







University of Bari — Department of Computer Science — Department of Physics LACAM Machine Learning Lab — National Institute for Nuclear Physics

# Fast and Accurate Denstiy Estimation with Extremely Randomized Cutset Networks

Nicola Di Mauro O Antonio Vergari O Teresa M.A. Basile Floriana Esposito

e = both authors contributed equally

19th September - ECML-PKDD 2017 - Skopje, Macedonia

## **Outline**

- → Density Estimation
- → Tractable Probabilistic Models
- → Cutset Networks
- $\rightarrow$  XCNets
- $\rightarrow$  Experiments
- → Conclusions
- $\rightarrow$  References

## **Density Estimation**

**Density estimation** is the unsupervised task of learning an estimator for the joint probability distribution  $p(\mathbf{X})$  from a set of i.i.d. samples  $\mathcal{D} = \{\mathbf{x}^i\}_{i=1}^m$  over random variables (RVs)  $\mathbf{X} = \{X_1, \dots, X_n\}$ 

Given such an estimator, one uses it to *answer probabilistic queries* about configurations on  $\mathbf{X}$ , i.e. to do *inference*. E.g., classification can be performed by Most Probable Explanaition (MPE) inference:  $y^* = \operatorname{argmax}_{u \sim Y} p(y|\mathbf{X})$ .

The main challenge in density estimation is balancing:

- ▶ the *representation expressiveness* of the model to learn
- ▶ the **cost of learning** such a model
- ▶ and the cost of performing inference on it

## **Tractable Probabilistic Models (TPMs)**

Classical Probabilistic Graphical Models like *Bayesian Networks* (BNs) and *Markov Networks* (MNs) are highly expressive but exact

inference is generally NP-hard with them [Roth 1996].





**Tractable Probabilistic Models** (**TPMs**) on the other hand, are density estimators for which some kind of **exact inference is tractable**, i.e. polynomial in the number of RVs, i.e., n, or their domains

learning may still be hard to scale on high-dimensional data

## **Product of Bernoullis (PoBs)**

A not so much expressive TPM, assuming all RVs to be independent:



Learning a PoB has linear time complexity O(nm)Complete evidence inference is linear O(n)

## **Chow-Liu Trees (CLTrees)**

A directed tree-structured model [Meilă and Jordan 2000] over  $\mathbf{X}$  is a BN in which each node  $X_i \in \mathbf{X}$  has at most one parent,  $\mathrm{Pa}_{X_i}$ .



$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | Pa_{x_i})$$

Complete evidence inference is still linear for CLtrees: O(n)

But learning now takes quadratic time  $O(n^2(m + \log n))$ 

## **Cutset Networks (CNets)**



A  $\it Cutset\ Network\ (CNet)\ C$  is a TPM represented via a  $\it weighted\ probabilistic\ model$  tree over  $\it X$  recursively defined as:

- 1. a TPM  ${\mathcal M}$  , with  $\mathsf{scope}({\mathcal M}) = \mathbf{X}$
- 2. a weighted disjunction (OR node) of two CNets  $\mathcal{C}_0$  and  $\mathcal{C}_1$  conditioned on RV  $X_i \in \mathbf{X}$ , with weights  $w_i^0$  and  $w_i^1$  s.t.  $w_i^0 + w_i^1 = 1$ , where  $\mathsf{scope}(\mathcal{C}_0) = \mathsf{scope}(\mathcal{C}_1) = \mathbf{X}_{\backslash i}$

#### **CNets I**



A CNet  $\mathcal{C}$  defines the following joint distribution:

$$p(\mathbf{x}) = p_l(\mathbf{x}_{|\mathsf{scope}(\mathcal{C}) \setminus \mathsf{scope}(\mathcal{M}_l)}) p_{\mathcal{M}_l}(\mathbf{x}_{|\mathsf{scope}(\mathcal{M}_l)})$$

