TEMA 4

Matrices y sistemas de ecuaciones

4.1 Aritmética de Matrices

En este tema \Bbbk representa un cuerpo, es decir, un conjunto \Bbbk junto con dos operaciones suma y producto tales que

suma asociativa x + (y + z) = (x + y) + z para cualesquiera $x, y, z \in \mathbb{k}$,

elemento neutro de la suma existe $0 \in \mathbb{k}$ tal que x + 0 = 0 + x = x para cualquier $x \in \mathbb{k}$,

elemento opuesto para cualquier $x \in \mathbb{k}$ existe $-x \in \mathbb{k}$ tal que x + (-x) = (-x) + x = 0,

suma conmutativa x + y = y + x para cualesquiera $x, y \in \mathbb{k}$,

producto asociativo x(yz) = (xy)z para cualesquiera $x, y, z \in \mathbb{k}$,

elemento neutro para el producto existe $1 \in \mathbb{k} \setminus \{0\}$ tal que x1 = 1x = x para cualquier $x \in \mathbb{k}$,

elemento inverso para cualquier $x \in \mathbb{k} \setminus \{0\}$ existe $x^{-1} \in \mathbb{k}$ tal que $xx^{-1} = x^{-1}x = 1$,

producto conmutativo xy = yx para cualesquiera $x, y \in \mathbb{k}$,

distributiva del producto con respecto de la suma x(y+z)=xy+xz y (x+y)z=xz+yz para cualesquiera $x,y,z\in \mathbb{k}$.

Definición 1. Una matriz de m filas y n columnas sobre un cuerpo k es una aplicación

$$A: \{1,\ldots,m\} \times \{1,\ldots,n\} \longrightarrow \mathbb{k}, \ [(i,j) \longmapsto a_{ij}].$$

Normalmente se representa a una matriz A de la forma siguiente:

$$A = \left(a_{ij}\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

El conjunto de las matrices de m filas y n columnas sobre \mathbb{k} se denota $\mathcal{M}_{m \times n}(\mathbb{k})$

Definición 2. Sean $A, B \in \mathcal{M}_{m \times n}(\mathbb{k})$. Se define la suma de $A \vee B$ como

$$A + B : \{1, \ldots, m\} \times \{1, \ldots, n\} \longrightarrow \mathbb{k}, [(i, j) \longmapsto a_{ij} + b_{ij}],$$

es decir,

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Definición 3. Sean $A \in \mathcal{M}_{m \times n}(\mathbb{k})$ y $B \in \mathcal{M}_{n \times p}(\mathbb{k})$. Definimos el producto de A por B como

$$AB: \{1,\ldots,m\} \times \{1,\ldots,p\} \longrightarrow \mathbb{k}, \left[(i,j) \longmapsto \sum_{k=1}^{n} a_{ik} b_{kj} \right],$$

o en otra notación

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mp} \end{pmatrix}$$

donde $c_{ij} = a_{i1}b_{ij} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$

Proposición 4. La suma y el producto de matrices satisfacen las propiedades siguientes:

suma asociativa A + (B + C) = (A + B) + C para cualesquiera $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{k})$,

elemento neutro de la suma existe $0 \in \mathcal{M}_{m \times n}(\mathbb{k})$ tal que A + 0 = 0 + A = A para cualquier $A \in \mathcal{M}_{m \times n}(\mathbb{k})$,

elemento opuesto para cualquier $A \in \mathcal{M}_{m \times n}(\mathbb{k})$ existe $-A \in \mathcal{M}_{m \times n}(\mathbb{k})$ tal que A + (-A) = (-A) + A = 0,

suma conmutativa A + B = B + A para cualesquiera $A, B \in \mathcal{M}_{m \times n}(\mathbb{k})$,

producto asociativo A(BC) = (AB)C para cualesquiera $A, B, C \in \mathcal{M}_{*\times *}(\mathbb{k})$,

elemento neutro para el producto para cada $n \in \mathbb{N}$ existe $I_n \in \mathcal{M}_{n \times n}(\mathbb{k})$ tal que $AI_n = I_m A = A$ para cualquier $A \in \mathcal{M}_{m \times n}(\mathbb{k})$,

distributiva del producto con respecto de la suma A(B+C) = AB+AC y (A+B)C = AC+BC para cualesquiera $A, B, C \in \mathcal{M}_{*\times *}(\Bbbk)$.

