### **Data Mining**

## Lecture 3 Preprocessing Methods



http://www.informatik.uni-hamburg.de/WTM/

#### Data Preprocessing

Data Preprocessing: An Overview



- Data Quality
- Major Tasks in Data Preprocessing
- Data Cleaning
- **Data Integration**
- Data Reduction
- **Data Transformation**
- Data Discretization

#### Data Quality: why preprocess the Data?

Measures for data quality: A multidimensional view

- Accuracy: correct or wrong, accurate or not
- Completeness: not recorded, unavailable, ...
- Consistency: some modified but some not, dangling, ...
- Timeliness: timely update?
- Believability: how trustable are the data are?
- Interpretability: how easily the data can be understood?

## Why We should Clean Dirty Data



#### Major Tasks in Data Preprocessing

#### Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

#### Data integration

Integration of multiple databases, data cubes, or files

#### Data reduction

- Dimensionality reduction
- Data compression
- Data transformation and data discretization
  - Normalization
  - Concept hierarchy generation

#### Data Preprocessing

- Data Preprocessing: An Overview
  - Data Quality
  - Major Tasks in Data Preprocessing
- Data Cleaning



- Data Integration
- **Data Reduction**
- **Data Transformation**
- Data Discretization

#### **Data Cleaning**

- Data in the real world is "dirty" or incorrect, e.g., instrument faulty, human or computer error, transmission error
- Incomplete: lacking attribute values, lacking certain attributes of interest, or only aggregate data available
  - e.g., Occupation=" " (missing data)
- Noisy: containing noise, errors, or outliers
  - e.g., Salary="-10" (an error)
- Inconsistent: containing discrepancies in codes or names, e.g.,
  - Age="42", Birthday="03/07/2012"
  - Was rating "1, 2, 3", now rating "A, B, C"
  - discrepancy between duplicate records
- Intentionally imprecise (e.g., disguised missing data)
  - Jan. 1 as everyone's birthday?

#### Incomplete (Missing) Data

- Data is not always available
  - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
  - equipment malfunction
  - inconsistent with other recorded data and thus deleted
  - data not entered due to misunderstanding
  - certain data may not be considered important at the time of entry
  - not register history or changes of the data
- Missing data may need to be inferred

#### How to handle missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification) — not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill it in automatically with
  - a global constant : e.g., "unknown", a new class?!
  - the attribute mean
  - the attribute mean for all samples belonging to the same class: smarter
  - the most probable value: inference-based such as Bayesian formula or decision tree

## Missing Data

 One possible interpretation of missing values – "don't care" values:

```
X = \{1, ?, 3\}

\rightarrow for the second feature the domain is [0, 1, 2, 3, 4]:

X1 = \{1, 0, 3\}, X2 = \{1, 1, 3\}, X3 = \{1, 2, 3\}, X4 = \{1, 3, 3\}, X5 = \{1, 4, 3\}
```

- Data miner can generate model of correlation between features.
  - Different techniques possible: regression, Bayesian formalism, clustering, or decision tree induction.

## Missing Data Replacement with Regression Analysis



- In general, replacement of missing values using a simple, artificial schema of data preparation is speculative and often misleading.
- It is best to generate multiple solutions of data mining with and without features that have missing values, and then make comparison, analysis and interpretation.

#### **Noisy Data**

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
  - technology limitation
  - faulty data collection instruments
  - data entry problems
  - data transmission problems
  - inconsistency in naming convention
- Other data problems which require data cleaning
  - duplicate records
  - incomplete data
  - inconsistent data

### How to handle noisy Data?

- Binning
  - first sort data and partition into (equal-frequency) bins
  - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
  - smooth by fitting the data into regression functions 37.0
- Clustering
  - detect and remove outliers
- Combined computer and human inspection
  - detect suspicious values and check by human (e.g., deal with possible outliers)





## Data Quality: why preprocess the Data?



### **Data Preprocessing**

- Data Preprocessing: An Overview
  - Data Quality
  - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration



- Data Reduction
- Data Transformation
- Data Discretization

## **Data Integration**



- Data integration:
  - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
  - Integrate metadata from different sources
- Entity identification problem:
  - Identify real world entities from multiple data sources, e.g.,
     Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
  - For the same real world entity, attribute values from different sources are different
  - Possible reasons: different representations, different scales, e.g., metric vs. British units

#### Handling Redundancy in Data Integration

- Redundant data occur often when integrating multiple databases
  - Object identification: The same attribute or object may have different names in different databases
  - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be possible to detect by correlation analysis
- Careful integration of the data from multiple sources may reduce/avoid redundancies and inconsistencies and improve mining speed and quality

### Correlation Analysis (Nominal Data)

X<sup>2</sup> (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The cells that contribute the most to the X<sup>2</sup> value are those whose actual count is very different from the expected count
- Correlation does not imply causality
  - # of hospitals and # of car-thefts in a city are correlated
  - Both are causally linked to the third variable: population

