المخروطيات المنحنيات من الدرجة الثانية

الطريقة الأولى تعتمد على تغيير المعلم بتغيير الأساس

. $(E) = \{M(x,y) \in P/5x^2 + 5y^2 + 6xy - 8 = 0\}$: نعتبر المجموعة : (O,\vec{i},\vec{j}) ؛ نعتبر المجموعة :

.
$$\vec{v} = -\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j}$$
 و $\vec{u} = \frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j}$: نعتبر المتجهتين : \vec{V}_2

(E) في المعلم (O,\vec{u},\vec{v}) ثم استنتج طبيعة المنحنى . (E)

. (O,\vec{i},\vec{j}) في المعلم (E) في المعلم 2.

الحل: تذكير:

: فإن : $0 < \theta < \frac{\pi}{2}$ و $(\vec{i}, \vec{u}) \equiv \theta[2\pi]$: فإن الماسان متعامدان متعامدان ممنظمان حيث

 $\vec{v} = -\sin(\theta)\vec{i} + \cos(\theta)\vec{j}$ $\vec{u} = \cos(\theta)\vec{i} + \sin(\theta)\vec{j}$

.
$$\vec{v} = -\sin\left(\frac{\pi}{4}\right)\vec{i} + \cos\left(\frac{\pi}{4}\right)\vec{j} = \frac{\sqrt{2}}{2}\left(-\vec{i} + \vec{j}\right)$$
 و $\vec{u} = \cos\left(\frac{\pi}{4}\right)\vec{i} + \sin\left(\frac{\pi}{4}\right)\vec{j} = \frac{\sqrt{2}}{2}\left(\vec{i} + \vec{j}\right)$ في المثال ؛ لدينا

xy يتم اختيار $\frac{\pi}{4}$ بحيث تكون معادلة (E) غير محتوية على الحد

1. نعتبر M نقطة من المستوى P بحيث:

لدينا

ومنه فإن:

. $\left(O,\vec{u},\vec{v}\right)$ هو زوج إحداثيتي النقطة M بالنسبة للمعلم $\left(O,\vec{i},\vec{j}\right)$ و $\left(X,Y\right)$ هو زوج إحداثيتي النقطة M بالنسبة للمعلم $\left(x,y\right)$

$$\overrightarrow{OM} = x \, \overrightarrow{i} + y \, \overrightarrow{j} = X \, \overrightarrow{u} + Y \, \overrightarrow{v} \quad \Leftrightarrow \quad x \, \overrightarrow{i} + y \, \overrightarrow{j} = \frac{\sqrt{2}}{2} X \, \left(\overrightarrow{i} + \overrightarrow{j} \right) + \frac{\sqrt{2}}{2} Y \, \left(-\overrightarrow{i} + \overrightarrow{j} \right)$$

 $\begin{cases} x = \frac{\sqrt{2}}{2}(X - Y) \\ y = \frac{\sqrt{2}}{2}(X + Y) \end{cases}$

$$M \in (E) \Leftrightarrow 5x^2 + 5y^2 + 6xy - 8 = 0$$

$$\Leftrightarrow \frac{5}{2}(X - Y)^2 + \frac{5}{2}(X + Y)^2 + \frac{6}{2}(X - Y)(X + Y) - 8 = 0$$

$$\Leftrightarrow 5(X^2 - 2XY + Y^2) + 5(X^2 + 2XY + Y^2) + 6(X^2 - Y^2) - 16 = 0$$

$$\Leftrightarrow 16X^2 + 4Y^2 - 16 = 0$$

$$\Leftrightarrow \frac{\overline{X^2} + \overline{Y^2}}{1^2} = 1$$

. B'(0,-2) و O(0,0) و O(0,0) و O(0,0) هي O(0,0) هي O(0,0) و O(0,0) و O(0,0) و O(0,0) هي O(0,0) هي اهليليج مركزه O(0,0)

لدينا : a = 1 و منه فإن بؤرتي الإهليليج a < b فإن a < b فإن a < b ومنه فإن بؤرتي الإهليليج a < b لدينا : a < b

.
$$(D'):Y=-rac{4\sqrt{3}}{3}$$
 و $(D):Y=rac{4\sqrt{3}}{3}$: ودلیلاه هما $F'\left(0-\sqrt{3}
ight)$ و $F\left(0,\sqrt{3}
ight)$ هما $\left(0,\vec{u},\vec{v}
ight)$

.
$$e=\frac{c}{b}=\frac{\sqrt{3}}{2}$$
 : تباعده المركزي هو

: ويما أن :
$$\begin{cases} X = \frac{\sqrt{2}}{2}(x+y) \\ Y = \frac{\sqrt{2}}{2}(-x+y) \end{cases} : فإن : \begin{cases} x = \frac{\sqrt{2}}{2}(X-Y) \\ y = \frac{\sqrt{2}}{2}(X+Y) \end{cases}$$

.
$$B'\left(\sqrt{2},-\sqrt{2}
ight)$$
 و $B\left(-\sqrt{2},\sqrt{2}
ight)$ و $A'\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}
ight)$ و $A\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}
ight)$: رؤوس (E) هي (E)

