Year 11 Elicitation to Quadratics and Polynomials WHAT DO I REMEMBER FROM LAST YEAR?

Name: _____ Marks: /54

1. Solve for the roots and simplify the following by using the quadratic formula a) $y = 5x^2 - 6x + 3$

b) $y = \sqrt{3}x^2 - \sqrt{5}x + 9$

c)
$$y = 12x^2 - 16x + 27$$

[2]

2. Factorise the following:

a)
$$y = x^2 - 4x + 3$$

b)
$$y = x^2 + 5x + 6$$

(1)
$$y = x^2 + 5$$

(2) d)
$$y = (x+3)^2$$

[2]

3. On the set of axes below, sketch the graph $f(x) = x^2 - 2x + 2$ and the graph $g(x) = -x^2 - 2x + 2$. State any minimums and maximums using technology.

4. Develop a conjecture as to what the sign of the "a" term in the quadratic formula determines, if the quadratic formula is represented in the form $ax^2 + bx + c$

[3]

a) Consider $h(x) = -x^2 + 3x + 2$ and $i(x) = x^2 + 3x + 2$. Determine h(2), h(-2), i(2) and i(-2) algebraically and hence comment on the nature of the parabolas. Does this support your original conjecture?

- 5. A canon is fired with a cannonball following the trajectory of the function $f(x) = -x^2 + 5x$ with the x-axis representing the ground. One unit on the y-axis is equal to 2m and one unit on the x-axis also represents 2m. If the cannonball exceeds a height of 14m, then it may cause damage to the roof of a stadium arena.
 - a) Show that the cannonball has a horizontal displacement of 10m when it hits the ground after being fired

b) Determine the x co-ordinate that corresponds to the apex (maxima) of the cannonball's trajectory

c) Hence, determine if the cannonball can be fired without causing damage to the roof of the stadium arena

A different cannonball follows the trajectory of $f(x) = -x^2 + 4x$.

d) Determine the x intercept and hence the horizontal displacement of the cannonball before it hits the ground again.

[3]

	e)	Hence, forms a possible conjecture linking the value of b in the equation $-x^2 + bx$ to the horizontal displacement of the cannonball before it hits the ground.	
6.		de of a cube is given by $(x+1)$ centimeters. Show that the volume of the cube is given by x^3+3x^2+3x+1 m ³	[2]
	b)	Determine the surface area of the cube in expanded form	[1]
	c)	Hence, if the total surface area is to be 200m^2 , determine the value of x.	[3]

7.	A swimming pool is twice as long as it is wide. The pool is surrounded by a path
	that is 2m wide and the combined area of the path and pool is 900m ² .

a) Sketch a diagram of the situation

[3]

b) Derive the dimensions of the pool.