

Volume Integrals Associated With the Inhomogeneous Helmholtz Equation

II - Cylindrical Region; Rectangular Region

W. F. Zhong and L. S. Fu

GRANT NSG3-340 DECEMBER 1983 LOAN COPY: RETURN TO AFWL TECHNICA'. LIBRARY KIRTLAND AFB, N.M. 87117

NASA Contractor Report 3750

Volume Integrals Associated With the Inhomogeneous Helmholtz Equation

II - Cylindrical Region; Rectangular Region

W. F. Zhong and L. S. Fu The Ohio State University Columbus, Ohio

Prepared for Lewis Research Center under Grant NSG3-340

Scientific and Technical Information Branch

1983

I. INTEGRATION OVER A FINITE CYLINDRICAL REGION, Fig. 1

The integrals, Eqs. (12,13) [1], see also [2], are of either one of the following forms:

$$\phi^{\circ} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} dv'$$
 (1)

$$\phi^{S} = \iiint_{\Omega} \rho(x',y',z') \frac{\partial^{n}}{\partial x'^{k} \partial y'^{k} \partial x'^{n-k-k}} \left\{ \frac{\sin \alpha r'}{r'} \right\} dv'$$
 (2)

$$\phi^{C} = \iiint_{\Omega} \rho(x', y', z') \frac{\partial^{n}}{\partial x'^{\ell} \partial y'^{k} \partial x'^{n-\ell-k}} \left\{ \frac{\cos \alpha \gamma'}{\gamma'} \right\} dv'$$
(3)

Letting x'=x', y'= $\zeta\cos\theta$, z'= $\zeta\sin\theta$ and dv'=dx'dy'dz'= ζ d ζ d θ dx', these integrals can be further evaluated as follows: [3]

$$\phi^{0} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} dv'$$

$$= \frac{(q-1)!!(s-1)!!(2\pi)}{(q+s)!!} (\frac{a^{2+q+s}}{2+q+s}) (\frac{2 \ell^{1+p}}{1+p}) \quad \text{if p,q,s all even}$$

$$= 0 \quad \text{if any one of p,q,s is odd. (4b)}$$

where according to the definition of factorial,

$$(q-1)!! = \frac{(q-1)!}{2^{(\frac{q}{2}-1)}(\frac{q}{2}-1)!} = 1 \cdot 3 \cdot 5 \dots (q-1), q \text{ even}$$
 (5a)

$$(q+s)!! = 2^{\left(\frac{q+s}{2}\right)} \left(\frac{q+s}{2}\right)! = 2 \cdot 4 \cdot 6 \dots s(s+2) \dots (s+q), q,s \text{ even}$$
 (5b)

and a is the radius of the cylinder, £ the length.

(b)
$$n=0, \phi^{S}$$
:

$$\phi^{S} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{S} \frac{\sin \alpha \gamma'}{\gamma'} dv'$$

$$= \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{S} \sum_{m=0}^{\infty} (-1)^{m} \frac{\alpha^{2m+1}}{(2m+1)!} (r')^{2m} dv'$$

$$= \sum_{m=0}^{\infty} (-1)^m \frac{\alpha^{2m+1}}{(2m+1)!} S_{m,p}$$
 (6)

$$S_{m,p} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} (r')^{2m} dv'$$
 (7)

Using the multinomial formula, [4]

$$(\mathbf{r'})^{2m} = (\mathbf{x'}^2 + \mathbf{y'}^2 + \mathbf{z'}^2)^m = \sum_{m_1, m_2, m_3} \frac{m!}{m_1! m_2! m_3!} (\mathbf{x'})^{2m_1} (\mathbf{y'})^{2m_2} (\mathbf{z'})^{2m_3}$$
 (8)

the integral

$$S_{m,p} = \sum_{m_1, m_2, m_3} \frac{m!}{m_1! m_2! m_3!} \int \int \int (x')^{2m_1 + p} (y')^{2m_2 + q} (z')^{2m_3 + s} dv'$$

$$= \sum_{m_1, m_2, m_3} \frac{m!}{m_1! m_2! m_3!} \frac{(\mu - 1)!! (\nu - 1)!! (2\pi)}{(\mu + \nu)!!} (\frac{a^{2 + \mu + \nu}}{2 + \mu + \nu}) (\frac{2\iota^{1 + \lambda}}{1 + \lambda})$$

$$= 0 \qquad \text{if any one of } \lambda, \mu, \nu \text{ is odd} \qquad (9)$$

where $(\mu-1)!!$, $(\nu-1)!!$, $(\mu+\nu)!!$ are defined as the same as (5a) and (5b),

and,

$$\lambda = 2m_1 + p$$
 $\mu = 2m_2 + q$
 $\nu = 2m_3 + s$
 $m = m_1 + m_2 + m_3$

(10)

(c) n=0, ϕ^{c} :

$$\phi^{C} = \iiint_{\Omega} (x')^{p} (y')^{q} (x')^{s} \frac{\cos \alpha r'}{r'} dv'$$

$$= \iiint_{\Omega} (x')^{p} (y')^{q} (x')^{s} \sum_{m=0}^{\infty} (-1)^{m} \frac{\alpha^{2m}}{(2m)!} \frac{(r')^{2m}}{r'} dv'$$

$$= \sum_{m=0}^{\infty} (-1)^{m} \frac{\alpha^{2m}}{(2m)!} C_{m,p}$$
(11)

$$C_{m,p} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} \frac{(r')^{2m}}{r'} dv'$$

$$= \sum_{m_{1}, m_{2}, m_{3}} \frac{m!}{m_{1}! m_{2}! m_{3}!} \iiint_{\Omega} (x')^{\lambda} (y')^{\mu} (z')^{\nu} \frac{dv'}{r'}$$

$$\lambda = 2m_{1} + p$$

$$\mu = 2m_{2} + q$$
(12)

$$v = 2m_3 + s$$

$$m_1 + m_2 + m_3 = m$$
(13)

