Corrigé de l'épreuve de mathématiques du baccalauréat Session principale 2017 Section: Mathématiques

Exercice 1

1)
$$(\overrightarrow{\Omega J}, \overrightarrow{\Omega D}) \equiv (\overrightarrow{\Omega J}, \overrightarrow{\Omega A}) + (\overrightarrow{\Omega A}, \overrightarrow{\Omega D})[2\pi].$$

AΩJ est un triangle rectangle en J tel que $(\overrightarrow{AΩ}, \overrightarrow{AJ}) = \frac{\pi}{12} [2\pi]$.

Alors
$$(\overrightarrow{\Omega J}, \overrightarrow{\Omega A}) \equiv (\overrightarrow{JA}, \overrightarrow{J\Omega}) - (\overrightarrow{A\Omega}, \overrightarrow{AJ})[2\pi] \equiv \frac{\pi}{2} - \frac{\pi}{12}[2\pi]$$

DAΩ est un triangle isocèle (direct) en D tel que $(\overrightarrow{AΩ}, \overrightarrow{AD}) = (\overrightarrow{AΩ}, \overrightarrow{AJ})[2\pi] = \frac{\pi}{12}[2\pi]$

Alors
$$(\overrightarrow{\Omega D}, \overrightarrow{\Omega A}) \equiv (\overrightarrow{A\Omega}, \overrightarrow{AJ})[2\pi] \equiv \frac{\pi}{12}[2\pi]$$
. Par la suite $(\overrightarrow{\Omega J}, \overrightarrow{\Omega D}) \equiv \frac{\pi}{2} - \frac{\pi}{12} - \frac{\pi}{12}[2\pi] \equiv \frac{\pi}{3}[2\pi]$.

2) a) R est la composée de deux symétries orthogonales d'axes sécants Donc R est la rotation de centre Ω d'angle $\frac{2\pi}{3}$ car $2(\overrightarrow{\Omega J}, \overrightarrow{\Omega D}) = \frac{2\pi}{3}[2\pi]$.

$$b) \bullet F = R \big(J \big) \ donc \big(\overrightarrow{\Omega J} \overset{\wedge}{,} \overrightarrow{\Omega F} \big) \equiv \frac{2\pi}{3} \big[2\pi \big], \ de \ plus \ \big(\overrightarrow{\Omega J} \overset{\wedge}{,} \overrightarrow{\Omega I} \big) \equiv \frac{\pi}{3} + \frac{\pi}{12} + \frac{\pi}{4} \big[2\pi \big] \equiv \frac{2\pi}{3} \big[2\pi \big].$$

$$\bullet \big(\overrightarrow{\Omega F} \overset{\wedge}{,} \overrightarrow{\Omega I} \big) \equiv \big(\overrightarrow{\Omega F} \overset{\wedge}{,} \overrightarrow{\Omega J} \big) + \big(\overrightarrow{\Omega J} \overset{\wedge}{,} \overrightarrow{\Omega I} \big) \big[2\pi \big] \equiv -\frac{2\pi}{3} + \frac{2\pi}{3} \big[2\pi \big] \equiv 0 \big[2\pi \big] \ \ donc \ F \in \big[\Omega I \big).$$

- 3) a) f(J) = hoR(J) = h(F) = I.
 - b) f est la composée d'une homothétie et d'un déplacement donc f est une similitude directe. •f(Ω) = hoR(Ω) = h(Ω) = Ω . Alors Ω est le centre de f.

•f(J) = I et
$$(\overrightarrow{\Omega J}, \overrightarrow{\Omega I}) \equiv \frac{2\pi}{3} [2\pi]$$
 donc f est d'angle $\frac{2\pi}{3}$.

Remarques:

- * f = h o R donc l'angle de f est celui de R car le rapport de h est positif car h(F) = I et F \in [Ω I). * h et R ont le même centre Ω alors Ω est le centre de f = h o R.
- c) Le triangle ΩAI est rectangle et isocèle en I, $\frac{\Omega I}{\Omega A} = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.

Le triangle ΩJA est rectangle en J et $\Omega \stackrel{\wedge}{A}J = \frac{\pi}{12}$, donc $\frac{\Omega A}{\Omega J} = \frac{1}{\sin\left(\frac{\pi}{12}\right)} = \frac{2\sqrt{2}}{\sqrt{3}-1}$.

