Stack Overflow: Tag Prediction

1 Business Problem

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming knowledge, and build their careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developers come to Stack Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range of topics in computer programming. The website serves as a platform for users to ask and answer questions, and, through membership and active participation, to vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of April 2014 Stack Overflow has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type of tags assigned to questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and HTML.

Problem Statement

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

▼ LOAD REQUIRED LIBRARIES

```
1 import warnings
 2 warnings.filterwarnings("ignore")
 3 import pandas as pd
 4 import sqlite3
 5 import csv
 6 import matplotlib.pyplot as plt
 7 import seaborn as sns
 8 import numpy as np
 9 from wordcloud import WordCloud
10 import re
11 import os
12 from sqlalchemy import create engine # database connection
13 import datetime as dt
14 from nltk.corpus import stopwords
15 from nltk.tokenize import word tokenize
16 from nltk.stem.snowball import SnowballStemmer
17 from sklearn.feature_extraction.text import CountVectorizer
18 from sklearn.feature_extraction.text import TfidfVectorizer
19 from sklearn.multiclass import OneVsRestClassifier
20 from sklearn.linear model import SGDClassifier
21 from sklearn import metrics
22 from sklearn.metrics import f1_score,precision_score,recall_score
23 from sklearn import svm
24 from sklearn.linear_model import LogisticRegression
25 from sklearn.naive_bayes import GaussianNB
26 from datetime import datetime
```

▼ CONNECT TO GOOGLE COLAB

```
1 from google.colab import drive
2
3 drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", for

▼ LOAD THE DATA FROM CSV FILE TO TRAIN.DB

```
1 if not os.path.isfile('train.db'):
2 start = datetime.now()
3 disk_engine = create_engine('sqlite:///train.db')
4 start=dt.datetime.now()
5 chunksize=180000
6 j=0
7
    index_start=1
8 for df in pd.read_csv('/content/drive/My Drive/Colab Notebooks/StackOverflow Tag Predictor/Train.csv',names=['Ic
    df.index +=index_start
9
10
   df.to sql('data', disk engine, if exists='append')
11
    index_start = df.index[-1] + 1
12
print("Time taken to run this cell :", datetime.now() - start)
```

Time taken to run this cell : 0:04:30.307245

▼ COUNT THE TOTAL NO OF ROWS

```
1 if os.path.isfile('train.db'):
2    start = datetime.now()
3    con=sqlite3.connect('train.db')
4    num_rows = pd.read_sql_query("""SELECT count(*) FROM data""",con)
5    print("Number of rows in the database :","\n",num_rows['count(*)'].values[0])
6    con.close()
7    print("Time taken to count the number of rows :", datetime.now() - start)
8    else :
9    print("Please download the train.db file from drive or run the above cell to genarate train.db file")
```

Number of rows in the database : 6034196 Time taken to count the number of rows : 0:00:14.149502

▼ CHECK FOR DUPLICATES

```
1 if os.path.isfile('train.db'):
2   start = datetime.now()
3   con=sqlite3.connect('train.db')
4   df_no_duplicate=pd.read_sql_query('SELECT Title, Body, Tags, COUNT(*) as cnt_dup FROM data GROUP BY Title, Body, con.close()
6   print("Time taken to run this cell :", datetime.now() - start)
7   else:
8   print("Please download the train.db file from drive or run the first to genarate train.db file")
```

Time taken to run this cell : 0:05:11.238108

```
1 df_no_duplicate.head()
```

С⇒

```
Tags cnt_dup
                                      Title
                                                                                Bodv
         Implementing Boundary Value Analysis
                                                                               c++ c
                                      of S...
                                             <code>#include&lt;iostream&gt;\n#include&...
1 print("number of duplicate questions :", num rows['count(*)'].values[0]- df_no duplicate.shape[0], "(",(1-((df_no
   number of duplicate questions : 1827881 ( 30.292038906260256 % )
        Dynamic Datagne Dineng in Onvenignt:
                                                                          dvnamicall
                                                                                                         columns
1 df_no_duplicate.cnt_dup.value_counts()
         2656284
₽
    1
    2
         1272336
    3
          277575
    4
               90
    5
               25
    6
               5
    Name: cnt_dup, dtype: int64
1 df no duplicate["Tags"].head()
    0
                                         C++ C
C→
                  c# silverlight data-binding
    1
         c# silverlight data-binding columns
    3
                                      jsp jstl
    4
                                     java jdbc
    Name: Tags, dtype: object
1 start = datetime.now()
2 df_no_duplicate["tag_count"] = df_no_duplicate["Tags"].apply(lambda text: len(str(text).split()))
3 print("Time taken to run this cell :", datetime.now() - start)
4 df_no_duplicate.head()
   Time taken to run this cell: 0:00:03.016791
                                  Title
                                                                             Body
                                                                                                Tags
                                                                                                      cnt_dup tag_count
              Implementing Boundary Value
                                                                            <
     0
                                                                                                                        2
                                                                                                c++ c
                                         <code>#include&lt;iostream&gt;\n#include&...
                          Analysis of S...
               Dynamic Datagrid Binding in
                                                   I should do binding for datagrid
                                                                                     c# silverlight data-
     1
                                                                                                                        3
                              Silverlight?
                                                                      dynamicall...
                                                                                              binding
               Dynamic Datagrid Binding in
                                                   I should do binding for datagrid
                                                                                     c# silverlight data-
     2
                                                                                                                        4
                              Silverlight?
                                                                      dynamicall...
                                                                                      binding columns
                   . .
1 df_no_duplicate.tag_count.value_counts()
    3
         1206157
С→
         1111706
    4
          814996
    1
          568298
    5
          505158
    Name: tag_count, dtype: int64
1 if not os.path.isfile('train_no_dup.db'):
      disk_dup = create_engine("sqlite:///train_no_dup.db")
      no_dup = pd.DataFrame(df_no_duplicate, columns=['Title', 'Body', 'Tags'])
3
4
      no_dup.to_sql('no_dup_train',disk_dup)
1 if os.path.isfile('train_no_dup.db'):
2
      start = datetime.now()
      con = sqlite3.connect('train_no_dup.db')
      tag data = nd read sol query("""SFLECT Tags FROM no dun train""". con)
```

```
cub_uucu purreuu_sqr_query( sereer rugs rivorrio_uup_erurii
5
      #Always remember to close the database
6
      con.close()
7
      # Let's now drop unwanted column.
8
9
      tag_data.drop(tag_data.index[0], inplace=True)
      #Printing first 5 columns from our data frame
10
11
      tag_data.head()
12
      print("Time taken to run this cell :", datetime.now() - start)
13 else:
      print("Please download the train.db file from drive or run the above cells to genarate train.db file")
14
```

Time taken to run this cell : 0:01:54.541361

```
1 tag_data.head()
```

```
Tags

1 c# silverlight data-binding

2 c# silverlight data-binding columns

3 jsp jstl

4 java jdbc

5 facebook api facebook-php-sdk
```

```
1 tag_data.loc[tag_data['Tags'].isnull(),'Tags'] = ''
```

▼ ANALYSIS OF TAGS --> COUNTVECTORIZER

```
1 vectorizer=CountVectorizer(tokenizer = lambda x : str(x).split())
3 tag_dtm=vectorizer.fit_transform(tag_data['Tags'])
1 print("Number of data points :", tag_dtm.shape[0])
2 print("Number of unique tags :", tag_dtm.shape[1])
Number of data points : 4206314
    Number of unique tags: 42048
1 feature_tags=vectorizer.get_feature_names()
3 print("Some of the tags we have :", feature_tags[:10])

    Some of the tags we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash-profile', '.class-file', '.cs-fil

1 freqs = tag_dtm.sum(axis=0).A1
2 result = dict(zip(feature_tags, freqs))
1 if not os.path.isfile('tag_counts_dict_dtm.csv'):
      with open('tag counts dict dtm.csv', 'w') as csv file:
3
          writer = csv.writer(csv_file)
          for key, value in result.items():
              writer.writerow([key, value])
6 tag_df = pd.read_csv("tag_counts_dict_dtm.csv", names=['Tags', 'Counts'])
7 tag_df.head()
```

С→

```
        Tags
        Counts

        0
        .a
        18

        1
        .app
        37

        2
        .asp.net-mvc
        1

        3
        .aspxauth
        21
```

```
1 tag_df_sorted=tag_df.sort_values(['Counts'],ascending=False)
2
3 tag_counts=tag_df_sorted['Counts'].values
```

```
1 plt.plot(tag_counts)
2 plt.title("Distribution of number of times tag appeared questions")
3 plt.grid()
4 plt.xlabel("Tag number")
5 plt.ylabel("Number of times tag appeared")
6 plt.show()
```



```
1 plt.plot(tag_counts[0:10000])
2 plt.title('first 10k tags: Distribution of number of times tag appeared questions')
3 plt.grid()
4 plt.xlabel("Tag number")
5 plt.ylabel("Number of times tag appeared")
6 plt.show()
```

first 10k tags: Distribution of number of times tag appeared questions


```
1 plt.plot(tag_counts[0:1000])
2 plt.title('first 10k tags: Distribution of number of times tag appeared questions')
3 plt.grid()
4 plt.xlabel("Tag number")
```

```
5 plt.ylabel("Number of times tag appeared")
6 plt.show()
```

first 10k tags: Distribution of number of times tag appeared questions


```
1 plt.plot(tag_counts[0:500])
2 plt.title('first 500 tags: Distribution of number of times tag appeared questions')
3 plt.grid()
4 plt.xlabel("Tag number")
5 plt.ylabel("Number of times tag appeared")
6 plt.show()
```

first 500 tags: Distribution of number of times tag appeared questions


```
1 plt.plot(tag_counts[0:100], c='b')
2 plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label="quantiles with 0.05 intervals")
3 # quantiles with 0.25 difference
4 plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "quantiles with 0.25 intervals")
5
6 for x,y in zip(list(range(0,100,25)), tag_counts[0:100:25]):
7     plt.annotate(s="({} , {})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))
8
9 plt.title('first 100 tags: Distribution of number of times tag appeared questions')
10 plt.grid()
11 plt.xlabel("Tag number")
12 plt.ylabel("Number of times tag appeared")
13 plt.legend()
14 plt.show()
15 print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```

С→


```
1 # Store tags greater than 10K in one list
2 lst_tags_gt_10k = tag_df[tag_df.Counts>10000].Tags
3 #Print the length of the list
4 print ('{} Tags are used more than 10000 times'.format(len(lst_tags_gt_10k)))
5 # Store tags greater than 100K in one list
6 lst_tags_gt_100k = tag_df[tag_df.Counts>100000].Tags
7 #Print the length of the list.
8 print ('{} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```

153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- 4. Since some tags occur much more frequenctly than others
- 5. Micro-averaged. F1-score is the appropriate metric for this probelm.

▼ TAGS PER QUESTION

```
1 tag_quest_count = tag_dtm.sum(axis=1).tolist()
2
3 tag_quest_count=[int(j) for i in tag_quest_count for j in i]
4 print ('We have total {} datapoints.'.format(len(tag_quest_count)))
5
6 print(tag_quest_count[:5])
```

We have total 4206314 datapoints. [3, 4, 2, 2, 3]

```
1 sns.countplot(tag_quest_count, palette='gist_rainbow')
2 plt.title("Number of tags in the questions ")
3 plt.xlabel("Number of Tags")
4 plt.ylabel("Number of questions")
5 plt.show()
```

C→

```
1.0 - SUOTE OF LOS IN THE QUESTIONS
```

```
1 start = datetime.now()
3 # Lets first convert the 'result' dictionary to 'list of tuples'
4 tup = dict(result.items())
5 #Initializing WordCloud using frequencies of tags.
6 wordcloud = WordCloud(
                             background_color='black',
7
                             width=1600,
8
                             height=800,
9
                       ).generate_from_frequencies(tup)
10
11 fig = plt.figure(figsize=(30,20))
12 plt.imshow(wordcloud)
13 plt.axis('off')
14 plt.tight_layout(pad=0)
15 fig.savefig("tag.png")
16 plt.show()
17 print("Time taken to run this cell :", datetime.now() - start)
```


Time taken to run this cell: 0:00:05.589744

Observations: A look at the word cloud shows that "c#", "java", "php", "asp.net", "javascript", "c++" are some of the most

```
1 i=np.arange(30)
2 tag_df_sorted.head(30).plot(kind='bar')
3 plt.title('Frequency of top 20 tags')
4 plt.xticks(i, tag_df_sorted['Tags'])
5 plt.xlabel('Tags')
6 plt.ylabel('Counts')
7 plt.show()
```


Observations:

7

try:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

▼ CLEANING & PREPROCESSING OF QUESTIONS

conn = sqlite3.connect(db_file)

```
1 import nltk
2 nltk.download('stopwords')
   [nltk_data] Downloading package stopwords to /root/nltk_data...
    [nltk_data] Unzipping corpora/stopwords.zip.
   True
1 def striphtml(data):
   cleanr = re.compile('<.*?>')
3
     cleantext = re.sub(cleanr, ' ', str(data))
     return cleantext
5 stop_words = set(stopwords.words('english'))
6 stemmer = SnowballStemmer("english")
1 def create_connection(db_file):
   """ create a database connection to the SQLite database
         specified by db_file
3
   :param db_file: database file
4
   :return: Connection object or None
     .....
6
```

```
9
    return conn
10
    except Error as e:
11
        print(e)
12
13
    return None
14
15 def create_table(conn, create_table_sql):
      """ create a table from the create_table_sql statement
16
17
     :param conn: Connection object
    :param create_table_sql: a CREATE TABLE statement
18
19
      :return:
20
21
     try:
22
         c = conn.cursor()
23
          c.execute(create_table_sql)
24
   except Error as e:
25
          print(e)
26
27 def checkTableExists(dbcon):
28
    cursr = dbcon.cursor()
29
    str = "select name from sqlite_master where type='table'"
30
   table_names = cursr.execute(str)
31
   print("Tables in the databse:")
32
     tables =table_names.fetchall()
33
      print(tables[0][0])
34
     return(len(tables))
35
36 def create_database_table(database, query):
37
    conn = create connection(database)
38
    if conn is not None:
39
          create_table(conn, query)
40
          checkTableExists(conn)
41
42
          print("Error! cannot create the database connection.")
43
      conn.close()
44
45 sql create table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text,
46 create_database_table("Processed.db", sql_create_table)
```

Tables in the databse: QuestionsProcessed

```
1 start = datetime.now()
2 read_db = 'train_no_dup.db'
3 write_db = 'Processed.db'
4 if os.path.isfile(read_db):
   conn_r = create_connection(read_db)
      if conn r is not None:
7
          reader =conn_r.cursor()
          reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 1000000;")
8
9
10 if os.path.isfile(write_db):
    conn_w = create_connection(write_db)
11
      if conn_w is not None:
12
13
          tables = checkTableExists(conn_w)
          writer =conn_w.cursor()
14
15
          if tables != 0:
              writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
16
              print("Cleared All the rows")
18 print("Time taken to run this cell :", datetime.now() - start)
```

 \Box

```
Tables in the databse:

Outsties Deceased

1 nltk.download('punkt')
```

[¬] [nltk_data] Downloading package punkt to /root/nltk_data... [nltk_data] Unzipping tokenizers/punkt.zip. True

