Przedstawienie problemu Wstrzykiwanie zależności Implementacja Wyniki Podsumowanie

Implementacja wydajnego wzorca wstrzykiwania zależności dla złożonych grafów zależności

Adrian Mularczyk

Uniwersytet Wrocławski Wydział Matematyki i Informatyki Kierunek: Informatyka

Agenda

- Przedstawienie problemu
- Wstrzykiwanie zależności
- Implementacja
- Wyniki
- 5 Podsumowanie

SOLID Kontenery wstrzykiwania zależnośc Problem Cel Pracy

Przedstawienie problemu

SOLID

- S SRP (Single responsibility principle)
- O OCP (Open/closed principle)
- L LSP (Liskov substitution principle)
- I ISP (Interface segregation principle)
- D DIP (Dependency inversion principle)

SOLID

Kontenery wstrzykiwania zależności Problem Cel Pracy

Dependency Inversion Principal

Wysokopoziomowe moduły nie powinny zależeć od modułów niskopoziomowych. Zależności między nimi powinny wynikać z abstrakcji.

SOLID Kontenery wstrzykiwania zależności Problem Cel Pracy

Kontenery wstrzykiwania zależności

- Rejestracja
- Tworzenie obiektów

SOLID Kontenery wstrzykiwania zależnośc Problem Cel Pracy

Problem

- W grafach zależności często powtarzają się typy
- Utworzenie instancji nowego obiektu zajmuje czas
- Nowe obiekty są często tworzone

SOLID Kontenery wstrzykiwania zależnośc Problem Cel Pracy

Cel Pracy

Stworzenie wydajenego kontenera wstrzykiwania zależności, który będzie wydajny dla zlożonych grafów zależności, a także który będzie efektywnie tworzył kolejne instancje tej samej klasy.

Wstrzykiwanie zależności

Rodzaje wstrzykiwania zależności

- Wstrzykiwanie przez konstruktor
- Wstrzykiwanie przez metodę
- Wstrzykiwanie przez właściwość

Implementacje przemysłowe

- Unity
- NInject
- Autofac
- StructureMap
- Windsor
- Grace
- Dryloc
- LightInject
- SimpleInjector

Dwa rozwiązania Partial Emit Function Full Emit Function

Implementacja

Implementacja

- CIL
- Reflection.Emit

Dwa rozwiązania

- Partial Emit Function
- Full Emit Function

Partial Emit Function

Full Emit Function

Przypadek testowy A Przypadek testowy C

Wyniki

Przypadek testowy A - graf zależności

Przypadek testowy A - Transient

Liczba iteracji: 1 i 10

Autofac	0
NiquloCPartial	1
Windsor	1
NiquloCFull	8
Unity	8
LightInject	10
StructureMap	10
Ninject	11
SimpleInjector	13
Dryloc	14
Grace	15

NiquloCPartial	3
Autofac	6
NiquloCFull	8
LightInject	10
SimpleInjector	14
StructureMap	14
Dryloc	15
Grace	16
Unity	16
Windsor	16
Ninject	90

Przypadek testowy A - Transient

Liczba iteracji: 100 i 1000

NiquloCFull	9
LightInject	11
SimpleInjector	15
Dryloc	16
Grace	18
NiquloCPartial	19
StructureMap	54
Autofac	59
Unity	88
Windsor	155
Ninject	882

NiquloCFull	18
LightInject	19
SimpleInjector	29
Dryloc	29
Grace	37
NiquloCPartial	173
StructureMap	417
Autofac	587
Unity	813
Windsor	1529
Ninject	8934

Przypadek testowy C - graf zależności

Przypadek testowy C - Transient

Liczba iteracji: 1 i 10

Autofac	2
NiquloCPartial	4
Windsor	7
Unity	19
StructureMap	26
NiquloCFull	31
LightInject	36
Dryloc	39
Ninject	39
SimpleInjector	41
Grace	61

NiquloCPartial	10
Autofac	24
NiquloCFull	32
LightInject	37
Dryloc	40
StructureMap	40
SimpleInjector	41
Unity	47
Grace	62
Windsor	62
Ninject	353

Przypadek testowy C - Transient

Liczba iteracji: 100 i 1000

NiquloCFull	38
LightInject	44
Dryloc	47
SimpleInjector	49
Grace	73
NiquloCPartial	74
StructureMap	181
Autofac	231
Unity	318
Windsor	608
Ninject	3511

NiquloCFull	82
LightInject	86
Dryloc	99
SimpleInjector	116
Grace	155
NiquloCPartial	690
StructureMap	1540
Autofac	2288
Unity	3015
Windsor	6037
Ninject	37642

Przedstawienie problemu Wstrzykiwanie zależności Implementacja Wyniki Podsumowanie

Podsumowanie