Informatik I: Einführung in die Programmierung

15. Rekursion, Endrekursion, Iteration

Z

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann

17. Dezember 2024

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Rekursive Funktionen

Definition

Eine Funktion f ist **rekursiv**, wenn der Funktionsrumpf einen Aufruf von f enthält.

Beispiel (Zweierlogarithmus)

```
def 12 (n : int) -> int:
    if n == 0:
        return -1
    else:
        return 12 (n // 2) + 1
```

- Problem: Termination (vgl. while Schleife)
- **Bekannt von Funktionen auf Bäumen: rekursive Aufrufe nur auf Teilbaum** \Rightarrow **Termination.**
- Allgemein müssen die Argumente eines rekursiven Aufrufs "kleiner" sein als die Argumente der Funktion ⇒ Termination

Rekursion

Binäre

Potenzieren

Schneller Potenzieren

ortieren

Rekursion und Bäume

Erinnerung

- Bäume sind induktiv definiert:
 - Ein Baum ist entweder leer □ oder
 - ein Knoten mit einer Markierung und einer Liste von Teilbäumen.
- Schema für Funktionen *F* auf Bäumen, die natürlich rekursiv sind:

$$F(\square) = A$$

$$t_0 \dots t_{n-1}$$

$$= B(\max, F(t_0), \dots, F(t_{n-1}))$$

■ *B* ist ein Programmstück, das die Markierung der Wurzel, sowie die Ergebnisse der Funktionsaufrufe von *F* auf den Teilbäumen verwenden darf.

Rekursion

Binäre

Potenzierer

Schneller Potenzieren

ortieren

Lindenmaye

Rekursion und Bäume

Codegerüst

```
@dataclass
class Tree:
    mark : Any
    children : list['Tree']
def tree_skeleton (tree : Optional[Tree]) -> Any:
    match tree:
        case None:
            return "A" # result for empty tree
        case Tree (mark, children):
            # compute B from
            \# - mark
            # - tree skeleton(children[0])
            # - ...
            # - tree skeleton(children[n-1])
              where n = len (childen)
```

return "B"

Rekursion

Binäre

Potenziere

Schneller Potenzieren

ortieren

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Jede Rekursion folgt einer Baumstruktur

9/61

Binäre Suche

Eingabe

■ lst : list[T] streng aufsteigend sortierte Liste

■ key : T Suchbegriff

Ausgabe

i sodass lst[i] == key, falls key in lst

andernfalls: None

Idee

- Betrachte die Liste wie einen binären Suchbaum
- Wähle ein beliebiges Element als Wurzel: alle Elemente links davon sind kleiner, rechts davon größer
- Optimiere die Effizienz durch geschickte Wahl der Wurzel (in der Mitte)

Rekursion

Binäre Suche

Potenzieren

Potenzierer

Cortioren

Lindenmayer

17. Dezember 2024 P. Thiemann – Info I

Binäre Suche

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Binäre Suche (5) = 1

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Binäre Suche (23) = None

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Binäre Suche

Elementtyp int

```
N
```

```
def bsearch (lst : list[int], key : int) -> Optional[int]:
   n = len (lst)
    if n == 0:
        return None # key not in empty list
   m = n//2 # position of root
    if lst[m] == key:
        return m
    elif lst[m] > key:
        return bsearch (lst[:m], key)
    else: \# lst[m] < key
        r = bsearch (lst[m+1:], key)
        return None if r is None else r+m+1
```

Rekursion

Rinäre

Suche

Potenzieren

Potenziere

Sortieren

- Funktioniert ..., aber lst[:m] und lst[m+1:] erzeugen jeweils Kopien der halben Liste (→ ineffizient!)
- Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in 1st
- Der rekursive Aufruf muss nur den Start- bzw. Endpunkt verschieben

Binäre Suche

Potenzierer

Potenzieren

Sortieren

Binäre Suche ohne Kopieren

```
def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]
   n = hi - lo # length of list segment
    if n == 0:
       return None # key not in empty segment
   m = lo + n//2 # position of root
    if lst[m] == kev:
       return m
    elif lst[m] > key:
        return bsearch2 (1st, key, lo, m)
    else: \# lst[m] < key
        return bsearch2 (1st, key, m+1, hi)
```

