CLAIMS

1. A cosmetic or pharmaceutical composition comprising, in a physiologically acceptable medium, at least one polymer comprising at least one monomeric compound of formula (I):

$$R_2$$
, R_3

10 in which:

- R_2 and R_3 , which are present on the same ring or each on a different ring, represent, independently of each other, a hydrogen, a halogen or a group of formula -X-G-P (II), with the proviso that at least one of the radicals R_2 and/or R_3 represents a group of formula (II), in which:
- X is chosen from the groups -O-, -S-, -SO-, -SO₂-,
 -NH- and -NR- with R representing a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 30 carbon atoms, optionally substituted with one or more groups chosen from =O, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;
- G is a linear, branched and/or cyclic, saturated and/or unsaturated divalent carbon-based radical containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH₂ and

halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

- P is a polymerizable group chosen from one of the following formulae:

in which:

- 10 R' represents H or a linear or branched, saturated C_{1-6} hydrocarbon-based radical,
 - X' represents O, NH or NR" with R" representing a radical chosen from C₁-6 alkyl, C₆-10 aryl, (C₆-10)
 5 aryl(C₁-6)alkyl and (C₁-6)alkyl(C₆-10)aryl radicals, the alkyl and/or aryl groups also possibly being substituted with one or more groups chosen from OH, halogen, C₁-6 alkoxy and C₆-10 aryloxy; preferably, X' represents O;

- m is equal to 0 or 1; n is equal to 0 or 1; p is equal to 0, 1 or 2; and
- B represents one of the following divalent aromatic 25 groups (IVa) to (IVd):

in which:

- R1 is linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;
- R22 is a hydrogen atom or a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from =O, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;
 - R20 and R21 are, independently of each other, a hydrogen atom, a linear or branched C1-8 alkyl radical or a cyclopentyl, cyclohexyl, cyclooctyl, cyclodecyl, cyclododecyl, benzyl, naphthyl or phenyl radical.
 - 2. The composition as claimed in the preceding claim, in which, in the monomeric compound, the radical R_2 is a hydrogen atom and R_3 is a group of formula (II).
- The composition as claimed in either of 25 preceding claims, in which, in the monomeric compound, in the group of formula (II), X is chosen from -O-, -NH- and -NR- with R preferentially representing a and/or cyclic, saturated linear, branched unsaturated hydrocarbon-based radical 30 optionally comprising a hydrocarbon-based ring that is saturated or unsaturated, containing 2 to especially 3 to 12 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH2 and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S.
 - 4. The composition as claimed in one of the preceding claims, in which, in the monomeric compound, X is

chosen from -NH- and -NR- with R representing a cyclohexyl.

5. The composition as claimed in one of the preceding claims, in which, in the monomeric compound, the divalent radical G is a linear, branched and/or cyclic, saturated or unsaturated divalent hydrocarbon-based radical optionally comprising a hydrocarbon-based ring that is itself saturated or unsaturated, containing in total 2 to 18 and especially 3 to 10 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P and Si.

15

20

- 6. The composition as claimed in one of the preceding claims, in which, in the monomeric compound, G is chosen from linear or branched, saturated divalent hydrocarbon-based radicals optionally comprising a saturated hydrocarbon-based ring, containing in total 2 to 18 and especially 3 to 10 carbon atoms.
- 7. The composition as claimed in one of the preceding claims, in which, in the monomeric compound, the polymerizable group P is chosen from one of the following formulae:

- 30 in which R' represents H or methyl.
- 8. The composition as claimed in one of the preceding claims, in which, in the monomeric compound, the group B is chosen from those of formula (IVa) in which R1 is preferentially a linear, branched and/or cyclic, saturated carbon-based radical containing 1 to 32

carbon atoms, especially 2 to 12 or even 3 to 6 carbon atoms; in particular, R1 may be a methyl, ethyl or propyl radical.

9. The composition as claimed in one of the preceding claims, in which the monomeric compound corresponds to one of the following formulae in which R is hydrogen or methyl:

. 10

10. The composition as claimed in one of the preceding claims, in which the polymer is a homopolymer of a monomeric compound as defined in one of claims 1 to 9.

5

11. The composition as claimed in one of claims 1 to 9, in which the polymer is a copolymer comprising only monomeric compounds as defined in one of claims 1 to 9.

10

12. The composition as claimed in one of claims 1 to 9, in which the polymer is a copolymer comprising at least one monomeric compound as defined in one of claims 1 to 9, and at least one additional componer.