## Chi-Square Calculation: an Example

• Questionnaire among *N*=1500 participants:

|                          | Play chess | Not play chess | Sum (row) |
|--------------------------|------------|----------------|-----------|
| Like science fiction     | 250        | 250            | 500       |
| Not like science fiction | 50         | 950            | 1000      |
| Sum (column)             | 300        | 1200           | 1500      |

• Expected results  $e_{ij}$  from the null hypothesis stating that "preferred reading" and "game favour" are uncorrelated):

|                          | Play chess | Not play chess | Sum (row) |
|--------------------------|------------|----------------|-----------|
| Like science fiction     | 100        | 400            | 500       |
| Not like science fiction | 200        | 800            | 1000      |
| Sum (column)             | 300        | 1200           | 1500      |

$$e_{ij} = sum(col\ i) \cdot sum(row\ j) / N$$

#### Chi-Square Calculation: an Example

X<sup>2</sup> (chi-square) calculation:

$$\chi^2 = \frac{(250 - 100)^2}{100} + \frac{(50 - 200)^2}{200} + \frac{(250 - 400)^2}{400} + \frac{(950 - 800)^2}{800} = \underline{421.9}$$

What does it show?

### Chi-square Test

Small deviations are more expected than large deviations:



- Random variable Y has a normal distribution
  - $\rightarrow$  Y<sup>2</sup> has a chi-square distribution (with 1 degree of freedom)

### Chi-square Test

Some percentage of expected deviations is over a

threshold



- E.g.: 10% of all  $\chi^2$  values are larger than critical value 2.7
- Values can be looked up in a chi-square distribution table

#### Chi-square Distribution Table

#### probability level

| $\alpha$ | 0.5   | 0.1   | 0.05  | 0.02  | 0.01  | 0.001  |
|----------|-------|-------|-------|-------|-------|--------|
|          | 0.455 | 2.706 | 3.841 | 5.412 | 6.635 | 10.827 |

- α=0.1: 90% of values are below critical value 2.706
- α=0.05: 95% of values are below critical value 3.841

. . .

- α: significance level
- Earlier, we have found a value of 421.9
- → Our data are extremely unlikely given the null hypothesis

#### Chi-Square Calculation: an Example

X² (chi-square) calculation:

$$\chi^2 = \frac{(250 - 100)^2}{100} + \frac{(50 - 200)^2}{200} + \frac{(250 - 400)^2}{400} + \frac{(950 - 800)^2}{800} = \underline{421.9}$$

- It shows that "preferred reading" and "game favour" are correlated in the group (since X² larger than 10.827, from X² table – a statistical measure for significance of 2x2 table)
- What if all numbers were 10x smaller (N=150 participants)?

$$\rightarrow \chi^2 = ... = 42.19$$

What if all numbers were 50x smaller (N=30 participants)?

$$\chi^{2} = \frac{(5-2)^{2}}{2} + \frac{(1-4)^{2}}{4} + \frac{(5-8)^{2}}{8} + \frac{(19-16)^{2}}{16} = 8.4375$$

### Chi-Square Calculation: Degrees of Freedom

|                      |        | Category 1 Levels |    |     | Sum |       |
|----------------------|--------|-------------------|----|-----|-----|-------|
|                      |        | L1                | L2 | ••• | LJ  | (row) |
| Category 2<br>Levels | L1     |                   |    |     |     |       |
| Leveis               |        |                   |    |     |     |       |
|                      | LI     |                   |    |     |     |       |
| Sum                  | (col.) |                   |    |     |     | N     |

- If the two categories have several levels (J levels for category 1 and I levels for category 2), then there are more degrees of freedom in which the entries can differ
- I x J contingency table
- Number of degrees of freedom: (I-1) x (J-1)

#### Chi-Square Calculation: Degrees of Freedom

More degrees of freedom make larger deviations probable:



- Sum of k independ. random variables Y<sub>i</sub> with normal distrib.
  - $\rightarrow \Sigma_i Y_i^2$  has a  $\chi^2$  distribution with k degrees of freedom

#### Chi-square Distribution Table

#### probability level

| DF | 0.5   | 0.1   | 0.05   | 0.02   | 0.01   | 0.001  |
|----|-------|-------|--------|--------|--------|--------|
| 1  | 0.455 | 2.706 | 3.841  | 5.412  | 6.635  | 10.827 |
| 2  | 1.386 | 4.605 | 5.991  | 7.824  | 9.210  | 13.815 |
| 3  | 2.366 | 6.251 | 7.815  | 9.837  | 11.345 | 16.268 |
| 4  | 3.357 | 7.779 | 9.488  | 11.668 | 13.277 | 18.465 |
| 5  | 4.351 | 9.236 | 11.070 | 13.388 | 15.086 | 20.517 |



