## Linear neural network: Single-batch





dims: d (p,d) p (q,p)

$$h=W_1x$$
  $\dfrac{\partial f}{\partial W_1}=\dfrac{\partial f}{\partial h}x^T$   $z=\sigma(h)$   $\dfrac{\partial f}{\partial h}=\dfrac{\partial f}{\partial z}\odot 
abla \sigma(h)$   $\hat{y}=W_2z$   $\dfrac{\partial f}{\partial W_2}=\dfrac{\partial L}{\partial \hat{y}}z^T, \ \dfrac{\partial f}{\partial z}=W_2\dfrac{\partial L}{\partial \hat{y}}$   $f=L(\hat{y})$   $\dfrac{\partial f}{\partial \hat{y}}=
abla L(\hat{y})$  Backward

Store h, z and  $\hat{y}$  Store  $\nabla_{W}$ 

Store  $\nabla_{W_1} f(W_1)$  and  $\nabla_{W_2} f(W_2)$ 

## Linear neural network: Mini-batch





dims: d (p,d) p (q,p)

$$h_b = W_1 x_b \qquad \frac{\partial f}{\partial W_1} = \frac{1}{B} \sum_{b=1}^B \frac{\partial f}{\partial h_b} x_b^T,$$

$$z_b = \sigma(h_b) \qquad \frac{\partial f}{\partial h_b} = \frac{\partial f}{\partial z_b} \odot \nabla \sigma(h_b)$$

$$\hat{y}_b = W_2 z_b \qquad \frac{\partial f}{\partial W_2} = \frac{1}{B} \sum_{b=1}^B \frac{\partial L}{\partial \hat{y}_b} z_b^T, \quad \frac{\partial f}{\partial z_b} = W_2 \frac{\partial f}{\partial \hat{y}_b}$$

$$f = \frac{1}{B} \sum_{b=1}^{B} L(\hat{y}_b) \qquad \qquad \frac{\partial f}{\partial \hat{y}_b} = \frac{\partial R}{\partial \hat{y}_b}$$

**Forward** 

Backward

Store 
$$\{\mathbf{h}_b, \mathbf{z}_b, \widehat{\mathbf{y}}_b\}_{b=1}^B$$

Store  $\nabla_{W_1} f(W_1)$  and  $\nabla_{W_2} f(W_2)$