Napredni modeli i baze podataka

Predavanja Studeni 2015.

4. Vremenske baze podataka

Sadržaj

- Upravljanje vremenom u standardnim SUBP motivacijski primjeri
- Modeliranje vremena
- SQL standard i temporalno proširenje
 - Vremenski tipovi podataka i operacije
 - Vremenske dimenzije (vrijeme valjanosti i transakcijsko vrijeme)
 - Temporalne relacije
 - Temporalna ograničenja integriteta
 - Temporalni upiti
- PostgreSQL

Model omogućuje pohranu aktualnih dužnosnika. Što je s prethodnicima?

Trenutni dekan: 1.10.2014 – 30.09.2016

Prethodnik: 1.10.2010 – 30.09.2014

Prethodnikov prethodnik: 1.10.2006 – 30.09.2010

Itd.

Kako popraviti model podataka?

orgJed

<u>sifOrgJed</u>	nazivOrgJed	sifNadOrgJed
100	Fakultet elektrotehnike i računarstva	
103	Zavod za primijenjenu matematiku	1

funkcija

<u>sifFun</u>	nazivFun
10	Dekan
11	Prodekan za nastavu
12	Predstojnik zavoda

osoba

<u>sifOsoba</u>	ime	prezime
100	Mislav	Grgić
101	Marko	Delimar
102	Ilko	Brnetić

obavljaFunkciju

<u>sifFun</u>	sifOrgJed	sifOsoba
10	100	100
11	100	101
12	103	102

U Zagrebu, 25. veljače 2013.

M.P. DEKAN

Prof. dr. sc. Nedjeljko Perić

U Zagrebu, 29. lipnja 2010.

M.P. DEKAN

Prof. dr. sc. Vedran Mornar

Prvi pokušaj popravljanja modela:

osoba

<u>sifOsoba</u>	ime	prezime	
50	Nedjeljko	Perić	
51	Vedran	Mornar	
100	Mislav	Grgić	

obavljaFunkciju

<u>sifFun</u>	sifOrgJed	sifOsoba	<u>datumOd</u>
10	100	51	1.10.2006
10	100	50	1.10.2010
10	100	100	1.10.2014

Dekan na dan '1.11.2008'?

```
SELECT osoba.ime, osoba.prezime
FROM osoba, obavljaFunkciju
WHERE osoba.sifOsoba = obavljaFunkciju.sifOsoba
AND sifFun = 10
AND sifOrgJed = 100
AND '1.11.2008' >= obavljaFunkciju.datumOd
AND '1.11.2008' <
(SELECT MIN(datumOd)
FROM obavljaFunkciju of
WHERE obavljaFunkciju.sifFun = of.sifFun
AND obavljaFunkciju.sifOrgJed = of.sifOrgJed
AND obavljaFunkciju.datumOd < of.datumOd);
```

Dekan na dan '1.11.2014'?

ime	prezime		

Zašto?

Trovalentna logika.

NULL vrijednosti.

Upiti postaju kompliciraniji.

Kako izgleda upit koji uvijek

vraća ispravnu vrijednost?

```
SELECT osoba.ime, osoba.prezime
 FROM osoba, obavljaFunkciju
WHERE osoba.sifOsoba = obavljaFunkciju.sifOsoba
   AND sifFun = 10
  AND sifOrgJed = 100
  AND datumOd <= '15.11.2014'
  AND ('15.11.2014' <
         (SELECT MIN (datumOd)
            FROM obavljaFunkciju of
           WHERE obavljaFunkciju.sifFun = of.sifFun
             AND obavljaFunkciju.sifOrgJed = of.sifOrgJed
             AND obavljaFunkciju.datumOd < of.datumOd)
        OR NOT EXISTS
         (SELECT *
            FROM obavljaFunkciju of
           WHERE obavljaFunkciju.sifFun = of.sifFun
             AND obavljaFunkciju.sifOrgJed = of.sifOrgJed
             AND obavljaFunkciju.datumOd < of.datumOd) )
```

Dekan na dan '1.11.2014'?

