Assignment week - 2 of Applied Data Science

Submitted by - Rahul Kumar, Registration number - 20BEC1186

Mail ID - <u>rahulkumar2020a@vitstudent.ac.in</u> (<u>mailto:rahulkumar2020a@vitstudent.ac.in</u>)

Question 1:

1. Download the dataset: Dataset

Question 2:

2. Load the dataset

In [1]:

```
import pandas as pd
data = pd.read_csv("titanic.csv")
data
```

Out[1]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

891 rows x 15 columns

Question 3:

3. Perform Below Visualizations.

Univariate Analysis

In [4]:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.distplot(data['age'])
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Future Warning: `distplot` is a deprecated function and will be removed in a future ve rsion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[4]:

<AxesSubplot:xlabel='age', ylabel='Density'>

• Bi - Variate Analysis

```
In [5]:
```

```
#line plot for the bi-variate Analysis
sns.lineplot(x=data.age , y = data.fare)
```

Out[5]:

<AxesSubplot:xlabel='age', ylabel='fare'>

Multi - Variate Analysis

In [6]:

```
#heat plot for the multi variate Analysis
# plotted this without encoding the categorical variable
sns.heatmap(data.corr(), annot = True)
```

Out[6]:

<AxesSubplot:>

Question 4:

4. Perform descriptive statistics on the dataset.

In [7]:

```
import pandas as pd
print(data)
     survived
                pclass
                                                          fare embarked
                            sex
                                  age
                                       sibsp
                                               parch
                                                                           class \
0
            0
                     3
                           male
                                 22.0
                                            1
                                                   0
                                                        7.2500
                                                                       S
                                                                           Third
                                                      71.2833
1
            1
                     1
                        female
                                 38.0
                                            1
                                                                       C
                                                                           First
                                                   0
2
                                                                       S
             1
                     3
                        female
                                 26.0
                                            0
                                                   0
                                                       7.9250
                                                                           Third
3
                                                                       S
            1
                     1
                        female
                                 35.0
                                            1
                                                   0
                                                      53.1000
                                                                           First
                                                                       S
4
             0
                     3
                          male
                                            0
                                                                           Third
                                35.0
                                                   0
                                                        8.0500
                            . . .
                                                                             . . .
                                  . . .
                                 27.0
                                                                       S
886
            0
                     2
                           male
                                            0
                                                   0
                                                      13.0000
                                                                          Second
            1
                     1
                        female
                                 19.0
                                            0
                                                   0
                                                      30.0000
                                                                       S
                                                                           First
887
                                                                       S
888
             0
                     3
                        female
                                  NaN
                                            1
                                                   2 23.4500
                                                                           Third
                                                   0 30.0000
                                                                       C
                                                                           First
889
             1
                     1
                          male 26.0
                                            0
                     3
890
             0
                           male 32.0
                                            0
                                                   0
                                                       7.7500
                                                                       Q
                                                                           Third
            adult male deck
                               embark town alive
                                                   alone
       who
                   True
                         NaN
                               Southampton
0
                                                   False
       man
                                               no
1
                  False
                            C
     woman
                                 Cherbourg
                                              yes
                                                   False
2
     woman
                  False NaN
                               Southampton
                                              yes
                                                    True
3
                  False
                         C
                               Southampton
                                                   False
     woman
                                              yes
                   True NaN
4
       man
                               Southampton
                                               no
                                                    True
                    . . .
                                              . . .
                                                     . . .
886
                   True
                        NaN
                               Southampton
                                                    True
       man
                                              no
887
     woman
                  False
                           В
                               Southampton
                                                    True
                                              yes
888
     woman
                  False
                         NaN
                               Southampton
                                              no
                                                   False
                            C
889
                   True
                                 Cherbourg
                                                    True
       man
                                              yes
890
       man
                   True
                        NaN
                                Queenstown
                                               no
                                                    True
[891 rows x 15 columns]
```

In [8]:

```
# printing and getting the information about the data set
data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	object
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	203 non-null	object
12	embark_town	889 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool

dtypes: bool(2), float64(2), int64(4), object(7)

memory usage: 92.4+ KB

```
In [9]:
```

```
#mean median and mode of every column of only numeric contaning column
data.mean(numeric only = True)
```

Out[9]:

survived 0.383838 pclass 2.308642 age 29.699118 0.523008 sibsp parch 0.381594 fare 32.204208 adult male 0.602694 alone 0.602694

dtype: float64

In [12]:

