记号: 设域扩张 E/F, 以 Aut_FE 表示 E/F 的 Galois 群.

设域 E,G 是 E 自同构群的子群, 以 E^G 表示 $\{a \in E \mid \sigma(a) = a, \forall \sigma \in G\}$. 它是 E 的子域. 设域扩张 $E/F,\alpha \in E$ 在 F 上代数, 以 $Irr(\alpha,F,x)$ 表示 α 在 F 上的极小多项式,x 为未定元. 设 F 为域, 则 F 的代数闭包存在且在同构意义下唯一, 记为 F^a .

 \mathbf{Z} , \mathbf{Q} , \mathbf{R} , \mathbf{C} , \mathbf{F}_q 分别记整数环, 有理数域, 实数域, 复数域, q 阶域, 其中 q 是某一素数的幂. S_n , A_n 分别记 n 次对称群, n 次交错群.

设 G, H 是群 G = 1 表示 G 只有一个元素 $G \simeq H$ 表示 G 同构于 H.

1 有时表示只有一个元素的群, 有时表示群的幺元.

正文没有完整证明, 只含简略的说明.

引理 0.1 设代数扩张 $E/k,\sigma:k\to L$ 将 k 嵌入到一代数闭域 L. 则 σ 可延拓为嵌入 $E\to L$.

证明 令集合 S 由 (F,τ) 组成, 其中 F 是 E/k 的中间域, τ 是嵌入 $F \to L$ 并且 $\tau|_k = \sigma$. 则 $(k,\sigma) \in S$, 从而 S 非空. 设 $(F,\tau),(F',\tau') \in S$, 记 $(F,\tau) \le (F',\tau')$ 如果 $F \subset F'$ 且 $\tau'|_F = \tau$. 这在 S 上定义了偏序. 设链 $\{(F_i,\tau_i)\}_{i\in I} \subset S$, 令 $F = \bigcup_{i\in I} F_i$, 定义映射 $\tau\colon F \to L$, 若 $\alpha \in F_i$, 则 $\tau(\alpha) = \tau_i(\alpha)$. 易验证 F 是 E/k 的中间域, τ 是良定义的嵌入 $F \to L$. 从而是 $\{(F_i,\tau_i)\}$ 的上界. 用 Zorn 引理,S 有极大元.

 \Leftrightarrow (K,λ) 为 S 的一个极大元, 我们断言 K=E. 否则, 取 $\alpha \in E-K$, 则 λ 可延拓为 $K(\alpha) \to L$, 与 (K,λ) 是极大元矛盾! 这就证明 σ 可延拓为嵌入 $E \to L$.

1 有限域

定理 1.1 设 F 是域,G 是 F 乘法群的有限子群,则 G 是循环群.

设 |G| = n, 取 $m \mid n$, 则方程 $x^m = 1$ 在 G 中的解至多有 m 个.

定理 1.2 设有限群 G 的阶为 n. 若任意 $m \mid n.G$ 中满足 $x^m = 1$ 的元至多 m 个. 则 G 是循环群.

事实上, 设 $m \mid n$, 记 $d_m(G)$ 表示 G 中 m 阶元的个数. 必然有 $d_m(G) \leq \varphi(m)$. 否则 G 有两个不同的 m 阶循环群, 导致 $x^m = 1$ 的解多于 m 个. 有

$$|G| = n = \sum_{m|n} d_m(G) \le \sum_{m|n} \varphi(m) = n.$$

于是 $d_m(G) = \varphi(m), \forall m \mid n$. 特别地, $G \in \mathbb{R}$ 阶元,从而 G 是循环群.

由此, 设 F 是有限域, 则 F 的乘法群 F^{\times} 是循环群.

