Teste z para comparação de duas proporções

Um teste z de duas amostras é usado para testar a diferença entre duas proporções p_1 e p_2 quando uma amostra é selecionada aleatoriamente de cada população.

Por exemplo, suponha que você queira determinar se a proporção de estudantes universitários do sexo feminino que receberam diploma de bacharel em quatro anos é diferente da proporção de estudantes universitários do sexo masculino que receberam diploma de bacharel em quatro anos. As condições a seguir são necessárias para usar um teste z para testar tal diferença.

- 1. As amostras devem ser selecionadas aleatoriamente.
- 2. As amostras devem ser independentes.
- 3. As amostras devem ser grandes o suficiente para usar uma distribuição normal de amostragem. Isto é, $n_1p_1 \ge 5$, $n_2p_2 \ge 5$ e $n_2q_2 \ge 5$. Para verificar tal condição a partir de dados amostrais deve-se substituir p_1 e p_2 por \bar{p} e q_1 e q_2 por $(1 \bar{p})$.

Notação utilizada:

 n_1 = tamanho da 1^a amostra

 n_2 = tamanho da 2^a amostra

x₁ = número de sucessos da 1^a amostra

 x_2 = número de sucessos da 2^a amostra

 \hat{p}_1 = proporção de sucessos da 1ª amostra

 \hat{p}_2 = proporção de sucessos da 2ª amostra

Hipóteses estatísticas:

H_0 : $p_1 = p_2$	versus	H_A : $p_1 \neq p_2$	→ Hipótese bilateral
---------------------	--------	------------------------	----------------------

 H_0 : $p_1 \le p_2$ versus H_A : $p_1 > p_2$ \rightarrow Hipótese unilateral à direita H_0 : $p_1 \ge p_2$ versus H_A : $p_1 < p_2$ \rightarrow Hipótese unilateral à esquerda

Estatística de teste:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\overline{p}\left(1 - \overline{p}\right)}{n_1} + \frac{\overline{p}\left(1 - \overline{p}\right)}{n_2}}}$$

onde, a estimativa ponderada para p_1 e p_2 pode ser obtida por:

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

Valor p:

"Quantifica o erro cometido ao rejeitar a hipótese nula"

Tipo de teste	Valor p		
Unilateral direito	Área à direita da estatística de teste		
Bilateral	2 x a área à direita do módulo da		
Dilateral	estatística de teste.		
Unilateral esquerdo	Área à esquerda da estatística de teste		

Concluindo um teste de hipótese utilizando o valor p:

- Se valor p > α, então aceitamos H₀;
- Se valor p ≤ α, então rejeitamos H₀.

Intervalo de confiança:

$$(\hat{p}_1 - \hat{p}_2) \pm \left(z_{\frac{1-\alpha}{2}}\right) \cdot \sqrt{\frac{\overline{p}(1-\overline{p})}{n_1} + \frac{\overline{p}(1-\overline{p})}{n_2}}$$

Conclusão utilizando o intervalo de confiança:

Por meio desse intervalo de confiança é possível obter duas respostas:

✓ Verificar se as duas proporções são iguais ou diferentes:
 Podemos reescrever as hipóteses estatísticas da seguinte maneira:

$$H_0$$
: $p_1 - p_2 = 0$ versus H_1 : $p_1 - p_2 \neq 0$

Ou seja, se o intervalo contém 0 (zero) há indícios de que as duas proporções são iguais, caso contrário, se o intervalo não contém 0 (zero) pode-se concluir com $100(1-\alpha)\%$ de confiança que as duas proporções são diferentes.

- ✓ Se o intervalo de confiança indicar que as duas proporções são diferentes é possível verificar qual proporção é maior ou menor:
 - Se os limites do intervalo do confiança apresentam sinal negativo (-) pode-se dizer que a proporção da 2ª amostra é maior do que a proporção da 1ª amostra.
 - ° Ao contrário, se os limites do intervalo apresentarem sinal positivo (+) concluise que a proporção da 1ª amostra é maior que a proporção da 2ª amostra.

Exemplo

Uma empresa que presta serviços de assessoria econômica a outras empresas está interessada em comparar a taxa de reclamações sobre os seus serviços em dois dos seus escritórios em duas cidades diferentes. Suponha que a empresa tenha selecionado aleatoriamente 134 serviços realizados pelo escritório da cidade A e foi constatado que em 12 deles houve algum tipo de reclamação. Já do escritório da cidade B foram selecionados 145 serviços e 18 receberam algum tipo de reclamação. A empresa deseja saber se estes resultados são suficientes para se concluir que o escritório A apresenta uma taxa de aprovação maior que o escritório B. Use $\alpha = 0,1$.