The integral on the right hand side of Eq.(12) can be evaluated as follows:

$$\iint_{\Omega} (x')^{\lambda} (y')^{\mu} (z')^{\nu} \frac{dv'}{r'} = \frac{(\mu-1)!! (\nu-1)!!}{(\mu+\nu)!!} (2\pi) \cdot I \qquad \text{if } \mu, \nu \text{ all even}$$
(14a)

= 0 if any one of
$$\mu$$
, ν is odd. (14b)

In the above expression

$$I = \frac{1}{k+1} \sum_{t=1}^{\frac{1}{2}(k-1)} (-1)^{t+1} \frac{(k+1)(k-1)\dots(k-2t+3)}{k(k-2)\dots(k-2t+2)} (a)^{k-2t+1} \int_{-\ell}^{\ell} (x')^{\lambda+2t-2} (a^2+x'^2)^{1/2} dx'$$

$$+ (-1)^{\frac{1}{2}(k-1)} \frac{(k-1)!!}{k!!} \int_{-\ell}^{\ell} (x^{\lambda+k-1}(a^2+x^{2})^{1/2}-x^{\lambda+k}) dx'$$
 (15)

where

$$k = 1 + \mu + \nu \tag{16}$$

is odd, and

(k-1)!! =
$$2^{\left(\frac{k-1}{2}\right)} \cdot \left(\frac{k-1}{2}\right)! = 2 \cdot 4 \dots (k-1)$$
 (17a)

$$(k)!! = \frac{k!}{2^{(\frac{k-1}{2})} (\frac{k-1}{2})!} = 1 \cdot 3 \dots (k)$$
(17b)

The integrals

$$\int_{-\mathcal{L}}^{\mathcal{L}} (x')^{\lambda+2t-2} (a^2+x'^2)^{1/2} dx'$$

$$= \frac{\frac{k_1}{2}}{k_1+1} \sum_{t_1=1}^{k_1} (-1)^{t_1+1} \frac{(k+1)(k_1-1)\dots(k_1-2t_1+3)}{(k_1+2)k_1\dots(k_1-2t_1+4)} (a)^{2t_1-2} \cdot (\ell)^{k_1-2t_1+1} \cdot (a^2+\ell^2)^{3/2}$$

$$+ (-1)^{\frac{k_1}{2}} \frac{(k_1-1)!!}{(k_1+2)(k_1)!!} 2a^{k_1} (\ell\sqrt{a^2+\ell^2} + a^2 \sinh^{-1}\frac{\ell}{a}) \quad \text{if } \lambda, \mu, \nu \text{ are even}$$

= 0 if any one of
$$\lambda, \mu, \nu$$
 is odd. (18)

where

$$k_1 = \lambda + 2t - 2 \tag{19}$$

is even, and
$$(k_1-1)!! = \frac{(k_1-1)!}{\frac{k_1}{2}-1} = 1 \cdot 3 \cdot 5 \dots (k_1-1)$$

$$2^{(\frac{k_1}{2}-1)} \cdot (\frac{k_1}{2}-1)!$$
(20a)

$$(k_1)!! = 2^{\frac{k_1}{2} \cdot (\frac{k_1}{2})!} = 2 \cdot 4 \dots (k_1)$$
 k_1 is even (20b)

The integral

$$\int_{-\ell}^{\ell} (x')^{\lambda+k-1} (a^{2}+x'^{2})^{1/2} dx' \\
= \int_{-\ell}^{\ell} (x')^{k_{2}} (a^{2}+x'^{2})^{1/2} dx' \\
= \frac{2}{k_{2}+1} \sum_{t_{2}=1}^{\frac{k_{2}}{2}} (-1)^{t_{2}+1} \frac{(k_{2}+1)(k_{2}-1)\dots(k_{2}-2t_{2}+3)}{(k_{2}+2)k_{2}\dots(k_{2}-2t_{2}+4)} (a)^{2t_{2}-2} \cdot (\ell)^{k_{2}-2t_{2}+1} \cdot (a^{2}+\ell^{2})^{3/2}$$

$$= (-1)^{\frac{k_2}{2}} \frac{(k_2-1)!!}{(k_2+2)\cdot(k_2)!!} \cdot 2a^{k_2} (\ell\sqrt{a^2+\ell^2} + a^2 \sinh^{-1}\frac{\ell}{a}) \quad \text{if } \lambda,\mu,\nu \text{ are even}$$
 (21a)

= 0 if any one of
$$\lambda, \mu, \nu$$
 is odd. (21b)

$$k_2 = \lambda + k - 1 = \lambda + \mu + \nu$$
 (22)

The integral

$$\int_{-\ell}^{\ell} (x')^{\lambda+k} dx'$$

$$= \frac{2\ell^{\lambda+k+1}}{\lambda+k+1}$$
 if λ,μ,ν are even (23a)

= 0 if any one of λ, μ, ν is odd. (23b)

II. INTEGRATION OVER A RECTANGULAR PARALLELEPIPED. Fig. 2

In the case of a rectangular parallelepiped, the integrals in (14), (15), (16) can be evaluated as follows:

(a)

$$\phi^{O} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} dv'$$

$$= \frac{8}{(p+1)(q+1)(s+1)} (a)^{q+1} (b)^{s+1} (l)^{p+1} \quad \text{if p,q,s all are even} \qquad (24a)$$

$$= 0 \qquad \qquad \text{if any one of p,q,s is odd.} \qquad (24b)$$

where ℓ , a,b is length of the rectangular parallelepiped toward x',y',z'-direction, respectively.

