Mineria de datos aplicada Asociación

La gaseosa es comprada junto a las ¿papitas?¿choclitos?

Los productor de limpieza son comprados conjuntamente con cuales

¿Como la demografía de los vecinos afecta lo que compramos?

¿Si cambia e precio de algunos productos como cambia la cantidad de otros?

Dado un conjunto de transacciones, encontrar las reglas que predicen la aparición de un artículo basado en las ocurrencias de otros elementos en la transacción

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Ejemplos de reglas de asociación

```
{Diaper} \rightarrow {Beer},

{Milk, Bread} \rightarrow {Eggs,Coke},

{Beer, Bread} \rightarrow {Milk},
```

!La implicación significa co-ocurrencia no causalidad!

Conjunto de items (itemset)

- Una coleccion de 1 o mas items
 - Ejemplo: {Milk, Bread, Diaper}
- k-itemset
 - Un conjunto de items que contiene k items

Suporte absoluto - Support count (σ)

- Frecuencia de las coo-ocurencias de un conjunto de items
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Soporte relativo -Support

- La fracción de las transacciones que contiene un conjunto de items
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Conjunto de items frecunte

 Un conjunto de items que son mayors o iguales a un umbral (minsup)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Regla de asociación

- Aun expresión de la implicación de la forma
 X → Y, donde X y Y son conjunto de items
- Ejemplo: {Milk, Diaper} → {Beer}

Métricas de evaluación de reglas

- Soporte (s)
 - Fracción de las transacciones que contienen a X y a Y
- Confianza (c)
 - Medide la frecuencia con la que el conjunto de ítems de Y aparecen en las transacciones que tiene X

Ejemplo:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper,Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Dado un conjunto de transacciones T, El objetivo de las minería de reglas de asociaciones es encontrar todas as reglas que:

- Soporte ≥ minsup
- Confianza ≥ minconf

Enfoque de fuerza bruta:

- Listar todas las posibles regaras de asociación
- Computar el soporte y la confianza de cada regla
- Podar reglas que fallen en los umbrales *minsup* y *minconf*
- ⇒ !Computacionalmente muy costoso!

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Ejemplos de reglas:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observaciones:

- Todas las reglas son binarias del mismo conjunto de items: {Milk, Diaper, Beer}
- Las reglas originarias del mismo conjunto de items tienen el mismo soporte pero diferente confianza
- Así, podemos desvincular los requerimiento de soporte y confianza

Minería de reglas de asociación

Aaproximación por dos pasos:

- 1. Generación de conjunto de ítems frecuentes
 - -Generar todos los itemsets cuyo Soporte ≥ minsup
- 2. Generación de reglas
 - Generar reglas de alta confianza para cada conjunto frecuente

Enfoque de fuerza bruta:

- Cada itemset en el entramado es un candidato a itemset frecuente
- Se cuente el soporte de cada candidato escaneando la base de datos

- Emparejar cada transaction contra cada candidato
- Complejidad ~ O(NMw) => Costosa desde M = 2^d !!!

Dado d únicos items:

- # tota de reglas de items= 2^d
- # tota de reglas de asociación:

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

Sí d=6, R = 602 rules

Reducir el numero de candidatos(M)

Búsqueda completa: M=2^d Usar técnicas de poda para reducir M

Reducir el numero de transaciones (N)

Usado por DHP y algoritmos vertical-based mining

Reducir el numero de comparisons (NM)

Usar estructuras de datos eficientes para guardar las transacciones

No necesita comparar cada transacción contra las otras

Principio Apriori:

Si un itemset es frecuente, entonces todos sus subconjuntos deberían ser frecuentes

EL principio a priori se sostiene gracias a la siguiente propiedad de la medida de soporte:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

El soporte de un itemset nunca excede el soporte de sus subconjuntos:

Esto es conocido como la propiedad anti monotona del suporte

	_
Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Count
3
2
3
2
3
3

Par (2-itemsets)

(No necesita generar candidatos que involucren a Coke o Eggs)

Soporte minimo = 3

Tripleta (3-itemsets)