设 F 是有限域, 则 F 的特征 p>0, F 含 \mathbf{F}_p 为子域, 是 \mathbf{F}_p 上的线性空间. 记 $n=[F:\mathbf{F}_p]$, 得到 $|F|=p^n$. 由此, 有限域的阶是某一素数的幂. 记 |F|=q, 有 $|F^\times|=q-1$, 从而任意 $\alpha\in F-\{0\}$, 有 $\alpha^{q-1}-1=0$. 再考虑 0, 我们得到

$$x^q - x = 0, \forall x \in F.$$

记 $f(x) = x^q - x$, 则 f(x) 在 F 上分裂 (分解为一次因式之积).F 的所有元素恰为 f(x) 的所有根, 易见 F 是 $f(x) \in \mathbf{F}_p[x]$ 在 \mathbf{F}_p 上的分裂域. 从而,q 阶域在同构意义下唯一.

取 \mathbf{F}_p 的代数闭包 $\mathbf{F}_p^{\mathrm{a}}$, 取 $\mathbf{F}_p^{\mathrm{a}}$ 的有限子域 \mathbf{F}_q , 设 $x \in \mathbf{F}_p^{\mathrm{a}}$, 则 $x \in \mathbf{F}_q \Longleftrightarrow x^q - x = 0$.

设有限域 \mathbf{F}_{p^n} , 取其子域 \mathbf{F}_{p^m} , 则 $m \mid n$. 设

$$\phi: \mathbf{F}_{n^n} \to \mathbf{F}_{n^n}, x \mapsto x^{p^m}.$$

则 ϕ 是 \mathbf{F}_{p^n} 的自同构, 且保持 \mathbf{F}_{p^m} . 可验证 $o(\phi) = \frac{n}{m}$ 和 $|\operatorname{Aut}_{\mathbf{F}_{n^m}}\mathbf{F}_{p^n}| \leq [\mathbf{F}_{p^n}:\mathbf{F}_{p^m}] = \frac{n}{m}$, 从而

$$\operatorname{Aut}_{\mathbf{F}_{p^m}}\mathbf{F}_{p^n} = \langle \phi \rangle = \{\phi^k : x \mapsto x^{p^{km}}\}.$$

称

$$\varphi: \mathbf{F}_a \to \mathbf{F}_a, x \mapsto x^p$$

为 Frobenius mapping.

2 可分性

设 E/F 是代数扩张, 设 $\sigma: F \to L$ 将 F 嵌入到一代数闭域 L, 且 L 在 σF 上代数 (即 L 是 σF 的一个代数闭包). σ 可延拓为嵌入 $E \to L$, 记 σ 的所有这样的延拓为 S_{σ} , 定义

$$[E\colon F]_s = |S_{\sigma}|.$$

下面说明 $[E:F]_s$ 与 σ 的选取无关. 设 $\tau:F\to L'$ 是另一个满足上述条件的嵌入. 则存在同构 $\lambda:L\to L'$, 且 $\lambda|_{\sigma F}=\tau\sigma^{-1}$, 即

$$\begin{array}{c|c} L & \xrightarrow{\lambda} & L' \\ & & | \\ \sigma F & \longleftarrow & \tau \\ \end{array}$$

则验证 $\lambda S_{\sigma} = S_{\tau}$, 从而验证 $|S_{\sigma}| = |S_{\tau}|$. 选取 E 的代数闭包 E^{a} , 则 $[E:F]_{s}$ 就是 F-嵌入 $\sigma:E\to E^{a}$ 的多少.

定理 2.1 设域的代数扩张塔 $k \subset F \subset E$. 有

$$[E:k]_s = [E:F]_s[F:k]_s.$$

设 [E:k] 有限,则 $[E:k]_s$ | [E:k].

选取 E 的代数闭包 $E^{\rm a}$, 设 $\{\sigma_i: F \to E^{\rm a}\}_{i \in I}$ 是所有的 k-嵌入 $F \to E^{\rm a}$. 对每个 i, 将 σ_i 延拓为 $\{\tau_{ij}: E \to E^{\rm a}\}_{j \in J_i}$. 每个 σ_i 的延拓 $\{\tau_{ij}\}_{j \in J_i}$ 的基数恰为 $[E:F]_s$, 不同的 σ_i 给出的延拓必然不同. 从 而 $|\{\tau_{ij}\}_{i,j}| = [E:F]_s[F:k]_s$. 再说明每个 k-嵌入 $E \to E^{\rm a}$ 必然等于某个 τ_{ij} 即可.

