

Image Processing and Computer Vision Laboratory CSE 4128

Project Title: Stair Counter

Supervised By:

Dr. Sk. Md. Masudul Ahsan

Professor

Department of CSE, KUET

Dipannita Biswas

Lecturer

Department of CSE, KUET

Submitted By:

Md. Rakibul Hasan Adnan

Roll: 1907106

Year: 4th

Term: 1st

Date of Submission: 02-09-2024

Outline

- Introduction
- Application
- Key Steps
- Methodology Explanation
- Result Analysis
- Conclusion
- References

Introduction

- > Stair counter project involves developing a python program that automatically detects and counts stairs in images.
- This project uses image processing techniques and custom algorithms to analyze images for stair structures.

Figure 1 : Stair Image

Figure 2 : Stair counted

Application

- Architectural Analysis
- Safety Assessments
- Autonomous Navigation

Figure 3: Autonomous Robot climbing Stairs

Key Steps

- 1. Load and Preprocess Image
- 2. Edge Detection
- 3. Line Detection
- 4. Count Stairs

Methodology Explanation

Image Preprocessing

- 1. Load the Image and resize if necessary to standardize dimensions
- 2. Convert the image to grayscale, simplifying it for further processing

Figure 4: Input Image

Figure 5: Image Converted to Grayscale

Edge Detection

- 1. Apply a custom Canny Edge Detection Algorithm
 - Gaussian Blur
 - Gradient Calculation
 - Non-Maximum Suppression
 - Double Threshold & Hysteresiss

Figure 6: Input Image

Figure 7: Gaussian Blur Output

Figure 8: X derivative

Figure 10 : Gradient Magnitude

Figure 9: y derivative

Figure 11: NMS suppression

Figure 13 : Hysteresis

Figure 12 : Double Thresholding

Line Detection

- 1. Hough Line Transform to detect straight lines from the edge detected image.
- 2. Filter lines based on their orientation and distance to identify potential stair edges

Figure 14: Detection of lines from a stair image

Counting Stairs

- 1. Analyze the detected lines to determine the number of stairs:
 - Count lines that meet criteria for stair edges
 - Ensure lines are parallel and consistently spaced to avoid false positives

Figure 15: Stair Number Counted

Result

Figure 16: Input Image

Figure 17: Result

Limitations

- The algorithm may have difficulty with images containing complex staircases or unusual angles.
- The presence of clutter or occlusion in images may result in missed of false stair detections.
- Further refinement and integration with machine learning techniques could improve accuracy

Conclusion

- The Stair Counter project demonstrates the feasibility of using computer vision techniques for stair detection.
- The project achieves its goal, with the algorithm detecting stairs accurately in most cases.
- Future work could involve enhancing the algorithm with machine learning to improve robustness and adaptability

References

- Canny Edge Detection https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
- Hough Line Transform https://medium.com/@alb.formaggio/implementing-the-hough-transform-from-scratch-09a56ba7316b