WO 2005/012490

10/575457 IAPS CC'd PCT/PTO 12 APR 2005

SEQUENCE LISTING

<110>	Elan Pha Zhao, By Mei, Yu		uticals	s, In	iC.			•				•		
<120>	Neuropro	otecti	ve Effe	ects	of A	TF6								
<130>	08576.00	004-00	304	•			•				•			
<14 0> <14 1>	PCT clar 2004-07-		iority	to U	s 60	/491	, 565							
<150> <15 1 >	60/491,5 2003-08-					٠						· .		
<16 0>	11					•		•						
<170>	PatentIr	versi	ion 3.2	:									•	
<210><211><211><212><213>	1 10 DNA human, r	at, mu	ırine				•							
<40 0> ggtgace	1 gtgg													1
<210> <211> <212> <213>	2 10 DNA human, r	at, mu	ırine			•							· · · · ·	
<40 0> ggtgacg	2 otga				÷			•	-					1
<210> <211> <212> <213>	3 19 DNA human, r	at, mu	rine											
	3 gcg gcgg	cca cg											,	1
<210> <211> <212> <213>	4 670 PRT human													
<40 0>	4		•			•						· ·		
Met Gly L	/ Glu Pro	Ala G 5	ly val	Ala	Gly	Thr 10	Met	Glu	Ser	Pro	Phe 15	Ser		
Pro Gly	Leu Phe 20	His A	rg Leu	Asp	G]u 25	Asp	Trp	Asp	Ser	A1a 30	Leu	Phe	·	
Ala Glu	ı Leu Gly 35	ТУ г Р	he Thr	Asp 40	Thr	Asp	Glu	Leu	G]n 45	Leu	Glü	Ala	•	
Ala Asr 50	Glu Thr	туr G	lu Asn 55	Asn	Phe	_	Asn	Leu 60	Asp	Phe	Asp	Leu		

Asp Leu Leu Pro Trp Glu Ser Asp Ile Trp Asp Ile Asm Asm Gln Ile 65 70 75 80 Cys Thr Val Lys Asp Ile Lys Ala Glu Pro Gln Pro Leu Ser Pro Ala 85 90 95 Ser Ser Ser Tyr Ser Val Ser Ser Pro Arg Ser Val Asp Ser Tyr Ser 100 105 110 Ser Thr Gln His Val Pro Glu Glu Leu Asp Leu Ser Ser Ser Gln
115 120 125 Met Ser Pro Leu Ser Leu Tyr Gly Glu Asn Ser Asn Ser Leu Ser Ser 130 140 Pro Glu Pro Leu Lys Glu Asp Lys Pro Val Thr Gly Ser Arg Asn Lys 145 150 155 160 Thr Glu Asn Gly Leu Thr Pro Lys Lys Lys Ile Gln Val Asn Ser Lys 165 170 175 Pro Ser Ile Gln Pro Lys Pro Leu Leu Leu Pro Ala Ala Pro Lys Thr 180 185 Gln Thr Asn Ser Ser Val Pro Ala Lys Thr Ile Ile Ile Gln Thr Val 195 200 205 Pro Thr Leu Met Pro Leu Ala Lys Gln Gln Pro Ile Ile Ser Leu Gln 210 215 220 Pro Ala Pro Thr Lys Gly Gln Thr Val Leu Leu Ser Gln Pro Thr Val 225 230 235 Val Gln Leu Gln Ala Pro Gly Val Leu Pro Ser Ala Gln Pro Val Leu 250 255 Ala Val Ala Gly Gly Val Thr Gln Leu Pro Asn His Val Val Asn Val 260 265 270 Val Pro Ala Pro Ser Ala Asn Ser Pro Val Asn Gly Lys Leu Ser Val 275 285 Thr Lys Pro Val Leu Gln Ser Thr Met Arg Asn Val Gly Ser Asp Ile 290 295 300 Ala Val Leu Arg Arg Gln Gln Arg Met Ile Lys Asn Arg Glu Ser Ala 305 310 315 Cys Gln Ser Arg Lys Lys Lys Glu Tyr Met Leu Gly Leu Glu Ala.
325 330 335 Page 2

PCT/US2004/024571

Arg Leu Lys Ala Ala Leu Ser Glu Asn Glu Gln Leu Lys Lys Glu Asn 340 345 350 Gly Thr Leu Lys Arg Gln Leu Asp Glu Val Val Ser Glu Asn Gln Arg 355 360 365 Leu Lys Val Pro Ser Pro Lys Arg Arg Val Val Cys Val Met Ile Val 370 380 Leu Ala Phe Ile Ile Leu Asn Tyr Gly Pro Met Ser Met Leu Glu Gln 385 390 395 Asp Ser Arg Arg Met Asn Pro Ser Val Gly Pro Ala Asn Gln Arg Arg
405 416 417 His Leu Leu Gly Phe Ser Ala Lys Glu Ala Gln Asp Thr Ser Asp Gly 420 425 430 Ile Ile Gln Lys Asn Ser Tyr Arg Tyr Asp His Ser Val Ser Asn Asp 445 Lys Ala Leu Met Val Leu Thr Glu Glu Pro Leu Leu Tyr Ile Pro Pro 450 455 460 Pro Pro Cys Gln Pro Leu Ile Asn Thr Thr Glu Ser Leu Arg Leu Asn 465 470 475 480 His Glu Leu Arg Gly Trp Val His Arg His Glu Val Glu Arg Thr Lys 485 490 495 Ser Arg Arg Met Thr Asn Asn Gln Gln Lys Thr Arg Ile Leu Gln Gly 500 505 Val Val Glu Gln Gly Ser Asn Ser Gln Leu Met Ala Val Gln Tyr Thr
515 520 525 Glu Thr Thr Ser Ser Ile Ser Arg Asn Ser Gly Ser Glu Leu Gln Val 530 540 Tyr Tyr Ala Ser Pro Arg Ser Tyr Gln Asp Phe Phe Glu Ala Ile Arg 545 550 560 Arg Arg Gly Asp Thr Phe Tyr Val Val Ser Phe Arg Arg Asp His Leu 565 570 575 Leu Leu Pro Ala Thr Thr His Asn Lys Thr Thr Arg Pro Lys Met Ser 580 585 Ile val Leu Pro Ala Ile Asn Ile Asn Glu Asn val Ile Asn Gly Gln Page 3

