

Customer No.: 31561
Application No.: 10/711,509
Docket No.: 12405-US-PA-0P

AMENDMENT

Please amend the application as indicated hereafter.

To the Claims

Claim 1. (currently amended) A manufacturing method of a thin film transistor (TFT), comprising:

forming a gate over a substrate;

forming an inter-gate dielectric layer over the substrate covering the gate;

forming a channel layer over a portion of the inter-gate dielectric layer at least over the gate, wherein the channel layer is a lightly doped amorphous silicon layer, and the step of forming the channel layer comprises:

forming a first lightly doped sub-amorphous silicon layer over the portion of the inter-gate dielectric layer at a first deposition rate; and

forming a second lightly doped sub-amorphous silicon layer over the first lightly doped sub-amorphous silicon layer at a second deposition rate; and

forming source/drain regions over the channel layer, wherein the source/drain regions are separated by a distance, ~~and the lightly doped amorphous silicon layer between the source region and the drain region is a channel region.~~

Claim 2. (original) The manufacturing method of claim 1, wherein the channel layer comprises an N-type lightly doped amorphous silicon layer.

Claim 3. (original) The manufacturing method of claim 1, wherein the channel layer comprises a P-type lightly doped amorphous silicon layer.

Customer No.: 31561
Application No.: 10/711,509
Docket No.: 12405-US-PA-OP

Claim 4. (original) The manufacturing method of claim 1, wherein the channel layer is doped with phosphorous atoms, and a concentration of phosphorous atoms is in a range of about 1E17 atom/cm³ to about 1E18 atom/cm³.

Claim 5. (original) The manufacturing method of claim 1, wherein the channel layer is doped with boron atoms, and a concentration of boron atoms is in a range of about 1E16 atom/cm³ to about 5E17 atom/cm³.

Claim 6. (original) The manufacturing method of claim 1, wherein the step of forming the channel layer comprises performing a chemical vapor deposition (CVD) process using a reaction gas mixture comprising silane (SiH₄), hydrogen (H₂) and phosphine (PH₃), wherein an effective content ratio of the phosphine (PH₃) is in a range of about 2.8E-7 to about 8E-6, and wherein the effective content ratio of the phosphine (PH₃) is equal to the ratio of the content of phosphine (PH₃) to the total content of silane (SiH₄), hydrogen (H₂) and phosphine (PH₃).

Claim 7. (original) The manufacturing method of claim 1, wherein the step of forming the channel layer comprises performing a chemical vapor deposition (CVD) process using a reaction gas mixture comprising silane (SiH₄), hydrogen (H₂) and boroethane (B₂H₆), wherein an effective content ratio of the boroethane (B₂H₆) is in a range of about 5E-7 to about 1E-5, and wherein the effective content ratio of the boroethane (B₂H₆) is equal to the ratio of the content of boroethane (B₂H₆) to the total content of silane (SiH₄), hydrogen (H₂) and boroethane (B₂H₆).

Claim 8. (cancelled)

Claim 9 (cancelled)

Customer No.: 31561
Application No.: 10/711,509
Docket No.: 12405-US-PA-OP

Claim 10. (original) The manufacturing method of claim 1, further comprising a step of forming a protection layer over the substrate after the step of forming the source/drain regions covering the source/drain regions, the channel layer and the inter-gate dielectric layer.

Claims 11-18 (cancelled)

Claim 19 (currently amended) A manufacturing method of a thin film transistor (TFT), comprising:

forming a gate over a substrate;
forming an inter-gate dielectric layer over the substrate covering the gate;
forming a channel layer over a portion of the inter-gate dielectric layer at least over the gate, wherein the channel layer comprises a lightly doped amorphous silicon layer and the step of forming the channel layer comprises:
forming a first lightly doped sub-amorphous silicon layer over the portion of the inter-gate dielectric layer at a first deposition rate; and
forming a second lightly doped sub-amorphous silicon layer over the first lightly doped sub-amorphous silicon layer at a second deposition rate;
forming an ohmic contact layer over the channel layer; and
forming source/drain regions over the channel layer, wherein the source/drain regions are separated by a distance, ~~and the lightly doped amorphous silicon layer between the source region and the drain region is a channel region.~~

Claim 20. (previously presented) The manufacturing method of claim 19, wherein the channel layer comprises an N-type lightly doped amorphous silicon layer.

Customer No.: 31561
Application No.: 10/711,509
Docket No.: 12405-US-PA-0P

Claim 21. (previously presented) The manufacturing method of claim 19, wherein the channel layer comprises a P-type lightly doped amorphous silicon layer.

Claim 22. (previously presented) The manufacturing method of claim 19, wherein the channel layer is doped with phosphorous atoms, and a concentration of phosphorous atoms is in a range of about 1E17 atom/cm³ to about 1E18atom/cm³.

Claim 23. (previously presented) The manufacturing method of claim 19, wherein the channel layer is doped with boron atoms, and a concentration of boron atoms is in a range of about 1E16 atom/cm³ to about 5E17 atom/cm³.

Claim 24. (previously presented) The manufacturing method of claim 19, further comprising a step of forming a protection layer over the substrate after the step of forming the source/drain regions covering the source/drain regions, the channel layer and the inter-gate dielectric layer.

Claim 25. (cancelled)

Claim 26. (previously presented) The manufacturing method of claim 19, wherein the step of forming the channel layer comprises performing a chemical vapor deposition (CVD) process using a reaction gas mixture comprising silane (SiH₄), hydrogen (H₂) and phosphine (PH₃), wherein a effective content ratio of the phosphine (PH₃) is in a range of about 2.8E-7 to about 8E-6, and wherein the effective content ratio of the phosphine (PH₃) is equal to the ratio of the content of phosphine (PH₃) to the total content of silane (SiH₄), hydrogen (H₂) and phosphine (PH₃).

Claim 27. (previously presented) The manufacturing method of claim 19, wherein the step of forming the channel layer comprises performing a chemical vapor deposition

Customer No.: 31561
Application No.: 10/711,509
Docket No.: 12405-US-PA-0P

(CVD) process using a reaction gas mixture comprising silane (SiH_4), hydrogen (H_2) and boroethane (B_2H_6), wherein a effective content ratio of the boroethane (B_2H_6) is in a range of about 5E-7 to about 1E-5, and whercin the effective content ratio of the boroethane (B_2H_6) is equal to the ratio of the content of boroethane (B_2H_6) to the total content of silane (SiH_4), hydrogen (H_2) and boroethane (B_2H_6).