Beobachtungen

■ Der Test n == 0 entspricht hi - lo == 0 und damit lo == hi

$$\blacksquare$$
 lo + (hi - lo)//2 == (lo + hi)//2

17 Dezember 2024 P Thiemann - Info I 15 / 61 Rekursion

Rinäre Suche

Lindenmayer


```
def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]
    if lo == hi:
        return None # key not in empty segment

m = (lo + hi)//2 # position of root

if lst[m] == key:
    return m

elif lst[m] > key:
    return bsearch2 (lst, key, lo, m)

else: # lst[m] < key
    return bsearch2 (lst, key, m+1, hi)</pre>
```

Beobachtungen

- Jeder rekursive Aufruf von bsearch2 erfolgt in einer return Anweisung.
- Solche Aufrufe heißen endrekursiv.

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzierer

Cortioren

Lindenmaver

Endrekursive Funktionen

Definition

Eine Funktion heißt **endrekursiv**, falls alle rekursiven Aufrufe endrekursiv sind.

Elimination von Endrekursion durch Iteration

- Jede endrekursive Funktion kann durch eine while-Schleife (Iteration) implementiert werden.
- Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der while-Schleife.
- Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
- Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.

Warum?

In Python sind while-Schleifen effizienter als rekursive Funktionen.

Rekursion

Binäre Suche

Potenzierer

Schneller Potenzieren

Sortieren

Beispiel: bsearch2 ist endrekursive Funktion


```
Abbruchbedingung der Rekursion
```

```
if lo == hi:
    return None
```

wird negiert zur Bedingung der while-Schleife

```
while lo != hi:
    ...
else:
    return None
```

Rekursion

Binäre Suche

Potenzierei

Potenziere

Sortieren

Endrekursive Aufrufe

return bsearch2 (1st, key, lo, m)

werden zu Zuweisungen an die Parameter

lst, key, lo, hi = lst, key, lo, m

bzw. hier reicht

hi = m

Rekursion

Binäre Suche

Potenzieren

Potenzierer

Sortieren


```
def bsearch2 (
        lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
    while lo != hi:
        m = (lo + hi)//2
        if lst[m] == key:
            return m
        elif lst[m] > kev:
           hi = m # bsearch2 (lst, key, lo, m)
        else: \# lst[m] < key
           lo = m+1 \# bsearch2 (lst. key. m+1. hi)
    else:
        return None
```

Binäre Suche

Potenzieren

Potenziere

Sortieren

Erinnerung: Suche im binären Suchbaum

Ebenfalls endrekursiv


```
def search(tree : Optional[Node], item : Any) -> bool:
    if tree is None:
        return False
    elif tree mark == item:
        return True
    elif tree.mark > item:
        return search(tree.left, item)
    else:
        return search(tree.right, item)
  ■ Gleiches Muster ... nicht überraschend
```

Rekursion

Binäre Suche

Potenzierei

Schneller Potenzierer

0----

Suche im binären Suchbaum

Iterativ, umgewandelt gemäß Schema


```
def search(tree : Optional[Node], item : Any) -> bool:
    while tree is not None:
        if tree mark == item:
            return True
        elif tree mark > item:
            tree = tree.left
        else:
            tree = tree.right
    else:
        return False
```

Rekursion

Binäre Suche

Potenzierer

Schneller Potenziere

Sortieren

3 Potenzieren

■ Rekursive Definition

Rekursion

Binäre Suche

Potenzieren

Rekursive Definition

Schneller Potenzieren

Sortieren

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: $x^0 = 1$ $x^{n+1} = x \cdot x^n$

$$x^0 = 1$$

$$x^{n+1} = x \cdot x^n$$

Oder "informatisch" hingeschrieben

power
$$(x, 0) == 1$$

power $(x, n+1) == x * power (x, n)$

- Wo ist da der Baum?
- Erinnerung: Induktive Definition der natürlichen Zahlen
 - Eine natürliche Zahl ist entweder 0 oder
 - \blacksquare der Nachfolger 1 + (n) einer natürlichen Zahl n.
- Als Baum:

Daraus ergibt sich das folgende Codegerüst.

