Logistic Regression: What And Why?

Logistic Regression produces results in a binary format which is used to predict the outcome of a categorical dependent variable. So the outcome should be discrete/ categorical such as:

- Interested in knowing p(c|x)
 - Not just in the right classification
 - E.g. Medical domain
 - Confidence of classification
- Treat as a regression problem?

- Use an indicator variable for class
 - 1 for buys and 0 for does not buy

$$X_1 = \langle 30000, 25 \rangle, Y_1 = DoesnotBuyComputer \\ X_2 = \langle 80000, 45 \rangle, Y_2 = BuysComputer \\ \vdots \\ X_2 = \langle 0.15, 0.25 \rangle, Y_1 = 0 \\ X_2 = \langle 0.4, 0.45 \rangle, Y_2 = +1 \\ \vdots$$

- Use linear regression!
- -f(x) can be interpreted as p(y=1|x)

- What are the problems?
 - Linear regression is not limited in range
 - Output cannot be interpreted as a probability
 - Can be negative!
 - Works in practice, but not that well

Linear Regression

Linear and Logistic Regression

What if you wanted to know whether the employee would get a promotion or not based on their rating

age	have_insurance
22	0
25	0
47	1
52	0
46	1
56	1 ₽
55	0
60	1
62	1
61	1
18	0
28	0
27	0
29	0
49	1

$$y = m * x + b$$

$$y = \frac{1}{1 + e^{-(m*x+b)}}$$

Use linear regression still?

On a transformed function

Logistic or Logit function

- Log-Odds
- Let p(x) denote the p(y=1|x)
- Logit transformation is given by:

$$\log\left(\frac{p(x)}{1-p(x)}\right)$$

Formally a logistic regression model tries to fit:

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + x \cdot \beta_1$$

Solving for p(x)

$$p(x) = \frac{e^{\beta_0 + x \cdot \beta}}{1 + e^{\beta_0 + x \cdot \beta}} = \frac{1}{1 + e^{-(\beta_0 + x \cdot \beta)}}$$

Why Not Linear Regression?

Why Not Linear Regression?

The Math behind Logistic Regression

The Math behind Logistic Regression

Logistic Regression Equation

The Logistic Regression Equation is derived from the Straight Line Equation

Equation of a straight line

Jm

Range is from –(infinity) to (infinity)

Let's try to reduce the Logistic Regression Equation from Straight Line Equation

In Logistic equation Y can be only from 0 to 1

Now, to get the range of Y between 0 and infinity, let's transform Y

Now, the range is between 0 to infinity

Let us transform it further, to get range between -(infinity) and (infinity)

$$\log \left[\frac{Y}{1-Y}\right] \longrightarrow Y = C + BIX1 + B2X2 +$$

Final Logistic Regression Equation

The Math behind Logistic Regression

$$\log\left(\frac{p(x)}{1-P(x)}\right) = \beta_0 + \beta_1 x$$

Exponentiating both sides:
$$e^{ln}\left(\frac{p(x)}{1-p(x)}\right) = e^{\beta_0 + \beta_1 x}$$

$$\left(\frac{p(x)}{1 - p(x)}\right) = e^{\beta_0 + \beta_1 x}$$

Let
$$Y = e^{\beta_0 + \beta_1 x}$$

Then
$$\frac{p(x)}{1-p(x)} = Y$$

$$p(x) = Y(1 - p(x))$$

$$p(x) = Y - Y(p(x))$$

$$p(x) + Y(p(x)) = Y$$

$$p(x)(1+Y) = Y$$

$$n(x)(1+Y)=Y$$

$$p(x) = \frac{Y}{1+Y}$$

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$p(x) = \frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}}$$

The equation of a sigmoid function:

$$e^{\beta_0+\beta_1x}$$

$$p(x) = \frac{1 + e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$
$$p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

The Math behind Logistic Regression

Predict class is 1 when p(x) > 0.5 and 0 otherwise

Minimizes misclassification rate

Linear classifier

– Decision boundary is: $\beta_0 + x \cdot \beta_1 = 0$

Powerful

Works well in practice

Linear regression with a logistic transformation

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + x \cdot \beta_1$$

We optimize the likelihood of the training data with respect to the parameters β

Likelihood

It is the probability of the training data D, given a parameter setting

– It is a function of the parameter, since the training data D is fixed

$$L(\beta_0, \beta) = \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i))^{(1-y_i)}$$

Log Likelihood

Usually operate with logarithms to simplify

$$\ell(\beta_0, \beta) = \sum_{i=1}^{n} \left(y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i)) \right)$$

$$= \sum_{i=1}^{n} \log (1 - p(x_i)) + \sum_{i=1}^{n} y_i \log \frac{p(x_i)}{1 - p(x_i)}$$

$$= \sum_{i=1}^{n} \log (1 - p(x_i)) + \sum_{i=1}^{n} y_i (\beta_0 + x_i \cdot \beta)$$

$$= \sum_{i=1}^{n} -\log (1 + e^{\beta_0 + x_i \cdot \beta}) + \sum_{i=1}^{n} y_i (\beta_0 + x_i \cdot \beta)$$

Linear Vs Logistic Regression

Linear Regression

- 1 Continuous variables
- 2 Solves Regression Problems
- 3 Straight line

Logistic Regression

- 1 Categorical variables
- 2 Solves Classification Problems
- 3 S-Curve

Logistic Regression Applications

Helps determine the kind of weather that can be expected

Weather Prediction

Logistic Regression Applications

Identifies the different components that are present in the image, and helps categorize them

Image Categorization

Logistic Regression Applications

Determines the possibility of patient survival, taking age, ISS and RTS into consideration

Healthcare (TRISS)