

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Архитектурно-строительный институт

(наименование института полностью)

Центр архитектурных, конструктивных решений и организации строительства

ОТЧЕТ УЧЕБНОЙ (ИЗЫСКАТЕЛЬСКОЙ) ПРАКТИКИ

(наименование практики)

ОБУЧАЮЩЕГОСЯ

(И.О. Фамилия)

направление подготовки (специальность): **Промышленное** и гражданское строительство

ГРУППА:	
РУКОВОДИТЕЛЬ	
ПРАКТИКИ:	
(И.О. Фамилия)

ДАТА СДАЧИ ОТЧЕТА

Руководитель практики от организации (предприятия, учреждения, сообщества)

(фамилия, имя, отчество, должность)

Содержание

Введение		3
1. Проверяемое задание 1		4
2. Проверяемое задание 2		8
3. Проверяемое		задание
3	10	
4. Проверяемое		задание
4	19	
Заключение		28
Список используемых источников	• • • • • • • • • • • • • • • • • • • •	29
Припожения		31

Введение

Строительный бизнес один из самых энергично развивающихся отраслей современной промышленности. Несмотря на спад в мировой экономике, строительство показывает рост объемов производства. Но в тоже время эта отрасль является одной из самых рисковых видов деятельности. Так как является трудоемкой, энергоемкой и требует значительных финансовых затрат на начальном этапе. Так же одним из факторов риска является, то, что компании, занимающиеся строительством, очень сильно зависят от погодных и климатических условий, что тоже очень сильно влияет на себестоимость продукции.

Сложно переоценить значимость учебной практики для формирования специалиста.

Целью учебной (изыскательной) практики является закрепление и углубление теоретических знаний, который были приобретены в результате изучения теоретического курса «Геодезия», а также приобретение практических навыков по геодезическому делу.

же практика позволяет студенту получить представление о деятельности конкретного предприятия, его организационной структуре, выпускаемой ассортименте продукции, применяемых технологиях, познакомиться с коллективом предприятия, получить навыки деловой Окунутся будни строительной коммуникации. компании, изучить повседневный труд от простого рабочего до мастера участка.

Инструктаж с обучающимся по ознакомлению с требованиями охраны труда, техники безопасности, пожарной безопасности, а также правилами внутреннего трудового распорядка проведен.

Практика проходила в ООО «Импульс».

Проверяемое задание 1

Задача 1.1.

Тема «Линейные измерения»

Вычислите уклон линии AB, если отсчет по задней рейке в точке A: a = 1775 мм, отсчет по передней рейке в точке B: b = 2485 мм и горизонтальное проложение линии AB = L = 152,65 м.

Решение:

Определим уклон линии АВ по формуле:

$$i = \frac{h}{L}$$

где h – превышение задней точки над передней, м;

$$h = 2,485-1,775 = 0,71 \text{ M}$$

$$i_{AB} = \frac{0.71}{152.65} = 2,474$$

Задача 1.2.

Тема «Решение прямой геодезической задачи»

Задача 1.2. Вычислите координаты точки 2 (X_2 , Y_2), если даны координаты точки 1: $X_1 = -200,15$ м, $Y_1 = 180,45$ м; расстояние между точками $L_{1-2} = 152,65$ м и дирекционный угол линии 1-2 $\alpha_{1-2} = 179^{\circ}55'$.

Решение:

Вычисляем приращения координат ΔX и ΔY по формулам:

$$\Delta X = L * \cos \cos \alpha$$

 $\Delta Y = L * \sin \sin \alpha$

где L- горизонтальное проложение стороны хода, м;

 α - дирекционный углы строны теодолитного хода.

Знаки приращений определяем по знакам $\cos\cos\alpha$ и $\sin\sin\alpha$.

$$\Delta X_{1-2} = 152,65 * \cos \cos 179^{\circ}55' = -152,62 \text{M}$$

 $\Delta Y_{1-2} = 152,65 * \sin \sin 179^{\circ}55 = 2,67 \text{M}$

Вычисляем координаты точки 2 по формулам:

$$X_2 = -200,15 - 152,62 = -352,77$$
 $Y_2 = +180,45 + 2,67 = 183,12$ M

Задача 1.3.

Тема «Геодезические разбивочные работы»

Вынести на местность заданный проектный отрезок $d_{\rm np}=152,65$ м. Принять угол наклона линии на местности $v=15^{\rm o}15'$ при номинальной длине прибора $l_{\rm o}=20$ м, рабочей длине l=19,986 м. Температура воздуха (мерной ленты) при измерениях $t_{\rm изм.}=+8$ и при компарировании $t_{\rm ком.}=+12$.

Решение:

Значение длины линии на местности Д будет отличаться от горизонтального проложения линии d, взятого с проекта, на сумму поправок за наклон Δd_v за компарирование Δd_k и за температуру мерного прибора Δd_t :

$$\Delta d_v = 2 * 152,65 * sin^2 \left(\frac{15^\circ 15^\circ}{2}\right) = 1,687 \text{м}$$

$$\Delta d_{\kappa} = \frac{152,65}{19,986} (19,986 - 20,000) = -0,107$$

$$\Delta d_t = 0,0000125 * 152,65(8 - 12) = -0,0076 \text{ M}$$

$$Д = 152,65 + 1,687 - 0,107 - 0,0076 = 154,22 \text{ M}$$

От опорной точки в заданном (отложенном) направлении несколько раз откладывают преобразованную проектную длину линии Д и при допустимом расхождении закрепляют среднее положение конечной точки.

Задача 1.4.

Определите линейную, угловую и относительную величину крена высотного сооружения башенного типа (H = 50,5 м) методом теодолитного проектирования в двух взаимно перпендикулярных плоскостях. Результаты проектирования: $l_1 = 7,8$ см; $l_2 = 9,5$ см

Решение:

Рисунок 1 — Схема определения крена сооружения методом теодолитного проектирования в двух взаимно перпендикулярных плоскостях

Крен сооружения может быть выражен в линейной, угловой и относительной мере.

