Lecture 3 Image Sampling

COMP3204 Computer Vision

How is an image sampled and what does it imply?

Department of Electronics and Computer Science

Content

- 1. What can go wrong with sampling?
- 2. How does the discrete Fourier transform work, and help?

Sampling Signals

original continuous signal

bad sampling (aliased)

Aliasing in Sampled Imagery

(a) high resolution

(c) low resolution – aliased

Correct and Incorrect Apparent Wheel Motion

(a) Oversampled rotating wheel

(b) Slow rotation

(c) Undersampled rotating wheel

(d) Fast rotation

Figure 4.5 Correct and incorrect apparent wheel motion

In the frequency domain

Spectra repeat

If sampling is just right, spectra just touch

Minimum sampling frequency = 2 × max

a) Sampling at high frequency

(b) Sampling at the Nyquist frequency

(c) Sampling at low frequency, aliasing the data

Sampling theory

Nyquist's sampling theorem

In order to be able to be able to reconstruct a signal from its samples we must sample at minimum at twice the maximum frequency in the original signal

E.g. speech 6kHz, sample at 12 kHz

Video bandwidth (CCIR) is 5MHz

Sampling at 10MHz gave 576×576 images

Guideline: "two pixels for every pixel of interest"

https://www.pinterest. com/pin/27542333343 1517864/

Discrete Fourier calculates frequency from data points

$$Fp_u = p_i$$

sampled frequency Fp_u sampled points p_i

Discrete Fourier calculates frequency from data points

$$Fp_{u} = \frac{1}{N} \sum_{i=0}^{N-1} p_{i}$$

sampled frequency Fp_u

sampled points p_i

N points

Discrete Fourier calculates frequency from data points

$$Fp_{u} = \frac{1}{N} \sum_{i=0}^{N-1} p_{i} e^{-j\frac{2\pi}{N}iu}$$

sampled frequency Fp_u

sampled points p_i

N points

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

Discrete Fourier calculates frequency from data points

$$Fp_{u} = \frac{1}{N} \sum_{i=0}^{N-1} p_{i} e^{-j\frac{2\pi}{N}iu}$$

Comparison
$$Fp(\omega) = \int_{-\infty}^{\infty} p(t)e^{-j\omega t}dt$$

sampled frequency Fp_{μ}

sampled points p_i

N points

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

Fireside time

Why/ how did you (I) get into biometrics?

Transform Pair for Sampled Pulse

(a) original sampled signal

(c) second coefficient Fp₁

(b) first coefficient Fp₀

(d) adding Fp₁ and Fp₀

(e) adding Fp_0 , Fp_1 , Fp_2 and Fp_3

(f) adding all six frequency components

FEATURE EXTRACTION
AND IMAGE PROCESSING
FOR COMPUTER VISION
ADDRESS OF THE PROCESSING
ADDRESS OF

signal reconstruction from its transform components

2D Fourier transform

Forward transform
$$\mathbf{F}\mathbf{P}_{u,v} = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \mathbf{P}_{x,y} e^{-j\left(\frac{2\pi}{N}\right)(ux+vy)}$$

where two dimensions of space, x and y two dimensions of frequency, u and v image NxN pixels $\mathbf{P}_{x,y}$

Inverse transform

$$\mathbf{P}_{x,y} = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \mathbf{F} \mathbf{P}_{u,v} e^{j\left(\frac{2\pi}{N}\right)(ux+vy)}$$

 π ??

Implementation is via (Fast) FFT

```
while L<cols %iterate until log2(cols)-1 levels have been performed
  for j=1:2*L:cols %do all the points in L/2 batches
    for i=1:I %now do I butterflies
      upp(((j+1)/2)+i-1) = Fp(j+i-1)+Fp(j+L+i-1)*exp(-1j*2*pi*(i-1)/(L*2));
      low(((i+1)/2)+i-1) = Fp(i+i-1)-Fp(i+L+i-1)*exp(-1i*2*pi*(i-1)/(L*2));
    end
  end
  for j=1:2*L:cols %copy the components across, to the right places
    for i=1:T_i
      Fp(j+i-1) = upp(((j+1)/2)+i-1);
      Fp(j+L+i-1) = low(((j+1)/2)+i-1);
                                                    (this is a 1-D FFT)
    end
  end
L=L*2; %and go and do the next level (up)
end
```

Shift invariance

Rotation

(a) original image

(b) rotated image

(c) transform of original image

(d) transform of rotated image

$$\mathbf{FP}_{u,v} = \frac{1}{N} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} \mathbf{P}_{x,y} e^{-j\left(\frac{2\pi}{N}\right)(uy+vx)}$$

Filtering

Fourier gives access to frequency components

(a) low-pass filtered image

(b) low-pass filtered transform

(c) high-pass filtered image

(d) high-pass filtered transform

Other transforms

(b) discrete cosine transform

Comparing Transforms

(c) Hartley transform

Modelling Gait(s)

- Extended pendular thigh-model, based on angles
- Uses forced oscillator/ bilateral symmetry/ phase coupling

Modeling the Thigh's Motion 1

$$vs_x(t) = A\cos(\omega t + \phi)$$

Modeling the Thigh's Motion 2

$$vh_x(t) = Vx + A\cos(\omega t + \phi)$$

Modeling the Thigh's Motion 3

$$\phi(t) = a_0 + \sum_{k=1}^{N} \left[b_k \cos(k\omega_0 t + \psi) \right]$$

Validity?

Applications of 2D FT

- Understanding and analysis
- Speeding up algorithms
- Representation (invariance)
- Coding
- Recognition/ understanding (e.g. texture)

Takeaway time

- 1 need to sample at a high enough frequency
- 2 aliasing corrupts image information
- 3 discrete Fourier allows analysis and understanding
- 4 Fourier has many properties and advantages
- but it's complex. So we'll move on to processing images

