

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής
Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι

40 Εξάμηνο, Ακαδημαϊκό Έτος 2020-2021

Εργασία σε πρόγραμμα προσομοίωσης LT Spice

Καθ. Παύλος-Πέτρος Σωτηριάδης

Προετοιμασία και επιμέλεια: Χρήστος Δήμας Υ.Δ.

21 Μαΐου 2021

Οδηγίες-Διευκρινίσεις:

- Η εργασία είναι **προαιρετική**, ατομική και παραδίδεται **ηλεκτρονικά** στη σελίδα του μαθήματος στο mycourses, έως και την Τετάρτη, **30 Ιουνίου** 2021.
- Παραδοτέο είναι ένα συμπιεσμένο αρχείο .zip ή .rar το οποίο περιλαμβάνει: όλα τα αρχεία προσομοιώσεων LT Spice (ASC) με κατάλληλες ονομασίες, μια αναφορά σε PDF και ένα αρχείο .txt με το ονοματεπώνυμο και τον Α.Μ. σας.
- Η αναφορά θα πρέπει να περιέχει επαρκείς αιτιολογήσεις και συγκρίσεις με τις αναμενόμενες συμπεριφορές των κυκλωμάτων από τη θεωρία.
- Η συνεισφορά της εργασίας στην τελική βαθμολογία είναι η ακόλουθη:

100% τελική εξέταση+10% ασκήσεις+ 10% προαιρετική εργασία.

• Οι γραφικές παραστάσεις στην αναφορά πρέπει να είναι ευανάγνωστες, δηλαδή ή screenshot από το LT Spice, αλλά με τροποποίηση των γραφικών επιλογών παρουσίασης των προσομοιώσεων (πιο μεγάλες γραμμές, ανοιχτό background), ή με μεταφορά των γραφικών παραστάσεων σε Python ή Matlab.

Μέρος 1º (30%)

Για τους τρεις καθρέπτες ρεύματος του παρακάτω σχήματος, δίνονται V_{CC} =10V και I_1 = I_2 = I_3 =1mA. Για τα Q_1 - Q_9 , χρησιμοποιείστε το διπολικό τρανζίστορ 2N3904.

Σχήμα 1

- **A)** Ποια η αντίσταση εξόδου r_{out} του καθρέπτη Wilson α) για $V_{out} = 5V$ στην συχνότητα f = 100 Hz; (Hint: Θεωρήστε πηγή **μόνο για AC** προσομοίωση στον κόμβο εξόδου, με DC 5V και AC 1).
- **B)** Ποια η αντίσταση εξόδου r_{out} του καθρέπτη Widlar β) για $V_{out} = 5V$ στην συχνότητα f = 100Hz;
- Γ) Ποιες οι αντιστάσεις εξόδου r_{out1} r_{out2} του τροποποιημένου καθρέπτη Wilson γ) για $V_{out1} = V_{out2} = 5V$ στην συχνότητα f = 100 Hz;
- **Δ**) Ποια η ελάχιστη τάση στον συλλέκτη του Q_3 για την οποία το ρεύμα εξόδου (I_{C3}) είναι ίσο με το ονομαστικό (με απόκλιση το πολύ 5%).
- Ε) Ποια η ελάχιστη τάση στον συλλέκτη του Q_4 για την οποία το ρεύμα εξόδου (I_{C4}) είναι ίσο με το ονομαστικό (με απόκλιση το πολύ 5%).

Μέρος 2° (30%)

Σχήμα 2

Για το παραπάνω κύκλωμα δίνονται V_{CC} =10V , R_1 =1k Ω , R_2 =50 Ω , R_3 =1k Ω , C_1 = C_2 =100μF και I_1 =50mA.

Για τα Q1 και Q2 , χρησιμοποιείστε το διπολικό τρανζίστορ 2N2222.

- **A)** Ποια πρέπει να είναι η τιμή της I_2 , ώστε το ρεύμα συλλέκτη του Q_1 να είναι I_{C1} =5.1mA; Να παρουσιαστεί η διαδικασία εύρεσης και το κατάλληλο διάγραμμα.
- **B)** Να σχεδιαστεί το διάγραμμα Bode ενίσχυσης και φάσης σε κατάλληλο εύρος συχνοτήτων. Ποια η συχνότητα f_{-3dB} του παραπάνω ενισχυτή; Συμφωνεί το κέρδος στην ωφέλιμη ζώνη συχνοτήτων με το θεωρητικό αναμενόμενο;
- Γ) Να σχεδιαστεί το διάγραμμα της αντίστασης εισόδου του ενισχυτή (όπως υποδεικνύεται στο σχήμα) σε κατάλληλο εύρος συχνοτήτων. Οι τιμές του διαγράμματος να είναι σε Ohm (γραμμικός y άξονας) και ο άξονας συχνοτήτων λογαριθμικός. Ποια η αντίσταση εισόδου $r_{\rm in}$ του παραπάνω ενισχυτή στην συχνότητα $f=10{\rm kHz}$; Συμφωνεί η αντίσταση εισόδου κοντά στο DC με την αναμενόμενη θεωρητική;
- Δ) Να σχεδιαστεί το διάγραμμα της αντίστασης εξόδου του ενισχυτή (όπως υποδεικνύεται στο σχήμα) σε κατάλληλο εύρος συχνοτήτων. Οι τιμές του διαγράμματος να είναι σε Ohm (γραμμικός y άξονας) και ο άξονας συχνοτήτων λογαριθμικός. Ποια η αντίσταση εξόδου rout του παραπάνω ενισχυτή στην συχνότητα $f=10 \mathrm{kHz}$; Συμφωνεί η αντίσταση εξόδου κοντά στο DC με την αναμενόμενη θεωρητική;

