(c) [Ni(NH3)4]2+

(d) [Ni(CN)₄]2-

(e) [Fe(CN)6]4-(Kerala PET 2011)

- 35. Amongst Ni(CO)₄, [Ni(CN)₄]²⁻ and [NiCl₄]²⁻
 - (a) Ni(CO)4 and [NiCl4]2- are diamagnetic and [Ni(CN)₄]²⁻ is paramagnetic
 - (b) [NiCl₄]²⁻ and [Ni(CN)₄]²⁻ are diamagnetic and Ni(CO)4 is paramagnetic
 - (c) Ni(CO)4 and [Ni(CN)4]2- are diamagnetic and [NiCl₄]²⁻ is paramagnetic
 - (d) Ni(CO)4 is diamagetic and [NiCl4]2- and [Ni(CN)₄]²⁻ are paramagnetic.
- 36. Among [Ni(CO)₄], [Ni(CN)₄]²⁻, [NiCl₄]²⁻ species, the hybridisation states at the Ni atom are, respectively

(a) sp^3 , dsp^2 , dsp^2

(b) sp^3 , dsp^2 , sp^3

(c) sp^3 , sp^3 , dsp^2

(d) dsp^2 , sp^3 , sp^3

(Atomic number of Ni = 28)

(HT 2008, AMU Engg. 2011)

37. The hybridization involved in the complex $[Ni(CN)_4]^{2-}$ is (At. No. of Ni = 28)

(a) d^2sp^2

(b) d^2sp^3

(c) dsp2

(d) sp^3

(RE-AIPMT 2015)

- Which of the following complexes are not correctly matched with the hybridisation of their central metal ion?
- (i) [Ni(CO)₄] sp³ (ii) [Ni(CN)₄]²⁻ sp³
 - (iii) [CoF₆]3- d2sp3 (iv) [Fe(CN)₆]3- sp3d2 Select the correct answer using the codes given below:

(a) (i) and (ii)

(b) (i) and (iii)

(c) (ii) and (iv)

(d) (i), (iii) and (iv)

1

(e) (ii), (iii) and (iv)

- 39. Which of the following complex exhibits the highest paramagnetic behaviour?
 - (a) [V(gly)2 (OH)2(NH3)2]+

(b) [Fe(en)(bpy) (NH₃)₂]²⁺

- (c) $[Co(OX)_2(OH)_2]^{2-}$ (d) $[Ti(NH_3)_6]^{3+}$ where gly = glycine, en = ethylene diamine and bpy = bipyridyl moities (At Nos. Ti = 22, V = 23, (AIPMT 2008) Fe = 26, Co = 27
- 40. The pair having the same magnetic moment is [At. No. Cr = 24, Mn = 25, Fe = 26, Co = 27]
 - (a) [Cr(H2O)6]2+ and [CoCl4]2-
 - (b) $[Cr(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{2+}$

(d) [CoCl₄]²⁻ and [Fe(H₂O)₆]²⁺

(JEE Main 2016)

 Among [Ni(CO)₄], [NiCl₄]²⁻, [Co(NH₃)₄Cl₂] Cl, Na₃[CoF₆], Na₂O₂ and CsO₂, the total number of paramagnetic compounds is

(b) 3

(c) 4

(d) 5

(JEE Advanced 2016)

- 42. Hybridization, shape and magnetic moment of $K_3[Co(CO_3)_3]$ is
 - (a) d²sp³, octahedral, 4.9 B.M.
 - (b) sp³d², octahedral, 4.9 B.M.
 - (c) dsp², square planar, 4.9 B.M.
 - (d) sp³, tetrahedral, 4.9 B.M.

(Odisha JEE 2008)

43. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour?

(a) [Ni(NH₃)₆]²⁺

(b) [Zn(NH₃)₆]²⁺

(c) [Cr(NH₃)₆]³⁺

(d) $[Co(NH_3)_6]^{3+}$ (AIPMT Prelim 2012)

44. Consider the following complex ions, P, Q and R. $P = [FeF_6]^{3-}, Q = [V(H_2O)_6]^{2+}$ and $R = [Fe(H_2O)_6]^{2+}$

The correct order of the complex ions, according to their spin only magnetic moment (in B.M.) is

(a) R < Q < P (b) Q < R < P

(c) R < P < Q (d) Q < P < R

(JEE Advanced 2013) 45. The spin only magnetic moment value (in Bohr magneton units) of Cr(CO)6 is

(a) 0

(b) 2.84

(c) 4-90

(HT 2009) (d) 5.92

46. A magnetic moment of 1.73 BM will be shown by one among the following:

(a) [Cu(NH₃)₄]²⁺

(b) [Ni(CN)₄]²-

(c) TiCl4

(d) [CoCl₆]⁴

- 47. Which one of the following is wrongly matched?
 - (a) [Cu(NH₃)₄]²⁺ square planar
 - (b) [Ni(CO)4] neutral ligand

(c) $[Fe(CN)_6]^3 - sp^3d^2$

(d) [Co(en)₃]³⁺ - follows EAN rule

(Karnataka CET 2010)

48. Geometrical shapes of the complexes formed by the reaction of Ni2+ with Cl-, CN- and H2O, respectively, are