•f(J) =I . Donc le rapport de f est égal à
$$\frac{\Omega I}{\Omega J} = \frac{\Omega I}{\Omega A}$$
. $\frac{\Omega A}{\Omega J} = \frac{\sqrt{2}}{2} \cdot \frac{2\sqrt{2}}{\sqrt{3}-1} = \frac{2}{\sqrt{3}-1} = \sqrt{3}+1$.

- 4)a)• g est une similitude indirecte telle que $g(\Omega) = \Omega$ et g(J) = I.
 - f o $S_{(\Omega J)}$ est la composée d'une similitude directe et d'un antidéplacement($S_{(\Omega J)}$), donc f o $S_{(\Omega J)}$ est une similitude indirecte. $(S_{(\Omega J)})$ est une similitude indirecte. On vérifie facilement que f o $S_{(\Omega J)}(\Omega) = \Omega$ et f o $S_{(\Omega J)}(J) = I$. Ainsi g et f o $S_{(\Omega J)}$ sont deux similitudes indirectes qui coïncident en deux points distincts donc $g = f \circ S_{(\Omega J)}$.

1

- b)•Méthode1: g = f o $S_{(\Omega J)}$ et $S_{(\Omega J)}$ est une similitude indirecte de rapport 1. Donc le rapport de g est celui de f c'est à dire $\sqrt{3} + 1$.
 - •Méthode 2: g(J) = I alors le rapport de g est $\frac{\Omega I}{\Omega J} = \sqrt{3} + 1$.

- c) g(J) = I donc l'axe de g est la droite qui porte la bissectrice intérieure de l'angle $I \overset{\wedge}{\Omega} J$. Or $\left(\overrightarrow{\Omega J} \overset{\wedge}{,} \overrightarrow{\Omega D} \right) = \left(\overrightarrow{\Omega D} \overset{\wedge}{,} \overrightarrow{\Omega I} \right) [2\pi]$, alors la droite (ΩD) porte la bissectrice intérieure de l'angle $I \overset{\wedge}{\Omega} J$. Ainsi l'axe de g est la droite (ΩD) .
- d) g est la similitude indirecte de centre Ω , de rapport $\sqrt{3}$ +1 et d'axe (ΩD) donc la forme réduite de g est $g = h_{\left(\Omega, \sqrt{3}+1\right)}$ o $S_{\left(\Omega D\right)} = S_{\left(\Omega D\right)} o h_{\left(\Omega, \sqrt{3}+1\right)}$ h est l'homothétie de centre Ω , de rapport $\frac{\Omega I}{\Omega F} = \frac{\Omega I}{\Omega I} = \sqrt{3}$ +1. Donc g = h o $S_{\left(\Omega D\right)}$.

 $\underline{\text{Ou bien}} : g = f \text{ o } S_{(\Omega J)} = \text{hoRoS}_{(\Omega J)} = \text{hoS}_{(\Omega D)} \text{oS}_{(\Omega J)} \text{oS}_{(\Omega J)} = \text{hoS}_{(\Omega D)}.$

- e) K est un point de l'axe de g donc K' = g(K) = h o $S_{(\Omega D)}(K) = h(K)$.
 - * h(K) = K' et h(F) = I
 - * Le point K' est donc le point d'intersection de la droite (ΩK) avec la droite passant pat I et parallèle à la droite (FK).

Exercice 2

$$1) \ a) \ \overrightarrow{EC} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}; \ \overrightarrow{ED} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \ d'où \ \overrightarrow{EC} \wedge \overrightarrow{ED} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \ or \ \overrightarrow{AH} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \ donc \ \overrightarrow{EC} \wedge \overrightarrow{ED} = \overrightarrow{AH}.$$

- b) L'aire du triangle ECD est égale à : $\frac{1}{2} \| \overrightarrow{EC} \wedge \overrightarrow{ED} \| = \frac{1}{2} \| \overrightarrow{AH} \| = \frac{\sqrt{2}}{2}$.
- c) Le volume du tétraèdre AECD est : $v = \frac{1}{6} \left| \left(\overrightarrow{EC} \wedge \overrightarrow{ED} \right) . \overrightarrow{EA} \right|$. Avec $\overrightarrow{EA} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$, On trouve $v = \frac{1}{6}$.
- 2) a)• $C \in (AC) \cap (DCG)$ d'où $h(C) \in h(AC) \cap h(DCG)$. h(AC) = (AC) car le centre de h appartient à (AC) et h(DCG) est le plan passant

par M et parallèle au plan (DCG). Comme (AC) \cap h(DCG) = {N} alors h(C) = N.

