

Capstone Project-2 Yes Bank Stock Closing Price Prediction

Team

Name: Web Crawlers

- Rajat Chaudhary
- Anukriti Shakyawar
- Raman Kumar
- Deepmala Srivastava

Content

- Introduction
- Data Description
- Analysis Methodology
- Feature Engineering
- Model Building
- Conclusion

Introduction

- Yes Bank Limited is an Indian Private Sector Bank headquartered in Mumbai, India, and was founded by Rana Kapoor and Ashok Kapoor in 2004. It offers a wide range of banking and financial products for corporate and retail customers through retail banking and asset management services.
- We used Regression Analysis to predict the future stock price of this company. Starting with linear regression, and then move on to Ridge Regression, Lasso Regression and Elastic Net Regression

Problem statement

This dataset has monthly stock prices of the bank since its inception and includes closing, starting, highest, and lowest stock prices of every month. The main objective is to predict the stock's closing price of the month.

Data Description

- a. Date: We will use it as an index.
- b. Open: opening price of the stock of a particular day.
- c. High: It's the highest price at which a stock traded during a period.
- d. Low: It's the lowest price at which stock traded during a period.
- e. Close: Closing price of a stock at the end of a trading day.

Analysis Methodology

- Data Cleaning
- Filtering
- Data visualization
- Data Transformation
- Modelling

EDA

Fig.1: Trend of Yes Bank Closing Price

Fig.2: Distribution of Closing Price

Fig.3: Distribution of the Close Price after log transformation

Fig.4: Distribution of High, Low & Open before and after log transformation

Fig.5: Correlation between Independent variables and Dependent variables

Correlation

Fig.6: HeatMap for correlation between variables

Model Building Linear Regression Model

Mean Squared Error: 0.008378716531125619

Root Mean Squared Error: 0.09153532941507131

R2: 0.9550214108859424

Adjusted R2: 0.9147774100996803

Fig.7: Actual closing price vs Predicted Price by Linear Regression

Ridge Regression Model

Mean Squared Error: 0.008847513525776934

Root Mean Squared Error: 0.09406122222136461

R2: 0.9525048169276678

Fig 8. Actual closing price vs Predicted Price by Ridge Regression

Lasso Regression Model

Mean Squared Error: 0.009376701436556797

Root Mean Squared Error: 0.09683336943717696

R2: 0.9496640327198869

Adjusted R2: 0.9046265883113646

Fig 9. Actual closing price vs predicted price by Lasso Regression

Elastic Net Regression

Mean Squared Error: 0.009096377849834535

Root Mean Squared Error: 0.09537493302663198

R2: 0.9511688645612937

Adjusted R2: 0.9074778486424512

Fig 10. Actual closing price vs predicted price by ElasticNet Regression

Fig 11. Actual closing price vs predicted by all algorithms

Conclusion

- Target Variable is strongly dependent on Independent Variables.
- Linear Regression and Lasso are performing better than other models with training accuracy 94.0359% and 94.45777% respectively.
- Apart from Linear Regression and Lasso, Ridge and Elastic Net are also performing better but they have less training accuracy.
- Ridge and ElasticNet are performing far much better after Applying Hyperparameter Tuning and Cross validation, it is because we have a small set of datasets.
- R2 and Adjusted R2 are around 95 and 91% in each model.