Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	1/9
--------------------------------------	--	-----

1 Descrição do projeto:

1.1 O que é:

Um sensor no formato de botão de emergência para envio de eventos para um gateway, o produto é sem fio que utiliza o protocolo Zigbee para transmissão de dados.

1.2 Como surgiu a ideia para este novo projeto:

A ideia surgiu para agregar mais um sensor ao sistema de monitoramento e alertas emergências para idosos.

1.3 Características funcionais:

Simples botão para envio de eventos na rede Zigbee, será possível um simples clique para um evento, um clique duplo para outro evento e um terceiro evento se ficar pressionando o botão.

Entrada de Alimentação: A interface de alimentação do produto é uma bateria CR2032 (formato moeda).

Sensores: Os sensores previstos no projeto são entradas digitais que se comunicam diretamente com o microcontrolador principal do produto. Por padrão estas entradas ficam geralmente em nível lógico alto e ao realizar uma mudança de estado para o nível lógico baixo, o sistema detecta um evento. Os sensores podem ser utilizados para funções diferentes, desde que respeitados os níveis lógicos e a forma de funcionamento.

Microcontrolador: Consiste na principal parte do circuito eletrônico, é através dos eventos que são processados através do microcontrolador CC2530 que são realizadas todas as ações do produto. O Ci CC2530 possui integrado na sua arquitetura as memórias RAM com retenção em toda a potência e Flash programável, além de contar com 21 portas de GPIO (19 × 4 mA, 2 × 20 mA) e possibilidade de utilização de USARTs com protocolos seriais.

Conversor de energia: O circuito conversor de energia é utilizado para ajustar os níveis de tensão de acordo com as especificações de cada componente. Em série a saída do conversor TPS54325 está o CI MIC5205-YM5 que possui a configuração em sua saída para estabilizar a tensão em 3,3V. Para alimentação do chip Zigbee Texas CC2530 e demais componentes.

Restore: O restore é basicamente uma entrada que muda o nível lógico de alto para baixo quando necessário resetar o dispositivo. O mesmo está interligado diretamente no microcontrolador STM32F072CBU6 e quando detectada a mudança no nível lógico da entrada desta porta, o CI limpa os dados que possui na memória de dados do produto.

Interface de gravação: barra de pinos com interface para realização da gravação do firmware do produto.

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	2/9
--------------------------------------	--	-----

1.4 Características técnicas:

- Fonte de Alimentação: 3Vdc (Bateria CR2032)
- Dimensões: 30X20X10 mm.
- Temperatura de operação: -20 até 50°C.
- Unidade de armazenamento: até 90% (não condensado)
- Grau de proteção: IP66
- Alcance da rede: <= 70 metros (ambiente aberto)

1.4.1 Fotos do produto

1.4.1.1 Mecânica

Projetado com um design compacto e resistente à água, para que seja possível banhar-se com o dispositivo conectado ao corpo. Botão emborrachado de fácil acesso para o envio do evento. O produto deve ter borracha de vedação na conexão do case de polímero. Além disso ele precisa ter um led de indicação para saber o status dele com a rede e um botão para restaurar o padrão de fábrica ou procurar uma rede Zigbee.

1.5 Desenvolvimento:

1.5.1 Objetivo geral

A necessidade de monitorar pessoas idosas não é algo que surgiu recentemente. As novas tecnologias de sensores nos possibilitam fazer um monitoramento mais preciso e confiável tendo assim um sistema viável para monitorar os idosos quando estão em sua residência, prevenindo que algo aconteça sem sermos notificados.

Diante disto, surgiu a ideia do sistema de monitoramento de idosos, utilizando sensores para verificar se algo está fora do normal, assim desenvolvendo um sensor que possa monitorar o

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	3/9
--------------------------------------	--	-----

movimento do idoso, a fim de checar se ele está se movimentando ou se ele sofreu alguma queda abrupta.

1.5.2 Metodologia

A equipe seguiu a metodologia de desenvolvimento para que um projeto avance de forma controlada requer:

Sigilo: apenas colaboradores do projeto têm conhecimento do projeto como um todo.

Reuniões periódicas: os objetivos das reuniões são a avaliação do cumprimento das atividades face ao que havia sido planejado para o período, definição das atividades para a semana seguinte, sempre baseado no cronograma macro das entregas, replanejamentos, se necessário, discussões técnicas, identificação de necessidades e de obstáculos.

