Problem 5

Problem

In the adjoining figure AM and BN are parallel to each other and are tangent to the circle O, with A and B the points of tangency. MPN is a third tangent with P as point of tangency. Show that the radius of the circle is $r = \sqrt{AM \times BN}.$

Solution

Connect OM, OP, ON . Since A and P are two tangent points, AM = PM. OA = OP = r.OM = OM. So $\triangle AOM \cong \triangle POM$. Then $\angle AOM = \angle POM = \alpha$. Similarly, $\angle PON = \angle BON = \beta$.

Since $2\alpha + 2\beta = 180^{\circ}$, $\alpha + \beta = \angle MON = 90^{\circ}$, Thus $PO^2 = MP \times PN = AM \times BN$, or $r^2 = AM \times BN \implies r = \sqrt{AM \times BN}$