2 2 5 2)

Anirudh Jakhotia

- 1) 8 to 3 parallel comparator circuit; CAlso called Flash ADC)
- These are the fastest way to convert an analog signal to digital signal. But these are more expensive.
- → For any Nbit → 2^N-1 comparators are.

 Required

 $N=3 \rightarrow 2^3-1=8-1=7$ comparators.

Here, Vref - Stable voltage.

If Ven exceeds vref => the off will saturate
to high State

Truth table For

1	1001										
4	I_{7}	I6	15	Ty	, 2 ³	I)	J	J'o	D ₂	D1	Do
	D	٥	0	O	0	0	D	1	0	0	; 0
1	0	0	P	0	0	O	1	1	6	0	1.
	0	D	ם	0	D	1	1	1.	٥	1	٥
	0	0	0	O	1	1	1_	1	0,	(1-
,	D	D	D	1	1	1	1	1	ţ	0	0
_	0	O	1	1	1	1	1	1	1	0	1
7	0	1	1	1	1	1	1	1	1	1	6
-	1	1	1	1	1	1	1	1		1	1

Operation of DAC using Binary weighted resistors

- i) pac convertors degital quantity into analog quantity.
 - 1) There are several ways to make a DAC.
 - 3) Binary weighted resistor is one of them.

 For a +4-bit >
 - 9) 4 switches. One for each bit applied to the
 - 17) A weighted resistor ladder network, where the resistance are inversely proportional to

the numerical significance of the corresponding

ill) A summing amplifier that adds the current flowing in the resistive network to develop a signal that is proportional to digital input.

-> circuit t.

So
$$V_R$$
 A_3 A_3 A_4 A_5 A

So, S1, S2, S3 - States (high or low) of each bit.

Total current $I = I_0 + I_1 + I_2 + I_3$.

Advantages +

- 1) It is simple in construction.
- 2) It provides fast conversion.

De advantages +

- 1) It can be expensive. Hence, resolution is limited to 8-bit size.
- 2) poquires low switch resistances in transistors 3) this type soquires large range of resistors with necessary high precision for 1000 sesistors.

Given, Ro = 8R, PI=4R, PZ=2R, P3=R ("multiples of '21) (" Binary weighted) Greneral form of R, RU = 2N-1 R N-3 NO. of bits k > proportionality to the ref. voltage. -> Output voltage (VA) - for 4 bit Input 53525,50 VA & [(S3×23) + (S2×22) + (S,×21) + (S8×20)] $VA = K \left[(S_3 \times 2^3) + (S_1 \times 2^2) + (S_1 \times 2^1) + (S_1 \times 2^2) \right]$ Finally, $V_A = K \sum_{h}^{N+1} S_k 2^k$. The States of K-bit, i.e, Sk=1, then, Ak gets connected to Ve else it gets connected to and. IK = VEAL)-0 = & VEAL)-0 $I = \frac{V_R}{N+10} \sum_{k=0}^{N+1} S_k \times 2^k \qquad \left[\begin{array}{c} \cdot \cdot \cdot \cdot R_k = \frac{2^{N-1}R}{2^k} \end{array} \right].$ 4 bit $\Rightarrow I = \frac{VR}{2^3R} \stackrel{3}{\sim} S_L \times 2^K$. = Vr (Sox2+5x2'+5xx2+5x23). Voz -RgI 1 Vo = - VR (Re) (So+ 29 + 452 + 853)]

The of the gots

July Connected &