BÀI 4. TÍCH PHÂN MẶT LOẠI I & II

1.1. Định nghĩa

Cho hàm số f(x, y, z) xác định trên mặt S. Chia S một cách tùy ý thành n phần không dẫm lên nhau, diện tích mỗi phần là ΔS_i (i=1,2,...,n). Trong mỗi ΔS_i ta lấy điểm $M_i(x_i,y_i,z_i)$

tùy ý và lập tổng tích phân
$$I_n = \sum_{i=1}^n f(x_i, y_i, z_i) \Delta S_i$$
.

Nếu
$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta S_i$$
 tồn tại hữu hạn, không

phụ thuộc vào cách chia S và cách chọn điểm M_i thì số I được gọi là *tích phân mặt loại I* của f(x, y, z) trên S.

Ký hiệu
$$I = \iint_{S} f(x, y, z) dS$$
.

1.1. Định nghĩa

Nhận xét: Tích phân mặt loại 1 có các tính chất như tích phân đường loại 1.

1.2. Phương pháp tính

a) Chiếu S lên Oxy

 Nếu S có phương trình z = z(x, y) và S có hình chiếu trên Oxy là D thì:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, z(x, y)) \sqrt{1 + \left(z_{x}^{\prime}\right)^{2} + \left(z_{y}^{\prime}\right)^{2}} dx dy.$$

b) Chiếu S lên Oxz

 Nếu S có phương trình y = y(x, z) và S có hình chiếu trên Oxz là D thì:

$$\iint\limits_{S} f(x,y,z)dS = \iint\limits_{D} f(x,y(x,y),z) \sqrt{1 + \left(y_{x}^{\prime}\right)^{2} + \left(y_{z}^{\prime}\right)^{2}} dxdz.$$

1.2. Phương pháp tính

- c) Chiếu S lên Oyz
- Nếu S có phương trình x = x(y, z) và S có hình chiếu trên
 Oyz là D thì:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x(y, z), y, z) \sqrt{1 + \left(x'_{y}\right)^{2} + \left(x'_{z}\right)^{2}} dy dz.$$

Chú ý: Nếu hình chiếu của S xuống mp Oxy chỉ là một đường cong (trường hợp này xảy ra khi S là một mặt trụ song song với Oz) thì phải chiếu S xuống các mp khác, không chiếu xuống mp Oxy.

Ví dụ: Tính $\iint x^2 + y^2 + z^2 ds, \text{ trong } S$ đó S là phần của mặt nón $z = \sqrt{x^2 + y^2}$ nằm giữa hai mặt phẳng z = 0 và z = 3.

Ta có:

$$D = S \Big|_{0 \times y} : x^2 + y^2 \le 9.$$

Vậy

$$\iint_{S} (x^{2} + y^{2} + z^{2}) ds = \iint_{D} 2(x^{2} + y^{2}) . \sqrt{2} dx dy = \dots$$

Ví dụ: Tính tích phân $\iint_S x^2 + y^2 ds$, trong

đó S là nửa trên của mặt cầu $x^2 + y^2 + z^2 = R^2$

lấy phần $z \ge 0$

Ta có:

$$S: z = \sqrt{R^2 - x^2 - y^2}$$

$$D = S \Big|_{Oxy} : x^2 + y^2 \le R^2$$

Vậy

$$\iint_{S} (x^{2} + y^{2}) ds = \iint_{D} (x^{2} + y^{2}) \cdot \sqrt{\frac{R^{2}}{R^{2} - x^{2} - y^{2}}} dx dy = \dots$$

Ví dụ: Tính
$$\iint_S x + y + z \, ds$$
 trong đó S cho bởi $x + y + z = 1$, $z \ge 0$, $x \ge 0$, $y \ge 0$

Ta có:

$$S: z = 1 - x - y$$

$$D = S \Big|_{0 \times y} : \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 - x \end{cases}$$

