Math 327 Homework 1

Chongyi Xu

April 4, 2017

- 1. Prove that the product of a nonzero rational number and an irrational number is irrational. How about the product of two irrational numbers?
 - (a) Let $a = \frac{m}{n}, b = \sqrt{2}$, and $m, n \in \mathbb{N}$, then $a \in \mathbb{Q}, b \in \mathbb{R} \setminus \mathbb{Q}$. $\Rightarrow a\dot{b} = \sqrt{2}\frac{m}{n}$, which is an irrational number. Q.E.D.
 - (b) Let $a=\sqrt{\frac{m}{n}}, b=\sqrt{\frac{p}{q}}, m, n, p, q \in \mathbb{N}$, then $a \in \mathbb{R} \setminus \mathbb{Q}, b \in \mathbb{R} \setminus \mathbb{Q}$

$$\begin{split} & \to if \ \sqrt{\frac{m}{n}} = \sqrt{\frac{p}{q}}, a \cdot b = \frac{m}{n} \in \mathbb{Q} \\ & \to if \ \sqrt{\frac{m}{n}} \neq \sqrt{\frac{p}{q}}, a \cdot b = \sqrt{\frac{m \cdot p}{n \cdot q}} \in \mathbb{R} \backslash \mathbb{Q} \end{split}$$

- 2. Find the inf (greatest lower bound), sup (least upper bound), max and min, if they exist, for the following sets. Prove your answers in (d) and (e). To prove m is the inf of a set, you have to show it is a lower bound and that no number bigger than m is a lower bound. To prove M is the sup of a set, you have to show it is an upper bound and that no number smaller than M is an upper bound.
 - (a) $S = \{1, 3, 5, 7, 9\}$ $infS = minS = 1, \ supS = maxS = 9$
 - (b) $S = (3, \pi]$ infS = 3, $supS = maxS = \pi$ min does not exist.
 - (c) $S = \{q \in \mathbb{Q} : 3 < q \le \pi\}$ $\sup S = \pi$ min, max, and inf do not exist.
 - (d) $S = \{\frac{1}{a} : a \in \mathbb{Z}, a \neq 0\}$ infS = minS = -1, supS = maxS = 1Proof:
 - infimum
 - $\circ x \ge -1 \ \forall x \in S$. Thus -1 is a lower bound.
 - Assume -1 is not the infimum. Then $\exists r > 0, -1 + r = \inf S$

$$0 < \frac{r}{2} < r$$
$$-1 < -1 + \frac{r}{2} < -1 + r$$

since $-1 + \frac{r}{2} \in S$, -1 + r is not the lower bound. Contradicts. \Rightarrow -1 is the infimum. And Since $-1 \in S$, minS = infS

1

- supremum
 - $\circ x \leq 1 \ \forall x \in S$. Thus 1 is a upper bound.
 - Assume 1 is not the supremum. Then $\exists r > 0, 1 r = \sup S$

$$0 < \frac{r}{2} < r$$

$$0 > -\frac{r}{2} > -r$$

$$1 - r < 1 - \frac{r}{2} < 1$$

since $1 - \frac{r}{2} \in S, 1 - r$ is not the upper bound. Contradicts. $\Rightarrow 1$ is the supremum. And Since $1 \in S$, maxS = supS

- (e) $S = \{\frac{n+2}{2n+5} : n \in \mathbb{N}\}$ $infS = minS = \frac{3}{7}, supS = \frac{1}{2}$ max does not exist. Proof:
 - infimum
 - \circ Since $\frac{d}{dn}\frac{n+2}{2n+5}$ is positive, the value of $\frac{n+2}{2n+5}$ will keep growing as n increases. Therefore, it has its lower bound when n is smallest, in the other word, when n=1. When n=1, $x\geq \frac{3}{7}$ for $\forall x\in S$. Thus $\frac{3}{7}$ is the a lower bound.
 - Assume $\frac{3}{7}$ is not the infimum. Then $\exists r > 0, \ r + \frac{3}{7} = infS$

$$0 < \frac{r}{2} < r$$

$$\frac{3}{7} < \frac{3}{7} + \frac{r}{2} < \frac{3}{7} + r$$

Since $\frac{3}{7} + \frac{r}{2} \in S$, $\frac{3}{7} + r$ is not a lower bound. Contradicts. $\Rightarrow \frac{3}{7}$ is the infimum. And since $\frac{3}{7} \in S$, minS = infS.

- supremum
 - o Since L'Hospital's Rule tells $\lim_{x\to+\infty}\frac{n+2}{2n+5}=\frac{1}{2}$, it has its upper bound $\frac{1}{2}$ and has no maximum.
 - $\circ\,$ Assume $\frac{1}{2}$ is not the supremum. Then $\exists r>0,\ \frac{1}{2}-r=supS$

$$\begin{aligned} 0 &< \frac{r}{2} < r \\ 0 &> -\frac{r}{2} > -r \\ \frac{1}{2} - r &< \frac{1}{2} - \frac{r}{2} < \frac{1}{2} \end{aligned}$$

Since $\frac{1}{2} - \frac{r}{2} \in S$, $\frac{1}{2} - r$ is not the uppr bound. Contradicts. $\Rightarrow \frac{1}{2}$ is the supremum.

- 3. Suppose A and B are non-empty sets of real numbers that are both bounded above.
 - (a) Prove that if $A \subset B$, then $sup A \leq sup B$.

Proof by contradiction: Assume supA > supB (in order to reach contradiction),

$$\exists C = \{k \in \mathbb{R} : k \in [supB, supA]\}\$$

And by the definition of supremum, $C \subset A$ but $C \not\subset B$. Contradicts the condition $A \subset B$. Therefore, if $A \subset B$, then $sup A \leq sup B$. Q.E.D.

- (b) Prove that $sup(A \cup B) = max\{supA, supB\}$ Proof:
 - \bullet Show it is an upper bound.

Assume $supA \ge supB$, then $max\{supA, supB\} = supA(\text{Otherwise, switch } supA \text{ with } supB)$ Let $x \in A \cup B$

$$\rightarrow if \ x \in A, \ supA \ge x$$

 $\rightarrow if \ x \in B, \ supB \ge x, \ but \ supA \ge supB, \ supA \ge x$

Thus in any cases, $sup A \ge x$. sup A is an upper bound.

• Show no smaller number works.

Let
$$k < sup A$$
, then $\exists x \in A \text{ with } k < x \leq sup A$

Since
$$A \subseteq A \cup B, x \in A \cup B$$

So k is not an upper bound for $A \cup B$

Therefore, $sup(A \cup B) = max\{supA, supB\}$ Q.E.D

- (c) Prove that if $A \cap B \neq emptyset$, then $sup(A \cap B) \leq min\{supA, supB\}$. Give an example to show that equality need not hold.
 - Proof:
 - Show it is an upper bound.

Assume $supA \leq supB$, then $mim\{supA, supB\} = supA(Otherwise, switch <math>supA$ with supB)

Assume $A \cap B \neq emptyset$. Let $x \in A \cap B$. Thus $x \in A$

From the definition of supremum, $x \leq supA$. supA is an upper bound. Q.E.D

• example:

Two sets.
$$A = \{1, 3, 4, 5, 6\}, B = \{2, 3, 5, 7\}$$

Then $A \cap B = \{3, 5\}$. sup A = 6, $sup B = 7 \Rightarrow min(sup A, sup B) = 6$. But $sup(A \cap B) = 5$. The equality does not hold.