AFP1

- Docente de teoría:
 - Ing. Emmanuel Vázquez
- Auxiliar de trabajos prácticos
 - Ing. Claudio Lauxmann

Lazo de control

Lazo de control

Lazo de control

Tipos de válvulas

- Compuerta o esclusa
- Diafragma
- Esférica o bola
- Globo
- Mariposa
- Macho o tapón

Tipos de válvulas Compuerta o esclusa

Tipos de válvulas Diafragma

Tipos de válvulas Esférica o bola

Tipos de válvulas Globo. Estrangulación superior/inferior

Tipos de válvulas Globo. En Ángulo/Y

Tipos de válvulas Mariposa

Tipos de válvulas Macho o tapón lubricado.

Tipos de válvulas

Jaula. Aguja. Apriete.

Caudalímetros

- Magnético
- Ultrasónico
- Tubo Venturi
- Placa orificio
- Tubo Pitot
- Annubar

- Térmico
- A turbina
- Desplazamiento positivo o de lóbulos
- Principio de Coriollis
- Vortex

Caudal

Caudalímetro Magnético

Caudalímetro Ultrasónico

Caudalímetro Tubo venturi

Caudalímetro Placa orificio

Caudalímetro Tubo pitot

Caudalímetro Tubo annubar

Caudalímetro Térmico

Caudalímetro Turbina

Caudalímetro Desplazamiento positivo

Caudalímetro Principio de Coriolis

Caudalímetro Principio de Coriolis

Caudalímetro Por torbellino o vórtice

Actuador eléctrico: motor

15/04/2023

15/04/2023

Actuador eléctrico: motor – paso a paso

Imán permanente

Reluctancia variable

Actuador eléctrico: motor – paso a paso

• Reluctancia variable con apilamiento múltiple

Actuador eléctrico: motor – paso a paso

Híbrido

Actuador eléctrico: motor – BLDC

Actuador eléctrico: motor DC – imán permanente

Actuador eléctrico: motor DC

Motor en serie

Motor Shunt

Motor Compound

Motor Excitación Serie

Motor Excitación Paralelo

Motor Excitación Compound

Actuador eléctrico: motor AC monofásico

Fase partida (con condensador)

De espira en cortocircuito

Actuador eléctrico: motor AC trifásico

Campo magnético rotatorio

15/4/2023 37

Actuador eléctrico: motor AC trifásico asíncrono

Rotor bobinado

Rotor jaula de ardilla

Actuador eléctrico: motor AC síncrono

Motor de reluctancia
 Rotor de histéresis

15/4/2023 39

Actuadores mecánicos

- Reductores
- Cambio de dirección
- Transformación de movimiento

Actuador mecánico reductor: piñón-corona

- Efecto:
 - Reducción de velocidad de
 - Aumento del par motor

Actuador mecánico reductor: coaxial

- Efecto:
 - Reducción de velocidad de calida
 - Aumento del par motor

Actuador mecánico reductor: motoreductor

- Efecto:
 - Velocidad rotacional con alto torque

Actuador mecánico: reductor armónico

- Efecto:
 - Reductor de velocidad

Actuador mecánico: cambio de dirección

- Piñon-corona
 - Eje salida ortogonal a eje entrada.

• Reducción de velocidad de salida y aumento del par

Actuador mecánico: cambio de dirección- Reductor:

- corona tornillo sinfín
 - Eje salida ortogonal a eje entrada.

• Reducción de velocidad de salida y aumento del par

Actuador mecánico: transformación de movimiento

Piñon-cremallera Husillo fricción/bolas

Actuador mecánico: transformación de movimiento

Cilindro pistón de doble efecto con piñón y

cremallera

15/4/2023

Actuador mecánico: transformación de movimiento

Desplazador lineal

Actuador hidráulico

Actuador hidráulico