Vậy

$$\iint_{S} (x + y + z) ds = \iint_{D} (x + y + z) . \sqrt{3} dx dy = \dots$$

Ví dụ: Tính $\iint x + y + z \, ds$ trong đó S là Smặt xung quanh hình chóp cho bởi $x + y + z \le 1, \ z \ge 0, x \ge 0, y \ge 0$

Mặt S gồm có bốn mặt của tứ diện OABC
Tích phân S₁ trên mặt ABC đã tính trong ví
dụ trước. Ta tính tích phân trên các mặt còn
lại OAB, OBC, OCA

Trên mặt OAB, phương trình của mặt là z = 0, hình chiếu của mặt xuống Oxy là chính tam giác OAB

1.3. Ứng dụng

- 1) Diện tích mặt S là $\iint_S dS$.
- 2) Nếu mặt S có hàm mật độ khối lượng là $\rho(x, y, z)$ thì khối lượng của mặt S là:

$$m = \iint_{S} \rho(x, y, z) dS.$$

Khi đó, tọa độ trọng tâm G của mặt S là:

$$x_G = \frac{1}{m} \iint_{S} x \rho(x, y, z) dS, \ \mathbf{y}_G = \frac{1}{m} \iint_{S} y \, \rho(x, y, z) dS,$$

$$z_G = \frac{1}{m} \iint_{S} z \rho(x, y, z) dS.$$

1.3. Ứng dụng

Vi du: Tính diện tích nửa trên mặt cầu bán kính R và diện tích toàn bộ mặt cầu .

Ví dụ: Tính diện tích của mặt cong S, trong đó S là phần của mặt paraboloid $z = 2 - x^2 - y^2$ lấy trong phần $0 \le z \le 1$

2.1. Định nghĩa

2.1.1. Mặt định hướng

- Xem mặt cong S là tập hợp các điểm M(x,y,z) thỏa mãn phương trình : F(x,y,z) = 0 (1).
- Mặt S gọi là mặt tron nếu vector gradient $\nabla_{F(x, y, z)} = (F_x, F_y, F_z)$ liên tục và khác θ trên S (hay nói cách khác hàm F(x,y,z) có các đạo hàm riêng F_x , F_y , F_z liên tục và không đồng thời bằng 0 trên S).
- Chú ý rằng mặt cong S thường cho bởi phương trình

$$z = f(x, y), (x, y) \in G$$
 (2).

Khi đó ta có thể coi phương trình trên là trường hợp riêng của dạng

$$F(x, y, z) = f(x, y) - z = 0$$
 có $\nabla_{F(x, y, z)} = (f_x, f_y, -1).$

Và khi đó mặt S là mặt tron khi và chỉ khi các đạo hàm riêng f_x , f_y liên tục trên G.

2.1. Định nghĩa

2.1.1. Mặt định hướng

Định nghĩa: Mặt trơn S được gọi là *mặt định hướng* nếu pháp vector đơn vị \vec{n} xác định tại mọi điểm M thuộc S (có thể trừ biên S) biến đổi liên tục khi M chạy trên S. Mặt định hướng có hai phía, phía mà nếu đứng trên đó thì \vec{n} hướng từ chân lên đầu là phía dương, ngược lại là phía âm.

• Hướng của biên S là hướng ngược chiều kim đồng hồ khi nhìn từ ngọn của \vec{n} .

2.1. Định nghĩa

2.1.1. Mặt định hướng

• Khi mặt S không kín, ta gọi *phía trên* là phía mà *n* lập với tia Oz góc nhọn, ngược lại là *phía dưới*.

Khi mặt S kín ta gọi phía trong và phía ngoài.

• Mặt trơn từng khúc S là định hướng được nếu hai phần trơn bất kỳ của S nối với nhau bởi đường biên C có định

hướng ngược nhau.

2.1. Định nghĩa

2.1.2. Định nghĩa tích phân mặt loại 2

• Cho hàm số f(x, y, z) xác định trên mặt định hướng, trơn từng khúc S. Chia S một cách tùy ý thành n phần không dẫm lên nhau, diện tích mỗi phần là ΔS_i (i=1,2,...,n). Trong mỗi ΔS_i ta lấy điểm $M_i(\xi_i, \eta_i, \xi_i)$ tùy ý.