Asp Tyr Glu Val Met Met Gln Ile Asp Cys Gln Val Met Asp Thr Arg 610 620

Ile Leu His Ile Lys Ser Ser Ser Val Pro Pro Tyr Leu Arg Asp Gln 625 630 635

Gln Arg Asn Gln Thr Asn Thr Phe Phe Gly Ser Pro Pro Ala Ala Thr
645 650 655

Glu Ala Thr His Val Val Ser Thr Ile Pro Glu Ser Leu Gln 660 665 670

<210> 5
<211> 703
<212> PRT

<212> PKI <213> human

<400> 5

Met Ala Glu Leu Met Leu Leu Ser Glu Ile Ala Asp Pro Thr Arg Phe 1 10 15

Phe Thr Asp Asn Leu Leu Ser Pro Glu Asp Trp Gly Leu Gln Asn Ser 20 25 30

Thr Leu Tyr Ser Gly Leu Asp Glu Val Ala Glu Glu Gln Thr Gln Leu 35 40

Phe Arg Cys Pro Glu Gln Asp Val Pro Phe Asp Gly Ser Ser Leu Asp 50 55 60

Val Gly Met Asp Val Ser Pro Ser Glu Pro Pro Trp Glu Leu Leu Pro 65 70 75 80

Ile Phe Pro Asp Leu Gln Val Lys Ser Glu Pro Ser Ser Pro Cys Ser 90 95

Ser Ser Ser Leu Ser Ser Glu Ser Ser Arg Leu Ser Thr Glu Pro Ser 100 105

Ser Glu Ala Leu Gly Val Gly Glu Val Leu His Val Lys Thr Glu Ser 115 120 125

Leu Ala Pro Pro Leu Cys Leu Leu Gly Asp Asp Pro Thr Ser Ser Phe 130 140

Glu Thr Val Gln Ile Asn Val Ile Pro Thr Ser Asp Asp Ser Ser Asp 145 150 155 160

Val Gln Thr Lys Ile Glu Pro Val Ser Pro Cys Ser Ser Val Asn Ser 165 170 175

Glu Ala Ser Leu Leu Ser Ala Asp Ser Ser Ser Gln Ala Phe Ile Gly
180 185 190 Glu Glu Val Leu Glu Val Lys Thr Glu Ser Leu Ser Pro Ser Gly Cys 195 200 205 Leu Leu Trp Asp Val Pro Ala Pro Ser Leu Gly Ala Val Gln Ile Ser 210 220 Met Gly Pro Ser Leu Asp Gly Ser Ser Gly Lys Ala Leu Pro Thr Arg 225 230 235 240 Lys Pro Pro Leu Gln Pro Lys Pro Val Leu Thr Thr Val Pro Met 245 255 Pro Ser Arg Ala Val Pro Pro Ser Thr Thr Val Leu Leu Gln Ser Leu 260 265 270 Val Gln Pro Pro Val Ser Pro Val Val Leu Ile Gln Gly Ala Ile 275 280 285 Arg Val Gln Pro Glu Gly Pro Ala Pro Ser Leu Pro Arg Pro Glu Arg 290 295 300 Lys Ser Ile Val Pro Ala Pro Met Pro Gly Asn Ser Cys Pro Pro Glu 305 310 315 Val Asp Ala Lys Leu Leu Lys Arg Gln Gln Arg Met Ile Lys Asn Arg 325 330 335 Glu Ser Ala Cys Gln Ser Arg Arg Lys Lys Glu Tyr Leu Gln Gly 340 345 Leu Glu Ala Arg Leu Gln Ala Val Leu Ala Asp Asn Gln Gln Leu Arg 355 360 365 Arg Glu Asn Ala Ala Leu Arg Arg Leu Glu Ala Leu Leu Ala Glu 370 375 380 Asn Ser Glu Leu Lys Leu Gly Ser Gly Asn Arg Lys Val Val Cys Ile 385 390 395 Met Val Phe Leu Phe Ile Ala Phe Asn Phe Gly Pro Val Ser Ile 405 410 415 Ser Glu Pro Pro Ser Ala Pro Ile Ser Pro Arg Met Asn Lys Gly Glu 420 425 430 Pro Gln Pro Arg Arg His Leu Leu Gly Phe Ser Glu Gln Glu Pro Val
435
440
445

PCT/US2004/024571

WO 2005/012490

Gln Gly Val Glu Pro Leu Gln Gly Ser Ser Gln Gly Pro Lys Glu Pro 450 455 460 Gln Pro Ser Pro Thr Asp Gln Pro Ser Phe Ser Asn Leu Thr Ala Phe 465 470 475 480 Pro Gly Gly Ala Lys Glu Leu Leu Leu Arg Asp Leu Asp Gln Leu Phe
485 490 495 Leu Ser Ser Asp Cys Arg His Phe Asn Arg Thr Glu Ser Leu Arg Leu 500 505 510 Ala Asp Glu Leu Ser Gly Trp Val Gln Arg His Gln Arg Gly Arg Arg 515 520 525 Lys Ile Pro Gln Arg Ala Gln Glu Arg Gln Lys Ser Gln Pro Arg Lys 530 540 Lys Ser Pro Pro Val Lys Ala Val Pro Ile Gln Pro Pro Gly Pro Pro S45 550 555 Glu Arg Asp Ser Val Gly Gln Leu Gln Leu Tyr Arg His Pro Asp Arg 565 570 575 Ser Gln Pro Ala Phe Leu Asp Ala Ile Asp Arg Arg Glu Asp Thr Phe 580 585 590 Tyr Val Val Ser Phe Arg Arg Asp His Leu Leu Leu Pro Ala Ile Ser 595 600 605 His Asn Lys Thr Ser Arg Pro Lys Met Ser Leu Val Met Pro Ala Met 610 620 Ala Pro Asn Glu Thr Leu Ser Gly Arg Gly Ala Pro Gly Asp Tyr Glu 625 630 635 Glu Met Met Gln Ile Glu Cys Glu Val Met Asp Thr Arg Val Ile His 645 650 655 Ile Lys Thr Ser Thr Val Pro Pro Ser Leu Arg Lys Gln Pro Ser Pro 660 665 670 Thr Pro Gly Asn Ala Thr Gly Gly Pro Leu Pro Val Ser Ala Ala Ser 675 680 Gln Ala His Gln Ala Ser His Gln Pro Leu Tyr Leu Asn His Pro 690 700

