Supplementary Material for Unsupervised Discriminative Feature Selection With $\ell_{2,0}$ -Norm Constrained Sparse Projection

Xia Dong, Feiping Nie*, Senior Member, IEEE, Lai Tian, Rong Wang, and Xuelong Li, Fellow, IEEE

I. NOTATIONS

TABLE I: Summary of Notations

Notations	Descriptions
\overline{n}	Number of samples
d	Number of features
c	Number of clusters
m	Reduced dimensionality
k	Number of selected features
1_n	Vector with all n elements as one
$I_{n imes n}$	Identity matrix with size $n \times n$
\mathbb{R}	Set of real numbers
\mathbb{Z}^+	Set of positive integers
$\text{Tr}(oldsymbol{X})$	Trace of square matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$
$\operatorname{rank}(\boldsymbol{X})$	Rank of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
$oldsymbol{x}_i$	The i -th column of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
$oldsymbol{x}^i$	The <i>i</i> -th row of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
x_{ij}	The (ij) -th element of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
X^{\top}	Transpose of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
X^{\dagger}	Moore-Penrose inverse of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
$\{\lambda_i(\boldsymbol{X})\}_{i=1}^n$	Eigenvalues of X , ordered in descending order
$\ \boldsymbol{X}\ _F = \sqrt{\text{Tr}(\boldsymbol{X}^\top \boldsymbol{X})}$	Frobenius norm of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
$\ oldsymbol{X}\ _{p,q} = \left(\sum_{i=1}^n \left\ oldsymbol{x}^i ight\ _p^q ight)^{1/q}$	$\ell_{p,q} ext{-norm of matrix }\mathbf{X}\in\mathbb{R}^{n imes d}$
	1-norm of matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$
	Infinity norm of matrix $\mathbf{X} \in \mathbb{R}^{n imes d}$

II. THE WORKFLOW OF SPDFS

The workflow of SPDFS is illustrated in Fig. 1.

III. CLARIFIED EXPRESSION OF Eq. (14)

For clarity, we present a more detailed and explicit derivation of Eq. (14) below.

$$\begin{split} &\sum_{i=1}^{n} \sum_{j=1}^{c} y_{ij}^{T} \| \boldsymbol{W}^{\top} \boldsymbol{x}_{i} - \boldsymbol{W}^{\top} \boldsymbol{u}_{j} \|_{2}^{2} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{c} f_{ij} \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{W} \boldsymbol{W}^{\top} \boldsymbol{x}_{i} - 2 \boldsymbol{x}_{i}^{\top} \boldsymbol{W} \boldsymbol{W}^{\top} \boldsymbol{u}_{j} + \boldsymbol{u}_{j}^{\top} \boldsymbol{W} \boldsymbol{W}^{\top} \boldsymbol{u}_{j} \right) \\ &= \text{Tr} \left(\boldsymbol{W}^{\top} \boldsymbol{X} \text{diag} \left(\boldsymbol{F} \boldsymbol{1} \right) \boldsymbol{X}^{\top} \boldsymbol{W} \right) - \sum_{j=1}^{c} \frac{\boldsymbol{f}_{j}^{\top} \boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{W}^{\top} \boldsymbol{X} \boldsymbol{f}_{j}}{\boldsymbol{f}_{j}^{\top} \boldsymbol{1}} \\ &= \text{Tr} \left(\boldsymbol{W}^{\top} \boldsymbol{X} \left(\text{diag} \left(\boldsymbol{F} \boldsymbol{1} \right) - \boldsymbol{F} \text{diag} \left(\boldsymbol{F}^{\top} \boldsymbol{1} \right)^{-1} \boldsymbol{F}^{\top} \right) \boldsymbol{X}^{\top} \boldsymbol{W} \right) \\ &= \text{Tr} \left(\boldsymbol{W}^{\top} \boldsymbol{X} \left(\boldsymbol{D} - \boldsymbol{G} \right) \boldsymbol{X}^{\top} \boldsymbol{W} \right) \end{split}$$

$$= \operatorname{Tr} \left(\mathbf{W}^{\top} \mathbf{X} \mathbf{L} \mathbf{X}^{\top} \mathbf{W} \right)$$

$$= \operatorname{Tr} \left(\mathbf{W}^{\top} \mathbf{S}_{m} \mathbf{W} \right), \tag{1}$$

where $S_m = XLX^{\top}$, and $L = D - G = \operatorname{diag}(F1) - F\operatorname{diag}(F^{\top}1)^{-1}F^{\top}$ is indeed the Laplacian matrix in graph theory. To see why, we analyse its two components, D and G, separately. First, $G = F\operatorname{diag}(F^{\top}1)^{-1}F^{\top}$ serves as a normalized similarity matrix, capturing the pairwise similarity among samples while incorporating class importance normalization. Second, given the definition of the degree matrix, $D = \operatorname{diag}(G1)$. By direct derivation, we have $D = \operatorname{diag}(F1)$.

