1. Séries numéricas

(Slides com ligeiras adaptações de outros já existentes fortemente baseados no Capítulo 3 dos Apontamentos de Cálculo II da Prof. Doutora Virgínia Santos (disponíveis no Moodle))

Universidade de Aveiro, 2024/2025

Cálculo II - C

Séries numéricas

Definição: Seja $(a_n)_{n\in\mathbb{N}}$ uma sucessão de números reais. A expressão

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

chama-se série gerada pela sucessão $(a_n)_{n\in\mathbb{N}}$. A série também pode ser representada por

$$\sum_{n=1}^{+\infty} a_n \quad \text{ou} \quad \sum_{n \in \mathbb{N}} a_n \quad \text{ou} \quad \sum_{n \ge 1} a_n.$$

Dizemos que a_n é o termo geral da série. Seja, para cada $n \in \mathbb{N}$,

$$S_n = a_1 + a_2 + a_3 + \cdots + a_n = \sum_{k=1}^n a_k.$$

A sucessão $(S_n)_{n\in\mathbb{N}}$ chama-se sucessão das somas parciais

Convergência de uma série

Definição: Dizemos que a série $\sum_{n=1}^{\infty} a_n$ é convergente se

$$\lim_{n\to+\infty} S_n$$

existe e é finito. Neste caso, chama-se soma da série ao valor desse limite e escrevemos

$$\sum_{n=1}^{+\infty} a_n = \lim_{n \to +\infty} S_n.$$

Se $\lim_{n\to +\infty} S_n$ não existe ou é infinito, dizemos que a série é divergente.

Séries numéricas

Exercício: Indique a natureza das seguintes séries e, em caso de convergência, calcule a sua soma:

$$\sum_{n=1}^{+\infty} (-1)^n$$

- $\bullet \sum_{n=1}^{+\infty} \left(\frac{1}{n} \frac{1}{n+1} \right)$

Séries numéricas

Observação: O estudo das séries numéricas é composto por duas vertentes:

- determinar a natureza da série (convergência ou divergência da série);
- no caso de convergência, calcular a soma da série.

O cálculo da soma de uma série convergente não é, em geral, possível dada a dificuldade em determinar o limite da sucessão das somas parciais.

Há dois exemplos de séries para as quais é possível calcular a sua soma, caso sejam convergentes: são as séries geométricas e as séries de Mengoli.

Séries geométricas

Definição: Chama-se série geométrica a toda a série que é gerada por uma progressão geométrica, ou seja, trata-se de uma série do tipo:

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=0}^{+\infty} ar^{n} = \sum_{n=1}^{+\infty} ar^{n-1},$$

onde $a \in \mathbb{R} \setminus \{0\}$ é o primeiro termo da série e $r \in \mathbb{R} \setminus \{0\}$ a razão.

Observação: Note-se que o termo geral da sucessão de somas parciais é dado por

$$S_n = egin{cases} na & ext{se } r = 1 \ \\ \dfrac{1 - r^n}{1 - r} a & ext{se } r
eq 1. \end{cases}$$

Séries geométricas

Proposição: A série geométrica $\sum_{n=1}^{r} ar^{n-1}$ converge se e só se |r| < 1. Em

caso de convergência, a soma é dada por $\frac{a}{1-r}$.

Exercício: Verifique se as seguintes séries são convergentes e, em caso afirmativo, determine a sua soma:

$$\bullet \sum_{n=0}^{+\infty} \left(\frac{99}{100}\right)^n$$

$$\sum_{n=1}^{+\infty} \frac{2^{n-1}}{3^n}$$

Séries de Mengoli

Definição: Uma série $\sum_{n=1}^{\infty} a_n$ diz-se série de Mengoli (ou redutível ou

telescópica) se o seu termo geral se puder escrever numa das seguintes formas:

$$a_n = u_n - u_{n+p}$$
 ou $a_n = u_{n+p} - u_n$

onde $(u_n)_{n\in\mathbb{N}}$ é uma sucessão e $p\in\mathbb{N}$.

Observação: No caso em que $a_n = u_n - u_{n+p}$, temos que

$$S_n = \sum_{k=1}^n (u_k - u_{k+p}) = u_1 + \cdots + u_p - (u_{n+1} + \cdots + u_{n+p}).$$

No caso em que $a_n = u_{n+p} - u_n$, temos que

$$S_n = \sum_{k=1}^n (u_{k+p} - u_k) = u_{n+1} + \ldots + u_{n+p} - (u_1 + \ldots + u_p).$$

Séries de Mengoli

Exercício: Estude a natureza das seguintes séries e, em caso de convergência, determine a sua soma:

3
$$\sum_{n=1}^{+\infty} \left(\frac{1}{2n} - \frac{1}{2n+2} \right)$$

$$\int_{n-2}^{+\infty} \frac{2}{n^2-1}$$

Séries numéricas

Observação: O estudo da natureza de uma série pode ser feito sem recurso à construção explicita da sucessão das somas parciais $(S_n)_{n\in\mathbb{N}}$, recorrendo a **testes** ou **critérios de convergência**.

