

Model Optimization and Tuning Phase Template

Date	20 July 2024
Team ID	SWTID1720163161
Project Title	Hydration Essentials: Classifying Water Bottle Images
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters	
	Hyperparameters:	
Model 1	 Batch Size: 32 Image Size: 256 (each image is resized to 256x256 pixels) Channels: 3 (color channels for RGB images) Epochs: 50 Optimizer: Adam Loss Function: Sparse Categorical Crossentropy Metrics: Accuracy Description: 	
	 Batch Size: Number of samples processed before the model is updated. Image Size: Dimensions to which each input image is resized. Channels: Number of color channels in the input images. Epochs: Number of complete passes through the entire training dataset. Optimizer: Algorithm used to update model weights. 	

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	• Performance Metrics: This model achieved higher accuracy and lower loss on both the training and validation datasets, demonstrating superior performance.
	• Training Stability: This model exhibited stable training and validation curves, indicating good generalization and minimal overfitting.
	• Efficiency: This model was efficient in terms of training time and resource usage, thanks to the appropriate batch size and number of epochs.
	• Simplicity and Effectiveness: The architecture of This model balances complexity and effectiveness, making it suitable for the given image classification task without unnecessary complexity.
Model 1	• Generalization: The model's performance on the validation set indicates good generalization to unseen data, which is crucial for real-world applications.