IV. PRACTICAL AND EFFICIENT CHOICE OF γ

In problem (16), $S_d = \gamma I - S_o$, where $S_o = S_m - \alpha S_t$. γ is large enough to ensure S_d is positive semi-definite. Theoretically, γ can be set to the largest eigenvalue of S_o , i.e., $\lambda_{\max}(S_o)$. However, computing $\lambda_{\max}(S_o)$ via eigenvalue decomposition is computationally expensive. Instead, for the square matrix S_o , the 1-norm $\|S_o\|_1$ and infinity norm $\|S_o\|_\infty$ provide efficient upper bounds on $\lambda_{\max}(S_o)$ without requiring explicit eigenvalue computation [2]. Since S_o is symmetric, $\|S_o\|_1 = \|S_o\|_\infty$, making them equivalent choices for γ and ensuring computational efficiency.

V. AN EXAMPLE OF MATRIX A

To clarify the description of matrix $A \in \{0,1\}^{d \times k}$ in Section IV-A1, we provide an example. Suppose there are d=6 inputs, and we select k=3 with row indices $\boldsymbol{q}=[2,4,5]$. According to the definition of the operator $\Omega_d^k(\boldsymbol{q})$, the corresponding row-selection matrix \boldsymbol{A} is:

$$\boldsymbol{A} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

From this example, we see that A is a sparse matrix with k columns, each containing exactly one 1 at the row index specified by q, which implies that $A^{\top} \mathbf{1}_d = \mathbf{1}_k$.

Fig. 1: Illustration of the SPDFS workflow. Guided by the principle of supervised LDA, SPDFS jointly performs fuzzy c-means membership learning $\boldsymbol{Y} \in \mathbb{R}^{n \times c}$ and PCA projection learning $\boldsymbol{W} \in \mathbb{R}^{d \times m}$ under an $\ell_{2,0}$ -norm constraint $\|\boldsymbol{W}\|_{2,0} = k$ for feature-wise sparsity, enabling discriminative feature selection in an unsupervised manner.

```
Algorithm 3: Solve Problem (6).

Input: X \in \mathbb{R}^{d \times n}, S_d \in \mathbb{R}^{d \times d}, d, k, m, r.

Initialization: Initialize Y_0 and M_0 by Eq. (5), and initialize W_0 randomly.

while not converge do

Update \alpha by Eq. (9).

while not converge do

Update M by Eq. (11).

Update W by Algorithm 2.

Update W by Eq. (26).

Output: W \in \mathbb{R}^{d \times m}, Y \in \mathbb{R}^{n \times c}, M \in \mathbb{R}^{m \times c}.
```

VI. RELATIONSHIP BETWEEN $oldsymbol{S}_m$ AND $oldsymbol{S}_w$

In problem (36), S_w is the intra-cluster scatter matrix in LDA, given by $S_w = \sum_{j=1}^c \sum_{y_{ij}=1} \| x_i - \bar{x}_j \|_2^2 = \left(X - XY \left(Y^\top Y \right)^{-1} Y^\top \right) \left(X - XY \left(Y^\top Y \right)^{-1} Y^\top \right)^\top = X \left(I - Y \left(Y^\top Y \right)^{-1} Y^\top \right) X^\top$. In fact, this structure can be directly observed from Eq. (1). Specifically, when r=1, we have $f_{ij} = y_{ij}^r = y_{ij}$, leading to $S_m = XLX^\top = X \left(\operatorname{diag}(Y1) - Y \operatorname{diag}\left(Y^\top 1 \right)^{-1} Y^\top \right) X^\top$. Since Y satisfies $\sum_{j=1}^c y_{ij} = 1$ and $y_{ij} \in \{0,1\}$, it follows that $S_m = X \left(I - Y \left(Y^\top Y \right)^{-1} Y^\top \right) X^\top = S_w$. This reveals the relationship between S_m and S_w . That is, when r=1, we have $S_m = S_w$.

VII. CORRECTION TO ALGORITHM 3

The pseudocode for Algorithm 3 in the main text of the published article inadvertently missed a line, specifically the optimization step for variable M. The complete Algorithm 3 is provided here as a supplement.

VIII. CORRECTION TO THE PROOF OF THEOREM 6

The proof of Theorem 6 in the main text has been revised for clarity and completeness. The updated version presented

here provides a more accurate and complete presentation of the proof.

Proof. We begin with problem (31), which can be equivalently expressed as follows:

$$\min_{\operatorname{Tr}(\boldsymbol{W}^{\top}\boldsymbol{S}_{t}\boldsymbol{W})=\operatorname{C}} \frac{\operatorname{Tr}(\boldsymbol{W}^{\top}\boldsymbol{S}_{m}\boldsymbol{W})}{\operatorname{Tr}(\boldsymbol{W}^{\top}\boldsymbol{S}_{t}\boldsymbol{W})}.$$
 (2)

