Problem Set 7 Algebra III

Bennett Rennier bennett@brennier.com

Ex 1. Show that the natural group homomorphism $\phi: \mathbb{R}^* \to (\mathbb{R}/J(\mathbb{R}))^*$ is surjective.

Proof. Let x + J(R) be an invertible element of R/J(R). This means there is a y + J(R) such that

$$(y + J(R))(x + J(R)) = yx + J(R) = 1 + J(R).$$

This proves that $1-yx \in J(R)$. Switching the order of multiplication, we also see that $1-xy \in J(R)$.

Since 1-yx is in the Jacobson ideal, we know that 1-(1-yx)=yx invertible. Thus, there is a $r \in R$ such that r(yx)=1. This means that x has a left inverse. We can apply the same reasoning to 1-xy to conclude that x also has a right inverse. By uniqueness, these inverses must coincide and thus $x \in R^*$. This proves that $\phi(x)=x+J(R)$. Since x+J(R) was arbitrary, we have that ϕ is surjective.

Ex 2. Let k be a field of characteristic 3 and consider the standard representation $\rho: S_3 \to \mathrm{GL}_3(k)$. Prove that this representation is not completely reducible.

Proof. Suppose that ρ was completely reducible. This would mean that k^3 can be written as the direct sum of S_3 -invariant subspaces. That is, $k^3 = U \oplus V$. Without loss of generality, we may assume that $\dim(U) = 1$ and $\dim(V) = 2$.

Let $(x,y,z) \in U$ be a non-zero vector. Since U is S_3 -invariant, this means that all permutations of (x,y,z) also lie in U, and since U is 1-dimensional, it must be that all of these permutations are scalar multiples of (x,y,z). I claim that it must be that x=y=z and so U must be the subspace $\{(x,x,x):x\in k\}$. To prove this, assume without loss of generality that $x\neq 0$ (we can use a permutation to make this the case). Transposing the second and third coordinate, we have that $(x,y,z)=\alpha(x,z,y)$. Since $x=\alpha x$ and $x\neq 0$, it must be that $\alpha=1$ and so y=z. Transposing the first and second coordinate we have that $(x,y,z)=\beta(y,x,z)$. As $z=\beta z$, either $\beta=1$, giving us that x=y=z, or z=0 in which case y=0 as well and $x=\beta y=0$, a contradiction. Thus, it must be that x=y=z and so $U=\{(x,x,x):x\in k\}$.

We note that the subspace $W = \{(x,y,z) : x+y+z=0\}$ is also invariant under permutations and that for $(x,x,x) \in k^3$, x+x+x=3x=0 (as we are in characteristic zero), proving that $U \subseteq W$. Since W is of dimension 2, it must be that $W \cap V$ is not trivial. If $W \cap V$ is two-dimensional, then W = V. This is a contradiction, though, as $U \subseteq W$, so U + W cannot be a direct sum. This means that $W \cap V$ must be 1-dimensional. Since W and V are both S_3 -invariant, so is their intersection. By the previous paragrah though, U is the only 1-dimensional S_3 -invariant space, so $W \cap V = U$. However, this implies that $V \cap U \neq \emptyset$, contradicting U + V being a direct sum. Thus, we have that ρ cannot be completely reducible.

Ex 3.

- a) If G is a finite abelian group, show that any irreducible real representation of G is of degree 1 or 2.
- b) If G is cyclic of finite order n > 2, construct an irreducible real representation of G of degree 2.
- c) If G is of order 2, is there an irreducible real representation of G of degree 2?

Proof.

- a) Finding a irreducible real representation of G is equivalent to finding a simple $\mathbb{R}[G]$ -module. By Maschke's Theorem, since G is finite and \mathbb{R} has characteristic zero, we know that $\mathbb{R}[G]$ is semisimple. Thus, from Artin-Weddenburn, we know that $\mathbb{R}[G]$ is isomorphic to $\bigoplus_{i \leq k} M_{n_i}(D_i)$ for some \mathbb{R} -division algebras D_i . Since $\mathbb{R}[G]$ is commutative, though, it must be that $n_i = 1$ for all $i \leq k$ and that the \mathbb{R} -division algebras D_i are really fields. Since the only fields over \mathbb{R} are \mathbb{R} and \mathbb{C} , we have that $\mathbb{R}[G]$ can be decomposed as the direct sum of copies of \mathbb{R} and \mathbb{C} . Since every simple $\mathbb{R}[G]$ -module appears in this decomposition, we have that every simple $\mathbb{R}[G]$ -module is isomorphic to either \mathbb{R} or \mathbb{C} . Since these have dimension 1 and 2 respectively (over the field \mathbb{R}), any irreducible real representation of G is of degree 1 or 2.
- b) Consider the map $f: \mathbb{Z} \to \mathrm{GL}_2(\mathbb{R})$ given by sending 1 to the matrix