对第二个论断,E/k 是有限扩张,从而存在扩张塔

$$k \subset k(\alpha_1) \subset k(\alpha_1, \alpha_2) \subset \cdots \subset k(\alpha_1, \cdots, \alpha_r) = E.$$

我们只证明, 每个单代数扩张 $k(\alpha)/k$, 有 $[k(\alpha):k]_s \mid [k(\alpha):k]$. 并且只考虑 char k=p>0.

引理 2.1 设 F 是特征为 p > 0 的域. 设 $f(x) \in F[x]$ 是 F 上不可约多项式,则 f(x) 的每一根有相同的重数 $p^u.u \ge 0$. 存在 $h(x) \in F[x], h(x)$ 无重根使 $f(x) = h(x^{p^u})$.

推论 2.1 设 α 在 F 上代数, 存在 $u \ge 0$, 使 α^{p^u} 在 F 上可分.

设 $g(x) = \operatorname{Irr}(\alpha, k, x)$. 取 k 的代数闭包 $k^{\mathbf{a}}$. 存在两两不同的元素 $\alpha = u_1, u_2, \cdots, u_m \in k^{\mathbf{a}}$, 整数 u, 使

$$g(x) = (x - u_1)^{p^u} (x - u_2)^{p^u} \cdots (x - u_m)^{p^u}.$$

易见 $[k(\alpha):k]_s=m, [k(\alpha):k]=\deg g=p^um.$

设 α 在 F 上代数, 称 α 在 F 上纯不可分, 如果存在 $u \geq 0$ 使得 $\alpha^{p^u} \in F$.

定理 2.2 设 α 在 F 上代数, 下列条件等价:

- i) α 在 F 上纯不可分.
- ii) α 在 F 上的极小多项式只有一根.
- iii) α 在 F 上的极小多项式形如 $x^{p^u} a$, $u \ge 0$, $a \in F$.

对 i) \Longrightarrow ii), 多项式 $x^{p^u} - \alpha^{p^u} \in F[x]$ 零化 α , 从而 $\operatorname{Irr}(\alpha, F, x)$ 是 $x^{p^u} - \alpha^{p^u} = (x - \alpha)^{p^u}$ 的因子, 只有一根. 对 ii) \Longrightarrow iii), 设 $g(x) = \operatorname{Irr}(\alpha, F, x) = (x - \alpha)^{p^k m}, m, p$ 互素. 有

$$g(x) = (x^{p^k} - \alpha^{p^k})^m = x^{p^k m} - m\alpha^{p^k} x^{(m-1)p^k} + \dots + (-1)^m \alpha^{mp^k} \in F[x].$$

于是 $m\alpha^{p^k} \in F, m \neq 0$, 从而 $\alpha^{p^k} \in F$, 导致 $g(x) = (x - \alpha)^{p^k}$.iii) \Longrightarrow i) 是显然的.

推论 2.2 设 α 在 F 上代数, α 在 F 上同时可分和纯不可分当且仅当 $\alpha \in F$.

称域扩张 E/F 为纯不可分 (resp. 可分) 扩张, 如果 E 的每一元在 F 上纯不可分 (resp. 可分).

定理 2.3 设代数扩张 E/F, 以下条件等价:

- *i*) $[E:F]_s=1$.
- ii) E/F 纯不可分.
- iii) 存在 E 在 F 上的生成元 $\{\alpha_i\}_{i\in I}\subset E$, 满足每个 α_i 在 F 上纯不可分.
- $i) \Longrightarrow ii)$. 设 $\alpha \in E$, 取 u 是 $Irr(\alpha, F, x)$ 在代数闭包 E^a 的一根,有 F-嵌入 $\sigma : F(\alpha) \to F(u)$,满足 $u = \sigma(\alpha)$. 延拓为 $E \to E^a$,仍然记为 σ . 由 $[E:F]_s = 1$,只有 $\sigma = id$,从而 $u = \alpha, Irr(\alpha, F, x)$ 只有一根.
- ii) \Longrightarrow iii). 取 $\{\alpha_i\} = E$.
- iii) \Longrightarrow i). 每个 α_i 在 F 上纯不可分,从而在 F 上的极小多项式只有一根. 设 σ 是 F-嵌入 $E \to E^{\rm a}$,只有 $\sigma(\alpha_i) = \alpha_i, \forall i \in I$,从而 $\sigma = {\rm id}$.

