1 Backpropagation

In this discussion, we will explore the chain rule of differentiation, and provide some algorithmic motivation for the backpropagation algorithm. Those of you who have taken CS170 may recognize a particular style of algorithmic thinking that underlies the computation of gradients.

Let us begin by working with simple functions of two variables.

(a) Define the functions $f(x) = x^2$ and g(x) = x, and $h(x_1, x_2) = x_1^2 + x_2^2$. Compute the derivative of $\ell(x) = h(f(x), g(x))$ with respect to x.

Solution: We can write $\ell(x) = x^4 + x^2$, and from there, this is just a simple differentiation problem, and we have $\ell'(x) = 4x^3 + 2x$.

It is also helpful to think of this from the chain rule perspective, where we have $\ell(x) = f(x)^2 + g(x)^2$, and differentiating using the chain rule yields

$$\ell'(x) = 2f(x)f'(x) + 2g(x)g'(x)$$

= $2x^{2}(2x) + 2(x) \cdot 1$
= $4x^{3} + 2x$

(b) Chain rule of multiple variables: Assume that you have a function given by $f(x_1, x_2, \ldots, x_n)$, and that $g_i(w) = x_i$ for a scalar variable w. How would you compute $\frac{\mathrm{d}}{\mathrm{d}w} f(g_1(w), g_2(w), \ldots, g_n(w))$? What is its computation graph?

Solution: This is the chain rule for multiple variables. In general, we have

$$\frac{\mathrm{d}f}{\mathrm{d}w} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial x_i}{\partial w} = \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial w}.$$

In the literature of neural network, you will find the people often abuse the notation in which they replace the total derivative $\frac{df}{dw}$ with the partial derivative symbol $\frac{\partial f}{\partial w}$. This is **NOT** correct mathematically but it simplifies the notation as we can see in the following part.

The function graph of this computation is given in Figure 1.

(c) Let $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n \in \mathbb{R}^d$, and we refer to these variables together as $\mathbf{W} \in \mathbb{R}^{n \times d}$. We also have $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Consider the function

$$f(\mathbf{W}, \mathbf{x}, y) = \left(y - \sum_{i=1}^{n} \phi(\mathbf{w}_{i}^{\mathsf{T}} \mathbf{x} + \mathbf{b}_{i})\right)^{2}.$$

Figure 1: Example function computation graph

Write out the function computation graph (also sometimes referred to as a pictorial representation of the network). This is a directed graph of decomposed function computations, with the function at one end (which we will call the sink), and the variables $\mathbf{W}, \mathbf{x}, y$ at the other end (which we will call the sources).

Solution:

Figure 2: Example function computation graph

(d) Define the cost function

$$\ell(\mathbf{x}) = \frac{1}{2} \|\mathbf{W}^{(2)} \mathbf{\Phi} \left(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b} \right) - \mathbf{y} \|_2^2, \tag{1}$$

where $\mathbf{W}^{(1)} \in \mathbb{R}^{d \times d}$, $\mathbf{W}^{(2)} \in \mathbb{R}^{d \times d}$, and $\mathbf{\Phi} : \mathbb{R}^d \to \mathbb{R}^d$ is some nonlinear transformation. Compute the partial derivatives $\frac{\partial \ell}{\partial \mathbf{x}}, \frac{\partial \ell}{\partial \mathbf{W}^{(1)}}, \frac{\partial \ell}{\partial \mathbf{W}^{(2)}}$, and $\frac{\partial \ell}{\partial \mathbf{b}}$.

Solution: First, we write out the intermediate variable for our convenience.

$$\mathbf{x}^{(1)} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}$$

$$\mathbf{x}^{(2)} = \mathbf{\Phi}(\mathbf{x}_1)$$

$$\mathbf{x}^{(3)} = \mathbf{W}^{(2)}\mathbf{x}^{(2)}$$

$$\mathbf{x}^{(4)} = \mathbf{x}^{(3)} - \mathbf{y}$$

$$\ell = \frac{1}{2} \|\mathbf{x}^{(4)}\|_2^2.$$

Remember that the superscripts represents the index rather than the power operators. We have

$$\frac{\partial \ell}{\partial \mathbf{x}^{(4)}} = \mathbf{x}^{(4)\top}
\frac{\partial \ell}{\partial \mathbf{x}^{(3)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(4)}} \frac{\partial \mathbf{x}^{(4)}}{\partial \mathbf{x}^{(3)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(4)}}
\frac{\partial \ell}{\partial \mathbf{x}^{(2)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(3)}} \frac{\partial \mathbf{x}^{(3)}}{\partial \mathbf{x}^{(2)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(3)}} \mathbf{W}^{(2)}
\frac{\partial \ell}{\partial \mathbf{W}^{(2)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(3)}} \frac{\partial \mathbf{x}^{(3)}}{\partial \mathbf{W}^{(2)}} = \mathbf{x}^{(2)} \frac{\partial \ell}{\partial \mathbf{x}^{(3)}}
\frac{\partial \ell}{\partial \mathbf{x}^{(1)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}} \frac{\partial \mathbf{\Phi}}{\partial \mathbf{x}^{(1)}}
\frac{\partial \ell}{\partial \mathbf{b}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}} \frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{b}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}} \mathbf{W}^{(1)}
\frac{\partial \ell}{\partial \mathbf{W}^{(1)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}} \frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{b}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}}
\frac{\partial \ell}{\partial \mathbf{W}^{(1)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}} \frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{W}^{(1)}} = \mathbf{x} \frac{\partial \ell}{\partial \mathbf{x}^{(1)}}.$$

The easy trick to solve these derivative is to "guess an expression" so that the dimension is correct on both side. Notice that we abuse the notation. These derivatives should be total rather than partial.

