

BUSA2302: ENGINEERING PROJECT MANAGEMENT

Project Report

AI-powered drone for plant care

Prepared by:

Mohammad Abu Shams 1200549

Mohammed Owda 1200089

Rana Odeh 1201750

Katya Kobari 1201478

Hidaya Mustafa 1201910

Osaid Hamza 1200875

Instructor: Dr. Sahar El_Jallad

Section: 2

Date: 10-6-2023

Group: 8

Table of Contents

Executive Summary	2
1. Defining the Project	3
1.1 Project Scope	3
1.1.1 Project Objective	3
1.1.2 Deliverables	3
1.1.3 Milestones	4
1.1.4 Technical Requirements	5
1.1.5 Limits and Exclusions	5
1.2 Project Priorities	6
1.3 Work Breakdown Structure	6
1.4 Coding the WBS for the Information System	7
2. Estimating Project Times and Costs	7
3. Project Plan	9
4. Project Budget	10
5. Risk Management Plan	11
5.1 Risk Response Strategies	12

Executive Summary

This project proposal outlines the development of an AI-powered drone for plant care in agriculture. The objective is to leverage advanced technologies to enhance crop health, optimize irrigation practices, detect diseases, and monitor plant growth. By utilizing a combination of AI algorithms, sensors, and cameras, the drone will collect real-time data from crops and provide actionable insights to farmers.

The project scope includes defining the specific objectives, deliverables, milestones, technical requirements, and limitations. The primary goal is to design and build a functional drone prototype capable of autonomously collecting data and analyzing plant health parameters. The project priorities include accuracy in plant health analysis, flight efficiency, and minimizing data latency for prompt decision-making.

The work breakdown structure will be created to organize and manage project tasks effectively. By coding the WBS into an information system or project management software, the team will ensure seamless coordination and progress tracking throughout the project lifecycle.

Estimating project times and costs will be crucial to allocate resources efficiently and ensure timely completion. A detailed project plan will be developed, encompassing all activities, timelines, and dependencies. A comprehensive budget will be formulated to cover expenses related to hardware, software development, testing, and personnel.

Risk management will be a priority, and a plan will be devised to identify potential risks and devise appropriate response strategies. Contingency plans, alternative approaches, and risk transfer mechanisms will be considered to mitigate potential challenges.

By successfully executing this project, we aim to contribute to the agricultural sector by providing farmers with an AI-powered drone solution that enables precise and efficient plant care. The integration of advanced technologies will empower farmers to make data-driven decisions, optimize resource allocation, and enhance overall crop yield and quality.

Throughout the project, strict adherence to ethical and legal considerations regarding drone operations and data privacy will be maintained. Regular testing, validation, and documentation will be carried out to ensure the effectiveness and reliability of the developed drone system.

Overall, this project holds immense potential to revolutionize plant care in agriculture through the utilization of AI and drone technologies. The collaboration of multidisciplinary expertise and diligent project management will be crucial for the successful realization of the AI-powered drone for plant care in agriculture.

1. Defining the Project

1.1 Project Scope

The project scope outlines the boundaries and focus of the AI-powered drone for plant care in agriculture. It identifies the specific areas and aspects that the project will cover.

1.1.1 Project Objective

The primary objective of this project is to develop an AI-powered drone system that can autonomously monitor and care for plants in agricultural settings. The drone will utilize advanced technologies, including artificial intelligence, computer vision, and machine learning, to optimize plant health, detect diseases, and improve overall crop yield. By combining aerial surveillance and data analysis capabilities, the drone will assist farmers in making informed decisions for effective plant care.

1.1.2 Deliverables

The project will deliver several key outcomes that contribute to the successful implementation of the AI-powered drone system. These deliverables include:

- A functional prototype of the AI-powered drone: Development of a fully operational drone capable of autonomously navigating agricultural fields, capturing high-resolution images, and performing plant care tasks.
- AI algorithms and machine learning models for plant health analysis and disease detection: Implementation of advanced AI algorithms and machine learning models to analyze collected data, assess plant health parameters, identify diseases or pests, and provide actionable insights.
- A user interface for data visualization and interaction with the drone system: Creation of a user-friendly interface that enables farmers to access and interpret data, view analysis results, schedule drone flights, and customize parameters for plant care activities.
- Data analytics and reporting: Provision of comprehensive data analytics tools that deliver insights, reports, and recommendations on plant health, disease prevalence, and crop performance.
- Integration with existing agricultural systems: Integration of the AI-powered drone system with existing agricultural management systems or software platforms, allowing seamless data sharing and synchronization for enhanced decision-making and workflow optimization.