Ne želim pisati komplicirane upite kao odgovore na jednostavna pitanja!

obavljaFunkciju

<u>sifFun</u>	sifOrgJed	sifOsoba	<u>datumOd</u>
10	100	51	1.10.2006
10	100	50	1.10.2010
10	100	100	1.10.2014

Ima li model još mana?

1. Model dozvoljava unos dekana za *datumOd* 2.10.2006 ili 3.10.2006

Mandat dužnosnika traje određeni vremenski period: datumOd-datumDo.

Kako to osigurati modelom?

Drugi pokušaj popravljanja modela:

obavljaFunkciju

<u>sifFun</u>	sifOrgJed	sifOsoba	<u>datumOd</u>	datumDo
10	100	51	1.10.2006	30.09.2010
10	100	50	1.10.2010	30.09.2014
10	100	100	1.10.2014	30.09.2016

Upit za dohvat dekana na određeni datum postaje jednostavniji.

Međutim, u općem slučaju *datumDo* ne mora biti poznat => ni upit ne mora biti jednostavniji.

Ima li model još mana?

- 1. Je li {sifFun, sifOrgJed, datumOd} dobar ključ?
- 2. Je li {sifFun, sifOrgJed, datumDo} dobar ključ?
- 3. Je li {sifFun, sifOrgJed, datumOd, datumDo} dobar ključ?
 Nijedan od gornjih kandidata nije ispravan ključ! Jedinstvenost se provjerava operatorom =, a to nije dovoljno.

Treba mi novi tip podatka koji će obuhvaćati sve datume u periodu datumOd - datumDo.

<u>sifFun</u>	sifOrgJed	sifOsoba	<u>periodOdDo</u>
10	100	51	[1.10.2006, 30.09.2010]
10	100	50	[1.10.2010, 30.09.2014]
10	100	100	[1.10.2014, 30.09.2016]

Dodatno:

- kraj perioda ne smije biti < početak perioda
- ne smije postojati dekan za period koji je sadržan u nekom od postojećih perioda
- ...

Treba mi:

- novi tip podatka "period" (DATE period, TIMESTAMP period,...)
- funkcije za obavljanje operacija s novim tipovima podataka npr.
 - preklapaju li se period1 i period2
 - sadržava li period1 period2
 - period1 + period2, period1 period2
 - ...
- podrška za novu paradigmu pri osiguravanju
 - PRIMARY KEY ograničenja

FOREIGN KEY ograničenja

kako ih definirati s logičkog stanovišta?

- •
- podrška za nove metode spajanja (JOIN) koje uključuju operatore za rad s novim tipovima podataka (temporalni upiti)
- **...**

Motivacijski primjer 2 Evidencija održavanja i prisustvovanja nastavi

predmet		dvorana		osoba		
sifPredmet	nazivPredmet	<u>oznDvorana</u>	kapacPred	<u>sifOsoba</u>	ime	prezime

rezuvorana	a				prisustvo			
oznDvorana	sifPredmet	sifNast	terminOd	terminDo	oznDvorana	sifStudent	terminOd	terminDo
A101	1	100	12.11.2015 08:00	12.11.2015 11:00	A101	23459789	12.11.2015 08:17	12.11.2015 10:55
A101	2	101	12.11.2015 11:00	12.11.2015 13:00	A101	23459789	12.11.2015 08:21	12.11.2015 10:59

Što je ključ *rezDvorana* i *prisustvo?*

Kada bismo imali *PERIOD* tip podatka na raspolaganju:

rezDvorana			prisustvo			
oznDvorana	sifPredmet	sifNast	terminOdDo	oznDvorana	sifStudent	terminOdDo
A101	1	100	[12.11.2015 08:00, 2015-11-12 11:00)	A101	23459789	12.11.2015 08:17, 12.11.2015 10:55
A101	2	101	[12.11.2015 11:00, 2015-11-12 13:00)	A101	20006789	12.11.2015 08:21, 12.11.2015 10:59

Smije li u *rezDvorana* postojati n-torka: A101 3 101 [12.11.2015 09:15, 2015-11-12 10:00)

n-torka: A101 3 101 [12.11.2015 07:30, 2015-10-05 09:30)