```
1 start = datetime.now()
 2 preprocessed_data_list=[]
 3 reader.fetchone()
4 questions_with_code=0
 5 len_pre=0
6 len_post=0
7 questions_proccesed = 0
8 for row in reader:
10
      is_code = 0
11
12
      title, question, tags = row[0], row[1], row[2]
13
      if '<code>' in question:
14
15
          questions_with_code+=1
16
          is code = 1
17
      x = len(question)+len(title)
18
      len pre+=x
19
      code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
20
21
      question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
22
23
      question=striphtml(question.encode('utf-8'))
24
25
      title=title.encode('utf-8')
26
      question=str(title)+" "+str(question)
27
28
      question=re.sub(r'[^A-Za-z]+',' ',question)
29
      words=word_tokenize(str(question.lower()))
30
31
      #Removing all single letter and and stopwords from question exceptt for the letter 'c'
32
      question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or j=='c'))
33
34
      len_post+=len(question)
35
      tup = (question,code,tags,x,len(question),is_code)
36
      questions_proccesed += 1
      writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values (?,?,?,
37
38
      if (questions_proccesed%100000==0):
39
           print("number of questions completed=",questions_proccesed)
40
41 no dup avg len pre=(len pre*1.0)/questions proccesed
42 no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
43
44 print( "Avg. length of questions(Title+Body) before processing: %d"%no dup avg len pre)
45 print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
46 print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
48 print("Time taken to run this cell :", datetime.now() - start)
```

 \Box

```
number of questions completed= 100000
    number of questions completed= 200000
     number of questions completed= 300000
     number of questions completed= 400000
     number of questions completed= 500000
    number of questions completed= 600000
     number of questions completed= 700000
 1 conn r.commit()
 2 conn w.commit()
 3 conn r.close()
 4 conn_w.close()
     ובווופ נמגפוו נט ויטוו נוובט נפבד . ש.בס.ב/.ססששבב
 1 if os.path.isfile(write_db):
 2
      conn_r = create_connection(write_db)
 3
      if conn_r is not None:
 4
          reader =conn r.cursor()
           reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
 5
           print("Questions after preprocessed")
 6
 7
          print('='*100)
8
          reader.fetchone()
9
          for row in reader:
10
               print(row)
               print('-'*100)
12 conn_r.commit()
13 conn_r.close()
```

C→ Questions after preprocessed

______ ('right wrong practic use statement foo foo true throughout short career far program mere student work internsh ______ ('java anim import imag netbean hi want ask move import jpg imag left right bottom beginn java pleas help thank ('help sql inner join tri inner join temp tabl ni know done done complet forgot npleas advis queri tri execut f ('possibl pitfal use extens method base shorthand regular want access properti possibl null object use often sn ______ ('chrome extens run background file function everi sec extens need synch data server everi second also backgrou ______ ('iphon xcode mutablecopi still immut look place regard problem tri creat nsuser default object add mutabl arra ('could due servic endpoint bind use http protocol wcf servic run fine local machin put server receiv follow er ______ ('gotoandstop bug reason one instanc get gotoandstop go stop second frame movi clip two frame load ad movieclip ('traffic shape tp ipsec vpn via account connect need abl control amount bandwidth specif user account use vpn

```
1 start = datetime.now()
2 con=sqlite3.connect('/content/drive/My Drive/Colab Notebooks/StackOverflow Tag Predictor/Processed.db')
3 preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""",con)
4 con.close()
5 print("Time taken to count the number of rows :", datetime.now() - start)
```

Time taken to count the number of rows : 0:00:21.968940

```
1 preprocessed_data.head()
```

С→

	question	tags
0	macport gcc select error tri exec appl darwin	macports selection gcc
1	right wrong practic use statement foo foo true	validation if-statement logic
→ MACH	IINE LEARNING MODELS	

▼ Converting Tags to MultiLabel Problems

```
1 preprocessed data[preprocessed data.isnull().any(axis=1)]
С→
                                            question tags
     642062 handl nullobject done quit bit research best w... None
1 preprocessed data.loc[preprocessed data['tags'].isnull(),'tags'] = ''
1 # binary = true , means it will return binary vector
2 count vectorizer=CountVectorizer(tokenizer = lambda x : str(x).split() , binary='true')
4 multilabel_y=count_vectorizer.fit_transform(preprocessed_data['tags'])
1 def tags_to_choose(n):
      t = multilabel_y.sum(axis=0).tolist()[0]
      sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
3
      multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
5
      return multilabel_yn
6
7 def questions_explained_fn(n):
      multilabel_yn = tags_to_choose(n)
9
      x= multilabel_yn.sum(axis=1)
      return (np.count_nonzero(x==0))
1 multilabel_y.shape[1]
[→ 35388
1 preprocessed_data.shape[0]
   999997
1 questions_explained = []
2 total_tags=multilabel_y.shape[1]
3 total_qs=preprocessed_data.shape[0]
4 for i in range(500, total_tags, 100):
      {\tt questions\_explained.append(np.round(((total\_qs-questions\_explained\_fn(i))/total\_qs)*100,3))}
1 fig, ax = plt.subplots()
2 ax.plot(questions_explained)
3 xlabel = list(500+np.array(range(-50,450,50))*50)
4 ax.set_xticklabels(xlabel)
5 plt.xlabel("Number of tags")
6 plt.ylabel("Number Questions coverd partially")
7 plt.grid()
8 plt.show()
```

9 # you can choose any number of tags based on your computing power, minimun is 50(it covers 90% of the tags)

```
10 print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
```

```
Day of the partial of
```

with $\,$ 5500 tags we are covering $\,$ 99.048 % of questions

```
1 multilabel_yx = tags_to_choose(5500)
2 print("number of questions that are not covered :", questions_explained_fn(5500),"out of ", total_qs)
```

ightharpoonup number of questions that are not covered : 9517 out of 999997

```
1 print("Number of tags in sample :", multilabel_y.shape[1])
2 print("number of tags taken :", multilabel_yx.shape[1],"(",(multilabel_yx.shape[1]/multilabel_y.shape[1])*100,"%)'
```

Number of tags in sample : 35388 number of tags taken : 5500 (15.541991635582683 %)

Split the Data into Test & Train

```
1 total_size=preprocessed_data.shape[0]
2 train_size=int(0.80*total_size)
3
4 x_train=preprocessed_data.head(train_size)
5 x_test=preprocessed_data.tail(total_size - train_size)
6
7 y_train = multilabel_yx[0:train_size,:]
8 y_test = multilabel_yx[train_size:total_size,:]
1 print("Number of data points in train data :", y_train.shape)
2 print("Number of data points in test data :", y_test.shape)
```

Number of data points in train data : (799997, 5500)

Number of data points in test data : (200000, 5500)

Featurizing of data

▼ TF-IDF Featurization Vector

```
1 x_train_multilabel = vectorizer.fit_transform(x_train['question'])
```

```
StackOverflow Tags Predictor.ipynb - Colaboratory
1 x_test_multilabel = vectorizer.transform(x_test['question'])
2 print("Time taken to run this cell :", datetime.now() - start)
Time taken to run this cell : 0:00:37.624874
1 print("Dimensions of train data X:",x_train_multilabel.shape, "Y :",y_train.shape)
2 print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
□→ Dimensions of train data X: (799997, 9366) Y: (799997, 5500)
    Dimensions of test data X: (200000, 9366) Y: (200000, 5500)
1 classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jobs=-1)
2 classifier.fit(x_train_multilabel, y_train)
3 predictions = classifier.predict(x_test_multilabel)
5 print("accuracy :",metrics.accuracy_score(y_test,predictions))
6 print("macro f1 score :",metrics.f1_score(y_test, predictions, average = 'macro'))
7 print("micro f1 scoore :",metrics.f1_score(y_test, predictions, average = 'micro'))
8 print("hamming loss :",metrics.hamming_loss(y_test,predictions))
9 print("Precision recall report :\n",metrics.classification report(y test, predictions))
1 start = datetime.now()
2 con=sqlite3.connect('/content/drive/My Drive/Colab Notebooks/StackOverflow Tag Predictor/Titlemoreweight.db')
3 preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed LIMIT 200000""",con)
4 con.close()
5 print("Time taken to count the number of rows :", datetime.now() - start)
Time taken to count the number of rows : 0:04:14.738980
1 print("number of data points in sample :", preprocessed_data.shape[0])
2 print("number of dimensions :", preprocessed data.shape[1])
   number of data points in sample : 200000
    number of dimensions : 2
1 vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
2 multilabel y = vectorizer.fit_transform(preprocessed_data['tags'])
1 questions_explained = []
2 total_tags=multilabel_y.shape[1]
3 total qs=preprocessed data.shape[0]
4 for i in range(500, total_tags, 100):
      questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
1 fig, ax = plt.subplots()
2 ax.plot(questions_explained)
3 xlabel = list(500+np.array(range(-50,450,50))*50)
4 ax.set_xticklabels(xlabel)
5 plt.xlabel("Number of tags")
6 plt.ylabel("Number Questions coverd partially")
7 plt.grid()
8 plt.show()
9 # you can choose any number of tags based on your computing power, minimun is 500(it covers 90% of the tags)
10 print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
11 print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
```

С→

```
100 James 100 Ja
```

```
1 multilabel_yx = tags_to_choose(500)
2 print("number of questions that are not covered :", questions_explained_fn(500),"out of ", total_qs)
```

number of questions that are not covered : 15044 out of 200000

```
1 train_datasize = 130000
2 x_train=preprocessed_data.head(train_datasize)
3 x_test=preprocessed_data.tail(preprocessed_data.shape[0] - 130000)
4
5 y_train = multilabel_yx[0:train_datasize,:]
6 y_test = multilabel_yx[train_datasize:preprocessed_data.shape[0],:]
```

```
1 print("Number of data points in train data :", y_train.shape)
2 print("Number of data points in test data :", y_test.shape)
```

Number of data points in train data : (130000, 500)

Number of data points in test data : (70000, 500)

Time taken to run this cell : 0:02:30.165520

```
1 print("Dimensions of train data X:",x_train_multilabel_bow.shape, "Y :",y_train.shape)
2 print("Dimensions of test data X:",x_test_multilabel_bow.shape,"Y:",y_test.shape)
```

Dimensions of train data X: (130000, 100181) Y : (130000, 500) Dimensions of test data X: (70000, 100181) Y: (70000, 500)

```
1 start = datetime.now()
2 classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jobs=1)
3 classifier.fit(x_train_multilabel_bow, y_train)
4 predictions = classifier.predict (x_test_multilabel_bow)
5
6
7 print("Accuracy :",metrics.accuracy_score(y_test, predictions))
8 print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
9
10
11 precision = precision_score(y_test, predictions, average='micro')
12 recall = recall_score(y_test, predictions, average='micro')
13 f1 = f1_score(y_test, predictions, average='micro')
14
15 print("Micro-average quality numbers")
```

```
16 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))

17

18 precision = precision_score(y_test, predictions, average='macro')

19 recall = recall_score(y_test, predictions, average='macro')

20 f1 = f1_score(y_test, predictions, average='macro')

21

22 print("Macro-average quality numbers")

23 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))

24

25 print (metrics.classification_report(y_test, predictions))

