Package 'RAdamant'

July 12, 2011

Type Package

Title Financial Technical Analysis and Risk Management

Version 0.8.1
Date 2011-07-11
Author RAdamant Development Team
Maintainer RAdamant Development Team <pre><team@r-adamant.org></team@r-adamant.org></pre>
Depends R (>= 2.11.1), utils, grDevices
Description R-Adamant is a collection of functions and algorithms for processing of Financial Time Series, Risk Management and Econometrics.
License GPL>=2
LazyLoad yes
R topics documented:
3dptelem 8 3dptpars 9 abi 10 absrs 11 acdi 11 adi 12 adrating 12 adratio 13 advdec 13 ama 14 apo 15 apprais 15 archlm 16 armaspc 16

sfs	. 20
ssmeas	. 20
arthann	. 22
artlet	. 23
incoef	. 24
lackman	. 24
olband	. 25
olbandb	. 26
olfib	. 26
oot	. 27
op	. 28
ox3d	. 28
pdlind	. 29
readth	. 29
romot	. 30
romot2d	. 31
sfml	. 31
sgreeks	. 32
	. 32
1	. 32
smomt	
sprice	. 34
uypre	. 34
apm	. 35
ci	. 36
civ2	. 37
haikin	. 37
haosacc	. 38
hist	. 39
hvol	. 40
leanup	. 40
lust	. 41
lv	. 42
mf	. 42
mof	. 43
ofit	. 44
olinprs	. 44
olinred	. 45
ombine	. 45
osine	
plot	
plot3d	
ramv	
rbtree	
rosef	
rosplot	
rscolin	
umfun	
ataset	
ecimals	
ecscal	
ema	
emark	. 57

dgev	
dgpd	58
dma	
dpo	
drawdown	
dropn	
edgefact	
edwdist	
edwprice	
ema	
emat	
eom	
epma	
erf	
erfi	
extrdd	69
factor	69
fft	71
finplot	72
firsthit	73
flogbuf	74
fmeas	75
fmlmreg	75
forcidx	76
frama	77
fresvar	78
fsevecar	79
fulp	79
funcomx	80
funlent	81
fwmovav	82
garch	83
gauss	84
gdema	85
getacfci	86
getfs	87
getlmwgh	0.0
getpred	
gevar	
gevarci	
gevarent	
gevarcst	
gevarg	
gevark	
gevci	
gevcont	
gevlike	
gevmcst	
gevml	
gevrng	
gevsicst	
gevxicst	97

gini	
glogbuf	. 98
gmma	. 99
gpdboot	. 100
	. 101
gpdcnt	
gpdes	
gpdesci	
gpdescnt	
gpdescst	
gpdesfce	
gpdesk	
gpdesml	
gpdesrng	
gpdlk	
gpdml	
ppdrng	. 108
gpdsfc	. 109
gpdsgcnt	. 110
gpdvar	
ppdvarci	
gpdvaren	
gpdvaret	
gpdvarg	
gpdvarlk	
gpdvarml	
gpdvarsf	
gpdxicst	
grad	
grangcas	. 117
grautil	. 117
namming	. 118
nann	. 119
neas	. 120
nhv	
nill	
nma	
nroi	
nor	
chkh	
mpulse	
n2woe	
nertia	
nvlogit	
nvp	. 128
rsvecar	. 128
sfs	. 129
btest	. 129
ensen	
rbtree	
kaiser	
Kama	
<u> </u>	. 104

elt	3
ri	4
rurtskew	5
vo	5
agret	6
anczos	8
ew	9
iftgain	
ibgarch	
	•
kgarch	
kmgarch	
ktgarch	
lv	
ogger	
ogit	
rbtree	
nacd	6
nass	7
nasscum	8
ncf	8
negind	9
nclog	
ncosc	
neplot	
nesi	
	_
ndbuglev	
neans	-
nfind	
nflow	
nfratio	6
ninmaxs	7
nlbsize	7
nlogfile	8
nlogwarn	9
nma	0
nndma	1
nom	
noments	
novapply	
novav	
novfunc	
1	
nreg	
nsort	
ntacf	
ntccf	
ntmcf	0
ntoscil	0
ntreg	1
otunivar 17	ว

30			
oscil	 	 	. 176
pchan	 	 	. 177
pdfhit	 	 	. 178
perf	 	 	. 178
pfe	 	 	. 179
pgarch	 	 	. 179
pgev	 	 	. 180
10			
101			
100			
1			
1			
•			
•			
1			
1			
•			
•			
-			
•			
-			
printfs	 	 	. 199
printvar	 	 	. 200
pro	 	 	. 200
probhit	 	 	. 201
-			
-			
•			
•			
-			
-			
101			
raupkg	 	 	208

recycle	 		 	 	 		 		 							. 209
relvol	 		 	 	 		 		 							. 209
rema	 		 	 	 		 		 							. 210
rgev	 		 	 	 		 		 							. 211
rgpd	 		 	 	 		 		 							. 212
roc	 		 	 	 		 		 							. 212
rowmax	 		 	 	 		 		 							. 213
rschint	 		 	 	 		 		 							. 213
rsi																
runlog																
runner																
rvi																
sampmom .																
scaledf																
scorecd																
sensan																
																. 221
sensanrg																
sharpe	 		 	 	 		 		 							. 222
sinma	 		 	 	 		 		 							. 223
sma	 		 	 	 		 		 							. 224
sme	 		 	 	 		 		 							. 225
pecgram .	 		 	 	 		 		 							. 226
splitwdw	 		 	 	 		 		 							. 228
sssym	 		 	 	 		 		 							. 228
stacklev	 		 	 	 		 		 							. 229
starc	 		 	 	 		 		 							. 230
statbar																
stepmat																
strvar																
styles																
sumdd																
sumdens	 		 	 	 		 	-	 		 •	 -			•	
sumreg																
swing																
symlkup	 	• •	 	 	 	•	 	٠	 	•	 ٠	 ٠	•	 ٠	٠	
tema	 		 	 	 	•	 		 	•	 ٠	 •	•		•	. 236
thigh																
tirlev																
tlow	 		 	 	 		 		 							. 239
tma	 		 	 	 		 		 							. 239
reynor	 		 	 	 		 		 							. 241
trf	 		 	 	 		 		 							. 241
triangle	 		 	 	 		 		 							. 242
ttma	 		 	 	 		 		 							. 243
typ	 		 	 	 		 		 							. 244
ulcer																
ultima																
univar																
var																` <u>_</u>
varptf																
vcmof	 		 	 	 		 		 							. 249

8 3dptelem

	vecar
	vhff
	vidyaf
	vwma
	wad
	weigevid
	whvar
	wildavg
	wildsum
	wma
	wro
	zind
	zlma
	zscore
Index	261

3dptelem

3D Plot Elements

Description

Add elements to 3D Plot

Usage

```
lines3d(x, y, z, pmat = getProjectionMatrix(), ...)
points3d(x, y, z, pmat = getProjectionMatrix(), ...)
rect3d(xrange, yrange, z, pmat = getProjectionMatrix(), ...)
text3d(x, y, z, pmat = getProjectionMatrix(), ...)
```

Arguments

Author(s)

RAdamant Development Team <team@r-adamant.org>

3dptpars 9

3dptpars

3D Plot Axis Formatting

Description

Add and format labels for 3D Plot

Usage

```
x.axis3d(xlim = getPlotLimits(1), ylim = getPlotLimits(2),
zlim = getPlotLimits(3),
pmat = getProjectionMatrix(), at = NULL,
labels = NULL, theme.params = getCurrentTheme(),
show.labels = TRUE, grid = theme.params[["xgrid"]],
overrides = list(\dots), \dots)
y.axis3d(xlim = getPlotLimits(1), ylim = getPlotLimits(2), zlim =
getPlotLimits(3),
pmat = getProjectionMatrix(), at = NULL,
labels = NULL, theme.params = getCurrentTheme(),
show.labels = TRUE, grid = theme.params[["ygrid"]],
overrides = list(\dots), \dots)
z.axis3d(xlim = getPlotLimits(1), ylim = getPlotLimits(2), zlim =
getPlotLimits(3),
pmat = getProjectionMatrix(), at = NULL, labels = NULL,
theme.params = getCurrentTheme(), show.labels = TRUE,
grid = theme.params[["zgrid"]],
overrides = list(...), ...)
x.title3d(xlim = getPlotLimits(1), ylim = getPlotLimits(2), zlim =
getPlotLimits(3),
pmat = getProjectionMatrix(), title = "",
theme.params = getCurrentTheme(), ...)
y.title3d(xlim = getPlotLimits(1), ylim = getPlotLimits(2), zlim =
getPlotLimits(3),
pmat = getProjectionMatrix(), title = "",
theme.params = getCurrentTheme(), ...)
z.title3d(xlim = getPlotLimits(1), ylim = getPlotLimits(2), zlim =
getPlotLimits(3),
pmat = getProjectionMatrix(), title = "",
theme.params = getCurrentTheme(), ...)
getPlotLimits(which = 1:3, env = getOption("RAdamant"))
setPlotLimits(xlim = NULL
, ylim = NULL
```

10 abi

```
, zlim = NULL
, env = getOption("RAdamant")
)
```

Arguments

```
xlim
                xlim
ylim
                ylim
zlim
                zlim
pmat
                pmat
at
                at
which
                which
env
                environment
labels
                labels
title
                title
theme.params theme.params
show.labels show.labels
                grid
grid
overrides
                Overrides list
                Further arguments to or from other methods
```

Author(s)

RAdamant Development Team < team@r-adamant.org>

abi

Absolute Breath Index - ABI

Description

Compute Absolute Breath Index (Technical Analysis)

Usage

```
Abi(X, lag = 5, plot=FALSE, ...)
```

Arguments

Χ	Input numerical series
lag	Number of lags
plot	LOGICAL. Return plot.
	Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

absrs 11

Description

Compute Absolute Relative Strenght (Technical Analysis)

Usage

```
absrs(X, lag = 14, na.rm = FALSE, plot = FALSE, ...)
```

Arguments

```
X
lag INTEGER. Number of lag periods.
na.rm na.rm
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\claim= adamant.org>|$

acdi	Acceleration Deceleration	

Description

Acceleration Deceleration Technical Indicator

Usage

```
acdi(Close, High = NULL, Low = NULL, Vol = NULL, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
Vol	VECTOR. Asset traded Volume.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

12 adrating

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

adi

Advance-Decline Indicator

Description

Advance-Decline Indicator (Technical Analysis)

Usage

```
ADind(close, high, low, lag = 5)
```

Arguments

close	VECTOR. Close price.
high	VECTOR. high price.
low	VECTOR. Low price.

lag INTEGER. Number of lag periods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

adrating

Average Directional Rating

Description

Compute Average Directional Rating index (Technical Analysis)

Usage

```
ADrating(close, high, low, lag)
```

Arguments

close	VECTOR. Close price.
high	VECTOR. high price.
low	VECTOR. Low price.

lag INTEGER. Number of lag periods.

adratio 13

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

adratio

Advance Decline ratio

Description

Compute Advance Decline ratio (Technical Analysis)

Usage

```
ADratio(X, lag, plot, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

advdec

Advance Decline issues

Description

Compute Advance Decline issues (Technical Analysis)

Usage

```
AdvDec(X, lag = 5, ret.idx = TRUE, plot = FALSE, ...)
```

14 ama

Further arguments to or from other methods.

Arguments

X X
lag INTEGER. Number of lag periods.
ret.idx ret.idx
plot LOGICAL. If TRUE plot is returned.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ama General Adaptive Moving Average

Description

General Adaptive Moving Average, computed on each column of the input data X.

Usage

```
ama(X, ar.ord = 1, ma.ord = 1, func = NULL, padding = 0, type = "AMA",
plot = FALSE, ...)
```

Arguments

```
Χ
                 X
ar.ord
                 ar.ord
ma.ord
                 ma.ord
func
                 func
padding
                 padding
type
                 type
                 LOGICAL. If TRUE plot is returned.
plot
                 Further arguments to or from other methods
. . .
```

Author(s)

RAdamant Development Team < team@r-adamant.org>

apo 15

apo

Apo - Absolute price indicator

Description

Apo - Absolute price indicator

Usage

```
apo(X, fast.lag = 10, slow.lag = 30, plot = FALSE, ...)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

apprais

Appraisal ratio

Description

```
Appraisal: Calculate Jensen index for a portfolio Appraisal. Capm: Get Jensen index from an object of class "Capm".
```

Usage

```
Appraisal(PTF, ...)
## Default S3 method:
Appraisal(PTF, PTF_M, rf = NULL, rfr = 0, ...)
## S3 method for class 'Capm'
Appraisal(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

16 armaspc

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
Sharpe, Treynor, Jensen
```

archlm

ARCH-LM test

Description

Compute ARCH-LM test

Usage

```
Archlm(x, lags, std=FALSE, plot.acf=FALSE)
```

Arguments

```
egin{array}{lll} x & x & & & & & & & & \\ lags & & lags & & & & & & \\ std & & std & & & & & & \\ plot.acf & & plot.acf & & & & & \\ \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

armaspc

Arma spectral representation

Description

Spectral representation based on ARMA models

Usage

```
Arma.Spec(X, ar_ord = 1, ma_ord = 1, vfreq = NULL)
```

Arguments

arms 17

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

arms Arms index

Description

Compute Arms index (Technical Analysis)

Usage

```
Arms(X, Volume, lag, plot = FALSE, ...)
```

Arguments

X X

Volume VECTOR. Asset traded Volume.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

arodown Aroon Down oscillator

Description

Compute Aroon Down oscillator (Technical Analysis)

Usage

```
arodown(X, lag = 5, plot = TRUE, ...)
```

18 aroon

Arguments

Χ X

INTEGER. Number of lag periods. lag

LOGICAL. If TRUE plot is returned. plot

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

Aroon oscillator aroon

Description

Compute Aroon oscillator (Technical Analysis)

Usage

```
aroon(X, lag = 5, plot = TRUE, ...)
```

Arguments

plot

Χ X

lag INTEGER. Number of lag periods. LOGICAL. If TRUE plot is returned.

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

aroud 19

aroud

Aroon Down oscillator

Description

Compute Aroon Down oscillator (Technical Analysis)

Usage

```
aroud(X, lag = 5, plot = TRUE, ...)
```

Arguments

```
\begin{array}{ccc} \textbf{X} & & \textbf{X} \\ \textbf{lag} & & \textbf{lag} \\ \textbf{plot} & & \textbf{plot} \\ & \cdots & & \cdots \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

aroup

Aroon Up oscillator

Description

Compute Aroon Up oscillator (Technical Analysis)

Usage

```
aroup(X, lag = 5, plot = TRUE, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

20 assmeas

asfs

Convert Yahoo! Data into Financial Series object

Description

Converts a stock data series (dataframe) into a Financial Series (fs) object.

Usage

```
as.fs(X, SName = "", <math>Symbol = "")
```

Arguments

X Input dataframe with columns (Open, High, Low, Close, Volume, Adj.Close).

SName The name assigned to the fs object.

Symbol The symbol assigned to the fs object.

Value

A financial Time Series object. This is a matrix with columns (Open, High, Low, Close, Volume, Adj.Close). The following attributes are attached to the object:

SName The Name/Description of the financial series.

Symbol The input stock symbol.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Load sample financial series data
data(ex_fs)
# Subset data and create another fs object
as.fs(as.data.frame(ex_fs[1:10,]), SName = "My Financial Series", "My Symbol")
```

assmeas

Association measures

Description

Measures of Association of Predicted Probabilities and Observed Responses

assmeas 21

Usage

```
KendallTau(target, pred, ...)
GKgamma(target, pred, ...)
CalcPairs(target, pred, segm_fact = 0.002)
SomerD(target, pred, ...)

confusionM(target, ...)
## Default S3 method:
confusionM(target, pred, th=0.5, ...)
## S3 method for class 'scorecard'
confusionM(target, th=0.5, ...)
accuracy(x, ...)
## S3 method for class 'scorecard'
accuracy(x, th=0.5, ...)
```

Arguments

target	VECTOR. Observed target value
pred	VECTOR. Predicted values
x	An object of class "scorecard"
segm_fact	Segmentation factor used for pairs calculation
th	Threshold value for the predicted values (Defaults = 0.5)
	Further arguments to or from other methods

Details

- KendallTau: calculate Kendall rank correlation coefficient;
- GKgamma: calculate Goodman and Kruskal's gamma;
- Somerd: calculate Somer D statistic;
- CalcPairs: calculate number of Concordant and Discordant pairs;
- confusionM: calculate confusion matrix predicted VS original values
- accuracy: get accuracy measure from the results of a classification model

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# load example data set
data(ex_credit)

## Generate Score Card
data = ex_credit[ ,-1]
target = ex_credit[ ,1]
# Example of scorecard
sc3 = Score.card(X=data, Y=target, nseg = c(2,3,4))
sc3

# get confusion matrix for an object of class "scorecard"
```

22 barthann

```
confusionM(sc3, 0.5)
# extract accuracy measures
accuracy(sc3, 0.4)

# get predicted values
pred = predict(sc3)

# calculate association measures
SomerD(target, pred)
KendallTau(target, pred)
GKgamma(target, pred)
```

barthann

Bartlet-Hann window

Description

Computes Bartlet-Hann window of given length

Usage

```
barthann(N, normalized = TRUE, alpha = 0.38)
```

Arguments

N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.

alpha Shape factor (DEFAULT = 0.38).

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Bartlet-Hann window.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Generate a Bartlet-Hann window of size 100
x = barthann(100, FALSE)
# Plot the window
cplot(x
, main = "Bartlet-Hann Window"
, legend = attr(x, "type")
)

# Generate another window with different smoothing factor
y = barthann(100, normalized = FALSE, alpha = 0.5)
# Compare the two windows
cplot(cbind(x, y)
, main = "Bartlet-Hann Window"
, legend = paste("Bartlet-Hann (alpha = ", c(0.38, 0.5), ")", sep = "")
```

bartlet 23

```
, type = c("1", "o")
, xlab.srt = 0
)
```

bartlet

Bartlet window

Description

Computes Bartlet window of given length

Usage

```
bartlet(N, normalized = TRUE)
```

Arguments

N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Bartlet window.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Generate a Normalised Bartlet window of size 100
x = bartlet(100)
# Plot the window
cplot(x
, main = "Bartlet Window"
, legend = attr(x, "type")
)
# Generate a non-normalised window
y = bartlet(100, FALSE)
# Compare the two
cplot(cbind(x, y)
, main = "Bartlet Window"
, legend = paste(attr(x, "type"), c("Normalised", "Not Normalised"))
, type = c("l", "o")
, xlab.srt = 0
```

24 blackman

bincoef

Binomial coefficient

Description

Calculate binomial coefficient

Usage

```
BinCoef(N, n)
```

Arguments

N N n n

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

blackman

Blackman window

Description

Computes Blackman window of given length

Usage

```
blackman(N, normalized = TRUE, alpha = 0.16)
```

Arguments

N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.

Shape factor (DEFAULT = 0.16). Determines the smoothing of the window sidelobes.

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Blackman window.

Author(s)

RAdamant Development Team < team@r-adamant.org>

bolband 25

Examples

```
# Generate a Blackman window of size 100
x = blackman(100, FALSE)
# Plot the window
cplot(x
, main = "Blackman Window"
, legend = attr(x, "type")
)

# Generate another window with lower smoothing factor
y = blackman(100, normalized = FALSE, alpha = 0.4)
# Compare the two windows
cplot(cbind(x, y)
, main = "Blackman Window"
, legend = paste("Blackman (alpha = ", c(0.16, 0.4), ")", sep = "")
, type = c("l", "o")
, xlab.srt = 0
)
```

bolband

Bollinger Bands

Description

Compute Bollinger Bands (Technical Analysis)

Usage

```
BolBand(Close, High, Low, fact = 2, win.size = 5, plot = FALSE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

fact fact
win.size win.size
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

26 bolfib

bolbandb Bollinger Bands Bandwidth

Description

Compute Bollinger Bands Bandwidth (Technical analysis)

Usage

```
BolBandB(Close, High, Low, fact=2, win.size=5, plot=FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

fact fact win.size

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bolfib Bollinger Bands - Fibonacci ratio

Description

Compute Bollinger Bands - Fibonacci ratio (Technical Analysis)

Usage

```
Bol.Fib(Close, High, Low, win.size = 5, fibo = c(1.618, 2.618, 4.236), plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

win.size win.size fibo

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

boot 27

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

boot

General bootstrapping function

Description

General bootstrapping function

Usage

```
boot(X, nboots = 100, func = NULL, init = NULL,
message = "Bootstrapping...", ...)
```

Arguments

```
X X
nboots nboots
func func
init init
message message
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

28 box3d

bop Balance of Power

Description

Compute Balance of Power (Technical Analysis)

Usage

```
Bop(Close, Open, High, Low, smoothed = TRUE, ...)
```

Arguments

Close VECTOR. Close price.

Open VECTOR. Open price.

High VECTOR. High price.

Low VECTOR. Low price.

smoothed smoothed

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

box3d 3D box

Description

Plotting tools

Usage

```
box3d(x, y, z, pmat = getProjectionMatrix(), half = FALSE, ...)
```

Arguments

... Further arguments to or from other methods

bpdlind 29

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

bpdlind

BPDL indicator

Description

Compute BPDL indicator (Technical Analysis)

Usage

```
BPDLind(Close, lag = 1, smoothed = TRUE, slag = 5)
```

Arguments

Close VECTOR. Close price.

lag INTEGER. Number of lag periods.

 $\begin{array}{cc} \text{smoothed} & \text{smoothed} \\ \text{slag} & \text{slag} \end{array}$

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

breadth

Breadth trusth indicator

Description

Compute Breadth trusth indicator (Technical Analysis)

Usage

```
Breadth(X, lag = 5, plot = FALSE, \dots)
```

Arguments

X

lag INTEGER. Number of lag periods. plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

30 bromot

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bromot

Browniam motion

Description

Simulate a standard Brownian motion

Usage

```
BroMot(nsim, T, S0 = 0, mi = 0, sigma = 1,
geom = TRUE, same.rnd = TRUE, plot = FALSE, ...)
```

Arguments

```
nsim
nsim
                 T
Τ
S0
                 S0
mi
                 mi
sigma
                 sigma
geom
                 geom
same.rnd
                 same.rnd
                 LOGICAL. If TRUE plot is returned.
plot
                 Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

bromot2d 31

bromot2d

2-dimensional Browniam motion

Description

Simulate a bi-dimensional standard Brownian motion

Usage

```
BroMot2D(nsim, T, S0, mi, sigma, geom = TRUE,
same.rnd = FALSE, laydisp = NULL, plot = TRUE, ...)
```

Arguments

nsim	nsim
T	T
S0	S0
mi	mi
sigma	sigma
geom	geom
same.rnd	same.rnd
laydisp	laydisp
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bsfml

Black & Scholes formula

Description

Black & Scholes analytical formula

Usage

```
BS.formula(type = c("call", "put"))
```

Arguments

type

type

32 bslmpvol

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bsgreeks

Black & Scholes greeks

Description

Calculate analytically Black & Scholes greeks

Usage

```
BS.greeks(X = NULL, ...)
```

Arguments

x X

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

 ${\tt bslmpvol}$

Black & Scholes Implied volatility

Description

Calculate Black & Scholes Implied volatility

Usage

```
BS.ImpVol(P, under, strike, rfr, sigma, maty,
yield, interval = c(-20, 20),
calc.type =c("standard", "lognorm", "gammarec"),
opt.type = c("call", "put"))
```

bsmomt 33

Arguments

P	P
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yield
interval	interval
calc.type	calc.type
opt.type	opt.type

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

bsmomt

Black & Scholes moments

Description

Calculate first four moments for Black & Scholes

Usage

```
BS.moments(BS = NULL, under, rfr, sigma, yield, maty)
```

Arguments

BS	BS
under	under
rfr	rfr
sigma	sigma
yield	yield
maty	maty

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

34 buypre

bsprice

Black & Scholes price generic

Description

Generic method for Black & Scholes price

Usage

```
BS.price(under, ...)
## Default S3 method:
BS.price(under, strike, rfr, sigma, maty, yield, calc.type =c("standard",
"lognorm", "gammarec"), opt.type = c("call", "put"), ...)
```

Arguments

Underlying asset price. under strike Strike price. rfr Risk free rate. sigma Volatility. maty Maturity. yield Yield Calculation type. calc.type opt.type Option type. Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

buypre

Buying pressure indicator

Description

Compute Buying pressure indicator (Technical Analysis)

Usage

```
buypre(Close, Low, lag = 5, plot = FALSE, ...)
```

35 capm

Arguments

Close	VECTOR. Close price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

Capm - default method capm

Description

Default method for CAPM

Usage

```
Capm(PTF, ...)
## Default S3 method:
Capm(PTF, PTF_M, rf = NULL, rfr = NULL, ...)
```

Arguments

PTF	Matrix of returns, one series for each asset in the portfolio.
PTF_M	Vector of returns for the market portfolio
rf	Vector. Risk free asset returns
rfr	Numeric. Risk free rate
	Further arguments to or from other methods

Author(s)

RAdamant Development Team

36 cci

Examples

```
# load example dataset
data(ex_ptf)
# Generate a random return risk free asset
rf = rnorm(NROW(ex_ptf), mean = 0.05, sd = 0.01)
# Calculate CAPM
Capm(PTF = ex_ptf[,-1], PTF_M = ex_ptf[,1], rf)
## Not run:
## Example with real time series
ACME = get.fs("APKT", SName = "Acme Packet", from=as.Date("2010-01-01"))
ABTL = get.fs("ABTL", SName = "Autobytel", from=as.Date("2010-01-01"))
CNAF = get.fs("CNAF", from=as.Date("2010-01-01"))
BIIB = get.fs("BIIB", SName = "Biogen", from=as.Date("2010-01-01"))
SONY = get.fs("SNE", SName = "Sony", from=as.Date("2010-01-01"))
ENI = get.fs("E", SName = "Eni", from=as.Date("2010-01-01"))
ptf = combine.fs(ACME, ABTL, CNAF, BIIB, SONY, ENI);
head(ptf)
# Load a Benchmark Portfolio Index
NASDAQ = get.fs("^IXIC", SName = "NASDAQ", from=as.Date("2010-01-01"));
R_ptf = Ret(ptf, na.rm = TRUE);
# Return of the Benchmark portfolio (NASDAQ index)
R_NASDAQ = Ret(NASDAQ, na.rm = TRUE)
# Generate a random return risk free asset
rf = rnorm(NROW(R_ptf), mean = 0.05, sd = 0.01)
Capm(R_ptf, R_NASDAQ, rf)
## End(Not run)
```

cci

Commodity channel index

Description

Compute Commodity channel index (Technical Analysis)