<210> 6 <211> 678 <212> PRT

<213> mouse

<40.0> 6

Leu Thr His Pro Ser Cys Glu Gly Glu Val Ser Val Ser Gly Lys Pro
1 10 15

Ala Cys Val Ala Gly Ala Met Glu Ser Pro Phe Ser Pro Val Leu Pro 20 25 30

His Gly Pro Asp Glu Asp Trp Glu Ser Thr Leu Phe Ala Glu Leu Gly 35 40

Tyr Phe Thr Asp Thr Asp Asp Val His Phe Asp Ala Ala His Glu Ala 50 55

Tyr Glu Asn Asn Phe Asp His Leu Asn Phe Asp Leu Asp Leu Met Pro 70 75 80

Trp Glu Ser Asp Leu Trp Ser Pro Gly Ser His Phe Cys Ser Asp Met 85 90 95

Lys Ala Glu Pro Gln Pro Leu Ser Pro Ala Ser Ser Ser Cys Ser Ile 100 105 110

Ser Ser Pro Arg Ser Thr Asp Ser Cys Ser Ser Thr Gln His Val Pro 115 120 125

Glu Glu Leu Asp Leu Leu Ser Ser Ser Gln Ser Pro Leu Ser Leu Tyr 130 135 140

Gly Asp Ser Cys Asn Ser Pro Ser Ser Val Glu Pro Leu Lys Glu Glu 145 150 150 160

Lys Pro Val Thr Gly Pro Gly Asn Lys Thr Glu His Gly Leu Thr Pro 165 170 175

Lys Lys Lys Ile Gln Met Ser Ser Lys Pro Ser Val Gln Pro Lys Pro 180 185 190

Leu Leu Leu Pro Ala Ala Pro Lys Thr Gln Thr Asn Ala Ser Val Pro 195 200 205

Ala Lys Ala Ile Ile Ile Gln Thr Leu Pro Ala Leu Met Pro Leu Ala 210 215 220

Lys Gln Gln Ser Ile Ile Ser Ile Gln Pro Ala Pro Thr Lys Gly Gln 225 230 235 240

Thr Val Leu Leu Ser Gln Pro Thr Val Val Gln Leu Gln Ser Pro Ala 245 250 255

Val Leu Ser Ser Ala Gln Pro Val Leu Ala Val Thr Gly Gly Ala Ala 260 265 270 Gln Leu Pro Asn His Val Val Asn Val Leu Pro Ala Pro Val Val Ser 275 280 285 Pro Val Asn Gly Lys Leu Ser Val Thr Lys Pro Val Leu Gln Ser 290 295 300 Ala Thr Arg Ser Met Gly Ser Asp Ile Ala Val Leu Arg Arg Gln Gln 305 310 315 Arg Met Ile Lys Asn Arg Glu Ser Ala Cys Gln Ser Arg Lys Lys Lys 325 Lys Glu Tyr Met Leu Gly Leu Glu Ala Arg Leu Lys Ala Ala Leu Ser 340 345 350 Glu Asn Glu Gln Leu Lys Lys Glu Asn Gly Ser Leu Lys Arg Gln Leu 355 360 Asp Glu Val Val Ser Glu Asn Gln Arg Leu Lys Val Pro Ser Pro Lys 370 375 Arg Arg Ala Val Cys Val Met Ile Val Leu Ala Phe Ile Met Leu Asn 385 390 400 Tyr Gly Pro Met Ser Met Leu Glu Gln Glu Ser Arg Arg Val Lys Pro 405 410 415 Ser Val Ser Pro Ala Asn Gln Arg Arg His Leu Leu Glu Phe Ser Ala 420 425 430 Lys Glu Val Lys Asp Thr Ser Asp Gly Asp Asn Gln Lys Asp Ser Tyr
435
440
445 Ser Tyr Asp His Ser Val Ser Asn Asp Lys Ala Leu Met Val Pro Ser 450 460 Glu Glu Pro Leu Leu Tyr Met Pro Pro Pro Pro Cys Gln Pro Leu Ile 465 470 480 Asn Thr Thr Glu Ser Leu Arg Leu Asn His Glu Leu Arg Gly Trp Val 485 490 495 His Arg His Glu Val Glu Arg Thr Lys Ser Arg Arg Met Thr Asn Ser 500 505 510 Gln Gln Lys Ala Arg Ile Leu Gln Gly Ala Leu Glu Gln Gly Ser Asn 515 520 525