- $C \in (AG) \cap (DCG)$ d'où $h(G) \in h(AG) \cap h(DCG)$. h(AG) = (AG) et $(AG) \cap h(DCG) = \{P\}$ alors h(G) = P.
- b) h(E) est le point d'intersection du plan h(ECD) avec la droite (AE)= h(AE). Donc h(E) = K. (h(ECD) est le plan parallèle à (ECD) et passant par M).
 Ainsi l'image par h du tétraèdre AECD est le tétraèdre AKMN.

Par la suite $V(AKMN) = \left(\frac{3}{4}\right)^3 x \frac{1}{6}$.

3) a) **Méthode 1**: une équation du plan (DCG) est y-1=0 d'où $d(I,(DCG))=\frac{1}{2}$, par conséquent : le plan (DCG) coupe la sphère (S) suivant un cercle (C) de rayon $r=\sqrt{R^2-d(I,(DCG))}=\sqrt{\frac{3}{4}-\frac{1}{4}}=\frac{\sqrt{2}}{2}.$

Le centre de (C) est le point H du plan (DCG) vérifiant $\overrightarrow{IH} = \alpha \overrightarrow{AD}, \ \alpha \in \mathbb{R}$.

(Le vecteur \overrightarrow{AD} est normal au plan (DCG)). On trouve $H\left(\frac{1}{2}, 1, \frac{1}{2}\right)$.

Méthode 2: Remarquons que les points D, C et G (qui ne sont pas alignés) appartiennent à (S), alors le plan (DCG) coupe la sphère (S) suivant le cercle (C) circonscrit au triangle DCG (qui est rectangle en C). Le centre du cercle (C) est donc le milieu du segment [DG]

c'est-à-dire le point de coordonnées $\left(\frac{1}{2},1,\frac{1}{2}\right)$ et le rayon de (C) est $\frac{DG}{2} = \frac{\sqrt{2}}{2}$.

- b) h(S) = (S'), h(DCG) = (MNP) et $(S) \cap (DCG) = (C)$. Donc le plan (MNP) coupe la sphère (S') suivant le cercle (C') = h(C).
 - (C') est un cercle de centre le point H' = h(H) et de rayon R' = $\frac{3}{4}$ R = $\frac{3\sqrt{2}}{8}$.

On trouve $H'\left(\frac{3}{8}, \frac{3}{4}, \frac{3}{8}\right)$.

Exercice 3

- 1) a) 53 est premier et x est un nombre premier avec 53 donc d'après Fermat : $x^{52} \equiv 1 \pmod{53}$. Le reste modulo 53 de x^{52} est égal à 1.
 - b) Soit k un entier naturel, on écrit $x^{52k+1} = (x^{52})^k \cdot x$ Comme $x^{52} \equiv 1 \pmod{53}$ alors $x^{52k+1} \equiv x \pmod{53}$.
- 2) $\left(2^9\right)^{29}=2^{9x29}$ et 9x29=261=1+52x5. Comme 2 est premier avec 53, alors d'après 1)b) $\left(2^9\right)^{29}\equiv 2 \left(\text{mod}53\right)$ d'où 2^9 est solution de l'équation (E_1) .
- 3) a) Soit $d=x \wedge 53$. d divise x donc d divise x^{29} et d divise 53 donc d divise 2. Car $x^{29} \equiv 2 \pmod{53}$. ($x^{29} \equiv 2 \pmod{53}$ alors il existe $p \in \mathbb{Z}$ tel que $x^{29} = 2 + 53p$ c'est à dire $x^{29} 53p = 2$) Donc d=1 ou d=2. Comme 2 ne divise pas 53 alors d=1.

b) x une solution de l'équation (E_1) . D'après 3)a) x est premier avec 53.

