Governance of the Blockchain 土屋研究会 IS 22春 期末発表

研究の背景

ガバナンス問題

- ・ブロックチェーンはトラストレスと信じられているが...
- ・仕様変更などの際、コア開発者・ノード運営者に権力が集中していることが指摘されている
- ・このままでは安定的なブロックチェーンの運用が達成されない可能性がある
- 適切なガバナンスシステムを用意する必要性が高まっている
- ・ブロックチェーンガバナンスの定義:
 - ► パブリックブロックチェーンコミュニティと主要なステークホルダーが, 特にプロトコル変更に関して集団行動に至る方法 (Carter 2018)

研究の目的

・ブロックチェーンの適切なガバナンスモデルを模索したい

前回までの調査

ガバナンスにまつわる問題点の事例調査

- ・ いくつかの事例から問題点を調査
 - ► Bitcoinのブロックサイズ論争
 - Governance of the blockchainの問題が明るみになった事件
 - ► Ethereum The DAO事件
 - コア開発者とノード運営者が過去の取引をなかったことにしてしまう
 - コミュニティが分裂し、ハードフォークが発生した

前回までの調査

オンチェーンでのガバナンスシステムを調査

- Polkadot
 - ノードのランタイムをチェーン上で管理し、フォークレスアップグレードを 実現
 - ► トークンベースの投票システムを設け、承認されればランタイムを更新できる
 - ▶ お金持ち優位な政治では?

最近やったこと

- ・前回は事故事例の調査が中心だった
- オフチェーンガバナンスと、オンチェーンガバナンスのメリット・デメリットを整理した
 - オフチェーンガバナンスを採用しているチェーンの例: Bitcoinのガバナンスの仕組みを詳細に調べた
 - ► オンチェーンガバナンスを採用しているチェーンの例: Polkadot (前回調べた)

BIP

- ・BIPとは?
 - Bitcoin Improvement Proposal
 - ► Bitcoinの新機能提案を行う技術的な設計文書
 - ► GitHubで管理されている
- ・ 例えばどんなものがあるの?
 - ► BIP-2: BIP process, revised BIPについて定めたもの
 - ► BIP-141: Segregated Witness (Consensus Layer)

 ブロックの構造を変えることにより、スケーリング問題などに対処する

BIP

- BIPの種類
 - ト Standard Track BIP ← BIP-141: Segregated Witness (Consensus Layer) プロトコル変更や検証ルールの変更など, インターオペラビリティに影響を与える項目. BIP(設計ドキュメント)→参照実装(Bitcoin Core)への取り込み
 - ► Informational BIP 一般的なガイドラインや情報をコミュニティに提供するもの
 - ▶ **Process BIP** ← BIP-2: BIP process, revised Bitcoinを取り巻く様々なプロセス(ex: 意思決定プロセス)の変更を提案したりする. Informational BIPと異なり, ユーザーは無視することが出来ない.

BIP

• BIP反映のプロセス

Bitcoin BIP

- ・BIPの著者:
 - ► Draft, Deferred, Withdrawnは自分で設定できる
- ・有効な実装があり、Finalに進めるためのコミュニティ計画があれば、Draftから Proposedにステータスが移行する
- 3年間進捗がなければ、Draft/ProposedからRejectedにステータスが変更される
- · ProposedなBIPは, 実世界で採用された場合Finalに変更される(次のスライドで)
- もう適切なBIPではなくなった場合にObsolete/Replacedとなる

Bitcoin BIP

Draft Proposed Final / Active Obsolete

Rejected Replaced

Deferred

- Finalステータスへの移行
 - ▶ ハードフォーク or ソフトフォーク
 - ハードフォーク: チェーンの分岐を伴う
 - ソフトフォーク:後方互換性のあるフォーク 旧ルールの制限をより狭める等
 - ソフトフォークが必要なBIPは、チェーン上の投票によりマイナーの95%の 賛成が必要となる (BIP-9で定義されている投票プロセス)

BIP

- Case: Segwit (Segregated Witness)
 - ソフトフォークによって実現
 - ► なかなかマイナーの賛同を得られなかったので、BIPを乱発して通した

洗練されたガバナンスシステムの例

- 後発のブロックチェーンでは、暗黙的でないガ バナンスシステムを設けているものがある
- ・ Polkadot: 複数のブロックチェーンを繋げることができ, Interoperabilityをもたせるチェーン

フォークレスアップグレード

- Polkadotノードのランタイムはwasmで書かれており、チェーン自体に保存されている
- チェーン上のランタイムデータを変更すれば、ハードフォークすることなくランタイムを更新できる
- トークンホルダーを中心に投票を行い、承認されれば更新される仕組み

ステークホルダー

- Token holders
- Council Members
 - ▶ 投票の提案, 拒否権の発動ができる
 - ► Token holderから選出される
- Technical Committee
 - ▶ コア開発者メンバーで構成
 - ▶ 緊急の投票提案ができる

