Übungsblatt 27 zur Homologischen Algebra II

Aufgabe 1. Rechnen modulo Torsion

Sei Ab_{fp} die abelsche Kategorie der endlich präsentierten abelschen Gruppen und \mathcal{T} ihre volle Unterkategorie der Torsionsgruppen.

- a) Mache dir klar, dass \mathcal{T} eine Serresche Unterkategorie von Ab_{fp} ist.
- b) Konstruiere einen Funktor $\overline{F}: \mathrm{Ab_{fp}}/\mathcal{T} \to \mathrm{Vect}(\mathbb{Q})_{\mathrm{findim}}$ mit $A \mapsto A \otimes_{\mathbb{Z}} \mathbb{Q}$.

 Tipp: Verwende die universelle Eigenschaft von $\mathrm{Ab_{fp}}/\mathcal{T}$ (siehe Blatt 16, Aufgabe 4) und die Flachheit von \mathbb{Q} über \mathbb{Z} .
- c) Zeige, dass \overline{F} treu ist.

 Tipp: Zeige, dass aus $A \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ folgt, dass A eine Torsionsgruppe ist. Verwende dann Tag 06XK aus dem Stacks Project.
- d) Zeige, dass in $\mathrm{Ab_{fp}}/\mathcal{T}$ der Morphismus $\mathbb{Z} \xrightarrow{\cdot n} \mathbb{Z}$ für $n \geq 1$ invertierbar ist. Folgere, dass \overline{F} voll und daher eine Kategorienäquivalenz ist.
- e) Sei eine konvergente Spektralsequenz in Ab_{fp} gegeben. Was ist zu tun, wenn man vorgeben möchte, dass alle kurzen exakten Sequenzen in Ab_{fp} zerfallen? Wie schwächt man seine Resultate dadurch ab?