Suggested Answers, Problem Set 2 ECON 30331

Bill Evans Spring 2018

1. a)
$$\hat{\sigma}_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} = 2500/100 = 25$$

b)
$$\hat{\rho}(x, y) = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x \hat{\sigma}_y} = \frac{\frac{\sum_{i=1}^n (x_i - \overline{x})(y - \overline{y})}{(n-1)}}{\left(\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}\right)^{0.5} \left(\frac{\sum_{i=1}^n (y_i - \overline{y})^2}{n-1}\right)^{0.5}} = \frac{\frac{1500}{100}}{(25)^{0.5} \left(\frac{3600}{100}\right)^{0.5}} = 0.5$$

c/d)
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{1500}{2500} = 0.60 \qquad \hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1 = 40 - 60(0.6) = 4$$

e)
$$R^2 = 1 - \frac{SSE}{SST_y}, SSE = SST(1 - R^2)$$

$$SST_y = \sum_{i=1}^{n} (y_i - \overline{y})^2 = 3600 \quad so \quad SSE = 3600*(1 - 0.2) = 2880$$

2. In class, we demonstrated that the OLS estimate for β_1 can be written as $\hat{\beta}_1 = \frac{\hat{\rho}_x \hat{\sigma}_y}{\hat{\sigma}_y}$ so

$$\hat{\beta}_1 = \frac{\hat{\rho}_x \hat{\sigma}_y}{\hat{\sigma}_x} = 0.4176(13.37) / 27.27 = 0.205$$

This means that dy/dx = 0.205 and for each additional million dollars in payroll, wins increase by 0.2. Another 15 million will generate (15)(0.205) = 3 or another 3 wins.

$$\hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1 = 80.97 - 70.13(0.205) = 66.59$$

3. a)
$$SST = SSM + SSE \text{ so } SSM = SST - SSE = 0.652 - 0.090 = 0.562$$

b)
$$R^2 = \frac{SSM}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{0.090}{.652} = 0.862$$

c)
$$\hat{\beta}_1 = \frac{\hat{\rho}_x \hat{\sigma}_y}{\hat{\sigma}_x} = .929 * 0.118 / 0.505 = 0.217$$

d)
$$\hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1$$
 so $\overline{y} = \hat{\beta}_0 + \overline{x}\hat{\beta}_1 = 7.77 + 0.5(0.217) = 7.88$

e) Root MSE =
$$\sqrt{\hat{\sigma}_{\varepsilon}^2} = \sqrt{\frac{SSE}{N-2}} = \sqrt{\frac{0.089}{46}} = 0.044$$

. sum x y

Variable)bs	Mean S	Std. Dev.	Min	Max
x			.5 .		0	1
У		48 7.87	79975 .	1177725	7.674153	8.037867

. corr x y (obs=48)

. reg y x

of obs = 48	Number of ol		_	df		
46) = 287.76	F(1,4					
F = 0.0000	Prob > F		562059213	1 .	.562059213	Model
red = 0.8622	R-squared		001953208	46 .0	.08984759	Residual
squared = 0.8592	Adj R-square				·	
= .0442	Root MSE		013870358	47 .0	.651906803	Total
% Conf. Interval]	-					4
07409 .2421021	.1907409	6 0.000	16.96	.012758	.2164215	X
53605 7 789923	7 753605	0 0 0 0	3 961 /0	000021	7 771764	cone

4. a)
$$\hat{\beta}_0 = \overline{y} - \overline{x} \hat{\beta}_1$$
 so $\hat{\beta}_0 = \overline{y}$

b)
$$R^2 = SSM / SST = \sum_{i=1}^{n} (\hat{y}_i - \overline{\hat{y}})^2 / \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$\hat{y}_i = \hat{\beta}_0 + x_i \hat{\beta}_1 \text{ but because } \hat{\beta}_1 = 0, \ \hat{y}_i = \hat{\beta}_0 \text{ and hence } \overline{\hat{y}} = \hat{\beta}_0 \text{ and } \sum_{i=1}^n (\hat{y}_i - \overline{\hat{y}})^2 = 0$$

