

**Eric Maris** 

**Neuronal signals for BCI** 





#### **Outline**

- 1. The different types of electrophysiological data
- 2. Electrophysiology versus fMRI
- 3. The physiology of EEG and MEG
- 4. Evoked responses and induced oscillations







## **Electrophysiological Data**

1. EEG = ElectroEncephaloGram















Copyright @ 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins

































## **Electrophysiological Data**

2. MEG = MagnetoEncephaloGram















## **Electrophysiological Data**

3. ECoG = ElectroCorticoGram

(iEEG = intracranial EEG)













## **Electrophysiological Data**

## 4. Wire electrodes







## What are Wire Electrodes?















## **Electrophysiology versus fMRI**

- Neuronal activity involves changes in the potential distribution in the brain
- These changes in potential distribution contribute to the signal that is measured in, on, or outside of the brain
- fMRI is a measure of haemodynamic processes in the brain
- The relation between electrophysiological measures and fMRI is unclear







## **Electrophysiology vs fMRI**







#### **Artefacts in Electrophysiological Measurements**

- Artefact = a component in the recorded signal that is not produced by neurophysiological activity
  - Non-neuronal physiological activity: muscle contraction, vascular activity
  - Non-physiological activity: line noise, moving magnetic fields
- The neurophysiological component in the recorded signal is often small!







#### **Artefacts in Electrophysiological Measurements**



Copyright @ 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins







#### MEG first



H.C. Ørsted, 1820



Electrical current deflects a compass







#### Measuring dendritic currents





## Measuring dendritic currents











Action potential:



Post-synaptic currents, not action potentials generate the field

Post-synaptic current:



τ ~ 10 ms





Synchronized activity is required to produce a measurable field

















Synchronized activity manifests itself in two ways:

- Evoked responses

   (e.g. auditory evoked fields)
- Spontaneous oscillations (e.g. 9-13 Hz alpha rhythm)







Dendrites of inhibitory neurons are not aligned

Pyramidal neurons generate the field!



Inhibitory synapses close to the soma





# O'

#### The Physiology of EEG/MEG



When the apical dendrites are aligned, then the neurophysiological generator consists of

- 1. a source region
- 2. a sink region
- 3. electrical current from source to sink

The *dipole* is a good mathematical model for the current that is produced by this type of generator







MEG only

EEG and MEG









#### Two components in the EEG/MEG:

- 1. Primary currents (intracellular) produced by the neural generator
  - in MEG only
- Secondary currents (extracellular)
  - in EEG and MEG







The external magnetic field of a radial source is zero because the magnetic fields of the primary and the secondary currents cancel out.











## MEG is less spatially smeared than EEG









#### Example: the magnetic N400







MEG Field map

1st order planar gradient

Time:  $300 - 500 \, \text{ms}$ 









MEG Field map

**ERP Field map** 







## From Extracranial EEG/MEG to the Intracranial Potential Distribution?

There is an infinite number of current distributions within the head that gives rise to the same external EEG/MEG observation



Hermann Ludwig Ferdinand von Helmholtz

Über einige Gezetze der Verteilung elektrischer Ströme in körperliche Leitern mit Anwendung auf die thierisch-elektrischen Versuche

Pogg Ann Physik und Chemie, 89:211-233, 1853.







## **Evoked Responses**







#### **Induced Oscillations**









#### **Induced Oscillations**





- There are four types of electrophysiological data: EEG, MEG, ECoG, and wire electrode recordings
- Electrophysiological data have a spatial and a temporal dimension
- Electrophysiological data reflect electrical potential distributions in the brain (but not only that!)
- fMRI data reflect haemodynamic processes in the brain







- The EEG/MEG is produced by synchronized post-synaptic currents in the pyramidal neurons
- When the apical dendrites are aligned, then the neurophysiological generator of the EEG/MEG can be modeled as a current dipole
- MEG measures both primary and secondary currents, whereas EEG measures only secondary currents







- MEG is less spatially smeared than EEG
- There is an infinite number of current distributions within the head that gives rise to the same external EEG/MEG observation (von Helmholtz, 1853)
- Evoked responses are obtained by time-locked averaging (to stimulus- or response onset) of the raw EEG/MEG





 Induced oscillations are obtained by convolving the raw EEG/MEG with a filter that passes the signal components in a particular frequency band

