Analytic Hierarchical Process

Decisão

É comum o **gerente** se deparar com uma situação na qual uma **decisão** deve ser tomada entre uma série de alternativas conflitantes e concorrentes, então duas opções básicas se apresentam:

- 1) usar a sua intuição gerencial; e
- 2) realizar um processo de modelagem da situação, simulando os mais diversos cenários, de maneira a estudar mais profundamente o problema

Propostas para tratar problemas multicriteriais

Economia

Multi-Atribute-Utility Theory

Preços-sombra

Engenharia e Administração

Métodos de "score": AHP, Electre, Star, ...

Quantificar a importância de cada critério

Avaliar como cada alternativa contribui a cada critério

Identificar a alternativa com melhor contribuição total (ponderando as contribuições a cada critério pela importância desses critérios)

Propostas para tratar problemas multicriteriais

Exemplo de análise multicriterial: seleção de projeto

A inclinação das retas (razão B/C) determina a seleção. (desprezando a escala dos projetos)

Análise multicriterial

Desafios

Escala de medida em cada critério

m2 ou número de dormitórios?

Linear?

Importância relativa de cada critério

Linear?

Depende do tomador de decisão: seu nível de riqueza, sua idade, etc

Exemplo: seleção de um emprego

Passo 1: Listar os critérios de decisão

Passo 2: Definir um peso para cada critério

Passo 3: Avaliar como cada alternativa satisfaz cada critério: atribua uma nota ou um grau

Passo 4: Compute o score de cada alternativa, ponderando as notas de cada alternativa em todos os critérios

Passo 5: Ordene as alternativas segundo os scores

Exemplo: seleção de um emprego

Passo 1: Listar os critérios de decisão;

Passo 2: Definir um peso para cada critério;

Passo 3: Avaliar como cada alternativa satisfaz cada critério: atribua uma nota ou um grau;

Passo 4: Compute o score de cada alternativa, ponderando as notas de cada alternativa em todos os critérios;

Passo 5: Ordene as alternativas segundo os scores

Critério	Ponderação (w _i)
Progressão na carreira	5
Localização	3
Gestão	4
Salário	3
Prestigio	2
Estabilidade	4
Trabalho agradável	5

Exemplo: seleção de um emprego

Passo 1: Listar os critérios de decisão;

Passo 2: Definir um peso para cada critério;

Passo 3: Avaliar como cada alternativa satisfaz cada critério: atribua uma nota ou um grau;

Passo 4: Compute o score de cada alternativa, ponderando as notas de cada alternativa em todos os critérios:

Passo 5: Ordene as alternativas segundo os scores

Ponderação (w _i)	Analyst – Chicago	Accountant - Denver	Auditor Houston
5	8	6	4
3	3	8	7
4	5	6	9
3	6	7	5
2	7	5	4
4	4	7	6
5	8	6	5
	Ponderação (w _i) 5 3 4 3 2 4 5	Ponderação (W _i) Analyst – Chicago 5 8 3 3 4 5 3 6 2 7 4 4 5 8	Ponderação (W _i) Analyst – Chicago Accountant - Denver 5 8 6 3 3 8 4 5 6 3 6 7 2 7 5 4 4 7 5 8 6

Ponderação de notas

Passo 1: Listar os critérios de decisão;

Passo 2: Definir um peso para cada critério;

Passo 3: Avaliar como cada alternativa satisfaz cada critério: atribua uma nota ou um grau;

Passo 4: Compute o score de cada alternativa, ponderando as notas de cada alternativa em todos os critérios;

Passo 5: Ordene as alternativas segundo os scores

Ponderação linear

$$S_j = \sum_i w_i \, r_{ij}$$

Onde:

w, = (weight) peso do critério i na decisão;

 r_{ii} = (rating) grau da alternativa j no critério i;

 S_{j} = (score) nota ponderada da alternativa j;

Ponderação de notas

Passo 1: Listar os critérios de decisão;

Passo 2: Definir um peso para cada critério;

Passo 3: Avaliar como cada alternativa satisfaz cada critério: atribua uma nota ou um grau;

