Diversidade

Roberto Pinheiro

Roteiro

- Motivação
- Introdução
- Medidas de Diversidade
 - Pareadas
 - Não Pareadas
 - Experimentos
- Métodos de Criação de Diversidade
- Conclusões
- Referências

Motivação

Não existe classificador perfeito

 Classificadores diversos acertam e erram em situações diferentes

 Diversidade parece ser um requerimento para o sucesso de uma combinação

Introdução

Apesar de ser um conceito aparentemente intuitivo

 Não existe uma definição formalmente aceita de diversidade

 Isso não impediu pesquisadores de insistirem em alcançar a diversidade

Medidas de Diversidade

- Pareadas
 - Envolvem apenas dois classificadores

- Não Pareadas
 - Envolvem três ou mais classificadores

Medidas de Diversidade

Pareadas

• Suponha dois Classificadores α e θ

Tabela de Relação entre os Classificadores

	Classificador α acerta	Classificador α erra
Classificador β acerta	а	b
Classificador β erra	С	d

 a, b, c e d são valores inteiros representando a quantidade de padrões de teste nas condições especificadas

Q Statistics [5]

$$Q_{\alpha,\beta} = \frac{ad - bc}{ad + bc}$$

- $Q_{\alpha,\beta}$ varia entre -1 e 1
 - Reconhecem os mesmos padrões tende à +1
 - Cometem erros diferentes tendem à -1
- $Q_{\alpha,\beta}$ = 0, para classificadores estatisticamente independentes

Correlation Coefficient ρ [6]

$$\rho_{\alpha,\beta} = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

- $Q_{\alpha,\beta}$ e $\rho_{\alpha,\beta}$ terão o mesmo sinal
- $|Q_{\alpha,\beta}| \ge |\rho_{\alpha,\beta}|$

Disagreement Measure [7]

$$Dis_{\alpha,\beta} = \frac{b+c}{a+b+c+d}$$

• Probabilidade dos classificadores α e θ discordarem da decisão

• Agreement Measure é o inverso desta

Double-Fault Measure [8]

$$DF_{\alpha,\beta} = \frac{d}{a+b+c+d}$$

• Probabilidade dos classificadores α e θ errarem juntos

Medidas de Diversidade

Não Pareadas

 Calcula a Diversidade entre 3 ou mais classificadores

 É possível utilizar as medidas pareadas para obter a diversidade de um conjunto de classificadores (valor médio)

$$Medida_{av} = \frac{2}{L(L-1)} \sum_{i=1}^{L-1} \sum_{j=i+1}^{L} Medida_{i,j}$$

Entropy Measure E [9]

$$E = \frac{1}{N} \frac{2}{L-1} \sum_{j=1}^{N} \min \left\{ \left(\sum_{i=1}^{L} y_{j,i} \right), \left(L - \sum_{i=1}^{L} y_{j,i} \right) \right\}$$

- 0 -> nenhuma diferença
- 1 -> maior diversidade possível

- Quantidade de votos corretos para um padrão
- Quantidade de votos incorretos para um padrão
- Intuitivamente um *ensemble* é mais diverso quando os *L/2* classificadores acertam e os outros *L/2* dos classificadores erram
 - Afinal, se todos acertarem tudo ou errarem tudo, não há desacordo. Logo, não vale a pena combiná-los.
- Apesar do nome, não é a Entropia usual

Entropy Measure E [9]

$$E = \frac{1}{N} \frac{2}{L-1} \sum_{j=1}^{N} \min \left\{ \left(\sum_{i=1}^{L} y_{j,i} \right), \left(L - \sum_{i=1}^{L} y_{j,i} \right) \right\}$$
Quantidade de votos

Quantidade de votos

- 0 -> nenhuma diferença
- 1 -> maior diversidade possível

- Quantidade de voto corretos para um padrão
- Quantidade de votos incorretos para um padrão
- $y_{j,i} = 1$, se o classificador *i* acertou o padrão *j*
- $y_{i,i} = 0$, caso contrário
- *L-1* na divisão parece incorreto
 - Exemplo N = 3 e L = 4