E/F 是可分扩张, 等价于 E 存在可分的生成元. 当 E/F 有限时, 等价于 $[E:F]_s = [E:F]$.

定理 2.4 i) 设域的代数扩张塔 $k \subset F \subset E$, 则 E/k 是纯不可分 (resp. 可分) 扩张当且仅当 E/F, F/k 是纯不可分 (resp. 可分) 扩张.

ii) 设 E/k 是纯不可分 (resp. 可分) 扩张,F/k 是任意域扩张,E,F 在某一共同的域中,则 EF/F 是纯不可分 (resp. 可分) 扩张.

iii) 设 E/k,F/k 是纯不可分 $(resp.\ 可分)$ 扩张,E,F 在某一共同域中,则 EF/k 是纯不可分 $(resp.\ 可分)$ 扩张.

iii) 可以由 i),ii) 推出. 用图表表示则是

设代数扩张 K/k, 则 K 中所有在 k 上可分的元素组成的集合 K_0 构成域.

定理 2.5 K_0/k 是可分扩张, K/K_0 是纯不可分扩张.

事实上, 设 $\alpha \in K$, 存在 p^u 使 α^{p^u} 在 k 上可分. 于是 $\alpha^{p^u} \in K_0$, 导致 α 在 K_0 上纯不可分.

我们有 $[K:k]_s = [K:K_0]_s [K_0:k]_s = [K_0:k]$. 定义 $[K:k]_i = [K:K_0]$, 则 $[K:k]_s [K:k]_i = [K:k]$.

定理 2.6 设 $E, F \in \mathbb{R}$ 的有限扩张, 且 E/k 可分, F/k 纯不可分. 设 E, F 在某个共同的域之中, 有

$$[EF: F] = [E: k] = [EF: k]_s,$$

 $[EF: E] = [F: k] = [EF: k]_i.$

画图 (s 表示可分扩张,i 表示纯不可分扩张)

定理 2.7 设 K/k 是正规扩张, $G = \operatorname{Aut}_k K$, 则 K^G/k 是纯不可分扩张, K/K^G 是可分扩张. 且 $K^GK_0 = K$, $K_0 \cap K^G = k$.

图表如下 (s 表示可分扩张,i 表示纯不可分扩张).

设 $\alpha \in K^G$, 设 k-嵌入 $\sigma : k(\alpha) \to K^a$, 延拓为 $\sigma^* : K \to K^a.K/k$ 正规, 从而 $\sigma^* \in \operatorname{Aut}_k K$, 于是 $\sigma(\alpha) = \alpha$, 从而 $\sigma = \operatorname{id}$. 从而 $[k(\alpha) : k]_s = 1, \alpha$ 在 k 上纯不可分.

设 $\alpha \in K$, 记 $G = \operatorname{Aut}_k K$. 令 $G\alpha = \{\alpha_1, \dots, \alpha_r\}$ (这当然是有限集). 记 $g(x) = (x - \alpha_1) \dots (x - \alpha_r)$. 易见 $g(x) \in K^G[x]$ 是可分多项式, α 是 g(x) 的根.

由 K^G/k 纯不可分知 K_0K^G/K_0 纯不可分. 再由 K/K_0 纯不可分知 K/K_0K^G 可分. 类似推出 K/K_0K^G 可分, 从而 $K=K_0K^G$.

由 K_0/k 可分和 K^G/k 纯不可分知 $K_0 \cap K^G/k$ 同时是可分和纯不可分的, 从而 $K_0 \cap K^G = k$.

注记: 当 K/k 同时是可分扩张和正规扩张, 即伽罗瓦扩张时, $K^G = k$, 且 $[K:k] = [K:k]_s = |G|$.

