2 HUMERICAL SOLUTION OF SYSTEMS OF 2 HYPERBOLIC EQUATIONS
ENGINEERING EXAMPLES: TRAHSMISSION LIKES CABLES V, I ELASTIC WAVES IN A BAR TRAHSIEHT PIPE FLOW D, V OR H, Q
2. I CHARACTERISTIC FORM OF A SYSTEM OF 2 HYPERBOLIC EQUATIONS
PROPAGATION OF A SIGNAL ALOHG A CABLE IS DESCRIBED BY THE FOLLOWING EQUATIONS
2V + 1 2L = 0 (1) V-VOLTAGE [V] 2t c 2x = 0 (1) I-CUPPENT [A]
31 + 1 2V = 0 (2) C'-UNIT CAPACITANCE (FM) 21 + 11 0x = 0 (2) L'-UNIT INDUCTANCE ENMI (1) + d(2) -> CABLE RESISTANCE NECROTED!
3V + C 3X + X 3F + C 3X - 0
$\frac{\partial V}{\partial t} + \frac{1}{\sqrt{2}} \frac{\partial X}{\partial t} + \frac{1}{\sqrt{2}} \frac{\partial V}{\partial t} + \frac{1}{\sqrt{2}} \frac{\partial V}{\partial t} = 0 $ (3)
= CV FOR X = dx = dT FOR 1 = dx dt U dt dt dt dt
$\frac{dx}{dt} = \frac{1}{L'} = \frac{1}{dc'} \Rightarrow \sqrt{2} = \frac{L'}{c'}$ $\sqrt{2} = \frac{L'}{c'}$
CH = + 1 [] = + C C-SPEED OF ELECTRO- BUAGHENE WAVE
(3) $\frac{dV}{dt} + \frac{\int i dI}{\partial t} = 0$ FOR $\frac{dV}{dt} = \pm \frac{1}{\sqrt{Lici}}$