Μέρος 3º (25%)

Η παρακάτω διάταξη ονομάζεται Howland Current Source/ Pump (HCP). Είναι ένας ενισχυτής τάσης σε ρεύμα (VCCS) που χρησιμοποιείται για δημιουργία πηγών ρευμάτων σε χαμηλές και μεσαίες συχνότητες, με αρκετές παραλλαγές. Το ρεύμα οδηγείται στο φορτίο R_L .

Σχήμα 3

- **A)** Εκτελέστε transient προσομοίωση για πηγή πλάτους 1V και συχνότητα 10kHz, του ρεύματος εξόδου για τιμές των R_1 - R_4 στα $1k\Omega$, $10k\Omega$, $50k\Omega$ και $100 k\Omega$, και R_5 ={1 $k\Omega$, 5 $k\Omega$ }. Χρησιμοποιείστε τον LT1001 OPAMP και την εντολή ".step param X list". Η προσομοίωση να τερματίζεται στα 0.5ms.
- **Β)** Για τιμές R_1 - R_4 100 $k\Omega$ και R_5 =1 $k\Omega$, εκτελέστε transient προσομοιώσεις για πηγή τάσης πλάτους 0.5, 1, 2 και 3V και συχνότητας 10kHz σε κοινούς άξονες. Χρησιμοποιείστε τον LT1001 OPAMP και την εντολή ".step param X list". Η προσομοίωση να τερματίζεται στα 0.5ms.
- Γ) Για τιμές των R_1 - R_4 στα $1k\Omega$, $10k\Omega$, $50k\Omega$ και 100 $k\Omega$, και R_5 = $\{1$ $k\Omega$, 5 $k\Omega\}$, προσομοιώστε τις τιμές (μέτρο και φάση) της αντίστασης εξόδου του κυκλώματος για εύρος συχνοτήτων 1Hz-10MHz. Ο άξονα y στα πλάτη να είναι λογαριθμικός και να δείχνει τιμές αντιστάσεων σε Ohm. Χρησιμοποιείστε τον LT1001 OPAMP και την εντολή ".step param X list ". Που οφείλεται η αλλαγή όσο αυξάνεται η συχνότητα; Τι επιδιώκουμε σε ότι αφορά την αντίσταση εξόδου και γιατί;
- Δ) Επαναλάβετε το ερώτημα Γ) αυτή τη φορά χρησιμοποιώντας τον ΟΡΑΜΡ ΑDA4625. Ποιες διαφορές παρατηρείτε; Που μπορεί να οφείλονται; Ποια κατάσταση πρέπει να αποφύγουμε;

Μέρος 4° (15%)

Για το διαφορικό ενισχυτή του παρακάτω σχήματος, θεωρείστε u_{b2} =0 και χρησιμοποιείστε το transistor 2N2222. Θεωρείστε ότι η u_{b1} μεταβάλλεται από -0.25 μέχρι 0.25V. Θεωρήστε επίσης ότι V_{cc} =10V και I=2mA.

- **A)** Χαράξτε τη χαρακτηριστική μεταφοράς της διαφορικής εξόδου \mathbf{u}_{c2} - \mathbf{u}_{c1} ως προς την είσοδο σε κοινούς άξονες για τις ακόλουθες τιμές της αντίστασης \mathbf{R}_c : 100Ω , 500Ω , $1k\Omega$, $2k\Omega$, $5k\Omega$, $10k\Omega$. Τι παρατηρείτε; Είναι αναμενόμενο από τη θεωρητική σας ανάλυση;
- **B**) Επαναλάβετε το παραπάνω για το transistor 2N3904. Παρατηρείτε κάποια αλλαγή; Δικαιολογείστε την απάντησή σας με βάση και τη θεωρητική σας ανάλυση.
- Γ) Χρησιμοποιώντας το transistor 2N3904, και αντίσταση $R_c=1k\Omega$, χαράξτε την παραπάνω συνάρτηση μεταφοράς για θερμοκρασίες από 0 μέχρι 120 βαθμούς, με βήμα 10 βαθμών, σε κοινούς άξονες. Τι παρατηρείτε; Δικαιολογείστε την απάντησή σας με βάση και τη θεωρητική σας ανάλυση.
- **Δ)** Θεωρήστε ότι οι u_{b1} και u_{b2} στο κάτω άκρο τους αντί γης έχουν ένα dc σήμα 0.5V (offset). Για τις τιμές της R_C πάνω από το transistor $Q2~0.95k\Omega$, $0.98k\Omega$, $1k\Omega$, $1.02k\Omega$ και $1.05k\Omega$, εκτελέστε transient προσομοίωση θεωρώντας πως η u_{b1} είναι ημιτονικό σήμα 1kHz και πλάτους 0.05V. Οι γραφικές να παρασταθούν στους ίδιους άξονες. Εάν αυξηθεί αρκετά το πλάτος τι θα συμβεί;