IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1-2. (Canceled)
- 3. (Withdrawn) The compound of claim 1, wherein R₂ and R₃ taken together with the atoms to which they are attached form a heterocyclic ring having the structure:

wherein X is selected from the group consisting of -CHR₁₂-, -O- and -NR₁₂-, wherein R_{11} and R_{12} are independently selected from the group consisting of H, benzyl and C_{1} - C_{4} alkyl.

4-15. (Canceled)

16. (Withdrawn) A method for treating a neoplastic disease, said method comprising the step of administering to a patient in need thereof a composition comprising a compound represented by the general structure:

$$R_{4}$$
 QH NH_{2} R_{5} R_{6} R_{6} R_{6}

wherein R is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkenyl, -(CH₂)_nC₃- C_6 cycloalkyl,

wherein n is an integer ranging from 0-4;

 R_4 and R_5 are independently selected from the group consisting of H, halo, C_1 - C_4 alkyl, C_7 - C_4 alkenyl, C_2 - C_4 alkynyl, -COR $_{11}$ and $(C_1$ - C_4) alkoxy; and

R6 is selected from the group consisting of H, halo,

wherein R₁₁ is selected from the group consisting of H, C₁-C₄ alkyl, NH₂ and OH.

 $17. \qquad \text{(Withdrawn)} \ \ \text{The method of claim 16 wherein R is selected from the group consisting of C_1-$C_{12} alkyl;}$

 R_4 and R_5 are independently selected from the group consisting of H, halo and $C_1\text{-}C_4$ alkvl; and

R₆ is selected from the group consisting of H,

wherein n is an integer ranging from 0-4.

18. (Withdrawn) The method of claim 17 wherein R4 and R5 are independently selected from the group consisting of H and halo; and R6 is H.

19-20. (Canceled)

21. (New) A sodium channel blocker represented by the structure:

$$R_{5}$$
 R_{6}
 R_{2}
 R_{2}
 R_{2}

wherein R is selected from the group consisting of C1 alkyl, C3-C6 alky, C8-C12 alkyl, C2-C₉ alkenyl, C₂-C₉ alkynyl, -(CH₂)_mCOOH, -(CH₂)_mNH₂, -(CH₂)_mCONH₂, -(CH₂)_nC₃-C₆ cycloalkyl, -(CH₂)_naryl, -(CH₂)_n aryl, -(CH₂)_pNCH₃(CH₂)_p aryl and -(CH₂)_n heterocyclic, wherein m is an integer ranging from 3-8, n is an integer ranging from 0-4 and p is an integer ranging from 1-4;

R₂ is -(CH₂)_nCONH₂ wherein n is 3 or 4;

R₃ is hydroxyl;

R4 and R5 are both H; and

R₆ is

CH₃(CH₂)_n

wherein n is an integer ranging from 0-2.

22. (New) A sodium channel blocker represented by the structure:

$$R_5$$
 R_6
 R_7
 R_8
 R_9
 R_9
 R_9

wherein R is selected from the group consisting of C_1 alkyl, C_3 - C_6 alky, C_6 - C_{12} alkyl, C_2 - C_9 alkenyl, $-(CH_2)_mCOH_1$, $-(CH_2)_mCOH_2$, $-(CH_2)_mCOH_2$, $-(CH_2)_nC_3$ - C_6 cycloalkyl, $-(CH_2)_n$ aryl, $-(CH_2)_n$ aryl, $-(CH_2)_n$ aryl and $-(CH_2)_n$ heterocyclic, wherein m is an integer ranging from 3-8, n is an integer ranging from 0-4 and p is an integer ranging from 1-4;

wherein R2 is -(CH2)nCONH2 wherein n is 3 or 4;

R₃ is hydroxyl;

R4 and R5 are both C1-C4 alkyl; and

R6 is

wherein n is an integer ranging from 0-2.

23. (New) A sodium channel blocker represented by the structure:

$$R_5$$
 R_6
 R_7
 R_8
 R_9
 R_9

wherein R is

wherein R2 is -(CH2)nCONH2, wherein n is 3 or 4;

R₃ is hydroxyl;

 R_4 and R_5 are independently selected from the group consisting of H, halo and $C_1\text{--}C_4$ alkoxy; and

R6 is H.