

Università degli Studi di Milano - Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea Magistrale in Informatica

Algoritmi per la trasformata di Burrows–Wheeler posizionale con compressione run-length

Relatore: Prof.ssa Raffaella Rizzi

Correlatore: Dr. Yuri Pirola

Tesi di Laurea Magistrale di:

Davide Cozzi Matricola 829827

Anno Accademico 2021-2022

E pensare che mi iscrissi ad informatica per fare il sistemista!

Indice

1 Introduzione					
2	Pre	i	5		
	2.1	Bitvect	tor	5	
		2.1.1	Funzione rank	6	
		2.1.2	Funzione select	7	
	2.2	Straigh	nt-Line Program	8	
		2.2.1	~	10	
	2.3	Suffix .		11	
		2.3.1		12	
		2.3.2		13	
		2.3.3		14	
		2.3.4	-	15	
	2.4	Trasfor		16	
	2.5			22	
		2.5.1		22	
		2.5.2		24	
		2.5.3	Uso delle LCE query	27	
	2.6	Trasfor		32	
		2.6.1	Set-maximal exact match con aplotipo esterno	38	
		2.6.2		46	
		2.6.3	Una prima proposta run-length encoded	49	
3	Met	odo		52	
	3.1	Perché	la compressione run-length	52	
	3.2	Matchi	ing Statistics per la RLPBWT	53	
	3.3			56	
		3.3.1		57	
		3.3.2		68	
		3.3.3	Componente per i prefix array sample	72	
		3.3.4		73	

		3.3.5	Componente per la struttura Phi	75
	3.4	Strutt	ure dati per la RLPBWT	81
		3.4.1	Calcolo degli SMEM con RLCP	83
		3.4.2	Calcolo degli SMEM con matching statistics	86
4	Rist	ultati s	sperimentali	98
	4.1	Panne	lli del 1000 Genome Project	100
		4.1.1	Riproducibilità degli esperimenti	101
	4.2	Risulta	ati della sperimentazione	102
		4.2.1	Costruzione delle strutture e calcolo degli SMEM	103
		4.2.2	Tempo di una singola query	113
5	Con	clusion	ai	119
	5.1	Svilup	pi futuri	120
$\mathbf{R}^{\mathbf{i}}$	iferin	nenti		122

Capitolo 1

Introduzione

Negli ultimi anni si è assistito ad un cambio di paradigma nel campo della bioinformatica, ovvero il passaggio dallo studio della sequenza lineare di un singolo genoma a quello di un insieme di genomi, provenienti da un gran numero di individui, al fine di poter considerare anche le varianti geniche. Questo nuovo concetto è stato nominato per la prima volta, nel 2005, da Tettelin [1] con il termine di **pangenoma**. Grazie ai risultati ottenuti in pangenomica, ci sono stati miglioramenti sia nel campo della biologia che in quello della medicina personalizzata, grazie al fatto che, con il pangenoma, si migliora la precisione della rappresentazione di multipli genomi e delle loro differenze.

Il genoma umano di riferimento (GRCh38.p14) è composto da circa 3.1 miliardi di basi, con più di 88 milioni varianti tra i genomi sequenziati, secondo i risultati ottenuti nel 1000 Genome Project [2]. Considerando come la quantità dei dati di sequenziamento sia destinata ad aumentare esponenzialmente nei prossimi anni, grazie al miglioramento delle tecnologie di sequenziamento (Next Generation Sequencing e Third-Generation Sequencing), risulta necessaria la costruzione di algoritmi e strutture dati efficienti per gestire una tale informazione. In merito, uno degli approcci più usati per rappresentare il pangenoma è un pannello di aplotipi [3], ovvero, computazionalmente, una matrice di M righe, corrispondenti agli individui, e N colonne, corrispondenti ai siti con le varianti. Si specifica che, con il termine aplotipo, si intende l'insieme di alleli, ovvero di varianti, che, a meno di mutazioni, un organismo eredita da ogni genitore.

In questo contesto trova spazio uno dei problemi fondamentali della bioinformatica, ovvero quello del pattern matching. Inizialmente, tale concetto era relativo allo studio di un piccolo pattern all'interno di un testo di grandi dimensioni, ovvero il genoma di riferimento. Ora, con l'introduzione del pangenoma, tale problema si è adattato alle nuove strutture dati.

Lo scopo di questa tesi è ottimizzare il problema del pattern matching, inteso come ricerca dei **set-maximal exact match** (SMEM) tra un aplotipo esterno e

un pannello di aplotipi, in una delle strutture dati più utilizzata: la **trasformata di Burrows–Wheeler Posizionale** (PBWT) [4]. Il progetto di tesi, svolto in collaborazione con il prof. Gagie (Dalhousie University) e la prof.ssa Boucher (University of Florida), tra gli autori dei principali risultati ottenuti per la **trasformata di Burrows–Wheeler run-length encoded** (RLBWT) [5] [6] [7] [8], ha quindi permesso lo sviluppo di diverse strutture dati composte per la variante **run-length encoded** della **PBWT** (RLPBWT), efficienti dal punto di vista delle memoria utilizzata.

Parte delle strutture dati e degli algoritmi presentati in questa tesi sono inseriti in un articolo, dal titolo Compressed data structures for population-scale positional Burrows-Wheeler transforms [9]. Al momento della stesura di questa tesi, tale articolo è in fase di review per il giornale Genome Research (Cold Spring Harbor Laboratory Press).

Struttura della tesi

Nel Capitolo 2 si introdurranno i concetti di base, di ambito computazionale e bioinformatico, necessari a comprendere questa tesi. Nel Capitolo 3 verranno discussi
i contributi di questa tesi, descrivendo le soluzioni algoritmiche e le metodologie
utilizzate per raggiungere gli obiettivi prefissati. Nel dettaglio verranno presentate varie strutture dati che saranno le componenti necessarie alla produzione delle
strutture dati per la RLPBWT e al calcolo degli SMEM. Nel Capitolo 4 si discuteranno i risultati ottenuti durante la sperimentazione sui dati reali della phase 3 del
1000 Genome Project [38], progetto, che ha avuto inizio nel 2008, il quale ha
visto lo sforzo della comunità scientifica internazionale per la catalogazione delle
varianti geniche umane. Infine, nel Capitolo 5, si trarranno le conclusioni di questo
progetto di tesi discutendone, infine, i prospetti futuri.

DC L'intera introduzione va estesa

Capitolo 2

Preliminari

In questo capitolo verranno specificati tutti i concetti fondamentali, allo stato dell'arte, atti a comprendere i metodi usati in questa tesi. Si introdurranno i concetti di:

- bitvector
- straight-line program e longest common extension query
- suffix array e longest common prefix
- trasformata di Burrows-Wheeler e la sua variante run-length encoded
- trasformata di Burrows–Wheeler posizionale

A livello di notazione, si specifica che, con T[i,j] si intende la sottostringa del testo/sequenza/riga/colonna T, iniziante all'indice i e terminante all'indice j incluso. Qualora si avesse j > i si identifica la sottostringa nulla ε .

2.1 Bitvector

Nonostante qualche primo risultato isolato, si identifica, con la tesi di dottorato di Jacobson del 1988 [10], l'inizio dello studio delle **strutture dati succinte**. Jacobson, con questo termine, denota quelle strutture dati che usano, con N numero dei differenti oggetti da memorizzare, $\log N + o(\log N)$ bit. Ad esempio, assumendo un array di n bit, una struttura dati succinta utilizza n + o(n) bit, avendo infatti $N = 2^n$ [11].

Un anno dopo, Jacobson [12] notò come una delle strutture dati succinte fondamentali allo sviluppo di altre strutture efficienti in memoria fossero i cosiddetti bitvector.

Definizione 1. Si definisce un **bitvector** B come un array di lunghezza n, popolato da elementi binari. Formalmente si ha quindi:

$$B[i] \in \{0, 1\}, \ \forall i \ t.c. \ 0 \le i < n$$
 (2.1)

In alternativa si potrebbe avere, come formalismo:

$$B[i] \in \{\bot, \top\}, \ \forall i \ t.c. \ 0 \le i < n \tag{2.2}$$

Nel corso degli ultimi anni si sono sviluppate diverse varianti dei bitvector, finalizzate ad offrire diversi costi di complessità spaziale e diversi tempi computazionali per le principali funzioni offerte.

Il primo vantaggio di questa struttura dati è quella di garantire **random access** in tempo costante, pur sfruttando varie tecniche per la memorizzazione efficiente della stessa in memoria. Lo spazio necessario per l'implementazione delle principali varianti nella **Succinct Data Structure Library** (SDSL) [13] (una delle principali librerie, scritta in C++11, per strutture dati succinte) è visualizzabile in tabella 2.1. Il secondo vantaggio consiste nel fatto che i bitvector permettono l'implementazione efficiente di due funzioni: la funzione rank e la funzione select. Un'implementazione naïve delle stesse richiederebbe tempo $\mathcal{O}(n)$, dovendo scansionare l'intero bitvector. In realtà, tali funzioni, al costo teorico di o(n) bit aggiuntivi, possono essere supportate in tempo costante. Si noti però che, nelle implementazioni della SDSL, le complessità temporali delle due funzioni possono variare, sia in termini di bit aggiuntivi che di complessità temporale, a seconda della tipologia di bitvector.

Tabella 2.1: Stime dello spazio occupato (bit) per la memorizzazione di alcune varianti di *bitvector*. Si assume un bitvector di lunghezza n con un numero di simboli $\sigma = 1$ (o $\sigma = \top$) pari a m. K indica la *block size* per l'*interleave*.

V ariante	Spazio occupato
$Plain\ bitvector$	$64\left\lceil\frac{n}{64}+1\right\rceil$
Interleaved bitvector	$\approx n \left(1 + \frac{64}{K}\right)$
H_0 -compressed bitvector	$pprox \left\lceil \log \binom{n}{m} \right\rceil$
Sparse bitvector	$\approx m \left(2 + \log \frac{n}{m}\right)$

2.1.1 Funzione rank

La prima funzione che si approfondisce è la funzione rank. Tale funzione permette di calcolare il *rango* di un dato elemento del bitvector.

DC Mi è sembrato utile riportare tali tabelle

Definizione 2. Dato un bitvector B, lungo n, e data una certa posizione i del bitvector, la funzione rank restituisce il numero di valori uguali a 1 presenti fino a quella data posizione, esclusa. Più formalmente si ha che:

$$\operatorname{rank}_{B}(i) = \sum_{k=0}^{k < i} B[k], \ \forall i \ t.c. \ 0 \le i < n$$
 (2.3)

Come detto, da un punto di vista teorico, al costo di o(n) bit aggiuntivi in memoria tale funzione sarebbe supportata in tempo $\mathcal{O}(1)$. La complessità temporale varia però a seconda dell'implementazione, anche in conseguenza al fatto che si ha una quantità diversa di bit aggiuntivi salvati in memoria. La tabella con le complessità temporali stimate della funzione rank, per le varianti di bitvector implementate nella SDSL, è visualizzabile in tabella 2.2.

Tabella 2.2: Complessità temporali stimate della funzione rank per alcune varianti di bitvector, con la quantità di bit aggiuntivi richiesta. Si assume un bitvector di lunghezza n, con un numero di simboli $\sigma = 1$ (o $\sigma = \top$) pari a m, e un numero k di $rank\ sample$.

Variante	Bit aggiuntivi	Complessità temporale
$Plain\ bitvector$	$0.0625 \cdot n$	$\mathcal{O}(1)$
Interleaved bitvector	128	$\mathcal{O}(1)$
H_0 -compressed bitvector	80	$\mathcal{O}(k)$
$Sparse\ bitvector$	64	$\mathcal{O}\left(\log \frac{n}{m}\right)$

2.1.2 Funzione select

La seconda funzione fondamentale è la funzione select, la quale permettere di ottenere l'indice di un simbolo $\sigma=1$ nel bitvector.

Definizione 3. Dato un bitvector B, lungo n, e dato un valore intero i, la funzione select calcola l'indice dell'i-esimo valore pari a 1 nel bitvector B. Più formalmente si ha che:

$$select_B(i) = min\{j < n \mid rank_B(j+1) = 1\}, \ \forall i \ t.c. \ 0 < i < rank_B(n)$$
 (2.4)

Anche in questo caso vale lo stesso discorso fatto per la funzione rank in merito alla complessità temporale e ai bit aggiuntivi. La tabella con le complessità temporali stimate della funzione select, per le varianti di bitvector implementate

nella SDSL, è visualizzabile in tabella 2.3.

Tabella 2.3: Complessità temporali stimate della funzione select per alcune varianti di bitvector, con la quantità di bit aggiuntivi richiesta. Si assume un bitvector di lunghezza n.

Variante	Bit aggiuntivi	Complessità temporale
$Plain\ bitvector$	$\leq 0.2 \cdot n$	$\mathcal{O}(1)$
Interleaved bitvector	64	$\mathcal{O}(\log n)$
H_0 -compressed bitvector	64	$\mathcal{O}(\log n)$
Sparse bitvector	64	$\mathcal{O}(1)$

Esempio 1. Ipotizziamo di avere il seguente bitvector B, di lunghezza n = 14:

								8						
1	0	0	1	0	1	0	1	0	1	0	0	1	0	

Si ha che, per esempio:

$$\mathsf{rank}(6) = 3$$

$$select(5) = 9$$

Si vedrà, in questo progetto di tesi, come l'uso di tali strutture, nelle varianti plain bitvector e bitvector sparsi, sia fondamentale per lo studio delle due strutture run-length encoded.

2.2 Straight-Line Program

In ambito bioinformatico, una delle principali problematiche è la gestione di testi molto estesi. Si pensi, ad esempio, al caso umano, dove il primo cromosoma, il più lungo, conta circa 247.249.719 bps (paia di basi), nonostante, è bene segnalare, l'uomo non sia affatto l'essere vivente con il genoma più esteso. Fatta questa breve premessa, è facile comprendere l'importanza degli algoritmi e delle strutture dati per la compressione di testi.

Per questa tesi si è quindi pensato all'uso dei cosiddetti **Straight-Line Program** (SLP). In termini generici, un SLP è una grammatica context-free che genera una e una sola parola [14]. Si parla, quindi, di grammar-based compression.

Definizione 4. Sia dato un alfabeto finito Σ di simboli terminali. Sia data una stringa $s = a_1, a_2, \ldots, a_n \in \Sigma^*$, lunga n e costruita sull'alfabeto Σ , avendo $a_i \in \Sigma$, $\forall i$ t.c. $1 \leq i \leq n$. Si denota, con alph $(s) = \{a_1, a_2, \ldots a_n\}$, l'insieme dei simboli della stringa s.

Si definisce SLP, costruito sull'alfabeto Σ , una grammatica context-free \mathcal{A} tale che:

$$\mathcal{A} = (\mathcal{V}, \Sigma, \mathcal{S}, \mathcal{P}) \tag{2.5}$$

Dove:

- V è l'insieme dei simboli non terminali
- Σ è l'insieme dei simboli terminali
- $S \in V$ è il simbolo iniziale non terminale
- \mathcal{P} è l'insieme delle produzioni, avendo che:

$$\mathcal{P} \subseteq \mathcal{V} \times (\mathcal{V} \cup \Sigma)^* \tag{2.6}$$

Tale grammatica, per essere un SLP, deve soddisfare due proprietà:

- 1. si ha una e una sola produzione $(A, \alpha) \in \mathcal{P}, \forall A \in \mathcal{V} e \text{ con } \alpha \in (\mathcal{V} \cup \Sigma)^*$ (si noti che la produzione (A, α) può anche essere indicata con $A \to \alpha$)
- 2. la relazione $\{(A, B) \mid (A, \alpha) \in \mathcal{P}, B \in alph(\alpha)\}$ è aciclica

DC verificare questo secondo punto

Si ha quindi che la grandezza dell'SLP è calcolabile come:

$$|\mathcal{A}| = \sum_{(A,\alpha)\in\mathcal{P}} |\alpha| \tag{2.7}$$

Il linguaggio A generato da un SLP consiste in una singola parola, denotata da eval(A).

A partire dall' SLP \mathcal{A} si genera un albero di derivazione, che, nel dettaglio, è un albero radicato e ordinato dove la radice è etichettata con \mathcal{S} , ogni nodo interno è etichettato con un simbolo di $\mathcal{V} \cup \Sigma$ e ogni foglia è etichettata con un simbolo di Σ .

Esempio 2. Si prenda, ad esempio [15], la seguente stringa:

$$s = GATTAGATACAT\$GATTACATAGAT$$

Si potrebbe produrre il seguente SLP:

- $S \rightarrow ZWAY\$ZYAW$ $Y \rightarrow CV$
- $W \rightarrow GV$

- $Z \rightarrow WX$
- $X \rightarrow TA$

• $V \rightarrow AT$

Al quale corrisponde il seguente albero di derivazione:

Si noti che il simbolo iniziale non terminante, ovvero la radice, è indicata con un cerchio giallo, i simboli non terminanti, ovvero i nodi interni, sono indicati dai cerchi blu mentre i simboli terminanti, ovvero le foglie, sono indicati dai quadrati verdi.

Nel 2020, Gagie et al. [15] proposero un articolo, a cui si rimanda per approfondimenti, in merito a miglioramenti prestazionali per il random access all'SLP, anche tramite l'uso dei bitvector sparsi.

Si stima che il tempo necessario al random access su un testo T, compresso tramite SLP e lungo n, sia:

$$\mathcal{O}\left(\log n\right) \tag{2.8}$$

L'uso di tale variante degli SLP è stato cruciale, come si vedrà più avanti in questa tesi, per la costruzione della versione run-length encoded sia della BWT che della PBWT.

2.2.1 Longest Common Extension

Oltre a permettere *random access* al testo compresso, l'uso degli SLP permette di effettuare un'altra operazione in modo efficiente, ovvero il calcolo delle **Longest** Common Extension (LCE) query.

Definizione 5. Dato un testo T, tale che |T| = n, il risultato della LCE query tra due posizioni i e j, tali che $0 \le i, j < n$, corrisponde al più lungo prefisso comune tra le sottostringhe che hanno come indice di partenza i e j, ovvero il più lungo prefisso comune tra T[i, n-1] e T[j, n-1].

Sfruttando l'SLP del testo T è quindi possibile effettuare due random access al testo compresso, agli indici i e j, per poi "risalire" l'albero di derivazione al fine di computare il prefisso comune tra le due sottostringhe.

Si stima che il calcolo di una LCE query di lunghezza l sia effettuabile, avendo l'SLP di un testo T lungo n, in tempo:

$$\mathcal{O}(\log n + l) \approx \mathcal{O}(\log n)$$
 (2.9)

Avendo che la lunghezza dell' LCE è trascurabile rispetto alla lunghezza del testo. I due concetti di SLP e LCE query verranno generalizzati, in questa tesi, all'uso su matrici permettendo una rappresentazione compatta in memoria per un pannello di aplotipi, garantendo random access.

DC capire se sono necessari altri approfondimenti

Librerie

Da un punto di vista implementativo, l'oggetto contenente l'SLP del pannello viene costruito ed interrogato mediante l'uso della libreria **ShapedSlp**¹, implementazione dei risultati teorici ottenuti da Gagie et al. [15]. Inoltre, tale libreria basa il suo funzionamento sull'uso di un'altra libreria, detta **BigRePair**², che implementa ulteriori risultati teorici di Gagie et al. [16] in merito alla compressione, via uso di grammatiche, di file con frequenti ripetizioni (come possono essere, nel nostro caso, pannelli binari di aplotipi).

In termini di pipeline si procede quindi:

- 1. generando la grammatica tramite BigRePair, che accetta come file di input un file txt "raw" ma anche file in formato standard nel campo della bioinformatica, come i FASTA
- 2. generando l'SLP tramite ShapedSlp specificatamente a partire dai risultati di BigRePair (si segnala che la libreria accetta anche grammatiche prodotte da altri software)

2.3 Suffix Array

Nel 1976, Manber e Myers [17] proposero una struttura dati per la memorizzazione di stringhe e la loro interrogazione, efficiente sia in termini di uso della memoria che di complessità temporale. Tale struttura venne nominata Suffix Array (SA).

¹ttps://github.com/itomomoti/ShapedSlp

²https://gitlab.com/manzai/bigrepair

Definizione 6. Dato un testo T, \$-terminato (assumendo che il simbolo \$ sia sempre il simbolo lessicograficamente minore nell'alfabeto di studio), tale che |T| = n, si definisce suffix array di T, denotato con SA_T , un array di interi lungo n, tale che $\mathsf{SA}_T[i] = j$ sse il suffisso di ordine j, ovvero T[j, n-1], è l'i-esimo suffisso nell'ordinamento lessicografico dei suffissi di T. Ne segue che, presi $i, i' \in \mathbb{N}$ tali che $0 \le i < i' < n$ e indicando con \prec l'ordinamento lessicografico:

$$T[\mathsf{SA}_T[i], n-1] \prec T[\mathsf{SA}_T[i'], n-1]$$
 (2.10)

Il suffix array è, quindi, una permutazione dei numeri interi in $\{0, n-1\}$.

Esempio 3. Si prenda la stringa:

$$s = mississippi\$, |s| = 12$$

Si producono quindi i seguenti suffissi e il loro riordinamento:

Indice del suffisso	Suffisso		Indice del suffisso	Suffisso
0	mississippi\$		11	\$
1	ississippi\$		10	i\$
2	ssissippi\$		7	ippi\$
3	sissippi\$		4	issippi\$
4	issippi\$		1	ississippi\$
5	ssippi\$	\Longrightarrow	0	mississippi\$
6	sippi\$		9	pi\$
7	ippi\$		8	ppi\$
8	ppi\$		6	sippi\$
9	pi\$		3	sissippi\$
10	i\$		5	ssippi\$
11	\$		2	ssissippi\$

Avendo che:

$$SA_T = [11, 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]$$

2.3.1 Longest common prefix

L'uso del suffix array è spesso accompagnato da un'altra struttura dati, detta Longest Common Prefix (LCP).

Definizione 7. Si definisce il Longest Common Prefix di un testo T lungo n, denotato con LCP_T , come un array lungo n+1, contenente la lunghezza del prefisso comune tra ogni coppia di suffissi consecutivi nell'ordinamento lessicografico dei suffissi, ovvero l'ordinamento specificato da SA_T . Più formalmente, LCP_T è un array tale che, avendo $0 \le i \le n$ e indicando con $\mathsf{lcp}(x,y)$ il più lungo prefisso comune tra le stringhe x e y:

$$\mathsf{LCP}_{T}[i] = \begin{cases} -1 & se \ i = 0 \lor i = n \\ \left| \mathsf{lcp}(T[\mathsf{SA}_{T}[i-1], n], T[\mathsf{SA}_{T}[i], n]) \right| & altrimenti \end{cases} \tag{2.11}$$

Indice	SA_T	LCP_T	Suffisso
0	11	-1	\$
1	10	0	i\$
2	7	1	<u>i</u> ppi\$
3	4	1	<u>i</u> ssippi\$
4	1	4	<u>issi</u> ssippi\$
5	0	0	mississippi\$
6	9	0	pi\$
7	8	1	ppi\$
8	6	0	sippi\$
9	3	2	<u>si</u> ssippi\$
10	5	1	ssippi\$
11	2	3	<u>ssi</u> ssippi\$
12	-	-1	_

Esempio 4. Riprendendo l'esempio precedente si avrebbe:

Senza entrare in ulteriori dettagli relativi all'algoritmo di pattern matching tramite SA e LCP , in quanto non centrali per il resto della trattazione, risulta comunque interessante riportarne le complessità temporali. Si ha che, per l'algoritmo di query su SA senza l'uso dell' LCP , si ha, per un testo lungo n e un pattern lungo m:

$$\mathcal{O}(m\log n) \tag{2.12}$$

Con l'uso dell' LCP, si riduce a:

$$\mathcal{O}(m + \log n) \tag{2.13}$$

Per ulteriori approfondimenti in merito agli algoritmi di pattern matching basati su suffix array e ai relativi "acceleratori", si rimanda al testo di Gusfield [18].

2.3.2 Inverse suffix array

Ai fini di poter comprendere future definizioni, si presenta anche la permutazione inversa dei valori del suffix array, detta **Inverse Suffix Array** (ISA). Grazie a tale permutazione inversa, dato un indice di suffisso, è possibile sapere in quale posizione si trovi tale suffisso nel *suffix array*.

Definizione 8. Dato il suffix array SA_T , costruito su un testo T di lunghezza n, si definisce l'inverse suffix array, denotato con ISA_T , come:

$$\mathsf{ISA}_{T}[i] = j \iff \mathsf{SA}_{T}[j] = i, \ \forall i \in \{0, n-1\}$$
 (2.14)

Esempio 5. Riprendendo l'esempio precedente si avrebbe:

Indice	SA_T	$ ISA_T $	Suffisso
0	11	5	\$
1	10	4	i\$
2	7	11	ippi\$
3	4	9	issippi\$
4	1	3	ississippi\$
5	0	10	mississippi\$
6	9	8	pi\$
7	8	2	ppi\$
8	6	7	sippi\$
9	3	6	sissippi\$
10	5	1	ssippi\$
11	2	0	ssissippi\$

2.3.3 Permuted longest common prefix

Un'altra permutazione che bisogna introdurre è il **permuted longest common prefix** (PLCP) **array** [19]. Tale permutazione permette una rappresentazione succinta in memoria dell'LCP [20], permettendo di ottenere gli stessi risultati di quest'ultimo.

Definizione 9. Si definisce il permuted longest common prefix, denotato con $PLCP_T$, costruito a partire da un testo T di lunghezza n, come un array tale per cui [8]:

$$\mathsf{PLCP}_T[p] = \begin{cases} -1 & se \ \mathsf{ISA}_T[p] = 0 \\ \mathsf{LCP}_T[\mathsf{ISA}_T[p]] & altrimenti \end{cases}, \ \forall \, p \in \{0, n-1\}$$
 (2.15)

Si noti che i valori sono in ordine di posizione, ovvero l'ordine originale dato dagli indici dei suffissi, e non lessicografico. In altri termini, si ha una permutazione dei valori di LCP_T tale per cui [19]: $\mathsf{PLCP}_T[\mathsf{SA}_T[p]] = \mathsf{LCP}_T[p], \ \forall \, p \in \{1, n-1\}$

Esempio 6. Riprendendo l'esempio precedente si avrebbe quindi:

Indice	SA_T	ISA_T	$ LCP_T $	$PLCP_T$	Suffisso
0	11	5	-1	0	\$
1	10	4	0	4	i\$
2	7	11	1	3	<u>i</u> ppi\$
3	4	9	1	2	issippi\$
4	1	3	4	1	<u>issi</u> ssippi\$
5	0	10	0	1	mississippi\$
6	9	8	0	0	pi\$
7	8	2	1	1	<u>p</u> pi\$
8	6	7	0	1	sippi\$
9	3	6	2	0	<u>si</u> ssippi\$
10	5	1	1	0	ssippi\$
11	2	0	3	-1	ssissippi\$
12	-	-	-1	-	-

DC L'intera sottosezione potrebbe essere quasi totalmente rimossa ma almeno la definizione serve per il calcolo di tutte le occorrenze di un MEM, come in PHONI

Ciò che permette una rappresentazione compatta del PLCP è descritto nel seguente lemma [21].

Lemma 1. Dato un testo T, tale che |T| = n, si ha che:

$$PLCP_T[i] \ge PLCP_T[i-1] - 1, \ \forall i \in \{1, n-1\}$$
 (2.16)

Grazie a tale lemma si può memorizzare l'PLCP sparso.

Definizione 10. Dato un intero q, per il quale calcolo (basato sul lemma precedente) si rimanda al paper di Kasai [21], si definisce array PLCP sparso, lungo $\left\lfloor \frac{n}{q} \right\rfloor$ e denotato PLCP_q , come l'array che memorizza ogni q-esimo valore del PLCP , avendo che:

$$PLCP_{q}[i] = PLCP_{T}[iq]$$
 (2.17)

DC Capire se serve variante esempio

2.3.4 Funzione phi

L'ultimo concetto che si introduce sono le funzioni φ e φ^{-1} , usate per poter identificare i valori precedenti e successivi di un dato valore in SA_T . Esse sono utili al fine di poter sia ricostruire efficientemente il PLCP di un testo T (per i dettagli si rimanda all'articolo di Kärkkäinen [19]) che di permettere, come si vedrà più avanti nella sezione 2.4, il riconoscimento di tutte le occorrenze di un **maximal exact match** (MEM) in T [8].

Definizione 11. Dato un testo T di lunghezza n si definiscono le funzioni, che di fatto sono permutazioni dei valori di SA_T , φ e φ^{-1} come [8]:

$$\varphi(p) = \begin{cases} \text{null} & \text{se } \mathsf{ISA}_T[p] = 0\\ \mathsf{SA}_T[\mathsf{ISA}_T[p] - 1] & \text{altrimenti} \end{cases}, \ \forall \, p \in \{0, n - 1\}$$
 (2.18)

$$\varphi(p) = \begin{cases} \text{null} & se \ \mathsf{ISA}_T[p] = 0 \\ \mathsf{SA}_T[\mathsf{ISA}_T[p] - 1] & altrimenti \end{cases}, \ \forall \, p \in \{0, n - 1\}$$

$$\varphi^{-1}(p) = \begin{cases} \text{null} & se \ \mathsf{ISA}_T[p] = n - 1 \\ \mathsf{SA}_T[\mathsf{ISA}_T[p] + 1] & altrimenti \end{cases}, \ \forall \, p \in \{0, n - 1\}$$

$$(2.18)$$

Si noti che si ha il valore null quando, rispettivamente, si studia il primo e l'ultimo valore del suffix array in quanto non hanno, sempre rispettivamente, l'antecedente e il successore.

Analogamente, sempre coi medesimi vincoli, le due funzioni possono essere definite come [19]:

$$\varphi(\mathsf{SA}[p]) = \mathsf{SA}[p-1] \tag{2.20}$$

$$\varphi^{-1}(\mathsf{SA}[p]) = \mathsf{SA}[p+1] \tag{2.21}$$

Indice	SA_T	$ ISA_T $	φ	φ^{-1}	Suffisso
0	11	5	1	9	\$
1	10	4	4	0	i\$
2	7	11	5	null	ippi\$
3	4	9	6	5	issippi\$
4	1	3	7	1	ississippi\$
5	0	10	3	2	mississippi\$
6	9	8	8	3	pi\$
7	8	2	10	4	ppi\$
8	6	7	9	6	sippi\$
9	3	6	0	8	sissippi\$
10	5	1	11	7	ssippi\$
11	2	0	null	10	ssissippi\$

Esempio 7. Riprendendo l'esempio precedente si avrebbe quindi:

Infatti, ad esempio, il valore 9 in SA_T è preceduto dal valore $\varphi(9) = 0$ ed è seguito dal valore $\varphi^{-1}(9) = 8$.

2.4 Trasformata di Burrows-Wheeler

Introdotta nel 1994 da Burrows e Wheeler con lo scopo di comprimere testi, la **Burrows-Wheeler Transform** (BWT) [22] è divenuta ormai uno standard nel campo dell'algoritmica su stringhe e della bioinformatica, grazie ai suoi molteplici vantaggi sia dal punto di vista della complessità temporale che da quello dell'efficienza in memoria.

Nel dettaglio, la BWT è una trasformata reversibile che permette una compressione lossless, quindi senza perdita d'informazione. Tale trasformazione viene costruita a partire dal riordinamento dei caratteri del testo in input, riordinando lessicograficamente le cosiddette *rotazioni* del testo. Interessante è la proprietà per cui caratteri uguali tendono ad essere posti consecutivamente all'interno della stringa prodotta dalla trasformata. Questa proprietà è causata dalle ripetizioni di sottostringhe all'interno del testo stesso.

Definizione 12. Dato un testo T \$-terminato, tale che |T| = n, si definisce la Burrows-Wheeler Transform di T, denotata con BWT_T , come un array di caratteri lungo n dove l'elemento i-esimo è il carattere che precede l'i-esimo suffisso di T nel riordinamento lessicografico. Più formalmente si ha che:

$$\mathsf{BWT}_{T}[i] = \begin{cases} T[\mathsf{SA}_{T}[i] - 1] & se \; \mathsf{SA}_{T}[i] \neq 1 \\ \$ & altrimenti \end{cases}, \; \forall i \in \{0, n - 1\}$$
 (2.22)

In termini operativi, la BWT di un testo è calcolabile riordinando lessicograficamente tutte le possibili rotazioni del testo T.

Definizione 13. Si definisce rotazione i-esima di un testo T lungo n, denotata con $\mathsf{ROT}_T(i)$, come la stringa ottenuta dalla concatenazione del suffisso i-esimo con la restante porzione del testo. Più formalmente, si ha che, denotando con $X \cdot Y$ la concatenazione tra la stringa X e la stringa Y:

$$\mathsf{ROT}_T(i) = T[i, n-1] \cdot T[0, i-1], \ \forall i \in \{0, n-1\}$$
 (2.23)

Data questa definizione, quindi, la BWT del testo T risulta essere l'ultima colonna della matrice, detta **Burrows–Wheeler Matrix** (BWM), che si ottiene riordinando tutte le rotazioni di T, che altro non sono che i suffissi già riordinati per il calcolo di SA_T a cui viene concatenata la parte restante del testo.

Un altro array spesso utilizzato insieme alla BWT è il cosiddetto array F, lungo |T|, che è l'array formato dalla prima colonna della BWM. In pratica l'array F_T è l'array formato dal riordinamento lessicografico dei caratteri del testo T.

Esempio 8. Si prenda la stringa:

$$s = mississippi \$, |s| = 12$$

 $Si\ produce\ la\ \mathsf{BWM}_T,\ da\ cui\ si\ estraggono\ \mathsf{F}_T\ e\ \mathsf{BWT}_T$:

Indice	SA_T	$ F_T$	BWM_T	BWT_T
0	11	\$	\$mississippi	i
1	10	i	i\$mississipp	p
2	7	i	ippi\$mississ	\mathbf{s}
3	4	i	issippi\$miss	\mathbf{s}
4	1	i	ississippi\$m	m
5	0	m	mississippi\$	\$
6	9	p	pi\$mississip	p
7	8	p	ppi\$mississi	i
8	6	s	sippi\$missis	\mathbf{s}
9	3	s	sissippi\$mis	\mathbf{s}
10	5	s	ssippi\$missi	i
11	2	s	ssissippi\$mi	i

L'importanza di questa trasformata è dovuta al fatto che sia reversibile, implicando quindi che, a partire da BWT_T , sia possibile ricostruire T. Questo è possibile grazie ad una proprietà intrinseca della trasformata che viene riassunta nel concetto di LF -mapping.

Definizione 14. Dato un testo T, tale che |T| = n, data la sua BWT $_T$ e il suo array F_T si definisce LF-mapping come la proprietà per la quale l'i-esima occorrenza di un carattere σ in BWT $_T$ corrisponde all'i-esima occorrenza dello stesso carattere in F_T .

Grazie a questa definizione è possibile partire dall'ultimo carattere del testo, ovvero $\sigma = \$$, e ricostruire l'intero testo a ritroso. Si vede quindi un breve esempio.

