Úvod do komplexní analýzy

6. října 2020

1 Zavedení základních pojmů

 \mathbb{R}^2 je reálný vektorový prostor dimenze 2. Definujeme v něm Euklidovskou normu a metriku:

- $|z| = \sqrt{x^2 + y^2}, z = (x, y) \in \mathbb{R}^2$
- $\rho(z,w) := |z-w|, z,w \in \mathbb{R}^2$

Definice 1.1. Prostor \mathbb{C} je prostor \mathbb{R}^2 , v němž definujeme navíc:

- n'asobeni(x,y).(u,v) = (xu yv, xv + yu)
- $ztoto\check{z}\check{n}ujeme\ (x,0)\cong,\ neboli\ \mathbb{R}\subset\mathbb{C}$
- $značíme\ i = (0,1)$

Vlastnosti \mathbb{C} . Necht $z = (x, y) \in \mathbb{C}$.

- $Potom \ z = x + iy \ a \ (\pm i)^2 = -1$
- Násobení v $\mathbb C$ zahrnuje násobení v $\mathbb R$ i násobení skalárem v $\mathbb R^2$

Značení 1.2. Nechť z = x + iy, kde $x, y \in \mathbb{R}$. Potom

- $\overline{z} := x iy$ je komplexně sdružená část k z,
- Re(z) := x je reálná část z, Im(z) := y je imaginární část z,
- $|z| = \sqrt{x^2 + y^2}$ je modul nebo absolutní hodnota z.

Dále platí

- $\bullet \ |z|^2=z\overline{z}, \ \overline{zw}=\overline{z}.\overline{w}, \ |zw|=|z|.|w|, \ z+\overline{z}=2.Re(z), \ z-\overline{z}=2i.Im(z)$
- $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$, je-li $z \neq 0$
- C je těleso

Pozor, $\mathbb C$ nelze $rozumn\check{e}$ upořádat!

- $i > 0 \implies -1 = i^2 > 0$
- $i < 0 \implies -1 = i^2 > 0$

2 Lineární zobrazení

Definice 2.1. \mathbb{R}^2 je reálný vektorový prostor dimenze 2, jeho báze je $((1,0)^T,(0,1)^T)$. Obecné \mathbb{R} -lineární zobrazení $L:\mathbb{R}^2\to\mathbb{R}^2$ má tvar

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{1}$$

 $kde\ a, b, c, d \in \mathbb{R}$.

 \mathbb{C} je komplexní vektorový prostor dimenze 1, jeho báze je 1. Obecné \mathbb{C} -lineární zobrazení $L: \mathbb{C} \to \mathbb{C}$ má tvar $Lz = wz, z \in \mathbb{C}$, kde $w \in \mathbb{C}$. Nechť z = (a+ib)(x+iy) = (ax-by,bx+ay) =

$$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Pozorování 2.2. \mathbb{R} -lineární zobrazení (1) je \mathbb{C} -lineární, právě $když\ d=a,c=-b$.

Poznámka 2.3. C-lineární zobrazení jsou velmi specifická R-lineární zobrazení.

Úmluva 2.4. Nebude-li řečeno něco jiného, funkce znamená komplexnou funkci komplexné proměnné. Na $f: \mathbb{C} \to \mathbb{C}$ se můžeme vždy dívat jako na $f: \mathbb{R}^2 \to \mathbb{R}^2$, protože $\mathbb{C} \approx \mathbb{R}^2$. Nechť f je funkce $z \mathbb{C}$ do \mathbb{C} . Spojitost a limita se definuje stejně jako v základním kurzu matematické analýzy.

Definice 2.5. Pro $z_0 \in \mathbb{C}, \delta > 0$ značíme $U(z_0, \delta) := \{z \in \mathbb{C} : |z - z_0| < \delta\}$ a nazýváme ji okolí z_0 . Dále $P(z_0, \delta) := U(z_0, \delta) \setminus \{z_0\}$ nazýváme prstencové okolí. Pokud δ není důležité, budeme často psát jen $U(z_0), P(z_0)$.

Potom definujeme

- $\lim_{z\to x_0} f(z) = L$, $pokud \ \forall \epsilon > 0 \ \exists \delta > 0 : z \in P(x_0, \delta) \implies f(z) \in U(L, \epsilon)$
- f je spojitá v x_0 , pokud $\lim_{x\to x_0} f(x) = f(x_0)$.