Degrees of freedom

#### Values Reduction

Data often have continuous features



Many classification algorithms require data with discrete attributes

- 1. Sort the data for the given feature in ascending order
- 2. Define initial intervals so that every value of the feature is in a separate interval

#### 3. Repeat.

- 3.1 Compute  $X^2$  tests for each pair of adjacent intervals
- 3.2 Merge two adjacent intervals with the lowest  $X^2$  value, if calculated  $X^2$  is less than threshold
- **Until** no  $X^2$  test of any two adjacent intervals is less than threshold value

### Values Reduction – Contingency Table

• A ChiMerge requires computation of  $X^2$  test for the contingency table 2 x 2 of categorical data:

|            | Class 1         | Class 2         | Σ              |
|------------|-----------------|-----------------|----------------|
| Interval-1 | A <sub>11</sub> | A <sub>12</sub> | $R_1$          |
| Interval-2 | A <sub>21</sub> | A <sub>22</sub> | R <sub>2</sub> |
| Σ          | C <sub>1</sub>  | $C_2$           | N              |

 $X^2$  test is:

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{k} \frac{\left(A_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

#### where:

k = number of classes,

A<sub>ii</sub> = number of instances in the i-th interval, j-th class,

 $E_{ij} = expected frequency of A_{ij}$ , which is computed as  $(R_i \cdot C_j) / N$ ,

 $R_i$  = number of instances in the i-th interval =  $\sum A_{ij}$  , j = 1,...k,

 $C_{j}$  = number of instances in the j-th class =  $\sum A_{ij}$  , i = 1,2,

N = total number of instances =  $\sum R_i$ , i = 1,2.



•  $X^2$  was minimum for intervals: [7.5,8.5] and [8.5,10]

| Sample: | F  | K   |
|---------|----|-----|
| 1       | 1  | 1   |
| 2       | 3  | 2   |
| 3       | 7  | 1   |
| 4       | 8  | 1   |
| 5       | 9  | 1   |
| 6       | 11 | 2 2 |
| 7       | 23 | 2   |
| 8       | 37 | 1   |
| 9       | 39 | 2   |
| 10      | 45 | 1   |
| 11      | 46 | 1   |
| 12      | 59 | 1   |
|         |    |     |

|                    | Class 1            | Class 2            | Σ                 |
|--------------------|--------------------|--------------------|-------------------|
| Interval [7.5,8.5] | A <sub>11</sub> =1 | A <sub>12</sub> =0 | $R_1=1$           |
| Interval [8.5,10 ] | A <sub>21</sub> =1 | A <sub>22</sub> =0 | R <sub>2</sub> =1 |
| Σ                  | C <sub>1</sub> =2  | C <sub>2</sub> =0  | N=2               |

Based on the table's values, we can calculate expected values:

E11 = 
$$1*2/2 = 1$$
, E12 =  $1*0/2 = 0$ , E21 =  $1*2/2 = 1$ , & E22 =  $1*0/2 = 0$ 

and corresponding  $X^2$  test:

$$X^2 = (1-1)^2/1 + (0-0)^2/0 + (1-1)^2/1 + (0-0)^2/0 = \mathbf{0}$$

For d=1 degree of freedom:  $X^2 = 0 < 2.706 \rightarrow merge!$ (a=0.1)

#### ... one of the following iterations:

| Sample:                    | F      | K |
|----------------------------|--------|---|
| 1                          | 1      | 1 |
| 2                          | 3      | 2 |
| 2<br>3<br>4<br>5<br>6<br>7 | 7      | 1 |
| 4                          | 8<br>9 | 1 |
| 5                          | 9      | 1 |
| 6                          | 11     | 2 |
|                            | 23     | 2 |
| 8                          | 37     | 1 |
| 9                          | 39     | 2 |
| 10                         | 45     | 1 |
| 11                         | 46     | 1 |
| 12                         | 59     | 1 |
|                            |        |   |

|                        | Class 1            | Class 2            | Σ                 |
|------------------------|--------------------|--------------------|-------------------|
| Interval [ 0.0 , 7.5 ] | A <sub>11</sub> =2 | A <sub>12</sub> =1 | R <sub>1</sub> =3 |
| Interval [7.5,10 ]     | A <sub>21</sub> =2 | A <sub>22</sub> =0 | R <sub>2</sub> =2 |
| Σ                      | C <sub>1</sub> =4  | C <sub>2</sub> =1  | N=5               |

E11 = 
$$3*4/5$$
 = 2.4, E12 =  $3*1/5$  = 0.6,  
E21 =  $2*4/5$  = 1.6, E22 =  $2*1/5$  = 0.4  
 $X^2 = (2-2.4)^2/2.4 + (1-0.6)^2/0.6 + (2-1.6)^2/1.6 + (0-0.4)^2/0.4 =$ **0.834**

For d=1 degree of freedom: 
$$X^2 = 0.834 < 2.706 \rightarrow merge!$$
(a=0.1)