- 13. The composition as claimed in either of claims 14 and 12, in which the polymer is a statistical, alternating, grafted, block or gradient copolymer.
- 14. The composition as claimed in either of claims 11 and 12, in which the monomeric compound is present in an amount of from 0.01% to 70% by weight relative to the weight of said polymer, especially in an amount of from 0.1% to 50% by weight, in particular from 0.5% to
- 25 30% by weight, or even from 1% to 20% by weight and better still from 2% to 10% by weight, the additional comonomers, alone or as a mixture, representing the remainder to 100% by weight.
- 30 15. The polymer as claimed in one of claims 12 to 14, characterized in that it comprises at least one

additional comonomer with an optical effect chosen from the compounds of formula (A) and/or of formula (B) below:

$$Ra_{1}$$
 Ra_{2}
 Ra_{3}
 Ra_{2}
 Ra_{3}
 Ra_{2}

5

10

15

20

in which:

- Ral represents a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 32 carbon atoms; optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

- Rb1 is chosen from (i) a hydrogen atom, (ii) a halogen atom, (iii) a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based containing 1 to 12 carbon atoms, optionally substituted with one or more groups chosen from =0, OH and NH_2 and/or optionally interrupted with one or heteroatoms chosen from O, N, P, Si and S; (iv) a group NRR' with R and R' being, independently of each other, a hydrogen atom or a linear, cyclic or branched, saturated C1-6 hydrocarbon-based radical, especially methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl or hexyl;

- Ra2 and Ra3, which are present on the same ring or each on a different ring, represent, independently of each other, a hydrogen, a halogen or a group of formula -Xa-Ga-Pa (II), with the proviso that at least one of the radicals Ra2 and/or Ra3 represents a group of formula (II), in which:

- Xa is chosen from the groups -O-, -S-, -SO-, -SO₂-, -NH- and -NR₄- with R4 representing a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 30 carbon atoms, optionally substituted with one or more groups chosen from =O, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

- Ga is a linear, branched and/or cyclic, saturated and/or unsaturated divalent carbon-based radical containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

15 - Pa is a polymerizable group chosen from one of the following formulae:

HC=CH₂

$$H(CH_2)_{\overline{m}} - (X')_{\overline{m}} - (CH_2)_{\overline{p}} - (CH_2)_{\overline{$$

in which:

- R' represents H or a linear or branched, saturated 20 C1-6 hydrocarbon-based radical,
 - X' represents O, NH or NR" with R" representing a radical chosen from C1-6 alkyl, C6-10 aryl, (C6-10) aryl (C1-6) alkyl and (C1-6) alkyl (C6-10) aryl radicals, the alkyl and/or aryl groups also possibly being substituted with one or more groups chosen from OH, halogen, C1-6 alkoxy and C6-10 aryloxy; and m is equal to 0 or 1; n is equal to 0 or 1; p is equal to 0, 1 or 2.
- 30 16. The composition as claimed in one of claims 12 to 15, in which the polymer comprises at least one additional comonomer chosen, alone or as a mixture,

from the following monomers:

- (i) ethylenic hydrocarbons containing from 2 to 10 carbons, such as ethylene, isoprene or butadiene;
- (ii) the (meth)acrylates of formula:

$$CH_2 = CHCOOR'_3$$
 or $H_2C=C$ — $COOR'_3$

in which R'₃ represents:

- a linear or branched alkyl group of 1 to 18 carbon atoms, in which is (are) optionally intercalated one or 10 more heteroatoms chosen from O, N, S and P; said alkyl group also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F), and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C1 to C6 alkyl group or a phenyl group; R'₃ may especially be a methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, hexyl, ethylhexyl, octyl, lauryl, isooctyl, isodecyl, dodecyl, cyclohexyl, t-butylcyclohexyl or stearyl group; 2-ethylperfluorohexyl; or 20 C₁₋₄ hydroxyalkyl group such as 2-hydroxyethyl, 2-hydroxypropyl; 2-hydroxybutyl. or (C_{1-4}) alkoxy (C_{1-4}) alkyl such group as methoxyethyl, ethoxyethyl or methoxypropyl,
- 25 a C_3 to C_{12} cycloalkyl group such as an isobornyl group,
 - a C_3 to C_{20} aryl group such as a phenyl group,
 - a C_4 to C_{30} aralkyl group (C_1 to C_8 alkyl group) such as 2-phenylethyl, t-butylbenzyl or benzyl,
- or more heteroatoms chosen from O, N and S, the ring being aromatic or non-aromatic,
 - a heterocycloalkyl group (1 to 4 C alkyl), such as furfurylmethyl or tetrahydrofurfurylmethyl,
- 35 said cycloalkyl, aryl, aralkyl, heterocyclic or heterocycloalkyl groups possibly being optionally

substituted with one or more substituents chosen from hydroxyl groups, halogen atoms and linear or branched C_{1-4} alkyl groups in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P, said alkyl groups also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F), and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C_1 to C_6 alkyl group or a phenyl group,

