CEGO

1.0

Generated by Doxygen 1.8.14

Contents

1	REA	DME		1
2	Hier	archica	al Index	3
	2.1	Class	Hierarchy	3
3	Clas	ss Index	K	5
	3.1	Class	List	5
4	Clas	ss Docu	umentation	7
	4.1	CEGC	D::AbstractIndividual Class Reference	7
		4.1.1	Detailed Description	8
		4.1.2	Member Function Documentation	8
			4.1.2.1 recombine_with()	8
	4.2	CEGO	D::ALPSInputValues Struct Reference	8
		4.2.1	Detailed Description	9
	4.3	CEGO	D::ALPSReturnValues Struct Reference	9
		4.3.1	Detailed Description	9
	4.4	Antoin	ne Class Reference	9
		4.4.1	Detailed Description	10
	4.5	CEGO	D::Bound Struct Reference	10
		4.5.1	Detailed Description	10
		4.5.2	Member Function Documentation	10
			4.5.2.1 reflect_then_random_out_of_bounds()	10
	4.6	Bumps	s Class Reference	11
		461	Detailed Description	11

ii CONTENTS

	4.6.2	Member Function Documentation	11
		4.6.2.1 f_givenxy() [1/2]	12
		4.6.2.2 f_givenxy() [2/2]	12
4.7	Bumps	SInputs Struct Reference	12
	4.7.1	Detailed Description	12
4.8	CEGO	::numberish::id Union Reference	13
	4.8.1	Detailed Description	13
4.9	CEGO	::Layers < T > Class Template Reference	13
	4.9.1	Detailed Description	14
	4.9.2	Member Function Documentation	15
		4.9.2.1 graduate_elderly_individuals()	15
		4.9.2.2 print_diagnostics()	15
4.10	CEGO	::numberish Struct Reference	15
	4.10.1	Detailed Description	16
4.11	CEGO	::NumericalIndividual < T > Class Template Reference	16
	4.11.1	Detailed Description	17
	4.11.2	Member Function Documentation	17
		4.11.2.1 recombine_with()	17
4.12	RatPol	yAncillary Class Reference	18
	4.12.1	Detailed Description	18
4.13	CEGO	::RecombinationFlags Struct Reference	18
	4.13.1	Detailed Description	18
	4.13.2	Member Data Documentation	19
		4.13.2.1 nonuniform_w_stddev	19
		4.13.2.2 p_same_w	19
		4.13.2.3 uniform_w_stddev	19
4.14	CEGO	::Result Struct Reference	19
	4.14.1	Detailed Description	20
4.15	StornTe	est Class Reference	20
	4.15.1	Detailed Description	20

Index

21

Chapter 1

README

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.

For more information go to http://eigen.tuxfamily.org/.

2 README

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CEGO::AbstractIndividual
CEGO::NumericalIndividual < T >
CEGO::ALPSInputValues
CEGO::ALPSReturnValues
Antoine S
CEGO::Bound
Bumps
BumpsInputs
CEGO::numberish::id
CEGO::Layers < T >
CEGO::numberish
RatPolyAncillary
CEGO::RecombinationFlags
CEGO::Result
StornTest

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

DEGO::AbstractIndividual
CEGO::ALPSInputValues
CEGO::ALPSReturnValues
Antoine
DEGO::Bound
Bumps 1
BumpsInputs
DEGO::numberish::id
DEGO::Layers < T >
DEGO::numberish
DEGO::NumericalIndividual < T >
RatPolyAncillary
DEGO::RecombinationFlags
DEGO::Result
StornTest

6 Class Index

Chapter 4

Class Documentation

4.1 CEGO::AbstractIndividual Class Reference

Inheritance diagram for CEGO::AbstractIndividual:

Public Member Functions

AbstractIndividual (std::size_t age)

True if the individual needs to have their objective function evaluated.

void request_evaluation ()

Ask for an evaluation of this individual.