261=
$$5x 52 + 1 \text{ donc } x^{261} \equiv x \pmod{53} \text{ d'aprés 1) b}.$$

c)x est une solution de(E₁) alors $x^{29} \equiv 2 \pmod{53}$ d'où $\left(x^{29}\right)^9 \equiv 2^9 \pmod{53}$. (I)

Or 29 x 9 = 261 donc
$$(x^{29})^9 \equiv x^{261} \pmod{53}$$
. D'aprés : 3)b) $x^{261} \equiv x \pmod{53}$. (II)

(I)et (II) donnent $x \equiv 2^9 \pmod{53}$.

4) a)
$$2^9 = 512 = 9 \times 53 + 35 \text{ d'où } 2^9 \equiv 35 \pmod{53}$$

b) • Si x est une solution de (E_1) alors $x \equiv 2^9 \pmod{53}$, d'aprés 3)c)

• Si
$$x \equiv 2^9 \pmod{53}$$
 alors $x^{29} \equiv \left(2^9\right)^{29} \pmod{53}$

et comme $\left(2^9\right)^{29}\equiv 2\pmod{53}$ $\left(\text{car }2^9\text{ solution de }(E_1)\right)\text{alors }x^{29}\equiv 2\pmod{53}.$

D'où x solution de (E_1) .

Conclusion: x solution de $(E_1) \Leftrightarrow x \equiv 2^9 \pmod{53}$.

Or $2^9 \equiv 35 \pmod{53}$ d'aprés 4)a), d'où les solutions de l'équation (E₁) sont les entiers 53k + 35 avec $k \in \mathbb{Z}$.

- 5) a) $71 \times 3 53 \times 4 = 213 212 = 1$ donc (3, 4) solution de (E₂).
 - b) •Soit (u, v) une solution $de(E_2)$

Des égalités: 71 u - 53 v = 1 et 71 x 3 - 53 x 4 = 1 on déduit que 71 (u - 3) = 53 (v - 4)

Comme 71 \wedge 53 = 1 alors il existe $k \in \mathbb{Z}$ tel que v-4=71k (lemme de Gauss)

Ainsi
$$S_{\mathbb{Z}x\mathbb{Z}}\subset \left\{ \ \left(u\ ,\ 4+71\,k\right),\ \left(u,k\right)\in\mathbb{Z}^{2}\ \right\}$$

• Soit $(u, k) \in \mathbb{Z}^2$,

(u , 4+71 k) est une solution de(E₂)
$$\Leftrightarrow$$
 71 u – 53 (4+71 k) = 1
 \Leftrightarrow 71 u – 53 (4+71 k) = 71 x 3 - 53 x 4
 \Leftrightarrow 71 u – 53 · 71 k = 71 x 3
 \Leftrightarrow u – 53 · k = 3
 \Leftrightarrow u = 3+53 k

Par la suite $\left\{ \ \left(u \ , \ 4+71 \ k \right), \ \left(u,k \right) \in \mathbb{Z}^2 \ \right\} \subset S_{\mathbb{Z} \times \mathbb{Z}}$ si et seulement si $u=3+53 \ k$.

Conclusion : $S_{\mathbb{Z}x\mathbb{Z}} = \left\{ (3+53 \text{ k , } 4+71 \text{ k}), \text{ k} \in \mathbb{Z} \right\}$

Remarque :On pourra appliquer le lemme de gauss deux fois : On exprime u et v en fonction de k et k' puis on vérifie que k=k'.

6) Soit $x \in \mathbb{Z}$,

$$\begin{cases} x \equiv 34 \pmod{71} \\ x^{29} \equiv 2 \pmod{53} \end{cases} \Leftrightarrow \begin{cases} x \equiv 34 \pmod{71} \\ x \equiv 35 \pmod{53} \end{cases} \Leftrightarrow \begin{cases} x = 34 + 71 u, \quad u \in \mathbb{Z} \\ x = 35 + 53 v, \quad v \in \mathbb{Z} \end{cases}.$$

Alors 71 u - 53 v = 1. Donc (u, v) est solution de l'équation (E_2).

Par la suite il existe $k \in \mathbb{Z}$ tel que $\begin{cases} u = 3 + 53 \ k \\ v = 4 + 71 \ k \end{cases}$

Ainsi
$$x = 34 + 71(3+53 k) = 247 + 3763 k, k \in \mathbb{Z}.$$

réciproquement:

si x = 247 + 3763 k, k
$$\in \mathbb{Z}$$
 alors

•
$$x = 71 \times 3 + 34 + 71x(53 \text{ k}) \equiv 34 \pmod{71}$$

•
$$x = 35 + 53 \times 4 + 53 \times (71 \text{ k}) \equiv 35 \pmod{53}$$
. On sait que $2^{29} \equiv 35 \pmod{53}$.