26 print("Time taken to run this cell :", datetime.now() - start)
```

С⇒

Accuracy: 0.11258571428571429 Hamming loss 0.006103285714285714 Micro-average quality numbers

Precision: 0.3424, Recall: 0.5517, F1-measure: 0.4225

Macro-average quality numbers Precision: 0.1623, Recall: 0.3566, F1-measure: 0.2083 precision recall f1-score support 0 0.97 0.96 0.96 42802 1 0.25 0.32 0.28 1764 2 0.27 0.41 0.33 942 3 0.24 0.28 0.26 6539 4 0.35 0.45 0.40 2540 5 0.50 0.58 0.54 2156 6 1990 0.47 0.54 0.50 7 0.13 0.21 0.16 611 8 0.20 0.33 0.25 324 9 0.69 0.74 0.71 2335 10 0.27 0.43 0.33 736 11 0.23 0.38 0.29 1199 12 0.31 0.48 0.38 842 770 0.30 0.44 0.36 13 0.49 0.40 0.63 975 14 15 0.22 0.33 0.26 523 16 0.09 0.36 0.14 143 0.34 0.57 0.43 428 17 18 0.39 0.60 0.47 552 19 0.44 0.59 0.50 708 20 89 0.26 0.63 0.37 21 0.39 0.24 219 0.17 22 0.29 0.29 0.29 662 1965 23 0.18 0.20 0.19 24 0.23 0.38 0.29 1046 25 0.23 0.34 0.27 488 26 0.26 0.38 0.31 458 0.39 0.31 1193 27 0.25 28 0.51 0.44 0.47 1492 29 0.09 0.22 0.13 354 30 0.10 0.47 0.17 159 0.09 0.15 31 0.34 157 32 0.17 0.26 0.21 740 33 0.40 0.44 0.42 1337 34 0.21 0.38 0.27 226 35 535 0.25 0.50 0.33 36 0.22 0.37 0.28 315 37 0.12 0.28 0.17 167 38 0.48 1074 0.39 0.62 39 0.23 0.33 0.27 336 40 0.13 0.45 0.21 312 41 0.13 0.19 0.15 682 0.46 265 42 0.36 0.65 0.54 478 43 0.46 0.65 44 0.22 0.42 0.29 598 45 0.19 0.33 0.24 1054 46 0.26 0.42 0.32 253 47 0.14 0.21 0.17 936 48 0.10 0.28 0.15 133 152 49 0.09 0.23 0.13 50 0.35 0.42 0.38 943 51 0.10 0.18 0.13 243 0.19 135 52 0.13 0.36 53 0.92 0.84 0.88 969 54 0.13 0.19 0.16 801 55 0.13 0.72 0.22 50 0.18 142 56 0.12 0.40 57 0.13 0.36 0.19 125 39 58 0.02 0.15 0.03 59 0.10 0.50 0.16 36 0.22 0.29 205 60 0.42 61 0.11 0.21 0.14 354 62 0.10 0.20 0.13 266 63 a 17 a 51 a 26

				/erflow_lags
64	0.36	0.76	0.49	163
65	0.13	0.48	0.43	46
66	0.13	0.25	0.17	269
67	0.29	0.79	0.43	133
68	0.18	0.33	0.23	577
69	0.12	0.23	0.16	212
70	0.31	0.70	0.43	120
71	0.09	0.20	0.13	258
72	0.13	0.23	0.17	354
73	0.42	0.58	0.49	159
74 75	0.07	0.31	0.11	89 125
75 76	0.22 0.08	0.37 0.24	0.28 0.12	125 94
70 77	0.37	0.37	0.12	456
78	0.20	0.31	0.24	712
79	0.15	0.22	0.18	299
80	0.06	0.23	0.10	53
81	0.12	0.40	0.18	275
82	0.21	0.40	0.28	623
83	0.18	0.43	0.25	75
84	0.01	0.22	0.02	27
85	0.24	0.39	0.29	230
86 87	0.26	0.42 0.27	0.32	177
87 88	0.03 0.32	0.62	0.06 0.42	30 655
89	0.06	0.02	0.42	126
90	0.31	0.30	0.31	422
91	0.05	0.12	0.07	130
92	0.53	0.87	0.66	451
93	0.05	0.17	0.08	77
94	0.04	0.12	0.06	461
95	0.26	0.50	0.34	104
96	0.07	0.15	0.10	454
97	0.20	0.49	0.28	345
98	0.17	0.49	0.26	125
99 100	0.25 0.09	0.47 0.22	0.33 0.12	144 279
101	0.09	0.25	0.12	99
102	0.34	0.53	0.42	553
103	0.12	0.34	0.18	123
104	0.05	0.12	0.07	542
105	0.11	0.18	0.14	542
106	0.07	0.18	0.10	118
107	0.18	0.58	0.27	73
108	0.07	0.24	0.11	191
109	0.06	0.13	0.08	180
110 111	0.10	0.30	0.15	121
111 112	0.05 0.07	0.24 0.16	0.08 0.10	41 254
113	0.06	0.18	0.10	146
114	0.38	0.41	0.39	279
115	0.13	0.22	0.17	245
116	0.14	0.29	0.19	102
117	0.37	0.35	0.36	469
118	0.08	0.10	0.09	248
119	0.15	0.28	0.19	98
120	0.20	0.40	0.27	105
121	0.07	0.24	0.10	164
122	0.12	0.42	0.19	95
123 124	0.19	0.42 0.41	0.26	208 85
125	0.23 0.18	0.48	0.29 0.26	98
126	0.03	0.27	0.05	41
127	0.32	0.41	0.36	431
128	0.23	0.37	0.28	111
129	0.10	0.35	0.16	74
130	0.10	0.27	0.15	116
131	0.14	0.49	0.21	126
132	0.23	0.46	0.31	270
133	0.05	0.43	0.10	35
134	0.07	0.30	0.11	64
125	A 15	A 50	0 25	2/12

		;	StackOverflow ₋	_Tags
136	0.75	0.81	0.78	345
137	0.12	0.25	0.16	174
138	0.11	0.34	0.17	183
139	0.50	0.43	0.46	454
140	0.52	0.74	0.61	302
141	0.16	0.40	0.23	82
142	0.34	0.82	0.48	82
143	0.18	0.37	0.24	98
144	0.41	0.72	0.52	137
145	0.22	0.32	0.26	412
146 147	0.02 0.11	0.10 0.25	0.03 0.15	224 153
148	0.25	0.70	0.37	64
149	0.17	0.51	0.26	68
150	0.08	0.25	0.12	126
151	0.07	0.10	0.09	202
152	0.02	0.31	0.04	39
153	0.09	0.39	0.15	36
154	0.20	0.49	0.28	136
155	0.07	0.13	0.09	212
156 157	0.23	0.45	0.31	51 94
157 158	0.17 0.04	0.45 0.13	0.25 0.06	286
159	0.28	0.48	0.35	350
160	0.07	0.36	0.12	22
161	0.05	0.20	0.07	120
162	0.06	0.17	0.09	144
163	0.24	0.50	0.33	119
164	0.07	0.29	0.11	42
165	0.66	0.83	0.73	361
166	0.11	0.24	0.15	206
167 168	0.16	0.40 0.35	0.23 0.10	87 112
169	0.06 0.15	0.27	0.20	298
170	0.19	0.24	0.21	191
171	0.17	0.44	0.24	91
172	0.22	0.52	0.31	100
173	0.04	0.14	0.07	167
174	0.32	0.31	0.32	344
175	0.03	0.07	0.04	76
176 177	0.06	0.17	0.08	198
177 178	0.09	0.27	0.13 0.12	127
178 179	0.08	0.26 0.52	0.12	102 31
180	0.23	0.42	0.30	139
181	0.17	0.51	0.25	63
182	0.17	0.28	0.21	367
183	0.19	0.55	0.28	67
184	0.01	0.04	0.01	46
185	0.46	0.16	0.24	381
186	0.04	0.17	0.06	29
187 188	0.11 0.14	0.26 0.38	0.16 0.21	111 121
189	0.01	0.02	0.02	82
190	0.15	0.36	0.21	118
191	0.13	0.43	0.20	77
192	0.19	0.53	0.28	118
193	0.05	0.15	0.07	159
194	0.26	0.30	0.28	269
195	0.25	0.67	0.36	81
196	0.22	0.43	0.29	299
197 198	0.04 0.30	0.11 0.77	0.06 0.43	47 47
198	0.08	0.77 0.27	0.43	62
200	0.01	0.08	0.02	24
201	0.18	0.42	0.25	86
202	0.29	0.27	0.28	308
203	0.40	0.55	0.46	321
204	0.03	0.06	0.04	67
205	0.06	0.25	0.09	28
206	0.17	0.61	0.26	59
207 / . l .	0 1/1	A 21	Ω 10 NIZNI44:£7:Γ.	2/15

		;	StackOverflow ₋	_Tags
208	0.25	0.68	0.37	53
200	0.03	0.11	0.05	274
210	0.02	0.38	0.04	8
211	0.20	0.46	0.28	95
212	0.18	0.37	0.24	129
213	0.13	0.50	0.20	34
214	0.17	0.30	0.22	89
215	0.14	0.43	0.21	67
216	0.07	0.36	0.12	25
217	0.49	0.80	0.61	109
218	0.09	0.16	0.11	134
219	0.20	0.46	0.28	70
220	0.14	0.42	0.21	67
221	0.14	0.32	0.20	79
222	0.22	0.44	0.29	50
223 224	0.34 0.13	0.75 0.35	0.47 0.19	93 94
225	0.04	0.11	0.06	180
226	0.03	0.14	0.05	79
227	0.13	0.45	0.20	64
228	0.03	0.10	0.05	50
229	0.21	0.64	0.31	53
230	0.08	0.34	0.13	44
231	0.11	0.28	0.16	61
232	0.11	0.59	0.19	49
233	0.40	0.75	0.52	72
234 235	0.12 0.11	0.18 0.16	0.14 0.13	233 166
236	0.21	0.60	0.31	58
237	0.06	0.20	0.10	152
238	0.23	0.30	0.26	302
239	0.19	0.52	0.28	42
240	0.25	0.52	0.34	269
241	0.05	0.13	0.07	54
242	0.08	0.25	0.12	162
243	0.06	0.30	0.10 0.31	23
244 245	0.24 0.05	0.44 0.33	0.09	66 40
246	0.22	0.42	0.29	73
247	0.49	0.71	0.58	78
248	0.08	0.18	0.11	131
249	0.10	0.26	0.14	82
250	0.30	0.65	0.41	57
251	0.15	0.18	0.16	296
252 253	0.13 0.13	0.24 0.27	0.17 0.18	87 96
254	0.38	0.30	0.34	280
255	0.03	0.21	0.05	24
256	0.10	0.24	0.14	88
257	0.04	0.57	0.07	7
258	0.08	0.21	0.11	136
259	0.28	0.51	0.36	73
260	0.42	0.19	0.26	268
261 262	0.30 0.39	0.91 0.55	0.45 0.46	11 82
263	0.04	0.60	0.07	5
264	0.13	0.32	0.18	108
265	0.26	0.63	0.36	78
266	0.06	0.20	0.09	69
267	0.05	0.19	0.08	80
268	0.13	0.43	0.20	28
269 270	0.03	0.14	0.05	44
270 271	0.23 0.14	0.60 0.34	0.33 0.20	42 114
271 272	0.08	0.17	0.11	59
273	0.09	0.23	0.13	130
274	0.10	0.33	0.15	48
275	0.04	0.20	0.07	227
276	0.30	0.73	0.43	75
277	0.13	0.22	0.16	68
278 279	0.40 a an	0.56 a 23	0.46 a a7	143 78
		CMIA - DE		, ×

			StackOver	
280	0.30	0.63	0.41	78
281	0.30	0.52	0.39	61
282	0.04	0.11	0.06	61
283	0.08	0.27	0.12	52
284	0.02	0.12	0.03	24
285	0.03	0.10	0.05	125
286	0.11	0.25	0.15	138
287	0.11	0.25	0.15	171
288	0.38	0.50	0.43	157
289	0.09	0.43	0.14	30
290	0.02	0.17	0.04	30
291	0.21	0.47	0.29	64
292	0.02	0.33	0.04	9
293	0.13	0.30	0.18	123
294	0.08	0.29	0.13	35
295	0.01	0.05	0.01	22
296	0.24	0.47	0.32	184
297	0.18	0.30	0.23	140
298	0.19	0.29	0.23	224
299	0.19	0.46	0.27	97
300	0.05	0.12	0.07	65
301	0.04	0.16	0.06	44
302	0.09	0.39	0.14	38
303	0.22	0.30	0.26	98
304	0.08	0.42	0.13	31
305	0.30	0.40	0.34	235
306	0.39	0.73	0.51	249
307 308	0.13 0.12	0.10 0.45	0.11 0.19	247 122
309	0.13	0.43	0.19	230
310	0.09	0.23	0.13	166
311	0.05	0.28	0.09	40
312	0.05	0.24	0.08	17
313	0.06	0.31	0.10	36
314	0.27	0.47	0.34	109
315	0.00	0.01	0.01	67
316	0.35	0.67	0.46	79
317	0.10	0.15	0.12	197
318	0.10	0.49	0.17	47
319	0.47	0.39	0.43	222
320	0.11	0.59	0.19	27
321	0.50	0.63	0.56	207
322	0.42	0.39	0.40	240
323	0.20	0.15	0.18	215
324	0.20	0.43	0.27	120
325	0.12	0.37	0.18	130
326	0.23	0.57	0.33	28
327	0.07	0.16	0.10	166
328	0.32	0.60	0.42	45
329	0.33 0.04	0.54 0.24	0.41	180
330 331	0.10	0.24	0.06 0.14	62 105
332	0.23	0.69	0.14	39
333	0.06	1.00	0.12	4
334	0.13	0.41	0.19	113
335	0.13	0.47	0.20	78
336	0.08	0.22	0.11	51
337	0.20	0.18	0.19	147
338	0.01	0.03	0.02	135
339	0.04	0.15	0.07	27
340	0.06	0.14	0.08	79
341	0.39	0.73	0.51	30
342	0.10	0.30	0.15	54
343	0.26	0.31	0.28	195
344	0.13	0.36	0.19	39
345	0.11	0.89	0.19	9
346	0.47	0.69	0.56	86
347	0.05	0.16	0.08	44
348	0.25	0.42	0.32	185
349	0.21	0.62	0.31	66
350 251	0.03 a 1a	0.67 a 1a	0.06 a 15	3
	/ 1 / / / / / / / / / / / / / / / / / /	2. 7.2	S 12	

			StackOver	
352	0.37	0.38	0.38	216
353	0.22	0.40	0.28	42
354	0.04	0.50	0.08	6
355	0.02	1.00	0.04	3
356	0.03	0.36	0.05	14
357	0.09	0.55	0.15	31
358	0.11	0.33	0.16	204
359	0.05	0.05	0.05	211
360	0.30	0.26	0.28	184
361	0.18	0.25	0.21	108
362	0.02	0.06	0.03	54
363	0.05	0.27	0.08	56
364	0.09	0.21	0.12	97
365	0.12	0.40	0.19	72
366	0.02	0.17	0.03	12
367	0.29	0.22	0.25	185
368	0.12	0.16	0.13	193
369	0.03	0.12	0.05	34
370	0.18	0.34	0.23	164
371	0.14	0.83	0.24	18
372	0.08	0.29	0.13	65
373	0.07	0.35	0.11	20
374	0.01	0.03	0.01	29
375	0.27	0.42	0.33	71
376	0.04	0.05	0.04	164
377	0.17	0.53	0.25	185
378	0.05	0.21	0.08	24
379	0.09	0.33	0.14	52
380	0.02	0.14	0.04	57
381	0.09	0.17	0.12	59
382	0.11	0.29	0.16	117
383	0.17	0.62	0.27	39
384	0.28	0.45	0.34	125
385	0.07	0.25	0.11	130
386	0.26	0.61	0.37	74
387	0.19	0.66	0.29	35
388	0.10	0.67	0.17	21
389	0.20	0.25	0.22	175
390	0.07	0.11	0.09	54
391	0.00	0.00	0.00	29
392	0.07	0.14	0.09	63
393	0.10	0.47	0.17	34
394	0.20	0.66	0.31	38
395	0.05	0.27	0.09	15
396	0.01	0.10	0.01	10
397	0.08	0.27	0.13	49
398	0.24	0.31	0.27	169
399	0.08	0.30	0.13	33
400	0.35	0.56	0.43	84
401	0.27	0.61	0.37	31
402	0.10	0.54	0.17	24
403	0.57	0.26	0.36	187
404	0.03	0.50	0.06	6
405	0.12	0.33	0.18	33
406	0.02	0.18	0.04	17
407	0.03	0.19	0.05	21
408	0.07	0.21	0.10	62
409	0.07	0.14	0.09	78
410	0.46	0.47	0.46	147
411	0.06	0.29	0.10	31
412	0.00	0.00	0.00	14
413	0.19	0.31	0.23	103
414 415	0.42 0.28	0.75 0.57	0.53 0.38	36 68
			0.38 a aa	43
416 417	0.02 0.18	0.19 0.45	0.04 0.26	73
417	0.18	0.45	0.54	62
418	0.06	0.23	0.10	97
420	0.06	0.23	0.09	42
421	0.17	0.41	0.24	42
422	0.01	0.05	0.02	38
122	a aa	a az	0.02 a a1	36
	/ / / / / / / / / / / / / / / / / / / /	7 1/101414 - 5	- NUCNIA :	

```
U.UI
424
          0.04
                     0.23
                                0.07
                                             13
425
          0.06
                     0.33
                                0.10
                                             24
426
          0.00
                     0.33
                                0.01
                                              3
427
          0.07
                     0.30
                                0.11
                                             94
428
          0.27
                     0.26
                                0.27
                                            151
429
          0.34
                     0.71
                                0.46
                                             63
430
          0.02
                     0.25
                                0.04
                                             40
                                0.30
                                             49
431
          0.23
                     0.43
432
          0.01
                     0.03
                                0.01
                                             34
433
          0.27
                     0.78
                                0.40
                                             37
434
          0.10
                     0.35
                                0.15
                                             34
435
          0.06
                     1.00
                                0.11
                                              1
436
          0.03
                     0.17
                                0.05
                                             29
437
          0.06
                     0.18
                                0.09
                                             50
                                0.00
438
          0.00
                                            104
                     0.00
                                             29
439
          0.00
                     0.00
                                0.00
440
          0.06
                     0.35
                                0.11
                                             23
441
          0.03
                     0.09
                                0.04
                                             46
                                             39
442
          0.05
                     0.15
                                0.07
443
          0.17
                     0.34
                                0.23
                                             56
444
          0.18
                     0.47
                                0.27
                                             80
445
          0.03
                     0.10
                                0.05
                                             30
446
          0.04
                     0.17
                                0.06
                                             30
447
          0.13
                     0.30
                                0.18
                                             37
448
          0.02
                     0.05
                                0.03
                                             39
449
          0.07
                     0.16
                                0.10
                                             83
450
          0.06
                     0.39
                                0.10
                                             23
451
          0.06
                     0.44
                                0.10
                                             9
452
          0.06
                     0.23
                                0.10
                                             44
453
          0.25
                     0.17
                                0.20
                                            166
454
          0.19
                                0.30
                                             32
                     0.66
455
          0.06
                     0.26
                                0.10
                                             53
                                0.23
                                             41
456
          0.14
                     0.63
457
          0.05
                     0.12
                                0.07
                                             78
458
          0.13
                     0.19
                                0.16
                                            133
459
          0.05
                     0.20
                                0.08
                                             25
                     0.34
                                0.16
                                            103
460
          0.11
461
          0.10
                     0.21
                                0.14
                                             53
462
          0.07
                     0.30
                                0.12
                                             30
463
          0.03
                     0.50
                                0.05
          0.06
                     0.08
                                0.07
464
                                             66
465
          0.03
                     0.28
                                0.05
                                             47
466
          0.06
                     0.26
                                0.10
                                             31
                                             35
467
          0.14
                     0.49
                                0.22
                                             50
468
          0.01
                     0.04
                                0.02
469
          0.34
                     0.35
                                0.34
                                            155
470
          0.06
                     0.26
                                0.10
                                             27
471
          0.36
                     0.50
                                0.42
                                             58
472
          0.03
                     0.08
                                0.05
                                            159
```

