Chapitre 9

Logarithme népérien

I. La fonction logarithme népérien

1) Liens avec la fonction exponentielle

La fonction exponentielle est continue et strictement croissante sur R.

De plus, $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to +\infty} e^x = +\infty$, donc d'après la généralisation du théorème des valeurs intermédiaires, pour tout nombre réel x de $]0;+\infty[$, il existe un unique nombre réel y tel que $e^y = x$.

Définition:

La fonction logarithme népérien, notée \ln , est la fonction définie sur $]0;+\infty[$ qui à tout nombre réel x>0, associe l'unique solution de l'équation $e^y=x$ d'inconnue y. On note $y=\ln x$.

Conséquences:

Elles découlent directement de la définition précédente.

- Pour tout nombre réel x>0 et tout nombre réel y, $x=e^y$ équivaut à $y=\ln x$.
- Pour tout nombre réel x>0, $e^{\ln x}=x$.
- Pour tout nombre réel x, $\ln(e^x) = x$.

•
$$\ln 1=0 \text{ (car } e^0=1 \text{) }; \qquad \ln e=1 \text{ (car } e^1=e \text{) }; \qquad \ln \frac{1}{e}=-1 \text{ (car } e^{-1}=\frac{1}{e} \text{)}$$

Propriété :

Dans un repère orthonormé, les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation y=x.

1

Démonstration:

On note respectivement $\mathscr C$ et $\mathscr C$ ' les courbes représentatives des fonctions exp et \ln .

Pour tous nombres réels x et y>0, dire que M'(x;y) appartient à $\mathscr C$ 'équivaut à $y=\ln x$ c'est-à-dire $x=e^y$ ce qui équivaut à dire que M(y;x) appartient à $\mathscr C$.

 \mathscr{C} et \mathscr{C} ' sont donc symétriques par rapport à la droite d'équation y=x.

Remarque:

On dit que les fonctions exp et ln sont réciproques l'une de l'autre.,

2) Sens de variation de la fonction In

Propriété:

La fonction logarithme népérien est strictement croissante sur $]0;+\infty[$.

Démonstration :

a et b sont deux nombres réels tels que 0 < a < b, c'est-àdire tels que $e^{\ln a} < e^{\ln b}$.

La fonction exponentielle est strictement croissante sur \mathbb{R} donc :

 $\ln a < \ln b$

Conséquences:

Pour tous nombres réels a>0 et b>0.

- $\ln a = \ln b$ équivaut à a = b
- $\ln a < \ln b$ équivaut à a < b
- $\ln a > 0$ équivaut à a > 1 et $\ln a < 0$ équivaut à 0 < a < 1.

II. Propriétés algébriques

1) Relation fonctionnelle

Propriété:

Pour tous nombres réels a>0 et b>0,

$$\ln(ab) = \ln(a) + \ln(b)$$

Démonstration:

a et b sont deux réels strictement positifs. On note $A = \ln(ab)$ et $B = \ln(a) + \ln(b)$.

Alors $e^A = ab$ et $e^B = e^{\ln(a) + \ln(b)} = e^{\ln(a)} \times e^{\ln(b)} = ab$. Donc $e^A = e^B$ d'où A = B.

Remarque:

- On dit que la fonction ln transforme les produits en somme.
- Pour tous nombres strictement positifs $a_1, a_2, ..., a_n$:

$$\ln(a_1 \times a_2 \times ... \times a_n) = \ln(a_1) + \ln(a_2) + ... + \ln(a_n)$$

2) Logarithme d'un inverse, d'un quotient

Propriétés:

Pour tous nombres réels a>0 et b>0.

$$\ln\frac{1}{b} = -\ln b \qquad ; \qquad \ln\frac{a}{b} = \ln a - \ln b$$

Démonstrations :

- Pour b>0, $b\times\frac{1}{b}=1$; donc $\ln\left(b\times\frac{1}{b}\right)=0$, c'est-à-dire $\ln b+\ln\frac{1}{b}=0$, d'où $\ln\frac{1}{b}=-\ln b$.
- Pour a > 0 et b > 0, $\ln \frac{a}{b} = \ln \left(a \times \frac{1}{b} \right) = \ln a + \ln \frac{1}{b} = \ln a \ln b$.

