Departamento de Ingeniería en Matemática

MA4801-1 - Ecuaciones en Derivadas Parciales, Primavera 2024

Profesores: Rayssa Caju y Claudio Muñoz

Auxiliares: Benjamin Borquez, Vicente Salinas y Jessica Trespalacios

Guia 5 - Introdución a los Espacios de Sobolev

- **P1.** Pruebe que $H^1(\mathbb{R}^n) = H^1_0(\mathbb{R}^n)$.
- **P2.** Sea $\Omega \subset \mathbb{R}^n$. Defina el espacio $H^s(\partial\Omega)$ y pruebe que es Hilbert.
- **P3.** Sea $\Omega = (-1, 1)$ y considere la función

$$u(x) = \begin{cases} 0, & \text{si } x \in (-1,0) \\ x, & \text{si } x \in [0,1) \end{cases}$$

Demuestre que $u \in W^{1,\infty}(\Omega)$, pero u no puede ser aproximada en este espacio por funciones de $C^{\infty}(\Omega)$.

P4. Sea $\Omega = (-1,0) \cup (0,1)$ y considere la función

$$u(x) = \begin{cases} 0, & \text{si } x \in (-1,0) \\ 1, & \text{si } x \in (0,1) \end{cases}$$

Demuestre que $u \in W^{1,p}(\Omega)$ para todo $p \ge 1$, pero u no puede ser aproximada en este espacio por funciones de $C^1(\bar{\Omega})$.

P5. Sea p > N. Demuestre que si $u, v \in W^{1,p}(\mathbb{R}^N)$, entonces $uv \in W^{1,p}(\mathbb{R}^N)$ y

$$||uv||_{W^{1,p}(\mathbb{R}^N)} \le C||u||_{W^{1,p}(\mathbb{R}^N)}||v||_{W^{1,p}(\mathbb{R}^N)}.$$

¿El resultado sigue siendo verdadero si $p \leq N$?

- **P6.** Suponga N=1 y $u\in W^{1,p}((0,1))$ para algún $1\leq p<\infty$.
 - (a) Muestre que u es igual c.t.p. a una función absolutamente continua $u' \in L^p((0,1))$;
 - (b) Si 1 , entonces

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p dt \right)^{1/p}$$
, para c.t.p. $x, y \in [0, 1]$.

P7. Demuestre que una función $u \in L^p(\Omega)$ ($1 \le p < \infty$) no tiene traza en $\partial\Omega$. Más precisamente, demuestre que no existe un operador lineal acotado

$$T: L^p(\Omega) \to L^p(\partial\Omega)$$

tal que $Tu=\left.u\right|_{\partial\Omega}$ siempre que $u\in C(\bar\Omega)\cap L^p(\Omega).$