```
1 start = datetime.now()
 2 classifier_2 = OneVsRestClassifier(LogisticRegression(penalty='l1',solver='liblinear'), n_jobs=1)
 3 classifier_2.fit(x_train_multilabel_bow, y_train)
 4 predictions 2 = classifier 2.predict(x_test_multilabel_bow)
 5 print("Accuracy :",metrics.accuracy_score(y_test, predictions_2))
 6 print("Hamming loss ",metrics.hamming_loss(y_test,predictions_2))
 7
 8
9 precision = precision_score(y_test, predictions_2, average='micro')
10 recall = recall_score(y_test, predictions_2, average='micro')
11 f1 = f1_score(y_test, predictions_2, average='micro')
13 print("Micro-average quality numbers")
14 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
15
16 precision = precision_score(y_test, predictions_2, average='macro')
17 recall = recall_score(y_test, predictions_2, average='macro')
18 f1 = f1_score(y_test, predictions_2, average='macro')
19
20 print("Macro-average quality numbers")
```

```
21 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))

22

23 print (metrics.classification_report(y_test, predictions_2))

24 print("Time taken to run this cell :", datetime.now() - start)
```

₽

Accuracy : 0.2359

Hamming loss 0.002942057142857143 Micro-average quality numbers

Precision: 0.6777, Recall: 0.5207, F1-measure: 0.5889

Macro-average quality numbers Precision: 0.4122, Recall: 0.3021, F1-measure: 0.3397 precision recall f1-score 0 0.98 0.97 0.97 42802 1 0.42 0.26 0.32 1764 2 0.56 0.38 0.46 942 3 0.34 0.19 0.25 6539 4 0.48 0.41 0.45 2540 5 0.65 0.54 0.59 2156 1990 6 0.66 0.50 0.57 7 0.31 0.22 0.17 611 8 0.55 0.24 0.34 324 9 0.76 0.78 0.77 2335 10 0.48 0.40 0.44 736 11 0.40 0.29 0.34 1199 12 0.55 0.40 0.46 842 770 0.54 0.36 0.43 13 0.61 0.56 0.58 975 14 15 0.37 0.21 0.27 523 0.40 0.27 0.32 143 16 0.71 428 17 0.56 0.62 18 0.71 0.53 0.61 552 19 0.67 0.55 0.60 708 20 0.81 0.61 0.69 89 21 0.33 219 0.48 0.25 22 0.43 0.27 0.33 662 23 0.23 0.13 0.17 1965 24 0.50 0.28 0.36 1046 25 0.44 0.29 0.35 488 26 0.47 0.31 0.37 458 0.44 27 0.52 0.38 1193 28 0.68 0.48 0.56 1492 0.19 354 29 0.23 0.16 30 0.49 0.41 0.45 159 0.47 0.36 31 0.29 157 32 0.31 0.19 0.24 740 33 0.53 0.40 0.46 1337 34 0.57 0.32 0.41 226 35 0.66 0.49 0.57 535 36 0.46 0.28 0.35 315 37 0.33 0.20 0.25 167 38 0.74 1074 0.64 0.68 39 0.44 0.26 0.33 336 40 0.49 0.37 0.42 312 41 0.22 0.13 0.16 682 265 42 0.74 0.57 0.65 0.77 478 43 0.61 0.68 44 0.63 0.36 0.46 598 45 0.45 0.27 0.34 1054 46 0.51 0.30 0.38 253 47 0.27 0.17 0.21 936 48 0.32 0.23 0.27 133 49 0.38 0.18 0.24 152 50 0.43 0.40 943 0.37 51 0.17 0.11 0.13 243 135 52 0.43 0.28 0.34 53 0.98 0.90 0.94 969 54 0.24 0.13 0.17 801 55 0.58 0.64 0.61 50 0.55 0.36 0.44 142 56 57 0.49 0.27 0.35 125 58 0.24 0.13 0.17 39 59 0.38 0.36 0.37 36 0.51 0.40 205 60 0.33 61 0.29 0.21 0.24 354 62 0.28 0.20 0.24 266 63 a 52 a 17 a 52

			StackOverl	
64	0.90	0.68	0.77	163
65	0.53	0.46	0.49	46
66	0.36	0.20	0.26	269
67	0.78	0.74	0.76	133
68	0.32	0.20	0.24	577
69	0.23	0.09	0.13	212
70	0.82	0.66	0.73	120
71	0.29	0.16	0.21	258
72	0.19	0.12	0.14	354
73	0.72	0.58	0.64	159
74	0.50	0.27	0.35	89
75	0.37	0.29	0.32	125
76	0.26	0.20	0.23	94
77	0.52	0.36	0.43	456
78	0.42	0.38	0.40	712
79	0.29	0.11	0.16	299
80	0.28	0.17	0.21	53
81	0.43	0.32	0.37	275
82	0.53	0.23	0.32	623
83	0.53	0.39	0.45	75
84	0.12	0.07	0.09	27
85	0.62	0.34	0.44	230
86	0.49	0.36	0.41	177
87	0.45	0.33	0.38	30
88	0.60	0.69	0.64	655
89	0.14	0.10	0.12	126
90	0.50	0.37	0.42	422
91	0.15	0.04	0.06	130
92	0.82	0.86	0.84	451
93	0.29	0.06	0.11	77
94	0.13	0.05	0.07	461
95	0.71	0.38	0.50	104
96	0.18	0.09	0.12	454
97	0.39	0.37	0.38	345
98	0.44	0.44	0.44	125
99	0.52	0.33	0.41	144
100	0.20	0.06	0.09	279
101	0.49	0.18	0.26	99
102	0.78	0.62	0.69	553
103	0.52	0.24	0.32	123
104	0.14	0.08	0.10	542
105	0.21	0.14	0.17	542
106	0.33	0.11	0.16	118
107	0.52	0.40 0.14	0.45	73 101
108	0.27	0.14	0.19	191
109	0.29 0.48	0.12	0.17 0.35	180 121
110 111	0.28	0.17	0.33	41
112	0.14	0.06	0.08	254
113	0.19	0.13	0.15	146
114	0.60	0.36	0.45	279
115	0.33	0.17	0.22	245
116	0.49	0.21	0.29	102
117	0.56	0.39	0.46	469
118	0.20	0.06	0.09	248
119	0.37	0.24	0.29	98
120	0.56	0.47	0.51	105
121	0.23	0.11	0.15	164
122	0.48	0.31	0.37	95
123	0.48	0.27	0.35	208
124	0.59	0.39	0.47	85
125	0.60	0.53	0.57	98
126	0.27	0.15	0.19	41
127	0.79	0.34	0.47	431
128	0.59	0.33	0.43	111
129	0.39	0.22	0.28	74
130	0.42	0.20	0.27	116
131	0.52	0.42	0.47	126
132	0.35	0.40	0.37	270
133	0.36	0.29	0.32	35
134	0.34	0.27	0.30	64
125	a 59	0 66	a 67	2/12
~~~!~	com/drive/1Kh67s	VICINITAGE	DEagNIKNI11aif	7: 5.014/6

		;	StackOverflow_	_Tags
136	0.96	0.79	0.87	345
137	0.41	0.18	0.25	174
138	0.32	0.27	0.29	183
139	0.73	0.39	0.50	454
140	0.81	0.72	0.76	302
141	0.68	0.34	0.46	82
142	0.77	0.77	0.77	82
143	0.50	0.37	0.42	98
144	0.86	0.74	0.79	137
145	0.41	0.25	0.31	412
146	0.21	0.09	0.12	224
147	0.29	0.13	0.18	153
148 149	0.60 0.61	0.62 0.41	0.61 0.49	64 68
150	0.20	0.08	0.11	126
151	0.15	0.09	0.12	202
152	0.26	0.28	0.27	39
153	0.56	0.39	0.46	36
154	0.50	0.46	0.48	136
155	0.20	0.06	0.09	212
156	0.49	0.39	0.43	51
157	0.45	0.44	0.44	94
158	0.20	0.08	0.12	286
159 160	0.52 0.45	0.45	0.48	350
160 161	0.10	0.41 0.07	0.43 0.08	22 120
162	0.24	0.12	0.16	144
163	0.59	0.50	0.55	119
164	0.37	0.26	0.31	42
165	0.82	0.81	0.81	361
166	0.28	0.15	0.19	206
167	0.60	0.29	0.39	87
168	0.29	0.29	0.29	112
169 170	0.24	0.11	0.15	298
170 171	0.40 0.44	0.23 0.48	0.29 0.46	191 91
172	0.67	0.49	0.57	100
173	0.10	0.05	0.07	167
174	0.47	0.34	0.40	344
175	0.07	0.04	0.05	76
176	0.17	0.09	0.12	198
177	0.40	0.24	0.30	127
178	0.33	0.20	0.25	102
179	0.65	0.35	0.46	31
180 181	0.51 0.65	0.46 0.56	0.48 0.60	139 63
182	0.46	0.24	0.32	367
183	0.52	0.70	0.59	67
184	0.00	0.00	0.00	46
185	0.57	0.16	0.25	381
186	0.90	0.31	0.46	29
187	0.33	0.26	0.29	111
188	0.26	0.17	0.20	121
189	0.21	0.04 0.42	0.06	82
190 191	0.58 0.70	0.52	0.49 0.60	118 77
192	0.59	0.53	0.56	118
193	0.26	0.09	0.14	159
194	0.43	0.38	0.41	269
195	0.76	0.64	0.70	81
196	0.41	0.31	0.35	299
197	0.31	0.09	0.13	47
198	0.76	0.74	0.75	47
199	0.40	0.26	0.31	62 24
200 201	0.31 0.53	0.17 0.27	0.22 0.36	24 86
202	0.53	0.22	0.31	308
203	0.67	0.56	0.61	321
204	0.08	0.03	0.04	67
205	0.16	0.18	0.17	28
206	0.58	0.49	0.53	59
207 	0 36	α 22 ΙΟΜίλ - DE	0 70 NIKNAA :::7:17:	2/15

		•	StackOverflow_	_Tags
208	0.85	0.64	0.73	53
200	0.11	0.09	0.10	274
210	0.12	0.12	0.12	8
211	0.48	0.26	0.34	95
212	0.29	0.22	0.25	129
213	0.64	0.47	0.54	34
214	0.29	0.34	0.31	89
215	0.55	0.36	0.43	67
216	0.36	0.20	0.26	25
217	0.62	0.63	0.63	109
218	0.40	0.15	0.22	134
219	0.62	0.49	0.54	70
220	0.53	0.40	0.46	67
221	0.39	0.22	0.28	79
222	0.50	0.40	0.44	50
223 224	0.72 0.27	0.71 0.26	0.71 0.26	93 94
225	0.14	0.05	0.07	180
226	0.10	0.06	0.08	79
227	0.31	0.36	0.33	64
228	0.15	0.06	0.09	50
229	0.65	0.64	0.65	53
230	0.52	0.34	0.41	44
231	0.24	0.21	0.23	61
232	0.39	0.39	0.39	49
233	0.73	0.75	0.74	72
234 235	0.20 0.33	0.14 0.10	0.16 0.16	233 166
236	0.67	0.52	0.58	58
237	0.16	0.07	0.09	152
238	0.52	0.27	0.35	302
239	0.49	0.55	0.52	42
240	0.46	0.34	0.39	269
241	0.26	0.11	0.16	54
242	0.21	0.07	0.11	162
243	0.50	0.39	0.44 0.41	23
244 245	0.65 0.19	0.30 0.10	0.41	66 40
246	0.67	0.59	0.63	73
247	0.83	0.62	0.71	78
248	0.35	0.17	0.23	131
249	0.26	0.11	0.16	82
250	0.67	0.58	0.62	57
251	0.19	0.06	0.09	296
252 253	0.39	0.18	0.25	87
254	0.27 0.44	0.16 0.14	0.20 0.21	96 280
255	0.25	0.21	0.23	24
256	0.31	0.19	0.24	88
257	0.23	0.43	0.30	7
258	0.24	0.15	0.19	136
259	0.72	0.56	0.63	73
260	0.63	0.43	0.51	268
261	1.00	0.82	0.90	11
262 263	0.69 0.50	0.51 0.80	0.59 0.62	82 5
264	0.37	0.24	0.29	108
265	0.67	0.50	0.57	78
266	0.16	0.10	0.12	69
267	0.34	0.12	0.18	80
268	0.37	0.25	0.30	28
269	0.12	0.05	0.07	44
270 271	0.66	0.60	0.62	42
271 272	0.47 0.10	0.25 0.08	0.32 0.09	114 59
272 273	0.27	0.21	0.24	130
274	0.26	0.21	0.23	48
275	0.17	0.11	0.13	227
276	0.72	0.77	0.74	75
277	0.71	0.32	0.44	68
278	0.59	0.48	0.53	143
979 	0 16	0 15  CM:4DE	0 16 NUCNIAA:57:F.	72

			StackOver	
280	0.69	0.56	0.62	78
281	0.72	0.59	0.65	61
282	0.06	0.02	0.03	61
283	0.43	0.25	0.32	52
284	0.20	0.08	0.12	24
285	0.06	0.02	0.02	125
286	0.35	0.19	0.24	138
287	0.18	0.09	0.12	171
288	0.68	0.45	0.54	157
289	0.52	0.40	0.45	30
290	0.18	0.10	0.13	30
291	0.77	0.31	0.44	64
292	0.14	0.22	0.17	9
293	0.20	0.12	0.15	123
294	0.45	0.29	0.35	35
295	0.25	0.09	0.13	22
296	0.41	0.46	0.43	184
297	0.64	0.21	0.32	140
298	0.38	0.19	0.25	224
299	0.63	0.45	0.53	97
300	0.07	0.03	0.04	65
301	0.11	0.05	0.06	44
302 303	0.43 0.37	0.26 0.18	0.33 0.24	38 98
304	0.48	0.48	0.48	31
305	0.38	0.48	0.30	235
306	0.98	0.23	0.95	249
307	0.40	0.09	0.15	247
308	0.40	0.30	0.34	122
309	0.20	0.08	0.11	230
310	0.37	0.16	0.22	166
311	0.23	0.15	0.18	40
312	0.56	0.29	0.38	17
313	0.27	0.19	0.23	36
314	0.55	0.33	0.41	109
315	0.00	0.00	0.00	67
316	0.63	0.58	0.61	79
317	0.08	0.02	0.03	197
318	0.27	0.53	0.36	47
319	0.62	0.35	0.45	222
320	0.47	0.56	0.51	27
321	0.68	0.56	0.61	207
322 323	0.69 0.26	0.38 0.18	0.49 0.21	240 215
323 324	0.42	0.33	0.37	120
325	0.42	0.23	0.30	130
326	0.68	0.54	0.60	28
327	0.15	0.16	0.15	166
328	0.66	0.56	0.60	45
329	0.45	0.45	0.45	180
330	0.17	0.08	0.11	62
331	0.44	0.23	0.30	105
332	0.81	0.67	0.73	39
333	0.67	1.00	0.80	4
334	0.54	0.28	0.37	113
335	0.39	0.40	0.39	78
336	0.27	0.14	0.18	51
337	0.42	0.17	0.24	147
338	0.07	0.02	0.03	135
339	0.29	0.33	0.31	27
340	0.29	0.13	0.18	79
341	0.92	0.73	0.81	30
342	0.26	0.15	0.19	54 105
343 344	0.59 0.35	0.23 0.31	0.33	195 39
344 345	0.35 0.75	0.31 0.67	0.33 0.71	39 9
345 346	0.75	0.78	0.71	86
340 347	0.39	0.78	0.77	44
348	0.68	0.39	0.50	185
349	0.68	0.61	0.64	66
350	1.00	0.67	0.80	3
251	a 30	a 21	A 35	35
	/ / : / / / / 0-		SE NUCNIA "	

