Time Series Analysis

Yair Mau

Table of contents

About

Welcome to Time Series Analysis for Environmental Sciences (71606) at the Hebrew University of Jerusalem. This is Yair Mau, your host for today. I am a senior lecturer at the Institute of Environmental Sciences, at the Faculty of Agriculture, Food and Environment, in Rehovot, Israel.

This website contains (almost) all the material you'll need for the course. If you find any mistakes, or have any comments, please email me.

Disclaimer

The material here is not comprehensive and does not constitute a stand alone course in Time Series Analysis. This is only the support material for the actual presential course I give.

What, who, when and where?

Course number 71606, 3 academic points Yair Mau (lecturer), Erez Feuer (TA) Tuesdays, from 14:15 to 17:00 Computer classroom #16 Office hours: upon request

Syllabus

Course description

Data analysis of time series, with practical examples from environmental sciences.

Course aims

This course aims at giving the students a broad overview of the main steps involved in the analysis of time series: data management, data wrangling, visualization, analysis, and forecast. The course will provide a hands-on approach, where students will actively engage with real-life datasets from the field of environmental science.

Learning outcomes

On successful completion of this module, students should be able to:

- Explore a time-series dataset, while formulating interesting questions.
- Choose the appropriate tools to attack the problem and answer the questions.
- Communicate their findings and the methods they used to achieve them, using graphs, statistics, text, and a welldocumented code.

Course content

- Data wrangling: organization, cleaning, merging, filling gaps, excluding outliers, smoothing, resampling.
- **Visualization:** best practices for graph making using leading python libraries.
- Analysis: stationarity, seasonality, (auto)correlations, lags, derivatives, spectral analysis.
- Forecast: ARIMA
- Data management: how to plan ahead and best organize large quantities of data. If there is enough time, we will build a simple time-series database.

Books and other sources

Click here.

Course evaluation

There will be 2 projects during the semester (each worth 25% of the final grade), and one final project (50%).

Weekly program

Week 1

- Lecture: Course overview, setting of expectations. Introduction, basic concepts, continuous vs discrete time series, sampling, aliasing
- Exercise: Loading csv file into python, basic time series manipulation with pandas and plotting

Week 2

- Lecture: Filling gaps, removing outliers
- Exercise: Practice the same topics learned during the lecture. Data: air temperature and relative humidity

Week 3

- Lecture: Interpolation, resampling, binning statistics
- Exercise: Practice the same topics learned during the lecture. Data: air temperature and relative humidity, precipitation

Week 4

- Lecture: Time series plotting: best practices. Dos and don'ts and maybes
- Exercise: Practice with Seaborn, Plotly, Pandas, Matplotlib

Project 1

Basic data wrangling, using real data (temperature, relative humidity, precipitation) downloaded from USGS. 25% of the final grade

Week 5

- Lecture: Smoothing, running averages, convolution
- Exercise: Practice the same topics learned during the lecture. Data: sap flow, evapotranspiration

Week 6

- Lecture: Strong and weak stationarity, stochastic processes, auto-correlation
- Exercise: Practice the same topics learned during the lecture. Data: temperature and wind speed

Week 7

- Lecture: Correlation between signals. Pearson correlation, time-lagged cross-correlations, dynamic time warping
- Exercise: Practice the same topics learned during the lecture. Data: temperature, solar radiation, relative humidity, soil moisture, evapotranspiration

Week 8

Same as lecture 7 above

Week 9

- **Lecture:** Download data from repositories, using API, merging, documentation
- Exercise: Download data from USGS, NOAA, Fluxnet, Israel Meteorological Service

Project 2

Students will study a Fluxnet site of their choosing. How do gas fluxes (CO2, H2O) depend on environmental conditions? 25% of the final grade

Week 10

- Lecture: Fourier decomposition, filtering, Nyquist—Shannon sampling theorem
- Exercise: Practice the same topics learned during the lecture. Data: dendrometer data

