Cognitive Effects of Sugar & Caffeine on Human Alertness

Group 6

Stella, Katherine, Katinka, Audrey, Janet, Soomedha

Introduction

Research Question

"How does caffeine and sugar affect a person's mental alertness?"

Sampling Process

- Randomly selected city in Bonne Santé
- Randomly selected people of different age groups using birth records and schools

**Note: This is not completely randomized since our sample is limited to specific towns on a single island.

Factor Identification

Treatment Variables

i. Sugar

(sugar free / with sugar)

ii. Caffeine

(caffeine free / with caffeine)

Response Variable

Improvement in Vigilance

Test Score

(minutes)

Measured in minutes taken to circle all Z's on a page of 2000 random letters before and after drinking an energy drink.

Nuisance Factor

Age

(children, youth, adult, senior)

Groupings were based on Statistics Canada.

Experimenta I Design

2² Factorial Design with 1 Block

Sampling Process & Sample

Data from Eden Size

House	Name	Sugar	Caffeine	Age Block	Age	В4	After	Vigilance Test Improvement	Age
148	Jeremy Bager	0	0	1	0-14	6.4	6.2	0.2	12
262	Laurie Zaman	0	1	1	0-14	6.2	6.1	0.1	10
228	Adam Watanabe	1	0	1	0-14	6.6	6.2	0.4	8
491	Karlene Morris	1	1	1	0-14	7.7	7.1	0.6	7
376	Armand Bhatt	0	0	2	15-24	5.2	5.3	-0.1	19
412	Ella Jensen	0	1	2	15-24	3.9	3.9	0	22
417	Claire Erickson	1	0	2	15-24	5.8	5.6	0.2	18
384	Harvey Edwards	1	1	2	15-24	4.6	4.4	0.2	15
Arcadia 443	Lamont Page	0	0	3	25-64	5.3	5.2	0.1	53
271	Aahna Ramanuj	0	1	3	25-64	5.4	5.3	0.1	45
721	Ishana Shah	1	0	3	25-64	4.9	4.5	0.4	32
478	Pranay Asan	1	1	3	25-64	5.5	5.1	0.4	32
352	Jermaine Bager	0	0	4	65+	5.2	4.9	0.3	76
227	Asmee Bhatt	0	1	4	65+	7.3	7.4	-0.1	73
230	Zania Banerjee	1	0	4	65+	5	4.6	0.4	66
20	Mallory Abel	1	1	4	65+	4	4.1	-0.1	73

```
> sugar <- rep(c(0, 0, 1, 1), 4)
> caffeine <- rep(c(0, 1), 8)
> block <- c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4))
> response <- c(-0.2, -0.1, -0.4, -0.6,
              0.1, 0, -0.2, -0.2,
              -0.1, -0.1, -0.4, -0.4,
              -0.3, -0.1, -0.4, 0.1)
> response <- response * -1
> model_no_block <- aov(response ~ factor(sugar)*factor(caffeine))
> model_block <- gov(response ~ factor(sugar)*factor(caffeine) + factor(block))</pre>
> summary(model_no_block)
                            Df Sum Sa Mean Sa F value Pr(>F)
factor(sugar)
                             1 0.1806 0.18063 5.522 0.0367 *
                                                                        Compared to the
factor(caffeine)
                             1 0.0156 0.01563 0.478 0.5026
factor(sugar):factor(caffeine) 1 0.0006 0.00063 0.019 0.8923
                                                                      MSE, we can note
Residuals
                            12 0.3925 0.03271
                                                                     that MS block is not
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                         that large. So,
> summary(model_block)
                                                                         blocking is not
                            Df Sum Sa Mean Sa F value Pr(>F)
factor(sugar)
                             1 0.18063 0.18063 6.359 0.0327 *
                                                                            necessary.
factor(caffeine)
                             1 0.01563 0.01563 0.550 0.4772
                             3 0.13688 0.04563 1.606 0.2554
factor(block)
factor(sugar):factor(caffeine) 1 0.00062 0.00062 0.022 0.8853
                             9 0.25563 0.02840
Residuals
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> #no block
> d <- 0.2
> MSE <- 0.03271
> #install.packages("pwr")
> library(pwr)
> pwr.anova.test(k = 4, f = d/sqrt(MSE), power = 0.9)
    Balanced one-way analysis of variance power calculation
                                                Since n = 4.035544.
            n = 4.035544
                                                  we should use at
             f = 1.105833
     sig.level = 0.05
                                                       least n = 5
         power = 0.9
                                                    replicates per
NOTE: n is number in each aroup
                                                 treatment combo.
```

01 Interpreting Our Results

A Breakdown of Our Data

This process was repeated 6 times for 6 random cities on the island of Bonne Santé. With 16 observations per city, we collected data on a total of 96 subjects.

Our Models

Main Effects

Age block is NOT significant

Without blocking

```
```{r}
model1 <- aov(Vigilance.Test.Improvement ~ factor(Sugar)*factor(Caffeine), data = data)
summary(model1)
 Df Sum Sa Mean Sa F value Pr(>F)
factor(Sugar)
 1 1.4259 1.4259 43.650 2.5e-09 ***
 factor(Caffeine)
 1 0.0126 0.0126
 0.386
 0.536
 factor(Sugar):factor(Caffeine) 1 0.0009 0.0009
 0.029
 0.866
 Residuals
 92 3.0054 0.0327
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Sugar is
 significant
```

#### With age block

```
```{r}
model2 <- aov(Vigilance.Test.Improvement ~ factor(Sugar)*factor(Caffeine)</pre>
                                           + factor(Age.Block), data = data)
summary(model2)
                                Df Sum Sq Mean Sq F value
                                                            Pr(>F)
 factor(Sugar)
                                 1 1.4259 1.4259 43.104 3.37e-09 ***
 factor(Caffeine)
                                 1 0.0126 0.0126
                                                    0.381
                                                             0.539
 factor(Age.Block)
                                 3 0.0611 0.0204
                                                    0.616
                                                             0.606
 factor(Sugar):factor(Caffeine) 1 0.0009
                                          0.0009
                                                             0.867
                                                    0.028
                                89 2.9443 0.0331
 Residuals
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Investigating Our Interaction Term

Recall...

Our interaction term had a p-value > 0.05

Indicates little to no interaction

Interaction plot between sugar & caffeine

02

Model Assumptions

Normality

Normality is satisfied

Linearity

Conclusions

03

Limitations

Sampling

- Random selection within **6** cities on Bonne Sante
- Not as randomized since our sample is limited to specific towns on a single island

Age Blocking

- Blocked by age due to potential age-related cognitive and reflex differences
- Did <u>not</u> significantly contribute to the analysis

Confounding Variable

- Blocking by age might have led us to miss another confounding variable that was affecting the data

Ways to Improve

Larger Sample Size

Due to the limitations of a small sample size, testing could be expanded to obtain data from subjects from more cities and islands.

Measure of Alertness

We could choose more measures of mental alertness beyond just the vigilance test in order to further validate the significance of our claim.

Blocking

Since we concluded Age is not a significant block, we could investigate other factors that may affect vigilance such as Weight, Education, or Gender.

Measure of Sugar

We concluded sugar helps improve mental vigilance only through the form of energy drinks. We could investigate other forms of sugar such as **Lollies or Sugar Tablets** and its effects to improve our conclusion.

Thank you!

Takeaway: Sugary energy drinks improve vigilance scores!