

Lecture 02

Modelos lineales para regresión y clasificación

Temas de la Lección

- Regresión lineal
- Sobre-asjuste, sub-ajuste
- Descomposición sesgo-varianza
- Regularización
- Ajuste de hiperparámetros

Escuela de Ciencias Aplicadas e Ingeniería

Dado un conjunto de ejemplos:

$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$$

- ightharpoonup Entrenamiento: Ajustar un modelo $f: \mathbf{x} \mapsto y$ a partir de los datos
- ightharpoonup Prueba: Utilizar el modelo para predecir y dado x, i.e,

$$\hat{y} = f(\mathbf{x})$$

- Especificar forma explícita de $f(x; \theta)$ con parámetro(s) θ .
- Ejemplo:
 - ► Regresión lineal: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$, $\theta = \{\mathbf{w}, b\}$.
 - Regresión logística
 - Clasificador Softmax
 - Redes profundas
- ightharpoonup Entrenamiento: aprender θ a partir de las muestras de entrenamiento $\{(\mathbf{x}_i,y_i)\}$.
- Prueba: para una muestra de prueba x, predecir \hat{y} usando f(x).

Regresión lineal

- Forma paramétrica: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$.
- Aprender w y b a partir de muestras $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ resolviendo:

$$\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w}^{\top} \mathbf{x}_{i} + b - y_{i} \right)^{2} \equiv \frac{1}{n} \left\| \tilde{\mathbf{X}} \tilde{\mathbf{w}} - \mathbf{y} \right\|^{2}.$$

Donde

$$ilde{X} = egin{bmatrix} \mathbf{x}_1^{\intercal} & 1 \ dots & dots \ \mathbf{x}_n^{\intercal} & 1 \end{bmatrix}, \qquad ilde{\mathbf{w}} = egin{bmatrix} \mathbf{w} \ b \end{bmatrix}, \qquad \mathbf{y} = egin{bmatrix} y_1 \ dots \ y_n \end{bmatrix}.$$

 $\tilde{\mathbf{w}}^* = \tilde{\mathbf{X}}^{\dagger}\mathbf{y}$ (pseudoinversa de Moore–Penrose).

$$\Rightarrow \frac{1}{m} \nabla_{\boldsymbol{w}} ||\boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})}||_{2}^{2} = 0$$
 (5.8)

$$\Rightarrow \nabla_{\boldsymbol{w}} \left(\boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} \right)^{\top} \left(\boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} \right) = 0$$
 (5.9)

$$\Rightarrow \nabla_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{X}^{(\text{train})\top} \boldsymbol{X}^{(\text{train})} \boldsymbol{w} - 2 \boldsymbol{w}^{\top} \boldsymbol{X}^{(\text{train})\top} \boldsymbol{y}^{(\text{train})} + \boldsymbol{y}^{(\text{train})\top} \boldsymbol{y}^{(\text{train})} \right) = 0$$
(5.10)

$$\Rightarrow 2\mathbf{X}^{(\text{train})\top}\mathbf{X}^{(\text{train})}\mathbf{w} - 2\mathbf{X}^{(\text{train})\top}\mathbf{y}^{(\text{train})} = 0$$
 (5.11)

$$\Rightarrow \boldsymbol{w} = \left(\boldsymbol{X}^{(\text{train})\top}\boldsymbol{X}^{(\text{train})}\right)^{-1}\boldsymbol{X}^{(\text{train})\top}\boldsymbol{y}^{(\text{train})}$$
(5.12)

Deep Learning (cap. 5, p. 107), por I. Goodfellow, Y. Bengio, y A. Courville, 2016, MIT Press. Copyright 2016 por The MIT Press

- Supongamos datos $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ i.i.d.
- Modelo generativo: $y_i = \mathbf{w}^{\top} \mathbf{x}_i + b + \varepsilon_i$, con $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ indep.
- Entonces

$$p(y_i \mid \mathbf{x}_i, \mathbf{w}, b, \sigma^2) = \mathcal{N}(y_i \mid \mathbf{w}^{ op} \mathbf{x}_i + b, \sigma^2).$$

Verosimilitud total:

$$p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}, b, \sigma^2) = \prod_{i=1}^n \mathcal{N}(y_i \mid \mathbf{w}^{ op} \mathbf{x}_i + b, \sigma^2).$$

Maximizar la log-verosimilitud \iff minimizar $\sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i - b)^2$. (¡Nuestro MSE!)

