111-2 數位邏輯設計實習 HW 4

班級: 電子三丙 學號: 109360781 姓名: 呂靖樑

實驗目的

學習如何操作七段顯示器,並使用七段解碼器正確驅動。

實驗原理

 $a = \overline{D3 * D2 * D1} * D0 + D2 * \overline{D0}$

 $b = D2 * \overline{D1} * D0 + D2 * D1 * \overline{D0}$

 $c = \overline{D2} * D1 * \overline{D0}$

 $d = D2 * \overline{D1 * D0} + D2 * D1 * D0 + \overline{D2 * D1} * D0$

 $e = D0 + D2 * \overline{D1}$

 $f = \overline{D3 * D2} * D0 + D1 * D0 + \overline{D2} * D1$

 $g = \overline{D3 * D2 * D1} + D2 * D1 * D0$

設計程序

Flow Status	Successful - Fri Mar 17 13:52:35 2023
Quartus Prime Version	20.1.1 Build 720 11/11/2020 SJ Lite Edition
Revision Name	hw4
Top-level Entity Name	seven
Family	Cyclone V
Device	5CSXFC6D6F31C6
Timing Models	Final
Logic utilization (in ALMs)	N/A
Total registers	0
Total pins	11
Total virtual pins	0
Total block memory bits	0
Total DSP Blocks	0
Total HSSI RX PCSs	0
Total HSSI PMA RX Deserializers	0
Total HSSI TX PCSs	0
Total HSSI PMA TX Serializers	0
Total PLLs	0
Total DLLs	0

模擬結果

成果詳細討論說明

在這次的實習中,我第一次使用到七段顯示器和四個按鈕。由於按鈕也是共陽的,所以一開始無法正確地讀取輸入信號,不過在加入四個 not 閘後,這個問題迎刃而解。通過這次實作,我熟悉了七段顯示器的運作原理,而且未來期末專題感覺有機會用到七段顯示器。

實驗目的

使用卡諾圖將原先的七段解碼器擴充字母輸出(A, b, C, d, E, F)。

實驗原理

	D3	D2	D1	D0	a	b	С	d	е	f	g
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	1	1	0	0	1	1	1	1
2	0	0	1	0	0	0	1	0	0	1	0
3	0	0	1	1	0	0	1	1	0	0	0
4	0	1	0	0	1	0	0	1	1	0	0
5	0	1	0	1	0	1	0	0	1	0	0
6	0	1	1	0	1	1	0	0	0	0	0
7	0	1	1	1	0	0	0	1	1	1	1
8	1	0	0	0	0	0	0	0	0	0	0
9	1	0	0	1	0	0	0	1	1	0	0
Α	1	0	1	0	0	0	0	1	0	0	0
В	1	0	1	1	1	1	0	0	0	0	0
С	1	1	0	0	0	1	1	0	0	0	1
d	1	1	0	1	1	0	0	0	0	1	0
Е	1	1	1	0	0	1	1	0	0	0	0
f	1	1	1	1	0	1	1	1	0	0	0

Successful - Fri Mar 17 15:10:42 2023

設計程序

Flow Status

Quartus Prime Version	20.1.1 Build 720 11/11/2020 SJ Lite Edition
Revision Name	hw4
Top-level Entity Name	seven
Family	Cyclone V
Device	5CSXFC6D6F31C6
Timing Models	Final
Logic utilization (in ALMs)	4 / 41,910 (< 1 %)
Total registers	0
Total pins	11 / 499 (2 %)
Total virtual pins	0
Total block memory bits	0 / 5,662,720 (0 %)
Total DSP Blocks	0 / 112 (0 %)
Total HSSI RX PCSs	0/9(0%)

0/9(0%)

0/9(0%)

0/15(0%)

0/4(0%)

Total HSSI PMA RX Deserializers 0 / 9 (0 %)

Total HSSI TX PCSs

Total PLLs

Total DLLs

Total HSSI PMA TX Serializers

燒錄結果

成果詳細討論說明

當進行解碼器的 gate level 設計時,我發現這個過程非常複雜,需要花費很多時間在畫卡諾圖、設計邏輯閘、以及拉線等步驟。我還是早點學習 Verilog 程式語言。學會 Verilog 就不必手動進行諸如邏輯閘設計等瑣碎的步驟,這使得整個過程更加簡單。

實驗目的

將原本的七段解碼器加入二位元交叉開關,控制七段顯示輸出為b和e相反。

實驗原理

$$a = \overline{D3 * D2 * D1} * D0 + D2 * \overline{D0}$$

$$b = (D2 * \overline{D1} * D0 + D2 * D1 * \overline{D0}) * \overline{S} + (D0 + D2 * \overline{D1}) * S$$

$$c = \overline{D2} * D1 * \overline{D0}$$

$$d = D2 * \overline{D1 * D0} + D2 * D1 * D0 + \overline{D2 * D1} * D0$$

$$e = (D0 + D2 * \overline{D1}) * \overline{S} + (D2 * \overline{D1} * D0 + D2 * D1 * \overline{D0}) * S$$

$$f = \overline{D3 * D2} * D0 + D1 * D0 + \overline{D2} * D1$$

$$g = \overline{D3 * D2 * D1} + D2 * D1 * D0$$

設計程序

Flow Status	Successful - Fri Mar 17 15:25:08 2023
Quartus Prime Version	20.1.1 Build 720 11/11/2020 SJ Lite Edition
Revision Name	hw4
Top-level Entity Name	hw4
Family	Cyclone V
Device	5CSXFC6D6F31C6
Timing Models	Final
Logic utilization (in ALMs)	4 / 41,910 (< 1 %)
Total registers	0
Total pins	12 / 499 (2 %)
Total virtual pins	0
Total block memory bits	0 / 5,662,720 (0 %)
Total DSP Blocks	0 / 112 (0 %)
Total HSSI RX PCSs	0/9(0%)
Total HSSI PMA RX Deserializers	0/9(0%)
Total HSSI TX PCSs	0/9(0%)
Total HSSI PMA TX Serializers	0/9(0%)
Total PLLs	0 / 15 (0 %)
Total DLLs	0 / 4 (0 %)

燒錄結果

(S=0)

(S=1)

成果詳細討論說明

在這次的實驗中,我將原先的電路進行了升級,加入了兩個二對一多工器和一個 Select,透過這些元件的控制,我可以實現七段顯示器輸出 b 和 e 相反的功能。這周我進一步了解了多工器的應用和運作原理,並且掌握了如何將多個元件進行整合以實現更複雜的功能。