Observe that this trace ratio formulation can be rewritten as: $\frac{\operatorname{Tr}(\boldsymbol{W}^{\top}S_m\boldsymbol{W})}{\operatorname{Tr}(\boldsymbol{W}^{\top}S_t\boldsymbol{W})} = \frac{\sum_{i=1}^m \boldsymbol{w}_i^{\top}S_m\boldsymbol{w}_i}{\sum_{i=1}^m \boldsymbol{w}_i^{\top}S_t\boldsymbol{w}_i}$. Suppose that $\frac{\boldsymbol{w}_1^{\top}S_m\boldsymbol{w}_1}{\boldsymbol{w}_1^{\top}S_t\boldsymbol{w}_1}$ $\frac{\sum_{i=1}^{m} \boldsymbol{w}_{i}^{\top} \boldsymbol{S}_{m} \boldsymbol{w}_{i}}{\sum_{i=1}^{m} \boldsymbol{w}_{i}^{\top} \boldsymbol{S}_{t} \boldsymbol{w}_{i}}. \text{ Suppose that } \frac{\boldsymbol{w}_{1}^{\top} \boldsymbol{S}_{m} \boldsymbol{w}_{1}}{\boldsymbol{w}_{1}^{\top} \boldsymbol{S}_{t} \boldsymbol{w}_{1}}$ is the minimum among the set $\left\{ \frac{\boldsymbol{w}_{i}^{\top} \boldsymbol{S}_{m} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{\top} \boldsymbol{S}_{t} \boldsymbol{w}_{i}} \right\}_{i=1}^{m}$. 2, we have $\frac{\boldsymbol{w}_1^{\top} \boldsymbol{S}_m \boldsymbol{w}_1}{\boldsymbol{w}_1^{\top} \boldsymbol{S}_t \boldsymbol{w}_1} \leq \frac{\operatorname{Tr}(\boldsymbol{W}^{\top} \boldsymbol{S}_m \boldsymbol{W})}{\operatorname{Tr}(\boldsymbol{W}^{\top} \boldsymbol{S}_t \boldsymbol{W})}$. Since \boldsymbol{w}_* is defined $rg \min \frac{w^{\top} S_m w}{w^{\top} S_t w}$, it follows that for any W, $\frac{\boldsymbol{w}_{*}^{\top}\boldsymbol{S}_{m}\boldsymbol{w}_{*}}{\boldsymbol{w}_{*}^{\top}\boldsymbol{S}_{t}\boldsymbol{w}_{*}} \leq \frac{\boldsymbol{w}_{1}^{\top}\boldsymbol{S}_{m}\boldsymbol{w}_{1}}{\boldsymbol{w}_{1}^{\top}\boldsymbol{S}_{t}\boldsymbol{w}_{1}} \leq \frac{\operatorname{Tr}(\boldsymbol{W}^{\top}\boldsymbol{S}_{m}\boldsymbol{W})}{\operatorname{Tr}(\boldsymbol{W}^{\top}\boldsymbol{S}_{t}\boldsymbol{W})}.$ When each column of W is equal to w_* , i.e., $w_i = w_*$ for all $i \in [1, m]$, the equality in $\frac{w_*^\top S_m w_*}{w_*^\top S_t w_*} \leq \frac{\text{Tr}(W^\top S_m W)}{\text{Tr}(W^\top S_t W)}$ holds. Thus, the minimum value of $\frac{\text{Tr}(W^\top S_m W)}{\text{Tr}(W^\top S_t W)}$ is achieved at $\frac{w_*^\top S_m w_*}{w_*^\top S_t w_*}$. To satisfy the constraint $\operatorname{Tr}(\mathbf{W}^{\top} \hat{\mathbf{S}}_{t} \mathbf{W}) = \mathrm{C}$, an optimal solution to problem (31) is $\mathbf{W}_* = [c_1 \mathbf{w}_*, c_2 \mathbf{w}_*, \dots, c_m \mathbf{w}_*]$, which is a trivial solution since all columns are multiples of the same vector w_* , making the rank of W_* at most 1, under the assumption that w_* is the unique solution. If w_* is not unique, then each column of the optimal W_* lies within the subspace spanned by the solutions of w_* . Here, $\{c_i\}_{i=1}^m$ are arbitrary constants chosen such that $\operatorname{Tr}(W_*^{\top} S_t W_*) = C$. This completes the proof.

IX. THE PROOF OF THEOREM 1

Proof. Suppose x_* is the globally optimal solution to problem (7), with the corresponding globally minimal objective value α_* . This implies that $\frac{h(x_*)}{p(x_*)} = \alpha_*$. Consequently, $\forall \ x \in \mathcal{S}$, we have $\frac{h(x)}{p(x)} \geq \alpha_*$. Since p(x) > 0, it follows that $h(x) - \alpha_* p(x) \geq 0$. Moreover, noting that $h(x_*) - \alpha_* p(x_*) = 0$, we conclude that $\min_{x \in \mathcal{S}} (h(x) - \alpha_* p(x)) = 0$. Now, define the function $f(\alpha) = \min_{x \in \mathcal{S}} (h(x) - \alpha p(x))$. Then, we have $f(\alpha_*) = 0$. This completes the proof.

X. The Proof of Theorem 2

Proof. In Algorithm 1, we observe from lines 1–2 that $h(\boldsymbol{x}_t) - \alpha_t p(\boldsymbol{x}_t) = 0$ and $h(\boldsymbol{x}_{t+1}) - \alpha_t p(\boldsymbol{x}_{t+1}) \leq h(\boldsymbol{x}_t) - \alpha_t p(\boldsymbol{x}_t)$. Accordingly, it follows that $h(\boldsymbol{x}_{t+1}) - \alpha_t p(\boldsymbol{x}_{t+1}) \leq 0$, which implies $\frac{h(\boldsymbol{x}_{t+1})}{p(\boldsymbol{x}_{t+1})} \leq \alpha_t = \frac{h(\boldsymbol{x}_t)}{p(\boldsymbol{x}_t)}$. This indicates that Algorithm 1 guarantees the objective function of problem (7) is non-increasing at each iteration until convergence.

