Correction TD 3

Exercice 1

Résoudre le PL suivant avec la méthode de Simplexe

$$\textbf{\textit{PL}} = \begin{cases} Max \ z = 2x_1 + 3x_2 + 4x_3 + 5x_4 \\ S. \ c & x_1 + 2x_2 + 3x_3 + 4x_4 \leq 256 \\ x_1 + 2x_2 + 2x_3 + 3x_4 \leq 128 \\ x_1 + 2x_2 + x_3 + 2x_4 \leq 96 \\ x_1, x_2, x_3, x_4 \geq 0 \end{cases}$$

Ecriture du PL sous la forme standard :

$$\textbf{\textit{PL}} = \begin{cases} \textit{Max} \ z = 2x_1 + 3x_2 + 4x_3 + 5x_4 \\ \textit{S.} \ c & x_1 + 2x_2 + 3x_3 + 4x_4 + e_1 = 256 \\ & x_1 + 2x_2 + 2x_3 + 3x_4 + e_2 = 128 \\ & x_1 + 2x_2 + x_3 + 2x_4 + e_3 = 96 \\ & x_1, x_2, x_3, x_4, e_1, e_2, e_3 \geq 0 \end{cases}$$

 $SBR_0 = (0, 0, 0, 0, 256, 128, 96)$

Construction du tableau 0 associé à SBR₀

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0	e_1	1	2	3	4	1	0	0	256	256/4
0	e_2	1	2	2	3	0	1	0	128	128/3
0	e_3	1	2	1	2	0	0	1	96	96/2
	C_{j}	2	3	4	5	0	0	0	Z_0	0

Construction du tableau 1

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0	e_1	-1/3	-2/3	1/3	0	1	-4/3	0	256/3	256
5	x_4	1/3	2/3	2/3	1	0	1/3	0	128/3	64
0	e_3	1/3	2/3	-1/3	0	0	-2/3	1	32/3	-32
	C_{j}	1/3	-1/3	2/3	0	0	-5/3	0	Z_1	640/3

Construction du tableau 2

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0	e_1	-1/2	-1	0	-1/2	1	-3/2	0	192/3	
4	x_3	1/2	1	1	3/2	0	1/2	0	64	
0	e_3	1/2	2	0	2	0	0	1	288/3	
	C_{j}	0	-1	0	-1	0	-2	0	Z_2	256

Tous les C_j sont ≤ 0 donc S=(0, 0, 64, 0) est une solution optimale por PL avec $z^*=256$.

Remarque : il existe plusieurs solutions optimales on peut continuer puisqu'il y a des VHB qui ont des $C_j = 0$. On peut choisir une VHB d'entre eux et la faire entrer dans la base pour chercher d'autres solutions optimales bien sur qui ont la même valeur de $z^*=256$ telles que S=(64, 0, 32, 0);

$$PL = \begin{cases} Max \ z = 3x_1 + 4x_2 + 2x_3 \\ S. \ c & x_1 + x_2 + x_3 \le 56 \\ 2x_1 - x_3 \ge 9 \\ 3x_1 + 2x_2 + 4x_3 \ge 5 \\ -x_3 \le 3 \\ x_1, x_2, x_3 de \ signe \ quelconque \end{cases}$$

On pose $x_1 = x_1' - x_1''$, $x_2 = x_2' - x_2''$ et $x_3 = x_3' - x_3''$ on obtient :

$$SBR_0 = (0, 0, 0, 0, 0, 0, 56, 0, 0, 3, 9, 5)$$

$$Max z = 3x'_1 - 3x''_1 + 4x'_2 - 4x''_2 + 2x'_3 - 2x''_3 - M a_2 - M a_2$$

 a_2 et a_3 sont les VB donc il faut les exprimer en fonction des VHB

$$\begin{cases} a_2 = 9 - 2x_1' + 2x_1'' + x_3' - x_3'' + e_2 \\ a_3 = 5 - 3x_1' + 3x_1'' - 2x_2' + 2x_2'' - 4x_3' + 4x_3'' + e_3 \end{cases}$$

$$Max z = 3x'_1 - 3x''_1 + 4x'_2 - 4x''_2 + 2x'_3 - 2x''_3 - M (9 - 2x'_1 + 2x''_1 + x'_3 - x''_3 + e_2)$$
$$- M (5 - 3x'_1 + 3x''_1 - 2x'_2 + 2x''_2 - 4x'_3 + 4x''_3 + e_3)$$

$$Max z = (3 + 5M)x'_1 + (-3 - 5M)x''_1 + (4 + 2M)x'_2 + (-4 - 2M)x''_2 + (2 + 3M)x'_3 + (-2 - 3M)x''_3 - Me_2 - Me_3$$

