Induction

Consider a problem

Principle
Examples
Summations
Inequalities

Let's prove that the sum of the first *n* positive integers

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

for all positive integers n = 1, 2, 3, 4, ...

Consider a problem

Principle
Examples
Summations
Inequalities

Let

$$P(n): 1+2+...+n = \frac{n(n+1)}{2}.$$

Prove that

for all positive natural numbers $n = 1, 2, 3, 4 \dots$

The idea

Principle
Examples
Summations
Inequalities

If we can prove that

$$P(1)$$

$$P(1) \rightarrow P(2)$$

$$P(2) \rightarrow P(3)$$
...
$$P(n) \rightarrow P(n+1)$$
...

Then it follows that

$$P(n)$$
 for all $n \ge 1$

The idea

Principle
Examples
Summations
Inequalities

The implications can be grouped together. Thus it is enough to prove that

- 1) P(1)
- 2) $\forall n \geq 1 : P(n) \rightarrow P(n+1)$

Then it follows that

$$P(n)$$
 for all $n \ge 1$

Principle Examples Summations Inequalities

Principle
Examples
Summations
Inequalities

Principle Examples Summations Inequalities

Principle

Examples

Summations Inequalities

If we can prove

1. "The basis step"

P(1) is true, and

2. "The inductive step"

for all
$$n \ge 1$$
, $P(n)$ implies $P(n+1)$.

then P(n) is true for every integer $n \ge 1$.

Principle

Examples

Summations

Inequalities

Let's use induction to prove the formula of the sum of positive integers from 1 to *n*:

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

(We have to show that both, the *basis step* and the *inductive step* are correct)

Principle

Examples

Summations Inequalities

Prove that

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

Part 1. *The basis step*. Consider n = 1.

The left hand side is just

1

The right-hand side:

$$\frac{1\cdot(1+1)}{2}=1$$

They are equal, so it is true.

Part 2. *The inductive step*.

Assume that the formula is true for an arbitrary $n = m \ge 1$:

$$1+2+3+\ldots+m=\frac{m(m+1)}{2}$$

We have to prove that it is also true for the next value n = m + 1:

$$1+2+3+\ldots+m+(m+1)=\frac{(m+1)((m+1)+1)}{2}$$

Principle

Examples

Summations Inequalities

Part 2. The inductive step.

Assume that the formula is true for an arbitrary $n = m \ge 1$:

$$1+2+3+\ldots+m=\frac{m(m+1)}{2}$$

We have to prove that it is also true for the next value n = m + 1:

$$1+2+3+\ldots+m+(m+1)=\frac{(m+1)((m+1)+1)}{2}$$

Consider the left-hand side:

$$\underbrace{1+2+3+\ldots+m}_{2} + (m+1) = \frac{m(m+1)}{2} + m+1 = \frac{m(m+1)+2(m+1)}{m+1}$$
$$= \frac{m(m+1)}{2}$$
$$= \frac{(m+1)(m+2)}{2} = \frac{(m+1)((m+1)+1)}{2}$$

Principle

Examples

Summations

Inequalities

Principle

Examples

Summations Inequalities

The base case and the inductive step are true.

Therefore, *by induction*, the formula is correct for every positive integer n.

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

This is a very useful formula, by the way.

Rewrite it using the sigma-notation

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Prove by induction

Principle

Examples

Summations

Inequalities

$$\sum_{i=k}^{n} {i \choose k} = {n+1 \choose k+1} \quad \text{for all } n \ge k$$

Prove by induction

Principle

Examples

Summations Inequalities

$$\sum_{i=k}^{n} {i \choose k} = {n+1 \choose k+1} \quad \text{for all } n \ge k$$

That is, for all $n \ge k$,

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}.$$

Principle

Examples

Summations Inequalities

$$\sum_{i=k}^{n} {i \choose k} = {n+1 \choose k+1} \quad \text{for all } n \ge k$$

Choose some integer k. We have to show that then, for all $n \ge k$, the identity holds.

The base case. n = k.

The left hand side:

$$\sum_{i=k}^{k} {i \choose k} = {k \choose k} = 1.$$

The right hand side: $\binom{k+1}{k+1} = 1$. Both are equal.

Principle

Examples

Summations Inequalities

The inductive step.

Assume that the equality holds for some $n \ge k$:

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}$$

Prove that it also holds for n + 1:

$$\sum_{i=k}^{n+1} {i \choose k} = {(n+1)+1 \choose k+1}$$

To prove that, take the left hand side, and show that it is equal to the right hand side.

Prove that

$$\sum_{i=k}^{n+1} {i \choose k} = {(n+1)+1 \choose k+1}$$

The left hand side:

$$\sum_{i=k}^{n+1} {i \choose k} = \sum_{i=k}^{n} {i \choose k} + {n+1 \choose k}$$

By the inductive hypothesis, the sum $\sum_{i=k}^{n} = \binom{n+1}{k+1}$, so

$$\sum_{i=k}^{n+1} {i \choose k} = {n+1 \choose k+1} + {n+1 \choose k} = {n+2 \choose k+1},$$

where the last equality holds because of Pascal's identuty.

