Real-Space Topological Invariant for Time-Quasiperiodic Majoranas

Zihao Qi (Cornell University)

APS Global Physics Summit, March 2025

Phys. Rev. B 110, 014309 (2024) [Editors' Suggestion]

Time-Quasiperiodic Systems

- Generalization of Floquet (time-periodic) systems.
- e.g. $H(t) = f(\omega_1 t, \omega_2 t)$. ω_1 and ω_2 mutually irrational.
- Quasi-energy is defined modulo $n_1\omega_1 + n_2\omega_2$, $n_1, n_2 \in \mathbb{Z}$.
- For sufficiently large $|n_1|, |n_2|, n_1\omega_1 + n_2\omega_2$ can approach any real number \rightarrow dense quasienergy spectrum.

Time-Quasiperiodic Majoranas

• Four particle-hole symmetric quasi-energies¹:

$$\bar{\epsilon} = 0, \omega_1/2, \omega_2/2, (\omega_1 + \omega_2)/2.$$

• Question: How do we define a topological invariant in the gapless system?

¹Y. Peng and G. Refael, PRB 98, 220509 (R), 2018.

Spectral Localizer

- Detects whether incompatible observables have approximate common eigenstates.
- For Hamiltonian H, position operator X, define localizer as:

$$L_{x,E}\left(X,H\right)=\kappa(X-xI)\otimes\Gamma_{1}+\left(H-EI\right)\otimes\Gamma_{2}.$$

 κ is a hyperparameter. $\Gamma_{1,2}^{\dagger}=\Gamma_{1,2}$, $\Gamma_{1}\Gamma_{2}=-\Gamma_{2}\Gamma_{1}$, $\Gamma_{1,2}^{2}=I$.

• If there is a common eigenstate $|\psi\rangle$ of H and X:

$$H|\psi\rangle = E^*|\psi\rangle$$
, $X|\psi\rangle = x^*|\psi\rangle$,

then L_{x^*,E^*} has a zero eigenvalue.

Topological Invariant

• Choose $\Gamma_1 = \sigma_x$, $\Gamma_2 = \sigma_y$.

$$L_{x,\epsilon}(X,K) = \begin{pmatrix} 0 & \kappa(X-xI) - i(K-\epsilon I) \\ \kappa(X-xI) + i(K-\epsilon I) & 0 \end{pmatrix}$$

- K is the enlarged, frequency-domain Hamiltonian.
- Symmetries of $L_{x,\epsilon}$:
 - Particle-hole: $(V_c \otimes \sigma_z) L_{x,\bar{\epsilon}}^* (V_c \otimes \sigma_z)^{-1} = -L_{x,\bar{\epsilon}}$.
 - Chiral: $(I \otimes \sigma_z) L_{x,\epsilon} (I \otimes \sigma_z)^{-1} = -L_{x,\epsilon}$.
- $L_{x,\epsilon}$ is in 0D Class BDI. Classified by a \mathbb{Z}_2 invariant:

$$C_{x,\overline{\epsilon}} = \operatorname{sign} \left(\det \left(\kappa (X - xI) + i(K - \overline{\epsilon}I) \right) \right).$$

Interpretation using non-Hermitian Physics

- Define $M_X(\kappa) := \kappa(X xI) + i(K \bar{\epsilon}I)$.
- $M_X(\kappa)$ is PT symmetric but non-Hermitian. It has two types of eigenvalues:
 - PT-breaking (bulk) states: $\Gamma_n \pm i\epsilon_n$.
 - PT-preserving (Majorana) states: (δ_L, δ_R) .
- $C_{x,\epsilon} = \operatorname{sign}(\det M) = \operatorname{sign}(\prod_n (\Gamma_n \pm i\epsilon_n) \delta_L \delta_r) = \operatorname{sign}(\delta_L \delta_R)$.

Intepretation, cont'd

• For small κ , first order perturbation gives:

$$\delta_{L,R} \simeq \kappa(\langle \psi_{L,R} | X | \psi_{L,R} \rangle - x)$$

- For x near either boundary, $\delta_{L,R}$ have the same sign, C=1.
- For x near chain center, $\delta_L < 0, \delta_R > 0$, C = -1.
- Real-space signature of Majoranas: change of invariant from 1 to -1 as x goes from boundary into the bulk.

Hyperparameter κ

- How to choose the hyperparameter κ ?
- Previous understanding: κ cannot be too large, often chosen empirically.²
- Connection with non-Hermitian physics: at $\kappa = \kappa_c$, $M(\kappa_c)$ is non-diagonalizable (an exceptional point).
- For $\kappa > \kappa_c$, $M(\kappa)$ becomes topologically distinct from $M(\kappa=0)$. No PT-preserving modes (Majoranas) anymore.
- The criteria for choosing κ : no EP should be met as κ increases from zero. i.e. $\kappa < \kappa_c$.

²K. Dixon, T. Loring, A. Cerjan, PRL 131, 213801 (2023).

Numerical Example: Driven Kitaev Chain

$$H(t) = H_K + V(\omega_1 t) + V(\omega_2 t)$$
 $H_K = -\mu \sum_{j=1}^N c_j^\dagger c_j - \sum_{j=1}^{N-1} [(J c_j^\dagger c_{j+1} + i \Delta c_j c_{j+1}) + ext{h.c.}]$ $V(\omega_i t; \Delta_i) = -i \Delta_i \sum_{j=1}^{N-1} (e^{-i\omega t} c_j c_{j+1} - e^{i\omega t} c_{j+1}^\dagger c_j^\dagger)$

Numerical Results

Collaborators

Yang Peng (CSUN)

Iryan Na (UCB) Gil Refael (Caltech)

Summary & Outlook

- We defined a real-space topological invariant to detect time-quasiperiodic Majoranas using spectral localizer.
- Outlined a criteria for selecting the hyperparameter κ .
- Numerical study of driven Kitaev chain agrees with expectations.
- Physical setup for the non-Hermitian probe?

Phase Diagram