- R'_3 may also be a group - $(C_2H_4O)_m$ -R'', with m=5 to 150 and R''=H or C_1 to C_{30} alkyl, for example -POE-methyl or -POE-behenyl;

15 - (iii) the (meth)acrylamides of formula:

$$H_2C=C$$
— $CO-N$
 R_7

5

25

in which R_8 denotes H or methyl; and R_7 and R_6 , which may be identical or different, represent:

- a hydrogen atom; or
- a linear or branched alkyl group of 1 to 18 carbon atoms, in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P; said alkyl group also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F), and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C_1 to C_6 alkyl group or a phenyl group;
- R₆ and/or R₇ may especially be a methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, hexyl, ethylhexyl, octyl, lauryl, isooctyl, isodecyl, dodecyl, cyclohexyl, t-butylcyclohexyl or stearyl group; 2-ethylperfluorohexyl; or a C₁₋₄ hydroxyalkyl group such as 2-hydroxyethyl, 2-hydroxybutyl or 2-hydroxypropyl; or a (C₁₋₄)alkoxy(C₁₋₄)alkyl group such as methoxyethyl,

ethoxyethyl or methoxypropyl,

- a C_3 to C_{12} cycloalkyl group, such as an isobornyl group,
- a C_3 to C_{20} aryl group such as a phenyl group,
- 5 a C₄ to C₃₀ aralkyl group (C₁ to C₈ alkyl group) such as 2-phenylethyl, t-butylbenzyl or benzyl,
 - a 4- to 12-membered heterocyclic group containing one or more heteroatoms chosen from O, N and S, the ring being aromatic or non-aromatic,
- a heterocycloalkyl group (1 to 4 C alkyl), such as furfurylmethyl or tetrahydrofurfurylmethyl, cycloalkyl, aryl, aralkyl, heterocyclic heterocycloalkyl groups possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms and linear or branched 15 alkyl groups in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, and P, said alkyl groups also possibly optionally substituted with one or more substituents 20 chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F) and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C1 to C6 alkyl group, or a phenyl group;
- (iv) the vinyl compounds of formulae: CH₂=CH-R₉, CH₂=CH-CH₂-R₉ or CH₂=C(CH₃)-CH₂-R₉ in which R₉ is a hydroxyl group, halogen (Cl or F), NH₂, OR₁₀ in which R₁₀ represents a phenyl group or a C₁ to C₁₂ alkyl group (the monomer is a vinyl or allylic 30 ether); acetamide (NHCOCH₃); a group OCOR₁₁ in which R₁₁ represents a linear or branched alkyl group of 2 to 12 carbons (the monomer is a vinyl or allylic ester); or a group chosen from:
- a linear or branched alkyl group of 1 to 18 carbon atoms, in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P; said alkyl group also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F) and groups Si(R4R5), in

which R_4 and R_5 , which may be identical or different, represent a C_1 to C_6 alkyl group or a phenyl group;

- a C_3 to C_{12} cycloalkyl group such as isobornyl or cyclohexane,
- 5 a C_3 to C_{20} aryl group such as phenyl,

group, or a phenyl group;

- a C_4 to C_{30} aralkyl group (C_1 to C_8 alkyl group) such as 2-phenylethyl; benzyl,
- a 4- to 12-membered heterocyclic group containing one or more heteroatoms chosen from O, N and S, the ring being aromatic or non-aromatic,
- a heterocycloalkyl group (1 to 4 C alkyl), such as furfurylmethyl or tetrahydrofurfurylmethyl,

said cycloalkyl, aryl, aralkyl, heterocyclic or heterocycloalkyl groups possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms and linear or branched 1 to 4 C alkyl groups in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P, said alkyl groups also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F) and groups $Si(R_4R_5)$ in which R_4 and R_5 , which may be identical or different, represent a C_1 to C_6 alkyl

25

20

10

- (v) (meth)acrylic, (meth)acrylamide or vinyl monomers
containing a fluoro or perfluoro group, such as
ethylperfluorooctyl or 2-ethylperfluorohexyl
(meth)acrylate;

30

- (vi) silicone-based (meth)acrylic, (meth)acrylamide
or vinyl monomers, such as
methacryloxypropyltris(trimethylsiloxy)silane or
acryloxypropylpolydimethylsiloxane;

35

- (vii) ethylenically unsaturated monomers comprising at least one carboxylic, phosphoric or sulfonic acid, or anhydride, function, for instance acrylic acid, methacrylic acid, crotonic acid, maleic anhydride,

itaconic acid, fumaric acid, maleic acid, acrylamidopropanesulfonic acid, vinylbenzoic acid and vinylphosphoric acid, and the salts thereof;

