PROBABILIDAD Y ESTADÍSTICA TERCER PARCIAL

Docente: NIDIA QUINTERO PEÑA

Grupo: D1

Fecha máxima de entrega: 4 de Marzo de 2021 Fecha de sustentación: 5 de Marzo de 2021

OBJETIVO

Aplicar los conceptos estudiados sobre Probabilidad Conjunta y las Distribuciones de Probabilidad de variables aleatorias Continuas para solucionar los problemas propuestos.

METODOLOGÍA

Solucionar los problemas propuestos en los grupos de trabajo, aplicando los conceptos estudiados en la asignatura, crear un archivo con extensión .pdf y subirlo en la plataforma Moodle en la pestaña 'lo que se va a evaluar'.

El día de la sustentación, cada grupo explicará la solución del ejercicio asignado por la profesora.

Nota: se debe mostrar el procedimiento realizado para obtener los resultados. Ejercicio sin procedimiento no tiene validez.

PROBLEMA 1

La variable aleatoria **X** tiene distribución uniforme en el intervalo [1, 3] y la variable aleatoria **Y** tiene distribución uniforme en el intervalo [2, 5]. Si se conoce que las variables **X** y **Y** son independientes. Se desea calcular:

- a) La función de densidad de probabilidad conjunta $f_{xy}(x,y)$
- b) P(X > 1.5, 2 < Y < 3.5)
- c) P(X > 2)
- d) P(Y > 2.5)
- e) P(X > 2 | Y = 3)
- f) $P(Y < 4 \mid X = 2)$
- q) E(X), E(Y).

h) V(X), V(Y).

Se define una variable aleatoria \mathbf{Z} como: $\mathbf{Z} = \mathbf{2Y} - \mathbf{X}$, calcular:

- i) E(Z).
- j) V(Z).

PROBLEMA 2

Suponga que cada rueda trasera de un avión experimental se llena a una presión de 40 psi. Sea **X** la presión real del aire para la rueda derecha y **Y** la presión real del aire para la rueda izquierda. Suponga que la relación entre las variables aleatorias **X** y **Y** es la función de densidad conjunta:

$$f_{xy}(x, y) = k(x^2 + y^2),$$
 $30 \le x < 50,$ $30 \le y < 50$
 $f_{xy}(x, y) = 0$ en otro caso

Calcular:

- a) k para que $f_{xy}(x,y)$ cumpla con las propiedades de una función de densidad de probabilidad conjunta.
- b) P(30 < X < 40, 40 < Y < 50).
- c) La probabilidad de que ambas ruedas no contengan la suficiente cantidad de aire.
- d) $P(35 < X < 45 \mid Y = 40)$
- e) $P(35 < Y < 45 \mid X = 40)$
- f) P(30 < X < 40)
- q) P(30 < Y < 40)
- h) La covarianza y la correlación entre la presión real del aire de la rueda derecha y de la rueda izquierda.

PROBLEMA 3

Sea **X** el número de veces que fallará cierta máquina de control numérico: 1, 2 o3 veces en un día dado. Y sea **Y** el número de veces que se llama a un técnico para una emergencia, su distribución de probabilidad conjunta está dada como se muestra en la tabla:

			\mathcal{X}	
f(x, y)		1	2	3
	1	0.05	0.05	0.10
v	3	0.05	0.10	0.35
y	5	0.00	0.20	0.10

Calcular:

- a) P(X > 1.5, 2 < Y < 4)
- b) P(X > 1)
- c) P(Y > 1)
- d) P(X | Y = 3)
- e) P(Y | X = 2)
- f) E(X), E(Y).
- g) V(X), V(Y).
- h) La covarianza y la correlación de X, Y.

PROBLEMA 4

Suponga que se tienen tres variables aleatorias independientes con las siguiente características: X es N($\mu=1,\ \sigma=1$), Y es N($\mu=3,\ \sigma=2$) y Z es N($\mu=4,\ \sigma=3$). Calcular:

- a) La función de densidad de probabilidad conjunta $f_{xyz}(x,y,z)$
- b) P(X > 1, Y < 2, Z > 3)
- c) P(X > 2)
- d) P(Y > 4)
- e) P(0 < X < 2, 1 < Y < 5 | Z = 5)
- f) $P(1 < X < 3 \mid Y = 4, Z = 6)$

Se define una variable aleatoria W como: W = 2X + Y + 3Z, calcular:

- g) *E(W)*.
- h) V(W).