Time series analysis: review Ch 1- 6

Motivating data series below: How to forecast future outcomes?

Step 1 in time series analysis

- ▶ Use the sample to investigate/explore/examine/analyze the properties of the underlying time series process.
- ▶ What is a time series process? What properties are we interested in?

Time series process

- ▶ The sequence of random variables $\{Y_t : t = 0, \pm 1, \pm 2, \pm 3, ...\}$ is called a stochastic process, also referred to as a time series process.
- We are interested in:
 - mean function $\mu_t = E(Y_t)$
 - autocovariance function $\gamma_{t,s} = Cov(Y_t, Y_s)$
 - (second-order) stationarity:
 - Is μ_t constant with time?
 - ▶ Is $\gamma_{t,t-k} = \gamma_{0,k} = \gamma_k$ (free of t) for all time t and lags k?

Back to step 1

- ▶ Use the sample to investigate/explore/examine/analyze the properties of the underlying time series process.
- ► How to find out about the mean function, autocovariance function (or equivalently variance and autocorrelation function) and stationarity?
- ▶ Use exploratory tools: sample autocorrelation functions (ch. 6)!

(Sample) autocorrelation function

For a stationary time series process, the autocorrelation function (ACF) is given by:

$$\rho_k = Corr(Y_t, Y_{t+k}) = \frac{Cov(Y_t, Y_{t+k})}{Var(Y_t)} = \frac{\gamma_k}{\gamma_0}.$$

▶ Based on an observed time series Y_1, \ldots, Y_n , the sample autocorrelation function r_k (sample ACF) for time lag $k = 1, 2, \ldots$ is defined as

$$r_k = \frac{\sum_{t=k+1}^n (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^n (Y_t - \bar{Y})^2}.$$

▶ For a stationary time series process $\{Y_t\}$, r_k is an estimator for the true autocorrelation function $\rho_k = Corr(Y_t, Y_{t-k})$.

Example of sample ACF for data series 1

- ▶ In R: acf(data1) (using TSA library).
- Note that r_k is an estimate for ρ_k based on one observed series and thus subject to sampling error.
- Question: Are the sample autocorrelations in data series 1 higher than expected if the observations would be uncorrelated?
 - For an independent series of observations (white noise), approximately $r_k \sim N(0, 1/n)$ for large n.

(Sample) partial autocorrelation function

- For a stationary time series process, the partial autocorrelation between Y_t and Y_{t-k} , which is denoted by ϕ_{kk} , is the autocorrelation between Y_t and Y_{t-k}
 - "that is not explained by" $Y_{t-1}, \ldots, Y_{t-k+1}$,
 - ▶ after "controlling for" $Y_{t-1}, ..., Y_{t-k+1}$.
- ϕ_{kk} is the coefficient of Y_{t-k} in an AR(k) model, and can be found by solving the following set of (YW) equations:

or through using a recursive approach.

▶ Based on an observed time series, the sample PACF $\hat{\phi}_{kk}$ estimates ϕ_{kk} , and is obtained by using the equations above, replacing ϕ_{kj} by $\hat{\phi}_{kj}$ and ρ_k by sample ACF r_k for all k,j.

Example of sample PACF for data series 1

More examples: ACF data series 2

- Something odd going on here?
- ► The series may not be stationary. Not clear what the autocorrelation structure is.
- ▶ What to do?

Dealing with non-stationary series

- Differencing or using other transformations may help to obtain a stationary series.
- ▶ Below the differenced time series $W_t = \nabla Y_t = Y_t Y_{t-1}$, and sample ACF and sample PACF for data series 2.

Step 1 summarized, and step 2

- ► Step 1: Use the sample to investigate/explore/examine/analyze the properties of the underlying time series process.
 - Sample autocorrelation functions provide information for stationary series.
 - ▶ If the series is not stationary, differencing and/or transformations may result in a stationary series.
- Step 2: Identify candidate model(s)...
 - Which time series models (specifications of time series processes) can we choose from?
 - If there is more than one, which model(s) to choose?

ARIMA models (processes) are an important class of time series models!

ARMA processes

▶ A (zero-mean) mixed autoregressive moving average process $\{Y_t\}$ of orders p and q, denoted by ARMA(p, q), is defined as:

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

with $e_t \sim WN(0, \sigma_e^2)$ (independent white noise terms).

- Examples:
 - MA(q): $Y_t = e_t \theta_1 e_{t-1} \theta_2 e_{t-2} \ldots \theta_q e_{t-q}$,
 - AR(p): $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + e_t$,
 - ARMA(1,1): $Y_t = \phi Y_{t-1} + e_t \theta e_{t-1}$.

