CSC 222: AUTOMATA THEORY

Lecture III: Recursive Definitions

Set Definition

- · A precise definition aids in carrying out proof
- · A concise definition assists in understanding
- · Recursive definitions are precise and concise

Recursive Definitions

- · A recursive definition is a three-step process:
 - Define basic set members
 - Give rules for constructing more set members from the ones already known
 - Exclude all set members except those created by the first two steps

Example

- Supposing we wish to define the set EVEN which is the set of positive even integers.
 How would you define this set?

Example

- Supposing we wish to define the set EVEN which is the set of positive even integers.
- · How would you define this set?

 $\ensuremath{\mathsf{EVEN}}$ is the set of all positive whole numbers divisible by 2

EVEN is the set of all 2n where n = 1, 2, 3, 4...

Example of a Recursive Definition

• The set EVEN (of positive even integers) is defined recursively as follows:

Rule 1: 2 is in EVEN

Rule 2: if x is in EVEN then so is x + 2

Rule 3: Only elements defined by rules 1 and 2 above are in EVEN

 The last rule is called an EXCLUSION RULE (it prevents members from sneaking into a set by unknown means, and it is tacitly presumed in recursive definitions).

Proving membership using definitions

- Is 14 in set EVEN?
- · Which definition is "better"?
- Note, there are some sets that have no better definition than a recursive one

Definition of Set EVEN

- How else can the set EVEN be defined recursively?
- If EVEN_INTS is the set of positive and negative integers, how would you define EVEN_INTS recursively?

Definition aides Proof

 Supposing you want to prove that the sum of any two numbers in EVEN is also in EVEN, which definition would best serve your purpose?

Recap

- A recursive definition is better than another if it produces shorter proofs for set membership.
 Set EVEN has fine definitions that are non-recursive later in the course, we shall be interested in certain sets that have no better
- definition than the recursive one.

 The choice of whether or not to use a recursive
- definition depends on:
 How easy is it to understand the other possible definitions?
 What types of theorems do we wish to prove about the

Example - Set of Integers

· Following is a recursive definition of the set of positive integers:

Rule I: 1 is in INTEGERS. Rule II: If x is in INTEGERS, then so is x

How would you define INTEGERS to include both positive and negative integers?

Example - Set POLYNOMIAL

- Polynomial is a finite sum of terms each of which is of the form of a real number times a power of x (that may be $x^0=1$)
- · Definition of the set POLYNOMIAL :

Rule 1: Any natural number is in POLYNOMIAL

Rule 2: The variable x is in POLYNOMIAL

Rule 3: If p and q are in POLYNOMIAL then so are p + q, p - q, (p) and (pq)

Rule 4: Exclusion rule

Set POLYNOMIAL

- Use the definition of POLYNOMIAL to prove that 3x + 2 is in POLYNOMIAL
- Use the definition of POLYNOMIAL to prove that $4x^2 + 2x - 6$ is in POLYNOMIAL

The Power of Recursive Definitions

- · Suppose in a calculus class we prove that:
- the derivative of the sum of two functions is the sum of
- the derivatives And that the derivative of the product fg is fg + fg' And that the derivative of a number is always 0 And that the derivative of x is 1
- · Using the recursive definition of POLYNOMIAL and these proofs it is now a trivial exercise to show that all POLYNOMIALS can be differentiated. how?
- We don't yet know the most efficient algorithm for doing this but we know that it can be done.

The Power of Recursive Definitions

- Perhaps even more importantly recursive definitions can be used to show that certain tasks are theoretically impossible for any computer to
- But that is beyond the scope of this course...

Recursion in the Real World

- Rule 1: The children of ABRAHAM are all members of the set DESCENDANTS_OF_ABRAHAM
- Rule 2: if x is an element of DESCENDANTS_OF_ABRAHAM then so are x's children.

Recursion in Mathematics

• Definition of set FACTORIAL:

Rule 2: n! = n (n-1)!

Recursive Definitions of earlier Languages

 $\mathcal{L}_{\mathrm{odd}} = -x^{2\mathrm{n-1}} \ for \ n > 0 = \{x \ xxx \ xxxxx \ \ldots\}$

 $\mathbf{L}_4 \quad \equiv \quad x * = \{ \Lambda \, x \, xx \, xxx \, xxxx \, \dots \}$

Kleene Closure e.g. S*

An Important Language – Arithmetic Expressions

- · What constitutes a valid arithmetic expression What is the alphabet?
 Are the following strings in language AE?
-)6 +)5 + 3)9 + 8/(2 -(4 + (5) 8)
- What rules govern formation of correct AE strings?

Example - Arithmetic Expressions

· Recursive definition of AE most natural way rather than a list of forbidden substrings, parentheses requirements and rules!

Rule 1: in AE Any number (positive, negative or zero) is

If x is in AE then so are (x) and -(x)If x and y are in AE then so are

x + y, (if the first symbol in y is not -) x - y, (if the first symbol in y is not -) x * y,

Arithmetic Expressions

- Is the arithmetic expression (4 + 25 / (10 ** 2) / 5 in AE?
- If AE: Is the arithmetic expression (2+5)*(6*(9-2)/5)/4*(2+9)-1 in AE? How does the recursive definition allow us to
- simply carry out such proofs?

Proving Theorems

- THEOREM 2: No arithmetic expression can contain the character \$
- THEOREM 3: No arithmetic expression can begin or end with the symbol /

Example from LOGIC

• Definition of the set WFF (well-formed formulae):

$$\Sigma = \{ \rightarrow \neg () \ a \ b \ c \ d \dots \}$$

Rule 1: Any single Latin letter is a WFF e.g. a b c dRule 2: If p is a WFF, then so are (p) and $\neg p$ Rule 3: If p and q are WFFs then so is $p \rightarrow q$

• Are the following in WFF? 1. $p \rightarrow ((p \rightarrow p) \rightarrow q)$ 2. $p \rightarrow$ 3. $\rightarrow p$ 4. $p \rightarrow \neg p$ 5. $p) \rightarrow p($

Exercises:

- 1. Using the fact that $3x^2 + 7x 9 = (((((3)x) + 7)x) 9)$, show how to produce this polynomial from the rules for POLYNOMIAL using multiplication only twice. What is the smallest number of steps needed for producing $x^8 + x^{4?}$ 2. Show that if n is less than 31, then xn can be shown to be in POLYNOMIAL in fewer than eight steps.

- eight steps.
 What is the full list of substrings of length 2 that cannot occur in arithmetic expressions?
 The rules given for the set AE allow for the peculiar expressions (((((9))))) and -(-(-(-(9)))). These are not harmful, but is there some modified definition of AE that eliminates this problem?

Exercises:

- Give a recursive definition for the language EVENPALINDROME of all palindromes of even