Unit-Ramp Response: The unit-ramp response of the compensated system may be obtained by entering MATLAB Program 7–34 into the computer. Here we converted the unit-ramp response of $G_cG/(1 + G_cG)$ into the unit-step response of $G_cG/[s(1 + G_cG)]$. The unit-ramp response curve obtained using this program is shown in Figure 7–155.

```
MATLAB Program 7-34

%*****Unit-ramp response*****

num = [40  24  3.2];
 den = [1  9.02  24.18  56.48  24.32  3.2  0];
 t = 0:0.05:20;
 c = step(num,den,t);
 plot(t,c,'-',t,t,'.')
 grid
 title('Unit-Ramp Response of Compensated System')
 xlabel('Time (sec)')
 ylabel('Unit-Ramp Input and Output c(t)')
```


Figure 7–155 Unit-ramp response of the compensated system.

PROBLEMS

B–7–1. Consider the unity-feedback system with the open-loop transfer function:

$$G(s) = \frac{10}{s+1}$$

Obtain the steady-state output of the system when it is subjected to each of the following inputs:

(a)
$$r(t) = \sin(t + 30^\circ)$$

(b)
$$r(t) = 2\cos(2t - 45^\circ)$$

(c)
$$r(t) = \sin(t + 30^\circ) - 2\cos(2t - 45^\circ)$$

Problems 561

B-7-2. Consider the system whose closed-loop transfer function is

$$\frac{C(s)}{R(s)} = \frac{K(T_2s+1)}{T_1s+1}$$

Obtain the steady-state output of the system when it is subjected to the input $r(t) = R \sin \omega t$.

B–7–3. Using MATLAB, plot Bode diagrams of $G_1(s)$ and $G_2(s)$ given below.

$$G_1(s) = \frac{1+s}{1+2s}$$

$$G_2(s) = \frac{1-s}{1+2s}$$

 $G_1(s)$ is a minimum-phase system and $G_2(s)$ is a nonminimum-phase system.

B-7-4. Plot the Bode diagram of

$$G(s) = \frac{10(s^2 + 0.4s + 1)}{s(s^2 + 0.8s + 9)}$$

B-7-5. Given

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

show that

$$\left|G(j\omega_n)\right| = \frac{1}{2\zeta}$$

B–7–6. Consider a unity-feedback control system with the following open-loop transfer function:

$$G(s) = \frac{s + 0.5}{s^3 + s^2 + 1}$$

This is a nonminimum-phase system. Two of the three open-loop poles are located in the right-half *s* plane as follows:

Open-loop poles at s = -1.4656

$$s = 0.2328 + j0.7926$$

$$s = 0.2328 - j0.7926$$

Plot the Bode diagram of G(s) with MATLAB. Explain why the phase-angle curve starts from 0° and approaches $+180^{\circ}$.

B-7-7. Sketch the polar plots of the open-loop transfer function

$$G(s)H(s) = \frac{K(T_a s + 1)(T_b s + 1)}{s^2(Ts + 1)}$$

for the following two cases:

(a)
$$T_a > T > 0$$
, $T_b > T > 0$

(b)
$$T > T_a > 0$$
, $T > T_b > 0$

B–7–8. Draw a Nyquist locus for the unity-feedback control system with the open-loop transfer function

$$G(s) = \frac{K(1-s)}{s+1}$$

Using the Nyquist stability criterion, determine the stability of the closed-loop system.

B-7-9. A system with the open-loop transfer function

$$G(s)H(s) = \frac{K}{s^2(T_1s+1)}$$

is inherently unstable. This system can be stabilized by adding derivative control. Sketch the polar plots for the open-loop transfer function with and without derivative control.

B–7–10. Consider the closed-loop system with the following open-loop transfer function:

$$G(s)H(s) = \frac{10K(s+0.5)}{s^2(s+2)(s+10)}$$

Plot both the direct and inverse polar plots of G(s)H(s) with K = 1 and K = 10. Apply the Nyquist stability criterion to the plots, and determine the stability of the system with these values of K.

B–7–11. Consider the closed-loop system whose open-loop transfer function is

$$G(s)H(s) = \frac{Ke^{-2s}}{s}$$

Find the maximum value of *K* for which the system is stable.

B–7–12. Draw a Nyquist plot of the following G(s):

$$G(s) = \frac{1}{s(s^2 + 0.8s + 1)}$$

B–7–13. Consider a unity-feedback control system with the following open-loop transfer function:

$$G(s) = \frac{1}{s^3 + 0.2s^2 + s + 1}$$

Draw a Nyquist plot of G(s) and examine the stability of the system.

B–7–14. Consider a unity-feedback control system with the following open-loop transfer function:

$$G(s) = \frac{s^2 + 2s + 1}{s^3 + 0.2s^2 + s + 1}$$

Draw a Nyquist plot of G(s) and examine the stability of the closed-loop system.

B–7–15. Consider the unity-feedback system with the following G(s):

$$G(s) = \frac{1}{s(s-1)}$$

Suppose that we choose the Nyquist path as shown in Figure 7–156. Draw the corresponding $G(j\omega)$ locus in the G(s) plane. Using the Nyquist stability criterion, determine the stability of the system.

Figure 7–156 Nyquist path.

B–7–16. Consider the closed-loop system shown in Figure 7–157. G(s) has no poles in the right-half s plane.

If the Nyquist plot of G(s) is as shown in Figure 7–158(a), is this system stable?

