Introduction to Field Extension

Date: Mar 13 Made by Eric

In this note, \mathbb{E} is always a field

Definition

Definition 1. \mathbb{E} is an extension of \mathbb{F} if $\mathbb{F} \leq \mathbb{E}$

Definition 2. An \mathbb{F} -polynomial is a polynomial in $\mathbb{F}[x]$

Definition 3. Let $\mathbb{F} \leq \mathbb{E}$ and $\alpha \in \mathbb{E}$

lpha is algebraic over $\mathbb F$ if there exists non-zero polynomial f in $\mathbb F[x]$ such that f(lpha)=0

 α is **transcendental over** $\mathbb F$ if α is not algebraic over $\mathbb F$, more precisely, no nonzero $\mathbb F$ -polynomial have root α

Definition 4. Let $\alpha \in \mathbb{C}$

 α is an **algebraic number** if α is algebraic over $\mathbb Q$

 α is an **transcendental number** is α is not an algebraic number

Definition 5. Let $f \in \mathbb{F}[x]$

f is a monic polynomial if the leading coefficient is 1

Definition 6. Let $\mathbb{F} \leq \mathbb{E}$, and let $\alpha \in \mathbb{E}$ be algebraic over \mathbb{F}

The **irreducible polynomial for** α **over** \mathbb{F} is the unique monic irreducible polynomial $f \in \mathbb{F}[x]$ that satisfy $f(\alpha) = 0$

Definition 7. Let f be the irreducible polynomial for α over \mathbb{F}

We write $irr(\alpha, \mathbb{F}) = f$ and the **degree of** α **over** \mathbb{F} $deg(\alpha, \mathbb{F}) = deg(f)$

Definition 8. Let $\mathbb{F} \leq \mathbb{E}$, $\alpha \in \mathbb{E}$ be algebraic, and $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$ be evaluation homomorphism

$$\mathbb{F}(\alpha) = \phi_{\alpha}[\mathbb{F}[x]]$$

Definition 9. Let $\mathbb{F} \leq \mathbb{E}$, $\alpha \in \mathbb{E}$ be transcendental, and $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$

 $\mathbb{F}(lpha)$ is the field of quotient expanded by $\phi_{lpha}[\mathbb{F}[x]]$

Definition 10. Let $\mathbb{F} \leq \mathbb{E}$

 \mathbb{E} is a simple extension of \mathbb{F} if $\mathbb{E} = \mathbb{F}(\alpha)$ for some $\alpha \in \mathbb{E}$

Theorems

Theorem 1. Let $f \in \mathbb{F}[x]$, where f have roots less than deg(f) in \mathbb{F}

We can extend \mathbb{F} to a field \mathbb{E} such that f have more roots in \mathbb{E}

Proof. First notice that f have root β means exactly that $(x-\beta)$ appears in the factorization of f

Let deg(f) = n. Because f have roots less than $deg(f) \in \mathbb{F}$, we factorize f and we will see the result have at least a factor p that is of degree more than 1

Example: Let
$$f(x) = x^3 + 8x^2 + 21x + 14 = (x^2 + 7x + 14)(x + 1)$$

f have only **one** root -1, and deg(f) = 3. p(x) is the factor of degree 2

Fix such p(x), and let $\mathbb{E} := \mathbb{F}[x]/\langle p(x)\rangle$

We now prove \mathbb{F} is isomorphic to a subfield of \mathbb{E} , so $\mathbb{E} := \mathbb{F}[x]/\langle p(x)\rangle$

Let $\phi : \mathbb{F} \to \mathbb{E}$ be defined by $c \mapsto c + \langle p(x) \rangle$

$$\phi(c+d) = ((c+d) + \langle p \rangle) = (c + \langle p \rangle) + (d + \langle p \rangle) = \phi(c) + \phi(d)$$

$$\phi(cd) = cd + \langle p \rangle = (c + \langle p \rangle)(d + \langle p \rangle) = \phi(c)\phi(d)$$

$$\phi(a) = \phi(b) \implies a + \langle p \rangle = b + \langle p \rangle \implies a - b \in \langle p \rangle \implies a = b$$

 $\forall \phi(r) \in \phi[\mathbb{F}], \phi(r^{-1})\phi(r)=1$ This guarantee that the image of ϕ is a field (done)

