Compositing

CS4620 Lecture 24

Pixel coverage

- Antialiasing and compositing both deal with questions of pixels that contain unresolved detail
- Antialiasing: how to carefully throw away the detail
- Compositing: how to account for the detail when combining images

[Titanic; DigitalDomain; vfxhq.com]

Compositing

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

$$r_C = tr_A + (1 - t)r_B$$
$$g_C = tg_A + (1 - t)g_B$$
$$b_C = tb_A + (1 - t)b_B$$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

$$r_C = tr_A + (1 - t)r_B$$
$$g_C = tg_A + (1 - t)g_B$$
$$b_C = tb_A + (1 - t)b_B$$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

$$r_C = tr_A + (1 - t)r_B$$
$$g_C = tg_A + (1 - t)g_B$$
$$b_C = tb_A + (1 - t)b_B$$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

$$r_C = tr_A + (1 - t)r_B$$
$$g_C = tg_A + (1 - t)g_B$$
$$b_C = tb_A + (1 - t)b_B$$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

- Often useful combine elements of several images
- Trivial example: video crossfade
 - smooth transition from one scene to another

$$r_C = tr_A + (1 - t)r_B$$
$$g_C = tg_A + (1 - t)g_B$$
$$b_C = tb_A + (1 - t)b_B$$

- note: weights sum to 1.0
 - no unexpected brightening or darkening
 - no out-of-range results
- this is linear interpolation

Foreground and background

- In many cases just adding is not enough
- Example: compositing in film production
 - shoot foreground and background separately
 - also include CG elements
 - this kind of thing has been done in analog for decades
 - how should we do it digitally?

Foreground and background

How we compute new image varies with position

 Therefore, need to store some kind of tag to say what parts of the image are of interest

Binary image mask

- First idea: store one bit per pixel
 - answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Binary image mask

- First idea: store one bit per pixel
 - answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Binary image mask

- First idea: store one bit per pixel
 - answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- same problem, same solution: intermediate values

Partial pixel coverage

 The problem: pixels near boundary are not strictly foreground or background

- how to represent this simply?
- interpolate boundary pixels between the fg. and bg. colors

Alpha compositing

- Formalized in 1984 by Porter & Duff
- Store fraction of pixel covered, called α

$$E = A \text{ over } B$$

$$r_E = \alpha_A r_A + (1 - \alpha_A) r_B$$

$$g_E = \alpha_A g_A + (1 - \alpha_A) g_B$$

$$b_E = \alpha_A b_A + (1 - \alpha_A) b_B$$

- this exactly like a spatially varying crossfade
- Convenient implementation
 - 8 more bits makes 32
 - 2 multiplies + I add per pixel for compositing

A little notation

- Define $\bar{\alpha} = 1 \alpha$
- then in E = A over B

$$c_E = \alpha_A c_A + \bar{\alpha}_A c_B$$

Alpha compositing—example

Alpha compositing—example

Alpha compositing—example

- so far have only considered single fg. over single bg.
- in real applications we have *n* layers
 - Titanic example
 - compositing foregrounds to create new foregrounds
 - what to do with α ?
 - want (c_A, α_A) over $(c_B, \alpha_B) = (\alpha_A c_A + \bar{\alpha}_A c_B, ???)$
- desirable property: associativity

$$A ext{ over } (B ext{ over } C) = (A ext{ over } B) ext{ over } C$$

– to make this work we need to be careful about how α is computed

Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

$$c_D = \alpha_A c_A + \bar{\alpha}_A [\alpha_B c_B + \bar{\alpha}_B c_C]$$
$$= \alpha_A c_A + \bar{\alpha}_A \alpha_B c_B + \bar{\alpha}_A \bar{\alpha}_B c_C$$

Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

$$c_D = \alpha_A c_A + \bar{\alpha}_A [\alpha_B c_B + \bar{\alpha}_B c_C]$$
$$= \alpha_A c_A + \bar{\alpha}_A \alpha_B c_B + \bar{\alpha}_A \bar{\alpha}_B c_C$$

Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

$$c_D = \alpha_A c_A + \bar{\alpha}_A [\alpha_B c_B + \bar{\alpha}_B c_C]$$
$$= \alpha_A c_A + \bar{\alpha}_A \alpha_B c_B + \bar{\alpha}_A \bar{\alpha}_B c_C$$

Some pixels are partly covered in more than one layer

– in D = A over (B over C) what will be the result?

$$c_D = \alpha_A c_A + \bar{\alpha}_A [\alpha_B c_B + \bar{\alpha}_B c_C]$$
$$= \alpha_A c_A + \bar{\alpha}_A \alpha_B c_B + \bar{\alpha}_A \bar{\alpha}_B c_C$$

Fraction covered by neither A nor B

- What does this imply about (A over B)?
 - Coverage has to be

$$\alpha_{(A \text{ over } B)} = 1 - \bar{\alpha}_A \bar{\alpha}_B$$
$$= \alpha_A + \bar{\alpha}_A \alpha_B = \alpha_B + \alpha_A \bar{\alpha}_B$$

- ...but the color values then don't come out nicely in D = (A over B) over C, the color should be the same as in A over (B over C):

$$c_D = \alpha_{(A \text{ over } B)}(\dots) + \bar{\alpha}_{(A \text{ over } B)}c_C$$
$$= (\alpha_A + \bar{\alpha}_A \alpha_B)(\dots) + \bar{\alpha}_A \bar{\alpha}_B c_C$$
$$= \alpha_A c_A + \bar{\alpha}_A \alpha_B c_B + \bar{\alpha}_A \bar{\alpha}_B c_C$$

An improvement

Compositing equation again

$$c_E = \alpha_A c_A + (1 - \alpha_A) c_B$$

- Note c_A appears only in the product $\alpha_A c_A$
 - so why not do the multiplication ahead of time?
- Leads to premultiplied alpha:
 - store pixel value (r', g', b', α) where $c' = \alpha c$
 - E = A over B becomes

$$c_E' = c_A' + (1 - \alpha_A)c_B'$$

- this turns out to be more than an optimization...
- hint: so far the background has been opaque!

Premultiplied alpha

What about just E = A over B (with B transparent)?

- in premultiplied alpha, the result

$$(c'_A, \alpha_A)$$
 over $(c'_B, \alpha_B) = (c'_A + \bar{\alpha}_A c_B, \alpha'_A + \bar{\alpha}_A \alpha_B)$

treats alpha just like colors, and it leads to associativity.

A over (B over C)

(A over B) over C

color

A over (B over C)

(A over B) over C

color

$$c'_A + \bar{\alpha}_A [c'_B + \bar{\alpha}_B c'_C]$$
$$c'_A + \bar{\alpha}_A c'_B + \bar{\alpha}_A \bar{\alpha}_B c'_C$$

A over (B over C)

(A over B) over C

color

$$c'_{A} + \bar{\alpha}_{A}[c'_{B} + \bar{\alpha}_{B}c'_{C}] \qquad [c'_{A} + \bar{\alpha}_{A}c'_{B}] + \bar{\alpha}_{A}\bar{\alpha}_{B}c'_{C}$$
$$c'_{A} + \bar{\alpha}_{A}c'_{B} + \bar{\alpha}_{A}\bar{\alpha}_{B}c'_{C} \qquad c'_{A} + \bar{\alpha}_{A}c'_{B} + \bar{\alpha}_{A}\bar{\alpha}_{B}c'_{C}$$

$$[c'_A + \bar{\alpha}_A c'_B] + \bar{\alpha}_A \bar{\alpha}_B c'_C$$

$$c'_A + \bar{\alpha}_A c'_B + \bar{\alpha}_A \bar{\alpha}_B c'_C$$

A over (B over C)