Sobre-ajuste, sub-ajuste

- Podemos crear nuevas características elevando potencias (expansión polinómica / cambio de base).
- ▶ 1D: $\phi(x) = [1, x, x^2, \dots, x^d]^\top$.
- Modelo: $f(x) = \mathbf{w}^{\top} \phi(x)$.
 - No es lineal en x, pero sí es lineal en los parámetros w.
- ► Grado $d \uparrow \Rightarrow$ mayor capacidad \Rightarrow riesgo de ajustar ruido.
- Sobreajuste: error entrenamiento ↓, error prueba ↑.
- Motivación para regularizar (Ridge/L2, Lasso/L1) o limitar d.

$$\phi(\mathbf{x}) = [1, x_1, x_2] \quad \phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2]$$

- F: familia de modelos (hipótesis) que podemos representar.
- $f^* = \arg \min_{f \in \mathcal{F}} R(f)$: mejor modelo dentro de la familia.
- \hat{f} : modelo aprendido con datos finitos (el que entrenamos).
- ightharpoonup g(x): función verdadera (puede estar fuera de \mathcal{F}).
- ► Error de estimación: $R(\hat{f}) R(f^*)$ (datos finitos / ruido / optimización).
- Error de modelado: $R(f^*) R(g)$ (limitación de la familia).
- ▶ Total (conceptual): $R(\hat{f}) R(g) \approx \text{modelado} + \text{estimación}$.

- Error de modelado = bias.
- Error de estimación = varianza respecto a los datos de entrenamiento.
- ► F más grande: error de modelado ↓
 pero error de estimación ↑.

- $y = g(\mathbf{x}) + \varepsilon$, con $\mathbb{E}[\varepsilon] = 0$, std $(\varepsilon) = \sigma$.
- Aprendemos un predictor $\hat{y} = f(\mathbf{x}; \mathcal{D})$ minimizando MSE en el conjunto de entrenamiento $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}.$
- El error de generalización (riesgo cuadrático esperado) es:

$$\begin{split} \mathbb{E}_{\mathcal{D},\varepsilon} \big[(y - \hat{y})^2 \big] &= \mathbb{E}_{\mathcal{D},\varepsilon} \big[(g(\mathbf{x}) - f(\mathbf{x}; \mathcal{D}) + \varepsilon)^2 \big] \\ &= \mathbb{E}_{\mathcal{D}} \big[(g(x) - f(\mathbf{x}; \mathcal{D}))^2 \big] + \mathbb{E}_{\varepsilon} [\varepsilon^2] \\ &= \mathbb{E}_{\mathcal{D}} \Big[\big(g(\mathbf{x}) - \mathbb{E}_{\mathcal{D}} f(\mathbf{x}; \mathcal{D}) + \mathbb{E}_{\mathcal{D}} f(\mathbf{x}; \mathcal{D}) - f(\mathbf{x}; \mathcal{D}) \big)^2 \Big] + \sigma^2 \\ &= \underbrace{ \big(g(\mathbf{x}) - \mathbb{E}_{\mathcal{D}} f(\mathbf{x}; \mathcal{D}) \big)^2}_{\text{bias}^2} + \underbrace{\mathbb{E}_{\mathcal{D}} \big[f(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} f(\mathbf{x}; \mathcal{D}) \big]^2}_{\text{varianza}} + \underbrace{\sigma^2}_{\text{error irreducible}} \end{split}$$

- ¿Cómo generalizar bien?
- Reducir el sesgo: pérdida de entrenamiento baja, un \mathcal{F} rico.
- Reducir la varianza: brecha pequeña entre la pérdida de prueba y la de entrenamiento.
 - Conjunto de entrenamiento más grande.
 - Regularización: restringir a un subconjunto de \mathcal{F} .

