Block Ciphers and the Data Encryption Standard

Modern Block Ciphers

- > now look at modern block ciphers
- > one of the most widely used types of cryptographic algorithms
- provide secrecy / authentication services
- ➤ focus on DES (Data Encryption Standard)
- > to illustrate block cipher design principles

Block vs Stream Ciphers

- block ciphers process messages in blocks, each of which is then en/decrypted
- like a substitution on very big characters
 - 64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
 - better analysed
 - broader range of applications

Block vs Stream Ciphers

(a) Stream Cipher Using Algorithmic Bit Stream Generator

Block Cipher Principles

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to **decrypt** ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2⁶⁴ entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

Ideal Block Cipher

Claude Shannon and Substitution-Permutation Ciphers

- Claude Shannon introduced idea of substitutionpermutation (S-P) networks in 1949 paper
- Form basis of modern block ciphers
- > S-P nets are based on the two primitive cryptographic operations seen before:
 - substitution (S-box)
 - permutation (P-box)
- > provide confusion & diffusion of message & key

Confusion and Diffusion

- cipher needs to completely obscure statistical properties of original message
- a one-time pad does this
- more practically Shannon suggested combining S & P elements to obtain:
- **diffusion** dissipates statistical structure of plaintext over bulk of ciphertext
- **confusion** makes relationship between ciphertext and key as complex as possible

Feistel Cipher Structure

- Horst Feistel devised the feistel cipher
 - based on concept of invertible product cipher
- partitions input block into two halves
 - process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves
- implements Shannon's S-P net concept

Feistel Cipher Structure

Feistel Cipher Design Elements

- block size
- key size
- > number of rounds
- > subkey generation algorithm
- > round function
- ➤ fast software en/decryption
- > ease of analysis

Data Encryption Standard (DES)

- most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
 - as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security

DES History

- IBM developed Lucifer cipher
 - by team led by Feistel in late 60's
 - used 64-bit data blocks with 128-bit key
- then redeveloped as a commercial cipher with input from NSA and others
- in 1973 NBS issued request for proposals for a national cipher standard
- IBM submitted their revised Lucifer which was eventually accepted as the DES

DES Design Controversy

- although DES standard is public
- was considerable controversy over design
 - in choice of 56-bit key (vs Lucifer 128-bit)
 - and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
 - especially in financial applications
 - still standardised for legacy application use

DES Encryption Overview

Initial Permutation IP

- First step of the data computation
- > IP reorders the input data bits
- > even bits to LH half, odd bits to RH half
- > quite regular in structure (easy in h/w)
- > example:

```
IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)
```

Encryption (IP, IP⁻¹)

IP

Bit	0	1	2	3	4	5	6	7
1	58	50	42	34	26	18	10	2
9	60	52	44	36	28	20	12	4
17	62	54	46	38	30	22	14	6
25	64	56	48	40	32	24	16	8
33	57	49	41	33	25	17	9	1
41	59	51	43	35	27	19	11	3
49	61	53	45	37	29	21	13	5
57	63	55	47	39	31	23	15	7

■ IP⁻¹

Bit	0	1	2	3	4	5	6	7
1	40	8	48	16	56	24	64	32
9	39	7	47	15	55	23	63	31
17	38	6	46	14	54	22	62	30
25	37	5	45	13	53	21	61	29
33	36	4	44	12	52	20	60	28
41	35	3	43	11	51	19	59	27
49	34	2	42	10	50	18	58	26
57	33	1	41	9	49	17	57	25

■ Note: $IP(IP^{-1}) = IP^{-1}(IP) = I$

Encryption (Round)

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$$

- F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P

DES Round Structure

Encryption (Round) (cont.)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	45	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1 0

P

16	7	20	21	29	12	28	17
1	15	23	23 26		18	31	10
2	8	24	14	32	27	3	9
9	13	30	6	22	11	4	25

Expansion

Expansion

Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- > each S-box is actually 4 little 4 bit boxes
 - outer bits 1 & 6 (**row** bits) select one row of 4
 - inner bits 2-5 (**col** bits) are substituted
 - result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data & key
 - feature known as autoclaving (autokeying)
- > example:
 - \circ S(18 09 12 3d 11 17 38 39) = 5fd25e03

Encryption (Round) (cont.)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	45	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1 0

P

16	7	20	21	29	12	28	17
1	15	23	23 26		18	31	10
2	8	24	14	32	27	3	9
9	13	30	6	22	11	4	25

Expansion

Expansion

Encryption (Round) (cont.)