.
$$F'\!\left(rac{\sqrt{6}}{2},-rac{\sqrt{6}}{2}
ight)$$
 و $F\!\left(-rac{\sqrt{6}}{2},rac{\sqrt{6}}{2}
ight)$: بؤرتي E

$$(D')$$
: $\frac{\sqrt{2}}{2}(x+y) = \frac{4\sqrt{3}}{3}$ و (D) : $\frac{\sqrt{2}}{2}(-x+y) = \frac{4\sqrt{3}}{3}$: لميلا (E)

$$(D'): x + y = \frac{4\sqrt{6}}{3} g(D): -x + y = \frac{4\sqrt{6}}{3}: \phi$$

: $\left(O\,, \overrightarrow{i}\,, \overrightarrow{j}\,
ight)$ انشاء الإهليليج (E) في المعلم

الطريقة الثانية تعتمد على الدوران

 $(E) = \{M(x,y) \in P/5x^2 + 5y^2 + 6xy - 8 = 0\}$ في المستوى المنسوب إلى معلم متعامد ممنظم (O,\vec{i},\vec{j}) ؛ نعتبر المجموعة ونعتبر الدوران R الذي مركزه $O\left(0,0\right)$ وزاويته R .

. $\left[R\left(E\right)
ight]$ ثم استنتج طبيعة $\left[R\left(E\right)
ight]$ في المعلم $\left(O,ec{i},ec{j}
ight)$ ثم استنتج طبيعة .1

 (O,\vec{i},\vec{j}) مدد طبيعة المجموعة (E) ثم أنشئها في المعلم (E) .

الحل: لتكن M نقطة من المستوى P بحيث:

هو زوج إحداثيتي النقطة M بالنسبة للمعلم $\left(O,\vec{i},\vec{j}
ight)$ و $\left(O,\vec{i},\vec{j}
ight)$ هو زوج إحداثيتي النقطة $\left(X,Y
ight)$

: لدينا لدينا (O,\vec{u},\vec{v})

$$M' = R(M) \Leftrightarrow \begin{cases} X = \cos\left(\frac{\pi}{4}\right)x - \sin\left(\frac{\pi}{4}\right)y \\ Y = \sin\left(\frac{\pi}{4}\right)x + \cos\left(\frac{\pi}{4}\right)y \end{cases} \Leftrightarrow \begin{cases} X = \frac{\sqrt{2}}{2}(x - y) \\ Y = \frac{\sqrt{2}}{2}(x + y) \end{cases} \Leftrightarrow \begin{cases} X = \frac{\sqrt{2}}{2}(x + y) \\ Y = \frac{\sqrt{2}}{2}(x + y) \end{cases}$$

 $\begin{cases} X = \cos(\theta)x - \sin(\theta)y \\ Y = \sin(\theta)x + \cos(\theta)y \end{cases}$: هي $R(O,\theta)$ الصيغة التحليلية للدوران

: ومنه فإن $M'(X,Y) \in E/M' = R(M)$ لان $M'(X,Y) \in R(E)$

$$\int_{0}^{1} x = \frac{\sqrt{2}}{2} (X + Y)$$

$$\int_{0}^{1} y = \frac{\sqrt{2}}{2} (-X + Y)$$

$$\int_{0}^{1} 5x^{2} + 5y^{2} + 6xy - 8 = 0$$

$$5 \times \frac{1}{2} (X + Y)^2 + 5 \times \frac{1}{2} (-X + Y)^2 + 6 \times \frac{1}{2} (X + Y) (-X + Y) - 8 = 0$$
 : $\frac{1}{2} (X + Y)^2 + 6 \times \frac{1}{2} (X + Y) + \frac{1}{2} (X + Y)^2 + \frac{1}{2} (X$

$$5(X^2 + Y^2 + 2XY) + 5(X^2 + Y^2 - 2XY) + 6(Y^2 - X^2) - 16 = 0$$
 : $ightharpoonup$

$$O\left(0,0
ight)$$
 ومنه فإن $\left(E'
ight)=R\left(E
ight)$. ومنه فإن $\left(E'
ight)=R\left(E
ight)$.

ولدينا :
$$(O,\vec{i},\vec{j})$$
 و النسبة المعلم $c=\sqrt{a^2-b^2}=\sqrt{2^2-1^2}=\sqrt{3}$ ؛ لدينا : $a=2$

$$A'(0,-1)$$
 و $B(0,1)$ و $B(0,1)$ و $B'(0,-1)$ و $B(0,1)$ و $B'(0,-1)$ دووس $B'(0,-1)$ دووس (E') هي

.
$$F'\left(-\sqrt{3},0
ight)$$
 و $F\left(\sqrt{3},0
ight)$:

.
$$e=\frac{c}{a}=\frac{4\sqrt{3}}{3}$$
 : هو (E') هو التباعد المركز للإهليليج

$$(D'): x = -\frac{4\sqrt{3}}{3}$$
 وليلا $(E'): x = \frac{4\sqrt{3}}{3}$:

 $:\left(O,\overrightarrow{i},\overrightarrow{j}
ight)$ في المعلم المجموعة (E) في المعلم 2.

لدينا :
$$(E')$$
 هو أيضا إهليليج يستنج من (E') وبما أن (E') إذن : (E') الإن : (E') هو أيضا إهليليج يستنج من (E')