· void set needs evaluation (bool needs evaluation)

Set the evaluation state of this individual.

· bool needs_evaluation () const

Returns true if evaluation is needed.

void increase_age ()

Increase the age of the individual.

std::size_t age () const

Return the age of the individual.

void set_age (std::size_t age)

Set the age of the individual.

• virtual double get_cost ()=0

Return the cost.

• virtual void calc_cost ()=0

Calculate the cost of this individual.

virtual Eigen::ArrayXd get_coeffs_ArrayXd ()=0

Get the coefficients as an array of doubles. Throws if not possible.

virtual plndividual copy () const =0

Return a copy of this individual.

• void evaluate ()

Evaluate the given individual; no-op if no evaluation is needed.

 virtual plndividual recombine_with (plndividual &other, const std::vector< Bound > &bounds, const RecombinationFlags &flags)=0

Merge this individual with another individual to obtain the offspring.

4.1.1 Detailed Description

Definition at line 261 of file datatypes.hpp.

4.1.2 Member Function Documentation

4.1.2.1 recombine_with()

Merge this individual with another individual to obtain the offspring.

This must be implemented by the derived class; deciding how to handle crossover will depend on the data storage model (homogeneous or heterogeneous)

Implemented in CEGO::NumericalIndividual< T >.

The documentation for this class was generated from the following file:

· include/CEGO/datatypes.hpp

4.2 CEGO::ALPSInputValues Struct Reference

Public Attributes

std::vector < Bound > bounds

The vector of bounds on the variables.

double VTR

Value to reach (terminates on reaching this cost value)

CostFunction f

The cost function to be minimized.

• bool parallel = false

If true, evaluate each layer in a separate thread.

• std::size_t max_gen = 1000

Maximum number of generations that are allowed.

std::size_t NP = 40

The number of individuals in a population (per layer)

• std::size_t Nlayer = 1

The number of layers.

• std::size_t age_gap = 5

The number of generations between restarting the bottom layer.

• bool disp = false

If true, display diagnostics as you go to standard out.

4.2.1 Detailed Description

Definition at line 634 of file CEGO.hpp.

The documentation for this struct was generated from the following file:

• include/CEGO/CEGO.hpp

4.3 CEGO::ALPSReturnValues Struct Reference

Public Attributes

double fval

The function value at termination.

• double elapsed_sec

The number of seconds to conduct the entire optimization.

std::string termination_reason

Why the optimization stopped.

4.3.1 Detailed Description

Definition at line 645 of file CEGO.hpp.

The documentation for this struct was generated from the following file:

• include/CEGO/CEGO.hpp

4.4 Antoine Class Reference

Public Member Functions

- Antoine (const std::string &name)
- void plot curve ()
- Eigen::ArrayXd eval_RHS (const Eigen::ArrayXd &T, const Eigen::ArrayXd &c)
- double objective (const CEGO::AbstractIndividual *pind)
- double objective (const Eigen::ArrayXd &c)
- void plot_trace (const std::vector< double > &best_costs)
- const Eigen::ArrayXd & get_T ()

Public Attributes

- double m_Tt
- · double m_Tc
- double m_pc
- · double m_Dc
- Eigen::ArrayXd m_LHS
- Eigen::ArrayXd m_T
- std::string m_name

4.4.1 Detailed Description

Definition at line 21 of file Antoine.cxx.

The documentation for this class was generated from the following file:

· src/Antoine.cxx

4.5 CEGO::Bound Struct Reference

Public Member Functions

```
    template<class T >
```

Bound (const T &lower, const T &upper)

template<class T >

```
Bound (const std::pair < T, T > &bounds)
```

• template<typename URNG >

void gen_uniform (URNG &gen, double &d, int &i) const

- numberish enforce_bounds (const numberish &n) const
- template<typename URNG >

```
numberish random_out_of_bounds (URNG &gen, const numberish &n) const
```

template<typename URNG >
 numberish reflect_then_random_out_of_bounds (URNG &gen, const numberish &val) const

Public Attributes

- numberish m lower
- numberish m upper

4.5.1 Detailed Description

Definition at line 126 of file datatypes.hpp.

