1. Weihao's observations

• How to standardise $cov(p_{it}, \phi)$ – still thinking but inclined to standardise by σ_{ϕ} instead of σ_{ϕ}^2 .

pdj - I agree. Then one is inclined to write

$$p_{it} \approx \mu_{it} + \beta_{it} \frac{\phi - 1}{\sigma_{\phi}}$$
,

and hence β_{it} is the response to a one–unit increase in the standardised stress factor $(\phi - 1)/\sigma_{\phi}$. Hence to my mind it argues the stress factor $(\phi - 1)/\sigma_{\phi}$ is core and needs concrete characterisation.

 \bullet Capital shortfall at time i+h is the difference between debt and admissible assets

$$d_{it} - (1-k)(w_{i,t+h} + d_{it}), w_{i,t+h} = w_{it}e^{\nu_{it}}$$

where k is the non-admissible factor and ν_{it} is the return on equity. Capital shortfall at time i + h can be rewritten as

$$d_{it} - (1 - k_{i,t+h})(w_{it} + d_{it})$$
, $k_{i,t+h} \equiv 1 - (1 - k)\frac{w_{it}e^{\nu_{it}} + d_{it}}{w_{it} + d_{it}}$

where assets are constant, similar to debt. However the non-admissible or impairment factor $k_{i,t+h}$ varies inversely with ν_{it} . One can either forecast capital shortfall by modeling ν_{it} or $k_{i,t+h}$, and this paper adopts the former due to available data on equity returns.

pdj – Another way to look at this is to write

$$\frac{1 - k_{i,t+h}}{1 - k} = \left(1 - \frac{d_{it}}{a_{it}}\right) e^{\nu_{it}} + \frac{d_{it}}{a_{it}}$$

Can this be exploited? – note debts to assets is the odds of debt to equity

• Artzner asserts that any coherent risk measure is the supremum of the expected capital shortfall in a collection of generalised scenarios or probability measures \mathcal{P} on states of the world, i.e.

$$\sup \{ \mathcal{E}_{\mathbb{P}}(p_{it}) | \mathbb{P} \in \mathcal{P} \}$$

pdj— this seems a useful background result allowing us to argue the generality of our approach. Not sure how to best write up/connect to our presentation.

• $E(p_{it}) = E(p_{it}) + cov\{E(p_{it}|\phi), \phi\}$

pdj– The implication here is that one can take each given scenario (ie possible outcome of ϕ) and just consider how expected put prices for each scenario covary with scenario:

$$\beta_{it} = \text{cov}\{p_{it}(\phi^*), \phi^*\}, \qquad \phi^* \equiv \frac{\phi - 1}{\sigma_\phi}, \qquad p_{it}(\phi^*) \equiv \text{E}(p_{it}|\phi^*) \approx \mu_{it} + \beta_{it}\phi^*$$

This seems useful to me.

• Write the put payout as

$$p_{it} = k \left| 1 - e^{\nu_{it}^*} \right|^+ = k \int_0^\infty (1 - e^{\nu_{it}^*} > s) ds = k \int_0^\infty (\nu_{it}^* < \ln(1 - s)) ds$$
$$= k \int_{-\infty}^0 (\nu_{it}^* < s) e^s ds$$

and hence the put covariance is

$$cov(p_{it}, \phi) = cov \left\{ k \int_{-\infty}^{0} (\nu_{it}^* < s) e^s ds, \phi \right\} = k \int_{-\infty}^{0} cov \left\{ (\nu_{it}^* < s), \phi \right\} e^s ds.$$

The covariance in the final integral is between a capital shortfall scenario $(\nu_{it}^* < s)$ and the stress factor.

pdj – can you use the expected stress factor trick here? Still thinking about the implications of above.