```
# without using the only numeric function
data.median()
```

C:\Users\Dell\AppData\Local\Temp\ipykernel_10288\4184645713.py:1: FutureWarnin
g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=Non
e') is deprecated; in a future version this will raise TypeError. Select only
valid columns before calling the reduction.
 data.median()

Out[12]:

survived 0.0000 pclass 3.0000 age 28.0000 sibsp 0.0000 parch 0.0000 fare 14.4542 adult_male 1.0000 alone 1.0000

dtype: float64

In [13]:

```
data.mode(numeric_only = True)
```

Out[13]:

	survived	pclass	age	sibsp	parch	fare	adult_male	alone
0	0	3	24.0	0	0	8.05	True	True

```
In [14]:
# variance
data.var(numeric only = True)
Out[14]:
survived
               0.236772
               0.699015
pclass
             211.019125
age
               1.216043
sibsp
parch
               0.649728
fare
            2469.436846
adult_male
               0.239723
alone
               0.239723
dtype: float64
In [16]:
data.std(numeric only = True)
Out[16]:
survived
             0.486592
             0.836071
pclass
age
            14.526497
             1.102743
sibsp
parch
             0.806057
fare
            49.693429
adult_male
             0.489615
             0.489615
alone
dtype: float64
In [15]:
data.columns
Out[15]:
```

Question 5:

'alive', 'alone'],
dtype='object')

5. Handle the Missing values.

In [19]:

data.isna()

Out[19]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck
0	False	False	False	False	False	False	False	False	False	False	False	True
1	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	True
3	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	True
886	False	False	False	False	False	False	False	False	False	False	False	True
887	False	False	False	False	False	False	False	False	False	False	False	False
888	False	False	False	True	False	False	False	False	False	False	False	True
889	False	False	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False	False	True

891 rows x 15 columns

In [21]:

data.isna().any()

Out[21]:

survived False pclass False False sex True age False sibsp False parch fare False embarked True class False who False adult_male False deck True embark_town True alive False alone False dtype: bool

In [23]:

data.age.fillna(data.age.mean() , inplace = True)

In [29]:

data['embarked'].fillna(data['embarked'].mode()[0] , inplace = True)

```
In [31]:
data['embark town'].fillna(data['embark town'].mode()[0] , inplace = True)
In [32]:
data['deck'].fillna(data['deck'].mode()[0] , inplace = True)
In [33]:
data.isna().any()
Out[33]:
survived
               False
pclass
               False
sex
               False
               False
age
sibsp
               False
               False
parch
fare
               False
embarked
               False
class
               False
who
               False
adult_male
               False
deck
               False
embark_town
               False
alive
               False
alone
               False
dtype: bool
```

Question 6:

6. Find the outliers and replace the outliers

In [34]:

```
#boxplot will help us to find outlier
sns.boxplot(data.age)
data = data[data.age < 40]
data = data[data.age > 15]
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn ing: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments withou t an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [35]:

```
plot = sns.boxplot(data.age)
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn ing: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments withou t an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[35]:

<AxesSubplot:xlabel='age'>

Question 7:

7. Check for Categorical columns and perform encoding.

In [39]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

data.sex = le.fit_transform(data.sex)
data.embarked = le.fit_transform(data.embarked)
data['class'] = le.fit_transform(data['class'])
data.who = le.fit_transform(data.adult_male)
data.deck = le.fit_transform(data.deck)
data.embark_town = le.fit_transform(data.embark_town)
data.alive = le.fit_transform(data.alive)
data.alone = le.fit_transform(data.alone)
data
```

Out[39]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	d
0	0	3	1	22.000000	1	0	7.2500	2	2	1	True	
1	1	1	0	38.000000	1	0	71.2833	0	0	0	False	
2	1	3	0	26.000000	0	0	7.9250	2	2	0	False	
3	1	1	0	35.000000	1	0	53.1000	2	0	0	False	
4	0	3	1	35.000000	0	0	8.0500	2	2	1	True	
886	0	2	1	27.000000	0	0	13.0000	2	1	1	True	
887	1	1	0	19.000000	0	0	30.0000	2	0	0	False	
888	0	3	0	29.699118	1	2	23.4500	2	2	0	False	
889	1	1	1	26.000000	0	0	30.0000	0	0	1	True	
890	0	3	1	32.000000	0	0	7.7500	1	2	1	True	