Rekursiye Definition

Lindenmayer


```
def power (x : float, n : int) -> float:
    """ x ** n for n >= 0 """
    if n == 0:
        return 1
    else: # n = 1+n'
        return x * power (x, n-1)
```

Binäre

Potenzieren

Rekursive Definition

Schneller

Sortieren

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz

```
ightarrow power(2,3) wählt else-Zweig und ruft auf:

ightarrow power(2,2) wählt else-Zweig und ruft auf:

ightarrow power(2,1) wählt else-Zweig und ruft auf:

ightarrow power(2,0) wählt if-Zweig und:

ightarrow power(2,0) gibt 1 zurück

ightarrow power(2,1) gibt (2 × 1) = 2 zurück

ightarrow power(2,2) gibt (2 × 2) = 4 zurück

ightarrow power(2,3) gibt (2 × 4) = 8 zurück
```

Rekursion

Suche

Potenzieren

Rekursive Definition

Schneller

Sortieren

```
def power (x : float, n : int) -> float:
   if n==0:
     return 1
   else:
     return x * power (x, n-1)
```

Aber wir könnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

```
def power_acc (x : float, n : int, acc : float = 1) -> float:
   if n==0:
      return acc
   else:
      return power_acc (x, n-1, acc * x)
```

■ Aufruf mit power_acc (x, n); die Funktion power_acc ist endrekursiv ...

Rekursion

Binäre

Potenziere

Rekursive Definition

Schneller Potenzieren

Sortieren

Lindenmayer

Iterative Power

Schematische Transformation in Iteration

```
def power_it (x : float, n : int, acc : float = 1):
    while n != 0:
        n, acc = n-1, acc*x
    else:
        return acc
```

- Startwert acc = 1 im Funktionskopf definiert.
- Jeder Aufruf power_it (x, n) verwendet acc=1.
- Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.

Rekursion

Binäre

Potenzieren

Definition Schneller

Schneller Potenzieren

Sortieren

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Efficient Power


```
def power_it (x : float, n : int, acc : float=1):
    while n != 0:
        n, acc = n-1, acc*x
    else:
        return acc
```

Wieviele Multiplikationen braucht es zur Berechnung von

```
■ power (x, 0)?
```

Mehr Multiplikationen als unbedingt notwendig!

Rekursion

Binäre Suche

Potenzierei

Schneller Potenzieren

Sortieren

Alternative Definition von Power


```
power(x, 0) == 1

power(x, 2*n) == power(x*x, n) # n>0

power(x, 2*n+1) == x * power(x*x, n) # n>=0
```

- Alternative Aufteilung der natürlichen Zahlen.
- Jede natürliche Zahl ungleich 0 ist entweder gerade oder ungerade.
- In jedem Fall können wir die Berechnung von power entweder sofort abbrechen oder auf die power mit einem **echt kleineren** Exponenten n zurückführen.

Rekursion

Binäre

Potenzierei

Schneller Potenzieren

Sortieren

Schnelle Exponentiation


```
def fast power (x : float, n : int) -> float:
   if n == 0.
        return 1
   elif n % 2 == 0:
        return fast_power (x*x, n//2)
   else: # n % 2 == 1
        return x * fast_power (x*x, n//2)
```

```
Multiplikationen für n = 1?
```

- Multiplikationen für n = 2? 3
- Multiplikationen für n = 4?
- Multiplikationen für $n = 2^k$? k+2
- Multiplikationen für $n < 2^k$: höchstens $2k \approx 2\log_2 n$.
- Schneller als die power Funktion: logarithmisch viele Multiplikationen!
- Berechnung von n//2 und n%2 ist billig. Warum?

Rekursion

Schneller Potenzieren

Lindenmayer

```
def fast_power (x : float, n : int) -> float:
    if n == 0:
        return 1
    elif n % 2 == 0:
        return fast_power (x*x, n//2)
    else: # n % 2 == 1
        return x * fast power (x*x, n//2)
```

- Nicht endrekursiv!
- Aber es kann wieder ein akkumulierender Parameter eingeführt werden, der die äußeren Multiplikationen mit dem x durchführt.

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Binäre

Potenzierer

Schneller Potenzieren

Sortieren

Schematische Transformation liefert

Rekursion

Binäre

Potenzieren

Schneller Potenzieren

Sortieren

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Sortieren

Sortieren

- Eingabe
 - Liste lst : list[T]
 - (Ordnung <= auf den Listenelementen vom Typ T)
- Ausgabe
 - aufsteigend sortierte Liste (gemäß <=)
 - jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren durch Partitionieren

- Quicksort
- Erdacht von Sir C.A.R. Hoare um 1960
- Lange Zeit einer der schnellsten Sortieralgorithmen

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Sortieren

Lindenmaver

Systeme

Quicksort

Vorgehensweise

- Falls 1st leer ist, so ist die Ausgabe die leere Liste.
- Sonst wähle ein Element p aus 1st.
- Sei lst_lo die Liste der Elemente aus lst, die <= p sind.
- Sei lst_hi die Liste der Elemente aus lst, die nicht <= p sind.
- Sortiere lst_lo und lst_hi mit Ergebnissen sort_lo und sort_hi.
- Dann ist sort_lo + [p] + sort_hi eine sortierte Version von lst.

