Percentil, Quartil e Boxplot

Gilberto Pereira Sassi

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Estatística

30 de maio de 2016

1/13

Percentil

O percentil de ordem $p \cdot 100$ (0 $) é o valor que ocupa a posição <math>p \cdot (n+1)$ dos dados ordenados.

Notação:

- q(p) é o percentil de ordem p · 100;
- se p = 0,25, chamamos o percentil de primeiro quartil e usamos a notação matemática Q₁;
- se p=0,25, chamamos o percentil de segundo quartil ou mediana e usamos a notação matemática Q_2 ou md
- se p=0,75, chamamos o percentil de terceiro quartil e usamos a notação matemática Q_3

Considere a população nos 20 maiores municípios brasileiros em 1996 mostrados na Tabela 1. Calcule o primeiro, o segundo, o terceiro quartil, o intervalo interquartil.

Tabela 1: Vinte maiores cidades do Brasil em 1996 em 10.000 habitantes.

Município	População			
São Paulo(SP)	988,8	<i>x</i> (20)		
Rio de Janeiro(RJ)	556,9	x(19)		
Salvador(BA)	224,6	x(18)		
Belo Horizonte(MG)	210,9	x(17)		
Fortaleza(CE)	201,5	x(16)		
Brasília(DF)	187,7	x(15)		
Curitiba(PR)	151,6	x(14)		
Recife(PE)	135,8	x(13)		
Porto Alegre(RS)	129,8	x(12)		
Manaus(AM)	119,4	x(11)		
Belém(PA)	116,0	x(10)		
Goiânia(GO)	102,3	x(9)		
Guarulhos(SP)	101,8	x(8)		
Campinas(SP)	92,4	x(7)		
São Gonçalo(RJ)	84,7	x(6)		
Nova Iguaçu(RJ)	83,9	x(5)		
São Luis(MA)	80,2	x(4)		
Maceió(AL)	74,7	x(3)		
Duque de Caxias(RJ)	72,7	x(2)		
São Bernardo do Campo(SP)	68,4	x(1)		

3 / 13

posição: $0,25 \cdot (20+1) = 5,25$. Então Quartil

$$Q_1 = \frac{X_{(5)} + X_{(6)}}{2} = \frac{83,9 + 84,7}{2} = 84,3$$

2° **Quartil** posição: $0, 5 \cdot (20 + 1) = 10, 5$. Então,

$$Q_2 = \frac{x_{(10)} + x_{(11)}}{2} = \frac{116 + 119, 4}{2} = 117, 7$$

posição: $0,75 \cdot (20 + 1) = 15,75$. Então, 3° Quartil

$$Q_3 = \frac{x_{(15)} + x_{(16)}}{2} = \frac{187, 7 + 201, 5}{2} = 194, 6$$

Boxplot

A informação obtida pelo $1^\circ, 2^\circ$ e 3° quartil podem ser ser traduzidos graficamente num diagrama chamado de Boxplot.

Figura 1: Boxplot

Boxplot - continuação

em que

• $LS = Q_3 + 1.5 \cdot (Q_3 - Q_1)$ é o limite superior;

• $LI = Q_1 - 1, 5 \cdot (Q_3 - Q_1)$ é o limite inferior;

• Chamamos um valor entre LI e LS de valor adjacente;

• Chamamos um valor maior que *LS* ou menor que *LI* de ponto exterior, que pode possivelmente é um valor atípico.

Figura 2: Boxplot para as 20 maiores cidades brasileiras.

São Paulo

Considere as notas para as três turmas da Estatística Básica mostradas na Tabela. Calcule o primeiro, segundo, terceiro quartis e desenhe o Boxplot para as três turmas.

Tabela 2: Notas em ordem crescente para as três turmas de Estatística Básica.