$$\begin{bmatrix} \cos(2\pi/n) & -\sin(2\pi/n) \\ \sin(2\pi/n) & \cos(2\pi/n) \end{bmatrix}.$$

Since this matrix is a rotation by $2\pi/n$, it has order n. This means that $\ker(f) = n\mathbb{Z}$ and so we have a real representation $\rho: \mathbb{Z}/n\mathbb{Z} \to \mathrm{GL}_2(\mathbb{R})$. This representation is irreducible as we can see that there are no subspaces of \mathbb{R}^2 that are invariant under this action of rotation.

c) Let e and x be the elements of the cyclic group \mathbb{Z}_2 . Consider the map $f: \mathbb{R} \oplus \mathbb{R} \to \mathbb{R}[\mathbb{Z}_2]$ given by $f(a,b) = \frac{a+b}{2}e + \frac{a-b}{2}x$. Since f(1,0) = e + x and f(0,1) = e - x is a basis of $\mathbb{R}[\mathbb{Z}_2]$, we see that this map is a an isomorphism of vector spaces. Additionally, as

$$f(a,b)f(c,d) = \left(\frac{a+b}{2}e + \frac{a-b}{2}x\right) \left(\frac{c+d}{2}e + \frac{c-d}{2}x\right)$$

$$= \frac{(a+b)(c+d) + (a-b)(c-d)}{4}e + \frac{(a+b)(c-d) + (a-b)(c+d)}{4}x$$

$$= \frac{ac+bd}{2}e + \frac{ac-bd}{2}x = f(ac,bd) = f((a,b)(c,d)),$$

this proves that $\mathbb{R}[\mathbb{Z}_2] \simeq \mathbb{R} \oplus \mathbb{R}$ as rings. By the uniqueness of Artin-Weddenburn, we have that all simple $\mathbb{R}[\mathbb{Z}_2]$ -modules are isomorphic to \mathbb{R} , meaning that all irreducible real representations of \mathbb{Z}_2 must be of degree 1.

Ex 4. Let G be either D_8 or Q_8 .

- a) Show that for any field k with $\operatorname{char}(k) \neq 2$, G admits four inequivalent representations of degree 1.
- b) Show that G admits a complex irreducible representation of degree 2.
- c) Determine the structure of $\mathbb{C}[G]$.

Proof.

a) We note that if $G = D_8 = \langle r, s \mid r^4 = s^2 = (sr)^2 = 1 \rangle$, then there are three index 2 subgroups: $\{1, r, r^2, r^3\}, \{1, r^2, s, sr^2\}, \text{ and } \{1, r^2, sr, sr^3\}$. Similarly, if $G = Q_8 = \{-1, i, j, k : (-1)^2 = 1, i^2 = j^2 = k^2 = ijk = -1\}$, then there are also three index 2 subgroups, namely $\{1, -1, i, -i\}, \{1, -1, j, -j\}, \text{ and } \{1, -1, k, -k\}.$

Knowing this, let H_1, H_2, H_3 be the index two subgroups of G. Let $\rho_i : G \to M_1(k) \simeq k$ be the representation where ρ_i sends elements of H_i to 1 and sends elements not in H_i to -1 (this is well-defined because the subgroups are index two).

If ρ_1 and ρ_2 were equivalent, then there would be a vector space isomorphism $f: \mathbb{R} \to \mathbb{R}$ such that $f \circ \rho_1(g) = \rho_2(g) \circ f$ for all $g \in G$. But the only such f are $f(x) = \alpha x$ for some $\alpha \in \mathbb{R}^{\times}$. If we let $g \in H_1 \setminus H_2$, then $f \circ \rho_1(g) = f \circ \text{const}_1 = \text{const}_{\alpha}$ and $\rho_2(g) \circ f = \text{const}_0 \circ f = 0$. This proves that $\alpha = 0$, a contradiction. Thus, ρ_1 and ρ_2 are inequivalent. The same reasoning can be applied to show that ρ_1, ρ_2, ρ_3 , and the trivial representation are all inequivalent representations of degree 1.

