The group G is isomorphic to the group labelled by [33,1] in the Small Groups library. Ordinary character table of $G\cong \mathrm{C33}$:

	1a	11a	11b	11 <i>c</i>	11 <i>d</i>	11 <i>e</i>	11f	11 <i>g</i>	11h	11 <i>i</i>	11j	3a	33a	33b	33c	33d	33e	33f	33g	33h	33i	33j	3b	33k	33l	33m	33n	330	33p	33q	33r	$\overline{33s}$	$\overline{33t}$
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	1	1	1	1	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^2$
χ_3	1	1	1	1	1	1	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)
χ_4	1	E(11)	$E(11)^{2}$	$E(11)^{3}$	$E(11)^4$	$E(11)^{5}$	$E(11)^{6}$	$E(11)^{7}$	$E(11)^{8}$	$E(11)^{9}$	$E(11)^{10}$	1	E(11)	$E(11)^{2}$	$E(11)^{3}$	$E(11)^4$	$E(11)^{5}$	$E(11)^{6}$	$E(11)^{7}$	$E(11)^{8}$	$E(11)^9$	$E(11)^{10}$	1	E(11)	$E(11)^{2}$	$E(11)^{3}$	$E(11)^4$	$E(11)^{5}$	$E(11)^{6}$	$E(11)^{7}$	$E(11)^{8}$	$E(11)^{9}$	$E(11)^{10}$
χ_5	1	E(11)	$E(11)^{2}$	$E(11)^{3}$	$E(11)^4$	$E(11)^{5}$	$E(11)^{6}$	$E(11)^{7}$	$E(11)^{8}$	$E(11)^9$	$E(11)^{10}$	E(3)	$E(33)^{14}$	$E(33)^{17}$	$E(33)^{20}$	$E(33)^{23}$	$E(33)^{26}$	$E(33)^{29}$	\ / /	$E(33)^{2}$	$E(33)^{5}$	$E(33)^{8}$	$E(3)^{2}$	$E(33)^{25}$	$E(33)^{28}$	$E(33)^{31}$	E(33)	$E(33)^4$	$E(33)^{7}$	$E(33)^{10}$	$E(33)^{13}$	$E(33)^{16}$	$E(33)^{19}$
χ_6	1	E(11)	$E(11)^{2}$	$E(11)^{3}$	$E(11)^4$	$E(11)^{5}$	$E(11)^{6}$	$E(11)^{7}$	$E(11)^{8}$	$E(11)^9$	$E(11)^{10}$	$E(3)^{2}$	$E(33)^{25}$	$E(33)^{28}$	$E(33)^{31}$	E(33)	$E(33)^4$	$E(33)^{7}$	$E(33)^{10}$	$E(33)^{13}$	$E(33)^{16}$	$E(33)^{19}$	E(3)	$E(33)^{14}$	$E(33)^{17}$	$E(33)^{20}$	$E(33)^{23}$	$E(33)^{26}$	$E(33)^{29}$	$E(33)^{32}$	$E(33)^{2}$	$E(33)^{5}$	$E(33)^{8}$
χ_7	1	$E(11)^{2}$	$E(11)^4$	$E(11)^{6}$	$E(11)^{8}$	$E(11)^{10}$	E(11)	$E(11)^{3}$	$E(11)^{5}$	$E(11)^{7}$	$E(11)^{9}$	1	$E(11)^{2}$	$E(11)^4$	$E(11)^{6}$	$E(11)^{8}$	$E(11)^{10}$	E(11)	$E(11)^{3}$	$E(11)^{5}$	$E(11)^{7}$	$E(11)^9$	1	$E(11)^{2}$	$E(11)^4$	$E(11)^{6}$	$E(11)^{8}$	$E(11)^{10}$	E(11)	$E(11)^{3}$	$E(11)^{5}$	$E(11)^{7}$	$E(11)^9$
