The Graph Structure of Process Interpretations of Regular Expressions

Clemens Grabmayer

https://clegra.github.io

Department of Computer Science

S GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES
Scuola Universitaria Superiore

L'Aquila, Italy

IFIP 1.6 Working Group Meeting

Nancy

July 1, 2024

Overview

Process interpretation $P(\cdot)$ of regular expressions (Milner, 1984)

Process interpretation $P(\cdot)$ of regular expressions (Milner, 1984)

Process interpretation $P(\cdot)$ of regular expressions (Milner, 1984)

Definition (Transition system specification T)

$$\frac{e_i \xrightarrow{a} e'_i}{a \xrightarrow{a} 1} \qquad \frac{e_i \xrightarrow{a} e'_i}{e_1 + e_2 \xrightarrow{a} e'_i} (i \in \{1, 2\})$$

Definition (Transition system specification T)

$$\frac{e_i \xrightarrow{a} e'_i}{e_1 + e_2 \xrightarrow{a} e'_i} (i \in \{1, 2\})$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$

Definition (Transition system specification \mathcal{T})

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \overline{(e^{*}) \Downarrow}$$

$$\frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

Definition (Transition system specification \mathcal{T})

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow}$$

$$\frac{a^{a} + 1}{a^{a} + 1} \qquad \frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e_{1} \stackrel{a}{\rightarrow} e'_{1}}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{1} \cdot e_{2}} \qquad \frac{e_{1} \Downarrow}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{2}} \qquad \frac{e^{a} \stackrel{a}{\rightarrow} e'}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

Definition (Transition system specification \mathcal{T})

$$\frac{e_{i} \Downarrow}{(e_{1} + e_{2}) \Downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \Downarrow}{(e_{1} \cdot e_{2}) \Downarrow} \qquad \frac{e^{*} \Downarrow}{(e^{*}) \Downarrow}$$

$$\frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{a \stackrel{a}{\rightarrow} 1} \qquad \frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e_{1} \stackrel{a}{\rightarrow} e'_{1}}{e_{1} \stackrel{a}{\rightarrow} e'_{1}} \qquad \frac{e_{1} \Downarrow}{e_{1} \stackrel{a}{\rightarrow} e'_{2}} \qquad \frac{e^{\stackrel{a}{\rightarrow} e'}}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

Definition

The process (graph) interpretation P(e) of a regular expression e:

P(e) :=labeled transition graph generated by e by derivations in \mathcal{T} .

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- There is an infinite path from the start vertex.
- Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

A process graph is a loop graph if:

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

(L1), (L2) (L1),

(L1),(L2),(L3)

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Definition

- (L1) There is an infinite path from the start vertex.
- (L2) Every infinite path from the start vertex returns to it.
- (L3) Termination is only possible at the start vertex.

Loop elimination, and properties

- →_{elim}: eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

(i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.

Loop elimination, and properties

- →_{elim}: eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

- (i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.
- $(ii) \longrightarrow_{\mathsf{elim}} \cup \longrightarrow_{\mathsf{prune}} is decreasing [Van Oostrom, de Bruijn]$

Loop elimination, and properties

- →_{elim}: eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

- (i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.
- $(ii) \longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is decreasing, and hence locally confluent.

Loop elimination, and properties

- →_{elim}: eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

- (i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.
- (ii) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is decreasing, and hence locally confluent.
- $(iii) \longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}} is confluent.$

- \longrightarrow_{elim} : eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

(i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.

- \longrightarrow_{elim} : eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

(i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.

Loop elimination, and properties

- →_{elim}: eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

- (i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.
- (ii) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is decreasing, and so due to (i) locally confluent.

Loop elimination, and properties

- →_{elim}: eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune: remove a transition to a deadlocking state

Lemma

- (i) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating.
- (ii) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is decreasing, and so due to (i) locally confluent.
- $(iii) \longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}} is confluent.$

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \mathsf{elim}$$

 $\wedge G_0$ has no infinite trace).

