Домашнее задание 4 (линал)

Андрей Зотов

Июнь 2023

Задача 1

Ответ:
$$A = \begin{pmatrix} -3 & 5 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 (в стандартном базисе).

Решение. Пусть $e_1=(1,0,0)^T, e_2=(0,1,0)^T, e_3=(0,0,1)^T$ стандартный базис в \mathbb{R}^3 . По определению i-й столбец матрицы A (линейного оператора $\varphi:\mathbb{R}^3\to\mathbb{R}^3$) в стандартном базисе состоит из координат вектора $Ae_i=\varphi(e_i)$ в стандартном базисе. При этом нам известно, что $Av_i=u_i$ (i=1,2,3), а также даны координаты u_i и v_i в стандартном базисе. Например, при i=1 имеем:

$$v_1 = e_1 + 2e_3, u_1 = e_1 + e_3 \Rightarrow A(e_1 + 2e_3) = e_1 + e_3 \Leftrightarrow Ae_1 + 2Ae_3 = e_1 + e_3$$

Далее расписывая таким же образом соотношения $Av_i = u_i$ для i = 2, 3 получаем систему:

$$\begin{cases}
Ae_1 + 2Ae_3 = e_1 + e_3 \\
Ae_1 + Ae_2 - Ae_3 = e_2 + e_3 \\
2Ae_1 + 3Ae_3 = 2e_3
\end{cases} \tag{1}$$

Наша задача разрешить систему (1) относительно Ae_i через линейные комбинации e_i (коэффициенты при e_i будут столбцами искомой матрицы). Видно, что полученная система линейна относительно Ae_i , поэтому можем составить расширенную матрицу (V|U) этого уравнения и привести ее левую часть V к каноническому ступенчатому виду. Не трудно заметить, что V и U - это матрицы 3×3 , для которых формально верно следующее матричное произведение: $V(Ae_1,Ae_2,Ae_3)^T = U(e_1,e_2,e_3)^T$ и по сути строки матрицы V - это координаты векторов v_i в стандартном базисе, а строки матрицы U - это координаты векторов u_i в стандартном базисе. И в случае, если матрица V обратима, то с помощью метода Гаусса мы можем получить соотношение $E(Ae_1,Ae_2,Ae_3)^T = V^{-1}U(e_1,e_2,e_3)^T$ или что тоже самое алгоритмически $(V|U) \to (E|V^{-1}U)$. При этом в i-й строке матрицы $V^{-1}U$ будут координаты Ae_i в стандартном базисе, т.е. искомая матрица $A = (V^{-1}U)^T$ Таким образом:

$$(V|U) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 1 \\ 1 & 1 & -1 & 0 & 1 & 1 \\ 2 & 0 & 3 & 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 1 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -3 & 0 & 1 \\ 0 & 1 & -3 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -3 & 0 & 1 \\ 0 & 1 & 0 & 5 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \end{pmatrix} = (E|V^{-1}U)$$

Т.е. в стандартном базисе матрица оператора φ будет $A = (V^{-1}U)^T = \begin{pmatrix} -3 & 0 & 1 \\ 5 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}^T = \begin{pmatrix} -3 & 5 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$

Задача 2

Otbet:
$$A'=A(\varphi,f,g)=\left(egin{array}{ccc} -2 & 0 & 0 \\ 5 & 3 & 5 \end{array}
ight).$$

Решение. Пусть $f=\{f_1,f_2,f_3\},\ g=\{g_1,g_2\},\ s_2=\{(1,0)^T,(0,1)^T\}$ стандартный базис в \mathbb{R}^2 , а $s_3=\{(1,0,0)^T,(0,1,0)^T,(0,0,1)^T\}$ стандартный базис в \mathbb{R}^3 , тогда

$$A'=A(\varphi,f,g)=C_{s_2\to g}^{-1}A(\varphi,s_3,s_2)C_{s_3\to f}$$

где $C_{s_2 \to g} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ (по определению матрицы перехода $s_2 \to g$ в ее i-м столбце стоят координаты базисного

вектора g_i в стандартном базисе s_2), т.е. $C_{s_2 \to g}^{-1} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$. Аналогично $C_{s_3 \to f} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$. И по

условию $A(\varphi, s_3, s_2) = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$. Таким образом:

$$A' = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} -2 & -2 & 2 \\ 3 & 4 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 5 & 3 & 5 \end{pmatrix}.$$

Задача 3

Ответ: $A = \begin{pmatrix} 13/6 & 5/6 \\ 5/3 & 4/3 \end{pmatrix}$.

