

SEQUENCE LISTING

<110> Parales, R.
Gibson, D.
Resnick, S.
Lee, K.

<120> Novel naphthalene dioxygenase and methods for their use

<130> 875.006US2

<140> US 09/843,250
<141> 2001-04-26

<150> PCT/US99/25079
<151> 1999-10-26

<150> US 60/105,575
<151> 1998-10-26

<160> 65

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2265
<212> DNA
<213> Artificial Sequence

<220>

<223> A sequence encoding an NDO mutant.

<400> 1		
gagggttagag aaatcgaatg ccccttgcat caaggtcggt ttgacgtttg cacaggcaaa		60
gccctgtgcg caccgtgac acagaacatc aaaacatatac cagtcaagat tgagaacctg		120
cgcgtaatga ttgatttgag ctaagaattt taacaggagg caccggc cctagagcgt		180
aatcacccccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt		240
aagtgaatct ggtctgagcc aaaagcacct gattcatggc gatgaagaac ttttccaaca		300
tgaactgaaa accatttttgcg gactatgttgcgaaat gggattgac gaggtcatcg tctccggca		360
tgccccccggc gactatgttgcgaaat gggattgac gaggtcatcg tctccggca		420
gaacgacggt tcgatttcgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat		480
gagcgtggaa gccggcaatgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat		540
ctccaacgggttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		600
taaaaaatgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		660
cggttgcgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		720
cctggaaatcttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		780
tgtatcaagttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		840
gggttggacgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		900
caatgcggcgcttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		960
catgggtgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1020
gatggcatttcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1080
tcggatttatcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1140
ctcggtgtttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1200
cgccattgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1260
gccaacgggttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1320
ttcgcaaaatcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1380
cggtgaggacgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1440
cgagaccagtatcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1500
ggctgagttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1560
ctaacagacgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1620
gacggccgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1680
actacgctgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1740
gagcactgttgcgaaat gtttgcgttgcgaaat gatgttgcgttgcgaaat gatgttgcgttgcgaaat		1800

*COPY OF PAPER
ORIGINAL*

*COPY OF PAPERS
ORIGINALLY FILED*

tca	gagcg	tc gttataa	gct caatga	aggcc atgaa	ac aacgtt	acaacgaaaa	ttttcagcaa	1860
ctg	aaaagt	ttc gagttg	agca tcaact	ggat ccgc	aaaact gggc	caacag cccg	aagctg	1920
cg	catttact	tc acgtcc	acgttatcac	ccag gccc	aatgg acgt	aaatgta caa	agacta	1980
ctt	cacatcc	gttccaa	acgt cttatc	caacgtcc	acgttgcac	cgccac	gtggcaatca	2040
ttc	tgccg	cccg	gccc gggaa	gaa taaatgg	cgatc ag	ggcag gtgg	gatgtc	2100
cag	cgattc	tcgat	ttc accat	tttccaa	acgtc acaat	ctgat ggtt	cattgtc	2160
tgat	tcgt	accat	tttcaat	gggtca ctg	atctgat ggtt	caccatt aat	caaagg	2220
aat	gtacgt	tttcaat	gggtca ctg	aaatgg	tttcgataac	cggtg	aaatgg	2265

<210> 2

<211> 449

<212> PRT

<213> Artificial Sequence

<220>

<223> A polypeptide encoded by SEQ ID NO:1

<400> 2

Met	Asn	Tyr	Asn	Asn	Lys	Ile	Leu	Val	Ser	Glu	Ser	Gly	Leu	Ser	Gln
1						5			10				15		
Lys	His	Leu	Ile	His	Gly	Asp	Glu	Glu	Leu	Phe	Gln	His	Glu	Leu	Lys
							20	25				30			
Thr	Ile	Phe	Ala	Arg	Asn	Trp	Leu	Phe	Leu	Thr	His	Asp	Ser	Leu	Ile
						35		40		45					
Pro	Ala	Pro	Gly	Asp	Tyr	Val	Thr	Ala	Lys	Met	Gly	Ile	Asp	Glu	Val
						50		55		60					
Ile	Val	Ser	Arg	Gln	Asn	Asp	Gly	Ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
						65		70		75		80			
Cys	Arg	His	Arg	Gly	Lys	Thr	Leu	Val	Ser	Val	Glu	Ala	Gly	Asn	Ala
						85		90		95					
Lys	Gly	Phe	Val	Cys	Ser	Tyr	His	Gly	Trp	Gly	Phe	Gly	Ser	Asn	Gly
						100		105		110					
Glu	Leu	Gln	Ser	Val	Pro	Phe	Glu	Lys	Asp	Leu	Tyr	Gly	Glu	Ser	Leu
						115		120		125					
Asn	Lys	Lys	Cys	Leu	Gly	Leu	Lys	Glu	Val	Ala	Arg	Val	Glu	Ser	Phe
						130		135		140					
His	Gly	Phe	Ile	Tyr	Gly	Cys	Phe	Asp	Gln	Glu	Ala	Pro	Pro	Leu	Met
						145		150		155		160			
Asp	Tyr	Leu	Gly	Asp	Ala	Ala	Trp	Tyr	Leu	Glu	Pro	Met	Phe	Lys	His
						165		170		175					
Ser	Gly	Gly	Leu	Glu	Leu	Val	Gly	Pro	Pro	Gly	Lys	Val	Val	Ile	Lys
						180		185		190					
Ala	Asn	Trp	Lys	Ala	Pro	Ala	Glu	Asn	Phe	Val	Gly	Asp	Ala	Tyr	His
						195		200		205					
Val	Gly	Trp	Thr	His	Ala	Ser	Ser	Leu	Arg	Ser	Gly	Glu	Ser	Ile	Phe
						210		215		220					
Ser	Ser	Leu	Ala	Gly	Asn	Ala	Ala	Leu	Pro	Pro	Glu	Gly	Ala	Gly	Leu
						225		230		235		240			
Gln	Met	Thr	Ser	Lys	Tyr	Gly	Ser	Gly	Met	Gly	Val	Leu	Trp	Asp	Gly
						245		250		255					
Tyr	Ser	Gly	Val	His	Ser	Ala	Asp	Leu	Val	Pro	Glu	Leu	Met	Ala	Phe
						260		265		270					
Gly	Gly	Ala	Lys	Gln	Glu	Arg	Leu	Asn	Lys	Glu	Ile	Gly	Asp	Val	Arg
						275		280		285					
Ala	Arg	Ile	Tyr	Arg	Ser	His	Leu	Asn	Cys	Thr	Val	Phe	Pro	Asn	Asn
						290		295		300					
Ser	Met	Leu	Thr	Cys	Ser	Gly	Val	Phe	Lys	Val	Trp	Asn	Pro	Ile	Asp
						305		310		315		320			
Ala	Asn	Thr	Thr	Glu	Val	Trp	Thr	Tyr	Ala	Ile	Val	Glu	Lys	Asp	Met
						325		330		335					
Pro	Glu	Asp	Leu	Lys	Arg	Arg	Leu	Ala	Asp	Ser	Val	Gln	Arg	Thr	Val
						340		345		350					

```
<210> 3
<211> 9841
<212> DNA
<213> Artificial Sequence
```

<220>
<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 3
gaattcatca ggaagacatt caaatgaacg taaaacaataa gggcagcgctc tgtatggcg
gcagcgaaat gctccctaaa ttccctcattt accccatctg aggattgctt tatgacagta
aagtggattg aagcagtcgc tctttctgac atccttgaag gtgacgtcct cgccgtgact
gtcgaggggca aggagctggc gctgtatgaa gttgaaggcg aaatctacgc taccgacaaac
ctgtgcacgc atggttccgc ccgcatgagt gatggttatc tcgagggtag agaaaatcgaa
tgccccttc atcaaggtcg gtttgacggt tgcacaggca aagccctgtg cgcacccgtg
acacagaaca tcaaaaacata tccagtcag attgagaacc tgcgctaatt gattgatttg
agctaagaat tttaacacgga ggcaccccg gcccstagagc gtaatcaccc ccattccatc
tttttaggt gaaaacatga attacaataa taaaatctt gtaagtgaat ctggctcgag
ccaaaagcac ctgattcatg gcgatgaaga actttccaa catgaactga aaaccatttt
tgcgcggAAC tggcttttc tcactcatga tagcctgatt cctgcccccg gcgactatgt
taccgaaaaa atggggattt acgaggcatcgat cgtctcccg gagaacgacg gttcgattcg
tgctttctg aacgtttgcc ggcatcggtt caagacgctg gtgagcgtgg aagccggcaa
tgccaaaggt tttgttgca gctatcacgg ctggggcttc ggctccaacg gtgaactgca
gagcgttcca tttggaaaaag atctgtacgg cgagtgcgtc aataaaaaat gtctggggtt
gaaagaagtc gctcgctgg agagcttcca tggcttcata tacgggtgct tcgaccagga
ggcccctctt cttatggact atctgggtga cgctgcttgg tacctggaaac ctatgttcaa
gcattccggc ggtttagaaac tggctcggtcc tccaggcaag gttgtatca aggccaactg
gaaggcaccc gcggaaaaact ttgtggaga tgcataccac gtgggttggc cgcacgcgtc
ttcgcttcgc tcgggggagt ctatcttcgc tgcgctcgct gcaatgcgg cgctaccacc
tgaaggcgca ggcttgcaaa tgacctccaa atacggcagc ggcattgggg ttttgggg
cgatattca ggtgtgcata gcgcaagactt gttccggaa ttgatggcat tcggaggcgc
aaagcaggaa aggctgaaca aagaaattgg cgatgttcgc gctcgattt atcgcagcca
cctcaactgc accgtttcc atggAACCCG atcgacgc当地
catgccttag gatctcaagc ggcgttggc cgactctgtt cagcgaacgg tcgggcctgc
tggcttcgg gaaagcgacg acaatgacaa tatggaaaca gttcgcaaa acggcaagaa
atatcaatca agagatagtg atctgttttcc aacacccgtt ggtctggacc tacgcattt
cgacgcggtc tatccaggcg tcgtcgcaaa atcgccgatc ggcgagacca gttatcg
tttctaccgg gcttaccagg cacacgtcag cagctccaaac tggctgagtt tcgagcatgc
ctcttagtact tggcataactg aacttacgaa gactactgtat cgctaacaga cgagtcgacc
atgatgatca atattcaaga agacaagctg gttccggcc acgacgccga agagattctt
cgtttcttca attgccacgaa ctctgcttttgc caacaagaag ccactacgct gctgaccc
gaagcgcatt tggggacat tcaggcttac cgtgcttgg tagagcaactg cgtgggggtca
gagggtcaat atcaggtcat ttcacgcgaa ctgcgcgcag cttcagagcg tcgttataag
ctcaatgaag ccatgaacgt ttacaacgaa aattttcagc aactgaaaat tcgagttqag
120
180
240
300
360
420
480
540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160

catcaactgg atccgaaaa ctggggcaac agccccgaagc tgcgcttac tcgcattttac 2220
accAACgtcc aggccgcaat ggacgtaaat gacaaggagc tacttcacat ccgctccaac 2280
gtcattctgc accgggcacg acgtggcaat caggtcgatg tcttcacgc cggccggaa 2340
gataaatgga aacgtggcga aggtggagta cgaaaattgg tccagcgatt cgtcgattac 2400
ccagagcgca tacttcagac gcacaatctg atggctttc tgtgattcag tgaccattt 2460
tacAAatggt cactgcaacc gcggtcacca ttaatcaaag ggaatgtacg tgtatggca 2520
atcaacaagt cgttgcata accgggtcag gtcaggaat cggctcgaa ctggttcggt 2580
ccttaagtc gcccgttat tacgtatccg ctctcgtag aaacgaggag caagaggcgc 2640
ttcttgcaa agagttcaag gacgcactcg agattgttagt gggcgatgtc cgggaccacg 2700
caacaaatga gaagctgata aagcaaaaca tcgatagatt cggctcatctt gattgttta 2760
ttgcaaatgc cgttatctgg gattacatgc tgagcatcga agagccttgg gagaaaatat 2820
cgagcagttt tgacgaaata ttgcacatta atgtcaagag ctatttcagt ggcacatcg 2880
ccgcctgcc ggaactgaaa aagactaacg gatcagtggt gatgaccgct tcgggtcg 2940
cccatgcggc cgtgggtggt ggttcttgc acatcgccag caagcatcgc gtgctcggt 3000
tggtaaggc ttggcctac gaattggccc cgaagttcg cgtgaacgct gtttcggg 3060
ggggcaccgt gacgtctctg tgccgtcccg cgagcgcggg ttcgacaaa atgcacatga 3120
aagacatgcc cgccatcgac gatatgatca aaggcttcac gcctcttggg tttgcagcca 3180
agcccgaaga cgtggggca ccctattttgt tgctggctt gcgaaagcaa ggaaaattca 3240
tcaccggcac cgtgatttagc attgatggcg gatggcgct cggctcgcaag tgagcttgc 3300
gccgatcaga atttatac acatttcagg tgacgcccc tgaagacaaa actgtttatc 3360
aataacgcct ggatcgattc tagtgaccag cagaccccg agcgcataca ccccgctcagc 3420
agcgatgtgg tgactgagag cgcaaaacgc acagtgcgg acgcataaaa ggcggcgc 3480
gcggccgagg aggcttcaa gacctggaa gccgttggac cttcagagcg tcgcccctt 3540
ctccctaaagg tcgcccgtgt catggaaagt aaaacaccca agttcatcga agtgcgtggc 3600
atggagggtgg gagctccgc ccttggccc ggattcaacg tccatcgctc tgccatgtg 3660
ttccgagagg ctgcctcgct ggctacccaa attcagggtg aaaccatccc aacggacaaa 3720
gcccggaaacgc tctcaatgac actacgtcag cccgttggcc cgatctcaag catcgatcca 3780
tggaaacggca cccgagtgtc tgccgcacga gccatcgctt atccgcttgt ctgtggcaac 3840
actgtgggtgt tcaaaggctc tgaatttagt cccgcgcgc atgcctgtat caccctgtc 3900
gtgcaggaaag cccggctgccc cgttggcggt ctcaattacc tcaactcttgc gcttgcacgt 3960
tcgcccggaga tgcgtgacgc actgatctct gccaaggaga tccgcgcattt caacttcacg 4020
ggttccaccc gctgtggcag cattatcgcg cagaaggccg cgcaacacactt caagcgctc 4080
ctgctggagc tggccggcaa gtcccccgtt attgttctgg atgatgcaga catcgatcgc 4140
gcggtcaagg cagcgggttt cggtagcttc ctgttccaa gtcagatctg catgtccact 4200
gagcgttga tgcgttgcata gaagatagcc gacgaatttt tcgaaaattt tgcggaaaattt 4260
actaagcgct tgcgcgcagg cgaccgtgc gtaactggcg actgcacatcat cggcccgatg 4320
gtctcgccaa attcgggtga gcgatcaat ggttttca aagacgcgtt cggacaaagg 4380
gcaaaaaggtt tttgcggcgg ctggcccaa ggtgcgcctc tgccggccac gatcctggat 4440
cacgtcaaattt ctgacatcgat gatttacat gaggagaccc ttggccccat caccgtggta 4500
atccgttgcata aaggcgaagc agggccgtc cgcattgcac acgacacgtt ctatggctc 4560
tcgtcggcg tatttggccg cgacatcaac cgcgccttac gcgtgggtat gtccatcgaa 4620
tatggttctg tacacatcaa cggttcgacc gtccagaacg aggccgaggc tccttacgg 4680
ggcaccaaga acacccgcta cgggcgttcc gacggccgtg ctgtaatcga cagttcaca 4740
gagatcaagt ggctgaccat cgaaccttcc gacgacaaat atcccttctg ataaggacta 4800
actcccaggaa atcaaaactat gagtaagcaa gtcgcgttca tcgagctcg atacatgggt 4860
atctcggtca aggaccctga tgcgtggaaa tcatttgcac cggatatgtt aggtctgc 4920
gttcttgcgtt agggtgagaa ggaccgttcc tatctgcggg tggattactg gcatcatcg 4980
atcgtagtcc atcacaacgg acaggacgc ttggagttacc taggcgtggc tgcggccggc 5040
aagccggagt tgcgttgcata ggtcaaaaat cttattgtat cgggttacaa gatccgcac 5100
tgcgacaaag ttgaggctca ggacgtatg gtgttgggtc tgatgaagac agaagatccg 5160
ggcggcaacc cggccggat attctgggc ccccgatcg acatgacaa cccgttccat 5220
cccggtcgcc cccgtcgcgg aaagttgtg accgggtacc aaggcttggg ccattgcac 5280
gttcgccaaa cccgtcgcgg agaagctcat aagtttata gcctgcgttgc cttccgtggg 5340
gacgtcgaat accggattcc gttgcccac ggcgtactg ccgaactgtc gttcatcgat 5400
tgcaacggcc cgtatcactt cattgtttt ggtccatgc cccgtccaa acgactcaat 5460
cacttgcgttgc ttgagttacac ccatatggaa gacttggat acacgcacca acagttgt 5520
aagaacgaaa ttgacattgc cttgcgttgc ggcattcaac ccaacgacaa ggcgttgcac 5580
ttctatgggtt caacgcctt cggctggctc attgagcccc gctggcgagg tgccacggcc 5640
atagatgaag cggagtattt cgtcgccac atttcggcc atggcgttgc ggcacttgc 5700
tatggccctgg atgtaaaact gagctaaaga tgcgttgcgtt tgccgtggg ctctagtcc 5760
gcacatccat acgcaaccaa cttgcaggg cgttgcgttgc aaaggacgtt aaagcgaagg 5820
ggaagtgggtt cggccatgc gcataaccat ccatgcattt tgtttcatag tatataggta 5880

gatagggtgaa	tcaagcgctt	agtcaactag	tggacacatc	tgttccatga	ggcttatctac	5940
tatctattca	aaacaagaat	aataaatagg	atgaaaataa	taatgataaa	aagaacgatt	6000
tgtcttggt	atccctatt	ctgttggca	agccccacat	gggccaaga	gtcgcccttg	6060
acgtaccgta	ttggtagac	taatgttagct	ttcgatgcta	gchgaaaagt	atacttaat	6120
ggtcagcggg	tgcaggagg	aagcgctgat	gchagcgata	acaacgcgct	tacattcgac	6180
ttcggtacg	ccatcaacga	ccagtggaat	gtacgtgcga	ttgtcggtat	tccgcctaca	6240
actaaagtga	cggcgcagg	cacacttcct	ggtatccagc	tgggaaaat	aacttacgct	6300
ccaacagtat	taacgttcaa	ctataaccc	cccgttgg	gtcccggtcg	ccctcacata	6360
ggtgccggag	tcaattacac	gcccgtttt	gaaagtccgg	acgctaatact	aaaatcgttc	6420
gatgccgacc	acgcttggtc	ccccgcgcta	catgttgggt	ccgatattga	cgtaaccgt	6480
ggttgggtcg	ttagcattga	tatccggaag	ttatacctga	aaaccgacgc	atcagggtac	6540
ttggggccac	aggaggctaa	agcacgggt	actcttgacc	cattactaac	ttcgatcgcg	6600
atcgacgccc	aattctgtat	attctgtta	aagttcttta	tctatctaac	cgcaaaaggg	6660
gtttccatgt	cgaataaaaat	tatgaaaacg	tcgcgtctta	ccgccaaga	tatcaacggc	6720
gcctggacta	taatgcccac	accctcgacg	cctgatgct	ctgattggcg	cagcactgcc	6780
accgtggact	tagaagagac	tgcccgcata	gttgaagagc	tgattgcage	tggtgtcaac	6840
ggtattctaa	gtatgggtac	tttggtgag	tgccgcacgt	tgacctggga	tgaaaaaaggt	6900
gattatgtct	cgacgattgt	cgagaccatt	cgtggtcgag	tgcccttattt	ctgtggcacg	6960
acagccttaa	atacccgaga	agtcatccgc	cagaccggag	agcttatacg	tattggcgcc	7020
aacggcacta	tgctcggggt	gccgatgtgg	gtgaagatgg	acctgcctac	agcgggttcag	7080
ttctatctgt	atgttgcaga	tgccgtacca	gaggctgcca	ttgcgattta	cgccaaacccc	7140
gaagcattca	agttcgactt	ccctcgccca	ttctgggcag	agatgtccaa	attccgcag	7200
gtagtgtact	cgaagtatct	aggcatcgga	atgcttgact	tggacttgag	actggcaccc	7260
aacatccgct	tcctcccca	cgaagatgac	tattacgcgg	ccgcacgc	caatcccggag	7320
cgcataaccg	cgttctggtc	aagcggggcc	atgtcgccgc	cggctaccgc	catcatgttg	7380
cgtgacgaag	ttgtgcgggc	caagagcacc	ggtgacttgg	ccaaggccaa	agccatctcc	7440
gatgatatgc	gtcagccga	ctcgacattt	tttccgcgt	gcgactttt	ggagttctcg	7500
aagtataata	tcgggcttga	aaaggcacgg	atggatgcgg	ctggttggct	caaggctggg	7560
ccctgcccgc	cgcctacaa	ccttgttcca	gaagactacc	tcgctggtgc	acagaaaatca	7620
ggcaaggcctt	ggggccgcgt	gcacgctaaa	tacagtaatg	aattgaagta	gttcacacccc	7680
gcagacccgt	gtacagggt	ggcgcagacg	ctgagggtgc	aggaattaag	ttagctaaag	7740
cacattttt	gcccaggca	ttgcccagatc	agcaaagttt	gctgatctgg	cagtttcaaa	7800
aatttggcg	aaagctgata	tcaggaatac	gggataaagg	cagtgcacca	taacgacggg	7860
gcgtgcatt	cgtgatgaa	gattttgcta	ttgtgcgcac	ttctgttctt	ggagtgttt	7920
attgtgattt	tcgattttt	tttcgatttt	tttagtccgt	tctcttactt	ggccaaccat	7980
cgtttgtcaa	agcttgcgca	agactatggc	tttcccatc	tttattacgc	aatcgattt	8040
gcgcgagtt	aaatagccat	cggaaacgtt	ggtccatcta	atcgccacct	gatagtcaag	8100
ctggactatt	tgaaagtaga	tttgcacagg	tgggcccggc	tttacgaaat	accgttggta	8160
ttcccagcta	actacaacag	ccgacggat	aatactggg	tttattactc	gggagccatg	8220
gcacagactg	gtgcctatgt	gaatgttagt	ttaatgcgg	tttggggaga	tggcatagct	8280
ccagatttgg	aaagcttgc	tgctctggta	tctaaaaac	taggtggga	tcgtacgc	8340
ttcgaggact	ttatcagcag	cgtgcccga	acagagaggt	atgacgagca	gacacatgcc	8400
gcgatcgaa	gcaaagtgtt	cggtgtgcca	acgatgtttt	tgggcatga	aatgtgggt	8460
ggaaacgacc	gtctatttat	gctcgagaac	gcagtggag	gtgcgcctgt	aatggagaa	8520
tagtcgtac	ggagcgctt	tgccggctaa	atgcccata	aagtgttga	cctgatcg	8580
atttgctcga	tacagcgctt	tcaaaatcg	cggctactga	agtcagataa	aatgcggga	8640
ctacttcagg	catcctgtgc	gacacaaaat	tttacctgt	attgtccacc	tattccgagt	8700
ttggaatgtt	agctgactcg	ctatgcgacc	agcgatagcc	taacaagaca	tgcataactg	8760
gtaacgggtt	ggtgtgaagc	tcctgcaaca	atgtagcccc	ttgatgtgt	tatttgcgt	8820
gagggtgaagc	acagatgctc	ggagccgtac	cggcttgc	cgctaggctg	gcaagatata	8880
gcaacgtaa	tgggggttgg	ggcgcata	gaacccaaaa	ccaaaccaag	ccttaccagc	8940
gtcgttcgtt	gccttcctcc	catgcctccg	cctcgataaa	gcagctgc	atatcgctt	9000
cctggctgtat	ctcggttagt	aggctatcg	aggtcttgc	cagcgcctcg	tcgctccgt	9060
acggaatgtt	cagctcgtaa	tggccgtct	ccgaccgctt	catgcccgt	ggctccagc	9120
agtagcgctc	gatgttctcc	gtggcccgct	tcgcaccgc	catgaactt	ctgttgc	9180
ccaccggccag	gcccgggtt	acggtgccca	cccgtcgac	gttgcactt	gccgggtacg	9240
cgatattcg	ctttgaccc	cgcgcagg	cgcttctcg	gtacgtcccc	atctcgacgc	9300
cacgggtggcg	taggttagct	tacagggtgc	tcttggagat	gtgcaactt	tcgcccgt	9360
cgctgacgt	caggcggccc	tcgcgttaca	gggtctccgc	cccatggcg	gtggcctc	9420
ccttggctgg	caggccctt	ggacggcgac	cgatccggcc	tcgagtcgt	gccggc	9480
ggcccgctt	agtccgctcg	cggatcagct	cgcgctcgaa	ctgaacaggt	tgaacaccag	9540
cgcatcttgg	gctgtgggtc	tgtcaatggg	gtcggtcagg	ctctgcaagc	cgactttgcg	9600

tgcagccagc tagccgacca actcaaccag gtgcttgagc gagcgaccga ggcgatccag	9660
cttccagatc accacggcat cgcccgctcg aacatgggt agcaacttgt ccaactccgg	9720
ccgcgcgctt tttgcgccgc tggcgatgtc ttgatagatg cggtcgacc cggcctgttt	9780
cagggcatcg acctggaggt cggcggtcta atcccgagtg ctcaccccg tataaccgat	9840
c	9841