Esempio 9. Si riprende l'esempio precedente, avendo:

$$BWT_T = ipssm pissii \ e \ F_T = piiiimppssss$$

E avendo i seguenti caratteri associati dall'LF-mapping:

Indice	SA_T	F_T	BWM_T	BWT_T
0	11	\$	\$mississippi	i
1	10	i _	i\$mississipp	р
2	7	i	ippi\$mississ	\mathbf{s}
3	4	i	issippi\$miss	s
4	1	i	ississippi\$m	m
5	0	m-	unssissippi	\$
6	9	p/	pi\$miszissip	p
7	8	p-	ppiemississi	i
8	6	s	sippi\$missis	s
9	3	s	sissippi\$mis	s
10	5	s	ssip pi\$ missi	ì
11	2	s	ssissippi\$mi	i

Si comincia dal simbolo '\$' in BWT_T , che è l'ultimo carattere di T. Si ha che esso corrisponde al primo e unico simbolo '\$' in F_T , all'indice 0. Tale simbolo, per l'ovvia proprietà delle rotazioni è preceduto dal simbolo $\mathsf{BWT}_T[0] = 'i'$ in T. Quindi 'i' precederà '\$' in T:

$$T = \dots i$$
\$

Si sa inoltre che tale 'i' è il primo 'i' in BWT_T . Si cerca quindi il primo simbolo 'i' anche in F_T , sapendo che sono lo stesso simbolo nel testo. A questo punto il simbolo allo stesso indice di tale 'i' nella BWT_T , ovvero il simbolo 'p', sarà il simbolo che precede 'i' nel testo:

$$T = \dots pi$$
\$

Proseguendo a ritroso si ricostruisce l'intero testo:

$$T = mississippi$$
\$

DC Questo esempio serve davvero?

FM-index

Tramite l'uso dell'LF-mapping è possibile risolvere il problema di ricerca di un pattern all'interno del testo, tramite l'algoritmo nominato **backward search**. Questa tecnica consiste nell'iterare il pattern da destra a sinistra e salvare, di volta in volta, un intervallo sul suffix array. Nel dettaglio, ipotizzando di essere in posizione i del pattern, tale intervallo è relativo a quei suffissi che hanno come prefisso il suffisso i-esimo del pattern. Tale intervallo viene esteso usando il carattere P[i-1] selezionando il nuovo intervallo sul suffix array. Tale aggiornamento è detto $backward\ step\ e\ consiste\ nell'aggiornare\ l'intervallo\ sul\ suffix\ array\ a\ quei\ suffissi\ del testo che, estesi a\ sinistra\ col\ carattere\ <math>(i-1)$ -esimo del pattern, presentano un match con P[i-1,|P|-1].

Usando la BWT è possibile usare due funzioni, dette C e Occ, per computare la backward search.

Definizione 15. Dato un testo \$-terminato T, lungo n e costruito su alfabeto Σ , si definisce la funzione C, come una funzione:

$$\mathsf{C}: \Sigma \cup \$ \to \mathbb{N} \tag{2.24}$$

Dato un carattere $\sigma \in \Sigma$, $C(\sigma)$ restituisce il numero di occorrenze dei caratteri lessicograficamente più piccoli di σ in T.

Definizione 16. Dato un testo \$\structure{s}\text{-terminato } T\$, lungo n e costruito su alfabeto Σ , e la sua BWT_T , si definisce la funzione Occ, come una funzione:

$$\mathsf{Occ}: \Sigma \cup \$ \times \{0, n\} \to \mathbb{N} \tag{2.25}$$

Dato un carattere $\sigma \in \Sigma$ e una posizione i della BWT_T , $Occ(\sigma, i)$ restituisce il numero di occorrenze del carattere σ nei primi i elementi di BWT_T .

Questa coppia di funzioni prende il nome di **FM-index** [23], il quale è definito essere un self index in quanto è possibile tenere in memoria solo tale indice per ottenere i risultati medesimi della BWT_T , ricordando anche che da essa si può ricostruire il testo T.

Esempio 10. Si prenda il seguente testo e la corrispondente BWT_T :

$$T = mississippi \$, |s| = 12$$

$$BWT_T = ipssm pissii$$

Si hanno, per $C(\sigma)$ e $Occ(\sigma, i)$:

		$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$	0 0 0	$\left egin{array}{c} 0 \\ 0 \\ 1 \end{array} \right $	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
$\sigma \mid$	$\mid C(\sigma)$	$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1 1 1	0 0	1 1 1	$\begin{vmatrix} 0\\1\\2 \end{vmatrix}$
\$ i m	0 1 5 6	5 6 7 8	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	$\begin{array}{ c c } 1 \\ 1 \\ 1 \\ 2 \\ \end{array}$	1 1 1 1	$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}$
p s	8	9 10 11 12	1 1 1 1	2 2 3 4	1 1 1 1	2 2 2 2	3 4 4 4
		i/σ	\$	i	m	p	S

Dato un simbolo σ del pattern e il precedente intervallo [f, g) su SA_T , si esegue il backward step, tramite l'FM-index, aggiornando f e g nel seguente modo:

$$f' = \mathsf{C}(\sigma) + \mathsf{Occ}(\sigma, f), \quad g' = \mathsf{C}(\sigma) + \mathsf{Occ}(\sigma, g) \tag{2.26}$$

Ritornando il nuovo intervallo $[f,g) \leftarrow [f',g')$ sse f' < g'. Si segnala che tali variabili sono inizializzate con f = 0 e g = n.

Tale calcolo si basa sull'LF-mapping. Infatti, partendo da un intervallo su SA_T (che è anche un intervallo su BWT_T), si identificano quali suffissi sono preceduti dal simbolo del pattern voluto. Tale simbolo, se il pattern ha un'occorrenza fino al carattere in analisi, sarà presente in sottointervallo di [f,g) sulla BWT_T . Una volta identificati tali caratteri su BWT_T si usano $\mathsf{C}(\sigma)$ e $\mathsf{Occ}(\sigma,i)$ per trovare tali caratteri su F_T , calcolando il nuovo intervallo [f,g).

DC capire se dire meglio

Esempio 11. Si assuma il pattern P = iss da voler ricercare nel testo T = mississippi\$. Si ha, in termini di inizializzazione che f = 0, g = 12, $\sigma = P[|P| - 1] = P[2] = s$. Si calcolano i nuovi f' e g':

$$f' = \mathsf{C}(s) + \mathsf{Occ}(s, 0) = 8 + 0 = 8$$

$$g' = \mathsf{C}(s) + \mathsf{Occ}(s, 12) = 8 + 4 = 12$$

Ottenendo l'intervallo [8, 12) sul suffix array. Si prosegue leggendo il carattere $\sigma = P[1] = s$:

$$f' = \mathsf{C}(s) + \mathsf{Occ}(s, 8) = 8 + 2 = 10$$

$$g' = C(s) + Occ(s, 12) = 8 + 4 = 12$$

Limitando quindi l'intervallo a [10,12). Si noti che tale intervallo corrisponde ai due simboli "s" presenti in $BWT_T[8,11]$, che sono esattamente i simboli in $F_T[10,11]$. Un ulteriore aggiornamento, col carattere $\sigma = P[0] = i$, comporta:

$$f' = C(i) + Occ(i, 10) = 1 + 2 = 3$$

$$q' = C(i) + Occ(i, 12) = 1 + 4 = 5$$

Avendo l'intervallo finale su SA_T del match, ovvero: [3, 5). Seguendo l'intero ragionamento sul suffix array si avrebbe:

Indice	SA_T	$ F_T$	BWM_T	BWT_T		Indice	SA_T	$ F_T$	BWM_T	BWT_T
0	11	\$	\$mississippi	i		0	11	\$	\$mississippi	i
1	10	i	i\$mississipp	p		1	10	i	i\$mississipp	p
2	7	i	ippi\$mississ	S		2	7	i	ippi\$mississ	s
3	4	i	issippi\$miss	S		3	4	i	issippi\$miss	S
4	1	i	ississippi\$m	m		4	1	i	ississippi\$m	m
5	0	m	mississippi\$	\$	\Longrightarrow	5	0	m	mississippi\$	\$
6	9	p	pi\$mississip	p		6	9	р	pi\$mississip	p
7	8	р	ppi\$mississi	i		7	8	р	ppi\$mississi	i
8	6	s	sippi\$missis	S		8	6	s	sippi\$missis	S
9	3	s	sissippi\$mis	S		9	3	s	sissippi\$mis	S
10	5	s	ssippi\$missi	i		10	5	s	ssippi\$missi	i
11	2	s	ssissippi\$mi	i		11	2	s	ssissippi\$mi	i

 \Downarrow

Indice	SA_T	F_T	BWM_T	BWT_T		Indice	SA_T	$ F_T$	BWM_T	BWT_T
0	11	\$	\$mississippi	i	="	0	11	\$	\$mississippi	i
1	10	i	i\$mississipp	p		1	10	i	i\$mississipp	p
2	7	i	ippi\$mississ	S		2	7	i	ippi\$mississ	s
3	4	i	issippi\$miss	s		3	4	i	issippi\$miss	S
4	1	i	ississippi\$m	m		4	1	i	ississippi\$m	m
5	0	m	mississippi\$	\$	\Longrightarrow	5	0	m	mississippi\$	\$
6	9	p	pi\$mississip	p		6	9	p	pi\$mississip	p
7	8	р	ppi\$mississi	i		7	8	р	ppi\$mississi	i
8	6	s	sippi\$missis	S		8	6	s	sippi\$missis	s
9	3	s	sissippi\$mis	S		9	3	s	sissippi\$mis	s
10	5	s	ssippi\$missi	i		10	5	s	ssippi\$missi	i
11	2	s	ssissippi\$mi	i		11	2	s	ssissippi\$mi	i

Avendo quindi che le occorrenze del pattern P = iss iniziano alle posizioni $\mathsf{SA}_T[3] = 4$ e $\mathsf{SA}_T[4] = 1$ del testo.

2.5 Trasformata di Burrows–Wheeler run-length encoded

Come già introdotto, la BWT tende ad avere caratteri uguali in posizioni consecutive all'interno della sua sequenza. Si è quindi pensato, fin da subito, ad un modo efficiente per memorizzare in modo compresso testi mediante l'uso del run-length encoding.

Tale tecnica consiste nel memorizzare le cosiddette *run*, ovvero sequenze massimali di caratteri uguali, mediante coppie (carattere, lunghezza della run).

Esempio 12. Vediamo un breve esempio.

Si ipotizzi di avere la sequente stringa:

$$s = aaaacctgggggg$$

La sua memorizzazione run-length sarebbe:

$$\{(a,4),(c,2),(t,1),(g,6)\}$$

2.5.1 RLBWT e r-index

In questa direzione, nel 2005, Mäniken e Navarro proposero la Run-Length encoded Burrows--Wheeler Transform (RLBWT) [5].

Definizione 17. Dato un testo T, si definisce la RLBWT $di\ T$ come la rappresentazione run-length encoded della BWT $_T$, denotandola con RLBWT $_T$. Si noti che, avendo r come numero di run nella BWT $_T$:

$$|\mathsf{RLBWT}_T| = r \tag{2.27}$$

L'uso di tale struttura risulta particolarmente efficiente, ad esempio, volendo creare un'unica BWT a partire dalla concatenazione di multipli genomi. Infatti, tale concatenazione conterrà, per ovvie ragioni biologiche, diverse regioni genomiche ripetute.

Una strategia per la memorizzazione in modo compatto la RLBWT è quella di memorizzare:

- una stringa c, tale che |c|=r, contenente un solo carattere per ogni run della BWT_T
- un bitvector bv, lungo quanto BWT_T , tale che bv[i] = 1 sse $\mathsf{BWT}_T[i]$ è il primo carattere, detto anche testa, di una run

Esemplo 13. Si prenda ad esemplo la seguente BWT_T :

$$BWT_T = acggtcccaa$$

Si hanno:

$$c = acgtca$$
 $bv = 1110110010$

Mäniken e Navarro hanno proposto anche il seguente teorema.

Teorema 1. Dato un testo T, tale che |T| = n, si può costruire RLBWT $_T$ in uno spazio $\mathcal{O}(r)$, avendo che si possono conteggiare tutte le occorrenze di un pattern P, tale che |P| = m, in tempo:

$$\mathcal{O}(m\log n) \tag{2.28}$$

La struttura dati dietro questo risultato ha preso il nome di **r-index**. Tale indice consiste in:

- la RLBWT
- dei suffix array sample, in spazio $\mathcal{O}(r)$

Grazie a tale indice, dato un testo T, tale che |T| = n, e dato un pattern P, tale che |P| = m, è stato possibile:

- conteggiare le occorrenze (count query) del pattern nel testo, in tempo $\mathcal{O}(m\log n)$ e in spazio $\mathcal{O}(r)$
- localizzare tali occorrenze nel testo (*locate query*) in tempo $\mathcal{O}(s)$ e in spazio $\mathcal{O}\left(\frac{r}{s}\right)$, avendo s come distanza tra due SA sample

Nel 2017, Policriti and Prezza [24] proposero un teorema fondamentale in questo ambito.

Teorema 2 (Toehold lemma). Dato un testo T, tale che |T| = n, e dato un pattern P, tale che |P| = m, si può computare l'intervallo sulla BWT_T contenente i k caratteri precedenti le occorrenze di P in T in spazio $\mathcal{O}(r)$ e in tempo:

$$\mathcal{O}(m\log\log n) \tag{2.29}$$

Questo risultato dimostra come identificare \underline{un} SA sample nell'intervallo contenente il pattern P. Il limite è dato dal fatto che non si supporta la localizzazione di tutte le k occorrenze degli SA sample in quell'intervallo.

Nel 2020 Gagie et al [6], combinando la RLBWT, il Toehold lemma e la già introdottta funzione φ , trovarono una soluzione a questo problema, permettendo di avere le locate query in spazio $\mathcal{O}(r)$. Tale risultato si riassume nel seguente teorema.

Teorema 3. Dato un testo T, tale che |T| = n, si può memorizzare T in spazio $\mathcal{O}(r)$, avendo che si possano trovare tutte le k occorrenze di un pattern P, lungo m, in tempo:

$$\mathcal{O}((m+k)\log\log n) \tag{2.30}$$

Nel dettaglio, i risultati di Gagie portarono a ridefinire l'r-index tramite l'uso dei valori del SA all'inizio e alla fine di ogni run come SA sample. Si è quindi ottenuto che i SA sample possono essere memorizzati in spazio proporzionale al numero di run, pur permettendo in modo efficiente le locate query.

Per ulteriori dettagli in merito alla costruzione dell'r-index si rimanda anche ai paper di Kuhnle et al. [25], di Mun et al. [26] e di Boucher et al. [27].

2.5.2 Match massimali con RLBWT

Dopo aver introdotto l'r-index, bisogna brevemente come avvenga il calcolo dei cosiddetti **Maximal Exact Match** (MEM), ovvero match esatti, tra un pattern e un testo, che non possono essere estesi in alcuna direzione, essendo quindi massimali.

Definizione 18. Dato un testo T, con |T| = n, e un pattern P, con |P| = m, si definisce MEM di P in T una sottostringa P[i, i+l-1], di lunghezza l, se:

- P[i, i+l-1] è una sottostringa di T
- P[i-1,i+l-1] non è una sottostringa di T (non si può estendere a sinistra)
- P[i, i+l] non è una sottostringa di T (non si può estendere a destra)

L'importanza nel calcolo dei match massimali esatti si ritrova nel loro uso nei metodi di allineamento basati sul paradigma seed-and-extend. Tale paradigma, sfruttato in algoritmi di allineamento come BLAST [28], uno degli allineatori più usati al mondo, si basa sul trovare MEM di piccola lunghezza, detti seed, per poi continuare l'allineamento tramite algoritmi più sofisticati, spesso basati sulla programmazione dinamica.

Nel 2020, Bannai et al. [29] mostrarono come il calcolo dei MEM fosse equivalente al calcolo delle **Matching Statistics** (MS), un concetto teorico molto usato in bioinformatica.

Definizione 19. Dato un testo T, con |T| = n, e un pattern P, con |P| = m, si definisce matching statistics di P su T un array MS di coppie (pos, len), lungo quanto il pattern, tale che:

• $T[\mathsf{MS}[i].\mathsf{pos}, \mathsf{MS}[i].\mathsf{pos} + \mathsf{MS}[i].\mathsf{len} - 1] = P[i, i + \mathsf{MS}[i].\mathsf{len} - 1], \ quindi \ si \ ha$ un match tra $P \ e \ T$, lungo $\mathsf{MS}[i].\mathsf{len}$, a partire da $\mathsf{MS}[i].\mathsf{pos}$ in $T \ e \ da \ i$ in P

• $P[i, i + \mathsf{MS}[i].\mathsf{len}]$ non occorre in T, quindi il match non è ulteriormente estendibile

Informalmente, per ogni posizione i del pattern, le matching statistics riportano la lunghezza e una posizione di inizio sul testo della più lunga sottostringa comune tra il testo e P[i, |P| - 1].

Una volta calcolato l'array MS si ha il seguente lemma.

Lemma 2. Dato un testo T, un pattern P lungo m e il corrispondente array MS, si ha che:

$$P[i, i+l-1], \forall 0 < i \le m$$
 (2.31)

è un MEM, di lunghezza l, in T sse:

$$MS[i].len = l \wedge MS[i-1].len \leq MS[i].len$$
 (2.32)

Inoltre, qualora si avesse i=0, si ha che P[0,l-1] è un MEM "banale", di lunghezza 1, in T sse:

$$MS[0].len = 1 \land MS[0].len \ge MS[1].len$$
 (2.33)

DC Secondo caso da verificare

Per costruire l'array delle matching statistics l'approccio naïve è quello di sfruttare interamente l'array LCP ma, sempre nell'articolo di Bannai et al. [29], si è presentato una semplice concetto in grado di ottimizzare il processo, quello delle **threshold**. Questa piccola struttura dati memorizza il primo valore minimo dell'array LCP tra due run consecutive del medesimo simbolo nella BWT.

Definizione 20. Dato un testo T e date $BWT_T[j',j]$ e $BWT_T[k,k']$ due run consecutive dello stesso carattere in BWT_T , si definisce threshold la posizione:

$$j < i \le k \ t. \ c. \ i \ e \ l'indice \ del \ primo \ valore \ minimo \ in \ \mathsf{LCP}_T[j+1,k]$$
 (2.34)

Rossi et al., nel 2021, sfruttarono tutte le conoscenze relative alla RLBWT, all'r-index e alle matching statistics per ideare MONI: A Pangenomics Index for Finding MEMs [7]. In questa soluzione si ha la costruzione, in due sweep sul pattern P (lungo m) dell'array MS, tramite l'algoritmo di Bannai. Infatti, si ha:

- un primo sweep che computa i valori $MS[i].pos, \forall i \in \{0, m-1\}$
- un secondo sweep che, tramite random access sul testo T computa i valori $\mathsf{MS}[i].\mathsf{len}, \, \forall i \in \{0, m-1\}$, confrontando direttamente le due sottostringhe del testo e del pattern. Contemporaneamente a tale calcolo, l'algoritmo annota gli eventuali MEM

Nel dettaglio, per computare i valori $\mathsf{MS}[i].\mathsf{pos}, \forall i \in \{0, m-1\}$, si procede scorrendo il pattern P, lungo m, da destra a sinistra. Brevemente i passi dell'algoritmo sono i seguenti:

- 1. si inizia cercando l'ultima occorrenza, di indice q, di P[m-1], in BWT_T , memorizzata in modo compatto tramite compressione run-length
- 2. si procede tramite LF-mapping a partire da q, arrivando in una nuova posizione q per le medesime motivazione descritte precedentemente nel caso della BWT
- 3. a questo punto si hanno due alternative:
 - se $\mathsf{BWT}_T[q] = P[i-1]$ si procede con il mapping come in 2, dopo aver memorizzato $\mathsf{MS}[i].\mathsf{pos} = \mathsf{SA}_T[q]$
 - se $BWT_T[q] \neq P[i-1]$ si deve selezionare un nuovo q tale per cui $BWT_T[q] = P[i-1]$. Questo può essere o l'indice della coda della run precedente di simboli P[i-1] o la testa della run successiva di simboli P[i-1]. Qualora non si debba scegliere, ovvero la run attuale non è preceduta/succeduta da una run di simboli P[i-1], si sceglie, rispettivamente, la testa della run successiva o la coda della run precedente di simboli P[i-1]. Altrimenti si usa la threshold relativa al carattere P[i-1], la cui posizione viene denotata t. Avendo q < t, si procede scegliendo la coda della run precedente mentre, avendo q > t, si seleziona la testa della run successiva. La scelta basata sulla posizione della threshold è dettata dal fatto che, in tal modo, si seleziona, di volta in volta, il suffisso più lungo che presenta un match con il suffisso, esteso a sinistra con P[i-1], del pattern. Questo è garantito dal riordinamento lessicografico che costruisce BWT_T . Una volta scelto il nuovo q si procede con il mapping come in 2, dopo aver memorizzato $MS[i].pos = SA_T[q]$

4. si itera fino ad esaurimento del pattern

Lo pseudocodice è visualizzabile all'algoritmo 2.1.

Questa pubblicazione è stata uno dei punti di partenza per riadattare quanto studiato sulla RLBWT, al fine di ottenere risultati analoghi per la RLPBWT.

Per ulteriori dettagli sull'implementazione, sul calcolo delle threshold e sui risultati sperimentali si rimanda direttamente al paper di MONI [7]. <u>Una corretta stima</u> della complessità temporale risulta difficile in quanto dipendente dalla struttura con cui si memorizza il testo T sul quale fare random access. Nell'articolo si riporta che, per un testo T lungo n e un pattern P lungo m, assumendo che si possa

DC Sistemare pseudo Bannai

DC ridire meglio e dimostra-

Algoritmo 2.1 Algoritmo di Bannai per il calcolo dell'array delle matching statistics tra un pattern P e un testo T. Per semplicità si ignorano i casi in cui q non è definito. Si assume inoltre che P[m-1] occorre in T. Con $LF(\cdot)$ si intende il calcolo dell'LF-mapping.

```
1: function COMPUTE_MS(P, T, SA_T, BWT_T)
                                                                                          \triangleright |P| = m, |T| = n, |\mathsf{MS}| = m
          MS \leftarrow [(pos : 0, len : 0) \dots (0, 0)]
         q \leftarrow posizione dell'ultima occorrenza di P[m-1] in \mathsf{BWT}_T
 3:
 4:
         pos \leftarrow \mathsf{SA}_T[q]
                                                                                                         ⊳ calcolo MS[i].pos
          for every i \in [0, m-1] do
 5:
              if BWT_T[q] \neq P[i] then
 6:
 7:
                   if BWT_T[q] è prima della relativa threshold per P[i] then
 8:
                        q \leftarrow posizione dell'occorrenza precedente di P[i] in \mathsf{BWT}_T
 9:
                   else
                        q \leftarrow posizione dell'occorrenza successiva di P[i] in \mathsf{BWT}_T
10:
11:
                   pos \leftarrow \mathsf{SA}_T[q]
12:
               MS[i].pos \leftarrow pos
13:
               q \leftarrow \mathsf{LF}(q), \ pos \leftarrow pos - 1
                                                                                                          \triangleright calcolo MS[i].len
14:
          for every i \in [0, m-1] do
               \mathsf{MS}[i].\mathsf{len} \leftarrow \mathsf{MS}[i-1].\mathsf{len} - 1
15:
               while P[i + MS[i].len] = T[MS[i].pos + MS[i].len] do
16:
                   \mathsf{MS}[i].\mathsf{len} \leftarrow \mathsf{MS}[i].\mathsf{len} + 1
17:
18:
          return MS
```

accedere alla posizione delle threshold in tempo $\mathcal{O}(\log \log n)$ e che i backward-step siano effettuabili in tempo $\mathcal{O}(\log \log n)$, i valori $\mathsf{MS}[i].\mathsf{pos}, \, \forall i \in \{0, m-1\}$, sono calcolabili in tempo $\mathcal{O}(m \log \log n)$. Analogamente, assumendo di avere random access su T in tempo in tempo $\mathcal{O}(\log \log n)$ (tramite, secondo l'articolo, una struttura compatta basata sul Tabix index [30]), i valori $\mathsf{MS}[i].\mathsf{len}, \, \forall i \in \{0, m-1\}$ sono calcolabili in tempo $\mathcal{O}(m \log \log n)$. Tali stime sono, in ogni caso, fortemente teoriche e si rimanda all'articolo per ulteriori dettagli.

2.5.3 Uso delle LCE query

Nel 2021, Boucher, Gagie, Rossi et al. proposero un ulteriore miglioramento di quanto fatto in MONI, con **PHONI**: Streamed Matching Statistics with Multi-Genome References [8].

In questo progetto non solo si sostituì l'uso delle thresholds con l'uso delle LCE query, riducendo l'algoritmo ad un solo sweep sull'array delle matching statistics (permettendo un uso "online" dell'algoritmo), ma si esplicitò anche l'uso delle funzioni φ e φ^{-1} e di PLCP_T per il riconoscimento di tutte le occorrenze di ogni MEM tra un pattern e un testo, nel modo riportato all'algoritmo 2.2 [8].

A tal fine, si sfrutta infatti il seguente teorema [6].

Teorema 4. Dato un testo T, tale che |T| = n, si può memorizzare T in $\mathcal{O}(r)$, con r numero di run, tale che, dato un indice $p \in \{0, n-1\}$, si possono computare $\varphi(p)$, $\varphi^{-1}(p)$ e PLCP[p] in tempo:

$$\mathcal{O}(\log\log n) \tag{2.35}$$

Si è quindi potuto migliorare e semplificare l'algoritmo di Bannai usato in MONI. Sfruttando le LCE query, avendo il testo T in memoria sotto forma di SLP, è possibile computare contemporaneamente sia i valori MS[i].pos che i valori MS[i].len. Infatti, a differenza di quanto visto in MONI, dovendo scegliere una nuova posizione dopo un mismatch, si usa il risultato delle LCE query. In tal modo, in contemporanea, si possono computare i valori $MS[i].len, \forall \in \{0, m-1\}.$ Sfruttando, infatti, MS[i+1].len e la lunghezza del risultati della LCE query è possibile tenere conto di eventuali overlap tra i match e computare correttamente MS[i].len. Alternativamente, qualora si possa proseguire avendo un match tra $\mathsf{BWT}_T[q] \in P[i-1]$, il calcolo $\mathsf{MS}[i]$.len avviene a partire da $\mathsf{MS}[i+1]$.len, incrementandolo di uno avendo aggiunto un carattere a sinistra. Inoltre, come nel caso dell'algoritmo di Bannai, si ha il computo dei MEM in contemporanea al computo dei valori MS[i].len. Il riconoscimento della run a cui appartiene un certo indice e degli indici delle teste delle run avviene tramite l'uso di bitvector. Infatti, $\forall \sigma \in \Sigma$, con Σ alfabeto in uso, si ha un bitvector (sparso) B_{σ} , lungo n (ovvero quanto il testo), tale che:

$$B_{\sigma}[i] = \begin{cases} 1 & \text{se BWT}_{T}[i] = \sigma \\ 0 & \text{altrimenti} \end{cases}$$
 (2.36)

L'algoritmo 2.3 [8] riporta il calcolo completo dell'array delle matching statistics presente in PHONI, la cui complessità temporale è stimata in $\mathcal{O}(m \log \log n)$. Anche in questo caso, la stima asintotica è difficile da caratterizzare in modo corretto ed è fortemente dipendente dalle strutture dati in uso, ad esempio per il calcolo delle LCE query. Per ulteriori approfondimenti si rimanda al paper di riferimento [8].

Esempio 14. Dat il sequente testo T e il sequente pattern P:

$$T = mississippi$$
\$ $e P = miss$

Si vuole studiare il calcolo dell'array delle matching statistics sia con MONI che con PHONI. Si assume che |T| = n e |P| = m.

Si hanno, avendo in ultima colonna i cinque bitvector relativi alle threshold di ogni simbolo:

Algoritmo 2.2 Algoritmo per il calcolo della lista di tutte le occorrenze di una sottostringa del pattern, P[i, j], in un testo T, a partire dall'array delle matching statistics MS.

```
1: function ALL OCC(MS, i, j, P, T)
          if MS[i].len < j - i + 1 then
 2:
 3:
               return
          p \leftarrow \mathsf{MS}[i].\mathsf{pos}
 4:
          occ \leftarrow []
 5:
 6:
          push(occ, p)
          while PLCP[p] \geq j - i + 1 do
 7:
 8:
               p \leftarrow \varphi(p)
 9:
               push(occ, p)
          p \leftarrow \varphi^{-1}(\mathsf{MS}[i].\mathsf{pos})
10:
          while p \neq null \land \mathsf{PLCP}[p] \geq j - i + 1 do
11:
               push(occ, p)
12:
               p \leftarrow \varphi^{-1}(p)
13:
14:
          return occ
```

Algoritmo 2.3 Algoritmo per il calcolo dell'array delle matching statistics in *PHONI*. Per semplicità si ignorano i casi in cui q, q' e q'' non sono definiti. Si assume inoltre che P[m-1] occorre in T. Con $\mathsf{LF}(\cdot)$ si intende il calcolo dell'LF-mapping.

```
1: function Compute MS(P, T, SA_T, BWT_T)
             MS \leftarrow [(pos : 0, len : 0) \dots (0, 0)]
                                                                                                         \triangleright |P| = m, |T| = n, |\mathsf{MS}| = m
  2:
             q \leftarrow \mathsf{select}_{P[m-1]}(1)
 3:
             \mathsf{MS}[m-1] \leftarrow (\mathsf{SA}_T[q]-1,1), \ q \leftarrow \mathsf{LF}(q)
 4:
             for i = m - 2 \text{ to } 0 \text{ do}
 5:
 6:
                   if BWT_T[q] = P[i] then
                         \mathsf{MS}[i] \leftarrow (\mathsf{MS}[i+1].\mathsf{pos}-1, \mathsf{MS}[i+1].\mathsf{len}+1), \ q \leftarrow \mathsf{LF}(q)
 7:
 8:
                   else
 9:
                         c \leftarrow \mathsf{rank}_{P[i]}(q)
                         q' \leftarrow \mathsf{select}_{P[i]}(c), \, q'' \leftarrow \mathsf{select}_{P[i]}(c+1)
10:
                         l' \leftarrow \min\left(\mathsf{MS}[i+1].\mathsf{len}, |\mathsf{LCE}(\mathsf{SA}_T[q'], \mathsf{MS}[i+1].\mathsf{pos})|\right)
11:
12:
                         l'' \leftarrow \min \left( \mathsf{MS}[i+1].\mathsf{len}, |\mathsf{LCE}(\mathsf{SA}_T[q''], \mathsf{MS}[i+1].pos)| \right)
                   if l' > l'' then
13:
                         \mathsf{MS}[i] \leftarrow (\mathsf{SA}_T[q'] - 1, l' + 1), \ q \leftarrow \mathsf{LF}(q')
14:
15:
                   else
                         \mathsf{MS}[i] \leftarrow (\mathsf{SA}_T[q''] - 1, l'' + 1), \ q \leftarrow \mathsf{LF}(q'')
16:
            return MS
17:
```

Capitolo 2. Preliminari 2.5. Trasformata di Burrows-Wheeler run-length encoded

Indice	SA_T	F_T	BWM_T	BWT_T	$B_{\$}$	B_i	B_m	B_p	B_s	\$imps
0	11	\$	\$mississippi	i	0	1	0	0	0	11111
1	10	i	i\$mississipp	p	0	0	0	1	0	01000
2	7	i	ippi\$mississ	s	0	0	0	0	1	00000
3	4	i	issippi\$miss	\mathbf{s}	0	0	0	0	0	00000
4	1	i	ississippi\$m	m	0	0	1	0	0	00000
5	0	m	mississippi\$	\$	1	0	0	0	0	00011
6	9	p	pi\$mississip	p	0	0	0	1	0	00000
7	8	p	ppi\$mississi	i	0	1	0	0	0	00000
8	6	\mathbf{s}	sippi\$missis	\mathbf{s}	0	0	0	0	1	01000
9	3	\mathbf{s}	sissippi\$mis	\mathbf{s}	0	0	0	0	0	00000
10	5	\mathbf{s}	ssippi\$missi	i	0	1	0	0	0	00000
11	2	s	ssissippi\$mi	i	0	0	0	0	0	00000

Si inizia con l'algoritmo visto in MONI.

Si ha che P[m-1]= 's', ne segue, seguendo la stessa notazione vista sopra e cercando l'ultima occorrenza di 's' in BWT_T , che q=9. Si procede quindi con l'LF-mapping, avendo che $\mathsf{LF}(9)=11$. A questo punto si ha il valore di $\mathsf{MS}[m-1].pos$:

$$MS.pos = ???SA_T[11] = ???2$$

$$MS.pos = ??SA_T[11]2 = ??22$$

Si ha, a questo punto, che $\mathsf{BWT}_T[11] = \ \ i' = P[m-3] = \ \ i'$. Si procede con l'LF-mapping, ottenendo $\mathsf{LF}(11) = 4$ e aggiornando MS :

$$MS.pos = ?SA_T[4]22 = ?122$$

Infine, avendo $\mathsf{BWT}_T[4] = ii \neq P[m-4] = m'$, si conclude il calcolo dell'array MS con l'ultimo l'LF-mapping, $\mathsf{LF}(4) = 5$, avendo quindi:

$$MS.pos = SA_T[5]122 = 0122$$

A questo punto, tramite random access al testo, si calcolano i valori MS.len. Partendo da sinistra, si calcola per primo MS[i].len, con i=0, cercando il più lungo prefisso comune tra $P[i,m-1]=miss\ e\ T[MS[0].len,m-1-i]=miss$, che è, in questo caso, lungo 4. Si procede per tutti i valori di MS.pos, ottenendo:

i	0	1	1	3
P	m	i	S	s
pos	0	1	2	2
len	4	3	2	1

Secondo il lemma 2 visto per il calcolo dei MEM, si ha che P[0,4-1]=P[0,3] è un MEM di P in T.

Si passa ora al calcolo tramite PHONI.

Si inizia avendo $q = \operatorname{select}_{P[m-1]}(1) = \operatorname{select}_{s'}(1) = 2$, ovvero ponendo q pari all'indice della prima occorrenza di P[m-1] in BWT_T . Seguendo l'algoritmo si ottiene, essendo $\mathsf{SA}_T[2] = 7$:

i	0	1	1	3
P	m	i	S	s
pos	?	?	?	6

Si procede con l'LF-mapping, avendo $\mathsf{LF}(2) = 8$. Si ha che $\mathsf{BWT}_T[8] = P[m-2]$ e quindi, essendo $\mathsf{SA}_T[8] = 6$ si ottiene:

i	0	1	1	3
P	m	i	S	\mathbf{s}
pos	?	?	5	6
len	?	?	2	1

Anche in questo caso, essendo LF(8) = 10 ed essendo $BWT_T[10] = P[m-3]$, si aggiornano senza ulteriori passaggi i valori dell'array delle matching statistics:

i	0	1	1	3
P	m	i	s	S
pos	?	4	5	6
len	?	3	2	1

Infine, avendo che $\mathsf{LF}(10) = 3$, si ha $\mathsf{BWT}_T[3] \neq P[m-4]$. In questo caso si potrebbe ottimizzare il calcolo del nuovo indice, sapendo che è presente una sola occorrenza del carattere desiderato, 'm', in BWT_T , ma, ai fini dell'esempio, si mostra il calcolo completo.

