W3WI DS304.1 Applied Machine Learning Fundamentals

Exercise Sheet # 1 - Numeric Optimization Techniques

Question 1 2023, modified (Gradients)

Compute the gradients of the following functions:

1.
$$\begin{cases} f_1 : \mathbb{R}^3 \to \mathbb{R} \\ (x, y, z) \mapsto 3x^2 - 5y^2 + 2z^2 \end{cases}$$

4.
$$\begin{cases} f_4 : \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto \frac{xy}{3x+y^2} \end{cases}$$

2.
$$\begin{cases} f_2 : \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto \ln(\sqrt{xy^3}) \end{cases}$$

5.
$$\begin{cases} f_5 : \mathbb{R}^2 \to \mathbb{R} \\ (x, y) \mapsto \ln(e^{-x} + e^{2y}) \end{cases}$$

3.
$$\begin{cases} f_3 : \mathbb{R}^m \to \mathbb{R} \\ \boldsymbol{x} \mapsto \|\boldsymbol{x}\|^2 \end{cases}$$

6.
$$\begin{cases} f_6 : \mathbb{R}^2 \to \mathbb{R} \\ (x, y) \mapsto \sqrt{x + y} \sin(xy) \end{cases}$$

Hint: $\|\boldsymbol{x}\| := \sqrt{\sum_{j=1}^m x_j^2}$ denotes the **Euclidean norm** of the vector $\boldsymbol{x} \in \mathbb{R}^m$.

Question 2 (Gradient descent for the Rosenbrock function)

Let the function

$$\begin{cases} f: \mathbb{R}^2 \to \mathbb{R} \\ (x_1, x_2) \mapsto \left(100 \cdot (x_2 - x_1^2)^2 + (x_1 - 1)^2 \right) \end{cases}$$

be given. This function is known as the **Rosenbrock function** whose graph is shown in the following figure 1:

Figure 1: Plot of the two-dimensional Rosenbrock function.

- 1. Compute the gradient of f and apply five iterations of gradient descent using the learning rate $\alpha = 0.0005$. Start at the point $\boldsymbol{x}_0 = (0.85, 1.10)^{\intercal}$.
- 2. Now perform three iterations of gradient descent using the same starting point and the learning rate $\alpha = 0.005$. What phenomenon do you observe?

Question 3 2021, modified (Gradient descent for the Himmelblau function)

Let the following function

$$\begin{cases} f: \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto (x^2 + y - 11)^2 + (x + y^2 - 7)^2 \end{cases}$$

be given (this function is known as the **Himmelblau function**). Perform two iterations of gradient descent using the learning rate $\alpha = 0.02$. Start at the coordinates $x_0 = y_0 = 0$ (the subscript index denotes the number of iterations already performed). Please answer the following questions:

- 1. What are the values of x_2 and y_2 ?
- 2. What is the function value $f(x_2, y_2)$ compared to $f(x_0, y_0)$?
- 3. Is f a **convex function? Hint:** Figure 2 might be helpful. (Please justify your answer!)
- 4. In which point will you eventually end up when initializing the algorithm at the coordinates $\tilde{x}_0 = -1$ and $\tilde{y}_0 = 1$?

Figure 2: Contour plot of the Himmelblau function.

Question 4 2020 (Gradient descent learning rate)

What is a suitable value for the learning rate α ? What problems do you face when choosing it **too low or too high**?

Question 5 2021 (Gradient ascent)

Suppose you want to find a maximum of a given function f. How would you have to alter the gradient descent update rule to achieve your goal? This algorithm is called **gradient** ascent.

Question 6 2020 (Gradient descent update rule)

Tick the correct parameter update rule used in gradient descent (\mathcal{J} is the cost function).

$$\Box \theta \longleftarrow \theta + \alpha \nabla \mathcal{J}(\theta)$$

$$\square \boldsymbol{\theta} \longleftarrow \boldsymbol{\theta} - \alpha \nabla \mathcal{J}(\boldsymbol{\theta})$$

$$\square \ \boldsymbol{\theta} \longleftarrow \alpha \nabla \mathcal{J}(\boldsymbol{\theta})$$

 \square All options are incorrect.

Question 7 (Newton's method)

Compute the Hessian matrix of the Rosenbrock function (see question 2) and perform two iterations of Newton's method starting from the coordinates $\boldsymbol{x}_0 = (0.85, 1.10)^{\mathsf{T}}$!