Ser Gln Leu Met Ala Val Gln Tyr Thr Glu Thr Thr Ser Ile Ser Arg 530 540

Asn Ser Gly Ser Glu Leu Gln Val Tyr Tyr Ala Ser Pro Gly Ser Tyr 545 550 560

Gln Gly Phe Phe Asp Ala Ile Arg Arg Gly Asp Thr Phe Tyr Val 565 570

Val Ser Phe Arg Arg Asp His Leu Leu Leu Pro Ala Thr Thr His Asn 580 585 590

Lys Thr Thr Arg Pro Lys Met Ser Ile Val Leu Pro Ala Ile Asn Ile 595 600 605

Asn Asp Asn Val Ile Asn Gly Gln Asp Tyr Glu Val Met Met Gln Ile 610 620

Asp Cys Gln Val Met Asp Thr Arg Ile Leu His Ile Lys Ser Ser Ser 625 630 635

Val Pro Pro Tyr Leu Arg Asp His Gln Arg Asn Gln Thr Ser Thr Phe 645 650

Phe Gly Ser Pro Pro Thr Thr Thr Glu Thr Thr His Val Val Ser Thr 660 665 670

Ile Pro Glu Ser Leu Gla

<210> 7

<211> 699

<212> PRT

<213> murine

<400> 7

Met Ala Glu Leu Met Leu Leu Ser Glu Ile Ala Asp Pro Thr Arg Phe 1 10 15

Phe Thr Asp Asn Leu Leu Ser Pro Glu Asp Trp Asp Ser Thr Leu Tyr 20 25 30

Ser Gly Leu Asp Glu Val Ala Glu Glu Gln Ala Gln Leu Phe Arg Cys
35 40 45

Val Glu Gln Asp Val Pro Phe Asp Ser Ser Ser Leu Asp Val Gly Met 50 55

Asp Val Ser Pro Pro Glu Pro Pro Trp Asp Pro Leu Pro Ile Phe Pro 65 70 75 80

Asp Leu Gln Val Lys Ser Glu Pro Ser Ser Pro Cys Ser Ser Ser Ser Pag**e 9** 85

90

95

Leu Ser Ser Glu Ser Ser His Leu Ser Thr Glu Pro Pro Ser Gln val 100 105 110 Pro Gly Val Gly Glu Val Leu His Val Lys Met Glu Ser Leu Ala Pro 115 120 Pro Leu Cys Leu Leu Gly Asp Asp Pro Ala Ser Pro Phe Glu Thr Val 130 135 140 Gln Ile Thr Val Gly Ser Ala Ser Asp Asp Leu Ser Asp Ile Gln Thr 145 150 155 Lys Leu Glu Pro Ala Ser Pro Ser Ser Ser Val His Ser Glu Ala Ser 165 170 175 Leu Leu Ser Ala Asp Ser Pro Ser Gln Pro Phe Ile Gly Glu Glu Val 180 185 190 Leu Glu Val Lys Thr Glu Ser Pro Ser Pro Pro Gly Cys Leu Leu Trp 200 205 Asp Val Pro Ala Ser Ser Leu Gly Ala Val Gln Ile Ser Met Gly Pro 210 215 220 Ser Pro Asp Ser Ser Ser Gly Lys Ala Pro Ala Thr Arg Lys Pro Pro 225 230 235 240 Leu Gln Pro Lys Pro Val Val Leu Thr Thr Val Pro Val Pro Pro Arg 245 250 255 Ala Gly Pro Thr Ser Ala Ala Val Leu Leu Gln Pro Leu Val Gln Gln 260 265 270 Pro Ala Val Ser Pro Val Val Leu Ile Gln Gly Ala Ile Arg Val Gln 275 280 285 Pro Glu Gly Pro Ala Pro Ala Ala Pro Arg Pro Glu Arg Lys Ser Ile 290 295 300 Val Pro Ala Pro Met Pro Gly Asn Ser Cys Pro Pro Glu Val Asp Ala 305 310 315 Lys Leu Leu Lys Arg Gln Gln Arg Met Ile Lys Asn Arg Glu Ser Ala 325 330 335 Cys Gln Ser Arg Arg Lys Lys Lys Glu Tyr Leu Gln Gly Leu Glu Ala 340 345 350 Arg Leu Gln Ala Val Leu Ala Asp Asn Gln G<mark>ln Leu Arg Arg Glu Asn</mark>

Pag**e 10**

355

360

365

Ala Ala Leu Arg Arg Arg Leu Glu Ala Leu Leu Ala Glu Asn Ser Gly 370 380 Leu Lys Leu Gly Ser Gly Asn Arg Lys Val Val Cys Ile Met Val Phe 385 390 395 400 Leu Leu Phe Ile Ala Phe Asn Phe Gly Pro Val Ser Ile Ser Glu Pro 405 410 415 Pro Pro Ala Pro Met Ser Pro Arg Met Ser Arg Glu Glu Pro Arg Pro 420 425 430 Gln Arg His Leu Leu Gly Phe Ser Glu Pro Gly Pro Ala His Gly Met 445 Glu Pro Leu Arg Glu Ala Ala Gln Ser Pro Gly Glu Gln Gln Pro Ser 450 455 Ser Ala Gly Arg Pro Ser Phe Arg Asn Leu Thr Ala Phe Pro Gly Gly 465 470 480 Ala Lys Glu Leu Leu Leu Arg Asp Leu Asp Gln Leu Phe Leu Ser Ser 490 495 Asp Cys Arg His Phe Asn Arg Thr Glu Ser Leu Arg Leu Ala Asp Glu 500 505 510 Leu Ser Gly Trp Val Gln Arg His Gln Arg Gly Arg Arg Lys Ile Pro 515 520 525 His Arg Ala Gln Glu Arg Gln Lys Ser Gln Leu Arg Lys Lys Ser Pro 530 535 540 Pro Val Lys Pro Val Pro Thr Gln Pro Pro Gly Pro Pro Glu Arg Asp 545 550 550 555 Pro Val Gly Gln Leu Gln Leu Tyr Arg His Pro Gly Arg Ser Gln Pro 565 570 575 Glu Phe Leu Asp Ala Ile Asp Arg Glu Asp Thr Phe Tyr Val Val 580 585 Ser Phe Arg Arg Asp His Leu Leu Leu Pro Ala Ile Ser His Asn Lys 595 600 605 Thr Ser Arg Pro Lys Met Ser Leu Val Met Pro Ala Met Ala Pro Asn 610 620 Glu Thr Val Ser Gly Arg Gly Pro Pro Gly Asp Tyr Glu Glu Met Met

