Prediction Model for the number of deaths due to COVID-19 in Africa

SANDILE MDUDUZI MCHUNU

MAY20/MIT/037U

Import libaries

```
In [3]:
         import pandas as pd
         import numpy as np
In [4]:
         path='WHO COVID-19 global table data June 27th 2021 at 4.32.12 PM.csv'
         global_df = pd.read_csv(path)
In [5]:
         global df.dtypes
Out[5]: Name
                                                                            object
        WHO Region
                                                                            object
        Cases - cumulative total
                                                                             int64
        Cases - cumulative total per 100000 population
                                                                           float64
        Cases - newly reported in last 7 days
                                                                             int64
        Cases - newly reported in last 7 days per 100000 population
                                                                           float64
        Cases - newly reported in last 24 hours
                                                                             int64
        Deaths - cumulative total
                                                                             int64
        Deaths - cumulative total per 100000 population
                                                                           float64
        Deaths - newly reported in last 7 days
                                                                             int64
        Deaths - newly reported in last 7 days per 100000 population
                                                                           float64
        Deaths - newly reported in last 24 hours
                                                                             int64
        Transmission Classification
                                                                            object
        dtype: object
In [6]:
         global_df['WHO Region'].value_counts().to_frame()
                             WHO Region
Out[6]:
                                      62
                      Europe
                    Americas
                                      56
                      Africa
                                      50
               Western Pacific
                                      35
         Eastern Mediterranean
                                      22
               South-East Asia
                                      11
                       Other
                                       1
In [7]:
         africa_df = global_df.loc[(global_df['WHO Region'] == 'Africa')]
In [8]:
         africa df['WHO Region'].value counts().to frame()
```

WHO Region

Out[8]:

WHO Region

Africa 50

```
In [16]:
```

```
africa_df.rename(columns = {'Name':'Country','Cases - cumulative total':'Total_Cases
'Cases - cumulative total per 100000 population':'Total_Case
'Cases - newly reported in last 7 days per 100000 populatio
'Cases - newly reported in last 7 days per 100000 populatio
'Cases - newly reported in last 24 hours':'Daily_Cases',
'Deaths - cumulative total':'Total_Deaths',
'Deaths - newly reported in last 7 days':'Weekly_Deaths',
'Deaths - newly reported in last 7 days per 100000 populati
'Deaths - newly reported in last 24 hours':'Daily_Deaths',
'Transmission Classification': 'Transmission_Classificati
}, inplace = True)
```

/srv/conda/envs/notebook/lib/python3.6/site-packages/pandas/core/frame.py:4308: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyerrors=errors,

Check the table headers

In [22]: africa_df.head()

Out[22]:

	Country	WHO Region	Total_Cases	Total_Cases_per_100000_population	Weekly_Cases	Weekly_Cases_p
19	South Africa	Africa	1877143	3165.04	91064	
67	Ethiopia	Africa	275601	239.73	826	
81	Kenya	Africa	181239	337.06	3957	
83	Nigeria	Africa	167401	81.21	259	
87	Zambia	Africa	140620	764.91	18376	
4						•

In [23]:

africa df.tail()

Out[23]:

	Country	WHO Region	Total_Cases	Total_Cases_per_100000_population	Weekly_Cases	Weekly_Cases
181	Liberia	Africa	3265	64.56	536	
189	Sao Tome and Principe	Africa	2364	1078.67	5	
194	Mauritius	Africa	1852	145.62	79	

		Country	WHO Region	Total_Cases	Total_Cases_per_100000_population	Weekly_Cases	Weekly_Cases
	203	United Republic of Tanzania	Africa	509	0.85	0	
	233	Saint Helena	Africa	0	0.00	0	
	4						•
In [24]:	afr:	ica_df.sh	ape				
Out[24]:	(50,	13)					

Data Analysis

In [38]:

Out[38]:		Total_Cases	Total_Cases_per_1000	000_population	Weekly_Cases	Weekly_Cases_per_100000_po
	count	5.000000e+01		50.000000	50.000000	5(
	mean	7.822606e+04		1060.529800	3215.760000	4!
	std	2.653622e+05		2523.380276	13082.564441	15!
	min	0.000000e+00		0.000000	0.000000	(
	25%	6.333500e+03		101.417500	38.750000	(
	50%	1.995850e+04		230.955000	243.000000	
	75%	4.712000e+04		505.582500	947.500000	1(
	max	1.877143e+06		15364.980000	91064.000000	1004
	4					•

