1 Kolobarji polinomov

1.1 Računanje s kompleksnimi števili

$$z = x + iy = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\varphi = \arg z = \arctan\frac{y}{x}$$

De Moivreova formula

$$z^n = r^n (\cos \varphi n + i \sin \varphi n)$$

Osnovni izrek algebre

Vsak nekonstanten polinom $a_n x^n + \cdots + a_0$ ima natanko n kompleksnih ničel (štetih z večkratnostjo).

Trigonometrične identitete

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

$$\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)}$$

$$\cot(x \pm y) = \frac{\cot(x)\cot(y) \mp 1}{\tan(x) \pm \tan(y)}$$

$$\sin^{2}(x) + \cos^{2}(x) = 1$$

$$1 + \cot^{2}(x) = \frac{1}{\sin^{2}(x)}$$

$$1 + \tan^{2}(x) = \frac{1}{\cos^{2}(x)}$$

$$\sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$$