

FIG. 1

SYNTHETIC COMBINATORIAL ANTIBODY LIBRARY

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,324

	D	<u> </u>	ᄓ	<u> </u>	니
	B		Image: contract of the contract of	ŀ	
H	A	ı	S.	S S	S
).	72	Õ	Ø	Ø	Ŏ
CDR.	97	S S	S	ß	ß
	25	A	Ŋ	Ø	ß
	₽Z	R	以	K K	%
	23	ט	 ပ	\mathcal{C}	U
	22	H	Ŋ	Ŋ	Z
	27	H	Н	Д	H
	20	Ē	ß	Н	Н
	6T	>	Ø	K	Ø
	81	民	Д	α	民
	LT	Д	団	口	ы
	9 T	Ŋ	Ŋ	\mathcal{O}	\mathcal{O}
H	ST	>	Д	Д	Д
<u>.</u> 	ÐΤ	ഗ	E	Ŋ	Ŋ
work	ET	Ø	>	Ц	>
Mé	IS	ഗ	Д	Ŋ	Ø
ame	TI	니	Ц	H	Ы
fra	OT	ഗ	ഗ	\vdash	ഗ
Ŧ	6	വ	Ы	Ø	О
	8	Д	Д	Д	ሷ
	L	ß	ഗ	ഗ	Ŋ
	9	Ø	Q	Ø	Q
	S	Η	E	\vdash	\vdash
	Ð	Σ	V M	ļ	VM
	2	Ø		>	
		Н	Н	Н	Н
	I	ΙQ	2DI	:3 D	Ω
		77	K 2	7.3	k 4 D

					CDRI	Z									44	fra	ame	nework)r]	ł	2					S	DR	H _.	· 1
	D	E E D	E	182	29	3.0	3.1	32	33	₽€	35	98	3.7	38	3 8	ΟĐ	ΙĐ	242	εħ	ъъ	SŦ	9 b	L D	8 b	6 b	05	25 25	23	₹S
7K 5	ı	ŀ	i	Ŋ	Н	വ	വ	×	J	Ø	3	×	Ø	Ø	X	д	Ŋ	X	Ø	д	X	Д	口	Н	. Y	A A	A.	S S	그
VK6H	. 出	ഗ	1	Z	Ŋ	⊱	Z	\succ	니	О	3	\Rightarrow	Ц	Ø	X	Д	Ŋ	Ø	Ŋ	Д	Ø	ы	П	H	7	L (r C	N N	兄
VK 7		1	1	>	S	ഗ	ഗ	\Rightarrow	Ц	Ø	3	\Rightarrow	Ø	O	X	Д	Ŋ	O	K	Д	CK.	Д	ь	H) ∀	Ü 7	A A	S S	民
VK8 Y S	>-	ഗ	വ	Z	Z	X	Z	\Rightarrow	Ы	Ø	\mathbb{Z}	\Rightarrow	Q	Ø	又	Д	Ŋ	O	Д	Д	X	П	П	Н	7	M	W W	ST	٦.

F/G. 2A

IJ	DRII	H												Ţ	am	le S	ewor	ᄾ	Μ										
	SS	85 95 95	LS	85	65	09	τ9	29	٤9	₽9	9	99	۷9	89	69	04	TL	72	27	ÐΔ	SL	9 <i>L</i>	LL	87	64	08	18	28	£8 ₽8
7×1	Ø	DS Q	Ŋ	\rangle	Д	വ	区	ĮΞų	വ	Ŋ	ß	Ŋ	വ	r U	Ħ	Ω	ſΞţ	E	口	₽	Н	ഗ	ഗ	口		<u>ط</u>	田田	Д	FA
JK2 A S G	K	ഗ	Ω	\gt	щ	Ω	又	ĮΤ	Ŋ	Ω	S	\mathcal{O}	Ŋ	\mathcal{O}	\vdash	Ω	Įτι	Н	ᆡ	×	\vdash	Ŋ	以	>	田	Z	田田	D	\ Q \
1K3 A T G	Ø	\vdash	Ŋ	>	Д	Ø	α	Ľτι	ഗ	Ŋ	Ŋ	\mathcal{Q}	ഗ	\mathcal{Q}	\vdash	Ω	ŢŢ	\vdash	口	E	Н	Ŋ	ഗ	Ц	ы	<u>Д</u>	田田	D	F A
7k4 ESGV	田	ഗ	G	>	д	П	저	Гщ	വ	Ŋ	S	Ω	ഗ	Ŋ	\vdash	Д	ſι	\vdash	Д	ᇊ	Н	Ø	S	П	Ŏ	Z Z	田	D	V A

	•	1
	!	F/G.
	60T	E
	80T	24
	LOT	又
4	90T	Н
یا	SOT	田
7	₽OI	>
aillewo	EOI	봈
=	105	₽
ש	TOT	Ŋ
-1	001	O
	1	I

fr	ame	e	work	윘	m		CD	l CKI	II	Н						£τ	ಹ	me	WOL]	rk	4	-			$\overline{}$
	58	98	۲8	88	68	06	τ6	76	٤6	7 6	96	96	۷6	86	66	001	TOT	707	EOT	DOT	SOT	90T	70T	80I	lco-
Vk1 T	\vdash	\succ	\Rightarrow	O.	Ŏ	Ø	耳	\Rightarrow	E	H	Д	വ	Ľ	ĹΉ	G	ŏ	G	[X	Λ 1	田	I	X F	R 1	E
Vk2	>	\Rightarrow	\succ	\mathcal{O}	Ø	Ø	耳	\succ	Η	H	Д	Д	H	ſτι	Ŋ	Ø	Ċ	 [→	X	>	田	H	以 H	R [E
Vk 3 V Y	>	\succ	\succ	\mathcal{O}	Ø	\circ	田	\succ	\vdash	H	Д	Д	\vdash	ſτι	G	Ø	Ŋ	 [→	X N	>	臼	H	X R		<u></u>
Vk4	4 V Y	>	\succ	\mathcal{O}	O	Ø	耳	\triangleright	\vdash	E	Д	Д	Е	ſщ	Ŋ	Ø	Ŋ	E	X	>	凹	H	X R		E

	28	H	<u>У</u> О	П I
-	E	~		
CDRI	D	ß	S	1
CD	72	ß	ς Ω	A O
	92	ഗ		Ω
	25	Ö	c D	CD
	77	Š	H	S
	23	Ö	Ö	S
	22	വ	Ŋ	S
	SI	Н	Н	Н
	20	H	\vdash	K
	6 T	>	Н	Ø
	8 T	民	Ŋ	H
	LT	Ŏ	O	0
	9 T	Q	Ŋ	G
- 	ST D T	Д	Д	Д
,¥4	ÐΤ	Ø	ß	Ø
WOL	EI	G	Ω	>
Mé	ITS	വ	ഗ	ഗ
me	TT	\Rightarrow	\gt	\gt
Гa	Οτ	· i	1	ı
41	6	വ	ഗ	ഗ
	8	д	Z,	Д
	L	Д	വ	Д
	9	Ø	Q	0
1	5	₽	. E	₽
	S & Z T		Ы	П
	3	>	Ø	口
	2	က	ഗ	\Rightarrow
	JT	Ø	Ŏ	ഗ
		VAIQSVL	Vλ 2 Q	$ \lambda_3 _{S Y E}$

١	1										١		l	l	١		l	ľ											_	_
			\Box	CDRI	Н							44	Н	Eme	amework	OI	,	N							CD	찟	H			
82		30	3.1	92 98 18 A SE	32	EΕ	₽£	35	9ε	7.5	3.8	3 8	0 b	ΤĐ	2 £	εħ	ÞЪ	SÐ	9₺	LĐ	8₽	6 Đ	05	TS	22	53	ħS	55	95	LS[
B		VA1GSN	Z	7 -	>-	>	ഗ	3	×	Q	Ø	니	Д	ධ	H	A	Д	X	ᄓ	L	H	\succ	Д	Z	Z	Ø	α	Д	വ	Ŋ
<u> </u>		Ŋ	\Rightarrow	VA 2 G G Y N Y	Ŋ	>	Ŋ	3	\succ	Ø	Q	出	Д	Ŋ	又	Ø	Д	×	니	Ξ	Н	\Rightarrow	Д	>	ഗ	Z	α	Д	S	Ŋ
		О	V Л З G D К -	1	\Rightarrow	Ø	ഗ	3	\Rightarrow	Ø	Ø	又	Д	\mathcal{O}	Q	A	Щ	>	니	>	Н	≯			വ		~	д	ഗ	CD
J	1														l	ļ	ĺ	İ												

FIG. 2C

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,324

												44	fre	mæ	amework	O1	본	w											
	85	69	て9 て9 09 65 85	τ9	29	٤9	₹9	59	99	۷9	89	69	0 7	TΔ	27	٤ <i>L</i>	D L	SL	94	L L	87	64	08	18 8	83	₽8	8 2	98	۷8
	>	Д	VA1 VPDR	r R	ĮΤι	വ	r	ഗ	X	ഗ	Ŋ	H	Ŋ	Æ	Ŋ	П	A	, H	E	ΐ	L L	Ø	S	口 日	田	A		\succ	[
	>	ഗ	VÀ.2 VSNRF	以	ഥ	ഗ	Ŋ	ഗ	X	ഗ	U	Z	Н	ø	S	٦ ا	H	Н	S	ტ	L U	Ŏ 7	A	口 曰	田	Ø	Д	×	×
	н	щ	VA3 IPER	α	Ĺц	ഗ	Ŋ	ഗ	Z	ഗ	Ŋ	Z	E	Ø	\vdash	, ,	⊣	Н	S	r G) H	Ŏ	A	E D	田	K	О	×	\Rightarrow

				ال	CDR	\vdash	II	}					£r	am	IΨ	WOL]	r,	4			
	88	68	06	16	26	63	⊅ 6	96	96	L6	86	66	OOT	TOT	TOS	EOI	FOT	SOT	90T	A	LOT
$\sqrt{\lambda}$ 1	S	Ø	Ø	田	≯	₽	₽	ሷ	വ	>	ĹΤι	හ	ෆ	r	₽	×	口	₽	>	口	C
vλ2	U	O	Q	出	\Rightarrow	H	\vdash	Д	$\Omega_{\mathbf{i}}$	>	ſτι	\mathcal{O}	\mathcal{O}	Ŋ	E	×	Д	⊱	>	口	\mathcal{O}
VZ 3	Ö	Ø	Ø	耳	\Rightarrow	\vdash	\vdash	Д	Д	>	ĮΉ	\mathcal{Q}	\mathcal{O}	\mathcal{Q}	E	×	П	E	>	J	\mathcal{O}

FIG. 2D

													fr	l me	ne	ework	LŽ	1			1			1						:
	I	\$ C C T	Ε	7	S	9	L	8	6	O T	TT	IZ	13	ÐΤ	SI	9 T	LI	8 T	6 T	20	ZI	22	23	52	25	26	72	82	62	3 0
VH1A Q V Q L	Q	>		H	>	Ø	S	Q	A	臼	>	×	X	Д	O	S	ß	>	×	>	S	ပ	K	A	S	G	Q		Ŀ	S
VH1B Q V Q	Ø	>	Ø	니	>	0	S	G	A	田	>	×	X	Д	G	Ø	ß	>	×	>	ഗ	Ö	×	K	Ŋ	Q	>	H	ĮΉ	H
VH2	Ø	OVQL	O	H	X	田田	S	Ö	ρ,	K	Н	>	×	ρı	EH	Ø	H	H	H	H	H	Ö	E	ſτι	Ø	<u>م</u> .	ĮΤΙ	ß	Ы	Ŋ
VH3	山	VOL	Q	. 	>	田	S	G	Ö	G	H	>	Ø	Д	G	Q	S	H	R	Ы	Ø	U,	Ø	Ø	Ø	Q	[I4	Н	[I]	S
VH4	O ²	>	Ø	1	Ø	田〇	S	C)	Д	(D)	H	>	×	ρı	ß	田	H	,_]	Ø	H	EH	Ö	H	>	Ø	Ü	Ŋ	Ŋ	Н	S
VH5	国	>	Ø	니		0 /	S	G	A	田	>	X	×	ρı	G	臼	ß	H	×	H	S	\mathcal{O}	×	Q	Ŋ	Ŋ	×	Ø	ſΞų	E
9нл	Ø	QVQL	O	H	Q	Ø	S	ß	Ω,	Ö	L	>	×	<u>Q</u>	വ	Ø	H	Н	വ	H	H	ပ	K	Н	Ŋ	Ö	Д	Ø	>	വ
	1		1			1	1	-	- 1	•	_ ,		- 1			- 1	1				1									

FIG. 2E

VH6 S N S A A	S	Z	က	4	4	M 1		3	H	R	Ø	S	<u>D</u>	ß	R	ß	니	Э	3	L G		띪	E	 	Y R	1	1	S	X X	X	Z
					CDF	RI.												fr	ווש	me	ewo	[남	' '	ll m				Ш			l
29 29 19 69 89	8 5	65	09	Τ9	29	٤9	ام جا	9	99	۷9	89	69	07	TΖ	2L	٤ <u>۲</u>	ÐΔ	SL	9 <i>L</i>	7 T	8 Z	6 L	08	T8	S8 A	B	2	83	₽8	98	
VH1A	z	≻	Ø	õ	X	ĮΤι	ŏ	Ŋ	ĸ	>	₽	H	Ħ	A	Ω	印	Ŋ	H	က	Œ	A	Y	M	回 回	L S	SS	L L	X	S	田田	
VH1B NYAQ	Z	\Rightarrow	æ	Ø	X	[L	Ø	Ŋ	ĸ	>	H	Σ	Е	K	Д	H	വ	Н	ß	E	4	Y	Σ	臼	니	S S		L R	∞ Ω	田田	
VH2	>-	≻∙	YYST		ഗ	Ы	×	H	α	Ы	Е	Н	ഗ	×	Ω	E	ß	×	Z	Ó	>	>	IJ,	H	M	E E	N	I D	<u>Д</u>	>	
VH3	>-	\succ	YA	Ω	ഗ	>	×	Ŋ	α	ſτι	H	Н	Ø	α	Ω	Z	ഗ	×	Z	<u>[</u>	, L	7	L O	Ø	M		S	L R	A ~	田	
VH4	Z	NYN		Ωį	ß	Д	×	ഗ	α	>	\vdash	Н	ß	>	Ω	E	ഗ	X	Z	Ø	ĹĿį	S	H	ス L	니	S	S	LΛ	ď	A 1	
VH5	R Y	\Rightarrow	ഗ	Д	ഗ	Įτį	Ø	Ŋ	Ø	\gt	H	Н	Ø	K	Ω	×	ഗ	Н	Ŋ	E	A	7	☐ ☐	70	3	S	S	L K	A >	S	
9HA	Ω	>-	DYAV		ഗ	>	又	വ	R.	н	H	н	Z	Д		E	W	K	Z	Ø	ſĿι	S	L (Ø	I.J	N	S	VT	Сı Сı	田	

			fΥ	framev	je.	NO	work		\sim						CD	α	TIT	Н						fr	ra	ame	ewo	닐	ᅩ	4
] 98	L 28	88	68 88 48 98	06	16	26	83	₹ 6	96	96	۷6	86	66	001	A	B	้อ	TOT	TOS	EOI	DO T	SOT	901	70T	60T	OII		IIS	EII
VH1A D T A V Y	Ω	T	K	>	\Rightarrow	≯	Ŋ	Æ	跃	3	ტ	Ŋ	Ω	හ	ſτι	>1	A	Σ	<u> </u>	Z	3	5	Ø	ט	T	L V	7	>	ß	വ
VH1B	Ω		K	TAV	×	\Rightarrow	Ö	Ø	民	Z	Ŋ	Ŋ	Д	O	ſτι	>	Ø	Σ	Д	7	M	<u>ე</u>	Ø	ה	H	LV	E /	>	Ŋ	S
VH2	Ω	Η	Ø	DTAT	×	≯	Ŋ	Ø	民	Z	Ŋ	Ŋ	Д	Ŋ	ĮΤί	≻	Ø	Σ	, D	7	3	<u>ა</u>	Ø	ה	H	L	T 7	>	Ŋ	Ŋ
VH3	Ω	<u>-</u>	K	DTAV	≯	×	\mathcal{O}	Ø	ፈ	Z	Ŋ	Ŋ	Ω	Ö	ſτι	>1	K	Σ	Д	7	M	<u>ე</u>	Ø	ני.		LV	T /	>	ς Ω	ഗ
VH4	Ω	H	Æ	DTAVY	×	×	ပ	A	民	Z	വ		Д	Ŋ	ĮΤι	>1	A	\mathbf{Z}	Д	Y	M	<u>ე</u>	Ø	ט.	T L	LV	T _	>	Ŋ	Ŋ

FIG. 2F

S

S

ഗ ഗ \vdash \gt \vdash \mathcal{O} \mathcal{O} Ø Ø \mathcal{O} \mathcal{O} 3 \succ \succ Ξ \mathbf{Z} Þ K ≻ Ц ſц \mathcal{O} \mathcal{O} О Ŋ \mathcal{O} ഗ \mathcal{O} \geq 3 മ്പ 召 Ø D \mathcal{O} \succ Σ K Q \vdash **9HA**

F/G. 2G

Ω	A L		φ Ω Ω	Ø	A H	ΩH	~ Co Co Co Co Co Co Co Co Co Co Co Co Co C
Ŋ	GCGTGGGTGA CGCACCCACT	니	AGCTATCTGG TCGATAGACC	7	~~~~ AATTTATGCA TTAAATACGT	G S BamHI	GCTCTGGATC CGAGACCTAG
S ∧	TGG	>	TAT ATA	×	TT? AA1	ω H	CTC
	9 9 9 9 9	S	AGC ICG	Н	~~~~~~~ ATT AAT TAA TTA		GCT
S		7.0		L AseI	≀	Ŋ	
Ø	9090	Ŋ	TAG	L F	TAT ATZ	Ω	AGC
N A S	AGC ICG	Н	CAT	· ×	AAC ITG	자 년 있	I'T'I AAA
г	CTGAGCGCGA GACTCGCGCT	Ŋ	GGGCATTAGC CCCGTAATCG	K A P K L	CGAAACTATT GCTTTGATAA	民	CGTTTTAGCG GCAAAATCGC
		Q		Д			
Ω	TAG		0 0 0 0 0	Ø	GCA	Ŋ	GTC
W	TC.	₹ S	GA GCT	X	AAA	DI P	700 1000 1000
ద H	~~~~ CCCGTCTAGC GGGCAGATCG	7	ĞAGCGAGCCA CTCGCTCGGT	Ŋ	~~~ GGTAAAGCAC CCATTTCGTG	V SanDI	G GGTCCCGTCC C CCAGGGCAGG
S BanI	GAG CCC CTC GGG	H K	}	P G SexAI	}	رن ن	
д С	~ AGA ICT	C PstI	√~~ IGC ACG		ACC TGG	Ω	0 0 0 0 0
O)	CC2	[[\(\frac{1}{2}\)\(\fr	Q X	AAA	ο λ	AAA(TTT
H	TGACCCAGAG ACTGGGTCTC	H	ATTACCTGCA TAATGGACGT	Q	GCAGAAACCA CGTCTTTGGT	O.	TGCAAAGCGG ACGTTTCGCC
Z				O ²		Ы	
\circ	CAG	H	SAC TTG		√~~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ŋ	4GC
I RV	TCC	\triangleright	'GTC	/ Y KpnI	GGTACC CCATGG	W	1,007.
.D I ECORV	~~~~~ GATATCCAGA CTATAGGTCT	民	TCGTGTGACC AGCACACTGG	_	CGTGGTACCA GCACCATGGT	Æ	GCCAGCAGCT CGGTCGTCGA
•	ひじ		HA	\forall	OQ		Ω

FIG. 3A

P E D F Eco57I	BbsI ~~~~~~ GAAGACTTTG CTTCTGAAAC	F G Q MscI	CTTTGGCCAG GAAACCGGTC		
S S L Q P E ECO57I	CCATTAGCAG CCTGCAACCT GGTAATCGTC GGACGTTGGA	T T T T T	CATTATACCA CCCCGCCGAC GTAATATGGT GGGGCGGCTG	T .WI	ებე დენ
Н	CCATT GGTAA	Х Н	CATTA GTAAT	形 BS 1.	$\widetilde{\mathbb{A}} \widetilde{\mathbb{A}} \widetilde{\mathbb{A}} \widetilde{\mathbb{A}}$
T L T	CTGA GACT	О О	GCAG	M H	TTAA AATT
E E	TTTACCCTGA	O U	TTGCCAGCAG AACGGTCGTC	団	TTGAAATTAA AACTTTAATT
Q L D	BamHI CGGCACTGAT I GCCGTGACTA A	X X L	CGACCTATTA I GCTGGATAAT A	T K V	GGTACGAAAG 1 CCATGCTTTC A
.	Bar ~ CG(A	G G G	D	0 0 0 0

FIG. 3B

口 GAGGCCCGCT CATAGCAACG GTATCGTTGC AAGCCCGCAG TTCGGGCGTC CTGCCAGTGA CTCCGGGCGA \bigcirc ${\mathbb Z}$ \mathcal{O} Д ഗ Д S 出 \vdash GACGGTCACT AAGCCTGCTG AACCAGGTCA TTGGTCCAGT TTCGGACGAC Ø 口 > ~~~~~~ Ç SexAI 口 Д Д ഗ 口 又 GAAGCAGCCA CTTCGTCGGT TGACCCAGAG CCCACTGAGC ACTGGGTCTC GGGTGACTCG AGACCTAACC ATGGAAGTTT TCTGGATTGG TACCTTCAAA O ഗ Ø ഗ 口 口 ഗ Д ~~~~~ KpnI BanI. α TAATCGACGT ATTAGCTGCA PstI Ŋ 2 \mathcal{O} O Ω ഗ Н П \succeq CTATAGCACT GCTATAACTA GATATCGTGA CGATATTGAT GCCTGCGAGC CGGACGCTCG \succ ഗ Z K ECORV ~ ~ ~ ~ ~ ~ ~ × Д C

FIG. 3C

о В В	CGGATCGTTT GCCTAGCAAA	ಬ ಸ >	AGCCGTGTGG TCGGCACACC	E E	TACCACCCCG ATGGTGGGGC
S G V P SanDI	AGTGGGGTCC TCACCCCAGG	J K	CCTGAAAATT GGACTTTTAA	О Н У	AGCAGCATTA TCGTCGTAAT
Y L G S N R A	ATCTGGGCAG CAACCGTGCC TAGACCCGTC GTTGGCACGG	G S G T D F T Bamhi	GGATCCGGCA CCGATTTTAC CCTAGGCCGT GGCTAAAATG	V G V Y Y C Q	CGTGGGCGTG TATTATTGCC GCACCCGCAC ATAATAACGG
L L I Asel	СТАТТААТТТ GATAATTAAA	დ დ	TAGCGGCTCT ATCGCCGAGA	E A E D ECO57I ~~~~~~ BbsI	AAGCTGAAGA TTCGACTTCT

FIG. 3D

BsiWI 召 X 口 \bowtie CGGTCCCATG \vdash \mathcal{O} MscI ſщ \vdash Д

FIG. 3E

闩	GA		TC	≯
L T Q S P A T L S L S P G E Banii	TGACCCAGAG CCCGGCGACC CTGAGCCTGT CTCCGGGCGA	LSCRASQSVSSY Psti	CTGAGCTGCA GAGCGAGCGTGAGC AGCAGCTATC GACTCGACGT CTCGCTCGGT CTCGCACTCG TCGTCGATAG	L A W Y Q Q K P G Q A P R L L I Y KpnI SexAI AseI
Д	999	Ŋ	AG(L L AseI
	CTC	W	AGC ICG	AS ~~~
W	T. A.		ပ္ပုတ္	ь
니	CTG	O)	GAG	\simeq
W	18C(\triangleright	GT(
c	IGA ACI	Ø	AGC ICG	14
	56		ĞAGCGAGCCA GAGCGTGAGC CTCGCTCGGT CTCGCACTCG	A.
\vdash	ACC	O.	CC2 GG1	O.
A.	0 0 0 0	Ω	3AG UTC	۲h ك >
Д	~ GGG GCG	A	000	P G SexAI
ΙΙτ	~ C C C C C C C C C C C C C C C C C C C	~	Ç GA CTI	о С С С С
S Banii	TGACCCAGAG CCCGGCGACC ACTGGGTCTC GGGCCGCTGG	C B PstI	~~~~~~ CTGCA G GACGT C	⋈
\circ	CAG GTC	Д В	CTGAGCTGCA GACTCGACGT	O .
\vdash) (0 (0 (0	W	HAG(0
	IGA ACT	ᆸ	CTG	~
니		Γ.	ပ္ပုပ္ပု	W Y KpnI ~~~~~~
\triangleright	GATATCGTGC CTATAGCACG	R A T	ACGTGCGACC TGCACGCTGG	W KK
D I EcoRV	YTC YTC	Ø	7GC 1CG	√ ¹
й Н	~~~~~ GATATC CTATAG	民	CG.	7
	≀ ଫ ଠ		A H	긔

FIG. 3F

CCAGCAGAAA CCAGGTCAAG CACCGCGTCT ATTAATTTAT GGTCGTCTTT GGTCCAGTTC GTGGCGCAGA TAATTAAATA	A R F S G S G Bamhi	?	GCGCGTTTTA GCGGCTCTGG	CGCCGAGACC	P E D Eco57I	<pre></pre>	BbsI	<pre></pre>	CCTGAAGACT	GGACTTCTGA
GTCT CAGA	<u>г</u> ч		TTTA	CGCGCAAAAT	വ വ വ				GGAA	CCTT
) (G) (G) (G)	ద		GT	₹	口				CT	GGA
CACC	Æ		GCGC		ഗ				CAG(GTC
AG TC	Д	?	000	<u>ر</u> و	ഗ				AG	TC
TCA AGI	SanDI	≀ ≀	TCC	AGG	Н				ATT	TAZ
CCAGGTCAAG GGTCCAGTTC	G V P SanDI	<pre></pre>	TGGGGTCCCG	ACCCAGGGC	D F T L T I S				TGACCATTAG CAGCCTGGAA	ACTGGTAATC GTCGGACCTT
A.A.	H				H					
GAZ CTJ	ø		CAZ	<u>.</u>	E-4				JAC(\TG(
GCA	ద		GTG	CAC	Гщ				TT	AAZ
CCAGCAGAAA GGTCGTCTTT	S R T		GCCGTGCAAC	CGGCACGI"I'G	Ω				GATTTTACCC	CTAAAATGGG
GTA			GCA))	[- -				ACG	TGC
GTG CAC	Ø		CGA		<u>ග</u>		Н		999	SSS
TGGCGTGGTA ACCGCACCAT	S S		GGCGCGAGCA		ഗ		BamHI	? ? ?	ATCCGGCACG	TAGGCCGTGC

FIG. 3G

F A V Y	×	×	Ö	Ø	Ø	田	\succ	⊱	⊣	Д	Д	Y C Q Q H Y T T P P T F G	Ľτί	Ŋ
													Ï	MSCI
													ì	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
TTGCGGTGTA	Ą.	TTATTGCCAG	TGC		CAGCATTATA CCACCCCGCC	CAT	TATA	Ŭ	CACC	CCG	\mathcal{C}	GACCTTTGGC	rTT(3GC
AACGCCACAT	Ę	AATAACGGTC	ACG	GTC	GTC	3TA	GTCGTAATAT		GGTGGGGCGG) B	(J)	CTGGAAACCG	1AA(
E O	X	K V E I	Ы		X X	民	₽.							
MscI						Щ	BsiWI	, ,						
						?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,						
CAGGGTACGA		AAGTTGAAAT TAAACGTACG	TGA	AAT	TAA	₹CG	TACG	z b						
上して日くしてした			F C K	K E K	י די די ל	7	7	,						

FIG. 3H

臼	CGA GCT	Ø	GCA CGT	Ω ₄	0 0 0 0
O	36G(CAC	വ) 1000
H	GCCTGGGCGA CGGACCCGCT	Ω	TATAGCAGCA	O	~ TCAGCCGCCG AGTCGGCGGC
S		<i>P</i> 1			~~ T(A)(
>	CTGGCGGTGA	Ы	GAGCGTGCTG	P G SexAI	AGAAACCAGG TCAGCCGCCG TCTTTGGTCC AGTCGGCGGC
K	- CGC	\gt	GTG	አ ማ ያ	ACC TGC
ьì	TGG ACC	ഗ	AGC TCG	×	GAA CTT
		\bigcirc		O	
W	AGO	Q	CC2 GG3	Q	AG(TC(
О	SAT	Ŋ	CAG	7 T T	√~~ \ GG
Д	CCCGGATAGC	Ŋ	~ GAAGCAGCCA CTTCGTCGGT	W Y Q Q KpnI	~~~~~~ TGGTACCAGC ACCATGGTCG
S BanII	AG CCC TC GGG	凶	GA CT	Ŋ	TG AC
S Bal	TGACCCAGAG CCCGGATAGC ACTGGGTCTC GGGCCTATCG	C B PstI	ATTAACTGCA GAAGCAGCCA TAATTGACGT CTTCGTCGGT	A.	0 0 0 0
Q	CAG GTG		~~~ CTG GAC	ц	TGG ACC
[-1 .) () () () ()	Z	AA!	П	ATC.
	TGA ACI	Н	ATTAACTGCA TAATTGACGT	≯	CTATCTGGCG GATAGACCGC
V M		c .		Z	
	GTG	[GAC	N N	AA <i>2</i> TTT
I ORV	√~~ ATC PAG	Þ	rgc Acg	Z	ACA PGT
D I EcoRV	~~~~~ GATATCGTGA CTATAGCACT	召	ACGTGCGACC TGCACGCTGG	z Z	ACAACAAAAA TGTTGTTTTT
	≀ დ ბ		4 H	Z	K H