According to Theorem 1, the global minimum of the objective in problem (7) corresponds to the root of the function $f(\alpha)$. It is well known that Newton's method is widely regarded as an effective algorithm for root-finding under standard regularity conditions. According to line 2 of Algorithm 1, let $f(\alpha_t) = h(\boldsymbol{x}_{t+1}) - \alpha_t p(\boldsymbol{x}_{t+1})$, then the derivative is $f'(\alpha_t) = -p(\boldsymbol{x}_{t+1})$. Applying the Newton's update rule, we obtain

$$\alpha_{t+1} = \alpha_t - \frac{f(\alpha_t)}{f'(\alpha_t)} = \alpha_t - \frac{h(x_{t+1}) - \alpha_t p(x_{t+1})}{-p(x_{t+1})} = \frac{h(x_{t+1})}{p(x_{t+1})}$$

which coincides with line 1 of Algorithm 1. Therefore, the iterative scheme in Algorithm 1 is equivalent to applying Newton's method to find the root of $f(\alpha)$. According to [1], Newton's method enjoys a quadratic convergence rate under standard regularity conditions. This completes the proof. \Box

XI. THE PROOF OF REMARK 1

Proof. According to problems (16) and (22), we have

$$f(\boldsymbol{W}_{t}) = \operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{t}\right),$$

$$g\left(\boldsymbol{W}_{t} \middle| \boldsymbol{W}_{t}\right) = \operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top} \left(\boldsymbol{S}_{d} \boldsymbol{W}_{t} \left(\boldsymbol{W}_{t}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{t}\right)^{\dagger} \boldsymbol{W}_{t}^{\top} \boldsymbol{S}_{d}\right) \boldsymbol{W}_{t}\right).$$

$$(4)$$

It is straightforward to verify that $f(\mathbf{W}_t) = g(\mathbf{W}_t | \mathbf{W}_t)$ since $\mathbf{P} = \mathbf{P} \mathbf{P}^{\dagger} \mathbf{P}$ for any matrix \mathbf{P} .

Since S_d is positive semi-definite, it admits a factorization $S_d = QQ^{\top}$. Denote the following matrices:

$$\mathbf{\Upsilon} = \mathbf{Q}^{\top} \mathbf{W}_t \left(\mathbf{W}_t^{\top} \mathbf{S}_d \mathbf{W}_t \right)^{\dagger} \mathbf{W}_t^{\top} \mathbf{Q}, \tag{5}$$

$$\Psi = Q^{\top} W W^{\top} Q. \tag{6}$$

Then, the function $g(\mathbf{W}|\mathbf{W}_t)$ can be rewritten as

$$g\left(\boldsymbol{W}|\boldsymbol{W}_{t}\right) = \operatorname{Tr}\left(\boldsymbol{W}^{\top}\left(\boldsymbol{S}_{d}\boldsymbol{W}_{t}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\right)^{\dagger}\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\right)\boldsymbol{W}\right)$$
$$= \operatorname{Tr}\left(\boldsymbol{\Upsilon}\boldsymbol{\Psi}\right). \tag{7}$$

According to Theorems 4.3.53 and 1.3.22 [2], and noting that $\lambda_i(\Psi) \geq 0$ for all $i \in [1, m]$, we obtain

$$\operatorname{Tr}\left(\mathbf{\Upsilon}\mathbf{\Psi}\right) \leq \sum_{i=1}^{d} \lambda_{i}\left(\mathbf{\Upsilon}\right) \lambda_{i}\left(\mathbf{\Psi}\right) \leq \sum_{i=1}^{m} \lambda_{i}\left(\mathbf{\Psi}\right). \tag{8}$$

Since $\operatorname{rank}(\Psi) \leq \operatorname{rank}(\boldsymbol{W}) = m$, we have $\sum_{i=1}^m \lambda_i(\Psi) = \operatorname{Tr}(\Psi)$. That is, $\operatorname{Tr}(\Upsilon\Psi) \leq \operatorname{Tr}(\Psi) = \operatorname{Tr}(\boldsymbol{W}^\top \boldsymbol{S}_d \boldsymbol{W}) = f(\boldsymbol{W})$. In summary, we have $g(\boldsymbol{W}|\boldsymbol{W}_t) \leq f(\boldsymbol{W})$. This completes the proof.

XII. THE PROOF OF THEOREM 3

According to [3], we provide the proof of Theorem 3 below.