			StackOver	
352	0.57	0.42	0.48	216
353	0.41	0.38	0.40	42
354	0.67	0.33	0.44	6
355	0.06	0.33	0.10	3
356	0.22	0.14	0.17	14
357	0.34	0.35	0.35	31
358	0.32	0.06	0.10	204
359	0.12	0.01	0.02	211
360	0.38	0.19	0.25	184
361	0.29	0.20	0.24	108
362	0.06	0.02	0.03	54
363 364	0.21 0.21	0.18 0.10	0.19 0.14	56 97
365	0.29	0.21	0.24	72
366	0.17	0.08	0.11	12
367	0.64	0.41	0.50	185
368	0.18	0.06	0.09	193
369	0.27	0.12	0.16	34
370	0.57	0.34	0.43	164
371	0.62	0.72	0.67	18
372	0.22	0.11	0.14	65
373 374	0.60 0.00	0.30 0.00	0.40 0.00	20 29
37 <del>4</del> 375	0.64	0.42	0.51	71
376	0.14	0.12	0.13	164
377	0.37	0.34	0.35	185
378	0.19	0.21	0.20	24
379	0.24	0.17	0.20	52
380	0.21	0.12	0.15	57
381	0.20	0.07	0.10	59
382	0.23	0.09	0.13	117
383	0.58	0.54	0.56	39 125
384 385	0.57 0.35	0.53 0.14	0.55 0.20	130
386	0.66	0.58	0.62	74
387	0.71	0.63	0.67	35
388	0.48	0.62	0.54	21
389	0.35	0.24	0.28	175
390	0.19	0.09	0.12	54
391	0.00	0.00	0.00	29
392	0.35	0.11	0.17	63
393 394	0.28 0.81	0.32 0.66	0.30 0.72	34 38
395	0.20	0.20	0.72	15
396	0.29	0.20	0.24	10
397	0.33	0.18	0.24	49
398	0.51	0.20	0.29	169
399	0.29	0.24	0.26	33
400	0.45	0.35	0.39	84
401	0.72	0.58	0.64	31
402	0.38	0.42	0.40	24
403 404	0.67	0.36	0.47	187
404 405	0.40 0.50	0.33 0.30	0.36 0.38	6 33
406	0.21	0.24	0.22	17
407	0.20	0.10	0.13	21
408	0.42	0.16	0.23	62
409	0.20	0.06	0.10	78
410	0.70	0.50	0.58	147
411	0.30	0.26	0.28	31
412	0.00	0.00	0.00	14
413 414	0.41 0.74	0.12 0.64	0.18 0.69	103 36
414 415	0.74	0.59	0.58	68
416	0.07	0.05	0.05	43
417	0.45	0.38	0.41	73
418	0.73	0.60	0.65	62
419	0.04	0.02	0.03	97
420	0.03	0.02	0.03	42
421	0.63	0.46	0.54	41
422	0.07	0.05	0.06	38 36
172	0 01	a az	0 02 	76

```
رن. ن
424
                     0.08
                                0.10
                                             13
          0.14
425
          0.42
                     0.33
                                0.37
                                             24
426
          0.10
                     0.33
                                0.15
                                              3
427
          0.37
                     0.23
                                0.29
                                             94
428
          0.38
                     0.22
                                0.28
                                            151
429
          0.60
                     0.54
                                0.57
                                             63
430
          0.09
                     0.05
                                0.06
                                             40
                                0.46
                                             49
431
          0.53
                     0.41
432
          0.00
                     0.00
                                0.00
                                             34
433
          0.78
                     0.76
                                0.77
                                             37
434
          0.36
                     0.29
                                0.32
                                             34
435
          1.00
                     1.00
                                1.00
                                              1
436
          0.13
                     0.07
                                0.09
                                             29
437
          0.20
                     0.18
                                0.19
                                             50
          0.00
                                0.00
438
                                            104
                     0.00
          0.00
                                             29
439
                     0.00
                                0.00
440
          0.33
                     0.22
                                0.26
                                             23
441
          0.05
                     0.02
                                0.03
                                             46
                                0.09
                                             39
442
          0.12
                     0.08
443
          0.57
                     0.30
                                0.40
                                             56
444
          0.54
                     0.49
                                0.51
                                             80
445
          0.09
                     0.03
                                0.05
                                             30
446
          0.11
                     0.10
                                0.11
                                             30
447
          0.32
                     0.30
                                0.31
                                             37
448
          0.19
                     0.10
                                0.13
                                             39
449
          0.21
                     0.14
                                0.17
                                             83
450
          0.47
                     0.39
                                0.43
                                             23
451
          0.40
                     0.67
                                0.50
                                             9
452
          0.38
                                0.26
                                             44
                     0.20
453
          0.48
                     0.36
                                0.41
                                            166
454
          9.64
                     0.56
                                0.60
                                             32
455
          0.37
                     0.25
                                0.30
                                             53
                                             41
456
          0.52
                     0.59
                                0.55
457
          0.18
                     0.09
                                0.12
                                             78
458
          0.29
                     0.11
                                0.16
                                            133
459
          0.25
                     0.16
                                0.20
                                             25
          0.51
                     0.37
                                0.43
                                            103
460
461
          0.53
                     0.15
                                0.24
                                             53
462
          0.34
                     0.33
                                0.34
                                             30
463
          0.11
                     0.25
                                0.15
                                              4
464
          0.11
                     0.06
                                0.08
                                             66
```

## **▼ LINEAR SVM**

```
468
                        0.00
                                  0.00
                                                        50
                                            0.00
1 from sklearn.model_selection import GridSearchCV
2 from scipy.stats import randint as sp randint
3 from sklearn.model_selection import cross_val_score
4 from sklearn.linear_model import SGDClassifier
5
6
7 LinearSVM = OneVsRestClassifier(SGDClassifier(loss='hinge',penalty='12',random_state=None, class_weight=None), n_j
8 LinearSVM.fit(x train multilabel bow, y train)
9 predictions_svm = LinearSVM.predict(x_test_multilabel_bow)
10 print("Accuracy :", metrics.accuracy_score(y_test, predictions_svm))
11 print("Hamming loss ", metrics.hamming_loss(y_test, predictions_svm))
12
13
14 precision = precision_score(y_test, predictions_svm, average='micro')
15 recall = recall_score(y_test, predictions_svm, average='micro')
16 f1 = f1_score(y_test, predictions_svm, average='micro')
18 print("Micro-average quality numbers")
19 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
20
21 precision = precision_score(y_test, predictions_svm, average='macro')
22 recall = recall_score(y_test, predictions_svm, average='macro')
23 f1 = f1_score(y_test, predictions_svm, average='macro')
```

```
24
25 print("Macro-average quality numbers")
26 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
27
28 print (metrics.classification_report(y_test, predictions_svm))
29 print("Time taken to run this cell :", datetime.now() - start)
```

₽

Accuracy : 0.2384

Hamming loss 0.002897085714285714 Micro-average quality numbers

Precision: 0.7029, Recall: 0.4923, F1-measure: 0.5790

Macro-average quality numbers

Precision: 0.4318, Recall: 0.2714, F1-measure: 0.3184 precision recall f1-score support 0 0.98 0.95 0.96 42802 1 0.36 0.23 0.28 1764 2 0.55 0.32 0.40 942 3 0.36 0.17 0.23 6539 4 0.46 0.37 0.41 2540 5 0.64 0.53 0.58 2156 6 0.56 1990 0.64 0.49 7 0.29 0.18 0.22 611 8 0.43 0.25 0.32 324 9 0.76 0.79 0.78 2335 10 0.44 0.38 0.41 736 11 0.37 0.25 0.29 1199 12 0.49 0.36 0.42 842 770 0.52 0.30 0.38 13 0.55 0.53 0.54 975 14 15 0.32 0.17 0.23 523 16 0.38 0.25 0.30 143 0.54 0.59 428 17 0.64 18 0.71 0.50 0.59 552 19 0.62 0.53 0.57 708 20 89 0.84 0.60 0.70 21 0.18 0.26 219 0.47 22 0.41 0.24 0.30 662 1965 23 0.25 0.12 0.16 24 0.49 0.27 0.35 1046 25 0.42 0.26 0.32 488 26 0.42 0.27 0.33 458 0.45 1193 27 0.53 0.38 28 0.69 0.42 0.52 1492 29 0.24 0.17 354 0.13 30 0.43 0.36 0.39 159 0.28 31 0.33 0.24 157 32 0.32 0.22 0.26 740 33 0.55 0.40 0.46 1337 34 0.57 0.30 0.39 226 35 0.69 0.44 0.54 535 36 0.48 0.18 0.27 315 37 0.28 0.15 0.20 167 38 0.76 1074 0.59 0.67 39 0.39 0.21 0.28 336 40 0.43 0.35 0.39 312 41 0.24 0.16 0.19 682 265 42 0.81 0.54 0.65 0.68 478 43 0.76 0.63 44 0.67 0.25 0.36 598 45 0.53 0.25 0.34 1054 46 0.49 0.28 0.36 253 47 0.31 0.13 0.18 936 48 0.33 0.20 0.25 133 152 49 0.31 0.10 0.15 50 0.45 0.24 0.31 943 51 0.19 0.09 0.12 243 0.30 135 52 0.41 0.35 53 0.98 0.74 0.85 969 54 0.23 0.04 0.07 801 55 0.62 0.58 0.60 50 0.30 0.40 142 56 0.60 57 0.39 0.24 0.30 125 0.09 39 58 0.12 0.08 59 0.44 0.33 0.38 36 0.51 0.36 205 60 0.27 61 0.31 0.19 0.23 354 62 0.27 0.15 0.19 266 63 0 66 a za a 12

			StackOver	
61	0.00	0.50	0.70	162
64 65	0.85 0.54	0.63 0.43	0.72 0.48	163 46
66	0.39	0.45	0.48	269
67	0.72	0.74	0.73	133
68	0.34	0.09	0.73	577
69	0.15	0.03	0.06	212
70	0.77		0.71	120
		0.67		
71	0.25	0.14	0.18	258
72	0.17	0.19	0.18	354
73	0.72	0.57	0.63	159
74	0.44	0.25	0.32	89
75	0.48	0.29	0.36	125
76	0.32	0.26	0.29	94
77	0.56	0.28	0.37	456
78	0.48	0.27	0.35	712
79	0.25	0.07	0.11	299
80	0.18	0.15	0.16	53
81	0.54	0.27	0.36	275
82	0.53	0.11	0.19	623
83	0.55	0.37	0.44	75
84	0.10	0.07	0.08	27
85	0.63	0.39	0.48	230
86	0.51	0.32	0.39	177
87	0.50	0.33	0.40	30
88	0.61	0.50	0.55	655
89	0.18	0.12	0.14	126
90	0.49	0.38	0.43	422
91	0.08	0.02	0.03	130
92	0.83	0.80	0.82	451
93	0.19	0.05	0.08	77
94	0.08	0.00	0.01	461
95	0.68	0.40	0.51	104
96	0.19	0.09	0.12	454
97	0.39	0.41	0.40	345
98	0.43	0.40	0.42	125
99	0.54	0.39	0.45	144
100	0.27	0.11	0.15	279
101	0.47	0.09	0.15	99
102	0.79	0.55	0.65	553
103	0.71	0.20	0.32	123
104	0.22	0.07	0.10	542
105	0.17	0.05	0.08	542
106	0.32	0.14	0.20	118
107	0.58	0.40	0.47	73
108	0.29	0.14	0.18	191
109	0.30	0.12	0.17	180
110	0.47	0.17	0.25	121
111	0.39	0.22	0.28	41
112	0.12	0.02	0.04	254
113	0.17	0.10	0.13	146
114	0.66	0.34	0.45	279
115	0.35	0.12	0.18	245
116	0.51	0.23	0.31	102
117	0.57	0.36	0.44	469
118	0.23	0.03	0.06	248
119	0.38	0.23	0.29	98
120	0.57	0.41	0.48	105
121	0.18	0.05	0.08	164
122	0.39	0.28	0.33	95
123	0.47	0.37	0.42	208
124	0.53	0.35	0.42	85
125	0.65	0.51	0.57	98
126	0.23	0.07	0.11	41
127	0.79	0.39	0.52	431
128	0.57	0.29	0.38	111
129	0.41	0.27	0.33	74
130	0.44	0.22	0.30	116
131	0.54	0.31	0.39	126
132	0.37	0.37	0.37	270
133	0.35	0.20	0.25	35
134	0.41	0.23	0.30	64
125	A 67	0 65	0 6/1 0 5/1 = 0 11/2 11/4 = :	2/12

		;	StackOverflow_	
136	0.93	0.75	0.83	345
137	0.41	0.18	0.25	174
138	0.34	0.28	0.31	183
139	0.76	0.27	0.39	454
140	0.86	0.64	0.73	302
141	0.62	0.39	0.48	82
142	0.74	0.80	0.77	82
143	0.42	0.35	0.38	98
144	0.87	0.64	0.73	137
145	0.48	0.21	0.30	412
146	0.24	0.10	0.14	224
147	0.26	0.08	0.12	153
148	0.62	0.64	0.63	64
149	0.54	0.38	0.45	68
150 151	0.18	0.07	0.10	126
152	0.15 0.21	0.07 0.15	0.10 0.18	202 39
153	0.55	0.33	0.41	36
154	0.69	0.43	0.53	136
155	0.21	0.04	0.07	212
156	0.50	0.43	0.46	51
157	0.49	0.48	0.49	94
158	0.18	0.07	0.10	286
159	0.49	0.49	0.49	350
160	0.41	0.32	0.36	22
161	0.15	0.07	0.10	120
162 163	0.24 0.59	0.14 0.55	0.18 0.57	144 119
164	0.50	0.19	0.28	42
165	0.85	0.73	0.79	361
166	0.35	0.14	0.20	206
167	0.60	0.17	0.27	87
168	0.39	0.26	0.31	112
169	0.33	0.10	0.15	298
170	0.45	0.15	0.23	191
171 172	0.55	0.44	0.49 0.64	91
172 173	0.88 0.22	0.50 0.07	0.10	100 167
174	0.47	0.41	0.44	344
175	0.14	0.04	0.06	76
176	0.25	0.09	0.13	198
177	0.42	0.19	0.26	127
178	0.38	0.22	0.28	102
179	0.67	0.26	0.37	31
180	0.57	0.47	0.52	139
181 182	0.74 0.47	0.41 0.25	0.53 0.32	63 367
183	0.49	0.64	0.55	67
184	0.00	0.00	0.00	46
185	0.54	0.11	0.18	381
186	0.56	0.17	0.26	29
187	0.31	0.16	0.21	111
188	0.22	0.12	0.15	121
189	0.17	0.01	0.02	82
190 191	0.50 0.79	0.36 0.34	0.42 0.47	118 77
192	0.61	0.53	0.57	118
193	0.38	0.07	0.12	159
194	0.44	0.24	0.31	269
195	0.78	0.58	0.67	81
196	0.44	0.20	0.27	299
197	0.09	0.02	0.03	47
198	0.79	0.70	0.74	47
199 200	0.36 0.00	0.16 0.00	0.22 0.00	62 24
200 201	0.60	0.30	0.40	86
202	0.52	0.15	0.24	308
203	0.77	0.45	0.57	321
204	0.00	0.00	0.00	67
205	0.21	0.21	0.21	28
206	0.51	0.44	0.47	59
707 	0 22 /4Kb07-V	A 10	0 7/1 NU/NI44:57:F.	2/15

