Intro DS - Group Assignment 2

Albin Åberg Dahlberg, Emil Wormbs, Folke Hilding, Oscar Boman, Sofia Alfsson

December 27, 2023

1 Prove Collorary 3.7

Similarly to the proof of Theorem 3.6, we do not assume anything about the sign of X and denote $S_n = \sum_{i=1}^n X_i$ and let s, t > 0, where $t = n\epsilon$ for some $\epsilon > 0$

$$P(\overline{X}_n - \mathbb{E}[\overline{X}_n] \le -\epsilon)$$

$$= P(S_n - \mathbb{E}[S_n] \le -t)$$

$$= P(-(S_n - \mathbb{E}[S_n]) \ge t)$$

$$= P(e^{-s(S_n - \mathbb{E}[S_n])} \ge e^{st}),$$

which with Markov's inequality yields

$$P(e^{-s(S_n - \mathbb{E}[S_n])} \ge e^{st}) \le e^{-st} \mathbb{E}[e^{-s(S_n - \mathbb{E}[S_n])}]$$
$$= e^{-st} \prod_{i=1}^n \mathbb{E}[e^{-s(X_i - \mathbb{E}[X_i])}].$$

Following the proof of Theorem 3.6, using Hoeffdings lemma for $\lambda = s$ for each term in the product we get

$$= e^{-st} \prod_{i=1}^{n} \mathbb{E}[e^{-s(X_i - \mathbb{E}[X_i])}] \le e^{-st} e^{(-s)^2 (b-a)^2 n/8}$$
$$= e^{-st} e^{s^2 (b-a)^2 n/8}.$$

This is the exact same setting as in the proof of Theorem 3.6, as such it follows that

$$P(\overline{X}_n - \mathbb{E}[\overline{X}_n] \le -\epsilon) \le e^{-\frac{2n\epsilon^2}{(b-a)^2}}.$$

Furthermore, using Boole's inequality for the positive and negative deviations, we get

$$\begin{split} &P(\left|\overline{X}_n - \mathbb{E}[\overline{X}_n]\right| \geq \epsilon) \\ &= P(\overline{X}_n - \mathbb{E}[\overline{X}_n] \leq -\epsilon) \cup P(\overline{X}_n - \mathbb{E}[\overline{X}_n] \geq \epsilon) \\ &\leq P(\overline{X}_n - \mathbb{E}[\overline{X}_n] \leq -\epsilon) + P(\overline{X}_n - \mathbb{E}[\overline{X}_n] \geq \epsilon) \\ &\leq e^{-\frac{2n\epsilon^2}{(b-a)^2}} + e^{-\frac{2n\epsilon^2}{(b-a)^2}} = 2e^{-\frac{2n\epsilon^2}{(b-a)^2}}. \end{split}$$

2 Prove Lemma 3.15, properties 1-4.

2.1 Property 1

Let X be a sub-Gaussian RV with parameter λ , then αX is sub-Gaussian with parameter $|\alpha|\lambda$.

Answer: By definition 3.11, X is said to be sub-Gaussian with parameter λ if:

$$\mathbb{E}[e^{s(X-\mathbb{E}(X))}] \le e^{\frac{s^2\lambda^2}{2}} \text{for all s}$$

Inserting αX yields:

$$\mathbb{E}[e^{s(\alpha X - \mathbb{E}(\alpha X))}] = \mathbb{E}[e^{s\alpha(X - \mathbb{E}(X))}] \longrightarrow \mathbb{E}[e^{\alpha s(X - \mathbb{E}(X))}] \le e^{\frac{(\alpha s)^2 \lambda^2}{2}}$$

 $(\alpha s)^2 \lambda^2 = \alpha^2 s^2 \lambda^2 \longrightarrow |\alpha|^2 s^2 \lambda^2$. Therefore the parameter $\lambda_{\alpha} = |\alpha| \lambda$, proving the property.

2.2 Property 2

Let X be a sub-exponential RV with parameter λ , then αX is sub-Gaussian with parameter $|\alpha|\lambda$.

Answer: By definition 3.12, X is said to be sub-exponential with parameter λ if:

$$\mathbb{E}[e^{s(X-\mathbb{E}(X))}] \le e^{\frac{s^2\lambda^2}{2}} \text{ for all } |s| \le \frac{1}{\lambda}$$

Inserting αX yields:

$$\mathbb{E}[e^{s(\alpha X - \mathbb{E}(\alpha X)}] = \mathbb{E}[e^{s\alpha(X - \mathbb{E}(X)}] \longrightarrow \mathbb{E}[e^{\alpha s(X - \mathbb{E}(X)}] < e^{\frac{(\alpha s)^2 \lambda^2}{2}}$$

 $(\alpha s)^2 \lambda^2 = \alpha^2 s^2 \lambda^2 \longrightarrow |\alpha|^2 s^2 \lambda^2$. As the parameter $\lambda_{\alpha} = \alpha \lambda$ needs to fulfill the property of $|s| \leq \frac{1}{\lambda_{\alpha}}$, $\lambda_{\alpha} = |\alpha|\lambda$, proving the property.