Passo 4: Compute o score de cada alternativa, ponderando as notas de cada alternativa em todos os critérios:

Passo 5: Ordene as alternativas segundo os scores

Ponderação linear

$$S_j = \sum_i w_i \, r_{ij}$$

Primeira alternativa — Analyst in Chicago									
Ponderação (w _i)	Grau (r _{i1})	$\mathbf{W_{i}r_{i1}}$							
5	8	40							
3	3	9							
4	5	20							
3	6	18							
2	7	14							
4	4	16							
5	8	40							
	Score	157							
	Ponderação (w _i) 5 3 4	Ponderação (w _i) Grau (r _{i1}) 5 8 3 3 4 5 3 6 2 7 4 4 5 8							

Ponderação de notas

Ponderação linear

$$S_j = \sum_i w_i \, r_{ij}$$

Primeira alternativa – Analyst in Chicago							
Critério	Ponderação (w _i)	Grau (r _{i1})	W _i r _{i1}				
Progressão na carreira	5	8	40				
Localização	3	3	9				
Gestão	4	5	20				
Salário	3	6	18				
Prestigio	2	7	14				
Estabilidade	4	4	16				
Trabalho agradável	5	8	40				
		Score	157				

Ponderação (w _i)	And the second s	
. 5	Grau (r _{i2})	$\mathbf{W}_{i}\mathbf{r}_{i2}$
5	6	30
3	8	24
4	6	24
3	7	21
2	5	10
4	7	28
5	6	30
	Score	167
	4	5 6 8 4 6 3 7 2 5 4 7 5 6

	Terceira alternativa – A	Auditor Houston	
Critério	Ponderação (w _i)	Grau (r _{i3})	$W_i\Gamma_{i3}$
Progressão na carreira	5	4	20
Localização	3	7	21
Gestão	4	9	36
Salário	3	5	15
Prestigio	2	4	8
Estabilidade	4	6	24
Trabalho agradável	5	5	25
		Score	149
	_		

10

AHP : Analytic Hierarchy Process

O "Processo Análise Hierárquica" desenvolvido pelo Prof. Thomas Saaty da Universidade da Pennsylvania, é um método de score com as seguintes características:

estruturação hierárquica:

critérios de primeiro nível decompostos em critérios de segundo nível

...

critérios detalhados: os atributos sob os quais analisar as alternativas

ponderação entre critérios estabelecida por

comparação aos pares

graus de satisfação das alternativas aos atributos por

comparação aos pares

AHP : Analytic Hierarchy Process

AHP : Analytic Hierarchy Process

AHP : Analytic Hierarchy Process

Nível 01

SELEÇÃO DE UM EMPREGO

Objetivo

AHP Analytic Hierarchy Process: Escalas

Estudos mostraram que as comparações aos pares devem adotar uma escala de 1 a 9:

Intensida de	Definição	Explicação
1	Mesma importância	As duas atividades contribuem igualmente para o objetivo.
2	Fraca importância	Entre igual e moderada importância.
3	Importância moderada	A experiência ou julgamento é fracamente a favor de uma atividade sobre outra.
4	Moderada para forte importância	Entre moderada e forte importância.
5	Fortemente importante	A experiência ou julgamento é fortemente a favor de uma atividade sobre outra.
6	Fortemente para muito fortemente preferível	Entre forte e muito forte importância.
7	Muito fortemente ou demonstra importância	Uma atividade é muito fortemente preferida sobre outra. A sua dominância é possível na prática.
8	Importância quase extrema	Entre muito forte e extrema importância.
9	Extrema importância	A evidência de preferência de uma atividade pode ser afirmada em sua

Escala	Avaliação	Recíproco	Comentário Os dois critérios contrinbuem igualmente para os objetivos				
Igualmente preferido	1	1					
Moderadamente preferido	3	1/3	A experiência e o julgamento favorecem um critério levemente sobre o outro				
Fortemente preferido	5 1/5		A experiência e o julgamento favorecem um critério fortemente sobre o outro				
Muito fortemente preferido	mente 7 1/7		Um critério é fortemente favorecido em relação a outro e pode ser demonstrado				
Extremamente preferido	9 1		Um critério é favorecido em relação a outro com o mais alto grau de certeza				
Valores intermediários	2, 4, 6 e 8	1/2; 1/4; 1/6 e 1/8	Quando o consenso não for obtido e houver necessidade de uma negociação				