3) Logarithme d'une puissance, d'une racine carrée

Propriété:

Pour tout nombre réel a>0 et pour tout nombre entier relatif n:

$$\ln(a^n) = n \ln a$$

Démonstration:

- Cas où *n* est un nombre entier naturel : on utilise un raisonnement par récurrence.
 - Initialisation : pour n=0, $\ln(a^0) = \ln 1 = 0$ et $0 \ln a = 0$.
 - Hérédité : on considère un nombre entier naturel k tel que $\ln(a^k) = k \ln a$. Alors $\ln(a^{k+1}) = \ln(a^k \times a) = \ln(a^k) + \ln a = k \ln a + \ln a = (k+1) \ln a$.
 - Conclusion: pour tout nombre entier naturel n, $\ln(a^n) = n \ln a$.
- Cas où *n* est un nombre entier strictement négatif

$$\ln(a^n) = \ln\left(\frac{1}{a^{-n}}\right) = -\ln(a^{-n}) = -(-n)\ln a = n\ln a \text{ car } -n > 0.$$

Exemple:

Pour tout nombre réel x>0, $\ln(x^2)=2\ln x$.

Propriété:

Pour tout nombre réel a>0:

$$\ln \sqrt{a} = \frac{1}{2} \ln a$$

3

Démonstration:

Pour a > 0, $(\sqrt{a})^2 = a$, donc $\ln(\sqrt{a})^2 = \ln a$ soit $2 \ln \sqrt{a} = \ln a$, d'où $\ln \sqrt{a} = \frac{1}{2} \ln a$.

Exemple:

$$\ln \sqrt{2} - \frac{1}{3} \ln 4 = \frac{1}{2} \ln 2 - \frac{1}{3} \ln (2^2) = \frac{1}{2} \ln 2 - \frac{2}{3} \ln 2 = -\frac{1}{6} \ln 2.$$

III. Étude de la fonction In

1) <u>Dérivabilité et continuité de In</u>

Propriétés:

La fonction ln est **dérivable** sur $]0;+\infty[$ et pour tout nombre réel x>0.

$$\ln'(x) = \frac{1}{x}$$

Démonstration :

repère orthonormé. Dans un 1es courbes représentatives des fonctions exp et ln symétriques par rapport à la droite d'équation y=x. Or, les symétries axiales conservent le contact, donc une tangente à la courbe représentative de exp a pour symétrique une tangente à la courbe représentative de ln . De plus, aucune tangente à la courbe de exp n'est parallèle à l'axe des abscisses. donc aucune tangente à la courbe de ln n'est parallèle à l'axe des ordonnées.

4

Ainsi, la fonction exp étant dérivable sur \mathbb{R} , sa réciproque \ln est dérivable sur $]0;+\infty[$.

• f est la fonction définie sur $]0;+\infty[$ par $f(x)=e^{\ln(x)}=x$. ln est dérivable sur $]0;+\infty[$ donc f est dérivable sur $]0;+\infty[$ et pour tout x>0. $f'(x)=\exp'(\ln x)\times\ln'(x)=\exp(\ln x)\times\ln'(x)$.

Or
$$f(x)=x$$
, donc $f'(x)=1$. Par conséquent, pour tout $x>0$, $\ln f(x)=\frac{1}{x}$.

Conséquence :

La fonction ln est **continue** sur $]0;+\infty[$.

En effet, toute fonction dérivable sur un intervalle est continue sur cet intervalle.

2) Limite de In en 0 et en +∞

Propriétés:

$$\lim_{x \to +\infty} \ln x = +\infty \qquad \qquad \lim_{x \to 0} \ln x = -\infty$$

Démonstrations :

- Pour tout nombre réel A, $\ln x > A \Leftrightarrow x > e^A$. Donc $\ln x > A$ pour tout nombre réel $x > e^A$ et donc $\lim_{x \to +\infty} \ln x = +\infty$.
- On a, pour x > 0, $\ln x = -\ln \frac{1}{x}$. Donc $\lim_{x \to 0} \ln x = \lim_{x \to 0} -\ln \frac{1}{x}$.

