Pyramide

Aus einem Kreis mit dem Radius r wird ein symmetrischer Stern ausgeschnitten und die vier Ecken A, B, C, D zur Spitze einer quadratischen Pyramide hochgebogen. Wie groß kann das Volumen der entstehenden Pyramide höchstens werden? Wie groß ist in diesem Fall die Pyramidenoberfläche?

Hauptbedingung

Das Volumen soll maximal sein.

Das Volumen bildet sich aus der sich ergebenen Höhe, die die gefaltenen Seiten ergeben. Im folgenden ist dieses Falten seitlich dargestellt:

Hier ist das grüne weiterhin die Kante mit Länge d. Die gesamtstrecke von zwei gegenüberstehenden Punkten beträgt 2r. Somit erhalten wir für die Länge der einzelnen Faltseiten (folgend mit l):

$$2r = 2l + d \qquad |-d$$
 $2l = 2r - d \qquad | \div 2$
 $l = r - \frac{d}{2}$

l ist hier die Hypotenuse des Dreiecks zwischen der Faltecke, der Spitze und dem Mittelpunkt des Kreises. Die höhe dieses halben Dreiecks ist dann:

$$\left(r - rac{d}{2}
ight)^2 = \left(rac{d}{2}
ight)^2 + h^2 \ h = \sqrt{\left(r - rac{d}{2}
ight)^2 - \left(rac{d}{2}
ight)^2} \ = \sqrt{r^2 - dr + rac{d^2}{4} - rac{d^2}{4}} \ = \sqrt{r^2 - dr}$$

Die Höhe der gefalteten Pyramide ist somit $h=\sqrt{r^2-dr}$.

Daraus bildet sich folgende Hauptbedingung:

$$V(d;r) = rac{1}{3} \cdot d^2 \cdot \sqrt{r^2 - dr}$$

Da der Radius von dem Kreis zu d unabhängig ist, ändere ich die Betrachtungsweise d prozentual zu r.

$$egin{aligned} V(p) &= rac{1}{3} \cdot p^2 \cdot \sqrt{1^2 - p \cdot 1} \ &= rac{1}{3} \cdot p^2 \cdot \sqrt{1 - p} \; ; \quad 0 \leq p \leq 1 \end{aligned}$$

Notwendiges Kriterium für lokale Extrema: V'(p) = 0 $0=V'(d) \ 0=rac{2}{3}\cdot p\cdot \sqrt{1-p}-rac{1}{6}\cdot p^2\cdot rac{1}{\sqrt{1-p}}$

 $p_1=0 \quad ee \quad 0=rac{2}{3}\cdot \sqrt{1-p}-rac{1}{6}\cdot p\cdot rac{1}{\sqrt{1-p}}$

 $0 = \frac{2}{3} \cdot \sqrt{1-p} - \frac{1}{6} \cdot p \cdot \frac{1}{\sqrt{1-p}} \qquad \qquad |-\frac{2}{3} \cdot \sqrt{1-p}|$

 $-\frac{2}{3}\cdot\sqrt{1-p}=-\frac{1}{6}\cdot p\cdot\frac{1}{\sqrt{1-p}}$ $|\cdot\sqrt{1-p}|$

 $3 \cdot 6 \cdot \sqrt{1}$ $4 \cdot \sqrt{1-p} = p \cdot \frac{1}{\sqrt{1-p}}$ $4 \cdot (1-p) = p$ 4 - 4p = p 4 = 5p $p = \frac{4}{5} = 0.8$ |+4p $|\div 5$

Erstes hinreichendes Kriterium für lokale Extrema:
$$V''(p) \neq 0$$

$$V''(p) = \frac{2}{3} \cdot \sqrt{1-x} - \frac{2}{3}x \cdot \frac{1}{\sqrt{1-x}} - \frac{1}{12} \cdot x^2 \cdot (1-x)^{-\frac{3}{2}}$$

$$V''(0,8) = \frac{2}{3} \cdot \sqrt{1-0,8} - \frac{2}{3} \cdot 0, 8 \cdot \frac{1}{\sqrt{1-0,8}} - \frac{1}{12} \cdot 0, 8^2 \cdot (1-0,8)^{-\frac{3}{2}}$$
 $\approx -1,491 < 0$

Weil p=0,8 durch V''(0,8)<0 ein Hochpunkt ist, so ist die optimale Länge d exakt 80% von r .

$$egin{aligned} V(d;r) &= rac{1}{3} \cdot d^2 \cdot \sqrt{r^2 - dr} \ V(0,8r;r) &= rac{1}{3} \cdot (0,8r)^2 \cdot \sqrt{r^2 - 0,8r \cdot r} \ &= rac{16}{75} r^2 \cdot \sqrt{r^2 - 0,8r^2} \ &= rac{16}{75} r^2 \cdot \sqrt{0,2r^2} \ &= rac{16}{75} r^2 \cdot \sqrt{0,2} \cdot r \end{aligned}$$

Oberfläche

Die Oberfläche der Pyramide:

$$egin{split} O(d;r) &= d^2 + 4 \cdot \left[d \cdot l \cdot rac{1}{2}
ight] \ &= d^2 + 2 \cdot d \cdot l \end{split}$$

Setzen wir ein, so erhalten wir:

$$egin{align} O(r) &= d^2 + 2 \cdot \overbrace{d}^{=0.8r} \cdot \underbrace{l}_{=r - rac{d}{2}}^{=0.8r} \ O(r) &= rac{16}{25} r^2 + 2 \cdot 0, 8r \cdot (r-0, 4r) \ &= rac{16}{25} r^2 + 0, 96r \ \end{pmatrix}$$