#### **CNets II**



A CNet  ${\cal C}$  acts as a **deterministic mixture of experts** in which the OR tree acts as the **gating function** 

$$p(\mathbf{x}) = \left[ p_l(\mathbf{x}_{|\mathsf{scope}(\mathcal{C}) \setminus \mathsf{scope}(\mathcal{M}_l)}) \right] p_{\mathcal{M}_l}(\mathbf{x}_{|\mathsf{scope}(\mathcal{M}_l)})$$

#### **CNets III**



and in which leaf models  $\mathcal{M}_l$  play the role of **local experts** 

$$p(\mathbf{x}) = p_l(\mathbf{x}_{|\mathsf{scope}(\mathcal{C}) \setminus \mathsf{scope}(\mathcal{M}_l)}) \; p_{\mathcal{M}_l}(\mathbf{x}_{|\mathsf{scope}(\mathcal{M}_l)})$$

complete evidence inference is still linear O(n)

## **Learning CNets I**

**Top-down greedy** CNet learners can be unified in single template, Learn CNet:

in which for the base case, if no conditioning is possible, a leaf distribution is estimated

## **Learning CNets II**

**Top-down greedy** CNet learners can be unified in single template, Learn CNet:

or selecting a RV to condition on is performed, splitting the dataset and recursing

## **Learning CNets III**

Different implementations of select lead to different time complexities:

entCNet choosing  $X_i$  to lower approximate average joint entropy [Rahman, Kothalkar, and Gogate 2014]

$$\rightarrow O(mn^2)$$

**dCSN** choosing  $X_i$  in a principled way improving likelihood [Di Mauro, Vergari, and Esposito 2015]

$$\to O(n^3(m + \log n))$$

Quadratic and cubic times for *each* RV selection do not scale on high dimensional data  $\rightarrow$  We aim at drastically reducing it!

#### **XCNets I**

**XCNets** (Extremely Randomized CNets) are CNets built by LearnCNet when select chooses one RV completely at random.

select time complexity ightarrow O(1) !

Advantages of a **single** XCNet over a classically learned CNet:

- extremely fast to learn
- only slightly less accurate as density estimators
- almost as good at generating samples
- ► less prone to overfitting

When plugged into **ensembles** they outperform state-of-the-art density estimators in a fraction of the time!

#### **XCNets II**

Why a single XCNet is not much worse than a CNet?

Because of the mixture of experts interpretations, a path  $p=p_{(1)}p_{(2)}\cdots p_{(k)}$  connects the root to a single leaf  $\mathcal{M}_l$  after observing  $x_1x_2\cdots x_k$ ,  $p_l(\mathbf{x}_{|\mathbf{sc}(\mathcal{C})\setminus\mathbf{sc}(\mathcal{M}_l)})$  is decomposed by the chain rule across path p

$$ightarrow$$
 shuffling  $X_{p_(0)},\ldots,X_{p_k}$  does not influence inference!

Focus on learning *accurate local experts* (leaves) than the gating function! Sampling is less affected:



#### **XCNets III**

Single CNets learned with LearnCNet are prone to overfitting. *Randomizing the gating function* in XCNets alleviate this issue.





Learning curves of CNets and XCNets (negative log-likelihoods) on KddCup2k and EachMovie The latter overfits much later than the former.

Moreover, it helps differentiating the local leaf experts

#### **Ensembles of XCNets**

Ensembles of XCNets do not require to additionally diversify each component (e.g. no bootstrapping required).

Learning up to **500 components** of XCNets is still **faster than learning 40** models of other variants:

**CNet**<sub>bag</sub> bagging entCSN [Rahman and Gogate 2016]

**CNet**<sub>boost</sub> boosting entCSN [Rahman and Gogate 2016]

**dCSN**<sup>k</sup> bagging dCSN [Di Mauro, Vergari, and Basile 2015;

Di Mauro, Vergari, and Esposito 2015]

## **Experiments**

We validate the following research questions:

- (Q1) how does a single XCNet compare to the optimal one learned by dCSN?
- (Q2) how accurate are ensembles of XCNets compared to state-of-the-art density estimators?
- (Q3) how much time do actually XCNets save in practice?