Решение. Пусть $e_1=(1,0)^T, e_2=(0,1)^T$ стандартный базис в \mathbb{R}^2 . Тогда по условию $\varphi(e_1+e_2)=\varphi(e_1)+\varphi(e_2)=3(e_1+e_2)$ и $\varphi(-e_1+2e_2)=-\varphi(e_1)+2\varphi(e_2)=0.5(-e_1+2e_2)$. Если обозначить $Ae_i=\varphi(e_i),\ i=1,2,$ то получим систему как в задаче 1:

$$\begin{cases} Ae_1 + Ae_2 = 3e_1 + 3e_2 \\ -2Ae_1 + 4Ae_2 = -e_1 + 2e_2 \end{cases}$$
 (2)

Решаем систему (2) относительно Ae_i так же как в задаче 1 - приведением методом Гаусса к каноническому ступенчатому виду расширенной матрицы системы (2):

$$(V|U) = \left(\begin{array}{cc|c} 1 & 1 & 3 & 3 \\ -2 & 4 & -1 & 2 \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 1 & 1 & 3 & 3 \\ 0 & 6 & 5 & 8 \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 1 & 1 & 3 & 3 \\ 0 & 1 & 5/6 & 4/3 \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 1 & 0 & 13/6 & 5/3 \\ 0 & 1 & 5/6 & 4/3 \end{array} \right) = (E|V^{-1}U)$$

Транспонированная правая часть и есть матрица оператора φ в стандартном базисе:

$$A = (V^{-1}U)^T = \begin{pmatrix} 13/6 & 5/3 \\ 5/6 & 4/3 \end{pmatrix}^T = \begin{pmatrix} 13/6 & 5/6 \\ 5/3 & 4/3 \end{pmatrix}.$$

Задача 4

Ответ: собственные значения $\lambda \in \{0,1\}$; базис пространства $V_{\lambda=0}$ состоит из одного собственного вектора $v_1=(1,2,3)^T$, т.е. $V_{\lambda=0}=\langle (1,2,3)^T\rangle$; базис пространства $V_{\lambda=1}$ тоже состоит из одного собственного вектора $v_2=(1,1,1)^T$, т.е. $V_{\lambda=1}=\langle (1,1,1)^T\rangle$. Матрицу линейного оператора диагонализировать нельзя - не существует базиса, в котором она имеет диагональный вид.

Решение. Пусть $A = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$. Найдем собственные значения линейного оператора с матрицей A,

т.е. корни характеристического многочлена $\chi_A(\lambda) = \det(\lambda E - A) = 0$:

$$|\lambda E - A| = \begin{vmatrix} \lambda - 4 & 5 & -2 \\ -5 & \lambda + 7 & -3 \\ -6 & 9 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^2 (\lambda + 7) + 90 + 90 - 12(\lambda + 7) + 27(\lambda - 4) + 25(\lambda - 4) =$$

$$= (\lambda - 4)^2 (\lambda + 7) + 180 + 40\lambda - 292 = \lambda^3 - \lambda^2 = 0$$

$$\chi_A(\lambda) = \lambda^2(\lambda - 1) = 0$$

$$\updownarrow$$

$$\lambda \in \{0, 1\}$$

Нашли два собственных значения, поэтому рассмотрим два случая.

1. Для пространства $V_{\lambda=0}=\{v=(x_1,x_2,x_3)^T\in\mathbb{R}^3|Av=0\}$ найдем базис (или собственные вектора соответствующие собственному значению $\lambda=0$):

$$A = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & -5 & 2 \\ 1 & -2 & 1 \\ 6 & -9 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 4 & -5 & 2 \\ 2 & -4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 4 & -5 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 4 & -5 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 0 & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -2/3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & -2/3 \end{pmatrix}$$

В каноническом ступенчатом виде имеем одну свободную переменную x_3 , поэтому $\dim V_{\lambda=0}=1$ и ФСР обеспечивает один базисный (собственный) вектор $(1/3,2/3,1)^T$ ($x_3=1\Rightarrow x_1=1/3,x_2=2/3$). Можем умножить этот вектор на 3 - от этого его свойство быть базисным (собственным) не измениться, т.е. получим базисный (собственный) вектор $(1,2,3)^T \Rightarrow V_{\lambda=0} = \langle (1,2,3)^T \rangle$.

