CONTEXT FREE GRAMMAR:

A context free grammar (CFG) can be define in 4-tuple (S, T, N, P) where -

- ❖ **S** is a special variable called the **Start symbol**, S ∈ N (*S is a representation of start symbol as we have q0 in FA, it name may be change*)
- \bullet T or Σ is a finite non-empty set of **Terminal symbols.**
 - Represented by Small letters (a to z) E.g. $\sum = \{a, b\}$
 - ► **OR** Represented by digits (0 to 1) E.g. $\Sigma = \{0, 1\}$
 - ➤ OR special symbols E.g. \$, #, @ etc.
 - ➤ It is always on right side of production.
- ❖ N or VN is a finite non-empty set of variables or non-terminal symbols.
 - ➤ Represented by Capital letters (A to Z) E.g. {S, A}
 - It is always on left side of production, but also possible on right side as well.
- ❖ P is Production rules for Terminals and Non-terminals.
 - \triangleright A production rule can be in the form of $α \rightarrow β$ where

$$\alpha \to \beta$$
 (α determine β)
 $\alpha \in N$, α must be only 1
 $\beta \in (\sum \cup N)^*$

For Example:

- \triangleright S \rightarrow Aa
- \triangleright A \rightarrow a
- \triangleright A \rightarrow b
- \triangleright A \rightarrow ϵ
- $A \to 0/1/2/3$

The above is the example of CFG, each line is called **rule of grammar**, due to that we define grammar as; "a set of rules and regulations".

Backus-Nour Form / Backus Normal Form:

It states that if left side of production is same then we can write it together instead of separate.

For Example:

- \triangleright S \rightarrow A
- \triangleright A \rightarrow a
- \triangleright A \rightarrow b

$$\rightarrow$$
 A $\rightarrow \varepsilon$

We notice that on left side of production letter are same, then we can write it together, like

$$\rightarrow$$
 A \rightarrow a / b / ϵ

Why we use Context Free Grammar?

- ❖ Before going to main question we must know that what is regular languages and non-regular languages?
- * Regular languages are those languages for which we can draw Finite automata
- **♦** (NFA/DFA)
- ❖ Non-Regular languages are those languages for which we cannot draw FA.
- ❖ Now the question is that how to handle Non-Regular languages, answers is simple to handle Non-Regular languages context-free grammar is use.

Examples of Context-Free Grammar

How to generate a string from CFG?

- **1.** Let's we have given a grammar.
 - \triangleright S \rightarrow A
 - \rightarrow A \rightarrow A+A
 - \rightarrow A \rightarrow A*A
 - $A \rightarrow 0/1/2/3/4/5/6/7/8/9$
 - ❖ And tell us that generate the string "2+3*5" from above grammar.

Let's solve it...

```
S → A  // Replace the A with A+A, follow above grammar)
A → A+A  // Now replace right A with A*A, follow grammar)
A → A+A*A  // Now replace left A with 2, follow grammar)
A → 2+A*A  // Now replace middle A with 3, follow grammar)
A → 2+3*A  // Now replace right A with 5, follow grammar)
A → 2+3*5  // finally, we got the desire string)
```

2. Let's we take another example, suppose we have given a grammar.

$$\Rightarrow S \rightarrow A$$

$$\Rightarrow A \rightarrow \varepsilon$$

$$\Rightarrow A \rightarrow 0 / 1$$

$$\Rightarrow A \rightarrow 0 A 0$$

$$\Rightarrow A \rightarrow 1 A 1$$

❖ And tell us that generate the string "0110" from above grammar.

Let's solve it...

```
S \rightarrow A // Replace the A with 0A0, follow above grammar)

A \rightarrow 0A0 // Now replace right A with 1A1, follow grammar)

A \rightarrow 01A10 // Now to remove the A, use \varepsilon)

A \rightarrow 01\varepsilon 10 // \varepsilon not effect any string)

A \rightarrow 0110 // finally, we got the desire string)
```

How to convert Regular Expression to CFG?

1. Let's we have R.E.

```
R.E = a // Grammar start from S, it generate only "a" CFG = S \rightarrow a
```

2. Let's we have R.E.

$$\mathbf{R.E} = 1$$

$$\mathbf{CFG} = \mathbf{S} \to \mathbf{1}$$

// Grammar start from S, it generate only "1"

3. Let's we have R.E.

$$\mathbf{R.E} = \mathbf{a} + \mathbf{b}$$

$$\mathbf{CFG} = \mathbf{S} \to \mathbf{X} / \mathbf{Y}$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

OR we can write it as well,

$$S \rightarrow a/b$$

OR we can write it as well,

$$S \rightarrow a$$

$$S \rightarrow b$$

4. Let's we have R.E.

R.E =
$$(a+b)(a+b)$$

$$\mathbf{CFG} = \mathbf{S} \to \mathbf{X} \mathbf{X}$$

$$X \rightarrow A / B$$

$$A \rightarrow a$$

$$B \rightarrow b$$

We know that, a+b = union and a.b / ab = concatenation in R.E, now in CFG, for union we use this symbol " / " and concatenation will be same.