We employ the **20 standard benchmark datasets** for density estimation [Haaren and Davis 2012; Vergari, Mauro, and Esposito 2015]

We compare to single and ensembles of CNets plus other state-of-the-art TPMs like Sum-Product Networks (ID-SPN) and Markov Networks learned with ACs (ACMN) and even untractable Bayesian Networks (BN).

# (Q1) Single Model Comparison

| dataset    | entCNet | dCSN    | XCNet                | $dCSN_PoB$ | $XCNet_PoB$  |
|------------|---------|---------|----------------------|------------|--------------|
| NLTCS      | -6.06   | -6.03   | 6.06±0.01            | -6.09      | -6.17±0.05   |
| MSNBC      | -6.05   | -6.05   | -6.09±0.02           | -6.05      | -6.18±0.03   |
| KDDCup2k   | -       | -2.18   | -2.19±0.01           | -2.19      | -2.21±0.01   |
| Plants     | -13.25  | -13.25  | -13.43±0.07          | -14.89     | -15.66±0.22  |
| Audio      | -42.05  | -42.10  | -42.66±0.14          | -42.95     | -44.02±0.22  |
| Jester     | -55.56  | -55.40  | -56.10±0.19          | -56.23     | -57.39±0.15  |
| Netflix    | -58.71  | -58.71  | -59.21±0.06          | -60.20     | -61.40±0.25  |
| Accidents  | -30.69  | -29.84  | -31.58±0.24          | -36.24     | -40.22±0.46  |
| Retail     | -10.94  | -11.24  | -11.44±0.09          | -11.06     | -11.19±0.04  |
| Pumsb-star | -24.42  | -23.91  | -25.55±0.34          | -32.11     | -39.91±2.48  |
| DNA        | -87.59  | -87.31  | -87.67±0.00          | -98.83     | -99.84±0.05  |
| Kosarek    | -11.04  | -11.20  | -11.70±0.13          | -11.38     | -11.80±0.07  |
| MSWeb      | -10.07  | -10.10  | -10.47±0.10          | -10.19     | -10.43±0.07  |
| Book       | -37.35  | -38.93  | -42.36±0.28          | -38.21     | -39.47±0.33  |
| EachMovie  | -58.37  | -58.06  | -60.71±0.89          | -59.70     | -62.58±0.38  |
| WebKB      | -162.17 | -161.92 | -167.45±1.59         | -168.7     | -174.78±0.81 |
| Reuters-52 | -88.55  | -88.65  | -99.52±1.93          | -90.51     | -100.25±0.57 |
| 20NewsG    | -       | -161.72 | -172.6±1.40          | -162.25    | -167.39±0.74 |
| BBC        | -263.08 | -261.79 | <b>-261.79</b> ±0.00 | -264.56    | -274.83±1.15 |
| Ad         | -16.92  | -16.34  | -18.70±1.44          | -36.44     | -36.94±1.41  |

Table 1.

Average test log-likelihoods for entCNet, dCSN, XCNet and their PoB variants dCSN $_{PoB}$  and XCNet $_{PoB}$ . For randomized models, mean and standard deviation over 10 runs are reported.

# (Q2) Ensemble Model Comparison

new state-of-the-art scores on 11/20 datasets...

