香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2014年香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2014

數學 必修部分 試卷-MATHEMATICS COMPULSORY PART PAPER 1

評卷參考 MARKING SCHEME

本評卷參考乃香港考試及評核局專爲今年本科考試而編寫,供閱卷員參考之用。本評卷參考之使用,均受制於閱卷員有關之委任條款及閱卷員指引。特別是:

- 本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之書面批准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷參考之全部或其部份。在遵守上述條款之情況下,本局有限地容許閱卷員可在應屆香港中學文憑考試的考試成績公布後,將本評卷參考提供任教本科的教師參閱。
- 在任何情況下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant appointment terms and Instructions to Markers. In particular:

- The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.
- Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved

Hong Kong Diploma of Secondary Education Examination Mathematics Compulsory Part Paper 1

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *all the marks* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 5. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

Solution	Marks	Remarks
1. $\frac{(xy^{-2})^3}{y^4}$ $= \frac{x^3}{y^{10}}$ $= \frac{x^3}{y^{10}}$		for $(ab)^m = a^m b^m$ or $(a^m)^n = a^{mn}$ for $c^{-p} = \frac{1}{c^p}$ or $\frac{c^p}{c^q} = c^{p-q}$
2. (a) $a^{2}-2a-3$ =(a+1)(a-3) (b) $ab^{2}+b^{2}+a^{2}-2a-3$ $=ab^{2}+b^{2}+(a+1)(a-3)$ $=b^{2}(a+1)+(a+1)(a-3)$ $=(a+1)(b^{2}+a-3)$	1A 1M 1A(3)	or equivalent for using the result of (a) or equivalent
3. (a) 200 fee (b) 123 (c) 123.4	1A 1A 1A (3)	
4. The median =1 The mode = 2 The standard deviation 0.8888192441 ≈ 0.889	1A 1A(3)	r.t. 0.889

		Solution	Marks	Remarks
5. ((a)			
		6m + 2n - m + I	1 M	for expanding
		$n = \frac{7 - 5m}{2}$	1A	or equivalent
		2(3m+n)=m+7		
		$3m + n = \frac{m + 7}{2}$	1M	for division
		$n = \frac{7 - 5m}{2}$	1A	or equivalent
(b)	The decrease in the value of n	1 M	
	,	= 5	1M (4)	
			(4)	
6 (٥)	The colling major of the toy		1
6. (8	a)	The selling price of the toy $= 255(1-40\%)$	IM	
		= \$153	1A	
a	b)	Let x be the cost of the toy.		
(,	(1+2%)x = 153	1M	
		x = 150	1A	
		Thus, the cost of the toy is \$150.		
			(4)	
7. (a	a)	f(2) = -33	1M	
`		$4(2)^3 - 5(2)^2 - 18(2) + c = -33$		
		c = -9		
		f(-1)	1M	
		$= 4(-1)^3 - 5(-1)^2 - 18(-1) - 9$ = 0		
		Thus, $x+1$ is a factor of $f(x)$.	1A	f.t.
(b		f(x) = 0		
		$4x^3 - 5x^2 - 18x - 9 = 0$		•
		$(x+1)(4x^2-9x-9) = 0$	1M	for $(x+1)(px^2+qx+r) = 0$
		(x+1)(x-3)(4x+3) = 0		
		$x = -1$, $x = 3$ or $x = \frac{-3}{4}$		
		Note that -1 , 3 and $\frac{-3}{4}$ are rational numbers.		
	,	Thus, the claim is agreed.	1A	f.t.
			(5)	
2014-D	SE-N	MATH-CP 1–4		