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \land G_0 \text{ has no infinite trace}).$$

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\longrightarrow_{\text{elim}}$ normal form without an infinite trace.

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \land G_0 \text{ has no infinite trace}).$$

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\longrightarrow_{\text{elim}}$ normal form without an infinite trace.
- (iii) There is an $\longrightarrow_{\text{elim,prune}}$ normal form without an infinite trace.

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace*{1cm}} \mathsf{elim}$$

 $\land G_0 \text{ has no infinite trace}).$

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\longrightarrow_{\text{elim}}$ normal form without an infinite trace.
- (iii) There is an →_{elim,prune} normal form without an infinite trace.
- (iv) Every →_{elim} normal form is without an infinite trace.
- (v) Every $\longrightarrow_{\text{elim,prune}}$ normal form is without an infinite trace.

Structure property LEE

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \land G_0 \text{ has no infinite trace}).$$

Lemma (by using termination and confluence)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\longrightarrow_{\text{elim}}$ normal form without an infinite trace.
- (iii) There is an →_{elim,prune} normal form without an infinite trace.
- (iv) Every $\longrightarrow_{\text{elim}}$ normal form is without an infinite trace.
- (v) Every $\longrightarrow_{\text{elim,prune}}$ normal form is without an infinite trace.

Theorem (efficient decidability)

The problem of deciding LEE(G) for process graphs G is in PTIME.

Interpretation/extraction correspondences with LEE

(← G/Fokkink 2020, G 2021)

```
(Int)_{P}^{(*/+)}: P^{\bullet}-(*/+)-expressible graphs have structural property LEE Process interpretations P(e) of (*/+) regular expressions e are finite process graphs that satisfy LEE.

(Extr)_{P}: LEE implies [\cdot]_{P}-expressibility

From every finite process graph G with LEE a regular expression e can be extracted such that G \hookrightarrow P(e).
```

Interpretation/extraction correspondences with LEE

(← G/Fokkink 2020, G 2021)

```
(Int)_{D}^{(*/\pm)}: P^{\bullet}-(*/\pm)-expressible graphs have structural property LEE
                Process interpretations P(e)
                 of (*/1) regular expressions e
                   are finite process graphs that satisfy LEE.
(Extr)<sub>P</sub>: LEE implies \llbracket \cdot \rrbracket_P-expressibility
              From every finite process graph G with LEE
               a regular expression e can be extracted
                 such that G \stackrel{\text{def}}{=} P(e).
(Coll): LEE is preserved under collapse
            The class of finite process graphs with LEE
              is closed under bisimulation collapse.
```

 G_4

(

 $)^* \cdot 0$

$$)^* \cdot 0)$$

$$\downarrow a$$

$$)^* \cdot 0$$

$$\begin{array}{c}
\widehat{G_4} & P(e) \stackrel{?}{=} G_4 \\
 & \stackrel{e}{\longrightarrow} (a \cdot 1) \cdot \left(\left(c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)) \right)^* \cdot 0 \right) \\
\downarrow a & \downarrow a \\
b & \downarrow a \\
 & \downarrow a \\
 & \downarrow a \\
 & \downarrow a \\
 & \downarrow b \\$$

$$\begin{array}{c}
\widehat{G_4} & P(e) \supseteq G_4 \not\cong P(e) \\
& \stackrel{e}{\longrightarrow} (a \cdot 1) \cdot \left(\left(c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)) \right)^* \cdot 0 \right) \\
\downarrow a \\
\downarrow b \\
\downarrow b \\
\downarrow a \\
\downarrow b \\
\downarrow b \\
\downarrow a \\
\downarrow b \\
\downarrow$$

$$G_5 \qquad P(e) = G_5$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^* \cdot 0)$$

$$G_{5}$$

$$P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad \qquad \downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow ((1 \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a \qquad \qquad \downarrow a$$