| dataset    | Cherpas | Chethoost | 8C5HAO  | t Cherros | +CHe <sup>lo</sup> | +Chetoo | ID:SPA  | ACHIN   | ner     |
|------------|---------|-----------|---------|-----------|--------------------|---------|---------|---------|---------|
| NLTCS      | -6.00   | -6.01     | -6.00   | -6.01     | -6.00              | -5.99   | -6.02   | -6.00   | -6.02   |
| MSNBC      | -6.08   | -6.15     | -6.05   | -6.11     | -6.06              | -6.06   | -6.04   | -6.04   | -6.04   |
| KDDCup2k   | -2.14   | -2.15     | -2.15   | -2.13     | -2.13              | -2.13   | -2.13   | -2.17   | -2.16   |
| Plants     | -12.32  | -12.67    | -12.59  | -13.09    | -11.99             | -11.84  | -12.54  | -12.80  | -12.65  |
| Audio      | -40.09  | -39.84    | -40.19  | -40.30    | -39.77             | -39.39  | -39.79  | -40.32  | -40.50  |
| Jester     | -52.88  | -52.82    | -52.99  | -53.64    | -52.65             | -52.21  | -52.86  | -53.31  | -53.85  |
| Netflix    | -56.55  | -56.44    | -56.69  | -57.64    | -56.38             | -55.93  | -56.36  | -57.22  | -57.03  |
| Accidents  | -29.88  | -29.45    | -29.27  | -36.92    | -29.31             | -29.10  | -26.98  | -27.11  | -26.32  |
| Retail     | -10.84  | -10.81    | -11.17  | -10.88    | -10.93             | -10.91  | -10.85  | -10.88  | -10.87  |
| Pumsb-star | -23.98  | -23.46    | -23.78  | -32.91    | -23.44             | -23.31  | -22.41  | -23.55  | -21.72  |
| DNA        | -81.07  | -85.67    | -85.95  | -98.28    | -84.96             | -84.17  | -81.21  | -80.03  | -80.65  |
| Kosarek    | -10.74  | -10.60    | -10.97  | -10.91    | -10.72             | -10.66  | -10.60  | -10.84  | -10.83  |
| MSWeb      | -9.77   | -9.74     | -9.93   | -9.83     | -9.66              | -9.62   | -9.73   | -9.77   | -9.70   |
| Book       | -35.55  | -34.46    | -37.38  | -34.77    | -36.35             | -35.45  | -34.14  | -35.56  | -36.41  |
| EachMovie  | -53.00  | -51.53    | -54.14  | -51.66    | -51.72             | -50.34  | -51.51  | -55.80  | -54.37  |
| WebKB      | -153.12 | -152.53   | -155.47 | -155.83   | -153.01            | -149.20 | -151.84 | -159.13 | -157.43 |
| Reuters-52 | -83.71  | -83.69    | -86.19  | -85.16    | -84.05             | -81.87  | -83.35  | -90.23  | -87.55  |
| 20NewsG    | -156.09 | -153.12   | -156.46 | -152.21   | -153.89            | -151.02 | -151.47 | -161.13 | -158.95 |
| BBC        | -237.42 | -247.01   | -248.84 | -251.31   | -238.47            | -229.21 | -248.93 | -257.10 | -257.86 |
| Ad         | -15.28  | -14.36    | -15.55  | -26.25    | -14.20             | -14.00  | -19.05  | -16.53  | -18.35  |

