Appendix

observed.

Data analysis code

```
git clone https://github.com/Cistron/bioc3301_data
# Download year 2016 and year 2017 data-sets into custom folder.

source activate qiime1
# Activates miniconda (Python) virtual environment.

validate_mapping_file.py -m map.tsv -o ./vmf
# Ensures the mapping file is correct, faults will be highlighted in maps.tsv.html

split_libraries_fastq.py --barcode_type 12 -i bioc3101_2016_read1_50k.fastq.gz -m map.tsv -o ./slout -b bioc3101_2016_barcodes_50k.fastq
# Demultiplexing and quality filtering of data according to barcode.
# Only used read 1 because read 2 was of lower quality this year.

count_seqs.py -i ./slout/seqs.fna
# Counts the sequences in a fna file and write results to slout.

pick_closed_reference_otus.py -i ./slout/seqs.fna -o ./otus
# Picks operational taxonomic units with closed reference.

biom summarize-table -i ./merged_otu_table.biom
```

Produces a human readable summary of the OTU table (Table 5) where a total of 10453611 sequences can be

Table 5 | Summary of the OTU table generated using the biom summarize-table command.

Number of samples:	12
Number of observations:	15504
Total count:	10453711
Table density (fraction of non-zero values:	0.443
Counts/sample summary:	
Min:	371590.0
Max:	1427140.0
Median:	849510.000
Std. dev.:	261282.144
Sample Metadata Categories:	None provided
Observation Metadata Categories:	Taxonomy
Counts/sample detail:	
15.16.1:	1427140.0
15.16.2:	966382.0
15.16.3:	785867.0
15.16.4:	371590.0
16.17.1:	818625.0
16.17.2:	1094022.0
16.17.3:	693596.0
16.17.4:	880395.0
16.17.5:	597583.0
16.17.6:	1017801.0
16.17.7:	724145.0
16.17.8:	1076565.0

April 2017 1

core_diversity_analyses.py --recover_from_failure -o cdout/ -i merged_otu_table.biom -m
map.tsv -t 97 otus.tree -e 371590 --recover from failure

- # Runs diversity analyses at 371590 sequences per sample.
- # Enables investigation of alpha (within sample) and beta (differences between habitats) diversity.
- # Also generates 3D principal coordinate plots, which can be subsequently viewed in EMPeror.
- # -e is the sampling depth, set to 371590 which is the lowest number of sequences observed in the biom table summary, else these data are excluded from the analysis.
- # If –e parameter is set too high, the smaller samples will be excluded.
- # --recover_from_failure permits analysis to be resumed should it crash.
- # The output of this script is an HTML file that can opened in a web browser (Figure 10).

Run summary data		
Master run log	log 20170324140718.txt	
Previous run log	log 20170323213036.txt	
Previous run log	log 20170324124136.txt	
Previous run log	log 20170324125105.txt	
Previous run log	log 20170324125309.txt	
BIOM table statistics	biom table summary.txt	
Filtered BIOM table (minimum sequence count: 371590)	table mc371590.biom.gz	
rarefied BIOM table (sampling depth: 371590)	table_even371590.biom.gz	
Taxonomic summary results		
Taxa summary bar plots	bar charts.html	
Taxa summary area plots	area charts.html	
Beta diversity results (even sampling: 371590)		
PCoA plot (unweighted_unifrac)	index.html	
Distance matrix (unweighted_unifrac)	unweighted unifrac dm.txt	
Principal coordinate matrix (unweighted_unifrac)	unweighted unifrac pc.txt	
PCoA plot (weighted_unifrac)	index.html	
Distance matrix (weighted_unifrac)	weighted unifrac dm.txt	
Principal coordinate matrix (weighted_unifrac)	weighted unifrac pc.txt	
Alpha diversity results		
Alpha rarefaction plots	rarefaction plots.html	

Need help? See http://help.qiime.org.

Figure 10 | HTML result from core_diversity_analyses.py. This HTML file summarises and gives access to the results of the diversity analyses conducted on the given OTU table.

make_2d_plots.py -i unweighted_unifrac_pc.txt -m map.tsv_corrected.txt
Generates 2D PCoA unweighted plots which is useful for qualitative analysis, considers the presence or absence
of species).

make_2d_plots.py -i weighted_unifrac_pc.txt -m map.tsv_corrected.txt

Generates 2D PCoA weighted plots which is useful for quantitative analysis, accounts for abundance of observed organisms.

source deactivate qiime1

Deactivates virtual environment.

Statistical testing testing code

The following QIIME scripts were used for performing statistical significance analyses of sample grouping using UniFrac distance matrices (http://qiime.org/scripts/compare_categories.html).

```
source activate giime1
```

Activates miniconda (Python) virtual environment.

```
compare_categories.py --method adonis -i unweighted_unifrac_dm.txt -m map.tsv_corrected.txt -
c Year -o adonis_out -n 999
```

adonis is a non-parametric statistical method that takes a QIIME distance matrix file such as UniFrac distance matrix, a mapping file, and a category in the mapping file to determine the sample grouping for beta diversity.

This command creates a new output directory named adonis_out, which will contain a single text file (adonis_results.txt)

 $\# R^2$ value (effect size) will be computed, which shows the percentage of variation explained by the supplied mapping file category (in this case, Year)

a p-value will also be computed, which determines the statistical significance

```
compare_categories.py --method anosim -i unweighted_unifrac_dm.txt -m map.tsv_corrected.txt -
c Year -o anosim out -n 999
```

- # ANOSIM (similar to adonis) tests whether 2 or more groups of samples are significantly different.
- # Quantifies the strength of the grouping or clustering of samples observed in the ordination plots.
- # Generates the R statistic (strength of the factors on the samples) and p-value (significance level).
- # R-values that are close to 1 indicates high separation between levels of your factor.
- # R-values that are close to 0 indicates no separation between levels of your factor.

```
compare_categories.py --method adonis -i weighted_unifrac_dm.txt -m map.tsv_corrected.txt -c
Year -o adonis_out_w -n 999
```

Same as above but using weighted UniFrac distances.

```
compare_categories.py --method anosim -i weighted_unifrac_dm.txt -m map.tsv_corrected.txt -c
Year -o anosim_out_w -n 999
```

Same as above but using weighted UniFrac distances.

```
source deactivate qiime1
```

Deactivates virtual environment.