CS5321 Numerical Optimization Homework 4

Due Jan 04 2016

1. (20%) Consider the problem

- (a) Write down the KKT conditions for (1).
- (b) Solve the KKT conditions and find the optimal solutions, including the Lagrangian parameters.
- (c) Compute the reduced Hessian and check the second order conditions for the solution.
- 2. (20%) The trust region method (for unconstrained optimization problem) needs to solve a local model in each step

$$\min_{\vec{p}} \quad m(\vec{p}) = \frac{1}{2} \vec{p}^T A \vec{p} + \vec{g}^T \vec{p}$$

s.t.
$$\vec{p}^T \vec{p} \le \Delta^2.$$

Prove that the optimal solution \vec{p}^* of the local model satisfies

$$(A + \lambda I)\bar{p}^* = -\vec{g}$$

 $\lambda(\Delta - ||\bar{p}^*||) = 0$
 $(A + \lambda I)$ is positive semidefinite.

(Hint: to prove the last statement, you only need to consider the directions in the *critical cone*.)

3. (60%) Implement the Interior Point Method (IPM), as shown in Figure 1, to solve linear programming problem.

$$\min_{\vec{x}} \qquad \vec{c}^T \vec{x}$$
 s.t.
$$A\vec{x} - \vec{s} = \vec{b}$$

$$\vec{s} \ge 0$$

You can assume $\vec{x}_0 = 0$ is a feasible interior point.

- (1) Given \vec{x}_0 , $\vec{\lambda}_0$, and \vec{s}_0 , in which $\vec{\lambda}_0$, $\vec{s}_0 \ge 0$.
- (2) For $k = 0, 1, \dots$
- (3) Choose $\sigma_k \in [0, 1]$ and solve

$$\begin{pmatrix} 0 & -A^T & 0 \\ -A & 0 & I \\ 0 & S^k & \Lambda^k \end{pmatrix} \begin{pmatrix} \Delta x_k \\ \Delta \lambda_k \\ \Delta s_k \end{pmatrix} = \begin{pmatrix} A^T \vec{\lambda}_k - \vec{c} \\ A \vec{x}_k - \vec{s}_k - \vec{b} \\ \sigma_k \mu_k e - \Lambda^k S^k e \end{pmatrix},$$

where
$$\mu_k = \frac{\vec{\lambda}_k^T \vec{s}_k}{m}$$
, $\Lambda^k = \text{diag}(\vec{\lambda}_k)$, $S^k = \text{diag}(\vec{s}_k)$.

(4) Compute α_k such that

$$(\vec{x}_{k+1}, \vec{\lambda}_{k+1}, \vec{s}_{k+1}) = (\vec{x}_k, \vec{\lambda}_k, \vec{s}_k) + \alpha_k(\Delta x_k, \Delta \lambda_k, \Delta s_k)$$

is in the region $N(\gamma) = \{(\vec{x}, \vec{\lambda}, \vec{s}) | \lambda_i s_i \ge \gamma \mu_k, \forall i = 1, 2, \dots, n\}$ for some $\gamma = 10^{-3}$.

Figure 1: The interior point method for solving linear programming