Olimpiada Nacional de Física 1999. Hermosillo, Sonora. Examen Teórico.

http://olimpiadafisicayucatan.farap.net

Problema 1. Un péndulo en Marte.

Un péndulo tiene un período de oscilación de 10 segundos sobre la superficie de la tierra. Este mismo péndulo es llevado a la superficie de l planeta Marte. El objeto del problema es encontrar cual será su nuevo período de oscilación. Lo siguiente le será de utilidad:

-Cuando la tierra se halla a una distancia de $d=5.56\times 10^{10}$ m de Marte, se observa que el planeta tiene un diámetro angular $\alpha=25$ ".1

-Se observa además que la distancia angular máxima entre el centro de Marte y su satélite Fobos es de $\beta=34^\circ.5$ y su período de revolución alrededor de Marte es de $T=2.76\times10^4$ s. Considere la órbita de Fobos circular. $G=6.67\times10^{-11}$ Nm²Kg²

Recuerde que 1" = 3.14/(180 * 60 * 60)
rad = 4.9 × 10^{-6} rad

Problema 2. Aterrizaje Suave.

Un recipiente contiene dos líquidos que se mezclan y forman dos capas de alturas a_1 y a_2 . Sus densidades son p_1 y p_2 respectivamente . Un objeto pequeño y de perfil hidrodinámico, es soltado sobre la superficie de la capa superior . El objeto cae y llega al fondo del recipiente en el preciso momento en que su velocidad es cero. ¿ Cual será la densidad del objeto? Suponga que la viscosidad de los líquidos es despreciable y que el objeto al tener perfil hidrodinámico no presente resistencia la moverse.

AYUDA: La energía potencial del objeto se disipa completamente al llegar al fondo con velocidad cero. El trabajo de resistencia solo la realizan las fuerzas de flotación.

Problema 3. Partícula en un campo.

Una partícula de carga q y masa m se mueve por el punto A con una velocidad V_0 y un ángulo α con respecto a la dirección de un campo magnético uniforme de magnitud \mathbf{B} . Si queremos que la partícula pase justamente por el punto \mathbf{C} , ¿Qué valor o valores deberá tener el campo \mathbf{B} ? El punto \mathbf{C} se halla a una distancia d del punto \mathbf{A} .

