Билет 5

1. Метод разделения переменных для уравнения колебаний струны в одномерном случае

Рассмотрим задачу:

$$\begin{cases} u_{tt} = a^2 u_{xx}, & t > 0; \quad 0 < x < l \\ u(0,t) = 0, \ u(l,t) = 0, & t \ge 0 \\ u(x,0) = \varphi(x), \ u_t(x,0) = \psi(x), & 0 \le x \le l \end{cases}$$
 (*)

▶ 1. Найдем решения уравнения колебаний (частные) вида X(x)T(t). Подставляем в уравнение:

 $X(x)T''(t) = a^2X''(x)T(t) \mid : a^2T(t)X(x)$

$$X(x)T''(t) = a^2X''(x)T(t) \mid : a^2T(t)X(x)$$
 (2) $\frac{T''(t)}{T(t)a^2} = \frac{X''(x)}{X(x)} = -\lambda$ (для нек. константы λ) Разрешаем отнсительно $X(x): X''(x) + \lambda X(x) = 0$

2. Дописываем к этому уравнению кравевые условия из (*): $\begin{cases} X''(x) + \lambda X(x) = 0 \\ X(0) = 0, X(l) = 0 \end{cases}$

Это задача Штурма-Лиувилля. Ее спектр: $\lambda_k=(\frac{\pi k}{l})^2,~X_k(x)=\sin(\frac{\pi kx}{l}),~k=1,2,3,...$

3. Разрешаем пропорцию (2) отн-но T(t) и подставляем $\lambda = \lambda_k$: $T_k''(t) + a^2 \lambda_k T_k(t) = 0$

Общее решение этого уравнения: $T_k(t) = A_k cos(a\frac{\pi kt}{l}) + B_k sin(a\frac{\pi kt}{l})$

4. Принцип суперпозиции: общее решение ур-я колеб. представляется в виде ∞ лин. комб. его элементарных решений: $u(x,t) = \sum_{k=1}^{\infty} [A_k cos(a\frac{\pi kt}{l}) + B_k sin(a\frac{\pi kt}{l})] sin(\frac{\pi kx}{l})$ A_k, B_k - ? Найдем их из нач. условий. Разложим ф-ии $\varphi(x)$ и $\psi(x)$ в ряд Фурье на [0,l] по системе функций

ий:
$$u(x,t) = \sum_{k=1}^{\infty} [A_k cos(a\frac{\pi kt}{l}) + B_k sin(a\frac{\pi kt}{l})] sin(\frac{\pi kx}{l})$$

 $\{sin(\frac{\pi kx}{l})\}_{k=1}^{\infty}$

$$\varphi(x) = \sum_{k=1}^{\infty} \varphi_k sin(\frac{\pi kx}{l})$$
, где $\varphi_k = \frac{2}{l} \int\limits_0^l \varphi(x) sin(\frac{\pi kx}{l}) dx \; \psi(x) = \sum_{k=1}^{\infty} \psi_k sin(\frac{\pi kx}{l})$, где $\psi_k = \frac{2}{l} \int\limits_0^l \psi(x) sin(\frac{\pi kx}{l}) dx$

$$u(x,0) = \sum_{k=1}^{\infty} A_k \sin(\frac{\pi kx}{l}) = \varphi(x) = \sum_{k=1}^{\infty} \varphi_k \sin(\frac{\pi kx}{l}) \Rightarrow A_k = \varphi_k, \forall k$$

$$u_t(x,0) = \sum_{k=1}^{\infty} B_k \frac{\pi k a}{l} sin(\frac{\pi k x}{l}) = \psi(x) = \sum_{k=1}^{\infty} \psi_k sin(\frac{\pi k x}{l}) \Rightarrow B_k = \frac{l}{\pi k a} \psi_k, \forall k$$

Тем самым, след. функциональный ряд является "формальным" решением задачи (*), являющийся суммой стоячих

волн:
$$u(x,t) = \sum_{k=1}^{\infty} \left[\varphi_k cos(a\frac{\pi kt}{l}) + \frac{l}{\pi ka} \psi_k sin(a\frac{\pi kt}{l}) \right] sin(\frac{\pi kx}{l}) \blacktriangleleft$$

Рассмотрим также:
$$\begin{cases} u_{tt} = a^2 u_{xx} + f(x,t), & t>0; \quad 0< x < l \\ u(0,t) = 0, \quad u(l,t) = 0, \quad t \geq 0 \\ u(x,0) = 0, \quad u_t(x,0) = 0, \quad 0 \leq x \leq l \end{cases}$$

 $\mathbf{u}(x,0) = 0, \ u_t(x,0) = 0, \ \ 0 \le x \le \iota$ Будем искать решение в виде: $u(x,t) = \sum_{n=1}^{\infty} T_n(t) sin(\frac{\pi n x}{l})$ (1). Чтобы найти $T_n(t)$, подставим предполагаемый

вид решения (1) в первое уравнение системы (**), разложив f(x,t) в ряд Фурье по синусам:

$$\sum_{n=1}^{\infty} T_n''(t) sin(\frac{\pi nx}{l}) = -a^2 \sum_{n=1}^{\infty} T_n(t) (\frac{\pi n}{l})^2 sin(\frac{\pi nx}{l}) + \sum_{n=1}^{\infty} f_n(t) sin(\frac{\pi nx}{l}),$$
 где $f_n(t) = \frac{2}{l} \int\limits_0^l f(\xi,t) sin(\frac{\pi n\xi}{l}) d\xi$ Отсюда и из начальных условий системы (**) при каждом $n=1,2,3,...$ получаем для нахождения $T_n(t)$ задачу

Коши:
$$\begin{cases} T_n''(t) + a^2(\frac{\pi n}{l})^2 T_n(t) = f_n(t), & t \ge 0 \\ T_n(0) = \varphi_n, T_n'(0) = \psi_n \end{cases}$$

Замечание: [Все аналогично для граничных условий 2-рода и смешанных условий]

Решение
$$u(x,t)$$
 задачи:
$$\begin{cases} u_{tt} = a^2 u_{xx} + f(x,t), & t>0; \quad 0< x < l \\ u(0,t) = \mu_1(t), \ u(l,t) = \mu_2(t), & t\geq 0 \\ u(x,0) = \varphi(x), \ u_t(x,0) = \psi(x), & 0\leq x \leq l \end{cases}$$

можно найти, разбив ее на рассмотренные выше задачи: $u(x,t) = u_1(x,t) + u_2(x,t)$,

где $u_1(x,t)$ без f(x,t) с нулевыми граничными условиями, а $u_2(x,t)$ с f(x,t) и нулевыми граничными и начальными условиями.

Замечание: [в первом случае колебания называются свободными, во втором вынужденными]

2. Формула для логарифмического потенциала двойного слоя

$$w(M) = \int_{S} \frac{\cos\varphi(P,M)}{r_{PM}} \nu(P) dS_{P};$$

arphi(P,M) - угол между нормалью в точке и P и вектором \overrightarrow{PM}

 $\nu(P)$ - плотность в точке P

 r_{PM} - расстояние между точками P и M