You Only Look Once: Unified, Real-Time Object Detection

(Remon, Divvala, Girshick, & Farhadi, 2016, CVPR)

AI빅데이터융합경영학과 20212548

김지은

Object detection?

- Object classification: 이미지 내에 object 한 개 존재, 그것이 개인지 고양인지를 판단
- Object classification + localization: 이미지 내에 object 한 개 존재, 위치+객체 판단
- Object detection: 이미지 내에 객체가 한 개 이상 존재, 서로 다른 object의 위치 + 객체 판단
- Instance segmentation: 이미지 내에 객체가 한 개 이상 존재, 픽셀단위의 위치 + 객체 판단

Object detection

Classification + localization

(객체 분류 + bounding box를 통한 위치 정보 파악)

* Bounding box: 하나의 객체를 포함하는 가장 작은 직사각형

One-stage vs Two-stage Detector

- One stage: localization + classification을 동시에 수행

Ex) conv를 통과한 후, 각 grid cell마다 classification 결과와 bounding box regression을 통해 결과 도출

- Two stage: localization -> classification 순차적 진행 Ex) DPM*, R-CNN*

Ex) region proposal을 통해 먼저 후보 box를 추출, classification 결과와 bounding box regression을 통해 결과 도출

- * DPM(deformable parts models): 이미지 전체를 거쳐 슬라이딩 윈도우 방식으로 객체 검출
- * R-CNN: bounding box 생성 후, classification & regression -> 중복제거(NMS) 진행
- ➡ 느림

One stage Detector

VS

Two stage Detector

ROI (Region proposal)

Sliding window

기존의 경우, sliding window를 이용한 방식으로 이미지의 모든 영역을 window로 탐색

- → 굳이 객체가 없는 곳까지 탐색하게 됨
- ➡비효율적임

물체가 있을 만한 영역만을 찾아내자!

→ Region Proposal Ex) Selective search

Selective Search

- 1. 색상, 질감 등을 활용해 Segmentation을 먼저 실시한 후, 후보영역들을 선정
- 2. 많은 후보들을 적절하게 통합함
- 3. 적절한 box 후보들 생성

One-stage vs Two-stage detector

Two stage

Image → Region proposal → feature extractor → classification, regression

후보 object 위치 제안 후, object class 예측

→ 느리지만 정확도는 높음 ex) R-CNN 계열

*느린 또다른 이유: bbox 크기를 다 동일하게 만들어줘야 함

Figure 2: Warped training samples from VOC 2007 train.

One stage

Image → feature extractor → classification, regression

ROI 영역을 추출하지 않고, 전체 이미지를 봄(각 grid cell마다 2개의 bbox 산출)

➡ 이미지를 한 번 보는 것만으로도 object의 위치와 종류를 추측할 수 있음!

➡ 빠르지만 정확도는 비교적 낮음 ex) YOLO

Yolo - Unified Detection

1. 49개의 bbox 검출 및 class 확률 예측

2.7x7x30

3. class-specific confidence score 계산 + 임계값 기준 제거 + NMS

Yolo - Network design

<Pre-trained model>

- GoogleNet의 변형
- 24conv + 2fc layer
- 20 conv: pretrained된 layer 사용
- 4 conv + 2fc → fine tuning 진행 (PASCAL VOC)
- 1x1 layer 연산량 감소
- 224*224 → 448*448*3 (input)

Yolo - Loss Function

$\text{Loss} \\ \text{Localization Loss} \\ \begin{array}{l} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ \text{Confidence Loss} \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ \text{Classification Loss} \\ \end{array}$

- -. $\mathbf{1}_{ij}^{obj}$: Object가 존재하는 grid cell i의 predictor bounding box j
- -. $\mathbf{1}_{ij}^{noobj}$: Object가 존재하지 않는 grid cell i의 bounding box j
- -. $\mathbf{1}_{i}^{obj}$: Object가 존재하는 grid cell i

[Mean Squared Error]

- (1) Object가 존재하는 grid cell i의 predictor bounding box j에 대해, x와 y의 loss를 계산
- (2) Object가 존재하는 grid cell i의 predictor bounding box j에 대해, w와 h의 loss를 계산
- (3) Object가 존재하는 grid cell i의 predictor bounding box j에 대해, confidence score의 loss를 계산
- (4) Object가 존재하지 않는 grid cell i의 bounding box j에 대해, confidence score의 loss를 계산
- (5) Object가 존재하는 grid cell i에 대해, classification의 loss 계산
 - λcoord : coordinates(x,y,w,h)에 대한 loss와 다른 loss들과의 균형을 위한 balancing parameter
 - λnoobj : obj가 있는 box와 없는 box간에 균형을 위한 balancing parameter
 - → 어떤 loss를 더 많이 반영할 것인가(가중치의 개념)

