WHAT IS CLAIMED IS:

A compound having the formula (I): 1 2 3 wherein 4 X is a member selected from the group consisting of a bond, -C(O)-, 5 $-C(R^5)(R^6)$ -, $-C(R^5)$ =, -S(O)-, -S(O)₂- and -N=; 6 Z is a member selected from the group consisting of a bond, -N=, -O-, -S-, 7 $-N(R^{17})$ - and $-C(R^7)$ =, with the proviso that X and Z are not both a bond; 8 L is a member selected from the group consisting of a bond, C(O)-(C₁-9 C_8)alkylene, (C_1-C_8) alkylene and (C_2-C_8) heteroalkylene; 10 Q is a member selected from the group consisting of a bond, (C₁-11 C_8)alkylene, (C_2-C_8) heteroalkylene, -C(O)-, -OC(O)-, $-N(R^8)C(O)$ -, $-CH_2CO$ -, $-CH_2SO$ -12 and -CH₂SO₂-; 13 optionally L and Q can be linked together to form a 5- or 6-membered 14 heterocyclic group having from 1 to 3 heteroatoms; 15 R¹ and R² are members independently selected from the group consisting 16 of H, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, aryl and heteroaryl or optionally are combined to 17 form a 3 to 8-membered ring having from 0 to 2 heteroatoms as ring vertices; 18 optionally R² and L can be linked together to form a 5- or 6-membered 19 heterocyclic group having from 1 to 4 heteroatoms; 20 R³ is a member selected from the group consisting of hydroxy, (C₁-21 C_8)alkoxy, amino, (C_1-C_8) alkylamino, (C_1-C_8) alkylamino, (C_2-C_8) heteroalkyl, (C_3-C_8) alkylamino, (C_1-C_8) alkylamino, (C_2-C_8) heteroalkyl, (C_3-C_8) alkylamino, (C_1-C_8) alkylamino, (C_1-C_8) alkylamino, (C_2-C_8) heteroalkyl, (C_3-C_8) alkylamino, (C_1-C_8) alkylamin 22 C₉)heterocyclyl, (C₁-C₈)acylamino, amidino, guanidino, ureido, cyano, heteroaryl, 23 -CONR⁹R¹⁰ and -CO₂R¹¹; 24 R^4 is a member selected from the group consisting of (C_1-C_2) alkyl, (C_2-C_2) 25 C_{20})heteroalkyl, heteroaryl, aryl, heteroaryl(C_1 - C_6)alkyl, heteroaryl(C_2 - C_6)heteroalkyl, 26 $aryl(C_1-C_6)alkyl$ and $aryl(C_2-C_6)heteroalkyl$; 27 R⁵ and R⁶ are each members independently selected from the group 28

```
consisting of H, (C1-C8)alkyl, (C2-C8)heteroalkyl, heteroaryl and aryl, or optionally R5
29
       and R<sup>6</sup> are combined to form a 3- to 7-membered ring;
30
                        R<sup>7</sup> and R<sup>8</sup> are each members independently selected from the group
31
       consisting of H, (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl, heteroaryl and aryl,
32
                        each R<sup>9</sup>, R<sup>10</sup> and R<sup>11</sup> is independently selected from the group consisting
33
       of H, (C_1-C_8)alkyl, (C_2-C_8)heteroalkyl, heteroaryl, aryl, heteroaryl(C_1-C_6)alkyl,
34
       heteroaryl(C_2-C_8)heteroalkyl, aryl(C_1-C_8)alkyl and aryl(C_2-C_8)heteroalkyl;
35
                         \mathbf{Y}^{1} and \mathbf{Y}^{2} are each members independently selected from the group
36
       consisting of -C(R^{2})=, -N=, -O-, -S- and -N(R^{13})-;
37.
                        Y<sup>3</sup> is a member selected from the group consisting of N and C wherein the
38
       carbon atom shares a double bond with either Z or Y4; and
39
                        Y^4 is a member selected from the group consisting of -N(R^{14})-, -C(R^{14})=,
40
       -N= and -N(R^{14})-C(R^{15})(R^{15}), wherein
41
                        each R<sup>12</sup> is a member independently selected from the group consisting of
42
       H, halogen, hydroxy, amino, alkylamino, dialkylamino, (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl,
43
       heteroaryl and aryl, or optionally when Y^1 and Y^2 are both -C(R^{12}) the two R^{12} groups
44
       can be combined to form a substituted or unsubstituted 5- to 6-membered cycloalkyl,
45
       heterocycloalkyl, aryl or heteroaryl ring or optionally when Y^1 is -C(R^{12})= and X is -
46
       C(R^5) = or -C(R^5)(R^6)-, R^{12} and R^5 can be combined to form a substituted or unsubstituted
47
       5- to 6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring;
48
                        R^{13} is a member selected from the group consisting of H, (C_1-C_8) alkyl,
49
       (C_2-C_8)heteroalkyl, heteroaryl, aryl, heteroaryl(C_1-C_6)alkyl, heteroaryl(C_2-C_8)heteroalkyl,
50
       aryl(C_1-C_8)alkyl and aryl(C_2-C_8)heteroalkyl;
51
                        R<sup>14</sup> is a member selected from the group consisting of (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-
52
       C_8)heteroalkyl, aryl(C_1-C_8)alkyl, aryl(C_2-C_8)heteroalkyl, heteroaryl(C_1-C_8)alkyl,
53
       heteroaryl(C_2-C_8)heteroalkyl, heteroaryl and aryl;
54
                        R<sup>15</sup> and R<sup>16</sup> are each members independently selected from the group
55
       consisting of H, (C<sub>1</sub>-C<sub>8</sub>)alkyl and (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl; and
56
                        R<sup>17</sup> is a member selected from the group consisting of H, (C<sub>1</sub>-C<sub>8</sub>)alkyl,
57
       (C_2-C_8)heteroalkyl, heteroaryl, aryl, heteroaryl(C_1-C_6)alkyl, heteroaryl(C_2-C_8)heteroalkyl,
58
       aryl(C_1-C_8)alkyl and aryl(C_2-C_8)heteroalkyl, or optionally when Y^2 is -C(R^{12})= or -
59
       N(R<sup>13</sup>)-, R<sup>17</sup> can be combined with R<sup>12</sup> or R<sup>13</sup> to form a substituted or unsubstituted 5- to
60
       6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring;
61
                        with the proviso that when the Y<sup>3</sup>-containing ring system is \( \)
62
```