Week 11

- Lecture: Seasonality, seasonal decomposition (trend, seasonal, residue), Hilbert transform
- Exercise: Practice the same topics learned during the lecture. Data: monthly atmospheric CO2 concentration, hourly air temperature

Week 12

- Lecture: Derivatives, differencing
- Exercise: Practice the same topics learned during the lecture. Data: dendrometer data

Week 13

- Lecture: Forecasting. ARIMA
- Exercise: Practice the same topics learned during the lecture. Data: vegetation variables (sap flow, ET, DBH, etc)

Final Project

In consultation with the lecturer, students will ask a specific scientific question about a site of their choosing (from NOAA, USGS, Fluxnet), and answer it using the tools learned during the semester. The report will be written in Jupyter Notebook,

combining in one document all the calculations, documentation, figures, analysis, and discussion. 50% of the final grade.

Part I

Basic data manipulation and plotting

1 Pandas

2 Pyplot

3 First Steps — basic time series analysis

Import packages. If you don't have a certain package, e.g. 'new-package', just type pip install newpackage

```
import urllib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os.path
import matplotlib.dates as mdates
import datetime as dt
import matplotlib as mpl
from pandas.tseries.frequencies import to_offset
from scipy.signal import savgol_filter
```

This is how you download data from Thingspeak

```
filename1 = "test_elad.csv"
# if file is not there, go fetch it from thingspeak
if not os.path.isfile(filename1):
    # define what to download
    channels = "1690490"
    fields = "1,2,3,4,6,7"
    minutes = "30"

# https://www.mathworks.com/help/thingspeak/readdata.html
# format YYYY-MM-DD%20HH:NN:SS
    start = "2022-05-01%2000:00:00"
    end = "2022-05-08%2000:00:00"
```

```
# download using Thingspeak's API
# url = f"https://api.thingspeak.com/channels/{channels}/fields/{fields}.csv?minutes={mi
url = f"https://api.thingspeak.com/channels/{channels}/fields/{fields}.csv?start={start}
data = urllib.request.urlopen(url)
d = data.read()

# save data to csv
file = open(filename1, "w")
file.write(d.decode('UTF-8'))
file.close()
```

You can load the data using Pandas. Here we create a "dataframe", which is a fancy name for a table.

3.0.1 First graph

```
title = "my first graph")
# makes slanted dates
plt.gcf().autofmt_xdate()
```


3.0.2 Two columns in the same graph

```
ax.legend(loc="upper right")
```

<matplotlib.legend.Legend at 0x7fe6c9730610>

3.0.3 Calculate stuff

You can calculate new things and save them as new columns of your dataframe.

```
def calculate_es(T):
    es = np.exp((16.78 * T - 116.9) / (T + 237.3))
    return es

def calculate_ed(es, rh):
    return es * rh / 100.0

es = calculate_es(df['T1'])
ed = calculate_ed(es, df['RH'])
df['VPD2'] = es - ed
```

See if what you calculated makes sense.

<matplotlib.legend.Legend at 0x7fe6989ca700>

3.0.4 Two y axes

Text(0, 0.5, 'Temperature (deg C)')

3.1 NaN, Missing data, Outliers

```
# %matplotlib widget
start = "2022-05-03 12:00:00"
end = "2022-05-06 00:00:00"
fig, ax = plt.subplots(1, figsize=(8,4))
# plot using pandas' plot method
df.loc[start:end, 'T2'].plot(ax=ax,
                             linestyle='-',
                             marker='o',
                             color="tab:blue",
                             label="data")
# annotate examples here:
# https://jakevdp.github.io/PythonDataScienceHandbook/04.09-text-and-annotation.html
                                               # text to write, if nothing, then ""
ax.annotate("NaN",
            xy=('2022-05-03\ 20:30:00',\ 25), # (x,y coordinates for the tip of the arrow)
            xycoords='data',
                                              # xy as 'data' coordinates
            xytext = (-20, 60),
                                              # xy coordinates for the text
            textcoords='offset points',
                                              # xytext relative to xy
            arrowprops=dict(arrowstyle="->") # pretty arrow
ax.annotate("outlier",
            xy=('2022-05-03 22:30:00', 85),
            xycoords='data',
            xytext=(40, -20),
            textcoords='offset points',
            arrowprops=dict(arrowstyle="->")
ax.annotate("missing rows",
            xy=('2022-05-05\ 00:00:00', 25),
            xycoords='data',
            xytext=(0, 40),
            textcoords='offset points',
            arrowprops=dict(arrowstyle="->")
```