- 5 (viii) ethylenically unsaturated monomers comprising at least one tertiary amine function, for instance 2-vinylpyridine, 4-vinylpyridine, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate or dimethylaminopropylmethacrylamide, and the salts 10 thereof.
- 17. The composition as claimed in one of claims 12 to 16, in which the additional comonomer(s) is (are) present in an amount of from 30% to 99.99% by weight, especially in an amount of from 50% to 99.9% by weight, in particular from 70% to 99.5% by weight, or even from 80% to 99% by weight, and better still from 90% to 98% by weight, relative to the weight of the final polymer.
- 20 The composition as claimed in one of claims 12 to 17, in which the additional comonomers are chosen, alone or as a mixture, from C_1-C_{18} alkyl or C_3-C_{12} cycloalkyl (meth)acrylates, and especially from methyl acrylate, methyl methacrylate, isobornyl acrylate, isobornyl methacrylate, isobutyl acrylate, 25 isobutyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, dodecyl acrylate, dodecyl methacrylate, stearyl acrylate, stearyl methacrylate, trifluoroethyl acrylate trifluoroethyl methacrylate; and alternatively acrylic acid, methacrylic 30 methacryloxypropyltris(trimethylsiloxy)silane, oxypropyltris(trimethylsiloxy)silane, acryloxypropylpolydimethylsiloxane methacryloxypropylpolyand dimethylsiloxane.
 - 19. The composition as claimed in one of the preceding claims, in which the polymer has a weight-average molecular mass (Mw) of between 5000 and 600 000 g/mol, especially between 10 000 and 300 000 g/mol and better

still between 20 000 and 150 000 g/mol.

20. The composition as claimed in one of the preceding claims, in which the polymer is present, alone or as a mixture, in an amount of from 0.01% to 60% by weight, preferably 0.1% to 50% by weight, especially 1% to 25% by weight or even 3% to 15% by weight and better still 5% to 12% by weight, relative to the total weight of the composition.

10

15

20

- 21. The composition as claimed in one of the preceding claims, in which the physiologically acceptable medium comprises a hydrophilic medium comprising water or a water/hydrophilic organic solvent(s) mixture and/or comprises a fatty phase.
- 22. The composition as claimed in one of the preceding claims, in which the fatty phase comprises waxes, pasty fatty substances, gums, lipophilic organic solvents and oils, and/or mixtures thereof.
- 23. The composition as claimed in one of the preceding claims, also comprising a particulate phase that may comprise pigments and/or nacres and/or fillers.

- 24. The composition as claimed in one of the preceding claims, comprising dyestuffs chosen from water-soluble dyes and/or liposoluble dyes.
- 30 25. The composition as claimed in one of the preceding claims, comprising at least one additional polymer such as a film-forming polymer.
- 26. The composition as claimed in one of the preceding claims, comprising at least one ingredient chosen from vitamins, thickeners, gelling agents, trace elements, softeners, sequestrants, fragrances, acidifying or basifying agents, preserving agents, sunscreens, surfactants, antioxidants, hair-loss counteractants,

antidandruff agents, propellants and ceramides, or mixtures thereof.

- The composition as claimed in one of the preceding claims, which is in the form of a suspension, dispersion especially of oil in water by means of vesicles; an optionally thickened or even gelled oily solution; an oil-in-water, water-in-oil or multiple emulsion; a gel or a mousse; an oily or emulsified gel; a dispersion of vesicles, especially lipid vesicles; a 10 two-phase or multi-phase lotion; a spray; a loose, compact or cast powder; an anhydrous paste; a lotion, a cream, a pomade, a soft paste, an ointment, a cast or molded solid especially as a stick or in a dish, or 15 alternatively a compacted solid.
- 28. The composition as claimed in one of the preceding claims, which is in the form of a care and/or makeup product for bodily or facial skin, the lips, the nails,
 20 the eyelashes, the eyebrows and/or the hair, an antisun or self-tanning product, or a hair product for caring for, treating, shaping, making up or dyeing the hair.
- 29. The composition as claimed in one of the preceding claims, which is in the form of a makeup composition, 25 especially a complexion product such as a foundation, a makeup rouge or an eyeshadow; a lip product such as a lipstick or a lipcare product; a concealer product; a blusher, a mascara or an eyeliner; an eyebrow makeup 30 product, a lip pencil or an eye pencil; a nail product such as a nail varnish or a nailcare product; a body makeup product; a hair makeup product (hair mascara or hair lacquer); a composition for protecting or caring for the skin of the face, the neck, the hands or the 35 especially an antiwrinkle composition moisturizing or treating composition; an antisun or artificial tanning composition; hair а especially for dyeing, holding the hairstyle, shaping the hair, caring for, treating or cleansing the hair,

such as shampoos, hairsetting gels or lotions, blowdrying lotions, and fixing and styling compositions such as lacquers or sprays.

