

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based on inhublished proprietary dates submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in his document unless the chave received the data on which the summaries and evaluation are based, either:

• From Bayer CropScience; or
• From other applicants once the period of data protection has expired. The summaries and evaluations contained in this document are based on impublished proprietary dates submitted for the purpose of the assessment undertaken by the contained in this document are based on impublished proprietary dates.

Version history

i contract of the contract of		
Date	Data points containing amendments or additions ¹ and brief description	Doment identific and version number
	> .	
	AT Û	
¹ It is suggested th SANCO/10180/20	at applicants adopt a similar approach to showing revisions and 13 Chapter 4 How to revise an Assessment Report	d version history as outlined in

	Table of Contents FATE AND REHAVIOUR IN THE ENVIRONMENT	
		′ %' D-&-
CP 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT.	Page \$5
CP 9.1	FATE AND BEHAVIOUR IN THE ENVIRONMENT.	
CP 9.1.1	Rate of degradation in soil	
CP 9.1.1.1	Laboratory studies \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~ 8
CP 9.1.1.2	Field studies	% & C
CP 9.1.1.2.1	Soil dissipation studies	®
CP 9.1.1.2.2	Soil dissipation studies Soil accumulation studies	Ø. 8
	Mobility in the soil	Ş 8
CP 9.1.2.1	Laboratory studies Q Q Q Q Q A	8
CP 9.1.2.2	Lysimeter studies 4 & Q Q	
CP 9.1.2.3	Laboratory studies Lysimeter studies Field leaching studies	Ş 8
CP 9.1.3	Estimation of concentrations in soft	9
CP 9.2	Fate and behaviour water and sediment	11
CP 9.2.1	Laboratory studies Lysimeter studies Field leaching studies Estimation of concentrations in soil Aerobic mineralisation in surface water Water/sediment study Irradiated water/sediment study Estimation of concentrations in groundwater Calculation of concentrations in groundwater	12
CP 9.2.2	Water/sediment study	12
CP 9.2.3	Irradiated water/sediment study	12
CP 9.2.4	Estimation of conventrations in groundwater	12
CP 9.2.4.1	Calculation of concentrations in groundwater.	13
CP 9.2.4.2	Additional field tests	16
CP 9.2.5	Estimation of concentrations in surface water and sediment	16
CP 9.3	Fate and behaviour in air	20
CP 9.3.1	Route and rate of degradation in air and transport was air	20
CP 9.4	Estimation of concentrations for other routes of exposure	20
₽,		
Q.		
Ž.		
Ö	Mobility in the soil Laboratory studies Lysimeter studies Field leaching studies Estimation of concentrations in seff Fate and behaviour in water and sediment Aerobic mineralisation in surface water Water/sediment study Irradiated water/sediment study Estimation of concentrations in groundwater Calculation of concentrations in groundwater Additional field tests Estimation of concentrations in surface water and sediment Fate and behaviour in air Route and rate of degradation in air and transport via air Estimation of concentrations for other routes of exposure	

CP 9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Use pattern considered in the environmental exposure and risk assessment

Table 9-1: Intended application pattern

Crop	Timing of application (range)	Number of applications	Application interval [days]	Maximum & label rate	Maximum application rate, individual treatments [g/ha]			
Maize	Seed treatment BBCH 00	1		0.125*				
* Sowing	* Sowing rate: 2.2 unit/ha (1 unit = 50 000 seeds), 0,125 L product/ont							

Compounds addressed in this document.

In addition to the active substance thiackprid, the degradation products summarised in Table 9-were addressed in this document as they have to be considered for exposite assessments.

Table CP 9-1: Active substance and degradation products addressed in this document

Compound / Codes Chemical Strugure	Considered for
Thiacloprid (YRC 2894) Active Substance (a.s.)	PEC _{soil}
Active Substance (a.s.)	PEC & PEC _{sed}
YRC 2894-amide (M02)	FEC _{soil}
(M02)	PEC _{gw} PEC _{sw} & PEC _{sed}
	PEC _{soil}
	PEC _{sw} & PEC _{sed}
YRC 2894-sulfanic acid (sodium salt shown) (M30)	PEC _{soil}
(sodium salt shown) CC N N (M30)	PEC _{gw} PEC _{sw} & PEC _{sed}
YRC2894-sulfonic acid amide	
(M34)	PEC _{gw}
YRC 2894-sulfonic acid amide (M34) YRC 2894-hiadiacine (M46) ONH2 ONH2 ONH2 ONH2 ONH2	PEC_{gw}
$\begin{array}{c c} (M46) & & & & \\ \hline \\ CI & N & O & NH_2 \\ \hline \end{array}$	

