Lecture #11: Smooth functions that are strongly convex

Lecturer: Dabeen Lee

October 6, 2022

1 Outline

In this lecture, we study

- More properties of smooth and strongly convex functions,
- Convergence of gradient descent for functions that are smooth and strongly convex.

1.1 More properties of smooth and strongly convex functions

Another interesting result is that when f is smooth, we can measure the gap between the optimal value and f(x) for any given solution x. More precisely, we prove the following result.

Theorem 11.1. If $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth with respect to the ℓ_2 norm, then

$$\frac{1}{2\beta} \|\nabla f(x)\|_2^2 \le f(x) - f(x^*) \le \frac{\beta}{2} \|x - x^*\|_2^2 \quad \forall x \in \mathbb{R}^d$$

where x^* is an optimal solution to $\min_{x \in \mathbb{R}^d} f(x)$.

Proof. Let us prove the upper bound on $f(x) - f(x^*)$ first. As f is β -smooth, we have

$$f(x) \le f(x^*) + \nabla f(x^*)^{\top} (x - x^*) + \frac{\beta}{2} ||x - x^*||_2^2,$$

which implies the upper bound as $\nabla f(x^*) = 0$. For the lower bound, note that for any $y \in \mathbb{R}^d$,

$$f(x^*) \le f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{\beta}{2} ||y - x||_2^2.$$

Here, we can take $y = x - (1/\beta)\nabla f(x)$, which makes the right-most side

$$f(x) - \frac{1}{2\beta} \|\nabla f(x)\|_2^2$$
.

Then it follows that

$$f(x^*) \le f(x) - \frac{1}{2\beta} \|\nabla f(x)\|_2^2,$$

as required.

Based on Theorem 11.1, we can prove the following property of smooth functions.

Lemma 11.2. If $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth with respect to the ℓ_2 norm, then

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge \frac{1}{\beta} \|\nabla f(x) - \nabla f(y)\|_2^2$$

for any $x, y \in \mathbb{R}^d$.

Proof. Given $x, y \in \mathbb{R}^d$, we take the following two functions.

$$g(z) = f(z) - \nabla f(x)^{\top} z,$$

$$h(z) = f(z) - \nabla f(y)^{\top} z.$$

As $\nabla g(z) = \nabla f(z) - \nabla f(x)$ and $\nabla h(z) = \nabla f(z) - \nabla f(y)$, it follows that x and y minimize g and h, respectively. Moreover, g and h are both β -smooth. Note that

$$f(y) - f(x) - \nabla f(x)^{\top} (y - x) = g(y) - g(x)$$

$$\geq \frac{1}{2\beta} \|\nabla g(y)\|_{2}^{2}$$

$$= \frac{1}{2\beta} \|\nabla f(y) - \nabla f(x)\|_{2}^{2}.$$

Similarly, we have

$$\begin{split} f(x) - f(y) - \nabla f(y)^{\top}(x - y) &= h(x) - h(y) \\ &\geq \frac{1}{2\beta} \|\nabla h(x)\|_{2}^{2} \\ &= \frac{1}{2\beta} \|\nabla f(x) - \nabla f(y)\|_{2}^{2}. \end{split}$$

Adding these two inequalities, we obtain

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge \frac{1}{\beta} \|\nabla f(x) - \nabla f(y)\|_{2}^{2},$$

as required.

Theorem 11.3. If $f: \mathbb{R}^d \to \mathbb{R}$ is α -strongly convex with respect to the ℓ_2 norm, then

$$\frac{\alpha}{2} \|x - x^*\|_2^2 \le f(x) - f(x^*) \le \frac{1}{2\alpha} \|\nabla f(x)\|_2^2 \quad \forall x \in \mathbb{R}^d$$

where x^* is an optimal solution to $\min_{x \in \mathbb{R}^d} f(x)$.

Proof. Let us prove the lower bound on $f(x) - f(x^*)$ first. As f is α -strongly convex, we have

$$f(x) \ge f(x^*) + \nabla f(x^*)^{\top} (x - x^*) + \frac{\alpha}{2} ||x - x^*||_2^2,$$

which implies the lower bound as $\nabla f(x^*) = 0$. For the upper bound, note that

$$f(x^*) \ge f(x) + \nabla f(x)^{\top} (x^* - x) + \frac{\alpha}{2} ||x^* - x||_2^2$$

$$\ge \min_{y \in \mathbb{R}^d} f(x) + \nabla f(x)^{\top} (y - x) + \frac{\alpha}{2} ||y - x||_2^2.$$

The minimization term above is minimized when y satisfies $\nabla f(x) + \alpha(y-x) = 0$, which is equivalent to $y = x - (1/\alpha)\nabla f(x)$. Therefore,

$$f(x^*) \ge f(x) - \frac{1}{2\alpha} \|\nabla f(x)\|_2^2$$

as required.

Lemma 11.4. If $f: \mathbb{R}^d \to \mathbb{R}$ is α -strongly convex with respect to the ℓ_2 norm, then

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge \alpha ||x - y||_2^2$$

for any $x, y \in \mathbb{R}^d$.