Kohavi-Wolpert Variance [10]

$$KW = \frac{1}{NL^{2}} \sum_{j=1}^{N} \left(\sum_{i=1}^{L} y_{j,i} \right) \left(L - \sum_{i=1}^{L} y_{j,i} \right)$$

0.00 -> nenhuma diferença0.25 -> maior diversidade possível

Quantidade de votos corretos para um padrão

Quantidade de votos incorretos para um padrão

- Mesma ideia que a Entropia
 - Mais diversidade quando os classificadores dividem os acertos e erros

Measure of Interrater Agreement [11]

$$\kappa = 1 - \frac{\frac{1}{L} \sum_{j=1}^{N} \left(\sum_{i=1}^{L} y_{j,i} \right) \left(L - \sum_{i=1}^{L} y_{j,i} \right)}{N(L-1)\overline{p}(1-\overline{p})}$$

- No qual: $\overline{p} = \frac{1}{NL} \sum_{i=1}^{N} \sum_{j=1}^{L} y_{j,i}$ 1 -> nenhuma diferença -1 -> maior diversidade possível

 - Média da taxa de acerto dos classificadores do ensemble
- Existe uma relação com outras medidas

$$\kappa = 1 - \frac{L}{(L-1)\overline{p}(1-\overline{p})}KW = 1 - \frac{1}{2\overline{p}(1-\overline{p})}D_{av}$$

Measure of "difficulty" θ [12]

- Se a variância e média forem pequenas?
 - Exemplo: 40 em 0/7 e 60 em 1/7 = 0.004752

Generalized Diversity [13]

$$GD=1-rac{\displaystyle\sum_{i=1}^{L}rac{i(i-1)}{L(L-1)}}{\displaystyle\sum_{i=1}^{L}rac{i}{L}p_{i}}$$
 p_{i} exatamente i classificadores aleatórios **errarem**

- Supondo apenas 2 classificadores
 - Diversidade é máxima (1) quando a falha de um dos classificadores é sempre acompanhada pelo acerto do outro classificador
 - Diversidade é mínima (0) quando a falha de um dos classificadores é sempre acompanhada pela falha do outro classificador

Coincident Failure Diversity [13]

$$CFD = \begin{cases} 0, & p_0 = 1\\ \frac{1}{1 - p_0} \sum_{i=1}^{L} \frac{L - i}{L - 1} p_i, & p_0 < 1 \end{cases}$$

- Modificação do GD
- Insere probabilidade de nenhum classificador errar (p_0)
 - Diversidade é mínima (0) se todos classificadores, simultaneamente, sempre acertam ou erram
 - Diversidade é máxima (1) se todo erro é cometido por no máximo um classificador

• É **esperado** que quanto maior a diversidade entre os classificadores de uma combinação, melhor será sua taxa de acerto

Essa expectativa é a realidade?

- Um estudo foi realizado sobre uma combinação de três classificadores [3]
- Foram utilizados
 - 10 medidas de diversidade diferentes
 - Medidas pareadas foram condensadas pela média
 - 10 padrões de teste
 - 28 combinações de classificadores diferentes
 - Cada classificador individual com taxa de acerto igual 0.6
- Resultado final obtido por voto majoritário

No.	Q	ρ	D	DF	KW	К	Ε	θ	GD	CFD	Voto
1	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.90	0.9
2	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.75	0.8
3	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.83	0.8
4	-0.67	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
5	-0.56	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
6	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.50	0.7
7	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.64	0.7
8	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
9	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
10	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
11	-0.39	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
12	-0.38	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
13	1.0	1.0	0.00	0.40	0.00	1.0	0.00	0.24	0.00	0.00	0.6
14	0.92	0.72	0.13	0.33	0.04	0.72	0.20	0.20	0.17	0.30	0.6
15	0.69	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
16	0.56	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
17	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
18	0.24	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
19	0.00	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
20	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
21	-0.11	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
22	-0.21	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
23	-0.33	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
24	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.30	0.5
25	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.50	0.5
26	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
27	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
28	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.50	0.4

