应用离散数学

杭州电子科技大学

所以 $\neg (p \land q) = \neg p \lor \neg q$ 。

(五) 1 0 (一(n A a)

设A,B是两个命题公式,如果在任何赋值下,A,B都有相同的真值,则称A,B等价,记为A=B。

$\neg p \mid 1.9 \ (\neg (p \land q) = \neg p \lor \neg q)$										
p	q	$p \wedge q$	$\neg(p \land q)$		p	q	$\neg p$	$\neg q$	$\neg p \vee \neg q$	
0	0	0	1		0	0	1	1	1	
0	1	0	1		0	1	1	0	1	
1	0	0	1		1	0	0	1	1	
1	1	1	0		1	1	0	0	0	

- A = B: 当所有赋值均以相同次序排列时,真值表中A, B 所在列 完全相同;
- A = B的充要条件是 $A \leftrightarrow B$ 是永真式。

例
$$(\neg p \lor q = p \to q)$$

p	q	$\neg p$	$\neg p \vee q$	$p \rightarrow q$	$(\neg p \lor q) \leftrightarrow (p \to q)$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	0	1	1	1

练习 (证明 $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$)

p	q	r	$q\vee r$	$p \wedge q$	$p \wedge r$	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

定理1.3(基本等价式)

设A, B, C是命题公式,则

2. 等幂律
$$A \lor A = A, A \land A = A$$

3. 交換律
$$A \lor B = B \lor A, A \land B = B \land A$$

4. 结合律
$$(A \lor B) \lor C = A \lor (B \lor C)$$

$$(A \land B) \land C = A \land (B \land C)$$

5. 分配律
$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$

 $A \land (B \lor C) = (A \land B) \lor (A \land C)$

6. 德摩根律
$$\neg (A \lor B) = \neg A \land \neg B$$

 $\neg (A \land B) = \neg A \lor \neg B$

7. 吸收律
$$A \lor (A \land B) = A, A \land (A \lor B) = A$$

8. \$\$\psi\$
$$A \leftrightarrow 1 = 1, A \leftrightarrow 0 = 0 $$$

9.
$$\stackrel{\bullet}{\mathbf{L}}$$
 \mathbf{L} \mathbf{L}

10. **否定律**
$$A \lor \neg A = 1, A \land \neg A = 0$$

11.
$$\mathbf{\underline{a}}\mathbf{\overline{M}}$$
 $A \to B = \neg A \lor B$

12. 等值律
$$A \leftrightarrow B = (A \to B) \land (B \to A)$$

例1.10(证明下面命题公式等价)

$$((A \land B) \to C) \land (B \to (D \lor C))$$
$$= (B \land (D \to A)) \to C$$

练习(证明以下等价式)

所以等式成立。

所以等式成立。

例1.11 (将下面的程序简化)

If $A \wedge B$ then Else

If $B \vee C$ then If $A \wedge C$ then

X Y

Else

Y X

End End

End

作业: 习题1.3 第1(1)(3)(5), 3(1)(3)(5)(7)题