If the Nyquist plot is as shown in Figure 7–158(b), is this system stable?

Figure 7–157 Closed-loop system.

Figure 7–158 Nyquist plots.

B–7–17. A Nyquist plot of a unity-feedback system with the feedforward transfer function G(s) is shown in Figure 7–159.

If G(s) has one pole in the right-half s plane, is the system stable?

If G(s) has no pole in the right-half s plane, but has one zero in the right-half s plane, is the system stable?

Problems 563

B–7–18. Consider the unity-feedback control system with the following open-loop transfer function G(s):

$$G(s) = \frac{K(s+2)}{s(s+1)(s+10)}$$

Plot Nyquist diagrams of G(s) for K = 1, 10,and 100.

B–7–19. Consider a negative-feedback system with the following open-loop transfer function:

$$G(s) = \frac{2}{s(s+1)(s+2)}$$

Plot the Nyquist diagram of G(s). If the system were a positive-feedback one with the same open-loop transfer function G(s), what would the Nyquist diagram look like?

B–7–20. Consider the control system shown in Figure 7–160. Plot Nyquist diagrams of G(s), where

$$G(s) = \frac{10}{s[(s+1)(s+5) + 10k]}$$
$$= \frac{10}{s^3 + 6s^2 + (5+10k)s}$$

for k = 0.3, 0.5, and 0.7.

B–7–22. Referring to Problem **B–7–21**, it is desired to plot only $Y_1(j\omega)/U_1(j\omega)$ for $\omega > 0$. Write a MATLAB program to produce such a plot.

If it is desired to plot $Y_1(j\omega)/U_1(j\omega)$ for $-\infty < \omega < \infty$, what changes must be made in the MATLAB program?

B–7–23. Consider the unity-feedback control system whose open-loop transfer function is

$$G(s) = \frac{as+1}{s^2}$$

Determine the value of a so that the phase margin is 45° .

B–7–24. Consider the system shown in Figure 7–161. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin and gain margin.

Figure 7–161 Control system.

Figure 7–160 Control system.

B-7-21. Consider the system defined by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 6.5 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

There are four individual Nyquist plots involved in this system. Draw two Nyquist plots for the input u_1 in one diagram and two Nyquist plots for the input u_2 in another diagram. Write a MATLAB program to obtain these two diagrams.

B–7–25. Consider the system shown in Figure 7–162. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin and gain margin with MATLAB.

Figure 7–162 Control system.

564

Chapter 7 / Control Systems Analysis and Design by the Frequency-Response Method

B–7–26. Consider a unity-feedback control system with the open-loop transfer function

$$G(s) = \frac{K}{s(s^2 + s + 4)}$$

Determine the value of the gain K such that the phase margin is 50°. What is the gain margin with this gain K?

B–7–27. Consider the system shown in Figure 7–163. Draw a Bode diagram of the open-loop transfer function, and determine the value of the gain K such that the phase margin is 50°. What is the gain margin of this system with this gain K?

Figure 7–163 Control system.

B–7–28. Consider a unity-feedback control system whose open-loop transfer function is

$$G(s) = \frac{K}{s(s^2 + s + 0.5)}$$

Determine the value of the gain K such that the resonant peak magnitude in the frequency response is 2 dB, or $M_r = 2$ dB.

B–7–29. A Bode diagram of the open-loop transfer function G(s) of a unity-feedback control system is shown in Figure 7–164. It is known that the open-loop transfer function is minimum phase. From the diagram, it can be seen that there is a pair of complex-conjugate poles at $\omega = 2$ rad/sec. Determine the damping ratio of the quadratic term involving these complex-conjugate poles. Also, determine the transfer function G(s).

Figure 7–164Bode diagram of the open-loop transfer function of a unity-feedback control system.

Problems 565

B-7-30. Draw Bode diagrams of the PI controller given by

$$G_c(s) = 5\bigg(1 + \frac{1}{2s}\bigg)$$

and the PD controller given by

$$G_c(s) = 5(1 + 0.5s)$$

B–7–31. Figure 7–165 shows a block diagram of a space-vehicle attitude-control system. Determine the proportional gain constant K_p and derivative time T_d such that the bandwidth of the closed-loop system is 0.4 to 0.5 rad/sec. (Note that the closed-loop bandwidth is close to the gain crossover frequency.) The system must have an adequate phase margin. Plot both the open-loop and closed-loop frequency response curves on Bode diagrams.

Figure 7–165Block diagram of space-vehicle attitude-control system.

B–7–32. Referring to the closed-loop system shown in Figure 7–166, design a lead compensator $G_c(s)$ such that the phase margin is 45°, gain margin is not less than 8 dB, and the static velocity error constant K_v is 4.0 sec⁻¹. Plot unit-step and unit-ramp response curves of the compensated system with MATLAB.

Figure 7–166 Closed-loop system.

B-7-33. Consider the system shown in Figure 7–167. It is desired to design a compensator such that the static velocity error constant is $4 \sec^{-1}$, phase margin is 50° , and gain margin is 8 dB or more. Plot the unit-step and unit-ramp response curves of the compensated system with MATLAB.

Figure 7–167 Control system.

B–7–34. Consider the system shown in Figure 7–168. Design a lag–lead compensator such that the static velocity error constant K_v is $20 \sec^{-1}$, phase margin is 60° , and gain margin is not less than 8 dB. Plot the unit-step and unit-ramp response curves of the compensated system with MATLAB.

Figure 7–168Control system.