TAB 0

Coef	VB	x_1'	$x_1^{\prime\prime}$	x_2'	$x_2^{\prime\prime}$	x_3'	x'' ₃	e_1	e_2	e_3	e_4	a_2	a_3	valeur	Ratio
0	e_1	1	-1	1	-1	1	-1	1	0	0	0	0	0	56	56
0	e_4	0	0	0	0	-1	1	0	0	0	1	0	0	3	∞
-M	a ₂	2	-2	0	0	-1	1	0	-1	0	0	1	0	9	$\frac{9}{2}$
- <i>M</i>	a ₃	3	-3	2	-2	4	-4	0	0	-1	0	0	1	5	5 3
	Cj	3 + 5M	-3-5M	4 + 2M	-4 - 2M	2 + 3M	-2 - 3M	0	-M	-M	0	0	0	Z 0=	

TAB 1

Coef	VB	x_1'	x''	x_2'	$x_2^{\prime\prime}$	x_3'	$x_3^{\prime\prime}$	e_1	e_2	e_3	e_4	a_2	a_3	valeur	Ratio
0	e ₁	0	0	$\frac{1}{3}$	- 1 3	$-\frac{1}{3}$	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0	0	- 1 /3	$\frac{163}{3}$	-163
0	e_4	0	0	0	0	-1	1	0	0	0	1	0	0	3	3
-M	a ₂	0	0	$-\frac{4}{3}$	$\frac{4}{3}$	$-\frac{11}{3}$	$\left(\frac{11}{3}\right)$	0	-1	$\frac{2}{3}$	0	1	$-\frac{2}{3}$	$\frac{17}{3}$	$\frac{17}{11}$
3	x_1'	1	-1	$\frac{2}{3}$	$-\frac{2}{3}$	4 3	$-\frac{4}{3}$	0	0	- 1 3	0	0	$\frac{1}{3}$	<u>5</u> 3	- 5 4
	Cj	0	0	$\frac{6-4M}{3}$	$\frac{4M-6}{3}$	$\frac{-6-11M}{3}$	$\frac{6+11M}{3}$	0	-M	$\frac{2M+3}{3}$	0	0	$\frac{-3-5M}{3}$	Z1=	

TAB 2

Coef	VB	x_1'	$x_1^{\prime\prime}$	x_2'	$x_2^{\prime\prime}$	x_3'	$x_3^{\prime\prime}$	e_1	e_2	e_3	e_4	a_2	a_3	valeur	Ratio
0	e ₁	0	0	$\frac{5}{11}$	- 15 3	0	0	1	$\frac{1}{11}$	$\frac{3}{11}$	0	- 1 11	- 3 11	592 11	592 5
0	e ₄	0	0	$\left(\frac{4}{11}\right)$	$-\frac{4}{11}$	0	0	0	$\frac{3}{11}$	$-\frac{2}{11}$	1	$-\frac{3}{11}$	$\frac{2}{11}$	$\frac{16}{11}$	4
-2	$x_3^{\prime\prime}$	0	0	$-\frac{4}{11}$	$\frac{4}{11}$	- 1	1	0	$-\frac{3}{11}$	$\frac{2}{11}$	0	$\frac{3}{11}$	$-\frac{2}{11}$	$\frac{17}{11}$	≤ 0
3	x_1'	1	-1	$\frac{2}{11}$	$-\frac{6}{33}$	0	0	0	$-\frac{4}{11}$	$-\frac{1}{11}$	0	$\frac{4}{11}$	$\frac{1}{11}$	$\frac{41}{11}$	$\frac{41}{2}$
	Cj	0	0	$\frac{90 + 40M}{33}$	$\frac{-90-40M}{33}$	0	0	0	6 11	$\frac{7}{11}$	0	$\frac{-6-11M}{11}$	$\frac{-33M-21}{11}$	Z 2=	

