ECON10005 Quantitative Methods 1

Tutorial in Week 4

Zheng Fan

The University of Melbourne

Introduction

Zheng Fan

- Ph.D student in Economics at Unimelb. Research interest in Bayesian Econometrics
- Personal website: zhengfan.site for some details

Don't be shy if you need help

- Discuss on Ed Discussion Board
- Attend consultation sessions: see Canvas for time and location
- Consult Stop 1, in case of special considerations,
- Contact QM-1@unimelb.edu.au for admin issues
- Send me an email: fan.z@unimelb.edu.au

Section: Introduction

Part A

- 1 Discuss the solutions for pre-tutorial Part A questions.
- ② What is the relationship between E(M) and E(X1), E(X2)?

		F	irst R	oll (2	(1)	
Second Roll (X_2)	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

Table 1: Multiplication results of two dice rolls $(X_1 \text{ and } X_2)$.

М	1	2	3	4	5	6	8	9	10	12	15	16	18	20	24	25	30	36
P(M)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	3 36	$\frac{2}{36}$	4 36	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	4 36	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Table 2: Probability distribution of M.

By the definition of expect value

$$E(M) = 1 \cdot \frac{1}{36} + 2 \cdot \frac{2}{36} + 3 \cdot \frac{2}{36} + \dots + 36 \cdot \frac{1}{36} \approx 12.25$$

М	1	2	3	4	5	6	8	9	10	12	15	16	18	20	24	25	30	36
P(M)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	<u>4</u> 36	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{4}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Table 3: Probability distribution of M.

Following the formula

$$Var(M) = E[(M - E(M))^{2}] = \sum_{i=1}^{18} P(M_{i}) \cdot (M_{i} - 12.25)^{2}$$

$$= \frac{1}{36} \cdot (1 - 12.25)^{2} + \frac{2}{36} \cdot (2 - 12.25)^{2}$$

$$+ \frac{2}{36} \cdot (3 - 12.25)^{2} + \dots + \frac{1}{36} \cdot (36 - 12.25)^{2}$$

$$\approx 79.965$$

$X_1 \mid 1$	2	3	4	5	6	$X_2 \mid 1 2 3 4 5$	6
$P(X_1) \mid \frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$P(X_2) \mid \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6}$	$\frac{1}{6}$

Table 4: Probability distribution of X_1 and X_2 respectively.

By the definition of expect value

$$E(X_1) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

and variance

$$Var(X_1) = E[(M - E(X_1))^2] = \frac{1}{6} \cdot (1 - E(X_1))^2 + \frac{1}{6} \cdot (2 - E(X_1))^2 + \frac{1}{6} \cdot (3 - E(X_1))^2 + \frac{1}{6} \cdot (4 - E(X_1))^2 + \frac{1}{6} \cdot (5 - E(X_1))^2 + \frac{1}{6} \cdot (6 - E(X_1))^2$$

$$\approx 2.917$$

By the independence of X_1 and X_2 , we know:

$$E(M) = E(X_1) \times E(X_2) = 3.5 \times 3.5 = 12.25$$

Part B

- Ompare the mean and variance properties of M, G and P.
- ② Define P more generally as P = wM + (1 w)G, where w represents any weight between 0 and 1. Calculate E(P) and var(P) for $w = 0, 0.1, 0.2, \dots, 0.9, 1$. Which of these portfolios has the lowest risk?

Part B

From excel, we have

	М	G
mean	0.1328	0.1241
sd	6.4136	2.3577
var	41.1345	5.5588
Cov	2.5508	

Given P = wM + (1 - w)G, it is easy to calculate E(P) and Var(P).

$$E(P) = E(wM + (1 - w)G) = wE(M) + (1 - w)E(G)$$

$$= 0.1328 \cdot w + 0.1241 \cdot (1 - w)$$

$$Var(P) = Var(wM + (1 - w)G)$$

$$= w^{2}Var(M) + (1 - w)^{2}Var(G) + 2w(1 - w)Cov(M, G)$$

$$= w^{2} \cdot 41.1345 + (1 - w)^{2} \cdot 5.5588 + 2w(1 - w) \cdot 2.5508$$

Part B

Substituting w from 0 to 1, we can have

W	E(P)	Var(P)
0	0.1241	5.5588
0.1	0.1249	5.3731
0.2	0.1258	6.0193
0.3	0.1267	7.4972
0.4	0.1276	9.8071
0.5	0.1284	12.9487
0.6	0.1293	16.9222
0.7	0.1302	21.7275
0.8	0.1311	27.3647
0.9	0.1319	33.8337
1	0.1328	41.1345

Group report

- Discuss the progress of the assignment
- Finalize the contract if not yet done last week
- Q&A

Section: Assignment 11

Any final questions?

Thanks for your attention!

Let me know if you have any questions

Section: End