

Elisabeth Barar und Johanna Unruh

Ziel

- Finden eines geeigneten Datensatzes
- Trainieren unterschiedlicher Klassifikationsmodelle
- Herausfinden, welches Modell am Besten ist und warum
- Bau einer bespielhaften Applikation

Die Modelle

kNN

DecisionTrees

3 Random Forest

And Naive Bayes

Die Modelle

1 2 3 4 kNN Decision Random Naive Trees Forest Bayes

Alle Modelle für Klassifizierungsprobleme geeignet

Datenvorbereitung

- 1. Entfernen der Zeilen, die NaN Werte haben
- 2. Korrelationsanalyse durchführen
- 3. Entfernen der Spalten, die eine geringe Korrelation zu der Zielspalte haben
- 4. Entfernen der Zeilen, die bei der Zielspalte "Enrolled" stehen haben

Kriterien für ein gutes Modell

Guter Recall Score

✓ AUC nahe 1

Vergleich der Modelle

Kriterium	Ergebnis	
Accuracy Score von über 80%		

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	
Guter Recall Score für "Dropout"		

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	
Guter Recall Score für "Dropout"	83%	

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	
Guter Recall Score für "Dropout"	83%	

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	
Guter Recall Score für "Dropout"	83%	
AUC Score nahe 1		

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	
Guter Recall Score für "Dropout"	83%	
AUC Score nahe 1	0,947	

Kriterium	Ergebnis	
Accuracy Score von über 80%	90,4%	
Guter Recall Score für "Dropout"	83%	
AUC Score nahe 1	0,947	

Warum hat Random Forest eine gute Performance?

- 1. Ensemble von Decision Trees erlaubt eine Fehlerreduktion
- 2. Geringeres Risiko zum Overfitten was zu einer niedrigeren Varianz führt
- 3. Geringe Varianz führt zu einer besseren Generalisierung daher bessere Performance auf einem unbekanntem Datensatz

Demo

Die wichtigsten Features für die Entscheidungsfindung

Fazit und Ausblick

- Noch stärkere Konzentration auf wichtige Features
- Datensatz hätte größer sein können, um noch ein genaueres
 Modell zu bekommen
- Leicht ungleichmäßige Verteilung von "Dropout" und "Graduate"
- Zurzeit auf das amerikanische Notensystem angepasst, müsste auf das deutsche System übertragen werden

Danke für Eure Aufmerksamkeit!

Literatur

Die Präsentation bezieht sich auf unseren Bericht