Conclusion : l'ensemble des solutions du système est $S_{\mathbb{Z}}=\left\{ \ 247+3763\ k,\ k\in\mathbb{Z}\ \right\} .$

Exercice 4

1) •
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

$$\bullet \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{e^x - 1}}{x} = \lim_{x \to +\infty} \sqrt{\frac{e^x}{x^2} - \frac{1}{x^2}} = +\infty.$$

 $\left(C_{f}\right)$ admet au voisinage de $+\infty$, une branche parabolique de direction $\left(0,\ \vec{j}\right)$.

$$2) \ a) \lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{\sqrt{e^x - 1}}{x} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} \cdot \sqrt{\frac{e^x - 1}{x}} = +\infty \ \text{car} \ \lim_{x \to 0^+} \frac{e^x - 1}{x} = 1 \ \text{et} \ \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty.$$

 $\begin{array}{l} \bullet \ \ \text{lim} \ \frac{f\left(x\right)}{x} = \ \ \text{lim} \ \frac{f\left(x\right) - f\left(0\right)}{x - 0} = +\infty \ \ \text{donc f n'est pas dérivable à droite en 0} \ . \\ \text{La courbe } \left(C_f\right) \ \ \text{admet au point d'abscisse 0 une demi-tangente vertivale.} \end{array}$

b) Pour tout
$$x \in \left]0,+\infty\right[, f'(x) = \frac{e^x}{2\sqrt{e^x - 1}}$$
.

En effet: la fonction dérivée de $u: x \mapsto e^x - 1$ est la fonction $u': x \mapsto e^x$ et $\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$. (u est dérivable sur]0,+ ∞ [et u(x) >0, $\forall x \in$]0,+ ∞ [)

d) f (ln(2)) = 1 et la fonction f est strictement croissante sur $[0, +\infty]$:

$$x \in \left[0, \ln 2\right] \Leftrightarrow \ f\left(x\right) \le 1 \ \Leftrightarrow \ \sqrt{e^x - 1} \le 1 \Leftrightarrow \sqrt{e^x - 1} \times \sqrt{e^x - 1} \le 1 \times \sqrt{e^x - 1}$$
$$\Leftrightarrow e^x - 1 \le \sqrt{e^x - 1}$$

(On sait que $\sqrt{e^x - 1} \ge 0$ pour tout $x \ge 0$).

3) On vérifie que pour tout x]0,+ ∞ [, f''(x) = $\frac{e^x(e^x-2)}{4(\sqrt{e^x-1})^3}$.

Х	0	In(<u>(2)</u> +∞
f"(x)			
		- ¢) +

f "(x) s'annule en ln(2) en changeant de signe donc le point B(ln(2),1) est un point d'inflexion de (C_f) .

5

- 4) a) D'aprés 2) d): $x \in [0, \ln 2] \Leftrightarrow e^{x} 1 \le f(x)$. Par la suite:
 - si $x \in [0,ln2]$ alors alors (C_f) au-dessus de Γ .
 - si $x \in [ln(2), +\infty[$ alors (C_f) au-dessous de Γ .

(Remarque: $(C_f) \cap \Gamma = \{B\}$)

5) a) La fonction g est dérivable sur $\left[0, \frac{\pi}{2}\right[$.

Pour tout
$$x \in \left[0, \frac{\pi}{2}\right]$$
, $g'(x) = 1 + \tan^2(x) > 0$

donc g est strictement croissante sur $\left[0, \frac{\pi}{2}\right[$.

Ainsi g réalise une bijection de $\left[0,\frac{\pi}{2}\ \right[\ \text{sur g}\left[\left[0,\frac{\pi}{2}\ \right]\right].$

De la continuité g sur $\left[0,\frac{\pi}{2}\right[$ et des égalités g(0)=0 et $\lim_{x\mapsto\left(\frac{\pi}{2}\right)^-}g(x)=+\infty$.

