

Fortgeschrittene Sortierverfahren

Überblick

- Sortieren ist ein sehr intensiv untersuchtes Problem
- ☐ Es gibt eine große Zahl von Algorithmen mit jeweils verschiedenen Varianten
- ☐ Generell ordnet man Sortierverfahren in zwei Gruppen:
 - 1) Vergleichende Sortierverfahren
 - A. Einfache Sortierverfahren
 - B. Fortgeschrittene Sortierverfahren
 - 2) Nicht vergleichende Sortierverfahren

Überblick

- ☐ Einfache vergleichende Sortierverfahren
 - > Sortieren durch Einfügen (insertion sort)
 - > Sortieren durch Auswählen (selection sort)
 - > Sortieren durch Vertauschen (bubble sort)
- ☐ Fortgeschrittene vergleichende Sortierverfahren
 - > Sortieren durch Mischen (merge sort)
 - > Sortieren mittels Heapify (heap sort)
 - Sortieren durch Gruppieren (quick sort)
- Nicht vergleichende Sortierverfahren
 - > Sortieren durch Zählen (count sort)
 - Sortieren durch Fachverteilen (radix sort)

Quicksort

- Sortieren durch Gruppieren (quick sort)
 - > Berühmt, schnell, breit einsetzbar
 - Nutzt das Prinzip "Teile und Herrsche"
- Arbeitsweise
 - ➤ Die Folge wird in zwei Teilfolgen gruppiert (partition), so dass jedes Element der ersten Folge kleiner ist als jedes Element der zweiten.
 - Auf diese Teilfolgen wird das Prinzip dann rekursiv angewendet.
 - Die Rekursion endet, wenn man bei einelementigen Teilfolgen angelangt ist.
 - Als Trennelement (pivot) für das Gruppieren kann ein beliebiges Folgenelement verwendet werden,
 - z.B. das Letzte, das Erste, oder das Mittlere.

Quicksort: Prinzip

Nach Gruppieren:

Nach Vertauschen:

Komplexität von Quicksort

- Wenn es gelingt, die Teilfolgen durch das Gruppieren jeweils zu halbieren, erhalten wir eine Komplexität von: $T_{bc} = O(n \log n)$
- Wird jeweils nur eine Teilfolge konstanter Länge abgespalten, so wird n mal gruppiert und daher: $T_{wc} = O(n^2)$
- ☐ Im Durchschnitt ist allerdings die Länge der Intervalle abhängig von n und man braucht nur zweimal mehr Operationen als im besten Fall:

 $T_{ac} = O(n \log n)$

Quicksort-Varianten

- Vorgeschlagene Varianten betreffen die Wahl des Trennwerts für das Gruppieren, der in der vorliegenden Form für das schlechte Verhalten bei nahezu sortierten Folgen verantwortlich ist:
- ☐ Trennindex zufällig aus [start, end]
- Trennwert als Median aus drei Elementen $\left\{f_{start}, f_{\left[\frac{end-start}{2}\right]}, f_{end}\right\}$
- Beide Varianten haben sich gut bewährt und sorgen auch bei fast sortierten Folgen für O(n log n).
- ☐ Es ist außerdem vorteilhaft, die kleinere Teilfolge zuerst zu sortieren (Rekursionstiefe minimieren).

Quicksort mit Listen: Gruppieren

- Zerlegen einer Folge in zwei Teilfolgen, wovon die eine die kleineren (<) Elemente, die andere die größeren (≥) Elemente enthält
 - ➤ Als Trennwert pivot wird oft der Wert des ersten Elements genommen.
 - Statt des Vertauschens (swap) werden die Elemente in zwei neue Listen (links und rechts) versetzt (move).
 - Diese werden dann rekursiv sortiert und zu der Resultatliste zusammengesetzt.
 - ➤ Die Komplexität des nachfolgenden Gruppierungsverfahren ist, wie bei den Arrays, O(n), da die Liste genau einmal abgelaufen wird und jeweils konstanter Aufwand entsteht.

Partition

Neue Liste rechts mit Elementen ≥ Pivot

Hinweis: Sind in der Liste noch weitere Elemente mit demselben "Wert" wie das Pivotelement vorhanden, werden diese in die rechte Liste eingefügt. Das Pivotelement selbst ist immer Rückgabewert der Partition.

Quicksort:

- > Rekursives Sortieren der linken und rechten Liste
 - Sortierte linke Liste mit Elementen < Pivot

Last

Sortierte rechte Liste mit Elementen ≥ Pivot

PivotPivot6

Quicksort:

> Resultat: sortierte Liste

Quicksort:

Sortieren durch Gruppieren (Variante: Stabiler Quicksort)

Neue Liste rechts mit Elementen ≥ Pivot

Hinweis: Sind in der Liste noch weitere Elemente mit demselben "Wert" wie das Pivotelement vorhanden, werden diese in die rechte Liste eingefügt. Das Pivotelement selbst ist immer Rückgabewert der Partition.