Usage

```
cci(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
• • •	Further arguments to or from other methods.

cciv2 37

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

cciv2

Commodity channel index v02

Description

Compute Commodity channel index v02 (Technical Analysis)

Usage

```
cci.v2(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

```
High VECTOR. High price.

Low VECTOR. Low price.

Close VECTOR. Close price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

chaikin

Chaikin oscillator

Description

Compute Chaikin oscillator (Technical Analysis)

```
chaikin(Close, High = NULL, Low = NULL,
Vol = NULL, fast.lag = 3, slow.lag = 10,
plot = TRUE, ...)
```

38 chaosace

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Vol VECTOR. Asset traded Volume.

fast.lag fast.lag slow.lag

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

chaosacc

Chaos Accelerator oscillator

Description

Compute Chaos Accelerator oscillator (Technical Analysis)

Usage

chaosAcc(X)

Arguments

X X

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

chist 39

chist

Custom histogram function

Description

Custom histogram function

Usage

```
chist(x, nclass = min(max(round(NROW(x)/10), 10),
NROW(x)), density = c("kernel", "normal"),
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight", "cosine", "optcosine"),
theme.params = getCurrentTheme(), main = "Histogram and Kernel Density Estimatic
xtitle = NULL, ytitle = NULL, legend = NULL,
show.legend = TRUE, normalised = FALSE, ...)
```

Arguments

```
X
nclass
               nclass
density
               density
               kernel
kernel
theme.params theme.params
main
               main
xtitle
               xtitle
               ytitle
ytitle
legend
               legend
show.legend show.legend
normalised
               normalised
. . .
```

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\claim= adamant.org>|$

40 cleanup

chvol Chaikin volatility indicator	
------------------------------------	--

Description

Compute Chaikin volatility indicator (Technical Analysis)

Usage

```
Ch.vol(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

cleanup	Clean memory

Description

Cleanup environment and (optionally) performs Garbage Collection

Usage

```
cleanup(keep = c(), env = parent.frame(), gc = FALSE)
```

Arguments

keep	CHARACTER. Vector of variables to keep in memory.
env	Environment from which objects are removed. Defaults to the environment from which this function is called.
gc	LOGICAL. If TRUE, garbage collection is performed to release memory. (Default = TRUE)

clust 41

Value

VOID

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

clust

Time series clusters

Description

Create a simple cluster partition of a time series

Usage

```
TSClust(x, ...)
## Default S3 method:
TSClust(x, y=NULL, n_clust=5,
bk.type=c("quantile","volatility","uniform","custom"),
pc_vol=0.1, win.size=10, custom_breaks=NULL,
lab.dig=0, ...)
## S3 method for class 'TSClust'
summary(object, funs = summary, ...)
## S3 method for class 'TSClust'
plot(x, smooth=FALSE, ...)
```

Arguments

```
Univariate time series or an object of class "TSClust"
x, object
                 number of cluster
n_clust
bk.type
                 Breaks type
custom_breaks
                 custom_breaks
lab.dig
                 lab.dig
funs
                 function to run inside summary.TSClust
smooth
                 smooth
pc_vol
                 pc_vol
win.size
                 win.size
                 further arguments accepted by "funs"
. . .
```

42 cmf

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

clv

Close Location value oscillator

Description

Compute Close Location value oscillator (Technical Analysis)

Usage

```
clv(Close, High = NULL, Low = NULL, plot = TRUE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

cmf

Chaikin Money Flow

Description

Compute Chaikin Money Flow (Technical Analysis)

```
cmf(Close, Low, High, Volume, plot = FALSE, ...)
```

cmof 43

Arguments

Close VECTOR. Close price.

Low VECTOR. Low price.

High VECTOR. High price.

Volume Volume

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

cmof Chande Momentum Oscillator

Description

Compute Chande Momentum Oscillator (Technical Analysis)

Usage

```
cmof(X, lag = 5, plot = FALSE, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

44 colinprs

cofit

Cornish Fisher Transformation

Description

Cornish Fisher Transformation

Usage

```
cofit(X, p, k = NULL, s = NULL)
```

Arguments

- X Input matrix/sequence. Sequences are treated as one column matrices.
- p vector of probability threshold (interval [0, 1])
- k kurtosis (DEFAULT = NULL -> becomes kurt(X))
- s skewness (DEFAULT = NULL -> becomes skew(X))

Value

A matrix length(trsh) by NCOL(X) of computed quantiles

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

colinprs

Co-Linearity analysis

Description

This function performs a Co-Linearity analysis between the columns of X: Correlation factors between columns are computed, and pairs of columns with a correlation factor higher than a specified threshold are returned.

Usage

```
colin.pairs(X_{i} trsh = 0.8)
```

Arguments

 \mathbf{X} \mathbf{X} trsh \mathbf{trsh}

colinred 45

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

colinred

Co-Linearity reduction

Description

Perform a cross Co-Linearity analysis between the columns of Y and X, and for each Yi returns a reduced set of columns of X obtained after removing those columns of X that are too correlated (one for each co-linear pair). In the removal process, those columns of X that are most correlated to Yi are kept.

Usage

```
colin.reduce(Y, X, max.iter = 100, trsh = 0.85)
```

Arguments

```
Y Y X X X max.iter X max.iter X
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

combine

Combine Multiple objects

Description

This is a generic function, the default implementation combines Financial Series objects.

```
combine(...)
## Default S3 method:
combine(...)
## S3 method for class 'fs'
combine(..., which = "Close")
```

46 cosine

Arguments

... All input objects to be combined.

which Which column/columns to extract from each input object

Value

Result depends on the implementation. The default method is a call to combine fs which returns a matrix containing the selected columns from each input object.

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
## Not run:
# Load a set of assets
StartDate = as.Date("2010-01-01");
ACME = get.fs("APKT", SName = "Acme Packet", from = StartDate);
ABTL = get.fs("ABTL", SName = "Autobytel", from = StartDate);
CNAF = get.fs("CNAF", from = StartDate);
BIIB = get.fs("BIIB", SName = "Biogen", from = StartDate);
SONY = get.fs("SNE", SName = "Sony", from = StartDate);
ENI = get.fs("E", SName = "Eni", from = StartDate);
# Combine all series together in matrix format
Portfolio = combine (ACME, ABTL, CNAF, BIIB, SONY, ENI);
Portfolio[1:10, ]
# Combine Close and Volume data from each series
Portfolio2 = combine(ACME, ABTL, CNAF, BIIB, SONY, ENI, which = c("Close", "Volume"));
Portfolio2[1:10, ]
## End(Not run)
```

cosine

Cosine window

Description

Computes Cosine window of given length

Usage

```
cosine(N, normalized = TRUE)
```

Arguments

```
N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.
```

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Cosine window.

cplot 47

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
# Generate a Normalised Cosine window of size 100
x = cosine(100)
# Plot the window
cplot(x
, main = "Cosine Window"
, legend = attr(x, "type")
)
# Generate a non-normalised window
y = cosine(100, FALSE)
# Compare the two
cplot(cbind(x, y)
, main = "Cosine Window"
, legend = paste(attr(x, "type"), c("Normalised", "Not Normalised"))
, type = c("l", "o")
, xlab.srt = 0
)
```

cplot

2-Dimensional Plotting

Description

Workhorse function for automatic plotting

Usage

```
cplot(X, base = NULL, xrange = NULL, yrange = NULL, theme.params =
getCurrentTheme(), xtitle = "" , xlabels = NULL , ytitle = "" , ylabels =
NULL , ytitle2 = "" , ylabels2 = NULL, show.xlabels = TRUE , show.ylabels =
TRUE , main = NULL , legend = NULL , legend.col = theme.params[["col"]],
show.legend = TRUE , shaded = FALSE, grid = TRUE , overrides = list(...),
new.device = FALSE, append = FALSE, multicolor = FALSE , ...)
```

Arguments

```
x coordinates of the plot
Χ
                  y coordinates of the plot
base
                  x axis range
xrange
yrange
                  y axis range
theme.params Retrieve RAdamant graphical theme
                  title for the x axis
xtitle
                  labels for x tick marks
xlabels
                  title for the y axis
ytitle
                  labels for y tick marks
ylabels
```

48 cplot

```
title for the right-y axis
ytitle2
ylabels2
                 labels for right-y tick marks
show.xlabels LOGICAL. Show labels on the x axis
show.ylabels LOGICAL. Show labels on the y axis
main
                 Main title for the plot
                 Add the legend
legend
                 Colors for the elements in the legend
legend.col
                 LOGICAL. Display the legend in the plot
show.legend
shaded
                 LOGICAL. Insert shaded under the plot
grid
                 LOGICAL. Draw a grid
                 overrides list
overrides
                 open new.device window
new.device
                 append to existing plot
append
multicolor
                 multiple colors
                 additional arguments for generic funciotn "plot"
```

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
plot, draw.grid, draw.legend, draw.projections, draw.x.axis, draw.x.title,
draw.y.title, draw.y.axis
```

Examples

```
# Main 2D plotting function "cplot"
cplot(
# plot 4 random series
X = matrix(cumsum(rnorm(1000)), ncol = 4)
# Assign custom x-axis labels
, xlabels = paste("t", 0:249, sep = "-")
# Add shading area to the first series
, shaded = TRUE
, main = "Sample 2D Plot"
, xtitle = "time"
, ytitle = "value"
```

cplot3d 49

cplot3d *3-Dimensional plotting*

Description

Workhorse function for 3D automatic plotting

Usage

```
cplot3d(x, y, z, fill = c("simple", "colormap", "gradient"),
main = "", xtitle = "", ytitle = "", ztitle = "",
xlim = range(x) + 0.1*diff(range(x))*c(-1, 1),
ylim = range(y) + 0.1*diff(range(y))*c(-1, 1),
zlim = range(z, na.rm = TRUE) + 0.1*diff(range(z, na.rm = TRUE))*c(-1, 1),
pre = NULL, post = NULL,
theme.params = getCurrentTheme(),
overrides = list(...), new.device = FALSE,
append = FALSE, axis = TRUE,
xlabels = NULL, ylabels = NULL,
zlabels = NULL,
show.xlabels = TRUE, show.ylabels = TRUE,
show.zlabels = TRUE, show.xticks = TRUE, show.yticks = TRUE,
show.zticks = TRUE, ...)
```

Arguments

```
x coordinates for the plot
Х
                 y coordinates for the plot
У
                 z coordinates for the plot
                 fill
fill
main
                 main
                 xtitle
xtitle
ytitle
                 ytitle
ztitle
                 ztitle
xlim
                 xlim
                 ylim
ylim
zlim
                 zlim
xlabels
                 xlables
ylabels
                 ylabels
zlabels
                 zlabels
                 pre
pre
                 post
post
theme.params theme.params
overrides
                 overrides
                 new.device
new.device
```

50 cramv

```
append append
axis axis
show.xlabels show.xlabels
show.zlabels show.zlabels
show.zlabels show.xticks
show.xticks show.yticks
show.zticks show.zticks
show.zticks show.zticks
show.zticks show.zticks
show.zticks show.zticks
... Further arguments to or from other methods
```

Author(s)

RAdamant Development Team < team@r-adamant.org>

cramv Cramers V

Description

Calculate Cramers V

Usage

```
cramv(x, y)
```

Arguments

f x f y f y

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

crbtree 51

crbtree

CRR Binomial Tree

Description

Option evaluation with Cox, Rossand and Rubinstein Binomial Tree

Usage

```
CRR.BinTree(Nsteps, under, strike, rfr,
sigma, maty, yield, life, ret.steps = FALSE)
```

Arguments

Nsteps	Nsteps
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yield
life	life
ret.steps	ret.steps

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

croscf

Cross correlation function

Description

Compute the cross correlation function for each pairs of variables (Yi Xj)

```
cross.ccf(Y, X, ...)
## Default S3 method:
cross.ccf(Y, X, lag.max = 10, ci = 0.95, plot = TRUE, ...)
```

52 crosplot

Arguments

Y	Matrix of data series (one column per variable)
Χ	Matrix of data series (one column per variable)
lag.max	Max lag to be computed by the cross correlation function (DEFAULT: 10)
ci	Confidence Interval (DEFAULT: 0.95)
plot	LOGICAL. If TRUE, results are plotted.
	additional parameters accepted by the function plot.cross.ccf.

Value

A list of Ny*Nx cross correlation objects of the class "cross.acf"

Author(s)

RAdamant Development Team <team@r-adamant.org>

|--|--|

Description

Plot the input dependent variable Y versus each input independent variable X

Usage

```
cross.plot(Y, X, theme.params = getCurrentTheme(),
xlabels = NULL, two.axis = TRUE,
shaded.first = FALSE, overrides = NULL)
```

Arguments

Y	serie of the dependent variable
X	Matrix containing all independent variables (one column per variable)
theme.params	theme parameters (DEFAULT: getCurrentTheme())
xlabels	serie of the lables associated to the rows of X (i.e. Time libels)(DEFAULT: $\mbox{\scriptsize NULL})$
two.axis	LOGICAL. If TRUE, series are plotted on two axis (two scales).
shaded.first	LOGICAL. If TRUE, the variable Y is shaded.
overrides	list of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: $NULL$)

Value

VOID

Author(s)

 $RA damant \ Development \ Team \ \verb|\claim= adamant.org>|$

crscolin 53

Description

Perform a cross Co-Linearity analysis between the columns of Y and X: Correlation factors between each column Yi and all columns of X are calculated for different time lags. Also pairs of columns of X with a correlation factor higher than a specified threshold are returned.

Usage

```
cross.colin(Y, X, max.lag = 8, trsh = 0.8)
```

Arguments

Y	Y
X	X
max.lag	max.lag
t.rsh	trsh

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

cumfun	Cumulative functions	
--------	----------------------	--

Description

Cumulative max / min / Mean / Standard Deviation / Variance / sum on each column of the input matrix.

Usage

```
cumMax(X, lag = 0, padding = NA, na.rm = FALSE)
```

Arguments

X	Input matrix/sequence
lag	vector of integer lags. If lag $>= 0$ data are shifted to the right, else to the left. (DEFAULT = 0)
padding	value used to initialise the output matrix (DEFAULT = NA)
na.rm	LOGICAL. If TRUE, N-lag entries are removed from the output. Also NA in the input are replaced by -Inf (DEFAULT = FALSE)

54 decimals

Details

Sequences are treated as one-column matrices

Value

A matrix of cumulative maximums of X. Number of rows depends on the na.rm parameter. Number of columns is NCOL(X)

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

lew

dataset

Example datasets for portfolio and time series analysis

Description

ex ts: Univariate timeseris of 126 observations;

<code>ex_ptf</code>: Matrix of returns: 60 rows and 8 colums. The first column is taken as a "market fund" and the other 7 columns are 8 possible indexes. <code>ex_fs</code>: An object of class "fs" containing financial series: 252 rows and 6 colums.

Usage

```
data(ex_ts)
data(ex_ptf)
data(ex_fs)
data(ex_credit)
```

Source

Artificially created.

decimals

Count decimal

Description

Count decimal

```
decimals(x, max.digits = 10, ...)
```

decscal 55

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

decscal

Decimal scale

Description

Compute decimal scale of a vector

Usage

```
Decscal(x, scale = 0.1)
```

Arguments

```
x x scale scale
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

56 dema

dema

Double EMA

Description

Compute multiple Double EMA on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
dema(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

```
    X
    win.size
    plot
    LOGICAL. If TRUE plot is returned.
    ...
    Further arguments to or from other methods.
```

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed. DEMA is a weighted combination of EMA: 2*EMA(X) - EMA(EMA(X)). Smoothing factor: lambda = 2/(win.size+1).
```

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
dema(x, 10)

## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
dema(x, 30, plot = TRUE)

# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
```

demark 57

```
# single lag
dema(ex_fs, 30, plot=TRUE)
## End(Not run)
```

demark

DeMark indicator

Description

Compute DeMark indicator (Technical Analysis)

Usage

```
demark(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

dgev

Generalised Extreme Value (GEV)

Description

Generalised Extreme Value (GEV) - Density function

```
dgev(X, mu = 0, xi = 0.1, sigma = 1)
```

58 dgpd

Arguments

 ${f X}$ ${f m}{f u}$ ${f m}{f u}$ ${f m}{f u}$ ${f x}{f i}$ ${f s}{f i}{f g}{f m}{f a}$

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

dgpd

Generalised Pareto Distribution (GPD)

Description

Generalised Pareto Distribution (GPD) - Density function

Usage

```
dgpd(X, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

dma 59

dma

Derivative Moving Averages

Description

Compute multiple Derivative Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
dma(X, fast.win = 5, slow.win = 28, plot = FALSE, ...)
```

Arguments

```
X X
fast.win fast.win
slow.win
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed.

Formula: 100 * ( movMax(SMA(X, fast.win), slow.win) - movMin(SMA(X, fast.win), slow.win)) / X.
```

Value

A object of class 'ma' with attributes type = "DMA" and 'win.size' as from the corresponding input parameters [fast.win,slow.win]:

- matrix of size NROW(X) by NCOL(X) where each column is the moving average of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

sma

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average
dma(x, fast.win=10, slow.win=35)
```

drawdown drawdown

```
## Not run:
# refine results of moving average
setCurrentTheme(2)
dma(x, fast.win=10, slow.win=35, plot = TRUE)
## End(Not run)
```

dpo

Detrended price oscillator

Description

Compute Detrended price oscillator (Technical Analysis)

Usage

```
dpo(Close, lag = 5, plot = TRUE, ...)
```

Arguments

Close VECTOR. Close price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

drawdown

Financial Drawdown

Description

Drawdown risk analysis

```
drawdown(x, ...)
## Default S3 method:
drawdown(x, FUN = max, relative = FALSE, plot = FALSE, ...)
```

dropn 61

Arguments

 ${\tt x}$ ${\tt x}$ FUN FUN relative realtive

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

dropn

Drop N Possible Terms to a Linear Regression Model

Description

Drop N Possible Terms to a Linear Regression Model

Usage

```
dropn (mod, N = 1, \ldots)
```

Arguments

 $\begin{array}{cc} \text{mod} & \text{mod} \\ \text{N} & \textbf{N} \end{array}$

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

62 edwdist

edgefact

Edge Factor (B&S)

Description

Edgeworth adaption factors

Usage

```
EdgeFact(x, s, k)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

edwdist

Edgeworth distribution

Description

Simulate empirical Edgeworth distribution

Usage

```
EdgeWorthDist(init, Nsteps, p=0.5)
```

Arguments

init init
Nsteps Nsteps
p p

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\claim= adamant.org>|$

edwprice 63

edwprice	Edgeworth option price	
----------	------------------------	--

Description

Option evaluation with Edgeworth adapted Binomial Tree

Usage

```
Edgeworth.price(init, under, strike, rfr, sigma, maty, yield)
```

Arguments

init	init
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yiels

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

ema	Exponential Moving Average	

Description

Compute multiple Exponential Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
ema(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = 10).
plot	LOGICAL. Return plot.
	Additional parameters accepted by the function Mmovav.

64 emat

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed. Smoothing factor: lambda = 2/(win.size+1).
```

Value

A object of class 'ma' with attributes type = "EMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
ema(x, 10)
# compute moving average with multiple lags
ema(x, c(10,20))
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
ema(x, 30, plot = TRUE)
# multiple lags
ema(x, seq(5,50,10), plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
ema(ex_fs, 30, plot=TRUE)
# multiple lags
ema(ex_fs, seq(5,50,10), plot=TRUE)
## End(Not run)
```

emat

Trend corrected Exponential Moving Averages

Description

Compute multiple Trend corrected Exponential Moving Averages on the input data, one for each column of X[,i] and window size win.size[j].

emat 65

Usage

```
emat(X, win.size = NROW(X), alpha = 0.1, plot = FALSE, ...)
```

Arguments

Matrix of data series (one column per variable).

win.size vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = NROW(X)).

alpha weight for the trend correction (DEFAULT: 0.1)

plot LOGICAL. Return plot.

... Additional parameters accepted by function ema.

Details

For financial time series (class = 'fs'), only 'Close' column is processed. EMAT is a dynamic model regulated by the smoothing factors lambda = 2/(win.size+1) and alpha.

Value

A object of class 'ma' with attributes type = "EMAT", 'lambda' and 'alpha':

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
emat(x, 10, alpha=0.5)
# compute moving average with multiple lags
emat(x, c(10,20), alpha=0.3)
## Not run:
# refine results of moving average
setCurrentTheme(2)
# single lag
emat(x, 15, plot = TRUE)
# multiple lags
emat(x, seq(5,30,5), plot = TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(1)
data(ex_fs)
```

66 epma

```
# single lag
emat(ex_fs, 30, plot=TRUE)
# multiple lags
emat(ex_fs, seq(5,50,10), plot=TRUE)
## End(Not run)
```

eom

Ease of Movement oscillator

Description

Compute Ease of Movement oscillator (Technical Analysis)

Usage

```
eom(Close, High = NULL, Low = NULL, Vol = NULL, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
Vol	VECTOR. Asset traded Volume.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

epma

end Point Moving Averages

Description

Computes multiple End-Points Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

```
epma(X, win.size = 10, plot = FALSE, ...)
```

epma 67

Arguments

X	Matrix of data series (one column per variable)
win.size	Vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
plot	LOGICAL. Return plot.
	Additional parameters accepted by the function Movav

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

EPMA Weights are given by a win.size-long line with angular coefficient = -3 and intercept = 2*win.size-1

Value

A object of class 'Movav' with attributes type = "EPMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

Movav

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
epma(x, 10)
# compute moving average with multiple lags
epma(x, c(10, 15, 20))
## Not run:
# refine results of moving average
setCurrentTheme(2)
# single lag
epma(x, 30, plot = TRUE)
# multiple lags
epma(x, c(10,30,50), plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
epma(ex_fs, 30, plot=TRUE)
# multiple lags
epma(ex_fs, c(10,30,50), plot=TRUE)
```

68 erfi

```
## End(Not run)
```

erf

Elder Ray force

Description

Compute Elder Ray force (Technical Analysis)

Usage

```
erf(Close, High = NULL, Low = NULL, lag = 13, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\claim= adamant.org>|$

erfi

Elder Ray force index

Description

Compute Elder Ray force index (Technical Analysis)

Usage

```
erfi(X, Volume, lag = 13, plot = FALSE, ...)
```

Arguments

```
    X
    Volume
    VECTOR. Asset traded Volume.
    lag
    INTEGER. Number of lag periods.
    LOGICAL. If TRUE plot is returned.
    ...
    Further arguments to or from other methods.
```

extrdd 69

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

extrdd

Maximum / Minimum drawdown

Description

Calculate Mximum / Minimum DrawDown

Usage

```
ExtremeDD(DD, FUN, lag = 1, rolling = FALSE, plot = TRUE, ...)
```

Arguments

DD OBJECT of class "drawdown"

FUN
lag INTEGER. Number of lag periods.

rolling rolling

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

factor

Factorise variable

Description

Factorise numerical variables according to defined number of bins

```
Factorise(X, nseg,
seg.type = c("freq_equal", "width_equal"),
na.replace = NULL)
extrBreak(var, Factors)
## S3 method for class 'Factorise'
print(x, ...)
```

70 factor

Arguments

X	Numeric input matrix.
nseg	INTEGER / VECTOR. Number of segments to factorise numerical variables.
seg.type	CHARACTER. Type of segments to create. (Default = "equal frequencies")
na.replace	CHARACTER / NUMERIC. Value to replace missing. If NULL missing values are not considered in the computation.
var	Character. Name(s) of the variable(s) for which to extract the breaks.
Factors, x	an object of class "Factorise"
	Further arguments to or from other methods.

