Databázové systémy

Úvod do funkčních závislostí a normalizace

Vilém Vychodil

KMI/DATA1, Přednáška 8

Databázové systémy

Přednáška 8. Přehled

- Funkční závislosti:
 - pravdivost funkčních závislostí v systémech relací,
 - teorie, modely,
 - sémantické vyplývání,
 - kanonické relace, kanonické modely,
 - testování sémantického vyplývání,
 - sémantický uzávěr množiny atributů,
 - algoritmus pro výpočet uzávěru,
 - charakterizace vyplývání pomocí sémantického uzávěru,
 - vztah k pojmu klíč.
- Boyce-Coddova normální forma:
 - formulace normální formy,
 - dekompozice na základě funkčních závislostí,
 - normalizace pomocí dekompozice.

Opakování: Funkční závislosti (Přednáška 7)

Definice (funkční závislost, angl.: functional dependency)

Nechť R je relační schéma. Pak **funkční závislost** nad schématem R je formule ve tvaru $A\Rightarrow B$, kde $A,B\subseteq R$.

Definice (pravdivost funkční závislosti v datech)

Nechť R je relační schéma a $\mathcal D$ je relace nad schématem R. Pak funkční závislost $A\Rightarrow B$ nad schématem R je **pravdivá** v $\mathcal D$, což označujeme $\mathcal D\models A\Rightarrow B$, pokud pro každé n-tice $r_1,r_2\in\mathcal D$ platí:

pokud
$$r_1(A) = r_2(A)$$
, pak $r_1(B) = r_2(B)$.

V opačném případě říkáme, že $A\Rightarrow B$ neplatí v $\mathcal D$ a píšeme $\mathcal D\not\models A\Rightarrow B$. Funkční závloslost se nazývá **triviální**, pokud je pravdivá v každé $\mathcal D$.

pozorování: $A \Rightarrow B$ je triviální p. k. $B \subseteq A$

Příklad (Funkční závislosti, které jsou/nejsou pravdivé v \mathcal{D})

mějme relaci $\mathcal{D} = \{r_1, r_2, r_3, r_4\}$ nad schématem $R = \{\texttt{FOO}, \texttt{BAR}, \texttt{BAZ}, \texttt{QUX}\}$:

BAR	BAZ	QUX
22	a	222
33	Ъ	333
22	a	444
33	a	555
	22 33 22	33 b 22 a

$$\begin{array}{l} r_1 = \{\langle \texttt{F00}, \texttt{10} \rangle, \langle \texttt{BAR}, \texttt{22} \rangle, \langle \texttt{BAZ}, \texttt{a} \rangle, \langle \texttt{QUX}, \texttt{222} \rangle\} \\ r_2 = \{\langle \texttt{F00}, \texttt{10} \rangle, \langle \texttt{BAR}, \texttt{33} \rangle, \langle \texttt{BAZ}, \texttt{b} \rangle, \langle \texttt{QUX}, \texttt{333} \rangle\} \\ r_3 = \{\langle \texttt{F00}, \texttt{10} \rangle, \langle \texttt{BAR}, \texttt{22} \rangle, \langle \texttt{BAZ}, \texttt{a} \rangle, \langle \texttt{QUX}, \texttt{444} \rangle\} \\ r_4 = \{\langle \texttt{F00}, \texttt{20} \rangle, \langle \texttt{BAR}, \texttt{33} \rangle, \langle \texttt{BAZ}, \texttt{a} \rangle, \langle \texttt{QUX}, \texttt{555} \rangle\} \end{array}$$

$$\mathcal{D} \not\models \{\mathtt{BAZ}\} \Rightarrow \{\mathtt{BAR}\}$$

(kvůli
$$r_1$$
 a r_4)

$$\mathcal{D} \not\models \{\texttt{FOO}, \texttt{BAZ}\} \Rightarrow \{\texttt{QUX}\}$$

(kvůli
$$r_1$$
 a r_3)

$$\mathcal{D} \not\models \{\mathtt{BAR}\} \Rightarrow \{\mathtt{BAZ}\}$$

(kvůli
$$r_2$$
 a r_4)

$$\mathcal{D} \models \{ \text{FOO}, \text{BAR} \} \Rightarrow \{ \text{BAZ} \}$$

(pro jakékoliv
$$S$$
 je triviálně splněná)

$$\mathcal{D} \models \{\mathtt{QUX}\} \Rightarrow S$$

$$\mathcal{D} \models \{F00, BAR\} \Rightarrow \{F00\}$$

Věta (O pravdivosti funkčních závislostí)

Pro každé $A,B,C\subseteq R$ a libovolné relace $\mathcal{D},\mathcal{D}_1,\mathcal{D}_2$ nad R platí:

- **1** pokud $\mathcal{D} \models A \Rightarrow B$, pak $\mathcal{D} \models A \Rightarrow B \cap C$;
- ② pokud $\mathcal{D} \models A \Rightarrow B$, pak $\mathcal{D} \models A \cup C \Rightarrow B$;
- **3** $\mathcal{D} \models A \Rightarrow B$ právě tehdy, když $\mathcal{D} \models A \Rightarrow B \setminus A$;
- pokud $\mathcal{D}_1 \subseteq \mathcal{D}_2$ a $\mathcal{D}_2 \models A \Rightarrow B$, pak $\mathcal{D}_1 \models A \Rightarrow B$.

Důkaz.

Předpokládejme, že $\mathcal{D} \models A \Rightarrow B$ a vezměme libovolné $r_1, r_2 \in \mathcal{D}$ takové, že $r_1(A) = r_2(A)$. Dle předpokladu pak $r_1(B) = r_2(B)$ a tím spíš $r_1(B \cap C) = r_2(B \cap C)$, protože $B \cap C \subseteq B$, to dokazuje ① a jednu stranu tvrzení ③. Analogicky ②. Pokud $\mathcal{D} \models A \Rightarrow B \setminus A$ a platí $r_1(A) = r_2(A)$, pak z $r_1(B \setminus A) = r_2(B \setminus A)$ a $r_1(A) = r_2(A)$ dostaneme $r_1(A \cup (B \setminus A)) = r_2(A \cup (B \setminus A))$, to jest platí ③, protože $B \subseteq A \cup (B \setminus A)$. Bod ④ je přímým důsledkem toho, že pro každé $r_1, r_2 \in \mathcal{D}_1$ platí $r_1, r_2 \in \mathcal{D}_2$.