Innanzitutto, bisogna capire quanti caratteri P[m-4] = m si hanno prima di q=3. Si ha che $\operatorname{rank}_{m'}(3)=0$. A questo punto si selezionano, tramite $\operatorname{select}_{m'}$, l'indice della coda della run precedente di caratteri m (che in questo caso non esiste e gli si assegna, per comodità, il valore 0) e della testa della run successiva:

$$q' = select_{m'}(3) = 0$$
 $q'' = select_{m'}(4) = 4$

Sequendo l'algoritmo si ha che:

$$l' = \min(3, |\mathsf{LCE}(\mathsf{SA}_T[0], 4)|) = \min(3, |\mathsf{LCE}(11, 4)|) = \min(3, 0) = 0$$

$$l'' = \min(3, |\mathsf{LCE}(\mathsf{SA}_T[4], 4)|) = \min(3, |\mathsf{LCE}(1, 4)|) = \min(3, 4) = 3$$

Avendo $l'' \ge l'$ si aggiorna MS di conseguenza, avendo $\mathsf{SA}_T[q''] = \mathsf{SA}_T[4] = 1$:

i	0	1	1	3
P	m	i	s	s
pos	0	4	5	6
len	4	3	2	1

Infine, sempre per il lemma 2, si ha che P[0,4-1] = P[0,3] è un MEM di P in T.

DC Esempio da sistemare

2.6 Trasformata di Burrows–Wheeler posizionale

Presentata nel 2014 da Richard Durbin [4], la **Positional Burrows–Wheeler Transform** (PBWT), traducibile con *trasformata di Burrows–Wheeler posizionale*, è una struttura dati efficiente per la memorizzazione e l'interrogazione di pannelli di aplotipi.

La costruzione di tali pannelli avviene tramite il riconoscimento delle varianti di un singolo nucleotide tra le sequenze genomiche di diversi individui, ovvero dei cosiddetti Single-Nucleotide Polymorphism (SNP). Ogni variante, identificata per un certo nucleotide in una posizione specifica, viene detto allele. La combinazione di tutte le varianti alleliche, ereditate, a meno di mutazioni, da ogni genitore, forma l'aplotipo di un certo individuo. Come visibile in figura 2.1 [31], la costruzione parte dai vari sequenziamenti (nell'immagine relativi a diversi cromosomi ma il procedimento è uguale partendo da diversi individui) da cui si identificano le varianti alleliche. Da queste ultime si costruiscono gli aplotipi, da cui si estraggono i cosiddetti tag SNP, ovvero le possibili alternative per una certa variante allelica. Questi ultimi, normalmente rappresentati per l'uomo da due caratteri vista la sua natura diploide, formano, l'alfabeto del pannello. L'informazione combinata di tutti gli aplotipi in un individuo è detta, invece, **genotipo**. Formalmente, si considera un pannello X di M aplotipi x_i , con i = 0, ..., M-1, con N siti, indicizzati tramite $k = 0, \dots, N-1$, tale per cui tutti i siti sono considerati biallelici. Da un punto di vista computazionale, quest'ultima assunzione comporta che il pannello X è costruito sull'alfabeto ordinato $\Sigma = \{0, 1\}$, con $0 \prec 1$, avendo la sostituzione dei tag SNPs, per un certo sito, con tale alfabeto. Ne segue che:

$$x_i[k] = \{0, 1\} \tag{2.37}$$

Prima di proseguire con la trattazione, è bene specificare alcuni formalismi utilizzati:

Figura 2.1: Schema di ottenimento del pannello di aplotipi.

- si denota con $x_i[k_1, k_2)$ la sottostringa di x_i che inizia alla colonna k_1 e termina alla colonna $k_2 1$, per una qualsiasi riga $x_i \in X$
- date due righe x_i e x_j , si ha un match tra le due righe, iniziante alla colonna k_1 e terminante alla colonna $k_2 1$, sse:

$$x_i[k_1, k_2) = x_i[k_1, k_2) (2.38)$$

• un match tra due righe x_i e x_j , come definito al punto precedente, è definito localmente massimale sse non si ha alcuna estensione a destra o sinistra che comporti un ulteriore match:

$$(k_1 = 0 \lor x_i[k_1 - 1] \ne x_i[k_1 - 1]) \land (k_2 = N \lor x_i[k_2] \ne x_i[k_2])$$
 (2.39)

• comparando una sequenza (ovvero un aplotipo esterno) z a un pannello di aplotipi X, si ha che un match localmente massimale è un set-maximal exact match (SMEM) di z contro $x_i \in X$, iniziante alla colonna k_1 e terminante alla colonna $k_2 - 1$, sse non si ha alcun altro match localmente massimale di z con un altro x_j che include ed estende l'intervallo $[k_1, k_2)$. La sequenza z può avere uno SMEM, tra k_1 e $k_2 - 1$, con più di un aplotipo del pannello. Per praticità, si è introdotta la definizione di SMEM usando un aplotipo esterno ma tale definizione può essere riferita anche a due righe interne al pannello X

Si noti che il match tra due sequenze nella PBWT è tale sse iniziano entrambi nella stessa colonna e terminano nella stessa colonna. Questo vincolo, da cui deriva il

termine "posizionale" e che, di fatto, impedisce l'uso degli algoritmi tradizionali visti con la BWT, è dato dal fatto che una colonna rappresenta un preciso sito di una variante genica.

La costruzione di questa struttura dati si basa, ad ogni colonna k, sul riordinamento lessicografico delle sequenze di aplotipi, nel dettaglio sull'ordinamento inverso dei prefissi terminanti in colonna k-1. I valori presenti in colonna k, dopo il riordinamento, altro non sono che i valori che andranno a popolare la cosiddetta matrice PBWT, che rappresenta la vera e propria trasformata. Si noti che avere le sequenze ordinate in base ai prefissi inversi alla k-esima colonna permette di identificare i match con maggior facilità in quanto, ad ogni colonna, aplotipi con suffisso comune (o prefisso comune inverso) saranno "virtualmente" in posizioni consecutive all'interno della trasformata.

La computazione di tutti i riordinamenti non presenta difficoltà dal punto di vista computazionale. Infatti, conoscendo l'ordinamento in colonna k, si può derivare facilmente l'ordinamento in colonna k+1, studiando solo i valori riordinati alla colonna precedente. Si ha infatti un ordinamento stabile ad ogni colonna.

Definizione 21. Dato un pannello X e un indice di colonna k, si definisce il **prefix array** a_k come una permutazione degli indici $\{0, \ldots, M-1\}$ tale per cui $a_k[i] = j$ sse x_j è l'i-esimo aplotipo di X nell'ordinamento inverso dei prefissi ottenuto alla colonna k.

Data questa definizione, segue che la matrice PBWT si ottiene direttamente usando, per ogni colonna, gli indici del prefix array e prendendo i valori del pannello X secondo l'ordine espresso da esso.

Per comodità di rappresentazione, definiamo formalmente i valori della matrice PBWT con il seguente formalismo:

$$y_i^k[j] = x_{a_k[i]}[j] (2.40)$$

Con tale notazione si ha che y_i^k denota la sequenza *i*-esima secondo l'ordinamento ottenuto per la colonna k.

Si può quindi accedere al valore j-esimo, ovvero il valore in colonna j, di tale sequenza. Si può meglio spiegare perché risulti semplice computare i vari prefix array. L'ordinamento degli elementi per a_{k+1} si ottiene a partire dall'ordinamento in a_k , considerando i valori $y_i^k[k]$ e la precedenza del valore 0 sul valore 1 per riordinare in modo stabile tali valori.

Come anticipato, prefissi simili saranno consecutivi nei riordinamenti fino alla colonna k-esima. Quindi, risulta utile tenere traccia della posizione iniziale dei prefissi inversi comuni più lunghi tra prefissi adiacenti nei riordinamenti.

DC Un po' confusionario

Definizione 22. Si definisce **divergence array** l'array d_k , tale che $d_k[i]$ è l'indice della colonna iniziale del match massimale a sinistra, terminante a destra in

colonna k-1, tra l'i-esimo aplotipo e il suo precedente nell'ordinamento ottenuto alla colonna k-esima. Formalmente, dato i > 0, si definisce $d_k[i]$ come il più piccolo j tale che:

$$y_i^k[j,k) = y_{i-1}^k[j,k) \tag{2.41}$$

Ne segue che

$$y_i^k[k-1] \neq y_{i-1}^k[k-1] \implies d_k[i] = k$$
 (2.42)

Per definizione, non avendo una riga precedente con cui effettuare il confronto:

$$d_k[0] = k \tag{2.43}$$

Si può dimostrare che l'inizio di qualsiasi match massimale, terminante in colonna k, tra qualsiasi y_i^k e y_j^k , con i < j, è calcolabile facilmente, essendo dato da:

$$\max_{i < m \le j} d_k[m] \tag{2.44}$$

Si noti che al posto del divergence array si può usare anche una variante posizionale del Longest Common Prefix array.

Definizione 23. Si definisce Reverse Longest Common Prefix (RLCP) l'array l_k che, anziché memorizzare l'indice d'inizio del match massimale a sinistra da due aplotipi consecutivi nell'ordinamento ottenuto alla colonna k-esima, tiene traccia della lunghezza di tale match. Formalmente si ha che:

$$l_k[i] = k - d_k[i] (2.45)$$

Fatte queste premesse possiamo quindi fornire una definizione formale di PBWT.

Definizione 24. Dato un pannello $X = \{x_0, x_1, \dots, x_{M-1}\}$, di M aplotipi con ciascuno N siti, si definisce PBWT di X una collezione di N+1 coppie di array (a_k, d_k) , con $0 \le k \le N$.

La procedura per la costruzione di a_{k+1} e d_{k+1} a partire da a_k e d_k è disponibile all'algoritmo 2.4. Si noti che il costo della costruzione dei due insiemi di array è:

$$\mathcal{O}(NM) \tag{2.46}$$

Ai fini della trattazione dell'algoritmo di computo degli SMEM per un'aplotipo esterno, ricordiamo un'ulteriore definizione, analoga (e con lo stesso significato) a quanto visto con il suffix array e la sua permutazione inversa.

DC Serve altro? Serve spiegare i dettagli dell'algoritmo?

Definizione 25. Si definisce α_k come l'inverso della permutazione data dal prefix array a_k , avendo che:

$$\alpha_k[i] = j \iff a_k[j] = i$$

Algoritmo 2.4 Algoritmo di Durbin per la costruzione di a_{k+1} e d_{k+1} a partire da a_k e d_k .

```
1: function BUILDPREFIXANDDIVERGENCEARRAYS(k, M, a_k, d_k)
          u \leftarrow 0, v \leftarrow 0
 3:
          p \leftarrow k + 1, q \leftarrow k + 1
          a \leftarrow [], \, b \leftarrow [], \, d \leftarrow [], \, e \leftarrow []
 4:
          for every i \in [0, M-1] do
 5:
               if d_k[i] > p then
 6:
 7:
                     p \leftarrow d_k[i]
               if d_k[i] > q then
 8:
                     q \leftarrow d_k[i]
 9:
               if y_i^k[k] = 0 then
10:
                     a[u] \leftarrow a_k[i], d[u] \leftarrow p
11:
12:
                     u \leftarrow u + 1, p \leftarrow 0
13:
               else
                     b[v] \leftarrow a_k[i], \ e[v] \leftarrow q
14:
                     v \leftarrow v + 1, q \leftarrow 0
15:
16:
          a_{k+1} \leftarrow concatenate(a, b)
17:
          d_{k+1} \leftarrow concatenate(d, e)
```

Grazie a queste prime definizioni, è possibile denotare alcune prime forti correlazioni, fattore chiave nello sviluppo di questa tesi, che sussistono tra BWT e PBWT (e le rispettive varianti run-length encoded). Nella seguente tabella si ricordano queste correlazioni:

BWT	PBWT
SA_T	a_k
ISA_T	α_k
LCP_T	$d_k \circ l_k$

Esempio 15. Si assuma il seguente pannello X e di voler calcolare y^6 :

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1

Si inizia riordinando il pannello con l'ordine inverso alla quinta colonna, avendo che y^6 altro non è che la sesta colonna del pannello così riordinato. Ne segue che a_6 è la colonna degli indici, che è stata ottenuta con la permutazione data dall'ordinamento, e d_6 la colonna iniziale in cui terminano i match tra righe consecutive nel riordinamento le sottolineature (evidenziati nell'immagine seguente dalle sottolineature):

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1

Si ha, nel complesso:

$$a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$$

$$\alpha_6 = [2, 12, 13, 14, 16, 17, 18, 19, 6, 3, 4, 7, 8, 9, 0, 1, 5, 15, 10, 11]$$

$$d_6 = [6, 0, 4, 2, 0, 0, 5, 0, 0, 0, 3, 0, 4, 0, 0, 6, 4, 0, 0, 0]$$

$$l_6 = [0, 6, 2, 4, 6, 6, 1, 6, 6, 6, 3, 6, 2, 6, 6, 0, 2, 6, 6, 6]$$

Con il calcolo di tutti gli a_k si otterrebbe la seguente matrice PBWT:

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	1	0	1	1	0	0	0	1	0	0	1	1	1	1
01	1	1	0	1	1	0	0	0	1	0	0	1	1	1	1
02	1	1	0	1	1	1	0	0	0	1	1	1	0	1	1
03	1	1	0	1	1	0	0	0	1	0	0	1	1	0	1
04	0	1	0	1	0	1	0	0	1	0	0	1	1	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	0
07	0	1	0	1	1	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	0	1
10	0	1	0	1	1	0	0	0	0	0	0	1	1	0	1
11	0	1	0	0	1	0	1	1	0	0	0	1	0	0	1
12	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1
13	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
16	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1
17	1	0	1	0	0	0	0	0	0	0	1	1	0	0	1
18	0	0	1	0	0	0	0	0	0	0	1	1	0	0	1
19	0	1	0	0	0	0	0	0	0	0	1	1	0	0	1

2.6.1 Set-maximal exact match con aplotipo esterno

Durbin, nel suo articolo, propone diversi algoritmi per l'uso effettivo della sua trasformata. Ad esempio, viene proposto un algoritmo per il calcolo di match interni ad X più lunghi di una lunghezza minima L e uno per la ricerca di tutti gli SMEM interni ad X, in tempo lineare.

Di interesse per questa tesi è il cosiddetto **algoritmo 5**, usato per computare tutti gli SMEM tra il panello X e un aplotipo esterno z, assumendo |z| = N. Quest'ultimo vincolo è dovuto al fatto che una colonna k del pannello e una posizione k della query rappresentano il medesimo sito.

L'idea dietro l'algoritmo è quella di usare tre indici: e_k , f_k e g_k . Nel dettaglio e_k tiene traccia dell'inizio del più lungo match, terminante in colonna k, tra z e un qualche y_i^k . Invece, l'intervallo $[f_k, g_k) \subseteq [0, \ldots, M)$ identifica il sotto-intervallo di a_k contenente gli indici degli aplotipi che presentano tale match. Si noti come si riprendi l'idea, vista con la backward search per la BWT, di studiare un intervallo $[f_k, g_k)$ su SA_T per identificare i match tra un pattern e un testo. In questo caso, però, si ha a che fare con una "forward search".

Definizione 26. Dato un pannello X, con M aplotipi/righe e N siti/colonne, e un aplotipo query z, tale che |z| = N, si definisce uno SMEM iniziante in colonna e_k e terminante il colonna k, tra la query z e tutte le righe del pannello indicizzate dai valori compresi nell'intervallo $[f_k, g_k)$ in a_k , sse:

$$z[e_k, k) = y_i^k[e_k, k) \land z[e_k - 1] \neq y_i^k[e_k - 1], \forall i \ t.c. \ f_k \le i < g_k$$
 (2.47)

Si noti che $g_k = M$ sse y_{M-1}^k appartiene alle righe per le quali si ha tale SMEM.

Bisogna capire come aggiornare e_k , f_k e g_k passando dalla colonna k alla colonna k+1. Si procede esattamente come visto per la backward search nella BWT, selezionando, per calcolare $[f_{k+1}, g_{k+1})$, il sottointervallo di $[f_k, g_k)$ in cui si hanno aplotipi che possono essere estesi a destra con il simbolo z[k+1]. L'idea è quella per cui, avendo $f_{k+1} < g_{k+1}$, allora sicuramente si hanno ancora delle righe che presentano un match che parte da $e_{k+1} = e_k$ e termina in k che può essere esteso in k+1. In caso contrario, avendo $f_{k+1} = g_{k+1}$, non si hanno match estendibili e si può concludere che quelli terminanti in colonna k erano effettivamente SMEM. In questo secondo caso bisogna poi aggiornare e_{k+1} , ottenendo i relativi nuovi valori f_{k+1} e g_{k+1} , al fine di trovare la nuova colonna da cui parte lo SMEM successivo e le righe del pannello per le quali si ha tale SMEM.

Bisogna, a questo punto, capire come funzioni la variante del backward-step introdotta per la BWT, avendo che nella PBWT si può parlare di forward-step/mapping. Tale funzione, guidata dal carattere corrente dell'aplotipo query, permette di ottenere f_{k+1} e g_{k+1} a partire da f_k e g_k .

Per effettuare il mapping abbiamo bisogno di tre componenti, che, intuitivamente, svolgono la medesima funzione di C e Occ per la BWT:

- 1. l'array c tale per cui c[k] = j sse la colonna k contiene j occorrenze di 0
- 2. l'array u_k tale per cui, alla colonna k-esima, $u_k[i] = j$ sse j è il numero di occorrenze di 0 prima dell'indice i nella $y^k[k]$
- 3. l'array v_k tale per cui, alla colonna k-esima, $v_k[i] = j$ sse j è il numero di occorrenze di 1 prima dell'indice i in $y^k[k]$

Tali valori possono essere computati e memorizzati in fase di costruzione della PBWT, come visibile direttamente nell'algoritmo 2.4 per quanto riguarda u e v (per l'array c basterebbe tenere traccia del numero di 0 incontrati nella colonna k-esima o sfruttare direttamente l'array u).

Sfruttando i valori di questi tre array possiamo quindi effettuare lo step/mapping alla colonna successiva, definito, per comodità, da una funzione:

$$w_k: \{0, \dots, M\} \times \Sigma \to \{0, \dots, M\}$$
 (2.48)

tale per cui:

$$w_k(i,\sigma) = \begin{cases} u_k[i] & \text{se } \sigma = 0\\ v_k[i] + c[k] & \text{se } \sigma = 1 \end{cases}$$
 (2.49)

Tale funzione è rappresentabile in pseudocodice come nell'algoritmo 2.5. Risulta interessante notare che:

$$a_{k+1} \left[w_k \left(i, y_i^k[k] \right) \right] = a_k[i]$$
 (2.50)

Quindi, tale mapping permette di "seguire" una determinata riga all'interno delle varie permutazioni dettate dai valori dei prefix array.

Algoritmo 2.5 Algoritmo per il mapping nella PBWT.

```
1: function W(k, i, s, c_k, u_k, v_k)
```

- 2: **if** s = 0 **then**
- 3: return $u_k[i]$
- 4: **else**
- 5: $\operatorname{\mathbf{return}} c_k + v_k[i]$

Esempio 16. Si riprende l'esempio 15, ricordando che:

$$a_5 = [14, 15, 17, 0, 4, 5, 6, 7, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3]$$

$$\alpha_5 = [3, 17, 18, 19, 4, 5, 6, 7, 11, 8, 9, 12, 13, 14, 0, 1, 10, 2, 15, 16]$$

$$a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$$

$$\alpha_6 = [2, 12, 13, 14, 16, 17, 18, 19, 6, 3, 4, 7, 8, 9, 0, 1, 5, 15, 10, 11]$$

Si ha, ad esempio con k = 5 e i = 2, che:

$$a_6 \left[w_5 \left(2, y_2^5 [5] \right) \right] = a_5 [2]$$

Avendo:

$$w_5(2, y_2^5[5]) = w_5(2, 1) = v_5[2] + c[5] = 0 + 15 = 15$$

Avendo anche che:

$$a_6[15] = 17 = a_5[2]$$

Si conferma come con tale funzione si possa, di fatto, seguire la riga 17, capendo da quale riga della colonna permutata precedente arrivi.

Pensando alla permutazione inversa del prefix array, si ottiene un altro risultato interessante, che lega tale permutazione alla funzione w_k :

$$\alpha_{k+1}[i] = w_k(\alpha_k[i], x_i[k]) \tag{2.51}$$

Esempio 17. Si riprendono i dati dell'esempio precedente e si calcola, sempre con k = 5 e i = 2:

$$\alpha_6[2] = 13 = w_5(\alpha_5[2], x_2[5]) = w_5(18, 0) = 13$$

Come volevasi dimostrare.

DC Capire se dire altro su w()

L'ultima equazione ci suggerisce che la funzione w_k consente il corretto aggiornamento di f_k e g_k . Definendo, infatti:

$$f_{k+1} = w_k(f_k, z[k]) (2.52)$$

si ha che f_{k+1} sarà l'indice, in a_{k+1} , della prima sequenza y_j^k , con $j \geq f_k$, per la quale $y_j^k[k] = z[k]$. Analogamente, pensando alla prima sequenza per cui si ha un mismatch dopo l'aggiornamento dell'intervallo, si calcola:

$$g_{k+1} = w_k(g_k, z[k]) (2.53)$$

Si hanno quindi, dopo il calcolo dei potenziali f_{k+1} e g_{k+1} , due possibili casi:

- 1. si ha che $f_{k+1} < g_{k+1}$. In questo caso si hanno ancora match, inizianti in e_k e terminanti in k, che si estendono anche in k+1. In altri termini, si ha un sottointervallo non nullo di $[f_k, g_k)$ relativo a righe che presentano z[k+1] come simbolo in colonna k+1. In tal caso, si prosegue con l'iterazione, avendo $e_{k+1} = e_k$
- 2. si ha che $f_{k+1} = g_{k+1}$. In questo caso non si hanno match, inizianti in e_k e terminanti in k, che sono anche estendibili in k+1. Bisogna, quindi, annotare i match terminanti in k-1, ovvero gli SMEM con le righe indicizzate nell'intervallo $[f_k, g_k)$ su a_k , e poi ricalcolare i nuovi e_{k+1} , f_{k+1} e g_{k+1} . Il punto fondamentale per poter calcolare i nuovi indici è che, virtualmente, l'aplotipo z si trova, in colonna k secondo il riordinamento inverso, o subito prima o subito dopo il l'insieme di aplotipi indicizzati da $[f_k, g_k)$ su a_k . Di conseguenza si può inferire che, essendo z nell'ordinamento in k o subito prima di f_k o subito dopo g_k ed avendo $f_{k+1} = g_{k+1}$:

$$y_{f_{k+1}-1}^{k+1} \prec z \prec y_{f_{k+1}}^{k+1} \tag{2.54}$$

Ne segue direttamente che:

$$e_{k+1} \le d_{k+1}[f_{k+1}] \tag{2.55}$$

Avendo che il nuovo indice di partenza del match sarà almeno nella colonna indicata da $d_{k+1}[f_{k+1}]$, essendo esso calcolato tra $y_{f_{k+1}-1}^{k+1}$ e $y_{f_{k+1}}^{k+1}$, tra le quali

sequenze è virtualmente compresa la query z. Si considera quindi, come punto di partenza:

$$e_{k+1} = d_{k+1}[f_{k+1}] - 1 (2.56)$$

Studiando, di conseguenza, $z[e_{k+1}]$, si hanno due casi possibili, dati dal fatto che, per la nozione di divergence array e di ordinamento dei prefissi inversi con $0 \prec 1$:

$$y_{f_{k+1}-1}^{k+1}[e_{k+1}] = 0 \neq y_{f_{k+1}}^{k+1}[e_{k+1}] = 1$$
(2.57)

Tali casi sono:

- (a) se tale valore è 0, allora, z ha un match migliore con $y_{f_{k+1}-1}^{k+1}$ rispetto che con $y_{f_{k+1}}^{k+1}$. Si aggiorna, quindi, e_{k+1} , decrementandolo fino a che si ha match tra $z[e_{k+1}-1]$ e $y_{f_{k+1}-1}^{k+1}[e_{k+1}-1]$. Infine, si decrementa f_{k+1} fino a che $d_{k+1}[f_{k+1}] \leq e_{k+1}$, trovando quelle righe per il quale il divergence array non supera il valore di e_{k+1} . Si ottengono, in tal modo, le sequenze, nel riordinamento in k+1, che hanno un match da e_{k+1} a k+1. Invece, g_{k+1} resta fisso, avendo che $y_{g_{k+1}}^{k+1}$ presenta un mismatch in colonna k+1
- (b) se tale valore è 1, allora, z ha un match migliore con $y_{f_{k+1}}^{k+1}$ rispetto che con $y_{f_{k+1}-1}^{k+1}$. Si aggiorna, quindi, e_{k+1} , decrementandolo fino a che si ha match tra $z[e_{k+1}-1]$ e $y_{f_{k+1}-1}^{k+1}[e_{k+1}-1]$. Infine, si incrementa g_{k+1} fino a che $d_{k+1}[g_{k+1}] \leq e_{k+1}$, per lo stesso ragionamento del caso precedente. Si noti che si permette di ottenere $g_{k+1} = M$, avendo che tale valore risulta escluso in $[f_{k+1}, g_{k+1})$. In tal modo si segnala che la riga indicizzata con $a_{k+1}[M-1]$, in colonna k+1, presenta un match. Invece, f_{k+1} resta fisso, avendo che $y_{f_{k+1}}^{k+1}$ presenta un mismatch in colonna k+1

In termini di inizializzazione, per permettere il funzionamento dell'algoritmo, si hanno:

$$f_0 = g_0 = e_0 = 0$$

Esempio 18. Mostrare un esempio completo di esecuzione richiederebbe troppo spazio quindi ci si limita a mostrare cosa succeda nel caso in cui, ad un certo punto dell'esecuzione, $f_{k+1} = g_{k+1}$.

Si assumano il pannello e la matrice PBWT visti all'esempio 15, con una query z. Nel complesso, si identificano i seguenti match:

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
\mathbf{Z}	0	1	0	0	1	0]	1	0	0	0]	1	1	1	0	1

Si assuma di essere in colonna k=6, avendo, dopo i calcoli fatti in colonna k=5:

$$f_6 = 6, g_6 = 10, e_6 = 0$$

Tali valori segnalano che, a partire dalla colonne 0 fino alla colonna 6-1=5, si hanno le righe nel range [6,10) di a_6 che presentano un match con z[0,5]. Tali righe sono, nel dettaglio, quelle indicizzate $\{8,11,12,13\}$.

Bisogna quindi computare f_7 e g_7 . Si assuma che z[6] = 1 e che:

$$y^6 = 00000000000100000000, \ c[6] = 19$$

Si calcolano quindi:

$$f_7 = w_6(6, 1) = v_6[6] + c[6] = 0 + 19 = 19$$

 $g_7 = w_6(10, 1) = v_6[10] + c[6] = 0 + 19 = 19$

Avendo $f_7 = g_7$ si procede, in primis, annotando gli SMEM terminanti in k = 5. Seguendo l'algoritmo si ha un primo aggiornamento di e_{k+1} , che viene, avendo in memoria d_7 , posto pari a:

$$e_7 = d_7[19] - 1 = 7 - 1 = 6$$

Questo viene fatto in quanto, come detto, l'aplotipo z si trova o subito prima del blocco di aplotipi $[f_k, g_k)$ o subito dopo.

Essendo, inoltre, $z[e_7] = z[6] = 1$, si procede aggiornando g_7 e tenendo fisso f_7 , avendo z[6] = 1. Si procede computando g_7 :

$$g_7 = f_7 + 1 = 20$$

Si ricordi che g_k può "superare" le dimensioni del pannello, essendo escluso in $[f_k, g_k)$.

A questo punto, si segue la riga specificata da f_7 in a_7 a ritroso, partendo da $e_7 - 1$, fino a che si hanno match con z, aggiornando così il valore di e_7 .

In questo caso non si hanno altre operazioni, in quanto $g_7 = M$ ma, qualora non lo fosse stato, si sarebbe incrementato g_7 fino a che il corrispondente $d_7[g_7]$ sarebbe stato minore o uguale di e_7 , identificando tutte le nuove righe presentanti un match con $z[e_7, 6]$.

DC Forse sono necessarie imma gini?

L'algoritmo 5, consultabile all'algoritmo 2.6, secondo i calcoli di Durbin, ha complessità:

$$\mathcal{O}(N+c) \tag{2.58}$$

Tale risultato è così stimato in quanto si ritiene che il numero di accessi ai cicli while interni sia limitato dalla costante rappresentante il numero di match, c. Nonostante ciò, tale complessità temporale è ancora in corso di studio in quanto si hanno in letteratura evidenze della sua non correttezza. Un esempio è il paper di Naseri [32], dove si afferma che l'intuizione per cui tale costante c limiti superiormente gli accessi ai loop innestati sia falsa. Si noti che nell'articolo non viene precisata una nuova misura per la complessità dell'algoritmo ma solo che la stima di Durbin è empiricamente accettabile come caso medio:

$$Avg. \ \mathcal{O}(N+c) \tag{2.59}$$

In ogni caso, una soluzione naïve, impiegherebbe tempo:

$$\mathcal{O}(N^2M) \tag{2.60}$$

Si comprende, quindi, come tale algoritmo e tale struttura siano stati rivoluzionari per lo studio di pannelli di aplotipi.

Limiti spaziali

Bisogna affrontare la tematica della complessità in spazio di tale algoritmo. Si ipotizzi di non ricalcolare, colonna per colonna, comportando un'incremento dal punto di vista temporale in caso di dover studiare più query z, tutti gli array necessari a costruire la PBWT e a permettere di computare la funzione $w(i,\sigma)$. Ricapitolando, per poter eseguire l'algoritmo 5, si necessita di avere in memoria, con $random\ access$:

Algoritmo 2.6 Algoritmo 5 di Durbin per il calcolo degli SMEM con aplotipo esterno.

```
1: function FIND_SET_MAXIMAL_MATCHES_WITH_Z(z)
           e \leftarrow 0, f \leftarrow 0, f \leftarrow 0
 2:
           for k \leftarrow 0 to N do
 3:
                e, f, g \leftarrow Update\_Matches(k, z, e, f, g)
 4:
 5:
 6: function UPDATE_MATCHES(k, z, e, f, g)
 7:
           f' \leftarrow \mathsf{w}(k, f, z[k])
           g' \leftarrow \mathsf{w}(k, g, z[k])
 8:
           if f' < g' then
                                                 \triangleright se k \stackrel{.}{e} N - 1 report degli SMEM da e_k a N - 1
 9:
10:
                e' \leftarrow e_k
           else

ightharpoonup report\ degli\ \mathsf{SMEM}\ da\ e_k\ a\ k
11:
                e' \leftarrow d_{k+1}[f'] - 1
12:
                if z[e'] = 0 and f' > 0 then
13:
                      f' \leftarrow g' - 1
14:
                     while z[e'-1] = y_{f'}^{k+1}[e'-1] do e' \leftarrow e'-1 while d_{k+1}[f'] \le e' do f' \leftarrow f'-1
15:
16:
                else
17:
                      g' \leftarrow f' + 1
18:
                     while z[e'-1] = y_{f'}^{k+1}[e'-1] do e' \leftarrow e'-1 while g' < M and d_{k+1}[g'] \le e' do g' \leftarrow g'+1
19:
20:
           return e', f', g'
21:
```

- il pannello X, di dimensione NM
- l'insieme dei **prefix array** a, di dimensione NM
- l'insieme dei divergence array d, di dimensione NM
- i **vettori** u_k e v_k , per ogni colonna k, complessivamente di dimensione 2NM
- il **vettore** c, di dimensione N

Quindi, si ha una complessità in spazio pari a:

$$\mathcal{O}(NM) \tag{2.61}$$

Nel dettaglio, Durbin stesso ha proposto una stima quantitativa di tale memoria richiesta, ovvero³:

$$13NM$$
 byte (2.62)

Per poter capire meglio la problematica conseguente a tali richieste di spazio, prendiamo, ad esempio, un pannello di dimensioni N=6.196.151 e M=4.908. Ne segue che, secondo la stima di Durbin, si necessitano 368GB di memoria. Una stima sperimentale di tale richiesta di memoria può essere confermata con l'esecuzione dell'implementazione ufficiale della PBWT⁴. Infatti, monitorando con time il picco di memoria durante l'esecuzione, si ha che esso corrisponde a 369GB, comprensivi anche di tutto ciò che è "a contorno" all'algoritmo stesso. I dati, quindi, sembrano confermare le stime di Durbin, confermando l'alto uso di memoria richiesto dall'algoritmo 5. Questa è stata la motivazione principale per cui si è sviluppata, in questa tesi magistrale, una versione run-length encoded della PBWT che permettesse il calcolo degli SMEM con un aplotipo esterno, in modo efficiente dal punto di vista della memoria richiesta.

2.6.2 Varianti della PBWT

Negli anni immediatamente successivi all'articolo di Durbin, una miriade di articoli e ricerche sono state svolte per migliorare la PBWT, crearne varianti o utilizzarla per portare a compimento vari studi. Non essendo tali lavori direttamente correlati a questa tesi non verranno approfonditi ma, soprattutto nell'ottica dei prospetti futuri, è bene citarne i principali.

⁴https://github.com/richarddurbin/pbwt

PBWT multiallelica

La prima variante che si introduce è la **PBWT multiallelica** (mPBWT), proposta da Naseri et al. [33] nel 2019. Questo lavoro estende la PBWT di Durbin, generalizzandola ad un alfabeto arbitrario.

Dal punto di vista delle motivazioni biologiche, questa soluzione risulta fondamentale, oltre che per lo studio di specie multialleliche (soprattutto nel mondo vegetale), in quanto gli studi riportano come, nell'uomo, la presenza di siti triallelici sia sotto stimata.

Da un punto di vista prettamente algoritmico, si sono generalizzati i concetti di c, u_k e v_k visti nella PBWT, ottenendo un vero e proprio FM-index in grado di lavorare su alfabeto arbitrario Σ , con conseguente forte aumento dello spazio richiesto in memoria. Da un punto di vista della complessità temporale, invece, si ha che le le stime asintotiche degli algoritmi devono tenere conto anche della grandezza dell'alfabeto stesso, avendo però che, essendo esso tendenzialmente di dimensioni ridotte, questo fatto non comporti particolari problematiche dal punto di vista dei tempi di calcolo. Infatti, le complessità temporali della mPBWT sono moltiplicate di un fattore $t=|\Sigma|$. Se tale valore è assunto costante ad inizio computazione, avendo che difficilmente t>>2, la complessità temporale non subisce variazioni considerevoli.

PBWT con struttura LEAP

Sempre nel 2019, Naseri et al. [34] proposero anche una variante della PBWT che permettesse il calcolo non solo degli SMEM, come per l'algoritmo 5 di Durbin, ma anche qualsiasi match, tra un aplotipo esterno e un pannello, di lunghezza maggiore uguale ad una lunghezza arbitraria L. Tale algoritmo fu nominato PBWT-query. Inoltre, nello stesso articolo, proposero una struttura dati aggiuntiva, detta LEAP (Linked Equal/Alternating Position), che, al costo della memorizzazione di otto array aggiuntivi che permettessero di effettuare dei salti nella matrice PBWT (salvando gli indici del precedente/prossimo valore nella colonna uguale/diverso) e di memorizzare gli indici dei valori nel divergence array relativi a tali indici, ottimizzava i tempi dell'algoritmo per la PBWT-query, ottenendo l'algoritmo detto L-PBWT-query. Da un punto di vista computazionale, si noti che la complessità in tempo dell'algoritmo per la PBWT query, con match di lunghezza minima L, è:

DC Serve dire di più sulla struttura LEAP?

$$\mathcal{O}(N + c(R - L + 1)) \tag{2.63}$$

Avendo:

- R lunghezza media dei match
- c numero totale dei match

In merito alla complessità in tempo dell'algoritmo L-PBWT-query si ha che, al costo di 8NM interi aggiuntivi in memoria, con N e M dimensioni del pannello, essa è proporzionale a:

$$\mathcal{O}(N+c) \tag{2.64}$$

PBWT dinamica

Sanaullah et al. [32], nel 2021, proposero la **Dynamic PBWT** (dPBWT), col fine di superare le limitazioni imposte dalle strutture statiche usate nella PBWT di Durbin. Si è quindi pensato di sostituire l'uso degli array, statici, con l'uso di linked list, ovvero strutture dati dinamiche.

