CES Softwareentwicklungspraktikum

Analyse- und Entwurfsdokument

Lena Blum, Alexander Fischer und William Hulin

Matr.-Nr. 302253, 303979 und 293858 email:

[lena.blum|alexander.fischer|william.hulin]@rwth-aachen.de

Inhaltsverzeichnis

1	Vor	wort	2
	1.1	Aufgabenstellung und Struktur des Dokuments	2
	1.2	Projektmanagement	2
2	Ana	alyse	3
	2.1	Anforderungsanalyse	3
		2.1.1 Benutzeranforderungen	3
		2.1.2 Anwendungsfallanalyse	
	2.2	Begriffsanalyse	
3	Ent	wurf	12
	3.1	Grobentwurf: Subsysteme	12
	3.2	Detailentwurf: Klassen	13
	3.3	Graphical User Interface	17
	3.4	Use-Case-Diagramm	19
4	Ber	nutzerdokumentation	20
5	Ent	wicklerdokumentation	21

Vorwort

1.1 Aufgabenstellung und Struktur des Dokuments

Aufgabenstellung

Im Rahmen des Softwareentwicklungspraktikums (CES_SS2012) soll eine Software zur Simulation eines Stehaufkreisels erstellt werden. Die Simulationssoftware muss sowohl den reibungsfreien, als auch den reibungsbehafteten Fall korrekt simulieren können.

Als Programmiersprache soll C++ verwendet werden. Der Quellcode soll derart strukturiert und kommentiert sein, dass spätere Modifikationen und Erweiterungen durch Dritte möglich sind.

1.2 Projektmanagement

Protoyping (MATLAB/ FORTRAN)	
Dokumentation	Lena
Coding:	
Parameterset, Solver, Solution, Rkv56Parset, Rkv56,	
DESolution, «interface» RightSide, RHS, Rkv56Modified	Alexander
«interface » OutputInterface, OutputToolbox, Main, ExceptionHandlingModule,	
MathException, NonCriticalME, CriticalME, ParameterException	William
GUI	Lena

Analyse

2.1 Anforderungsanalyse

2.1.1 Benutzeranforderungen

Das von Herrn Professor Gauger gestellte Simulationsproblem umfasst die Erstellung einer Software zur Simulation eines Stehaufkreisels.

Die Simulation muss sowohl den reibungsbehafteten, als auch reibungsfreien Fall korrekt simulieren.

Im Speziellen wird ein Runge-Kutta 56-Verfahren mit adaptiver Schrittweitensteuerung unter Betrachtung einer Erhaltungsgröße (*conserved quantity*) zur Simulation des Problems verwendet.

Das Rkv56 Verfahren wurde durch ein StepperDopr853-Verfahren ersetzt, um eine höhere Genauigkeit zu erreichen.

Die Realisierung der Simulation findet in C++ statt.

Die Bedienung sowie das Ausgeben der Simulationsergebnisse muss durch eine grafische Benutzeroberfläche (GUI) möglich sein.

Die Simulationsergebnisse können in einer ASCII-formatierten Datei zur weiteren Verarbeitung und Auswertung exportiert werden.

Durch den modularen Aufbau ist die Wartbarkeit und einfache Erweiterbarkeit der Software durch Dritte gewährleistet.

Das Kernproblem besteht im Lösen der Rechten Seite des folgenden Differentialgleichungssystems:

$$\ddot{\theta}(I + ma^2 \sin^2 \theta + kma \sin \theta (R - a \cos \theta)(-\dot{x}_c \sin \phi + \dot{y}_c \cos \phi + (R - a \cos \theta)\dot{\theta}))$$

$$= \underbrace{-(I_3 - I)\dot{\phi}^2 \sin \theta \cos \theta}_{=0} - I_3\dot{\phi}\sin \theta\dot{\psi} + (g + a\dot{\theta}^2 \cos \theta)(-ma \sin \theta - km(R - a \cos \theta))$$