Details

The function <code>extrBreak</code> allows to extract the breaks of one or more variables from an object of class Factorise.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# load example data set "credit"
data(ex_ptf)
## Create matrix of factorised variables
# one segment
fact = Factorise(ex_ptf, nseg = c(2,4), seg.type="f")
fact
# two segments
fact = Factorise(ex_ptf, nseg = c(2,4), seg.type="f")
# load example data set
data(ex_credit)
# consider only the numerical variable
num = ex_credit[,c(3,6,14)]
# four segments
fact = Factorise(num, nseg = c(2,3,4,5), seg.type="f")
fact
# extract the breaks for one variable
extrBreak("duration", Factors=fact)
# extract the breaks for two varaibles
extrBreak(c("duration", "age"), Factors=fact)
# try to extract the breaks for a variable that doesn't exist in the data...
extrBreak("sex", Factors=fact)
```

fft 71

fft Customised Fast Fourier Transform

Description

Computes FFT on each column of X. For Financial series objects (class 'fs'), Close data is extracted.

Usage

```
FFT(x, ...)
## Default S3 method:
FFT(x
, Fs = 1
, half = FALSE
, window = NULL
, plot = TRUE
, optimised = TRUE
, ...
)
```

Arguments

X	Matrix of data series (one column per variable).
Fs	Sampling frequency (DEFAULT: 1).
half	LOGICAL. If TRUE, half spectrum indices are computed.
window	Function or character name of the window used to smooth the data (DEFAULT: NULL. Results in rectangular window).
plot	LOGICAL. If TRUE, frequency spectrum is plotted.
optimised	LOGICAL. If TRUE, the number of FFT evaluation points is the next integer (power of 2) that allows the fast computation
	Additional parameters passed to the plot (in the default implementation)

Value

An object of the class 'FFT'. It is a complex matrix (same number of columns as x) of frequency data. The following attributes are attached to the object:

Fs	The input Fs parameter
window	The window function used to smooth the input data
freq	The frequencies where the FFT was evaluated
fpoints	The array indices where the frequency points relative to 'freq' are stored
half	The input half parameter.

Author(s)

 $RA damant \ Development \ Team \ \verb|\team@r-adamant.org|| \\$

72 finplot

Examples

```
# Load sample financial series data
data(ex_fs)

# Frequency Analysis - Full spectrum
FFT(ex_fs)

# Frequency Analysis - Half spectrum (right side) and use blackman windowing, remove area
FFT(ex_fs, half = TRUE, window = blackman, shaded = FALSE)

# Show periodicity instead of frequency, and use hamming window
FFT(ex_fs, half = TRUE, window = hamming, show.periodicity = TRUE)

# Use kaiser window, zoom in to show only 10% of the half frequency spectrum, use semilog
FFT(ex_fs, half = TRUE, window = kaiser, show.periodicity = TRUE, zoom = 10, semilog = TRUE)

# Multiple FFT on matrix input.
# Use Bartlet-Hann window, zoom in to show only 20% of the full frequency spectrum, use semilog = TFT(ex_fs[,], window = barthann, zoom = 20, semilog = TRUE, shaded = FALSE)
```

finplot

Plot financial time series

Description

Generic plotting for financial data. Produces a two panels plot

Usage

```
fin.plot(X
, top.vars = c("Close", "High", "Low")
, bottom.vars = "Volume"
, style = c("default", "candlestick")
, snames = attr(X, "SName")
, xlabels = rownames(X)
, main = ""
, main2 = ""
, ytitle = ""
, ytitle2 = ""
, theme.top = getCurrentTheme()
, overrides = list(...)
, theme.bottom = getCurrentTheme()
, overrides2 = NULL
, ...
)
```

Arguments

X Input matrix of data to be plotted.

top.vars Indices or names of the columns for the top plot.

bottom.vars Indices or names of the columns for the bottom plot.

firsthit 73

style	Not used. For future releases.
snames	Names of the series being plotted.
xlabels	labels for the x-axis.
main	Main title for the top plot.
main2	Main title for the bottom plot.
ytitle	Title for the y-axis (top plot).
ytitle2	Title for the y-axis (bottom plot).
theme.top	Theme parameters list for the top plot (DEFAULT = getCurrentTheme()).
overrides	List of parameters to override theme for the top plot. Only parameters that match those defined by the theme are overridden (DEFAULTlist()).
theme.bottom	Theme parameters list for the bottom plot.
overrides2	List of parameters to override theme for the bottom plot. (DEFAULT = $NULL$).
•••	Additional parameters passed to the cplot function. Also used to quickly specify theme overrides.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

cplot.

Examples

```
# Load sample financial series data
data(ex_fs)
# Plot the data
plot(ex_fs)
# Change the style and color of the bottom chart
plot(ex_fs, overrides2 = list(type = "l", col = "grey"))
```

firsthit

First Hit time barrier (Brownian motion)

Description

Calculate expected time of the First Hitting for a Brownian motion

Usage

```
FirstHit(B, S0, mi, geom = FALSE, sigma = NULL)
```

Arguments

```
\begin{array}{ccc} \text{B} & & \text{B} \\ \text{S0} & & \text{S0} \\ \text{mi} & & \text{mi} \\ \text{geom} & & \text{geom} \\ \text{sigma} & & \text{sigma} \end{array}
```

74 flogbuf

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

flogbuf

Flush the log buffer to file

Description

Flush the content of the log buffer to file and console.

Usage

```
flushLogBuffer(console = FALSE, logfile = getLogFile(env = env), env = getOption
```

Arguments

console LOGICAL. If TRUE, content is sent to console.

logfile The path to the log file.

env The environment where the info is stored (DEFAULT = getOption("RAdamant")).

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Save content of the log buffer to file and print content to console as well
flushLogBuffer(console = TRUE);
```

fmeas 75

fmeas

Four Measures indexes

Description

Calculate the Four Measures indexes

Usage

```
FourMeasures(PTF, ...)
## Default S3 method:
FourMeasures(PTF, PTF_M, rf = NULL, rfr = 0, ...)
## S3 method for class 'Capm'
FourMeasures(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

Value

Return a matrix containing the values for the following indexes: Sharpe, Treynor, Jensen and Appraisal

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
Sharpe, Treynor, Jensen, Appraisal
```

fmlmreg

Extract formula from regression object

Description

Extract formula from regression ("reg" / "mreg") object

```
## S3 method for class 'reg'
formula(x, ...)
## S3 method for class 'mreg'
formula(x, ...)
```

76 forcidx

Arguments

An object of class "reg" / "mreg" Х

Further arguments passed to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

forcidx

Force index

Description

Compute Force index (Technical Analysis)

Usage

```
forcidx(X, Volume, lag = 5, sth = TRUE,
sth.lag = 13, mov = sma, plot = FALSE, ...)
```

Arguments

Χ X Volume Volume INTEGER. Number of lag periods. lag sthsth sth.lag sth.lag mov mov LOGICAL. If TRUE plot is returned. plot Further arguments to or from othermethods

Note

. . .

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

frama 77

Description

Fractal Moving Average, computed on each column of the input data X and for each pair (fast.win[i], slow.win[i]).

Usage

```
frama(X, win.size = 10, tau = 4.6,
keep.lambda = FALSE, keep.ER = FALSE, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of window sizes (lags) (DEFAULT = 10).
tau	controls how the smoothing factor lambda is calculated (lambda = $\exp(\tan^* \log(ER))$) (DEFAULT = 4.6).
keep.lambda	LOGICAL. If TRUE, adaptive smoothing factor lambda is returned as an attribute (DEFAULT = FALSE).
keep.ER	LOGICAL. If TRUE, adaptive Efficiency Ratio ER is returned as an attribute (DEFAULT = FALSE).
plot	LOGICAL. Return plot.
	Additional parameters for future development.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'Movav' with attributes type = "FRAMA", 'lambda' and 'ER' as required and 'win.size' and 'tau' given by the corresponding input parameters:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

78 fresvar

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
frama(x, 20, tau=4.6)
# compute moving average with multiple lags
frama(x, c(40,50,60), tau=5.0)
## Not run:
# refine results of moving average
setCurrentTheme(2)
# single lag
frama(x, 20, tau=4.6, plot = TRUE)
# multiple lags
frama(x, c(10,15,30,50), tau = 4.0, plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
frama(ex_fs, 20, tau=4.6, plot = TRUE)
# multiple lags
frama(ex_fs, c(10,15,30,50), tau = 4.0, plot=TRUE)
## End(Not run)
```

fresvar

Fiited / Residual for VAR

Description

Get Fitted values and Residuals from a VAR model

Usage

```
## S3 method for class 'VecAr'
fitted(object, Coefs, ar.lags, ...)
```

Arguments

```
object object
Coefs Coefs
ar.lags ar.lags
```

Further arguments to or from other methods

Note

TO BE COMPLETED

fsevecar 79

Author(s)

RAdamant Development Team < team@r-adamant.org>

fsevecar

VAR Forecast Standard Error

Description

Compute forecast standard error for VAR model

Usage

```
FSE.VecAr(X, steps, ...)
```

Arguments

```
{\tt X} {\tt Steps} {\tt Steps}
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

fulp Full price

Description

Compute Full price (Technical Analysis)

Usage

```
fullP(Close, Open, High, Low, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
Open	VECTOR. Open price.
High	VECTOR. High price.
Low	VECTOR. Low price.

 ${\tt plot} \qquad \qquad {\tt LOGICAL.} \ {\tt If} \ {\tt TRUE} \ {\tt plot} \ {\tt is} \ {\tt returned}.$

... Further arguments to or from other methods.

80 funcomx

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

funcomx

Function comment

Description

Given an input file, this functions created an index based commented version of the file.

Usage

```
func.comment.idx(control.df =
data.frame(FNAME = c(), FCODE = c(),
AREA = c(), SECTION = c(), CLASS = c()),
infile = NULL, incode = NULL, outfile = NULL, max.dgt = 3)
```

Arguments

control.df	List of function names. See Details
infile	Input file (Full path: Mandatory).
incode	Input code array (Alternative to infile: Mandatory). Each entry is considered to be a line of code.
outfile	Output commented file (Full path: Optional). If provided, an output file is generated.
max.dgt	Controls the number of digits to be used on each section of the comment.

Details

This data frame is a list of function names:

- FNAME = Name of the function
- FCODE = code identifier for the function. (a-Z)(0-9).
- AREA = Macro area (Description) classification for the function.
- SECTION = Section (Description) classification for the function (Sub-AREA)
- CLASS = The class of the returned object.

Value

String array where every entry is a line of code. Each original line of the input code is preceded by a special comment.

Note

TO BE COMPLETED

funlent 81

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
#### EXAMPLE #####
tst = data.frame(FNAME = c("sd", "lm")
, FCODE = c("SD", "LM")
, AREA = c("s5", "s2")
, SECTION = c("s1", "s1")
, CLASS = c("c1", "c2")
);
incode = rbind(paste("sd =", as.character(deparse(args(sd)))[1])
, as.matrix(deparse(body(sd)))
, ""
, ""
, paste("lm =", as.character(deparse(args(lm)))[1])
, as.matrix(deparse(body(lm)))
)
func.comment.idx(tst, incode = incode, max.dgt=3)
```

funlcnt

Function line counting

Description

Given a package name or a list of functions, for each function X in the package or the list it counts the lines of code, the number of subcalls made to any other function Y of the list/package and the number of other functions that make calls to the function X.

Results are plotted if requested.

Usage

```
func.line.cnt(package = NULL, plot = TRUE,
qtz.type = "NONE", qtz.nbins = 10, qtz.cutoff = 30)
```

Arguments

```
CHARACTER. Single name of the package to load or array list of function names.

plot LOGICAL. If TRUE, results are plotted on bar charts.

qtz.type CHARACTER. qtz.type = "NONE" | "LINEAR" | "LOG".

qtz.nbins INTEGER. Number of bins to be computed. Used only when qtz.type != "NONE".

(Default = 10)

qtz.cutoff Used only when qtz.type = "LOG". (Default = 30)
```

82 fwmovav

Details

Parameter "qtz.type" is Case Insensitive. It states the type of quantization to be used to set bin size for the barchart plotting the distribution of lines of code. Values:

- If "NONE", bin size is set to 1.
- If "LINEAR", qtz.nbins equispaced intervarls are computed.
- If "LOG", qtz.nbins log-spaced intervals are computed based on qtz.cutoff.

Parameter "qtz.bins": qtz.nbins equispaced intervals are computed on a log(x/qtz.cutoff) scale. This creates more intervals in the range 0 < x < qtz.cutoff.

Value

Data frame containing the stats for each function in the input list/package:

- fcn.name = Name of the function
- fcn.lines = Number of lines of code
- fcn.subcalls = Calls made to other functions
- fcn.called = Number of function calling the function

Author(s)

RAdamant Development Team < team@r-adamant.org>

fwmovav

Front Weighted Moving Averages

Description

fw1: Computes multiple Front Weighted 32 Day Moving Averages on the input data, one for each column X[, i].

 ${\tt fw2}$: Computes multiple Front Weighted 18 Day Moving Averages on the input data, one for each column X[,i].

fw3: Computes multiple Front Weighted 2 Day Moving Averages on the input data, one for each column X[,i].

Usage

```
fw1(X, plot = FALSE, ...)
fw2(X, plot = FALSE, ...)
fw3(X, plot = FALSE, ...)
```

Arguments

```
    Matrix of data series (one column per variable).
    LOGICAL. Return plot.
    Additional parameters accepted by function movav.
```

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

garch 83

Value

A object of class 'ma' with attributes type = "FW1/2/3" and 'weights' given by the FW1/2/3 filter weights:

- matrix of size NROW(X) by NCOL(X) where each column is the moving average of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

garch Garch

Description

Estimate Garch models

Usage

```
Garch(x, ...)
## Default S3 method:
Garch(x, Y=NULL, order=c(alpha=1,beta=1), phi=0, delta=0,
type=c("garch", "mgarch", "tgarch", "egarch"), prob=c("norm", "ged", "t"), ...)
```

Arguments

X	Univariate time series, usually returns
Υ	Exogenous regressors for the Mean Equation
order	Garch order
type	Garch type.
prob	Probability density for the innovations.
phi	Phi pars
delta	Delta pars
	Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

84 gauss

gauss

Gauss window

Description

Computes Gauss window of given length

Usage

```
gauss(N, normalized = TRUE, sigma = 0.5)
```

Arguments

```
N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.

sigma Standard Deviation - Expansion factor. sigma <= 0.5.
```

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Gauss window.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Generate a Normalised Gauss window of size 100
x = gauss(100)
# Plot the window
cplot(x
, main = "Gauss Window"
, legend = attr(x, "type")
# Generate a non-normalised window
y = gauss(100, FALSE)
# Compare the two
cplot(cbind(x, y)
, main = "Gauss Window"
 legend = paste(attr(x, "type"), c("Normalised", "Not Normalised"))
, type = c("l",
, xlab.srt = 0
# Generate another window with smaller expansion factor
z = gauss(100, normalized = FALSE, sigma = 0.1)
# Compare the two expansion factors
cplot(cbind(y, z)
, main = "Gauss Window"
, legend = paste("Gauss (sigma = ", c(0.5, 0.1), ")")
, type = c("l", "o")
, xlab.srt = 0
```

gdema 85

)

gdema Generalised Double EMA	
------------------------------	--

Description

Compute multiple Generalised Double EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
gdema(X, win.size = NROW(X), alpha = 0.7, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = $NROW(X)$).
alpha	weight in the interval [0, 1]. (DEFAULT: 0.7)
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed.

GDEMA is a weighted combination of EMA and DEMA: alpha*DEMA(X) + (1-alpha) * EMA(X).

Smoothing factor: lambda = 2/(win.size+1).
```

Value

A object of class 'ma' with attributes type = "GDEMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

86 getacfci

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
gdema(x, 10)
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
gdema(x, 30, plot = TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
gdema(ex_fs, 15, plot=TRUE)
## End(Not run)
```

getacfci

Normal confidence intervals for correlation

Description

Compute the Normal confidence intervals for correlation and partial autocorrelation data

Usage

```
get.acf.ci(X, ci = 0.95)
```

Arguments

 $egin{array}{lll} X & X & & & \\ {\tt ci} & & {\tt ci} & & \\ \end{array}$

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

getfs 87

getfs

Download Financial Series data from Yahoo!

Description

Download Yahoo! time series data and returns a Financial Series (fs) object.

Usage

```
get.fs(symbol = NULL
, SName = NULL
, from = as.Date("1950-01-01")
, to = Sys.Date()
, strip.spaces = TRUE
, strip.char = "."
)
```

Arguments

symbol	Stock symbol to download.
SName	Name that will be assigned to the time series. If NULL (default) the name is retrieved from Yahoo!
from	Date object. The start date of the time series (DEFAULT = as.Date("1950-01- 01 ")).
to	Date object. The end date of the time series (DEFAULT = Sys.Date()).
strip.spaces	$\label{logical} LOGICAL.\ If\ TRUE, spaces\ from\ SName\ are\ replaced\ with\ the\ value\ of\ strip. char\ (DEFAULT=TRUE).$
strip.char	The character used to replaces spaces in SName (DEFAULT = ".").

Value

A financial Time Series object. This is a matrix of Yahoo! daily data with columns (Open, High, Low, Close, Volume, Adj.Close). The following attributes are attached to the object:

SName The Name/Description of the financial series.

Symbol the input stock symbol.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Get Dow Jones quotes from Jan 2010
DowJones = get.fs("^DJI", from = as.Date("2010-01-01"))
DowJones
```

88 getpred

getlmwgh

 ${\it Extract\ weights\ percentages\ of\ the\ coefficients\ of\ a\ linear\ model}$

Description

Extract weights percentages of the coefficients of a linear model

Usage

```
get.lm.weights(mod, pct = FALSE)
```

Arguments

 $\begin{array}{cc} \text{mod} & \text{mod} \\ \\ \text{pct} & \text{pct} \end{array}$

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

getpred

Extract the column names of the regression terms of a linear model

Description

Extract the column names of the regression terms of a linear model

Usage

```
get.predictors(mod)
```

Arguments

mod mod

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

gevar 89

gevar *GEV - VaR calculation*

Description

GEV - VaR calculation

Usage

```
gev.VaR(Xbmax, mu = NULL, xi = NULL, sigma = NULL, prob = 0.01, ...)
```

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevarci

GEV - VaR calculation and Confidence Intervals

Description

GEV - VaR calculation and Confidence Intervals

```
gev.VaR.ci(Xbmax, VaR = sum(gev.VaR.constraint(parms = c(0, xi, sigma),
type = "both", Xbmax = Xbmax, prob = prob))/2, xi = 0.1,
sigma = 1, alpha = 0.01, df = 3, prob = alpha[1], ...)
```

90 gevarent

Arguments

Xbmax	Xbmax
VaR	VaR
xi	xi
sigma	sigma
alpha	alpha
df	df
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevarcnt

GEV - VaR Joint Confidence Intervals by Profile Likelihood

Description

GEV - VaR Joint Confidence Intervals by Profile Likelihood

Usage

```
gev.VaR.contour(Xbmax,
VaR = sum(gev.VaR.constraint(parms = c(0, xi, sigma),
type = "both", Xbmax = Xbmax, prob = prob))/2, xi = 0.1,
sigma = 1, alpha = 0.01, df = 3, prob = alpha[1], ...)
```

Arguments

Xbmax	Xbmax
VaR	VaR
xi	xi
sigma	sigma
alpha	alpha
df	df
prob	prob

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

gevarest 91

gevarcst

GEV - Domain range for the VaR parameter

Description

GEV - Domain range for the VaR parameter

Usage

```
gev.VaR.constraint(parms, type = c("left", "right", "both"),
Xbmax, prob = 0.01, ...)
```

Arguments

parms	parms
type	type
Xbmax	Xbmax
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevarg

GEV - VaR range grid for contour calculation

Description

GEV - VaR range grid for contour calculation

```
gev.VaR.range(Xbmax,
VaR = sum(gev.VaR.constraint(parms = c(0, xi, sigma),
type = "both", Xbmax = Xbmax, prob = prob))/2, xi = 0.1,
sigma = 1, alpha = 0.01, df = 3, prob = alpha[1], ...)
```

92 gevark

Arguments

Xbmax	Xbmax
VaR	VaR
xi	xi
sigma	sigma
alpha	alpha
df	df
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevark GEV - VaR Log Likelihood

Description

GEV - VaR Log Likelihood

Usage

```
gev.VaR.like(parms, Xbmax, prob = 0.01, ...)
```

Arguments

parms parms
Xbmax Xbmax
prob prob

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevci 93

gevci

GEV - Distribution fitting and Confidence Intervals

Description

GEV - Distribution fitting and Confidence Intervals

Usage

```
gev.ci(Xbmax, mu = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 3, ...)
```

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
alpha	alpha
df	df

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevcont

GEV - Joint Confidence Intervals by Profile Likelihood

Description

GEV - Joint Confidence Intervals by Profile Likelihood

Usage

```
gev.contour(Xbmax, mu = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 3, ...)
```

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
alpha	alpha
df	df

... Further arguments to or from other methods.

94 gevmcst

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevlike

GEV - Log Likelihood

Description

GEV - Log Likelihood

Usage

```
gev.like(parms, Xbmax, ...)
```

Arguments

parms parms
Xbmax Xbmax

.. Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevmcst

GEV - Domain range for the mu parameter

Description

GEV - Domain range for the mu parameter

Usage

```
gev.mu.constraint(parms, type = c("left", "right", "both"), Xbmax, ...)
```

Arguments

parms parms
type type
Xbmax Xbmax

... Further arguments to or from other methods.

gevml 95

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\team@r-adamant.org|| \\$

gevml

GEV - Maximum Likelihood Parameters Estimation

Description

GEV - Maximum Likelihood Parameters Estimation

Usage

```
gev.ml(Xbmax, init = c(0, 0.1, 1), ...)
```

Arguments

Xbmax Xbmax init

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevrng

GEV - Parameters range grid for contour calculation

Description

GEV - Parameters range grid for contour calculation

```
gev.range(Xbmax, mu = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 3, \dots)
```

96 gevsicst

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
alpha	alpha
df	df
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

 ${\it GEV-Domain\ range\ for\ the\ sigma\ parameter}$

Description

GEV - Domain range for the sigma parameter

Usage

```
gev.sigma.constraint(parms, type = c("left", "right", "both"), Xbmax, parm.type "VaR", "ES"), prob = 0.01, ...)
```

Arguments

```
parms parms
type type
Xbmax Xbmax
parm.type parm.type
prob prob
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevxicst 97

gevxicst

GEV - Domain range for the xi parameter

Description

GEV - Domain range for the xi parameter

Usage

```
gev.xi.constraint(parms, type = c("left", "right", "both"),
Xbmax, parm.type = c("mu", "VaR", "ES"), prob = 0.01, ...)
```

Arguments

```
parms parms
type type
Xbmax Xbmax
parm.type parm.type
prob prob
...
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gini Gini index

Description

Calculate Gini index based on the results of a classification model.

```
Gini(x, ...)
## Default S3 method:
Gini(x, ...)
## S3 method for class 'scorecard'
Gini(x, glob = TRUE, ...)
```

98 glogbuf

Arguments

X	An object of class "scorecard" or a matrix containing "Number of Goods" and "Number of bads"
glob	Logical. If TRUE the function returns the Gini index for the model otherwise, it returns a separate index for each variable
	Further arguments to or from other methods

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
# load example data set
data(ex_credit)

## Generate Score Card
data = ex_credit[ ,-1]
target = ex_credit[ ,1]
# Two examples of scorecard
sc2 = Score.card(X=data, Y=target, nseg = c(2,4))
sc3 = Score.card(X=data, Y=target, nseg = c(2:5))

# calculate global Gini
Gini(sc2, glob=TRUE)
Gini(sc3, glob=TRUE)
# calculate Gini for each variable
Gini(sc2, glob=FALSE)
Gini(sc3, glob=FALSE)
```

glogbuf

Retrieve the content of the Log Buffer

Description

Retrieve the content of the Log Buffer.

Usage

```
getLogBuffer(env = getOption("RAdamant"))
```

Arguments

env

The environment where the info is stored (DEFAULT = getOption("RAdamant")).

Value

Returns the content of the log buffer.

Author(s)

RAdamant Development Team < team@r-adamant.org>

gmma 99

Examples

```
# Retrieve content of the log buffer.
getLogBuffer();
```

gmma

Guppy's Multiple EMA

Description

Compute Guppy's Multiple EMA on the input data, one for each column of X[, i].

Usage

```
gmma(X, plot = FALSE, ...)
```

Arguments

X Matrix of data series (one column per variable).

plot LOGICAL. Return plot.

... Additional parameters accepted by function ema.

Details

GMMA is two sets (short and long window sizes) of six EMA:

- Short Windows: 3, 5, 8, 10, 12, 15
- Long Windows: 30, 35, 40, 45, 50, 60.

Value

A object of class 'ma' with attributes type = "GMMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*12 with twelve moving averages for each column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute guppy moving averages
gmma(x)
## Not run:
```

100 gpdboot

```
# refine results of moving average
setCurrentTheme(1)
# single lag
gmma(x, plot = TRUE)

# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
gmma(ex_fs, plot=TRUE)

## End(Not run)
```

gpdboot

GPD - parameters bootstrapping

Description

GPD - parameters bootstrapping

Usage

```
gpdboot(Xtail, trsh = 0, xi = NULL, sigma = NULL, nboots = 100, ...)
```

Arguments

```
Xtail
trsh
xi
xi
sigma
nboots
nboots
Xtail
trsh
xi
ni
nboots
```

. Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdci 101

gpdci

GPD - Distribution fitting and Confidence Intervals

Description

GPD - Distribution fitting and Confidence Intervals

Usage

```
gpd.ci(Xtail, trsh = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 2, ...)
```

Arguments

```
Xtail
trsh
trsh
xi
xi
sigma
alpha
alpha
df
Xtail
trsh
xi
di
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdcnt

GPD - Joint Confidence Intervals by Profile Likelihood

Description

GPD - Joint Confidence Intervals by Profile Likelihood

Usage

```
gpd.contour(Xtail, trsh = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 2, ...)
```

Arguments

```
Xtail Xtail
trsh trsh
xi xi
sigma sigma
alpha alpha
df df
```

... Further arguments to or from other methods.

102 gpdes

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdes

GPD - Expected Shortfall (ES) calculation

Description

GPD - Expected Shortfall (ES) calculation

Usage

```
gpd.ES(Xtail, trsh = 0, xi = NULL, sigma = NULL, N, prob = 0.01, ...)
```

Arguments

Xtail Xtail
trsh trsh
xi xi
sigma sigma
N N
prob prob
...

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdesci 103

gpdesci

GPD - ES calculation and Confidence Intervals

Description

GPD - ES calculation and Confidence Intervals

Usage

```
gpd.ES.ci(Xtail, trsh = 0, ES = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
ES	ES
xi	xi
alpha	alpha
df	df
N	N
prob	prob

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdescnt

GPD - ES Joint Confidence Intervals by Profile Likelihood

Description

GPD - ES Joint Confidence Intervals by Profile Likelihood

```
gpd.ES.contour(Xtail, trsh = 0, ES = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

104 gpdescst

Arguments

Xtail Xtail trsh trsh ES ES хi хi alpha alpha df df N Ν prob prob Further arguments to or from other methods. . . .

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdescst

GPD - Domain range for the ES parameter

Description

GPD - Domain range for the ES parameter

Usage

```
gpd.ES.constraint(parms, type = c("left", "right", "both"), trsh = 0, ...)
```

Arguments

```
parms parms
type type
trsh trsh
...
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

gpdesfce 105

gpdesfce

GPD - Log Likelihood 3D surface as a function of Expected Shortfall

Description

GPD - Log Likelihood 3D surface as a function of Expected Shortfall

Usage

```
gpd.ES.surface(ES = NULL, xi = NULL, Xtail,
trsh = 0, N, prob = 0.01, grid.size = 100, alpha = 0.01, ...)
```

Arguments

ES	ES
xi	xi
Xtail	Xtail
trsh	trsh
N	N
prob	prob
grid.size	grid.size
alpha	alpha
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdesk

GPD - ES Log Likelihood

Description

```
GPD - ES Log Likelihood
```

```
gpd.ES.like(parms, Xtail, trsh = 0, N, prob = 0.01, ...)
```

106 gpdesml

Arguments

parms parms
Xtail Xtail
trsh trsh
N N
prob prob

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdesml

GPD - Maximum Likelihood ES Estimation

Description

GPD - Maximum Likelihood ES Estimation

Usage

```
gpd.ES.ml(Xtail, trsh = 0, N, init = c(1, 0.1), ...)
```

Arguments

Xtail Xtail
trsh trsh
N N
init init

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

gpdesrng 107

gpdesrng

GPD - ES range grid for contour calculation

Description

GPD - ES range grid for contour calculation

Usage

```
gpd.ES.range(Xtail, trsh = 0, ES = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
ES	ES
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

gpdlk

GPD - Log Likelihood

Description

```
GPD - Log Likelihood
```

Usage

```
gpd.like(parms, Xtail, trsh = 0, ...)
```

Arguments

parms	parms
Xtail	Xtail
trsh	trsh

... Further arguments to or from other methods.