<210> 4
<211> 2515
<212> DNA
<213> Artificial Sequence

<220>
<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 4	
gaattcatca ggaagacatt caaatgaacg taaacaataa gggcagcgtc tgtatggcg	60
gcagcgaaat gctccctaaa ttcctcattt accccatctg aggattgtt tatgacagta	120
aagtggattt aaggcgtcgc tctttctgac atccttgaag gtgcgtcct cggcgtgact	180
gtcgagggca aggagctggc gctgtatgaa gttgaaggcg aaatctacgc taccgacaac	240
ctgtgcacgc atggtccgc cccatgagt gatgttatac tcgaggtag agaaatcgaa	300
tgccccttgc atcaaggcgtc gtttgcgtt tgacaggca aagccctgtg cgcacccgtg	360
acacagaaca taaaaacata tccagtcaag attgagaacc tgcgctaat gattgattt	420
agctaagaat tttaacagga ggcaccccg gcccstagagc gtaatcaccc ccattccatc	480
tttttttaggt gaaaacatga attacaataa taaaatctt gtaagtgaat ctggctgag	540
ccaaaagcac ctgattcatg gcgtgaaacttccaa catgaactga aaaccat	600
tgcgccgaaac tggcttttc tcaactcatga tagcctgatt cctgcccccg gcgactatgt	660
taccgcacaaa atggggattt acgaggatcat cgtctcccg cagaacgcac gttcgattcg	720
tgcttttctg aacgtttgcgc ggcacgttgg caagacgtg gtgagcgtgg aagccggcaa	780
tgccaaagggt tttgtttgcgc gctatcacgg ctgggcttc ggctccaacg gtgaaactgca	840
gagcgttcca tttgaaaaag atctgtacgg cgagtcgtc aataaaaaat gtctgggtt	900
gaaagaagtc gtcgcgtgg agagcttcca tggcttcatt tacgggttgc tcgaccagga	960
ggccccctctt cttatggact atctgggttgc cgctgttgg tacctggaa ctatgttcaa	1020
gcattccggc ggtttagaacat tggcgttgc tccaggcaag gttgtatca aggccaactg	1080
gaaggcaccc gcgaaaaact ttgtgggaga tgcataaccac gtgggttggc cgacgcgtc	1140
ttcgcttcgc tcggggagt ctatcttcgtc gtcgtcgtc ggcaatgcgg cgctaccacc	1200
tgaaggcgcgc ggcttgcacaa tgacccatca atacggcagc ggcacgggtt tggtgtggaa	1260
cgatattca ggtgtgcata gcgcagactt ggttccggaa ttgtatggcat tcggaggcgc	1320
aaagcaggaa aggctgaaca aagaaattgg cgatgttcgc gctcgattt atcgacgca	1380
cctcaactgc accgtttcc cgaacaacag catgtgcacc tgctcggtt tttcaaaat	1440
atggAACCCG atcgacgcacaa acaccaccga ggtctggacc tacgccattt tcgaaaaaga	1500
catgccttagt gatctcaagc gccgttgcgc cgactctgtt cagcgaacgg tcggcctgc	1560
tggcttctgg gaaagcgacg acaatgacaa tatgaaaca gcttcgcacaa acggcaagaa	1620
atatcaatca agagatagt atctgttttcaaaacccgtt ttcgggtgagg acgtatacgg	1680
cgacgcggc tatccaggcg tcgtcgccaa atcggcgtatc ggcgagacca gttatcgatgg	1740
tttctaccgg gcttaccagg cacacgtcag cagctccaaat tggctgttgcgtt tcgacgtgc	1800
ctcttagtact tggcataactg aacttacgaa gactactgtat cgctacacaga cgagtcgtacc	1860
atgatgatca atattcaaga agacaagctg gttccgcacc acgacgcgcg agagattttt	1920
cgtttcttca attgcccacgc ctctgttttgc caacaagaag ccactacgt gctgacccag	1980
gaagcgcatt tggtggacat tcaggcttac cgtgttgcgtt tagagcactg cgtgggtca	2040
gaggtgcaat atcaggatcat ttcacgcgaa ctgcgcgcag ctgcgcgcag tcgttataag	2100
ctcaatgaag ccatgaacgt ttacaacgaa aatttcagc aactgaaatg tcgagttgag	2160
catcaactgg atccgcacaa ctggggcaac agccgcacgc tgcttgcatttac tcgcatttac	2220
accaacgtcc aggccgcacat ggacgtaaat gacaaagagc tacttcacat ccgcctcaac	2280
gtcattctgc accgggcacgc acgtggcaat caggtcgatc tcttctacgc cgccggaa	2340
gataaaatggaa aacgtggcga aggtggagta cgaaaattgg tccagcgatt cgtcgattac	2400
ccagagcgcacac ttttccatcg acataatctg atggcttttgcgttgcatttgcgttgcattt	2460
tacaaatggt cactgcacca gcggtcacca ttaatcaaaat ggaatgtacgtgtat	2515

<210> 5
<211> 9706
<212> DNA
<213> Artificial Sequence

<220>
<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 5	
gctgatttcg accaattatt ccacggcgtc tgcgccagca aggccgtaat cagttcgaa	60
aggggagccc qcagtaacag cgaaccgacg ccggtagctg cgccgctgaaa tcctgagatc	120
acaatttctt ggcgattatc gcatttcaat ttccacccaag cgccgttctt tgctgtctg	180
tagccggc catcacgctt ctccacgatt ccctccagct gcatccggca agcgttggcc	240
agcagctgca ctgggtaaagc ttccagggtt tcgctgaagc gtacgcgtc caatggcag	300
tgctcgagga ggcctcaag tacctgggg ctcagttcaa cgccctctcc cccgagatct	360
gcaccgtcga ggttagagcag gtcgaacgcc acgtacacaa atttgcgtt acaccgtcg	420
gccaacgctg actgcagggc ttgaaatgtt ggtcgaccgt cgtcataactg gaatacgacc	480
tcaccgtcga gccaggctga atggacggct aggctccca gctatttggc caggagtggc	540
atatgatcga tctagtcaaa cccgttttgc gtaaaaagct gcacctgttc accatcgatc	600
cgtgctaaca gacgatacca gtcgtacttg atctcgatc gccatgtcc tgccgacgac	660
agtgtcaga gagaaccag ttgtggcgcg atccaaacacg gttttggc cttggcggtt	720
ttcactatcg ccacctcgct ataggaacat tccttcaggg tggagtgcgt aattttctga	780
aaggggagcc aggttatgag tattcacatt ggtgataaac aacatcactt atgcgttatt	840
gacatataac gtcgtattca cgattattta ccatataagt cttataataa cgaagccata	900
ttatggaact cctcatacaa ccgaaaaatc gcataattcc cttcagtgcc ggtccaacc	960
ttctggaagt gcttcgcgag aacgggttag ctatttccta cagttgttgc tctggcggtt	1020
gcggAACCTG tcgctgcccgtt gttatagatg gcagtgtcat tgattctggg gcgaaaaatg	1080
ggcaatcaaa cctcaccgac aagcagtatg tgctgcctg tcagtcagta ctcactggca	1140
attgcgtat cgaagtccta gaagccgacg aaattgtcac tcacccggcg cgaatcatca	1200
agggcacagt ggtcgactc gactcgccca ctcacgatat ccgtcgctt cgcgtacgccc	1260
tctccaagcc ctgcgttgc tcacccggac agtacgcgtc actgcgttgc agccctgagc	1320
atgcgtgtcc gtattcaatg gcagggttgc cagatgacca agaaatggag ttccacatac	1380
gcaagggtgcc ggggtggcgcc gtcacggagt atgtttcga acacgtccgc gaaggtacaa	1440
gcatcaagtt gagcggggcctt ctgggtacgg cttatctacg tcagaagcac accggaccga	1500
tgctgtgtgt aggtggcggtt accggactcg caccgggtct gtcgattgtt cgcggcgcc	1560
tgaagtgcggg tatgacgaac cccatccctt tttatccgg ggtgcgcagt cagcaagacc	1620
tctacgacgc agagcgattt cacaaactcg ccgcgtacca ccctcaactg accgtacaca	1680
cggtgattgc aacggggcccg attaatgagg gtcagcgtacg cggcctaatt accgtatgt	1740
tcgaaaaaga catcccttcg ctggctgggtt ggaggcccta cctgtgcggc gcaccagcg	1800
tgggttgaagc gttgtgcacc gtcaccaagc atcttggat atcaccggaa catatttgc	1860
ccgatgcctt ctatccccgtt gggatctgaa tagtcccg ccgtgcacccct ctgtccatcg	1920
agaatttcac aggaagacat tcaaatgaac gtaaacaata agggcagcgt ctgtatttgc	1980
ggcagcggaaa tgctccctaa attccctatttacccatct gaggattgtt ttatgacagt	2040
aaagtggattt gaagcgtcg ctctttctga catcctgaa ggtgacgtcc tcggcggtac	2100
tgtcgaggggc aaggagctgg cgctgtatga agttaaggc gaaatctacg ctacccgacaa	2160
cctgtgcacg catggttccg cccgcgtatgatg tgatggttat ctcgagggtt gagaatcg	2220
atgcccccttgc catcaagggtc ggtttgacgt ttgcacaggc aaagccctgt ggcgcacccgt	2280
gacacagaac atcaaaacat atccagtccaa gatttggaaac ctgcgtctaa tgattgattt	2340
gagctaaagaa tttaaacagg aggcccccgg ggccttagag cgtaatcacc cccattccat	2400
cttttttagg tgaaaacatg aattacaata ataaaatctt ggttaagtgaa tctggctctga	2460
gccaaaagca cctgattcat ggcgtatgaa aactttcca acatgtactg aaaaccattt	2520
ttgcgtggaa ctggctttt ctcactcatg atagccgtat tccgtcccc ggcgactatg	2580
ttacccgcaaa aatggggattt gacgagggtca tcgtctcccg gcagaacgc ggtcgattt	2640
gtgttttttgc gaaatggggat gacgagggttgc cggcatgtg gcaagacgtt ggtgagcgtt gaaagccggca	2700
atgccaaagg ttttgggtgc agctatcagc gctggggctt cggctccaaac ggtgaactgc	2760
agagcggttttcc atttggaaaaa gatctgtacg gcgagtcgtt caataaaaaa tgctgggggt	2820
tgaaaagaatg cgctcggttgc gagagcttccat atggcttcat ctacgggttgc ttgcaccagg	2880
aggccctcccttcc tcttattggac tatctgggttgc acgtcgcttgc gtacctgttca cctatgttca	2940
agcattccggc cgggttagaa ctggctggc tcctcaggca ggttgcgttgc aagccaaact	3000
ggaaggccacc cggggaaaac ttgtggggag atgcatacca cgtgggttgg acgcacgcgt	3060

cttcgcttcg	ctcgaaaaag	tctatcttct	gctcgctcgc	tggcaatgcg	gcgctaccac	3120
ctgaaggcgc	aggcttgcaa	atgacacctca	aatacggcag	cggcatgggt	gtgttgtggg	3180
acggatattc	aggtgtcat	agcgcagact	tggttccgga	attgatggca	ttcggaggcg	3240
caaagcagga	aaggctgaac	aaagaaaattg	gcatgttcg	cgctcgatt	tatcgagcc	3300
acctaactg	caccgtttc	cggacaacaaca	gcatgtgcac	ctgctcggtt	gtttcaaag	3360
tatggAACCC	gatcgacgca	aacaccaccc	aggctctggac	ctacgcccatt	gtcgaaaaag	3420
acatgcctga	ggatctcaag	cggcgcttgg	ccgactctgt	tcagcgaacg	gtcgccccctg	3480
ctggcttctg	ggaaagcgcac	gacaatgaca	atatggaaac	agtttcgcaaa	aacggcaaga	3540
aatatcaatc	aagagatagt	gatctgctt	caaacccttgg	tttcgggttag	gacgtatacg	3600
gcgacgcgg	ctatccaggc	gtcgtcgcc	aatcgccat	cgccgagacc	agttatcg	3660
gtttctaccg	ggcttaccag	gcacacgtca	gcagctccaa	ctgggctgag	ttcgagcatg	3720
cctctagtag	ttggcataact	gaacttacga	agactactga	tcgctaacag	acgagtcgac	3780
catgtatgtc	aatattcaag	aagacaagct	ggttccgccc	cacgacgccc	aagagattct	3840
tcgtttcttc	aattgccacg	actctgctt	gcaacaagaa	gccactacgc	tgctgaccct	3900
ggaagcgcac	ttgttggaca	ttcaggctta	ccgtgcttgg	tttagagact	gcgtggggc	3960
agaggtgcaa	tatcagggtca	tttcacgcga	actgcgcgca	gcttcagagc	gtcgttataa	4020
gctcaatgaa	gccatgaacg	tttacaacga	aaattttcag	caactgaaag	ttcgagttga	4080
gcatcaactg	gatccgcacaa	actggggcaa	cagcccgaag	ctgcgcctta	ctcgctttat	4140
caccaacgtc	caggccgca	ttggacgtaaa	tgacaaagag	ctacttcaca	tccgctccaa	4200
cgtcattctg	caccgggcac	gacgtggcaa	tcagtcgat	gtcttctacg	ccgccccgg	4260
agataaaatgg	aaacgtggcg	aagggtggat	acgaaaattg	gtccagcgat	tcgtcgatta	4320
cccagagcgc	atacttcaga	cgcacaatct	gatgtctt	ctgtgattca	gtgaccattt	4380
ttacaaatgg	tcactgcaac	cgcggtcacc	attaatcaaa	gggaatgtac	gtgtatgggc	4440
aatcaacaag	tcgtttcgat	aaccgggtca	ggctcaggaa	tcggctcga	actgggtcg	4500
tcctttaagt	cgccgggtta	ttacgtatcc	gctctcgatc	gaaacgagga	gcaagaggcg	4560
cttcttgc	aagagttcaa	ggacgcactc	gagattgtag	ttggcgatgt	ccgggaccac	4620
gcaacaaatg	agaagctgat	aaagcaaaaca	atcgatagat	tcggctatct	tgattgtttt	4680
attgcaaatg	ccggtatctg	ggattacatg	ctgagcatcg	aagagcctt	ggagaaaata	4740
tcgagcagg	ttgacgaaat	attcgacatt	aatgtcaaga	gctatttcag	tggcatcagt	4800
ggcccccgtc	cggaactgaa	aaagactaac	ggatcagtgg	tgatgaccgc	ttcgggtgtcg	4860
tcccattgg	tcgggtgtgg	ttgttcttc	tacatcgcca	gcaagcatgc	gggtctcggt	4920
atggtaagg	ctttggccta	cgaattggcc	cccgaagttc	gcgtgaacgc	tgttcggcc	4980
gggggcaccc	tgacgtctct	gtgcgggtcc	gcaagcggcc	tttcgacaa	aatgcacatg	5040
aaagacatgc	ccggcatcga	cgatatgatc	aaaggtctca	cgcccttgg	tttgcagcc	5100
aagcccgaa	acgtgggtgc	accctatttg	ttgctggctt	cgcaaaagca	aggaaaattc	5160
atcaccggca	ccgtgattag	cattgatggc	ggtatggcgc	tcggctcga	gtgagcttgc	5220
agccgatcag	aagttataga	cacatttcag	gtgacgcccc	atgaagacaa	aactgtttat	5280
caataacgcc	ttgatcgatt	ctagtgcacca	gcagacccctc	gagcgcatac	accccgatcg	5340
cagcgatgt	gtgactgaga	gcaaaacgc	cacagtgcac	gacgcgataa	aggccgcac	5400
agccggccgag	gaggcgttca	agacctggaa	ggccgttgg	ccttcagagc	gtcgccgcct	5460
tctctaaag	gtcggcgatg	tcatggaaag	taaaacaccc	aagttcatcg	aagtgtatggc	5520
catggaggt	ggagcttccg	ccctttggc	cggttcaac	gtccatcggt	ctgccaatgt	5580
gttcccgag	gtcgctcgc	ttggctaccca	aattcagggt	gaaaccatcc	caacggacaa	5640
agccgaaacg	ctctcaatga	cactacgtca	gccgtcgcc	ccgatccaa	gatcgatcc	5700
atggAACGGC	accgcagtgc	ttgcggcacg	agccatcgct	tatccgctgg	tctgtggca	5760
cactgtgg	ttcaaaaggct	ctgaatttag	tcccgcacg	catgcccgt	tcacccagtg	5820
cgtcagg	gcccggctc	ccgctggcgt	gctcaattac	ctcaactctt	cgccgtaccg	5880
ttcgccccgg	atcgctgacg	cactgatctc	tgccaaaggag	atccggcga	tcaacttcac	5940
gggttccacc	cgcgtggcga	gcattatcgc	gcagaaagcc	gcaacacacc	tcaagcgctg	6000
cctgctgg	ctcgccggca	agtccccgt	tattttctg	gatgtatcg	acatcgatgc	6060
ggcggtaag	gcagcggtgt	tcggtagctt	cctgttccaa	ggtcagatct	gatgtccac	6120
tgagcgctt	atcggtatg	agaagatacg	cgacaattt	gtcgaaaaat	ttgtcgaaaa	6180
aactaagcgc	ttgagcgcag	gcaacccgt	cgtaactggc	gactgcatac	tcggcccgat	6240
ggtctcgcca	aattcgggt	agcggatcaa	tggttggtc	aaagacgcga	tcgacaaagg	6300
ggcaaaagg	gtttggcg	gtttggccca	aggtgcgc	atgcggccca	cgatccctgg	6360
tcacgtcaa	tctgacatgc	ggatttacga	tgaggagacc	tttggtccca	tcaccgtgg	6420
aatccgtgt	aaaggcgaag	cagaggccgt	ccgcattgc	aacgcacagcg	tctatggcct	6480
gtcgctgg	gtatttggcc	gcaacatcaa	ccgcgtctca	cgcggtggta	tgtccatcg	6540
atatggttct	gtacacatca	acgggtcgac	cgtccagaac	gaggcgcagg	ctccctacgg	6600
aggcaccaag	aacaccggct	acggggcgctt	cgacggccgt	gtgtaatcg	acgagttcac	6660
agagatcaag	tggctgacca	tcgaacctt	cgagcagcaa	tatcccttct	gataagcact	6720
aactcccagg	aatcaaacta	ttagtgcacca	agctgcagtt	atcgagctcg	gatacatggg	6780

tatctcggtc aaggaccctg atgcgtggaa atcatttgc acggatatgc taggtctgca	6840
agttcttgat gagggtgaga aggaccgttt ctatctcggtt atggattact ggcacatcatcg	6900
gatcgtagtc catcacaacg gacaggacga cttggagtac ctggctggc gtgtagccgg	6960
caagccggag ttcgaagctc tgggtcaaaa gcttatttgc gcccgttaca agatccgcat	7020
ctgcgacaaa gttgaggctc aggagcttat ggtttgggt ctgtatgaaaga cagaagatcc	7080
gggcggcaac ccgaccgaga tattctgggg cccccggatc gacatgagca acccggttcca	7140
tcccggtcgc cccctgcacg gaaagttgt gaccgggtac caaggcttgg gccattgcac	7200
cgttcgcacaa accgacgtcg cagaagctca taagtttat agcctgttgg gcttccgtgg	7260
ggacgtcgaa taccggattc cggttggccaa cgccatgact gccgaactgt cgttcatgca	7320
ttgcaacgcc cgtgatcaactt ccattgttgg tgggtccatg cccgctgcca aacgactcaa	7380
tcacttgatg cttgagttaca cccatatgaa agacttggga tacacgcacc aacagttgt	7440
aaagaacgaa attgacattt cttgcagttt gggcatttac gccaacgaca aggccgttgc	7500
gttctatggt gcaacgcctt cggggctggctt catttgcggcc ggctggcgag gtggcacggc	7560
catagatgaa gcggagttt acgtcgccgaa catcttcggc catggctggg aggccactgg	7620
atatggcctg gatgtaaaaac tgagctaaag atgcgcgtc gttggcgag gctctagtcc	7680
agcatcttca tacgcaacca accttgcagg gcgttgcgat cttttttttt taaaggcgaag	7740
ggaaagtggt tcggggccatg cgccataccga tccatgacat ttgtttcata gtatatagg	7800
agataggtga atcaacgcgt tagtcaacta gtggacacat ctgttccatg aggctatcta	7860
ctatcttattt aaaacaagaa taataaaatag gatgaaaata ataatgataa aaagaacgat	7920
ttgtcttggc tatcccttat tctgtttggc aagccccaca tggggccgaaag agtgccttg	7980
gacgttaccgtt attgttatgtt ctaatgttgc ttccatgttgc agtgcggaaatatactttaa	8040
tggtcagcggtt gtcggcaggag gaagcgctgtt tgccggatcgtt aacaacgcgc ttacattcga	8100
cttcggctac gccatcaacg accagtggaa tggatgttgcg attgttgcgtt ttccgcctac	8160
aactaaatgtt acggggcgccg gcacacttcc tggatgttgcg ctggggaaaataacttacgc	8220
tccaaacatgtt ttaacgttgc actataaccc ccccgctttt ggtcccggttgc gcccacat	8280
aggtgcgggg gtcatttaca cggggatttt tgaaagtccgg gacgctaatc taaaatcggtt	8340
cgatggccgac cacgttgggtt ccccccgcgtt acatgttgggtt gccgatattt acgttacccg	8400
tgggttgggtt gttttttttt atatccggaa gttttttttt gttttttttt gttttttttt gttttttttt	8460
cttggggccca caggaggctt aagcacgggtt aacttttgc ccattactaa cttcgatcgc	8520
gatcgacgcgcaattttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	8580
tgtttccatg tcgatataaaa ttatgtttttttt gttttttttt gttttttttt gttttttttt gttttttttt	8640
cgcctggacttataatggccca cacccttcgac gttttttttt gttttttttt gttttttttt gttttttttt	8700
caccgtggac ttatgtttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	8760
cggttattttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	8820
tgattttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	8880
gacagcccttta aataccggat aagtcatccg ccagaccggat gttttttttt gttttttttt gttttttttt	8940
caacggcactt atgctgggg tggatgttgc ggtttttttt gttttttttt gttttttttt gttttttttt	9000
gttctatgtt gatgttgcgtt atgctgggttcc agaggctgttcc attgttgcattt acgccaaccc	9060
cgaaggcattt aagttcgacttccctcgccc attgttgcattt gttttttttt gttttttttt gttttttttt	9120
ggtagtgcactt gtcggatgttcc gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	9180
caacatccgc ttccctcccc acgaagatgtt gttttttttt gttttttttt gttttttttt gttttttttt	9240
gcccataacc gcttctgggtt caagcgggggc catgtcgccgc cccggcttcccg cccatcatgttt	9300
gctgtacggaa gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	9360
cgatgtatgtt cgtcgacccgttccctcgccc attgttgcattt gttttttttt gttttttttt gttttttttt	9420
gaagtataat atcggatgttcc gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	9480
gcccctggccgttccctcgccc attgttgcattt gttttttttt gttttttttt gttttttttt gttttttttt	9540
aggcaaggctt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	9600
cgcagacccgttccctcgccc attgttgcattt gttttttttt gttttttttt gttttttttt gttttttttt	9660
gcacattttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt	9706

<210> 6
<211> 2294
<212> DNA
<213> Artificial Sequence

<220>
<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<221> misc_feature
<222> (186)...(186)
<223> n = a or t or g or c

<400> 6

aggcgagcgt	ctgtatttgc	ggcagcgaaa	tgctccctaa	attcctcatt	taccccatt	60
gaggattgct	ttatgacagt	aaagtggatt	gaagcagtcg	cttttctga	catttttgc	120
ggtaatntacg	ctaccgacaa	cctgtgcacg	catgttccg	cccgcatgag	tgatggttat	180
ctcgagggta	gagaatcga	atgcccctg	catcaaggc	ggtttgcgt	ttgcacaggc	240
aaagccctgt	gcgcacccgt	gacacagaac	atcaaaacat	atccagtc	gattgagaac	300
ctgcgcgtaa	tgattgattt	gagctaagaa	ttttaacagg	aggcaccccg	ggcccttagag	360
cgtaatcacc	cccatccat	cttttttagg	tgaaaacatg	aattacaata	ataaaatctt	420
ggtaagtcaa	tttggctga	gccaaaagca	cctgattcat	ggcgatgaag	aactttcca	480
acatgaactg	aaaaccattt	ttgcgcggaa	ctggctttt	ctcaactcatg	atagcctgat	540
tcctgcccc	ggcgaactatg	ttaccgc当地	aatggggatt	gacgaggta	tcgtctccg	600
gcagaacgac	ggttcgattc	gtgcttttct	gaacgtttgc	cggtatcg	gcaagacgct	660
ggtgagcgt	gaagccggca	atgccaaagg	tttttttgc	agctatcag	gctggggctt	720
cggctccaa	ggtgaactgc	agagcgttcc	atttaaaaaa	gatctgtacg	gcaagtcgt	780
caataaaaaa	tgtctggggt	tgaaaagaat	cgctcggt	gagagcttcc	atggcttcat	840
ctacggttgc	ttcgaccagg	aggcccttcc	tcttatggac	tatctgggt	acgctgcttgc	900
gtacctggaa	cctatgttca	agcattccgg	cggtttagaa	ctggcggtc	ctccaggca	960
ggttgtgatc	aaggccaact	gaaaggcacc	cgcgaaaaac	tttggggag	atgcatacca	1020
cgtgggttgg	acgcacgcgt	tttcgcttgc	ctcgggggag	tctatcttct	cgctcgctcg	1080
tggcaatgcg	gcttaccac	ctgaaggcgc	aggcttgc当地	atgacctcca	aatacggcag	1140
cggcatgggt	gtgttgtggg	acggatattc	agggtgtcat	agcgcagact	tggttccgg	1200
attgatggca	ttcgaggcg	caaagcagga	aaggctgaa	aaagaaaattt	gcatgttgc	1260
cgctcgatt	tatcgacg	acctaactg	caccgtttt	ccgaacaaca	gcatgttgc	1320
ctgctccgg	gttttcaaa	atggaaccc	gatcgacgca	aacaccaccg	aggcttggac	1380
ctacgcccatt	gtcgaaaaa	acatgcctg	ggatctcaag	cgccgcttgg	ccgactctgt	1440
tcagcgaa	gtcgggcctg	ctggcttgc	ggaaagcgac	gacaatgaca	atatggaaac	1500
agcttcgaa	aacggcaaga	aatatcaatc	aagagatgt	gatctgttt	caaacccttgg	1560
tttcgggtgag	gacgtatacg	gctgacgcgt	ctatccaggc	gtcgctggca	aatcgccgat	1620
cggcgagacc	agttatcg	gttttacccg	ggcttaccga	gcacacgtca	gcagctccaa	1680
ctgggctgag	ttcgagcatg	cctctagatc	ttggcatact	gaacttacga	agactactga	1740
tcgctaaca	acgatcgac	catgtatgc	aatattcaag	aagacaagct	gtttccggcc	1800
cacgacgccc	aagagattt	tcgtttctt	aattgccacg	actctgttt	gcaacaagaa	1860
gccactacgc	tgctgaccca	gaaagcgat	ttgttggaca	ttcaggctt	ccgtgttgg	1920
tttagagcact	gcgtgggtc	agaggtgcaa	tatcaggta	tttcacgc	actgcgcgca	1980
gcttcagagc	gtcgttataa	gctcaatgaa	gccatgaacg	tttacaacga	aaattttcg	2040
caactgaa	ttcgagttga	gcatcaactg	gatccgcaaa	actggggca	cagccgaa	2100
ctgcgttta	ctcgctttat	ccaacgc	caggccgaa	tggacgtaaa	tgacaaagag	2160
ctacttcaca	tccgctccaa	cgtcattctg	caccggcac	gacgtggcaa	tcaggtcgat	2220
gtcttctacg	ccgc					2280
						2294

