PDE - Ders 1

Konumuz Kismi Turevsel Denklemler (partial differential equtions -PDE-). Bu dersin on gerekliliklerinden en onemlisi normal diferansiyel denklemlerdir (ordinary differential equtions -ODE-), cunku pek cok PDE'yi cozmenin teknigi onlari bir ODE sistemine indirgemekten geciyor. Yani PDE cozmek icin ODE cozme tekniklerini de bilmek gerekiyor. Bir diger gerekli bilgi Lineer Cebir dersi.

Bu dersin ana amaci, bir muhendislik dersi olarak, denklem cozmek, ve pek cok denklemin cikis noktasi fiziksel problemler. Mesela sicaklik yayilmasi (heat diffusion), dalga hareketi (wave motion), titresen hucre zari (vibrating membrane) gibi. Fakat PDE kavrami finansta bile ortaya cikabilen bir kavram, mesela Black-Sholes denklemlerinde oldugu gibi.

Yani dersimiz cok teori odakli olmayacak, bazi ispatlardan bahsedecegiz, ama onun haricinde teori uzerinde fazla durmayacagiz.

PDE nedir? Ilk once ODE tanimindan baslayalim.

$$y = y(x)$$

$$\frac{dy}{dx} = y$$

Baslangic sartlari

$$y(0) = y_0$$

Cozum

$$y = y_0 e^x$$

Bu bir ODE cunku sadece bir tane bagimsiz degisken var (x), ve bir tane bagimli degisken var (y).

PDE ise icinde kismi turevleri, ve bir veya *birden fazla* bagimsiz degiskeni barindiran bir denklemdir.

Eger gunes etrafindaki yorungeleri temsil etmek istiyorsaniz gezegenleri boyutsuz parcaciklar gibi kabul ederek ODE'ler ile temsil etmek yeterli olabilir, ama diger problemlerde daha fazla bagimsiz degisken gerekecegi icin ODE yetmez, mesela zaman, cismin 3D uzaydaki boyutlari gibi.

Mesela bir PDE

$$u = u(x, y)$$

Cogunlukla problem taniminin ilk basinda fonksiyonel iliskiyi hemen gostermek iyi olur, mesela ustte bagimsiz degiskenler x, y, ve u bu iki degiskene bagimli. Devam edelim PDE soyle olsun

$$\frac{\partial^3 u}{\partial x^3} + \cos(y)\frac{\partial u}{\partial y} + 3 = 0$$

Bir PDE problemine cogunlukla ek olarak sinir kosullari (boundary condition -BC-) ve baslangic kosullari (initial conditions -IC-) eklemek de gerekir.

Kismi Turev nedir?

$$u = u(x_1, x_2, ..., x_n)$$

$$\frac{\partial u}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{u(x_1, ..., x_i + \Delta x_i, x_{i+1}, ..., x_n) - u(x_1, ..., x_i, x_{i+1}, ..., x_n)}{\Delta x_i}$$

Yani bir fonksiyonun kismi turevini almak istedigimiz degisken haricinde tum diger degiskenlerinin sabit tutuldugu bir durum.

Ornek

$$u = x_1^2 + x_1 sin(x_2)$$

$$\frac{\partial u}{\partial x_1} = 2x_1 + \sin(x_2)$$

$$\frac{\partial u}{\partial x_2} = x_1 cos(x_2)$$

Notasyon

Cogunlukla kismi turevler 3 farkli sekilde gosteriliyor.

$$\frac{\partial u}{\partial x} \equiv u_x \equiv \partial_x u$$

Ustte soldaki tanimi gorduk, bazen ortadaki de tercih edilebiliyor, ya da bazen en sagdaki.

PDE Derecesi

Bir PDE'nin derecesi, o denklemdeki kismi turevlerin en yuksek dereceli

olanin derecesi neyse o'dur.

Mesela

$$u_{xxx} + u_y = 5$$

derecesi 3. Ayni zamanda bu lineer ve homojen olmayan (inhomogeneous) bir PDE. Bu son iki kavrami birazdan tanimlayacagim.

Ornek

$$(u_{xx})^2 + u_x u_y = u$$

Bu 2. derece. Bu bazi insanlarin kafasini karistiriyor, cunku u_{xx} 'in karesi var. Bu ayni zamanda homojen, ve gayri lineer. Bu dersteki cogu PDE lineer olacak.

Lineer ve gayri lineerlikten bahsetmisken, sunu ekleyelim.

