## The two-category case:

d-dimensional feature vector.



- 1. begin intralize a, 7(·), t ←0
- 2. do K < K+1
- 3.  $\alpha \leftarrow \alpha + \eta(k) \geq y$
- 4. until 1 m(k) \( \St \) set of samples mis desofied by a(k).
- 5- geturn a
- 6. end n(K) = y | wty >0.

Batch perceptron:

The next weight vector is obtained by adding some multiple of the sum of the misclessified samples  $\eta(k) * \Sigma y$  to the present weight vector  $a \leftarrow a + \eta(k) * \Sigma y$ 

a(o) = Thitial weight near, artitrary  $a(k+1) = a(k) + \eta(k), \quad \sum y$   $\forall y \text{ misclassified.}$ 

(or)

## exits different variant that is easier to analyze.

\* we shall consider the samples in a sequence and shall modify the weight vector whenever it mis classifies a single sample,

& n(K) - constant => fixed - increment case. n(8) = 1 with no loss in generality.

\* The second simplification, when the samples are consided sequentially, some will be misclassified, J, y2, y3, y1, y2, y3, y1, y2

> a (0) - arbitrary a(k+1) = a(k) +2yk K=1 7年1.

Agenthm (Fixed-Increment Single-Sample Perception)

- 1. begin Initialize a, K = 0
- 2. do K (R+1) mad n
- a(k) a(k+) eat 1+y k It yk is misdessified by and then a fatyk 3, (auth) 200K
- 4. centil all samples properly classified
- S. return a
- 6. end

| Description of | f the pa | reterns. | Example. | Perceptron learning |
|----------------|----------|----------|----------|---------------------|
| Pattern no     |          | 2        | Class    | Algorithm.          |
| ×1             | 0-5      | 3.0      | ×,1~     | 7                   |
| 962            | 1        | 3.0      | x, 1     | The same of         |
| 9C3.           | 0-5      | 2-5      | x, 1     |                     |
| 24.            | 1        | 2.5      | X11      | w                   |
| 965.           | 1.5      | 2.5      | x 1 )    |                     |
| x6.            | 4-5      | 1        | 0,27     |                     |
| 27.            | 5        | 1        | 0,2      |                     |
| 28-            | 4.5      | 0-5      | 0,2      | wz                  |
| 29-            | 5.5      | 0.5      | 0,2      |                     |
|                |          |          |          |                     |

|            |      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |         |                   |
|------------|------|---------------------------------------|------|---------|-------------------|
| Pattern no | 2001 | - 2                                   | 3    |         | Walter C.         |
| 24         | -0.5 | -3.0                                  | -1 ) | puls.   | nt the vector and |
| 22         | -1   | -3.0                                  | -1   | -       | x 2               |
| 23         | -0.5 | -2.5                                  | 7 -1 | W2 -    | -11               |
| Xq         | -1   | -21.5                                 | -1   |         | A. 13.            |
| 25         | -1.5 | -2.5                                  | -1   | 7-8-6   |                   |
| 26         | 4.5  | 1                                     | 1 )  | · ·     | t the nector      |
| 29         | 5    | 1/ 1                                  | 1    | cend no | gatesite          |
| X8         | 4.5  | 0.5                                   | 1    | W X     | 8                 |
| ag         | 5-5  | 0-5                                   | 1    |         |                   |

1. 
$$w_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and  $\alpha_1 \begin{pmatrix} -0.5 \\ -3.0 \\ -1 \end{pmatrix}$ 

here  $w_1^{\dagger} \approx_1 = 0$  so  $w_2 = w_1 + \alpha_1$  which is represented by

$$\omega_2 = \omega_1 + \alpha_1$$

$$= \begin{pmatrix} -0.5 \\ -3 \\ -1 \end{pmatrix}$$

2. nent ne cavoider pattern ocz. wz ocz

$$(-0.5 - 3 - 1)$$
  $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$  = 10.5 > 0

963, 264 & ocs are also properly classified.

$$(-0.5 -3 -1)$$
  $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.5)$   $(-0.$ 

$$(-0.5 -3 -1)/-1$$
 $(-0.5 -3 -1)/-1$ 
 $(-1.5)$ 
 $= 9$ 

$$(-1.5)$$
 =  $(-1.5)$  =  $(-2.5)$ 

$$(-0.5 - 3 - 1)$$
  $(4.5)$  =  $-6.25$ 

so appeals weight nector

$$\omega l_3 = \omega_2 + 2l_6$$

$$= \begin{pmatrix} -0.5 \\ -3 \\ -1 \end{pmatrix} \begin{pmatrix} 4.5 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$$

note that we classifies patterns 27,26, 29, and in the nent iteration 21,22,213 2214 correctly.

$$w_3^{t} > 07 = (4 - 2 0) \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} = 18$$

$$w_3 \times 8 = (4 - 2 0) \begin{pmatrix} 4.5 \\ 0.5 \end{pmatrix} = 17$$

$$w_{3}^{t} = (4 - 2 0) \begin{pmatrix} 5-5 \\ 0.5 \end{pmatrix} = 21$$

$$w_3 \approx (4 - 2 0) \left( -0.5 \right) = 4$$

$$w_{s}^{t} \chi_{2} = (4 - 2 0) (-1) = 2$$

$$w_3^{t} x_3 = (4 - 2 0) (-0.5) = 3$$

$$w_3 \times A_4 = (4 -2 0) \begin{pmatrix} -1 \\ -2.5 \end{pmatrix} = 1$$

4. However X5 is mis classified by w3. note that w3 x5 is -1

$$w_3^{t} = (4 - 2 0) \begin{pmatrix} -1.5 \\ -2.5 \end{pmatrix} = -1$$

So, update weight vector w== w3+265.

$$\omega_4 = \begin{pmatrix} 4 \\ -2 \end{pmatrix} + \begin{pmatrix} -1.5 \\ -2.5 \end{pmatrix} = \begin{pmatrix} 2.5 \\ -4.5 \\ -1 \end{pmatrix}$$

WA classifies patterns 26, 27, 28, 29, 21, 22, 23, 24 & 25

Correctly. 2.5 - 4.5 - 1 (4.5) = 5.75 (4.5) = 5.75

$$w_{4}^{t} x_{7} = \begin{pmatrix} 2^{15} - 4^{5} - 1 \\ 4^{12} & 8 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} = 7$$

$$w_4$$
  $x_5 = (4 - 20)(-1.5) = 8.5$ 

So  $w_4$  is the desired vector. (a) In other words  $2.5 \times 1-4.5 \times 2-1=0$  is the equation of the decision boundary. Equivalently, the line separating the two classes is  $5 \times 1-9 \times 2-2=0$ ;  $w_1=5$ ;  $w_2=-9$ ;  $w_0=-2$