Therefore, the statement is true by induction.

Principle

Examples

Summations

Inequalities

Tiling $2^n \times 2^n$ with 1 square removed

For all n>0, a checkerboard $2^n \times 2^n$ with one square removed

can be tiled by L-shaped tiles

Principle

Examples

Summations Inequalities

Tiling $2^n \times 2^n$ with 1 square removed

Principle
Examples
Summations
Inequalities

For all n>0, a checkerboard 2ⁿ x 2ⁿ with one square removed

can be tiled by L-shaped tiles

The base case for n=1

Inductive step. Assuming that we can tile $2^n \times 2^n$ with one removed, prove that it's possible to tile $2^{n+1} \times 2^{n+1}$ with one removed

Another example proof

Principle

Examples

Summations Inequalities

Let P(n) be the predicate, "I can lift n grains of sand."

• I can lift one grain of sand, so P(1) is true. This is my basis step.

Another example proof

Principle

Examples

Summations Inequalities

Let P(n) be the predicate, "I can lift n grains of sand."

- I can lift one grain of sand, so P(1) is true. This is my basis step.
- Then, surely, if I can lift m grains, then I can lift m+1, it does not make any difference!

$$P(m) \rightarrow P(m+1)$$

This is my inductive step.

Another example proof

Principle

Examples

Summations Inequalities

Let P(n) be the predicate, "I can lift n grains of sand."

- I can lift one grain of sand, so P(1) is true. This is my basis step.
- Then, surely, if I can lift m grains, then I can lift m+1, it does not make any difference!

$$P(m) \rightarrow P(m+1)$$

This is my inductive step.

So, by induction, *I can lift any amount of sand*. Right?

Where is a mistake?

Principle

Examples

Summations Inequalities

Of course, the proof is wrong. But should we blame induction for that?

Well, we made an error in the proof of $P(m) \rightarrow P(m+1)$.

It is hard to say for exactly which m it is false, but certainly there is some value!

Principle

Examples

Summations

Inequalities

Prove by induction that

$$b^0 + b^1 + b^2 + \ldots + b^n = \frac{b^{n+1} - 1}{b - 1}$$

First we can do the base case, then the inductive step.

Principle

Examples

Summations

Inequalities

Prove that

$$b^0 + b^1 + b^2 + \ldots + b^n = \frac{b^{n+1} - 1}{b - 1}$$

Basis step (n = 0):

$$b^0 = 1$$
, and $\frac{b^1 - 1}{b - 1} = 1$

•

Principle

Examples

Summations Inequalities

Prove that

$$b^{0} + b^{1} + b^{2} + \ldots + b^{n} = \frac{b^{n+1} - 1}{b - 1}$$

Inductive step:

As always, we make a hypothesis that for some $n = m \ge 0$ the formula holds:

$$b^{0} + b^{1} + b^{2} + \dots + b^{m} = \frac{b^{m+1} - 1}{b - 1}$$

And we have to prove that the formula is correct for n = m + 1:

$$b^{0} + b^{1} + b^{2} + \ldots + b^{m} + b^{m+1} = \frac{b^{m+2} - 1}{b - 1}$$

Principle

Examples

Summations

Inequalities

Inductive step:

We have to prove that the formula is correct for n = m + 1:

$$b^{0} + b^{1} + b^{2} + \ldots + b^{m} + b^{m+1} = \frac{b^{m+2} - 1}{b - 1}$$

$$\underbrace{b^0 + b^1 + b^2 + \ldots + b^m}_{b-1} + b^{m+1} = \underbrace{\frac{b^{m+1} - 1}{b - 1}}_{b-1} + b^{m+1}$$

$$= \underbrace{\frac{b^{m+1} - 1}{b - 1}}_{b-1} \text{ by the hypothesis}$$

$$= \underbrace{\frac{b^{m+1} - 1 + b^{m+2} - b^{m+1}}_{b-1}}_{b-1} = \underbrace{\frac{b^{m+2} - 1}_{b-1}}_{b-1}.$$

Principle

Examples

Summations

Inequalities

So, this formula for the sum is correct

$$b^{0} + b^{1} + b^{2} + \ldots + b^{n} = \frac{b^{n+1} - 1}{b - 1}$$

In the sigma-notation:

$$\sum_{k=0}^{n} b^k = \frac{b^{n+1} - 1}{b - 1}$$

Principle

Examples

Summations

Inequalities

We can multiply both sides by a constant a:

$$\sum_{k=0}^{n} ab^{k} = ab^{0} + ab^{1} + ab^{2} + \ldots + ab^{n} = \frac{a(b^{n+1} - 1)}{b - 1},$$

The sequence of numbers

$$a, ab, ab^2, ab^3, \dots ab^n, \dots$$

is called a Geometric progression.

So, we proved the formula for the partial sum of a geometic progression.

