TIÊU CHUẨN QUỐC GIA TCVN 9394:2012

ĐÓNG VÀ ÉP CỌC - THI CÔNG VÀ NGHIỆM THU

Pile driving and static jacking works- Construction, check and acceptance

Lời nói đầu

TCVN 9394:2012 được chuyển đổi từ TCXDVN 286:2003 theo quy định tại khoản 1 Điều 69 của Luật Tiêu chuẩn và Quy chuẩn kỹ thuật và điểm a khoản 1 Điều 7 Nghị định số 127/2007/NĐ-CP ngày 01/8/2007 của Chính phủ quy định chi tiết thi hành một số điều của Luật Tiêu chuẩn và Quy chuẩn kỹ thuật.

TCVN 9394:2012 do Viện Khoa học Công nghệ Xây dựng - Bộ Xây dựng biên soạn, Bộ Xây dựng đề nghị, Tổng cục Tiêu chuẩn Đo lường Chất lượng thẩm định, Bộ Khoa học và Công nghệ công bố.

ĐÓNG VÀ ÉP CỌC - THI CÔNG VÀ NGHIỆM THU

Pile driving and static jacking works- Construction, check and acceptance

1 Phạm vi áp dụng

- 1.1 Tiêu chuẩn này áp dụng cho các công trình xây dựng thuộc lĩnh vực xây dựng, giao thông, thủy lợi.
- 1.2 Tiêu chuẩn này không áp dụng cho các công trình có điều kiện địa chất công trình đặc biệt như vùng có hang các-tơ, mái đá nghiêng, đá cứng... Các công trình này được thi công và nghiệm thu theo yêu cầu của Thiết kế, hoặc do Tư vấn đề nghị với sự chấp thuận của Chủ đầu tư.

2 Tài liêu viên dẫn

Các tài liệu viện dẫn sau cần thiết cho việc áp dụng tiêu chuẩn này. Đối với các tài liệu viện dẫn ghi năm công bố thì áp dụng phiên bản được nêu. Đối với các tài liệu viện dẫn không ghi năm công bố thì áp dụng phiên bản mới nhất, bao gồm cả các sửa đổi, bổ sung (nếu có).

TCVN 4453:1995, Kết cấu bê tông và bê tông cốt thép toàn khối - Quy phạm thi công và nghiệm thu.

TCVN 5308:1991, Quy phạm kỹ thuật an toàn trong xây dựng.

TCVN 9393:2012, Cọc-Phương pháp thí nghiệm bằng tải trọng tĩnh ép dọc trục.

3 Thuật ngữ và định nghĩa

3.1

Cọc đóng (Driving pile)

Cọc được hạ bằng năng lượng động (va đập, rung).

3.2

Cọc ép (Pressing pile)

Cọc được hạ bằng năng lượng tĩnh, không gây ra xung lực lên đầu cọc.

3.3

Độ chối của cọc đóng (Pile refusal)

Độ lún của cọc do một nhát búa đóng và một phút làm việc của búa rung gây ra.

3.4

Tải trọng thiết kế (Design load)

Giá trị tải trọng do Nhà thiết kế dự tính tác dụng lên cọc.

3.5

Lực ép nhỏ nhất (P_{ep})_{min} (The minimum jacking load)

Lực ép do Nhà thiết kế quy định để đảm bảo tải trọng thiết kế lên cọc, thông thường lấy bằng 150 % đến 200 % tải trọng thiết kế.

3.6

Lực ép lớn nhất (P_{ep})_{max} (The maximum jacking load)

Lực ép do Nhà thiết kế quy định, không vượt quá sức chịu tải của vật liệu cọc; được tính toán theo kết quả xuyên tĩnh, khi không có kết quả này thì thường lấy bằng 200 % đến 300 % tải trọng thiết kế.

4 Quy đinh chung

4.1 Thi công hạ cọc cần tuân theo bản vẽ thiết kế thi công, trong đó bao gồm: dữ liệu về bố trí các công trình hiện có và công trình ngầm; đường cáp điện có chỉ dẫn độ sâu lắp đặt đường dây tải điện và biện pháp bảo vệ

chúng; danh mục các máy móc, thiết bị; trình tự và tiến độ thi công; các biện pháp đảm bảo an toàn lao động và vệ sinh môi trường; bản vẽ bố trí mặt bằng thi công kể cả điện nước và các hạng mục tạm thời phục vụ thi công.

Để có đầy đủ số liệu cho thi công móng cọc, nhất là trong điều kiện địa chất phức tạp, khi cần thiết Nhà thầu phải tiến hành đóng, ép các cọc thử và tiến hành thí nghiệm cọc bằng tải trọng động hoặc tải trọng tĩnh theo đề cương của Tư vấn hoặc Thiết kế đề ra.

- 4.2 Trắc đạc định vị các trục móng cần được tiến hành từ các mốc chuẩn theo đúng quy định hiện hành. Mốc định vị trục thường làm bằng các cọc đóng, nằm cách trục ngoài cùng của móng không ít hơn 10 m. Trong biên bản bàn giao mốc định vị phải có sơ đồ bố trí mốc cùng tọa độ của chúng cũng như cao độ của các mốc chuẩn dẫn từ lưới cao trình thành phố hoặc quốc gia. Việc định vị từng cọc trong quá trình thi công phải do các trắc đạc viên có kinh nghiệm tiến hành dưới sự giám sát của kỹ thuật thi công cọc phía Nhà thầu và trong các công trình quan trọng phải được Tư vấn giám sát kiểm tra. Độ chuẩn của lưới trục định vị phải thường xuyên được kiểm tra, đặc biệt khi có một mốc bị chuyển dịch thì cần được kiểm tra ngay. Độ sai lệch của các trục so với thiết kế không được vượt quá 1 cm trên 100 m chiều dài tuyến.
- 4.3 Chuyên chở, bảo quản, nâng dựng cọc vào vị trí hạ cọc phải tuân thủ các biện pháp chống hư hại cọc. Khi chuyên chở cọc bê tông cốt thép (BTCT) cũng như khi sắp xếp xuống bãi tập kết phải có hệ con kê bằng gỗ ở phía dưới các móc cẩu. Nghiêm cấm việc lăn hoặc kéo cọc BTCT bằng dây.
- 4.4 Công tác chuẩn bị
- 4.4.1 Nhà thầu căn cứ vào hồ sơ thiết kế, yêu cầu của Chủ đầu tư và điều kiện môi trường cụ thể để lập biện pháp thi công cọc trong đó nên lưu ý làm rõ các điều sau:
- a) Công nghệ thi công đóng/ép;
- b) Thiết bị dự định chọn;
- c) Kế hoạch đảm bảo chất lượng, trong đó nêu rõ trình tự hạ cọc dựa theo điều kiện đất nền, cách bố trí đài cọc, số lượng cọc trong đài, phương pháp kiểm tra độ thẳng đứng, kiểm tra mối hàn, cách đo độ chối, biện pháp an toàn và đảm bảo vệ sinh môi trường...;
- d) Dự kiến sự cố và cách xử lý;
- e) Tiến độ thi công...
- 4.4.2 Trước khi thi công hạ cọc cần tiến hành các công tác chuẩn bị sau đây:
- a) Nghiên cứu điều kiện địa chất công trình và địa chất thủy văn, chiều dày, thế nằm và đặc trưng cơ lý của chúng;
- b) Thăm dò khả năng có các chướng ngại dưới đất để có biện pháp loại bỏ chúng, sự có mặt của công trình ngầm và công trình lân cận để có biện pháp phòng ngừa ảnh hưởng xấu đến chúng;
- c) Xem xét điều kiện môi trường đô thị (tiếng ồn và chấn động) theo tiêu chuẩn môi trường liên quan khi thi công ở gần khu dân cư và công trình có sẵn;
- d) Nghiệm thu mặt bằng thi công;
- e) Lập lưới trắc đạc định vị các trục móng và tọa độ các cọc cần thi công trên mặt bằng;
- f) Kiểm tra chứng chỉ xuất xưởng của cọc;
- g) Kiểm tra kích thước thực tế của cọc;
- h) Chuyên chở và sắp xếp cọc trên mặt bằng thi công;
- i) Đánh dấu chia đoạn lên thân cọc theo chiều dài cọc;
- k) Tổ hợp các đoạn cọc trên mặt đất thành cây cọc theo thiết kế;
- I) Đặt máy trắc đạc để theo dõi độ thẳng đứng của cọc và đo độ chối của cọc.
- 4.5 Hàn nối các đoạn cọc
- 4.5.1 Chỉ bắt đầu hàn nối các đoạn cọc khi:
- Kích thước các bản mã đúng với thiết kế;
- Trục của đoạn cọc đã được kiểm tra độ thẳng đứng theo hai phương vuông góc với nhau;
- Bề mặt ở đầu hai đoạn cọc nối phải tiếp xúc khít với nhau.
- 4.5.2 Đường hàn mối nối cọc phải đảm bảo đúng quy định của thiết kế về chịu lực, không được có những khuyết tật sau đây:
- Kích thước đường hàn sai lệch so với thiết kế:
- Chiều cao hoặc chiều rộng của mối hàn không đồng đều;
- Đường hàn không thẳng, bề mặt mối hàn bị rỗ, không ngấu, quá nhiệt, có chảy loang, lẫn xỉ, bị nứt...
- 4.5.3 Chỉ được tiếp tục hạ cọc khi đã kiểm tra mối nối hàn không có khuyết tật.

5 Vật liệu cọc

- 5.1 Coc bê tông cốt thép
- 5.1.1 Cọc bê tông cốt thép có thể là cọc rỗng, tiết diện vành khuyên (đúc ly tâm) hoặc cọc đặc, tiết diện đa giác đều hoặc vuông (đúc bằng ván khuôn thông thường). Bê tông cọc phải đảm bảo mác thiết kế, cọc được nghiệm thu theo TCVN 4453:1995.
- 5.1.2 Kiểm tra cọc tại nơi sản xuất gồm các khâu sau đây:
- a) Vật liệu:
- Chứng chỉ xuất xưởng của cốt thép, xi măng; kết quả thí nghiệm kiểm tra mẫu thép, và cốt liệu cát, đá (sỏi), xi măng, nước theo các tiêu chuẩn hiện hành;
- Cấp phối bê tông;
- Kết quả thí nghiệm mẫu bê tông;
- Đường kính cốt thép chịu lực;
- Đường kính, bước cốt đai;
- Lưới thép tăng cường và vành thép bó đầu cọc;
- Mối hàn cốt thép chủ vào vành thép;
- Sự đồng đều của lớp bê tông bảo vệ;
- b) Kích thước hình học:
- Sự cân xứng của cốt thép trong tiết diện cọc;
- Kích thước tiết diện cọc;
- Độ vuông góc của tiết diện các đầu cọc với truc;
- Độ chụm đều đặn của mũi cọc;
- 5.1.3 Không được dùng các đoạn cọc có độ sai lệch về kích thước vượt quá quy định trong Bảng 1 và có vết nứt rộng hơn 0,2 mm. Độ sâu vết nứt ở góc không quá 10 mm, tổng diện tích do lẹm, sứt góc và rỗ tổ ong không lớn hơn 5 % tổng diện tích bề mặt cọc và không quá tập trung.
- 5.2 Coc thép
- 5.2.1 Cọc thép thường được chế tạo từ thép ống hoặc thép hình cán nóng. Chiều dài các đoạn cọc chọn theo kích thước của không gian thi công cũng như kích thước và năng lực của thiết bị hạ cọc.
- 5.2.2 Mặt đầu các đoạn cọc phải phẳng và vuông góc với trục cọc, độ nghiêng không lớn hơn 1 %.
- 5.2.3 Chiều dày của cọc thép lấy theo quy định của thiết kế thường bằng chiều dày chịu lực theo tính toán cộng với chiều dày chịu ăn mòn.
- 5.2.4 Trong trường hợp cần thiết có thể được bảo vệ bằng phun vữa xi măng mác cao, chất dẻo hoặc phương pháp điện hoá.
- 5.2.5 Các đoạn cọc thép được nối hàn, chiều cao và chiều dài đường hàn phải tuân theo thiết kế.

