Chapitre 8

Espaces préhilbertiens réels

1. Espaces préhilbertiens réels (rappels de M.P.S.I.)

1.1. Produit scalaire

Définitions 1 : produit scalaire, espace préhilbertien réel

Soit E un \mathbb{R} -espace vectoriel.

- ❖ On appelle produit scalaire toute forme bilinéaire ①, symétrique ② définie positive ④+③.
- \diamond On appelle espace préhilbertien réel tout $\mathbb R$ -espace vectoriel muni d'un produit scalaire.
- ❖ On appelle espace euclidien tout espace préhilbertien de dimension finie.
- Ainsi un produit scalaire est une application $\Phi: E \times E \to \mathbb{R}$ telle que
 - 1. $\forall (x,y) \in E^2$: $\Phi(x,.)$ et $\Phi(.,y)$ sont linéaires
 - 2. $\forall (x,y) \in E^2$: $\Phi(x,y) = \Phi(y,x)$
 - 3. $\forall x \in E : \Phi(x, x) \geqslant 0$
 - 4. $\forall x \in E: \ [\Phi(x,x)=0] \Rightarrow [x=0_E]$
- On justifiera toujours avec particulièrement d'attention le caractère ④.
- On note, à la place de $\Phi(x,y)$: $(x \mid y)$ ou $(x \mid y)$ ou $x \cdot y$

1.2. <u>Norme euclidienne</u>

a) Définition

Définition 2 : dans un espace préhilbertien réel, la **norme euclidienne** d'un vecteur x est le réel positif $\left\| x \right\|_2 = \sqrt{\Phi(x,x)} \right]$.

- Lorsqu'il n'y a pas d'ambiguïté, on le notera aussi ici : $\parallel x \parallel$
- On verra a posteriori (§ e) que c'est bien une norme.

b) Propriétés algébriques des normes euclidiennes

Propriété 1 : un calcul à faire sans hésiter

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2(x | y)$$

Propriété 2 : identités de polarisation

$$(x \mid y) = \frac{1}{2} [\|x + y\|^2 - \|x\|^2 - \|y\|^2]$$
$$(x \mid y) = \frac{1}{2} [\|x\|^2 + \|y\|^2 - \|x - y\|^2]$$
$$(x \mid y) = \frac{1}{4} [\|x + y\|^2 - \|x - y\|^2]$$

Propriété 3 : propriété du parallélogramme

Savoir les retrouver de tête...

1

- Interprétation géométrique des deux dernières
- Remarque: l'égalité du parallélogramme permet par exemple de tester si une norme est euclidienne.

Ainsi dans \mathbb{R}^2 , les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ ne sont pas euclidiennes

Inégalité de Cauchy-Schwarz

Théorème 1: $\forall (x,y) \in E^2$: $||(x \mid y)| \leq ||x|| \times ||y|||$ ou $||(x \mid y)|^2 \leq ||x||^2 \times ||y||^2$

L'égalité est réalisée si et seulement si x et y sont colinéaires

i.e.
$$x=0_E$$
 ou $\exists \lambda \in \mathbb{R}/\ y=\lambda x$

• Démonstration à connaître 3.

- Se souvenir du démarrage : $F(\lambda) = ||\lambda x + y||^2 = ...$

$$\begin{array}{l} \bullet \quad \text{Exemples}: \ \left(\sum_{i=1}^n a_i b_i\right)^2 \leqslant \left(\sum_{i=1}^n a_i^{\ 2}\right) \left(\sum_{i=1}^n b_i^{\ 2}\right) & (ac+bd)^2 \leqslant (a^2+b^2)(c^2+d^2) \\ & \left(\int_a^b f(t)g(t)dt\right)^2 \leqslant \left(\int_a^b f(t)^2 dt\right) \times \left(\int_a^b g(t)^2 dt\right) \\ \end{array}$$

d) <u>Inégalité de Minkowski</u>, dite aussi triangulaire

Théorème 2 : $\forall (x,y) \in E^2$: $|||x+y|| \le ||x|| + ||y||$

L'égalité est réalisée si et seulement si x et y sont colinéaires de même sens

i.e.
$$x = 0_E$$
 ou $\exists \lambda \in \mathbb{R}_+ / y = \lambda x$

- Démonstration en exercice (élever au carré...
- e) Bilan

Propriété : $\big\| \, \big\|_{\!_{2}}$ définit bien un norme.

