Outline

- book content
- motivations
- storyline

Content

- history from 1968 (Veneziano amplitude) to 1984 (first string revolution)
- 7 parts with introductions, 35 contributors and 5 appendices:
 - I. Overview

 (Veneziano, Schwarz, E. Castellani)

 II. The prehistory: the analytic S-matrix

 (Ademollo, Rubinstein, Freund, Gell-Mann)
 - III. The Dual Resonance Model (Di Vecchia, Shapiro, Amati, Clavelli, Lovelace, Musto, Nicodemi, Sciuto)
 - IV. The string (Goddard, Susskind, Nielsen, Nambu, Fairlie, Mandelstam, Brower)
 - V. Beyond the bosonic string (Olive, Ramond, Neveu, Corrigan, Bardakci & Halpern, Gervais, Montonen)
 - VI. The superstring (Gliozzi, Yoneya, Brink, Di Vecchia, Cremmer, Schwarz)
 - VII. Preparing the string renaissance (Green, Polyakov, Cappelli & Colomo)

Motivations

• seminar on history & philosophy of physics in Florence

- workshop on string history at the Galileo Galilei Institute in May 2007
 within the first string program
- the early string:
 - a "scientific saga", not so well known and not yet recorded
 - great ideas that were fully developed later and also found application in many other domains

Dual Resonance Model

 strong interactions in the sixties: about 50 baryons and 20 mesons in linear Regge trajectories

$$J=lpha(s)=lpha_0+lpha's,\quad s=M^2$$
 $lpha'$ universal

- quarks were only "technical"; perturbative quantum field theory was abandoned
- S-matrix approach: the bootstrap

$$a = \sum_{n} a$$

$$b = \sum_{n} n$$

$$d = \sum_{n} n$$

$$d = \sum_{n} n$$

- poles on Regge trajectories & Regge behaviour $A(s,t)\sim eta(t)s^{lpha(t)}, \quad s\gg -t>0$
- <u>Veneziano closed-form solution</u> $\pi\pi o \pi\omega$

$$A(s,t) = \frac{\Gamma(1 - \alpha(s))\Gamma(1 - \alpha(t))}{\Gamma(2 - \alpha(s) - \alpha(t))}$$

Planar duality

1968		four-meson amplitude	Veneziano
1969		<pre>string idea & action closed string</pre>	Nielsen, Susskind, Nambu Shapiro, Virasoro
1970			Fubini, many others
1971	DRM	fermionic string	Ramond, Neveu & Schwarz
1972		covariant quantization	Di Vecchia, Fubini, many others
1973	STRING	light-cone quantization of string action	n Goddard, Goldstone, Rebbi, Thorn
1974		interacting strings	Ademollo et al., etc.

1968		four-meson amplitude <i>Veneziano</i>
1969		string idea & action Nielsen, Susskind, Nambu closed string Shapiro, Virasoro
1970		spectrum of DRM Fubini, many others
1971	DRM	fermionic string Ramond, Neveu & Schwarz extra dimensions Lovelace
1972		world-sheet supersymmetry Gervais & Sakita covariant quantization Di Vecchia, Fubini, many others
1973	STRING	field-theory limit Scherk, Neveu, Yoneya
1974		interacting strings Ademollo et al., etc.

Hadronic string

- Reasons to be born (1968)
 - Veneziano amplitude: simple closed-form solution to S-matrix bootstrap
 - initial phenomenological appeal was replaced by fascination for the beautiful structure of the theory (stemming from two-dimensional conformal symmetry)

- Reasons to die (in 1974)
 - D=26
 - $lpha_0=1,2$ i.e. massless particles with spin 1 and 2
 - soft scattering
 Deep Inelastic Scattering & QCD

Superstring unification (1974)