Teorema: A série $\sum_{n=1}^{+\infty} a_n$ é convergente se e só se a série

$$R_m = a_{m+1} + a_{m+2} + \ldots = \sum_{n=m+1}^{+\infty} a_n$$

(série dos termos após m) é convergente. Adicionalmente, se $\sum_{n=1}^{+\infty} a_n$ é convergente, então

$$\lim_{m\to+\infty} R_m = 0.$$

Nota: A R_m chamamos **resto de ordem** m da série.

Propriedades das séries numéricas

Observação: O teorema anterior afirma que a natureza de uma série não depende dos seus primeiros termos, isto é, as séries

$$\sum_{n=1}^{+\infty} a_n e \sum_{n=m+1}^{+\infty} a_n$$

ou são ambas convergentes ou ambas divergentes.

Condição necessária de convergência

Teorema (Condição necessária de convergência): Se a série $\sum_{n=1}^{+\infty} a_n$ é convergente, então $\lim_{n\to\infty} a_n = 0$.

Observação: O resultado anterior é considerado como um primeiro critério para estudar a natureza de uma série. Na verdade, o critério é útil na sua forma contrapositiva, isto é:

$$\lim_{n \to +\infty} a_n \neq 0$$
 ou $\lim_{n \to +\infty} a_n$ não existe $\Rightarrow \sum_{n=1}^{+\infty} a_n$ é divergente

revelando-se, assim, como um "critério de divergência".

Note-se que se $\lim_{n \to +\infty} a_n = 0$, nada se pode concluir sobre a natureza da série.

Limites notáveis úteis no estudo da natureza de uma série numérica

$$\lim_{n \to +\infty} \sqrt[n]{n^p} = 1 \quad (p \in \mathbb{N})$$
 $\lim_{n \to +\infty} \sqrt[n]{n!} = +\infty$
 $\lim_{n \to +\infty} \left(1 + \frac{b}{n}\right)^n = e^b \quad (b \in \mathbb{R})$
 $\lim_{n \to +\infty} \frac{a^n}{n^k} = +\infty \quad \text{se} \quad a > 1 \quad (k \in \mathbb{R})$

Natureza de uma série

Exercício: Analise a natureza das séries seguintes:

Propriedades aritméticas das séries numéricas

Teorema:

• Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries numéricas convergentes com somas A e B, respetivamente. Então a série $\sum_{n=1}^{+\infty} (a_n + b_n)$ é convergente e tem soma A + B, isto é,

$$\sum_{n=1}^{+\infty} (a_n + b_n) = \sum_{n=1}^{+\infty} a_n + \sum_{n=1}^{+\infty} b_n = A + B.$$

• Se $\sum_{n=1}^{+\infty} a_n$ é convergente e tem soma A, então, para todo $\lambda \in \mathbb{R}$, $\sum_{n=1}^{+\infty} \lambda a_n$ é convergente e tem soma λA , isto é,

$$\sum_{n=1}^{+\infty} \lambda a_n = \lambda \sum_{n=1}^{+\infty} a_n = \lambda A.$$

Propriedades aritméticas das séries numéricas

Teorema:

- Seja $\lambda \in \mathbb{R} \setminus \{0\}$. Se $\sum_{n=1}^{+\infty} a_n$ é divergente, então $\sum_{n=1}^{+\infty} \lambda a_n$ é divergente.
- Se $\sum_{n=1}^{+\infty} a_n$ é convergente e $\sum_{n=1}^{+\infty} b_n$ é divergente, então a série $\sum_{n=1}^{+\infty} (a_n + b_n)$ é divergente.

Observação: Note-se que o último resultado nada afirma quanto ao caso de ambas as séries serem divergentes. Na verdade, a série resultante $\sum_{n=0}^{+\infty} (a_n + b_n)$ tanto pode ser convergente como divergente.

Propriedades das séries numéricas: exercícios

Exercício: Verifique se as seguintes séries são convergentes e, em caso afirmativo, determine a sua soma:

$$\bullet \sum_{n=1}^{+\infty} 50 \ln \left(\frac{n}{n+2} \right)$$

$$\sum_{n=1}^{+\infty} \frac{3^n - 2^n}{4^n}$$

Séries de termos não negativos

Definição: Dizemos que a série $\sum_{n=1}^{\infty} a_n$ é uma série de termos não negativos se $a_n \geq 0$, $\forall n \in \mathbb{N}$.