On déduit que $g\left(\left[0,\frac{\pi}{2}\right]\right) = \left[0,+\infty\right]$.

- b) $g^{-1}(0) = 0$ et $g^{-1}(1) = \frac{\pi}{4}$. Car g(0) = 0 et $g(\frac{\pi}{4}) = 1$.
- c) Pout tout $x \in \left[0, \frac{\pi}{2}\right[$, $g'(x) \neq 0$ alors g^{-1} est dérivable sur $g\left(\left[0, \frac{\pi}{2}\right]\right) = \left[0, +\infty\right[$. Soit $x \in \left[0, +\infty\right[$ et $y \in \left[0, \frac{\pi}{2}\right[$, $\left(g^{-1}(x) = y\right) \Leftrightarrow \left(g(y) = x\right) \Leftrightarrow \left(tany = x\right)$, ainsi :

$$\text{pour tout } x \in \left[0, +\infty\right[, \ \left(g^{-1}\right)'(x) = \frac{1}{g'(g^{-1}(x))} = \frac{1}{g'(y)} = \frac{1}{1 + \left(tany\right)^2} = \frac{1}{1 + x^2}.$$

- $d) \lim_{x \to 0^+} \frac{g^{-1}(x)}{x} = \lim_{x \to 0^+} \frac{g^{-1}(x) g^{-1}(0)}{x 0} = \left(g^{-1}\right)'(0) = 1.$
- 6) a) f est continue sur $[0,+\infty[$ donc F est la primitive de f sur $[0,+\infty[$ qui s'annule en 0. (F(0) = 0) ainsi pour tout $x \in [0,+\infty[$ F'(x) = f(x).
 - $G(x) = 2(f(x) (g^{-1}o f)(x)).$

G est dérivable sur $\left]0,+\infty\right[$ et pour tout $x\in\left]0,+\infty\right[,$

$$G'(x) = 2\bigg[f'(x) - f'\big(x\big) \cdot \Big(g^{-1}\big)'\big(f\big(x\big)\big)\bigg] = 2f'(x)\bigg[1 - \Big(g^{-1}\big)'\big(f\big(x\big)\big)\bigg]$$

$$=2f'(x)\Biggl(1-\frac{1}{1+\bigl(f\bigl(x\bigr)\bigr)^2}\Biggr)=2f'(x)\Biggl(1-\frac{1}{1+e^x-1}\Biggr)=2\cdot\frac{e^x}{2\sqrt{e^x-1}}\Biggl(\frac{e^x-1}{e^x}\Biggr)=\sqrt{e^x-1}=f\bigl(x\bigr).$$

Donc F'(x) = G'(x) pour tout $x \in [0, +\infty)$.

b) Pour tout $x \in]0,+\infty[$, F'(x) = G'(x),

donc il existe $k\in\mathbb{R}$ tel que ,pour tout $x\in\left]0,+\infty\right[,\ F(x)=G(x)+k$.

Les fonctions F et G sont continues en 0 et F(0) = G(0) alors k = 0.

(En effet $\lim_{x\to 0^+} F(x) = \lim_{x\to 0^+} G(x) + k$ c'est à dire F(0) = G(0) + k)

Conclusion: pour tout $x \in [0, +\infty[$, F(x) = G(x).

c) Pour tout $x \in [0, ln(2)]$, $e^{x} -1 \le f(x)$.

$$A = \int_0^{\ln(2)} \! \left(f(t) - \left(e^t - 1 \right) \! \right) \! dt = G \! \left(\ln(2) \right) - \left[e^t - t \right]_0^{\ln(2)} = 2 \! \left(1 - g^{-1} \! \left(1 \right) \right) - \left(2 - \ln(2) - 1 \right) . D'où \ A = 1 + \ln 2 - \frac{\pi}{2} .$$