Gọi D_i là hình chiếu của ΔS_i lên Oxy kèm theo dấu *dương* nếu ΔS_i có *định hướng trên*, ngược lại là dấu *âm*.

Lập tổng tích phân
$$I_n = \sum_{i=1}^n f(\xi_i, \eta_i, \xi_i).S(D_i)$$
.

2.1. Định nghĩa

2.1.2. Định nghĩa tích phân mặt loại 2

Nếu
$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i, \eta_i, \xi_i).S(D_i)$$
 tồn tại hữu hạn,

không phụ thuộc vào cách chia S và cách chọn điểm M_i thì số I được gọi là *tích phân mặt loại 2* của f(x, y, z) trên mặt định hướng S.

Ký hiệu
$$\iint_S f(x, y, z) dxdy$$
.

• Tương tự, khi chiếu S lên Ozx và Oyz ta có $\iint_S f(x,y,z)dzdx \text{ và } \iint_S f(x,y,z)dydz.$

2.1. Định nghĩa

2.1.2. Định nghĩa tích phân mặt loại 2

• Kết hợp cả 3 dạng trên ta được *tích phân mặt loại 2* của các hàm P, Q, R trên S:

$$\iint_{S} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$$

<u>Nhận xét</u>

- Nếu đổi hướng của mặt S thì tích phân đổi dấu.
- Nếu S kín thì tích phân còn được ký hiệu là:

$$\bigoplus_{S} P dy dz + Q dz dx + R dx dy.$$

2.1. Định nghĩa

2.1.2. Định nghĩa tích phân mặt loại 2

• Kết hợp cả 3 dạng trên ta được *tích phân mặt loại 2* của các hàm P, Q, R trên S:

$$\iint_{S} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$$

<u>Nhận xét</u>

- Nếu đổi hướng của mặt S thì tích phân đổi dấu.
- Nếu S kín thì tích phân còn được ký hiệu là:

$$\bigoplus_{S} P dy dz + Q dz dx + R dx dy.$$

2.2. Liên hệ với tích phân mặt loại 1

• Cho mặt định hướng trơn từng khúc S có pháp vector đơn vị \vec{n} . Gọi α , β , γ lần lượt là góc hợp bởi \vec{n} với các tia Ox, Oy, Oz. Khi đó:

$$\iint_{S} P dy dz + Q dz dx + R dx dy = \iint_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS.$$

Trong đó:

$$|\cos \alpha| = \frac{1}{\sqrt{1 + (x_y')^2 + (x_z')^2}},$$

$$|\cos \beta| = \frac{1}{\sqrt{1 + (y_x')^2 + (y_z')^2}}, |\cos \gamma| = \frac{1}{\sqrt{1 + (z_x')^2 + (z_y')^2}}.$$

Chú ý: $\vec{n} = (c \circ s^{\alpha}, c \circ s^{\beta}, c \circ s^{\gamma})^{-}$ pháp vector đơn vị của mặt S.

2.3. Phương pháp tính (Đưa về tích phân kép)

Giả sử cần tính tích phân

$$\iint_{S} R \, dx \, dy = \iint_{S} R \, c \, o \, s \, \gamma \, ds \quad (3),$$

trong đó, S là mặt cong có phương trình z = z(x,y) (trơn hoặc trơn từng khúc) với pháp vector định hướng n lên trên (tức là phía trên của mặt cong và pháp vector n tạo với hướng dương của trục Oz một góc nhọn).

Vế phải (3) là giới hạn của tổng tích phân mặt loại 1

$$\sum_{i=1}^{n} R(x_i, y_i, z(x_i, y_i)) .cos^{\gamma} .\Delta S_i$$
 (4)

Mặt khác, ta có

$$cos^{\gamma}.^{\Delta}S_{i} \approx ^{\Delta}D_{i}$$
 (5),

$$\mathbf{v\acute{o}i}^{\Delta}D_{i} = \Delta_{S_{i}}|_{\mathbf{O}\times\mathbf{V}}$$
.

