Double-click (or enter) to edit

#Capstone Project:3- Exploratory Data Analysis Projects #HEALTH FAILURE ANALYSIS

#MODULES NEEDED: Numpy, Pandas, Matplotlip, Seaborn

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

#load the data

heart_df=pd.read_csv("/content/heart_failure_clinical_records_dataset.csv") print(heart_df)

$\overline{\geq}$		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction
	0	75.0	0	582	0	20
	1	55.0	0	7861	0	38
	2	65.0	0	146	0	20
	3	50.0	1	111	0	20
	4	65.0	1	160	1	20
	294	62.0	0	61	1	38
	295	55.0	0	1820	0	38
	296	45.0	0	2060	1	60
	297	45.0	0	2413	0	38
	298	50.0	0	196	0	45

	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex
0	1	265000.00	1.9	130	1
1	0	263358.03	1.1	136	1
2	0	162000.00	1.3	129	1
3	0	210000.00	1.9	137	1
4	0	327000.00	2.7	116	0
294	1	155000.00	1.1	143	1
295	0	270000.00	1.2	139	0
296	0	742000.00	0.8	138	0
297	0	140000.00	1.4	140	1
298	0	395000.00	1.6	136	1

	smoking	time	DEATH_EVENT
0	0	4	1
1	0	6	1
2	1	7	1
3	0	7	1
4	0	8	1
294	1	270	0
295	0	271	0
296	0	278	0
297	1	280	0
298	1	285	0

[299 rows x 13 columns]

#load the data in first 5 rows

heart_df.head()

\rightarrow	а	ge anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
	0 75	5.0 0	582	0	20	1	265000.00	1.9	130	1	0	4	1
	1 55	5.0 0	7861	0	38	0	263358.03	1.1	136	1	0	6	1
	2 65	5.0 0	146	0	20	0	162000.00	1.3	129	1	1	7	1
	3 50).0 1	111	0	20	0	210000.00	1.9	137	1	0	7	1
	4 65	5.0 1	160	1	20	0	327000.00	2.7	116	0	0	8	1

#Load the data in last 5 rows

heart_df.tail()

*		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
	294	62.0	0	61	1	38	1	155000.0	1.1	143	1	1	270	0
	295	55.0	0	1820	0	38	0	270000.0	1.2	139	0	0	271	0
	296	45.0	0	2060	1	60	0	742000.0	0.8	138	0	0	278	0
	297	45.0	0	2413	0	38	0	140000.0	1.4	140	1	1	280	0
	298	50.0	0	196	0	45	0	395000.0	1.6	136	1	1	285	0

#cleaning of data for checking null values

heart_df.isnull().sum()

	0
age	0
anaemia	0
creatinine_phosphokinase	0
diabetes	0
ejection_fraction	0
high_blood_pressure	0
platelets	0
serum_creatinine	0
serum_sodium	0
sex	0
smoking	0
time	0
DEATH_EVENT	0

dtype: int64

heart_df.isnull().any().any()

→ False

#Info on the dataset heart_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 299 entries, 0 to 298

0	2 /			
рата	columns (total 13 columns):		
#	Column	Non-	-Null Count	Dtype
0	age	299	non-null	float64
1	anaemia	299	non-null	int64
2	creatinine_phosphokinase	299	non-null	int64
3	diabetes	299	non-null	int64
4	ejection_fraction	299	non-null	int64
5	high_blood_pressure	299	non-null	int64
6	platelets	299	non-null	float64
7	serum_creatinine	299	non-null	float64
8	serum_sodium	299	non-null	int64
9	sex	299	non-null	int64
10	smoking	299	non-null	int64
11	time	299	non-null	int64
12	DEATH_EVENT	299	non-null	int64
dtyp	es: float64(3), int64(10)			

#Some dataset was cleaning

heart_data = pd.DataFrame()

memory usage: 30.5 KB

heart_data["age"] = heart_df["age"] heart_data["anaemia"] = np.where(heart_df["anaemia"]< 1,"No","yes")

heart_data["diabetes"] = np.where(heart_df["diabetes"]< 1,"No","yes")

heart_data["high_blood_pressure"] = np.where(heart_df["high_blood_pressure"]< 1,"No","yes")

heart_data["platelets"] = heart_df["platelets"] heart_data["serum_creatinine"] = heart_df["serum_creatinine"]

heart_data["serum_sodium"] = heart_df["serum_sodium"]

heart_data["sex"] = np.where(heart_df["sex"]< 1,"Female","Male") heart_data["smoking"] = np.where(heart_df["smoking"]< 1,"No","yes")</pre>

heart_data["DEATH_EVENT"] = np.where(heart_df["DEATH_EVENT"]< 1,"No","yes")