Teorema: Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não negativos. Então a sucessão das somas parciais associada à série é monótona crescente.

Teorema: Seja $\sum_{n=1}^{+\infty} a_n$ uma série de termos não negativos. Então, a série é convergente se e só se a sua sucessão das somas parciais é limitada superiormente.

Critério do Integral

Teorema: (Critério do Integral) Seja $\sum_{n=1}^{+\infty} a_n$ uma série de termos não negativos e $f:[1,+\infty[\to\mathbb{R}]$ uma função decrescente e tal que $f(n)=a_n$, $\forall n\in\mathbb{N}$. Então

$$\sum_{n=1}^{+\infty} a_n \quad \text{e} \quad \int_1^{+\infty} f(x) dx$$

têm a mesma natureza.

Exercício: Estude a natureza das seguintes séries:

- $\sum_{n=1}^{+\infty} \frac{1}{n}$
- $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

Série harmónica de ordem p

Observação: A condição necessária de convergência e o Critério do Integral permitem concluir que a série do tipo

$$\sum_{n=1}^{+\infty} \frac{1}{n^p}$$

converge se p > 1 e diverge se $p \le 1$.

Esta série é conhecida como série harmónica de ordem p ou série de Dirichlet de ordem p e é muito útil para estudar a natureza de outras séries numéricas.

Critério da Comparação

Teorema (Critério da Comparação): Suponha-se que existe $n_0 \in \mathbb{N}$ tal que

$$0 \le a_n \le b_n, \quad \forall n \ge n_0.$$

Então:

- $\sum_{n=1}^{+\infty} b_n$ converge $\Rightarrow \sum_{n=1}^{+\infty} a_n$ converge.
- $\sum_{n=1}^{+\infty} a_n$ diverge $\Rightarrow \sum_{n=1}^{+\infty} b_n$ diverge.

Observação: Convém notar que, se $\sum_{n=1}^{+\infty} b_n$ for divergente ou $\sum_{n=1}^{+\infty} a_n$ for convergente, nada se pode concluir.

Critério do Limite

Teorema (Critério do Limite): Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries tais que $a_n \ge 0$ e $b_n > 0$, $\forall n \in \mathbb{N}$. Suponha-se que existe o limite

$$L=\lim_{n\to\infty}\frac{a_n}{b_n}.$$

Então verificam-se as condições seguintes:

- se $L \in \mathbb{R}^+$, então as séries têm a mesma natureza.
- se L=0, $\sum_{n=1}^{+\infty}b_n$ converge $\Rightarrow \sum_{n=1}^{+\infty}a_n$ converge.
- se $L = +\infty$, $\sum_{n=1}^{+\infty} b_n$ diverge $\Rightarrow \sum_{n=1}^{+\infty} a_n$ diverge.

Critério do Limite

Observação: Podemos assim concluir que a série $\sum_{n=1}^{\infty} b_n$ funciona como referência, sendo necessário conhecer à partida a sua natureza. A escolha desta série é normalmente sugerida pela forma da série $\sum_{n=1}^{+\infty} a_n$. Em muitas

situações, as séries de Dirichlet $\sum_{n=1}^{+\infty} \frac{1}{n^p}$ ou as séries geométricas revelam-se de grande utilidade (como referência).

Exercícios

Exercício: Use o Critério da Comparação ou o Critério do Limite para estudar a natureza das séries seguintes:

$$(a) \sum_{n=1}^{+\infty} \frac{\sin^2(n)}{n^4}$$

(b)
$$\sum_{n=1}^{+\infty} \frac{1}{n + \sqrt{n^3}}$$

(c)
$$\sum_{n=1}^{+\infty} \frac{1}{17n-13}$$

(d)
$$\sum_{n=1}^{+\infty} \frac{10n^2}{n^6+1}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{37n^3+2}}$$

(f)
$$\sum_{n=1}^{+\infty} \operatorname{sen}\left(\frac{1}{n}\right)$$

(g)
$$\sum_{n=1}^{+\infty} \frac{\cos^4(n-1)}{n^{3/2}}$$

$$\mathsf{h})\,\sum_{n=1}^{+\infty}\frac{e^{1/n}}{n}$$

(i)
$$\sum_{n=1}^{+\infty} \frac{1}{n \cdot \sqrt[n]{r}}$$

$$(j) \sum_{n=1}^{+\infty} \frac{1}{n^2 \cdot \sqrt[n]{n}}$$

$$(k) \sum_{n=2}^{+\infty} \frac{1}{\ln^2(n)}$$

(I)
$$\sum_{n=1}^{+\infty} \frac{\cos(n) + 1}{2^n + 1}$$

Convergência simples e absoluta

Definição: Seja $\sum_{n=1}^{\infty} a_n$ uma série de números reais e $\sum_{n=1}^{\infty} |a_n|$ a correspondente série dos módulos.

