

ANALOGY AND SIGNALS

Embodied Intelligence - Balázs Nagy, PhD

What is embodied intelligence?

Cangelosi, A., Bongard, J., Fischer, M.H., Nolfi, S. (2015). Embodied Intelligence. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_37

What is embodied intelligence?

Embodied intelligence is the computational approach to the design and understanding of intelligent behavior in embodied and situated agents through the consideration of the strict coupling between the agent and its environment (situatedness), mediated by the constraints of the agent's own body, perceptual and motor system, and brain (embodiment).

Cangelosi, A., Bongard, J., Fischer, M.H., Nolfi, S. (2015). Embodied Intelligence. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_37

Central processing unit

Brain

CPU

Central processing unit

Brain

Eyes

Nose

Ears

Skin

Tongue

Spidey Sense

CPU

Sensors

Optical sensor (cameras) Olfactory sensors

> Audio sensor Equilibrium sensor

FACULTY OF INFORMATICS

Central processing unit

Sensors

Optical sensor (cameras) Olfactory sensors

> Audio sensor Equilibrium sensor

Actuators

Motors **Blasters**

CPU

Brain

Eyes

Nose

Ears

Skin

Tongue

Muscles

Spidey Sense

Web shooter

Skills needed

Informatics

Mechanics

• Signal conditioning:

the manipulation of an analog signal in such a way that it meets the requirements of the next stage for further processing.

amplification, filtering, converting, range matching, isolation

- A/D: Analog to digital conversion
- D/A: Digital to analog conversion

• **Signal processing:** the "brain", this is were the intelligent part is implemented

Canonical control loop

x_h: Base signal

x_c: Control signal

x_r: Regulated/controlled signal

x_f: Feedback signal

x_d: Disturbance signal

Transfer function

= mathematical model of the plant

Garbage in garbage out (GIGO)

In computer science, garbage in, garbage out (GIGO) is the concept that flawed, or nonsense (garbage) input data produces nonsense output.

Rubbish in, rubbish out (RIRO) is an alternate wording.

What is a signal?

- Signal can be anything
- Physical state changes during time

Signal = Information + Noise

Information: useful part of the signal

Noise: unwanted disturbance

Communication model

Communication model

- **Deterministic:**If a signal value at any point in time can be defined precisely by a mathematical equitation.
- **Stochastic** (non-deterministic): A signal is said to be non-deterministic if. there is uncertainty with respect to its value at some instant of time

Ergodic:

A random signal where time averages equal ensemble averages for fixed time. => Can be predicted with a finite statistics. (noise with normal distribution)

Not ergodic:
 Can not be predicted.

Analog:

A signal that continuously and infinitely varies in accordance with some time-varying parameter

Digital:

A signal that represents data as a sequence of discrete values

Periodic

A signal that has a definite pattern and repeats itself at a regular interval of time.

- Sinusoid
- General periodic

Not periodic (aperiodic):

- Quasiperiodic
- Transient

Signal types examples

Not periodic

Time

General periodic

Transient

Signal types examples

Comparison

	Analog	Digital
Signal	Continuous signal	Discrete time signals
Waves	Denoted by sine waves	Denoted by square waves
Representation	Continuous range of values	Discrete or discontinuous values
Noise	More likely to get affected, subjected to deterioration by noise during transmission	Less affected since noise response, can be noise-immune without deterioration during transmission
Flexibility	Analog hardware is not flexible.	Digital hardware is flexible in implementation.
Bandwidth	Analog signal processing can be done in real time and consumes less bandwidth	There is no guarantee that digital signal processing can be done in real time and consumes more bandwidth to carry out the same information
Power	Analog instrument draws large power	Digital instrument draws only negligible power

Every signal is a superposition of many sinusoid signal

https://academo.org/demos/wave-interference-beat-frequency/

Spectrum

- A signal is a function of time which can be represented by a series of sinusoidal functions or sinusoidal components.
- These sinusoidal components have different frequencies, different amplitudes, and different phases.
- Therefore, the plots of frequency versus amplitude and phase for the sinusoidal components which comprise the signal are called the Frequency Spectrum or Spectrum of the signal.

