ЛЕКЦІЯ 12

Таблично-керований передбачаючий (прогнозуючий) розбір

На рис.1 зображена структура передбачаючого аналізатора, який визначає чергове правило з таблиці. Таку таблицю можна побудувати безпосередньо з граматики.

Рис 1

Таблично-керований передбачаючий аналізатор має вхідний буфер, магазин, таблицю аналізу і вихід. Вхідний буфер містить рядок розпізнавання, за яким йде # — правий кінцевий маркер (ознаку кінця рядка). Магазин містить послідовність символів граматики з символом # на дні. Спочатку магазин містить початковий символ граматики на верхівці і символ # на дні. Таблиця аналізу — це двовимірний масив М [A,a], де A — нетермінал, і а — термінал або символ #.

Аналізатор керується програмою, яка працює наступним чином. Програма розглядає X— символ на верхівці магазину і а— поточний вхідний символ. Ці два символи визначають дію аналізатора. Є три подальші варіанти:

- 1. Якщо X = a = #, аналізатор зупиняється і повідомляє про успішне завершення розбору.
- 2. Якщо $X = a \neq \#$, аналізатор видаляє X з магазина і просуває покажчик входу на наступний вхідний символ.
- 3. Якщо X нетермінал, програма бере з таблиці елемент M[X,a]. За цими координатами в таблиці зберігається або правило для нетерміналу X, або ознака помилки. Якщо, наприклад, $M[X,a] = \{X \to UVW\}$, аналізатор заміняє X на верхівці магазину на WVU (в результаті на верхівці буде U). Будемо вважати, що аналізатор в якості виходу просто друкує використані правила виводу. Якщо M[X,a] = error, аналізатор звертається до підпрограми аналізу помилок.

Поведінка аналізатора може бути описана в термінах конфігурацій автомата розбору.

Спочатку аналізатор знаходиться в конфігурації, в якій магазин містить S# (S – початковий символ граматики) у вхідному буфері w# (w – вхідний рядок), змінна InSym містить перший символ вхідного рядка. Алгоритм, який використовує таблицю аналізатора М для здійснення розбору показано нижче (Алгоритм 1).

Алгоритм 1. Нерекурсивний передбачаючий аналіз.

```
Х := верхній символ магазина;
repeat
         if X - термінал чи #
         then if X = InSym
              then
                   begin
                         видалити Х з магазина;
                         InSym := черговий символ;
                   end
              else error()
         else /*X = \text{нетермінал*}/
              if M[X, InSym] = X \rightarrow Y_1Y_2...Y_k
              then
                   begin
                         видалити Х з магазина;
                         помістити Y_{k}, Y_{k-1}, ...Y_1 в магазин (Y_1 на верхівку);
                         вивести правило X \to Y_1Y_2...Y_k;
                   end
              else error() /*вхід таблиці М пустий*/
untilx X = \#; /*магазин пустий*/
```

Приклад 1. Розглянемо граматику арифметичних виразів у такому вигляді:

```
1. E \rightarrow T E'
                                              FIRST(E) = FIRST(T) = FIRST(F) = \{(, id)\}
   	ext{E'} 
ightarrow + 	ext{T E'}
                                              FIRST (E') = \{+, \varepsilon\}
                                              FIRST (T') = \{*, \varepsilon\}
3
   	ext{E'} 	o \epsilon
   T \rightarrow F T'
                                              FOLLOW(E) = FOLLOW(E') = \{), \# \}
4.
    \mathtt{T'} \, 	o \, ^\star \, \mathtt{F} \, \mathtt{T'}
                                              FOLLOW(T) = FOLLOW(T') = \{+, \}, \#\}
5.
                                              FOLLOW (F) = { +, *, ), #}
6.
    T' 
ightarrow \epsilon
7. F \rightarrow (E)
   F \rightarrow id
```

Таблиця передбачаючого аналізатора показана нижче (Таблиця 1). Тут пусті клітинки – входи помилок. Непусті клітинки містять правила, за якими виконується розгортка нетермінала.

