Text Clustering as Classification with LLMs

Natural Language Processing

Salveen Singh Dutt Patryk Prusak January 29, 2025

Warsaw University of Technology

Paper

- Title: Text Clustering as Classification with LLMs
- · Authors: Chen Huang, Guoxiu He
- Affiliations: StatNLP Research Group (SUTD), East China Normal University
- · Year: 2024
- Contact: chen_huang@mymail.sutd.edu.sg, gxhe@fem.ecnu.edu.cn

· Background:

• Text clustering organizes and identifies patterns in unlabeled data.

· Background:

- Text clustering organizes and identifies patterns in unlabeled data.
- Traditional methods rely on fine-tuning embedders and sophisticated metrics.

· Background:

- Text clustering organizes and identifies patterns in unlabeled data.
- Traditional methods rely on fine-tuning embedders and sophisticated metrics.

· Objective:

 Transform text clustering into a classification task using LLMs.

· Background:

- Text clustering organizes and identifies patterns in unlabeled data.
- Traditional methods rely on fine-tuning embedders and sophisticated metrics.

· Objective:

 Transform text clustering into a classification task using LLMs.

Key Contributions:

- No fine-tuning or hyperparameter tuning required.
- · State-of-the-art performance on multiple datasets.

Methodology Overview

- · Framework: Two-Stage Process
 - 1. Stage 1: Label Generation
 - · Generate labels in mini-batches.
 - Merge similar labels for granularity.

Methodology Overview

- Framework: Two-Stage Process
 - 1. Stage 1: Label Generation
 - · Generate labels in mini-batches.
 - Merge similar labels for granularity.
 - 2. Stage 2: Label Classification
 - · Classify data samples based on the generated labels.

Methodology Overview

· Framework: Two-Stage Process

- 1. Stage 1: Label Generation
 - Generate labels in mini-batches.
 - Merge similar labels for granularity.
- 2. Stage 2: Label Classification
 - · Classify data samples based on the generated labels.
- · Advantages:
 - Utilizes LLM's in-context learning ability.
 - Bypasses input length and clustering algorithm complexity.

Task Definition

- Input: Unlabeled dataset $D = \{d_i\}_{i=1}^N$.
- **Goal:** Partition data into $C = \{c_j\}_{j=1}^K$ clusters.
- · Transformation:
 - Generate potential labels $L = \{l_k\}_{k=1}^{K'}$.
 - Classify each $d_i \in D$ into one label $l \in L$.

Methodology

Figure 1: Clustering Methodology from [Huang and He(2024)]

- · Process:
 - 1. Divide dataset into mini-batches.

· Process:

- 1. Divide dataset into mini-batches.
- 2. Prompt LLM to generate labels for each mini-batch.

· Process:

- 1. Divide dataset into mini-batches.
- 2. Prompt LLM to generate labels for each mini-batch.
- 3. Aggregate and merge similar labels to reduce redundancy.

· Process:

- 1. Divide dataset into mini-batches.
- 2. Prompt LLM to generate labels for each mini-batch.
- 3. Aggregate and merge similar labels to reduce redundancy.

· Prompt Examples:

Generate labels: "Given sentences: {sentences}.
 Suggest labels."

· Process:

- 1. Divide dataset into mini-batches.
- 2. Prompt LLM to generate labels for each mini-batch.
- 3. Aggregate and merge similar labels to reduce redundancy.

· Prompt Examples:

- Generate labels: "Given sentences: {sentences}.
 Suggest labels."
- Merge labels: "Analyze and merge synonymous labels: {label_list}."

Experiment Setup

· Datasets:

- Tasks: Topic mining, emotion detection, intent discovery, domain discovery.
- Examples: ArxivS2S, GoEmo, Massive-I/D, MTOP-I.

Experiment Setup

· Datasets:

- Tasks: Topic mining, emotion detection, intent discovery, domain discovery.
- Examples: ArxivS2S, GoEmo, Massive-I/D, MTOP-I.

· Evaluation Metrics:

 Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI).

Experiment Setup

· Datasets:

- Tasks: Topic mining, emotion detection, intent discovery, domain discovery.
- Examples: ArxivS2S, GoEmo, Massive-I/D, MTOP-I.

· Evaluation Metrics:

 Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI).

· Baseline Methods:

• K-means, IDAS, PAS, Keyphrase Clustering, ClusterLLM.

· Accuracy (ACC)

- Measures the percentage of correctly assigned cluster labels
- Formula: $ACC = \frac{1}{N} \sum_{i=1}^{N} \delta(y_i, map(c_i))$
- Where $\delta(x, y)$ is 1 if x=y and 0 otherwise
- $map(c_i)$ finds the best mapping between clusters and true labels

- · Rand Index (RI)
 - Measures similarity between two data clusterings
 - Defined as the fraction of correctly grouped or separated pairs.

