JAFUNO PROJET Controle Qualité 16/12/2019

Qualite-JAFUNO.csv

In [3]:

```
data1<- read.table('//home/jafuno/Téléchargements/Controle Qualité/Qualite-JAFUNO.csv', header = TRUE,sep=",")
data<- data1[,2:109]</pre>
```

In [4]:

head(data)

Date	V2	V3	V4	V5	V6	V7	V8	V9	V10	 V99	V100	
6885.434	8620.503	8903.216	13130.45	11131.088	6519.5178	0.3901023	2.305189	1.766009	1.7789040	 8.501358	6.655823	4.3
10934.471	8707.748	8762.200	13149.41	2607.214	5335.8661	2.1960414	2.298841	1.922416	2.6567498	 4.982161	12.031019	8.28
6907.490	8527.289	9006.014	13144.05	4374.358	25737.3092	1.3247141	1.901779	1.364063	1.0512042	 6.593759	7.484890	8.60
7136.301	8699.658	8652.489	13087.37	3050.461	256.2939	2.9486380	1.817420	1.923744	0.7579353	 6.069911	7.446334	4.50
18597.949	8905.560	8802.194	13131.98	4323.867	13894.3131	1.6346265	1.393835	2.258834	1.9948030	 6.060440	6.253521	8.5
6272.575	8742.773	8599.898	13145.13	5574.604	22.5561	2.0612067	2.057807	1.874150	2.8658075	 9.680542	6.630408	7.3

1) Loi des 6 premières colonnes

qqplot

```
In [5]:
```

```
par(mfrow=c(2,3))
for(i in 1:6){
    data2 <- (data[,i]- mean(data[,i]))/sd(data[,i])
#Xbar <- (Xbar- mean(Xbar))/sd(Xbar)
qqnorm(data2,ylab='R', main = names(data[i]))
#distribution normales de R
abline(0, 1, col='blue')
}</pre>
```


Toutes les variables semblent suivre une loi Normale sauf Date, V5 et V6 faisons un test de Shapiro pour confirmer cela

```
In [6]:
```

shapiro.test(data[,1])

```
Shapiro-Wilk normality test

data: data[, 1]
W = 0,9745, p-value = 3,012e-12

In [7]:

shapiro.test(data[,5])

Shapiro-Wilk normality test

data: data[, 5]
W = 0,85041, p-value < 2,2e-16
```

In [8]:

```
shapiro.test(data[,6])
Shapiro-Wilk normality test
```

data: data[, 6]
W = 0,83382, p-value < 2,2e-16</pre>

Histogrammes de Date, V5 et V6

```
In [9]:
```

```
par(mfrow=c(2,2))
z=data[,1]
hist(z, breaks =50, freq= F,main= "Distribution de Date")
lines(density(z), col= 'red', lwd=3)
y=data[,5]
hist(y, breaks =50, freq= F,main= "Distribution de V5")
lines(density(y), col= 'red', lwd=3)
x<-data[,6]
hist(x, breaks =50, freq= F,main= "Distribution de V6")
curve(dexp(x,1/mean(data[,6])), col = "red",lwd=3, add = TRUE) ## Bonne adéquation à une loi exponentielle
\#\#,ylim=c(0,0.00015), xlim=c(0,30000)
```

Distribution de Date

Distribution de V5

Distribution de V6

On voit que V6 semblent suivre une loi exponnentielle, que Date une loi de type Weibull et V5 une loi de type Log Normal

2) Carte de Controle

In [10]:

```
datachart<- data[,7:106]
head(datachart)</pre>
```

V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	 V97	V98	V9!
0,3901023	2,305189	1,766009	1,7789040	1,435421	2,742302	1,708236	2,525970	1,7922025	2,565676	 7,397260	11,192278	8,501358
2,1960414	2,298841	1,922416	2,6567498	2,247887	1,594490	2,003579	1,894161	2,5414300	2,299044	 10,463558	6,834040	4,98216 ⁻
1,3247141	1,901779	1,364063	1,0512042	1,774624	2,741821	2,032588	1,830209	2,3713170	2,213992	 6,135284	7,191626	6,593759
2,9486380	1,817420	1,923744	0,7579353	2,387034	1,300430	2,046088	2,099705	2,4016411	1,832437	 4,488158	6,000473	6,06991 [,]
1,6346265	1,393835	2,258834	1,9948030	1,675601	1,847252	2,266560	2,137983	1,7101801	1,673991	 8,372307	8,884302	6,060440
2,0612067	2,057807	1,874150	2,8658075	1,951794	1,776818	1,680203	1,946843	0,9566565	2,137658	 8,420229	5,249355	9,680542
4												

In [11]:

```
library(SixSigma)# pour les coefficients
n=100
d2<-ss.cc.getd2(n=100)
d3<-ss.cc.getd3(n=100)
A2<-3/(d2*sqrt(n))
D4=1+(3*d3/d2)
D3=1-(3*d3/d2)
c4<-4*(n-1)/(4*n-3)
A3<-3/(c4*sqrt(n))
B3<-1-(3/(c4*sqrt(2*(n-1))))
B4<-1+(3/(c4*sqrt(2*(n-1))))</pre>
```