<210> 7
<211> 4355
<212> DNA
<213> Artificial Sequence

<220>
<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 7

atcgataaaa	ccatgagggt	aataaataat	gatgaaggag	actatctaga	attcggttctg	60
gagacgggt	cggtggcata	accgttagacc	agcaggctga	gcaaaatacc	tcgggggtat	120
aagccgcgt	accgcgtccg	ccatatgct	gagtgagtgc	gctaaggctg	ggccgcctaa	180
tggcttcgag	aataaagcgg	gccaggtat	ttctctgtca	tctcgccgaa	tgggtggaa	240
cacatcaacc	tgaccggcga	ttacgtctgg	cggtcgatgc	gcagactgga	ggtcgccgaa	300
ttccggccgt	tacggcgcc	ctgaaaacct	tagtgtacga	tttttccgt	tttctctatt	360

cggcctgcgt	tgcgacgttc	gatctgacta	ggggcgcagcg	gcaacatcg	ctgagtacga	420
tccagcgct	ggatctgggt	tatttcgtca	accgacaaca	ccagagcg	tttccgggtgg	480
ttcaggtaaa	gcccaaccac	attgactacc	tctcggcaaa	atgagggtcg	ttactaattt	540
tgaacgtctt	caagcgatgg	ggtttttaggt	cggaagctgc	ccagacctgc	ccaacacctacc	600
acgtcggtac	ccgagcatat	tcggcccg	gcccggaaaaaa	acacagaat	gagcgggtga	660
cccgatcgcc	tttgcgtat	tctccgttt	caaaatggc	gggggctgaa	gtcagccaga	720
aatacatgac	tacttcagac	gattcgtcgat	attcacgtcg	gtgataaaca	aattcaacta	780
tgctttattt	acaaataaaa	gcacgctcac	catcatcg	aatacaaatac	ttataaaaat	840
taagccggat	ttatggaact	tctcatacag	ccaaacaatc	gcctcattag	cttttagtccc	900
ggcggcaacc	ttcttggaaat	gcttcgtcgaa	aacgggtcg	ctatttccta	cagggttatg	960
tctggcggtt	gcggaaacctg	ccgctgtcg	gttacagatg	gcagtgtat	tgattcgggg	1020
gcgggaagcg	gttttacaaa	cctcgtggac	gagcattatg	tgctcgctg	tcagtcgat	1080
cttactcaca	attgcgcgtat	cgaaatccca	gaaaccgacg	aaatcg	tcacccggcg	1140
agaatcatca	agggactgt	ggtcgcgtc	gagtcgc	ctcacgtat	ccgtcgcc	1200
cgcgtacgcc	tcgctaagcc	cttcgagttc	tcacccggac	agtcgc	attgcagttc	1260
agtcctgagc	atgcgcgtcc	gtattcaatg	gcaggtctgc	cagatgacca	agaaatggag	1320
ttccacatac	gcaagggtgcc	gggtggggc	gtaacggat	atgtttcg	gcacgtccgc	1380
gaaggtacaa	gcatcaagtt	gagcgggca	cttggtaacgg	cttatttgc	tcagaaccac	1440
accggggcga	tgctctgtgt	ggggcgttgg	accgactag	caccgggt	gtcgattgtt	1500
cgcggcgccg	tgaagttggg	tatgacaac	cccatcctcc	tttatttgc	agtgcgact	1560
cagcaagacc	tctacgacgc	agagcgattt	cacaaactcg	ccgctgatca	ccctcaactg	1620
accgtacaca	cggtaatcg	aatggggcc	attaatgaga	gtcagcg	cggtctagtt	1680
accgatgtga	tcgaaaaaaga	catcatttc	ctggctgggt	ggagggccta	cctgtcgcc	1740
gcaccagcg	tggttgaagc	gctttgcacc	gttaccaagc	atcttggat	atcaccggaa	1800
catattttag	ccgatcgctt	ctatccgg	ggaatctgaa	tagtccctt	ccctgcac	1860
ctgtccatcg	aggactcatc	aggaggatac	tcaaaaatgc	gcaaaaataa	acagtcgcgt	1920
cagtatttgc	ggcagcgaaa	tggtttccct	ctccctcatt	taccccatct	gaggatagtt	1980
ttatgacaga	aaaatggatt	gaagcgtcg	cccttctga	catcccagaa	ggtgatgtcc	2040
tcggcggtac	tgtcgagg	aaggagctgg	cggtgtacg	agtggaaggc	gaaatctacg	2100
ctaccgacaa	cctgtgcacg	catggtgc	cccgcatgag	cgatggtat	ctcgaggggc	2160
gagaatcga	atgcccctt	catcaagg	ggtttgcgt	ttgtacag	agagccctct	2220
gcgcggccgt	gacagagaac	atcaaaacat	atgcgtcaa	gattgagaac	ctgcgcgtaa	2280
tgattgatt	gagcggagag	tttaataagg	agttaccccg	gaccctagcg	cgtaactacc	2340
ccaattccat	cttttttagg	tgaaaacatg	aattacaaa	acaaaatatt	ggtgagtgaa	2400
tctgggctga	cccaaaagca	cctgattcat	ggcgtatgaa	aacttttca	gcacgaactg	2460
agaaccattt	ttgcgcggaa	ctggctttt	ctcactcatg	acagcctgat	tccatcccc	2520
ggcgactatg	ttaccgacaa	aatgggtatt	gacgagg	tcgtctctcg	gcagagcgac	2580
ggttcgattt	gtgccttc	gaacgttgt	cggtttcg	gcaagacgt	ggttaacgcg	2640
gaagccggca	atgccaaagg	tttcgtttc	agctatc	gctggggctt	cggttccaa	2700
ggtgaactgc	agagcggtcc	attcgaaaaa	gagctgtacg	gcgagtcgt	caacaaaaaa	2760
tgtctgggtt	tgaaaagaatg	cgctcggt	gagagcttcc	atggcttcat	ctatgggttgc	2820
ttcgatcagg	aggcccttcc	tcttatggac	tatctgggt	acgctgtt	gtacctagag	2880
cccatcttca	aacatttcagg	cggttttagaa	ctggcggtc	ctccagg	ggttgtgatc	2940
aaggccaact	ggaaggcacc	cgccggaaaac	tttgggggg	atgcatacca	cgtgggttgg	3000
acgcacgcgt	cttcgttcc	ctcgggagag	tctatcttc	cgatgtcg	tggcaacgc	3060
gtgctgcccc	ctgaagggtc	aggcttgc	atgac	aatacggcag	cggttccgg	3120
gtgttgcgg	acggatattc	aggcg	agcgc	actggat	tttccgg	3180
ttcggcggt	ctaagcg	aaagg	aaagaaattt	gcatgtt	cgccggatt	3240
tatcgacggc	acctcaactg	caccgtttc	ccgaa	acatgtt	ctgtcggt	3300
gttttcaaa	tatggaaaccc	gatcgacgc	aaacc	agg	ctacgcccatt	3360
gtcgaaaaa	acatgcccga	ggatctca	cgccgtt	ccgactcg	tcagcgat	3420
gttggccctg	ctggcttctg	ggaaagcgac	gacaatg	atatggaa	agcgtcgaa	3480
aacggcaaga	aatatcaatc	cagagata	gatctgtt	caaacc	tttccggtaag	3540
gacgtatacg	gcgacgcgt	ctatcctgc	gtcgtcg	aatcg	cggttccgg	3600
agttatcg	gttttctacc	ggcttacc	gcacacgt	cgact	ctgggtt	3660
ttcgaggat	cctctag	ttggcata	gactgac	agact	tcgttac	3720
acgagtcgac	catgtatgt	aatattca	aagaca	actgttcc	cgacacgccc	3780
aagagtttct	tcgttctt	aattgcc	acgcgg	gat	tttccgg	3840
tgctgaacc	ggaagcgat	ctgttgg	ttcagg	ccgg	tttaggt	3900
gcgtggggtc	agagg	tatcg	tttca	ccgg	actgcgc	3960
gccgttataa	gctcaatgaa	gccatgaa	tttaca	actgc	gcttccg	4020
tgcgaatcga	gcatcaactg	gatccg	aaact	cgcccc	caactgaa	4080

ctcgcttcat caccaatgtc caggccgcaa gggacgtaga tgacgaagag ctacttcaca	4140
tccgcctcaa cgtcattctg caccggcac gacgtggcaa tcaggtcgat gtcttctacg	4200
ccgccccggga agacaaaatgg aaacgtggcg aagggtggagt gcgaaaattg gtccagcgat	4260
tcgtggatta cccagagcgc atacttcaga cgcacaatct gatggtctt ctgtgatcca	4320
tgaccactt ttacaaaatgg tgactgctac cgccg	4355

<210> 8
<211> 2176
<212> DNA
<213> Artificial Sequence

<220>
<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 8	
gtgatgtcct cggcgtgact gtcgagggtt aggatctggc actgtacgaa gtggaaaggcg	60
aatatctacgc taccgacgac ctgtgcacgc atgggccgc ccgcacgac gatggttatc	120
tcgagggggcg agaaatcgaa tgccccttc atcaaggtcg gtttgcgtt tgtacaggca	180
gagccctctg cgccccctgt acagagaaca tcaaaacata tgcagtcaag attgagaacc	240
tgcgcgtaat gattgattt agctgagaat ttttaatagg aggcgcggcc gaccatagag	300
cgttaattatc cccattccat ctttttttag gtgaaaacat gaattacaaa aacaaaatct	360
tggtaagtga gtctgggctg accccaaaagc acctgattca tggcgtatgaa gaactttcc	420
agcacgaact gagaaccatt tktgcgcqga actgctttt tctcactcat gacagcctga	480
ttccttcccc cggcgactat gttaccgcaa aaatggggat tgacgagggtc atcgctctc	540
ggcaaagcga cggttcgatt cgtgccttcc tgaacgtttt ccggcacccgc ggcaagacac	600
tggtaacgc ggaagccggc aatgctaaag gtttcgtttt cagttatcac ggctggggct	660
tcggctccaa cggcgactg cagagcggtt cattcgaaaa agagctgtac ggcgagtcgc	720
tcaacaaaaa atgtctgggg ttgaaagaag tgcgtcgctg agagagctt catgggttca	780
tctatggttt cttcgatcag gaggccccctt ctcttatggg ctatctcggt gacgctgtt	840
ggtacctgga acccatcttc aaacattcag gcgggtttaga actggtaggt cctccaggtt	900
aggttgtat caaggccaac tggaaaggcac ctgcggaaaa ctttgcgtt gatgcataacc	960
acgtcggtt gacgcacgcg tttcgcttc gcacaggcgat atctatcttc tcgtcgctcg	1020
ctggcaacgc agtgcgtccg cctgaaggtt cgggttgcgaa atgacctcc aaatacggca	1080
gcggtatggg tgggttgcgtt gacggatatt caggcgtgca tagcgcagac ttggttccgg	1140
aattgatggc attcggcgcc gctaagcagg aaagctgaa caaagaaatt ggcgatgttc	1200
ccgccccggat ttatcgacg caccctcaact gcaccgtttt cccgaacaac agcgtgctga	1260
cctgctcggtt tggtttcaaa gatggaaacc cgatcgacgc aaacaccacc gaggtctgg	1320
cctacgcccatt tgtcgaaaaa gacatgcccagg agatctcaa gcgcgcctt gccgacgcgg	1380
ttcagcgaac ggtcgggcct gtcggcttct gggaaagcga cgacaatgac aatatggaaa	1440
cagcatcgca aaacggcaaa aaatatcaat ccagagatag tgatctgatt tccaaccttg	1500
gtttcgggaa ggatgtatac ggcgacgcgg tctatcctgg cgtcgctgaa aatcgccga	1560
tcggcgcagac cagttatcgt gttttctacc gggcttacca ggcacacgtc agcagctcca	1620
actgggctga gttcgaggat gcctctagta cttgcatac cgaactgacg aagactactg	1680
atcgctaaca gacgagtcga ccatgatgat caatactcaa gaagacaagc tggatccgc	1740
ccatgacgccg gaagagttt ttcgtttctt caattgccac gactcggctt tgcaacaaga	1800
agccaccacg ctgctgaccc gggaaagcgc tctgctggac attcaggctt accggacttg	1860
gttagagcac tgcgtgggtt cagaggttca atatacaagtc atttcacgcg aactgcgcgc	1920
cgcttccgag cgccgttata agctcaatga agccatgaac gtttacaacg aaaattcca	1980
gcaactgaaa gttcgagtcg agcatcaact ggattcacaa aactggagca acagccgaa	2040
gctgcgcctt actcgcttca tcaccaatgt ccagccgcgatggacgtaa atgatgaaga	2100
tctgcttccac gtccgctcca acgtcggttct gcaccggcgatggacgtaa atcaagtcga	2160
tgtcttctac gcccggcc	2176

<210> 9
<211> 14462
<212> DNA
<213> Artificial Sequence

<220>
<223> A modified DNA molecule encoding valine at the

position corresponding to the F352 amino acid in NDO.

gcatgggtt ttaggtcga aagctgccca ggccgtcgaa acctaccaca tcgtaacccg	3540
agcatattcg gcccgcggcg gctaaaaaca cagaaatgag cgggtgacc cgatgcctt	3600
tgatcgatttccgc ttcaaaataa attcaactat gctttatgtt caaataaaaag	3660
aatcacaaca ttcatgctgg tgataaataa atcaactat tataaaatta agccggattt atgaaaacttc	3720
cacactcacc atcatcgca atacaatct tataaaatta agccggattt atgaaaacttc	3780
tcatacagcc aaacaatcgc ctcattagct ttatcccgg cgccaaacctt ctggaaagtgc	3840
ttcgcgagaa cgggtcgct atttcctaca gtttatgtc tggcggttgc ggaacctgcc	3900
ggtgccgggt tacagatggt agtataatg attcgggac gggaaaggcggtt accacacc	3960
tcgtggacga gcattatgtc ctcgcctgtc ggtcagttact tactaacaat tgcgatcg	4020
aaatcccaga agccgacgaa atcgtcaccc accggcgag aatcatcaag ggcactgtgg	4080
tcgctattga gtcgcccact cacgatatcc gtcgcctacg cgatgcctc gccaagccct	4140
tcgagttctc accccggacag tacgcgacat tgcaatttcg tcctgagcat ggcgtccgt	4200
attcaatggc aggtctgcca gatgaccaag aaatggagtt ccacatacgc aagggtccgg	4260
gtggcgcgt aactgagttat gtttcgagc acgtccgcga aggtacaagc atcaaattga	4320
gcgggcaact tggtaaggcttatttacgtc agaaccacac cgggcccgtat ctctgtgtgg	4380
gcgggtggAAC cggacttagca cccgtgtgtt cgattattcg cggcgcgtgt aagttggta	4440
tgacaaaccc catcccttatttccggat tgcgactca gcaagacccct tacgacgcag	4500
agcgattgca taacccgcg gctgatcacc ctcactgac cgatcacacg gtaatcgaa	4560
tggcccgat taatgagagt cagcgacgcg gtctagttac cgatgcgatc gaaaaagaca	4620
tcagttcgct ggctgggtgg agggcctatc tgcgcgttgc accagcgatg gttgaagcgc	4680
tttgcaccgtt accaaacat cttggatatt caccggacata tatttatgcc gatgccttct	4740
atcccggtga aatctgaatc gtccctttcc ctcacccctgg tccattgagg actcatcagg	4800
aggatactca aataggcgca aataataaca gccgcgtcac tatgtgcggc agcgaaatgg	4860
tttccctctc cctcatttgc cccatccggat gatagttta tgacagaaaa atggattgaa	4920
gcagtcgccc ttgtgacat tccagaaggat gatgcctcg gctgtactgt cgagggttaag	4980
gatctggcac tgcgttgtt ggaaggcgaa atctacgcta ccgacgacccgt gtcacgcac	5040
ggtgcgcggc gcatgagcga tggtatctc gagggcgag aaatcgatg ccccttgcac	5100
caaggtcggt ttgacgttttgc tacaaggaga gccctctgcg cccccgtgac agagaacatc	5160
aaaacatatg cagtcaagat tgagaacccgt cgctgtatgc ttgatTTAAG ctgagaattt	5220
ttaataggcg gcgcggcggc ccatagacgc tgattatccc cattccatct ttttttaggt	5280
aaaaacatga attacaaaaaa caaaatctt gtaagtggat ctgggctgac cccaaaggcac	5340
ctgattcatg gcggtgaagg gctttccag cacgaaactga gagccgttt tgcgcggAAC	5400
tggcttttc tcaactcatga cagccgttattt cttttcccg gcgactatgt taccgaaaa	5460
atggggattt acgagggtcat cgtctctcg gaaagcgacg gttcgattcg tgccttcctg	5520
aacgtttgcc ggcaccgcgg caagacactg gtgaacgcgg aagccggaa tgctaaaggt	5580
ttcggttgcg gttatcacgg ctggggcttc ggctccaaacg gcaactgca gagcgttcca	5640
ttcgaaaaaa agctgtacgg cgagtcgctc aacaaaaaat gtcgggtt gaaagaagtc	5700
gctcgcgttag agagcttcca tgggttcatc tatgcctgca tcgatcagga ggcccttct	5760
cttattggact atctcggtga cgctgttttgc tacctggaaac ccatttttccaa acattcaggc	5820
ggtttagaac tggtagggccc tccaggtaag gttgtatca aggccaactg gaaggcacct	5880
gcggaaaaact ttgtgggtga tgcataccac gtcgggttgc cgacacgcgt ttcgtctgc	5940
acaggcgagt ctatcttc gtcgtcgctt ggcacacgcg tgctgcgc tgaagggtcg	6000
ggcttgcaaa tgacccatcgaa atacggcagc ggtatgggtg tgggtggat cggatattca	6060
ggcgtgcata ggcgcgactt gttccggaa ttgtatggat tcggcggcgc taagcaggaa	6120
aggctgaaca aagaatttgg cgatgttgcg gcccggattt atcgacggcca cctcaactgc	6180
accgtttcc cgaacaacacg cgtgtcgacc tgctgggtg tttcaaatg atggaaacccg	6240
atcgacgcaa acaccacccg ggtctggacc tacggcattt tcgaaaaaaa catgcggcag	6300
gatctcaagc gccgcttggc cgacgcgggtt cagcgacccg tcggcctgc tggcttctgg	6360
aaaaggcgacg acaatgacaa tatggaaaca gcatcgcaaa acggaaaaaa atatcaatcc	6420
agagatagtg atctgatttcc aacccctgtt ttcggaaagg atgtatacg cgacgcggc	6480
tatccctggcg tgcgttgtt gatcgacgatc ggcgagacca gttatcgat ttttcccg	6540
gcttaccagg cacacgtcag cagctccaaat tgggtctgtt tcgaggatgc ctctagttact	6600
tggcataccg aactgacgaa gactactgtt cgtctacaga cgactcgacc atgtatgtca	6660
atactcaaga agacaagctg gatccgcggcc atgacgcgaa aggtttttt cgtttttca	6720
attggccacga ctcggcttttgc aacaaagaag ccaccacgcg gctgacccgg gaagcgatc	6780
tgctggacat tcaggcttac cggacttggat tagacactg cgtggggatca gaggttcaat	6840
atcaagtcat ttccacgcgaa ctgcgcgcgcg cttccgagcg acgttataatg ctcaatgaag	6900
ccatgaacgt ttgcgacgaa aatttccagg aactgaaatg tgcgttgttgc catcaactgg	6960
attcacaaaa ctggagacac agcccgaaacg tgcgttttac tgcgttcatc accaatgtcc	7020
aggccgcaat cgagctaaat gatgaagatc tgcttacgtt cgcgttccaaac gtcgttctgc	7080
accggggcaccg acgtggacat caagtcgatg ttttccacgc cggccggaa gacaaatgg	7140
aacgtggcgaa aggtggagtg cgaaaatttg tgcagcgatt cgtggatttccagacgc	7200

tacttcagac gcacaatctg atggtcttc tgtgatccgg tgaccacttt tacaatggt	7260
gactgctacc gcggcacca ttaatcaaaa gggaatgtac gtgtatggc aatcaacaag	7320
tcgtttcaat aaccggtgcc ggctcaggaa tcggctcgaa actgggtcga tccttcaagt	7380
cggccggta ttgcgtatcc gctctcgta gaaacgagga gcaagagcg cttttgc	7440
atgaattcaa ggacgcactc gagatcggtg tggcgatgt ccgagatcac gcaataatg	7500
agaagctgat caagcagaca atcgctagat tcggcatct cgattgttc atcgcaatg	7560
ccggtatttgg gattacatg ctgagcatcg aagagccttgg ggagaaaatc tccagcagtt	7620
ttgacgaaat attcgacatc aatgtaaaga gctatttcg tggcatcagt gcagctctgc	7680
cggactgaa aaagacgaac ggatcggtgg tgatgaccgc ttgggtgtcg tccatgcgg	7740
tcgggtgtgg tggttcttgc tacatgcgc gcaagcatgc ggtgttaggt atggtcaagg	7800
cttggcccta cgaattggct cccgaaattc gcgtgaacgc tgcgtccgc ggcggcaccg	7860
tgacgtctct gtgcggccct gcaagcgcgc gtttcgacaa aatgcacatg aaagacatgc	7920
ccggcatcga cgatatgatc aaaggcctca ctcccttgg gtttgcagcc aagcccgaag	7980
acgtggtgg gcccttatctg ttgctggctt cgccaaagca gggaaaattc atcaccggca	8040
ccgtgatttag cattgatggc ggtatggcgc tcggctcgaa gtgagcttc agccgatcaa	8100
aggttataga aacatttttta ggtgacgcgc catgaagaca aaactgttta tcaacaacgc	8160
ctggatcgat tccagtgacc agcagacattt cgagcgcag cccccgtca acagcgaggt	8220
gatgactgag agcgcacaaacg ccacgggtgac ggacgcgata aaggcggcgc aagtggccga	8280
ggaggcattc aagaccttgg aaggacgttgg accttcggag cgtcggcc ttctcctgaa	8340
ggtcgcccgt gtcatggaaa gtaaaacacc caagtttatac gaagtgtatgg ccatggaggt	8400
gggagcttcc gctctttggg ccggatttcaa cgtccatgcg tctgccaatg tgttccggaa	8460
ggctgcctcg ctggccactc aaattcagggg cgaaaccatc ccaacggaca aagccgaaac	8520
gctctcaatg acactacgtc agccggctgg cccgatctcg agcatcgcc catggAACGG	8580
caccgcagtg ctggggcac gaggcatcgc gtatccgcgt gtcgtggca acacgggtgt	8640
gttcaaggc tctgaattta gtcggcgcac gcatggccctg atcaccctgt gcgtccagga	8700
agccgggctg cccgtggcg tgctcaacta tctcaactcc tcgcctgacc gttgcccga	8760
gatcgccgac gcactgatct cccgcaagga gatccggcgc atcaacttca cgggttcaac	8820
cccgctgggc agcattatcg cccgcaagggc cccgcaacac ctcaagcgct gcctactgga	8880
gtcggcggc aagtccccgc ttattgttct ggtacgcgaa aacattgacg cggcggtcaa	8940
ggcagcggtg ttccgttagt ccctgttcca aggtcagatc tgcatgttca ctgagcgctt	9000
ggtgggtgat gagaagattt ccgacgaatt tgcgtccaaat tttgtcgaaa aaactaagcg	9060
ctttagcggt ggcgacccgt gctgtactgg cgtacgcata atcggccaa tggctcgcc	9120
aaattcgggc gagcggatca atgggttggt caaggacgcg atcgataaaag gggccaaatg	9180
tgtttcgcc ggcattggccc agggtgcggg catggccggcc acgatctgg atcacgtgaa	9240
atctgacatg cggatctacg atgaggagac ctgggttccc atcacagtgg tgatccgttgc	9300
caaaggggaa gcagaggcca tccgcatttc caacgacagc gtttatggtc tgcgtccgg	9360
cgttttggc cgcgcacatca accgtgtctt ggcgtgggt atgtcgatcg aatatgggt	9420
cgtacacatc aacggctcga ccgtccagaa cgaggcgcag gtccttacg gaggatccaa	9480
gaacaccggc tacggcgct tcgacggccg tgccgtggc gacgagtca cagagctaa	9540
gtggctgacc attgagccat tgcgtccggc atatcccttc taaaagact aactccaagg	9600
aatcaaacga tgagtaagca agctgcaggat atcgacgtcg gatacatggg catctcgtc	9660
aaggatcctg atgcgtggaa atcggttgcg atgaatatgc tgggtctgca agtactcgat	9720
gagggtgaga aggaccgtt ctatctgcgg atggattact ggcaccatcg tatctgtat	9780
catcacggcg gagaggacga ctggaaatat ctggctggc gtgtagccgg caagccggag	9840
ttcgaagctt tggggcaaaa gtcattgtt ggcgttaca agatccgtgt ctgcgacaaa	9900
gttgggtctc aggacgtat ggtgttggc ctgtatggaa cagaagatcc aggcggcaac	9960
ccgaccgaga tattctgggg gccccggatc gacatggca atccgttca tccggccgc	10020
cctctgcacg gcaagttgtt gaccgggtgac caggcttag gtcattgcata cggtcccaa	10080
accgacgtcg ctgcggccca taaattctac agcctgtgg gcttccgtgg ggacgtcgaa	10140
taccgcattc cattgccttcc cggcatgact gccgaactgt cattcatgca ttgcaacgc	10200
cgtgtactt ccattgcgtt tgggtccatg cctgtgcgc agcggcttca tcacactgt	10260
ctttagtaca cccatatggc agacttgggata tatacgatc aacagttcgta gaagaacgaa	10320
attgacatcg ccttgcgttcc tggcatttac gccaacgaca aggcgttgc gttctacggc	10380
gcaacgcctt cggggctggc tatcgagccc ggctggcgag gtgtacggc catagacgaa	10440
gcgggatattt acgtcgccga catcttcggc catggcgatc aggcacccgg atatggcctg	10500
gatgtaaaatc tgagttaaaa gcgattatgc gtacatcggtt tttctgtacgt ttctgtctt	10560
ctatacagcg caataacaat aacaactaag tggaaatatt aataatgata aaaaaaacgt	10620
ttctttatcat gcctcgctt acttgcgttcc acgtcgccgc atggggccaa gaatcacctt	10680
ggacataccg catcgccatg agtaatattt ctggatcata aagcgccaaa gtgtacttgg	10740
gaggccagcg tgcgtccggaa ggaagcgctg acgcgagccaa taacaacgcg ctccatcg	10800
acttcggcta tgccatcaac gaccaatgaa atgcacgttt gattgtcggt attccaccta	10860
caactaaatgtaaaggcgca ggcacacttc cggcattca gctggggaaaa ataacttgc	10920

ctccaacatt actgacgtta aactataacc tcccagctt tggggcccgaa cgtcctcaca	10980
tcgggtcagg agtcaattac acgcgaattt tgaaagcaa ggacgtaat ctaaaatcat	11040
tcgatccga ccacgcttgg tcccccgccg tgcattttgg tgccgatatt gacgtgagtc	11100
gcaactgggt cgtcagcatt gatattcgaa agttataacct gaaaaccgac gcatcagggtt	11160
acttagggcc acaggaggct aaagcaaaagg taactcttga cccattgata acatcgatcg	11220
caatcgagc ccaatttga tgccccctt taagctctc tatctatcta actgcaaagg	11280
gtatTTTAT gttgaataaaa attagtaaaa ccgcgcgtct taccgcgtaa gatataatg	11340
gtgcctggac tataatgccc acaccgtcga cgcctgatgc ttctgatgg cgacacgacta	11400
acactgtggc ctttagacgag actgcccgcg tagttaaga gctgattgtc gctgggtca	11460
acggtatTTT gaggatgggt acctttgggt agtgcgccac gttgaccctgg gaggagaaac	11520
gtgattatgt ttgcacgggtt gtcgagacca ttcgcggctcg tgcgttgc ttctgcggca	11580
cgacggccct gaatacccgaa gaagtcatTC ggcagaccccg agagcttac gatattggcg	11640
ctaacggcac catgttaggc gtgcgcgtgt gggtaagat ggacctgccc acagcggtcc	11700
agttctatcg tgatgttgcg ggcgcgggtac cggaggctgc cattgcgatt tacgccaacc	11760
ccgaagcatt caaattcgac ttcgcgcgcg cattttggc agagatgtct aaaattccctc	11820
aggttagtgc acgttgcgtat cttaggcattcg gaatgttgcg cttggacactg aaattggcg	11880
ctaacatccc cttcccttca cacgaggacg actattacgc ggccgcacgc atcaatccc	11940
agcgcattac tgcgttgcgg tcaagcgggg ccatgtgcgg cccggctacc gctatcgct	12000
tgcgtatgt agtggagcg gccaagagta ccggactcg gatcaaggcc aaagccatct	12060
ccgatgatat gcgtcagcc gattcgacat tgcgttgcgg tggcacttt tcggagttct	12120
cgaagtataa tatcggtt gaaaaggcac ggatggacgc ggctggttgg ctcaaggctg	12180
gtccctgcgg tcctccctac aatcttgcg cagaagatta cctcggttgg gcacagaaat	12240
caggcaagtc gtggccgcg ctgcacgcgta aatacagtaa agaattaaag tagttcacct	12300
ccgcattgcgtt gagcgcgagg ggtgacgtaa acgcccggcg gtgcggaaag taagttagt	12360
agagttcatt tcttgccgaa ggcactgcgta gatcagcaaa gttagctgtat ctgcgtct	12420
cggaaaatttgg ggcgaaagct gatcttagga atgcgggata aaggcagtagc accgtaacga	12480
tcgggggtgtg ccgttcatgt tgaacgcac acgttgcg cgcacttctc ttctcggag	12540
tgtttgattt tgattgtcgat tttctatttc gatttttgcg tgcgttgc ttacttggcc	12600
aatcagcggtt tgtcaagat tgcgcgaaat catggccta ccacgtgttgc taacgcgatc	12660
gatttggcgcg gggtaaaaat agcgtcggt aacgttgcgc catctaattcg cgacttggaa	12720
gtaaaatttgg actatttgcg aatgttgcg aatgcgggac tacttcaggc catgttgcg gggcggtcg	12780
ctgggtatttc cagctaacta caacacgaga cggatgaaat ctgggttta ttactcggag	12840
gccgaggtgc aggccgcgtc ctatgtgat gtatgttta atgcgatttg gggagaaggc	12900
atagcaccag atttggaaat ctgcgttgcg ctggatctg aatgttgcgtt ctggatctgt	12960
agtgccttcg agcgttttc cagcagcaac gcccaacag agaggatgtg cgagcagaca	13020
catttcgcgc tgcagcgaa ggttgcgtt gtcgcacgcg tgcgttgcgtt cgatgaaatg	13080
tggtgccgggaa acgaccgtct gtttgcgtt gggcgccg atatgtctaa atctcgctt	13140
aatgcgcatt taagttagtt atctgtatcg tatttgcgtt atgatgtcg ttcaagatca	13200
gcggataactg aatgtcgatc aatgcgggac tacttcaggc catgttgcg gggcggtcg	13260
ggcgacttgg cgtgtcgatc gtatgttgcg cgtgaggcat gtttttgcg tactatttc	13320
agtgcctctg gctctctctg gtttgcgtt gggcgccg atatgtctaa atctcgctt	13380
gtacctgacc agagatacgg gtgttgcgtt tggcatcgat ggtacagcgcc atgacgcct	13440
gctgcttcac ttgcgttgcg ttcacgcact cgcgcgtatc aatctcaacg agccagatga	13500
tcgcgcgcgc gggcgaaatc tagtcgtat tgcgttgcgtt tacgttgcgat ccgaatgcgc	13560
tcctggctt aacggccac gccttaaaacg tggatgcgc aatctcgat gtcgcacatttgc	13620
gcccatataa tgggttgcgtt ctccctctatc cagaatcagc taagggtgtgc atgggtataa	13680
ctgggtcaagc cggaaatcagc cggaaatcgcg cgcgcgttgcgc cactggcgat caaacagcg	13740
tcaaaatacta ccatttgcgtt ggcctaaagag ggtgtggaca aaataaagta aacttcttc	13800
tcctttcttgc tgcagcatttgcg accgcgttgcgtt aatgttgcgtt gcccacccgc atcgctacgc	13860
accattaccc tctgtgcacc aggctcgctc atacgcgcgc ttattccatc caagccgcac	13920
tggcgcaaga ttccatgcgtt aacggggcat caccgcgcgc cccgcacaccc ttgcaaaaagg	13980
gctgagactg gccggatcg ttgcgttgcg aatgttgcgtt ggcacacccgg cgtcgttgcg cggagcagac	14040
cgagcctcgatc aatgttgcgtt gtttgcgtt gggcgccg atatgtctaa atctcgctt	14100
ctatcccagt tgcgttgcgtt atgcgtatcg gacgttgcgtt gctgattttat ttgatgtctc	14160
ggggagggtcgcc ggcgttgcgtt tgcgttgcgtt gggcgccg atatgtctaa atctcgctt	14220
gtcggtcgatc cagggtcgatc tggcgatcg tgcgttgcgtt gtttgcgtt gggcgccg atatgtctaa	14280
gtctataaaaaa ctttcggccg tggcgatcg aatgttgcgtt gggcgccg atatgtctaa atctcgctt	14340
tccgtggccca atggcgagag cgggtggatc gtatgtatcg gccgtcagcc gctgttgcgtt	14400
attcccaatc aacgcgcacgc tctcccaag gggcgccg atatgtctaa atctcgctt	14460
ag	14462