발전 모델

YOLO v1

2016년에 발표된 최초 버전으로, 실시간 객체 검출을 위한 딥러닝 기반의 네트워크

YOLO v3

2018년에 발표된 세 번째 버전으로, 네트워크 구조와 학습 방법을 개선하여 객체 검출의 정확도와 속도를 모두 개선

YOLO v5

2020년 6월에 발표된 버전으로 YOLOv4와 비교하여 객체 검출 정확도에서 10% 이상 향상되었으며, 더 빠른 속도와 더 작은 모델 크기를 가짐

YOLO v6

2022년 9월 발표된 버전으로, 여러 방법을 이용하여 알고리즘의 효율을 높이고, 특히 시스템에 탑재하기 위한 Quantization과 distillation 방식도 일부 도입하여 성능 향상

2017년에 발표된 두 번째 버전으로, 성능을 개선하고 속도를 높인 것이 특징

YOLO v2

2020년 4월에 발표된 네 번째 버전으로, SPP와 PAN 등의 기술이 적용되어 더욱 정확한 객체 검출과 더 높은 속도를 제공

YOLO v4

2022년 7월 발표된 버전으로, 훈련 과정의 최적화에 집중하여 훈련 cost를 강화화는 최적화된 모듈과 최적 기법인 trainable bag-of-freebies를 제안

YOLO v7

2023년 1월 발표된 버전으로, YOLO 모델을 위한 완전히 새로운 리포지토리를 출시하여 개체 감지, 인스턴스 세분화 및 이미지 분류 모델을 train하기 위한 통합 프레임워크 로 구축됨 ➡ 공식적 논문 미출시

YOLO v8

Experiments/Summary

Figure 1: Comparison of state-of-the-art efficient object detectors. Both latency and throughput (at a batch size of 32) are given for a handy reference. All models are test with TensorRT 7.

Object Detection on COCO 2017 val

Method	Input Size	AP ^{val}	\mathbf{AP}^{val}_{50}	FPS (bs=1)	FPS (bs=32)	Latency (bs=1)	Params	FLOPs
YOLOv5-N [10]	640	28.0%	45.7%	602	735	1.7 ms	1.9 M	4.5 G
YOLOv5-S [10]	640	37.4%	56.8%	376	444	2.7 ms	7.2 M	16.5 G
YOLOv5-M [10]	640	45.4%	64.1%	182	209	5.5 ms	21.2 M	49.0 G
YOLOv5-L [10]	640	49.0%	67.3%	113	126	8.8 ms	46.5 M	109.1 G
YOLOX-Tiny [7]	416	32.8%	50.3%*	717	1143	1.4 ms	5.1 M	6.5 G
YOLOX-S [7]	640	40.5%	59.3%*	333	396	3.0 ms	9.0 M	26.8 G
YOLOX-M [7]	640	46.9%	65.6%*	155	179	6.4 ms	25.3 M	73.8 G
YOLOX-L [7]	640	49.7%	68.0%*	94	103	10.6 ms	54.2 M	155.6 G
PPYOLOE-S [45]	640	43.1%	59.6%	327	419	3.1 ms	7.9 M	17.4 G
PPYOLOE-M [45]	640	49.0%	65.9%	152	189	6.6 ms	23.4 M	49.9 G
PPYOLOE-L [45]	640	51.4%	68.6%	101	127	10.1 ms	52.2 M	110.1 G
YOLOv7-Tiny [42]	416	33.3%*	49.9%*	787	1196	1.3 ms	6.2 M	5.8 G
YOLOv7-Tiny [42]	640	37.4%*	55.2%*	424	519	2.4 ms	6.2 M	13.7 G*
YOLOv7 [42]	640	51.2%	69.7%	110	122	9.0 ms	36.9 M	104.7 G
YOLOv6-N	640	35.9%	51.2%	802	1234	1.2 ms	4.3 M	11.1 G
YOLOv6-T	640	40.3%	56.6%	449	659	2.2 ms	15.0 M	36.7 G
YOLOv6-S	640	43.5%	60.4%	358	495	2.8 ms	17.2 M	44.2 G
YOLOv6-M [‡]	640	49.5%	66.8%	179	233	5.6 ms	34.3 M	82.2 G
YOLOv6-L-ReLU [‡]	640	51.7%	69.2%	113	149	8.8 ms	58.5 M	144 0 G
YOLOv6-L [‡]	640	52.5%	70.0%	98	121	10.2 ms	58.5 M	144.0 G

[Experiments/Summary]

- YOLO v6 SOTA 달성
- APval(정확도), FPS(속도) 측면에서 YOLO v6가 훨씬 좋은 결과를 보임 실시간으로 쓰레기를 탐지해 수거해가는 것이 중요하기에 속도는 빠르지만 정확도 또한 높은 YOLO model을 사용하는 것이 적합하다고 판단