- the $\alpha' \to 0$ limit shows that string theory is an extension of field theory rather then an alternative to it
- the remaining particles are massless with spin one and two
- the superstring is consistent quantum mechanically
- dynamics of massless particles is uniquely determined:
 - non-Abelian gauge theories for spin one
 - gravity for spin two

string theory unifies (predicts) gauge theories and gravity

1974		gauge & gravity unit space-time supersy Kaluza-Klein compac	mmetry	Scherk & Schwarz, Yoneya Wess & Zumino Cremmer, Scherk
1976	←	open superstring (ty	ype I)	Gliozzi, Scherk, Olive
	←	RNS string action	Brink, Di Vec	chia, Howe; Deser & Zumino
	→	supergravity	Freedman,	Van Nieuwenhuizen, Ferrara
1978		d=11 supergravity		Cremmer, Julia, Scherk
1980				
	·	modern convariant	quantization	Polyakov
1982		IIA & IIB closed su	uperstrings	Green & Schwarz
1984				

1974		gauge & gravity uni space-time supersy		Scherk & Schwarz, Yoneya Wess & Zumino
	—	Kaluza-Klein compa	ctification	Cremmer, Scherk
1976	—	open superstring (t	ype I)	Gliozzi, Scherk, Olive
	-	RNS string action	Brink, Di Ved	cchia, Howe; Deser & Zumino
	-	supergravity	Freedman,	Van Nieuwenhuizen, Ferrara
1978		d=11 supergravity		Cremmer, Julia, Scherk
1980				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ochodon
		modern convariant	quantization	Polyakov
1982	—	IIA & IIB closed s	uperstrings	Green & Schwarz
1702			10	
		gravitational anomo	alies	Alvarez-Gaumé & Witten
1001	←	anomaly cancellation	on in type I	Green & Schwarz
1984		heterotic strings	Gra	oss, Harvey, Martinec, Rohm
	•	Calabi-Yau compact	rifications	Candelas, Horowitz,
				Strominger, Witten

<u>Superstring</u>

Reasons to be reborn (in 1984)

Unification of gauge theories and gravity beyond the SM, with:

- chiral fermions without chiral anomalies
- supergravity without infinities
- five (six) consistent theories

<u>Superstring</u>

Reasons to be reborn (in 1984)

Unification of gauge theories and gravity beyond the SM, with:

- chiral fermions without chiral anomalies
- supergravity without infinities
- five (six) consistent theories
- Reasons to die again
 -next book

Superstring

Reasons to be reborn (in 1984)

Unification of gauge theories and gravity beyond the SM, with:

- chiral fermions without chiral anomalies
- supergravity without infinities
- five (six) consistent theories
- Reasons to die again (not quite)
 -next book
 - gauge/gravity correspondence: the hadronic string is back

String theory at large

supersymmetry and extra dimensions

theoretical physics — many areas of mathematics

conformal field theory
 gauge/gravity correspondence
 & condensed matter

NEW TOOLS in theoretical physics

String theory at large

supersymmetry and extra dimensions

theoretical physics many areas of mathematics

conformal field theory
 gauge/gravity correspondence
 statistical mechanics
 & condensed matter

"Rock & Roll \saved my \life" (Wim Wenders)

String theory physicist's physicist's

About history

"The garbage of the past often becomes the treasure of the present (and vice versa)"

A. M. Polyakov

"When a good idea is around, many people have it at the same time: the credit goes to the one that explains it better"

5. Fubini

"...although to study the history of physics and to distribute credits is an interesting enterprise, I am not yet prepared for it"

A. M. Polyakov

Bibliography

Book web page: http://theory.fi.infn.it/colomo/string-book/

Three choral books on history of fundamental interactions (Cambridge UK):

- The Rise of the Standard Model

(1997) Hoddeson, L., Brown, L. M.,

Riordan, M., Dresden, M. eds.

- Pions to Quarks

(2009) Brown, L. M., Dresden, M.,

Hoddeson, L. eds.

- The Birth of Particle Physics

(1986) Brown, L. M., Hoddeson., L. eds.

Another volume on history-philosophy-sociology of string theory:

-Forty Years of String Theory:

Reflecting on the Foundations

(2013) De Haro, S., Dieks, D., 't Hooft, G., Verlinde, E. eds., Foundations of Physics 43