		;	StackOverflow_	_Tags
207	0.65	0.58	0.61	53
209	0.06	0.01	0.01	274
210	0.25	0.12	0.17	8
211	0.53	0.38	0.44	95
212	0.30	0.25	0.27	129
213 214	0.58 0.35	0.44 0.30	0.50 0.33	34 89
214	0.51	0.37	0.43	67
216	0.42	0.20	0.27	25
217	0.67	0.53	0.59	109
218	0.45	0.10	0.16	134
219	0.60	0.47	0.53	70
220 221	0.63 0.50	0.36 0.18	0.46 0.26	67 79
222	0.57	0.40	0.47	50
223	0.75	0.71	0.73	93
224	0.33	0.22	0.27	94
225	0.10	0.06	0.07	180
226 227	0.22 0.35	0.09 0.38	0.13 0.36	79 64
228	0.25	0.04	0.07	50
229	0.72	0.55	0.62	53
230	0.55	0.27	0.36	44
231	0.18	0.26	0.21	61
232	0.38	0.51	0.43	49 72
233 234	0.82 0.23	0.75 0.17	0.78 0.19	72 233
235	0.34	0.06	0.10	166
236	0.84	0.45	0.58	58
237	0.12	0.01	0.02	152
238	0.61	0.23	0.33	302
239 240	0.49 0.56	0.48 0.42	0.48 0.48	42 269
241	0.25	0.07	0.11	54
242	0.20	0.02	0.03	162
243	0.53	0.39	0.45	23
244	0.78	0.38	0.51	66
245 246	0.14 0.69	0.05 0.49	0.07 0.58	40 73
247	0.86	0.55	0.67	78
248	0.28	0.13	0.18	131
249	0.37	0.13	0.20	82
250	0.86	0.56	0.68	57
251 252	0.21 0.49	0.01 0.20	0.03 0.28	296 87
253	0.25	0.15	0.18	96
254	0.52	0.26	0.34	280
255	0.36	0.17	0.23	24
256	0.38	0.14	0.20	88
257 258	0.30 0.26	0.43 0.12	0.35 0.16	7 136
259	0.76	0.47	0.58	73
260	0.62	0.51	0.56	268
261	0.82	0.82	0.82	11
262	0.67	0.43	0.52	82
263 264	0.33	0.40	0.36	100
265	0.36 0.80	0.25 0.47	0.30 0.60	108 78
266	0.24	0.09	0.13	69
267	0.41	0.11	0.18	80
268	0.57	0.29	0.38	28
269 270	0.22	0.05	0.08	44
270 271	0.71 0.41	0.57 0.29	0.63 0.34	42 114
272	0.15	0.23	0.09	59
273	0.43	0.20	0.27	130
274	0.23	0.19	0.21	48
275 276	0.28	0.10	0.14	227
276 277	0.77 0.65	0.61 0.38	0.68 0.48	75 68
278	0.66	0.51	0.57	143
279	a 26	A 15	a 19	72

			StackOverflow _.	_Tags
200	0.20	0.17	0.17	78
280 281	0.81 0.75	0.44 0.49	0.57 0.59	61
282	0.00	0.00	0.00	61
283	0.69	0.21	0.32	52
284	0.25	0.12	0.17	24
285	0.11	0.02	0.03	125
286	0.35	0.17	0.23	138
287	0.17	0.05	0.07	171
288	0.72	0.31	0.43	157
289	0.62	0.33	0.43	30
290	0.17	0.07	0.10	30
291	0.74	0.31	0.44	64
292	0.15	0.22	0.18	9
293	0.36	0.13	0.19	123
294	0.55	0.34	0.42	35
295	0.20	0.05	0.07	22
296	0.40	0.44	0.42	184
297	0.63	0.29	0.40	140
298	0.39	0.10	0.16	224
299	0.80 0.12	0.44	0.57	97 65
300 301	0.14	0.03 0.05	0.05 0.07	44
302	0.50	0.32	0.39	38
303	0.45	0.26	0.32	98
304	0.52	0.42	0.46	31
305	0.32	0.25	0.28	235
306	0.99	0.76	0.86	249
307	0.31	0.23	0.26	247
308	0.47	0.29	0.36	122
309	0.24	0.06	0.10	230
310	0.40	0.13	0.19	166
311	0.19	0.10	0.13	40
312	0.44	0.24	0.31	17
313	0.27	0.19	0.23	36
314	0.53	0.39	0.44	109
315	0.00	0.00	0.00	67
316	0.72	0.68	0.70	79
317	0.19	0.06	0.09	197 47
318 319	0.16 0.68	0.47 0.32	0.23 0.44	222
320	0.63	0.44	0.52	27
321	0.70	0.57	0.63	207
322	0.74	0.29	0.41	240
323	0.32	0.06	0.09	215
324	0.47	0.29	0.36	120
325	0.44	0.16	0.24	130
326	0.82	0.64	0.72	28
327	0.12	0.15	0.13	166
328	0.76	0.49	0.59	45
329	0.51	0.48	0.49	180
330	0.23	0.11	0.15	62
331	0.28	0.25	0.26	105
332	0.96	0.56	0.71	39
333	0.50	1.00	0.67	4
334	0.61	0.40	0.48	113 78
335 336	0.64 0.21	0.29 0.08	0.40 0.11	51
337	0.40	0.18	0.25	147
338	0.00	0.00	0.00	135
339	0.30	0.37	0.33	27
340	0.12	0.01	0.02	79
341	0.95	0.63	0.76	30
342	0.25	0.06	0.09	54
343	0.59	0.20	0.30	195
344	0.30	0.33	0.31	39
345	0.86	0.67	0.75	9
346	0.78	0.65	0.71	86
347	0.31	0.11	0.17	44
348	0.76	0.28	0.40	185
349	0.83	0.53	0.65	66
350 351	0.33 a 53	0.33 a 29	0.33 a 37	3
	13 14141-07-14	DE		.0\4

			StackOver	
352	0.51	0.31	0.39	216
353	0.52	0.33	0.41	42
354	0.67	0.33	0.44	6
355	0.07	0.67	0.12	3
356	0.20	0.07	0.11	14
357	0.42	0.35	0.39	31
358	0.39	0.09	0.14	204
359	0.00	0.00	0.00	211
360	0.48	0.17	0.26	184
361	0.29	0.18	0.22	108
362	0.00	0.00	0.00	54
363 364	0.31 0.32	0.18 0.09	0.23 0.14	56 97
365	0.41	0.17	0.24	72
366	0.00	0.00	0.00	12
367	0.60	0.22	0.32	185
368	0.20	0.02	0.03	193
369	0.17	0.06	0.09	34
370	0.57	0.27	0.37	164
371	0.67	0.67	0.67	18
372	0.29	0.15	0.20	65
373	0.42	0.25	0.31	20
374	0.00	0.00	0.00	29 71
375 376	0.52 0.12	0.34 0.01	0.41 0.01	71 164
377	0.53	0.14	0.22	185
378	0.12	0.12	0.12	24
379	0.26	0.25	0.25	52
380	0.08	0.02	0.03	57
381	0.29	0.03	0.06	59
382	0.33	0.02	0.03	117
383	0.65	0.56	0.60	39
384	0.65	0.44	0.53	125
385 386	0.27 0.66	0.12 0.58	0.16 0.62	130 74
387	0.66	0.54	0.59	35
388	0.52	0.57	0.55	21
389	0.49	0.13	0.20	175
390	0.00	0.00	0.00	54
391	0.00	0.00	0.00	29
392	0.46	0.10	0.16	63
393	0.33	0.38	0.36	34
394 395	0.75 0.50	0.63 0.20	0.69 0.29	38 15
396	0.25	0.20	0.22	10
397	0.33	0.12	0.18	49
398	0.67	0.05	0.09	169
399	0.33	0.30	0.32	33
400	0.56	0.45	0.50	84
401	0.80	0.52	0.63	31
402	0.44	0.46	0.45	24
403 404	0.72 0.50	0.16 0.33	0.26 0.40	187 6
404 405	0.58	0.33	0.42	33
406	0.17	0.12	0.14	17
407	0.50	0.05	0.09	21
408	0.32	0.10	0.15	62
409	0.19	0.04	0.06	78
410	0.67	0.48	0.56	147
411	0.35	0.23	0.27	31
412	0.00	0.00	0.00	14
413 414	0.69 0.88	0.19 0.61	0.30 0.72	103 36
414 415	0.51	0.59	0.72	68
416	0.16	0.07	0.10	43
417	0.44	0.37	0.40	73
418	0.89	0.52	0.65	62
419	0.00	0.00	0.00	97
420	0.08	0.05	0.06	42
421 422	0.73	0.39	0.51	41
422 122	0.33 a 5a	0.05 a az	0.09 a as	38 36
	/ . / . / . / . / . / . / . / .	-VION4:4 - F	 DENIZAI44 '	7:50144

```
رن. ن
424
          0.20
                     0.08
                                0.11
                                             13
425
          0.33
                                0.18
                                             24
                     0.12
426
          0.00
                     0.00
                                0.00
                                              3
427
          0.40
                     0.22
                                0.29
                                             94
428
          0.37
                                0.22
                                            151
                     0.16
429
          0.73
                     0.59
                                0.65
                                             63
430
          0.25
                     0.07
                                0.12
                                             40
                                0.37
                                             49
431
          0.47
                     0.31
          0.00
432
                     0.00
                                0.00
                                             34
433
          0.87
                     0.70
                                0.78
                                             37
434
          0.39
                     0.32
                                0.35
                                             34
435
          1.00
                     1.00
                                1.00
                                              1
436
          0.14
                     0.03
                                0.06
                                             29
437
          0.17
                     0.14
                                0.15
                                             50
438
          0.00
                     0.00
                                            104
                                0.00
          0.00
                                             29
439
                     0.00
                                0.00
440
          0.20
                     0.04
                                0.07
                                             23
441
          0.00
                     0.00
                                0.00
                                             46
                                             39
442
          0.27
                     0.10
                                0.15
443
          0.61
                     0.30
                                0.40
                                             56
444
          0.61
                     0.35
                                0.44
                                             80
445
          0.14
                     0.07
                                0.09
                                             30
446
          0.10
                     0.07
                                0.08
                                             30
447
          0.33
                     0.24
                                0.28
                                             37
448
                     0.13
                                0.21
                                             39
          0.62
449
          0.19
                     0.10
                                0.13
                                             83
450
          0.67
                     0.26
                                0.38
                                             23
451
          0.31
                     0.56
                                0.40
                                              9
452
                                0.24
                                             44
          0.47
                     0.16
453
          0.55
                     0.10
                                0.17
                                            166
454
          0.68
                     9.47
                                0.56
                                             32
455
          0.29
                     0.11
                                0.16
                                             53
456
          0.60
                     0.51
                                0.55
                                             41
457
          0.14
                     0.08
                                0.10
                                             78
458
          0.25
                     0.05
                                0.09
                                            133
459
          0.33
                     0.12
                                0.18
                                             25
          0.50
                                0.26
                                            103
460
                     0.17
461
                     0.09
                                0.16
          0.62
                                             53
462
          0.38
                     0.30
                                0.33
                                             30
463
          1.00
                     0.25
                                0.40
          0.17
                     0.05
                                0.07
464
                                             66
465
          0.25
                     0.11
                                0.15
                                             47
466
          0.33
                     0.19
                                0.24
                                             31
          0.59
                     0.21
                                0.31
                                            155
```

## ▼ LOGISTIC REGRESSION FOR HYPER PARAMETER TUNING

```
رے ، ں
1 from sklearn.model_selection import GridSearchCV
2 from scipy.stats import randint as sp_randint
3 from sklearn.model_selection import cross_val_score
4 from sklearn.linear_model import SGDClassifier
5
6 start = datetime.now()
8 grid_params = [{ 'estimator__C' : [10**x for x in range(-4,3)]}]
9 logistic_regression = OneVsRestClassifier(LogisticRegression(penalty='l1',solver='liblinear'))
10 clf=GridSearchCV(logistic regression,grid params,scoring='f1 micro',cv=3)
11 clf.fit(x_train_multilabel_bow, y_train)
12 predictions_2 = clf.predict(x_test_multilabel_bow)
13 print("Accuracy :",metrics.accuracy_score(y_test, predictions_2))
14 print("Hamming loss ",metrics.hamming_loss(y_test,predictions_2))
15
16
17 precision = precision_score(y_test, predictions_2, average='micro')
18 recall = recall_score(y_test, predictions_2, average='micro')
10 fl - fl cconoly tast madictions 2 avanaga- 'micro')
```

```
20
21 print("Micro-average quality numbers")
22 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
23
24 precision = precision_score(y_test, predictions_2, average='macro')
25 recall = recall_score(y_test, predictions_2, average='macro')
26 f1 = f1_score(y_test, predictions_2, average='macro')
27
28 print("Macro-average quality numbers")
29 print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
30
31 print (metrics.classification_report(y_test, predictions_2))
32 print("Time taken to run this cell :", datetime.now() - start)
```

С→

Accuracy: 0.23587142857142857 Hamming loss 0.0029417714285714285

Micro-average quality numbers

Precision: 0.6778, Recall: 0.5207, F1-measure: 0.5890

Macro-average quality numbers

Precision: 0.4123, Recall: 0.3021, F1-measure: 0.3397 precision recall f1-score 0 0.98 0.97 0.97 42802 1 0.42 0.26 0.32 1764 2 0.56 0.38 0.46 942 3 0.34 0.19 0.25 6539 4 0.48 0.41 0.45 2540 5 0.65 0.54 0.59 2156 6 0.57 1990 0.66 0.50 7 0.31 0.22 611 0.17 8 0.55 0.24 0.34 324 9 0.77 0.76 0.78 2335 10 0.48 0.40 0.44 736 11 0.40 0.29 0.34 1199 12 0.55 0.40 0.46 842 770 0.54 0.36 0.43 13 0.61 0.56 0.58 975 14 15 0.37 0.21 0.27 523 16 0.40 0.27 0.32 143 0.71 0.62 428 17 0.56 18 0.71 0.53 0.61 552 19 0.67 0.55 0.60 708 20 89 0.81 0.61 0.69 21 0.48 0.25 0.33 219 22 0.43 0.27 0.33 662 1965 23 0.23 0.13 0.17 24 0.50 0.28 0.36 1046 25 0.44 0.29 0.35 488 26 0.47 0.31 0.37 458 0.44 1193 27 0.52 0.38 28 0.68 0.48 0.56 1492 29 0.19 354 0.23 0.16 30 0.49 0.41 0.45 159 0.36 31 0.48 0.29 157 32 0.31 0.19 0.24 740 33 0.54 0.40 0.46 1337 34 0.57 0.32 0.41 226 35 0.66 0.49 0.57 535 36 0.46 0.28 0.35 315 37 0.33 0.20 0.25 167 38 0.74 0.68 1074 0.64 39 0.44 0.26 0.33 336 40 0.48 0.37 0.42 312 41 0.22 0.13 0.16 682 265 42 0.74 0.57 0.65 0.77 478 43 0.61 0.68 44 0.63 0.36 0.46 598 45 0.45 0.27 0.34 1054 46 0.50 0.30 0.37 253 47 0.27 0.17 0.21 936 48 0.32 0.23 0.27 133 152 49 0.38 0.18 0.24 50 0.43 0.37 0.40 943 51 0.17 0.11 0.13 243 0.34 135 52 0.43 0.28 53 0.98 0.90 0.94 969 54 0.24 0.13 0.17 801 55 0.58 0.64 0.61 50 0.56 0.36 0.44 142 56 57 0.49 0.27 0.35 125 0.24 0.17 39 58 0.13 59 0.38 0.36 0.37 36 0.51 0.40 205 60 0.33 61 0.29 0.21 0.24 354 62 0.28 0.20 0.24 266 63 a 58 a 52 a 17