108 gpdrng

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdml

GPD - Maximum Likelihood Parameters Estimation

Description

GPD - Maximum Likelihood Parameters Estimation

Usage

```
gpd.ml(Xtail, trsh = 0, init = c(0.1, 1), ...)
```

Arguments

Xtail Xtail
trsh trsh
init init

. . . Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdrng

GPD - Parameters range grid for contour calculation

Description

GPD - Parameters range grid for contour calculation

```
gpd.range(Xtail, trsh = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 2, \dots)
```

gpdsfc 109

Arguments

Xtail	Xtail
trsh	trsh
xi	xi
sigma	sigma
alpha	alpha
df	df
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdsfc

GPD - Log Likelihood 3D surface

Description

GPD - Log Likelihood 3D surface

Usage

```
gpd.surface(xi = NULL, sigma = NULL, Xtail,
trsh = 0, grid.size = 100, alpha = 0.01, ...)
```

Arguments

```
xi xi
sigma sigma
Xtail Xtail
trsh trsh
grid.size grid.size
alpha alpha
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

110 gpdvar

gpdsgcnt

GPD - Domain range for the sigma parameter

Description

GPD - Domain range for the sigma parameter

Usage

```
gpd.sigma.constraint(parms, type = c("left", "right", "both"), Xtail, trsh = 0, ...)
```

Arguments

parms	parms
type	type
Xtail	Xtail
trsh	trsh

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdvar

GPD - VaR calculation

Description

GPD - VaR calculation

Usage

```
gpd.VaR(Xtail, trsh = 0, xi = NULL, sigma = NULL, N, prob = 0.01, ...)
```

Arguments

```
Xtail Xtail
trsh trsh
xi xi
sigma sigma
N N
prob prob
```

... Further arguments to or from other methods.

gpdvarci 111

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdvarci

GPD - VaR calculation and Confidence Intervals

Description

GPD - VaR calculation and Confidence Intervals

Usage

```
gpd.VaR.ci(Xtail, trsh = 0, VaR = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
VaR	VaR
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

112 gpdvarct

gpdvarcn

GPD - VaR Joint Confidence Intervals by Profile Likelihood

Description

GPD - VaR Joint Confidence Intervals by Profile Likelihood

Usage

```
gpd.VaR.contour(Xtail, trsh = 0, VaR = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
VaR	VaR
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further aroum

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarct

GPD - Domain range for the VaR parameter

Description

GPD - Domain range for the VaR parameter

Usage

```
gpd.VaR.constraint(parms, type = c("left", "right", "both"), trsh = 0, ...)
```

Arguments

```
\begin{array}{ll} \text{parms} & \text{parms} \\ \text{type} & \text{type} \\ \text{trsh} & \text{trsh} \end{array}
```

... Further arguments to or from other methods.

gpdvarg 113

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarg

GPD - VaR range grid for contour calculation

Description

GPD - VaR range grid for contour calculation

Usage

```
gpd.VaR.range(Xtail, trsh = 0, VaR = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
VaR	VaR
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

114 gpdvarml

gpdvarlk

GPD - VaR Log Likelihood

Description

```
GPD - VaR Log Likelihood
```

Usage

```
gpd.VaR.like(parms, Xtail, trsh = 0, N, prob = 0.01, ...)
```

Arguments

```
parms parms

Xtail Xtail

trsh trsh

N prob prob
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarml

GPD - Maximum Likelihood VaR Estimation

Description

GPD - Maximum Likelihood VaR Estimation

Usage

```
gpd.VaR.ml(Xtail, trsh = 0, N, init = c(1, 0.1), \ldots)
```

Arguments

Xtail	Xtail
trsh	trsh
N	N
init	init

... Further arguments to or from other methods.

gpdvarsf 115

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarsf

GPD - Log Likelihood 3D surface as a function of VaR

Description

GPD - Log Likelihood 3D surface as a function of VaR

Usage

```
gpd.VaR.surface(VaR = NULL, xi = NULL, Xtail,
trsh = 0, N, prob = 0.01, grid.size = 100, alpha = 0.01, ...)
```

Arguments

VaR	VaR
xi	xi
Xtail	Xtail
trsh	trsh
N	N
prob	prob
grid.size	grid.size
alpha	alpha
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

116 grad

gpdxicst

GPD - Domain range for the xi parameter

Description

GPD - Domain range for the xi parameter

Usage

```
gpd.xi.constraint(parms, type = c("left", "right", "both"),
Xtail, trsh = 0, N, parm.type = c("sigma", "VaR", "ES"),
prob = 0.01, ...)
```

Arguments

parms	parms
type	type
Xtail	Xtail
trsh	trsh
N	N
parm.type	parm.type
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

grad

Compute numerical gradient of a function

Description

Plotting tools

Usage

```
grad(func = NULL, x, scalar = TRUE, eps = sqrt(.Machine$double.neg.eps), ...)
```

grangcas 117

Arguments

func func x x scalar eps eps

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

grangcas

Granger Causality test

Description

Perform Granger causality test for parameters of VAR model

Usage

```
## S3 method for class 'VecAr'
GrangCas(X, cause = NULL, ...)
```

Arguments

 ${\tt X}$ cause cause

.. Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

grautil

RAdamant Graphical utilities

Description

Graphical utilities used by the plotting functions

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

118 hamming

hamming

Hamming window

Description

Computes Hamming window of given length

Usage

```
hamming(N, normalized = TRUE)
```

Arguments

```
N Window length.
```

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Hamming window.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Generate a Normalised Hamming window of size 100
x = hamming(100)
# Plot the window
cplot(x
, main = "Hamming Window"
, legend = attr(x, "type")
)
# Generate a non-normalised window
y = hamming(100, FALSE)
# Compare the two
cplot(cbind(x, y)
, main = "Hamming Window"
, legend = paste(attr(x, "type"), c("Normalised", "Not Normalised"))
, type = c("l", "o")
, xlab.srt = 0
)
```

hann 119

hann *Hann window*

Description

Computes Hann window of given length

Usage

```
hann(N, normalized = TRUE)
```

Arguments

```
N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.
```

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Hann window.

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
# Generate a Normalised Hann window of size 100
x = hann(100)
# Plot the window
cplot(x
, main = "Hann Window"
, legend = attr(x, "type")
)
# Generate a non-normalised window
y = hann(100, FALSE)
# Compare the two
cplot(cbind(x, y)
, main = "Hann Window"
, legend = paste(attr(x, "type"), c("Normalised", "Not Normalised"))
, type = c("l", "o")
, xlab.srt = 0
)
```

120 hhv

heas

Heikin - Ashi techniques

Description

Compute Heikin - Ashi techniques (Technical Analysis)

Usage

```
he_as(Close, Open, High, Low, plot = FALSE, ...)
```

Further arguments to or from other methods.

Arguments

```
Close VECTOR. Close price.

Open VECTOR. Open price.

High VECTOR. High price.

Low VECTOR. Low price.

plot LOGICAL. If TRUE plot is returned.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

hhv

Highest high

Description

Compute Highest high (Technical Analysis)

Usage

```
hhv(X, lag, na.rm = TRUE)
```

Arguments

 \mathbf{X}

lag INTEGER. Number of lag periods.

na.rm na.rm

Note

TO BE COMPLETED

hill 121

Author(s)

RAdamant Development Team < team@r-adamant.org>

hill

Hill function

Description

Hill function: Approximated gamma parameter of the Generalised Pareto distribution

Usage

```
Hill(X, trsh)
```

Arguments

X Input matrix/sequence. Sequences are treated as one column matrices. trsh vector of probability threshold (interval [0, 1])

Value

A matrix length(trsh) by NCOL(X) of computed quantiles

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

hma

Hull Moving Averages

Description

Compute multiple Hull Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
hma(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

Matrix of data series (one column per variable)
 win.size
 vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = NROW(X)).
 plot
 LOGICAL. Return plot.
 Further arguments to or from other methods

122 hroi

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed.
HMA is a combination of WMA: WMA(2*WMA(X, win.size/2) - wma(X, win.size), sqrt(win.size)).
```

Value

A object of class 'ma' with attributes type = "HMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

wma

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
hma(x, 10)
# compute moving average with multiple lags
hma(x, c(10,20))
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
hma(x, 30, plot = TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
hma(ex_fs, 30, plot=TRUE)
## End(Not run)
```

hroi 123

Description

Computes historical returns on investment and two-sided VaR. Analysis of the performance of the returns as a function of the holding period. For Financial series objects (class 'fs'), Close data is processed.

Usage

```
hroi(X
, lag = 1
, mode = c("auto", "range", "selected")
, autolag.start = 1
, range.step = 1
, log = TRUE
, VaR.type = "norm"
, p = 0.05
, ...
)
```

Arguments

h

Input matrix of data to be plotted.

Xag The maximum lag used to compute returns (DEFAULT = 1).

mode Controls how the lags are computed. See details.

autolag.start

Starting lag value for the case where mode = "auto" (DEFAULT = 1). See details.

range.step Lag increment used for the case where mode = "range" (DEFAULT = 1). See

details.

log LOGICAL. If TRUE, log returns are computed. DEFAULT = TRUE.

VaR.type The distribution used for VaR calculation. See VaR for details.

p The confidence interval used for VaR calculation. (DEFAULT = 0.05)

... Additional parameters passed to the VaR function.

Details

For each input time series, returns are calculated for multiple lags, hence average and two-sided Value at Risk (Profit & Loss with p The number and the way lags are computed is controlled by the mode parameter:

- auto: All lags between autolag.start and max(lag) (DEFAULT option)
- range: All lags between min(lag) and max(lag) with increment given by range.step
- selected: Only selected lags are calculated.

Value

An instance of the class 'roi'. This is a list of length given by the number of columns of the input X. Each entry is a matrix with columns [Return (Avg.), VaR (Profit), VaR (Loss)] where the rows are calculated for each lag. The following attributes are attached to the object:

log The input log parameter.

lag The lags for which returns are computed.

124 hvar

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
Ret, VaR, plot.roi.
```

Examples

```
# Load sample financial series data
data(ex_fs)

# Historical returns for all lags between 1 and 10 days
hroi(ex_fs, lag = 10)

# Historical returns for lags between 2 and 10 with increment 2
hroi(ex_fs, lag = c(2, 10), mode = "range", range.step = 2)

# Historical returns for selected lags
hroi(ex_fs, lag = c(2, 5, 10), mode = "selected")

# Analyse the performance of the returns up to 200 days and plot results
plot(hroi(ex_fs, lag = 200, log = FALSE), xlab.srt = 0)
```

hvar

Historical Value at Risk

Description

Compute historical VaR on each column of the input matrix

Usage

```
hVaR(X, p = 0.05, centered = FALSE)
```

Arguments

X Input matrix/sequence. Sequences are treated as one column matrices.

p vector of probabilities (DEFAULT = 0.05)

centered LOGICAL. If TRUE, input data are standardised

Value

A matrix length(p) by NCOL(X) of computed quantiles

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ichkh

ichkh

Ichimoku Kinko Hyo

Description

Compute Ichimoku Kinko Hyo (Technical Analysis)

Usage

```
Ichkh(Close, High, Low, plot = FALSE, ...)
```

Arguments

Close close High high Low low

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

impulse

Unitary impulse

Description

Generates an impulse sequence of specified length

Usage

```
impulse(N, value = 1)
```

Arguments

N Length of the impulse

Value

Impulse sequence of specified length

Author(s)

RAdamant Development Team < team@r-adamant.org>

126 in2woe

		\sim			
1	n	Z	W	0	\in

Data to Weight of Evidence

Description

Transform input data according to weight of evidence

Usage

```
input2woe(data, nseg, woe, ...)
```

Arguments

data	MATRIX or DATA.FRAME. Input data.
nseg	Integer of Vector. Number of segment to split the numerical variables.
woe	A matrix of results created by the function WeightEvid
	Further parameter for the function Factorise

Details

Input data can contain both numerical and categorical variables. Numerical variables will be factorised according with the specified number of segments; categorical variables will be processed as they are (no aggregation for the existing classes).

The factorisation of the numerical variables is performed by the function Factorise. Each value in the input data will be replaced with the corresponding Weight of Evidence.

Value

A matrix with the same number of rows of the input data and number of columns given by: Number of categorical variables + Number of numerical variables * Number of segments.

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

Examples

```
# load example data set "credit"
data(ex_credit)
# calculate weight of evidence
input = ex_credit[ ,-1]
target = ex_credit[ ,1]
woe = WeightEvid(data=input, target=target, nseg = 2:3, missing=FALSE)
# quick look of the results got from WeightEvid
head(woe)
# recode input data according to weight of evidence calculation
new = input2woe(data = input, nseg=2:3, woe=woe)
# quick look of the new data
head(new)
```

inertia 127

inertia

Inertia oscillator

Description

Compute Inertia oscillator (Technical Analysis)

Usage

```
Inertia(X, lag, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

invlogit

Inverse Logit transformation

Description

Inverse Logit transformation

Usage

```
inv.logit(y)
```

Arguments

у у

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

128 irsvecar

invp

Peizer-Pratt Inversion formula

Description

Peizer-Pratt Inversion formula

Usage

```
InvPP(z, n)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

irsvecar

VAR Impulse response

Description

Compute and plot Impulse response function calculated for VAR model

Usage

```
IRS.VecAr(X, imp, resp = NULL, steps = 5, cum = TRUE, ortho = FALSE, ...)
```

Arguments

. . . Further arguments to or from other methods.

Note

TO BE COMPLETED

isfs 129

Author(s)

RAdamant Development Team <team@r-adamant.org>

isfs

Check for inheritance from Financial Series class

Description

Check for inheritance from Financial Series class

Usage

```
is.fs(X)
```

Arguments

Χ

The object to be checked.

Author(s)

RAdamant Development Team <team@r-adamant.org>

jbtest

Jaques-Brera normality test

Description

Compute Jaques-Brera normality test for each column of X

Usage

```
JB.test(X, plot.hist=FALSE)
```

Arguments

X Matrix of data series (one column per variable)

plot.hist LOGICAL. Return histogram.

Value

Matrix of Jaques-Brera scores and P-Value

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
kurt, skew
```

jrbtree jrbtree

jensen Jensen index

Description

```
Jensen: Calculate Jensen index for a portfolio
Jensen. Capm: Get Jensen index from an object of class "Capm".
```

Usage

```
Jensen(PTF, ...)
## Default S3 method:
Jensen(PTF, PTF_M, rf = NULL, rfr = 0, ...)
## S3 method for class 'Capm'
Jensen(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
Sharpe, Treynor, Appraisal
```

jrbtree

JR Binomial Tree

Description

Option evaluation with Jarrow and Rudd Binomial Tree

Usage

```
JR.BinTree(Nsteps, p, under, strike, rfr, sigma,
maty, yield, life, ret.steps = FALSE)
```

kaiser 131

Arguments

Nsteps	Nsteps
р	p
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yield
life	life
ret.steps	ret.steps

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

kaiser	Kaiser window	

Description

Computes Kaiser window of given length (Discrete Prolate Spheroidal Sequence approximation).

Usage

```
kaiser(N, normalized = TRUE, alpha = 3)
```

Arguments

N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.

alpha Shape factor (DEFAULT = 3).

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Kaiser window.

Author(s)

RAdamant Development Team <team@r-adamant.org>

132 kama

Examples

```
# Generate a Kaiser window of size 100
x = kaiser(100, FALSE)
# Plot the window
cplot(x
, main = "Kaiser Window"
, legend = attr(x, "type")
)

# Generate another window with different smoothing factor
y = kaiser(100, normalized = FALSE, alpha = 6)
# Compare the two windows
cplot(cbind(x, y)
, main = "Kaiser Window"
, legend = paste("Kaiser (alpha = ", c(3, 6), ")", sep = "")
, type = c("l", "o")
, xlab.srt = 0
)
```

kama

Kauffman Adaptive Moving Average

Description

Kauffman Adaptive Moving Average, computed on each column of the input data X and for each pair (fast.win[i], slow.win[i]).

Usage

```
kama(X, fast.win = 2, slow.win = 30, lag = 5,
keep.lambda = FALSE, keep.ER = FALSE, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
fast.win	vector of fast window sizes (fast lags) (DEFAULT = 2)
slow.win	vector of slow window sizes (slow lags) (DEFAULT = 30)
lag	vector of lags used to compute Kauffman efficiency ratio (DEFAULT = 5). Recycled to be of equal length as fast and slow lags if necessary
keep.lambda	LOGICAL. If TRUE, adaptive smoothing factor lambda is returned as an attribute (DEFAULT = FALSE)
keep.ER	LOGICAL. If TRUE, adaptive Efficiency Ratio ER is returned as an attribute (DEFAULT = FALSE)
plot	LOGICAL. Return plot.
	Further arguments to or from other methods.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

kelt 133

Value

An object of class 'Movav' with attributes type = "KAMA", 'lambda' and 'ER' as required and 'fast.win', 'slow.win' and 'lag' given by the corresponding input parameters:

- matrix of size NROW(X) by NCOL(X)*length(fast.win) where each column is the moving average of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ama

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
kama(x, fast.win=5, slow.win=20, lag=10:20)
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
# compute moving average with single lag
kama(x, fast.win=5, slow.win=20, lag=10:20, plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(1)
data(ex_fs)
# single lag
kama(ex_fs, fast.win=5, slow.win=20, lag=5, plot=TRUE)
## End(Not run)
```

kelt

Keltner channel

Description

Compute Keltner channel (Technical Analysis)

Usage

```
kelt(Close, High, Low, mult = 2, plot = FALSE, ...)
```

134 kri

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

mult mult

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

kri Kairi Relative Index

Description

Compute Kairi Relative Index (Technical Analysis)

Usage

```
kri(X, lag1 = 10, lag2 = 20, plot = FALSE, ...)
```

Further arguments to or from other methods.

Arguments

X X
lag1 lag1
lag2 lag2
plot LOGICAL. If TRUE plot is returned.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

kurtskew 135

kurtskew

Kurtosis and Skewness

Description

```
\label{eq:kurt:Compute the excess kurtosis} \ for each \ column \ of \ X \\ \text{skew: Compute the skewness for each column of } X
```

Usage

```
kurt(X, pval = FALSE)
skew(X, pval = FALSE)
```

Arguments

X Matrix of numeric data series (one column per variable).

pval LOGICAL. Return P-Value.

Value

Matrix of Excess Kurtosis / Skewness and P-Value

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
JB.test
```

kvo

Klinger oscillator

Description

Compute Klinger oscillator (Technical Analysis)

Usage

```
kvo(Close, High = NULL, Low = NULL,
Vol = NULL, cumulative = FALSE, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.

Vol VECTOR. Asset traded Volume.

cumulative cumulative

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

lagret

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

lagret

Time Series Operators

Description

Ret: Compute N-points Returns on each column of the input matrix.

Lag: Compute lag on each column of the input matrix.

Diff: Compute lagged difference on each column of the input matrix.

 ${\tt MDiff:} \ \ Compute \ \ Multiple \ lagged \ differences \ on \ each \ column \ of \ the \ input \ matrix. \ \ \ \ Cr \ \ MLag:$

Compute Multiple lags on each column of the input matrix

Usage

```
Ret(X, lag = 1, log = FALSE, mode = "selected", na.rm = FALSE, plot = FALSE, ...
Lag(X, lag = 1, na.rm = FALSE, padding = NA)

Diff(X, lag = 1, padding = NA, na.rm = FALSE)

MDiff(X, lag = 1, padding = NA, mode = c("auto", "range", "selected"), na.rm = FALSE)

MLag(X, lag = 1, na.rm = FALSE, padding = NA, mode = c("auto", "range", "selected"), autolag.start = 1)
```

Arguments

. . .

X	Input data (i.e. matrix/vector of prices)	
lag	INTEGER or VECTOR. number of lags (it can be both positive and negative)	
log	BOOLEAN: compute log-returns	
na.rm	BOOLEAN: remove NAs	
plot	BOOLEAN: return plot	
padding	value to replace removed observations	
mode	mode of using the vector of lags	
autolag.start		

Further arguments to or from other methods

autolag.start

lagret 137

Details

Sequences are treated as one-column matrices.

The parameter "mode" allows to control the calculation when the parameter is passed as a vector:

- auto: only the first element is used;
- range: if the lag arguments is composed of two numbers, the computation is performed for all the integers contained in the interval, ex: lag = c(4,10) allow to calculate all the lags between 4 and 10;
- selected: the computation is done only for the lag specified in the argument.

Value

A matrix (n.obs X n.lag) containing lagged /differenced time series or returns

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
plot.ret
```

Examples

```
# load an example dataset containing financial daily prices
data(ex_fs)
x = ex_fs[,1:4]
# compute multiple multiple lags for single time series
# different uses of the parameter "mode"
res = MLag(x[,1], lag = c(4,8), mode="range")
res[1:10, ]
res = MLag(x[,1], lag = c(4,8), mode="selected")
res[1:10, ]
res = MLag(x[,1], lag = 4, mode="auto")
res[1:10, ]
## SINGLE LAG
# calculate return for single time series
res = Ret(x[ ,1], lag=4, log=TRUE, na.rm=TRUE)
res[1:10, ,drop=FALSE]
# calculate return for multiple time series
res = Ret(x, lag=10, log=TRUE, na.rm=TRUE)
res[1:10, ,drop=FALSE]
## MULTIPLE LAGS
# calculate return for single time series
res = Ret(x[ ,1], lag=c(2,4,6,8), mode = "selected", log=TRUE, na.rm=TRUE)
res[1:10, ,drop=FALSE]
# calculate return for multiple time series
res = Ret(x[, 1:2], lag=c(2,4,6,8), mode = "selected", log=FALSE, na.rm=FALSE)
res[1:10, ,drop=FALSE]
```

lanczos

```
## PLOT RESULTS
# calculation and plot for single series
Ret(x[,1], lag = 5, mode = "selected", plot=TRUE, style="bar", main="Returns - 5 Lags")
# calculation and plot for multiple series
par(mfrow=c(2,2))
Ret(x, lag = 5, mode = "selected", plot=TRUE, style="bar", main="Returns - 5 Lags")
## Not run:
# get APPLE financial series
symbol.lookup("Apple")
APPLE = get.fs("AAPL", from=as.Date("2008-06-01"), to=as.Date("2011-04-01"));
RAPPLE = Ret(APPLE, mode = "selected", plot = TRUE, style = "bar", ylab.fmt = .3, na.rm
RAPPLE;
## End(Not run)
```

lanczos

Lanczos window

Description

Computes Lanczos window of given length

Usage

```
lanczos(N, normalized = TRUE)
```

Arguments

```
N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.
```

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Lanczos window.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
## Not run:
# Generate a Normalised Lanczos window of size 100
x = lanczos(100)
# Plot the window
cplot(x
, main = "Lanczos Window"
, legend = attr(x, "type")
)
```

lew 139

```
# Generate a non-normalised window
y = lanczos(100, FALSE)
# Compare the two
cplot(cbind(x, y)
, main = "Lanczos Window"
, legend = paste(attr(x, "type"), c("Normalised", "Not Normalised"))
, type = c("l", "o")
, xlab.srt = 0
)
## End(Not run)
```

lew

Moving window

Description

Apply a given function to an extending window of the lagged data series of the input matrix, each column separately.

Usage

```
lew(X, lag = 0, padding = NA, na.rm = FALSE,
func = NULL, is.cumulative = TRUE, ...)
```

Arguments

X	Input matrix/sequence	
lag	vector of integer lags. If lag $>= 0$ data are shifted to the right, else to the left. (DEFAULT = 0)	
padding	value used to initialise the output matrix (DEFAULT = NA)	
na.rm	LOGICAL. If TRUE, N-lag entries are removed from the output (DEFAULT = FALSE)	
func	function applied to the extending data window (DEFAULT = NULL)	
is.cumulative		
	LOGICAL. If TRUE it the function provided must be cumulative by itself (like cummax, cummin, etc) (DEFAULT = TRUE)	
	Additional parameters accepted by the function 'func'	

Details

Sequences are treated as one-column matrices

Value

A matrix where func has been applied on increasing data windows for each column of X. Number of rows depends on the na.rm parameter. Number of columns is NCOL(X)

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

140 liftgain

See Also

cumSum, cumMin, cumMax, cumSd, cumVar

liftgain

Classification model accuracy plots

Description

Plot cumulative Gain, Lift chart and ROC curve for a classification model

Usage

```
Gain(x, ...)
Lift(x, ...)
ROCplot(x, ...)
## S3 method for class 'scorecard'
Gain(x, pc = 0.1, ...)
## S3 method for class 'scorecard'
Lift(x, pc = 0.1, ...)
## S3 method for class 'scorecard'
ROCplot(x, ...)
```

Arguments

x An object of class "scorecard"

pc Numeric. A value indicating the perentile used to create data points.

... Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
Score.card
```

Examples

```
# load example data set
data(ex_credit)

## Generate Score Card
data = ex_credit[ ,-1]
target = ex_credit[ ,1]

# Two examples of socrecards
sc2 = Score.card(X=data, Y=target, nseg = c(2,4))
# Three segments for numerical variables
sc3 = Score.card(X=data, Y=target, nseg = c(2,3,4))

# Lift chart
Lift(sc2)
```

ljbgarch 141

```
Lift(sc3)
# Cumualtive Gain
Gain(sc2)
Gain(sc3)
# ROC plot
ROCplot(sc2)
ROCplot(sc3)
```

ljbgarch

Ljung-Box test

Description

Perform Ljung-Box test for residual correlation

Usage

```
LjungBox(x, lags, plot.acf = FALSE)
```

Arguments

Residual series or object of class "Garch"
 lags
 Number of lags to calculate the autocorrelation function
 plot.acf
 LOGICAL. Plot ACF.

lkegarch

EGARCH likelihood function

Description

Calculate EGARCH likelihood function

Usage

```
like.egarch(theta, ee, x, Y,
order = c(alpha = 1, beta = 1), prob = c("norm", "ged", "t"))
```

Arguments

theta	theta
ee	ee
X	X
Y	Y
order	order
prob	prob

142 lkgarch

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

lkgarch

GARCH likelihood function

Description

Calculate GARCH likelihood function

Usage

```
like.garch(theta, ee, x, Y, order, prob = c("norm", "ged", "t"), r)
```

Arguments

theta	theta
ee	ee
X	X
Y	Y
order	order
prob	prob
r	r

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

lkmgarch 143

lkmgarch

MGARCH likelihood function

Description

Calculate MGARCH likelihood function

Usage

```
like.mgarch(theta, x, Y, order, prob=c("norm", "ged", "t"))
```

Arguments

```
theta theta
x x
Y Y
order order
prob prob
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

lktgarch

TGARCH likelihood function

Description

Calculate TGARCH likelihood function

Usage

```
like.tgarch(theta, ee, x, Y, order, prob = c("norm", "ged", "t"))
```

Arguments

```
theta theta
ee ee
x x
Y Y
order order
prob prob
```

logger

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

llv

Lowest low

Description

Compute Lowest low (Technical Analysis)

Usage

```
llv(X, lag, na.rm = TRUE)
```

Arguments

```
X X lag INTEGER. Number of lag periods. na.rm na.rm
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

logger

Main logging function

Description

Create Log for the functions contained in the package

Usage

```
Logger(message = "", from = deparse(sys.call(sys.parent())),
level = 1, line = NA, env = getOption("RAdamant"),
console = getConsoleLogging(env = env),
logfile = getLogFile(env = env))
```

logit 145

Arguments

message Message printed.

from from

level Log depth level, minimum = 1

line line

env environment
console console logging

logfile log file

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

logit Logit transformation

Description

Logit transformation

Usage

```
logit(x, adjust = 5e-05)
```

Arguments

X X

adjust adjust

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

146 macd

lrbtree

LR Binomial Tree

Description

Option evaluation with Leinsen and Reimer Binomial Tree

Usage

```
LR.BinTree(Nsteps, under, strike, rfr,
sigma, maty, yield, life, ret.steps = FALSE)
```

Arguments

Nsteps	Nsteps
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yield
life	life
ret.steps	ret.steps

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

macd

Moving Average Convergence / Divergence

Description

Compute Moving Average Convergence / Divergence (Technical Analysis)

```
macd(X, fast.lag = 12, slow.lag = 26, signal.lag = 14, plot = TRUE, ...)
```

mass 147

Arguments

X X
fast.lag fast.lag
slow.lag slow.lag
signal.lag signal.lag
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mass Mass indicator

Description

Compute Mass indicator (Technical Analysis)

Usage

```
mass(High, Low, Close = NULL, lag = 9, plot = FALSE, ...)
```

Arguments

High VECTOR. High price.

Low VECTOR. Low price.

Close VECTOR. Close price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

148 mcf

masscum	Mass indicator cumulative

Description

Compute Mass indicator cumulative (Technical Analysis)

Usage

```
mass.cum(High, Low, Close = NULL, lag = 9, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

Description

Compute auto-correlation and partial auto-correlation function on a matrix

Usage

```
mcf(X, lag.max = 10, ci = 0.95, plot=TRUE, ...)
```

Arguments

X	Matrix of data series (one column per variable)
lag.max	Max lag to be computed by the cross correlation function (DEFAULT: 10)
ci	Confidence Interval (DEFAULT: 0.95)
plot	LOGICAL. If TRUE, results are plotted.
	additional parameters accepted by the function plot.cross.ccf.

mcgind 149

Value

A list with two entries:

ACF list of Auto-Correlation Functions (one for each column of X)

PACF list of Partil Auto-Correlation Functions (one for each column of X)

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
cross.ccf
```

Examples

```
## Not run:
# Plot Autocorrelation Function and Partial ACF
mcf(RSP, lag.max = 30)
# using another theme
theme = getTheme("Vanilla")
mcf(RDJ, lag.max = 30, theme = getTheme(2))
## End(Not run)
```

mcgind

McGinley Dynamic Indicator

Description

Compute McGinley Dynamic Indicator (Technical Analysis)

Usage

```
mcgind(X, lag = 12, plot = FALSE, ...)
```

Arguments

X

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

150 mcosc

mclog

Manage Console Logging

Description

Set and retrieve the console logging status. Control whether logging info is printed to console.

Usage

```
setConsoleLogging(consoleLogging = TRUE, env = getOption("RAdamant"))
getConsoleLogging(env = getOption("RAdamant"))
```

Arguments

```
consoleLogging
```

LOGICAL. If TRUE, log information are also sent to console.

env

The environment where the info is stored (DEFAULT = getOption("RAdamant")).

Value

Returns the current ConsoleLogging status.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Retrieve current debug level
getConsoleLogging();

# Enable logging
setDebugTraceLevel(1);
setDebugLevel(1);
# Enable Console Logging
setConsoleLogging(TRUE);
cplot(1:10)
```

mcosc

McClellan Oscillator

Description

Compute McClellan Oscillator (Technical Analysis)

```
mcosc(X, fast.lag = 19, slow.lag = 39, hist.lag = 9, plot = TRUE, ...)
```

mcplot 151

Arguments

```
X X
fast.lag fast.lag
slow.lag slow.lag
hist.lag hist.lag
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mcplot

Muliple correlation plot

Description

Multiple correlation plot

Usage

```
mcplot(X, hist.nclass = 10, theme.params = getCurrentTheme(),
coLin = TRUE,
main = ifelse(coLin, "Co-Linearity Analysis", "Multi-Correlation Analysis"),
new.device = FALSE, ...)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

152 mdbtlev

mcsi

McClellan Summation Index

Description

Compute McClellan Summation Index (Technical Analysis)

Usage

```
mcsi(matr, nr, nc, lag1, lag2, plot = FALSE, ...)
```

Arguments

matr	matr
nr	nr
nc	nc
lag1	lag1
lag2	lag2
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

 ${\tt mdbtlev}$

Manage Debug Trace Level

Description

Set and retrieve the level of function nesting for which logging is performed. Controls how much information is sent to the log about the execution of each function executed inside the call stack.

Usage

```
setDebugTraceLevel(level = 1, env = getOption("RAdamant"))
getDebugTraceLevel(env = getOption("RAdamant"))
```

Arguments

```
level The level of nesting (level >= 1). See details.

env The environment where the info is stored (DEFAULT = getOption("RAdamant")).
```

mdbuglev 153

Details

The amount of information sent to log depends on the debug trace level:

- level = 1: Only top level function calls are logged.
- level = 2: Top and second level function calls (function within a function) are logged.
- level = N: All functions in the call stack up to level N are logged.

Value

The current value of debug trace level.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Retrieve current debug level
getDebugTraceLevel();

# Enable logging to console
setConsoleLogging(TRUE);

# Set minimal level of trace debugging
setDebugTraceLevel(1);
cplot(1:10);

# Set high level of trace debugging (up the 10th level of inner function call)
setDebugTraceLevel(5);
cplot(1:10);
```

mdbuglev

Manage Debug Level

Description

Set and retrieve the level of debugging. Control how much information is sent to the log about the execution of each function executed.

Usage

```
setDebugLevel(level = 1, env = getOption("RAdamant"))
getDebugLevel(env = getOption("RAdamant"))
```

Arguments

level The level of debug required (level >= 0). See details.

env The environment where the info is stored (DEFAULT = getOption("RAdamant")).

154 means

Details

The amount of information sent to log depends on the debug level:

- level = 0: No information is sent to the \log .
- level = 1: Information about main body and conditional executions.
- level = 2: Include information about first level inner loop.
- level = 3: Include information about second level inner loop (loop within loop).
- level = N: Include information about N-th level inner loop.

Value

The current level of debugging.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Retrieve current debug level
getDebugLevel();
# Set minimal level of debugging and traceback
setDebugLevel(1);
setDebugTraceLevel(1);
# Enable Console logging
setConsoleLogging(TRUE);
# Compute FFT on some random two-colums matrix. Prints nothing because FFT.default has no
x = FFT (matrix (cumsum (rnorm (256)), 128, 2), plot = FALSE)
plot(x, shaded = FALSE) # Prints nothing because plot.default has no logging message
# Increase Traceback level
setDebugTraceLevel(2);
# Now prints logging info for plot.FFT
plot(x, shaded = FALSE)
# Increase Debug level
setDebugLevel(2);
# Now prints additional logging info for plot.FFT (from code executed inside a loop)
plot(x, shaded = FALSE)
```

means

Geometric and Harmonic means

Description

gmean: Compute the geometric mean for each column of X hmean: Compute the harmonic mean for each column of X

mfind 155

Usage

```
gmean (X, \ldots)
hmean (X, \ldots)
```

Arguments

X Matrix of data series (one column per variable)

. . . Additional parameters accepted by the function sum (i.e. na.rm)

Value

Matrix of harmonic / geometric means

Author(s)

RAdamant Development Team <team@r-adamant.org>

mfind

Money flow indicator

Description

Compute Money flow indicator (Technical Analysis)

Usage

```
Mflow.ind(Close, High, Low, Volume, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Volume VECTOR. Asset traded Volume.

plot LOGICAL. If TRUE plot is returned.

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

156 mfratio

mflow Money flow

Description

Compute Money flow (Technical Analysis)

Usage

```
Mflow(Close, High, Low, Volume, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Volume VECTOR. Asset traded Volume.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mfratio Money flow ratio

Description

Compute Money flow ratio (Technical Analysis)

Usage

```
Mflow.ratio(Close, High, Low, Volume, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Volume VECTOR. Asset traded Volume.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

minmaxs 157

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

minmaxs

Mini/Max Scale

Description

Compute minimum / maximum scale of a vector

Usage

```
Minmaxscal(x, tmin = 0, tmax = 1)
```

Arguments

```
\begin{array}{ccc} \textbf{x} & & \textbf{x} \\ \textbf{tmin} & & \textbf{tmin} \\ \textbf{tmax} & & \textbf{tmax} \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

mlbsize

Manage Log Buffer Size

Description

Set and retrieve the size of the current log buffer.

Usage

```
setLogBufferSize(size = 10000, env = getOption("RAdamant"), ...)
getLogBufferSize(env = getOption("RAdamant"))
```

Arguments

```
size The capacity (number of records) of the log buffer.

env The environment where the info is stored (DEFAULT = getOption("RAdamant")).

Additional parameters passed to flushLogBuffer.
```

158 mlogfile

Value

Returns the size of the current log buffer.

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
# Retrieve current buffer size
getLogBufferSize();

# Set the size of the log buffer to 10 records (this will force a flush to file of the cu
setLogBufferSize(10);
```

mlogfile

Manage Logging Filename

Description

Set and retrieve the full filename and location of the current log file.

Usage

```
setLogFile(logfile = NULL, env = getOption("RAdamant"))
getLogFile(env = getOption("RAdamant"))
```

Arguments

logfile String. The full path to the log file.

env The environment where the info is stored (DEFAULT = getOption("RAdamant")).

Value

The full filename and location of the current log file.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Retrieve current log file
getLogFile();

# Set log file
setLogFile("path-to-logfile");
```

mlogwarn 159

mlogwarn

Manage log warnings

Description

Set and retrieve the LogWarning status. Not all functions support this feature.

Usage

```
setLogWarning(showWarning = TRUE, env = getOption("RAdamant"))
getLogWarning(env = getOption("RAdamant"))
```

Arguments

```
showWarning LOGICAL. If TRUE, a warning is generated if the log buffer is full and no logfile is available.

env The environment where the info is stored (DEFAULT = getOption("RAdamant")).
```

Value

The current value of LogWarning (TRUE/FALSE).

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# Retrieve current status
getLogWarning();
# Set the size of the log buffer to 10 records
setLogBufferSize(10);
# Set an invalid entry for the log file
setLogFile(logfile = NULL);
# Enable logging
setDebugLevel(1)
# Enable Log Warning
setLogWarning(TRUE);
# Prints a warning
cplot(1:10)
# Disable Log Warning
setLogWarning(FALSE);
# No warning
cplot(1:10)
# Restore RAdamant package options
# .First.lib()
```

160 mma

mma *Modified EMA*

Description

Compute multiple Modified EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
mma(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

Matrix of data series (one column per variable).
 win.size vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = NROW(X)).
 plot LOGICAL. Return plot.
 Additional parameters accepted by function ema.

Details

For financial time series (class = 'fs'), only 'Close' column is processed. MMA is a EMA with smoothing factor: lambda = 1/win.size.

Value

A object of class 'ma' with attributes type = "MMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

ema

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
mma(x, 15)
# compute moving average with multiple lags
mma(x, c(5, 10, 30, 50))
```

mndma 161

```
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
mma(x, 30, plot = TRUE)
# multiple lags
mma(x, c(5, 10, 30, 50), plot=TRUE)

# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
mma(ex_fs, c(5, 10, 30, 50), plot=TRUE)

## End(Not run)
```

mndma

Modified N-Day Moving Averages

Description

Computes multiple Modified N-Day Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
mndma(X, win.size = 50, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable)
win.size	Vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
plot	LOGICAL. Return plot.
	Additional parameters accepted by the function sma

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'Movav' with attributes type = "MNDMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

162 mom

See Also

sma

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
mndma(x, 50)
# compute moving average with multiple lags
mndma(x, c(40,50,60))
## Not run:
# refine results of moving average
setCurrentTheme(2)
# single lag
mndma(x, 50, plot = TRUE)
# multiple lags
mndma(x, c(30,40,50), plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
mndma(ex_fs, 25, plot=TRUE)
# multiple lags
mndma(ex_fs, seq(5,25,5), plot=TRUE)
## End(Not run)
```

mom

Momentum oscillator

Description

Compute Momentum oscillator (Technical Analysis)

Usage

```
mom(X, lag = 5, plot = TRUE, ...)
```

Arguments

```
    X
    lag INTEGER. Number of lag periods.
    plot LOGICAL. If TRUE plot is returned.
    ... Further arguments to or from other methods.
```

moments 163

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

moments

Main Moments

Description

Calculate sample moments on each columns of X

Usage

```
moments(X)
```

Arguments

Χ

Matrix of data series (one column per variable)

Value

Matrix of moments

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
JB.test, skew, kurt
```

movapply

Moving Apply function

Description

Applies a given function to a sliding window of the input data

```
movApply(X, win.size = 1, padding = NA, rm.transient = FALSE, func = NULL, ...)
```

164 movav

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of data window sizes that will be passed to the given function "func" (DEFAULT = 1).
padding	Padding value to fill transient of result (output data rows from 1 to win.size-1). (DEFAULT = NA)
rm.transient	transient: LOGICAL. If TRUE, transient is removed, otherwise funct is applied to the transient. (DEFAULT = FALSE)
func	Function to be run
	Additional parameters accepted by the function func

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A matrix of size NROW(X) by NCOL(X)*length(win.size). func is applied to each sliding window SWi (given by win.size[i]) and each column of X.

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

movav

Generic Multiple) Moving Average

Description

Generic Multiple Moving Average (MA filter). Compute multiple FIR filtering on each column of the input data

```
Movav(X, ...)
## Default S3 method:
Movav(X, win.size = NULL,
func = NULL, padding = 0,
rm.transient = TRUE, normalize.weights = FALSE,
type = "MA", desc = "Moving Average",
plot= FALSE, ...)
```

movfunc 165

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of lengths of the FIR filters to be applied on the data X . (DEFAULT = NULL).
func	function accepting an integer \boldsymbol{N} and returning an N-long set of filter coefficients.
padding	value to replace leading lagged values.
rm.transient	remove initial lagged window.
normalize.weights	
	Normalise weights for weighted moving averages.
type	Charachter attribute attached to the result (DEFAULT: "MA").
desc	desc
plot	LOGICAL. Return plot.
	Further arguments to or from other methods

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'Movav' with attributes 'type' and 'win.size' as given by the corresponding input parameters:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

|--|

Description

Applies the function "Max", "Min", "Standard Deviation" or "Variance" to a sliding window of the input data

Usage

```
movMax(X, win.size = 1, ...)
movMin(X, win.size = 1, ...)
movSd(X, win.size = 1, ...)
movVar(X, win.size = 1, ...)
```

Arguments

```
    Matrix of data series (one column per variable).
    win.size
    Vector of data window sizes that will be used for the calculations (DEFAULT = 1).
    Additional parameters accepted by the function movApply
```

166 mqt

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A matrix of size NROW(X) by NCOL(X)*length(win.size). max is applied to each sliding window SWi (given by win.size[i]) and

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
movApply
```

mqt

Multiple t quantile

Description

Compute quantiles from Students T distribution for multiple degrees of freedom values

Usage

```
mqt(p, df, ...)
```

Arguments

```
p Vector of probabilities (DEFAULT = 0.05)
```

df Vector of degrees of freedom

... Further arguments to and from other methods

Value

A matrix length(p) by length(df) of computed quantiles

Author(s)

RAdamant Development Team <team@r-adamant.org>

mreg 167

mreg Multiple regressions

Description

Multiple regressions

Usage

```
mreg(Y, X, xlabels = NULL, tick.step = 1, backtest = 0,
stress.idx = c(), type = "simple",
model = "lm", ci = 0.95, max.vars = NCOL(X),
intercept = TRUE, family = gaussian, weights = NULL,
plot = TRUE, scope = NULL, trace = FALSE, ...)
```

Arguments

```
Y
Υ
                X
Χ
xlabels
                xlabels
tick.step
                tisck.step
                backtest
backtest
                stress.idx
stress.idx
type
                type
model
                model
Сi
                ci
                max.vars
max.vars
intercept
                intercepts
family
                family
weights
                weights
plot
                LOGICAL. If TRUE plot is returned.
trace
                trace
scope
                scope
                Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

168 mtacf

msort

Sort matrix

Description

Sort each column of the input matrix X independently

Usage

```
SORT(X, decreasing = FALSE, ...)
```

Arguments

```
X Input matrix.decreasing LOGICAL. Decreasing order.... Further arguments to or from other methods.
```

Value

A matrix with the same dimensions as the original input X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
data(ex_fs)
x = ex_fs[1:20, 1:3]
SORT(x, decreasing = FALSE)
```

mtacf

Cool.Acf methods

Description

Plot and Print methods for class 'cool.acf'

```
## S3 method for class 'cool.acf'
print(x, ...)
## S3 method for class 'cool.acf'
plot(x, theme.params = getCurrentTheme(), xtitle = "Lag", ytitle =
expression(rho), overrides = list(...), ...)
```

mtccf 169

Arguments

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

mtccf Cross.ccf functions

Description

Methods for class 'cross.ccf'

Usage

```
## S3 method for class 'cross.ccf'
print(x, ...)
## S3 method for class 'cross.ccf'
plot(x, theme.params = getCurrentTheme(), xtitle = "Lag", ytitle =
expression(rho), overrides = list(...), ...)
```

Arguments

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

170 mtoscil

mtmcf

Mcf methods

Description

Plot and Print method for class 'mcf'

Usage

```
## S3 method for class 'mcf'
print(x, ...)

## S3 method for class 'mcf'
plot(x, theme.params = getCurrentTheme(),
xtitle = "Lag", ytitle = expression(rho),
overrides = NULL, ...)
```

Arguments

X	Instance of class 'mcf'
theme.params	Theme parameters (DEFAULT: getCurrentTheme())
xtitle	Title for the x-axis (DEFAULT: "Lag")
ytitle	Title for the y-axis (DEFAULT: expression(rho))
overrides	List of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: NULL)
	Further arguments to or from other methods

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

mtoscil

Plot function for Oscillators

Description

Plot and Print method for Oscillators (Technical Analysis)

```
## S3 method for class 'oscil'
print(x, digits = 5, ...)

## S3 method for class 'oscil'
plot(x, Y = NULL, main = "",
show.trsh = NULL, xlabels = rownames(Y),
theme.params =getTheme(1), overrides = NULL, ...)
```

mtreg 171

Arguments

```
Х
                X
                Y
Υ
main
                main
                show treshold
show.trsh
xlabels
                xlabels
theme.params them.params
                overrides
overrides
digits
                digits
                Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

mtreg Methods for reg

Description

Plot, Print ND Summary method for "reg"

Usage

```
## S3 method for class 'reg'
print(x, ...)
## S3 method for class 'reg'
summary(object, ...)
## S3 method for class 'reg'
plot(x, mode = c("response", "link"),
title = ifelse(x$model.type == "lm", "LS Regression", "GLM Regression"),
theme.params = getCurrentTheme(),
overrides = list(...), ...)
```

Arguments

```
x, object x
mode mode
title title
theme.params theme.params
overrides overrides
... Further arguments to or from other methods
```

172 mtunivar

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mtunivar

Methods for univariate analysis

Description

Print, Plot and Summary methods for class 'univar'

Usage

```
## S3 method for class 'univar'
summary(object, ...)
## S3 method for class 'univar'
plot(x, theme.params = getCurrentTheme(), overrides = NULL, ...)
## S3 method for class 'univar'
print(x, ...)
```

Arguments

```
x, object Instance of class 'univar'

theme.params params: Theme parameters (DEFAULT: getCurrentTheme())

overrides list of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: NULL)

... Further arguments to or from other methods
```

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

univar

namutil 173

namutil

Get column and row names

Description

Retrieve column / row names from a matrix.

Usage

```
get.col.names(X, default = "X")
get.row.names(X, default = "")
```

Arguments

X Input matrix.

default LOGICAL vector. Each entry determines the sort direction of the respective

column of X. Recycled if necessary. (DEFAULT = FALSE).

Details

Sequences are treated as one column matrices.

Default names are given if input has missing names.

Value

A character sequence containing the column names of X, or a default set of names if X has no column names

Author(s)

RAdamant Development Team <team@r-adamant.org>

newsimp

News impact curve

Description

Compute News impact curve

```
newsimp(x, ...)
## S3 method for class 'Garch'
newsimp(x, plot = TRUE, ...)
## Default S3 method:
newsimp(x, theta, order,
type=c("garch", "mgarch", "egarch", "tgarch"),
plot=FALSE, ...)
```

174 normfit

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

normfit

Fit normal distribution

Description

Fit normal distribution

Usage

```
norm.fit(x, n = 200, range = NULL, ...)
```

Arguments

 ${\tt x}$ ${\tt n}$ ${\tt n}$ range ${\tt range}$

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

normlike 175

normlike

Normal Distribution - Log Likelihood function

Description

Normal Distribution - Log Likelihood function

Usage

```
norm.like(parms, X, ...)
```

Arguments

```
\begin{array}{ccc} \text{parms} & & \text{parms} \\ \text{X} & & \text{X} \end{array}
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

objgarch

Garch objects

Description

Extract objects from Garch model (class "Garch")

Usage

```
## S3 method for class 'Garch'
coef(object, names=TRUE, ...)
## S3 method for class 'Garch'
logLik(object, ...)
## S3 method for class 'Garch'
vcov(object, ...)
```

Arguments

object An object of class "Garch"

names Return names

... Further arguments to or from other methods

Note

TO BE COMPLETED

176 oscil

Author(s)

RAdamant Development Team < team@r-adamant.org>

obv

On Balance Volume oscillator

Description

Compute On Balance Volume oscillator (Technical Analysis)

Usage

```
Obv(Close, Volume)
```

Arguments

Close VECTOR. Close price.

Volume VECTOR. Asset traded Volume.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

oscil

Oscillator default method

Description

Compute Oscillator (Technical Analysis)

Usage

```
oscil(X, ...)
## Default S3 method:
oscil(X, Y, pc = FALSE, type = "oscil", ...)
```

Arguments

```
egin{array}{lll} X & X & X & Y & Y & Y & & & & \\ pc & pc & pc & & type & type & & type & & & & & \\ \hline \end{array}
```

... Further arguments to or from other methods

pchan 177

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pchan

Price channel

Description

Compute Price channel (Technical Analysis)

Usage

```
Pchan(CLose, High, Low, lag = 20, na.rm = TRUE, plot = FALSE, ...)
```

Arguments

CLose	CLose
High	VECTOR. High price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
na.rm	na.rm
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

178 perf

pdfhit

Density of Hitting probability

Description

Density for the First Hitting time

Usage

```
PDFHit(t, B = 0, S0 = 0, mi, sigma, cumul = FALSE, plot = FALSE, ...)
```

Arguments

```
t t
B B B
S0 S0
mi mi sigma sigma
cumul cumul
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

perf Performance indicator

Description

Compute Performance indicator (Technical Analysis)

Usage

```
Perf(X, ini.per = 1, cut = TRUE, plot = FALSE, ...)
```

Arguments

```
    X
    ini.per
    cut
    plot
    LOGICAL. If TRUE plot is returned.
    ... Further arguments to or from other methods.
```

pfe 179

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pfe

Polarized fractal efficiency

Description

Compute Polarized fractal efficiency (Technical Analysis)

Usage

```
pfe(X, lag = 9, corr_fact = 200, plot = FALSE, ...)
```

Arguments

X

lag INTEGER. Number of lag periods.

corr_fact corr_fact

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

pgarch

Print Garch

Description

Print function for Garch model

```
## S3 method for class 'Garch'
print(x, digits = 5, ...)
```

180 pgev

Arguments

 $\begin{array}{ll} x & x \\ \text{digits} & \text{digits} \\ \dots & \dots \end{array}$

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pgev

Generalised Extreme Value (GEV) - Probability function

Description

Generalised Extreme Value (GEV) - Probability function

Usage

```
pgev(X, mu = 0, xi = 0.1, sigma = 1)
```

Arguments

 $\mbox{\scriptsize X}$ mu mu $\mbox{\scriptsize xi}$ xi sigma sigma

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

pgpd 181

pgpd

Generalised Pareto Distribution (GPD) - Probability function

Description

Generalised Pareto Distribution (GPD) - Probability function

Usage

```
pgpd(Q, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

Q Q xi xi sigma sigma trsh trsh

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pgrangas

Print Granger test

Description

Print function for Granger test

Usage

```
## S3 method for class 'GrangCas'
print(x, ...)
```

Arguments

x OBJECT of class "GrangCas".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

182 plikeci

phivecar VAR - PHI

Description

Estimate PHI matrix for MA (Wold) representation of VAR model

Usage

```
PHI. VecAr(X, steps, ortho = FALSE, ...)
```

Arguments

```
    X OBJECT of class "VecAR"
    steps INTEGER. Number of steps ahead.
    ortho LOGICAL. If TRUE matrix is orthogonal
    ... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

plikeci Likelihood confidence intervals calculation

Description

General function for profile likelihood confidence intervals calculation

Usage

```
plike.ci(ML.init = c(), flike = NULL, alpha = 0.01, df = NULL, frange = list(), NULL, \dots)
```

Arguments

```
ML.init
flike
flike
alpha
df
frange
par.names

ML.init
flike
flike
alpha
frange
par.names
```

... Further arguments to or from other methods.

plikecnt 183

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

plikecnt

Likelihood joint confidence intervals contour

Description

General function for profile likelihood joint confidence intervals contour

Usage

```
plike.contour(ML.init = c(), flike = NULL,
alpha = 0.01, df = NULL, frange = list(),
par.names = NULL, grid.size = 100, ...)
```

Arguments

```
ML.init

flike
flike
flike
alpha
df
df
frange
par.names
par.names
grid.size
grid.size
Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

184 plotfft

plikerng

Range grid for contour calculation

Description

General range grid for contour calculation

Usage

```
plike.range(ML.init = c(), flike = NULL,
alpha = 0.01, df = NULL, frange = list(), par.names
= NULL, grid.size = 100, max.iter = 100, tol = 10^-5, ...)
```

Arguments

ML.init	ML.init
flike	flike
alpha	alpha
df	df
frange	frange
par.names	par.names
grid.size	grid.size
max.iter	max.iter
tol	tol
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

plotfft

Customised Fast Fourier Transform - Plotting

Description

Plot function for class 'FFT'. Plots Modulus and Phase for each column of the FFT object x

plotfft 185

Usage

```
## S3 method for class 'FFT'
plot(x
, theme.params = getCurrentTheme()
, overrides = list(...)
, shaded = TRUE
, show.periodicity = FALSE
, show.legend = FALSE
, zoom = 100
, semilog = FALSE
, new.device = FALSE
, ...
)
```

Instance of class 'FFT'.

Arguments x

theme.params theme parameters list (DEFAULT: getCurrentTheme()).

overrides List of parameters to override the theme. Only parameters that match those defined by the theme are overridden (DEFAULT: list(...)).

shaded LOGICAL. If TRUE, the modulus of x is shaded.

show.periodicity

LOGICAL. If TRUE, Periods (1/frequencies) are showed instead of frequencies on the x-axis (DEFAULT = FALSE).

show.legend LOGICAL. If TRUE, legend is added to the plot (DEFAULT = FALSE)

zoom Zoom semilog Semilog new.device new.device

. . . Additional parameters passed to the cplot function. Also used to quickly specify theme overrides.

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
cplot.
```

```
# Load sample financial series data
data(ex_fs)
# Frequency Analysis
```

186 plotfs

```
Xf = FFT(ex_fs, plot = FALSE)

# Plot full spectrum
plot(Xf)

# Plot falf spectrum (right side) and use blackman windowing, remove area shading
plot(Xf, half = TRUE, window = blackman, shaded = FALSE)

# Show periodicity instead of frequency, and use hamming window
plot(Xf, half = TRUE, window = hamming, show.periodicity = TRUE)

# Use kaiser window, zoom in to show only 10% of the half frequency spectrum, use semilog
plot(Xf, half = TRUE, window = kaiser, show.periodicity = TRUE, zoom = 10, semilog = TRUE
```

plotfs

Plot fs data

Description

Plot method for Financial Series (fs) object.