heart_data.head()

```
age anaemia diabetes high_blood_pressure platelets serum_creatinine serum_sodium
                                                                                      sex smoking DEATH_EVENT
                                          yes 265000.00
    0 75.0
                No
                        No
                                                                   1.9
                                                                               130
                                                                                     Male
                                                                                              No
                                                                                                         yes
                                          No 263358.03
     1 55.0
                No
                        No
                                                                   1.1
                                                                               136
                                                                                    Male
                                                                                              No
                                                                                                         yes
     2 65.0
                No
                                          No 162000.00
                                                                   1.3
                                                                               129
                        No
                                                                                    Male
                                                                                             yes
                                                                                                        yes
     3 50.0
                                          No 210000.00
                                                                   1.9
                                                                               137
                        No
                                                                                   Male
                                                                                              No
                                                                                                         yes
     4 65.0
                                          No 327000.00
                                                                   2.7
                                                                               116 Female
                                                                                              No
                        yes
                                                                                                        yes
#some info on the dataset
```

heart_data.info()

</pre RangeIndex: 299 entries, 0 to 298 Data columns (total 10 columns): Non-Null Count Dtype # Column -------0 age 299 non-null float64 299 non-null object 1 anaemia 299 non-null 2 diabetes object 3 high_blood_pressure 299 non-null object 299 non-null float64 4 platelets 5 serum_creatinine 299 non-null float64 6 serum_sodium 299 non-null int64 7 sex 299 non-null object 299 non-null 8 smoking object 9 DEATH_EVENT 299 non-null dtypes: float64(3), int64(1), object(6) memory usage: 23.5+ KB

#Remove un-needed data - time column

heart_df.drop(['time'], axis = 1, inplace = True)

describe of the data

heart df.describe()

	011	`-	0	۰	0.0	 ٠.	 - 1	/	

\rightarrow		age	anaemia	<pre>creatinine_phosphokinase</pre>	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	DEATH_EVENT
	count	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.000000	299.00000	299.000000	299.000000	299.00000	299.00000
	mean	60.833893	0.431438	581.839465	0.418060	38.083612	0.351171	263358.029264	1.39388	136.625418	0.648829	0.32107	0.32107
	std	11.894809	0.496107	970.287881	0.494067	11.834841	0.478136	97804.236869	1.03451	4.412477	0.478136	0.46767	0.46767
	min	40.000000	0.000000	23.000000	0.000000	14.000000	0.000000	25100.000000	0.50000	113.000000	0.000000	0.00000	0.00000
	25%	51.000000	0.000000	116.500000	0.000000	30.000000	0.000000	212500.000000	0.90000	134.000000	0.000000	0.00000	0.00000
	50%	60.000000	0.000000	250.000000	0.000000	38.000000	0.000000	262000.000000	1.10000	137.000000	1.000000	0.00000	0.00000
	75%	70.000000	1.000000	582.000000	1.000000	45.000000	1.000000	303500.000000	1.40000	140.000000	1.000000	1.00000	1.00000
	max	95.000000	1.000000	7861.000000	1.000000	80.000000	1.000000	850000.000000	9.40000	148.000000	1.000000	1.00000	1.00000

#shape of the data

heart_data.shape

→ (299, 10)

#Value count of the data #"ANAEMIA" #"HIGH_BLOOD_PRESSURE"

#"DIABETES"

#"SMOKING" #"DEATH_EVENT"

#Anaemia

heart_data['anaemia'].value_counts()

 \Rightarrow count anaemia 170 No 129 yes

dtype: int64

heart_data['high_blood_pressure'].value_counts()

 \Rightarrow count high_blood_pressure No 194 105 yes

dtype: int64

heart_data['diabetes'].value_counts()

 \Rightarrow count diabetes 174 No 125 yes

dtype: int64

heart_data['smoking'].value_counts()

count smoking No 203 96 yes

dtype: int64

heart_data['DEATH_EVENT'].value_counts()

 \Rightarrow count DEATH_EVENT No 203 96 yes

dtype: int64

#Visualization the data Matplotlib & Seaborn #the relationship of the whole dataset (with relation to death event) using pairplot

import matplotlib.pyplot as plt

import seaborn as sns heart_data.head()

		age	anaemia	diabetes	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex	smoking	DEATH_EVENT
	0	75.0	No	No	yes	265000.00	1.9	130	Male	No	yes
	1	55.0	No	No	No	263358.03	1.1	136	Male	No	yes
	2	65.0	No	No	No	162000.00	1.3	129	Male	yes	yes
	3	50.0	yes	No	No	210000.00	1.9	137	Male	No	yes
	4	65.0	yes	yes	No	327000.00	2.7	116	Female	No	yes

#Show the relationship of the whole dataset (with relation to death event) using pairplot.

sns.pairplot(heart_data, hue = 'DEATH_EVENT', diag_kind="hist", palette='mako')