We now prove $\exists \alpha \in \mathbb{E} \setminus \mathbb{F}, f(\alpha) = 0$

Let
$$\beta = x + \langle p \rangle$$

$$f(\beta) = f(x) + \langle p \rangle = \langle p \rangle$$
 Notice $\langle p \rangle$ is the additive identity in \mathbb{E} (done)

Theorem 2. Let \mathbb{E} be an extension of \mathbb{F} and let $\alpha \in \mathbb{E}$. Let $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$ be the evaluation homomorphism of α

lpha is transcendental over $\mathbb F$ if and only if ϕ_lpha is a monomorphism

Proof. (\longrightarrow)

$$\phi_{\alpha}(f) = \phi_{\alpha}(g) \implies f(\alpha) = g(\alpha) \implies (f - g)(\alpha) = 0 \implies f - g = 0 \implies f = g$$

 (\longleftarrow)

$$f(\alpha) = 0 \implies \phi_{\alpha}(f) = 0 \implies f = 0$$

Theorem 3. Let \mathbb{E} be an extension of \mathbb{F} , and pick $\alpha \in \mathbb{E}$ where α is algebraic over \mathbb{F}

The smallest polynomial $p \in \mathbb{F}[x]$ that satisfy $p(\alpha) = 0$, is irreducible

Proof. Let
$$S = \{ f \in \mathbb{F}[x] | f(\alpha) = 0 \}$$

We now prove S is an ideal of $\mathbb{F}[x]$

Let $q, h \in S$ and $r \in \mathbb{F}[x]$

$$(q+h)(\alpha) = q(\alpha) + h(\alpha) = 0 \implies q+h \in S$$

$$0(\alpha) = 0 \implies 0 \in S$$

$$(-g)(\alpha) = -g(\alpha) = 0 \implies -g \in S$$

$$(gs)(\alpha) = g(\alpha)s(\alpha) = 0s(\alpha) = 0 \implies gs \in S$$

$$(sg)(\alpha) = s(\alpha)g(\alpha) = s(\alpha)0 = 0 \implies sg \in S \text{ (done)}$$

We know $\mathbb{F}[x]$ contains only principal ideal, so we can pick a polynomial p that generate S and see that p is of smallest degree and is irreducible

Theorem 4. Let $\mathbb{E} = \mathbb{F}(\alpha)$, where $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} . Let $\beta \in \mathbb{E}$, and let $n = deg(\alpha, \mathbb{F})$

$$\beta$$
 can be uniquely expressed as $c_0\alpha^0 + c_1\alpha^1 + \cdots + c_{n-1}\alpha^{n-1}$ for some $\{c_0, \ldots, c_{n-1}\} \subseteq \mathbb{F}$

Proof. Let $\phi_{\alpha}: \mathbb{F}[x] \to \mathbb{E}$ be evaluation homomorphism

Because $\mathbb{E} = \mathbb{F}(\alpha)$ and α is algebraic over \mathbb{F} , so we know $\mathbb{E} \simeq \phi_{\alpha}[\mathbb{F}[x]]$

Because we know $\langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle$ is the kernel of $\phi_{\alpha}[\mathbb{F}[x]]$, so by First Isomorphism Theorem, we know $\mu : \mathbb{F}[x]/\langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle \to \mathbb{E}$ defined by $f + \langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle \mapsto \phi_{\alpha}(f)$ is an isomorphism

We now prove β can be expressed in such fashion

Because μ is an isomorphism, we know there exists $f + \langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle$ satisfy $\mu(f + \langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle) = \beta$

We fix such f

Do division algorithm on f with $\langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle$ to have $f = q \operatorname{irr}(\alpha, \mathbb{F}) + r$

Because
$$f-r=q$$
 $\operatorname{irr}(\alpha,\mathbb{F})\in\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle$, we know $f+\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle)=r+\langle\operatorname{irr}(\alpha,\mathbb{F})\rangle$

Then we see
$$\beta = \mu(f + \langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle) = \mu(r + \langle \operatorname{irr}(\alpha, \mathbb{F}) \rangle) = \phi_{\alpha}(r) = r(\alpha)$$
 where $deg(r) < deg(\alpha, \mathbb{F})$ (done)