Proof. Recall that Remark 1 demonstrates that the surrogate problem (22) for optimizing W meets the condition (20) required by the majorize-minimization (MM) framework [4], [5]. Let $\widehat{W}_{t+1} = \arg\max_{W} g(W|W_t)$, according to Eq. (21), the following inequality holds:

$$f(\widetilde{\boldsymbol{W}}_{t+1}) \ge g(\widetilde{\boldsymbol{W}}_{t+1}|\boldsymbol{W}_t) \ge g(\boldsymbol{W}_t|\boldsymbol{W}_t) = f(\boldsymbol{W}_t). \tag{9}$$

According to Eq. (3) and inequality (9), we have

$$\operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\right) \leq \operatorname{Tr}\left(\widetilde{\boldsymbol{W}}_{t+1}^{\top}\boldsymbol{S}_{d}\widetilde{\boldsymbol{W}}_{t+1}\right). \tag{10}$$

Given $\widetilde{W}_{t+1} = A_{t+1}\widetilde{B}_{t+1}$ and $W_{t+1} = A_{t+1}B_{t+1}$. According to problem (23), B_{t+1} maximizes its objective in the (t+1)-th iteration, then we have

$$\operatorname{Tr}\left(\widetilde{\boldsymbol{W}}_{t+1}^{\top} \boldsymbol{S}_{d} \widetilde{\boldsymbol{W}}_{t+1}\right) = \operatorname{Tr}\left(\widetilde{\boldsymbol{B}}_{t+1}^{\top} \boldsymbol{A}_{t+1}^{\top} \boldsymbol{S}_{d} \boldsymbol{A}_{t+1} \widetilde{\boldsymbol{B}}_{t+1}\right)$$

$$\leq \operatorname{Tr}\left(\boldsymbol{B}_{t+1}^{\top} \boldsymbol{A}_{t+1}^{\top} \boldsymbol{S}_{d} \boldsymbol{A}_{t+1} \boldsymbol{B}_{t+1}\right)$$

$$= \operatorname{Tr}\left(\boldsymbol{W}_{t+1}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{t+1}\right). \tag{11}$$

According to inequalities (10) and (11), we have

$$\operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\right) \leq \operatorname{Tr}\left(\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t+1}\right). \tag{12}$$

This indicates that Algorithm 2 ensures the objective of problem (16) remains non-decreasing with each iteration. Then we aim to prove that if $W_t \neq W_{t+1}$, then $\operatorname{Tr}(W_t^{\top} S_d W_t) \neq \operatorname{Tr}(W_{t+1}^{\top} S_d W_{t+1})$. This result demonstrates the ascent property of Algorithm 2, namely, $\operatorname{Tr}(W_t^{\top} S_d W_t) < \operatorname{Tr}(W_t^{\top} S_d W_{t+1})$.

Note that if $W_t \neq W_{t+1}$, then $A_t \neq A_{t+1}$, since W = AB and B is formed by the leading m eigenvectors of $(A^{\top}S_dA)$. Therefore, suppose that there exists $A_t \neq A_{t+1}$ such that $\operatorname{Tr}(W_t^{\top}S_dW_t) = \operatorname{Tr}(W_{t+1}^{\top}S_dW_{t+1})$. Then the equality in inequality (8) holds. According to the equality condition in Theorem 4.3.53 [2], the matrices $Q^{\top}W_t(W_t^{\top}S_dW_t)^{\dagger}W_t^{\top}Q$ and $Q^{\top}W_{t+1}W_{t+1}^{\top}Q$ are simultaneously diagonalizable. Assuming that S_d is full rank, we have that $\Omega_t = W_t^{\top}S_dW_t$ is diagonal. Define $\Phi_t = Q^{\top}W_t\Omega_t^{-1/2}$, then

$$\boldsymbol{Q}^{\top} \boldsymbol{W}_{t} \left(\boldsymbol{W}_{t}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{t} \right)^{\dagger} \boldsymbol{W}_{t}^{\top} \boldsymbol{Q} = \boldsymbol{Q}^{\top} \boldsymbol{W}_{t} \boldsymbol{\Omega}_{t}^{-1} \boldsymbol{W}_{t}^{\top} \boldsymbol{Q} = \boldsymbol{\Phi}_{t} \boldsymbol{\Phi}_{t}^{\top}, \tag{13}$$

$$\boldsymbol{\Phi}_t^{\top} \boldsymbol{\Phi}_t = \boldsymbol{\Omega}_t^{-1/2} \boldsymbol{W}_t^{\top} \boldsymbol{S}_d \boldsymbol{W}_t \boldsymbol{\Omega}_t^{-1/2} = \boldsymbol{\Omega}_t^{-1/2} \boldsymbol{\Omega}_t \boldsymbol{\Omega}_t^{-1/2} = \boldsymbol{I}_{m \times m}. \tag{14}$$

From the simultaneously diagonalizable property and Theorem 1.3.22 [2], it follows that

$$\begin{aligned} \boldsymbol{Q}^{\top} \boldsymbol{W}_{t+1} \boldsymbol{W}_{t+1}^{\top} \boldsymbol{Q} &= \boldsymbol{\Phi}_{t} \boldsymbol{\Omega}_{t+1} \boldsymbol{\Phi}_{t}^{\top} \\ &= \boldsymbol{Q}^{\top} \boldsymbol{W}_{t} \boldsymbol{\Omega}_{t}^{-1/2} \boldsymbol{\Omega}_{t+1} \boldsymbol{\Omega}_{t}^{-1/2} \boldsymbol{W}_{t}^{\top} \boldsymbol{Q}. \end{aligned} \tag{15}$$

