

NASA IN-SITU RESOURCE UTILIZATION PROJECT—AND SEAL CHALLENGES

Kurt Sacksteder and Diane Linne
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

NASA In-Situ Resource Utilization Project – and Seals Challenges

Kurt Sacksteder and Diane Linne
NASA Glenn Research Center

2005 NASA Seal/Secondary Air System Workshop
November 8-9, 2005

New Space Exploration Vision

- On January 14, 2004, the President announced a new vision for NASA
 - Implement a *sustained and affordable* human and robotic program to explore the solar system and beyond;
 - Extend *human presence* across the solar system, starting with a human return to the Moon in preparation for human exploration of Mars and other destinations;
 - Develop the *innovative technologies, knowledge, and infrastructures* both to explore and to support decisions about the destinations for human exploration; and
 - Promote *international and commercial participation* in exploration to further U.S. scientific, security, and economic interests.

“Making use of the Moon’s abundant resources...”

What Are Space Resources?

- **Traditional material resources including:**
 - Water from the soil or atmosphere
 - Atmospheric gases (CO_2 , O_2 , N_2 , etc.)
 - Volatile species from the solar wind or comets (H_2 , He, H_2O , CH_4 , etc.)
 - Minerals/metals (Fe, Ti, Ni, Si, etc.)
- **Energy**
 - (Near) Continuous sunlight for electrical/thermal power and stable thermal control
 - (Near) Continuous Darkness for cryogenic fluid storage, scientific instruments and stable thermal control
- **Environment**
 - Vacuum/Dryness
 - Micro/Partial Gravity
 - High Thermal Gradients
- **Location**
 - Stable Locations for Earth/Sun/deep-space observations, mission staging
 - Isolation from Earth's electromagnetic noise, storage of duplicate vital information
 - Isolation for Earth to conduct hazardous testing (nuclear, biological, etc.) and extraterrestrial sample curation & analysis, etc.

In-Situ Resource Utilization exploits these resources, creating products & services that significantly reduce the mass, cost, & risk of extended-duration space exploration

Space Resource Utilization for Exploration

Mission Consumable Production

- Propellants for Lander/Ascent Vehicles, Surface Hoppers, & Aerial Vehicles
- Fuel cell reagents for mobile (rovers, EVA) & stationary backup power
- Life support consumables (oxygen, water, buffer gases)
 - Gases for science equipment and drilling
 - Bio-support products (soil, fertilizers, etc.)
 - Feedstock for in-situ manufacturing & surface construction

Surface Construction

- Radiation shielding for habitat & nuclear reactors from in-situ resources or products (Berms, bricks, plates, water, hydrocarbons, etc.)
- Landing pad clearance, site preparation, roads, etc.
 - Shielding from micro-meteoroid and landing/ascent plume debris
 - Habitat and equipment protection

Manufacturing w/ Space Resources

Spare parts manufacturing

- Locally integrated systems & components (especially for increasing resource processing capabilities)
- High-mass, simple items (chairs, tables, replaceable structure panels, wall units, wires, extruded pipes/structural members, etc.)

Space Utilities & Power

Storage & distribution of mission consumables

- Thermal energy storage & use
 - Solar energy (PV, concentrators, rectennas)
 - Chemical energy (fuel cells, combustion, catalytic reactors, etc.)

ISRU Enables Affordable, Sustainable & Flexible Exploration

Propellant from the Moon Could Revolutionize Space Transportation

Schematic representation of the scale of an Earth launch system for scenarios to land an Apollo-size mission on the Moon, assuming various refueling depots and an in-space reusable transportation system. Note: Apollo stage height is scaled by estimated mass reduction due to ISRU refueling

Apollo missions utilized Earth - supplied propellant (Saturn V liftoff mass = 2,962 tons)

Lunar lander refueled on the Moon's surface reduces launch to 73% of Apollo mass (2,160 tons)

Refueling at L1 and on Moon reduces launch to 34% of Apollo mass (1,004 tons)

NASA ISRU Capability “Roadmap” Study, 2005

A Catalog and Timeline of Capabilities for the Utilization of Space Resources

Kurt Sacksteder, NASA GRC, Kurt.Sacksteder@nasa.gov

www.nasa.gov

Timeline for ISRU Capability Implementation

In-Situ Resource Utilization must earn acceptance for mission critical roles in crewed missions through convincing demonstrations early in the Exploration timeline

Kurt Sacksteder, NASA GRC, Kurt.Sacksteder@nasa.gov

www.nasa.gov

Lunar ISRU Implementation Approach

Lunar Mission Assumptions with ISRU (Lunar Exploration Analysis Group-LEAG)

- Robotic precursors identify resources and validate critical processes
- Early human missions (4 to 14 days) gain system & operational experience until a candidate long-term site is selected
 - Pre-deployed ISRU/mission assets before human missions
- Develop infrastructure at one base for Mars mission ‘dress rehearsals’ (90 day & 500 day) and sustained human presence in space
 - Traverse or hop to other locations for short term science mission objectives

Initial Capabilities

- Surface regolith excavation and manipulation
 - Excavation for volatile extraction and regolith processing
 - Berms and shielding for radiation and plume protection
 - Site/landing pad preparation and road/dust mitigation
- Extraction & recovery of useful volatiles from surface resources (H_2 , CO , N_2 , H_2O)
- Oxygen (O_2) production from regolith processing
- Production/regeneration of fuel cell reagents
- Cryogenic storage & transfer
- In-situ fabrication and repair
- Space Power
- Thermal energy storage & use

Long-Term Lunar Capabilities

- In-situ manufacturing of complex parts and equipment
- Habitat and infrastructure construction (surface & subsurface)
- Life Support System – bio support (soil, fertilizers, etc.)
- Helium-3 isotope (3He) mining

ISRU Resources & Products of Interest

LUNAR RESOURCES

MARE REGOLITH

Ilmenite - 15%	
FeO•TiO ₂	98.5%
Pyroxene - 50%	
CaO•SiO ₂	36.7%
MgO•SiO ₂	29.2%
FeO•SiO ₂	17.6%
Al ₂ O ₃ •SiO ₂	9.6%
TiO ₂ •SiO ₂	6.9%
Olivine - 15%	
2MgO•SiO ₂	56.6%
2FeO•SiO ₂	42.7%
Anorthite - 20%	
CaO•Al ₂ O ₃ •SiO ₂	97.7%

VOLATILES (Solar Wind & Polar Ice/H₂)

Hydrogen (H ₂)	50 - 150 ppm
Helium (He)	3 - 50 ppm
Helium-3 (³ He)	10^{-2} ppm
Carbon (C)	100 - 150 ppm
Polar Water (H ₂ O)/H ₂	1 - 10%

→ Thermal Volatile Extraction

Challenging Seals Requirements for ISRU

The Moon is a Harsh Environment

- Temperatures from 40K (-230C) to 450K (150C)
- High Vacuum, 10^{-10} mm Hg
- Dust: abrasive, static cling, etc.
- Partial gravity

Initial ISRU Capabilities

- Surface regolith excavation and manipulation – mechanism bearings and regolith abrasion
 - Excavation for volatile extraction and regolith processing
 - Berms and shielding for radiation and plume protection
 - Site/landing pad preparation and road/dust mitigation
- Extraction & recovery of useful volatiles from surface resources (H_2 , CO , N_2 , H_2O) – encapsulate regolith during excavation and heating
- Oxygen (O_2) production from regolith processing – high temperature reactors and reagent recovery systems
- Production/regeneration of fuel cell reagents – fuel transfer operations
- Cryogenic storage & transfer – valves and other plumbing issues