ECE 09495/09595

Advanced Emerging Topics in Computational Intelligence, Machine Learning and Data Mining Emerging Topics in Computational Intelligence, Machine Learning and Data Mining

Ghulam Rasool, PhD

30 January 2019

Lecture 3 and 4

Housekeeping

- Google ML Crash Course
- Projects
- Google Colab

Data Preparation

May take up to 70-80% of the teams' effort initially

Data Preparation

Evaluation and design iteration

Data Distribution

- Make the training error small ->
- Make the gap between training and test error small ->

Model performs well Model generalizes well

Underfitting

Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training set.

Underfitting and Overfitting

Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training set.

Overfitting occurs when the gap between the training accuracy and test accuracy is too large.

Regularization – Dropout, L1, L2, Weight Decay

Linear Models - Why?

Linear Regression

• We have a dataset giving the living areas and prices of houses

Living Area	Price \$K									
2104	400									
1600	330	7 ^{×105}								
2400	369	,								
:	:	6 -					•		•	
		5 –		•	•		•			
		4 -		•						
	_	3 -			• •	•				
		2 -	••	•						
		1 500	1000	1500	2000	2500	3000	3500	4000	4500

Linear Model

• Lets try to make a linear model

$$h_w(x) = w_0 + w_1 x$$

$$y = mx + c$$

Notations

- $x^{(i)}$ is the i-th input example (feature) with $y^{(i)}$ as the target or the label.
- Together $(x^{(i)}, y^{(i)})$ are referred to as the i-th training example.
- $\{(x^{(i)}, y^{(i)}); i = 1, \dots, m\}$ is the training data set.
- \mathcal{X} is the space of input values, and \mathcal{Y} the space of labels/targets, $\mathcal{X} = \mathcal{Y} = \mathbb{R}$

Our goal $h: \mathcal{X} \mapsto \mathcal{Y}$ so that h(x) is a good predictor of y

More features

- We may have more features, living area and number of bedrooms, so we have $x_1^{(i)}$, and $x_2^{(i)}$. Feature space is now two-dimensional, $x \in \mathbb{R}^2$.
- Who decides how many features we have?

Lets try to make a linear model

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2$$
$$h(x) = \sum_{i=0}^{n} w_i x_i = w^T x$$

 x_0 is set to 1.

 w_i are the parameters or weights and w is the vector of parameters/weights. x is the vector on inputs.

The unknown w and the Least-Squares

Given training set $\{(x^{(i)}, y^{(i)}), i = 1, \dots, m\}$, how do we learn the parameters w such that h(x) is close to the ground truth y.

Choose some w randomly and test all examples and compare h(x) and y. Lets define cost function

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{i})^{2}$$

This is a least-squares cost function and referred to as the ordinary least-squares (OLS) regression.

Machine Learning - Supervised Learning

Linear Regression - cost function

$$J(w) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{i})^{2}$$

$$h(x) = \sum_{i=0}^{n} w_i x_i = w^T x$$

Square Error

Ground truth

Sum over all given examples

Goal : Minimize J(w)

Gradient Descent

We want to choose w so as to minimize J(w)

Starts with some "guess" for w, and then repeatedly change w to make J(w) smaller.

The gradient descent algorithm starts with some initial w, and repeatedly performs the update:

$$w_j \coloneqq w_j - \alpha \frac{\partial}{\partial w_j} J(w) \qquad j = 1, \dots, n$$

 α is the learning rate (more on this later)

For a single training example, we may solve and get:

$$w_j \coloneqq w_j - \alpha \left(h_w(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

LMS (Least Mean Squares) Update Rule

Gradient descent: But how?

$$f(w) = w^{2} + 20w$$

$$\frac{df(w)}{dw} = 2w + 20$$

$$\alpha = 0.1$$

$$w \coloneqq w + \frac{\alpha}{\alpha} \left(-\frac{df(w)}{dw} \right)$$

Batch gradient descent

Loop till convergence:

$$w_j := w_j - \alpha \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$\frac{\partial}{\partial w_j}J(w)$$

This method looks at every example in the entire training set on every step

Stochastic gradient descent

```
Loop:{  for \ i = 1: m \ \{ \\ w_j \coloneqq w_j - \alpha \left( h_w \big( x^{(i)} \big) - y^{(i)} \right) x_j^{(i)} \ for \ all \ j \\ \}
```

Batch gradient descent has to scan through the entire training set before taking a single step of updating w – a costly operation if m is large

Stochastic gradient descent can start making progress right away, and continues to make progress with each example it looks at.

Stochastic gradient descent may get w close to the minimum much faster than batch gradient descent. It may never converge to the minimum, that is, w may keep oscillating around the minimum of J(w)

Logistic Regression

Labels are now discrete categories, e.g.

$$y \in \{0, 1\}$$
 – a binary classification

problem

Previously:
$$h_w(x) = w^T x$$

$$h_w(x) = g(w^T x)$$
 such that

$$h_w(x) \in \{0,1\}$$

$$g(z) = \frac{1}{1 + \exp(-z)}$$

Logistic regression: How to estimate w?

