Data Science SS20

Machine Learning III

Simple Probabilistic Models

Recall Classification

Supervised Learning: Annotated Training Data

Recall Classification

Supervised Learning: Annotated Training Data

Recall Classification

LEARNING: is a optimization problem → Finding the best function separating

1D Feature Space. All data samples a simple scalar values.

Task: "learn" splitting function from data.

y: color

1D Feature Space. All data samples a simple scalar values.

Task: "learn" splitting function from data.

Where should we cut?

1D Feature Space. All data samples a simple scalar values.

Task: "learn" splitting function from data.

Where should we cut?

1D Feature Space. All data samples a simple scalar values.

Task: "learn" splitting function from data.

Where should we cut?

Here Gaussian Bayes (other distributions possible!)

Here Gaussian Bayes (other distributions possible!)

Bayes Rule:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Here Gaussian Bayes (other distributions possible!)

Here Gaussian Bayes (other distributions possible!)

Bayes Rule: Compute for all classes

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

$$f(x) := argmax_y P(x|y)P(y)$$

Naive Bayes Classifier (ND)

Here is the NAIVE assumption:

Features are independent!

Naive Bayes Classifier (ND)

Final formulation:

$$y = argmax_y P(y) \prod_{i=1}^n P(x_i|y)$$

Naive Bayes Classifier (ND)

Final formulation:

$$y = argmax_y P(y) \prod_{i=1}^n P(x_i|y)$$

Discussion:

- ++ simple but powerful model
- ++ does not need much data
- + supports complex distributions (like mixture of Gaussians)
- + scales well
- makes strong assumption on feature independence
- - estimation of complex distributions needs a lot of data

Discussion

Lab exercises coming up ...