4.5.2 Member Function Documentation

4.5.2.1 reflect_then_random_out_of_bounds()

- < Excursion above the upper bound
- < Excursion below the lower bound
- < Width of the range
- < Excursion above the upper bound
- < Excursion below the lower bound
- < Width of the range

Definition at line 177 of file datatypes.hpp.

The documentation for this struct was generated from the following file:

include/CEGO/datatypes.hpp

4.6 Bumps Class Reference

Public Member Functions

- **Bumps** (std::size_t Nbumps, std::size_t Npoints)
- Eigen::ArrayXd f_givenxy (const Eigen::ArrayXd &xb, const Eigen::ArrayXd &yb, const Eigen::ArrayXd &x, const Eigen::ArrayXd &y)

Calculate the functional value for a set of vectors of points.

- double objective (const CEGO::AbstractIndividual *pind)
- double objective_vec (const std::vector< double > &c)
- double penalty_vec (const std::vector< double > &c)
- double penalty (const Eigen::ArrayXd &c)
- double **objective** (const Eigen::ArrayXd &c)
- void plot surface ()
- void plot_trace (const std::vector< double > &best_costs)
- Bumps (std::size_t Nbumps, std::size_t Npoints, const std::vector < CEGO::Bound > &bounds)
- Eigen::ArrayXd f_givenxy (const Eigen::ArrayXd &c, const Eigen::ArrayXd &x, const Eigen::ArrayXd &y)

 Calculate the functional value for a set of vectors of points.
- double objective (const CEGO::AbstractIndividual *pind)
- double **objective** (const Eigen::ArrayXd &cscaled)
- Eigen::ArrayXd to_realworld (const std::vector< CEGO::numberish > &x)
- Eigen::ArrayXd to_realworld (const Eigen::ArrayXd &x)
- Eigen::ArrayXd to_scaled (const Eigen::ArrayXd &x)
- void plot_surface ()
- void plot_trace (const std::vector< double > &best_costs)

Public Attributes

- std::size_t Nbumps
- Eigen::ArrayXd xb0
- · Eigen::ArrayXd yb0
- Eigen::ArrayXd xp
- Eigen::ArrayXd yp
- Eigen::ArrayXd zp
- double gamma = 5
- Eigen::ArrayXd c0
- const std::vector < CEGO::Bound > m_bounds

4.6.1 Detailed Description

Definition at line 13 of file inverse_gaussian.cxx.

4.6.2 Member Function Documentation

4.6.2.1 f_givenxy() [1/2]

Calculate the functional value for a set of vectors of points.

xb The x coordinate of the center of the bump yb The y coordinate of the center of the bump x The x coordinate of the points to be evaluated y The y coordinate of the points to be evaluated

Definition at line 38 of file inverse gaussian.cxx.

4.6.2.2 f_givenxy() [2/2]

Calculate the functional value for a set of vectors of points.

xb The x coordinate of the center of the bump x The x coordinate of the points to be evaluated y The y coordinate of the points to be evaluated

Definition at line 57 of file shaped inverse gaussian.cxx.

The documentation for this class was generated from the following files:

- src/inverse_gaussian.cxx
- src/shaped_inverse_gaussian.cxx

4.7 BumpsInputs Struct Reference

Public Attributes

- std::string root
- std::size_t parallel_threads
- std::size_t Nbumps
- std::vector< std::size t > Nlayersvec
- std::size_t i

4.7.1 Detailed Description

Definition at line 133 of file shaped_inverse_gaussian.cxx.