TAB 3

Coe f	VB	x_1'	x''	x_2'	$x_2^{\prime\prime}$	x_3'	$x_3^{\prime\prime}$	e_1	e_2	e_3	e_4	a_2	a_3	valeur	Ratio
0	e_1	0	0	0	$-\frac{50}{11}$	0	0	1	$-\frac{1}{4}$	$\left(\frac{1}{2}\right)$	$-\frac{5}{4}$	$\frac{1}{4}$	$-\frac{1}{2}$	52	104
4	x_2'	0	0	1	- 1	0	0	0	$\frac{3}{4}$	$-\frac{1}{2}$	$\frac{11}{4}$	$-\frac{3}{4}$	$\frac{1}{2}$	4	≤ 0
-2	$x_3^{\prime\prime}$	0	0	0	0	- 1	1	0	0	0	1	0	0	3	∞
3	x_1'	1	-1	0	$-\frac{20}{11}$	0	0	0	- 1 2	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	3	∞
	Cj	0	0	0	0	0	0	0	$\frac{-33-20M}{22}$	$\frac{66 + 20M}{33}$	$\frac{-45 - 20M}{11}$	$\frac{66-4M}{44}$	$\frac{-108 - 119M}{33}$	Z3=	

TAB 4

Coef	VB	x_1'	$x_1^{\prime\prime}$	x_2'	<i>x</i> ′′′	x_3'	$x_3^{\prime\prime}$	e ₁	e_2	e_3	e_4	a_2	a_3	valeur	Ratio
0	e_3	0	0	0	$-\frac{100}{11}$	0	0	2	- 1 2	1	- 10 4	$\frac{1}{2}$	- 1	102	
4	x_2'									0		-		56	
-2	$x_3^{\prime\prime}$									0				3	
3	x_1'									0				3	
	Cj	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	≤ 0	0	≤ 0	≤ 0	≤ 0	Z4 =	227

Solution optimale:

$$x_1^* = x_1' - x_1'' = 3 - 0 = 3$$

 $x_2^* = x_2' - x_2'' = 56$
 $x_3^* = x_3' - x_3'' = -3$
 $Z^* = 227$

Exercice 2

$$\textbf{\textit{PL}} = \left\{ \begin{array}{l} \textit{\textit{Max}} \; (-z) = 0.75x_1 - 20x_2 + 0.5x_3 - 6x_4 \\ \textit{\textit{S.c}} \; \; 0.25x_1 - 8x_2 - x_3 + 9x_4 + e_1 = 0 \\ 0.5x_1 - 12x_2 - 0.5x_3 + 3x_4 + e_2 = 0 \\ x_3 + e_3 = 1 \\ x_1, x_2, x_3, e_1, e_2, e_3 \geq 0 \end{array} \right.$$

 $SBR_0 = (0, 0, 0, 0, 0, 0, 1)$

Nous somme dans le cas d'une SBR dégénérée (voir cours) car il y a 2 VB e_1 et e_2 qui sont nulles. Dans ce cas, il faut choisir (au cours des itérations de Simplexe) la variable sortante qui nous offre pivot positif, (bien sûr dans le cas où il y a égalité du ratio entre deux VB.

Lorsqu'on rencontre un cycle il faut prendre le critère de la 1^{ère} VHB qui a le $C_j > 0$ lors du choix de la VHB entrante.