Carte Xbar, R colonne 7 à 106

In [12]:

```
Xbar<-apply(datachart, 1,mean)</pre>
w<-apply(datachart, 1,range)</pre>
R < -w[2,]-w[1,]
Xbarbar = mean(Xbar)
Rbar= mean(R)
lcl = Xbarbar - A2*Rbar
ucl = Xbarbar + A2*Rbar
lclR=D3*Rbar
uclR=D4*Rhar
\#par(mfrow=c(2,1))
plot(Xbar, col= 'blue', ylim=c(lcl-10,ucl+10),type="b",pch=19, main ='Carte Xbar')
abline(Xbarbar,0, col ='green')
abline(ucl,0, col ='black')
abline(lcl,0, col ='red')
legend(1,28,c("UCL= 18.6","Mean= 11.34","LCL= 4.04"),col=c('black','green','red'),lty = 1)
plot(R, col= 'blue', ylim=c(lclR-250,uclR+250),type="b",pch=19, main = 'Carte R')
abline(Rbar,0, col ='green')
abline(uclR,0, col ='black')
abline(lclR,0, col ='red')
legend(0,390,c("UCL= 166","Mean= 122","LCL= 77"),col=c('black','green','red'),lty = 1)
```

Carte Xbar

Carte R

Le signal du processus est sous controle pour Xbar mais pas pour R ou l'on voit plusieurs points en dessous ou au dela des valeurs de controles

Carte Xbar, S colonne 7 à 106

In [13]:

```
S<-apply(datachart, 1,sd)</pre>
Sbar= mean(S)
A3=3/(c4*sqrt(n))
B3=1-(3/(c4*sqrt(2*(n-1))))
B4=1+(3/(c4*sqrt(2*(n-1))))
Sbar= mean(S)
lcl = Xbarbar - A3*Sbar
ucl = Xbarbar + A3*Sbar
uclS=B4*Sbar
lclS=B3*Sbar
plot(Xbar, col= 'blue', ylim=c(lcl-10,ucl+10),type="b",pch=19, main ='Carte Xbar')
abline(Xbarbar,0, col ='green')
abline(ucl,0, col ='black')
abline(lcl,0, col ='red')
legend(1,27,c("UCL= 17,2","Mean= 11.3","LCL= 5.4"),col=c('black','green','red'),lty = 1)
plot(S, col= 'blue', ylim=c(lclS-39,uclS+39),type="b",pch=19, main = 'Carte S')
abline(Sbar,0, col = 'green')
abline(uclS,0, col ='black')
abline(lclS,0, col ='red')
legend(0,62,c("UCL= 23","CL= 19.6","LCL= 15"),col=c('black','green','red'),lty = 1)
```

Carte Xbar

Carte S

Le signal du processus n'est pas sous controle pour les 2 cartes, pour Xbar on a un point hors de controle

Carte Cusum pour V107

```
carto cacam pour vior
```

```
In [14]:
d107<- data[,107]
head(d107)</pre>
```

Estimation de sigma

In [15]:

```
#Estimation de sigma
MR<-c() # CQ3 page 29

for( i in 1:999){
   MR[i]<- abs(d107[i+1]-d107[i])
}
MRbar= mean(MR)
sigma= MRbar/ 1.128
```

In [27]:

```
d107<- data[,107]
#mean(d107[1:2])
mu0 =2# On veut detecter un changement par rapportà une moyenne égal à 2
k = 0.25
K=k*sigma
h=8.01
H=h∗sigma
UCL=H
Cusum<-c()
Cusum[1]=0
for(i in 2:1000){
  Cusum[i] = max(0,d107[i]-(mu0+K)+ Cusum[i-1])
D<-c()
D[1]=0
for(i in 2:1000){
  D[i] = max(0,(mu0-K)-d107[i]+D[i-1])
plot(Cusum, ylim=c(-10, 35700), xlim=c(0, 1000), col= 'blue', type="b", pch=19, main='Carte Cusum, k=0.25, h=8.01')
lines(D,ylim=c(-0.5,0.5),xlim=c(0,26), col= 'red',type="b",pch=19)
abline(0,0,col='black')
abline(H,0,col='pink',lty = 1)
abline(-H,0,col='green',lty = 1)
legend("topleft",c("C+","C-","UCL= 128.8 ","CL= 0","LCL= -128.8"),col=c('blue','red','pink','black','green'),lty
= 1)
```

Carte Cusum, k=0.25, h=8.01


```
In [18]:

a<-c()
for(i in 1:1000){
    a[i]<-(Cusum[i]<H)
}
n=sum(a)
print(paste("Le signal du processus n'est pas sous controle, les pts après le",as.character(n),'ème dépassent les limites de controle'))</pre>
```

[1] "Le signal du processus n'est pas sous controle, les pts après le 503 ème dépassent les limites de controle"

