For this exam, consider the following schema and instances of the relations. Feel free to remove this page from the exam.

This a product database. It is composed of three relations: *Parts*, *Suppliers* and *Catalog* (indicating what Parts are offer by which Suppliers. Empty values represent NULL.

Parts(pid: integer, pname character(40), color character(20));

Primary key: pid.

pid	pname	color
6	Anti-Gravity Turbine Generator	Cyan
7	Anti-Gravity Turbine Generator	Magenta
8	Fire Hydrant Cap	Red
9	7 Segment Display	Green
10	SQL queries	Green

Suppliers(sid: character(10), sname: character(40), address: char(50));

Primary key: sid.

sid	sname	address
acme	Acme Widget Suppliers	1 Grub St., Potemkin Village, IL 61801
bigRed	Big Red Tool and Die	4 My Way, Bermuda Shorts, OR 90305
per	Perfunctory Parts	99999 Short Pier, Terra Del Fuego, TX 41299
alien	Alien Aircaft Inc.	2 Groom Lake, Rachel, NV 51902

Catalog(sid character(10), pid integer, cost real);

Primary key: (sid,pid).

sid	pid	cost
acme	8	11.7
bigRed	8	7.95
per	8	12.5
per	9	1
acme	10	10.5
acme	9	

1. Writing queries (SQL and Relation Algebra

For each of the following questions, provide a relational algebra expression that solves it, and its corresponding SQL statement. You can refer to Parts as P, Suppliers are S, and Catalog as C.

(a) [4] Find the **pid** of all the parts that are color *red*.

(b) [4] Find **sid** of suppliers who supply at least one *red* and at least one *blue* part.

(c) [4] Find the **address** of the suppliers who supply the part with **pname** Fire Hydrant Cap.

(d) [4] Find the **pid** of parts in the catalog that that do not have a price (price is not null).

(e) [4] Find out how many tuples in the catalog have a price.

(f)	[4] Find out the number of parts that are in the relations Parts (how many tuples are in the relation Parts).
(g)	[4] For each part in the Parts relation, list its pid , and the number of suppliers that sell that part.
(h)	[4] For each part in the Catalog relation, list its pid , its most expensive price, and the sid of the supplier which sells it at that price.
(i)	[4] List the pid of parts that are sold by exactly 2 suppliers.
(j)	[4] List the <i>pname</i> of the parts that are not in the catalog relation.

2. Normalization

- (a) [5] Consider a relation R(A, B, C, D) with the following functional dependencies (FDs): $A \to B, BC \to D$. Which of the following FDs can be derived from them? Show all your work.
 - \bullet $AC \rightarrow D$
 - \bullet $B \to D$

(b) [5] Given the relation R(A,B,C) and the set of functional dependencies $F = \{AB \to C, B \to A, C \to B\}$. Find all the keys of this relation. Show all your work.

(c) [5] Consider the relation R(A,B,C,D), with the following functional dependencies: $AB \to D, B \to C, C \to B$. Its candidate keys are AB and AC. Is R in BCNF? Is R in 3NF? Show all your work.

(d) [5] Let relation R = (A, B, C), and assume the following set of FDs: $A \to B, B \to C$, $C \to A$. Compute the projection of its set of FDS into the subrelation $R_1 = (A, B)$. Show all your work.

(e) [5] Consider the relation R(A,B,C,D,E) with set of functional dependencies $F=\{AB\to C,AB\to E,E\to A,E\to B,C\to D\}$. F is minimal, and the keys of the relation are AB, and E. This table is not 3NF. Decompose it, using synthesis, into a set of relations that are loss-less join and dependency preserving (you do not have to demonstrate that the resulting relations satisfy these last two properties). Show all your work.

End of examination Total pages: 6 Total marks: 65