(b)
$$n=0$$
, ϕ^S

$$\phi^{S} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{S} \frac{\sin \alpha r'}{r'} dv'$$

$$= \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{S} \sum_{m=0}^{\infty} (-1)^{m} \frac{\alpha^{2m+1}}{(2m+1)!} (r)^{2m}$$

$$= \sum_{m=0}^{\infty} (-1)^{m} \frac{\alpha^{2m+1}}{(2m+1)!} S_{m,p}$$
(25)

and

$$S_{m,p} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} (r')^{2m} dv'$$

$$= \sum_{m_{1}, m_{2}, m_{3}} \frac{m!}{m_{1}! m_{2}! m_{3}!} \iiint_{\Omega} (x')^{2m_{1}+p} (y')^{2m_{2}+l} (z')^{2m_{3}+s} dv'$$

$$= \sum_{m_{1}, m_{2}, m_{3}} \frac{8m!}{m_{1}! m_{2}! m_{3}!} \frac{(a)^{l+1} (b)^{l+1} (l)^{l+1}}{(l+1)^{l+1} (l+1)^{l+1}}$$

$$m=0,1,2,... \quad \text{if } l, l, l, l \text{ are even}$$

$$= 0 \qquad \qquad \text{if any one of } l, l, l, l \text{ is odd.} \qquad (26a)$$

where

$$m = m_1 + m_2 + m_3$$
 $\lambda = 2m_1 + p$
 $\mu = 2m_2 + q$
 $\nu = 2m_3 + s$
(27)

(c) n=0, ϕ^{c} .

$$\phi^{c} = \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} \frac{\cos \alpha r'}{r'} dv'$$

$$= \iiint_{\Omega} (x')^{p} (y')^{q} (z')^{s} \int_{m=0}^{\infty} (-1)^{m} \frac{\alpha^{2m}}{(2m)!} \frac{(r')^{2m}}{r'}$$

$$= \int_{m=0}^{\infty} (-1)^{m} \frac{\alpha^{2m}}{(2m)!} C_{m,p}$$
(28)

and

$$C_{m,p} = \sum_{m_1, m_2, m_3} \frac{m!}{m_1! m_2! m_3!} \int_{\Omega} (x')^{\lambda} (y')^{\mu} (z')^{\nu} \frac{dv'}{r'}$$

$$= \sum_{m_1, m_2, m_3} \frac{m!}{m_1! m_2! m_3!} \int_{-\ell}^{\ell} (x')^{\lambda} [\int_{-a}^{a} (y')^{\mu} (\int_{-b}^{b} \frac{(z')}{\sqrt{\alpha^2 + z^2}} dz') dy'] dx' \qquad (29)$$

where

$$\lambda = 2m_1 + p$$
 $\mu = 2m_2 + q$
 $\nu = 2m_3 + s$
 $\alpha^2 = x^{2} + y^{2}$
 $m_1 + m_2 + m_3 = m$

(30)

The integrals in (34) can be evaluated as follows:

(i)
$$\int_{-b}^{b} \frac{(z')^{\nu}}{\sqrt{\alpha^{2}+z'^{2}}} dz'$$

$$= \prod_{\nu} (b)^{\nu-2t+1} (x'^{2}+y'^{2}) \sqrt{b^{2}+x'^{2}+y'^{2}} + (-1)^{\nu/2} \frac{2(\nu-1)!!}{(\nu)!!} (x'^{2}+y'^{2})^{\nu/2} sh^{-1} \frac{b}{\sqrt{x'^{2}+y'^{2}}}$$

if
$$v$$
 is even (31a)

=0 if
$$\nu$$
 is odd. (31b)

where $\boldsymbol{\Pi}_{\boldsymbol{V}}$ is defined as an operator as follows:

$$\Pi_{V} = \frac{2}{v+1} \sum_{t=1}^{v/2} (-1)^{t+1} \frac{(v+1)(v-1)\dots(v-2t+3)}{v(v-2)(v-4)\dots(v-2t+2)}$$
(32a)

$$(v-1)!! = \frac{(v-1)!}{2^{(\frac{v}{2}-1)}(\frac{v}{2}-1)!} = 1 \cdot 3 \dots (v-1)$$
 (32b)

$$(v)!! = 2^{\frac{v}{2}(\frac{v}{2})!} = 2 \cdot 4 \dots v$$
, v is even (32c)

(ii)
$$\int_{-a}^{a} \int_{-b}^{b} (y')^{\mu} (z')^{\nu} \frac{dy'dz'}{\sqrt{x'^{2}+y'^{2}+z'^{2}}}$$

$$= \pi_{v} \sum_{n_{1}, n_{2}} (-1)^{v/2} \frac{n!}{n_{1}! n_{2}!} (b)^{v-2t+1} (x')^{2n_{1}} I_{1}(x')$$