Под линейной величиной абсолютного крена *е* понимается отрезок между проекциями на горизонтальную плоскость цента подошвы фундамента и положения центра верхнего сечения сооружения (отрезок Он-О'в на рисунке 1):

$$e = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{0.078^2 + 0.095^2} = 0.123$$
 м

Угол наклона сооружения γ относительно отвесной линии вычисляется по формуле:

$$\gamma = arctg \frac{e}{h} = arctg \frac{0,123}{50.5} = 0^{\circ}08'22''$$

Угловую величину крена α вычислим по формуле:

$$\alpha = arctg \frac{\Delta y}{\Delta x} = arctg \frac{0.095}{0.078} = 50^{\circ}36,7'$$

Относительным креном называют отношение абсолютного крена сооружения к высоте сооружения:

$$i = \frac{e}{h} = \frac{0,123}{50,5} = \frac{1}{50,5:0,123} = \frac{1}{411} < \frac{1}{200}$$

СНиП нормируют относительный крен сооружений, так при высоте сооружения башенного типа до 100 м предельно допустимое значение относительно крена (0,005=1/200), это значит, что крен здания в задании в пределах нормы.

Проверяемое задание 2

1. Что называется масштабом. Какие бывают масштабы. Понятия о численных масштабах, расшифровка их. Что такое точность масштаба, как определить точность любого масштаба.

Масштаб карты – это отношение длины линии на карте к её длине на поверхности.

Изображения на карте имеют различные по величине искажения, поэтому масштаб карты бывает неодинаковым.

Численный масштаб – это масштаб, который выражен в виде простой дроби.

Численный масштаб подписывают на планах, картах или профилях в их нижней части.

Для определения количества метров на местности в одном сантиметре плана, требуется у знаменателя численного масштаба отбросить два последних нуля.

Крупные масштабы: 1:500, 1:1000, 1:2000, 1:5000; к средним - 1:10 000, 1:25 000, 1:50 000,

Мелкие масштабы: 1: 00 000, 1:200 000, 1:500 000, 1:1 000 000 и мельче.

Основание масштаба — это линейный масштаб, который представляет собой график в виде отрезка прямой горизонтальной линии, на которой последовательно отложены равные отрезки.

Нормальный масштаб – это линейный масштаб, при котором основание масштаба равно 2 см.

2. Чем руководствуются при проведении проектной линии. Как вычисляются проектные и рабочие отметки.

Проектная линия — это линия, которая показывает расположение продольной оси относительно поверхности Земли.

На продольный профиль можно наносить проектную линию по секущей и по обертывающей.

Проектирование по обертывающей чаще всего применяется в равнинной и слабопересеченной местности и заключается в том, что проектную линию наносят, следуя основным изгибам поверхности земли, с соблюдением рекомендуемых рабочих отметок и уклонов не выше максимально допустимой для дороги данной категории.

В условиях холмистого, сильно пересеченного рельефа проектная линия наносится по секущей с примерным балансом земли для смежных участков насыпей и выемок. Для обеспечения водоотвода проектную линию в выемке наносят с уклоном не менее 5 %о. При этом следует избегать мелких выемок большой протяженности.

Такие выемки обычно сырые и снегозаносимые. Нужно избегать резких переломов профиля от одних уклонов к другим, а также применение кривых малого радиуса между длинными прямыми и коротких прямых вставок между смежными кривыми большого протяжения, применения кривых малых радиусов в конце затяжных спусков.

При нанесении проектной линии применяем метод тангенсов, при котором проектную линию наносим сопрягающимися прямыми участками с последующим вписыванием в их переломы вертикальных кривых.

Проверяемое задание 3

Задание:

Постройте план теодолитной съемки в масштабе 1:1000 по вычисленным координатам точек и нанесите ситуацию.

Исходные данные (13 вариант):

- дирекционный угол начальной линии 1-2 α_{1-2} =295°22′;
- координаты точки 1 X_1 =275,00м, Y_1 =275,00м;
- абрис съемки (рисунок 2);
- журнал измеренных углов и длин сторон хода (таблица 1).

Рисунок 2 – Абрис теодолитной съемки Таблица 1

Журнал измерения горизонтальных углов и сторон теодолитного хода

№ вершин	Среднее значение измеренных горизонтальных углов β	Горизонтальное проложение линий S, м
	Замкнутый ход	
1	116°29,0′	130,32
2	104°22,7′	,
3	123°12,2′	128,48
4	·	132,55
	77°06,2′	89,81
5	225°50,6′	89,44
6	72°57,5′	149,16
	Диагональный ход	147,10
2	42°43,7′	
	·	91,41
7	245°46,7′	83,70
8	77°22,2′	05,70
5	164°41,1′	68,48
	,	

1. Вычислительная обработка замкнутого теодолитного хода

Выписываем из журнала теодолитной съемки в графу 2 ведомости вычисления прямоугольных координат замкнутого хода значения измеренных углов β. В графу 4 ведомости заносим значения дирекционного угла. В графу 5 ведомости выписываем из журнала измерения горизонтальных углов горизонтальные проложения сторон теодолитного хода.

Определяем угловую невязку замкнутого хода по следующей формуле:

$$f_{_{\beta}} = \sum \beta_{_{{\tt MSM}}} - \sum \beta_{_{{\tt Teop}}}$$

где $\sum \beta_{_{\text{ИЗМ}}}$ - сумма измеренных внутренних углов;

 $\sum eta_{
m Teop}$ - теоретическая сумма внутренних углов замкнутого теодолитного хода, определяемая по формуле:

$$\sum \beta_{\text{Teop}} = 180^{\circ} * (n - 2)$$

n - число углов теодолитного хода.

Находим $\sum \beta_{_{\text{ИЗМ}}} = 719^{\circ}58, 2'$

$$\sum \beta_{\text{reop}} = 180^{\circ} * (6 - 2) = 720^{\circ}00'$$

$$f_{\beta} = 719^{\circ}58, 2' - 720^{\circ}00' = -0^{\circ}01, 8'$$

Вычисленную угловую невязку сравниваем с допустимой невязкой $f_{\rm ggon}, \, {\rm вычисляемой} \,\, {\rm пo} \,\, {\rm формулe} :$

$$f_{\rm ggon} = \pm 2m_{\rm g} \cdot \sqrt{n} = \pm 2.0,5'*\sqrt{6} = \pm 2,4'$$

Так как угловая невязка допустима, т.е. $f_{\beta} = 01, 8' < f_{\beta \text{доп}} = 02, 4'$, мы ее распределим в виде поправки с обратным знаком в измеренные углы с дробными частями, округляя их до целых минут.