• Démonstration en exercice. Réviser au passage la définition d'une norme.

Exemples 1.3.

a) Produit scalaire canonique dans \mathbb{R}^n : $|(x \mid y) = \sum x_i y_i| \|x\|_2 = \sqrt{2}$

... ainsi nommé car, pour ce produit scalaire, la base canonique est orthonormée.

b) Sur $|\mathcal{C}([a,b],\mathbb{R})|$:

c) Sur $\ell^2(\mathbb{R}) = u \in \mathbb{R}^{\mathbb{N}} / \sum u_n^2$ converge :

5

4

$$(u\mid v) = \sum_{n=0}^{+\infty} u_n v_n$$

$$\|u\|_2 = \left(\sum_{n=0}^{+\infty} u_n^2\right)^{\frac{1}{2}}$$

On utilise deux inégalités souvent utiles (à retrouver de tête):

$$|a \times b| \leqslant \frac{1}{2}(a^2 + b^2)$$

$$|a \times b| \le \frac{1}{2}(a^2 + b^2)$$
 et $(a+b)^2 \le 2(a^2 + b^2)$

d) Exercice: sur $\mathbb{R}_n[X]$: on définit $N(P) = \left(\sum_{i=1}^n P(i)^2\right)^{\frac{1}{2}}$.

Montrer que N définit une norme sur $\mathbb{R}_n[X]$

6

1.4. Orthogonalité

a) Définitions

Définitions 3 : orthogonalité

Soit E un espace préhilbertien réel.

- Vecteurs orthogonaux : $x, y \in E$ tels que $(x \mid y) = 0$
- Famille orthogonale : $(x_i)_{i \in I} \in E^I$ telle que $\forall i \neq j : (x_i \mid x_j) = 0$
- Famille orthonormale : $(x_i)_{i \in I} \in E^I$ telle que $\forall i, j : (x_i \mid x_j) = \delta_{i,j}$
- Sous-espace vectoriels orthogonaux : F et G tels que

$$\forall (x,y) \in F \times G : (x \mid y) = 0$$

b) <u>Propriétés</u>

Propriété 1 : toute famille orthogonale de vecteurs non nuls est libre

- Démonstration
- Conséquence : Toute famille orthonormale est libre.

Propriété 2 : **Théorème de Pythagore**

Si la famille $(x_i)_{1 \le i \le p} \in E^p$ est orthogonale, alors $\left\| \sum_{i=1}^p x_i \right\|^2 = \sum_{i=1}^p \left\| x_i \right\|^2$

$$\left\| \sum_{i=1}^{p} x_i \right\|^2 = \sum_{i=1}^{p} \|x_i\|^2$$

- Démonstration
- La réciproque n'est vraie que pour p=2.

c) Expression du produit scalaire et de la norme dans une base orthonormée

Théorème : Soit $\mathcal{B}=(e_i)_{1\leqslant i\leqslant n}$ une base orthonormée d'un espace euclidien E.

Soit
$$x = \sum_{i=1}^{n} x_i e_i$$
 et $y = \sum_{i=1}^{n} y_i e_i$ deux vecteurs de E .

Soit $u \in \mathcal{L}(E)$ et soit $A = M_{\mathcal{B}}(u) = (a_{i,j})_{1 \le i,j \le n}$.

d) Orthogonal d'un sous-espace vectoriel

Définitions 4: orthogonal d'un sous-espace vectoriel F

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de E.

L'orthogonal de F est défini par $F^{\perp} = \{x \in E \mid \forall y \in F : (x \mid y) = 0\}$

• Plus généralement on peut définir l'orthogonal de X pour $X \in \mathcal{P}(E)$.