Quicksort – Pseudocode

QuickSort (list tosort)

```
// Abbruchbedingung
                                                   8.
                                                            // Listen Zusammenfügen
    if (tosort.first == tosort.last)
                                                   9.
                                                            if ( left.first == NULL )
3.
       return
                                                   10.
                                                                   tosort.first <- pivot
                                                   11.
    else
                                                            else
                                                   12.
5.
        list left,right
                                                                   tosort.first <- left.first
                                                   13.
                                                                   left.last.next <- pivot
        pivot <- Partition(tosort, left, right)</pre>
6.
7.
        // Rekursion
                                                             if ( right.first == NULL )
                                                   14.
8.
        QuickSort (left)
                                                   15.
                                                                   pivot.next <- NULL
9.
        QuickSort (right)
                                                   16.
                                                                   tosort.last <- pivot
                                                   17.
                                                             else
                                                   18.
                                                                   pivot.next <- right.first</pre>
                                                   19.
                                                                   tosort.last <- right.last
```


Quicksort: Zusammenfassung

- Sortieren durch Gruppieren (quick sort)
 - > Berühmt, schnell, breit einsetzbar
 - Nutzt das Prinzip "Teile und Herrsche"
- Arbeitsweise
 - ➤ Die Folge wird in zwei Teilfolgen gruppiert (partition), so dass jedes Element der ersten Folge kleiner ist als jedes Element der zweiten.
 - Auf diese Teilfolgen wird das Prinzip dann rekursiv angewendet.
 - Die Rekursion endet, wenn man bei einelementigen Teilfolgen angelangt ist.
 - > Kann sowohl auf Arrays als auch auf Listen eingesetzt werden
 - Als Trennelement (pivot) für das Gruppieren kann
 - Bei Arrays ein beliebiges Folgenelement verwendet werden,
 z.B. das Letzte, das Erste, oder das Mittlere.
 - Bei Listen am einfachsten das Erste oder das Letzte.

Sortieren

- ☐ Standard Sortierverfahren (Bubble-sort, Insertion-sort, Selection-sort, Quicksort, Merge-sort) sind nicht nur auf Arrays sondern auch auf verkettete Listen anwendbar.
 - > Die Komplexität ist dieselbe.
- ☐ Lediglich die auf Indexrechnung beruhenden schnellen Verfahren (count sort) können nicht verwendet werden.

Anmerkungen: Quicksort vs. Merge-Sort

- Beide Verfahren, Quicksort und Merge-Sort, benötigen zusätzlichen Speicher
- Merge-Sort, weil das Mischen in linearer Zeit nur mit einem zweiten Array möglich ist.
- Quicksort, weil die rekursiven Aufrufe den Programmstapel (program stack) erheblich anwachsen lassen.
 - ➤ (Dies kann man mildern, wenn man das Verfahren so umorganisiert, dass kürzere Teilfolgen immer zuerst bearbeitet werden.)
- ☐ Ein Sortierverfahren mit dem gleichen asymptotischen Aufwand und ohne zusätzlichen Speicherbedarf ist Heapsort.

KOMPLEXITÄT VON VERGLEICHENDEN SORTIERVERFAHREN

Komplexität von vergleichenden Sortierverfahren

- □ Alle bisher besprochenen Sortieralgorithmen gehören zur Klasse der Vergleichssortierverfahren
 - > Elementaroperation ist der paarweise Größenvergleich
- Damit ergibt sich Folgendes:
- Satz: Jedes Sortierverfahren, das auf dem paarweisen Vergleich von Elementen beruht, hat eine Komplexität von: $\Omega(n \log n)$

Komplexität von vergleichenden Sortierverfahren

- □ Alle bisher besprochenen Sortieralgorithmen gehören zur Klasse der Vergleichssortierverfahren
 - > Elementaroperation ist der paarweise Größenvergleich
- Der Ablauf kann in einem binären Entscheidungsbaum wie folgt dargestellt werden:
 - > Jeder interne Knoten entspricht dem Vergleich zweier Elemente.
 - ▶ Die jeweiligen Teilbäume enthalten die noch erforderlichen restlichen Vergleiche, so dass eine Sortierung gelingt.
 - > Jedes Blatt repräsentiert eine der n! möglichen Permutationen.
 - ➤ Der Ablauf einer konkreten Sortierung entspricht einem Pfad von der Wurzel bis zu einem Blatt.

Entscheidungsbaum

- □ Der längste Pfad von der Wurzel bis zu einem Blatt (= Höhe des Baumes) kennzeichnet die größtmögliche Anzahl von Vergleichen und damit die Laufzeit des Algorithmus.
 - ➤ Die Worst-case-Komplexität aller solcher vergleichsbasierter Sortierverfahren entspricht daher der Höhe des Baumes.
 - ➤ Eine untere Schranke für die Höhe des Entscheidungsbaums ist daher auch eine untere Schranke für jedes vergleichsbasierte Sortierverfahren.