Definition of the residue for risk assessment

Table CP 9-2: Definition of the residue for risk assessment

Definition of the residue for risk assessment						
Justification for	the residue definition for risk assessment is provided by MCA Section 7.					
Table CP 9- 2:	Definition of the residue for risk assessment					
Compartment	Residue Definition					
Soil	Thiacloprid (YRC 2894) YRC 2894-amide (M02) YRC 2894-des-cyano (M29) YRC 2894-sulfonic acid (M30)					
Groundwater	Thiacloprid (YRC 2894) YRC 2894-amide (M02) YRC 2894-des-cyano (M29) YRC 2894-sulfonic acid (M30) YRC 2894-sulfonic acid amide (M34) YRC 2894-thiadiazine (M46)					
Surface water	Thiacloprid (YRC 2894) YRC 2894-amide (M02) YRC 2894-des-cyano (M29) YRC 2894-sulfonic acid (M30)					
Sediment	Thiacloprid (SRC 2894)					
Air	Thiacloprid (YRC 2894) D D D D D D D D D D D D D D D D D D D					

Fate and bepaviour in soil

Figure CP 9.1-1: Proposed degradation pathway of thiacloprid in soil under laboratory conditions considering all routes of soil degradation and lysimeter studies.

CP 9.1.1 Rate of degradation in soil

No specific studies with the formulation are required. For further information on the fate and behaviour in soil please refer to MCA Section 7, data points 7.1.1 and 7.1.2.

CP 9.1.1.1 Laboratory studies

For information on laboratory studies please refer to MCA Section 7, data point 7.1.2

Field studies CP 9.1.1.2

For information on field studies please refer to MCA section 7, date point 7.1.2

CP 9.1.1.2.1 Soil dissipation studies

extion 7 Sata point For information on field dissipation studies please refer to MCA

CP 9.1.1.2.2 Soil accumulation studies

For information on field accumulation studies please

CP 9.1.2 Mobility in the soil

For information on mobility studies please refer to MCA Section 7, data point 7.1

CP 9.1.2.1 Laboratory studies

For information on laboratory studies please refer to MCA Section 7, data point 7

CP 9.1.2.2 Lysimeter studies

For information on lysmeter studies please refer to Section 7, data point 7.1.4.2.

CP 9.1.2.3 Field leaching studies

For information on field leaching studies please refer to MCA Section 7, data point 7.1.4.3.

CP 9.1.3 Estimation of concentrations in soil

New calculations were performed to reflect findings from new studies presented in the active substance dossier, section 7 "Fate and behaviour in the environment". In addition these calculations considered the most recent guidance documents for exposure calculations. Calculations of predicted environmental concentrations in soil (PEC_{soil}) are presented below.

Endpoints for PEC_{soil}

For deriving the respective end points please refer to MCA Section 7 ata point 7.

Table CP 9.1.3- 1: Key modelling input parameters for this clopped and its notabolites

	Worst case D 50 Maximum Molar Molar mass non-normalized occurrence wisoil mass correction
Compound	morst case 1456 Maximum, Motor Molar mass non-normalized occurrence if soil mass correction of the first mass and the first mass of the fi
Thiacloprid	1357)* 2 400 2 2525 4 1
YRC 2894-amide (M02)	\$\frac{1}{2}\frac{1}{2
YRC 2894-sulfonic acid (M30)	97.6% 192 5 36.8 5 41.3328
YRC 2894-des-cyano (M29)	78903)#

*: worst case non-normalized field D 50 value.

: 2011: M-404822-01-1

: worst case non-normalized haboratory DT50 @lue.

Predicted environmental concentrations in soil PECs

Report: ; 2014 M-491012-01-1

Title: Thiackprid (TCP) and metabolites: PECsoil EUR - Use in oil seed rape and maize in

Europe

Report No.: EnSa-14-0806 Document No.: W49101201-

Guidelines: Onot applicable; not app

GLP/GEP: No 4

Methods and Materials: The predicted environmental concentrations in soil (PEC_{soil}) of thiacloprid and its metabolites were estimated based on a first tier approach using a Microsoft® Excel spreadsheet. A bulk density of 1 skg/L and a soil mixing depths of 5 cm were used as recommended by FOCUS (1997) and EU Commission (1995, 2000). The occumulation potential of thiacloprid and metabolites after long term use was also assessed employing the mixing depth of 20 cm to account for normal agricultural practices such as filling and soil mixing, for the calculation of the background concentration.