#### ... One of the additional iterations:

| Sample: | F  | K   |
|---------|----|-----|
| 1       | 1  | 1   |
| 2       | 3  | 2   |
| 3       | 7  | 1   |
| 4       | 8  | 1   |
| 5       | 9  | 1   |
| 6       | 11 | 2 2 |
| 7       | 23 | 2   |
| 8       | 37 | 1   |
| 9       | 39 | 2   |
| 10      | 45 | 1   |
| 11      | 46 | 1   |
| 12      | 59 | 1   |
|         |    |     |

|                     | Class 1            | Class 2            | Σ                 |
|---------------------|--------------------|--------------------|-------------------|
| Interval [ 0.0,10 ] | A <sub>11</sub> =4 | A <sub>12</sub> =1 | R <sub>1</sub> =5 |
| Interval [10 ,42]   | A <sub>21</sub> =1 | A <sub>22</sub> =3 | R <sub>2</sub> =4 |
| Σ                   | C <sub>1</sub> =5  | C <sub>2</sub> =4  | N=9               |

$$E11 = 2.78$$
,  $E12 = 2.22$ ,  $E21 = 2.22$ ,  $E22 = 1.78$ 

$$X^2 = 2.72 > 2.706 \longrightarrow NO merge!$$

Final discretization:

Interval representatives: 5 (low) 26 (medium) 51 (high)

| Sample: F K |    |   | Sampl            | ample: F |    |   |
|-------------|----|---|------------------|----------|----|---|
| 1           | 1  | 1 | =                | 1        | 5  | 1 |
| 2           | 3  | 2 | with reduced     | 2        | 5  | 2 |
| 3           | 7  | 1 | set of values F: | 3        | 5  | 1 |
| 4           | 8  | 1 |                  | 4        | 5  | 1 |
| 5           | 9  | 1 |                  | 5        | 5  | 1 |
| 6           | 11 | 2 | Original set     | 6        | 26 | 2 |
| 7           | 23 | 2 |                  | 7        | 26 | 2 |
| 8           | 37 | 1 |                  | 8        | 26 | 1 |
| 9           | 39 | 2 |                  | 9        | 26 | 2 |
| 10          | 45 | 1 |                  | 10       | 51 | 1 |
| 11          | 46 | 1 |                  | 11       | 51 | 1 |
| 12          | 59 | 1 |                  | 12       | 51 | 1 |

### Data Preprocessing

- Data Preprocessing: An Overview
  - Data Quality
  - Major Tasks in Data Preprocessing
- Data Cleaning
- **Data Integration**
- Data Reduction



- Data Transformation
- Data Discretization

#### **Feature Reduction**

Which features to select, and how?

| TRS_DT   | TRS_TYP_CD | REF_DT   | REF_NUM | CO_CD  | GDS_CD | QTY | UT_CD | UT_PRIC |
|----------|------------|----------|---------|--------|--------|-----|-------|---------|
| 21/05/93 | 00001      | 04/05/93 | 25119   | 10002J | 001M   | 10  | CTN   | 22.000  |
| 21/05/93 | 00001      | 05/05/93 | 25124   | 10002J | 032J   | 200 | DOZ   | 1.370   |
| 21/05/93 | 00001      | 05/05/93 | 25124   | 10002J | 033Q   | 500 | DOZ   | 1.000   |
| 21/05/93 | 00001      | 13/05/93 | 25217   | 10002J | 024K   | 5   | CTN   | 21.000  |
| 21/05/93 | 00001      | 13/05/93 | 25216   | 10026H | 006C   | 20  | CTN   | 69.000  |
| 21/05/93 | 00001      | 13/05/93 | 25216   | 10026H | 008Q   | 10  | CTN   | 114.000 |
| 21/05/93 | 00001      | 14/05/93 | 25232   | 10026H | 006C   | 10  | CTN   | 69.000  |
| 21/05/93 | 00001      | 14/05/93 | 25235   | 10027E | 003A   | 5   | CTN   | 24.000  |
| 21/05/93 | 00001      | 14/05/93 | 25235   | 10027E | 001M   | 5   | CTN   | 24.000  |
| 21/05/93 | 00001      | 22/04/93 | 24974   | 10035E | 009F   | 50  | CTN   | 118.000 |
| 21/05/93 | 00001      | 27/04/93 | 25033   | 10035E | 015A   | 375 | GRS   | 72.000  |
| 21/05/93 | 00001      | 20/05/93 | 25313   | 10041Q | 010F   | 10  | CTN   | 26.000  |
| 21/05/93 | 00001      | 12/05/93 | 25197   | 10054R | 002E   | 25  | CTN   | 24.000  |

#### **Features Reduction**

#### Two standard approaches:

- Feature selection: A process that chooses an optimal subset of features according to an objective function:
  - feature ranking algorithms,
  - minimum subset algorithms.
- Feature extraction: refers to the mapping of the original high-dimensional data onto a lower-dimensional space.
  - Descriptive setting: minimizes the information loss
  - Predictive setting: maximizes the class discrimination

# Feature selection – Example for Optimal Features' Subset



- Data set (whole set)
  - Five Boolean features
  - $C = F_1 \vee F_2$
  - $F_3 = \neg F_2$ ,  $F_5 = \neg F_4$
  - Optimal subset:

$$\{F_1, F_2\}$$
 or  $\{F_1, F_3\}$ 

 Combinatorial nature of searching for an optimal subset

## Feature Selection – Complexity

Feature selection in general can be viewed as a search problem.