Simdi diyelim ki bir girdi (input) fonksiyonu I(t) bir isleme giriyor (L operatoru) ve cikti (output) olarak R(t) cikiyor. Yani sistem

$$R = \mathcal{L} I$$

Bir lineer sistemde eger girdiyi iki ile carparsaniz, cikti da iki katina cikar. O zaman kurallar

- 1. $\mathcal{L}(\alpha I) = \alpha \mathcal{L}(I)$, ki α bir sabit.
- 2. $\mathcal{L}(I_1 + I_2) = \mathcal{L}(I_1) + \mathcal{L}(I_2)$, ki buna ust uste eklenebilme (superposition) prensibi deniyor. Bu prensibi bu dersteki cogu PDE'yi cozmek icin kullanacagiz. Bir lineer sistem varsa cogu zaman arka planda bir yerlerde ust uste eklenebilme prensibi geziniyordur.

Diyelim ki PDE'nizi soyle yazdiniz

$$\mathcal{L}u = f(\vec{x})$$

Burada u bagimli degisken, \vec{x} bir vektor, $\vec{x} \in \Re^n$, ve bu vektorun icinde birden fazla degisken var, bu degiskenlerin hepsi bagimsiz.

$$\vec{x} = \begin{pmatrix} x_1, \\ \dots \\ x_n \end{pmatrix}$$

Bu denkleme benzer bir diger denklem lineer cebirdeki $A\vec{x} = \vec{b}$ denklemidir. PDE sisteminde de cevabini aradigimiz, lineer cebir sisteminde "A ile carpilip b sonucunu verecek \vec{x} hangisidir?" sorusuna benzer bir sekilde " \mathcal{L} operatoru uygulanip $f(\vec{x})$ sonucunu verecek u hangisidir?" sorusudur.

Bu analojiden devam etmek gerekirse, belli bir noktada u'nun icinde oldugu "fonksiyon uzayi" hakkinda dusunmemiz gerekebilir, \vec{x} 'in icinde oldugu \Re^n uzayi gibi. Lineer cebir durumunda operatorun ozelliklerine bakilir, mesela "b'nin icinde oldugu ve A operatoru uygulanip hic sonuc alinamayacak uzayin belli kisimlari var midir?" gibi sorularla ugrasilabilir, bunlar A'nin "ulasamadigi yerlerdir" vs. PDE'deki $\mathcal L$ operatoru icin de benzer sorular sorulabilir.

Yani lineer cebirle pek cok kavram PDE dunyasina benziyor, orada vektor uzayi var, burada fonksiyon uzayi var. Yani bir analoji olarak bu benzerligi aklimizda tutmamiz faydali.

Bir operator su sekilde de olabilir

$$\mathcal{L} = \mathcal{L}\left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., u, ..\right)$$

Yani operator kismi turevlere ve hatta u'nun kendisine de bagimli olabilir.

Eger elimizde gayri lineer bir PDE var ise, basimiz dertte demektir. Boyle bir sistemi cozmek icin cogunlukla sayisal cozumlere basvurmak gerekir. Eger lineer ise cozumde bayagi ilerlemek mumkundur.

Lineerlik

Bir operator ve onun tanimladigi bir ust uste eklenebilme durumu dusunelim

$$\mathcal{L} = \mathcal{L}(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 \mathcal{L} u_1 + \alpha_2 \mathcal{L} u_2$$

ki α_1, α_2 birer tekil sayidir (scalar), ya reel, ya da kompleks.

Ornek

Birazdan bakacagimiz denklem dalga denklemi. Orada

$$u_{tt} - c^2 u_x = 0$$

Bu denklemi

$$\mathcal{L}u = 0$$

seklinde yazabiliriz ki \mathcal{L} soyle tanimli olacaktir

$$\mathcal{L} = \frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2 = 0}$$

c bir sabittir.

Simdi diyelim ki su denklemi cozmemiz lazim

$$\mathcal{L}u = f$$

ki

$$\mathcal{L}:V\to V$$

Yani, \mathcal{L} bir vektor uzayini bir digerine eslemekte (map), ve yine diyelim ki bu uzaylar birer Hilbert Uzayi (bunun anlamina simdi bilmemiz gerekmiyor, ileride bu konuya donecegiz, bu kelimeyi soyle bir ortaya atmak istedim).