Bảng 1- Mức sai lệch cho phép về kích thước cọc

Kích thước cấu tạo	Mức sai lệch cho phép		
1. Chiều dài đoạn cọc, mm	± 30		
2. Kích thước cạnh (đường kính ngoài) tiết diện của cọc đặc (hoặc rỗng giữa), mm	+ 5		
3. Chiều dài mũi cọc, mm	± 30		
4. Độ cong của cọc (lồi hoặc lõm), mm	10		
5. Độ võng của đoạn cọc	1/100 chiều dài đốt cọc		
6. Độ lệch mũi cọc khỏi tâm, mm	10		
7. Góc nghiêng của mặt đầu cọc với mặt phẳng thẳng góc trục cọc:			
- Cọc tiết diện đa giác, %;	nghiêng 1		
- Cọc tròn, %.	nghiêng 0,5		
8. Khoảng cách từ tâm móc treo đến đầu đoạn cọc, mm	± 50		
9. Độ lệch của móc treo so với trục cọc, mm	20		
10. Chiều dày của lớp bê tông bảo vệ, mm	± 5		

1	i i
11. Bước cốt thép xoắn hoặc cốt thép đai, mm	± 10
12. Khoảng cách giữa các thanh cốt thép chủ, mm	± 10
13. Đường kính cọc rỗng, mm	± 5
14. Chiều dày thành lỗ, mm	± 5
15. Kích thước lỗ rỗng so với tim cọc, mm	± 5

6 Hạ cọc bằng búa đóng và búa rung

- 6.1 Tùy theo năng lực trang thiết bị hiện có, điều kiện địa chất công trình, quy định của Thiết kế về chiều sâu hạ cọc và độ chối quy định Nhà thầu có thể lựa chọn thiết bị hạ cọc phù hợp. Nguyên tắc lựa chọn búa như sau:
- a) Có đủ năng lượng để hạ cọc đến chiều sâu thiết kế với độ chối quy định trong thiết kế, xuyên qua các lớp đất dày kể cả tầng kẹp cứng;
- b) Gây nên ứng suất động không lớn hơn ứng suất động cho phép của cọc để hạn chế khả năng gây nứt cọc;
- c) Tổng số nhát đập hoặc tổng thời gian hạ cọc liên tục không được vượt quá giá trị khống chế trong thiết kế để ngăn ngừa hiện tượng cọc bị mỏi;
- d) Độ chối của cọc không nên quá nhỏ có thể làm hỏng đầu búa.
- 6.2 Lựa chọn búa đóng cọc theo khả năng chịu tải của cọc trong thiết kế và trọng lượng cọc. Năng lượng cần thiết tối thiểu của nhát búa đập E được xác định theo công thức:

$$E = 1,75 \text{ a.P}$$
 (1)

trong đó:

E là năng lượng đập của búa, tính bằng kilôgam lực mét (kG.m);

a là hệ số bằng 25 kilôgam lực mét trên tấn (kG.m/T);

P là khả năng chịu tải của cọc, quy định trong thiết kế tính bằng tấn (T).

Loại búa được chọn với năng lượng nhát đập phải thoả mãn điều kiện:

$$\frac{Q_n + q}{E_m} \pounds k \tag{2}$$

trong đó:

k là hệ số chọn búa đóng, quy định trong Bảng 2;

Q_n là trọng lượng toàn phần của búa, tính bằng kilôgam lực (kG);

q là trọng lượng cọc (gồm cả trọng lượng mũ và đệm đầu cọc), tính bằng kilôgam lực (kG);

Đối với búa điệzen, giá trị tính toán năng lượng đập lấy bằng:

đối với búa ống $E_{tt} = 0.9 \text{ QH}$

đối với búa cần $E_{tt} = 0,4$ QH

trong đó:

Q là trọng lượng phần đập của búa tính bằng kilôgam lực (kG);

H là chiều cao rơi thực tế phần đập búa khi đóng ở giai đoạn cuối, đối với búa ống H= 2,8 m; đối với búa cần có trọng lượng phần đập là 1,25; 1,80 và 2,50 T thì H tương ứng là 1,7; 2,0 và 2,2 m.

Bảng 2- Hệ số chọn búa đóng

Loại búa	Hệ số k				
Búa điêzen kiểu ống và song động	6				
Búa đơn động và điêzen kiểu cần	5				
Búa treo 3					
CHÚ THÍCH: Khi hạ cọc bằng phương pháp xói nước thì các hệ số nói trên được tăng thêm 1,5.					

6.3 Khi cần phải đóng xuyên qua các lớp đất chặt nên dùng các búa có năng lượng đập lớn hơn các trị số tính toán theo các công thức (1) và (2), hoặc có thể dùng biện pháp khoan dẫn trước khi đóng hoặc biện pháp xói nước.

Khi chọn búa để đóng cọc xiên nên tăng năng lượng đập tính theo công thức (1) với hệ số k_1 cho trong Bảng 3.

Bảng 3- Hệ số chon búa đóng cọc xiên

Hệ số k.					
1 IÇ 30 K1					

5:1	1,1
4:1	1,15
3:1	1,25
2:1	1,40
1:1	1,70

6.4 Loại búa rung hạ cọc chọn theo tỷ số K_0/Q_t tùy thuộc vào điều kiện đất nền và chiều sâu hạ cọc; K_0 là mô men lệch tâm, tính bằng tấn xentimét (T.cm) và Q_t là trọng lượng toàn phần gồm trọng lượng cọc, búa rung và đệm đầu cọc, tính bằng tấn (T). Giá trị của tỷ số này khi dùng búa rung với tốc độ quay bánh lệch tâm từ 300 r/min đến 500 r/min không được nhỏ hơn trị số cho trọng Bảng 4.

Bảng 4- Tỷ số K₀/Q_t

Tính chất đất mà cọc xuyên qua	Phương pháp hạ cọc	K₀/Qt khi độ sâu hạ cọc	
		<15 m	>15 m
Cát no nước, bùn, sét dẻo mềm và dẻo chảy	Không xói nước và lấy đất ra khỏi cọc	0,80	1,00
Cát ẩm, đất sét, á sét dẻo mềm, cứng	Xói nước tuần hoàn và lấy đất khỏi lòng cọc ống	1,10	1,30
	Xói nước và lấy đất khỏi lòng cọc thấp hơn cả mũi cọc	1,30	1,60

CHÚ THÍCH: Khi chọn búa rung để hạ cọc ống có đường kính lớn hơn 1,2 m nên ưu tiên cho các máy có lỗ thoát để đưa đất từ trong lòng cọc ống ra ngoài mà không phải tháo lắp máy. Trong trường hợp cần rung hạ các cọc đường kính lớn nên dùng hai búa rung ghép đôi đồng bộ trên một đế trung chuyển; khi đó các giá trị K_0 và Q_t phải là tổng các chỉ tiêu tương ứng của hai búa rung.

- 6.5 Khi rung hạ cọc tròn rỗng hoặc cọc dạng tấm cần có các biện pháp chống khả năng xuất hiện các vết nứt hoặc hư hỏng cọc:
- Để tránh sự tăng áp suất không khí trong lòng cọc do đậy khít nên dùng chụp đầu cọc có các lỗ hổng có tổng diện tích không ít hơn 0,5 % diện tích tiết diện ngang của cọc;
- Để tránh sinh ra áp lực thủy động nguy hiểm của nước trong đất lòng cọc có thể gây nứt rạn cọc-ống BTCT phải có biện pháp hút nước hoặc truyền không khí.

Để có thể dự báo trước những hư hỏng có thể xảy ra khi rung hạ cọc - ống nên dùng thiết bị đo gia tốc, trong trường hợp không có thiết bị thì tiến hành quan sát mức độ tiêu hao công suất búa (hoặc điện năng) và biên độ giao động của cọc. Nếu thấy công suất búa và biên độ giao động của cọc tăng, liên kết búa rung và đầu cọc vẫn khít mà tốc độ hạ cọc lại bị giảm thì chứng tỏ mũi cọc đã gặp chướng ngại; khi đó cần dừng máy, tìm cách loại bỏ chướng ngại bằng cách lấy đất lòng cọc và bơm rửa đáy cọc.

Khi rung hạ cọc trong cát và á cát ở giai đoạn cuối thì nên giảm tần số và rung cọc trong khoảng từ 7min đến 10 min ở độ sâu thiết kế để làm chặt đất trong lòng và xung quanh cọc.

- 6.6 Khi rung hạ cọc bình thường tức là các thông số búa rung ổn định, cọc không gặp chướng ngại thì theo sự tăng tiến của chiều sâu, tốc độ hạ cọc, biên độ giao động và công suất máy sẽ bị giảm do ma sát bên của cọc tăng dần. Để tăng chiều sâu hạ cọc nên tăng công suất động cơ cho đến công suất thiết kế. Khi tốc độ hạ cọc giảm tới 2 cm/min đến 5 cm/min và biên độ giao động khoảng 5 mm thì cọc sẽ khó xuống tiếp; cần phải tiến hành xói nước hoặc lấy đất lòng cọc cùng với việc chạy hết công suất động cơ.
- 6.7 Khi đóng cọc bằng búa phải dùng mũ cọc và đệm gỗ phù hợp với tiết diện ngang của cọc. Các khe hở giữa mặt bên của cọc và thành mũ cọc mỗi bên không nên vượt quá 1 cm.

Cần phải siết chặt cứng búa rung hạ cọc với cọc.

Khi nối các đoạn cọc tròn rỗng và cọc - ống phải đảm bảo độ đồng tâm của chúng. Khi cần thiết phải dùng bộ gá cố định và thiết bị dẫn hướng để tăng độ chính xác.