Věta (Dekompozice na základě funkčních závislostí)

Mějme $\mathcal D$ na R a $A,B\subseteq R$. Pokud $\mathcal D\models A\Rightarrow B$, pak $\mathcal D$ má bezeztrátovou dekompozici vzhledem k $A\cup B$ a $A\cup (R\setminus B)$.

Důkaz.

Máme ukázat, že $\pi_{A\cup B}(\mathcal{D})\bowtie\pi_{A\cup(R\setminus B)}(\mathcal{D})\subseteq\mathcal{D}$ (obrácená inkluze platí vždy). Vezměme n-tice $r_1\in\pi_{A\cup B}(\mathcal{D})$ a $r_2\in\pi_{A\cup(R\setminus B)}(\mathcal{D})$, které jsou spojitelné. Jelikož

$$(A \cup B) \cap (A \cup (R \setminus B)) = A \cup (B \cap (R \setminus B)) = A \cup \emptyset = A,$$

platí, že $r_1(A)=r_2(A)$. Vezměme $s\in\mathcal{D}$ takovou, že $r_2=s(A\cup(R\setminus B))$. Jelikož je B funkčně závisá na A, pak zřejmě z $r_1(A)=r_2(A)=s(A)$ dostáváme $r_1(B)=s(B)$, to jest $r_1=s(A\cup B)$. To znamená, že $r_1r_2=s\in\mathcal{D}$.

triviální použití:

• pokud je $A\Rightarrow B$ triviální, pak je $B\subseteq A$ a potom se $\mathcal D$ na R dekomponuje na relace na schématech $A\cup B=A$ a $A\cup (R\setminus B)\supseteq A\cup (R\setminus A)=R$ (nezajímavé)

$P\check{r}iklad (Dekompozice použitím \{DEPT\} \Rightarrow \{HEAD, SCHOOL, DEAN\})$

SCHOOL	DEAN	DEPT	HEAD	ID	COURSE	YEAR
SCI	Blangis	AF	Durcet	7	QOPT1	2012
SCI	Blangis	AF	Durcet	8	LASR1	2012
SCI	Blangis	AF	Durcet	8	LASR1	2013
SCI	Blangis	CS	Curval	3	ALMA1	2012
SCI	Blangis	CS	Curval	3	ALMA1	2013
SCI	Blangis	CS	Curval	6	DATA1	2012
SCI	Blangis	CS	Curval	6	DATA1	2013
SCI	Blangis	CS	Curval	6	PAPR1	2012

SCHOOL	DEAN	DEPT	HEAD
SCI	Blangis	AF	Durcet
SCI	Blangis	CS	Curval

DEPT	ID	COURSE	YEAR	
AF	7	QOPT1	2012	
AF	8	LASR1	2012	
AF	8	LASR1	2013	
CS	3	ALMA1	2012	
CS	3	ALMA1	2013	
CS	6	DATA1	2012	
CS	6	DATA1	2013	
CS	6	PAPR1	2012	

 \bowtie

Pravdivost závislostí v systémech relací

Definice (pravdivost funkční závislosti v datech)

Nechť R je relační schéma a \mathcal{M} je množina relací nad schématem R. Položíme $\mathcal{M}\models A\Rightarrow B$ pokud $\mathcal{D}\models A\Rightarrow B$ pro každou $\mathcal{D}\in\mathcal{M}$.

Věta (pravdivost funkčních závislostí v systému dvouprvkových relací)

Pro každou $\mathcal D$ nad R existuje konečný systém $\mathcal M$ nejvýš dvouprvkových relací nad R tak, že pro každé $A,B\subseteq R$ platí: $\mathcal D\models A\Rightarrow B$ p. k. $\mathcal M\models A\Rightarrow B$.

Důkaz.

Položme $\mathcal{M}=\left\{\{r_1,r_2\}\,|\,r_1,r_2\in\mathcal{D}\right\}$, to jest, \mathcal{M} je systém dvouprvkových tabulek složených ze všech n-tic z relace \mathcal{D} . Zřejmě platí, že $\mathcal{D}\models A\Rightarrow B$ p. k. pro libovolné $r_1,r_2\in\mathcal{D}$ takové, že $r_1(A)=r_2(A)$, platí $r_1(B)=r_2(B)$, což je p. k. pro libovolné $r_1,r_2\in\mathcal{D}$ platí, že $\{r_1,r_2\}\models A\Rightarrow B$ p. k. $\mathcal{M}\models A\Rightarrow B$.

Příklad (Dvouprvkové relace odpovídající \mathcal{D})

F00	BAR	BAZ	QUX
10	22	a	222
20	33	a	555

F00	BAR	BAZ	QUX
10	22	a	222
10	22	a	444

F00	BAR	BAZ	QUX
10	22	a	444
10	33	b	333

F00	BAR	BAZ	QUX
10	22	a	222
10	33	b	333
10	22	a	444
20	33	a	555

F00	BAR	BAZ	QUX
10	22	a	222
10	33	Ъ	333

F00	BAR	BAZ	QUX
10	22	a	444
20	33	a	555

F00	BAR	BAZ	QUX
10	33	b	333
20	33	a	555

Teorie a modely

motivace:

Chceme se zabývat tím, které funkční závislosti vyplývají z jiných závislostí. Primárně se zajímáme o sémantické vyplývání, pro jeho zavedení potřebujeme pojmy teorie a model.

Definice (teorie, angl.: theory)

Množinu funkčních závislostí (nad schématem R) nazveme **teorie** (nad R). Pokud je Γ teorie a $A\Rightarrow B\in \Gamma$, pak říkáme, že $A\Rightarrow B$ je **předpokladem** z Γ .