Documentação: Desde sua concepção no plano de projeto. O plano de projeto contém todas as informações relativas ao projeto: objetivo, escopo, cronograma, entradas e saídas esperadas. Durante a execução do projeto, o plano de projeto é atualizado e todas as críticas, modificações e verificações são registradas, assim como eventuais ajustes no cronograma.

Desenvolvimento: em termos de software devemos utilizar linguagens e ambientes de programação que proporcionem agilidade, flexibilidade e facilidade de manutenção. Todas as informações referentes aos projetos são armazenadas em um repositório do Github. O código fonte, assim como a documentação técnica e a gestão de problemas de sistema, são administrados por meio de ferramentas de controle de software, como o Git. Para a gestão de projetos podemos usar o Trello.

1.5.3 Cronograma

	CRONOGRAM	IA D	DE I	DES	EN	VOI	VIN	IEN'	то	DE P	RO	DUT	0														Dat	a d	e Ir	icio	do	Pro	jet)		┸			
																													7/	3/2	023					\perp			
Produto: Botão sensor de en	nergência Zigbee																																						
Atividade	Responsável		Mai	r- 2 3	3		Apr-	-23	Т	М	ay-	23	Τ	Jur	1-23			Jul-	23		-	Aug	-23		S	ер-	-23	T		Oct-	23	Τ	N	ov-2	3	†	De	c-2	3
Attviudue	Responsaver	1	2	3	4	1	2	3	4	1	2	3 4	1 1	2 ا	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2 3	3 4	1 1	2	2 3	4
Estudo de Viabilidade	Andrey/Bruno/Vict or/Daniel									T	T	Τ	Γ	Γ																	T		Τ	Τ	Γ		Γ		Γ
Estudo das tecnologias	Andrey/Bruno/Vict or/Daniel						Ī				T		Γ	Γ																	T	T	T	T	T		Γ	Γ	Γ
Estudo dos harwares	Andrey/Bruno/Vict or/Daniel									١			ſ	T													1				1	T	T	T	T	T	T	T	T
Adquirir componentes	Andrey/Bruno/Vict or/Daniel	Г																								1	T				T	T	T	T	T	Τ	Γ	Г	Г
Hardware - Mecânico	Andrey/Bruno/Vict or/Daniel	Г					П		T	T	T	Τ	Γ	Γ													T				T	T	T	T	T	Τ	Γ	Γ	Γ
Produção de protótipos	Andrey/Bruno/Vict or/Daniel																																						
Dev. Software	Andrey/Bruno/Vict or/Daniel																																						
Testes homolog produto	Andrey/Bruno/Vict or/Daniel																																						
Teste de campo	Andrey/Bruno/Vict or/Daniel																																						Γ
Lote Piloto	Andrey/Bruno/Vict or/Daniel																																						
Documentação Técnica	Andrey/Bruno/Vict or/Daniel												Γ																				T						

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	4/9
--------------------------------------	--	-----

Dispêndios com MPV (MOQ 50pcs)

PCB(com antena): ~35 reais

Montagem: ~20 reais

Gabinete: ~40 reais (case IP66)

Tampografia: ~5 reais

Custos com componente médio:

Texas Instruments CC2530: US\$ 2,50 a US\$ 5,00

Botão táctil: US\$ 0,05 a US\$ 0,50

Resistor de 10k ohms: US\$ 0,01 a US\$ 0,05

• Capacitor de 0,1uF: US\$ 0,01 a US\$ 0,05

Fonte de alimentação de 3V (por exemplo, bateria CR2032): US\$ 0,50 a US\$ 1,00

Dessa forma, o custo total dos componentes pode variar de US\$ 5,00 a US\$ 20,00 aproximadamente, dependendo das escolhas de especificações técnicas e da quantidade de componentes comprados. É importante notar que esse é apenas um cálculo aproximado, e que o custo total pode variar dependendo de outros fatores, como taxas de frete e impostos.