$$(-\dot{x}_c \sin \phi + \dot{y}_c \cos \phi + (R - a \cos \theta)\dot{\theta}))$$

$$\ddot{\phi}I\sin\theta = -\underbrace{(2I - I_3)}_{=I}\dot{\phi}\dot{\theta}\cos\theta + I_3\dot{\theta}\dot{\psi}$$

$$-km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(a - R\cos\theta)(\dot{x}_c\cos\phi + \dot{y}_c\sin\phi + (a\dot{\phi} + \dot{\psi}R)\sin\theta)$$

$$\ddot{\psi}I_3 = -I_3(\ddot{\phi}\cos\theta - \dot{\phi}\dot{\theta}\sin\theta)$$

$$-km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(R\sin\theta)(\dot{x}_c\cos\phi + \dot{y}_c\sin\phi + (a\dot{\phi} + \dot{\psi}R)\sin\theta)$$

$$m\ddot{x}_c = -km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(\dot{x}_c + (a\dot{\phi} + \dot{\psi}R)\sin\theta\cos\phi + (a\cos\theta - R)\sin\phi\dot{\theta})$$

$$m\ddot{y}_c = -km(g + a\cos\theta\dot{\theta}^2 + a\sin\theta\ddot{\theta})(\dot{y}_c + (a\dot{\phi} + \dot{\psi}R)\sin\theta\sin\phi + (R - a\cos\theta)\cos\phi\dot{\theta})$$

${\bf 2.1.2}\quad {\bf An wendungs fall analyse}$

Beschreibung der Anwendungsfälle

Name	Export/Import as Tecplot file	
Ziel	Enable storag	e of simulation da-
Einordnung		
Vorbedingung	Simulation has been run/There are existing save files	
Nachbedingung	A save file is created/Simulation data is loaded and graphed	
Nachbedingung im Fehlerfall	Errormessage is shown	
Haupt-Neben-akteure	User	
Auslöser	User presses the $Export\ Data$ or $Import\ data$ button	
Standardfluss	Schritt	Aktion
	1	User presses the Export Data or Import data button
	2	User selects a file to export/import
	3	Export file is created/Simulation data is loaded and graphed

Name	Input Parame	ters	
Ziel	A set of parameters have been entered		
Einordnung			
Vorbedingung			
Nachbedingung	The user can start a simulation		
Nachbedingung im Fehlerfall	Errormessage	Errormessage is shown	
Haupt-Neben-akteure	User		
Auslöser	User presses the Change Parameter button in the GUI		
Standardfluss	Schritt	Aktion	
	1	User presses the Change Parameter button in the GUI	
	2	User enters parameters in a popupwindow	
	3	User clicks Submit Changes	
Nebenfluss	Schritt 2a	Aktion User clicks on the Import/Export buttons	

Name	Save/Load Pa	rameters from file
Ziel	Parameters from file	are saved/loaded
Einordnung		
Vorbedingung	There are parameters to save/there is a file to load	
Nachbedingung	A parameter file is created/parameters are loaded	
Nachbedingung im Fehlerfall	Errormessage is shown	
Haupt-Neben-akteure	User	
Auslöser	User presses the Save or Load button in the GUI	
Standardfluss	Schritt	Aktion
	1	User presses the Change Parameter button
	2	
	3	$oxed{ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
Nebenfluss	Schritt 1a	Aktion User enters parameters

Name	Start Simulati	on
Ziel	Run the mathematical solver with the given parameters	
Einordnung		
Vorbedingung	Parameters have been entered and checked for validity	
Nachbedingung	Solver is finished, output is being created	
Nachbedingung im Fehlerfall	Solver could not finish calculation	
Haupt-Neben-akteure	User, Solver	
Auslöser	User presses the Simulate button in the GUI	
Standardfluss	Schritt	Aktion
	1	User starts the simulation
	2	Check validity of parameters
	3	Run the solver