Si cada subconjunto es considerado,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
Basado en e soporte podamos,
6 + 6 + 1 = 13

Método:

Sea k = 1

Generar conjuntos de elementos frecuentes de longitud 1 Repita hasta que se identificaron nuevos conjuntos de elementos frecuentes

- Generar longitud (k + 1) conjuntos de elementos candidatos de longitud k conjuntos de elementos frecuentes
- Pode los conjuntos de elementos candidatos que contienen subconjuntos de longitud k que son poco frecuentes
- Contar con el apoyo de cada candidato mediante el escaneo de la DB
- Eliminar a los candidatos que son poco frecuentes, dejando sólo las que son frecuentes

Recuento candidato:

- Escanear la base de datos de transacciones para determinar el sopurte de cada conjunto de elementos candidato
- Para reducir el número de comparaciones, almacenar los candidatos en una estructura de hash
 - En lugar de hacer coincidir cada transacción en contra de cada candidato, compararlo con los candidatos que figuran en los recipientes de hash

Transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Hash Structure

Dado una transación t, Cuales son los posibles subconjuntos de tamaño 3?

Suponga que tiene 15 itemsets candidatos de longitude 3:

 $\{1\ 4\ 5\},\ \{1\ 2\ 4\},\ \{4\ 5\ 7\},\ \{1\ 2\ 5\},\ \{4\ 5\ 8\},\ \{1\ 5\ 9\},\ \{1\ 3\ 6\},\ \{2\ 3\ 4\},\ \{5\ 6\ 7\},\ \{3\ 4\ 5\},\ \{3\ 5\ 6\},\ \{3\ 5\ 7\},\ \{6\ 8\ 9\},\ \{3\ 6\ 7\},\ \{3\ 6\ 8\}$

Se necesita:

- Función Hash
- Máximo tamaño de la hoja : numero máximo de itemsets guardados en una hoja nodo(Si el numero de itemset candidatos excede el máximo tamaño de hoja, dividir este nodo)

Ciencia, tecnología y bienestar para el país

Ciencia, tecnología y bienestar para el país

Minería de datos aplicada – Juan Esteban Mejía Velásquez

Factores que afectan la complejidad

Escoger un umbral mínimo de soporte

- Umbrales bajos de soporte resultan mayor numero de ítem frecuentes
- Esto puede aumentar el numero de candidatos y la máxima longitud de ítem frecuentes

Dimensional dad (Numero de items) del conjunto de datos

- Mas espacio se necesita para guardas la cuenta de soporte para cada item
- Si el numero de ítem frecuentes también se incrementa, los costos computacional y de l/o también se incrementa

Factores que afectan la complejidad

Tamaño de la base de datos

Amplitud promedio de la transacción

Algunos itemsets son redundantes dado que tiene un suporte identico

TID	A1	A2	A3	A 4	A5	A6	A7	A8	A9	A10	В1	B2	В3	B4	B5	B6	B7	B8	В9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Número de itemset frecuentes
$$= 3 \times \sum_{k=1}^{10} {10 \choose k}$$

Se nesesita una representación compacta

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
$\{A,C,D\}$	2
{B,C,D}	3
{A,B,C,D}	2

General-to-specific vs Specific-to-general

Traversal of Itemset Lattice

Equivalent Classes

(b) Suffix tree

Breadth-first vs Depth-first

(a) Breadth first

(b) Depth first

Representación de una base de datos

- Horizontal vs Vertical

Horizontal Data Layout

TID	Items		
1	A,B,E		
2	B,C,D		
3	C,E		
4	A,C,D		
5	A,B,C,D		
6	A,E		
7	A,B		
8	A,B,C		
9	A,C,D		
10	В		

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1
4	2	3	4	3
5	2 5	4	2 4 5 9	3 6
4 5 6 7	7	2 3 4 8 9	9	
7	8	9		
8 9	10			
9				

FP-growth Algorithm

- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

TID	Items			
1	{A,B}			
2	$\{B,C,D\}$			
3	$\{A,C,D,E\}$			
4	{A,D,E}			
5	{A,B,C}			
6	$\{A,B,C,D\}$			
7	{B,C}			
8	{A,B,C}			
9	{A,B,D}			
10	(B,C,E)			

