Operációs rendszerek BSc

7.gyak. 2021. 03. 24.

Készítette: Kovács Krisztián Programtervező informatikus WIQPM2 1. Adott négy processz a rendszerbe, melynek beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész.

Kezdetben mindegyik processz p_uspri = 60. Az A, B, C processz p_nice = 0, a D processz p_nice = 5. Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 201. óraütés-ig.

- a) Határozza meg az ütemezést RR nélkül és az ütemezést RR-nal külön-külön táblázatba.
- b) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.
- c) Igazolja a számítással a tanultak alapján.

	A pro	ocess	B pro	ocess	C pro	ocess	D pro	ocess	Resch	nedule		
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after	D p_nice:	
Starting point	60	0	60	0	60	0	60	0		A	KF	0,857143
1	60	1	60	0	60	0	60	0	A	A		
99	60	99	60	0	60	0	60	0	A	Α		
100	72	86	50	0	50	0	60	0	Α	В		
101	72	86	50	1	50	0	60	0	В	В		
199	72	86	50	99	50	0	60	0	В	В		
200	69	74	72	86	50	0	60	0	В	С		
201	69	74	72	86	50	1	60	0	С	С		

	A pro	ocess	B pro	ocess	C pr	ocess		D pro	ocess	Resche	edule				
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_	_uspri	p_cpu	running before	running after	D p_nice:	5		
Starting point	60	0	60	0	60)	0	60	0		A	KF	0,857143	(2*3)/(2*	3+1)
1	60	1	60	0	60)	0	60	0	A	Α				
												p_cpu:	p_cpu*KF		
9	60	9	60	0	60)	0	60	0	A	Α				
10	60	10	60	0	60)	0	60	0	A	В	p_uspri:		/4+2*p_ni	
11	60	10	60	1	60)	0	60	0	В	В		ahol a p_c újonnan k		
													ujonnan k	iszailloit.	
19	60	10	60	9	60)	0	60	0	В	В				
20	60	10	60	10	60)	0	60	0	В	С				
30	60	10	60	10	60) 1	LO	60	0	С	D				
40	60	10	60	10	60) 1	LO	60	10	D	Α				
50	60	20	60	10	60) 1	LO	60	10	A	В				
60	60	20	60	20	60) 1	LO	60	10	В	С				
70	60	20	60	20	60) 2	20	60	10	С	D				
80	60	20	60	20	60) 2	20	60	20	D	A			Aktivál	ia a l

8	60	20	60	20	60	20	60	20	D	A
9	60	30	60	20	60	20	60	20	Α	В
9	9 60	30	60	29	60	20	60	20	В	В
10	57	26	57	26	54	17	67	17	В	С
10	1 57	26	57	26	54	18	67	17	С	С
110	57	26	57	26	54	27	67	17	С	Α
12	57	36	57	26	54	27	67	17	Α	В
13	57	36	57	36	54	27	67	17	В	С
14	57	36	57	36	54	37	67	17	С	A

140	57	36	57	36	54	37	67	17	С	Α				
150	57	46	57	36	54	37	67	17	Α	В				
160	57	46	57	46	54	37	67	17	В	С				
170	57	46	57	46	54	47	67	17	C	Α				
180	57	56	57	46	54	47	67	17	Α	В				
190	57	56	57	56	54	47	67	17	В	С				
											Azért fut	a 100 óra	ütés után az	Α
199	57	56	57	56	54	56	67	17	C	С	B és C, mert az 54-57 prioritással rendelkező folyamatok azonos sorban vannak.		al	
200	62	48	62	48	62	49	64	15	С	D				
201	62	48	62	48	62	49	64	16	D	D				

- 2. A tanult rendszerhívásokkal (open(), read()/write(), close() ők fogják a rendszerhívásokat tovább hívni.) írjanak egy neptunkod_openclose.c programot, amely megnyit egy fájlt neptunkod.txt, tartalma: hallgató neve, szak , neptunkod. A program következő műveleteket végezze:
 - olvassa be a neptunkod.txt fájlt, melynek attribútuma: O_RDWR

```
WIQPM2.txt-Jegyzettömb

Fájl Szerkesztés Formátum Nézet Súgó

Kovacs Krisztian Programtervezo informatikus WIQPM2

fd=open("WIQPM2.txt", O_RDWR);

close(fd);
```

Először is létrehoztam a .txt fájlt, aminek a tartalma: név, szak, neptunkód. A fájl megnyitását az open() rendszerhívás végzi, melynek 2 atribútuma van: fájl elérési útja, és mire nyissuk meg: olvasás, írás, vagy olvasás és írás. Jelen esetben az utolsó van.

• hiba ellenőrzést,

```
if (fd == -1) {
    perror("open() hiba!");
    exit(-1);
}
```

Ha a fájlt nem sikerült megnyitni valamilyen oknál fogva, akkor az open visszatérési értéke -1. Ilyenkor a program kiiírja a hibát és leáll. Például ha egy nem létező fájlt adunk meg (esetleg hibás az elérési út), akkor a "No such file or directory" hibaüzenetet kapjuk.

• read() - kiolvassa a neptunkod.txt tartalmát és mennyit olvasott ki (byte), és kiírja konzolra.

```
ret=read(fd, buf, 64);
printf("read() olvasott %d byteot, ami a kovetkezo: %s\n", ret, buf);
```

A karaktertömbbe eltároljuk a read() által beolvasott szöveget. read() paraméterei: fájl, tárolásra kijelölt változó, hány byte-ot olvasson ki a fájlból. Látható, hogy jelenleg 64 byte-ot olvas.

• lseek() – pozícionálja a fájl kurzor helyét, ez legyen a fájl eleje: SEEK_SET, és kiírja a konzolra.

```
ret=lseek(fd, 0, SEEK_SET);
printf("lseek() mondia: %d\n", ret);
```

Beolvasás után a fájlban a kurzor a 64 byte után található, ami jelenleg a fájl vége. Az lseek() rendszerhívással ezt módosíthatjuk. Paraméterei: fájl, hány byte-al tolja el, a kurzor mozgatását mihez képest számoljuk(0, SEEK_SET-fájl eleje, 1, SEEK_CUR-kurzor jelenlegi pozíciója, 2, SEEK_END-fájl vége),

• write() - mennyit ír ki a konzolra.

```
strcpy(buf, "WIQPM2");
```

```
ret=write(fd, buf, 6);
printf("write() mondja: %d\n", ret);
```

A fájlba ír a write() rendszerhívás. Három paramétere van, melyek a következők: fájl, melyik változót írja a fájlba, annak hány byte-át. Látható, hogy a változó értékét lecseréltük a Neptun kódra, ezért az kerül az első hat byte-ra a fájlban.

```
read() olvasott 51 byteot, ami a kovetkezo: Kovacs Krisztian Programtervezo informatikus WIQPM2
lseek() mondja: 0
write() mondja: 6
Process returned 0 (0x0) execution time : 0.109 s
Press any key to continue.
```