Таблиця 1

Нетермінал	Вхідний символ						
	id	+	*	()	#	
E	$E \rightarrow TE$ '			$ ext{E}{ ightarrow}$ TE '			
E'		E' o + TE'			$\text{E}'\! o\!\epsilon$	$ ext{E}'\! o\!\epsilon$	
T	$T \rightarrow FT$ '			$T \rightarrow FT'$			
T'		$\text{T'} \to \epsilon$	T'→*FT'		$\text{T'}\!\to\!\epsilon$	$\mathtt{T'}\!\to\!\epsilon$	
F	$F \rightarrow id$			$F \rightarrow (E)$			

Таблиця 2

			тиолици 2
Вхід	Магазин	Вихід (застосо- ване правило)	№ викор. правила
id+id*id#	E#		
id+id*id#	TE'#	E→TE'	1
id+id*id#	FT'E'#	T→FT'	4
id+id*id#	idT'E'#	F→id	8
+id*id#	T'E'#		
+id*id#	E ' #	${ t T}' { o} \epsilon$	6
+id*id#	+TE'#	E'→+TE'	2
id*id#	TE'#		
id*id#	FT'E'#	T→FT'	4
id*id#	idE'T'#	F→id	8
*id#	T'E'#'		
*id#	F*T'E'#	T'→*FT'	5
id#	FT'E'#		
id#	idT'E'#	F→id	8
#	T'E'#		
#	E ′ #	Τ'→ε	6
#	#	Ε'→ε	3

Якщо на вхід подається рядок id + id * id, передбачаючий аналізатор виконує послідовність кроків, яка показана в таблиці 2. Вказівник вхідного рядка показує на найлівіший символ в колонці «Вхід». Якщо уважно проаналізувати дії аналізатора, то видно, що він виконує лівий вивід, тобто правила застосовуються в відповідності до лівого виводу. За вже переглянутими вхідними символами йдуть символи граматики в магазині (зверху вниз), що відповідає лівим сентенціальним формам виводу. Дерево розбору для рядка id + id * id зображено на рис. 2.

Конструювання таблиць передбачаючого аналізатора

Для конструювання таблиць передбачаючого аналізатора за граматикою G може бути використано алгоритм, який базується на наступній ідеї. Припустимо, що $A \to \alpha$ – правило виводу граматики і $a \in FIRTS(\alpha)$. Тоді аналізатор виконує розгортку A по α , якщо вхідним символом ϵ а. Складність виникає, коли $\alpha = \epsilon$ чи $\alpha \Rightarrow * \epsilon$. В цьому випадку потрібно розгорнути A в α , якщо поточний вхідний символ належить FOLLOW(A) або дорівнює #, причому # ϵ FOLLOW(A).

Алгоритм 2. Побудова таблиць передбачаючого аналізатора.

Для кожного правила виводу $A \to \alpha$ граматики виконати кроки 1 і 2:

- Крок 1. Для кожного терміналу а з FIRST(u) додати $A \to u$ до M[A,a].
- Крок 2. Якщо $\varepsilon \in FIRST(\alpha)$, додати $A \to \alpha$ до M[A,b] для кожного терміналу b з FOLLOW(A). Якщо $\varepsilon \in FIRST(\alpha)$ і $\# \in FOLLOW(A)$, додати $A \to \alpha$ до M[A,#].
- Крок 3. Всі невизначені входи прирівняти до error.

Приклад 2. Застосуємо алгоритм 2 до граматики, яка була приведена в прикладі 1.

Оскільки FIRST(TE') = FIRST(T) = $\{ (, id) \}$, у відповідності з правилом виводу $E \to TE'$ входи M[E,(] і M[E,id] стають рівними $E \to TE'$.

В відповідності з правилом виводу $E' \to +$ TE' вхід M[E',+] буде дорівнювати $E' \to +$ TE'.

В відповідності з правилом виводу $E' \to \varepsilon$ входи M[E',)] і M[E',#] будуть дорівнювати $E' \to \varepsilon$, оскільки $FOLLOW(E') = \{ \}$, $\# \}$.

Таблиця аналізу, побудована алгоритмом 2, приведена в таблиці 1.