[Text(0.5, 0, ''), Text(0, 0.5, 'Temperature (deg C)')]

The arrows (annotate) work because the plot was df['column'].plot()

If you use the usual
ax.plot(df['column'])

then you matplotlib will not understand timestamps as x-positions. In this case follow the instructions below.

```
# %matplotlib widget

start = "2022-05-03 12:00:00"
end = "2022-05-06 00:00:00"

fig, ax = plt.subplots(1, figsize=(8,4))

ax.plot(df.loc[start:end, 'T2'], linestyle='-', marker='o', color="tab:blue", label="data")

t_nan = '2022-05-03 20:30:00'
x_nan = mdates.date2num(dt.datetime.strptime(t_nan, "%Y-%m-%d %H:%M:%S"))
```

```
ax.annotate("NaN",
            xy=(x_nan, 25),
            xycoords='data',
            xytext=(-20, 60),
            textcoords='offset points',
            arrowprops=dict(arrowstyle="->")
t_outlier = '2022-05-03 22:30:00'
x outlier = mdates.date2num(dt.datetime.strptime(t_outlier, "%Y-%m-%d %H:%M:%S"))
ax.annotate("outlier",
            xy=(x_outlier, 85),
            xycoords='data',
            xytext=(40, -20),
            textcoords='offset points',
            arrowprops=dict(arrowstyle="->")
t_missing = '2022-05-05 00:00:00'
x_missing = mdates.date2num(dt.datetime.strptime(t_missing, "%Y-%m-%d %H:%M:%S"))
ax.annotate("missing rows",
            xy=(x_missing, 25),
            xycoords='data',
            xytext=(0, 40),
            textcoords='offset points',
            arrowprops=dict(arrowstyle="->")
# code for hours, days, etc
# https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d %b, %H:00'))
plt.gcf().autofmt_xdate()
ax.set(xlabel="",
       ylabel="Temperature (deg C)")
```

[Text(0.5, 0, ''), Text(0, 0.5, 'Temperature (deg C)')]

```
80
                              outlier
  NaN
                                                     missing rows
     30
     20
                           04 May, 12:00
      03 W84, 18:00
                    04 May, 06:00
                                 04 May, 18:00
                                        05 May, 00:00
                                                      05 May 12:00
                                                             05 May 18:00
             OA MAY, 00:00
                                               05 May 06:00
                                                                    06 M84, 00:00
03 Way, 12:00
```


3.2 Resample

3.2.1 Downsampling

[Text(0.5, 0, 'time'), Text(0, 0.5, 'temperature (deg C)')]

3.2.2 Filling missing data

[Text(0.5, 0, 'time'), Text(0, 0.5, 'temperature (deg C)')]