Usage

```
## S3 method for class 'fs'
plot(x, ...)
```

Arguments

x Instance of class 'fs'

. . . Additional parameters passed to fin.plot function.

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
fin.plot.
```

```
# Load sample financial series data
data(ex_fs)
# Plot the data
plot(ex_fs)
# Change the style and color of the bottom chart
plot(ex_fs, overrides2 = list(type = "l", col = "grey"))
```

plotkit 187

plotkit Plotting Tools

Description

Utilities functions used for Plotting

Usage

```
draw.grid(X, base = NULL, theme.params = getCurrentTheme())

draw.legend(legend = "", theme.params = getCurrentTheme(),
    overrides = list(...), ...)

draw.projections(X, Y, Y.fit,
    col = getCurrentTheme()[["projection.col"]][1],
    type = getCurrentTheme()[["projection.type"]][1],
    lty = getCurrentTheme()[["projection.lty"]][1])

draw.x.axis(X, base = NULL, xlabels = NULL,
    theme.params = getCurrentTheme(), show.labels = TRUE, ...)

draw.x.title(xtitle = "", theme.params = getCurrentTheme())

draw.y.axis(X, ylabels = NULL, theme.params = getCurrentTheme(),
    side = 1, show.labels = TRUE, ...)

draw.y.title(ytitle = "", theme.params = getCurrentTheme(), side = 1)
```

Arguments

```
X
                Y
Υ
base
                base
theme.params theme.params
overrides
                overrides
legend
                legend
xlabels
                xlabels
ylabels
                ylabels
xtitle
                xtitle
ytitle
                ytitle
show.labels
               show.labels
Y.fit
                Y.fit
                col
col
type
                type
                lty
lty
side
                side
                Further arguments to or from other methods.
. . .
```

188 plotmov

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

cplot

plotmov

Plot Moving Average

Description

Plot method for object of class 'Movav' (Moving Average)

Usage

```
## S3 method for class 'Movav'
plot(x, fs = NULL, main = attr(x, "desc"), ...)
```

Arguments

X	instance of class 'Movav'
fs	Matrix containing the original data series (one column per variable). For financial time series (class = 'fs'), only 'Close' column is processed.
main	Main title of the plot
	Additional parameters accepted by the functions cplot and fin.plot

Details

If the original data series is an instance of class 'fs', then the plot will have two panels:

- plot of fs and x on the top;
- histogram of the Volume data of the financial series X.

Value

VOID

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

cplot

plotmreg 189

Examples

```
# Compute Exponential Moving Average and plot results
x = ema(rnorm(100), 10)
# Plot Multiple Moving Averages together using "" plotting class
plot(x)
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:1000,2, drop=FALSE])
# set RAdamant theme (1 - Finance or 2 - Vanilla)
setCurrentTheme(1)
\verb|plot.Movav|(cbind(kama(x),frama(x),ema(x, 10),gdema(x, 10),zlma(x, 10))|, x||
# plot multiple moving average results from an object of class "fs"
data(ex_fs)
class(ex_fs)
x = ex_fs
\# set RAdamant theme (1 - Finance or 2 - Vanilla)
setCurrentTheme(2)
\verb|plot.Movav| (\verb|cbind| (\verb|kama|(x)|, \verb|frama|(x)|, ema|(x, 10)|, dema|(x, 10)|, tema|(x, 10)|) |, x | |
```

plotmreg

Plot function for mreg

Description

Plot function for class 'mreg'

Usage

```
## S3 method for class 'mreg' plot(x, ...)
```

Arguments

x OBJECT of class "mreg".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

190 plotret

plotret

Plot Returns

Description

Plot method for class "ret"

Usage

```
## S3 method for class 'ret'
plot(x, style = c("line", "bar"), xlabels = rownames(x), theme.params =
getCurrentTheme(), ...)
```

Arguments

```
x an objekt of class "ret"
style plot style, "line" plot or "bar" plot
xlabels
theme.params theme.params
... Further arguments to or from other methods
```

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

Ret

```
# load an example dataset containing financial daily prices
data(ex_fs)
x = ex_fs[ ,1:4]

# calculation and plot for single series
Ret(x[,1], lag = 5, plot=TRUE, , mode = "selected", style="bar", main="Returns - 5 Lags
# calculation and plot for multiple series
par(mfrow=c(2,2))
Ret(x, lag = 5, mode = "selected", plot=TRUE, style="bar", main="Returns - 5 Lags")
```

plotroi 191

plotroi

Plot Return on Investment objects

Description

Plot method for class 'roi'.

Usage

```
## S3 method for class 'roi'
plot(x, main = "Historical Return on Investment", xtitle = "Lag", ...)
```

Arguments

x Instance of class 'roi'.
main Title for the plot.
xtitle The title for the x-axis.
... Additional parameters passed to the cplot function.

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

cplot.

```
# Load sample financial series data
data(ex_fs)

# Analyse the performance of the returns (Close data) up to 200 days and plot results
plot(hroi(ex_fs, lag = 200, log = FALSE), xlab.srt = 0)

# Analyse the performance of the returns (All data) up to 200 days and plot results
plot(hroi(ex_fs[,], lag = 200, log = FALSE), xlab.srt = 0)
```

192 plotspec

plotsme

Plot Sample Mean Excess class

Description

Plotting function for Sample Mean Excess class

Usage

```
## S3 method for class 'sme'
plot(x, main = attr(x, "desc"), xtitle = get.col.names(attr(x, "data")), ...)
```

Arguments

```
x OBJECT of class "sme".
main main
xtitle xtitle
... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

plotspec

Spectrogram Plotting

Description

Plot method for class 'specgram'.

Usage

```
## S3 method for class 'specgram'
plot(x
, show.periodicity = FALSE
, theme.params = getCurrentTheme()
, xtitle = "Time"
, ytitle = ifelse(show.periodicity, "Periodicity", "Frequency")
, plot3d = FALSE
, overrides = list(...)
, ...
)
```

pmreg 193

Arguments

Instance of class 'specgram' show.periodicity LOGICAL. If TRUE, Periods (1/frequencies) are showed instead of frequencies on the x-axis (DEFAULT = FALSE) theme.params theme parameters (DEFAULT = getCurrentTheme()) xtitle Title for the x-axis (DEFAULT = "Time") Title for the y-axis (DEFAULT = "Frequency" or "Periodicity" depending on the ytitle value of show.periodicity) LOGICAL. If TRUE, 3D spectrogram is plotted. plot3d list of parameters to override the theme. Only parameters that match those deoverrides fined by the theme are overridden (DEFAULT = list(...)) Used to quickly specify theme overrides.v

Value

Void

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
specgram.
```

Examples

```
# Load sample financial series data
data(ex_fs)

# 3D spectrogram
spec = specgram(ex_fs, plot = FALSE)
# Plotting
plot(spec, plot3d = TRUE)
```

pmreg

Print function for mreg

Description

Print function for class 'mreg'

Usage

```
## S3 method for class 'mreg'
print(x, ...)
```

194 *ppo*

Arguments

```
x OBJECT of class "mreg".
```

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ppo

Percentage Price oscillator

Description

Compute Percentage Price oscillator (Technical Analysis)

Usage

```
ppo(X, fast.lag = 10, slow.lag = 30, plot = TRUE, ...)
```

Arguments

```
X X
fast.lag fast.lag
slow.lag
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

prbsar 195

prbsar

Parabolic Stop and Reverse (PSAR)

Description

Compute Parabolic Stop and Reverse (PSAR) (Technical Analysis)

Usage

```
prbsar(Close, High, Low, accel = c(0.02, 0.2), plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
accel	accel
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

preder

Prediction error

Description

Measures for model evaluation

Usage

```
pred_error(target, pred, pc = FALSE)
av_er(target, pred, pc=FALSE)
abs_avdi(target, pred, pc=FALSE)
mse(target, pred)
sde(target, pred)
track_sign(target, pred)
track_sign_exp(target, pred)
```

196 predgar

Arguments

target VECTOR. Observed target value pred VECTOR. Predicted values

pc Logical. If TRUE return results in percentage

Details

• pred_error: Prediction error

• av_er: Average error

• abs_avdi: Absolute average discard

• mse: Mean squared error

• sde: Error standard deviation

• track_sign: Error track signal

• track_sign_exp: Exponential track signal

Author(s)

RAdamant Development Team < team@r-adamant.org>

predgar

Predict Garch model

Description

Predict Garch model

Usage

```
## S3 method for class 'Garch'
predict(object, plot = TRUE, ...)
```

Arguments

object OBJECT of class "Garch".

 ${\tt plot} \qquad \qquad {\tt LOGICAL.} \ {\tt If} \ {\tt TRUE} \ {\tt plot} \ {\tt is} \ {\tt returned}.$

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

predmreg 197

predmreg

Predict method for Multiple regressions

Description

Predict function for class 'mreg'

Usage

```
## S3 method for class 'mreg'
predict(object, ...)
```

Arguments

```
object OBJECT of class "mreg".
... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

predreg

Predict method for regression

Description

Predict method for class 'reg'

Usage

```
## S3 method for class 'reg'
predict(object, newdata = NULL, ci = 0.95, mode = c("response", "link"),
plot = FALSE, shaded = FALSE, xlabels = NULL, main = "Linear Model Prediction",
getThemeAttr("col", exact = TRUE)[c(1, 2, 2)],
shade.stripes = 1, shade.col = getThemeAttr("col", exact = TRUE)[2],
shade.density = 40, shade.angle = 30, legend = NULL, ...)
```

198 predvear

Arguments

object OBJECT of class "reg".

newdata newdata

ci ci mode mode

plot LOGICAL. If TRUE plot is returned.

shaded shaded xlabels main main col color shade.stripes

shade.stripes

shade.col shade.col

shade.density

shade.density

shade.angle shade.angle legend

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

predvear VAR predictions

Description

Predict VAR model

Usage

```
## S3 method for class 'VecAr'
predict(object, steps = 5, CI = 0.95, viewby = c("vars", "step"), ...)
```

Arguments

object OBJECT of class "VecAr".

 $\begin{array}{ll} \text{steps} & \text{steps} \\ \text{CI} & \text{CI} \\ \text{viewby} & \text{viewby} \end{array}$

... Further arguments to or from other methods

printfft 199

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

printfft

Print FFT results

Description

Print method for class 'FFT'

Usage

```
## S3 method for class 'FFT'
print(x, ...)
```

Arguments

- x Instance of class 'FFT'
- ... Further arguments to and from other methods

Value

Void

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

printfs

Print fs data

Description

Print method for Financial Series (fs) object.

Usage

```
## S3 method for class 'fs'
print(x, ...)
```

Arguments

- x Instance of class 'fs'
- ... Not Used. For compatibility with the generics print function.

200 pro

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

printvar

Print VaR results

Description

Print method for class 'VaR'

Usage

```
## S3 method for class 'VaR'
print(x, ...)
```

Arguments

x Instance of class 'VaR'

... Further arguments to and from other methods

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

pro

Price oscillator

Description

Compute Price oscillator (Technical Analysis)

Usage

```
pro(Close, fast.lag = 5, slow.lag = 10, plot = TRUE, ...)
```

Arguments

```
Close VECTOR. Close price.
```

 $\begin{array}{ll} \text{fast.lag} & \text{fast.lag} \\ \text{slow.lag} & \text{slow.lag} \end{array}$

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

probhit 201

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

probhit

Probability of first hit (Brownian motion)

Description

Calcualte probability to Hit a barrier

Usage

```
ProbHit(B = 0, S0 = 0, mi, sigma)
```

Arguments

```
\begin{array}{ccc} \text{B} & & \text{B} \\ \text{SO} & & \text{SO} \\ \text{mi} & & \text{mi} \\ \text{sigma} & & \text{sigma} \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

psme

Print Sample Mean Excess class

Description

Printing function for Sample Mean Excess class

Usage

```
## S3 method for class 'sme'
print(x, ...)
```

Arguments

```
x OBJECT of class "sme".
```

... Further arguments to or from other methods

202 ptfoper

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ptfoper

Portfolio operators

Description

Get portfolio Beta

Usage

```
PtfRet(PTF, w = NULL, glob = TRUE, calc.ret = FALSE, ...)
PtfVar(PTF, w = NULL, glob = TRUE,
vol = FALSE, calc.ret = FALSE, ...)
PtfBeta(beta, w = NULL, glob = TRUE)
```

Arguments

PTF	Matrix containing one or more series of prices/returns, one time series for each asset
W	Vector of portfolio weights
glob	Logical. If TRUE return the value for the whole portfolio.
vol	Logical. If TRUE returns volatility (standard deviation instead of variance).
calc.ret	Logical. If TRUE the input matrix is considered as a matrix of prices, so returns are calculated.
beta	Value of the Beta coefficient or an object of class "Capm".
	Further arguments to or from other methods.

Author(s)

RAdamant Development Team <team@r-adamant.org>

```
# load example portfolio
data(ex_ptf)
# results for each series
PtfRet(ex_ptf, glob=FALSE)
PtfVar(ex_ptf, glob=FALSE)
# results for the whole portfolio
PtfRet(ex_ptf, glob=TRUE)
PtfVar(ex_ptf, glob=TRUE)
```

ptfopt 203

```
# Example with a series of prices instead of returns
data(EuStockMarkets)
PtfRet(PTF = EuStockMarkets, w=c(0.3, 0.4, 0.2, 0.1), calc.ret=TRUE)
PtfRet(PTF = EuStockMarkets, w=c(0.3, 0.4, 0.2, 0.1), glob = FALSE, calc.ret=TRUE)
```

ptfopt

Mean-Variance optimum portfolio

Description

Calculate mean-variance efficient portfolio

Usage

```
PtfOpt(ret = NULL, ptf = NULL, mi = NULL, SIGMA = NULL, volatility = TRUE, ...)
## S3 method for class 'PtfOpt'
print(x, ...)
```

Arguments

ret	Vector containing averge return for each asset
ptf	Matrix containing one or more series of prices, one time series for each asset
mi	Target return for the portfolio
SIGMA	Sample covariance matrix
volatility	Logical. If TRUE volatility is returned, else the variance is computed.
х	An object of class "PrfOpt".
	Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
PtfFront, PtfUtility
```

```
# Calculate weights from a series of prices
data(EuStockMarkets)
PtfOpt(ptf = EuStockMarkets)
# simulate efficient frontier
PtfFront(PTF = EuStockMarkets, n_sim=100, col="yellow")
PtfFront(PTF = EuStockMarkets, n_sim=30, col="green")

# calculate weights from a vector of returns R and matrix SIGMA
R = c(A=0.021, B=0.09)
SIGMA = matrix(c(0.101^2, 0.005, 0.005, 0.208^2),2,2)
# set target returns to be 0.05
PtfOpt(ret = R, ptf = NULL, SIGMA = SIGMA, mi = c(0.05))
```

204 ptfront

```
# set two target returns: 0.05 and 0.07
PtfOpt(ret = R, ptf = NULL, SIGMA = SIGMA, mi = c(0.05, 0.07))
# simulate efficient frontier
PtfFront(ret = R, ptf = NULL, SIGMA = SIGMA, n_sim=100, col="yellow")
## Example with real time series
## Not run:
ACME = get.fs("APKT", SName = "Acme Packet", from=as.Date("2010-01-01"))
ABTL = get.fs("ABTL", SName = "Autobytel", from=as.Date("2010-01-01"))
CNAF = get.fs("CNAF", from=as.Date("2010-01-01"))
BIIB = get.fs("BIIB", SName = "Biogen", from=as.Date("2010-01-01"))
SONY = get.fs("SNE", SName = "Sony", from=as.Date("2010-01-01"))
ENI = get.fs("E", SName = "Eni", from=as.Date("2010-01-01"))
ptf = combine.fs(ACME, ABTL, CNAF, BIIB, SONY, ENI);
head(ptf)
# Compute Minimum Variance portfolio
PtfOpt(ptf = ptf)
## End(Not run)
```

ptfront

Portfolio efficient frontier

Description

Compute / Simulate portfolio mean-variance efficient frontier

Usage

```
PtfFront(PTF = NULL, ret = NULL, SIGMA = NULL, mi = NULL, n_sim = 10,
volatility = TRUE, plot = TRUE, main = paste("Frontier Simulation:",
ifelse(is.null(mi), n_sim, length(mi)), "points"), xtitle = ifelse(volatility,
expression(sigma), expression(sigma^2)), ytitle = expression(mu), xlab.srt =
0, ytitle.srt = 0, type = "o", legend = "Mean-Variance Frontier", ...)
```

Arguments

```
PTF
PTF
ret
                ret
SIGMA
                SIGMA
mi
                mi
                n sim
n sim
volatility
                volatility
                plot
plot
main
                main
                xtitle
xtitle
                ytitle
ytitle
xlab.srt
                xlab.srt
```

ptfutil 205

```
ytitle.srt ytitle.srt
type type
legend legend
```

. . . Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ptfutil Portfolio Utility

Description

Calculate utility and plot for efficient portfolio

Usage

```
PtfUtility(PTF = NULL, W, R = NULL, SIGMA = NULL,
af = 3, plot = TRUE, ...)
```

Arguments

PTF	Matrix containing TWO series of returns, one series for each asset.
W	Initial vector of weights.
R	Vector of PTF returns.
SIGMA	PTF sample covariance matrix.
af	Numeric (range: 0,1). Adversion factor (Default = 3)
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
PtfFront, PtfOpt
```

```
# vector of returns for two assets A and B R = c(A=0.021, B=0.09) # Covariance matrix SIGMA = matrix(c(0.101^2, 0.005, 0.005, 0.208^2), 2, 2) # Calculate and show utility for the two assets PtfUtility(PTF=NULL, R=R, SIGMA=SIGMA, W=c(0.4, 0.6))
```

206 pvt

pvecar

Print VAR

Description

Print method for VAR

Usage

```
## S3 method for class 'VecAr'
print(x, ...)
```

Arguments

X OBJECT of class "VecAr".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pvt

Price Volume trend indicator

Description

Compute Price Volume trend indicator (Technical Analysis)

Usage

```
pvt(Close, Volume, lag = 5, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

Volume VECTOR. Asset traded Volume.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

qgev 207

qgev

Generalised Extreme Value (GEV) - Quantile function

Description

Generalised Extreme Value (GEV) - Quantile function

Usage

```
qgev(P, mu = 0, xi = 0.1, sigma = 1)
```

Arguments

 $\begin{array}{ccc} \text{P} & & \text{P} \\ \text{mu} & & \text{mu} \\ \text{xi} & & \text{xi} \\ \text{sigma} & & \text{sigma} \end{array}$

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

qgpd

Generalised Pareto Distribution (GPD) - Quantile function

Description

Generalised Pareto Distribution (GPD) - Quantile function

Usage

```
qgpd(P, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

 $\begin{array}{ccc} \text{P} & & \text{P} \\ \text{xi} & & \text{xi} \\ \text{sigma} & & \text{sigma} \\ \text{trsh} & & \text{trsh} \end{array}$

Note

TO BE COMPLETED

Author(s)

208 recref

radpkg

Financial Technical Analysis and Risk Management

Description

R-Adamant is a collection of functions and algorithms for processing of Financial Time Series, Risk Management and Econometrics.

Details

Package: RAdamant
Type: Package
Version: 0.8.1
Date: 2011-07-11
License: GPL>=2
LazyLoad: yes

Author(s)

RAdamant Development Team Maintainer: RAdamant Development Team <team@r-adamant.org>

recref

Recode and Reformat

Description

Change the attributes and format of vector or data frame

Usage

```
recode(x, old, new)
reformat(X, classes)
```

Arguments

X	Vector input.
X	Matrix or Data frame input
old	Old (actual) unique values in the vector
new	New values to be placed in the vector
classes	Vector containing the classes to be applied to X. The vector must contain one class for each column of the input X.

Author(s)

recycle 209

Examples

```
# create random numeric vector
old_vec = sample(c(1,2,3), 10, TRUE)
# old values
old = unique(old_vec)
# new values
new = c("low", "medium", "high")
# new vector
new_vec = recode(old_vec, old=old, new=new)
```

recycle

Recycle function for time series

Description

Recycle an input sequence X to get a new sequence of the specified length V

Usage

```
recycle(X, V = length(X))
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

relvol

Relative Volatility oscillator

Description

Compute Relative Volatility oscillator (Technical Analysis)

Usage

```
RelVol(Close, sdlag = 9, lag = 5)
```

Arguments

Close VECTOR. Close price.

sdlag sdlag

lag INTEGER. Number of lag periods.

210 rema

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

rema

Regularised Exponential Moving Averages

Description

Compute multiple Regularised Exponential Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
rema(X, win.size = NROW(X), alpha = 0.5, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
alpha	weight in the interval [0, 1]. (DEFAULT: 0.7).
plot	LOGICAL. Return plot.
	Additional parameters for future development.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

REMA is a second order IIR filter with the two coefficients are regulated by the smoothing factors lambda and alpha.

Smoothing factors: lambda = 2/(win.size+1) and alpha.

Value

A object of class 'ma' with attributes type = "REMA", 'lambda' and 'alpha':

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

rgev 211

Examples

```
\#\# load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
rema(x, 10, alpha=0.5)
# compute moving average with multiple lags
rema(x, c(10,20), alpha=0.3)
## Not run:
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
rema(ex_fs, 30, plot=TRUE)
# multiple lags
rema(ex_fs, seq(5,50,10), plot=TRUE)
## End(Not run)
```

rgev

Generalised Extreme Value (GEV) - Random Numbers Generator

Description

Generalised Extreme Value (GEV) - Random Numbers Generator

Usage

```
rgev(N, mu = 0, xi = 0.1, sigma = 1)
```

Arguments

N N mu mu xi xi sigma sigma

Note

TO BE COMPLETED

Author(s)

212 roc

rgpd

Generalised Pareto Distribution (GPD) - Random Numbers Generator

Description

Generalised Pareto Distribution (GPD) - Random Numbers Generator

Usage

```
rgpd(n, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

```
\begin{array}{ccc} \text{n} & & \text{n} \\ \text{xi} & & \text{xi} \\ \text{sigma} & & \text{sigma} \\ \text{trsh} & & \text{trsh} \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

roc

Rate of Change index

Description

Compute Rate of Change index (Technical Analysis)

Usage

```
roc(X, lag = 5, pc = TRUE, plot = TRUE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
рс	pc
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods

Note

TO BE COMPLETED

rowmax 213

Author(s)

RAdamant Development Team <team@r-adamant.org>

rowmax

Maximum / Minimum by row

Description

```
\begin{tabular}{ll} $\tt rowMax: Compute parallel max across the rows of $X$ \\ \verb"rowMin: Compute parallel min across the rows of $X$ \\ \end{tabular}
```

Usage

```
rowMax(X)
rowMin(X)
```

Arguments

Χ

Input matrix/sequence

Value

A matrix NROW(X) by one, where each row is the max / min of the rows of X).

Author(s)

RAdamant Development Team < team@r-adamant.org>

rschint

Interval for uniroot function

Description

Compute a proper search interval for uniroot function

Usage

```
root.search.interval(from, func = NULL,
type = c("left", "both", "right"), max.iter = 500,
show.warnings = FALSE, debug = FALSE, ...)
```

Arguments

```
from from func type type max.iter max.iter show.warnings
```

show.warnings

debug debug

... Further arguments to or from other methods.

214 runlog

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

rsi

Relative strength indicator

Description

Compute Relative strength indicator (Technical Analysis)

Usage

```
rsi(X, lag, plot = FALSE, ...)
```

Arguments

X
 lag
 INTEGER. Number of lag periods.
 plot
 LOGICAL. If TRUE plot is returned.
 ...
 Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

runlog

Error Handling and Log with runner

Description

```
write.log: Simple function to write/append log to file (csv format). error.handling: Error handling function
```

Usage

```
write.log(log = matrix(NA, nrow = 0, ncol = 0), logfile = "runlog.log")
error.handling(err)
```

runner 215

Arguments

log Matrix containing logging information.

logfile Filename of the log

err List containing the status code of the error.

Details

Function error.handling is to be called ONLY inside a tryCatch statement. It assigns three variables:

- log.status = "Failed": the status of the execution is set to "Failed"
- log.message: The error message generated inside the tryCatch
- res = NA: the result is set to NA

Value

VOID

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
run, multirun
```

runner

Runner and Multirunner

Description

Wrapper function to execute any function.

Run single or multiple functions and provide a list of results.

Usage

```
run(func = NULL, args = list(), writelog = TRUE,
logfile = "runlog.log", check.input = TRUE,
output = c("console", "sing.file"))

multirun(func.array = character(0), args.list = list(),
writelog = TRUE, logfile = "runlog.log",
output = c("console", "sing.file", "multi.file"))
```

Arguments

```
func Name of the function to run

func.array Array of function names to execute

args Named list of parameters of the function.

Each entry is of the form: args[["PARAM.NAME"]] = VALUE.
```

216 runner

args.list	Array of named list of parameters of the function. Each entry is a list of parameters, as required by the wrapper function "run".
writelog	LOGICAL. If TRUE, execution log is written to file.
logfile	Filename of the log
check.input	LOGICAL. If TRUE, basic checks are performed on input data, and stop code execution in case of wrong data.
output	Choose wether to return the results in the console or export the to text file.

Details

When called the function multirun the elements of the argument args.list can be specified with or without names. If the names are specified the arguments can be put in a different order from the array function.

If writelog = TRUE a log containing information about submitted computation is saved in the current working directory. If output = "sing.file", a text file containing all the results is saved in current working directory.

The file will be named "Run_time_date.txt" If output = "sing.file", a text for each called function is saved in a text file.

