First Assignment for Experimental Robotics Laboratory

Generated by Doxygen 1.8.17

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

person	??
robot_control_server	??
state machine	??

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

State	
state_machine.Normal	?
state_machine.Play	?
state machine Sleen	?

4 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

state_machine.Normal	
Define Normal state	??
state_machine.Play	
Define Play state	??
state_machine.Sleep	
Define Sleep state	??

6 Class Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

scripts/person.py	??
scripts/robot_control_server.py	??
scripts/state machine.py	??

8 File Index

Namespace Documentation

5.1 person Namespace Reference

Functions

• def person ()

Publishes either a voice command or a location depending on the robot state.

5.1.1 Detailed Description

Implements two publishers. Mimics the behaviour of a person controlling the robot using voice commands or pointing gestures.

5.1.2 Function Documentation

5.1.2.1 person()

```
def person.person ( )
```

Publishes either a voice command or a location depending on the robot state.

5.2 robot_control_server Namespace Reference

Functions

• def checkConsistency (x, y)

Checks if the requested position is inside the map boundaries.

• def moveToDestination (req)

Callback function for the service.

• def robotControlServer ()

Client initialization.

Variables

• timeScale = rospy.get_param("time_scale")

The time scale of the simulation.

5.2.1 Detailed Description

Implementation of a server/client pattern. Given a location, the module checks its consistency and then moves the robot accordingly.

5.2.2 Function Documentation

5.2.2.1 checkConsistency()

```
 \begin{array}{c} \text{def robot\_control\_server.checkConsistency (} \\ x, \\ y \end{array} )
```

Checks if the requested position is inside the map boundaries.

Parameters

ſ	Χ	The x position of the location
ſ	У	The y position of the location

Returns

The consistency of the location with respect to the map

5.2.2.2 moveToDestination()

```
\begin{tabular}{ll} \tt def \ robot\_control\_server.moveToDestination \ ( \\ \it req \ ) \end{tabular}
```

Callback function for the service.

Parameters

req	The client's requested location
-----	---------------------------------

Returns

Whether the robot was able to reach the destination or not

5.2.2.3 robotControlServer()

```
def robot_control_server.robotControlServer ( )
```

Client initialization.

5.2.3 Variable Documentation

5.2.3.1 timeScale

```
robot_control_server.timeScale = rospy.get_param("time_scale")
```

The time scale of the simulation.

5.3 state_machine Namespace Reference

Classes

· class Normal

Define Normal state.

class Play

Define Play state.

class Sleep

Define Sleep state.

Functions

• def robotControlCall (x, y)

Calls the "robot_control" service.

def receivedVoiceCommand (data)

Callback for the 'voice_command' topic.

def receivedPointingGesture (data)

Callback for the 'pointing_gesture' topic.

• def main ()

State machine initialization.

Variables

```
• personx = rospy.get_param("person/x")
```

The person's position.

- persony = rospy.get_param("person/y")
- homex = rospy.get_param("home/x")

The "home" position.

- homey = rospy.get_param("home/y")
- mapx = rospy.get_param("map/xmax")

The map's boundaries.

- mapy = rospy.get_param("map/ymax")
- timeScale = rospy.get_param("time_scale")

The time scale of the simulation.

• int sleepCounter = 0

Counter.

• bool playState = False

Flag for notifying the NORMAL state that the person published a play command.

5.3.1 Detailed Description

Defines the different robot behaviours and the transitions between them. Available states are NORMAL, SLEEP and PLAY.

5.3.2 Function Documentation

5.3.2.1 main()

```
def state\_machine.main ( )
```

State machine initialization.

5.3.2.2 receivedPointingGesture()

```
\begin{tabular}{ll} $\tt def state\_machine.receivedPointingGesture ( & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

Callback for the 'pointing_gesture' topic.

Parameters

data	The pointed location
------	----------------------

5.3.2.3 receivedVoiceCommand()

```
\label{lem:def_def} \mbox{def state\_machine.receivedVoiceCommand (} \\ \mbox{\it data} \mbox{\ )}
```

Callback for the 'voice_command' topic.

Parameters

data The voice command

5.3.2.4 robotControlCall()

Calls the "robot_control" service.

Parameters

Х	The x position of the destination	
у	The y position of the destination	

5.3.3 Variable Documentation

5.3.3.1 homex

```
state_machine.homex = rospy.get_param("home/x")
```

The "home" position.

5.3.3.2 homey

```
state_machine.homey = rospy.get_param("home/y")
```

5.3.3.3 mapx

```
state_machine.mapx = rospy.get_param("map/xmax")
```

The map's boundaries.

5.3.3.4 mapy