Yani sordugumuz Hilbert Uzayi V'de bir f'e esleyecek bir u fonksiyonu olup olmadigi. Bu arada tipik bir Hilbert Uzayi mesela kare alip bir sinir bolgesinde (boundary domain) entegre edince elde edilen sonlu (finite) bir sonuclarin olusturdugu uzay. Yani "derli toplu" fonksiyonlar bir anlamda, absurt sonuclar vermeyen turden, sonsuzluga dogru patlayip giden turden olanlari degil.

Faraziyeye devam edelim, diyelim ki V icinde bir baz (basis) var. Baz nedir? Lineer cebirden hatirlayalim, mesela uc boyutlu Oklidsel (Euclidian) uzayi \Re^3 .

$$\vec{x} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$$

$$\vec{y} = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right]$$

$$\vec{z} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Bu uzaydaki herhangi bir vektor \vec{r} ustteki uc
 baz vektoru kullanilarak parcalarina ayirilabilir, ya da, onlarin bir lineer kombinasyonu olarak gosterilebilir. Mesela

$$\vec{r} = x\vec{x} + y\vec{y} + z\vec{z}$$

Bu uc vektorun bu uzay icin bir "baz olusturdugu" soylenebilir, cunku bu uzaydaki her vektor bu uc vektorun bir kombinasyonu olarak temsil edilebilir. Dikkat edelim, iki baz vektor yeterli olmazdi, dort taneye gerek yok. Tami tamina uc tane vektor bu uzayin bazini olusturuyor.

Bu sonlu (finite) miktarda bir uzay, herhangi bir vektoru tanimlamak icin sonlu miktarda baz vektoru yeterli. Sonsuz boyutlu bir uzay da olabilirdi, o zaman herhangi bir fonksiyonu tanimlamak icin sonsuz tane baz vektoru gerekirdi. Mesela Fourier Serilerini dusunelim

$$u = \sum_{i=1}^{\infty} \alpha_i \phi_i(x)$$

ki baz fonksiyonlar
$$\left\{\phi_i(x)\right\}_{i=1}^{\infty}$$
.

Bu fonksiyonlarin her biri trigonometrik fonksiyonlar olabilir (cos, sin) gibi, o zaman seri Fourier Serisi olur. Her halukarda, yukaridaki tanimla diyoruz ki belli (unique) α degerleri var ki, o degerleri zaten onceden bilinen baz fonksiyonlari ile carpip toplayarak u'yu olusturabiliyoruz.

Eger lineer operatorumuzu hatirlarsak

$$\mathcal{L} = \mathcal{L}(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 L u_1 + \alpha_2 L u_2$$

Bu operator herhangi iki katsayiyi kullaniyordu, fakat iki ustteki sonsuz tane toplami da icerecek sekilde genisletilebilir, ve baz kavrami ile ust uste eklenebilme kavraminin arasindaki alakayi gosterir.

Diyelim ki \mathcal{L} 'nin her baz vektorunu nasil esledigini biliyoruz,

$$\mathcal{L}\phi_i = -\lambda_i \phi_i$$

Ustteki ifade ϕ 'in L'in ozfonksiyonu oldugunu soyluyor ayni zamanda. Eger alttaki acilimi yaparsak, ki bunu yapabiliriz cunku ϕ 'ler bazdirlar,

$$\mathcal{L}u = \mathcal{L}\left(\sum_{i} \alpha_{i} \phi_{i}(x)\right) = \sum_{i} \alpha_{i} \left(\mathcal{L}\phi_{i}\right)$$
$$= -\sum_{i} \alpha_{i} \lambda_{i} \phi_{i}$$

Bir operatorun herhangi bir baz uzerinde nasil islem yaptigini anladigimiz anda, o zaman \mathcal{L} 'in herhangi bir u fonksiyonu uzerinde ne etki yaptigini bilebiliriz. Diger bir deyisle bir uzayda sonsuz tane fonksiyon olabilir, ama biz operatorumuzun bazlara nasil etki ettigini biliyorsak, o bazlarla olusturulan tum fonksiyonlara nasil etki ettigini de biliyoruz demektir.

Tekrar belirtelim, bu sadece \mathcal{L} lineer bir operator oldugu zaman mumkun.