625 630 635 640

Gln Ile Glu Cys Glu Val Met Asp Thr Arg Val Ile His Ile Lys Thr 645 655

Ser Thr Val Pro Pro Ser Leu Arg Lys Gln Pro Ser Pro Gly 660 665

Asn Thr Thr Gly Gly Pro Leu Pro Gly Ser Ala Ala Ser Pro Ala His 675 680

Gln Ala Ser Gln Pro Leu Tyr Leu Asn His Pro 690 695

<210> 8 <211> 2474 <212> DNA <213> human

<400> aagatattaa tcacggagtt ccagggaaaa ggaacttgtg aaatggggga gccggctggg 60 gttgccggca ccatggagtc accttttagc ccgggactct ttcacaggct ggatgaagat 120 tgggattctg ctctctttgc tgaacttggt tatttcacag acactgatga gctgcaattg 180 gaagcagcaa atgagacgta tgaaaacaat tttgataatc ttgattttga tttggatttg 240 300 ttaccttggg agtcagacat ttgggacatc aacaaccaaa tctgtacagt taaagatatt 360 aaggcagaac cccagccact ttctccagcc tcctcaagtt attcagtctc atctcctcgg tcagtggact cttattcttc aactcagcat gttcctgagg agttggattt gtcttctagt 420 tctcagatgt ctcccctttc cttatatggt gaaaactcta atagtctctc ttcaccggag 480 ccactgaagg aagataagcc tgtcactggt tctaggaaca agactgaaaa tggactgact 540 ccaaagaaaa aaattcaggt gaattcaaaa ccttcaattc agcccaagcc tttattgctt 600 660 ccagcagcac ccaagactca aacaaactcc agtgttccag caaaaaccat cattattcag acagtaccaa cgcttatgcc attggcaaag cagcaaccaa ttatcagttt acaacctgca 720 cccactaaag gccagacggt tttgctgtct cagcctactg tggtacaact tcaagcacct 780 ggagttctgc cctctgctca gccagtcctt gctgttgctg ggggagtcac acagctccct 840 aatcacgtgg tgaatgtggt accagcccct tcagcgaata gcccagtgaa tggaaaactt 900 tccgtgacta aacctgtcct acaaagtacc atgagaaatg tcggttcaga tattgctgtg 960 ctaaggagac agcaacgtat gataaaaaat cgagaatccg cttgtcagtc tcgcaagaag 1020 aagaaagaat atatgctagg gttagaggcg agattaaagg ctgccctctc agaaaacgag 1080 1140 caactgaaga aagaaaatgg aacactgaag cggcagctgg atgaagttgt gtcagagaac cagaggetta aagteectag tecaaagega agagttgtet gtgtgatgat agtattggca 1200 tttataatac tgaactatgg acctatgagc atgttggaac aggattccag gagaatgaac 1260 cctagtgtgg gacctgcaaa tcaaaggagg caccttctag gattttctgc taaagaggca 1320 Page 12

				•	_	
caggacacat	cagatggtat	tatccagaa a	aacagctaca	gatatgat ca	ttctgtttca	1380
aatgacaaag	ccctgatggt	gctaactgaa	gaaccattgC	tttacatt cc	cccacctcct	1440
tgtcagcccc	taattaatac	aacagagtct	ctcaggttaa	atcatgaa ct	tcgaggat gg	1500
gttcatagac	atgaagtaga	aaggaccaa g	tctagaagaa	tgacaaataa	tcaacaga aa	1560
acccgtatt c	ttcagggtgt	tgtggaacag	ggctcaaatt	ctcagctgat	ggctgttc aa	1620
tacacagaaa	ccactagtag	tatcagcagg	aactcaggga	gtgagctaca	agtgtat tat	1680
gcttcaccca	gaagttatca	agactttttt	gaagccatcc	gcagaagggg	agacaca ttt	1740
tatgttgtgt	catttcgaag	ggatcacctg	ctgttaccag	ctaccaccca	taacaag acc	1800
acaagaccaa	aaatgtcaat	tgtgttacca	gcaataaac a	taaatgaga a	tgtgatca at	18 60
gggcaggact	acgaagtgat	gatgcagatt	gactgtcag g	tgatggacac	caggat cctc	1920
catatcaaaa	gttcgtcggt	tcctccttac	ctccgaga tc	agcagag gaa	tcaaacca ac	19 80
accttctttg	gctcccctcc	cgcagccaca	gaggcaaccc	acgttg tcag	caccatccct	2040
gagtcattac	aatagcaccc	gcagctatgt	ggaaaactga	gcgtggga cc	cccagac tga	2100
agagcagg tg	agcaaaa tgc	tgcttttcct	tggtgg cagg	cagaga actg	ttcgtactag	2160
aattcaagg a	gaaaagaag a	agaaataaa a	gaagctgctc	catttt tcat	catctaccca	2220
tctatttgga	aagcactgg a	attcagatg c	aagagaacaa	tgtttct tca	gtggcaa atg	22 80
tagccctgc a	tcctccagtg	ttacctggtg	tagattttt	tttctgta cc	tttctaa acc	2340
tctcttccct	ctgtgatggt	tttgtgttta	aacagtcatc	ttcttttaa a	taatatccac	2400
ctctcctttt	tgccatttca	cttattgatt	cataaagtg a	attttat tta	aagctaa aaa	2460
aaaaaaaa a	aaaa	-				2474
.210- 0	•					•
<210> 9 <211> 2622	2					

<210> 9 <211> 2622 <212> DNA <213> human

aaccgtctcc tggttggggg gtggggggga aagatggcgg agctgatgct gctcagcgag 60 attgctgacc cgacgcgttt cttcaccgac aacctgctta gcccggagga ctggggtctg 120 180 cagaacagca ccttgtattc tggcctagat gaagtggccg aggagcagac gcagctcttc 240 cgttgcccgg agcaggatgt cccgtttgac ggcagctccc tggacgtggg gatggatgtc agcccctctg agcccccatg ggaactcctg ccgatcttcc cagatcttca ggtgaagtct 300 360 gagccatctt cccctgctc ttcctcctcc ctcagctccg agtcatcgcg tctctccaca 420 gagccatcca gcgaggctct tggggtaggg gaggtgctcc atgtgaagac agagtccttg gcaccccac tgtgtctcct gggagatgac ccaacatcct catttgaaac cgtccagatc 480 aatgttatcc ccacctctga tgattcctca gatgtccaga ccaagataga acctgtctct 540 ccatgttctt ccgtcaactc tgaggcctcc ctgctctcag ccgactcctc cagccaggct 600