χ_8	1	$E(11)^{2}$	$E(11)^4$	$E(11)^{6}$	$E(11)^{8}$	$E(11)^{10}$	E(11)	$E(11)^{3}$	$E(11)^{5}$	$E(11)^{7}$	$E(11)^{9}$	E(3)	$E(33)^{17}$	$E(33)^{23}$	$E(33)^{29}$	$E(33)^{2}$	$E(33)^{8}$	$E(33)^{14}$	$E(33)^{20}$	$E(33)^{26}$	$E(33)^{32}$	\ /	$E(3)^{2}$	$E(33)^{28}$	E(33)	$E(33)^{7}$	$E(33)^{13}$	$E(33)^{19}$	$E(33)^{25}$	$E(33)^{31}$	$E(33)^4$	$E(33)^{10}$	$E(33)^{16}$
χ_9	1	$E(11)^{2}$	$E(11)^4$	$E(11)^{6}$	$E(11)^{8}$	$E(11)^{10}$	E(11)	$E(11)^{3}$	$E(11)^{5}$	$E(11)^{7}$	$E(11)^{9}$	$E(3)^{2}$	$E(33)^{28}$	E(33)	$E(33)^{7}$	$E(33)^{13}$	$E(33)^{19}$	$E(33)^{25}$	$E(33)^{31}$	$E(33)^4$	$E(33)^{10}$	$E(33)^{16}$	E(3)	$E(33)^{17}$	$E(33)^{23}$	$E(33)^{29}$	$E(33)^{2}$	$E(33)^{8}$	$E(33)^{14}$	$E(33)^{20}$	$E(33)^{26}$	$E(33)^{32}$	$E(33)^5$
χ_{10}	1	$E(11)^{3}$	$E(11)^{6}$	$E(11)^9$	E(11)	$E(11)^4$	$E(11)^{7}$	$E(11)^{10}$	$E(11)^{2}$	$E(11)^{5}$	$E(11)^{8}$	1	$E(11)^{3}$	$E(11)^{6}$	$E(11)^{9}$	E(11)	$E(11)^4$	$E(11)^{7}$	$E(11)^{10}$	$E(11)^{2}$	$E(11)^{5}$	$E(11)^{8}$	1	$E(11)^{3}$	$E(11)_{-}^{6}$	$E(11)^9$	E(11)	$E(11)^4$	$E(11)^{7}$	$E(11)^{10}$	$E(11)^{2}$	$E(11)^{5}$	$E(11)^{8}$
χ_{11}	1	$E(11)^{3}$	$E(11)^{6}$	$E(11)^9$	E(11)	$E(11)^4$	$E(11)^{7}$	$E(11)^{10}$	$E(11)^{2}$	$E(11)^{5}$	$E(11)^{8}$	E(3)	$E(33)^{20}$	$E(33)^{29}$	$E(33)^{5}$	$E(33)^{14}$	$E(33)^{23}$	$E(33)^{32}$	$E(33)^{8}$	$E(33)^{17}$	$E(33)^{26}$	\ /	$E(3)^{2}$	$E(33)^{31}$	$E(33)^{7}$	$E(33)^{16}$	$E(33)^{25}$	E(33)	$E(33)^{10}$	$E(33)^{19}$	$E(33)^{28}$	$E(33)^4$	$E(33)^{13}$
χ_{12}	1	$E(11)^{3}$	$E(11)^{6}$	$E(11)^9$	E(11)	$E(11)^4$	$E(11)^{7}$	$E(11)^{10}$	$E(11)^{2}$	$E(11)^{5}$	$E(11)^{8}$	$E(3)^{2}$	$E(33)^{31}$	$E(33)^{7}$	$E(33)^{16}$	$E(33)^{25}$	E(33)	$E(33)^{10}$	$E(33)^{19}$	$E(33)^{28}$	$E(33)^4$	$E(33)^{13}$	E(3)	$E(33)^{20}$	$E(33)^{29}$	$E(33)^{5}$	$E(33)^{14}$	$E(33)^{23}$	$E(33)^{32}$	$E(33)^{8}$	$E(33)^{17}$	$E(33)^{26}$	$E(33)^{2}$
χ_{13}	1	$E(11)^4$	$E(11)^{8}$	E(11)	$E(11)^{5}$	$E(11)^9$	$E(11)^{2}$	$E(11)^{6}$	$E(11)^{10}$	$E(11)^{3}$	$E(11)^{7}$	1	$E(11)^4$	$E(11)^{8}$	E(11)	$E(11)^{5}$	$E(11)^9$	$E(11)^{2}$	$E(11)^{6}$	$E(11)^{10}$	$E(11)^{3}$	$E(11)^{7}$	1	$E(11)^4$	$E(11)^{8}$	E(11)	$E(11)^{5}$	$E(11)^9$	$E(11)^{2}$	$E(11)_{-}^{6}$	$E(11)^{10}$	$E(11)^{3}$	$E(11)^{7}$
