Lógica Primeira Ordem

- Proposições passam a predicados;
- Permitem quantificadores e que as variáveis variem perante o domínio;
- Conjuntos e Relações;
- M = (D,I)
 - 1. M -> Modelo
 - 2. D -> Domínio (não vazio) de todas as interpretações
 - 3. I -> Interpretação de constantes, funções e predicados

Alloy	Math
$x_1 \rightarrow \dots \rightarrow x_n \text{ in } P$	$P(x_1,\ldots,x_n)$
$x_1 ->> x_n \text{ not in } P$	$\neg P(x_1,\ldots,x_n)$
x = y	x = y
x != y	$\neg(x=y)$
$not\ \boldsymbol{\phi}$	$ eg oldsymbol{\phi}$
$oldsymbol{\phi}$ and $oldsymbol{\psi}$	$\boldsymbol{\phi} \wedge \boldsymbol{\psi}$
$oldsymbol{\phi}$ or $oldsymbol{\psi}$	$\phi \vee \psi$
$oldsymbol{\phi}$ implies $oldsymbol{\psi}$	$\boldsymbol{\phi} \to \boldsymbol{\psi}$
$all x : P \mid \phi$	$\forall x \cdot P(x) \rightarrow \phi$
some $x:P \mid \phi$	$\exists x \cdot P(x) \land \phi$

univ -> Topo none -> Set vazio iden -> Id

Alloy	Math
ФіпΨ	Φ⊆Ψ
Φ = Ψ	$\Phi=\Psi$
lone Φ	$ \Phi \leq 1$
$\text{some }\Phi$	$ \Phi \ge 1$
по Ф	$ \Phi = 0$
one Φ	Φ = 1

17	
Alloy	Math
Φ + Ψ	Φ∪Ψ
ΦεΨ	$\Phi \cap \Psi$
Φ - Ψ	Φ\Ψ
Φ -> Ψ	$\Phi \times \Psi$
Φ.Ψ	Φ.Ψ
А<: Ф	Α∢Ψ
Ф:>А	$\Phi \triangleright A$
~ Ф	Ф°
^ Ф	Φ^+
* Ф	Φ*
$\frac{\{x:A\mid \phi\}}{}$	$\{x\mid x\in A\land \phi\}$

abstract sig A{} -> Não existe um A que não seja uma extensão. Extensões de assinaturas são sempre disjuntos.

Erros -> Slide nº3

Fun -> Servem para visualizar propriedades específicas.

LTL (Linear Temporal Logic)

- Fórmulas interpretadas por passos
- Tanto operadores de futuro como de passado
- Se uma fórmula LTL é satisfazível, então é satisfeita por pelo menos um "lasso trace" -> representação de traços infinitos usando traços finitos.

Electrum	Math	Meaning
always ϕ	G <i>φ</i> □ <i>φ</i>	$oldsymbol{\phi}$ is always true from now on
eventually ϕ	F ϕ \Diamond ϕ	$oldsymbol{\phi}$ will eventually be true
after $oldsymbol{\phi}$	$X\phi \circ \phi$	$oldsymbol{\phi}$ will be true in the next state
$oldsymbol{\phi}$ until $oldsymbol{\psi}$	$\phi \cup \psi$	ψ will eventually be true and ϕ is true until then
ϕ releases ψ	ϕ R ψ	ψ can only be false after ϕ is true
Electrum	Math	Meaning
Electrum historically ϕ	Мath Н ф	Meaning $oldsymbol{\phi}$ was always true
10.00	w	
historically ϕ	Н ф	ϕ was always true
historically ϕ once ϕ	н <i>ф</i> О <i>ф</i>	ϕ was always true ϕ was once true

Bounded Model Checking (LTL)

- Traços infinitos;
- Traços infinitos representados por "lasso trace";
- Para verificar uma fórmula, tenta-se encontrar um contra-exemplo;
- Relações mutáveis passam a K relações estáticas;
 - o Fórmulas G (Always), F(eventually), são "desenroladas";
 - Fórmulas X (After) verifica-se o estado atual e o imediatamente a seguir;

Propriedades Safety

- Algo de mau nunca irá acontecer;
- Basta verificar os prefixos (cuja continuação violam a propriedade) para verificar safety;
- Serve para limitar os comportamentos indesejados nos modelos;

```
assert safety{
    always ....
}
```

Propriedades Liveness

- Algo de bom irá eventualmente acontecer;
- Muito mais difícil de verificar comparativamente à safety, pois é necessário verificar todo o traço.

```
assert liveness{
fairness implies eventually ....
}
```

Propriedade Fairness

- Necessária para verificar propriedades de liveness;
- Exclui traços onde um evento fica continuamente disponível mas nunca ocorre.
 - Strong Fairness -> Infinitely Often
 - Weak Fairness -> Permanently

Strong fairness (always eventually enabled) implies (always eventually happens)

```
Weak fairness
(eventually always enabled) implies (always eventually happens)
always ((always enabled) implies (eventually happens))
```

util/ordering[_]

- next
- first
- last
- prev (~next)
- nextes
- prevs

Models of Time

- Linear Model of Time (LTL) (Ellectrum)
 - o Tempo (lógico) é linearizado;
 - o Sistema é representado por um conjunto infinito de traços;

- Branching Model of Time (CTL Computational Tree Logic)
 - Em cada estado da árvore são mostradas todas as possibilidades a partir dos nodos;
 - Sistema é representado por um conjunto infinito de árvores de computação.

Operator	Meaning
Gφ □ φ	$oldsymbol{\phi}$ is always true from now on
F ϕ \Diamond ϕ	$oldsymbol{\phi}$ will eventually be true
$X \phi \circ \phi$	$oldsymbol{\phi}$ will be true in the next state
$oldsymbol{\phi} \cup oldsymbol{\psi}$	$oldsymbol{\psi}$ will eventually be true and $oldsymbol{\phi}$ is true until then
ϕ R ψ	ψ can only be false after ϕ is true

Operator	Meaning
Α <i>φ</i>	ϕ is valid in all paths
E $oldsymbol{\phi}$	$oldsymbol{\phi}$ is valid in some path

Slide 11 -> CTL Model Checking Slide 12 -> LTL Model Checking