La matriz cero y la matriz identidad, elementos neutros para la suma y el producto, son

$$\left(0\right)_{1 \leq i \leq m \atop 1 \leq j \leq n} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \quad I_n = \left(\delta_{ij}\right)_{1 \leq i, j \leq n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Las matrices con igual número de filas y de columnas se llaman matrices cuadradas. Para denotarlas empleamos un único tamaño: $\mathcal{M}_n(\Bbbk) = \mathcal{M}_{n \times n}(\Bbbk)$

Teorema 5. $(\mathcal{M}_n(\mathbb{k}), +, \cdot)$ *es un anillo.*

El producto de matrices es no conmutativo

- 1. Porque hay matrices que pueden multiplicarse en un orden y no en otro.
- 2. Porque hay matrices que aún multiplicándose en los dos órdenes los resultados tienen tamaño distinto.
- 3. Porque incluso hay matrices cuadradas cuyo producto en los dos sentidos dan resultados distintos.

Definición 6. Dada una matriz, se define su traspuesta como aquella que se obtiene intercambiando filas por columnas, es decir,

$$A = \left(a_{ij}\right)_{1 \le i \le m \atop 1 \le j \le n} \in \mathcal{M}_{m \times n}(\mathbb{k}) \leadsto A^t = \left(a_{ji}\right)_{1 \le j \le n \atop 1 \le i \le m} \in \mathcal{M}_{n \times m}(\mathbb{k})$$

Definición 7. Una matriz cuadrada $A \in \mathcal{M}_n(\mathbb{k})$ se dice simétrica si $A = A^t$.

Proposición 8. Para cualesquiera matrices A, B de tamaños adecuados,

$$(A + B)^{t} = A^{t} + B^{t} y (AB)^{t} = B^{t}A^{t}$$

Definición 9. Una matriz por bloques es una matriz

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ \hline A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ \hline A_{s1} & A_{s2} & \cdots & A_{sr} \end{pmatrix}$$

donde cada $A_{ij} \in \mathcal{M}_{*\times *}(\mathbb{k})$ de modo que matrices en la misma fila tienen el mismo número de filas y matrices en la misma columna el mismo número de columnas.

Proposición 10. Sean $A = \left(A_{ij}\right)_{s \times r} y \ B = \left(B_{ij}\right)_{r \times t}$ dos matrices por bloques de tamaños adecuados. Entonces

$$AB = C = \left(C_{ij}\right)_{s \times t} donde C_{ij} = \sum_{k=1}^{r} A_{ik} B_{kj}$$

4.2

Matrices escalonadas reducidas

Definición 11. Para una matriz cualquiera, el primer elemento no nulo de cada fila se llama pivote. Una matriz $A \in \mathcal{M}_{m \times n}(\mathbb{k})$ se dice que está en forma escalonada reducida si

- 1. las filas nulas (todos sus elementos son 0) ocupan las últimas posiciones de la matriz.
- 2. el pivote de cada fila es un 1,
- 3. si i < j, el pivote de la fila j está más a la derecha del pivote de la fila i,
- 4. el resto de los elementos de cada columna que contiene a un pivote es 0.

Definición 12. Sobre una matriz de cualquier tamaño definimos tres tipos de transformaciones elementales sobre las filas de la matriz:

- Tipo 1 Intercambiar dos filas.
- Tipo 2 Multiplicar una fila por una constante no nula.
- **Tipo 3** Sumar a una fila un múltiplo de otra.

Definición 13. Decimos que A y B son equivalentes por filas si existe una sucesión de transformaciones elementales sobre las filas $\sim_1, \sim_2, \ldots, \sim_t$ tales que

$$A \sim_1 A' \sim_2 \cdots \sim_t B$$
.

Este hecho se denota $A \sim_f B$. Es sencillo comprobar que ser equivalentes por filas es una relación de equivalencia.

Teorema 14. Dada una matriz A es equivalente por filas a una única matriz escalonada reducida H. H recibe el nombre de forma normal de Hermite de A.

La demostración de la existencia de H consiste en describir el método de Gauss-Jordan para el cálculo de H. Para cada fila y en orden secuencial desde la primera hasta la última,

- 1. intercambiamos la fila actual por cualquiera que esté debajo de ella y que tenga su pivote lo más a la izquierda posible,
- 2. multiplicamos la fila por el inverso del pivote,
- 3. sumamos a cada una de las demás filas el correspondiente múltiplo de la fila actual hasta conseguir que todos los elementos por encima y por debajo del pivote sean 0.

