Agenda

- 1. Linear regression with one covariate
- 2. Joint posteriors
- 3. Interpreting coefficients at log-scale
- 4. Linear regression with many covariates
- 5. Estimation and working with samples in R

$$y_i \sim \text{Norm}(\mu, \sigma)$$

 $y_i \sim \text{Norm}(\mu_i, \sigma)$

Value of μ depends on the person

$$y_i \sim \mathrm{Norm}(\mu_i, \sigma)$$
 $\mu_i = \alpha + \beta w_i \longleftarrow_{\mu_i = \alpha \text{ for men}} \mu_i = \alpha + \beta \text{ for women}$

$$y_i \sim \mathrm{Norm}(\mu_i, \sigma)$$
 $\mu_i = a + \beta w_i$
 $a \sim \mathrm{Norm}(0, 30)$
Prior for each $\beta \sim \mathrm{Norm}(0, 30)$
 $\sigma \sim \mathrm{Unif}(0, 50)$

No predictors

 $y_i \sim \text{Norm}(\mu, \sigma)$ $\mu \sim \text{Norm}(0, 30)$ $\sigma \sim \text{Unif}(0, 50)$

One predictor

 $y_i \sim \operatorname{Norm}(\mu_i, \sigma)$ $\mu_i = a + \beta w_i$ $a \sim \operatorname{Norm}(0, 30)$ $\beta \sim \operatorname{Norm}(0, 30)$ $\sigma \sim \operatorname{Unif}(0, 50)$

$$\mu_i = a + \beta w_i$$

Alternate expressions

One model, three representations

$$y_i \sim \operatorname{Norm}(\mu_i, \sigma)$$
 $y_i = \alpha + \beta w_i$ $y_i \sim \operatorname{Norm}(\alpha + \beta w_i, \sigma)$ $\varepsilon_i \sim \alpha \sim \operatorname{Norm}(0, 30)$ $\alpha \sim \operatorname{Vorm}(0, 30)$

$$y_i = \alpha + \beta w_i + \varepsilon_i$$
 $\varepsilon_i \sim \text{Norm}(0, \sigma)$
 $a \sim \text{Norm}(0, 30)$
 $\beta \sim \text{Norm}(0, 30)$
 $\sigma \sim \text{Unif}(0, 50)$

Joint posterior

When we estimate this model, we get a single joint posterior distribution for all three parameters:

$$Pr(\alpha, \beta, \sigma | D)$$

What can we do with a joint posterior?

Working with the posterior

 $\Pr(a, \beta, \sigma | D)$

Data: Sample of 35,124 working adults in the United States

1. Describe the marginal posterior distributions

 $Pr(\alpha|D), Pr(\beta|D), Pr(\sigma|D)$

	Mean	Std. Dev.	2.5%	97.5%
а	10.382	0.009	10.364	10.400
β	-0.434	0.013	-0.459	-0.408
σ	1.221	0.005	1.212	1.230

Working with the posterior

$$\Pr(a, \beta, \sigma | D)$$

Data: Sample of 35,124 working adults in the United States

1. Describe the marginal posterior distributions

$$Pr(\alpha|D), Pr(\beta|D), Pr(\sigma|D)$$

2. Describe posterior probability of theoretically relevant scenarios

$$Pr(\beta < 0|D)$$

$$y_i \sim \operatorname{Norm}(\mu_i, \sigma)$$
 $\mu_i = a + \beta w_i$
 $a \sim \operatorname{Norm}(0, 30)$
 $\beta \sim \operatorname{Norm}(0, 30)$
 $\sigma \sim \operatorname{Unif}(0, 50)$

Working with the posterior

$$\Pr(a, \beta, \sigma | D)$$

Data: Sample of 35,124 working adults in the United States

1. Describe the marginal posterior distributions

$$Pr(\alpha|D), Pr(\beta|D), Pr(\sigma|D)$$

2. Describe posterior probability of theoretically relevant scenarios

$$Pr(\beta < 0|D)$$

3. Describe the partial joint posterior distribution

$$Pr(\alpha, \beta|D)$$

Interpreting log-scale coefficients

$$y_i = \log(\text{income}) \longrightarrow y_i \sim \text{Norm}(\mu_i, \sigma)$$
 $\mu_i = \alpha \text{ for men}$ $\mu_i = \alpha + \beta \text{ for women}$

	Mean	Std. Dev.	2.5%	97.5%
α	10.382	0.009	10.364	10.400
β	-0.434	0.013	-0.459	-0.408
σ	1.221	0.005	1.212	1.230

$$\mu_m = 10.382 \approx \log(32,300)$$

 $\mu_w = 9.948 \approx \log(20,900)$

In general: if the outcome variable is on a log-scale, then exponentiating coefficient estimates (e^{α}) gives *multiplicative* factors

exp(-0.434) ≈ 0.65: These results suggest that women make about 35% less than men on average

Modeling income

Adding covariates

$$y_i \sim \operatorname{Norm}(\mu_i, \sigma)$$
 $\mu_i = a + \beta_1 w_i + \beta_2 age_i + \beta_3 college_i$
 $a \sim \operatorname{Norm}(0, 30)$
 $\beta_1 \sim \operatorname{Norm}(0, 30)$
 $\beta_2 \sim \operatorname{Norm}(0, 30)$
 $\beta_3 \sim \operatorname{Norm}(0, 30)$
 $\sigma \sim \operatorname{Unif}(0, 50)$

$$y_i \sim ext{Norm}(\mu_i, \sigma)$$
 $\mu_i = a + eta_1 w_i + eta_2 age_i + eta_3 college_i$ $a, eta_1, eta_2, eta_3 \sim ext{Norm}(0, 30)$ $\sigma \sim ext{Unif}(0, 50)$