Aufgabe 1 (Frühjahr 2009). (a) Berechnen Sie das Minimalpolynom von $\zeta_{15} = e^{\frac{2\pi i}{15}}$ über \mathbb{Q} .

(b) Seien M der Zerfällungskörper von X^{15} – 10 über $\mathbb Q$ und G die Automorphismengruppe von M über $\mathbb Q$. Bestimmen Sie die Gruppe G und zeigen Sie, daß G nicht isomorph zur symmetrischen Gruppe S_5 ist.

Aufgabe 2 (Herbst 2003). Beweisen Sie:

$$\cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}.$$

Aufgabe 3 (Frühjahr 2004). Es sein n > 2 und ζ eine primitive n-te Einheitswurzel über \mathbb{Q} . Zeigen Sie:

$$[\mathbb{Q}(\zeta+\zeta^{-1}):\mathbb{Q}]=\frac{1}{2}\varphi(n),$$

wobei φ die Euler'sche φ -Funktion bezeichnet.

Aufgabe 4 (Frühjahr 2004). Für Primzahlpotenzen q bezeichne \mathbb{F}_q den Körper aus q Elementen.

- (a) Bestimmen Sie die kleinste Zweierpotenz $q=2^m$, so daß der Körper \mathbb{F}_q eine primitive 17-te Einheitswurzel enthält.
- (b) Es sei α ein erzeugendes Element der multiplikativen Gruppe des Körpers \mathbb{F}_{256} . Welchen Grad hat das Minimalpolynom f von α über \mathbb{F}_2 ? Welche Potenzen von α sind Nullstellen von f?
- (c) Es sei α wie in (b). Zeigen Sie unter Benutzung der Galois-Theorie, daß das Polynom

$$g(X) = (X - \alpha)(X - \alpha^4)(X - \alpha^{16})(X - \alpha^{64})$$

Koeffizienten in \mathbb{F}_4 hat.

Aufgabe 5 (Frühjahr 1998). Es sei $f(X) \in \mathbb{Q}[X]$ irreduzibel von ungeradem Grad m. Sei ω eine primitive siebzehnte Einheitswurzel. Zeigen Sie, daß f(X) über $\mathbb{Q}(\omega)$ irreduzibel ist.