No.	Q	ρ	D	DF	KW	К	E	θ	GD	CFD	Voto
1	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.90	0.9
2	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.75	0.8
3	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.83	0.8
4	-0.67	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
5	-0.56	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
6	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.50	0.7
7	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.64	0.7
8	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
9	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
10	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
11	-0.39	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
12	-0.38	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
13	1.0	1.0	0.00	0.40	0.00	1.0	0.00	0.24	0.00	0.00	0.6
14	0.92	0.72	0.13	0.33	0.04	0.72	0.20	0.20	0.17	0.30	0.6
15	0.69	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
16	0.56	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
17	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
18	0.24	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
19	0.00	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
20	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
21	-0.11	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
22	-0.21	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
23	-0.33	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
24	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.30	0.5
25	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.50	0.5
26	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
27	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
28	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.50	0.4

No.	Q	ρ	D	DF	KW	К	Ε	θ	GD	CFD	Voto
1	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.90	0.9
2	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.75	0.8
3	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.83	0.8
4	-0.67	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
5	-0.56	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
6	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.50	0.7
7	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.64	0.7
8	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
9	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
10	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
11	-0.39	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
12	-0.38	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
13	1.0	1.0	0.00	0.40	0.00	1.0	0.00	0.24	0.00	0.00	0.6
14	0.92	0.72	0.13	0.33	0.04	0.72	0.20	0.20	0.17	0.30	0.6
15	0.69	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
16	0.56	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
17	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
18	0.24	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
19	0.00	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
20	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
21	-0.11	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
22	-0.21	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
23	-0.33	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
24	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.30	0.5
25	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.50	0.5
26	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
27	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
28	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.50	0.4

No.	Q	ρ	D	DF	KW	К	E	θ	GD	CFD	Voto
1	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.90	0.9
2	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.75	0.8
3	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.83	0.8
4	-0.67	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
5	-0.56	-0.39	0.67	0.07	0.22	-0.39	1.0	0.02	0.83	0.90	0.8
6	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.50	0.7
7	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.64	0.7
8	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
9	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.75	0.7
10	-0.50	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
11	-0.39	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
12	-0.38	-0.25	0.60	0.10	0.20	-0.25	0.90	0.04	0.75	0.83	0.7
13	1.0	1.0	0.00	0.40	0.00	1.0	0.00	0.24	0.00	0.00	0.6
14	0.92	0.72	0.13	0.33	0.04	0.72	0.20	0.20	0.17	0.30	0.6
15	0.69	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
16	0.56	0.44	0.27	0.27	0.09	0.44	0.40	0.15	0.33	0.50	0.6
17	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
18	0.24	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
19	0.00	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.64	0.6
20	-0.22	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
21	-0.11	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
22	-0.21	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
23	-0.33	-0.11	0.53	0.13	0.18	-0.11	0.80	0.06	0.67	0.75	0.6
24	0.88	0.58	0.20	0.30	0.07	0.58	0.30	0.17	0.25	0.30	0.5
25	0.51	0.31	0.33	0.23	0.11	0.31	0.50	0.13	0.42	0.50	0.5
26	0.06	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
27	-0.04	0.03	0.47	0.17	0.16	0.03	0.70	0.08	0.58	0.64	0.5
28	0.33	0.17	0.40	0.20	0.13	0.17	0.60	0.11	0.50	0.50	0.4

Aumentar a quantidade de combinações facilita a visualização de uma "relação":

- 563 combinações de classificadores
- Comportamento similar entre as medidas de similaridade
- Uma medida isolada não é precisa o suficiente para capturar a diversidade
 - Talvez medidas combinadas sejam uma boa solução
- Existe um limiar para cada medida que garante uma melhoria

Correlação entre as medidas

	ρ	Dis	DF	KW	K	E	θ	GD	CFD
Q	98	-97	65	-97	98	-97	36	-98	-95
ρ		-97	72	-97	100	-97	44	-100	-97
Dis			-56	100	-98	100	-26	98	96
DF				-56	70	-56	93	-72	-70
KW					-98	100	-26	98	96
K						-98	41	-100	-98
Ε							-26	98	96
θ								-44	-42
GD									98