Khi thi công cọc ở vùng sông nước nên tiến hành khi sóng không cao hơn cấp 2. Các phương tiện nổi cần được neo giữ chắc chắn.

6.8 Trong quá trình hạ cọc cần ghi chép nhật ký theo mẫu in sẵn (có thể xem Phụ lục A).

Đóng từ 5 cọc đến 20 cọc đầu tiên ở các điểm khác nhau trên khu vực xây dựng phải tiến hành cẩn thận có ghi chép số nhát búa cho từng mét chiều sâu và lấy độ chối cho loạt búa cuối cùng. Nhà thầu nên dùng thí nghiệm động biến dạng lớn (PDA) để kiểm tra việc lựa chọn búa và khả năng đóng của búa trong các điều kiện đã xác định(đất nền, búa, cọc...)

6.9 Vào cuối quá trình đóng cọc khi độ chối gần đạt tới trị số thiết kế thì việc đóng cọc bằng búa đơn động phải tiến hành từng nhát dể theo dõi độ chối cho mỗi nhát; khi đóng bằng búa hơi song động cần phải đo độ lún của cọc, tần số đập của búa và áp lực hơi cho từng phút; khi dùng búa đi-ê-zen thì độ chối được xác định từ trị trung bình của loạt 10 nhát sau cùng.

Cọc không đạt độ chối thiết kế thì cần phải đóng bù để kiểm tra sau khi được "nghỉ" theo quy định. Trong trường hợp độ chối khi đóng kiểm tra vẫn lớn hơn độ chối thiết kế thì Tư vấn và Thiết kế nên cho tiến hành thử tĩnh cọc và hiệu chỉnh lại một phần hoặc toàn bộ thiết kế móng cọc.

6.10 Trong giai đoạn đầu khi đóng cọc bằng búa đơn động nên ghi số nhát búa và độ cao rơi búa trung bình để cọc đi được 1,0 m; khi dùng búa hơi thì ghi áp lực hơi trung bình và thời gian để cọc đi được 1 m và tần số nhát đập trong 1 min. Độ chối phải đo với độ chính xác tới 1 mm.

Độ chối kiểm tra được đo cho 3 loạt búa cuối cùng. Đối với búa đơn và búa điệzen thì một loạt là 10 nhát; đối với búa hơi thì một loạt là số nhát búa trong thời gian 2 min; đối với búa rung 1 loạt cũng là thời gian búa làm việc trong 2 min.

Thời gian "nghỉ" của cọc trước khi đóng kiểm tra phụ thuộc vào tính chất các lớp đất xung quanh và dưới mũi cọc nhưng không nhỏ hơn:

- a) 3 ngày khi đóng qua đất cát;
- b) 6 ngày khi đóng qua đất sét.
- 6.11 Trong trường hợp khi thi công thay đổi các thông số của búa hoặc cọc đã được chỉ dẫn trong thiết kế thì độ chối dư, e, lúc đóng hoặc đóng kiểm tra phải thoả mãn điều kiện:

$$e \pounds \frac{nFE_{tt}}{\frac{kPakP}{MEM} + nF\frac{\ddot{o}}{\dot{\alpha}}} x \frac{Q_{\uparrow} + \epsilon^{2}(q+q_{\downarrow})}{Q_{\uparrow} + q+q_{\downarrow}}$$
(3)

Nếu độ chối dư, e, nhỏ hơn 0,2 cm (với điều kiện là búa dùng để đóng phù hợp với yêu cầu ở 6.1, thì độ chối toàn phần (bằng tổng độ chối đàn hồi và độ chối dư) phải thoả mãn điều kiện:

$$e+c f = \frac{2E_{tt} \frac{Q}{Q+q} + kPc}{kP \frac{\acute{e}}{\acute{e}} + \frac{kP}{4} \frac{\rlap{@}e}{\acute{e}} + \frac{n_{\sigma} \ddot{o}}{Q+q} \frac{Q}{Q+q} \sqrt{2g(H-h)} \dot{\dot{u}}}{Q+q} \dot{\dot{u}}$$
(4)

Trong các công thức trên:

e là độ chối dư, bằng độ lún của cọc do một nhát búa đóng và 1 min làm việc của búa rung, tính bằng xentimét (cm);

c là độ chối đàn hồi (chuyển vị đàn hồi của đất và cọc) xác định bằng dụng cụ đo độ chối, tính bằng xentimét (cm);

n là hệ số tra theo Bảng 5, tính bằng tấn trên mét vuông (T/m²);

Bảng 5- Hệ số n

Bang	3- 11¢ 30 11
Loại búa	Hệ số n (T/m²)
Cọc BTCT có mũ	150
Cọc thép có mũ	500

Bảng 6- Năng lượng quy đổi

Lực cưỡng bức, (T)	10	20	30	40	50	60	70	80
Năng lượng nhát đập quy đổi (T.cm)	450	900	1 300	1 750	2 200	2 650	3 100	3 500

Q là trọng lượng phần đập của búa, tính bằng tấn (T);

H là chiều cao rơi thực tế phần đập của búa, tính bằng xentimét (cm);

k là hệ số an toàn về đất, lấy k=1,4 trong công thức (3) và k=1,25 trong công thức (4); còn trong xây dựng cầu khi số lượng cọc trong trụ lớn hơn 20 thì k=1,4, từ 11 cọc đến 20 cọc thì k=1,6, từ 6 cọc đến 10 cọc thì k=1,65, từ 1 cọc đến 5 cọc thì k=1,75;

P là khả năng chịu tải của cọc theo thiết kế, tính bằng tấn (T);

M là hệ số lấy bằng 1 cho búa đóng và theo Bảng 7 cho búa rung;

Bảng 7- Hệ số M

Loại đất dưới mũi cọc	Hệ số M
Sỏi sạn có lẫn cát	1,3
Cát: - hạt trung và thô	1,2

- hạt nhỏ chặt vừa	1,1		
- cát bụi chặt vừa	1,0		
Á cát dẻo, á sét và sét cứng	0,9		
Á sét và sét - nửa cứng	0,8		
Á sét và sét - dẻo cứng	0,7		
CHÚ THÍCH: Khi cát chặt giá trị hệ số M được tăng thêm 60 %.			

Q_T là trọng lượng toàn phần của búa hoặc búa rung, tính bằng tấn (T);

 ϵ^2 là hệ số phục hồi va đập, lấy ϵ^2 = 0,2 khi đóng cọc BTCT và cọc thép có dùng mũ cọc đệm gỗ, còn khi dùng búa rung thì ϵ^2 = 0;

q là trọng lượng cọc và mũ cọc, tính bằng tấn (T);

 q_1 là trọng lượng cọc đệm, tính bằng tấn (T); khi dùng búa rung $q_1 = 0$;

h là chiều cao cho búa điêzen, h = 50 cm, các loại khác h = 0;

 Ω là diện tích mặt bên của cọc, tính bằng mét vuông (m²);

 n_0 và n_σ là các hệ số chuyển đổi từ sức kháng động của đất sang sức kháng tĩnh, tính bằng giây mét trên tấn n_σ = 0,25 s.m/T; n_0 = 0,002 5 s.m/T;

g là gia tốc trọng trường (g = 9,81 m/s²);

F là diện tích theo chu vi ngoài của cọc đặc hoặc rỗng (không phụ thuộc vào cọc có hay không có mũi nhọn), tính bằng mét vuông (m²);

E_{tt} là năng lượng tính toán của nhát đập, tính bằng tấn xentimét (T.cm), lấy theo 6.2 cho búa điêzen, búa treo và búa đơn động lấy bằng QH, khi dùng búa hơi song động lấy theo lý lịch máy, đối với búa rung lấy theo năng lượng nhát đập quy đổi, cho trong Bảng 6;

Khi tính theo công thức động Hilley rút gọn thì độ chối có thể kiểm tra theo công thức:

$$e = \frac{e_f H W_r}{Q_u} - 0.5e_0 \tag{4a}$$

$$e_0 = \sqrt{\frac{2e_f H W_r L_p}{F E_e}}$$
 (4b)

trong đó

e là độ chối của cọc (tính trung bình cho 20 cm cuối cùng), tính bằng mét (m);

ef là hiệu suất cơ học của búa đóng cọc; một số giá trị được kiến nghị như sau:

- Búa rơi tự do điều khiển tự động, e_f = 0,8;
- Búa điệzen, $e_f = 0.8$;
- Búa rơi tự do nâng bằng cáp tời, e_f = 0,4;
- Búa hơi đơn động, e_f = 0,6;

H là chiều cao rơi búa, tính bằng mét (m);

W_r là trọng lượng của búa đóng, tính bằng tấn (T);

 $Q_u \ l\grave{a} \ khả năng mang tải cực hạn của cọc, thông thường lấy với hệ số an toàn, F_s, không dưới tính bằng tấn (T);$

Lp là chiều dài cọc, tính bằng mét (m);

F là diện tích tiết diện cọc, tính bằng mét vuông (m²);

 E_e là mô đun đàn hồi của vật liệu cọc, tính bằng tấn trên mét vuông (T/m²).

6.12 Nếu trong thiết kế móng cọc ống có quy định tìm biên độ giao động khi sắp dừng rung cọc thì biên độ dao động các cọc-ống đường kính ngoài đến 2 m, với tốc độ hạ cọc từ 2 cm đến 20 cm trong 1 min được tính theo công thức:

$$A \pm \frac{153(0,85N_n - N_x)}{n_v \frac{e}{60.7l} - Q_v \frac{\ddot{o}}{\dot{o}}}$$
(5)

trong đó:

A là biên độ lấy bằng 1/2 độ lắc toàn phần của giao động ở những phút cuối trước lúc dừng rung, tính bằng xentimét (cm);

 N_n là công suất hữu hiệu toàn phần ở giai đoạn cuối, tính bằng kilôoát (kW);

 N_x là công suất vận hành không tải, đối với búa rung tần số thấp, lấy bằng 25 % công suất thiết kế của động cơ điện, tính bằng kilôoát (kW);

n_v là tốc độ quay của bộ lệch trong búa rung, tính bằng vòng trên phút (r/min);

P là khả năng chịu tải của cọc-ống, tính bằng tấn (T);

 λ là hệ số phụ thuộc vào tỷ số giữa sức kháng động và sức kháng tĩnh của đất, cho trong Bảng 8 và Bảng 9;

Q_v là trọng lượng của hệ thống rung, bằng tổng trọng lượng của búa rung và chụp đầu cọc, tính bằng tấn (T).

