

Computer Organization

COMP2120

Qi Zhao

January 17, 2024

Digital Logic

- Proposed by George Boole in 1854
- Variables: the values of the variables are the truth values true (1) and false (0)
- A Boolean function with *k* input variables

$$f: \{0,1\}^k \longrightarrow \{0,1\} \tag{1}$$

• Operations: AND $(A \cdot B)$, OR (A + B), NOT (\overline{A})

- Proposed by George Boole in 1854
- Variables: the values of the variables are the truth values true (1) and false (0)
- A Boolean function with *k* input variables

$$f: \{0,1\}^k \longrightarrow \{0,1\} \tag{1}$$

- Operations: AND $(A \cdot B)$, OR (A + B), NOT (\overline{A})
- Truth table

Α	NOT A
0	1
1	0

Α	В	A AND B	A OR B
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

• NAND and NOR: the complement (NOT) of AND and OR, $\overline{A \cdot B}, \overline{A + B}$

- NAND and NOR: the complement (NOT) of AND and OR, $\overline{A \cdot B}, \overline{A + B}$
- XOR: exactly one of the operands has the value 1, $A \oplus B$

- NAND and NOR: the complement (NOT) of AND and OR, $\overline{A \cdot B}, \overline{A + B}$
- XOR: exactly one of the operands has the value 1, $A \oplus B$
- Boolean Algebra Laws

- **NAND** and **NOR**: the complement (NOT) of AND and OR, $\overline{A \cdot B}$, $\overline{A + B}$
- **XOR**: exactly one of the operands has the value 1, $A \oplus B$
- Boolean Algebra Laws
 - 1. Commutative Law

$$AB = BA, A + B = B + A$$

- **NAND** and **NOR**: the complement (NOT) of AND and OR, $\overline{A \cdot B}$, $\overline{A + B}$
- **XOR**: exactly one of the operands has the value 1, $A \oplus B$
- Boolean Algebra Laws
 - 1. Commutative Law

$$AB = BA$$
, $A + B = B + A$

2. Identity elements

$$1 \cdot A = A, 0 + A = A$$

- **NAND** and **NOR**: the complement (NOT) of AND and OR, $\overline{A \cdot B}$, $\overline{A + B}$
- **XOR**: exactly one of the operands has the value 1, $A \oplus B$
- Boolean Algebra Laws
 - 1. Commutative Law

$$AB = BA, A + B = B + A$$

2. Identity elements

$$1 \cdot A = A, 0 + A = A$$

3. Null law:

$$0 \cdot A = 0, 1 + A = 1$$

- **NAND** and **NOR**: the complement (NOT) of AND and OR, $\overline{A \cdot B}$, $\overline{A + B}$
- **XOR**: exactly one of the operands has the value 1, $A \oplus B$
- Boolean Algebra Laws
 - 1. Commutative Law

$$AB = BA, A + B = B + A$$

2. Identity elements

$$1 \cdot A = A, 0 + A = A$$

3. Null law:

$$0 \cdot A = 0, 1 + A = 1$$

4. Idempotent law:

$$A \cdot A = A, A + A = A$$

- **NAND** and **NOR**: the complement (NOT) of AND and OR, $\overline{A \cdot B}$, $\overline{A + B}$
- **XOR**: exactly one of the operands has the value 1, $A \oplus B$
- Boolean Algebra Laws
 - 1. Commutative Law

$$AB = BA, A + B = B + A$$

2. Identity elements

$$1 \cdot A = A, 0 + A = A$$

3. Null law:

$$0 \cdot A = 0, 1 + A = 1$$

4. Idempotent law:

$$A \cdot A = A, A + A = A$$

5. Inverse law:

$$A \cdot \overline{A} = 0, A + \overline{A} = 1$$

6. Associative law

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C,$$

 $A + (B + C) = (A + B) + C$

6. Associative law

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C,$$

 $A + (B + C) = (A + B) + C$

7. Distributive Law

$$A(B+C) = AB + AC$$

$$A + (BC) = (A+B)(A+C)$$

6. Associative law

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C,$$

 $A + (B + C) = (A + B) + C$

7. Distributive Law

$$A(B+C) = AB + AC$$

$$A + (BC) = (A+B)(A+C)$$

Proof

$$RHS = (A+B)(A+C)$$

$$= A \cdot A + A \cdot C + B \cdot A + B \cdot C$$

$$if A = 0, RHS = 0 + B \cdot C$$

$$if A = 1, RHS = 1 + B + C + B \cdot C = 1 + B \cdot C$$

8. DeMorgan's Theorem

$$\overline{A \cdot B} = \overline{A} + \overline{B}, \ \overline{A + B} = \overline{A} \cdot \overline{B}$$

8. DeMorgan's Theorem

$$\overline{A \cdot B} = \overline{A} + \overline{B}, \ \overline{A + B} = \overline{A} \cdot \overline{B}$$

• Represent Boolean function via Venn diagrams

Boolean	Sets	
$A \cdot B$	$A \cap B$, intersection	
A + B	$A \cup B$, union	

8. DeMorgan's Theorem

$$\overline{A \cdot B} = \overline{A} + \overline{B}, \ \overline{A + B} = \overline{A} \cdot \overline{B}$$

• Represent Boolean function via Venn diagrams

Boolean	Sets	
$A \cdot B$	$A \cap B$, intersection	
A + B	$A \cup B$, union	

Gates

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A F	$F = A \bullet B$ or $F = AB$	AB F 0000 010 1000 1111
OR	A F	F = A + B	AB F 0000 011 1001 1111
NOT	A — F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0

NAND	A B F	$F = \overline{AB}$	AB F 00 1 01 1 10 1 11 0
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	A B	$F = A \oplus B$	A B F 0 0 0 0 1 1 1 0 1

Functionally complete sets

- AND, OR, NOT
- AND, NOT: DeMorgan's theorem

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

- OR, NOT, think about it!
- NAND
- NOR

three basic functions can be reduced to NAND or NOR. Why??

