Latent class analysis

LCA Basics

DL Oberski & L Boeschoten

	Models	for means
	L	atent
	Continuous	Discrete
Observed		
Continuous	Factor analysis	Latent profile analysis
Discrete	Item response theory	Latent class analysis

Table 1 Names of different kinds of latent variable models.

The Latent Class Model

- Observed (continuous or) categorical Items (Y)
- Categorical Latent Class Variable (X)
- Continuous or Categorical Covariates (Z)

Four main applications of LCM

- Clustering (model based / probabilistic)
- Scaling (discretized IRT/factor analysis)
- Random-effects modelling (mixture regression / nonparametric multilevel)
- Density estimation

Why latent class models?

For substantive analysis:

- Creating typologies of respondents, e.g.:
 - McCutcheon 1989: tolerance,
 - Rudney 2015: human values
 - Savage et al. 2013: "A new model of Social Class"
 - ...
- Nonparametric multilevel model (Vermunt 2013)
- Longitudinal data analysis
 - Growth mixture models
 - Latent transition ("Hidden Markov") models

Why would survey researchers need latent class models?

For survey methodology:

- As a method to evaluate questionnaires, e.g.
 - Biemer 2011: Latent Class Analysis of Survey Error
 - Oberski 2015: latent class MTMM
- Modeling extreme response style (and other styles), e.g.
 - Morren, Gelissen & Vermunt 2012: extreme response
- Measurement equivalence for comparing groups/countries
 - Kankaraš & Moors 2014: Equivalence of Solidarity Attitudes
- Identifying groups of respondents to target differently
 - Lugtig 2014: groups of people who drop out panel survey
- Flexible imputation method for multivariate categorical data
 - Van der Palm, Van der Ark & Vermunt

A small example

(showing the basic ideas and interpretation)

Small example: data from GSS 1987

Y1: "allow anti-religionists to speak"

Y2: "allow anti-religionists to teach"

Y3: "remove anti-religious books from the library"

(1 = allowed, 2 = not allowed), (1 = allowed, 2 = not allowed), (1 = do not remove, 2 = remove).

Y1	Y2	Y 3	Observed frequency (n)	Observed proportion (n/N)
1	1	1	696	0.406
1	1	2	68	0.040
1	2	1	275	0.161
1	2	2	130	0.076
2	1	1	34	0.020
2	1	2	19	0.011
2	2	1	125	0.073
2	2	2	366	0.214

N = 1713

Estimating the 2-class model in R

```
antireli <- read.csv("antireli_data.csv")
library(poLCA)

M2 <- poLCA(cbind(Y1, Y2, Y3)~1, data=antireli, nclass=2)</pre>
```

Profile for 2-class model

```
$Y1
          Pr(1) Pr(2)
class 1: 0.9601 0.0399
class 2: 0.2284 0.7716
$Y2
          Pr(1) Pr(2)
class 1: 0.7424 0.2576
class 2: 0.0429 0.9571
$Y3
          Pr(1) Pr(2)
class 1: 0.9166 0.0834
class 2: 0.2395 0.7605
```

Estimated class population shares 0.6205 0.3795

2-class model in Latent GOLD

Profile for 2-class model

> plot(M2)

Classes; population share

Manifest variables

Profile plot for 2-class model

Model equation for 2-class LC model for 3 indicators

Model for

$$P(y_1, y_2, y_3)$$

the probability of a particular response pattern.

For example, how likely is someone to hold the opinion "allow speak, allow teach, but remove books from library: P(Y1=1, Y2=1, Y3=2) = ?

Two key model assumptions

(X is the latent class variable)

1. (MIXTURE ASSUMPTION)

Joint distribution mixture of 2 class-specific distributions:

$$P(y_1, y_2, y_3) = P(X = 1)P(y_1, y_2, y_3 \mid X = 1) + P(X = 2)P(y_1, y_2, y_3 \mid X = 2)$$

2. (LOCAL INDEPENDENCE ASSUMPTION)

Within class X=x, responses are independent:

$$P(y_1, y_2, y_3 | X = 1) = P(y_1 | X = 1)P(y_2 | X = 1)P(y_3 | X = 1)$$

 $P(y_1, y_2, y_3 | X = 2) = P(y_1 | X = 2)P(y_2 | X = 2)P(y_3 | X = 2)$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

(Mixture assumption)

$$P(Y1=1, Y2=1, Y3=2 \mid X=1) P(X=1) +$$

Example: model-implied proportion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

(Mixture assumption)

(Local independence assumption)

$$P(Y1=1|X=1) P(Y2=1|X=1) P(Y2=2|X=1) 0.620 +$$

$$P(Y1=1|X=2) P(Y2=1|X=2) P(Y2=2|X=2) 0.380$$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

```
P(Y1=1, Y2=1, Y3=2) =
```

```
(Mixture assumption)
P(Y1=1, Y2=1, Y3=2 | X=1) 0.620 +
P(Y1=1, Y2=1, Y3=2 | X=2) 0.380 =
```

```
(Local independence assumption)

(0.960) (0.742) (1-0.917) (0.620) +

(0.229) (0.044) (1-0.240) (0.380) \approx
```

≈ 0.0396

Small example: data from GSS 1987

Y1: "allow anti-religionists to speak"

Y2: "allow anti-religionists to teach"

Y3: "remove anti-religious books from the library"

(1 = allowed, 2 =	not allowed),
1 = allowed, 2 =	not allowed),
(1 = do not remov	/e, 2 = remove).

Y1	Y2	Y 3	Observed frequency (n)	Observed proportion (n/N)
	- 1	- 1	030	U. 1 UU
1	1	2	68	0.040
1	2	1	2/5	0.161
1	2	2	130	0.076
2	1	1	34	0.020
2	1	2	19	0.011
2	2	1	125	0.073
2	2	2	366	0.214

Implied is 0.0396, observed is 0.040.

N = 1713

Activity

You can play around with the implied probabilities in the Excel file on the course website!

(thanks to Jeroen Vermunt).