			StackOverflow_	_Tags
C 4	0.50	0.7/	0.72	1/0
64	0.90	0.69	0.78	163
65	0.53	0.46	0.49 0.26	46
66	0.36	0.20	0.26 0.75	269
67 68	0.78	0.73		133
68	0.32	0.20	0.24	577
69	0.23 0.82	0.09	0.13 0.73	212 120
70 71	0.29	0.66 0.16	0.73	258
72	0.19	0.10	0.14	354
73	0.72	0.58	0.64	159
74	0.50	0.27	0.35	89
75	0.37	0.29	0.32	125
76	0.26	0.20	0.23	94
77	0.53	0.36	0.43	456
78	0.42	0.38	0.40	712
79	0.29	0.11	0.16	299
80	0.28	0.17	0.21	53
81	0.43	0.32	0.37	275
82	0.53	0.23	0.32	623
83	0.53	0.39	0.45	75
84	0.12	0.07	0.09	27
85	0.62	0.34	0.44	230
86	0.49	0.36	0.41	177
87	0.45	0.33	0.38	30
88	0.60	0.69	0.64	655
89	0.14	0.10	0.12	126
90	0.50	0.37	0.42	422
91	0.15	0.04	0.06	130
92	0.82	0.86	0.84	451
93	0.29	0.06	0.11	77
94	0.13	0.05	0.07	461
95	0.71	0.38	0.50	104
96	0.18	0.09	0.12	454
97	0.39	0.37	0.38	345
98	0.44	0.44	0.44	125
99	0.52	0.33	0.41	144
100	0.20	0.06	0.09	279
101	0.49	0.18	0.26	99
102	0.78	0.62	0.69	553
103	0.52	0.24	0.32	123
104	0.14	0.08	0.10	542
105	0.21	0.14	0.17	542
106	0.33	0.11	0.16	118
107	0.52	0.40	0.45	73
108	0.27	0.14	0.19	191
109	0.29	0.12	0.17	180
110	0.47	0.27	0.35	121
111	0.28	0.17	0.21	41
112	0.14	0.06	0.08	254
113	0.19	0.13	0.15	146
114	0.60	0.36	0.45	279
115	0.33	0.17	0.22	245
116	0.49	0.21	0.29	102
117	0.56	0.39	0.46	469
118	0.20	0.06	0.09	248
119	0.37	0.24	0.29	98
120	0.56	0.47	0.51	105
121	0.23	0.11	0.15	164
122	0.48	0.31	0.37	95
123	0.48	0.27	0.35	208
124	0.59	0.39	0.47	85
125	0.60	0.53	0.57	98
126	0.27	0.15	0.19	41
127	0.79	0.34	0.47	431
128	0.59	0.33	0.43	111
129	0.39	0.22	0.28	74
130	0.42	0.20	0.27	116
131	0.52	0.42	0.47	126
132	0.35	0.40	0.37	270
133	0.36	0.29	0.32	35
134	0.34	0.27	0.30	64
125	0 5R	0 66	a 67	2/12
noodle	/ - I - I / A I / I - O 1	VIOLA:4 -	eREagNKN11aif7iEv	-CIA1-

136				StackOver	
137	136	0.50	0.00	0.02	2/15
138					174
139					183
141					454
142         0.77         0.77         0.77         8           143         0.50         0.37         0.42         9           144         0.86         0.74         0.79         13           145         0.42         0.25         0.31         41           146         0.21         0.09         0.12         22           147         0.29         0.13         0.18         15           148         0.60         0.62         0.61         6           149         0.61         0.41         0.49         6           159         0.20         0.08         0.11         12           151         0.15         0.09         0.12         20           152         0.26         0.28         0.27         3           153         0.56         0.39         0.46         3           154         0.50         0.46         0.48         13           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158	140			0.76	302
143         0.50         0.37         0.42         9           144         0.86         0.74         0.79         13           145         0.42         0.25         0.31         41           146         0.21         0.09         0.12         22           147         0.29         0.13         0.18         15           148         0.60         0.62         0.61         6           159         0.20         0.08         0.11         12           150         0.20         0.08         0.11         12           151         0.15         0.09         0.12         20           152         0.26         0.28         0.27         3           153         0.56         0.39         0.46         3           154         0.50         0.46         0.48         13           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.44         0.45         9           158         0.20         0.08         0.12         28	141	0.68	0.34	0.46	82
144         0.86         0.74         0.79         13           145         0.42         0.25         0.31         41           146         0.21         0.09         0.12         22           147         0.29         0.13         0.18         15           148         0.60         0.62         0.61         66           149         0.61         0.41         0.49         6           150         0.20         0.08         0.11         12           151         0.15         0.09         0.12         20           152         0.26         0.28         0.27         3           153         0.56         0.39         0.46         3           154         0.50         0.46         0.49         0.49           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160	142	0.77	0.77	0.77	82
145         0.42         0.25         0.31         41           146         0.21         0.09         0.12         22           147         0.29         0.13         0.18         15           148         0.60         0.62         0.61         6           149         0.61         0.41         0.49         6           150         0.20         0.08         0.11         12           151         0.15         0.09         0.12         20           152         0.26         0.28         0.27         3           153         0.56         0.39         0.46         3           154         0.50         0.46         0.48         13           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.44         0.45         9           159         0.52         0.45         0.44         0.43         2					98
146         0.21         0.09         0.12         22           147         0.29         0.13         0.18         15           148         0.60         0.62         0.61         6           149         0.61         0.41         0.49         6           150         0.20         0.08         0.11         12           151         0.15         0.09         0.12         20           152         0.26         0.28         0.27         3           153         0.56         0.39         0.46         3           154         0.50         0.46         0.48         13           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           161         0.10         0.07         0.08         12           162					137
147         0.29         0.13         0.18         15           148         0.60         0.62         0.61         6           149         0.61         0.41         0.49         6           159         0.20         0.08         0.11         12           151         0.15         0.09         0.12         20           152         0.26         0.28         0.27         3           153         0.56         0.39         0.46         3           154         0.50         0.46         0.48         13           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           160         0.45         0.41         0.43         2           161         0.40         0.7         0.84         35           162					412
148         0.60         0.62         0.61         64         61         149         0.61         0.41         0.49         6         6         150         0.20         0.08         0.11         12         150         0.20         0.08         0.11         12         120         0.26         0.28         0.27         3         3         151         0.56         0.39         0.46         3         154         0.50         0.46         0.48         13         155         0.20         0.06         0.09         21         156         0.49         0.39         0.43         5         157         0.46         0.44         0.45         9         158         0.20         0.08         0.12         28         157         0.46         0.44         0.45         9         158         0.20         0.08         0.12         28         159         0.52         0.45         0.48         35         159         0.52         0.44         0.43         28         160         0.44         0.43         22         28         160         0.44         0.43         22         160         0.44         0.43         22         161         161         0.44         0.43         22 <td></td> <td></td> <td></td> <td></td> <td>224</td>					224
149         0.61         0.41         0.49         6           150         0.20         0.08         0.11         12           151         0.15         0.09         0.12         20           152         0.26         0.28         0.27         3           153         0.56         0.39         0.46         3           154         0.50         0.46         0.48         13           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           160         0.45         0.41         0.43         2           161         0.10         0.07         0.08         12           162         0.24         0.12         0.16         14           163         0.59         0.50         0.55         11           164					64
150					68
151					126
152					202
154         0.50         0.46         0.48         13           155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           161         0.10         0.07         0.08         12           162         0.24         0.12         0.16         14           163         0.59         0.50         0.55         11           164         0.37         0.26         0.31         4           165         0.82         0.81         0.81         36           166         0.28         0.15         0.19         20           167         0.60         0.29         0.39         8           166         0.28         0.15         0.19         12           167         0.60         0.29         0.29         12           170	152		0.28	0.27	39
155         0.20         0.06         0.09         21           156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           161         0.10         0.07         0.08         12           162         0.24         0.12         0.16         14           163         0.59         0.50         0.55         11           164         0.37         0.26         0.31         4           165         0.82         0.81         0.81         36           166         0.28         0.15         0.19         20           167         0.60         0.29         0.39         8           168         0.29         0.29         0.29         11           167         0.60         0.29         0.29         12           170         0.40         0.23         0.29         12           171	153	0.56	0.39	0.46	36
156         0.49         0.39         0.43         5           157         0.46         0.44         0.45         9           158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           160         0.45         0.41         0.43         2           161         0.10         0.07         0.08         12           162         0.24         0.12         0.16         14           163         0.59         0.50         0.55         11           164         0.37         0.26         0.31         4           165         0.82         0.81         0.81         36           166         0.28         0.15         0.19         20           167         0.60         0.29         0.39         8           166         0.28         0.15         0.19         20           167         0.60         0.29         0.39         18           168         0.29         0.29         0.29         11           170					136
157       0.46       0.44       0.45       9         158       0.20       0.08       0.12       28         159       0.52       0.45       0.48       35         160       0.45       0.41       0.43       2         161       0.10       0.07       0.08       12         162       0.24       0.12       0.16       14         163       0.59       0.50       0.55       11         164       0.37       0.26       0.31       4         165       0.82       0.81       0.81       36         166       0.28       0.15       0.19       20         167       0.60       0.29       0.39       18       36         169       0.24       0.11       0.15       29       19         169       0.24       0.11       0.15       29       19         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16					212
158         0.20         0.08         0.12         28           159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           161         0.10         0.07         0.08         12           162         0.24         0.12         0.16         14           163         0.59         0.50         0.55         11           164         0.37         0.26         0.31         4           165         0.82         0.81         0.81         36           166         0.28         0.15         0.19         20           167         0.60         0.29         0.39         8           168         0.29         0.29         0.29         11           169         0.24         0.11         0.15         19           170         0.40         0.23         0.29         19           171         0.44         0.48         0.46         9           172         0.67         0.49         0.57         10           173         0.10         0.05         0.07         16           174					51
159         0.52         0.45         0.48         35           160         0.45         0.41         0.43         2           161         0.10         0.07         0.08         12           162         0.24         0.12         0.16         14           163         0.59         0.50         0.55         11           164         0.37         0.26         0.31         4           165         0.82         0.81         0.81         36           166         0.28         0.15         0.19         20           167         0.60         0.29         0.39         8           168         0.29         0.29         0.29         11           169         0.24         0.11         0.15         29           170         0.40         0.23         0.29         19           171         0.44         0.48         0.46         9           172         0.67         0.49         0.57         10           173         0.10         0.05         0.07         16           174         0.47         0.34         0.40         34           175					94
166       0.45       0.41       0.43       2         161       0.10       0.07       0.08       12         162       0.24       0.12       0.16       14         163       0.59       0.50       0.55       11         164       0.37       0.26       0.31       4         165       0.82       0.81       0.81       36         166       0.28       0.15       0.19       20         167       0.60       0.29       0.39       8         168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       16         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24					
161       0.10       0.07       0.08       12         162       0.24       0.12       0.16       14         163       0.59       0.50       0.55       11         164       0.37       0.26       0.31       4         165       0.82       0.81       0.81       36         166       0.28       0.15       0.19       20         167       0.60       0.29       0.39       8         168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         179       0.65       0.35 <td></td> <td></td> <td></td> <td></td> <td>22</td>					22
162       0.24       0.12       0.16       14         163       0.59       0.50       0.55       11         164       0.37       0.26       0.31       4         165       0.82       0.81       0.81       36         166       0.28       0.15       0.19       20         167       0.60       0.29       0.39       8         168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         179       0.65       0.35       0.46       3         180       0.51       0.46					120
163       0.59       0.50       0.55       11         164       0.37       0.26       0.31       4         165       0.82       0.81       0.81       36         166       0.28       0.15       0.19       20         167       0.60       0.29       0.39       8         168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         179       0.65       0.35       0.46       3         180       0.51       0.46					144
165       0.82       0.81       0.81       36         166       0.28       0.15       0.19       20         167       0.60       0.29       0.39       8         168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70					119
166       0.28       0.15       0.19       20         167       0.60       0.29       0.39       8         168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00	164	0.37	0.26	0.31	42
167       0.60       0.29       0.39       8         168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00					361
168       0.29       0.29       0.29       11         169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31					206
169       0.24       0.11       0.15       29         170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31					87
170       0.40       0.23       0.29       19         171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.1       0.20       12         189       0.21       0.04					112
171       0.44       0.48       0.46       9         172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         189       0.21       0.04					
172       0.67       0.49       0.57       10         173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04					91
173       0.10       0.05       0.07       16         174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         192       0.59       0.53					100
174       0.47       0.34       0.40       34         175       0.07       0.04       0.05       7         176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52					167
176       0.17       0.09       0.12       19         177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         194       0.43       0.38	174	0.47	0.34	0.40	344
177       0.40       0.24       0.30       12         178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         194       0.43       0.38       0.41       26         197       0.31       0.09	175	0.07	0.04	0.05	76
178       0.33       0.20       0.25       10         179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         197       0.31       0.09					198
179       0.65       0.35       0.46       3         180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         197       0.31       0.09       0.13       4         198       0.76       0.74					127
180       0.51       0.46       0.48       13         181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26					
181       0.65       0.56       0.60       6         182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26					31 130
182       0.46       0.24       0.32       36         183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17					63
183       0.51       0.70       0.59       6         184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27					367
184       0.00       0.00       0.00       4         185       0.57       0.16       0.25       38         186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22					67
186       0.90       0.31       0.46       2         187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22       0.31       30         203       0.67       0.56       0.61       32         204       0.08       0.03		0.00	0.00		46
187       0.33       0.26       0.29       11         188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22       0.31       30         203       0.67       0.56       0.61       32         204       0.08       0.03       0.04       6         205       0.16       0.18	185	0.57	0.16	0.25	381
188       0.26       0.17       0.20       12         189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         196       0.41       0.31       0.35       29         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22       0.31       30         203       0.67       0.56       0.61       32         204       0.08       0.03       0.04       6         205       0.16       0.18					29
189       0.21       0.04       0.06       8         190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         196       0.41       0.31       0.35       29         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22       0.31       30         203       0.67       0.56       0.61       32         204       0.08       0.03       0.04       6         205       0.16       0.18       0.17       2         206       0.58       0.49					111
190       0.58       0.42       0.49       11         191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         196       0.41       0.31       0.35       29         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22       0.31       30         203       0.67       0.56       0.61       32         204       0.08       0.03       0.04       6         205       0.16       0.18       0.17       2         206       0.58       0.49       0.53       5					121
191       0.70       0.52       0.60       7         192       0.59       0.53       0.56       11         193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         196       0.41       0.31       0.35       29         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22       0.31       30         203       0.67       0.56       0.61       32         204       0.08       0.03       0.04       6         205       0.16       0.18       0.17       2         206       0.58       0.49       0.53       5					82 119
192     0.59     0.53     0.56     11       193     0.26     0.09     0.14     15       194     0.43     0.38     0.41     26       195     0.77     0.65     0.71     8       196     0.41     0.31     0.35     29       197     0.31     0.09     0.13     4       198     0.76     0.74     0.75     4       199     0.40     0.26     0.31     6       200     0.31     0.17     0.22     2       201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					77
193       0.26       0.09       0.14       15         194       0.43       0.38       0.41       26         195       0.77       0.65       0.71       8         196       0.41       0.31       0.35       29         197       0.31       0.09       0.13       4         198       0.76       0.74       0.75       4         199       0.40       0.26       0.31       6         200       0.31       0.17       0.22       2         201       0.53       0.27       0.36       8         202       0.53       0.22       0.31       30         203       0.67       0.56       0.61       32         204       0.08       0.03       0.04       6         205       0.16       0.18       0.17       2         206       0.58       0.49       0.53       5					118
194     0.43     0.38     0.41     26       195     0.77     0.65     0.71     8       196     0.41     0.31     0.35     29       197     0.31     0.09     0.13     4       198     0.76     0.74     0.75     4       199     0.40     0.26     0.31     6       200     0.31     0.17     0.22     2       201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					159
196     0.41     0.31     0.35     29       197     0.31     0.09     0.13     4       198     0.76     0.74     0.75     4       199     0.40     0.26     0.31     6       200     0.31     0.17     0.22     2       201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					269
197     0.31     0.09     0.13     4       198     0.76     0.74     0.75     4       199     0.40     0.26     0.31     6       200     0.31     0.17     0.22     2       201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5	195	0.77	0.65	0.71	81
198     0.76     0.74     0.75     4       199     0.40     0.26     0.31     6       200     0.31     0.17     0.22     2       201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5	196		0.31	0.35	299
199     0.40     0.26     0.31     6       200     0.31     0.17     0.22     2       201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					47
200     0.31     0.17     0.22     2       201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					47
201     0.53     0.27     0.36     8       202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					62
202     0.53     0.22     0.31     30       203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					24 86
203     0.67     0.56     0.61     32       204     0.08     0.03     0.04     6       205     0.16     0.18     0.17     2       206     0.58     0.49     0.53     5					86 308
204       0.08       0.03       0.04       6         205       0.16       0.18       0.17       2         206       0.58       0.49       0.53       5					321
205       0.16       0.18       0.17       2         206       0.58       0.49       0.53       5					67
206 0.58 0.49 0.53 5					28
7A7 A 26 A 72 A 78 7A					59
	7A7	A 36	0 25	a 28	2/15