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad$$

$$G_{5} \qquad P(e) = G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a \qquad \qquad \downarrow a \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow c \qquad \qquad \downarrow a \qquad$$

$$G_{5}$$

$$P(e) = G_{5} \Rightarrow G_{4}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (a \cdot 1)) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

$$G_{5}$$

$$P(e) = G_{5} \Rightarrow G_{4} \not\cong G_{5}$$

$$(a \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow a$$

$$(1 \cdot 1) \cdot ((c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*} \cdot 0)$$

$$\downarrow c$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (a \cdot 1) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0)$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow ((1 \cdot (b \cdot 1 + b \cdot (a \cdot 1))) \cdot (c \cdot (a \cdot 1) + a \cdot (b \cdot 1 + b \cdot (a \cdot 1)))^{*}) \cdot 0$$

Observation

▶ LEE is not invariant under bisimulation.

Observation

▶ LEE is not invariant under bisimulation.

Observation

▶ LEE is not invariant under bisimulation.

Observation

- ▶ LFF is not invariant under bisimulation.
- ▶ LEE is not preserved by converse functional bisimulation.

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \overset{\longrightarrow}{=} G_2 \implies \mathsf{LEE}(G_2)$$
.

Proof (Idea).

Use loop elimination in G_1 to carry out loop elimination in G_2 .

$$P(a(a(b+ba))^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$

$$P(a(a(b+ba))^* \cdot 0)$$

$$P((aa(ba)^* \cdot b)^* \cdot 0)$$

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse $C \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse $C \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

▶ images of loop subcharts in G_1 under \geq are loop subcharts of G_2 .

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse $C \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

- ▶ images of loop subcharts in G_1 under \geq are loop subcharts of G_2 .
- ▶ eliminating a loop subchart from G_2 amounts, via \Rightarrow , to eliminating a transition induced subgraph from G_1 .

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse $C \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

- ▶ images of loop subcharts in G_1 under \geq are loop subcharts of G_2 .
- ▶ eliminating a loop subchart from G_2 amounts, via \geq , to eliminating a transition induced subgraph from G_1 .
- ▶ LEE is preserved by dropping transition-induced subgraphs.

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land G$$
 has bisimulation collapse $C \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

- ▶ images of loop subcharts in G_1 under \geq are loop subcharts of G_2 .
- ▶ eliminating a loop subchart from G_2 amounts, via \Rightarrow , to eliminating a transition induced subgraph from G_1 .
- ▶ LEE is preserved by dropping transition-induced subgraphs.

Due to $LEE(G_1)$, then such loop elimination in G_2 terminates in a graph without an infinite trace. This establishes $LEE(G_2)$.

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

Lemma (C)

reg.expr's proc-int loop loop-elim confluence LEE LEE-witness extraction collapse cp-proc-int refd-extr char's outlook res

LLEE-preserving collapse (example, corollary)

Lemma (C)

The bisimulation collapse of a LLEE-graph is again a LLEE-graph.

Corollary

A process graph is $[\cdot]_{P}$ -expressible by an (*/4) regular expression if and only if its bisimulation collapse is a LLEE-graph.

Definition (Transition system specification \mathcal{T})

$$\frac{e_{i} \downarrow}{(e_{1} + e_{2}) \downarrow} (i \in \{1, 2\}) \qquad \frac{e_{1} \downarrow}{(e_{1} \cdot e_{2}) \downarrow} \qquad \frac{e^{*} \downarrow}{(e^{*}) \downarrow}$$

$$\frac{e_{i} \stackrel{a}{\rightarrow} e'_{i}}{e_{1} + e_{2} \stackrel{a}{\rightarrow} e'_{i}} (i \in \{1, 2\})$$

$$\frac{e_{1} \stackrel{a}{\rightarrow} e'_{1}}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{1} \cdot e_{2}} \qquad \frac{e_{1} \downarrow}{e_{1} \cdot e_{2} \stackrel{a}{\rightarrow} e'_{2}} \qquad \frac{e^{\stackrel{a}{\rightarrow} e'}}{e^{*} \stackrel{a}{\rightarrow} e' \cdot e^{*}}$$

