Optimization Method homework 2

Qingfu Wen

2015213495

October 1, 2015

CONTENTS

i.	Problem 1	2
ii.	Problem 2	3
iii.	. Problem 3	5

I. PROBLEM 1

Suppose $S = \{x | Ax \ge b\}$, A is a m * n matrix, m > n and r(A) = n. Prove that the necessary and sufficient condition of $x^{(0)}$ is S's pole is that A and b can be divided as follows.

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Among them, A_1 has n rows and r(A) = n, b_1 is a n-dimensional column vector, subject to $A_1 x^{(0)} = b_1$, $A_2 x^{(0)} \ge b_2$.

Proof:

• prove the necessity first. we know that $x^{(0)}$ is *S*'s pole. let me prove it by contradiction. Divide *A*, *b* into the following form at $x^{(0)}$:

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \ b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \ A_1 x^{(0)} = b_1, \ A_2 x^{(0)} > b_2.$$

 $r(A_1) = k < n$, suppose first k columns is linearly independent, we can rewrite $A_1 = [B\ N]$, B is invertible.

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$$
, $x_B = B^{-1}b_1 - B^{-1}Nx_N$.

The solution of $A_1x = b_1$ is

$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b_1 - B^{-1}Nx_N \\ x_N \end{bmatrix}. \tag{i.1}$$

S's pole

$$x^{(0)} = \begin{bmatrix} x_B^{(0)} \\ x_N^{(0)} \\ x_N^{(0)} \end{bmatrix} = \begin{bmatrix} B^{-1}b_1 - B^{-1}Nx_N^{(0)} \\ x_N^{(0)} \\ \end{bmatrix}.$$
 (i.2)

Since $A_2x^{(0)} > b_2$, $\exists x_N \in N_\delta(x_N^{(0)})$, $A_1x = b_1$ and $A_2x > b_2$ holds. On the line passed $x_N^{(0)}$, $\exists x_N^{(1)}, x_N^{(2)} \in N_\delta(x_N^{(0)})$, subject to $\lambda x_N^{(1)} + (1-\lambda)x_N^{(2)} = x_N^{(0)}$, $\lambda \in (0,1)$, substitute this into (i.2), we get

$$x^{(0)} = \begin{bmatrix} B^{-1}b_1 - B^{-1}N(\lambda x_N^{(1)} + (1-\lambda)x_N^{(2)}) \\ \lambda x_N^{(1)} + (1-\lambda)x_N^{(2)} \end{bmatrix}$$

$$= \lambda \begin{bmatrix} B^{-1}b_1 - B^{-1}Nx_N^{(1)} \\ x_N^{(1)} \end{bmatrix} + (1-\lambda) \begin{bmatrix} B^{-1}b_1 - B^{-1}Nx_N^{(2)} \\ x_N^{(2)} \end{bmatrix}.$$
(i.3)

Thus, $x^{(0)}$ can be represented as convex combination of two point in S which is contradicted with $x^{(0)}$ is pole.

• Then prove the sufficiency. Suppose at point $x^{(0)}$, A, b can be divided as follows:

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \ b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \ A_1 x^{(0)} = b_1, \ A_2 x^{(0)} \ge b_2, r(A_1) = n.$$

And suppose $\exists x^{(1)}, x^{(2)} \in S$, subject to

$$\begin{array}{rcl} x^{(0)} & = & \lambda x^{(1)} + (1 - \lambda) x^{(2)}, \lambda \in (0, 1) \\ A_1 x^{(0)} & = & \lambda A_1 x^{(1)} + (1 - \lambda) A_1 x^{(2)} \end{array}$$

Because $A_1x^{(0)}=b_1$, $A_1x^{(1)}\geq b_1$, $A_1x^{(2)}\geq b_1$ and λ , $1-\lambda>0$, substitute it into the above equation.