Or
$$\lim_{\substack{x \to 0 \ x > 0}} \frac{1}{x} = +\infty$$
 et $\lim_{\substack{x \to +\infty}} (-\ln X) = -\infty$.

D'après le théorème sur la limite d'une fonction composée $\lim_{x\to 0} \ln x = -\infty$.

3) Tableau de variation et courbe

5

L'axe des ordonnées est asymptote verticale à la courbe représentative de ln.

IV. Compléments sur la fonction In

1) Limites

Propriété:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Démonstration :

La fonction ln est dérivable sur $]0;+\infty[$, donc en 1.

Cela signifie que $\lim_{x\to 0} \frac{\ln(1+x) - \ln 1}{x} = \ln'(1)$.

Or $\ln 1 = 0$ et $\ln'(1) = \frac{1}{1} = 1$, donc $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$.

Remarque:

On en déduit que pour h proche de 0: $\ln(1+h) \approx h$.

Croissances comparées

<u>Propriété :</u>

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \qquad ; \qquad \lim_{x \to 0} x \ln x = 0$$

Démonstration :

• On pose $Y = \ln x$, alors $e^Y = x$ et $\frac{\ln x}{x} = \frac{Y}{e^Y}$. Or $\lim_{x \to +\infty} \ln x = \lim_{x \to +\infty} Y = +\infty$ et $\lim_{Y \to +\infty} \frac{Y}{e^Y} = 0$.

Donc d'après le théorème de la limite d'une fonction composée, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

• Avec le même changement de variable, $x \ln x = Y e^{Y}$. Or $\lim_{x \to 0} \ln x = \lim_{x \to 0} Y = -\infty$ et $\lim_{y \to -\infty} Y \times e^{Y} = 0$.

Donc d'après le théorème de la limite d'une fonction composée, $\lim_{x\to 0} x \ln x = 0$

Généralisation:

Pour tout
$$n \in \mathbb{N}^*$$
, $\lim_{x \to 0} x^n \ln x = 0$ et $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$

2) Fonction $x \mapsto \ln(u(x))$

Notation:

 \overline{u} désigne une fonction strictement positive sur un intervalle I.

La fonction $x \mapsto \ln(u(x))$ définie sur *I* est notée $\ln u$.

$$x \mapsto u(x) \mapsto \ln(u(x))$$

6

Propriété:

u est une fonction dérivable et strictement positive sur un intervalle I

La fonction $\ln u$ est **dérivable** sur I et $(\ln u)' = \frac{u'}{u}$.

Démonstration :

On utilise la propriété $(g \circ f)' = f' \times (g' \circ f)$.

En particulier, avec la fonction f=u, dérivable et strictement positive sur l'intervalle I et $g=\ln$, on obtient, pour tout réel x appartenant à I, la dérivée de $\ln(u(x))$:

$$\ln'(u(x)) = u'(x) \times \frac{1}{u(x)} = \frac{u'(x)}{u(x)}$$

Conséquence:

Les fonctions u et $\ln u$ ont le même sens de variation sur I.

Démonstration :

 $(\ln u)'$ a le même signe que u' car u>0.

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x) = \ln(x^2 + 1)$.

 $f = \ln u$ où u est la fonction définie sur \mathbb{R} par $u(x) = x^2 + 1$. Or, u est dérivable et strictement positive sur \mathbb{R} , donc f est dérivable sur \mathbb{R} .

Pour tout nombre réel x, $f'(x) = \frac{2x}{x^2 + 1}$.

3) La fonction logarithme décimal

Définition:

La fonction logarithme décimal, notée \log , est définie pour tout réel x de $]0;+\infty[$ par :

$$\log x = \frac{\ln x}{\ln 10}.$$

Propriété:

La fonction logarithme décimal vérifie les mêmes propriétés algébriques que la fonction ln .

Exemples:

$$\log 1=0$$
; $\log 10=1$; $\log 0,1=-1$; $\log 100=2$; $\log 0,01=-2$

Remarques:

• Pour tout réel x strictement positif et tout entier relatif n, on a :

$$10^n \leqslant x < 10^{n+1} \iff n \leqslant \log x < n+1.$$

• Les fonctions $x \mapsto 10^x$ et $x \mapsto \log x$ sont réciproques l'une de l'autre.

