# Metody Numeryczne 2 Laboratorium 1

Wyznaczanie zer wielomianów metodą stycznych z deflacją czynnikiem liniowym

Szymon Adach

20 października 2015

## 1 Treść zadania

Zadanie 12: Wyznaczenie wszystkich zer wielomianów metodą stycznych w dziedzienie rzeczywistej. Po wyznaczeniu kolejnego zera należy dokonać deflacji czynnikiem liniowym.

### 2 Opis metody

Zadanie można podzielić na następujące podproblemy:

1. Obliczenie wartości wielomianu i jego pochodnej w punkcie.

W tym celu wykorzystano algorytm Hornera. Obliczmy wartość wielomianu  $W(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$  w punkcie  $\hat{x}$ . Wtedy:

// w - wartosc wielomianu dla 
$$\hat{x}$$
  
// p - wartosc pochodnej wielomianu dla  $\hat{x}$   
w =  $a_n$   
p = w  
for k = n - 1,...,1  
 $w = w \cdot \hat{x} + a_k$   
 $p = p \cdot \hat{x} + w$   
end  
 $w = w \cdot \hat{x} + a_0$ 

#### 2. Wyszukanie pierwiastka wielomianu.

Zgodnie z poleceniem wykorzystano metodę Newtona. W celu zapewnienia poprawnego wykonania programu, maksymalna liczba iteracji została ustalona na MAX\_ITER = 30.

Ponadto aby uniknąć dzielenia przez zero, jeżeli wartość pierwszej pochodnej jest równa zero, jest ona zaburzana poprzez dodanie 0.012.

Za punkt startowy metody obrano x = 0;

Wzór na zero x wielomianu W:

$$x \coloneqq x - \frac{W(x)}{W'(x)}$$

Warunkiem stopu metody jest przekroczenie maksymalnej liczby iteracji lub  $|W(x)| \leq err$  gdzie  $err := (1\text{E}6 \cdot eps) = 2.2204\text{E}-10.$ 

#### 3. Dzielenie wielomianu przez dwumian

W tym celu wykorzystano algorytm Hornera.

4. Wyznaczenie wszystkich zer

(dane wejściowe: wielomian W i opcjonalnie punkt startowy a)

- (a) Dopóki liczba iteracji jest mniejsza od deg(W), startując z a wyszukaj metodą stycznych pierwiastek  $x_0$  wielomianu.
- (b) Podziel wielomian W przez dwumian  $(x-x_0),\,W(x)\coloneqq\frac{W(x)}{(x-x_0)}$
- (c) Niech  $a = x_0$ . Wróć do (a).

### 3 Działanie programu

Program został napisany w MATLAB-ie, składa się z 4 plików i jest uruchamiany poleceniem **find\_zeroes(poly, start)**, gdzie poly to wektor współczynników (podawanych od najniższej potęgi), a start to argument opcjonalny - punkt startowy metody.

Jeżeli nie znaleziono zer, to program zwraca pusty wektor [ ]. W przeciwnym przypadku zwracany jest wektor z zerami wielomianu - zera wielokrotne pojawiają się odpowiednią ilośc razy.

### 4 Przykłady

1. 
$$W(x) = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3})$$
  
 $x_0 = 0$ 

Wyjście: -1.7321 -1.4142 1.4142 1.7321

Komentarz: Punkt startowy w punkcie zerowania pierwszej pochodnej, pierwiastki rozłożone symetrycznie względem punktu startowego.

2. 
$$W(x) = x^4 + 3x^3 + 3x^2 + 2x + 4$$
  
 $x_0 = 0$ 

Wyjście []

Komentarz: Wielomian, który nie ma zer rzeczywistych.

3. 
$$W(x) = x^4$$
  
 $x_0 = 0$ 

**Wyjście:** 0 0 0 0

Komentarz: Poczwórne zero wielomianu, podczas deflacji powstają błędy współczynników.

4. 
$$W(x) = (x-1)^3 \cdot (x+1)$$
  
 $x_0 = 0$ 

 $\mathbf{Wyj\acute{s}cie:}\ 0.999709367039642\ 1.003572973256412\ 0.996711743886779\ -0.999994084182832$ 



**Komentarz:** Wykres wielomianu jest spłaszczony w okolicach x=1; metoda daje niedokładne wyniki.

5. 
$$W(x) = -1231.23 + 53453x + 333x^2 - 15x^3$$
  
 $x_0 = 0$ 

Wyjście: 0.023030579340882 -49.632175488307347 71.809144908966474

 ${\bf Komentarz:}$  Duży zakres współczynników oraz duży zakres zer wielomianu.