$$b_1 = A_1 x^{(0)} = \lambda A_1 x^{(1)} + (1 - \lambda) A_1 x^{(2)} \ge \lambda b_1 + (1 - \lambda) b_1 = b_1$$

so we have

$$\lambda A_1 x^{(1)} + (1 - \lambda) A_1 x^{(2)} = \lambda b_1 + (1 - \lambda) b_1$$

$$\lambda (A_1 x^{(1)} - b_1) + (1 - \lambda) (A_1 x^{(2)} - b_1) = 0$$

Since λ , $1 - \lambda > 0$, $A_1 x^{(1)} - b_1 \ge 0$, $A_1 x^{(2)} - b_1 \ge 0$, so $A_1 x^{(1)} - b_1 = 0$, $A_1 x^{(2)} - b_1 = 0$, then

$$A_1 x^{(0)} = A_1 x^{(1)} = A_1 x^{(2)} = b_1$$

 $x^{(0)} = x^{(1)} = x^{(2)}$

Thus, $x^{(0)}$ is pole.

II. PROBLEM 2

solve the following LP problem using simplex algorithm.

1.

min
$$3x_1 - 5x_2 - 2x_3 - x_4$$

s.t. $x_1 + x_2 + x_3 \le 4$
 $4x_1 - x_2 + x_3 + 2x_4 \le 6$
 $-x_1 + x_2 + 2x_3 + 3x_4 \le 12$
 $x_j \ge 0, j = 1, \dots, 4$

Solution:

Lead slack variable x_5 , x_6 , x_7 .

min
$$3x_1 - 5x_2 - 2x_3 - x_4$$

s.t. $x_1 + x_2 + x_3 + x_5 = 4$
 $4x_1 - x_2 + x_3 + 2x_4 + x_6 = 6$
 $-x_1 + x_2 + 2x_3 + 3x_4 + x_7 = 12$
 $x_i \ge 0, j = 1, \dots, 7$

solve it using simplex algorithm.

	x_1	x_2	x_3	x_4	x_5	x_6	x_7		
<i>x</i> ₅	1	1	1	0	1	0	0	4	
x_6	4	-1	1	2	0	1	0	6	
x ₇	-1	1	2	3	0	0	1	12	
f	-3	5	2	1	0	0	0	0	
x_2	1	1	1	0	1	0	0	4	
<i>x</i> ₆	5	0	2	2	1	1	0	10	
<i>x</i> ₇	-2	0	1	3	-1	0	1	8	
f	8	0	-3	1	-5	0	0	-20	
x_2	1	1	1	0	1	0	0	4	
<i>x</i> ₆	$ \begin{array}{r} \frac{19}{3} \\ -\frac{2}{3} \\ -\frac{22}{3} \end{array} $	0	$-\frac{4}{3}$	0	2	1	$-\frac{2}{3}$	$\frac{14}{3}$ $\frac{8}{3}$ $-\frac{68}{3}$	
x_4	$-\frac{2}{3}$	0	$\frac{1}{3}$	1	0	0	$\frac{1}{3}$	$\frac{8}{3}$	
f	$-\frac{22}{3}$	0	$-\frac{10}{3}$	0	$-\frac{14}{3}$	0	$-\frac{1}{3}$	$-\frac{68}{3}$	

From the above simplex table, we can see that solution $\mathbf{x}=(0,4,0,\frac{8}{3},0,\frac{14}{3},0), f_{min}=-\frac{68}{3}.$

2.

min
$$-3x_1 - x_2$$

s.t. $3x_1 + 3x_2 + x_3 = 30$
 $4x_1 - 4x_2 + x_4 = 6$
 $2x_1 - x_2 \le 12$
 $x_j \ge 0, j = 1, \dots, 4$

Solution:

Lead slack variable x_5 .

min
$$-3x_1 - x_2$$

s.t. $3x_1 + 3x_2 + x_3 = 30$
 $4x_1 - 4x_2 + x_4 = 6$
 $2x_1 - x_2 + x_5 = 12$
 $x_j \ge 0, j = 1, \dots, 5$

solve it using simplex algorithm.