(A over B) over C

color

$$c'_{A} + \bar{\alpha}_{A}[c'_{B} + \bar{\alpha}_{B}c'_{C}] \qquad [c'_{A} + \bar{\alpha}_{A}c'_{B}] + \bar{\alpha}_{A}\bar{\alpha}_{B}c'_{C}$$
$$c'_{A} + \bar{\alpha}_{A}c'_{B} + \bar{\alpha}_{A}\bar{\alpha}_{B}c'_{C} \qquad c'_{A} + \bar{\alpha}_{A}c'_{B} + \bar{\alpha}_{A}\bar{\alpha}_{B}c'_{C}$$

$$[c'_A + \bar{\alpha}_A c'_B] + \bar{\alpha}_A \bar{\alpha}_B c'_C$$
$$c'_A + \bar{\alpha}_A c'_B + \bar{\alpha}_A \bar{\alpha}_B c'_C$$

$$\alpha_A + \bar{\alpha}_A [\alpha_B + \bar{\alpha}_B \alpha_C]$$
$$\alpha_A + \bar{\alpha}_A \alpha_B + \bar{\alpha}_A \bar{\alpha}_B \alpha_C$$

A over (B over C)

(A over B) over C

color

$$c'_A + \bar{\alpha}_A [c'_B + \bar{\alpha}_B c'_C]$$
$$c'_A + \bar{\alpha}_A c'_B + \bar{\alpha}_A \bar{\alpha}_B c'_C$$

$$\alpha_A + \bar{\alpha}_A [\alpha_B + \bar{\alpha}_B \alpha_C]$$
$$\alpha_A + \bar{\alpha}_A \alpha_B + \bar{\alpha}_A \bar{\alpha}_B \alpha_C$$

$$[c'_A + \bar{\alpha}_A c'_B] + \bar{\alpha}_A \bar{\alpha}_B c'_C$$

$$c'_A + \bar{\alpha}_A c'_B + \bar{\alpha}_A \bar{\alpha}_B c'_C$$

$$[\alpha_A + \bar{\alpha}_A \alpha_B] + \bar{\alpha}_A \bar{\alpha}_B \alpha_C$$
$$\alpha_A + \bar{\alpha}_A \alpha_B + \bar{\alpha}_A \bar{\alpha}_B \alpha_C$$

Compositing algebras

- Compositing is a multiply-and-add operation
 - "take the color you have, scale it by I-alpha, add some more"
- This is a ID affine transformation

$$\begin{bmatrix} \bar{\alpha}_A & c_A' \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \bar{\alpha}_B & c_B' \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \bar{\alpha}_A \bar{\alpha}_B & c_A' + \bar{\alpha}_A c_B' \\ 0 & 1 \end{bmatrix}$$

- Once we write it like this, associativity is automatically inherited from matrix multiplication!
 - and we realize we haven't invented any new math after all.

Independent coverage assumption

- Why is it reasonable to blend α like a color?
- Simplifying assumption: covered areas are independent
 - that is, uncorrelated in the statistical sense

description	area		
$\overline{A} \cap \overline{B}$	$(1-\alpha_A)(1-\alpha_B)$		
$A \cap \overline{B}$	$\alpha_A(1-\alpha_B)$		
$\overline{A} \cap B$	$(1-\alpha_A)\alpha_B$		
$A \cap B$	$\alpha_A \alpha_B$		

Independent coverage assumption

Holds in most but not all cases

- This will cause artifacts
 - but we'll carry on anyway because it is simple and usually works...

Alpha compositing—failures

positive correlation: too much foreground

negative correlation: too little foreground

Porter & Duff 84]

Other compositing operations

Generalized form of compositing equation:

$$\alpha_E = A \text{ op } B$$

$$c'_E = F_A c'_A + F_B c'_B$$

 $1 \times 2 \times 3 \times 2 = 12$ reasonable choices

operation	quadruple	diagram	F_A	F_B
clear	(0,0,0,0)		0	0
A	(0,A,0,A)		1	0
В	(0,0,B,B)		0	1
A over B	(0,A,B,A)		1	1-00
B over A	(0,A,B,B)		1-α _B	1
A in B	(0,0,0,A)		α_B	0
B in A	(0,0,0,B)		0	α_A
A out B	(0,A,0,0)		$1-\alpha_B$	0
B out A	(0,0,B,0)		0	1-a _A
A atop B	(0,0,B,A)		α_B	$1-\alpha_A$
B atop A	(0,A,0,B)		1- <i>a</i> _B	α_A
A xor B	(0,A,B,0)	X	1-αΒ	1-a _A