TAB0:

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0	e_1	0.25	-8	-1	9	1	0	0	0	0
0	e_2	0.5	-12	-0.5	3	0	1	0	0	0
0	e_3	0	0	1	0	0	0	1	1	∞
	Cj	0.75	-20	0.5	-6	0	0	0	Z=	= 0

TAB1:

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0.75	x_1	1	-32	- 4	36	4	0	0	0	0
0	e_2	0	4	1.5	-15	-2	1	0	0	0
0	e_3	0	0	1	0	0	0	1	1	∞
	Cj	0	4	3.5	-33	-3	0	0	Z=	

TAB2:

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0.75	x_1	1	0	8	- 84	- 12	0	0	0	0
-20	x_2	0	1	<u>3</u> 8	$-\frac{15}{4}$	$-\frac{1}{2}$	$\frac{1}{4}$	0	0	0
0	e_3	0	0	1	0	0	0	1	1	1
	Cj	0	0	2	-18	-1	-1	0	Z =	= 0

TAB3:

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0.5	x_3	$\frac{1}{8}$	0	1	$-\frac{21}{2}$	$-\frac{3}{2}$	0	0	0	0
-20	x_2	$-\frac{3}{64}$	1	0	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{1}{4}$	0	0	0
0	e_3	$-\frac{1}{8}$	0	0	$\frac{21}{2}$	3 2	0	1	1	∞
	Cj	$-\frac{1}{4}$	0	0	3	2	-1	0	Z =	0

TAB4:

Coef	VB	x_1	x_2	x_3	<i>x</i> ₄	e_1	e_2	e_3	Valeur	Ratio
0.5	<i>x</i> ₃	$-\frac{5}{2}$	56	1	0	2	14	0	0	0
-6	x_4	$-\frac{1}{4}$	16 3	0	1	$\frac{1}{3}$	$\frac{4}{3}$	0	0	0
0	e_3	<u>5</u> 2	-56	0	0	-2	-14	1	1	0.4
	Cj	$\frac{1}{2}$	-16	0	0	1	-5	0	Z =	

TAB5:

Coef	VB	x_1	<i>x</i> ₂	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0	e_1	- 5	28	$\frac{1}{2}$	0	1	7	0	0	0
-6	x_4	<u>1</u> 6	- 4	- 1 6	1	0	-1	0	0	0
0	e_3	0	0	1	0	0	0	1	1	∞
	Cj	7 4	- 44	$-\frac{1}{2}$	0	0	-12	0	Z =	

TAB6:

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0	e_1	0	- 2	$-\frac{3}{4}$	15 2	1	$-\frac{1}{2}$	0	0	0
0.75	x_1	1	- 24	-1	6	0	-6	0	0	0
0	e_3	0	0	1	0	0	0	1	1	1
	Cj	0	-2	$\frac{5}{4}$	$-\frac{21}{2}$	0	$-\frac{3}{2}$	0	Z =	= 0

TAB7:

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	e_3	Valeur	Ratio
0	e_1	0		0		1			$\frac{3}{4}$	
0.75	x_1	1		0		0			1	
0.5	x_3	0	0	1	0	0	0	1	1	
	Cj	0	-2	0	$-\frac{21}{2}$	0	$-\frac{3}{2}$	- 5 4	Z = 1.2	

Tous les $Cj \le 0$ donc c'est le tableau optimal. Donc la solution optimale est :

$$x_1^* = 1, x_2^* = 0, x_3^* = 1, x_4^* = 0 \text{ Avec } Z^* = 1.25.$$

2)

$$SBR_0=(0, 0, 0, 0, 0, 10, 15, 12)$$

$$VB=(e_2, a_1, a_3)$$

$$VHB=(x_1, x_2, x_3, x_4, e_1)$$

$$\begin{cases} a_1 = 15 - 3x_1 + x_2 - 4x_3 - x_4 + e_1 \\ a_3 = 12 - 2x_1 - x_2 - x_3 \end{cases}$$

On remplace $a_1et\ a_3$ de la FO avec les deux expressions précédentes :

$$Max(-z) = -2x_1 + 4x_2 + 3x_3 - x_4 - M(15 - 3x_1 + x_2 - 4x_3 - x_4 + e_1) - M(12 - 2x_1 - x_2 - x_3)$$

$$Max(-z) = (5M - 2)x_1 + 4x_2 + (3 + 5M)x_3 + (M - 1)x_4 - Me_1 - 27$$

TAB0:

Coef	VB	x_1	<i>x</i> ₂	x_3	x_4	e_1	e_2	a_1	a_3	Valeur	Ratio
-M	a_1	3	-1	4	1	-1	0	1	0	15	15/4
0	e_2	1	3	0	-1	0	1	0	0	10	∞
-M	a_3	2	1	1	0	0	0	0	1	12	12
	Cj	5 <i>M</i> – 2	4	3 + 5 <i>M</i>	M - 1	-M	0	0	0	Z= - 2	27M