1. Pearson Correlations

Check Correlation of the entire data

In [40]:	africa_df.corr()			
Out[40]:		Total_Cases	Total_Cases_per_100000_population	Weekly_Cases
	Total_Cases	1.000000	0.105260	0.969138
	Total_Cases_per_100000_population	0.105260	1.000000	0.129520
	Weekly_Cases	0.969138	0.129520	1.000000
	Weekly_Cases_per_100000_population	0.099370	0.858236	0.157503
	Daily_Cases	0.947494	0.146628	0.990264
	Total_Deaths	0.993836	0.106699	0.972590
	Total_Deaths_per_100000_population	0.575956	0.688792	0.606945

	Total_Cases	Total_Cases_per_100000_population	Weekly_Cases
Weekly_Deaths	0.933022	0.120342	0.981895
Weekly_Deaths_per_100000_population	0.148798	0.503043	0.246266
Daily_Deaths	0.830222	0.140741	0.909088
◆			•

Check Correlation of the entire two variables

Looking at the data i found that there is a strong relationship between the Daily_Cases and Weekly_Cases

Hypothesis

- 1. Null Hypthesis, **Ho**: Weekly_Deaths are not affected by Daily_Cases
- 2. Alternative Hypthosesis, H1: Weekly_Deaths are affected by Daily_Cases

Visualising related variables

```
In [9]:
         #df1=Daily Cases, std=2367.162193, mean=610.260000
         #df2=Weekly_Death, std=163.081701, mean =49.460000
         from numpy import mean
         from numpy import std
         from numpy.random import randn
         from numpy.random import seed
         from matplotlib import pyplot
         # seed random number generator
         seed(1)
         # prepare data
         df1 = 2367.162193 * randn(50) + 2367.162193
         df2 = df1 + (163.081701 * randn(50) + 49.460000)
         print('df1: mean=%.3f stdv=%.3f' % (mean(df1), std(df1)))
         print('df2: mean=%.3f stdv=%.3f' % (mean(df2), std(df2)))
         # plot
         pyplot.scatter(df1, df2)
         pyplot.show()
```

df1: mean=2306.764 stdv=2295.175 df2: mean=2380.145 stdv=2295.844

covariance of the variables

The covariance between the two variables is positive, **5368596.66360723**. suggesting the variables change in the same direction as we expect.

calculate the Pearson's correlation between two variables

```
from numpy.random import randn
from numpy.random import seed
from scipy.stats import pearsonr
# seed random number generator
seed(1)
# prepare data
df1 = 2367.162193 * randn(50) + 2367.162193
df2 = df1 + (163.081701 * randn(50) + 49.460000)
# calculate Pearson's correlation
corr, _ = pearsonr(df1, df2)
print('Pearsons correlation: %.3f' % corr)
```

Pearsons correlation: 0.998

The two variables are positively correlated and that the correlation is **0.998**. This suggests a high level of correlation between cases reported daily and deaths reported weekly, given that the value is above 0.5 and close to 1.0.

Testing Hypothesis

```
In [12]:
    #import Libraries
    import scipy.stats
```

Since the p-value, **0.6426** is 0.5 then I reject Ho and accept the H1 that Deaths reported weekly are arising from cases reported daily

Decision tree

```
In [37]:
          %conda install seaborn
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.pipeline import Pipeline
          from sklearn.preprocessing import StandardScaler,PolynomialFeatures
          %matplotlib inline
          Collecting package metadata (current_repodata.json): done
         Solving environment: done
          ==> WARNING: A newer version of conda exists. <==
           current version: 4.9.2
           latest version: 4.10.3
         Please update conda by running
              $ conda update -n base conda
         # All requested packages already installed.
         Note: you may need to restart the kernel to use updated packages.
In [38]:
          africa_df['Transmission_Classification'].value_counts().to_frame()
Out[38]:
                                Transmission_Classification
          Community transmission
                                                    47
                       Pending
                                                     1
                 Clusters of cases
                                                     1
                       No cases
```

Feature before One Hot Encoding

```
import itertools
from matplotlib.ticker import NullFormatter
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline
```

Out[40]:

In [40]: africa_df[['Weekly_Deaths','Total_Cases','Weekly_Cases','Daily_Cases', 'Transmission

	Weekly_Deaths	Total_Cases	Weekly_Cases	Daily_Cases	Transmission_Classification
19	1083	1877143	91064	16078	Community transmission
67	34	275601	826	99	Community transmission
81	104	181239	3957	741	Community transmission
83	1	167401	259	70	Community transmission
87	330	140620	18376	3594	Community transmission

