Fakultät IWI, Hochschule Karlsruhe und Fakultät Maschinenbau, KIT

Klausur zur Modellierung und Simulation 01. Juli 2014, SS 2014

Es sind keine Hilfsmittel zugelassen. Bearbeitungszeit: 40 Minuten (Master Hochschule, Aufgaben 1 - 3) bzw. 90 Minuten (KIT, alle Aufgaben)

Aufgabe 1: Anfangswertproblem

Gegeben ist das dynamische System (Anfangswertproblem)

$$y'(t) = y(t)(2 - 0.1 \cdot y(t))$$
 mit $y(0) = 10$.

- a) Geben Sie für das Anfangswertproblem die Eulersche Iterationsformel an.
- b) Bestimmen Sie für eine Schrittweite h=0.1 den ersten Iterationsschritt des Eulerverfahrens.
- c) Geben Sie nun das Runge-Kutta Verfahren 2. Ordnung an.
- d) Bestimmen Sie für h=0.1 den ersten Iterationsschritt des Runge-Kutta Verfahrens 2. Ordnung.

Aufgabe 2: Nullstellenberechnung und numerische Integration

- a) Gegeben ist die Funktion $h(x) = -x^3 + 4x + 2$. Verwenden Sie das Newtonverfahren zur Bestimmung einer Nullstelle h(x) = 0. Wählen Sie den Startwert $x_0 = 2$ und berechnen Sie den ersten Newton-Iterationsschritt.
- b) Verwenden Sie nun das Sekantenverfahren (Regula falsi) und berechnen Sie den ersten Iterationschritt zu den Startwerten $x_0 = 1$ und $x_1 = 2$.
- c) Gegeben ist die Funktion $k(x) = \frac{2x}{x+1}$. Gesucht ist ein Näherungswert des Integrals $\int_1^3 k(x) dx$ im Intervall I = [1, 3]. Teilen Sie das Intervall I in zwei gleiche Teilintervalle I_1 und I_2 . Berechnen Sie den numerischen Wert des Integrals mit der Trapezformel.
- d) Berechnen Sie nun mit derselben Intervallzerlegung wie in c) das Integral mit der Simpsonformel.

Aufgabe 3: Lineares Ausgleichsproblem

Gegeben sind die Messdaten $(x_i, y_i), i = 1, ..., 3$ mit:

$$\begin{array}{c|ccccc} x_i & 0 & 1 & 2 \\ \hline y_i & -3 & -5 & 2 \end{array}$$

Berechnen Sie zu den Messdaten eine Ausgleichsparabel $f(x) = a + bx + cx^2$ mit den Ansatzfunktionen $f_1(x) = 1$, $f_2(x) = x$ und $f_3(x) = x^2$, so dass die $\sum_{i=1}^3 (y_i - f(x_i))^2$ minimal wird. Gehen Sie hierzu wie folgt vor:

- a) Formulieren Sie das Fehlergleichungssystem $A\lambda = y$.
- b) Stellen Sie das Normalengleichungssystem $\mathbf{A}^T \mathbf{A} \lambda = \mathbf{A}^T \mathbf{y}$ auf.
- c) Lösen Sie das Gleichungssystem und bestimmen Sie die Ausgleichsfunktion $f(x) = a + bx + cx^2$.

Aufgabe 4: Numerisches Differenzieren

a) Bestimmen Sie für eine allgemeine Funktion f(x) mit Hilfe der Taylorformel den Diskretisierungsfehler der zentralen Differenzenformel der 2. Ableitung

$$D^{2}f(x_{0}) = \frac{f(x_{0} + h) - 2f(x_{0}) + f(x_{0} - h)}{h^{2}}.$$

(Hinweis: Entwickeln Sie $f(x_0 + h)$ und $f(x_0 - h)$ in eine Taylorreihe)

- b) Bestimmen Sie für die Funktion $f(x) = x + \frac{2}{x-2}$ den Näherungswert der zweiten Ableitung über die zentrale Differenzenformel $D^2 f(x)$ an der Stelle $x_0 = 1$ und für eine Schrittweite von h = 1/2.
- c) Leiten Sie aus der zentralen Differenzenformel für die 2. Ableitung $D^2 f(x_0)$ über den Ansatz $D^{3-} f(x_0) = D^{-}(D^2 f(x_0))$ eine linksseitige Differenzenformel für die 3. Ableitung her.
- d) Bestimmen Sie für die Funktion f(x) unter b) den Wert der linksseitigen 3. Ableitung $D^{3-}f(x_0)$ an der Stelle $x_0 = 1$ und für eine Schrittweite von h = 1/2.

Aufgabe 5: Interpolationspolynom und kubische Splinefunktion

- a) Gegeben sind die Stützpunkte (-2,4), (-1,1), (0,0) und (4,6). Bestimmen Sie über das Verfahren der dividierten Differenzen das Interpolationspolynom.
- b) Gegeben sind die Stützpunkte (-2,4), (-1,1) und (0,0). Stellen Sie zur Bestimmung der kubischen Spline-Funktionen

$$g(x) = \begin{cases} g_1(x) = a_{13}x^3 + a_{12}x^2 + a_{11}x + a_{10} & \text{für} \quad -2 \le x \le -1\\ g_2(x) = a_{23}x^3 + a_{22}x^2 + a_{21}x + a_{20} & \text{für} \quad -1 \le x \le 0 \end{cases}$$

die erforderlichen 8 Bedingungen aus Stetigkeit, Differenzierbarkeit und den Randbedingungen $g_2'(0) = 0, g_2''(0) = 0$ auf.

c) Lösen Sie das aufgestellte Gleichungssystem für die Koeffizienten a_{ij} auf und bestimmen Sie die kubischen Spline-Funktionen $g_1(x)$ und $g_2(x)$.