	tttataggag	aggaggtcct	ggaagtgaa g	acagagtccc	tgtccccttc	aggat gcctc	6 60
		tcccagcccc					720
	gatggctcct	caggcaaagc	cctgcccacc	cggaagccgç	cactgcagcc	caaac ctgta	780
	gtgctaacca	ctgtcccaat	gccatccaga	gctgtgcctc	ccagcaccac	agtccttctg	840
	cagtccctcg	tccagccacc	cccagtgtcc	ccagttgtcc	tcatccaggg	tgcta ttcga	900
	gtccagcctg	aagggccggc	tccctctcta	ccacggcctg	agaggaaga g	catcgttecc	960
	gctcctatgc	ctggaaactc	ctgcccgcct	gaagtggat g	caaagctgct	gaagcgg cag	1020
	cagcgaatga	tcaagaaccg	ggagtcagcc	tgccagtccc	ggagaaag aa	gaaagag tat	1080
	ctgcagggac	tggaggctcg	gctgcaagca	gtactggctg	acaaccagca	gctccgcc ga	1140
•	gagaatgctg	ccctccggcg	gcggctggag	gccctgctgg	ctgaaaacag	cgagc tcaag	1200
	ttagggtct g	gaaacaggaa	ggtggtctgc	atcatggt ct	tccttctctt	cattgccttc	1260
	aactttggac	ctgtcagcat	cagtgagcct	ccttcagctc	ccatctctcc	tcggatg aac	1320
	aagggggag c	ctcaaccccg	gagacacttg	ctggggttct	cagagcaaga	gccagtt cag	1380
	ggagttgaac	ctctccaggg	gtcctcccag	ggccctaagg	agccccagcc	cagccccaca	1440
	gaccagccca	gtttcagcaa	cctgacagcc	ttccctgggg	gcgccaag ga	gctacta cta	1500
	agagacctag	accagctctt	cctctcctct	gattgccggc	acttcaaccg	cactgag tcc	1560
	ctgaggctt g	ctgacgagtt	gagtggctgg	gtccagcgcc	accagagag g	ccggagg aag	1620
	atccctcaga	gggcccagga	gagacagaag	tctcagccac	ggaagaa gtc	acctcca gtt	1680
	aaggcagtcc	ccatccaacc	ccctggaccc	ccagaaaggg	attctgtgg g	ccagc tgcaa	1740
	ctatatcgc c	acccagaccg	ttcgcagcca	gcattcttgg	atgcaatt ga	ccgacgg gaa	1800
	gacacatttt	atgttgtctc	tttccgaagg	gaccacctgc	tgctcccagc	catcagecac	1860
	aacaagacct	cccggcccaa	gatgtccctg	gtgatgcctg	ccatggcccc	caatgag acc	1920
	ctgtcaggcc	gtggggcccc	gggggactat	gaggagatga	tgcagatc ga	gtgtgag gtc	1980
	atggacacca	gggtgattca	catcaagacc	tccacagtgc	cccctcgct	ccgaaaa cag	2040
	ccatccccaa	ccccaggcaa	tgccacaggt	ggccccttgc	cagtctct gc	agccagcc ag	2100
	gcccaccagg	cctcccacca	gcccctctac	ctcaatcatc	cctgacctct	gccat tcaca	2160
	ctgacttag a	acggggggag	ggggtaccag	gtggccaggt	gggactgttt	caaatttccc	2220
	tgatccccag	gcttggggca	attggtaaag	gaaagagcag	gtgtgggg gt	taagcac tta	2280
	tttgaggtgg	gggtgttcac	ctctcttctc	atcccttttc	agaatatag g	gctcctctca	2340
	ttcctgtgaa	ccccagtcc	tggcttcttt	gtttgagggg	attgtgtga g	gttcagtt gt	2400
	ggggtgggt g	gtgagctgct	gcatatttt	tattttgttt	ctctagtgtt	atggcagt gg	2460
	aggtggga at	ttagtcccca	ggtgggacaa	gggaagtttt	ttcattttg g	agctag ttac	2520
	tgggagtaag	ggagggtggg	gtggggggga	gttcaggttt	atgtgtg tgc	atttcttttt	2580
	tattattatt	aaataaaca a	cttggagg ga	gttgaaaa a	aa		2 622

<210> 10 <211> 4447 <212> DNA <213> murine

60	catggag tcg	ttgccggc gc	ccggcttgtg	ttcggggaag	aggtgtctgt	<400> 10 ccggagggag
120	gttgtttgct	gggagtcgac	gatgaaga ct	tcatggacca	cggttcttcc	ccttttagtc
180	tgaggcttat	atgcagca ca	gtgcactttg	cactgatgat	atttcacaga	gaacttggct
240	gtcagac cta	tgccttggga	ttggatttga	taattttgat	ttgatcatct	gaaaataatt
300	tctttctccg	agccccag cc	atgaaggca g	ctgctcaga c	gcagccactt	tggagccccg
360	ttcaactcag	actcgtg ttc	cggtccaca g	ctcctctcct	gttgctccat	gcttcctcca
420	cttatatg gc	ccccctttc	agttctcagt	tttgttgtct	aggagttgga	cacgttcctg
480	tgtca ctggt	aagagaagcc	ccactgaag g	ctctgtagag	atagcccctc	gacagctgta
540	gagttta aaa	aaattcagat	ccaaagaaaa	tggactgact	aaacagaa ca	cctggaaaca
600	aaccaat gcc	ccaagactca	ccagcagcg c	tttattactt	agcccaag cc	ccttcagttc
660	actggca aag	cccttatgcc	acactaccag	catcattcag	caaaagccat	ggtgtcccag
720	tttgctctct	gccagactgt	cccaccaaag	acagcctgcg	ttatcagcat	cagcagtcga
780	gccggtt ctt	cgtctgctca	gcggttctgt	tcagagccct	tggttcaact	cagccgactg
·840	ctggccagcc	tgaattgttg	aaccatgtg g	acagctacct	ggggagcc gc	gcagtcactg
900	ttctacaa ag	actaaacctg	actttccgtg	tgaatggaaa	agcagcccg g	ccctgtggtg
960	ggatga taaa	agacagcag c	tgtgctgag g	cggatatcg c	agtatgggtt	tgccaccaga
1020	taggact gga	gagtatat gc	gaagaagaaa	agtcgcgcaa	tctgcttgtc	gaaccgagag
1080	aatg gctccc	gtagaaggag	atgagcagct	ctctcataga	caaggctgcc	ggccaggcct
1140	ccaag tccaa	gctcaaag tc	agaaccaga g	gtggtgtcag	gctggacgag	tgaagcgaca
1200	tatgggceca	aatgctga ac	tagcatttat	atgatagtat	tgtctgtgtg	agcgaagag c
1260	gccaatcaga	tgtgagccct	tgaaacctag	tcccgaagag	ggagcaagaa	tgagcatgct
1320	ggtgacaacc	cacatcagat	aagttaaaga	tcagcaaaag	cttggaattt	ggaggcatct
1380	atggtg ctaa	caaagctt ta	tgtccaatg a	gatcactctg	ttacagctat	agaaagacag
1440	aacacaacag	acccctga tt	ctccatgtca	atgcctccac	attgctttat	gtgaagagcc
1500	gtggaaa gga	tagacatgaa	gctgggttca	gaacttcgag	gttgaaccat	agtctctcag
1560	ggtgctct gg	cattctccag	agaaagcccg	aatagccaac	aagaatga ca	ccaaatctag
1620	agcatca gta	agaaacca ct .	tccagtaca c	ctgatggctg	taattctcag	aacagggc tc
1680	caaggcttct	tggaagtt ac	acgcctcccc	caagtgtatt	gagtgagctg	ggaattctgg
1740	agggatcatc	ctcatttcga	tttacgttgt	ggagatacgt	ccgcaggagg	ttgacgccat
1800	attgta ttac	aaaaatg tca	ccacaagacc	cacaacaaga	agctacca cc	tgctattacc
1860	atgatgcaġ a	ctatgaag ta .5	atgggcagga Pag e 1	aatgtgatc a	cataaatgat	cagcaataaa

