

Lane Segmentation Week 3

HCT CV Course

主要内容

学习目标

• 掌握U-Net的原理和实现

Pytorch 1.4

https://pytorch.org/blog/pytorch-1-dot-4-released-and-domain-libraries-updated/

Tensor

tensor = multidimensional array

Howard Chow

Make your hand dirty

1小时前

O Alan Wang, Al-King

Rongfan Leo: 效果还挺好的

Semantic Segementation

FCN

U-Net

Human Pose Estimation

Human Pose Estimation

Human Pose Estimation

Stride

receptive field

Coarse Output

Image/G.T.

DCNN output

U-Net Architecture

- Encoder-Decoder
- Skip Connection

Encoder

Encoder

Pre-Trained Model

Decoder

Decoder

Deeper

Decoder

- bilinear interpolation
- transposed convolution

Skip Connection

Skip Connection

Concat

concat

Overlap-tile strategy

 seamless segmentation of arbitrary large images

Overlap-tile strategy

Padding

- same
- valid

Pix2Pix

The Pix2Pix Generative Adversarial
 Network, or GAN, is an approach to training a deep convolutional neural network for image-to-image translation tasks.

Pix2Pix

Pix2Pix

Input Image

Ground Truth

Predicted Image

U-Net

Global Context

Deeplab v3+

HRNet

课程总结

• U-Net的原理和实现

重难点

- Encoder-Decoder
- Skip Connection

课程作业

借鉴ResNet的Residual Block实现U-Net

- U-Net: Convolutional Networks for Biomedical Image Segmentation https://arxiv.org/abs/1505.04597
- U-Net-Pytorch
 https://github.com/jvanvugt/pytorch-unet/blob/master/unet.py
- U-Net-PP
 https://github.com/PaddlePaddle/PaddleSeg/blob/release/v0.3.0/pdseg/models/modeling/unet.py
- U-Net-PP-LaneSeg
 https://github.com/gujingxiao/Lane-Segmentation-Solution-For-BaiduAl-Autonomous-Driving-Competition/blob/master/models/unet_base.py

Next Week: Project I

- https://aistudio.baidu.com/aistudio/competition/detail/5
- https://github.com/gujingxiao/Lane-Segmentation-Solution-For-BaiduAl-Autonomous-Driving-Competition

一所专注前沿互联网技术领域的创新实战大学