По исходному дирекционному углу и исправленным углам $\beta_{\text{исп}}$ вычислим дирекционные углы сторон замкнутого хода по формуле:

$$a_{n+1} = a_n + 180^{\circ} - \beta_{n, n+1 \text{ исп}}$$

где : a_{n+1} - дирекционный угол последующей стороны;

 a_n - дирекционный угол предыдущей стороны;

 $\beta_{n,\ n+1\ \text{исп}}$ - увязанный, вправо по ходу лежащий угол между предыдущей и последующей сторонами.

$$a_{2-3} = a_{1-2} + 180^{\circ} - \beta_2 = 295^{\circ}22' + 180^{\circ} - 104^{\circ}23' - 360^{\circ} = 10^{\circ}59'$$

Делаем контроль вычислений дирекционных углов. В замкнутом ходе контролем вычислений является получение исходного дирекционного угла через дирекционный угол стороны, предшествующей начальной (6-1):

$$a_{1-2} = 231^{\circ}51, 3' + 180^{\circ} - 116^{\circ}29, 3' = 295^{\circ}22'$$

Знаки приращений определяем по знакам $\cos \cos \alpha$ и $\sin \sin \alpha$.

$$\Delta X_{1-2} = 130,32 * \cos \cos 295^{\circ}22' = + 55,83 \text{M}$$

 $\Delta Y_{1-2} = 130,32 * \sin \sin 295^{\circ}22' = - 117,76 \text{M}$

Определяем невязки f_x и f_y в приращениях координат по осям X и Y, пользуясь формулами:

$$f_{x} = + 0,28$$
M

$$f_y = + 0,11$$
_M

Находим абсолютную линейную невязку в периметре теодолитного хода по формуле:

$$f_{\text{a6c}} = \sqrt{f_x^2 + f_y^2} = \sqrt{0,28^2 + 0,11^2} = 0,30 \text{M}$$

Устанавливаем допустимость невязки $f_{\rm a6c}$. Для этого вычисляем относительную невязку в периметре и сравниваем ее с допустимой относительной невязкой, составляющей $\frac{1}{2000}$ доли периметра.

$$f_{\text{OTH}} = \frac{f_{\text{a6c}}}{P} = \frac{0,30}{719,76} = \frac{1}{719,76:0,30} \approx \frac{1}{2399} < \frac{1}{2000}$$

Так как относительная невязка допустима — можем вводить поправки в вычисленные приращения.

Сумма поправок должна равняться невязке с обратным знаком.

$$\theta_{X\,1-2} = -\,\frac{0.28}{719.76}\,130$$
, $32\,=-\,0$, $05\,\mathrm{m}$; $\theta_{Y\,1-2} = -\,\frac{0.11}{719.76}\,130$, $32\,=-\,0$, $02\,\mathrm{m}$

Складывая алгебраически величины вычисленных приращений с их поправками, находим исправленные приращения:

$$\Delta X_{1-2\mu\text{cm}} = +55,83 - 0,05 = +55,78\text{M}$$

 $\Delta Y_{1-2\mu\text{cm}} = -117,76 - 0,02 = -117,78\text{M}$

Вычисляем координаты вершин основного замкнутого хода по формулам:

$$X_2 = X_1 + \Delta X_{1-2\mu\text{cm}} = 275,00 + 55,78 = 330,78\text{m}$$

$$Y_2 = Y_1 + \Delta Y_{1-2\mu\text{CH}} = 275,00 - 117,78 = 157,22\text{M}$$

Для контроля вычисляем через координаты точки 6 координаты исходной точки:

$$X_1 = X_6 + \Delta X_{6-1$$
исп = 367, 20 - 92, 20 = 275, 00м
 $Y_1 = Y_6 + \Delta Y_{6-1$ исп = 392, 34 - 117, 34 = 275, 00м

2. Вычислительная обработка диагонального хода теодолитного хода. Угловую невязку разомкнутого хода находим по формуле:

$$\sum \beta_{\text{reop}} = 295^{\circ}22' - 124^{\circ}49, 1' + 180^{\circ} * 4 = 530^{\circ}32, 9'$$

$$\sum \beta_{_{\mathrm{H3M}}} = 42^{\circ}43,5^{'} + 245^{\circ}46,5^{'} + 77^{\circ}22^{'} + 164^{\circ}40,9^{'} = 530^{\circ}33,7^{'}$$

$$f_{_{\mathrm{B}}} = 530^{\circ}33,7^{'} - 530^{\circ}32,9^{'} = + 0^{\circ}00,8^{'}$$

Допустимую угловую невязку в диагональном ходе вычисляем по формуле:

$$f_{\rm ggon} = \pm \ 2m_{\rm g} \bullet \sqrt{n} = 2 \bullet 0,5' \bullet \sqrt{4} = \pm \ 02'$$

Так как угловая невязка находится в допуске, т.е. $f_{\beta}=00,8'< f_{\beta \text{доп}}=02'$, мы ее распределяем в виде поправки с обратным знаком в измеренные углы с десятыми долями минут, округляя их до целых значений.

$$a_{2-7}=a_{1-2}+180^\circ-\beta_{\text{исп2}}=295^\circ22'+180^\circ-42^\circ43$$
, 5' = 72°38, 5' Контролем является получение дирекционного угла α_{κ} .

$$a_{5-6} = a_{8-5} + 180^{\circ} - \beta_{\text{\tiny MCNS}} = 109^{\circ}30' + 180^{\circ} - 164^{\circ}40, 9' = 124^{\circ}49, 1'$$

Выписываем в ведомость координаты начальной $(X_{\scriptscriptstyle H},\,Y_{\scriptscriptstyle H})$ и конечной $(X_{\scriptscriptstyle K},\,Y_{\scriptscriptstyle K})$ точек диагонального хода.