Detailed population data used for simulation of PEC_{soil} were compiled in Table CP 9.1.3-2.

Table CP 9.1.3- 2: Application pattern used for PEC_{soil} calculations of thiacloprid

			Amount reaching			
Individual crop	FOCUS crop used for interception	Rate per season	Interval	Plant interception	BBCH Stage	soil per season application
	_	[g a.s. /ha]	[days]	[%]	>	
Maize, GAP & simulation	maize	1 × 110	-8	0	00	1 10.0

Substance Specific Parameters: The compound specific input parameters (end-points for PEC soil calculations) are summarized in Table CP 9.1.3-

Findings: The maximum PEC_{soil} values for that long and its metabolite are summarised in Table CP 9.1.3-3. The maximum, short-term and long-term PECsoil values and the time weighted everage values (TWAC_{soil}) are provided thereafter.

Table CP 9.1.3- 3: Maximum PEC soil of this Goprid and its metabolites for the uses assessed

		YRC 2894 O-amide	YRC 2894 O -sulfonic acid	YRC 2894 -des-cyano
Use Pattern	PECsoil [mg/kg]	PECsoil mg/kg	PECsoil [m@/kg]	PEC _{soil} [mg/kg]
Maize, 1×110 g a.s./ha, 0%	© 0.147°	0.136	2 0.039 V	0.044

Table CP 9.1.3- 4: PEC@ (actual) of thiacloped and its metabolites

				0 %				
	Maize V 110 g.a.s./ha/0% interception Thaclopkid YRC 2894 YRC 2894 Sulfonic acid -des-cyano							
<u> </u>		Thaclopkid	∜YR€2894 \$	ŸRC 2894	YRC 2894			
Os		i maciopaya	🦃 - Amide 🔘	√ ⊈ulfonic acid	-des-cyano			
, Q	Time,	PEC Dil	"PECs@/	PECsoil	PECsoil			
	[daŷs]	[mag/kg]	🗬 [mg/kg] 🥏	[mg/kg]	[mg/kg]			
Initial	1 %T) %	″ 0 147 © `	0.136	0.039	0.044			
	29 1 ×	0.139		0.038	0.044			
Short term	© 2Å	08/22 10	0.1360	0.038	0.044			
				0.037	0.044			
		0.0120 0.0051 0.036 0.012 0.012	≫ <u>"0</u> .134	0.037	0.044			
, ¶	14 💸	0.07	©0.132	0.035	0.043			
(F)	21	00051	0.130	0.033	0.043			
Long	28	0.036	0.128	0.032	0.043			
Long term	28 42		9.124	0.029	0.042			
4	50	0.012 O	0.122	0.027	0.042			
	100	0.012	0.110	0.019	0.040			
Long term		0.012 0° 0001						

Table CP 9.1.3-5: TWACsoil of thiacloprid and its metabolites

		Thiacloprid	YRC 2894 -amide	YRC 2894 -sulfonic acid	YR © 2894 🖔 -des-cyano
	Time [days]	TWAC _{soil} [mg/kg]	TWAC _{soil} [mg/kg]	TWACsoil	TWA(Soil
Initial	0		_0	~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	1	0.143	0.136	Q 0.038	30 .044
Short term	2	0.139	Ø.136	0.038	Q 0.043 (X
	4	0.133	△ 0.136	0.038	ر 0.044 را سال 0.044 م
	7	0.124	0.135	Ø 0.038 \	D" @9.044_@"
	14	0.105	[∞] 0.134 ©	√° 0.067 °	\$\sqrt{0.04}
	21	0.090	@0.13 3	€ £36 €	0.043
Long term	28	0.078	0.152	0.035 °	\$ 950\43 €°
	42	0.061	0,30	△ 0.03\$	♥ .043 © ′
	50	0.05%	7.129 °	~ 0.032 ~	√ 0.04
	100	0,429 &	√ 0.123√ √	9.028 ®	$\sqrt{9}$ 0.0 $\sqrt{9}$ 2

Potential accumulation in soil The accumulation potential after long term use was also assessed. The results for a mixing depth of

PEC of this clopped and its metabolites taking the effect of accumulation into **Table CP 9.1.3-6:** account (mixing thepth of 20 cm)

Use Pattern	PECsojil	Thiacleprid	YRC 9894 -amide Pmg/kg	YRC 2894 -sulfonic acid [mg/kg]	YRC 2894 -des-cyano [mg/kg]
Maize 🔪 👟	plateau	©<0.001	© 0.028°	< 0.001	0.029
1 × 110 gg.s./ha, 0% interception	n togal*	0.147	× 0 <u>d</u> 65	0.039	0.073

^{*} total = plateau (background concentration/after projeti-year use) + max. PEC 3/11 (see Fehler! Verweisquelle konnte nicht gefunden werden.)