645 rows x 15 columns

Question 8:

8. Split the data into dependent and independent variables.

```
X = data.loc[: , data.columns != 'alive']
Out[42]:
      survived pclass sex
                                 age sibsp parch
                                                        fare embarked class who adult_male d
   0
                                                     7.2500
                                                                     2
            0
                    3
                         1 22.000000
                                                                           2
                                                                                 1
                                                                                          True
   1
                                                                     0
            1
                         0 38.000000
                                                 0 71.2833
                                                                           0
                                                                                 0
                                                                                         False
                    1
                                          1
   2
                    3
                                          0
                                                                     2
                                                                           2
            1
                         0 26.000000
                                                     7.9250
                                                                                 0
                                                                                         False
   3
                                                 0 53.1000
                                                                     2
            1
                    1
                         0 35.000000
                                                                           0
                                                                                 0
                                                                                         False
                                                                     2
                                                                           2
   4
            0
                    3
                         1
                            35.000000
                                          0
                                                     8.0500
                                                                                 1
                                                                                          True
  ---
 886
            0
                    2
                         1 27.000000
                                          0
                                                 0 13.0000
                                                                     2
                                                                           1
                                                                                 1
                                                                                          True
 887
                                                                     2
                                                                           0
                                                                                 0
            1
                    1
                         0 19.000000
                                                 0 30.0000
                                                                                         False
 888
                    3
                         0 29.699118
                                                    23.4500
                                                                     2
                                                                           2
                                                                                         False
 889
                    1
                            26.000000
                                                    30.0000
                                                                                          True
 890
            0
                    3
                         1 32.000000
                                          0
                                                     7.7500
                                                                     1
                                                                           2
                                                                                 1
                                                                                          True
645 rows x 14 columns
In [43]:
Y = data.loc[:, 'alive']
Υ
Out[43]:
0
1
        1
2
        1
3
        1
        0
886
        0
887
        1
888
        0
889
        1
890
```

Question 9:

Name: alive, Length: 645, dtype: int32

In [42]:

#independent

9. Scale the independent variables

```
In [45]:
```

```
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X_scaled = scale.fit_transform(X)
X<sup>-</sup>scaled
Out[45]:
array([[0.
                    , 1.
                                 , 1.
                                             , ..., 0.33333333, 1.
                   ],
        0.
                   , 0.
                                 , 0.
        [1.
                                             , ..., 0.33333333, 0.
                   ],
        0.
       [1.
                   , 1.
                                 , 0.
                                              , ..., 0.33333333, 1.
        1.
        [0.
                   , 1.
                                              , ..., 0.33333333, 1.
                                 , 0.
                   ],
        0.
       [1.
                   , 0.
                                 , 1.
                                             , ..., 0.33333333, 0.
                   ],
        1.
        [0.
                    , 1.
                                 , 1.
                                              , ..., 0.33333333, 0.5
                   ]])
         1.
```

Question 10:

10. Split the data into training and testing

In [46]:

```
from sklearn.model_selection import train_test_split
X train , X test , Y train , Y test = train test split(X , Y , test size = 0.2 , random state
```

In [48]:

```
X train.head()
```

Out[48]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	d
713	0	3	1	29.000000	0	0	9.4833	2	2	1	True	
45	0	3	1	29.699118	0	0	8.0500	2	2	1	True	
378	0	3	1	20.000000	0	0	4.0125	0	2	1	True	
795	0	2	1	39.000000	0	0	13.0000	2	1	1	True	
595	0	3	1	36.000000	1	1	24.1500	2	2	1	True	
4												•

In [49]:

X test.head()

Out[49]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	d
877	0	3	1	19.000000	0	0	7.8958	2	2	1	True	
815	0	1	1	29.699118	0	0	0.0000	2	0	1	True	
826	0	3	1	29.699118	0	0	56.4958	2	2	1	True	
399	1	2	0	28.000000	0	0	12.6500	2	1	0	False	
99	0	2	1	34.000000	1	0	26.0000	2	1	1	True	
4												•

In [50]:

Y train.head()

Out[50]:

713 0 45 0 378 0

795 0595 0

Name: alive, dtype: int32

In [51]:

Y_test.head()

Out[51]:

Name: alive, dtype: int32