Last time

- · Heine-Borel Th™: S seq. compact ← S closed & bded
- $f:S \rightarrow \mathbb{R}$ ch at $x_0 \in S \iff \forall \ \mathcal{E} > 0 \ \exists \ \ \mathcal{E} > 0$ s.H. if $x \in S \otimes |x-x_0| < S$ then $|f(x)-f(x_0)| < \mathcal{E}$.

- \underline{Ex} . 1. any $f^{\underline{n}} f: N \longrightarrow R$ is ch at every $x_0 \in N$.
 - 1. any f J.... 2. $f: R \longrightarrow R$, $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$ at any $x_0 \in R$.
 - 3. $\exists f: R \rightarrow R$, s.th. f is cheat every irrational x, but not cb at any $x \in \mathcal{Q}$.

Ex. $f: S \longrightarrow \mathbb{R}$ is ch at $x_0 \in S$, suppose $T \subset S_y$ $x_0 \in T$. Then $f|_T: T \longrightarrow \mathbb{R}$ is ch at x_0 .

Restriction of f to T

 $\frac{Def^{m}4.2: \text{We say } f: S \longrightarrow \mathbb{R} \text{ is } \frac{cts \text{ on } S}{cts \text{ at every } x_{o} \in S.}$

Ex: if f:5-)R is cb on S & TCS then fly:T->IR
is cb on T.

Ex: What does it mean for f:S-)R to not be cts at x.25?

- $\exists \varepsilon > 0$ s.th $\forall S > 0$ $\exists x \in S$ s.th. $|x-x_0| < \delta$ and $|f(x) f(x_0)| \neq \varepsilon$.
- i. If $f p not cts at x_0 then <math>\exists \varepsilon > 0$ s.th. $\forall n \in \mathbb{N} \exists s_n \in S \text{ s.th. } |s_n - x_0| \leqslant \frac{1}{n}$ and $|f(s_n) - f(x_0)| > \varepsilon$. $\Rightarrow s_n \to x_0$
- i. f not cb at $x_0 \Rightarrow \exists seq. (s_n)$ in S s.th. $s_n \rightarrow x_0$ but $f(s_n) \not\rightarrow f(x_0)$
- $Th^{m}4.3: f:S \longrightarrow \mathbb{R}$ in ch at $x_0 \in S \iff$ for every seq. $(s_n)_{n=1}^{\infty}$ in S s.th. $s_n \longrightarrow x_0$, $f(s_n) \longrightarrow f(x_0)$
- Pf: (\Leftarrow) proved the combrapositive already. (\Longrightarrow) . Suppose (S_n) to a seg in S s.th. $f(S_n) \to f(S_n)$. Let E > 0.
 - Since $f \triangleright cb$ at x_0 , $\exists 8>0$ c.th. if $x \in S$ 8 $|x-x_0| < 8$ then $|f(x)-f(x_0)| < \epsilon$.
 - Since $s_n \to x_0$, $\exists N \in \mathbb{N}$ s.th. $n > \mathbb{N}$ (take $\epsilon = 8$). $\Rightarrow |s_n - x_0| < 8$. in the def of cryae for $s_n \to x_0$
 - i. If n > N then (since $s_n \in S \forall n$). $|s_n - x_0| < S$ and $s_0 |f(s_n) - f(x_0)| < S$. Since this is true for any $s_0 > 0$, it follows that $f(s_n) \longrightarrow f(x_0)$.

 $7h^{m}4.4:$ Suppose $S \subset \mathbb{R}, f, g: S \longrightarrow \mathbb{R}, s. \in S$ If f, g are cb at so then (i) cf is ch at so $\forall c \in \mathbb{R}$ (cf)(x) = c(f(x))). (ii) f+g is cb at so exercise: Prove all of these chalement using Def 4.1. (iv) f/g is ch at so, if g(s) \$= 0 for all seS. Pf: Use the Alg. Limit The together with The A.3. eg (iii). Let (sn) be a seq. in S s.th. sn -> so. (Check that $f-g(s_n) \longrightarrow f-g(s_0)$). The 4.3 -> f(sn) -> f(so) (f ch at ro) g(sn) -> g(so) (g ch at so) Alg. Limit $7h^m \implies f(s_n)g(s_n) \longrightarrow f(s_0)g(s_0)$. i.e. fg(sn) - fg(so)Since this is true for all segs. (sn) in S s.th. sn → so, Th = 4.3 =) f.g D ch at so. $\pi^{\underline{m}}4.5$: If $f: S \to \mathbb{R}$ is chart so, $f(s) \subset T$, $g: T \longrightarrow \mathbb{R}$ is chaff(so) then $g \circ f: S \longrightarrow \mathbb{R}$ is ch at so. (see CEx 3). $Ex.1.g:R \rightarrow R, g(x) = |x| p ch m R.$ use $||x|-|x_0|| \leq |x-x_0|$. to show g s ch at xo for all xo ER. 2. If $f,g:S \rightarrow R$ are ch at so then

max (f,g): S -> IR, min (f,g): S-) IR are cho.

- 3. if $f: S \rightarrow |R|$ is chart so, then

 1 $f: S \rightarrow |R|$ is chart so
- 4. If $: R \rightarrow R$ s.H. f is not ch at any $x_0 \in R$ but $|f|: R \rightarrow R$ is ch on |R|.

The 4.6: Suppose $f: S \longrightarrow IR$ is chowhere S is non-empty and seq. compact. Then f is bounded. (i.e. $f(S) = \{f(S) \mid S \in S \}$ is a bounded set, i.e. $\exists K > 0$ s.th. $|f(S)| \le K$ for all $S \in S$.

Corr: If f: [9,6] -) IR is ch then f is bounded.

* closed & bded set is seq. compact.

Pf: Suppose f is not bounded. Hence $\exists \forall n \in \mathbb{N}$, $\exists sn \in S$ s.th. |f(sn)| > n. Observe: (sn) is a seq. in S. Since S seq. compact $\therefore \exists$ subseq. (sn_k) s.th. $sn_k \rightarrow s_0$ for some $s_0 \in S$. Since $f: S \rightarrow \mathbb{R}$ is ch, $f(sn_k) \rightarrow f(s_0)$.

But $|f(sn_k)| > n_k > k \Rightarrow (f(sn_k))$ is unbounded -contradiction. $\therefore f$ is bounded.

The 4.7: Suppose $f: S \rightarrow \mathbb{R}$ is cb, where S is nm-empty & seq. compact. Then f affains ib max. & min on S, i.e. f(S) has a max & a min, i.e. $f(S) \in S$ s.th. $f(S_0) \leq f(S_0) \leq f(S_0)$