B. Wróblewski

Istnienie i jednoznaczność rozwiązań

Zadanie 1. Zbadaj istnienie rozwiązania zagadnienia Cauchy'ego y' = f(y,t) i y(0) = 0, gdzie

$$f(y,t) = \begin{cases} -1 & t \le 0, \ y \in \mathbb{R} \\ 1 & t > 0, \ y \in \mathbb{R} \end{cases}$$

Zadanie 2. Wyprowadź wzór na n-tą iterację Picarda $y_n(x)$ i oblicz jej granicę gdy $n \to \infty$ dla podanych zagadnień Cauchy'ego:

a)
$$y' = -y$$
 $y(0) = 1$

b)
$$y' = 2yt \quad y(0) = 1$$
,

a)
$$y' = -y$$
 $y(0) = 1$, b) $y' = 2yt$ $y(0) = 1$, c) $y' = -y^2$ $y(0) = 0$.

Zadanie 3. Wyprowadź wzór na n-tą iterację Picarda dla zagadnienia początkowego $x'=x^2, \ x(0)=1$ na odcinku [0,2], jeżeli $x_0(t)\equiv 1$. Oblicz granicę tego ciągu. Znajdź rozwiązanie zagadnienia, i porównaj rezultaty.

Zadanie 4. Stosując twierdzenie Picarda-Lindelöfa dla podanych niżej zagadnień Cauchy'ego udowodnij, że rozwiązanie y = y(t) istnieje na zadanym przedziale:

a)
$$y' = y^2 + \cos t^2$$
, $y(0) = 0$, $0 \le t \le \frac{1}{2}$,

a)
$$y' = y^2 + \cos t^2$$
, $y(0) = 0$, $0 \le t \le \frac{1}{2}$, b) $y' = 1 + y + y^2 \cos t$, $y(0) = 0$, $0 \le t \le \frac{1}{3}$.

Zadanie 5. Rozważmy równanie $2y=t^2y''$. Rozwiązania $y\equiv 0$ i $y=t^2$ spełniają warunki początkowe y = y' = 0 dla t = 0. Wyjaśnij, dlaczego zachodzi ta niejednoznaczność rozwiązań.

Zadanie 6. Pokaż, że jeżeli zagadnienie $y' = f(t,y), y(t_0) = y_0$ ma dwa rozwiązania, to ma ich nieskończenie wiele.

Zadanie 7. Zbadaj ilość rozwiązań zagadnienia w zależności od wartości parametru a:

a)
$$y' = y^a$$
, $y(0) = 0$,

b)
$$y' = y |\log y|^a$$
, $x(0) = 0$.

Zadanie 8. Znajdź rozwiązanie zagadnienia $y'=t\sqrt{1-y^2}$, y(0)=1, różne od rozwiązania $y(t) \equiv 1$. Które z założeń twierdzenia Picarda-Lindelöfa nie jest spełnione?

Zadanie 9. Niech $f: \mathbb{R}^2 \to \mathbb{R}$ będzie funkcją ciągłą. Pokaż, że zagadnienie $y' = f(y,t) + \lambda$, $\lambda \in \mathbb{R}$, $y(0) = y_0$, nie ma jednoznacznego rozwiązania co najwyżej dla przeliczalnej ilości λ .

Zadanie 10. Niech y(t) będzie nieujemną ciągłą funkcją spełniającą

$$y(t) \le L \int_{t_0}^t y(s) \, ds$$

na odcinku $t_0 \le t \le t_0 + \alpha$. Udowodnij, że y(t) = 0 dla $t_0 \le t \le t_0 + \alpha$ (łatwiejsza wersja lematu Gronwalla). WSKAZÓWKA: Pokaż indukcyjnie, że $y(t) \le c(L^n/n!)(t-t_0)^n$.

Zadanie 11. Stosując lemat Gronwalla udowodnij, że y(t) = -1 jest jedynym rozwiązaniem zagadnienia y' = t(1 + y), y(0) = -1.