	Solution	Marks	Remarks
8. (a	The coordinates of P' are $(5,3)$.	1A	
	The coordinates of Q' are $(-19, -7)$.	1A	
(t			
	$=\frac{5+7}{-3-2}$	1M	
	$=\frac{-12}{5}$	1A	
	5		either one
	The slope of $P'Q'$		either one
	$=\frac{3+7}{5+19}$		
	$=\frac{5}{12}$		
	So, the product of the slope of PQ and the slope of $P'Q'$ is -1 .	1	
	Thus, PQ is perpendicular to $P'Q'$.		
		(5)	
0 (-	In AARC and ARRC		
9. (a	In $\triangle ABC$ and $\triangle BDC$, $\angle BAC = \angle DBC$ (given)		 [已知]
	$\angle ACB = \angle BCD$ (common \angle)		[公共角]
	$\angle ABC = \angle BDC$ ($\angle sum of \Delta$) $\Delta ABC \sim \Delta BDC$ (AAA)		
	$\Delta ABC \sim \Delta BDC$ (AAA)		(AA) (equiangular) [等角]
	Marking Scheme: Case 1 Any correct proof with correct reasons.	2	
	Case 2 Any correct proof without reasons.	1	
(h	CD BC	1M	
(b	BC = AC	1101	
	$\frac{CD}{20} = \frac{20}{25}$:	
	CD = 16 cm		
	$BD^2 + CD^2$	1M	
	$=12^2 + 16^2$	1171	}
	$=20^{2}$		•
	$=BC^{2}$ Thus, A BCD, is a right angled triangle.	1.4	£4
	Thus, $\triangle BCD$ is a right-angled triangle.	1A (5)	f.t.
2014-DS	E-MATH-CP 15		

		Solution	Marks	Remarks
10.	(a)	The distance of car A from town X at 8:15 in the morning		
		$=\frac{45}{120}(80)$	1M	
		120 = 30 km	1A	
		- 50 Km	(2)	
	(b)	Suppose that car A and car B first meet at the time t minutes after 7:30 in the morning. t 44	111	
		$\frac{t}{120} = \frac{44}{80}$	1M	
		t = 66 Thus, car A and car B first meet at 8:36 in the morning.	1A (2)	
	(c)	During the period 8:15 to 9:30 in the morning, car B travels 36 km		
		while car A travels more than 36 km.	1 M	
		So, the average speed of car A is higher than that of car B . Thus, the claim is disagreed.	1A	f.t.
		The average speed of car A during the period 8:15 to 9:30 in the morning $= \frac{80-30}{1.25}$ $= \frac{50}{50}$	1M	accept $\frac{80}{2}$
		$-\frac{1.25}{1.25}$:	.,
		= 40 km/h		either one
		The average speed of car B during the period 8:15 to 9:30 in the morning $= \frac{80 - 44}{1.25}$		
		36		
		$=\frac{1.25}{0.001}$		
		= 28.8 km/h		
		Note that $40 > 28.8$. So, the average speed of car A is higher than that of car B .		
		Thus, the claim is disagreed.		f.t.
			(2)	
				•
)14-)	DSE-	MATH-CP 1–6		

	Solution	Marks	Remarks
1. (a)	The range 21 18 = 73 thousand dollars	1M 1A	either one
	The inter-quartile range 63-42 = 21 thousand dollars	1A (3)	
(b)	The mean of the prices of the remaining paintings in the art gallery $= \frac{(33)(53) - 32 - 34 - 58 - 59}{33 - 4}$	1M	
	$= \frac{1566}{29}$ = 54 thousand dollars	IA	
	Note that 32 and 34 are less than 55. Also note that 58 and 59 are greater than 55.		
	The median of the prices of the remaining paintings in the art gallery = 55 thousand dollars	1A (3)	
14-DSI	E-MATH-CP 1-7		