Fate and behaviour in water and sediment **CP 9.2**

The proposed degradation pathway of thiacloped in water and sediment is shown in Figure CP 9.2-1. Specific studies with the formulation have not been performed and are not required. For inform on the fate and behaviour in water and section 7 data point 7.2. Specific studies with the formulation have not been performed and are not required. For information

Figure CP 9.2-1: Proposed bio-degradation pathway of Thiacloprid (YRC 2894) in the aquatics.

For information on aerobic more ralisation in surface water studies please refer to MCA Section 7, data point 7.2.2.2.

CP 9.2.2

For information on water/security r to MCA Section 7, data point 7.2.2.3.

Irradiated water/sediment study

For information on wradiated water sediment studies please refer to MCA Section 7, data point 7.2.2.4.

Estimation of concentrations in groundwater **CP 9.2.4**

Calculations were performed, to reflect findings from new studies presented in the active substance dossier Sction "Fate and behaviour in the environment". In addition these calculations consider the most recent gordance documents for exposure calculations.

Calculations of predicted environmental concentrations in groundwater (PEC_{gw}) are presented below.

Endpoints for PECgw

For deriving the respective end points please refer to MCA Section 7, data point 7.1.

Table CP 9.2.4-1: Key modelling input parameters for thiacloprid and its metabolites

Compound	Formation fraction	DT ₅₀ [days]	Koc)2 [mL/g]	Kom)2 [n(E/g]	FREUNDLICH)20 exponent
Thiacloprid	1.0	5.4 ⁾¹	615.0	357.0	©0.880°
YRC 2894-amide (M02)	$0.61^{-0.02}$	41.3)1	293.0	آ ^گ 170.0	~ 0.8 90 ~
YRC 2894- sulfonic acid (M30)	$0.80^{-0.02}$	15.6	20.2	11.7	Ø940 Ø
YRC 2894-thiadiazine (M46)	0.44)5	1,9,8)3	9,6	5.6×	\$0.96 9 \$
YRC 2894-des-cyano (M29)	0.23)2	∆140.7)3	35 1.0	· 21,5,0	0.840
YRC 2894-sulfonic acid amide (M34)	$0.56^{-)2}$ 2	⁹ 48.8 ⁾⁴	√ 7.0 Ø	Q' ₁ (0	Ø000 €

-)1: Median of complete data set of normalized lab and field DT50 values.
-)2: Arithmetic mean of data set.
-)3: Geometric mean of lab data set.
-)4: Worst case of lab data set.

CP 9.2.4.1 Calculation of concentrations in groundwater

Predicted environmental concentrations in groundwater (PEG

Report: j; 2014; M-49 10/3-0

Title: Thiaclopfed (TCP) and metabolites: PEGgw FOCUS PEARL, PELMO EUR - Use in oil

seed rape and porize in Europe

Report No.: EnSa-14-08097 Document No.: M-491013-01-1

Guidelines: O pot applicable; not applicable

GLP/GEP: Of Mo

Materials and Methods: The predicted divironmental concentrations in groundwater (PEC_{gw}) for thiacloprid and its pretabolites were calculated using the simulation model FOCUS PEARL (version 4.4.4) and FOCUS PEIMO (version 5.5.3). Trop interception was taken into account according to the BBCH growth stage as recommended by FOCUS (2012). Application dates for the simulation runs were defined following the crop event dates of the respective crop and scenario as given by FOCUS (2000, 2009).

Detailed application data used for Simulation of PEC_{gw} were compiled in Table CP 9.2.4.1-1.

Table CP 9.2.4.1-1: Application pattern used for PECgw calculations

			Amount reaching			
Individual crop	FOCUS Gop Sused for interception	Rate per season	Interval	Plant interception	BBCH Stage	soil per season application
	25	[g a.s. /ha]	[days]	[%]		[g a.s. /ha]
Maize, GAP & Simulation	maize	1 × 110	-	0	00	1 × 110.0

^{)5:} Worst case assumption that M30 can only degrade to M34 and M46

For maize, the planting date was used as application date. All application dates are summarised in the table below.