Annexe 1: Table logarithmique

Voici une table (simplifiée) du logarithme décimale :

$$\log x = \frac{\ln x}{\ln 10}$$

	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,3010	0,4771	0,6021	0,6990	0,7782	0,8451	0,9031	0,9542
0,1	0,0414	0,3222	0,4914	0,6128	0,7076	0,7853	0,8513	0,9085	0,9590
0,2	0,0792	0,3424	0,5051	0,6232	0,7160	0,7924	0,8573	0,9138	0,9638
0,3	0,1139	0,3617	0,5185	0,6335	0,7243	0,7993	0,8633	0,9191	0,9685
0,4	0,1461	0,3802	0,5315	0,6435	0,7324	0,8062	0,8692	0,9243	0,9731
0,5	0,1761	0,3979	0,5441	0,6532	0,7404	0,8129	0,8751	0,9294	0,9777
0,6	0,2041	0,4150	0,5563	0,6628	0,7482	0,8195	0,8808	0,9345	0,9823
0,7	0,2304	0,4314	0,5682	0,6721	0,7559	0,8261	0,8865	0,9395	0,9868
0,8	0,2553	0,4472	0,5798	0,6812	0,7634	0,8325	0,8921	0,9445	0,9912
0,9	0,2788	0,4624	0,5911	0,6902	0,7709	0,8388	0,8976	0,9494	0,9956

Lecture de log(x):

- Pour x=1,5, la case de la 1^{ère} colonne et de la 5^e ligne, on a $\log(1,5) \approx 0,1761$.
- Pour x=15000, on a $15000=1,5\times10^4$, or $\log(15000)=\log(1,5\times10^4)=\log(1,5)+\log(10^4)$ donc: $\log(15000)\approx0,1761+4\approx4,1761$
- Pour x=0.00000015, on a $0.00000015=1.5\times10^{-7}$, or $\log(0.00000015)=\log(1.5\times10^{-7})=\log(1.5)+\log(10^{-7})$ donc: $\log(0.00000015)\approx0.1761-7\approx-6.8239$
- Pour x=123456, on a $123456=1,23456\times10^5$ on s'intéresse donc à $\log(1,23456)$. On a $\log(1,2)\approx0,0792$ et $\log(1,3)\approx0,1139$ et on effectue une interpolation (linéaire):

$$\log(1,23456) = \left(\frac{\log(1,3) - \log(1,2)}{1,3-1,2}\right) \times (1,23456 - 1,2) + \log(1,2)$$

$$\log(1,23456) \simeq \left(\frac{0,1139 - 0,0792}{1,3-1,2}\right) \times (1,23456 - 1,2) + 0,0792 \simeq 0,091$$
D'où $\log(123456) \simeq 5,091$

Utilisation pour des calculs:

On peut ainsi effectuer, à la main, des produits :

- $\log(123456789 \times 9876543210) = \log(123456789) + \log(9876543210)$ $\log(123456789 \times 9876543210) = \log(1,23456789 \times 10^8) + \log(9,87654321 \times 10^9)$ $\log(123456789 \times 9876543210) = 8 + 9 + \log(1,23456789) + \log(9,87654321)$
- Par interpolation linéaire :

$$\log(1,23456789) = \left(\frac{\log(1,3) - \log(1,2)}{1,3-1,2}\right) \times (1,23456789 - 1,2) + \log(1,2)$$

$$\log(1,23456789) \approx \left(\frac{0,1139 - 0,0792}{1,3-1,2}\right) \times (1,23456789 - 1,2) + 0,0792 \approx 0,091$$

et

$$\log(9,87654321) = \left(\frac{\log(9,9) - \log(9,8)}{9,9 - 9,8}\right) \times (9,87654321 - 9,8) + \log(9,8)$$
$$\log(9,87654321) \approx \left(\frac{0,9956 - 0,9912}{9,9 - 9,8}\right) \times (9,87654321 - 9,8) + 0,9912 \approx 0,995$$

Ainsi $\log(123456789 \times 9876543210) \approx 17 + 0.091 + 0.995 \approx 18,086$

• On cherche donc le nombre y tel que $\log(y)=18,086$. En fait on s'intéresse au nombre x dont le logarithme est 0,086 : Par interpolation linéaire :

$$\log(x) = \left(\frac{\log(1,3) - \log(1,2)}{1,3 - 1,2}\right) \times (x - 1,2) + \log(1,2) \approx 0,086$$

$$\left(\frac{0,1139 - 0,0792}{1,3 - 1,2}\right) \times (x - 1,2) + 0,0792 \approx 0,086 \text{ donc } x \approx 1,220$$
A inside the matter of the first of the second of the

• Ainsi $y=x\times10^{18}\simeq1,22\times10^{18}$

Remarque:

Une table plus détaillée facilitera les calculs et rendra ces derniers plus précis.