b) We can represent D_8 as $\phi: D_8 \to M_2(\mathbb{C})$ where

$$r \mapsto \begin{bmatrix} \cos(2\pi/4) & -\sin(2\pi/4) \\ \sin(2\pi/4) & \cos(2\pi/4) \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad ; \quad s \mapsto \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

and we can represent Q_8 as $\psi: Q_8 \to M_2(\mathbb{C})$ where

$$1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad ; \quad i \mapsto \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \quad ; \quad j \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad ; \quad k \mapsto \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}.$$

We observe that these are indeed representations as $\phi(r)^4 = \phi(s)^2 = \phi(sr)^2 = 1$ and that $\psi(-1)^2 = \psi(1)$ and $\psi(i)^2 = \psi(j)^2 = \psi(k)^2 = \psi(ijk) = \psi(-1)$.

c) As |G| = 8 and \mathbb{C} has characteristic zero, by Maschke's Theorem, $\mathbb{C}[G]$ is semi-simple. Thus, from Artin-Weddenburn, we get that $\mathbb{C}[G] \simeq \bigoplus_{i \leq k} M_{n_i}(D_i)$ where D_i is a \mathbb{C} -division algebra. Since \mathbb{C} is algebraically closed, we know that $D_i = \mathbb{C}$ for every $i \leq k$. We also know that

$$8 = \dim(\mathbb{C}[G]) = \sum_{i \le k} \dim(M_{n_i}(\mathbb{C})) = \sum_{i \le k} n_i^2.$$

Additionally, each of these simple $\mathbb{C}[G]$ modules correspond to an irreducible representation. Since there are four representations of G of degree 1 and one representation of G of degree 2, it must be that

$$\mathbb{C}[G] = M_2(\mathbb{C}) \oplus \mathbb{C}^4.$$

Ex 5.

- a) Show that D_8 admits a real irreducible representation of degree 2.
- b) Show that Q_8 admits a real irreducible representation of degree 4.
- c) Determine $\mathbb{R}[D_8]$ and $\mathbb{R}[Q_8]$ and show that they are not isomorphic as rings.

Proof.

a) The representation given in Exercise 4b works over \mathbb{R} as well.

b) We can represent Q_8 as $\rho: Q_8 \to M_4(\mathbb{R})$ where

$$-1 \mapsto \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \quad ; \quad i \mapsto \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$j \mapsto \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \quad ; \quad k \mapsto \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

We can observe this is representation by seeing that $\phi(-1)^2 = \phi(1)$ and that $\phi(i)^2 = \phi(j)^2 = \phi(k)^2 = \phi(ijk) = \phi(-1)$.

c) By Exercise 4a, we know that both D_8 and Q_8 have four inequivalent real representations of degree 1. In the case of D_8 , we also know that there is a real representation of degree 2, this means that the decomposition of $\mathbb{R}[D_8]$ has four copies of \mathbb{R} and a copy of either $M_2(\mathbb{R})$ or \mathbb{C} . However, if $\mathbb{R}[D_8]$ contained a copy of \mathbb{C} , then it must be that $\mathbb{R}[D_8] \simeq \mathbb{R}^4 \oplus \mathbb{C} \oplus \mathbb{R}^2$ or $\mathbb{R}[D_8] \simeq \mathbb{R}^4 \oplus \mathbb{C} \oplus \mathbb{C}$. Neither of these can be the case, though, as $\mathbb{R}[D_8]$ is not commutative. Thus, it must be that $\mathbb{R}[D_8]$ contains a copy of $M_2(\mathbb{R})$ and so

$$\mathbb{R}[D_8] \simeq \mathbb{R}^4 \oplus M_2(\mathbb{R}).$$

Now, similarly, since Q_8 has a real representation of degree 4, this means that $\mathbb{R}[Q_8]$ contains a copy of either $M_2(\mathbb{C})$ or \mathbb{H} in addition to four copies of \mathbb{R} . Since the dimension of $M_2(\mathbb{C})$ over reals is $4 \cdot 2 = 8$, it must be that $\mathbb{R}[Q_8]$ contains a copy of \mathbb{H} . This gives us that

$$\mathbb{R}[Q_8] \simeq \mathbb{R}^4 \oplus \mathbb{H}.$$

Since \mathbb{H} is not isomorphic to $M_2(\mathbb{R})$ and these decompositions are unique up to permutation and isomorphisms by Artin-Weddenburn, we have that $\mathbb{R}[D_8]$ and $\mathbb{R}[Q_8]$ are not isomorphic.