这说明, 当 K/k 是正规扩张时, K 由一个在 k 上可分的域和一个在 k 上纯不可分的域合成.

定理 2.8 设 K/k 是正规扩张, 则 K_0/k 是正规扩张.

设 $\sigma: K_0 \to K^a$ 是 k-嵌入, 延拓为嵌入 $K \to K^a$, 仍然记为 $\sigma.K/k$ 正规, 从而 $\sigma: K \to K$ 是 K 的 k-自同构. $\sigma K_0 \subset K$ 在 k 上可分, 从而 $\sigma K_0 \subset K_0$. 只有 $\sigma K_0 = K_0$.

域 k 被称为完美域, 如果 $k^p=k$, 其中 p 是 k 的特征. 每个特征零的域都是完美的. 每个有限域也都是完美的.

定理 2.9 k 是完美域当且仅当 k 的每个代数扩张是可分的.

这里设 $\operatorname{char} k = p > 0$.

设 k 是完美域, 记 $p = \operatorname{char} k$. 首先说明 k 的纯不可分扩张只有本身. 设 F/k 纯不可分, 设 $\alpha \in F$, 则 $\operatorname{Irr}(\alpha, k, x)$ 形如 $x^{p^u} - a, a \in k$. 由 k 完美知 $x^{p^u} - a$ 的根在 k 上, 从而 $\alpha \in k$.

设 α 在 k 上代数 (α 在某一扩域中), 取 $k(\alpha)$ 的正规闭包 K(在一选定的代数闭包中). 则 K 由一个在 k 上可分的域和一个在 k 上纯不可分的域合成. 然而在 k 上纯不可分的代数扩张只有 k 本身, 得到 K/k 可分, 从而 α 在 k 上可分.

反之, 设 k 的每个代数扩张可分. 设 $\alpha \in k$. 取 $\beta \in k^{a}$ 是多项式 $x^{p} - \alpha$ 的一根, 则 β 在 k 上纯不可分, 从而 $k(\beta)$ 在 k 上纯不可分. 由假设, 只有 $k(\beta) = k$, 从而 $\beta \in k$. 这导致 $k^{p} = k$.

定理 2.10 (Primitive Element Theorem) 设 E/k 是有限扩张,则存在 $\alpha \in E$,使 $E=k(\alpha)$ 等价于 E/k 的中间域只有有限个. 若 E/k 是有限可分扩张,则满足上述条件的 α 存在.

只需考虑 k 是无限域, 设 E/k 中间域只有有限个. 只需证明 $E = k(\alpha, \beta)$ 时的情况然后归纳. 由 E/k 的中间域只有有限个知存在 $c_1 \neq c_2 \in k$ 使得

$$k(\alpha + c_1\beta) = k(\alpha + c_2\beta).$$

记为 F, 有 $\alpha + c_1\beta$, $\alpha + c_2\beta \in F$, 从而 $(c_1 - c_2)\beta \in F$, 从而 $\beta \in F$. 再推出 $\alpha \in F$. 于是 $E = k(\alpha, \beta) = F$. 反之,设 $E = k(\alpha)$. 设 $\Gamma = \{F \mid k \subset F \subset E\}$ 是 E/k 所有中间域的集合, $f(x) = \operatorname{Irr}(\alpha, k, x)$,设 $\Sigma = \{\dot{\mathbf{i}} - g(x) \in E[x] \mid g(x) \mid f(x)\}$. 则 Σ 是有限集. 设 $F \in \Gamma$, 记 $g_F(x) = \operatorname{Irr}(\alpha, F, x)$. 得到映射

$$\Gamma \to \Sigma, F \mapsto g_F(x).$$

再证它是单射, 从而证明定理. 设 $g_F(x)$ 的系数在 k 上生成域 F_0 , 有 $F_0 \subset F.g_F(x)$ 在 F 上不可约, 从 而在 F_0 上不可约, 从而 α 在 F_0 上的极小多项式也为 $g_F(x)$, 有 $[k(\alpha):F_0]=[k(\alpha):F]$, 从而 $F=F_0$. 这说明 F 由 $g_F(x)$ 的系数唯一确定, 从而 $F\mapsto g_F(x)$ 是单射.