We now prove uniqueness

Assume such expression is not unique

Let
$$\beta = d_0 \alpha^0 + \dots + d_{n-1} \alpha^{n-1}$$
 where d is another sequence of coefficients $(c_0 - d_0)\alpha^0 + \dots + (c_{n-1} - d_{n-1})\alpha^{n-1} = 0$ CaC to that $n = deg(\alpha, \mathbb{F})$ (done)

Theorem 5.
$$\mathbb{R}(x + \langle x^2 + 1 \rangle) \simeq \mathbb{C}$$

Proof. Let $\phi: \mathbb{C} \to \mathbb{R}(x+\langle x^2+1\rangle)$ be defined by lifting $1\mapsto 1+\langle x^2+1\rangle$ and $i\mapsto x+\langle x^2+1\rangle$

$$\phi(a+bi) + \phi(c+di) = [(a+bx) + \langle x^2 + 1 \rangle] + [(c+dx) + \langle x^2 + 1 \rangle] = [(a+c) + (b+d)x] + \langle x^2 + 1 \rangle = \phi((a+bi) + (c+di))$$

LEFT TO PROVE

Summary

- 1. The spirit of simple extension $\mathbb{F}(\alpha)$ is to take all outputs, with input x, of \mathbb{F} -coefficient polynomial as a field
- 2. All element in simple extension $\mathbb{F}(\alpha)$ can be expressed as a polynomial of α of degree less than $deg(\alpha,\mathbb{F})$
- 3. If α is algebraic over $\mathbb F$, $|\mathbb F(\alpha)|=|\mathbb F|^{deg(\alpha,\mathbb F)}$. If α is transcendental over $\mathbb F$, $\mathbb F(\alpha)\geq \infty$
- 4. To construct a field of cardinality p^n , construct irreducible $f \in \mathbb{Z}_p[x]$ such that deg(f) = n, and let α be a zero of f, then $|\mathbb{Z}_p(\alpha)| = p^n$
- 5. If α is algebraic over \mathbb{F} , then there is a set of coefficient in \mathbb{F} that can assemble α back to 0. If α is transcendental, then there is not.

Exercises

29.

Let \mathbb{E} be an extension of \mathbb{F} , and let $\alpha, \beta \in \mathbb{E}$. Suppose α is transcendental over \mathbb{F} but algebraic over $\mathbb{F}(\beta)$

Show β is algebraic over $\mathbb{F}(\alpha)$

Proof. α is algebraic over $\mathbb{F}(\beta)$ implies that there exists a set of polynomial $\{f_0,\ldots,f_n\}$ in $\mathbb{F}[x]$ such that $f_n(\beta)\alpha^n+\cdots+f_0(\beta)\alpha^0=0$ where $f_n(\beta)\neq 0$

Suppose that among the set of polynomial $\{f_0, \ldots, f_n\}$, the one that is of the highest degree is of the degree m

Then we can rewrite $f_n(\beta)\alpha^n + \cdots + f_0(\beta)\alpha^0 = 0$ into the form

$$g_m(\alpha)\beta^m + \dots + g_0(\alpha)\beta^0 = 0$$

Where $\{g_m, \ldots, g_0\}$ is a set of polynomial in $\mathbb{F}[x]$

Notice α is transcendental over \mathbb{F} , so we know $g_m(\alpha) \neq 0$

This shows that β is algebraic over $\mathbb{F}(\alpha)$

30

Let $\mathbb E$ be an extension of $\mathbb F$, where $|\mathbb F|=q$. Let $\alpha\in\mathbb E$. Suppose $deg(\alpha,\mathbb F)=n$

Prove
$$|\mathbb{F}(\alpha)| = q^n$$

Proof. Let
$$f: \mathbb{F}^n \to \mathbb{F}[\alpha]$$
 be defined by $(c_n, \ldots, c_1) \mapsto c_n \alpha^{n-1} + \cdots + c_1 \alpha^0$

Notice every element β in $\mathbb{F}(\alpha)$ can be uniquely expressed in the form $\beta = c_n \alpha^{n-1} + \cdots + c_1 \alpha^0$ where $c_i \in \mathbb{F}$, so we know f is bijective, which give us $|\mathbb{F}[\alpha]| = q^n$

31.

