Table 1: Different Models to Calculate Electrostatic Potential Energy of QM/MM under Periodic Boundary Conditions

Embedding≤ Embedding>	EEd EEd	EEd EEd'	EEd EEd"	EEd EEq	EEd EEq'	EEd ME	EEq EEq	EEq EEq'	EEq ME	ME ME	EEd	EEq	ME
$\langle \rho_{QM} \hat{j}_{\leq} \rho_{QM} \rangle$	•	•	•	•	•	•	•	•	•	•	•	•	•
$\langle \rho_{QM} \hat{j}_{\leq} q_{MM} \rangle$	•	•	•	0	0	0					•		
$\langle Q_{QM} \hat{j}_{\leq} q_{MM} \rangle$				0	0		•	•	0			•	
$\left\langle Q_{QM}^{ref} \middle \hat{j} \le \middle q_{MM} \right\rangle$						0			0	•			•
$\langle ho_{QM} \hat{j}_{>} ho_{QM} angle$	•												
$\langle ho_{QM} \hat{j}_{>} Q_{QM} \rangle$		•											
$\left\langle ho_{QM} \middle \hat{j}_{>} \middle Q_{QM}^{ref} ight angle$			•										
$\langle Q_{QM} \hat{j}_{>} Q_{QM}\rangle$				•			•						
$\left\langle Q_{QM}\middle \hat{j}_{>}\middle Q_{QM}^{ref} ight angle$					•			•					
$\left\langle Q_{QM}^{ref} \middle \hat{j}_{\geq} \middle Q_{QM}^{ref} \right angle$						•			•	•			
$\langle ho_{QM} \hat{j}_{>} q_{MM} \rangle$	•	•	•										
$\langle Q_{QM} \hat{j}_{>} q_{MM}\rangle$				•	•		•	•					
$\left\langle Q_{QM}^{ref} \middle \hat{j}_{>} \middle q_{MM} \right angle$						•			•	•			
Comments			[1]	[2–6]		[1]	[7, 8]				[9]		

^{*} EEd = Electrostatic Embedding with Electron Density, EEq = Electrostatic Embedding with Atomic Charges, ME = Mechanical Embedding

References

- (1) Giese, T. J.; York, D. M. J. Chem. Theory Comput. 2016, 12, 2611–2632.
- (2) Nam, K.; Gao, J. L.; York, D. M. J. Chem. Theory Comput. 2005, 1, 2–13.
- (3) Walker, R. C.; Crowley, M. F.; Case, D. A. J. Comput. Chem. 2008, 29, 1019–1031.
- (4) Holden, Z. C.; Richard, R. M.; Herbert, J. M. J. Chem. Phys. 2013, 139, 244108.
- (5) Ojeda-May, P.; Pu, J. J. Chem. Theory Comput. 2014, 10, 134–145.
- (6) Zhou, Y.; Wang, S.; Li, Y.; Zhang, Y. In *Methods in Enzymology*, Voth, G. A., Ed.; Computational Approaches for Studying Enzyme Mechanism Part A, Vol. 577; Academic Press: 2016, pp 105–118.
- (7) Seabra, G. d. M.; Walker, R. C.; Elstner, M.; Case, D. A.; Roitberg, A. E. J. Phys. Chem. A 2007, 111, 5655–5664.
- (8) Kubař, T.; Welke, K.; Groenhof, G. J. Comput. Chem. 2015, 36, 1978–1989.
- (9) Fang, D.; Duke, R. E.; Cisneros, G. A. J. Chem. Phys. 2015, 143, 044103.