Bảng	Q	Цâ	cá	2	cho	ကက်
Band	გ-	не	SO	٨.	cno	cai

Tên cát	Hệ số λ			
	Thô	Vừa	Nhỏ	
Cát no nước	4,5	5,0	6,0	
Cát ẩm	3,5	4,0	5,0	

Bảng 9- Hệ số λ cho sét

Tên cát	Hệ số λ khi độ sệt					
	I _L >0,75	0,5 < l _L ≤ 0,75	0,25< I _L ≤ 0,5			
Á sét, á cát	4,0	3,0	2,5			
Sét	3,0	2,2	2,0			

Khi có nhiều lớp đất thì λ xác định theo công thức:

$$\lambda = \frac{\mathring{a}}{\mathring{a}} \frac{\lambda_i h_i}{h_i} \tag{6}$$

trong đó:

 λ_i là hệ số của lớp thứ i;

h_i là chiều dày của lớp thứ i, tính bằng mét (m).

6.13 Khi rung hạ cọc tròn và cọc- ống, không tựa vào đá và nửa đá, để đảm bảo khả năng mang tải của cọc, P, cần rung hạ đoạn cuối sao cho biên độ dao động thực tế A, không vượt quá biên độ tính toán, A_{tt} , theo vế phải của công thức (5). Nếu $A > A_{tt}$ chứng tỏ sức kháng của đất chưa đạt yêu cầu, cần phải tiếp tục rung hạ cho tới khi thoả mãn công thức nêu trên thì mới đảm bảo khả năng mang tải của cọc. Giá trị của n_v nếu không có thiết bị đo thì lấy theo thông số trong lý lịch búa rung. Có thể dùng các loại máy trắc đạc để đo biên độ dao động, hoặc dùng các thiết bị tự ghi. Trong trường hợp không có thiết bị đo thì có thể dùng cách vẽ đường ngang thật nhanh lên giấy kẻ ô đã dán sẵn vào thân cọc, sẽ thu được đường cong dao động. Nối các đỉnh trên và đỉnh dưới thành đường gấp khúc, đo chiều cao lớn nhất với độ chính xác tới 0,1 cm ta thu được độ lắc của dao động chính bằng 2 lần biên độ dao động cần tìm.

6.14 Trị số của các hệ số λ trong Bảng 8 và Bảng 9 nên chuẩn xác lại theo kết quả nén tĩnh cọc thử. Sau khi rung hạ cọc và nén tĩnh cho ta khả năng chịu tải của cọc P thì hệ số λ cho điều kiện đất nền thực tế được tính theo công thức:

$$\lambda = \frac{1,43P}{\frac{153(0,85N_n - N_x)}{An_v} + Q_v}$$
 (7)

Các thông số của quá trình rung lấy như phần trên.

6.15 Chỉ cho phép dùng xói nước để hạ cọc ở những nơi cách xa nhà và công trình hiện có trên 20 m. Để giảm áp suất, lưu lượng nước và công suất máy bơm, cần phải kết hợp xói nước với đóng hoặc ép cọc bằng đầu

búa. Khi cần xói nước trong cát và á cát ở độ sâu hơn 20 m phải kèm theo bơm khí nén khoảng từ 2 m³/min đến 3 m³/min vào vùng xói nước.

Đối với cọc và cọc ống có đường kính nhỏ hơn 1 m thì cho phép dùng một ống xói đặt giữa tiết diện. Đối với các cọc ống đường kính lớn hơn 1 m thì nên đặt các ống xói theo chu vi cọc ống cách nhau từ 1,0m đến 1,5 m. Khi hạ cọc đến mét cuối cùng thì ngưng việc xói nước, tiếp tục đóng hoặc rung hạ cọc cho đến khi đạt độ chối thiết kế để đảm bảo khả năng chịu tải của cọc. Nên áp dụng biện pháp xói nước khi hạ cọc trong đất cát.

6.16 Các ống xói nước phải có đầu phun hình nón. Để đạt được hiệu quả xói lớn nhất thì đường kính đầu phun nên chiếm khoảng 0,4 đến 0,45 lần đường kính trong của ống xói. Khi cần tăng tốc độ hạ cọc thì ngoài đầu phun chính tâm còn làm thêm các lỗ phun nghiêng 30° đến 40° so với phương đứng ở xung quanh ống xói. Đường kính các lỗ này từ 6 mm đến 10 mm. Áp lực nước cần thiết, lưu lượng nước tùy theo đường kính, chiều sâu cọc và loại đất có thể tham khảo trong Bảng 10.

Bảng 10- Áp lực nước để xói

		<u> </u>	iù c na o c ac xoi			
Tên cát	Chiều sâu (m)	Cột áp tại vòi phun (T/m²)	Đường kính trong (mm)/lưu lượng (L/min) cho cọc có đường kính (cm)			
	(111)		30 đến 50	50 đến 70		
Bùn, á cát chảy	Từ 5 đến 15	Từ 4 đến 8	$\frac{37}{400,1000}$	$\frac{50}{1000,1500}$		
Cát mịn, bụi, chảy, bùn dẻo chảy, dẻo mềm	Từ 15 đến 25	Từ 8 đến 10	68 1000,1500	80 1500,2000		
Sét và á sét	Từ 25 đến 35	Từ 10 đến 15	80 1500,2500	$\frac{106}{200,3000}$		
Cát hạt trung, thô và lẫn sỏi	Từ 5 đến 15	Từ 6 đến 10	50 1000,1500	68 1500,2000		
Á cát dẻo	Từ 15 đến 25	Từ 10 đến 15	80 1500,2500	68 2000,3000		
Á sét và sét dẻo cứng	Từ 25 đến 35	Từ 8 đến 20	68 2500,3000	106,131 2500,4000		

CHÚ THÍCH: Khi đóng bù các cọc dài, để tận dụng công suất búa thì sau khi ngưng xói nước chính tâm, nên xói tiếp thêm phía ngoài phần trên của cọc. Có thể dùng hai ống xói đường kính trong từ 50 mm đến 68 mm.

7 Hạ cọc bằng phương pháp ép tĩnh

- 7.1 Lựa chọn thiết bị ép cọc cần thoả mãn các yêu cầu sau:
- Công suất của thiết bị không nhỏ hơn 1,4 lần lực ép lớn nhất do thiết kế quy định;
- Lực ép của thiết bị phải đảm bảo tác dụng đúng dọc trục tâm cọc khi ép từ đỉnh cọc và tác dụng đều lên các mặt bên cọc khi ép ôm, không gây ra lực ngang lên cọc;
- Thiết bị phải có chứng chỉ kiểm định thời hiệu về đồng hồ đo áp và các van dầu cùng bảng hiệu chỉnh kích do cơ quan có thẩm quyền cấp;
- Thiết bị ép cọc phải đảm bảo điều kiện vận hành và an toàn lao động khi thi công.
- 7.2 Lựa chọn hệ phản lực cho công tác ép cọc phụ thuộc vào đặc điểm hiện trường, đặc điểm công trình, đặc điểm địa chất công trình, năng lực của thiết bị ép. Có thể tạo ra hệ phản lực bằng neo xuấn chặt trong lòng đất, hoặc dàn chất tải bằng vật nặng trên mặt đất khi tiến hành ép trước, hoặc đặt sẵn các neo trong móng công trình để dùng trọng lượng công trình làm hệ phản lực trong phương pháp ép sau. Trong mọi trường hợp tổng trọng lượng hệ phản lực không nên nhỏ hơn 1,1 lần lực ép lớn nhất do thiết kế quy định.
- 7.3 Thời điểm bắt đầu ép cọc khi phải dùng trọng lượng công trình làm phản lực (ép sau) phải được thiết kế quy định phụ thuộc vào kết cấu công trình, tổng tải trọng làm hệ phản lực hiện có và biên bản nghiệm thu phần đài cọc có lỗ chờ cọc và hệ neo chôn sẵn theo các quy định về nghiệm thu kết cấu BTCT hiện hành.
- 7.4 Kiểm tra định vị và thăng bằng của thiết bị ép cọc gồm các khâu:
- Trục của thiết bị tạo lực phải trùng với tim cọc;
- Mặt phẳng " công tác" của sàn máy ép phải nằm ngang phẳng (có thể kiểm ta bằng thủy chuẩn ni vô);
- Phương nén của thiết bị tạo lực phải là phương thẳng đứng, vuông góc với sàn "công tác";

- Chạy thử máy để kiểm tra ổn định của toàn hệ thống bằng cách gia tải khoảng từ 10 % đến 15 % tải trọng thiết kế của coc.
- 7.5 Đoạn mũi cọc cần được lắp dựng cẩn thận, kiểm tra theo hai phương vuông góc sao cho độ lệch tâm không quá 10 mm. Lực tác dụng lên cọc cần tăng từ từ sao cho tốc độ xuyên không quá 1 cm/s. Khi phát hiện cọc bị nghiêng phải dừng ép để căn chỉnh lai.
- 7.6 Ép các đoạn cọc tiếp theo gồm các bước sau:
- a) Kiểm tra bề mặt hai đầu đoạn cọc, sửa chữa cho thật phẳng; kiểm tra chi tiết mối nối; lắp dựng đoạn cọc vào vị trí ép sao cho trục tâm đoạn cọc trùng với trục đoạn mũi cọc, độ nghiêng so với phương thẳng đứng không quá 1 %;
- b) Gia tải lên cọc khoảng 10 % đến 15 % tải trọng thiết kế suốt trong thời gian hàn nối để tạo tiếp xúc giữa hai bề mặt bê tông; tiến hành hàn nối theo quy định trong thiết kế.
- c) Tăng dần lực ép để các đoạn cọc xuyên vào đất với vận tốc không quá 2 cm/s;
- d) Không nên dừng mũi cọc trong đất sét dẻo cứng quá lâu (do hàn nối hoặc do thời gian cuối ca ép...).
- 7.7 Khi lực nén bị tăng đột ngột, có thể gặp một trong các hiện tượng sau:
- Mũi cọc xuyên vào lớp đất cứng hơn;
- Mũi cọc gặp dị vật;
- Cọc bị xiên, mũi cọc tì vào gờ nối của cọc bên cạnh.

Trong các trường hợp đó cần phải tìm biện pháp xử lý thích hợp, có thể là một trong các cách sau:

- Cọc nghiêng quá quy định, cọc bị vỡ phải nhổ lên ép lại hoặc ép bổ sung cọc mới (do thiết kế chỉ định)
- Khi gặp dị vật, vỉa cát chặt hoặc sét cứng có thể dùng cách khoan dẫn hoặc xói nước như đóng cọc;
- 7.8 Cọc được công nhận là ép xong khi thoả mãn đồng thời hai điều kiện sau đây:
- a) Chiều dài cọc đã ép vào đất nền không nhỏ hơn L_{min} và không quá L_{max} với L_{min} , L_{max} là chiều dài ngắn nhất và dài nhất của cọc được thiết kế dự báo theo tình hình biến động của nền đất trong khu vực;
- b) Lực ép trước khi dừng, $(P_{ep})_{KT}$ trong khoảng từ $(P_{ep})_{min}$ đến $(P_{ep})_{max}$, trong đó:
- (Pep)min là lực ép nhỏ nhất do thiết kế quy định;
- (Pep)max là lực ép lớn nhất do thiết kế quy định;
- $(P_{ep})_{KT}$ là lực ép tại thời điểm kết thúc ép cọc, trị số này được duy trì với vận tốc xuyên không quá 1 cm/s trên chiều sâu không ít hơn ba lần đường kính (hoặc cạnh) cọc.