Algumas das despesas que podem ser incluídas no orçamento para o produto comercial:

- Custos de hardware, incluindo o chip Zigbee, outros componentes eletrônicos, antenas,
 PCB e outros materiais de construção.
- Custos de software, incluindo licenças de software, taxas de desenvolvimento e horas de trabalho do desenvolvedor.
- Custos de fabricação, incluindo prototipagem, teste e fabricação em massa do produto final.
- Custos de design, incluindo design gráfico, criação de embalagens e outras atividades de marketing.
- Custos de licenciamento e regulamentações da Anatel.

1.5.4 Atividades

Macro etapa 1: Planejamento

Atividade 1: Pesquisa, validações e especificação de arquitetura

Descrição: Nesta atividade faremos uma pesquisa sobre a tecnologia que será utilizada, análise de componentes, etc. Com essa pesquisa inicial elaboraremos o escopo do projeto,

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	5/9
--------------------------------------	--	-----

mensurando o que seria desenvolvido e os esforços necessários. Para finalizar a atividade elaboraremos o cronograma do projeto.

Macro etapa 2: Prototipação

Atividade 2: Desenvolvimento de Hardware

Descrição: Durante essa atividade realizaremos a elaboração dos esquemáticos dos produtos, assim como o layout da placa e a documentação para fabricação das placas nuas (Gerber e Pick place). posteriormente acompanharemos a montagem das placas na montadora e após a chegada realizamos os testes elétricos e funcionais para garantir que tudo estava ok.

Atividade 3: Desenvolvimento mecânico

Descrição:Para esse projeto optamos por um case que seja IP66, para que o idoso possa usar durante um banho. Após o desenho do projeto no software solidWorks, o mesmo será validado pela equipe de desenvolvimento e será solicitada a compra de algumas amostras para validar o produto. Após o recebimento, as peças serão avaliadas e aprovadas.

Atividade 4: Desenvolvimento de software

Descrição: O desenvolvimento de software consiste no desenvolvimento de um firmware que vai embarcado no produto, durante o desenvolvimento serão realizados testes unitários para testar o código.

Atividade 5: Integração software e hardware

Descrição: Após a finalização das placas de protótipo e finalização do firmware versão alpha, realizaremos testes do software com o hardware. O Objetivo será simular as funcionalidades implementadas testando direto na placa e após a aprovação montaremos alguns produtos completos, que seriam instalados no ambiente de desenvolvimento para acompanhar os testes.

Macro Etapa 3: Integração

Atividade 6: Homologação (QA)

Descrição: Após a aprovação dos testes de integração, montaremos alguns produtos e para acompanhar os testes diariamente. Durante esse período, todos os bugs e melhorias observadas serão repassadas para a equipe de desenvolvimento e serão corrigidas até ter um teste estável e a aprovação para início dos testes de campo.

Atividade 7: Testes de campo

Descrição: Para validar o produto, entregaremos algumas unidades para clientes testarem. Durante os testes receberemos os feedbacks dos clientes, novas implementações foram surgindo e novas versões foram enviadas aos clientes, até ter a aprovação do produto e uma versão de produto pronta para comercialização. Durante essa atividade também serão elaboradas as documentações necessárias, como: datasheet e manual do usuário.

Atividade 8: Lote piloto

Descrição: Com a aprovação dos testes de campo, iniciaremos o processo de criação dos testadores de produto (jigas), assim como as instruções de teste. Após todos trâmites internos

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	6/9
--------------------------------------	--	-----

para inserção de um novo produto, faremos o processo de NPI, que é o processo responsável por simular o processo desde a venda até a finalização da fabricação do produto, ele garante que todos têm todas as instruções necessárias para executar as atividades e avalia a qualidade do produto final. No final dessa atividade, serão ministrados os treinamentos com a equipe de produção, assistência técnica e suporte técnico.

Macro etapa 4: Encerramento

Atividade 9: Liberação comercial e Certificação Anatel

Descrição: Precisamos realizar a certificação Anatel para o sensor antes de lançar comercialmente e após a finalização do lote piloto, capacitamos a equipe de comercial e realizaremos a divulgação de marketing e liberação do produto comercialmente.

2 Características inovadoras:

O produto não possui características inovadoras, diversos fabricantes já tem desenvolvido esse produto.

3 Integrantes:

Nome:	Andrey Gonçalves
CPF	08198881921
Domicilio e residência	Rua Santo Antonio de Lisboa, São José
Formação:	Técnico em Telecomunicações (Graduando Engenharia de Telecom)
Cargo:	Desenvolvedor de hardware
Experiência profissional:	Desenvolvimento de hardware
Atividades executadas:	Desenvolvimento de hardware - geração dos esquemáticos e revisão do layout.