Grazie alle linked list, si è reso possibile l'aggiornamento efficiente della matrice PBWT all'aggiunta di un nuovo aplotipo nel pannello o alla rimozione di uno già presente nel pannello.

Da un punto di vista computazionale, è interessante notare come le implementazioni degli algoritmi di Durbin presentino la medesima complessità asintotica di quelli basati sull'uso di tali strutture dinamiche. Infatti, ad esempio, la creazione della dPBWT richiede tempo:

$$\mathcal{O}(NM) \tag{2.65}$$

Invece, l'aggiunta e la rimozione di un aplotipo sono entrambe in tempo:

$$Avg. \ \mathcal{O}(N)$$
 (2.66)

PBWT con wildcard

La tematica dei dati mancanti è una tematica aperta in bioinformatica. I sequenziatori, infatti, presentano un range d'errore dal 1% al 15%, si ha a volte un basso coverage (ovvero il numero di read che contengono la base sequenziata per un certo locus del genoma) e la fase di assemblaggio del genoma può comportare errori. Questo, in fase di produzione dei pannelli, implica che, in determinati casi, non si sappia quale sia l'allele corretto per un individuo, riferendosi ad un certo sito.

Nel 2020, Williams e Mumey [35] proposero l'uso della PBWT con wildcard al fine di disegnare un algoritmo in grado di calcolare i cosiddetti *blocchi* in un pannello biallelico con dati mancanti, rappresentati come wildcard mediante il simbolo "*" (avendo quindi, come alfabeto, $\Sigma = \{0, 1, *\}$).

In termini computazionali gli autori sono riusciti a formulare un algoritmo in grado tutti i T blocchi nel pannello in tempo:

$$\mathcal{O}(NMT) \tag{2.67}$$

DC Serve dire altro? Ho evitato di citare il termine blocco per non dover aggiungere la definizione

IMPUTE5

Per citare un uso della PBWT, si può introdurre il concetto di genotype imputation, ovvero il processo con il quale si predicono genotipi non ancora osservati in un campione di individui, usando un pannello di aplotipi. Questo tipo di studio si basa sui dati prodotti dai GWAS (Genome-wide association study), studi il cui scopo è quello di esaminare multipli genomi alla ricerca di associazioni tra varianti genetiche e malattie (o outcome specifici delle stesse), identificando varianti genomiche che sono statisticamente associate al rischio per una malattia.

A tal fine, nel 2020, Rubinacci et al. [36] proposero **IMPUTE5**, un metodo basato sulla PBWT per la genotype imputation, in grado di studiare, in ottica GWAS, pannelli di grandi dimensioni.

DC Aggiungere qualcosa?

2.6.3 Una prima proposta run-length encoded

A fine 2021, Gagie et al. [37] hanno iniziato a teorizzare una variante run-length encoded della PBWT, cercando di basarsi sui risultati già ottenuti sulla BWT con la RLBWT. Pensando alla costruzione della PBWT, con M individui e N siti, si ha che ogni colonna della matrice PBWT è ottenuta tramite la permutazione data dal prefix array. Denotiamo tale permutazione, alla colonna k, con π_k , $\forall 1 \leq k < N$. Ipotizziamo di voler studiare la riga i-esima del pannello originale. Si ha che, al variare della colonna k sulla matrice PBWT, la posizione della riga i è ricostruibile applicando le varie permutazioni:

$$i, \pi_1(i), \pi_2(\pi_1(i)), \dots, \pi_{N-1}(\dots(\pi_2(\pi_1(i)))\dots)$$
 (2.68)

Il punto fondamentale, relativo al run-length encoding, si ritrova nel fatto che l'autore asserisce:

Notice π_k can be stored in space proportional to the number of runs in the kth column of the PBWT ...

Nell'articolo si propone una struttura dati formata da N "tabelle" dove la j-esima riga della k tabella contiene:

- l'indice p di inizio della j-esima run nella colonna k della matrice PBWT
- il valore $\pi_k(p)$, avendo che:

$$\pi_k(p) = \begin{cases} p - v_k[p] & \text{if } y_p^k[k] = 0\\ c[k] + v_k[p] - 1 & \text{if } y_p^k[k] = 1 \end{cases}$$
 (2.69)

• l'indice della run contenente il simbolo $\pi_k(p)$ nella colonna k+1 della matrice PBWT

• un booleano che specifica se la prima run è composta da simboli $\sigma=0$. Si noti che tale valore non è esplicitato nel'articolo ma risulta necessario per ottenere il simbolo corrispondente ad una qualsiasi run

Il paper presenta anche il metodo per l'estrazione della i-esima riga. Inizialmente, si cerca della prima "tabella" la riga relativa alla run, con indice di testa p, contenente l'indice i. Si noti che la prima "tabella", relativa alla colonna k=1, non presenta permutazioni e quindi l'indice i del pannello è anche l'indice i della matrice PBWT. Si può calcolare, quindi, la permutazione per l'indice i (alla prima operazione si avrà k=1):

$$\pi_k(i) = \pi_k(p) + i - p \tag{2.70}$$

Si identifica, poi, la riga relativa alla run contenente il simbolo $\pi_k(p)$ nella "tabella" successiva e si scansionano le righe di tale tabella, a partire da quella appena identificata, fino a trovare la run che contiene $\pi_k(i)$ (alla prima operazione si avrà k=1). Infine, si estrae il simbolo relativo a tale run. Ripetendo la procedura per ogni colonna k, a partire dal computo della permutazione, si può calcolare la riga i-esima del pannello.

Inoltre, vengono proposti ulteriori ottimizzazioni, basate sul metodo detto fractional cascading. Con tale rappresentazione, si riesce a ridurre il numero di run che devono essere scansionate, al costo di una maggior richiesta di spazio. Infatti, aumentando il numero totale di righe in tutte le tabelle di un fattore al più $\left(1+\frac{1}{d}\right)$, è possibile garantire che si avranno al più d iterazioni, in ogni tabella, per ottenere l'estrazione del simbolo desiderato. Per ulteriori dettagli si rimanda al paper di riferimento [37].

Esempio 19. Supponendo di voler ricostruire la riga i = 9, si assuma la seguente matrice PBWT, avendo in rosso i simboli appartenenti alla riga 9:

X	01	02	03	04	05	06	07	08	09	10	11	12
00	1	1	0	0	0	1	0	0	1	1	1	1
01	1	1	0	0	0	1	0	0	1	1	1	1
02	1	1	1	0	0	0	1	1	1	0	1	1
03	1	1	0	<u>0</u>	<u>0</u>	1	0	0	1	1	0	1
04	1	0	1	0	0	1	0	0	1	1	0	1
05	1	0	1	0	0	0	0	0	1	<u>0</u>	0	1
06	1	0	1	0	0	0	0	0	1	0	0	0
07	1	1	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	0	1	0	0	0	1	0	1
09	1	0	0	0	0	1	0	0	0	0	0	1
10	1	1	0	0	0	0	0	0	1	1	0	1
11	0	1	0	1	1	0	0	0	1	0	0	1
12	0	1	0	0	1	0	0	0	0	0	0	1
13	0	0	0	0	1	0	0	0	0	0	0	1
14	0	0	0	0	0	0	0	0	<u>0</u>	0	0	1
15	0	0	0	0	0	0	0	<u>0</u>	0	0	0	1
16	1	0	0	0	0	0	0	0	1	0	0	1
17	0	0	0	0	0	0	0	1	1	0	0	1
18	0	0	0	0	0	0	0	1	1	0	0	$\frac{1}{1}$
19	0	0	0	0	0	0	0	1	1	0	0	1

Si	costruis cono	le	seguenti	tabelle	[37	<i> :</i>	
----	---------------	----	----------	---------	-----	-----------	--

	ta	able 1	L	ta	able 2	2	ta	able 3	3	ta	able 4	1	ta	able 5	5	ta	able 6	;
0	0	9	3	0	11	4	0	0	0	0	0	0	0	0	0	0	14	2
1	8	0	0	4	0	0	2	15	2	11	19	2	11	17	5	2	0	0
2	9	17	5	7	15	4	3	2	0	12	11	1	14	11	5	3	16	2
3	11	1	0	9	3	2	4	16	2							5	1	0
4	16	19	5	10	17	4	8	3	0							8	18	2
5	17	6	1	13	4	3										10	4	2

	ta	able 7	7	ta	able 8	3	ta	able 9)	ta	ble 1	0	ta	ble 1	1	table 12
0	0	0	0	0	0	0	0	7	4	0	13	1	0	17	2	0
1	2	19	3	2	16	4	7	0	0	2	0	0	3	0	0	6
2	3	2	1	3	2	0	10	14	7	3	15	1				7
3				17	17	4	12	3	2	5	1	0				
4							16	16	7	7	17	1				
5										9	3	1				
6										10	19	1				
7										11	4	1				

Nelle tabelle, in rosso, si hanno le varie $\pi_k(i)$ calcolate nel processo, ottenute, se necessario, iterando a partire dalle $\pi_k(p)$, segnalate in azzurro. Numericamente si hanno i seguenti calcoli, ovvero i vari $\pi_j(i) = \pi_j(p) + i - p$ relativi alle permutazioni in colonna k, per l'estrazione della riga 9:

•
$$\pi_1(9) = 17 + 9 - 9 = 17$$

•
$$\pi_2(17) = 4 + 17 - 13 = 8$$

•
$$\pi_3(8) = 4 + 8 - 8 = 3$$

•
$$\pi_4(3) = 0 + 3 - 0 = 3$$

•
$$\pi_5(3) = 0 + 3 - 0 = 3$$

•
$$\pi_6(3) = 16 + 3 - 3 = 16$$

•
$$\pi_7(16) = 2 + 16 - 3 = 15$$

•
$$\pi_8(15) = 2 + 15 - 3 = 14$$

•
$$\pi_9(14) = 3 + 14 - 12 = 5$$

•
$$\pi_{10}(5) = 1 + 5 - 5 = 1$$

•
$$\pi_{11}(1) = 17 + 1 - 0 = 18$$

Sfruttando il valore booleano (non rappresentato nelle tabelle) che indica con che simbolo inizi una colonna della matrice PBWT e sapendo che, essendo un pannello binario, si alternano run con simboli $\sigma=0$ e $\sigma=1$, si può ricostruire la riga 9 del pannello originale: $x_9=100001000011$.

Si segnala che, nel paper, non vengono specificati metodi per effettuare query a tale struttura dati, indicando solo che dovrebbe essere possibile interrogare tale struttura a tabelle.

Capitolo 3

Metodo

In questo capitolo verranno illustrate le metodologie usate in questa tesi, trattando tutte le soluzioni che hanno portato alla costruzione di diverse varianti della RLPBWT.

Verranno discussi gli usi delle singole componenti, le stime asintotiche sia in tempo che in spazio, gli algoritmi di costruzione e di successivo calcolo degli SMEM e i pro/contro delle varie strutture dati composte ottenibili da tali componenti.

3.1 Perché la compressione run-length

Prima di proseguire con la spiegazione dettagliata delle varianti della RLPBWT, è bene dare un'ulteriore motivazione al perché si sia ritenuto utile sviluppare una variante run-length encoded della PBWT.

Una motivazione la si ha citando direttamente il paper di Durbin sulla PBWT [4]:

Furthermore we can also expect the y arrays to be strongly run-length compressible. This is because population genetic structure means that there is local correlation in values due to linkage disequilibrium, which means that haplotypes with similar prefixes in the sort order will tend to have the same allele values at the next position, giving rise to long runs of identical values in the y array. So the PBWT can easily be stored in smaller space than the original data.

Quindi, il risultato atteso è quello per cui aplotipi simili, che, ad ogni step, saranno consecutivi nel riordinamento inverso, è molto probabile presentino lo stesso allele nella colonna di cui si sta calcolando la permutazione. Ne segue che, all'interno della matrice PBWT, è molto probabile che si abbiano lunghe run di simboli $\sigma=0$ e di simboli $\sigma=1$. Si ottiene il medesimo risultato atteso avuto con la BWT, dove si aveva che caratteri uguali era molto probabile fossero posti in posizioni consecutive all'interno della trasformata stessa. Si hanno, di conseguenza, le stesse

premesse che hanno portato alla RLBWT, considerando, inoltre, che non si tratta solo di memorizzare la struttura con compressione run-length ma di lavorare direttamente con la struttura dati compressa, risolvendo il problema del calcolo degli SMEM senza decomprimere la struttura dati. Ipotizzando che, per una certa colonna della matrice PBWT, il numero di run sia molto minore della lunghezza della colonna stessa, si deduce facilmente che l'uso della compressione run-length possa comportare una riduzione significativa della memoria necessaria all'uso della trasformata.

3.2 Matching Statistics per la RLPBWT

Bisogna, per prima cosa, introdurre il concetto di **matching statistics** nel caso della PBWT (e quindi anche della sua variante run-length encoded).

Definizione 27. Dato un pannello X, con M individui aventi N siti, e un aplotipo esterno/pattern z, tale che |z| = N, si definisce matching statistics di z su X un array MS di coppie (row, len), di lunghezza N, tale che (avendo che x_i indica l'i-esima riqa del pannello X):

- $x_{\mathsf{MS}[i].\mathsf{row}}[i-\mathsf{MS}[i].\mathsf{len}+1,i] = z[i-\mathsf{MS}[i].\mathsf{len}+1,i]$, ovvero si ha che l'aplotipo query ha un match, lungo $\mathsf{MS}[i].\mathsf{len}$, terminante in colonna i, con la riga $\mathsf{MS}[i].\mathsf{row}\text{-}esima$ del pannello
- $z[i-\mathsf{MS}[i].\mathsf{len},i]$ non è un suffisso terminante in colonna i di un qualsiasi sottoinsieme di righe di X. In altri termini, il match non deve essere ulteriormente estendibile a sinistra

Analogamente al caso della variante classica, si ha il seguente lemma.

Lemma 3. Dato un pannello X, di dimensioni $M \times N$, con M individui e N siti, un aplotipo esterno/pattern z, tale che |z| = N, e il corrispondente array di matching statistics MS si ha che z[i-l+1,i] presenta uno SMEM di lunghezza l con la riga MS[i].row-esima del pannello X sse:

$$\mathsf{MS}[i].\mathsf{len} = l \land (i = N - 1 \lor \mathsf{MS}[i].\mathsf{len} \ge \mathsf{MS}[i + 1].\mathsf{len}) \tag{3.1}$$

Si vedrà in sezione 3.3.5 come calcolare, a partire da tali SMEM, tutte le righe del panello per le quali si ha il medesimo SMEM.

Il calcolo dell'array MS di z rispetto al pannello X si basa su due fasi:

- 1. la fase di **start**
- 2. la fase di **extend**

Si assuma di avere due indici $i \in j$, $0 \le i \le j < N$, tali per cui z[i,j] è un suffisso di uno tra $x_0[0,j]$, ..., $x_{M-1}[0,j]$.

La fase di extende stende il match di z[i, j] a z[i, j + 1] sse:

- j < N
- z[i, j+1] è un suffisso di uno tra $x_0[0, j+1], \ldots, x_{M-1}[0, j+1]$

La fase di start cerca il più piccolo indice i', avendo $i \leq i' \leq j$, tale per cui z[i',j] è un suffisso di uno tra $x_0[0,j], \ldots, x_{M-1}[0,j]$. Si ha quindi il computo di ogni coppia di valori $\mathsf{MS}[i], \forall i \in [0,N)$:

- si assume inizialmente che MS[0].len = 0, quando i = 0
- si applica la fase di start per cercare il minimo indice i', avendo $i \leq i'$, tale che $z[i',i'+\mathsf{MS}[i].\mathsf{len}]$ è un suffisso di uno tra $x_0[0,i'+\mathsf{MS}[i].\mathsf{len}],\ldots$ $x_{M-1}[0,i'+\mathsf{MS}[i].\mathsf{len}].$ Inoltre, per minimalità di i', si ha che, $\forall i < j < i'$, $\mathsf{MS}[j].\mathsf{len} = \mathsf{MS}[j-1].\mathsf{len} 1, \forall j \in [i+1,i'-1]$
- si itera la fase di extend per trovare il più lungo prefisso z[i',k] che è anche un suffisso di uno tra $x_0[0,k],\ldots,x_{M-1}[0,k]$, avendo che $\mathsf{MS}[i']$.len = k-i'+1
- avendo che i' > i, si può procedere induttivamente al calcolo dell'array MS

Per convenzione, si ha che, nella prima colonna, l'iterazione parte dall'ultima riga. Tale scelta è, in ogni caso, arbitraria. In modo analogo, qualora si abbia una colonna k di un solo carattere, non corrispondente a quello della query, si sceglie l'ultima riga della colonna successiva, dalla quale si riprende il calcolo dell'array delle matching statistics, dopo aver memorizzato $\mathsf{MS}[k].\mathsf{row} = M$ (un valore sentinella non esistendo la riga di indice M) e $\mathsf{MS}.\mathsf{len}[k] = 0$.

In altri termini, più "pratici", il calcolo dell'array MS avviene nel seguente modo:

- si parte da una riga arbitraria i della prima colonna
- se si ha $x_i[0] = z[0]$, si procede salvando MS[0].row = i
- qualora si abbia $x_i[0] \neq z[0]$, si seleziona o l'ultima riga della run precedente o la prima riga della run successiva a quella a cui appartiene la riga i. Tale riga verrà salvata come $\mathsf{MS}[0].\mathsf{row} = j$ e da essa si proseguirà l'esecuzione dell'algoritmo
- si effettua il mapping verso la colonna successiva, k, e, a seconda di avere o meno un match con z[k], si procede come nei casi visti sopra

Si noti che non si è parlato di come calcolare i valori $\mathsf{MS}[i]$.len, in quanto si hanno due soluzioni (approfondite in seguito), che rispecchiano quanto visto con MONI [7] e PHONI [8] per la RLBWT:

- 1. si possono usare le threshold, per capire quale nuova riga selezionare in caso di mismatch. In tal caso, i valori $\mathsf{MS}[i]$.len devono essere calcolati successivamente al calcolo dei valori $\mathsf{MS}[i]$.row, tramite random access al panello
- 2. si possono usare le LCE query, per capire quale nuova riga selezionare in caso di mismatch. In tal caso, il calcolo dei valori $\mathsf{MS}[i]$.len avviene in contemporanea al calcolo dei valori $\mathsf{MS}[i]$.row

Esempio 20. Si riprenda, al fine di vedere un esempio di calcolo dell'array MS, l'esempio 18, con i seguenti SMEM tra la query z e il pannello X:

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
								,							_
\mathbf{Z}	0	1	0	0	1	0]	1	0	0	0	1	[1]	1	0	1

In tal caso l'array MS sarebbe, iniziando il computo dalla riga 19:

$\underline{}$	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
\overline{z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1
row	19	19	16	15	13	13	19	19	19	19	11	11	17	17	17
len	1	2	3	4	5	6	4	5	6	7	4	5	2	3	4

In MS si possono riconoscere i vari SMEM, la cui colonna di fine è segnalata nello stesso colore con cui si rappresentano gli SMEM nel pannello.

3.3 Componenti per la RLPBWT

Dovendo utilizzare strutture dati fortemente dipendenti dal tipo di dato (in termini, ad esempio, di "sparsità" intrinseca del pannello) e dall'implementazione (soprattutto in termini di strutture dati succinte), sarebbe stato difficile limitarsi a stime teoriche che sarebbero potute essere non confermate in fase sperimentale. Una sola caratterizzazione asintotica avrebbe potuto comportare sottostime e sovrastime, sia in termini di tempo che di spazio. Quindi, si deciso di sviluppare diverse varianti della RLPBWT.

Al fine di una miglior trattazione di tali implementazioni, si è deciso di suddividere le stesse in componenti, le quali, adeguatamente assemblate, permetteranno la costruzione di strutture dati composte atte al calcolo degli SMEM. Tali componenti, che verranno dettagliate in seguito, sono:

- le componenti per il mapping tra la colonna k-esima e la colonna k+1 della matrice PBWT, ovvero, riprendendo la notazione di Durbin, le strutture run-length encoded per gli array c, u_k e v_k . Nel dettaglio, tale componente è implementata in due varianti:
 - 1. mapping tramite intvector (MAP-INT)
 - 2. mapping tramite bitvector sparsi (MAP-BV)
- la componente per la memorizzazione delle threshold, anch'essa proporzionale al numero di run. Anche in questo caso si hanno due varianti, corrispondenti, di fatto, alle due varianti della componente per il mapping:
 - 1. threshold con intvector (THR-INT)
 - 2. threshold con bitvector sparsi (THR-BV)
- la componente per la memorizzazione compatta della permutazione ad ogni colonna della matrice PBWT, tramite i sample di prefix array (PERM)
- la componente in grado di garantire random access al pannello. Si hanno due possibilità:
 - 1. random access con bitvector (RA-BV)
 - 2. random access con SLP (RA-SLP)
- la componente per le longest common extension query (LCE)

- la componente per l'intero reverse longest common prefix array (RLCP), già descritto nella sezione 2.6
- la componente per permettere il calcolo delle funzioni φ e φ^{-1} (PHI)

3.3.1 Componente per il mapping

La prima componente che si descrive è quella relativa al mapping tra una colonna e la sua successiva nella matrice PBWT. In altri termini, bisogna studiare come effettuare il forward-step/mapping nella RLPBWT. Bisogna memorizzare, per ogni colonna k e in modo proporzionale al numero di run della stessa, le informazioni atte a ottenere i medesimi risultati ottenibili con la funzione $w(i, \sigma)$ (secondo la notazione di Durbin).

Mapping con intvector compressi

La prima variante che si descrive è quella denominata MAP-INT.

L'ispirazione iniziale per tale componente è stata data dall'articolo di Gagie et al [37], nonostante si abbiano, di fatto, diverse modifiche strutturali. Riprendendo quanto descritto al termine della sezione 2.6, si è deciso di memorizzare gli indici delle teste di run. Ovviamente, quest'informazione non è sufficiente per poter sapere se una run sia composta da simboli $\sigma=0$ o simboli $\sigma=1$. Fortunatamente, essendo lo studio limitato, come per la PBWT di Durbin, a pannelli costruiti su alfabeto binario $\Sigma=\{0,1\}$, si è potuto sfruttare il fatto che le run si alternano tra un carattere e l'altro. Basta quindi tenere in memoria un valore booleano nominato $start_k$, che permetta di capire se, in colonna k, la prima run sia una run di simboli $\sigma=0$. Le run di indice pari presentano lo stesso simbolo della prima run e quindi, dato un qualsiasi indice di run, è possibile sapere quale sia il simbolo corrispondente a tale run. L'implementazione di questo concetto banale si ritrova nella funzione get_symbol, la quale è visualizzabile all'algoritmo 3.1 e richiede tempo costante.

Algoritmo 3.1 Algoritmo per estrazione simbolo da una run in una colonna.

```
1: function GET_SYMBOL(k, r) \triangleright k indice di colonna, r indice di run
2: if start_k then
3: if r \mod 2 = 0 then return 0 else return 1
4: else
5: if r \mod 2 = 0 then return 1 else return 0
```

Si memorizzano gli indici delle teste di run in un array p_k , di lunghezza pari al numero di run in colonna k. Si memorizza un indice $i \in \{0, M-1\}$ sse:

$$y_{i-1}^{k}[k] \neq y_{i}^{k}[k] \tag{3.2}$$

Il passaggio successivo è stato quello di capire se le informazioni memorizzate per il mapping fossero tutte necessarie, ovvero se, data la colonna k nella matrice PBWT, fossero necessari interamente c[k], $u_k \in v_k$. In merito al valore c[k], si è deciso che si potesse calcolarlo in fase di costruzione delle RLPBWT e memorizzarlo esattamente come per la PBWT, avendo in totale N valori per l'intera trasformata. In merito, invece, ai vettori u_k e v_k si è cercato un modo per ottenerne una rappresentazione che implicasse memorizzare un solo valore per ogni run della colonna. In altri termini, si è cercato di capire se fosse possibile tenere in memoria r valori (con r numero di run in una colonna) che permettessero di effettuare comunque il mapping, a partire da un indice arbitrario $i \in \{0, \dots, M-1\}$. L'alternanza data dal caso binario ha permesso di trovare una semplice soluzione, avendo che i valori di u_k e v_k crescono in modo alternato. Infatti, a seconda del simbolo σ rappresentato in una data run, si ha che solo i valori dell'array relativo a tale simbolo, nel range di indici di quella run, verranno incrementati, ad ogni passo, di un'unità. Facendo un semplice esempio, se siamo in una run di 0 e iteriamo virtualmente all'interno di tale run, solo i valori di u_k , in quel range di indici, cresceranno di volta in volta di uno mentre per v_k , nello stesso range, si avrà sempre lo stesso valore.

Esempio 21. Sia data la seguente colonna:

Si hanno, oltre a c[5] = 15:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
y^5	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
u_5	0	1	2	2	3	3	3	3	3	4	5	6	7	8	9	10	11	12	13	14
v_5	0	0	0	1	1	2	3	4	5	5	5	5	5	5	5	5	5	5	5	

Dove si nota l'alternanza di crescita dei valori, come sopra descritto.

Grazie a questo comportamento, è possibile memorizzare, per ogni indice di testa di run i, tale che $i \neq 0$, solo il valore di $u_k[i]$ o $v_k[i]$, rispettivamente se sia una run su simboli $\sigma = 1$ o $\sigma = 0$. Per i = 0, banalmente, si ha $u_k[i] = v_k[i] = 0$. Memorizzando i valori di u_k e v_k in un array uv_k , tale che $|uv_k| = r$, con r numero di run, e dato $i \in \{0, \ldots, r-1\}$, a seconda che la colonna presenti o meno la prima run con simboli $\sigma = 0$, si possono estrarre, in tempo costante, i valori di u_k e v_k per una data testa di run. Nel dettaglio, dato $i \in 0, \ldots, r-1$:

- se i = 0 si ha che $u_k[p[i]] = v_k[p[i]] = uv_k[0] = 0$
- se $i \mod 2 = 0$ si hanno due casi:

- la prima run è di simboli $\sigma=0$ e quindi si ottiene $u_k[p[i]]=uv_k[i-1]$ e $v_k[p[i]]=uv_k[i]$
- la prima run è di simboli $\sigma=1$ e quindi si ottiene $u_k[p[i]]=uv_k[i]$ e $v_k[p[i]]=uv_k[i-1]$
- se $i \mod 2 \neq 0$ si hanno due casi, che sono l'inverso della situazione descritta precedentemente:
 - la prima run è di simboli $\sigma=0$ e quindi si ottiene $u_k[p[i]]=uv_k[i]$ e $v_k[p[i]]=uv_k[i-1]$
 - la prima run è di simboli $\sigma=1$ e quindi si ottiene $u_k[p[i]]=uv_k[i-1]$ e $v_k[p[i]]=uv_k[i]$

Tale operazione è eseguibile in tempo costante e lo pseudocodice relativo a quanto appena descritto è consultabile all'algoritmo 3.2.

Algoritmo 3.2 Algoritmo per la funzione uvtrick con MAP-INT.

```
1: function UVTRICK(k, i)
                                                           \triangleright k indice di colonna, i indice di run
2:
       if i = 0 then
3:
           return (0, 0)
       else if i \mod 2 = 0 then
4:
           u \leftarrow uv_k[i-1], \ v \leftarrow uv_k[i]
5:
6:
           if start_k then return (u, v) else return (v, u)
7:
       else
8:
           u \leftarrow uv_k[i], \ v \leftarrow uv_k[i-1]
           if start_k then return (u, v) else return (v, u)
9:
```

Da un punto di vista implementativo, gli array di interi p_k e uv_k vengono memorizzati in vettori di interi bit-compressed (intvector compressi), disponibili nella libreria SDSL. Dato un array v, si memorizzano le componenti di v in un vettore di interi con componenti memorizzate in b bit, avendo:

$$b = \lceil \log(\max_{i} v[i] - 1) \rceil + 1 \tag{3.3}$$

Quindi, per la componente MAP-INT, si hanno in memoria, per ogni colonna k:

- $start_k$, ovvero il booleano atto a sapere il simbolo della prima run
- p_k , ovvero gli indici delle teste di run.
- uv_k , ovvero i valori compatti di u_k e v_k per le teste di run
- c[k], ovvero il numero totale di simboli $\sigma=0$ nella colonna k della matrice PBWT

Facendo una prima stima della memoria occupata da questa componente si ha che, avendo ρ numero medio di run per colonna e considerando che un elemento di un intvector compresso necessita $\frac{\lceil \log(M-1) \rceil + 1}{8}$ byte, essa è:

$$\approx N \left(\rho \frac{\lceil \log(M-1) \rceil + 1}{4} + 5 \right) \text{ byte}$$
 (3.4)

DC Ricontrollare conto

```
Algoritmo 3.3 Algoritmo per la costruzione della componente MAP-INT per la colonna k.
```

```
1: function BUILD MAP INT(col, pref)
                                                                                                         \triangleright pref = a_k
          c \leftarrow 0, u \leftarrow 0, v \leftarrow 0, u' \leftarrow 0, v' \leftarrow 0, run \leftarrow 0
 2:
          start \leftarrow \top, \ beg_{run} \leftarrow \top, \ push_{zero} \leftarrow \bot, \ push_{one} \leftarrow \bot
 3:
 4:
         p \leftarrow [], uv \leftarrow []
          for every k \in [0, M) do
 5:
 6:
              if k = 0 \land col[pref[k]] = 1 then start \leftarrow \bot
              if col[pref[k]] = 0 then c \leftarrow c + 1
 7:
 8:
         if start then push_{one} \leftarrow \top else push_{zero} \leftarrow \top
 9:
          for every k \in [0, M) do
10:
              if beg_{run} then
                   u \leftarrow u', \ v \leftarrow v'
11:
12:
                   beg_{run} \leftarrow \bot
              if col[pref[k]] = 1 then v' \leftarrow v' + 1 else u' \leftarrow u' + 1
13:
              if k = 0 \lor col[pref[k]] \ne col[pref[k-1]] then
14:
15:
                   run \leftarrow k
              if k = M - 1 \lor col[pref[k]] \ne col[pref[k+1]] then
16:
17:
                   if push_{one} then
                        push(p, run), push(uv, v)
18:
                        swap(push_{one}, push_{zero})
19:
                   else
20:
21:
                        push(p, run), push(uv, u)
22:
                        swap(push_{one}, push_{zero})
                   beq_{run} \leftarrow \top
23:
24:
         return (start, c, p, uv)
```

Esempio 22. Sia data la seguente colonna:

Per la componente MAP-INT della colonna 5, si hanno in memoria:

$$p_5 = [0, 2, 3, 4, 8]$$

$$uv_5 = [0, 2, 1, 3, 5]$$

 $c[5] = 15$

La costruzione della componente MAP-INT per una certa colonna, analizzabile nell'algoritmo 3.3, ha costo temporale $\mathcal{O}(M)$, avendo che la costruzione avviene scorrendo la colonna k, permutata dal prefix array a_k .

Per l'implementazione dei vari algoritmi si ha necessità di usare anche indici con valori $i \in \{0, M-1\}$ e non solo $i \in \{0, r-1\}$. Una delle operazioni fondamentali è quindi quella, dato un indice $i \in \{0, \dots, M-1\}$, di computare a quale run esso appartenga, in una certa colonna k. Tale operazione può essere svolta usando una semplice variante della ricerca binaria che, anziché ritornare l'indice di un elemento, qualora esista, nell'array, restituisce l'ultimo indice iniziale del sottointevallo usato dalla ricerca binaria, calcolato prima dell'interruzione dell'esecuzione dell'algoritmo. Pur essendo, di fatto, una funzione rank. si è deciso, per comodità di lettura, di chiamare tale funzione index_to_run, la quale, come visualizzabile all'algoritmo 3.4, ha complessità in tempo:

$$\mathcal{O}(\log(r)) \tag{3.5}$$

Algoritmo 3.4 Algoritmo per convertire un indice di colonna in indice di run, con MAP-INT.

```
1: function INDEX TO RUN(k, i)
                                                            \triangleright kindice di colonna, iindice di riga della colonna k
          if i \ge p_k[|p_k|-1] then return |p_k|-1
 2:
         \begin{array}{l} b \leftarrow 0, \ e \leftarrow |p_k| \\ run \leftarrow \frac{e-b}{2} \end{array}
 3:
 4:
 5:
          while run \neq e \wedge p_k[run] \neq i do
 6:
               if i < p_k[run] then
 7:
 8:
               else
 9:
                   if run + 1 = e \vee p_k[run + 1] > i then
10:
                         break
                    b \leftarrow run + 1
11:
               run \leftarrow b + \frac{e-b}{2}
12:
13:
          return run
```

Ipotizzando di avere un indice $i \in \{0, ..., M-1\}$ è possibile risalire ai valori $u_k[i]$ e $v_k[i]$, sfruttando l'offset dell'indice rispetto alla testa della run a cui appartiene. Banalmente, ipotizzando di essere in una run di simboli σ con testa di run all'indice p, si avranno, avendo ottenuto $u_k[p]$ e $v_k[p]$ da $uv_k[p]$:

$$\begin{cases} v_k[i] = v_k[p] \\ u_k[i] = u_k[p] + (i-p) \end{cases}, \text{ sse } y_p^k[k] = 0 \quad \begin{cases} u_k[i] = u_k[p] \\ v_k[i] = v_k[p] + (i-p) \end{cases}, \text{ sse } y_p^k[k] = 1$$
(3.6)

Tenendo eventualmente conto dell'offset off, qualora si abbia un simbolo σ uguale a quello della run in analisi, è quindi possibile riadattare l'algoritmo per il mapping visto per la PBWT di Durbin. Tale soluzione è riportata all'algoritmo 3.5. Ricordando che si può risalire ai valori u[p] e v[p] in tempo costante, anche il mapping da una colonna alla successiva avviene in tempo costante, usando la componente MAP-INT.

Algoritmo 3.5 Algoritmo per il mapping con MAP-INT.

```
1: function W(k, i, \sigma, o)
                                             \triangleright k indice di colonna, i indice di riga, \sigma simbolo
 2:
         run \leftarrow \mathsf{index\_to\_run}(k, i)
         if \sigma = 0 \land \text{get\_symbol}(start_k, run) = 1 \text{ then}
 3:
 4:
         else if \sigma = 1 \land \text{get\_symbol}(start_k, run) = 0 then
 5:
              off \leftarrow 0
 6:
         else
 7:
              off \leftarrow i - p_k[run]
 8:
         (u,v) \leftarrow \mathsf{uvtrick}(k,\ i)
 9:
         if p_k[i] + off = M then
10:
              if get_symbol(start_k, i) = 0 then v \leftarrow v - 1 else u \leftarrow u - 1
11:
         if \sigma = 0 then return u + off else return c[k] + v + off
12:
```

Mapping con bitvector

La seconda variante della componente di mapping, al posto degli intvector compressi, utilizza i bitvector sparsi, da cui la nomenclatura MAP-BV.

L'idea è quella di sostituire, data una colonna k, quanto necessario a rappresentare le run e quanto necessario a permettere il mapping (ovvero i vettori p_k e uv_k della MAP-INT), tramite bitvector sparsi.