Propriétés:

- \square F^{\perp} est un sous-espace vectoriel de E, orthogonal à F.
- $\square \quad \text{Si } F_1 \subset F_2 \text{ alors } F_2^{\perp} \subset F_1^{\perp}$
- \square Si G est un sous-espace vectoriel de E orthogonal à F alors $G \subset F^{\perp}$ Ainsi F^{\perp} est <u>le plus grand sous-espace vectoriel de E orthogonal à F.</u>
- $\square \qquad F \subset (F^{\perp})^{\perp}$
- $\hfill \Box$ La somme $F+F^\perp$ est une somme directe
- $\square \quad \text{ Si } F = Vect(e_{\scriptscriptstyle 1}, e_{\scriptscriptstyle 2}, \ldots, e_{\scriptscriptstyle p}) \text{ , alors } [x \in F^{\scriptscriptstyle \perp}] \Leftrightarrow [\forall j \in [\![1, p \]\!] : (x \mid e_{\scriptscriptstyle j}) = 0]$
- Démonstration en exercice
 - On n'a pas forcément $F = (F^{\perp})^{\perp}$ ni $F \oplus F^{\perp} = E$

... mais ceci est vrai si E est de dimension finie (cf. MPSI)

... ou même seulement si F est de dimension finie (§ 2)

2. Projection orthogonale sur un sous-espace de dimension finie

2.1.Le résultat fondamental

Théorème : Soit E un espace préhilbertien réel.

Soit F un sous-espace vectoriel de dimension finie p de E.

Soit $(e_1, e_2, ..., e_p)$ une base orthonormée de F. Alors :

- $\ \square \ F \oplus F^{\perp} = E \, : \, F^{\perp}$ est appelé le supplémentaire orthogonal de F.
- $\square \quad F = (F^{\perp})^{\perp}$
- $\hfill \Box$ On peut définir le projecteur orthogonal $\,p_{\scriptscriptstyle F}$ de $E\,$ sur $F\,$ et

$$\forall x \in E: \quad p_{\scriptscriptstyle F}(x) = \sum_{\scriptscriptstyle i=1}^{\scriptscriptstyle p} (e_{\scriptscriptstyle i} \mid x).e_{\scriptscriptstyle i}$$

- $\forall x \in E : d(x, F) = d(x, p_F(x)) = ||x p_F(x)||.$
- $\forall x \in E : p_F(x)$ est l'unique vecteur $y \in F$ tel que d(x,F) = d(x,y)

Conséquence (optimisation): $\forall x \in E, \forall y \in F \setminus \{p_F(x)\}: d(x, p_F(x)) < d(x, y)$

- Démonstration **10**
- Exemple : si F = Vect(a) avec a unitaire : $p_F(x) = (a \mid x)$. a
- Rappelons quelques propriétés issues de celles des projecteurs :

Projecteurs orthogonaux

 $\forall x \in E : \exists ! (y,z) \in F \times F^{\perp} / x = y + z \text{ et alors} :$

$$p_{\scriptscriptstyle F}(x) = y$$
 et $p_{\scriptscriptstyle F^\perp}(x) = z$

- $p_{\scriptscriptstyle F}(x) = y \quad \text{ et } \quad p_{\scriptscriptstyle F^\perp}(x) = z$ $\bigstar \quad \forall x \in E : \boxed{ [y = p_{\scriptscriptstyle F}(x)] \Leftrightarrow [y \in F \text{ et } (x y) \in F^\perp] }$
- p_F est un **projecteur** i.e. $p_F \in \mathcal{L}(E)$ et $p_F \circ p_F = p_F$
- $p_{\scriptscriptstyle F} + p_{\scriptscriptstyle F^\perp} = \mathit{Id}_{\scriptscriptstyle E} \quad ext{et} \quad p_{\scriptscriptstyle F} \circ p_{\scriptscriptstyle F^\perp} = 0_{\scriptscriptstyle \mathcal{L}(E)}$

2.2. Exercice traité: optimisation

Une recherche de minimum

Montrer que l'application $\Phi: \left\{ (a,b) \rightarrow \int_{-1}^{1} (t^2 - at - b)^2 dt \right\}$

admet un minimum sur \mathbb{R}^2 et le déterminer

2.3. Inégalité de Bessel

Théorème : Soit $(e_1, e_2, ..., e_p)$ une famille orthonormale de E. Alors :

$$\forall x \in E: \sum_{i=1}^{p} (e_i \mid x)^2 \leqslant ||x||^2$$

• Démonstration 11; la démonstration montre par ailleurs que,

si
$$F = Vect(e_1, e_2, ..., e_p)$$
: $||x||^2 = \sum_{i=1}^p (e_i \mid x)^2 + d(x, F)^2$