提案の発議

- ・ 提案の種類
 - Public referenda
 - 一定の期間トークンを預けることで投票の提案ができる
 - 同額のトークンを預けることで賛成できる
 - 最も賛成を得た提案が、次の投票プロセスに回される
 - Council referenda
 - Council発の議案は即次の投票プロセスに回される

投票

- ・投票は28日ごとに行われる
- Token holderは、トークンを預けることで投票ができる
- ・Adaptive Quorum Biasingを採用 提案に対して大きな反対(賛成)がない場合に可決(否決)を用意にする
 - Positive Turnout Bias
 - ・ <u>投票率が低いときは賛成票の超過半数が必要</u>だが, 投票率が 100%に近づくにつれ単純多数決になる
 - Negative Turnout Bias
 - ・ 投票率が低いときは反対票の超過半数が必要だが、投票率が 100%に近づくにつれ単純多数決になる

提案形式	成立条件
Public Referenda	Positive Turnout Bias (Super-Majority Approve)
Council Referenda (全会一致)	Negative Turnout Bias (Super-Majority Against)
Council Referenda (過半数の賛成)	単純多数決

問題

- ・Polkadot以外にも似たようなシステムを採用しているチェーンは複数あるが、 投票にトークンを用いる時点でお金持ち優位であり、到底民主的とは呼べない のではないか
- ・一方, ブロックチェーン上で"一人一票"を実現することは難しい

- BitcoinやEthereumのようなオフチェーン型のガバナンスと, Polkadotのようなオンチェーン型のガバナンスシステムに分類される
- ・どちらがマシか、様々な議論が行われていた

ガバナンス観による違い

- ・ガバナンスを, 意思決定機能と捉える場合
 - ガバナンスシステムは関数として扱える
 - ▶ 決定論的な関数であると嬉しい
 - ▶ 計算量が少ないと嬉しい
 - オンチェーンガバナンスに分がある

ガバナンス観による違い

- ・ガバナンスを、調整機関として捉える場合
 - ▶ コインホルダーとその他のアクターの利害が対立することは多々ある
 - ► 様々な声を聞き、全体のラフコンセンサスを形成し、協調していく必要がある
 - オフチェーンガバナンスに分がある

メリットとデメリット

- ・オンチェーンガバナンスのメリット
 - ▶ Verifiableなのでアカウンタビリティの担保が出来る
 - 意思決定に拘束力をもたせることができる
 - ▶ ハードフォークの可能性を低く抑えられる
 - ▶ 分散型
 - 投票ルールをプログラム可能
- ・デメリット
 - ▶ 低い投票率
 - ▶ 金権政治

メリットとデメリット

- オフチェーンガバナンスのメリット
 - ▶ ラフなコンセンサスを形成しやすい.協調できる可能性がある.
- ・デメリット
 - ► メーリングリストやTwitter, Redditなどでバラバラに不定期開催される不透明な議論
 - ▶ 議論のプラットフォーム上で、書き込みを増やして声を大きく見せることが(理論上)可能
 - ► ハードフォークの可能性が大きい
 - ▶ 中央集権的

考察(感想)

マルチステークホルダー型のガバナンスへ

- ・トークンベースの投票によるオンチェーンガバナンスは金権政治に陥る可能性が高く、多くの/多様なユーザーの声を反映しているとはいい難い→正統性に疑問が残るのでは?
 - ► (そもそも, ガバナンストークン売って設ける口実だろ…)
- ・とはいえBitcoinのような既存のオフチェーンガバナンスも,現状,本当に多様性あふれる集団による議論が行われているのだろうか
 - ▶ コア開発者・マイナー(マイニングプール運営者)・ノード運営者の声が大きすぎる
- ・いい感じのマルチステークホルダーガバナンスやりたい

今後の予定

- ・他のチェーンについても調べてみる
 - ► 最終レポートは、各チェーンのガバナンスモデルを調べて分類する予定
- マルチステークホルダーモデルでいい感じにできないかなという感想があります
 - ► コインホルダー, マイナー, ノード運営者, 規制当局, アプリケーション開発者, 先進国の人々, 発展途上国の人々, etc…
 - ▶ いい感じ: マルチステークホルダーで(技術的に)拘束力のある決定ができる

参考文献

- "BIP-2"
 https://github.com/bitcoin/bips/blob/master/bip-0002.mediawiki
- "BIP-9" https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
- 安土 茂亨 "動画で学ぶブロックチェーン】Bitcoinのソフトフォークのデプロイ方法" (2021)
 https://www.youtube.com/watch?v=_3fgK4aYz3E
- Pierre Rochard "Bitcoin Governance" (2018) https://pierre-rochard.medium.com/bitcoin-governance-37e86299470f
- Vitalik Buterin "Notes on Blockchain Governance" (2017)
 https://vitalik.ca/general/2017/12/17/voting.html
- EthHub "Governance on Ethereum" https://docs.ethhub.io/ethereum-basics/governance/
- Phil Lucsok "Why on-chain governance?" (2018) https://medium.com/polkadot-network/why-on-chain-governance-82ecf28f314c