Trong trường hợp không đạt hai điều kiện trên, cần báo cho Thiết kế để có biện pháp xử lý.

- 7.9 Việc ghi chép lực ép theo nhật ký ép cọc nên tiến hành cho từng m chiều dài cọc cho tới khi đạt tới $(P_{ep})_{min}$, bắt đầu từ độ sâu này nên ghi cho từng 20 cm cho tới khi kết thúc, hoặc theo yêu cầu cụ thể của Tư vấn, Thiết kế.
- 7.10 Đối với cọc ép sau, công tác nghiệm thu đài cọc và khoá đầu cọc tiến hành theo tiêu chuẩn thi công và nghiệm thu công tác bê tông và bê tông cốt thép hiện hành.

8 Giám sát và nghiệm thu

- 8.1 Nhà thầu phải có kỹ thuật viên thường xuyên theo dõi công tác hạ cọc, ghi chép nhật ký hạ cọc. Tư vấn giám sát hoặc đại diện Chủ đầu tư nên cùng Nhà thầu nghiệm thu theo các quy định về dừng hạ cọc nêu ở phần trên cho từng cọc tại hiện trường, lập biên bản nghiệm thu theo mẫu in sẵn (xem Phụ lục A, E). Trong trường hợp có các sự cố hoặc cọc bị hư hỏng Nhà thầu phải báo cho Thiết kế để có biện pháp xử lý thích hợp; các sự cố cần được giải quyết ngay khi đang đóng đại trà, khi nghiệm thu chỉ căn cứ vào các hồ sơ hợp lệ, không có vấn đề còn tranh chấp.
- 8.2 Khi đóng cọc đến độ sâu thiết kế mà chưa đạt độ chối quy định thì Nhà thầu phải kiểm tra lại quy trình đóng cọc của mình, có thể cọc đã bị xiên hoặc bị gãy, cần tiến hành đóng bù sau khi cọc được "nghỉ" và các thí nghiệm kiểm tra độ nguyên vẹn của cọc (PIT) và thí nghiệm động biến dạng lớn (PDA) để xác định nguyên nhân, báo Thiết kế có biện pháp xử lý.
- 8.3 Khi đóng cọc đạt độ chối quy định mà cọc chưa đạt độ sâu thiết kế thì có thể cọc đã gặp chướng ngại, điều kiện địa chất công trình thay đổi, đất nền bị đẩy trồi..., Nhà thầu cần xác định rõ nguyên nhân để có biện pháp khắc phục.
- 8.4 Nghiệm thu công tác thi công cọc tiến hành dựa trên cơ sơ các hồ sơ sau:
- a) Hồ sơ thiết kế được duyệt;
- b) Biên bản nghiệm thu trắc đạc định vị trục móng cọc;
- c) Chứng chỉ xuất xưởng của cọc theo các điều khoản nêu trong phần 3 về cọc thương phẩm;
- d) Nhật ký hạ cọc và biên bản nghiệm thu từng cọc;

- e) Hồ sơ hoàn công cọc có thuyết minh sai lệch theo mặt bằng và chiều sâu cùng các cọc bổ sung và các thay đổi thiết kế đã được chấp thuận;
- f) Các kết quả thí nghiệm động cọc đóng (đo độ chối và thí nghiệm PDA nếu có);
- g) Các kết quả thí nghiệm kiểm tra độ toàn khối của cây cọc- thí nghiệm biến dạng nhỏ (PIT) theo quy định của Thiết kế;
- h) Các kết quả thí nghiệm nén tĩnh cọc theo TCVN 9393:2012.
- 8.5 Độ lệch so với vị trí thiết kế của trục cọc trên mặt bằng không được vượt quá trị số nêu trong Bảng 11 hoặc ghi trong thiết kế.

Bảng 11- Độ lệch trên mặt bằng

Loại cọc và cách bố trí chúng	Độ lệch trục cọc cho phép
1) Cọc có cạnh hoặc đường kính đến 0,5 m	
a) Khi bố trí cọc một hàng	0,2d
b) Khi bố trí hình băng hoặc nhóm 2 và 3 hàng	
- Cọc biên	0,2d
- Cọc giữa	0,3d
c) Chi bố trí quá 3 hàng trên hình băng hoặc bãi cọc	
- Cọc biên	0,2d
- Cọc giữa	0,4d
d) Cọc đơn	5 cm
e) Cọc chống	3 cm
2) Các cọc tròn rỗng đường kính từ 0,5 m đến 0,8 m	
a) Cọc biên	10 cm
b) Cọc giữa	15 cm
c) Cọc đơn dưới cột	8 cm
3) Cọc hạ qua ống khoan dẫn (khi xây dựng cầu)	Độ lệch trục tại mức trên cùng của ống dẫn đã được lắp chắc chắn không vượt quá 0,025D ở bến nước (ở đây D là độ sâu của nước tại nơi lắp ống dẫn) và ± 25 mm ở vũng không nước

CHÚ THÍCH: số cọc bị lệch không nên vượt quá 25 % tổng số cọc khi bố trí theo dải, còn khi bố trí cụm dưới cột không nên quá 5 %. Khả năng dùng cọc có độ lệch lớn hơn các trị số trong Bảng 11 sẽ do Thiết kế quy định.

- 8.6 Nhà thầu cần tổ chức quan trắc trong khi thi công hạ cọc (đối với bản thân cọc, độ trồi của các cọc lân cận và mặt đất, các công trình xung quanh...).
- 8.7 Nghiệm thu công tác đóng và ép cọc tiến hành theo các quy định hiện hành. Hồ sơ nghiệm thu được lưu giữ trong suốt tuổi thọ thiết kế của công trình.

9 An toàn lao đông

- 9.1 Khi thi công cọc phải thực hiện mọi quy định về an toàn lao động theo TCVN 5308:1991 và đảm bảo vệ sinh môi trường theo đúng các quy định hiện hành.
- 9.2 Trong ép cọc, đoạn cọc mồi bằng thép phải có đầu chụp. Phải có biện pháp an toàn khi dùng hai đoạn cọc mồi nối tiếp nhau để ép.

		Phụ lục A	
		(Tham khảo)	
		Biên bản hạ cọc	
A.1 Nhật ký đóng cọc			
Tên Nhà thầu:			
Công trình:			
	1	Nhật ký đóng cọc	
	(Từ N ⁰	đến N ⁰)
	Bắt đầu	Kết thúc	

_	_				
. Áp suất (kh	í, hơi), atm				
. Loại và trọn	ng lượng của mũ cọc	c, kG			
Cọc số (theo r	mặt bằng bãi cọc)				
. Ngày tháng	đóng				
2. Nhãn hiệu d	cọc (theo tổ hợp các	đoạn cọc)			
. Cao độ tuyế	ệt đối của mặt đất cạ	anh cọc			
I. Cao độ tuyế	ệt đối của mũi cọc				
s. Độ chối thiế	t kế, cm				
N⁰ lần đo	Độ cao rơi búa, cm	Sô nhát đập trong lần đo	Độ sâu hạ cọc trong lần đo	Độ chối của 1 nhát đập, cm	Ghi chú
1	2	3	4	5	6
	Kỹ thuật thi công		Tư vấn	giám sát	
2 Tổng hợp	đóng cọc				
ên Nhà thầu:					

Báo cáo tổng hợp đóng cọc

Bao cao tong nọp dong cọc										
			(Từ N	l ^o	đ	ến N ⁰)		
			Bắt đ	ầu		Kết thúc	·			
Tên	Loại	Ngày/ca	Độ sá	Độ sâu, m		Tổng số	Độ ch	nối, cm	Ghi chú	
cóc	cọc		Thiết kế	Thực tế	búa	nhát đập	Khi đóng	Khi kiểm tra		
2	3	4	5	6	7	8	9	10	11	
	cóc	cóc cóc	cóc cóc	Bắt đ T Tên Loại Ngày/ca Độ sá cọc cọc Thiết kế	(Từ N ⁰ Bắt đầu T Tên Loại Ngày/ca Độ sâu, m cọc cọc Thiết kế Thực tế	(Từ Nº đ Bắt đầu T Tên Loại Ngày/ca Độ sâu, m Loại cọc cọc Thiết kế Thực tế	(Từ Nº đến Nº Bắt đầu Kết thúc T Tên Loại Ngày/ca Độ sâu, m Loại Tổng số cọc cọc Thiết kế Thực tế búa nhát đập	(Từ Nº đến Nº	(Từ Nº đến Nº	

Công trình:

Kỹ thuật thi công

Tư vấn giám sát

A.3 Nł	nật ký run	g hạ cọc ốr	ng			
		•	•			
Công t	trình:					
				Nhật ký rung hạ cọc ống		
			(Từ	r Nº đến N⁰)	
			Bắ	t đầu Kết thúc		
1. Loạ	i búa runç	j				
2. Loạ	i và trọng	lượng của	mũ cọc, l	<g< td=""><td></td><td></td></g<>		
Cọc số	ີ່ (theo ma	ặt bằng bãi	cọc			
1. Ngà	y tháng					
2. Đườ	ng kính ı	ngoài		Chiều dày thành		
3. Số l	ượng và	chiều dài c	ác đoạn c	oc		
4. Loạ	i mối nối (của các đo	ạn cọc			
5. Cac	độ tuyệt	đối của mặ	t đất cạnl	1 cọc		
6. Cac	độ tuyệt	đối của mũ	ii cọc			
7. Cac	độ của r	uút đất trong	g lòng cọc	;		
Tốc đợ	ì lún tron	g lần đo sau	ı cùng			
N ⁰ lần	Thời	Độ lún	Thời	Số liêu về vận hành húa rung	Cao độ của đất trong	GŁ

N ⁰ lần đo	Thời gian đo,	Độ lún trong lần	Thời gian	Số liệu về vận hành búa rung				Cao độ của đất trong lòng cọc		Ghi chú
	min	đo, cm	nghỉ, min	Lực kích động, T	Cường độ dòng điện, A	Điện thế dòng điện, V	Biên độ dao động, mm	Trước khi đào bỏ	Sau khi đào bỏ	
1	2	3	4	5	6	7	8	9	10	11

Kỹ thuật thi công							Tư vấn giám sát				
Tên N	Nhà thầ										
Công	trình:										
				(T \)			g hợp ru		-	`	
				,						•	
	Tân	Logi	Ngày/aa						Àn đo so		Ghi chú
TT	Tên cọc	Loại cọc	Ngày/ca		âu, m Thực tế	búa	Lực	Công	ần đo sa Tốc độ	Cao	Gni chu
				kế	mực te	rung	kích	suất	hạ,	độ lõi	
							động, –	yêu cầu,	m/min	đất,	
							Т	kW		m	
1	2	3	4	5	6	7	8	9	10	11	12
					l				l		
		Kỹ th	nuật thi côr	ıg				Tư	vấn giám	sát	
A.5 N	lhật ký	е́р со́с									
Tên N	Nhà thầ	ıu:									
Công	trình:										
					-0	_	ký ép c	-			
4 1 = -	ni ma 4∵	án as s									
1. LO	ại iiiay	eh cóc .									