Definice (model, angl.: model)

Mějme teorii Γ . Relace $\mathcal D$ je **model** Γ pokud pro každou $A\Rightarrow B\in \Gamma$ platí, že $\mathcal D\models A\Rightarrow B$. Množinu všech modelů Γ označujeme $\operatorname{Mod}(\Gamma)$, to jest:

$$\operatorname{Mod}(\Gamma) = \{ \mathcal{D} \, | \, \operatorname{pro} \, \operatorname{každou} \, A \Rightarrow B \in \Gamma \, \operatorname{plati} \, \mathcal{D} \models A \Rightarrow B \}.$$

Příklad (Teorie a modely)

uvažujme následující teorii:

$$\begin{split} \Gamma &= \{ \{ \text{QUX} \} \Rightarrow \{ \text{FOO}, \text{BAR}, \text{BAZ} \}, \\ &\quad \{ \text{BAR}, \text{BAZ} \} \Rightarrow \{ \text{FOO} \}, \\ &\quad \{ \text{FOO}, \text{BAZ} \} \Rightarrow \{ \text{BAR} \}, \\ &\quad \{ \text{FOO}, \text{BAR} \} \Rightarrow \{ \text{BAZ} \} \} \end{split}$$

potom pro danou Γ například:

F00	BAR	BAZ	QUX
10	22	a	222
10	33	Ъ	333
10	22	a	444
20	33	a	555

F00	BAR	BAZ	QUX
10	22	a	222
10	33	ъ	333
20	22	a	444
20	33	a	555

F00	BAR	BAZ	QUX
10	22	a	222
10	33	b	222
10	22	a	444
20	33	a	555

je model

není model

není model

Sémantické vyplývání

Definice (sémantické vyplývání, angl.: semantic entailment)

Funkční závislost $A\Rightarrow B$ sémanticky plyne z teorie Γ pokud je $A\Rightarrow B$ pravdivá v každém modelu Γ , to znamená pokud $\operatorname{Mod}(\Gamma)\models A\Rightarrow B$. Fakt, že $A\Rightarrow B$ sémanticky plyne z Γ značíme $\Gamma\models A\Rightarrow B$.

slovně:

Funkční závislost $A \Rightarrow B$ plyne z teorie Γ pokud je $A \Rightarrow B$ pravdivá v každé relaci, ve které jsou pravdivé všechny formule z teorie Γ .

speciální případ:

- pro $\Gamma = \emptyset$ píšeme $\models A \Rightarrow B$ místo $\emptyset \models A \Rightarrow B$
- význam: $\models A \Rightarrow B$ p. k. $A \Rightarrow B$ je pravdivá v každé relaci
- z předchozího víme: $\models A \Rightarrow B$ p. k. $A \Rightarrow B$ je triviální, to jest $B \subseteq A$

Věta (Vlastnosti teorií, modelů a sémantického vyplývání)

Pro libovolné teorie $\Gamma, \Gamma_1, \Gamma_2$ nad R platí:

- **1** pokud $\Gamma_1 \subseteq \Gamma_2$, pak $\operatorname{Mod}(\Gamma_2) \subseteq \operatorname{Mod}(\Gamma_1)$;
- **2** $\operatorname{Mod}(\emptyset)$ je množina všech relací nad R;
- **3** $\operatorname{Mod}(\Gamma) \neq \emptyset$ pro každou teorii Γ ;
- pokud $\Gamma_1 \subseteq \Gamma_2$ a $\Gamma_1 \models A \Rightarrow B$, pak $\Gamma_2 \models A \Rightarrow B$;

Důkaz.

Pokud $\mathcal{D} \in \operatorname{Mod}(\Gamma_2)$, pak pro každou $A \Rightarrow B \in \Gamma_2$ platí, že $\mathcal{D} \models A \Rightarrow B$. Jelikož ale $\Gamma_1 \subseteq \Gamma_2$, tím spíš platí $\mathcal{D} \models A \Rightarrow B$ pro každou $A \Rightarrow B \in \Gamma_1$, což ukazuje \bullet ;

- 2 plyne přímo z definice; 3 platí, protože $\mathcal{D}\in\mathrm{Mod}(\Gamma)$ pro každou \mathcal{D} splňující
- $|\mathcal{D}|<2$; 4 je důsledkem 0; 5 platí triviálně, protože $\mathcal{D}\models A\Rightarrow B$ pro každé
- $A \Rightarrow B \in \Gamma \text{ a } \mathcal{D} \in \text{Mod}(\Gamma).$

Příklad (Sémantické důsledky teorie)

teorie z předchozího příkladu:

```
\Gamma = \{\{\text{QUX}\} \Rightarrow \{\text{FOO}, \text{BAR}, \text{BAZ}\}, \{\text{BAR}, \text{BAZ}\} \Rightarrow \{\text{FOO}\},
                                  \{FOO, BAZ\} \Rightarrow \{BAR\}, \{FOO, BAR\} \Rightarrow \{BAZ\}\}
netriviální funkční závislosti A \Rightarrow B, kde A \cap B = \emptyset a \Gamma \models A \Rightarrow B:
    \{BAR, BAZ, QUX\} \Rightarrow \{FOO\}, \{BAR, BAZ\} \Rightarrow \{FOO\},
                                                                                                \{BAR, QUX\} \Rightarrow \{BAZ\},
    \{BAR, QUX\} \Rightarrow \{FOO, BAZ\}, \{BAR, QUX\} \Rightarrow \{FOO\},
                                                                                                \{BAZ, QUX\} \Rightarrow \{BAR\},
                                                                                                \{FOO, BAR, QUX\} \Rightarrow \{BAZ\},\
    \{BAZ, QUX\} \Rightarrow \{FOO, BAR\},\
                                               \{BAZ, QUX\} \Rightarrow \{FOO\},\
    \{FOO, BAR\} \Rightarrow \{BAZ\},\
                                                                                                \{FOO, BAZ\} \Rightarrow \{BAR\},\
                                                  \{FOO, BAZ, QUX\} \Rightarrow \{BAR\},\
    \{FOO, QUX\} \Rightarrow \{BAR, BAZ\},\
                                                  \{FOO, QUX\} \Rightarrow \{BAR\},\
                                                                                                \{FOO, QUX\} \Rightarrow \{BAZ\},\
    \{QUX\} \Rightarrow \{BAR, BAZ\},\
                                                  \{QUX\} \Rightarrow \{BAR\},
                                                                                                \{QUX\} \Rightarrow \{BAZ\},
    \{QUX\} \Rightarrow \{FOO, BAR, BAZ\},\
                                                 \{QUX\} \Rightarrow \{FOO, BAR\},\
                                                                                                \{QUX\} \Rightarrow \{FOO, BAZ\},\
    \{QUX\} \Rightarrow \{FOO\}
```

Kanonické relace a modely

Definice (kanonická relace, angl.: canonical relation)

Pro libovolnou $M\subseteq R$ definujeme relaci \mathcal{D}_M nad schématem R tak, že $\mathcal{D}_M=\{r_1,r_2\}$, přitom $r_1(y)=p$ pro každý $y\in R$ a

$$r_2(y) = \begin{cases} p, & \text{pokud } y \in M, \\ q, & \text{pokud } y \notin M, \end{cases}$$

přitom p,q označují dva různé (fixní) prvky domén atributů z R. Takto zavedenou relaci \mathcal{D}_M nazveme **kanonická relace** nad schématem R.