Name	Toggle View	
Ziel	Enable the user to view a different set of graphs	
Einordnung		
Vorbedingung	There is simulation data to be graphed	
Nachbedingung		
Nachbedingung im Fehlerfall	Errormessage is shown	
Haupt-Neben-akteure	User	
Auslöser	User presses one of the buttons Angles, Derivatives or Positions in the GUI	
Standardfluss	Schritt	Aktion
	1	User presses one of the buttons Angles, Derivatives or Positions in the GUI
	2	A new set of data is graphed according to the button pressed

Systemanforderungen

Funktionale Anforderungen

Dem Anwender ist es möglich die Simulationsparameter k (Reibung) sowie $\dot{\psi}(rad/s), \theta(rad), R(cm), a(cm), m(g)$ und die Toleranz der Erhaltungsgröße über eine grafische Eingabemaske festzulegen. Wenn während der Simulation ein Fehler auftritt wird der Anwender über ein Popup-Fenster benachrichtigt. Nach Durchlauf der Simulation bekommt der Anwender die Simulationsergebnisse - $\theta, \psi, \phi, x_c, y_c, \dot{\theta}, \dot{\psi}, \dot{\phi}, v_x, v_y$ - in Form von LineCharts in eine GUI eingebettet angezeigt.

Die auf der GUI ausgegebenen Plots können als Bilddatei oder im Tecplotformat

exportiert werden.

Kommt es während der Laufzeit zu einem kritischen Fehler (ein Fehler, der das korrekte Fortführen des Programmes unmöglich macht) wird der Anwender über ein Popup-Fenster benachrichtigt und das an die Stelle zurückgesetzt, an der der Fehler auftrat.

Nicht-Funktionale Anforderungen

Die Exportfunktion der Simulationssoftware schreibt Tecplot konforme ASCII-kodierte Ausgabedateien. Vormals exportierte Dateien können wieder importiert und geplottet werden. Ebenso können ältere Parameterkonfigurationen importiert werden.

2.2 Begriffsanalyse

- LineChart Zwei Achsen Diagramm mit Kartesischem Koordinatensystem. Die einzelnen Datenpunkte sind durch gerade Linien verbunden.
- GUI Eine grafische Benutzeroberfläche (GBO oder GUI) ist eine Software-Komponente, die dem Benutzer eines Computers die Interaktion mit der Maschine über grafische Symbole erlaubt.
- \bullet θ Nutation
- φ Präzession
- \bullet ψ Rotation
- x_c x-Koordinate
- y_c y-Koordintate
- $\dot{\theta}$ Nutationsgeschwindigkeit
- $\dot{\phi}$ Präzessionsgeschwindigkeit
- $\dot{\psi}$ Rotationsgeschwindigkeit
- v_x Geschwindigkeit in x-Richtung
- v_y Geschwindigkeit in y-Richtung
- R Radius
- k Reibungskoeffizient
- a Abstand vom Mittelpunkt zum Schwerpunkt
- m Masse des Kreisels

- ullet G Erhaltungsgröße
- ullet atol absolute Toleranz des Runge-Kutta-Verfahrens
- ullet rtol relative Toleranz des Runge-Kutta-Verfahrens

Entwurf

3.1 Grobentwurf: Subsysteme

3.2 Detailentwurf: Klassen

StepperDopr853 - Dormand-Prince 853 method

Entwicklungsschritte vom Prototypen zum fertigen Löser

Um Referenzdaten erzeugen zu können und frühzeitig mathematische Fehler ausschließen zu können haben wir uns für die Implementierung eines Prototypen entschieden. Nach der ersten Implementierung eines rkv56 Verfahrens in Matlab entschieden wir uns, zu Gunsten einer höheren Genauigkeit und Geschwindigkeit, weiter Implementierungen in Fortran95 zu programmieren. Der fertige Fortran Prototyp, ebenfalls ein Runge-Kutta 56 mit adaptiver Schrittweitensteuerung, benötigte für die Lösung des TippeTop Problems¹

```
Simulation of the TippeTop gyro
Performing rkv56
Solution computed
Steps:
3160922
Done
```

Lösung des Prototypen für $\dot{\psi}$ in rot/s

 $[\]frac{1}{1}k = 0.3, h_{min} = 10^{-8}, h_{max} = 10^{-6}, rtol = atol = 10^{-4}, y0 = (0.0, 0.0, 250.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0), T = [0, 2.75], dG < 10^{-6}, 3160922$ Einzelschritte.

