Работа 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления проволоки

Работу выполнил Павлов Михаил Б01-109

Цель работы: Измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

1. Аннотация

В работе измеряется удельное сопротивление тонкой проволоки круглого сечения, изготовленной из нихромового сплава. Используются следующие методы измерений сопротивления: 1) определение углового коэффициента наклона зависимости напряжения на проволоке от тока через неё, измеряемых с помощью аналоговых и цифровых вольтметров и амперметров, 2) измерение с помощью моста постоянного тока. Геометрические размеры образца измеряются с помощью линейки, штангенциркуля и микрометра. Детально исследуется систематические и случайные погрешности проводимых измерений.

2. Теоретические сведения

Удельное сопротивление однородной проволоки круглого сечения, имеющей всюду одинаковую толщину:

$$\rho = R \frac{\pi d^2}{4l},\tag{1}$$

где R — сопротивление проволоки, d — её диаметр, l — длина. Согласно закону Ома напряжение V и ток I в образце связаны соотношением

$$V = RI. (2)$$

Для измерения напряжения и тока использовалась схема рис. 1. Ввиду неидеальности используемого вольтметра необходимо учесть поправку на его конечное сопротивление R_V . Показания амперметра I_A и вольтметра V_B связаны соотношением

$$V_B = R'I_A, (3)$$

где R' — сопротивление параллельно соединенных проволоки и вольтметра, причём $\frac{1}{R'}=\frac{1}{R}+\frac{1}{R_V}$, и $R_V>>R$, R'. График зависимости $V_B(I_A)$ должен представлять прямую, угловой коэффициент которой есть R', откуда сопротивление образца может быть найдено как

$$R = \frac{R_V R'}{R_V - R'} \approx R' (1 + \frac{R'}{R_V}).$$

Рис. 1. Схема измерения вольт-амперной характеристики проволоки

3. Инструментальные погрешности

Линейка: $\Delta_{rul} \approx \pm 2$ мм. с учётом погрешности ± 0.5 мм. (половина цены деления линейки) и неидеальное расположение линейки относительно проволоки.

Штангенциркуль: $\Delta_{cal} = \pm 0.05$ мм (маркировка производителя)

Микрометр: $\Delta_{mcm} = \pm 0.01$ мм (маркировка производителя)

Вольтметр: Характеристика вольтметра:

Предел измерений	10 B
Внутреннее сопротивление	$R_V = 10 \text{ MOm}$

Амперметр: Характеристика амперметра:

Класс точности	0.2
Предел измерений	0.75 A
Внутреннее сопротивление	$R_A = 116$ мОм
Погрешность	$\pm 1.5 \text{ MA } (0.2\%)$

4. Результаты измерений и обработка данных

Измерение диаметра проволоки с помощью микрометра:

N	1	2	3	4	5	6
d_1 , MM	0.38	0.37	0.38	0.37	0.38	0.38

Измерение диаметра проволоки с помощью штангенциркуля:

N	1	2	3	4	5	6
d_2 , MM	0.4	0.4	0.4	0.4	0.4	0.4

Получаем
$$<\overline{d_1}>=0.377$$
 мм и $<\overline{d_2}>=0.4$ мм

При измерении диаметра проволоки штангенциркулем случайная погрешность измерения отсутствует. Следовательно, точность измерения определяется только точностью штангенциркуля (систематической погрешностью): $d_2 = (0.40 \pm 0.05)$ мм

Измерения с помощью микрометра содержат как систематическую, так и случайную погрешности.

$$\sigma_{sys} = 0.01$$
mm, $\sigma_{ran} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (d - \langle \overline{d} \rangle)^2} \approx 1.5 * 10^{-3}$ mm

 $\sigma_{sys}=0.01$ мм, $\sigma_{ran}=\frac{1}{N}\sqrt{\sum_{i=1}^n(d-<\overline{d}>)^2}\approx 1.5*10^{-3}$ мм Поскольку $\sigma_{sys}^2>>\sigma_{ran}^2$, то можно считать проволоку однородной по диаметру, а погрешность определить только лишь систематической погрешностью микрометра.

Вычисление площади поперечного сечения:

$$S = \frac{\pi d^2}{4} = \frac{3.14 * (3.77 * 10^{-1})^2}{4} = 1.12 * 10^{-3} \text{ cm}^2$$

Вычисление площади поперечного сече
$$S=\frac{\pi d^2}{4}=\frac{3.14*(3.77*10^{-1})^2}{4}=1.12*10^{-3}~\mathrm{cm}^2$$
 Теперь вычислим погрешность: $\sigma_S=2\frac{\sigma_d}{< d>}S=2\frac{0.01}{0.377}*1.12*10^{-3}\approx 5.9*10^{-5}~\mathrm{cm}^2$ Таким образом, $S=(1.12\pm0.06)*10^{-3}~\mathrm{cm}^2$

Измерение силы тока и напряжения:

Соберём схему, указанную на рисунке, и проведём опыт для трёх длин проволоки $l_1=20{
m cm}$, $l_2 = 30 {\rm cm}$ и $l_3 = 50 {\rm cm}$. Системная погрешность измерения длины проволоки равна $0.2 {\rm cm}$.