3. Lưu lượng b	oơm dầu, I/ phút				
4. Diện tích hũ	u hiệu của pittông,	cm²			
5. Số giấy kiển	n định				
Cọc số (theo n	nặt bằng bãi cọc)				
1. Ngày tháng	ép				
2. Số lượng và	ı chiều dài các đoạr	ı cọc			
3. Cao độ tuyệ	t đối của mặt đất cạ	anh cọc			
4. Cao độ tuyệ	t đối của mũi cọc				
5. Lực ép quy	định trong thiết kế (min, max), tấn			
Ngày, giờ ép	Độ sá	àu ép	Giá trị lụ	Ghi chú	
	Ký hiệu đoạn	Độ sâu, m	Áp lực, kg/cm²	Lực ép, T	
1	2	3	4	5	6

2. Áp lực tối đa của bơm dầu, kg/cm²

Kỹ thuật thi công

Tư vấn giám sát

A.6 Tổng hợp ép cọc							
Tên Nhà thầu:							
Công trình:							
	Báo cáo tổng hợp ép cọc						
	(Từ N ⁰	đến N ⁰)					

TT	Tên cọc	Ngày/ca	Loại cọc	Ký hiệu đoạn cọc	Lực ép khi dừng, T	Độ sâu, m Thiết kế Thực tế		Loại máy ép	Ghi chú
1	2	3	4	5	6	7	8	9	10

Kỹ thuật thi công

Tư vấn giám sát

Phu luc B

(Tham khảo)

Hư hỏng cọc bê tông cốt thép khi đóng

Khi đóng cọc bê tông cốt thép có thể xảy ra các hư hỏng sau đây có liên quan tới công nghệ đóng:

- Rạn nứt và sứt mẻ đầu cọc;
- Có khe nứt dọc ở bất kỳ đoạn nào trên thân cọc, nhưng thường có nhiều ở đoạn đầu cọc;
- Khe nứt ngang thường ở vùng đầu hoặc giữa 1/3 thân cọc;
- Khe nứt ngang, chuyển thành khe nứt xiên 45° ở phần cọc trên mặt đất.

Nguyên nhân hư hỏng dạng thứ nhất thường do tập trung ứng suất cục bộ do nhát đập của búa không chính tâm, hoặc do các tấm giảm xung ở mũ cọc không đạt yêu cầu gây ra. Cho nên khi thi công đóng cọc cần thường xuyên kiểm tra độ đồng trục của cọc, mũ cọc và búa, trạng thái các tấm đệm giảm xung trên và dưới của mũ cọc đặc biệt là độ vuông góc của mặt phẳng tấm đệm trên và mặt phẳng đầu cọc so với trục cọc; độ đồng nhất của vật liệu tấm đệm dưới cũng như độ khe hở của hệ động với cần búa. Sự xuất hiện các vết nứt dọc thân cọc có quan hệ với sự gia tăng chung của ứng suất vượt quá sức bền chịu nén động của bê tông cọc dưới tác dụng của tải trọng lặp. Hư hỏng này khả dĩ nhất là do chiều cao rơi búa lớn hoặc tấm đệm giảm xung quá cứng. Nguyên nhân khác có thể là mũi cọc gặp đất quá cứng hoặc chướng ngại rắn. Khi đó sẽ tạo ra sóng nén phản hồi cộng vào với sóng nén trực diện làm tăng ứng suất nén trong thân cọc. Ngăn ngừa hư hỏng này bằng cách giảm chiều cao rơi búa và thay các tấm đệm có độ đàn hồi lớn hơn. Thường hay dùng cách thay vật liệu tấm đệm vì cách này ít ảnh hưởng tới độ chối của nhát búa. ứng suất nén lớn nhất trong cọc khi đóng có thể xác định theo phương pháp trình bày trong Phụ lục C.

Khi độ chối của cọc bị giảm nhiều (nhỏ hơn 0,2 cm) do dùng các biện pháp trên, mà cần phải hạ cọc tới độ sâu thiết kế, nên chuyển đổi dùng búa nặng hơn hoặc tìm cách giảm sức kháng của đất (khoan dẫn, xói nước ...).

Một trong những nguyên nhân gây nứt ngang là do thân cọc bị uốn khi mũi cọc bị lệch khỏi hướng xuất phát vì gặp chướng ngại hoặc cần búa bị lệch, bị lắc. Nếu cần búa bị lệch thì nguyên nhân chính là máy chủ đứng trên nền lún không đều. Hiện diện của mô men uốn, quan hệ với độ lệch của cọc hoặc búa đóng so với vị trí ban đầu dễ dàng nhận ra do cọc bị xô về một phía sau khi nâng búa và mũ cọc ra ngoài. Cho nên khi đóng cọc cần phải theo dõi độ thẳng đứng của cọc theo hai phương vuông góc nhau bằng máy trắc đạc.

Nguyên nhân khác gây vết nứt ngang là các sóng kéo, có thể hình thành trong cọc khi bắt đầu đóng, cũng như khi mũi cọc xuyên trong đất yếu hoặc khi dùng xói nước, khoan dẫn.

Sức kháng của đất bị yếu biểu hiện qua độ chối có trị số lớn, vì thế khi không cho phép xuất hiện vết nứt ngang cần phải khống chế độ chối lớn nhất trong thời gian đóng cọc BTCT theo độ dài cọc như trong Bảng B.1.

Bảng B.1- Độ chối lớn nhất theo chiều dài cọc đóng

Chiều dài cọc, m	Độ chối lớn nhất, cm				
Đến 10	Từ 5 đến 6				
Từ 10 đến 15	Từ 4 đến 5				

Từ 15 đến 20	Từ 3 đến 4
Trên 20	Từ 2 đến 3

Khi độ chối lớn hơn các tri số nêu trên cần giảm chiều cao rơi búa hoặc dùng vật liệu đêm ít cứng hơn.

Ứng suất kéo lớn nhất trong cọc khi đóng có thể xác định theo phương pháp trình bày trong Phụ lục C.

Vết nứt xiên (thường với góc gần 45°) thường xuất hiện do các nội lực xoắn gây ra khi mũ cọc hoặc cọc bị xoay, hoặc do tác dụng đồng thời của lực kéo và xoắn. Dấu hiệu của tác dụng mô men xoắn là độ xoay của đầu cọc so với vị trí ban đầu khị nâng búa và mũ cọc ra và có vết tì một góc của cọc vào tấm đệm gỗ dưới. Khi đó cần phải xoay cần búa, hoặc dùng mũ cọc có cấu tạo không cản trở cọc xoay quanh trục, hoặc chuyển sang cọc tròn.

Phu luc C

(Tham khảo)

Xác định ứng suất đông trong coc bê tông cốt thép khi đóng

C.1 Theo Kanshin-Plutalov-Smidth

Lời giải trình bày dưới đây dựa trên lý thuyết sóng nhát đập được Kanshin-Plutalov-Smidth giản lược. Thực chất của phương pháp này như sau. Cọc được chia thành nhiều phần tử cứng, nối với nhau bằng các liên kết kể đến đặc trưng biến dạng của vật liệu cọc. Đầu búa, sabô, mũ cọc được xem như các phần tử trong hệ. Đệm gỗ giảm xung mang tính đàn-nhớt, đất nền xung quanh cọc và dưới mũi cọc có tính đàn-nhớt-dẻo. Đối với mỗi phần tử của hệ quy ước người ta thành lập hệ phương trình mô tả trạng thái của phần tử trong khoảng thời gian rất ngắn t, đủ để xem tác động của các phần tử kề bên và môi trường đất bên ngoài lên phần tử đang xét và tốc độ dịch chuyển của nó là cố định. Bằng cách giải lặp tuần tự các phương trình cho từng phần tử có thể xác định nội lực ở biên và suy ra các ứng suất tại thời điểm bất kỳ trong chu trình nhát đập. Hiện nay đã có nhiều công trình nghiên cứu về lý thuyết truyền sóng được công bố trong các hội nghị quốc tế. Tuy nhiên cách tính ứng suất động bằng cách tra bảng vẫn có thể áp dụng cho công tác đóng cọc.

Trị số ứng suất động nén, kéo lớn nhất trong thân cọc BTCT, hệ số bố trí cốt thép dọc đến 0,05, do búa ống điệzen và búa hơi đơn động gây ra có thể tính theo công thức:

$$\sigma_{n,k} = K K_1 K_2 K_3 K_4,$$
 (C.1)

trong đó:

 $\sigma_{n,k}$ là ứng suất nén, kéo trong thân cọc, tính bằng kilôgam lực trên xentimét vuông (kG/cm²);

K là hệ số tin cậy lấy bằng 1,1 cho ứng suất nén và 1,3 cho ứng suất kéo;

 K_1 là hệ số, phụ thuộc vào tỷ số trọng lượng phần đập của búa trên diện tích tiết diện thực của cọc, bằng kilôgam lực trên xentimét vuông (kG/cm²);

K₂ là hệ số, phụ thuộc vào chiều cao rơi tính toán phần đập của búa, H;

K₃ là hệ số, phụ thuộc vào độ cứng của vật liệu tấm đệm dưới của mũ cọc, K₅;

 K_4 là hệ số, phụ thuộc vào chiều dài của cọc, L, và cường độ tiêu chuẩn, R^n của đất nền dưới mũi cọc, tính theo các chỉ tiêu cường độ của đất nền, theo Bảng A.1 của TCXD 205:1998 (xem Thư mục tài liệu tham khảo).

Trị số của các hệ số K_1 , K_2 , K_3 , K_4 cho búa điêzen kiểu ống cho trong các Bảng C.1 đến Bảng C.4, cho búa hơi đơn động trong các Bảng C.5 đến Bảng C.8 dưới dạng phân số, tử số dùng tính ứng suất nén, mẫu số dùng tính ứng suất kéo.

