Assessment 4 Part 1

Dulki Nihinsa Danthanarayana

2025-09-28

Downloading gene_expression.tsv data file

```
URL="https://raw.githubusercontent.com/ghazkha/Assessment4/refs/heads/main/gene_expression.tsv"
download.file(URL,destfile="gene_expression.tsv")
```

The code defines the URL for a tsv file containing RNA-seq count data for three samples of interest, downloads the file as gene_expression.tsv

Downloading growth_data.csv data file

```
URL="https://raw.githubusercontent.com/ghazkha/Assessment4/refs/heads/main/growth_data.csv"
download.file(URL,destfile="growth_data.csv")
```

The code defines the URL for a csv file containing measurements for tree circumference growing at two sites, control site and treatment site which were planted 20 years ago, downloads the file as growth data.csv

1. Reading Gene Expression Data and Setting Row Names

```
gene_expr <- read.table("gene_expression.tsv", header=TRUE, sep="\t", row.names=1)</pre>
```

The read.table() import the TSV file, row.names = 1 set gene identifiers as row names.

head(gene_expr)

##		GTEX.1117F.0226.SM.5GZZ7	GTEX.1117F.0426.SM.5EGHI
##	ENSG00000223972.5_DDX11L1	0	0
##	ENSG00000227232.5_WASH7P	187	109
##	ENSG00000278267.1_MIR6859-1	0	0
##	ENSG00000243485.5_MIR1302-2HG	1	0
##	ENSG00000237613.2_FAM138A	0	0
##	ENSG00000268020.3_OR4G4P	0	1
##		GTEX.1117F.0526.SM.5EGHJ	
##	ENSG00000223972.5_DDX11L1	0	
##	ENSG00000227232.5_WASH7P	143	
##	ENSG00000278267.1_MIR6859-1	1	
##	ENSG00000243485.5_MIR1302-2HG	0	
##	ENSG00000237613.2_FAM138A	0	
##	ENSG00000268020.3_OR4G4P	0	

The head(gene_expr) command display the first six rows.

2. Calculating Gene Mean Expression

```
gene_expr$Mean <- rowMeans(gene_expr)</pre>
```

The mean across samples for each gene is calculated using rowMeans() and it is added as a new column named "Mean".

```
head(gene_expr)
```

```
GTEX.1117F.0226.SM.5GZZ7 GTEX.1117F.0426.SM.5EGHI
##
## ENSG00000223972.5 DDX11L1
                                                        187
                                                                                  109
## ENSG00000227232.5_WASH7P
## ENSG00000278267.1_MIR6859-1
                                                          0
                                                                                    0
## ENSG00000243485.5_MIR1302-2HG
                                                                                    0
                                                          1
## ENSG00000237613.2_FAM138A
                                                                                    0
## ENSG00000268020.3_OR4G4P
                                                                                    1
                                  GTEX.1117F.0526.SM.5EGHJ
##
                                                                   Mean
## ENSG00000223972.5_DDX11L1
                                                              0.0000000
## ENSG00000227232.5_WASH7P
                                                        143 146.3333333
## ENSG00000278267.1_MIR6859-1
                                                              0.3333333
## ENSG00000243485.5_MIR1302-2HG
                                                          0
                                                              0.3333333
## ENSG00000237613.2_FAM138A
                                                              0.000000
## ENSG00000268020.3_OR4G4P
                                                              0.3333333
```

The head(gene expr) command shows the first six genes with the new column added.

3. Listing the 10 genes with the highest mean expression

```
top10 <- head(gene_expr[order(-gene_expr$Mean), ], 10)
top10</pre>
```

```
##
                              GTEX.1117F.0226.SM.5GZZ7 GTEX.1117F.0426.SM.5EGHI
## ENSG00000198804.2_MT-C01
                                                267250
                                                                         1101779
## ENSG00000198886.2_MT-ND4
                                                273188
                                                                          991891
## ENSG00000198938.2_MT-CO3
                                                250277
                                                                         1041376
## ENSG00000198888.2_MT-ND1
                                                243853
                                                                          772966
## ENSG00000198899.2_MT-ATP6
                                                141374
                                                                          696715
## ENSG00000198727.2_MT-CYB
                                                127194
                                                                          638209
## ENSG00000198763.3_MT-ND2
                                                159303
                                                                          543786
## ENSG00000211445.11 GPX3
                                                464959
                                                                           39396
## ENSG00000198712.1 MT-CO2
                                                128858
                                                                          545360
## ENSG00000156508.17_EEF1A1
                                                317642
                                                                           39573
##
                              GTEX.1117F.0526.SM.5EGHJ
                                                           Mean
## ENSG00000198804.2_MT-C01
                                                218923 529317.3
## ENSG00000198886.2_MT-ND4
                                                277628 514235.7
## ENSG00000198938.2 MT-CO3
                                                223178 504943.7
## ENSG00000198888.2 MT-ND1
                                                194032 403617.0
## ENSG00000198899.2 MT-ATP6
                                                151166 329751.7
## ENSG00000198727.2_MT-CYB
                                               141359 302254.0
## ENSG00000198763.3_MT-ND2
                                                149564 284217.7
## ENSG00000211445.11_GPX3
                                                306070 270141.7
## ENSG00000198712.1 MT-CO2
                                                122816 265678.0
## ENSG00000156508.17_EEF1A1
                                                339347 232187.3
```