$$X_H = X_2 = 330,78M$$
 $Y_H = Y_2 = 157,22M$ $X_K = X_5 = 418,30M$ $Y_K = Y_5 = 318,92M$

Вычисляем приращения координат ΔX и ΔY :

$$\Delta X_{2-7} = 91,41 * \cos \cos 72^{\circ}38,5' =+ 27,27 \text{M}$$

 $\Delta Y_{2-7} = 91,41 * \sin \sin 72^{\circ}38,5' =+ 87,25 \text{M}$

Невязки в приращения координат разомкнутого хода определим по формулам:

$$\sum \Delta X_{\text{BMY}} = +87,51 \text{M}$$

$$\sum \Delta Y_{_{\rm BMY}} = + 161,81$$
 м

$$\begin{split} &f_{_X} = +~87,51~-~(418,30~-~330,78) = +~87,51~-~87,52~= -~0,01\text{M} \\ &f_{_Y} = +~161,81~-~(318,92~-~157,22) = +~161,81~-~161,70~= +~0,11\text{M} \end{split}$$

Вычисляем линейную, а затем относительную невязку диагонального хода:

$$f_{\rm p} = \sqrt{f_{_X}^2 + f_{_Y}^2} = \sqrt{(-0,01)^2 + 0,11^2} = 0,11$$
m

Допустимая относительная невязка диагонального хода составляет $\frac{1}{2000}$ долю от суммы длин сторон.

$$\frac{f_{\rm P}}{P} = \frac{0.11}{243.56} = \frac{1}{243.56:0.11} \approx \frac{1}{2214} < \frac{1}{2000}$$

Поскольку относительная невязка допустима, то увязываем вычисленные приращения, вводя в них поправки.

$$\vartheta_{X\,2-7}=-\frac{-0.01}{243,56}$$
91, 41 =+ 0, 01м; $\vartheta_{Y\,2-7}=-\frac{0.11}{243,56}$ 91, 41 =- 0, 04м Находим исправленные приращения:

$$\Delta X_{2-7\text{\tiny MC\Pi}} = \Delta X_{2-7\text{\tiny Bbl}4} + \vartheta_{X\,2-7} = + \,\,27,27\,+\,\,0,01\,= +\,\,27,28\text{M}$$

$$\Delta Y_{2-7\text{\tiny MC\Pi}} = \Delta Y_{2-7\text{\tiny Bbl}4} + \vartheta_{Y\,2-7} = +\,\,87,25\,-\,\,0,04\,= +\,\,87,21\text{M}$$

Вычисляем координаты вершин разомкнутого хода:

$$X_7 = X_2 + \Delta X_{2-7 \text{HCII}} = 330,78 + 27,28 = 358,06 \text{M}$$

 $Y_7 = Y_2 + \Delta Y_{2-7 \text{HCII}} = 157,22 + 87,21 = 244,43 \text{M}$

Вычисления контролируемся по координатам (X_{κ}, Y_{κ}) конечной точки диагонального хода.

$$X_5 = X_8 + \Delta X_{8-5$$
исп = 441, 16 - 22, 86 = 418, 30м
 $Y_5 = Y_8 + \Delta Y_{8-5$ исп = 254, 40 + 64, 52 = 318, 92м

По итогам вычислений и абрисам составляем план теодолитной съемки (Приложение A).

Таблица 2 - Ведомость вычисления координат замкнутого теодолитного хода

№ Be	Внутренние угль					екц		умб		я коорді Длина горизон		141 541		Грира			40)31¥11		Коорд		
рш ин по		иере вые		авле		пыс	СТ	горс	Н	тальног о	E	вычисл	eı	ные	И	е е	те	нны		Коорд	аты	
ли го на	0	,	0	,	0	,	На 3в.	0	,	пролож ения, м	±	ΔΧ	±	ΔΥ	±	ΔΧ	土	ΔΥ	±	ΔΧ	±	ΔΥ
		0,'3																				
1	11 6	29, 0	116	29,3								-0,05		-0,0 2					+	275,0 0	+	275,0 0
		0,'3			295	22	C3	64	38	130,32	+	55,83	ı	117, 76	+	55,78	ı	117, 78				
2	10 4	22, 7	104	23								-0,05		-0,0 2						330,7 8	+	157,2 2
		0,'3			10	59	C B	10	59	128,48	+	126,1 3	+	24,4	+	126,0 8	+	24,4 6				
3	12 3	12, 2	123	12,5								-0,05		-0,0 2					+	456,8 6	+	181,6 8
		0,'3			67	46, 5	C B	67	46 ,5	132,55	+	50,14	+	122, 70	+	50,09	+	122, 68				
4	77	06, 2	77	06,5								-0,03		-0,0 1						506,9 5	+	304,3
		0,'3			170	40	Ю В	9	20	89,81	-	88,62	+	14,5 7	-	88,65	+	14,5 6				
5	22 5	50, 6	225	50,9								-0,03		-0,0 1					+	418,3 0	+	318,9
		0,'3			124	49, 1	Ю В	55	10 ,9	89,44	-	51,07	+	3	-	51,10	+	73,4 2				
6	72	57, 5	72	57,8								-0,07		-0,0 3						367,2 0	+	392,3
					231	51, 3	Ю 3	51	51 ,3	149,16	-	92,13	-	117, 31	-	92,20	-	117, 34				
1																			+	275,0 0	+	275,0
\sum_{i}	$eta_{\scriptscriptstyle{\mathit{U}^{3M}}}$	=71			295	22																
$\sum \beta_m = 180^{\circ}(n-2) = 1$																						
f_{β}	$f_{\beta} = \sum \beta_{u_{3M}} - \sum \beta_{me}$									$\sum P = 7$	j	+0,2	J	+0,1	 ز	$f_{\Delta x} = 0$	j	$f_{\Delta y} =$				
-1',8										Ш												

1. Допустимая невязка в углах

$$f_{\text{βдоп}} = \pm 2m_{\text{β}} \cdot \sqrt{n} = \pm 2.0, '5 * \sqrt{6} = \pm 2, 4'$$