 For practical methods, an optimal search is not feasible, and simplifications are made to produce acceptable and timely reasonable results:

heuristic criteria

bottom-up approach

top-down approach



#### Methods of Feature Selection

- Univariate methods
  - Considers one variable (feature) at a time.
- Filter methods
  - Separating feature selection from classifier learning
  - Relying on general characteristics of data (information, distance, dependence, consistency)
  - No bias toward any learning algorithm, fast
- Wrapper methods
  - Relying on a predetermined classification algorithm.
  - Using predictive accuracy as goodness measure
  - High accuracy, computationally expensive
- Embedded methods
  - Combine Filter and Wrapper approaches

#### Features Selection: Univariate Methods

Comparison of means and variances:

Samples of two classes (A and B) can be examined:

$$SE(A-B) = \sqrt{\frac{var(A)}{n_1} + \frac{var(B)}{n_2}}$$

TEST:

$$\frac{\left| \operatorname{mean}(A) - \operatorname{mean}(B) \right|}{\operatorname{SE}(A - B)} > threshold-value$$

where  $n_1$  and  $n_2$  are the corresponding number of samples for classes A and B.

#### Features Selection: Univariate Methods

Comparison of means and variances – Example:

| X                                      | Y                                      | С                     |
|----------------------------------------|----------------------------------------|-----------------------|
| 0.3<br>0.2<br>0.6<br>0.5<br>0.7<br>0.4 | 0.7<br>0.9<br>0.6<br>0.5<br>0.7<br>0.9 | A<br>B<br>A<br>A<br>B |

Threshold value is 0.5

$$X_A = \{0.3, 0.6, 0.5\},\$$

$$Y_A = \{0.7, 0.6, 0.5\},\$$

$$X_{B} = \{0.2, 0.7, 0.4\},\$$

$$Y_B = \{0.9, 0.7, 0.9\}$$

#### Features Selection: Univariate Methods

Comparison of means and variances – Example:

$$SE(X_A - X_B) = \sqrt{\frac{\text{var}(X_A)}{n_1} + \frac{\text{var}(X_B)}{n_2}} = \sqrt{\frac{0.0233}{3} + \frac{0.6333}{3}} = 0.4678$$

$$SE(Y_A - Y_B) = \sqrt{\frac{\text{var}(Y_A)}{n_1} + \frac{\text{var}(Y_B)}{n_2}} = \sqrt{\frac{0.0133}{3} + \frac{0.0133}{3}} = 0.0875$$

#### Tests:

X: 
$$\frac{\left| \operatorname{mean}(A) - \operatorname{mean}(B) \right|}{\operatorname{SE}(A - B)} = \frac{\left| 0.4667 - 0.4333 \right|}{0.4678} < 0.5$$
Y: 
$$\frac{\left| \operatorname{mean}(A) - \operatorname{mean}(B) \right|}{\operatorname{SE}(A - B)} = \frac{\left| 0.6 - 0.8333 \right|}{0.0875} > 0.5$$

X is a candidate feature for reduction because its mean values are close, and therefore the final test is below threshold value.

#### Filter Model



- Example filter algorithm for feature selection:
  - Relief (Kira & Rendell 1992)

#### Wrapper Model



- Example wrapper algorithm for Feature Selection:
  - SVM

#### Data Reduction: Dimensionality Reduction

#### Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

#### Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

#### Data Reduction Strategies

- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- Obtain a reduced representation of the data set that is much smaller in volume but yet produces the (almost) same analytical results
- Data reduction strategies
  - Dimensionality reduction, e.g., remove unimportant attributes
    - Feature subset selection, feature creation
    - Wavelet transforms
    - Principal Components Analysis (PCA)
  - Numerosity reduction (some simply call it: Data Reduction)
    - Regression and Log-Linear Models
    - Histograms, clustering, sampling
    - Data cube aggregation
  - Data compression

#### Dimensions Reduction of Large Data Sets

#### Main dimensions:



#### **Data Preprocessing**

- Data Preprocessing: An Overview
  - Data Quality
  - Major Tasks in Data Preprocessing
- Data Cleaning
- **Data Integration**
- **Data Reduction**
- Data Transformation



