貞享暦の日行盈縮と定朔

須賀 隆1

1. はじめに

貞享暦は、渋川春海が作成した初めての日本製の暦法であり、貞享2年(1685)から宝暦2年(1752)まで使用された。 筆者は昨年『暦の大事典』(2014)の貞享暦に関するコラムで、貞享暦の暦定数に関し、

貞享暦は授時暦の暦定数(朔望月・近点月・交点月)を小数点以下5桁未満四捨五入して用い、回帰年は授時暦消長法の一年分の補正のみ行った。<中略>冬至や定朔の時刻・日月食の推算については、基準とする経緯度を大都(北京)から京都に改め、太陽の運行の遅速の計算で太陽の近地点が冬至点から約6度ずれたことを考慮に入れた。

と解説した。要するに授時暦に対する改良点としては、里 差(基準経度のずれ)と近地点の移動(近地点と冬至点のず れ)の2点を考慮したことのみに留めたのである。

しかし、暦定数を詳細に分析してみると、この2点にと どまらない改良が加えられていることがわかる。

2. 日行盈縮

授時暦は太陽と月の運動を計算するのに招差法と呼ばれる三次多項式を用いている。日本製の暦法も貞享暦と宝暦暦は同じく三次多項式を用いて太陽と月の運動を計算している。下表にこれらの暦法の暦定数を示す²。

項番	曆定数	授時曆	貞享曆	寶曆曆	修正寶曆曆
1	曆元	至元 18 年(1281)	貞享元年(1684)	寶曆4年(1754)	寶曆4年(1754)
2	曆元前甲子	2188871	2336111	2361671	2361671
3	消長周期/年	100	1	1	1
4	周天	365. 2575000	365. 2566960	365. 2565560	365. 2566260
5	歳差	0. 0150000	0. 0150000	0. 0150000	0. 0150000
6	曆應	概念なし	6. 4450000	6. 4550000	7. 4200000
7	歳周	365. 2425000	365. 2416960	365. 2415560	365. 2416260
8	氣應	55. 0600000	7. 6900000	14. 5360000	14. 6810000
9	盈初縮末限	88. 9092250	89. 2539200	89. 2538850	89. 2539025
10	1次(定差)	5133200	4360000	4360000	4360000
11	2次(平差)	-24600	-20000	-20000	-20000
12	3次(立差)	-31	-34	-34	-34
13	縮初盈末限	93. 7120250	93. 3669280	93. 3668930	93. 3669105
14	1次(定差)	4870600	4119800	4119800	4119800
15	2次(平差)	-22100	-17640	-17640	-17640
16	3次(立差)	-27	-31	-31	-31
17	朔實	29. 5305930	29. 5305900	29. 5305900	29. 5305900
18	閏應	20. 1850000	2. 7790000	25. 6540000	25. 8200000
19	轉終	27. 5546000	27. 5546000	27. 5546000	27. 5546000
20	轉應	13. 1904000	22. 7200000	18. 8800000	19. 3070000
21	遅初速末限	6. 8886500	7. 2653420	7. 2653420	7. 2653420
22	1次(定差)	11110000	11731000	11731000	11731000
23	2次(平差)	-28100	-37000	-37000	-37000
24	3次(立差)	-325	-400	-400	-400
25	速初遅末限	6. 8886500	6. 5119580	6. 5119580	6. 5119580
26	1次(定差)	11110000	13240000	13240000	13240000
27	2次(平 差)	-28100	-52000	-52000	-52000
28	3次(立差)	-325	-500	-500	-500

この表中の項番9-16の8行が本節の主題である。

招差法では太陽の真位置(真近点角 v)と平均位置(平均 近点角 M)の差(中心差 v-M)を、一億分の一度³を単位として、

定差×日数 + 平差×日数² + 立差×日数³

とする。ただし近地点の前後の盈初縮末限以内の日数では、 上記式中の日数は近地点通過の瞬間からの日数とし、定差・平差・立差は表の盈初縮末限に続く項番 10-12 の 3 値を用いる。逆に、遠地点の前後の縮初盈末限以内の日数では、上記式中の日数は遠地点通過の瞬間からの日数とし、定差・平差・立差は表の縮初盈末限に続く項番 14-16 の 3 値を用いる。 暦應は近地点と冬至点のずれを度数で表現したものであり、授時暦では 0 とみなされる。

