Entity-relationship Data Model

- A logic tool used for database scheme design.
 - Application ER model Database scheme.
- Based on a perception that a real world consists of.
 - entities: a set of basic objects, and.
 - relationships among these objects.
- Described by an entity-relationship diagram.

Database Design Process

Entity

- things with independent existence
- described by its attributes
- determined by particular value of its attributes

Example

```
a customer is an entity with attributes
customer name
social insurance number
address
an account is an entity with attributes
account number
balance
```

Entity set (entity type)

- Define a set of entities of the same type (share the same structure).
- Denoted by a rectangular box in ER diagram.
- Identified by a list of attributes (in ovals).
- Key attributes.
 - A set of attributes that uniquely identify entity type.

Relationship and Relationship set

- A relationship is an association among several entities.
- A relationship set is a set of relationship of the same type.

```
Let E1, E2, ... En be a set of entity sets.
<e1, e2, ..., en> is a relationship, where ei is contained in Ei.
a subset of E1 x E2 x ... x En is a relationship set
```

Example:

Fall, 2010

CMPUT 291, Li-Yan Yuan

Relationship sets.

- Defines an association of entity sets.
- Is a subset of Cartesian product E1 x E2 x ... x en.
- Ei is said to play a role in the relationship set.
- Denoted by a diamond in the ER diagram.

Descriptive attributes

Attributes of relationships

Structural constraints

- Degree: the number of participating entity sets
- Cardinality constraints: 1:1, 1:N, M:N
- Participation constraints: partial or total

Cardinality Constraints

- 1:1 each customer has at most one account and each account is owned by at most one customer.
- 1:N each customer may have any number of accounts but each account is owned by at most one customer.
- M:N each customer may have any number of accounts and each account may be owned by any number of customers.

Cardinality Constraints

One-to-Many Relationship (Key Constraints)

One-to-One Relationship

Many-to-Many Relationship

Participation Constraints

- Given an entity set E and a relationship set R, a participation constraints specifies that for every entity e in E, whether there exists a relationship r in R such that e participates in r.
 - Partial: a professor does not have to work for a department
 - Total: a department must have at least one professor

Weak Entities

- A weak entity can be identified uniquely only by considering the primary key of another (owner) entity
 - Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities)
 - Weak entity set must have total participation in this identifying relationship set

Weak Entity

ISA Hierarchies

- If we declare A ISA B, every A entity is also considered to be a B entity
 - Attributes are inherited
 - To add descriptive attribute specific to a subentity
 - To identify entities that participate in a relationship

ISA Hierarchies

Constraints

- Overlap constraints: Can Sarah be an Hourly_Emp as well as a Contract_Emp? (Allowed/disallowed)
- Covering constraint: Does every Employee have to be an Hourly_Emp or a Constract_Emp? (Yes/no)

Design Choices

- Descriptive attributes versus a new logic entity set
 - Some simple facts may be represented by a few descriptive attributes
 - A new entity maybe needed for more complicated ones
- Entity set versus Relationship set

Binary versus Ternary Relationships

Descriptive attributes versus a new entity set

What if an employee works for a department over more than one period? Multiple durations require a new entity set.

Descriptive attributes versus a new entity set

Entity versus Relationship

The following describes a simple On-Line database system.

What if a customer may purchase the same set of items again?

Entity versus Relationship

The following describes a simple On-Line database system.

Binary versus Ternary (1)

Consider the following two E-R models:

Binary versus Ternary (1)

Questions

- Are these two E-R models the same?
- What if no joined policy is allowed?

Consider the following scenario

Binary versus Ternary (2)

Any problems with this representation?

Binary versus Ternary (2)

Fall, 2010

Self Relationship

How to represent a marriage relationship?

Represents ER model using tables

- Basic rules:
 - One table for one entity set
 - → One column for one attribute
 - One table for one relationship set
 - → Columns are:
 - Key attributes of all participating entity sets
 - All descriptive attributes
- Exceptions
 - 1:N relationships can be omitted

Represents ER model using tables

- Basic rules:
 - One table for one entity set
 - → One column for one attribute
 - → Primary Key consists of the key attributes
 - One table for one relationship set
 - → Columns are:
 - Key attributes of all participating entity sets
 - All descriptive attributes
 - → Foreign keys reference to the key attributes of all the participating entity sets
- Exceptions
 - 1:N binary relationships can be omitted by adding the key attributes of one side into the table for the many side