(L)
$$\begin{cases} \max & \exists_{L}(x) = 2x_{1} - 7x_{2} - 3x_{3} \\ x_{1} + x_{2} & \Rightarrow 2 \\ x_{2} & \neq 4 \\ x_{1} - 2x_{2} - x_{3} & = 3 \\ x_{1} & \Rightarrow 0, x_{2} & \Rightarrow 0 \end{cases}$$

а) намишете съотвешнама канопикна задага (К); б) на мериме ино песемьото от оптинали решения и оптинамама етобност на челевама ф-из на задаче (К) и(L). като използвани таблична форма на спинлеко метода.

Permenue: a) x3 = x3+-x3

min
$$z_{k}(x) = -2x_{1} + 7x_{2} + 3x_{3}^{+} - 3x_{3}^{-}$$

 $x_{1} + x_{2}$ $-x_{4} \times 1 = 2$
 $x_{2} + x_{5} = 4$
 $x_{1} - 2x_{2} - x_{3}^{+} + x_{3}^{-} = 3$
 $x_{1} = 2x_{2} - x_{3}^{+} + x_{3}^{-} = 3$
 $x_{1} = 2x_{2} - x_{3}^{+} + x_{3}^{-} = 3$
 $x_{1} = 2x_{2} - x_{3}^{+} + x_{3}^{-} = 3$

8) (K) nua zaerezen bazuc X5, X3. Dobabe ne ny nyerbena npomennuba X6 n numen M-3agara

min
$$\geq_{M}(x) = -2x_{1} + 7x_{2} + 3x_{3}^{+} + 3x_{3}^{-} + 10x_{6}^{-}$$

 $\times 1 + \times 2$ $- \times 4 + 10x_{6}^{-} = 2$
 $\times 2$ $+ \times 5 = 4$
 $\times 1 - 2x_{2} - x_{3}^{+} + x_{3}^{-} = 3$
 $\times 1 \neq 0, x_{2} \neq 0, x_{3}^{+} \neq 0, x_{3}^{-} \neq 0, x_{4} \neq 0, x_{5}^{-} \neq 0, x_{5}^$

Kosmo e le Saguem leng cupsuo naranu 8xyuc {x6, x5, x3}

			11	A							4)
1	XB	Co	X1 -2	X2 7	x ₃ ⁺	x3 - 3	Xy	×5	×61	1 6	16a CT min)2,43 = 2
(-	X6 X5 X3	M 0 -3	1 0 1	1 -2	0 0 -1	0 0 1	-1 0 0	0 1 0	1 0 0	2 4 3	жиза Х ₂ вмза Х ₆ измиза
٠	7		-M+1	-M+1	0	0	М	. 0	0	9-2M	
	X2 X5 X3	7 0 -3	1) -1 3 /p/	1 0 0	0 0 -1 /9//	0 0 1 0	-1 1 -2 1	0 1 0	1 -1 2 M-1	2 2 7 7	2 pa CT HOTHOC. OGOULLE Ca = 0 = 7 OUTHURAND SAPTION HA (M) MINSTER 3Ta CT
×** M	×1 ×5 ×3	- 2 0 -3	1 0 0	1 1 -3	0 0 -1	0 1 0	-1 0 1 1	0 1 0	1 0 -1 M-1	2417	gpyro ontum togp na(M)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\chi^{**} k (2,0,0,1,0,1)$ $Z^{*} k = Z(x^{*}k) = -7$ $\chi^{**} k$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											± 70
$d_{L}^{*}(0,0,0) - 7 \text{ now a neory. pos ot pew,}$ H pew Ha (L)ca $\Lambda \times^{*}L + (1-\Lambda) \times^{*}\lambda$ 3a $\Lambda \in [0,1]$, um (2.2. 21-6.) 2a $\Lambda \in [0,1]$.											
M=mo ot Neweurs na (L) e orceckA. X" X"											

2. Ja zagarata (L): 6) nammenere gloorincibe nama zagara (DI);

1) καινο υχυσηβαίο CT στ πιοχτόγια δ), ποςοςείε εξηνο σητιμαπηο μεινε τινε πα (\$1) и ποςογείε συτυμαπιώτα εινίστικος πα περεβείο τ' функция.

Peure mee;

(2)
$$(2)$$
 (2)

2) Dboûncilena a na (K) e:

(3K) | max
$$2g_1 + 7g_2 + 3g_3$$
 | max $2g_1 + 9g_2 + 3g_3$
 $g_1 + g_3 = -2$
 $g_1 + g_2 - 2g_3 = 7$
 $g_1 + g_2 - 2g_3 = 7$

Om nocheques a CT 3a

penne nue na (DK) ananel; $y^* = c_5 B^{-1} = [-2,0,-3] [1 0 0] = [-1] [0 1]$ = [-2+3,0,-3] =[1,0,13] 07 bposkata (#) unave za penemie (202) ha (22) $\pi^* = [1, 0, 3].$ Ontun, em m na ngen. ø-ces na løzte: how the species of th -2.1+3.3 = -2+9 = 4. Toba ce oranba, zamomo suaen. ce

(El - 624 - 634)