Use one hot encoding technique to convert categorical variables to binary variables and append them to the training Data

```
train_africa = africa_df[['Total_Cases','Weekly_Deaths']]
    train_africa = pd.concat([train_africa,pd.get_dummies(africa_df['Transmission_Classi
    train_africa.drop(['No cases'], axis = 1,inplace=True)
    train_africa.drop(['Pending'], axis = 1,inplace=True)
    #Feature.drop(['Not applicable'], axis = 1,inplace=True)
    train_africa.head()
```

Out[41]:		Total_Cases	Weekly_Deaths	Clusters of cases	Community transmission
	19	1877143	1083	0	1
	67	275601	34	0	1
	81	181239	104	0	1
	83	167401	1	0	1
	87	140620	330	0	1

Feature selection

Lets defind feature sets, X:

```
In [42]: X = train_africa
X[0:5]
```

Out[42]:		Total_Cases	Weekly_Deaths	Clusters of cases	Community transmission
	19	1877143	1083	0	1
	67	275601	34	0	1
	81	181239	104	0	1
	83	167401	1	0	1
	87	140620	330	0	1

What are our lables?

```
In [43]:
    y = africa_df['Transmission_Classification'].values
    y[0:5]
```

```
Out[43]: array(['Community transmission', 'Community transmission', 'Community transmission', 'Community transmission', 'Community transmission'], dtype=object)
In [44]:
              y_collection = africa_df['Transmission_Classification'].replace(to_replace=['Communi
              y_collection[0:5]
Out[44]: array([2, 2, 2, 2, 2], dtype=object)
```

Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split

```
In [45]:
          from sklearn.preprocessing import StandardScaler
          X initial = X
          scaler = preprocessing.StandardScaler().fit(X_initial)
          X= scaler.transform(X)
          X[0:10]
Out[45]: array([[ 6.8479251 , 6.40190195, -0.14285714, 0.25264558],
                [ 0.75134587, -0.09576156, -0.14285714, 0.25264558],
                [ 0.39213867, 0.33782895, -0.14285714, 0.25264558],
                [\ 0.33946165,\ -0.30016852,\ -0.14285714,\ 0.25264558],
                [ 0.23751459, 1.73770689, -0.14285714, 0.25264558],
                [0.22526846, 0.09006294, -0.14285714, 0.25264558],
                [\ 0.06483918,\ -0.28158607,\ -0.14285714,\ 0.25264558],
                [0.01158735, 0.92007906, -0.14285714, 0.25264558],
                0.00860671, -0.24442117, -0.14285714, 0.25264558],
                [-0.01023643, 1.17403922, -0.14285714, 0.25264558]])
```

Import libraries

```
In [46]:
          from sklearn import metrics
          from sklearn.metrics import confusion_matrix, classification_report
          from sklearn.metrics import jaccard score
          from sklearn.metrics import f1_score
          from sklearn.metrics import log loss
          %conda install six
          %conda install pydotplus
          import six
          import sys
          sys.modules['sklearn.externals.six'] = six
          from six import StringIO
          %conda install graphviz
          from sklearn.externals.six import StringIO
          import pydotplus
          import matplotlib.image as mpimg
          from sklearn import tree
          from sklearn.tree import DecisionTreeClassifier
         Collecting package metadata (current_repodata.json): done
         Solving environment: done
         ==> WARNING: A newer version of conda exists. <==
           current version: 4.9.2
           latest version: 4.10.3
         Please update conda by running
             $ conda update -n base conda
```

Solving environment: done

current version: 4.9.2 latest version: 4.10.3

All requested packages already installed.

Note: you may need to restart the kernel to use updated packages.