TAB1:

Coef	VB	x_1	x_2	<i>x</i> ₃	x_4	e_1	e_2	a_1	a_3	Valeur	Ratio
3	x_3	3/4	-1/4	1	1/4	-1/4	0	1/4	0	15/4	-15
0	e_2	1	3	0	-1	0	1	0	0	10	10/3
-M	a_3	5/4	5/4	0	-1/4	1/4	0	-1/4	1	33/4	33/5
	Cj	$\frac{5M-17}{4}$	$\frac{5M+19}{4}$	0	$\frac{-M-7}{4}$	$\frac{M+3}{4}$	0	$\frac{-3-5M}{4}$	0	$Z=-\frac{33M}{4}$	+45/4

TAB2:

Coef	VB	x_1	x_2	x_3	x_4	e_1	e_2	a_1	a_3	Valeur	Ratio
3	x_3	5/6	0	1	1/6	-1/4	1/2	1/4	0	55/12	11/2
4	<i>x</i> ₂	1/3	1	0	-1/3	0	1/3	0	0	10/3	10
-M	a_3	5/6	0	0	1/6	1/4	-5/12	-1/4	1	49/12	49/10
	Cj	$\frac{10M-70}{12}$	0	0	$\frac{2M-2}{12}$	$\frac{M+3}{4}$	$\frac{-5M - 19}{12}$	$\frac{-3-5M}{4}$	0	$Z = -\frac{49M}{12}$	+325/12

TAB3:

Coef	VB	x_1	x_2	<i>x</i> ₃	x_4	e_1	e_2	a_1	a_3	Valeur	Ratio
3	x_3	0	0	1	0	-1/2	11/12	1/2	-1	1/2	≤ 0
4	x_2	0	1	0	-2/5	-1/10	1/2	1/10	-2/5	51/30	≤ 0
-2	x_1	1	0	0	1/5	3/10	-1/2	-3/10	6/5	49/10	49/3
	Cj	0	0	0	0	<u>5</u> 2	$\frac{-27}{6}$	$\frac{-5-2M}{2}$	-M - 7	Z=- 1.5	;

TAB4:

Coef	VB	x_1	x_2	<i>x</i> ₃	x_4	e_1	e_2	a_1	a_3	Valeur	Ratio
3	x_3		0	1		0				26/3	
4	x_2		1	0		0				10/3	
0	e_1		0	0		1				49/3	
	Cj	-25/3	0	0	-5/3	0	$\frac{-1}{3}$	- <i>M</i>	-M - 17	Z = 11	.8/3

Tous les $Cj \le 0$ donc c'est le tableau optimal. Donc la solution optimale est :

$$x_1^* = 0, x_2^* = \frac{10}{3}, x_3^* = \frac{26}{3}, x_4^* = 0 \text{ Avec } Z^* = \frac{118}{3}.$$

Exercice 3

Ecriture du PL sous la forme standard :

$$PL = \begin{cases} Max \ z = x_1 + 3x_2 + 5x_3 \\ S. \ c & 3x_1 + x_2 + 3x_3 + e_1 = 6 \\ & 6x_1 + 3x_2 + 5x_3 + e_2 = 15 \\ & x_1, x_2, x_3, e_1, e_2 \ge 0 \end{cases}$$

TAB0:

Coef	VB	x_1	x_2	x_3	e_1	e_2	Valeur	Ratio
0	e_1	3	1	1	1	0	6	6
0	e_2	6	3	5	0	1	15	3
	Cj	1	3	5	0	0	<i>Z</i> =	= 0

TAB1:

Coef	VB	x_1	x_2	<i>x</i> ₃	e_1	e_2	Valeur	Ratio
0	e_1	9/5	2/5	0	1	-1/5	3	7.5
5	X ₃	6/5	3/5	1	0	1/5	3	5
	Cj	-5	0	0	0	-1	Z =	: 15

Tous les $C_j \le 0$ donc c'est le tableau optimal. La solution optimale est :

$$x_1^* = 0, x_2^* = 0, x_3^* = 5, \text{Avec } Z^* = 15.$$

On a une infinité de solution car la VHB x_2 a un C_j =0 dans le tableau optimal. Nous pouvons continuer la résolution avec la méthode de simplexe pour trouver d'autres solutions optimales ayant la même valeur de Z=15.