设 E/k 是可分扩张. 只对 $E = k(\alpha, \beta)$ 时证明. 令 $\sigma_1, \dots, \sigma_n$ 为两两不同的 k-嵌入 $E \to k^a$. 令

$$P(x) = \prod_{i \neq j} (\sigma_i \alpha + x \sigma_i \beta - \sigma_j \alpha - x \sigma_j \beta).$$

验证 P(x) 不是零多项式, 从而存在 $c \in k$, 使 $P(c) \neq 0$. 于是 $\sigma_i(\alpha + c\beta)$ 两两不同 $(i = 1, 2, \dots, n)$, 于是 $[k(\alpha + c\beta) : k] \geq n$ (在 k^a 中它有不少于 n 个共轭的元素). 但是 $n = [k(\alpha, \beta) : k]$, 只有 $k(\alpha, \beta) = k(\alpha + c\beta)$.

3 多项式的伽罗瓦群

3.1 定义与基本性质

设 F 是域, $f(x) \in F[x]$, E 为 f(x) 在 F 上的分裂域. 将 Aut_FE 称为多项式 f(x) 在 F 上的伽罗瓦群.

以下记 f(x) 的根集为 $\{u_1.u_2, \dots, u_n\} = X$, $\operatorname{Aut}_F E = G$. 令 G 作用于 X 上, $\sigma \in G$ 在 X 上的作用唯一决定 σ , 给出单同态 $G \to S_n$. 我们视 G 为 S_n 的子群.

回忆: 对称群 S_n 的子群 G 被称为 S_n 的可迁子群, 或者说, 集合 $\Lambda = \{1, 2, \dots, n\}$ 上的可迁置换群, 如果 G 在 Λ 上的作用传递.

定理 3.1 i) G 同构于对称群 S_n 的某一子群.

ii) 设 f 无重根, 则 f(x) 在 F 上不可约 \iff G 是 S_n 的可迁子群.

i) 已经说明, 对 ii), 设 f(x) 在 F 上不可约. 任取 $u_1, u_2 \in X, u_1, u_2$ 在 F 上的极小多项式恰为 f, 从而存在 F-同构 $\sigma: F(u_1) \to F(u_2)$, 使得 $\sigma(u_1) = u_2$. 将 σ 延拓为 E 的自同构, 仍然记 σ , 有 $\sigma \in G$, 说 明 G 在 X 上作用传递. 反之, 设 G 在 X 上作用传递, 取 $u \in X$, 记 $g(x) = \operatorname{Irr}(u, F, x).G$ 在 X 上的作用传递, 从而 f(x) 的所有根都是 g(x) 的根, 又 f(x) 无重根,g(x) 不可约, 只有 f(x) = g(x) 在 F 上不可约.

定理 3.2 设 $\sigma \in S_n$. 则 $\sigma \in G$ 当且仅当 σ 保持 f 的根之间的所有代数关系, 即设 $g(x_1, x_2, \dots, x_n) \in F[x_1, x_2, \dots, x_n]$, 则 $g(u_1, u_2, \dots, u_n) = 0 \Longrightarrow g(\sigma(u_1), \dots, \sigma(u_n)) = 0$.

设 $\sigma \in \mathcal{S}_n$ (即 X 的对称群), 且 σ 保持代数关系. 设 $a \in E$, 存在 $\psi \in F[x_1, \dots, x_n]$ 使 $a = \psi(u_1, \dots, u_n)$. 定义

$$\hat{\sigma}: E \to E, a = \psi(u_1, \dots, u_n) \mapsto \psi(\sigma(u_1), \dots, \sigma(u_n)).$$

验证这是良定义的, 且 $\hat{\sigma} \in \text{Aut}_F E$.

从而,G 等价于保持 f(x) 所有根之间的代数关系的 $\{u_1,u_2,\cdots,u_n\}$ 上的所有置换构成的群.G 反映的即是 f(x) 根之间的对称.

