Problems and solutions

First day — August 2, 1996

Problem 1. (10 points)

Let for j = 0, ..., n, $a_j = a_0 + jd$, where a_0, d are fixed real numbers. Put

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_0 & a_1 & \cdots & a_{n-1} \\ a_2 & a_1 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}.$$

Calculate det(A), where det(A) denotes the determinant of A

Solution. Adding the first column of A to the last column we get that

$$\det(A) = (a_0 + a_n) \det \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & 1 \\ a_1 & a_0 & a_1 & \cdots & 1 \\ a_2 & a_1 & a_0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & a_{n-2} & \cdots & 1 \end{pmatrix}.$$

Subtracting the *n*-th row of the above matrix from the (n + 1)-st one, (n - 1)-st from *n*-th, ..., first from second we obtain that

$$\det(A) = (a_0 + a_n) \det \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & 1 \\ d & -d & -d & \cdots & 0 \\ d & d & -d & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d & d & d & \cdots & 0 \end{pmatrix}.$$

Hence,

$$\det(A) = (-1)^n (a_0 + a_n) \det \begin{pmatrix} d & -d & -d & \cdots & -d \\ d & d & -d & \cdots & -d \\ d & d & d & \cdots & -d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d & d & d & \cdots & d \end{pmatrix}.$$

Adding the last row of the above matrix to the other rows we have

$$\det(A) = (-1)^n (a_0 + a_n) \det \begin{pmatrix} 2d & 0 & 0 & \cdots & 0 \\ 2d & 2d & 0 & \cdots & 0 \\ 2d & 2d & 2d & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d & d & d & \cdots & d \end{pmatrix} = (-1)^n (a_0 + a_n) 2^{n-1} d^n.$$

Problem 2. (10 points)

Evaluate the definite integral

$$\int_{-\pi}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} \, dx,$$

where n is a natural number.

Solution. We have

$$I_n = \int_{-\pi}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} dx$$
$$= \int_{0}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} dx + \int_{-\pi}^{0} \frac{\sin nx}{(1+2^x)\sin x} dx.$$

In the second integral we make the change of variable x = -x and obtain

$$I_n = \int_0^{\pi} \frac{\sin nx}{(1+2^x)\sin x} \, dx + \int_0^{\pi} \frac{\sin nx}{(1+2^{-x})\sin x} \, dx$$

$$= \int_0^\pi \frac{(1+2^x)\sin nx}{(1+2^x)\sin x} dx$$
$$= \int_0^\pi \frac{\sin nx}{\sin x} dx.$$

For $n \geq 2$ we have

$$I_n - I_{n-2} = \int_0^\pi \frac{\sin nx - \sin(n-2)x}{\sin x} dx$$
$$= 2 \int_0^\pi \cos(n-1)x dx = 0.$$

The answer

$$I_n = \begin{cases} 0 & \text{if } n \text{ is even,} \\ \pi & \text{if } n \text{ is odd.} \end{cases}$$

follows from the above formula and $I_0 = 0$, $I_1 = \pi$.

Problem 3. (15 points) The linear operator A on the vector space V is called an involution if $A^2 = E$ where E is the identity operator on V. Let dim $V = n < \infty$.

- (i) Prove that for every involution A on V there exists a basis of V consisting of eigenvectors of A.
- (ii) Find the maximal number of distinct pairwise commuting involutions on V.

Solution.

(i) Let $B = \frac{1}{2}(A + E)$. Then

$$B^{2} = \frac{1}{4}(A^{2} + 2AE + E) = \frac{1}{4}(2AE + 2E) = \frac{1}{2}(A + E) = B.$$

Hence B is a projection. Thus there exists a basis of eigenvectors for B, and the matrix of B in this basis is of the form diag(1, ..., 1, 0, ..., 0).

Since A = 2B - E the eigenvalues of A are ± 1 only.

(ii) Let $\{A_i: i \in I\}$ be a set of commuting diagonalizable operators on V, and let A_1 be one of these operators. Choose an eigenvalue λ of A_1 and denote $V_{\lambda} = \{v \in V: A_1v = \lambda v\}$. Then V_{λ} is a subspace of V, and since $A_1A_i = A_iA_1$ for each $i \in I$ we obtain that V_{λ} is invariant under each A_i . If $V_{\lambda} = V$ then A_1 is either E or -E, and we can start with another operator A_i . If $V_{\lambda} \neq V$ we proceed by induction on dim V in order to find a common eigenvector for all A_i . Therefore $\{A_i: i \in I\}$ are simultaneously diagonalizable.