χ_{14}	1	$E(11)^4$	$E(11)^{8}$	E(11)	$E(11)^{5}$	$E(11)^9$	$E(11)^{2}$	$E(11)^{6}$	$E(11)^{10}$	$E(11)^{3}$	$E(11)^{7}$	E(3)	$E(33)^{23}$	$E(33)^{2}$	$E(33)^{14}$	$E(33)^{26}$	$E(33)^{5}$	$E(33)^{17}$	$E(33)^{29}$	$E(33)^{8}$	$E(33)^{20}$	$E(33)^{32}$	\ /	E(33)	$E(33)^{13}$	$E(33)^{25}$	$E(33)^4$	$E(33)^{16}$	$E(33)^{28}$	$E(33)^{7}$	$E(33)^{19}$	$E(33)^{31}$	$E(33)^{10}$
χ_{15}	1	$E(11)^4$	$E(11)^{8}$	E(11)	$E(11)^{5}$	$E(11)^9$	$E(11)^{2}$	$E(11)^{6}$	$E(11)^{10}$	$E(11)^{3}$	$E(11)^{7}$	$E(3)^{2}$	E(33)	$E(33)^{13}$	$E(33)^{25}$	$E(33)^4$	$E(33)^{16}$	$E(33)^{28}$	$E(33)^{7}$	$E(33)^{19}$	$E(33)^{31}$	$E(33)^{10}$	E(3)	$E(33)^{23}$	$E(33)^{2}$	$E(33)^{14}$	$E(33)^{26}$	$E(33)^{5}$	$E(33)^{17}$	$E(33)^{29}$	$E(33)^{8}$	$E(33)^{20}$	$E(33)^{32}$
χ_{16}	1	$E(11)^{5}$	$E(11)^{10}$	$E(11)^4$	$E(11)^9$	$E(11)^{3}$	$E(11)^{8}$	$E(11)^{2}$	$E(11)^{\gamma}$	E(11)	$E(11)^{6}$	1	$E(11)^{5}$	$E(11)^{10}$	$E(11)^4$	$E(11)_{2}^{9}$	$E(11)^3$	$E(11)^{8}$	$E(11)^2$	$E(11)^{\gamma}$	E(11)	$E(11)^{6}$	1	$E(11)^{5}$	$E(11)^{10}$	$E(11)^4$	$E(11)^9$	$E(11)^{3}$	$E(11)^{8}$	$E(11)^{2}$	$E(11)^{\gamma}$	E(11)	$E(11)_{-}^{6}$
χ_{17}		$E(11)^{5}$	$E(11)^{10}$	$E(11)^4$	$E(11)^9$	$E(11)^{3}$	$E(11)^{8}$	$E(11)^{2}$	$E(11)^{7}$	E(11)	$E(11)^{6}$	E(3)	$E(33)^{26}$	$E(33)^{8}$	$E(33)^{23}$	$E(33)^{5}$	$E(33)^{20}$	$E(33)^2$	$E(33)^{17}$	$E(33)^{32}$	$E(33)^{14}$	` / .	. ,	$E(33)^4$	$E(33)^{19}$	E(33)	$E(33)^{16}$	$E(33)^{31}$	$E(33)^{13}$	$E(33)^{28}$	$E(33)^{10}$	$E(33)^{25}$	$E(33)^{7}$
χ_{18}	1	$E(11)^{5}$	$E(11)^{10}$	$E(11)^{4}$	$E(11)^9$	$E(11)^{3}$	$E(11)^{8}$	$E(11)^{2}$	$E(11)^{7}$	E(11)	$E(11)^{6}$	$E(3)^{2}$	$E(33)^4$	$E(33)^{19}$	E(33)	$E(33)^{16}$	$E(33)^{31}$	$E(33)^{13}$	` ′ _	$E(33)^{10}$	$E(33)^{25}$	` ′ _	E(3)	$E(33)^{26}$	$E(33)^{8}$	$E(33)^{23}$	$E(33)^{5}$	$E(33)^{20}$	$E(33)^{2}$	$E(33)^{17}$	$E(33)^{32}$	$E(33)^{14}$	$E(33)^{29}$
χ_{19}	1	$E(11)^{6}$	E(11)	$E(11)^{\gamma}$	$E(11)^{2}$	$E(11)^{8}$	$E(11)^{3}$	$E(11)^9$	$E(11)^4$	$E(11)^{10}$	$E(11)^{5}$	1	$E(11)^{6}$	E(11)	$E(11)^{\gamma}$	$E(11)^2$	$E(11)^{8}$	$E(11)^3$	$E(11)_{2}^{9}$	$E(11)^4$	$E(11)^{10}$	\ /	1	$E(11)^{6}$	E(11)	$E(11)^{7}$	$E(11)^{2}$	$E(11)^{8}$	$E(11)^{3}$	$E(11)^9$	$E(11)^4$	$E(11)^{10}$	$E(11)^{5}$