After reading TID=1:

After reading TID=2:

Conditional Pattern base for D:

Recursively apply FP-growth on P

Frequent Itemsets found (with sup > 1):
AD, BD, CD, ACD, BCD

Items are listed in lexicographic order

Each node P stores the following information:

- Itemset for node P
- List of possible lexicographic extensions of P: E(P)
- Pointer to projected database of its ancestor node
- Bitvector containing information about which transactions in the projected database contain the itemset

Original Database:

TID	Items			
1	{A,B}			
2	$\{B,C,D\}$			
3	$\{A,C,D,E\}$			
4	{A,D,E}			
5	{A,B,C}			
6	{A,B,C,D}			
7	{B,C}			
8	{A,B,C}			
9	{A,B,D}			
10	{B,C,E}			

TID	Items			
1	{B}			
2	{}			
3	$\{C,D,E\}$			
4	{D,E}			
5	{B,C}			
6	{B,C,D}			
7	{}			
8	{B,C}			
9	{B,D}			
10	{}			

Projected Database for node A:

For each transaction T, projected transaction at node A is $T \cap E(A)$

Generación de Reglas

Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L - f$ satisfies the minimum confidence requirement

– If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

How to efficiently generate rules from frequent itemsets?

In general, confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- $e.g., L = {A,B,C,D}:$

$$c(ABC \to D) \geq c(AB \to CD) \geq c(A \to BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Candidate rule is generated by merging two rules that share the same prefix

in the rule consequent

join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC

Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Many real data sets have skewed support distribution

Support distribution of a retail data set

How to set the appropriate *minsup* threshold?

- If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
- If minsup is set too low, it is computationally expensive and the number of itemsets is very large

Using a single minimum support threshold may not be effective

How to apply multiple minimum supports?

- MS(i): minimum support for item i
- e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
- MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli)) = 0.1%
- Challenge: Support is no longer anti-monotone
 - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
 - {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

lte m	M S (I)	Sup(I)
Α	0.10%	0.25%
В	0.20%	0.26%
С	0.30%	0.29%
D	0.50%	0.05%
E	3 %	4.20%

It e m	M S (I)	Sup(I)
Α	0.10%	0.25%
В	0.20%	0.26%
С	0.30%	0.29%
D	0.50%	0.05%
Е	3 %	4.20%

Multiple Minimum Support (Liu 1999)

Order the items according to their minimum support (in ascending order)

- e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
- Ordering: Broccoli, Salmon, Coke, Milk

Need to modify Apriori such that:

- L₁: set of frequent items
- F_1 : set of items whose support is ≥ MS(1) where MS(1) is min_i(MS(i))
- C₂: candidate itemsets of size 2 is generated from F₁ instead of L₁

Modifications to Apriori:

- In traditional Apriori,
 - A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k
 - The candidate is pruned if it contains any infrequent subsets of size k
- Pruning step has to be modified:
 - Prune only if subset contains the first item
 - e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to minimum support)
 - {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent
 - Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli.

Evaluación de Reglas de asociación

Los algoritmos de asociación tienden a producir muchas reglas

- Muchas de ellas redundantes o poco interesantes
- Redundantes si {A,B,C} → {D} y {A,B} → {D}
 tienen le mismo soporte y confianza

Las medidas de interés sirven para podar o ranquiar los patrones derivados

Computar medidas interesantes

Dada la regla $X \rightarrow Y$, La information necessaire para computer la medidas de interes esta en la table de contingencia

Tabla de contingencia para $X \rightarrow Y$

	Υ	Υ	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 f_{11} : Soporte de X y Y f_{10} : Soporte de X y Y f_{01} : Soporte de X y Y f_{00} : Soporte de X 7 Y

Usada para varios indicadores

 Soporte , Confianza, lift, Gini, J-measure, etc.

