Introduction to Neural Computation

Michale Fee
MIT BCS 9.40 — 2018
Video Module on Nernst Potential
Part 2

The Nernst potential for potassium

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

lon	Cytoplasm	Extracellular	Nernst
	(mM)	(mM)	(mV)
K ⁺	400	20	-75

$$\Delta V = \frac{kT}{q} \ln \left(\frac{\left[K \right]_{out}}{\left[K \right]} \right) \qquad \frac{kT}{q} = 25 \text{mV at 300K (room temp)}$$
 for monovalent ion

$$E_K = 25mV(-3.00) = -75mV$$

How to implement an ion specific conductance as a battery in our model neuron

Potassium I-V relation

One of the best ways to study the function of an ion channel is to plot the current-voltage relation (I-V curve). This can be measured as the current required to hold the neuron at a given voltage.

For a potassium conductance

- If you hold the voltage above the equilibrium potential, K current will flow out through the membrane (positive current)
- If you hold the cell below E_K, then the current will flow into the cell.

Note that the current <u>reverses</u> at the equilibrium potential, so this is often referred to as the 'reversal potential'

I-V relation

This relation turns out to be monotonic and roughly linear for ion channels in the open state. So we can write:

$$I_K = G_K (V - E_K)$$
, $G_K = R_K^{-1}$

We can model this as a battery in series with a resistor! Why?

$$\Delta V = \frac{I_K}{G_K}$$

$$\Delta V = E_K$$

$$V_{m} \stackrel{\bullet}{Q} V_{m} = E_{K} + \frac{I_{K}}{G_{K}} \longrightarrow I_{K} = G_{K}(V - E_{K})$$

driving potential

Our equation is now:

$$I_K + C\frac{dV}{dt} = I_e$$

$$G_K(V - E_K) + C \frac{dV}{dt} = I_e$$
 , $R_K = G_k^{-1}$, $\tau = R_K C$

$$V + \tau \frac{dV}{dt} = E_K + R_K I_e$$

$$V_{ee}$$

$$V + \tau \frac{dV}{dt} = V_{\infty}, \qquad V_{\infty} = E_K + R_K I_e$$

Response to current injection

A mathematical model of a neuron

Equivalent circuit model

Alan Hodgkin Andrew Huxley, 1952

The Nernst Potential is different for different ions

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

lon	Cytoplasm (mM)	Extracellular (mM)	Nernst (mV)
K ⁺	400	20	-75
Na ⁺	50	440	

$$E_{Na} = 25mV \ln\left(\frac{440}{50}\right) = 25mV(2.17) = 54.3mV$$

The Nernst Potential is different for different ions

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

lon	Cytoplasm (mM)	Extracellular (mM)	Nernst (mV)
K ⁺	400	20	-75
Na ⁺	50	440	+54
Cl-	52	560	

$$E_{Cl} = -25mV \ln\left(\frac{560}{52}\right) = -25mV(2.38) = -59.4mV$$

The negative here comes from the negative charge of the Cl⁻ ion (q=-e)

The Nernst Potential is different for different ions

Intracellular and extracellular concentrations of ionic species, and the Nernst potential

lon	Cytoplasm (mM)	Extracellular (mM)	Nernst (mV)
K ⁺	400	20	-75
Na ⁺	50	440	+55
Cl ⁻	52	560	-59
Ca ⁺⁺	10-4	2	+124

$$E_{Ca} = 12.5 \, mV \ln \left(\frac{2}{.0001} \right) = 124 \, mV$$

Outline of HH model

Voltage and time-dependent ion channels are the 'knobs' that control membrane potential.

- Na⁺channels push the membrane potential toward +50mV.
- K⁺ channels push the membrane potential toward -80mV.
- Together these channels give the neural machinery flexible control of voltage!
- for example to generate an action potential