Astro 507; Problem Set 4

Tom Wagg

March 5, 2022

1. Impossible Astronomy 1a. Dense Planet

Let's operate under the assumption that the planet is made entirely from a single element. The density of the planet is

$$\rho = \frac{M}{\frac{4}{3}\pi R^3} = \frac{3M_{\text{jup}}}{\frac{4}{3}\pi R_{\text{earth}}^3}$$

$$\rho = 5239 \,\text{g cm}^{-3}$$
(2)

$$\rho = 5239 \,\mathrm{g \, cm^{-3}}$$
 (2)

However, we know that the density of iron is $\rho_{\rm iron} \approx 8\,{\rm g\,cm^{-3}}$. Therefore, the planet is much more dense than iron. Since iron is the densest common element that could make up this planet, that means that it must be impossible.

1b. Cold planet

Looking at the plot on Slide 9 of Lecture 12, we see that in the low temperature limit, for a planet with mass $3M_{\text{jup}}$, the maximum possible radius is $R_{\text{max}} = R_{\text{jup}}$. Therefore the radius of $5M_{\text{jup}}$ is not possible.

1c. Overgrown Neutron Star

We showed in class that the absolute upper bound on the mass of a neutron star is $2.9\,\mathrm{M}_\odot$ based on the setting that the sound speed must be less that the speed of light. Therefore, a neutron star of mass $4 \,\mathrm{M}_{\odot}$ cannot possibly exist.

1d. Overgrown White Dwarf

The maximum white dwarf mass is the Chandrasekhar mass, $M_{\rm ch} = 1.44 \, \rm M_{\rm lodot}$. So twice the mass of the sun is not possible.

1e. Chilly White Dwarf

Using the white dwarf cooling relation and that the age of the high- α disc is around 12 Gyr, we know that the coolest white dwarf that can exist is around 1500 K. Therefore this white dwarf is too cold and hasn't had enough time to cool.

1f. Baby black hole

If the black hole is a stellar remnant then it must have collapsed in on itself and overcome both electron and neutron degeneracy pressure. Since the "black hole" is less than the mass of the sun, it is below the Chandrasekhar mass and so couldn't have overcome this pressure.