Exercise 5.5

For more educational resources visit

www.taleemcity.com

Q. 1: If $L = \{a, b, c\}$, $M = \{3, 4\}$, then find two binary relations of $L \times M$ and $M \times L$. $L \times M = \{a, b, c\} \times \{3, 4\}$ $= \{(a,3), (a,4), (b,3), (b,4), (c,3), (c,4)\}$ $M \times L = \{3, 4\} \times \{a, b, c\}$ $= \{(3,a), (3,b), (3,c), (4,a), (4,b), (4,c)\}$ $=\{(a,3),(b,4),(c,3)\}$ R_1 $R_2 = \{(a,4), (b,3), (c,4)\}$ $R_3 = \{(3,a),(4,a)\}$ $R_4 = \{(3,b), (4,b), (3,c), (4,c)\}$ Q. 2: If $Y = \{-2, 1, 2\}$, then make two binary relations $Y \times Y$. Also find their domain and range. $Y \times Y = \{-2, 1, 2\} \times \{-2, 1, 2\}$ $=\{(-2,-2),(-2,1),(-2,2),(1,-2),(1,1),(1,2),(2,-2),(2,1),(2,2)\}$ $R_1 = \{(-2, -2), (-2, 1), (1, 2), (2, 2)\}$ $Dom R_1 = \{-2, 1, 2\} = L$ Range $R_1 = \{-2, 1, 2\}$ $R_2 = \{(-2,1), (1,1), (-2,2)\}$ $Dom R_2 = \{-2, 1\}$ Range $R_2 = \{1, 2\}$ Q. 3: If $L = \{a, b, c\}$ and $L = \{d, e, f, g\}$, then find two binary relations in each: (i) $L \times L$ $L \times L = \{a, b, c\} \times \{a, b, c\}$ $= \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\}$ $=\{(a,a),(a,b)\}$ R_1 $=\{(b,c),(c,c)\}$ $L \times M$ (ii) $L \times M = \{a, b, c\} \times \{d, e, f, g\}$ $=\{(a,d),(a,e),(a,f),(a,g),(b,d),(b,e),(b,f),(b,g),(c,d),(c,e),(c,f),(c,g)\}$ $=\{(a,d),(b,g)\}$ R_1 $=\{(a,f),(b,e),(c,f)\}$ R_2 $M \times M$ (iii) $M \times M = \{d, e, f, g\} \times \{d, e, f, g\}$ $= \{(d,d),(d,e),(d,f),(d,g),(e,d),(e,e),(e,f),(e,g),(f,d),(f,e),(f,f),(f,g),(g,d),(g,e),(g,f),(g,g)\}$ $= \{(d,e),(d,f)\}$ R_1 $=\{(e,e),(f,f),(g,g)\}$ R_2

Q. 4: If set M has 5 elements, then find the number of binary relations in M.

No. of Elements in M=m=5

No. of binary relations in $M = 2^{m \times m}$

$$= 2^{5 \times 5}$$

 $= 2^{25}$

Q. 5: If $L = \{x | x \in N \land x \le 5\}$, $M = \{x | x \in P \land x \le 10\}$, then make the following relations from L to M. Also write the domain and range of each relation.

So, we have from the question

$$L = \{1, 2, 3, 4, 5\}$$

 $M = \{2, 3, 5, 7\}$

$$L \times M = \{1, 2, 3, 4, 5\} \times \{2, 3, 5, 7\}$$

 $=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7),(3,2),(3,3),(3,5),(3,7),(4,2),(4,3),(4,5),(4,7),(5,2),(5,3),(5,5),(5,7)\}$