χ_{20}		$E(11)^{6}$	E(11)	$E(11)^{\gamma}$	$E(11)^{2}$	$E(11)^{8}$	$E(11)^{3}$	$E(11)^9$	$E(11)^4$	$E(11)^{10}$	$E(11)^{5}$	E(3)	$E(33)^{29}$	$E(33)^{14}$	$E(33)^{32}$	$E(33)^{17}$	$E(33)^{2}$	$E(33)^{20}$	$E(33)^{5}$	$E(33)^{23}$	$E(33)^{8}$	$E(33)^{26}$	$E(3)^{2}$	$E(33)^{7}$	$E(33)^{25}$	$E(33)^{10}$	$E(33)^{28}$	$E(33)^{13}$	$E(33)^{31}$	$E(33)^{16}$	E(33)	$E(33)^{19}$	$E(33)^4$
χ_{21}		$E(11)^{6}$	E(11)	$E(11)^{\gamma}$	$E(11)^{2}$	$E(11)^{8}$	$E(11)^{3}$	$E(11)^9$	$E(11)^4$	$E(11)^{10}$	$E(11)^{5}$	$E(3)^{2}$	$E(33)^{7}$	$E(33)^{25}$	$E(33)^{10}$	$E(33)^{28}$	$E(33)^{13}$	$E(33)^{31}$	$E(33)^{16}$	E(33)	$E(33)^{19}$	$E(33)^4$	E(3)	$E(33)^{29}$	$E(33)^{14}$	$E(33)^{32}$	$E(33)^{17}$	$E(33)^{2}$	$E(33)^{20}$	$E(33)^{5}$	$E(33)^{23}$	$E(33)^{8}$	$E(33)^{26}$
χ_{22}		$E(11)^{\gamma}$	$E(11)^{3}$	$E(11)^{10}$	$E(11)^{6}$	$E(11)^{2}$	$E(11)^9$	$E(11)^{5}$	E(11)	$E(11)^{8}$	$E(11)^4$	1	$E(11)^{7}$	$E(11)^3$	$E(11)^{10}$	$E(11)^{6}$	$E(11)^2$	$E(11)^9$	$E(11)^5$	E(11)	$E(11)^{8}$	$E(11)^4$	1	$E(11)^{\gamma}$	$E(11)^{3}$	$E(11)^{10}$	$E(11)^{6}$	$E(11)^2$	$E(11)^9$	$E(11)^{5}$	E(11)	$E(11)^{8}$	$E(11)^4$
χ_{23}	1	$E(11)^{\gamma}$	$E(11)^{3}$	$E(11)^{10}$	$E(11)^{6}$	$E(11)^2$	$E(11)^9$	$E(11)^{5}$	E(11)	$E(11)^{8}$	$E(11)^4$	E(3)	$E(33)^{32}$	$E(33)^{20}$	$E(33)^{8}$	$E(33)^{29}$	$E(33)^{17}$	$E(33)^5$	$E(33)^{26}$	$E(33)^{14}$	$E(33)^2$	$E(33)^{23}$	$E(3)^{2}$	$E(33)^{10}$	$E(33)^{31}$	$E(33)^{19}$	$E(33)^{7}$	$E(33)^{28}$	$E(33)^{16}$	$E(33)^4$	$E(33)^{25}$	$E(33)^{13}$	E(33)
χ_{24}		$E(11)^{\gamma}$	$E(11)^{3}$	$E(11)^{10}$	$E(11)^{6}$	$E(11)^{2}$	$E(11)^9$	$E(11)^{5}$	E(11)	$E(11)^{8}$	$E(11)^4$	$E(3)^{2}$	$E(33)^{10}$	$E(33)^{31}$	$E(33)^{19}$	$E(33)^{7}$	$E(33)^{28}$	$E(33)^{16}$	$E(33)^4$	$E(33)^{25}$	` ′ ′	` .′o	E(3)	$E(33)^{32}$	`. '. =	$E(33)^{8}$	$E(33)^{29}$	$E(33)^{17}$	$E(33)^{5}$	$E(33)^{26}$	$E(33)^{14}$	$E(33)^{2}$	$E(33)^{23}$
χ_{25}		$E(11)^{8}$	$E(11)^{5}$	$E(11)^{2}$	$E(11)^{10}$	$E(11)^{7}$	$E(11)^4$	E(11)	$E(11)^9$	$E(11)^{6}$	$E(11)^{3}$	1	$E(11)^{8}$	$E(11)^{5}$	$E(11)^2$	$E(11)^{10}$	$E(11)^{7}$	$E(11)^4$	E(11)	$E(11)^9$	$E(11)^{6}$	$E(11)^3$	1	$E(11)^{8}$	$E(11)^{5}$	$E(11)^2$	$E(11)^{10}$	$E(11)^{7}$	$E(11)^4$	E(11)	$E(11)^9$	$E(11)^{6}$	$E(11)^3$