If they are involutions then $|I| \leq 2^n$ since the diagonal entries may equal 1 or -1 only.

Problem 4. (15 points)

Let $a_1 = 1$, $a_n = \frac{1}{n} \sum_{k=1}^{n-1} a_k a_{n-k}$ for $n \ge 2$. Show that

- (i) $\limsup_{n\to\infty} |a_n|^{1/n} < 2^{-1/2}$,
- (ii) $\limsup_{n\to\infty} |a_n|^{1/n} \ge 2/3$.

Solution.

(i) We show by induction that

(*)
$$a_n \le q^n \text{ for } n \ge 3$$
,

where q = 0.7 and use that $0.7 < 2^{-1/2}$. One has $a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{3}$,

$$a_4 = \frac{11}{48}.$$

Therefore (*) is true for n=3 and n=4. Assume (*) is true for $n \leq N-1$ for some $N \geq 5$. Then

$$a_N = \frac{2}{N} a_{N-1} + \frac{1}{N} a_{N-2} + \frac{1}{N} \sum_{k=2}^{N-3} a_k a_{N-k} \le \frac{2}{N} q^{N-1} + \frac{1}{N} q^{N-2} + \frac{N-5}{N} q^N \le q^N$$

because $\frac{2}{q} + \frac{1}{q^2} \le 5$.

(ii) We show by induction that

$$a_n \ge q^n$$
 for $n \ge 2$,

where $q = \frac{2}{3}$. One has $a_2 = \frac{1}{2} > (\frac{2}{3})^2 = q^2$. Going by induction we have

$$a_N = \frac{2}{N}a_{N-1} + \frac{1}{N}\sum_{k=2}^{N-2} a_k a_{N-k} \ge \frac{2}{N}q^{N-1} + \frac{N-3}{N}q^N = q^N$$

because $\frac{2}{q} = 3$.

Problem 5. (25 points)

(i) Let a, b be real numbers such that $b \le 0$ and $1 + ax + bx^2 \ge 0$ for every x in [0, 1]. Prove that

$$\lim_{n \to \infty} n \int_0^1 (1 + ax + bx^2)^n dx = \begin{cases} -\frac{1}{a} & \text{if } a < 0, \\ +\infty & \text{if } a \ge 0. \end{cases}$$

(ii) Let $f:[0,1] \to [0,\infty)$ be a function with a continuous second derivative and let $f''(x) \le 0$ for every x in [0,1]. Suppose that $L = \lim_{n \to \infty} n \int_0^1 (f(x))^n dx$ exists and $0 < L < +\infty$. Prove that f' has a constant sign and $\min_{x \in [0,1]} |f'(x)| = L^{-1}$.

Solution.

(i) With a linear change of the variable (i) is equivalent to: (i') Let a, b, A be real numbers such that $b \le 0, A > 0$ and $1 + ax + bx^2 > 0$ for every x in [0, A]. Denote $I_n = n \int_0^A (1 + ax + bx^2)^n dx$. Prove that

$$\lim_{n\to\infty} I_n = -\frac{1}{a} \text{ when } a < 0 \text{ and } \lim_{n\to\infty} I_n = +\infty \text{ when } a \ge 0.$$

Let a < 0. Set $f(x) = e^{ax} - (1 + ax + bx^2)$. Using that f(0) = f'(0) = 0 and $f''(x) = a^2 e^{ax} - 2b$ we get for x > 0 that

$$0 < e^{ax} - (1 + ax + bx^2) < cx^2$$

where $c = \frac{a^2}{2} - b$. Using the mean value theorem we get

$$0 < e^{anx} - (1 + ax + bx^2)^n < cx^2 ne^{a(n-1)x}.$$

Therefore

$$0 < n \int_0^A e^{anx} dx - n \int_0^A (1 + ax + bx^2)^n dx < cn^2 \int_0^A x^2 e^{a(n-1)x} dx.$$

Using that

$$n\int_0^A e^{anx} dx = \frac{e^{anA} - 1}{a} \to \frac{-1}{a} \quad \text{as } n \to \infty$$

and

$$\int_0^A x^2 e^{a(n-1)x} \, dx < \frac{1}{|a|^3 (n-1)^3} \int_0^\infty t^2 e^{-t} \, dt$$

we get (i') in the case a < 0.