+
$$\sum_{i_1,i_2} (-1)^{\nu/2} \frac{i!}{i_1!i_2!} \frac{2(\nu-1)!!}{(\nu)!!} (b) (x')^{2i_1} I_2(x')$$

$$-\sum_{i_1,i_2} (-1)^{\nu/2} \frac{i!}{i_1!i_2!} \frac{(\nu-1)!!}{3(\nu)!!} (b)^3 (x')^{2i_1} I_3(x')$$

$$+\sum_{i_{1},i_{2}}\sum_{j=2}^{\infty}(-1)^{\nu/2+j}\frac{i!}{i_{1}!i_{2}!}\frac{2(\nu-1)!!}{(\nu)!!}\frac{(2j)!}{2^{2j}(j!)^{2}(2j+1)}(b)^{2j+1}(x')^{2i_{1}}I_{4}(x')$$
(33)

where

$$I_1(x') = \int_a^a (y')^{2n_2+\mu} \sqrt{b^2+x'^2+y'^2} dy'$$

$$= \pi_{\xi}(a)^{\xi-2t_1+1}(b^2+x^2)^{t_1-1}\sqrt{(a^2+b^2+x^2)^3} + (-1)^{\xi/2} \frac{2(\xi-1)!!}{(\xi+2)!!}(b^2+x^2)^{\xi/2}$$

$$\cdot (a\sqrt{a^2+b^2+x^2} + (b^2+x^2)sh^{-1} \frac{a}{\sqrt{b^2+x^2}})$$

if
$$\mu$$
 is even (34a)

= 0 if
$$\mu$$
 is odd. (34b)

In the above expression

$$\Pi_{\xi} = \frac{2}{\nu+1} \sum_{t_1=1}^{\xi/2} (-1)^{t_1+1} \frac{(\xi+1)(\xi-1)\dots(\xi+2t_1+3)}{(\xi+2)\xi\dots(\xi-2t_1+4)}$$
(35)

$$\xi = 2n_2 + \mu \tag{37}$$

The integral

$$I_2(x') = \int_{-a}^{a} (y')^{2i} 2^{+\mu} \frac{dy'}{\sqrt{x'^2+y'^2}}$$

$$= \Pi_{\xi_{1}}(a)^{\xi_{1}^{-2t}3^{+1}}(x'^{2})^{t_{3}^{-1}}\sqrt{a^{2}+x'^{2}} + (-1)^{\xi_{1}/2}\frac{2(\xi_{1}^{-1})!!}{(\xi_{1})!!}(x'^{2})^{\xi_{1}/2}sh^{-1}\frac{a}{x'}$$

if
$$\mu$$
 is even (38a)

= 0 if
$$\mu$$
 is odd. (38b)

where $\pi_{\xi_{\mbox{$1$}}}$ is defined as the same as(32a), only if replace ν with $\xi_{\mbox{$1$}}$ and

$$\xi_1 = 2i_2 + \mu$$
 (39a)

$$(\xi_1^{-1})!! = 1 \cdot 3 \dots (\xi_1^{-1})$$
 ξ_1 is even (39b)

$$(\xi_1)!! = 2 \cdot 4 \dots (\xi_1)$$
 ξ_1 is even (39c)

The integral

$$I_3(x') = \int_{-a}^{a} \frac{(y')^{\xi_1}}{\sqrt{(x'^2+y'^2)^3}} dy'$$

$$= \pi_{\xi_1}^{\prime}(a)^{\xi_1^{-2t_4^{+1}}}(x^{\prime 2})^{t_4^{-1}} / \sqrt{a^{2} + x^{\prime 2}}$$

$$+ (-1)^{\frac{\xi_{\bar{1}}^2}{2}} \frac{2(\xi_1^{-1})!!}{(\xi_1^{-2})!!} (x'^2)^{\frac{\xi_1}{2}} - 1 (sh^{-1} \frac{a}{x'} - \frac{a}{\sqrt{a^2 + x'^2}})$$

if
$$\mu$$
 is even (40a)

= 0 if
$$\mu$$
 is odd. (40b)

$$\Pi_{\xi_{1}}^{!} = \frac{2}{\xi_{1}+1} \sum_{t_{A}=1}^{\frac{\xi_{1}}{2}-1} (-1)^{t_{A}+1} \frac{(\xi_{1}+1)(\xi_{1}-1)\dots(\xi_{1}-2t_{4}+3)}{(\xi_{1}-2)(\xi_{1}-4)\dots(\xi_{1}-2t_{4})}$$
(41)

The integral

$$I_{4}(x') = \int_{-a}^{a} \frac{(y')^{\xi_{1}}}{\sqrt{(x'^{2}+y'^{2})^{2j+1}}} dy'$$

$$= II_{\xi_{1}}^{"}(a)^{\xi_{1}-2t_{2}+1} (x'^{2})^{t_{2}-1} / \sqrt{(a^{2}+x'^{2})^{2j-1}}$$

$$t_{0}$$

$$+ \sum_{t_{0}=1}^{j-1} (-1)^{\xi_{1}/2} \frac{2(\xi_{1}-1)!!(2)^{t_{0}}}{(\xi_{1}-2j)(\xi_{1}-2j-2)\dots(2-2j)} \frac{(j-1)(j-2)\dots(j-t_{0})}{(2j-1)(2j-3)\dots(2j-2t_{0}+1)}$$

$$\cdot (a)(x'^{2})^{\frac{\xi_{1}}{2}} - t_{0}^{-1} \frac{(a^{2}+x'^{2})^{t_{0}}}{\sqrt{(a^{2}+x'^{2})^{2j-1}}}$$

$$+ (-1)^{\xi_{1}/2} \frac{2(\xi_{1}-1)!!}{(\xi_{1}-2j)(\xi_{1}-2j-2)\dots(2-2j)(2j-1)} (a) (x'^{2})^{\frac{\xi_{1}}{2}-1} \cdot \frac{1}{\sqrt{(a^{2}+x'^{2})^{2j-1}}}$$

if
$$\mu$$
 is even (42a)