Correlação (em %) das medidas de diversidade em experimentos realizados sobre base *breast cancer*

Correlação entre as medidas

	ρ	Dis	DF	KW	K	E	θ	GD	CFD
Q	98	-97	65	-97	98	-97	36	-98	-95
ho		-97	72	-97	100	-97	44	-100	-97
Dis			-56	100	-98	100	-26	98	96
DF				-56	70	-56	93	-72	-70
KW					-98	100	-26	98	96
K						-98	41	-100	-98
Ε							-26	98	96
θ								-44	-42
GD									98

Correlação (em %) das medidas de diversidade em experimentos realizados sobre base *breast cancer*

Considerações

- Precisamos de diversidade
 - A ideia de que é necessário classificadores diversos é bem clara e intuitiva
- Mas não sabemos calcular bem
 - Não há medida universal nem definição formal
 - As medidas atuais
 - Não exibem uma relação forte com a taxa de acerto da combinação
 - Na maioria dos casos se comportam similarmente
- Então, se as medidas não são confiáveis como obter Diversidade?

Métodos para Criação de Diversidade

- Existem vários métodos
- Usaremos a taxonomia criada por Brown [4] como guia
- Primeira distinção
 - Implícitos
 - Usa aleatoriedade na expectativa de gerar Diversidade
 - Explícitos
 - Utiliza determinismo para reforçar a presença da Diversidade
- Apesar de todos os métodos buscarem a Diversidade, dado a falta de formalização, nenhum deles garante Diversidade

Métodos para Criação de Diversidade

- Segunda distinção
 - Inicialização
 - Variação no ponto inicial influenciando a convergência
 - Opções de Acesso
 - Variação no que é utilizado para treinamento dos classificadores
 - Espaço da Hipótese
 - Variação na resposta do ensemble final

Taxonomia

Espaço da Inicialização Opções de Acesso Hipótese Variação na Variação nos arquitetura ou padrões de Explícito Implícito Explícito Implícito parâmetros dos treinamento classificadores Implícito Explícito Implícito Explícito

Taxonomia – Inicialização

- Inicialização aleatória dos pesos para cada Rede Neural
 - Mais comum
 - Menos efetivo em gerar Diversidade
 - Convergência bastante similar
 - Implícito

Taxonomia – Inicialização

- Determinar pesos de modo que cada Rede Neural ocupe um lugar diferente no espaço de hipóteses
 - Levemente melhor que a versão aleatória
 - Explícito

Taxonomia – Inicialização

- Fast Comitte Learning
 - Usa apenas uma Rede Neural mas guarda os pesos de M diferentes estados e usa cada estado como uma Rede Neural do ensemble
 - Mais rápido do que treinar diferentes Redes
 Neurais
 - Implícito se usar estados aleatórios
 - Explícito se usar alguma métrica para definir os estados

- Variação nos padrões de treinamento
 - Bagging
 - Random Subspace
- Variação na arquitetura/parâmetros dos classificadores
 - Número de nós na camada escondida
 - Número de vizinhos usados para classificação

Variação nos padrões de treinamento

- Pré-processamento
 - Representação
 - Transformação
 - Normalização
 - Inserção de Ruído
 - Implícito / Explícito dependendo de como o procedimento foi realizado
- Modificar saída de alguns padrões de treinamento
 - Inserção de ruído aleatório
 - Segundo criador é mais efetivo que Bagging
 - Implícito

Variação nos padrões de treinamento

AdaBoost

- Altera a distribuição dos padrões de treinamento de cada classificador baseado nos erros do classificador anterior
- É esperado que os classificadores "futuros"
 acertem onde os anteriores erraram e vice-versa
- Explícito

Variação nos padrões de treinamento

- Medida de Diversidade
 - Usar alguma medida para encontrar subconjunto de padrões ou características que beneficiem a Diversidade
 - Construção gradativa do ensemble com inserção dos classificadores de acordo com a Diversidade atual
 - Só insere classificadores que aumentem Diversidade
 - Explícito