63	quinazolinone or quinolinone ring system, and R ⁴ -Q- is substituted or unsubstituted (C ₅ -
64	C ₁) alkyl, then R ³ -L- is other than substituted or unsubstituted (C ₂ -C ₈) alkylene or a
65	substituted or unsubstituted (C2-C8)heteroalkylene attached to -NR'R", wherein R' and
66	R" are independently selected from the group consisting of hydrogen and (C1-C8)alkyl, or
67	optionally are combined with the nitrogen atom to which each is attached to form a 5-, 6-
68	or 7-membered ring.
	A
1	A compound of Claim 1, wherein Y ⁴ is -N(R ¹⁴)- wherein R ¹⁴ is
2	selected from the group consisting of aryl and heteroaryl.
1	3. A compound of Claim 1, wherein X is -C(O)-
1	4. A compound of Claim 1, wherein Z is -N=.
•	ii Troompound or ordina 1, whorem 2 to 1.
1	5. A compound of Claim 1, wherein Y^1 and Y^2 are each $-C(R^{12})=$
2	wherein the two R ¹² groups are combined to form a fused 6-membered aryl or heteroaryl
3	ring. $\setminus \mathcal{Q}$
1	6. A compound of Claim 1, wherein X is -C(O)-; Z is -N=; Y³ is C; and
2	Y^1 and Y^2 are each $-C(R^{12})=$.
1	7. A compound of Claim 6, wherein the two R ¹² groups are combined to
2	form a fused 6-membered substituted or unsubstituted aryl or heteroaryl ring.
1	8. A compound of Claim 6, wherein Y^4 is $-N(R^{14})$
1	9. A compound of Claim 6, wherein Y^4 is $-C(R^{14})=$.
1	10. A compound of Claim 7, wherein Y^4 is $N(R^{14})$
1	11. A compound of Claim 7, wherein Y^4 is $-C(R^{14})=$.
1	12. A compound of Claim 1, wherein L is (C ₁ -C ₈)alkylene.
1	13. A compound of Claim 1, wherein Q is -C(O)
1	14. A compound of Claim 1, wherein R ⁴ is selected from the group
2	consisting of (C ₅ -C ₁₅)alkyl, substituted or unsubstituted phenyl and biphenyl

```
15. A compound of Claim 1, wherein R<sup>3</sup> is selected from the group
1
      consisting of (C<sub>1</sub>-C<sub>8</sub>)alkoxy, (C<sub>1</sub>-C<sub>8</sub>)alkylamino, di(C<sub>1</sub>-C<sub>8</sub>)alkylamino, (C<sub>2</sub>-
2
      C<sub>8</sub>)heteroalkyl, (C<sub>3</sub>-C<sub>9</sub>)heterocyclyl, (C<sub>1</sub>-C<sub>8</sub>)acylamino, cyano, heteroaryl, -CONR<sup>9</sup>R<sup>10</sup>
3
      and -CO_2R^{11}.
4
                       16. A compound of Claim 1, wherein R<sup>1</sup> and R<sup>2</sup> are independently selected
1
      from the group consisting of H and (C_1-C_4)alkyl.
2
                       17. A compound of Claim 1, wherein Y<sup>3</sup> is C and the carbon atom shares a
1
2
      double bond with Z.
                       18. A compound of Claim 1, wherein X \neq -C(R^5)(R^6)-; Y^4 is -N(R^{14})-,
1
     wherein R<sup>14</sup> is substituted or unsubstituted aryl or heteroaryl; Y<sup>3</sup> is C; Z is -N=; and Y<sup>1</sup>
2
     and Y^2 are each -C(R^{12})=.
3
                       19. A compound of Claim 18, wherein X is -CH<sub>2</sub>- and the R<sup>12</sup> groups are
1
     combined to form a substituted or unsubstituted aryl or heteroaryl ring.
2
                       20. A compound of Claim 1, wherein X is -C(R^5)=; Y^4 is -C(R^{14})=,
1
     wherein R^{14} is substituted or unsubstituted aryl or heteroaryl; Y^3 is C; Z is -N=; and Y^1
2
     and Y^2 are each -C(R^{12})=.
3
                       21. A compound of Claim 20, wherein R<sup>1</sup> is H.
1
                       22. A compound of Claim 1, wherein X is a bond; Y^4 is -N(R^{14})-, wherein
1
     R^{14} is substituted or unsubstituted aryl or heteroaryl; Y^3 is C; Z is -N=; and Y^1 and Y^2 are
2
     each -C(R^{12})=.
3
                       23. A compound of Claim 22, wherein the R<sup>12</sup> groups are combined to
1
      form a substituted or unsubstituted aryl or heteroaryl ring.
2
                       24. A compound of Claim 22, wherein R<sup>1</sup> is H.
1
                       25. A compound of Claim 1, wherein X is -C(R^5)=; Y^4 is -C(R^{14})=,
1
      wherein R^{14} is substituted or unsubstituted aryl or heteroaryl; Y^3 is C; Z is -C(R^7)=; and
2
         and Y^2 are each -C(R^{12})=.
3
```

26. A compound of Claim 25, wherein R⁵ and R¹² are combined to form a 1 5- or 6-membered substituted or unsubstituted aryl or heteroaryl ring. 2 27. A compound of Claim 25, wherein R¹ is H. 1 **28.** A compound of Claim 1, wherein X is a bond; Z is -N= or $-N(R^{17})$ -; 1 Y^4 is $-C(R^{14})$ =, wherein R^{14} is substituted or unsubstituted aryl or heteroaryl; Y^1 is 2 selected from the group consisting of -O-, -S- and $-N(R^{13})$ -; and Y^2 is $-C(R^{12})$ =. 3 29. A compound of Claim 28, wherein Y¹ is -O- and Z is -N=. 1 30. A compound of Claim 28, wherein Y¹ is -S- and Z is -N=. 1 31. A compound of Claim 28, wherein Y^1 is $-N(R^{13})$ - and Z is -N=. 1 32. A compound of Claim 1, wherein X is $-SO_2$ -; Y^4 is $-N(R^{14})$ =, wherein R^{14} is substituted or unsubstituted aryl or heteroaryl; Y^3 is C; Z is -N= or $-C(R^7)=$; and Y^1 2 and Y^2 are each $-C(R^{12})=$. 3 33. A compound of Claim 32, wherein R¹ is H. 1 34. A compound of Claim 1, wherein X is a bond; Z is -O-, -S- or 1 $-N(R^{17})$ -; Y^1 is $-N = \text{ or } -N(R^{13})$ -; Y^2 is $-C(R^{12})$ =; and Y^4 is $-C(R^{14})$ = wherein R^{14} is 2 substituted or unsubstituted aryl or heteroaryl. 35. A compound of Claim 34, wherein $Y \setminus is -N=$ and Z is -O-. 1 **36.** A compound of Claim 34, wherein Y^1 is N=1 and Z is S=1. 1 37. A compound of Claim 34, wherein Z is -N(R¹⁷)-. 38. A compound of Claim 34, wherein R¹ is H. 1 **39.** A compound of Claim 1, wherein X is a bond; $Y \setminus S = N(R^{13})$ or = N - S, 1 Y^2 is $-C(R^{12})=$; Y^3 is C; Y^4 is $-C(R^{14})=$ wherein R^{14} is substituted or unsubstituted aryl or 2 heteroaryl; and Z is $-N(R^{17})$ - or =N-, with the proviso that Y^1 and Z are not both =N-. **40.** A compound of Claim 1, wherein X is a bond; Y^1 and Y^2 are each 1 independently $-C(R^{12})=$; Y^3 is C; Y^4 is $-C(R^{14})=$ wherein R^{14} is substituted or 2