-

Motivacijski primjer 2 Evidencija održavanja i prisustvovanja nastavi

rezDvorana	a			prisustvo		
<u>oznDvorana</u>	sifPredmet	sifNastavnik	<u>terminOdDo</u>	<u>oznDvorana</u>	sifStudent	<u>terminOdDo</u>
A101	1	100	[2015-11-12 08:00, 2015-10-05 11:00)	A101	23459789	2015-11-12 08:17, 2015-10-05 10:55
A101	2	101	[2015-11-12 11:00, 2015-11-12 13:00)	A101	20006789	2015-11-12 08:21, 2015-10-05 10:59

Ako je K_{REZDVORANA}= {oznDvorana, terminOdDo} što znači sljedeći strani ključ:

ALTER table prisustvo
... FOREIGN KEY (oznDvorana, terminOdDo) REFERENCES rezDvorana (oznDvorana, terminOdDo)

- Da bi se n-torka iz prisustvo referencirala na n-torku iz rezDvorana moraju li rezDvorana.terminOdDo i prisustvo.terminOdDo biti identični?
- Je li dovoljno da prisustvo.terminOdDo bude
 - sadržan u rezDvorana.terminOdDo?
 - obuhvaća rezDvorana.terminOdDo?
 - Djelomično se preklapa s rezDvorana.terminOdDo?
 - •
- U tradicionalnom relacijskom modelu se integriteta ključa (bilo primarnog bilo stranog) uvijek čuvao pomoću operatora jednakosti (=).
- To nam više nije dovoljno dobro.

Motivacijski primjer 3 FER-ova organizacijska shema kroz povijest

Od 2005 ··· 1926 -1956 ··· 1919-1926

Fakultet elektrotehnike i računarstva

- Zavod za primijenjenu fiziku
- Zavod za primijenjenu matematiku
- Zavod za primijenjeno računarstvo
- Zavod za osnove elektrotehnike i električka mjerenja
- Zavod za elektrostrojarstvo i automatizaciju
- Zavod za visoki napon i energetiku
- Zavod za telekomunikacije
- Zavod za elektroničke sustave i obradbu informacija
- Zavod za automatiku i računalno inženjerstvo
- Zavod za elektroakustiku
- Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave
- Zavod za radiokomunikacije

Tehnički fakultet

- Zavod za primijenjenu fiziku
- Zavod za primijenjenu matematiku
- Zavod za osnove elektrotehnike i električka mjerenja
- Zavod za elektrostrojarstvo i automatizaciju
- Zavod za visoki napon i energetiku
- Zavod za telekomunikacije
- Zavod za elektroničke sustave i obradbu informacija
- Zavod za automatiku i računalno inženjerstvo
- Zavod za elektroakustiku
- Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave
- Zavod za radiokomunikacije

Visoka tehnička škola

- Zavod za primijenjenu matematiku
- Zavod za osnove elektrotehnike i električka mjerenja
- Zavod za elektrostrojarstvo i automatizaciju

Kako odgovoriti na pitanja:

- Promjene u broju zaposlenih po zavodima
- Promjene u predmetima po zavodima
- Promjene u broju znanstvenih publikacija po zavodima
- ...

Što je s FER-ovom organizacijskom shemom između 1956 i 2005?

Motivacijski primjer 3 FER-ova organizacijska shema kroz povijest

orgJed	sifOrgJed	nazivOrgJed	sifNadOrgJed
	100	Fakultet elektrotehnike i računarstva	

Kako pratiti povijesne promjene u organizacijskoj strukturi?

Prvi pokušaj popravljanja modela:

sifOrgJed	nazivOrgJed	 vrijediOd	vrijediDo
1	Visoka tehnička škola	dd.mm.1919	dd.mm.1926
2	Zavod za primijenjenu matematiku	dd.mm.1919	∞
5	Tehnički fakultet	 dd.mm.1926	30. 06.1956
78	Elektrotehnički fakultet	 01.07.1956	06. 02.1995
100	Fakultet elektrotehnike i računarstva	 07.02.1995	∞
135	Zavod za primijenjeno računarstvo	19.10.2005	∞

Ima li mana?

