Quantile, risk measure and inequality index with heavy-tailed distribution

Arthur Charpentier Université du Québec à Montréal

Emmanuel Flachaire Aix-Marseille University

Motivation

In the presence of heavy-tails:

- Density: kernel estimation can be very poor
- Indices: sample estimates can be very far from true values

Our contribution:

- Density: more efficient estimation
- Indices: more efficient estimators

Kernel density estimation

		Kernel methods			
Distribution	Upper-tail	Ksil	Kcv	Kad	
Lognormal	moderate	0.1031	0.1087	0.1090	
	medium	0.1323	0.1319	0.1284	
	strong	0.1630	0.1670	0.1572	
Singh-Maddala	moderate	0.0985	0.1055	0.0986	
	medium	0.1089	0.1153	0.1041	
	strong	0.1290	0.1409	0.1237	
Mixture of S-M.	moderate	0.2262	0.1456	0.1348	
	medium	0.2665	0.1678	0.1455	
	strong	0.3005	0.2310	0.1684	

Table : Quality of density estimation: MIAE criteria, n = 500.

Sample estimates

Bimodal & strongly heavy upper-tail

Figure : Boxplots of sample estimates (EDF-based estimates), n=500

The transformed kernel estimate

Devroye and Györfi (1985), Devroye and Lugosi (2001):1

The transformed kernel estimate (Devroye et al., 1983) is based upon a transformation $T: \mathbb{R}^1 \to [0,1]$ which is strictly monotonically increasing, continuously differentiable, one-to-one and onto, and which has a continuously differentiable inverse. The transformed data sequence is Y_1, \ldots, Y_n , where $Y_1 = T(X_1)$. Note that Y_1 has density

$$g(x) = f(T^{-1}(x))T^{-1}(x).$$

Now, g is estimated by g_n from Y_1, \ldots, Y_n , and f is estimated by

$$f_n(x) = g_n(T(x))T'(x). \tag{2}$$

Estimate the density via a transformation into the unit interval

$$\mathbb{R} {\longrightarrow} [0,1] \longrightarrow \mathbb{R}$$

 $^{^1}$ see Ruppert and Cline (1994), Hössjer and Ruppert (1995), Swanepoel and Van Graan (2005), Buch-Larsen et al. (2005), Charpentier and Oulidi (2010) \equiv

Method

Nonparametric density estimation via a transformation into [0,1]:

- ① Transform the sample with a function $\mathcal{T}: \mathbb{R} \to [0,1]$
- 2 Estimate the density of the transformed sample Y = T(X)
- Obtain the density of the original sample as,

$$\hat{f}_X(x) = \hat{f}_Y[T(x)] \cdot T'(x),$$

Optimal transformation function:

• If T is the CDF of X, the distribution of Y is $\mathcal{U}(0,1)$

Method

Nonparametric density estimation via a transformation into [0,1]:

- ① Transform data with a parametric CDF estimate $H(X, \hat{\theta})$
- 2 Estimate the density of the transformed sample $Y = H(X, \hat{\theta})$
- Obtain the density of the original sample as,

$$\hat{f}_X(x) = \hat{f}_Y[H(x,\hat{\theta})] \cdot H'(x,\hat{\theta}),$$

Optimal transformation function:

- ullet If $H(X,\hat{ heta})$ is a correctly specified dist. of X, $Y \underset{as}{\sim} \mathcal{U}(0,1)$
- If $H(X, \hat{\theta})$ is a misspecified distribution of X, a nonparametric estimation will capture any deviation from $\mathcal{U}(0,1)$

Method

×

Main idea

Questions:

- which transformation function?
- what should we do on [0,1]?

With heavy-tailed distribution:

- \bullet use a transformation function to fit appropriately the tails \rightarrow parametric CDF
- ullet use a nonparametric estimation on [0,1] to capture any deviation from $\mathcal{U}(0,1)$

The transformation function (positive data)

$$GB2: \ t(y;a,b,p,q) = rac{|a|y^{ap-1}}{b^{ap}\mathrm{B}(p,q)[1+(y/b)^a]^{p+q}}, \qquad ext{for } y>0,$$

GB2 permits to capture upper tail of many different types, including heavy-tails and also light-tails

What should we do on [0,1]?

Nonparametric density estimation with bounded support:²

- Beta kernel
- mixture of beta distributions
- (Bernstein)

²Chen (1999), Bouezmarni & Rolin (2003), Bouezmarni & Rombouts (201⊕)

Beta distribution

Figure : Beta density functions, beta(y; a, b)

Beta kernel estimation

$$\hat{f}(u) = \sum_{i=1}^{n} \frac{1}{n} \operatorname{beta}\left(u; \frac{U_i}{h}, \frac{1 - U_i}{h}\right)$$

with some possible boundary corrections (Chen 1999)

Beta kernel estimation: bandwidth sensitivity

Figure : Beta kernel density estimation and bandwidth sensitivity. The red line is the true density function, other lines are beta kernel estimators with h=.002,.01,.02,.05,.1. The top figures are computed with the standard beta kernels and the bottom figures with the modified beta kernels

Beta kernel estimation: bandwidth selection

We capture deviations from the uniform distribution!

- Rule-of-thumb? (reference distribution uniform: $h = \infty$)
- Cross-validation? (regularity conditions)

Automatic bandwidth selection is problematic.

Mixture of Beta distributions

The beta mixture estimator is

$$\hat{f}(u) = \sum_{k=1}^{K} \hat{\pi}_k \text{ beta } \left(u; \hat{a}_k, \hat{b}_k\right)$$

with
$$0 \leq \hat{\pi}_k \leq 1$$
 and $\sum_{k=1}^K \hat{\pi}_k = 1$

- It allows us to bring out the link between parmetric (K = 1) and nonparametric (K = n) estimation.
- K is selected by minimizing a criteria, as the BIC.³

Simulations

 $Figure: \ Mixture \ of \ two \ Singh-Maddala \ distributions$

Results: density estimation

	Kernel methods				Transformed methods				
Upper-tail	Ksil	Kcv	Kad		TK1	TK2	TK3	TMix	
Lognormal									
moderate	0.1031	0.1087	0.1090		0.1023	0.1178	0.1773	0.0899	
medium	0.1323	0.1319	0.1284		0.1023	0.1176	0.1766	0.0904	
strong	0.1630	0.1670	0.1572		0.1021	0.1175	0.1767	0.0890	
Singh-Maddala									
moderate	0.0985	0.1055	0.0986		0.1058	0.1200	0.1774	0.0927	
medium	0.1089	0.1153	0.1041		0.1061	0.1201	0.1774	0.0931	
strong	0.1290	0.1409	0.1237		0.1042	0.1187	0.1765	0.0905	
Mixture of two Singh-Maddala,									
moderate	0.2262	0.1456	0.1348		0.1096	0.1172	0.1714	0.1022	
medium	0.2665	0.1678	0.1455		0.1093	0.1178	0.1722	0.1030	
strong	0.3005	0.2310	0.1684		0.1072	0.1171	0.1730	0.1078	

Table : Quality of density estimation: MIAE criteria, n=500.

Results: estimation of indices (moderately heavy-tailed)

Bimodal & moderately heavy tailed

Results: estimation of indices (strongly heavy-tailed)

Bimodal & strongly heavy upper-tail

Conclusion

With transformed kernel/mixture density estimation:

- Density: the quality of the fit is better, compared to standard kernel estimation, it does not deteriorate as the tail is heavier
- Indices: more reliable estimation, compared to sample indices

We should also improve inference (work in progress) ...