$$|B| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ ca_{i1} & ca_{i2} & ca_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = c \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = c|A|$$
(3.2.4)

Demostración

Para probar (3.2.4) se expande el renglón i de A para obtener

$$\det B = ca_{i1}A_{i1} + ca_{i2}A_{i2} + \dots + ca_{in}A_{in} = c(a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}) = c \det A$$

En el caso de las columnas se puede hacer una prueba similar.

EJEMPLO 3.2.7 Illustración de la propiedad 3.2.2

Observación

Al utilizar la propiedad 3.2.2 se puede probar (vea el problema 3.2.37) que para cualquier escalar α y cualquier matriz Ade $n \times n$, det $\alpha A = \alpha^n \det A$.

Sea
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 4 \\ 0 & -2 & 5 \end{pmatrix}$$
. Entonces det $A = 16$. Si se multiplica el segundo renglón

por 4 se tiene
$$B = \begin{pmatrix} 0 & -1 & 2 \\ 12 & 4 & 16 \\ 0 & -2 & 5 \end{pmatrix}$$
 y det $B = 64 = 4$ det A . Si se multiplica la tercera

-3 se obtiene
$$C = \begin{pmatrix} 1 & -1 & -6 \\ 3 & 1 & -12 \\ 0 & -2 & -15 \end{pmatrix}$$
 y det $C = -48 = -3 \det A$.

P Propiedad 3.2.3

Sea

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{pmatrix}, B = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{pmatrix}$$

$$y C = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & + & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & + & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & + & a_{nj} & \cdots & a_{nn} \end{pmatrix}$$

Entonces

$$\det C = \det A + \det B \tag{3.2.5}$$