	I-X			x - xx	
Определение высказывания	Высказывание - утверждение, которое true / faise		КНФ	Конъюктивная нормальная форма - конъюкци - отдельные аргументы - простая дизъюнкция несколью	
Арность	Число аргументов данной функции / операции		Минтерм	Булева функция, которая принимает едничное зн значений переменн	
Булева алгебра	<u>def</u> Множество В, сост. из 0 & 1, на котором заданы бинарные операци — <u>rules</u> коммутативность, ассоциативность, дистрибутивность, тождества илемпотентность. свойства констант, инволютивность		СДНФ	Совершенная ДНФ - представление функции в в аргументов	иде дизъюнции минтермов от n
Булево множество	Множество В, которое состоит только из 0 & 1		Теорема разложения для ДНФ	Всякую булеву функцию можно пр f(A1, A2, , An) = Ai f(A1, A2, , 1(i позиция), позиция), , An)	, An) + ¬ (Ai)f(A1, A2, , 0 (i
Закон единственнности дополнения	Дополнение произвольного элемента 'х' определяются его свой $ x + \neg x = 1, x^* \neg x = 0 $	йствами:	Импликанта	Импликанта ф функции f - функция, все минтермы кот функции f.	орой входят в множество минтермов
Закон инволюции	フ コス = X		Минимизация булевой функции	Минимизация булевой формулы — нахождение наим (состоящие из одной конъюнкции), которые в дизъюн	иеньшего числа простых импликант кции описывают исходную функцию.
Теорема склеивания	$(x \land y) \lor (x \land \neg y) = x$ $(x \lor y) \land (x \lor \neg y) = x$		Сокращенная ДНФ	Запись функции, в которой учитываютс - любые два спагаемых отличаются ми - ни один из конъюнктов не содержитс	нимум в двух местах
Отличие функции от формулы	- У функции мб множество формул - Функция может быть задана формулой		Тупиковая ДНФ	Сокращенная ДНФ, которая не содержит лишних (не импликант.	влияющих на таблицу истинности)
Число булевых функций от n аргументов	2^(2^n))		Минимальная ДНФ	Тупиковая ДНФ, которая содержит минимальное	е число вхождений переменных.
ДНФ	Дизъюнктивная нормальная форма - дизъюнкция выражений, которые либо: - отдельные аргументы - простая конъюкция нескольких аргументов		Макстерм Булева функция, принимающая 1 на всех наборах аргументов, кроме одного.		

	XXX - XL		W. I	
	XXX - XL		XL- L	
СКНФ	Соверешенная КНФ - представлление в виде конъюнкции макстермов функции.	Полином Жегалкина	Полином с коэффициентами 0 и 1, где произведение - конъюнкции, а сложение - XOR	
Теорема разложения для КНФ	Всякую булеву функцию можно представить в виде $f(A1, \dots, An) = (Ai + f(A1, \dots, 0 \text{ (i позиция)}, \dots, An)) \cdot (\qquad \neg Ai + f(A1, \dots, 1 \text{ (i позиция)}, \dots, An))$	Что включает в себя Булев базис, является ли он безызбыточным?	Является избыточным и состоит из конъюнкции, дизъюнкции и инверсии. При исключении дизъюнкции или конъюнкции система останется полной	
Суперпозиция функции	Функция, полученная из некоторого множества функций путем подстановок одной функции в другую и/или отождествления переменных.	Самодвойственная функция	Функция, которая на противоположных наборах дает противоположные значения.	
Подстановка g в f	Замена i-го аргумента функции f значением функции g.	Линейная функция	функция, которая при представлении в виде полинома Жегалкина не имеет конъюнкций	
Отождествление переменных в f	Подстановка і-го аргумента функции вместо ј-го.	Монотонная функция	Функция, которая на сравнимых наборах не убывает.	
Ранг суперпозиции	Минимальное число подстановок и отождествлений, за которое суперпозиция может быть получена из исходного множества функций	Сравнимые наборы	Сравнимые наборы - а и b, если ∀i: ai ≼ bi => f(a1 an) < f(b1 bn) Если наборы НЕ сравнимы, то значения монотонной функции могут на них убывать или оставаться неизменными.	
Замкнутое множество функции	Множество, в котором любая булева функция является суперпозицией некоторого подмножества функций из данного множества	Сохраняющая константу функция	Функция, сохраняющая единицу — функция, возвращающая 1на единичном наборе аргументов (111). Функция, сохраняющая ноль — функция, возвращающая 0 на нулевом наборе аргументов (000).	
Замыкание множества функции	Некоторое подмножество булевых функций, такое что любую из этих функций можно выразить через функции исходного множества	Формулировка критерия Поста	Набор функций полон тогда и только тогда, когда он не содержится целиком ни в одном из предполных классов. ∃ несамодвойственная V нелинейная V немоноточная V не сохраняющая ноль V не сохраняющая единицу функция.	
Полная система функций	Множество функций, для которого замыкание совпадает с множеством всех булевых функций.	Что включает в себя базис Жегалична, является ли он безызбыточным?	1, XOR и конъюнкция. Является безызбыточным.	
Безызбыточная полная система функций	Полная система функций, которая перестает быть полной после исключения из неё любой функции	Перечислить полные системы из одной функции	- Штрих Шеффера - Стрелка Пирса	