	Solution	Marks	Remarks
2. (a)	The radius of C = $\sqrt{(6-0)^2 + (11-3)^2}$	1M	
	= 10 Thus, the equation of C is $x^2 + (y-3)^2 = 10^2$.	1A (2)	$x^2 + y^2 - 6y - 91 = 0$
(b) ((i) Let (x, y) be the coordinates of P .	[
	$\sqrt{(x-0)^2 + (y-3)^2} = \sqrt{(x-6)^2 + (y-11)^2}$ $3x + 4y - 37 = 0$ Thus, the equation of Γ is $3x + 4y - 37 = 0$.	1M 1A	
	The slope of AG $= \frac{11-3}{6-0}$ $= \frac{4}{3}$ Note that the slope of Γ is $\frac{-3}{4}$. Also note that the mid-point of AG is $(3,7)$. The equation of Γ is $y-7=\frac{-3}{4}(x-3)$	1M	
	3x + 4y - 37 = 0	1A	
(ii) Γ is the perpendicular bisector of the line segment AG .	1A	
(1	iii) The perimeter of the quadrilateral AQGR = 4(10) = 40	1M 1A (5)	
14-DSE-M.	ATH-CP 1–8		

	Solution	Marks	Remarks
3. (a)	Let $f(x) = px^2 + q$, where p and q are non-zero constants. So, we have $4p + q = 59$ and $49p + q = -121$. Solving, we have $p = -4$ and $q = 75$.	1A 1M 1A	for either substitution for both correct
	Therefore, we have $f(x) = 75 - 4x^2$. Thus, we have $f(6) = -69$.	1A (4)	
(b)	By (a), we have $a = -69$. Since $f(x) = 75 - 4x^2$, we have $f(-6) = f(6)$. So, we have $b = -69$.	1M	either one
	AB = 6 - (-6) = 12	1M	can be absorbed
	The area of $\triangle ABC$ $= \frac{(12)(69)}{2}$	1M	
	= 414	1A (4)	
14-DSE	-MATH-CP 1-9		

		Solution	Marks	Remarks
4. (8	a)	The slant height of the circular cone $= \sqrt{72^2 + 96^2}$ = 120 cm	1M	
		The area of the wet curved surface of the vessel $= \pi (72)(120) \frac{(96-60+28)^2 - (96-60)^2}{96^2}$	1M+1M	
		$= \pi (72)(120) \frac{64^2 - 36^2}{96^2}$ $= 2.625 \pi \text{ cm}^2$	1A	
		Let R cm be the radius of the water surface.	<u> </u>	
		Then, we have $\frac{R}{72} = \frac{96 - 60 + 28}{96}$. Therefore, we have $\frac{R}{72} = \frac{64}{96}$.	1M	
		So, we have $R = 48$. Let r cm be the base radius of the lower part of the inverted right circular cone.		either one
		Then, we have $\frac{r}{72} = \frac{96 - 60}{96}$. Therefore, we have $\frac{r}{72} = \frac{36}{96}$.		
		So, we have $r = 27$. The area of the wet curved surface of the vessel $= \pi (48)\sqrt{48^2 + 64^2} - \pi (27)\sqrt{27^2 + 36^2}$	1M+1M	
		$= \pi(48)(80) - \pi(27)(45)$ = 2 625 π cm ²	1A	
			(4)	
(b)	The volume of the circular cone $= \frac{1}{3}\pi (72)^2 (96)$	1M	
		$= 165888\pi \text{ cm}^3$		
		The volume of water in the vessel $= 165888\pi \left(\frac{64^3 - 36^3}{96^3} \right)$	lM+1A	
		$= 40 404 \pi \text{ cm}^3$		
		$\approx 0.126932909 \text{ m}^3$		
		$> 0.1 \text{ m}^3$ Thus, the claim is agreed.	1A	f.t.
		The volume of water in the vessel		
		$= \frac{1}{3}\pi(48)^2(64) - \frac{1}{3}\pi(27)^2(36)$	1M+1M+1A	
		$= 49152\pi - 8748\pi$ $= 40404\pi \text{ cm}^3$		
		$\approx 0.126932909 \mathrm{m}^3$		
		$> 0.1 \mathrm{m}^3$		
		Thus, the claim is agreed.	1A (4)	f.t.
			-(-/)	