Rekursion

Binäre Suche

Potenzierer

Potenziere

Sortieren

Quicksort Beispiel

Rekursion

Binäre Suche

Potenzieren

Schneller

Potenzieren

Sortieren

```
Pokurojer
```

```
def quicksort (lst : list[int]) -> list[int]:
   if len (lst) <= 1:
      return lst
   else:
      p, lst_lo, lst_hi = partition (lst)
      return (quicksort (lst_lo) + [p] + quicksort (lst_hi))</pre>
```

Wunschdenken

- Wir nehmen an, dass partition (1st) für len (1st)>=1 ein 3-Tupel liefert, wobei
 - p ist ein Element von 1st
 - lst_lo enthält die Elemente z von lst mit z <= p
 - lst_hi enthält die Elemente z von lst mit z > p

Rekursion

Binäre

Potenzieren

Potenziere

Sortieren

- Codegerüst für Listenverarbeitung
- Zwei Akkumulatoren lst_lo und lst_hi

Betrachtung von Quicksort

- Der rekursive Algorithmus ist die einfachste Beschreibung von Quicksort.
- Eine iterative Implementierung ist möglich.
- Diese ist aber deutlich schwieriger zu verstehen.

Rekursion

Binäre

Potenzieren

Schneller

1 Otomzioi

Sortieren

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Lindenmayer Systeme

Wikipedia

Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung vorgeschlagen wurde. In jüngerer Zeit fanden L-Systeme Anwendung in der Computergrafik bei der Erzeugung von Fraktalen und in der realitätsnahen Modellierung von Pflanzen.

Rekursion

Binäre

Potenzieren

Potenziere

Sortieren

Lindenmayer Systeme, formal

Definition

Ein OL-System ist ein Tupel $G = (V, \omega, P)$. Dabei ist

- V eine Menge von Symbolen (Alphabet),
- lacksquare $\omega \in V^*$ ein String von Symbolen und
- $P \subseteq V \times V^*$ eine Menge von Produktionen, sodass zu jedem $A \in V$ mindestens eine Produktion $(A, w) \in P$ existiert.

Beispiel (Lindenmayer): 0L-System für Algenwachstum

$$V = \{A, B\}$$

$$\square$$
 $\omega = A$

$$\blacksquare$$
 $P = \{A \rightarrow BA, B \rightarrow A\}$

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortioron

Wie rechnet ein 0L-System?

Definition (Berechnungsrelation eines 0L-Systems)

Sei $G = (V, \omega, P)$ ein 0L-System.

Sei $A_1A_2...A_n$ ein String über Symbolen aus V (also $A_i \in V$).

Ein Rechenschritt von *G* ersetzt **jedes** Symbol durch eine zugehörige rechte Produktionsseite:

$$A_1A_2...A_n \Rightarrow w_1w_2...w_n$$

wobei $(A_i, w_i) \in P$, für $1 \le i \le n$.

Die Sprache von G besteht aus allen Strings, die aus ω durch endlich viele \Rightarrow -Schritte erzeugt werden können.

Rekursion

Binäre Suche

Potenzierer

Potenziere

Cartioren

Beispiel: Algenwachstum

$$V = \{A, B\}, \quad \omega = A, \quad P = \{A \rightarrow BA, B \rightarrow A\}$$

- \mathbf{A}
- 2 *BA*
- 3 ABA
- 4 BAABA
- 5 ABABAABA
- **BAABAABABAABA**
- *ABABAABABAABAABABAABA*
- 8 usw

Rekursion

Binäre

Potenzierei

Schneller Potenzieren

0----

Beispiel Kochkurve

- Die Kochkurve ist ein Fraktal
- D.h. eine selbstähnliche Kurve mit rekursiver Beschreibung und weiteren spannenden Eigenschaften.

Sie kann durch ein 0L-System beschrieben werden.