Definition (Transition system specification T)

$$e_1 \xrightarrow{a} e'_1$$

$$e_1 \cdot e_2 \xrightarrow{a} e'_1 \cdot e_2$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$

Definition (Transition system specification \mathcal{T}^{\bullet} , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*}$$
 (if e' is normed)

Definition (Transition system specification \mathcal{T}^{\bullet} , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1'} \text{ (if } e_1' \text{ is not normed)}$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*} \text{ (if } e' \text{ is normed)} \qquad \frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'} \text{ (if } e' \text{ is not normed)}$$

Definition (Transition system specification \mathcal{T}^{\bullet} , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)} \qquad \frac{e_1 \stackrel{a}{\rightarrow} e_1'}{e_1 \cdot e_2 \stackrel{a}{\rightarrow} e_1'} \text{ (if } e_1' \text{ is not normed)}$$

$$\frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e' \cdot e^*} \text{ (if } e' \text{ is normed)} \qquad \frac{e \stackrel{a}{\rightarrow} e'}{e^* \stackrel{a}{\rightarrow} e'} \text{ (if } e' \text{ is not normed)}$$

Definition

The compact process (graph) interpretation $P^{\bullet}(e)$ of a reg. expr's e: $P^{\bullet}(e) := \text{labeled transition graph generated by } e \text{ by derivations in } \mathcal{T}^{\bullet}.$

Clemens Grabmayer clegra.github.io

Definition (Transition system specification \mathcal{T}^{\bullet} , changed rules w.r.t. \mathcal{T})

$$\frac{e_1 \xrightarrow{a} e_1'}{e_1 \cdot e_2 \xrightarrow{a} e_1' \cdot e_2} \text{ (if } e_1' \text{ is normed)} \qquad \frac{e_1 \xrightarrow{a} e_1'}{e_1 \cdot e_2 \xrightarrow{a} e_1'} \text{ (if } e_1' \text{ is not normed)}$$

$$\frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e' \cdot e^*} \text{ (if } e' \text{ is normed)} \qquad \frac{e \xrightarrow{a} e'}{e^* \xrightarrow{a} e'} \text{ (if } e' \text{ is not normed)}$$

Definition

The compact process (graph) interpretation $P^{\bullet}(e)$ of a reg. expr's e:

 $P^{\bullet}(e) :=$ labeled transition graph generated by e by derivations in \mathcal{T}^{\bullet} .

Lemma (P^{\bullet} increases sharing; P^{\bullet} , P have same bisimulation semantics)

- (i) $P(e)
 ightharpoonup P^{\bullet}(e)$ for all regular expressions e.
- (ii) (G is $\llbracket \cdot \rrbracket_{P^{\bullet}}$ -expressible \iff G is $\llbracket \cdot \rrbracket_{P}$ -expressible) for all graphs G.

$$)*) \cdot 0$$

$$((1 \cdot a) \cdot ()^*) \cdot 0$$

$$a$$

$$(1 \cdot ()^*) \cdot 0$$

$$\widehat{G_4}$$

$$\widehat{G_4}$$

$$\widehat{G}_{4} \qquad P^{\bullet}(uf) = P(uf) \simeq G_{4}$$

$$\downarrow uf \\
((1 \cdot a) \cdot (c \cdot a + a \cdot (b + b \cdot a))^{*}) \cdot 0 \\
\downarrow a \\
\downarrow a \\
((1 \cdot (c \cdot a + a \cdot (b + b \cdot a))^{*}) \cdot 0$$

$$\downarrow a \\
((1 \cdot (b + b \cdot a)) \cdot (c \cdot a + a \cdot (b + b \cdot a))^{*}) \cdot 0$$

P-expressibility and $\llbracket \cdot \rrbracket_P$ -expressibility (examples revisited)

not P-expressible not $\|\cdot\|_{P}$ -expressible

P-/P•-expressible P•-expressible $\|\cdot\|_P$ -expressible

- ▶ 1-free/under-star-1-free (+*) reg. expr'ss defined (also) with unary star
- ▶ image of (1/*) regular expressions under the process interpretation P is not closed under bisimulation collapse