The files will be named "Function Name_time_date.txt"

Value

The object returned depends on the function being called.
multirun returns a list of results, one entry for each function being executed.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
write.log, error.handling
```

```
# Run Exponential Moving Average and Simple Moving Average.
# For each function a list of parameters has been specified
multirun(c("ema","sma")
,list( list(rnorm(150), 5), list(rnorm(100), 10) )
, writelog = TRUE
)
# Specifies names in the list of arguments
multirun(func.array=c("ema","sma")
,args.list=list( sma=list(rnorm(150), 5), ema=list(rnorm(100), 30) )
, TRUE
)
# Output to text file
multirun(func.array=c("ema","sma")
,args.list=list( sma=list(rnorm(150), 5), ema=list(rnorm(100), 30) )
, output = "multi.file"
)
```

rvi 217

rvi

Relative Vigor indicator

Description

Compute Relative Vigor indicator (Technical Analysis)

Usage

```
rvi(Close, High = NULL, Low = NULL, Open = NULL, plot = TRUE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Open VECTOR. Open price.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sampmom

Sample moments (Brownian motion)

Description

Calculate sample moments of a Brownian motion

Usage

```
SampMom(P, X, moms = 1:2)
```

Arguments

P	P
X	X
moms	moms

Note

TO BE COMPLETED

218 scaledf

Author(s)

RAdamant Development Team < team@r-adamant.org>

scaledf Apply functions on a scaled window

Description

scalApply: Applies a given function to the pairs (X[n,i],X[n-lag,i]). scalMax: Scaled max on each column of the input matrix. Scaled min on each column of the input matrix

Usage

```
scalApply(X, lag = 0, padding = NA, na.rm = FALSE, func = NULL, ...)
scalMax(X, lag = 1, padding = -Inf, na.rm = FALSE, func = NULL)
scalMin(X, lag = 1, padding = Inf, na.rm = FALSE, func = NULL)
```

Arguments

Χ	Input matrix/sequence
lag	vector of integer lags. If lag \geq 0 data are shifted to the right, else to the left. (DEFAULT = 0)
padding	value used to initialise the output matrix (DEFAULT = NA)
na.rm	LOGICAL. If TRUE, N-lag entries are removed from the output (DEFAULT = FALSE)
func	function applied to the data (DEFAULT = NULL)
	Additional parameters accepted by the function 'func'

Details

Sequences are treated as one-column matrices.

Value

A matrix where func / max / min has been applied on each pair (X[n, i], X[n-lag, i]) for each column i of X. Number of rows depends on the na.rm parameter. Number of columns is NCOL(X)

Author(s)

RAdamant Development Team <team@r-adamant.org>

scoreed 219

scorecd	Score	Card
SCOLECA	score	Cara

Description

Create Credit Score Card based on Logistic Regression

Usage

```
Score.card(X, Y, nseg = 2, col.classes=NULL)
## S3 method for class 'scorecard'
print(x, ...)
## S3 method for class 'scorecard'
summary(object, plot=FALSE, ...)
## S3 method for class 'scorecard'
predict(object, ...)
```

Arguments

X	DATA.FRAME / MATRIX of regressors.
Y	VECTOR. Target variable in 0-1 format.
nseg	INTEGER / VECTOR. Number of segments to factorise numerical variables.
col.classes	Vector. Indicate the format to use for each variable (Numeric / Character). If NULL the original input formats are maintained.
x, object	an object of class "scorecard"
plot	Logical. If TRUE accuracy plots are displayed:
	• Lift Chart, Lift
	• Cumulative Gain, Gain
	• ROC, ROCplot
	Sensitivity VS Specificity
	Further arguments to or from other methods.

Details

The input X can contain both numerical and categorical variables.

All the input variables are converted according to the results of Weight of Evidence calculation (WeightEvid). Numerical variables are factorised according with the number of segments indicated by the parameter "nseg".

Value

The function returns an object of class "scorecard" containing:

```
scorecard : data frame containing the score card results ("Variable", "Segment", "WoE", "Est.Coef", "Wald-Z", "P-Val", "Ods_ratio", "Score", "Round.Score");
```

220 sensan

```
Model : an object of class "glm" - "lm" with the results of logistic model (see glm);
WeightOfEvidence
: A matrix containing the results of Weight of Evidence calculation (see WeightEvid);
```

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
WeightEvid, input2woe, glm
```

Examples

```
# load example data set
data(ex_credit)
## Generate Score Card
data = ex\_credit[ ,-1]
target = ex_credit[ ,1]
# Two segments for numerical variables
sc2 = Score.card(X=data, Y=target, nseg = c(2,4))
# Three segments for numerical variables
sc3 = Score.card(X=data, Y=target, nseg = c(2,3,4))
# display more detailed results with the method summary
summary(sc2)
summary(sc3)
# ... show plots
# display more detailed results with the method summary
summary(sc2, plot=TRUE)
summary(sc3, plot=TRUE)
```

sensan

Sensitivity analysis default method

Description

Sensitivity analysis default method

```
sensAnalysis(X, ...)
## Default S3 method:
sensAnalysis(X, win.size = length(coef(X)), plot = FALSE, ...)
```

sensanIm 221

Arguments

 \mathbf{X}

win.size win.size

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

sensanlm

Sensitivity analysis method for lm

Description

Sensitivity analysis method for lm

Usage

```
## S3 method for class 'lm'
sensAnalysis(X, ...)
```

Arguments

X OBJECT of class "lm".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

222 sharpe

sensanrg

Sensitivity analysis method for reg

Description

Sensitivity analysis method for reg

Usage

```
## S3 method for class 'reg'
sensAnalysis(X, ...)
```

Arguments

X OBJECT of class "reg".

Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sharpe

Sharpe index

Description

```
Sharpe: Calculate Sharpe index for a portfolio.
Sharpe.Capm: Get Sharpe index from an object of class. "Capm"
```

Usage

```
Sharpe(PTF, ...)
## Default S3 method:
Sharpe(PTF, rfr = 0, ...)
## S3 method for class 'Capm'
Sharpe(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
rfr	risk free rate
	Further arguments to or from other methods

Author(s)

RAdamant Development Team <team@r-adamant.org>

sinma 223

See Also

Treynor, Jensen, Appraisal

sinma

(Normalised) Sine Weighted Moving Averages

Description

Compute multiple (Normalised) Sine Weighted Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
sinma(X, win.size = 10, plot = FALSE, ...)
```

Arguments

X Matrix of data series (one column per variable).

win.size vector of moving average window sizes (lags) to be applied on the data X. (DE-

FAULT = 10).

plot LOGICAL. Return plot.

... Further arguments to or from other methods

Details

For financial time series (class = 'fs'), only 'Close' column is processed. Weights: sin(pi * (1:win.size)/(win.size+1))

Value

A object of class 'ma' with attributes type = "SINMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

Movav

224 sma

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
sinma(x, 10)
# compute moving average with multiple lags
sinma(x, c(10,20))
## Not run:
# refine results of moving average
setCurrentTheme(2)
# single lag
sinma(x, 30, plot = TRUE)
# multiple lags
sinma(x, seq(5,50,10), plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
sinma(ex_fs, 30, plot=TRUE)
# multiple lags
sinma(ex_fs, seq(5,50,10), plot=TRUE)
## End(Not run)
```

sma

Simple Moving Average

Description

Compute multiple Simple Moving Averages on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
sma(X, win.size = 10, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = 10).
plot	LOGICAL. Return plot.
	Additional parameters accepted by the function Mmovav.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

sme 225

Value

A object of class 'ma' with attributes type = "SMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
sma(x, 15)
# compute moving average with multiple lags
sma(x, c(15,30))
## Not run:
# refine results of moving average
setCurrentTheme(2)
sma(x, 30, plot = TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(1)
data(ex_fs)
# single lag
sma(ex_fs, 30, plot=TRUE)
# multiple lags
sma(ex_fs, seq(5,50,5), plot=TRUE)
## End(Not run)
```

Sample Mean Excess function

sme

Description

Sample Mean Excess function

```
sme(X, plot = TRUE, ...)
```

226 specgram

Arguments

```
\mathbf{X} \mathbf{X} plot plot ...
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

specgram

Spectrogram using short-time Fourier transform

Description

Computes FFT on each column of X. For Financial series objects (class 'fs'), Close data is extracted.

Usage

```
specgram(X, win.size = max(1, NROW(X)/20), plot = TRUE, ...)
```

Arguments

```
    Matrix of data series (one column per variable).
    win.size The size of the window used to compute the FFT
    plot LOGICAL. If TRUE, spectrogram is plotted.
    ... Additional parameters passed to splitWindow, FFT and plot.specgram
```

Details

A spectrogram is a time-varying spectral representation (forming an image) that shows how the spectral density of a signal varies with time. The most common format is a graph with two geometric dimensions: the horizontal axis represents time, the vertical axis is frequency; a third dimension indicating the amplitude of a particular frequency at a particular time is represented by the intensity or colour of each point in the image. A forward sliding window of length win.size is used to split the input data into segments, then for each segment the FFT of size NFFT = 2ceiling(log2(win.size)) is computed. The sliding of the window is controlled by the 'by' parameter of the splitWindow function (default: by = 1). The 'by' parameter should take values between 1 and win.size. If by = win.size, the input data is split into Nwindows = ceiling(NRowX/win.size) non-overlapping adjacent blocks. If by = 1 then Nwindows = NRowX - win.size + 1 overlapping segments are computed.

specgram 227

Value

An object of the class 'specgram'. This is an array with dimensions (NFFT, Nwindows, NColX):

NFFT The FFT length. It is the next power of 2 greater than the length of each seg-

ment/window of X.

Nwindows The number of window segments computed. It depends on the 'by' parameter

(default is 1) of the splitWindow function (see details).

NColX The number of columns of X.

The following attributes are attached to the object:

Fs The input Fs parameter to the FFT.

window The window function used to smooth the input data.

freq The frequencies where the FFT was evaluated.

fpoints The array indices where the frequency points relative to 'freq' are stored.

half The input half parameter to the FFT.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
splitWindow, FFT, plot.specgram.
```

Examples

```
# Load sample financial series data
data(ex_fs)
# 3D spectrogram
specgram(ex_fs, plot3d = TRUE)
# Sampling period
Ts = 0.01
# Generate 10 seconds timeline
t = seq(0, 10, by = Ts)
# Sampling frequency
Fs = 1/Ts
# Linear increasing frequency
f = 2 * t
#Chirp signal - Cosine of increasing frequency
chirp = as.matrix(cos(2*pi*f*t))
colnames(chirp) = "Chirp"
# 2D spectrogram
specgram(chirp, Fs = Fs)
# 2D spectrogram with non overlapping windows
specgram(chirp, Fs = Fs, win.size = 128, by = 128)
# 3D spectrogram
specgram(chirp, Fs = Fs, win.size = 128, plot3d = TRUE)
```

228 sssym

splitwdw

Sliding windows

Description

Sliding windows

Usage

```
splitWindow(N, direction = c("forward", "backward"),
mode = c("EW", "SW"), from = NULL,
win.size = 1, by = 1, labels = 1:N, ...)
```

Arguments

```
N direction direction mode mode from from win.size by by labels labels
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sssym

State Space system simulation

Description

Generic function for State Space system simulation. The system can be either linear or non linear.

```
ss.sym(X, F = NULL, G = NULL, H = NULL, D = NULL,
init = 0, SLen = ifelse(is.function(F), NA,
NROW(F)), YLen = ifelse(is.function(H), NA, NROW(H)), ...)
```

stacklev 229

Arguments

X	Matrix of data series (one column per variable).
F	[State -> State] transition matrix or [(State, Input) -> State] function ($F = function(S, X, n,)$ returning the new state vector S_new based on the current State S and the data X at time period n) (DEFAULT = NULL)
G	[Input -> State] transition matrix. Only for linear models (DEFAULT = NULL)
Н	[State -> Output] transition matrix or [(State, Input) -> Output] function (H = function(S, X, n,)
	returning the new output vector Y[, n] based on the new state S[, n] and the data X at time period n) (DEFAULT = NULL -> converted in diag(SLen))
D	[Input -> Output] transition matrix. Only for linear models (DEFAULT = NULL -> converted to a zero matrix SLen by NCOL(X))
init	Initial values for the state vactor S (DEFAULT = 0, recycled to length SLen if necessary)
SLen	Length of the state vector S. (DEFAULT = ifelse(is.function(F), NA, NROW(F)))
YLen	Number of columns of the output vector Y. (DEFAULT = ifelse(is.function(H), NA, NROW(H)))
	Additional parameters accepted by the functions F and H

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'ss' with attributes 'F', 'G', 'H', 'D' as given by the corresponding input parameters:

- matrix of size NROW(X) by YLen, result of the symulation of the given dynamic system subject to input 'X' and initial condition 'init'.

Author(s)

RAdamant Development Team < team@r-adamant.org>

stacklev Retrieve the number of calls in the stack.

Description

Retrieve the number of calls in the stack. To be called from inside a function.

Usage

```
CallStackLevels()
```

Value

The number of calls in the stack.

230 starc

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
# Create two nested functions
f1 = function() {
f2();
}
f2 = function() {
CallStackLevels()
}

# Returns 1
f2();
# Returns 2
f1();
```

starc

Stoller Starc bands

Description

Compute Stoller Starc bands (Technical Analysis)

Usage

```
starc(Close, High = NULL, Low = NULL, atr.mult = 2, lag = 5, atr.lag =
14, mov = c("sma", "ema", "wma"), plot = FALSE, ...)
```

Arguments

```
Close
                 VECTOR. Close price.
                 VECTOR. High price.
High
                 VECTOR. Low price.
Low
                 atr.mult
atr.mult
                 INTEGER. Number of lag periods.
lag
                 atr.lag
atr.lag
mov
                 mov
                 LOGICAL. If TRUE plot is returned.
plot
                 Further arguments to or from other methods.
. . .
```

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\team@r-adamant.org|| \\$

statbar 231

Description

Interactive status bar for console logging

Usage

```
statusbar(message = "Computing..", status = 0, n = 1, N = 1, step = 0.01)
```

Arguments

message	message
status	status
n	n
N	N
step	step

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

```
stepmat Step matrix for binomial tree
```

Description

Simulate binomial path of a binomial tree

Usage

```
StepMat(init, n_step, up, down)
```

Arguments

```
\begin{array}{ll} \text{init} & \text{init} \\ \text{n\_step} & \text{n\_step} \\ \text{up} & \text{up} \\ \text{down} & \text{down} \end{array}
```

Note

TO BE COMPLETED

232 styles

Author(s)

RAdamant Development Team <team@r-adamant.org>

strvar

Structural Vector Autoregressive model

Description

Estimate Structural Vector Autoregressive model

Usage

```
Strvar.VecAr(X, A = NULL, B = NULL, inter = FALSE, ...)
```

Arguments

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

styles

Styles analysis (portfolio)

Description

Perform Style analysis for single and multiple time periods

```
Styles(FUND, IND, W, lower = NULL, upper = NULL, ...)

Multi.Styles(FUND, IND, W, n_clust = 5, lower = NULL, upper = NULL, ...)
```

sumdd 233

Arguments

FUND	Vector. Benchmark investment fund
IND	Matrix of indices (returns)
M	Initial weghts to be assigned to the indices
n_clust	Number of time periods clusters for multi period analysis
lower	Lower boundary for the optimal weights (used in optim)
upper	Upper boundary for the optimal weights (used in optim)
	Further arguments to or from other methods.

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
# load examples portfolio
data(ex_ptf)
# set initial weights
ww = c(0.09, rep(0.13,6))
# single period style analysis
Styles(FUND=ex_ptf[,1], IND=ex_ptf[,-1] , W=ww, lower=NULL, upper=NULL)
# multi period style analysis
Multi.Styles(FUND=ex_ptf[,1], IND=ex_ptf[,-1] , n_clust=5, W=ww, lower=NULL, upper=NULL)
```

sumdd

Summary drawdown

Description

Summary function for drawdown

Usage

```
SummaryDD (DD)
```

Arguments

DD

OBJECT of class "drawdown"

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

234 sumreg

sumdens

Plot summary information

Description

Plot summary information of a vector with its density

Usage

```
Sum.dens(x, ...)
```

Arguments

x VECTOR. Input series.

... further arguments for "plot" function

Author(s)

RAdamant Development Team < team@r-adamant.org>

sumreg

Summary method for mreg

Description

Summary method for mreg

Usage

```
## S3 method for class 'mreg'
summary(object, ...)
```

Arguments

object OBJECT of class "mreg"

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

swing 235

swing Swing Index

Description

Calculate Swing index (Technical Analysis)

Usage

```
Swing(Close, High, Low, Open, ret_cum = FALSE, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Open VECTOR. Open price.

ret_cum ret_cum

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

symlkup Lookup Stock Symbol from Yahoo!

Description

Lookup stock symbols for which the symbol, name or description matches the input string value.

Usage

```
symbol.lookup(what = "")
```

Arguments

what The string to search for.

236 tema

Value

A matrix containing the top 10 stock symbols that match the input, with the following columns:

Symbol The stock symbol.

Name The stock name.

Exchange The Exchange symbol.

Type The Exchange Name.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
get.fs
```

Examples

```
# lookup the symbol for Apple
symbol.lookup("Apple")
# Apple
APPLE = get.fs("AAPL", from=as.Date("2008-06-01"), to=as.Date("2011-04-01"));
```

tema

Triple EMA

Description

Compute multiple Triple EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
tema(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

Matrix of data series (one column per variable).
 win.size vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = NROW(X)).
 plot LOGICAL. Return plot.
 Additional parameters accepted by function ema.

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed. TEMA is a weighted combination of EMA: 3*EMA(X) - 3*EMA(EMA(X)) + EMA(EMA(EMA(X))). Smoothing factor: lambda = 2/(win.size+1).
```

thigh 237

Value

A object of class 'ma' with attributes type = "TEMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

ema

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
tema(x, 10)
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
tema(x, 40, plot = TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
tema(ex_fs, 15, plot=TRUE)
## End(Not run)
```

thigh

True High oscillator

Description

Compute True High oscillator (Technical Analysis)

```
thigh(Close, High = NULL, lag = 5, plot = TRUE, ...)
```

238 tirley

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

tirlev Trione levels

Description

Compute Trione levels (Technical Analysis)

Usage

```
tirLev(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High VECTOR. High price.

Low VECTOR. Low price.

Close VECTOR. Close price.

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

tlow 239

Description

Compute True Low oscillator (Technical Analysis)

Usage

```
tlow(Close, Low = NULL, lag = 5, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

tma	Triangular Moving Averages	

Description

Compute multiple Triangular Moving Averages on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
tma(X, win.size = 10, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = 10).
plot	LOGICAL. Return plot.
	Additional parameters accepted by the function Mmovav.

240 tma

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'ma' with attributes type = "TMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

Movav

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
# compute moving average with multiple lags
tma(x, c(15,30))
## Not run:
# refine results of moving average
setCurrentTheme(2)
# single lag
tma(x, 30, plot = TRUE)
# multiple lags
tma(x, seq(5,50,10), plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(1)
data(ex_fs)
# single lag
tma(ex_fs, 30, plot=TRUE)
# multiple lags
tma(ex_fs, seq(5,50,10), plot=TRUE)
## End(Not run)
```

treynor 241

treynor

Treynor index

Description

```
Treynor: Calculate Treynor index for a portfolio
Treynor.Capm: Get Treynor index from an object of class "Capm"
```

Usage

```
Treynor(PTF, ...)
## Default S3 method:
Treynor(PTF, PTF_M, rfr = 0, rf = NULL, ...)
## S3 method for class 'Capm'
Treynor(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
Jensen, Sharpe, Appraisal
```

trf

(Average) True range

Description

Compute (Average) True range (Technical Analysis)

```
trf(Close, High = NULL, Low = NULL, lag = 1,
average = TRUE, avg.lag = 14, plot = FALSE, ...)
```

242 triangle

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

lag INTEGER. Number of lag periods.

average average avg.lag

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

triangle *Triangle window*

Description

Computes Triangle window of given length

Usage

```
triangle(N, normalized = TRUE)
```

Arguments

N Window length.

normalized LOGICAL. If TRUE (default), window is normalised to have unitary norm.

Value

An object of the class 'Window'. It is a simple sequence of N samples of the Triangle window.

Author(s)

RAdamant Development Team < team@r-adamant.org>

ttma 243

Examples

```
# Generate a Normalised Triangle window of size 100
x = triangle(100)
# Plot the window
cplot(x
, main = "Triangle Window"
, legend = attr(x, "type")
)
# Generate a non-normalised window
y = triangle(100, FALSE)
# Compare the two
cplot(cbind(x, y)
, main = "Triangle Window"
, legend = paste(attr(x, "type"), c("Normalised", "Not Normalised"))
, type = c("l", "o")
, xlab.srt = 0
)
```

ttma T3 EMA

Description

Compute multiple T3 EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
ttma(X, win.size = NROW(X), alpha = 0.7, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DEFAULT = NROW(X)).
alpha	weight in the interval [0, 1]. (DEFAULT: 0.7).
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

T3 EMA is a three times application of GDEMA: GDEMA(GDEMA(GDEMA(X, alpha), alpha), alpha).

Smoothing factor: lambda = 2/(win.size+1).

244 typ

Value

A object of class 'ma' with attributes type = "TTMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
ema, gdema
```

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
ttma(x, 10)
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
ttma(x, 40, plot = TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
ttma(ex_fs, 15, plot=TRUE)
## End(Not run)
```

typ

Typical price

Description

Compute Typical price (Technical Analysis)

```
tyP(Close, High, Low, plot = FALSE, ...)
```

ulcer 245

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ulcer *Ulcer index*

Description

Compute Ulcer index (Technical Analysis)

Usage

```
ulcer(X, lag, plot = FALSE, ...)
```

Arguments

X
 lag INTEGER. Number of lag periods.
 plot LOGICAL. If TRUE plot is returned.
 ... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

246 univar

ultima

Ultima oscillator

Description

Compute Ultima oscillator (Technical Analysis)

Usage

```
ultima(Close, High = NULL, Low = NULL, lag = 1, win1 = 7, win2 = 14, win3 = 28, \dots)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
win1	win1
win2	win2
win3	win3
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

univar

Univariate analysis

Description

Perform univariate analisys of the dependent variable Y versus each independent variable X, plotting the results

```
univar(Y, X, stress.period.idx = c(),
Y.logit = FALSE, Y.logit.adj = 5e-05,
theme.params = getCurrentTheme(),
plot = TRUE, overrides = list(...), ...)
```

var 247

Arguments

Y	serie of the dependent variable
X	Matrix containing all independent variables (one column per variable)
stress.perio	d.idx
	vector of positions specifing the stress regime. If provided, the system will run a modified LS to capture the two regimes
Y.logit	LOGICAL. If TRUE, the dependent variable is transformed using the Logit transform. The results are retransformed using the inverse Logit. (DEFAULT: FALSE)
Y.logit.adj	Cut-off value. The range of the Y variable is restricted within the interval [Y.logit.adj, 1-Y.logit.adj] (DEFAULT: 0.00005)
theme.params	Theme parameters (DEFAULT: getCurrentTheme())
plot	list of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: $NULL$)
overrides	LOGICAL. If TRUE, results are plotted.
	Further arguments to or from other methods

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
plot.univar,print.univar
```

var

Value at Risk

Description

General VaR, computed on each column of the input matrix

Usage

```
VaR(X, ...)
## Default S3 method:
VaR(X, p = 0.05, probf = c("norm","t","cofi"),
df = max(4, (kurt(X)+3)), params = FALSE, ...)
```

Arguments

X	Input matrix/sequence. Sequences are treated as one column matrices.
р	Vector of probabilities (DEFAULT = 0.05)
probf	Probability dristribution, see Details
df	Degrees of freedom for the Student T distribution (DEFAULT = $max(4, (kurt(X)+3)))$
params	Additional parameter for future development
	Additional parameters accepted by the function cofit

248 varptf

Details

Accepted probability distributions:

- "norm" = Normal distribution
- "t" = Students T distribution
- "cofi" = Cornish-Fischer distribution

Value

General VaR, computed on each column of the input matrix

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

varptf

Portfolio Value at Risk

Description

General VaR, computed for an input portfolio

Usage

```
VaRPtf(X, p = 0.05, weights = rep(1/NCOL(X), NCOL(X)), probf = c("norm", "t"), df(x) = (1/NCOL(X)), probf(x) = (1/NCOL(X)),
```

Arguments

X Input matrix/sequence. Sequences are treated as one column matrices.

p vector of probabilities (DEFAULT = 0.05)

probf probability distribution, see Details

weights portfolio weigths (DEFAULT = rep(1/NCOL(X), NCOL(X)))

df Degrees of freedom for the Student T distribution (DEFAULT = 4)

... Additional parameters for future development

Details

Accepted probability distributions:

- "norm" = Normal distribution
- "t" = Students T distribution
- "cofi" = Cornish-Fischer distribution

Value

A matrix length(p) by 1 of computed portfolio VaRs

vcmof 249

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

vcmof

Variable Chande Momentum Oscillator

Description

Compute Variable Chande Momentum Oscillator (Technical Analysis)

Usage

```
vcmof(X, lag = 5, plot = FALSE, ...)
```

Arguments

 \mathbf{X}

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

vecar

Vector Autoregressive model

Description

Estimate Vector Autoregressive model

```
VecAr(X, ...)
## Default S3 method:
VecAr(X, ar.lags = 1:2,
type = c("const", "trend", "constrend", "none"),
exog = NULL, ...)
```

vhff

Arguments

Χ	Input matrix of time series.
	N.B. The first column is taken as dependent variable
ar.lags	Number (or vector) of lags for the AR components
type	Type of deterministic regressor(s) to be included in the model
exog	matrix of exogenous variables (Default = NULL)
	Further arguments to or from other methods

Value

An object list of class "VecAr". The list contains the following elements:

- Results of the estimation ("lm" object)
- Nunmber of Observations
- Number of Variables
- Number of Parameters
- LogLikelihood value
- AIC information criteria
- BIC information criteria

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
Strvar.VecAr, fitted.VecAr
```

vhff

Vertical Horizontal Filter

Description

Compute Vertical Horizontal Filter (Technical Analysis)

Usage

```
vhff(X, lag = 9, plot = FALSE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

vidyaf 251

	1 0	
777	dvat	

Variable Index Dynamic Average

Description

Compute Variable Index Dynamic Average (Technical Analysis)

Usage

```
vidyaf(X, lag = 5, plot = FALSE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

vwma

Volume Weighted Moving Averages

Description

Compute multiple Volume Weighted Moving Averages on the input data, one for each column of X[,i] and window size win.size[j].