χ_{26}		$E(11)^{8}$	$E(11)^{5}$	$E(11)^{2}$	$E(11)^{10}$	$E(11)^{7}$	$E(11)^4$	E(11)	$E(11)^9$	$E(11)^{6}$	$E(11)^{3}$	E(3)	$E(33)^2$	$E(33)^{26}$	$E(33)^{17}$	$E(33)^8$	$E(33)^{32}$	$E(33)^{23}$	$E(33)^{14}$	$E(33)^{5}$	$E(33)^{29}$	\ /	$E(3)^{2}$	$E(33)^{13}$	\ /	$E(33)^{28}$	$E(33)^{19}$	$E(33)^{10}$	E(33)	$E(33)^{25}$	$E(33)^{16}$	$E(33)^{\gamma}$	$E(33)^{31}$
χ_{27}		$E(11)^{8}$	$E(11)^{5}$	$E(11)^{2}$	$E(11)^{10}$	$E(11)^{7}$	$E(11)^4$	E(11)	$E(11)^{9}$	$E(11)^{6}$	$E(11)^{3}$	$E(3)^{2}$	$E(33)^{13}$	$E(33)^4$	$E(33)^{28}$	$E(33)^{19}$	$E(33)^{10}$	E(33)	$E(33)^{25}$	$E(33)^{16}$	$E(33)^{7}$	$E(33)^{31}$	E(3)	$E(33)^{2}$	$E(33)^{26}$	$E(33)^{17}$	$E(33)^{8}$	$E(33)^{32}$	$E(33)^{23}$	$E(33)^{14}$	$E(33)^{5}$	$E(33)^{29}$	$E(33)^{20}$
χ_{28}	1	$E(11)^9$	$E(11)^{r}$	$E(11)^{5}$	$E(11)^3$	E(11)	$E(11)^{10}$	$E(11)^{8}$	$E(11)^{6}$	$E(11)^4$	$E(11)^2$	1	$E(11)^{9}$	$E(11)^{r}$	$E(11)^{5}$	$E(11)^3$	E(11)	$E(11)^{10}$	$E(11)^{8}$	$E(11)^{6}$	$E(11)^4$	$E(11)^2$	1	$E(11)^9$	$E(11)^{r}$	$E(11)^{5}$	$E(11)^3$	E(11)	$E(11)^{10}$	$E(11)^8$	$E(11)^{6}$	$E(11)^4$	$E(11)^2$
χ_{29}		$E(11)^9$	$E(11)^{\gamma}$	$E(11)^{5}$	$E(11)^3$	E(11)	$E(11)^{10}$	$E(11)^{8}$	$E(11)^{6}$	$E(11)^4$	$E(11)^{2}$	E(3)	$E(33)^{5}$	$E(33)^{32}$	$E(33)^{26}$	$E(33)^{20}$	$E(33)^{14}$	$E(33)^{8}$	$E(33)^2$	$E(33)^{29}$	$E(33)^{23}$	\ /	$E(3)^{2}$	$E(33)^{16}$	$E(33)^{10}$	$E(33)^4$	$E(33)^{31}$	$E(33)^{25}$	$E(33)^{19}$	$E(33)^{13}$	$E(33)^{7}$	E(33)	$E(33)^{28}$
χ_{30}		$E(11)^9$	$E(11)^{\gamma}$	$E(11)^{5}$	$E(11)^3$	E(11)	$E(11)^{10}$	$E(11)^{8}$	$E(11)^{6}$	$E(11)^4$	$E(11)^2$	$E(3)^{2}$	$E(33)^{16}$	$E(33)^{10}$	— i i o	$E(33)^{31}$	$E(33)^{25}$	$E(33)^{19}$	$E(33)^{13}$	$E(33)^{7}$	E(33)	$E(33)^{28}$	E(3)	$E(33)^5$	$E(33)^{32}$	$E(33)^{26}$	$E(33)^{20}$	$E(33)^{14}$	$E(33)^{8}$	$E(33)^2$	$E(33)^{29}$	$E(33)^{23}$	$E(33)^{17}$
χ_{31}			$E(11)^9$	$E(11)^{8}$	$E(11)^{7}$	$E(11)^{6}$	$E(11)^{5}$	$E(11)^4$	$E(11)^3$	$E(11)^2$	E(11)	1	$E(11)^{10}$	$E(11)^9$	$E(11)^{8}$	$E(11)^{7}$	$E(11)^6$	$E(11)^{5}$	$E(11)^4$	$E(11)^3$	$E(11)^2$	E(11)	1	$E(11)^{10}$	$E(11)^9$	$E(11)^{8}$	$E(11)^{7}$	$E(11)^{6}$	$E(11)^{5}$	$E(11)^4$	$E(11)^3$	$E(11)^2$	E(11)