5. There are a number of ways to show this. Here is what I think is the easiest.

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$
 so $y_i = \hat{y}_i + \hat{\varepsilon}_i$

Take the means of both sides

$$(1/n)\sum_{i} y_{i} = (1/n)\sum_{i} \hat{y}_{i} + (1/n)\sum_{i} \hat{\varepsilon}_{i}$$

Which produces

 $\overline{y}=\overline{\hat{y}}+\overline{\hat{\varepsilon}}$ and from the first first-order condition we know that $\overline{\hat{\varepsilon}}=0$ so $\overline{y}=\overline{\hat{y}}$.

6. The regression results are below

- a) Every year, population in the US increased by about 2.46 million people
- b) The R^2 is 0.997
- c) This high R² means that population changes are highly predictable.
- d) US population in 2017 is about 325.5 million
- e) Timetrend in 2017 would be 2017-1949=68. The model predicts population in 2017 will be 152.2 + (68)*(2.46) = 319.5. Pretty close to the actual number only 1.8% off.

. reg population trend

	Source	SS	df	MS	Numbe	r of obs	=	51
-					- F(1,	49)	=	14327.28
	Model	66717.7033	1	1 66717.7033 Prob > F		=	0.0000	
	Residual	228.177828	49	4.65669036	R-squ	ared	=	0.9966
-					- Adj R	-squared	=	0.9965
	Total	66945.8811	50	1338.91762	Root	MSE	=	2.1579
-								
	population	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
	trend	2.457194	.0205285	119.70	0.000	2.4159	4	2.498447
	cons	152.1881	.6133413	248.13	0.000	150.955	5	153.4206
	_							

7. The program below will generate the results for this problem

- * read in meps_senior use meps senior
- *describe what is in the data set desc
- * run OLS of totalexp on age reg totalexp age

Source	SS	df		MS		Number of obs F(1, 2968)		
		1 2968	3.95 197	32e+09 808727		Prob > F R-squared Adj R-squared	=	0.0000 0.0067
	5.9105e+11			073579		Root MSE		14064
totalexp	Coef.			t	P> t	-	In	terval]
age _cons	185.2511	41.43	923	4.47 -1.74	0.000	103.9986 -11404.44	_	66.5036 75.7084

a)
$$\hat{\beta}_0 = -5364.4$$
 and $\hat{\beta}_1 = 185.3$

b) $\hat{\beta}_1 = \frac{\partial total \exp}{\partial age} = 185.25$ so each additional year of age increases annual medical expenditures by

c)
$$\hat{y}_i = \hat{\beta}_0 + x_i \hat{\beta}_1 = \hat{\beta}_0 = -5364.4 + (70)(185.3) = 7603.1$$

d)
$$\hat{y}_i = \hat{\beta}_0 + x_i \hat{\beta}_1 = \hat{\beta}_0 = -5364.4 + (71)(185.3) = 7788.4$$

- d) $\hat{y}_i = \hat{\beta}_0 + x_i \hat{\beta}_1 = \hat{\beta}_0 = -5364.4 + (71)(185.3) = 7788.4$ e) Notice that the difference in the answers between parts c and d is 185.3, which is the estimate for $\frac{\partial total \exp}{\partial age} = \hat{\beta}_1$. This makes sense because as the numbers in parts c) and d) indicate, as a person ages 1 year, expenditures go up by \$185.3
- The R² is 0.0067 8. a.
 - The regression of x on y (age_i= γ_0 + totalexp_i γ_1 +v_i) produces an R² that also equals 0.0067

c. This takes some effort.
$$R_y^2 = \frac{SSM}{SST} = \frac{\sum_{i=1}^n (\hat{y}_i - \overline{\hat{y}})^2}{\sum_{i=1}^n (y_i - \overline{y})^2}$$
. Note that $\sum_{i=1}^n (\hat{y}_i - \overline{\hat{y}})^2 = \hat{\beta}_1^2 \sum_{i=1}^n (x_i - \overline{x})^2$.