	x_1	x_2	x_3	x_4	x_5	
x_3	3	3	1	0	0	30
x_4	4	-4	0	1	0	16
x_5	2	-1	0	0	1	12
f	3	1	0	0	0	0
x_3	0	6	1	0	0	18
$ x_1 $	1	-1	0	$-\frac{3}{4}$	0	4
x_5	0	1	0	$\frac{1}{4}$	1	4
f	0	4	0	$-\frac{1}{2}$	0	-12
x_2	0	1	$\frac{1}{6}$	$-\frac{1}{8}$	0	3
x_1	1	0	$\frac{1}{6}$	$\frac{1}{8}$	0	7
x_5	0	0	$-\frac{1}{6}$	$-\frac{1}{8}$ $-\frac{3}{8}$	1	1
f	0	0	$ \begin{array}{c c} \frac{1}{6} \\ \frac{1}{6} \\ -\frac{1}{6} \\ -\frac{2}{3} \end{array} $	$-rac{ ilde{1}}{4}$	0	-24

From the above simplex table, we can see that solution $\mathbf{x}=(7,3,0,0,1)$, $f_{min}=-24$.

III. PROBLEM 3

Suppose when solving LP problem using simplex algorithm

$$min \quad \mathbf{cx}$$
s.t.
$$\mathbf{Ax} = \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0}$$

in one iteration, the check number of variable x_j $z_j-c_j>0$, and the corresponding column in simplex table $y_j={\bf B}^{-1}{\bf p}_j\leq 0$, Prove that

$$\mathbf{d} = \begin{bmatrix} -y_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

is the polar direction of feasible region, component 1 correspond to x_j among it. (suppose **B** is **A**'s first m columns)

Solution:

Suppose **A** is a m * n matrix, and

$$\mathbf{A} = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_m \ \cdots \ \mathbf{p}_n] = [\mathbf{B} \ \mathbf{p}_{m+1} \ \cdots \ \mathbf{p}_n]$$

Since

$$\mathbf{Ad} = \begin{bmatrix} \mathbf{B} \ \mathbf{p}_{m+1} \ \cdots \ \mathbf{p}_n \end{bmatrix} \begin{bmatrix} -\mathbf{B}^{-1} \mathbf{p}_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = -\mathbf{p}_j + \mathbf{p}_j = 0$$

and $\mathbf{d} \ge 0$, \mathbf{d} is the direction of feasible region. Then, we can prove \mathbf{d} is a polar direction by contradiction.

Suppose **d** is a positive linear combination of two directions of feasible region, $\mathbf{d_1}$, $\mathbf{d_2}$.

$$\mathbf{d} = \lambda \mathbf{d_1} + \mu \mathbf{d_2} \tag{iii.1}$$

 $\lambda, \mu > 0$, $\mathbf{d_1}, \mathbf{d_2} \ge 0$, from **d**'s form, we can know that

$$\mathbf{d_1} = \begin{bmatrix} -y_j^{(1)} \\ 0 \\ \vdots \\ a_j \\ \vdots \\ 0 \end{bmatrix}, \mathbf{d_2} = \begin{bmatrix} -y_j^{(2)} \\ 0 \\ \vdots \\ b_j \\ \vdots \\ 0 \end{bmatrix}, a_j, b_j > 0.$$

Because d_1 is the direction of feasible region, $Ad_1 = 0, d_1 \ge 0$.

$$-\mathbf{B}y_{j}^{(1)} + a_{j}p_{j} = \mathbf{0}$$
 (iii.2)

In the same way,

$$-\mathbf{B}y_{j}^{(2)}+b_{j}p_{j}=\mathbf{0} \tag{iii.3}$$

from the above two equation, we can get

$$\frac{1}{a_j} \mathbf{B} y_j^{(1)} = \frac{1}{b_j} \mathbf{B} y_j^{(2)}
y_j^{(1)} = \frac{a_j}{b_j} y_j^{(2)}$$
(iii.4)

substitute it into d_1 , now we get

$$\mathbf{d_2} = \frac{b_j}{a_j} \mathbf{d_1}, a_j, b_j > 0.$$
 (iii.5)

 d_1, d_2 are non-zero vectors with same direction, which is contradict with the hypothesis. Thus, d can not be represented as a positive linear combination of two directions of feasible region. d is polar direction.