Sinusoid wave composition

$$\omega=2\pi f.$$
 $f=rac{1}{T}$ $A\sin\left(\omega t
ight)=A\sin\left(2\pi ft
ight)=A\sin\left(rac{2\pi}{T}t
ight)$

Decomposition of a Signal

We can express the following representation of a function:

$$x(t) = A_o + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \theta_k)$$

$$= X_o + \Re e\{\sum_{k=1}^{N} X_k e^{j2\pi f_k t}\}$$
Where $X_o = A_o$ is a real constant (DC component) and $X_k = A_k e^{j\theta_k}$ is the phasor for frequency f_k

• Here we see that there are N+1 frequency components for x(t), $0 \le k \le N$ and with each frequency there is a phasor.

Decomposition of a Signal

• For example, the k^{th} frequency has a phasor X_k with amplitude, A_k , and phase θ_k

$$x(t) = A_o + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \theta_k) = X_o + \Re e\{\sum_{k=1}^{N} X_k e^{j2\pi f_k t}\}$$

Where $X_o = DC$ component and $X_k = A_k e^{j\theta_k}$ is the phasor for frequency f_k

This is really only half of the spectrum.

Decomposition of a Signal

• Using Euler's formula, rewrite x(t):

$$x(t) = A_o + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \theta_k) = X_o + \sum_{k=1}^{N} \left\{ \frac{A_k}{2} e^{j\theta_k} e^{j2\pi f_k t} + \frac{A_k}{2} e^{-j\theta_k} e^{-j2\pi f_k t} \right\}$$

$$= X_o + \sum_{k=1}^{N} \left\{ \frac{X_k}{2} e^{j2\pi f_k t} + \frac{X_k}{2} e^{-j2\pi f_k t} \right\}$$

- Using this approach, we see that there are 2N+1 frequency component
- Or we can say that for each k where $1 \le k \le N$, there is a positive frequency f_k with phasor $X_k/2$ and a negative frequency $-f_k$ with phasor $X_k*/2$
- Therefore, we say that the spectrum is two-sided

Aliasing

 A family of sinusoids at the critical frequency, all having the same sample sequences of alternating +1 and -1. That is, they all are aliases of each other

Shannon theorem

 According to the sampling theorem (Shannon, 1949), to reconstruct a onedimensional signal from a set of samples, the sampling rate must be equal to or greater than twice the highest frequency in the signal.

Filter types

- Low-pass filter: low frequencies are passed, high frequencies are attenuated.
- **High-pass filter:**high frequencies are passed, low frequencies are attenuated.
- Band-pass filter: only frequencies in a frequency band are passed.
- Band-stop filter (or band-reject filter): only frequencies in a frequency band are attenuated.

Parts of a filter

- **Ripples:**the fluctuations in the pass band, or stop band, of a filter's frequency magnitude response curve.
- Transition region:
 The region which is in between the passband and stopband

No free lunch theory (NFL)

No free lunch theory states that any two optimization algorithms are equivalent when their performance is averaged across all possible problems.

Wolpert, D.H., and Macready, W.G. (2005) "Coevolutionary free lunches", *IEEE Transactions on Evolutionary Computation*, 9(6): 721–735

No free lunch theory (NFL)

No free lunch theory states that any two optimization algorithms are equivalent when their performance is averaged across all possible problems.

If you gain something, you will lose something. There is always an exchange.

Hmmm... IF IT'S TOO GOOD TO BE TRUE. IT USUALLY IS. GUY DOWNES @ 'H

Wolpert, D.H., and Macready, W.G. (2005) "Coevolutionary free lunches", *IEEE Transactions on Evolutionary Computation*, 9(6): 721–735

Filters

- Butterworth
 no gain ripple in pass band
 and stop band, slow cutof
- Chebyshev type 1: no gain ripple in stop band, moderate cutoff
- Chebishev type 2: No gain ripple in pass band, moderate cutoff
- Elliptic: gain ripple in pass and stop band, fast cutoff

Canonical control loop

x_h: Base signal

x_c: Control signal

x_r: Regulated/controlled signal

x_f: Feedback signal

x_d: Disturbance signal

Transfer function

= mathematical model of the plant

Controlled signal

Bike turn example

PID controller

https://vis-ro.web.app/robotics/pid

Controller types

- A **Proportional (P)** controller is used to reduce the rise time and speed up the response. This controller makes no changes in the phase response of the plant.
- A **Derivative** (**D**) controller is required to minimise the transient errors like overshoot and oscillations in the output of the plant. But this can create heavy instability in noisy environments. Be careful to use smaller gain with this controller. It provides a phase lead to the output when compared with the input. , usually with no change in magnitude.
- An **Integral (I)** controller corrects the time invariant errors. This provides a phase lag and no change in magnitude in the output.

Controller in action -> Behaviour

Thank you for your attention!