

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, மார்ச் - 2020

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education Northern Province Term Examination, March - 2020

தரம் :- 13 (2020)		பௌத்கவியல்		புள்ளித்திட்டம்						
				பகுதி	I					
1)	4	11)	3	21)	2		31)	4	41)	2
2)	4	12)	1	22)	3		32)	2	42)	2
3)	2	13)	4	23)	5		33)	1	43)	4
4)	4	14)	3	24)	3		34)	5	44)	3
5)	1	15)	3	25)	4		35)	5	45)	1
6)	3	16)	2	26)	2		36)	3	46)	3
7)	4	17)	4	27)	2		37)	3	47)	4
8)	4	18)	4	28)	5		38)	2	48)	3
9)	1	19)	5	29)	1.		39)	5	49)	3
10)	3	20)	2	30)	2		40)	1	50)	2

1

தரம் - 13 (2020) – மார்ச் - 2020 F.W.C

பௌதிகவியல் புள்ளித்திட்டம்

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, மார்ச் - 2020

Conducted by Field Work Centre, Thondalmanaru In Collaboration with Provincial Department of Education Northern Province Term Examination, March - 2020

Grade - 13 (2020)

Physics

Marking Scheme

வடமாகாணக் கல்வித் தினைக்களத்துடன் இனைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவனைப் பரீட்சை, மார்ச் - 2020

Conducted by Field Work Centre, Thondalmanaru In Collaboration with Provincial Department of Education Northern Province Term Examination, March - 2020

Grade -	13 (2020)	Physics	Marking Scheme
	the weight of The f	partly or fully immersed in weight experienced by the laid dis proceed by the	
'	Determination of big: - Determination of big: - Determining HTE p - Hot-air-balloon - Hydrometer - Swim bladder in	unity of gold.	For any two 02
6) 4) (e)	$W_1 = 321.29$ $W_2 = 256.49$ $\frac{P_{\text{strine}}}{P_{\text{totaley}}} = \frac{W_1}{W_1 - W_2}$		
(t)	Pumpa 321.2- W3 = 272.20	256.4 64.8	02 02
, h)	Puzzter Wi-		(02)
i)	Punglar = 321.2	$\frac{2-272.2}{2-256.4} = \frac{49.0}{64.8} = 0$	756 ~ 0.76
1)) The cerrors due to:	(i) weight of the thread: (ii) absorption of water by the reading.	te stone will change The
		1	DTAL MARKS (20)
02, 4)	Mass of air Temperature of	air	<u>⊕</u> 02
ь)	Clarata	emperature at constant valu	e,

v) Not possible The pressure excerted by the mercury thread

will be small. By changing the inclination of the tube, the readings obtained for the length of air colourn will not have wider range of values.

i) X = resistance box, because its values to be known	(0)
ii) $F = kl_0$ $IR = kl_0$ $I = \frac{kl}{R+1}$ $= \frac{1}{R+1}$ $log R = l(R+1)$ One mark for each equation	64)
$\frac{1}{1} = \frac{1}{1} \cdot \frac{1}{1} + \frac{1}{10}$ $\frac{1}{1} = \frac{1}{10} \cdot \frac{1}{10} + \frac{1}{10}$	@
y) (i) \(
TOTAL MARKS	20
Puvolog TIQ	
$\frac{PHYSICS IIB}{3} = \frac{3}{18 \times 10^{3}} = 3 \times 10^{3} = \frac{0}{3}$	②
Mark against Bleauth = 1.5×10 N x D.3×10m	O
= S.6XD J	
ii)Work against friction = 5:0x10 N x 4.930 m	
	O
Minimum power = total work done	- ①
3.6×10 + 2.4×10	- O
2 - 12	(1)
= 2.0x10 W.	_
b)) Resultant force down the plane = 1.2×10× 0.3 -5.0×10	
- 62.5N	
Acceleration = $\frac{62.5}{1.2\times10^3} = \frac{2}{2}$	0
& 2.5×10 W3	
$V^{2} = \eta^{2} + 20S \qquad \qquad 2$ $= D + 2 \times 5 \cdot 2 \times 10 \times 6 \cdot 4 \times 10$	① (1)
2 665 6 (Mg')	(I)
V = 1665 6 125.8 mg	O
iii) Frictional force = weight component down the plane = 1.2x10 x grid	_
= 562·6N	O

