Tail Current Source Resistance in Common-Mode Gain of Diff. Amplifier

Dr. Anil Kumar Gundu

Role of Tail Current Source Resistance in Common-Mode Gain (I)

What is the impact of the tail current source's finite output resistance on the common-mode gain of a differential amplifier employing an active and perfectly matched current mirror if:

- (i) the channel length modulation (CLM) of $M_1 M_4$ are zero
- (ii) The channel length modulation of M_1 , M_2 is zero but the channel length modulation of transistors M_3 and M_4 is non-zero

Case (i): The common-mode gain remains zero when the channel length modulation (CLM) of M_1 , M_2 , M_3 , and M_4 is zero, even with a finite output resistance in the tail current source. This is because identical currents through M_1 and M_2 result in a zero short-circuit current, as the current mirror (M_3 – M_4) replicates this current. Thus, zero transconductance (G_m) leads to a zero common-mode gain.

Role of Tail Current Source Resistance in Common-Mode Gain (II)

What is the impact of the tail current source's finite output resistance on the common-mode gain of a differential amplifier employing an active and perfectly matched current mirror if:

- (i) the channel length modulation (CLM) of M_1 , M_2 , M_3 , and M_4 are zero
- (ii) The channel length modulation of M_1 , M_2 is zero but the channel length modulation of transistors M_3 and M_4 is non-zero

Case (ii): I_{M1} spilts between r_{o3} and $1/g_{m3}$. A fraction of current mirrored to M_4 and hence the structure exhibits transconductance. The output impedance looking into the output is r_{o4} (as CLM = o for M_1 and M_2) which eventually lead to a negative common-mode gain. To mitigate this, the transconductance multiplied by a source resistance ($2g_mR_s$) should be significantly larger than 1, implying that the sizing of input devices like M_1 and M_2 needs to be larger than that of the tail current source.

