CSU44004 Formal Verification: First Order Logic Natural Deduction Solutions

By: Alexander Sepelenco

Note

This document will contain 9 years of first order logic natural deduction solutions ranging from 2022 to 2015. I will create helper proofs for future questions:

 $\neg \to e$ $\neg \forall x.A \to \exists x. \neg A,$ $\neg \exists x.A \to \forall x. \neg A,$ $\neg \exists x.A \to \exists x. \neg A,$ $\neg \forall x.A \to \forall x. \neg A,$ $\forall x. \neg A \to \neg \forall x. A,$ $\exists x. \neg A \to \neg \exists x. A,$

Prove: $\neg(p \to q) \vdash p \land \neg q$

1.	$\neg(p \to q)$	premise
2.	$\neg(p \land \neg q)$	assumption
3.	p	assumption
4.	$\neg q$	assumption
5.	$ \ \ \ p \wedge \neg q$	∧i, 3, 4
6.		¬e, 5, 2
7.	$\neg \neg q$	¬i, 4–6
8.	q	¬¬e, 6
9.	p o q	\rightarrow i, 3–7
10.		¬e, 9, 1
11.	$\neg\neg(p \land \neg q)$	$\neg i, 2-10$
12.	$p \land \neg q$	$\neg \neg e, 12$

Prove: $\neg \forall x.A \vdash \exists x. \neg A$

1.	$\neg \forall x. A$	premise
2.	$\neg \exists x. \neg A$	assumption
3.	xo	
4.	$\neg A$	assumption
5.	$\exists x. \neg A$	∃i, 4
6.		¬e, 5, 2
7.	A	PBC, 4–6
8.	$\forall x.A$	∀i, 3–7
9.		¬e, 8, 1
10.	$\exists x. \neg A$	PBC, 2–9

Prove: $\neg \exists x.A \vdash \forall x. \neg A$

1.	$\neg \exists x. A$	
2.	$\neg \forall x. \neg A$	assumption
3.	$\exists x. \neg \neg A$	$\neg \forall x. A \to \exists x. \neg A, 2$
4.	xo	
5.		assumption
6.	A	¬¬e, 5
7.	$\exists x.A$	∃i, 6
8.		¬e, 7, 1
9.		$\exists e, 3, 4-8$
10.	$\forall x. \neg A$	PBC, 2-4

Prove: $\neg \exists x.A \vdash \exists x. \neg A$

1.	$\neg \exists x. A$	premise
2.	$\neg \exists x. \neg A$	assumption
3.	xo	
4.	$\neg A$	assumption
5.	$\exists x. \neg A$	∃i, 4
6.		¬e, 5, 2
7.	A	PBC, 4–6
8.	$\forall x.A$	∀i, 3–7
9.	A	∀e, 8
10.	$\exists x.A$	∃i, 9
11.		¬e, 10, 1
12.	$\exists x. \neg A$	PBC,211

Prove: $\neg \forall x.A \vdash \forall x. \neg A$

1.
$$\neg \forall x.A$$
 premise
2. $\neg \forall x. \neg A$ assumption
3. $\exists x. \neg \neg A$ $\neg \forall x.A \rightarrow \exists x. \neg A, 2$
4. xo
5. $\neg \neg A$ assumption
6. A $\neg \neg e, 5$
7. $\forall x.A$ $\forall i, 4-6$
8. \bot $\neg e, 7, 1$
9. $\forall x. \neg A$ $PBC, 2-8$

Prove: $\forall x. \neg A \rightarrow \neg \forall x. A$

Prove: $\exists x. \neg A \rightarrow \neg \exists x. A$

1.	$\exists x. \neg A$	premise
2.	$\neg\neg\exists x.A$	assumption
3.	$\exists x.A$	¬¬e, 2
4.	xo	
5.	A	assumption
6.	yo	
7.	$ \ \ \ \neg A$	assumption
8.	$ \ \ \ A$	copy 5
9.		¬e, 8, 7
10.		∃e, 1, 6–9
11.		$\exists e, 3, 4-10$
12.	$\neg \exists x. A$	PBC, 2–6

2022 Q2

(c) Prove: $\neg \exists x. \forall y. S(x,y) \vdash \forall x. \exists y. \neg S(x,y)$