S-box

s_1	14 0 4	4 15	13 7 14	1 4 8	2 14 13	15 2 6	11 13 2	8 1 11	3 10 15	10 6 12	6 12 9	12 11 7	5 9 3	9 5 10	0 3 5	7 8 0	s ₅	2 14 4	12 11 2	4 2 1	1 12 11	7 4 10	10 7 13	11 13 7	6 1 8	8 5 15	5 0 9	3 15 12 0	15 10 5 9	13 3 6 10	0 9 3	14 8 0	9 6 14 3
	15	12	8	2	4	9	1	7	5	ll 	3	14	10	0	6	13		12		10	15	. 1	2.	6	13	0	13	3	4	14	7	5	11
\mathbf{s}_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	s_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	0 13	14 8	7 10	11 1	10 3	4 15	13 4	1 2	5 11	8 6	12 7	6 12	9 0	3 5	2 14	15 9		9	3	2	12	9	8 5	15	10	11	14	1	10 7	6	0	8	13
																		A	11	2	1.4	15		0	12	2	12	0	7	- 5	10	-	1
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8	S ₇	13	11	11	14 7	15 4	9	0	10	3 14	3	5	12	2	15	8	6
s_3	13	1	0	9	3	4	6	10	2	8)	14	12	11	15	1	5/	1	1	11	13	12	3	7	1/	10	15	6	2	0	5	9	2
	13 1	6 10	13	9	8	15 9	3	0 7	11 4	1 15	2 14	12) 11	10 5	14	12		6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
						. <u> </u>																											
	7	13	14	3	0	6	9	10	l	2	8	5	11	12	4	15		13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
s_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9	s ₈	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	10	6	9	0	12	11	7	13	15	l	3	14	5	2	8	4		7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	3	15	0	6	10	l	13	8	9	4	5	11	12	7	2	14		2	l	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES Key Schedule

- Forms subkeys used in each round
 - initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating each half separately either 1 or 2 places depending on the key
 rotation schedule K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- > note practical use issues in h/w vs s/w

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 - •
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value

Key Generation

DES Key Schedule

- Forms subkeys used in each round
 - initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves
 - 16 stages consisting of:
 - rotating each half separately either 1 or 2 places depending on the key
 rotation schedule K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- > note practical use issues in h/w vs s/w

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 - •
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value

DES Example

Round	K _i	L_i	R_i
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP −1		da02ce3a	89ecac3b

Avalanche in DES

Round		δ
	02468aceeca86420	1
	12468aceeca86420	
1	3cf03c0fbad22845	1
	3cf03c0fbad32845	
2	bad2284599e9b723	5
	bad3284539a9b7a3	
3	99e9b7230bae3b9e	18
	39a9b7a3171cb8b3	
4	0bae3b9e42415649	34
	171cb8b3ccaca55e	
5	4241564918b3fa41	37
	ccaca55ed16c3653	
6	18b3fa419616fe23	33
	d16c3653cf402c68	
7	9616fe2367117cf2	32
	cf402c682b2cefbc	
8	67117cf2c11bfc09	33
	2b2cefbc99f91153	

Round		δ
9	c11bfc09887fbc6c	32
	99f911532eed7d94	
10	887fbc6c600f7e8b	34
	2eed7d94d0f23094	
11	600f7e8bf596506e	37
	d0f23094455da9c4	
12	f596506e738538b8	31
	455da9c47f6e3cf3	
13	738538b8c6a62c4e	29
	7f6e3cf34bc1a8d9	
14	c6a62c4e56b0bd75	33
	4bc1a8d91e07d409	
15	56b0bd7575e8fd8f	31
	1e07d4091ce2e6dc	
16	75e8fd8f25896490	32
	1ce2e6dc365e5f59	
IP-1	da02ce3a89ecac3b	32
	057cde97d7683f2a	