Умови безповоротного LL(1) синтаксичного аналізу

Якщо для LL(1)-граматики можна побудувати синтаксичний аналізатор, що працює без повернень, то отримаємо дві наступні переваги:

- 1) загальний час синтаксичного аналізу буде обмежений величиною, що пропорційна довжині вхідного рядка;
- 2) програма синтаксичного аналізатора може читати вхідні символи по одному, не зберігаючи раніше прочитані символи.

Відомо, що правила будь-якої КВ-граматики можна подати у вигляді правил, що належать лише наступним п'яти типам:

```
Тип 1. X_p \rightarrow X_q \mid X_r, де q<p i r<p
```

Тип 2. $X_p \rightarrow X_q X_r$, де qX_q \rightarrow + \epsilon , то і r<p

Тип 3. $X_p \rightarrow X_q$, де q<p

Тип 4. $X_p \rightarrow a$

Тип 5. $X_p \rightarrow \epsilon$

Для всіх типів правил X_p , X_q , $X_r \in N$, $a \in T$.

Відношення q < p в даному випадку означає таку властивість: якщо граматика не має ліворекурсивних нетерміналів, то всі нетермінали $X_1, X_2, ..., X_n$ можна впорядкувати так, що

 $X_p \Rightarrow^L + X_q$ лише тоді, коли q<p.

Наприклад, для граматики

 $S \rightarrow P \#$

 $P \rightarrow LE$

 $E \rightarrow +LE \mid \epsilon$

 $L \rightarrow MT$

 $T \rightarrow MT \mid \epsilon$

 $M \rightarrow a \mid b \mid (P)$,

де S, P, L, E, M, $T \in N$;

 $a, b \in T$

таким впорядкуванням буде E, M, T, L, P, S.

Умови безповоротного низхідного розбору формулюються наступним чином:

- 1. Жоден нетермінальний символ не є ліворекурсивним.
- 2. Для жодного правила типу 1 із X_q і X_r не виводяться рядки, що починаються з одного і того ж термінального символа, тобто $FIRST(X_q) \cap FIRST(X_r) = \emptyset$.
- 3. Для будь-якого правила типу 1, де X_r може породжувати порожній рядок $X_r \Rightarrow^* \epsilon$, із іншого нетерміналу X_q не може виводитись рядок, що починаєтся з терміналу, який належить множині FOLLOW нетерміналу лівої частини правила X_p , тобто завжди виконується FIRST(X_q) \cap FOLLOW(X_p) = \emptyset . Те ж саме повинне виконуватись, якщо X_q і X_r міняються ролями.
- 4. В жодному правилі типу 1 символ X_q або X_r не повинні бути «безвідмовним», іншими словами йому повинна відповідати процедура аналізуючої машини Кнута, яка хоча б в одному випадку повертає значення «false».

Визначення. Нетермінальний символ X_p є «безвідмовним» тоді і тільки тоді, коли відповідне йому правило:

- 1) або належить типу 5 ($X_p \rightarrow \varepsilon$);
- 2) або належить типу 3 і X_q є безвідмовним;
- 3) або належить типу $2 i X_q \varepsilon$ безвідмовним;
- 4) або належить типу 1 і X_q або X_r є безвідмовним.

Перевірити умову 4 можна шляхом послідовного дослідження символів X_p на безвідмовність в порядку $X_1, X_2, ..., X_p$, тобто від меншого до більшого.

Теорема. Довільна LL(1) — мова може бути описана граматикою, всі правила якої належать одному з двох типів:

Тип 1. А
$$\rightarrow a_1 \beta_1 | a_2 \beta_2 | ... | a_m \beta_m$$

Тип 2. А
$$\rightarrow a_1 \beta_1 | a_2 \beta_2 | \dots | a_m \beta_m | \varepsilon$$

де $a_1, a_2, \dots a_m$ – різні термінальні символи; в правилах типу 2 жоден із символів a_i не належить множині FOLLOW(A); β_i – довільні сентенціальні форми.

Марченко О.І. Інженерія програмного забезпечення - 1. Основи проектування трансляторів Copyright © Марченко О.І., 2006 - 2013, All rights reserved.