= 0 if
$$\mu$$
 is odd (42b)

where

$$\Pi_{\xi_{1}}^{"} = \frac{2}{\xi_{1}+1} \sum_{t_{0}=1}^{\xi_{1}/2} (-1)^{t_{2}+1} \frac{(\xi_{1}+1)(\xi_{1}-1)\dots(\xi_{1}-2t_{2}+3)}{(\xi_{1}-2j)(\xi_{1}-2j-2)\dots(\xi_{1}-2j-2t_{2}+2)}$$
(43)

$$\begin{split} & \iiint_{\Omega} (x^{*})^{\lambda} (y^{*})^{\mu} (z^{*})^{\nu} \frac{dv^{*}}{\sqrt{x^{*}^{2}+y^{*}^{2}+z^{*}^{2}}} \\ &= \prod_{\nu} \prod_{\xi} \sum_{n_{1},n_{2}} (-1)^{\nu/2} \frac{n!}{n_{1}!n_{2}!} (a)^{\xi-2t} 1^{+1} \cdot (b)^{\nu-2t+1} \cdot I_{1} \\ &+ (-1)^{\xi/2} \prod_{\nu} \frac{2(\xi-1)!!}{(\xi+2)!!} (b)^{\nu-2t+1} \cdot I_{2} \\ &+ \prod_{\xi} \sum_{i_{1},i_{2}} (-1)^{\nu/2} \frac{i!}{i_{1}!i_{2}!} \frac{2(\nu-1)!!}{(\nu)!!} (a)^{\xi} 1^{-2t} 2^{+1} \cdot (b) \cdot I_{3} \\ &+ \prod_{\xi} \sum_{i_{1},i_{2}} (-1)^{\frac{\nu+\xi}{2}} \frac{i!}{i_{1}!i_{2}!} \frac{2(\nu-1)!!}{(\nu)!!} \frac{2(\xi_{1}^{-1})!!}{(\xi_{1}^{-1})!!} (b) \cdot I_{4} \\ &- \prod_{\xi} \sum_{i_{1},i_{2}} (-1)^{\frac{\nu+\xi}{2}} \frac{i!}{i_{1}!i_{2}!} \frac{(\nu-1)!!}{3(\nu)!!} \frac{2(\xi_{1}^{-1})!!}{(\xi_{1}^{-2})!!} (b)^{3} \cdot I_{5} \\ &- \sum_{i_{1},i_{2}} (-1)^{\frac{\xi_{1}^{+\nu-1}}{2}} \frac{i!}{i_{1}!i_{2}!} \frac{(\nu-1)!!}{3(\nu)!!} \frac{2(\xi_{1}^{-1})!!}{(\xi_{1}^{-2})!!} (b)^{3} \cdot I_{6} \\ &+ \prod_{\xi} \sum_{i_{1},i_{2}} \sum_{j=2}^{\infty} (-1)^{\frac{j+\nu}{2}} \frac{i!}{i_{1}!i_{2}!} \frac{2(\nu-1)!!}{(\nu)!!} \frac{2(2j)!}{(2^{j}+1)!} (a)^{\xi_{1}^{-2}+2^{t+1}} \cdot (b)^{2j+1} \cdot I_{7} \\ &+ \sum_{i_{1},i_{2}} \sum_{j=2}^{j-1} (-1)^{\frac{j+\nu}{2}} \frac{i!}{2^{j-1}} \frac{2(\nu-1)!!}{(2^{j-1})!} \frac{2(\xi_{1}^{-1})!!}{(\nu)!!} \frac{2(\xi_{1}^{-1})!!}{(\xi_{1}^{-2j})(\xi_{1}^{-2j-2}) \dots (2^{-2j})} \\ &\cdot \frac{(2j)!}{2^{2j}(j!)^{2}(2j+1)} \frac{(j-1)(j-2) \dots (j-t_{0})}{(2^{j-1})(2^{j-3}) \dots (2^{j}-2t_{0}^{+1})} (a) (b)^{2j+1} \cdot I_{8} \\ &+ \sum_{i_{1},i_{2}} \sum_{j=2}^{\infty} (-1)^{\frac{j+\nu}{2}} \frac{\xi_{1}}{i_{1}!i_{2}!} \frac{i!}{2^{(\nu-1)!!}} \frac{2(\nu-1)!!}{2^{2j}(j!)^{2}(2j+1)} \frac{(2j)!}{(\xi_{1}^{-2j-2})(\xi_{1}^{-2j-2}) \dots (2^{-2j})} \\ &\cdot \frac{2(\xi_{1}^{-1})!!}{(\xi_{1}^{-2j})(\xi_{1}^{-2j-2}) \dots (2^{-2j})(2j-1)!} \frac{2(\nu-1)!!}{(\nu)!!} \frac{2(2j)!}{2^{2j}(j!)^{2}(2j+1)} \\ &\cdot \frac{2(\xi_{1}^{-1})!!}{(\xi_{1}^{-2j})(\xi_{1}^{-2j-2}) \dots (2^{-2j})(2j-1)!} (a) (b)^{2j+1} \cdot I_{9} \end{aligned}$$

The integrals in (44) can be evaluated as in Appendix.