Avalanche Effect

- key desirable property of encryption alg
- where a change of **one** input or key bit results in changing approx **half** output bits
- making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

Strength of DES - Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - in 1999 above combined in 22hrs!
- still must be able to recognize plaintext
- must now consider alternatives to DES

Strength of DES – Analytic Attacks

- > now have several analytic attacks on DES
- > these utilise some deep structure of the cipher
 - by gathering information about encryptions
 - can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest
- > generally these are statistical attacks
 - differential cryptanalysis
 - linear cryptanalysis
 - related key attacks

Strength of DES – Timing Attacks

- > attacks actual implementation of cipher
- > use knowledge of consequences of implementation to derive information about some/all subkey bits
- > specifically use fact that calculations can take varying times depending on the value of the inputs to it
- > particularly problematic on smartcards

- one of the most significant recent (public) advances in cryptanalysis
- known by NSA in 70's cf DES design
- Murphy, Biham & Shamir published in 90's
- powerful method to analyse block ciphers
- used to analyse most current block ciphers with varying degrees of success
- DES reasonably resistant to it, cf Lucifer

- > a statistical attack against Feistel ciphers
- > uses cipher structure not previously used
- ➤ design of S-P networks has output of function *f* influenced by both input & key
- hence cannot trace values back through cipher without knowing value of the key
- ➤ differential cryptanalysis compares two related pairs of encryptions

Differential Cryptanalysis Compares Pairs of Encryptions

- > with a known difference in the input
- > searching for a known difference in output
- when same subkeys are used

$$\Delta m_{i+1} = m_{i+1} \oplus m'_{i+1}$$

$$= [m_{i-1} \oplus f(m_i, K_i)] \oplus [m'_{i-1} \oplus f(m'_i, K_i)]$$

$$= \Delta m_{i-1} \oplus [f(m_i, K_i) \oplus f(m'_i, K_i)]$$

- ➤ have some input difference giving some output difference with probability p
- ➤ if find instances of some higher probability input / output difference pairs occurring
- > can infer subkey that was used in round
- > then must iterate process over many rounds (with decreasing probabilities)

- > perform attack by repeatedly encrypting plaintext pairs with known input XOR until obtain desired output XOR
- > when found
 - if intermediate rounds match required XOR have a right pair
 - if not then have a **wrong pair**, relative ratio is S/N for attack
- > can then deduce keys values for the rounds
 - right pairs suggest same key bits
 - wrong pairs give random values
- ➤ for large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs
- ➤ Biham and Shamir have shown how a 13-round iterated characteristic can break the full 16-round DES

Linear Cryptanalysis

- > another recent development
- > also a statistical method
- > must be iterated over rounds, with decreasing probabilities
- developed by Matsui et al in early 90's
- based on finding linear approximations
- can attack DES with 2⁴³ known plaintexts, easier but still in practise infeasible

Linear Cryptanalysis

• find linear approximations with prob p $!= \frac{1}{2}$

```
P[i_1, i_2, ..., i_a] \oplus C[j_1, j_2, ..., j_b] = K[k_1, k_2, ..., k_c]
where i_a, j_b, k_c are bit locations in P, C, K
```

- gives linear equation for key bits
- get one key bit using max likelihood alg
- using a large number of trial encryptions
- effectiveness given by: $|p^{-1}/_2|$

DES Design Criteria

- as reported by Coppersmith in [COPP94]
- 7 criteria for S-boxes provide for
 - non-linearity
 - resistance to differential cryptanalysis
 - good confusion
- 3 criteria for permutation P provide for
 - increased diffusion

Block Cipher Design

- basic principles still like Feistel's in 1970's
- number of rounds
 - more is better, exhaustive search best attack
- function f:
 - provides "confusion", is nonlinear, avalanche
 - have issues of how S-boxes are selected
- key schedule
 - complex subkey creation, key avalanche

Summary

- have considered:
 - block vs stream ciphers
 - Feistel cipher design & structure
 - DES
 - details
 - strength
 - Differential & Linear Cryptanalysis
 - block cipher design principles