A more formal way to solve these requires doing the expansion. For example, $\frac{\partial \ell}{\partial \mathbf{w}^{(1)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}} \frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{W}^{(1)}}$. However, the right hand side is a 3D tensor, in which the matrix codebook does not provide us a useful information. We need to do that manually. Notice that $x_k^{(1)} = \sum_l W_{kl}^{(1)} x_l + b_k$, we have

$$\frac{\partial \ell}{\partial W_{ij}^{(1)}} = \sum_{k} \frac{\partial \ell}{\partial x_k^{(1)}} \frac{\partial x_k^{(1)}}{\partial W_{ij}^{(1)}}$$

$$= \sum_{k} \sum_{l} \frac{\partial \ell}{\partial x_{k}^{(1)}} \left(\epsilon_{ik} \epsilon_{jl} x_{l} \right)$$
$$= \frac{\partial \ell}{\partial x_{i}^{(1)}} x_{j}$$

so that

$$\frac{\partial \ell}{\partial \mathbf{W}^{(1)}} = \frac{\partial \ell}{\partial \mathbf{x}^{(1)}} \frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{W}^{(1)}} = \mathbf{x} \frac{\partial \ell}{\partial \mathbf{x}^{(1)}}.$$
 (2)

(e) Compare the computation complexity of computing the $\frac{\partial \ell}{\partial \mathbf{W}}$ for Equation (1) using the analytic derivatives and numerical derivatives.

Solution: For numerical differentiation, what we do is to use the following first order formula

$$\frac{\partial \ell}{\partial W_{ij}} = \frac{\ell \left(W_{ij} + \epsilon, \cdot \right) - \ell \left(W_{ij}, \cdot \right)}{\epsilon}.$$

We need $O(d^4)$ operations in order to compute $\frac{\partial \ell}{\partial \mathbf{W}}$. On the other hand, it only takes $O(d^2)$ operations to compute it analytically.

(f) What is the intuitive interpretation of taking a partial derivative of the output with respect to a particular node of this function graph?

Solution: The partial derivative measures how much the function changes when that particular variable is changed, keeping all the other variables in our computation fixed. In particular, assume in the previous example that we are computing $\frac{\partial f}{\partial u_i}$ for some node of the graph u_i . In order to see what this looks like, we fix the values of all the parameters of the network that do not influence u_i , and vary u_i by a small amount. The partial derivative then tells us the rate at which the function changes. In order to move downhill, we then see that we must toggle u_i in the direction that decreases the function value.

(g) Discuss how gradient descent would work on the function $f(\mathbf{W}, \mathbf{x}, y)$ if we use backpropagation as a subroutine to compute gradients with respect to the parameters \mathbf{W} (with \mathbf{x} and y given).

Solution: In order to compute a gradient update, we require $w_t = w_{t-1} - \gamma \nabla f(w_t)$. The gradient step can be computed by backpropagation above. However, we also require the function value in order to compute each of the gradients, and note that as w changes, the function values at each of the nodes changes. Therefore, the gradient descent algorithm proceeds with a forward pass (in order to compute the function values at each of the nodes) followed by a backward pass via backpropagation.

2 Derivatives of simple functions

Compute the derivatives of the following simple functions used as non-linearities in neural networks.

(a)
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Solution: Taking the derivative via chain rule, we have

$$\sigma'(x) = -\frac{1}{(1+e^{-x})^2}(-e^{-x}) = \frac{1}{1+e^{-x}}\left(1 - \frac{1}{1+e^{-x}}\right) = \sigma(x)(1 - \sigma(x)).$$

(b)
$$ReLu(x) = max(x, 0)$$

Solution: The derivative here is equal to 1 if x > 0, and 0 if x < 0. At 0, the function is not differentiable, so we must pick a "subgradient", which is some tangent to the function. It is typical to pick either 0 or 1.

(c)
$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Solution: Notice that $\tanh(x) = \frac{1-e^{-2x}}{1+e^{-2x}} = \sigma(2x) - (1-\sigma(2x)) = 2\sigma(2x) - 1$. Hence, by chain rule, it is clear that the derivative is just $4\sigma'(2x) = 4\sigma(2x)(1-\sigma(2x))$.

(d) Leaky ReLu: $f(x) = \max(x, -0.1x)$

Solution: This is similar to the first part, where the derivative takes value 1 and -0.1 when x is positive and negative, respectively. At 0, the sub-gradient is anything between -0.1 and 1.