unsubstituted aryl or heteroaryl; and Z is $-N(R^{17})$ -, O or 5. 3 41. A compound of Claim 40, wherein the two R¹² groups are combined to 1 form a fused 5- or 6-membered substituted or unsubstituted aryl or heteroaryl ring. 2 42. A compound of Claim 1, wherein X is -C(O)-; Y^1 is $-N(R^{13})$ -; Y^2 is 1 -N=; Y³ is C; Y⁴ is $-N(R^{14})$ - wherein R¹⁴ is substituted or unsubstituted aryl or heteroaryl; 2 and Z is a bond. 3 43. A compound of Claim A2, wherein R¹ is H. 1 44. A compound of Claim 1, wherein X is-C(O)-; Z is -N(R¹⁷)- wherein 1 R¹⁷ is substituted or unsubstituted aryl or heteroaryl; Y¹ and Y² are each independently 2 $-C(R^{12})=$; Y³ is C; and Y⁴ is -N=. 3 45. A compound of Claim 44, wherein R¹ is H. 1 **46.** A compound of Claim 1, wherein X and Z are -N=, Y^1 and Y^2 are each 1 independently $-C(R^{12})=$; Y^3 is C; and Y^4 is $-C(R^{14})=$ wherein R^{14} is a substituted or 2 unsubstituted aryl or heteroaryl group. 3 47. A compound of Claim 46, wherein R¹ is H. 1 48. A compound of Claim 1, wherein X is -C(O)-; Y⁴ is 1 $-N(R^{14})-C(R^5)(R^6)$; wherein R^{14} is substituted or unsubstituted aryl or heteroaryl; Y^1 and 2 Y^2 are each independently $-C(R^{12})=$; Y^3 is C; and Z is -N=. 3 49. A compound of Claim 48, wherein R¹ is H. 1 50. A compound of Claim 1, wherein the Y³-containing ring system is 1 selected from the group consisting of quinoline, quinazoline, naphthalene, quinolinone, 2 quinazolinone, triazolinone, pyrimidin-4-one, benzimidazole, thiazole, imidazole, 3 pyridine, pyrazine and benzodiazepine. 4

```
$1. A compound of Claim 1, having the formula (III):
  1
  2
                                                       III
  3
  4
       wherein
               A^4 is C or N:
  5
               X is -CO_{-}, -CH_{2}- or a bond;
  6
               R<sup>1</sup> and R<sup>2</sup> are each members independently selected from the group consisting of
  7
                       H and (C_1-C_4) alkyl;
  8
               R<sup>14</sup> is a substituted or unsubstituted member selected from the group consisting of
  9
 10
                       phenyl, pyridyl, thiazolyl, thienyl and pyrimidinyl;
               Q is -CO-;
 11
               L is (C_1-C_8)alkylene;
 12
               the subscript n is an integer of from 0 to 4; and
13
               each R<sub>a</sub> is independently selected from the group consisting of halogen, -OR',
14
                       -OC(O)R', -NR'R'', -SR^{\dagger}, -R', -CN, -NO_2, -CO_2R', -CONR'R'', -C(O)R',
15
                       -OC(O)NR'R", -NR"C(O)R', -NR"C(O)2R', ,-NR'-C(O)NR"R"",
16
                       -NH-C(NH_2)=NH, -NR'C(NH_2)=NH, -NH-C(NH_2)=NR', -S(O)R', -
17
                       S(O)_2R', -S(O)_2NR'R'', -N_3, CH(Ph)_2, perfluoro(C_1-C_4)alkoxy, and
18
                       perfluoro(C<sub>1</sub>-C<sub>4</sub>)alkyl, wherein R', R" and R" are each independently
19
20
                       selected from the group consisting of H, (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl,
21
                       unsubstituted aryl, unsubstituted heteroaryl, (unsubstituted aryl)-(C1-
                       C_4)alkyl, and (unsubstituted aryl)oxy-(C_1-C_4)alkyl.
22
                       52. A compound of Claim 51, wherein X is -C(O).
  1
                       53. A compound of Claim 51, wherein X is -CH<sub>2</sub>-.
  1
  1
                       54. A compound of Claim 51, wherein X is a bond.
                       55. A compound of Claim 51, wherein R<sup>4</sup> is substituted or unsubstituted
  1
  2
       benzyl, wherein said substituents are selected from the group consisting of halogen,
       halo(C_1-C_4)alkyl, halo(C_1-C_4)alkoxy, cyano, nitro, and phenyl
  3
```

1	36. A compound of Claim 51, wherein R ¹⁴ is selected from the group
2	consisting of substituted phenyl, substituted pyridyl, substituted thiazolyl and substituted
3	thienyl, wherein the substituents are selected from the group consisting of cyano, halogen,
4	(C_1-C_8) alkoxy, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, CONH ₂ , methylenedioxy and
5	ethylenedioxy.
1	57. A compound of Claim 51, wherein R ¹⁴ is substituted phenyl, wherein
2	the substituents are selected from the group consisting of cyano, halogen, (C1-C8)alkoxy,
3	(C ₁ -C ₈)alkyl, (C ₂ -C ₈)heteroalkyl, CONH ₂ , methylenedioxy and ethylenedioxy.
1	58. A compound of Claim 51, wherein R ⁴ is substituted or unsubstituted
2	benzyl, wherein said substituents are selected from the group consisting of halogen,
3	halo(C_1 - C_4)alkyl, halo(C_1 - C_4)alkoxy, cyano, nitro and phenyl, and R^{14} is substituted
4	phenyl, wherein the substituents are selected from the group consisting of cyano, halogen,
5	(C ₁ -C ₈)alkoxy, (C ₁ -C ₈)alkyl, (C ₂ -C ₈)heteroalkyl, CONH ₂ , methylenedioxy and
6	ethylenedioxy.
1	59. A compound of Claim 51, wherein R ¹ is selected from the group
2	consisting of methyl, ethyl and propyl, and R ² is hydrogen.
1	60. A compound of Claim 51, wherein R ¹ and R ² are each methyl.
1	61. A compound of Claim 51, wherein R ³ is selected from the group
2	consisting of (C ₁ -C ₈)alkoxy, amino, (C ₁ -C ₈)alkylamino, di(C ₁ -C ₈)alkylamino, (C ₂ -
3	C ₈)heteroalkyl, (C ₃ -C ₉)heterocyclyl and heteroaryl.
1	62. A compound of Claim 51, wherein R ³ is selected from the group
2	consisting of substituted or unsubstituted pyridyl and substituted or unsubstituted
3	imidazolyl.
1	63. A compound of Claim 51, wherein L is (C ₁ -C ₄)alkylene.
1	64. A compound of Claim 51, wherein X is -CO-; R ¹ and R ² are each
2	independently selected from the group consisting of H, methyl and ethyl; R ¹⁴ is phenyl; ;
3	L is methylene, ethylene or propylene, R ³ is selected from the group consisting of
4	substituted or unsubstituted pyridyl and substituted or unsubstituted imidazolyl; R4 is
5	substituted or unsubstituted benzyl, wherein said substituents are selected from the group

- 6 donsisting of halogen, halo(C_1 - C_4)alkyl, halo(C_1 - C_4)alkoxy, cyano, nitro, and phenyl; and
- 7 each R_a is selected from the group consisting of halogen, -OR', -OC(O)R', -NR'R", -SR',
- 8 -R'\,-CN, -NO₂, -CO₂R', -CONR'R", -C(O)R', -NR"C(O)R', -NR'-C(O)NR"R",
- 9 perfluoro(C₁-C₄)alkoxy, and perfluoro(C₁-C₄)alkyl, wherein R', R" and R" are each
- independently selected from the group consisting of H, (C₁-C₈)alkyl, (C₂-C₈)heteroalkyl,
- unsubstituted aryl, unsubstituted heteroaryl, (unsubstituted aryl)-(C₁-C₄)alkyl, and
- 12 (unsubstituted aryl) $oxy-(C_1-C_4)alkyl$.
- 1 65. A compound of Claim 51, wherein said compound is selected from the
- 2 group consisting of:

4

1

2

3

4

66. A pharmaceutical composition comprising a pharmaceutically

acceptable carrier or excipient and a compound having the formula (I):

