Language	MATLAB/Octave	Python	R	
Elementwise operations	a .* b	a * b or multiply(a,b)	a * b	1 5 9 16
Matrix product (dot product)	a * b	matrixmultiply(a,b)	a %*% b	$\begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$
Inner matrix vector multiplication $a \cdot b'$		inner(a,b) or		5 11 11 25
Outer product		outer(a,b) or	outer(a,b) or a %o% b	$ \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{bmatrix} $
Cross product			crossprod(a,b) or t(a) %*% b	$ \left[\begin{array}{cc} 10 & 14 \\ 14 & 20 \end{array}\right] $
Kronecker product	kron(a,b)	kron(a,b)	kronecker(a,b)	$\begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 4 & 6 & 8 \\ 3 & 6 & 4 & 8 \\ 9 & 12 & 12 & 16 \end{bmatrix}$
Left matrix division, $b^{-1} \cdot a$ (solve linear equations)	a / b a \ b	linalg.solve(a,b)	solve(a,b)	Ax = b
Vector dot product Cross product		vdot(a,b) cross(a,b)		