2.4. Procédé d'orthonormalisation de Schmidt

Théorème : Soit $(u_1,u_2,...,u_p)$ une famille libre de l'espace préhilbertien E. Alors il existe une et une seule famille orthonormale $(e_1, e_2, ..., e_p)$ telle que :

$$\forall k \in \llbracket \ 1, p \ \rrbracket : \begin{cases} Vect(e_1, \ldots, e_k) = Vect(u_1, \ldots, u_k) \\ (e_k \mid u_k) > 0 \end{cases}$$

 $(e_{\scriptscriptstyle 1}, e_{\scriptscriptstyle 2}, \ldots, e_{\scriptscriptstyle p})$ s'appelle l'orthonormalisée de Schmidt de $(u_{\scriptscriptstyle 1}, u_{\scriptscriptstyle 2}, \ldots, u_{\scriptscriptstyle p})$

- Rappel de l'algorithme de construction 12
- Retenir que $\left| f_k = u_k p_{k-1}(u_k) = u_k \sum_{i=1}^{k-1} (u_k \mid e_i). e_i \right|$ puis $\left| e_k = \frac{f_k}{\|f_k\|} \right|$
- De plus la famille et son orthonormalisée ont même orientation.

Suites orthonormales de vecteurs d'un espace préhilbertien réel. 2.5.

a) Suites totales

Définition : On dit qu'une famille $(e_i)_{i\in\mathbb{N}}$ d'éléments dun espace vectoriel Eest une suite totale de E si $\overline{Vect((e_i)_{i\in\mathbb{N}})}=E$

- Autrement dit : le sous-espace engendré par $(e_i)_{i\in\mathbb{N}}$ est dense dans E.
- $\text{Traduction}: \left| \forall x \in E, \, \forall \varepsilon > 0: \exists p \in \mathbb{N}, \, \exists y \in Vect(e_{\scriptscriptstyle 0}, e_{\scriptscriptstyle 1}, \overline{\ldots, e_{\scriptscriptstyle p}}) \, \, / \, \, \left\| x y \right\| \leqslant \varepsilon \right|$

ou
$$\forall x \in E, \forall \varepsilon > 0 : \exists \ p \in \mathbb{N}, \exists \ (a_0, a_1, ..., a_p) \in \mathbb{K}^{p+1} / \left\| x - \sum_{i=0}^p a_i e_i \right\| \leqslant \varepsilon$$
 tification \blacksquare Exemple: $(X^i)_{i \in \mathbb{N}}$ suite totale de $\mathcal{C}([a, b], \mathbb{R})$

Justification

b) Le résultat fondamental

Théorème : Soient $(e_i)_{i\in\mathbb{N}}$ est une suite orthonormale totale d'un espace préhilbertien E et pour tout $n \in \mathbb{N}$, p_n le projeté orthogonal de E sur $Vect(e_0,e_1,...,e_n)$. Alors $\forall x\in E$, la suite $(p_n(x))_{n\in\mathbb{N}}$ converge vers x.

- Démonstration 14
- Conséquence (Bessel) la série $\sum (e_i \mid x)^2$ converge et a pour somme $||x||^2$

15

2.6. Exemples de suites totales de polynômes orthogonaux

a) Sur $\mathcal{C}([-1,1],\mathbb{R})$ muni du produit scalaire usuel : $(f \mid g) = \int_{-1}^{1} f(t)g(t)dt$ $orall n \in \mathbb{N} : L_n = rac{1}{2^n n!} [(X^2 - 1)^n]^{(n)}$ polynômes de Legendre définis par

- b) Sur $\mathcal{C}([-1,1],\mathbb{R})$ muni du produit scalaire $\langle f \mid g \rangle = \int_{-1}^{1} \frac{f(t)g(t)}{\sqrt{1-t^2}} dt$ **polynômes de Tchebychev** définis par $\forall n \in \mathbb{N} : T_n(x) = \cos(n \operatorname{Arc} \cos(x))$
- c) Exercice: la base canonique $(X^n)_{n\in\mathbb{N}}$ de $\mathbb{K}[X]$ est-elle orthogonale?

3. Isométries vectorielles d'un espace euclidien E

3.1. Matrice orthogonale

• On rappelle que les trois propriétés équivalentes suivantes permettent de définir une matrice orthogonale :

Théorème : caractérisations d'une matrice orthogonale et définition

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors:

$$\boxed{ \begin{bmatrix} {}^t A \times A = I_n \end{bmatrix} \Leftrightarrow [A \times {}^t A = I_n] \ \Leftrightarrow [A \in GL_n(\mathbb{R}) \ \text{ et } \ A^{-1} = {}^t A] }$$

On appelle matrice orthogonale toute matrice vérifiant l'une de ces trois propriétés.