5 wherein

6 X is a member selected from the group consisting of a bond, -C(O)-,

7 -C(R⁵)(R⁶)-, -C(R⁵)=, -S(O)-, -S(O)₂- and -N $\frac{1}{2}$

8	is a member selected from the group consisting of a bond, -N=, -O-, -S-
9	-N(\mathbb{R}^{17})- and -C(\mathbb{R}^7)=, with the proviso that X and Z are not both a bond;
10	L is member selected from the group consisting of a bond, $C(O)$ - $(C_1$ -
11	C ₈)alkylene, (C ₁ -C ₈)alkylene and (C ₂ -C ₈)heteroalkylene;
12	Q is a member selected from the group consisting of a bond, (C ₁ -
13	C ₈)alkylene, (C ₂ -C ₈)heteroalkylene, -C(O)-, -OC(O)-, -N(R ⁸)C(O)-, -CH ₂ CO-, -CH ₂ SO-
14	and -CH ₂ SO ₂ -;
15	optionally L and Q can be linked together to form a 5- or 6-membered
16	heterocyclic group having from to 3 heteroatoms;
17	R ¹ and R ² are members independently selected from the group consisting
18	of H, (C ₁ -C ₈)alkyl, (C ₂ -C ₈)heteroalkyl, aryl and heteroaryl, or optionally are combined to
19	form a 3 to 8-membered ring having from 0 to 2 heteroatoms as ring vertices;
20	optionally R ² and L can be linked together to form a 5- or 6-membered
21	heterocyclic group having from 1 to 4 heteroatoms;
22	R^3 is a member selected from the group consisting of hydroxy, (C ₁ -
23	C ₈)alkoxy, amino, (C ₁ -C ₈)alkylamino, di(C ₁ -C ₈)alkylamino, (C ₂ -C ₈)heteroalkyl, (C ₃ -
24	C ₉)heterocyclyl, (C ₁ -C ₈)acylamino, amidino, guanidino, ureido, cyano, heteroaryl,
25	$-\text{CONR}^9\text{R}^{10}$ and $-\text{CO}_2\text{R}^{11}$;
26	R^4 is a member selected from the group consisting of (C_1-C_{20}) alkyl, (C_2-C_{20})
27	C_{20})heteroalkyl, heteroaryl, aryl, heteroaryl(C_1 - C_6)alkyl, heteroaryl(C_2 - C_6)heteroalkyl,
28	$aryl(C_1-C_6)alkyl$ and $aryl(C_2-C_6)heteroalkyl;$
29	R ⁵ and R ⁶ are each members independently selected from the group
30	consisting of H, (C ₁ -C ₈)alkyl, (C ₂ -C ₈)heteroalkyl, heteroaryl and aryl, or optionally R ⁵
31	and R ⁶ are combined to form a 3- to 7-membered ring;
32	R ⁷ and R ⁸ are each members independently selected from the group
33	consisting of H, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, heteroaryl and aryl,
34	each R ⁹ , R ¹⁰ and R ¹¹ is independently selected from the group consisting
35	of H, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, heteroaryl, aryl, heteroaryl (C_1-C_6) alkyl,
36	heteroaryl(C_2 - C_8)heteroalkyl, aryl(C_1 - C_8)alkyl and aryl(C_2 - C_8)heteroalkyl;
37	Y ¹ and Y ² are each members independently selected from the group
38	consisting of $-C(R^{12})=$, $-N=$, $-O-$, $-S-$ and $-N(R^{13})-$;
39	Y ³ is a member selected from the group consisting of N and C wherein the
40	carbon atom shares a double bond with either Z or Y^4 ; and
41	Y^4 is a member selected from the group consisting of $-N(R^{14})$ -, $-C(R^{14})$

```
-N = \text{and } -N(R^{14})-C(R^{15})(R^{16})-, wherein
42
                        each R<sup>12</sup> is a member independently selected from the group consisting of
43
       H, halogen, hydroxy, amino, alkylamino, dialkylamino, (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl,
44
       heteroaryl and aryl, or optionally when Y^1 and Y^2 are both -C(R^{12}) the two R^{12} groups
45
       can be combined to form a substituted or unsubstituted 5- to 6-membered cycloalkyl,
46
       heterocycloalkyl, aryl or heteroaryl ring; or optionally when Y^1 is -C(R^{12})= and X is -
47
       C(R^5) = or -C(R^5)(R^6)-, R^{12} and R^5 can be combined to form a substituted or unsubstituted
48
       5- to 6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring;
49
                        \mathbb{R}^{13} is a member selected from the group consisting of H, (C_1-C_8) alkyl,
50
       (C_2-C_8)heteroalky), heteroaryl, aryl, heteroaryl(C_1-C_6)alkyl, heteroaryl(C_2-C_8)heteroalkyl,
51
       aryl(C_1-C_8)alkyl and aryl(C_2-C_8)heteroalkyl;
52
                        R<sup>14</sup> is a member selected from the group consisting of (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-
53
54
       C_8)heteroalkyl, aryl(C_1-C_8)alkyl, aryl(C_2-C_8)heteroalkyl, heteroaryl(C_1-C_8)alkyl,
       heteroaryl(C<sub>2</sub>-C<sub>8</sub>)heteroalkyl, heteroaryl and aryl;
55
                        R<sup>15</sup> and R<sup>16</sup> are each members independently selected from the group
56
       consisting of H, (C<sub>1</sub>-C<sub>8</sub>)alkyl and (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl; and
57
                        R^{17} is a member selected from the group consisting of H, (C_1-C_8) alkyl,
58
       (C_2-C_8)heteroalkyl, heteroaryl, aryl, heteroaryl(C_1-C_6)alkyl, heteroaryl(C_2-C_8)heteroalkyl,
59
       aryl(C_1-C_8)alkyl and aryl(C_2-C_8)het croalkyl, or optionally when Y^2 is -C(R^{12})= or -
60
      N(R^{13})-, R^{17} can be combined with R^{12} or R^{13} to form a substituted or unsubstituted 5- to
61
       6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring;
62
                        with the proviso that when the Y<sup>3</sup>-containing ring system is a
63
       quinazolinone or quinolinone ring system, and R<sup>4</sup>-Q- is substituted or unsubstituted (C<sub>5</sub>-
64
       C<sub>15</sub>)alkyl, then R<sup>3</sup>-L- is other than substituted or unsubstituted (C<sub>2</sub>-C<sub>8</sub>)alkylene or a
65
      substituted or unsubstituted (C2-C8)heteroalkylone attached to -NR'R", wherein R' and
66
       R" are independently selected from the group consisting of hydrogen and (C<sub>1</sub>-C<sub>8</sub>)alkyl, or
67
      optionally are combined with the nitrogen atom to which each is attached to form a 5-, 6-
68
69
       or 7-membered ring.
                        67. A composition of Claim 66, wherein Y^4 is -N(R^{14})- wherein R^{14} is
 1
       selected from the group consisting of aryl and heteroaryl.
 2
                        68. A composition of Claim 66, wherein X is \{C(O)\}.
 1
                        69. A composition of Claim 66, wherein Z is -N

♣
 1
```

1	10. A composition of Claim 66, wherein Y^1 and Y^2 are each $-C(R^{12})=$
2	wherein the two R ¹² groups are combined to form a fused 6-membered aryl or heteroary
3	ring.
1	71. A composition of Claim 66, wherein X is $-C(O)$ -; Z is $-N=$; Y^3 is C;
2	and Y^1 and Y^2 are each $-C(R^{12})$ = wherein the two R^{12} groups are combined to form a
3	fused 6-membered substituted or unsubstituted aryl or heteroaryl ring.
1	72. A composition of Claim 66, wherein L is (C ₁ -C ₈)alkylene.
1	73. A composition of Claim 66, wherein Q is -C(O)
1	74. A composition of Claim 66, wherein R ⁴ is selected from the group
2	consisting of (C ₅ -C ₁₅)alkyl, substituted or unsubstituted phenyl and biphenyl.
1	75. A composition of Claim 66, wherein R ³ is selected from the group
2	consisting of (C_1-C_8) alkoxy, (C_1-C_8) alkylamino, (C_1-C_8) alkylamino, (C_2-C_8)
3	C ₈)heteroalkyl, (C ₃ -C ₉)heterocycly, (C ₁ -C ₈)acylamino, cyano, heteroaryl, -CONR ⁹ R ¹⁰
4	and $-CO_2R^{11}$.
1	76. A composition of α laim 66, wherein α and α are independently
2	selected from the group consisting of H and (C_1-C_4) alkyl.
1	77. A composition of Claim 66, wherein Y ³ is C and the carbon atom
2	shares a double bond with Z.
1	78. A composition of Claim 66, wherein the Y ³ -containing ring system is
2	selected from the group consisting of quinoline, quinazoline, naphthalene, quinolinone,
3	quinazolinone, triazolinone, pyrimidin-4-one, benzimidazole, thiazole, imidazole,
4	pyridine, pyrazine and benzodiazepine.
1	79. A composition of Claim 66, wherein the compound has the formula
2	(III):
	$(R_a)_{n} \stackrel{\text{II}}{\underset{\text{II}}{\downarrow}} A^4 \stackrel{\text{N}}{\underset{\text{R}}{\downarrow}} R^1$
3	R ⁴ -Q-N-L-R ³