Bảng C.1- Hệ số K₁

Q/F, kG/cm ²	0,8	1,0	1,2	1,4	1,6	1,8
K ₁ ,kG/cm ²	<u>13</u>	<u>148</u>	<u>161</u>	<u>170</u>	<u>178</u>	<u>186</u>
	73	65	58	51	45	39
Q/F, kG/cm ²	2,0	2,2	2,4	2,6	2,8	3,0
K ₁ ,kG/cm ²	<u>193</u>	<u>199</u>	<u>205</u>	<u>210</u>	<u>215</u>	<u>220</u>
	33	28	23	19	16	13

Bảng C.2- Hệ số K₂

	Build 6.5 Lib 20 Li										
Chiều cao rơi H, cm	150	175	200	225	250	275	300				
K_2	<u>0,58</u>	<u>0,76</u>	<u>0,84</u>	0,92	<u>1,00</u>	<u>1,08</u>	<u>1,16</u>				
	0,35	0,45	0,55	0,75	1,00	1,25	1,55				

Bảng C.3- Hệ số K₃

Độ cứng đệm K _p , kG/cm²	50	100	150	200	300	400	500
K ₃	<u>0,58</u>	<u>0,78</u>	<u>0,87</u>	<u>0,94</u>	<u>1,05</u>	<u>1,14</u>	<u>1,22</u>
	0,20	0,40	0,60	0,80	1,16	1,36	1,50
Độ cứng đệm K _p , kG/cm²	600	700	800	900	1000	1100	1200
K ₃	<u>1,29</u>	<u>1,35</u>	<u>1,41</u>	<u>1,47</u>	<u>1,52</u>	<u>1,57</u>	<u>1,62</u>
	1,60	1,67	1,72	1,76	1,80	1,83	1,85

Bảng C.4-Hệ số K₄

Chiều dài	Hé	ệ số K₄ ứng	với cường	độ tiêu chu	ẩn của đất	nên dưới m	ũi cọc R ⁿ , T	/m²
cọc, L, m	1 100	800	600	400	250	150	100	50
25	<u>1,03</u>	1,03	1,02	1,02	<u>1,01</u>	<u>1,01</u>	1,00	<u>1,00</u>
	0,44	0,44	0,88	1,10	1,37	1,65	1,93	2,58
20	<u>1,02</u>	<u>1,01</u>	<u>1,01</u>	<u>1,00</u>	<u>1,00</u>	<u>0,99</u>	<u>0,98</u>	<u>0,98</u>
	0,40	0,60	0,80	1,00	1,25	1,50	1,75	2,25
16	<u>1,01</u>	<u>1,00</u>	<u>1,00</u>	<u>0,99</u>	<u>0,98</u>	<u>0,97</u>	<u>0,96</u>	<u>0,95</u>
	0,35	0,53	0,70	0,88	1,10	1,32	1,54	2,00
12	0,99	<u>0,99</u>	<u>0,98</u>	<u>0,97</u>	<u>0,96</u>	<u>0,94</u>	<u>0,92</u>	<u>0,91</u>
	0,30	0,44	0,59	0,74	0,93	1,11	1,29	1,70
8	0,98	<u>0,97</u>	<u>0,96</u>	<u>0,95</u>	<u>0,93</u>	<u>0,92</u>	<u>0,88</u>	<u>0,86</u>
	0,20	0,30	0,40	0,50	0,63	0,75	0,88	1,30

Bảng C.5- Hệ số K₁

Q/F, kG/cm ²	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
K ₁ , kG/cm ²	<u>140</u>	<u>155</u>	<u>165</u>	<u>177</u>	<u>185</u>	<u>196</u>	<u>203</u>	<u>209</u>
	82	64	48	36	28	22	18	15

Bảng C.6- Hệ số K₂

Chiều cao rơi H,	20	40	60	80	100	120
cm						
K_2	<u>0,55</u>	<u>0,71</u>	<u>0,71</u>	<u>1,00</u>	<u>1,12</u>	<u>1,23</u>
	0,47	0,67	0,84	1,00	1,14	1,27

Bảng C.7- Hê số K₃

			Dai	19 O.7 110	- 50 Tt3		
Độ cứng đệm	50	100	150	200	300	400	500
K _p , kG/cm ²							
K_3	<u>0,50</u>	<u>0,78</u>	<u>0,87</u>	<u>0,94</u>	<u>1,05</u>	<u>1,14</u>	<u>1,20</u>
	0,47	0,40	0,60	0,80	1,21	1,48	1,65
Độ cứng đệm	600	700	800	900	1000	1100	1200
K _p , kG/cm²							
K ₃	<u>1,32</u>	<u>1,40</u>	<u>1,48</u>	<u>1,56</u>	<u>1,64</u>	<u>1,72</u>	<u>1,79</u>
	1,76	1,84	1,90	1,95	2,00	2,04	2,08

Bảng C.8- Hệ số K₄

Chiều	ều Hệ số K4 ứng với cường độ tiêu chuẩn của đất nền dưới mũi cọc R ⁿ , T/m²										
dài cọc,											
dai oço,	1 100	800	600	400	250	150	100	50			
1											
L, m				I			l				

25	<u>1,04</u>	<u>1,03</u>	<u>1,03</u>	<u>1,02</u>	1,02	<u>1,01</u>	<u>1,01</u>	<u>1,01</u>
	0,52	0,78	1,04	1,30	1,56	1,82	2,03	2,40
20	<u>1,03</u>	<u>1,02</u>	<u>1,02</u>	<u>1,01</u>	<u>1,01</u>	<u>1,01</u>	<u>1,00</u>	<u>1,00</u>
	0,47	0,70	0,94	1,17	1,41	1,64	1,87	2,20
16	<u>1,02</u>	<u>1,02</u>	<u>1,01</u>	<u>1,00</u>	<u>1,00</u>	<u>1,00</u>	<u>0,99</u>	<u>0,99</u>
	0,40	0,60	0,80	1,00	1,20	1,40	1,60	1,90
12	<u>1,00</u>	<u>0,99</u>	<u>0,98</u>	<u>0,97</u>	<u>0,97</u>	<u>0,97</u>	<u>0,96</u>	<u>0,96</u>
	0,30	0,44	0,59	0,74	0,89	1,03	1,18	1,50
8	<u>0,96</u>	<u>0,95</u>	<u>0,94</u>	<u>0,93</u>	<u>0,93</u>	<u>0,93</u>	0,92	0,92
	0,16	0,24	0,32	0,40	0,48	0,56	0,64	0,90

CHÚ THÍCH:

- 1) Để xác định ứng suất nén lớn nhất khi đóng bằng búa điệzen cần theo công thức (C.1) riêng hệ số K lấy bằng 1, còn các hệ số khác như trong Bảng C.1 đến Bảng C.4;
- 2) Các giá trị trung gian của các hệ số trong Bảng C.1đến Bảng C.8 lấy theo chia khoảng;
- 3) Tổn thất năng lượng trong kết cấu búa lấy bằng 15 % cho búa ống và 10 % cho búa hơi đơn động. Với các tổn thất trong phạm vi nêu trên thì trị số chiều cao rơi búa tính toán, H, trong Bảng C.2 và Bảng C.6 trùng với chiều cao rơi thực tế. Khi tổn thất khác các giá trị nêu trên thì chiều cao rơi búa tính toán và thực tế có quan hệ sau:

$$H = H^{1} \frac{m'}{m} \tag{C.2}$$

trong đó:

H và H1 là chiều cao rơi búa tính toán và thực tế;

m' là hệ số tổn thất năng lượng thực tế, trong búa ống lấy từ 0,8 đến 0,9, trong búa hơi lấy từ 0,7 đến 0,9 m là hệ số tổn thất năng lượng tính toán, trong búa điêzen ống lấy bằng 0,85, trong búa hơi lấy bằng 0,9.

4) Độ cứng của tấm đệm K_p tính theo công thức:

$$K_p = \frac{E_{tt}}{K_n l_h} \tag{C.3}$$

trong đó:

 E_{tt} là mô đun đàn hồi tính toán của vật liệu tấm đệm, lấy theo Bảng C.9 phụ thuộc vào ứng suất nén cho trước lớn nhất, σ trong cọc. Nếu khi tính theo công thức (C.1) được ứng suất σ n chênh với σ quá 10 % thì phải tra bảng tính lại;

K_n là hệ số nén chặt của vật liệu tấm đệm, lấy theo Bảng C.9;

I_b là chiều dày ban đầu của tấm đệm trước khi nén, tính bằng xentimét (cm).

Độ cứng của tấm đệm nhiều lớp xác định theo công thức:

$$\frac{1}{K_p} = \frac{1}{K_{p1}} + \frac{1}{K_{p2}} + \dots + \frac{1}{K_{pn}}$$
(C4)

5) Trong trường hợp cần thiết có thể dùng công thức (C.1) để giải bài toán ngược.

VÍ DŲ:

Cọc BTCT tiết diện (40 x 40) cm, dài 16 m đóng bằng búa D35 vào đất sét dẻo cứng(I_L = 0,4) đến độ sâu 15 m. Vật liệu tấm đệm mũ cọc là ván xẻ thớ ngang hướng đóng. Chiều dày ban đầu trước khi nén là 20 cm. số nhát búa cho phép trước khi đổi tấm đệm là 1000. Xác định ứng suất nén lớn nhất ở đầu cọc và ứng suất kéo lớn nhất trong thân cọc lúc khởi đầu đóng với chiều cao rơi búa là 170 cm; tính ứng suất nén lớn nhất ở đầu cọc khi sắp kết thúc với chiều cao rơi 220 cm. Trọng lượng phần đập quả búa 3 500 kG. Tổng trọng lượng quả búa 7200 kG, trọng lượng mũ cọc 500 kG, tổn thất năng lượng trong búa 15 %.

- 1. Tính các thông số cần thiết
- a) $Q / F = 3500 / 40 / 40 = 2.2 kG/cm^2$;

b) Lúc khởi đầu đóng, sức kháng của đất nền dưới mũi cọc bằng tổng trọng lượng búa, mũ cọc và cọc chia cho diện tich tiết diện cọc:

 $R_0^n = (7.2 + 0.5 + 6.4) / 0.16 = 90 \text{ T/m}^2;$

c) Khi kết thúc đóng, sức kháng của đất nền dưới mũi cọc (tra Bảng A.1 của TCXD 205:1998) là R_{15}^{n} = 280 T/m².