Definice (kanonický model, angl.: canonical model)

Mějme teorii Γ . Kanonická relace \mathcal{D}_M , která je modelem Γ , se nazývá **kanonický model** Γ . Množinu všech kanonických modelů Γ značíme $\mathrm{Mod}_{\mathbf{C}}(\Gamma)$, to jest:

$$\mathrm{Mod}_{\mathrm{C}}(\Gamma) = \{ \mathcal{D}_M \, | \, \mathcal{D}_M \in \mathrm{Mod}(\Gamma) \}.$$

Věta (Pravdivost funkčních závislostí v kanonických relacích)

Pro libovolné $A, B, M \subseteq R$ jsou následující tvrzení ekvivalentní:

- \bullet pokud $A \subseteq M$, pak $B \subseteq M$.

Důkaz.

Nejprve ukážeme, že pro $\mathcal{D}_M=\{r_1,r_2\}$ a libovolnou $C\subseteq R$ platí, že $r_1(C)=r_2(C)$ p. k. $C\subseteq M$. Dle definice kanonické relace máme, že $r_1(C)=r_2(C)$ znamená $r_2(y)=p$ pro každý $y\in C$. To znamená, $y\in M$ pro každý $y\in C$, to jest $C\subseteq M$.

S použitím tohoto faktu, $\mathcal{D}_M \models A \Rightarrow B$ právě tehdy, když $r_1(A) = r_2(A)$ implikuje $r_1(B)r_2(B)$, to platí právě tehdy, když $A \subseteq M$ implikuje $B \subseteq M$. To jest body \bullet a \bullet jsou ekvivalentní.

poznámka:

ullet pozorování slouží ke zjednodušenému vyjádření $\mathcal{D}_M \models A \Rightarrow B$

Věta (Charakterizace ⊨ pomocí kanonických modelů)

 $\Gamma \models A \Rightarrow B$ právě tehdy, když $\operatorname{Mod}_{\mathbb{C}}(\Gamma) \models A \Rightarrow B$.

Důkaz.

Pokud $\Gamma \models A \Rightarrow B$, to jest dle definice $\operatorname{Mod}(\Gamma) \models A \Rightarrow B$ a tím spíš $\operatorname{Mod}_{\mathbf{C}}(\Gamma) \models A \Rightarrow B$, protože $\operatorname{Mod}_{\mathbf{C}}(\Gamma) \subseteq \operatorname{Mod}(\Gamma)$.

Obráceně, předpokládejme, že $\operatorname{Mod}_{\mathbf{C}}(\Gamma) \models A \Rightarrow B$ a vezměme libovolný $\mathcal{D} \in \operatorname{Mod}(\Gamma)$. To znamená, že $\mathcal{D} \models C \Rightarrow D$ pro každou $C \Rightarrow D \in \Gamma$. Dle jednoho z předchozích tvrzení existuje množina dvouprvkových relací \mathcal{M} tak, že $\mathcal{M} \models C \Rightarrow D$ pro každou $C \Rightarrow D \in \Gamma$. Ke každé $\mathcal{D}' \in \mathcal{M}$ můžeme vzít množinu atributů, na kterých jsou si obě n-nice z \mathcal{D}' rovny, to jest

$$M = \{ y \in R \, | \, r_1(y) = r_2(y) \},$$

kde $\mathcal{D}'=\{r_1,r_2\}$. Potom \mathcal{D}_M je kanonický model Γ . Jelikož $\mathrm{Mod}_{\mathbf{C}}(\Gamma)\models A\Rightarrow B$, pak i $\mathcal{D}_M\models A\Rightarrow B$. Protože jsme vzali $\mathcal{D}'\in\mathcal{M}$ libovolně, máme $\mathcal{D}\models A\Rightarrow B$. \square

Příklad (Kanonické relace odpovídající \mathcal{D})

F00	BAR	BAZ	QUX
10	22	a	222
20	33	a	555

F00	BAR	BAZ	QUX
10	22	a	222
10	22	a	444

F00	BAR	BAZ	QUX
10	22	a	444
10	33	Ъ	333

F00	BAR	BAZ	QUX
10	22	a	222
10	33	Ъ	333
10	22	a	444
20	33	a	555

F00	BAR	BAZ	QUX
10	22	a	222
10	33	b	333

F00	BAR	BAZ	QUX
10	22	a	444
20	33	a	555

F00	BAR	BAZ	QUX
10	33	b	333
20	33	a	555

Příklad (Kanonické relace odpovídající \mathcal{D})

F00	BAR	BAZ	QUX
0	0	1	0
1	1	1	1

F00	BAR	BAZ	QUX
1	1	1	0
1	1	1	1

F00	BAR	BAZ	QUX
1	0	0	0
1	1	1	1

F00	BAR	BAZ	QUX
10	22	a	222
10	33	b	333
10	22	a	444
20	33	a	555

F00	BAR	BAZ	QUX
1	0	0	0
1	1	1	1

F00	BAR	BAZ	QUX
0	0	1	0
1	1	1	1

F00	BAR	BAZ	QUX
0	1	0	0
1	1	1	1

Vztah k sémantickému vyplývání z výrokové logiky

motivace:

Funkční závislosti lze chápat jako výrokové formule. V jakém vztahu je tedy výrokové sémantické vyplývání a \models tak, jak jsme jej zavedli my?

funkční závislosti jako výrokové formule:

$$\{y_1,\ldots,y_m\}\Rightarrow\{z_1,\ldots,z_n\}$$
 vs. $(y_1\wedge\cdots\wedge y_m)\Rightarrow(z_1\wedge\cdots\wedge z_n)$

Pro $A \Rightarrow B$, Γ a \mathcal{D}_M lze proto brát jejich výrokové protějšky:

- odpovídající výrokovou formuli $\varphi_{A,B}$;
- odpovídající výrokovou teorii $\Gamma_{V} = \{ \varphi_{A,B} \mid A \Rightarrow B \in \Gamma \};$
- odpovídající ohodnocení výrokových proměnných: $e_M(y)=1$ p. k. $y\in M$; přitom jako důsledek předchozí věty máme:

$$\Gamma \models A \Rightarrow B$$
 p. k. $e(\varphi_{A,B}) = 1$ pro každý model e teorie Γ_V .

důsledek: vyplývání funkčních závislostí lze ověřovat tabulkovou metodou

Příklad (Test sémantického vyplývání pomocí tabelace)

φ_1	φ_2	φ_3	φ_4	$ \psi_1 $	ψ_2	ψ_3
1	1	1	1	1	1	1
0	1	1	1	1	1	1
1	1	1	1	1	0	1
0	1	1	1	1	0	0
1	1	1	1	1	1	1
0	1	1	1	1	1	1
1	0	1	1	1	0	1
0	0	1	1	1	0	1
1	1	1	1	1	1	1
0	1	1	1	1	1	1
1	1	0	1	0	0	1
0	1	0	1	1	0	0
1	1	1	0	1	1	1
0	1	1	0	1	1	1
1	1	1	1	0	1	1
1	1	1	1	1	1	1
	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1	1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1	1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1	1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	1 1

teorie:

$$\begin{split} \varphi_1 \colon \{ \texttt{QUX} \} &\Rightarrow \{ \texttt{FOO}, \texttt{BAR}, \texttt{BAZ} \} \\ \varphi_2 \colon \{ \texttt{BAR}, \texttt{BAZ} \} &\Rightarrow \{ \texttt{FOO} \}, \\ \varphi_3 \colon \{ \texttt{FOO}, \texttt{BAZ} \} &\Rightarrow \{ \texttt{BAR} \}, \\ \varphi_4 \colon \{ \texttt{FOO}, \texttt{BAR} \} &\Rightarrow \{ \texttt{BAZ} \} \end{split}$$

testované formule:

```
\begin{array}{l} \psi_1 \colon \{\texttt{FOO}, \texttt{BAZ}\} \Rightarrow \{\texttt{QUX}\} \\ \psi_2 \colon \{\texttt{BAZ}\} \Rightarrow \{\texttt{FOO}, \texttt{BAR}\} \\ \psi_3 \colon \{\texttt{BAZ}, \texttt{QUX}\} \Rightarrow \{\texttt{BAR}\} \end{array}
```

algoritmus pro výpočet $[M]_{\Gamma}$

```
Data: M \subseteq R a teorie \Gamma nad R
Result: množina [M]_{\Gamma} \subseteq R (sémantický uzávěr M vzhledem k \Gamma)
W:=M; /* W je pomocná proměnná */
repeat
   L:=W; /* L označuje poslední vypočtnou hodnotu W */
    foreach E \Rightarrow F \in \Gamma do
       if E \subseteq W then
           W := W \cup F; /* aktualizuj W */
           \Gamma := \Gamma \setminus \{E \Rightarrow F\}; /* E \Rightarrow F \text{ už není potřeba v } \Gamma */
       end
   end
until L=W:
return W:
```

proč zavádíme: pomocí $[M]_T$ ukážeme efektivní test sémantického vyplývání

Příklad (Průběh výpočtu sémantického uzávěru)

```
\Gamma:
 W:
                               \{A\} \Rightarrow \{B,C\}, \{B,D\} \Rightarrow \{E,F\}, \{C,E\} \Rightarrow \{G\}, \{F\} \Rightarrow \{A,B\}, \{D,G\} \Rightarrow \{A,C,H\}
 {A}
 \{A, B, C\}
 W:
                               \Gamma:
                                \{A\} \Rightarrow \{B,C\}, \{B,D\} \Rightarrow \{E,F\}, \{C,E\} \Rightarrow \{G\}, \{F\} \Rightarrow \{A,B\}, \{D,G\} \Rightarrow \{A,C,H\}
 \{A, E\}
                               \{B,D\} \Rightarrow \{E,F\}, \{C,E\} \Rightarrow \{G\}, \{F\} \Rightarrow \{A,B\}, \{D,G\} \Rightarrow \{A,C,H\}
 \{A, B, C, E\}
 \{A, B, C, E, G\}
  W:
                               \Gamma:
                                \{A\} \Rightarrow \{B,C\}, \{B,D\} \Rightarrow \{E,F\}, \{C,E\} \Rightarrow \{G\}, \{F\} \Rightarrow \{A,B\}, \{D,G\} \Rightarrow \{A,C,H\}
 \{E,F\}
                                \{A\} \Rightarrow \{B,C\}, \{B,D\} \Rightarrow \{E,F\}, \{C,E\} \Rightarrow \{G\}, \{D,G\} \Rightarrow \{A,C,H\}
 \{A,B,E,F\}
 \{A, B, C, E, F\}
                                \{B,D\} \Rightarrow \{E,F\}, \{C,E\} \Rightarrow \{G\}, \{D,G\} \Rightarrow \{A,C,H\}
 \{A, B, C, E, F, G\}
odtud: [\{A\}]_{\Gamma} = \{A, B, C\}, [\{A, E\}]_{\Gamma} = \{A, B, C, E, G\}, [\{E, F\}]_{\Gamma} = \{A, B, C, E, F, G\}
```

Věta (Základní vlastnost sémantického uzávěru I)

Pro libovolnou Γ nad R a $A \subseteq R$ platí, že $\Gamma \models A \Rightarrow [A]_{\Gamma}$.

Důkaz.

Nechť $\mathcal D$ je libovolný model $\mathcal D\in\operatorname{Mod}(\Gamma)$. Vezměme libovolné $r_1,r_2\in\mathcal D$ takové, že $r_1(A)=r_2(A)$. Stačí ukázat, že $r_1([A]_\Gamma)=r_2([A]_\Gamma)$. Toto tvrzení prokážeme indukcí přes počet kroků algoritmu pro výpočet $[A]_\Gamma$.