4	\	III .
5	wherein	
6		A ⁴ is C or N;
7		X is -CO-, -CH ₂ - or a bond;
8		R ¹ and R ² are each members independently selected from the group
9	consisting	f H and (C ₁ -C ₄)alkyl;
10	`	R^{14} is a substituted or unsubstituted member selected from the group
11	consisting of	f phenyl, pyridyl, thiazolyl, thienyl and pyrimidinyl;
12		Q & -CO-;
13	•	L is (C ₁ -C ₈)alkylene;
14		the subscript n is an integer of from 0 to 4; and
15		each Ra is independently selected from the group consisting of halogen, -
16	OR', -OC(O)R', -NR'R", -SR', -R', -CN, -NO ₂ , -CO ₂ R', -CONR'R", -C(O)R',
17	, ,	R", -NR"C(O)R',-NR"C(O) ₂ R', ,-NR'-C(O)NR"R"', -NH-C(NH ₂)=NH, -
18	NR'C(NH ₂)=	=NH, -NH-C(NH ₂)=NR', $S(O)R'$, -S(O) ₂ R', -S(O) ₂ NR'R", -N ₃ , -CH(Ph) ₂ ,
19	perfluoro(C ₁	$-C_4$) alkoxy, and perfluorc (C_1-C_4) alkyl, wherein R', R'' and R''' are each
20	independent	ly selected from the group consisting of, (C ₁ -C ₈)alkyl, (C ₂ -C ₈)heteroalkyl,
21	unsubstituted	d aryl, unsubstituted heteroaryl, (unsubstituted aryl)-(C1-C4)alkyl, and
22	(unsubstitute	ed aryl)oxy- (C_1-C_4) alkyl.
		20 A supplied in a sould Claim 70 and again V is C(O)
1		80. A composition in accordance with Claim 79, wherein X is -C(O)
1		81. A composition in accordance with Claim 79, wherein X is -CH ₂
1		82 A samuration in accordance with Claim 70 and arrive V is a hand
ı		82. A composition in accordance with Claim 79, wherein X is a bond.
1		83. A composition in accordance with Claim 79, wherein R ⁴ is substituted
2	or unsubstitu	tted benzyl, wherein said substituents are selected from the group consisting
3	of halogen, h	nalo(C ₁ -C ₄)alkyl, halo(C ₁ -C ₄)alkoxy, cyano, nitro, and phenyl.
1		84. A composition in accordance with Claim 79, wherein R ¹⁴ is selected
2	from the gro	up consisting of substituted phenyl, substituted pyridyl, substituted thiazolyl
3	•	ed thienyl, wherein the substituents are selected from the group consisting of
4		en, (C_1-C_8) alkoxy, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, CONH,
5	•	ovy and ethylenediavy

1	85. A composition in accordance with Claim 79, wherein R ¹ is selected
2	from the group consisting of methyl, ethyl and propyl, and R ² is.
1	86. A composition in accordance with Claim 79, wherein R ¹ and R ² are
2	each methyl.
1	87. A composition in accordance with Claim 79, wherein R ³ is selected
2	from the group consisting of substituted or unsubstituted pyridyl and substituted or
3	unsubstituted imidazolyl.
1	88. A composition in accordance with Claim 79, wherein L is (C ₁ -
2	C ₄)alkylene.
1	89. A composition in accordance with Claim 79, wherein X is -CO-; R ¹
2	and R ² are each independently selected from the group consisting of, methyl and ethyl;
3	R ¹⁴ is selected from the group consisting of substituted or unsubstituted phenyl; L is
4	methylene, ethylene or propylene, R ³ is selected from the group consisting of substituted
5	or unsubstituted pyridyl and substituted or unsubstituted imidazolyl; R4 is substituted or
6	unsubstituted benzyl, wherein said substituents are selected from the group consisting of
7	halogen, halo(C ₁ -C ₄)alkyl, halo(C ₁ -C ₄)alkoxy, cyano, nitro, and phenyl; and each R _a is
8	selected from the group consisting of halogen, -OR', -OC(Q)R', -NR'R'', -SR', -R', -CN
9	$-NO_2$, $-CO_2R'$, $-CONR'R''$, $-C(O)R'$, $-NR''C(O)R'$, $-NR'-C(O)NR''R'''$, perfluoro(C_1 -
10	C ₄)alkoxy, and perfluoro(C ₁ -C ₄)alkyl, wherein R', R" and R" are each independently
1	selected from the group consisting of, (C ₁ -C ₈)alkyl, (C ₂ -C ₈)heteroalkyl, unsubstituted
12	aryl, unsubstituted heteroaryl, (unsubstituted aryl)-(C1-C4)alkyl, and (unsubstituted
13	aryl)oxy- (C_1-C_4) alkyl.
1	90. The composition of Claim 79, wherein said compound is:

$$F_3C$$
 OCH₂CH₃ OCH₂CH₃ F_3C OCH₂CH₃

3

1 91. A method of treating an inflammatory or immune condition or disease

2 in a subject, said method comprising administering to a subject in need of such treatment

a therapeutically effective amount of a compound having the formula (I):

$$\begin{array}{c|cccc}
Y_1^1 & X & Y_4 & R^1 \\
Y^2 & Z & Y^3 & R^2 \\
\hline
R^4 & Q & L & R^3
\end{array}$$

4 5

7

13

16

6 wherein

X is a member selected from the group consisting of a bond, -C(O)-,

8 -C(R⁵)(R⁶)-, -C(R⁵)= $\sqrt{-S(O)}$ -, -S(O)₂- and -N=;

Z is a member selected from the group consisting of a bond, -N=, -O-, -S-,

10 $-N(R^{17})$ - and $-C(R^{7})$ =, with the proviso that X and Z are not both a bond;

11 L is a member selected from the group consisting of a bond, C(O)- $(C_1$ -

12 C_8)alkylene, (C_1-C_8) alkylene and (C_2-C_8) heteroalkylene;

/ Q is a member selected from the group consisting of a bond, (C₁-

14 C₈)alkylene, (C₂-C₈)heteroalkylene, -C(O)-, -OC(O)-, -N(R⁸)C(O)-, -CH₂CO-, -CH₂SO-

15 and CH₂SO₂-;

optionally L and Q can be linked together to form a 5- or 6-membered

heterocyclic group having from 1 to 3 heteroatoms;

18	R ¹ and R ² are members independently selected from the group consisting
19	of H, (C ₁ -C ₈)alky (C ₂ -C ₈)heteroalkyl, aryl and heteroaryl, or optionally are combined to
20	form a 3 to 8-membered ring having from 0 to 2 heteroatoms as ring vertices;
21	optionally R ² and L can be linked together to form a 5- or 6-membered
22	heterocyclic group having from 1 to 4 heteroatoms;
23	R ³ is a member selected from the group consisting of hydroxy, (C ₁ -
24	C_8) alkoxy, amino, (C_1-C_8) alkylamino, di (C_1-C_8) alkylamino, (C_2-C_8) heteroalkyl, (C_3-C_8)
25	C ₉)heterocyclyl, (C ₁ -C ₈)acylamino, amidino, guanidino, ureido, cyano, heteroaryl,
26	-CONR 9 R 10 and -CO $_2$ R 11 ;
27	R ⁴ is a member selected from the group consisting of (C ₁ -C ₂₀)alkyl, (C ₂ -
28	C_{20})heteroalkyl, heteroaryl, aryl, heteroaryl(C_1 - C_6)alkyl, heteroaryl(C_2 - C_6)heteroalkyl,
29	$aryl(C_1-C_6)alkyl$ and $aryl(C_2-C_6)heteroalkyl$;
30	R ⁵ and R ⁶ are each members independently selected from the group
31	consisting of H, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, heteroaryl and aryl, or optionally R^5
32	and R ⁶ are combined to form a 3- to 7-membered ring;
33	R ⁷ and R ⁸ are each members independently selected from the group
34	consisting of H, (C ₁ -C ₈)alkyl, (C ₂ -C ₈)heteroalkyl, heteroaryl and aryl,
35	each R ⁹ , R ¹⁰ and R ¹¹ is independently selected from the group consisting
36	of H, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, heteroaryl, aryl, heteroaryl (C_1-C_6) alkyl,
37	heteroaryl(C_2 - C_8)heteroalkyl, aryl(C_1 - C_8)alkyl and aryl(C_2 - C_8)heteroalkyl;
38	Y^1 and Y^2 are each members independently selected from the group
39	consisting of $-C(R^{12})=$, $-N=$, $-O-$, $-S-$ and $-N(R^{13})-$;
40	Y ³ is a member selected from the group consisting of N and C wherein the
41	carbon atom shares a double bond with either Z or Y^4 ; and
42	Y^4 is a member selected from the group consisting of $-N(R^{14})$ -, $-C(R^{14})$ =,
43	-N= and -N(R^{14})-C(R^{15})(R^{16})-, wherein
44	each R ¹² is a member independently selected from the group consisting of
45	H, halogen, hydroxy, amino, alkylamino, dialkylamino, (C_1-C_8) alkyl, (C_7-C_8) heteroalkyl,
46	heteroaryl and aryl, or optionally when Y^1 and Y^2 are both $-C(R^{12})$ = the two R^{12} groups
47	can be combined to form a substituted or unsubstituted 5- to 6-membered cycloalkyl,
48	heterocycloalkyl, aryl or heteroaryl ring; or optionally when Y^1 is $-C(R^{12})=$ and X is $-$
49	$C(R^5)$ = or $-C(R^5)(R^6)$ -, R^{12} and R^5 can be combined to form a substituted or unsubstituted
50	5- to 6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring;
51	R^{13} is a member selected from the group consisting of H. (C_1-C_8) alky

