430.457

Introduction to Intelligent Systems

Prof. Songhwai Oh ECE, SNU

LEARNING WITH HIDDEN VARIABLES: THE EM ALGORITHM

Latent (or Hidden) Variables

• Latent variables can dramatically reduce the number of parameters required to specify a Bayesian network.

Figure 20.10 (a) A simple diagnostic network for heart disease, which is assumed to be a hidden variable. Each variable has three possible values and is labeled with the number of independent parameters in its conditional distribution; the total number is 78. (b) The equivalent network with *HeartDisease* removed. Note that the symptom variables are no longer conditionally independent given their parents. This network requires 708 parameters.

Unsupervised Clustering

- The problem of discerning multiple categories in a collection of objects.
- The problem is unsupervised because the category labels are not given.
- Chicken-and-egg problem: We do not know the assignments nor the parameters

k-means Algorithm

- k = 2 (number of clusters)
- Means: μ_1, μ_2
- Indicator variables $c_n^i \in \{0,1\}$: $c_n^i = 1$ if x_n is assigned to the *i*th cluster.
- Iterate the following two steps until convergence.
 - 1. Find assignments

$$c_n^i = \begin{cases} 1 & \text{if } i = \arg\min_j ||x_n - \mu_j||^2 \\ 0 & \text{otherwise.} \end{cases}$$

2. Update means

$$\mu_i = \frac{\sum_n c_n^i x_n}{\sum_n c_n^i}$$

• k-means algorithm finds a solution which minimizes the following cost function (distortion measure).

$$J = \sum_{n=1}^{N} \sum_{i=1}^{k} c_n^i ||x_n - \mu_i||^2.$$

Prof. Songhwai Oh

Introduction to Intelligent Systems

Mixture Models

• Mixture distribution with k components:

mixture weight

$$P(\mathbf{x}) = \sum_{i=1}^{k} P(C=i)P(\mathbf{x}|C=i)$$

• Mixture of Gaussians (or a Gaussian Mixture Model (GMM))

$$P(\mathbf{x}) = \sum_{i=1}^{k} P(C=i) \mathcal{N}(\mathbf{x}|\mu_i, \Sigma_i)$$

• Mixture of Gaussians

$$P(\mathbf{x}) = \sum_{i=1}^{k} P(C=i) \mathcal{N}(\mathbf{x}|\mu_i, \Sigma_i)$$

Generative model

- 1. Choose the component with probability P(C=i)
- 2. Generate a sample using the distribution of the chosen component

Mixture Models

$$C_n = \text{multinomial}(K; \pi)$$

$$P(X_n | \theta) = \sum_{i=1}^K P(C_n^i = 1 | \pi) P(X_n | C_n^i = 1, \theta_i)$$

Mixture of Gaussians

$$P(x_n|c_n^i = 1, \theta_i) = \mathcal{N}(x_n|\mu_i, \Sigma_i)$$

$$P(x_1, \dots, x_N | \theta) = \prod_{n=1}^N \left(\sum_{i=1}^K P(C_n^i = 1 | \pi) P(x_n | C_n^i = 1, \theta_i) \right)$$

Log-likelihood
$$\mathcal{L}(\theta|x_1,\ldots,x_N) = \sum_{n=1}^N \log \left\{ \sum_{i=1}^K P(C_n^i = 1|\pi) P(x_n|C_n^i = 1,\theta_i) \right\}$$

No closed-form ML solution

Expectation-Maximization (EM) Algorithm

For the mixture of Gaussians, we initialize the mixture-model parameters arbitrarily and then iterate the following two steps:

- 1. **E-step**: Compute the probabilities $p_{ij} = P(C = i \mid \mathbf{x}_j)$, the probability that datum \mathbf{x}_j was generated by component i. By Bayes' rule, we have $p_{ij} = \alpha P(\mathbf{x}_j \mid C = i)P(C = i)$. The term $P(\mathbf{x}_j \mid C = i)$ is just the probability at \mathbf{x}_j of the ith Gaussian, and the term P(C = i) is just the weight parameter for the ith Gaussian. Define $n_i = \sum_j p_{ij}$, the effective number of data points currently assigned to component i.
- M-step: Compute the new mean, covariance, and component weights using the following steps in sequence:

$$\mu_i \leftarrow \sum_j p_{ij} \mathbf{x}_j / n_i$$

$$\Sigma_i \leftarrow \sum_j p_{ij} (\mathbf{x}_j - \mu_i) (\mathbf{x}_j - \mu_i)^\top / n_i$$

$$w_i \leftarrow n_i / N$$

E-step (expectation step) computes the expected values p_{ij} of the hidden indicator variables Z_{ij} , where $Z_{ij} = 1$ if x_j was generated by the *i*th component and 0 otherwise. M-step (maximization step) finds the ML estimates, given the expected values of the hidden indicator variables.

The model learned by the EM algorithm

- The EM algorithm increases the log likelihood at every iteration
- The EM algorithm converges to a local maximum in likelihood.

EM Algorithm

Pretend all nodes are observed

$$\mathcal{D}_c = \{(x_n, c_n) : n = 1, \dots, N\}$$

Complete likelihood

$$\prod_{n=1}^{N} \prod_{i=1}^{K} \left(P(c_n^i = 1 | \pi) P(x_n | c_n^i = 1, \theta_i) \right)^{c_n^i}$$

Complete log-likelihood

$$\mathcal{L}_{c}(\theta|\mathcal{D}_{c}) = \sum_{n=1}^{N} \sum_{i=1}^{K} c_{n}^{i} \log \left(P(c_{n}^{i} = 1|\pi) P(x_{n}|c_{n}^{i} = 1, \theta_{i}) \right)$$

Expected complete log-likelihood

$$\mathbb{E}_{\tilde{\theta}} \left(\mathcal{L}_c(\theta | \mathcal{D}_c) \right) = \mathbb{E}_{\tilde{\theta}} \left(\sum_{n=1}^N \sum_{i=1}^K c_n^i \log \left(P(c_n^i = 1 | \pi) P(x_n | c_n^i = 1, \theta_i) \right) \right)$$

$$= \sum_{n=1}^N \sum_{i=1}^K \mathbb{E}_{\tilde{\theta}} \left(c_n^i \right) \log \left(P(c_n^i = 1 | \pi) P(x_n | c_n^i = 1, \theta_i) \right)$$

EM Algorithm

- 1. E-step: Compute $\mathbb{E}_{\theta^{(t)}}\left(c_n^i\right) = P(c_n^i = 1 | x_1, \dots, x_N, \theta^{(t)})$
- 2. M-step: Maximize $\mathbb{E}_{\theta^{(t)}} \left(\mathcal{L}_c(\theta | \mathcal{D}_c) \right)$ with respect to θ ; the solution becomes $\theta^{(t+1)}$.
- 3. Iterate until it converges