Pro počáteční hodnotu W=A je tvrzení zřejmé, protože $A\Rightarrow A$ je triviální funkční závislost. Předpokládejme, že pro W platí $r_1(W)=r_2(W)$ a uvažujme $E\Rightarrow F\in \Gamma$ takovou, že $E\subseteq W$. Pak stačí ukázat, že $r_1(W\cup F)=r_2(W\cup F)$. Z faktů, že $\mathcal{D}\in \operatorname{Mod}(\Gamma)$, $r_1,r_2\in \mathcal{D}$, $r_1(W)=r_2(W)$, $E\subseteq W$ a $E\Rightarrow F\in \Gamma$ ihned dostáváme, že $r_1(F)=r_2(F)$ což dohromady s naším předpokladem $r_1(W)=r_2(W)$ dává, že $r_1(W\cup F)=r_2(W\cup F)$.

Odtud plyne, že pro každou průběžnou hodnotu W v algoritmu je $\mathcal{D} \models A \Rightarrow W$, tedy $\Gamma \models A \Rightarrow W$. Zbyek plyne z toho, že $[A]_{\Gamma}$ je poslední hodnotou W.

Věta (Základní vlastnost sémantického uzávěru II)

Pokud $\Gamma \models A \Rightarrow B$, pak $B \subseteq [A]_{\Gamma}$.

Důkaz.

Tvrzení prokážeme obměnou: Za předpokladu, že $B \nsubseteq [A]_{\Gamma}$ ukážeme, že $\Gamma \not\models A \Rightarrow B$. K tomu stačí ukázat, že za předpokladu $B \nsubseteq [A]_{\Gamma}$ existuje model $\mathcal{D} \in \operatorname{Mod}(\Gamma)$ tak, že $\mathcal{D} \not\models A \Rightarrow B$.

Předpokládejme tedy, že $B \nsubseteq [A]_{\Gamma}$. Hledaný model budeme uvažovat jako kanonickou relaci. Konkrétně vezmeme $\mathcal{D}_{[A]_{\Gamma}}$. Z věty o platnosti $A\Rightarrow B$ v kanonické relaci dostáváme, že $\mathcal{D}_{[A]_{\Gamma}}\not\models A\Rightarrow B$, protože $A\subseteq [A]_{\Gamma}$, ale $B\nsubseteq [A]_{\Gamma}$ (předpoklad). Stačí tedy ukázat, že $\mathcal{D}_{[A]_{\Gamma}}\in\operatorname{Mod}(\Gamma)$.

Vezměme libovolnou $E\Rightarrow F\in\Gamma$. Z algoritmu pro výpočet $[A]_{\Gamma}$ je patrné, že pokud $E\subseteq [A]_{\Gamma}$, pak musí platit i $F\subseteq [A]_{\Gamma}$, protože $[A]_{\Gamma}$ je poslední průběžnou hodnotou W z algoritmu. To jest, $E\subseteq [A]_{\Gamma}$ implikuje $F\subseteq [A]_{\Gamma}$, což dává $\mathcal{D}_{[A]_{\Gamma}}\models E\Rightarrow F$ a tedy $\mathcal{D}_{[A]_{\Gamma}}\in\mathrm{Mod}(\Gamma)$, protože $E\Rightarrow F\in\Gamma$ jsme zvolili libovolně.

Věta (Charakterizace sémantického vyplývání)

Pro každou teorii Γ a $A, B \subseteq R$ isou následující tvrzení ekvivalentní:

- $\Gamma \models A \Rightarrow B$,
- $arrange B \subseteq [A]_{\Gamma}$,

Důkaz.

Z bodu 1 plyne bod 2 díky předchozí větě. Předpokládejme, že platí 2, pak ihned dostáváme 3 z věty o platnosti funkčních závislostí v kanonických relacích. Předpokládejme, že platí 3. Pak z $A \subseteq [A]_{\Gamma}$ ihned dostáváme, že $B \subseteq [A]_{\Gamma}$. Jelikož ale $\Gamma \models A \Rightarrow [A]_{\Gamma}$ (viz základní vlastnost sémantického uzávěru), tím spíš i $\Gamma \models A \Rightarrow B$, protože $B \subseteq [A]_{\Gamma}$.

důsledky:

- $[A]_{\Gamma}$ je největší prvek množiny $\{B \subseteq R \mid \Gamma \models A \Rightarrow B\}$
- podmínka ② je efektivní test sémantického vyplývání

Příklad (Testování sémantického vyplývání pomocí uzávěrů)

Pro $\Gamma = \{\{A\} \Rightarrow \{B,C\}, \{B,D\} \Rightarrow \{E,F\}, \{C,E\} \Rightarrow \{G\}, \{F\} \Rightarrow \{A,B\}, \{D,G\} \Rightarrow \{A,C,H\}\}$ z předchozího příkladu a množinu atributů $M = \{A,E\}$ máme:

To jest $[M]_{\Gamma}=\{\mathtt{A},\mathtt{B},\mathtt{C},\mathtt{E},\mathtt{G}\}$ a platí, že $\Gamma\models M\Rightarrow N$ p. k. $N\subseteq\{\mathtt{A},\mathtt{B},\mathtt{C},\mathtt{E},\mathtt{G}\}.$

Například tedy platí:

$$\begin{array}{ll} \Gamma \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{G}\} & \Gamma \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{C}\} & \Gamma \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{C},\mathtt{G}\} \\ \Gamma \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{B},\mathtt{G}\} & \Gamma \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{B},\mathtt{C},\mathtt{G}\} & \Gamma \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{B},\mathtt{C},\mathtt{G}\} \end{array}$$

Na druhou stranu například:

$$\begin{array}{lll} \Gamma \not \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{D}\} & \qquad \Gamma \not \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{H}\} & \qquad \Gamma \not \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{D},\mathtt{E}\} \\ \Gamma \not \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{F},\mathtt{G}\} & \qquad \Gamma \not \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{C},\mathtt{D}\} & \qquad \Gamma \not \models \{\mathtt{A},\mathtt{E}\} \Rightarrow \{\mathtt{C},\mathtt{G},\mathtt{H}\} \end{array}$$

Klíče z pohledu funkčních závislostí

Definice (nadklíč, klíč, angl.: superkey, key)

Mějme relační schéma R a teorii Γ nad R. Pak **nadklíč** schématu R vzhledem k Γ je libovolná $K \subseteq R$ taková, že $\Gamma \models K \Rightarrow R$. Pokud je K nadklíč R vzhledem k Γ a žádná $K' \subset K$ není nadklíč R vzhledem k Γ , pak je K klíč R vzhledem k Γ .

otázka:

Jak souvisí s pojmem klíče relační proměnné (PŘEDNÁŠKA 2)?

