Al-Isra University

Faculty of IT

Department of Computer Science

جامعة الإسراء كلية تكنولوجيا المعلومات قسم هندسة البرمجيات

Department:	Assignment:	Submission Deadline:
CS	<u>#2</u>	
Semester:	Year:	<u>Instructor</u>
Second	2023/2024	Dr. Dimah Fraihat
Course No.:	Course Name:	Section:
Course No.:	Course Name: Computer Design and Organisation	<u>Section</u> : <u>1</u>
Course No.: Student No.:		

Question No.	Mark	
	Max	Score
1	2	
2	2	
3	3	
4	3	
Total Mark	10	

1) Convert (50.375)10 to binary number (show your work)

Solution:

50 to binary

0.375 = binary

 $50 \div 2 = 25 \mod = 0$

 $0.375 \times 2 = 0.75 = 0$

 $25 \div 2 = 12 \mod = 1$

 $0.75 \times 2 = 1.5 = 1$

 $12 \div 2 = 6 \mod = 0$

 $0.5 \times 2 = 1.0 = 1$

 $6 \div 2 = 25 \text{ mode} = 0$

0.375 = 011

 $3 \div 2 = 1 \mod 2 = 1$

 $1 \div 2 = 1 \mod 2 = 1$

50 decemal = 110010 binary

50.375 decemal = 110010.011 binary

2) Convert (ABC2)16 to its equivalent in Octal (show your work)

Solution:

2 hex = 0010 binary

A hex = 1010 binary

B hex = **1011** binary

C hex = **1100** binary

ABC2 hex = 10101011111000010 binary

1010101111000010 binary = 25341 octal

3) Convert -0.375 base 10 to binary (show your work) using both one's and two's complement.

One's Complement:

0.375 to binary

 $0.375 \times 2 = 0.75 \text{ intger} = 0$

0.75 × 2 = 1.5 intger = 1

 $0.5 \times 2 = 1.0 \text{ intger} = 1$

0.375 december = 0.011

One's Complement → - 0.375 decemal = 1.100 binary

Two's Complement:

0.375 decemal = 0.011 binary

- 0.375 decemal = 1.100 binary

1.100 + 1 = 1.101

Two's Complement → - 0.375 decemal = 1.101 binary

4) Find the <u>1's complement</u> , <u>2's complement</u> , and <u>sign magnitude</u> representations of the number 00010010
Solution:
One's complement: 00010010 = 11101101
Tow's complement: 00010010 = 11101101 11101101 + 1 = 11101110
Sign magnitude: 0 00010010

5) Represent binary -0.0111 in IEEE format

Solution:

0.0111 - 1.11 * 2 ^ -2

Sign bit = 1

Exponent = -2 + 127 = 125

125 decemal = 01111101 binary