Bảng C.9- Mô đun đàn hồi của tấm đệm mũ cọc

TT	Vật liệu tấm đệm	iệm Hệ số nén Mô đun E _{tt} , (kG/cm²) ứng với ứng suất									
		K_{np}	kG/cm² cho trước là:								
			50	100	150	200	250				
1	Gỗ thông mọi loại thớ	0,4	900	1 700	2 500	3 200	3 600				
	Gỗ sồi thớ vuông góc với hướng nén	0,6	2 600	3 400	4 100	4 600	4 800				
3	Ván ép	0,7	2 800	3 800	4 100	4 600	4 800				
	Cao su chịu nhiệt có độ xốp, %:										
	10	1,0	1 100	2 300	3 200	3 700	3 900				
	15	1,0	800	1 800	2 600	3 200	3 500				
	20	1,0	600	1 500	2 300	2 900	3 200				
	25	1,0	500	1 300	2 000	2 700	3 000				

- 2. Tính ứng suất nén lớn nhất ở đầu cọc khi mới đóng
- a) Theo Bảng C.1 tính ra $K_1 = 199$;
- b) Theo Bảng C.2, với H = 170 cm, tính ra $K_2 = 0.71$;
- c) Giả sử ứng suất nén σ = 150 kG/cm², tính độ cứng của tấm đệm ván xẻ theo công thức (C.3):

 $K_p = 2500 / 0.4 / 20 = 312 \text{ kG/cm}^3$;

- d) Theo Bảng C.3 tính ra $K_3 = 1,06$;
- e) Theo Bảng C.4 tính ra $K_4 = 0.96$;
- f) Theo công thức (C.1) ta có ứng suất nén lớn nhất ở đầu cọc khi mới đóng là:

$$\sigma_0 = 1,10 \times 199 \times 0,71 \times 1,06 \times 0,96 = 158 \text{ kG/cm}^2$$

Trị số này so với trị số tạm tính σ = 150 kG/cm² không chênh nhau đáng kể, nên lấy ứng suất nén là $\sigma_{n=}$, 158 kG/cm²

- 3. Tính ứng suất kéo lớn nhất ở đầu cọc khi mới đóng
- a) Theo Bảng C.1 tính ra $K_1 = 28$;
- b) Theo Bảng C.2, với H = 170 cm, tính ra $K_2 = 0.71$;
- c) Theo Bảng C.9, với ứng suất nén σ = σ_n = 158 kG/cm², mô đun đàn hồi tính toán của đệm là 2 610 kG/cm²; tính độ cứng của tấm đệm ván xẻ theo công thức (C.3): K_p = 2610 / 0,4 / 20 = 326 kG/cm³;
- d) Theo Bảng C.3 tính ra $K_3 = 1,21$;
- e) Theo Bảng C.4 tính ra $K_4 = 1,63$;
- f) Theo công thức (C.1) ta có ứng suất kéo lớn nhất ở thân cọc khi mới đóng là:

$$\sigma_k = 1.3 \times 28 \times 0.43 \times 1.21 \times 1.63 = 31 \text{ kG/cm}^2$$

- 4. Tính ứng suất nén lớn nhất ở đầu cọc khi sắp kết thúc
- a) Theo Bảng C.1 tính ra $K_1 = 199$;
- b) Theo Bảng C.2, với H = 220 cm, tính ra $K_2 = 0.90$;
- c) Giả thiết ứng suất nén lớn nhất là 200 kG/cm², theo Bảng C.9 mô đun đàn hồi của gỗ là 3 200 kG/cm²; tính độ cứng của tấm đệm ván xẻ theo công thức(C.3): $K_p = 3\ 200\ /\ 0.4\ /\ 20 = 400\ kG/cm²$;

Theo Bảng C.3 tính ra $K_3 = 1,14$;

- d) Theo Bảng C.4 với L = 16 m, $R_{15}^n = 280 \text{ T/m}^2 \text{ tính ra } K_4 = 1,0$;
- e) Theo công thức (C.1) ta có ứng suất nén lớn nhất ở đầu cọc là:

$$\sigma_n$$
= 1,1 x 199 x 0,9 x 1,14x 1,0 = 222 kG/cm².

Trị số này so với trị số tạm tính σ = 200 kG/cm² chênh nhau đáng kể, nên tính lại với σ_n = 222 kG/cm², mô đun đàn hồi sẽ là 3 640 kG/cm² và độ cứng của tấm đệm sẽ là: K_p = 3 640 / 0,4 / 20 = 455 kG/cm³.

- f) Theo Bảng C.3 tính ra $K_3 = 1,14$.
- g) Theo công thức (C.1) ta có ứng suất nén lớn nhất ở đầu cọc là:

$$\sigma_n$$
= 1,1 x 199 x 0,9 x 1,18 x 1,0 = 232 kG/cm².

C.2 Theo Broms B.B.

Ứng suất nén lớn nhất có thể xác định theo công thức:

$$\sigma_{n} = \frac{\alpha \sqrt{2 e E_{ep} \gamma_{p} H}}{\frac{\partial}{\partial x} + \frac{F_{c}}{F_{b}} \sqrt{\frac{E_{ec} \gamma_{c}}{E_{ep} \gamma_{b}}} \frac{\ddot{o} \partial x}{\ddot{o} \dot{b}} + \frac{F_{p}}{F_{c}} \sqrt{\frac{E_{ep} \gamma_{p}}{E_{ec} \gamma_{c}}} \frac{\ddot{o}}{\dot{o}}}$$
(C.5)

Trong đó:

 σ_n là ứng suất nén lớn nhất trong cọc tính bằng kilôgam lực trên xentimét vuông (kG/cm²);

H là độ cao rơi búa, tính bằng xentimét (cm);

 α = 0.6 đối với búa rơi tư do;

 α = 2,0 đối với búa điệzen;

e là hệ số hiệu suất búa- cọc, e = 0,6 cho búa rơi tự do và e = 0,8 cho búa điêzen;

F là diện tích tiết diện cọc, tính bằng xentimét vuông (cm²);

Ee là mô đun đàn hồi, tính bằng kilôgam lực trên xentimét vuông (kG/cm²);

 γ là dung trọng, tính bằng kilôgam lực trên xentimét khối (kG/cm³);

Các ký hiệu h, c, p ở chân của E_e , γ, F tương ứng cho búa (hammer), đệm cọc (cushion) và cọc (pile).

Ứng suất kéo trong cọc BTCT thường dao động trong khoảng 30 % đến 40 % σn. Nên thiết kế chống nứt do kéo ở ba cấp ứng suất kéo là 50 kG/cm², 55 kG/cm² và 60 kG/cm².

Phụ lục D

(Tham khảo)

Cấu tạo mũ cọc

Mũ cọc có vai trò rất quan trọng trong công tác thi công cọc đóng, vừa đảm bảo cho cọc không bị nứt, vỡ, mà còn giữ cho sabô của búa không bị hư hại. Thông thường các cơ sở sản xuất búa đều cung cấp đồng bộ cả giàn búa cùng loại mũ cọc tương ứng. Tuy nhiên, trong điều kiện nước ta chưa chế tạo được dàn búa, có thể thay thế mũ cọc chế sẵn bằng cách tự gia công bằng hàn. Phụ lục giới thiệu các thành phần cấu tạo chính của mũ cọc để có thể gia công được mũ cọc khi cần thiết.

Khi đóng cọc bằng búa hơi đơn động và búa điêzen kiểu ống nên dùng mũ cọc dạng chữ H đúc hoặc hàn có khoang trên và khoang dưới. Khi đóng cọc bằng búa điêzen kiểu cần và búa hơi song động có thể dùng mũ cọc dạng chữ U chỉ có mình khoang dưới (xem Hình D.1).

Mũ cọc phải có lỗ tai hoặc vòng treo để ngoắc vào đầu búa trong tư thế thẳng đứng bằng cáp. Khoang trên thường có dạng hình tròn sâu 100 mm đến 150 mm cho búa hơi và 200 mm đến 300 mm cho búa điệzen. Khoang trên chứa giảm chấn để giảm tải trọng động lên búa cũng như lên chinh mũ cọc. Đường kính khoang trên thường rộng hơn đường kính sabô của búa khoảng 10 mm đến 15 mm hoặc không nhỏ hơn kích cỡ ngoài của búa hơi.

Giảm chấn trên thường được làm từ các loại gỗ cứng (sồi, thông, sến, táu, lát...) cắt dọc thớ, đặt vuông góc chuẩn với trục chinh. Bề dày của tấm giảm chấn trên phụ thuộc vào trọng lượng phần đập của búa; với búa điêzen kiểu ống có trọng lượng phần đập là 1 250, 1 800, 2 500, 3 500, 5 000 kG thì chiều dày đệm không nhỏ hơn tương ứng là 150, 200, 200, 250, 300 mm; với búa hơi không nhỏ hơn 250 mm đến 300 mm.

Nghiêm cấm việc dùng tấm giảm chấn trên đã bị giập nát, có thể xảy ra nhát đập trực tiếp của búa vào mũ thép.

Kích cỡ khoang dưới của mũ cọc thường chỉ rộng hơn kích thước tiết diện cọc 1 cm. Chiều sâu khoang dưới khoảng 500 mm đến 600 mm. Tấm giảm chấn dưới có thể làm từ các vật liệu khác nhau (xem Bảng C.9 Phụ lục C). Bề dày của đệm dưới khi đóng cọc bê tông cốt thép phụ thuộc vào vật liệu đệm, tính năng kỹ thuật của búa, cọc, đặc điểm đất nền và xác định nhờ tính toán (xem Phụ lục C).

CHÚ DẪN:

- 1) Búa
- 2) Khoang trên
- 3) Giảm chấn trên
- 4) Vành trên
- 5) Vách ngang
- 6) Vành dưới
- 7) Giảm chấn dưới
- 8) Khoang dưới
- 9) Đai
- 10) Lỗ đục ở giảm chấn trên
- 11) Lõi hình chóp
- a) Búa điêzen kiểu ống
- b) Búa điêzen kiểu cần
- c) Búa hơi đơn động
- d) Để đóng cọc ống

Hình D.1- Cấu tạo mũ cọc

Phụ lục E

(Tham khảo)

Biểu ghi độ chối đóng cọc

Lần đ	o:								

Người đo:			Kỹ thuật Nhà thầu:							Tư vấn giám sát:					

Hình E.1- Biểu ghi độ chối cọc

Ví dụ: Biểu ghi độ chối cọc đóng tại nhà máy xi măng Nghi Sơn.

CHÚ DẪN: 1,2 là độ chối đàn hồi; 1,3 là độ chối dư

Hình E.2- Biểu ghi độ chối cọc tại nhà máy xi măng Nghi Sơn

THƯ MỤC TÀI LIỆU THAM KHẢO

1- TCXD 205:1998, Tiêu chuẩn thiết kế móng cọc.

MỤC LỤC

Lời nói đầu

- 1 Phạm vi áp dụng
- 2 Tài liệu viện dẫn
- 3 Thuật ngữ và định nghĩa
- 4 Quy định chung
- 5 Vật liệu cọc
- 6 Hạ cọc bằng búa đóng và búa rung
- 7 Hạ cọc bằng phương pháp ép tĩnh

8 Giám sát và nghiệm thu

9 An toàn lao động

Phụ lục A (tham khảo) Biên bản hạ cọc

Phụ lục B (Tham khảo) Hư hỏng cọc bê tông cốt thép khi đóng

Phụ lục c (Tham khảo) Xác định ứng suất động trong cọc BTCT khi đóng

Phụ lục D (Tham khảo) cấu tạo mũ cọc

Phụ lục E (Tham khảo) Biểu ghi độ chối đóng cọc

Thư mục tài liệu tham khảo