2.3 Property 3

A sub-Gaussian RV X with parameter λ is sub-Exponential with parameter λ . Answer: We want to show that a sub-Gaussian random variable X with parameter λ is also sub-Exponential with parameter λ . The definition for a sub-Gaussian RV with parameter λ :

$$\mathbb{E}[e^{s(X-\mathbb{E}[X])}] \leq e^{\frac{s^2\lambda^2}{2}}, s \in \mathbb{R}$$

Since sub-Gaussian RV is defined for all values of $s \in \mathbb{R}$ it comes with heavy restrictions on the RV. On the other hand, the definitions for a sub-exponential RV with parameter λ is:

$$\mathbb{E}[e^{s(X-\mathbb{E}[X])}] \leq e^{\frac{s^2\lambda^2}{2}}, |s| \leq \frac{1}{\lambda}$$

Since the sub-exponential RV is defined for a stricter interval of s it's restrictions for an RV is lighter in comparison with the sub-Gaussian RV, which means a sub-Gaussian RV \in sub-exponential RV. This also means that the decay for a sub-exponential RV can be slower than for a sub-Gaussian.

2.4 Property 4

A bounded RV X, i.e. $\mathbb{P}(X \in [a,b]) = 1$, then X is sub-Gaussian with parameter (b-a)/2. Specifically a Bernoulli RV is sub-Gaussian with parameter 1/2

Answer: A bounded RV confined by Hoeffding's Lemma

$$\mathbb{E}\left[e^{s(X-\mathbb{E}[X])}\right] \le e^{\frac{s^2(b-a)^2}{8}}.$$

Using the definition of a sub-Gaussian RV,

$$\mathbb{E}[e^{s(X-\mathbb{E}[X])}] \le e^{\frac{s^2\lambda^2}{2}}, s \in \mathbb{R},$$

we can put these definitions equal to each other, where λ is the parameter of the sub-Gaussian,

$$e^{\frac{s^2\lambda^2}{2}} = e^{\frac{s^2(b-a)^2}{8}}$$

Solving for λ yields

$$\frac{\lambda^2}{2} = \frac{(b-a)^2}{8}$$
$$\lambda^2 = \frac{(b-a)^2}{4}$$
$$\lambda = \frac{b-a}{2}.$$

Thus, a bounded RV is sub-Gaussian. Furthermore, inserting the Bernoulli bounds [0,1] yields the sub-Gaussian parameter

$$\lambda = 1/2$$

3 Solve Exercise 3.16

For the Poisson distribution, we have

$$\mathbb{E}[e^{sX}] = e^{\lambda(e^s - 1)}$$

is this sub-Gaussian, sub-exponential or neither?

Answer: We can expand on the expression for the Poisson distribution. Since $\mathbb{E}[X]$ is a fixed number, i.e. non-random, we can multiply the expression for the

Poisson as

$$\mathbb{E}\left[e^{sX}\right] = e^{\lambda(e^s - 1)}$$

$$\iff \mathbb{E}\left[e^{sX}\right] e^{-s\mathbb{E}[X]} = e^{\lambda(e^s - 1)} e^{-s\mathbb{E}[X]}$$

$$\iff \mathbb{E}\left[e^{s(X - \mathbb{E}[X])}\right] = e^{\lambda(e^s - 1)} e^{-s\mathbb{E}[X]}$$

$$= e^{\lambda(e^s - 1) - s\mathbb{E}[X]}.$$

Since $\mathbb{E}[X] = \lambda$ for a poisson distribution;

$$e^{\lambda(e^s - 1) - s\mathbb{E}[X]} = e^{\lambda(e^s - 1 - s)} \tag{1}$$

To determine if the distribution is sub-Gaussian, we need to determine if it fulfills the following condition, with a \mathbb{R} -valued random variable X and parameter σ .

$$\mathbb{E}[e^{s(X-\mathbb{E}[X])}] \leq e^{\frac{s^2\sigma^2}{2}} \text{ for all } s.$$

To verify the inequality of the exponents from $e^{\lambda(e^s-1-s)}$ and $e^{\frac{s^2\sigma^2}{2}}$, we use L'Hopital's rule.