• Démonstration

16

Reconnaissance visuelle : les vecteurs colonnes de la matrice A constituent une base orthonormée de \mathbb{R}^n pour le produit scalaire usuel.

3.2. Isométrie ou automorphisme orthogonal

a) Définition, caractérisations

Théorème : caractérisations d'une isométrie et définition

Soient $u \in \mathcal{L}(E)$, \mathcal{B} base <u>orthonormée</u> de E et $A = M_{\mathcal{B}}(u)$.

Les quatre propriétés suivantes sont équivalentes :

❖ Conservation du produit scalaire :

$$\forall (x,y) \in E^2 : (u(x) \mid u(y)) = (x \mid y)$$

❖ Conservation de la norme :

$$\forall x \in E: \ \left\| \ u(x) \ \right\| = \left\| \ x \ \right\|$$

❖ Conservation du caractère orthonormé d'une base :

l'image d'une base orthonormée de E est une base orthonormée

 \bullet A est une matrice orthogonale:

Tout endomorphisme de E vérifiant l'une de ces quatre propriétés est appelé isométrie vectorielle ou automorphisme ortghogonal.

• Démonstration

17

b) Exemple: symétrie orthogonale

Propriété 1 : toute symétrie orthogonale est une isométrie vectorielle.

Propriété 2 : caractérisation d'une symétrie orthogonale par sa matrice

Soient ${\mathcal B}\,$ une base orthonormée de E , $u\in {\mathcal L}(E)$ et $A=M_{{\mathcal B}}(u).$ Alors :

 $[u \text{ est une symétrie orthogonale}] \Leftrightarrow [A \text{ est symétrique et orthogonale}]$

• Démonstrations

3.3. Groupe orthogonal

<u>Proposition 1</u> : Soit O(E) l''ensemble des isométries vectorielles de E. $(O(E), \circ)$ est un sous-groupe de $(GL(E), \circ)$ appelé **groupe orthogonal de E**.

• Démonstration

19

<u>Proposition 2</u>: Soit O(n) l''ensemble des matrices orthogonales $n \times n$. $(O(n),\times)$ est un sous-groupe de $(GL_n(\mathbb{R}),\times)$ appelé **groupe orthogonal** d'ordre n.

• Démonstration

20

 $\frac{\text{Proposition 3}: \text{Soit } \mathcal{B} \text{ une base } \underline{\text{orthonorm\'ee}} \text{ de l'espace euclidien } E.}{\text{L'application } \Phi_{\mathcal{B}}: \left\{ \begin{array}{l} O(E) \to O(n) \\ u & \to M_{\mathcal{B}}(u) \end{array} \right.} \text{ définit un } \mathbf{isomorphisme} \text{ de groupes.}$

• Démonstration

21

<u>Proposition 4</u>: **déterminant** d'une isométrie, d'une matrice orthogonale. Le déterminant d'une isométrie (d'une matrice orthogonale) vaut 1 ou -1. Si $d\acute{e}t(u) = 1$, l'isométrie est dite **directe**.

• Démonstration

22

3.4. Groupe spécial orthogonal

Proposition 5:

Soient $SO(E) = \{u \in O(E) / d\acute{e}t(u) = 1\}$ et $SO(n) = \{A \in O(n) / d\acute{e}t(A) = 1\}$

- lacktriangledown $(SO(E), \circ)$ est un groupe, sous-groupe de $(O(E), \circ)$.
- \blacktriangleleft $(SO(n),\times)$ est un groupe, sous-groupe de $(O(n),\times)$.
- $\stackrel{\sim}{\Phi}_{\mathcal{B}} : \begin{cases} SO(E) \to SO(n) \\ u \to M_{\mathcal{B}}(u) \end{cases} \text{ définit un isomorphisme de groupes.}$
- Démonstration

3 . Bilan récapitulatif : ∠

 \lhd signifie: sous-groupe de \updownarrow signifie: isomorphe à

3.5. Théorème de stabilité

<u>Proposition</u>: Si $u \in O(E)$ et si F est un sous-espace vectoriel stable par u, alors F^{\perp} est aussi stable par u.

