Data Mining

Predictive Modelling Decision Trees

Raquel Sebastião

Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

raquel.sebastiao@ua.pt

Prediction Models – approaches

Geometric approaches

- Distance-based: kNN
- Linear models: Fisher's linear discriminant, perceptron, logistic regression, SVM (w. linear kernel)

Probabilistic approaches

naive Bayes, logistic regression

Logical approaches

classification or regression trees, rules

Optimization approaches

neural networks, SVM

Sets of models (ensembles)

random forests, adaBoost

Model to predict a response y based on the feature vector

$$X = \begin{bmatrix} x^1 & x^2 & \dots & x^D \end{bmatrix}^T \in \mathbb{R}^D$$

If the dependent (target) variable y (predicted) represents:

- Class label: classification tree
- Real number: regression tree

Ensemble algorithms

combining many decision trees

Divide-and-conquer method

- Set of *splitting rules*
- Partitioning the feature space into smaller (non-overlapping) regions with similar response values
 - Each node is a partition of the input space

The decision surfaces

- hyperplanes, splitting the space into regions
- are parallel to the axis of the spaces

Tree:

- Root node no income edges
- Internal node with a test on an attribute/predictor variable
- **Branch** represents an outcome of the test in the respective node
- Leaf node contains the value of the target variable (either class label or a numeric value)

Training phase: at each node, one attribute is chosen to split training examples into distinct classes as much as possible

Testing phase: A new case is classified by following a matching path to a leaf node

Tree:

- Root node no income edges
- Internal node with a test on an attribute/predictor variable
- **Branch** represents an outcome of the test in the respective node
- Leaf node contains the value of the target variable (either class label or a numeric value)

Training phase: at each node, one attribute is chosen to split training examples into distinct classes as much as possible

Testing phase: A new case is classified by following a matching path to a leaf node

Algorithms:

- CLS (Hunt et al., 1966): Concept Learning System early algorithm for DT construction
- ID3 (Quinlan, 1979): based on information theory
- CART (Breiman et al., 1984)
- C4.5 (Quinlan, 1993): improved extension of ID3
- (...)

CLASSIFICATION AND REGRESSION TREES (CART)

Decision Trees: learning

Algorithms to grow a decision tree use a best feature x_i at each node and the related value

 to split the corresponding subset of the training set into more homogeneous groups

The main issues of the algorithm

- Splitting Rule: split the cases of the sample to form partitions that are more homogeneous ("purer") than the parent node
 - Using a *homogeneity function* (impurity function) based on the distribution of the classes at each node
- Class Assignment Rule: Assign a class to each leaf (terminal node)
- Pre-pruning Rule: early stop (stop growing the three)

Post-Pruning: removing branches and nodes after training

Decision Trees: learning

Splitting binary rules

- numerical predictors: $x_i \in \mathbb{R}$
- categorical predictors: $x_i \in \{v_1, ..., v_m\}$

Each path from the root till a leaf node is a set of logical tests defining a region on the predictors space

All the examples "falling" on a leaf will get the same prediction (either a class label or a numeric value)

Decision Trees: learning

Splitting binary rules

- How to handle categorical attributes*
 - Evaluate all possible combinations of 2 subsets of values
 - Choose the test that produces more homogeneous partitions
- How to handle continuous attributes
 - Discretize continuous values and treat them as categorical values
 - Determine the best split point
 - Sort all values in increasing order
 - Consider all possible binary splits and finds the best cut

Decision Trees: homogeneity function

The basic idea is to find out decision rules which turn the subsets more homogenous

- Decision rule A: one of the subsets is homogeneous
- Decision rule B: subsets have samples of two classes almost equiprobable

The rule A is preferred over rule B

Decision Trees: designing facts

Each node k is associated with a subset X_k of the training set X.

In node k

- X_k is split into two (binary splits) disjoint descendant subsets:
 - $X_{k,N} \cap X_{k,M} = \emptyset$
 - $\mathbf{X}_{k,N} \cup \mathbf{X}_{k,M} = \mathbf{X}_k$
 - the subsets $\mathbf{X}_{k,N}$ and $\mathbf{X}_{k,M}$ correspond to "YES" and "NO" branches

How to measure class-homogeneity of set X_k and subsets $X_{k,N}$ and $X_{k,M}$?

- Computing the variation on entropy (information gain)
- Computing the variation on Gini index

Decision Trees: homogeneity of sets

How to measure class-homogeneity of (sub)set X_k and subsets $X_{k,N}$ and $X_{k,M}$?

