Mode Pengalamatan

D4 Teknik Komputer Politeknik Elektronika Negeri Surabaya

Pokok Bahasan (SAP)

- Pengantar Desain dan Organisasi Komputer
- Evolusi dan Kinerja Komputer
- Komponen dan Struktur CPU
- Memori Komputer
- Peralatan Penyimpanan Data
- Unit Masukan dan Keluaran
- Sistem Bus
- Set Instruksi
- Mode Pengalamatan
- Unit Kontrol
- Pipelining dan Branch Prediction

Mode Pengalamatan

- Mengatasi keterbatasan format instruksi
- Dapat mereferensi lokasi memori yang besar
- Mode pengalamatan yang mampu menangani keterbatasan tersebut
- Masing masing prosesor menggunakan mode pengalamatan yang berbeda – beda.
- Memiliki pertimbangan dalam penggunaannya.
- Ada beberapa teknik pengalamatan
 - Immediate Addressing
 - Direct Addressing
 - Indirect Addressing
 - Register Addressing
 - Register Indirect Addressing
 - Displacement Addressing
 - Stack Addressing

Immediate Addressing (1)

- Bentuk pengalamatan ini yang paling sederhana?
 - Operand benar benar ada dalam instruksi atau bagian dari instruksi = Operand sama dengan field alamat.
 - Umumnya bilangan akan disimpan dalam bentuk komplemen dua.
 - Bit paling kiri sebagai bit tanda.
 - Ketika operand dimuatkan ke dalam register data, bit tanda akan digeser ke kiri hingga maksimum word data
 - Contoh :

ADD 5; tambahkan 5 pada akumulator

Immediate Addressing (+)&(-)

Keuntungan

- Mode ini adalah tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand.
- Menghemat siklus instruksi sehingga proses keseluruhan akan cepat.
- Kerugiannya
 - Ukuran bilangan dibatasi oleh ukuran field alamat

Direct Addressing (2)

- Pengalamatan langsung
 - Kelebihan :
 - Field alamat berisi efektif address sebuah operand.
 - Teknik ini banyak digunakan pada komputer lama dan komputer kecil.
 - Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulasi khusus.
 - Kelemahan :
 - Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word
 - Contoh :

ADD A; tambahkan isi pada lokasi alamat A ke akumulator

Indirect Addressing (3)

- Mode pengalamatan tak langsung
 - Field alamat mengacu pada alamat word di dalam memori, yang pada gilirannya akan berisi alamat operand yang panjang
 - Contoh:

ADD (A) ; tambahkan isi memori yang ditunjuk oleh isi alamat A ke akumulator

Indirect Addressing (+)&(-)

Keuntungan

 Ruang bagi alamat menjadi besar sehingga semakin banyak alamat yang dapat referensi.

Kerugian

 Diperlukan referensi memori ganda dalam satu fetch sehingga memperlambat proses operasi

Register Addressing (4)

- Metode pengalamatan register mirip dengan mode pengalamatan langsung.
- Perbedaannya terletak pada field alamat yang mengacu pada register, bukan pada memori utama.
- Field yang mereferensi register memiliki panjang 3 atau 4 bit, sehingga dapat mereferensi 8 atau 16 register general purpose.

Register Addressing (+)&(-)

- Keuntungan pengalamatan register
 - Diperlukan field alamat berukuran kecil dalam instruksi dan tidak diperlukan referensi memori.
 - Akses ke register lebih cepat daripada akses ke memori, sehingga proses eksekusi akan lebih cepat.
- Kerugian
 - Ruang alamat menjadi terbatas

Register Indirect Addressing (5)

- Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung.
- Perbedaannya adalah field alamat mengacu pada alamat register. Letak operand berada pada memori yang ditunjuk oleh isi register.
- Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung.
 - Keterbatasan field alamat diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak.
 - Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung

Displacement Addressing (6)

- Menggabungkan kemampuan pengalamatan langsung dan pengalamatan register tidak langsung.
- Mode ini mensyaratkan instruksi memiliki dua buah field alamat, sedikitnya sebuah field yang eksplisit.
 - Field eksplisit bernilai A dan field implisit mengarah pada register

Displacement Addressing (6)

- Operand berada pada alamat A ditambah isi register.
- Tiga model displacement
 - Relative Addressing
 - Base Register Addressing
 - Indexing