民		0 0 0 0) () () ()	E			•
Ω		ATCCACCCGT GAAAGCGGGG TCCCGGATCG TAGGTGGGCA CTTTCGCCCC AGGGCCTAGC	Ŋ	ATTTCGTCCC TAAAGCAGGG	[- -			
Д	}) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ŋ	TC				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TCC	Н	ATT TAZ	≯			
V SanDI	}	(h) (h)	F	TACCCTGACC ATGGGACTGG	耳			
U T	}	900	I I	GA(O ₄			
W		AGC ICG		CCI	o o			•
ы		AAA YTT	H	PAC.				
			ſъ		Ŋ			
民		TTTATTGGGC ATCCACCCGT AAATAACCCG TAGGTGGGCA	Д Н	GCACTGATTT CGTGACTAAA	X X			
\vdash		ACC TGC		TG	\Rightarrow			
W		TCC	H	CAC	\triangleright			
A .		A Ei	Ŋ					
Y W A		TTTATTGGGC AAATAACCCG	S H	TCTGGATCCG AGACCTAGGC	Ø			
M		rtg AAC	G S BamHI	~~~~~ GGATCC CCTAGG	\gt			
≯ I		TAT		ŽHG.	Д	,	ш	}
Н	}		Ø		7 I	?	BbsI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
L AseI	<pre></pre>	raa att	O	0 0 0 0	A E Eco57I	? ?	Д	?
	?	AT.	S) (CG(αщ	ξ		
X L		АААСТАТТАА ТТТGАТААТТ	· Ľų	TTTTAGCGGC AAAATCGCCG	O			
X		AA T'T'	• •	TT	ü			

FIG. 3J

GCCAGCAGCA TTATACCACC CGGTCGTCGT AATATGGTGG GAAATTAAAC GTACG CTTTAATTTG CATGC BsiWI 召 × Н 闰 TACGAAAGTT GGCGGCTGGA AACCGGTCCC ATGCTTTCAA TGCAAGCTGA AGACGTGGCG GTGTATTATT CACATAATAA X \vdash ACGITCGACT ICTGCACCGC CCGCCGACCT TTGGCCAGGG Ċ O MscI Ċ ш \vdash Д Д

FIG. 3K

AGTGGCGCAC CAGGTCAGCG CAACATTGGC AGCAACTATG GCTGATTTAT α TCGTTGATAC TCACCGCGTG GTCCAGTCGC Q Z C 口 SexAI ഗ Д CCCGGGACGG CGCCGAAACT GTTGTAACCG 口 C K X Н \mathcal{O} Д \geq S BbeI Þ GCAGCAGCAG CGTCGTCGTC GCCTTCAGTG CGGAAGTCAC ഗ \gt \vdash Eco57I ~~~~~ S S ~~~~~ Ç XmaI S Д Д C TGTGACCATC TCGTGTAGCG GICTCGCACG ACTGGGTCGG ACACTGGTAG AGCACATCGC TGACCCAGCC TGAGCTGGTA CCAGCAGTTG Д 口 S \bigcirc Ø BSSSI \vdash Ø S KpnI П CAGAGCGTGC H2 \vdash S ഗ \gt Ø \gt

FIG. 4A

CGACTAAATA

GGGCCCTGCC GCGGCTTTGA

ACTCGACCAT GGTCGTCAAC

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,324

¥ ACACAAACCG CGCCTAGGTT AGCGAAGACG TCGCTTCTGC GCGGATCCAA BbsI BamHI S 口 \mathcal{O} ഗ S GTCGTAATAT GGTGGGGCGG CTAGCAAAAT AGCGCGAGCC TTGCGATTAC GGGCCTGCAA TCGCGCTCGG AACGCTAATG CCCGGACGTT GATCGTTTTA Ø ഥ щ \Box 召 Ç H AGCGTCCCTC AGGCGTGCCG CTATTGTTGG TCGCAGGGAG TCCGCACGGC CAGCATTATA \vdash Д \triangleright 口 Þ C Bsu36I \Box AATAACGGTC Y C Q TTATTGCCAG S S Д Þ 召 S Ø GATAACAACC AAGCGGCACC TTCGCCGTGG TTCGCCTAAT AAGCGGATTA Z Д C Z Ø ഗ Д 口

FIG. 4B

C
4
G.
F

GGCGCCACGA AGTTAACCGT TCTTGGC CCGCCGTGCT TCAATTGGCA AGAACCG

HpaI

×

 \vdash

 \mathcal{O}

 \mathcal{O}

ഗ AGCGGCTCAC CAGGTCAGAG CCGATATTGA GGCTATAACT TGACTACTAA GTCCAGTCTC ACTGATGATT Н Z Ø Ξ C 口 SexAI Ç Д AGGCGCCGAA TCGCCGAGTG CGATGTGGGC GCTACACCCG × Ç ഗ Д BbeI C Ø \Box S 又 GTACTAGCAG CATGATCGTC CATCCCGGGA AGCTTCAGTG TCGAAGTCAC Eco57I ഗ \gt Ç XmaI ~ ~ ~ ~ ~ ~ ~ ഗ S Д \vdash K 工 C AGCACATGCC GTACCAGCAG TGACCCAGCC TCGTGTACGG ACTGGGTCGG Д O \vdash Ø Ø S C BssSI \vdash KpnI \succ 口 ATGTGAGCTG GTAATGGTAG CAGAGCGCAC CATTACCATC GTCTCGCGTG 3 HÞ S \vdash S > \mathbf{H} Ø >

FIG. 41

TCCGCGGCTT

GTAGGGCCCT

CATGGTCGTC

TACACTCGAC

SH.	7 L	H >	7G	ſτ.	L'T A.A
S G S BamHI	TTAGCGGATC AATCGCCTAG	E E E E E E E	GCCTGACCAT TAGCGGCCTG CAAGCGGAAG CGGACTGGTA ATCGCCGGAC GTTCGCCTTC	YYC QQHY TTPPVF	GCCTGTGTTT CGGACACAAA
Д ≀	9 9 9 9	K	0 0 0 0	\triangleright	IGT ACA
Οĵ	TAG	NTASLTISGLOAE Bb	AAG TTC	വ	CCJ GGZ
Ĺτι			ت ن		
~	TT:	ᆸ	CTG 3AC	Щ	7CC
114) 000	Ch	999	[- 1	AC(TG(
Z	AA TT		Ω Ω Ω	⊱)) ()
W	AGCAACCGTT TCGTTGGCAA	O)	TAGCGGCCTG ATCGCCGGAC		ATACCACCCC TATGGTGGGG
		Н		≻	
\wedge	GT	.	GCCTGACCAT CGGACTGGTA	出	CAGCAGCATT GTCGTCGTAA
ტ }	3 3 3 3 3 3 3 3	H	3AC CTG	\bigcirc	AGC
P S G Bsu36I	CA(GT(니	CTC	<u> </u>	GG.
P S Bsu36I ~~~~~~~	CT GA	7.0	9 9	O	CA
N R P S G V S N R F Bsu36I	GCAACCGTCC CTCAGGCGTG CGTTGGCAGG GAGTCCGCAC	01	GA	ر ا	G G G
K	GT	Ø	ς Ο Ο Ο		TT
b	100 100	\vdash	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Я	LT7 PAT
4	CA/	Z	AACACCGCGA TTGTGGCGCT	⊱	TTATTATTGC AATAATAACG
വ					
	rga act	<u></u> ტ .	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Н	3G2
	TG. AC.	S) (3)	A.) (CG)
A D A	JGA CT	Z HH	AAA TTT:	田田	BAA TTT
\succ	TATGATGTGA ATACTACACT	K BamHI ~	CAAAAGCGGC GTTTTCGCCG	D E BbsI	ACGAAGCGGA TGCTTCGCCT
		, , ,			

FIG. 4E

	L	
GCAAGAACCG	GCTTCAATTG	CGCCGT
CGTTCTTGGC	GCGGCA CGAAGTTAAC CGTTCTTGGC	GCGGCA
? ? ?	~ ~ ~ ~ ~	
MscI	HpaI	

 \gt

×

 \vdash

 \mathcal{O}

 \mathcal{O}

 \mathcal{O}

FIG. 4F

T Q P P S V S V A P G Q T SexAI	CC GCCTTCAGTG AGCGTTGCAC CAGGTCAGAC GG CGGAAGTCAC TCGCAACGTG GTCCAGTCTG	S G D A L G D K Y A S	CG GCGATGCGCT GGGCGATAAA TACGCGAGCT GC CGCTACGCGA CCCGCTATTT ATGCGCTCGA	KPGQAPVLVIYDD
വ		ڻ ت		Ŋ
CV EH	TGACCCAGCC ACTGGGTCGG	S C S BSSSI	TCGTGTAGCG AGCACATCGC	저 면
자 표 고	AGCTATGAAC TG TCGATACTTG AC	A R I Bs	CGCGCGTATC TC GCGCGCATAG AC	M Y Q Q
Ω ≻i	AGCJ TCG2	K.	00C(M

F/G. 4G

TTATGATGAT AATACTACTA TTCTGGTGAT AAGACCACTA CAGGCGCCAG GTCCGCGGTC GAAACCCGGG CTTTGGGCCC GGTACCAGCA CCATGGTCGT

Ċ GGTTGTCGCC ഗ Z BamHI ~~~~~ ഗ TTTAGCGGAT AAATCGCCTA Ċ ഗ ſΉ GGGCCTTGCG 召 口 Д GGAGTCCGTA CCTCAGGCAT Ç ~~~~~~ Bsu36I S Д AGACTGGCAG TCTGACCGTC 召 \Box S

Þ

口

 \Box

口

Þ

Q

 \vdash

Ç

S

H

 \vdash

Ц

 \vdash

Ø

 \vdash

Z

BbsI

FIG. 4H

GACGAAGCGG CTGCTTCGCC ACCGCCGCCG TGGCGGCGGC TTAGCGGCAC TCAGGCGGAA AATCGCCGTG AGTCCGCCTT TATACCACCC CGCCTGTGTT ATATGGTGGG GCGGACACAA \vdash CAACACCGCG ACCCTGACCA TAATAATAAC GGTCGTCGTA TGGGACTGGT D Y Y C Q Q H ATTATTATTG CCAGCAGCAT GTTGTGGCGC

T K L T V L G Hpai MscI ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G FIG. 41

ഗ	<i>የ</i> ካ የ ነ		d F1		ር) የካ
01	CA(₫'.	100 1007	Ŋ	000
W	AG(TC(. 4	TG AC		$\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}\mathcal{C}$
Ŋ	CGGGCAGCAG GCCCGTCGTC	X X	AGCTATGCGA TCGATACGCT	M G	GATGGGCGGC CTACCCGCCG
	99	S) (G	Ξ	AT.
Д			•	h->	
\	AAC 7TG	ഗ	\GC	M	STG CAC
V K K P	GTGAAAAAAC CACTTTTTTG	E F	CACTTTTAGC GTGAAAATCG	田田田	GTCTCGAGTG CAGAGCTCAC
K	AAZ I'T'I	1-4	I'T'I AAZ	L XhoI	~~. HC(AG(
>	TG.	E	AC, TG,		TC' AG.
r				CD	
田	TGGCGCGGAA ACCGCGCCTT	Ç	CCTCCGGAGG GGAGGCCTCC	<u> </u>	CCTGGGCAGG
G B E	0 0 0 0 0	S G BspEI	~~~~~ TCCGGA AGGCCT	O	3CA 3GT
A.	000	3.5.D		CD	
Ċ	200	07 дд	ZTC GAC	வ	~ ~ ~ CTC GAC
	T(A(₫.		_ X	ì ŏ ŏ ≥
W	TC AG	CK	AGCTGCAAAG TCGACGTTTC	R Q A P G Q G BstXI	GCGCCAAGCC CCTGG CGCGGTTCGG GGACC
S	~~ TGGTTCAGTC ACCAAGTCAG	×	AGCTGCAAAG TCGACGTTTC	Щ	~~ AG 'TC
_	TT.	\mathcal{O}	09. 00. 00.	O	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
\triangleright) (C.)	Ŋ	CG2	K	
ДΗ		01	A(\mathcal{G} \mathcal{G}
Q MfeI	~~~~ AAT TTA	\triangleright	A A C	\triangleright	GT
QΞ	~ CA Z	•	AG' TC	M	φ Ο Ο
\triangleright	CAGGTGCAAT GTCCACGTTA	V K V	CGTGAAAGTG GCACTTTCAC	M	TTAGCTGGGT AATCGACCCA
> ŏ	, 20 20	>	TG AC	വ	AG TC
O	CA GT		90	H	TT AA

FIG. 5A

TAATAACGCG CGCAACCCCG TACCTTGACT ATTATTGCGC GCGTTGGGGC CGCGTCTTCA AAGTCCCGGC G 口 3 口 α Ξ Щ BSSHI CACCGCGTAT GTGGCGCATA K \mathcal{O} K \vdash CCGCTTGATG AAAGCACCAG TTTCGTGGTC ACGGCCGTGT ATCGCTTCTA TGCCGGCACA ഗ \vdash ~~~~~ EagI Q ഗ \vdash 口 TAATAAGGCT AAAAACCGTG ACCGCGGATG TGGCGCCTAC TAGCGAAGAT \Box 口 Þ S Н GGTGACCATT CCACTGGTAA GCAGCCTGCG CGTCGGACGC 召 Н Д 口 ~~~~~ BStEII ഗ ഗ

FIG. 5B

 \vdash

CCCTGGTGAC GGGACCACTG Н CCGGTTCCGT GGCCAAGGCA \mathcal{Q} StyIØ O GGATTATTGG 3 \triangleright \Box GGCGATGGCT TTTATGCGAT CCGCTACCGA AAATACGCTA Ξ K \triangleright GGTTAGCTCA G CCAATCGAGT C ſτι BlpI G ഗ \Box \gt G

TCGATAATAT GATGGGCTGG CTACCCGACC S GCCGCGCTC AGCTATTATA \geq Ø Ç \mathcal{O} Ξ ഗ Д GTCTCGAGTG CACTTTTTG ATGGAAATGG CAGAGCTCAC TACCTTTACC 3 GTGAAAAAAC \vdash X L E XhoI Ľ X \vdash \mathcal{O} GGCGGTTCGG GGACCCGTCC CCTCCGGATA CCGCCAAGCC CCTGGGCAGG GGAGGCCTAT CGGCGCGGAA GCCGCGCCTT × 口 BSpEI Q Ç Þ \mathcal{O} S Ċ Д BstXI K GICCACGITA ACCAAGICIC AGCTGCAAAG CAGGTGCAAT TGGTTCAGAG TCGACGTTTC ഗ Ø × Ø Ø \mathcal{O} 召 ഗ ~~~~~ Q L MfeI TGCACTGGGT CGTGAAAGTG GCACTTTCAC ACGTGACCCA \gt \geq 工 \triangleright Ø Ξ

FIG. 5D

A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC I N P N S G G T N Y ATTAACCCGA ATAGCGGCGG CACGAACTAC TAATTGGGCT TATCGCCGCC GTGCTTGATG

4

CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT П 口 \boxtimes K \vdash CCAGCATTAG GGTCGTAATC S ഗ \vdash ACCCGTGATA TGGGCACTAT \Box K H GGTGACCATG CCACTGGTAC Ξ V T BstEII ~~~~~

C 3 召 BSSHII \gt EagI Ø \vdash Д 口 ഗ 召 口 S S

~ ~ ~ ~ ~ ~

TAATAACGCG CGCAACCCCG ATTATIGCGC GCGTIGGGGC ATCGCTTCTA TGCCGGCACA ACGCCCGTGT TAGCGAAGAT GCAGCCTGCG CGTCGGACGC

FIG. 5E

 \vdash CCGGTTCCGT GGGACCACTG Ы \vdash GGCCAAGGCA U Styl Ø C CCTAATAACC GGATTATTGG 3 GGCGATGGCT TTTATGCGAT AAATACGCTA $\mathbf{\Xi}$ Þ \succ 禸 CCGCTACCGA Ç \Box ტ . .

V S S BlpI ~~~~~~ GGTTAGCTCA G CCAATCGAGT C FIG. 5F

 \vdash GCTGGGTTTG GGAAAGCCCT CGAGTGGCTG GACCTAAGCG GTCGGCGAC CCTTTCGGGA GCTCACCGAC TAGCCTGTCC ACGTCTGGCG TGCAGACCGC CGACCCAAAC 口 \mathcal{O} Ø \geq S \vdash 口 \vdash XhoI Д CTGGTGAAAC GACCACTTTG ATCGGACAGG ഗ 又 Q 口 X ഗ 口 C CCTGACCCTG ACCTGTACCT TTTCCGGATT CAGCCGCCTG ACTITICITIC GCCGGGCCGG TGGACATGGA AAAGGCCTAA 2299222992 H Þ BSPEI Д BstXI ~~~~~ Ċ Д Д S C \circ CAGGTGCAAT TGAAAGAAAG ſщ CTGGATTCGC ഗ 斘 \vdash 口 Н \mathcal{O} X 3 \vdash 22222 O Mfei GTCCACGTTA TTGGCGTGGG GGACTGGGAC AACCGCACCC C 口 H O ᆸ Q >

FIG. 5G

D W D D K Y Y S T S L K T MluI	TATAGCACCA GCCTGAAAAC ATATCGTGGT CGGACTTTTG	T J V V Z I	AAATCAGGTG GTGCTGACTA TTTAGTCCAC CACGACTGAT	D P V D T A T Y Y C A R W BSSHII	CCTATTATTG CGCGCGTTGG
D W D D K Y	ATTGGGATGA TGATAAGTAT TAACCCTACT ACTATTCATA	ISKDTSKNVQVVLT NspV	• –		GGACCCGGTG GATACGGCCA CCTGGGCCAC CTATGCCGGT
A L I	GCTCTGATTG CGAGACTAAC	R L T MluI	GCGTCTGACC CGCAGACTGG	M T M	TGACCAACAT ACTGGTTGTA

FIG. 5H

\triangleright	GT		
디	CTG		
N I I ∼	TGGGGCCAAG GCACCCTGGT ACCCCGGTTC CGTGGGACCA		
ρ T Σ	တို့ ပွ		
Q G StyI ~~~~~~~	CAA		
ტ '	390		
M	TGG(
≻⊣			
Ω	GAT		
G F Y A M D Y W G Q G Styl	GATGGATTAT TGGGGCCAAG CTACCTAATA ACCCCGGTTC		
A	19C 10G		
≻	TAT		
Įт	GCTTTTATGC CGAAAATACG	ω H .>	TCAG AGTC
O		ე ~~	
Ω .	GGCGGCGATG CCGCCGCTAC	Ω . M .	GACGGTTAGC CTGCCAATCG
О	3000 3000	Ω ≥El	GGT
CD	GGCGGCGATG CCGCCGCTAC	E	GAC

FIG. 51

P\	
_	
•	
•	

S AGCTATGCGA GGTGAGCGCG CGGGCGGCAG GCCGCCCGTC TCGATACGCT CCACTCGCGC Þ K C S O >S Д CTGGTGCAAC ATGGAAATCG CAGAGCTCAC TACCTTTAGC GACCACGTTG GTCTCGAGTG 3 ഗ Q L E XhoI ſщ \vdash 口 C BOOBOOBOOB GGAGGCCTAA CGCGGTTCGG GGACCCTTCC CGGCGGCGGC CCTCCGGATT GCGCCAAGCC CCTGGGAAGG L Ç S BSPEI × Ç C \mathcal{O} Д Þ GAAGTGCAAT TGGTGGAAAG ACCACCTTTC TCGACGCGCC ഗ Þ Þ 口 O \mathcal{O} \gt 召 ഗ Q MfeI CTTCACGTTA GGACGCAGAC TGAGCTGGGT CCTGCGTCTG ACTCGACCCA Ц 3 召 ഗ \Box 口 \boxtimes

FIG. 5J

 α CGCCTATCGC ACTTTCCGGC Ċ GCGGATAGCG ഗ Д T Y Y CACCTATTAT GTGGATAATA S G G S S GCGCCAG TAATCGCCAT CGCCGCCGTC ഗ ATTAGCGGTA ტ ഗ

 \boxtimes 口 Ц E Z ¥ NspVഗ Z Д Pmlr ഗ \mathbf{H} \vdash L

GACGTTTACT ATTCGAAAAA CACCCTGTAT CTGCAAATGA GTGGGACATA TAAGCTTTTT AGTGCACTAT TCACGTGATA AAAATGGTAA TTTACCATT

召 Н BSSHI \succ > EagI Ø Н \Box 口 D 召 Ц S Z

 \mathcal{O}

3

ATTATTGCGC GCGTTGGGGC CGCAACCCCG TAATAACGCG ACGGCCGTGT TGCCGGCACA TGCGGAAGAT ACGCCTTCTA ACAGCCTGCG TGTCGGACGC

FIG. 5K

\vdash		AC TG
\gt		GTG
Y A M D Y W G Q G T L V T Styl		CCCTGGTGAC GGGACCACTG
		CA TO TI
r D	?	S C C C C
Q (Styl	~ ~ ~ ~ ~ ~ ~	GGCCAAGGCA CCGGTTCCGT
Ü	′	000
M		TGG
\succ		TAT ATA
Ω		GGATTATTGG CCTAATAACC
Σ		AT:
Ø		0001 0001
		TTTATGCGAT AAATACGCTA
Įт		
CD		`GG(\CC(
Ω		GGCGATGGCT CCGCTACCGA
O		900

FIG. 5L

 \vdash GCTCGCTTTG CGAGCGAAAC TCGATAATAA AGCTATTATT \succ 口 \mathcal{O} ഗ Hഗ Д CTGGTGAAAC GACCACTTTG CAGCATTAGC GTCGTAATCG 3 ഗ 又 L E XhoI \mathbf{H} > ഗ ᆸ \mathcal{O} ACCAGGCCCG TTTCCGGAGG AAAGGCCTCC TGGTCCGGGC \mathcal{O} O, S G BspEI 又 ~~~~ Д Ç Ç Д >ACGTTCTTTC TGCAAGAAAG TGGACGTGGC ACCTGCACCG ഗ Д \vdash 口 O \mathcal{O} Ø 召 \vdash Q MfeI GTCCACGTTA CAGGTGCAAT GGACTCGGAC Н Н 3 ഗ ഗ 口 Ø 3

F/G. 5M

TTTGACTCGT GATTGGCTAT AAAGCCGGGT TTTCGGCCCA AAACTGAGCA CTAACCGATA **₹** \mathcal{O} BstEI ഗ α G 口 ഗ 3 又 又 CCGAGCCTGA GTCTCGAGTG CAGAGCTCAC GGCTCGGACT GTTTAGCCTG CAAATCGGAC 召 口 口 BSSHI Þ ഗ ഗ 口 Д GTTGATACTT CGAAAAACCA GCTTTTTGGT ATTTATTATA GCGGCAGCAC CAACTATAAT CCTGGGAAGG GGACCCTTCC GTTGATATTA O Z Z \succ × ~~~~~ \mathbb{Z} NspVEagl D ഗ CAACTATGAA CGCCGTCGTG GGAGCTGGAT TCGCCAGCCG AGCGGTCGGC \vdash Е \vdash S О Ċ Þ > S CCTCGACCTA TAAATAATAT GACCATTAGC CTGGTAATCG ď ഗ \vdash T I BstEII > ~ ~ ~ ~ Н S

FIG. 5N

GCCGTGTATT ATTGCGCGCG TTGGGGCGGC CGGCACATAA TAACGCGCGC AACCCCGCCG	Y A M D Y W G Q G T L V T V Styl	PACCC TGGTGACGGT FTGGG ACCACTGCCA
ATTGCG	O G Styl	CAAGGCACCC GTTCCGTGGG
GCCGTGTATT CGGCACATAA	D M	ATGCGATGGA TTATTGGGGC CAAGGCACCC TACGCTACCT AATAACCCCG GTTCCGTGGG
GGCGGATACG CCGCCTATGC	Z A M D	ATGCGATGGA TACGCTACCT
GCGTGACGGC CGCACTGCCG	D G Y	GATGGCTTTT CTACCGAAAA

FIG. 50

S

CGGCGAAAG GCCGCTTTC TCGATAACCT GATGGGCATT CTACCCGTAA AGCTATTGGA \mathbf{H} 3 口 \mathcal{O} \succ C Σ S Д GTCTCGAGTG GTGAAAAAAC CACTTTTTG CAGAGCTCAC TTCCTTTACG AAGGAAATGC \geq Еч ¥ ~~~~~ L E XhoI ш 又 S >Ċ ACCAAGTCTC GCCGCGCCTT GCGCCAGATG CCTGGGAAGG CGCGGTCTAC GGACCCTTCC CGGCGCGGAA GTTCCGGATA CAAGGCCTAT \succ 口 S BSPEI 又 ~ ~ ~ ~ ~ ~ ~ K O C Д ~~~~~~~~ $^{\circ}$ TGGTTCAGAG TCGACGTTTC AGCTGCAAAG ഗ Ξ X \circ Ø \mathcal{O} > 召 ഗ Q Mfel CTTCACGTTA TTGGCTGGGT AACCGACCCA GAAGTGCAAT GGACTTTTAA CCTGAAAATT >3 \bowtie \mathcal{O} 口 口 H

TAATAACGCG CGCAACCCCG ATTATTGCGC GCGTTGGGGC GAAGTTACCT AGAGGCTCGA AAGTCCCGGT CACCGCGTAT CTTCAATGGA \mathcal{O} 3 3 Ø 召 口 Щ BSSHI GTGGCGCATA Þ TCTCCGAGCT ഗ Q Д × \vdash S \succ AAAGCATTAG GCAGCCTGAA AGCGAGCGAT ACGGCCATGT TTTCGTAATC TGCCGGTACA ATGGGCAATA T R Y TACCCGTTAT S Σ HQ ഗ \vdash × TAAATAGGCC CGCTATCGCT TCGCTCGCTA AGCGCGGATA TCGCGCCTAT \Box GCGATAGCGA \Box \Box ഗ S K Д Z, ഗ Ċ GGTGACCATT CCACTGGTAA CGTCGGACTT 又 \vdash Д Ы ~~~~~ V T BstEII S S

FIG.50

L V	CCCTGGTGAC GGGACCACTG	
Styl	GGCCAAGGCA CO	
O X Q	GGATTATTGG GC CCTAATAACC CC	
F Y A M D Y W G Q G T L V T Styl	TTTATGCGAT G AAATACGCTA C	
щ О О	GGCGATGGCT CCGCTACCGA	S S

-1G.5R

L Q Q S G P G L V K P S Q T I		T C A I S G D S V S S N S BSPEI	ACCTGTGCGA TTTCCGGAGA TAGCGTGAGC AGCAACAGCG TGGACACGCT AAAGGCCTCT ATCGCACTCG TCGTTGTCGC	WIRQSPGRGLEWL BstXI Xhoi	GCGTGGC
O V Q L MfeI	CAGGTGCAAT GTCCACGTTA	L S L	CCTGAGCCTG GGACTCGGAC	A A W N	CGGCGTGGAA GCCGCACCTT

FIG. 5S

GTCAAATCGG TTATTGCGCG TTGCTAATAC GCCACTCGCA CAGTTTAGCC CGGTGAGCGT BSSHII ~ ~ ~ ~ ~ ~ S \succ Q K AACGATTATG TTCGAAAAAC AAGCTTTTTG CGGCCGTGTA GCCGCCACAT Z ~ ~ ~ ~ ~ ~ NspVEagI Þ ഗ \vdash TGGGCCTATG CCGGAAGATA ACCCGGATAC GGCCTTCTAT CCGGCATGGA TAATAGCATC GTTTACCATA E П 3 Щ Д Д Z CAGCGTGACC Y R S ATTATCGTAG GTCGCACTGG GAAAAGCCGG ATTACCATCA CTTTTCGGCC TAATGGTAGT \vdash Н BsaBI \gt \vdash ഗ TGCAACTGAA ACGTTGACTT GGCCGTACCT Z 召 口 ß Ø 又 山

FIG. 5T

\vdash	AC TG		
ආ ⁺	000 000		
DGFYAMDYWGQGT Styl	GCCAAGGCAC CGGTTCCGTG		
Ŋ			
N	GATTATTGGG CTAATAACCC		
\Rightarrow	TAT		
О	GAI		
Z	ATG TAC		
K.	909 090		
×	GCGATGGCTT TTATGCGATG CGCTACCGAA AATACGCTAC		
ĹΉ	TT	, н	AG
ტ	999	SSBIPI	CTC
Д	GCGATGGCTT CGCTACCGAA	V S S Blp	GTTAGCTCAG CAATCGAGTC
	000	\triangleright	GT C
O		£I	\mathcal{C}
O	0		GA
R W G G	IGG ACC	L V T	GGT
R W BSSHII ~	CGTTGGGGCG GCAACCCCGC	ᆸ	CCTGGTGACG

- O1K1 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG ÷3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

FIG. 6A

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,324

- GCCATAAATTAATAGACGC
- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- **O3K6** 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAACTATCTGGCGTGGTACCAG
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC-3'
- **O1L1** 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- **O1L2** 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCGTCCCGGGCAACTGC -3
 O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-

AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

FIG.6B

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,324

- **O1L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- **O3L2** 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGCCAACACCGCGACCCTGACCATTAGCGG -3'
- **O3L6** 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- **O1AH2**5'- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGGT-TTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

FIG. 6C

- **O1AH3** 5'- GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAGGCTC -3'
- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCCA-AAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 '- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGGT-TTTTCACTTCCGCGCCGCCTCTGAACCAATTGCACCTGGGC-TTTG -3 '
- **O1BH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3'
- **O1BH5** 5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

FIG. 6D

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,324

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- **O3H1** 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGAGG-CAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

FIG. 6E

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,324

- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA ATTG -3'
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5 ' GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3 '
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTGGCG-3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC-3'
- **OCLK1** 5'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCGCCGACCTTTGGCCAGGGTAC -3'

FIG. 6F

- **OCLK2** 5'- GCGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGCCTGCTG -3'
- **OCLK4** 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- **OCLK5** 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
- **OCLK6** 5'- GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG -3'
- **OCLK7** 5'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- **OCLK8** 5'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- **OCH1** 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- **OCH5** 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- **OCH6** 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- **OCH7** 5'- GAGCAGCAGCTTAGGCACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- **OCH8** 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