Definición 15. Se define el rango de una matriz A como el número de filas no nulas de su forma normal de Hermite.

Proposición 16. Si $A \in \mathcal{M}_{m \times n}(\mathbb{k})$, entonces rango $(A) \leq \min\{m, n\}$.

4.3

Matrices regulares

Llamaremos matrices elementales de orden n a aquellas matrices cuadradas que se obtienen aplicando una transformación elemental a la matriz identidad. Tenemos por tanto tres tipos de matrices elementales.

Proposición 17. Sea $A \in \mathcal{M}_{m \times n}(\Bbbk)$ y sea $E \in \mathcal{M}_m(\Bbbk)$ una matriz elemental. Entonces EA es la matriz que se obtiene a partir de A aplicando a sus filas la misma transformación elemental elemental con la que se obtiene E a partir de I_m .

Corolario 18. Sean $A, H \in \mathcal{M}_{m \times n}(\mathbb{k})$ tales que H es la forma normal de Hermite de A. Existen matrices elementales $E_1, \ldots, E_t \in \mathcal{M}_m(\mathbb{k})$ tales que

$$H = E_t E_{t-1} \dots E_1 A$$

Definición 19. Una matriz cuadrada $A \in \mathcal{M}_n(\Bbbk)$ se dice regular si tiene inversa para el producto, es decir, si existe $B \in \mathcal{M}_n(\Bbbk)$ tal que $AB = BA = I_n$

Lo primero que hay que observar es que de existir la inversa es única: si B_1 y B_2 son inversas de A entonces

$$B_1 = B_1 I_n = B_1 (AB_2) = (B_1 A) B_2 = I_n B_2 = B_2.$$

La inversa de A, en caso de existir, se denota A^{-1} Dos propiedades muy fáciles de comprobar son:

- 1. $(AB)^{-1} = B^{-1}A^{-1}$,
- 2. $(A^t)^{-1} = (A^{-1})^t$.

Proposición 20. Las matrices elementales son regulares, y sus inversas son matrices elementales.

Teorema 21. Para una matriz $A \in \mathcal{M}_n(\mathbb{k})$ son equivalentes las siguientes afirmaciones:

- 1. A es regular,
- 2. $\operatorname{rango}(A) = n$,
- 3. la forma de Hermite de A es I_n ,
- 4. A se puede escribir como un producto de matrices elementales.

Corolario 22. $H \in \mathcal{M}_{m \times n}(\mathbb{k})$ es la forma de Hermite de $A \in \mathcal{M}_{m \times n}(\mathbb{k})$ si y sólo si existe una matriz regular $P \in \mathcal{M}_m(\mathbb{k})$ tal que H = PA.

Para calcular la inversa de una matriz procedemos de la siguiente forma.

1. Dada una matriz $A \in \mathcal{M}_n(\mathbb{k})$, construimos la matriz $(A|I_n) \in \mathcal{M}_{n \times 2n}(\mathbb{k})$.

- 2. Calculamos la forma normal de Hermite $H \sim_f (A|I_n)$.
- 3. Si $H = (I_n | B)$ entonces A es regular y su inversa es B, en caso contrario A no es regular.

La misma idea sirve para calcular la matriz de paso junto a la forma de Hermite:

- 1. Dada una matriz $A \in \mathcal{M}_{m \times n}(\mathbb{k})$, construimos la matriz $(A|I_m) \in \mathcal{M}_{m \times (n+m)}(\mathbb{k})$.
- 2. Calculamos la forma normal de Hermite $H \sim_f (A|I_m)$.
- 3. Si $H = (H_A|P)$ entonces H_A es la forma de Hermite de A y $H_A = PA$.

4.4

Sistemas de ecuaciones lineales

Definición 23. Un sistema de ecuaciones lineales (SEL) sobre un cuerpo № es una expresión de la forma

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$
(7)

donde a_{ij} , $b_i \in \mathbb{k}$ para cualesquiera $1 \le i \le m$, $1 \le j \le n$.