```
state_machine.mapy = rospy.get_param("map/ymax")
```

5.3.3.5 personx

```
state_machine.personx = rospy.get_param("person/x")
```

The person's position.

5.3.3.6 persony

```
state_machine.persony = rospy.get_param("person/y")
```

5.3.3.7 playState

```
bool state_machine.playState = False
```

Flag for notifying the NORMAL state that the person published a play command.

5.3.3.8 sleepCounter

```
int state_machine.sleepCounter = 0
```

Counter.

5.3.3.9 timeScale

```
state_machine.timeScale = rospy.get_param("time_scale")
```

The time scale of the simulation.

Class Documentation

6.1 state_machine.Normal Class Reference

Define Normal state.

Inheritance diagram for state_machine.Normal:

 $Collaboration\ diagram\ for\ state_machine. Normal:$

16 Class Documentation

Public Member Functions

- def __init__ (self)
- def execute (self, userdata)

Public Attributes

sleepThreshold

6.1.1 Detailed Description

Define Normal state.

6.1.2 Constructor & Destructor Documentation

6.1.3 Member Function Documentation

6.1.3.1 execute()

6.1.4 Member Data Documentation

6.1.4.1 sleepThreshold

```
state\_machine.Normal.sleepThreshold
```

The documentation for this class was generated from the following file:

scripts/state_machine.py

6.2 state_machine.Play Class Reference

Define Play state.

Inheritance diagram for state_machine.Play:

Collaboration diagram for state_machine.Play:

Public Member Functions

- def __init__ (self)
- def execute (self, userdata)

Public Attributes

timeThreshold

6.2.1 Detailed Description

Define Play state.

18 Class Documentation

6.2.2 Constructor & Destructor Documentation

```
6.2.2.1 __init__()
```

6.2.3 Member Function Documentation

6.2.3.1 execute()

```
def state_machine.Play.execute ( self, \\ userdata )
```

6.2.4 Member Data Documentation

6.2.4.1 timeThreshold

```
state_machine.Play.timeThreshold
```

The documentation for this class was generated from the following file:

scripts/state_machine.py

6.3 state_machine.Sleep Class Reference

Define Sleep state.

Inheritance diagram for state_machine.Sleep:

Collaboration diagram for state_machine.Sleep:

Public Member Functions

- def __init__ (self)
- def execute (self, userdata)

6.3.1 Detailed Description

Define Sleep state.

6.3.2 Constructor & Destructor Documentation

20 Class Documentation

6.3.2.1 __init__()

```
def state_machine.Sleep.__init__ ( self \ )
```

6.3.3 Member Function Documentation

6.3.3.1 execute()

The documentation for this class was generated from the following file:

• scripts/state_machine.py

File Documentation

7.1 CMakeLists.txt File Reference

7.2 scripts/person.py File Reference

Namespaces

person

Functions

• def person.person ()

Publishes either a voice command or a location depending on the robot state.

7.3 scripts/robot_control_server.py File Reference

Namespaces

· robot_control_server

Functions

- def robot_control_server.checkConsistency (x, y)
 - Checks if the requested position is inside the map boundaries.
- def robot_control_server.moveToDestination (req)
 - Callback function for the service.
- def robot_control_server.robotControlServer ()

Client initialization.

22 File Documentation

Variables

robot_control_server.timeScale = rospy.get_param("time_scale")

The time scale of the simulation.

7.4 scripts/state machine.py File Reference

Classes

· class state_machine.Normal

Define Normal state.

· class state_machine.Sleep

Define Sleep state.

· class state_machine.Play

Define Play state.

Namespaces

• state_machine

Functions

def state machine.robotControlCall (x, y)

Calls the "robot_control" service.

• def state_machine.receivedVoiceCommand (data)

Callback for the 'voice_command' topic.

• def state_machine.receivedPointingGesture (data)

Callback for the 'pointing_gesture' topic.

• def state_machine.main ()

State machine initialization.

Variables

state_machine.personx = rospy.get_param("person/x")

The person's position.

- state_machine.persony = rospy.get_param("person/y")
- state_machine.homex = rospy.get_param("home/x")

The "home" position.

- state_machine.homey = rospy.get_param("home/y")
- state_machine.mapx = rospy.get_param("map/xmax")

The map's boundaries.

- state_machine.mapy = rospy.get_param("map/ymax")
- state_machine.timeScale = rospy.get_param("time_scale")

The time scale of the simulation.

• int state_machine.sleepCounter = 0

Counter.

• bool state_machine.playState = False

Flag for notifying the NORMAL state that the person published a play command.