3.3 Smoothing noisy data

Let's first download data from a different project.

```
filename2 = "test_peleg.csv"
# if file is not there, go fetch it from thingspeak
if not os.path.isfile(filename2):
    # define what to download
    channels = "1708067"
    fields = "1,2,3,4,5"
    minutes = "30"
    # https://www.mathworks.com/help/thingspeak/readdata.html
    # format YYYY-MM-DD%20HH:NN:SS
    start = "2022-05-15%2000:00:00"
    end = "2022-05-25\%2000:00:00"
    # download using Thingspeak's API
    # url = f"https://api.thingspeak.com/channels/{channels}/fields/{fields}.csv?minutes={mi
    url = f"https://api.thingspeak.com/channels/{channels}/fields/{fields}.csv?start={start}
    data = urllib.request.urlopen(url)
    d = data.read()
    # save data to csv
    file = open(filename2, "w")
    file.write(d.decode('UTF-8'))
```

	entry_id	Т	Tw	RH	VPD	dist			
timestamp									
2022-05-18 20:09:3	31+00:00	2471	.6	23.8	5 23.	3125	65.32	1.02532	7.208
2022-05-18 20:10:3	32+00:00	2471	7	23.8	8 23.	2500	65.32	1.02717	7.208
2022-05-18 20:11:3	33+00:00	2471	.8	23.9	0 23.	2500	65.23	1.03107	7.276
2022-05-18 20:12:3	33+00:00	2471	9	23.9	0 23.	2500	65.19	1.03226	7.208
2022-05-18 20:13:3	34 + 00:00	2472	20	23.8	9 23.	2500	65.15	1.03282	7.633
									•••
2022-05-24 12:18:3	35 + 00:00	3271	.1	27.4	7 26.	1250	47.49	1.92397	8.925
2022-05-24 12:19:3	6+00:00	3271	.2	27.4	7 26.	1250	47.62	1.91921	8.925
2022-05-24 12:20:3	89 + 00:00	3271	.3	27.4	7 26.	1250	47.96	1.90675	8.925
2022-05-24 12:21:4	0+00:00	3271	4	27.4	7 26.	1875	47.75	1.91444	8.925
2022-05-24 12:22:4	1+00:00	3271	.5	27.4	9 26.	1875	47.94	1.90971	8.925

3.4 Smoothing noisy data

3.4.1 Moving average and SavGol

```
# %matplotlib widget

fig, ax = plt.subplots(1, figsize=(8,4))

# apply a rolling average of size "window_size",
# it can be either by number of points, or by window time
# window_size = 30 # number of measurements
window_size = '120min' # minutes
```

<matplotlib.legend.Legend at 0x7fe6a0525730>

Part II Outliers and Gaps

4 Z-score

$$z = \frac{x - \mu}{\sigma},$$

Let's write a function that identifies outliers according to the Z-score.

where

```
def zscore(df, degree=3):
    data = df.copy()
    data['zscore'] = (data - data.mean())/data.std()
    outliers = data[(data['zscore'] <= -degree) | (data['zscore'] >= degree)]
    return outliers['value'], data
```

Now we can simply use this function:

```
threshold = 2.5
outliers, transformed = zscore(tx, threshold)
```

Source: Atwan (2022)

Part III Resampling

5 Upsampling, interpolation

6 Downsampling

Part IV Best practices

7 Dates

Part V Smoothing

8 Convolution

Running windows of different shapes (kernels)

This is the temperature for Tel Aviv, between 2 and 5 of January 2022. Data is in intervals of 10 minutes, and was downloaded from the Israel Meteorological Service.

We see that the temperature curve has a rough profile. Can we find ways of getting smoother curves?

Convolution is a fancy word for averaging a time series using a running window. We will use the terms **convolution**, **running average**, **and rolling average** interchangeably. See the animation below. We take all temperature values inside a window of width 500 minutes (51 points), and average them with equal weights. The weights profile is called **kernel**.

The pink curve is much smoother than the original! However, the running average cannot describe sharp temperature changes. If we decrease the window width to 200 minutes (21 points), we get the following result.

There is a tradeoff between the smoothness of a curve, and its ability to describe sharp temporal changes.

8.1 Kernels

We can modify our running average, so that values closer to the center of the window have higher weights, and those further away count less. This is achieved by changing the weight profile, or the shape of the kernel. We see below the result of a running average using a triangular window of base 500 minutes (51 points).