Proof. As $g(x) = f(x) - (\alpha/2) ||x||_2^2$ is convex, the monotonicity of the gradient of g implies that

$$(\nabla g(x) - \nabla g(y))^{\top}(x - y) \ge 0$$

for any $x, y \in \mathbb{R}^d$. Note that $\nabla g(x) = \nabla f(x) - \alpha x$ and $\nabla g(y) = \nabla f(y) - \alpha y$, which implies that

$$(\nabla g(x) - \nabla g(y))^{\top}(x - y) = (\nabla f(x) - \nabla f(y))^{\top}(x - y) - \alpha ||x - y||_{2}^{2}.$$

Then we obtain $(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge \alpha ||x - y||_2^2$, as required.

1.2 Convergence result for smooth and strongly convex functions

When f is both smooth and strongly convex, f satisfies the following property.

Lemma 11.5. If $f : \mathbb{R}^d \to \mathbb{R}$ is β -smooth with respect to the ℓ_2 norm and $\beta \geq \alpha$, then $f(x) - (\alpha/2)||x||_2^2$ is $(\beta - \alpha)$ -smooth.

Proof. By Theorem ??, $f(x) - (\alpha/2) ||x||_2^2$ is $(\beta - \alpha)$ -smooth if and only if

$$\frac{\beta - \alpha}{2} \|x\|_2^2 - \left(f(x) - \frac{\alpha}{2} \|x\|_2^2\right) = \frac{\beta}{2} \|x\|_2^2 - f(x)$$

is convex. Then, again, Theorem ?? implies that $(\beta/2)||x||_2^2 - f(x)$ is convex if and only if f is β -smooth. Since f is β -smooth, it follows that $f(x) - (\alpha/2)||x||_2^2$ is $(\beta - \alpha)$ -smooth, as required. \square

Lemma 11.6. If $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth and α -strongly convex with respect to the ℓ_2 norm, then

$$(\nabla f(x) - \nabla f(y))^{\top} (x - y) \ge \frac{1}{\beta + \alpha} \|\nabla f(x) - \nabla f(y)\|_2^2 + \frac{\alpha \beta}{\beta + \alpha} \|x - y\|_2^2$$

for any $x, y \in \mathbb{R}^d$.

Proof. Since f is α -strongly convex, $f(x) - (\alpha/2)||x||_2^2$ is convex. Moreover, $f(x) - (\alpha/2)||x||_2^2$ is $(\beta - \alpha)$ -smooth by Lemma 11.5. Applying Lemma 11.2 to $f(x) - (\alpha/2)||x||_2^2$, it follows that

$$(\nabla f(x) - \nabla f(y))^{\top} (x - y) - \alpha \|x - y\|_{2}^{2}$$

$$\geq \frac{1}{\beta - \alpha} \|\nabla f(x) - \nabla f(y)\|_{2}^{2} - \frac{2\alpha}{\beta - \alpha} (\nabla f(x) - \nabla f(y))^{\top} (x - y) + \frac{\alpha^{2}}{\beta - \alpha} \|x - y\|_{2}^{2}.$$

This implies that

$$(\nabla f(x) - \nabla f(y))^{\top} (x - y) \ge \frac{1}{\beta + \alpha} \|\nabla f(x) - \nabla f(y)\|_2^2 + \frac{\alpha \beta}{\beta + \alpha} \|x - y\|_2^2,$$

as required. \Box

Theorem 11.7. Let $f: \mathbb{R}^d \to \mathbb{R}$ be β -smooth and α -strongly convex, and let $\{x_t: t = 1, \ldots, T+1\}$ be the sequence of iterates generated by gradient descent with sep size $\eta_t = 2/(\alpha + \beta)$ for each t. Then

$$f(x_{T+1}) - f(x^*) \le \frac{\beta}{2} \exp\left(-\frac{4T}{\kappa + 1}\right) \|x_1 - x^*\|_2^2$$

where x^* is an optimal solution to $\min_{x \in \mathbb{R}^d} f(x)$.

Proof. Let $\eta_t = \eta$ for each $t \geq 1$. Note that

$$||x_{t+1} - x^*||_2^2 = ||x_t - \eta \nabla f(x_t) - x^*||_2^2$$

$$= ||x_t - x^*||_2^2 - 2\eta \nabla f(x_t)^\top (x_t - x^*) + \eta^2 ||\nabla f(x_t)||_2^2$$

$$\leq ||x_t - x^*||_2^2 - \frac{2\eta}{\alpha + \beta} ||\nabla f(x_t)||_2^2 - \frac{2\eta\alpha\beta}{\alpha + \beta} ||x_t - x^*||_2^2 + \eta^2 ||\nabla f(x_t)||_2^2$$

$$= \left(1 - \frac{2\eta\alpha\beta}{\alpha + \beta}\right) ||x_t - x^*||_2^2 + \left(\eta^2 - \frac{2\eta}{\alpha + \beta}\right) ||\nabla f(x_t)||_2^2$$

where the inequality follows from Lemma 11.6. Setting $\eta = 2/(\alpha + \beta)$, we obtain

$$||x_{t+1} - x^*||_2^2 \le \left(\frac{\beta - \alpha}{\beta + \alpha}\right)^2 ||x_t - x^*||_2^2 = \left(\frac{\kappa - 1}{\kappa + 1}\right)^2 ||x_t - x^*||_2^2,$$

which implies that

$$||x_{t+1} - x^*||_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right) ||x_t - x^*||_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^t ||x_1 - x^*||_2.$$

Since f is β -smooth, we have

$$f(x_{t+1}) - f(x^*) \le \frac{\beta}{2} ||x_{t+1} - x^*||_2^2 \le \frac{\beta}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^t ||x_1 - x^*||_2.$$