

X3-Class HiPerFET™ Power MOSFET

IXFN240N25X3

30

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

 V_{DSS} = 250V I_{D25} = 240A $R_{DS(on)} \le 4.5 \text{m}\Omega$

miniBLOC, SOT-227 E153432

Symbol	Test Conditions		Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$		250	V	
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$		250	V	
V _{GSS}	Continuous		± 20	V	
V _{GSM}	Transient		± 30		
I _{D25} I _{L(RMS)}	$T_{c} = 25^{\circ}C$ (Chip Capability)		240	A	
	External Lead Current Limit		200	A	
	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}		600	A	
I _A	$T_c = 25^{\circ}C$		200	A	
E _{AS}	$T_c = 25^{\circ}C$		3	J	
P_{D}	T _c = 25°C		695	W	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$		50	V/ns	
T _J T _{JM} T _{stg}			-55 +150 150 -55 +150	သ လ သ	
V _{ISOL}	50/60 Hz, RMS	t = 1 minute	2500	V~	
	I _{ISOL} ≤ 1mA	t = 1 second	3000	V~	
M _d	Mounting Torque Terminal Connect		1.5/13 1.3/11.5	Nm/lb.in Nm/lb.in	

Symbol		Characteristic Values				
$T_{\rm J} = 25^{\circ}$ C	Unless Otherwise Specified)		Min.	Тур.	Max	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 3mA$		250			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 8mA$		2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				25	μΑ
		$T_J = 125^{\circ}C$			2.5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 120A, Note$	e 1		3.5	4.5	mΩ

G = Gate D = Drain S = Source

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500V~
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

g

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Weight

Symbol	•		Characteristic Values			
$(T_J = 25^{\circ}C, l)$	Unless Otherwise Specified)	Min.	Тур.	Max		
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	80	135	S		
R_{Gi}	Gate Input Resistance		1.8	Ω		
C _{iss}			23.8	nF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3.7	nF		
C _{rss}			1.5	pF		
	Effective Output Capacitance					
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		1400	pF		
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		5480	pF		
t _{d(on)}	Resistive Switching Times		36	ns		
t,	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 120A$ $R_{G} = 1\Omega$ (External)		32	ns		
$t_{d(off)}$ t_{f}			180	ns		
	n _G = 152 (External)		14	ns		
$Q_{g(on)}$			345	nC		
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 120A$		112	nC		
Q _{gd})		72	nC		
R _{thJC}				0.18 °C/W		
R _{thCS}			0.05	°C/W		

Source-Drain Diode

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)		Chara Min.	acteristic Values Typ. Max		
I _s	$V_{GS} = 0V$			240	Α
I _{SM}	Repetitive, Pulse Width Limited by $\rm T_{_{\rm JM}}$			960	Α
V _{SD}	$I_F = 100A$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 120A$, $-di/dt = 100A/\mu s$ $V_R = 100V$		165 3.7 45.6		ns μC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

© 2019 IXYS CORPORATION, All Rights Reserved.

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.