3 Diferencovatelnost

Definice 3.1. Funkce f je v x_0 \mathbb{R} -diferencovatelná, pokud existuje \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ takové, že

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{|h|} = 0.$$

Poznámka 3.2. Potom $df(x_0) := L$ je tzv. totální diferenciál f v x_0 a platí, že

$$df(x_0)h := \begin{pmatrix} \frac{\partial f_1}{\partial x}(x_0) & \frac{\partial f_1}{\partial y}(x_0) \\ \frac{\partial f_2}{\partial x}(x_0) & \frac{\partial f_2}{\partial y}(x_0) \end{pmatrix} h, h \in \mathbb{R}^2$$

 $kde\ f(x,y) = (f_1(x,y), f_2(x,y)).$ (Ta matice se nazývá Jacobiho matice.)

Definice 3.3. $\check{R}ekneme$, $\check{z}e$ funkce f je v x_0 \mathbb{C} -diferencovatelná, pokud existuje konečná limita

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Číslo $f'(x_0)$ nazýváme komplexní derivací f v x_0 .

Poznámka 3.4. Jako pro reálnou funkci reálné proměnné platí $(f\pm g)', (f.g)', (f/g)', (f\circ g)'$

Příklad 3.5. • $(z^n)' = n.z^{n-1}, z \in \mathbb{C} \ a \ n \in \mathbb{N}$

• $f(z) = \overline{z}$ není nikde v \mathbb{C} \mathbb{C} -diferencovatelná, ale f(x,y) = (x,-y) je všude \mathbb{R} -diferencovatelná. Skutečně, máme

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\overline{h}}{h}$$

Avšak poslední limita neexistuje.

Věta 3.6. (Cauchy-Riemannova)

Nechť f je funkce diferencovatelná na okolí $x_0 \in \mathbb{C}$. Pak následující je ekvivalentní:

- 1. Existuje $f'(x_0)$
- 2. Existuje $df(x_0)$ a $df(x_0)$ je \mathbb{C} -lineární
- 3. Existuje $df(x_0)$ a v z_0 platí tvrzení Cauchy-Riemannových podmínek.

Cauchy-Riemannovy podmínky:

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}$$
$$\frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x}$$

 $zde \ f(x,y) = (f_1(x,y), f_2(x,y))$

 $D\mathring{u}kaz$. (2. \iff 3.) plyne z pozorování pro lineární zobrazení (1. \iff 2.) Z definice $w=f'(z_0)$ znamená, že

$$0 = \lim_{h \to 0} \frac{f(x_0 + h) - f(z_0) - wh}{h} \tag{2}$$

Po vynásobení výrazu v limitě h/|h| dostaneme, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{|h|}$$
(3)

což je ekvivalentní tomu, že $df(z_0)h=wh,h\in\mathbb{C}.$ Z (3) plyne (2) vynásobením |h|/h.

Poznámka 3.7. • Existuje-li $f'(z_0)$, potom $df(z_0)h = f'(z_0)h, h \in \mathbb{C}$ a $f'(z_0) = \frac{\partial f}{\partial x}(z_0)$

• Platí, že $(CR) \iff \frac{\partial f}{\partial x} = -i\frac{\partial f}{\partial y}$

 $D\mathring{u}kaz.$ • $df(x_0)1 = \frac{\partial f_1}{\partial x}(x_0) + i\frac{\partial f_2}{\partial x}(x_0) =: \frac{\partial f}{\partial x}(x_0)$

• zřejmé

Příklad 3.8. Necht $f(z) = \overline{z}$, pak f'(x,y) = (x,-y). Dále

$$\frac{\partial f_1}{\partial x} = 1, \frac{\partial f_1}{\partial y} = 0, \frac{\partial f_2}{\partial x} = 0, \frac{\partial f_2}{\partial y} = -1.$$

 $\textit{M\'ame}, \ \check{\textit{z}e} \ f \in C^{\infty}(\mathbb{R}^2), \ \textit{ale} \ \textit{v} \ \check{\textit{z}\'adn\'em} \ \textit{z} \in \mathbb{C} \ \textit{nesplňuje} \ (CR), \ \textit{proto} \ \textit{nen\'e} \ \textit{nikde} \ \mathbb{C} - \textit{diferencovateln\'a}.$