Variação nos padrões de treinamento

DECORATE

- Similar a Medida de Similaridade
- Entretanto, trabalha com inserção de padrões artificiais em vez de modificação do conjunto de treinamento
- Geram-se conjuntos discordantes de padrões artificiais que aumentem a taxa de acerto do ensemble
- O processo é iterativo e termina após uma quantidade de iterações ou quando o tamanho desejado do ensemble tenha sido atingido
- Explícito

Variação nos padrões de treinamento

- Input Decimation Ensembles
 - Usa seleção de características para que cada classificador seja especializado numa classe ou conjunto de classes
 - Mostrou grandes benefícios em dados reais e artificiais
 - Resultados melhores que Bagging e Random
 Subspace
 - Explícito

Variação na arquitetura/parâmetros dos classificadores

- Variação do número de nós
 - Pouco impacto nos experimentos realizados
 - Apenas uma base
 - Apenas variando entre 8-12 nós
 - Não gerou tanta Diversidade
 - Implícito se aleatório
 - Explícito se houver alguma metodologia

Espaço da Hipótese

- Métodos de Penalidade
 - Utilizar o erro para gerar overfitting em classificadores individuais

- Métodos Evolucionários
 - Utiliza algoritmos para buscar a melhor combinação
 - Função de Fitness: alguma Medida de Diversidade
 - Em vez de gerar indivíduos que explorem o máximo possível gera indivíduos que se complementam

Conclusão

- Diversidade ainda é um conceito informal
- Não há medida de diversidade universal
 - Além de não serem fortemente relacionadas com taxa de acerto
- Taxonomia abstrata e categorias abrangentes
 - Algumas categorias ainda estão pouco exploradas
- Existem muitas maneiras de obter diversidade
 - Métodos explícitos, em sua maioria, são superiores aos implícitos

Referências

- [1] Kuncheva, Ludmila I., and Christopher J. Whitaker. "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy." *Machine learning* 51.2 (2003): 181-207.
- [2] Zhou, Zhi-Hua. *Ensemble methods: foundations and algorithms*. CRC Press, 2012.
- [3] Kuncheva, Ludmila I. *Combining pattern classifiers: methods and algorithms*. John Wiley & Sons, 2004.
- [4] Brown, Gavin, et al. "Diversity creation methods: a survey and categorisation." *Information Fusion* 6.1 (2005): 5-20.
- [5] Yule, G. Udny. "On the association of attributes in statistics: with illustrations from the material of the childhood society, &c." Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character (1900): 257-319.

Referências

- [6] Sneath, Peter HA, and Robert R. Sokal. *Numerical taxonomy. The principles and practice of numerical classification*. 1973.
- [7] D. B. Skalak. The sources of increased accuracy for two proposed boosting algorithms. In *Proc. American Association for Artificial Intelligence, AAAI-96, Integrating Multiple Learned Models Workshop*, 1996.
- [8] Ruta, Dymitr, and Bogdan Gabrys. "Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems." In *Proc. SOCO 2001* (2001): 50.
- [9] Cunningham, Padraig, and John Carney. "Diversity versus quality in classification ensembles based on feature selection." *Machine Learning: ECML 2000*. Springer Berlin Heidelberg, 2000. 109-116.

Referências

- [10] Kohavi, Ron, and David H. Wolpert. "Bias plus variance decomposition for zero-one loss functions." *ICML*. 1996.
- [11] Fleiss, Joseph L., Bruce Levin, and Myunghee Cho Paik. Statistical methods for rates and proportions. John Wiley & Sons, 2013.
- [12] Hansen, Lars Kai, and Peter Salamon. "Neural network ensembles." *IEEE transactions on pattern analysis and machine intelligence* 12.10 (1990): 993-1001.
- [13] Partridge, Derek, and W. Krzanowski. "Software diversity: practical statistics for its measurement and exploitation." *Information and software technology*39.10 (1997): 707-717.