Lets start with probability assignment:

$$P(y = 1|x; w) = h_w(x)$$
 and thus $P(y = 0|x; w) = 1 - h_w(x)$
 $p(y|x; w) = [h_w(x)]^y [1 - h_w(x)]^{1-y}$

For m independent training examples:

$$L(w) = \prod_{i=1}^{m} [h_w(x^{(i)})]^{y^{(i)}} [1 - h_w(x^{(i)})]^{1-y^{(i)}}$$

$$l(w) = \log L(w) = \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

Logistic Regression Loss Function

Inputs: x, y

Parameters: w and b

Output : \hat{y}

 \boldsymbol{w} and \boldsymbol{b} can be combined

$$w^{T}x + b = [w_1, w_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b$$
$$= [b, w_1, w_2] \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

$$J(w,b) = -\sum_{i=1}^{m} y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$
$$\hat{y}^{(i)} = \sigma(w^{T} x^{(i)} + b) = \frac{1}{1 + \exp(-w^{T} x^{(i)} + b)}$$

$$y^{(i)} = 1$$
 and $h(x^{(i)}) = 0.999$ Loss ≈ 0 $y^{(i)} = 0$ and $h(x^{(i)}) = 0.001$ Loss ≈ 0 $y^{(i)} = 1$ and $h(x^{(i)}) = 0.001$ Loss ≈ 3 $y^{(i)} = 0$ and $h(x^{(i)}) = 0.999$ Loss ≈ 3

Loss function / Cost function

- Function of the unknown weights, w, and b
- Differentiable
- Must output a scalar

Linear Regression and Logistic Regression

When the target variable (y) we are trying to predict is <u>continuous</u>, such as in our housing example, we call the learning problem a regression problem. We can solve this problem using linear models and this is referred to as <u>Linear Regression</u>.

Examples???

When y can take on only a small number of discrete values or <u>categories</u>, (e.g., low-range, mid-range, expensive, crazy-expensive), we call it a classification problem. We can solve this problem using linear models, this is referred to as <u>Logistic Regression</u>.

Examples???

Logistic Regression – 1 example case

$$\frac{dJ}{db} = \frac{dJ}{dz}$$

$$\chi_1 = \frac{dJ}{dw_1} = \chi_1 \frac{dJ}{dz}$$

$$x_2 = \frac{w_2}{w_2}$$

$$\frac{dJ}{dw_2} = x_2 \frac{dJ}{dz}$$

$$z = w_1 x_1 + w_2 x_2 + b$$

$$\frac{dJ}{dw_1} = x_1 \frac{dJ}{dz}$$

$$\frac{dJ}{dz} = x_1 \frac{dJ}{dz}$$

$$\frac{dJ}{dz} = \frac{dJ}{da} \frac{da}{dz}$$

$$\frac{dJ}{dz} = \left(-\frac{y}{a} + \frac{1-y}{1-a}\right) * a(1-a)$$

$$\frac{dJ}{dw_2} = x_2 \frac{dJ}{dz}$$

$$\frac{dJ}{dz} = a - y$$

$$a = \sigma(z)$$

$$\frac{dJ}{da} = -\frac{y}{a} + \frac{1-y}{1-a}$$

$$J(w, b) = -y \log(a) - (1 - y) \log(1 - a)$$

$$w_{1} \coloneqq w_{1} - \alpha \frac{dJ}{dw_{1}}$$

$$w_{2} \coloneqq w_{2} - \alpha \frac{dJ}{dw_{2}}$$

$$b \coloneqq b - \alpha \frac{dJ}{db}$$

Logistic Regression to Neuron

Neural Network Examples

Applications	Input	Output	Neural Network
Housing Example			Simple NN
Iris Classification			Simple NN
Image classification			CNN
Tumor Segmentation			CNN
Speech translation			RNN / LSTM
Sentiment analysis			RNN / LSTM
Autonomous cars			Customized Architectures

Neuron to Artificial neural network

http://www.dspguide.com/ch26/2.htm

Artificial Neural Networks

Input Data = x, y

Out Data = \hat{y}

Fitness Function = $J(y, \hat{y})$

Weights and Biases = ???

Input layer

Hidden layer(s)

Output layer

Artificial Neural Networks

Forward Pass

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

$$X = \begin{bmatrix} 1 & 1 & 1 \\ x^{(1)} & x^{(2)} & x^{(m)} \\ 1 & 1 & 1 \end{bmatrix}$$

$$Z^{[1]} = \begin{bmatrix} 1 & 1 & 1 \\ z^{1} & z^{[1](2)} & z^{[1](m)} \\ 1 & 1 & 1 \end{bmatrix}$$

$$A^{[1]} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A^{[1]} = \begin{bmatrix} & & & | & & | \\ a^{1} & a^{[1](2)} & a^{[1](m)} \\ | & & | & & | \end{bmatrix}$$

$$Z1 = np.dot(W1, X) + b1$$

A1 = sigmoid(Z1)

Z2 = np.dot(W2, A1) + b2

A2 = sigmoid(Z2)

Artificial Neural Networks

Backpropagation

Classification Task

Initial random weights

Classification Task

Classification Task

Classification Task

Classification Task

Classification Task

Artificial Neural Networks – Training and Testing

Train

Test

Artificial Neural Networks - Nonlinearity

The network will learn to classify points as belonging to one or the other.

ANN with 1 input layer and 1 output layer. The network simply tries to separate the two classes of data by dividing them with a line.

ANN with 1 hidden layer. It separates the data with a more complicated curve than a line.

Artificial Neural Networks – Why Go Deep?

1 hidden layer – 2 neurons

2 hidden layers – 4 neurons

3 hidden layers – 9 neurons

Background Math

The Matrix Calculus You Need For Deep Learning

https://arxiv.org/pdf/1802.01528.pdf

Coding Assignment

- Logistic Regression
- Neural Network
 - Without using any libraries
 - Keras
 - TensorFlow
- Google co-lab

https://colab.research.google.com/drive/1H F3Fgab3aTH1gBmXHTjlvarBheAJGvy