Things can get as fancy as we want. Instead of a triangular kernel, which has sharp edges, we can choose a smoother gaussian kernel, see the difference below. We used a gaussian kernel with 60-minute standard deviation (the window in the animation is 4 standard deviations wide).

8.2 Math

The definition of a convolution between signal f(t) and kernel k(t) is

$$(f*k)(t) = \int f(\tau)k(t-\tau)d\tau.$$

The expression f*k denotes the convolution of these two functions. The argument of k is $t-\tau$, meaning that the kernel runs from left to right (as t does), and at every point the two signals (f and k) are multiplied together. It is the product of the signal with the weight function k that gives us an average. Because of $-\tau$, the kernel is flipped backwards, but this has no effect to symmetric kernels, like to ones in the examples above. Finally, the actual running average is not the convolution, but

$$\frac{(f*k)(t)}{\int k(t)dt}.$$

Whenever the integral of the kernel is 1, then the convolution will be identical with the running average.

8.3 Numerics

Running averages are very common tools in time-series analysis. The pandas package makes life quite simple. For example, in order to calculate the running average of temperature using a rectangular kernel, one writes

```
df['temperature'].rolling(window='20', center=True).mean()
```

- window=20 means that the width of the window is 20 points. Pandas lets us define a window width in time units, for example, window='120min'.
- center=True is needed in order to assign the result of averaging to the center of the window. Make it False and see what happens.
- mean() is the actual calculation, the average of temperature over the window. The rolling part does not compute anything, it just creates a moving window, and we are free to calculate whatever we want. Try to calculate the standard deviation or the maximum, for example.

It is implicit in the command above a "rectangular" kernel. What if we want other shapes?

8.3.1 Gaussian

)

where * window_width is an integer, number of points in your window * std_gaussian is the standard deviation of your gaussian, measured in sample points, not time!

For instance, if we have measurements every 10 minutes, and our window width is 500 minutes, then window_width = 500/10 + 1 (first and last included). If we want a standard deviation of 60 minutes, then std_gaussian = 6. The gaussian kernel will look like this:

You can take a look at various options for kernel shapes here, provided by the **scipy** package. The graph above was achieved by running:

```
g = scipy.signal.gaussian(window_width, std)
plt.plot(g)
```

8.3.2 Triangular

Same idea as gaussian, but simpler, because we don't need to think about standard deviation.

8.4 Which window shape and width to choose?

Sorry, there is not definite answer here... It really depends on your data and what you need to do with it. See below a comparison of all examples in the videos above.

9 LOESS

10 A perfect smoother

Source: Eilers (2003)

GitHub repository

Noisy series y of length m.

The smoothed series is called z.

We have conflicting interests:

- we want a z series "as smooth as possible".
- however, the smoother z is, the farthest from y it will be (low fidelity).

Roughness:

$$R = \sum_i (z_i - z_{i-1})^2$$

Fit to data:

$$S = \sum_{i} (y_i - z_i)^2$$

Cost functional to be minimized:

$$Q = S + \lambda R$$

Part VI Stationarity

11 Stochastic processes

12 Autocorrelation

See the temperatures for Jerusalem in a 4-day interval:

12.1 Question

If I know the temperature right now, what does that tell me about the temperature 10 minutes from now? How about 100 minutes? 1000 minutes?

To answer this, we need to talk about **autocorrelation**. Let's start by introducing the necessary concepts.

12.2 Mean and standard deviation

Let's call our time series from above X, and its length N. Then:

$$\text{mean}\quad \mu = \frac{\sum\limits_{i=1}^N X_i}{N}$$
 standard deviation
$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^N (X_i - \mu)^2}{N}}$$

The mean and standard deviation can be visualized thus:

One last basic concept we need is the expected value:

$$E[X] = \sum_{i=1}^N X_i p_i$$

For our time series, the probability p_i that a given point X_i is in the dataset is simply 1/N, therefore the expectation becomes

$$E[X] = \frac{\sum_{i=1}^{N} X_i}{N}$$

12.3 Autocorrelation

The autocorrelation of a time series X is the answer to the following question:

if we shift X by τ units, how similar will this be to the original signal?

