ALAPINTEGÁLOK

\mathcal{D}_f	f(x)	$\int f(x) dx$
\mathbb{R}	x^n $(n \in \mathbb{N})$	$\frac{x^{n+1}}{n+1} + c$
$(0,+\infty)$	$\frac{1}{x}$	$\ln x + c$
$(-\infty,0)$	$\frac{1}{x}$	$\ln(-x) + c$
$(-\infty,0)$ vagy $(0,+\infty)$	$\frac{1}{x^n}$ $(2 \le n \in \mathbb{N})$	$\frac{1}{(1-n)x^{n-1}} + c$
$(0,+\infty)$	x^{α} $(\alpha \in \mathbb{R} \setminus \{-1\})$	$\frac{x^{\alpha+1}}{\alpha+1} + c$
\mathbb{R}	e^x	$e^x + c$
\mathbb{R}	a^x $\left(a \in (0,1) \cup (1,+\infty)\right)$	$\frac{a^x}{\ln a} + c$
\mathbb{R}	$\sin x$	$-\cos x + c$
\mathbb{R}	$\cos x$	$\sin x + c$
$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\frac{1}{\cos^2 x}$	$\operatorname{tg} x + c$
$(0,\pi)$	$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x + c$

\mathcal{D}_f	f(x)	$\int f(x) dx$
\mathbb{R}	$\operatorname{sh} x$	$\operatorname{ch} x + c$
\mathbb{R}	$\operatorname{ch} x$	$\operatorname{sh} x + c$
\mathbb{R}	$\frac{1}{\cosh^2 x}$	th x + c
$(-\infty,0)$ vagy $(0,+\infty)$	$\frac{1}{\sinh^2 x}$	$-\coth x + c$
\mathbb{R}	$\frac{1}{1+x^2}$	arc tg x + c
(-1,1)	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + c$
\mathbb{R}	$\frac{1}{\sqrt{x^2+1}}$	$\operatorname{arsh} x + c$
$(1, +\infty)$	$\frac{1}{\sqrt{x^2 - 1}}$	$\operatorname{arch} x + c$
$(-\infty,1)$	$\frac{1}{\sqrt{x^2 - 1}}$	$-\operatorname{arch}(-x) + c$