χ_{32}		$E(11)^{10}$	$E(11)^9$	$E(11)^{8}$	$E(11)^{7}$	$E(11)^{6}$	$E(11)^{5}$	$E(11)^4$	$E(11)^3$	$E(11)^2$	E(11)	E(3)	$E(33)^{8}$	$E(33)^5$	$E(33)^2$	$E(33)^{32}$	$E(33)^{29}$	$E(33)^{26}$	$E(33)^{23}$	$E(33)^{20}$	$E(33)^{17}$	$E(33)^{14}$	$E(3)^{2}$	$E(33)^{19}$	$E(33)^{16}$	$E(33)^{13}$	$E(33)^{10}$	$E(33)^{7}$	$E(33)^4$	E(33)	$E(33)^{31}$	$E(33)^{28}$	$E(33)^{25}$
χ_{33}	1	$E(11)^{10}$	$E(11)^9$	$E(11)^{8}$	$E(11)^{7}$	$E(11)^{6}$	$E(11)^5$	$E(11)^4$	$E(11)^3$	$E(11)^2$	E(11)	$E(3)^{2}$	$E(33)^{19}$	$E(33)^{16}$	$E(33)^{13}$	$E(33)^{10}$	$E(33)^{7}$	$E(33)^4$	E(33)	$E(33)^{31}$	$E(33)^{28}$	$E(33)^{25}$	E(3)	$E(33)^{8}$	$E(33)^5$	$E(33)^2$	$E(33)^{32}$	$E(33)^{29}$	$E(33)^{26}$	$E(33)^{23}$	$E(33)^{20}$	$E(33)^{17}$	$E(33)^{14}$

Trivial source character table of $G \cong C33$ at p = 11:

Trivial source character table of $G \cong C33$ at $p = 11$:				
Normalisers N_i	N_1		N	$\overline{V_2}$
p-subgroups of G up to conjugacy in G	P_1		F	$\overline{P_2}$
Representatives $n_j \in N_i$	1a $3a$	3b	1a $3a$	$\sqrt{3b}$
$\boxed{1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{30} + 1 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{33} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31}$	11 11	11	0 0	0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 11 * E(3)	$11 * E(3)^2$	0 0	0
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 1 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 1 \cdot \chi_{33} + 0 \cdot \chi_{31} + 0 $	$11 11 * E(3)^2$	11 * E(3)	0 0	0
$\boxed{1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31}$	1 1	1	1 1	1
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 E(3)	$E(3)^{2}$	1 E(3)	$E(3)^2$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{33} + 0 \cdot \chi_{31} + 0 $	$1 E(3)^2$	E(3)	1 E(3)	$)^2 E(3)$

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)]) \cong C11$

 $N_1 = Group([(1,2,3), (4,5,6,7,8,9,10,11,12,13,14)]) \cong C33$ $N_2 = Group([(1,2,3), (4,5,6,7,8,9,10,11,12,13,14)]) \cong C33$