• Démonstration

24

3.6. Spectre d'une matrice orthogonale, d'une isométrie

<u>Proposition</u>: Si $A \in O(n)$, alors $Sp_{\mathbb{R}}(A) \subset \{-1,1\}$ et $Sp_{\mathbb{C}}(A) \subset U$ où U est l'ensemble des nombres complexes de module 1. De plus $\forall \lambda \in Sp_{\mathbb{C}}(A), \, \overline{\lambda} \in Sp_{\mathbb{C}}(A)$

Démonstration

25

Ainsi les seules valeurs propres réelles potentielles sont 1 et -1. les valeurs propres complexes ont toutes pour module 1.

3.7.En dimension 2 (rappels de M.P.S.I.)

$O(E_2)$	
$O(E_2)$	$O(E_2) - SO(E_2)$
rotations $r_{\!\scriptscriptstyle{ heta}}$ d'angle $ heta$	réflexion d'axe Δ_{α}
$ \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} $	$ \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{pmatrix} $
SO(2)	O(2) - SO(2)
O(2)	
$Sp_{\mathbb{C}}(A) = \{e^{i heta}, e^{-i heta}\}$	$Sp_{\mathbb{C}}(A) = \{-1,1\}$
$\chi_A = X^2 - 2\cos(\theta)X + 1$	$\chi_A = X^2 - 1$

- Les matrices sont du type $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ ou $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$ avec $a^2 + b^2 = 1$.
- Les premières ont pour déterminant 1 : matrices de rotation.
- Les secondes pour déterminant -1: ce sont des matrices de symétries orthogonales, qu'on reconnaît au caractère symétrique de la matrice!
 - **Bon à savoir** : Δ_{α} a pour angle polaire α

3.8. Théorème de réduction

Théorème:

Si $u \in O(E)$, alors il existe une base orthonormée de E pour laquelle

$$M_{\mathcal{B}}(u) = \begin{pmatrix} I_r & 0 & \cdots & \cdots & 0 \\ 0 & -I_q & \ddots & & \vdots \\ \vdots & \ddots & R(\theta_1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & R(\theta_s) \end{pmatrix} \quad \begin{array}{c} (p,q,s) \in \mathbb{N}^3 \, / \, p + q + 2s = n \\ \forall i \in \llbracket \, 1,s \, \rrbracket : \theta_i \in \mathbb{R} - \pi \mathbb{Z} \\ \text{où} \\ R(\theta_i) = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix},$$

- Démonstration
- 27. Illustration en § 3.9 🗷

3.9. En dimension 3

- b) Isométries vectorielles directes d'un espace euclidien de dimension 3

<u>Proposition</u>:

Dans un espace euclidien de dimension 3, toute isométrie vectorielle directe a dans une base orthonormée directe $\mathcal{B} = (u, v, w)$ bien choisie une

matrice du type : $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} \quad \text{où } \alpha \in [0, 2\pi[\ .$

- \downarrow u est ainsi la **rotation** d'axe orienté $\Delta = \text{Vect}(u)$ et d'angle α .
- Démonstration
- 28
- Cas particuliers : cas où cette matrice est symétrique

29

- c) Structure générale de $O(E_3)$ (H.P.) : schéma.
- d) Algorithmes:
- **30** .
- détermination de la nature d'une isométrie donnée par sa matrice
- ❖ détermination de ses éléments caractéristiques

4. Endomorphismes symétriques d'un espace euclidien

4.1. Définition et première propriété

a) <u>Définition</u>

Définition : On dit qu'un endomorphisme $s \in \mathcal{L}(E)$ est symétrique si $\forall (x,y) \in E^2 : (u(x) \mid y) = (x \mid u(y))$

- On note S(E) l'ensemble des endomorphismes symétriques.
 - lacktriangledown C'est un sous-espace vectoriel de $\mathcal{L}(E)$ \star exercice
- b) Noyau et Image sont supplémentaires orthogonaux

• Démonstration

31

• En particulier : $Ker(s) = Im(s)^{\perp}$

4.2. Exemples: projecteurs orthogonaux, involutions orthogonales

Propriétés :

- ① Les seuls projecteurs symétriques sont les projecteurs orthogonaux.
- ${\Bbb Q}$ Les seules involutions symétriques sont les symétries orthogonales.
- démonstration

4.3. Lien avec les matrices symétriques

Théorème : Soient \mathcal{B} une base <u>orthonomée</u> de E, $u \in \mathcal{L}(E)$ et $A = M_{\mathcal{B}}(u)$. [u est un endomorphisme symétrique] \Leftrightarrow [A est une matrice symétrique].