následující je ekvivalentní:

- K_1, \ldots, K_n je množina klíčů (relační proměnné) typu R; to jest $\{K_1, \ldots, K_n\} \neq \emptyset$ a $K_i \nsubseteq K_j$ pro každé $i \neq j$ (Přednáška 2) p. k.
- ② každý K_i je klíč R vzhledem k $\Gamma = \{K_1 \Rightarrow R, \dots, K_n \Rightarrow R\}.$

pozorování: každý nadklíč (R vzhledem k Γ) obsahuje nějaký klíč (R vzhledem k Γ)

Příklad (Nadklíče a klíče)

Pro $\Gamma = \{\{\mathtt{A}\} \Rightarrow \{\mathtt{B},\mathtt{C}\}, \{\mathtt{B},\mathtt{D}\} \Rightarrow \{\mathtt{E},\mathtt{F}\}, \{\mathtt{C},\mathtt{E}\} \Rightarrow \{\mathtt{G}\}, \{\mathtt{F}\} \Rightarrow \{\mathtt{A},\mathtt{B}\}, \{\mathtt{D},\mathtt{G}\} \Rightarrow \{\mathtt{A},\mathtt{C},\mathtt{H}\}\}$ z předchozích příkladů jsou klíče schématu $R = \{\mathtt{A},\ldots,\mathtt{H}\}$ vzhledem k Γ následující:

$$K_1=\{\mathtt{A},\mathtt{D}\},\quad K_2=\{\mathtt{B},\mathtt{D}\},\quad K_3=\{\mathtt{C},\mathtt{D},\mathtt{E}\},\quad K_4=\{\mathtt{D},\mathtt{F}\},\quad K_5=\{\mathtt{D},\mathtt{G}\},$$
 protože pro K_1 platí:

$$[\{\mathtt{A},\mathtt{D}\}]_{\Gamma}=R, \qquad \quad [\{\mathtt{A}\}]_{\Gamma}=\{\mathtt{A},\mathtt{B},\mathtt{C}\}\neq R, \qquad \quad [\{\mathtt{D}\}]_{\Gamma}=\{\mathtt{D}\}\neq R,$$

to znamená: $\Gamma \models K_1 \Rightarrow R$ a $\Gamma \not\models M \Rightarrow R$ pro každou $M \subset K_1$, to jest K_1 je klíč. Analogicky se dá ukázat pro K_2, \ldots, K_5 . Například pro K_3 je $[K_3]_{\Gamma} = R$ a

$$[\{\mathtt{C},\mathtt{D}\}]_{\Gamma} = \{\mathtt{C},\mathtt{D}\} \neq R, \quad [\{\mathtt{C},\mathtt{E}\}]_{\Gamma} = \{\mathtt{C},\mathtt{E},\mathtt{G}\} \neq R, \quad [\{\mathtt{D},\mathtt{E}\}]_{\Gamma} = \{\mathtt{D},\mathtt{E}\} \neq R.$$

Následující jsou nadklíče, ale nejsou klíče:

$$\{\mathtt{A},\mathtt{D},\mathtt{E}\}, \qquad \{\mathtt{B},\mathtt{D},\mathtt{G}\}, \qquad \{\mathtt{C},\mathtt{D},\mathtt{E},\mathtt{F}\}, \qquad \{\mathtt{D},\mathtt{F},\mathtt{H}\}, \qquad \{\mathtt{A},\ldots,\mathtt{H}\}$$

Například {A}, {A,E}, {E,F} nejsou nadklíče, protože $[\{A\}]_{\Gamma} = \{A,B,C\} \neq R$, $[\{A,E\}]_{\Gamma} = \{A,B,C,E,G\} \neq R$ a $[\{E,F\}]_{\Gamma} = \{A,B,C,E,F,G\} \neq R$.

Příklad (Nalezení klíče postupnou redukcí nadklíče)

Pokud je dána Γ nad R, (některý) klíč schématu R vzhledem k Γ lze nalézt tak, že vyjdeme z nadklíče K=R a postupně z něj odebíráme atributy, dokud je množina pořád nadklíč. Pokud už žádný atribut nelze odebrat, výsledná množina K je klíč.

Pro $\Gamma = \{\{\mathtt{A}\}\Rightarrow \{\mathtt{B},\mathtt{C}\}, \{\mathtt{B},\mathtt{D}\}\Rightarrow \{\mathtt{E},\mathtt{F}\}, \{\mathtt{C},\mathtt{E}\}\Rightarrow \{\mathtt{G}\}, \{\mathtt{F}\}\Rightarrow \{\mathtt{A},\mathtt{B}\}, \{\mathtt{D},\mathtt{G}\}\Rightarrow \{\mathtt{A},\mathtt{C},\mathtt{H}\}\}$ z předchozích příkladů můžeme najít klíče K_1,K_2,K_3 takto:

Analogicky pro K_4 a K_5 .

pozor: algoritmus závisí na výběru prvku z aktuálního nadklíče (!!)

Motivace pro normalizaci

motivace:

Na základě znalostí (funkčních) závislostí v datech je potřeba navrhnout relační schémata v databázi tak, aby se minimalizovala redundance dat a nedocházelo k patologickým situacím souvisejícím s modifikací dat.

příklad relace nad nevhodným schématem:

SCHOOL	DEAN	DEPT	HEAD	ID	COURSE	YEAR
SCI	Blangis	AF	Durcet	7	QOPT1	2012
SCI	Blangis	AF	Durcet	8	LASR1	2012
:	:	:	:	:	:	:
SCI	Blangis	CS	Curval	6	PAPR1	2012

problémy:

- redundance dat (zbytečná duplikace hodnot)
- 2 anomálie spojená s výmazem dat (výmaz kurzů katedry "odstraní vedoucího")
- anomálie spojená s aktualizací hodnot (změna vedoucího katedry na víc místech)

Boyce-Coddova normální forma

zdroj anomálií v předchozím příkladě: některá množina atributů je funkčně závislá na jiné množině atributů, která není nadklíč; zavádíme proto:

Definice (Boyce-Coddova normální forma, BCNF)

Mějme relační schéma R a teorii Γ . Pak R je v BCNF vzhledem k Γ pokud pro každou netriviální $A\Rightarrow B\in \Gamma$ platí, že $\Gamma\models A\Rightarrow R$.

normalizace pomocí dekompozice: pokud není R v BCNF vzhledem k Γ , pak:

- $\bullet \ \ \text{vezmeme netriviáln} \ A \Rightarrow B \in \Gamma \ \text{takovou, že} \ \Gamma \not\models A \Rightarrow R$

- ① proces se pokusíme opakovat pro dvojici R_1 a Γ_1 pokud R_1 není v BCNF vzhledem k Γ_1 a analogicky pro R_2 a Γ_2

poznámka: BCNF nemusí být dosažitelná, více kurs Databázové systémy 2 (!!)