In primis, per poter localizzare le run nella k-esima colonna, si è scelto di usare un bitvector sparso, che denominiamo per praticità h_k , tale che $|h_k| = M$. Formalmente si ha che:

$$h_k[i] = \begin{cases} 1 & \text{se } y_i^k[k] \neq y_{i+1}^k[k] \lor i = M - 1 \\ 0 & \text{altrimenti} \end{cases}, \forall i \in \{0, \dots, M - 1\}$$
 (3.7)

Informalmente, quindi, si ha che si ha $h_k[j] = 1$ sse j è l'indice di fine di una run. La ratio dietro l'uso di questa struttura dati succinta è quella per cui ci si aspettano poche run all'interno di una colonna della matrice PBWT, per quanto già discusso nella sezione 2.6. Avendo poche run, ci si aspetta di avere anche pochi simboli $\sigma = 1$ all'interno di h_k , ottimizzando al meglio l'uso dei bitvector sparsi. Si ricorda

che, secondo quanto riportato per la libreria SDSL [13], tale variante richiede in memoria, indicando con r il numero di run:

$$\approx r \left(2 + \log \frac{M}{r}\right)$$
 bit (3.8)

Pensando ad una correlazione tra MAP-INT e MAP-BV, si ha che rank_{h_k} fa le veci della funzione index_to_run mentre select_{h_k} equivale ad accedere ai valori di p_k . Più elaborata è la rappresentazione dei vettori u_k e v_k . In questo caso si è deciso, a differenza della rappresentazione unica vista con la MAP-INT, di optare per due bitvector sparsi. In particolare, per il vettore u_k , tale che $|u_k| = c[k]$, si ha che, $\forall i \in \{0, \dots, |u_k| - 1\}$:

$$u_k[i] = \begin{cases} 1 & \text{se } i \text{ è il numero di simboli che contiene la } \mathsf{rank}_{u_k}(i)\text{-esima run di } 0 \\ 0 & \text{altrimenti} \end{cases}$$

Analogamente si definisce v_k , avendo $|v_k| = M - c[k]$ e $\forall i \in \{0, \dots, |v_k| - 1\}$, come:

$$v_k[i] = \begin{cases} 1 & \text{se } i \text{ è il numero di simboli che contiene la } \operatorname{rank}_{v_k}(i)\text{-esima run di 1} \\ 0 & \text{altrimenti} \end{cases}$$
(3.10)

Si noti che:

$${\rm rank}_{h_k}(|h_k|-1)+1=({\rm rank}_{u_k}(|u_k|-1)+1)+({\rm rank}_{v_k}(|v_k|-1)+1) \eqno(3.11)$$

Ovvero il numero di simboli $\sigma=1$ presenti in h_k è pari alla somma di quelli presenti in u_k e v_k . Si noti che i vari +1 sono dovuti al fatto che la funzione ${\sf rank}(i)$ esclude dal computo la posizione i stessa e tutti e tre i bitvector, per costruzione, presentano $\sigma=1$ in ultima posizione. Ne segue che, anche per questi ultimi due bitvector, la scelta di usare bitvector sparsi per la loro memorizzazione sia giustificata, empiricamente, dalla poca quantità attesa di simboli $\sigma=1$.

Esempio 23. Sia data la sequente colonna:

Si ha quindi che:

$$h_5 = 011100010000000000001$$

Avendo appunto un numero di run pari a:

$$\mathsf{rank}_{h_5}(|h_5|-1)+1=4+1=5$$

In merito alle run composte da simboli $\sigma = 0$ si ha che:

$$u_5 = 011000000000001$$

Avendo:

- la prima run composta da due simboli $\sigma = 0$
- la seconda run composta da un solo simbolo $\sigma = 0$
- la terza run composta da dodici simboli $\sigma = 0$

Parlando invece di v_5 si ha:

$$v_5 = 10001$$

Avendo:

- la prima run è composta da un solo simbolo $\sigma=1$
- la seconda run è composta da quattro $\sigma = 1$

Si conferma, inoltre, quanto indicato nell'equazione 3.11, avendo:

$$\mathsf{rank}_{h_5}(|h_5|-1)+1=5=(\mathsf{rank}_{u_5}(13)+1)+(\mathsf{rank}_{v_5}(4)+1)=(2+1)+(1+1)=5$$

Lo pseudocodice relativo alla costruzione della componente MAP-BV per la colonna k-esima è disponile all'algoritmo 3.6. Anche in questo caso, la costruzione avviene scorrendo la colonna k, permutata dal prefix array a_k .

Assumendo che la complessità in tempo delle costruzioni delle strutture a supporto per le funzioni rank e select dei tre bitvector sparsi sia limitata superiormente dalla loro lunghezza massima, ovvero M, si ha che la costruzione della componente MAP-BV, per una singola colonna, avviene in tempo:

$$\mathcal{O}(M) \tag{3.12}$$

Bisogna, in primis, spiegare come, dato un indice di riga $i \in \{0, ..., M-1\}$ e una colonna k, computare $u_k'[i]$ e $v_k'[i]$, ovvero come se si stesse usando la PBWT, a partire dagli attuali $u_k[i]$ e $v_k[i]$ (i due bitvector sparsi). A differenza della componente MAP-INT, risulta difficile formulare un'unica formula per il calcolo di tali valori. Si è quindi deciso di offrire una spiegazione operazionale.

DC Commentato nel T_EX c'è la formula di Travis, in caso da adattare sui significati qui di u e v

In primis, se i = 0, si ha che $u'_k[0] = v'_k[0] = 0$. In caso contrario bisogna calcolare la run in cui si trova l'indice i. Questo si ottiene direttamente sfruttando h_k :

$$run = \operatorname{rank}_{h_h}(i) \tag{3.13}$$

Una volta calcolato l'indice di run, si hanno tre possibilità:

1. si ha run=0 e una run di simboli $\sigma=b,$ con $b\in\{0,1\}.$ In tal caso, semplicemente:

$$(u,v) = \begin{cases} (i,0) & \text{se } b = 0\\ (0,i) & \text{altrimenti} \end{cases}$$
 (3.14)

Algoritmo 3.6 Algoritmo per la costruzione della componente MAP-BV per la colonna k.

```
1: function BUILD_MAP_BV(col, pref)
                                                                                                       \triangleright pref = a_k
         c \leftarrow 0, \ u \leftarrow 0, \ v \leftarrow 0, \ u' \leftarrow 0, \ v' \leftarrow 0, \ curr_{lcs} \leftarrow 0
 3:
         start \leftarrow \top, \ beg_{run} \leftarrow \top, \ push_{zero} \leftarrow \bot, \ push_{one} \leftarrow \bot
 4:
         for every k \in [0, M) do
              if k = 0 \land col[pref[k]] = 1 then start \leftarrow \bot
 5:
 6:
              if col[pref[k]] = 0 then c \leftarrow c + 1
         runs \leftarrow [0..0]
 7:
                                                   \triangleright bitvector sparso per le run, di lunghezza M+1
 8:
         zeros \leftarrow [0..0]
                                                            \triangleright bitvector sparso per u_k, di lunghezza c[k]
         ones \leftarrow [0..0]
                                                        \triangleright bitvector sparso per v_k, di lunghezza M-c
 9:
10:
         if start then push_{one} \leftarrow \top else push_{zero} \leftarrow \top
         for every k \in [0, M) do
11:
              if beg_{run} then
12:
                   u \leftarrow u', \ v \leftarrow v', \ beg_{run} \leftarrow \bot
13:
              if col[pref[k]] = 1 then v' \leftarrow v' + 1 else e u' \leftarrow u' + 1
14:
15:
              if k = M - 1 \lor col[pref[k]] \ne col[pref[k+1]] then
                   runs[k] \leftarrow 1
16:
17:
                   if push_{one} then
                       if v \neq 0 then ones[k-1] = 1
18:
                       swap(push_{zero}, \ push_{one})
19:
20:
                   else
21:
                       if u \neq 0 then zeros[k-1] = 1
22:
                       swap(push_{zero}, push_{one})
                   beg_{run} \leftarrow \top
23:
         if |zeros| \neq 0 then zeros[|zeros| - 1] \leftarrow 1
24:
         if |ones| \neq 0 then ones[|ones| - 1] \leftarrow 1
25:
26:
         costruzione delle strutture per rank/select dei tre bitvector
         return (start, c, runs, zeros, ones)
27:
```

2. si ha run = 1 e una run di simboli $\sigma = b$, con $b \in \{0, 1\}$. In tal caso, bisogna individuare l'indice di inizio della seconda run, sfruttando h_k :

$$beq = \mathsf{select}_{h_h}(1) + 1 \tag{3.15}$$

A questo punto si ha il numero di simboli della prima run, e, calcolando la distanza tra l'indice di riga e quello di inizio della prima run, si ottiene che:

$$(u,v) = \begin{cases} (beg, i - beg) & \text{se } b = 0\\ (i - beg, beg) & \text{altrimenti} \end{cases}$$
(3.16)

3. si ha run = j, con $j \in \{2, r-1\}$. Anche in questo caso si procede calcolando l'indice di inizio della run:

$$beg = \mathsf{select}_{h_h}(run) + 1 \tag{3.17}$$

e l'offset rispetto all'indice i dato da:

$$offset = i - beg (3.18)$$

Poi, sfruttando la solita dicotomia fornita dal caso binario in studio, si hanno due casi:

(a) si è in una run di indice pari e si sfruttano poi u_k e v_k per sapere l'indice della precedente run con simboli $\sigma = 0$:

$$pre_u = \mathsf{select}_{u_k}\left(\left\lfloor \frac{run}{2} \right\rfloor\right) + 1$$
 (3.19)

Analogamente si calcola l'indice della run precedente con simboli simboli $\sigma=1$:

$$pre_v = \operatorname{select}_{v_k} \left(\left\lfloor \frac{run}{2} \right\rfloor \right) + 1$$
 (3.20)

Si noti che si usa $\frac{run}{2}$ in quanto, essendo in una run di indice pari, si hanno precedentemente lo stesso numero di run per $\sigma=0$ e per $\sigma=1$ e quindi si considera lo stesso numero di run nei due bitvector sparsi u_k e v_k .

A questo punto, sempre per il ragionamento per cui solo uno tra u e v non è costante all'interno di una run, si ha che o pre_u o pre_v è costante mentre l'altro valore deve essere calcolato considerando l'offset:

$$(u,v) = \begin{cases} (pre_u + offset, pre_v) & \text{se } b = 0\\ (pre_u, pre_v + offset) & \text{altrimenti} \end{cases}$$
(3.21)

(b) ci si trova in una run di indice dispari, quindi non si hanno precedentemente lo stesso numero di run per i due simboli. Bisogna quindi calcolare quante siano tali run. Se la prima run è di zeri si ha che:

$$run_u = \operatorname{select}_{u_k} \left(\left\lfloor \frac{run}{2} \right\rfloor \right) + 1$$
 (3.22)

$$run_v = \operatorname{select}_{v_k} \left(\left\lfloor \frac{run}{2} \right\rfloor \right)$$
 (3.23)

Mentre se la prima run non è di zeri si devono invertire i due valori. Si sa, quindi, quali run considerare sui due bitvector sparsi u_k e v_k , potendo procedere come nel caso precedente:

$$pre_u = \mathsf{select}_{u_k}(run_u) + 1 \tag{3.24}$$

$$pre_v = \mathsf{select}_{v_k}(run_v) + 1 \tag{3.25}$$

Infine, si calcola:

$$(u,v) = \begin{cases} (pre_u, pre_v + offset) & \text{se } b = 0\\ (pre_u + offset, pre_v) & \text{altrimenti} \end{cases}$$
(3.26)

DC Sistemare

Esempio 24. Si prendano i dati e i risultati ottenuti all'esempio 23. Si vogliono calcolare u[i] e v[i] per i = 6. In primis, si hanno:

$$run = \operatorname{rank}_{h_5}(6) = 3$$
 $beg = \operatorname{select}_{h_5}(3) + 1 = 3 + 1 = 4$ $offset = i - beg = 6 - 4 = 2$

Quindi ci si trova nel terzo caso e, nel dettaglio, in una run di indice dispari. Si calcolano:

$$run_u = \operatorname{select}_{u_5}\left(\left\lfloor \frac{3}{2} \right\rfloor\right) + 1 = \operatorname{select}_{u_5}(1) + 1 = 1 + 1 = 2$$

$$run_v = \operatorname{select}_{v_5}\left(\left\lfloor \frac{3}{2} \right\rfloor\right) = \operatorname{select}_{v_5}(1) = 0$$

Tali valori non andranno invertiti avendo start₅ = \top . Si calcolano, quindi:

$$pre_u = select_{u_5}(2) + 1 = 2 + 1 = 3$$

 $pre_v = select_{v_5}(0) + 1 = 0 + 1 = 1$

Avendo, in totale, tre simboli $\sigma = 0$ e un simbolo $\sigma = 1$ prima dell'indice 6. Concludendo, avendo start₅ = \top :

$$(u, v) = (pre_u, pre_v + offset) = (3, 1 + 2) = (3, 3)$$

Lo pseudocodice per il calcolo di $u_k[i]$ e $v_k[i]$ è disponibile all'algoritmo 3.7. In merito alla complessità in tempo, si ha che essa è limitata superiormente dal costo della funzione rank su bitvector sparsi, essendo la funzione select disponibile in tempo costante. Ne segue che, avendo r run nella colonna k, si ha un tempo proporzionale a:

$$\mathcal{O}\left(\log\frac{M}{r}\right) \tag{3.27}$$

Non dovendo considerare esplicitamente l'offset, come nel caso della MAP-INT, il mapping dalla colonna k alla colonna k+1 viene fatto come nel caso della PBWT, come visualizzabile all'algoritmo 3.8, che presenta quindi la medesima complessità del calcolo di u[i] e v[i], ovvero quello visto all'equazione 3.27. Facendo una prima stima della memoria occupata da questa componente si ha che, avendo ρ numero medio di run per colonna, essa è:

$$\approx N \left(\frac{\rho \left(2 + \log \frac{M}{\rho} \right)}{4} + 29 \right) \text{ byte}$$
 (3.28)

È possibile fare ora un piccolo confronto, ad alto livello, tra la memoria richiesta da un bitvector sparso e un intvector compresso.

DC Ricontrollare conto

Si noti che confrontare analiticamente le stime in memoria delle due componenti possibili per il mapping non è banale, valutando l'equazione (relativo ad un solo bitvector sparso, comprendente le strutture per le funzioni rank e select, e ad un solo intvector compresso):

$$\rho\left(2 + \log\frac{M}{\rho}\right) + 128 = \rho\lceil\log(M-1)\rceil + 1\tag{3.29}$$

Bisogna considerare come difficoltà aggiuntiva il fatto che $M, \rho \in \mathbb{N}$ e che entrambi i lati dell'equazione hanno valori nell'insieme dei naturali.

DC Ricontrollare conto

Solo valutazioni sperimentali hanno mostrato come, con valori di M e ρ relativi ai pannelli di aplotipi studiati, l'uso degli intvector compressi sia più vantaggioso in termini di memoria richiesta. Una stima derivata da tali conti è visibile in figura 3.1, dove si evince che, qualora la media del numero di run resti proporzionale a quanto visto con 4.908 sample (ovvero una media di 12 run come verrà analizzato nel Capitolo 4), l'uso dei bitvector sparso diventerebbe favorevole solo con pannelli con più di circa 17.180 sample/aplotipi/righe.

DC Serve altro?

3.3.2 Componente per le threshold

Come discusso con MONI per la RLBWT, l'uso delle threshold è uno dei due modi per computare l'array delle matching statistics.

Algoritmo 3.7 Algoritmo per la funzione uvtrick con MAP-BV.

```
1: function UVTRICK(k, i)
                                                                          \triangleright k indice di colonna, i indice di riga
            if i = 0 then return (0, 0)
 2:
            run \leftarrow rank_h^k(i)
 3:
            if run = 0 then
 4:
                 if start_k then return (i, 0) else return (0, i)
 5:
            else if run = 1 then
 6:
                 if start_k then
 7:
                       return (select_h^k(run) + 1, i - (select_h^k(run) + 1))
 8:
 9:
                 else
                       return (i - (select_h^k(run) + 1), select_h^k(run) + 1)
10:
            else
11:
                 if run \mod 2 = 0 then
12:
                       \begin{array}{l} pre_u \leftarrow select_u^k \left( \left \lfloor \frac{run}{2} \right \rfloor \right) + 1 \\ pre_v \leftarrow select_v^k \left( \left \lfloor \frac{run}{2} \right \rfloor \right) + 1 \\ offset \leftarrow i - \left( select_h^k (run) + 1 \right) \end{array}
13:
14:
15:
                       if start_k then
16:
                             return (pre_u + offset, pre_v)
17:
                       else
18:
                             return (pre_u, pre_v + offset)
19:
20:
                 else
                       \begin{aligned} run_u &\leftarrow \left( \left\lfloor \frac{run}{2} \right\rfloor \right) + 1 \\ run_v &\leftarrow \left\lfloor \frac{run}{2} \right\rfloor \end{aligned}
21:
22:
                       if \neg start_k then swap(run_u, run_v)
23:
                       pre_u \leftarrow select_u^k(run_u) + 1
24:
                       pre_v \leftarrow select_v^k(run_v) + 1
25:
                       offset \leftarrow i - (select_h^k(run) + 1)
26:
27:
                       if start_k then
                             return (pre_u, pre_v + offset)
28:
29:
                       else
                             return (pre_u + offset, pre_v)
30:
```

Algoritmo 3.8 Algoritmo per il mapping con MAP-BV.

```
1: function W(k, i, \sigma) \triangleright k indice di colonna, i indice di riga, \sigma simbolo 2: c \leftarrow c[k] 3: (u, v) \leftarrow \mathsf{uvtrick}(k, i) 4: if \sigma = 0 then return u else return c + v
```


Figura 3.1: Confronto tra la stima di memoria in bit necessaria ai bitvector sparsi e agli intvector compressi, al variare dell'altezza del pannello. Con la linea verde si segnala il numero di sample dopo il quale si avrebbe un vantaggio in memoria nell'usare i bitvector sparsi.

Definizione 28. Data la colonna k-esima della matrice PBWT, y^k , memorizzata tramite compressione run-length e data la run j-esima, indicizzata da i a i', si definisce threshold come l'indice del minimo valore dell'RLCP, compreso negli indici della run, considerando anche l'eventuale RLCP_k[i'+1], qualora i' $\neq M-1$. Si noti che quest'ultimo valore, se esistente, deve essere considerato in quanto calcolato prendendo in considerazione $y^k_{i'}$ (valore appartenente alla run in analisi) e $y^k_{i'+1}$. Qualora si abbiano più valori minimi uguali in RLCP_k si seleziona il primo, per convenzione.

Da un punto di vista implementativo, come anticipato, si hanno due soluzioni, una basata su intvector compressi e una basata su bitvector sparsi. In entrambi i casi il calcolo si può effettuare in parallelo a quello delle componenti MAP-INT e MAP-BV.

Threshold con intvector compressi

Con questa componente, la memorizzazione delle threshold avviene in modo molto semplice, usando un vettore di interi bit-compressed. Data una colonna k della matrice PBWT, con r numero di run, si calcola t_k tale che $t_k[i] = j$ sse j è l'indice della threshold dell'i-esima run.

Lo pseudocodice per la costruzione della componente THR-INT della colonna k è consultabile all'algoritmo 3.9 e, dovendo scorrere la colonna permutata dal prefix array a_k e dovendo accedere ai valori di l_k , tale operazione ha complessità in tempo proporzionale a:

$$\mathcal{O}(M) \tag{3.30}$$

Si noti che, qualora il minimo valore dell'RLCP si trovi nella testa della run successiva, si memorizza, come threshold, l'indice della testa della run successiva.

```
Algoritmo 3.9 Algoritmo per la costruzione della componente THR-INT.
```

Threshold con bitvector

Con questa componente, le posizioni delle threshold vengono memorizzate, per ogni colonna k, tramite un bitvector sparso, denotato t_k , avendo che $t_k[i] = 1$ sse i è l'indice di una threshold. Qualora il minimo RLCP si trovi nell'indice della testa della run successiva, la posizione della threshold verrà memorizzata all'indice della coda della run corrente. Purtroppo questa è una situazione di ambiguità. Infatti, come si vedrà poi durante lo studio dell'algoritmo di calcolo delle matching statistics tramite threshold, il fatto che una threshold posta a fine run corrisponda effettivamente ad un minimo RLCP in quella posizione o a quella successiva comporta differenze dal punto di vista del calcolo dell'array MS. Purtroppo, non è possibile salvare la threshold direttamente nella testa della run successiva in quanto questa potrebbe essere anche la posizione della threshold della run successiva. Avere due threshold sovrapposte impedirebbe di capire a quale run appartiene una

certa threshold, tramite la funzione rank.

Lo pseudocodice per la costruzione della componente THR-BV della colonna k è consultabile all'algoritmo 3.10 e, dovendo scorrere la colonna permutata dal prefix array a_k e dovendo accedere ai valori di l_k , tale operazione ha complessità in tempo proporzionale a:

$$\mathcal{O}(M) \tag{3.31}$$

In merito al confronto tra THR-INT e THR-BV, in termini di uso di memoria, valgono le stesse considerazioni fatte per le componenti di mapping.

Algoritmo 3.10 Algoritmo per la costruzione della componente THR-BV.

```
\triangleright pref = a_k, div = l_k
function Build_thr_bv(col, pref, div)
    curr_{lcs} \leftarrow 0, \ tmp_{thr} \leftarrow 0
    t \leftarrow [0..0]
                                                           \triangleright bitvector sparso di lunghezza M
    for every k \in [0, M) do
         if k = 0 \lor col[pref[k]] \ne col[pref[k-1]] then
             curr_{lcs} \leftarrow div[k], \ tmp_{thr} \leftarrow k
        if div[k] < curr_{lcs} then
             curr_{lcs} \leftarrow div[k], \ tmp_{thr} \leftarrow k
        if k = M - 1 \lor col[pref[k]] \ne col[pref[k+1]] then
             if k \neq M - 1 \wedge div[k+1] < div[tmp_{thr}] then
                  t[k] \leftarrow 1
             else
                  t[tmp_{thr}] \leftarrow 1
    costruzione delle strutture rank/select per t
    return t
```

3.3.3 Componente per i prefix array sample

Come introdotto parlando delle matching statistics, qualora si abbia un cambio di riga da memorizzare, si seleziona sempre o quella relativa alla coda della run precedente o quella relativa alla testa della run successiva. Risulta quindi necessario, in colonna k, memorizzare i valori di a_k all'inizio e alla fine di ogni run. Anche in questo caso si sono scelti gli intvector compressi. Tali valori sono un sample dei valori che permettono le permutazioni che costruiscono la matrice PBWT e, quindi, tale componente prende il nome di PERM.

All'algoritmo 3.11 è possibile analizzare lo pseudocodice del metodo usato per calcolare tale componente per la colonna k-esima. L'algoritmo, dovendo iterare l'intera colonna della $matrice\ PBWT$ ha costo, in tempo:

$$\mathcal{O}(M) \tag{3.32}$$

La costruzione può essere fatta in contemporanea a quelle delle componenti gia descritte, ovvero: MAP-INT/MAP-BV e THR-INT/THR-BV. In termini di memoria ne-

Algoritmo 3.11 Algoritmo per la costruzione della componente PERM per la colonna k.

```
1: function BUILD_PERM(col, pref)
                                                                                                 \triangleright pref = a_k
 2:
         tmp_{beg} \leftarrow 0, \ beg_{run} \leftarrow \top
         samples_{bea} \leftarrow []
                                        ▷ vettore per i prefix array sample ad inizio di ogni run
 3:
         samples_{end} \leftarrow []
                                            ⊳ vettore per i prefix array sample a fine di ogni run
 4:
         for every k \in [0, height) do
 5:
 6:
             if beg_{run} then
 7:
                  tmp_{beg} \leftarrow pref[k]
 8:
                  beg_{run} \leftarrow \bot
             if k = height - 1 \lor col[pref[k]] \neq col[pref[k+1]] then
 9:
                  push(samples_{beg}, tmp_{beg})
10:
11:
                  push(samples_{end}, pref[k])
                  beg_{run} \leftarrow \top
12:
         return (samples_{beq}, samples_{end})
13:
```

cessaria per questa componente, si hanno le medesime considerazioni fatte nel caso della componente MAP-INT, per l'uso degli intvector compressi.

3.3.4 Componenti per il random access e le LCE query

Si descrivono ora le componenti atte a garantire il random access al testo e, nel caso dell'uso di un SLP, permettere il computo delle LCE query.

Parlando di strutture per il random access, una differenza sostanziale tra l'uso di un vettore di bitvector, RA-BV, e quello dell'SLP, RA-SLP, è data dai tempi di accesso ai singoli elementi. Infatti, parlando di RA-BV, si ha accesso in tempo costante ad un qualsiasi elemento del pannello mentre, nel caso di RA-SLP, si ha che l'accesso ad ogni elemento è in tempo:

$$\mathcal{O}(\log(NM)) \tag{3.33}$$

La seconda differenza, già ampiamente introdotta e di fatto scontata, è data dalla dimensione delle due strutture dati, avendo che RA-BV memorizza $\sim NM$ bit, dove il \sim è dato dai costi in memoria aggiuntivi dati dall'avere un vettore che memorizza i bitvector. Parlando invece di RA-SLP, non si può avere una stima a priori dello spazio necessario ma, come si vedrà nel capitolo 4, i risultati quantitativi daranno prova della capacità di compressione di tale grammatica.

Parlando della componente RA-SLP e della componente LCE, bisogna descrivere la metodologia con cui si ottiene la singola stringa che verrà compressa tramite SLP. In primis, le librerie per la costruzione di tale struttura assumono un input

monodimensionale, ovvero una singola sequenza lineare. Inoltre, per permettere la costruzione efficiente della PBWT, e conseguentemente della RLPBWT, il pannello in input risulta essere trasposto, avendo che ogni record consecutivo nel file contiene una colonna del pannello e non una riga dello stesso. Bisogna quindi trasporre tale pannello in input. Bisogna ricordare che sull'SLP si avrà necessità di effettuare LCE query che, si anticipa, devono essere fatte tra due righe da destra a sinistra (a differenza di quanto visto nel caso standard dove si confrontavano prefissi comuni a partire da due posizioni del testo). Per rendere possibile questa operazione, il pannello deve essere sia salvato come un'unica riga, per ottenerne l'SLP, che essere letto da destra a sinistra per costruire la sequenza, per permettere le LCE query. Si procede, quindi, concatenando ogni riga, selezionandole consecutivamente e leggendone i singoli elementi da destra a sinistra.

Esempio 25. Si assuma di avere il seguente pannello trasposto nel file in input.

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Si ha che le righe sono i siti e le colonne i sample. Per ottenere l'SLP bisogna trasporre la matrice:

$$X^T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

A questo punto bisogna considerare l'ordine in cui si vorranno effettuare le LCE query. Ad esempio, prendendo la seconda e la terza riga, facendo partire il confronto dall'ultima colonna, avremmo una LCE query lunga 3, terminante nella prima colonna, esclusa:

$$X^{T} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \underline{0} & \underline{1} & 1 & 0 \\ \underline{1} & \underline{1} & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Si procede quindi salvando la sequenza lineare relativa al pannelli come descritto sopra. Si ottiene, con colorati gli stessi risultati della LCE query fatta sopra:

0010 0110 0111 1100 0110

Si noti che, qui, si sono segnalate le varie righe con uno spazio ma solo per praticità "visiva".

In merito al random access, considerando tale memorizzazione monodimensionale e invertita, si ha, per accedere alla colonna k della riga i-esima del pannello:

$$x_i[k] = \mathsf{SLP}[N(i+1) - k - 1] \tag{3.34}$$

In termini di complessità, si ricorda che, come per il random access, il calcolo delle LCE query con SLP è in tempo proporzionale a:

$$\mathcal{O}(\log(NM))\tag{3.35}$$

3.3.5 Componente per la struttura Phi

L'ottenimento dell'array matching statistics permette di sapere solo l'indice di una della righe del pannello per le quali si ha uno SMEM con l'aplotipo query. Analogamente a quanto discusso in PHONI [8], anche per la RLPBWT si è pensato a due funzioni, φ e φ^{-1} , per il riconoscimento di tutte le righe del pannello per le quali si ha il medesimo SMEM. La componente che permette il calcolo di tali funzioni è la componente denotata PHI e si dovrà considerare l'assenza in memoria dei valori degli array RLCP.

L'intuizione alla base del ragionamento è molto semplice. Nell'ordinamento alla colonna k-esima, dato da a_k , tutte le righe, per le quali si ha un certo SMEM, sono poste consecutivamente, a causa dell'ordinamento lessicografico inverso.

Definizione 29. Dati un pannello X, di dimensioni $N \times M$, e una colonna k, avendo prefix array a_k e permutazione inversa del prefix array α_k , si definiscono formalmente:

$$\varphi_k(p) = \begin{cases} \text{null} & se \ \alpha_k[p] = 0 \\ a_k[\alpha_k[p] - 1] & altrimenti \end{cases}, \forall p \in \{0, M - 1\}$$

$$\varphi_k^{-1}(p) = \begin{cases} \text{null} & se \ \alpha_k[p] = M - 1 \\ a_k[\alpha_k[p] + 1] & altrimenti \end{cases}, \forall p \in \{0, M - 1\}$$

In altri termini, si ha che:

$$\varphi_k(a_k[j]) = \begin{cases} \text{null} & \text{se } j = 0 \\ a_k[j-1] & \text{altrimenti} \end{cases}, \forall j \in \{0, M-1\}$$

$$\varphi_k^{-1}(a_k[j]) = \begin{cases} \text{null} & se \ j = M - 1 \\ a_k[j+1] & altrimenti \end{cases}, \forall j \in \{0, M - 1\}$$

Quindi, dato un elemento di a_k , le due funzioni restituiscono il valore antecedente ad esso, se esistente, e il valore successivo ad esso, se esistente, nel prefix array. In caso di inesistenza di tale valore, rispettivamente ad inizio e fine del prefix array, si restituisce null.

Esempio 26. Si ipotizzi di avere, come per l'esempio 15:

$$a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7]$$

$$\alpha_6 = [2, 12, 13, 14, 16, 17, 18, 19, 6, 3, 4, 7, 8, 9, 0, 1, 5, 15, 10, 11]$$

Si fissa quindi p = 3 e si ottengono:

$$\varphi(3) = a_6[\alpha_6[3] - 1] = a_6[14 - 1] = a_6[13] = 2$$

$$\varphi^{-1}(3) = a_6[\alpha_6[3] + 1] = a_6[14 + 1] = a_6[15] = 17$$

Avendo, quindi, $\mathsf{MS}[i].\mathsf{row} = p$ e $\mathsf{MS}[i].\mathsf{len} = l$ basta iterare le righe a partire da p in a_i , righe che denotiamo con l'indice q, fino a che si ha $\mathsf{LCE}_k(x_p, x_q) \geq l$. Ovviamente bisogna iterare in entrambe le direzioni. Tutte le righe x_q che soddisfano tale condizione presentano uno SMEM di lunghezza l con l'aplotipo query. L'algoritmo 3.12 rappresenta quanto appena descritto, avendo che la funzione lce_bounded limita il calcolo della LCE alla lunghezza desiderata l, escludendo computazioni inutili oltre tale lunghezza. Tale funzione è riproducile, per mezzo di iterazioni, anche sulla componente $\mathsf{RA-BV}$. La complessità temporale di questo algoritmo varia a seconda della componente per il random access (e della conseguente presenza della componente LCE). Inoltre, è difficile poter dare una stima asintotica in quanto varia sul numero di righe ν che presentano un certo SMEM . Quindi, si ha, con la componente $\mathsf{RA-BV}$, un tempo proporzionale a:

$$\mathcal{O}(\nu N) \tag{3.36}$$

Mentre con l'uso della componente LCE, avendo il pannello in memoria sotto forma di SLP, si ha complessità in tempo:

$$\mathcal{O}(\nu \log(NM)) \tag{3.37}$$

Si è presentata la definizione formale delle due funzioni ma, con la RLPBWT, si hanno in memoria solo i prefix array sample e nessuna informazione in merito alla permutazione inversa del prefix array. Non si ha in memoria nemmeno il RLCP, che, in via teorica, come per la BWT, potrebbe rendere efficiente il computo delle funzioni φ e φ^{-1} . Quindi, si è pensato ad una struttura dati, basata anch'essa su bitvector sparsi e intvector compressi, che permettesse il calcolo delle due funzioni senza mantenere informazioni complete in memoria.

DC Stime molto per eccesso, con RA-BV si scala su l di fatto.

DC VERIFICA-RE DEFINIZIO-

NE IN QUAN-TO "NUOVA"

Algoritmo 3.12 Algoritmo per il calcolo di ogni SMEM in colonna k tramite la componente PHI.

```
1: function EXTEND MATCHES(k, row, len)
 2:
         haplos \leftarrow []
         check_{down} \leftarrow \top, \ check_{up} \leftarrow \top
 3:
 4:
         while check_{down} do
              down_{row} \leftarrow \varphi^{-1}(row, k)
 5:
 6:
              if lce\_bounded(k, row, down_{row}, len) then
 7:
                  push(haplos, down_{row})
 8:
                  row \leftarrow down_{row}
              else
 9:
                   check_{down} \leftarrow \bot
10:
11:
         while up_{down} do
              up_{row} \leftarrow \varphi(row, k)
12:
              if lce\_bounded(k, row, up_{row}, len) then
13:
14:
                  push(haplos, up_{row})
15:
                   row \leftarrow up_{row}
16:
              else
17:
                   check_{up} \leftarrow \bot
18:
         return haplos
```

Costruzione della struttura di supporto

L'idea, per la costruzione della struttura a supporto delle funzioni φ e φ^{-1} , si basa sul fatto che, data una colonna k e dati due valori consecutivi p e q in a_k (avendo $a_k[i] = p$ e $a_k[i+1] = q$), essi rimarranno consecutivi anche in a_{k+o} (prefix array dell'arbitraria colonna k+o), fino a che che $x_p[k+o] \neq x_q[k+o]$, ovvero fino a che, in colonna k+o, tali righe corrisponderanno a due simboli diversi, consecutivi nella matrice PBWT. Cruciale è che, in quella colonna, p sarà memorizzato come prefix array sample della fine della run r mentre q come prefix array sample dell'inizio della run r 1. Grazie a questa informazione, si può costruire una struttura che, data una colonna arbitraria e un arbitrario valore di prefix array, permetta di computare φ e φ^{-1} .

Tale struttura dati è composta da:

- un vettore di bitvector sparsi per φ , che denotiamo con Φ , tale che $\Phi[i][j] = 1$ sse la riga i indicizza una testa di run alla colonna j, nella matrice PBWT. Si ha quindi che Φ ha dimensione $M \times N$
- un vettore di bitvector sparsi per φ^{-1} , che denotiamo con Φ^{-1} , tale che $\Phi[i][j]=1$ sse la riga i indicizza una coda di run alla colonna j, nella matrice PBWT. Si ha quindi che Φ^{-1} ha dimensione $M\times N$

- un vettore di intvector compressi, denotato Φ_{supp} , a supporto del vettore Φ , che memorizza, per ogni simbolo $\sigma = 1$ di tale vettore, il prefix array sample della coda della run precedente o l'altezza del pannello, M, qualora non si abbia alcuna run precedente
- un vettore di intvector compressi, denotato Φ_{supp}^{-1} , a supporto del vettore Φ^{-1} , che memorizza, per ogni simbolo $\sigma=1$ di tale vettore, il prefix array sample della testa della run successiva o l'altezza del pannello, M, qualora non si abbia alcuna run successiva

Si ha che la lunghezza della riga *i*-esima di Φ_{supp} è uguale al numero di simboli $\sigma=1$ presenti nella riga *i*-esima di Φ . Analogamente si ha per Φ_{supp}^{-1} . In entrambi i casi, inoltre, si hanno M righe. Queste osservazioni si ripercuotono sul costo in memoria della componente PHI, avendo che può essere stimata coi costi in memoria dei bitvector sparsi e degli intvector compressi, come fatto per le precedenti componenti. Si noti, però, che in questo caso i bitvector sparsi sono ulteriormente ottimizzati, avendo un rapporto davvero basso di simboli $\sigma=1$ sul totale di simboli N (e non M come negli altri casi, segnalando che, in pannelli reali, N>>M). Al fine della costruzione, bisogna sfruttare a_{N-1} per poter identificare quelle coppie di valori consecutivi non presenti nei vari prefix array sample, in modo che sia possibile effettuare le query per qualsiasi valore di prefix array in input.