3.2 判别式

依然沿用上文记号, 下设 F 的特征不为 2, f(x) 无重根, 从而 E/F 是 (有限) 伽罗瓦扩张. 本节解决以下问题: 在伽罗瓦对应下, $G\cap \mathcal{A}_n$ 对应的中间域是什么.

令 $\Delta = \prod_{1 \leq i < j \leq n} (u_i - u_j)$, 对 $\sigma \in G$, 有

$$\sigma(\Delta^2) = \sigma(\Delta)^2 = (\pm \Delta)^2 = \Delta^2.$$

由此, $\Delta^2 \in E^G = F$. 称 Δ^2 为 f 的判别式. 看出 $\sigma(\Delta) = \Delta \Longleftrightarrow \sigma \in \mathcal{A}_n \cap G$, 从而 $F(\Delta) = E^{G \cap \mathcal{A}_n}$.

定理 3.3 *i)* $\operatorname{Aut}_{F(\Delta)}E = G \cap \mathcal{A}_n$, $E^{G \cap \mathcal{A}_n} = F(\Delta)$. *ii)* $G \subset \mathcal{A}_n \iff \Delta \in F$.

3.3 三次方程

沿用上节记号和条件, 设 f(x) 是 F 上的 3 次无重根不可约多项式. S_3 的可迁子群只有 S_3 和 A_3 , 故

$$G = \begin{cases} \mathcal{A}_3 & \text{若 } \Delta \in F, \\ \mathcal{S}_3 & \text{否则.} \end{cases}$$

3.4 四次方程

 S_4 的全部可迁子群是

- i) S_4 ,
- ii) \mathcal{A}_4 ,
- iii) $V = \{(1), (12)(34), (13)(24), (14)(23)\},\$
- iv) $C_4 = \langle (1234) \rangle$ 以及其共轭子群,
- v) 3 个 2-Sylow 子群: $D_4 = V \cup \{(1234), (1432), (24), (13)\}$ 和其共轭.

设 $f(x) = x^4 - p_1 x^3 + p_2 x^2 - p_3 x + p_4 \in F[x]$ 是无重根不可约多项式,E 是 f(x) 在 F 上的分裂 域, r_1, r_2, r_3, r_4 是 f(x) 的根. 令

$$\alpha = r_1 r_2 + r_3 r_4, \beta = r_1 r_3 + r_2 r_4, \gamma = r_1 r_4 + r_2 r_3.$$

则 V 保持 α, β, γ . 从而 $F(\alpha, \beta, \gamma) \subset E^{G \cap V}$. 另一方面,可以验证 $G - G \cap V$ 中的元都变动 α, β, γ 之一,从而 $E^{G \cap V} = F(\alpha, \beta, \gamma)$.(V 所有陪集的代表元分别为 1, (123), (132), (12), (23), (13))

则 $F(\alpha,\beta,\gamma)$ 恰是 r(x) 在 F 上的分裂域. 易验证 α,β,γ 两两不同. 令 $m=[F(\alpha,\beta,\gamma):F]$, 则 $m\mid 6=|\mathcal{S}_3|$.

定理 3.4 设 F 特征不为 2. 其他记号同上. 有

- i) $G = S_4 \iff r(x)$ 在 F 上不可约且 f 的判别式不属于 $F^2 \iff m = 6$.
- ii) $G = A_4 \iff r(x)$ 在 F 上不可约且 f 的判别式属于 $F \iff m = 3$.
- $iii) G = V \iff m = 1.$
- iv) $G \simeq C_4 \iff m = 2$ 且 f 在 $F(\alpha, \beta, \gamma)$ 上可约.
- v) $G \simeq D_4 \iff m = 2$ 且 f 在 $F(\alpha, \beta, \gamma)$ 上不可约.

记 $L = F(\alpha, \beta, \gamma)$, 有 $m = [L: F] = [G: G \cap V]$.

当 $G = S_4$ 时 $m = [L: F] = [G: G \cap V] = 6$. 此时 r(x) 在 F 上不可约, 判别式不属于 $F^2.G = A_4$ 时也有类似推理.