AHP Analytic Hierarchy Process: Escalas

Valor numérico	Significado na determinação dos Pesos	Significado na determinação dos Graus			
9	Critério A é extremamente preferível ao critério B, na consecução do critério hierarquicamente acima.	Em relação ao atributo em análise, o Projeto tem grau de satisfação extremamente melh que o do Projeto Q			
		· · · ·			
1	Indiferente	Igual			

AHP Analytic Hierarchy Process: Escalas

Uma possível prática metodológica seria pedir para cada um dos (k) participantes preencher tabelas.

Escala da preferência dos usuários

Atributo-base	9	7	5	3	1	3	5	7	9	Atributo
Disponibilidade infraestrutura										operabilidade e confiabilidade
Disponibilidade infraestrutura										hidrografia e solo
operabilidade e confiabilidade										hidrografia e solo

Indique, a cada par de atributos constantes na Tabela o de sua maior preferência, de acordo com a escala de preferências.

Registro das preferências par-a-par dos analistas para os critérios do nível da hierarquia h

	Escala da preferência dos especialistas										
critério-base	9	7	5	3	1	3	5	7	9	critério	$A_{i,j}$
c_1						İ				c_2	$a_{1,2}$
c_1					8					c_3	$a_{1,3}$
c_1										:	
c_1										c_i	$a_{1,i}$
c_1				Î	C.					:	
c_1										c_{n-1}	$a_{1,n-1}$
c_1										c_n	$a_{1,n}$
c_2										c_3	$a_{2,3}$
c_2										i	:
c_2										c_i	$a_{2,i}$
c_2										:	:
c_2										c_{n-1}	$a_{2,n-1}$
c_2		2								c_n	$a_{2,n}$
c_3										c_i	$a_{3,i}$
c_3										:	:
c_3					6.0					c_{n-1}	$a_{3,n-1}$
c_3			d.	23						c_n	$a_{3,n}$
c_i										c_{n-1}	$a_{i,n-1}$
c_i										c_n	$a_{i,n}$
c_{n-1}										c_n	$a_{n-1,n}$

Neste ponto, apenas os coeficientes $\mathbf{a}_{i,j}$ acima da diagonal principal da matriz A são preenchidos, tendo como referência a Tabela.

		c_1	c_2	c_3	• • •	c_i	• • •	c_{n-1}	c_n
	c_1	1	$a_{1,2}$	$a_{1,3}$	• • •	$a_{1,i}$	* * *	$a_{1,n-1}$	$a_{1,n}$
	c_2		1	$a_{2,3}$	• • •	$a_{2,i}$	•••	$a_{2,n-1}$	$a_{2,n}$
	c_3			1	•	$a_{3,i}$		$a_{3,n-1}$	$a_{3,n}$
A:	:				1	:		:	:
	c_i					1	• • •	$a_{i,n-1}$	$a_{i,n}$
							1		:
	c_{n-1}							1	$a_{n-1,n}$
	c_n								1

Na sequência é realizado o preenchimento dos coeficientes $a_{i,j}$, abaixo da diagonal principal da **matriz de decisão A**, atribuindo o valor $a_{i,j}$ = 1/ $a_{j,i}$