Let $a \ge 0$. Then for $n > \max\{A^{-2}, -b\} - 1$ we have

$$n \int_0^A (1 + ax + bx^2)^n dx > n \int_0^{\frac{1}{\sqrt{n+1}}} (1 + bx^2)^n dx$$
$$> n \cdot \frac{1}{\sqrt{n+1}} \cdot \left(1 + \frac{b}{n+1}\right)^n$$
$$> \frac{n}{\sqrt{n+1}} e^b \to \infty \quad \text{as } n \to \infty.$$

(i) is proved.

(ii) Denote $I_n = n \int_0^1 (f(x))^n dx$ and $M = \max_{x \in [0,1]} f(x)$.

For M < 1 we have $I_n \leq nM^n \to 0$, a contradiction.

If M>1 since f is continuous there exists an interval $I\subset [0,1]$ with |I|>0 such that f(x)>1 for every $x\in I$. Then $I_n\geq n|I|\to\infty$, a contradiction. Hence M=1. Now we prove that f' has a constant sign. Assume the opposite. Then $f'(x_0)=0$ for some $x\in (0,1)$. Then $f(x_0)=M=1$ because $f''\leq 0$. For x_0+h in [0,1], $f(x_0+h)=1+\frac{h^2}{2}f''(\xi)$, for some ξ in (x_0,x_0+h) . Let $m=\min_{x\in [0,1]}f''(x)$. So, $f(x_0+h)\geq 1+\frac{h^2}{2}m$.

Let $\delta > 0$ be such that $1 + \frac{\delta^2}{2}m > 0$ and $x_0 + \delta < 1$. Then

$$I_n \ge n \int_{x_0}^{x_0 + \delta} (f(x))^n dx \ge n \int_0^{\delta} \left(1 + \frac{m}{2}h^2\right)^n dh \to \infty \quad \text{as } n \to \infty$$

in view of (i') — a contradiction. Hence f is monotone and M = f(0) or M = f(1).

Let M = f(0) = 1. For h in [0, 1]

$$1 + hf'(0) \ge f(h) \ge 1 + hf'(0) + \frac{m}{2}h^2,$$

where $f'(0) \neq 0$, because otherwise we get a contradiction as above. Since f(0) = M the function f is decreasing and hence f'(0) < 0. Let 0 < A < 1 be such that $1 + Af'(0) + \frac{m}{2}A^2 > 0$. Then

$$n\int_0^A (1+hf'(0))^n dh \ge n\int_0^A (f(x))^n dx \ge n\int_0^A \left(1+hf'(0)+\frac{m}{2}h^2\right)^n dh.$$

From (i') the first and the third integral tend to $-\frac{1}{f'(0)}$ as $n \to \infty$, hence so does the second. Also

$$n \int_{A}^{1} (f(x))^{n} dx \le n(f(A))^{n} \to 0 \quad (f(A) < 1).$$

We get $L = -\frac{1}{f'(0)}$ in this case.

If M = f(1) we get in a similar way $L = -\frac{1}{f'(1)}$.

Problem 6. (25 points) Upper content of a subset E of the plane \mathbb{R}^2 is defined as

$$C(E) = \inf \left\{ \sum_{i=1}^{n} \operatorname{diam}(E_i) \right\}$$

where inf is taken over all finite families of sets $E_1, \ldots, E_n, n \in \mathbb{N}$, in \mathbb{R}^2 such that $E \subseteq \bigcup_{i=1}^n E_i$.

Lower content of E is defined as

 $K(E) = \sup\{ \text{length}(L) : L \text{ is a closed line segment onto which } E \text{ can be contracted} \}.$

Show that

- (a) C(L) = length(L) if L is a closed line segment;
- (b) $C(E) \geq K(E)$;
- (c) the equality in (b) needs not hold even if E is compact.

Hint. If $E = T \cup T'$ where T is the triangle with vertices (-2, 2), (2, 2) and (0, 4), and T' is its reflexion about the x-axis, then C(E) = 8 > K(E).

