https://goo.gl/tYmyZL

KYOTO UNIVERSITY

統計的モデリング基礎® ~因果関係・ランダム化試験~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

今回の話題:

因果推論

- ■相関関係と因果関係は異なるという話:相関⊇因果
- ■因果関係の定量化
- ランダム化試験(RCT): 因果関係を導く方法

因果関係

Kyoto University

相関と因果:

これは因果関係?

- ■警察官を増やすと、犯罪率が上がる?
 - 回帰モデル: 犯罪率(%) = 3×警察官の人数(千人)
 - 警察官を1,000人増やすと、犯罪率が3%上がるのか?
- 握力を上げると、学力が上がる?
 - テストの点 = 3 × 握力
 - 握力を1kgw増やせば3点増える?

因果関係の定量化

Kyoto University

因果:

因果 = 平均介入効果

- ■全く同じ状況において「介入を受けた場合(介入群)」と「介入を 受けなかった場合(対照群)」の結果の違いが介入の因果効果
- iさんが介入を受けた場合の結果変数 Y_i^T と、受けなかった場合の結果変数 Y_i^C の差 $Y_i^T Y_i^C$ がiさんへの介入による効果
- 母集団に対する平均的な介入効果が因果関係の強さになる:

$$E[Y^{\mathrm{T}} - Y^{\mathrm{C}}]$$

これを推定するのが目的

※ 量的変数の場合は、介入Xと結果Yに線形の関係を仮定して $E[Y \mid X] - E[Y \mid X = 0] = \beta X$ であるときの β みたいな感じ

因果関係の推定:

平均介入効果は直接計測できない

- 我々の知りたい因果関係の強さ: $E[Y^{\mathrm{T}}-Y^{\mathrm{C}}]$
- その推定量は $\frac{1}{n}\sum_i (Y_i^T Y_i^C)$ で推定できそう
 - これは直接計測できない
 - 介入の有無はどちらか一方のみ実現するので、 $Y_i^T と Y_i^C$ のいずれか一方のみ観測可能
 - ◆観測されない「反実仮想 I
- $E[Y^{T} Y^{C}] = E[Y^{T}] E[Y^{C}]$ なので、介入群と対照群からそれぞれ $E[Y^{T}]$ と $E[Y^{C}]$ を推定すればよいのでは? \rightarrow ダメ 🝶

11 Kyoto University

介入によるバイアス:

計測は介入の判断に影響をうける

- ■なんらかの基準で介入するかどうか(X)が決まるとする
 - 介入する: X = T
 - 介入しない: X = C
- 我々が推定できるのは、母集団中で
 - 介入する人に介入した結果
 - 介入しない人に介入しなかった結果

の平均的な差:

$$E[Y^{\mathrm{T}} \mid X = \mathrm{T}] - E[Y^{\mathrm{C}} \mid X = \mathrm{C}] \quad (\neq E[Y^{\mathrm{T}}] - E[Y^{\mathrm{C}}])$$

■ この値が正だからといって、因果関係があるとは限らない

自己選抜バイアス:

自己選抜バイアスがなければ介入群への介入効果は測れる

- $E[Y^{\mathrm{T}} \mid X = \mathrm{T}] E[Y^{\mathrm{C}} \mid X = \mathrm{C}] > 0$ は因果関係を意味しない
 - 介入した人の結果が大きかったとしても、本当は介入しなくても 結果は大きくなっていたのかもしれない
 - ・例:意識高い系は留学もするし就職も強い(とか)
- 自己選抜バイアス: 結果が大きくなりそうな人を選んでいる

$$=E[Y^{T}-Y^{C}|X=T]+E[Y^{C}|X=T]-E[Y^{C}|X=C]$$
 介入群への介入効果 自己選抜バイアス

■ 自己選抜バイアスが0なら、介入群への介入効果が正しく測れる

L3 KYOTO UNIVERSITY

ランダム化試験による因果関係の計測

因果関係を導くためには:

原因変数と交絡因子の因果を切る

- ■真の因果関係を導くには、交絡因子の影響を切る必要がある
 - データを増やしてもバイアスは消えないので意味なし
- 例:ある最新の治療法を実施したほうが、死亡率が高い
 - ◆因果関係:治療法が死亡率を上げているのか?
 - ◆交絡:そもそも難病患者にのみ治療法を適用しているのか?(難病患者かどうかが交絡因子)
 - の2つを区別する必要がある

5 Kyoto University

ランダム化試験 (RCT):

介入を交絡因子と独立にすることで交絡因子の影響を切る

- 因果をただしく測るには:
 - 原因変数の割り付けを交絡因子と独立にする
 - または、交絡因子を固定する
 - 原因変数と結果変数以外の変数の分布を、介入群と対照群で同一にする
- ランダム化試験(Randomized Controlled Trial; RCT):
 - 介入群と対照群をランダムに割りつける
 - ◆交絡因子と独立にする

16

ランダム化試験(RCT)のやり方: とにかくランダムに割り付ける

- ランダム化試験(Randomized Controlled Trial; RCT):
 - 対象をランダムに2つのグループに分ける
 - ・片方のグループを介入群に、もう一方のグループを対照群として 、前者にのみ介入を行う
 - それぞれの群の結果を比較する。
- A/BテストはRCT

Source: http://kylerush.net/blog/optimization-at-the-obama-campaign-ab-testing/

17

KYOTO UNIVERSITY

ランダム化の効果: 平均介入効果が正しく計測可能

■ ランダム化の効果:因果関係が測れる!

$$E[Y^{\mathrm{T}} \mid X = \mathrm{T}] - E[Y^{\mathrm{C}} \mid X = \mathrm{C}] = E[Y^{\mathrm{T}} - Y^{\mathrm{C}}]$$

介入群・対照群それぞれの結果の差から…

平均介入効果が測れる

- XとYが独立ならE[Y | X] = E[Y]
- ■観測されない変数含め、すべての他の変数と独立になる
 - 介入群と対照群で、介入の有無に影響をうけないすべての変数 の分布が両群で等しくなる

18

RCTの限界:

現実には実行困難な場合あり

- RCTをいつでもできるわけではない
 - そもそもできない (倫理的にできないなど)
 - できたとしても完全にランダムな割り付けを実行できない
 - ◆案内を出しても実行しないなど
- 準実験:すでにあるデータから因果関係を導きたい
 - 回帰不連続デザイン
 - 層別解析/回帰モデル
 - マッチング/傾向スコア

• . . .