	Solution	Marks	Remarks
15.	$\log_8 y - 0 = \frac{-1}{3} (\log_4 x - 3)$	1M	
	$\log_8 y = \frac{-1}{3}\log_4 x + 1$		
	$\log_8 y = \log_4 x^{-\frac{1}{3}} + \log_4 4$		
	$\log_8 y = \log_4 4x^{-\frac{1}{3}}$		
	$\frac{\log_2 y}{\log_2 8} = \frac{\log_2 4x^{\frac{-1}{3}}}{\log_2 4}$	1M	
		1171	
	$\log_2 y = \frac{3}{2} \log_2 4x^{\frac{-1}{3}}$		
	$\log_2 y = \log_2 8x^{\frac{-1}{2}}$		
	$y = 8x^{\frac{-1}{2}}$	1A	
	$\log_8 y - 0 = \frac{-1}{3} (\log_4 x - 3)$	1M	
	$\log_8 y = \frac{-1}{3}\log_4 x + 1$		
	$\log_8 y = \log_4 x^{\frac{-1}{3}} + \log_4 4$		
	$\log_8 y = \log_4 4x^{\frac{-1}{3}}$		
	$y = 8^{\log_4 4x^{\frac{-1}{3}}}$		
	$y = 4^{\frac{3}{2}\log_4 4x^{\frac{-1}{3}}}$	1M	
	$y = 4^{\log_4 8x^{\frac{-1}{2}}}$		
	$y = 8x^{\frac{-1}{2}}$	1A	
		(3)	
16	Note that the numbers of dots in the patterns form an arithmetic sequence.		
10.			
	The total number of dots in the first m patterns $= 3 + 5 + 7 + \cdots + (2m + 1)$		
	$=\frac{m}{2}(3+(2m+1))$	1M+1A	accept $\frac{m}{2}((2)(3) + (m-1)(2))$
	$=m^2+2m$		_
	$m^2 + 2m > 6888$		
	$m^2 + 2m - 6888 > 0$	1M	
	(m-82)(m+84) > 0 m < -84 or $m > 82$		
	Thus, the least value of m is 83.	1A	
		(4)	
2014	-DSE-MATH-CP 1–11		

	Solution	Marks	Remarks
17. (a)	By sine formula, we have $\frac{\sin \angle AVB}{AB} = \frac{\sin \angle VAB}{VB}$ $\frac{\sin \angle AVB}{18} = \frac{\sin 110^{\circ}}{30}$ $\angle AVB \approx 34.32008291^{\circ}$ $\angle VBA \approx 180^{\circ} - 110^{\circ} - 34.32008291^{\circ}$	1M	
	$\angle VBA \approx 35.67991709^{\circ}$ $\angle VBA \approx 35.7^{\circ}$	1A (2)	r.t. 35.7°
(b)	By cosine formula, we have $MP^2 = BP^2 + BM^2 - 2(BP)(BM)\cos \angle VBA$	1M	
	$MP^2 \approx 9^2 + 15^2 - 2(9)(15)\cos 35.67991709^\circ$ $MP \approx 9.310329519 \text{ cm}$		
	$MN = \frac{BC}{2}$ $MN = 5 \text{ cm}$	1M	
	Note that $MP = NQ$. Let $h \text{ cm}$ be the height of the trapezium $PQNM$.		
	$h = \sqrt{MP^2 - \left(\frac{PQ - MN}{2}\right)^2}$ $h \approx \sqrt{9.310329519^2 - \left(\frac{10 - 5}{2}\right)^2}$	1M	
	$h \approx \sqrt{9.310329519^2 - \left(\frac{1}{2}\right)}$ $h \approx 8.968402074$		
	The area of the trapezium $PQNM$ $= \frac{h(MN + PQ)}{2}$ $\approx \frac{(8.968402074)(5+10)}{2}$	1M	
	$\approx 67.26301555 \text{ cm}^2$ < 70 cm ²		
	Thus, the claim is agreed.	1A	f.t.

