

planetmath.org

Math for the people, by the people.

equivalent statements of Lindemann-Weierstrass theorem

 ${\bf Canonical\ name} \quad {\bf Equivalent Statements Of Lindemann Weierstrass Theorem}$

Date of creation 2013-03-22 18:05:18 Last modified on 2013-03-22 18:05:18

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771)

Entry type Result
Classification msc 12D99
Classification msc 11J85

Proposition 1. The following versions of the Lindemann-Weierstrass Theorem are equivalent:

- 1. If $\alpha_1, \ldots, \alpha_n$ are linearly independent algebraic numbers over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent over \mathbb{Q} .
- 2. If $\alpha_1, \ldots, \alpha_n$ are distinct algebraic numbers over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are linearly independent over \mathbb{Q} .

Proof. $(1 \Longrightarrow 2)$. Write $A_i = e^{\alpha_i}$ for each i = 1, ..., n. Suppose $0 = r_1 A_1 + \cdots + r_n A_n$, where $r_i \in \mathbb{Q}$. Moving $r_1 A$ to the LHS and by multiplying a common denominator we can assume that $r_1 A_1 = r_2 A_2 + \cdots + r_n A_n$ where $r_i \in \mathbb{Z}$. We want to show that $r_1 = \cdots = r_n = 0$. We induct on n. The case when n = 1 is trivial because A_1 is never 0 and therefore $0 = r_1 A_1$ forces $r_1 = 0$.

By induction hypothesis, suppose the statement is true when n < k. Now suppose n = k. If $\alpha_1, \ldots, \alpha_k$ are linearly independent over $\mathbb{Q}, A_1, \ldots, A_k$ are algebraically independent and certainly linearly independent over \mathbb{Q} . So suppose $\alpha_1, \ldots, \alpha_k$ are not linearly independent over \mathbb{Q} . Without loss of generality, we can assume $s_1\alpha_1 = s_2\alpha_2 + \cdots + s_k\alpha_k$, where $s_i \in \mathbb{Q}$ and $s_1 \neq 0$. By multiplying a common denominator we can further assume that $s_i \in \mathbb{Z}$ and $s_1 > 0$. Then

$$A_1^{s_1} = e^{s_1\alpha_1} = e^{s_2\alpha_2 + \dots + s_k\alpha_k} = e^{s_2\alpha_2} \cdots e^{s_k\alpha_k} = A_2^{s_2} \cdots A_k^{s_k}.$$

Since $r_1A_1 = r_2A_2 + \cdots + r_nA_n$, we get

$$(r_1^{s_1})(A_2^{s_2}\cdots A_k^{s_k}) = (r_1^{s_1})A_1^{s_1}$$

$$= (r_1A_1)^{s_1}$$

$$= (r_2A_2 + \cdots + r_kA_k)^{s_1}$$

$$= g(A_2, \dots, A_k),$$

where $g(x_2, \ldots, x_k) = (r_2x_2 + \cdots + r_kx_k)^{s_1} \in \mathbb{Q}[x_2, \ldots, x_k]$. Partition the numbers $s_i's$ into non-negative and negative ones, so that, say, $s_{c(1)}, \ldots, s_{c(l)}$ are non-negative and $s_{d(1)}, \ldots, s_{d(m)}$ are negative, then

$$(r_1^{s_1})A_{c(1)}^{s_{c(1)}}\cdots A_{c(i)}^{s_{c(i)}} = g(A_2,\ldots,A_k)A_{d(1)}^{s_{d(1)}}\cdots A_{d(j)}^{s_{d(j)}}.$$

If we define

$$f(x_2, \dots, x_k) = r_1^{s_1} x_{c(1)}^{s_{c(1)}} \cdots x_{c(i)}^{s_{c(i)}} - g(x_2, \dots, x_k) x_{d(1)}^{s_{d(1)}} \cdots x_{d(j)}^{s_{d(j)}},$$

then $f(x_2, \ldots, x_k) \in \mathbb{Q}[x_2, \ldots, x_k]$ and $f(A_2, \ldots, A_k) = 0$. By the induction hypothesis, f = 0. It is not hard to see that $r_1 = \cdots = r_k = 0$ and therefore A_1, \ldots, A_k are linearly independent.

 $(1 \Leftarrow 2)$. We first need two lemmas:

Lemma 1. Given 2., if $\alpha \neq 0$ is algebraic over \mathbb{Q} , then e^{α} is transcendental over \mathbb{Q} .