Chú ý: Do n tạo với Oz góc nhọn nên $\cos^{\gamma} > 0$ và Δ_{D_i} lấy dấu +.

2.3. Phương pháp tính (Đưa về tích phân kép)

Thế (5) vào (4) ta được tổng tích phân kép, qua giới hạn ta được

$$\iint_{R(x,y,z(x,y))dxdy} = \iint_{R(x,y,z(x,y))dxdy},$$

trong đó
$$D = S |_{Oxy}$$
.

Nếu đối hướng của mặt S (tức đối phía của S) thì $\cos^{\gamma} \le 0$ và $\Delta_{D_{\tau}}$ lấy dấu -, tức là

$$\iint_{R(x, y, z)dxdy} = -\iint_{R(x, y, z(x, y))dxdy}.$$

Tương tự, tả có

$$\iint_{S} P \, dy \, dz = \pm \iint_{D_{yz}} P(x(y,z), y, z) \, dy \, dz,$$

$$\iint_{Q} Q \, dx \, dz = \pm \iint_{D_{yz}} Q(x, y(x,z), z) \, dx \, dz.$$
S
$$\int_{D_{yz}} P(x(y,z), y, z) \, dy \, dz$$

2.3. Phương pháp tính (Đưa về tích phân kép)

Chú ý: Nếu hình chiếu của S xuống một mặt phẳng nào đó (ví dụ mặt phẳng Oxy) chỉ là một đường cong (trường hợp này xảy ra khi S là một phần mặt trụ có các đường sinh song song với trục Oz) thì tích phân tương ứng với các biến vi phân của mặt phẳng đó bằng 0 (tức $\iint_{R} dx dy = 0$).

2.3 Phương pháp tính (Đưa về tích phân kép)

Ví dụ: Tính $I = \iint yz dx dy$, S - phía ngoài của mặt giới hạn bởi

$$x^{2} + y^{2} \le R^{2}, x \ge 0, y \ge 0, 0 \le z \le h.$$

Ta có:

$$I = \iint_{S_1} = \iint_{S_2} + \iint_{S_3} + \iint_{S_4} + \iint_{S_5},$$
trong đó

 S_1, S_2 – hai mặt đáy; S_3, S_4 – hai mặt bên nằm trong Oxz, Oyz tương ứng; s, - mặt trụ cong.

cong.

Vì
$$\iint_{s_3} = \iint_{s_4} = \iint_{s_5} = 0$$
 (xem chú ý 2.3) và $\iint_{s_1} yzdxdy = 0$ (vì z = 0) nên

$$I = \iint_{\substack{yz dx dy \\ s_2}} yz dx dy = h \iint_{\substack{x'' + y^2 \le R^2 \\ x \ge 0, y \ge 0}} ydx dy = h \int_{0}^{\frac{\pi}{2}} \sin \varphi d\varphi \int_{0}^{R} r^2 dr = \frac{hR^3}{3}.$$

2.3. Phương pháp tính (Đưa về tích phân kép)

Ví du

Tính
$$I = \iint_{S} (x+z) dx dy$$

trong đó S là phần mặt $z = x^2 + y^2$, bị cắt bởi mặt phẳng x + z = 2, phía dưới theo hướng trục 0z.

Pháp véctơ tạo với 0z một góc luôn tù.

Phương trình: $z = x^2 + y^2$

Hình chiếu của S xuống 0xy:

$$x^2 + y^2 \le 2 - x$$

$$(x+1/2)^2 + y^2 \le 9/4$$

2.3. Phương pháp tính (Đưa về tích phân kép)

$$I = \iint_{S} (x+z)dxdy$$

$$= -\iint_{(x+1/2)^2 + y^2 \le 9/4} (x+(2-x))dxdy$$

$$I = -\iint_{(x+1/2)^2 + y^2 \le 9/4} 2dxdy$$

$$= -2 \cdot S_{\text{hình tròn}} = -2 \cdot \frac{9}{4} \pi$$

* Dùng liên hệ với tích phân mặt loại 1

Ví dụ

Tính
$$I = \iint_{S} (2x + y)dydz + (2y + z)dxdz + (2z + x)dxdy$$

trong đó S là phần mặt phẳng x + y + z = 3 nằm trong hình trụ $x^2 + y^2 = 2x$, phía dưới theo hướng trục 0z.