ttgactgtca	ggtgatggac	accaggatcc	tccacatca a	aagctcctcg	gttccccctt	1920
atctccggga	tcatcagcgg	aaccaaacca	gcaccttctt	tggttcccct	ссаасаа сса	1980
cagagacgac	ccatgtggtc	agcaccatc c	ctgagtcgtt	gcagtagtgc	ccgagct gcg	2040
ctggacagca	gagactgaag	agctggtgaa	gatgctgctc	tctgcctctt	cggcaag cag	2100
agacttgcc t	tgtacgcaa c	tccaggggaa	gaggaagaga	gaacaggaa g	tgcgctg ctt	2160
gtcaccgtcc	acccagtgg g	gtggaacatg	ctagcgagc a	attctctggt	ggcagtg cag	2220
ccctgtgggc	agtgtcgc ct	ggtgttggtt	ctgctgtg tc	atctttagtg	cttttctcaa	2280
tgtgtgtttg	gttctcagtt	atcttccttc	aggtcaga cc	cacttcctct	tctgtccact	2340
gcacttcctg	gtgcagtaaa	gagatttgta	tttaaagct t	tagaacacat	gctcatgt gg	2400
tttccaccaa	ttggctttct	ctctcctttg	gttcaaatc c	attctgaatg	ttatact tga	2460
gaaaacacat	ttcaaaaaa c	cgagcagcca	aaaacatccc	acaaagag tc	aaaacag ttt	25,20
agagtttggg	taaagggatt	atctccagtt	ggtaagagtt	tatttttact	tgtgatt tgt	2580
ggttcagccc	tggacaaata	actgttgtgg	gggtcacag a	gtgagccaca	cactgga gac	.2640
aagggaagg g	aaggccagtg	gtggaatg ta	aggggaag tg	actccatttt	catatgtatt	2700
taaacacaga	gttcctgtgg	cctcggtaag	ctcagagcta	tagccaccct	cagtgttg ga	2760
actcggctaa	tcagcagag a	tcttcaaag a	tctcagggca	catgcttgcc	tctcattgtg	2820
gaccctcagc	.ccagagcata	ctcctgtgaa	accagact ca	gcaaagggac	ttgga ggtca	2880
ctaggcttaa	gcaagactag	agagtttc cc	ttaaggacca	acagtgca ca	gagcaa gcat	2940
ggcttcccag	agaagctgc a	gcacagtatg	gtgaagttct	cagtttttcc	agtggaa aga	3000
tgataaagga	attaagctct	ctttgttgtt	gctatggctg	tgaacatg gc	tttaateeta	3060
gcaccatttg	gaaggaaag g	caggctttgt	ttgatatca g	cctggcctac	atttcaa att	3120
ccaggacagg	acagctaaa g	ctatataaag	aacccacctc	aaaaaatag a	tgaatga ata	3180
aatgagtaaa	taaacaaa ta	caaacaaaa a	gcaaagttat	gttcacatat	attttat tgt	3240
attttgcctg	cttccttcac	catagcaagc	agccacattt	ctattgcact	gtaca ttgta	3300
cgttacaagt	tcacagaaat	ggatgccagg	actcatgt ca	gtcatgtgct	gcctcccttc	3360
ccaggatttc	agcaggtt ct	catagactct	tcccagcctg	gcttgcccat	tgtcagg tgg	3420
tcccattcca	gtaagcacaa	tggcggctaa	gtcctctt ct	ctctacaagg	agtgacacac	3480
agtcaggtc a	tcttttgcct	gtggccccat	tatgcctgg c	actgttcacc	aacaact gtt	3540
ccctggacag	cactgctgc c	atctaagcta	aggtgaga tg	ttttcggggc	agggcca ttc	3600
ttgctgaatt	cagtgccgc a	gtccatcctg	attggctct c	gggtgat tt	cagacaa gac	36 60
ctgtttgtcc	·cgggggctg g	tcctctaatg	ggtgccaag g	agaagata cc	aaatacatg g	3720
agtaccttta	ggagtagcca	tttgtggggg	aggttgggc t	accctgtg gc	catgttcttc	37 80
ctgcctgtga	agcagctcaa	aacgaggatg	tgactgtgg g	ctgtggaca g	aggcagca ca	38 40
cgcattcctg	atgctgatct	gctgagaca c	gaatagaatc Pag e 1 0		ccagtgta cc	3900