Collecting package metadata (current_repodata.json): done

==> WARNING: A newer version of conda exists. <==

```
Please update conda by running
             $ conda update -n base conda
         # All requested packages already installed.
         Note: you may need to restart the kernel to use updated packages.
         Collecting package metadata (current_repodata.json): done
         Solving environment: done
         ==> WARNING: A newer version of conda exists. <==
           current version: 4.9.2
           latest version: 4.10.3
         Please update conda by running
             $ conda update -n base conda
         # All requested packages already installed.
         Note: you may need to restart the kernel to use updated packages.
         Build an empty DecisionTree object with depth 5
In [50]:
          CovidTree = DecisionTreeClassifier(criterion="entropy", max depth = 5)
          CovidTree # it shows the default parameters
Out[50]: DecisionTreeClassifier(criterion='entropy', max_depth=5)
In [51]:
          from sklearn import preprocessing
          from sklearn.preprocessing import MinMaxScaler
          from sklearn.preprocessing import Binarizer
          from sklearn.preprocessing import StandardScaler
          X= preprocessing.StandardScaler().fit(X).transform(X)
          X[0:5]
Out[51]: array([[ 6.8479251 , 6.40190195, -0.14285714, 0.25264558],
                [0.75134587, -0.09576156, -0.14285714, 0.25264558],
                [0.39213867, 0.33782895, -0.14285714, 0.25264558],
                [0.33946165, -0.30016852, -0.14285714, 0.25264558],
                [ 0.23751459, 1.73770689, -0.14285714, 0.25264558]])
         Train the decision tree using the global X data set.
```

```
In [52]: CovidTree.fit(X_initial, y)
```

Out[52]: DecisionTreeClassifier(criterion='entropy', max_depth=5)

Print the Decision Tree

```
In [53]:
    dot_data = StringIO()
    filename = "TCtree.png"
    featureNames = train_africa.columns
    targetNames = africa_df['Transmission_Classification'].tolist()
    out=tree.export_graphviz(CovidTree,feature_names=featureNames, out_file=dot_data, cl
    graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
    graph.write_png(filename)
    img = mpimg.imread(filename)
    plt.figure(figsize=(100, 200))
    plt.imshow(img,interpolation='nearest')
```

Out[53]: <matplotlib.image.AxesImage at 0x7fc744fa9080>

```
Total Cases ≤ 2108.0
                                           entropy = 0.423
                                            samples = 50
                                         value = [1, 47, 1, 1]
                                   class = Community transmission
                                      True
                                                             False
                       Clusters of cases \leq 0.5
                                                             entropy = 0.0
                          entropy = 1.585
                                                              samples = 47
                            samples = 3
                                                          value = [0, 47, 0, 0]
                         value = [1, 0, 1, 1]
                                                    class = Community transmission
                      class = Clusters of cases
          Total Cases ≤ 254.5
                                         entropy = 0.0
              entropy = 1.0
                                          samples = 1
              samples = 2
                                       value = [1, 0, 0, 0]
           value = [0, 0, 1, 1]
                                    class = Clusters of cases
            class = No cases
  entropy = 0.0
                         entropy = 0.0
   samples = 1
                          samples = 1
value = [0, 0, 1, 0]
                       value = [0, 0, 0, 1]
class = No cases
                        class = Pending
```

```
from sklearn.datasets import load_iris
from sklearn import tree
clf = tree.DecisionTreeClassifier()
iris = load_iris()
clf = clf.fit(iris.data, iris.target)
tree.export_graphviz(clf, out_file='tree.dot')
```

Evaluating the Accuracy of Decison Tree Algorithm

Use Decision Tree object previously trained.

```
yhat_tree=CovidTree.predict(X_initial)
tree_jacc_test=metrics.jaccard_score(y, yhat_tree, average='micro')
tree_f1_test=metrics.f1_score(y, yhat_tree, average ='macro')
```

```
tree_cnf_matrix = confusion_matrix(y, yhat_tree)
print("Accuracy is ", tree_jacc_test, " F1 is" , tree_f1_test)
print(classification_report(y, yhat_tree))
tree_cnf_matrix
```

```
Accuracy is 1.0 F1 is 1.0
                               precision recall f1-score
                                                             support
             Clusters of cases
                                   1.00
                                             1.00
                                                       1.00
                                                                   1
         Community transmission
                                            1.00
                                                       1.00
                                                                  47
                                   1.00
                                            1.00
                                                       1.00
                      No cases
                                   1.00
                                                                   1
                                             1.00
                                                       1.00
                      Pending
                                   1.00
                                                                   1
                                                       1.00
                                                                  50
                      accuracy
                                  1.00
                                             1.00
                     macro avg
                                                       1.00
                                                                  50
                                   1.00
                                             1.00
                                                                  50
                  weighted avg
                                                       1.00
Out[57]: array([[ 1, 0, 0, 0],
               [ 0, 47, 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
```

REMARKS

The Accuracy is 1.0 and F1 is 1.0 ::indicating that the Community Transmission mode is the most significance and dangerous modes of transmission of Covid-19 which require interventions from government.

End

By: Sandile Mduduzi Mchunu