Simulations of the MA(1) with $\theta = 0.9$

▶ We need to set a distribution for the white noise, generally $N(0, \sigma_e^2)$.

Note on simulations

- ► For MA and AR processes, it's a good learning experience to generate your own simulations
 - Easy for MA processes: just simulate the white noise first.
 - ▶ For AR-processes, we can construct simulations through an iterative procedure, starting with a draw from the stationary distribution of (Y_1, \ldots, Y_p) .
- ► Simulations can also be obtained in R through the built-in function "arima.sim", e.g. use

```
thetas = 0.9 arima.sim(model=list(ma=-thetas),n=400) to obtain a new simulation for the MA(1) process with \theta=0.9 but note that the specification of the MA-coefficients is of opposite sign.
```

▶ IMPORTANT: In R, the θ 's are always reported with opposite sign! E.g. in R, think about an MA process as

$$Y_t = e_t + \theta_1^{(R)} e_{t-1} + \theta_2^{(R)} e_{t-1} + \ldots + \theta_1^{(R)} e_{t-q},$$

where $\theta_k^{(R)} = -\theta_k$ in the MA notation we use in the class/the book.

Back to ARMA processes

▶ A (zero-mean) mixed autoregressive moving average process $\{Y_t\}$ of orders p and q, denoted by ARMA(p, q), is defined as:

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

with $e_t \sim WN(0, \sigma_e^2)$ (independent white noise terms).

- ► What model(s) to use to represent the underlying process in a time series of interest?
- Examine autocorrelation functions of ARMA processes:
 - ▶ ACF γ_k , PACF ϕ_{kk} .
- But first: Restrict attention to stationary ARMA processes.

When is an ARMA process stationary?

▶ The ARMA(p, q) process, with e_t be independent of $Y_{t-1}, Y_{t-2}, Y_{t-3}, \ldots$, is stationary if and only if the roots of the AR characteristic equation exceed 1 in absolute value (modulus): If the roots z_i (for i=1 up to p) of the AR characteristic equation

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p = 0$$

satisfy $|z_i| > 1$.

- Note: If |z_i| < 1, we do obtain a stationary process, but with e_t NOT independent of Y_{t-1}, Y_{t-2}..., which is called a non-causal process.
- We focus attention to causal and stationary processes only, with $|z_i| > 1$.
- ▶ Let's examine autocorrelation functions
 - ▶ ACF γ_k , PACF ϕ_{kk} .

for a stationary ARMA process.

Autocovariance function for an ARMA process

- ▶ How to obtain the (theoretical) autocovariance function $\gamma_k = Cov(Y_t, Y_{t+k})$ and $\rho_k = \gamma_k/\gamma_0$, for an ARMA process?
- ▶ For MA(q) processes, $Y_t = e_t \theta_1 e_{t-1} \theta_2 e_{t-2} \ldots \theta_q e_{t-q}$, we can obtain γ_k directly, just plug in the expression for Y_t in $\gamma_k = Cov(Y_t, Y_{t+k})$.

Example for MA(1),
$$Y_t = e_t - \theta e_{t-1}$$
:

$$\rho_k = \left\{ \begin{array}{ll} 1 & \text{for } k = 0, \\ \frac{-\theta}{1+\theta^2} & \text{for } k = 1, \\ 0 & \text{otherwise,} \end{array} \right.$$

Autocorrelation function for an ARMA process

- ► How to obtain the (theoretical) ACF for a zero-mean AR(p) process?
 - ▶ Multiply both sides by Y_{t-k} , take expectations and divide by γ_0 :

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \phi_3 \rho_{k-3} + \dots + \phi_p \rho_{k-p}. \tag{1}$$

• Use Eq.(1) to obtain ρ_1, \ldots, ρ_p by solving the following set of (Yule-Walker) equations (based on plugging in $k = 1, \ldots, p$, and noting that $\rho_k = \rho_{-k}$):

$$\begin{split} \rho_1 &= \, \phi_1 + \phi_2 \rho_1 + \phi_3 \rho_2 + \dots + \phi_p \rho_{p-1} \\ \rho_2 &= \, \phi_1 \rho_1 + \phi_2 + \phi_3 \rho_1 + \dots + \phi_p \rho_{p-2} \\ &\vdots \\ \rho_p &= \, \phi_1 \rho_{p-1} + \phi_2 \rho_{p-2} + \phi_3 \rho_{p-3} + \dots + \phi_p \end{split}$$

▶ A similar approach is used for an ARMA(p,q) process but the expression becomes more complicated, so we just use software.