太陽の真位置(v)と平均位置(M)の差が最大になるのは

授時暦では、

M = 89.27 日 → v - M = 2.367 度

貞享暦では、

M = 88.86 日 → v - M = 2.027 度

である。

一方、太陽の運行をケプラーの楕円運動と考えると、E を 離心近点角、e を軌道の離心率、r を天体間の距離、a を 軌道の半長径として、

 $E - e \sin E = M$ $r \cos v = a(\cos E - e)$ $r \sin v = a(1 - e^2)^{1/2} \sin E$

これらから r, a, E を消去して、 υ - M を M でフーリエ 展開すると、

 υ - M = 2e sin M + 2e² sin 2M + \cdots

地球軌道の離心率 e=0.01671 を使って 5 、この極値を求めると、

 $M = 88.17 \, \text{度} \rightarrow \upsilon - M = 1.916 \, \text{度}$

である。貞享暦は授時暦と比較して日行盈縮の近似精度が大幅に向上している。

貞享暦のさらなる改暦を目指した徳川吉宗は、貞享暦の 誤差を見出すため中根元圭に命じて享保 17 年(1732)に伊 豆6で日出時限および太陽最高点を実測させたが、中根元 圭は「貞享暦と差異無き」と復命した7。確かに本節の検 討を踏まえると、当時の観測精度では差異を見出すのは難 しかったのではないかと推察される。

3. 定朔

幾何学的には、平朔と定朔の日時の差は、<u>定朔日時</u>で厳密に、

月の中心差 - 太陽の中心差

月の平均黄経の時間微分 - 太陽の平均黄経の時間微分

である⁸(以下上記を[定朔日時による計算式]と呼ぶ)。しかし、この式は求めたい定朔日時自体を独立変数とするので、そのまま利用することが難しい。

そこで授時暦では、平朔と定朔の日時の差を、定朔日時ではなく平朔日時で、

月の中心差 - 太陽の中心差

月の真位置の時間微分 - 太陽の真位置の時間微分

(以下上記を[平朔日時による計算式] と呼ぶ)と近似し、さらに分母第2項である太陽の真位置の時間微分を無視して計算している⁹。

実際の貞享暦の定朔の日付を[平朔日時による計算式]で 検算したところ、分母第2項を省略しない方がより一致す る¹⁰。さらに[平朔日時による計算式]ではなく[定朔日時 による計算式]を用いて逐次近似を行った可能性もある¹¹。 貞享暦は授時暦と比較して定朔の計算方法も改良されて

4. おわりに

いるのである。

第2節・第3節の分析のとおり、貞享暦は事典的な理解で認識されている以上に、授時暦に対して細かな改良がなされていることがわかる。貞享暦の歴史的評価はこれらの改良をも考慮にいれて行っていく必要があるのではないだろうか。

$^{\scriptscriptstyle 1}$ SGB02104@nifty.com

文献調査の不足のため本稿と類似の先行研究の見落としがありえる。その場合ご容赦願いたい。

- 2 室暦3-4年の暦定数は文献が残っていない。
- 3 「度」は全円周を1回帰年の日数で割った角度。このため以下の式のいくつかで「日」と「度」を同一視している
- 4 第 2 節は藪内清・中山茂『授時暦―訳注と研究―』 (2006)pp.11-12 を参考にしている。
- 5 これは現代の値。時代により若干変動するが論旨には影響ない。
- 6 太陽が水平線から昇り水平線に沈む場所として伊豆 が選定されたのではないだろうか。
 - 7能田忠亮『暦学史論』(1948)pp.221-222.
- 8 定朔日時では中心差の差と平均黄経の差が打ち消す 為。http://suchowan.at.webry.info/201403/article_21.html 9 広瀬秀雄「授時暦と大津神社暦算額」数学史研 究,82(1979),pp.27-50.
 - 10 ずれが14例から3例に減少する。

http://suchowan.at.webry.info/201501/article_7.html

http://suchowan.at.webry.info/201403/article_24.html