Sum of kb^{k-1}

Principle

Examples

Summations Inequalities

The partial sum of the geometric progression with the coefficient a = 1:

$$\sum_{k=0}^{n} b^{k} = b^{0} + b^{1} + b^{2} + \ldots + b^{n} = \frac{(b^{n+1} - 1)}{b - 1},$$

Can we compute

$$\sum_{k=0}^{n} kb^{k-1} = 0 + 1 + 2b + 3b^2 + 4b^3 \dots + nb^{n-1}$$
 ?

The terms b^k have these increasing coefficients now ...

Sum of kb^{k-1}

There is a cheap trick. We know that

Principle

Examples

Summations

$$b^0 + b^1 + b^2 + \dots + b^n = \frac{(b^{n+1} - 1)}{b - 1}$$

If two functions of the same argument are equal, then their derivatives with respect to that argument are equal too

$$\frac{d}{db}(b^0 + b^1 + b^2 + \dots + b^n) = \frac{d}{db}(\frac{(b^{n+1} - 1)}{b - 1})$$

$$0+1+2b+3b^2+4b^3+\ldots+nb^{n-1}=\frac{d}{db}\left(\frac{b^{n+1}-1}{b-1}\right)=\frac{nb^{n+1}-(n+1)b^n+1}{(b-1)^2}$$

Therefore,
$$\sum_{k=0}^{n} kb^{k-1} = \frac{nb^{n+1} - (n+1)b^n + 1}{(b-1)^2}.$$

Geometric progression again

Principle

Examples

Summations

Inequalities

The partial sum of the geometric progression:

$$\sum_{k=0}^{n} ab^{k} = ab^{0} + ab^{1} + ab^{2} + \dots + ab^{n} = \frac{a(b^{n+1} - 1)}{b - 1}$$

Well, what if we want to add up an infinite sequence?

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

Infinite geometric progression

Principle

Examples

Summations Inequalities

The partial sum of the geometric progression is

$$\sum_{k=0}^{n} ab^{k} = ab^{0} + ab^{1} + ab^{2} + \dots + ab^{n} = \frac{a(b^{n+1} - 1)}{b - 1}$$

If *b* is a small real number, specifically, if the absolute value |b| < 1, then

$$|b| > |b^2| > |b^3| > \dots$$

In the limit, $\lim_{n\to\infty} b^n = 0$

$$\sum_{n=0}^{\infty} ab^n = \lim_{n \to \infty} ab^n = \lim_{n \to \infty} \frac{a(b^{n+1} - 1)}{b - 1} = \frac{a(-1)}{b - 1} = \frac{a}{1 - b}$$

Principle

Examples

Summations

Inequalities

Using mathematical induction, prove that for $n \ge 1$:

$$2^n > n$$

Principle

Examples

Summations

Inequalities

Using mathematical induction, prove that for $n \ge 1$:

$$2^n > n$$

The basis step:

n = 1.2 > 1 is true.

Principle

Examples

Summations

Inequalities

Using mathematical induction, prove that for $n \ge 1$:

$$2^n > n$$

The basis step:

n = 1. 2 > 1 is true.

The inductive step:

Assume that $2^n > n$ for $n \ge 1$. Prove that $2^{n+1} > (n+1)$.

Equivalently, we have to prove that

$$2^{n+1} - (n+1) > 0.$$

Principle

Examples Summations

Inequalities

We assumed that $2^n > n$ for $n \ge 1$.

We have to prove that $2^{n+1} - (n+1) > 0$.

$$2^{n+1} - (n+1) = 2 \cdot 2^n - n - 1$$

> $2 \cdot n - n - 1$ (by the I.H.)
= $n - 1$
 $\ge 1 - 1 = 0$. (b/c $n \ge 1$)

Therefore, by induction, $2^n > n$ is true for $n \ge 1$.

One more proof

Principle
Examples
Summations
Inequalities

Theorem. All horses are the same color.

We can prove this by induction on the number of horses in a given set.

All horses are the same color

Principle

Examples
Summations

Inequalities

The basis step. If there's just one horse then it's the same color as itself.

For the *inductive step*, assume that *n* horses are of the same color.

Assume that there are n + 1 horses numbered 1 to n + 1.

All horses are the same color

By the induction hypothesis, horses 1 through n are the same color, and similarly horses 2 through n+1 are the same color.

Principle
Examples
Summations
Inequalities

But the middle horses, 2 through n, can't change color when they're in different groups; these are horses, not chameleons. So horses 1 and n+1 must be the same color as well. Thus all n+1 horses are the same color.

What, if anything, is wrong with this reasoning?

All horses are the same color

By the induction hypothesis, horses 1 through n are the same color, and similarly horses 2 through n+1 are the same color.

Principle
Examples
Summations
Inequalities

But the middle horses, 2 through n, can't change color when they're in different groups; these are horses, not chameleons. So horses 1 and n+1 must be the same color as well. Thus all n+1 horses are the same color.

What, if anything, is wrong with this reasoning?