Data Discretization

# Mapping Data to a New Space

- Fourier transform: mapping from time to frequency domain
- Wavelet transform



**Two Sine Waves** 

**Two Sine Waves + Noise** 

**Frequencies** 

#### **Data Transformation**

- A function that maps the entire set of values of a given attribute to a new set of replacement values so that each old value can be identified with one of the new values
- Methods
  - Smoothing: Remove noise from data
  - Attribute/feature construction
    - New attributes constructed from the given ones
  - Aggregation: Summarization
  - Normalization: Scaled to fall within a smaller, specified range
    - min-max normalization
    - z-score normalization
    - normalization by decimal scaling
  - Discretization: Concept hierarchy climbing

#### **Normalization**

Min-max normalization: to [new\_min<sub>A</sub>, new\_max<sub>A</sub>]

$$v' = \frac{v - min_A}{max_A - min_A} (new \_ max_A - new \_ min_A) + new \_ min_A$$

- Ex. Let income range \$12,000 to \$98,000. Normalize to [0.0, 1.0]. Then \$73,600 is mapped to  $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- **Z-score normalization** (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let  $\mu = 54,000$ ,  $\sigma = 16,000$ . Then  $\frac{73,600-54,000}{16,000} = 1.225$
- Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 where j is the smallest integer such that Max(|v'|) < 1

#### Correlation Analysis (Numeric Data)

Correlation coefficient (also called *Pearson's product moment coefficient*)

$$r_{A,B} = \frac{\sum_{i=1}^{N} (a_i - \overline{A})(b_i - \overline{B})}{N\sigma_A \sigma_B}$$

- N = number of tuples
- $\overline{A}$  and  $\overline{B}$  = means of attributes A and B
- $\sigma_A$  and  $\sigma_B$  = standard deviations of A and B
- $r_{A,B} > 0$ : A and B are positively correlated
  - A's values increase as B's. Larger  $r_{AB} \rightarrow$  stronger correlation.
- $r_{A,B} = 0$ : independent
- $r_{AB} < 0$ : negatively correlated

## Visually Evaluating Correlation



**Scatter plots** 

Correlation coefficients range from –1 to 1.

#### Covariance (Numeric Data)

Covariance:

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

Related to correlation coefficient:  $r_{A,B} = \frac{Cov(A,B)}{\sigma_A \sigma_B}$ 

- n = number of tuples
- $\overline{A}$  and  $\overline{B}$  = mean or **expected values** of A and B
- $\sigma_A$  and  $\sigma_B$  = standard deviation of A and B.
- **Positive covariance**: If  $Cov_{A,B} > 0$ , then A and B both tend to be larger than their expected values.
- **Negative covariance**: If  $Cov_{A,B} < 0$  then if A is larger than its expected value, B is likely to be smaller than its expected value.
- Independence:  $Cov_{A,B} = 0$

#### Co-Variance: an Example

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

- Suppose two stocks A and B have the following values in one week: (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
  - E(A) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
  - E(B) = (5 + 8 + 10 + 11 + 14)/5 = 48/5 = 9.6
  - Cov(A,B) = (2.5 + 3.8 + 5.10 + 4.11 + 6.14)/5 4.9.6 = 4
- Thus, A and B rise together since Cov(A, B) > 0.

## Principal Component Analysis (Steps)

- Given N data vectors from n-dimensions, find m << n orthogonal vectors (principal components) to represent the data</li>
  - Subtract mean from the input data, each attribute has mean zero
  - Compute *m* orthonormal (unit) vectors, i.e., *principal components*
  - Each input data (vector) is a linear combination of the m principal component vectors
  - The principal components are sorted in order of decreasing "significance" (1st component: data has maximum variance)
  - Since the components are sorted, the size of the data can be reduced by eliminating the insignificant components, i.e., those with low variance
  - Thus, using only the most significant principal components, it is possible to reconstruct a good approximation of the original data.
- Works for numeric data; reduction of higher dimensions to lower

#### Principal Components Analysis Algorithm

1. Compute the *n×n* covariance matrix S

$$S_{ij} = \frac{1}{N-1} \cdot \sum_{d=1}^{N} \left( x_i^d - \overline{x}_i \right)^T \cdot \left( x_j^d - \overline{x}_j \right) \quad \text{ where } \ \overline{x} = \frac{1}{N-1} \cdot \sum_{d=1}^{N} x^d$$

 Calculate the eigenvalues of the covariance matrix S for the given data and sort the eigenvalues of S:

$$\{\lambda_1, \lambda_2, ..., \lambda_n\}$$
 where  $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0$ .

The eigenvalues are the variances of the data in the directions of ``their'' eigenvectors.

3. The **eigenvectors**  $e_1, e_2, ..., e_n$  correspond to ``their' eigenvalues  $\lambda_1, \lambda_2, ..., \lambda_n$ ,

The eigenvectors are called the *principal axes*.

# Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space



Symmetric matrix A  $A \cdot x$ X [2.5 0.5] Eigenvector(s),  $A \cdot e_1 = \lambda_1 \cdot e_1$ large eigenvalue  $\lambda_1$ Eigenvector(s)  $A \cdot e_2 = \lambda_2 \cdot e_2$ 

small eigenvalue  $\lambda_2$ 

Non-symmetric matrix A  $A \cdot x$ X 2.6 0.5 Eigenvector(s)  $[-0.5 \ 1.4]$ Eigenvector(s)



Rotation matrix A



No eigenvectors

## Multiply a Vector with a Covariance Matrix

- The covariance matrix S is a symmetric matrix
  - It always has eigenvectors
  - Eigenvectors are orthogonal to each other, if their eigenvalues differ
- Its eigenvalues are ≥ 0
  - S is positive (semi-) definite
- Eigenvalues are variances of the data in the directions of the corresponding eigenvectors



Multiplying by S does not rotate any vector by more than 90°

#### Repeatedly Multiply with the Covariance Matrix



#### Repeatedly Multiply with the Covariance Matrix



Easy to see: individual dimensions/components i of  $\tilde{x}$  are multiplied by  $\lambda_i$ 

## Obtain Largest Eigenvalue and Eigenvector

#### Iterative method

- Choose an initial random vector x
- Repeat
  - $x \leftarrow S \cdot x$
  - Normalize x to length 1
- Until converged. Then *normalized eigenvector*  $e_1 = x$

Compute corresponding eigenvalue as the norm:

$$\lambda_1 = / S \cdot e_1 /$$

 Other linear algebra methods, e.g. SVD, compute all eigenvectors and corresponding eigenvalues.

# Principal Components Analysis

The data can be expressed in the new coordinate system

$$x = \overline{x} + \sum_{j=1}^{m} w_j \cdot e_j$$

- w<sub>i</sub> are the data coordinates along the eigenvector axes
- m < n: data are only approximately reconstructed</p>

The first principal component is an axis in the direction of maximum variance.



# Principal Components Analysis

The criterion for features selection is based on the ratio R of the sum of the m largest eigenvalues (m≤n) of S to the trace of S (for example R>90%):

$$R = \frac{\displaystyle\sum_{i=1}^{m} \lambda_{i}}{\displaystyle\sum_{i=1}^{n} \lambda_{i}}$$
 sum over all explained variances

Trace of S

= sum over all variances

- Benefit:
  - non-explained variance  $\sum_{i=m+1}^{n} \lambda_i$  may be small, even if m << n.



# Principle Components Example: Eigenfaces

Eigenfaces are the (first few) principle components of a face image database.

reconstructed face eigenfaces

## Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
  - Simple random sampling may have very poor performance in the presence of skewed data
  - Develop adaptive sampling methods, e.g., stratified sampling

#### Cases Reduction: Sampling ...

Key principle for effective sampling:

- Using a sample will work almost as well as using the entire data sets, if the sample is representative.
- A sample is representative if it has approximately the same property (of interest) as the original set of data.

# Cases Reduction: Sample Size



# Cases Reduction: Accuracy Parameter Estimation

 Challenging task: Infer the value of a population parameter based on a sample model.



#### General-purpose Sampling Methods

#### Systematic sampling:

- For example 50% of a data set (every second sample)
- Simplest.
- Built in most of Data Mining tools
- Problem: regularities in data set!

#### Random sampling

- Random sampling without replacement,
- Random sampling with replacement.
- Average sampling: Combined solution from several subsets (randomly selected)
  - Stratified sampling



# Sampling With or Without Replacement



Once an object is selected, it is removed from the population

A selected object is not removed from the population

# Stratified Sampling

- Partition the data set into strata (non-overlapping)
- Draw samples from each partition proportionally to its percentage in the data



# Data Preprocessing

- Data Preprocessing: An Overview
  - Data Quality
  - Major Tasks in Data Preprocessing
- Data Cleaning
- **Data Integration**
- **Data Reduction**
- Data Transformation
- Data Discretization



#### Data Discretization Methods

- Reduce number of values for given continuous attribute by dividing into intervals
  - Binning: equal width binning and replacing bin by mean
    - Top-down split, unsupervised, no class information used
  - Histogram analysis
    - Top-down split, unsupervised, no class information used
  - Clustering analysis (unsupervised, top-down split or bottom-up merge)
  - Decision-tree analysis (supervised, top-down split)
  - Correlation (e.g., χ²) analysis (unsupervised, bottom-up merge)

# Simple Discretization: Binning

- Equal-width (distance) partitioning
  - Divides the range into N intervals of equal size: uniform grid
  - If A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
  - Simple, but outliers may dominate presentation
  - Skewed data is not handled well
- Equal-depth (frequency) partitioning
  - Divides the range into N intervals, each containing approximately same number of samples
  - Good data scaling

# Binning Methods for Data Smoothing

Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

Partition into equal-frequency (equi-depth) bins:

