Advanced Data Analysis

DATA 71200

Class 5

Course Schedule

4-Mar	Representing Data
11-Mar	Evaluation Methods
18-Mar	Supervised Learning (k-Nearest Neighbors, Linear Models) Project 1 Due
25-Mar	Supervised Learning (Naive Bayes Classifiers and Decision Trees)
1-Apr	Supervised Learning (Support Vector Machines and Uncertainty estimates from Classifiers)
7-Apr	Unsupervised Learning (Dimensionality Reduction & Feature Extraction, and Manifold Learning) Project 2 Due

Assignments for this week

DataCamp

- Preprocessing for Machine Learning in Python
 - Introduction to Data Preprocessing
 - Standardizing Data
 - Feature Engineering (March 11)
 - Selecting features for modeling (March 11)

Reading

 Ch 4: "Representing Data/Engineering Features"in Guido, Sarah and Andreas C. Muller. (2016). Introduction to Machine Learning with Python, O'Reilly Media, Inc. 213–55.

DATA 71200: Project 1 (Due March 18)

The goal for this assignment is for you to create a usable dataset from an open-source data collection that you will use for a supervised classification task in Project 2 and with unsupervised learning in Project 3.

Step 1: Find and download a dataset. Here are some potential places to look

- Amazon's AWS datasets: https://aws.amazon.com/opendata/public-datasets/
- Data Portals: http://dataportals.org/
- Kaggle datasets: http://kaggle.com
- NYPL digitizations: http://libguides.nypl.org/eresources
- NYC Open Data: http://opendata.cityofnewyork.us/data/
- Open Data Monitor: http://opendatamonitor.eu/
- QuandDL: http://quandl.com/
- UC Irvine Machine Learning Repository: https://archive.ics.uci.edu/ml/index.php

Inspecting Data to Gain Insights

Review from last week

- Data size and type
- Summary statistics
- Histograms
- Scatter Matrix

Representing Data

- Continuous versus categorical
 - One-Hot Encoding
 - Binning
- Transformations
- Automatic feature selection
- Utilizing expert knowledge

Some Terminology

- (Linear) Regression
 - Continuous predictive model created by estimating a linear relationship between features
- Logistic Regression
 - Predictive model of the probability of a certain class

Some Terminology

Regularization

- Adds an extra term to the cost function
- Can be applied to linear and logistic regression
- Can also be used for feature selection
- Lasso (least absolute shrinkage and selection operator) regression is another form, referred to as L1
- Ridge is a form of regularization, referred to at L2

Some Terminology

Ridge Regression

 Predictive model that addresses multicollinearity (linear relationships between parameters) and having more parameters than observations

Continuous Versus Categorical

- Regression predicts continuous values
- Classification predicts categorical, or discrete, values
- Continuous versus categorical distinct also holds for input features

One-Hot Encoding

- Split the different categories in their own variable
- E.g., a single variable for color where the values are the strings "blue", "red", "yellow" would be encoded as

	Blue	Red	Yellow	← Variables
Blue	1	0	0	
Red	0	1	0	
Yellow	0	0	1	
†	I	:	:	Cotogoriool

Categorical data can also be encoded as numbers

In-Class Activity 1

- Apply one-hot encoding to the ocean_proximity value in the California Housing dataset that we looked at last class
 - Using pd.dummies and/or OneHotEncoder from scikitlearn

Binning

- Discretizing continues data into numerical bins can be useful when small differences in value are not significant
- E.g., for numerical grade data (out of 100), it may be more useful to give a model how many scores fall into ranges of 5 rather than the continuous data

In-Class Activity 2

- Apply binning to the housing_median_age value in the California Housing dataset that we looked at last class
 - housing['housing median age'].values.reshape(-1, 1)
 - Plot both the original data and the binned data
- Explore binning with other features

Transformations

- Squaring and cubing is useful for linear regression models
- Logarithms and exponentials are useful for representing your data with a Gaussian distribution, which is useful for mean-based models

In-Class Activity 3

- Apply the following transformations to housing_median_age in the California Housing dataset that we looked at last class
 - Squaring (**2)
 - Cubing (**3)
 - np.log
 - np.exp
- Plot histograms and scatter matrices to explore the resultant data (for **2, **3, and np.log)

Automatic Feature Selection

- Regularization can be used to assess the relative importance of features in the performance of a model
 - Although this can't tell you anything about features you don't include
- Recursive feature elimination (RFE) starts with all features and removes the poorly performing ones
- You can also start with one feature and build up a model

Utilizing Expert Knowledge

- Domain knowledge can be useful for recognizing patterns in data that may be beneficial or detrimental to the model
- This can inform decisions about which features to include and how to represent them

Assignments for next week

DataCamp

- Preprocessing for Machine Learning in Python
 - Feature Engineering
 - Selecting features for modeling
 - Putting it all together

Reading

 Ch 5: "Model Evaluation and Improvement" in Guido, Sarah and Andreas C. Muller. (2016). Introduction to Machine Learning with Python, O'Reilly Media, Inc.