- Kada je 7.2.1995 promijenjen naziv institucije što se dogodilo s n-torkama koje su se referencirale na orgjed.sifOrgJed = 78 (npr. orgJed.sifNadOrgJed, obnašatelji funkcija,...)?
- Kada je 2005 osnovan Zavod za primijenjeno računarstvo što se dogodilo sa zaposlenik.sifOrgJed u n-torkama ZPR-ovih zaposlenika koji su do tada bili zaposlenici Zavoda za primijenjenu matematiku?

	zaposlenik	<u>sifOsoba</u>	 sifOrgJed	datZaposl
Što sa sifOrgJed za npr.		598	12	01.05.1994
prof. Kalpića?		798	12	01.03.1978
'	_			

Motivacijski primjer 3 FER-ova organizacijska shema kroz povijest

<u>sifOrgJed</u>	nazivOrgJed	 vrijediOd	vrijediDo
1	Visoka tehnička škola	dd.mm.1919	dd.mm.1926
2	Zavod za primijenjenu matematiku	dd.mm.1919	∞
5	Tehnički fakultet	 dd.mm.1926	30. 06.1956
78	Elektrotehnički fakultet	 01.07.1956	06. 02.1995
100	Fakultet elektrotehnike i računarstva	 07.02.1995	∞
135	Zavod za primijenjeno računarstvo	19.10.2005	∞

- Zadržavanje stare vrijednosti referencirajućeg atributa ne prati promjene.
- Izmjena referencirajućeg atributa na novu vrijednost zaboravlja povijest.

Drugi pokušaj popravljanja modela:

orgJe	d
-------	---

<u>sifOrgJed</u>	nazivOrgJed	
12	Zavod za primijenjenu matematiku	
1	Fakultet elektrotehnike i računarstva	
135	Zavod za primijenjeno računarstvo	

org Jed Povijest

<u>sifOrgJed</u>	nazivOrgJed	 vrijediOd	vrijediDo
1	Visoka tehnička škola	 dd.mm.1919	dd.mm.1926
1	Tehnički fakultet	dd.mm.1926	30. 06.1956
1	Elektrotehnički fakultet	 01.07.1956	06. 02.1995

- Ključ u orgJed se ne mijenja
 - Nestaju problemi sa stranim ključem
- orgJed odražava trenutno stanje
- Povijesne promjene moraju se moći rekonstruirati pomoću orgJed i orgJedPovijest

Modeliranje vremena

- Vrijeme se uglavnom shvaća kao jednodimenzionalni kontinuum koji se prostire od prošlosti prema budućnosti
- Može se modelirati kao
 - konačno/beskonačno
 - Početak početak vremenske linije (PostgreSQL 4713 p.n.e.)
 - Zauvijek kraj vremenske linije (PostgreSQL 294276 n.e.)
 - diskretno/kontinuirano
 - Diskretni modeli izomorfni su prirodnim ili cijelim brojevima
 - Svaki prirodan ili cijeli broj odgovara osnovnoj jedinici vremena –
 chrononu (kvantum vremena, diskretna i nedjeljiva jedinica vremena kao dio hipoteze da vrijeme nije kontinuirano)
 - Chronone možemo grupirati u veće jedinice vremena (sati, dani ...)
 - Kontinuirani modeli izomorfni su realnim brojevima
 - Svaki realan broj odgovara jednom vremenskom trenutku
 - apsolutno/relativno
 - **31. listopada 2015. 9:15**

Vrijeme

 U diskretnom modelu kalendarske vrijednosti (godine, datume, ...) možemo preslikati u cjelobrojne konstante:

- Fenomeni iz stvarnog svijeta se
 - dogode u određenom trenutku (chrononu) i nemaju trajanje ili
 - 2. traju/istinite su u nekom vremenskom intervalu ili periodu