<210> 10
 <211> 12808
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 10						
gtcgacgcac	gatgcaggac	tgggcccgtc	gcctcgacct	cttcgagcag	aaccaggctg	60
aggcgcccaag	catggccgtc	accgtgcata	tggaagggtgt	gccccattc	ccgagtgagc	120
aaaccgcagaag	cgcgcctct	acgcccgtt	ccgcttcgc	aagcctgctc	gtgacgaagc	180
cgggtgacgc	catggcggtt	gtttctgc	ccgcacatcg	gctgccggca	gtgccgcccc	240
agcgatcggc	cgcgcgtt	gtgcctcg	acattcagcg	cgagagaatg	gatttgtcg	300
atgtcttcga	agcgccgcac	aaccttcccg	tcgctgcgtt	tgccaagatg	gcgggcaa	360
ctcgcagggt	gatcaagctac	gagatccagg	cggcaactt	gctggcggtt	aacgtggca	420
accgcggcca	gcgcgtgc	gactggacc	tcgacccgct	caagcacgag	ctgatccagt	480
ctgtcctgaa	gctgaccagg	ggtgcggacc	cttgcagat	ctaccatgca	ctgctgcagc	540
cgcgcgtcat	gctgcgggg	cgctcgac	tggagggcgt	gactgcccagc	aatctcgaca	600
agctcgcat	ggccgtgagc	acagcggtg	aggaaagcga	atggaccccg	ctgcgggtcg	660
gtggcgtgt	agtcaaaaca	cgggcccgt	aggatggcc	tggacattat	tcatattagt	720
gatactaata	ttcatttat	gtttattgac	tattagaata	cagtcaatga	tcatggacc	780
ataaaagcata	taaataaaaga	agctagatct	atggaaacttc	tcgtactacc	gaacaatcg	840
cgcgtgcctt	ttgattccgg	tgccaaac	ttggaaagtgc	tccgtgagca	ccgtgtgggt	900
atttcctaca	gctgtatgtc	ttggacgtgc	ggtacttgcc	gctgccgagt	tatacatggc	960
agcgtcatta	gttcggccgc	aaaaagcgtt	gactcaaatac	gcatcgaa	gcattatgt	1020
ctcgccctgtc	agtcagtgt	caccagcaat	tgcgcaattt	agatcataga	ctcagacgac	1080
atagtcactc	acccggcgcg	aatcatcaa	ggcatgggtt	tcgcccgt	gtcgcccact	1140
cacgatattc	gcccgcattc	catttcgc	gccaagccct	tcgagtttc	acccggacag	1200
tacgcgtatgc	tacagttcag	tcccgaaacat	gtgcgtccat	attcaatggc	tggctgc	1260
gatgaccaag	aaatggagtt	ccatatccgc	aaagtgcgg	gcgggcgtt	cacggagtat	1320
attttcgagc	acgtccgcga	aggtacaagc	attaaagtga	gtgggcctt	tggtacggcc	1380
tatctcggtc	aggctcacac	cgggcccgt	ctgtgtgtt	gcggcgggac	cggactcg	1440
ccgggtctgt	cgattttcg	cggcgcgtt	aagtccggaa	tgacgaaccc	catccac	1500
tatccgggg	tgcgcagtca	gcaagac	tacgacgcag	accgatttga	ccaactcg	1560
gctatccacc	ctcaactgac	tgtccatata	gtgatcg	cgccccgt	taatgagg	1620
cagcggccg	gcctaattac	cgatttgc	gaaaaagaca	tccctcg	ggctgggtt	1680
agagcctacc	tgtccggcgc	accagcgat	gttgcgc	tatgcacc	cgccaaagat	1740
cttggatat	cgcccggac	tatccatgc	gacccctt	atcccagc	ggctgt	1800
gccccgaccc	ttcacctcg	tacatcgaga	attcatc	aggactt	ccactcg	1860
actaacaaca	gcccgcgt	aatattttag	acagctggat	gatctctaa	tccatcatt	1920
ccccatttga	agatacg	atgacagaaa	aatggattt	cgccgtcg	ctttatgaa	1980
tccctgaagg	tgacgtc	ggcgtgac	tcgaaggta	ggaactag	ctgtatgaa	2040
tggaaaggcga	aatctacgt	accgacaacc	tgtgcacaca	tggctgt	cgcatgag	2100
atggctttct	agaaggcaga	gaaatttgc	gtccttgc	tcaagg	tttgcgtt	2160
gcacaggcag	ggcctgt	ccccctgt	cacagaacat	caaaccatac	ccggtaaga	2220
ttgagggcca	gctgtgtat	attgatttgc	gctgagaatt	ttaatagg	gcaccccg	2280
cccttagagcg	taatcccccc	cattcgat	cttggagg	aaatatga	tacaaaata	2340
aaaacttgg	gagtgaat	gggctgac	aaaacac	gattcatgg	gacgaaga	2400
tttccagcg	cgaaactgg	accat	ctcgac	gctttcc	actcatg	2460
gcctgattcc	gtccctgt	gactatgt	cgccaaa	gggggtt	gaggttat	2520
tctccaggc	gaacgac	tcgattcg	cttgc	cggtgt	caccgtgg	2580
agacgctgg	acacgc	gaggtaat	ctaaagg	cggtgc	tatcacgg	2640
ggggcttcgg	cgcta	gaaactgc	gcgtccc	tggaaa	ctgtatgg	2700
aggcgctcg	caagaaatgt	atgggattt	aaagact	tcgtgt	agcttccat	2760
gcttcatcta	tgggtgtt	gatgagg	ccccttct	caaagact	atgggggac	2820
ctggctgg	cctggag	atgttaa	attccgg	gctagaact	atcggtc	2880
caggaaagg	cataatca	gctaact	aaagcccc	ggaaaactt	acggggat	2940
cgttaccacgt	gggttgg	catgcgtt	cgctcg	agggcag	gtcttct	3000
cgttagctgg	caacgcag	ttggccc	aagg	tctgc	acctccaa	3060

acgcggcgg	catgggtgt	ttgtgggacg	gatattcagg	cgtgcacagc	gcagacctgg	3120
tccggaaatt	gatggccttc	ggcggtgcta	agcaggaacg	gctgaacaaa	aaaattggcg	3180
aggtcgcgc	acgaatctat	cgcagccacc	tcaactgcac	cgtttcccc	aacaacagt	3240
ttctgacctg	ctcgggtgtc	ttcaaggtat	ggcacccgat	cgacgcaa	accactgagg	3300
tatggaccta	cccatggtc	aaaaaagaca	tgcccggagga	tctcaagcgc	cgcttggctg	3360
acgcggttca	gagaacggtt	gggcctgctg	gcttctggga	aagcgacgac	aacgacaata	3420
tggaaacggt	atcgaaaac	gccaagaaat	atcagtccag	agatggcgat	ctggttcca	3480
acctgggttt	cgcggggac	gtatacggcg	acgagggtta	tcctggcata	gtcggcaaat	3540
cggcgattgg	cgagaccagt	tatcgtggct	totatcgggc	ttacggcgcg	cacatcagca	3600
gctctagctg	ggctgaattc	gaggatgtct	ctaaaaattt	gcataccgaa	ctggcaaaa	3660
ctactgatcg	ctaacagacg	agagggacca	tgatgattaa	tattoaggaa	gacaagctt	3720
tctccgcccc	cgacgcccga	gagtttcttc	gtttcttcaa	ttccggcgac	gaggcttgc	3780
aacaagaagc	taccacgtt	ctaaccggg	aagcgcata	tttagacatt	caggcttacc	3840
gcgcctgggt	agagcactgc	gtggactcg	aggtgaaata	tcaagattatc	tcacgcgaac	3900
tgcgctcagc	ttccgagcgc	cgttaccagc	tcaatgaaac	catgaacatt	ttcaacgaga	3960
attatgaaca	actggaaagt	cgcgtagcgc	atcaacttgg	tccgaaaaac	tggggcaata	4020
gtccaaaggt	gcgctttact	cgtttcatca	caaataatcoa	ggctgcaatg	gacgaaaatg	4080
aagatttgct	tcacattcgc	tccaaacctaa	ttgttcaccg	agcacgacgc	ggcaatcaag	4140
tcgatgtctt	ctatgccact	cgggaggata	aatggaaagcg	cgcgaaagat	ggagcgcgt	4200
agttggtcca	acgattgatt	gattatccag	agcgcacatt	ccagacgcac	aatgtgatga	4260
tctttatgtg	acccaataat	cgcctttaca	aatggtgact	gctacaagcg	gtccccattgt	4320
tcaaaaaggaa	atttatgtgt	atgagcaatc	aacaagtcgt	ttcgataacc	ggtgctggct	4380
caggaattgg	tctcgaactg	gttcgatct	ttaagtccgc	cggttattgc	gtatccgctc	4440
tcgtacaaaa	cgaggagcaa	aaggcgagcc	tttgcata	gttcaaggac	gcaactcgaga	4500
tcgtcgtggg	cgatgtccgg	gaccacgca	caaataatggaa	gctgataaaag	caaacaacccg	4560
atagattcgg	ccatctcgat	tgtttatttgc	caaataatggcg	tattttggat	tacatgcttgc	4620
gcatcgaaga	gccttgggag	aaaataatcg	gcagttttga	tgagatattc	aacatcaatg	4680
tcaagagacta	tttcagcggt	atcaggcccg	ccctgcagga	actgaaaaag	actagcgat	4740
cagtggtgat	gaccgcttca	gtgtcgcccc	atgcggtcgg	tgctgggtgt	tcttgctaca	4800
tcgcccagcaa	gcatcggtc	ctgggcatga	tgaaagctt	ggcttacgaa	ttggctcccc	4860
acattcgcgt	caacgcccga	gcacccggcg	gcactgtgac	gcctctgagc	ggtcccgca	4920
gcgcggcgctt	cgacaaaact	cacatggaaa	acatgcccgg	tatcgaggac	atgatcaagg	4980
gtctaacgccc	tcttggattt	tcagccaaagg	cogaagacgt	agtggcaccc	tattttgtgt	5040
tggcgtcgcg	agatcaaggg	aaatttatttgc	ccgggactgt	cattaatata	gatggaggaa	5100
tggcgtcgg	tcgcaagtag	gtttgtcgcc	tatcttggaa	taataactaa	atttctggta	5160
aaaccgcatg	aataaaaaat	tgtttata	caatgtctgg	atcaatttca	gtgaccaaca	5220
gacccctcgag	cgaaaagcacc	ccgtcagtttgc	tgaggtgatg	acggagtg	caaactccac	5280
ggtgtatggat	gctttaaagg	ccgcgcga	tgcccaagag	gtttccaga	cctggaaagac	5340
tgttggacct	tcggagcg	gccgccttct	gctgagggtt	gctgagggtt	tggaaagtaa	5400
aacaccggag	tttatcgaag	tgatggccaa	ggaggtggga	gcctccgctc	tttggggccgg	5460
cttcaatgtc	cagatgtcag	ccaatgttgc	ccgtgaagcg	gcatcgctgg	ctacacaaaat	5520
tcagggggaa	actattccga	cagacaatgc	tgacacgctc	tcaatgacgc	tacgtcagcc	5580
ggtcggcccg	atcttgcgca	tcgtggccgt	gaacggcacc	gcagtgtcg	cgccacgagc	5640
catcgcttat	ccgctggct	gcccgaacgc	ggttgtatttgc	aaaggttctg	agtttagtcc	5700
cgcgacgcatt	gcctgtatca	cccagtgcgt	gcaggaagcc	gggctgcctg	ctggcgtgt	5760
caactatctc	aactcttcgc	ctgaccgttc	gcccggatc	gcccacgcac	tgatctcagc	5820
caaggagatc	cgacgcata	acttcacggg	ctccacccgc	gtgggcagta	ttatcgcgca	5880
gaaggcccg	caacacccca	agcgtgcct	getggagctc	ggtggcaagt	ccccacttat	5940
tgttctggat	gatgcagaca	tcgtatgcggc	ggtcaaggca	gcccgtt	gtagcttcc	6000
gttccaaggt	cagatctgca	tgtccactga	gctgatgtatc	tttgatgaga	agatagccga	6060
cgaaatttgc	gcaaaaatttgc	tcgaaaaaaat	taagcgcttgc	agcgcaggcg	acccgtcg	6120
aactggcgac	tgcatacatcg	gcccgtatgtt	ctcgccaaat	tcgggtgagc	gatcaatgg	6180
tttggccaaa	gacgcata	acaaaaggggc	aaaagttgtt	tgccggcgct	tggcccaagg	6240
tgcgtctatg	ccggccacga	tcctggatca	cgtaatct	gacatgcgg	tttacgatga	6300
ggagacccctt	ggtcccatca	ccgtggtaat	ccgttggaa	ggcgaagcag	aggccgtcg	6360
cattgccaac	gacagcg	atggccgtc	gtcggcgta	tttggcccg	acatcaacccg	6420
cgctctacgc	gtgggtatgt	ccatcgata	tggttctgt	cacatcaacg	gttcgaccgt	6480
ccagaacgag	gfcgaggctc	cttacggagg	caccaagaac	accggctacg	ggcgcttgc	6540
cgcccgct	gtaatcgacg	agttcacaga	gatcaatgttgc	ctgaccatcg	aaccttgc	6600
cgacgaatata	cccttctgtat	aagcacta	tcccaaggaat	caaactatga	gtaagcaac	6660
tgcagttatc	gagctcgat	acatgggtat	ctcggtaag	gaccctgtat	cgtggaaatc	6720
atttgcacg	gatatgtatc	gtctgcaat	tcttgatgag	ggtgagaagg	accgtttctat	6780

tctgcggatg gattactggc atcatcgat cgtagtcac cacaacggac aggacgactt	6840
ggagtaccta ggctggcgtg tagccggcaa gccggagttc gaagctctgg gtcaaaagct	6900
tattgatgcc ggttacaaga tccgcacatcg cgacaaaagtt gaggctcagg agcgtatgg	6960
gttgggtctg atgaagacag aagatccggg cggcaacccg accgagatat tctggggccc	7020
ccggatcgac atgagcaacc cgttccatcc cggtcgcccc ctgcacgaa agtttgtac	7080
cggtagccaa ggcttggcc attgcacatcg tcgccaacc gacgtcgcag aagtcataa	7140
gttttatagc ctgctggct tccgtggga cgtcaatac cggattccgt tgcccaacgg	7200
catgactgcc gaactgtcgt tcatgcattt caacgcccgt gatcactcca ttgctttgg	7260
tgccatgcc gctgccaac gactcaatca cttgatgctt gagtacaccc atatggaaga	7320
cttgggatac acgcaccaac agttgtaaa gaaccaaatt gacattgcct tgcaagttgg	7380
cattcacgcc aacgacaagg cgttgcgtt ctatggtca acgccttcgg gctggctcat	7440
tgagcccggc tggcgaggtg ccacggccat agatgaagcg gagtattacg tcggcgacat	7500
cttcggccat ggcgtggagg ccactggata tggcctggat gtaaaactga gctaaagatg	7560
cgcgcgtcgtt gggcgaggct ctatccacgc atctcatac gcaaccaacc ttgcaggcg	7620
atgagatcaa aggacgttaa agcgaagggg aagtggttcg ggccatgcgc ataccgatcc	7680
atgacatttgc ttccatagta tataggtaga taggtgaatc aagcgcttag tcaactagt	7740
gacacatctg ttccatgagg ctatctacta tctattcaaa acaagaatga taaataggat	7800
aaaaataata atgataaaaaa gaacgatttgc tcttgcgtat cctctattct gtttggcaag	7860
ccccacatgg gccgaagagt cgccttggac gtaccgtatt ggtatgacta atgtagctt	7920
cgatgcttagc gcaaaagtat acttaaatgg tcagcgggtg ccaggaggaa ggcgtatgc	7980
gagcgataac aacgcgccta cattcgactt cggctacgccc atcaacgacc agtggatgt	8040
acgtgcgtt gtcgggtattc cgcctacaac taaagtgcgc ggcgcaggca cacttcctgg	8100
tatccagctg gggaaaataa cttacgctcc aacagtatta acgttgaact ataacctccc	8160
cgcttgggtt cccgttcgccc ctcacatagg tgcgggagtc aattacacgc ggattttga	8220
aagtccggac gctaatactaa aatcggtcga tgccgaccac gcttggtccc cccgcgtaca	8280
tgttgggtgcc gatattgcgc ttaaccgtgg ttgggtcgat agcattgata tccggaagtt	8340
atacctgaaa accgacgcatt cagggtactt gggggccacag gaggctaaag cacgggtaac	8400
tcttgaccctt ttactaactt cgatcgcat cggacgccta ttctgtatgat tctgtttaaa	8460
gttctttatc tatctaaccg caaagggtgt ttccatgtcg aataaaaatta tgaaaacgtc	8520
gcgtcttacc gccgaagata tcaacggcgc ctggactata atgcccacac cctcgacgcc	8580
tgatgcttctt gattggcgca gcactgcac cgtggactta gaagagactg cccgcatagt	8640
tgaagagctg attgcagctg gtgtcaacgg tattctaagt atgggtactt ttggtgagtg	8700
cgccacgttg acctccggatg aaaaacgtga ttatgtctcg acgattgtcg agaccattcg	8760
tggtcgcgtg ctttatttctt gtggcacgac agccttaaat acccgagaag tcatccgcca	8820
gaccgcgagag cttatcgata ttggcgccaa cggcactatg ctcgggggtgc cgatgtgggt	8880
gaagatggac ctgcctacag cggttcagtt ctatcgat gttgcagatg cggtaccaga	8940
ggctgccatt gcgatttacg ccaaccccgaa agcattcaag ttgcacttcc ctcgcccatt	9000
ctgggcagag atgtccaaaa ttccgcaggt agtgcactgcg aagtatctag gcatcgaaat	9060
gcttgcatttgc gaccttgcgc tggcacccaa catccgcattt cttccccac aagatgacta	9120
ttacgcggcc gcacgcattca atcccgagcg cataaccgcg ttctggtcaa gccccccat	9180
gtgcggcccg gctaccgcca tcatgttgcg tgacgaagtg gtgcgggcca agagcaccgg	9240
tgactgggcc aaggccaaag ccatctccga tgatatgcgt gcagccgact cgacatttt	9300
tccgcgtggc gacttttcgg agttctcgaa gtataatatc gggcttggaaa aggacggat	9360
ggatgcggct ggttggctca aggctggcc ctgcgtccg ccctacaacc ttgttccaga	9420
agactaccc gctggcgcac agaaatcagg caagcttgg gccgcgtgc acgctaaata	9480
cagtaatgaa ttgaagatgt tcacccgcgc agacgttgcg gacaggggtgg cgcagacgc	9540
gagggtgcag gaattaatgt agctaaagca catttcttgc gccaggcatt gccagatcg	9600
caaagtttc tgatctggca gtttccaaaa ttggggcgaa agctgtatc aggaatacgg	9660
gataaaggca gtgcaccata acgacggggg cgtgccattc gtgtgaacg attttgtat	9720
tgtccgcact tctgttcttgc gagggtttgc ttgttgcatttgcgat ttcgatgtttt	9780
tgagtccgtt ctcttacttgc gccaaccatc gtttgcatttgc gcttgcgcac gactatggct	9840
tttccatttgc ttattacgca atcgatttgc cgcgagttaa aatagccatc gggaaacgttg	9900
gtccatctaa tcgcgcacccatc atagtcacgc tggacttattt gaaagtagat ttgcaacgg	9960
ggcccgagct ttacgaaata ccgttggat tccacatcgatc ctacaacgc cgacggatga	10020
atactgggtt ttattactcg ggagccatgg cacagactgg tgcctatgttgc aatgtgtat	10080
ttaatgcgggtt ttggggagat ggcatacgatc cagatttgcgaa aagcttgcct gctctggat	10140
ctgaaaaactt aggctggat cgtacgcgcct tcgaggactt tatcagcgc gatgccgaa	10200
cagagaggta tgacgaggcag acacatgcgc cgtacgcgc gaaacgcaccg tctattatgc ctcgagaacgc	10260
cgtatgtttt gggcgatgaa atgtgggtgg gaaacgcaccg tctattatgc ctcgagaacgc	10320
cagtggggagg tgcgcctgtt aatggagaat agtgcgtacgc gagcgttgc gccggctaa	10380
tgccgatata agtgggttgc acgtatcgat tttgtcgat acagcgctt caaaatcagc	10440
ggctactgaa gtcagataaa aatgcgggac tacttcaggc atccgtgcg acacaaagtt	10500

ttacctgtaa ttgtccaccc	attccgagtt tggaatggta	gctgactcgc tatgcacca	10560
gcatagccct aacaagacat	gcatcaactgg taacggtggg	gtgtgaagct cctgcaacaa	10620
tgtagccccct	tgatgtgtt atttgctcg	aggtgaagca cagatgctcg	10680
ggcttgcgc gctaggctgg	caagtatgag caacctaagt	gggggttggg ggcgaatggg	10740
aaccaaaaac caacgcaga	cttaccagcg tcgtcggtg	ccttcctccc atgcctccgc	10800
ctcgataaaag cagctgcga	tatcggttc ctggctgatc	tcggtagta ggtcatgca	10860
ggtcttgtcc agcgccctcg	cgctccgata cggaatggtc	agctcgtaat ggccggctc	10920
cgaccgcctt atgcccgtt	gctccaggca gtacgcgtcg	atgttctccg tggcccgctt	10980
ccgaccgcgc atgaacttgc	tgttgttac cacggccagg	cgcagggtga cggggccac	11040
ccgctcgacg gttgactctg	ccgggtgacgc gatattgcgc	tttgcacctc ggcggcaggc	11100
gctctctgg tacgtcccga	tctcgacgccc acgggtggct	aggtagctgt acagggtgt	11160
cttggagatg tgcaacttct	cgccgatggc gctgacgctc	aggcgccct cgcggtagc	11220
ggtctccgccc gccatggcgg	ttggcctcgcc cttggctggc	aggcccttgg gacggcgacc	11280
gatccggcct cgagtcgtg	ccggccgacag gcccgcctga	gtccgcgtcg ggatcagctc	11340
gchgctcgaaac tgaacagggtt	gaacaccagg cgatcttggg	cgtgggtgtc gtcaatgggg	11400
tcgttcaggc tctgcaagcc	gactttgcgt gcagccagct	agccgaccaa ctcaaccagg	11460
tgctttagcg agcgaccgag	gcatcccgac ttccagatca	ccacggcatc gcccgcgtga	11520
acatgggcta gcaacttgc	caactccggc cgccgcgttt	ttgcgcgcgt ggcatgtct	11580
tgatagatgc gttcgcaccc	ggcctgtttc agggcatcga	cctggaggtc ggcttctaa	11640
tcccgagtgc tcaccccggt	ataaccgatc ttcataaaaa	gtaccgtta cttgactgca	11700
tttagtaatag ttgaactttt	attaagctta ccagttattt	gaacccttagc gcaggtgtaa	11760
gcgtccagcc gccccaccc	tactcagctt gatgaaccga	ggggcagtag ttcatcaatc	11820
cggtcttttag ggaaactctg	agaagactt cctgattttg	gcaaatgccc cgatttcac	11880
ccgcccgggt ttccaatgaa	gcagatgacc ttccctcgac	ccaggtatgc cggtaagcgc	11940
aaacagacccc gcaaagagct	ttccctgtatc gagatggatc	gggtgggtgc gtggaaagggt	12000
ttgattgcct tgatcgatcc	gcattacccc aagggtgagg	gtggccgcg agcctatcca	12060
ctgacggcaa tgctcggtt	tcatctgtatc cataagtgg	tcggctacag cgaccggcg	12120
atggaggaag cgctgtacga	gacgaccatc ctgcggcgt	ttgcccgggt gagcctggag	12180
cgcattccgg actaaaccac	catccccaaat ttccggcggc	tgctggagaa acacgaacta	12240
cctaccggca tcatgtttgc	tgaattttcg ctttggctt	tgagtgcggc attcaaccga	12300
tacagggtgt gcatgacacg	ccaaagaaaat caaccttggc	ggctagaaca cttgtcgatg	12360
aagcgaaccaa tccgcaaaacg	ttaaggctac cagaaaaaac	ccaggatgcg gtagccata	12420
gcccgcgcgc gcattggct	cctccgtcc aagagtgtca	aaggatattt gactaatgca	12480
gcatgcctcg accacatggc	cgtggccgt tcatctgtt	gccatacgtc tatcgatcg	12540
gacgcggcgc gcgacgac	cggtttgttgcgatc	cagtcgatga gctcagtcag	12600
ggacggcattc agcgaagtcc	cgagcggggt gagccgtag	cgcacagatg ggggtgtcga	12660
gggcgttacc tcgcgcccaga	ttagtccgtc gcgttcgagg	tgacgcagcg tctcggtcag	12720
catccggcgc gaaatgtcg	gcacggcgcg ggccagcgca	ttgaatcggt gcggaccctg	12780
cgacaagggtt accaggatca	gcgtcgac		12808

