Aprendizaje de máquina

Verónica E. Arriola-Rios

Aprendizaje de máquina

11 de abril de 2025

Introducción

- Introducción
- Sesgo inductivo

Temas

- Introducción
 - Aplicaciones
 - Definición
 - Espacio de hipótesis
 - Tipos de aprendizaje

Introducción

- Minería en bases de datos
 - Internet
 - Búsquedas en la red
 - Clasificación de correos
 - Registros médicos
 - Biología
 - Ingeniería
- Estudiar cómo aprende el cerebro humano.

- Programas que no se logran hacer a mano
 - Reconocimiento de escritura.
 - Visión por computadora.
 - Etiquetado de fotografías
 - Procesamiento de lenguaje natural.
- Programas que aprenden a ajustarse al usuario.
 - Sistemas de recomendación. (Amazon, Netflix, etc.)

Temas

- Introducción
 - Aplicaciones
 - Definición
 - Espacio de hipótesis
 - Tipos de aprendizaje

Aprendizaje de máquina

El *aprendizaje de máquina* es el campo de estudio que dota a las computadoras de la habilidad de aprender sin haber sido programadas explícitamente.

Definición

Se dice que un programa de computadora aprende de la experiencia E, con respecto a una tarea T, y una medida de desempeño D si su desempeño en T, como lo mide D, mejora con la experiencia E.^a

^aMitchell 1997

Verónica E. Arriola-Rios Definición Aprendizaje de máquina

Ejemplo

Juego de damas:

E = la experiencia de jugar varios juegos de damas.

T =la tarea de jugar damas.

D = la probabilidad de que el programa gane el próximo juego.

Figura: Juego de damas.

Temas

- Introducción
 - Aplicaciones
 - Definición
 - Espacio de hipótesis
 - Tipos de aprendizaje

Hipótesis

El aprendizaje se realizará con respecto a una familia de hipótesis.

 Dado un espacio de hipótesis se busca aquella que se ajuste mejor al concepto que se desea aprender.

Clasificación de los conjuntos de datos

Para entrenar un algoritmo de aprendizaje se requieren datos de entrenamiento, separados en tres conjuntos:

Entrenamiento Datos con los cuales se ajustan los parámetros de la hipótesis.

Validación Datos utilizados para ajustar los parámetros del algoritmo de entrenamiento (*hiperparámetros*), cuando estos afectan qué hipótesis será elegida.

Prueba Datos utilizados para evaluar la posibilidad de que la hipótesis aprendida generalice^[1] a datos no vistos anteriormente.

[1] Es decir, que sea válida también para datos nuevos.

Temas

- Introducción
 - Aplicaciones
 - Definición
 - Espacio de hipótesis
 - Tipos de aprendizaje

Aprendizaje supervisado

Decimos que el aprendizaje es *supervisado* si para cada ejemplo x entre los datos de entrenamiento X se conoce la respueta correcta y.

Figura: Ejemplos de aprendizaje supervisado. Izquierda: Regresión. Derecha Clasificación

Verónica E. Arriola-Rios Tipos de aprendizaje Aprendizaje de máquina

Regresión

Un modelo de *regresión* busca predecir valores de salida **continuos**.

Figura: Función de Regresión: Dada la entrada x = (tamaño), ¿en qué precio se puede vender la casa?.

Clasificación

En un problema de *clasificación* se desea predecir una salida discreta.

Figura: Problema de $extit{Clasificación:}$ Dadas las entradas $x=(x_1,x_2)$, ¿el ejemplar pertenece o no a la clase?

Aprendizaje no supervisado

- No se tienen valores correctos o incorrectos
- El objetivo del aprendizaje no supervisado es descubrir estructura en los datos.

Figura: Aprendizaje no supervisado ¿qué estructura tienen los datos?

Organizar clusters de computadoras

Segmentación del mercado

Análisis de datos astronómicos

Figura: Aplicaciones

Eiemplos:

Introducción

Agrupamiento Designa clústeres a grupos de datos semejantes.

Reducción de dimensionalidad Obtiene representaciones en pocas dimensiones (dos o tres) de datos n-dimensionales.

Figura: Los algoritmos de agrupamiento generan clasificaciones según las distrubuciones de los datos.

Aprendizaje por refuerzo

Para cada estado se desea aprender una *política* que indique la acción que maximizará la *recompensa* recibida en el menor tiempo posible.

Política π	
(0,0)	\uparrow
(1,0)	↑
(2,0)	\uparrow
(0,1)	\rightarrow
(1,1)	$ $ \rightarrow $ $

Sesgo inductivo

- Introducción
- Sesgo inductivo

Sesgo inductivo

Definición

Considere un algoritmo de aprendizaje de conceptos L para el conjunto de ejemplares X.

- Sea c un concepto arbitrario definido sobre X y
- sea $D_c = \langle x, c(x) \rangle$ un conjunto arbitrario de ejemplares de entrenamiento de c.
- Sea $L(x_i, D_c)$ la clasificación asignada al ejemplar x_i por L, después de ser entrenado con los datos D_c .

El sesgo inductivo de L es cualquier conjunto mínimo de aseveraciones B tales que:

- para cada concepto objetivo c
- y su respectivo conjunto de entrenamiento D_c

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$
(1)

ロ ト 4 倒 ト 4 き ト 4 き - り Q (^)

Referencias I

Mitchell, Tom M. (1997). Machine Learning. McGrawHill.

Ng, Andrew (2015). *Machine Learning OnLine Course*. Ed. por Stanford University. Coursera.

Licencia

Creative Commons Atribución-No Comercial-Compartir Igual