1.
$$\neg \exists x. \forall y. S(x,y)$$
 premise
2. $\exists x. \neg \forall y. S(x,y)$ $\neg \exists x. A \rightarrow \exists x. \neg A, 1$
3. xo
4. $\neg \forall y. S(xo,y)$ assumption
5. $\forall y. \neg S(xo,y)$ $\neg \forall x. A \rightarrow \forall x. \neg A, 4$
6. yo
7. $\neg S(xo,yo)$ $\forall e, 5$
8. $\exists y. \neg S(xo,y)$ $\exists i, 7$
9. $\forall x. \exists y. \neg S(x,y)$ $\forall i, 6-8$
10. $\forall x. \exists y. \neg S(x,y)$ $\exists e, 2, 3-9$

$2021~\mathrm{Q2}$

(c) This question has been done, view blackboard for solution

2020 Q2

(c) Prove: $\forall x.\exists y.R(x,y) \vdash \neg \forall y. \forall z.(R(a,y) \rightarrow \neg R(y,z))$

1.	$\forall x. \exists y. R(x,y)$	premise
2.	$\neg\neg\forall y.\forall z(R(a,y)\to\neg R(y,z))$	assumption
3.	$\forall y. \forall z. (R(a,y) \rightarrow \neg R(y,z))$	$\neg \neg e, 2$
4.	xo xo	
5.	$\exists y.R(xo,y)$	$\forall e, 1$
6.	$\forall z. (R(a, xo) \to \neg R(xo, z))$	$\forall e, 3$
7.	yo	
8.	$ \ \ \ \ \ \ \ \ \ \$	assumption
9.	$ R(a, xo) \to \neg R(xo, yo)$	$\forall e, 6$
10.	$ \ \ \ \neg R(a, xo)$	MT, 8, 9
11.	$ \ \ \exists y. \neg R(a,y)$	∃i, 10
12.	$\exists y. \neg R(a, y)$	∃e, 5, 7–11
13.	$ $ $\neg \exists y.R(a,y)$	$\exists x. \neg A \rightarrow \neg \exists x. A, 12$
14.	$\exists y.R(a,y)[a/xo]$	copy, 5
15.	<u> </u>	¬e, 14, 13
16.	$\forall x. \bot$	$\forall i, 4-15$
17.	Т	$\neg e, \forall e, 16$
18.	$\neg \forall y. \forall z. (R(a,y) \to \neg R(y,z))$	PBC, 2-17

$2019~\mathrm{Q2}$

(c)

(i) Prove: $\neg \forall x. D(x) \vdash \exists y. \neg D(y)$ Using proof of our rule similar to question.

1.
$$\neg \forall x. D(x)$$
 premise
2. $\exists x. \neg D(x)$ $\neg \forall x. A \rightarrow \exists x. \neg A, 1$
3. yo
4. $\neg D(yo)$ assumption
5. $\exists y. \neg D(y)$ $\exists i, 4$
6. $\exists y. \neg D(y)$ $\exists e, 2, 3-5$

(ii) Prove: $\vdash \exists x. (D(x) \rightarrow \forall y. D(y))$

1.	$\neg \exists x. (D(x) \to \forall y. D(y))$	assumption
2.	$\forall x. \neg (D(x) \rightarrow \forall y. D(y))$	$\neg \exists x. A \to \forall x. \neg A, 1$
3.	xo	
4.	$\neg (D(xo) \to \forall y.D(y))$	$\forall e, 2$
5.	$D(xo) \land \neg \forall y. D(y)$	$\neg \to e, 4$
6.	D(xo)	$\wedge e_1, 5$
7.	$\exists y. D(y)$	∃i, 6
8.	$\neg \forall y. D(y)$	$\wedge e_2, 5$
9.	$\exists y. \neg D(y)$	$\neg \forall x.A \to \exists x. \neg A, 8$
10.	y0	
11.	$ \ \ \ \neg D(y0)$	assumption
12.	$ \ \ \ D(y0)$	copy 6
13.		¬e, 11, 12
14.		∃e, 9, 10–13
15.	$\forall x. \bot$	∀i, 3–14
16.		$\forall e, 15$
17.	$\exists x. (D(x) \to \forall y. D(y))$	PBC, 1–12