 (C_2-C_8) heteroalkyl, heteroaryl, aryl, heteroaryl (C_1-C_6) alkyl, heteroaryl (C_2-C_8) heteroalkyl, 52. ary (C_1-C_8) alkyl and aryl (C_2-C_8) heteroalkyl; 53 R¹⁴ is a member selected from the group consisting of (C₁-C₈)alkyl, (C₂-54 C_8)heteroalkyl, aryl(C_1 - C_8)alkyl, aryl(C_2 - C_8)heteroalkyl, heteroaryl(C_1 - C_8)alkyl, 55 heteroaryl(C_2 - C_8)heteroalkyl, heteroaryl and aryl; 56 R^{15} and R^{16} are each members independently selected from the group 57 consisting of H, (C_1-C_8) alkyl and (C_2-C_8) heteroalkyl; and 58 R^{17} is a member selected from the group consisting of H, (C_1-C_8) alkyl, 59 (C_2-C_8) heteroalkyl, heteroaryl, aryl, heteroaryl (C_1-C_6) alkyl, heteroaryl (C_2-C_8) heteroalkyl, 60 $aryl(C_1-C_8)$ alkyl and $aryl(C_2-C_8)$ heteroalkyl, or optionally when Y^2 is $-C(R^{12}) = or -$ 61 N(R¹³)-, R¹⁷ can be combined with R¹² or R¹³ to form a substituted or unsubstituted 5- to 62 6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring; 63 with the proviso that when the Y³-containing ring system is a 64 quinazolinone or quinolinone ring system, and R⁴-Q- is substituted or unsubstituted (C₅-65 C_{15})alkyl, then R^3 -L- is other than substituted or unsubstituted (C_2 - C_8)alkylene or a 66 substituted or unsubstituted (C2-C8)heteroalkylene attached to -NR'R", wherein R' and 67 R" are independently selected from the group consisting of hydrogen and (C₁-C₈)alkyl, or 68 optionally are combined with the nitrogen atom to which each is attached to form a 5-, 6-69 70 or 7-membered ring. 92. The method of Claim 91, wherein said compound is administered 1 2 orally, parenterally or topically. 93. The method of Claim 91, wherein said compound modulates CXCR3. 1 1 94. The method of Claim 91, wherein said compound is a CXCR3 2 antagonist. 95. The method of Claim 91, wherein said inflammatory or immune 1 2 condition or disease is selected from the group consisting of neurodegenerative diseases, 3 multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, atherosclerosis, 4 encephalitis, meningitis, hepatitis, nephritis, sepsis, sarcoidosis, psoriasis, eczema, 5 uticaria, type I diabetes, asthma, conjunctivitis, otitis, allergic rhinitis, chronic obstructive pulmonary disease, sinusitis, dermatitis, inflammatory bowel disease, ulcerative colitis, 6 7 Crohn's disease, Behcet's syndrome, gout, cancer, viral infections, bacterial infections

8 drgan transplant conditions and skin transplant conditions.

1 96. The method of Claim 91, wherein said compound is administered in

2 combination with a second therapeutic agent, wherein said second therapeutic agent is

- 3 useful for treating or preventing neurodegenerative diseases, multiple sclerosis, systemic
- 4 lupus erythematosus, rheumatoid arthritis, atherosclerosis, encephalitis, meningitis,
- 5 hepatitis, nephatis, sepsis, sarcoidosis, psoriasis, eczema, uticaria, type I diabetes,
- 6 asthma, conjunctivitis, otitis, allergic rhinitis, chronic obstructive pulmonary disease,
- 7 sinusitis, dermatitis, inflammatory bowel disease, ulcerative colitis, Crohn's disease,
- 8 Behcet's syndrome, goot, cancer, viral infections, bacterial infections, organ transplant
- 9 conditions or skin transplant conditions.
- 97. A method of treating a CXCR3-mediated condition or disease in a subject, said method comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound having the formula (I):

6 wherein

7 X is a member selected from the group consisting of a bond, -C(O)-,

8 $-C(R^5)(R^6)$ -, $-C(R^5)$ =, -S(O)-, $-S(O)_2$ - and -N=;

Z is a member selected from the group consisting of a bond, -N=, -O-, -S-,

10 $-N(R^{17})$ - and $-C(R^7)$ =, with the proviso that X and Z are not both bond;

L is a member selected from the group consisting of a bond, C(O)-(C₁-

12 C_8)alkylene, (C_1-C_8) alkylene and (C_2-C_8) heteroalkylene;

Q is a member selected from the group consisting of a bond, $(C_1$ -

14 C_8)alkylene, (C_2-C_8) heteroalkylene, -C(O)-, -OC(O)-, $-N(R^8)C(O)$ -, $-CH_2CO_5$, $-CH_2SO$ -

15 and $-CH_2SO_2$ -;

18

optionally L and Q can be linked together to form a 5- or 6-membered

17 heterocyclic group having from 1 to 3 heteroatoms;