- 5 30. A cosmetic process for making up or caring for keratin materials, especially bodily or facial skin, the lips, the nails, the eyelashes, the eyebrows and/or the hair, comprising the application to said materials of a cosmetic composition as defined in any one of claims 1 to 29.
 - 31. A monomeric compound of formula (I):

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

15

20

in which:

- R_2 and R_3 , present on the same ring or each on a different ring, represent, independently of each other, a hydrogen, a halogen or a group of formula -X-G-P (II), with the proviso that at least one of the radicals R_2 and/or R_3 represents a group of formula (II), in which:
- 25 X is chosen from -O-, -S-, -SO-, -SO₂-, -NH- and -NR- groups with R representing a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 30 carbon atoms, optionally substituted with one or more groups chosen from =O, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

- G is a linear, branched and/or cyclic, saturated and/or unsaturated divalent carbon-based radical, containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;
- P is a polymerizable group chosen from one of the 10 following formulae:

in which:

- 15 R' represents H or a linear or branched, saturated C_{1-6} hydrocarbon-based radical,
 - X' represents O, NH or NR" with R" representing a radical chosen from $C_{1^{-6}}$ alkyl, $C_{6^{-10}}$ aryl, $(C_{6^{-10}})$ aryl $(C_{1^{-6}})$ alkyl and $(C_{1^{-6}})$ alkyl $(C_{6^{-10}})$ aryl radicals, the alkyl and/or aryl groups also possibly being substituted with one or more groups chosen from OH, halogen, $C_{1^{-6}}$ alkoxy and $C_{6^{-10}}$ aryloxy; preferably, X' represents O;
- 25 m is equal to 0 or 1; n is equal to 0 or 1; p is equal to 0, 1 or 2; and
 - B represents one of the following divalent aromatic groups (IVa) to (IVd):

in which:

- R1 is a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from = O, OH, NH₂ and halogen atoms; - R22 is a hydrogen atom or a linear, branched and/or saturated and/or unsaturated carbon-based cyclic, 10 radical containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from = 0, OH, NH_2 and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

15 - R20 and R21 are, independently of each other, a hydrogen atom, a linear or branched C1-8 alkyl radical or a cyclopentyl, cyclohexyl, cyclooctyl, cyclodecyl, cyclododecyl, benzyl, naphthyl or phenyl radical; with the exclusion of the compounds for which, 20 simultaneously, P is of formula (IIIa), X' is O, m = 1, X is NH and B is of formula (IVc).

32. The monomeric compound as claimed in claim 31, in which R_2 is a hydrogen atom and R_3 is thus a group of formula (II).

33. The monomeric compound as claimed in either of claims 31 and 32, in which, in said group of formula (II), X is chosen from -O-, -NH- and -NR- with R preferentially representing a linear, branched and/or cyclic, saturated or unsaturated hydrocarbon-based radical optionally comprising a hydrocarbon-based ring that is itself saturated or unsaturated, containing 2

to 18 and especially 3 to 12 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S.

- 34. The monomeric compound as claimed in claim 33, in which the radical R is an ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl, hexyl, cyclohexyl, octyl, cyclooctyl, decyl, cyclodecyl, dodecyl, cyclododecyl, phenyl or benzyl radical.
- 35. The monomeric compound as claimed in one of claims 31 to 34, in which X is chosen from -NH- and -NR- with R representing a cyclohexyl.

10

35

- 36. The monomeric compound as claimed in one claims 31 to 35, in which the divalent radical G is a linear, branched and/or cyclic, saturated 20 unsaturated divalent hydrocarbon-based optionally comprising a hydrocarbon-based ring that is itself saturated or unsaturated, containing in total 2 to 18 and especially 3 to 10 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted 25 with one or more heteroatoms chosen from O, N, P and Si.
- The monomeric compound as claimed in one of 30 claims 31 to 36, in which G is chosen from linear or branched, saturated divalent hydrocarbon-based radicals optionally comprising a saturated hydrocarbon-based ring, containing in total 2 to 18 and especially 3 to 10 carbon atoms.

The monomeric compound as claimed in claims 31 to 37, in which G is chosen from ethylene, npropylene, isopropylene (or 1-methylethylene and 2-

methylethylene), n-butylene, isobutylene, pentylene,

n-pentylene, hexylene, especially especially n-hexylene, cyclohexylene, heptylene, octylene, cyclooctylene, decylene, cyclodecylene, cyclohexylespecially dimethylene of formula $-CH_2-C_6H_{10}-CH_2-$, dodecylene and cyclododecylene radicals.

39. The monomeric compound as claimed in one of claims 31 to 38, in which the polymerizable group P is chosen from one of the following formulae:

10

in which R' represents H or methyl.