Table CP 9.2.4.1- 2:

V.	
9.2.4.1-2: First application date	es and related information for thiacloprid as used for
the simulation runs	
Individual crop	Maize Every Year Incorp De cm Planting 1st App. Date/(Inflan dag)
Repeat Interval for App. Events	Every Year D O O
Application Technique	Incorp. (Wem)
Absolute / Relative to	2 Planting O P
Scenario	Maize Every Year Incorp Office 1st App. Date/(Juffan dag) Office 20 Apr/(110)
Scenario Scenario	Maize

Substance specific and model related input parameters for FOCUS PEARL & PELMO PECgw Substance specific and model related input parameters for FOCUS PEARL & PELMO PECgw calculations are summarised in Table CP 9-2:4.1. Degradation pathway related parameters are given in Table CP 9.2.4.1.1.

Table CP 9.2.4.1-3: Compound input parameters for thiacloprid and its metabolites

Parameter	Unit	ТСР	YRC 2894- amide	YRC 2894- sulfonic acid	YRC 2894- thiadiazine	XRC 2894- des-cyano	YRÇ 2894-7 golfonic avid antide
Common					.4	S	
Molar Mass	[g/mol]	252.7	270.7	336.8	275Æ	227.7	. 29 3.7 🗸
Solubility	[mg/L]	159	660	66 000	130000	570 @0 ″	~13500g\$
Vapour Pressure	[Pa]	3.00E-10	3.40E-10	380E-04	2,30E-05	1.10£-04 <i>g</i>	Ç5.90 ⋤ -07
Freundlich Exponent		0.880	0.830	C 0.940	_©0.960	20.840	1 ,690 0 (
Plant Uptake Factor		0.0^{A}	0.0	0.0	o.0°		උර්.0 @
Walker Exponent		0.7	0.7	0.7	¥ gi⊋a .	O.Z	0.7
PEARL Parameters						× ×	
Substance Code		TCP	M 02	∞ M3 0	Į≪MZ5€	№ 129 ~	™ № 34
DT ₅₀	[days]	5.4	@1.3 _ @	13.6	7 19.80	ŵ140.7€	<u></u> 48.8 € .
Molar Activ. Energy	[kJ/mol]	65.4	₫ 65.4°°	_ % 5.4 Q	65.4	65 ®	© 65.4°
Kom	[mL/g]	357.0	√ 170°.	11.7	<u></u> \$5.6 0	2,1,5.0	3,6
K_{f}	[mL/g]	- 🤊		v" . . ~	O -17	Q- W	
PELMO Parameters		Q			Ý.Õ		
Substance Code		AŞ '	Al Al	∜B1 ~	201	P AS	, 👰 B2
Rate Constant	[1/day]	0.02860	0.01680	0.04450	_&63500€	0,00490 %	0.01420
Q_{10}		@, 2.58√J	a 38 .C	× 2 <i>5</i> 8	√ 2.5 %		2.58
Koc	[mL/g] \approx	© 615 ³ .6√	293.0	1 0.2 6	× 9.6	© 371 © ×	6.3 #
* TOD 41: 1 :1	% .	Λ .		η –	. 📆 🕟	_	

^{*} TCP = thiacloprid

Table CP 9.2.4.1—P. Degradation pathway related parameters for thracloprid and its metabolites.

Degradation fraction fro (FOCU PEARL)	0.61 FCP -> M02 0.23 M02 -> M29 0 0.8 M02 -> M30 0
Degradation frontion fro	0.61 CP -> M02 0.23 M02 -> M29 0 0.8 M02 -> M34 0.44 M30 -> MZ5
(FOCUS PÉARI)	0.8 M02 AM30 A A M34 A A M34 A
(TOCODY LAKE)	© 56 M30 -> M34 ~
	% % % % 40 44 N420 -> 10475 ~
	0.07 7000 AS -> Or 0.0499000 AS -> BR/CO ₂ 0.0134000 A1 -> B1 0.0034000* A7 -> A2 0.01960000 1 -> C1 0.024900 B1 -> B2
	0.0499000 AS -> AO 0.0499000 AS -> BR/CO ₂ 0.0134000 A1 -> B1
\$ E	0.0134000 Al -> Bl
Degradation rate from -	0.0034000* A -> A2 0.0160000 1 -> C1
(FOCUS PLMO)	
(FOCUS PELMO)	0024900 B1 -> B2
	0.0350000 C1 -> 2 0.0000000 A2 -> 2 0.00000000 A2 -> 2
, **	
<i>a</i> , \	$Q_1 = 0.0042000 \text{ B2} -> < \text{BR/CO}_2$

^{*} The sum of formation fraction of YRC 2894 des-cyano (0.23) and YRC 2894-sulfonic acid (0.80) is slightly larger than 1. The FOCUS PELMO, this would lead to faster disappearance of YRC 2894-amide (by 3 %) due to the way the specification of degradation parameters is technically implemented (FOCUS PEARL is not affected). We order to overcome this issue, the formation of YRC 2894-des-cyano was limited to 0.20 in FOCUS PELMO runs. This change doe not have any measurable effect on the PECgw of YRC 2894-des-cyano but is essential to keep internal consistency of the description of other metabolites.

