Prova di Comunicazioni Numeriche 075II

17 Luglio 2023

- 1. Si consideri il polinomio $g(D) = D^3 + D^2 + 1$.
 - (a) Dimostrare che g(D) può essere utilizzato come polinomio generatore per un codice ciclico con n=7 e trovare il corrispondente valore di k;
 - (b) Trovare la matrice generatrice sistematica del codice.
 - (c) Sapendo che $d_{min}=3$ e data la parola ricevuta $\mathbf{y}=\mathbf{x}+\mathbf{e}=[1,0,1,1,1,0,0],$ sfruttare le proprietà dei codici ciclici per trovare $\hat{\mathbf{e}}$ e, successivamente, $\hat{\mathbf{x}}$. (4 punti)
- 2. Dato il codice convoluzionale con polinomi generatori (in notazione ottale) $g_1 = 6$ e $g_2 = 7$, disegnare lo schema a blocchi ed il diagramma di stato del codificatore. Assumendo che il codificatore parta dallo stato 00 e vi torni dopo 5 intervalli di segnalazione, data la sequenza ricevuta $\mathbf{y} = \mathbf{x} + \mathbf{e} = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0]$, trovare la sequenza $\hat{\mathbf{x}}$ secondo il criterio di decodifica a massima verosimiglianza. (4 punti).
- 3. Il codice a blocco $\mathcal C$ con n=4 e k=2 ha le seguenti parole di codice:

$$C = \{0000, 1011, 0101, 1110\}$$

- (a) Trovare una matrice generatrice del codice;
- (b) Determinare i coset del codice;
- (c) Decodificare la parola ricevuta $\mathbf{y} = \mathbf{x} + \mathbf{e} = [0, 1, 0, 0]$, utilizzando i coset leader. La parola decodificata è univoca? Motivare la risposta. (2 punti)
- 4. Enunciare ed applicare ad un problema a scelta il teorema di integrazione. (3 punti)
- 5. Enunciare ed applicare ad un problema a scelta la prima formula di Poisson. (3 punti)
- 6. Si lanciano due dadi. Calcolare la probabilità di ottenere: (3 punti)
 - (a) due numeri superiori a 3;
 - (b) due numeri la cui somma è 6;

- (c) due numeri la cui somma non supera il 6.
- 7. Le variabile aleatorie X,Y,Z sono indipendenti e uniformemente distribuite nell'intervallo $[-1,1],\ [-2,2]$ e [-4,4]. Sia N=X+0.5Y+0.25Z una variabile aleatoria con valor medio μ_n e varianza σ_n^2 . (3 punti)
 - (a) Calcolare $Pr(-3 \le N \le 3)$;
 - (b) Calcolare un bound superiore per $\Pr(|N \mu_n| \ge \sqrt{7})$.
- 8. Dato il sistema di comunicazione numerico PAM illustrato in figura dove $g_T(t) = g_R(t) = \text{rect}(t/T)$ e w(t) è un processo aleatorio di rumore Gaussiano bianco con densità spettrale di potenza $N_0/2$. (4 punti)

- (a) Calcolare il campione x(k) ottenuto all'istante di campionamento t=kT;
- (b) Dimostrare che i campioni di rumore ottenuti a diversi istanti di campionamento sono indipendenti.
- 9. Calcolare (a partire dal campione $\tilde{x}(k) = c_k + \tilde{n}(k)$ in uscita dal filtro di ricezione) la probabilità di errore sul simbolo di un sistema di comunicazione numerico 4-QAM in funzione del rapporto E_s/N_0 (4 punti)