Relationship between salinity & water temp.(ML)

In [5]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

0 33:440	10.50	•••							
1 33.440 64858 37 3 33.420	10.46 31/24/5/4 10.45	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
 4 33.421 5 33.431 86485940 7 33.424 		864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
8 33.4209 33.494864860In [18]:	10.06 9.86 34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
df.isna()	.any())		20- 1611SR-					
Temp	34404 True True	864862	093.4 026.4	MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426

Out[17]:

	sal	Temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

814247 rows × 2 columns

```
C:\Users\prajapath Arjun\AppData\Local\Temp\ipykernel_25184\1742398843.py:
4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-
view-versus-a-copy)
  df[column].fillna(mean,inplace=True)
In [43]:
df.isna().any()
Out[43]:
sal
        False
        False
Temp
dtype: bool
```

30 32 34 36 sal

In [47]:

df.describe()

Out[47]:

	sal	Temp
count	864863.000000	864863.000000
mean	33.840350	10.799677
std	0.449022	4.216841
min	28.431000	1.440000
25%	33.504000	7.720000
50%	33.840350	10.130000
75%	34.180000	13.830000
max	37.034000	31.140000

```
In [55]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
In [56]:
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
0.23923796511229323
In [57]:
```

y_pred=regr.predict(x_test)

d+500=d+[:][:500]

32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50 sal

```
df500.fillna(method='ffill',inplace=True)
x=np.array(df500['sal']).reshape(-1,1)
y=np.array(df500['Temp']).reshape(-1,1)
df500.dropna(inplace=True)
```

```
32.75 33.00 33.25 33.50 33.75 34.00 34.25 34.50
```

In [71]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(x_train,y_train)
```

Out[71]:

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.