- (a) Show that there exists an irreducible polynomial of degree 3 in $\mathbb{Z}_3[x]$
- **(b)** Show that there exists a finite field of 27 elements

Proof. (a) $x^3 + 2x + 1$ is an irreducible polynomial of degree 3

(b)

We know there exists an extension $\mathbb E$ for $\mathbb F$ such that $\mathbb E$ contain a zero α of x^3+2x+1

Notice
$$deg(\alpha, \mathbb{F}) = 3$$

By Exercises 30, we know
$$|\mathbb{Z}_3(\alpha)| = |\mathbb{Z}_3|^3 = 27$$

Consider the prime field \mathbb{Z}_p

- (a) Show that, for $p \neq 2$, not every element in \mathbb{Z}_p is a square of an element of \mathbb{Z}_p
- **(b)** Show that there exists finite field of p^2 elements for every prime p in \mathbb{Z}^+

Proof. (a)

Let
$$f: \mathbb{Z}_p \to \mathbb{Z}_p$$
 be defined by $x \mapsto x^2$

Assume every element is a square of an element of \mathbb{Z}_p

We know f is onto, so we deduce f is one-to-one by counting

$$f(1) = f(p-1) \operatorname{CaC}$$

(b)

When p>2, pick an element a that is not a square of an element of \mathbb{Z}_p

Consider the polynomial $g(x) = x^2 - a \in \mathbb{Z}_p[x]$

Because g have no zeros in \mathbb{Z}_p , and deg(g)=2, so g is irreducible

We know there exists an extension \mathbb{E} of \mathbb{Z}_p such that g have some zeros α in \mathbb{E}

$$|\mathbb{Z}_p(\alpha)| = p^{deg(\alpha,\mathbb{Z}_p)} = p^{deg(g)} = p^2$$

When p=2, consider the polynomial $f(x)=x^2+x+1\in\mathbb{Z}_2[x]$

Because f have no zeros in \mathbb{Z}_2 , and deg(f) = 2, so f is irreducible

We know there exists an extension \mathbb{E} of \mathbb{Z}_2 such that g have some zeros α in \mathbb{E}

$$|\mathbb{Z}_2(\alpha)| = p^{deg(\alpha,\mathbb{Z}_2)} = 2^{deg(g)} = 2^2$$

35.

Show that there exists a field of 8 elements; of 16 elements; of 25 elements

Proof. Consider
$$f = x^3 + x + 1 \in \mathbb{Z}_2[x]$$

Let $\mathbb E$ be an extension of $\mathbb Z_2$ containing zeros α for f

$$|\mathbb{Z}_2(\alpha)| = 8$$

Consider $f = x^4 + x + 1 \in \mathbb{Z}_2[x]$

Let \mathbb{E} be an extension of \mathbb{Z}_2 containing zeros α for f

$$|\mathbb{Z}_2(\alpha)| = 16$$

Consider
$$f = x^2 + 2 \in \mathbb{Z}_5[x]$$

Let $\mathbb E$ be an extension of $\mathbb Z_5$ containing zeros α for f

$$|\mathbb{Z}_5(\alpha)| = 25$$

36.

Let $\mathbb F$ be a finite field of characteristic p. Show that every element of $\mathbb F$ is algebraic over the prime field $\{m\cdot 1|m\in\mathbb Z\}$

Proof. Clearly 0 is algebraic over $\{m \cdot 1 | m \in \mathbb{Z}\}$

Let $\alpha \in \mathbb{F}^*$

Notice $\alpha^{|\mathbb{F}^*|}=1$, since \mathbb{F}^* is a group

Then
$$\alpha^{|\mathbb{F}^*|} - 1 = 0$$
, so α is algebraic over $\{m \cdot 1 | m \in \mathbb{Z}\}$

37.

Show that every finite field $\mathbb F$ is of prime-power order

Proof. Let p be the characteristic of \mathbb{F}

 $\{m\cdot 1|m\in\mathbb{Z}\}$ is an additive subgroup of \mathbb{F} of order p, so $|\mathbb{F}|$ is divided by p

Assume there exists another prime q that divides $|\mathbb{F}|$

Because $\langle \mathbb{F}, + \rangle$ is a group, by Sylow's First Theorem, we know there exists an element $x \in \mathbb{F}$ of order q in the additive group \mathbb{F}

Let
$$q = np + r$$
 where $r < p$

$$r \cdot x = q \cdot x = 0$$
 CaC