Cluster labels by an algorithm	Ground truth cluster labels
0	2
0	2
1	3
1	3
2	1

Figure 2: Clustering Example

· Rand Index (RI)

- Measures similarity between two data clusterings
- Defined as the fraction of correctly grouped or separated pairs
- · Formula:

$$RI = \frac{TP + TN}{\binom{n}{2}}$$

where:

- *TP* = Number of pairs in the same cluster in both partitions
- TN = Number of pairs in different clusters in both partitions
- $\binom{n}{2}$ = Total number of pairs
- Ranges from 0 to 1:
 - · 1: Perfect agreement between clusterings
 - · 0: No agreement beyond random chance

· Adjusted Rand Index (ARI)

- Measures similarity between two data clusterings. [Hubert and Arabie(1985)]
- Adjusts for chance accounts for random label assignments
- Formula: $ARI = \frac{RI E[RI]}{max(RI) E[RI]}$
- Where RI is the raw Rand index
- Ranges from -1 to 1:
 - 1: Perfect match between clusterings
 - · 0: Random labeling
 - · Negative: Worse than random

· Normalized Mutual Information (NMI)

- Measures the mutual dependence between true labels and predicted clusters.
 [Vinh et al.(2010)Vinh, Epps, and Bailey]
- Formula: $NMI(Y, C) = \frac{2 \times I(Y;C)}{H(Y) + H(C)}$
- I(Y; C) is mutual information, H(Y) and H(C) are entropies
- Ranges from 0 (no mutual information) to 1 (perfect correlation)

Results

· Performance Highlights:

- Outperforms baselines in ACC, NMI, and ARI across all datasets.
- Example: ArxivS2S ACC: 38.78% (Ours) vs. 26.34% (ClusterLLM).

Results

· Performance Highlights:

- Outperforms baselines in ACC, NMI, and ARI across all datasets.
- Example: ArxivS2S ACC: 38.78% (Ours) vs. 26.34% (ClusterLLM).

· Granularity:

- Closer alignment to true cluster counts after label merging.
- Example: MTOP-I clusters: 83 (Ours) vs. 43 (ClusterLLM).

Advantages and Limitations

· Advantages:

- · Simplifies clustering into a classification task.
- Improves interpretability with meaningful labels.
- · Eliminates fine-tuning and hyperparameter tuning.

Advantages and Limitations

· Advantages:

- · Simplifies clustering into a classification task.
- Improves interpretability with meaningful labels.
- · Eliminates fine-tuning and hyperparameter tuning.

· Limitations:

- · Higher API costs due to LLM usage.
- Challenges in managing label granularity and polysemy.

Conclusion

· Summary:

- Transformed text clustering into a classification task using LLMs.
- Achieved superior performance compared to state-of-the-art methods.

Conclusion

· Summary:

- Transformed text clustering into a classification task using LLMs.
- Achieved superior performance compared to state-of-the-art methods.

· Future Work:

- · Incorporate user feedback for improved labels.
- Explore cost-efficient and fine-grained clustering methods.

References i

Text clustering as classification with llms.

arXiv preprint arXiv:2410.00927, 2024.
URL https://anonymous.4open.science/r/
Text-Clustering-via-LLM-E500.

lawrence Hubert and Phipps Arabie.

Comparing partitions.

Journal of Classification, 2(1):193-218, 1985.
URL https://link.springer.com/article/10.
1007/BF01908075.

References ii

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance.

Journal of Machine Learning Research, 11:2837–2854, 2010.

URL https://www.jmlr.org/papers/volume11/vinh10a/vinh10a.pdf.

Thank You

What is the primary goal of text clustering?

- A) To generate labeled datasets
- B) To group similar texts based on their representations
- C) To create embeddings for text analysis
- D) To reduce dataset size

What are the two stages of the proposed framework?

- A) Label Generation and Clustering
- B) Label Generation and Classification
- C) Clustering and Embedding Fine-Tuning
- D) Classification and Hyperparameter Tuning

Which challenge does the proposed method address in traditional text clustering approaches?

- A) Lack of datasets
- B) Complexity of fine-tuning embedders and hyperparameter tuning
- C) Low accuracy of clustering results
- D) High computational requirements of small models

What evaluation metrics were used in the experiments?

- A) Precision, Recall, F1-Score
- B) Accuracy, Normalized Mutual Information (NMI), Adjusted Rand Index (ARI)
- C) BLEU, ROUGE, METEOR
- D) Log-Loss, Cross-Entropy

Which baseline methods were compared against the proposed framework?

- A) IDAS, PAS, K-means, Keyphrase Clustering, ClusterLLM
- B) Word2Vec, FastText, BERT
- C) GANs, Transformers, Autoencoders
- D) Sentence Transformers, T5, GPT-4

What advantage does label merging provide in the proposed method?

- A) Reduces API usage
- B) Increases the number of clusters
- C) Eliminates redundant labels and improves granularity
- D) Lowers the need for training data

Which dataset tasks were used in the experiments?

- A) Sentiment analysis and machine translation
- B) Topic mining, emotion detection, intent discovery, domain discovery
- C) Summarization and text generation
- D) Image recognition and text classification

What is a key limitation of the proposed method?

- A) Inconsistent results across datasets
- B) High dependency on embeddings
- C) Higher API costs due to reliance on LLMs
- D) Limited dataset availability

Answer Key

- 1. B) To group similar texts based on their representations
- 2. B) Label Generation and Classification
- 3. **B)** Complexity of fine-tuning embedders and hyperparameter tuning
- 4. **B)** Accuracy, Normalized Mutual Information (NMI), Adjusted Rand Index (ARI)
- 5. A) IDAS, PAS, K-means, Keyphrase Clustering, ClusterLLM
- 6. C) Eliminates redundant labels and improves granularity
- 7. **B)** Topic mining, emotion detection, intent discovery, domain discovery
- 8. **C)** Higher API costs due to reliance on LLMs