Ex 6.

a) $K \otimes_k k[x_1, \dots, x_n] \simeq K[x_1, \dots, x_n]$

b) $K \otimes_k k[x_1, \dots, x_n]/(f) \simeq K[x_1, \dots, x_n]/(f)$ for $f \in k[x_1, \dots, x_n]$

Proof.

a) Let $f: K \to K[x_1, \ldots, x_n]$ and let $g: k[x_1, \ldots, x_n] \to K[x_1, \ldots, x_n]$ be the inclusion maps. Since the image of these maps commute, the map $\phi: K \otimes_k k[x_1, \cdot, x_n] \to K[x_1, \ldots, x_n]$ where $\phi(\lambda \otimes p(x)) = f(\lambda)g(p(x)) = \lambda p(x)$ is a well-defined k-algebra homomorphism.

If we let v_1, \ldots, v_ℓ be a basis of K as a k-vector space, then we see that $K \otimes_k k[x_1, \ldots, x_n]$ has basis $v_j \otimes \prod_{i \leq n} x_i^{e_i}$ and that $K[x_1, \ldots, x_n]$ has basis $v_j \prod_{i \leq n} x_i^{e_i}$. Since f is a bijection on these basis elements, we have that f is a bijection and thus that f is an isomorphism.

b) Let $f: K \to K[x_1, \ldots, x_n]/(f)$ and let $g: k[x_1, \ldots, x_n]$ $(f) \to K[x_1, \ldots, x_n]$ (f) be the inclusion maps. Since the image of these maps commute, the map $\phi: K \otimes_k k[x_1, \cdot, x_n] \to$

 $K[x_1,\ldots,x_n]$ where $\phi(\lambda\otimes(p(x)+(f)))=f(\lambda)g(p(x)+(f))=\lambda p(x)+(f)$ is a well-defined k-algebra homomorphism.

[Proof that f is a bijection is incomplete.]

Ex 7.

- a) $K \otimes_k M_n(k) \simeq M_n(K)$
- b) $K \otimes_k \left(\frac{\alpha,\beta}{k}\right) \simeq \left(\frac{\alpha,\beta}{K}\right)$

Proof.

a) Let $f: K \to M_n(K)$ be the map $f(\lambda) = \lambda \operatorname{Id}_n$ and let $g: M_n(k) \to M_n(K)$ be the inclusion map. Since the image of these maps commute, the map $\phi: K \otimes_k M_n(k) \to M_n(K)$ where $\phi(\lambda \otimes A) = f(\lambda)g(A) = \lambda \operatorname{Id}_n A = \lambda A$ is a well-defined k-algebra homomorphism.

If we let v_1, \ldots, v_ℓ be a basis of K as a k-vector space, then we see that $K \otimes_k M_n(k)$ has basis $v_m \otimes e_{ij}$ and that $M_n(K)$ has basis $v_j e_{ij}$. Since f is a bijection on these basis elements, we have that f is a bijection and thus that f is an isomorphism.

b) Let $f: K \to \left(\frac{\alpha, \beta}{K}\right)$ be the map $f(\lambda) = \lambda \cdot 1$ and let $g: \left(\frac{\alpha, \beta}{k}\right) \to \left(\frac{\alpha, \beta}{K}\right)$ be the inclusion map. Since the image of these maps commute, the map $\phi: K \otimes_k \left(\frac{\alpha, \beta}{k}\right) \to \left(\frac{\alpha, \beta}{K}\right)$ where $\phi(\lambda \otimes x) = f(\lambda)g(x) = \lambda x$ is a well-defined k-algebra homomorphism.

If we let v_1, \ldots, v_ℓ be a basis of K as a k-vector space, then we see that $K \otimes_k \left(\frac{\alpha, \beta}{k}\right)$ has basis $v_m \otimes e_i$ (where $e_1 = 1$, $e_2 = i$, $e_3 = j$, and $e_4 = k$) and that $\left(\frac{\alpha, \beta}{K}\right)$ has basis $v_j e_{ij}$. Since f is a bijection on these basis elements, we have that f is a bijection and thus that f is an isomorphism.