базисный (собственный) вектор $(1,2,3)^T\Rightarrow V_{\lambda=0}=\langle (1,2,3)^T\rangle.$ 2. Для пространства $V_{\lambda=1}=\{v=(x_1,x_2,x_3)^T\in\mathbb{R}^3|Av=v\}=\{v=(x_1,x_2,x_3)^T\in\mathbb{R}^3|(A-E)v=0\}$ найдем базис (или собственные вектора соответствующие собственному значению $\lambda=1$):

$$A - E = \begin{pmatrix} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 6 & -9 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 5 & -8 & 3 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

В каноническом ступенчатом виде имеем одну свободную переменную x_3 , поэтому dim $V_{\lambda=1}=1$ (что и ожидалось, т.к. кратность корня $\lambda=1$ ровно 1) и Φ CP обеспечивает один базисный (собственный) вектор $(1,1,1)^T$ $(x_3=1\Rightarrow x_1=1,x_2=1)$. Т.е. $V_{\lambda=1}=\langle (1,1,1)^T\rangle$.

Т.к. оказалось, что $\dim V_{\lambda=0}+\dim V_{\lambda=1}=2<3$, то матрицу A нельзя диагонализировать. Для существования диагонального вида линейного оператора $\varphi:\mathbb{R}^3\to\mathbb{R}^3$ требуется наличие 3-х линейно независимых собственных векторов - однако в данном случае их может быть только 2.

Задача 5

Ответ: матрица имеет диагональный вид
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 в базисе $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$. Решение. Пусть $A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}$. Тогда, учитывая, что матрица $\lambda E - A = \begin{pmatrix} \lambda - 1 & 1 & 1 \\ 0 & \lambda - 2 & 1 \\ 0 & 0 & \lambda - 3 \end{pmatrix}$

имеет треугольный вид, то характеристический многочлен будет $\chi_A(\lambda) = \det(\lambda E - A) = (\lambda - 1)(\lambda - 2)(\lambda - 3) = 0$, т.е. собственные значения матрицы A будут $\lambda \in \{1, 2, 3\}$. Таким образом имеется 3 разных собственных значения у матрицы размером $3 \times 3 \Rightarrow$ существует базис из собственных векторов, в котором она имеет диа-

гональный вид $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Найдем этот базис (собственные вектора, соответствующие трем собственным значениям $\lambda \in \{1,2,3\}$).

1. $\lambda = 1 \Rightarrow V_{\lambda=1} = \{v \in \mathbb{R}^3 | (A - E)v = 0\}$:

$$A - E = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Одна свободная переменная $x_1 \Rightarrow \dim V_{\lambda=1} = 1$. ФСР: $x_1 = 1 \Rightarrow x_2 = 0, x_3 = 0 \Rightarrow$ собственный вектор

$$v_1=\left(egin{array}{c}1\\0\\0\end{array}
ight)$$
 и $V_{\lambda=1}=\langle v_1
angle.$ 2. $\lambda=2\Rightarrow V_{\lambda=2}=\{v\in\mathbb{R}^3|(A-2E)v=0\}:$

$$A - 2E = \left(\begin{array}{ccc} -1 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{array} \right) \rightarrow \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right) \rightarrow \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Одна свободная переменная $x_2 \Rightarrow \dim V_{\lambda=2} = 1$. ФСР: $x_2 = 1 \Rightarrow x_1 = -1, x_3 = 0 \Rightarrow$ собственный вектор

$$v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 и $V_{\lambda=2} = \langle v_2 \rangle$.

3. $\lambda = 3 \Rightarrow V_{\lambda=3} = \{v \in \mathbb{R}^3 | (A - 3E)v = 0\}$:

$$A - 3E = \begin{pmatrix} -2 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Одна свободная переменная $x_3 \Rightarrow \dim V_{\lambda=3} = 1$. ФСР: $x_3 = 1 \Rightarrow x_1 = 0, x_2 = -1 \Rightarrow$ собственный вектор / 0 \

$$v_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 и $V_{\lambda=3} = \langle v_3 \rangle$.

Задача 6

Ответ: через 1000 дней клад будет состоять из $5 \cdot 2^{999} \cdot (3^{1000} + 1)$ золотых монет, $5 \cdot 2^{998} \cdot (3^{1000} - 1)$ серебряных и $5 \cdot 2^{999} \cdot (3^{1000} - 1)$ бронзовых.

Решение. Будем считать наборы из трех видов монет $(x_1, x_2, x_3)^T$ $(x_1$ - число золотых монет, x_2 - серебряных, x_3 - бронзовых) элементами векторного пространства \mathbb{R}^3 , т.е. на этих наборах определены операции сложения и умножения на скаляр $\in \mathbb{R}$ в соответствии с аксиомами векторного пространства. Также считаем преобразование φ , которое происходит с кладом за сутки действием линейного оператора на наборах из трех видов монет, т.е. $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ удовлетворяет условиям линейного оператора.