Solution	Marks	Remarks
By cosine formula, we have		
$MP^2 = BP^2 + BM^2 - 2(BP)(BM)\cos \angle VBA$	1M	
$MP^2 \approx 9^2 + 15^2 - 2(9)(15)\cos 35.67991709^\circ$		
$MP \approx 9.310329519 \text{ cm}$		
$MN = \frac{BC}{2}$	1M	
MN = 5 cm		
$\cos \angle MPQ = \frac{\underline{PQ - MN}}{\underline{2}}$	1M	
1 171		
$\cos \angle MPQ \approx \frac{\frac{10-5}{2}}{9.310329519}$		
$\cos \angle MPQ \approx \frac{2}{9.310329519}$		
$\angle MPQ \approx 74.42384466^{\circ}$		
Note that $MP = NQ$.		
Let $h \text{ cm}$ be the height of the trapezium $PQNM$.		
$\frac{h}{MP} = \sin \angle MPQ$		
$\frac{h}{9.310329519} \approx \sin 74.42384466^{\circ}$		
$h \approx 8.968402074$		
The area of the trapezium PQNM		
$= h(MN) + \frac{1}{2}(MP)(BC - MN)\sin \angle MPQ$	1M	
$\approx (8.968402074)(5) + \frac{1}{2}(9.310329519)(10 - 5)\sin 74.42384466^{\circ}$		
$\approx 67.26301555 \text{ cm}^2$		
$< 70 \text{ cm}^2$		
Thus, the claim is agreed.	1A	f.t.
	(5)	

	Solutio	Marks	Remarks	
18. (a)	The slope of L_2 $= \frac{90 - 0}{45 - 180}$ $= \frac{-2}{3}$			
	The equation of L_2 is		ļ	
	$y - 90 = \frac{-2}{3}(x - 45)$		1M	
	2x + 3y - 360 = 0		1A	
		$\int 6x + 7y \le 900$		
	Thus, the system of inequalities is	$\begin{cases} 2x + 3y \le 360 \\ x \ge 0 \end{cases}$	1M+1A	or equivalent
		$y \ge 0$	(4)	
(b)	and y are non-negative integers. Denote the total profit on the production. Then, we have $P = 440x + 665y$. Note that the vertices of the shaded	≤ 900 and $2x + 3y \le 360$, where x action of wardrobes by $\$P$. I region in Figure 7 are the points	1A	
	(0,0), $(0,120)$, $(45,90)$ and $(150,0)$.			
	At the point $(0,0)$, we have $P = (440)(0) + (665)(0) = 0$.		1M+1M	1M for testing a point +
	At the point $(0, 120)$, we have $P = (440)(0) + (665)(120) = 79800$.			1M for testing all points
	At the point $(45, 90)$, we have $P = (440)(45) + (665)(90) = 79650$.			
	At the point $(150, 0)$, we have $P = (440)(150) + (665)(0) = 66000$. So, the greatest possible profit is \$79800.			
	Thus, the claim is disagreed.	379 800 .	1A	f.t.
	Let x and y be the numbers of we month respectively. Now, the constraints are $6x + 7y$: and y are non-negative integers. Denote the total profit on the product of the product of the straight line $88x + 133y$ constant. It is found that P attains its greater So, the greatest value of P is \$75. Thus, the claim is disagreed.	≤ 900 and $2x + 3y \leq 360$, where x action of wardrobes by P . $= k$ on Figure 7, where k is a st value at the point $(0, 120)$.	1A 1M+1M 1A	IM for sliding straight line + IM for straight line with negative slope f.t.