1.1.3 Milestones

The project will be divided into distinct milestones, each marking a significant progress stage:

- 1) Milestone 1: Prototype Development Initiated
 - > Start development of the functional prototype of the AI-powered drone.
 - ➤ Begin designing the hardware components and system architecture.
- 2) Milestone 2: Drone Prototype Completion
 - Complete the development of the AI-powered drone prototype.
 - Ensure the drone can navigate autonomously, capture high-resolution images, and perform plant care tasks.
- 3) Milestone 3: AI Algorithm Development
 - ➤ Develop and implement AI algorithms and machine learning models for plant health analysis and disease detection.
 - Train and optimize the algorithms using relevant datasets.
- 4) Milestone 4: User Interface Development
 - ➤ Design and develop a user-friendly interface for data visualization and interaction with the drone system.
 - Implement features such as data display, analysis results, and customization options.
- 5) Milestone 5: Data Analytics and Reporting
 - > Develop comprehensive data analytics tools for processing collected data.
 - ➤ Generate insights, reports, and recommendations on plant health, disease prevalence, and crop performance.
- 6) Milestone 6: Integration with Agricultural Systems
 - ➤ Integrate the AI-powered drone system with existing agricultural management systems or software platforms.
 - ➤ Enable seamless data sharing and synchronization for enhanced decision-making and workflow optimization.
- 7) Milestone 7: Testing and Refinement
 - Conduct rigorous testing of the drone prototype, AI algorithms, and user interface.
 - > Iterate and refine the system based on testing feedback and performance evaluation.
- 8) Milestone 8: Documentation and Training Materials
 - Create comprehensive documentation, technical reports, user manuals, and training materials.
 - ➤ Provide resources to assist users in understanding and effectively utilizing the AI-powered drone system.

1.1.4 Technical Requirements

The technical requirements for the AI-powered drone system include:

- 1) Hardware Components:
 - > Flight control system
 - > Sensors (GPS, cameras, multispectral sensors, environmental sensors)
 - > Communication systems
- 2) AI and Machine Learning Capabilities:
 - ➤ High-performance processors
 - ➤ Memory and storage
 - > Training and optimization capabilities
- 3) Navigation and Plant Care Capabilities:
 - ➤ Autonomous navigation
 - ➤ Plant care tools
 - > Precision and accuracy
- 4) Data Processing and Analysis:
 - Data storage and management
 - ➤ Real-time processing
 - > AI algorithms and models
- 5) User Interface and Integration:
 - ➤ User-friendly interface
 - > Integration with agricultural systems

1.1.5 Limits and Exclusions

- 1) Operational Limits:
 - Weather conditions, flight range, and payload capacity have operational constraints.
- 2) Legal and Regulatory Compliance:
 - Compliance with drone regulations and obtaining necessary permits and licenses.
- 3) System Limitations:
 - Battery life, processing capabilities, and data storage have inherent limitations.
- 4) Exclusions:
 - Certain physical plant care actions and crop-specific limitations may be excluded.
- 5) Importation Limitations Due to Occupation:
 - The occupation may impose constraints on importing the required equipment, including drones and hardware components

1.2 Project Priorities

- Technology Development: Focus on integrating advanced technologies like AI and machine learning for enhanced drone capabilities in plant care.
- Accuracy and Efficiency: Emphasize precise and efficient data collection, analysis, and plant care activities.
- User-Friendly Interface: Develop an intuitive interface for easy interaction, data access, and actionable insights for farmers.
- Cost-Effectiveness: Strive for budget-friendly solutions without compromising functionality and performance.
- Safety and Compliance: Prioritize safety measures and compliance with drone regulations in agriculture.

1.3 Work Breakdown Structure

The following is an outline of the main activities and their corresponding tasks for the AI-powered drone project

Each phase consists of several tasks that need to be accomplished for successful completion. A detailed WBS will further breakdown these tasks and assign responsibilities.

1.4 Coding the WBS for the Information System

A unique identifier or code will be assigned to each component of the WBS to enhance project management efficiency. The coding system will facilitate easy tracking, coordination of project tasks, and provide an efficient means of organizing project information.

2. Estimating Project Times and Costs

The project is expected to span a duration of approximately 18-24 months, taking into account all stages from the initial product specification to the final manufacturing phase and post-implementation review. The estimated costs for the project are set at \$100,000, with a breakdown of costs across different activities. This accounts for cost components including drone technology, specialized sensors, system development, labor costs, and testing procedures.

