浙江大学 20 18 - 20 19 学年 春夏 学期

«

有机化学 》课程期末考试试卷

课程号:	061B9010 ,	开课学院:	化学系

考试试卷: A 卷 √、B 卷 (请在选定项上打 √)

考试形式:闭√、开卷(请在选定项上打√),允许带 / 入场

考试日期: 2019 年 6 月 28 日,考试时间: 120 分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:	学号:	所属院系:	
77LXL711•		/// /P3 12/4/ •	

题序	 11	111	四	五	总 分
得分					
评卷人					

一 选择题 (36 分,每空 1.5 分)

选择题答题区 (请将选择题答案填入答题区)

1	2	3	4	5	6	7	8	9	10	11	12
C	В	A	A	В	В	В	D	C	В	A	C
13	14	15	16	17	18	19	20	21	22	23	
В	C	C	C	В	A	В	D	В	A	D	C

1. 人类历史上利用无机物合成的第一种有机物是()。

A电石气 B甲烷 C尿素 D醋酸

2. 在水溶液中下列化合物的碱性, 最强的是()。

A乙酰胺 B甲胺 C氨 D苯胺

3. 根据休克尔规则,下列化合物中没有芳香性的是()。

4. 下列化合物中, 有光学活性的是()

5. 反-1,4-二甲基环己烷最稳定的构象是()。

6. 拉罗替尼可用于治疗 NTRK 基因融合的晚期实体瘤患者,其分子结构中含有2 个手性中心,绝对构型表示正确的是(___)。

- 7. 下列化合物中不能发生 Fridel-Crafts 酰基化反应的是 ()。 **A** 甲苯 **B** 硝基苯 **C** 呋喃 **D** 噻吩
- 8. 下列化合物进行 S_N1 反应时,反应速率最大的是 ()。

9. 下列各式中,不正确的共振结构式是()。

A
$$CH_2$$
 CH_2 CH_2

10. 从薄荷叶中提取的(-)-薄荷酮(如图)具有旋光性,但在碱性条件下旋光性逐渐消失,即发生了外消旋化,其原因是 ()。

11. 下述频哪醇重排反应中,不同芳基(R)迁移速率最快的是()。

12. 丙氨酸(等电点 pI = 6.0),在 pH= 9.0 的水溶液中主要以 ()形式存在。
\mathbf{A} $\mathrm{CH_3CHCO_2H}$ \mathbf{B} $\mathrm{CH_3CHCO_2^-}$ \mathbf{C} $\mathrm{CH_3CHCO_2^-}$ \mathbf{D} $\mathrm{CH_3CHCO_2H}$ $\mathrm{NH_2}$ $\mathrm{NH_3}$ $\mathrm{NH_2}$ $\mathrm{NH_3}$
13. 下列各组化合物中,两个化合物互为对映体的是()。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14. 下列氯代烃进行 S _N 2 反应, 速率最快的是 ()。 A CI CH ₂ CI D CI CH ₃
15. 下列化合物的命名,错误的是 ()。 A B OH C H CO ₂ H HO—CO ₂ H H ₃ C CH ₂ CH ₃ 2,3-二甲基-4-戊烯醛 2,4-二羟基苯甲酸 (<i>Z</i>)-2-乙基-2-丁烯酸
16. 下列化合物不能被酸性 KMnO ₄ 氧化成苯甲酸的是 ()。 A 甲苯 B 乙苯 C 叔丁苯 D 环己基苯
17. 以下试剂中,亲核性最强的是 ()。 A CH ₃ CO [⊖] B CH ₃ CH ₂ S [⊖] C CH ₃ CH ₂ O [⊝] D CH ₃ CH ₂ OH
18. 比较下列烯烃 (1-4) 发生亲电加成反应的活性大小,正确的是 ()。 CF ₃ CH ₃ CI H ₃ C CH ₃ 1 2 3 4 A 4>2>3>1 B 4>3>2>1 C 1>3>2>4 D 2>4>3>1
19. 下列分子中,能形成分子内氢键的是()。 A B NO ₂ C CH ₃ D O ₂ N—OH OH
20. 下列自由基 (1-4) 按稳定性顺序由大到小排列,正确的是 ()。
CH_3 $^{\bullet}CH_3$ $^{\bullet}CH_3$ $^{\bullet}CH_2$ $^{\bullet}C$ $^{\bullet}CH_2CH_2CH_3$
1 2 3 4

A 4>2>3>1 B 3>4>2>1 C 2>1>3>4 D 2>4>3>1

- 21. 下列化合物中最易发生亲电取代的是 ()。 **A** 苯 **B** 呋喃 **C** 吡啶 **D** 三氟甲基苯
- 22. 下列卤代醇,在碱性条件下可发生分子内 S_N 反应而生成环醚的是 ()

23. 下列单糖,不能被溴水氧化的是();被稀硝酸氧化后,没有光学活性的是()。

二 推测化合物结构 (8分)

1. 分子式为 C_7H_{14} 的化合物 $A \times B \times C$ 都是旋光性物质,其中 $A \to R$ 构型, $B \times C$ 均为 S 构型。化合物 $A \times B$ 经镍催化加氢得 S 构型的相同化合物 $D(C_7H_{16})$,而化合物 C 经镍催化加氢得 S 构型化合物 $E(C_7H_{16})$ 。化合物 $A \times B \times C$ 经酸性高锰酸钾溶液氧化均有气体放出。试推测化合物 $A \times B \times C \times D$ 和 E 的结构式。

2. 1,2-二甲基环己醇经脱水反应所得产物为烯烃混合物,其组成为:烯烃 A (3%),烯烃 B (31%),烯烃 C (85%)。无论烯烃 A,B 或 C 经催化加氢,都得到 1,2-二甲基环己烷。此外,该烯烃混合物在酸性条件下加热,3 个烯烃组分 $(A \times B \times C)$ 可发生转化(即双键移位),最终达到平衡,此时组成为:烯烃 A (0%),烯烃 B (15%),烯烃 C (85%)。试推测烯烃 A \times B 和 C 的结构式。

三 完成下列反应式;如反应有立体选择性,请写出产物的立体构型 (32分)

1.

2.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

3.

4.

5.

6.

7.

$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{O} \\ \text$$

8.

10.

11.
$$\begin{array}{c} H_2SO_4 \\ \hline \Delta \end{array}$$

15.

$$\left(\begin{array}{c} 1) B_2 H_6 \\ \hline 2) H_2 O_2, NaOH \\ \end{array} \right) \begin{array}{c} 1) O_3 \\ \hline 2) H_2 O, Zn \\ \end{array} \right)$$

16.

四 试画出下列反应的机理 (8分)

1. CH₃MgBr
CH₃MgBr
CH₃ CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
C

五 合成题 (16分)

1 在括号中写出反应过程所需的试剂或相关中间产物,以合成目标分子

$$\begin{array}{c|c}
 & (\text{LiAIH}_{4}) \\
\hline
 & (\text{CO}_{2}H) \\
\end{array}$$

$$\begin{array}{c|c}
 & (\text{LiAIH}_{4}) \\
\hline
 & (\text{CH}_{2}OH) \\
\end{array}$$

$$\begin{array}{c|c}
 & (\text{CH}_{2}CN) \\
\end{array}$$

$$\begin{array}{c|c}
 & (\text{CH}_{2}CN) \\
\end{array}$$

2 由苯胺和必要的有机、无机试剂合成目标分子

3 以环己烯、苯和其他必要的有机、无机试剂合成目标分子

4 在括号中画出反应过程相关中间产物,以合成目标分子