KONGU ENGINEERING COLLEGE, PERUNDURAI 638 060

CONTINUOUS ASSESSMENT TEST 1

(Regulations 2022)

Month and Year : September 2024	Roll Number: 22CSR070		
Programme : B.E Branch : CSE Semester : V	Date : 02.09.2024 Time : 9.15 am to 10.45 am		
Course Code : 22CST53 Course Name : Theory of Computation	Duration : 1 ½ Hours Max. Marks : 50		

PART - A $(10 \times 2 = 20 \text{ Marks})$ ANSWER ALL THE QUESTIONS

- 1. Mention the steps to be followed to solve problems in mathematical induction. [CO1] [K2]
- 2. Distinguish between DFA and NFA. [CO1] [K2]
- 3. Using proof by deduction, prove that if x is an even number then x^2 is also an even [CO1] [K3] number.
- 4. Design a DFA that accepts string of the language L={a^m bⁿ | m and n are positive [CO1] [K3] integers}
- 5. If Σ = { ab, bb}, find Σ ⁴. [CO1] [K3]
- 6. Prove that, if a % b=b % a then a=b. [CO1] [K3]
- 7. Find the language of the given NFA. [CO1] [K3]

- 8. Identify the operators of regular expression and state its priority. [CO2] [K2]
- 9. Write the regular language for the regular expression (0*1*)*000(0+1)* [CO2] [K2]
- 10. If L= {10, 1}, Find L*. [CO2] [K3]

Part - B (3 × 10 = 30 Marks) ANSWER ANY THREE QUESTIONS

- 11. (i) Prove by mathematical induction, 2+2²+2³+.....+2n=2n+1-2.
 (ii) Prove the statement: Every tree has one node more than its edges.
 (5) [CO1] [K2]
- 12. Convert the following NFA to DFA. (10) [CO1] [K3]

States	Input	
	0	1
→p	{p,r}	{q}
q	{r,s}	{p}
*r	{p,s}	{r}
*8	{q,r}	{Φ}

States	Input				
	A	В	3		
→p	{q}	{p,r}	{r}		
q	{p}	{Φ}	{Φ}		
*r	{r}	{p}	{p,q}		

- (i)Compute the e-closure for each state.
- (ii) Convert the E- NFA to DFA.
- (iii) Write the set of all strings of length 3 or less accepted by the automata.
- 14. Consider the DFA given by the transition table

(10) [CO1] [K3]

States	Input				
	0	1			
→ q1	{q2}	{q3}			
q2	{q3}	{q5}			
*q3	{q4}	{q3}			
q4	{q3}	{q5}			
q4 *q5	{q2}	{q5}			

- (i) Draw the table of distinguishabilities for this automaton.
- (ii) Construct the minimum state equivalent DFA.

Bloom's Taxonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentage	-	30	70	-		-

KONGU ENGINEERING COLLEGE, PERUNDURAI 638 060 CONTINUOUS ASSESSMENT TEST 2

(Regulations 2022)

	(Regulation	115 2022)		
	Month and Year : October 2024	Roll Number: 22CSR067		1
	Programme : B.E Branch : CSE Semester : V	Date : 15.10.2024 Time : 1.15 pm to 2.45 pm		
(Course Code : 22CST53 Course Name : Theory of Computation	Duration : 1 ½ Hours Max. Marks : 50		
	PART - A (10 × ANSWER ALL TH			
1.	Write the regular expression for the language s		[CO2]	[K2]
2.	any number of b's in between. Identify the purpose of pumping lemma in reconditions.	egular language. Give the necessary	[CO2]	[K2]
3.	Design an E-NFA for the regular expression a+b	*c.	[CO2]	[K3]
4.	Show that the complement of a regular language i	s also regular.	[CO2]	[K3]
5.	Consider the grammar G=(N,T,P,S) and N={S} T	={a,b}, P=S→aSb, S→ab. Write L(G).	[CO3]	[K2]
6.	Consider the context free grammar (CFG) given for the string bbaa. S→b\$ aT € T→aT bU € U→a E	n below. Write the leftmost derivation	[CO3]	[K3]
7.	Show that the given grammar is ambiguous. S→ SbS a		[CO3]	
8.	Construct a CFG for a set of strings that contain $\Sigma = \{a, b\}.$		[CO3]	[K3]
9.	Draw pushdown automata to accept strings of the		[CO3]	
10.	Specify the different ways of language accrepresentations.	ceptance in PDA and write their	[CO3]	[K2]
	Part – B (3 × 10 ANSWER ANY THR) = 30 Marks) EEE QUESTIONS		
11.	i) Demonstrate how the set L={ap/p is prime} is n	ot regular. (5)	[CO2]	[K2]
	ii) Draw an C-NFA for the given regular expressing 10+(0+11)0*1	(0)	[CO2]	
12.	Deduce into regular expression that denotes to DFA.	he language accepted by following	[CO2]	[K3]
3.	Construct PDA for the language $L = \{WcWR \mid V\}$	W E {0,1} by final state	ICCON	ITZO
4.	For the given context free language L={anbcn using empty stack.	n>0} find the equivalent PDA	[CO3]	[K3]