The documentation for this struct was generated from the following file:

• src/shaped_inverse_gaussian.cxx

4.8 CEGO::numberish::id Union Reference

Public Attributes

- double d
- int i

4.8.1 Detailed Description

Definition at line 17 of file datatypes.hpp.

The documentation for this union was generated from the following file:

· include/CEGO/datatypes.hpp

4.9 CEGO::Layers < T > Class Template Reference

Public Types

typedef std::vector< std::tuple< std::size_t, plndividual >> MutantVector

Public Member Functions

- Layers (const std::function < double(const std::vector < T > &)> &function, std::size_t Nind_size, std::size ←
 _t Npop_size, std::size_t Nlayers, std::size_t age_gap=5)
- Layers (CostFunction &function, std::size_t Nind_size, std::size_t Npop_size, std::size_t Nlayers, std::size_t age_gap=5)

Constructor into which is passed a CostFunction and information about the layers.

void set_logging_scheme (LoggingScheme scheme)

Specify the logging scheme that is to be employed.

LoggingScheme get_logging_scheme ()

Get the logging scheme in use.

• void set filtering function (const std::function< FilterOptions(const Result &)> &f)

Set the filtering function that should be used.

void set_bounds (const std::vector < Bound > &bounds)

Set the bounds on each element in the individual. If a one-element vector, the same bounds are used for each parameter.

const std::vector< Bound > & get_bounds ()

Get the bounds applied to each element in the individual.

const nlohmann::json get_evolver_flags () const

Get the flags for the evolver in JSON format.

• const void set_evolver_flags (const nlohmann::json &flags) const

Set the flags for the evolver in JSON format.

• void set_builtin_evolver (BuiltinEvolvers e)

Pick one of the builtin evolvers.

const CostFunction & get cost function ()

Get the cost function that is being used currently.

void set_generation_mode (GenerationOptions flag)

Set the flag to determine whether LHS or random (or other) is to be used to generate the population.

GenerationOptions get_generation_mode ()

Get the flag to determine whether LHS or random is to be used to generate the population.

- void graduate_elderly_individuals ()
- void repopulate_layers ()

Repopulate the layer to replace removed old individuals.

void evaluate_ind (pIndividual &ind)

Evaluate a single individual, and store the values if needed.

void evaluate_layers ()

Evaluate all of the layers.

void sort_all_layers ()

Sort all of the layers.

void increase_all_ages ()

Increase the age of all individuals.

std::vector< std::map< std::string, double > > cost_stats_each_layer ()

Calculate statistics of the costs of individuals in each layer.

void sort layer (Population &pop)

Sort a given layer.

- · void parallel_evaluator (MutantVector::iterator itstart, MutantVector::iterator itend, double &elap_sec)
- void init thread pool (short Nthreads)
- void evaluate_mutants (MutantVector &mutants)
- void evolve_parallel ()
- void evolve_layer (std::size_t i)

Evolve a given layer serially.

void do_generation ()

Carry out the steps for one generation.

- std::vector< std::tuple< double, const std::vector< T >>> get_best_per_layer ()
- std::tuple< double, const std::vector< T >> get best ()
- std::string print diagnostics ()
- std::vector< Result > get_results ()

Get the results that have been logged during the course of this optimization.

Public Attributes

- bool parallel = false
- bool print_chunk_times = false
- std::size_t parallel_threads = 6
- std::size t Nind size
- std::size_t Npop_size
- · std::size_t Nlayers
- std::size_t age_gap

4.9.1 Detailed Description

```
template < typename T> class CEGO::Layers < T>
```

Definition at line 130 of file CEGO.hpp.

4.9.2 Member Function Documentation

4.9.2.1 graduate_elderly_individuals()

```
template<typename T>
void CEGO::Layers< T >::graduate_elderly_individuals ( ) [inline]
```

Iterate over the layers and find individuals that are too old for the given layer

First try to see if the elderly individual dominates any individual in a layer with a higher age limit If it does, replace the individual in the higher age limit layer

Definition at line 247 of file CEGO.hpp.