- d j) of =(51.25 50.80)kHz = 0.45kHz = 450Hz V = \(\frac{C}{2f}\)
 - 2f = 340×450 = 2×50.60 = 1506 m ?
- e) i) $f = \frac{1}{1}$
 - = 2 Hz (i)
 ii) The amplitude of the oscillation decreases with time (ii)
 - ii) Force on each wheel spring = TEOON
 - $k = \frac{F}{x}$ (0)
 - 12 x 10 m (0)
 - IV) The frequency of the periodical driving force must be equal to the natural frequency of the braing object '

 V) 110 km = 110x10 m

 60 x60s
 - $= 30.56 \text{ m}^{\frac{1}{3}}$ $\sqrt{100} = \sqrt{100}$ $\sqrt{100} = \sqrt{100}$ $\sqrt{100} = \sqrt{100}$
 - 30.56 ms -
 - = 15.28 m (0)

 ... Distance between crests = 15,28 m (0)

 Amorbitude

(01

(2) i) Forodays law of electromagnetic in duction (statement) ii) Lenz's law (Statement) (2) iii) Total number of magnetic flux Dines passing Through a gricen area at right-angle to the surface. (2 IV) Normal fleu per und area. (2) V. (9) Magnetie Plus density (b) The speed of the conductor One mark each B (c) Ite number of furns VI When a conductor passes through a magnetic Field or when it is test in a varying magnetic Field, Those will be induced cyclic currents in the anductor, these currents are called eddy ourrents. VI. - Vehicle's speadovnetor - Magnetic Revitation trains - Brake system - Electric saw/drill for emorgoney shuttoff For any two from - Concer freatment this or any other -Induction welding two (one mork each) (2 (2 2m дw 21 Induced e.m. fin closed circuit 0 = 2x2x1 = 4V } The mark 2

(i)) P= Y2	(1)
$-1.8 = \frac{V^2}{P} = \frac{(12)}{6} = 24.0$	-0
2) I = E R+Y	
= <u>24</u> \$\frac{9}{8} +24	-0
= 24 = 0.6A	$ \bigcirc$
3) The power supplied to the circuit = flevroupphial by livell. Power discip-	dal in
= GI - I,L	9
= 24x0.6-0.36x9	-0
11) Mr. Como Though (1 11) P	_(I)
ii) The arrent through L, (bulb) = P	
= 6	(2)
	_
2) As the fam totates, a back e.m.f. is included in the fam's of Hence, the current is rectuded.	
3) I = E-e e=back e.m.?	- ①
0.5 = 24 - 6	0
e = 4v	1
d) . Hill 1-11 = 12V	\odot
€= 12V Y=8s.	
8 cells	0
09 B Total Marks (30)

9	/	CUP		. (
型、	A	В	F	A	
	0	0	0	0	Г
	1	0	0	1	
	0	1	0	0	

	N	от	
	A	F	
	0	1	
	ı	0	-[3]
I			

N. i. obnovino più blive o se guy.

- II. ഇസ്സിധർ, ഇവതിഞ്ഞഥ O്ൽവണ ഥിര ഉച്ചാദ്വ
- m. மிரைச்சங்களினால் பிழிகும் பாதிக்கப்படுவுதில்மை.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 1 0 1 -0	
0 1 0 0	
1 0 0 1 -0	
1 0 1 1 -0	
1 1 0 1 -0	
1 1 1 1 — 0	

5

$$x = \overline{PQR} + \overline{PQR}$$

(R+R)=1

3) 17.5×10 ×1260×10×0·25 = \frac{m_1}{8767} \times 125 \times \times \frac{125 \times \times \times \times \frac{125 \times \times \times \frac{125 \times \times \times \times \frac{125 \times \times \times \times \times \times \frac{125 \times \times \times \times \times \frac{125 \times \times \times \times \times \times \times \frac{125 \times \times \times \times \times \times \times \times \frac{125 \times \ti	5500° 4
1 10 50 x 100 = 160	5
M z 10.55 ×10 g	
. Present R.H = mixing.	
$= \frac{4.4 \times 6}{10.56 \times 10} \times 100),$	(2)
=25%	
OR.	
lat The partial pressure of the water valorour	at 20°C be= P
$P \times 1 = \frac{4.4}{18} \times \frac{8.31 \times 293}{13600 \times 10 \times 10^3}$	2)
P = 4.376 mmHg	- U (5)
· Present R.H= 4.376 x100%	
~ 25/s	0
2111 - 21	2/2
5) I) Whom the process is shouly carried out, the of the system will remain constant.	temp.extue
· · DU = 0	677
1) Whan the process is respiritly carried out called adverteric process. Therefore DB Whom volume decreases DWCO DU; thema The temperature of the system will	>0
James College	
	TOTAL (30)

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