- \bigcirc Se $\sum_{n=1}^{+\infty} |a_n|$ converge, então $\sum_{n=1}^{+\infty} a_n$ diz-se absolutamente convergente.

Teorema: Toda a série absolutamente convergente é também convergente.

Convergência simples e absoluta

Observação:

- ② Realça-se que se $\sum_{n=1}^{+\infty} |a_n|$ diverge, então nada se pode concluir sobre a natureza da série $\sum_{n=1}^{+\infty} a_n$. Esta pode ser convergente ou divergente.
- O Como $\sum_{n=1}^{\infty} |a_n|$ é uma série de termos não negativos, então podemos aplicar os critérios vistos anteriormente para estudar a sua natureza.

Convergência simples e absoluta

Exercício: Verifique se as séries seguintes são absolutamente convergentes:

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$

$$\sum_{n=1}^{+\infty} \frac{\cos(n)}{e^n}$$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n n}{n^2 + 1}$$

Critério de D'Alembert ou Critério do Quociente

Teorema (Critério de D'Alembert ou Critério do Quociente) Seja $\sum_{n=1}^{+\infty} a_n$ uma série de números reais não nulos e

$$L=\lim_{n\to+\infty}\frac{|a_{n+1}|}{|a_n|}.$$

Se o limite existir, verificam-se as condições seguintes:

- se $0 \le L < 1$, então $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
- se L > 1, então $\sum_{n=1}^{+\infty} a_n$ é divergente.

Nota: se L = 1, nada se pode concluir (devemos utilizar outro critério para estudar a natureza da série).

Critério de Cauchy ou Critério da Raiz

Teorema (Critério de Cauchy ou Critério da Raiz) Seja $\sum_{n=1}^{+\infty} a_n$ uma série

de números reais e

$$L=\lim_{n\to+\infty}\sqrt[n]{|a_n|}.$$

Se o limite existir, verificam-se as condições seguintes:

- se $0 \le L < 1$, então $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
- se L > 1, então $\sum_{n=1}^{+\infty} a_n$ é divergente.

Nota: se L=1, nada se pode concluir (devemos utilizar outro critério para estudar a natureza da série).

Exercícios

Exercício: Estude a natureza das seguintes séries:

(a)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n!2^n}$$

(c)
$$\sum_{n=1}^{+\infty} \frac{n^n}{2^n n!}$$

(e)
$$\sum_{n=1}^{n-1} (-1)^{n+1} \frac{n^n}{3^{n^2}}$$

(g)
$$\sum_{n=1}^{+\infty} n \left(\frac{4}{3}\right)^n$$

(b)
$$\sum_{n=1}^{+\infty} \left(\frac{\ln n}{n} \right)^n$$

(d)
$$\sum_{n=1}^{+\infty} \frac{n! n^2}{(2n)!}$$

$$(\mathsf{f})\,\sum_{n=1}^{+\infty}(-1)^n\left(\frac{n}{n+1}\right)^n$$

(h)
$$\sum_{n=1}^{+\infty} \frac{3^n n! + 1}{n^n}$$

Critério de Leibniz

Definição: Uma série alternada é uma série onde os seus termos são alternadamente positivos e negativos, ou seja, uma série do tipo

$$\sum_{n=1}^{+\infty} (-1)^n a_n$$
 ou $\sum_{n=1}^{+\infty} (-1)^{n+1} a_n$

onde $a_n > 0$, $\forall n \in \mathbb{N}$.

Teorema (Critério de Leibniz): Seja $\sum_{n=1}^{+\infty} (-1)^n a_n$ tal que:

- $a_n > 0, \forall n \in \mathbb{N}$
- $\bullet \lim_{n\to\infty} a_n = 0$
- a sucessão $(a_n)_{n\in\mathbb{N}}$ é monótona decrescente.

Então a série alternada é convergente.

Critério de Leibniz

Exercício: Estude a natureza das seguintes séries. Em caso de convergência, indique se a convergência é simples ou absoluta.

$$\bullet \sum_{n=2}^{+\infty} (-1)^n \frac{1}{n}$$