(i)
$$R_1 = \{(x, y) | y < x\}$$

= $\{(3, 2), (4, 2), (5, 2), (4, 3), (5, 3)\}$

 $Dom R_1 = \{3, 4, 5\}$

Range $R_1 = \{2, 3\}$

(ii)
$$R_2 = \{(x, y) | y = x\}$$

= $\{(2, 2), (3, 3), (5, 5)\}$

 $Dom R_2 = \{2, 3, 5\}$

Range $R_2 = \{2, 3, 5\}$

(iii)
$$R_3 = \{(x, y) | x + y = 6\}$$

= $\{(1, 5), (3, 3), (4, 2)\}$

 $Dom R_3 = \{1, 3, 4\}$

Range $R_3 = \{2, 3, 5\}$

(iv)
$$R_4 = \{(x, y)|y - x = 2\}$$

= $\{(1, 3), (3, 5), (5, 7)\}$

 $Dom R_4 = \{1, 3, 5\}$

Range $R_4 = \{3, 7\}$

Q. 6: Indicate relations, into function, one-one function, onto function, and bijective function from the following. Also find their domain and range.

(i)
$$R_1 = \{(1,1), (2,2), (3,3), (4,4)\}$$

 $Dom R_1 = \{1, 2, 3, 4\}$

Range
$$R_1 = \{1, 2, 3, 4\}$$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

So, the given relation is function.

As, All distinct elements of A have distinct images in B so, the given relation is One-One.

Also, every element of set B is an image of at least one element of set A i.e. $Range\ of\ f=B$. So, given relation is also Onto function.

As, the given relation is One-One as well as Onto function so, it is bijective function.

(ii)
$$R_2 = \{(1,2), (2,1), (3,4), (3,5)\}$$

$$Dom R_2 = \{1, 2, 3\}$$

Range
$$R_2 = \{1, 2, 4, 5\}$$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

As, we can clearly see the 3 is repeated in 3^{rd} and 4^{th} ordered pair so the given relation is not a function, its only a <u>relation</u>.

(iii)
$$R_3 = \{(b, a), (c, a), (d, a)\}$$

$$Dom R_3 = \{b, c, d\}$$

Range $R_3 = \{a\}$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

So, the given relation is a function.

As, it doesn't fulfill any condition of One-One, Onto or into function so the relation is only a function.

(iv)
$$R_4 = \{(1,1), (2,3), (3,4), (4,3), (5,4)\}$$

$$Dom R_4 = \{1, 2, 3, 4, 5\}$$

Range
$$R_4 = \{1, 3, 4, \}$$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

So, the given relation is a function.

As,

It doesn't fulfill condition of One-One.

Every element of set B is an image of at least one element of set A. So, the given relation is an onto function.

(v)
$$R_5 = \{(a,b), (b,a), (c,d), (d,e)\}$$

Dom
$$R_5 = \{a, b, c, d\}$$

Range
$$R_5 = \{a, b, d, e\}$$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

So, the given relation is a function.

As,

As, All distinct elements of A have distinct images in B so, the given relation is One-One.

It doesn't fulfill condition of Onto function.

So, the given relation is a One-One function.

(vi)
$$R_6 = \{(1,2), (2,3), (1,3), (3,4)\}$$

$$Dom R_6 = \{1, 2, 3\}$$

Range
$$R_6 = \{2, 3, 4\}$$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

As, we can clearly see the 1 is repeated in 1^{st} and 3^{rd} ordered pair so the given relation is not a function, it's only a <u>relation</u>.

(vii)

$$R_7 = \{(1,r), (3,p), (5,s)\}$$

$$Dom R_7 = \{1, 3, 5\}$$

Range
$$R_7 = \{p, r, s\}$$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

As, All distinct elements of A have distinct images in B so, the given relation is One-One.

It doesn't fulfill condition of Onto function.

So, the given relation is a One-One function.

(viii)

$$R_7 = \{(1,c), (3,a), (7,b)\}$$

$$Dom R_8 = \{1, 3, 7\}$$

Range
$$R_8 = \{a, b, c\}$$

As, we know A relation becomes a function if

$$Dom f = A$$

and

Every $x \in A$ appears in one and only one ordered pair in f.

But $Dom f \neq A$, So the given relation is not a function. it's only a <u>relation</u>.