По условию задачи нам известно действие оператора φ на векторах стандартного базиса в \mathbb{R}^3 :

$$\varphi((1,0,0)^T) = (4,1,2)^T;$$

$$\varphi((0,1,0)^T) = (0,2,0)^T;$$

$$\varphi((0,0,1)^T) = (2,1,4)^T.$$

Поэтому матрица оператора φ в стандартном базисе будет

$$A = \left(\begin{array}{ccc} 4 & 0 & 2 \\ 1 & 2 & 1 \\ 2 & 0 & 4 \end{array}\right)$$

Таким образом требуется вычислить действие матрицы A, примененной 1000 раз к начальному вектору (начальное состояние клада) $(5,0,0)^T$, т.е. найти вектор $=A^{1000}(5,0,0)^T$.

Если существует базис $v=\{v_1,v_2,v_3\}$, в котором матрица оператора φ имеет диагональный вид D, тогда $A^{1000}=CD^{1000}C^{-1}$, где матрица C - это матрица перехода от стандартного базиса в \mathbb{R}^3 к базису v, т.е. столбцы матрицы C - это координаты v_i в стандартном базисе. Проверим существует ли такой базис.

Найдем корни характеристического многочлена матрицы А:

$$\chi_A(\lambda) = \det(\lambda E - A) = 0$$

$$\begin{vmatrix} \lambda - 4 & 0 & -2 \\ -1 & \lambda - 2 & -1 \\ -2 & 0 & \lambda - 4 \end{vmatrix} = 0$$

$$\updownarrow$$

$$(\lambda - 4)^{2}(\lambda - 2) - 4(\lambda - 2) \equiv ((\lambda - 4)^{2} - 4)(\lambda - 2) = 0$$

$$\updownarrow$$

$$(\lambda - 4 - 2)(\lambda - 4 + 2)(\lambda - 2) \equiv (\lambda - 2)^{2}(\lambda - 6) = 0$$

$$\updownarrow$$

$$\lambda \in \{2, 6\}$$

Найдем базис из собственных векторов:

1. $\lambda = 2 \Rightarrow V_{\lambda=2} = \{v \in \mathbb{R}^3 | (A-2E)v = 0\}$, поэтому ищем ФСР для $V_{\lambda=2}$:

$$A - 2E = \begin{pmatrix} 2 & 0 & 2 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$$

Получили две свободные переменные x_2 и x_3 , т.е. $\dim V_{\lambda=2}=2$ и ФСР дает два собственных вектора (базис в $V_{\lambda=2}$):

$$x_2 = 1, x_3 = 0 \Rightarrow x_1 = 0 \Rightarrow v_1 = (0, 1, 0)^T$$

 $x_2 = 0, x_3 = 1 \Rightarrow x_1 = -1 \Rightarrow v_2 = (-1, 0, 1)^T$

Таким образом $V_{\lambda=2} = \langle (0,1,0)^T, (-1,0,1)^T \rangle$.

2. $\lambda = 6 \Rightarrow V_{\lambda = 6} = \{v \in \mathbb{R}^3 | (A - 6E)v = 0\}$, поэтому ищем ФСР для $V_{\lambda = 6}$:

$$A - 6E = \begin{pmatrix} -2 & 0 & 2 \\ 1 & -4 & 1 \\ 2 & 0 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 1 & -4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & -4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -0.5 \end{pmatrix}$$

Получили одну свободную переменную x_3 , т.е. $\dim V_{\lambda=6}=1$ и Φ CP дает один собственный вектор (базис в $V_{\lambda=6}$):

$$x_3 = 1 \Rightarrow x_1 = 1, x_2 = 0.5 \Rightarrow v_3 = (1, 0.5, 1)^T$$

Чтобы избавиться от дробных компонент умножим v_3 на 2, т.е. новое значение будет $v_3=(2,1,2)^T$, т.е. $V_{\lambda=6}=\langle (2,1,2)^T \rangle$

Таким образом искомый базис существует: $v = \{(0,1,0)^T, (-1,0,1)^T, (2,1,2)^T\}$. И следовательно матрицы D и C имеют вид:

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \ C = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Найдем C^{-1} методом Гаусса:

$$(C|E) = \begin{pmatrix} 0 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & -1 & 2 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 4 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 1/4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/4 & 1 & -1/4 \\ 0 & 1 & 0 & 1/4 & 0 & 1/4 \end{pmatrix} = (E|C^{-1})$$

$$\downarrow \downarrow \qquad \qquad \downarrow \qquad$$

Таким образом

$$A^{1000} = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2^{1000} & 0 & 0 \\ 0 & 2^{1000} & 0 \\ 0 & 0 & 6^{1000} \end{pmatrix} \begin{pmatrix} -1/4 & 1 & -1/4 \\ -1/2 & 0 & 1/2 \\ 1/4 & 0 & 1/4 \end{pmatrix}$$