7)a)La fonction G_n est dérivable sur $]ln(n),+\infty[$ et pour tout $x\in]ln(n),+\infty[$,

$$G'_{n}\left(x\right) = 2 \left(\left(f_{n}\right)'(x) \right. \\ \left. - \sqrt{n} \right. \\ \left. \frac{\left(f_{n}\right)'(x)}{\sqrt{n}} \cdot \left(g^{-1}\right)'\left(\frac{f_{n}\left(x\right)}{\sqrt{n}}\right) \right) = 2 \left(f_{n}\right)'(x) \\ \left. 1 - \sqrt{n} \right. \\ \left. \frac{1}{1 + \left(\frac{f_{n}\left(x\right)}{\sqrt{n}}\right)^{2}} \right) \\ \left.$$

$$= 2 \Big(f_n\Big)' \Big(x \Big) \left(1 \ - \ \frac{1}{1 + \frac{e^x - n}{n}} \right) = 2 \frac{e^x}{2 \sqrt{e^x - n}} \left(\ \frac{e^x - n}{e^x} \right) = \sqrt{e^x - n} = f_n \left(x \right).$$

 $\text{La fonction } u: x \mapsto \int_{ln(n)}^{x} f_n \left(t \right) dt \text{ est dérivable } \text{sur} \big[ln(n), +\infty \big[\text{ et } u'(x) = f_n \left(x \right).$

(Voir l'explication en 6)a))

Donc pour tout $x \in [ln(n), +\infty[$, $G'_n(x) = u'(x)$.

Alors il existe $k \in \mathbb{R}$, tel que pour tout $x \in [ln(n), +\infty[, G_n(x) = u(x) + k]$.

 $\text{comme } \lim_{x \to lnn} G_n\left(x\right) = \lim_{x \to lnn} \left[\ u\left(x\right) + k \right], \text{ de plus } G_n \text{ et u sont continues en ln(n)},$

alors $G_n(Inn) = u(Inn) + k$ et puisque $G_n(In(n)) = u(In(n)) = 0$ on trouve k = 0.

Conclusion: Pour tout $n \ge 2$ et pour tout $x \in \left[ln(n), +\infty\right[, \ G_n\left(x\right) = \int_{ln(n)}^x f_n\left(t\right) \ dt$.

b) Soit $n \geq 2$; n > 1 alors -n < -1 d'où $e^{X} - n < e^{X} - 1$.

Comme $n \ge 2$ et $x \ge \ln(n)$, $e^x - n \ge 0$ et $e^x - 1 \ge 0$.

D'où pour tout $n \ge 2$ et pour tout $x \ge \ln(n)$, $\sqrt{e^x - n} < \sqrt{e^x - 1}$.

Or d'après 4)a), $f(x) \le e^{x}-1$ pour tout $x \in [\ln(n), +\infty[$, car $(\ln(n) \ge \ln(2))$.

Donc $f_n(x) \le e^x-1$, pour tout $n \ge 2$ et pour tout $x \in [ln(n), +\infty[$.

$$\begin{split} c) \; A_n &= \int_{ln(n)}^{ln(n+1)} \! \left(\! \left(e^x - 1 \right) \! - f_n \left(x \right) \! \right) \, dx \; = \; \left[e^x - x \right]_{ln(n)}^{ln(n+1)} - \left[G_n \left(x \right) \right]_{ln(n)}^{ln(n+1)} \\ &= \; \left(\; n + 1 - ln(n+1) - n + ln(n) \; \right) - G_n \left(ln(n+1) \right) \\ &= \; 1 + ln \! \left(\frac{n}{n+1} \right) - 2 \! \left(1 - \sqrt{n} \; g^{-1} \! \left(\frac{1}{\sqrt{n}} \right) \right) = 2 \; \sqrt{n} \; g^{-1} \! \left(\frac{1}{\sqrt{n}} \right) + ln \! \left(\frac{n}{n+1} \right) - 1. \end{split}$$

d) •
$$\lim_{n \to +\infty} \ln \left(\frac{n}{n+1} \right) = 0$$
 car $\lim_{n \to +\infty} \frac{n}{n+1} = 1$ et $\lim_{x \to 1} \ln(x) = 0$

•
$$\lim_{n \to +\infty} \sqrt{n} g^{-1} \left(\frac{1}{\sqrt{n}} \right) = \lim_{n \to +\infty} \frac{g^{-1} \left(\frac{1}{\sqrt{n}} \right)}{\frac{1}{\sqrt{n}}} = 1 \quad \text{car } \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \quad \text{et} \quad \lim_{x \to 0} \frac{g^{-1}(x)}{x} = 1 \quad \text{d'aprés 5)d}.$$

$$\mbox{D'où } \lim_{n \mapsto +\infty} \mbox{A}_n = 2 - 1 = 1.$$