- ▶ 1-free/under-star-1-free (+*) reg. expr'ss defined (also) with unary star
- ▶ image of (1/*) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- ▶ image of $(\pm \setminus *)$ reg. expr's under P^{\bullet} is closed under collapse

- ▶ 1-free/under-star-1-free (4*) reg. expr'ss defined (also) with unary star
- ▶ image of (±*) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- ▶ refined expression extraction from process graphs with LEE
- image of $(\pm \)$ reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a $(\pm \setminus *)$ regular expression \iff the bisimulation collapse of G satisfies LEE (G/Fokkink 2020).

- ▶ 1-free/under-star-1-free (+*) reg. expr'ss defined (also) with unary star
- ▶ image of (±*) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- ▶ refined expression extraction from process graphs with LEE
- ▶ image of $(\pm \)$ reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a $(\pm \setminus *)$ regular expression \iff the bisim. collapse of G is P^{\bullet} -expressible by a $(\pm \setminus *)$ reg. expr..

- ▶ 1-free/under-star-1-free (+*) reg. expr'ss defined (also) with unary star
- ▶ image of (±*) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- ▶ refined expression extraction from process graphs with LEE
- image of $(\pm \)$ reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a $(\pm \setminus *)$ regular expression \iff the bisim. collapse of G is P^{\bullet} -expressible by a $(\pm \setminus *)$ reg. expr..

Outlook on an extension:

▶ image of $(\pm \setminus *)$ reg. expr's under P^{\bullet} = finite process graphs with LEE.

- ▶ 1-free/under-star-1-free (4*) reg. expr'ss defined (also) with unary star
- ▶ image of (±*) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- ▶ refined expression extraction from process graphs with LEE
- image of $(\pm \)$ reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a $(\pm \setminus *)$ regular expression \iff the bisim. collapse of G is P^{\bullet} -expressible by a $(\pm \setminus *)$ reg. expr..

Outlook on an extension:

- ▶ image of $(\pm \)$ reg. expr's under P^{\bullet} = finite process graphs with LEE.
 - A finite process graph G is P^{\bullet} -expressible by a $(1 \ *)$ regular expression $\iff G$ satisfies LEE.

- ▶ 1-free/under-star-1-free (+*) reg. expr'ss defined (also) with unary star
- ▶ image of (±*) regular expressions under the process interpretation P is not closed under bisimulation collapse
- compact process interpretation P*
- refined expression extraction from process graphs with LEE
- image of $(\pm \)$ reg. expr's under P^{\bullet} is closed under collapse
- ▶ A finite process graph G is $[\cdot]_{P}$ -expressible by a $(\pm \setminus *)$ regular expression \iff the bisimulation collapse of G satisfies LEE (G/Fokkink 2020).

Outlook on an extension:

- ▶ image of $(\pm \setminus *)$ reg. expr's under P^{\bullet} = finite process graphs with LEE.
 - A finite process graph G is P^{\bullet} -expressible by a $(1 \ *)$ regular expression $\iff G$ satisfies LEE.

- ▶ Slides/extended abstract on clegra.github.io
 - ▶ slides: .../lf/TG-2024.pdf
 - extended abstract: .../lf/closing-bs-i-pi-us1f.pdf
- ► CG, Wan Fokkink: A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity
 - ▶ LICS 2020, arXiv:2004.12740, video on youtube.
- ▶ CG: Modeling Terms by Graphs with Structure Constraints,
 - ► TERMGRAPH 2018, EPTCS 288, arXiv:1902.02010.
- ▶ CG: The Image of the Process Interpretation of Regular Expressions is Not Closed under Bisimulation Collapse,
 - arXiv:2303.08553.
- CG: Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete,
 - ▶ LICS 2022, arXiv:2209.12188, poster.

Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi–Elgot–Wright, 1958)

Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi-Elgot-Wright, 1958)

Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi-Elgot-Wright, 1958)