SHORT SYLLABUS

BCSE202L Data Structures and Algorithms (3-0-0-3)

Importance of algorithms and data structures - Algorithm analysis - Algorithm efficiency - Linear Data Structures: Arrays, Stacks, Queues, List - Searching and Sorting - Trees - Binary Trees - Binary Search Trees - Graphs: Traversals - Hashing and its types - Heaps - AVL Trees and its operations.

BCSE202L Data Structures and Algorithms L T P						С				
				0	0	3				
Pre-requisite	NIL	Sy	llab	us v	/ersi	on				
				1.0						
Course Objectives										
1. To impart basic	c concepts of data structures and algorithms.									
2. To differentiate linear, non-linear data structures and their operations.										
3. To comprehen	d the necessity of time complexity in algorithms.									
•										
Course Outcome	es ·									
On completion of this course, students should be able to:										
1. Understand the fundamental analysis and time complexity for a given problem.										
	r, non-linear data structures and legal operations permit				١.					
	ply suitable algorithms for searching and sorting.									
4. Discover various tree and graph traversals.										
	ing, heaps and AVL trees and realize their applications.									
J. Explicate hash	ing, heaps and AVE trees and realize their applications.									
Module:1 Algor	rithm Analysis				3 ho	urs				
	orithms and data structures - Fundamentals of algorith	nm a	anal	/sis	Spa	ace				
	city of an algorithm, Types of asymptotic notations and									
	cy – best case, worst case, average case - Analysis of									
	nms - Asymptotic analysis for recurrence relation:									
	od, Master Method and Recursive Tree Method.					,				
	r Data Structures			-	7 ho	urs				
	D array- Stack - Applications of stack: Expression Evalua	ation	ı Cc							
of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue:										
Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists,										
	, Circular linked lists- Applications: Polynomial Manipul	_	•	i.co	note	',				
		atioi	<u> </u>	-	7 ho	ırs				
Module:3Searching and Sorting7 hoursSearching: Linear Search and binary search – Applications.										
	sort, Selection sort, Bubble sort, Counting sort, Quick	sort	Me	rae	sort	_				
Analysis of sorting		3011,	, ivic	ıgc	3011					
Module:4 Trees	, ,			_	6 ho	urs				
	ary Tree: Definition and Properties - Tree Traversals-	Fxn	ress							
	ees - Operations in BST: insertion, deletion, finding mi									
the k th minimum e		iii ui		ıax,		9				
Module:5 Grap				_	6 ho	ırs				
	epresentation of Graph – Graph Traversal: Breadth F	iret	Sea							
	ch (DFS) - Minimum Spanning Tree: Prim's, Kruskal				•	,				
Shortest Path: Dijl		3	Oiii	gic	Oou	100				
Module:6 Hash					1 ho	ıre				
	Separate chaining - Open hashing: Linear probing,	Ous	adrat							
	Closed hashing - Random probing – Rehashing - Extend					ııg,				
Module:7 Heap		aibic	, 1103		9. 5 ho :	ıre				
	t- Applications -Priority Queue using Heaps. AVL trees:	Ter	ming							
	on, insertion and deletion).	1 611		Jiog	y, DC	1010				
Module:8 Conte	,			- 2	2 ho	urs				
	· •									
	Total Lecture hours:			4	5 ho	urs				
Text Book										
	ss, Data Structures & Algorithm Analysis in C++, 4	th Fr	ditio	n 2	013					
Pearson Educ	· ·		a11101	٠, ۷	.5 10,					

Pearson Education.

Reference Books								
1.	Alfred V. Aho, Jeffrey D. Ullman and John E. Hopcroft, Data Structures and Algorithms, 1983, Pearson Education.							
2.								
3.	Thomas H. Cormen, C.E. Leiserson, R L. Rivest and C. Stein, Introduction to Algorithms, 2009, 3 rd Edition, MIT Press.							
Мо	Mode of Evaluation: CAT, Assignment, Quiz and FAT							
Recommended by Board of Studies 04-03-2022								
App	proved by Academic Council	No. 65	Date	17-03-2022				