Podemos observar que o parâmetro a ser comparado é a <u>taxa de aprovação</u> dos serviços de dois escritórios localizados em duas cidades diferentes, ou seja, duas proporções. Vamos considerar a cidade A como a 1ª amostra e a cidade B como a 2ª amostra. Os dados da pesquisa disponíveis no enunciado são:

 $n_1 = 134$ (tamanho da 1^a amostra)

 $n_2 = 145$ (tamanho da 2^a amostra)

 $x_1 = 134 - 12 = 122$ (número de sucessos da 1^a amostra)

 $x_2 = 145 - 18 = 127$ (número de sucessos da 2^a amostra)

 \hat{p}_1 = 122/134 = 0,9104 (proporção de sucessos da 1ª amostra)

 \hat{p}_2 = 127/145 = 0,8759 (proporção de sucessos da 2ª amostra)

A questão a ser respondida é: "Os resultados obtidos permitem concluir que o escritório A apresenta uma taxa de aprovação maior que o escritório B?". A partir daí as hipóteses estatísticas podem ser elaboradas:

$$H_0$$
: $p_1 \le p_2$ versus H_A : $p_1 > p_2$ \rightarrow Hipótese unilateral à direita

Calculando a estimativa ponderada para p_1 e p_2 :

$$\bar{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2} = \frac{134 \times 0.9104 + 145 \times 0.8759}{134 + 145} = \frac{248.9991}{279} = 0.8925$$

Agora obtemos a estatística de teste:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\bar{p}\left(1 - \bar{p}\right)}{n_1} + \frac{\bar{p}\left(1 - \bar{p}\right)}{n_2}}} = \frac{0,9104 - 0,8759}{\sqrt{\frac{0,8925(1 - 0,8925)}{134} + \frac{0,8925(1 - 0,8925)}{145}}} = 0,9299 \approx 0,93$$

Finalmente obtemos o valor p para o teste estatístico:

Utilizando a tabela da distribuição normal padrão temos que a área à direita de 0,93 é (0,5 - 0,3238) = 0,1762 e, consequentemente esse será o valor p. Interpretando o valor p: Se rejeitarmos H_0 , ou seja, se afirmarmos que o escritório A apresenta uma taxa de aprovação maior que o escritório B estamos cometendo um erro de 0,1762. Como o valor p é maior do que o nível de significância (0,1762 > 0,1) NÃO devemos rejeitar a hipótese nula, ou seja, o escritório A apresenta uma taxa de aprovação <u>inferior ou igual</u> a do escritório B.

Exercícios

1. Uma firma especializada em declarações de imposto de renda está interessada em comparar a qualidade do trabalho em dois de seus escritórios regionais (Sul e Sudeste). Ao selecionar aleatoriamente amostras de declarações do imposto de renda preenchidas em cada escritório e verificar a precisão amostral das declarações, a firma será capaz de estimar a proporção das declarações preenchidas erroneamente em cada escritório. A firma está interessada em verificar se a proporção de declarações preenchidas erroneamente é diferente nos dois escritórios. Use α = 0, 03.

Escritório	Tamanho	Declarações preenchidas
regional	amostral	erroneamente
Sul	240	21
Sudeste	350	59

2. Em um estudo 250 homens adultos e 200 mulheres adultas, ambos usuários de internet, foram selecionados aleatoriamente. Entre os homens 10% disseram realizar compras online pelo menos uma vez no mês. Entre as mulheres, esse percentual foi de 30%. Teste a afirmação de que a proporção de homens usuários de internet que compram pelo menos uma vez no mês é inferior a de mulheres. Utilize um nível de significância de 7%

Gabarito:

1. Hipótese bilateral

$$\bar{p} = 0.1356$$
 $z = 2.8258$

Valor p = 2x(0,5-0,4977)=0,0046

Como valor p < α , podemos rejeitar a hipótese nula, ou seja, a proporção de declarações preenchidas erroneamente difere entre os dois escritórios.

Intervalo de confiança:

$$z_{\frac{1-\alpha}{2}}$$
 =2,17

[-0,1434 ; -0,0188]

Como o intervalo de confiança não contém o zero, podemos rejeitar a hipótese nula. Além disso, pode-se dizer que a proporção de declarações preenchidas erroneamente pelo escritório da regional sudeste é significativamente maior do que no escritório da regional sul, com um nível de 97% de confiança.

2. Hipótese unilateral esquerda

 $\bar{p} = 0.1356$

z = 2,8258

Valor p = 2x(0,5-0,4977)=0,0046

Como valor p < α , podemos rejeitar a hipótese nula. Conclui-se com 7% de significância que a proporção de homens usuários de internet que compram pelo menos uma vez no mês é inferior a de mulheres

DISTRIBUIÇÃO NORMAL PADRÃO

Z	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998