Příklad (Schéma, které není v BCNF)

Uvažujme relační schéma

$$R = \{\mathtt{SCHOOL}, \mathtt{DEAN}, \mathtt{DEPT}, \mathtt{HEAD}, \mathtt{ID}, \mathtt{COURSE}, \mathtt{YEAR}\}$$

a teorii Γ popisující závislosti mezi atributy:

$$\begin{split} \Gamma &= \{ \{ \texttt{DEPT} \} \Rightarrow \{ \texttt{HEAD}, \texttt{SCHOOL}, \texttt{DEAN} \}, \\ \{ \texttt{SCHOOL} \} &\Rightarrow \{ \texttt{DEAN} \}, \\ \{ \texttt{COURSE}, \texttt{YEAR} \} &\Rightarrow \{ \texttt{ID} \}, \\ \{ \texttt{ID}, \texttt{YEAR} \} &\Rightarrow \{ \texttt{DEPT} \} \}. \end{split}$$

Schéma R není v BCNF vzhledem k Γ , protože (například):

- {DEPT} \Rightarrow {HEAD, SCHOOL, DEAN} $\in \Gamma$, ale $[\{\text{DEPT}\}]_{\Gamma} = \{\text{SCHOOL}, \text{DEAN}, \text{DEPT}, \text{HEAD}\} \neq R$, to jest $\Gamma \not\models \{\text{DEPT}\} \Rightarrow R$, nebo:
- $\{\mathtt{SCHOOL}\}\Rightarrow \{\mathtt{DEAN}\}\in \Gamma$, ale $[\{\mathtt{SCHOOL}\}]_{\Gamma}=\{\mathtt{SCHOOL},\mathtt{DEAN}\}\neq R$, to jest $\Gamma\not\models \{\mathtt{SCHOOL}\}\Rightarrow R$.

Příklad (Normalizace schématu pomocí dekompozice)

```
R = \{ SCHOOL, DEAN, DEPT, HEAD, ID, COURSE, YEAR \}
\Gamma = \{\{\text{DEPT}\} \Rightarrow \{\text{HEAD}, \text{SCHOOL}, \text{DEAN}\}, \ldots\} \text{ (viz předchozí příklad)}
 • R_1 = \{ SCHOOL, DEAN, DEPT, HEAD \}
     \Gamma_1 = \{\{\text{DEPT}\} \Rightarrow \{\text{HEAD}, \text{SCHOOL}, \text{DEAN}\}, \{\text{SCHOOL}\} \Rightarrow \{\text{DEAN}\}\}
        • R_{11} = \{ SCHOOL, DEAN \}
           \Gamma_{11} = \{\{\text{SCHOOL}\} \Rightarrow \{\text{DEAN}\}\}
        • R_{12} = \{\text{SCHOOL}, \text{DEPT}, \text{HEAD}\}
           \Gamma_{12} = \{\{\text{DEPT}\} \Rightarrow \{\text{HEAD}, \text{SCHOOL}\}, \{\text{SCHOOL}\} \Rightarrow \{\}\}
 • R_2 = \{ DEPT, ID, COURSE, YEAR \}
     \Gamma_2 = \{\{ \text{DEPT} \} \Rightarrow \{\}, \{ \text{COURSE}, \text{YEAR} \} \Rightarrow \{ \text{ID} \}, \{ \text{ID}, \text{YEAR} \} \Rightarrow \{ \text{DEPT} \} \}
        • R_{21} = \{ DEPT, ID, YEAR \}
           \Gamma_{21} = \{\{ \texttt{DEPT} \} \Rightarrow \{\}, \{ \texttt{ID}, \texttt{YEAR} \} \Rightarrow \{ \texttt{DEPT} \} \}
        • R_{22} = \{ ID, COURSE, YEAR \}
           \Gamma_{22} = \{\{\text{COURSE}, \text{YEAR}\} \Rightarrow \{\text{ID}\}, \{\text{ID}, \text{YEAR}\} \Rightarrow \{\}\}
```

Příklad (Reprezentace výchozích dat v normalizované databázi)

ì								
	SCHOOL	DEAN	DEPT	HEAD	ID	COURSE	YEAR	
	SCI	Blangis	AF	Durcet	7	QOPT1	2012	
	SCI	Blangis	AF	Durcet	8	LASR1	2012	
	SCI	Blangis	AF	Durcet	8	LASR1	2013	
	SCI	Blangis	CS	Curval	3	ALMA1	2012	
	SCI	Blangis	CS	Curval	3	ALMA1	2013	
	SCI	Blangis	CS	Curval	6	DATA1	2012	l
	SCI	Blangis	CS	Curval	6	DATA1	2013	
	SCI	Blangis	CS	Curval	6	PAPR1	2012	

	DEPT	ID	YEAR
	AF	7	2012
	AF	8	2012
1	AF	8	2013
'	CS	3	2012
	CS	3	2013
	CS	6	2012
	CS	6	2013

 \bowtie

ID	COURSE	YEAR
3	ALMA1	2012
3	ALMA1	2013
6	DATA1	2012
6	DATA1	2013
6	PAPR1	2012
7	QOPT1	2012
8	LASR1	2012
8	LASR1	2013

Přednáška 8: Závěr

pojmy k zapamatování:

- teorie, model, sémantické vyplývání
- kanonická relace, kanonický model
- sémantický uzávěr množiny atributů, charakterizace sémantického vyplývání
- anomálie, Boyce-Coddova normální forma, normalizace pomocí dekompozice

použité zdroje:

- Date C. J.: Database in Depth: Relational Theory for Practitioners O'Reilly Media 2005, ISBN 978-0596100124
- Maier D: *Theory of Relational Databases*Computer Science Press 1983, ISBN 978-0914894421
- Simovici D.: Tenney R.: *Relational Database Systems* Academic Press 1995, ISBN 978-0126443752