		c_1	c_2	c_3		c_i		c_{n-1}	c_n
	c_1	1	$a_{1,2}$	$a_{1,3}$	• •	$a_{1,i}$	• •	$a_{1,n-1}$	$a_{1,n}$
	c_2	$\frac{1}{a_{1,2}}$	1	$a_{2,3}$	• 1•::•	$a_{2,i}$		$a_{2,n-1}$	$a_{2,n}$
	c_3	$\frac{1}{a_{1,3}}$	$\frac{1}{a_{2,3}}$	1	• • •	$a_{3,i}$		$a_{3,n-1}$	$a_{3,n}$
=	(*)				1	•	• • •	:	•
А	c_i	$rac{1}{a_{1,i}}$	$rac{1}{a_{2,i}}$	$rac{1}{a_{3,i}}$		1	• • •	$a_{i,n-1}$	$a_{i,n}$
				•••	::		1		•
	c_{n-1}	$\frac{1}{a_{1,n-1}}$	$\frac{1}{a_{2,n-1}}$	$\frac{1}{a_{3,n-1}}$		$\frac{1}{a_{i,n-1}}$	• • •	1	$a_{n-1,n}$
	c_n	$\frac{1}{a_{1,n}}$	$\frac{1}{a_{2,n}}$	$\frac{1}{a_{3,n}}$	• • •	$\frac{1}{a_{i,n}}$	***	$\frac{1}{a_{n-1,n}}$	1

A matriz de decisão é sempre uma matriz quadrada, recíproca e positiva.

A compreensão fundamental desta etapa considera que, se o analista soubesse os **pesos relativos de cada um dos critérios** de uma matriz de n elementos, então **a matriz de comparação dos pares deveria ser equivalente a A,** em que:

	$\left(\frac{w_1}{w_1}\right)$	<u>W1</u>		$\frac{w_1}{}$
	W_1	W_2		W_n
	$\frac{W^2}{}$	$\frac{w_2}{}$		$\frac{W^2}{}$
A =	W_1	W_2		W_n
	÷	÷	٠.	i
	$\frac{Wn}{}$	\overline{Wn}		$\frac{Wn}{}$
9	$\backslash w_1$	W_2		W_n

Supondo que w = (w1, w2, ..., wn) são estimativas precisas, todos os elementos da matriz são consistentes:

* (wi/wj): importância relativa dos elementos da linha de ordem i em relação aos elementos da coluna de ordem j.

*w = (w1, w2, ..., wn): os pesos numéricos que refletirão os julgamentos registrados.

$$A = \begin{pmatrix} \frac{w_1}{w_1} & \frac{w_1}{w_2} & \dots & \frac{w_1}{w_n} \\ \frac{w_2}{w_1} & \frac{w_2}{w_2} & \dots & \frac{w_2}{w_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \dots & \frac{w_n}{w_n} \end{pmatrix}$$

A representação dos pesos relativos wi/wj é eficiente para mostrar a dominância do julgamento de uma alternativa em relação a outra, e é muito usual na literatura. Se o tomador de decisão, por exemplo, afirma que a alternativa 1 é moderadamente melhor do que a alternativa 2 (nota 3 na escala), o elemento a 12 da matriz vale 3/1, isto é, $w_i = 3$ e $w_i = 1$. E também se sabe que o elemento a_{21} vale 1/3.

$$A = \begin{bmatrix} \frac{w_1}{w_1} & \frac{w_1}{w_2} & \dots & \frac{w_1}{w_n} \\ \frac{w_2}{w_1} & \frac{w_2}{w_2} & \dots & \frac{w_2}{w_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \dots & \frac{w_n}{w_n} \end{bmatrix}$$

Para wi o peso relativo do critério i. Nesse caso, os pesos relativos podem ser facilmente obtidos de qualquer uma das n linhas de A porque Aw = nw para w = $(w_1, w_2, ..., w_n)$.

Aw = nw

Cada entrada da matriz de comparação, a_{ij} deve ser considerada como uma estimativa da razão entre os elementos da linha de ordem i e os elementos da coluna de ordem j, isto é, $a_{ij} = w_i / w_j$

Uma matriz quase consistente $A=(a_{ij})$ é uma pequena perturbação multiplicativa de uma matriz consistente $W=(w_i/w_j)$.

A utilização da representação Ax=cx significaria que estamos falando de matrizes quase consistentes, que um autovetor x, que é uma pequena perturbação do autovetor w da matriz consistente.