Если обозначить $x = 3^{1000}$, то получим

$$A^{1000} = 2^{1000} \begin{pmatrix} 0 & -1 & 2x \\ 1 & 0 & x \\ 0 & 1 & 2x \end{pmatrix} \frac{1}{4} \begin{pmatrix} -1 & 4 & -1 \\ -2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix} = 2^{998} \begin{pmatrix} 2x + 2 & 0 & 2x - 2 \\ x - 1 & 4 & x - 1 \\ 2x - 2 & 0 & 2x + 2 \end{pmatrix}$$

$$A^{1000}(5,0,0)^T = 5 \cdot 2^{998} \cdot (2x+2,x-1,2x-2)^T = 5 \cdot 2^{999} \cdot (3^{1000}+1,\frac{3^{1000}-1}{2},3^{1000}-1)^T$$

Таким образом через 1000 дней клад будет состоять из $5 \cdot 2^{999} \cdot (3^{1000} + 1)$ золотых монет, $5 \cdot 2^{998} \cdot (3^{1000} - 1)$ серебряных и $5 \cdot 2^{999} \cdot (3^{1000} - 1)$ бронзовых.

Задача 7

Ответ:

 $\lambda=0,$ если x=0; $\lambda\in\{0,a_1^2+a_2^2+\cdots+a_n^2\},$ если $x\neq 0$ и n>1; $\lambda=a_1^2,$ если $x\neq 0$ и n=1.

Решение. Пусть $x=(a_1,a_2,\ldots,a_n)\in\mathbb{R}^n$ и матрица $A=x^Tx$ матрица линейного оператора $\varphi:\mathbb{R}^n\to\mathbb{R}^n$ в стандартном базисе $e=\{e_1,e_2,\ldots,e_n\}$. Заметим, что для любого $i=1,\ldots,n$ верно, что $\varphi(e_i)=Ae_i=x^Txe_i=a_ix^T$, т.е. $\operatorname{Im}\varphi=\langle x^T\rangle$. Поэтому

$$\dim \operatorname{Im} \varphi = \begin{cases} 0 & x = 0\\ 1 & x \neq 0 \end{cases} \tag{3}$$

Тогда рассмотрим 3 случая:

1. $x=0 \Rightarrow A \equiv 0$ (нулевая матрица), т.е. $\chi_A(\lambda) = \lambda^n$ и следовательно $\lambda=0$ единственное собственное значение A.

2. $x \neq 0, n > 1 \Rightarrow$ (согласно (3)) dim Im $\varphi = 1$, т.е. dim ker $\varphi = \dim \mathbb{R}^n$ — dim Im $\varphi = n - 1$, а это значит, что dim $V_{\lambda=0} = \dim \ker \varphi = n - 1$. И т.к. n > 1, то $\lambda = 0$ - это собственное значение A и ему соответствует базис из n - 1 собственных векторов в $V_{\lambda=0}$. Т.к. dim $V_{\lambda=0} = n - 1$, то если существует собственное значение матрицы A отличное от нуля, то оно ровно одно (иначе бы в \mathbb{R}^n нашелся бы базис, состоящий из больше чем n собственных линейно независимых векторов, а это невозможно). Найдем это ненулевое собственное значение.

Ранее мы выяснили, что $Ae_i=a_ix^T$, поэтому, если $y=(y_1,y_2,\cdots,y_n)^T$ некий произвольный вектор из \mathbb{R}^n , то $Ay=A(y_1e_1+y_2e_2+\cdots+y_ne_n)=(y_1a_1+y_2a_2+\cdots+y_na_n)x^T$. Поэтому $Ax^T=(a_1^2+a_2^2+\cdots+a_n^2)x^T$, т.е. $\lambda=a_1^2+a_2^2+\cdots+a_n^2$ является единственным собственным значением A отличным от нуля (если бы сумма квадратов a_i давала ноль, то x=0, а мы рассматриваем случай когда $x\neq 0$).

Таким образом в случае n>1 и $x\neq 0$, у матрицы A ровно 2 собственных значения $\lambda\in\{0,a_1^2+a_2^2+\cdots+a_n^2\}$. $3.\ x\neq 0, n=1$ - в этом случае матрица A состоит из одного элемента a_1^2 и имеет, очевидно, одно единственное собственное значение $\lambda=a_1^2$.