Displacement Addressing

- Relative addressing, register yang direferensi secara implisit adalah program counter (PC).
 - Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat.
 - Memanfaatkan konsep lokalitas memori untuk menyediakan operand – operand berikutnya.
- Base register addressing, register yang direferensikan berisi sebuah alamat memori, dan field alamat berisi perpindahan dari alamat itu.
 - Referensi register dapat eksplisit maupun implisit.
 - Memanfaatkan konsep lokalitas memori.
- Indexing adalah field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut.
 - Merupakan kebalikan dari model base register.
 - Field alamat dianggap sebagai alamat memori dalam indexing.
 - Manfaat penting dari indexing adalah untuk eksekusi program program iteratif

Stack Addressing (7)

- Stack adalah array lokasi yang linier = pushdown list = last-in-first-out-queue.
- Stack merupakan blok lokasi yang terbalik.
 - Butir ditambahkan ke puncak stack sehingga setiap saat blok akan terisi secara parsial.
- Yang berkaitan dengan stack adalah pointer yang nilainya merupakan alamat bagian paling atas stack.
- Dua elemen teratas stack dapat berada di dalam register CPU, yang dalam hal ini stack ponter mereferensi ke elemen ketiga stack.
- Stack pointer tetap berada di dalam register.
- Dengan demikian, referensi referensi ke lokasi stack di dalam memori pada dasarnya merupakan pengalamatan register tidak langsung

Mode pengalamatan (tabel)

Mode	Algoritma	Keuntungan	Kerugian
Immediate Direct Indirect Register Register Indirect Displacement Stack	Operand = A	Tidak ada referensi memori	Besaran operand terbatas
	eA = A	Sederhana	Ruang alamat terbatas
	eA = (A)	Ruang alamat besar	Referensi memori ganda
	eA = R	Tidak ada referensi memori	Ruang alamat terbatas
	eA = (R)	Ruang alamat besar	Referensi memori ekstra
	eA = A + (R)	Fleksibel	Kompleks
	eA = top of stack	Tidak ada referensi	Aplikasi memori terbatas

Pentium dilengkapi bermacam – macam mode pengalamatan untuk memudahkan bahasa – bahasa tingkat tinggi mengeksekusinya secara efisien.

Mode	Algoritma
Immediate	Operand = A
Register	eA = R
Displacement	eA = (SR) + A
Base	eA = (SR) + (B)
Base with displacement	eA = (SR) + (B) + A
Scaled index with displacement	eA = (SR) + (B) + (I) + A
Base with scaled index and displacement	eA = (SR) + (I) x S + (B) + A
Relative	eA = (PC) + A

Keterangan:

SR = register segment

PC = program counter

A = isi field alamat

B = register basis

I = register indeks

S = faktor skala

Mode immediate

- Operand berada di dalam instruksi.
- Operand dapat berupa data byte, word maupun doubleword
- Mode operand register, operand adalah isi register.
 - Beberapa macam jenis register
 - register 8 bit (AH, BH, CH, DH, AL, BL, CL, DL)
 - register 16 bit (AX, BX, CX, DX, SI, DI, SP, BP)
 - register 32 bit (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP)
 - register 64 bit yang dibentuk dari register 32 bit secara berpasangan.
 - register 8, 16 dan 32 merupakan register untuk penggunaan umum (general purpose register).
 - register 64 bit biasanya untuk operasi floating point.
 - register segmen (CS, DS, ES, SS, FS, GS)

- Mode displacement
 - Alamat efektif berisi bagian bagian instruksi dengan displacement 8, 16, atau 32 bit.
 - Dengan segmentasi, seluruh alamat dalam instruksi mengacu ke sebuah offset di dalam segmen.
 - Dalam Pentium, mode ini digunakan untuk mereferensi variabel – variabel global

Mode base

- Pengalamatan indirect yang menspesifikasi satu register 8, 16 atau 32 bit berisi alamat efektifnya.
- Base with displacement mode
 - Instruksi mempunyai diplacement yang akan ditambahkan ke register basis.
 - Umumnya termasuk general purpose register.
 - Contoh penggunaan mode ini adalah digunakan kompiler untuk menunjuk awal daerah variabel, untuk mengindeks suatu larik, dan digunakan untuk mengakses field sebuah record

- Mode scaled index with diplacement
 - Instruksi mengandung diplacement yang akan ditambahkan ke register indeks.
 - Register indeks dapat berupa sembarang register kecuali ES yang umumnya untuk pengolahan stack.
 - Dalam perhitungan alamat efektif, isi register indeks dikalikan dengan 1, 2, 4, atau 8 dan kemudian ditambahkan ke diplacement.
 - Mode ini sangat cocok untuk pengindekan larik.
 - Faktor skala 2 digunakan untuk larik integer 16 bit, skala 4 untuk larik integer 32 bit dan faktor skala 8 untuk bilangan floating point

