Exercise 1. $\forall \epsilon > 0$, setting $N = \begin{bmatrix} \frac{1}{\epsilon} \end{bmatrix}$, for n > m > N,

$$\frac{\sin(m+1)x}{(m+1)((m+1)+\sin(m+1)x)} + \dots + \frac{\sin nx}{n(n+\sin nx)}$$

$$= \frac{1}{m+1} - \frac{1}{m+1+\sin(m+1)x} + \dots + \frac{1}{n} - \frac{1}{n+\sin nx}$$

$$\leq \frac{1}{m+1} - \frac{1}{m+2} + \dots + \frac{1}{n} - \frac{1}{n+1}$$

$$= \frac{1}{m+1} - \frac{1}{n+1} < \frac{1}{m+1} < \frac{1}{n+1}$$

$$= \frac{1}{\left[\frac{1}{e}\right]+1} \leq \epsilon$$

Exercise 2. $\forall \epsilon > 0$, setting $\delta = \min\{1, \frac{\epsilon}{19}\}$, for x satisfying $0 < |x - 2| < \delta$, we have

$$|x^2 + 2x + 4| \le |x|^2 + 2|x| + 4 \le 3^2 + 2 \cdot 3 + 4 = 19$$

So

$$|x^3 - 8| = |x - 2||x^2 + 2x + 4| < 19\delta \le 19\frac{\epsilon}{19} = \epsilon,$$

as desired.

Exercise 3. Let $x_0 \in \mathbb{R}$. We need to prove that f is divergent at x_0 . We can select $\{a_n\} \subset \mathbb{Q}$ and $\{b_n\} \subset \mathbb{R} \setminus \mathbb{Q}$ so that both of them converge to x_0 . Then we know $f(a_n) \to 1$ while $f(b_n) \to 0$. By Henie's theorem, the limit does not exist.

In the previous exercise we have secretly applied the density of $\mathbb Q$ in $\mathbb R$. More generally, we have

Proposition 1. $\forall a, b \in \mathbb{R}, \ \exists q \in \mathbb{Q} \ and \ r \in \mathbb{R} \backslash \mathbb{Q} \ such \ that \ a < q < b \ and \ a < r < b.$

We will regard this proposition as an axiom because it involves the establishment of $\mathbb R$ from $\mathbb Q.$

Exercise 4. (1) From $\lim_{x\to\infty} f(x) = +\infty$ we have

$$\forall G > 0, \exists X > 0, \forall x > X, f(x) > G \tag{1}$$

Since $\lim_{n\to\infty} x_n = +\infty$, for the previous X > 0, $\exists N \in \mathbb{N}$, $\forall n > N$, $x_n > X$. Hence by (1), $f(x_n) > G$. It follows that $\lim_{n\to\infty} f(x_n) = +\infty$.

For the other side, we argue this by contradiction. Assume

$$\exists G > 0, \forall X > 0, \exists x > X, f(x) < G$$

Letting X = 1, $\exists x_1 > 1$, so that $f(x_1) \leq G$; Letting X = 2, $\exists x_2 > 2$, so that $f(x_2) \leq G$;

. . .

Letting X = n, $\exists x_n > n$, so that $f(x_n) \leq G$;

. .

Hence we have obtained a sequence $\{x_n\}$ satisfying $x_n > n$, from which we can deduce that $\lim_{n\to\infty} x_n = +\infty$, and $f(x_n) \leq G$, which implies the boundedness of $\{f(x_n)\}$, a contradiction.

(2) We only need to discuss the sufficient side. Assume again that

$$\exists G > 0, \forall X > 0, \exists x > X, f(x) \leq G$$

Letting X = 1, $\exists x_1 > 1$, so that $f(x_1) \leq G$;

Letting $X = \max\{2, x_1\}$, $\exists x_2 > 2$ and $x_2 > x_1$, so that $f(x_2) \leq G$;

. . .

Letting $X = \max\{n, x_{n-1}\}, \exists x_n > n \text{ and } x_n > x_{n-1}, \text{ so that } f(x_n) \leq G;$

Hence we have obtained a sequence $\{x_n\}$ satisfying $x_n > n$, from which we can deduce that $\lim_{n\to\infty} x_n = +\infty$, $x_n > x_{n-1}$, so that $\{x_n\}$ is increasing, and $f(x_n) \leq G$, which implies the boundedness of $\{f(x_n)\}$, a contradiction.