#add title

plt.title("Relationship of the whole dataset (with relation to death event)")

#add X-axis label & Y-axis label

plt.xlabel("age") plt.ylabel("platelets")

#show

plt.show()

#Show the pairplot with heart failure dataset sns.pairplot(heart_df, hue="sex",palette="rocket" , height=3)

add title plt.title("Pairplot with heart failure dataset")

#add X-axis label & Y-axis label plt.xlabel("age") plt.ylabel("platelets")

Show plt.show()

#Show the relationship between categoric variable "sex" and its frequency using

#plot plt.figure(figsize=(4,4))

figure = heart_data["sex"].value_counts(ascending = True).plot.barh(color=['silver','darkgray'])

#add title plt.title("sex and its frequency")

#add X-axis label & Y-axis label plt.xlabel("Frequency")

plt.ylabel("sex")

```
#show
plt.show()
```

 $\overline{\Rightarrow}$

sex and its frequency Male SeX Female 50 150 200 100 Frequency

#Showing the relationship between categoric variable "death_event" and its frequency using bar plot.

#plot plt.figure(figsize=(4,4))

figure = heart_data["DEATH_EVENT"].value_counts(ascending = True).plot.barh(color=['plum','violet'])

#add title

plt.title("DEATH_EVENT and its frequency")

#add x-axis label & y-axis label plt.xlabel("Frequency")

plt.ylabel("DEATH_EVENT")

#show plt.show()

Death event per each sex using bar plot

plt.bar(heart_data['sex'].value_counts().index, heart_data['DEATH_EVENT'].value_counts(),color=['salmon','darksalmon'])

#add title

plt.title(' Death event per each sex ')

#add x-axis label & y-axis label

plt.xlabel('Sex')

plt.ylabel('Death event')

#show

plt.show()

 \Rightarrow Death event per each sex 200 175 150 event 125 Death 100 75 50

Sex

Double-click (or enter) to edit

25

#Sex correlated with Death rate (use heatmap)

Male

sns.heatmap((heart_data['sex'].value_counts(),heart_data['DEATH_EVENT'].value_counts()),cmap='copper',linewidth=.2,square=True,center=0)

Female

plt.title('Sex correlated with Death rate')

#x-axis &y-axis label

plt.xlabel('sex') plt.ylabel('DEATH_EVENT')

#show

#add title

#Smoking against Death using bar plot plt.barh(heart_data["smoking"].value_counts().index,heart_data["DEATH_EVENT"].value_counts(), color=['tan','wheat'])

plt.title("Smoking against Death ")

#x-axis & y-axis label

plt.xlabel("smoking") plt.ylabel("death")

#show plt.show()

```
Smoking against Death
        yes ·
      death
         No -
                  25
                                               125
                                                      150 175 200
                                        smoking
#High blood pressure with age using catplot.
sns.catplot(data=heart_data,x = "high_blood_pressure",y = "age", hue = "sex",)
#add title
plt.title("High blood pressure with age ")
#add x-axis label & y-axis label
plt.xlabel("high_blood_pressure")
plt.ylabel("age")
#show
plt.show()
\overline{\Rightarrow}
                      High blood pressure with age
        90 -
        80 -
        70
                                                                      sex
      age
                                                                   Male

    Female

        60 -
        40
                                                  No
                             high_blood_pressure
#Show the lineplot age with platelets
sns.lmplot(x='age',y='platelets',hue='sex',data=heart_data)
#add tltle
plt.title("Platelets with age")
#x-axis & y-axis label
plt.xlabel("age")
plt.ylabel("platelets")
#show
                               Platelets with age
        800000 -
        600000 -
     platelets
00000
                                                                     sex
                                                                      Male
                                                                   Female
```


#show the scatterplot serum_creatinine with age sns.scatterplot(x='serum_creatinine',y='age',hue='age',data=heart_data)

plt.title("Serum creatinine with age") #add x-axis label & y-axis label plt.xlabel("Serum creatinine")

plt.ylabel("Age") #show


```
#show countplot with death event for heart failure analysis
#plot
```

sns.countplot(data=heart_data,x='DEATH_EVENT',hue='sex') #add title

plt.title=("Which gender was more DEATH_EVENT?")

#add x-axis label & y-axis label plt.xlabel=("DEATH_EVENT")

plt.ylabel=("count")

#show plt.show()

#show countplot with age of heart failure analysis
#plot
cons countplot(data=heart data v='age' bue='sev')

sns.countplot(data=heart_data,x='age',hue='sex')

Sils.countprot(data=neart_data,x= age ,nue= sex

plt.title=("Which gender was more age in death event?")
#add x-axis & y-axis label
plt.xlabel=("age")

plt.ylabel=("count")
plt.show()