Pháp vécto đơn vị:
$$\overrightarrow{n_0} = \left(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$$

$$I = \iint_{S} \left((2x + y)\frac{-1}{\sqrt{3}} + (2y + z)\frac{-1}{\sqrt{3}} + (2z + x)\frac{-1}{\sqrt{3}}\right) ds$$

$$I = \frac{-3}{\sqrt{3}} \iint_{S} (x + y + z) ds$$

$$= -\sqrt{3} \iint_{x^2 + y^2 \le 2x} (x + y + 3 - x - y) \sqrt{1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} dx dy$$

$$= -9 \cdot S_{\text{hình tròn}} = -9\pi$$

2.4. Định lý Stokes (liên hệ giữa tích phân mặt và tích phân đường)

Cho mặt định hướng S trơn từng khúc với biên là chu tuyến C trơn từng khúc và không tự cắt (chu tuyến đơn giản). Cho các hàm P, Q, R và các đạo hàm riêng cấp một của chúng liên tục trong miền mở chứa S. Khi đó ta **có công thức Stokes**:

$$\iint_{S} \left(\frac{\partial_{R}}{\partial_{y}} - \frac{\partial_{Q}}{\partial_{z}} \right) dy dz + \left(\frac{\partial_{P}}{\partial_{z}} - \frac{\partial_{R}}{\partial_{x}} \right) dx dz + \left(\frac{\partial_{Q}}{\partial_{x}} - \frac{\partial_{P}}{\partial_{y}} \right) dx dy = \int_{C} P dx + Q dy + R dz \quad (5),$$

trong đó, hướng của chu tuyến C được lấy theo hướng dương ứng với mặt định hướng S.

* Để dễ nhớ có thể viết công thức Stokes ở dạng "hình thức" sau

$$\iint_{S} \begin{vmatrix} dydz & dxdz & dxdy \\ \frac{\partial}{\partial_{x}} & \frac{\partial}{\partial_{y}} & \frac{\partial}{\partial_{z}} \\ P & Q & R \end{vmatrix} = \int_{C} P dx + Q dy + R dz.$$

2.4. Định lý Stokes (liên hệ giữa tích phân mặt và tích phân đường)

Lưu ý: Công thức Stokes thường được dùng ở dạng liên hệ giữa tích phân đường loại 2 và tích phân mặt loại 1.

$$\int_{C} P dx + Q dy + R dz = \iint_{S} \left[\left(\frac{\partial_{R}}{\partial_{y}} - \frac{\partial_{Q}}{\partial_{z}} \right) \cos \alpha + \left(\frac{\partial_{P}}{\partial_{z}} - \frac{\partial_{R}}{\partial_{x}} \right) \cos \beta + \left(\frac{\partial_{Q}}{\partial_{x}} - \frac{\partial_{P}}{\partial_{y}} \right) \cos \gamma \right] ds \quad (6),$$

với $n = (\cos^{\alpha}, \cos^{\beta}, \cos^{\gamma})^{-}$ vector pháp đơn vị ứng với phía của mặt cong S.

* Để dễ nhớ có thể viết công thức Stokes ở dạng "hình thức" sau

$$\int_{C} P dx + Q dy + R dz = \iint_{S} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial_{x}} & \frac{\partial}{\partial_{y}} & \frac{\partial}{\partial_{z}} \\ P & Q & R \end{vmatrix} ds.$$

2.4. Định lý Stokes (liên hệ giữa tích phân mặt và tích phân đường)

Ví dụ: Tính tích phân $I = \int_{x^2} y^3 dx + dy + z dz$, trong đó C là đường tròn $x^2 + y^2 = R^2$ trong mặt phẳng z = 0 lấy ngược chiều kim đồng hồ nhìn từ hướng dương của trục Oz.

