Pipeline for functional assignation of heterogeneous data

Anne-Sophie Masson annesomasson@proton.me

IFOSSA project link

General info

Objectives of the pipeline

- to create objects usable for the analysis of ecological groups of organisms from heterogeneous data The gratin package (Le Guillarme, N., Hedde, M., Potapov, A. M., Martínez-Muñoz, C. A., Berg, M. P., Briones, M. J. I., Calderón-Sanou, I., Degrune, F., Hohberg, K., Martinez-Almoyna, C., Pey, B., Russell, D. J., & Thuiller, W. (2023). The Soil Food Web Ontology: Aligning trophic groups, processes, resources, and dietary traits to support food-web research. Ecological Informatics, 78, 102360. https://doi.org/10.1016/j.ecoinf.2023.102360 + Le Guillarme, N., & Thuiller, W. (2023). A practical approach to constructing a knowledge graph for soil ecological research. European Journal of Soil Biology, 117, 103497. https://doi.org/10.1016/j.ejsobi.2023.103497) and the standardized structure of phyloseq objects (https://joey711.github.io/phyloseq/import-data) are used.
- to pre-analyse data (some figures and tables to check outputs)

3 constructors are needed to create *phyloseq* objects (*PO*):

- *tidy_data* (*otu_table*) = the tidy table of abundance
- tax_table (tax_table) = the cleaned taxonomy table
- fun_table (to be combined with tax_table later) = the functional table generated with gratin package
- sam_data = metadata

There are several steps to create these constructors:

- step A = data homogenization
- → *tidy_data* creation
 - step B = taxonomic cleaning and filtering
- → *tax_table* creation
 - step C = functional assignation
- \rightarrow fun table creation
 - step D = merge into *phyloseq* objects
- \rightarrow sam data and PO creation

step A = data homogenization

community_0 = raw data (from observational counts or metabarcoding abundances) tidy_community_1 = homogenized format, structure and annotations tidy_community_2 = with minimal information = tidy_data by community tidy_ALL = all communities combined = tidy_data with all communities

Replace community by :

- macrofauna_surface
- macrofauna_aerial
- macrofauna_foliar
- nematodes
- micro_arthropodes
- microorganisms
 - o bacteria
 - o fungi
 - protists

• step B = taxonomic assignation, cleaning and filtering

```
For microorganisms, done during step A:
# cleaning step 1 = remove "no data"
# cleaning step 2 = modify taxonomic names if needed
# cleaning step 3 = filter
## Filter 1 (based on taxonomy) = keep Bacteria and remove Chloroplasts, keep Fungi or keep Cercozoa depending on the targeted community and amplicon sequences
## Filter 2 (based on abundance) = remove low abundant (< 0.1% per sample, cf Ogier, J.-C., Pagès, S., Galan, M., Barret, M., & Gaudriault, S. (2019). rpoB, a promising marker
for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiology, 19(1), 171. https://doi.org/10.1186/s12866-019-1546-z)
```

```
For other communities, done with taxize package:
# cleaning step 1 = taxize::gnr_resolve and small manual corrections
# cleaning step 2 = taxize::tax_name
# cleaning step 3 = manual additions
tax_community_1 = object to use for taxize input (query)
tax_community_2 = raw taxize output (ITIS and NCBI results)
```

For all communities:

 $tax_community_3 = cleaned taxonomy = tax_table$ by community $tax_ALL = all communities combined = tax_table$ with all communities

Replace community by:

- macrofauna_surface
- macrofauna_aerial
- macrofauna_foliar
- nematodes
- micro_arthropodes
- microorganisms
 - bacteria
 - o fungi
 - protists

step C = functional assignation

community_guilds_taxalevel (taxalevel = species or genus or family or order (order only for microorganisms because the function was to long = the taxa level was too high for the other communities) with the *get.guilds* function)

community_interactions_taxalevel (idem with the *get.interactions* function)

community_guilds (all taxalevels combined) = **fun_table** by community for guilds community_interactions (idem) = **fun_table** by community for interactions

fun_guilds_ALL = all communities combined = fun_table with all communities for guilds fun_interactions_ALL = all communities combined = fun_table with all communities for interactions

Gratin functions for assignations:

- get.guilds
- get.interactions
- get.trophic.groups (not used here)
- get.diets (not used here)

Replace community by :

- macrofauna_surface
- macrofauna_aerial
- macrofauna_foliar
- nematodes
- micro_arthropodes
- microorganisms
 - bacteria
 - o fungi
 - o protists

Tracking outputs

data = metabarcoding

Tracking outputs

data = all dates available

• step D = merge into *phyloseq* objects

Prepare constructors for all communities: tidy_data_PO (otu_table) metadata_PO (sam_data) fun_table_guilds_PO (to join in tax_table) fun_table_inter_PO (to join in tax_table)

Then merge into PO for each community:

tidy_data_PO_community tax_table_PO_community metadata_PO_community

Replace community by:

- macrofauna_surface
- macrofauna_aerial
- macrofauna_foliar
- nematodes
- micro_arthropodes
- microorganisms
 - o bacteria
 - o fungi
 - protists

PO_community_raw <- phyloseq(tidy_data_PO_community, tax_table_PO_community, metadata_PO_community)

PO_community_stand <- standardize abundances to the median sequencing depth (ref = https://joey711.github.io/phyloseg/preprocess.html + McKnight, D. T., Huerlimann, R., Bower, D. S., Schwarzkopf, L., Alford, R. A., & Zenger, K. R. (2019). Methods for normalizing microbiome data: An ecological perspective. Methods in Ecology and Evolution, 10(3), 389-400. https://doi.org/10.1111/2041-210X.13115)

- > total = median(sample_sums(PO_community))
- > standf = function(x, t=total) round(t*(x/sum(x)))
- > PO_community_stand = transform_sample_counts(PO_community, standf)

PO_community_stand_prop <- PO_community_stand transformed via proportions

PO_community_norm <- normalize via proportions (ref = https://adrientaudiere.github.io/MiscMetabar/reference/normalize_prop_pq.html)

> PO_community_norm <- normalize_prop_pq(PO_community, base_log = 2, digits = 0)

PO_community_norm_prop <- PO_community_norm transformed via proportions

Then merge PO by versions:

PO_all_stand <- merge_phyloseq(PO_community1_stand, PO_community2_stand...) # used for alpha diversity
PO_all_stand_prop <- merge_phyloseq(PO_community1_stand_prop, PO_community2_stand_prop...) # used for beta diversity
PO_all_norm_prop <- merge_phyloseq(PO_community1_norm_prop, PO_community2_norm_prop...) # used for abundance graphs and tests

Flowchart

tidy_data

homogeneized data with abundances (step A) tax_table

taxonomy classification (step B) fun_table

functional classification (step C)

Flowchart

Flowchart

Architecture GitHub

https://github.com/AnneSoMasson/IFOSSA-anneso/tree/main

root data raw_data derived data tidy_data tax_table intermediate_files final files fun table phyloseq_objects analyses tracking abundance_taxa lists_assignations number_groups number_taxa percentage_abundance percentage_number preanalyses manual