2014-DSE-MATH-CP 1-14

	Solution	Marks	Remarks
19. (a)	The required probability $= \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \cdots$	1M	
	$= \frac{1}{6} + \left(\frac{1}{6}\right) \left(\frac{25}{36}\right) + \left(\frac{1}{6}\right) \left(\frac{25}{36}\right)^2 + \cdots$		
	$=\frac{\frac{1}{6}}{1-\frac{25}{36}}$	1M	
	$=\frac{6}{11}$	1A	r.t. 0.545
	Let p be the probability that Ada wins the first round of the game. Then, the probability that Billy wins the first round of the game is $\frac{5p}{6}$.	1 M	
	$\begin{vmatrix} p + \frac{5p}{6} = 1\\ \frac{11p}{6} = 1 \end{vmatrix}$	1M	
	$p = \frac{6}{11}$	1A	r.t. 0.545
	Thus, the required probability is $\frac{6}{11}$.	(3)	
(b)	(i) Suppose that the player of the second round adopts Option 1.	(3)	
	The probability of getting 10 tokens		
	$=(1)\left(\frac{1}{8}\right)$	1M	accept $\frac{8}{8^2}$
	$=\frac{1}{8}$		
	The probability of getting 5 tokens		
	$=\frac{(7)(P_2^2)}{8^2}$		
	$=\frac{7}{32}$	1A	can be absorbed
	The expected number of tokens got		
	$= (10) \left(\frac{1}{8}\right) + (5) \left(\frac{7}{32}\right)$	1M	
	$=\frac{75}{32}$	1A	r.t. 2.34
	. 32		
2014-DSE	MATH-CP 1–15		

Solution	Marks	Remarks
(ii) Suppose that the player of the second round adopts Option 2.		
The probability of getting 50 tokens		
$=(1)\left(\frac{1}{8}\right)\left(\frac{1}{8}\right)$		
$=\frac{1}{64}$		
The probability of getting 10 tokens		
$=\frac{(6)(P_3^3)}{8^3}$		
$=\frac{9}{128}$		
$-\frac{128}{128}$		
The probability of getting 5 tokens		_
$= (2)\left(\frac{1}{8}\right)^2 \left(\frac{1}{8}\right) + (6)\left(\frac{1}{8}\right)^2 \left(\frac{2}{8}\right) + \left(\frac{7}{32}\right)\left(\frac{2}{8}\right)$	1M	accept $\frac{(7)(2)(C_2^3)}{6^3}$
·		o
$=\frac{21}{256}$		
The expected number of tokens got		
$= (50)\left(\frac{1}{64}\right) + (10)\left(\frac{9}{128}\right) + (5)\left(\frac{21}{256}\right)$		
$=\frac{485}{256}$		
Note that $\frac{75}{32} > \frac{485}{256}$.	134	
50 000	1M	f.t.
Thus, the player of the second round should adopt Option 1.	1A	I.t.
(iii) The probability of Ada getting no tokens $(6)(1 - 7)$		$1M \text{ for } 1-(a)p_1$
$=1-\left(\frac{6}{11}\right)\left(\frac{1}{8}+\frac{7}{32}\right)$	1M+1M	$\begin{cases} 1M \text{ for } 1 - (a)p_1 \\ + 1M \text{ for } p_1 = p_2 + p_3 \end{cases}$
$=\frac{13}{16}$		
= 0.8125		
< 0.9 Thus, the claim is incorrect.	1A	f.t.
The probability of Ada getting no tokens (6), 1 7) 5	13.6 13.6	$\int 1M \text{ for } (a)p_4 + 1 - (a)$
$= \left(\frac{6}{11}\right)\left(1 - \frac{1}{8} - \frac{7}{32}\right) + \frac{5}{11}$	1M+1M	$\begin{cases} 1M \text{ for } (a)p_4 + 1 - (a) \\ + 1M \text{ for } p_4 = 1 - p_5 - p_6 \end{cases}$
$=\frac{13}{16}$		
= 0.8125		
< 0.9 Thus, the claim is incorrect.	1A	f.t.
	(10)	
14-DSE-MATH-CP 1–16		