Exercise 1.2.6: Use the *triangle inequality* to establish the following inequalities:

(a) $|a - b| \le |a| + |b|$

Proof: (Direct) Suppose $a, b \in \mathbb{R}$. Note that,

$$|a - b| = |a + (-b)|.$$

By the triangle inequality we know that,

$$|a + (-b)| \le |a| + |(-b)|$$
.

Note,

$$|a| + |(-b)| = |a| + |b|$$
.

Therefore by substitution we arrive at,

$$|a - b| \le |a| + |b|$$

(b) $||a| - |b|| \le |a - b|$.

Proof: (Direct) Suppose $a, b \in \mathbb{R}$. Note that,

$$a = (a - b) + b$$
.

Therefore,

$$|a| = |(a-b) + b|.$$

Thus by triangle inequality we know that,

$$|a - b + b| \le |(a - b)| + |b|,$$

 $|a| \le |(a - b)| + |b|,$
 $|a| - |b| \le |a - b|.$

Exercise 1.2.6(b), (d): Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(a) = \{f(x) : x \in A\}$.

- (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
- (d) Form and prove a conjecture concerning $f(A \cup B)$ and $f(A) \cup f(B)$.

$$Proof(b)$$
.

$$Proof(d)$$
.

Exercise 1.2.8: Form the logical negation of each claim. Do not use the easy way out: "It is not the case that..." is not permitted (a) For all real numbers satisfying a < b, there exists $n \in \mathbb{N}$ such that a + (1/n) < b. (b) Between every two distinct real numbers there is a rational number. (c) For all natural numbers $n \in \mathbb{N}$, \sqrt{n} is either a natural number or is an irrational number. (d) Given any real number $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying n > x. **Solution:** (a) (b) (c) (d) **Exercise 1.2.9:** Show that the sequence $(x_1, x_2, x_3, ...)$ defined in Example 1.2.7 is bounded above by 2. That is, show that for every $i \in \mathbb{N}$, $x_i \leq 2$. Proof. **Exercise 1.3.4:** Assume that A and B are nonempty, bounded above, and satisfy $B \subseteq A$. Show that $\sup B \leq \sup A$. Proof. **Exercise 1.3.5:** Let A be bounded above and let $c \in \mathbb{R}$. Define the sets $c + A = \{a + c : a \in \mathbb{R} \}$ $a \in A$ and $cA = \{ca : a \in A\}.$ (a) Show that $\sup(c + A) = c + \sup(A)$. (b) If $c \ge 0$, show that $\sup(cA) = c \sup(A)$. (c) Postulate a similar statuent for $\sup(cA)$ when c < 0. Proof(a).

Statement for part (c):

Proof(b).

Exercise 1.3.6: Compute, without proof, the suprema and infima of the following sets.

Proof.

(a) $\{n \in \mathbb{N} : n^2 < 10\}.$
(b) $\{n/(n+m) : n, m \in \mathbb{N}\}.$
(c) $\{n/(2n+1): n \in \mathbb{N}\}.$
(d) $\{n/m : m, n \in \mathbb{N} \text{ with } m + n \le 10\}.$
Solution:
(a)
(b)
(c)
(d)
Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A , then $a = \sup A$.
Proof.
Exercise 1.3.8: If $\sup A < \sup B$ then show that there exists an element $b \in B$ that is an upper bound for A .