Turma	Notas							
	<i>X</i> ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	X ₍₆₎	<i>X</i> ₍₇₎	X ₍₈₎
Α	4	5	5	6	6	7	7	8
В	1	2	4	6	6	9	10	10
С	0	6	7	7	7	7	8	

8/13

Turma A 1° **Quartil** posição 0, 25 · (8 + 1) = 2, 25. Então,
$$Q_1 = \frac{x_{(2)} + x_{(3)}}{2} = \frac{5+5}{2} = 5;$$

2° **Quartil** posição
$$0, 5 \cdot (8+1) = 4, 5$$
. Então, $Q_2 = \frac{x_{(5)} + x_{(5)}}{2} = \frac{6+6}{2} = 6$;

3° **Quartil** posição
$$0,75 \cdot (8+1) = 6,75$$
. Então, $Q_3 = \frac{x_{(6)} + x_{(7)}}{2} = \frac{7+7}{2} = 7$.

Turma B 1° Quartil posição
$$0, 25 \cdot (8+1) = 2, 25$$
. Então, $Q_1 = \frac{x_{(2)} + x_{(3)}}{2} = \frac{2+4}{2} = 3$;

2° **Quartil** posição
$$0, 5 \cdot (8+1) = 4, 5$$
. Então, $Q_2 = \frac{x_{(5)} + x_{(5)}}{2} = \frac{6+6}{2} = 6$;

3° **Quartil** posição 0, 75 · (8 + 1) = 6, 75. Então,
$$Q_3 = \frac{x_{(6)} + x_{(7)}}{2} = \frac{9 + 10}{2} = 9, 5.$$

Turma C 1° Quartil posição
$$0, 25 \cdot (8+1) = 2, 25$$
. Então, $Q_1 = \frac{x_{(2)} + x_{(3)}}{2} = \frac{2+4}{2} = 3$;

2° **Quartil** posição
$$0, 5 \cdot (8+1) = 4, 5$$
. Então, $Q_2 = \frac{x_{(5)} + x_{(5)}}{2} = \frac{6+6}{2} = 6$;

3° Quartil posição
$$0,75 \cdot (8+1) = 6,75$$
. Então, $Q_3 = \frac{\chi_{(6)} + \chi_{(7)}}{2} = \frac{9+10}{2} = 9,5$.

Figura 3: Turma A

Figura 4: Turma B

Figura 5: Turma C

Boxplot para as três turmas.

Considere as notas finais de uma estatística com 12 alunos.

Tabela 3: Notas finais dos 12 alunos.

<i>X</i> ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	X ₍₆₎	X ₍₇₎	X ₍₈₎	X ₍₉₎	X ₍₁₀₎	X ₍₁₁₎	X ₍₁₂₎
0	3.35	3.41	3.83	3.98	4.08	4.19	4.55	5	5.55	5.84	10

1° **Quartil** posição
$$0, 25 \cdot (12+1) = 3, 25$$
. Então, $Q_1 = \frac{x_{(3)} + x_{(4)}}{2} = \frac{3,41+3,83}{2} = 3,62$;

2° **Quartil** posição
$$0, 5 \cdot (12+1) = 7, 5$$
. Então, $Q_2 = \frac{x_{(7)} + x_{(8)}}{2} = \frac{4,19+4,55}{2} = 4,37$;

$$3^{\circ} \; \textbf{Quartil} \qquad \qquad \text{posição } 0,75 \cdot (12+1) = 9,75. \; \text{Então, } Q_2 = \frac{x_{(9)} + x_{(10)}}{2} = \frac{5 + 5,55}{2} = 5,275;$$

Limite Superior
$$LS = Q_3 + 1, 5(Q_3 - Q_1) = 5,275 + 1,5 \cdot 1,655 = 7,7575;$$

Limite Inferior
$$LI = Q_1 - 1, 5(Q_3 - Q_1) = 3,62 - 1,5 \cdot 1,655 = 1,1375.$$

Figura 6: Boxplot para a turma de Estatística Básica.