2. Абсолютная невязка в периметре

$$f_p = \sqrt{f_{\Delta X}^2 + f_{\Delta Y}^2} = \sqrt{0,28^2 + 0,11^2} = 0,30$$
 м

3. Относительная невязка в периметре

$$\frac{1}{N} = \frac{f_P}{\Sigma P} = \frac{0.30}{719.76} = \frac{1}{4719.76:0.30} \approx \frac{1}{2399}$$

4. Допустимая невязка в периметре

$$\frac{1}{N} = \frac{1}{2000}$$

Таблица 3 - Ведомость вычисления координат диагонального теодолитного хода

№ верш	Bı	нутрен	ние уг.	ЛЫ		кционн		бы сто		Длина горизонталь		, ,		Прира				, ,	- Координаты				
ин полиг	измер	енные	1 -	вленн ie	ые	углы			· P ·	ного проложения,		вычисл	тенн	ые		исправ.	пені	ные		тоординаты			
она	0	•	0	'	0	'	Назв.	0	,	M	±	ΔΧ	±	ΔΥ	±	ΔΧ	±	ΔΥ	土	ΔΧ	±	ΔΥ	
		-0,'2			295	22																	
2	42	43,7	42	43,5								+0,01		-0,04					+	330,78	+	157,22	
	2.45	-0,'2	245	16.5	72	38,5	СВ	72	38,5	91,41	+	27,27	+	87,25	+	27,28	+	87,21		250.06		244.42	
7	245	46.7 -0,'2	245	46,5	6	52	СВ	6	52	83,70	+	83,10	+	-0,04 10,01	+	83,10	+	9,97	+	358,06	+	244,43	
8	77	22,2	77	22	0	32	СВ	0	32	83,70	-	83,10	'	-0,03		83,10	'	9,91	+	441,16	+	254,40	
	, ,	-0,'2	, ,		109	30	ЮВ	70	30	68,48	-	22,86	+	64,55	-	22,86	+	64,52		111,10		201,10	
5	164	41,1	164	40,9						·		· ·		·		,		,	+	418,30	+	318,92	
					124	49,1																	
6																							
$\sum \beta_{u3}$	=530	0°33,'7																					
$\sum \beta_m$	$=530^{\circ}$	°32,'9																					
$f_{\beta} = \sum_{i=1}^{n} f_{i}$	$\sum eta_{\scriptscriptstyle \mathit{u}\scriptscriptstyle 3M}$	$-\sum \beta_i$	meop =0	000,′8						$\sum P = 243,56$	$f_{\Delta x}$	-0,01	$f_{\Delta y}$	+0,11	f	$f_{\Delta x} = 0 \qquad f_{\Delta y} = 0$							

1. Допустимая невязка в углах

$$f_{\rm \beta доп} = \pm 2 m_{
m eta} \cdot \sqrt{n} = \pm 2 \cdot 0$$
, '5 * $\sqrt{4} = \pm 2$ '

2. Абсолютная невязка в периметре

$$f_{\beta \text{доп}} = \pm 2m_{\beta} \cdot \sqrt{n} = \pm 2 \cdot 0, '5 * \sqrt{4} = \pm 2'$$

$$f_{P} = \sqrt{f_{\Delta X}^{2} + f_{\Delta Y}^{2}} = \sqrt{(-0,01)^{2} + 0,11^{2}} = 0,11 \text{M}$$

3. Относительная невязка в периметре
$$\frac{1}{N} = \frac{f_p}{\Sigma P} = \frac{0.11}{243,56} = \frac{1}{243,56:0,11} \approx \frac{1}{2214}$$

4. Допустимая невязка в периметре

$$\frac{1}{N} = \frac{1}{2000}$$

Проверяемое задание 4

Задание

Постройте продольный профиль трубопровода по исходным данным.

Решение:

Результаты полевых измерений приведены в журнале технического нивелирования трассы (таблица 4)

Длина трассы L=0,5 км с одним поперечником.

Пикетажный журнал (рисунок 4).

Угол поворота трассы $\theta_{\text{правый}} = 82^{\circ}52'$

Радиус поворота кривой R=900м;

Вершина угла поворота ВУ – ПКЗ+30м.

Дирекционный угол начального прямолинейного участка трассы: 98°30′

Высотные отметки исходных реперов:

$$H_{P_{\Pi} 1500} = 77,125 M.$$

$$H_{P_{\Pi} \, 1650} = H_{P_{\Pi} \, 1} - 2$$
, $120 M = 77$, $125 - 2$, $120 = 75$, $005 M$.

Данные для нанесения на продольный профиль проектной линии:

- глубина промерзания грунта 2,3 метра;
- диаметр и материал труб: 400 мм, керамические;
- основание песок;
- на участке от ПК0 до ПК2 уклон проектной линии $i_1 = -0.010$,
- на участке от ПК2 до ПК3 уклон $i_2 = -0.031$,
- на участке от ПК3 до ПК5 уклон $i_3 = 0.013$.

Проектирование на поперечном профиле не производится.

Рисунок 3 – Пикетажный журнал трассы

Вычисление элементов круговой кривой производим по формулам:

$$T = R \cdot tg \frac{\theta}{2}$$

$$K = \pi R \frac{\theta}{180^{\circ}}$$

$$E = R \cdot (1 - \cos \cos \theta/2) / \cos \cos \theta/2$$

$$A = 2T - K$$

где Т - тангенс круговой кривой (расстояние от НК или КК до ВУ), м;

R — радиус круговой кривой, м;

 θ - угол поворота кривой;

К - кривая (расстояние от НК до КК вдоль кривой), м;

Б – биссектриса (расстояние от ВУ до СК), м;

Д - домер (укорочение трассы за счет кривой), м.