FIG. 6G

O 口 \Box ഗ Д Д ſτι ഥ \triangleright ഗ щ K Ø BSIWI ~ ~ ~ ~ ~ ~ ~

AAAGGCGGCT CGCTACTTGT TTTCCGCCGA GCGATGAACA CGTACGGTGG CTGCTCCGAG CGTGTTTATT GACGAGGCTC GCACAAATAA GCATGCCACC

CCGTGCCGCT CGCACCACAC GGACGACTTG TTGAAATAG AACTTTTATC GGCACGGCGA GCGTGGTGTG CCTGCTGAAC L L ഗ T ტ L K S ACTGAAAAGC TGACTTTTCG

P R E A K V Q W K V D N A L Q S G CGCGTGAAGC GAAAGTTCAG TGGAAAGTAG ACAACGCGCGT GCAAAGCGGC GCGCACTICG CTITCAAGIC ACCITICAIC IGITGCGCGA CGITICGCCG

AACAGCCAGG AAAGCGTGAC CGAACAGGAT AGCAAAGATA GCACCTATTC TIGICGGICC ITICGCACIG GCTIGICCIA ICGITICIAI CGIGGATAAG ഗ M D D O E ഗ 口 о 2

FIG. 7A

GGATTATGAA AAACATAAAG ACTCGTTTCG CCTAATACTT TTTGTATTTC 又 口 TGAGCAAAGC AGACTCGTCG TGGGACTGGG L S S T L T L TCTGAGCAGC ACCCTGACCC

GTAGTTCCAG ACTCGTCGGG CCACTGATTT Д ഗ ഗ CATCAAGGTC ACATACGCAC GCTTCACTGG 闰 \gt

口 C 召 Z Гщ ഗ SphI StuI

GIGGCGAGGC CIGATAAGCA IGC CACCGCTCCG GACTATTCGT ACG AGAAAATTAG TCTTTTAATC

FIG. 7B

ഗ ഗ Д Þ Ы Д ſщ \gt S Д G X \vdash SalI Þ BlpI

AAGGCGACCG AGGCTCGTCG GCTCAGCGTC GACCAAAGGT CCAAGCGTGT TTCCGCTGGC TCCGAGCAGC GGTTCGCACA CGAGTCGCAG CTGGTTTCCA

G C L V K D Y GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT TTTTCGTGGT CGCCGCCGTG CCGACGGGAC K S T S G G T A A L AAAAGCACCA GCGCGGCAC GGCTGCCTG

CCAGTCACCG TGAGCTGGAA CAGCGGGGCG CTGACCAGCG GGTCAGTGGC ACTCGACCTT GTCGCCCCGC GACTGGTCGC Ċ ഗ N M TTTCCCGGAA AAAGGGCCTT

GTGCTGCAAA GCAGCGGCCT GTATAGCCTG CACGACGTTT CGTCGCCGGA CATATCGGAC S G L ഗ CTTTCCGGCG GAAAGGCCGC GCGTGCATAC CGCACGTATG

FIG. 7C

AATCCGTGAG TCTGGATATA Ø \vdash Ċ S S S GAGCAGCAGC AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG

ഗ Д AACGTTGCAC Z

EcoRI HindI

~~~~~~

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA FIG. 7D



|              | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                          |                                                                      |                          |                          |
|--------------|-----------------------------------------|--------------------------|----------------------------------------------------------------------|--------------------------|--------------------------|
| $\leftarrow$ | GAAGACGAAG<br>CTTCTGCTTC                | CGGATTATTA<br>GCCTAATAAT | CGGATTATTA TTGCCAGCAG CATTATACCA<br>GCCTAATAAT AACGGTCGTC GTAATATGGT | CATTATACCA<br>GTAATATGGT | CCCCGCCTGT<br>GGGGCGGACA |
|              |                                         | dH<br>·~~                | HpaI<br>~~~~~~                                                       | MscI                     | DraIII                   |
| 51           | GTTTGGCGGC                              | GGCACGAAGT TAACCGTTCT    | TAACCGTTCT                                                           | TGGCCAGCCG               | AAAGCCGCAC               |
|              | CAAACCGCCG                              | CCGTGCTTCA               | CCGTGCTTCA ATTGGCAAGA                                                | ACCGGTCGGC               | 'I"I'I'CGGCG'I'G         |
|              | DraIII                                  |                          |                                                                      |                          |                          |
|              | <pre></pre>                             |                          |                                                                      |                          |                          |
| 101          | CGAGTGTGAC                              | GCTGTTTCCG               | GCTGTTTCCG CCGAGCAGCG AAGAATTGCA GGCGAACAAA                          | AAGAATTGCA               | GGCGAACAAA               |
|              | GCTCACACTG                              | CGACAAAGGC               | GGCTCGTCGC                                                           | TTCTTAACGT               | CCGCTTGTTT               |
| 151          | GCGACCCTGG                              | TGTGCCTGAT               | TGTGCCTGAT TAGCGACTTT                                                | TATCCGGGAG               | CCGTGACAGT               |
|              | CGCTGGGACC                              | ACACGGACTA               | ACACGGACTA ATCGCTGAAA ATAGGCCCTC                                     |                          | GGCACTGTCA               |

BbsI

# FIG. 7F

| . 201 GGCCTGGAAG GCA<br>CCGGACCTTC CGT                                                     | 251 CACCCTCCAA ACA<br>GTGGGAGGTT TGT                                                       | 301 CTGACGCCTG AGC<br>GACTGCGGAC TCG                                                                          |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| GCAGATAGCA<br>CGTCTATCGT                                                                   | AAAGCAAC<br>TTTCGTTG                                                                       | AGCAGTGGAA<br>TCGTCACCTT                                                                                      |
| GCCCCGTCAA<br>CGGGGCAGTT                                                                   | AACAAGTACG<br>TTGTTCATGC                                                                   | Rleai<br>~~~~~<br>GTCCCACAGA<br>CAGGGTGTCT                                                                    |
| GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA<br>CGTCTATCGT CGGGGCAGTT CCGCCCTCAC CTCTGGTGGT | ACAAAGCAAC AACAAGTACG CGGCCAGCAG CTATCTGAGC<br>TGTTTCGTTG TTGTTCATGC GCCGGTCGTC GATAGACTCG | RleaI<br>~~~~~~<br>AGCAGTGGAA GTCCCACAGA AGCTACAGCT GCCAGGTCAC<br>TCGTCACCTT CAGGGTGTCT TCGATGTCGA CGGTCCAGTG |
| GAGACCACCA<br>CTCTGGTGGT                                                                   | CTATCTGAGC<br>GATAGACTCG                                                                   | GCCAGGTCAC                                                                                                    |

FIG. 7G

GCATGAGGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT GAGGCCTGAT CGTACTCCCC TCGTGGCACC TTTTTTGGCA ACGCGGCTGA CTCCGGACTA 351

SphI

401 AAGCATGC TTCGTACG FIG. 7H

# M24: assembly PCR

M24-A:

GAAGACAAGCGGATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B:

CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-GAACGGTTAACTTCGTGCCGC

M24-C:

CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-TTTATCCGGGAGCCGTGACA

FIG. 71



### M24-D:

TGTTTGGAGGGTGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-GCCACTGTCACGGCTCCCGG

### M24-E:

CCACACCCTCCAAACAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

### M24-F:

GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-GACCTGGCAGCTGTAGCTTC

### FIG. 7J

Д  $\vdash$ ш SapI ᆸ Ц Д  $\Box$ П Z, 口 Ø Н Н S Ø X  $\Xi$ 

AATGGCAACG AGAAGTGGGG TTACCGTTGC TCTTCACCCC TGACCGTGAG ATGAAACAAA GCACTATTGC ACTGGCACTC CGTGATAACG TACTTTGTTT

 $\mathcal{O}$ ഗ 口  $\gt$ Q L MfeI  $\gt$ 口 ×  $\succ$ П Ø 幺  $\vdash$ 

 $\gt$ 

GAAAGCGGCG CTTTCGCCGC GCAATTGGTG CGTTAACCAC TTCTACTTCA AAGATGAAGT GCCGACTACA CGGCTGATGT TGTTACCAAA ACAATGGTTT

BSPEI S Ø Ø  $\mathcal{O}$ S 口 召 Ы S C G Д Ø  $\gt$  $\vdash$ O G

CCGTCGGACG CAGACTCGAC GCGCCGGAGG GGCAGCCTGC GTCTGAGCTG CGCGGCCTCC GCGGCCTGGT GCAACCGGGC CGCCGGACCA CGTTGGCCCG

G Д BstXI Ø Ø  $\alpha$ >3 ഗ  $\sum$ K S ഗ ſτι  $\vdash$ BspEI G

GGATTTACCT TTAGCAGCTA TGCGATGAGC TGGGTGCGCC AAGCCCCTGG

CCTAAATGGA AATCGTCGAT ACGCTACTCG ACCCACGCGG TTCGGGGACC

# FIG. 8A

 $\vdash$ ഗ G G ഗ Ċ ഗ Н Ø ഗ  $\gt$ Z XhoI 口 口 ტ X

CCGTCGTGGA GCGCGATTAG CGGTAGCGGC GGCAGCACCT CGCGCTAATC GCCATCGCCG GAAGGGTCTC GAGTGGGTGA CTTCCCAGAG CTCACCCACT

NspV Ŋ Z Д PmlI 召 ഗ H $\vdash$ ഥ 召 G X > ഗ K ×  $\succ$ 

CCATTTCACG TGATAATTCG GGTAAAGTGC ACTATTAAGC ATTATGCGGA TAGCGTGAAA GGCCGTTTTA CCGGCAAAAT ATCGCACTTT TAATACGCCT

EagI  $\Box$ 口 Ø 召  $\Box$ S  $\mathbb{Z}$  $\Xi$ O 口  $\succ$ 니  $\vdash$ Z NspV

TTCTATGCCG CTGCGTGCGG AAGATACGGC GACGCACGCC TTACTTGTCG TGTATCTGCA AATGAACAGC ACATAGACGT TTTTTGTGGG AAAAACACCC

 $\Sigma$ Ø >ſτι C  $\Box$  $\Omega$ G 3 召 Ø EagI

BSSHI

TGCGCGCGTT GGGGCGGCGA TGGCTTTTAT GCGATGGATT

| GCACATAATAACGCGCGCAA CCCCGCCGCT ACCGAAATA CGCTACCTAA Y W G Q G T L V T V S S A G G S Styl Styl | ATTGGGGCCA AGGCACCCTG GTGACGGTTA GCTCAGCGGG TGGCGGTTCT<br>TAACCCCGGT TCCGTGGGAC CACTGCCAAT CGAGTCGCCC ACCGCCAAGA | G G G G G G G G G G G D I ECORV | GGCGGCGGTG GGAGCGGTGG CGGTGGTTCT GGCGGTGGTG GTTCCGATAT<br>CCGCCGCCAC CCTCGCCACC GCCACCAAGA CCGCCACCAC CAAGGCTATA | MTQSPLSLPVTPGEPV BanII | ATGACC CAGAGCCCAC TGAGCCTGCC AGTGACTCCG GGCGAGCCTG<br>TACTGG GTCTCGGGTG ACTCGGACGG TCACTGAGGC CCGCTCGGAC |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|
| GCACATAAT<br>Y W G<br>S                                                                        | ATTGGGGCC<br>TAACCCCGG                                                                                           | <u>ი</u>                        | GGCGGCGGT                                                                                                        | V M T<br>ECORV         | CGTGATGACC<br>GCACTACTGG                                                                                 |
| •                                                                                              |                                                                                                                  |                                 |                                                                                                                  |                        |                                                                                                          |

CTGCAGAAGC AGCCAAAGCC TGCTGCATAG CAACGGCTAT GACGTCTTCG TCGGTTTCGG ACGACGTATC GTTGCCGATA

GACGTCTTCG

CGAGCATTAG GCTCGTAATC

 $\succ$ 

 $\mathcal{O}$ 

Z

S

工

 $\Box$ 

口

S

Ø

S

S

召

S

Н

S

K

PstI Ö

J

 $\vdash$ 

Д

Д

 $\vdash$ 

Н

>

出

 $\bigcirc$ 

 $\bigcirc$ 

 $\mathcal{O}$ 

 $\succ$ 

>

Ċ

>

E D BbsI

|           | L<br>seI                                             | ~~~<br>ATT<br>TAA                                                                      | Ŋ                                       | 909<br>080                                                                                                       | A                          | GCT                                                                                                              |
|-----------|------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|
|           | L<br>A                                               | GCT<br>CGA                                                                             | ĹΤι                                     | TTA<br>AAT                                                                                                       | H                          | GAA                                                                                                              |
|           | N Y L D W Y L Q K P G Q S P Q L L<br>KpnI SexAI AseI | ATTGGTACCT TCAAAACCA GGTCAAAGCC CGCAGCTATT TAACCATGGA AGTTTTTGGT CCAGTTTCGG GCGTCGATAA | I Y L G S N R A S G V P D R F S<br>Asel | AATTTATCTG GGCAGCAACC GTGCCAGTGG GGTCCCGGAT CGTTTTAGCG<br>TTAAATAGAC CCGTCGTTGG CACGGTCACC CCAGGGCCTA GCAAAATCGC | GSGSGTDFTLKISRVEA<br>Bamhi | GCTCTGGATC CGGCACCGAT TTTACCCTGA AAATTAGCCG TGTGGAAGCT<br>CGAGACCTAG GCCGTGGCTA AAATGGGACT TTTAATCGGC ACACCTTCGA |
|           | വ                                                    | )<br>(GG                                                                               | О                                       | BAT<br>TA                                                                                                        | 民                          | 300<br>300<br>300                                                                                                |
|           | W                                                    | AAG                                                                                    | Д.,                                     | ~<br>3000<br>3000                                                                                                | ω                          | AGC                                                                                                              |
|           | Ø                                                    | TCA                                                                                    | V<br>.091                               | TCC                                                                                                              | Н                          | באדי                                                                                                             |
|           | G<br>AI                                              | TCAAAAACCA GGTCAAAGCC<br>AGTTTTTGGT CCAGTTTCGG                                         | G V P<br>EcoO1091                       | G GGTCCC                                                                                                         | ×                          | AA 1                                                                                                             |
|           | ъ<br>Sex                                             | CCA                                                                                    | E C                                     | TGG                                                                                                              | H                          | TGA                                                                                                              |
|           | X                                                    | _<br>AAA<br>TTT                                                                        | Οĵ                                      | CAG<br>GTC                                                                                                       | E                          | 000                                                                                                              |
|           | O)                                                   | CAA<br>GTT                                                                             | A                                       | TGC<br>ACG                                                                                                       | Ĺتبا                       | TTA<br>AAT                                                                                                       |
|           |                                                      | T A                                                                                    | 民                                       | <u>ი</u> ი                                                                                                       |                            | T<br>A<br>A                                                                                                      |
|           | l H c                                                | ACC<br>IGG                                                                             | Z                                       | AAC<br>I'TG                                                                                                      | Д                          | CGA                                                                                                              |
|           | K<br>Kp                                              | GGTACC                                                                                 | Ø                                       | AGC.                                                                                                             | H                          | CAC                                                                                                              |
|           | M                                                    | AACTATCTGG ATTGGTACCT<br>TTGATAGACC TAACCATGGA                                         | O                                       |                                                                                                                  | ڻ<br>§                     | 0000<br>0000                                                                                                     |
|           | Ω                                                    | 0<br>0<br>0<br>0                                                                       | ъ                                       | TG                                                                                                               | G S<br>BamHI               | ATC<br>PAG                                                                                                       |
|           | 니                                                    | TCT                                                                                    | ≯₁                                      | ATC                                                                                                              | დ<br>წ Ba                  | GGA                                                                                                              |
|           | ×                                                    | AACTATCTGG<br>TTGATAGACC                                                               | e H                                     | TTT<br>'AAA                                                                                                      | S                          | TCT                                                                                                              |
| <b>',</b> | Z                                                    | AA<br>TT                                                                               | AS                                      | AAT<br>TTA                                                                                                       | Ö                          | 99                                                                                                               |
|           |                                                      |                                                                                        |                                         |                                                                                                                  |                            |                                                                                                                  |

FIG. 8D

CATTATACCA CCCCGCCGAC GTAATATGGT GGGGCGGCTG

GAAGACGTGG GCGTGTATTA TTGCCAGCAG CTTCTGCACC CGCACATAAT AACGGTCGTC

| ۲v.                       | ECORI     | <b>?</b>                                | TTC        | AAG                   |
|---------------------------|-----------|-----------------------------------------|------------|-----------------------|
| Ţ                         | ECC       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ACGTACGGAA | CTT                   |
| 臼                         | BsiWI     | ;<br>;                                  | \CG(       | PGC(                  |
| $\vdash$                  | BS        | <b>?</b>                                | GTZ        | 3CA.                  |
| 民                         |           | ,                                       |            | L L                   |
| F G Q G T K V E I K R T E |           |                                         | TTGAAATTAA | AACTTTAATT TGCATGCCTT |
| Н                         |           | •                                       | 3AA2       | CTT                   |
| 口                         |           |                                         | TT         | AA(                   |
| >                         |           |                                         | GGTACGAAAG | CCATGCTTTC            |
| 又                         |           |                                         | ACG2       | 555                   |
| ⊣                         |           |                                         | 3GT2       | CAI                   |
| Ċ                         |           |                                         |            |                       |
| Ø                         | MscI      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   | CTTTGGCCAG | GAAACCGGTC            |
| <u>ග</u>                  | $\succeq$ | ?                                       | TTG        | AAC                   |
| Щ                         |           |                                         | CJ         | GA                    |

# FIG. 8E



| 103        | >                 | >            | >         | >         | ≯         | ≷         | >         | >         | >         | >         | ≥        | >  | <u>&gt;</u> |
|------------|-------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----|-------------|
| 105        | , <del>&gt;</del> | >            | >         | >         | >         | >         | >-        | >         | >         | >-        | >-       | >  | >-          |
| 101        |                   |              |           |           |           |           |           |           |           |           |          |    |             |
| 300 l      | Σ                 | 1            | •         | ı         | ı         | ı         | ı         | 1         | 1         | ı         | 1        | t  | 1           |
| 100D       | ı                 | ŧ            | ı         | t         | 1         | 1         |           | ı         | 1         | 1         | ı        | ı  | 1           |
| J00 L      | 1                 | 1            | 1         | ı         | ı         | •         | t         | ı         | •         | ı         | ı        | ı  | t           |
| 100B       | $\triangleleft$   | 1            | ı         | •         |           | ı         | •         | •         |           | 1         | •        | ı  | 1           |
| A001       | >-                | •            | 1         | 1         | •         | 1         | t         | ı         | •         | 1         | 1        | ı  | ï           |
| 001        | u.                | >-           | I         | I         | $\propto$ | >-        | ٥         | •         | S         | $\times$  | 4        |    | Σ           |
| 66         | 9                 | Z            | ≷         | >-        | ⋖         | G         | 0         | $\propto$ | Z         | S         | Ø        | >- | ≥           |
| 86         |                   | Σ            | ш         |           | $\prec$   | H         | ⋖         | $\vdash$  | $\propto$ |           | ட        | 0  | ш           |
| <i>46</i>  | Ŋ                 | $\checkmark$ | $\vdash$  | ш         |           | <u>-</u>  | ш         | _         | Z         | ပ         | $\vdash$ | ۵. | S           |
| 96         | 9                 | 9            | $\propto$ | $\propto$ | ய         | Z         | Z         | ⋖         | >-        | >         | $\times$ | 4  | 0           |
| <i>S6</i>  | ≷                 | u.           | エ         | >         | $\times$  | ≥         | _         | <b> </b>  | ≥         | S         | S        | >  | Σ           |
| <i>t</i> 6 | <u>~</u>          | $\propto$    | ∝         | $\propto$ | œ        | ∝  | ~           |
| 83         | ⋖                 | ⋖            | A         | 4         | Ø         | Ø         | ⋖         | 4         | ⋖         | ⋖         | 4        | 4  | ⋖           |
| <i>7</i> 6 | $\overline{o}$    | ပ            | ပ         | C         | ပ         | ပ         | C         | ပ         | ပ         | C         | ပ        | ပ  | O           |
|            |                   |              |           |           |           |           |           |           |           |           |          |    |             |

Ø

 $\mathbf{\omega}$ 

## FIG. 10A



## FIG. 10B





FIG. 11



FIG. 12



FIG. 13



- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

FIG. 14





FIG. 16



Enrichment factor





| FREQUEN   | Μ             | $\infty$      | 7            | $\leftarrow$  | $\vdash$     | $\vdash$      | ⊣        | $\leftarrow$ | $\leftarrow$ | IJ·      | 4                | $\leftarrow$ I |
|-----------|---------------|---------------|--------------|---------------|--------------|---------------|----------|--------------|--------------|----------|------------------|----------------|
| EOT       | Z             | M             | Z            | M             | M            | M             | ß        | Ż            | 3            | Z        | Z                | Z              |
| TOT       | >             | >             | X            | $\succ$       | >            | $\succ$       | $\succ$  | $\succ$      | $\succ$      | $\succ$  | $\triangleright$ | >              |
| TOT       | О             | О             | Ω            | О             | О            | О             | Ω        | П            | О            | П        | Ω                | Ω              |
| JOOE      | ſΤ            | $\Xi$         | ĮΤί          | Ĺτι           | $\Xi$        | $\Sigma$      | ı        | $\Xi$        | $\Xi$        | $\Xi$    | $\Xi$            | ſτι            |
| JOOD      | $\mathcal{O}$ | $\bowtie$     | 民            | Ĺτί           | 田            | $\boxtimes$   | 1        | 民            | >            | Ĺщ       | 団                | Z              |
| JOOT      | $\bowtie$     | 只             | $\bowtie$    | $\succ$       | $\mathbb{Z}$ | X             | 1        | $\bowtie$    | $\succ$      | 民        | X                | X              |
| TOOB      | 民             | 只             | $\Omega$     | 闰             | ഗ            | 民             | 1        | $\succ$      | >            | $\alpha$ | U                | $\alpha$       |
| Y00T      | $\vdash$      | Z             | Н            | Ω             | M            | 田             | 1        | Ĺτι          | $\circ$      | لئر      | 召                | $\Xi$          |
| 00 T      | K             | X             | Д            | Ы             | Ĺτι          | $\alpha$      | Д        | 3            | Ŋ            | 召        | Ŋ                | $\alpha$       |
| 66        | Ø             | ſΤι           | $\mathbb{Z}$ | 又             | Ω            | Д             | щ        | 耳            | M            | $\Sigma$ | 口                | $\Xi$          |
| 86        | $\geq$        | Ш             | $\Xi$        | $\mathbb{Z}$  | Ç            | 臼             | Ø        | Z            | $\Xi$        | Ø        | Ø                | Ц              |
| ۷6        | Д             | M             | M            | П             | M            | 니             | X        | E            | О            | O        | 口                | $\alpha$       |
| 96        | 民             | $\circ$       | 民            | ഗ             | Д            | $\Omega$      | $\Sigma$ | X            | X            | X        | $\Sigma$         | $\Sigma$       |
| <i>S6</i> | $\vdash$      | Z             | X            | $\succ$       | >            | Z             | Н        | 以            | $\mathbb{N}$ | Z        | Z                | Z              |
| Þ6        | 只             | $\alpha$      | 民            | 民             | $\alpha$     | $\alpha$      | 召        | 召            | $\alpha$     | 以        | 召                | 以              |
| CC        | $\mathcal{A}$ | $\mathcal{A}$ | ~            | $\mathcal{A}$ | ~            | $\mathcal{A}$ | ~        | ~            | ~            | ~        | ~                | ~              |

| •          |               |                 |               |                          |                |                 |
|------------|---------------|-----------------|---------------|--------------------------|----------------|-----------------|
| FREQUENCY  | ₽,            | $\sim$          | 7             | ٦                        | $\leftarrow$ I | $\leftarrow$    |
| EOT        | Z             | 3               | 3             | M                        | M              | 3               |
| <i>T05</i> | X             | $\succ$         | ≻ı            | $\triangleright$         | Y              | ×               |
| TOT        | Ω             | $\Box$          | Ω             | Ω                        | Ω              | Ω               |
| IOOE       | ĹΤι           | ĹŢ              | Ĺц            | ſц                       | Ĺτι            | ſц              |
| 100D       | K             | Ŏ               | O             | $\Xi$                    | 3              | $\circ$         |
| J00T       | Ы             | $\Sigma$        | $\Sigma$      | $\vdash$                 | $\asymp$       | $\Sigma$        |
| T00B       | $\times$      | $\bowtie$       | ×             | X                        | $\Xi$          | O               |
| AOOI       | 以             | O               | Z             | $\Sigma$                 | $\vdash$       | 民               |
| 00 T       | $\asymp$      | 3               | $\alpha$      | $\boxtimes$              | $\alpha$       | ഗ               |
| 66         | K             | $\triangleleft$ | Ø             | Ø                        | 民              | $\triangleleft$ |
| 86         | Ø             | 出               | $\succ$       | Ŋ                        | 니              | 召               |
| L6         | $\asymp$      | $\alpha$        | $\asymp$      | 以                        | Д              | $\bowtie$       |
| 96         | Н             | Z               | >             | $\asymp$                 | $\asymp$       | $\alpha$        |
| 56         | $\Rightarrow$ | $\succ$         | $\succ$       | · >-                     | $\alpha$       | $\succ$         |
| ħ6         | 異             | 召               | $\alpha$      | $\alpha$                 | $\alpha$       | 民               |
| 86         | Ø             | Ø               | K             | æ                        | Ø              | Ø               |
| 76         | $\mathcal{O}$ | $\mathcal{O}$   | $\mathcal{O}$ | $\overline{\mathcal{O}}$ | <u>U</u> .     | $\mathcal{O}$   |

| FREQUENCY | 16                       | H             | $\vdash$      | .П       | $\vdash$                 | $\leftarrow$     | $\leftarrow$ I | <del>, -  </del> |
|-----------|--------------------------|---------------|---------------|----------|--------------------------|------------------|----------------|------------------|
| EOI       | $\geq$                   | Z             | 3             | Z        | Z                        | 3                | B              | Z                |
| IOS       | >                        | $\rightarrow$ | $\succ$       | ×        | ×                        | $\triangleright$ | ×              | ≻₁               |
| TOT       | О                        | О             | О             | Д        | Ω                        | Ω                | $\Box$         | Ω                |
| JOOE      | Ĺц                       | $\Sigma$      | ſτι           | $\Sigma$ | $\Sigma$                 | Ĺ                | $\Sigma$       | Ĺι               |
| TOOD      | 耳                        | Д             | O             | 3        | >                        | ഗ                | 3              | Z                |
| J00T      | G                        | Ω             | >             | 工        | 田                        | $\circ$          | 口              | $\succ$          |
| TOOB      | ×                        | $\succ$       | 3             | 耳        | Ω                        | $\vdash$         | Z              | 3                |
| ¥00T      | Н                        | ഗ             | $\succ$       | വ        | $\alpha$                 | لتبا             | 口              | ш                |
| 00 T      | $\bowtie$                | Z             | Z             | ×        | Ø                        | $\circ$          | $\vdash$       | Н                |
| 66        | ഗ                        | ſщ            | О             | 니        | $\circ$                  | S                | Ø              | 口                |
| 86        | $\alpha$                 | П             | 니             | $\succ$  | Ш                        | Z                | Щ              | H                |
| ۷6        | $\succ$                  | $\alpha$      | П             | Ø        | Н                        | 江                | 口              | വ                |
| 96        | 異                        | $\geq$        | <b>A</b>      | O        | 니                        | Z                | Ω              | 3                |
| 56        | Ø                        | 1             | $\Sigma$      | ıП       | K                        | S                | >              | Ω                |
| ₽6        | 民                        | 民             | 公             | $\alpha$ | 民                        | $\alpha$         | K              | $\alpha$         |
| £6        | Ø                        | Ø             | Ø             | Ø        | Ø                        | æ                | K              | Ø                |
| 76        | $\overline{\mathcal{O}}$ | $\mathcal{O}$ | $\mathcal{O}$ | <u>ں</u> | $\overline{\mathcal{O}}$ | $\mathcal{O}$    | $\circ$        | $\circ$          |

| REQUENCY  | 4             | か        | 2        | <del>,</del>    | $\vdash$ | 2       | $\leftarrow$ I | 13            | т                | <del>,</del>  | $\leftarrow$  | <del></del> 1  |
|-----------|---------------|----------|----------|-----------------|----------|---------|----------------|---------------|------------------|---------------|---------------|----------------|
| EOI       | Z             | Z        | M        | Z               | Z        | 3       | M              | N             | ß                | M             | M             | 3              |
| ZOT       | ×             | >        | $\gt$    | $\succ$         | >        | $\succ$ | >-             | $\overline{}$ | $\triangleright$ | $\supset$     | X             | $\succ$        |
| TOT       | Ω             | О        | Д        | Ω               | Ω        | О       | $\Box$         | $\Box$        | О                | О             | Ω             | Ω              |
| JOOE      | 1             | ĮΤ       | $\Sigma$ | $\Sigma$        | $\Sigma$ | $\Xi$   | لتر            | ĹΤί           | $\Sigma$         | ſΤ            | i             | $\Sigma$       |
| JOOD      | ı             | $\alpha$ | $\circ$  | Н               | Ø        | О       | ×              | ×             | 召                | ĹŢ            | 1             | 니              |
| 100Ca     | ı             | 1        | i        | 1               | 以        | 1       | .1             | 1             | 1                | 1             | I             | ł              |
| 200T      | 1             | 吖        | $\alpha$ | 異               | $\alpha$ | 니       | 公              | 以             | Z                | 民             | 1             | 以              |
| IOOB      | I             | $\gt$    | W        | Н               | Д        | Н       | >              | 以             | Ω                | X             | I             | 異              |