<210> 11
<211> 15024
<212> DNA
<213> Artificial Sequence

<220>
<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 11			
atcgctctta agcgccgcac	gcagccgtt aagtgaattt	ctgacggcag gctgcgtcag	60
ccccagttt tcgccccccg	tcgatacgtt ccggcgagc	agtagctgtt tgaagaccac	120
cacgagattc aagtgcgtt	cgccgcagatc catgtatgc	caccattatt catgctgggt	180
attttaacta tcagacttgc	tctatagcgc tataccgtc	gacgcgcagc aatcgacgc	240
attcggagac aactgaaaaa	agagcttgcg tggacttgtt	agtagaaaccc ctcacattgc	300
atctgaacgc ggagaccggc	agcaccctgc ttgacgtgt	caggtccaaac gaggtccccca	360
tttcttatag ctgcgtatgt	ggccgctgcg gcacttgcg	ttgcccgtgtt attgcccggcc	420
atcttcgcga taacggcccc	gagacaggcgc gcccgcaggc	aggaaagggaa acctacgttc	480
ttggcctgtca ggcgggtctg	accgaagact gcacgatcga	gattcctgaa tctgacgaga	540

tctgtggttca	cccggcgac	atcgtaaagg	ggacggcac	agcgatagac	gaagccaccc	600
atgacatccg	gcgcctgcgc	atcaaactgg	ccaaaccgct	tgagttcagc	cctggccagt	660
acgcaacggt	gcagttcagc	cccgaaatgcg	tccggccata	ttcgatggcc	gggctgccta	720
gcgatgcgga	aatggagttt	cagattcgcg	cggttcggg	cgggcatgtc	agcaactacg	780
ttttcaatga	actgtccgt	ggcgcttcgg	tgcgatcag	cgccccctc	gaaacggctt	840
atctgcggcg	cacgcacacc	ggcccccattgc	tttgtgtggg	gggtggaaaca	ggtctggcgc	900
ccgtcctttc	gatcggtcga	ggcgcactgg	aaagcgggat	gagcaacccc	atccatctgt	960
acttcgggt	gcggagcgcg	caggacatct	atgacgagga	acgccttcac	gcattggctg	1020
caagggttcc	aatctcaag	gtgaatgtcg	tttgtgcaac	aggccctgcc	ggccctggtc	1080
gtcgatccgg	cctggtcacc	gatctgatcg	gccgtactt	gccccatttg	gcccggatggc	1140
gcccctaccc	gtgtggcgct	ccggccatgg	tcgaggccct	gaacctgctc	tttgctcgcc	1200
taggcatagt	acccgggcac	atccatgcgg	atgcgttcta	tcccagcggc	gtctgagcga	1260
aggcaccatg	cgaacccaat	tcaacccaag	gataccaagc	catgagtgaa	ccccaaacgat	1320
taaaaacccgt	gtttcccaa	gatccgaaat	ggccggcga	aggttagcagc	cgcgttccct	1380
tctgggccta	caccccgaa	gacctgtaca	agcgcgaatt	ggagcgcctg	ttctatgcaa	1440
accactgggt	ctatgttagc	ctggaaagccg	agattccgaa	tccaggcgcac	ttcaagcga	1500
cggtgatcgg	tgagcgtctg	gtcatcatgg	tgctgtatcc	ggatggcggc	atcaacgtgg	1560
tggagaacgt	ctgcggccac	cgtggcatgc	gcttttgcgg	cgagcgcac	ggcaacgcca	1620
aggacttctt	ctgcccctac	caccagtga	actacagcct	caagggtgac	ctgcaggcgc	1680
tgcccttccg	ccgtggcgct	aagcaggacg	gcaaggtcaa	cgccggcatg	ccccaggact	1740
tcaaactcga	agaacacggc	ctgaccaagc	tcaaggtggc	cgcccgaggc	gtgcagtgt	1800
ttgcctcttt	tgaccacgt	gtcgagccct	tcgaggagtt	cctgggccc	accatcctgc	1860
attacttcga	ccgcgtcttc	aacggccgca	agctcaagat	cctgggctac	cgccggccagc	1920
gcatcccggg	caacttggaa	ctgatgcagg	agaacatcaa	ggaccctac	cacccgggccc	1980
tgctgcacac	ctgggtctcg	accttcggc	tctggcgcgc	cgacaacaag	tcggaactga	2040
agatggacgc	caagttccgc	cacggccaa	tgatctccac	gcccggcgtc	ggccggcaaga	2100
acgaggaggt	cgtgtccggc	gtggacagct	tcaaggaaca	gatgaagggt	aacgacccgc	2160
gcctgctcga	catctggccc	gagccctgg	ggggccgtcc	gactgcggtg	atgaccacga	2220
tcttccccag	cgtgtatc	cacggcggc	tcaacagcgt	atcgacc	cacatccagc	2280
ccaaacggtca	cggtcccttc	gatttcgtct	ggaccactt	cggttcgag	gacgacaacg	2340
aggagtggac	ccagcggccgc	ctgatccagg	ccaaacctgtt	cgggccggc	ggcttcgtgt	2400
cggccgatga	cggcgagggt	atcgagtgg	cgcaggaagg	ctttagacaa	aaaccgacgc	2460
accgcaccgt	gatcgagatg	ggcggtcacg	aaatccggcga	cacggaccac	atggtcaccg	2520
agacgctgat	ccgcggcatg	tacgactact	ggcgcaggt	gatgggggaa	taaacatgg	2580
cgacttcaaa	acctatttcg	aactgtgaa	cctgtacagc	gactacgc	ttgtgtgcga	2640
ctccgc当地	tgggagaagt	ggcctgatt	tttcatcgag	accggcac	accgcctgc	2700
gccgcgc当地	aactttgagc	agggcctg	gctgtgcctg	ctggcgctgg	agagcaaggc	2760
aatgatccgc	gaccgggt	acggcgtcaa	gaaaccatg	taccacgacc	cctactacca	2820
gcgc当地	gtgggcacgc	cgcgcgtg	gtcagtgag	cgtacgc	atggcgagcg	2880
catcaccgc当地	gaagccagct	atgcgtat	tcgcaccaag	tacgacggc	attccacgt	2940
tttcaacgc当地	ggcttattacc	gagacgtat	cgtgcgcac	cccggaggc	tcaagctgaa	3000
gtcgccctg	tgcggttacg	acagcgaaat	gatccccaa	tctgtatct	atccatctg	3060
aggcgacgc当地	catgactc	aactggatt	atgcagctt	tcttgacgac	atccctgaa	3120
gcgatgtgg	cggcgtcaa	gttaacggc	aggaaattgc	gctctacgag	gtcgagggg	3180
agatttatgc当地	caccgataac	ctgtgcac	acggcgtc	gcccgtgac	gatggcttc	3240
tcgaaggcc当地	ggaaattgaa	tgccctctc	accaaggct	atttgatgtc	tgccacaggc	3300
aaggccttgc当地	cacccccc	acaaaggaca	tcaaaaccta	ccccgtcaa	attgaaaaca	3360
tgcgcgtat当地	gtctaaaatg	gagtaagact	gtttaatc	aggaggctg	attcggacca	3420
atcaaccaa当地	ccatccaatc	cacccattag	ccaaaaacg	gagacattaa	tcatgattt	3480
tgaaaattt当地	gtgagtgaa	cagggtctg	gcaaaagc	ctgattcat	gcccgtgac	3540
actttccag当地	cacgaaattg	agaccatctt	cgccgaaac	tggcttttc	tgacccatg	3600
cagcttgc当地	ccctcccc	cgactatgt	cacggccaa	atgggtgtc	atgaagtcat	3660
cgtctccgc当地	cagaacgtat	gtctggctg	agcctttt	aatgtttgc	gtcaccgg	3720
caagacacta当地	gttcacgctg	aagccggaaa	tgccaaaggc	tttgtgtc	gttaccacgg	3780
ctggggctt当地	ggctccaac	cgcaactg	aagcttccc	tttgaaaaag	agttgtacgg	3840
cgatacgtat当地	aaaaaga	gcctggc	gaaagaagtc	ccccgtatc	aaagcttca	3900
tggcttcat当地	tacgggtt	ttgatgc	ggccccac	tttgtcg	atctgggt	3960
tgcagcctgg当地	tacttaga	acccatctt	gcaactct	ggcctgg	ttgttaggg	4020
ccccggcaaa当地	gtgggtatc	aggccaa	gaaggct	cgccaaaact	ttgtgggt	4080
cgcgttaccac当地	gttgggtt	cgcacgc	gtcttgc	tcaggtc	cgatattac	4140
ccctcttgc当地	ggcaacgc	tgc	cgaaaggc	ggcttacaa	tgaccagca	4200
gtatggcagt当地	gaaatggc	tattgtgg	cggtact	gtgtccaca	gtgtgac	4260

ggttcccgaa atgatggcat tcggcggcgc aaaacaggaa aaactcgcca agggaaatcg	4320
cgatgtccgg gcacggattt accgcagcca tctaaactgc acggtttcc cgaacaacag	4380
catttgacc tgctccggtg tcttcagaatg ctggaaacccg atcgatgaaa acacgaccga	4440
ggtttggacg tatgcacatcg tagaaaaaaga catgcctgag gacttaaagc gtcgcttgc	4500
tgacgcgggt cagcgcactg tcggaccagc aggattctgg gaaagcgacg acaacgacaa	4560
catggagacg gagtcgcaaa atgccaagaa ataccaatcc agcaacagtg atctgattgc	4620
caatttgggt ttcggcaagg acgtctacgg cgacaatgc tatccggcgc tcggttccaa	4680
atcggaatc ggcaaaacca gctatcgccg attctaccgt gcctaccagg ctcacatcg	4740
cagctccaat tggccgaggt tcgaaaacac ctccgaaat tggcacaccg aactcaccaa	4800
gacgactgat cgctaattca ggagccaacc atgatgatca atacccagga agacaagctg	4860
gtctccgcgc acgacgccga agaatttcat cgtttctcg tcgggcacga cagcgatctg	4920
cagcaagaag tcaccacact cctgacccga gaagcacatc tggatggacat tcaggcctac	4980
aacgcctggc ttgaacactg ctggccccg gagatcaa at accaagtgtat ctcgcgagaa	5040
tttcggtcca cttccgagcg tcgataccaa ctgaatgatg cggtaacat ctacaacgag	5100
aactatcagc acctgaaagt tcgagtttag catcagatgg accccgcagaa ctgggcaac	5160
agcccgaaga tccgttcac ccgcttcgtc accaatgtca cagcggccaa ggacaagatc	5220
gtacccggatc tgctgcatgt gcgttccaaac ctcattctcc accgcgcccag acgcggcaat	5280
caagttgacg tcttctatgc aacgcgggaa gacaaatggaa aacgcacatcg aggtgggtggc	5340
atccaactgg tggAACGTCT tggatggactac ccggagcgca ttctccagac ccacaatctg	5400
atgaccttcc tggatggccct gggatgcct gccttgcattt cggatccatc tggatgttt	5460
aaacagaaat ttattgcccattt gaacatacag caagttattt ccattactgg cgccgggttca	5520
ggcatcgggc tggAACTGGT tcgatccccc aaagcagctg gctattgcgt gtccgcactt	5580
gttcgcaacg aggaacaaga ggccggccctt cgcagtgaat tcaaagatgc catttagatc	5640
gtagcggcgc atggttgtga tcacgcccacc aatgaaaagc tggatggacaa ggccgtcgcc	5700
agggttcggac acctcgactg ctgcacatcgaa aatgcccggaa tatgggatta catgtggc	5760
gtcgacgagc catggagaa attatccggc agtttcgagg agatatttgc tatcaacatgc	5820
aaaagctatt tcagcggcat cagcgcggcc ttgcggaaac taaaaaaaaac gaacggatcg	5880
gtcgtatgtca cggcttcgt ttcttcctat gcggccggcg gcggccggctt tgctacatt	5940
gccagcaagc atgcagtgcgat gggatggc aaggcggttgc cctacgaaat ggccccgcac	6000
atccgggtca atggcgttgc gccaggtggt acggtaactt ctttgcgttgc gccggcaagc	6060
gccgggttcg aaaaaaccaa aatgaaagac atgcggcga tcgatgacat gatcaaggc	6120
ctgaccctt tgggttgcg agcaaggccc gaggacgtgg tggcaccgtt tctttgcgt	6180
gcctccggg aacaaggaa gttcatcaactt ggcacccgtaa tcggcatttttga tggccgtatg	6240
gctcgccgtc gaaagtgaat ttcaatcaa atcagatttt tcaaccccat tcccaggaga	6300
caacccatga agacgaaattt gttcatcaac aacacccgttga gcttcgtcgat tgacaaaaag	6360
tcatttcgatc gcaaggcccc tggatggacttgc gaggacgtgg tggcaccgtt tctttgcgt	6420
gtggacgatc cggtcaatgc gcgtcgaccc gctcaagagg cgttcaagtc ctggaaaggcc	6480
gtcggaccctt cggagcggcg ggccttctt ttgaagggttgc cagacgtcat ggagagcaaa	6540
acgcccggatc tcatcgaatgt gatggccaag gaagttggag cctccggcgat gtggccgggg	6600
ttcaacgtgc acctgtccgc caatgttattc cggaaagccg cctcaacttgc cacccaaatt	6660
caaggcgaaa ccattccgac ggacaaggctt gacaccctgtt caatgacgat gcttcacgat	6720
gtcggcccca tcttgcgtat cttcccttgc aacggcaccgc cctgtctcgcc ggcggggcc	6780
atcgcttattc cgctggcttg cggcaataacc gttgtttca aaggctccga gttcagcccc	6840
ggtagcgcacg ctttgcgtatc caagtgcctt caggaggccg acctgccttc tggcgtgtc	6900
aactatctga actcccccggc gacccggcgtt cccgatatttgc cagatgcgtt gatttcgtt	6960
aaagagatttgcgtatc cttcacagtc tccactcgatc tggggcgcatttgcatcgcccag	7020
aaatcgccccc agcatctcaa ggcgtcttg ctggagggttgc gttggaaatgc cccgctgtatc	7080
gttctggacg acgtctgacat cgacgcggca gtcaaggccg cgggtttccg cagttccctg	7140
ttccaaggcc agatctgcatttgc tggcaccggaa cgccttgcgttgc acatgcgtt gatcgccggac	7200
gaatttgcgtatc cggatccatc tggatggatcc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7260
acaggggacttgcgtatc cggatccatc tggatggatcc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7320
ctgttcaatgc acatgcgtatc cggatccatc tggatggatcc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7380
gctctgcgcg tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7440
cagaacgagg ctcaggccgc ttatggcgatc acaaaggccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7500
ggacgcgcgg tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7560
cagcgtatc ctttcgtatc tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7620
tgttcaatgc tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7680
tgccgcacac atgctgggac ttcaatgc tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7740
gcgtatc tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7800
tgttcaatgc tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7860
tgccgcacac atgctgggac ttcaatgc tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7920
gcgtatc tggatggatcc gatcgatccatc cggatccatc tggcgttgc gtcacggaaa gatcgccggac	7980

atacctgggc tggcgtgtcg ccggtaacc ggaattcgag gcattgggtc aaaagctcg 8040
ggacgcaggc tacaaggatcc gcgtgtcgca caaagccgaa gcacaagaac ggatgggtct 8100
gggcctgatg aagacagaag atccgggggg caacccgacc gagattttct ggggaccgg 8160
gattgacactg aacaacccct tccatccccg tcgtcccttg cacggaaat ttctaaccgg 8220
tgatcagggc ctgggccact gcacgtgcg tcagaacgat gttgaagcgg cacgtaaagt 8280
ctatagcttgc tgggatttc gtggagatgt cgagtaccgc cttcccttgc ccaacggcat 8340
gacggctgag ttgacgttca tgcatgtcaa tgctcgcat cattccatcg ctttcgggtc 8400
aatgcctgcg gccaagcgcc tcaatcatct gatgattgaa tacactcata tcgaagatt 8460
gggttgacaca caccagctt tcacgaagga aaagattgac attgccttgc aattgggcat 8520
ccattccaaac gataaggcgc tgacgttcta cggggcaaca cttccggct ggctgataga 8580
acctgggtgg cgaggcgccc ccgcattgc tgaatcgaa tattacgtcg ggcacattt 8640
cgcccacacc atcgaggcca ccggttatgg attggacgtc aaacttagct agccatgtaa 8700
cagatgcgaa atcgatcgca tctgtttcc ccattcagtt ccatataaaa aaaaggagac 8760
aatgtgatgc aaagaagcca tttccctcg aggacttggg atgctgatgc tcagcaccgc 8820
atatgcccgg gattcccggtt ggtcatatcg catcgccgc accaacgtag ctttcgatgc 8880
gagcgccaaa gttcgattt acggaacaag ggtgcccgg ggaagcgctg acgcccgtga 8940
caacaacgct ttgacatttgc acttcggta catcattaac gataactgga acgcgcgatt 9000
aattgttggc attccaccca ccacaaaagt gacgggcgc ggcacgctgc ctccgattt 9060
gctggccgt gtccaatatg ctccctgcgt tttgtcggcg acctacaacc tgccacagat 9120
gggatttgggtt cgcccgtacg tggggccgg gatcaactac actcgatttca tgaaaagcaa 9180
agatgccaat ctgacacctat tcgatgcaga tcatgcgtgg gcacttgtgc tccacatcg 9240
tgcagaagcg aacatcaacc gcgacttggg cgtcagctt gatatccgaa aactttatct 9300
aaaaacagat gcatcggggt ttcttggcc tcaagttgt acagcccgcg taacgttga 9360
tccgctgctg acgtcgattt cgattggccg gagattctga tcggtccaca ttgattccaa 9420
aattctgttt gcatcaccat tttcaaaagga aatttgaatg acaagaaaaga cgagcaaaagc 9480
ggtgcgcctg accggccgcgg atattcaagg cgcattgggtc atcatgcccga ccccgccac 9540
gcccggatgcc tcggactggc gcagcacgca cacggtcgat ctgcacgaga cggcccgat 9600
tgtcgaggag ttgatttgcgg ccggcgtaaa tggcattctg agccacggca ctttggcga 9660
atgcgcgacg ctgacgtggg aggagaagcg ggattttgtt tcaacggcgc tggaaaccgc 9720
gcgcggcgtca gtgcctact tctgcggcac aacggcctt aatacccgta aagtctacg 9780
ccagaccgcg gaattgtatcg acattggcgc ccaaggaaca atgctcgccg tgccgatgtg 9840
ggtgaagatg gatctgccta ctgcccgtca attttatcg gatgtggcgg aagcagtgcc 9900
agatgcagcc atcgctgtct acgccaaccc ggaggcttc aaatttgcattt ttcctcgccc 9960
gttttgggccc gaaatgttca aaatccgcg ggttgcaca gccaagttact tgggcattcg 10020
gatgctggac ttggatctga aattggcccc aaatattcgc ttccctccgc atgaggatga 10080
ctactacgct gcccggccgaa tcaatcccgta ggcgcattact gctttctgtt ctacgggttc 10140
catgtgcggc ccacgcgaccg cccttgcgt ggcgcattact gttgtaaagg ccaaaaataac 10200
aggtgattgg gccaaggccg aggctatttc agatgacatg cgcgcagccg atgcacact 10260
gtttccacgc ggcgattttc cggaatttctc aaaatacaac attggcctcg aaaaagcacg 10320
aatggacgag gcccggctggc tcaaggccggg gccgtgcggg ccacccataa cgctggttcc 10380
cgacgaatac cttgcagggtg cccgaaaatc aggcaaggcc tggccgcac tgcataccaa 10440
gtatgccaag gaatttgagga aaacccaaac ggcaaccaac tcgaaaaaga agtaagtcca 10500
ggccctgagt cagacatctc cgatcagcac aacctgtca tctggaggtt ttctggattha 10560
gtgcagtcgg cgagttaaaa atatgcctgtt acagagtggg agcgcaccaa ggcgcagggtg 10620
caccgatcgc cctgaagccaa ttcacacta ttgcacatctt ctctttgtt ggagtgcatt 10680
atcggtatgg tgcatttttta ttgcattttt ttgagccat ttgcgtatct ggccaaccac 10740
cgtttgcgg tgctcgccgg gcgttatggc ttctccatcc agtacacgc cattgatttg 10800
gcgcgagcaa aaacggccat tggcaacatc gggccatcca atcgggaccc caaggtcaag 10860
cttgactact taaaggtggc ttgcagcga tggccgcattc tctataggat tccgttggg 10920
ttccccctta acttcaacag ccggccgggtg aatgcggac tgcatttccccc ggcagccagg 10980
gagcgagccg ctgaatatgt tgccttgcgtt ttgcattccccc cttggggaa agggtgggca 11040
ctggatgctg atagctgtct ggctgaggta tgcgacaaggc taaactgggaa tctcggtgaa 11100
tttgaagatt tttgaacag cggaaatgcgc gcaaggcat acgacgaaga gacgcaggcg 11160
gccattgacc gaaagggtttt cgggggttccc accgttgcgtt gggatgtca aatgtgggtgg 11220
ggaaatgacc gcctttcat gcttgcggc aggttgcggg agggaaacgc accataaaatt 11280
ctcagtgcatttgcattttctt gattttcaaa ccacgccttgc attttaaggat gtctcatgaa 11340
gctttattac agcccccggcg catgttcattc gtcgcctcac atcatccttc gtgaagggtgg 11400
atttgacttt cagctagaaaa aggttgcattc cggcaccac gtcactgtggaa ctgggttgc 11460
ttacaagacc gtcaatcccg tggcgtgttgc ccccgcttgc caaatggatg atgggcagg 11520
gctcaccggaa gggccggccca tcgttcaata cctcgctgac cgtgtgcgg aaaaatgcct 11580
ggcaccggca gctggctcgc tggagcgtta cccgactgtggaa atttcatctc 11640
caccgaatttgcataaaaatgcgc tggcggcgttgcgttgc gttcagcccg gtgttccac aggatgcct 11700

gccagtcatc aaggccaaat tggaaagccg tcttgcccatt accgagcaga tgctcggtga	11760
caaggtttg gccatggga acgacttttc cgtgggtggac gcctacttgt ttactgtgct	11820
tggctgggg gcttacgtga atgtggacct ttcgccttgg cccggctgc aaggtacact	11880
caaccgcgtg gctgaacgtc cagcagtccg ggccacattt tcggctgaag gtttgatctg	11940
attttttag agaaaataaaat aaagcatggc cagcctccat gagcggccag ccatgcccgg	12000
gggcagccgt gggcagccgc ctcgatcaaa ttgcgatgca cacagattac gagccccctt	12060
ttccgactgc ggtcggttcc agaaaattgcc gatacttgct ttggctctgat cgaagcgtga	12120
gggatatcggt ctccccttat ccacatgctt gatgaagagg agcgtatcac catgagtcac	12180
gaacttggcc gacttggaaaga cctgcccggc gacttccggag acgaactcaa acaacttaac	12240
ctgggtccgc tatggcccag ctcgcgcgc gtgcgtccgc ccaatgtccc gagccgcccag	12300
acgcagccga cttactggtc ctaccagacg ctcaagccgc tgctgctcaa ggccgggtgag	12360
ctgaccccca ttgagaaggc cgagcgcgcgt gtgcgtggc tgcccaaccc cgcccacggc	12420
ctggagaaga tgcaagccag cgccgcata tacctggca tgcaaggctgct gctgcccggc	12480
gagtgggcgc ccagccaccg ccacacccccc aacgcgggtgc gcatgatctgt ggagggcgag	12540
ggccctaca ccaccgtgga tggcgagaag tgcccatgaa gccgggggtga cctcatacctc	12600
acgcccacccg gcctgtggca cgagcacggc cacgacggca acgagccctgt ggtgtggctc	12660
gatgtgttgg acctgcccgtt ggtgtactac atggaggcata gctaccacat cgacggcgag	12720
cgcccgagg tcgaccccg ccggggcgac tgccctggc cccgtgcggg cgtgggtccca	12780
accccccgtgt tccagcgcag cgacaagcgc tatctctct tgcaacttcc ttggggccac	12840
acccgtgccc ccctgctgtc gctggcggtc gaccagccctg agcaggaatg cgtgcaggc	12900
acctacgtca accccgaaac ggggtgacgac gccgagaaca tcctgggctt ctacgcccctg	12960
atgctcaagc ccggccagac cctgcgcctg cccgtgcgtt cggccgcgtt ggtgttccac	13020
cagatcgaag gccgcagcga ggcgcgcatac gccgagtcac ctttcgcctt gagggaaagcc	13080
gatacctgtc ggcggcccg ctacaccggc gtgacgctga aaaacctctc agccgaccag	13140
ccgtccttca tcttcatggc cgacgaaatcg cccctgcacc gcaagctggg cgttcttggaa	13200
aaccgcggct gagccggcgc gaagcaccac acaacaggaa agcaagttag caactacctc	13260
tggaaaccgc ctcccggttca gtctctgccc gttcggtggca agaccgagcg ctccccatc	13320
aaccgcatct tctcgctcggtt ccgcaactac cacggccacg cgggtggaaat gggccgtccg	13380
gtcqacaaaaa gctgtcaaca acggttctac ttccacaaat cgccacaaac cctgggtggaa	13440
agtgggtgca ccgtggcttca cccggccgc accagcaact accactacga gatggagctg	13500
gtgctggcga tcggcaagcc cgggttccgc gtcagcgaag accaggcgca cgagttgatt	13560
tacggctacg ccggccggctt ggacatgacc cggcgcgacc tgcaacttgg ggcacgcgc	13620
aaggggccgc cctgggacac cggcaaggac atcgaggaag gctcggtctg ctccgagatc	13680
gtgccgatgc aaggcgttgg ggtggagcag ggcgcgatcg ccctggaaatg caacggccag	13740
accaaacagt cgtccaaacgt ggacaaatgtg atctggaaacg tccgcgagat cattggccgc	13800
ctctccaccc actaccactt gcaacccggc gacctgattt acaccggcac gcccgaaggc	13860
gtggggcgccg tgggtgggggg tgacaagatc atcgccgtg tggaggcat tgccgagatc	13920
agcctgaccg tcggcccgcc cagtgagcc tgacacgcgt gaaatgtac aacttctggc	13980
gcagcggcac gtcacaccgg ctgcgcatacg cgctcaaccc caaggcgctg ccctacgagt	14040
acctggccgt gcacccggc aaggaagagc acctaaggaa cgccttcaag ggcgtgaacc	14100
cacagcagg tggcccgccg ctggacacgg ggcgcgaatg gctgatccatcg tcggccggca	14160
tcatcgaatg gctggaggaa cagtagccca cggccgcgt gctggccggcc gacgcgcacg	14220
gccgccaacg ggtgcgcgcg ctggccgccttca tcgtgggtcg cgacatccac cccatcaaca	14280
accggcccat tctggagtac ctgcgcataa cgttcggccgc cgacgaggcc gccatcaacg	14340
cctgggtgttcc cacctggatc agcgcgggtt tcgatgcctt cgaagactcg ctggccgtcg	14400
acccgaagcg cggccgcgtac agcttggcg acacacccac gctggccgac tgctacctgg	14460
tgcccgagggtt ggaaagcgcc cggccgttcc aggtggacct gacgccttac cccctgatcc	14520
gcgcagtgaa cgcggccgtc ggcgagttgg acgcatttcg ggcgcggccg ccagctgtctc	14580
aacctgatttcc ggcttgcacaa aaaatacgcgcc gccttcgccc taataaaacag ttctgtggccc	14640
tgcccaggta caagtatcaa tgagcaatag tgaaaatgtt aaggggaaaga ttatgaaaca	14700
tattctgacc cgacgaggcag ccctgaggcac tttgggttcc ctggaaatcg gggggcttcc	14760
gggcatgagc ttggcgcaat cggcccttgg cgtggccacg atcgtgatttgc gactcgccgc	14820
aggcgaggcg accgatattgg ctggccggccg gttgtctgtag ggaatgcgcg gtgcctatgc	14880
ttccagtggtt ctcgtcgaca accgcacggg ggcgggttgg cgaattgcga tccagcatgt	14940
taaggccgcg gcacccaaacg ggcgcacact tctgtgcacg cctgcatacca tgatgacgct	15000
ataccctcac acgtacaaatcg atct	15024