FIG. 1

FIG. 2

REFERENCES

- [1] L.S. Fu and T. Mura, Volume Integrals Associated with the Inhomogeneous Helmholtz Equation: I. Ellipsoidal Region, NASA Contractor Report XXXX, 1983.
- [2] L.S. Fu and T. Mura, Volume Integrals of an Ellipsoid Associated with the Inhomogeneous Helmholtz Equation, <u>Wave Motion</u>, <u>4</u>(2), 141-149, (April, 1982).
- [3] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, N.Y., 1965.
- [4] P.M. Morse and H. Feshbach, <u>Methods of Theoretical Physics</u>, McGraw-Hill, N.Y., 1277, 1953.

APPENDIX

The I-Integrals and π -Functions

(a) The I-integrals

(i)
$$I_{1} = \int_{-\ell}^{\ell} (x')^{\lambda+2\eta} (b^{2}+x'^{2})^{\frac{1}{1}-1} \sqrt{(a^{2}+b^{2}+x'^{2})^{\frac{3}{2}}} dx'$$

$$= \pi_{\eta_{\Gamma_{1}}, \Gamma_{2}} \frac{\Gamma!}{\Gamma_{1}! \Gamma_{2}!} (b)^{2\Gamma_{1}} \cdot (a^{2}+b^{2})^{\frac{1}{3}-1} \cdot (\ell)^{\eta-2t_{3}+1} \sqrt{(a^{2}+b^{2}+2)^{\frac{5}{2}}}$$

$$+ \sum_{\Gamma_{1}, \Gamma_{2}} (-1)^{\eta/2} \frac{\Gamma!}{\Gamma_{1}! \Gamma_{2}!} \frac{8(\eta-1)!!}{(\eta+4)!!} (b)^{2\Gamma_{1}} \cdot (a^{2}+b^{2})^{\eta/2} [\frac{1}{2}\ell \cdot \sqrt{(a^{2}+b^{2}+\ell^{2})^{\frac{3}{2}}} +$$

$$+ \frac{3}{4} (a^{2}+b^{2}) (\ell \sqrt{a^{2}+b^{2}+\ell^{2}} + (a^{2}+b^{2}) \sinh^{-1} \frac{\ell}{\sqrt{a^{2}+b^{2}}})]$$

if λ is even

0 if
$$\lambda$$
 is odd

in which the π -function π_n is defined in (b) of the Appendix.

(ii)
$$I_2 = I_2' + I_2''$$

$$I_2' = \int_{-\ell}^{\ell} a(x')^{\lambda+2\eta} 1_{(b^2+x'^2)^{\xi/2}} \sqrt{a^2+b^2+x'^2} dx'$$

$$= \prod_{\eta_1} \sum_{\theta_1,\theta_2} \frac{\theta!}{\theta_1!\theta_2!} (a) (b)^{2\theta_1} \cdot (a^2+b^2)^{t_4-1} \cdot (\ell)^{\eta_1-2t_4+1} \cdot \sqrt{(a^2+b^2+\ell^2)^3}$$

$$+ \sum_{\theta_1,\theta_2} (-1)^{\eta_1/2} \frac{\theta!}{\theta_1!\theta_2!} \frac{2(\eta_1-1)!!}{(\eta_1+2)!!} (a) (b)^{2\theta_1} (a^2+b^2)^{\eta_1/2}$$

$$\cdot (\ell\sqrt{a^2+b^2+2} + (a^2+b^2)sh^{-1} \frac{\ell}{\sqrt{a^2+b^2}}$$
if λ is even
$$= 0$$
if λ is odd.

(iii)
$$I_{3} = \int_{-\ell}^{\ell} (x')^{\lambda+2i} 1^{+2t} 3^{-2} \sqrt{a^{2}+x'^{2}} dx'$$

$$= \pi_{\eta_{2}} (a^{2})^{t} 5^{-1} (\ell)^{\eta_{2}-2t} 5^{+1} \sqrt{(a^{2}+\ell^{2})^{3}} + (-1)^{\eta_{2}/2} \frac{2(\eta_{2}-1)!!}{(\eta_{2}+2)!!} (a^{2})^{\eta_{2}/2}$$

$$\cdot (\ell \sqrt{a^{2}+\ell^{2}} + a^{2} \sinh^{-1} \frac{\ell}{a}) \qquad \text{if } \lambda \text{ is even}$$

$$= 0 \qquad \qquad \text{if } \lambda \text{ is odd.}$$

(iv)
$$I_{4} = \int_{-\ell}^{\ell} (x')^{\lambda+2i} 1^{+\xi} 1 \sinh^{-1} \frac{a}{x'} dx'$$

$$= \frac{a}{n_{9}+1} [\Pi_{n_{9}} (a^{2})^{t} 15^{-1} (\ell)^{n_{9}-2t} 15^{+1} \sqrt{a^{2}+\ell^{2}} + (-1)^{n_{9}/2} \frac{2(n_{9}-1)!!}{(n_{9})!!} (a)^{n_{9}} \sinh^{-1} \frac{\ell}{a}]$$
if λ is even
$$= 0 \qquad \qquad \text{if } \lambda \text{ is odd.}$$

$$15$$

(v)
$$I_{5} = \int_{-\ell}^{\ell} (x')^{\lambda+2i} 1^{+2t} 4^{-2} \frac{dx'}{\sqrt{a^{2}+x'^{2}}}$$

$$= \pi_{\eta_{8}}(a)^{t_{14}^{-1}} \cdot (\ell)^{\eta_{8}^{-2t} 14^{-1}} \cdot \sqrt{a^{2}+\ell^{2}} + (-1)^{\eta_{8}/2} \frac{2(\eta_{8}^{-1})!!}{(\eta_{8}^{2})!!} (a^{2})^{\eta_{8}/2} \sinh^{-1}\frac{\ell}{a}$$
if λ is even
$$= 0 \qquad \text{if } \lambda \text{ is odd.}$$