Annexe 2: Équation fonctionnelle

On connaît la relation $\forall (x; y) \in]0; +\infty[^2, \ln(xy) = \ln(x) + \ln(y)]$.

On se pose alors le problème suivant :

Quelles sont les fonctions f qui, comme ln, vérifient la condition :

$$\forall (x;y) \in [0;+\infty[^2, f(xy)=f(x)+f(y)]$$

Résoudre ce problème, c'est résoudre l'équation fonctionnelle f(xy) = f(x) + f(y) sur $]0;+\infty[$. équation où l'inconnue est une fonction.

On cherchera uniquement des fonctions solutions dérivables sur IR ou sur une partie de IR.

On cherche les fonctions dérivables sur $]0;+\infty[$, autre que la fonction nulle, telles que :

$$\forall (x;y) \in [0;+\infty[^2, \ln(xy)] = \ln(x) + \ln(y) \quad (E_A)$$

Remarque:

Pour tout $y \in \mathbb{R}$,

On suppose qu'une fonction f définie sur \mathbb{R} vérifie f(xy) = f(x) + f(y) pour tout réel x.

En particulier pour y=0 on a pour x=0 f(0)=f(0)+f(0) donc f(0)=0.

Alors pour tout $x \in \mathbb{R}$, $f(x \times 0) = f(x) + f(0)$ soit f(0) = f(x) + f(0) soit f(x) = 0.

Voilà pourquoi l'on cherche à résoudre cette équation sur $]0;+\infty[$ et pas sur \mathbb{R} .

x et y sont donc des réels strictement positifs

Pour x>0, $f_k(x)=k \ln x$. Soit y>0, $f_k(xy)=k \ln xy = k \ln x + k \ln y = f_k(x) + f_k(y)$

On vérifie donc que les fonctions définies, sur $]0;+\infty[$, par $x \mapsto k \ln x$ pour k réel donné, sont solutions de (E_A) .

Réciproquement,

Soit f une solution non nulles, de (E_A) , dérivable sur $]0;+\infty[$.

- En prenant x = y = 1, on a $f(1 \times 1) = f(1) + (1)$ donc f(1) = 0.
- \circ Soit y un réel strictement positif. On note f_y la fonction définie sur $]0;+\infty[$ par :

$$f_{y}(x) = f(xy) = f(x) + f(y)$$

En dérivant (par rapport à x) on obtient f'(x) = yf'(xy).

Pour
$$x=1$$
, on a donc $f'(y) = \frac{f'(1)}{y}$ soit $f'(y) = \frac{k}{y}$ avec $k = f'(1)$.
Soit h la fonction définie pour $x>0$ par $h(x) = f(x) - k \ln x$, où $k = f'(1)$.

On vérifie que $h'(x) = f'(x) - \frac{k}{x} = 0$ donc h est constante sur $]0; +\infty[$.

Or
$$f(1)=0$$
donc $h(1)=f(1)-k\ln 1=0=h(x)$.

On a donc bien $f(x) = k \ln x$.

Conclusion:

Les seules fonctions non nulles, dérivables sur $]0;+\infty[$ solutions de l'équation fonctionnelle (E_A) sont les fonctions $x \mapsto k \ln x$

Remarque:

Pour tout $k \in \mathbb{R}^*$, il existe un réel a strictement positif et différent de 1 tel que $k = \frac{1}{\ln a} \left(a = e^{\frac{1}{k}} \right)$.

Alors $x \mapsto k \ln x$ s'écrit $x \mapsto \frac{\ln x}{\ln a}$ et s'appelle le **logarithme de base a**.