Photosynthesis under partial sea-ice cover

Modeling photosynthesis in sea ice-covered waters

Matthew C. Long¹, Keith Lindsay¹, and Marika M. Holland¹

¹National Center for Atmospheric Research, Boulder, Colorado, USA

Figure 6. Annual net primary production in the (a) Arctic (>65.5°N) and (b) Antarctic region (>60°S) from CTRL (blue) and MCOG (red Shading shows the standard deviation of interannual variability over 30 years of simulation.

Challenge in HAMOCC: Southern Ocean Seasonality (Nevison et al. 2015)

Key Points:

- Photosynthesis is nonlinear, computations on mean versus full fields will differ
- Sea ice drives spatial variability in light
- Accounting for nonlinearity improves accuracy of simulated primary

J FM AM J J A S O N D J FM AM J

Bulk phytoplankton

$$\frac{\partial \text{Phy}}{\partial t} \underbrace{\underbrace{G_{\text{phy}}}^{\text{grazing}} F_{\text{pz}} - M_{\text{phy}} - E_{\text{phy}}}_{\text{growth}}$$

$$G_{\text{phy}} = I(I, T) \frac{X}{K_X + X} \text{Phy}$$

$$f(T) = \mu_{\text{phy}} 1.066^{(T)}$$

Growth

- Limitation by: light, temperature, nutrients
- Temperature: Eppley curve
- Light: P-I saturation curve (Smith, 1936) with light provided by MPIOM: vertical light field Zielinski et al. (2002) (exponential profile, clear water and self shading effect of Phy with constant C:Chl conversion factor)

$$g(I(z)) = o I_0 \left(\sigma \exp(-zk_r) + (1-\sigma) \exp(-zk_w - k_{\text{chl}} \int_0^z R_{\text{C:Chl}} Phy) \right)$$
depth dependent

$$J(I, T) = \frac{g(I(z))f(T)}{\sqrt{g(I(z))^2 + f(T)^2}}$$

Smith (1936)

$$P^{B} = P_{m}^{B} \alpha I / [(P_{m}^{B})^{2} + (\alpha I)^{2}]^{\frac{1}{2}}$$

Photosynthesis in HAMOCC

- Combined temperature- and light-limitation
- Non-linear
- For cold waters quickly light-saturated

Proposal: Fix for PAR

- Now: If grid cell is sea-ice covered, then strahl is attenuated
- Proposal: ..., then PAR for grid cell is calculated for sea-ice free area (f) and sea-ice covered area (1-f) separately
 - → CHANGE IN TIMING
- No change if no ice (f=0)
- No change if J(I,T) linear

Figure 1. Relative rate of photosynthesis (equation (1)) plotted as a function of irradiance (photosynthetically available radiation [PAR]) under constant temperature (2°C), nutrient replete conditions, and a chlorophyll:carbon ratio of 0.025 g Chl (g C)⁻¹ (P_{max}^{C} =4.8 day⁻¹, representative of diatoms in BEC). A thought experiment is illustrated in which a grid-cell is half covered with sea ice that has uniform transmittance properties, passing 5% of incident solar radiation such that I_{ke} =0.05 I_{ow} , where I_{ow} is the PAR value of open water.

My runs

- From Fabrice pre-industrial control restart file
- Ori (CTRL) = 30 yrs control run
- Phyice (MCOG) = 30 yrs phyice fix

INTPP in the Antarctic south of 60S

Figure 6. Annual net primary production in the (a) Arctic (>65.5°N) and (b) Antarctic region (>60°S) from CTRL (blue) and MCOG (red). Shading shows the standard deviation of interannual variability over 30 years of simulation.

INTPP in the Antarctic south of 60S

CO2 flux in the Antarctic south of 60S

Effects

- Little less primary production
- Bloom little later
- Sea-ice under-estimated in MPIOM
- Only checked for 60-90S in pi-control
- Adaptable for under-ice phytoplankton growth

pCO2 in the Antarctic south of 60S

dpCO2 in the Antarctic south of 60S

Summary Seasonality