Auf Grund der Erfahrung mit dem Prototypen entschieden wir uns für die Verwendung eines Dopr853 Verfahrens. Die erste Implementierung unter Verwendung des Datentyps double (auf 15 Nachkommastellen genau) lieferte leider signifikant falsche Ergebnisse

Die korrekte Lösung der rkf56 Fortran95 Implementierung ist rot dargestellt, die falsche Lösung des Dopr853_double Algorithmus in blau. Es lag nahe das diese Unterschiede in der Lösung auf Ungenauigkeiten in der Auswertung der steifen rechten Seite und den Berechnungen des Dopr853 Algorithmus zurückzuführen waren. Wir entschieden uns also für die Verwendung eines genaueren Datentyps,

und zwar NTL::RR aus der NTL library²

Unter verwendung des NTL::RR Datentyps kann der fertige Löser (Dopr853 in C++) die Lösung des Problems¹ in 852 Schritten berechnen.

Lösung für $\dot{\psi}$ (Drehgeschwindigkeit) mit Dopr853:

Der Dopr853 Algorithmus ist ein Algorithmus aus der Familie der Runge-Kutta Algorithmen der Ordnung 8. Für jeden Schritt werden 12 Auswertungen der rechten Seite des DGL benötigt. Der ursprüngliche Algorithmus nutzte eine Fehlerschätzung der Ordnung 6, was sich allerdings in einigen Fällen als unzureichend herausstellte, da dieser Fehlerschätzer jeweils die letzte Auswertung nicht berücksichtigte. Hairer, Nörsett und Wanner³ konstruierten Abschätzungen der fünften und dritten Ordnung, die auch den letzen Punkt berücksichtigen. Der Fehler kann also über

$$err = err_5 \frac{err_5}{\sqrt{(err_3)^2 + 0.01(err_5)^2}}$$

abgeschätzt werden.

Die meiste Zeit über gilt $err_5 \ll err_3$ und damit $err = O(h^8)$.

StepperDopr853 wurde als Mehrschrittverfahren mit fehlergesteuerter Schrittweitensteuerung implementiert, die neben dem geschätzten Fehler auch noch die Erhaltungsgröße

²http://www.shoup.net/ntl/

³Hairer, E., Nørsett, S.P., and Wanner, G. 1993, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed. (New York: Springer). Fortran codes at http://www.unige.ch/hairer/software.html

 $IR\dot{\phi}\sin^2\theta + I_3(R\cos\theta - a)(\dot{\phi}\cos\theta + \dot{\psi}) = const =: G$ berücksichtigt. (ΔG pro Schritt < 1E-6). Der Löser unterstützt sowohl eine dichte Ausgabe $dense\ output$, als auch die Ausgabe von n\ \text{aquidistant}\ verteilten Werten.\frac{4}{}

3.3 Graphical User Interface

 $^{^4\}mathrm{Frei}$ nach Numerical Recipes3rdEdition - Chapter 17.2.4 Dopr
853 - An Eight-Order Method Implementierung nach Numerical Recipes Software 2007, "Routine Implementing an Eighth-order Runge-Kutta Method,"
Numerical Recipes Webnote No. 20, at http://www.nr.com/webnotes?20

	Dialog
✓ Friction	
psidot0 [rad/s]	250
theta0 [rad]	0.1
R [cm]	2.5
a [cm]	0.5
m [g]	15
k [s/cm]	0.3
tolerance	1E-4
cq tolerance	1E-4
t_max [s]	2.75
Import Export	Cancel Submit Changes

3.4 Use-Case-Diagramm

Use Case Diagram

Benutzerdokumentation

Entwicklerdokumentation