Functionally complete sets

• AND, OR, NOT can be implemented by NAND or NOR

Figure 11.2 Some Uses of NAND Gates

• DeMorgan's law, $A+B=\overline{\overline{A}\cdot\overline{B}}$

Functionally complete sets

• DeMorgan's law, $A \cdot B = \overline{\overline{A} + \overline{B}}$.

Figure 11.3 Some Uses of NOR Gates

Table 11.3 A Boolean Function of Three Variables

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

(b) Boolean Operators Extended to More than Two Inputs (A. B. . . .)

. ,		1 1 1
Operation	Expression	Output = 1 if
AND	A · B ·	All of the set {A, B,} are 1.
OR	A + B +	Any of the set {A, B,} are 1.
NAND	A · B ·	Any of the set {A, B,} are 0.
NOR	A + B +	All of the set {A, B,} are 0.
XOR	A ⊕ B ⊕	The set {A, B,} contains an odd number of ones.

- Sum of products (SOP): $F = XXX + XXX + XXX + \dots$ any of input combinations that produce 1 is true.
- Product of sums (POS): $F = XXX \cdot XXX \cdot XXX \dots$

- Sum of products (SOP): $F = XXX + XXX + XXX + \dots$
- **Minterm**: the AND (product) of terms consists of exactly one instance of each literal, e.g. *ABC*.
- For the OR(+) of minterms, all 0's will have no effect on the final outcome (because 0 + x = x, for any x)
- 1's for minterms cause the output to be 1 (1 + x = 1, for any x).
- ullet By collecting all minterms with F=1, any logical expression can be expressed as a sum of minterms (sum-of-products)

Table 11.3 A Boolean Function of Three Variables

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- Minterms with F = 1: 3rd, 4th, 7th rows
- If the value of some variable is 1, take the variable without complementing it, e.g., 3rd row, B
- If the value of some variable is 0, take the variable by complementing it, e.g., 3rd row, \overline{A} , \overline{C} .
- $F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$

• Product of sums (POS): non of the input combinations that produce 0 (the row with F=0) is true

$$F = \overline{(\overline{A} \; \overline{B} \; \overline{C})} \cdot \overline{(\overline{A} \; \overline{B} \; C)} \cdot \overline{(A \; \overline{B} \; \overline{C})} \cdot \overline{(A \; \overline{B} \; C)} \cdot \overline{(A \; B \; C)}$$

Generalized DeMorgan's theorem:

$$\overline{(A\cdot B\cdot C)}=\overline{A}+\overline{B}+\overline{C}$$

Simplified

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

• We can implement any logic function by sum-of-product implementation or POS.

Graphical Symbol of the implementation

Figure 11.4 Sum-of-Products Implementation of Table 11.3

Graphical Symbol of the implementation

Figure 11.5 Product-of-Sums Implementation of Table 11.3

• Sum of products (SOP) $F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$

- Sum of products (SOP) $F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$
- Can we do something better? Yes,

- Sum of products (SOP) $F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$
- Can we do something better? Yes,
- Idempotent law: A + A = A
- Inverse law: $A + \overline{A} = 1$
- Distributive Law: A(B + C) = AB + AC

- Sum of products (SOP) $F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$
- Can we do something better? Yes,
- Idempotent law: A + A = A
- Inverse law: $A + \overline{A} = 1$
- Distributive Law: A(B + C) = AB + AC
- $\overline{A}B\overline{C} + \overline{A}BC = \overline{A}B(\overline{C} + C) = \overline{A}B$ $\overline{A}B\overline{C} + AB\overline{C} = (\overline{A} + A)B\overline{C} = B\overline{C}$

- Sum of products (SOP) $F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$
- Can we do something better? Yes,
- Idempotent law: A + A = A
- Inverse law: $A + \overline{A} = 1$
- Distributive Law: A(B + C) = AB + AC
- $\overline{A}B\overline{C} + \overline{A}BC = \overline{A}B(\overline{C} + C) = \overline{A}B$ $\overline{A}B\overline{C} + AB\overline{C} = (\overline{A} + A)B\overline{C} = B\overline{C}$

$$F = \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C}$$

$$= (\overline{A}B\overline{C} + \overline{A}BC) + (\overline{A}B\overline{C} + AB\overline{C})$$

$$= \overline{A}B + B\overline{C} = B(\overline{A} + \overline{C})$$

Logic gate implementation (optional)

- Logic Gates are implemented using transistors.
- Transistor can be treated as switches, which turns on/off according to the value of input. If input is 1, the transistor is ON, otherwise it is OFF.

Logic gate implementation (optional)

- NOT gate
- An additional resistor: protect transistors

Logic gate implementation

AND gate

Logic gate implementation

• OR gate

Multiplexers (Optional)

• The multiplexer connects multiple inputs to a single output. One of the inputs is selected to be passed to the output.

Figure 11.12 4-to-1 Multiplexer Representation

Table 11.7 4-to-1 Multiplexer Truth Table

S2	S1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Flip-Flops (Optional)

- The flip-flop is a bistable device. It exists in one of two states and, in the absence of input, remains in that state. Thus, the flip-flop can function as a 1-bit memory.
- The flip-flop has two outputs, which are always the complements of each other. These are generally labeled Q and \overline{Q} .

Figure 11.22 The S-R Latch Implemented with NOR Gates

Summary

- Basic operations of Boolean algebra
- All functions on binary numbers can be treated as logic functions.
- The logic function can then be implemented by SOP or POS
- The logic function can then be represented as either NAND or NOR function.
- How to use transistors to implement logic functions