Finding PEC_{gw} were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. FOCUS PEARL and PELMO PEC_{gw} results for thiacloprid and its metabolites after application to maize are given in Table CP 9.2.4.1- 5.

A Since degradation data from first trials are considered hear, the plant uptake factors as set to zero as a worst case assumption.

Table CP 9.2.4.1- 5: Maize: FOCUS PEARL & PELMO PEC_{gw} results of thiacloprid and metabolites

					
	Maize	e, 1 × 110 g a.s.	/ha, 0% interc	ep ti on	
ТСР	YRC 2894- amide	YRC 2894- sulfonic action	YRC 2894	YRC 2894 des-cyano	YRC 2894- sulfonic acid amide
PEC _{gw} [μg/L]	PEC _{gw} [μg/L]	PECgw [µg/L]	PEC [µg/L]	PEÇÇ [µg/L]	PEC [µ@L]
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.250 0.819 0.392 0.610 0.275 0.187 0.044	0.845 1.986 0.592 0.594 0.441 0.664	0.001 0.001 0.001 0.001 0.001 0.001 0.001	4.837 9.044 4.360
PEC _{gw} [μg/L]	PECgw [µg@L]	PECgw [µgQL]	PEC	PECO [µg/L]	PEC _{gw} γ [μg/L]
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	\$9.001 \$\leq 0.000 \$\leq 0.001 \$\leq 0.001 \$\leq 0.000 \$\leq 0.0001 \$\leq 0.001	Ø.151 &	0.466 0.466 0.137	©.001 0-0.001 0.001 0.001 0.001 0.001	4.121 6.914 4.795 4.282 3.355 2.333 1.623 2.899
	PECgw [μg/L] <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	TCP YRC 2894- amide PECgw [μg/L] [μg/L] <0.001	TCP YRC 2894- amide Sulfonic acid PECgw [μg/L] [μg/L] [μg/L] <0.001	TCP YRC 2894-amide YRC 2894-sulfonic acid YRC 2894-thiadiazint PECgw [μg/L] PECgw [μg/L] PECgw [μg/L] PECgw [μg/L] <0.001	PECgw

Conclusion: There are no concerns for groundwater from the use of thiacloprid in accordance with the use pattern for the representative formulation.

The concentration of the metabolites YRO2894 sulforic acid YRC 2894-thiadiazine and YRC 2894-sulfonic acid amide may exceed 1 µg/L, however, the relevance of these metabolites has been assessed and all metabolites are non-relevant in groundwater (see Document N4).

CP 9.2.4.2 Additional field tests

No additional field studies were performed or required due to low PEC_{gw} values calculated (see CP 9.2.4.7).

CP 9.2.5 Estimation of concentrations in surface water and sediment

Calculations were performed considering the most recent guidance documents for exposure calculations and taking into account the residue definition derived from the environmental fate studies on MCA Section 7.

Calculations of predicted environmental concentrations in surface water (PEC_{sw}) for thiacloprid and its metabolites are presented below.

Table CP 9.2.5- 1: Key modelling input parameters for thiacloprid and its metabolites at Steps 1-2 level PEC calculations

Parameter	Unit	Thiacloprid	YRC 2894 -amide	YRC 2894 -des-Cyano	YRC 2894 -sulfonic avid
Molar Mass	g/mol	252.7	270.7	√ 2 27.7	33608 4
Water Solubility	mg/L	159	© 60	\$ 57000	56000 S
Koc	mL/g	615	₹293	371	20.2 ×
Degradation			4		
Soil	days	5.4	41.3	.140.7°	15,6
Total System	days	15.8	99.2	2 10000° Z	1000 * 5
Water	days	15.8	99.2	1000	√£000.**
Sediment	days	15.8 📞	_&_^ 99 <u>.</u> &	/ ±000 * ©	°>√1000€**
Max Occurrence		0 ,			L A
Water / Sediment	%	10 <u>0</u>	~~ @69 - Q,~~	0.0001)" Ø9.7 🔆
Soil	%	100	86.7	332	19.7