Example ACF

```
phis <- c(-0.5,0.3) # AR coefficients
thetas = c(0.9,-0.6,-0.5) # MA coefficients
# to get the help file ?ARMAacf
# note: thetas are with opposite sign in this function
maxlag <- 15
# remove first lag 0 from acf
acf.k <- ARMAacf(ar = phis, ma= -thetas, lag.max = maxlag)[-1
plot(acf.k ~ seq(1, maxlag), type = "h", col = 2,
    xlab = "Lag", ylab = "ACF")
abline(h=0)</pre>
```

$$\begin{array}{rcl} Y_t & = & \phi_1 Y_{t-1} + \phi_2 Y_{t-2}, \\ & & + e_t \\ & & -\theta_1 e_{t-1} - \theta_2 e_{t-2} - \theta_3 e_{t-3}. \end{array}$$

Partial autocorrelation function for an ARMA process

- ▶ How to obtain the (theoretical) PACF ϕ_{kk} for lags k = 0, 1, ... for an ARMA(p, q) process?
- ▶ As before, ϕ_{kk} is the solution of solving the following set of equations:

thus after obtaining the ACF (the ρ_k 's), the PACF (the ϕ_{kk} 's) can be obtained.

Examples ACF/PACF

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \theta_3 e_{t-3},$$

with

phis <- c(-0.5,0.3) # AR coefficients thetas = c(0.9,-0.6,-0.5) # MA coefficients

Examples ACF/PACF

▶ When examining the ACF for MA processes, and the PACF for AR processes, we get some interesting results...

AR(2):
$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t.$$
 phis <- c(-0.5,0.3)

Summary of ACF and PACFs for ARMA processes

Overview for theoretical (P)ACF:

Model/process	Features
MA(q)	ACF cuts off after lag q , PACF tails off
AR(p)	PACF cuts off after lag p , ACF tails off
ARMA(p, q)	ACF/PACF tail off

- We can use the sample ACF and sample PACF of an observed (long) time series as exploratory tools for selecting candidate ARMA models:
 - ▶ For an MA-process, $E(r_k) = \rho_k$ and the $Var(r_k) \rightarrow 0$ as the sample size increases:
 - if the underlying process of an observed time series is an MA(q) process, we expect the sample ACF to cut off after lag q.
 - For an AR(p) process, the sample PACF $\hat{\phi}_{kk} \sim N(0, 1/n)$ approximately for large sample sizes: if the underlying process of an observed time series is an AR(p) process, we expect the sample PACF to cut off after lag p.
- ► The extended autocorrelation function (EACF) can be used to identify *p* and *q* in a mixed ARMA model but was left out.

One more issues with ARMA models

- ▶ We want to make sure that there is one ARMA model corresponding to a specific ACF.
 - ▶ If we do not put restrictions on the MA-parameters $\theta_1, \ldots, \theta_q$, we run into problems.

Example for MA(1):
$$\rho_1$$
 is also between 0 and 0.5 for $|\theta_1| > 1$.

$$\rho_k = \left\{ \begin{array}{ll} 1 & \text{for } k = 0, \\ \frac{-\theta}{1+\theta^2} & \text{for } k = 1, \\ 0 & \text{otherwise,} \end{array} \right.$$

- ▶ Restrict ARMA processes to invertible $(AR(\infty))$ processes only:
 - An ARMA(p, q) process is invertible if and only if the roots of the MA characteristic equation exceed one in modulus, with MA characteristic equation given by $\theta(x) = 1 \theta_1 x \theta_2 x^2 \ldots \theta_q x^q$.

ARMA and ARIMA processes/models

▶ A mixed autoregressive moving average process $\{Y_t\}$ of orders p and q, denoted by ARMA(p, q), is defined as:

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q}.$$

- ► ARMA processes have diverse (partial) autocorrelation functions, and define an important class of models for time series analysis.
- ▶ We discussed how to use sample autocorrelation functions based on an observed time series to identify candidate ARMA models.
- ▶ If differencing is applied to Y_t to obtain a stationary ARMA process, the original series Y_t is called an ARIMA process.
 - ▶ A process $\{Y_t\}$ is an integrated autoregressive moving average, ARIMA(p, d, q) if the d-th difference $W_t = \nabla^d Y_t$ is a stationary ARMA(p, q) process.

Overview of time series analysis steps

- We discussed how to:
 - ▶ Analyze the properties of a time series.
 - ▶ Identify candidate (ARIMA) model(s).
- Next:
 - Fit the model through (ML) estimation.
 - Check whether the model "fits well".
 - Forecast future outcomes.
- Outlook:
 - How to choose between models and how to check systematically for non-stationarity?
 - ► How to include covariates?
 - **.**...