R¹ and R² are members independently selected from the group consisting

```
Af H, (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl, aryl and heteroaryl, or optionally are combined to
19
       form a 3 to 8-membered ring having from 0 to 2 heteroatoms as ring vertices;
20
                         optionally R<sup>2</sup> and L can be linked together to form a 5- or 6-membered
21
       heterocyclic group having from 1 to 4 heteroatoms;
22
                         R<sup>3</sup> is a member selected from the group consisting of hydroxy, (C<sub>1</sub>-
23
       C<sub>8</sub>)alkoxy, amino, (C<sub>1</sub>-C<sub>8</sub>)alkylamino, di(C<sub>1</sub>-C<sub>8</sub>)alkylamino, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl, (C<sub>3</sub>-
24
       C_9)heterocyclyl, (C_1-C_8)acylamino, amidino, guanidino, ureido, cyano, heteroaryl,
25
       -CONR<sup>9</sup>R<sup>10</sup> and -CO_2R<sup>11</sup>;
26
                         R<sup>4</sup> is a member selected from the group consisting of (C<sub>1</sub>-C<sub>20</sub>)alkyl, (C<sub>2</sub>-
27
       C_{20})heteroalkyl, heteroaryl(C_1-C_6)alkyl, heteroaryl(C_2-C_6)heteroalkyl,
28
       aryl(C_1-C_6)alkyl and aryl(C_2-C_6)heteroalkyl;
29
                         R<sup>5</sup> and R<sup>6</sup> are each members independently selected from the group
30
       consisting of H, (C_1-C_8)alkyl, (C_2-C_8)heteroalkyl, heteroaryl and aryl, or optionally R^5
31
       and R<sup>6</sup> are combined to form a 3- to 7-membered ring;
32
                         R<sup>7</sup> and R<sup>8</sup> are each members independently selected from the group
33
       consisting of H, (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl, heteroaryl and aryl,
34
                         each R<sup>9</sup>, R<sup>10</sup> and R<sup>11</sup> is independently selected from the group consisting
35
       of H, (C<sub>1</sub>-C<sub>8</sub>)alkyl, (C<sub>2</sub>-C<sub>8</sub>)heteroalkyl, heteroaryl, aryl, heteroaryl(C<sub>1</sub>-C<sub>6</sub>)alkyl,
36
       heteroaryl(C_2-C_8)heteroalkyl, aryl(C_1-C_8)alkyl and aryl(C_2-C_8)heteroalkyl;
37
                         Y<sup>1</sup> and Y<sup>2</sup> are each members independently selected from the group
38
       consisting of -C(R^{12})=, -N=, -O-, -S- and -N(R^{13})-;
39
                         Y<sup>3</sup> is a member selected from the group consisting of N and C wherein the
40
       carbon atom shares a double bond with either Z or Y<sup>4</sup>; and
41
                         Y^4 is a member selected from the group consisting of -N(R^{14})-, -C(R^{14})=,
42
       -N= and -N(R^{14})-C(R^{15})(R^{16})-, wherein
43
                         each R<sup>12</sup> is a member independently selected from the group consisting of
44
       H, halogen, hydroxy, amino, alkylamino, dialkylamino, (C_1-C_8)alkyl, (C_2-C_8)heteroalkyl,
45
       heteroaryl and aryl, or optionally when Y^1 and Y^2 are both -C(R^{12})= the two R^{12} groups
46
47
       can be combined to form a substituted or unsubstituted 5- to 6-membered eycloalkyl,
       heterocycloalkyl, aryl or heteroaryl ring; or optionally when Y^1 is -C(R^{12}) = and X is -
48
       C(R^5) = or -C(R^5)(R^6)-, R^{12} and R^5 can be combined to form a substituted or unsubstituted
49
       5- to 6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring;
50
                        R^{13} is a member selected from the group consisting of H, (C_1-C_8) alkyl
51
       (C_2-C_8)heteroalkyl, heteroaryl, aryl, heteroaryl(C_1-C_6)alkyl, heteroaryl(C_2-C_8)heteroalkyl,
52
```

53	$a_{ryl}(C_1-C_8)$ alkyl and $a_{ryl}(C_2-C_8)$ heteroalkyl;
54	R^{14} is a member selected from the group consisting of (C ₁ -C ₈)alkyl, (C ₂ -
55	C_8) heteroalkyl, aryl (C_1-C_8) alkyl, aryl (C_2-C_8) heteroalkyl, heteroaryl (C_1-C_8) alkyl,
56	heteroakyl(C2-C8)heteroalkyl, heteroaryl and aryl;
57	R^{15} and R^{16} are each members independently selected from the group
58	consisting of H, (C_1-C_8) alkyl and (C_2-C_8) heteroalkyl; and
59	\mathbb{R}^{17} is a member selected from the group consisting of H, (C ₁ -C ₈)alkyl,
60	(C_2-C_8) heteroalkyl, heteroaryl, aryl, heteroaryl (C_1-C_6) alkyl, heteroaryl (C_2-C_8) heteroalkyl,
61	aryl(C_1 - C_8)alkyl and aryl(C_2 - C_8)heteroalkyl, or optionally when Y^2 is $-C(R^{12})$ = or $-$
62	$N(R^{13})$ -, R^{17} can be combined with R^{12} or R^{13} to form a substituted or unsubstituted 5- to
63	6-membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring;
64	with the proviso that when the Y ³ -containing ring system is a
65	quinazolinone or quinolinone ring system, and R ⁴ -Q- is substituted or unsubstituted (C ₅ -
66	C ₁₅)alkyl, then R ³ -L- is other than substituted or unsubstituted (C ₂ -C ₈)alkylene or a
67	substituted or unsubstituted (C2-C8)heteroalkylene attached to -NR'R", wherein R' and
68	R" are independently selected from the group consisting of hydrogen and (C1-C8)alkyl, or
69	optionally are combined with the nitrogen atom to which each is attached to form a 5-, 6-
70	or 7-membered ring.
1	98. A method in accordance with Claim 97, wherein Y^4 is $-N(R^{14})$ -
2	wherein R ¹⁴ is selected from the group consisting of aryl and heteroaryl.
1	99. A method in accordance with Claim 97, wherein X is -C(O)
1	100. A method in accordance with Claim 97, wherein Z is -N=.
1	101. A method in accordance with Claim 97, wherein Y ¹ and Y ² are
2	each $-C(R^{12})$ =, wherein the two R^{12} groups are combined to form a fused 6-membered
3	aryl or heteroaryl ring.
1	102. A method in accordance with Claim 97, wherein X is -C(O)-; Z is
2	$-N=$; Y ³ is C; and Y ¹ and Y ² are each $-C(R^{12})=$ wherein the two R ¹² groups are combined
3	to form a fused 6-membered substituted or unsubstituted aryl or heteroaryl ring.
1	103. A method in accordance with Claim 97, wherein his (C ₁ -
2	C ₈)alkylene.

1	04. A method in accordance with Claim 97, wherein Q is -C(O)
1	105. A method in accordance with Claim 97, wherein R ⁴ is selected
2	from the group consisting of (C_5-C_{15}) alkyl, substituted or unsubstituted phenyl and
3	biphenyl.
1	106. A method in accordance with Claim 97, wherein R ³ is selected
2	from the group consisting of (C_1-C_8) alkoxy, (C_1-C_8) alkylamino, di (C_1-C_8) alkylamino,
3	(C2-C8)heteroalkyl, (C3-C9)heterocyclyl, (C1-C8)acylamino, cyano, heteroaryl,
4	-CONR 9 R 10 and -CO $_2$ R 11 .
1	107. A method in accordance with Claim 97, wherein R ¹ and R ² are
. 2	independently selected from the group consisting of H and (C ₁ -C ₄)alkyl.
1	108. A method in accordance with Claim 97, wherein Y ³ is C and the
2	carbon atom shares a double bond with Z.
1	109. A method in accordance with Claim 97, wherein the Y ³ -containing
2	ring system is selected from the group consisting of quinoline, quinazoline, naphthalene,
3	quinolinone, quinazolinone, triazolinone, pyrimidin-4-one, benzimidazole, thiazole,
4	imidazole, pyridine, pyrazine and benzodiazepine.
1	110. A method in accordance with Claim 97, wherein said compound
2	has the formula (III): $ (R_a)_n \stackrel{X}{\underset{U}{\longrightarrow}} X_b \stackrel{R^{14}}{\underset{R^2}{\longrightarrow}} $
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4	ш
5	wherein
6	A^4 is C or N;
7	X is $-CO_{-}$, $-CH_{2}$ - or a bond;
8	R ¹ and R ² are each members independently selected from the group consisting of
9	H and (C_1-C_4) alkyl;
10	R ¹⁴ is a substituted or unsubstituted member selected from the group consisting of
11	phenyl, pyridyl, thiazolyl, thienyl and pyrimidinyl