Höhe des Entscheidungsbaums

- Wie groß ist die Höhe eines Entscheidungsbaumes für n Elemente mindestens?
- Es gibt n! Permutationen, also mindestens n! Blätter.
- Ein Binärbaum der Höhe h hat höchstens 2h Blätter, daher gilt $n! \le 2^h$
- □ Durch Logarithmieren $h \ge \log(n!)$ □ Nach der Stirlingschen Formel gilt $n! > \left(\frac{n}{e}\right)^n$

Also
$$h \ge \log \left(\left(\frac{n}{e} \right)^n \right) = n \log n - n \log e = O(n \log n)$$

Vergleichende Sortierverfahren

Satz: Jedes Sortierverfahren, das auf dem paarweisen Vergleich von Elementen beruht, hat eine Komplexität von: $\Omega(n \log n)$

Überblick

- ☐ Einfache Sortierverfahren
 - > Sortieren durch Auswählen (selection sort)
 - > Sortieren durch Vertauschen (bubble sort)
 - > Sortieren durch Einfügen (insertion sort)
- ☐ Fortgeschrittene Sortierverfahren
 - > Sortieren durch Gruppieren (quick sort)
 - > Sortieren durch Mischen (merge sort)
- Nicht vergleichende Sortierverfahren
 - > Sortieren durch Zählen (count sort)
 - Sortieren durch Fachverteilen (radix sort)

NICHT VERGLEICHENDE SORTIERVERFAHREN

Schnelle, digitale Sortierverfahren

- □ Die bisher diskutierten Sortierverfahren beruhen auf dem paarweisen Vergleich der Werte der einzelnen Elemente.
- \square Eine Verbesserung der asymptotischen Komplexität dieser Verfahren ist nicht möglich. (Siehe untere Schranke von Ω (n log n))

Schnelle, digitale Sortierverfahren

- □ Unter gewissen Einschränkungen des Wertebereichs können die Werte dazu verwendet werden, den endgültigen Platz direkt anzusteuern.
 - > Sortieren durch Zählen (count sort)
 - > Sortieren durch Fachverteilen (radix sort)
- □ Diese Verfahren sind jedoch nicht immer sinnvoll einsetzbar, z.B. wenn
 - Das Sortieren stabil sein soll
 - Der Wertebereich zu groß ist

Wiederholung: Sortieren durch Zählen (count sort)

■Annahme:

- ➤ Die Werte stammen aus einem kleinen Wertebereich, d.h. sie liegen so dicht, dass sie zum Indizieren eines Arrays verwendet werden können.
- > Es ist wahrscheinlich, dass Werte mehrfach auftreten.

Idee

- ▶ Die Häufigkeit jedes Elements wird ermittelt und daraus wird die endgültige Lage im Zielarray berechnet (streuendes Umspeichern).
- Zum Schluss kann die Folge in das ursprüngliche Array zurückkopiert werden.

Beispiel: Count-sort

Komplexität: Count-sort

- Anzahl der Schritte
 - > Linear in der Zahl der Elemente n
 - Linear in der Zahl der Werte N
- \square Also O(n), wenn N = O(n)
- Problem
 - ➤ In vielen praktischen Fällen ist der Wertebereich viel größer als die Zahl der Elemente

Sortieren durch Fachverteilen (radix sort)

☐ Idee:

- Wir wenden count sort nacheinander auf die Stellen der Werte an
- Begonnen wird bei der kleinsten signifikanten Stelle
- ➤ Da count sort stabil ist, bleibt die Ordnung bezüglich der weniger signifikanter Stellen erhalten

■ Voraussetzungen:

- > Werte können in einem Alphabet dargestellt werden
- ➤ Die Buchstaben des Alphabets sind total geordnet
- Typische Alphabete: Binär, Dezimal, Hexadezimal

Sortieren durch Fachverteilen (radix sort)

- ☐ Beispielfolge (Dezimal): 333, 78, 77, 3, 37, 38
- Sortieren nach der Einerstelle: 333, 3, 77, 37, 78, 38
 - > 2 x 3 (333, 3), 2 x 7 (77, 37), 2 x 8 (78, 38)
- □ Sortieren nach der Zehnerstelle: 3, 333, 37, 38, 77, 78
 - > 1 x 0 (3), 3 x 3 (333, 37, 38), 2 x 7 (77, 78)
- □ Sortieren nach den Hunderterstelle: 3, 37, 38, 77, 78, 333
 - > 5 x 0 (3, 37, 38, 77, 78), 1 x 3 (333)
- Notwendige Größe für das Zählerfeld ist immer 10

Sortieren durch Fachverteilen (radix sort)

■ Komplexität

- > Annahmen:
 - Der Größte Wert ist N
 - Die Größe des Wertebereichs für eine Stelle ist b
- > Laufzeit:
 - Dann ist die Anzahl der Stellen proportional zu log_b N
 - Für jede Stelle wird count sort verwendet: d.h. der Aufwand pro Stelle ist O(n)
 - Also insgesamt O(n log N), mit typischerweise log N << n