Definición 24. Una solución de (7) es una lista $(s_1, s_2, \dots, s_n) \in \mathbb{k}^n$ tal que

$$a_{11}s_1 + a_{12}s_2 + \dots + a_{1n}s_n = b_1$$

 $a_{21}s_1 + a_{22}s_2 + \dots + a_{2n}s_n = b_2$
 \vdots
 $a_{m1}s_1 + a_{m2}s_2 + \dots + a_{mn}s_n = b_m$

Asociado al sistema de ecuaciones (7), podemos definir dos matrices la matriz de los coeficientes y la matriz de los términos independientes:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Estas matrices permiten describir el sistema (7) de forma matricial como

$$AX = B ag{8}$$

donde

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Un sistema de ecuaciones lineales

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

está por tanto determinado por la llamada matriz ampliada:

$$(A|B) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Cada matriz sistema con m ecuaciones y n incógnitas está determinado por una matriz de tamaño $m \times (n+1)$, y recíprocamente cada matriz de tamaño $m \times (n+1)$ determina un sistema con m ecuaciones y n incógnitas.

Definición 25. Dos sistemas se dicen equivalentes si tienen las mismas soluciones.

Proposición 26. Los sistemas asociados a dos matrices que se diferencian en transformaciones elementales sobre filas son equivalentes, es decir, si $(A|B) \sim_f (A'|B')$, entonces los sistemas de ecuaciones

$$AX = B y A'X = B'$$

tienen las mismas soluciones.

Esta proposición es sencilla de demostrar una vez que sabemos que las transformaciones elementales se corresponden con los productos por matrices elementales.

Definición 27. Un sistema se llama *compatible* si tiene solución, en caso contrario se llama *incompatible*. Un sistema compatible se llama *determinado* si la solución es única. En caso contrario se llama *indeterminado*.

Teorema 28 (Rouché–Frobenius). Un sistema AX = B es compatible si y solo si rango(A) = rango(A|B); en otro caso es incompatible. Un sistema compatible es determinado si y solo si rango(A) = n, el número de incógnitas; en otro caso es indeterminado.

4.5

Dada una matriz $M \in \mathcal{M}_{m \times n}(\mathbb{k})$, denotamos M_{ij} a la submatriz de M que se obtiene eliminando la fila i y la columna j de A.

Definición 29. Definimos el determinante de una matriz cuadrada $A \in \mathcal{M}_n(\mathbb{k})$ de forma recursiva:

- Si $A = (a) \in \mathcal{M}_1(\mathbb{k})$ entonces $\det(A) = a$.
- Si $A \in \mathcal{M}_n(\mathbb{k})$ llamamos $\alpha_{ij} = (-1)^{i+j} \det(A_{ij})$ (que ya está definido por tener un tamaño menor), y definimos

$$\det(A) = a_{11}\alpha_{11} + a_{12}\alpha_{12} + \cdots + a_{1n}\alpha_{1n}.$$

Se denota

$$\det(A) = |A| = \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Propiedad 1

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 + y_1 & x_2 + y_2 & \dots & x_n + y_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ y_1 & y_2 & \dots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Propiedad 2

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 & y_2 & \dots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ y_1 & y_2 & \dots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

En particular el determinante es cero si hay dos filas iguales.

Propiedad 3

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda x_1 & \lambda x_2 & \dots & \lambda x_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \lambda \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Propiedad 4

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 & y_2 & \dots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 + \lambda y_1 & x_2 + \lambda y_2 & \dots & x_n + \lambda y_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 & y_2 & \dots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Propiedad 5

$$det(AB) = det(A) det(B)$$
.

Propiedad 6

$$det(A^t) = det(A)$$
.

Propiedad 7

$$A \text{ es regular} \iff \det(A) \neq 0$$

Propiedad 8

$$\det(A) = a_{i1}\alpha_{i1} + a_{i2}\alpha_{i2} + \cdots + a_{in}\alpha_{in}$$

para cualquier $1 \le i \le n$, donde $\alpha_{ij} = (-1)^{i+j} \det(A_{ij})$.

Los elementos $\alpha_{ij} = (-1)^{i+j} \det(A_{ij})$ reciben el nombre de adjuntos. La matriz

$$A^* = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{pmatrix}$$

se llama matriz adjunta. De las propiedades anteriores se deduce que para cualquier matriz $A \in \mathcal{M}_n(\mathbb{k})$

$$A \cdot (A^*)^t = \det(A)I_n$$

y por lo tanto,

Teorema 30. Si A es regular entonces $A^{-1} = \det(A)^{-1}(A^*)^t$.

Proposición 31. El rango de una matriz $A \in \mathcal{M}_{m \times n}(\mathbb{k})$ coincide con el tamaño de la mayor submatriz cuadrada con determinante distinto de cero.