Remarks: All distances used in this problem are Euclidean. Diameter of a set E is $\operatorname{diam}(E) = \sup\{\operatorname{dist}(x,y): x,y\in E\}$. Contraction of a set E to a set E is a mapping $f:E\to F$ such that $\operatorname{dist}(f(x),f(y))\leq\operatorname{dist}(x,y)$ for all $x,y\in E$. A set E can be contracted onto a set F if there is a contraction f of E to F which is onto, i.e., such that f(E)=F. Triangle is defined as the union of the three segments joining its vertices, i.e., it does not contain the interior.

Solution.

(a) The choice $E_1 = L$ gives $C(L) \leq \text{length}(L)$. If $E \subseteq \bigcup_{i=1}^n E_i$, then

$$\sum_{i=1}^{n} \operatorname{diam}(E_i) \ge \operatorname{length}(L).$$

By induction, n=1 obvious, and assuming that E_{n+1} contains the end point a of L, define the segment $L_{\varepsilon} = \{x \in L : \operatorname{dist}(x, a) > \operatorname{diam}(E_{n+1}) + \varepsilon\}$ and use induction assumption to get

$$\sum_{i=1}^{n+1} \operatorname{diam}(E_i) \ge \operatorname{length}(L_{\varepsilon}) + \operatorname{diam}(E_{n+1}) \ge \operatorname{length}(L) - \varepsilon;$$

but $\varepsilon > 0$ is arbitrary.

(b) If f is a contraction of E onto L and $E \subseteq \bigcup_{i=1}^n E_i$, then $L \subseteq \bigcup_{i=1}^n f(E_i)$ and

$$\operatorname{length}(L) \leq \sum_{i=1}^{n} \operatorname{diam}(f(E_i)) \leq \sum_{i=1}^{n} \operatorname{diam}(E_i).$$

(c1) Let $E = T \cup T'$ where T is the triangle with vertices (-2, 2), (2, 2) and (0, 4), and T' is its reflexion about the x-axis. Suppose $E \subseteq \bigcup_{i=1}^n E_i$. If no set among E_i meets both T and T', then E_i may be partitioned into covers of segments [(-2, 2), (2, 2)] and [(-2, -2), (2, -2)], both of length 4, so

$$\sum_{i=1}^{n} \operatorname{diam}(E_i) \ge 8.$$

If at least one set among E_i , say E_k , meets both T and T', choose $a \in E_k \cap T$ and $b \in E_k \cap T'$ and note that the sets $E'_i = E_i$ for $i \neq k$, $E'_k = E_k \cup [a, b]$ cover $T \cup T' \cup [a, b]$, which is a set of upper content at least 8, since its orthogonal projection onto y-axis is a segment of length 8. Since diam $(E_i) = \text{diam}(E'_i)$, we get

$$\sum_{i=1}^{n} \operatorname{diam}(E_i) \ge 8.$$

(c2) Let f be a contraction of E onto L = [a', b']. Choose $a = (a_1, a_2)$, $b = (b_1, b_2) \in E$ such that f(a) = a' and f(b) = b'. Since length(L) = dist(a', b') \leq dist(a, b) and since the triangles have diameter only 4, we may assume that $a \in T$ and $b \in T'$. Observe that if $a_2 \leq 3$ then a lies on one of the segments joining some of the points (-2, 2), (2, 2), (-1, 3), (1, 3); since all these points have distances from vertices, and so from points, of T_2 at most $\sqrt{50}$, we get that length(L) \leq dist(a, b) $\leq \sqrt{50}$. Similarly, if $b_2 \geq -3$. Finally, if $a_2 > 3$ and $b_2 < -3$, we note that every vertex, and so every point of T is in the distance at most $\sqrt{10}$ for a and every vertex, and so every point, of T' is in the distance at most $\sqrt{10}$ of b. Since f is a contraction, the image of T lies in a segment containing a' of length at most $\sqrt{10}$ and the image of T' lies in a segment containing b' of length at most $\sqrt{10}$. Since the union of these two images is L, we get length(L) $\leq 2\sqrt{10} \leq \sqrt{50}$. Thus $K(E) \leq \sqrt{50} < 8$.