In other words:

how correlated are X(t) and $X(t+\tau)$?

Using the Pearson correlation coefficient

we get

$$\rho_{XX}(\tau) = \frac{E\left[(X_t - \mu)(X_{t+\tau} - \mu)\right]}{\sigma^2}$$

A video is worth a billion words, so let's see the autocorrelation in action:

https://youtu.be/tpf-tuYHR5w

A few comments:

• The autocorrelation for $\tau = 0$ (zero shift) is always 1. [Can you prove this? All the necessary equations are above!]

Pearson correlation coefficient between X and Y:

$$\rho_{X,Y} = \frac{E\left[(X - \mu_X)(X_Y - \mu_Y)\right]}{\sigma_X \sigma_Y}$$

Part VII Time lags

13 Cross-correlation

```
import numpy as np
print('dfvdfv')
```

dfvdfv

14 Dynamic Time Warp

15 LDTW

according to this paper

Part VIII

Frequency

16 Fourier transform

17 Filtering

18 Nyquist-Shannon sampling theorem

Part IX Seasonality

19 Seasonal Decomposition

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters() # datetime converter for a matplotlib
import seaborn as sns
sns.set(style="ticks", font_scale=1.5)
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.dates as mdates
from matplotlib.dates import DateFormatter
```

20 Trends in Atmospheric Carbon Dioxide

 $\label{eq:main_contration} \begin{array}{l} \text{Mauna Loa CO2 concentration.} \\ \text{data from NOAA} \end{array}$

```
url = "https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_weekly_mlo.csv"
df = pd.read_csv(url, header=47, na_values=[-999.99])

# you can first download, and then read the csv
# filename = "co2_weekly_mlo.csv"
# df = pd.read_csv(filename, header=47, na_values=[-999.99])

df
```

year	r moi	nth	day	dec	cimal ave	erage	ndays	1	year ago	10 years ago	increase since 1800
0	1974	5		19	1974.379	95 3	33.37	5	NaN	NaN	50.40
1	1974	5		26	1974.398	36	32.95	6	NaN	NaN	50.06
2	1974	6		2	1974.417	78 3	32.35	5	NaN	NaN	49.60
3	1974	6		9	1974.437	70 3	32.20	7	NaN	NaN	49.65
4	1974	6		16	1974.456	32 3	32.37	7	NaN	NaN	50.06
	•••						•				
2510	2022	6		26	2022.483	36 4	20.31	7	418.1	4 395.36	138.71
2511	2022	7		3	2022.502	27 4	19.73	6	417.4	9 395.15	5 138.64
2512	2022	7		10	2022.521	9 4	19.08	6	417.2	394.59	138.52
2513	2022	7		17	2022.541	1 4	18.43	6	417.1	4 394.64	138.41
2514	2022	7		24	2022.560)3 4	17.84	6	415.6	8 394.11	138.36