- Base with index and diplacement mode
 - menjumlahkan isi register basis, register indeks, dan diplacement untuk mendapatkan alamat efektifnya.
 - Register basis dan register indeks dapat berupa sembarang register, kecuali ESP.
 - Contoh:
 - Untuk mengakses larik lokal pada stack frame.
 - Mode ini juga dapat digunakan untuk mendukung larik dua dimensi, diplacement menunjuk awal larik dan satiap register menangani satu dimensi larik

- Base scaled index with diplacement mode
 - Alamat efektif diperoleh dari penjumlahan isi register indeks yang dikalikan dengan faktor skala
 - Isi register basis, dan diplacement.
 - Mode ini sangat berguna untuk pengaksesan larik pada stack frame

- Mode relative addressing
 - Digunakan dalam instruksi instruksi tranfer kontrol.
 - Diplacement ditambahkan ke program counter (PC), yang menunjuk ke instruksi berikutnya

Format Instruksi

- Format instruksi menentukan susunan dan tata letak bit suatu instruksi.
- Format intruksi harus mencakup opcode serta implisit dan eksplisit operand.
- Biasanya set instruksi memiliki lebih dari satu format instruksi.
- Inti dari format instruksi adalah menentukan panjang instruksi dan alokasi bit dalam instruksi tersebut

Panjang Instruksi

- Penentuan panjang intruksi mempengaruhi dan dipengaruhi oleh
 - Ukuran memori
 - Organisasi memori
 - Struktur bus
 - Kompleksitas CPU
 - Kecepatan CPU
 - Bahasan RISC -

Pertimbangan: (INSTRUKSI)

- Instruksi yang kompleks mempengaruhi perancangan perangkat keras prosesor, karena fungsi – fungsi yang disajikan CPU harus diimplementasikan dalam perangkat keras.
- Semakin kompleks perangkat keras, tentunya akan meningkatkan faktor biaya walau belum tentu meningkatkan kinerja komputer secara keseluruhan.
- Penentuan panjang instruksi menjadi sangat essensi untuk mencapai kinerja komputer yang maksimal

Pertimbangan: (PROGRAMMER)

- Menginginkan opcode, operand, dan mode pengalamatan yang lebih banyak serta range alamat yang lebih besar karena semua itu akan mempermudah pemrogram mengimplementasikan keinginannya dalam program.
- Pertimbangannya bahwa opcode, operand dan mode pengalamatan yang lebih banyak akan membutuhkan ruang yang lebih besar.
- Instruksi 32 bit akan menempati ruang dua kali lebih banyak daripada instruksi 16 bit, namun kegunaannya mungkin tidak akan dua kali lebih banyak

Pertimbangan lain:

- Panjang instruksi harus sama dengan panjang perpindahan memori (pada sistem bus, panjang bus data) dan panjang instruksi seharusnya merupakan kelipatan panjang instruksi lainnya.
- Hal ini harus dipertimbangkan untuk mendapatkan optimalisasi proses eksekusi instruksi nantinya, baik kecepatan perpindahan maupun alokasi memorinya.
- Kecepatan perpindahan data tidak dapat diatasi dengan menambah kecepatan prosesor.
- Kecepatan prosesor hanya berhubungan dengan eksekusi insternalnya, sedangkan kecepatan perpindahan tergantung bus, memori, dan data itu sendiri.
- Cara meningkatkan kecepatan perpindahan data adalah dengan menggunakan cache memori dan menggunakan instruksi – instruksi yang lebih pendek

- Panjang instruksi harus merupakan kelipatan panjang karakter, yang umumnya 8 bit, dan kelipatan panjang bilangan fixed point.
- Diabaikan?
 - Terjadi pemborosan bit pada setiap word ketika sejumlah karakter disimpan di dalamnya
- Keputusan salah yang pernah diambil IBM
 - Mengeluarkan arsitektur prosesor 36 bit, terjadi banyak pemborosan karena ukuran karakter 8 bit.
 - Arsitektur tersebut diganti dengan arsitektur 32 bit

Bagaimana dengan Alokasi Bit?

