Parishram (2025)

Chemistry

Solutions

DPP: 7

- Q1 What mass of NaCl must be dissolved in 65.0 g of water to lower the freezing point of water by 7.5°C? The freezing point depression constant (K_f) for water is 1.86°C/m. Assume van't Hoff factor for NaCl is 1.87. (Molar mass of NaCl = 58.5) g)
- Q2 What mass of ethylene glycol (molar mass = 62.0 g mol^{-1}) must be added to 5.50 kg of water to lower the freezing point of water from 0°C to -10.0° C? (K, for water = 1.86 K kg mol⁻¹)?
- Q3 Determine the osmotic pressure of a solution prepared by dissolving 2.5×10^{-2} g of K_2SO_4 in 2L of water at 25°C, assuming that it is completely dissociated. (R = 0.0821 L atm K⁻¹ mol^{-1} , Molar mass of $K_2SO_4 = 174 \text{ g mol}^{-1}$)
- Q4 Osmotic Pressure of 0.4% urea solution is 1.64 atm and that of 3.42% cane sugar is 2.46 atm, the OP of the solution is;
 - (A) 0.82 atm
- (B) 2.05 atm
- (C) 1.64 atm
- (D) 4.10 atm

- Q5 4L of 0.02 M aqueous solution of NaCl was diluted by adding one litre of water. The molarity of the resultant solution is
 - (A) 0.004
- (B) 0.008
- (C) 0.012
- (D) 0.016
- **Q6** Which of the following units is useful in relating the concentration of a solution with its vapour pressure?
 - (A) mole fraction
 - (B) parts per million
 - (C) mass percentage
 - (D) molarity
- Q7 Considering the formation, breaking and strength of hydrogen bond, predict which of the following mixtures will show a positive deviation from Raoult's law?
 - (A) Methanol and acetone.
 - (B) Chloroform and acetone.
 - (C) Nitric acid and water.
 - (D) Phenol and aniline.

Answer Key

Q1	(8.19 to 8.2)	Q4	(B)
Q2	(1833 to 1833.4) gm	Q5	(D)
Q3	(5.2 × 10 ⁻³) atm	Q6	(A)
		Q7	(A)

Hints & Solutions

Q1 Text Solution:

Given:
$$M_2 = 58.5 \text{ g mol}^{-1} \text{ w}_1 = 65 \text{ g}$$

$$\Delta T_f = 7.5$$
°C K_f = 1.86 K kg mol⁻¹ i = 1.87

Substituting these values in the formula

$$\Delta T_f = i K_f m \qquad \Delta T_f = i K_f \frac{w_2 \times 1000}{M_2 \times w_1}$$

$$\therefore 7.5 = 1.87 \times 1.86 \times \frac{w_2 \times 1000}{58.5 \times 65}$$

or
$$w_2 = \frac{7.5 \times 58.5 \times 65}{1.87 \times 1.86 \times 1000}$$

$$\Delta 1_f - t R_f \text{ in} \qquad \Delta 1_f - t R_f \frac{M_f}{M_f}$$

$$\therefore 7.5 = 1.87 \times 1.86 \times \frac{w_2 \times 1000}{58.5 \times 65}$$
or $w_2 = \frac{7.5 \times 58.5 \times 65}{1.87 \times 1.86 \times 1000}$
or $w_2 = \frac{28518.75}{3478.2} = 8.199$

: Mass of NaCl to be dissolved, $w_2 = 8.199$ g.

Q2 Text Solution:

According to the formula:

$$M_2 = \frac{1000 \times K_f \times w_2}{w_1 \times \Delta T_f}$$

Where
$$[M_2 = 62, w_1 = 5.50, K_f = 1.86]$$

Substituting the values in the formula, we get

$$62 = \frac{1000 \times 1.86 \times w_2}{1000 \times 5.50 \times 10}$$

62 =
$$\frac{1000 \times 1.86 \times w_2}{1000 \times 5.50 \times 10 \times 1000}$$

or $w_2 = \frac{62 \times 5.50 \times 10 \times 1000}{1.86 \times 1000} = \frac{3410}{1.86}$

$$= 1833$$
gm $= 1.833$ kg

: Mass of ethylene glycol, $w_2 = 1.833$ kg.

Q3 Text Solution:

$$(5.2 \times 10^{-3})$$
 atm

and
$$M_2 = 174 \text{ gmol}^{-1}$$

$$T = 25^{\circ}C = 298K$$

Osmotic pressure, = $\frac{i \times w_2 RT}{M_2 V}$

$$\pi = \frac{3 \times 2.5 \times 10^{-2} \times 0.0821 \times 298}{10^{-2} \times 0.0821 \times 298}$$

$$\pi = \frac{3 \times 2.3 \times 10^{-2} \times 0.1}{174 \times 2}$$

$$\pi = \frac{183.49 \times 10^{-2}}{348}$$

$$= 5.27 \times 10^{-3}$$
 atm.

Q4 Text Solution:

When two solutions are mixed.

$$\pi_1 = 1.64 \text{ atm}$$

$$\pi_2 = 2.46 \text{ atm}$$

$$\pi = \frac{\pi_1 + \pi_2}{2}$$

$$=\frac{1.64+2.46}{2}$$

= 2.05 atm.

Q5 Text Solution:

Molarity
$$= \frac{n}{V} = 0.02 = \frac{n}{4}$$
 or n = 0.08 $M = \frac{n}{\frac{\text{Mass of water in kg}}{\text{Mass of water in kg}}} = \frac{0.08}{5} = 0.016.$

Q6 Text Solution:

Mole fraction is useful in relating vapour pressure with a concentration of the solution. According to Raoult's law, the partial vapour pressure of each component in the solution is directly proportional to its mole fraction present in solution.

A is one component.

$$p_A \propto x_A, x_A = \frac{n_A}{n_A + n_B}$$

Q7 Text Solution:

A mixture of Methanol and acetone shows positive deviation because methanolmethanol and acetone-acetone interactions are stronger than methanol- acetone. The more hydrogen bonds are broken the less number of new H-bonds are formed.