| AOOI      | I             | لترا     | X        | $\triangleleft$ | Z        | $\Xi$   | Z              | ⊱             | 江                | S             | ŀ             | $\bigcirc$     |
| 00 T      | ГIJ           | ഗ        | S        | $\Omega$        | S        | $\Box$  | K              | X             | >                | $\times$      | لتر           | $\bowtie$      |
| 66        | [             | Д        | ഗ        | $\Rightarrow$   | K        | >       | ⊱              | ഗ             | $\succ$          | $\vdash$      | 口             | <del>[-1</del> |
| 86        | لتر           | 口        | 闰        | 口               | 口        | Z       | 口              | 口             | Ø                | 团             | $\Xi$         | 団              |
| 46        | Q             |          | X        | О               | ĹĻ       | 口       | ഗ              | $\times$      | [-1              | 又             | Н             | 口              |
| 96        | Гц            | لتا      | Ц        | O               | $\Xi$    | Z       | $\succ$        | Щ             | ×                | 3             | $\succ$       | Щ              |
| 56        | Ŋ             | $\circ$  | Н        | 口               | Z        | 口       | O              | O             | ×                | 召             | О             | Ø              |
| <i>ħ6</i> | 民             | 民        | 召        | 公               | 以        | DC,     | 民              | K             | 民                | 召             | $\alpha$      | 民              |
| 86        | Ø             | A        | Ø        | K               | Ø        | Ø       | <              | <             | Ø                | Ø             | Ø             | <              |
| 76        | $\mathcal{O}$ | $\circ$  | $\circ$  | $\mathcal{O}$   | ()       | $\circ$ | $\mathcal{O}$  | $\bigcirc$    | $\circ$          | $\mathcal{O}$ | $\mathcal{O}$ | $\mathcal{O}$  |

| FREQUENCY | Ŋ             | <del></del> 1 | $\leftarrow$  | <del></del>   | $\vdash$      | <del>~</del>  |
|-----------|---------------|---------------|---------------|---------------|---------------|---------------|
| EOT       | 3             | M             | M             | M             | M             | M             |
| IOS       | ≻             | $\supset$     | >             | >-            | $\rightarrow$ | >             |
| ΤΟΤ       | Ω             | О             | Ω             | Д             | О             | Ω             |
| JOOE      | $\Sigma$      | ĹĽ            | $\Sigma$      | $\Sigma$      | $\Sigma$      | ĹΤΊ           |
| T00D      | >             | $\alpha$      | 召             | O             | $\succ$       | ſτι           |
| JOOT      | $\succ$       | ſщ            | >             | S             | Z             | 工             |
| 100B      | Д             | $\Rightarrow$ | >             | Z             | Z             | $\vdash$      |
| AOOI      | Н             | Z             | 山             | ഗ             | വ             | 니             |
| 00 T      | Ø             | $\Rightarrow$ | $\Sigma$      | ıП            | Ø             | Д             |
| 66        | $\Rightarrow$ | $\Xi$         | $\circ$       | $\propto$     | Z             | X             |
| 86        | 口             | $\succ$       | 印             | $\succ$       | 民             | Ĺτι           |
| 46        | Ŋ             | ⊱             | Ĺц            | 口             | ഗ             | Ŋ             |
| 96        | Q             | Ĺц            | Щ             | X             | Д             | Ŋ             |
| 56        | О             | >             | >             | Щ             | $\succ$       | Ω             |
| Þ6        | 異             | $\alpha$      | 民             | 民             | 民             | 召             |
| E6        | K             | Ø             | Ø             | Þ             | Ø             | Ø             |
| 76        | $\mathcal{O}$ | $\mathcal{O}$ | $\mathcal{O}$ | $\mathcal{O}$ | $\mathcal{O}$ | $\mathcal{O}$ |



| unique restriction site | Isoschizomers                     |
|-------------------------|-----------------------------------|
| Aatll                   |                                   |
| AfIII                   | Bfrl, BspTl, Bst981               |
| Ascl                    | 1                                 |
| Asel                    | Vspl, Asnl, PshBl                 |
| BamHl                   | Bstl                              |
| Bbel                    | Ehel, Kasl, Narl                  |
| BbsI                    | BpuAl, Bpil                       |
| BgIII                   | 1                                 |
| Blpl                    | Bpu1102I,CellI, BlpI              |
| BsaBI                   | Maml, Bsh1365l, BsrBRl            |
| BsiWl                   | Pfl23II, Spll, Sunl               |
| BspEl                   | AccIII, BseAI, BsiMI, Kpn2I, Mrol |
| BsrGI                   | Bsp1407I, SspBI                   |
| BssHII                  | Paul                              |
| BstEII                  | BstPl, Eco91l, Eco0651            |
| BstXI                   |                                   |
| Bsu36l                  | Aocl, Cvnl, Eco811                |
| Dralll                  | 1                                 |
| DsmAl                   |                                   |
| Eagl                    | BstZl, EclXl, Eco52l, Xmalll      |
| Eco571                  | 1                                 |
| Eco01091                | Drall                             |
| EcoRI                   |                                   |
| EcoRV                   | Eco32I                            |
| Fsel                    | 1                                 |
| HindIII                 | <u> </u>                          |
| Hpal                    | 1                                 |
| Kpnl                    | Acc651, Asp7181                   |
| Mlul                    | 1                                 |
| Mscl                    | Ball, MluNl                       |

FIG. 25B

| unique restriction site | Isoschizomers                      |
|-------------------------|------------------------------------|
| Munl                    | Mfel                               |
|                         | 1                                  |
| Nhel                    |                                    |
| Nsil                    | Ppu10l, EcoT22l, Mph1103l          |
| NspV                    | Bsp119l, BstBl, Csp45l, Lspl, Sful |
| Pacl                    |                                    |
| Pmel                    | /                                  |
| PmII                    | BbrPl, Eco72l, PmaCl               |
| Psp5II                  | PpuMI                              |
| Pstl                    | /                                  |
| Rsrll                   | (Rsril), Cpol, Cspl                |
| SanDI                   |                                    |
| Sapl                    |                                    |
| SexAl                   |                                    |
| Spel                    | . /                                |
| Sfil                    |                                    |
| Sphl                    | Bbul, Pael, Nspl                   |
| Stul                    | Aatl, Eco147l                      |
| Styl                    | Eco130I, EcoT14I                   |
| Xbal                    | BspLU11II                          |
| Xhol                    | PaeR7I                             |
| Xmal                    | Aval, Smal, Cfr91, PspAl           |

FIG. 25C

|                                              | 1                                                    |                                                        | <del></del>                    |                                                                                                                                                          |
|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| reference                                    | Skerra et al. (1991)<br>Bio/Technology 9,<br>273-278 | Hoess et al. (1986)<br>Nucleic Acids Res.<br>2287-2300 | see M2                         | Ge et al., (1994)<br>Expressing<br>antibodies in E.<br>coli. In: Antibody<br>engineering: A<br>practical approach.<br>IRL Press, New<br>York, pp 229-266 |
| template                                     | vector<br>pASK30                                     | (synthetic)                                            | (synthetic)                    | vector<br>plG10                                                                                                                                          |
| sites to be<br>inserted                      | Aatli                                                | lox, BgIII                                             | lox', Sphl                     | none                                                                                                                                                     |
| sites to be<br>removed                       | 2x Vspl<br>(Asel)                                    | 2x Vspl<br>(Asel)                                      | none                           | Sphl,<br>BamHl                                                                                                                                           |
| functional element                           | lac<br>promotor/operator                             | Cre/lox<br>recombination site                          | Cre/lox'<br>recombination site | glllp of filamentous<br>phage with N-<br>terminal<br>myctail/amber<br>codon                                                                              |
| module/flan-<br>king<br>restriction<br>sites | Aatii-lacp/o-<br>Xbai                                | BgIII-lox-<br>Aatii                                    | Xbal-lox'-<br>Sph1             | EcoRI-<br>gIIIlong-<br>HindIII                                                                                                                           |
| , ON                                         | M                                                    | M2                                                     | M3                             | M7-1                                                                                                                                                     |

# FIG. 26A

| ,      |                                |                                                                               |                                  |                      |                 |          |
|--------|--------------------------------|-------------------------------------------------------------------------------|----------------------------------|----------------------|-----------------|----------|
| M7-11  | M7-II EcoRI-gIIIss-<br>HindIII | truncated gillp of<br>filamentous phage<br>with N-terminal Gly-<br>Ser linker | Sphl                             |                      | vector<br>plG10 | see M7-I |
| M7-III | EcoRI-gIIIss-<br>HindIII       | truncated gillp of filamentous phage with N-terminal myctail/amber codon      | Sphl, Bbsl                       | ·                    | vector<br>pIG10 | see M7-1 |
| M8     | Sphl-lox-<br>HindIII           | Cre/lox<br>recombination site                                                 | none                             | xol                  | (synthetic)     | see M3   |
| M9-11  | HindIII-Ipp-<br>Pacl           | lpp-terminator                                                                | none                             | Pacl, Fsel           | (synthetic)     | see M1   |
| M10-   | Paci/Fsel-bla-<br>BsrGl        | beta-lactamase/bla<br>(ampR)                                                  | Vspl,<br>Eco571,<br>BssSl        | Pacl, Fsel,<br>BsrGl | pASK30          | see M1   |
| M11-   | BsrGI-f1 ori-<br>Nhel          | origin of single-<br>stranded replication                                     | Dralll<br>(Banll not<br>removed) | BsrGl, Nhel          | pASK30          | see M1   |
| M11-   | BsrGI-f1 ori-<br>Nhel          | origin of single-<br>stranded replication                                     | Oralli,<br>Banli                 | BsrGI, Nhel          | pASK30          | see M1   |

### FIG. 26B

|                                                    | ,                             | ·                                              | ····                                                                       | 1                                   |                                                                         |
|----------------------------------------------------|-------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------|
| Rose, R.E. (1988)<br>Nucleic Acids Res.<br>16, 355 | see M3                        | Yanisch-Peron, C.<br>(1985) Gene<br>33,103-119 | Cardoso, M. &<br>Schwarz,S. (1992)<br>J. Appl<br>Bacteriol.72, 289-<br>293 | see M1                              | Knappik, A &<br>Plückthun, A.<br>(1994)<br>BioTechniques 17,<br>754-761 |
| Nhel, BgIII pACYC184                               | (synthetic)                   | pUC19                                          | pACYC184                                                                   | (synthetic)                         | (synthetic)                                                             |
| Nhel, BgIII                                        | BgIII, Iox,<br>Xmnl           | Bgill, Nhel                                    |                                                                            |                                     |                                                                         |
| BssSI, VspI,<br>NspV                               | none                          | Eco571<br>(BssSI not<br>removed)               | BspEI, MscI,<br>Styl/Ncol                                                  | (synthetic)                         | (synthetic)                                                             |
| origin of double-<br>stranded replication          | Cre/lox<br>recombination site | origin of double-<br>stranded replication      | chloramphenicol-<br>acetyltransferase/<br>cat (camR)                       | signal sequence of<br>phosphatase A | signal sequence of<br>phosphatase A +<br>FLAG detection tag             |
| Nhel-p15A-<br>Bgill                                | BgIII-lox-<br>BgIII           | BgIII-ColEI-<br>Nhel                           | Aatil-cat-<br>Bgill                                                        | Xbal-phoA-<br>EcoRI                 | Xbal-phoA-<br>FLAG-EcoRI                                                |
| M12                                                | M13                           | M14-<br>Ext2                                   | M17                                                                        | M19                                 | M20                                                                     |

# FIG. 26C

| Ž.  |                           |                                                              |                                                                  |                 |                                                                                               |
|-----|---------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------|
| M21 | Xbal-stll-<br>Sapl        | heat-stable<br>enterotoxin II signal (synthetic)<br>sequence | (synthetic)                                                      | <br>(synthetic) | Lee et al. (1983)<br>Infect. Immunol.<br>264-268                                              |
| M41 | AfIII-laci-<br>Nhel       | lac-repressor                                                | BstXI,<br>MluI,BbsI,<br>BanII,<br>BstEII,<br>HpaI, BbeI,<br>VspI | pASK30          | see M1                                                                                        |
| M42 | EcoRI-Histail-<br>HindIII | poly-histidine tail                                          | (synthetic)                                                      | (synthetic)     | Lindner et al.,<br>(1992) Methods: a<br>companion to<br>methods in<br>enzymology 4, 41-<br>56 |

### FIG. 26D



|              | HindIll                                   | 7.1                                                | A<br>C<br>C                                                          | DALGI                                                                                        |
|--------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $\leftarrow$ | ACATGTAAGC<br>TGTACATTCG                  | TTCCCCCCCC                                         | ACATGTAAGC TTCCCCCCCC CCTTAATTAA<br>TGTACATTCG AAGGGGGGGG GGAATTAATT | ACATGTAAGC TTCCCCCCC CCTTAATTAA CCCCCCCCC TGTACACCCC                                         |
| 51           | Nhel<br>CCCCCGCTA GC                      | Nhel<br>cccccccra gcccccccc<br>gggggggar cgggggggg | Bglii<br>CCAGATCTCC<br>GGTCTAGAGG                                    | Aatii Xbai<br>CCCCCCGA CGTCCCCCT<br>GGGGGGCT GCAGGGGGGA                                      |
| 101          | XbaI<br>~~~~~<br>CTAGACCCCC<br>GATCTGGGGG | Sphi<br>ccccccarc c                                | 9999999999999999<br>                                                 | xbai EcoRI Aatli TAASA ECORI AATII CTAGACCCCC CCCCCCCCCC CGAATTCGAC GTC GATCTGGGG GGGGGGGGGG |

FIG. 27B



FIG. 28A

| ATCCTTGAGA                        | CAGCGGTAAG               | TGGATCTCAA<br>ACCTAGAGTT | TACATCGAAC<br>ATGTAGCTTG | ACGAGTGGGT<br>TGCTCACCCA | 251          |
|-----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| ł                                 | •                        |                          |                          |                          |              |
| AGTTGGGTĞC<br>TCAACCCACG<br>BSSSI | GCTGAAGATC<br>CGACTTCTAG | AGTAAAAGAT<br>TCATTTTCTA | CGCTGGTGAA<br>GCGACCACTT | CACCCAGAAA<br>GTGGGTCTTT | 201          |
|                                   | Eco57I                   |                          |                          |                          |              |
| TGTTTTTGCT<br>ACAAAAACGA          | TTTGCCTTCC<br>AAACGGAAGG | TTTGCGGCAT<br>AAACGCCGTA | TATTCCCTTT<br>ATAAGGGAAA | GTGTCGCCCT               | 151          |
| CAACATTTCC<br>GTTGTAAAGG          | TATGAGTATT<br>ATACTCATAA | AAAGGAAGAG<br>TTTCCTTCTC | TAATATTGAA<br>ATTATAACTT | AATGCTTCAA<br>TTACGAAGTT | 101          |
| AACCCTGATA<br>TTGGGACTAT          | ATGAGACAAT<br>TACTCTGTTA | GTATCCGCTC<br>CATAGGCGAG | ATTCAAATAT<br>TAAGTTTATA | TTCTAAATAC<br>AAGATTTATG | 51           |
| TTGTTTATTT<br>AACAAATAAA          | GAACCCCTAT<br>CTTGGGGATA | AATGTGCGCG<br>TTACACGCGC | TTTTCGGGGA               | CAGGTGGCAC<br>GTCCACCGTG | $\leftarrow$ |

FIG. 28B

BSSSI

### XmnI

| 301 | GTTTTCGCCC<br>CAAAAGCGGG | CGAAGAACGT<br>GCTTCTTGCA | TTTCCAATGA               | TGAGCACTTT<br>ACTCGTGAAA | TAAAGTTCTG<br>ATTTCAAGAC |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 351 | CTATGTGGCG               | CGGTATTATC               | CCGTATTGAC               | GCCGGGCAAG               | AGCAACTCGG               |
|     | GATACACCGC               | GCCATAATAG               | GGCATAACTG               | CGGCCCGTTC               | TCGTTGAGCC               |
| 401 | TCGCCGCATA               | CACTATTCTC<br>GTGATAAGAG | AGAATGACTT<br>TCTTACTGAA | GGTTGAGTAC<br>CCAACTCATG | TCACCAGTCA               |
| 451 | CAGAAAAGCA               | TCTTACGGAT               | GGCATGACAG               | TAAGAGAATT               | ATGCAGTGCT               |
|     | GTCTTTTCGT               | AGAATGCCTA               | CCGTACTGTC               | ATTCTCTTAA               | TACGTCACGA               |
| 501 | GCCATAACCA               | TGAGTGATAA               | CACTGCGGCC               | AACTTACTTC               | TGACAACGAT               |
|     | CGGTATTGGT               | ACTCACTATT               | GTGACGCCGG               | TTGAATGAAG               | ACTGTTGCTA               |
| 551 | CGGAGGACCG               | AAGGAGCTAA               | CCGCTTTTTT               | GCACAACATG               | GGGGATCATG               |
|     | GCCTCCTGGC               | TTCCTCGATT               | GGCGAAAAAA               | CGTGTTGTAC               | CCCCTAGTAC               |
| 601 | TAACTCGCCT               | TGATCGTTGG               | GAACCGGAGC               | TGAATGAAGC               | CATACCAAAC               |
|     | ATTGAGCGGA               | ACTAGCAACC               | CTTGGCCTCG               | ACTTACTTCG               | GTATGGTTTG               |
| 651 | GACGAGCGTG               | ACACCACGAT               | GCCTGTAGCA               | ATGGCAACAA               | CGTTGCGCAA               |

### FIG. 28C

| GCAACGCGTT                 |
|----------------------------|
| Ţ                          |
| $\sim$                     |
| $\sim$                     |
| $\sim$                     |
| AACGC                      |
| $\overline{A}$             |
| $\circ$                    |
| Ö                          |
| _                          |
| E                          |
| È                          |
| Ö                          |
| TACCGTTGT                  |
| Ē                          |
| Ö                          |
| $\circ$                    |
| $\mathcal{O}$              |
| ⊄                          |
|                            |
| _                          |
| H                          |
| $\mathcal{O}$              |
| $\mathcal{O}$              |
| GACATCGT                   |
| ~                          |
| $\mathcal{L}$              |
| (2                         |
| SS                         |
| $\ddot{\circ}$             |
|                            |
| TGTGGTGCTA                 |
| E                          |
| $\circ$                    |
| ပ                          |
| ⊣                          |
| က္ည                        |
| 9                          |
| Ţ                          |
| 9                          |
|                            |
| ( )                        |
| $\mathcal{A}$              |
| CTGCTCGCAC                 |
| $\widetilde{\mathfrak{S}}$ |
| $\ddot{\circ}$             |
| Ĕ                          |
| Ö                          |
| Ö                          |
| )L                         |
| $\mathcal{O}$              |

| Н |
|---|
| Ø |
| ഗ |
| Þ |
|   |
|   |

| CAATTAATAG | CTCGGCCCTT | AGCGTGGGTC | TCCCGTATCG | ACGAAATAGA | AACTGTCAGA | CATTTTAAT  |
|------------|------------|------------|------------|------------|------------|------------|
| GTTAATATC  |            | TCGCACCCAG | AGGCATAGC  | TGCTTTATCT | TTGACAGTCT | GTAAAAATTA |
| TTCCCGGCAA | CACTTCTGCG | GGAGCCGGTG | TGGTAAGCCC | CTATGGATGA | AAGCATTGGT | TTTAAAACTT |
|            | GTGAAGACGC | CCTCGGCCAC | ACCATTCGGG | GATACCTACT | TTCGTAACCA | AAATTTTGAA |
| TTACTCTAGC | GTTGCAGGAC | TGATAAATCT | TGGGGCCAGA | AGTCAGGCAA | CTCACTGATT | TTTAGATTGA |
| AATGAGATCG | CAACGTCCTG | ACTATTTAGA | ACCCCGGTCT | TCAGTCCGTT | GAGTGACTAA | AAATCTAACT |
| GGCGAACTAC | GGCGGATAAA | GGTTTATTGC | ATTGCAGCAC | CACGACGGGG | AGATAGGTGC | TCATATATAC |
| CCGCTTGATG | CCGCCTATTT | CCAAATAACG | TAACGTCGTG | GTGCTGCCCC | TCTATCCACG | AGTATATATG |
| ACTATTAACT | ACTGGATGGA | CCGGCTGGCT | TCGCGGTATC | TAGTTATCTA | CAGATCGCTG | CCAAGTTTAC |
| TGATAATTGA | TGACCTACCT | GGCCGACCGA | AGCGCCATAG | ATCAATAGAT | GTCTAGCGAC | GGTTCAAATG |
| 701        | 751        | 801        | 851        | 901        | 951        | 1001       |

### FIG. 28D

| 4051 | TTAAAAGGAT               | CTAGGTGAAG              | ATCCTTTTTG                     | ATAATCTCAT                             | GACCAAAATC               |
|------|--------------------------|-------------------------|--------------------------------|----------------------------------------|--------------------------|
|      | AATTTTCCTA               | GATCCACTTC              | TAGGAAAAAC                     | TATTAGAGTA                             | CTGGTTTTAG               |
| 1101 | CCTTAACGTG               | AGTTTTCGTT              | CCACTGAGCG                     | TCAGACCCCG                             | TAGAAAAGAT               |
|      | GGAATTGCAC               | TCAAAAGCAA              | GGTGACTCGC                     | AGTCTGGGGC                             | ATCTTTTCTA               |
| 1151 | CAAAGGATCT               | TCTTGAGATC              | CTTTTTTTCT                     | GCGCGTAATC                             | TGCTGCTTGC               |
|      | GTTTCCTAGA               | AGAACTCTAG              | GAAAAAAAGA                     | CGCGCATTAG                             | ACGACGAACG               |
| 1201 | AAACAAAAAA               | ACCACCGCTA              | CCAGCGGTGG                     | TTTGTTTGCC                             | GGATCAAGAG               |
|      | TTTGTTTTT                | TGGTGGCGAT              | GGTCGCCACC                     | AAACAAACGG                             | CCTAGTTCTC               |
| 1251 | CTACCAACTC<br>GATGGTTGAG | TTTTCCGAA<br>AAAAAGGCTT | GGTAACTGGC<br>CCATTGACCG<br>EC | C TTCAGCAGAG<br>G AAGTCGTCTC<br>Eco57I | CGCAGATACC<br>GCGTCTATGG |
| 1301 | AAATACTGTC               | CTTCTAGTGT              | AGCCGTAGTT                     | T AGGCCACCAC                           | TTCAAGAACT               |
|      | 'ITTATGACAG              | GAAGATCACA              | TCGGCATCAA                     | A TCCGGTGGTG                           | AAGTTCTTGA               |

### FIG. 28E

ACCAGTGGCT TGGTCACCGA

CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT GACATCGTGG CGGATGTATG GAGCGAGACG ATTAGGACAA

1351

| 1401 | GCTGCCAGTG               | GCGATAAGTC<br>CGCTATTCAG | ĠTGTCTTACC<br>CACAGAATGG | GGGTTGGACT<br>CCCAACCTGA          | CAAGACGATA<br>GTTCTGCTAT |
|------|--------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------|
| 1451 | GTTACCGGAT               | AAGGCGCAGC               | GGTCGGGCTG               | AACGGGGGGT                        | TCGTGCACAC               |
|      | CAATGGCCTA               | TTCCGCGTCG               | CCAGCCCGAC               | TTGCCCCCCA                        | AGCACGTGTG               |
| 1501 | AGCCCAGCTT               | GGAGCGAACG               | ACCTACACCG               | AACTGAGATA                        | CCTACAGCGT               |
|      | TCGGGTCGAA               | CCTCGCTTGC               | TGGATGTGGC               | TTGACTCTAT                        | GGATGTCGCA               |
| 1551 | GAGCTATGAG               | AAAGCGCCAC               | GCTTCCCGAA               | GGGAGAAAGG                        | CGGACAGGTA               |
|      | CTCGATACTC               | TTTCGCGGTG               | CGAAGGGCTT               | CCCTCTTTCC                        | GCCTGTCCAT               |
| 1601 | TCCGGTAAGC<br>AGGCCATTCG | GGCAGGGTCG<br>CCGTCCCAGC | GAACAGGAGA<br>CTTGTCCTCT | GCGCACGAGG<br>CGCGTGCTCC<br>BSSSI | GAGCTTCCAG<br>CTCGAAGGTC |
| 1651 | GGGGAAACGC               | CTGGTATCTT               | TATAGTCCTG               | TCGGGTTTCG                        | CCACCTCTGA               |
|      | CCCCTTTGCG               | GACCATAGAA               | ATATCAGGAC               | AGCCCAAAGC                        | GGTGGAGACT               |
| 1701 | CTTGAGCGTC<br>GAACTCGCAG | GATTTTTGTG<br>CTAAAAACAC | ATGCTCGTCA<br>TACGAGCAGT | GGGGGGGGA                         | GCCTATGGAA<br>CGGATACCTT |
| 1751 | AAACGCCAGC               | AACGCGGCCT               | TTTTACGGTT               | CCTGGCCTTT                        | TGCTGGCCTT               |

FIG. 28F

| RI                                       | ECORI                                                                                                            | Sphi                         | 1                                                   | XbaI                                   |      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------|----------------------------------------|------|
| Aatii<br>~~~~~<br>CCCCACGTC<br>GGGCTGCAG | BsrGI Nhel Bglil Aatii  CACCCCCCC CCGCTAGCCC CCCCCCCAG ATCTCCCCCC CCCCGACGTC GTGGGGGGGG GGGGGGGGGGGGGGGGGGGGGGGG | BG<br>CCCCCCCAG<br>GGGGGGGTC | Nhel<br>~~~~~~<br>CCGCTAGCCC<br>GGCGATCGGG          | BsrGI<br>~~<br>CACCCCCCC<br>GTGGGGGGGG | 1851 |
| BsrGI<br>~~~~<br>CCCCCTGTA<br>GGGGGACAT  | HindIII  ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ                                                                       | CCCCCCCTT                    | HindIII TTGCTCACAT GTAAGCTTCC AACGAGTGTA CATTCGAAGG | TTGCTCACAT                             | 1801 |
| ACGACCGGAA                               | TTTGCGGTCG TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA                                                           | AAAATGCCAA                   | T.T.GC.GCC.GGA                                      | 50,1.99091.1.1                         |      |

## FIG. 28G

CCCCCCGAA TTCACGT GGGGGGGCTT AAGTGCA

1901



M1 142 bp *FIG. 29A* 

Aatii

CCGAAATGTG CTCACTCATT AGGCACCCCA GGCTTTACAC GAGTGAGTAA TCCGTGGGGT TGTGAGTTAG ACACTCAATC CTGCAGAATT GACGTCTTAA

GATAACAATT CTATTGTTAA CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG GCCGAGCATA CAACACACCT TAACACTCGC AAATACGAAG TTTATGCTTC 51

XbaI

CGAATTTCTA GCTTAAAGAT TCACACAGGA AACAGCTATG ACCATGATTA AGTGTGTCCT TTGTCGATAC TGGTACTAAT

101

FIG. 29B



| GTGGTGGCTC | AATAAGGGGG               | CGCTAAAGGC               | ATGGTTTCAT               | GGTGATTTTG               | TAATTCACCT |      |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|------|
| CACCACCGAG | TTATTCCCCC               | GCGATTTCCG               | TACCAAAGTA               | CCACTAAAAC               | ATTAAGTGGA |      |
| GATCTGTAGG | GGCAAACGCT               | TACAGTCTGA               | GCTGCTATCG               | TGGTGCTACT               | GTGACGGTGA |      |
| CTAGACATCC | CCGTTTGCGA               | ATGTCAGACT               | CGACGATAGC               | ACCACGATGA               | CACTGCCACT |      |
| CTCTGAGGAG | ATGAAAAGAT               | GAAAACGCGC               | TGATTACGGT               | CTAATGGTAA               | GCTCAAGTCG |      |
| GAGACTCCTC | TACTTTTCTA               | CTTTTGCGCG               | ACTAATGCCA               | GATTACCATT               | CGAGTTCAGC |      |
| AGAAGCTGAT | GATTTTGATT               | AAATGCCGAT               | CTGTCGCTAC               | TCCGGCCTTG               | TTCCCAAATG | Ħ    |
| TCTTCGACTA | CTAAAACTAA               | TTTACGGCTA               | GACAGCGATG               | AGGCCGGAAC               | AAGGGTTTAC |      |
| GAATTCGAGC | TGGTTCCGGT<br>ACCAAGGCCA | CTATGACCGA<br>GATACTGGCT | AAACTTGATT<br>TTTGAACTAA | TGGTGACGTT<br>ACCACTGCAA | CTGGCTCTAA | CumX |

201

151

251

EcoRI

 $\vdash$ 

51

101

# FIG. 30B

ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA TAAAGGCAGT TATAAATGGA AGGGAGGGAG TTAGCCAACT

11111

TTAATGAATA AATTACTTAT

301

| GGAA TTTTCTATTG                             | CGTT TCTTTTATAT                             | GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA               |                                               |
|---------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|
| ACTT AAAAGATAAC                             | SCAA AGAAAATATA                             | CAACGGTGGA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT               |                                               |
| ACCAIAIGAA<br>TGGTATACTT                    | TCTTTG                                      | TTTGCTAACA<br>AAACGATTGT                                             |                                               |
| ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA ACCATATGAA | ATTGTGACAA AATAAACTTA TTCCGTGGTG TCTTTGCGTT | ATTTTCTACG                                                           |                                               |
| TACAGCGGGA AAACAGAAAC CGCGACCATT TGGTATACTT | TAACACTGTT TTATTTGAAT AAGGCACCAC AGAAACGCAA | TAAAAGATGC                                                           |                                               |
| TTTGTC1"1"1"G<br>AAACAGAAAC                 | AATAAACTTA<br>TTATTTGAAT                    | GTTGCCACCT TTATGTATGT ATTTTCTACG<br>CAACGGTGGA AATACATACA TAAAAGATGC | HindIII<br>GTCT TGATAAGCTT<br>CAGA ACTATTCGAA |
| ATGTCGCCCT TTTGTCTTTG                       | ATTGTGACAA                                  | GTTGCCACCT                                                           | TAAGGAGTCT                                    |
| TACAGCGGGA AAACAGAAAC                       | TAACACTGTT                                  | CAACGGTGGA                                                           | ATTCCTCAGA                                    |
| 351                                         | 401                                         | 451                                                                  | 501                                           |

FIG. 30C



### HindIII

| AAATGGCGC AGATTGTGCG              | CCCCCCCCC TTCGAACTGG ACACTTCACT TTTTACCGCG TCTAACACGC |
|-----------------------------------|-------------------------------------------------------|
| AAAATGGCGC P                      | TTTTACCGCG TCTA                                       |
| TGTGAAGTGA AA                     | TGG ACACTTCACT                                        |
| AAGCTTGACC                        | TTCGAACTGG                                            |
| GGGGGGGG AAGCTTGACC TGTGAAGTGA AA | CCCCCCCCC TTCGAAC                                     |

| FseI | * * * * * * * * * * * * * * * * * * * * | 5540055005 55555555 5 |
|------|-----------------------------------------|-----------------------|