反之设 r(x) 在 F 上不可约, 则 $3 \mid |G|$. 但 G 是 S_4 的可迁子群, 只有 $G = S_4$ 或 A_4 . 再由 f 的判别式 决定 G. 也可知 |G| = [E:L][L:F] = 4m. 所以当 m = 6 时 |G| = 24, 当 m = 3 时 G = 12.

对 iii), 若 G = V, 则 $G \cap V = G$, 从而 m = 1. 反之由 m = 1 可推出 G = V.

我们有 $E = L(r_1)$, 因为 S_4 中只有恒等映射才能保持 $L(r_1)$ 每个元不动. 设 m = 2, 则 f(x) 在 L 上不可约当且仅当 [E:L] = 4, 当且仅当 [E:F] = 8, 当且仅当 $G \simeq D_4$.

3.5 素数次对称群

设 p 是素数, $f(x) \in \mathbf{Q}[x]$ 是 \mathbf{Q} 上的 p 次不可约多项式, 若 f(x) 恰有两个非实的复根, 则 f(x) 的伽罗瓦群同构于 S_p .

f(x) 无重根,f(x) 的伽罗瓦群是 S_p 的可迁子群, 从而含有 p-轮换. 令 τ 是复数域的复共轭在 f(x) 的分裂域 E 上的限制, 验证 τ 是对换. 对换和 p-轮换生成 S_p .

3.5.1 布饶尔的构造

1. 设 m 是正偶数, $k \ge 5$ 是奇数, $n_1 < n_2 < \cdots < n_{k-1}$ 均为偶数, 令

$$g(x) = (x^2 + m)(x - n_1) \cdots (x - n_{k-2}) \in \mathbf{Z}[x].$$

分析 g(x) 在开区间 (n_i,n_{i+1}) 的取值的正负, 知道 y=g(x) 至少有 $\frac{k-3}{2}$ 个极大值, 在 (n_1,n_{k-2}) 中. 而任意奇数 h, 有 |g(h)|>2, 从而上述极大值都大于 2.

2. 令 f(x) = g(x) - 2, 则 f(x) 在开区间 (n_1, n_{k-2}) 至少有 k-3 个实根. 然而 $f(n_{k-2}) = -2$, $f(\infty) = \infty$, 因此 f(x) 必有实根大于 n_{k-2} . 由此 f(x) 至少有 k-2 个两两不同的实根. 设 r_1, r_2, \cdots, r_k 是 f(x) 的全部复根, 则

$$\begin{cases} \sum_{1 \le i \le k} r_i = \sum_{1 \le i \le k-2} n_i, \\ \sum_{1 \le i < j < k} r_i r_j = m + \sum_{1 \le i < j \le k-2} n_i n_j. \end{cases}$$

从而 $\sum r_i^2 = \sum n_i^2 - 2m$. 当 $m > \frac{1}{2} \sum n_i^2$ 时两式小于 0, 这意味至少有一个 r_i 不是实数. 从而 f(x) 有两个非实的复根.

3. 用 Eisenstein 判别法说明 f(x) 在 **Q** 上不可约.

3.5.2 素数次对称群可解的可迁子群

- 1. 设 $G \in S_n$ 的可迁子群, $H \in G$ 的正规子群. 则 $\{1, 2, \dots, n\}$ 的每一个 H-轨道有相同的长度. 由此证明: 若 n = p 是素数且 $H \neq 1$, 则 $H \in S_n$ 的可迁子群,从而 $p \mid |H|$, 进而, $H \triangleq p$ -轮换.
- 2. 设 $G \in \mathcal{S}_p$ 的可迁子群,p 是素数. $H \in G$ 所有 p 阶元生成的子群, 则
 - i) H 是单群.
 - ii) G/H 是循环群, 且阶是 p-1 的因子.
- 3. 设 $\langle (123\cdots p)\rangle = C \subset \mathcal{S}_p$, 令 $L = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a,b \in \mathbf{F}_p, a \neq 0 \right\}$. 则 $N_{\mathcal{S}_p}(C) \simeq L$.
- 4. 设 $G \in \mathcal{S}_p$ 可解的可迁子群. 则 G 同构于 L 的子群.