Based on Eq. (15), we have

$$egin{aligned} W_t^ op S_d W_{t+1} W_{t+1}^ op S_d W_t \ &= W_t^ op Q \left(Q^ op W_{t+1} W_{t+1}^ op Q
ight) Q^ op W_t \ &= W_t^ op Q Q^ op W_t \Omega_t^{-1/2} \Omega_{t+1} \Omega_t^{-1/2} W_t^ op Q Q^ op W_t \end{aligned}$$

$$= \Omega_t \Omega_{t+1}. \tag{16}$$

We now consider the objective of the surrogate problem (22), leading to

$$\operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t+1}\left(\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t+1}\right)^{\dagger}\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\right)$$

$$= \operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t+1}\boldsymbol{\Omega}_{t+1}^{-1}\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\right)$$

$$= \operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{Q}\boldsymbol{Q}^{\top}\boldsymbol{W}_{t+1}\boldsymbol{\Omega}_{t+1}^{-1}\boldsymbol{W}_{t+1}^{\top}\boldsymbol{Q}\boldsymbol{Q}^{\top}\boldsymbol{W}_{t}\right)$$

$$= \operatorname{Tr}\left(\boldsymbol{Q}^{\top}\boldsymbol{W}_{t+1}\boldsymbol{\Omega}_{t+1}^{-1}\boldsymbol{W}_{t+1}^{\top}\boldsymbol{Q}\boldsymbol{Q}^{\top}\boldsymbol{W}_{t}\boldsymbol{W}_{t}^{\top}\boldsymbol{Q}\right)$$

$$= \operatorname{Tr}\left(\boldsymbol{\Upsilon}_{t+1}\boldsymbol{\Psi}_{t}\right). \tag{17}$$

From Eq. (17), inequality (8), and Theorem 4.3.53 [2], we obtain

$$\operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{t+1} \boldsymbol{\Omega}_{t+1}^{-1} \boldsymbol{W}_{t+1}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{t}\right)$$

$$\leq \operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{t}\right) = \operatorname{Tr}\left(\boldsymbol{\Omega}_{t}\right).$$
(18)

Let $\Gamma = W_{t+1}^{\top} S_d W_t W_t^{\top} S_d W_{t+1} \in \mathbb{R}^{m \times m}$ and $\mathfrak{V} = \Omega_{t+1}^{-1} \in \mathbb{R}^{m \times m}$, then based on Theorem 4.3.53 [2], we have

$$\operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t+1}\boldsymbol{\Omega}_{t+1}^{-1}\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\right)$$

$$=\operatorname{Tr}\left(\boldsymbol{\Gamma}\boldsymbol{\mho}\right)\geq\sum_{i=1}^{m}\lambda_{i}(\boldsymbol{\Gamma})\lambda_{m-i+1}(\boldsymbol{\mho}).$$
(19)

Note that $\lambda_{m-i+1}(\mathbf{0}) = \lambda_i(\mathbf{\Omega}_{t+1})^{-1}$, and by Eq. (16) and Theorem 1.3.22 [2], we get

$$\sum_{i=1}^{m} \lambda_i(\mathbf{\Gamma}) \lambda_{m-i+1}(\mathbf{U}) = \sum_{i=1}^{m} \frac{\lambda_i(\mathbf{\Omega}_t \mathbf{\Omega}_{t+1})}{\lambda_i(\mathbf{\Omega}_{t+1})} = \operatorname{Tr}(\mathbf{\Omega}_t). \quad (20)$$

Combing inequalities (18), (19) and Eq. (20), we conclude that $\operatorname{Tr}\left(\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t+1}\boldsymbol{\Omega}_{t+1}^{-1}\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\right)=\operatorname{Tr}\left(\boldsymbol{\Omega}_{t}\right)$. According to Theorem 4.3.53 [2], the equality in inequality (19) implies that Γ and $\boldsymbol{\mho}$ are simultaneously diagonalizable. From Eq. (16), we know that $\Gamma=\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}\boldsymbol{W}_{t}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t+1}=\boldsymbol{\Omega}_{t}\boldsymbol{\Omega}_{t+1}$, which implies that $\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{t}=\boldsymbol{\Omega}_{t}^{1/2}\boldsymbol{\Omega}_{t+1}^{1/2}$ is diagonal. Recall that $\boldsymbol{\Phi}_{t}=\boldsymbol{Q}^{\top}\boldsymbol{W}_{t}\boldsymbol{\Omega}_{t}^{-1/2}$ and $\boldsymbol{\Phi}_{t+1}=\boldsymbol{Q}^{\top}\boldsymbol{W}_{t+1}\boldsymbol{\Omega}_{t+1}^{-1/2}$, then we have

$$\Phi_{t}^{\top} \Phi_{t} = \Omega_{t}^{-1/2} W_{t}^{\top} S_{d} W_{t} \Omega_{t}^{-1/2} = I_{m \times m},
\Phi_{t+1}^{\top} \Phi_{t+1} = \Omega_{t+1}^{-1/2} W_{t+1}^{\top} S_{d} W_{t+1} \Omega_{t+1}^{-1/2} = I_{m \times m},
\Phi_{t+1}^{\top} \Phi_{t} = \Omega_{t+1}^{-1/2} W_{t+1}^{\top} S_{d} W_{t} \Omega_{t}^{-1/2} = I_{m \times m}.$$
(21)

Thus, we conclude that $\Phi_t = \Phi_{t+1}$, which implies that $S_d W_t \Omega_t^{-1/2} = S_d W_{t+1} \Omega_{t+1}^{-1/2}$. Since S_d is full rank, it follows that $W_t \Omega_t^{-1/2} = W_{t+1} \Omega_{t+1}^{-1/2}$. Therefore, we conclude that $A_t = A_{t+1}$, since the operation $\Omega^{-1/2}$ does not affect the sparsity pattern of W. This leads to a contradiction with our initial assumption.