40. The monomeric compound as claimed in one of claims 31 to 39, in which the group B is chosen from those of formula (IVa) in which R1 is preferentially a linear, branched and/or cyclic, saturated carbon-based radical containing 1 to 32 carbon atoms, especially 2 to 12 or even 3 to 6 carbon atoms; in particular, R1 may be a methyl, ethyl or propyl radical.

20

41. The monomeric compound as claimed in one of claims 31 to 40, corresponding to one of the following formulae, in which R is hydrogen or methyl:

42. A polymer comprising at least one monomeric compound as defined in one of claims 31 to 41.

43. The polymer as claimed in claim 42, characterized in that it is a homopolymer of a monomeric compound as defined in one of claims 31 to 41.

5

- 44. The polymer as claimed in claim 42, characterized in that it is a copolymer comprising only monomeric compounds as defined in one of claims 31 to 41.
- 10 45. The polymer as claimed in claim 44, characterized in that the monomeric compounds are each present in a proportion of from 0.5% to 99.5% by weight, especially 5% to 95% by weight, or even 10% to 90% by weight and better still each in a proportion of from 30% to 70% by weight, relative to the total weight of the polymer.
 - 46. The polymer as claimed in claim 42, characterized in that it is a copolymer comprising at least one monomeric compound as defined in one of claims 31 to 41, and at least one additional comonomer.
 - 47. The polymer as claimed in claim 42, characterized in that it is a statistical, alternating, grafted, block or gradient copolymer.

25

30

20

48. The polymer as claimed in either of claims 46 and 47, characterized in that the monomeric compound is present in an amount of from 0.01% to 70% by weight relative to the weight of said polymer, especially in an amount of from 0.1% to 50% by weight, in particular from 0.5% to 30% by weight, or even from 1% to 20% by weight and better still from 2% to 10% by weight, the additional comonomers, alone or as a mixture, representing the remainder to 100% by weight.

35

49. The polymer as claimed in one of claims 46 to 48, characterized in that it comprises at least one additional comonomer with an optical effect chosen from

the compounds of formula (A) and/or of formula (B) below:

$$Ra_1$$
 Rb_1
 Ra_2 , Ra_3
 Ra_2 , Ra_3
 Ra_3
 Ra_2 , Ra_3

5 in which:

- Ral represents a linear, branched and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 32 carbon atoms; optionally substituted with one or more groups chosen from =0, OH, NH₂ and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;
- Ra2 and Ra3, which are present on the same ring or each on a different ring, represent, independently of each other, a hydrogen, a halogen or a group of formula -Xa-Ga-Pa (II), with the proviso that at least one of the radicals Ra2 and/or Ra3 represents a group of formula (II), in which:
- is chosen from (i) a hydrogen atom, halogen atom, (iii) a linear, branched and/or cyclic, and/or unsaturated carbon-based 20 containing 1 to 12 carbon atoms, optionally substituted with one or more groups chosen from =0, OH and NH_2 and/or optionally interrupted with one heteroatoms chosen from O, N, P, Si and S; (iv) a group NRR' with R and R' being, independently of each other, a hydrogen atom or a linear, cyclic or branched, saturated C1-6 hydrocarbon-based radical, especially methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl or hexyl;
- 30 Xa is chosen from the groups -O-, -S-, -SO-, -SO₂-, -NH- and -NR₄- with R4 representing a linear, branched

and/or cyclic, saturated and/or unsaturated carbon-based radical containing 1 to 30 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH_2 and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

- Ga is a linear, branched and/or cyclic, saturated and/or unsaturated divalent carbon-based radical containing 1 to 32 carbon atoms, optionally substituted with one or more groups chosen from =0, OH, NH_2 and halogen atoms; and/or optionally interrupted with one or more heteroatoms chosen from O, N, P, Si and S;

- Pa is a polymerizable group chosen from one of the following formulae:

15

10

in which:

- R' represents H or a linear or branched, saturated C1-6 hydrocarbon-based radical,
- X' represents O, NH or NR" with R" representing a radical chosen from C1-6 alkyl, C6-10 aryl, (C6-10) aryl(C1-6) alkyl and (C1-6) alkyl(C6-10) aryl radicals, the alkyl and/or aryl groups also possibly being substituted with one or more groups chosen from OH, halogen, C1-6 alkoxy and C6-10 aryloxy; and
- 25 m is equal to 0 or 1; n is equal to 0 or 1; p is equal to 0, 1 or 2.
- 50. The polymer as claimed in one of claims 46 to 49, characterized in that it comprises at least one additional hydrophilic comonomer, or a mixture of such comonomers, which may be present in a proportion of from 1% to 99.99% by weight, especially 2-70% by

weight, better still 5-50% by weight or even 10-30% by weight, relative to the total weight of the copolymer.