$$\begin{split} & I_{6} = I_{6}^{!} - I_{6}^{"} \\ & I_{6}^{!} = \int_{-\ell}^{\ell} (x')^{\lambda + 2i} 1^{+\xi} 1^{-2} sh^{-1} \frac{a}{x'} dx' \\ & = \frac{a}{\eta_{10} + 1} \{ \Pi_{\eta_{10}} (a^{2})^{t} 16^{-1} \cdot (\ell)^{\eta_{10} - 2t} 16^{+1} \cdot \sqrt{a^{2} + \ell^{2}} + (-1)^{\eta_{10} / 2} \frac{2(\eta_{10} - 1)!!}{(\eta_{10})!!} \cdot \\ & \cdot (a)^{\eta_{10}} sh^{-1} \frac{\ell}{a} \} \qquad \text{if } \lambda \text{ is even} \\ & = 0 \qquad \qquad \text{if } \lambda \text{ is odd.} \\ & I_{6}^{"} = \int_{-\ell}^{\ell} (x')^{\lambda + 2i} 1^{+\xi} 1^{-2} \frac{a}{\sqrt{a^{2} + x^{2}}} dx' \\ & = \Pi_{\eta_{5}} (a)^{t_{9}} \cdot (\ell)^{\eta_{5} - 2t_{9} - 1} \cdot \sqrt{a^{2} + \ell^{2}} + (-1)^{\eta_{5} / 2} \frac{2(\eta_{5} - 1)!!}{(\eta_{5})!!} (a)^{\eta_{5} / 2} sh^{-1} \frac{\ell}{a} \end{split}$$

$$\eta_5$$
 if λ is even

= 0

$$\begin{aligned} \text{(vii)} \quad & \text{I}_7 = \int_{-\ell}^{\ell} (\text{x'})^{\lambda + 2i} 1^{+2t} 2^{-2} \frac{d\text{x'}}{\sqrt{(a^2 + \text{x'}^2)^2 j^{-1}}} \\ & = & \text{II}_{\eta_6} (a^2)^{t_{10}^{-1}} \frac{(\ell)^{\eta_6 - 2t} 10^{+1}}{\sqrt{(a^2 + \ell^2)^2 j^{-3}}} + (-1)^{\eta_6/2} \frac{2(\eta_6 - 1)!!}{(\eta_6 - 2j - 2)(\eta_6 - 2j - 4) \dots (-2j)} \end{aligned}$$

if λ is odd.

$$\frac{a^{6} \ell}{(2j-3) a^{2} \sqrt{(a^{2}+\ell^{2})^{2j-3}}} \left(1 + \sum_{k_{11}=1}^{j-2} \frac{8^{k_{11}} (j-2) (j-3) \dots (j-k_{11}-1)}{(2j-5) (2j-7) \dots (2j-2k_{11}-3)} \frac{(a^{2}+2)^{k_{11}}}{(4a^{2})^{k_{11}}}\right)$$

if λ is even

= 0

if λ is odd.

$$I_{8} = \int_{-\ell}^{\ell} (x^{*})^{\lambda+2i} 1^{+\xi} 1^{-2t} o^{-2} \frac{(a^{2}+x^{*})^{t} o_{dx^{*}}}{\sqrt{(a^{2}+x^{*})^{2}j-1}}$$

$$= II_{\eta_{7}} \sum_{\phi_{1},\phi_{2}} \frac{\phi!}{\phi_{1}! \phi_{2}!} \frac{(a^{2})^{t} 12^{-1+\phi} 1_{(\ell)}^{\eta_{7}-2t} 12^{+1}}{\sqrt{(a^{2}+\ell^{2})^{2}j-3}} + \sum_{\phi_{1},\phi_{2}} \frac{\phi!}{\phi_{1}! \phi_{2}!}$$

$$\cdot (-1)^{\eta_{7}/2} \frac{2(\eta_{7}-1)!!}{(\eta_{7}-2j-2)(\eta_{7}-2j-4)\dots(-2j)}$$

$$\frac{(a^{2})^{\eta_{7}/2+\phi} 1_{\ell}}{(2j-3) a^{2}\sqrt{(a^{2}+\ell^{2})^{2}j-3}} (1 + \sum_{k_{1,z}=1}^{j-2} \frac{8^{k_{13}}(j-2)(j-3)\dots(j-k_{13}-1)(a^{2}+\ell^{2})^{k_{13}}}{(2j-5)(2j-7)\dots(2j-2k_{1z}-3)(4a^{2})^{k_{13}}}$$

if λ is even

= (

if λ is odd.

$$\begin{split} &\text{(ix)} & \text{I}_{9} = \int_{-\ell}^{\ell} (x')^{\lambda + 2i} \frac{1^{+\xi} 1^{-2}}{\sqrt{(a^{2} + x'^{2})^{2j - 1}}} \\ &= \prod_{\eta_{8}} \frac{(a^{2})^{\frac{t}{12^{-1}}} (\ell)^{\eta_{8} - 2t} 12^{+1}}{\sqrt{(a^{2} + \ell^{2})^{2j - 1}}} + (-1)^{\eta_{8}/2} \frac{2(\eta_{8} - 1)!!}{(\eta_{8} - 2j - 2)(\eta_{8} - 2j - 4) \dots (-2j)} \\ &= \frac{a^{\eta_{8}} \ell}{(2j - 3) a^{2} \sqrt{(a^{2} + \ell^{2})^{2j - 3}}} (1 + \sum_{k_{12} = 1}^{j - 2} \frac{8^{k_{12}} (j - 2)(j - 3) \dots (j - k_{12}^{-1})(a^{2} + \ell^{2})^{k_{12}}}{(2j - 5)(2j - 7) \dots (2j - 2k_{12}^{-3})(4a^{2})^{k_{12}}}) \end{split}$$

if λ is even

= 0

if λ is odd.

