RW354 Principles of Computer Networking

A.E. Krzesinski and B.A. Bagula Department of Computer Science University of Stellenbosch

Last updated: 16 July 2004

The material presented in these slides is used with permission from

- Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach (Third Edition). Morgan Kaufmann Publishers. ISBN 1-55860-577-0.
- William Stallings. Data and Computer Communications (Sixth Edition). Prentice-Hall Inc. ISBN 0-13-571274-2.
- Andrew S. Tannenbaum. Computer Networks (Fourth Edition). Prentice Hall Inc. ISBN 0-13-349945-6.

Permission to reproduce this material for not-for-profit educational purposes is hereby granted. This document may not be reproduced for commercial purposes without the express written consent of the authors.

Course Outcomes

This course is about the principles that underly the technologies and protocols used by current- and next-generation IP networks.

The student that passes this course on IP networks will become skilled in the following concepts

- Basic networking ideas: various models of connectivity, resource sharing, support for common network services, network performance metrics, network architecture (layering & protocols), the OSI & the Internet architecture models.
- Connection-oriented (circuit switching) networks:
 Nyquist's sampling theorem, PCM, DS-1 transmission format.

• . . .

Course Outcomes: Continued

- Direct link networks: nodes, links, data encoding, framing & SONET, error detection, reliable transmission, ethernet, token ring & wireless networks (IEEE802.11).
- Connection-less (packet switching) networks: datagrams & virtual circuits, switching & forwarding, bridges & the spanning tree algorithm, asynchronous transfer mode (ATM), switch hardware.
- IP Internetworking: the best effort service model, addressing, packet forwarding, address translation (ARP & DHCP), error management (ICMP), virtual networks & tunnels, routing concepts including the RIP and OSPF algorithms, global internet addressing issues such as subnetting, classless routing (CIDR), network address translation (NAT), interdomain routing (BGP),IPv6 & several multicast protocols.

• . . .

Course Outcomes

- End-to-end protocols: UDP, TCP concepts including connection management, sliding window & adaptive re-transmission.
- Congestion control & resource management: router scheduling (queueing) disciplines, TCP congestion control, congestion avoidance mechanisms & quality of service: Intserv and Diffserv mechanisms.
- End-to-end data: presentation formatting, data compression: JPEG, MPEG, MP3.
- Network security: cryptographic algorithms including DES, RSA & MD5, security mechanisms and examples of secure applications, firewalls.
- Applications: name service (DNS), traditional applications (SMTP, MIME, HTTP & SNMP) & multimedia applications.

Course Outcomes

During the practical component (laboratory exercises) of the course you will

 develop client-server applications on the Linux operating system using the IP, TCP and ICMP protocols.