		•	StackOverflow_	_Tags
208	0.85	0.64	0.73	53
200	0.11	0.09	0.10	274
210	0.12	0.12	0.12	8
211	0.48	0.26	0.34	95
212	0.29	0.22	0.25	129
213	0.64	0.47	0.54	34
214	0.29	0.34	0.31	89
215	0.55	0.36	0.43	67
216	0.36	0.20	0.26	25
217	0.62	0.63	0.63	109
218	0.40	0.15	0.22	134
219	0.62	0.49	0.54	70
220	0.53	0.40	0.46	67
221	0.39	0.22	0.28	79
222	0.50	0.40	0.44	50
223 224	0.72 0.27	0.72 0.26	0.72 0.26	93 94
225	0.14	0.05	0.07	180
226	0.10	0.06	0.08	79
227	0.31	0.36	0.33	64
228	0.15	0.06	0.09	50
229	0.65	0.64	0.65	53
230	0.52	0.34	0.41	44
231	0.24	0.21	0.23	61
232	0.39	0.39	0.39	49
233	0.73	0.75	0.74	72
234	0.20	0.14	0.16	233
235 236	0.33 0.67	0.10 0.52	0.16 0.58	166 58
237	0.15	0.07	0.09	152
238	0.52	0.27	0.35	302
239	0.49	0.55	0.52	42
240	0.46	0.34	0.39	269
241	0.26	0.11	0.16	54
242	0.21	0.07	0.11	162
243	0.50	0.39	0.44 0.41	23
244 245	0.65 0.19	0.30 0.10	0.41	66 40
246	0.67	0.59	0.63	73
247	0.84	0.62	0.71	78
248	0.35	0.17	0.23	131
249	0.26	0.11	0.16	82
250	0.67	0.58	0.62	57
251	0.19	0.06	0.09	296
252 253	0.39 0.27	0.18 0.16	0.25 0.20	87 96
254	0.44	0.14	0.21	280
255	0.25	0.21	0.23	24
256	0.31	0.19	0.24	88
257	0.23	0.43	0.30	7
258	0.24	0.15	0.19	136
259	0.72	0.56	0.63	73
260	0.63	0.43	0.51	268
261 262	1.00 0.69	0.82 0.51	0.90 0.59	11 82
263	0.50	0.80	0.62	5
264	0.37	0.24	0.29	108
265	0.67	0.50	0.57	78
266	0.16	0.10	0.12	69
267	0.34	0.12	0.18	80
268	0.37	0.25	0.30	28
269 270	0.12	0.05	0.07	44
270 271	0.66 0.47	0.60 0.25	0.62 0.32	42 114
272	0.09	0.08	0.09	59
273	0.27	0.21	0.24	130
274	0.26	0.21	0.23	48
275	0.17	0.11	0.13	227
276	0.72	0.77	0.74	75
277 279	0.71	0.32	0.44	68
278 279	0.59 a 16	0.48 a 15	0.53 a 16	143 78
		01414 DE	NUCNIA : (77:F	0147

			StackOverflow	_Tags
200	0.10	0.10	0.10	78
280 281	0.69 0.73	0.56 0.59	0.62 0.65	61
282	0.06	0.02	0.03	61
283	0.43	0.25	0.32	52
284	0.20	0.08	0.12	24
285	0.06	0.02	0.02	125
286	0.35	0.19	0.24	138
287	0.18	0.09	0.12	171
288	0.68	0.45	0.54	157
289	0.52	0.40	0.45	30
290	0.18	0.10	0.13	30
291	0.77	0.31	0.44	64
292	0.14	0.22	0.17	9
293	0.20	0.12	0.15	123
294	0.45	0.29	0.35	35
295	0.25	0.09	0.13	22
296	0.41	0.46	0.43	184
297	0.64	0.21	0.32	140
298	0.38	0.19	0.25	224
299	0.63 0.07	0.45	0.53	97 65
300 301	0.11	0.03 0.05	0.04 0.06	44
302	0.43	0.26	0.33	38
303	0.37	0.18	0.24	98
304	0.48	0.48	0.48	31
305	0.38	0.25	0.30	235
306	0.98	0.93	0.95	249
307	0.40	0.09	0.15	247
308	0.40	0.30	0.34	122
309	0.20	0.08	0.11	230
310	0.37	0.16	0.22	166
311	0.23	0.15	0.18	40
312	0.56	0.29	0.38	17
313	0.27	0.19	0.23	36
314	0.55	0.33	0.41	109
315	0.00	0.00	0.00	67
316 317	0.63 0.08	0.58 0.02	0.61 0.03	79 197
318	0.27	0.53	0.36	47
319	0.62	0.35	0.45	222
320	0.47	0.56	0.51	27
321	0.68	0.56	0.61	207
322	0.69	0.38	0.49	240
323	0.26	0.18	0.21	215
324	0.42	0.33	0.37	120
325	0.42	0.23	0.30	130
326	0.68	0.54	0.60	28
327	0.15	0.16	0.15	166
328	0.66	0.56	0.60	45
329	0.45	0.45	0.45	180
330	0.17	0.08 0.23	0.11	62 105
331 332	0.44 0.81	0.67	0.30 0.73	39
333	0.67	1.00	0.80	4
334	0.55	0.28	0.37	113
335	0.39	0.40	0.39	78
336	0.27	0.14	0.18	51
337	0.42	0.17	0.24	147
338	0.07	0.02	0.03	135
339	0.29	0.33	0.31	27
340	0.29	0.13	0.18	79
341	0.92	0.73	0.81	30
342	0.26	0.15	0.19	54
343	0.59	0.23	0.33	195
344	0.35	0.31	0.33	39
345	0.75	0.67	0.71	9
346 347	0.75 0.39	0.78 0.20	0.77 0.27	86 44
348	0.68	0.39	0.50	185
349	0.68	0.61	0.64	66
350	1.00	0.67	0.80	3
251	a 29	A 21	A 35	25
		(IOM:4 DE	N I / N I / A : £ 7 ! C	.014

			StackOve	rflow_Tags
352	0.57	0.42	0.48	216
353 353	0.37	0.38	0.40	42
354	0.67	0.33	0.44	6
355	0.06	0.33	0.10	3
356	0.22	0.14	0.17	14
357	0.34	0.35	0.35	31
358	0.31	0.06	0.10	204
359	0.12	0.01	0.02	211
360	0.38	0.19	0.25	184
361	0.29	0.20	0.24	108
362	0.06	0.02	0.03	54
363	0.21	0.18	0.19	56
364 365	0.21 0.29	0.10 0.21	0.14 0.24	97 72
366	0.23	0.08	0.11	12
367	0.64	0.41	0.50	185
368	0.18	0.06	0.09	193
369	0.27	0.12	0.16	34
370	0.56	0.34	0.42	164
371	0.62	0.72	0.67	18
372	0.22	0.11	0.14	65
373	0.60	0.30	0.40	20
374	0.00	0.00	0.00	29
375	0.64	0.42	0.51	71
376 377	0.14 0.37	0.12 0.34	0.13 0.35	164 185
377 378	0.19	0.21	0.20	24
379	0.24	0.17	0.20	52
380	0.21	0.12	0.15	57
381	0.20	0.07	0.10	59
382	0.23	0.09	0.13	117
383	0.58	0.54	0.56	39
384	0.57	0.53	0.55	125
385	0.35	0.14	0.20	130
386 387	0.66 0.71	0.58 0.63	0.62 0.67	74 35
388	0.48	0.62	0.54	21
389	0.35	0.24	0.28	175
390	0.19	0.09	0.12	54
391	0.00	0.00	0.00	29
392	0.35	0.11	0.17	63
393	0.28	0.32	0.30	34
394	0.81	0.66	0.72	38
395 396	0.20 0.29	0.20 0.20	0.20 0.24	15 10
397	0.23	0.18	0.24	49
398	0.51	0.20	0.29	169
399	0.29	0.24	0.26	33
400	0.45	0.35	0.39	84
401	0.72	0.58	0.64	31
402	0.38	0.42	0.40	24
403	0.67	0.36	0.47	187
404 405	0.40	0.33	0.36	6
405 406	0.50 0.21	0.30 0.24	0.38 0.22	33 17
407	0.20	0.10	0.13	21
408	0.42	0.16	0.23	62
409	0.20	0.06	0.10	78
410	0.70	0.50	0.58	147
411	0.30	0.26	0.28	31
412	0.00	0.00	0.00	14
413 414	0.41	0.12	0.18	103
414 415	0.74 0.58	0.64 0.59	0.69 0.58	36 68
415 416	0.07	0.05	0.05	43
417	0.45	0.38	0.41	73
418	0.73	0.60	0.65	62
419	0.04	0.02	0.03	97
420	0.03	0.02	0.03	42
421 422	0.63	0.46	0.54	41
422 122	0.07 a a1	0.05 a az	0.06 a az	38 36
	21/1 	7-VION44 DE		:C7:EO\44

			StackOver	flow_Tags_F
747	U.U <del>.</del>	0.05	0.00	20
424	0.14	0.08	0.10	13
425	0.42	0.33	0.37	24
426	0.10	0.33	0.15	3
427	0.37	0.23	0.29	94
428	0.38	0.22	0.28	151
429	0.60	0.54	0.57	63
430	0.09	0.05	0.06	40
431	0.53	0.41	0.46	49
432	0.00	0.00	0.00	34
433	0.78	0.76	0.77	37
434	0.36	0.29	0.32	34
435	1.00	1.00	1.00	1
436	0.13	0.07	0.09	29
437	0.20	0.18	0.19	50
438	0.00	0.00	0.00	104
439	0.00	0.00	0.00	29
440	0.33	0.22	0.26	23
441	0.05	0.02	0.03	46
442	0.12	0.08	0.09	39
443	0.57	0.30	0.40	56
444	0.54	0.49	0.51	80
445	0.09	0.03	0.05	30
446	0.11	0.10	0.11	30
447	0.32	0.30	0.31	37
448	0.19	0.10	0.13	39
449	0.21	0.14	0.17	83
450	0.47	0.39	0.43	23
451	0.40	0.67	0.50	9
452	0.40		0.26	44
453	0.48	0.20 0.36	0.41	166
453 454	0.48	0.56	0.60	32
455	0.04	0.25	0.30	53
455 456				
450 457	0.52	0.59	0.55	41 78
	0.18	0.09	0.12	
458	0.29	0.11	0.16	133
459	0.25	0.16	0.20	25
460	0.51	0.37	0.43 0.24	103 53
461	0.53	0.15		
462	0.34	0.33	0.34	30
463	0.11	0.25	0.15	4
464	0.11	0.06	0.08	66
465	0.25	0.17	0.20	47
466	0.32	0.19	0.24	31
467	0.55	0.51	0.53	35
468	0.00	0.00	0.00	50
469	0.63	0.44	0.52	155
470	0.29	0.15	0.20	27
471	0.64	0.48	0.55	58
472	0.18	0.08	0.11	159
473	0.29	0.15	0.20	27
474	0.56	0.28	0.37	115
175	0 36	0 30	W 33	1/12

## ▼ CONCLUSION USING PRETTY TABLE

2 x= PrettyTable()

```
170
                           0 30
                                       0 12
                                                   a 25
1 pip install -U PTable
Collecting PTable
       Downloading <a href="https://files.pythonhosted.org/packages/ab/b3/b54301811173ca94119eb474634f120a49cd370f257d1aae5a4">https://files.pythonhosted.org/packages/ab/b3/b54301811173ca94119eb474634f120a49cd370f257d1aae5a4</a>
     Building wheels for collected packages: PTable
       Building wheel for PTable (setup.py) ... done
       Created wheel for PTable: filename=PTable-0.9.2-cp36-none-any.whl size=22908 sha256=411947626798f9652c176229b
       Stored in directory: /root/.cache/pip/wheels/22/cc/2e/55980bfe86393df3e9896146a01f6802978d09d7ebcba5ea56
     Successfully built PTable
     Installing collected packages: PTable
    Successfully installed PTable-0.9.2
                           0.41
                                                   0.29
                                                                 13
1 from prettytable import PrettyTable
```

```
3 x.title = "TF-IDF Featurization"
4 x.field_names = ["Algorithm" , "Macro F1 Score Precision", "Micro F1 Score", "Hamming Loss"]
5 x.add_row(["Logistic Regression with OneVsRest",0.5473,0.7216,0.002708])
6 print(x)
7 y= PrettyTable()
8 y.add_row(["Logistic Regression with OneVsRest",0.4122,0.6777,0.002942])
9 y.add_row(["Linear SVM with OneVsRest",0.4318,0.7029,0.00289])
10 y.add_row(["Logistic Regression for Hyperparameter Tuning GridSearch",0.4123,0.6778,0.00290])
11 y.title = "CountVectorizer BIGRAM"
12 y.field_names = ["Algorithm" , "Macro F1 Score Precision", "Micro F1 Score", "Hamming Loss"]
13 print(y)
```

₽	+	TE IDE Footumination				+	
	TF-IDF Featurization +					:	
	Algorithm	Macro F1 Score Precis +	ion   +		Hamming Lo		
	Logistic Regression with OneVsRest	!		0.7216	0.00270		
	<del>+</del>						
	CountVectori			+-			-+
	Algorithm	 +	Macr	ro F1 Score Precis	sion   Micro	o F1 Score	Hammin 
	Logistic Regression with			0.4122 0.4318	!	0.6777 0.7029	0.00
	Logistic Regression for Hyperparame			0.4123	!	0.7023 0.6778	0.0
	+	+			+		-+

CONCLUSION: LOGISTIC REGRESSION WITH ONEVSREST HAVE GOOD PRECISION: 0.6777 AS MICRO F1 SCORE