Carte EWMA pour V107

In [19]:

```
#EWMA
lambda=0.5
mu0=2
1 = 3
EWMA_Z<-c()
EWMA_Z[1] = lambda*d107[1] + (1-lambda)*mu0
for(i in 2:1000){
 EWMA_Z[i]=lambda*d107[i]+(1-lambda)*EWMA_Z[i-1]
LCL<-c()
for(i in 1:1000){
 LCL[i]<- mu0 -L*sigma*sqrt((lambda/(2-lambda))*(1-(1-lambda)^(2*i)))</pre>
#LCl<- mu0 -L*sigma*sqrt((lambda/(2-lambda)))</pre>
UCL<-c()
for(i in 1:1000){
 UCL[i] \leftarrow mu0 + L*sigma*sqrt((lambda/(2-lambda))*(1-(1-lambda)^(2*i)))
plot(EWMA_Z,ylim=c(-100,150),xlim=c(0,1000), col= 'green',type="b",pch=19, main = 'Carte EWMA, lambda= 0.5, L= 3'
lines(UCL,ylim=c(7.96,8.13),xlim=c(0,1000), col= 'blue',type="b",pch=19)
lines(LCL,ylim=c(7.96,8.13),xlim=c(0,1000),col= 'red',type="b",pch=19)
legend(0,150,c("UCL","Z","LCL"),col=c('blue','green','red'),lty = 1)
```

Carte EWMA, lambda= 0.5, L= 3

In [20]:

```
for(i in 1:1000){
    a[i]<-(EWMA_Z[i]<max(UCL))
}
n=sum(a)
print(paste("Le signal du processus n'est pas sous controle, les pts après le",as.character(n),"ème dépassent les
limites de controle"))</pre>
```

[1] "Le signal du processus n'est pas sous controle, les pts après le 501 ème dépassent les limites de controle"

Carte Cusum pour V108

In [21]:

```
d108<- data[,108]
head(d108)
```

Estimation de sigma

```
In [22]:
```

```
MR<-c() # CQ3 page 29

for( i in 1:999){
   MR[i]<- abs(d108[i+1]-d108[i])
}
MRbar= mean(MR)
sigma2= MRbar/ 1.128</pre>
```

On prend donc pour la suite k= 0.5 et H= 4.77 et sigma= 0,505158885367955

In [23]:

```
d108<- data[,108]
mu0 =2# On veut detecter un changement par rapport à une moyenne égal à 2
k = 0.5
K=k*sigma2
h=4.77
H=h*sigma2
UCL=H
UCL=H
Cusum<-c()
Cusum[1]=0
for(i in 2:1000){
  Cusum[i] = max(0,d108[i]-(mu0+K)+ Cusum[i-1])
D<-c()
D[1]=0
for(i in 2:1000){
 D[i] = max(0,(mu0-K)-d108[i]+D[i-1])
plot(Cusum,ylim=c(-15,200),xlim=c(0,1000), col= 'blue',type="b",pch=19,main='Carte Cusum, k= 0.5, h=4.77')
lines(D,ylim=c(-0.5,0.5),xlim=c(0,26), col= 'red',type="b",pch=19)
abline(0,0,col='black')
abline(H,0,col='pink')
abline(-H,0,col='green')
legend("topleft",c("C+","C-","UCL= 2.4 ","Mean= 0","LCL= -2.4"),col=c('blue','red','pink','black','green'),lty =
1)
```

Carte Cusum, k= 0.5, h=4.77

In [24]:

```
for(i in 1:1000){
    a[i]<-(Cusum[i]<H)
    if(D[i]>H){m=i}
}
n=sum(a)

print(paste("Le signal du processus n'est pas sous controle, Pour C+ les points après le",as.character(n),'ème dé
passent les limites de controle'))
print(paste("pour C- seul le",as.character(m),"ème point est hors des limites de controle"))
```

Carte EWMA pour V108

^{[1] &}quot;Le signal du processus n'est pas sous controle, Pour C+ les points après le 308 ème dépassent l es limites de controle"

^{[1] &}quot;pour C- seul le 99 ème point est hors des limites de controle"

In [25]:

```
#EWMA
lambda=0.2
L=3
EWMA_Z<-c()
EWMA\_Z[1] = lambda*d108[1] + (1-lambda)*mu0
for(i in 2:1000){
 EWMA_Z[i] = lambda*d108[i] + (1-lambda)*EWMA_Z[i-1]
LCL<-c()
for(i in 1:1000){
 LCL[i]<- mu0 -L*sigma2*sqrt((lambda/(2-lambda))*(1-(1-lambda)^(2*i)))</pre>
UCL<-c()
for(i in 1:1000){
 UCL[i]<- mu0 +L*sigma2*sqrt((lambda/(2-lambda))*(1-(1-lambda)^(2*i)))</pre>
plot(EWMA_Z,ylim=c(1,3.25),xlim=c(0,1000), col= 'green',type="b",pch=19, main = 'Carte EWMA, Lambda=0.2, L=3')
lines(UCL,ylim=c(7.96,8.13),xlim=c(0,24), col= 'blue',type="b",pch=19)
lines(LCL,ylim=c(7.96,8.13),xlim=c(0,24),col= 'red',type="b",pch=19)
legend("topleft",c("UCL","Z","LCL"),col=c('blue','green','red'),lty = 1)
```

Carte EWMA, Lambda=0.2, L=3