Proof. Suppose $f(e^{\alpha}) = 0$ where $f(x) = r_0 + r_1 x + \cdots + r_n x^n \in \mathbb{Q}[x]$. Then we have

$$0 = r_0 + r_1 e^{\alpha} + \dots + r_n (e^{\alpha})^n$$
$$= r_0 e^0 + r_1 e^{\alpha} + \dots + r_n e^{n\alpha}.$$

Since $\alpha \neq 0, 0, \alpha, \dots, n\alpha$ are all distinct, $1, e^{\alpha}, \dots, e^{n\alpha}$ are linearly independent by the hypothesis. Thus, $r_0 = r_1 = \dots = r_n = 0$ and we have f(x) = 0, which means that e^{α} is transcendental over \mathbb{Q} .

Lemma 2. Given 2., if α and β are linearly independent and algebraic over \mathbb{Q} , then e^{α} is transcendental over $\mathbb{Q}(e^{\beta})$.

Proof. Let $A = e^{\alpha}$ and $B = e^{\beta}$. Suppose f(A) = 0 where $f(x) \in \mathbb{Q}(B)[x]$. We want to show that f(x) = 0. Write

$$f(x) = r_0(B) + r_1(B)x + \dots + r_n(B)x^n$$

where each $r_i(x) = p_i(x)/q_i(x)$ with $p_i(x)$, $q_i(x) \neq 0 \in \mathbb{Q}[x]$. Let $Q(x) = q_1(x) \cdots q_n(x)$. So Q(B), being the product of the denominators $q_i(B) \neq 0$, is non-zero. Multiply f(x) by Q(B) we get a new polynomial g(x) such that

$$g(x) = R_0(B) + R_1(B)x + \dots + R_n(B)x^n,$$

where each $R_i(x) = r_i(x)Q(x) = p_i(x)Q(x)/q_i(x) \in \mathbb{Q}[x]$. Now, g(A) = f(A)Q(B) = 0. So

$$0 = R_0(B) + R_1(B)A + \dots + r_n(B)A^n$$

$$= \sum_{j=0}^{m_0} a_{0j}B^j + \sum_{j=0}^{m_1} a_{1j}B^jA + \dots + \sum_{j=0}^{m_n} a_{nj}B^jA^n$$

$$= \sum_{j=0}^{m_0} a_{0j}e^{j\beta} + \sum_{j=0}^{m_1} a_{1j}e^{j\beta+\alpha} + \dots + \sum_{j=0}^{m_n} a_{nj}e^{j\beta+n\alpha},$$

where each $a_{ij} \in \mathbb{Q}$. Now, the exponents in the above equation are all distinct, or else we would end up with α and β being linearly dependent, contrary to the assumption. Therefore, by 2 (Lindemann-Weierstrass Version 2), all $e^{i\beta+j\alpha}$ are linearly independent, which means each $a_{ij}=0$. This implies that g(x)=0. But g(x)=f(x)Q(B) and $Q(B)\neq 0$, we must have f(x)=0.

Now onto the main problem. We proceed by induction on the number of linearly independent algebraic elements over \mathbb{Q} . The case when n=1 is covered in Lemma 1, since a linearly independent singleton is necessarily non-zero. So suppose $\alpha_1, \ldots, \alpha_k$ are linearly independent and algebraic over \mathbb{Q} . Then each pair α_k, α_i are independent and algebraic over \mathbb{Q} , $i \neq k$. Thus e^{α_k} is transcendental over $\mathbb{Q}(e^{\alpha_i}, \ldots, e^{\alpha_{k-1}})$.

Now let $A_i = e^{\alpha_i}$ for all i = 1, ..., k. Suppose $f(A_1, ..., A_k) = 0$ where $f \in \mathbb{Q}[x_1, ..., x_k]$. To show the algebraic independence of the $A_i's$, we need to show that f = 0. Rearranging terms of f and we have

$$0 = f(A_1, \dots, A_k) = \sum_{j=0}^{m} g_j(A_1, \dots, A_{k-1})(A_k)^j.$$

If we let $g(x) = f(A_1, \ldots, A_{k-1}, x)$, we see that $g(x) \in \mathbb{Q}(A_1, \ldots, A_{k-1})[x]$ and $g(A_k) = f(A_1, \ldots, A_{k-1}, A_k) = 0$. Since e^{α_k} is transcendental over $\mathbb{Q}(A_1, \ldots, A_{k-1})$, we must have g(x) = 0. This implies that each $g_j(A_1, \ldots, A_{k-1}) = 0$. But then A_1, \ldots, A_{k-1} are algebraically independent by the induction hypothesis, we must have each $g_j = 0$. This means that f = 0.