1) Estimated Times:

Activity	Start Date	End Date	Duration	Tasks		
Product Specification	01/01/24	01/07/24	1 week	Define Project Objectives (2 days: 01/01/24 - 01/02/24),		
				Identify Stakeholders (1 day: 01/03/24),		
				Perform Feasibility Analysis (2 days: 01/04/24 - 01/05/24),		
				Determine Technical Requirements (2 days: 01/06/24 - 01/07/24)		
Design	01/08/24	02/15/24	6 weeks	Design Drone Hardware (2 weeks: 01/08/24 - 01/19/24),		
				Develop AI Algorithms (3 weeks: 01/20/24 - 02/09/24),		
				Design User Interface (1 week: 02/10/24 - 02/16/24),		
				Conduct System Integration Planning (2 weeks: 02/17/24 - 03/02/24)		
Prototype & Test	02/16/24	04/15/24	8 weeks	Procure Drone Components (1 week: 02/16/24 - 02/23/24),		
				Assemble Drone Prototype (2 weeks: 02/24/24 - 03/09/24),		
				Implement AI Algorithms on Prototype (2 weeks: 03/10/24 - 03/23/24),		
				Test Drone Performance and Functionality (2 weeks: 03/24/24 - 04/06/24),		
				Refine and Optimize Design Iterations (1 week 04/07/24 - 04/15/24)		
Manufacture	04/16/24	06/30/24	11 weeks	Finalize Drone Design (2 weeks: 04/16/24 - 04/30/24),		
				Establish Manufacturing Processes (2 weeks: 05/01/24 - 05/14/24),		
				Source and Procure Materials (1 week: 05/15/24 - 05/21/24),		
				Manufacture Drone Components (3 weeks: 05/22/24 - 06/11/24),		
				Assemble and Test Production Units (2 weeks: 06/12/24 - 06/25/24),		
				Perform Quality Assurance and Control (1 week: 06/26/24 - 06/30/24),		
				Package and Prepare Drones for Distribution (1 week: 06/26/24 - 06/30/24)		

2) Estimated Costs:

Activity	Estimated Cost (\$)	Ratio (%)	Cost Details		
Product Specification	20,000	20%	- Research and analysis costs: \$5,000		
			- Stakeholder engagement expenses: \$5,000		
			- Feasibility study expenses: \$5,000		
			- Technical requirements assessment: \$5,000		
Design	40,000	40%	- Hardware design and development costs: \$10,000		
			- AI algorithm development expenses: \$15,000		
			- User interface design costs: \$10,000		
			- System integration planning expenses: \$5,000		
Prototype & Test	30,000	30%	- Drone component procurement costs: \$5,000		
			- Prototype assembly expenses: \$10,000		
			- AI algorithm implementation on prototype: \$10,000		
			- Performance and functionality testing costs: \$5,000		
Manufacture	10,000	10%	- Finalizing drone design costs: \$2,000		
			- Establishing manufacturing processes expenses: \$3,000		
			- Materials sourcing and procurement expenses: \$3,000		
Total	100,000	100%			

3. Project Plan

The project is set to commence on January 1, 2024, and is expected to be completed by June 30, 2024. The project is divided into four main phases: Product Specification, Design, Prototype & Test, and Manufacture.

This project plan provides a structured approach to developing the AI-powered drone for plant care, ensuring that all necessary steps are taken to deliver a high-quality, effective product.

4. Project Budget

The project budget will be meticulously divided into various categories, including feasibility study, system design and development, labor, testing, and implementation. A significant portion of the budget is anticipated to be allocated to system development and testing, considering the technical complexities involved.

Project Task	Labor	Labor	Material	Travel	Other	Total per
Troject rask	Hours	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Task
1.1 Product Specification	40	4,000	2,000	500	1,000	7,500
1.1.1 Define Project Objectives	10	1,000	2,000	-	-	1,000
1.1.2 Identify Stakeholders	10	1,000	_	_	_	1,000
1.1.3 Perform Feasibility	10	1,000	_	_	_	1,000
Analysis	10	1,000				1,000
1.1.4 Determine Technical	10	1,000	_	_	_	1,000
Requirements		1,000				1,000
Subtotal: Product	80	8,000	2,000	500	1,000	11,500
Specification		,,,,,,	_,,,,,,			,
2. Design						
2.1 Design Drone Hardware	50	5,000	3,000	500	1,000	9,500
2.2 Develop AI Algorithms	60	6,000	2,000	300	800	9,100
2.3 Design User Interface	30	3,000	1,000	100	300	4,400
2.4 System Integration	20	2,000	-	100	200	2,300
Planning		,				,
Subtotal: Design	160	16,000	6,000	1,000	2,300	25,300
3. Prototype & Test					ĺ	,
3.1 Procure Drone	20	2,000	2,000	200	500	4,700
Components		,	,			
3.2 Assemble Drone Prototype	40	4,000	-	100	400	4,500
3.3 Implement AI Algorithms	30	3,000	-	-	-	3,000
on Prototype						
3.4 Test Drone Performance	40	4,000	1,000	200	500	5,700
and Functionality						
3.5 Refine and Optimize	40	4,000	-	-	-	4,000
Design Iterations						
Subtotal: Prototype & Test	170	17,000	3,000	500	1,400	22,900
4. Manufacture						
4.1 Finalize Drone Design	30	3,000	-	200	500	3,700
4.2 Establish Manufacturing	40	4,000	1,000	200	500	5,700
Processes						
4.3 Source and Procure	20	2,000	1,000	100	200	3,300
Materials		5.000	2.000	200	4.000	10.000
4.4 Manufacture Drone	60	6,000	3,000	300	1,000	10,300
Components	40	4.000	2.000	200	500	6.500
4.5 Assemble and Test	40	4,000	2,000	200	500	6,700
Production Units	50	5.000	1.000	100	200	C 400
4.6 Perform Quality	50	5,000	1,000	100	300	6,400
Assurance and Control	20	2.000	1 000	100	200	2 200
4.7 Package and Prepare Drones for Distribution	20	2,000	1,000	100	200	3,300
Subtotal: Manufacture	260	26,000	9,000	1 100	2 200	29 200
Subtotal: Manufacture	260	26,000	8,000	1,100	3,200	38,300