## (Q3) Learning Times

...in a *fraction of the time* required by other competitors

| dataset    | dCSN  | XCNet | $dCSN_PoB$ | $XCNet_{PoB}$ | dCSN <sup>40</sup> | $XCNet^{40}_PoB$ | XCNet <sup>40</sup> | XCNet <sup>500</sup> | ID-SPN |
|------------|-------|-------|------------|---------------|--------------------|------------------|---------------------|----------------------|--------|
| NLTCS      | 7     | 0.2   | 0.1        | 0.01          | 10                 | 0.2              | 0.01                | 3                    | 310    |
| MSNBC      | 12    | 0.3   | 0.7        | 0.01          | 499                | 13.1             | 13                  | 155                  | 46266  |
| KDDCup2k   | 112   | 0.5   | 12.0       | 0.32          | 4126               | 21.2             | 16                  | 247                  | 32067  |
| Plants     | 15    | 0.3   | 45.5       | 0.22          | 325                | 1.0              | 6                   | 77                   | 18833  |
| Audio      | 58    | 0.3   | 74.8       | 0.48          | 980                | 0.8              | 6                   | 136                  | 21009  |
| Jester     | 50    | 0.2   | 95.6       | 0.26          | 989                | 0.3              | 4                   | 83                   | 10412  |
| Netflix    | 75    | 0.2   | 2.8        | 0.02          | 1546               | 0.4              | 9                   | 118                  | 30294  |
| Accidents  | 54    | 0.2   | 153.7      | 0.04          | 996                | 0.7              | 11                  | 138                  | 15472  |
| Retail     | 263   | 0.8   | 5.8        | 0.01          | 3780               | 3.2              | 13                  | 164                  | 4041   |
| Pumsb-star | 118   | 0.6   | 26.2       | 0.02          | 2260               | 0.8              | 23                  | 290                  | 20952  |
| DNA        | 30    | 0.1   | 4.4        | 0.01          | 224                | 0.06             | 3                   | 40                   | 3040   |
| Kosarek    | 588   | 2.4   | 41.2       | 0.01          | 10033              | 10.8             | 43                  | 524                  | 17799  |
| MSWeb      | 1215  | 7.2   | 7.4        | 0.01          | 17123              | 13.2             | 129                 | 1592                 | 19682  |
| Book       | 9235  | 9.7   | 113.0      | 0.04          | 155634             | 1.9              | 316                 | 3476                 | 61248  |
| EachMovie  | 1297  | 7.1   | 4.7        | 0.01          | 16962              | 1.1              | 127                 | 2601                 | 118782 |
| WebKB      | 4997  | 11.0  | 238.0      | 0.03          | 18875              | 0.9              | 190                 | 2237                 | 45451  |
| Reuters-52 | 9947  | 39.3  | 24.3       | 0.05          | 65498              | 2.7              | 414                 | 8423                 | 70863  |
| 20NewsG    | 16866 | 51.3  | 40.7       | 0.01          | 153908             | 4.4              | 506                 | 9883                 | 163256 |
| BBC        | 21381 | 8.4   | 7.3        | 0.02          | 69572              | 0.4              | 256                 | 4251                 | 61471  |
| Ad         | 5212  | 116.5 | 134.0      | 0.08          | 75694              | 4.2              | 2403                | 30538                | 87522  |

 $\label{thm:cond} {\sf Table 3. Times (in seconds) taken to learn the best models on each dataset for dCSN, XCNet, dCSN_{PoB}, XCNet_{PoB}, their ensembles and ID-SPN.}$ 

### **Conclusions**

Due to their simplicity to implement, fast learning times, and

accurate inference performances, XCNets set the new baseline to compare against for density estimation with TPMs (and not!).

#### **Future works**

Exploiting the mixture of experts interpretation to devise more expressive gating functions to still perform exact and fast inference

#### Code

https://github.com/nicoladimauro/cnet

#### **Paper**

http://www.di.uniba.it/~ndm/pubs/ndm17ecml.pdf

#### References

- Di Mauro, Nicola, Antonio Vergari, and Teresa M.A. Basile (2015). "Learning Bayesian Random Cutset Forests". In: Proceedings of ISMIS. Springer, pp. 122–132.
- Di Mauro, Nicola, Antonio Vergari, and Floriana Esposito (2015). "Learning Accurate Cutset Networks by Exploiting Decomposability". In: Proceedings of AIXIA. Springer, pp. 221–232.
- Haaren, Jan Van and Jesse Davis (2012). "Markov Network Structure Learning: A Randomized Feature Generation Approach". In: Proceedings of the 26th Conference on Artificial Intelligence. AAAI Press.
- Meilă, Marina and Michael I. Jordan (2000). "Learning with mixtures of trees". In: Journal of Machine Learning Research 1, pp. 1–48.
- Rahman, Tahrima and Vibhav Gogate (2016). "Learning Ensembles of Cutset Networks". In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI 16. Phoenix, Arizona: AAAI Press, pp. 3301–3307. URL: <a href="http://dl.acm.org/citation.cfm?id=3016100.3016365">http://dl.acm.org/citation.cfm?id=3016100.3016365</a>.
- Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). "Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees". In: Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.
- Roth, Dan (1996). "On the hardness of approximate reasoning". In: Artificial Intelligence 82.1-2, pp. 273-302.
- Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). "Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning". In: ECML-PKDD 2015.

## **Discuss**