Now substitute the definition of $\hat{\beta}_i$ into the equation above/. This produces

$$R_{y}^{2} = \left(\frac{\left(\sum_{i=1}^{n} (y_{i} - \overline{y})(x_{i} - \overline{x})\right)^{2}}{\left(\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right)^{2}}\right) \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \left(\frac{\left(\sum_{i=1}^{n} (y_{i} - \overline{y})(x_{i} - \overline{x})\right)^{2}}{\left(\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right)\left(\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}\right)}\right)$$

Now consider the R2 from the second regression $R_x^2 = \frac{\sum_i (\hat{x}_i - \hat{x})^2}{\sum_i (x_i - \overline{x})^2}$. Note that $\hat{x}_i = \hat{\gamma}_0 + y_i \hat{\gamma}_1$ so

 $\sum_{i} (\hat{x}_{i} - \overline{\hat{x}})^{2} = \hat{\gamma}_{1}^{2} \sum_{i} (y_{i} - \overline{y})^{2}. \text{ Note that } \hat{\gamma}_{1} = \frac{\sum_{i} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i} (y_{i} - \overline{y})^{2}} \text{ so substituting this into the into the}$

definition of R_x^2 you get exactly $R_x^2 = \left| \frac{\left(\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x}) \right)}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right) \left(\sum_{i=1}^n (y_i - \overline{y})^2 \right)} \right|$.

9. Given the model,
$$y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$$
 we know that $\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^n (x_i - \overline{x})^2} = -0.90$

For the second model, $y_i = \beta_0 + x_i^* \beta_1 + \varepsilon_i$ where $x_i^* = x_i / 100$

$$\hat{\gamma}_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y})(x_{i}^{*} - \overline{x}^{*})}{\sum_{i=1}^{n} (x_{i}^{*} - \overline{x}^{*})^{2}} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y}) \left(\frac{x_{i}}{100} - \frac{\overline{x}}{100}\right)}{\sum_{i=1}^{n} \left(\frac{x_{i}}{100} - \frac{\overline{x}}{100}\right)^{2}} = \frac{\frac{1}{100} \sum_{i=1}^{n} (y_{i} - \overline{y}) (x_{i} - x)}{\left(\frac{1}{100}\right)^{2} \sum_{i=1}^{n} (x_{i} - x)^{2}} = 100 \hat{\beta}_{1} = -0.9(100) = -90$$

For the third model, $y_i^* = \beta_0 + x_i \beta_1 + \varepsilon_i$ where $y_i^* = y_i / 12$

$$\hat{\alpha}_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i}^{*} - \overline{y})(x_{i} - \overline{x})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} \left(\frac{y_{i}^{*}}{12} - \frac{\overline{y}}{12}\right)(x_{i} - x)}{\sum_{i=1}^{n} (x_{i} - x)^{2}} = \frac{\frac{1}{12} \sum_{i=1}^{n} (y_{i} - \overline{y})(x_{i} - x)}{\sum_{i=1}^{n} (x_{i} - x)^{2}} = \frac{\hat{\beta}_{1}}{12} = \frac{-0.9}{12} = -0.075$$

6. Recall that
$$\hat{\beta}_0 = \overline{y} - \overline{x} \hat{\beta}_1$$
 and if $\hat{\beta}_1 = 0$ then $\hat{\beta}_0 = \overline{y}$. Recall that $R^2 = SSM / SST$ where $SSM = \sum_i (\hat{y}_i - \overline{y})^2$. When $\hat{\beta}_1 = 0$ then $\hat{y}_i = \hat{\beta}_0 + x_i \hat{\beta}_1 = \hat{\beta}_0 = \overline{y}$ and then $SSM = \sum_i (\overline{y} - \overline{y})^2 = 0$ and hence, $R^2 = 0$.