Ще одне визначення LL(1)-граматики

Алгоритм 2 для побудови таблиці аналізу М може бути застосовано до любої граматики. Проте для деяких граматик М може мати неоднозначно визначені входи. Наприклад, якщо граматика ліворекурсивна чи неоднозначна, М буде мати хоча б один неоднозначновизначений вхід. Граматики, для яких таблиці аналізу не мають неоднозначно-визначених входів, повинні бути LL(k)-граматиками, особливо LL(1)-граматиками.

Можна показати, що алгоритм 2 для кожної LL(1)-граматики G будує таблиці, за якими розпізнаються всі ланцюжки з L(G). LL(1)-граматики мають декілька відмінних властивостей. Неоднозначна чи ліворекурсивна граматика не може бути LL(1). Можна також показати, що граматика G являється LL(1) тоді і тільки тоді, коли для двох правил вигляду $A \to \alpha \mid \beta$ виконується наступне:

- 1) ні для якого терміналу а одночасно з α і β не виводяться рядки, які починаються з терміналу а;
- 2) тільки з одного із рядків α чи β може виводитися пустий рядок;
- 3) якщо $\beta \Rightarrow^* \epsilon$, то з α не виводиться ніякий рядок, який починається з терміналу, що належать множині FOLLOW(A).

Еквівалентним є наступне визначення:

КВ-граматика називається LL(1)-граматикою, якщо з існування двох лівих виводів

для яких FIRST(x) = FIRST(y), випливає, що $\beta = \delta$. Це означає, що для даного ланцюжка γ A α і першого символу, який виводиться з A α (чи #), існує не більше одного правила, яке може бути застосовано до A, щоб отримати вивід деякого термінального ланцюжка, який починається з γ і продовжується цим першим символом. Мова, для якої можна побудувати LL(1)-граматику, називають LL(1)-мовою. Якщо таблиця аналізу має неоднозначно-визначені входи, то граматика не являє собою LL(1). Прикладом може служити наступна граматика:

```
St \rightarrow if Ex then St | if Ex then St else St | Cont Ex \rightarrow ...
```

Ця граматика неоднозначна, що ілюструється на рис.3. Оскільки граматика неоднозначна, то вона не ε LL(1)-граматикою. Проблема, чи породжує граматика LL-мову, не має алгоритмічного розв'язку.

Марченко О.І. Інженерія програмного забезпечення - 1. Основи проектування трансляторів Copyright © Марченко О.І., 2006 - 2013, All rights reserved.

Видалення лівої рекурсії

Основна складність при використанні передбачаючого аналізу — це написання такої граматики для вхідної мови, щоб за нею можна було б побудувати передбачаючий аналізатор. Іноді за допомогою деяких простих перетворень не LL(1)-граматику можна привести до LL(1)-вигляду. Серед цих перетворень найбільш очевидні являються ліва факторизація і видалення лівої рекурсії. Тут необхідно зробити два зауваження: по-перше, не всяка граматика після цих перетворень стає LL(1), по-друге, після видалення лівої рекурсії і лівої факторизації отримана граматика може стати важкою для розуміння. Граматика ліворекурсивна, якщо в ній міститься нетермінал А такий, що існує вивід А \Rightarrow + Аи для деякого рядка и. Ліворекурсивні граматики не можуть аналізуватися методами зверху-вниз, тому необхідно видалення лівої рекурсії.

Безпосередню ліву рекурсію (рекурсію вигляду $A \to Au$) можна видалити наступним чином. Спочатку групуємо A-правила:

```
A \rightarrow Au1 \mid Au2 \mid ... \mid Aum \mid v1 \mid v2 \mid .... \mid vn
```

де ніякий із рядків vi не починається з А. Потім заміняємо А-правила на

```
A \rightarrow v1A' | v2A' | .... | vnA'
A'\rightarrow u1A' | u2A' | .... | umA' | \epsilon
```

Нетермінал А породжує ті ж рядки, що і раніше, але тепер немає лівої рекурсії. За допомогою цієї процедури видаляються всі безпосередні ліві рекурсії, але не видаляється ліва рекурсія, яка включає два чи більше кроки. Приведений нижче алгоритм 3 дозволяє видалити всі ліві рекурсії з граматики.