	Creating (K6)	Evaluating (K5)	Analysing (K4)	Applying (K3)	Understanding (K2)	(K1)	Bloom's Taxonomy Level
Percentage 30 70	(110)			70	30		Percentage

KONGU ENGINEERING COLLEGE, PERUNDURAI 638 060 CONTINUOUS ASSESSMENT TEST 3

(Regulations 2022)

Month and Year: November 2024	Roll Number: 22CSR070
Programme : B.E Branch : CSE Semester : V	Date : 21.11.2024 Time : 1.15 pm to 2.45 pm
Course Code : 22CST53 Course Name : Theory of Computation	Duration : 1 ½ Hours Max. Marks : 50

	PART - A $(10 \times 2 = 20 \text{ Marks})$ ANSWER ALL THE QUESTIONS			
1.	Prove that the language $L = \{a^ib^i; i \leq j\}$ is not CFL using pumping lemma.		[CO4]	[K3]
2.	Remove the null productions from the given grammar.		[CC4]	[K3]
	$S \rightarrow ABAC$			
	$A \rightarrow aA / \epsilon$ $B \rightarrow bB / \epsilon$			
	$C \rightarrow c$			
3.	Draw a Turing Machine that accept language $\Sigma = \{a, b\}$ that contain strings that with a.	ends	[CO4]	[K3]
4.	Design s Turing machine to perform $f(x,y) = x+y$.		[CO4]	[K3]
5.	How to remove unit productions in CFG? Write an example.		[CO4]	[K2]
6.	Compare recursive and recursively enumerable language.		[CO5]	[K2]
7.	Identify the reason for a problem to be undecidable. Give an example of undeciproblem.		[CO5]	[K2]
8.	Prove that if a language L and its complement L^1 are recursively enumerable the is recursive.	en L	[CO5]	[K2]
9.	Find the solution of an instance of PCP with two lists A and B.		[CC5]	[23]
10.	A=[aa, bb, abb] and B=[aab, ba, b] Provide example for tractable and intractable problems.		500-1	
	Part – B $(3 \times 10 = 30 \text{ Marks})$		[CO5]	[K2]
	ANSWER ANY THREE QUESTIONS			
11.	Convert the given CFG to GNF	(10)	[CO4]	[K3]
	S-AA/a			1
12.	A→SS/b Design a Turing Machine (M) to implement MULTIPLICATION	(10)	FGG .3	
	function using the subroutine copy.	(10)	[CO4]	[K3]
13	Prove the following	(10)	[CO5]	[K2]
	(i) "If L1 and L2 are recursive language then L1 U L2 is a recursive language".			
	(ii) Lu is recursively enumerable and Ld is recursive.			
14.	(i) Explain storage in finite control with suitable example.	(5)	[CO4]	[K9]
	(ii) Obtain the code for the Turing Machine			
	$\mathbf{M} = (\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\} \ \{0, 1\} \ \{0, 1, X, Y, B\}, \ \delta, \ q_{0}, \ B \ \{q_{4}\}) \text{ where } \delta \text{ is}$	(5)	[CO5]	[K3]
	given by			
	$\delta\left(q_{0},0\right) = \left(q_{1},X,R\right) \qquad \delta\left(q_{2},0\right) = \left(q_{2},0,L\right)$			
	$\delta\left(q_{0},Y\right) = \left(q_{3},Y,R\right) \qquad \delta\left(q_{2},X\right) = \left(q_{0},X,R\right)$			

Bloom's Taxonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentage		40	60	-		-