Computing the variation on entropy (information gain)

$$\Delta I(k) = I(k) - \frac{N_{k,N}}{N_k} I(k_N) - \frac{N_{k,M}}{N_k} I(k_M)$$

Computing the variation on Gini index

$$\Delta G(k) = G(k) - \frac{N_{k,N}}{N_k} G(k_N) - \frac{N_{k,M}}{N_k} G(k_M)$$

- Entropy: $I = -\sum_i p_i \log_2(p_i)$
- Gini index: $G = 1 \sum_i (p_i)^2$

where p_i , i=1,... , $\mathcal C$ are the probabilities of the classes

Decision Trees: homogeneity of sets

Data set with two (C=2) classes

- I (or G) is maximum when $p_i = p_i$, $\forall i, j$
 - maximum uncertainty (randomness, non-homoegeous)
- I (or G) is minimum when $p_i=1$, $p_j=0$ ($i \neq j$) i=1
 - the outcome is already known (set is homogeneous)

Decision Trees: splitting criteria

Node k: with N_k elements, belonging to classes ω_i , $i=1,\ldots,C$

Entropy* of node k

$$I(k) = -\sum_{i=1}^{C} P(\omega_i|k) \log_2(P(\omega_i|k))$$

where

•
$$P(\omega_i|k) = \frac{N_k^{(i)}}{N_k}$$

• $N_k^{(i)}$ is the number of examples (in node k) that belongs to class ω_i

Decision Trees: splitting criteria

Assuming that the (sub)set \mathbf{X}_k (at node k) is divided into the subsets

- $X_{k,N}$ with entropy $I(k_N)$
- $\mathbf{X}_{k,M}$ with entropy $I(k_M)$

Then the decrease in impurity with this split is given by the variation on entropy

$$\Delta I(k) = I(k) - \frac{N_{k,N}}{N_k} I(k_N) - \frac{N_{k,M}}{N_k} I(k_M)$$

 $\Delta I(k)^*$ is computed for every possible splitting test

The **splitting rule** is chosen for the **maximum** $\Delta I(k)$

* The Gini index can be used instead of entropy

Decision Trees: overfitting and tree pruning

- Overall scores keep improving while growing the DT
- Going down in the tree: the split decisions are made based on smaller and smaller sets
 - Thus, potentially less reliable decisions are made

Overfitting

Too large trees tend to overfit the training data and will perform badly on new data

Decision Trees: overfitting and tree pruning

Pre-pruning: stop growing the tree if our estimate of quality indicates that is not worth continuing

- minimum nr. of examples in a node
- minimum nr. of examples in a leaf
- maximum depth of the tree

Post-prunning: grow an overly large tree and then use some statistical procedure to prune unreliable branches according to error estimates

- Minimum error: The tree is pruned back to the point where the cross-validated error is a minimum
- Smallest tree: The tree is pruned back slightly further than the minimum error

Classification Trees: example

categorical categorical continuous target

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Start from the root of tree

Test Data

Home Owner			Defaulted Borrower
No	Married	80K	?

The prediction for a new test case is obtained by following a path from the root till a leaf according to its predictor values

Test Data

Test Data

			Defaulted Borrower
No	Married	80K	?

Test Data

Test Data Home **Defaulted Marital** Annual Owner **Status** Income **Borrower** No Married 80K ? Home Owner Yes No NO MarSt Single, Divorced **Married** Income NO < 80K ≥80K NO YES

Classification Trees: same data, another DT

categorical continuous target

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Training Data

Decision Trees: advantages and disadvantages

Advantages

- Easy to interpret models
- Can cope with any data type (categorical and numeric)
- Don't require feature scaling
- Embedded feature importance and handling of missing values
- Relatively inexpensive to construct
- Extremely fast at classifying unknown examples

Disadvantages

- Not robust: can be very sensitive to small variations in the data -> High variance
- Very complex decision trees usually have low bias (difficult to incorporate new data):
 - Weak learners: poor classification performance (specially if overfitting occurs)
- Key features might be hidden by more dominant ones: interacting attributes (that can distinguish between classes together but not individually) may be passed over in favor of other attributed that are less discriminating.

Bibliography

Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, *Pearson*, 2019 (chap 3.3, 3.4)

Data Mining, the Textbook, Charu C. Aggarwal, *Springer*, 2015 (chap 10.2, 10.3)

Xindong Wu, et al., **Top 10 algorithms in data mining**, Knowl Inf Syst, 14(1):1-37, 2007. https://doi.org/10.1007/s10115-007-0114-2