Solução exata usando autovalores e autovetores

É frequente se ver na literatura a relação Ax=cx do cálculo do autovetor e do autovalor representada por $Aw=\lambda_{max}w$, onde $w=(w_1,w_2,...,w_n)$ é o autovetor principal e λ_{max} é o autovalor máximo correspondente.

$$\begin{bmatrix} \frac{w_1}{w_1} & \frac{w_1}{w_2} & \dots & \frac{w_1}{w_n} \\ \frac{w_2}{w_1} & \frac{w_2}{w_2} & \dots & \frac{w_2}{w_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \dots & \frac{w_n}{w_n} \end{bmatrix} \times \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix} = \lambda_{\max} \times \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix}$$

No caso ideal, todos os autovalores são zero, exceto um, que é λ .

Solução exata usando autovalores e autovetores

Método Autovetor Direito: pode-se calcular o autovalor e o autovetor de qualquer matriz por dois métodos: algébrico e numérico. O cálculo algébrico é efetuado a partir da equação característica da matriz. A equação característica da decisão M é a seguinte

$$Det(M - \lambda I) = \begin{vmatrix} 1 - \lambda & 3 & 6 \\ \frac{1}{3} & 1 - \lambda & 2 \\ \frac{1}{6} & \frac{1}{2} & 1 - \lambda \end{vmatrix} = 0$$

$$A \mid 1 \quad 3 \quad 6$$

$$M = B \mid \frac{1}{3} \quad 1 \quad 2$$

$$C \mid \frac{1}{6} \quad \frac{1}{2} \quad 1 \end{vmatrix}$$

$$Det(M - \lambda I) = [(1 - \lambda)^3 + 1 + 1] - [(1 - \lambda) + (1 - \lambda) + (1 - \lambda)] = [1 - 3\lambda + 3\lambda^2 - \lambda^3 + 2] - [3 - 3\lambda] = [3\lambda^2 - \lambda^3] = 0.$$

 λ = 0 e λ = 3, Conforme o teorema de Perron enunciado anteriormente, é necessário obter o maior autovalor (λ max) que estará associado ao autovetor principal da referida matriz positiva. Portanto, o λ max será 3

Solução exata usando autovalores e autovetores

W1 / W1	W1 / W2	W1 / W3		W1		λ W1
W2 / W1	W2 / W2	W2 / W3	•	W2	=	λ W2
W3 / W1	W3 / W2	W3 / W3		W3		λ W3

Neste caco, **λ**=3 e não houve inconsistência. Na prática, a matriz de comparações aos pares apresenta inconsistências. Veremos exemplo.

Hierarquia de critérios

Atribuindo graus

No critério **CUSTO** *Brush Pik* é moderadamente preferível a *Cornell* Células da matriz são 3 e 1/3

Atribuindo graus

Método do autovetor: $Aw = \lambda w$

	Cornell	Brush Pik	Picobuy
Cornell	1	1/3	6
Brush Pik	3	1	7
Picobuy	1/6	1/7	1

Sabemos que para determinar o autovetor correspondente ao maior autovalor de uma matriz, podemos fazer por aproximações: Começando com yo arbitrário, calculamos y_{i+1} multiplicando A por y_i e normalizando-o.

y0	A y0	y1	A y1	y2	A yi	yi+1	A yi	w	lambda								
1	7,333	0,373	0,960	0,290	0,883	0,290	0,906	0,293	0,908	0,293	0,907	0,293	0,907	0,293	0,907	0,293	3,100
1	11,000	0,560	2,147	0,647	1,957	0,643	1,982	0,640	1,987	0,641	1,986	0,641	1,986	0,641	1,986	0,641	3,100
1	1,310	0,067	0,209	0,063	0,204	0,067	0,207	0,067	0,207	0,067	0,207	0,067	0,207	0,067	0,207	0,067	3,100

Método do autovetor: $Aw = \lambda w$

w 0,293 0,641 0,067

Verificando se esses valores condizem com a matriz (w_i/w_i):

,293 / ,293	,293 / ,641	,293 / ,067		1,0	0,5	4,4
,641 / ,293	,641 / ,641	,641 / ,067	=	2,2	1,0	9,6
,067 / ,293	,067 / ,641	,067 / ,067		0,2	0,1	1,0

A matriz de comparações original (ao lado) difere um pouco da que resulta do autovetor, pois havia inconsistência.

