Vyvažované stromy

Obsah přednášky

- ▶ BST výhody a nevýhody
- ► AVL stromy
- ► Červeno-černé stromy

Binární vyhledávací strom

- Binární strom s vlastnostmi
 - ▶ Uzly obsahují klíče, u kterých lze určit relace <,>,=
 - Klíče uzlů U ležících nalevo od kořene K jsou menší než klíč kořene K
 - ▶ Klíče uzlů U ležících napravo od kořene K jsou větší než klíč kořene K

Problémy

► Co se stane když budou vrcholy vkládány v "nešikovném" pořadí

Problémy

- ► Co se stane když budou vrcholy vkládány v "nešikovném" pořadí
- ▶ Příklad: 5 7 10 11 13
 - jaká je složitost vyhledávání?
 - co se s tím dá vymyslet?

Vyvažování stromu

- Snažit se zamezit tomu, aby některá z větví byla mnohem delší než ostatní
 - AVL stromy
 - red-black stromy
 - splay stromy
 - **>** ...
- Cena vyvažování nesmí být příliš vysoká

AVL stromy

- Aby byl strom vyvážený, musí platit:
 - pro každý uzel stromu se hloubka jeho dětí může lišit maximálně o 1
 - přestože jde o lokální vlastnost, zajišťuje globální vyváženost

Vyvážení stromu

- ► Faktor vyvážení
 - rozdíl hloubky levého a pravého podstromu

Úprava operace vložení

- Úprava operace vložení
- Úprava operace mazání

- Úprava operace vložení
- Úprava operace mazání
- Po provedení vložení/mazání nutno zkontrolovat splnění podmínky vyváženosti, v případě nesplnění strom vyvážit

- Operace vložení probíhá standardním způsobem
 - nalézt vhodné umístění nového uzlu
 - vložit uzel
- Pro zajištění vyváženosti
 - cestou zpět ke koření opravovat hloubky uzlů
 - pokud cestou zpět existuje nevyvážený uzel, musí se provést restrukturalizace stromu operací rotace

- přídání uzlu 45
 - znaménko nevyváženého uzlu a kořene většího podstromu je stejné

- přídání uzlu 45
 - znaménko nevyváženého uzlu a kořene většího podstromu je stejné
- provedení rotace
 - kořen většího podstromu a nevyvážený uzel si prohodí rodinné vztahy

- přídání uzlu 45
 - znaménko nevyváženého uzlu a kořene většího podstromu je stejné
- provedení rotace
 - kořen většího podstromu a nevyvážený uzel si prohodí rodinné vztahy
- přepočítání hloubky stromu

- Zobecněný postup
 - ► rotace doprava

- Zobecněný postup
 - rotace doleva (symetrická)

- ▶ Ne vždy stačí na opravu jednoduchá rotace
 - přidání uzlu 68

- ▶ Ne vždy stačí na opravu jednoduchá rotace
 - přidání uzlu 68

- ▶ Ne vždy stačí na opravu jednoduchá rotace
 - přidání uzlu 68

Operace vkládání – dvojitá rotace

Zobecněný postup (doleva – doprava)

Operace vkládání – rotace obecně

- Nalézt první nevyvážený uzel
 - procházením od listu ke kořenu
 - vybrat nevyvážený uzel a dva následníky ve směru nejdelší větve
- Seřadit nalezené uzly podle velikosti klíče
 - seřazené uzly označit a, b, c
- Umístit uzel b na pozici nevyváženého uzlu
 - upravit vazby mezi uzly tak, aby byly zachovány vlastnosti BST

Operace mazání

- Probíhá standardním způsobem
 - vymazat uzel a obnovit BST
- Cestou zpět ke koření kontrolovat vyváženost
 - pokud je nalezen nevyvážený uzel, provést vyvážení
- Vyvážení může obecně způsobit další problém
 - postupně dojít až ke kořenu

AVL stromy – shrnutí

- Operace vyvážení (jedna) O(1)
 - za předpokladu, že jsou ukazatele na rodiče
- Operace vyhledání uzlu O(log N)
 - složitost zajištěna i pro "nepříznivé" případy
- Operace vkládání O(log N)
 - vyhledání pozice O(log N)
 - vyvážení O(1)
- Operace odebrání O(log N)
 - vyhledání pozice O(log N)
 - vyvážení O(log N) pro nejhorší případ

Red-Black stromy

- AVL stromy jsou příliš omezující
 - vyvážení stromu je O (log N)
 - je zajištěno, že rozdíl hloubky dvou podstromů libovolného uzlu je menší než dva
 - není zaručen poměr největší a nejmenší hloubky
- Červeno-černé stromy volnější pravidla

Pravidla

- Uzly stromu jsou buď černé nebo červené
- Musí splňovat
 - kořen je černý
 - děti červeného uzlu jsou černé
 - každý list (prázdný prvek) je černý
 - "černá" hloubka všech listů je stejná

- Nově vkládaný uzel z je červený
 - pokud to není kořen
 - jestliže rodič v uzlu z je černý, pak je vše ok
 - jinak jsou ve stromě dva po sobě následující červené uzly a je třeba strom opravit
- Příklad
 - vložení uzlu 4

Opravy

- ▶ Označíme uzly
 - z vkládaný uzel
 - v rodič vkládaného uzlu
 - w sourozenec uzlu v
- Dvě možné situace
 - ▶ w je černý
 - restrukturalizace stromu
 - w je červený
 - přebarvení stromu

Restrukturalizace

- Celkem 4 různé situace
 - společné řešení

Přebarvení

- ► Rodič a sourozenec se přebarví na černo
- Prarodič se přebarví na červeno
 - pokud to není kořen

Red-Black stromy – shrnutí

- Nejhorší možná situace
 - nejmenší hloubka h, největší hloubka 2h
 - počet černých uzlů musí být stejný, červené nemohou být dva po sobě
- Nižší počet operací vyvážení

Konec