- 51. The polymer as claimed in one of claims 46 to 49, characterized in that it comprises at least one additional hydrophobic comonomer, or a mixture of such comonomers, which may be present in a proportion of from 1% to 99.99% by weight, especially 30-98% by weight, better still 50-95% by weight or even 70-90% by weight, relative to the total weight of the copolymer.
 - 52. The polymer as claimed in one of claims 46 to 49, characterized in that it comprises at least one additional comonomer chosen, alone or as a mixture, from the following monomers:
 - (i) ethylenic hydrocarbons containing from 2 to 10 carbons, such as ethylene, isoprene or butadiene;
- 20 (ii) the (meth)acrylates of formula:

$$CH_2 = CHCOOR'_3$$
 or $H_2C=C$ — $COOR'_3$

in which R'3 represents:

15

- a linear or branched alkyl group of 1 to 18 carbon atoms, in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P; said alkyl 25 group also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F), and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C₁ to C₆ alkyl group or a phenyl group; 30 R'₃ may especially be a methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, hexyl, ethylhexyl, octyl, lauryl, isodecyl, dodecyl, isooctyl, cyclohexyl, t-butylcyclohexyl or stearyl group; 2-ethylperfluorohexyl; or 35 a C₁₋₄ hydroxyalkyl group such as 2-hydroxyethyl, 2-hydroxybutyl 2-hydroxypropyl; or or а

 (C_{1-4}) alkoxy (C_{1-4}) alkyl group such as methoxyethyl, ethoxyethyl or methoxypropyl,

- a C_3 to C_{12} cycloalkyl group such as an isobornyl group,
- 5 a C_3 to C_{20} aryl group such as a phenyl group,
- a C_4 to C_{30} aralkyl group (C_1 to C_8 alkyl group) such as 2-phenylethyl, t-butylbenzyl or benzyl,
 - a 4- to 12-membered heterocyclic group containing one or more heteroatoms chosen from O, N and S, the ring being aromatic or non-aromatic,
 - a heterocycloalkyl group (1 to 4 C alkyl), such as furfurylmethyl or tetrahydrofurfurylmethyl,

said cycloalkyl, aryl, aralkyl, heterocyclic heterocycloalkyl groups possibly being optionally substituted with one or more substituents chosen from 15 hydroxyl groups, halogen atoms and linear or branched alkyl groups in which is (are) intercalated one or more heteroatoms chosen from O, N, and P, said alkyl groups also possibly being 20 optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F), and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C1 to C6 alkyl group or a phenyl group,

25 - R'_3 may also be a group - $(C_2H_4O)_m$ -R'', with m=5 to 150 and R''=H or C_1 to C_{30} alkyl, for example -POE-methyl or -POE-behenyl;

- (iii) the (meth)acrylamides of formula:

$$H_2C=C$$
—CO-N R_7

30

in which R_8 denotes H or methyl; and R_7 and R_6 , which may be identical or different, represent:

- 35 a hydrogen atom; or
 - a linear or branched alkyl group of 1 to 18 carbon

atoms, in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P; said alkyl group also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl. Br. I and F) and groups Si(R.R.) in

halogen atoms (Cl, Br, I and F), and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C_1 to C_6 alkyl group or a phenyl group;

 R_6 and/or R_7 may especially be a methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, hexyl, ethylhexyl,

- octyl, lauryl, isooctyl, isodecyl, dodecyl, cyclohexyl, t-butylcyclohexyl or stearyl group; 2-ethylperfluorohexyl; or a C₁₋₄ hydroxyalkyl group such as 2-hydroxyethyl, 2-hydroxybutyl or 2-hydroxypropyl; or a (C₁₋₄)alkoxy(C₁₋₄)alkyl group such as methoxyethyl, ethoxyethyl or methoxypropyl,
 - a C_3 to C_{12} cycloalkyl group, such as an isobornyl group,
 - a C_3 to C_{20} aryl group such as a phenyl group,
- a C_4 to C_{30} aralkyl group (C_1 to C_8 alkyl group) such 20 as 2-phenylethyl, t-butylbenzyl or benzyl,
 - a 4- to 12-membered heterocyclic group containing one or more heteroatoms chosen from O, N and S, the ring being aromatic or non-aromatic,
- a heterocycloalkyl group (1 to 4 C alkyl), such as
 25 furfurylmethyl or tetrahydrofurfurylmethyl,

said cycloalkyl, aryl, aralkyl, heterocyclic or heterocycloalkyl groups possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms and linear or branched C₁-C₄ alkyl groups in which is (are) optionally

- 30 C₁-C₄ alkyl groups in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P, said alkyl groups also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I
- and F) and groups $Si(R_4R_5)$, in which R_4 and R_5 , which may be identical or different, represent a C_1 to C_6 alkyl group, or a phenyl group;
 - (iv) the vinyl compounds of formulae:

CH₂=CH-R₉, CH₂=CH-CH₂-R₉ or CH₂=C(CH₃)-CH₂-R₉ in which R₉ is a hydroxyl group, halogen (Cl or F), NH₂, OR₁₄ in which R₁₄ represents a phenyl group or a C₁ to C₁₂ alkyl group (the monomer is a vinyl or allylic ether); acetamide (NHCOCH₃); a group OCOR₁₅ in which R₁₅ represents a linear or branched alkyl group of 2 to 12 carbons (the monomer is a vinyl or allylic ester); or a group chosen from:

- a linear or branched alkyl group of 1 to 18 carbon atoms, in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, S and P; said alkyl group also possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F) and groups Si(R₄R₅), in which R₄ and R₅, which may be identical or different, represent a C₁ to C₆ alkyl group or a phenyl group;
 a C₃ to C₁₂ cycloalkyl group such as isobornyl or
 - a C_3 to C_{20} aryl group such as phenyl,

cyclohexane,

- 20 a C_4 to C_{30} aralkyl group (C_1 to C_8 alkyl group) such as 2-phenylethyl; benzyl,
 - a 4- to 12-membered heterocyclic group containing one or more heteroatoms chosen from O, N and S, the ring being aromatic or non-aromatic,
- 25 a heterocycloalkyl group (1 to 4 C alkyl), such as furfurylmethyl or tetrahydrofurfurylmethyl,
- cycloalkyl, aryl, aralkyl, heterocyclic heterocycloalkyl groups possibly being optionally substituted with one or more substituents chosen from hydroxyl groups, halogen atoms and linear or branched 1 30 to 4 C alkyl groups in which is (are) optionally intercalated one or more heteroatoms chosen from O, N, and P, said alkyl groups also possibly optionally substituted with one or more substituents
- chosen from hydroxyl groups, halogen atoms (Cl, Br, I and F) and groups $Si\left(R_4R_5\right)$ in which R_4 and R_5 , which may be identical or different, represent a C_1 to C_6 alkyl group, or a phenyl group;

- (v) (meth)acrylic, (meth)acrylamide or vinyl monomers
containing a fluoro or perfluoro group, such as
ethylperfluorooctyl or 2-ethylperfluorohexyl
(meth)acrylate;

5

- (vi) silicone-based (meth)acrylic, (meth)acrylamide or vinyl monomers, such as methacryloxypropyltris(trimethylsiloxy)silane or acryloxypropylpolydimethylsiloxane;

10

15

- (vii) ethylenically unsaturated monomers comprising at least one carboxylic, phosphoric or sulfonic acid, or anhydride, function, for instance acrylic acid, methacrylic acid, crotonic acid, maleic anhydride, itaconic acid, fumaric acid, maleic acid, acrylamidopropanesulfonic acid, vinylbenzoic acid and vinylphosphoric acid, and the salts thereof;
- (viii) ethylenically unsaturated monomers comprising at least one tertiary amine function, for instance 2-vinylpyridine, 4-vinylpyridine, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate or dimethylaminopropylmethacrylamide, and the salts thereof.

25

- 53. The polymer as claimed in one of claims 46 to 52, characterized in that the additional comonomer(s) is (are) present in an amount of from 30% to 99.99% by weight, especially in an amount of from 50% to 99.9% by weight, in particular from 70% to 99.5% by weight or even from 80% to 99% by weight and better still from 90% to 98% by weight relative to the weight of the final polymer.
- 35 54. The polymer as claimed in one of claims 46 to 53, characterized in that the additional comonomers are chosen, alone or as a mixture, from C₁-C₁₈ alkyl or C₃-C₁₂ cycloalkyl (meth)acrylates, and especially from methyl acrylate, methyl methacrylate, isobornyl

isobornyl methacrylate, isobutyl acrylate, acrylate, 2-ethylhexyl isobutyl methacrylate, acrylate, 2-ethylhexyl methacrylate, dodecyl acrylate, dodecyl methacrylate, stearyl acrylate, stearyl methacrylate, trifluoroethyl acrylate and trifluoroethyl alternatively acrylic methacrylate; or methacryloxypropyltris(trimethylmethacrylic acid, siloxy) silane, acryloxypropyltris(trimethylsiloxy) acryloxypropylpolydimethylsiloxane silane, and methacryloxypropylpolydimethylsiloxane. 10

- 55. The polymer as claimed in one of claims 46 to 54, characterized in that it has a weight-average molecular mass (Mw) of between 5000 and 600 000 g/mol, especially between 10 000 and 300 000 g/mol and better still between 20 000 and 150 000 g/mol.
- 56. The use of at least one monomeric compound as defined in one of claims 31 to 41, or of at least one 20 polymer as defined in one of claims 42 to 55, in a composition, for giving said composition optical effects, especially fluorescence effects.