<210> 12
<211> 4912
<212> DNA

<213> Artificial Sequence

<220>

<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 12

gagctcgttg	cgcaaggcgct	tccatcagtg	ggggcatgaa	gtacatctcg	ccgatgtcgg
tcattgccaa	gttgaagggtg	cgcgtctgg	caa atgggtc	gaaagagtca	ccggtcgtca
gtgccgtctg	cagcgtgttgc	agcgcataga	ccacgggctc	cgcaagatgc	agtgcatacg
gtgtcggtctc	catgcctttt	gaggtgcgca	agaacaatac	gtcctttagc	qccgcacgca
gccgttaag	tgaattgctg	acggcaggct	gctcagcccc	cagttttcg	ccggccgtcg
atacgctccg	gtcgagcagt	agctgggtga	agaccaccag	cagattcaag	tcgatgtcgc
gcagatccat	gatgcctcac	cattattcat	gctgggtatt	ttaactatca	gacttgatct
atagcgctat	accgatcqac	gcccaggat	cgcagccatt	cgagacaac	tgaaaaaaaga
gcttgcattgg	aactggtagt	agaaccctc	aatttgcata	tgaacgcgga	gaccggcagc
accctgcttgc	acgtgctcag	gtccaacgag	gtccccattt	cttatacgct	catgtcgggc
cgctcgccca	cttgcgttgc	ccgtgtatt	gccggccatc	ttcgcgataa	cggtcccgag
acaggggcgcc	cgcaggcagg	aaagggggcc	tatgtcctgg	cctgtcaggc	ggttctgacc
gaagactgca	cgatcgagat	tcctgaatct	gacgagatcg	tggttcaccc	ggcgcgcatac
gtcaaggggaa	cggtcacagc	gatagacgaa	gccacccatg	acatccggcg	cctgcgcatac
aaactggcca	aaccgcttga	gttcagccct	ggccagtacg	caacggtgc	gttcacgccc
aatgcgttcc	gcccatttc	gatggccggg	ctgcctagcg	atgcggaaat	ggagttcag
attcgcgcgg	ttccggggcgg	gcatgtcagc	aactacgtt	tcaatgaact	gtccgttaggc
gcttcgggtc	ggatcagcgg	ccccctcgga	acggcctatc	tgccggcgcac	gcacaccggc
cccatgtttt	gtgtgggggg	tggAACAGGT	ctggcgcccc	tccttcgat	cgttcgaggc
gcactggaaa	gcgggatgag	caacccatc	catctgtact	tcggtgtcgc	gagcggcag
gacatctatg	acgaggaacg	ccttcacgca	ttggctgcaa	ggttccgaa	tctcaagggt
aatgtcgttgc	ttgcaacagg	ccctgcggc	cctggtcatc	gatccggcct	ggtcacccgat
ctgatcgcc	gtgacttgcc	caatttggcg	ggatggcg	cctacctgt	tggcgtccg
gccatggtcg	aggccctgaa	cctgctcg	gctgcctag	gcatagtacc	cgggcacatc
catgccgatg	cgttctatcc	cagcggcg	tgacgcaagg	caccatgcga	acccaattca
acccaaggat	accaagccat	gagtgaaccc	caacgattaa	aaccctgtt	tccccaaagat
ccgaaatggc	cgggcgaagg	tagcagccg	gttcccttct	ggcctacac	ccgcgaagac
ctgtacaagc	gcgaatttgg	gcccctgtt	tatgcaaacc	actggtgcta	ttaggcctg
gaagccgaga	ttccgaatcc	aggcgacttc	aagcgaacgg	tgatcggtg	gcgcctggc
atcatggtgc	gtgatccgg	tggcggatc	aacgtgggt	agaacgtctg	cggccactgt
ggcatgcgt	tttgcgcga	gcccacggc	aacgccaagg	acttcttctg	cccttaccac
cagtggaaact	acagcctcaa	gggtgacctg	cagggcgtc	cttccggc	aggcgtcaag
caggacggca	aggtaaacgg	cggcatgccc	aaggactca	aactcgaaga	acacggcctg
accaagctca	aggtggccgc	ccgaggcggt	gcagtgttt	ccttttgc	ccacgatgtc
gagccttcg	aggactgtgc	gtgtacaca	gcgagatgat	ccccaaactcc	ctcatctacc
ccatttgagg	ttgcagaaca	tgtccgagaa	ctggattgt	gccatcgac	gggacgctgt
gcctgagggc	gatgtggc	gagtcatcg	ggcaggcaaa	gacattgcct	tctatgaggt
ggaaggtgag	gtcttcgcca	ccgacaactt	gttacccac	ggggctgc	gettgagcga
cggtttctc	gaaggccggg	aaattgaatg	tccttgc	caaggccat	tcgatgttgc
cacgggtaaa	gccttgc	cacccctgac	acaggacatc	aaaacctacc	ccgtaaaaat
cgaaaacatg	cgcgtatgc	tcaagctga	ctaaaactct	ttcaggagg	aaagccaaat
ccggaaatca	ccccacccaa	cccaatca	accgtttt	aaacaagagg	agataagcaa
ttatgagtt	ccaaaactta	gtgagtgaag	cagggtgc	gcaaaagctc	ctgattcatg
gcgacaaaga	actttccag	cacgaattga	agaccatctt	cgcgcgaaac	tggcttttc
tgacccatga	cagtctgatt	ccctcccc	gagactatgt	cacagccaa	atggcgtcg
atgaagtcat	cgtctccgc	cagaacatg	gctcggtgc	agcctttt	aatgtttgc
gtcaccgggg	caagacacta	gttcacactg	aagccggaaa	tgcgaaaggc	tttgtgtcg
gctaccacgg	ctggggctac	ggttccaacg	gcaactgca	aagcgtccc	ttgaaaaag
agttgtacgg	agatgcgatc	aaaaagaaat	gcctgggctt	gaaagaagtc	cccccgcac
aaagcttca	tggcttatac	tatggctgtt	ttgatgcaga	agctcccc	ctcatcgatt
atctgggtga	tgcagcctgg	tacctggaa	ccacccatca	gcaactgtgt	ggcctggaaac
ttgttaggccc	ccccggcaaa	gtgggtgtt	aggccaactg	gaagcc	ggggaaaact
ttgttaggtga	catttaccac	gttgggttga	cgacgcagc	ggcttgcgc	gcagggcagt
cggtatattag	ttcttgc	ggcaacgcta	agttccacc	cgaaggcgc	ggcttgc

tgaccagcaa	gtatggcagt	ggaatggct	taacgtggga	ctactactcc	ggtaacttca	3300
gcgcgtat	gttcccgat	ctgatggcat	tcggccgc	aaaacagaa	aaactcgcca	3360
aggaaatcg	cgatgtccgg	gcacggatt	accgcagcat	tctgaacggc	acggtttcc	3420
cgaacaacag	cttttgacc	ggctccgcta	ccttcaaggt	ctggaacccg	atcgatgaaa	3480
acacgaccga	gttttgacg	tatgccttcg	tagaaaaaga	catgcctgag	gacttaaagc	3540
gtcgcttggc	tgacgcggct	cagcgcagtg	tcggaccagc	aggattctgg	gaaagcgacg	3600
acaacgaaaa	catggagacg	ttgtcgcaaa	atgccaagaa	ataccaatcc	agcaacagtg	3660
atcagattgc	cagttgggt	ttcggcaagg	acgctctacgg	cgacgaatgc	tatccggcg	3720
tcgttggcaa	atcggaatc	ggcgaaacca	gctatcgccg	attctaccgt	gcctaccagg	3780
ctcacatcg	cagctccaat	tgggcccagt	tcgaaaatgc	ctcccgaaat	tggcacaccg	3840
aactcaccaa	gacaactgat	cgctaattcc	ggagccaaacc	atgatgatca	atacccagga	3900
agacaagctg	gtctccgc	acgacgcccga	agaatttcac	cgtttctca	tcgtacaaga	3960
tgatgcacta	ctgcaagaag	tcaacacgct	cctgaccgc	gaagcgacc	tgctggacat	4020
tcaggcctac	aaaggctggc	ttgaacactg	cggtcccccc	gagatcaa	accaagtgtat	4080
ctcgcgagaa	cttcgctcca	cttccgagcg	tcgataccaa	ctgaatgatg	cggtaatct	4140
ctacaacgag	aactatcaac	agctgaaagt	tcgagttgaa	caccagatgg	atcctcagaa	4200
ctgggccaac	aacccgaaga	tccgcttac	ccgcttcgtc	accaatgtca	cgccggccaa	4260
ggacaagagc	gcacccggaa	tgctgcatgt	gcccccaac	ctcattctcc	atcgcccg	4320
acgagaaaaac	caagttgacg	tcttctatgc	aacgcgtgaa	gacaaatgg	aacgcatcg	4380
aggtgggtgg	atcaaattgg	tcgaacgott	tgtggactac	ccggagcgca	ttccccagac	4440
ccacaacctg	ttggtcttcc	tgtgaacct	ggggatgcct	gcctggatgg	cggcattcg	4500
tgattatttt	taacagaaaat	ttattgcat	gaacacacag	caagttttg	ccatcaactgg	4560
cgcggcctcg	ggcattgggt	tcgagttgt	tcgtctttt	aaggcagccg	gttatcgct	4620
atctgcactc	gttcgcaacg	aggagcaaga	ggcgggtctt	cgcagtgaat	tcaaagacga	4680
cattgagatc	gtggggggcg	atgtccgtga	tcacgccacc	aatgagaagc	tggttaaaca	4740
gacgggttgc	aagttcgggc	gcctggattt	ttcatcgga	aatgccggg	tatgggatta	4800
catgctgagc	atcgatgatg	cttgggagaa	attctcgggc	agtttcgacg	agatatttga	4860
catcaacgtc	aaaagctatt	tcagcggcat	cagcggcc	ttggcggagc	tc	4912

<210> 13

<211> 6779

<212> DNA

<213> Artificial Sequence

<220>

<223> A modified DNA molecule encoding valine at the position corresponding to the F352 amino acid in NDO.

<400> 13

atgcatacgt	agcgggtggcg	aaagaggcg	cgcttggaa	atccggtctg	tagctctggc	60
agaagacca	aggcgagatc	aaccgcac	gactccat	cctccttc	attgccagca	120
ttcgccgc	gcgtgtat	ctggatgt	ggagctcg	gccaagcg	ttccatcagt	180
gggggcatg	agtacatctc	gccatgtcg	gtcattgca	agttgaaggt	gcgcgtgctg	240
gcaaatgggt	cgaaagatc	acgggtcg	agtccgtct	gcagcgtt	gagcgcata	300
atcacggct	ccgcaagat	cagtgcata	ggtgtcg	ccatgcctt	tgaggtgcgc	360
agaacaaat	cgtcgatc	cgctgtac	agccgtt	gtgaattact	gacggcaggc	420
tgcgtcagcc	ccagttttc	gccggccgtc	gatacgct	ggtcgaggag	tagctgg	480
aagaccacca	gcagattca	gtcgatgt	cgcagatcc	tgacctcacc	ctcaccatt	540
ttcatgtctt	tgattttaa	tatcagact	gatctatag	gctataccg	tcgacgcgc	600
agaatcgca	ccattcgag	acaactgaa	aaagagctt	catgaaact	gttagtagaa	660
ccctcaattt	gcatctgaac	gcggagacc	gcagcac	gcttgcgt	ctcagg	720
acgagggtccc	catttctt	agctgcat	cgccgcgt	cggcacttgc	cgttgcgt	780
tgattggcg	ccatcttc	gataacgg	ccgagacagg	gcgcgc	gcaggaaagg	840
gggcctatgt	cctggctgt	caggcggt	tgaccgaa	ctgcacgat	gagattc	900
aatctgacga	gatgtgg	cacccggc	gcatcg	ggggacgg	acagcgat	960
acgaagccac	ccatgacat	cgccgc	gcataaa	ggccaaac	tttgagtt	1020
gccctggcca	gtacgcaac	gtgcgttca	cgccgaa	cgtccgc	tattcgat	1080
ccgggctggc	tagcgatgc	gaaatgg	ttcagatt	cgccgttcc	ggggggcat	1140
tcagcaacta	cgtttca	gaaactgt	taggcgtt	ggtgcggat	agcgcccc	1200
tcggAACGGC	ctatctgc	cgcacgcaca	ccggccccat	gcttgcgt	gggggtggaa	1260
cagggtctgg	ccccgtc	tcgatcg	gaggcgact	ggaaagcg	atgagctacc	1320

ccatccatct	gtacttcgg	gtgcggagcg	agcaggacat	ctatgacgag	gaacgccttc	1380
acgcattggc	tgcaagggtt	ccgaatctca	aggtgaatgt	cgttgttca	acaggccctg	1440
ccggccctgg	tcatcgatcc	ggcctggtca	ccgatctgtat	cggccgtgac	ttgcccatt	1500
tgccggatg	gcgactgcat	cctgtgtggc	gctccggcca	ttgtcgaggg	cctgaacctg	1560
ctcggtgctc	gccttaggcat	agtacccggg	cacatccatg	ccgatcgctt	ctatcccagc	1620
ggcgtctgag	cgaaggcacc	atgcgaaccc	aattcaaccc	aaggatacca	agccatgagt	1680
gaaccccaac	gattaaaacc	cgtgttccc	caagatccga	aatggccggg	cgaaggtgc	1740
agccgcgttc	cctctggc	ctacaccgc	gaagacctgt	acaagcgcga	attggagcgc	1800
ctgttctatg	caaaccactg	gtgctatgt	ggcctggaa	ccgagatcc	aatccaggc	1860
gacttcaagc	gaacgggtat	cggtgagcgc	tcggcatca	ttgtcgctga	tccggatggc	1920
ggcatcaacg	ttgtggagaa	cgtctgcgc	caccgtggca	tgcgctttt	cccgagcgc	1980
cacggcaacg	ccaaggactt	tttctgcccc	taccaccgt	ggaactacag	cctcaagggt	2040
gacctgcagg	gcgtgccctt	ccgccgtggc	gtcaagcagg	acggcaaggt	caacggcggc	2100
atgccaagg	acttcaaact	cgaagaacac	ggcctgacca	agctcaaggt	ggccgccccg	2160
aggcggtgca	gtgttgcct	cttgcacca	cgtatcgag	cctttcgagg	acttcttggg	2220
ccaaccatcc	tgcactactt	cgatcgctc	ttcaatggcc	gcaagctaa	gatcctggc	2280
taccggcc	agcgcatccc	gggcaactgg	aagctgatgc	aggagaacat	caaggacccc	2340
taccacccgg	gcctgctgca	cacctggttc	tcgacccctcg	ggctctggcg	cgccgacaac	2400
aagtccgaac	tgaagatgga	cgcgaagttc	cgccacgcgc	caatgatctc	cacgcgcgt	2460
cagggcggca	agaacgagga	ggtcggtcc	ggcgtggaca	gcttcaagga	acagatgaag	2520
gtgaacgacc	cgcgcctgt	cgacatcg	cccggccct	gttggggcg	tccgactgc	2580
gtgatgacca	cgatcttccc	cagcgatgtc	atccagcgc	aggtcaacag	cgtatcgacc	2640
cgcacacatcc	agcccaacgg	tcacggctcc	ttcgatttc	tctggacca	cttcggcttc	2700
gaggacgaca	acgaggagtg	gacccagcgc	cgccgtatcc	aggccaacct	gttcggccg	2760
gcgggcttcg	tgtcgccga	tgacggcgag	gtgatcgagt	gttgcagga	aggctttag	2820
caaaaaccca	cgcacccgac	cgtgatcgag	atggcggtc	acgaaatcg	cgacacggac	2880
cacatggtca	ccgagacgct	gatccgcggc	atgtacgact	actggcgaa	gttgcgtggg	2940
gaataaacat	ggtagacttc	aaaacctatt	tcgaactgct	gaacctgtac	agcactacg	3000
ccatggtgt	cgactccgccc	aattgggaga	agtggcctga	tttcttcatc	gagaccggca	3060
cctaccgc	gcaaccgcgc	aaaaacttcg	agcaggactt	gccgctgtgt	ctgtggcgc	3120
tggagagcaa	ggccatgatt	cgtgaccgag	ttgtacgggt	caaggaaacc	atgtaccacg	3180
atccctacta	ccagccac	atcgtaggca	cgccgcgt	gctgtcagt	gagcgtgatg	3240
cgacggcga	gcgcattcacc	gccgaagcca	gctatggcgt	gattcgacc	aagtacgacg	3300
gcatggccac	gatttcaac	gccggctatt	accgagacgt	gatcgctgc	acgccccgagg	3360
gcctcaagct	gaagtcgcgc	ctgtcgctgt	acgacagcga	aatgattccc	aactccatca	3420
tctaccctat	ctgagaagga	atccaatgag	cgagaactgg	atcgacccg	ccgccccgca	3480
cgaggtgcca	cgagggcgac	gtgatcgacca	tcaatatcg	cgccaaggag	attgcctcta	3540
cgaggtggcg	ggcgagatct	acgcccacca	caacacctgc	actcacggcg	ccgccccgcat	3600
gagcgatggc	tttctcgaag	gccgggaaat	tgaatgtcct	ttgcatcaag	gccgattcga	3660
tgtttgcacg	gttaaaggct	tgtgcacacc	cctgacacag	gacatcaaaa	cctacccctgt	3720
aaaaatcgaa	aacatgcgc	tgatgctcaa	gctgactaa	atgctcaagc	tggactaaaa	3780
ctctttgcag	gagaaagcc	aaatccggaa	atcaccac	ccaaacccaa	cactacccgt	3840
tttcaacaa	gatgagacaa	gcaattatg	gttaccaaaa	cttagtgat	gaagcagggc	3900
tgacgcaaaa	gcacctgatt	tatggcgaca	aagaactttt	ccagcacgaa	ttgaagacca	3960
tcttcgcgc	gaactggctt	tttctgaccc	atgacagtct	gattccctcc	cccgccgact	4020
atgtcaaaggc	aaaaatgggc	gtcgatgaa	tcatcgctc	ccgcccagaac	gatggctcg	4080
tgcgagcctt	tttgaatgtt	tgccgtcacc	ggggcaagac	aatagttgc	gctgaagccg	4140
gaaatgcgaa	aggcttgc	tgccgttacc	acggctgggg	ctatggctcc	aacggcgaac	4200
tgcaaaggct	tcccttgaa	aaagagttgt	acggagatgc	gatcaaaaag	aaatgcctgg	4260
gcttgaagaga	agtccccgc	atcgaaaagct	ttcatggctt	tatctatggc	tggtttgatg	4320
cagaagctcc	cccgctcattc	gattatctgg	gtgatgtagc	ctggtacctg	gaacccaccc	4380
tcaagcactc	ttgtggcctg	gaacttgc	gccccccgc	caaagtgggt	gttaagggca	4440
actggaaagg	ttttgcggaa	aactttgc	gtgacatcta	ccacattgtt	tggacgcacg	4500
catctatttt	gcgcgcagg	caggcgat	ttgcctct	tgccggcaac	gctatgcctc	4560
cacccgaagg	cacgggctt	caagcgacca	ccaagtatgg	cagtggaaatt	ggcgatcg	4620
tggacgccta	ctccgggtgc	cagagcgct	atctggttcc	cgaaatgtat	gcattcgccg	4680
gchgcaaaaca	ggaaaagctc	gccaaagaaa	tcggcgatgt	ccgggcgcgg	atttaccgca	4740
gccaagtggaa	cggcacgggtt	ttcccgaaaca	actgttttt	gaccggcgcc	ggtgtcttca	4800
aggcttttaa	cccgatcgat	gaaaacacga	ccgaggctt	gacgtatg	atcgtagaaa	4860
aagacatgcc	tgaggactt	aagcgctgc	tggctgacgc	ggctcagcgc	tctgtcgac	4920
cagcaggata	ctgggaaagc	gacgacaacg	acaacatgg	gttgcgcaaa	aatgccaaga	4980
aataccaatc	cagcaacagt	gatctgattt	ccgattttggg	tttcggcaag	gacgtctacg	5040

gcgacgaatg ctatccggc gtcgttagca aatccgcatt cagcgaaacc aaccatcgcg	5100
gatttaccc tgcctaccag gtcacatca gcagctccaa ttggcccgag ttgcaaaaca	5160
cctcccgaaa ttggcacacc gaactcacca agacgactga tcgctaattcc aggagccaat	5220
catgatgatc aataccagg aagacaagct ggtctccgcg cacgacgccg aagaattca	5280
ccgttcttc gtcggcacc acagcgatct gcagcaagaa gtcaccacac tcctgaccgg	5340
cgaagccgac ctgctggaca ttcaggccta caaaggctgg cttgaacact gcgttgcggcc	5400
cgagatcaaa taccaagtga tctcgcgaga acttcgctcc acttccgagc gtcgatacca	5460
actgaatgat gcggtgaata tctacaacga gaactatcaa cagctgaaag ttcgagttga	5520
acaccagatg gatcctcaga actggtacaa cagcccgaag atccgcttca cccgcttcgt	5580
caccaatgtc acggccgcca aggacaagag cgccacccgaa atgctgcatg tgccgtccaa	5640
cctcattctc catcgccca gacgaggaaa ccaagttgac gtcttctatg caacgcgaga	5700
agacaaatgg aaacgcatcg aagggtggg catcaaattg gtcgaaacgt ttgtggacta	5760
cccgagcgc agtccccaaa cccacaacct gatgatctc ctgtgagccc tgggatgcc	5820
tgcctggatg gcgggcattc gtgattattt ttaacaggc ggattcaaaa gtgaagtgc	5880
acaccctgga tttcaagtgaa tgagagtgaa gtgtcgccg ctattcacaa gcagttcgcg	5940
gtagaccgcg acgggtgatc gtactcccg cccttcctt ggccgggttg tgatttcatc	6000
ggcaatcgca tcgagctgct cctggctgta gatgctcaga tccgtccctt tggcaggta	6060
ctggcgcacc aggccattca tggctcggtt ggagccttcc tgccaaaggc tggtgggtc	6120
gcagaagtac acggctatgc cgggttgc actgagctt ttgtgcattg acatctcccg	6180
gccctggtcg tacgtcatgc tcaaccgcatt cggctgcgcgca atgcccagca gcttgtccgt	6240
gaaggcctgca aagacgttgg cagcactggc cggcttgcgac tcaggcagct tgaccagcat	6300
caccagccgg ctggcgcgtt ccaccaaggt cccgactgcg ctggcattgc ctctccctt	6360
gatgagatca cttcccaagt gcccgggaaa ctggcggtct tcgatctcg gggcggtac	6420
atggatgctc agcatgtcg gatatctggc tctggcggtcc ttgcccattgc tgccggcag	6480
ccgcttggg tggcggtgac gcagggtggc gatcagctt ttgcgcagct ctcccacggg	6540
catggcatag atgcagttgt agatggtttgc gtgtgacacg cggattcat gggccagggg	6600
atacaaacgt gccagtgtca gggcaatctg ctcggcgac cagcgcagcc gcagcagatg	6660
gatcaccagg caggacaaga tcgactcggtt atgcagctt atagctggtc tgccacagcg	6720
tctgcgtgc agggactggc actgggcattg tgccgtgcca tagccagatg aagatgc	6779

<210> 14

<211> 449

<212> PRT

<213> Artificial Sequence

<220>

<223> A polypeptide encoded by SEQ ID NO:3.

<400> 14

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln			
1	5	10	15
Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys			
20	25	30	
Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile			
35	40	45	
Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val			
50	55	60	
Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val			
65	70	75	80
Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala			
85	90	95	
Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly			
100	105	110	
Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu			
115	120	125	
Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe			
130	135	140	
His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met			
145	150	155	160

Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 15
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:4.

<400> 15
 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110

Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 16
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:5.

<400> 16
 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60

Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Cys Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 17
<211> 449
<212> PRT
<213> Artificial Sequence

<220>
<223> A polypeptide encoded by SEQ ID NO:6.

<400> 17
Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Phe Gly Leu Ser Gln
1 5 10 15

Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Arg Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 18
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>

<223> A polypeptide encoded by SEQ ID NO:7.

<400> 18

Met Asn Tyr Lys Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Thr Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Arg
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ser Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Ser Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Asn Ala Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Ile Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ala Ser Leu Ala Gly Asn Ala Val Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ser Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Val
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Lys Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu Asp Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 19
<211> 449
<212> PRT
<213> Artificial Sequence

<220>
<223> A polypeptide encoded by SEQ ID NO:8.

<221> SITE
<222> (35)...(35)
<223> Xaa = any amino acid.

<400> 19
Met Asn Tyr Lys Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Thr Gln
1 5 10 15
Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Arg
20 25 30
Thr Ile Xaa Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
35 40 45
Pro Ser Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
50 55 60
Ile Val Ser Arg Gln Ser Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
65 70 75 80
Cys Arg His Arg Gly Lys Thr Leu Val Asn Ala Glu Ala Gly Asn Ala
85 90 95
Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
100 105 110
Glu Leu Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Glu Ser Leu
115 120 125
Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
130 135 140
His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Ser Leu Met
145 150 155 160
Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Ile Phe Lys His
165 170 175
Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
180 185 190
Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
195 200 205
Val Gly Trp Thr His Ala Ser Ser Leu Arg Thr Gly Glu Ser Ile Phe
210 215 220
Ser Ser Leu Ala Gly Asn Ala Val Leu Pro Pro Glu Gly Ala Gly Leu
225 230 235 240
Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
245 250 255
Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
260 265 270
Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Pro
275 280 285
Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
290 295 300
Ser Val Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
305 310 315 320
Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
325 330 335
Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ala Val Gln Arg Thr Val
340 345 350
Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr
355 360 365
Ala Ser Gln Asn Gly Lys Tyr Gln Ser Arg Asp Ser Asp Leu Ile
370 375 380

Ser Asn Leu Gly Phe Gly Lys Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu Asp Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 20
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:9.

<400> 20
 Met Asn Tyr Lys Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Thr Gln
 1 5 10 15
 Lys His Leu Ile His Gly Gly Glu Leu Phe Gln His Glu Leu Arg
 20 25 30
 Ala Val Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ser Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Ser Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Asn Ala Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Ala Cys Ile Asp Gln Glu Ala Pro Ser Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Ile Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Cys Thr Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Val Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Val Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335

Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ala Val Gln Arg Thr Val
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Ile
 370 375 380
 Ser Asn Leu Gly Phe Gly Lys Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu Asp Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 21
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:10.