L'algoritmo 3.13 riporta la costruzione della struttura, iterando prima i vari prefix array sample e completando i risultati con a_{N-1} . Tale algoritmo ha complessità in tempo, nel caso peggiore, pari a:

$$\mathcal{O}(NM) \tag{3.38}$$

Tale caso peggiore si ha qualora ogni colonna della matrice PBWT abbia un numero di run pari all'altezza stessa della colonna (un caso irrealistico). Indicando con ρ il numero medio di run per colonna, si ha che la complessità nel caso medio è:

$$\Theta(N\rho) \tag{3.39}$$

Dal punto di vista delle query, data una colonna k e un valore di prefix array p, per la funzione φ si effettua $\mathsf{rank}^{\varphi}(k)$ sulla riga p di Φ , avendo che:

 $\varphi_k(p) = \begin{cases} \text{null} & \text{se } \varPhi^p_{supp}[\mathsf{rank}^\varphi_p(k)] = M \\ \varPhi^p_{supp}[\mathsf{rank}^\varphi_p(k)] & \text{altrimenti} \end{cases}$

Analogamente, per la funzione φ^{-1} si effettua la $rank^{\varphi^{-1}}(k)$ sulla riga p di Φ^{-1} , avendo che:

$$\varphi_k^{-1}(p) = \begin{cases} \operatorname{null} & \text{se } \varPhi_{supp}^{-1}[\operatorname{rank}_p^{\varphi^{-1}}(k)] = M \\ \varPhi_{supp}^{-1}[\operatorname{rank}_p^{\varphi^{-1}}(k)] & \text{altrimenti} \end{cases}$$

DC CAPIRE SE COMMEN-TARE ULTE-RIORMENTE LA COSTRU-ZIONE

DC Serve altro?

Algoritmo 3.13 Algoritmo per la costruzione della componente PHI.

```
1: function Build_phi(cols, panel, prefix)
                                                                                                                        \triangleright prefix = a_{N-1}
           \Phi \leftarrow [[0..0]..[0..0]], \ \Phi^{-1} \leftarrow [[0..0]..[0..0]]
                                                                                    \triangleright vettori di bitvector sparsi per \varphi e \varphi^{-1}
 3:
           \Phi_{supp} = [], \ \Phi_{supp}^{-1} = []
                                                            \triangleright vettori di intvector compressi di supporto per \varphi e \varphi^{-1}
           for every k \in [0, |cols|) do
 4:
                                                                                          ⊳ costruzione da prefix array sample
                \begin{array}{c} \mathbf{for}\ every\ i \in [0, |samples_{beg}|)\ \mathbf{do} \\ \varPhi[sample_{beg}^k[i]][k] \leftarrow 1 \end{array}
 5:
 6:
                     if i = 0 then
 7:
                          push(\Phi_{supp}[sample_{beq}^{k}[i]], panel_{height})
 8:
 9:
                     else
                           push(\Phi_{supp}[sample_{beq}^{k}[i]], sample_{end}^{k}[i-1])
10:
                     \begin{array}{l} \varPhi^{-1}[sample_{end}^{k}[i]][k] \leftarrow 1 \\ \textbf{if} \ i = |sample_{beg}^{k}| - 1 \ \textbf{then} \end{array}
11:
12:
                           push(\Phi_{supp}^{-1}[sample_{end}^{k}[i]], panel_{height})
13:
14:
                     else
                           push(\Phi_{supp}^{-1}[sample_{end}^{k}[i]], sample_{beg}^{k}[i+1])
15:
16:
           for every k \in [0, |prefix|) do
                                                                                           ⊳ costruzione da ultimo prefix array
17:
                if \Phi[k][|\Phi[k]| - 1] = 0 then
                      \Phi[k][|\Phi[k]|-1] \leftarrow 1
18:
19:
                     if k = 0 then
20:
                           push(\Phi_{supp}[prefix[k]], panel_{height})
21:
                     else
                           push(\Phi_{supp}[prefix[k]], prefix^k[i-1])
22:
                if \Phi^{-1}[k][|\Phi[k]| - 1] = 0 then
23:
                     \Phi^{-1}[k][|\Phi[k]| - 1] \leftarrow 1
24:
                     if k = |prefix| - 1 then
25:
                           push(\Phi_{supp}^{-1}[prefix[k]],panel_{height})
26:
27:
28:
                           push(\Phi_{supp}^{-1}[prefix[k]], prefix^{k}[i+1])
29:
           costruzione della struttura rank per ogni bitvector sparso \Phi \in \Phi^{-1}
```

Esempio 27. Si supponga di avere la seguente situazione nella matrice PBWT:

Dove si noti che, a parità di colore, si ha lo stesso simbolo tra due indici consecutivi.

In colonna k, che per praticità assumiamo essere k = 0, si vorrebbe avere informazione in merito a $\varphi_k(j)$ e $\varphi_k^{-1}(m)$.

Si nota che, per definizione della struttura dati, si ha (limitandoci alle colonne della figura):

$$\Phi_j = [0, 0, 0, 1, 0, \dots]$$

$$\Phi_m^{-1} = [0, 0, 0, 1, 0, \dots]$$

In quanto, in entrambi i casi, rispettivamente per la riga j e per la riga m, in colonna k+3, si ha che j è il valore del prefix array di una testa di run mentre m di una coda di run. In colonna k+3 si conoscono anche, rispettivamente, i, valore del prefix array della coda della run precedente a quella di j, e n, valore del prefix array della testa della run successiva quella di m. Si ottengono quindi:

$$\varPhi_{supp} = [i,\ldots]$$

$$\Phi_{supp}^{-1} = [n, \ldots]$$

Si vogliono quindi calcolare $\varphi_0(j)$ e $\varphi_0^{-1}(m)$. Si ha:

$$\varPhi_{supp}^{j}[\mathsf{rank}_{j}^{\varphi}(0)] = \varPhi_{supp}^{j}[0] = i$$

$$\Phi_{supp}^{-1\ m}[{\rm rank}_m^{\varphi^{-1}}(0)] = \Phi_{supp}^{-1\ m}[0] = n$$

Si noti che uguali risultati si avrebbero per k + 1, k + 2 e k + 3.

DC SISTEMA-RE UN PO' TUTTO

3.4 Strutture dati per la RLPBWT

Assemblando le componenti descritte nella sezione precedente, si ottengono otto varianti della RLPBWT:

• due strutture dati composte unicamente dalle componenti dedicate al mapping e dall'intero RLCP. Tali strutture sono nominate:

```
1 MAP-INT + RLCP
2 MAP-BV + RLCP
```

Queste soluzioni non permettono di sapere quali righe del pannello presentino uno SMEM, terminante in una certa colonna, ma solo quante esse siano. Non avendo traccia dei valori del prefix array, non si ha modo di usare la componente PHI. Il funzionamento dell'algoritmo è basato su una re-implementazione dell'algoritmo 5 di Durbin

• quattro strutture composte per il calcolo degli SMEM tramite la computazione, in due passaggi, dell'array delle matching statistics, in modo analogo a quanto introdotto in MONI [7] per la RLBWT, tramite threshold e random access al pannello. In merito a quest'ultimo, come anticipato, si ha che può essere memorizzato come vettore di bitvector o come SLP. L'algoritmo necessita, inoltre, sia della componente atta al mapping che di quella relativa ai prefix array sample. Infine, per estendere il riconoscimento a tutte le righe che presentano un medesimo SMEM fino ad una certa colonna, si necessita della struttura che permette di calcolare le funzioni φ e φ^{-1} . Tali strutture sono nominate:

```
3 MAP-INT + THR-INT + RA-BV + PERM + PHI

4 MAP-INT + THR-INT + RA-SLP + PERM + PHI

5 MAP-BV + THR-BV + RA-BV + PERM + PHI

6 MAP-BV + THR-BV + RA-SLP + PERM + PHI
```

• due strutture composte per il calcolo degli SMEM tramite la computazione, in un singolo passaggio, dell'array delle matching statistics, in modo analogo a quanto introdotto in PHONI [8] per la RLBWT, tramite l'uso delle LCE query. Queste ultime sostituiscono l'uso delle threshold e del random access al pannello. Tali strutture sono nominate:

```
7 MAP-INT + LCE + PERM + PHI
8 MAP-BV + LCE + PERM + PHI
```

Una visualizzazione grafica di quanto descritto è rappresentata alla figura 3.2.

Figura 3.2: Schema grafico dell'ottenimento delle otto strutture dati a partire dalle varie componenti.

3.4.1 Calcolo degli SMEM con RLCP

Questa prima soluzione per il calcolo degli SMEM con un aplotipo esterno è quella che può essere effettuata tramite le strutture dati composte:

- MAP-INT + RLCP
- MAP-BV + RLCP

I due algoritmi riprendono quanto discusso per l'algoritmo 5 di Durbin. Tali algoritmi non sfruttano l'uso delle matching statistics e sono limitati dal non poter calcolare quali righe presentano un solo SMEM, calcolando solo quante siano. Il secondo limite è dato dal fatto che necessitano di avere interamente in memoria l'RLCP array, una struttura non run-length encoded.

Il metodo procede, quindi, con l'aggiornamento dei tre indici e_k , f_k e g_k , avendo che gli ultimi due possono assumere qualsiasi valore in $\{0,\ldots,M\}$, come con la PBWT. Avendo memorizzato solo informazioni relative alle run bisogna, ogni volta, ricondurre gli indici di riga alla run a cui appartengono. Inoltre Durbin sfruttava il random access al pannello in input, avendolo in memoria insieme al prefix array e al divergence array, al fine di aggiornare il valore di e_k . In entrambe le struttura dati run-length encoded, però, non si ha in memoria né il prefix array né il pannello ma solo solo la rappresentazione compatta della matrice PBWT. Quindi, si è dovuto pensare ad un metodo che ricomponga una data riga x_j del pannello X a partire da un elemento, indicizzato con $a_{k+1}[i] = j$, con $0 \le i < M$, alla colonna k+1, della matrice PBWT. Questo risultato si può ottenere muovendosi da destra a sinistra, seguendo in modo inverso la permutazione che produce il prefix array. In altri termini, tale metodo permette un mapping inverso, che segue una riga del pannello originale nella matrice PBWT, a ritroso.

Per ottenere l'indice alla colonna k-esima della matrice PBWT, da cui proviene la riga j, indicizzata all'indice i in colonna k+1 della matrice PBWT, si inizia analizzando il valore c[k]. Infatti, se i < c[k], allora sicuramente, in colonna k, i è un indice di riga corrispondente a $\sigma = 0$, ricordando come la costruzione della colonna k+1 nella matrice PBWT si abbia grazie ad ordinamento stabile. In caso contrario, i corrisponde ad un elemento $\sigma = 1$ in colonna k della matrice PBWT. Si sfruttano così o l'array p_k o le funzioni rank_{h_k} e select_{h_k} per risalire all'indice in colonna k, calcolando prima l'indice di run e l'eventuale offset, per il quale il mapping porta all'indice i' in colonna k+1, e seguire, virtualmente, la riga x_j del pannello originale. Per quanto riguarda la struttura composta MAP-INT + RLCP, si ha lo pseudocodice per il mapping inverso consultabile all'algoritmo 3.14 mentre, per quanto riguarda la struttura composta MAP-BV + RLCP, si ha l'algoritmo 3.15. Parlando in termini di complessità in tempo si ha che, usando la componente MAP-INT, si ha, con r numero di run alla colonna k, un caso peggiore proporzionale

$$\mathcal{O}(r) \tag{3.40}$$

Nel caso, invece, in cui si usa la componente MAP-BV, si ha:

$$\mathcal{O}\left(\log\frac{M}{r}\right) \tag{3.41}$$

DC Approfondire?

```
Algoritmo 3.14 Algoritmo per il mapping inverso con la MAP-INT + RLCP.
```

```
1: function REVERSE MAP(k, i)
                                                                \triangleright k indice di colonna, i indice di riga
          if k = 0 then return 0
 2:
                                                                                                     ▷ by design
 3:
          k \leftarrow k-1
          c \leftarrow rlpbwt[k].c
 4:
          u \leftarrow 0, v \leftarrow 0, offset \leftarrow 0, run \leftarrow 0, found \leftarrow \bot
 5:
          if i < c then
 6:
               u \leftarrow i
 7:
               prev_0 \leftarrow 0, next_0 \leftarrow 0
 8:
               for every j \in [0, |p_k|) do
 9:
                    (prev_0, \_) \leftarrow \mathsf{uvtrick}(k, j)
10:
                    (next_0, \_) \leftarrow \mathsf{uvtrick}(k, j+1)
11:
                    if prev_0 \le u < next_0 then
12:
13:
                         run \leftarrow j, found \leftarrow \top
                         break
14:
               if \neg found then run \leftarrow |p_k| - 1
15:
               (curr_u, \_) \leftarrow \mathsf{uvtrick}(k, run), offset \leftarrow u - curr_u
16:
               return p_k[run] + offset
17:
          else
18:
               v \leftarrow i - c
19:
               prev_1 \leftarrow 0, next_1 \leftarrow 0
20:
               for every j \in [0, |p_k|) do
21:
                    (\_, prev_1) \leftarrow \mathsf{uvtrick}(k, j)
22:
                    (\_, next_1) \leftarrow \mathsf{uvtrick}(k, j+1)
23:
                    if prev_1 \leq v < next_1 then
24:
                         run \leftarrow j, found \leftarrow \top
25:
                         break
26:
27:
               if \neg found then run \leftarrow |p_k| - 1
28:
               (curr_v, curr_u) \leftarrow \mathsf{uvtrick}(k, run), offset \leftarrow v - curr_v
               return p_k[run] + offset
29:
```

Algoritmo 3.15 Algoritmo per il mapping inverso con la MAP-BV + RLCP.

```
1: function REVERSE MAP(k, i)
                                                                    \triangleright k indice di colonna, i indice di riga
           if k = 0 then return 0
 2:
                                                                                                           ⊳ by design
           k \leftarrow k - 1
 3:
           c \leftarrow c[k]
 4:
           if i < c then
 5:
                if start_k then
 6:
                     run \leftarrow \mathsf{rank}_{u}^{k}(i) \cdot 2
 7:
 8:
                     run \leftarrow \mathrm{rank}_u^k(i) \cdot 2 + 1
 9:
                i_{run} \leftarrow 0
10:
                if run \neq 0 then i_{run} \leftarrow \mathsf{select}_h^k(run) + 1
11:
                (prev_0, \_) \leftarrow \mathsf{uvtrick}(k, i_{run})
12:
13:
                return i_{run} + (i - prev_0)
14:
           else
                if start_k then
15:
                     run \leftarrow \mathsf{rank}_v^k(i) \cdot 2 + 1
16:
                else
17:
                     run \leftarrow \mathsf{rank}_v^k(i) \cdot 2
18:
                i_{run} \leftarrow 0
19:
                if run \neq 0 then i_{run} \leftarrow \mathsf{select}_h^k(run) + 1
20:
                (\_, prev_1) \leftarrow \mathsf{uvtrick}(k, i_{run})
21:
22:
                return i_{run} + (i - (c + prev_1))
```

Si ha, di conseguenza, un riadattamento dell'algoritmo di Durbin all'uso delle run, ottenendo, ad ogni step, i medesimi valori per e_k , f_k e g_k . Le uniche differenze sono:

- il calcolo del mapping necessità dell'estrazione dei valori u e v, tenendo conto esplicito degli offset nel caso della MAP-INT + RLCP
- non si ha random access al pannello quindi bisogna procedere, ogni volta, con il'inverso del mapping e il calcolo del simbolo a partire dall'indice della run
- non si ha il prefix array in memoria, quindi non è possibile sapere quali siano le righe per le quali si ha uno SMEM fino alla colonna k ma è possibile conoscere solo quante siano, ovvero $g_k f_k$

Anche in questo caso, lo pseudocodice è consultabile all'algoritmo 3.16. Calcolare la complessità di tale algoritmo non è semplice, come già visto nel caso dell'algoritmo 5 di Durbin. In modo analogo a quanto visto per quest'ultimo, si può, comunque, intuire come i vari cicli interni siano limitati superiormente dalla larghezza del pannello e dai tempi di mapping. Questo si può stimare in quanto le occorrenze dei cicli interni sono proporzionali al numero di SMEM e al numero di step all'indietro necessari a computare il nuovo intervallo. Tale numero di step scala sul numero di caratteri in overlap tra due SMEM consecutivi. Fatta questa premessa, si può stimare che il calcolo degli SMEM con la struttura MAP-INT + RLCP è proporzionale, con ρ numero medio di run per una colonna, a:

$$\mathcal{O}(N\log\rho)\tag{3.42}$$

Nel caso, invece, della struttura MAP-BV + RLCP si ha:

$$\mathcal{O}\left(N\log\frac{M}{\rho}\right) \tag{3.43}$$

DC APPROFONDIRE SPIEGAZIONE ALGORITMI

3.4.2 Calcolo degli SMEM con matching statistics

L'obbiettivo maggiore di questa tesi era quello di applicare i metodi e gli algoritmi già studiati per la RLBWT, riferendosi al calcolo dei MEM a partire dall'array delle matching statistics, alla RLPBWT.

Nelle sei strutture dati dedicate al calcolo degli SMEM tramite matching statistics, si riconoscono le due modalità già descritte con MONI [7] e PHONI [8]:

Algoritmo 3.16 Calcolo degli SMEM con aplotipo esterno per MAP-INT/BV + RLCP, con eventuali usi diversificati per MAP-INT e MAP-BV segnalati con "oppure".

```
1: function EXTERNAL MATCHES(z)
                                                                                                                       \triangleright si assume |z| = N
           f \leftarrow 0, \ f_{run} \leftarrow 0, \ f' \leftarrow 0
 3:
           g \leftarrow 0, \ g_{run} \leftarrow 0, \ g' \leftarrow 0
           e \leftarrow 0, \ nh \leftarrow 0
 4:
 5:
           for every k \in [0, |z|) do
 6:
                 f_{run} \leftarrow \mathsf{index\_to\_run}(f, k) \ \mathbf{oppure} \ f_{run} \leftarrow \mathsf{rank}_h^k(f)
 7:
                g_{run} \leftarrow \text{index\_to\_run}(g, k) \text{ oppure } f_{run} \leftarrow \text{rank}_h^k(g)
                 f' \leftarrow \mathsf{w}(k, \ f, \ z[k]), \ g' \leftarrow \mathsf{w}(k, \ g, \ z[k]), \ nh \leftarrow g - f
 8:
 9:
                if f' < g' then
10:
                      f \leftarrow f', \ g \leftarrow g'
11:
                 else
12:
                      if k \neq 0 then
13:
                            memorizzazione\ degli\ SMEM\ tra\ le\ colonne\ [e,\ k-1]\ con\ nh\ aplotipi
14:
                      if f' = |l_{k+1}| then e \leftarrow k+1 else e \leftarrow k-l_{k+1}[f']
                      if (z[e] = 0 \land f' > 0) \lor f' = M then
15:
                            f' \leftarrow g' - 1
16:
17:
                            if e \ge 1 then
                                 f_{rev} \leftarrow f', \ k' \leftarrow k+1
18:
                                 while k' \neq e - 1 do
19:
                                       f_{rev} \leftarrow \text{reverse\_map}(k', f_{rev}), k' \leftarrow k' - 1
20:
21:
                                 run \leftarrow \text{index\_to\_run}(f_{rev}, k') \text{ oppure } run \leftarrow \text{rank}_h^{k'}(f_{rev})
22:
                                 symb \leftarrow \mathsf{get\_symbol}(start_{k'}, run)
23:
                                 while e > 0 \land z[e-1] = symb \ \mathbf{do}
24:
                                       e \leftarrow e - 1, \ f_{rev} \leftarrow \text{reverse\_map}(e, \ f_{rev})
                                      run \leftarrow \mathsf{index\_to\_run}(f_{rev}, e-1) \ \mathbf{oppure} \ run \leftarrow \mathsf{rank}_h^{e-1}(f_{rev})
25:
26:
                                       symb \leftarrow \mathsf{get\_symbol}(start_{e-1}, run)
27:
                            while f' > 0 \land (k+1) - l_{k+1}[f] \le e \text{ do } f' \leftarrow f' - 1
28:
                            f \leftarrow f', g \leftarrow g'
29:
                      else
                            g' \leftarrow f' - 1
30:
                            if e \ge 1 then
31:
                                 f_{rev} \leftarrow f', \ k' \leftarrow k+1
32:
33:
                                 while k' \neq e - 1 do
34:
                                       f_{rev} \leftarrow \text{reverse\_map}(k', f_{rev}), k' \leftarrow k' - 1
                                 run \leftarrow \mathsf{index\_to\_run}(f_{rev}, k') \ \mathbf{oppure} \ run \leftarrow \mathsf{rank}_h^{k'}(f_{rev})
35:
                                 symb \leftarrow \mathsf{get\_symbol}(start_{k'}, run)
36:
37:
                                 while e > 0 \land z[e-1] = symb \ \mathbf{do}
                                       e \leftarrow e - 1, \ f_{rev} \leftarrow \text{reverse\_map}(e, \ f_{rev})
38:
                                      run \leftarrow \text{index\_to\_run}(f_{rev}, e - 1) \text{ oppure } run \leftarrow \text{rank}_h^{e-1}(f_{rev})
39:
40:
                                      symb \leftarrow \mathsf{get\_symbol}(start_{e-1}, run)
                            while e < M \land (k+1) - l_{k+1}[g'] \le e \text{ do } g' \leftarrow g' + 1
41:
42:
                            f \leftarrow f', g \leftarrow g'
43:
           if f < g then
44:
                 nh \leftarrow g - f
                 memorizzazione \ degli \ SMEM \ tra \ le \ colonne \ [e, \ |z|-1] \ con \ nh aplotipi
45:
```

- 1. calcolare l'array MS, in due passaggi, sfruttando le threshold per computare i valori $\mathsf{MS}[i]$.row e il random access al pannello per calcolare i valori $\mathsf{MS}[i]$.len
- 2. calcolare l'array MS , in un passaggio, sfruttando le LCE query sia per scegliere le righe da memorizzare in $\mathsf{MS}[i]$.row che per calcolare, in contemporanea, i valori $\mathsf{MS}[i]$.len

Calcolo dell'array delle matching statistics tramite threshold

Questa prima soluzione, necessitando sia della componente THR-INT/THR-BV che della componente RA-BV/RA-SLP, è relativa alle seguenti strutture dati composte:

- MAP-INT + THR-INT + RA-BV + PERM + PHI
- MAP-INT + THR-INT + RA-SLP + PERM + PHI
- MAP-BV + THR-BV + RA-BV + PERM + PHI
- MAP-BV + THR-BV + RA-SLP + PERM + PHI

Tra queste soluzioni, le uniche differenze si riscontrano nei tempi d'esecuzione e nella memoria richiesta.

Si presenta ora il funzionamento dell'algoritmo. Si supponga di aver computato l'array delle matching statistics fino alla colonna k-1, avendo che si sta processando la colonna corrente k. Sia i la riga della matrice PBWT che ha un match con il più lungo suffisso di z[0, k-1] che è suffisso di almeno uno tra $x_0[0, k-1]$, ..., $x_{M-1}[0, k-1]$. Sia p la corrispondente riga, sul pannello in input X, della riga i sulla matrice PBWT. Tale valore è ottenibile tramite il prefix array, avendo $p = a_k[i]$. Si ha, denotando con lcs(A, B) il più lungo suffisso comune tra le stringhe A e B, in termini formali, che:

$$|\mathsf{lcs}(z[0,k-1],x_p[0,k-1])| \geq |\mathsf{lcs}(z[0,k-1],x_{a_k[j]}[0,k-1])|, \ \forall \, j \in [0,M-1] \ \ (3.44)$$

Fatta questa premessa, qualora si avesse $y_i^k[k] = z[k]$, ovvero un match tra il k-esimo carattere della query e il carattere in riga i della matrice PBWT, si avrebbe semplicemente che $\mathsf{MS}[k]$.row = $a_k[i] = p$ e $\mathsf{MS}[k]$.len = $\mathsf{MS}[k-1]$.len + 1, in quanto si starebbe seguendo la medesima riga dello step precedente del calcolo delle matching statistics.

In caso contrario, si avrebbe $y_i^k[k] \neq z[k]$, ovvero un mismatch tra il k-esimo carattere della query è il carattere in riga i della matrice PBWT. Bisogna, quindi, scegliere un nuovo indice i' nella matrice PBWT, corrispondente all'indice p' nella pannello in input, che, a sua volta, corrisponde alla riga con il più lungo suffisso

DC Cercare di capire se e come legare a R-index possibile con la query, che sia estendibile anche in colonna k. Sia $y_{[s,e]}^k[k]$ l'intervallo corrispondente alla run che contiene l'indice i, nella matrice PBWT. Il più lungo suffisso di z[0,k], che è suffisso di almeno uno tra $x_0[0,k]$, ..., $x_{M-1}[0,k]$, corrisponde o alla fine della run precedente di simboli $\sigma = z[k]$ o all'inizio della run successiva di simboli $\sigma = z[k]$, nella colonna k della matrice PBWT. Formalmente, tale suffisso corrisponde ad uno tra $X_{a_k[s-1]}[0,k]$, se s>0, o $X_{a_k[e+1]}[0,k]$, se e< M-1. L'uso delle threshold permette di capire quale tra le righe $a_k[s-1]$ e $a_k[e+1]$ del pannello in input, se esistenti, abbia il più lungo suffisso comune con z[0,k].

Sia t l'indice della threshold nella run corrente. Si hanno due casi possibili:

1. i < t, allora, per definizione di threshold:

$$\left| |\mathsf{lcs}(z[0,k], x_{a_k[s-1]}[0,k]) \right| \ge \left| |\mathsf{lcs}(z[0,k], x_{a_k[e+1]}[0,k]) \right| \tag{3.45}$$

Quindi si ha che $\mathsf{MS}[k].\mathsf{row} = a_k[s-1] = p$ e il mapping potrà proseguire dall'indice s-1

2. $i \ge t$ allora, per definizione di threshold:

$$\left| |\mathsf{lcs}(z[0,k], x_{a_k[s-1]}[0,k]) \right| \le \left| \mathsf{lcs}(z[0,k], x_{a_k[e+1]}[0,k]) \right| \tag{3.46}$$

Quindi si ha che $\mathsf{MS}[k].\mathsf{row} = a_k[e+1]$ e il mapping potrà proseguire dall'indice e+1

Si ricorda il caso in cui la threshold sia posta a fine run, nel caso della componente THR-BV. In tale situazione, bisognerebbe scegliere la testa della run successiva, qualora l'indice i si trovi esattamente a fine run. Invece, qualora la threshold sia a fine run a causa del fatto che il minimo RLCP si trovi nella testa della run successiva, bisognerebbe scegliere la coda della run precedente. L'unico modo per disambiguare è effettuare random access al pannello o calcolare una LCE query, per vedere quale sia la soluzione migliore, ovvero quale tra la coda della run precedente e la testa della run successiva sia relativa alla riga del pannello originale con un suffisso comune alla query più lungo.

Una volta computato tutti i valori $\mathsf{MS}[i].\mathsf{row}$, per calcolare i valori $\mathsf{MS}[i].\mathsf{len}$, si scorre da sinistra a destra calcolando la lunghezza del match fino alla colonna i, facendo random access al pannello e confrontando la query z con la riga $\mathsf{MS}[i].\mathsf{row}$. Si assuma di aver calcolato $\mathsf{MS}[i-1].\mathsf{len}$ e di voler calcolare $\mathsf{MS}[i].\mathsf{len}$. Si hanno tre casi possibili:

1. $\mathsf{MS}[i].\mathsf{row} = M$. In tal caso, avendo segnalata l'inesistenza di un match terminante in colonna i, si ha che $\mathsf{MS}[i].\mathsf{len} = 0$

- 2. $\mathsf{MS}[i].\mathsf{row} = \mathsf{MS}[i-1].\mathsf{row}$, avendo $i \neq 0$ e $\mathsf{MS}[i-1].\mathsf{len} \neq 0$. In tal caso si sta seguendo la medesima riga seguita in colonna i-1 e quindi, banalmente, $\mathsf{MS}[i].\mathsf{len} = \mathsf{MS}[i-1].\mathsf{len} + 1$, dovendo conteggiare il carattere della colonna corrente
- 3. in qualsiasi altro caso bisogna confrontare, a partire dalla colonna i, la query z con la riga $\mathsf{MS}[i]$.row del pannello, da destra a sinistra, fino a che non si trova un mismatch, calcolando la lunghezza l del suffisso comune tra esse e memorizzando tale valore come $\mathsf{MS}[i]$.len = l

Esempio 28. Si vede, quindi, un esempio di funzionamento delle threshold per la scelta della riga da memorizzare in MS[i].row, dopo un mismatch. Si prenda pannello visto all'esempio 15 e si effettui la permutazione secondo a_2 :

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
18	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
19	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1

Si prenda la seconda run, di simboli $\sigma = 1$, indicizzata tra 17 e 18.

Si supponga che, tramite il mapping, si sia arrivati alla riga 17 ma che si abbia z[2] = 0. La scelta è, quindi, tra la coda della run precedente, avendo che $a_2[16] = 16$ o la testa della run successiva, avendo che $a_2[19] = 17$. Si può notare come il minimo RLCP si trovi, per la run, all'indice 18 (a causa del fatto che il minimo RLCP è all'indice 19, quello della testa della run successiva). L'indice in cui ci si trova, il 17, è quindi sopra la threshold. Questo significa che il suffisso comune più lungo con la query si ha con la riga 16 del pannello, per definizione di threshold, avendo che questa sarà memorizzata nell'array MS, avendo MS[2].row = 16.

Successivamente, o sfruttando MS[1].len o tramite random access al testo, confrontando la riga x_{16} e la query z, fino alla colonna k=2, si potrà calcolare che MS[2].len =3.

DC SISTEMA-RE ESEMPIO

In fase di costruzione delle lunghezze, è possibile anche riportare gli $\mathsf{SMEM},$ terminanti in colonna i, qualora:

- $MS[i].len \ge MS[i+1].len \land MS[i].len \ne 0$
- si è arrivati a fine query, avendo $i = N 1 \land \mathsf{MS}[i].\mathsf{len} \neq 0$

Queste condizioni segnalano che non è possibile estendere a destra il più lungo suffisso comune, terminante in colonna i, tra la query e una qualsiasi riga del pannello di input. Questo si può verificare anche nell'esempio 20.

L'algoritmo per il il calcolo degli SMEM tramite threshold è visualizzabile all'algoritmo 3.17. All'algoritmo 3.18 si riporta il metodo di **update** delle informazioni, nel passaggio dalla colonna k alla colonna k+1, di complessità pari a quelle per effettuare il mapping. Si noti che è possibile usare la funzione w, spiegata in precedenza, in quanto, avendo per costruzione $y_{curr_index}^k[k] = z[k]$, nel momento dell'applicazione della funzione, si ha che la funzione segue esattamente una certa riga da una colonna alla successiva, nella matrice PBWT.

Anche in questo caso, la stima delle complessità non è di facile ottenimento. Dividendo nelle varie parti l'algoritmo, si ha che:

• il calcolo dei valori MS[i].row varia a seconda dell'uso della componente MAP-INT o MAP-BV. Il costo della funzione down, che risolve l'eventuale ambiguità della threshold a fine run, è variabile a seconda della componente usata per il random access (e dell'eventuale componente LCE) e risulta trascurabile vista la bassa frequenza d'uso, in termini probabilistici. Si ha, quindi, che, con ρ numero medio di run per colonna, usando MAP-INT, si ha tempo proporzionale a:

$$\mathcal{O}(N\log\rho)\tag{3.47}$$

Mentre, usando la componente MAP-BV, è proporzionale a:

$$\mathcal{O}\left(N\log\frac{M}{\rho}\right) \tag{3.48}$$

il calcolo dei valori MS[i].len (e degli SMEM direttamente calcolabili da essi)
 è il più complesso da stimare, in termini di complessità asintotica. Questa difficoltà è dovuta dal fatto che gli accessi al pannello vengono fatti solo quando MS.row[i] ≠ MS.row[i − 1]. Ipotizzando un caso peggiore dove si

necessità di accedere al pannello in ogni colonna, si ha, nel caso della componente RA-BV, che il calcolo complessivo delle lunghezza è proporzionale a:

$$\mathcal{O}(N^2) \tag{3.49}$$

Mentre, con l'uso della componente RA-SLP, la complessità in tempo sarebbe proporzionale a:

$$\mathcal{O}\left(N^2\log(NM)\right) \tag{3.50}$$

In aggiunta bisogna considerare i costi della componente PHI per il computo di tutti gli SMEM.

Tali stime teoriche sono, in ogni caso, fortemente approssimative. Facendo una stima complessiva si può ipotizzare come la struttura MAP-BV + THR-BV + RA-SLP + PERM + PHI, a causa della maggior lentezza in fase di mapping e di accesso al pannello per il calcolo delle lunghezze, sia quella con prestazioni peggiori mentre, per il ragionamento inverso, la struttura MAP-INT + THR-INT + RA-BV + PERM + PHI sia quella con le migliori performance, dal punto di vista del tempo macchina. In termini di memoria, invece, la struttura MAP-INT + THR-INT + RA-SLP + PERM + PHI risulta essere la più vantaggiosa mentre la struttura MAP-BV + THR-BV + RA-BV + PERM + PHI la peggiore, per le stime sulle singole componenti, viste nelle sezioni precedenti.

DC Tutti questi tempi sono abbastanza a caso per ora.

DC Magari mettere complessità finali

Calcolo dell'array delle matching statistics tramite LCE query

Come anticipato, grazie all'uso delle LCE query, è possibile calcolare l'array delle matching statistics in un solo scorrimento, da sinistra a destra, sull'aplotipo query. Infatti, è possibile usare le LCE query per calcolare non solo quale nuova sequenza scegliere in caso di mismatch, in una certa colonna, con l'aplotipo query, come si faceva con l'uso delle threshold, ma anche di computare la lunghezza del suffisso comune tra essa e l'aplotipo query. In tal modo, si calcolano nello stesso momento sia i valori di $\mathsf{MS}[i]$.row che di $\mathsf{MS}[i]$.len (e di conseguenza anche gli SMEM). Tale soluzione è quindi relativa alle seguenti strutture dati composte:

- MAP-INT + LCE + PERM + PHI
- MAP-BV + LCE + PERM + PHI

Con la notazione lce(k, x, y), si indica il calcolo della LCE query, terminante in colonna k-1 (quindi escludendo la colonna k-esima), tra le righe di indice x e indice y.