Rekursion

Binäre

Potenziere

Schneller Potenzierer

Sortierer

Kochkurve

0L-System für die Kochkurve

$$V = \{F, +, -\}$$

$$\square$$
 $\omega = F$

$$\blacksquare$$
 $P = \{F \mapsto F + F - F + F\}$ sowie $+ \mapsto +$ und $- \mapsto -$

Interpretation der Symbole als Zeichenoperationen

- F Strecke vorwärts zeichnen
- + um 60° nach links abbiegen
- um 120° nach rechts abbiegen

Rekursion

Binäre

Potenzieren

Schneller Potenzieren

S = -- 11 = -- --

Idee der "Schildkrötengrafik"

Fine Schildkröte sitzt auf einer Zeichenfläche. Sie kann eine bestimmte Strecke geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken. Wenn ihr Hintern dabei über den Boden schleift, hinterläßt sie einen geraden Strich.

Befehle an die Schildkröte

```
from turtle import *
pencolor('black') #use the force
pendown()
                  #let it all hang out
forward(100)
left(120)
forward(100)
left(120)
forward(100)
```

Schildkröten-Interpretation

Die Operationen

```
forward (size)
          left (60)
           right (120)
Die Produktion F \mapsto F + F - F + F
def koch(size:float, n:int):
    #...
   koch(size/3, n-1) \#F
    left(60)
                      #+
   koch(size/3, n-1) \#F
   right(120)
                      #-
    koch(size/3, n-1) \#F
    left(60)
                      #+
```

koch(size/3, n-1) #F

Rekursion

Binäre Suche

Potenzierei

Potenziere

Sortieren

```
Rekursion
```

```
def koch (size:float, n:int):
    if n == 0:
        forward(size)
    else:
        koch (size/3, n-1)
        left(60)
        koch (size/3, n-1)
        right(120)
        koch (size/3, n-1)
        left(60)
        koch (size/3, n-1)
```

Rinäre

Sortieren

Beispiel: Fraktaler Binärbaum

0L-System für fraktale Binärbäume

- $V = \{0, 1, [,]\}$
- $\omega = 0$
- $P = \{1 \mapsto 11, 0 \mapsto 1[0]0\}$

Interpretation

- 0 Strecke vorwärts zeichnen mit Blatt am Ende
- 1 Strecke vorwärts zeichnen
- [Position und Richtung merken und um 45° nach links abbiegen
-] Position und Richtung von zugehöriger öffnender Klammer wiederherstellen und um 45° nach rechts abbiegen

Rekursion

Binäre Suche

Potenzieren

Potenzieren

ortieren


```
def btree_1 (size:float, n:int):
    if n == 0:
        forward (size)
    else:
        n = n - 1
        btree_1 (size/3, n)
        btree_1 (size/3, n)
```

Rekursion

Binäre

Potenzieren

Schneller Potenzieren

Cortioron

- n==0: letzte Generation erreicht
- Faktor 1/3 willkürlich gewählt

Turtle-Graphics Implementierung Teil 0

```
The street of th
```

```
UNI
FREIBURG
```

```
def btree_0 (size:float, n:int):
    if n == 0.
        forward(size)
                             # line segment
        dot (2, 'green')
                             # draw leaf
    else:
        n = n - 1
        btree_1 (size/3, n)
                             # "["
        pos = position()
        ang = heading()
        left(45)
        btree 0 (size/3, n)
                             # "0"
                             # "7"
        penup()
        setposition (pos)
        setheading (ang)
        pendown()
        right (45)
        btree 0 (size/3. n)
                             # "0"
```

Rekursion

Binäre Suche

Potenzierer

Schneller Potenzieren

Cortioren

Rekursion

Binäre Suche

Potenzieren

Schneller Potenzieren

Sortieren

Zusammenfassung

- Induktion ist eine Definitionstechnik aus der Mathematik.
- Funktionen auf induktiv definierten Daten (d.h. baumartigen Strukturen) sind meist rekursiv.
- Sie terminieren, weil die rekursiven Aufrufe stets auf Teilstrukturen erfolgen.
- In Python ist Rekursion oft nicht die effizienteste Implementierung einer Funktion!
- Endrekursion kann schematisch in effiziente Iteration umgewandelt werden.
- Jede rekursive Funktion lässt sich schematisch in eine äquivalente endrekursive Function umzuwandeln.

Rekursion

Binäre

Potenzieren

Potenzierer

Sortieren