(b) The π -Functions

The π -functions in the I-integrals listed in (a) of this Appendix are defined as follows:

(i)
$$\Pi_{\eta} = \frac{2}{\eta+1} \sum_{t_3=1}^{\eta/2} (-1) \frac{(\eta+1)(\eta-1)\dots(\eta-2t_3+3)}{(\eta+4)(\eta+2)\dots(\eta-2t_3+6)}$$

$$\eta = \lambda + 2\eta_2 + 2\Gamma_2 \quad \text{(is even)}$$

$$\Gamma_1 + \Gamma_2 = \Gamma = t_1-1$$

(ii)
$$\Pi_{\eta_1}$$
 as the same as (35), if replace ξ with η_1
$$\eta_1 = \lambda + 2\eta_1 + 2\theta_2 \quad \text{(is even)}$$

$$\theta_1 + \theta_2 = \theta = \xi/2$$

(iii)
$$\pi_{\eta_3} = \frac{2}{\eta_3 + 1} \sum_{t_7 = 1}^{\eta_7/2} (-1)^{t_7 + 1} \frac{(\eta_3 + 1)(\eta_3 - 1) \dots (\eta_3 - 2t_7 + 3)}{(\eta_3 - 2j_1 + 1)(\eta_3 - 2j_1 - 1) \dots (\eta_3 - 2j_1 - 2t_7 + 3)}$$

$$\pi'_{\eta_3} = \frac{4}{3 - 2(j_1 + 1)} \sum_{t_8 = 1}^{j_1 - 1} (-1)^{t_8 + 1} \cdot (2)^{t_8 - 1} \cdot \frac{[3 - 2(j_1 + 1)][3 - 2j_1] \dots [3 - 2(j_1 - t_8 + 2)]}{(j_1 - 1)(j_1 - 2) \dots (j_1 - t_8)}$$

$$\eta_3 = \lambda + 2\eta_1 + 2e_2 \quad \text{(is even)}$$

$$e_1 + e_2 = e = \frac{3}{2} \xi$$

- (iv) Π_{η_2} as the same as (35), if replace ξ with η_2 $\eta_2 = \lambda + 2i_1 + 2t_3 - 2$ (is even)
- (v) Π_{η_9} as the same as (32a), if replace ν with η_9 $\eta_9 = \lambda + 2i_1 + \xi_1 \quad \text{(is even)}$

- (vi) Π_{η_8} as the same as (32a), if replace ν with η_8 $\eta_8 = \lambda + 2i_1 + 2t_4 - 2 \quad \text{(is even)}$
- (vii) $\Pi_{\eta_{10}}$ as the same as (32a), if replace ν with η_{10} $\eta_{10} = \lambda + 2i_1 + \xi_1 2 \quad \text{(is even)}$
- (viii) Π_{η_5} as the same as (32a), if replace ν with η_5 $\eta_5 = \lambda + 2i_1 + \xi_1 2 \quad \text{(is even)}$
- (x) Π_{η_7} as the same as Π_{η_6} , if replace η_6 with η_7 $\eta_7 = \lambda + 2i_1 + \xi_1 + 2\phi_2 2t_0 2 \quad \text{(is even)}$ $\phi_1 + \phi_2 = \phi = t_0$
- (xi) Π_{η_8} as the same as Π_{η_6} , if replace η_6 with η_8 $\eta_8 = \lambda + 2i_1 + \xi_1 - 2$ (is even)

4 Title and Subtitle		· ·
4. Title and Subtitle		5. Report Date
Volume Integrals Associated With the Inhomogeneous Helmholtz Equation. II - Cylindrical Region; Rectangular Region		December 1983
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
W. F. Zhong and L. S. Fu		None
•		10. Work Unit No.
9. Performing Organization Name and Address		
The Ohio State University		11. Contract or Grant No.
1314 Kinnear Road Columbus, Ohio 43212		NSG3-340
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		Contractor Report
		14. Sponsoring Agency Code
		505-53-12 (E-1838)
16. Abstract		
Problems of wave phenomena elasticity are often reduc	ed to an integration of the sented for volume integrals 2, for the cases of an ell region of rectangular para expansions and multinomial series form for regions rethe origin to the point of of these integrals are eas	e inhomogenous Helmholtz s associated with the ipsoidal region, a finite llelepiped. By using theorem, these volume > r' and r < r', where r observation and source, sily evaluated. When
Problems of wave phenomena elasticity are often reduce quation. Results are pre Helmholtz operator, √2 + α cylindrical region, and a appropriate Taylor series integrals are obtained in and r' are distances from respectively. Derivatives the wave number approaches of variable densities. 17. Key Words (Suggested by Author(s)) Acoustic waves; Elastic wawaves; Helmholtz equation; inhomogeneities; Cylindricalinhomogeneities	ed to an integration of the sented for volume integrals 2, for the cases of an ellipegion of rectangular paralexpansions and multinomial series form for regions rethe origin to the point of of these integrals are easizero, the results reduce of the series of of	e inhomogenous Helmholtz s associated with the ipsoidal region, a finite llelepiped. By using theorem, these volume r' and r < r', where r observation and source, sily evaluated. When directly to the potentials