4.9.2.2 print_diagnostics()

```
template<typename T>
std::string CEGO::Layers< T >::print_diagnostics ( ) [inline]
```

Return a string with some diagnostic information for the best individual in the population

See also

```
get_best
get_best_per_layer
```

Definition at line 618 of file CEGO.hpp.

The documentation for this class was generated from the following file:

• include/CEGO/CEGO.hpp

4.10 CEGO::numberish Struct Reference

Classes

• union id

Public Types

enum types { INT, DOUBLE }

Public Member Functions

- numberish (const int &value)
- numberish (const double &value)
- void **operator**= (const int &value)
- void **operator**= (const double &value)
- numberish operator- (const numberish &value) const
- numberish operator+ (const numberish &value) const
- numberish operator* (const numberish &value) const
- · operator int () const

Get the value as an integer - stored double value will throw error.

· double as double () const

Return the value as a double.

• int as_int () const

Return the value as an integer.

• operator double () const

Get the value as a double - stored integer will upcast to a double.

• std::string to_string () const

Convert the value to a string.

Public Attributes

- enum CEGO::numberish::types type
- union CEGO::numberish::id u

4.10.1 Detailed Description

Definition at line 13 of file datatypes.hpp.

The documentation for this struct was generated from the following file:

· include/CEGO/datatypes.hpp

4.11 CEGO::NumericalIndividual < T > Class Template Reference

Inheritance diagram for CEGO::NumericalIndividual < T >:

Public Member Functions

- NumericalIndividual (const std::vector< T > &&c, const CostFunction &f)
- NumericalIndividual (const std::vector< T > &c, const CostFunction &f)
- const std::vector< T > & get_coefficients () const
- void calc_cost () override

Calculate the cost of this individual.

- void set_cost (T cost)
- · double get cost () override

Return the cost.

Eigen::ArrayXd get_coeffs_ArrayXd ()

Get the coefficients as an array of doubles. Throws if not possible.

• virtual plndividual recombine_with (plndividual &other, const std::vector< Bound > &bounds, const RecombinationFlags &flags={}) override

Merge this individual with another individual to obtain the offspring.

· virtual plndividual copy () const override

Return a copy of this individual.

4.11.1 Detailed Description

```
\label{template} \begin{split} \text{template} &< \text{class T}> \\ \text{class CEG0::NumericalIndividual} &< \text{T}> \end{split}
```

Definition at line 314 of file datatypes.hpp.

4.11.2 Member Function Documentation

4.11.2.1 recombine_with()

Merge this individual with another individual to obtain the offspring.

This must be implemented by the derived class; deciding how to handle crossover will depend on the data storage model (homogeneous or heterogeneous)

Implements CEGO::AbstractIndividual.

Definition at line 339 of file datatypes.hpp.

The documentation for this class was generated from the following file:

include/CEGO/datatypes.hpp

4.12 RatPolyAncillary Class Reference

Public Member Functions

- RatPolyAncillary (const std::string &name, const std::size_t Nnum, const std::size_t Nden)
- void plot curve ()
- void plot_deviation (const Eigen::ArrayXd &c)
- Eigen::ArrayXd eval_RHS (const Eigen::ArrayXd &x, const Eigen::ArrayXd &c)
- double **objective** (const CEGO::AbstractIndividual *pind)
- double **objective** (const Eigen::ArrayXd &c)
- void plot_trace (const std::vector< double > &best_costs)

Public Attributes

- double m_Tt
- · double m_Tc
- double m_pc
- double m Dc
- · std::size_t m_Nnum
- std::size_t m_Nden
- Eigen::ArrayXd m LHS
- Eigen::ArrayXd m_THETA
- Eigen::ArrayXd m_T
- · std::string m name
- fitting_options to_fit = FIT_RHOV

4.12.1 Detailed Description

Definition at line 21 of file fit_ratpoly_ancillary.cxx.