Theo định lý Stokes, chuyển tích phân trên thành tích phân mặt S, với S là hình tròn $x^2 + y^2 \le R^2$ trong mặt phẳng Oxy hướng lên trên (theo chiều dương của trục Oz). Vậy

$$I = \int_{C} x^{2} y^{3} dx + dy + z dz = \iint_{x^{2} + y^{2} \le R^{2}} 0 \, dy dz + 0 \, dx dz - 3 \, x^{2} y^{2} dx dy =$$

$$= -3 \int_{0}^{2^{\pi}} \cos^{2} \varphi \sin^{2} \varphi \, d\varphi \int_{0}^{R} r^{5} \, dr = -\frac{3}{8} \left(\varphi - \frac{\sin 4\varphi}{4} \right) \Big|_{0}^{2^{\pi}} \cdot \frac{r^{6}}{6} \Big|_{0}^{R} = -\frac{\pi R^{6}}{8}.$$

2.4. Định lý Stokes (liên hệ giữa tích phân mặt và tích phân đường)

Ví dụ: Tính tích phân $I = \int_{y} dx + z dy + x dz$, với C là đường tròn giao của mặt cầu $x^2 + y^2 + z^2 = R^2$ và mặt phẳng x + y + z = 0 và hướng tích phân trên C là hướng dương khi nhìn từ ngọn của tia Oz.

Gọi S là hình tròn với biên là đường tròn C. Theo định lý Stokes ta có:

$$I = -\iint_{S} dydz + dxdz + dxdy = -\iint_{S} (\cos\alpha + \cos\beta + \cos\gamma) ds,$$

 $\cos \alpha$, $\cos \beta$, $\cos \gamma$ – các cosin chỉ hướng của vector pháp $\frac{1}{n}$ của mặt phẳng

$$x + y + z = 0$$
. Mà ta có: $\vec{n} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, vậy

$$I = -\sqrt{3} \iint ds = -\sqrt{3}\pi R^{2}.$$

2.5. Định lý Gauss – Ostrogratski (liên hệ giữa tích phân mặt và tích phân bội ba)

Cho Ω là miền đóng, bị chặn trong không gian, với biên S tron từng khúc (tức là có thể chia S thành hữu hạn các mặt tron). Cho các hàm P, Q, R và các đạo hàm riêng cấp một của chúng liên tục trong miền mở chứa Ω . Khi đó ta có công thức:

$$\iint_{S} P \, dy \, dz + Q \, dx \, dz + R \, dx \, dy = \iiint_{\Omega} \left(\frac{\partial_{P}}{\partial_{x}} + \frac{\partial_{Q}}{\partial_{y}} + \frac{\partial_{R}}{\partial_{z}} \right) dx \, dy \, dz, \quad (*)$$

trong đó tích phân mặt được lấy theo phía ngoài của mặt S.

Chú ý: Nhờ công thức G - O, ta có thể tính thể tích vật thể bằng cách tính tích phân mặt nếu lấy P = x, Q = y, R = z. Khi đó (*) trở thành:

$$\iiint_{\Omega} 3 \, dx dy dz = \iint_{S} x dy dz + y dx dz + z dx dy$$

$$\Rightarrow V(\Omega) = \frac{1}{3} \iint_{S} x dy dz + y dx dz + z dx dy,$$

với S là mặt biên của Ω lấy theo phía ngoài.

2.5. Định lý Gauss – Ostrogratski (liên hệ giữa tích phân mặt và tích phân bội ba)

Ví dụ: Tính tích phân $I = \iint_S x^3 dy dz + y^3 dx dz + z^3 dx dy$, với S là phía ngoài mặt cầu $x^2 + y^2 + z^2 = R^2$.

Theo công thức G - O ta có:

$$I = 3 \iiint_{\Omega} (x^2 + y^2 + z^2) \, dx \, dy \, dz.$$

Chuyển sang tọa độ cầu

$$I = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{R} \rho^{4} d\rho = \frac{12}{5} \pi R^{5}.$$