The above command sort the data frame by the new mean column in descending order.

rownames(top10)

```
## [1] "ENSG00000198804.2_MT-C01" "ENSG00000198886.2_MT-ND4"
## [3] "ENSG00000198938.2_MT-C03" "ENSG00000198888.2_MT-ND1"
## [5] "ENSG00000198899.2_MT-ATP6" "ENSG00000198727.2_MT-CYB"
## [7] "ENSG00000198763.3_MT-ND2" "ENSG00000211445.11_GPX3"
## [9] "ENSG00000198712.1_MT-C02" "ENSG00000156508.17_EEF1A1"
```

The above command display the names of the top 10 genes.

4. Determining the number of genes with a mean <10

```
low_genes_count <- sum(gene_expr$Mean < 10)
low_genes_count</pre>
```

```
## [1] 35988
```

The sum(gene_expr\$Mean < 10) is used on the mean column to count genes with mean expression less than 10.

5. Plotting Histogram of Mean Expression

```
hist(gene_expr$Mean,
    main="Histogram of Gene Mean Expression",
    xlab="Mean Expression Count",
    col="darkblue", border="black")
```

Histogram of Gene Mean Expression

The plot is saved as a PNG using png("myplot.png").

6. Importing and Exploring Tree Growth Data

The read.csv("growth_data.csv", header=TRUE) command import csv file and column names are display by the colnames(growth).

7. Calculating the mean and standard deviation of tree circumference at the start and end of the study at both sites

```
# Calculating mean and SD for Circumference in 2005 by Site
mean_2005_northeast <- mean(subset(growth, Site == "northeast") Circumf_2005_cm, na.rm = TRUE)
mean 2005 northeast
## [1] 5.292
sd_2005_northeast <- sd(subset(growth, Site == "northeast")$Circumf_2005_cm, na.rm = TRUE)</pre>
sd_2005_northeast
## [1] 0.9140267
mean_2005_southwest <- mean(subset(growth, Site == "southwest") $Circumf_2005_cm, na.rm = TRUE)
mean_2005_southwest
## [1] 4.862
sd_2005_southwest <- sd(subset(growth, Site == "southwest") $Circumf_2005_cm, na.rm = TRUE)
sd_2005_southwest
## [1] 1.147471
# Calculating mean and SD for Circumference in 2020 by Site
mean_2020_northeast <- mean(subset(growth, Site == "northeast") Circumf_2020_cm, na.rm = TRUE)
mean_2020_northeast
## [1] 54.228
sd_2020_northeast <- sd(subset(growth, Site == "northeast") $Circumf_2020_cm, na.rm = TRUE)
sd 2020 northeast
## [1] 25.22795
```

```
mean_2020_southwest <- mean(subset(growth, Site == "southwest")$Circumf_2020_cm, na.rm = TRUE)
mean_2020_southwest
## [1] 45.596
sd_2020_southwest <- sd(subset(growth, Site == "southwest")$Circumf_2020_cm, na.rm = TRUE)
sd_2020_southwest
## [1] 17.87345</pre>
```

8. Box plot of tree circumference at the start and end of the study at both sites

Tree Circumference at Start (2005) and End (2020) of Study

9. Calculating the mean growth over the last 10 years at each site

```
# Calculating growth over last 10 years (2020 - 2010)
growth$Growth_10yr <- growth$Circumf_2020_cm - growth$Circumf_2010_cm

# Calculating mean growth by site
mean_growth_northeast <- mean(subset(growth, Site == "northeast")$Growth_10yr, na.rm = TRUE)
mean_growth_northeast

## [1] 42.94

mean_growth_southwest <- mean(subset(growth, Site == "southwest")$Growth_10yr, na.rm = TRUE)
mean_growth_southwest

## [1] 35.49</pre>
```

10. T-test of 10-Year Growth at Two Sites

```
t_result <- t.test(Growth_10yr ~ Site, data = growth)
t_result

##

## Welch Two Sample t-test

##

## data: Growth_10yr by Site

## t = 1.8882, df = 87.978, p-value = 0.06229

## alternative hypothesis: true difference in means between group northeast and group southwest is not

## 95 percent confidence interval:

## -0.3909251 15.2909251

## sample estimates:

## mean in group northeast mean in group southwest

## 42.94 35.49</pre>
```