| PacI | ?<br>?<br>?<br>?<br>?                   | TTAATTAAAG            |
|      |                                         | TGTCTGCCGT            |
|      |                                         | ACATTTTTT             |
|      |                                         |                       |

S

TGTAAAAAA ACAGACGGCA AATTAATTTC CCCCCCCCC CGGCCGGACC GGGGGGTGT ACAGGGGGGG GGG CCCCCCCACA TGTCCCCCCC CCC BsrGI 101

FIG. 31B



M11-III 470 bp *FIG. 32A* 

|               | יין ער ד                 |                          |                          |                          |                          |
|---------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| <del></del> 1 | GCTAGCACGC               | GCCCTGTAGC<br>CGGGACATCG | GGCGCATTAA<br>CCGCGTAATT | 222522525<br>25255252525 | TGTGGTGGTT               |
| 51            | ACGCGCAGCG               | TGACCGCTAC               | ACTTGCCAGC               | GCCCTAGCGC               | CCGCTCCTTT               |
|               | TGCGCGTCGC               | ACTGGCGATG               | TGAACGGTCG               | CGGGATCGCG               | GGCGAGGAAA               |
| 101           | CGCTTTCTTC<br>GCGAAAGAAG | CCTTCCTTTC<br>GGAAGGAAAG | TCGCCACGTT<br>AGCGGTGCAA | CGCCGGCTTT               | CCCCGTCAAG<br>GGGCCAGTTC |
| 151           | CTCTAAATCG               | GGGCATCCCT               | TTAGGGTTCC               | GATTTAGTGC               | TTTACGGCAC               |
|               | GAGATTTAGC               | CCCGTAGGGA               | AATCCCAAGG               | CTAAATCACG               | AAATGCCGTG               |
| 201           | CTCGACCCCA               | AAAAACTTGA               | TTAGGGTGAT               | GGTTCTCGTA               | GTGGGCCATC               |
|               | GAGCTGGGGT               | TTTTTGAACT               | AATCCCACTA               | CCAAGAGCAT               | CACCCGGTAG               |
| 251           | GCCCTGATAG               | ACGGTTTTTC               | GCCCTTTGAC               | GTTGGAGTCC               | ACGTTCTTTA               |
|               | CGGGACTATC               | TGCCAAAAAG               | CGGGAAACTG               | CAACCTCAGG               | TGCAAGAAAT               |
| 301           | ATAGTGGACT               | CTTGTTCCAA               | ACTGGAACAA               | CACTCAACCC               | TATCTCGGTC               |
|               | TATCACCTGA               | GAACAAGGTT               | TGACCTTGTT               | GTGAGTTGGG               | ATAGAGCCAG               |
| 351           | TATTCTTTG                | ATTTATAAGG               | GATTTTGCCG               | ATTTCGGCCT               | ATTGGTTAAA               |

## FIG. 32B

ATAAGAAAAC TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT GAATTTTAAC AAAATATTAA CTTAAAATTG TTTTATAATT ATTTAACAAA AATTTAACGC TAAATTGTTT TTAAATTGCG AAATGAGCTG / 401

BsrGI

H 1

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451

FIG. 32C



|              | 4 4 6 7    |            |            |            |            |
|--------------|------------|------------|------------|------------|------------|
| $\leftarrow$ | AGATCTGACC | AAAATCCCTT | AACGTGAGTT | TTCGTTCCAC | TGAGCGTCAG |
|              | TCTAGACTGG | TTTTAGGGAA | TTGCACTCAA | AAGCAAGGTG | ACTCGCAGTC |
| 51           | ACCCCGTAGA | AAAGATCAAA | GGATCTTCTT | GAGATCCTTT | TTTTCTGCGC |
|              | TGGGGCATCT | TTTCTAGTTT | CCTAGAAGAA | CTCTAGGAAA | AAAAGACGCG |
| 101          | GTAATCTGCT | GCTTGCAAAC | AAAAAACCA  | CCGCTACCAG | CGGTGGTTTG |
|              | CATTAGACGA | CGAACGTTTG | TTTTTTGGT  | GGCGATGGTC | GCCACCAAAC |
| 151          | TTTGCCGGAT | CAAGAGCTAC | CAACTCTTTT | TCCGAAGGTA | ACTGGCTACA |
|              | AAACGGCCTA | GTTCTCGATG | GTTGAGAAAA | AGGCTTCCAT | TGACCGATGT |
| 201          | GCAGAGCGCA | GATACCAAAT | ACTGTTCTTC | TAGTGTAGCC | GTAGTTAGGC |
|              | CGTCTCGCGT | CTATGGTTTA | TGACAAGAAG | ATCACATCGG | CATCAATCCG |
| 251          | CACCACTTCA | AGAACTCTGT | AGCACCGCCT | ACATACCTCG | CTCTGCTAAT |
|              | GTGGTGAAGT | TCTTGAGACA | TCGTGGCGGA | TGTATGGAGC | GAGACGATTA |
| 301          | CCTGTTACCA | GTGGCTGCTG | CCAGTGGCGA | TAAGTCGTGT | CTTACCGGGT |
|              | GGACAATGGT | CACCGACGAC | GGTCACCGCT | ATTCAGCACA | GAATGGCCCA |
| 351          | TGGACTCAAG | ACGATAGTTA | CCGGATAAGG | CGCAGCGGTC | GGGCTGAACG |

FIG. 33B

| SAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG CCCGACTTGC | STTCGT GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT<br>SAAGCA CGTGTGGG GTCGAACCTC GCTTGCTGGA TGTGGCTTGA | PACCTA CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGAATGGAT GTCGCAGTCG ATACTCTTTC GCGGTGCGAA GGGCTTCCCT | SGCGGA CAGGTATCCG GTAAGCGGCA GGGTCGGAAC AGGAGAGCGC<br>CCGCCT GTCCATAGGC CATTCGCCGT CCCAGCCTTG TCCTCGCG<br>BSSSI | GGGAGC TTCCAGGGGG AAACGCCTGG TATCTTTATA GTCCTGTCGG<br>CCCTCG AAGGTCCCCC TTTGCGGACC ATAGAAATAT CAGGACAGCC<br>[ | CGCCAC CTCTGACTTG AGCGTCGATT TTTGTGATGC TCGTCAGGGG<br>GCGGTG GAGACTGAAC TCGCAGCTAA AAACACTACG AGCAGTCCCC | SAGCCT ATGGAAAAC GCCAGCAACG CGGCCTTTTT ACGGTTCCTG |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| ACCTGAGTTC TGCTATCA                                | GGGGGTTCGT GCACACAG<br>CCCCCAAGCA CGTGTGTC                                                             | GAGATACCTA CAGCGTGA<br>CTCTATGGAT GTCGCA                                                             | GAAAGGCGGA CAGGTATC<br>CTTTCCGCCT GTCCATAG                                                                      | ACGAGGGAGC TTCCAGGG<br>TGCTCCCTCG AAGGTCCC<br>BssSI                                                           | GTTTCGCCAC CTCTGACT                                                                                      | GGCGGAGCCT ATGGAAAA                               |
|                                                    | 401                                                                                                    | 451                                                                                                  | 501                                                                                                             | 551                                                                                                           | 601                                                                                                      | 651                                               |

FIG. 33C

NheI

GCCTTTTGCT GGCCTT1.GC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG 701



| 1 | AALII |  |
|---|-------|--|

|               | ?<br>?<br>?              |                          |                          |                          |                          |
|---------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| <del></del> 1 | GGGACGTCGG               | GTGAGGTTCC               | AACTTTCACC               | ATAATGAAAT               | AAGATCACTA               |
|               | CCCTGCAGCC               | CACTCCAAGG               | TTGAAAGTGG               | TATTACTTTA               | TTCTAGTGAT               |
| 51            | CCGGGCGTAT               | TTTTTGAGTT<br>AAAAACTCAA | ATCGAGATTT<br>TAGCTCTAAA | TCAGGAGCTA<br>AGTCCTCGAT | AGGAAGCTAA<br>TCCTTCGATT |
| 101           | AATGGAGAAA               | AAAATCACTG               | GATATACCAC               | CGTTGATATA               | TCCCAATGGC               |
|               | TTACCTCTTT               | TTTTAGTGAC               | CTATATGGTG               | GCAACTATAT               | AGGGTTACCG               |
| 151           | ATCGTAAAGA<br>TAGCATTTCT | ACATTTTGAG<br>TGTAAAACTC | GCATTTCAGT<br>CGTAAAGTCA | CAGTTGCTCA               | ATGTACCTAT<br>TACATGGATA |
| 201           | AACCAGACCG               | TTCAGCTGGA               | TATTACGGCC               | TTTTTAAAGA               | CCGTAAAGAA               |
|               | TTGGTCTGGC               | AAGTCGACCT               | ATAATGCCGG               | AAAATTTCT                | GGCATTTCTT               |
| 251           | AAATAAGCAC               | AAGTTTTATC               | CGGCCTTTAT               | TCACATTCTT               | GCCCGCCTGA               |
|               | TTTATTCGTG               | TTCAAAATAG               | GCCGGAAATA               | AGTGTAAGAA               | CGGGCGGACT               |
| 301           | TGAATGCTCA               | CCCGGAGTTC               | CGTATGGCAA               | TGAAAGACGG               | TGAGCTGGTG               |
|               | ACTTACGAGT               | GGGCCTCAAG               | GCATACCGTT               | ACTTTCTGCC               | ACTCGACCAC               |
| 351           | ATATGGGATA               | GTGTTCACCC               | TTGTTACACC               | GTTTTCCATG               | AGCAAACTGA               |

## FIG. 34B

| AAACGCCTGG               | GGGTGCCCTT               | GGCAGTTATT               | ATTTTTAA                 | GCGGGGCGTA               | 751 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----|
| GAGTGGCAGG               | GTACTGCGAT<br>CATGACGCTA | AATTACAACA<br>TTAATGTTGT | ATGCTTAATG<br>TACGAATTAC | TGTCGGCAGA<br>ACAGCCGTCT | 701 |
| ATGGCTTCCA<br>TACCGAAGGT | GCCGTTTGTG<br>CGGCAAACAC | GGTTCATCAT<br>CCAAGTAGTA | TGGCGATTCA<br>ACCGCTAAGT | CTGATGCCGC               | 651 |
| CGACAAGGTG<br>GCTGTTCCAC | ATACGCAAGG<br>TATGCGTTCC | GGCAAATATT<br>CCGTTTATAA | TTTCACTATG<br>AAAGTGATAC | TCGCCCCCGT               | 601 |
| GACAACTTCT<br>CTGTTGAAGA | AGCCAATATG<br>TCGGTTATAC | ATTTAAACGT<br>TAAATTTGCA | ACCAGTTTTG<br>TGGTCAAAAC | GGTGAGTTTC<br>CCACTCAAAG | 551 |
| CCAATCCCTG<br>GGTTAGGGAC | TTCGTCTCAG<br>AAGCAGAGTC | GAATATGTTT<br>CTTATACAAA | GGTTTATTGA<br>CCAAATAACT | TTCCCTAAAG<br>AAGGGATTTC | 501 |
| CCTGGCCTAT<br>GGACCGGATA | ACGGTGAAAA<br>TGCCACTTTT | GTGGCGTGTT<br>CACCGCACAA | TTCGCAAGAT<br>AAGCGTTCTA | TACACATATA<br>ATGTGTATAT | 451 |
| CGGCAGTTTC<br>GCCGTCAAAG | CGACGATTTC<br>GCTGCTAAAG | GTGAATACCA<br>CACTTATGGT | TCGCTCTGGA               | AACGTTTTCA<br>TTGCAAAAGT | 401 |
| TCGTTTGACT               | CAAAAGGTAC               | AACAATGTGG               | CACAAGTGGG               | TATACCCTAT               |     |

## FIG. 34C

CGCCCCGCAT TAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC

Bglii ~~~~~~ TGCTAGATCT TCC ACGATCTAGA AGG 801



| Н   | AATTCGAGCA<br>TTAAGCTCGT | GAAGCTGATC<br>CTTCGACTAG | TCTGAGGAGG<br>AGACTCCTCC | ATCTGTAGGG<br>TAGACATCCC | TGGTGGCTCT               |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51  | GGTTCCGGTG               | ATTTTGATTA               | TGAAAAGATG               | GCAAACGCTA               | ATAAGGGGGC               |
|     | CCAAGGCCAC               | TAAAACTAAT               | ACTTTTCTAC               | CGTTTGCGAT               | TATTCCCCCG               |
| 101 | TATGACCGAA               | AATGCCGATG               | AAAACGCGCT               | ACAGTCTGAC               | GCTAAAGGCA               |
|     | ATACTGGCTT               | TTACGGCTAÇ               | TTTTGCGCGA               | TGTCAGACTG               | CGATTTCCGT               |
| 151 | AACTTGATTC               | TGTCGCTACT               | GATTACGGTG               | CTGCTATCGA               | TGGTTTCATT               |
|     | TTGAACTAAG               | ACAGCGATGA               | CTAATGCCAC               | GACGATAGCT               | ACCAAAGTAA               |
| 201 | GGTGACGTTT<br>CCACTGCAAA | CCGGCCTTGC               | TAATGGTAAT<br>ATTACCATTA | GGTGCTACTG<br>CCACGATGAC | GTGATTTTGC<br>CACTAAAACG |
| 251 | TGGCTCTAAT               | TCCCAAATGG               | CTCAAGTCGG               | TGACGGTGAT               | AATTCACCTT               |
|     | ACCGAGATTA               | AGGGTTTACC               | GAGTTCAGCC               | ACTGCCACTA               | TTAAGTGGAA               |
|     | ImmX                     | XmnI                     |                          |                          |                          |

EcoRI

FIG. 35B

CCCTCCCTCA ATCGGTTGAA GGGAGGGAGT TAGCCAACTT

TAATGAATAA TTTCCGTCAA TATTTACCTT ATTACTTATT AAAGGCAGTT ATAAATGGAA

301

| TTTCTATTGA<br>AAAGATAACT | CTTTTATATG<br>GAAAATATAC | ACTGCGTAAT<br>TGACGCATTA | CGCAGATTGT<br>GCGTCTAACA                      | S<br>O | 000000000000000000000000000000000000000 | GTTAAAATTC                    | CAATTTTAAG  |
|--------------------------|--------------------------|--------------------------|-----------------------------------------------|--------|-----------------------------------------|-------------------------------|-------------|
| CCATATGAAT<br>GGTATACTTA | CTTTGCGTTT<br>GAAACGCAAA | TTGCTAACAT<br>AACGATTGTA | TGAAAAATGG<br>ACTTTTTACC                      |        | AAGGGGGGGG                              | TTAATATTTT                    | AATTATAAAA  |
| CGCTGGTAAA<br>GCGACCATTT | TCCGTGGTGT<br>AGGCACCACA | TTTTCTACGT<br>AAAAGATGCA | ACCTGTGAAG<br>TGGACACTTC                      | PacI   | CGTTTAATTA<br>GCAAATTAAT                | ATTGTAAACG                    | TAACA'TTTGC |
| TTGTCTTTGG<br>AACAGAAACC | ATAAACTTAT<br>TATTTGAATA | TATGTATGTA<br>ATACATACAT | HindIII<br>~~~~~~<br>GATAAGCTTG<br>CTATTCGAAC |        | TTTTGTCTGC<br>AAAACAGACG                | BsrGi<br>~~~~~~<br>TGTACATGAA | ACATGTACTT  |
| TGTCGCCCTT<br>ACAGCGGGAA | TTGTGACAAA<br>AACACTGTTT | TTGCCACCTT<br>AACGGTGGAA | AAGGAGTCTT<br>TTCCTCAGAA                      | ·      | GCGACATTTT<br>CGCTGTAAAA                | TGGGGGGGGG                    | ACCCCCCCC   |
| 351                      | 401                      | 451                      | 501                                           |        | 551                                     | 601                           |             |

ACCCCCCCC ACATGRACT TAACATTTGC AATTATAAAA

FIG. 35C

|                          |                                           |                          | •                        |                          |                                   |                                     |
|--------------------------|-------------------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------|-------------------------------------|
| 9090990999               | AAAGGCCAGC<br>TTTCCGGTCG                  | TTTCCATAGG<br>AAAGGTATCC | GTCAGAGGTG<br>CAGTCTCCAC | CCTGGAAGCT<br>GGACCTTCGA | ATACCTGTCC<br>TATGGACAGG          | CACGCTGTAG<br>GTGCGACATC            |
| AACCACCACA<br>TTGGTGGTGT | CATGTGAGCA<br>GTACACTCGT                  | TGCTGGCGTT<br>ACGACCGCAA | CGACGCTCAA<br>GCTGCGAGTT | GGCGTTTCCC<br>CCGCAAAGGG | CGCTTACCGG                        | TCTCATAGCT<br>AGAGTATCGA            |
| CGCTGCGCGT<br>GCGACGCGCA | Nhel<br>~~~~~<br>GCGTGCTAGC<br>CGCACGATCG | AAGGCCGCGT<br>TTCCGGCGCA | TCACAAAAAT<br>AGTGTTTTTA | AAAGATACCA<br>TTTCTATGGT | CCGACCCTGC                        | CGTGGCGCTT<br>CGCCGCGAA<br>FIG. 35E |
| GTAGCGGTCA               | GCTACAGGGC<br>CGATGTCCCG                  | GAACCGTAAA<br>CTTGGCATTT | CTGACGAGCA<br>GACTGCCCGT | ACAGGACTAT<br>TGTCCTGATA | CTCTCCTGTT<br>GAGAGGACAA          | CTTCGGGAAG                          |
| GCTGGCAAGT               | TTAATGCGCC<br>AATTACGCGG                  | AAAAGGCCAG<br>TTTTCCGGTC | CTCCGCCCCC               | GCGAAACCCG<br>CGCTTTGGGC | BSSSI<br>CCCTCGTGCG<br>GGGAGCACGC | GCCTTTCTCC<br>CGGAAAGAGG            |
| 1001                     | 1051                                      | 1101                     | 1151                     | 1201                     | 1251                              | 1301                                |

| TGTGTGCACG | CTATCGTCTT | CAGCCACTGG | GAGTTCTTGA | TGGTATCTGC | GCTCTTGATC | TGCAAGCAGC | GATCTTTTCT |
|------------|------------|------------|------------|------------|------------|------------|------------|
| ACACACGTGC | GATAGCAGAA | GTCGGTGACC | CTCAAGAACT | ACCATAGACG | CGAGAACTAG | ACGTTCGTCG | CTAGAAAAGA |
| CAAGCTGGGC | TATCCGGTAA | CCACTGGCAG | CGGTGCTACA | GAACAGTATT | AGAGTTGGTA | TTTTTTTGTT | AAGATCCTTT |
| GTTCGACCCG | ATAGGCCATT | GGTGACCGTC | GCCACGATGT | CTTGTCATAA | TCTCAACCAT | AAAAAAACAA | TTCTAGGAAA |
| TCGTTCGCTC | CGCTGCGCCT | CGACTTATCG | GGTATGTAGG | TACACTAGAA | CTTCGGAAAA | GTAGCGGTGG | GGATCTCAAG |
| AGCAAGCGAG |            | GCTGAATAGC | CCATACATCC | ATGTGATCTT | GAAGCCTTTT | CATCGCCACC | CCTAGAGTTC |
| TCGGTGTAGG | TCAGCCCGAC | CGGTAAGACA | AGCAGAGCGA | TAACTACGGC | AGCCAGTTAC | ACCACCGCTG | CAGAAAAAA  |
| AGCCACATCC |            | GCCATTCTGT | TCGTCTCGCT | ATTGATGCCG | TCGGTCAATG | TGGTGGCGAC | GTCTTTTTTT |
| GTATCTCAGT | AACCCCCCGT | GAGTCCAACC | TAACAGGATT | AGTGGTGGCC | GCTCTGCTGT | CGGCAAACAA | AGATTACGCG |
| CATAGAGTCA | TTGGGGGGCA | CTCAGGTTGG | ATTGTCCTAA | TCACCACCGG | CGAGACGACA | GCCGTTTGTT | TCTAATGCGC |
| 1351       | 1401       | 1451       | 1501       | 1551       | 1601       | 1651       | 1701       |

FIG. 35F

| GGATTTTGGT               | TTAAAAAAAT                                 | CATTAAGCAT | TGAATCGCCA               | CATAGTGAAA               | CAAAACTGGT               | TCAATAAACC               |
|--------------------------|--------------------------------------------|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CCTAAAACCA               | AATTTTTTA                                  | GTAATTCGTA | ACTTAGCGGT               | GTATCACTTT               | GTTTTGACCA               | AGTTATTTGG               |
| TCACGTTAAG               | AATAACTGCC                                 | TGTTGTAATT | ATGATGAACC               | AATATTTGCC               | ACGTTTAAAT               | AAACATATTC               |
| AGTGCAATTC               | TTATTGACGG                                 | ACAACATTAA | TACTACTTGG               | TTATAAACGG               | TGCAAATTTA               | TTTGTATAAG               |
| GAACGAAAAC               | TAAGGGCACC                                 | ATCGCAGTAC | CACAAACGGC               | CCTTGCGTAT               | CATATTGGCT               | CTGAGACGAA               |
| CTTGCTTTTG               | ATTCCCGTGG                                 | TAGCGTCATG | GTGTTTGCCG               | GGAACGCATA               | GTATAACCGA               | GACTCTGCTT               |
| ACGCTCAGTG               | ACCAGGCGTT                                 | CCTGCCACTC | TGGAAGCCAT               | CACCTTGTCG               | AGAAGTTGTC               | CAGGGATTGG               |
| TGCGAGTCAC               | TGGTCCGCAA                                 | GGACGGTGAG | ACCTTCGGTA               | GTGGAACAGC               | TCTTCAACAG               | GTCCCTAACC               |
| ACGGGGTCTG<br>TGCCCCAGAC | Bglii<br>~~~~~<br>CAGATCTAGC<br>GTCTAGATCG | TACGCCCCGC | TCTGCCGACA<br>AGACGGCTGT | GCGGCATCAG<br>CGCCGTAGTC | ACGGGGGCGA<br>TGCCCCCGCT | GAAACTCACC<br>CTTTGAGTGG |
| 1751                     | 1801                                       | 1851       | 1901                     | 1951                     | 2001                     | 2051                     |

| 2101 | CTTTAGGGAA | ATAGGCCAGG | TTTTCACCGT | AACACGCCAC | ATCTTGCGAA |
|------|------------|------------|------------|------------|------------|
|      | GAAATCCCTT | TATCCGUTCC | AAAAGTGGCA | TTGTGCGGTG | TAGAACGCTT |
| 2151 | TATATGTGTA | GAAACTGCCG | GAAATCGTCG | TGGTATTCAC | TCCAGAGCGA |
|      | ATATACACAT | CTTTGACGGC | CTTTAGCAGC | ACCATAAGTG | AGGTCTCGCT |
| 2201 | TGAAAACGTT | TCAGTTTGCT | CATGGAAAAC | GGTGTAACAA | GGGTGAACAC |
|      | ACTTTTGCAA | AGTCAAACGA | GTACCTTTTG | CCACATTGTT | CCCACTTGTG |
| 2251 | TATCCCATAT | CACCAGCTCA | CCGTCTTTCA | TTGCCATACG | GAACTCCGGG |
|      | ATAGGGTATA | GTGGTCGAGT | GGCAGAAAGT | AACGGTATGC | CTTGAGGCCC |
| 2301 | TGAGCATTCA | TCAGGCGGGC | AAGAATGTGA | ATAAAGGCCG | GATAAAACTT |
|      | ACTCGTAAGT | AGTCCGCCCG | TTCTTACACT | TATTTCCGGC | CTATTTTGAA |
| 2351 | GTGCTTATTT | TTCTTTACGG | TCTTTAAAAA | GGCCGTAATA | TCCAGCTGAA |
|      | CACGAATAAA | AAGAAATGCC | AGAAATTTTT | CCGGCATTAT | AGGTCGACTT |
| 2401 | CGGTCTGGTT | ATAGGTACAT | TGAGCAACTG | ACTGAAATGC | CTCAAAATGT |
|      | GCCAGACCAA | TATCCATGTA | ACTCGTTGAC | TGACTTTACG | GAGTTTTACA |
| 2451 | TCTTTACGAT | GCCATTGGGA | TATATCAACG | GTGGTATATC | CAGTGATTTT |
|      | AGAAATGCTA | CGGTAACCCT | ATATAGTTGC | CACCATATAG | GTCACTAAAA |

|                                                                                            | 99999                                           | 2751 |
|--------------------------------------------------------------------------------------------|-------------------------------------------------|------|
|                                                                                            | EcoRI                                           |      |
| GAG<br>CTC                                                                                 | TTCACACAGG A<br>AAGTGTGTCC T                    | 2701 |
| Xbal Sphi                                                                                  |                                                 |      |
| CCGGCTCGTA TGTTGTGTGG AATTGTGAGC GGATAACAAT<br>GGCCGAGCAT ACAACACACC TTAACACTCG CCTATTGTTA | CTTTATGCTT C<br>GAAATACGAA G                    | 2651 |
| ATGTGAGTTA GCTCACTCAT TAGGCACCCC AGGCTTTACA<br>TACACTCAAȚ CGAGTGAGTA ATCCGTGGGG TCCGAAATGT | Aatii<br>~~~~~~<br>CCGACGTCTA A<br>GGCTGCAGAT T | 2601 |
| TAGTGATCTT ATTTCATTAT GGTGAAAGTT GGAACCTCAC<br>ATCACTAGAA TAAAGTAATA CCACTTTCAA CCTTGGAGTG | ATACGCCCGG T<br>TATGCGGGCC A                    | 2551 |
| TTAGCTTCCT TAGCTCCTGA AAATCTCGAT AACTCAAAAAAAAAA                                           | TTTCTCCATT T<br>AAAGAGGTAA A                    | 2501 |



M2 173 bp **F/G. 35J** 

AatII

111111

CTCACTCATT AGGCACCCCA GGCTTTACAC CCGAAATGTG TCCGTGGGGT GAGTGAGTAA ACACTCAATC TGTGAGTTAG GACGTCTTAA CTGCAGAATT

CTATTGTTAA GATAACAATT GTTGTGTGA ATTGTGAGCG TAACACTCGC CAACACACCT CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 2

XmnI

XbaI

111111

CATATTACAT GTATAATGTA TCACACAGGA AACAGCTATG ACCATGTCTA GAATAACTTC TGGTACAGAT CTTATTGAAG TTGTCGATAC AGTGTGTCCT

101

SphI

TCAATAGCGT ACG CGCTATACGA AGTTATCGCA GCGATATGCT 151

FIG. 35K



AatlI

TGACGTC ACTGCAG AGATCTCATA ACTTCGTATA ATGTATGCTA TACGAAGTTA TCTAGAGTAT TGAAGCATAT TACATACGAT ATGCTTCAAT

 $\mathbf{\Sigma}$ 



M7-I (long) 1255 bp *FIG.* 35N

| $\overline{}$         |  |
|-----------------------|--|
| ס                     |  |
| _                     |  |
| C                     |  |
| 0                     |  |
| $\boldsymbol{\vdash}$ |  |
|                       |  |
|                       |  |
|                       |  |
| H                     |  |
| 1                     |  |
| Ċ                     |  |
|                       |  |
|                       |  |
| Σ                     |  |
| -                     |  |

ECORI

|        | 1 1 1 1 1 1              | -                        |                          |                          |                          |
|--------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|        | GAATTCGGTG<br>CTTAAGCCAC | GTGGTGGATC<br>CACCACCTAG | TGCGTGCGCT<br>ACGCACGCGA | GAAACGGTTG<br>CTTTGCCAAC | AAAGTTGTTT<br>TTTCAACAAA |
| 51     | AGCAAAATCC               | CATACAGAAA               | ATTCATTTAC               | TAACGTCTGG               | AAAGACGACA               |
| 101    |                          | 正している 日本でした              |                          |                          |                          |
| H<br>D | TTTGAAATCT               | AGCAATGCGA               | TTGATACTCC               | CGACAGACAC               | CTTACGATGT               |
| 151    | GGCGTTGTAG               | TTTGTACTGG               | TGACGAAACT               | CAGTGTTACG               | GTACATGGGT               |
|        | CCGCAACATC               | AAACATGACC               | ACTGCTTTGA               | GTCACAATGC               | CATGTACCCA               |
| 201    | TCCTATTGGG               | CITGCIAICC               | CTGAAAATGA               | GGGTGGTGGC               | TCTGAGGGTG               |
|        | AGGATAACCC               | GAACGATAGG               | GACTTTTACT               | CCCACCACCG               | AGACTCCCAC               |
| 251    | GCGGTTCTGA               | GGGTGGCGGT               | TCTGAGGGTG               | GCGGTACTAA               | ACCTCCTGAG               |
|        | コンピラムマンンラン               |                          | フザンフン・フザウザ               | CGCCAIGAIL               | Tocaccaci                |

FIG. 350

CACCTATTCC GGGCTATACT TATATCAACC CTCTCGACGG GTGGATAAGG CCCGATATGA ATATAGTTGG GAGAGCTGCC

TACGGTGATA ATGCCACTAT

301

| 351 | CACTTATCCG               | CCTGGTACTG               | AGCAAAACCC               | CGCTAATCCT               | AATCCTTCTC               |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|     | GTGAATAGGC               | GGACCATGAC               | TCGTTTTGGG               | GCGATTAGGA               | TTAGGAAGAG               |
| 401 | TTGAGGAGTC               | TCAGCCTCTT               | AATACTTTCA               | TGTTTCAGAA               | TAATAGGTTC               |
|     | AACTCCTCAG               | AGTCGGAGAA               | TTATGAAAGT               | ACAAAGTCTT               | ATTATCCAAG               |
| 451 | CGAAATAGGC               | AGGGGGCATT               | AACTGTTTAT               | ACGGGCACTG               | TTACTCAAGG               |
|     | GCTTTATCCG               | TCCCCCGTAA               | TTGACAAATA               | TGCCCGTGAC               | AATGAGTTCC               |
| 501 | CACTGACCCC               | GTTAAAACTT               | ATTACCAGTA               | CACTCCTGTA               | TCATCAAAAG               |
|     | GTGACTGGGG               | CAATTTTGAA               | TAATGGTCAT               | GTGAGGACAT               | AGTAGTTTTC               |
| 551 | CCATGTATGA               | CGCTTACTGG               | AACGGTAAAT               | TCAGAGACTG               | CGCTTTCCAT               |
|     | GGTACATACT               | GCGAATGACC               | TTGCCATTTA               | AGTCTCTGAC               | GCGAAAGGTA               |
| 601 | TCTGGCTTTA               | ATGAGGA TTT              | ATTTGTTTGT               | GAATATCAAG               | GCCAATCGTC               |
|     | AGACCGAAAT               | TACTCCTAAA               | TAAACAAACA               | CTTATAGTTC               | CGGTTAGCAG               |
| 651 | TGACCTGCCT<br>ACTGGACGGA | CAACCTCCTG               | TCAATGCTGG<br>AGTTACGACC | CGGCGGCTCT               | GGTGGTGGTT<br>CCACCACCAA |
| 701 | CTGGTGGCGG<br>GACCACCGCC | CTCTGAGGGT<br>GAGACTCCCA | GGTGGCTCTG               | AGGGTGGCGG<br>TCCCACCGCC | TTCTGAGGGT<br>AAGACTCCCA |

FIG. 35P

| GCCCTTTTGT |            | CCCTCAATCG | TACCTTCCAT | CGTCAATATT | 1051 |
|------------|------------|------------|------------|------------|------|
| GAATAATTTC | CACCTTTAAT | GGTGATAATT | AGTCGGTGAA | AAATGGCTCA | 1001 |
| CTTATTAAAG | GTGGAAATTA | CCACTATTAA | TCAGCCACTT | TTTACCGAGT |      |
|            |            |            | ·          |            |      |
| TCTAATTCCC | TTTTGCTGGC | CTACTGGTGA | GGTAATGGTG | CCTTGCTAAT | 951  |
| AGATTAAGGG | AAAACGACCG | GATGACCACT | CCATTACCAC | GGAACGATTA |      |
| ACGTTTCCGG | TTCATTGGTG | TATCGATGGT | ACGGTGCTGC | GCTACTGATT | 901  |
| TGCAAAGGCC | AAGTAACCAC | ATAGCTACCA | TGCCACGACG | CGATGACTAA |      |
| TGATTCTGTC | AAGGCAAACT | TCTGACGCTA | CGCGCTACAG | CCGATGAAAA | 851  |
| ACTAAGACAG | TTCCGTTTGA | AGACTGCGAT | GCGCGATGTC | GGCTACTTTT |      |
| ACCGAAAATG | GGGGGCTATG | ACGCTAATAA | AAGATGGCAA | TGATTATGAA | 801  |
| TGGCTTTTAC | CCCCCGATAC | TGCGATTATT | TTCTACCGTT | ACTAATACTT |      |
| CCGGTGATTT | GGCTCTGGTT | TTCCGGTGGT | AGGGAGGCGG | GGCGGCTCTG | 751  |
| GGCCACTAAA | CCGAGACCAA | AAGGCCACCA | TCCCTCCGCC | CCGCCGAGAC |      |

GCAGTTATAA ATGGAAGGTA GGGAGTTAGC CAACTTACAG CGGGAAAACA

FIG. 35Q

|                          |                                                                                                                 |                          |                          | AGCTT                    | 1251 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|------|
|                          |                                                                                                                 |                          |                          | <i>t t t t</i>           |      |
|                          |                                                                                                                 |                          |                          | HindI                    |      |
| AGTCTTGATA<br>TCAGAACTAT | CGTAATAAGG                                                                                                      | TAACATACTG<br>ATTGTATGAC | CTACGTTEGC<br>GATGCAAACG | TATGTATTTT<br>ATACATAAAA | 1201 |
| HindIII                  |                                                                                                                 |                          |                          |                          |      |
| CACCTTTATG<br>GTGGAAATAC | TATATGTTGC<br>ATATACAACG                                                                                        | GCGTTTCTTT<br>CGCAAAGAAA | TGGTGTCTTT<br>ACCACAGAAA | ACTTATTCCG<br>TGAATAAGGC | 1151 |
| GACAAAATAA<br>CTGTTTTATT | CTTTGGCGCT GGTAAACCCT ATGAATTTTC TATTGATTGT GACAAATAA<br>GAAACCGCGA CCATTTGGGA TACTTAAAAG ATAACTAACA CTGTTTTATT | ATGAATTTTC<br>TACTTAAAAG | GGTAAACCCT<br>CCATTTGGGA | CTTTGGCGCT               | 1101 |

F/G. 35R



# M 7-II (SS-TAG):

# ECORI

| GTGATTTTGA                       | CACTAAAACT            |
|----------------------------------|-----------------------|
| CGGTGGTGGC TCTGGTTCCG GTGATTTTGA | GCCACCACCG AGACCAAGGC |
| CGGTGGTGGC                       | GCCACCACCG            |
| GAGGCGGTTC                       | CTCCGCCAAG            |
| CGGGAATTCG                       | GCCCTTAAGC            |
| -                                |                       |

| GAAAATGCCG                                      | CTTTTACGGC       |
|-------------------------------------------------|------------------|
| AAG ATGGCAAACG CTAATAAGGG GGCTATGACC GAAAATGCCG | PACTEG           |
| CTAATAAGGG                                      | GATTATTCCC CCGA1 |
| ATGGCAAACG                                      | TACCGTTTGC       |
| TTATGAAAAG                                      | AATACTTTTC TA    |
| 51                                              |                  |

| AAAACGC GCTACAGTCT GACGCTAAAG GCAAACTTGA TTCTGTCGCT | TIGGG CGAIGICAGA CIGCGAITIC CGIIIGAACI AAGACAGCGA |
|-----------------------------------------------------|---------------------------------------------------|
| GCAAACTTGA                                          | CGTTTGAACT                                        |
| GACGCTAAAG                                          | CTGCGATTTC                                        |
| GCTACAGTCT                                          | PTGCG CGATGTCAGA                                  |
| ATGAAAACGC                                          | TACTTTTGCG                                        |
| 101                                                 |                                                   |

### XmnI

ATTAAAGGCA TAATTTCCGT CTTTAATGAA GAAATTACTT CGGTGACGGT GATAATTCAC GCCACTGCCA CTATTAAGTG TGGCTCAAGT ACCGAGTTCA 251

## FIG. 35T

|                                         |                                                |                          |                          | Hi<br>~                  |     |
|-----------------------------------------|------------------------------------------------|--------------------------|--------------------------|--------------------------|-----|
| HindIII<br><br>CTTGATAAGC<br>GAACTATTCG | AATAAGGAGT<br>TTATTCCTCA                       | CATACTGCGT<br>GTATGACGCA | CGTTTGCTAA<br>GCAAACGATT | GTATTTTTA                | 451 |
| CTTTATGTAT<br>GAAATACATA                | ATGTTGCCAC<br>TACAACGGTG                       | TTTCTTTAT<br>AAAGAAAATA  | TGTCTTTGCG<br>ACAGAAACGC | TATTCCGTGG<br>ATAAGGCACC | 401 |
| AAAATAAACT<br>TTTTATTTGA                | TGATTGTGAC<br>ACTAACACTG                       | AATTTTCTAT<br>TTAAAAGATA | AAACCATATG<br>TTTGGTATAC | TGGCGCTGGT               | 351 |
| CTTTGTCTT<br>GAAAACAGAA                 | GAATGTCGCC CTTTTGTCTT<br>CTTACAGCGG GAAAACAGAA | TCAATCGGTT<br>AGTTAGCCAA | CTTCCCTCCC               | CAATATTTAC<br>GTTATAAATG | 301 |

TT

501



HindIII

GCATGCCATA ACTTCGTATA ATGTACGCTA TACGAAGTTA TAAGCTT CGTACGGTAT TGAAGCATAT TACATGCGAT ATGCTTCAAT ATTCGAA

FIG. 35W

.. დ Σ SphI



M10-II 1163 bp *FIG.* 35X

## BsrGI

| AACCCTGATA               | CAACATTTCC               | TGTTTTTGCT | AGTTGGGTGC               | ATCCTTGAGA               |
|--------------------------|--------------------------|------------|--------------------------|--------------------------|
| TTGGGACTAT               | GTTGTAAAGG               | ACAAAAACGA | TCAACCCACG               | TAGGAACTCT               |
| ATGAGACAAT<br>TACTCTGTTA | TATGAGTATT<br>ATACTCATAA | TTTGCCTTCC | GCTGAGGATC               | CAGCGGTAAG<br>GTCGCCATTC |
| GTATCCGCTC               | AAAGGAAGAG               | TTTGCGGCAT | AGTAAAAGAT               | TGGATCTCAA               |
| CATAGGCGAG               | TTTCCTTCTC               | AAACGCCGTA | TCATTTTCTA               | ACCTAGAGTT               |
| ATTCAAATAT               | TAATATTGAA               | TATTCCCTTT | CGCTGGTGAA               | TACATCGAAC               |
| TAAGTTTATA               | ATTATAACTT               | ATAAGGGAAA | GCGACCACTT               | ATGTAGCTTG               |
| GGGGGTGTAC               | AATGCTTCAA<br>TTACGAAGTT | GTGTCGCCCT | CACCCAGAAA<br>GTGGGTCTTT | GCGAGTGGGT<br>CGCTCACCCA |
| Н                        | 51                       | 101        | 151                      | 201                      |