$$T = 900 \cdot tg \frac{82^{\circ}52'}{2} = 794,39 \text{м}$$

$$K = 3,14 \cdot 900 \frac{82^{\circ}52'}{180^{\circ}} = 1301,01 \text{м}$$

$$E = 900 \cdot \left(1 - \cos\cos\frac{82^{\circ}52'}{2}\right) / \cos\cos\frac{82^{\circ}52'}{2} = 300,44 \text{м}$$

$$A = 2 \cdot 794,39 - 1301,01 = 287,77 \text{м}$$

Дальнейшие расчеты показали, что при радиусе кривой 900м не удается разбить пикетаж главных точек кривой, поскольку длина трассы всего 500м. Путем подбора принимаем проектный радиус R=100м и рассчитываем элементы кривой:

$$T = 100 \cdot tg \frac{82^{\circ}52'}{2} = 88,27 \text{м}$$

$$K = 3,14 \cdot 100 \frac{82^{\circ}52'}{180^{\circ}} = 144,56 \text{м}$$

$$E = 100 \cdot \left(1 - \cos \cos \frac{82^{\circ}52'}{2}\right) / \cos \cos \frac{82^{\circ}52'}{2} = 33,38 \text{м}$$

$$A = 2 \cdot 88,27 - 144,56 = 31,98 \text{м}$$

Пикетажное значение главных точек кривой вычисляем по формулам:

$$\Pi$$
КНК = Π КВУ - Π КТ ;
 Π ККК = Π КНК + Π КК
 Π КСК = Π КНК + $0,5$ К

Контроль:

ПКВУ + ПКТ =
$$\Sigma$$
; $\Sigma - \Pi$ КД = ПККК,

Следуя пикетажному журналу ПКВУ = ПК3+30м.

Контроль:

$$\Pi$$
КВУ + T $Д$ $=$ Π ККК

 Π ККК = 330, 00 + 88, 27 - 31, 98 = 386, 29 = Π КЗ + 86, 29м Вычисляем длины прямых вставок следующим образом:

- длина первой вставки равна расстоянию от начала трассы HT (ПК0) до начала кривой HK:

$$P_{1} = \Pi K H K = 241,73 M$$

- длина второй прямой вставки равна разности пикетажного значения конца трассы КТ (ПК5) и конца кривой КК:

$$2 = \Pi K KT - \Pi K KK = 500 - 386, 29 = 113,71 M$$

Вычислим дирекционный угол прямоуго участка КК-ПК5 после правого угла поворота:

$$\alpha_{KK-\Pi K5} = \alpha_{HT-HK} + \theta = 98^{\circ}30^{'} + 82^{\circ}52' = 181^{\circ}22'$$

Обработка журнала нивелирования трассы

Обработку журнала нивелирования производим в следующем порядке.

1. Для каждой станции вычисляем превышения между связующими точками по черной и красной сторонам реек:

$$h_{\mathbf{q}} = a_{\mathbf{q}} - b_{\mathbf{q}}$$
$$h_{\mathbf{K}} = a_{\mathbf{K}} - b_{\mathbf{K}}$$

где $h_{_{\mathrm{Y}}}$ и $h_{_{\mathrm{K}}}$ - превышения, полученные по черной и красной сторонам реек соответственно;

 $a_{
m q}, a_{
m K}, b_{
m q}, b_{
m K}$ - соответственно задние и передние отсчеты по черным и красным сторонам реек.

$$h_{\mathrm{H\ Phi1500-HK0}} = 1483 - 1583 = -100$$
мм $h_{\mathrm{K\ Phi1500-HK0}} = 6166 - 6270 = -104$ мм

2. Если расхождения между $h_{_{\mathrm{Y}}}$ и $h_{_{\mathrm{K}}}$ не более 5 мм, что допускается при техническом нивелировании, из полученных величин выводятся средние превышения:

$$h_{
m cp} = rac{h_{
m q} + h_{
m K}}{2}$$
 $h_{
m q \ P\pi 8-\Pi K0} = rac{(-100) + (-104)}{2} = - \ 102$ мм

3. Не переходя на следующую страницу, необходимо выполнить проверку вычислений – постраничный контроль. Для этого необходимо найти:

 $\Sigma 3$ – сумму задних отсчетов;

 $\Sigma\Pi$ – сумму передних отсчетов;

 $\Sigma h_{_{
m BЫЧ}}$ – алгебраическую сумму вычисленных превышений;

 $\Sigma h_{
m cp}$ - алгебраическую сумму средних превышений.

Должно выполняется равенство:

$$\frac{\sum a - \sum b}{2} = \frac{\sum h_{\text{выч}}}{2} = \sum h_{\text{ср}}$$

$$\frac{\sum a - \sum b}{2} = \frac{35203 - 43212}{2} = \frac{-8009}{2} = -4004,5 \text{мм}$$

$$\frac{\sum h_{\text{выч}}}{2} = \frac{-8009}{2} = -4004,5 \text{мм}$$

$$\sum h_{\text{ср}} = -4005 \text{мм}$$

Разница между значениями на 1-2 мм возможна из-за округлений дробных значений $h_{_{\rm CD}}$ до целых миллиметров.

Аналогичные вычисления по каждой странице суммируем и общие результаты записываем в конце журнала в соответствующих графах.

4. Для уравнивания нивелирного хода, проложенного между Рп1500 и Рп1650, определяем невязку хода по формуле:

$$f_h = \sum h_{cp} - (H_{P\pi 1650} - H_{P\pi 1500})$$

где $\sum h_{\rm cp}$ — алгебраическая сумма средних превышений всего нивелирного хода;

 $H_{P_{\Pi}1650}$ и $H_{P_{\Pi}1500}$ — высотные отметки реперов.

$$f_h = -2,108 - (75,005 - 77,125) = -2,108 - (-2,120) = +0,012$$
 M

Полученную невязку сравниваем с допустимой, которая при техническом нивелировании определяется по формуле:

$$f_{h\text{доп}}=\pm 50\sqrt{L}$$
, мм

где L - количество километров в ходе.

$$f_{h_{\Pi \text{O}\Pi}} = \pm 50\sqrt{0.5} = \pm 35.36 \text{MM}$$

Поскольку $\boldsymbol{f}_h < \boldsymbol{f}_{h\text{доп}}$, то полученную невязку распределяем пропорционально количеству станций, т.е. поровну на все станции.

