201423854 201531973

Requerimientos funcionales y sus complejidades temporales:

Resumen Crea un nuevo catálogo con los vuelos que vienen en un archivo dad	0.

Entradas

Archivo con la información de los vuelos.

Resultados

Se han leído los archivos y agregado los datos a las estructuras de datos del proyecto.

Complejidad temporal

La complejidad temporal de este algoritmo es $O(n^2)$ ya que es lo que se demora en leer los datos y agregarlos a las estructuras de datos.

Nombre	R2. Agregar una aerolínea al catálogo de vuelos.
Resumen	Insertar en el catálogo, un nueva aerolínea dada su información.

Entradas

Información de la aerolínea a agregar con sus respectivos datos.

Resultados

Se ha agregado al catálogo de vuelos una nueva aerolínea.

Complejidad temporal

Para este requerimiento se estima una complejidad temporal de O(1) pues a partir de la información ingresada, el catálogo debe únicamente insertar dicha aerolínea a sus estructuras, las cuales en su mayoría, la complejidad de inserción es constante.

Nombre	R3. Eliminar una aerolínea del catálogo de vuelos.
Resumen	Eliminar una aerolínea del catálogo de vuelos.
Entradas	

201423854 201531973

Nombre de la aerolínea a eliminar.

Resultados

Se ha eliminado del catálogo y sus respectivas estructuras una aerolínea junto con su información.

Complejidad temporal

Para este requerimiento se estima una complejidad de O(n) donde n es el número de vuelos de dicha aerolínea, pues a partir de la información ingresada, el catálogo debe únicamente eliminar de sus estructuras el objeto aerolínea con su información.

R4. Agregar y eliminar ciudades autorizadas para realizar vuelos autorizados.
Agrega y elimina una ciudad de acuerdo a la información que llega por parámetro.

Entradas

Nombre de la ciudad a eliminar o agregar.

Resultados

Se eliminó una ciudad junto a todos los arcos-vuelos que salen y entran a la misma. Se agrega una ciudad a una aerolínea y se crean todos los arcos correspondientes.

Complejidad temporal

Para eliminar una ciudad dada se calcula una complejidad temporal de O(n) donde n es el número de vuelos que salen y llegan a la ciudad. Asimismo, para eliminar se estima una complejidad de O(n) pues por vuelo de dicha ciudad se debe agregar el arco correspondiente.

Nombre	R5. Agregar un vuelo al catálogo de vuelos
Resumen	Agregar un vuelo al catálogo de vuelos con la información dada por el usuario
Entradas	

Número de vuelo, aerolínea, ciudad de origen, ciudad destino, hora de salida, hora de

201423854 201531973

llegada, tipo de avión, el cupo de vuelo, y los días de operación.

Resultados

Se agregó un nuevo vuelo en las estructuras de datos del programa.

Complejidad temporal

La complejidad temporal de agregar un vuelo es O(n+m) donde n es el número de colisiones ocurridas al buscar un puesto en la hash para el nodo y m es el número de vuelos de las ciudades origen y destino del vuelo agregado.

Nombre	R6. Calcular y actualizar las tarifas de los vuelos de acuerdo a la fórmula dada.
Resumen	Para que cada arco maneje un peso característico se debe calcular el mismo de acuerdo a la fórmula dada.

Entradas

Para calcular dicho peso es necesario tener: tarifa de un minuto de vuelo por cada aerolínea, duración del vuelo en minutos, número de sillas del vuelo, número máximo de sillas por vuelos y el día de la semana al cual pertenece el vuelo.

Resultados

Valor numérico que representa el peso del arco para un vuelo en específico dependiendo de ciertos atributos.

Complejidad temporal

La complejidad de este requerimiento es O(1) pues únicamente debe acceder a los datos de cada vuelo al momento de lectura y usarlos para realizar operaciones básicas de cálculo.

Nombre	R7. Informar las ciudades que están conectadas entre sí pero no con el resto del país.
Resumen	Encuentra y retorna la información de los componentes dentro del grafo.
Entradas	

Resultados

Se retorna la información de las ciudades conectadas del grafo

Complejidad temporal

La complejidad temporal de este requerimiento es O(V+E) utilizando el algoritmo de Kosaraju.

Nombre	R8. Informar las ciudades que están conectadas entre sí pero no con el resto del país para cada aerolínea.
Resumen	Encuentra y retorna la información de los componentes dentro del grafo
Entradas	
Resultados	
Se retorna la información de las ciudades conectadas del grafo	
Complejidad temporal	
La complejidad temporal de este requerimiento es O(V+E) utilizando el algoritmo de Kosaraju.	