Escuela de Ciencias Aplicadas e Ingeniería

Visualización de Sesgo, Varianza y Error Irreducible

!Más datos mejoran el rendimiento del modelo si el modelo tiene la complejidad adecuada!

20 años de investigación en Learning Theory super-simplificados

Si tienes:

- ightharpoonup Suficientes datos de entrenamiento $\mathcal D$ y
- $ightharpoonup \mathcal{F}$ no es demasiado complejo

Entonces:

probablemente podemos generalizar a datos de prueba no vistos.

Advertencias (Caveats):

Varios resultados empíricos recientes (Zhang et. al) cuestionan nuestras intuiciones construidas a partir de esta clara separación.

Principio: Combatir el sobreajuste (overfitting) penalizando la complejidad del modelo. La idea es que un modelo demasiado complejo tiene coeficientes (\mathbf{w}) con magnitudes muy grandes.

Formulación: Se añade un término de penalización $(R(\mathbf{w}))$ a la función de error original $(E(\mathbf{w}))$. El balance se controla con el hiperparámetro λ .

$$J(\mathbf{w}) = \underbrace{E(\mathbf{w})}_{\text{Error}} + \underbrace{\lambda}_{\text{Fuerza de Penalización Penalización por Complejidad}} \underbrace{R(\mathbf{w})}_{\text{Complejidad}}$$

Regularización L2 (Weight Decay)

Regularización L1 (Lasso)

$$R(\theta) = ||\mathbf{w}||_2^2 = \sum_j w_j^2$$
 $R(\theta) = ||\mathbf{w}||_1 = \sum_j |w_j|$

1. Función de Costo

$$J(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

2. Cálculo de la Derivada

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} \left(\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{y}^T \mathbf{y} + \lambda \mathbf{w}^T \mathbf{w} \right)$$
$$= 2 \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{X}^T \mathbf{y} + 2\lambda \mathbf{w}$$
$$= 2 (\mathbf{X}^T \mathbf{X} + \lambda I) \mathbf{w} - 2 \mathbf{X}^T \mathbf{y}$$

3. Igualar a Cero y Despejar

Para encontrar el mínimo, igualamos la derivada a cero:

$$2(\mathbf{X}^{T}\mathbf{X} + \lambda I)\mathbf{w} - 2\mathbf{X}^{T}\mathbf{y} = 0$$
$$(\mathbf{X}^{T}\mathbf{X} + \lambda I)\mathbf{w} = \mathbf{X}^{T}\mathbf{y}$$

Solución Analítica Final:

$$\hat{\mathbf{w}}_{\mathsf{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

Escuela de Ciencias Aplicadas e Ingeniería

El objetivo es encontrar los parámetros w más probables usando el Teorema de Bayes:

$$\underbrace{p(\mathbf{w}|\mathbf{y},\mathbf{X})}_{\text{Posterior}} \propto \underbrace{p(\mathbf{y}|\mathbf{X},\mathbf{w})}_{\text{Likelihood (Verosimilitud)}} \cdot \underbrace{p(\mathbf{w})}_{\text{Prior}}$$

▶ Likelihood (Datos → MSE):

$$\propto \exp\left(-rac{(\mathbf{y} - \mathbf{X}\mathbf{w})^T(\mathbf{y} - \mathbf{X}\mathbf{w})}{2\sigma_y^2}
ight)$$

▶ Prior (Creencia → L2):

$$\propto \exp\left(-\frac{\mathbf{w}^T\mathbf{w}}{2\sigma_w^2}\right)$$

Resultado (MAP = Ridge):

Maximizar el posterior es equivalente a minimizar la suma del error (MSE) y la penalización L2.