9. Project Management						
9.1 Progress Meetings/Reports	60	6,000	_	_	-	6,000
9.2 Interface with Vendors	30	3,000	-	-	-	3,000
9.3 Interface with Internal	40	4,000	_	_	-	4,000
Departments						
9.4 Quality Assurance	50	5,000	-	-	-	5,000
Subtotal: Project	180	18,000	-	-	-	18,000
Management						
10 – Other						
11 – Other						
Sub-totals	850	85,000	19,000	2,200	6,900	113,100
(Contingency):						
TOTAL (scheduled)						113,100

5. Risk Management Plan

The project will follow a systematic risk management approach, outlining potential risks such as technical challenges, cost overruns, timeline delays, and unmet plant care requirements. This risk management plan will guide the project team in identifying, assessing, and responding appropriately to these risks throughout the project lifecycle.

Internal Factors:

- Inadequate resources: Insufficient budget, limited workforce, and lack of equipment (H).
- Lack of expertise or skills: Team members lacking necessary technical knowledge or specific skills (M).
- Poor communication or collaboration: Miscommunication, lack of coordination, and ineffective collaboration among team members (M).

External Factors:

- Changes in market conditions: Shifts in customer preferences, emergence of new competitors, and changes in market demand (H).
- Economic fluctuations: Economic recessions, inflation, and currency exchange rate fluctuations (M).
- Regulatory changes: new regulations, compliance requirements, and legal restrictions impacting the project (M).

Technical Factors:

- Technology failures: Hardware or software malfunctions, system crashes, and compatibility issues (M).
- Software bugs: Programming errors, software glitches, and unexpected software behavior (M).
- Scalability limitations: Inability of the system to handle increased workload or user demand without performance degradation (L).

5.1 Risk Response Strategies

Risk response strategies are crucial for mitigating and managing risks in a project. They involve the utilization of various techniques and tools to identify and assess risks effectively. Three key elements that aid in implementing risk response strategies are the Risk Identification Team, Risk Breakdown Structure (RBS) Template, and Risk Identification Methods.

1) Risk Identification Team:

To ensure comprehensive risk identification in the AI-powered drone project, it is essential to establish a dedicated Risk Identification Team. This team consists of experts from various disciplines, including drone technology, AI algorithms, project management, and relevant stakeholders.

- 2) Risk Breakdown Structure (RBS) Using Risk Identification Methods: The Risk Breakdown Structure (RBS) is a valuable tool for organizing and categorizing risks in the AI-powered drone project. By utilizing various risk identification methods, risks can be identified and incorporated into the RBS. These methods include:
 - Brainstorming Sessions: Conduct brainstorming sessions involving the project team, stakeholders, and subject matter experts to generate ideas and identify potential risks.
 - Expert Judgment: Seek input from domain experts in drone technology, AI algorithms, and project management to leverage their knowledge and experience in identifying risks.

3) Risk mitigation plan:

- ✓ Risk: Technical challenges in AI algorithm development. Mitigation Plan: Allocate additional resources for research and development, conduct rigorous testing and validation, and engage subject matter experts to address technical complexities.
- ✓ Risk: Supply chain disruptions leading to delays in procuring drone components. Mitigation Plan: Identify alternative suppliers, maintain buffer inventory, establish clear communication channels with suppliers, and implement supply chain risk management strategies.
- ✓ Risk: Regulatory changes impacting drone operations.

 Mitigation Plan: Stay updated with regulatory requirements, maintain close collaboration with regulatory bodies, and adapt the drone design and operations to ensure compliance with changing regulations.
- ✓ Customer Changes Maintain a flexible project scope and change management process to accommodate customer changes while ensuring that they are properly assessed for their impact on the project timeline, budget, and resources.