Nombre	R9. Calcular e imprimir el MST (para cada componente conectado) para vuelos nacionales a partir de una ciudad específica utilizando como peso el tiempo de vuelo.
Resumen	Se encuentra el Minimum Spanning Tree para una ciudad dadas las restricciones.
Entradas	
Nombre de la ciudad de la que se encontrará el MST	
Resultados	
Se calculó e imprimió el MST	
Complejidad temporal	

La complejidad temporal de generar el MST utilizando el algoritmo de Kruskal es O(E log(V))

Nombre	R10. Calcular e imprimir el MST (para cada componente conectado) para vuelos nacionales, para una aerolínea específica, a partir de una ciudad específica utilizando como peso el costo de vuelo.
Resumen	Se encuentra el Minimum Spanning Tree para una ciudad dadas las restricciones.

Entradas

Nombre de la ciudad de la que se encontrará el MST y nombre de la aerolínea.

Resultados

Se calculó e imprimió el MST

Complejidad temporal

La complejidad temporal de generar el MST utilizando el algoritmo de Kruskal es O(E log(V))

empo de vuelo.
e encuentra el Minimum Spanning Tree para una ciudad dadas las stricciones.
Э (

Entradas

Nombre de la ciudad de la que se encontrará el MST y nombre de la aerolínea.

Resultados

Se calculó e imprimió el MST

Complejidad temporal

La complejidad temporal de generar el MST utilizando el algoritmo de Kruskal es O(E log(V))

201423854 201531973

Nombre	R12. Calcular e imprimir el itinerario de menor costo para cada aerolínea dada una ciudad de origen, una de destino y un día particular (si es posible)
Resumen	Se utilizará el algoritmo de Dijkstra para generar un itinerario de menor costo para algún trayecto dada una fecha de salida
Entradas	
Ciudad de origen, ciudad destino, fecha salida	
Resultados	
Se creó un itinerario de menos costo y se imprimió en orden ascendente por precio.	
Complejidad temporal	
La complejidad temporal utilizando el algoritmo de Dijkstra es de O(E log (V))	

Nombre	R13. Calcular e imprimir el itinerario de menor costo dada una ciudad de origen, una de destino y un día particular (si es posible), pueden haber distintas aerolíneas en el itinerario	
Resumen	Se utilizará el algoritmo de Dijkstra para generar un itinerario de menor costo para algún trayecto dada una fecha de salida	
Entradas		
Ciudad de origen, ciudad destino, fecha salida.		
Resultados		
Se creó un itinerario de menos costo y se imprimió.		
Complejidad temporal		
La complejidad temporal utilizando el algoritmo de Dijkstra es de O(E log (V))		

Nombre	R14. Saliendo de una ciudad en particular, calcular e imprimir la ruta de costo mínimo para ir a todas las otras ciudades cubiertas por una aerolínea.
Resumen	Hacer uso de Edmond´s Algorithm con el fin de encontrar la ruta más óptima en términos de costo para ir a todas las ciudades con una misma

	aerolínea.	
Entradas		
Nombre de la ciudad origen.		
Resultados		
Información impresa en consola de la ruta óptima para recorrer todas las ciudades en el costo mínimo.		
Complejidad temporal		
La complejidad calculada para realizar Edmond´s Algorithm es O(E log (V)).		

Nombre	R15. Saliendo de una ciudad en particular, calcular e imprimir la ruta de costo mínimo en término de tiempo para ir a todas las otras ciudades cubiertas por una aerolínea.	
Resumen	Hacer uso de Edmond's Algorithm con el fin de encontrar la ruta más óptima en términos de tiempo para ir a todas las ciudades con una misma aerolínea.	
Entradas		
Nombre de la ciudad origen.		
Resultados		
Nombre de la ciudad origen.		
Complejidad temporal		
La complejidad calculada para realizar Edmond´s Algorithm es O(E log (V)).		

Explicación/Justificación de las estructuras de datos:

Tabla de Hash: La utilización de tablas de Hash es útil para el proyecto ya que estas permiten buscar e insertar datos con una complejidad temporal de O(1), sin importar el tamaño de la estructura, siempre y cuando se utilice una función de Hash adecuada.

Cola de prioridad: Las colas de prioridad son importantes ya que estas permiten ordenar la lista según se desee (mayor a menor o viceversa) mientras se están leyendo y agregando los datos, lo cual reduce la complejidad temporal requerida en el proyecto anterior al tener que leer y ordenar por aparte antes de poder procesar los datos.

Grafo: El grafo es la estructura principal del proyecto ya que este nos permitirá establecer las conexiones entre vuelos y entre ciudades. De esta manera si conocemos esta información podemos establecer el camino que debemos tomar para llegar de una ciudad a otra, el tiempo que nos tomara y que vuelos debemos coger si buscamos la mínima duración o el mínimo costo.

Cola De Prioridad Indexada: La cola de prioridad indexada es importante ya que se necesita para hacer los algoritmos que nos permitirán encontrar el camino más corto sea en duración o en costo entre dos ciudades. Al ser indexadas podemos actualizar los valores que existen en la cola si lo necesitamos y así iremos tomando el nodo adyacente que más nos convenga considerando todos los caminos posibles para continuar y no solo los iniciales.

Diagramas de Secuencia

Requerimiento 7

Requerimiento 11

Requerimiento 13

201531973

Diagramas UML

Mundo

Estructuras

201531973

