*** Applied Machine Learning Fundamentals *** Clustering

M. Sc. Daniel Wehner

SAPSE

Winter term 2019/2020

Find all slides on GitHub

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Agenda for this Unit

1 Introduction

What is Clustering? Clustering Strategies Overview

k-Means

Introduction k-Means Algorithm
Use Case: Image Compression
Problems and Issues

3 Hierarchical Clustering

Agglomerative Clustering Algorithm Agglomerative Clustering: Example Distance Metrics between Clusters

- 4 Spectral Clustering
- **6** Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Section: Introduction

Clustering Introduction

- Clustering belongs to the category of unsupervised learning
- A clustering algorithm tries to **find structure** in the data
- Once the clusters are found, they first have to be interpreted...
- ...and can then be used for prediction purposes

A cluster must be **internally homogeneous**, but simultaneously **externally heterogeneous**. (Elements of one cluster have to be very similar, but must differ significantly from elements in other clusters.)

Example Use Cases for Clustering

- Behavioral segmentation
 - Customer segmentation (e. g. sinus milieus)
 - Creating profiles based on activity monitoring
- Sorting sensor measurements
 - Image grouping
 - Detection of activity types in motion sensors
- Inventory categorization
 - Grouping inventory by sales activity
 - Grouping inventory by manufacturing metrics
- Many, many more, ...

Clustering Strategies

- EM-based clustering, e.g.: k-Means
- 2 Hierarchical clustering, e. g.:
 - Agglomerative clustering
 - Divisive clustering
- 3 Affinity-based clustering, e.g.:
 - Spectral clustering
 - DBSCAN

k-Means: Procedure

- The algorithm is an instance of vector quantization
 - It represent data points by a single vector (here: centroid) which is close to them
 - This is useful for compression!
- How to: Create k partitions ($\widehat{=}$ clusters) of the data set \mathcal{D} , such that the sum of squared deviations from the cluster centroids is minimal:

$$\min_{\mu_j} \sum_{j=1}^k \sum_{\mathbf{x}^{(i)} \in \mathcal{D}_i} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_j\|^2 \tag{1}$$

• With $\mathcal{D}_i \equiv j^{th}$ cluster, $\mu_i \equiv$ centroid of j^{th} cluster

Result: Voronoi Diagram

- The dots represent cluster centroids
- The lines visualize the cluster boundaries
- For a new point we can easily determine to which cluster it has to be assigned

k-Means Algorithm

- Input: $\mathcal{D} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\} \in \mathbb{R}^{n \times m}$, Number of clusters k
- Algorithm:
 - \bullet $t \leftarrow 1$
 - 2 Randomly choose k means $\mu_1^{\langle 1 \rangle}, \mu_2^{\langle 1 \rangle}, \ldots, \mu_k^{\langle 1 \rangle}$
 - 3 While not converged:
 - **3a** Assign each $\mathbf{x}^{(i)} \in \mathcal{D}$ to the closest cluster:

$$\mathcal{D}_{j}^{\langle t \rangle} = \left\{ \boldsymbol{x}^{(i)} : \|\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{j}^{\langle t \rangle}\|^{2} \leqslant \|\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{j^{*}}^{\langle t \rangle}\|^{2}; \ \forall j^{*} = 1, 2, \dots, k; \boldsymbol{x}^{(i)} \in \mathcal{D} \right\}$$

3b Update cluster centroids μ_i :

$$oldsymbol{\mu}_{j}^{\langle t+1
angle} = rac{1}{|\mathcal{D}_{i}^{\langle t
angle}|} \sum_{oldsymbol{x}^{(i)} \in \mathcal{D}_{i}^{\langle t
angle}} oldsymbol{x}^{(i)}$$

3c
$$t \leftarrow t+1$$

Image Compression

Original image

Compressed image

k-Means Issues

- The algorithm assumes all clusters are sperical
 (≠ affinity-based clustering)
- Does not have a notion of **outliers** (unlike *DBSCAN*)
- What is the correct value for $k? \Rightarrow Elbow-method$:
 - Measure sum of squred distances from data points to cluster centers (inertia)
 - Record results for different values for k and plot them
 - Search for the 'elbow point'

Elbow Method

Section: Hierarchical Clustering

Agglomerative Clustering

- **1** Start with one cluster for each instance: $C = \{\{x^{(i)}\} : x^{(i)} \in X\}$
- 2 Compute distance $d(C_i, C_j)$ between all pairs of clusters C_i , C_j
- 3 Join clusters C_i and C_j with minimum distance into a new cluster C_p :

$$C_p = \{C_i, C_j\}$$

$$C = (C \setminus \{C_i, C_j\}) \cup \{C_p\}$$

- 4 Compute distances between C_p and all other clusters in C
- **5** If |C| > 1, goto 3

Single Linkage

- Computing distances between clusters C_1 and C_2
- Single linkage:

$$d(C_1, C_2) = \min\{d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) : \mathbf{x}^{(i)} \in C_1, \mathbf{x}^{(j)} \in C_2\}$$

Complete Linkage

- Computing distances between clusters C_1 and C_2
- Complete linkage:

$$d(C_1, C_2) = \max\{d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) : \mathbf{x}^{(i)} \in C_1, \mathbf{x}^{(j)} \in C_2\}$$

Section: Spectral Clustering

Spectral Clustering

Section: Wrap-Up

Introduction

k-Means

Hierarchical Clustering

Spectral Clustering

Wrap-Up

ummary elf-Test Questions ecture Outlook lecommended Literature and further Readin, Neme of the Day

Summary

Introduction

k-Means

Hierarchical Clustering

Spectral Clustering

Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Self-Test Questions

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Recommended Literature and further Reading

Meme of the Day

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Clustering

Term: Winter term 2019/2020

Contact:

M.Sc. Daniel Wehner SAPSE daniel.wehner@sap.com

Do you have any questions?