AE and AEAD

Right now we know

• Encryption which takes care of the confidentiality problem

an attacker cannot get any info about the plaintext from a ciphertext

· MAC which takes care of Integrity

An authorized party (receiver) can check if the data is genuine or tempered with

But we have yet to define a method that combines them. We are going to do it now

Authenticated Encryption

Authenticated encryption (AE) provides confidentiality and data authenticity simultaneously.

Security

A Secure AE system is secure against chosen ciphertext attacks

Let

- (E,D) = cipher
- (S,V) = MAC

Types

Encrypt-then-MAC

Encryption

- $c = E(k_e, m)$
- $t = S(k_m, c)$

Decryption

- $V(k_m, c, t)$
 - \circ = reject $\Rightarrow reject$
 - \circ = accept \Rightarrow return $D(k_e,c)$

encrypt-then-mac

Mistakes

- ullet $k_e=k_m$ -> they must be chosen independently
- apply the MAC to only a part of the ciphertext
 - $\circ~$ Ex: Not signing the IV in a CBC mode => An attacker can queue a custom IV^\prime and the challenger must decrypt c

MAC-then-Encrypt

Encryption

- $t = S(k_{mac}, m)$
- $c = E(k_{enc}, (m, t))$

Decryption

- $(m,t) = D(k_e,c)$
- $V(k_m, m, t)$
 - o = reject => reject
 - $\circ~$ = accept => return m

Broken

Vulnerable to CCA

Padding oracle attacks https://www.youtube.com/watch?v=O5SeQxErXA4

Encrypt-and-MAC

• $t = S(k_{mac}, m)$

• $c = E(k_e n c, m)$

Broken too

The MAC is not designed for confidentiality => It can reveal information about the message

Authenticated Encryption with Additional Data

Extension of AE

ullet We give AE an additional input -> **Associated data** d

• Integrity protected, Secrecy not

ullet c=E(k,m,d,n) where n is a nonce

• m or reject = D(k, c, d, n)

Security

AEAD is secure if (E, D) is CPA secure and has ciphertext integrity

Encrypt then MAC

Encryption

•
$$c = E(k_e, m, n)$$

•
$$t = S(k_m, (c, d), n)$$

Decryption

```
• V(k_m, (c, d), t, n)  \circ \  \, = \mathsf{reject} \Rightarrow reject \\  \  \, \circ \  \, = \mathsf{accept} \Rightarrow D(k_e, c, d, n)
```

Resources

- https://en.wikipedia.org/wiki/Authenticated_encryption
- https://crypto.stackexchange.com/questions/12178/why-should-i-use-authenticated-encryption-instead-of-just-encryption
- https://crypto.stackexchange.com/questions/12178/why-should-i-use-authenticated-encryption-instead-of-just-encryption