Dummit & Foote Ch. 3.3: The Isomorphism Theorems

Scott Donaldson

Oct. 2023

Let G be a group.

1. (10/20/23)

Let F be a finite field of order q and let $n \in \mathbb{Z}^+$. Prove that $|GL_n(F): SL_n(F)| = q - 1$.

Proof. Define a map $\varphi: GL_n(F) \to F^{\times}$ by $\varphi(A) = \det A$ for all $A \in GL_n(F)$. From Ch. 3.1, Exercise 35., φ is a surjective homomorphism with $\ker \varphi = SL_n(F)$.

From Corollary 17, we have:

$$|GL_n(F): \ker \varphi| = |\varphi(GL_n(F))|$$
, which implies that $|GL_n(F): SL_n(F)| = \underbrace{|F^{\times}|}_{\varphi \text{ is surjective}} = q - 1,$

as desired. \Box

3. (10/26/23)

Prove that if H is a normal subgroup of G of prime index p then for all $K \leq G$ either

- (i) $K \leq H$ or
- (ii) G = HK and $|K: K \cap H| = p$.

Proof. Suppose that $H \subseteq G$ with |G:H| = |G/H| = p, where p is a prime. Suppose additionally that $K \subseteq G$ and $K \nleq H$.

Now let $g \in G$. Clearly g belongs to the left coset gH, which we denote $\overline{g} \in G/H$. Since G/H has order p, it is cyclic, and so is generated by any non-identity element (that is, any coset of H other than itself). So \overline{g} generates G/H. Similarly, for any $k \in K, k \notin H$, \overline{k} generates G/H. Therefore $\overline{g} = \overline{k}$ for

some g, k, which implies that $g \in kH$. It follows that $g \in KH$, so $G \leq KH$. Since G is closed, we must have G = KH = HK.

From the Diamond Isomorphism Theorem, we have $HK/H \cong K/H \cap K$. Since HK = G, it follows that $|G:H| = |K:H \cap K|$, and so $|K:K \cap H| = p$. \square