$$\frac{\lim\limits_{s\to\infty}\frac{s^2\sigma^2}{2}}{\lim\limits_{s\to\infty}\lambda(e^s-1-s)} = \frac{\lim\limits_{s\to\infty}\frac{d^2}{ds^2}\frac{s^2\sigma^2}{2}}{\lim\limits_{s\to\infty}\frac{d^2}{ds^2}\lambda(e^s-1-s)} = \lim\limits_{s\to\infty}\frac{\sigma^2}{\lambda e^s} = 0 \tag{2}$$

for all $\lambda, \omega > 0$. Thus, $\lambda(e^s - 1 - s) > \frac{s^2 \sigma^2}{2}$ violating the inequality. However, the sub-exponential bound is weaker, so we need to test that as well.

In order for the Poisson distribution to be sub-exponential, it needs to fulfill the following condition, with a \mathbb{R} -valued random variable X and parameter σ :

$$\mathbb{E}[e^{s(x-\mathbb{E}[X])}] \le e^{\frac{s^2\sigma^2}{2}} \text{ for all } |s| \le \frac{1}{\sigma}.$$

This yields an upper bound of;

$$e^{\lambda(e^s - 1 - s)} \le e^{\frac{s^2 \sigma^2}{2}} \le e^{\frac{(\frac{1}{\sigma})^2 \sigma^2}{2}} = e^{1/2}$$
 (3)

To check if the bound holds, we need to investigate if there exists a solution to $\lambda(e^s - 1 - s) \leq 1/2$.

$$\lambda(e^s - 1 - s) \le 1/2 \iff e^s - 1 - s \le \frac{1}{2\lambda} \tag{4}$$

Expand e^s as the value of the Taylor series $e^s=1+s+\frac{s^2}{2!}+...$;

$$e^{s} - 1 - s = \frac{s^{2}}{2!} + \frac{s^{3}}{3!} + \dots$$
 (5)

$$\lim_{\lambda, s \to 0} e^s - 1 - s \le \frac{1}{2\lambda} \tag{6}$$

as $\lambda, s \to 0$ we can see that the left hand side approaches 0, while the right hand side approaches ∞ . Thus there exist a solution where $\lambda(e^s - 1 - s) \le 1/2$, where thereby the poisson-distribution is sub-exponential.

4 Solve Exercise 4.7

A reasonable statistical model for the pattern recognition problem is the family of discrete distributions

$$\mathbb{F} = \left\{ F_{Y,X}(y,x) = F_{Y|X}(y,x)F_X(x), F_{Y|X} \text{ is discrete} \right\}.$$

5 Prove Theorem 4.9 with all details, basically referring to all the properties of the indicator function used, the monotonicity of measures etc

For any decision function q(x) taking values in $\{0,1\}$, we have

$$R(h^*) \le R(g)$$

Proof: With the definition of risk and iterated expectation, i.e. the tower property, R(g) can be expressed as as

$$R(g) = \mathbb{E}\left[L(Y, g(X))\right] = \mathbb{E}\left[\mathbb{E}\left[L(Y, g(X))|X = X\right]\right].$$

Now we look at the inner part of the expectation. The inner expectation can be interpreted as the probability of an incorrect classification given an X. By the definition 0-1 loss function, this expectation can be expressed with an indicator function, which in turn can be expressed in terms of its complement

$$\mathbb{E}\left[L(Y,g(X))|X=x\right] = \mathbb{E}\left[\mathbbm{1}_{\{y\neq q(x)\}}|X=x\right] = 1 - \mathbb{E}\left[\mathbbm{1}_{\{y=q(x)\}}|X=x\right].$$

We can decompose the indicator function. Note that y and g(x) take values in $\{0,1\}$, so the two possible events are disjoint. Thus, we'll write the indicator function as the union of all possible combinations of correct classifications, that is, y = g(x) = 1 or y = g(x) = 0.

$$\begin{split} &1 - \mathbb{E} \left[\mathbbm{1}_{\{y = g(x)\}} | X = x \right] \\ &= 1 - \mathbb{E} \left[\mathbbm{1}_{\{g(x) = 1\}} \mathbbm{1}_{\{y = 1\}} + \mathbbm{1}_{\{g(x) = 0\}} \mathbbm{1}_{\{y = 0\}} | X = x \right] \\ &= 1 - \mathbb{E} \left[\mathbbm{1}_{\{g(x) = 1\}} \mathbbm{1}_{\{y = 1\}} | X = x \right] - \mathbb{E} \left[\mathbbm{1}_{\{g(x) = 0\}} \mathbbm{1}_{\{y = 0\}} | X = x \right]. \end{split}$$