Поправку, вводимую в средние превышения рассчитываем по формуле:

$$\delta_h = \frac{-f_h}{n}$$

где *n*- число средних превышений.

$$\delta_h = \frac{-12}{8} = -1,5$$
 мм

Поскольку невязка не делится поровну на количество станций, то в первые четыре средние превышения мы введем поправку (-2мм), а в остальные по (-1мм). Поправки подписываем над средним превышением.

5. Отметки передних точек вычисляем по формуле:

$$H_{n+1} = H_n + h_{\text{испр } n}$$

где H_{n+1} - отметка передней точки;

 H_{n} - отметка задней точки;

 $h_{\text{испр }n}$ - исправленное превышение;

$$H_{\Pi K0} = 77,125 + (-0,104) = 77,021 M$$

6. Чтобы определить отметки промежуточных точек на всех станциях, где есть такие точки, вычисляем горизонт инструмента:

$$\begin{split} \Gamma \mathrm{H} &= H_{_{i}} + a_{_{\mathrm{Y}i}} \\ \Gamma \mathrm{H} &= H_{_{i+1}} + b_{_{\mathrm{Y}i+1}} \\ \Gamma \mathrm{H}_{_{3\mathrm{CT}\,1}} &= 76,115\,+\,0,987\,=\,77,102\mathrm{M} \\ \Gamma \mathrm{H}_{_{3\mathrm{CT}\,2}} &= 74,701\,+\,2,400\,=\,77,101\mathrm{M} \\ \Gamma \mathrm{H}_{_{3\mathrm{CT}\,}} &= \frac{77,102+77,101}{2} =\,77,102\mathrm{M} \\ H_{_{i\,\,\mathrm{\Pi POM}}} &= \Gamma \mathrm{H}\,-\,\Pi_{_{\mathrm{\Pi POM}\,i}} \\ H_{_{\Pi \mathrm{K}2-\Pi+6}} &= 77,102\,-\,2,583\,=\,74,519\mathrm{M} \end{split}$$

	Вычисление элементов дорожных кривых													
No			УГЛЫ		ЭЛЕМЕНТ КРИВОЙ									
№ углов поворота трассы	В.У.	измеренны й горизонт.	поворот	а трассы	радиус	тангенс	кривая	домер	биссектриса					
		угол	право	лево										
1	ПК3+30.00		82° 52′		900 м	88,27	144,56	31,98	33,38					

	Расчет прямых и кривых дорожной трассы.													
		Прямые				Кривь	ie							
начало	конец	длина	дирекц. угол	румб	начало	конец	длина кривой	общая длина трассы						
ПКО	ПК2+41,73	241,73	98° 30 ′	ЮВ:81° 30′	ПК2+41,73	ПК3+ 86,29	144,56	500,00						
ПКЗ+86,29	ПК5	113,71	181°22′	Ю3: 1° 22 ′										

Журнал геометрического нивелирования трассы

No	Нивелируемые	Отс	четы по рейк	е, мм	Превыше	ние, мм	Превыше	ние ср,мм	Горизонт	Отметка
Станц.	точки	задняя	передняя	промеж.	+	-	+	-	инструмента,м	Н, м
	Рп.1500	1483				0100		-2		77,125
1		6166				0104		0102		
1 1	ПК0	4683	1583							77,125
			6270							
	ПК0	1305	4687			0905		-2		77,125
2		5991				0903		0904		
	ПК1	4685	2210							76,115
			6894							
	ПК1	0987	4682			1413		-2	77,102	76,115
		5672				1410		1412		
	ПК2	4685	2400						77,101	74,701
3			7082							
	ПК2-П+6		4682	2583					77,102	74,519
	ПК2-П+20			0296					77,102	76,805
	ПК2-Л+14			1830					77,102	75,272
	ПК2-Л+20			0537					77,102	76,565
	ПК2	0807				1609		-2		74,701
4		5490				1611		1610		
4	ПК2+44	4683	2416							73,089
			7101							
	ПК2+44	1309	4685		24		-1		74,398	73,089
5		5993			22		23			
	ПК3	4684	1285						74,396	73,111
			5971							

ПК2+70		4686	2891					74,397	71,506
ПК2+90			0929					74,397	73,468
П	35203	43212		46	8055	23	4028		
Постраничный	-8	3009		-80	09				
контроль	-40	004,5		-400	4,5	-4005			

№ станц	Нивелируемые	Отс	четы по рейн	ке, мм	Превыш	ение, мм	1 -	шение ее, мм	Горизонт	Отметка
ий	точки	задняя	передняя	промеж.	+	-	+	-	Горизонт инструмента, м	Н,м
	ПК3	2007			396		-1			73,111
		6689			396		396			
6	ПК4	4682	1611							73,506
			6293							•
	ПК4	2241	4682		1601		-1			73,506
7		6925			1601		1601			
/	ПК5	4684	0640							75,106
			5324							•
	ПК5	1416	4684			102		-1		75,106
		6102				98		100		
8	Рп.1650	4686	1518							75,005
			6200							
			4682							
	П	25380	21586		3994	200	1997	100		
	Постраничный	+3	3794		+3	794				
	контроль	+1	897		+1	897	+18	397		
	0.5 V	60583	64798		4040	8255	2020	4128		
	Общий	-4	215		-4	215				
	контроль	-2107,5			-21	07,5	-2108			

Расчет профиля проектной линии (отметки берутся ИЗ журнала геометрического нивелирования, округленные до двух знаков после запятой)

Начальную отметку проектной линии принимаем с таким учетом, чтобы по всей длине трассы лотка трубопровода глубина заложения была ниже глубины путем предварительных вычислений промерзания грунта, принимаем $H_{_{\Pi D}\,\Pi K0}=73,35$ м. Величины уклонов проектной линии и соответствующие им расстояния принимаем следующими: между ПК0 и ПК2 уклон i = (-0,010); между ПК2 и ПК3 уклон i = (-0.031); между ПК3 и ПК5 уклон i = (+0.013).