```
df['date'] = pd.to_datetime(df[['year', 'month', 'day']])
df = df.set_index('date')
df
```

year	mont	h day	decir	nal average	ndays	1 yea	ır ago 10 ye	ars ago inc	rease since 1800
date									
1974-05-19	1974	5	19	1974.3795	333.37	5	NaN	NaN	50.40
1974-05-26	1974	5	26	1974.3986	332.95	6	NaN	NaN	50.06
1974-06-02	1974	6	2	1974.4178	332.35	5	NaN	NaN	49.60
1974-06-09	1974	6	9	1974.4370	332.20	7	NaN	NaN	49.65
1974-06-16	1974	6	16	1974.4562	332.37	7	NaN	NaN	50.06
•••				•••			•••	•••	•••
2022-06-26	2022	6	26	2022.4836	420.31	7	418.14	395.36	138.71
2022-07-03	2022	7	3	2022.5027	419.73	6	417.49	395.15	138.64
2022-07-10	2022	7	10	2022.5219	419.08	6	417.25	394.59	138.52
2022-07-17	2022	7	17	2022.5411	418.43	6	417.14	394.64	138.41
2022-07-24	2022	7	24	2022.5603	417.84	6	415.68	394.11	138.36

fill missing data. interpolate method: 'time' interpolation methods visualized

year	mont	h day	decima	l average	ndays	1 yea	r ago 10 year	ars ago	increase since 1800	co2
date										
1974-05-19	1974	5	19	1974.3795	333.37	5	NaN	NaN	50.40	
1974-05-26	1974	5	26	1974.3986	332.95	6	NaN	NaN	50.06	
1974-06-02	1974	6	2	1974.4178	332.35	5	NaN	NaN	49.60	
1974-06-09	1974	6	9	1974.4370	332.20	7	NaN	NaN	49.65	
1974-06-16	1974	6	16	1974.4562	332.37	7	NaN	NaN	50.06	
		•••	•••			•••		•••		
2022-06-26	2022	6	26	2022.4836	420.31	7	418.14	395.36	138.71	
2022-07-03	2022	7	3	2022.5027	419.73	6	417.49	395.15	138.64	
2022-07-10	2022	7	10	2022.5219	419.08	6	417.25	394.59	138.52	
2022-07-17	2022	7	17	2022.5411	418.43	6	417.14	394.64	138.41	

У	year	month	day	decimal	average	ndays	1 year ago	o 10 years a	go increase	e since 1800	co2
date											
2022-07	7-24	2022	7	24 20	022.5603	417.84	6 4	115.68 3	94.11	138.36	

20.1 decompose data

seasonal_decompose returns an object with four components:

• observed: Y(t)• trend: T(t)• seasonal: S(t)• resid: e(t)

Additive model:

$$Y(t) = T(t) + S(t) + e(t)$$

Multiplicative model:

$$Y(t) = T(t) \times S(t) \times e(t)$$

20.1.0.1 Interlude

learn how to use zip in a loop

```
letters = ['a', 'b', 'c', 'd', 'e']
  numbers = [1, 2, 3, 4, 5]
  # zip let's us iterate over to lists at the same time
  for 1, n in zip(letters, numbers):
      print(f"{1} = {n}")
a = 1
b = 2
```

c = 3d = 4

e = 5

Plot each component separately.


```
# %matplotlib widget

decomposed = decomposed_m

fig, ax = plt.subplots(1, 2, figsize=(10,6))
ax[0].plot(df['co2'], color="tab:blue", label="observed")
ax[0].plot(decomposed.trend * decomposed.resid, color="tab:orange", label="trend*resid")
```

```
ax[0].plot(decomposed.trend * decomposed.seasonal, color="tab:red", label="trend*seasonal")
ax[0].plot(decomposed.trend, color="black", label="trend")
ax[0].set(ylabel="CO$_2$ concentration (ppm)",
          title="Mauna Loa CO$_2$ concentration")
ax[0].legend(frameon=False)
start = "2000-01-01"
end = "2003-01-01"
zoom = slice(start, end)
ax[1].plot(df.loc[zoom, 'co2'], color="tab:blue", label="observed")
ax[1].plot((decomposed.trend * decomposed.resid)[zoom], color="tab:orange", label="trend*res
ax[1].plot((decomposed.trend * decomposed.seasonal)[zoom], color="tab:red", label="trend*sea
ax[1].plot(decomposed.trend[zoom], color="black", label="trend")
date_form = DateFormatter("%Y")
ax[1].xaxis.set_major_formatter(date_form)
ax[1].xaxis.set_major_locator(mdates.YearLocator(1))
ax[1].set_title("Components, 2000--2003");
```


21 Hilbert transform

Part X Rates of change

22 Derivatives