<400> 21
 Met Asn Tyr Lys Asn Lys Asn Leu Val Ser Glu Ser Gly Leu Thr Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln Arg Glu Leu Glu
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ser Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Val Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val His Ala Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ala Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Glu Ala Leu
 115 120 125
 Asp Lys Lys Cys Met Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Glu Glu Ala Pro Ser Leu Lys
 145 150 155 160
 Asp Tyr Met Gly Asp Ala Gly Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Ile Gly Pro Pro Gly Lys Val Ile Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Thr Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Gln Ser Val Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Glu Val Arg
 275 280 285

Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Phe Leu Thr Cys Ser Gly Val Phe Lys Val Trp His Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Met Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Val Asp Ala Val Gln Arg Thr Val
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Val Ser Gln Asn Ala Lys Lys Tyr Gln Ser Arg Asp Gly Asp Leu Val
 370 375 380
 Ser Asn Leu Gly Phe Gly Asp Val Tyr Gly Asp Glu Val Tyr Pro
 385 390 395 400
 Gly Ile Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gly Ala His Ile Ser Ser Ser Trp Ala Glu Phe
 420 425 430
 Glu Asp Val Ser Lys Asn Trp His Thr Glu Leu Ala Lys Thr Thr Asp
 435 440 445
 Arg

<210> 22
 <211> 447
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:11.

<400> 22
 Met Ile Tyr Glu Asn Leu Val Ser Glu Ala Gly Leu Thr Gln Lys His
 1 5 10 15
 Leu Ile His Gly Asp Lys Glu Leu Phe Gln His Glu Leu Lys Thr Ile
 20 25 30
 Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile Pro Ser
 35 40 45
 Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Val Asp Glu Val Ile Val
 50 55 60
 Ser Arg Gln Asn Asp Gly Ser Val Arg Ala Phe Leu Asn Val Cys Arg
 65 70 75 80
 His Arg Gly Lys Thr Leu Val His Ala Glu Ala Gly Asn Ala Lys Gly
 85 90 95
 Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly Glu Leu
 100 105 110
 Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Asp Thr Ile Lys Lys
 115 120 125
 Lys Cys Leu Gly Leu Lys Glu Val Pro Arg Ile Glu Ser Phe His Gly
 130 135 140
 Phe Ile Tyr Gly Cys Phe Asp Ala Glu Ala Pro Thr Leu Val Asp Tyr
 145 150 155 160
 Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Ile Phe Lys His Ser Gly
 165 170 175
 Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys Ala Asn
 180 185 190
 Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His Val Gly
 195 200 205
 Trp Thr His Ala Ser Ser Leu Arg Ser Gly Gln Ser Ile Phe Thr Pro
 210 215 220
 Leu Ala Gly Asn Ala Met Leu Pro Pro Glu Gly Ala Gly Leu Gln Met
 225 230 235 240

Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly Tyr Ser
 245 250 255
 Gly Val His Ser Ala Asp Leu Val Pro Glu Met Met Ala Phe Gly Gly
 260 265 270
 Ala Lys Gln Glu Lys Leu Ala Lys Glu Ile Gly Asp Val Arg Ala Arg
 275 280 285
 Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn Ser Ile
 290 295 300
 Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp Glu Asn
 305 310 315 320
 Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met Pro Glu
 325 330 335
 Asp Leu Lys Arg Arg Leu Ala Asp Ala Val Gln Arg Thr Val Gly Pro
 340 345 350
 Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr Glu Ser
 355 360 365
 Gln Asn Ala Lys Lys Tyr Gln Ser Ser Asn Ser Asp Leu Ile Ala Asn
 370 375 380
 Leu Gly Phe Gly Lys Asp Val Tyr Gly Asp Glu Cys Tyr Pro Gly Val
 385 390 395 400
 Val Ala Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe Tyr Arg
 405 410 415
 Ala Tyr Gln Ala His Ile Ser Ser Asn Trp Ala Glu Phe Glu Asn
 420 425 430
 Thr Ser Arg Asn Trp His Thr Glu Leu Thr Lys Thr Thr Asp Arg
 435 440 445

<210> 23
 <211> 447
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:12.

<400> 23
 Met Ser Tyr Gln Asn Leu Val Ser Glu Ala Gly Leu Thr Gln Lys Leu
 1 5 10 15
 Leu Ile His Gly Asp Lys Glu Leu Phe Gln His Glu Leu Lys Thr Ile
 20 25 30
 Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile Pro Ser
 35 40 45
 Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Val Asp Glu Val Ile Val
 50 55 60
 Ser Arg Gln Asn Asp Gly Ser Val Arg Ala Phe Leu Asn Val Cys Arg
 65 70 75 80
 His Arg Gly Lys Thr Leu Val His Thr Glu Ala Gly Asn Ala Lys Gly
 85 90 95
 Phe Val Cys Gly Tyr His Gly Trp Gly Tyr Gly Ser Asn Gly Glu Leu
 100 105 110
 Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly Asp Ala Ile Lys Lys
 115 120 125
 Lys Cys Leu Gly Leu Lys Glu Val Pro Arg Ile Glu Ser Phe His Gly
 130 135 140
 Phe Ile Tyr Gly Cys Phe Asp Ala Glu Ala Pro Pro Leu Ile Asp Tyr
 145 150 155 160
 Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Thr Phe Lys His Ser Gly
 165 170 175
 Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Val Lys Ala Asn
 180 185 190
 Trp Lys Pro Phe Ala Glu Asn Phe Val Gly Asp Ile Tyr His Val Gly
 195 200 205

Trp Thr His Ala Ala Leu Arg Ala Gly Gln Ser Val Phe Ser Ser
 210 215 220
 Leu Ala Gly Asn Ala Lys Leu Pro Pro Glu Gly Ala Gly Leu Gln Met
 225 230 235 240
 Thr Ser Lys Tyr Gly Ser Gly Met Gly Leu Thr Trp Asp Tyr Tyr Ser
 245 250 255
 Gly Asn Phe Ser Ala Asp Met Val Pro Asp Leu Met Ala Phe Gly Ala
 260 265 270
 Ala Lys Gln Glu Lys Leu Ala Lys Glu Ile Gly Asp Val Arg Ala Arg
 275 280 285
 Ile Tyr Arg Ser Ile Leu Asn Gly Thr Val Phe Pro Asn Asn Ser Phe
 290 295 300
 Leu Thr Gly Ser Ala Thr Phe Lys Val Trp Asn Pro Ile Asp Glu Asn
 305 310 315 320
 Thr Thr Glu Val Trp Thr Tyr Ala Phe Val Glu Lys Asp Met Pro Glu
 325 330 335
 Asp Leu Lys Arg Arg Leu Ala Asp Ala Ala Gln Arg Ser Val Gly Pro
 340 345 350
 Ala Gly Phe Trp Glu Ser Asp Asp Asn Glu Asn Met Glu Thr Leu Ser
 355 360 365
 Gln Asn Ala Lys Lys Tyr Gln Ser Ser Asn Ser Asp Gln Ile Ala Ser
 370 375 380
 Leu Gly Phe Gly Lys Asp Val Tyr Gly Asp Glu Cys Tyr Pro Gly Val
 385 390 395 400
 Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe Tyr Arg
 405 410 415
 Ala Tyr Gln Ala His Ile Ser Ser Ser Asn Trp Ala Glu Phe Glu Asn
 420 425 430
 Ala Ser Arg Asn Trp His Thr Glu Leu Thr Lys Thr Thr Asp Arg
 435 440 445

<210> 24

<211> 451

<212> PRT

<213> Artificial Sequence

<220>

<223> A polypeptide encoded by SEQ ID NO:13.

<400> 24

Met Arg Gln Ala Ile Met Ser Tyr Gln Asn Leu Val Ser Glu Ala Gly
 1 5 10 15
 Leu Thr Gln Lys His Leu Ile Tyr Gly Asp Lys Glu Leu Phe Gln His
 20 25 30
 Glu Leu Lys Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp
 35 40 45
 Ser Leu Ile Pro Ser Pro Gly Asp Tyr Val Lys Ala Lys Met Gly Val
 50 55 60
 Asp Glu Val Ile Val Ser Arg Gln Asn Asp Gly Ser Val Arg Ala Phe
 65 70 75 80
 Leu Asn Val Cys Arg His Arg Gly Lys Thr Ile Val Asp Ala Glu Ala
 85 90 95
 Gly Asn Ala Lys Gly Phe Val Cys Gly Tyr His Gly Trp Gly Tyr Gly
 100 105 110
 Ser Asn Gly Glu Leu Gln Ser Val Pro Phe Glu Lys Glu Leu Tyr Gly
 115 120 125
 Asp Ala Ile Lys Lys Cys Leu Gly Leu Lys Glu Val Pro Arg Ile
 130 135 140
 Glu Ser Phe His Gly Phe Ile Tyr Gly Cys Phe Asp Ala Glu Ala Pro
 145 150 155 160
 Pro Leu Ile Asp Tyr Leu Gly Asp Val Ala Trp Tyr Leu Glu Pro Thr
 165 170 175

Phe Lys His Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Ala Lys Val
 180 185 190
 Val Val Lys Gly Asn Trp Lys Val Phe Ala Glu Asn Phe Val Gly Asp
 195 200 205
 Ile Tyr His Ile Gly Trp Thr His Ala Ser Ile Leu Arg Ala Gly Gln
 210 215 220
 Ala Ile Phe Ala Pro Leu Ala Gly Asn Ala Met Leu Pro Pro Glu Gly
 225 230 235 240
 Thr Gly Leu Gln Ala Thr Thr Lys Tyr Gly Ser Gly Ile Gly Val Ser
 245 250 255
 Leu Asp Ala Tyr Ser Gly Val Gln Ser Ala Asp Leu Val Pro Glu Met
 260 265 270
 Met Ala Phe Gly Gly Ala Lys Gln Glu Lys Leu Ala Lys Glu Ile Gly
 275 280 285
 Asp Val Arg Ala Arg Ile Tyr Arg Ser Gln Val Asn Gly Thr Val Phe
 290 295 300
 Pro Asn Asn Cys Phe Leu Thr Gly Ala Gly Val Phe Lys Val Phe Asn
 305 310 315 320
 Pro Ile Asp Glu Asn Thr Thr Glu Ala Trp Thr Tyr Ala Ile Val Glu
 325 330 335
 Lys Asp Met Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ala Ala Gln
 340 345 350
 Arg Ser Val Gly Pro Ala Gly Tyr Trp Glu Ser Asp Asp Asn Asp Asn
 355 360 365
 Met Val Leu Ser Gln Asn Ala Lys Lys Tyr Gln Ser Ser Asn Ser Asp
 370 375 380
 Leu Ile Ala Asp Leu Gly Phe Gly Lys Asp Val Tyr Gly Asp Glu Cys
 385 390 395 400
 Tyr Pro Gly Val Val Ser Lys Ser Ala Phe Ser Glu Thr Asn His Arg
 405 410 415
 Gly Phe Tyr Arg Ala Tyr Gln Ala His Ile Ser Ser Ser Asn Trp Ala
 420 425 430
 Glu Phe Glu Asn Thr Ser Arg Asn Trp His Thr Glu Leu Thr Lys Thr
 435 440 445
 Thr Asp Arg
 450

<210> 25

<211> 2265

<212> DNA

<213> Pseudomonas sp.

<400> 25

gagggttagag	aaatcgaatg	ccccttgcat	caaggtcggt	ttgacgtttg	cacaggcaaa	60
gccctgtgcg	caccgtgac	acagaacatc	aaaacatatac	cagtcaagat	tgagaacctg	120
cgcgtaatga	ttgatttgag	ctaagaattt	taacaggagg	caccccgggc	cctagagcgt	180
aatcaccccc	attccatctt	ttttaggtg	aaacatgaat	tacaataata	aaatcttgg	240
aagtgaatct	ggtctgagcc	aaaagcacct	gattcatggc	gatgaagaac	ttttccaaca	300
tgaactgaaa	accattttg	cgcggactg	gcttttctc	actcatgata	gcctgattcc	360
tgcccccggc	gactatgtt	ccgcaaaaat	ggggattgac	gaggtcatcg	tctccggca	420
gaacgacggt	tcgattcgt	cttttctgaa	cgtttgcgg	catcggtggca	agacgctggt	480
gagcgtggaa	gccggcaatg	ccaaaggttt	tgtttgcagc	tatcacggct	ggggcttcgg	540
ctccaacggt	gaactgcaga	gcgttccatt	tgaaaaagat	ctgtacggcg	agtcgctcaa	600
taaaaaatgt	ctggggttga	agaagtcgc	tcgcgtggag	agttccatg	gcttcatcta	660
cgggtgctt	gaccaggagg	cccttcctt	tatggactat	ctgggtgacg	ctgcttggt	720
cctggAACCT	atgttcaagc	attccggccg	tttagaactg	gtcggtcctc	caggcaaggt	780
tgtgatcaag	gccaaactgga	aggcacccgc	ggaaaacttt	gtgggagatg	cataccacgt	840
gggttggacg	cacgcgtctt	cgcttcgctc	gggggagatct	atcttctcg	cgctcgctgg	900
caatgcggcg	ctaccacctg	aaggcgcagg	cttgc当地at	acctccaaat	acggcagcgg	960
catgggtgt	ttgtgggacg	gatattcagg	tgtgc当地agc	gcagacttgg	ttccggaaatt	1020
gatggcattc	ggaggcgc当地a	agcaggaag	gctgaacaaa	gaaattggcg	atgttcgc当地c	1080
tcggatttat	cgcagccacc	tcaactgcac	cgtttcccg	aacaacagca	tgctgacactg	1140

ctcggtgtt ttcaaagtat ggaacccgat cgacgcaaac accaccgagg tctggaccta	1200
cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggcg actctgttca	1260
gcaacgttc gggcctgctg gttctggaa aagcgacgac aatgacaata tggaaacagc	1320
ttcgaaaac ggcaagaat atcaatcaag agatagtat ctgcttcaa accttggttt	1380
cggtgaggac gtatacggcg acgcggctta tccaggcgtc gtcggcaat cggcgatcg	1440
cgagaccagt tatcggtt tctaccggc ttaccaggca cacgtcagca gctccaactg	1500
ggctgagttc gagcatgcct ctagtacttgc gcatactgaa cttacgaaga ctactgatcg	1560
ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctgtt ttccgcccac	1620
gacgcccgaag agattttcg tttcttcaat tgccacgact ctgcttgc acaagaagcc	1680
actacgctgc tgacccagga agcgcatttgc ttggacatttgc aggcttaccg tgcttggta	1740
gagcaactgcg tgggtcaga ggtcaatatttgc caggtcatttgc acgcgaact ggcgcgcagct	1800
ttagcagcgtc gttataagct caatgaagcc atgaacgtt acaacgaaaa tttagcagca	1860
ctgaaagtgc gatggagca tcaactggat ccgcggaaacttgc gggcaacag cccgaagctg	1920
cgcttactc gcttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta	1980
ttcacatcc gctccaaacgt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc	2040
ttctacgccc cccggaaaga taaatggaaa cgtggcgaag gtggagtagc aaaattggtc	2100
cagcgattcg tcgatttaccc agagcgcata cttcagacgc acaatctgtt ggtcttctg	2160
tgattcgttgc accatttttcaaaatggta ctgcaaccgc ggtcaccattt aatcaaaggaa	2220
aatgtacgtt tatggcaat caacaagtcg tttcgataac cggttgc	2265

<210> 26

<211> 449

<212> PRT

<213> Pseudomonas sp.

<400> 26

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln	
1 5 10 15	
Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys	
20 25 30	
Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile	
35 40 45	
Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val	
50 55 60	
Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val	
65 70 75 80	
Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala	
85 90 95	
Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly	
100 105 110	
Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu	
115 120 125	
Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe	
130 135 140	
His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met	
145 150 155 160	
Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His	
165 170 175	
Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys	
180 185 190	
Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His	
195 200 205	
Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe	
210 215 220	
Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu	
225 230 235 240	
Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly	
245 250 255	
Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe	
260 265 270	
Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg	
275 280 285	

Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Phe
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 27
 <211> 2265
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> A sequence encoding an NDO mutant.

<400> 27	
gagggttagag aaatcgaatg ccccttgcat caaggtcggc ttgacgtttg cacaggcaaa	60
gccctgtgcg caccctgtac acagaacatc aaaacatatac cagtcaagat tgagaacctg	120
cgcgtaatga ttgatttgag ctaagaatt taacaggagg caccctggc cctagagcgt	180
aatcaccccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttggt	240
aagtgaatct ggtctgagcc aaaagcacct gattcatggc gatgaagaac ttttccaaca	300
tgaactgaaa accattttg cgccggactg gcttttctc actcatgata gcctgattcc	360
tgcccccggc gactatgtt ccgcaaaaat ggggattgac gaggtcatcg tctccggca	420
gaacgacggc tcgattcgtg ctttctgaa cgtttgcgg catcgtggca agacgctgg	480
gagcgtggaa gccggcaatg ccaaagggtt tgtttgcage tatcacggct ggggcttcgg	540
ctccaacggc gaactgcaga cggttccatt tgaaaaagat ctgtacggcg agtcgctaa	600
taaaaaatgt ctggggttga aagaagtgc tcgcgtggag agttccatg gcttcatcta	660
cgggtgcttc gaccaggagg cccctccct tatggactat ctgggtgacg ctgttggta	720
cctggAACCT atgttcaagc attccggcgg tttagaactg gtccgtcctc caggcaaggt	780
tgtgatcaag gccaactgga aggcccccgc ggaaaacttt gtgggagatg cataccacgt	840
gggttggacg cacgcgtctt cgcttcgctc gggggagtct atcttctcgt cgctcgctgg	900
caatgcggcg ctaccacctg aaggcgcagg cttgcaatg acctccaaat acggcagcgg	960
catgggtgtg ttgtggacg gatattcagg tgtgcatagc gcagacttgg ttccggaaatt	1020
gatggcattc ggaggcgcaa agcagggaaag gctgaacaaa gaaattggcg atgttcgcgc	1080
tcggatttat cgcagccacc tcaactgcac cgtttcccg aacaacagca tgctgacctg	1140
ctcggtgtt ttcaaaatgt ggaacccgtt cgacgcaaac accaccggagg tctggaccta	1200
cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggcg actctgttca	1260
gcgaacgggc gggcctgctg gcttctggc aagcgcac gatgacaata tggaaaacagc	1320
ttcgcaaaac ggcaagaaat atcaatcaag agatagtgtat ctgctttcaa accttgggtt	1380
cggtgaggac gtatacggcg acgcggctt tccaggcgat gtcggcaat cggcgatcgg	1440
cgagaccagt tatcgtgggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg	1500
ggctgagttc gagcatgcct ctagtacttgc ctagactgaa cttacgaaga ctactgatcg	1560
ctaacagacg agtgcaccat gatgatcaat attcaagaag acaagctggt ttccgcccac	1620
gacgccgaag agattctcg tttcttcaat tgccacgact ctgctttgca acaagaagcc	1680
actacgctgc tgaccaggaa agcgcatttgc ttggacattc aggcttacgg tgcttggta	1740
gagcactgcg tgggtcaga ggtgcaat cagtcattt cacgcgaact gcgcgcagct	1800

tcagagcgtc	gttataagct	caatgaagcc	atgaacgttt	acaacgaaaa	ttttcagcaa	1860
ctgaaagtc	gagttgagca	tcaactggat	ccgcaaaaact	ggggcaacag	cccgaagctg	1920
cgctttactc	gctttatcac	caacgtccag	gccgcaatgg	acgtaaatga	caaagagcta	1980
cttcacatcc	gctccaacgt	cattctgcac	cgggcacgac	gtggcaatca	ggtcgatgtc	2040
ttctacgccc	cccggyaaga	taaatggaaa	cgtggcgaag	gtggagtagc	aaaattggtc	2100
cagcgattcg	tcgattaccc	agagcgcata	cttcagacgc	acaatctgtat	ggtcaccatt	2160
tgattcagtg	accattttta	caaatggtca	ctgcaaccgc	ggtcaccatt	aatcaaagg	2220
aatgtacgtg	tatggcaat	caacaagtgc	tttcgataac	cggtg		2265

<210> 28

<211> 2265

<212> DNA

<213> Artificial Sequence

<220>

<223> A sequence encoding an NDO mutant.

<400> 28

gagggttagag	aaatcgaatg	ccccttgc	caaggtcggt	ttgacgtttt	cacaggcaaa	60
gccctgtgcg	caccctgtac	acagaacatc	aaaacatatac	cagtcaagat	tgagaacctg	120
cgcgtatga	ttgatttgag	ctaagaattt	taacaggagg	caccccgggc	cctagagcgt	180
aatcccccc	attccatctt	ttttaggtga	aaacatgaat	tacaataata	aaatcttgg	240
aagtgaatct	ggtctgagcc	aaaagcacct	gattcatggc	gatgaagaac	ttttccaaca	300
tgaactgaaa	accatTTTt	cgcggaaactg	gcttttctc	actcatgata	gcctgattcc	360
tgccccggc	gactatgtta	ccgcaaaaat	ggggattgac	gaggtcatcg	tctccggca	420
gaacgacggt	tcgattcgtg	cttttctgaa	cggttgcgg	catcggtggca	agacgctggt	480
gagcgtggaa	gccggcaatg	ccaaagggtt	tggttgcagc	tatcacggct	ggggcttcgg	540
ctccaacgg	gaactgcaga	gcgttccatt	tgaaaagat	ctgtacggcg	agtcgctcaa	600
taaaaaatgt	ctggggttga	aagaagtgc	tcgcgtggag	agcttccatg	gcttcatcta	660
cgggtcttc	gaccaggagg	cccttcctct	tatgactat	ctgggtgacg	ctgcttggta	720
cctggAACCT	atgttcaagc	atccggcgg	tttagaactg	gtcggtcctc	caggcaaggt	780
tgtgatcaag	gccaactgga	aggcacccc	ggaaaacttt	gtggagatg	cataaccacgt	840
gggttggacg	cacgcgtctt	cgcttcgtc	ggggagatct	atcttctgt	cgctcgctgg	900
caatgcggcg	ctaccacctg	aaggcgcagg	cttgc当地at	acctccaaat	acggcagcgg	960
catgggtgt	ttgtgggacg	gatattcagg	tgtgc当地agc	cgagacttgg	ttccggaaatt	1020
gatggcattc	ggaggcgcaa	agcaggaaag	gctgaacaaa	gaaattggcg	atgttcgcgc	1080
tcggatttat	cgcagccacc	tcaactgcac	cgtttcccg	aacaacagca	tgctgacctg	1140
ctcggtgtt	ttcaagat	gaaacccgat	cgacgcaaac	accaccgagg	tctggaccta	1200
cgccattgtc	aaaaagaca	tgcctgagga	tctcaagcgc	cgcttggccg	actctgttca	1260
gcaacggcc	gggcctgctg	gcttctggg	aagcagcagc	aatgacaata	tggaaacagc	1320
ttcgcaaaac	ggcaagaaat	atcaatcaag	agatagtgtat	ctgcttcaa	accttggtt	1380
cggtgaggac	gtatacggcg	acgcggctca	tccaggcg	gtcggcaaat	cggcgatcgg	1440
cgagaccagt	tatcggtt	tctaccggc	ttaccaggca	cacgtcagca	gctccaactg	1500
ggctgagttc	gagcatgcct	ctagtaactg	gcatactgaa	cttacgaaga	ctactgatcg	1560
ctaacagacg	agtgcaccat	gatgatcaat	attcaagaag	acaagctggt	ttccgcccac	1620
gacgccgaag	agattctcg	tttcttcaat	tgccacgact	ctgcttgc	acaagaagcc	1680
actacgctgc	tgaccaggaa	agcgcattt	ttggacattc	aggcttaccg	tgcttggta	1740
gagcaactgc	tgggtcaga	ggtcaat	caggtcattt	cacgcgaact	gcfgcagct	1800
tcagagcgtc	gttataagct	caatgaagcc	atgaacgttt	acaacgaaaa	ttttcagcaa	1860
ctgaaagttc	gagttgagca	tcaactggat	ccgcaaaaact	ggggcaacag	cccgaagctg	1920
cgctttactc	gctttatcac	caacgtccag	gccgcaatgg	acgtaaatga	caaagagcta	1980
cttcacatcc	gctccaacgt	cattctgcac	cgggcacgac	gtggcaatca	ggtcgatgtc	2040
ttctacgccc	cccggyaaga	taaatggaaa	cgtggcgaag	gtggagtagc	aaaattggtc	2100
cagcgattcg	tcgattaccc	agagcgcata	cttcagacgc	acaatctgtat	ggtcaccatt	2160
tgattcagtg	accattttta	caaatggtca	ctgcaaccgc	ggtcaccatt	aatcaaagg	2220
aatgtacgtg	tatggcaat	caacaagtgc	tttcgataac	cggtg		2265

<210> 29

<211> 2265

<212> DNA

<213> Artificial Sequence

<220>

<223> A sequence encoding an NDO mutant.

<400> 29

gagggttagag	aaatcgaatg	ccccttgcac	caaggtcggt	ttgacgtttg	cacaggcaaa	60
gccctgtgcg	caccctgtac	acagaacatc	aaaacatatac	cagtcaagat	tgagaacctg	120
cgcgtaatga	ttgatttgag	ctaagaattt	taacaggagg	caccccgggc	cctagagcgt	180
aatcaccccc	attccatctt	ttttaggtga	aaacatgaat	tacaataata	aaatcttggt	240
aagtgaatct	ggtctgagcc	aaaagcacct	gattcatggc	gatgaagaac	tttccaaca	300
tgaactgaaa	accattttg	cgcggaaactg	gcttttctc	actcatgata	gcctgattcc	360
tgcccccggc	gactatgtta	ccgcaaaaat	ggggattgac	gaggtcatcg	tctcccgca	420
gaacgacggt	tcgattcgtg	cttttctgaa	cgtttgcgg	catcgtggca	agacgctgg	480
gagcgtggaa	gccggcaatg	ccaaaggtt	tgtttgcagc	tatcacggct	ggggcttcgg	540
ctccaacggt	gaactgcaga	gcgttccatt	tgaaaaagat	ctgtacggcg	agtcgctcaa	600
aaaaaaaaatgt	ctgggggttga	aagaagtgc	tcgcgtggag	agtttccatg	gcttcatcta	660
cgggttgc	gaccaggagg	cccctccctt	tatgactat	ctgggtgacg	ctgcttggta	720
cctggAACCT	atgttcaagc	attccgggg	ttttagaactg	gtcggtcctc	caggcaaggt	780
tgtatcaag	gcacaactgga	aggcaccgc	ggaaaactt	gtgggagatg	cataaccacgt	840
gggttggacg	cacgcgtctt	cgcttcgctc	gggggagatct	atcttctcg	cgctcgctgg	900
caatgcggcg	ctaccacctg	aaggcgcagg	cttgc当地at	acctccaaat	acggcagcgg	960
catgggtgt	ttgtgggacg	gatattcagg	tgtcatagc	gcagacttgg	ttccggaaatt	1020
gatggcattc	ggaggcgaa	agcagggaaag	gctgaacaaa	gaaattggcg	atttcgcgc	1080
tcggatttat	cgcagccacc	tcaactgcac	cgtttcccg	aacaacagca	tgctgacctg	1140
ctcgggtgtt	ttcaaaatgt	ggaacccgat	cgacgcaaac	accaccgagg	tctggaccta	1200
cgccattgtc	aaaaaaagaca	tgcctgagga	tctcaagcgc	cgcttggccg	actctgttca	1260
gcgaacgacc	gggcctgctg	gcttctggga	aagcgcacgac	aatgacaata	tggaaacagc	1320
ttcgcaaaac	ggcaagaaat	atcaatcaag	agatagtgtat	ctgctttcaa	accttggtt	1380
cggtgaggac	gtatacggcg	acgcggctca	tccaggcgctc	gtcggcaaat	cggcgatcgg	1440
cgagaccagt	tatgtgggtt	tctaccgggc	ttaccaggca	cacgtcagca	gctccaactg	1500
ggctgagttc	gagcatgcct	ctagacttg	gcatactgaa	cttacgaaaga	ctactgtatcg	1560
ctaacagacg	agtcgaccat	gatgtcaat	attcaagaag	acaagctgg	ttccgcccac	1620
gacgccgaag	agattttcg	tttcttcaat	tgccacgact	ctgcttgca	acaagaagcc	1680
actacgctgc	tgaccaggaa	agcgcattt	ttggacattc	aggcttaccg	tgcttggta	1740
gagcaactgc	ttgggttcaga	ggtgcaatat	caggcattt	cacgcgaact	gcgcgcagct	1800
tcagagcg	gttataagct	caatgaagcc	atgaacgttt	acaacgaaaa	ttttcagcaa	1860
ctgaaagttc	gagttgagca	tcaactggat	ccgcaaaaact	ggggcaacag	cccgaaagctg	1920
cgcttactc	gttttatcac	caacgtccag	gccgcaatgg	acgtaaatga	caaagagcta	1980
tttcacatcc	gttccaaacgt	cattctgcac	cgggcacgac	gttccaaatca	gttcgatgtc	2040
ttctacgccc	cccgaaaaga	taaatggaaa	cgtggcgaag	gtggagatcg	aaaattggtc	2100
cagcgattcg	tcgatttaccc	agagcgcata	cttccagacgc	acaatctgtat	gttccaaatcg	2160
tgattcgtg	accattttt	caaatggtca	ctgcaaccgc	gttccaccatt	aatcaaaagg	2220
aatgtacgt	tatggcaat	caacaagtcg	tttcgataac	cggtg		2265

<210> 30

<211> 2265

<212> DNA

<213> Artificial Sequence

<220>

<223> A sequence encoding an NDO mutant.