1	1/3	6
3	1	7
1/6	1/7	1

Índice de Consistência (CI)

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$

Para testar o resultado do processo, é necessário conhecer se há consistência na comparação pareada realizada. Segundo a teoria de Saaty isto vai indicar se os dados estão logicamente relacionados.

Índice de Consistência aleatória (RI)

É necessário ainda consultar o índice de inconsistência aleatória RI, que é o mesmo índice de inconsistência calculado em uma matriz gerada aleatoriamente na escala de julgamentos de 1 a 9, com os valores recíprocos calculados de modo a forçar sua consistência.

n	IR
2	0,00
3	0,58
4	0,90
5	1,12
6	1,24
7	1,32
8	1,41

Razão de inconsistência CR

É o CR que mede a inconsistência dos julgamentos de uma matriz, e tem como valor aceitável até 0,10 no caso de cinco ou mais alternativas, 0,08 para quatro elementos e 0,05 para três elementos. Quando CR = 0, a matriz é dita absolutamente consistente

$$CR = \frac{CI}{RI}$$

Verificando consistência

O autovalor máximo deveria ser λ =n (onde n é a ordem da matriz), No caso max = 3.10.

Índice de Inconsistência proposto por Saaty: CI = (max - n)/(n - 1) = (3.10 - 3)/2 = .05

Índice de Inconsistência de matrizes aleatórios: RI = .58 (para matrizes de ordem 3)

Percentual de inconsistência: CR = CI / RI = .05/.58 = 9%

Percentual de inconsistência menor que 10% é muito bom.

Hierarquia de critérios

CUSTO

	Cornell	Brush Pik	Picobuy
Cornell	1	1/3	6
Brush Pik	3	1	7
Picobuy	1/6	1/7	1

CR = CI / RI = .05/.58 = 9%

Confiabilidade

		Cornell	Brush P	ik F	Picobuy
Cornell Brush Pik Picobuy	1 1/7 1/2	7 1 1,	/5	2 5 1	

Cornell: [.63]
Brush Pik: .24
Picobuy: [.13]

Inconsistência:

Ruim: 52% deveria rever as comparações

Cornell Brush Pik Picobuy Cornell Brush Pik 1/8 1/8 Picobuy

Prazo de Entrega

Cornell: .471

Brush Pik: .059

Picobuy: |.471

Inconsistência:

verificada: 0%

Importância Relativa dos Critérios

Também para avaliar as importâncias dos critérios, novamente se usa matriz de comparações aos pares:

	Custo	Confiabil.	Prazo	
Custo	1	7	9	
Confiabil.	1/7	1	7	
Prazo	1/9	1/7	1	

Custo: [.729]
Confiabil.: .216
Prazo: [.055]

Ponderando

Scores são obtidos ponderando graus pela importância dos respectivos critérios

	أ			. /	
Pesos		05	cri	TP	rins
			\smile		

[.729 .216 .055]

	Cust	Conf.	Prazo
Graus nos critérios			
Cornell	.298	.571	.471
Brush Pik	.632	.278	.059
Picobuy	.069	.151	.471

Prioridade

Scores são obtidos ponderando graus pela importância dos respectivos critérios

Cornell: (.729)(.298) + (.216)(.571) + (.055)(.471) = .366

Brush Pik: (.729)(.632) + (.216)(.278) + (.055)(.059) = .524

Picobuy: (.729)(.069) + (.216)(.151) + (.055)(.471) = .109

Comentários Finais

- Número de níveis hierárquicos: use de 1 a 3.
- Se um critério aparentemente for mais que 9 vezes mais importante que outro, é porque deveria estar acima na hierarquia de critérios.
- Metodologia serve para critérios qualitativos e quantitativos. Quando as alternativas têm medidas conhecidas em um critério (por exemplo, o valor a investir no projeto, ou a área de um terreno) pode-se usar essas medidas, mas provavelmente seja melhor aplicar uma curva de utilidade antes de usar o AHP.
- Se critérios e alternativas apresentam influências que não podem ser representadas numa árvore: use ANP (Analytic Network Process)