Regularización

A medida que λ aumenta, para optimizer la función de costo los parámetros deben tender a 0

$$J(\mathbf{w}) = \underbrace{E(\mathbf{w})}_{\text{Error}} + \underbrace{\lambda}_{\text{Fuerza de}} \underbrace{R(\mathbf{w})}_{\text{Penalización Penalización por}}$$
(Ajuste a datos)

Regularización

Escuela de Ciencias Aplicadas e Ingeniería

Efecto de la Regularización Ridge en un Modelo Polinomial (Grado 15)

Efecto de la Regularización Lasso (L1) en un Modelo Polinomial (Grado 15)

Regresión con Kernels y RBFs

Escuela de Ciencias Aplicadas e Ingeniería

► El vector de características $\phi(\mathbf{x})$ se construye evaluando la similitud de x con varios puntos centrales μ_i :

$$\phi(\mathbf{x}) = [\kappa(\mathbf{x}, \mu_1, \gamma), \dots, \kappa(\mathbf{x}, \mu_d, \gamma)]$$

Una RBF común es el kernel Gaussiano:

$$\kappa(\mathbf{x}, \mu_j, \gamma) = \exp\left(-\frac{1}{\gamma}||\mathbf{x} - \mu_j||^2\right)$$

Construimos un modelo lineal sobre estas nuevas características:

$$\hat{y}(x) = \phi(\mathbf{x})^T \mathbf{w} = w_0 + \sum_{j=1}^d \kappa(\mathbf{x}, \mu_j, \gamma) w_j$$

Regresión RBF en 2 Dimensiones

Regresión con Kernels y RBFs

Escuela de Ciencias Aplicadas e Ingeniería

Efecto del parámetro de ancho del kernel (γ)

► El vector de características $\phi(\mathbf{x})$ se construye evaluando la similitud de x con varios puntos centrales μ_j :

$$\phi(\mathbf{x}) = [\kappa(\mathbf{x}, \mu_1, \gamma), \dots, \kappa(\mathbf{x}, \mu_d, \gamma)]$$

Una RBF común es el kernel Gaussiano:

$$\kappa(\mathbf{x}, \mu_j, \gamma) = \exp\left(-\frac{1}{\gamma}||\mathbf{x} - \mu_j||^2\right)$$

Construimos un modelo lineal sobre estas nuevas características:

$$\hat{y}(x) = \phi(\mathbf{x})^T \mathbf{w} = w_0 + \sum_{j=1}^d \kappa(\mathbf{x}, \mu_j, \gamma) w_j$$

Sintonización de hiperparámetros

¿Cómo elegimos el coeficiente de regularización (λ), el ancho de los kernels (γ) o el grado del polinomio?

Hiperparámetros

- No se aprenden de los datos durante el entrenamiento.
- Son configuraciones del modelo que debemos elegir antes de entrenar.
- Controlan directamente el balance sesgo-varianza.

- Entrenamiento (Train): Para ajustar los parámetros del modelo (w).
- Validación (Validation): Para evaluar y elegir los mejores hiperparámetros.
- Prueba (Test): Para medir el rendimiento final del modelo elegido (se usa una sola vez).

Sintonización de hiperparámetros

	bad_weather	is_rush_hour	mile_distance	urban_address	late
0	0.0	1.0	5.00	1.0	0.0
1	1.0	0.0	7.00	0.0	1.0
2	0.0	1.0	2.00	1.0	0.0
3	1.0	1.0	4.20	1.0	0.0
4	0.0	0.0	7.80	0.0	1.0
5	1.0	0.0	3.90	1.0	0.0
6	0.0	1.0	4.00	1.0	0.0
7	1.0	1.0	2.00	0.0	0.0
8	0.0	0.0	3.50	0.0	1.0
9	1.0	0.0	2.60	1.0	0.0
10	0.0	0.0	4.10	0.0	1.0

Generalmente se "barajan" los datos antes de hacer las particiones para evitar sesgos en los datos resultantes

Sintonización de hiperparámetros

Average or combine validation performance metrics

K-fold cross-validation: Es una técnica de validación para ver que tan bien generaliza un modelo a un conjunto de validación independiente.

Se utilizan **K muestras reservadas** para validar el modelo, cada vez entrenando con las muestras restantes:

- Dividir el conjunto de entrenamiento en K grupos (folds).
- Repetir K veces el siguiente procedimiento:
- Reservar el Kth fold para validación
- Entrenar el modelo en los folds restantes
- Calcular el desempeño en el fold de validación
- Combinar la métrica de rendimiento calculada