Lab 03

Instructions:

- 1. Paste all screenshots (highlighted in red) in a single Word document in the correct order
- 2. Name the document as YourName-lab03
- 3. Submit the document as an attachment in Bb under Labs
- 4. Use a WSL terminal for all activities

Lab submissions must be made by the due date (as indicated on the Critical Path). Each day thereafter will incur a **10%** deduction from the earned marks, up to a maximum of **3 days**. Submissions beyond this deadline will receive a grade of **Zero**.

Lab Objectives:

There are 3 sections in this lab. Each section has a different set of objectives. The sections are described below:

Section 1: Expand lab02s3 and define and consume local values (lab03s1)

Section 2: Expand lab03s1 and define output blocks (lab03s2)

Section 3: Expand lab03s2 and add explicit lifecycle rules and dependencies (lab03s3)

WARNING

Code generated by ChatGPT or a similar generative AI tool, and copied and pasted without making the **right** modifications will result in a **ZERO** for that **entire section**.

Section 1

Objectives:

- Use configuration from lab02s3
- Define a locals block to assign tags to resources
- Validate, deploy, expand, analyze, and destroy infrastructure

Part 1: Prepare for the lab:

1. Create a folder called lab03s1 under automation/terraform

- 2. Copy network-main.tf, network-vars.tf, vmlinux-main.tf, vmlinux-vars.tf, and providers.tf files from lab02s3 to lab03s1 directory
- 3. Change into lab03s1

Part 2: Update vmlinux-vars.tf file:

- 4. Define a locals block with the following values at the beginning of the file. Make sure to enclose values within double quotation marks.
 - a. Name: Terraform-Class
 - b. Project: Learning
 - c. ContactEmail: yourHumberemail
 - d. Environment: Lab

SCREENSHOT of vmlinux-vars.tf

Part 3: Update vmlinux-main.tf file:

5. Add tags to network interface, public IP, and virtual machine resource blocks.

SCREENSHOT of vmlinux-main.tf

Part 4: Initialize Terraform:

6. Initialize Terraform to download plug-ins as required (terraform init)

Part 5: Validate configuration:

- 7. Validate the configuration to ensure there are no errors or typos in the file (**terraform validate**)
- 8. Fix any issues in the Terraform files if reported
- 9. Re-run the validation until no errors are reported (terraform validate)

Part 6: Run simulation:

- 10. Perform a dry run (terraform plan)
- 11. Review output and ensure all configuration is as per requirements. Observe the resources with +, -, or -/+ signs.
- 12. Fix any issues in the Terraform files if reported
- 13. Redo the dry run until no errors are reported (terraform plan)

Part 7: Deploy infrastructure:

- 14. Deploy the infrastructure and monitor progress (terraform apply)
- 15. View Terraform log file and review details

Part 8: Get information from Terraform state:

16. View and analyze state information (terraform state list | nl)

SCREENSHOT

Part 9: Confirm resource creation in Azure:

17. Log in to the Azure Portal. Navigate to the resource group and click on the virtual machine resource to confirm tags applied as per the specifications.

SCREENSHOT of VM Overview

Part 10: Destroy all resources and verify:

- 18. Destroy all the resources (terraform destroy)
- 19. Verify deletion (terraform state list | nl)

Section 2

Objectives:

- Use configuration from lab03s1
- Define output blocks to display values
- Validate, deploy, expand, analyze, and destroy infrastructure

Part 1: Prepare for the lab:

- 1. Copy the directory lab03s1 as lab03s2
- 2. Change into lab03s2
- 3. Create an empty file called outputs.tf

Part 2: Update outputs.tf file:

- 4. Define output blocks in the outputs.tf file to display the following values:
 - a. VM hostname (1 block)
 - b. VM FQDN (1 block)
 - c. Private IP address (1 block) and Public IP address (1 block)
 - d. Virtual network name (1 block) and address space (1 block)
 - e. Subnet names (2 blocks) and address spaces (2 blocks)

SCREENSHOT of outputs.tf

Part 3: Validate configuration:

- Validate the configuration to ensure there are no errors or typos in the file (terraform validate)
- 6. Fix any issues in the Terraform files if reported
- 7. Re-run the validation until no errors are reported (terraform validate)

Part 4: Run simulation:

- 8. Perform a dry run (terraform plan)
- 9. Review output and ensure all configuration is as per requirements. Observe the resources with +, -, or -/+ signs.

- 10. Fix any issues in the Terraform files if reported
- 11. Redo the dry run until no errors are reported (terraform plan)

Part 5: Deploy infrastructure:

- 12. Deploy the infrastructure and monitor progress (terraform apply)
- 13. Confirm output values displayed on the screen at the end of infrastructure deployment

Part 6: Get information from Terraform state:

14. View and analyze state information (terraform state list | nl) SCREENSHOT

Part 7: Display output information:

15. Display output information (terraform output)

SCREENSHOT

Part 8: Destroy all resources and verify:

- 16. Destroy all the resources (terraform destroy)
- 17. Verify deletion (terraform state list | nl)

Section 3

Objectives:

- Use configuration from lab03s2
- Define lifecycle rules to prevent updates and resource deletions
- Define explicit dependency
- Validate, deploy, expand, analyze, and destroy infrastructure

Part 1: Prepare for the lab:

- 1. Copy the folder lab03s2 as lab03s3
- 2. Change into lab03s3

Part 2: Update network-main.tf file:

3. Define an explicit dependency rule for the resource group to wait for the creation of virtual machine

SCREENSHOT of network-main.tf

Part 3: Validate configuration:

4. Validate the configuration to ensure there are no errors or typos in the file (**terraform validate**)

The validation will fail with an error.

SCREENSHOT

- 5. Remove the dependency for the resource group to wait for the creation of virtual machine
- 6. Re-run the validation until no errors are reported (terraform validate)

The validation should be successful this time.

Part 4: Run simulation:

- 7. Perform a dry run (terraform plan)
- 8. Review output and ensure all configuration is as per requirements. Observe the resources with +, -, or -/+ signs.
- 9. Fix any issues in the Terraform files if reported
- 10. Redo the dry run until no errors are reported (terraform plan)

Part 5: Deploy infrastructure:

- 11. Deploy the infrastructure and monitor progress (terraform apply)
- 12. Confirm output values displayed on the screen at the end of infrastructure deployment

Part 6: Add and test a lifecycle deletion rule:

- 13. Edit **vmlinux-main.tf** file and add a rule to prevent virtual machine, public IP, and network interface resources from removal
- 14. Run **terraform destroy** and observe the error message generated **SCREENSHOT**
- 15. Edit vmlinux-main.tf file again and remove the deletion rules

Do not destroy the infrastructure yet.

Part 7: Add and test a lifecycle update rule:

- 16. Go to the Azure Portal and change some of the tag values for the virtual machine
- 17. Edit vmlinux-main.tf file and add a rule to prevent tag updates to the virtual machine
- 18. Run **terraform plan** and observe the dry run output

SCREENSHOT

19. Edit vmlinux-main.tf file again and remove the update rule

Part 8: Destroy all resources and verify:

- 20. Destroy all the resources (terraform destroy)
- 21. Verify deletion (terraform state list | nl)