Report

What is The Target Feature

The target feature is the average distance for active members per census tract. To know this the active members per census tract need to be known. To get the value the amount of visitors to churches on Sundays for LDS church buildings was used to get the number of visitors for each census that the Safegraph data had acquired. This estimate was then scaled by another value to get a more accurate representation of the state.

Pseudocode

- 1. drop duplicate placekeys to remove multiple times for a single location
- 2. divides raw visits by visitor count to obtain visitor percentage.
- 3. multiplies visitor percentage into the normalized state_visit_counts to create a scaled visitor count
- 4. aggregates the vistorhomecbgs into a total quantity to be later used
- 5. Explodes visitor home cbgs and keeps the total for each cbgs and the scaled visitor count.
- 6. creates a percentage ratio of each cbgs value versus the total amount from the home aggrgation to create a percentage of visitors to a location from a cbgs. ex 4 from a cbgs / 65 total to a building.
- 7. Distributes the percentage ratio into the scaled visitor count to get the total members as a percentage of people that went to a building.
- 8. reduces down to cbgs and members and uses ceil to remove a few decimals.
- 9. groups by cbgs and aggreagetes members on cbgs with sum
- 10. joins county and track information on cbgs
- 11. aggregates members onto tract

Diagram of the Tables and Columns

col name	desc	
cbgs	census block group	
value	vistors per cbgs	
total	total amount of cbgs visiters per placekey	
visitor_scaling	isitor_scaling scaled visitor count	
percent_total	cent_total value/total as a percentage of visitors from a cbgs	
members	embers visitor_scaling * percent_total	
total_members	otal_members members aggregated to cbgs and then aggregated to tr	

col name	desc
county	county number
cnamelong	county name
tractcode	tract code

Code Snippet that demonstrates the Wrangling done and the Chart created

Gathering Churches

```
df = df.withColumn('websites', regexp_replace(col('websites'), r'[\[\]]', ''))
df = df.filter((col('websites').like('%lds.org%')) |
  (col('websites').like('%mormon.org%')) |
  (col('websites').like('%churchofjesuschrist.org%')) |
  (col('websites').like('%comeuntochrist.org%')) | (col('websites') == ''))

days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
  "Saturday", "Sunday"]
for day in days_of_week:
    df = df.withColumn(day, col("popularity_by_day").getItem(day))
df = df.drop("popularity_by_day")
days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
  "Saturday"]
for day in days_of_week:
    df = df.filter((col('Sunday') * 2) > col(day))
df = df.filter(df.Sunday > 5)
```

Estimating Active Members

```
a = a.withColumn('visitor_scaling', (col("normalized_visits_by_state_scaling") *
  ((col("raw_visitor_counts") / col("raw_visit_counts")))))
a = a.withColumn('totalcbgs', map_values('visitor_home_cbgs')).select("*",
   aggregate("totalcbgs", lit(0), lambda acc, x: acc +
   x).alias("total")).drop("totalcbgs")
a = a.select(explode(a.visitor_home_cbgs).alias("cbgs", "value"), "total",
   'visitor_scaling') \
        .withColumn("percent_total", (col("value") / (col("total")))) \
        .withColumn("members", col("percent_total")*col("visitor_scaling"))
a = a.select("cbgs", ceil("members").alias("total"))
```

Spatial Map

```
lat = MemberGraph['latitude'],
    text = MemberGraph["tract"],
    mode = 'markers',
    marker_color = MemberGraph['sum_state_tract'],
    color=df2.select('Sunday_Totals_Scaled_by_Month').rdd.flatMap(lambda x:
x).collect(),
    locationmode="USA-states"
    ))

fig.update_layout(
    title = 'Estimated Active Member Counts for Each Tract)',
    geo_scope='usa',
)
```

With and Without Temples

```
fig = px.scatter(data_frame=MemberGraph, x= "tractcode",
y="sum_state_tract",color="HasTemple",title="Does a Temple effect worthy Members")
fig.update_layout(
    xaxis_title="Census Block Groups",
    yaxis_title="Estimated Active Member Count"
)
```

Visualizations

spatial mapping

Esitmated Active Member Counts for Each Tract)

comparing the feature for tracts with and without temples

the first five rows of your feature table used in the visualizations sorted descending by Track ID

	county	tractcode	HasTemple	cnamelong	total_members
0	039	56039967800	False	Teton County	68
1	039	56039967702	False	Teton County	70
2	039	56039967600	False	Teton County	66
3	037	56037970902	False	Sweetwater County	55
4	023	56023978100	False	Lincoln County	78