

today's lecture

interference graphs

construction during liveness analysis

today's lecture

interference graphs

construction during liveness analysis

graph colouring

- assign registers to local variables and compiler temporaries
- store local variables and temporaries in memory

today's lecture

interference graphs

construction during liveness analysis

graph colouring

- assign registers to local variables and compiler temporaries
- store local variables and temporaries in memory

coalescing

handle move instructions

today's lecture

interference graphs

construction during liveness analysis

graph colouring

- assign registers to local variables and compiler temporaries
- store local variables and temporaries in memory

coalescing

handle move instructions

pre-coloured nodes

example

steps

simplify

remove node of insignificant degree (fewer than k edges)

select

add node, select colour

Optimistic colouring steps

```
remove node of insignificant degree (fewer than k edges)

spill

remove node of significant degree (k or more edges)

select

add node, select colour
```


Optimistic colouring

example with 2 colours

Optimistic colouring

example with 2 colours

Spilling steps

```
simplify
    remove node of insignificant degree (less than k edges)
spill
    remove node of significant degree (k or more edges)
select
    add node, select colour
actual spill
start over
```


potential spill

potential spill

actual spill

Spilling

III

coalescing

Recap: graph colouring

Recap: graph colouring

Recap: graph colouring

better solution

better solution

better solution

coalescing nodes

conservative strategies

Briggs

- a/b has fewer than k neighbours of significant degree
- nodes of insignificant degree and a/b can be simplified
- remaining graph is colourable

George

- all neighbours of a of significant degree interfere also with b
- neighbours of a of insignificant degree can be simplified
- subgraph of original graph is colourable

Graph colouring

steps

simplify

remove non-move-related node of insignificant degree

coalesce

freeze

turn move-related node of insignificant degree into non-move-related

spill

select

start over

coalescing nodes

pre-coloured nodes

Recap: Calling Conventions

CDECL

caller

- push parameters right-to-left on the stack
- clean-up stack after call

```
push 21
push 42
call _f
add ESP 8
```

callee

- save old BP
- initialise new BP
- save registers
- return result in AX
- restore registers
- restore BP

```
push EBP
     EBP ESP
mov
     EAX [EBP + 8]
mov
    EDX [EBP + 12]
mov
     EAX EDX
add
pop
     EBP
ret
```


Recap: Calling Conventions

STDCALL

caller

push parameters right-to-left on the stack

```
push 21
push 42
call _f@8
```

callee

- save old BP
- initialise new BP
- save registers
- return result in AX
- restore registers
- restore BP

```
push EBP
mov EBP ESP
    EAX [EBP + 8]
mov
    EDX [EBP + 12]
mov
    EAX EDX
add
pop
    EBP
ret
```

Recap: Calling Conventions

FASTCALL

caller

- passes parameters in registers
- pushes additional parameters right-to-left on the stack
- cleans up the stack

callee

- save old BP, initialise new BP
- save registers
- return result in AX
- restore registers
- restore BP

```
ECX 21
mov
     EDX 42
mov
call @f@8
```

```
push EBP
     EBP ESP
     EAX ECX
mov
     EAX EDX
add
     EBP
pop
ret
```

Pre-coloured nodes

representing registers

nodes

- register = pre-coloured node
- no simplify, no spill
- coalesce possible

edges

- all registers interfere with each other
- explicit usage of registers
- call and return instructions influence liveness

V

summary

Summary

lessons learned

How can we assign registers to local variables and temporaries?

- perform liveness analysis
- build interference graph
- colour interference graph

What to do if the graph is not colourable?

keep local variables in memory

How to handle move instructions efficiently?

coalesce nodes safely

Literature

learn more

Andrew W. Appel, Jens Palsberg: Modern Compiler Implementation in Java, 2nd edition. 2002

Lal George, Andrew W. Appel: Iterative Register Coalescing. POPL 1996

Lal George, Andrew W. Appel: Iterative Register Coalescing. TOPLAS 18(3), 1996

Outlook coming next

imperative and object-oriented languages

- Lecture 11: Register Allocation today
- Lecture 12: Garbage Collection Nov 13

compiler components & their generators

- Lecture 13: Scanning Nov 20
- Lecture 14: LL Parsing Dec 04
- Lecture 15: LR Parsing Dec 11

exam preparation

Question & Answer Jan 08

copyrights

Pictures

attribution & copyrights

Slide 1:

Colors #2 by Carmelo Speltino, some rights reserved

Slide 40:

Tchibo by Dominica Williamson, some rights reserved

Slide 76:

Romantic Pigeon Date by Harald Hoyer, some rights reserved