Ornek

Klasik Burger denklemi

$$u_t + uu_x = vu_{xx}$$

Denklemi

$$\mathcal{L}u = 0$$

olarak yazabiliriz, ki

$$\mathcal{L} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} - v \frac{\partial^2}{\partial x^2}$$

Bu gayri lineer

Ornek

$$u_{xx} + u_{yy} + sin(u)$$

$$\mathcal{L}u = 0$$

$$\mathcal{L} = \partial_{xx} + \partial_{yy} + \sin(\cdot)$$

Usttteki ilginc bir durum sinus fonksiyonun da ici bos halde, operator olarak kullanilmis olmasi. Operator taniminda bazen boyle nokta konuldugu oluyor, ki neyin uzerinde operasyon yapildigi anlasilsin diye, mesela ustteki soyle de gosteriliyor bazen

$$\mathcal{L} = \partial \cdot_{xx} + \partial \cdot_{yy} + \sin(\cdot)$$

Bu da gayri lineer cunku sin fonksiyonu lineer degil, yani

$$\sin(u_1 + u_2) \neq \sin(u_1) + \sin(u_2)$$

Lineerlik uzerinde cok duruyoruz cunku diferansiyel denklemimiz hakkinda bilmemiz gereken en onemli bilgilerden / ipuclarindan biri bu, cunku denklemimizin lineer ya da gayri lineer olmasi, bizi cok farkli cozum teknikleri kullanmaya itecek.

Bir diger onemli terim homojen (homogeneous), homojen olmayan (inhomogeneous) kavrami.

Homojenlik

Eger u = 0 bir cozum ise PDE homojendir.

Yani $\mathcal{L}u = f(\vec{x})$ denklem taniminda eger $f(\vec{x}) = 0$ ise PDE homojendir.

Ornek

$$u_{xx} + u_y^2 = xu$$

Denklem 2. derece, gayri lineer cunku bir kare var, ve homojen cunku u = 0'in bir cozum oldugunu gorebiliyoruz.

Ornek

$$u_x^2 + u_y = 6ysin\left(\frac{x^3}{5}\right)$$

PDE 1. derece, gayri lineer, ve homojen degil.

Soru

Bagimsiz degiskenlere bagli bir lineer operator olabilir mi?

Cevap

Evet. Mesela u = u(x, y), ve denklem $xu_x + u_y = u$.

Bu homojen bir denklem, ve $\mathcal{L}u = 0$ olarak gosterilebilen bir denklem, ve

$$\mathcal{L} = x \frac{\partial}{\partial x} + \frac{\partial}{\partial y} - 1$$

ve goruldugu uzere operator taniminda bagimsiz degisken x var.

Bu lineer bir operator. Lineerligin bagli oldugu sey bagimli degiskenler, bagimsizlar degil, mesela ustteki $x,\,x^3$ gibi bir sey olabilirdi ama problem hala lineer olurdu.

Sinir kosullari da bu baglamda cok onemli, mesela diyelim ki tanimi lineer olan bir PDE var, ama problem tanimindaki sinir kosullari eger fonksiyonun gayri lineer bir kombinasyonunu iceriyorsa o zaman problemin tamami gayri lineer hale gelir.

Biraz formel olarak dusunursek, mesela tek boyutlu isi denklemi

$$u_t = k u_{xx}$$

ki x mesafe belirten degisken, t zaman,

Bu denklem ustteki gibi bir borudaki isinin dagilimini, akisini gosteriyor olsun. $u|_{x=L}$ ile gosterilen bir sinir sarti, yani L uzunlugundaki borunun en ucunda (sagindaki) olmasi sart olan isi seviyesi. Mesela bu sart $u|_{x=L}=T_2$ olsun, ki T_2 bir tekil sayi, 100^o , 200^o gibi. Simdi homojenlige ne oldu? Ana denklem homojen, ama homojenlik testini sinir sartina uyguladigimiz zaman $0=T_2$ gibi bir sonuc aliyoruz, ki bu absurt bir sonuc demek ki sinir sarti homojen degil. O zaman bu problemin tamami homojen olamaz.

Benzer sekilde borunun oteki ucu icin tanimlanan sart gayri lineer olsa

ki bu sart o uctan bir tur sinusoidal bir enerji, isi verildigi bir durumu tarif ediyor, o zaman ana denklem lineer olsa bile, sinir sartinda gayri lineerlik oldugu icin problemin tamami gayri lineer olacaktir.

Aslinda formel olarak sinir sartlarini alip

$$\mathcal{L} = \frac{\partial}{\partial t} - k \partial_{xx}$$

operator tanimina bir sekilde dahil etmenin yollari var, ama biz bunlar cok ileri seviye teknikler, bu derste bu teknikleri gormeyecegiz.

Baslangic Sartlari

Mesela yayilma (diffusion) denklemi u(x,t) icin u(x,0) = f(x), yani baslangic aninda isi dagiliminin tum boru boyunca hangi seviyelerde oldugunun (burada bu dagilim f(x)) belirtilmesi, baslangic sartini tanimlamak demektir.