The above analysis establishes the non-decreasing property of the sequence $\{\operatorname{Tr}(\boldsymbol{W}_t^{\top}\boldsymbol{S}_d\boldsymbol{W}_t)\}_{t\in\mathcal{Z}^+}$. Note that $\operatorname{Tr}(\boldsymbol{W}_t^{\top}\boldsymbol{S}_d\boldsymbol{W}_t)$ is upper bounded by $\operatorname{Tr}(\boldsymbol{S}_d)$. Therefore, the sequence will eventually converge after a finite number of iterations. Moreover, we have shown that if $\boldsymbol{W}_t \neq \boldsymbol{W}_{t+1}$, then $\operatorname{Tr}(\boldsymbol{W}_t^{\top}\boldsymbol{S}_d\boldsymbol{W}_t) < \operatorname{Tr}(\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_d\boldsymbol{W}_{t+1})$. Therefore, by the contrapositive, if the objective value converges, i.e., $\operatorname{Tr}(\boldsymbol{W}_t^{\top}\boldsymbol{S}_d\boldsymbol{W}_t) = \operatorname{Tr}(\boldsymbol{W}_{t+1}^{\top}\boldsymbol{S}_d\boldsymbol{W}_{t+1})$, then it must be that $\boldsymbol{W}_t = \boldsymbol{W}_{t+1}$ and $\boldsymbol{A}_t = \boldsymbol{A}_{t+1}$. Consequently, the sequence $\{\boldsymbol{W}_t\}_{t\in\mathcal{Z}^+}$ converges to a fixed point $\widehat{\boldsymbol{W}}$, and as $\boldsymbol{W}_t \to \widehat{\boldsymbol{W}}$,

we have $\operatorname{Tr}\left(\boldsymbol{W}_t^{\top}\boldsymbol{S}_d\boldsymbol{W}_t\right) \to \operatorname{Tr}\left(\widehat{\boldsymbol{W}}^{\top}\boldsymbol{S}_d\widehat{\boldsymbol{W}}\right)$. This completes the proof.

XIII. THE PROOF OF LEMMA 1

According to [3], we provide the proof of Lemma 1 below.

Proof. Let $S_d = S_d^m + S_d^c$, We then have the following derivation:

$$\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{*}\right)$$

$$= \max_{\boldsymbol{W}^{\top}\boldsymbol{W}=\boldsymbol{I}_{m\times m},\ \|\boldsymbol{W}\|_{2,0}=k} \operatorname{Tr}\left(\boldsymbol{W}^{\top}\left(\boldsymbol{S}_{d}^{m}+\boldsymbol{S}_{d}^{c}\right)\boldsymbol{W}\right)$$

$$|, \text{ we} \leq \max_{\boldsymbol{W}^{\top}\boldsymbol{W}=\boldsymbol{I}_{m\times m},\ \|\boldsymbol{W}\|_{2,0}=k} \operatorname{Tr}\left(\boldsymbol{W}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}\right) + \max_{\boldsymbol{W}^{\top}\boldsymbol{W}=\boldsymbol{I}_{m\times m},\ \|\boldsymbol{W}\|_{2,0}=k} \operatorname{Tr}\left(\boldsymbol{W}^{\top}\boldsymbol{S}_{d}^{c}\boldsymbol{W}\right)$$

$$\leq \operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}_{m}\right) + \max_{\boldsymbol{W}^{\top}\boldsymbol{W}=\boldsymbol{I}_{m\times m}} \operatorname{Tr}\left(\boldsymbol{W}^{\top}\boldsymbol{S}_{d}^{c}\boldsymbol{W}\right)$$

$$\boldsymbol{O} = \leq \operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}_{m}\right) + \sum_{\boldsymbol{D} \in \boldsymbol{A}_{d}} \lambda_{i}(\boldsymbol{S}_{d}), \tag{22}$$

from which it follows that

$$\frac{\operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}_{m}\right)}{\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{*}\right)} \geq 1 - \frac{\sum_{i=m+1}^{2m} \lambda_{i}(\boldsymbol{S}_{d})}{\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{*}\right)}.$$
 (23)

Furthermore, we have the following two observations:

$$\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{*}\right) \stackrel{(a)}{\geq} \max_{\boldsymbol{W}^{\top}\boldsymbol{W} = \boldsymbol{I}_{m \times m}, \|\boldsymbol{W}\|_{2,0} = m} \operatorname{Tr}\left(\boldsymbol{W}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}\right)$$

$$\stackrel{(b)}{\geq} \frac{m}{d}\operatorname{Tr}\left(\boldsymbol{S}_{d}\right) = \frac{m}{d}\sum_{i=1}^{d} \lambda_{i}(\boldsymbol{S}_{d}), \tag{24}$$

$$\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{*}\right) \stackrel{(c)}{\geq} \max_{\boldsymbol{W}^{\top}\boldsymbol{W} = \boldsymbol{I}_{m \times m}, \|\boldsymbol{W}\|_{2,0} = k} \operatorname{Tr}\left(\boldsymbol{W}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}\right)$$

$$\stackrel{(d)}{\geq} \frac{k}{d} \sum_{i=1}^{d} \lambda_{i}(\boldsymbol{S}_{d}^{m}) = \frac{k}{d} \sum_{i=1}^{m} \lambda_{i}(\boldsymbol{S}_{d}), \qquad (25)$$

where (a) holds because $m \leq k$, and (c) holds since S_d is positive semi-definite. Inequality (b) holds since k=m, implying that the problem on the left side of (b) achieves its global optimum via Algorithm 2. Inequality (d) holds because $\operatorname{rank}(S_d^m) = m$, and thus the problem on the left side of (d) also achieves its global optimum via Algorithm 2.