Алгоритм 3. Видалення лівої рекурсії.

```
Крок 1. Впорядковуємо нетермінали в довільному порядку.
```

```
Крок 2. for i := 1 to n do for j := 1 to i-1 do hexaй Aj \to v1 | v2 | ... | vk - всі поточні правила для Aj; замінити всі правила вигляду Ai \to Aju на правила Ai \to v1u | v2u | ... | vkU; end; видалити безпосередню ліву рекурсію в правилах для Ai; end
```

Після (i-1)-ї ітерації зовнішнього циклу на кроці 2 для любого правила вигляду $Ak \to Alu$, де kk. В результаті на наступній ітерації (по і) внутрішній цикл (по ј) послідовно збільшує нижню межу по m в любому правилі $Ai \to Amu$, поки не буде виконано m >= i. Потім, викидаючи безпосередню ліву рекурсію для Ai-правил, робимо m більше i.

Алгоритм 3 застосовується, якщо граматика не має циклів (виводів вигляду $A \Rightarrow + A$) і ϵ -правил (правил вигляду $A \rightarrow \epsilon$). Як цикли, так і ϵ -правила можуть бути видалені попередньо. Отримувана граматика без лівої рекурсії може мати ϵ -правила.

Ліва факторизація

Основна ідея лівої факторизації в тому, коли незрозуміло яку з двох альтернатив потрібно використовувати для розгортки нетерміналу А, потрібно переробити А-правила так, щоб відкласти рішення до того часу, коли не буде достатньо інформації, щоб прийняти правильне рішення.

Якщо $A \to uv1 \mid uv2 -$ два A-правила і вхідний рядок починається з непустого рядка, який виводиться з u, ми не знаємо, чи розгортати по uv1 чи по uv2. Проте можна відкласти рішення, розгорнувши $A \to uA'$. Тоді після аналізу того, що виводимо з u, можна розгорнути $A' \to v1$ або $A' \to v2$.

Лівофакторизовані правила приймають вигляд:

$$A \rightarrow u A'$$
 $A' \rightarrow v1 \mid v2$

Алгоритм 4. Ліва факторизація граматики.

Для кожного нетерміналу A шукаємо самий довгий префікс u, спільний для двох чи більше його альтернатив. Якщо u # є, тобто існує нетривіальний спільний префікс, замінюємо всі A-правила

```
A \to uv1 \mid uv2 \mid \dots \mid uvn \mid z, де z – всі альтернативи, які не починаються з u, на A \to uA' \mid z A' \to v1 \mid v2 \mid \dots \mid vn
```

Тут А' – новий нетермінал. Повторно застосовуємо це перетворення, поки дві альтернативи не будуть мати спільного префікса.

Пример 3. Розглянемо знову граматику умовних операторів:

```
St \rightarrow if Ex then St | if Ex then St else St | Cont Ex \rightarrow ...
```

Після лівої факторизації граматика приймає вигляд

```
St \rightarrow if Ex then St St' | Cont

St' \rightarrow else St | \epsilon

Ex \rightarrow ...
```

На жаль, граматика залишається неоднозначною, і значить не ε LL(1), що ілюструється на рис.4.

Відновлення після синтаксичних помилок

В наведених програмах використовувалась процедура реакції на синтаксичні помилки error(). В найпростішому випадку ця процедура видає діагностику и завершує роботу аналізатора. Але можна спробувати деяким чином продовжити роботу. Для розбору зверху вниз можна запропонувати наступний простий алгоритм.

Якщо в момент виявлення помилки на верхівці магазину опинився нетермінальний символ N і для нього нема правила, яке відповідає вхідному символу, то скануємо вхід доти, доки не зустрінемо символ або з FIRST(N), або з FOLLOW(N). В першому разі розгортаємо N за відповідним правилом, в другому — видаляємо N з магазину.

Якщо на верхівці магазину термінальний символ, то можна викинути всі термінальні символи з верхівки магазину аж до першого (зверху) нетермінального символу і продовжувати так, як це було описано вище.