Aufgabe 6: Partielle Differenzialgleichung

Gegeben ist das Raum-Zeit-Problem $u_t = u_{xx} - u_x + 2x$ für $1 \le x \le 5$ und $t \ge 0$ mit Randbedingungen u(t,1) = 3, u(t,5) = 1 und Anfangsbedingung u(0,x) = 2. Wählen Sie für das diskrete Raum-Zeit Gitter eine Zerlegung von $\Delta x = 1$ und $\Delta t = 1/2$.

- a) Skizzieren Sie das diskrete Raum-Zeit-Gitter für die angegebenen Intervalle und Diskretisierungen in Raum- und Zeitrichtung. Markieren Sie hierbei die gegebenen Rand- und Anfangsbedingungen sowie die gesuchten Werte u_1^n, u_2^n, u_3^n .
- b) Diskretisieren Sie die partielle Differenzialgleichung mit Vorwärtsdifferenzen für u_t und zentralen Differenzen für u_x, u_{xx} . Formulieren Sie das explizite finite Differenzenverfahren und geben Sie hiebei auch die Rand- und Anfangsbedingungen in diskreter Form an.
- c) Berechnen Sie unter Verwendung des expliziten Differenzenverfahrens die Werte u_1^1, u_2^1, u_3^1 der ersten Zeititeration.

Fakultät IWI, Hochschule Karlsruhe und Fakultät Maschinenbau, KIT

Formelsammlung zur Vorlesung "Modellierung und Simulation"

Taylorformel

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \ldots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + R_n(x)$$

Newton-Algorithmus

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, 3, \dots$$

Regula-Falsi Verfahren

$$x_{n+1} = x_{n-1} - f(x_{n-1}) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Rechteckformel

$$I = h \sum_{i=0}^{n-1} f(\xi_i)$$
, mit $\xi_i = x_i$ oder $\xi_i = \frac{1}{2} (x_i + x_{i+1})$ oder $\xi_i = x_{i+1}$

Trapezformel

$$I_T = \frac{h}{2} \Big(f_0 + 2f_1 + 2f_2 + \ldots + 2f_{n-1} + f_n \Big)$$

Simpsonformel

$$I_S = \frac{4}{3}h(f_1 + f_3 + \dots + f_{2m-1}) + \frac{2}{3}h(f_2 + f_4 + \dots + f_{2m-2}) + \frac{1}{3}h(f_0 + f_{2m})$$

Runge-Kutta Verfahren 2. Ordnung

$$y_{k+1} = y_k + \frac{h}{2} \{ f(x_k, y_k) + f(x_{k+1}, y_k + hf(x_k, y_k)) \}$$

Runge-Kutta Verfahren 4. Ordnung

$$y_{k+1} = y_k + \frac{h}{6} \Big(F_1 + 2F_2 + 2F_3 + F_4 \Big)$$

mit

$$F_{1} = f(x_{k}, y_{k})$$

$$F_{2} = f(x_{k} + \frac{h}{2}, y_{k} + \frac{h}{2}F_{1})$$

$$F_{3} = f(x_{k} + \frac{h}{2}, y_{k} + \frac{h}{2}F_{2})$$

$$F_{4} = f(x_{k+1}, y_{k} + hF_{3})$$

Fehlerfunktional des Ausgleichsproblems

$$E(\lambda_1, \lambda_2, \dots, \lambda_m) := \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 = \sum_{i=1}^n \left(y_i - \sum_{j=1}^m \lambda_j f_j(x_i) \right)^2$$

Jacobi-Matrix

$$m{Df}(m{x}_0) = \left(egin{array}{cccc} rac{\partial f_1}{\partial x_1}(m{x}_0) & rac{\partial f_1}{\partial x_2}(m{x}_0) & \cdots & rac{\partial f_1}{\partial x_n}(m{x}_0) \ rac{\partial f_2}{\partial x_1}(m{x}_0) & rac{\partial f_2}{\partial x_2}(m{x}_0) & \cdots & rac{\partial f_2}{\partial x_n}(m{x}_0) \ dots & dots & dots & dots \ rac{\partial f_n}{\partial x_1}(m{x}_0) & rac{\partial f_n}{\partial x_2}(m{x}_0) & \cdots & rac{\partial f_n}{\partial x_n}(m{x}_0) \end{array}
ight)$$

Gauß-Newton-Verfahren (für nichtlineare Ausgleichsprobleme):

Für k = 0, 1, ...

- Berechne $\boldsymbol{\delta}^{(k)}$ als Lösung des linearen Ausgleichsproblems: Minimiere $||\boldsymbol{f}(\boldsymbol{x}^{(k)}) + \boldsymbol{D}\boldsymbol{f}(\boldsymbol{x}^{(k)})\boldsymbol{\delta}^{(k)}||_2^2$
- Setze $x^{(k+1)} = x^{(k)} + \delta^{(k)}$.