

What is claimed is:

1. A method of forming a gate electrode, comprising:
  - 2 forming a first layer of a first material having a first work function on a substrate;
  - 4 forming a second layer of a second material over the first layer, the second material having a second work function; and
  - 6 removing a portion of the first and second layers;7 wherein a stack formed by the first and second layers has a work function that is between the first work function and the second work function.

- 1 2. The method Claim 1, wherein the substrate is a silicon wafer with an insulating layer formed thereon.

- 1 3. The method of Claim 2, wherein the insulating layer comprises an oxide of silicon.

- 1 4. The method of Claim 2, wherein the second layer is substantially thicker than the first layer.

- 1 5. The method of Claim 2, further comprising providing an optimal channel doping for a predetermined relationship between an on current,  $I_{on}$ , and an off current,  $I_{off}$ .

1 6. An insulated gate FET, comprising:  
2       a gate dielectric layer disposed on a substrate;  
3       a gate electrode disposed over the gate dielectric; and  
4       a pair of source/drain regions disposed in the substrate along laterally  
5       opposed sidewalls of the gate electrode;  
6           wherein the gate electrode comprises a first material superjacent the gate  
7       dielectric, a second material superjacent the first the first material, the first  
8       material being a diffusion barrier with respect to the second material, and the  
9       thickness of the first material is such that the work function of the gate electrode  
10      is the work function of the second material.

1 7. The insulated gate FET of Claim 6, wherein the first material comprises  
2 TiN, and the second material comprises Al.

1 8. The insulated gate FET of Claim 6, wherein the first material comprises  
2 TiN, and the second material comprises Pd.

1 9. The insulated gate FET of Claim 6, wherein the first material comprises  
2 TaN, and the second material comprises Pd.

1 10. A method of tuning the work function of a gate electrode, comprising:  
2       forming a layer of a first conductive material superjacent a gate dielectric;  
3       and

5 forming a layer of a second conductive material superjacent the first  
6 conductive material;  
7 wherein the thickness of the first conductive material is greater than a first  
critical thickness and less than a second critical thickness.

1 11. The method of Claim 10, wherein the first conductive material comprises a  
2 material selected from the group consisting of TiN, and TaN.

1 12. The method of Claim 10, wherein the second conductive material  
2 comprises a material selected from the group consisting Al, Ti, Ta, Ni, Pd, and  
3 Pt.

1 13. The method of Claim 10, wherein the first conductive material comprises  
2 TiN, the second material comprises Al, the first critical thickness is approximately  
3 20 angstroms and the second critical thickness is approximatley100 angstroms.

1 14. A method of making a field effect transistor, comprising:  
2 forming a gate dielectric disposed on a semiconductor, a gate electrode  
3 comprising a first material disposed over the gate dielectric, and a pair of  
4 source/drain regions substantially disposed in the semiconductor and aligned to  
5 laterally opposed sidewalls of the gate electrode; and  
6 forming a work function modulation layer comprising a second material  
7 disposed intermediate the gate dielectric and the gate electrode, wherein the

8 thickness of the work function modulation layer is such that the work function of  
9 the gate electrode is different than the work function of the first material and  
10 different from the work function of the second material.

1 15. The method of Claim 14, wherein the work function modulation layer acts  
2 as a diffusion barrier to substantially preclude diffusion of the first material into  
3 the gate dielectric.

1 16. The method of Claim 14, wherein the work function modulation layer is  
2 titanium nitride.

1 17. The method of Claim 15, wherein the work function modulation layer is  
2 tantalum nitride.

1 18. An integrated circuit, comprising:  
2 an n-channel FET having a gate electrode comprising a first TiN layer  
3 superjacent a first gate dielectric and an Al layer superjacent the first TiN layer;  
4 and  
5 a p-channel FET having a gate electrode comprising a second TiN layer  
6 superjacent a second gate dielectric and a Pd layer superjacent the second TiN  
7 layer.

1 19. The integrated circuit of Claim 18, wherein the first TiN layer is between  
2 approximately one atomic monolayer and 100 angstroms thick; and the second  
3 TiN layer is between one atomic monolayer and 100 angstroms thick.

1 20. The integrated circuit of Claim 18, wherein the first TiN is approximately  
2 10 angstroms thick and the second TiN is approximately 20 angstroms thick.

1 21. An integrated circuit, comprising:  
2 an n-channel FET having a gate electrode comprising a TiN layer  
3 superjacent a first gate dielectric and an Al layer superjacent the TiN layer; and  
4 a p-channel FET having a gate electrode comprising a TaN layer  
5 superjacent a second gate dielectric and a Pd layer superjacent the TaN layer.

1 22. The integrated circuit of Claim 21, wherein the TiN layer is between  
2 approximately one atomic monolayer and 100 angstroms thick; and the TaN  
3 layer is between one atomic monolayer and 100 angstroms thick.

1 23. The integrated circuit of Claim 21, wherein the TiN is approximately 20  
2 angstroms thick.

1 24. The integrated circuit of Claim 23, wherein the TiN is an Al diffusion  
2 barrier, and the TaN is a Pd diffusion barrier.

1 25. An integrated circuit, comprising:  
2       a first FET of a first conductivity type, the first FET having a first work  
3       function modulation layer; and  
4       a second FET of the first conductivity type; the second FET having a  
5       second work function modulation layer;  
6       wherein the first and second work function modulation layers comprise the  
7       same material, and the thickness of the first work function modulation layer is  
8       different than the thickness of the second work function modulation layer.

1 26. The integrated circuit of Claim 25, wherein the first and second FETs have  
2       substantially identical channel doping profiles and the first and second FETs  
3       have different threshold voltages.