Image Processing Basics

COMP4211

Handwritten Digit Recognition

MNIST: 10 classes (digits 0to 9)

Convolutional neural network

Continuous Convolution

$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$$

demo

- commutative: f * g = g * f
- associative: f * (g * h) = (f * g) * h

Discrete Convolution

$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau$$

Discrete convolution:

$$(f * g)(m) = \sum_{n=0}^{N-1} f(n)g(m-n)$$

2D Convolution

image I(i,j); kernel (mask) K

convolution

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

convolution is commutative

$$S(i,j) = (K*I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

• easier to implement

2D Convolution...

we have flipped the kernel relative to the input

• good for writing proofs, not an important property of a neural network implementation

more common approach

same as convolution but without flipping the kernel

$$S(i,j) = (K*I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

2D Convolution...

Smoothing (Averaging) Filter

window size

original

n=15 (n×n mask)

n=5 (n×n mask)

n=25 (n×n mask)

Other Arrangements

1	1	1
1	2	1
1	1	1

1	1	1	1	1
1	2	3	2	1
1	3	4	3	1
1	2	3	2	1
1	1	1	1	1

center pixel: 1 vs 5

Sharpening Filters

Averaging pixels

- blur
- analogous to integration, related to sum of pixel intensity values

Differentiation

- has the opposite effect of blurring
- sharpens an image, related to difference between intensity values

First derivative

$$\frac{\partial f}{\partial x} \leftrightarrow f(x+1) - f(x)$$

Edge Detector

-1	0	1
-1	0	1
-1	0	1

-1	-1	-1
0	0	0
1	1	1