Si illustra ora come computare l'array delle matching statistics tramite le LCE query. Anche in questo caso, per convenzione, si inizia la computazione dall'ultima riga della prima colonna. Si assuma di avere calcolato l'array MS , per una query z

Algoritmo 3.17 Calcolo degli SMEM con aplotipo esterno con componenti MAP-INT/BV, THR-INT/BV (i cui usi diversificati di entrambe le componenti sono segnalati con "oppure"), RA-BV/SLP, PERM e PHI.

```
1: function EXTERNAL MATCHES(z)
                                                                                                                \trianglerightvettore MS di lunghezza |z|
         ms_{row} \leftarrow [0..0], \ ms_{len} \leftarrow [0..0]
<del>-</del>3:
         curr_{row} \leftarrow rlpbwt[0].samples_{end}[|rlpbwt[0].samples_{end}|-1]
 4:
5:
         curr_{run} \leftarrow index\_to\_run(curr_{index}, 0) oppure curr_{run} \leftarrow rank_h^0(curr_{index})
 6:
         symb \leftarrow \mathsf{get\_symbol}(start_0, curr_{run})
                                                                                                    \triangleright Costruzione righe dell'array MS
7:
         for every k \in [0, |z|) do
8:
              if z[i] = symb then
9:
                  ms_{row}[k] \leftarrow curr_{row}
10:
                  if k \neq |z| - 1 then (curr_{index}, \ curr_{run}, \ symb) \leftarrow \mathsf{update}(k, curr_{index}, z)
11:
12:
                   curr_{thr} \leftarrow t_k[curr_{run}] oppure curr_{thr} \leftarrow \text{rank}_t^k(curr_{index})
                   force_{down} \leftarrow \top \ sse \ l'indice \ \grave{e} \ sovrapposto \ ad \ una \ threshold \ non \ in \ coda \ di \ run \\ force_{down} \leftarrow \top \ sse \ l'indice \ \grave{e} \ sovrapposto \ ad \ una \ threshold \ in \ coda \ di \ run \ e \ \mathsf{DOWN}(\ldots) = \top
13:
14:
                   if |samples_{beg}^k| = 1 then
15:
16:
                       ms_{row}[k] \leftarrow M
17:
                       if k \neq |z| - 1 then
18:
                            curr_{row} \leftarrow rlpbwt[k+1].samples_{end}[|rlpbwt[k+1].samples_{end}|-1]
19:
                            curr_{index} \leftarrow M-1
                           curr_{run} \leftarrow \mathsf{index\_to\_run}(curr_{index}, k+1) \ \mathbf{oppure} \ curr_{run} \leftarrow \mathsf{rank}_{h}^{k+1}(curr_{index})
20:
21:
                            symb \leftarrow \mathsf{get\_symbol}(start_{k+1}, curr_{run})
22:
                   else if (curr_{run} \neq 0 \land curr_{run} = curr_{thr} \land \neg down) \lor curr_{run} = |samples_{beg}^k| - 1 then
23:
                       curr_{index} \leftarrow p_k[curr_{run}] - 1 oppure curr_{index} \leftarrow select_h^k(curr_{run})
24:
                       curr_{row} \leftarrow samples_{end}^{k}[curr_{run} - 1]
25:
                       ms_{row}[k] \leftarrow curr_{row}
26:
                       \textbf{if } k \neq |z| - 1 \textbf{ then } (curr_{index}, \ curr_{run}, \ symb) \leftarrow UPDATE(k, curr_{index}, z) \\
27:
                   else
28:
                       curr_{index} \leftarrow p_k[curr_{run} + 1] oppure curr_{index} \leftarrow \mathsf{select}_h^k(curr_{run} + 1) + 1
29:
                       curr_{row} \leftarrow samples_{beg}^{k}[curr_{run} + 1]
30:
                       ms_{row}[k] \leftarrow curr_{row}
31:
                       if k \neq |z| - 1 then (curr_{index}, curr_{run}, symb) \leftarrow \mathsf{update}(k, curr_{index}, z)
32:
          for every k \in [0, |z|) do
                                                                                            \triangleright Costruzione lunghezze dell'array MS
33:
              if ms_{row}[k] = M then
34:
                   ms_{len}[k] \leftarrow 0
35:
               else if k \neq 0 \land ms_{row}[i] = ms_{row}[i-1] \land ms_{len}[i-1] \neq 0 then
36:
                   ms_{len}[i] \leftarrow ms_{len}[i-1] + 1
37:
                                                                \triangleright ra effettua il random access con la componente RA-BV o RA-SLP
38:
                   tmp_{index} \leftarrow i, \ tmp_{len} \leftarrow 0
39:
                   while tmp_{index} \ge 0 \land z[tmp_{index}] = ra(ms_{row}[k], tmp_{index}) do
40:
                       tmp_{index} \leftarrow tmp_{index} - 1, \ tmp_{len} \leftarrow tmp_{len} + 1
41:
                   ms_{len}[k] \leftarrow tmp_{len}
42:
          for every k \in [0, |z|) do

ightharpoonup Calcolo dei match da MS
43:
              if (ms_{len}[k] > 1 \land ms_{len}[k] \ge ms_{len}[k+1]) \lor (k=|z|-1 \land ms_{len}[k] \ne 0 then
44:
                   report\ dello\ SMEM\ terminante\ in\ colonna\ k
                   SMEM di lunghezza ms_{len}[k] con la riga ms_{row}[k] e quelle estese da essa tramite PHI
45:
46: function DOWN(pos, prev, next)
47:
          si usano le LCE queries o il random access per calcolare il suffisso comune più lungo tra quelli delle righe
48:
          pos/prev e pos/next fino alla colonna precedente a quella corrente
49:
          se il secondo è maggiore o uguale al primo ritorna \top, altrimenti \bot
```

Algoritmo 3.18 Algoritmo per l'update con componenti MAP-INT e MAP-BV.

```
1: function UPDATE(k, curr_{index}, z)

2: curr_{index} \leftarrow w(k, curr_{index}, z[k])

3: curr_{run} \leftarrow index\_to\_run(curr_{index}, k+1) oppure curr_{run} \leftarrow rank_h^{k+1}(curr_{index})

4: symb \leftarrow get\_symbol(start_{k+1}, curr_{run})

5: return(curr_{index}, curr_{run}, symb)
```

rispetto al pannello X, fino alla colonna k-1. Sia i l'indice di riga sulla matrice PBWT al quale si è arrivati mediante il mapping, avendo che tale riga corrisponde a quella, in X, che ha il più lungo suffisso comune con z[0, k-1]. Si assuma che l'indice i appartenga alla run r, di simboli σ , con testa di indice s e coda di indice s. Si hanno diversi casi:

- 1. $z[k] = y_i^k[k] = \sigma$, quindi la riga i può essere usata per estendere il match, avendo che $\mathsf{MS}[k]$.row = $\mathsf{MS}[k-1]$.row e $\mathsf{MS}[k]$.len = $\mathsf{MS}[k-1]$.len + 1, e per proseguire col mapping in colonna k+1
- 2. $z[k] \neq y_i^k[k] = \sigma$ e si ha una sola run in colonna k, avendo che non si possono avere match in quella colonna. Per convenzione, si ha che $\mathsf{MS}[k]$.row = M e $\mathsf{MS}[k]$.len = 0. Infine, si ricomincia, in colonna k+1, dall'ultima posizione. Tale indice corrisponde, nel pannello originale, alla riga specificata dal valore del prefix array sample della coda dell'ultima run
- 3. $z[k] \neq y_i^k[k] = \sigma$ ma si hanno anche altre run, dovendo quindi scegliere la nuova riga da seguire. Si ha che il più lungo suffisso di z[0, k], che è anche suffisso di $x_0[0, k], \ldots, x_{M-1}[0, k]$, è uno tra:
 - $x_{a_k[s-1]}$, se $s \neq 0$, ovvero la riga del pannello corrispondente alla coda della run precedente alla run corrente, nella matrice PBWT, se esistente
 - $x_{a_k[e+1]}$, se $e \neq M-1$, ovvero la riga del pannello corrispondente alla testa della run successiva alla run corrente, nella matrice PBWT, se esistente

Anche in questo caso, questo fatto è dovuto all'ordinamento lessicografico inverso, che si ha per la costruzione della PBWT. Avendo quindi i prefix array sample, che ci dicono a quale riga nel pannello corrispondano tali valori, e conoscendo $\mathsf{MS}[k-1].\mathsf{row}$, è possibile calcolare $\mathsf{lce}(k, \mathsf{MS}[k-1].\mathsf{row}, a_k[s-1])$ e $\mathsf{lce}(k, \mathsf{MS}[k-1].\mathsf{row}, a_k[e+1])$. Si sceglie il suffisso comune più lungo tra le due, ovvero il più lungo risultato tra le due funzioni lce , e si sceglie la riga corrispondente per proseguire. Si ha quindi o $\mathsf{MS}[k].\mathsf{row} = a_k[s-1]$ o

 $\mathsf{MS}[k].\mathsf{row} = a_k[e+1]$. In merito al campo len, assumendo che la lunghezza maggiore delle due LCE query sia l, si ha che:

$$MS[k].len = min(MS[k-1].len, l) + 1$$
 (3.51)

Questa assegnazione si ha in quanto la LCE query potrebbe restituire un valore più lungo dell'effettivo match con la query z. Si sceglie, di conseguenza, il minimo tra le due lunghezze, per considerare l'overlap, ottenendo l'effettiva lunghezza del suffisso comune tra z e la nuova riga scelta, fino alla colonna k-1, incrementandolo di uno per conteggiare il match ottenuto in colonna k

DC Sistemare esempio.

Esempio 29. Si riprende l'esempio 28, visto per il calcolo di MS[i].row, dopo un mismatch, tramite threshold.

Senza usare le threshold, nella medesima situazione si dovrebbero calcolare, avendo che MS[1].row = 19 e MS[1].len = 2:

$$|ce(2, x_{19}, x_{16})| = "01" \implies |ce(2, x_{19}, x_{16})| = 2$$

$$|ce(2, x_{19}, x_{17}) = "1" \implies |ce(2, x_{19}, x_{17})| = 1$$

Come verificabile dal pannello presente all'esempio 15. Si ha quindi che MS[2].row = 16. Inoltre, sempre per quanto detto sopra:

$$MS[2].len = min(MS[1].len, 2) + 1 = 2 + 1 = 3$$

Con questa soluzione, il cui pseudocodice è consultabile all'algoritmo 3.19:

- non si necessita di tenere in memoria le informazioni per le threshold
- si permette il calcolo dell'array MS in una singola scansione della query
- non si necessita di memorizzare l'intero array MS ma solamente quattro variabili relative alla coppia (row, len) corrente e a quella precedente. Infatti, per computare i valori in colonna k+1 dell'array MS e gli SMEM terminanti in colonna k+1, si necessita solo delle informazioni in colonna k. Per facilità di lettura si è lasciato, nello pseudocodice, l'uso dell'intero array MS

Dal punto di vista della complessità temporale, per il calcolo dell'array MS tramite LCE query, si hanno solo due casistiche possibili, al variare della componente di mapping. Nel caso della componente MAP-INT, avendo ρ numero medio di run per

colonna, si ha un tempo proporzionale, dovendo iterare la query, fare il mapping e usare la componente LCE, a:

$$\mathcal{O}(N(\log \rho + \log(NM))) \tag{3.52}$$

Mentre, nel caso dell'uso della componente MAP-BV, si ha tempo proporzionale a:

$$\mathcal{O}\left(N\left(\log\frac{M}{\rho} + \log(NM)\right)\right) \tag{3.53}$$

Infine, per il calcolo di tutte le righe del pannello per cui si ha uno SMEM, bisogna considerare quando analizzato per la componente PHI.

Si deduce come la struttura composta MAP-INT + LCE + PERM + PHI sia, a livello di tempo macchina, la soluzione più vantaggiosa usando la componente LCE. Tale soluzione risulta essere, sempre nel contesto delle strutture basate sulla componente LCE, anche la miglior soluzione in termini di memoria.

Si vedrà, sperimentalmente, nel capitolo 4, il confronto con le altre strutture dati. Una prima intuizione in merito è quella che, usando le LCE query, si avranno sicuramente, a parità di componenti per il mapping, tempi peggiori rispetto all'uso della componente RA-BV, come mostrato dalle complessità temporali. Un confronto con le strutture basate su RA-SLP risulta. invece, più complesso da analizzare, limitandosi alle stime asintotiche, avendo quindi forte necessità di un'analisi più sperimentale.

DC Sistemare pseudocodice per non avere salvato intero MS

DC Uniformare gli pseudocodici Algoritmo 3.19 Calcolo degli SMEM con aplotipo esterno con componenti MAP-INT/BV (i cui usi diversificati sono segnalati con "oppure"), LCE, PERM e PHI.

```
1: function MATCHES_MS_LCE(z)
2:
3:
          ms_{row} \leftarrow [0..0], \ ms_{len} \leftarrow [0..0]
                                                                                                                       \trianglerightarrayMSdi lunghezza |z|
         curr_{row} \leftarrow rlpbwt[0].samples_{end}[|rlpbwt[0].samples_{end}|-1], \ curr_{index} \leftarrow curr_{row}
4:
5:
         curr_{run} \leftarrow index\_to\_run(curr_{index}, 0) oppure curr_{run} \leftarrow rank_h^0(curr_{index})
          symb \leftarrow \mathsf{get\_symbol}(start_0, curr_{run})
                                                                                                                 \triangleright Costruzione dell'array MS
6:
7:
8:
         for every k \in [0, |z|) do
              if z[i] = symb then
                   ms_{row}[k] \leftarrow curr_{row}
                  if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow ms_{len}[k-1] + 1
9:
10:
                  \textbf{if } k \neq |z|-1 \textbf{ then } (curr_{index}, \ curr_{run}, \ symb) \leftarrow \texttt{update}(k, curr_{index}, z)
11:
12:
                   if |samples_{beg}^k| = 1 then
                        \begin{aligned} ms_{row}[k] &\leftarrow M \\ ms_{len}[k] &\leftarrow 0 \end{aligned}
13:
14:
15:
                        if k \neq |z| - 1 then
16:
                             curr_{row} \leftarrow rlpbwt[k+1].samples_{end}[|rlpbwt[k+1].samples_{end}|-1]
17:
                             curr_{index} \leftarrow M-1
                             curr_{run} \leftarrow \mathsf{index\_to\_run}(curr_{index}, k+1) \ \mathbf{oppure} \ curr_{run} \leftarrow rank_h^{k+1}(curr_{index})
18:
19:
                             symb \leftarrow \mathsf{get\_symbol}(start_{k+1}, curr_{run})
20:
                    else
21:
                        if curr_{run} = |samples_{beg}^k| - 1 then
22:
                             curr_{index} \leftarrow p_k[curr_{run} - 1] oppure curr_{index} \leftarrow select_h^k(curr_{run})
23:
                             prev_{row} \leftarrow samples_{end}^{k}[curr_{run} - 1]
24:
                             lce \leftarrow \mathsf{lce}(k, curr_{row}, prev_{row})
25:
                             ms_{row}[k] \leftarrow prev_{row}, \ curr_{row} \leftarrow prev_{row}
26:
                             if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow min(ms_{len}[k-1], |lce|) + 1
\frac{1}{27}:
                             \textbf{if } k \neq |z| - 1 \textbf{ then } (curr_{index}, \ curr_{run}, \ symb) \leftarrow \texttt{update}(k, curr_{index}, z)
28:
                        else if curr_{run} = 0 then
                             curr_{index} \leftarrow p_k[curr_{run} + 1] \ \mathbf{oppure} \ curr_{index} \leftarrow select^k_h(curr_{run} + 1) + 1
29:
30:
                             next_{row} \leftarrow samples_{beg}^{k}[curr_{run} + 1]
31:
                             lce \leftarrow \mathsf{lce}(k, curr_{row}, next_{row})
32:
                             ms_{row}[k] \leftarrow next_{row}, \ curr_{row} \leftarrow next_{row}
                             if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow min(ms_{len}[k-1], |lce|) + 1
33:
34:
35:
                             \textbf{if } k \neq |z|-1 \textbf{ then } (curr_{index}, \ curr_{run}, \ symb) \leftarrow \texttt{update}(k, curr_{index}, z)
36:
                             prev_{row} \leftarrow samples_{end}^{k}[curr_{run} - 1], \ next_{row} \leftarrow samples_{beg}^{k}[curr_{run} + 1]
37:
                             lce \leftarrow \max(|\mathsf{lce}(k, curr_{row}, prev_{row})|, |\mathsf{lce}(k, curr_{row}, next_{row})|)
38:
                             curr_{row} \leftarrow lce_{row}
                                                                         \triangleright lce_{row}segnala l'indice della riga con LCE~querypiù lunga
39:
                             ms_{row}[k] \leftarrow curr_{row}
40:
                             if k = 0 then ms_{len}[k] \leftarrow 1 else ms_{len}[k] \leftarrow min(ms_{len}[k-1], |lce|) + 1
41:
                             if k \neq |z| - 1 then (curr_{index}, curr_{run}, symb) \leftarrow \mathsf{update}(k, curr_{index}, z)
42:
                                                                                                                   \triangleright Calcolo dei match da MS
43:
               if (ms_{len}[k] > 1 \land ms_{len}[k] \ge ms_{len}[k+1]) \lor (k=|z|-1 \land ms_{len}[k] \ne 0 then
44:
                    report degli SMEM di lunghezza ms_{len}[k], terminanti in colonna k
45:
                    con la riga ms_{row}[k] e quelle estese da essa tramite la componente PHI
```

Capitolo 4

Risultati sperimentali

Si riportano alcuni risultati sperimentali relativi alle diverse implementazioni della RLPBWT. In primis, verranno discusse le modalità di sperimentazione per poi trattare i risultati ottenuti su alcuni pannelli della phase 3 del 1000 Genome Project (1KGP) [38], progetto, nato nel 2008, il quale ha visto lo sforzo della comunità scientifica internazionale per la catalogazione delle varianti geniche umane. Il 1KGP risulta essere uno dei più importanti progetti nell'ambito bioinformatico. Verranno quindi confrontate le implementazioni degli algoritmi di calcolo degli SMEM della PBWT di Durbin e delle varianti per la RLPBWT.

DC Magari servono dettagli per il 1kgp

RLPBWT. In merito alle varianti della RLPBWT, sono state testate le otto strutture dati composte discusse nel capitolo 3:

- la struttura dati composta MAP-INT + LCP e la struttura dati composta MAP-BV + LCP. Si ricorda che tali soluzioni non supportano il riconoscimento delle righe del pannello per cui si ha uno SMEM ma solo la cardinalità dell'insieme di tali righe
- 2. le strutture dati composte basate sull'uso delle threshold per il calcolo dell'array delle matching statistics, ovvero: MAP-INT + THR-INT + RA-BV + PERM + PHI, MAP-INT + THR-INT + RA-SLP + PERM + PHI, MAP-BV + THR-BV + RA-BV + PERM + PHI e MAP-BV + THR-BV + RA-SLP + PERM + PHI
- 3. le strutture dati composte basate sull'uso delle LCE query per il calcolo dell'array delle matching statistics, ovvero: MAP-INT + LCE + PERM + PHI e MAP-BV + LCE + PERM + PHI

L'implementazione è stata fatta in linguaggio C++, usando le già citate librerie esterne:

- SDSL per intvector compressi, bitvector, bitvector sparsi, serializzazione e varie utility per il calcolo della memoria delle strutture dati
- BigRePair e ShapedSlp per la costruzione e l'uso degli SLP

L'implementazione delle strutture composte per la RLPBWT supporta lo studio parallelo di più query tramite openMP [39]. Al fine di un più corretto confronto con l'implementazione della PBWT, l'intera sperimentazione è stata svolta sfruttando un solo thread per volta, tramite la variabile d'ambiente OMP NUM THREADS=1.

PBWT. Al fine di validare più correttamente i confronti tra le varie strutture dati per la RLPBWT e la PBWT di Durbin, si è scelto di utilizzare l'implementazione originale di quest'ultima¹. Tale implementazione è scritta in linguaggio C. L'implementazione fornisce tre algoritmi per il calcolo degli SMEM, avendo N siti, M sample e Q query, per i quali si riportano le complessità asintotiche specificate nei commenti del codice:

- 1. matchNaive, ovvero un'implementazione naïve del calcolo degli SMEM che non sfrutta la PBWT. Questo algoritmo non è utilizzabile in casi reali. La complessità in tempo di tale soluzione è stimata essere $\mathcal{O}(NMQ)$ mentre quella in spazio è $\mathcal{O}(NM)$
- 2. matchIndexed, ovvero l'algoritmo 5 del paper originale [4]. La complessità in tempo di tale soluzione è stimata essere $\mathcal{O}(NQ)$, dopo una fase di preprocessing con complessità $\mathcal{O}(NM)$. La complessità in spazio è stimata essere $\mathcal{O}(NM)$, ricordando che, in pratica, essa corrisponda a 13NM byte in memoria
- 3. matchDynamic, ovvero un algoritmo non approfondito nel paper ma solo citato nei risultati sotto il nome di "batch". Pur mancando una descrizione approfondita dell'algoritmo, si è dedotto che il suo funzionamento si basi sul creare una trasformata PBWT anche delle query, viste sotto forma di pannello, e applicare l'algoritmo per il calcolo degli SMEM interni alla PBWT stessa. Inoltre, il calcolo dei vari indici viene fatto di colonna in colonna, dovendo fare, a differenza dell'algoritmo matchIndexed e degli algoritmi per la RLPBWT, una sola scansione della struttura dati per tutte le query. La complessità in tempo di tale soluzione è stimata essere $\mathcal{O}(N(M+Q))$ mentre quella in spazio è $\mathcal{O}(N+M)$.

Si intuisce fin da subito come l'ultima soluzione, non approfondita nel paper di riferimento e della quale si è avuto riconoscimento solo in fase di sperimentazione,

¹https://github.com/richarddurbin/pbwt

risulti essere la migliore a disposizione. Si hanno solo due piccole limitazioni. La prima è dovuta al fatto che, dovendo di fatto computare la trasformata anche per il pannello di query ed essendo l'algoritmo studiato per lavorare sulla trasformata stessa, i tempi di calcolo per poche query sono alti rispetto all'algoritmo matchIndexed e rispetto alle varie soluzioni per la RLPBWT. Il secondo limite è che i risultati non sono ordinati. Tutti gli altri algoritmi presentano i risultati query per query, in ordine, mentre l'algoritmo matchDynamic, studiando la trasformata anche delle query, presenta tutti i risultati permutati secondo la stessa. Si rileva, in ogni caso, come tali limiti possano essere per lo più trascurati, nonostante il problema su cui si concentrano gli studi di questa tesi fosse la ricerca degli SMEM tra una singola query e un pannello di aplotipi.

4.1 Pannelli del 1000 Genome Project

Come anticipato, al fine di valorizzare i risultati teorici ottenuti in questo progetto, si è deciso di procedere con lo studio di dati reali, relativi alla phase 3 del 1000 Genome Project ² [38].

Tali pannelli, disponibili in formato VCF (Variant Call Format) [40], presentano un numero costante di sample, ovvero 5.008, mentre a variare è il numero di siti. Essendo dati reali, si ha anche la presenza di siti multiallelici. Si è quindi proceduto alla selezione dei soli siti biallelici, ottenendo pannelli costruiti su un alfabeto binario $\Sigma = \{0,1\}$, tramite l'uso di *bcftools* [41], tramite il comando bcftools view -m2 -W2 -v snps.

La prima selezione dei pannelli è stata dettata dalla volontà di studiare, per praticità, pannelli non troppo estesi, ad eccezione di uno molto grande. Si sono, quindi, scelti i pannelli relativi ai cromosomi 22 (chr22), 20 (chr20), 18 (chr18), 16 (chr16) e 1 (chr1). Si noti che l'ordine è dato dal numero crescente di siti. La scelta di includere il cromosoma 1 è dettata dal fatto che risulta essere il più grande cromosoma umano, implicando che anche il relativo pannello delle varianti geniche sia tra quelli col maggior numero di siti.

Trattandosi di pannelli reali, è risultata interessante una preliminare indagine esplorativa sulla natura di tali pannelli in termini di sparsità degli alleli e di conseguente attesa numerosità delle run. Si è quindi calcolato, per i cinque pannelli, il numero di simboli $\sigma=0$ e $\sigma=1$, notando come il numero di simboli $\sigma=1$ fosse molto ridotto rispetto al totale, essendo il $\sim 0.03\%$ del totale dei simboli in tutti e cinque i casi. Una tale sparsità del dato ha diretta conseguenza sul numero di run di ogni colonna. Infatti, avendo pochi simboli $\sigma=1$ in ogni colonna, simboli che possono anche essere nella medesima run dopo la permutazione data dalla PBWT, si producono, nel complesso, poche run. Si ricordi, inoltre, che tale permutazione,

²https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

Chr	#Siti	#Run totale	Max run	Media run
chr22	1.055.454	14.772.105	2.450	14
chr20	1.739.315	19.966.504	2.176	11
chr18	2.171.378	24.288.263	2.365	11
chr16	2.596.072	31.187.856	2.330	12
chr1	6.196.151	69.671.952	2.721	11

Tabella 4.1: Informazioni quantitative relative ai cinque pannelli in analisi.

come la BWT, è studiata per essere maggiormente efficiente nel caso del dato biologico, comportando un'alta probabilità di produrre run del medesimo carattere. In tabella 4.1, quindi, si riportano il numero di siti di ogni cromosoma, il numero medio di run per colonna, il numero massimo di run in una colonna e il totale delle run. Si segnala, inoltre, come la mediana del numero di run per colonna abbia valore 3 per tutti e tre i pannelli. I valori quantitativi sono stati calcolati a partire dai pannelli con un numero di sample pari a 4.908 in quanto, si anticipa, 100 righe sono state utilizzate come query nelle successive fasi della sperimentazione. Si conferma il risultato atteso, in merito alla sparsità del dato e al conseguente basso numero medio di run per colonna, risultato che è a favore, in termini di complessità in spazio, della RLPBWT, in quanto tutte le componenti sono proporzionali al numero di run (ad eccezione della componente RLCP). In figura 4.1 si riportano i risultati statistici, sotto forma di boxplot, relativi alla distribuzione delle run nei cinque pannelli studiati. Il forte numero di outlier è dovuto al fatto che media e sopratutto mediana del numero di run per colonna risultino essere molto piccoli rispetto al numero massimo di run riscontrabili in una colonna.

4.1.1 Riproducibilità degli esperimenti

Al fine di rendere riproducibili gli esperimenti, si è costruita una pipeline per l'esecuzione dei vari algoritmi e l'estrazione dei dati quantitativi relativi alle performance.

L'intera pipeline è stata gestita tramite Snakemake [42] (un workflow management system), che è uno strumento molto usato in bioinformatica per creare analisi dati scalabili e riproducibili. Nel dettaglio la pipeline comprende, come visualizzabile in figura 4.2, avendo in input una lista di pannelli con associato il numero di query:

- lo scaricamento dei tool e delle dipendenze per la PBWT di Durbin e la RLPBWT proposta in questa tesi
- la produzione dell'input per la PBWT e della RLPBWT per la quantità di query richiesta

Figura 4.1: Boxplot della distribuzione delle run per i pannelli dei cinque cromosomo studiati. Il grafico (a) presenta uno zoom che esclude la maggior parte degli outlier mentre il grafico (b) presenta, in scala logaritmica, il boxplot completo con tutti gli outlier.

- la produzione delle strutture dati
- l'esecuzione degli algoritmi per il calcolo degli SMEM

Al fine di ottenere risultati non banali, si è deciso di estrarre dai pannelli un numero di righe pari al numero di query richieste, righe che, a loro volta, andranno a formare il pannello di query.

La sperimentazione è stata effettuata su una macchina con processore Intel Xeon E5-2640 V4 (2,40GHz), 756GB di RAM, 768GB di swap e sistema operativo Ubuntu 20.04.4 LTS. Tale macchina è stata gentilmente messa a disposizione dalla University of Florida.

DC la pic va aggiornata e va aggiunto link github dopo sistemazione pipeline

4.2 Risultati della sperimentazione

Si presentano ora i risultati quantitativi della sperimentazione effettuata sui cinque pannelli scelti. Come anticipato, al fine del computo degli SMEM, avendo un numero ridotto di sample a disposizione, si è scelto di estrarre da ognuno 100 sample da usare come query, riducendo quindi il numero di sample a 4.908.

Figura 4.2: Regole usate in Snakemake per la sperimentazione.

4.2.1 Costruzione delle strutture e calcolo degli SMEM

Viste le dimensioni di tali pannelli, si ritiene necessario studiare, dal punto di vista del tempo macchina e dei picchi di memoria necessaria, le varie fasi della sperimentazione, ovvero:

- la fase di preprocessing, necessaria per la preparazione dei vari input della RLPBWT, comprendente:
 - la conversione dei file in formato VCF nei file in formato MACs [43],
 usato come formato di input nella RLPBWT
 - l'estrazione del pannello delle query e la creazione del nuovo pannello di aplotipi
 - la produzione dell' SLP del pannello di aplotipi, comprendente sia la produzione della stringa unica monodimensionale che l'esecuzione di BigRepair e ShapedSlp
- la costruzione e serializzazione delle varie strutture dati composte per la RLPBWT e dei file ad hoc per la PBWT
- l'esecuzione degli algoritmi per il calcolo degli SMEM

Tabella 4.2: Risultati quantitivi dei picchi di memoria (gigabyte) relativi alle fasi di preprocessing per l'input delle varianti della RLPBWT.

\mathbf{Chr}	Costruzione SLP	Conversione VCF a MACs	Estrazione query
chr22	111	5	0,0089
chr20	183	9	0,0090
chr18	215	11	0,0090
chr16	272	13	0,0090
chr1	644	31	0,0094

Preprocessing. In figura 4.3 si possono analizzare le prestazioni delle tre fasi di preprocessing. I risultati quantitativi sono consultabili alla tabella 4.2 e alla tabella 4.3. La separazione del pannello con le query risulta essere assolutamente ininfluente e, di fatto, anche la conversione tra i due formati per l'input non necessita particolari considerazioni, come inferibile dai risultati numerici delle performance. Si segnala che tale conversione diventerebbe non necessaria, implementando l'input direttamente da file VCF per le varie strutture dati relative alla RLPBWT. Inoltre, in un contesto reale, la costruzione del pannello di query non sarebbe un'operazione necessaria.

Bisogna, però, analizzare la costruzione dell' SLP. Per quanto quest'operazione sia da svolgersi una tantum, le richieste in termini di memoria sono nell'ordine delle centinaia di gigabyte di RAM mentre i tempi di calcolo sono nell'ordine delle ore. Prendendo in analisi il cromosoma 1, si ha che è richiesto un picco di 644GB di RAM, avendo che l'intera esecuzione richiede circa 4 ore. Bisogna considerare che tutti gli strumenti computazionali per la produzione dell' SLP sono studiati per partire da una singola stringa e non da una matrice. Nuovi sviluppi in questa direzione potrebbero lasciar spazio a diverse ottimizzazioni. Bisogna, infine, considerare che questa fase è necessaria solo per quattro delle otto soluzioni studiate per la RLPBWT, ovvero quelle che utilizzano o la componente RA-SLP o la componente LCE. Inoltre, il fatto che questa costruzione sia necessaria solo una volta è cruciale nell'ottica di un confronto con lo spazio richiesto dall'algoritmo 5 di Durbin, che richiede 13NM byte ad ogni esecuzione.

In generale, la crescita di memoria richiesta e di tempo, per le tre fasi di preprocessing, sembra essere proporzionale al numero di siti dei pannelli, come atteso. In figura 4.4 si può osservare il vantaggio in termini di memoria che si ha con l'uso degli SLP, confrontando il peso dei file MACs con il peso delle grammatiche compresse. Si segnala che il peso dei vari file MACs include anche diversi header. In tabella 4.4 si possono confrontare quantitativamente tali risultati, notando come usare l'SLP richieda circa l'1% della memoria necessaria al file non compresso. È possibile, quindi, apprezzare la compressione di tali grammatiche. Si noti che, essendo la capacità di compressione di un SLP direttamente correlata alle ripetizioni

Figura 4.3: Picchi di memoria (a) e tempo richiesto (b) per le tre fasi di preprocessing dell'input per la RLPBWT, in scala logaritmica.

Tabella 4.3: Risultati quantitivi dei tempi (secondi) relativi alle fasi di preprocessing per l'input delle varianti della RLPBWT.

\mathbf{Chr}	Costruzione SLP	Conversione VCF a MACs	Estrazione query
chr22	2542	207	28
chr20	3950	320	47
chr18	4890	405	64
chr16	6104	500	71
chr1	14430	1098	157

Tabella 4.4: Dimensioni, in gigabyte, degli SLP e dei file MACs per i vari pannelli del 1000 Genome Project.

$_$ Chr	SLP	MACs
chr22	0,04	4,84
chr20	0,06	7,98
chr18	0,08	9,97
chr16	0,10	11,91
chr1	0,22	28,44

Figura 4.4: Confronto tra la memoria richiesta dai file MACs e dagli SLP per i pannelli del 1000 Genome Project, in scala logaritmica.

presenti nella stringa da comprimere, la dimensione dell' SLP non è perfettamente proporzionale al numero di siti dei pannelli in analisi. Per riferimento, comprimere il pannello relativo al cromosoma 1, con una tecnica standard (GZip), richiede 0,5GB.

Costruzione della struttura. Si analizzano, ora, tempi e picchi di memoria per la costruzione delle strutture dati. Bisogna ricordare che:

- nel caso della RLPBWT, per ognuna delle strutture dati composte, questa fase prevede la costruzione e la serializzazione dell'intera struttura dati
- nel caso della PBWT, questa fase crea unicamente un file compresso ad hoc, contenente le strutture base delle PBWT. A partire da tale file, in fase di calcolo degli SMEM, verranno calcolati anche tutti gli altri indici necessari al calcolo degli stessi, a seconda dell'algoritmo usato

Fatte queste doverose premesse, passiamo ad analizzare i risultati. In figura 4.5 (a) vengono visualizzati i picchi di memoria richiesti mentre in figura 4.5 (b) i tempi di calcolo delle strutture. Alla tabelle 4.5 e 4.6 si riportano i risultati quantitativi in termini di gigabyte e secondi.

Come anticipato, l'implementazione della PBWT non calcola e memorizza tutti gli indici necessari al calcolo degli SMEM in fase di costruzione, avendo quindi una

bassissima richiesta di memoria in questa fase. Discorso diverso si ha parlando delle strutture dati per la RLPBWT. Le strutture dati composte MAP-INT + RLCP e MAP-BV + RLCP, dovendo memorizzare l'intero insieme degli array RLCP, hanno un elevato consumo di memoria. Pur utilizzando degli intvector compressi, in modo analogo a quanto visto, ad esempio, per la componente PERM, si ha necessità di salvare NM valori interi. Risulta ovvio notare come, in termini di costruzione, siano le due strutture che non scalano sul numero di run ad aver maggiori richieste di memoria. Proseguendo nell'analisi si ha che l'utilizzo della componente MAP-BV richiede maggior memoria (approssimativamente tra il 15% e il 20% in più) della componente MAP-INT, coerentemente con quanto analizzato in Sezione 3.3. In merito, invece, ai tempi di costruzione delle due strutture, si segnala come i tempi di calcolo della componente MAP-BV siano superiori rispetto a quelli della MAP-INT (anche in questo caso approssimativamente tra il 15% e il 20% in più), dovendo, ad esempio, calcolare anche le strutture per le funzioni rank/select sui bitvector sparsi. Nel caso della componente MAP-INT, invece, l'unica operazione aggiuntiva, rispetto a quelle attese per una classica popolazione di array di interi, è la fase di compressione degli stessi. Le analisi effettuate sulle componenti di mapping sono da ritenersi analoghe per le componenti dedicate alle threshold, in termini d'uso di bitvector sparsi e intvector compressi. Tali considerazioni sono valide anche per le altre strutture composte per la RLPBWT. Infine, confrontando le strutture dati in grado di computare l'array MS, si aggiungono le considerazioni sulle possibili strutture per il random access e, nel caso d'uso dell' SLP, per l'uso delle LCE query. Si nota come l'uso della componente RA-BV comporti, come atteso, una maggior richiesta di memoria, pur limitata dall'uso dei bitvector. Sempre in termini di tempi di esecuzione, si ha che la componente RA-BV deve essere computata in fase di costruzione delle strutture, comportando un aumento dei tempi di calcolo (meno del 5% in più) rispetto alle strutture basate su RA-SLP/LCE. Confrontando i tempi di tutte le varianti, si ha che tutti gli algoritmi di costruzione sono in tempo proporzionale a $\mathcal{O}(NM)$ ma, come detto, le varianti della RLPBWT includono, in questa fase, anche il calcolo degli indici utili al calcolo degli SMEM.