## FIG. 35Y

GTTTTCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT TAAAGTTCTG CAAAAGCGGG GCTTCTTGCA AAAGGTTACT ACTCGTGAAA ATTTCAAGAC

251

XmnI

| 301 | CTATGTGGCG<br>GATACACCGC | CGGTATTATC<br>GCCATAATAG | CCGTATTGAC<br>GGCATAACTG | GCCGGGCAAG               | AGCAACTCGG<br>TCGTTGAGCC |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 351 | TCGCCGCATA<br>AGCGGCGTAT | CACTATTCTC<br>GTGATAAGAG | AGAATGACTT<br>TCTTACTGAA | GGTTGAGTAC               | TCACCAGTCA<br>AGTGGTCAGT |
| 401 | CAGAAAAGCA<br>GTCTTTTCGT | TCTTACGGAT<br>AGAATGCCTA | GGCATGACAG<br>CCGTACTGTC | TAAGAGAATT<br>ATTCTCTTAA | ATGCAGTGCT               |
| 451 | GCCATAACCA<br>CGGTATTGGT | TGAGTGATAA<br>ACTCACTATT | CACTGCGGCC<br>GTGACGCCGG | AACTTACTTC<br>TTGAATGAAG | TGACAACGAT<br>ACTGTTGCTA |
| 501 | CGGAGGACCG               | AAGGAGCTAA<br>TTCCTCGATT | CCGCTTTTTT<br>GGCGAAAAAA | GCACAACATG<br>CGTGTTGTAC | GGGGATCATG<br>CCCCTAGTAC |
| 551 | TAACTCGCCT<br>ATTGAGCGGA | TGATCGTTGG<br>ACTAGCAACC | GAACCGGAGC<br>CTTGGCCTCG | TGAATGAAGC<br>ACTTACTTCG | CATACCAAAC<br>GTATGGTTTG |
| 601 | GACGAGCGTG               | ACACCACGAT<br>TGTGGTGCTA | GCCTGTAGCA               | ATGCCAACAA               | CGTTGCGCAA<br>GCAACGCGTT |
| 651 | ACTATTAACT<br>TGATAATTGA | GGCGAACTAC<br>CCGCTTGATG | TTACTCTAGC<br>AATGAGATCG | TTCCCGGCAA<br>AAGGGCCGTT | CAGTTAATAG<br>GTCAATTATC |

FIG. 35Z

| CTCGGCCCTT               | AGCGTGGGTC | TCCCGTATCG  | ACGAAATAGA               | TAACTGTCAG               | TCATTTTAA                | TGACCAAAAT               | GTAGAAAAGA               |
|--------------------------|------------|-------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GAGCCGGGAA               | TCGCACCCAG | AGGGCATAGC  | TGCTTTATCT               | ATTGACAGTC               | AGTAAAAATT               | ACTGGTTTTA               | CATCTTTTCT               |
| CACTTCTGCG               | GGAGCCGGTG | TGGTAAGCCC  | CTATGGATGA               | AAGCATTGGG               | ATTTAAAACT               | GATAATCTCA               | GTCAGACCCC               |
| GTGAAGACGC               | CCTCGGCCAC | ACCATTCGGG  | GATACCTACT               | TTCGTAACCC               | TAAATTTTGA               | CTATTAGAGT               | CAGTCTGGGG               |
| GTTGCAGGAC               | TGATAAATCT | TGGGGCCAGA  | AGTCAGGCAA               | CTCACTGATT               | CTTTAGATTG               | GATCCTTTTT               | TCCACTGAGC               |
|                          | ACTATTTAGA | ACCCCGGTCT  | TCAGTCCGTT               | GAGTGACTAA               | GAAATCTAAC               | CTAGGAAAAA               | AGGTGACTCG               |
| GGCGGATAAA               | GGTTTATTGC | ATTGCAGCAC  | CACGACGGGG               | AGATAGGTGC               | CTCATATATA               | TCTAGGTGAA               | GAGTTTTCGT               |
| CCGCCTATTT               | CCAAATAACG | TAACGTCGTG  | GTGCTGCCCC               | TCTATCCACG               | GAGTATATAT               | AGATCCACTT               | CTCAAAAGCA               |
| ACTGGATGGA<br>TGACCTACCT | CCGGCTGGCT | TCGCGGGTATC | TAGTTATCTA<br>ATCAATAGAT | CAGATCGCTG<br>GTCTAGCGAC | ACCAAGTTTA<br>TGGTTCAAAT | TTTAAAAGGA<br>AAATTTTCCT | CCCTTAACGT<br>GGGAATTGCA |
| 701                      | 751        | 801         | 851                      | 901                      | 951                      | 1001                     | 1051                     |

# FIG. 35AA

| PacI | 1                                       | CCCCCCCTT                |
|------|-----------------------------------------|--------------------------|
| FseI | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | AATGGCCGGC<br>TTACCGGCCG |
|      |                                         | CCTTTTTGAT<br>GGAAAAACTA |
|      |                                         | TTCTTGAGAT<br>AAGAACTCTA |
|      |                                         | TCAAAGGATC<br>AGTTTCCTAG |
|      |                                         | 1101                     |

PacI



## M11-II:

NheI

| GTGGGCCATC               | GGTTCTCGTA<br>CCAAGAGCAT               | TTAGGGTGAT<br>AATCCCACTA | AAAAACTTGA<br>TTTTTGAACT                   | CTCGACCCCA<br>GAGCTGGGGT | 201      |
|--------------------------|----------------------------------------|--------------------------|--------------------------------------------|--------------------------|----------|
| TTTACGGCAC<br>AAATGCCGTG | GATTTAGTGC<br>CTAAATCACG               | TTAGGGTTCC               | BanII<br>~~~~~<br>GGGGCTCCCT<br>CCCCGAGGGA | CTCTAAATCG<br>GAGATTTAGC | 151      |
| GGGCAGTTC                | GCGGCCGAAA                             | AGCGGTGCAA               | GGAAGGAAAG                                 | GCGAAAGAAG               |          |
| CCGCTCCTTT<br>GGCGAGGAAA | GCCCTAGCGC<br>CGGGATCGCG               | ACTTGCCAGC<br>TGAACGGTCG | TGACCGCTAC<br>ACTGGCGATG                   | ACGCGCAGCG<br>TGCGCGTCGC | 5        |
| TGTGGTGGTT<br>ACACCACCAA | )<br> <br>   <br>   <br>   <br>   <br> | GGCGCATTAA<br>CCGCGTAATT | GCCCTGTAGC<br>CGGGACATCG                   | GCTAGCACGC<br>CGATCGTGCG | <b>~</b> |

# FIG. 35DD

GCCCTGATAG ACGGTTTTTC GCCCTTTGAC GTTGGAGTCC ACGTTCTTTA CGGGAAACTG CAACCTCAGG TGCAAAAAT

251

|                          |                                                                                                                  |                          | BSrGI<br>CGTTTACAAT TTCATGTACA<br>GCAAATGTTA AAGTACATGT | CGTTTACAAT<br>GCAAATGTTA | 451 |
|--------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------|--------------------------|-----|
| AAAATATTAA<br>TTTTATAATT | AAATGAGCTG ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA<br>TTTACTCGAC TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT | AATTTAACGC<br>TTAAATTGCG | ATTTAACAAA<br>TAAATTGTTT                                | AAATGAGCTG<br>TTTACTCGAC | 401 |
| ATTGGTTAAA<br>TAACCAATTT | TATTCTTTTG ATTTATAAGG GATTTTGCCG ATTTCGGCCT ATTGGTTAAA<br>ATAAGAAAAC TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT | GATTTTGCCG<br>CTAAAACGGC | TATTCTTTTG ATTTATAAGG<br>ATAAGAAAAC TAAATATTCC          | TATTCTTTTG<br>ATAAGAAAAC | 351 |
| TATCTCGGTC<br>ATAGAGCCAG | ATAGTGGACT CTTGTTCCAA ACTGGAACAA CACTCAACCC TATCTCGGTC<br>TATCACCTGA GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG | ACTGGAACAA<br>TGACCTTGTT | ATAGTGGACT CTTGTTCCAA<br>TATCACCTGA GAACAAGGTT          | ATAGTGGACT<br>TATCACCTGA | 301 |

FIG. 35EE



| ~   | ~~~~~~<br>AGATCTAATA<br>TCTAGATTAT | AGATGATCTT<br>TCTACTAGAA | CTTGAGATCG<br>GAACTCTAGC | TTTTGGTCTG               | CGCGTAATCT<br>GCGCATTAGA |
|-----|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51  | CTTGCTCTGA<br>GAACGAGACT           | AAACGAAAAA<br>TTTGCTTTTT | ACCGCCTTGC<br>TGGCGGAACG | AGGGCGGTTT<br>TCCCGCCAAA | TTCGTAGGTT<br>AAGCATCCAA |
| 101 | CTCTGAGCTA<br>GAGACTCGAT           | CCAACTCTTT<br>GGTTGAGAAA | GAACCGAGGT<br>CTTGGCTCCA | AACTGGCTTG<br>TTGACCGAAC | GAGGAGCGCA<br>CTCCTCGCGT |
| 151 | GTCACTAAAA<br>CAGTGATTTT           | CTTGTCCTTT<br>GAACAGGAAA | CAGTTTAGCC<br>GTCAAATCGG | TTAACCGGCG<br>AATTGGCCGC | CATGACTTCA<br>GTACTGAAGT |
| 201 | AGACTAACTC<br>TCTGATTGAG           | CTCTAAATCA<br>GAGATTTAGT | ATTACCAGTG<br>TAATGGTCAC | GCTGCTGCCA               | GTGGTGCTTT<br>CACCACGAAA |
| 251 | TGCATGTCTT<br>ACGTACAGAA           | TCCGGGTTGG               | ACTCAAGACG<br>TGAGTTCTGC | ATAGTTACCG<br>TATCAATGGC | GATAAGGCGC<br>CTATTCCGCG |
| 301 | AGCGGTCGGA<br>TCGCCAGCCT           | CTGAACGGGG<br>GACTTGCCCC | GGTTCGTGCA<br>CCAAGCACGT | TACAGTCCAG<br>ATGTCAGGTC | CTTGGAGCGA               |

FIG. 35GG

| 701    | <b>するいじしじするい</b> り | ТАТАТОПОПОТ                      | COCASHOSHO THATACAOTA TATATATATA AACSOBAASS |            | AG@L<br>111111111111111111111111111111111111 |
|--------|--------------------|----------------------------------|---------------------------------------------|------------|----------------------------------------------|
| H<br>> | CCTTCGCCTT         | ATATAGGACA                       | TAGTGTATAA                                  |            | TGGCCACGTC                                   |
|        |                    |                                  | Xmn I                                       |            |                                              |
| 751    | CCTTTTTTCT         | CCTTTTTTCT CCTGCCACAT GAAGCACTTC | GAAGCACTTC                                  | ACTGACACCC | TCATCAGTGC                                   |
|        | GGAAAAAAGA         | GGAAAAAGA GGACGGTGTA             | CTTCGTGAAG                                  | TGACTGTGGG | AGTAGTCACG                                   |
|        |                    |                                  | NheI                                        |            |                                              |
| 801    | CAACATAGTA         | AGCCAGTATA                       | CAACATAGTA AGCCAGTATA CACTCCGCTA GC         | ပ္ပ        |                                              |
|        | GTTGTATCAT         | TCGGTCATAT                       | GTGAGGCGAT                                  | 90         |                                              |
|        |                    |                                  | (                                           |            |                                              |



M13 49 bp *FIG. 35JJ* 

M 13:

BglII

AGATCTCATA ACTTCGTATA ATGTATGCTA TACGAAGTTA TTCAGATCT TCTAGAGTAT TGAAGCATAT TACATACGAT ATGCTTCAAT AAGTCTAGA

BglII

XmnI

## FIG. 35KK



ECORI

M 19

XbaI SphI

CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAAATG TTTATTTAC GCGTAGGAGA AGATCTCGTA TCTAGAGCAT

Sapi

TACCAAAGCC ATGGTTTCGG CCGTTGCTCT TCACCCCTGT GGCAACGAGA AGTGGGGACA GGCACTCTTA

51

# FIG. 35MM



M28 120 bp *FIG. 35NN* 

M 20:

XbaI SphI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT TCTAGAGCAT GCGTAGGAGA AAATAAATG AGATCTCGTA CGCATCCTCT TTTATTTTAC TTTATTTAC

Sapi

GGCACTCTTA CCGTTGCTCT TCACCCCTGT TACCAAAGCC GACTACAAAG CCGTGAGAAT GGCAACGAGA AGTGGGGACA ATGGTTTCGG CTGATGTTTC

51

MunI EcoRI

101 ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

# FIG. 3500



M21 96 bp *FIG. 35PP* 

M 21

XbaI

GAGGTGATTT TATGAAAAG AATATCGCAT TTCTTGC CTCCACTAAA ATACTTTTC TTATAGCGTA AAGAAGAACG TCTAGAGGTT AGATCTCCAA 1 1 1 1 1

NsiI

ECORI

GITITITICIA TIGCTACAAA TGCATACGCT GAATTC CAAAAAAGAT AACGATGTTT ACGTATGCGA CTTAAG

ATCTATGTTC TAGATACAAG

51

# FIG. 35QQ



M41 1221 bp *FIG.* 35RR

|   | • | • |
|---|---|---|
|   |   |   |
| • | _ | ٦ |
| • | _ |   |
| • | - | r |
|   |   |   |
|   |   |   |
| • | Σ |   |
| • | < | • |

NheI

| CAT GATAGCGCCC | GTA ACGTTATACG | TTC CCGCGTGGTG | AAAG TGGAAGCGGC | CAA CAACTGGCGG | TCT GGCCCTGCAC | SCCG ATCAACTGGG |
|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------|
| GGTATGGCAT     | GAAACCAGTA     | AGACCGTTTC     | CGGGAAAAAG      | CGTGGCACAA     | CCTCCAGTCT     | TCTCGCGCCG      |
| CCATACCGTA     | CTTTGGTCAT     | TCTGGCAAAG     | GCCCTTTTTC      | GCACCGTGTT     | GGAGGTCAGA     |                 |
| AACCTTTCGC     | TGGTGAATGT     | GTCTCTTATC     | TGCGAAAACG      | TTCCTAACCG     | GGCGTTGCCA     | GGCGATTAAA      |
| TTGGAAAGCG     | ACCACTTACA     |                | ACGCTTTTGC      | AAGGATTGGC     | CCGCAACGGT     | CCGCTAATTT      |
| AATGGCGCAA     | CAATTCAGGG     | GTATGCCGGT     | GCCACGTTTC      | CTGAATTACA     | GTTGCTGATT     | AAATTGTCGC      |
| TTACCGCGTT     | GTTAAGTCCC     | CATACGGCCA     | CGGTGCAAAG      | GACTTAATGT     | CAACGACTAA     | TTTAACAGCG      |
| GCTAGCATCG     | GGAAGAGAGT     | ATGTCGCAGA     | AACCAGGCCA      | GATGGCGGAG     | GCAAACAGTC     | GCGCCGTCGC      |
| CGATCGTAGC     | CCTTCTCTCA     | TACAGCGTCT     | TTGGTCCGGT      | CTACCGCCTC     | CGTTTGTCAG     |                 |
|                | 51             | 101            | 151             | 201            | 251            | 301             |

## F/G, 35SS

| )                        | )<br>(<br>)<br>)<br>(<br>)<br>( |                          |                          |                          |     |
|--------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|-----|
| TGCCATGTCC               | GCGACTGGAG<br>CGCTGACCTC        | GAACGGGAAG<br>CTTGCCCTTC | GCCGATAGCG<br>CGGCTATCGC | ATCAAATTCA<br>TAGTTTAAGT | 701 |
| CTCACTCGCA<br>GAGTGAGCGT | GCATAAATAT<br>CGTATTTATA        | TGGCTGGCTG<br>ACCGACCGAC | CGTCTGCGTC<br>GCAGACGCAG | TGTCTCGGCG               | 651 |
| CATTAAGTTC<br>GTAATTCAAG | TTAGCTGGCC<br>AATCGACCGG        | AATCGCGCTG<br>TTAGCGCGAC | GCCACCAGCA               | GTCGCATTGG<br>CAGCGTAACC | 601 |
| GGAGCATCTG<br>CCTCGTAGAC | GACTGGGCGT<br>CTGACCCGCA        | GACGGTACGC<br>CTGCCATGCG | CTCCCATGAG<br>GAGGGTACTC | GTATTATTT<br>CATAATAAAA  | 551 |
| CCCATCAACA<br>GGGTAGTTGT | TGACCAGACA<br>ACTGGTCTGT        | TTGATGTCTC<br>AACTACAGAG | GCGTTATTTC<br>CGCAATAAAG | TAATGTTCCG<br>ATTACAAGGC | 501 |
| CTGCCTGCAC               | GCTGTGGAAG<br>CGACACCTTC        | GGATGCTATT<br>CCTACGATAA | TGGATGACCA<br>ACCTACTGGT | AACTATCCGC<br>TTGATAGGCG | 451 |
| GCTGATTATT<br>CGACTAATAA | GTGTCAGTGG                      | CTCGCGCAAC<br>GAGCGCGTTG | GCACAATCTT<br>CGTGTTAGAA | AAGCGGCGGT<br>TTCGCCGCCA | 401 |
| GAAGCCTGTA<br>CTTCGGACAT | AAGCGGCGTC<br>TTCGCCGCAG        | TGGTAGAACG<br>ACCATCTTGC | GTCGTGTCGA               | TGCCAGCGTG<br>ACGGTCGCAC | 351 |

## FIG. 35TT

| 1   | 751  | GGTTTTCAAC<br>CCAAAAGTTG | AAACCATGCA<br>TTTGGTACGT | AATGCTGAAT<br>TTACGACTTA | GAGGGCATCG<br>CTCCCGTAGC | TTCCCACTGC<br>AAGGGTGACG |
|-----|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ω   | 301  | GATGCTGGTT<br>CTACGACCAA | GCCAACGATC<br>CGGTTGCTAG | AGATGGCGCT<br>TCTACCGCGA | GGGCGCAATG<br>CCCGCGTTAC | CGTGCCATTA<br>GCACGGTAAT |
| ω   | 851  | CCGAGTCCGG<br>GGCTCAGGCC | GCTGCGCGTT<br>CGACGCGCAA | GGTGCGGACA               | TCTCGGTAGT<br>AGAGCCATCA | GGGATACGAC<br>CCCTATGCTG |
| 01  | 901  | GATACCGAGG<br>CTATGGCTCC | ACAGCTCATG<br>TGTCGAGTAC | TTATATCCCG<br>AATATAGGGC | CCGCTGACCA               | CCATCAAACA<br>GGTAGTTTGT |
| 01  | 951  | GGATTTTCGC<br>CCTAAAAGCG | CTGCTGGGGC<br>GACGACCCCG | AAACCAGCGT<br>TTTGGTCGCA | GGACCGCTTG<br>CCTGGCGAAC | CTGCAACTCT<br>GACGTTGAGA |
| 7   | 001  | CTCAGGGCCA<br>GAGTCCCGGT | GGCGGTGAAG<br>CCGCCACTTC | GGCAATCAGC<br>CCGTTAGTCG | TGTTGCCCGT<br>ACAACGGGCA | CTCACTGGTG               |
| 1 ( | 1051 | AAAAGAAAAA<br>TTTTCTTTTT | CCACCCTGGC<br>GGTGGGACCG | TCCCAATACG<br>AGGGTTATGC | CAAACCGCCT<br>GTTTGGCGGA | CTCCCGCGC                |
| 7   | 101  | GTTGGCCGAT<br>CAACCGGCTA | TCACTGATGC<br>AGTGACTACG | AGCTGGCACG<br>TCGACCGTGC | ACAGGTTTCC<br>TGTCCAAAGG | CGACTGGAAA<br>GCTGACCTTT |

# FIG. 35UU

GCGGGCAGTG AGGCTACCCG ATAAAAGCGG CTTCCTGACA GGAGGCCGTT CGCCCGTCAC TCCGATGGGC TATTTTCGCC GAAGGACTGT CCTCCGGCAA 1151

Aflii

1201 TTGTTTTGCA GCCCACTTAA G AACAAAACGT CGGGTGAATT C FIG. 35VV







|   | Н  |
|---|----|
|   | H  |
| • | gl |
| ) | Ď, |
|   |    |

| AAAAAATTA                                       | TTTTTTAAT                                       |
|-------------------------------------------------|-------------------------------------------------|
| PAGCAC CAGGCGTTTA AGGGCACCAA TAACTGCCTT AAAAAAA | GIG GICCGCAAAI ICCCGIGGIT AIIGACGGAA IITITITAAI |
| AGGCCACCAA                                      | TCCCGTGGTT                                      |
| CAGGCGTTTA                                      | GTG GTCCGCAAAT                                  |
| GATCTAGCAC                                      | CTAGATCGTG                                      |
| ⊣                                               |                                                 |

| TTAAGCATTC                                      | AATTCGTAAG                                      |
|-------------------------------------------------|-------------------------------------------------|
| CCC TGCCACTCAT CGCAGTACTG TTGTAATTCA TTAAGCATTC | GGG ACGGTGAGTA GCGTCATGAC AACATTAAGT AATTCGTAAG |
| CGCAGTACTG                                      | GCGTCATGAC                                      |
| TGCCACTCAT                                      | ACGGTGAGTA                                      |
| 2225222252                                      | 5555555555                                      |
| 51                                              |                                                 |

| CATG GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC | CTTCGGTAGT GTTTGCCGTA CTACTTGGAC TTAGCGGTCG |
|--------------------------------------------------|---------------------------------------------|
| GATGAACCTG                                       | CTACTTGGAC                                  |
| CAAACGGCAT                                       | GTTTGCCGTA                                  |
| GAAGCCATCA                                       | AC CTTCGGTAGT                               |
| TGCCGACATG                                       | ACGGCTGTAC                                  |
| 101                                              |                                             |

| AGCA CCTTGTCGCC TTGCGTATAA TATTTGCCCA TAGTGAAAAC | AACGGGT ATCACTTTTG                                |
|--------------------------------------------------|---------------------------------------------------|
| A CCTTGTCGCC TTGCGTATAA TATTTGCCCA TAGTG         | STCGT GGAACAGCGG AACGCATATT ATAAACGGGT ATCACTTTTG |
| TTGCGTATAA                                       | GCGG AACGCATATT ATAAAC                            |
| CCTTGTCGCC                                       | FICGT GGAACAGCGG                                  |
| GGCATCAGCA                                       | CCGTAGTCGT                                        |
| 151                                              |                                                   |

|--|

| CACCCA GGGATTGGCT GAGACGAAAA ACATATTCTC AATAAACCCT | TTATTGGGA                                        |
|----------------------------------------------------|--------------------------------------------------|
| ACATATTCTC                                         | reget cectaaces etergetiti tetataasas tratutessa |
| GAGACGAAAA                                         | CTCTGCTTTT                                       |
| GGGATTGGCT                                         | CCCTAACCGA                                       |
| AACTCACCCA                                         | TTGAGTGGGT                                       |
| 251                                                |                                                  |

| CTTGCGAATA               | GAACGCTTAT                                       |
|--------------------------|--------------------------------------------------|
| A CACGCCACAT CTTGCGAATA  | TITA ICCGGICCAA AAGIGGCAIT GIGCGGIGIA GAACGCITAI |
| STT TICACCGTAA C.        | AAGTGGCATT                                       |
| AT AGGCCAGGTT TTCACCGTAA | TCCGGTCCAA A                                     |
| TTAGGGAAAT               | AATCCCTTTA                                       |
| 301                      |                                                  |

## FIG. 35XX

| TC CAGAGCGATG            | NGG GTGAACACTA           | GA ACTCCGGGTG | GA TAAAACTTGT            | NTC CAGCTGAACG           | CT CAAAATGTTC            | CA GTGATTTTT<br>GT CACTAAAAAA | PAA CTCAAAAAAT<br>NTT GAGTTTTTTA |
|--------------------------|--------------------------|---------------|--------------------------|--------------------------|--------------------------|-------------------------------|----------------------------------|
| GTATTCACTC               | TGTAACAAGG               | GCCATACGGA    | AAAGGCCGGA               | CCGTAATATC               | TGAAATGCCT               | GGTATATCCA                    | ATCTCGATAA                       |
| CATAAGTGAG               | ACATTGTTCC               | CGGTATGCCT    | TTTCCGGCCT               | GGCATTATAG               | ACTTTACGGA               | CCATATAGGT                    | TAGAGCTATT                       |
| AATCGTCGTG<br>TTAGCAGCAC | TGGAAAACGG<br>ACCTTTTGCC | GTCTTTCATT    | GAATGTGAAT<br>CTTACACTTA | TTTAAAAAGG<br>AAATTTTTCC | AGCAACTGAC<br>TCGTTGACTG | TATCAACGGT                    | GCTCCTGAAA<br>CGAGGACTTT         |
| AACTGCCGGA               | AGTTTGCTCA               | CCAGCTCACC    | AGGCGGGCAA               | CTTTACGGTC               | AGGTACATTG               | CATTGGGATA                    | AGCTTCCTTA                       |
| TTGACGGCCT               | TCAAACGAGT               | GGTCGAGTGG    | TCCGCCCGTT               | GAAATGCCAG               | TCCATGTAAC               | GTAACCCTAT                    | TCGAAGGAAT                       |
| TATGTGTAGA               | AAAACGTTTC               | TCCCATATCA    | AGCATTCATC               | GCTTATTTTT               | GTCTGGTTAT               | TTTACGATGC                    | TCTCCATTTT                       |
| ATACACATCT               | TTTTGCAAAG               | AGGGTATAGT    | TCGTAAGTAG               | CGAATAAAAA               | CAGACCAATA               | AAATGCTACG                    | AGAGGTAAAA                       |
| 351                      | 401                      | 451           | 501                      | 551                      | 601                      | 651                           | 701                              |

# FIG. 35YY

| 751  | ACGCCCGGTA<br>TGCGGGCCAT | GTGATCTTAT<br>CACTAGAATA | TTCATTATGG<br>AAGTAATACC | TGAAAGTTGG<br>ACTTTCAACC | AACCTCACCC<br>TTGGAGTGGG |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|      | Aatii                    |                          |                          |                          |                          |
| 801  | GACGTCTAAT<br>CTGCAGATTA | GTGAGTTAGC<br>CACTCAATCG | TCACTCATTA<br>AGTGAGTAAT | GGCACCCCAG               | GCTTTACACT<br>CGAAATGTGA |
| 851  | TTATGCTTCC<br>AATACGAAGG | GGCTCGTATG<br>CCGAGCATAC | TTGTGTGGAA               | TTGTGAGCGG<br>AACACTCGCC | ATAACAATTT<br>TATTGTTAAA |
|      |                          |                          |                          | XbaI                     |                          |
| 901  | CACACAGGAA<br>GTGTGTCCTT | ACAGCTATGA<br>TGTCGATACT | CCATGATTAC<br>GGTACTAATG | GAATTTCTAG<br>CTTAAAGATC | ACCCCCCCCC               |
|      | Sphi                     |                          |                          |                          | HindIII                  |
| 951  | CGCATGCCAT<br>GCGTACGGTA | AACTTCGTAT<br>TTGAAGCATA | AATGTACGCT<br>TTACATGCGA | ATACGAAGTT<br>TATGCTTCAA | ATAAGCTTGA<br>TATTCGAACT |
| 1001 | CCTGTGAAGT<br>GGACACTTCA | GAAAAATGGC<br>CTTTTTACCG | GCAGATTGTG<br>CGTCTAACAC | CGACATTTTT<br>GCTGTAAAAA | TTTGTCTGCC<br>AAACAGACGG |

FIG. 35ZZ

# FIG. 35AAA

| AACTGCCCCT TICGGCGCT IGCACCGCTC AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG TTCCTCGCCC GCGATCCCGC GACCGTTCAC ACCACCACAC CCGCCGCGCT TAATGCGCCG                                                            | GAGTGTATAC TGGCTTACTA TGTTGGCACT CTCACATATG ACCGAATGAT ACAACCGTGA                          | 0000<br>0000 | 1701 CTACGCTCGG TCGTTCGACT GCGGCGAGCG GAAATGGCTT ACGAACGGGG |      |                          |   | CGCCGCGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | CTGGCAAGTG GACCGTTCAC TAATGCGCGC ATTACGCGCCG ATTACGCACT ACAACCGTGA TTTCCGACGT CTTCCTCGCCT GAAGGAGCGA |                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------|------|--------------------------|---|----------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------|
| Nhei  CGTGCTAGCG GAGTGTATAC TGGCTTACTA TGTTGGCACT  GCACGATCGC CTCACATATG ACCGAATGAT ACAACCGTGA  Xmni  TCAGTGAAGT GCTTCATGTG GCAGGAGAAA AAAGGCTGCA  AGTCACTTCA CGAAGTACAC CGTCCTCTT TTTCCGACGT | TCAGTGAAGT GCTTCATGTG GCAGGAGAAA AAAGGCTGCA<br>AGTCACTTCA CGAAGTACAC CGTCCTCTTT TTTCCGACGT |              |                                                             | 1651 | AGCAGAATAT<br>TCGTCTTATA | _ | ATATATTCCG<br>TATATAAGGC               | CTTCCTCGCT<br>GAAGGAGCGA                                                                             | CACTGACTCG<br>GTGACTGAGC |

| AA TGCTTGCCCC | SG GAAGTGAGAG<br>CC CTTCACTCTC | CT GACAAGCATC<br>GA CTGTTCGTAG | AC AGGACTATAA<br>TG TCCTGATATT | CT CTCCTGTTCC            | CG CGTTTGTCTC                              | SCT CCAAGCTGGA           | SCC TTATCCGGTA           |
|---------------|--------------------------------|--------------------------------|--------------------------------|--------------------------|--------------------------------------------|--------------------------|--------------------------|
| CTTTACCGAA    | ACTTAACAGG<br>TGAATTGTCC       | CCGCCCCCT                      | GAAACCCGAC<br>CTTTGGGCTG       | CTCCTGCGCT               | GTTATGGCCG                                 | GCAGTTCGCT<br>CGTCAAGCGA | CCGCTGCGCC               |
| CGCCGCTCGC    | CCAGGAAGAT<br>GGTCCTTCTA       | TCCATAGGCT<br>AGGTATCCGA       | CAGTGGTGGC<br>GTCACCACCG       | TGGCGGCTCC               | TCATTCCGCT                                 | TTCCGGGTAG<br>AAGGCCCATC | TTCAGTCCGA<br>AAGTCAGGCT |
| AGCAAGCTGA    | CTGGAAGATG<br>GACCTTCTAC       | AAGCCGTTTT<br>TTCGGCAAAA       | ACGCTCAAAT<br>TGCGAGTTTA       | CGTTTCCCCC               | Agel<br>~~~~~~<br>TTTACCGGTG<br>AAATGGCCAC | TGACACTCAG<br>ACTGTGAGTC | GAACCCCCCG               |
| GATGCGAGCC    | CGGAGATTTC<br>GCCTCTAAAG       | GGCCGCGGCA                     | ACGAAATCTG<br>TGCTTTAGAC       | AGATACCAGG<br>TCTATGGTCC | TGCCTTTCGG                                 | ATTCCACGCC<br>TAAGGTGCGG | CTGTATGCAC<br>GACATACGTG |
|               | 1751                           | 1801                           | 1851                           | 1901                     | 1951                                       | 2001                     | 2051                     |

FIG. 35CCC

|                              |                          | CATCTTATTA<br>GTAGAATAAT | TCAAGAAGAT<br>AGTTCTTCTA | CAAAACGATC<br>GTTTTGCTAG | 2351 |
|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|
|                              |                          | Bglii                    |                          |                          |      |
| r ACGCGCAGAC<br>A TGCGCGTCTG | GCAAGAGATT<br>CGTTCTCTAA | CGTTTTCAGA<br>GCAAAAGTCT | GCGGTTTTTT<br>CGCCAAAAAA | GCCCTGCAAG<br>CGGGACGTTC | 2301 |
| r acgaaaaacc<br>a tgctttttgg | CAGAGAACCT<br>GTCTCTTGGA | GTTGGTAGCT<br>CAACCATCGA | GGTTCAAAGA<br>CCAAGTTTCT | CAGTTACCTC               | 2251 |
| TCCTCCAAGC                   | GTGACTGCGC               | ACAAGTTTTA<br>TGTTCAAAAT | AACTGAAAGG<br>TTGACTTTCC | GTTAAGGCTA<br>CAATTCCGAT | 2201 |
| TCATGCGCCG                   | AGTCTTGAAG<br>TCAGAACTTC | TAGAGGAGTT<br>ATCTCCTCAA | GTAATTGATT<br>CATTAACTAA | GCAGCCACTG               | 2151 |
| CACACTGGCA                   | ATGCAAAAGC<br>TACGTTTTCG | CCGGAAAGAC<br>GGCCTTTCTG | TGAGTCCAAC<br>ACTCAGGTTG | ACTATCGTCT<br>TGATAGCAGA | 2101 |

FIG. 35DDD



FIG. 35EEE

| . ← | GTACATGAAA                    | TTGTAAACGT | TAATATTTTG | TTAAAATTCG            | CGTTAAATTT |
|-----|-------------------------------|------------|------------|-----------------------|------------|
|     | CATGTACTTT                    | AACATTTGCA | ATTATAAAAC | AATTTTAAGC            | GCAATTTAAA |
| 51  | TTGTTAAATC                    | AGCTCATTTT | TTAACCAATA | GGCCGAAATC            | GGCAAAATCC |
|     | AACAATTTAG                    | TCGAGTAAAA | AATTGGTTAT | CCGGCTTTAG            | CCGTTTTAGG |
| 101 | CTTATAAATC                    | AAAAGAATAG | ACCGAGATAG | GGTTGAGTGT            | TGTTCCAGTT |
|     | GAATATTTAG                    | TTTTCTTATC | TGGCTCTATC | CCAACTCACA            | ACAAGGTCAA |
| 151 | TGGAACAAGA                    | GTCCACTATT | AAAGAACGTG | GACTCCAACG            | TCAAAGGGCG |
|     | ACCTTGTTCT                    | CAGGTGATAA | TTTCTTGCAC | CTGAGGTTGC            | AGTTTCCCGC |
| 201 | AAAAACCGTC                    | TATCAGGGCG | ATGGCCCACT | ACGAGAACCA            | TCACCCTAAT |
|     | TTTTTGGCAG                    | ATAGTCCCGC | TACCGGGTGA | TGCTCTTGGT            | AGTGGGATTA |
| 251 | CAAGTTTTTT                    | GGGGTCGAGG | TGCCGTAAAG | CACTAAATCG            | GAACCCTAAA |
|     | GTTCAAAAAA                    | CCCCAGCTCC | ACGGCATTTC | GTGATTTAGC            | CTTGGGATTT |
| 301 | Banii<br>~~~~~~<br>GGGAGCCCCC | GATTTAGAGC | TTGACGGGGA | TTGACGGGGA AAGCCGGCGA | ACGTGGCGAG |

FIG. 35FFF

| GAAATGGCTT               | GCGGCGAGCG               | TCGTTCGACT               | CTACGCTCGG                                | CACTGACTCG                                | 601 |
|--------------------------|--------------------------|--------------------------|-------------------------------------------|-------------------------------------------|-----|
| CTTCCTCGCT<br>GAAGGAGCGA | ATATATTCCG<br>TATATAAGGC | GTGATACAGG               | AGCAGAATAT<br>TCGTCTTATA                  | Agel<br>~~~~~<br>CCGGTGCGTC<br>GGCCACGCAG | 551 |
| AAAGGCTGCA<br>TTTCCGACGT | GCAGGAGAAA<br>CGTCCTCTTT | GCTTCATGTG               | TCAGTGAAGT<br>AGTCACTTCA                  | GATGAGGGTG                                | 501 |
| AgeI                     |                          | Ħ                        | Ym.                                       |                                           |     |
| TGTTGGCACT               | TGGCTTACTA               | GAGTGTATAC<br>CTCACATATG | Nhel<br>~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | CTACAGGGCG                                | 451 |
| TAATGCGCCG<br>ATTACGCGGC | CCGCCGCGCT               | ACCACCACAC<br>TGGTGGTGTG | GCTGCGCGTA<br>CGACGCGCAT                  | TAGCGGTCAC                                | 401 |
| CTGGCAAGTG<br>GACCGTTCAC | CGCTAGGGCG<br>GCGATCCCGC | AAGGAGCGGG<br>TTCCTCGCCC | AAGAAAGCGA<br>TTCTTTCGCT                  | AAAGGAAGGG<br>TTTCCTTCCC                  | 351 |
| TGCACCGCTC               | Tregeceeer               | AACTGCCCCT               | CTAAATCTCG                                | CCCTCGGGGG                                |     |

FIG. 35GGG

| ATGCAAAAGC<br>TACGTTTTCG | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC               | CAGAGAACCT<br>GTCTCTTGGA | GCAAGAGATT<br>CGTTCTCTAA | Bglii<br>~~~~~~<br>GATCTAGCAC |                                                  |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|--------------------------------------------------|
| CCGGAAAGAC<br>GGCCTTTCTG | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT | GTTĠGTAGCT<br>CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT | ~<br>CATCTTATTA<br>GTAGAATAAT | AAAAAAATTA<br>TTTTTTAAT                          |
| TGAGTCCAAC<br>ACTCAGGTTG | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT | GCGGTTTTTT<br>CGCCAAAAAA | TCAAGAAGAT<br>AGTTCTTCTA      | taactgcctt<br>attgacggaa<br><b>5111</b>          |
| ACTATCGTCT<br>TGATAGCAGA | GCAGCCACTG<br>CGTCGGTGAC | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC<br>GTCAATGGAG | GCCCTGCAAG<br>CGGGACGTTC | CAAAACGATC<br>GTTTTGCTAG      | AGGCCACCAA TAAC<br>TCCCGTGGTT ATTG<br>FIG. 35III |
| TTATCCGGTA<br>AATAGGCCAT | ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG               | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG | ACGCGCAGAC<br>TGCGCGTCTG      | CAGGCGTTTA                                       |
| 1001                     | 1051                     | 1101                     | 1151                     | 1201                     | 1251                          | 1301                                             |

| TTAAGCATTC TGCCGACATG        | AATCGCCAGC GGCATCAGCA | TAGTGAAAAC GGGGGGGGAAG       | AAACTGGTGA AACTCACCCA | AATAAACCCT TTAGGGAAAT | CTTGCGAATA TATGTGTAGA | CAGAGCGATG AAAACGTTTC        | GTGAACACTA TCCCATATCA        |
|------------------------------|-----------------------|------------------------------|-----------------------|-----------------------|-----------------------|------------------------------|------------------------------|
| AATTCGTAAG ACGGCTGTAC        | TTAGCGGTCG CCGTAGTCGT | ATCACTTTTG CCCCCGCTTC        | TTTGACCACT TTGAGTGGGT | TTATTTGGGA AATCCCTTTA | GAACGCTTAT ATACACATCT | GTCTCGCTAC TTTTGCAAAG        | CACTTGTGAT AGGGTATAGT        |
| TTGTAATTCA TTA               | GATGAACCTG AAT(       | TATTTGCCCA TAG               | GTTTAAATCA AAA(       | ACATATTCTC AAT.       | CACGCCACAT CTTO       | GTATTCACTC CAG               | TGTAACAAGG GTG               |
| AACATTAAGT AAT               | CTACTTGGAC TTA(       |                              | CAAATTTAGT TTT        | TGTATAAGAG TTA        | GTGCGGTGTA GAA        | CATAAGTGAG GTC               | ACATTGTTCC CAC               |
| CGCAGTACTG TTG               | AAACGGCAT             | TTGCGTATAA TAI               | TATTGGCTAC GTT        | GAGACGAAAA ACA        | TTCACCGTAA CAC        | AATCGTCGTG GTA               | TGGAAAACGG TG1               |
| GCGTCATGAC AAC               | TTTGCCGTA             | AACGCATATT ATA               | ATAACCGATG CAA        | CTCTGCTTTT TG1        | AAGTGGCATT GTC        | TTAGCAGCAC CAI               | ACCTTTTGCC AC2               |
| TGCCACTCAT C<br>ACGGTGAGTA G | GAAGCCATCA CL         | CCTTGTCGCC T<br>GGAACAGCGG A | AAGTTGTCCA T          | GGGATTGGCT G          | AGGCCAGGTT I          | AACTGCCGGA A<br>TTGACGGCCT I | AGTTTGCTCA T<br>TCAAACGAGT A |
| 1,351                        | 1401                  | 1451                         | 1501                  | 1551                  | 1601                  | 1651                         | 1701                         |

FIG. 35JJJ

|                                             |                          | FIG. 35KKK               | FIG.       |            |      |
|---------------------------------------------|--------------------------|--------------------------|------------|------------|------|
| TTATGCTTCC                                  | GCTTTACACT               | GGCACCCCAG               | TCACTCATTA | GTGAGTTAGC | 2101 |