^{*} Default value used

Table CP 9.2.5- 2: Additional modelling input parameters for this cloprid and its metabolites at step 3/4 level PE O calculation

	% 1° 2		· • . • . • . • . • . • . • . • . •	A
Parameter	© Un ©	Thiacleprid	YRC 2894-whide	YR 2894-des-cyano
Vapour Pressure	Pa	3.0E-10 €	3.4E-10	1.1E-04
Plant Uptake Factor	Ä J	0.0	(A) (D.O) (S)	0.0
Wash-Off Factor PRZW	l/cm	© 0.5°	S 0.5	0.5
Wash-Off Factor MACRQ	1/mm²> «	y 10 ₄ 05 💍	0.05	0.05
Degradation	~ ~	() - ()		
Soil &	d,©g/s ○ °	1 % 5.4%	1.3 ₀	140.7
Form. Frac. PRZM	molar basis		♥ 0.616€	0.230
Form. Frace MACRO	molar basis		0.659	0.207
	. 9//		Ž, O	
Molar Mass Corr. Factor		Ô -√7 (4.07123	-
Max Occ.	%	y & C	69	-
Tot. Corr. Factor 💝 🧳		, W-	0.73915	-
Max Occ. at Day		. 0" -, 0"	© ^V 35	-
&O (i)	~~ ~~			

Predicted environmental concentrations in water (PECsw) and sediment (PECsed)

Report: ; 2014; M-491014-01-1

Title: Thiacloprid (TCP) and metabolites: PECsw, sed FOCUS EUR - Use in maize and oil seed rape in Europe

Report No. EnSa-14-0808
Document No. Al-49104-01-1

Guidelines: Onot applicable; not applicable

GLP GEP: no

Report: ; 2014; M-491773-01-1

Materials and Methods: Predicted environmental concentrations in surface water and sediments (PEC_{sw} and PEC_{sed}) of thiacloprid and its metabolites have been calculated for the use in maize in Europe. All relevant entry routes of a compoundant of surface water (in the case of a solid treatment drain flow) were considered in these calculations.

At FOCUS Step 2 the application period was set to March Southern Europe was considered. Details and the control of the co

Application pattern used for PECsw,sed calculations at FOCUS steps 182 **Table CP 9.2.5-3:**

Crop	Rate Interval BBCH FOCK crop group Season Crop cover
Maize, GAP & simulation	1 × 1 10

Learning of the user of the us In FOCUS Step 3, the application date for each seenario is determined by the Pesticide Application Timer (PAT), which is part of the FOCUS SW Scenarios. The user may only define an application time window. For the me as seed treatment in main a relative application 2 weeks before emergence was employed. Details of the parameters used in the Step 3 calculations are summarised in Table CP

Table CP 9.2.5-4: Application dates of thiacloprid for the FOCUS Step 3 calculations

2.5- 4: Applicati	ion dates of thiacloprid for the FOCUS Step 3 calculations	_ 0
Parameter	Maize	
PAT start date		
rel./absolute	Emergence, -14 days	
Appl. method	soil incorp. (4 cm)	4 . 4
(appl. type)	(CAM 8)	
No of appl.		
PAT window	30	
range	₹ 30 €	
Appl. interval	(CAM 8) 1 30 1	
Application	PAT Start Date/(Julian Day) Appl. Date	
Details	TAT Start Date/(Junian Day)	
D1	21-Apr/(110) 20-Apr 20-Apr 26-Apr	, Q
D2	21-Opr/(11 0 20-Apr 26-Apr 26-Apr 26-Apr	
D3	21-Apr/(1116) 20-Apr	4
D4	26-Apr/(1) 6) 2 26-Apr	
D5	26-Apr/(16) × 4 26-Apr	
D6	06-Apr/(96) 09-Apr 09-Apr	
R1	19-Apr/(109) 2 26-Apr	0
R2	19-Apr/(109) 26-Apr 27-17-Apr/(109) 222-Apr	Q L
R3	17-Apr/(107) 22-Apr	
R4	1 27-Mer/(86) D & CS Apr	<i>(</i>

Compound input parameters for the Steps & 2 simulation runs are summarised in Table CP 9.2.5-1 and for the Steps 3&4 simulation runs on Table CP 9.2.5-2

Note, Step 3 assessment was calculated also for the metabolites PRC 2894-aroide and YRC 2894-descyano. Due to technical limitations of the models used for the calculations a special treatment is needed for YRC 2894-des-cyano. The metabolite is considered here to be a direct degradation product of the parent substance even thoughous evaluation of the soil degradation studies indicates that YRC 2894-des-cyano is formed from the YRC 2894-amide this set up cannot be directly reproduced in Step 3 of FOCUS_{sw}). The employed formation fraction of 28% from the parent represents a worst case estimate of the degradation behaviour of YRC 2894-des-cyano in soil.