Si conclude che, parlando di RLPBWT, la struttura composta MAP-INT + LCE + PERM + PHI risulti essere la meno costosa in termini di memoria, usando la struttura di mapping tramite intvector compressi e l'SLP (per le LCE query). Anche in termini di tempo, per i discorsi fatti sui tempi di calcolo delle singole componenti, risulta essere la soluzione più vantaggiosa.

In generale, si può concludere che questo risultato conferma quanto discusso nel capitolo 3.

Sfruttando i metodi offerti dalla SDSL, è possibile studiare l'occupazione di memoria delle singole componenti trattate nel capitolo 3. In tabella 4.8 e in figura 4.6 si riportano, in megabyte, le dimensioni delle varie componenti. Si può, innanzi-

DC Controllare tutti questi dati Tabella 4.5: Risultati quantitativi dei picchi di memoria (gigabyte) di costruzione delle strutture dati.

Tabella A: risultati relativi alla PBWT e alle varianti basate su RLCP per la RLPBWT.

Chr	PBWT	MAP-INT + RLCP	MAP-BV + RLCP
chr22	0,1	9	11
chr20	0,2	15	18
chr18	0,2	19	23
chr16	0,3	23	27
chr1	0,6	55	65

Tabella B: risultati relativi alle varianti basate su matching statistics e bitvector sparsi per la RLPBWT.

-Chr	MAP/THR-BV + RA-BV ···	MAP/THR-BV + RA-SLP···	MAP-BV + LCE ···
chr22	5	4	4
chr20	8	7	7
chr18	10	9	8
chr16	12	10	10
chr1	28	24	23

Tabella C: risultati relativi alle varianti basate su matching statistics e intvector compressi per la RLPBWT.

Chr	MAP/THR-INT + RA-BV ···	MAP/THR-INT + RA-SLP ···	MAP-INT + LCE ···
chr22	3	2	2
chr20	4	3	3
chr18	5	4	4
chr16	6	5	5
chr1	14	12	11

Tabella 4.6: Risultati quantitativi dei tempi (secondi) di costruzione delle strutture dati.

Tabella A: risultati relativi alla PBWT e alle varianti basate su RLCP per la RLPBWT.

Chr	PBWT	MAP-INT + RLCP	MAP-BV + RLCP
chr22	136	210	250
chr20	233	349	407
chr18	290	417	488
chr16	412	511	613
chr1	792	1145	1393

Tabella B: risultati relativi alle varianti basate su matching statistics e bitvector sparsi per la RLPBWT.

\mathbf{Chr}	MAP/THR-BV + RA-BV ···	MAP/THR-BV + RA-SLP ···	MAP-BV + LCE ···
chr22	262	255	240
chr20	439	424	363
chr18	521	503	431
chr16	660	628	533
chr1	1472	1400	1248

Tabella C: risultati relativi alle varianti basate su matching statistics e intvector compressi per la RLPBWT.

$_{\bf Chr}$	MAP/THR-INT + RA-BV ···	MAP/THR-INT + RA-SLP ···	MAP-INT + LCE ···
chr22	143	137	115
chr20	232	219	192
chr18	288	275	238
chr16	347	330	285
chr1	778	739	652

Figura 4.5: Picchi di memoria (a) e tempi di calcolo (b) per la costruzione delle varianti della RLPBWT e per la PBWT.

tutto, apprezzare il vantaggio dell'uso della componente RA-SLP/LCE rispetto alla componente RA-BV, avendo che si ha un risparmio di memoria superiore al 90%. Numericamente tale vantaggio è riportato in tabella 4.7. Si segnala, nuovamente, il forte vantaggio in memoria nell'utilizzo delle componenti basate su intvector compressi, rispetto che a quelle basate su sparse bitvector.

Si nota, infine, come le componenti PERM e PHI non presentino particolari criticità dal punto di vista della memoria richiesta. Terminando l'analisi di tali risultati, senza trattare nuovamente le componenti per il random access, si ha conferma della richiesta eccessiva in memoria della componente RLCP.

DC Serve altro?

Tabella 4.7: Vantaggio percentuale dell'uso delle componenti RA-SLP/LCE rispetto alla componente RA-BV.

Chr	RA-SLP/LCE (MB)	RA-BV (MB)	%
chr22	44	628	7
chr20	61	1.035	6
chr18	80	1.292	6
chr16	98	1.544	6
chr1	226	3.687	6

Figura 4.6: Memoria occupata dalle singole componenti, avendo sulle ascisse in (a) il numero di siti e in (b) il numero di run.

Tabella 4.8: Dimensioni, in megabyte, delle singole componenti per la RLPBWT.

Tabella A: dimensioni delle componenti di mapping e threshold usate nelle strutture dati per la RLPBWT.

Chr	MAP-INT	MAP-BV	THR-INT	THR-BV
chr22	74	543	36	199
chr20	109	882	53	322
chr18	137	1.100	61	402
chr16	167	1.320	81	483
chr1	384	3.133	185	1.146

Tabella B: dimensioni delle componenti di random access, prefix array sample, struttura ϕ e reverse longest common prefix.

Chr	RA-BV	RA-SLP/LCE	PERM	PHI	RLCP
chr22	628	44	71	89	9.095
chr20	1.035	62	104	118	15.468
chr18	1.292	80	128	147	19.223
chr16	1.545	99	159	186	22.888
chr1	3.687	227	366	411	54.588

Calcolo degli SMEM. In seguito si ha la discussione dei risultati ottenuti per il calcolo degli SMEM.

In figura 4.7 (a) si riportano i risultati i termini di picchi di memoria durante la computazione degli SMEM. Tali risultati sono consultabili quantitativamente in tabella 4.9. Come previsto, l'algoritmo matchDynamic della PBWT ha le migliori prestazioni in spazio, calcolando dinamicamente i vari indici necessari al calcolo degli SMEM interni. Invece, per quanto riguarda l'algoritmo 5 di Durbin, ovvero l'algoritmo matchIndexed, si confermano le previsioni fatte dall'autore stesso, avendo che la memoria utilizzata è circa 13NM byte. Escludendo le strutture MAP-INT + RLCP e MAP-BV + RLCP, si rileva circa un'intero ordine di grandezza in più di memoria rispetto alle strutture dati composte per la RLPBWT. Parlando di queste ultime, la differenza tra le varie strutture dati che supportano il calcolo dell'array MS è dovuta, a parità di componente per il mapping (e conseguentemente della componente per le threshold), dall'uso della componente RA-BV o della componente RA-SLP/LCE, in modo analogo a quanto visto discutendo il peso in memoria delle singole componenti.

In figura 4.7 (b) si riportano, invece, i risultati i termini di tempo di calcolo. Tali risultati sono consultabili numericamente in tabella 4.10. Anche in questo caso l'algoritmo matchDynamic risulta essere il più performante, in quanto studia contemporaneamente l'intero pannello di query. Parlando di RLPBWT, la struttura MAP-INT + THR-INT + RA-SLP + PERM + PHI e la struttura MAP-BV + THR-BV + RA-SLP + PERM + PHI, a causa delle frequenti operazioni di random access con la componente RA-SLP (sia per il calcolo delle lunghezze delle matching statistics che per la fase di disambiguazione), richiedono più tempo di tutte le altre varianti, soprattutto se si pensa alle corrispondenti varianti con componente RA-BV. L'uso della componente RA-SLP comporta, infatti, circa venti volte i tempi di calcolo che si hanno usando le componenti basate su bitvector sparsi e addirittura di circa 45 volte quelli che si hanno usando le strutture basate su intvector compressi per mapping e threshold. La struttura MAP-INT + LCE + PERM + PHI e la struttura MAP-BV + LCE + PERM + PHI risultano essere, al massimo, il doppio più lente rispetto all'algoritmo matchIndexed, con una differenze che diventa quasi trascurabile all'aumentare delle dimensioni del pannello. Questo è un risultato molto interessante, considerando la memoria necessaria per il calcolo degli SMEM delle varie implementazioni.

Confrontando l'uso delle LCE query con l'uso della componente RA-BV si hanno, invece, tempi triplicati nel caso d'uso di componenti per mapping e threshold con bitvector sparsi. Nel caso d'uso degli intvector compressi, si hanno, d'altro canto, circa sette volte i tempi di computazione. A priori delle componenti per mapping e threshold, l'uso della componente RA-SLP comporta circa sei volte il tempo d'uso delle LCE query. Queste ultime analisi comportano che l'uso del random access su

Figura 4.7: Picchi di memoria (a) e tempi di esecuzione (b) per il calcolo degli SMEM.

SLP è la peggior soluzione in ottica di calcolo delle matching statistics. Concludendo, si può notare come la struttura composta MAP-INT + THR-INT + RA-BV + PERM + PHI, tra quelle per la RLPBWT, risulti essere la migliore in termini di tempi di calcolo mentre la struttura composta MAP-INT + LCE + PERM + PHI sia la migliore in termini di memoria richiesta. Questo risultato è coerente con quanto analizzato nel Capitolo 3. Notando come quest'ultima sia circa 10 volte più lenta della soluzione con THR-INT e RA-BV, si può inferire come la scelta della miglior soluzione per la RLPBWT debba ricadere sulla MAP-INT + THR-INT + RA-BV + PERM + PHI, salvo situazioni in cui il risparmio di memoria fondamentale in fase di analisi dati.

DC Controllare tutti questi dati

4.2.2 Tempo di una singola query

Infine, per completare lo studio delle prestazioni dal punto di vista del tempo macchina, si è deciso di isolare il calcolo degli SMEM per ogni singola query, valutando media e deviazione standard dell'esecuzione su 100 query. A tal fine, la misurazione è stata effettuata sfruttando la libreria time.h presente nello standard del linguaggio C, al fine di avere le medesime istruzioni per le misurazioni sia con la PBWT che con la RLPBWT. La misurazione è stata fatta misurando unicamente le istruzioni atte a cercare gli SMEM, escludendo quelle per il computo degli indi-

Tabella 4.9: Risultati quantitativi dei picchi di memoria (gigabyte) di costruzione delle strutture dati.

Tabella A: risultati relativi alla PBWT e alle varianti basate su RLCP per la RLPBWT.

Chr	matchIndexed	matchDynamic	MAP-INT + RLCP	MAP-BV + RLCP
chr22	63	0,02	9	11
chr20	104	0,03	16	19
chr18	129	0,04	20	23
chr16	155	0,05	24	28
chr1	369	0,10	56	66

Tabella B: risultati relativi alle varianti basate su matching statistics e bitvector sparsi per la RLPBWT.

Chr	MAP/THR-BV + RA-BV ···	MAP/THR-BV + RA-SLP ···	MAP-BV + LCE ···
chr22	4	3	3
chr20	6	5	5
chr18	8	6	6
chr16	9	8	7
chr1	22	18	17

Tabella C: risultati relativi alle varianti basate su matching statistics e intvector compressi per la RLPBWT.

Chr	MAP/THR-INT + RA-BV ···	MAP/THR-INT + RA-SLP ···	MAP-INT + LCE ···
chr22	1,4	0,8	0,8
chr20	2,2	1,2	1,2
chr18	2,8	1,6	1,5
chr16	3,4	1,9	1,8
chr1	8,0	4,4	4,3

Tabella 4.10: Risultati quantitativi dei tempi (secondi) di calcolo degli SMEM.

Tabella A: risultati relativi alla PBWT e alle varianti basate su RLCP per la RLPBWT.

$_{\bf Chr}$	matchIndexed	${\tt matchDynamic}$	MAP-INT + RLCP	MAP-BV + RLCP
chr22	144	17	61	114
chr20	243	28	89	210
chr18	305	35	119	255
chr16	424	42	140	299
chr1	1026	93	298	616

Tabella B: risultati relativi alle varianti basate su matching statistics e bitvector sparsi per la RLPBWT.

Chr	MAP/THR-BV + RA-BV ···	MAP/THR-BV + RA-SLP ···	MAP-BV + LCE ···
chr22	76	1305	260
chr20	121	2097	385
chr18	149	2509	442
chr16	189	3252	640
chr1	419	7531	1278

Tabella C: risultati relativi alle varianti basate su matching statistics e intvector compressi per la RLPBWT.

\mathbf{Chr}	MAP/THR-INT + RA-BV ···	MAP/THR-INT + RA-SLP ···	MAP-INT + LCE ···
chr22	29	1344	250
chr20	49	2103	375
chr18	58	2483	421
chr16	68	3092	606
chr1	150	7234	1142

ci o del caricamento delle strutture dati. Si segnala che, nel caso dell'algoritmo matchDynamic, non si è potuto, per natura stessa dell'algoritmo, isolare il computo degli indici all'avanzamento alla colonna successiva. Resta esclusa, in ogni caso, la costruzione della struttura base della PBWT.

DC Non se dire questa cosa

Tale risultato è visualizzabile in figura 4.8, dove si è deciso di escludere le strutture MAP-INT + RLCP e MAP-BV + RLCP in quanto non in grado di computare quali righe presentino un certo SMEM. I risultati quantitativi sono consultabili in tabella 4.11. Anche in questo caso, si conferma molto di quanto ipotizzato e discusso nel Capitolo 3 e nella sezione precedente. Nel caso dell'algoritmo matchIndexed, non misurando le istruzioni per computare tutti gli array necessari, si hanno tempi di calcolo degli SMEM migliori di quanto visto sull'esecuzione completa. Caso a parte è dato dall'algoritmo matchDynamic, che risulta avere le performance peggiori, impiegando fino a cento volte il tempo dell'algoritmo 5 di Durbin, ovvero l'algoritmo matchIndexed. Infatti, per natura stessa dell'algoritmo, le operazioni sono studiate al fine di essere ottimizzate per pannelli di query e non per una query singola, avendo molte operazioni che potrebbero essere ottimizzate per il caso della singola query. Sperimentalmente, si è osservato che una query o un centinaio di query presentano all'incirca i medesimi tempi di calcolo. Infatti, prendendo ad esempio il cromosoma 1, si ha che tale algoritmo impiega 93s per il calcolo con 100 query e una media di circa 88s (con una deviazione standard di ben 7s) per una singola query. Per quanto riguarda la RLPBWT, con l'uso della componente RA-SLP, si rilevano gli stessi problemi relativi all'random access, precedentemente descritti. Questi problemi sono risolti con l'uso della componente RA-BV. Inoltre, a parità di componenti per il mapping (e conseguenti componenti per le threshold), l'uso della componente LCE risulta più lenta dell'uso della componente RA-BV, a causa dei costi di calcolo delle LCE query stesse. Tutti questi sono risultati coerenti con quanto visto nel caso di 100 query, anche in termini di migliori strutture composte parlando di RLPBWT. Si segnala che, oltre al fatto che non sono qui misurate le tempistiche di caricamento delle strutture, le acquisizioni dei dati per la singola query sono state ottenute in un momento diverso da quelle per 100 query, avendo, di conseguenza, una non perfetta proporzione tra i risultati quantitativi delle due fasi di sperimentazione.

Tabella 4.11: Risultati quantitativi dei tempi (secondi) di calcolo degli SMEM su singola query. I risultati sono nella forma "media \pm deviazione standard".

Tabella A: risultati relativi alla PBWT.

Chr	matchIndexed	${\tt matchDynamic}$
chr22	0.15 ± 0.01	$18,94 \pm 0,58$
chr20	0.25 ± 0.01	$28,90 \pm 1,99$
chr18	0.33 ± 0.02	$37,24 \pm 1,08$
chr16	0.38 ± 0.01	$45,37 \pm 3,49$
chr1	$1,01 \pm 0,10$	$88,73 \pm 7,08$

Tabella B: risultati relativi alle varianti basate su matching statistics e bitvector sparsi per la RLPBWT.

Chr	MAP/THR-BV + RA-BV ···	MAP/THR-BV + RA-SLP ···	MAP-BV + LCE ···
chr22	0.75 ± 0.28	$16,51 \pm 1,34$	$2,92 \pm 0,55$
chr20	$1,08 \pm 0,05$	$22,\!85\pm2,\!21$	$4,57 \pm 0,82$
chr18	$1,36 \pm 0,05$	$27,\!23 \pm 2,\!50$	$4,96 \pm 0,74$
chr16	$1,54 \pm 0,05$	$38,93 \pm 2,70$	$7,65 \pm 1,14$
chr1	$3,41 \pm 0,07$	$74,54 \pm 3,40$	$12,75 \pm 1,82$

Tabella C: risultati relativi alle varianti basate su matching statistics e intvector compressi per la RLPBWT.

Chr	MAP/THR-INT + RA-BV ···	MAP/THR-INT + RA-SLP ···	MAP-INT + LCE ···
chr22	0.24 ± 0.02	$13,52 \pm 1,26$	$2,44 \pm 0,54$
chr20	0.37 ± 0.03	$20,55 \pm 2,16$	$3,68 \pm 0,74$
chr18	0.45 ± 0.03	$24,43 \pm 2,38$	$3,62 \pm 0,70$
chr16	0.54 ± 0.03	$30,86 \pm 2,35$	$5,93 \pm 1,01$
chr1	$1,21 \pm 0,06$	$68,22 \pm 3,02$	$11,12 \pm 1,52$

Figura 4.8: Tempo medio di esecuzione del calcolo degli SMEM per una singola query. Il grafico di destra è in scala logaritmica e, in entrambi, le barre d'errore rappresentano la deviazione standard.

Capitolo 5

Conclusioni

Fissato l'iniziale obbiettivo di risolvere le problematiche relative alla memoria richiesta dall'algoritmo 5 di Durbin, le implementazioni della RLPBWT proposte in questa tesi, principalmente nelle strutture dati composte segnalate nel Capitolo 4, hanno riportato risultati molto incoraggianti. Come descritto nel medesimo capitolo, la quantità di memoria richiesta per il calcolo degli SMEM risulta essere molto inferiore rispetto a quella richiesta dall'algoritmo matchIndexed. D'altro canto, l'algoritmo matchDynamic di Durbin, per quanto non approfondito nell'articolo del 2014 [4], risulta essere ancor meno esoso di risorse, nonché incredibilmente più veloce dal punto di vista dei tempi di calcolo, ad eccezione del caso limite di avere un numero esiguo di query. Lo svantaggio si ritrova anche nell'ordinamento dei risultati e nella creazione di un'ulteriore PBWT che, giudicando la letteratura degli ultimi anni, le cui trattazioni si basano sempre sull'algoritmo 5, sembrano implicare un non facile riadattamento per la risoluzione di altri task.

In termini di casi d'uso, ipotizzando un possibile futuro in cui diventi comune interrogare pannelli di aplotipi frequentemente, magari con singole query da un'interfaccia web o tramite API (alla stregua di quanto avviene quotidianamente, ad esempio, con BLAST), l'uso della RLPBWT, in una delle sue migliori varianti, avrebbe evidenti vantaggi in termini di tempo di calcolo degli SMEM, non solo rispetto all'algoritmo 5 di Durbin ma anche rispetto all'algoritmo matchDynamic, alla luce dei risultati su singole query. Inoltre, quest'ultimo richiederebbe ogni volta la ricostruzione della permutazione, a differenza delle implementazioni della RLPBWT che potrebbero essere costruite e caricate in memoria una tantum.

Si possono rilevare alcune possibili migliorie in merito alle varie implementazioni della RLPBWT presentate in questa tesi, riferendosi essenzialmente alle soluzioni che prevedono il calcolo dell'array delle matching statistics:

DC Frase da rivedere

• si potrebbe pensare ad un metodo per gestire in modo efficiente lo studio di più query contemporaneamente, migliorando i tempi di calcolo complessivi.

Studiando contemporaneamente tutte le query si potrebbe, alla stregua di quanto visto con l'algoritmo matchDynamic, caricare in memoria, di volta in volta, solo la colonna necessaria ad un dato passo di computazione o comunque un sottoinsieme di colonne. In tal modo, si ridurrebbe l'uso massimo di memoria, qualora non fosse necessario tenere in memoria la struttura per rispondere a diverse query provenienti da diverse fonti

• studiare eventuali ottimizzazioni per la componente MAP-BV al fine di comprendere se sia possibile tenere in memoria un solo bitvector uv_k , che funzioni in modo similare a quanto si ha con la componente MAP-INT

Inoltre, risulterebbe interessante, dal solo punto di vista teorico, una più approfondita caratterizzazioni delle complessità asintotiche, sia in spazio che in tempo. Questa analisi, a causa degli algoritmi stessi e dell'uso di strutture dati succinte, sarebbe sicuramente molto difficile ma potrebbe portare a nuovi spunti di riflessione per il campo dell'informatica teorica, oltre che della bioinformatica.

Nonostante quanto detto, la qualità dei risultati è sufficiente per stabilire che una variante run-length encoded della PBWT, come analizzato negli ultimi anni per la RLBWT con MONI [7] e PHONI [8], sia possibile e possa permettere, nel prossimo futuro, la memorizzazione compatta delle informazioni necessarie allo studio di grandi pannelli di aplotipi. In un futuro in cui le tecnologie di sequencing produrranno sempre più dati, provenienti da sempre più individui, avere a disposizione strutture dati efficienti dal punto di vista della memorizzazione permetterà uno studio sempre più approfondito dei dati stessi, nei campi dei Genome-Wide Association Studies (GWAS), della medicina personalizzata etc...

5.1 Sviluppi futuri

Ovviamente, questa prima implementazione completa della RLPBWT, declinata nelle possibili strutture composte, non è da considerarsi come un punto di arrivo. Come accaduto per la PBWT, infatti, si potranno sviluppare nuove strutture dati basate su di essa per la gestione di pannelli di varia natura. Principalmente si può pensare a due casi, già anticipati nella sezione 2.6:

- lo studio di pannelli multiallelici, ovvero costruiti su un alfabeto Σ arbitrario e non limitato ai simboli $\sigma=0$ e $\sigma=1$
- lo studio di pannelli con dati mancanti, ovvero pannelli costruiti da dati reali che possono contenere siti, per certi individui, per i quali non si ha certezza in merito all'allele

Inoltre, allo stato attuale, la struttura dati è stata sviluppata per permettere unicamente il calcolo degli SMEM con un aplotipo esterno. Anche in questo caso, quindi, si potrebbe avere lo sviluppo di nuovi algoritmi che rispondano a task diversi, come, ad esempio, il calcolo degli SMEM interni al panello, il calcolo dei cosiddetti *blocchi*, o anche il calcolo di tutti i match con un aplotipo esterno di lunghezza maggiore ad una fissata o che includano un numero stabilito di sequenze di aplotipi nel panello.

DC Serve definire i blocchi?

RLPBWT multiallelica. Per quanto i pannelli di aplotipi, prodotti dal sequencing del genoma umano. raramente presentino siti multiallelici, si ha una presenza stimata, al momento, di circa il 2% di siti triallelici [44]. Inoltre, all'aumentare della disponibilità di dati genomici, si ha in letteratura la propensione a credere che tale percentuale di siti sia non solo sottostimata (evidenziando che sia stimato circa un terzo dei reali siti triallelici) ma anche destinata a crescere in modo non lineare rispetto al numero di individui sequenziati [45]. Inoltre, molte specie, soprattutto vegetali, sono già riconosciute essere poliploidi. Una struttura dati efficiente in memoria, in grado di gestire pannelli costruiti su un alfabeto arbitrario, risulterà necessaria nel breve futuro.

Ipotizzando un possibile funzionamento della RLPBWT multiallelica (mRLPBWT), si può pensare ad una soluzione molto simile a quanto visto per la RLBWT. Infatti, per ogni colonna, si potrebbero memorizzare:

- una stringa che memorizzi quale simbolo corrisponda ad una certa run, non potendo sfruttare l'alternanza di simboli vista nel caso binario
- una rivisitazione delle strutture necessarie al mapping, tenendo in memoria vettori di bitvector sparsi o di intvector compressi, al fine di poter computare la funzione $w(i,\sigma)$ anche nel caso multiallelico. Si segnala che si attende un inversione di tendenza in termini di memoria, avendo che, in tal caso, l'uso di intvector compressi potrebbe rivelarsi meno efficiente dell'uso dei bitvector sparsi, anche con pochi sample
- un riadattamento del calcolo dell'array delle matching statistics

In merito allo spazio richiesto e ai tempi di calcolo bisognerà considerare la grandezza dell'alfabeto su cui è costruito il pannello, che ci si aspetta, fortunatamente, inferiore a 10 nella maggioranza dei casi di studio biologico.

Quindi, nonostante, allo stato dell'arte, ci siano pochissimi studi in merito, si ritiene possibile generalizzare, in modo computazionalmente efficiente, la RLPBWT anche a questa casistica.

RLPBWT con dati mancanti. La maggior parte delle soluzioni attualmente sviluppate sono basate su una forte assunzione: i dati in input sono corretti e senza dati mancanti. Ovviamente, limitandosi a studiare pannelli simulati corretti in una fase di preprocessing, si rischia di limitare la capacità di inferenza dai pannelli stessi.

Come anticipato alla sezione 2.6, si sono iniziate a sviluppare estensioni della PBWT che ammettano wildcard, ovvero simboli nel pannello che possono assumere qualsiasi valore dell'alfabeto Σ , su cui è costruito il pannello stesso.

Uno degli sviluppi futuri sarebbe quindi quello di generalizzare la RLPBWT, ma anche l'eventuale mRLPBWT, per la gestione di dati mancanti nel pannello. Inoltre, si potrebbero sviluppare algoritmi in grado di gestire le wildcard anche all'interno delle query stesse.

Sempre in via ipotetica, l'uso di algoritmi parametrici (ma anche di algoritmi approssimati), adattati al funzionamento della RLPBWT, potrebbero portare a soluzioni interessanti per la gestione di pannelli reali non preprocessati.

K-SMEM. Come anticipato, oltre che variare le caratteristiche del pannello in analisi, si possono studiare anche algoritmi per risolvere nuovi task con la RLPBWT.

Di recente, Gagie [46] ha proposto un articolo in cui dimostra come la RLBWT, implementata in MONI [7], sia già predisposta al calcolo dei K-MEM, ovvero MEM, tra sottostringhe di un pattern e un testo, che occorrono esattamente k volte nel testo stesso.

In merito alla RLPBWT, si potrebbe adattare l'idea di Gagie al calcolo dei K-SMEM, tra sottostringhe dell'aplotipo query e il pannello, che comportino SMEM con esattamente k righe del pannello stesso. La correlazione tra la RLBWT e la RLPBWT porta a pensare che tale problema sia risolvibile anche con la nuova definizione di matching statistics presentata in questa tesi.

Nulla è stato sviluppato al momento ma si ritiene questo un'interessante sviluppo futuro in quanto permetterebbe studi statistici, molto comuni nei GWAS, in merito alla presenza di sottostringhe di un aplotipo esterno all'interno di un pannello di aplotipi.

La tematica della pangenomica è innovativa e il numero di problemi aperti è incredibilmente grande. I dati aumentano sempre di più e gli studi informatici devono evolversi per "stare al passo" con questa mole d'informazioni. Gli sviluppi futuri sono, da diversi punti di vista, anche imprevedibili. Risulta quindi difficile elencare, in modo completo, le possibilità future dietro questa branca della bioinformatica e dell'algoritmica sperimentale.

DC Frase conclusiva da modificare fortemente

Bibliografia

- [1] Hervé Tettelin, Vega Masignani, Michael J Cieslewicz, Claudio Donati, Duccio Medini, Naomi L Ward, Samuel V Angiuoli, Jonathan Crabtree, Amanda L Jones, A Scott Durkin, et al. Genome analysis of multiple pathogenic isolates of streptococcus agalactiae: implications for the microbial "pan-genome". Proceedings of the National Academy of Sciences, 102(39):13950–13955, 2005.
- [2] Jasmijn A Baaijens, Paola Bonizzoni, Christina Boucher, Gianluca Della Vedova, Yuri Pirola, Raffaella Rizzi, and Jouni Sirén. Computational graph pangenomics: a tutorial on data structures and their applications. *Natural Computing*, pages 1–28, 2022.
- [3] The Computational Pan-Genomics Consortium. Computational pangenomics: status, promises and challenges. *Briefings in Bioinformatics*, 19(1):118–135, 10 2016.
- [4] Richard Durbin. Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT). *Bioinformatics*, 30(9):1266–1272, 01 2014.
- [5] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. In *Annual Symposium on Combinatorial Pattern Matching*, pages 45–56. Springer, 2005.
- [6] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text searching in bwt-runs bounded space. *Journal of the ACM (JACM)*, 67(1):1–54, 2020.
- [7] Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI: A pangenomic index for finding maximal exact matches. *Journal of Computational Biology*, 02 2022.
- [8] Christina Boucher, Travis Gagie, I Tomohiro, Dominik Köppl, Ben Langmead, Giovanni Manzini, Gonzalo Navarro, Alejandro Pacheco, and Massimiliano

Rossi. PHONI: Streamed matching statistics with multi-genome references. In 2021 Data Compression Conference (DCC), pages 193–202. IEEE, 2021.

- [9] Paola Bonizzoni, Christina Boucher, Davide Cozzi, Travis Gagie, Sana Kashgouli, Dominik Köppl, and Massimiliano Rossi. Compressed data structures for population-scale positional Burrows–Wheeler transforms. *bioRxiv*, 09 2022.
- [10] Guy Joseph Jacobson. Succinct static data structures. Carnegie Mellon University, 1988.
- [11] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press, 2016.
- [12] Guy Jacobson. Space-efficient static trees and graphs. In 30th annual symposium on foundations of computer science, pages 549–554. IEEE Computer Society, 1989.
- [13] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug and play with succinct data structures. In 13th International Symposium on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.
- [14] Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. *Groups-Complexity-Cryptology*, 4(2):241–299, 2012.
- [15] Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Louisa Seelbach Benkner, Yoshimasa Takabatake, et al. Practical random access to SLP-compressed texts. In *International Symposium on String Processing and Information Retrieval*, pages 221–231. Springer, 2020.
- [16] Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Yoshimasa Takabatake, et al. Rpair: rescaling repair with rsync. In *International Symposium on String Processing and Information Retrieval*, pages 35–44. Springer, 2019.
- [17] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam Journal on Computing, 22(5):935–948, 1993.
- [18] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.
- [19] Juha Kärkkäinen, Giovanni Manzini, and Simon J Puglisi. Permuted longest-common-prefix array. In *Annual Symposium on Combinatorial Pattern Matching*, pages 181–192. Springer, 2009.

[20] Kunihiko Sadakane. Succinct representations of lcp information and improvements in the compressed suffix arrays. In SODA, volume 2, pages 225–232, 2002.

- [21] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-common-prefix computation in suffix arrays and its applications. In *Annual Symposium on Combinatorial Pattern Matching*, pages 181–192. Springer, 2001.
- [22] Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm. 1994.
- [23] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In *Proceedings 41st annual symposium on foundations of computer science*, pages 390–398. IEEE, 2000.
- [24] Alberto Policriti and Nicola Prezza. LZ77 computation based on the runlength encoded BWT. *Algorithmica*, 80(7):1986–2011, 2018.
- [25] Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni Manzini. Efficient construction of a complete index for pangenomics read alignment. *Journal of Computational Biology*, 27(4):500–513, 2020.
- [26] Taher Mun, Alan Kuhnle, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni Manzini. Matching reads to many genomes with the r-index. *Journal of Computational Biology*, 27(4):514–518, 2020.
- [27] Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and Taher Mun. Prefix-free parsing for building big BWTs. Algorithms for Molecular Biology, 14(1):1–15, 2019.
- [28] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman. Basic local alignment search tool. *Journal of molecular biology*, 215(3):403–410, 1990.
- [29] Hideo Bannai, Travis Gagie, and I Tomohiro. Refining the r-index. *Theoretical Computer Science*, 812:96–108, 2020.
- [30] Heng Li. Tabix: fast retrieval of sequence features from generic tab-delimited files. *Bioinformatics*, 27(5):718–719, 2011.
- [31] Richard A Gibbs, John W Belmont, Paul Hardenbol, Thomas D Willis, FL Yu, HM Yang, Lan-Yang Ch'ang, Wei Huang, Bin Liu, Yan Shen, et al. The international HapMap project. *Nature*, 2003.

[32] Ahsan Sanaullah, Degui Zhi, and Shaojie Zhang. d-PBWT: dynamic positional Burrows–Wheeler transform. *Bioinformatics*, 37(16):2390–2397, 02 2021.

- [33] Ardalan Naseri, Degui Zhi, and Shaojie Zhang. Multi-allelic positional Burrows-Wheeler transform. *BMC bioinformatics*, 20(11):1–8, 2019.
- [34] Ardalan Naseri, Erwin Holzhauser, Degui Zhi, and Shaojie Zhang. Efficient haplotype matching between a query and a panel for genealogical search. *Bioinformatics*, 35(14):i233–i241, 2019.
- [35] Lucia Williams and Brendan Mumey. Maximal perfect haplotype blocks with wildcards. *Iscience*, 23(6):101149, 2020.
- [36] Simone Rubinacci, Olivier Delaneau, and Jonathan Marchini. Genotype imputation using the positional Burrows Wheeler transform. *PLoS genetics*, 16(11):e1009049, 2020.
- [37] Nathaniel K Brown, Travis Gagie, and Massimiliano Rossi. RLBWT tricks. arXiv preprint arXiv:2112.04271, 2021.
- [38] 1000 Genomes Project Consortium et al. A global reference for human genetic variation. *Nature*, 526(7571):68, 2015.
- [39] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for shared-memory programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.
- [40] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks, Mark A DePristo, Robert E Handsaker, Gerton Lunter, Gabor T Marth, Stephen T Sherry, et al. The variant call format and VCFtools. *Bioinformatics*, 27(15):2156–2158, 2011.
- [41] Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, and Heng Li. Twelve years of SAMtools and BCFtools. *GiqaScience*, 10(2), 02 2021. giab008.
- [42] Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H Tomkins-Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok, Alexander Kanitz, et al. Sustainable data analysis with snakemake. F1000Research, 10, 2021.
- [43] Gary K. Chen. MaCS. https://github.com/gchen98/macs, 2019.

[44] Alan Hodgkinson and Adam Eyre-Walker. Human triallelic sites: evidence for a new mutational mechanism? *Genetics*, 184(1):233–241, 2010.

- [45] Ian M Campbell, Tomasz Gambin, Shalini N Jhangiani, Megan L Grove, Narayanan Veeraraghavan, Donna M Muzny, Chad A Shaw, Richard A Gibbs, Eric Boerwinkle, Fuli Yu, et al. Multiallelic positions in the human genome: challenges for genetic analyses. *Human mutation*, 37(3):231–234, 2016.
- [46] Travis Gagie. MONI can find k-MEMs. arXiv preprint arXiv:2202.05085, 2022.