Genel bir kural PDE'deki turev sayisi kadar sart tanimlanmasi gerektigidir. Mesela iki zaman turevi var ise, iki tane kosul gerekir, mesela t=0 anindaki bir kosul, arti zamana goreve turevin t=0 anindaki degeri, vs.

Soyle dusunebiliriz, u_{xx} 'in oldugu bir denklemde u elde etmek icin iki kere

entegre edilir, ve bunun sonucu olarak iki tane entegrasyon sabiti ortaya cikar, ki bu degerler herhangi bir sayi olabilir. O iki sabiti hesaplamak icin iki tane kosul gerekecektir.

Genel kurali daha somutlastirirsak, "her bagimsiz degisken icin gereken sinir kosulu, o bagimsiz degiskenin derecesine esittir". Tabii bu genel bir kural, bazen gercek dunyadaki fizik problemlerinde bu gecerli olmayabiliyor, bir problem icin duzgun sinir kosullari bulmak basli basina bir sanat denebilir aslinda.

Ornek

Laplace denklemi

$$\nabla^2 u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

ki ∇^2 Laplacian operatoru olarak bilinir.

Ustteki turden bir denklem hic kaynak akim verilmeyen sonsuz uzayda elektrik potansiyeli alanini temsil ediyor olabilir.

Bu denklemin bir cozumun (ki sinir sartlarina dikkat edelim) su sekilde olduğunu göstermek kolaydir:

$$u(\vec{x}) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

Bu Potansiyel Teori'sinde tipik bir problem, bir alan degiskeni var, ve orijinden uzaklastikca bu degisken azaliyor, bu azalma 1/ uzakligin karesi oraninda.

Bu "bir" cozum, fakat bir suru 2. derece turev var ortalikta, o zaman x, y, z'nin her turlu lineer fonksiyonu de aslinda bir cozumdur. Mesela

$$u(\vec{x}) = \alpha x + \beta y + \gamma z + \delta$$

formulu de bir cozum olabilir. Niye? Herhangi bir lineer fonksiyonun iki kere turevini alirsak o fonksiyon yokolur.

Demek ki bu problemin tanimi eksik, sinir sartlari da tanimlanmasi gerekli, aksi takdirde elde edilen sonuclar ozgun olmayacak. Envai turden cozum mumkun.

Bu problem icin tipik bir sinir kosulu $\lim_{|\vec{x}|\to\infty} u = 0$ ifadesidir. Elektrik alan

ornegine donersek, elektrik alani sonsuzluga giderken sifira dusuyor demis oluyoruz. Bir sabite gidiyor da diyebilirdik, o da islerdi.

O tur bir sart

$$u(\vec{x}) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

sonucunu saglardi, diger secenekleri elemis olurdu. Bu ornegi sinir kosullarinin onemini belirtmek icin sectik, bu kosullar ana denklemin kendisi kadar onemli.

Bir nokta daha:

Soyle bir ODE dusunelim

$$\frac{du}{dt} = 1$$

Entegre edince genel cozum

$$u(t) = t + c_1$$

Fakat PDE icin

$$u = u(x, y)$$

$$u_x = xy$$

Burada y bazli bir turev yok, basit bir PDE, cozmesi kolay, fakat unutmayin, entegre edince

$$u = \frac{1}{2}x^2y + [..]$$

Noktalarin oldugu yere ne gelecek? Bir sayi sabiti degil bir fonksiyon gelecek.

$$u = \frac{1}{2}x^2y + g(y)$$

cunku u, y'nin bir fonksiyonu, o zaman elimize gecen y'nin herhangi bir fonksiyonu olacak, ki bu fonksiyonun degeri sinir kosullari uzerinden tanimlanmis olmali. Bunu ozellikle vurgulamak istedim cunku insanlar bu detayi unutabiliyor.

Sinir kosulu nasil olabilir? Mesela $u(\alpha,y)=f(y)$ seklinde olabilir. Bu kosulu

yerine sokunca

$$\frac{1}{2}\alpha^2 y + g(y) = f(y)$$

Bu bize g(y)'in ne oldugunu soyler

$$g(y) = f(y) - \frac{1}{2}\alpha^2 y$$

ve bu ornek icin nihai cozum

$$u(x,y) = \frac{1}{2}x^2y + f - \frac{1}{2}\alpha^2y$$