Nome:	DANIEL VALDELEY MARQUES
CPF	08757797943
Domicilio e residência	Av. Egidio Abelino Richard 264
Formação:	Graduando Engenharia de Telecom
Cargo:	Desenvolvedor de produtos
profissional:	Desenvolvimento mecânico: elaboração de desenhos no solidworks, cotação com os fornecedores, validação de amostras e homologação da matéria prima.

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto 7/9
A 45 sind and a constant and a	. 1
Atividades executadas	Desenvolvimento mecânico e lote piloto
Nome:	Bruno
CPF	
Domicilio e residência	
Formação:	
Cargo:	Desenvolvedor de Software Fullstack
Experiência profissional:	Desenvolvimento de software

Desenvolvimento de software

Atividades executadas:

Nome:	Victor
CPF	
Domicilio e residência	
Formação:	Tecnologia em Eletrônica Industrial
Cargo:	Desenvolvedor de Hardware
Experiência profissional:	Desenvolvedor de produtos, responsável pelo processo de validação de entrada de novos produtos
Atividades executadas:	Lote piloto: processo de NPI (validação da entrada de novos produtos) e aprovação do lote piloto.

Nome:	Andrey Gonçalves
CPF	08198881921
Domicilio e residência	Rua Santo Antonio de Lisboa, São José
Formação:	Técnico em Telecomunicações (Graduando Engenharia de Telecom)
Cargo:	Desenvolvedor de hardware
Experiência profissional:	Desenvolvimento de hardware
Atividades executadas:	Elaboração de testes e jiga na produção

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	8/9
--------------------------------------	--	-----

4 Infraestrutura

Para o desenvolvimento dos produtos são utilizados basicamente três setores: a sala do P&D, o Laboratório de Hardware e o Laboratório de Software.

4.1 Equipamentos utilizados para o desenvolvimento dos produtos:

Quantidade	Descrição			
2	Estações de solda			
2	Multímetros			
1	Osciloscópio 300 MHz 2 canais			
1	Estação de retrabalho SMD			
2	Bancadas			
4	Computadores			
1	Gravador da Texas Instruments			

4.2 Softwares utilizados para o desenvolvimento do produto:

Software	Qtd	Descrição	Aplicação no Desenvolvimento do Produto	
C/C++	Livre	Ambiente de execução C++	Desenvolvimento do firmware embarcado	
G++	Livre	Compilador para o C++	Compilador geração da aplicação	
Git	Livre	Controle de versão do código	Utilizado para o versionamento do código de todas as versões.	
Github	Livre	Controle de versão do código	Utilizado para o visualizar o versionamento do código de todas as versões.	
VSCode	Livre	Ambiente de desenvolvimento do firmware	Interface para desenvolvimento do firmware .	
Interpretad or Python 3.7	Livre	Ambiente de execução Python	Utilizado para desenvolvimento dos scripts de testes automatizados.	
Whatsapp	Livre	Ferramenta de troca de mensagens	Utilizado para troca de informações e alinhamento da equipe.	
Altium	1	Gerador de Esquemático e Layout	Hardware, Software	
Solidworks	1	Software de CAD desenvolvimento de projetos mecânicos	Utilizado para confecção de cases e peças mecânicas	

Sensor Botão de Emergência Zigbee	Andrey Gonçalves, Bruno Nascimento, Daniel Marques, Victor Cesconetto	9/9
--------------------------------------	--	-----

5 Serviços terceirizados:

Alguns serviços terceirizados que podemos utilizar:

Prestador de Serviço Tecnológico	Serviço executado e equipamentos utilizados	Profissionais	Procedência (Nacional ou Internacional)	Atividades do projeto
Circuibras	Fabricação das placas nuas		Nacional	Hardware e lote piloto
Drescher	Tampografia dos gabinetes		Nacional	Hardware e lote piloto
Resolve	Montagem das placas		Nacional	Hardware e lote piloto

6 Referência bibliográfica:

https://www.zigbee2mqtt.io/devices/SEB01ZB.html

https://www.ti.com/lit/gpn/cc2530