agtgcctcag	atcaaagacc	tcaatagtgt	cacgtttgct	aaggctga tg	cctctcc tac	3 960
aggtaacagt	gggġatgacc	gttggaaggc	acagccaaag	agcagacag a	agttaagg tg	40 20
gccacagcac	aggtcaggga	tccaaggagc	tggggaggac	tgctcaaa ac	tagtctgg aa	4080
gcttgccttc	tctgctcctg	ctgaccatca	ggtcctgtca	ttaccactct	taggtcc gtc	4140
ttatgagatg	aggaatggg g	ccctcctcag	gggagagttt	cagaaatgag	ggaaag gcaa	4200
ttatagatag	aaagaagt at	cctgccattt	aaattgctg a	aagagctaga	atccctgg gc	4260
tcggtagttt	gtatcttaat	gtttgtgcgc	tagcacaggc	ccattggaga	ggaaaag ctg	4320
ttgtcctggg	agcaaagtaa	gcagccattc	aggtctcatt	ttttattttg	gtatgc ttgc	4380
ccttgggtgt	ttatagcccg	gaactgtagg	agctatgtat	gtacataa ta	tatatat tt	4440
ttaattt					٠	4447
<210> 11		•				
<211> 251 <212> DNA	4	•			•	
<213> mur	ine			•	-	•
<400> 11 gcggggagcc	ggctcatggt	ggggggtggg	gggaagatg g	cggagctg at	gctcctcact	60
gagatcgccg	acccgacgcg	cttcttcacc	gacaacct gc	tgagtccgga	ggactgg gac	120
agcaccttgt	acagtggcct	ggatgaagtg	gccgaggagc	aggcacagtt	gttccgtt gc	180
gtggagcagg	atgtcccgtt	tgacagcagc	tctctggatg	tggggatg ga	tgtcag cccc	240
cctgagcccc	cttgggaccc	tctacccatc	ttcccagatc	ttcaggtgaa	gtccgaġ cca	300
tcctctccct	gctcgtcctc	ctccctcagc	tcagagtcct	cacatctttc	cacagagccc	360
cccagccag g	tccctggtgt	aggcgaggtg	ctgcatgtg a	agatgga gtc	cctggcaccc	420
ccactctgcc	tgctggggga	tgatccagca	tcccctttg	aaacggtc ca	gatcactg tg	480
ggctctgcct	ctgatgatct	ttcagatatc	cagaccaa gc	tggaacctgc	ctctccg tct	540
tcttctgtcc	actctgagg c	ctccttgctg	tcagcaga ct	ctcccagtca	gcctttta ta	600
ggagaggag g	ttctggaagt	gaagacagag	tctccgtccc	ctccagggt g	cctcctgt gg	660
gatgtcccag	cctcttcgct	cggagctgtc	cagatcag ca	tgggtc catc	ccctgatagt	7.20
tcctcaggga	aagctccgg c	cactcggaag	cctccactgc	agcccaag cc	tgtggtacta	780
accacagttc	cggtgccacc	tagagctgg g	cctaccagcg	ctgccgtcct	cctgcaaccc	840
ctggtccag c	agcctgcggt	gtccccagtg	gtcctcatcc	aaggtg ctat	ccgagt ccag	900
cctgaagggc	cagctcccgc	agctccccg g	cct gagagg a	agagcatt gt	tccagc ccct	960
atgccgggga	actcctgccc	gcctgaagtg	gatgcaaag c	tgttgaag cg	gcagcagc gg	1020

1080

1140

1200

atgatcaaga atcgagagtc ggcctgccag tcccgccgca agaagaaaga gtacctgcca

aggcctggag gccccggctg caggctgtgc tggccgacaa ccagcagctg cgcagggaga

acgctgccct ccggcggcgg ctggaggccc tgctggcaga gaacagcggg ctcaagctgg

PCT/US2004/024571

WO 2005/012490

	ggtctgggaa	caggaaggtt	gtctgcatca	tggtcttcct	tctcttcatt	gccttcaa ct	1260
	tttggcctgt	gagcatcagc	gagccgcctc	cagctcccat	gtctcctcgg	atgagcagg g	1320
	aggaacctcg	accccagag g	cacctgctgg	gcttctcaga	accagggc ca	gctcatggca .	1380
	tggaacccct	tcgggaagcc	gcccagagcc	ccggggagca	gcagcccag c	tctgcag gca	.1440
	ggcccagctt	cagaaacctg	acggccttcc	ccgggggag c	caaggagg ct	gctgctgag a	1500
	gacctggacc	agctcttcct	ctcctcagac	tgtcgccatt	tcaaccga ac	tgagtc tctg	1560
	aggcttgctg	atgagctga g	tggctgggtc	caacgtca cc	agagagg tcg	acggaag ata	1620
	cctcacaggg	cccaggagag	acagaagtct	cagctacgga	agaagtct cc	tccagtga aa	1680
	cctgtcccca	cccaacctcc	aggaccccct	gaaagggacc	ccgtgggcca	gctgcag ctc	1740
	taccgccac c	ccggccgctc	gcagccggag	tttctagacg	caattgaccg	gagggag gat	1800
	accttctatg	ttgtctcctt	ccgaagggac	cacctgctgc	tcccagccat	cagccac cac	1860
	aagacatcca	ggcccaagat	gtcgctggtg	atgccagcca	tggcccccaa	tgagacc gtg	1920
•	tcaggccgg g	gcccccagg	ggactatgag	gagatgatg c	agatcgagt g	tgaggt catg	19 80
	gacaccaggg	tgattcacat	caagacctct	acggtgcccc	cctcgctccg	gaagcag ccg	2040
	tccccatccc	cgggcaatac	cacaggtggc	cccttgccag	gctccgca gc	tagtcctgcc	2100
	catcaggcct	cccagcccct	ttacctcaat	cacccctgac	atcctcacct	cacagtgact	2160
	tagaaccggg	ttagggaacc	tgatcctggg	gctcgggg gc	aattgtaaag	gaagacgg gg	2220
	tgtgggggtt	aagcactta g	tgggactagg	gtgggtgg t ţ	cacctctctt	ctcactcttt	2280
	ccagaaata t	agggctcctc	tcattcctgc	actcccag tc	ctctttcccc	gagggtacct	2340
	cgtgagggtt	tccccatat	cctcttcatt	ctctccttta	tctgtttgg g	agtcaagg tg	2400
	ggactaggtc	gccaggtgg g	acaagggatg	gttgtgggt g	gcagaagt ca	gtttatg tgt	2460
	gtgcgtat ct	tttttttatt	attattaaat	aaacaacgt g	gaggggtg ta	aag g	2514