<400> 30

gagggttagag	aaatcgaatg	ccccttgcac	caaggtcggt	ttgacgtttg	cacaggcaaa	60
gccctgtgcg	caccctgtac	acagaacatc	aaaacatatac	cagtcaagat	tgagaacctg	120
cgcgtaatga	ttgatttgag	ctaagaattt	taacaggagg	caccccgccc	cctagagcgt	180
aatcaccccc	attccatctt	ttttaggtga	aaacatgaat	tacaataata	aaatcttggt	240
aagtgaatct	ggtctgagcc	aaaagcacct	gattcatggc	gatgaagaac	tttccaaca	300
tgaactgaaa	accattttg	cgcggaaactg	gcttttctc	actcatgata	gcctgattcc	360
tgcccccggc	gactatgtta	ccgcaaaaat	ggggattgac	gaggtcatcg	tctcccgca	420
gaacgacggt	tcgattcgtg	cttttctgaa	cgtttgcgg	catcgtggca	agacgctgg	480
gagcgtggaa	gccggcaatg	ccaaaggtt	tgtttgcagc	tatcacggct	ggggcttcgg	540
ctccaacggt	gaactgcaga	gcgttccatt	tgaaaaagat	ctgtacggcg	agtcgctcaa	600

aaaaaaaaatgt	ctggggttga	aagaagtgcg	tgcgtggag	agcttccatg	gcttcata	660	
cgggtgttcc	gaccaggagg	cccctccct	tatggactat	ctgggtgacg	ctgcttggta	720	
cctggAACCT	atgttcaagc	attccggcg	tttagaactg	gtcggtcctc	caggcaaggt	780	
tgtgtatcaag	gccaacttgg	aggcacccgc	gaaaaacttt	gtgggagatg	cataaccacgt	840	
gggttggacg	cacgcgtctt	cgttcgctc	gggggagtc	atcttctcg	cgctcgctgg	900	
caatgcggcg	ctaccacctg	aaggcgcagg	cttgc当地atg	acctccaaat	acggcagcgg	960	
catgggtgt	ttgtgggacg	gatattcagg	tgtgc当地agc	gcagacttgg	ttccggaaatt	1020	
gatggcattc	ggaggcgc当地aa	agcaggaaag	gctgaacaaa	gaaattggcg	atgttgc当地c	1080	
tcggatttat	cgagccacc	tcaactgcac	cgtttcccc	aacaacagca	tgctgacctg	1140	
ctcggtgtt	ttcaaagtat	ggaaccgc当地t	cgacgcaac	accaccgagg	tctggaccta	1200	
cgccattgtc	gaaaaagaca	tgcctgagga	tctcaagcgc	cgcttggccg	actctgttca	1260	
gcgaacgctc	gggcctgctg	gcttctggg	aaqcgc当地ac	aatgacaata	tggaaacacgc	1320	
ttcgcaaaac	ggcaagaaaat	atcaatcaag	agatagtgtat	ctgcttcaa	accttggg	1380	
cggtgaggac	gtatacggcg	acgc当地ggct	tccaggcgtc	gtcggcaat	cggcgatcgg	1440	
cgagaccagt	tatcggtt	tctaccggc	ttaccaggca	cacgtcagca	gctccaactg	1500	
ggctgagttc	gagcatgcct	ctagta	gcataactgaa	cttacgaa	ctactgatcg	1560	
ctaacagacg	agtgc当地ccat	gatgatcaat	attcaagaag	acaagctgg	ttccgcccac	1620	
gacgccc当地aag	agattcttcg	tttcttcaat	tgccacgact	ctgcttgc当地a	acaagaagcc	1680	
actacgc当地c	tgacc	c当地atgc当地t	ttggacattt	aggcttaccg	tgcttggta	1740	
gagcactgc当地g	tggggtc当地a	ggtgcaat	cagg	cattt	cacgc当地act	1800	
tcagagcg	gttataagct	caatgaa	atgaacg	ttt	acaacgaaaa	tttcagca	1860
ctgaaagttc	gagttgagca	tcaactggat	ccgcaaaact	ggggcaac	ccc当地agctg	1920	
cgcttactc	gcttattcac	caacgtcc	ccgc当地atgg	acgttaatga	caaagagcta	1980	
cttcacatcc	gctccaacgt	cattctgcac	ccggc当地ac	gtggcaatca	gttc当地atgtc	2040	
ttctacgccc	ccccggaa	taatggaaa	cgtggc当地a	gtgggat	aaaattgg	2100	
cagcgattcg	tcgat	taacc	cttca	acaatctgat	gttcttctg	2160	
tgattcagtg	accat	ttta	caatgg	ctgcaacc	ggtcaccatt	2220	
aatgtacgtg	tatgg	caat	caaca	cggtg		2265	

<210> 31
<211> 2265

<212> DNA

<213> Art:

<223>

gaggatag

gggggttagg uucctggatc cccctgtat caaggcggt ttgacgttt cataggcaaa
gcccgtgcg caccctgtac acagaacatc aaaacatatac cagtcagat tgagaacctg
cgctaatga ttgtatttg ctaagaattt taacaggagg caccgggc cctagacgct
aatcaccccc attccatctt tttagtgta aaacatgaat tacaataata aatcttggt
aagtgaatct ggcttgagcc aaaagcacct gattcatggc gatgaagaac ttttccaaca
tgaactgaaa accatTTTG cgCGGAACTG gCTTTTCTC actcatgata gcctgattcc
tgccccggc gactatgtta ccgcaaaaat ggggattgac gaggtcatcg tctcccgca
gaacgacggt tcgattcgtg ctTTTCTGAA cgtttGCCGG catcgTGGCA agacgctgg
gagcgtgaa gcccggcaatg ccaaaggtt tttttgcagc tatcacggct ggggcttccgg
ctccaacggt gaactgcaga gcgttccatt taaaaaaagat ctgtacggcg agtcgctcaa
taaaaaatgt ctgggggttga aagaagtgcg tcgcgtggag agttccatg gcttcatcta
cggttgcTTc gaccaggagg cccctcctct tatggactat ctgggtgacg ctgcttggta
cctggAACCT atgttcaagc attccggcgg tttagaactg gtcggccctc caggcaagggt
tgtgatcaag gccaacttggg aggaccccgc gaaaaacttt gtgggagatg cataaccacgt
gggttggacg cacgcgtctt cgcttcgctc gggggagtc atcttctcg cgctcgctgg
caatgcggcg ctaccacctg aaggcgcagg ctgc当地 atgcactat acctccaaat acggcagcgg
catgggtgtg ttgtgggacg gatattcagg tgtgc当地 agcacttgg ttccggaaatt
gatggcattc ggagggcgcaa agcaggaaag gctgaacaaa gaaattggcg atgttcgcgc
tcggatttat cgcaGCCacc tcaactgcac cgTTTCCCG aacaacagca tgctgacctg
ctcggtgtt ttcaaagttt ggaaccggat cgacgc当地 accaccgagg tctggaccta
cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca
gcaacgatc gggcctgtcg gttctggga aagcgc当地 aatgacaata tggaaacagc
ttcgcaaaac ggcaagaat atcaatcaag agatagtgtat ctgcttcaa accttggtt
cggtgaggac gtatacggcg acgcggcttca tccaggcgctc gtcggcaat cggcgatccgg

cgagaccagt tatacggtt tctaccggc ttaccaggca cacgtcagca gctccaactg	1500
gcgtgagttc gagcatgcct ctatgtttc gcataactgaa cttacgaaga ctactgatcg	1560
ctaacagacg agtcgaccat gatgtcaat attcaagaag acaagcttgt ttccgcccac	1620
gacgccgaag agattttcg tttttcaat tgccacgact ctgcttgca acaagaagcc	1680
actacgtgc tgaccaggaa agcgcatttggacattc aggcttaccg tgcttggta	1740
gagcaactgcg tggggcaga ggtgcaat caggcattt caccgcgaact ggcgcagct	1800
ttagagcgtc gttataagct caatgaagcc atgaacgttt acaacgaaaa ttttcagcaa	1860
ctgaaagttc gagttgagca tcaactggat ccgcggaaact ggggcaacag cccgaagctg	1920
cgctttactc gctttatcac caacgtccag gccgcattt acgtaaatga caaagagcta	1980
cttcacatcc gctccaacgt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc	2040
ttctacgccc cccggaaaga taaatggaaa cgtggcgaag gtggagtaac aaaattggtc	2100
cagcgattcg tcgattaccc agagcgcata cttagacgc acaatctgt ggtcttctg	2160
tgattcgtt accattttt caaatggtca ctgcacccgc ggtcaccatt aatcaaagg	2220
aatgtacgtg tatggcaat caacaagtgc tttcgataac cggtg	2265

<210> 32

<211> 449

<212> PRT

<213> Artificial Sequence

<220>

<223> A polypeptide encoded by SEQ ID NO:27.

<400> 32

Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln	
1 5 10 15	
Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys	
20 25 30	
Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile	
35 40 45	
Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val	
50 55 60	
Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val	
65 70 75 80	
Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala	
85 90 95	
Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly	
100 105 110	
Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu	
115 120 125	
Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe	
130 135 140	
His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met	
145 150 155 160	
Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His	
165 170 175	
Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys	
180 185 190	
Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His	
195 200 205	
Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe	
210 215 220	
Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu	
225 230 235 240	
Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly	
245 250 255	
Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe	
260 265 270	
Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg	
275 280 285	
Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn	
290 295 300	

Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Gly
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 33
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:28.

<400> 33
 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255

Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Ala
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asp Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 34
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:29.

<400> 34
 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205

Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Thr
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 35
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:30.

<400> 35
 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160

Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Leu
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 36
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:31.

<400> 36
 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45
 Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110

Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Ile
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 37
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> A mutagenic oligonucleotide.

<400> 37
 ttcagcgaac ggtcgccct gc

<210> 38
 <211> 27
 <212> DNA
 <213> Artificial Sequence

<220>

<223> A tetracycline repair oligonucleotide.

<400> 38

gccgggcctc ttgcggata tcgtcca

27

<210> 39

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> An ampicillin knockout oligonucleotide.

<400> 39

gttgccattg ctgcaggcat cgtggtg

27

<210> 40

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> A mutagenic oligonucleotide.

<400> 40

gaggcacccg cggaagcttt tgtgggagat gca

33

<210> 41

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> A mutagenic oligonucleotide.

<400> 41

gcacccgcgg aacaatttgtt gggagatgca

30

<210> 42

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> A mutagenic oligonucleotide.

<400> 42

ccgcggaaag ctttgtggga g

21

<210> 43

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> A mutagenic oligonucleotide.

<400> 43

ccgcggaaaa gcttgtggga gatg

24

<210> 44

<211> 23

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> A mutagenic oligonucleotide.		
<400> 44		
cgcggaaaac gttgtggag atg		23
<210> 45		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> A mutagenic oligonucleotide.		
<400> 45		
atattcagg tgcgtatcg cag		23
<210> 46		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> A mutagenic oligonucleotide.		
<400> 46		
ggacggatat tcagggctcc atagcgcaga ct tg		34
<210> 47		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> A mutagenic oligonucleotide.		
<400> 47		
gacggatatt caggtAACCA tagcgcagac ttg		33
<210> 48		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> A mutagenic oligonucleotide.		
<400> 48		
ggtgtttca aagtgcgaa cccgatcgac		30
<210> 49		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> A mutagenic oligonucleotide.		
<400> 49		

ctgttcagcg aaacttcggg cctgct	26
<210> 50	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 50	
ctgttcagcg aaggttcggg cctgct	26
<210> 51	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 51	
ctgttcagcg aagtttcggg cctgct	26
<210> 52	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 52	
ttcagcgaac gctcgggcct gc	22
<210> 53	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 53	
ggcctgctgg cttcgcggaa agcgacgaca	30
<210> 54	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 54	
gaaagcgcacg ccaatgacaa t	21
<210> 55	
<211> 30	
<212> DNA	
<213> Artificial Sequence	

<220>
 <223> A mutagenic oligonucleotide.

 <400> 55
 acgacaatga caattggaa acagcttcgc 30

 <210> 56
 <211> 2265
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> A sequence encoding an NDO mutant.

 <400> 56
 gagggtagag aaatcgaatg ccccttgcac caaggcggt ttgacgttg cacaggcaaa 60
 gcccgtgcg caccgtgac acagaacatc aaaacatc cagtcaagat tgagaacctg 120
 cgcgtaatga ttgatttgcg ctaagaattt taacaggagg caccggc cctagagcgt 180
 aatcaccccccc attccatctt ttttaggtga aaacatgaat tacaataata aaatcttgg 240
 aagtgaatct ggtctgagcc aaaagcacct gattcatggc gatgaagaac ttttccaaca 300
 tgaactgaaa accatTTTG cgccgaactg gcttttctc actcatgata gcctgattcc 360
 tgccccccggc gactatgtt ccgcggaaat ggggattgac gaggtcatcg tctccggca 420
 gaacgacggg tcgattcgtg ctTTTCTGAA cgTTTGGCGG catcgtggca agacgctgg 480
 gagcgtggaa gccggcaatg ccaaaggTTTGTGTTGAGC tatcacggct ggggcttcgg 540
 ctccaaacgggtaaactgcaga gcttccatt taaaaaagat ctgtacggcg agtcgctcaa 600
 taaaaaATGT ctggggTTGA aagaagtgcg tcgcgtggag agttccatg gcttcatcta 660
 cgggtgcTTTTC gaccaggagg cccctccctt tatgactat ctgggtgacg ctgcgggtt 720
 cctggAACCT atgttcaagc attccggggg tttagaactg gtccgtcctc caggcaaggt 780
 tgtgtatcaag gccaacttggaa aggccccccg ggaaaacttt gtgggagatg cataccacgt 840
 ggggtggacg caccgtctt cgcttcgtc gggggagtct atttctcgat cgctcgctgg 900
 caatgcggcg ctaccacctg aaggcgcagg ctgcggaaatg acctccaaat acggcagcgg 960
 catgggtgtt ttgtgggacg gatattcagg tgtgcatacg gcagacttgg ttccggaaatt 1020
 gatggcatttgcg gggccgtctt gtttctggaa aaggcgcacg aatgacaata tggaaacaggc 1080
 tcggatttat cgcagccacc tcaactgcac cgTTTCCCG aacaacagca tgctgacctg 1140
 ctcgggttt ttcaaaagtat ggaacccgat cgacgcaaaac accaccggagg tctggaccta 1200
 cgccattgtc gaaaaagaca tgcctgagga tctcaagcgc cgcttggccg actctgttca 1260
 gcaacgtgg gggccgtctt gtttctggaa aaggcgcacg aatgacaata tggaaacaggc 1320
 ttgcggaaatc gcaaaatc atcaatcaag agatagtgat ctgcTTTCAA accttggTTT 1380
 cgggtggacg gtatacggcg acgcggctta tccaggcgat gtcggcaaat cggcgatcgg 1440
 cgagaccagt tatcggtt tctaccgggc ttaccaggca cacgtcagca gctccaactg 1500
 ggctgagttc gagcatgcct ctatgtactg gcatactgaa cttacgaaga ctactgtatcg 1560
 ctaacagacg agtcgaccat gatgatcaat attcaagaag acaagctgg ttccggccac 1620
 gacGCCGAAG agattttcg tttttcaat tgccacgact ctgcTTTCA acaagaagcc 1680
 actacgctgc tgacccagga agcgcattt gttggacattt aggcttaccg tgcttggta 1740
 gagcaactgcg tggggtcaga ggtgcataat caggtcattt cacgcgaact ggcgcagct 1800
 tcagagcgatc gttataagct caatgaaggcc atgaacgttt acaacgaaaa ttccggcaaa 1860
 ctgaaagtgcg ggttgcgatc tcaactggat ccgcggaaact ggggcaacag cccgaagctg 1920
 cgctttactc gctttatcac caacgtccag gccgcaatgg acgtaaatga caaagagcta 1980
 cttcacatcc gctccaaacgt cattctgcac cgggcacgac gtggcaatca ggtcgatgtc 2040
 ttctacgccc cccggaaataaaatggaaa cgtggcgaag gtggagtgacg aaaattggtc 2100
 cagcgattcg tcgattaccc agagcgcata cttcagacgc acaatctgtat ggtctttctg 2160
 tgattcgtg accatTTTA caaatggtc caatggcgc ggtcaccatt aatcaaagg 2220
 aatgtacgtg tatggcaat caacaagtgcg tttcgataac cgggt 2265

<210> 57
 <211> 2265
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> A sequence encoding an NDO mutant.

<400> 57

gagggttagag	aaatcgaatg	ccccttgc	caaggtcg	ttgacgttg	cacaggcaa	60
gccctgtgc	caccctgtac	acagaacatc	aaaacatatc	cagtcaagat	tgagaacctg	120
cgcgtaatga	ttgatttgag	ctaagaattt	taacaggagg	caccccgccc	cctagagcgt	180
aatcaccccc	attccatctt	tttaggtga	aaacatgaat	tacaataata	aaatcttgg	240
aagtgaatct	ggtctgagcc	aaaagcacct	gattcatggc	gatgaagaac	tttccaaca	300
tgaactgaaa	accattttg	cgcggaaactg	gcttttctc	actcatgata	gcctgattcc	360
tgccccccggc	gactatgtt	ccgcaaaaat	ggggattgac	gaggtcatcg	tctccggca	420
gaacgacggt	tcgattcgt	cttttctgaa	cgttgcgg	catcgtggca	agacgctgg	480
gagcgtggaa	gccggcaatg	ccaaaggtt	tgttgcgc	tatcacgct	ggggcttcgg	540
ctccaacgg	gaactgcaga	gcgttccatt	tgaaaaagat	ctgtacgac	agtcgctcaa	600
taaaaaatgt	ctgggggtt	aagaagtgc	tcgcgtgg	agttccatg	gcttcatcta	660
cggttgc	gaccaggagg	cccctccct	tatgactat	ctgggtgac	ctgcttggta	720
cctggAACCT	atgttcaagc	attccggcgg	tttagaactg	gtcggcctc	caggcaaggt	780
tgtgatcaag	gc当地actg	aggcacc	ggaaaactt	gtgggagatg	cataaccacgt	840
gggttggac	cacgcgtctt	cgcttcg	ggggagatct	atcttctcg	cgctcgctgg	900
caatgcggc	ctaccac	aaggcgcagg	cttgc	ac	acggcagcgg	960
catgggtgt	ttgtggac	gatattcagg	tgtgcata	gcagacttgg	ttccggatt	1020
gatggcattc	ggaggcgc	agcaggaag	gctgacaaa	gaaattggcg	atgttgcgc	1080
tcggatttat	cgcagccacc	tcaactgcac	cg	acaacagca	tgctgac	1140
ctcgggtgtt	ttcaaagtat	ggaacccgat	cgacgca	accac	tctggac	1200
cgccattgtc	aaaaagaca	tgccctgag	tctcaagcgc	cgcttggcc	actctgttca	1260
gc当地acggc	gggcctgct	gcttctgg	aagcgc	aatgacaata	tggaaacagc	1320
ttcgcaaaac	ggcaagaaat	atcaatcaag	agatagt	ctgcttca	accttgg	1380
cggtgaggac	gtatacggc	acgcgg	tccaggc	gtcgg	cg	1440
cgagaccagt	tatgtgg	tctaccggc	ttaccaggc	cacgtcag	gctccaact	1500
ggctgagttc	gagcatgc	ctagactt	gcatactg	cttacgaa	ctactgat	1560
ctaacagac	agtcgaccat	gatgatcaat	attcaagaag	acaagctgt	ttccgccc	1620
gacgccc	agattttcg	tttcttcaat	tgccacgact	ctgcttgc	acaagaagcc	1680
actacgct	tgacc	cagg	agcgcattt	ttggacattc	aggcttacc	1740
gagca	ctgggtc	caga	ggtgcaat	caggcattt	cacgcga	1800
tcagagcgt	gttataag	ct	aatgaa	cttacgaa	ctactgat	1860
ctgaaagttc	gagttgag	caact	ggat	ccgcaaaact	ggggcaac	1920
cgttta	tac	caacgtcc	ggcc	acgtaaatg	caaagagct	1980
ttcacatcc	gttccaa	cattctgc	cg	gcaat	ggtcgat	2040
ttctacg	cccg	ggaa	taatgg	ctg	ggactac	2100
cagcgat	tcgatt	accc	agagcgc	cttca	acaatctg	2160
tgattc	accattt	caa	atgg	ctg	caccatt	2220
aatgtac	tgat	ggca	aa	caac	aaagg	2265

<210> 58

<211> 449

<212> PRT

<213> Artificial Sequence

<220>

<223> A polypeptide encoded by SEQ ID NO:56.

<400> 58

Met	Asn	Tyr	Asn	Asn	Lys	Ile	Leu	Val	Ser	Glu	Ser	Gly	Leu	Ser	Gln
1						5			10				15		
Lys	His	Leu	Ile	His	Gly	Asp	Glu	Glu	Leu	Phe	Gln	His	Glu	Leu	Lys
						20			25			30			
Thr	Ile	Phe	Ala	Arg	Asn	Trp	Leu	Phe	Leu	Thr	His	Asp	Ser	Leu	Ile
						35			40			45			
Pro	Ala	Pro	Gly	Asp	Tyr	Val	Thr	Ala	Lys	Met	Gly	Ile	Asp	Glu	Val
						50			55			60			
Ile	Val	Ser	Arg	Gln	Asn	Asp	Gly	Ser	Ile	Arg	Ala	Phe	Leu	Asn	Val
						65			70			75			80
Cys	Arg	His	Arg	Gly	Lys	Thr	Leu	Val	Ser	Val	Glu	Ala	Gly	Asn	Ala
						85			90			95			

Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Trp
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 59
 <211> 449
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> A polypeptide encoded by SEQ ID NO:57.

<400> 59
 Met Asn Tyr Asn Asn Lys Ile Leu Val Ser Glu Ser Gly Leu Ser Gln
 1 5 10 15
 Lys His Leu Ile His Gly Asp Glu Glu Leu Phe Gln His Glu Leu Lys
 20 25 30
 Thr Ile Phe Ala Arg Asn Trp Leu Phe Leu Thr His Asp Ser Leu Ile
 35 40 45

Pro Ala Pro Gly Asp Tyr Val Thr Ala Lys Met Gly Ile Asp Glu Val
 50 55 60
 Ile Val Ser Arg Gln Asn Asp Gly Ser Ile Arg Ala Phe Leu Asn Val
 65 70 75 80
 Cys Arg His Arg Gly Lys Thr Leu Val Ser Val Glu Ala Gly Asn Ala
 85 90 95
 Lys Gly Phe Val Cys Ser Tyr His Gly Trp Gly Phe Gly Ser Asn Gly
 100 105 110
 Glu Leu Gln Ser Val Pro Phe Glu Lys Asp Leu Tyr Gly Glu Ser Leu
 115 120 125
 Asn Lys Lys Cys Leu Gly Leu Lys Glu Val Ala Arg Val Glu Ser Phe
 130 135 140
 His Gly Phe Ile Tyr Gly Cys Phe Asp Gln Glu Ala Pro Pro Leu Met
 145 150 155 160
 Asp Tyr Leu Gly Asp Ala Ala Trp Tyr Leu Glu Pro Met Phe Lys His
 165 170 175
 Ser Gly Gly Leu Glu Leu Val Gly Pro Pro Gly Lys Val Val Ile Lys
 180 185 190
 Ala Asn Trp Lys Ala Pro Ala Glu Asn Phe Val Gly Asp Ala Tyr His
 195 200 205
 Val Gly Trp Thr His Ala Ser Ser Leu Arg Ser Gly Glu Ser Ile Phe
 210 215 220
 Ser Ser Leu Ala Gly Asn Ala Ala Leu Pro Pro Glu Gly Ala Gly Leu
 225 230 235 240
 Gln Met Thr Ser Lys Tyr Gly Ser Gly Met Gly Val Leu Trp Asp Gly
 245 250 255
 Tyr Ser Gly Val His Ser Ala Asp Leu Val Pro Glu Leu Met Ala Phe
 260 265 270
 Gly Gly Ala Lys Gln Glu Arg Leu Asn Lys Glu Ile Gly Asp Val Arg
 275 280 285
 Ala Arg Ile Tyr Arg Ser His Leu Asn Cys Thr Val Phe Pro Asn Asn
 290 295 300
 Ser Met Leu Thr Cys Ser Gly Val Phe Lys Val Trp Asn Pro Ile Asp
 305 310 315 320
 Ala Asn Thr Thr Glu Val Trp Thr Tyr Ala Ile Val Glu Lys Asp Met
 325 330 335
 Pro Glu Asp Leu Lys Arg Arg Leu Ala Asp Ser Val Gln Arg Thr Tyr
 340 345 350
 Gly Pro Ala Gly Phe Trp Glu Ser Asp Asp Asn Asn Met Glu Thr
 355 360 365
 Ala Ser Gln Asn Gly Lys Lys Tyr Gln Ser Arg Asp Ser Asp Leu Leu
 370 375 380
 Ser Asn Leu Gly Phe Gly Glu Asp Val Tyr Gly Asp Ala Val Tyr Pro
 385 390 395 400
 Gly Val Val Gly Lys Ser Ala Ile Gly Glu Thr Ser Tyr Arg Gly Phe
 405 410 415
 Tyr Arg Ala Tyr Gln Ala His Val Ser Ser Ser Asn Trp Ala Glu Phe
 420 425 430
 Glu His Ala Ser Ser Thr Trp His Thr Glu Leu Thr Lys Thr Thr Asp
 435 440 445
 Arg

<210> 60
 <211> 26
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> A mutagenic oligonucleotide.

<400> 60

gttcagcgaa cgggcgggccc tgctgg	26
<210> 61	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 61	
gttcagcgaa cggccgggccc tgctgg	26
<210> 62	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 62	
gttcagcgaa cgaccgggccc tgctgg	26
<210> 63	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 63	
gttcagcgaa cgatcgggccc tgctgg	26
<210> 64	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 64	
gttcagcgaa cgtggggggccc tgctgg	26
<210> 65	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> A mutagenic oligonucleotide.	
<400> 65	
ttcagcgaac gtacgggcct gctgg	25