Findings: Steps 2: The maximum PEC_{sw} and PEC_{sed} values for thiacloprid and its metabolites at Steps 1&2 are summarised in Table CP 92.5-5

Table CP \$2.5-5: Maximum PE & and PEC values for this cloprid and its metabolites at Steps 1&2

Uso pottorn	Scenario			Thiactoprid YRC 2894 -amide		YRC 2894 -des-cyano		YRC 2894 -sulfonic acid	
Use pattern	A S	PEC [µg/L]	PEC _{sed}	PEC _{sw} [μg/L]	PEC _{sed} [μg/kg]	PEC _{sw} [μg/L]	PEC _{sed} [µg/kg]	PEC _{sw} [μg/L]	PEC _{sed} [μg/kg]
Maize	Step 1 Step 2 0	20.15 ≈	\$ 123.9	24.49	71.75	7.339	27.23	9.375	1.894
1 × 110 g a.s./ha	N-EW Single S-KW Single	2.411 4.823	14.83 29.66	4.580 9.159	13.42 26.84	1.439 2.878	5.339 10.68	1.570 3.139	0.317 0.634

Step 3: The maximum PEC_{sw} and PEC_{sed} values of thiacloprid, YRC 2894-amide and YRC 2894-descyano for relevant FOCUS Step 3 scenarios are given in the table below.

Table CP 9.2.5-6: Maize: Maximum PEC_{sw} and PEC_{sed} values for Thiacloprid, YRC 2894-amide and YRC 2894-des-cyano at Step 3

Use pattern		Maize, 1 × 110 g a.s./ha								
		Thiaclopri	d	YRC 2894 -amide		W*	2894 S			
FOCUS	Entry	PECsw	PECsed	PECsw	PECsed	PEC _{sw}	PLOC sed			
scenario	route*	[µg/L]	[µg/kg]	[µg/L]	[μg/kg🎉 🤊	[μg/L]	ျွစ်g/kg] 📞 ိ			
D3 (ditch)	D	< 0.001	< 0.001	<0.001	<0.0	<0.001	~~0.00 6			
D4 (pond)	D	< 0.001	< 0.001	<0.001	0.002	<0.001	\$ 0.0 69]			
D4 (stream)	D	< 0.001	< 0.001	<i>€</i> 9.002	₹0 .001	Ø:003 Q	Q- 3 903 (c)			
D5 (pond)	D	< 0.001	< 0.001	△ <0.001	Ø.00 <u>1</u> °		°0.005 و"			
D5 (stream)	D	< 0.001	< 0.001	©″ [∞] <0.001 ×	<0.001	Q <0.00j	© 0.00			
D6 (ditch)	D	< 0.001	< 0.001	<0.001 @	, <0:901 g	< 0.001	J <07 0 701			
R1 (pond)	R	< 0.001	<0.00 %	©0.001	₹ 0 .001 😂	₹9 .001 ~	<0.001			
R1 (stream)	R	< 0.001	<0.00	«J<0.0@j	Ø₹0.0 %	Ø0.00 ¼	≈ 0.001 ∘			
R2 (stream)	R	< 0.001	<0.001	© < Q. Ø1	<0. 0 01	<0.0 ₽	©<0.0 %			
R3 (stream)	R	< 0.001	20 .001	≪ 0,001 ∂	< 6,0 01 . C	° <0001	<0.001			
R4 (stream)	R	< 0.001	Ø.0027	©0.001	Ø.001	9 .001	6 .001			

^{*} Entry route: letters S, D, and R correspond the depainant entry path spray

CP 9.3 Fate and behaviour in air

For information on the fate and bekaviour of air please refer to MC

Route and rate of degradation in air and transport via air **CP 9.3.1**

For information on Juite and rate of degradation in air and transport via air please refer to MCA Section 7, data points 7,39 and 7.3.2

calculations are required. volativity and short half-life in air no PEC Due to the low

Estimation of concentrations for other routes of exposure

There are no other routes of exposure if the product is ased according to good agricultural practice. Therefore no further estimations are considered necessary.