- Démonstration **33**
- On rappelle à ce sujet que : $\boxed{\mathcal{M}_{\!{}_{\!{}}}(\mathbb{R}) = S_{\!{}_{\!{}}}(\mathbb{R}) \oplus A_{\!{}_{\!{}}}(\mathbb{R})}$ et que : $\boxed{\dim(S_{\!{}_{\!{}}}(\mathbb{R})) = \frac{n(n+1)}{2}}$ et $\boxed{\dim(A_{\!{}_{\!{}}}(\mathbb{R})) = \frac{n(n-1)}{2}}$ Démo

4.4. Théorème de stabilité

Proposition : Si s est un endomorphisme symétrique et si F est un sousespace vectoriel stable par s, alors F^{\perp} est aussi stable par s.

• Démonstration **35**

4.5. Réduction: théorèmes spectraux

a) Lemmes fondamentaux

Lemme 1 : Si s est un endomorphisme symétrique, alors le polynôme caractéristique de s est scindé dans $\mathbb R$. En particulier : $\overline{Sp_{\mathbb R}(s)=Sp_{\mathbb C}(s)}$ autrement dit : toutes les valeurs propres de s (dans $\mathbb C$) sont réelles.

• Démonstration **36**

Lemme 2 : Si s est un endomorphisme symétrique, alors ses sous-espaces propres sont deux à deux orthogonaux.

- Démonstration **37**
- b) Théorème spectral pour les endomorphisme symétriques

Théorème spectral: Tout endomorphisme symétrique est diagonalisable dans une base orthonormée. On dit aussi qu'il est "orthodiagonalisable".

- Autrement dit : il existe une base orthonomée $\mathcal B$ de E telle que $M_{\mathcal B}(s)$ est diagonale
- Démonstration 38. On a ainsi : $E = \bigoplus_{\lambda \in Sp(s)}^{\perp} E_{\lambda}$

c) <u>Théorème spectral pour les matrices symétriques</u>

Théorème spectral pour les matrices :

 $\forall A \in \mathcal{S}_n(\mathbb{R}): \exists P \in O(n) / P^{-1}AP$ est une matrice diagonale.

• Démonstration 39. © Intérêt : $P^{-1} = {}^{t}P$! Ainsi à retenir :

Toute matrice symétrique est diagonalisable et ses sous-espaces propres sont orthogonaux.

• On a aussi $\Delta = P^{-1}AP = {}^{t}PAP$.

d) Stratégie pour la diagonalisation d'une matrice symétrique de taille 3

 \blacktriangleleft Si $\chi_{\!\scriptscriptstyle A}$ admet trois valeurs propres distinctes $\lambda\,,\,\,\mu$ et $\nu\,$:

* déterminer $u \in E_{\lambda}$ et $v \in E_{\mu}$

* calculer alors $w = u \wedge v : w \in E_{\nu}$

lacksquare Si $\chi_{\scriptscriptstyle A}$ admet une valeur propre simple λ et une valeur propre double μ :

 $\ \, \ \, \ \, \ \, \ \, \ \, \ \,$ commencer par la valeur propre double :

 $E_{\scriptscriptstyle \mu}$ est un plan d'équation $ax+by+cz=0~{\rm car}~rg(A-\mu I)=1$

* ainsi $u = (a, b, c) \in E_{\lambda}$

 ${\rm car}\ E_\lambda \perp E_\mu$

* choisir $v \in E_u$

* calculer alors $w = u \wedge v : w \in E_u$

 $\frac{\text{Remarque}}{\text{en peut alors la normaliser}}: \text{la base } (u,v,w) \text{ est alors nécessairement orthogonale}$

la matrice de passage P sera alors orthogonale et donc $P^{-1}={}^tP$

Exemple traité :

40 .

$$A = \begin{pmatrix} 5 & -1 & 1 \\ -1 & 1 & -3 \\ 1 & -3 & 1 \end{pmatrix}$$