also achieves its global optimum via Algorithm 2. Let $z=\min\{\operatorname{rank}\left(S_d\right),2m\},\ c_1=\frac{\sum_{i=m+1}^z\lambda_i(S_d)}{\sum_{i=1}^d\lambda_i(S_d)},\ \text{and}\ c_2=\frac{\sum_{i=m+1}^z\lambda_i(S_d)}{\sum_{i=1}^d\lambda_i(S_d)}.$ Combining inequalities (23), (24), (25), we obtain

$$1 \ge \frac{\operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top} \boldsymbol{S}_{d}^{m} \boldsymbol{W}_{m}\right)}{\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top} \boldsymbol{S}_{d} \boldsymbol{W}_{*}\right)} \ge 1 - \min\left\{\frac{d \cdot c_{1}}{k}, \frac{d \cdot c_{2}}{m}\right\}. \quad (26)$$

Since S_d is positive semi-definite, we have

$$\operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{m}\right) = \operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}_{m}\right) + \operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}^{c}\boldsymbol{W}_{m}\right)$$

$$\geq \operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}_{m}\right). \tag{27}$$

Combining inequalities (26) and (27), we obtain $\varepsilon \leq \min\{(d \cdot c_1/k), (d \cdot c_2/m)\}$. Moreover, according to Theorem 4.3.53 [2], we have

$$\operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{m}\right) \geq \sum_{i=d-m+1}^{d} \lambda_{i}(\boldsymbol{S}_{d}) \geq m \cdot \lambda_{d}(\boldsymbol{S}_{d}).$$
 (28)

Let $\kappa = \lambda_1(S_d)/\lambda_d(S_d)$, then by Ky Fan's Theorem [6], we obtain

$$\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{*}\right) \leq \max_{\boldsymbol{W}^{\top}\boldsymbol{W}=\boldsymbol{I}_{m\times m}} \operatorname{Tr}\left(\boldsymbol{W}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}\right) = \sum_{i=1}^{m} \lambda_{i}(\boldsymbol{S}_{d})$$
$$\leq m \cdot \lambda_{1}(\boldsymbol{S}_{d}) = m \cdot \kappa \cdot \lambda_{d}(\boldsymbol{S}_{d}). \tag{29}$$

Combing inequalities (28) and (29), we obtain $\varepsilon \leq 1 - \kappa^{-1}$. Furthermore, we have

$$\operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{m}\right) \geq \operatorname{Tr}\left(\boldsymbol{W}_{m}^{\top}\boldsymbol{S}_{d}^{m}\boldsymbol{W}_{m}\right)$$

$$\geq \frac{k}{d}\operatorname{Tr}\left(\boldsymbol{S}_{d}^{m}\right) \geq \frac{k}{d}\sum_{i=1}^{m}\lambda_{i}(\boldsymbol{S}_{d}). \tag{30}$$

According to inequality (29), we have

$$\operatorname{Tr}\left(\boldsymbol{W}_{*}^{\top}\boldsymbol{S}_{d}\boldsymbol{W}_{*}\right) \leq \sum_{i=1}^{m} \lambda_{i}(\boldsymbol{S}_{d}). \tag{31}$$

Combing inequalities (30) and (31), we obtain $\varepsilon \le 1 - k/d$. In summary, we conclude that $\varepsilon \le \min\{(d \cdot c_1/k), (d \cdot c_2/m), 1 - \kappa^{-1}, 1 - k/d\}$. This completes the proof.

REFERENCES

- [1] H. W. Kuhn and A. W. Tucker, "Nonlinear programming," in *Traces and Emergence of Nonlinear Programming*. Springer, 2014, pp. 247–258.
- [2] R. A. Horn and C. R. Johnson, *Matrix analysis*, 2nd ed. Cambridge; New York: Cambridge University Press, 2013.
- [3] L. Tian, F. Nie, and X. Li, "Learning feature sparse principal components," arXiv preprint arXiv:1904.10155, 2019.
- [4] Y. Sun, P. Babu, and D. P. Palomar, "Majorization-minimization algorithms in signal processing, communications, and machine learning," *IEEE Transactions on Signal Processing*, vol. 65, no. 3, pp. 794–816, 2016.
- [5] F. Nie, D. Wu, R. Wang, and X. Li, "Truncated robust principle component analysis with a general optimization framework," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 44, no. 2, pp. 1081–1097, 2022.
- [6] K. Fan, "On a theorem of weyl concerning eigenvalues of linear transformations: II," Proceedings of the National Academy of Sciences of the United States of America, vol. 36, no. 1, p. 31, 1950.