Usage

```
vwma(X, Vol = NULL, win.size = 10, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
Vol	Matrix of volumes (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = 10).
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods

vwma vwma

Details

For financial time series (class = 'fs'), only 'Close' column is processed. If X is a financial time series (class = 'fs'), and Vol = NULL then Vol = X[, 'Volume'] (DEFAULT = NULL).

Value

A object of class 'ma' with attributes type = "VWMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

sma

Examples

```
## load a dataset provided by RAdamant
data(ex_fs)
# extract Close price and Volume
x = ex_fs[,1]
Vol = ex_fs[,5]
# compute moving average with single lag
vwma(x, Vol, 10)
\# compute moving average with multiple lags
vwma(x, Vol, c(10,20))
## Not run:
# refine results of moving average
setCurrentTheme(2)
# single lag
vwma(x, Vol, 15, plot = TRUE)
# multiple lags
vwma(x, Vol, c(10,20), plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(1)
data(ex_fs)
# single lag
vwma(ex_fs, Vol=NULL, 10, plot=TRUE, cex=0.7, rm.transient=FALSE)
# multiple lags
vwma(ex_fs, Vol=NULL, seq(5, 50, 10), plot=TRUE)
## End(Not run)
```

wad 253

wad	Williams Advance Decline	

Description

Compute Williams Advance Decline (Technical Analysis)

Usage

```
wad(Close, High = NULL, Low = NULL, lag = 5, na.rm = FALSE, plot = TRUE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.
```

lag INTEGER. Number of lag periods.

na.rm na.rm

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

weigevid	Weight of Evidence	
----------	--------------------	--

Description

Calculate weight of evidence for a matrix with target variable

Usage

```
WeightEvid(data, target, nseg, missing = FALSE, na.replace=NULL, ...)
```

Arguments

. . .

data	MATRIX or DATA.FRAME. Input data.
target	Vector. Target variable in binary format 0-1
nseg	Integer of Vector. Number of segment to split the numerical variables.
missing	Logical. If TRUE missing values are considered in the calculation as a separate class.
na.replace	CHARACTER / NUMERIC. Value to replace missing. If NULL missing values are not considered in the computation.

Further parameter for the function Factorise

254 whvar

Value

A matrix containing the following columns:

- "Variable"
- "Segment"
- "Obs"
- "PC.Obs"
- "Good"
- "PC.Good"
- "Bad"
- "Pc.Bad"
- "Rate"
- "Weight.Evidence"
- "Info.Value.Within"
- "Info.Value"

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
# load example data set "credit"
data(ex_credit)
# calculate weight of evidence
input = ex_credit[ ,-1]
target = ex_credit[ ,1]
woe = WeightEvid(data=input, target=target, nseg = 2:3, missing=FALSE)
# quick look of the results got from WeightEvid
woe
```

whvar

Weighted Historical Value at Risk

Description

Compute Weighted historical VaR on each column of the input matrix

Usage

```
whVaR(X, p = 0.05, lambda = 0.9, centered = FALSE)
```

Arguments

X Input matrix/sequence. Sequences are treated as one column matrices.

p vector of probabilities (DEFAULT = 0.05)

lambda $m controls\ the\ exponential\ window\ lambda^((NROW(X)-1):0)\ (DEFAULT=0.9)$

centered LOGICAL. If TRUE, input data are standardised

wildavg 255

Value

A matrix length(p) by NCOL(X) of computed quantiles

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\team@r-adamant.org|| \\$

wildavg

Wilder Moving Average

Description

Compute Wilder Moving Average (Technical Analysis)

Usage

```
wildAvg(X, lag = 5, plot = FALSE, ...)
```

Arguments

```
\mathbf{X} lag lag plot plot ...
```

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

256 wma

wildsum

Wilder Summation

Description

Compute Wilder Summation (Technical Analysis)

Usage

```
wildSum(x, lag = 5)
```

Arguments

```
x x lag
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

wma

Weighted Moving Averages

Description

Compute multiple Weighted Moving Averages on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
wma(X, win.size = 10, plot = FALSE, ...)
```

Arguments

Matrix of data series (one column per variable).
 win.size vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = 10).
 plot LOGICAL. Return plot.
 ... Additional parameters accepted by the function Mmovav.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

wro 257

Value

A object of class 'ma' with attributes type = "WMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

Examples

```
## load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
wma(x, 10)
# compute moving average with multiple lags
wma(x, c(10,20))
## Not run:
# refine results of moving average
setCurrentTheme(1)
# single lag
wma(x, 30, plot = TRUE)
# multiple lags
wma(x, seq(5,50,10), plot=TRUE)
# calculate moving average for an object of class "fs"
setCurrentTheme(2)
data(ex_fs)
# single lag
wma(ex_fs, 30, plot=TRUE)
# multiple lags
wma(ex_fs, seq(5,50,10), plot=TRUE)
## End(Not run)
```

wro

Williams R

Description

Compute Williams R (Technical Analysis)

Usage

```
wro(Close, High = NULL, Low = NULL, lag = 5, plot = TRUE, ...)
```

258 zind

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

zind Zindex

Description

Compute the Z-score of X (Standardize each column of X)

Usage

```
Zind(x, sigma = 1, mi = 2)
```

Arguments

 ${f x}$ ${f x}$ sigma sigma mi mi

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

zlma 259

zlma

Zero lag Moving Average

Description

Compute multiple Zero-Lag Exponential Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
zlma(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

Details

For financial time series (class = 'fs'), only 'Close' column is processed. ZLMA is a combination of EMA: EMA(X) + EMA(X - EMA(X)).

Value

A object of class 'ma' with attributes type = "EMAT" and lambda = 2/(win.size+1):
- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

Examples

```
# load a dataset provided by R
data(EuStockMarkets)
# extract sample (log) time series
x = log(EuStockMarkets[500:800,2, drop=FALSE])
# compute moving average with single lag
zlma(x, 10)
## Not run:
# refine results of moving average
setCurrentTheme(2)
```

260 zscore

```
# single lag
zlma(x, 15, plot = TRUE)

# calculate moving average for an object of class "fs"
setCurrentTheme(1)
data(ex_fs)
# single lag
zlma(ex_fs, 30, plot=TRUE)

## End(Not run)
```

zscore

Z Score

Description

Compute the Z-score of X (Standardize each column of X)

Usage

```
Zscore(X, means = NULL, sigma = NULL)
```

Arguments

X Matrix of data series (one column per variable)

means Mean value

sigma Standard deviation

Value

Matrix of standardised variables

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

Index

T'. maalraga	24
*Topic package	blackman, 24
radpkg, 208	Bol. Fib (bolfib), 26
3dptelem, 8	BolBand (bolband), 25
3dptpars,9	bolband, 25
Abi (abi), 10	BolBandB (bolbandb), 26
abi, 10	bolbandb, 26
abs_avdi (preder), 195	bolfib, 26
absrs, 11	boot, 27
accuracy (assmeas), 20	Bop (<i>bop</i>), 28 bop, 28
acdi, 11	bop, 28 box3d, 28
adi, 12	BPDLind (bpdlind), 29
ADind (adi), 12	bpdlind, 29
ADrating (adrating), 12	Breadth (breadth), 29
adrating, 12	breadth, 29
ADratio (adratio), 13	BroMot (bromot), 30
adratio, 13	bromot, 30
AdvDec (advdec), 13	BroMot2D (bromot2d), 31
advdec, 13	bromot2d, 31
ama, 14, <i>133</i>	BS.formula (bsfml), 31
apo, 15	BS.greeks (bsgreeks), 32
apply.format(grautil), 117	BS.ImpVol(bslmpvol), 32
apprais, 15	BS.moments(bsmomt), 33
Appraisal, 75, 130, 223, 241	BS.price (bsprice), 34
Appraisal (apprais), 15	bsfml, 31
Archlm (archlm), 16	bsgreeks, 32
archlm, 16	bslmpvol, 32
Arma. Spec (armaspc), 16	bsmomt, 33
armaspc, 16	bsprice, 34
Arms (arms), 17	buypre, 34
arms, 17	
arodown, 17	CalcPairs(assmeas),20
aroon, 18	CallStackLevels(stacklev), 229
aroud, 19	Capm(capm), 35
aroup, 19	capm, 35
as.fs <i>(asfs)</i> , 20	cci, 36
asfs, 20	cci.v2 (<i>cciv2</i>), 37
assmeas, 20	cciv2, 37
av_er (<i>preder</i>), 195	Ch.vol (chvol), 40
20	chaikin, 37
barthann, 22	chaosAcc (chaosacc), 38
bartlet, 23	chaosacc, 38
BinCoef (bincoef), 24	chist, 39
bincoef, 24	chvol, 40

cleanup, 40	dpo, 60
clust, 41	draw.grid, 48
clv, 42	draw.grid(plotkit),187
cmf, 42	draw.legend,48
cmof, 43	draw.legend(plotkit), 187
coef.Garch(objgarch), 175	draw.projections,48
cofit,44	draw.projections(plotkit), 187
colin.pairs (colinprs), 44	draw.x.axis,48
colin.reduce(colinred),45	draw.x.axis(plotkit), 187
colinprs, 44	draw.x.title, 48
colinred, 45	draw.x.title(plotkit), 187
combine, 45	draw.y.axis,48
comma.Fmt (grautil), 117	draw.y.axis (plotkit), 187
comma.kFmt (grautil), 117	draw.y.title, 48
comma.mFmt (grautil), 117	draw.y.title(plotkit), 187
confusionM(assmeas), 20	drawdown, 60
cosine, 46	dropn, 61
cplot, 47, 73, 185, 188, 191	- 1 / -
cplot3d, 49	EdgeFact (edgefact), 62
cramv, 50	edgefact, 62
crbtree, 51	Edgeworth.price(edwprice), 63
create.empty.plot(grautil), 117	EdgeWorthDist (edwdist), 62
croscf, 51	edwdist, 62
crosplot, 52	edwprice, 63
cross.ccf, 149	ema, 56, 63, 65, 77, 85, 99, 160, 210, 225,
cross.ccf (croscf), 51	237, 244, 259
cross.colin(crscolin), 53	emat, 64
cross.plot (crosplot), 52	eom, 66
CRR.BinTree (crbtree), 51	epma, 66
crscolin, 53	erf, 68
cumfun, 53	erfi,68
cumMax, 140	error.handling,216
cumMax (cumfun), 53	error.handling(runlog), 214
cumMean (cumfun), 53	ex_credit (dataset), 54
cumMin, 140	ex_fs (dataset), 54
	ex_ptf (dataset), 54
cumMin (cumfun), 53 cumSd, 140	ex_ptf (dataset), 54 ex_ts (dataset), 54
	extrBreak (factor), 69
cumSd (cumfun), 53	extrdd, 69
cumSum, 140	
cumSum (cumfun), 53	ExtremeDD (extrdd), 69
cumVar, 140	factor, 69
cumVar (cumfun), 53	Factorise, <i>126</i> , <i>253</i>
dataset, 54	Factorise (factor), 69
decimals, 54	FFT, 227
Decscal (decscal), 55	FFT (fft), 71
decscal, 55	fft, 71
dema, 56	fin.plot, 186
demark, 57	fin.plot(finplot),72
dgev, 57	finplot, 72 Final Wit (final hit) 73
dgpd, 58	FirstHit (firsthit), 73
Diff(lagret), 136	firsthit, 73
dma, 59	fitted.VecAr, 250

fitted. VecAr (fresvar), 78	getTheme(grautil), 117
flogbuf, 74	getThemeAttr(grautil),117
flushLogBuffer(flogbuf),74	gev.ci(<i>gevci</i>), 93
fmeas, 75	gev.contour(gevcont),93
fmlmreg, 75	gev.like(<i>gevlike</i>), 94
forcidx, 76	gev.ml(gevml), 95
formula.mreg(fmlmreg),75	gev.mu.constraint(gevmcst),94
formula.reg(fmlmreg),75	gev.range(<i>gevrng</i>), 95
FourMeasures (fmeas), 75	<pre>gev.sigma.constraint(gevsicst),</pre>
frama,77	96
fresvar, 78	gev.VaR(<i>gevar</i>), 89
FSE. VecAr (fsevecar), 79	gev.VaR.ci <i>(gevarci)</i> ,89
fsevecar, 79	gev.VaR.constraint(gevarcst),91
fullP (fulp), 79	gev.VaR.contour(<i>gevarcnt</i>), 90
fulp, 79	gev.VaR.like(<i>gevark</i>),92
func.comment.idx(funcomx), 80	gev.VaR.range(gevarg),91
func.line.cnt (funlcnt), 81	gev.xi.constraint(gevxicst),97
funcomx, 80	gevar, 89
funlcnt, 81	gevarci,89
fw1 (fwmovav), 82	gevarcnt, 90
fw2 (fwmovav), 82	gevarcst, 91
fw3 (fwmovav), 82	gevarg, 91
fwmovav, 82	gevark, 92
Gain, 219	gevci,93
Gain (liftgain), 140	gevcont, 93
· · · · · · · · · · · · · · · · · · ·	gevlike, 94
Garch (garch), 83 garch, 83	gevmcst, 94
gauss, 84	gevml, 95
gdema, 85, 244	gevrng, 95
get.acf.ci(getacfci), 86	gevsicst, 96
get.col.names(namutil), 173	gevxicst, 97
get.fs, 236	Gini (<i>gini</i>), 97
get.13,230 get.fs(getfs),87	gini, 97
get.13(get13), 07 get.lm.weights(get1mwgh), 88	GKgamma (assmeas), 20
get.lm.weights (getlmwgh), 60 get.plot.layout (grautil), 117	glm, 220
get.plot.rayout(grautil), 117 get.plot.params(grautil), 117	glogbuf, 98
get.predictors (getpred), 88	gmean (means), 154
get.row.names (namutil), 173	gmma, 99
getacfci, 86	gpd.ci (<i>gpdci</i>), 101
getConsoleLogging (mclog), 150	gpd.contour (gpdcnt), 101
getCurrentTheme (grautil), 117	gpd.ES (gpdes), 102
getDebugLevel (mdbuglev), 153	gpd.ES.ci (gpdesci), 103
<pre>getDebugTraceLevel (mdbtlev), 152</pre>	gpd.ES.constraint (gpdescst), 104
getfs, 87	gpd.ES.contour (gpdescnt), 103
getlmwgh, 88	gpd.ES.like (gpdesk), 105
getLogBuffer (glogbuf), 98	gpd.ES.ml (gpdesml), 106
getLogBufferSize (mlbsize), 157	gpd.ES.range (gpdesrng), 107
getLogFile (mlogfile), 158	gpd.ES.surface (gpdesfce), 105
getLogWarning (mlogwarn), 159	gpd.like(gpdlk), 107
getPlotLimits (3dptpars), 9	gpd.ml (gpdml), 108
getpred, 88	gpd.range (gpdrng), 108
getProjectionMatrix(grautil), 117	<pre>gpd.sigma.constraint(gpdsgcnt),</pre>

110	hvar, 124
gpd.surface (gpdsfc), 109	11041, 121
gpd. VaR (gpdvar), 110	Ichkh (ichkh), 125
gpd.VaR.ci (gpdvarci), 111	ichkh, 125
gpd. VaR. constraint (gpdvarct), 112	impulse, 125
gpd.VaR.contour (gpdvarcn), 112	in2woe, 126
gpd.VaR.like(gpdvarlk), 114	Inertia (inertia), 127
gpd.VaR.ml (gpdvarml), 114	inertia, 127
gpd.VaR.range (gpdvarg), 113	input2woe, 220
gpd. VaR. surface (gpdvarsf), 115	input2woe (in2woe), 126
gpd.xi.constraint (gpdxicst), 116	inv.logit(invlogit), 127
gpdboot, 100	invlogit, 127
gpdci, 101	invp, 128
gpdcnt, 101	InvPP (invp), 128
gpdes, 102	IRS. VecAr (irsvecar), 128
gpdesci, 103	irsvecar, 128
gpdescnt, 103	is.fs(<i>isfs</i>), 129
gpdescst, 104	isfs, 129
gpdesfee, 105	1010, 12)
gpdesk, 105	JB.test, <i>135</i> , <i>163</i>
gpdesml, 106	JB.test(jbtest), 129
gpdesmg, 107	jbtest, 129
gpdlk, 107	Jensen, 16, 75, 223, 241
gpdml, 108	Jensen (jensen), 130
gpdrng, 108	jensen, 130
gpdsfc, 109	jet.colors(grautil), 117
gpdsgcnt, 110	JR.BinTree (jrbtree), 130
gpdvar, 110	jrbtree, 130
gpdvarci, 111	J ,
gpdvarcn, 112	kaiser, 131
gpdvarct, 112	kama, 132
gpdvarg, 113	kelt, 133
gpdvarlk, 114	KendallTau (assmeas), 20
gpdvarml, 114	kri, 134
gpdvarsf, 115	kurt, <i>129</i> , <i>163</i>
gpdxicst, 116	kurt (kurtskew), 135
grad, 116	kurtskew, 135
gradient (grautil), 117	kvo, 135
grangcas, 117	
GrangCas. VecAr (grangcas), 117	Lag(lagret), 136
grautil, 117	lagret, 136
5	lanczos, 138
hamming, 118	lew, <i>54</i> , 139
hann, 119	Lift, 219
he_as (heas), 120	Lift (liftgain), 140
heas, 120	liftgain, 140
hhv, 120	like.egarch(lkegarch), 141
Hill (hill), 121	like.garch(lkgarch),142
hill, 121	like.mgarch(lkmgarch), 143
hma, 121	like.tgarch(lktgarch), 143
hmean (means), 154	lines3d(3dptelem),8
hroi, 122	ljbgarch, 141
hVaR (hvar), 124	LjungBox (1 jbgarch), 141

lkegarch, 141	movVar (movfunc), 165
lkgarch, 142	mqt, 166
lkmgarch, 143	mreg, 167
lktgarch, 143	mse (preder), 195
llv, 144	msort, 168
loadThemes (grautil), 117	mtacf, 168
Logger (logger), 144	mtccf, 169
logger, 144	mtmcf, 170
logit, 145	mtoscil, 170
logLik.Garch (objgarch), 175	mtreg, 171
LR.BinTree (1rbtree), 146	mtunivar, 172
1rbtree, 146	Multi.Styles(styles), 232
	multirun, 215
macd, 146	multirun (runner), 215
mass, 147	<i>''</i>
mass.cum (masscum), 148	namutil, 173
masscum, 148	newsimp, 173
mcf, 148	norm.fit(normfit),174
mcgind, 149	norm.like(normlike), 175
mclog, 150	normfit, 174
mcosc, 150	normlike, 175
mcplot, 151	
mcsi, 152	objgarch, 175
mdbtlev, 152	Obv (<i>obv</i>), 176
mdbuglev, 153	obv, 176
MDiff(lagret), 136	optim, 233
means, 154	optimize.polycords(grautil), 117
mfind, 155	oscil, 176
Mflow (mflow), 156	override.list(grautil),117
mflow, 156	
Mflow.ind(mfind), 155	Pchan (pchan), 177
Mflow.ratio(mfratio), 156	pchan, 177
mfratio, 156	PDFHit (pdfhit), 178
minmaxs, 157	pdfhit, 178
Minmaxscal (minmaxs), 157	Perf (<i>perf</i>), 178
MLag(lagret), 136	perf, 178
mlbsize, 157	pfe, 179
mlogfile, 158	pgarch, 179
mlogwarn, 159	pgev, 180
mma, 160	pgpd, 181
mndma, 161	pgrangas, 181
mom, 162	PHI. VecAr (phivecar), 182
moments, 163	phivecar, 182
movApply, 166	plike.ci(plikeci), 182
movApply (movapply), 163	plike.contour(plikecnt), 183
movapply, 163	plike.range(plikerng), 184
Movav, 67, 223, 240	plikeci, 182
Movav (movav), 164	plikecnt, 183
movav, 164	plikerng, 184
movfunc, 165	plot, 48
movMax (movfunc), 165	plot.cool.acf(mtacf), 168
movMin (movfunc), 165	plot.cross.ccf(mtccf), 169
movSd (movfunc), 165	plot.FFT (plotfft), 184

plot.fs(plotfs), 186	print.scorecard(scorecd),219
plot.mcf(<i>mtmcf</i>), 170	print.sme $(psme)$, 201
plot.Movav <i>(plotmov)</i> , 188	print.univar,247
plot.mreg(plotmreg), 189	print.univar(mtunivar),172
plot.oscil(<i>mtoscil</i>), 170	print.VaR <i>(printvar)</i> , 200
plot.reg(<i>mtreg</i>), 171	print.VecAr(pvecar), 206
plot.ret, <i>137</i>	printfft, 199
plot.ret(plotret), 190	printfs, 199
plot.roi, <i>124</i>	printvar,200
plot.roi(<i>plotroi</i>), <mark>19</mark> 1	pro, 200
plot.sme(plotsme), 192	ProbHit(probhit), 201
plot.specgram,227	probhit, 201
plot.specgram(plotspec), 192	psme, 201
plot.TSClust (clust), 41	PtfBeta(ptfoper), 202
plot.univar, 247	PtfFront, 203, 205
plot.univar(mtunivar), 172	PtfFront (ptfront), 204
plotfft, 184	ptfoper, 202
plotfs, 186	PtfOpt, 205
plotkit, 187	PtfOpt (ptfopt), 203
plotmov, 188	ptfopt, 203
plotmreg, 189	PtfRet (ptfoper), 202
plotret, 190	ptfront, 204
plotroi, 191	ptfutil, 205
plotsme, 192	PtfUtility, 203
plotspec, 192	PtfUtility(ptfutil),205
pmreg, 193	PtfVar(<i>ptfoper</i>), 202
points3d(<i>3dptelem</i>),8	pvecar, 206
ppo, 194	pvt, 206
prbsar, 195	207
pred_error (<i>preder</i>), 195	qgev, 207
preder, 195	qgpd, 207
predgar, 196	RAdamant (radpkg), 208
predict.Garch(<i>predgar</i>), 196	radpkg, 208
predict.mreg(predmreg), 197	recode (recref), 208
predict.reg(predreg), 197	recref, 208
predict.scorecard(scorecd), 219	rect3d(3dptelem),8
predict.VecAr(<i>predvear</i>), 198	recycle, 209
predmreg, 197	reformat (recref), 208
predreg, 197	RelVol (relvol), 209
predvear, 198	relvol, 209
print.cool.acf(mtacf),168	rema, 210
print.cross.ccf(mtccf), 169	Ret, <i>124</i> , <i>190</i>
print.Factorise(factor),69	Ret (lagret), 136
print.FFT(<i>printfft</i>), 199	rgev, 211
print.fs(printfs),199	rgpd, 212
print.Garch(pgarch),179	roc, 212
print.GrangCas(pgrangas), 181	ROCplot, 219
print.mcf(mtmcf), 170	ROCplot (liftgain), 140
print.mreg(pmreg), 193	root.search.interval(rschint),
print.oscil <i>(mtoscil)</i> , 170	213
print.PtfOpt(ptfopt),203	rowMax(rowmax),213
print.reg(mtreg), 171	rowmax, 213

rowMin (rowmax), 213	ss.sym(<i>sssym</i>), 228
rschint, 213	sssym, 228
rsi, 214	stacklev, 229
run, 215	starc, 230
run (runner), 215	statbar, 231
runlog, 214	statusbar (statbar), 231
runner, 215	StepMat(stepmat), 231
rvi, 217	stepmat, 231
	strvar, 232
SampMom (sampmom), 217	Strvar. VecAr, 250
sampmom, 217	Strvar. VecAr (strvar), 232
scalApply(scaledf), 218	Styles (styles), 232
scaledf, 218	styles, 232
scalMax(scaledf), 218	Sum.dens(sumdens), 234
scalMin(scaledf), 218	sumdd, 233
Score.card, 140	sumdens, 234
Score.card(scorecd), 219	summary.mreg(sumreg), 234
scorecd, 219	summary.reg(mtreg), 171
sde (preder), 195	summary.scorecard(scorecd), 219
sensan, 220	summary. TSClust (clust), 41
sensAnalysis (sensan), 220	summary.univar(mtunivar), 172
sensAnalysis.lm(sensanlm), 221	SummaryDD (sumdd), 233
sensAnalysis.reg(sensanrg), 222	sumreg, 234
sensanlm, 221	Swing (swing), 235
sensanrg, 222	swing, 235
set.bg(grautil), 117	symbol.lookup(symlkup), 235
set.bg3d(grautil), 117	symlkup, 235
setConsoleLogging (mclog), 150	5 ym 1 kup, 255
setCurrentTheme (grautil), 117	tema, 236
setDebugLevel (mdbuglev), 153	text3d(3dptelem),8
setDebugTraceLevel (mdbtlev), 152	thigh, 237
setLogBufferSize (mlbsize), 157	tirLev(tirlev), 238
setLogFile (mlogfile), 158	tirlev, 238
setLogWarning (mlogwarn), 159	tlow, 239
setPlotLimits (3dptpars), 9	tma, 239
setProjectionMatrix(grautil), 117	track_sign(preder), 195
setThemeAttr (grautil), 117	track_sign_exp(preder), 195
shade.plot (grautil), 117	transition (grautil), 117
Sharpe, 16, 75, 130, 241	Treynor, 16, 75, 130, 223
Sharpe (sharpe), 222	Treynor (<i>treynor</i>), 241
sharpe, 222	treynor, 241
SI.format (grautil), 117	trf, 241
sinma, 223	triangle, 242
skew, 129, 163	TSClust (clust), 41
skew (kurtskew), 135	ttma, 243
sma, 59, 162, 224, 252	tyP (typ), 244
sme, 225	typ, 244
SomerD (assmeas), 20	Cyp, 211
SORT (msort), 168	ulcer, 245
specgram, 193, 226	ultima, 246
splitwdw, 228	univar, <i>172</i> , 246
splitWindow, 227	- , - , -
splitWindow(splitwdw), 228	VaR, <i>123, 124</i>

```
VaR (var), 247
var, 247
VaRPtf (varptf), 248
varptf, 248
vcmof, 249
vcov.Garch (objgarch), 175
VecAr (vecar), 249
vecar, 249
vhff, 250
vidyaf, 251
vwma, 251
wad, 253
weigevid, 253
WeightEvid, 126, 219, 220
WeightEvid (weigevid), 253
whVaR (whvar), 254
whvar, 254
wildAvg(wildavg), 255
wildavg, 255
wildSum(wildsum), 256
wildsum, 256
wma, 122, 256
write.log, 216
write.log(runlog), 214
wro, 257
x.axis3d(3dptpars), 9
x.title3d(3dptpars),9
y.axis3d(3dptpars),9
y.title3d(3dptpars),9
z.axis3d(3dptpars),9
z.title3d(3dptpars),9
Zind (zind), 258
zind, 258
zlma, 259
Zscore (zscore), 260
zscore, 260
```