l = 20 cm:

N	1	2	3	4	5	6	7	8	9	10	11	12
I, A	0.135	0.155	0.180	0.240	0.360	0.675	0.655	0.430	0.295	0.220	0.150	0.110
U, B	0.268	0.305	0.355	0.481	0.730	1.365	1.321	0.867	0.595	0.445	0.375	0.271
<i>I</i> , дел	27	31	36	48	72	135	131	86	59	44	30	22

l = 30 cm:

N	1	2	3	4	5	6	7	8	9	10	11	12
I, A	0.150	0.165	0.200	0.265	0.360	0.735	0.695	0.480	0.320	0.190	0.160	0.120
U, B	0.466	0.524	0.617	0.834	1.131	2.363	2.224	1.517	1.010	0.592	0.506	0.379
I, дел	30	33	40	53	72	147	139	96	64	38	32	24

1 = 50 cm:

N	1	2	3	4	5	6	7	8	9	10	11	12
I, A	0.100	0.115	0.130	0.150	0.165	0.370	0.420	0.375	0.320	0.220	0.150	0.110
U, B	0.516	0.607	0.689	0.774	0.867	1.942	2.205	1.954	1.685	1.144	0.79	0.567
I, дел	20	23	26	30	33	74	84	75	64	44	30	22

Измерение сопротивления проволоки:

Результаты измерений зависимостей показаний вольтметра V_B от показаний амперметра I_A в схеме рис. 1 при разных длинах l образца представлены в таблицах выше. Соответствующие графики зависимостей изображены на рис. 2.

 $Puc.\ 2.\ \Gamma pa \phi u \kappa u$ зависимости I от U при различных значениях R

По графику убеждаемся, что экспериментальные данные с хорошей точностью (в пределах инструментальных погрешностей опыта) ложатся на теоретическую прямую $V=R{\rm I}$, исходящую из начала координат.

Пользуясь методом наименьших квадратов, строим аппроксимирующие прямые $V_B = \overline{R}I_A$, определяя их угловой коэффициент по формуле

$$\overline{R} = \frac{\langle VI \rangle}{\langle I^2 \rangle}.\tag{4}$$

Случайную погрешность определения углового коэффициента вычисляем как

$$\sigma_{R}^{ran} = \sqrt{\frac{1}{n-1}(\frac{< V^{2}>}{< I^{2}>} - \overline{R}^{2})}$$

Оценим возможную систематическую погрешность, обусловленную инструментальными погрешностями приборов. Предполагая, что при всех измерениях относительная погрешность приборов одинакова, оценим погрешность вычисления частного R=V/I при максимальных значениях V и I:

 $\Delta_R^{sys} R \sqrt{(\frac{\Delta_V}{V_{max}})^2 + (\frac{\Delta_I}{I_{max}})^2}.$

Полная погрешность измерения R не превосходит значения

$$\sigma_R^{full} \le \sqrt{(\sigma_R^{ran})^2 + (\Delta_R^{sys})^2}.$$

Результаты сведены далее в таблице. Там же для сравнения приведены результаты измерения R с помощью моста Уинстона.

l, см	\overline{R} , Om	σ_R^{ran} , Om	Δ_R^{sys} , Om	σ_R^{full} , Om	R_b , Om
50	5.229	0.016	0.034	0.037	$5.351 \pm 0,010$
30	3.152	0.017	0.022	0.026	$3.227 \pm 0,010$
20	2.085	0.019	0.014	0.017	$2.153 \pm 0,010$

Случайная составляющая измерения сопротивления мада, а основной вклад вносят систематические приборные погрешности. Контрольные измерения с помощью моста дают завышенные результаты, но все отклонения находятся в пределах $\pm 2\sigma_R^{full}$. полн.

Вычисление удельного сопротивления:

По формуле (1) находим удельное сопротивление материала проволоки, используя значения \overline{R} , полученные выше. Сравнивая относительные величины погрешностей величин, входящих в (1), приходим к выводу, что наибольший вклад в погрешность вносит измерение диаметра проволоки $(2\sigma_d/d\sim5.6\%)$, при этом вкладом остальных измерений можно пренебречь: $\sigma_{\rho}\approx\frac{2\sigma_d}{d}\rho$.

N опыта	$ ho, 10^{-6} \; ext{Ом * M}$
	$(1.167 \pm 0.065) * 10^{-6} \text{ Om * m}$
	$(1.172 \pm 0.065) * 10^{-6} \text{ Om * m}$
3	$(1.164 \pm 0.065) * 10^{-6} \text{ Om * m}$

Усредняя результаты опытов, окончательно получим: $\overline{\rho} = (1.17 \pm 0.07) * 10^{-6}$ Ом * м

5. Обсуждение результатов и выводы

Вклад погрешности измерения площади проволоки 6%, что является основной частью погрешности. Значит, для измерения сопротивления достаточна точность 3-4%

Полученное значение сравнимо с табличным значением удельного сопротивления нихрома. Табличное значение = $1.1*10^{-6}$ Ом * м, что лежит в пределах нашей погрешности, откуда следует, что результаты равны.

Мы измерили удельное сопротивление проволоки и вычислили систематические и случайные погрешности.