| Aatii<br>~~~~~~<br>GACGTCTAAT<br>CTGCAGATTA | AACCTCACCC<br>TTGGAGTGGG | TGAAAGTTGG<br>ACTTTCAACC | TTCATTATGG | GTGATCTTAT | 2051 |
| ACGCCCGGTA                                  | CTCAAAAAAT               | ATCTCGATAA               | GCTCCTGAAA | AGCTTCCTTA | 2001 |
| TGCGGGCCAT                                  | GAGTTTTTTA               | TAGAGCTATT               | CGAGGACTTT | TCGAAGGAAT |      |
| TCTCCATTTT                                  | GTGATTTTTT               | GGTATATCCA               | TATCAACGGT | CATTGGGATA | 1951 |
| AGAGGTAAAA                                  | CACTAAAAAA               | CCATATAGGT               | ATAGTTGCCA | GTAACCCTAT |      |
| TTTACGATGC                                  | CAAAATGTTC               | TGAAATGCCT               | AGCAACTGAC | AGGTACATTG | 1901 |
| AAATGCTACG                                  | GTTTTACAAG               | ACTTTACGGA               | TCGTTGACTG | TCCATGTAAC |      |
| GTCTGGTTAT                                  | CAGCTGAACG               | CCGTAATATC               | TTTAAAAAGG | CTTTACGGTC | 1851 |
| CAGACCAATA                                  | GTCGACTTGC               | GGCATTATAG               | AAATTTTTCC | GAAATGCCAG |      |
| GCTTATTTT                                   | TAAAACTTGT               | AAAGGCCGGA               | GAATGTGAAT | AGGCGGGCAA | 1801 |
| CGAATAAAAA                                  | ATTTTGAACA               | TTTCCGGCCT               | CTTACACTTA | TCCGCCCGTT |      |
| AGCATTCATC                                  | ACTCCGGGTG               | GCCATACGGA               | GTCTTTCATT | CCAGCTCACC | 1751 |
| TCGTAAGTAG                                  | TGAGGCCCCAC              | CGGTATGCCT               | CAGAAAGTAA | GGTCGAGTGG |      |

|      | CACTCAATCG               | AGTGAGTAAT               | CCGTGGGGTC                                 | CGAAATGTGA                                    | AATACGAAGG                                  |
|------|--------------------------|--------------------------|--------------------------------------------|-----------------------------------------------|---------------------------------------------|
| 2151 | GGCTCGTATG<br>CCGAGCATAC | TTGTGTGGAA<br>AACACACCTT | TTGTGAGCGG<br>AACACTCGCC                   | ATAACAATTT<br>TATTGTTAAA                      | CACACAGGAA<br>GTGTGTCCTT                    |
| 2201 | ACAGCTATGA<br>TGTCGATACT | CCATGATTAC<br>GGTACTAATG | Xbal<br>ZZZZZZ<br>GAATTTCTAG<br>CTTAAAGATC | .~<br>Acccccccc<br>TGGGGGGGG                  | Sphi<br>cccarccar<br>cccarccar              |
| 2251 | AACTTCGTAT<br>TTGAAGCATA | AATGTACGCT<br>TTACATGCGA | ATACGAAGTT<br>TATGCTTCAA                   | HindIII<br>~~~~~~<br>ATAAGCTTGA<br>TATTCGAACT | CCTGTGAAGT<br>GGACACTTCA                    |
| 2301 | GAAAAATGGC<br>CTTTTTACCG | GCAGATTGTG<br>CGTCTAACAC | CGACATTTTT<br>GCTGTAAAAA                   | TTTGTCTGCC                                    | PacI<br>~~~~~~~<br>GTTTAATTAA<br>CAAATTAATT |
| 2351 | Fs                       | FseI                     | CAAAAAGGAT<br>GTTTTTCCTA                   | CTCAAGAAGA                                    | TCCTTTGATC                                  |

FIG. 35LLL

| CATCCAGTCT<br>GTAGGTCAGA | TATCCGCCTC<br>ATAGGCGGAG | CCTGCAACTT<br>GGACGTTGAA | CAGAAGTGGT  | GGGCCGAGCG<br>CCCGGCTCGC | 2751 |
|--------------------------|--------------------------|--------------------------|-------------|--------------------------|------|
| CCAGCCGGAA               | AATAAACCAG               | ATTTATCAGC               | CCGCCTCCAG  | CCCACGCTCA               | 2701 |
| GGTCGGCCTT               | TTATTTGGTC               | TAAATAGTCG               | GGCCGAGGTC  | GGGTGCGAGT               |      |
| TACCGCGAGA               | GCTGCAATGA               | TGGCCCCAGT               | GCTTACCATC  | ATACGGGAGG               | 2651 |
| ATGGCGCTCT               | CGACGTTACT               | ACCGGGGTCA               | CGAATGGTAG  | TATGCCCTCC               |      |
| GATAACTACG               | CCGTCGTGTA               | GCCTGACTCC               | ATCCATAGTT  | TATTTCGTTC               | 2601 |
| CTATTGATGC               | GGCAGCACAT               | CGGACTGAGG               | TAGGTATCAA  | ATAAAGCAAG               |      |
| GCGATCTGTC               | ACCTATCTCA               | TCAGTGAGGC               | CAATGCT'TAA | GACAGTTACC               | 2551 |
| CGCTAGACAG               | TGGATAGAGT               | AGTCACTCCG               | GTTACGAATT  | CTGTCAATGG               |      |
| AACTTGGTCT               | TATATGAGTA               | ATCTAAAGTA               | TTTTAAATCA  | AAAAATGAAG               | 2501 |
| TTGAACCAGA               | ATATACTCAT               | TAGATTTCAT               | AAAATTTAGT  | TTTTTACTTC               |      |
| CTTTTAAATT               | CACCTAGATC               | AAAGGATCTT               | AGATTATCAA  | TTTGGTCATG               | 2451 |
| GAAAATTTAA               | GTGGATCTAG               | TTTCCTAGAA               | TCTAATAGTT  | AAACCAGTAC               |      |
| GTTAAGGGAT               | GAAAACTCAC               | TCAGTGGAAC               | GGTCTGACGC  | TTTTCTACGG               | 2401 |
| CAATTCCCTA               | CTTTTGAGTG               | AGTCACCTTG               | CCAGACTGCG  | AAAAGATGCC               |      |

# FIG. 35MMM

| TTAATAGTTT               | CGCTCGTCGT               | GCGAGTTACA               | GTCCTCCGAT               | GTTATGGCAG               | CTTTTCTGTG               | TGCGGCGACC               | CCACATAGCA               |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| AATTATCAAA               | GCGAGCAGCA               | CGCTCAATGT               |                          | CAATACCGTC               | GAAAAGACAC               | ACGCCGCTGG               | GGTGTATCGT               |
| AGTTCGCCAG               | CGTGGTGTCA               | AACGATCAAG<br>TTGCTAGTTC | AGCTCCTTCG<br>TCGAGGAAGC | ATCACTCATG               | CCGTAAGATG               | GAATAGTGTA<br>CTTATCACAT | TAATACCGCG<br>ATTATGGCGC |
| TAGAGTAAGT               | CTACAGGCAT               | TCCGGTTCCC               | AAAAGCGGTT               | CCGCAGTGTT               | GTCATGCCAT               | GTCATTCTGA               | CAATACGGGA               |
| ATCTCATTCA               | GATGTCCGTA               | AGGCCAAGGG               | TTTTCGCCAA               | GGCGTCACAA               |                          | CAGTAAGACT               | GTTATGCCCT               |
| GCCGGGAAGC               | GTTGCCATTG               | TTCATTCAGC               | TGTTGTGCAA               | AGTAAGTTGG               | TTCTCTTACT               | ACTCAACCAA               | TGCCCGGCGT               |
| CGGCCCTTCG               | CAACGGTAAC               | AAGTAAGTCG               | ACAACACGTT               | TCATTCAACC               | AAGAGAATGA               | TGAGTTGGTT               | ACGGGCCGCA               |
| ATTAACTGTT<br>TAATTGACAA | GCGCAACGTT<br>CGCGTTGCAA | TTGGTATGGC               | TGATCCCCCA               | CGTTGTCAGA<br>GCAACAGTCT | CACTGCATAA<br>GTGACGTATT | ACTGGTGAGT<br>TGACCACTCA | GAGTTGCTCT<br>CTCAACGAGA |
| 2801                     | 2851                     | 2901                     | 2951                     | 3001                     | 3051                     | 3101                     | 3151                     |

1

FIG. 35NNN

## XmnI

| GAAGCATTTA | CAATATTATT | CTTCCTTTTT | TACTCATACT | AAATGTTGAA | 3401 |
|------------|------------|------------|------------|------------|------|
| CTTCGTAAAT | GTTATAATAA | GAAGGAAAAA | ATGAGTATGA | TTTACAACTT |      |
| GGCGACACGG | AGGGAATAAG | GCCGCAAAAA | AAGGCAAAAT | CAAAAACAGG | 3351 |
| CCGCTGTGCC | TCCCTTATTC | CGGCGTTTTT | TTCCGTTTTA | GTTTTTGTCC |      |
| TCTGGGTGAG | CACCAGCGTT | CTTTTACTTT | TCCTCAGCAT | ACCCAACTGA | 3301 |
| AGACCCACTC | GTGGTCGCAA | GAAAATGAAA | AGGAGTCGTA | TGGGTTGACT |      |
| CCACTCGCGC | TCGATGTAAC | GAGATCCAGT | TACCGCTGTT | TCAAGGATCT | 3251 |
| GGTGAGCGCG | AGCTACATTG | CTCTAGGTCA | ATGGCGACAA | AGTTCCTAGA |      |
| GCGAAAACTC | GTTCTTCGGG | ATTGGAAAAC | AGTGCTCATC | GAACTTTAAA | 3201 |
| CGCTTTTGAG | CAAGAAGCCC | TAACCTTTTG | TCACGAGTAG | CTTGAAATTT |      |

## BsrGI

TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAAT AGTCCCAATA ACAGAGTACT CGCCTATGTA TAAACTTA 3451

# FIG. 35000



FIG. 35PPP

| Aatii           | GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC<br>AATACGAAGG  | CACACAGGAA<br>GTGTGTCCTT | Sphi<br>~~~~~~<br>CGCATGCCAT<br>GCGTACGGTA | CCTGTGAAGT<br>GGACACTTCA                      |
|-----------------|--------------------------|---------------------------|--------------------------|--------------------------------------------|-----------------------------------------------|
|                 | ACGAAGTTAT<br>TGCTTCAATA | GCTTTACACT<br>CGAAATGTGA  | ATAACAATTT<br>TATTGTTAAA | ACCCCCCCC<br>TGGGGGGGG                     | HindIII<br>~~~~~~<br>ATAAGCTTGA<br>TATTCGAACT |
|                 | TGTATGCTAT<br>ACATACGATA | GGCACCCCAG<br>CCGTGGGGGTC | TTGTGAGCGG               | XbaI<br>~~~~~<br>GAATTTCTAG<br>CTTAAAGATC  | ATACGAAGTT<br>TATGCTTCAA                      |
|                 | CTTCGTATAA<br>GAAGCATATT | TCACTCATTA<br>AGTGAGTAAT  | TTGTGTGGAA<br>AACACACCTT | CCATGATTAC<br>GGTACTAATG                   | AATGTACGCT<br>TTACATGCGA                      |
| O-3:<br>BglII   | GATCTCATAA<br>CTAGAGTATT | GTGAGTTAGC<br>CACTCAATCG  | GGCTCGTATG<br>CCGAGCATAC | ACAGCTATGA<br>TGTCGATACT                   | AACTTCGTAT<br>TTGAAGCATA                      |
| pCALO-3:<br>Bgl | <del>, - 1</del>         | 51                        | 101                      | 151                                        | 201                                           |

PacI

| . 251 | GAAAAATGGC (             | GCAGATTGTG<br>CGTCTAACAC | CGACATTTTT<br>GCTGTAAAAA | TTTGTCTGCC<br>AAACAGACGG | GTTTAATTAA<br>CAAATTAATT         |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|
|       | H<br>B<br>B<br>B         | S I                      |                          |                          |                                  |
| 301   | 90<br>00                 | $\mathcal{O}$            | CAAAAAGGAT<br>GTTTTTCCTA | CTCAAGAAGA<br>GAGTTCTTCT | TCCTTTGATC<br>AGGAAACTAG         |
| 351   | TTTTCTACGG AAAAGATGCC    | GGTCTGACGC<br>CCAGACTGCG | TCAGTGGAAC               | GAAAACTCAC<br>CTTTTGAGTG | <b>GTTAAG</b> GGAT<br>CAATTCCCTA |
| 401   | TTTGGTCATG               | AGATTATCAA<br>TCTAATAGTT | AAAGGATCTT<br>TTTCCTAGAA | CACCTAGATC<br>GTGGATCTAG | CTTTTAAATT<br>GAAAATTTAA         |
| 451   | AAAAATGAAG<br>TTTTTACTTC | TTTTAAATCA<br>AAAATTTAGT | ATCTAAAGTA<br>TAGATTTCAT | TATATGAGTA<br>ATATACTCAT | AACTTGGTCT<br>TTGAACCAGA         |
| 501   | GACAGTTACC               | CAATGCTTAA<br>GTTACGAATT | TCAGTGAGGC<br>AGTCACTCCG | ACCTATCTCA<br>TGGATAGAGT | GCGATCTGTC<br>CGCTAGACAG         |
| 551   | TATTTCGTTC               | ATCCATAGTT<br>TAGGTATCAA | GCCTGACTCC<br>CGGACTGAGG | CCGTCGTGTA<br>GGCAGCACAT | GATAACTACG<br>CTATTGATGC         |
|       |                          | FIG. 35RRR               | <b>5RRR</b>              |                          |                                  |

| 601 | ATACGGGAGG<br>TATGCCCTCC | GCTTACCATC<br>CGAATGGTAG | TGGCCCCAGT               | GCTGCAATGA<br>CGACGTTACT | TACCGCGAGA<br>ATGGCGCTCT |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 651 | CCCACGCTCA               | CCGGCTCCAG<br>GGCCGAGGTC | ATTTATCAGC<br>TAAATAGTCG | AATAAACCAG<br>TTATTTGGTC | CCAGCCGGAA<br>GGTCGGCCTT |
| 701 | GGGCCGAGCG               | CAGAAGTGGT<br>GTCTTCACCA | CCTGCAACTT<br>GGACGTTGAA | TATCCGCCTC<br>ATAGGCGGAG | CATCCAGTCT<br>GTAGGTCAGA |
| 751 | ATTAACTGTT               | GCCGGGAAGC               | TAGAGTAAGT               | AGTTCGCCAG               | TTAATAGTTT               |
|     | TAATTGACAA               | CGGCCCTTCG               | ATCTCATTCA               | TCAAGCGGTC               | AATTATCAAA               |
| 801 | GCGCAACGTT               | GTTGCCATTG               | CTACAGGCAT               | CGTGGTGTCA               | CGCTCGTCGT               |
|     | CGCGTTGCAA               | CAACGGTAAC               | GATGTCCGTA               | GCACCACAGT               | GCGAGCAGCA               |
| 851 | TTGGTATGGC               | TTCATTCAGC               | TCCGGTTCCC               | AACGATCAAG               | GCGAGTTACA               |
|     | AACCATACCG               | AAGTAAGTCG               | AGGCCAAGGG               | TTGCTAGTTC               | CGCTCAATGT               |
| 901 | TGATCCCCCA               | TGTTGTGCAA               | AAAAGCGGTT               | AGCTCCTTCG               | GTCCTCCGAT               |
|     | ACTAGGGGGT               | ACAACACGTT               | TTTTCGCCAA               | TCGAGGAAGC               | CAGGAGGCTA               |
| 951 | CGTTGTCAGA               | AGTAAGTTGG               | CCGCAGTGTT               | ATCACTCATG               | GTTATGGCAG               |
|     | GCAACAGTCT               | TCATTCAACC               | GGCGTCACAA               | TAGTGAGTAC               | CAATACCGTC               |

## FIG. 35SSS

| 1001 | CACTGCATAA               | TTCTCTTACT                            | GTCATGCCAT               | CCGTAAGATG               | CTTTTCTGTG               |
|------|--------------------------|---------------------------------------|--------------------------|--------------------------|--------------------------|
| 1201 |                          | A A A A A A A A A A A A A A A A A A A | ないというようない                | GAPTAGTA                 |                          |
|      | TGACCACTCA               | TGAGTTGGTT                            | CAGTAAGACT               | CTTATCACAT               | ACGCCGCTGG               |
| 1101 | GAGTTGCTCT<br>CTCAACGAGA | TGCCCGGCGT                            | CAATACGGGA<br>GTTATGCCCT | TAATACCGCG<br>ATTATGGCGC | CCACATAGCA<br>GGTGTATCGT |
|      |                          |                                       | Xmn I                    |                          |                          |
| 1151 | GAACTTTAAA               | AGTGCTCATC<br>TCACGAGTAG              | ATTGGAAAAC<br>TAACCTTTTG | GTTCTTCGGG<br>CAAGAAGCCC | GCGAAAACTC<br>CGCTTTTGAG |
| 1201 | TCAAGGATCT<br>AGTTCCTAGA | TACCGCTGTT<br>ATGGCGACAA              | GAGATCCAGT<br>CTCTAGGTCA | TCGATGTAAC<br>AGCTACATTG | CCACTCGCGC<br>GGTGAGCGCG |
| 1251 | ACCCAACTGA<br>TGGGTTGACT | TCCTCAGCAT<br>AGGAGTCGTA              | CTTTTACTTT<br>GAAAATGAAA | CACCAGCGTT<br>GTGGTCGCAA | TCTGGGTGAG<br>AGACCCACTC |
| 1301 | CAAAAACAGG<br>GTTTTTGTCC | AAGGCAAAAT<br>TTCCGTTTTA              | GCCGCAAAAA<br>CGGCGTTTTT | AGGGAATAAG<br>TCCCTTATTC | GGCGACACGG<br>CCGCTGTGCC |
| 1351 | AAATGTTGAA               | TACTCATACT                            | CTTCCTTTT                | CAATATTATT               | GAAGCATTTA               |

FIG. 35TTT

| H             |
|---------------|
| 4             |
| 3             |
| 7             |
| ξ,            |
| $\ddot{0}$    |
| Ĕ             |
| H             |
| $\mathcal{O}$ |
| _             |
| 'ATAATAA      |
| Z.I           |
| 5             |
| Z             |
| E             |
| Ă             |
| Н             |
| Ë             |
| O             |
| ~             |
| A             |
| AAAA          |
| ⋖             |
| AAGGAA        |
| Ö             |
| 8             |
| Z             |
| $\mathbf{c}$  |
|               |
| TATGA         |
| 9             |
| AT            |
| T             |
| ไว            |
|               |
| ă             |
| GA(           |
| TGA(          |
| ATGA(         |
| T ATGA        |
| ATG           |
| T ATG         |
| T ATG         |
| T ATG         |
| T ATG         |
| T ATG         |
| T ATG         |
| T ATG         |

## BsrGI

| 1401 | TCAGGGTTAT | TGTCTCATGA<br>ACAGAGTACT | GCGGATACAT<br>CGCCTATGTA | ATTTGAATGT<br>TAAACTTACA | ACATGAAATT<br>TGTACTTTAA |
|------|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1451 | GTAAACGTTA | ATATTTTGTT               | AAAATTCGCG               | TTAAATTTTT               | GTTAAATCAG               |
|      | CATTTGCAAT | TATAAAACAA               | TTTTAAGCGC               | AATTTAAAAA               | CAATTTAGTC               |
| 1501 | CTCATTTTTT | AACCAATAGG               | CCGAAATCGG               | CAAAATCCCT               | TATAAATCAA               |
|      | GAGTAAAAAA | TTGGTTATCC               | GGCTTTAGCC               | GTTTTAGGGA               | ATATTTAGTT               |
| 1551 | AAGAATAGAC | CGAGATAGGG               | TTGAGTGTTG               | TTCCAGTTTG               | GAACAAGAGT               |
|      | TTCTTATCTG | GCTCTATCCC               | AACTCACAAC               | AAGGTCAAAC               | CTTGTTCTCA               |
| 1601 | CCACTATTAA | AGAACGTGGA               | CTCCAACGTC               | AAAGGGCGAA               | AAACCGTCTA               |
|      | GGTGATAATT | TCTTGCACCT               | GAGGTTGCAG               | TTTCCCGCTT               | TTTGGCAGAT               |
| 1651 | TCAGGGCGAT | GGCCCACTAC               | GAGAACCATC               | ACCCTAATCA               | AGTTTTTGG                |
|      | AGTCCCGCTA | CCGGGTGATG               | CTCTTGGTAG               | TGGGATTAGT               | TCAAAAAACC               |

BanlI

| 1701 | GGTCGAGGTG<br>CCAGCTCCAC                   | CCGTAAAGCA<br>GGCATTTCGT | CTAAATCGGA<br>GATTTAGCCT | ACCCTAAAGG<br>TGGGATTTCC | GAGCCCCCGA<br>CTCGGGGGCT       |
|------|--------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|
| 1751 | TTTAGAGCTT<br>AAATCTCGAA                   | GACGGGGAAA<br>CTGCCCCTTT | GCCGGCGAAC<br>CGGCCGCTTG | GTGGCGAGAA<br>CACCGCTCTT | AGGAAGGGAA<br>TCCTTCCCTT       |
| 1801 | GAAAGCGAAA<br>CTTTCGCTTT                   | GGAGCGGGCG<br>CCTCGCCCGC | CTAGGGCGCT<br>GATCCCGCGA | GGCAAGTGTA<br>CCGTTCACAT | GCGGTCACGC<br>CGCCAGTGCG       |
| 1851 | TGCGCGTAAC<br>ACGCGCATTG                   | CACCACACCC<br>GTGGTGTGGG | GCCGCGCTTA<br>CGGCGCGAAT | ATGCGCCGCT               | ACAGGGCGCG<br>TGTCCCGCGC       |
| 1901 | NheI<br>~~~~~~<br>TGCTAGCGGA<br>ACGATCGCCT | GTGTATACTG               | GCTTACTATG<br>CGAATGATAC | TTGGCACTGA               | TGAGGGTGTC<br>ACTCCCACAG       |
|      |                                            |                          |                          | Age                      | I                              |
| 1951 | AGTGAAGTGC<br>TCACTTCACG                   | TTCATGTGGC               | AGGAGAAAAA<br>TCCTCTTTTT | AGGCTGCACC<br>TCCGACGTGG | cc ggrgcgrcag<br>gg ccacgcagrc |
| 2001 | CAGAATATGT<br>GTCTTATACA                   | GATACAGGAT<br>CTATGTCCTA | ATATTCCGCT               | TCCTCGCTCA<br>AGGAGCGAGT | CTGACTCGCT<br>GACTGAGCGA       |
|      |                                            | FIG. 35VVV               | 5WV                      |                          |                                |

# FIG. 35WWW

| 2401 | GTATGCACGA | ACCCCCCGTT | CAGTCCGACC | GCTGCGCCTT | ATCCGGTAAC |
|------|------------|------------|------------|------------|------------|
|      | CATACGTGCT | TGGGGGGCAA | GTCAGGCTGG | CGACGCGGAA | TAGGCCATTG |
| 2451 | TATCGTCTTG | AGTCCAACCC | GGAAAGACAT | GCAAAAGCAC | CACTGGCAGC |
|      | ATAGCAGAAC | TCAGGTTGGG | CCTTTCTGTA | CGTTTTCGTG | GTGACCGTCG |
| 2501 | AGCCACTGGT | AATTGATTTA | GAGGAGTTAG | TCTTGAAGTC | ATGCGCCGGT |
|      | TCGGTGACCA | TTAACTAAAT | CTCCTCAATC | AGAACTTCAG | TACGCGGCCA |
| 2551 | TAAGGCTAAA | CTGAAAGGAC | AAGTTTTAGT | GACTGCGCTC | CTCCAAGCCA |
|      | ATTCCGATTT | GACTTTCCTG | TTCAAAATCA | CTGACGCGAG | GAGGTTCGGT |
| 2601 | GTTACCTCGG | TTCAAAGAGT | TGGTAGCTCA | GAGAACCTAC | GAAAAACCGC |
|      | CAATGGAGCC | AAGTTTCTCA | ACCATCGAGT | CTCTTGGATG | CTTTTTGGCG |
| 2651 | CCTGCAAGGC | GGTTTTTTCG | TTTCAGAGC  | AAGAGATTAC | GCGCAGACCA |
|      | GGACGTTCCG | CCAAAAAAGC | AAAAGTCTCG | TTCTCTAATG | CGCGTCTGGT |

AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

2701

Bglii

## FIG. 35XXX

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

**AAGTTAT** 

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

**AGATCTCA** 

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-1: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

FIG. 35YYY

M8: synthesis

Iox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

IOX514-B: AGCITATAACTTCGTATAGCGTACATTATACGAAGT-

**TATGGCATG** 

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

**GAGGCGG** 

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

FIG. 35ZZZ

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

**CAAGGCG** 

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

**TGAGA** 

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

FIG. 35AAAA

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

**GGAGCCAGGGTGGTTTTTC** 

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGTT-

AAGGGGGGGGGG

FIG. 35BBBB

M41-MCS-rev: CTAGCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGGTGG

FIG. 35CCCC



FIG. 36A

|     |                          |                                  |                          | Psp5II                         |                              |  |
|-----|--------------------------|----------------------------------|--------------------------|--------------------------------|------------------------------|--|
|     |                          |                                  |                          | Ecol109I                       |                              |  |
|     | ~~~~~<br>HpaI            | BSTEII                           | Msc                      | I I                            | BsiwI NspV                   |  |
| 126 | CGCGTTAACC               | C TCAGGTGACC<br>G AGTCCACTGG     | AAGCCCCTGG<br>TTCGGGGACC | GG CCAAGGTCCC<br>CC GGTTCCAGGG | c gracgricga<br>c cargcaager |  |
|     |                          | PmlI                             |                          |                                |                              |  |
|     | NspVBsaBI                |                                  | KpnI                     |                                |                              |  |
| 176 | AGATTACCAT<br>TCTAATGGTA | CAT CACGTGGATC<br>GTA GTGCACCTAG | CGGTACCAGG               | 92299<br>29922                 | TCAAAAAGGA<br>AGTTTTTCCT     |  |
| 226 | TCTCAAGAAG<br>AGAGTTCTTC | G ATCCTTTGAT<br>C TAGGAAACTA     | CTTTTCTACG<br>GAAAAGATGC | GGGTCTGACG                     | CTCAGTGGAA<br>GAGTCACCTT     |  |
| 276 | CGAAAACTCA<br>GCTTTTGAGT | A CGTTAAGGGA<br>T GCAATTCCCT     | TTTTGGTCAT<br>AAAACCAGTA | GAGATTATCA<br>CTCTAATAGT       | AAAAGGATCT<br>TTTTCCTAGA     |  |

FIG. 36B

| CTACAGGCAT                | GTTGCCATTG               | GCGCAACGTT               | TTAATAGTTT               | AGTTCGCCAG               | 9 2 9 |
|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|
| GATGTCCGTA                | CAACGGTAAC               | CGCGTTGCAA               | AATTATCAAA               | TCAAGCGGTC               |       |
| TAGAGTAAGT                | GCCGGGAAGC               | ATTAACTGTT               | CATCCAGTCT               | TATCCGCCTC               | 929   |
| ATCTCATTCA                | CGGCCCTTCG               | TAATTGACAA               | GTAGGTCAGA               | ATAGGCGGAG               |       |
| CCTGCAACTT<br>GGACGTTGAA  | CAGAAĞTGGT<br>GTCTTCACCA | GGGCCGAGCG               | CCAGCCGGAA<br>GGTCGGCCTT | AATAAACCAG<br>TTATTTGGTC | 576   |
| ATTTATCAGC<br>TAAATAGTCG  | CCGGCTCCAG<br>GGCCGAGGTC | CCCACGCTCA<br>GGGTGCGAGT | TACCGCGAGA               | GCTGCAATGA               | 526   |
| TGGCCCCAGT<br>ACCGGGGGTCA | GCTTACCATC<br>CGAATGGTAG | ATACGGGAGG<br>TATGCCCTCC | GATAACTACG<br>CTATTGATGC | CCGTCGTGTA               | 476   |
| GCCTGACTCC<br>CGGACTGAGG  | ATCCATAGTT<br>TAGGTATCAA | TATTTCGTTC               | GCGATCTGTC<br>CGCTAGACAG | ACCTATCTCA<br>TGGATAGAGT | 426   |
| TCAGTGAGGC                | CAATGCTTAA               | TGACAGTTAC               | AAACTTGGTC               | ATATATGAGT               | 376   |
| AGTCACTCCG                | GTTACGAATT               | ACTGTCAATG               | TTTGAACCAG               | TATATACTCA               |       |
| AATCTAAAGT                | GTTTTAAATC               | TAAAAATGAA               | CCTTTTAAAT               | TCACCTAGAT               | 326   |
| TTAGATTTCA                | CAAAATTTAG               | ATTTTTACTT               | GGAAAATTTA               | AGTGGATCTA               |       |

FIG. 36C

| GTTCTTCGGG GCGAAAACTC TCAAGGATCT TACCGCTGTT GAGATCCAGT<br>CAAGAAGCCC CGCTTTTGAG AGTTCCTAGA ATGGCGACAA CTCTAGGTCA | 1076  |
|------------------------------------------------------------------------------------------------------------------|-------|
| TAATACCGCG CCACATAGCA GAACTTTAAA AGTGCTCATC ATTGGAAAAC<br>ATTATGGCGC GGTGTATCGT CTTGAAATTT TCACGAGTAG TAACCTTTTG | 1026  |
| GAATAGTGTA TGCGGCGACC GAGTTGCTCT TGCCCGGCGT CAATACGGGA<br>CTTATCACAT ACGCCGCTGG CTCAACGAGA ACGGGCCGCA GTTATGCCCT | 976   |
| CCGTAAGATG CTTTTCTGTG ACTGGTGAGT ACTCAACCAA GTCATTCTGA<br>GGCATTCTAC GAAAAGACAC TGACCACTCA TGAGTTGGTT CAGTAAGACT | 926   |
| ATCACTCATG GTTATGGCAG CACTGCATAA TTCTCTTACT GTCATGCCAT<br>TAGTGAGTAC CAATACCGTC GTGACGTATT AAGAGAATGA CAGTACGGTA | 876   |
| AGCTCCTTCG GTCCTCCGAT CGTTGTCAGA AGTAAGTTGG CCGCAGTGTT<br>TCGAGGAAGC CAGGAGGCTA GCAACAGTCT TCATTCAACC GGCGTCACAA | 8 2 6 |
| AACGATCAAG GCGAGTTACA TGATCCCCCA TGTTGTGCAA AAAAGCGGTT<br>TTGCTAGTTC CGCTCAATGT ACTAGGGGGT ACAACACGTT TTTTCGCCAA | 776   |
| CGTGGTGTCA CGCTCGTCGT TTGGTATGGC TTCATTCAGC TCCGGTTCCC<br>GCACCACAGT GCGAGCAGCA AACCATACCG AAGTAAGTCG AGGCCAAGGG | 726   |

FIG. 36D

|                          | \<br>H                             | BspEI BsrGI              |                                   | BssHII                   |      |
|--------------------------|------------------------------------|--------------------------|-----------------------------------|--------------------------|------|
| ATGGCTCGAG               | GCGCCA                             |                          | OO                                | ATTTGAATGT<br>TAAACTTACA | 1326 |
| I BssHII                 | Bbel Asel                          | BssSI                    | EagI                              |                          |      |
| XhoI                     |                                    | PstI                     |                                   |                          |      |
| GCGGATACAT<br>CGCCTATGTA | TGTCTCATGA<br>ACAGAGTACT           | TCAGGGTTAT<br>AGTCCCAATA | GAAGCATTTA<br>CTTCGTAAAT          | CAATATTATT<br>GTTATAATAA | 1276 |
| CTTCCTTTTT<br>GAAGGAAAAA | TACTCATACT<br>ATGAGTATGA           | AAATGTTGAA<br>TTTACAACTT | GGCGACACGG<br>CCGCTGTGCC          | AGGGAATAAG<br>TCCCTTATTC | 1226 |
| GCCGCAAAAA<br>CGGCGTTTTT | AAGGCAAAAT<br>TTCCGTTTTA           | CAAAAACAGG<br>GTTTTTGTCC | TCTGGGTGAG<br>AGACCCACTC          | CACCAGCGTT<br>GTGGTCGCAA | 1176 |
| CTTTTACTTT<br>GAAAATGAAA | TCTTCAGCAT<br>AGAAGTCGTA<br>Eco57I | ACCCAACTGA<br>TGGGTTGACT | CCACTCGTGC<br>GGTGAGCACG<br>BSSSI | TCGATGTAAC<br>AGCTACATTG | 1126 |

F/G. 36E

CGCGCTTCAG CGCTTTGTCT TCCGGATGTA CATGAAATT GCGCGAAGTC GCGAAACAGA AGGCCTACAT GTACTTTAA Eco571 Bbs1 1376

F/G. 36F

O\_K3L\_5 5'- G C C T G C A A G C G G A A G A C

BbsI

E D

Vk1 & Vk3 5'- G C C C T G C A A G C G G A A G A C

Vk2 5'- G C C T G C A A G C G G A A G A C

E D

Vk4 5'- G C C C T G C A A G C G G A A G A C

FIG. 37A



FIG. 37B



FIG. 37C

FIG. 37D

E D E A D
5'- C C T G C A A G C G G A A G A G C G G A T T -

FIG. 38A



FIG. 38B

|     |     |            |       |     |     | G   |              | G             |            | G   |   | •   | T   |   | K |     |    | L  |   |
|-----|-----|------------|-------|-----|-----|-----|--------------|---------------|------------|-----|---|-----|-----|---|---|-----|----|----|---|
|     |     |            |       |     |     | G G | $\mathbf{C}$ | G G           | $C \in$    | 6 G | C | Α ( | C G | Α | Α | G · | Γ. | TA | 1 |
|     |     | gap        | gap   |     |     |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
| - G | CT  | GCT        | GCT   | G C | T   |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
|     |     |            |       |     |     |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
| G   | AT  | GAT        | GAT   | G A | \T  |     |              |               |            | •   |   |     |     |   |   |     |    |    |   |
| G   | A G | GAG        | G A G | G A | G   | •   |              |               |            |     |   |     |     |   | ٠ |     |    |    |   |
| T   | TT  | TTT        | TTT   | TT  | T   |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
| G   | G T | GGT        | GGT   | GG  | iT  |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
| C   | A T | CAT        | CAT   | C A | \ T |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
| 1., | •   |            | ATT   |     |     |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
|     |     |            | AAG   | •   |     | 1   |              |               |            |     |   |     |     |   |   |     |    |    |   |
|     | -   | i          | CTT   | 1   |     | 1   |              |               |            |     |   |     |     |   |   |     |    |    |   |
| • • | -   | •          | ATG   | 1   |     | 1   |              |               |            |     |   |     |     |   |   |     |    |    |   |
| 1.  |     |            | AAT   | 1   |     | 1   |              |               |            |     |   |     |     |   |   |     |    |    |   |
| _   | -   | <u>:</u>   | CCT   | •   |     | i   |              |               |            |     |   |     |     |   |   |     |    |    |   |
| •   |     | ;          | CAG   | 1   |     | 1   |              |               |            |     |   |     |     |   |   |     |    |    |   |
| ; - |     |            | CGT   | 1   |     | •   |              |               |            |     |   |     |     |   |   |     |    |    |   |
| 1   |     |            | TCT   | į   |     |     |              |               | ٠          |     |   |     |     |   |   |     |    |    |   |
| • 1 |     |            | ACT   | :   |     |     |              |               |            |     |   |     |     |   |   |     |    |    |   |
| G   |     | $G \cap I$ | GTI   | 1   |     | i   |              |               |            |     |   |     |     |   |   |     |    |    |   |
| -   |     |            |       |     | 3 G | i   |              | _ 1_ 11       | : <b>.</b> |     |   |     |     |   |   |     |    |    |   |
|     |     | IAI        | TAT   |     |     | نـ  |              | abil<br>or. 7 | •          |     |   |     |     |   |   |     |    |    |   |
|     | 18  | 10         |       |     | 9   |     |              | ?E+(          |            |     |   |     |     |   |   |     |    |    |   |
|     | 18  | 18         | 10    |     | 9   |     |              | 3E+(          |            |     |   |     |     |   |   |     |    |    |   |
| 1.  | 18  | 18         | 18    | t   | 9   |     | J.UB         | 3E+(          | JØ         |     |   |     |     |   |   |     |    |    |   |

FIG. 38C

FIG. 38D



|              | 0   |     |     |     | <br>_0 | 9   | 9   |
|--------------|-----|-----|-----|-----|--------|-----|-----|
| <del>ب</del> | 60% | 36% | 45% | 830 | 450    | 47% | 510 |
| 77           | 61% | 39% | 36% | 71% | 33%    | 46% | 20% |
| 71           | %06 | 47% | 37% | 80% | 45%    | 54% | 45% |
| К4           | 42% | 48% | 49% | 61% | 44%    | 67% | 47% |
| $\Sigma$     | 52% | %99 | 46% | 76% | 51%    | 46% | 54% |
| 3            | 58% | 48% | 57% | 67% | 52%    | 49% | 58% |
| 7            | 61% | 39% | 47% | 85% | %69    | 49% | %06 |
| % soluble    | H1A | H1B | H2  | H3  | H4     | HS  | 9H  |

| Total amount     | - 5          | 2    | 5    | 7.5      | 1,   | 3.5  | 12   |
|------------------|--------------|------|------|----------|------|------|------|
| compared to H3K2 | <del>-</del> | 2    | 2    | <b>ታ</b> |      | 7.7  | 2    |
| H1A              | 289%         | 94%  |      | 272%     |      | 150% | 78%  |
| H18              | 219%         | 122% |      | 139%     |      | 158% | 101% |
| H2               | 186%         | 223% | 208% | 182%     | 126% | %09  | 97%  |
| H3               | 20%          |      |      | 54%      |      | 130% | 47%  |
| H4               | 37%          | 55%  |      | 77%      |      | 107% | 251% |
| H5               | 98%          | 201% |      | 83%      |      | 128% | 115% |
| 9H               | 65%          | 117% |      | 109%     |      | 215% | 278% |

## F/G. 40A

| Soluble amount   | ,        |      |        | 7          | ) 1      | ,    | ,     |
|------------------|----------|------|--------|------------|----------|------|-------|
| compared to H3K2 | <u>~</u> | 7    | χ<br>Σ | Κ <b>4</b> | K4 VI VZ | 77   | کہ    |
| H1A              | 191%     | 88%  | 121%   | 122%       | 26%      | 211% | 0/09/ |
| H18              | 124%     | 95%  | 83%    | 107%       | 79%      | 142% | 29%   |
| H2               | 126%     | 204% | 139%   | 130%       | %99      | 20%  | 0/00/ |
| H3               | 63%      | ı    | 81%    | 49%        | %69      | 143% | 61%   |
| H4               | 40%      | 47%  | 49%    | 54%        | 95%      | 55%  | 125%  |
| HS               | %69      | 158% | 116%   | 80%        | 72%      | 84%  | 84%   |
| 9H               | 85%      | 122% | 87%    | 77%        | 162%     | 162% | 212%  |
|                  | McPC     |      |        |            |          |      |       |
| soluble          | 38%      |      |        |            |          |      |       |
| %H3k2 total      | 117%     |      |        |            |          |      |       |
| %H3k2 soluble    | 69%      |      |        |            |          |      |       |

## FIG. 40B