По заданным уклонам вычисляем отметки проектного профиля:

$$H_{\text{пр}\,n} = H_{\text{пр}\,n-1} + i \cdot d$$

где $H_{\text{пр},n}$ - проектная отметка для определяемой точки;

 $H_{\text{пр},n-1}$ - проектная отметка предыдущей точки;

i - проектный уклон со своим знаком;

d - расстояние между рассматриваемыми точками.

$$H_{\text{пр ПК1}} = 73,35 + (-0,010) \cdot 100 = 72,35 M$$

Наносим ось лотка трубопровода, соединив прямой линией отметки лотков колодцев.

На каждом пикете и плюсовой точке вычисляем рабочие отметки как разность между проектной и фактической отметками точки:

$$h_n = H_{\text{пр}\,n} - H_{\Phi\,n}$$

 $h_n = {\rm H}_{\rm пp\,\it n} - {\rm H}_{\rm \varphi\,\it n}$ где h_n – определяемая рабочая отметка в данной точке;

 $H_{\text{пр }n}$ - проектная отметка в данной точке;

 $H_{\phi n}^{}$ — фактическая отметка этой точкие.

$$h_{\Pi \text{K1}} = 72,35 - 76,12 = -3,77 \text{M}$$

По итогам вычислений составляем продольный продольный профиль (Приложение Б) и поперечный профиль (Приложение В).

Заключение

В процессе прохождения практики я смог участвовать в процессе выполнения работ, ознакомился с принципами организации геодезических работ, источниками обеспечения строительства материалами, изделиями, энергетическими ресурсам и т.д.

Данная практика является хорошим практическим опытом для дальнейшей самостоятельной деятельности.

Список использованных источников

- 1. Багратуни Г.В. Инженерная геодезия / Багратуни Г.В., Болгов И.Ф., Величко В.А. и др.; под общей ред. П.С. Закатова. М.: Недра, 1969. 399 с.
- 2. Багратуни Г.В. Инженерная геодезия: учебник для строительных специальностей вузов / Г.В. Багратуни, В.Н. Ганьшин, Б.Д. Данилевич. М.: Недра, 1984. 344 с.
- 3. Закатов, П.С. Инженерная геодезия / П.С. Закатов. М.: Недра, 1976. 582с.
- 4. Инженерная геодезия / Г. В. Багратуни, В. Н. Ганьшин, Б. Б. Данилевич и др. М.: Недра, 1984. 344 с.
- 5. Инженерная геодезия. Методические указания и контрольные задания для студентов-заочников строительных специальностей высших учебных заведений / Под редакцией проф. А. С. Кучко. М.: Высшая школа, 1987. 58с.
- 6. Инженерная геодезия / Под ред. П. С. Закатова. М.: Недра, 1976. 583с.
- 7. Клюшин, Е.Б. Инженерная геодезия / Е.Б. Клюшин [и др.]. М. : Academia, 2004. 479 с.
- 8. Грицкив Л. Н. Решение задач по карте : учеб.-метод. пособие по курсу "Инженерная геодезия" для строит. спец. / Л. Н. Грицкив, Т. Г. Мальцева; ТГУ ; Инженерно-строит. ин-т ; каф. "Пром. и граждан. стр-во". ТГУ. Тольятти : ТГУ, 2010. 46 с. : ил. Библиогр.: с. 43. Прил.: с. 44-45. 11-67
- 9. Кузьменко И.Н., Субботин И.Е. Инженерно-топографические условия при трассировании магистрального газопровода // Сб. «Инженерная геодезия». 1977. вып. 20. С. 22-30.
- 10. Мальцева Т. Г. Решение задач для различных этапов геодезического обеспечения строительства: практикум / Т. Г. Мальцева, Л.Н. Грицкив; ТГУ; Архитектурно-строит. ин-т ; каф. "Промышленное и гражданское строительство". ТГУ. Тольятти : ТГУ, 2013. 91 с. : ил. Библиогр.: с. 89.
- 11. Мальцева Т. Г. Решение задач для различных этапов геодезического обеспечения строительства: практикум / Т. Г. Мальцева, Л.Н. Грицкив; ТГУ;

- Архитектурно-строит. ин-т ; каф. "Промышленное и гражданское строительство". ТГУ. Тольятти : ТГУ, 2013. 91 с. : ил. Библиогр.: с. 89.
- 12.Пандул И.С. Геодезические работы при изысканиях и строительстве гидротехнических сооружений: Учебное пособие / Пандул И.С. Спб.: Политехника, 2008. 154 с.
- 13. Условные знаки для топографических планов масштабов 1:500, 1:1000, 1:2000, 1:5000 Роскартография. М.: ФГУП «Картгеоцентр», 2005. 239с
- 14. Федотов, Г.А. Инженерная геодезия / Г.А. Федотов. М. : Высшая школа, 2009.-463 с.
- 15.Хейфец, В.С. Практикум по инженерной геодезии / В.С. Хейфец, Б.Б. Данилевич. М. : Недра, 1979. 331 с.

Приложения

Приложение А

ПЛАН ТЕОДОЛИТНОЙ СЪЕМКИ

Выполнил: ст. гр. СТРбз-1501Д Мазурик М.М.

1:1000

Приложение Б

103: 1º22'

113,71

ПРОДОЛЬНЫЙ ПРОФИЛЬ ТРУБОПРОВОДА *80* _[78 76 K4 K2 3.77 *K3* 74 4,26 3.35 72 396 16. 4,86 70 68 66 64 *Условный* 62 горизонт 60м материал труб Ø 400мм, керамические и изоляции K2; план трассы 10 13 31 длина 200 100 200 72,35 70,85 66'69 81.69 68,56 69,55 71,35 проектные отметки 74,70 76,12 73,47 73,51 75,11 71,51 фактические отметки *3емли* 4,26 3,77 4,91 3,96 глубина заложения 26 20 10 расстояние пикетаж 1 2 3 4 5

Выполнил: ст. гр. СТРбэ–1501Д Мазурик М.М.

план прямых

и кривых

Масштабы: Горизонтальный 1:2000 Вертикальный 1:200

IOB: 81º30'

241,73

Приложение В ПОПЕРЕЧНЫЙ ПРОФИЛЬ НА ПК2

Масштабы:

Горизонтальный 1:200 Вертикальный 1:200

Выполнил: ст. гр. СТРбз–1501Д Мазурик М.М.