TAB2:

Coef	VB	x_1	x_2	x_3	e_1	e_2	Valeur	Ratio
0	e_1	7/5	0	2/3	1	-1/3	1	1.5
3	<i>x</i> ₂	2	1	5/3	0	1/3	5	3
	Cj	-5	0	0	0	-1	Z =	: 15

$$x_1^* = 0, x_2^* = 3, x_3^* = 0, \text{Avec } Z^* = 15.$$

TAB3:

Coef	VB	x_1	x_2	x_3	e_1	e_2	Valeur	Ratio
5	x_3	21/10	0	1	3/2	-1/2	3/2	
3	x_2	-2/3	1	0	-5/2	5/2	5/2	
	Cj	-5	0	0	0	-1	Z = 15	

$$x_1^* = 0, x_2^* = 3/2, x_3^* = 5/2, \text{ Avec } Z^* = 15.$$

Exercice 4

Coef	VB	x_1	x_2	e_1	e_2	e ₃	Valeur
0	e_1	$-\frac{2}{3}$	0	f=1	0	$\frac{1}{6}$	46
0	e_2	-18	0	0	1	$\frac{5}{2}$	k
b= ?	x_2	с	1	g=0	i=0	$-\frac{1}{6}$	4
	c_{j}	d	e=0	h=0	j =0	$-\frac{1}{2}$	Z=m=?

- Le (PL) admet 3 contraintes, donc on a 3 VB. Puisque la colonne relative à une VB est composée par un élément égale à 1 et tous les autres éléments sont égaux à 0 donc les VB ne peuvent être que x₂, e₁ et e₂ car les colonnes de x₁ et e₃ contiennent des éléments ≠ de 0.
- 2) Les VB ont des $c_j = 0$ donc e = h = j = 0. De plus l'élément d'intersection de la ligne te la colonne d'une VB est égale à 1 donc f = 1, g = 0, i = 0.

La FO initiale est $Z = ax_1 + bx_2$ (1)

On sait que pour chaque SBR est associé une FO. Pour notre tableau la FO associée est $Z=dx_1-\frac{1}{2}e_3+m$ (2)

Pour transformer (1) en (2) il faut exprimer x_2 en fonction de x_1 et e_3 car x_2 est une VB et on sait que chaque FO a une SBR s'exprimant uniquement en Fonction des VHB.

D'après la troisième contrainte on a : $cx_1 + x_2 - \frac{1}{6}e_3 = 4$

donc
$$x_2 = 4 - cx_1 + \frac{1}{6}e_3$$

(1)
$$\rightarrow Z = ax_1 + 4b - cbx_1 + \frac{1}{6}e_3$$

$$Z = (a-cb)x_1 + \frac{1}{6}be_3 + 4b$$
 (3)

$$Z = dx_1 - \frac{1}{2}e_3 + m$$
 (2)

D'où
$$d = (a - cb), \frac{1}{6}b = -\frac{1}{2}$$
 et $4b = m$

D'où
$$d = (a + 3c), b = -3$$
 et $m = -12$

- 3) Il faut avoir d < 0 (car toutes les VHB doivent avoir un Cj < 0)d'où (a + 3b) < 0
- 4) Il faut avoir d = 0 et a = -3c.
- 5) Il faut avoir d > 0 et $c \le 0$.

L'algorithme du Simplexe identifie un PL non borné si dans un tableau on n'a aucune variable de base sortante. Autrement dit Si une variable admet un c j > 0 et les éléments de sa colonne sont tous négatifs ou nul dans un tableau de simplexe alors on peut conclure que le PL est non borné même si cette variable n'a pas le plus grand c j > 0.

6) Une SBR est dite dégénérée si une VB a pour valeur 0. Alors pour que la solution de base de ce tableau soit dégénérée il faut avoir k=0.