The documentation for this class was generated from the following file:

· src/fit_ratpoly_ancillary.cxx

4.13 CEGO::RecombinationFlags Struct Reference

Public Attributes

- double p_same_w = 0.5
- double nonuniform w stddev = 1
- double uniform_w_stddev = 1
- bool enforce_bounds = true

4.13.1 Detailed Description

Definition at line 244 of file datatypes.hpp.

4.13.2 Member Data Documentation

4.13.2.1 nonuniform_w_stddev

```
double CEGO::RecombinationFlags::nonuniform_w_stddev = 1
```

The standard deviation for the normal distribution for the weighting factor between the individuals

Definition at line 248 of file datatypes.hpp.

4.13.2.2 p same w

```
double CEGO::RecombinationFlags::p_same_w = 0.5
```

The probability in [0,1] that the same w will be used to weight the entire individual in the recombination, otherwise different w will be used for each coefficient in the individual

Definition at line 245 of file datatypes.hpp.

4.13.2.3 uniform_w_stddev

```
double CEGO::RecombinationFlags::uniform_w_stddev = 1
```

The standard deviation for the normal distribution for the weighting factor between the individuals

Definition at line 250 of file datatypes.hpp.

The documentation for this struct was generated from the following file:

include/CEGO/datatypes.hpp

4.14 CEGO::Result Struct Reference

Public Member Functions

• Result (Eigen::ArrayXd &&c, double &&ssq)

Public Attributes

- Eigen::ArrayXd c
- double ssq

4.14.1 Detailed Description

Definition at line 36 of file CEGO.hpp.

The documentation for this struct was generated from the following file:

• include/CEGO/CEGO.hpp

4.15 StornTest Class Reference

Public Member Functions

- **StornTest** (std::function< double(const std::vector< double > &)> &f, int NP, double F, double CR, double VTR, std::vector< CEGO::Bound > bounds)
- double **objective** (const CEGO::AbstractIndividual *pind)
- void run ()

Public Attributes

• int **Ncalls** = 0

Protected Attributes

- std::function< double(const std::vector< double > &)> m_f
- int m_NP
- · double m_F
- double m_CR
- double m_VTR
- std::vector < CEGO::Bound > m_bounds

4.15.1 Detailed Description

Definition at line 55 of file StornPriceprofiling.cxx.

The documentation for this class was generated from the following file:

• src/StornPriceprofiling.cxx

Index

```
Antoine, 9
Bumps, 11
    f_givenxy, 11, 12
BumpsInputs, 12
CEGO::ALPSInputValues, 8
CEGO::ALPSReturnValues, 9
CEGO::AbstractIndividual, 7
     recombine_with, 8
CEGO::Bound, 10
    reflect_then_random_out_of_bounds, 10
CEGO::Layers
    graduate_elderly_individuals, 15
    print_diagnostics, 15
CEGO::Layers < T >, 13
CEGO::NumericalIndividual
     recombine_with, 17
CEGO::NumericalIndividual < T >, 16
CEGO::RecombinationFlags, 18
    nonuniform_w_stddev, 19
    p_same_w, 19
    uniform w stddev, 19
CEGO::Result, 19
CEGO::numberish, 15
CEGO::numberish::id, 13
f_givenxy
    Bumps, 11, 12
graduate_elderly_individuals
    CEGO::Layers, 15
nonuniform_w_stddev
    CEGO::RecombinationFlags, 19
p_same_w
    CEGO::RecombinationFlags, 19
print diagnostics
    CEGO::Layers, 15
RatPolyAncillary, 18
recombine with
    CEGO::AbstractIndividual, 8
    CEGO::NumericalIndividual, 17
reflect_then_random_out_of_bounds
    CEGO::Bound, 10
StornTest, 20
uniform_w_stddev
    CEGO::RecombinationFlags, 19
```