Aufgabe 2

(a) Sei $L = \{0^n 1^m 1^p 0^q \mid n+m=p+q \text{ und } n, m, p, q \in \mathbb{N}_0\}$. Geben Sie eine kontextfreie Grammatik für L an. Sie dürfen dabei ε -Produktionen der Form $\{A \to \varepsilon\}$ verwenden.

```
P = \left\{ \begin{array}{c} S \to 0S0 \, | \, 0A0 \, | \, 0B0 \, | \, \varepsilon \, | \, A \, | \, B \, | \, C \\ A \to 0A1 \, | \, 0C1 \\ B \to 1B0 \, | \, 1C0 \\ C \to 1C1 \, | \, \varepsilon \end{array} \right.
```

- (b) Für eine Sprache L sei $L^r = \{x^r \mid x \in L\}$ die Umkehrsprache. Dabei bezeichne x^r das Wort, das aus r entsteht, indem man die Reihenfolge der Zeichen umkehrt, beispielsweise $(abb)^r = bba$.
 - (i) Sei L eine kontextfreie Sprache. Zeigen Sie, dass dann auch L^r kontextfrei ist.
 - (ii) Geben Sie eine kontextfreie Sprache L_1 , an, sodass $L_1 \cap L_1^r$ kontextfrei ist.
 - (iii) Geben Sie eine kontextfreie Sprache L_2 , an, sodass $L_2 \cap L_2^r$ nicht kontextfrei ist.