Since these are conditional expectations, we can extract all factors dependent on x.

$$1 - \mathbb{1}_{\{g(x)=1\}} \mathbb{E} \left[\mathbb{1}_{\{y=1\}} | X = x \right] - \mathbb{1}_{\{g(x)=0\}} \mathbb{E} \left[\mathbb{1}_{\{y=0\}} | X = x \right].$$

From the definition of the regression setting of a classification problem with two possible events, we get

$$\mathbb{E}\left[\mathbb{1}_{\{y=1\}}|X=x\right] = P(Y=1|X=x) = \mathbb{E}\left[Y|X=x\right] = r(x).$$

Thus we can replace the expectations from the previous expression

$$1 - \mathbb{1}_{\{g(x)=1\}} r(x) - \mathbb{1}_{\{g(x)=0\}} (1 - r(x)).$$

As a checkpoint, we emphasize that we now see that

$$R(g) = 1 - \mathbb{1}_{\{q(x)=1\}} r(x) - \mathbb{1}_{\{q(x)=0\}} (1 - r(x)) \quad (\star)$$

Now we want to see that Bayes classification rule h^* actually optimizes the pattern recognition problem

$$R(h^*) \le R(g)$$

$$\iff R(g) - R(h^*) \ge 0.$$

With (\star) we can rewrite the left-hand expression to

$$\begin{split} &1 - \mathbbm{1}_{\{g(x)=1\}} r(x) - \mathbbm{1}_{\{g(x)=0\}} (1-r(x)) - \left(1 - \mathbbm{1}_{\{h^*(x)=1\}} r(x) - \mathbbm{1}_{\{h^*(x)=0\}} (1-r(x))\right) \\ &= - \mathbbm{1}_{\{g(x)=1\}} r(x) - \mathbbm{1}_{\{g(x)=0\}} (1-r(x)) + \mathbbm{1}_{\{h^*(x)=1\}} r(x) + \mathbbm{1}_{\{h^*(x)=0\}} (1-r(x)) \\ &= r(x) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) - (1-r(x)) \left(\mathbbm{1}_{\{h^*(x)=0\}} - \mathbbm{1}_{\{g(x)=0\}}\right). \end{split}$$

The complement of the indicator function of any decision function f(x) can be written as

$$\mathbb{1}_{\{f(x)=0\}} = 1 - \mathbb{1}_{\{f(x)=1\}},$$

this gives us

$$\begin{split} & r(x) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) - (1-r(x)) \left(1-\mathbbm{1}_{\{h^*(x)=1\}} - 1+\mathbbm{1}_{\{g(x)=1\}}\right) \\ &= r(x) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) - (1-r(x)) \left(-\mathbbm{1}_{\{h^*(x)=1\}} + \mathbbm{1}_{\{g(x)=1\}}\right) \\ &= r(x) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) + (1-r(x)) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) \\ &= r(x) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) + (1-r(x)) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) \\ &= (2r(x)-1) \left(\mathbbm{1}_{\{h^*(x)=1\}} - \mathbbm{1}_{\{g(x)=1\}}\right) \geq 0. \end{split}$$

We check this by inspecting what happens when $r(x) > \frac{1}{2}$ and $r(x) \le \frac{1}{2}$. For $r(x) > \frac{1}{2} \to h^*(x) = 1$ we get

$$\begin{split} &(2r(x)-1)>0\\ &\mathbb{1}_{\{h^*(x)=1\}}=1\\ &\mathbb{1}_{\{g(x)=1\}}\in\{0,1\}\\ &\left(\mathbb{1}_{\{h^*(x)=1\}}-\mathbb{1}_{\{g(x)=1\}}\right)\in\{0,1\} \end{split}$$

which means that

$$(2r(x) - 1) \left(\mathbb{1}_{\{h^*(x) = 1\}} - \mathbb{1}_{\{g(x) = 1\}} \right) \ge 0$$

For
$$r(x) \le \frac{1}{2} \to h^*(x) = 0$$
 yields

$$\begin{aligned} &(2r(x) - 1) \le 0 \\ &\mathbb{1}_{\{h^*(x) = 1\}} = 0 \\ &\mathbb{1}_{\{g(x) = 1\}} \in \{0, 1\} \\ &\left(\mathbb{1}_{\{h^*(x) = 1\}} - \mathbb{1}_{\{g(x) = 1\}}\right) \in \{0, -1\} \end{aligned}$$

which means that

$$(2r(x)-1)\left(\mathbb{1}_{\{h^*(x)=1\}}-\mathbb{1}_{\{g(x)=1\}}\right)\geq 0$$

As such, the theorem is proven.