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

#### Smoothing by bin means:

- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

#### Smoothing by **bin boundaries**:

- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 21, 25
- Bin 3: 26, 26, 26, 34

# Example: Data Resampling and Smoothing in Point Cloud Application



# Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms



#### **Automatic Concept Hierarchy Generation**

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
  - The attribute with the most distinct values is placed at the lowest level of the hierarchy
  - Exceptions, e.g., weekday, month, quarter, year



The time series of values can be expressed as a list:

```
X = \{t(1), t(2), t(3), ..., t(n)\},
where t(n) is the most recent value.
```

- For many problems based on time series the goal is to:
  - **forecast** t(n+1) from previous n values of the feature (or more general forecast t(n+j)), where these values are directly related to the predicted value, or
  - find patterns in time series.
- The most important step in preprocessing of row timedependent data is specification of a window or a time lag

Example: time series consisting of eleven measurements:

$$\mathbf{X} = \{t(0), t(1), t(2), t(3), t(4), t(5), t(6), t(7), t(8), t(9), t(10)\}$$

window size:

$$w=5$$

next value:

| Sample | W<br>M1      | I N<br>M2 | D O  | W<br>M4 | M5           | Next Value |
|--------|--------------|-----------|------|---------|--------------|------------|
| 1      | <u>t(0)</u>  | t(1)      | t(2) | t(3)    | t(4)         | t(5)       |
| 2      | t(1)         | t(2)      | t(3) | t(4)    | t(5)         | t(6)       |
| 3      | t(2)         | t(3)      | t(4) | t(5)    | t(6)         | t(7)       |
| 4      | t(3)         | t(4)      | t(5) | t(6)    | t(7)         | t(8)       |
| 5      | <u>t(4)</u>  | t(5)      | t(6) | t(7)    | t(8)         | t(9)       |
| 6      | <u>t(</u> 5) | t(6)      | t(7) | t(8)    | <b>t</b> (9) | t(10)      |

Example: time series consisting of eleven measurements:

$$\mathbf{X} = \{t(0), t(1), t(2), t(3), t(4), t(5), t(6), t(7), t(8), t(9), t(10)\}$$

window size:

$$w=5$$

next value:

$$j=3$$

| Sample | $\mathbf{W}$                  | I N  | Next Value |      |      |       |
|--------|-------------------------------|------|------------|------|------|-------|
|        | M1                            | M2   | М3         | M4   | M5   |       |
| 1      | <u>t(0)</u>                   | t(1) | t(2)       | t(3) | t(4) | t(7)  |
| 2      | <u>t(1)</u>                   | t(2) | t(3)       | t(4) | t(5) | t(8)  |
| 3      | $\widetilde{\mathfrak{t}}(2)$ | t(3) | t(4)       | t(5) | t(6) | t(9)  |
| 4      | <u>t(3)</u>                   | t(4) | t(5)       | t(6) | t(7) | t(10) |

Time-dependent **2D** data

Samples prepared for window w = 3

| Time | а  | b   |          | Sample | а     | а     | a(n) | b     | b     | b(n) |
|------|----|-----|----------|--------|-------|-------|------|-------|-------|------|
| 1    | 5  | 117 |          |        | (n-2) | (n-1) |      | (n-2) | (n-1) |      |
| 2    | 8  | 113 |          | 1      | 5     | 8     | 4    | 117   | 113   | 116  |
| 3    | 4  | 116 | <b>-</b> | 2      | 8     | 4     | 9    | 113   | 116   | 118  |
| 4    | 9  | 118 |          | 3      | 4     | 9     | 10   | 116   | 118   | 119  |
| 5    | 10 | 119 |          | 3      | 7     | 9     | 10   | 110   | 110   | 119  |
| 6    | 12 | 120 |          | 4      | 9     | 10    | 12   | 118   | 119   | 120  |

 One way of summarizing features in the data set is to average them, producing "moving averages" (MA):

$$MA(i,m) = \frac{1}{m} \cdot \sum_{j=i-m+1}^{i} t(j)$$



The objective is to smooth neighboring time points by a moving average to reduce the random variation and noise components:

$$MA(i,m) = t(i) = mean(i) + error$$

# **Spatial-Temporal Data**



New disciplines: Temporal, Spatial, and Streaming Data Mining

#### Noise example in real world from the WTM lab

<u>www.informatik.uni-hamburg.de/WTM</u> or <u>www.knowledge-technology.info</u>



#### Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- Data integration from multiple sources:
  - Entity identification problem; Remove redundancies; Detect inconsistencies
  - Chi-square for correlation analysis

#### Data reduction

Dimensionality reduction, e.g. by comparison of means and variances;
 Numerosity reduction; Data compression

#### Data transformation

- Normalization
- PCA

#### Data discretization

Binning, Clustering, Concept hierarchy generation

#### HiWi Position at WTM Available

- 20 40 hours (one-off, approx. €400-€500)
- Immediate availability
- Task: Organize the Publications on the WTM Web Page