12	Q 1s –CO-;
13	$L = (C_1-C_8)$ alkylene;
14	the subscript n is an integer of from 0 to 4; and
15	each Rais independently selected from the group consisting of halogen, -OR',
16	-OC(O)R', -NR'R", -SR', -R', -CN, -NO ₂ , -CO ₂ R', -CONR'R", -C(O)R',
17	-OC(O)NR'R", -NR"C(O)R', -NR"C(O)₂R', ,-NR'-C(O)NR"R"',
18	-NH-C(NH ₂)=NH, -NR'C(NH ₂)=NH, -NH-C(NH ₂)=NR', -S(O)R', -
19	$S(O)_2R'$, $S(O)_2NR'R''$, $-N_3$, $-CH(Ph)_2$, perfluoro(C_1 - C_4)alkoxy, and
20	perfluoro(O ₁ -C ₄)alkyl, wherein R', R" and R" are each independently
21	selected from the group consisting of H, (C1-C8)alkyl, (C2-C8)heteroalkyl,
22	unsubstituted aryl, unsubstituted heteroaryl, (unsubstituted aryl)-(C1-
23	C_4)alkyl, and (unsubstituted aryl)oxy-(C_1 - C_4)alkyl.
1	111. A method in accordance with Claim 110, wherein X is -C(O)
1	112. A method in accordance with Claim 110, wherein X is -CH ₂
1	113. A method in accordance with Claim 110, wherein X is a bond.
1	114. A method in accordance with Claim 110, wherein R ⁴ is substituted
2	or unsubstituted benzyl, wherein said substituents are selected from the group consisting
3	of halogen, halo(C ₁ -C ₄)alkyl, halo(C ₁ -C ₄)alkoxy, cyano, nitro, and phenyl.
1	115. A method in accordance with Claim 110, wherein R ¹⁴ is selected
2	from the group consisting of substituted phenyl, substituted pyridyl, substituted thiazolyl
3	and substituted thienyl, wherein the substituents are selected from the group consisting of
4	cyano, halogen, (C_1-C_8) alkoxy, (C_1-C_8) alkyl, (C_2-C_8) heteroalkyl, $CONH_2$,
5	methylenedioxy and ethylenedioxy.
1	116. A method in accordance with Claim 110, wherein R ¹ is selected
2	from the group consisting of methyl, ethyl and propyl, and R ² is hydrogen.
1	117. A method in accordance with Claim 110, wherein R ¹ and R ² are
2	each methyl.
1	118. A method in accordance with Claim 110, wherein R ³ is selected
2	from the group consisting of substituted or unsubstituted pyridyl and substituted or

- 3 Insubstituted imidazolyl.
- 1 119. A method in accordance with Claim 110, wherein L is $(C_1-$
- 2 C₄)alkylene.
- 1 120. A method in accordance with Claim 110, wherein X is -CO; R^1
- 2 and R² are each independently selected from the group consisting of H, methyl and ethyl;
- 3 R¹⁴ is selected from the group consisting of substituted or unsubstituted phenyl; Q is –
- 4 CO-; L is methylene, ethylene or propylene, R³ is selected from the group consisting of
- 5 substituted or unsubstituted pyridyl and substituted or unsubstituted imidazolyl; R⁴ is
- 6 substituted or unsubstituted benzyl, wherein said substituents are selected from the group
- 7 consisting of halogen, halo(C_1 - C_4)alkyl, halo(C_1 - C_4)alkoxy, cyano, nitro, and phenyl; and
- 8 each R_a is selected from the group consisting of halogen, -OR', -OC(O)R', -NR'R", -SR',
- 9 -R', -CN, -NO₂, -CO₂R', -C\(\frac{1}{2}\)NR'R", -C(O)R', -NR"C(O)R', -NR'-C(O)NR"R"',
- perfluoro(C_1 - C_4)alkoxy, and perfluoro(C_1 - C_4)alkyl, wherein R', R" and R" are each
- independently selected from the group consisting of H, (C₁-C₈)alkyl, (C₂-C₈)heteroalkyl,
- unsubstituted aryl, unsubstituted heteroaryl, (unsubstituted aryl)-(C₁-C₄)alkyl, and
- 13 (unsubstituted aryl)oxy-(C₁-C₄)alkyl.
- 1 121. The method of Clarm 110, wherein said compound is selected from
- 2 the group consisting of:

$$F_3C$$
 OCH_2CH
 OCH_2CH_3
 OCH_2CH_3

1	A method in accordance with Claim 97, wherein said CXCR3-
2	mediated condition is selected from the group consisting of neurodegenerative diseases,
3	multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, atherosclerosis,
4	encephalitis, meningitis, hepatitis, nephritis, sepsis, sarcoidosis, psoriasis, eczema,
5	uticaria, type I diabetes, asthma, conjunctivitis, otitis, allergic rhinitis, chronic obstructive
6	pulmonary disease, sinusitis, dermatitis, inflammatory bowel disease, ulcerative colitis,
7	Crohn's disease, Behcet's syndrome, gout, cancer, viral infections, bacterial infections,
8	organ transplant conditions and skin transplant conditions.
1	123. The method of Claim 97, wherein said compound modulates
2	CXCR3.
1	124. A method in accordance with Claim 110, wherein said compound
2	is administered in combination with a second the apeutic agent, wherein said second
3	therapeutic agent is useful for treating neurodegenerative diseases, multiple sclerosis,
4	systemic lupus erythematosus, rheumatoid arthritis, atherosclerosis, encephalitis,
5	meningitis, hepatitis, nephritis, sepsis, sarcoidosis, psoriasis, eczema, uticaria, type I
6	diabetes, asthma, conjunctivitis, otitis, allergic rhinitis, chronic obstructive pulmonary
7	disease, sinusitis, dermatitis, inflammatory bowel disease, ulcerative colitis, Crohn's
8	disease, Behcet's syndrome, gout, cancer, viral infections, bacterial infections, organ
9	transplant conditions or skin transplant conditions.
1	125. A method in accordance with Claim 124, wherein said organ
2	transplant condition is a bone marrow transplant condition or a solid organ transplant
3	condition.
1	126. A method in accordance with Claim 125, wherein said solid organ
2	transplant condition is a kidney transplant condition, a liver transplant condition, a lung
3	transplant condition, a heart transplant condition or a pancreas transplant condition.
1	127. A method in accordance with Claim 97, wherein said CXCR3-
2	mediated condition is restenosis.
1	128. A method in accordance with Claim 97, wherein said CXCR3-
2	mediated condition is selected from the group consisting of multiple sclerosis, rheumators

3	attitus and organ transplant conditions.
1	129. A method in accordance with Claim 110, wherein said compound
2	is used in conjunction with another therapeutic agent selected from the group consisting
3	of Remicade®, Enbrel®, a COX-2 inhibitor, a glucocorticoid, an immunosuppressant,
4	methotre ate, predisolone, azathioprine, cyclophosphamide, tacrolimus, mycophenolate,
5	hydroxychloroquine, sulfasalazine, cyclosporine A, D-penicillamine, a gold compound,
6	an antilymphocyte or antithymocyte globulin, betaseron, avonex and copaxone.
1	130. A method in accordance with Claim 110, wherein said CXCR3-
2	mediated condition is an organ transplant condition and said compound is used alone or in
3	combination with a second therapeutic agent selected from the group consisting of
4	cyclosporine A, FK-506, rapamycin, mycophenolate, prednisolone, azathioprene,
5	cyclophosphamide and an antilymphocyte globulin.
1	131. A method in accordance with Claim 110, wherein said CXCR3-
2	mediated condition is rheumatoid arthritis and said compound is used alone or in
3	combination with a second the apeutic agent selected from the group consisting of
4	methotrexate, sulfasalazine, hydroxychloroquine, cyclosporine A, D-penicillamine,
5	Remicade®, Enbrel®, auranofin and aurothioglucose.
1	132. A method in accordance with Claim 110, wherein said CXCR3-
2	mediated condition is multiple sclerosis and said compound is used alone or in
3	combination with a second therapeutic agent selected from the group consisting of
4	betaseron, avonex, azathioprene, capoxone, prednisolone and cyclophosphamide.
1	133. The method of Claim 110, wherein said subject is a human.
1	134. A method for the modulation of CXCR3 function in a cell,
2	comprising contacting said cell with a compound of Claim 1.
1	135. A method for the modulation of CXCR3 function, comprising
2	contacting a CXCR3 protein with a compound of Claim

add 33