- Inti dalam alokasi bit adalah berada pada untung rugi antara jumlah opcode dengan kemampuan pengalamatannya.
- Opcode yang banyak akan menyebabkan bit yang lebih banyak pada field opcode, yang secara otomatis akan mengurangi jumlah bit untuk pengalamatan.
- Faktor yang merupakan hal hal yang penting dalam menentukan penggunaan bit – bit pengalamatan :
 - Jumlah mode pengalamatan
 - Jumlah operand
 - Register vs memori
 - Jumlah set register
 - Jangkauan alamat
 - Granularitas alamat

Jumlah mode pengalamatan

 Mode pengalamatan dapat dilakukan secara implisit atau eksplisit, yang kesemuanya memerlukan jumlah bit yang berbeda

Jumlah operand

- Jumlah operand sangat mempengaruhi kemampuan instruksi.
- Jumlah operand yang sedikit biasanya akan menjadikan instruksi yang panjang dalam suatu fungsi

Register vs memori

- Penggunaan register maupun memori membutuhkan jumlah bit yang berbeda.
- Pada pengalamatan implisit dengan register akan dibutuhkan bit lebih kecil dari pada mode pengalamatan langsung ke memori

Jumlah set register

- Jumlah set register juga mempengaruhi penggunaan bit bit instruksi.
- General purpose register yang umumnya dimiliki hampir seluruh arsitektur komputer dapat digunakan untuk register alamat maupun register instruksi

Jangkauan alamat

- untuk alamat alamat yang mereferensi memori secara eksplisit, jangkauan ditentukan oleh jumlah bit yang digunakan untuk pengalamatan.
- Pertimbangan menggunakan mode displacement patut dipertimbangkan untuk memiliki jangkauan pengalamatan yang besar

Granularitas alamat :

 Pengalamatan yang mereferansi memori dapat digunakan pengalamatan yang mereferensi word atau byte

Format Instruksi Pentium

- Arsitektur Pentium dilengkapi bermacam macam format instruksi.
- Instruksi instruksinya dibangun mulai dari nol hingga empat prefiks instruksi opsional, sebuah opcode satu atau dua byte, specifier alamat opsional, yang terdiri dari Mod r/m byte dan scale index byte (SIB), sebuah opsional displacement, dan opsional immidiate

Format Instruksi Pentium

Bagian prefix byte

- Instruction Prefixes Biasa
 - Berisi : Prefiks Lock dan Prefiks perulangan.
 - Prefiks Lock yang digunakan untuk keamanan penggunaan shared memory yang eksklusif dalam lingkugan multiprosesor.
 - Prefiks perulangan berguna untuk uperasi perulangan yang dapat diproses lebih cepat daripada menggunakan loop perangkat lunak biasa
- Segment Override
 - Menspesifikasi register segmen yang harus dipakai instruksi
 - Mengesampingkan (override) pilihan register segmen default yang dihasilkan Pentium untuk instruksi tersebut

Bagian prefix byte

Address Size

- Prosesor dapat mengalamati memori dengan menggunakan alamat 16 bit atau 32 bit.
- Ukuran alamat menentukan ukuran displacement dalam instruksi dan ukuran offset alamat yang dihasilkan selama perhitungan alamat efektif berlangsung.
- Prefiks ukuran alamat digunakan untuk mengubah alamat 16 bit ke 32 bit dan sebaliknya

Operand Size

- Instruksi memiliki ukuran operand default 16 bit dan 32 bit
- Prefiks operand mengubah operand 16 bit ke 32 bit dan sebaliknya

Field Instruksi

Opcode

 Opcode dapat mencakup bit - bit yang menspesifikasikan apakah suatu data merupakan byte atau full-size, arah operasi data, dan apakah immediate data field harus merupakan sign-extended

Mod r/m

- Memberikan informasi pengalamatan.
- Byte Mod r/m menspesifikasikan apakah operand berada di dalam register atau berada di dalam memori. Apabila operand berada di dalam memori, maka field – field yang berada di dalam byte akan menspesifikasi mode pengalamatan yang akan dipakai

► SIB

Berisi skala indeks register dan base register

Displacement

 Bila mode pengalamatan menggunakan mode ini maka akan ditambahkan field displacement integer bertanda 8 bit, 16 bit atau 32 bit

Immadiate

Memberikan nilai operand 8 bit, 16 bit atau 32 bit

Kesimpulan

- Instruksi = biner
 - Bagian opcode
 - Bagian alamat
- Tipe data dan jenis instruksi digolongkan kebeberapa kelompok
- Panjang bit Opcode mempengaruhi jumlah jenis instruksi
- Jumlah bit Alamat mempengaruhi jangkauan alamat yang bisa digunakan
- Terdapat berbagai macam mode pengalamatan digunakan sesuai dengan kondisi

Soal - Soal

- Jelaskan hubungan antara jumlah bit pada opcode dengan jumlah instruksi yang ada!
- Jelaskan hubungan antara jumlah bit pada Alamat yang ada di set instruksi dengan jumlah alamat yang bisa di jangkau!
- Bagaimana cara agar set instrusi jumlah dapat menambah jangkauan pada memori!
- Jelaskan kapan dan pada saat apa mode pengalamatan digunakan