Inconveninte de a confianza

	Ron	Ron	
Agua	15	5	20
Agua	75	5	80
	90	10	100

Regla de asociacion: Agua → Ron

Confianza = P(Ron|Agua) = 0.75

Pero P(Ron) = 0.9

- ⇒ Aunque a confianza es alta, la regla es engañosa
- \Rightarrow P(Ron|Agua) = 0.9375

Independencia estadistica

Oblation de 1000 Estudintes

- 600 Estudinates saben nadar (S)
- 700 Estudinates saben montar en bici (B)
- 420 Estudinates saben nadar y montar en bici(S,B)

$$-P(S \land B) = 420/1000 = 0.42$$

$$- P(S) \times P(B) = 0.6 \times 0.7 = 0.42$$

- $P(S \land B) = P(S) \times P(B) => Independencia estadsitica$
- $-P(S \land B) > P(S) \times P(B) => Positivamente correlacionados$
- $P(S \land B) < P(S) \times P(B) => Negativamente correlaciondos$

Medidas basadas en estadistica

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Ejemplo: Lift/Interest

	Ron	Ron	
Agua	15	5	20
Agua	75	5	80
	90	10	100

Regla de asociacion: Agua \rightarrow Ron

Confianza = P(Ron|Agua) = 0.75

Pero P(Ron) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, Así estan negativamente asociados)

Fallos de Lift & Interest

	Υ	Υ	
X	10	0	10
X	0	90	90
	10	90	100

	Υ	Υ	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Independencia estadistica:

If
$$P(X,Y)=P(X)P(Y) \implies Lift = 1$$

	#	Measure	Formula
	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_j, B_k) + \sum_{k} \max_{j} P(A_j, B_k) - \max_{j} P(A_j) - \max_{k} P(B_k)}{2 - \max_{j} P(A_j) - \max_{k} P(B_k)}$
	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} + P(A,B)P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{2}$
There are lots of measures	្រ	тшев г	$\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)} = \sqrt{\alpha+1}$
proposed in the literature	6	Kappa (κ)	$\frac{\check{P}(A,B)+P(\overleftarrow{A},\overrightarrow{B})-\check{P}(A)P(B)-P(\overleftarrow{A})P(\overrightarrow{B})}{1-P(A)P(B)-P(\overleftarrow{A})P(\overrightarrow{B})}$
proposed in the interaction	7	Mutual Information (M)	$\frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$ $\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}, B_{j})}{P(A_{i})P(B_{j})}$ $\overline{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
	8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right)$
Some measures are good for		, ,	$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
certain applications, but not	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
for others	•		$-P(B)^{2} - P(\overline{B})^{2},$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
			$-P(A)^{2}-P(\overline{A})^{2}$
What criteria should we use to			,
determine whether a measure	10	Support (s)	P(A,B)
is good or bad?	11	Confidence (c)	$\max(P(B A), P(A B))$
io good of bad.	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
What about Apriori atula	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
What about Apriori-style support based pruning? How	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
does it affect these measures?	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})}}{P(A,B)} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
UNIVERSIDAD NACIONAL Ciencia, tecnología y ba	ienes 21	Jaccard (ζ) tar para el país M Klosgen (κ)	in $\overline{E(A) + E(B)}$ to $\overline{E(A) + E(B)}$ and $\overline{E(A) + E(B)}$ to $\overline{E(A) + E(B)}$ and $E(A) + E($

Propiedades de una Buena medida

Piatetsky-Shapiro:

- 3 properties a good measure M must satisfy:
 - -M(A,B) = 0 if A and B are statistically independent
 - M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
 - M(A,B) decreases monotonically with P(A) [or P(B)]
 when P(A,B) and P(B) [or P(A)] remain unchanged

Compración de diferentes medidas

10 examples of contingency tables:

tables:

Rankings of contingency tables using various measures:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

#	φ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	\boldsymbol{F}	AV	\boldsymbol{S}	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	(10)	10	6	6	5	(1)	10	10	5	1	10	10	7

Propiedades sobre permutación de variables

Does M(A,B) = M(B,A)?

Symmetric measures:

support, lift, collective strength, cosine, Jaccard, etc.

Asymmetric measures:

• confidence, conviction, Laplace, J-measure, etc

THANK YOU!

ANY QUESTIONS?