1. $\langle t_{4}, f_{1} \rangle$, $\langle t_{7}, f_{2} \rangle$, $\langle t_{8}, f_{3} \rangle$

- npr. f₁:dana t₄ je osobi na tekući račun uplaćena plaća
- 2. $\langle [t_{4}, t_{7}], f_{1} \rangle$, $\langle [t_{7}, t_{8}], f_{2} \rangle$, $\langle [t_{8}, now), f_{3} \rangle$ npr. f_{1} :osoba je u periodu $[t_{4}, t_{7})$ mogla biti u minusu na tekućem računu u iznosu od 5000.00 kn

Sadašnji trenutak NOW

- Teško ga je formalizirati
- Granica između prošlosti i budućnosti
- Stalno se povećava

Stanja i događaji

- Fenomeni iz stvarnog svijeta čija su nam vremenska svojstva zanimljiva mogu se opisati kao stanja ili kao događaji
 - Stanja opisuju činjenice vezane uz neki objekt u bazi podataka koje su istinite u nekom vremenskom intervalu ili periodu. Te se činjenice ne smatraju točnima izvan pridruženog perioda.
 - Događaji opsuju činjenice vezane uz neki objekt u bazi podataka koje su se dogodile u određenom trenutku (chrononu) i nemaju trajanje.

Stanja i događaji

 Primjer relacija tekRacunLimit i uplataIsplata kao relacije stanja i relacije događaja.

etanie

tekRacunLi	mit	Star	
		/	<u> </u>
brTekRacun	iznosLimit	vrijediOd	vrijediDo
2341906787	5000	1.1.2015.	1.5.2015.
2341906787	8000	2.6.2015.	NULL
2211906783	10000	1.1.2005.	NULL
2192345667	9000	1.1.2015.	1.7.2015.
2192345667	5000	2.7.2015.	NULL
5361906785	7000	20.5.2015.	NULL

		događaj
uplatalspla	ata	
brTekRacun	iznos	datum
2341906787	5000.00	10.06.2015.
2341906787	-3500.00	12.06.2015.
2192345667	-1000.00	01.07.2015.
2192345667	-5000	20.05.2015.

vlasnik

id	ime	prezime
100	Ivan	lvkošić
101	Petar	Petrović
102	Marko	Marković
105	Ante	Antić

tekRacun

brTekRacun	idVlasnik
2341906787	100
2211906783	101
2192345667	102
5361906785	105

Upravljanje vremenom u standardnim relacijskim SUBP

- Baze podataka kojima upravljaju standardni relacijski SUBP najčešće odražavaju trenutačno stanje svijeta (u mjeri u kojoj je ono poznato bazi podataka)
- UPDATE: izmjenom se gubi informacija o prethodnom stanju.
- Čuvanje povijesnih informacija u standardnim SUBP je moguće jedino ako aplikacija sama upravlja vremenom.
- Standardni SUBP/SQL (uključujući SQL Server, IBM Informix, Microsoft Access, MySQL,...) pružaju ograničenu potporu upravljanju vremenom u obliku nekoliko tipova podataka
 - date (definira godinu, mjesec i dan)
 - time (definira sat, minutu i sekundu)
 - timestamp (definira godinu, mjesec, dan, sat, minutu i sekundu)
- Mane upravljanja vremenom kroz aplikaciju:
 - Semantika vremena, operacije te ograničenja integriteta moraju biti ugrađeni izravno u aplikaciju
 - Složeni upiti podložni greškama
 - Nedjelotvorno izvođenje upita

Implementacija vremenskih koncepata

Dva su moguća pristupa. Podršku vremenskim konceptima ugraditi u:

- 1. korisničku aplikaciju
 - Koristiti postojeće tipova podataka i postojeći upitni jezik
 - Sve vremenske koncepti ugraditi izravno u aplikaciju
 - Nedjelotvorno i podložno greškama

SUBP

- Proširiti nevremensku shemu vremenskim tipovima podataka
- Proširiti algebru i upitni jezik dodatnim operatorima kao što je temporalno spajanje, temporalna selekcija, temporalna projekcija i sl.
- Implementirati temporalna integritetska ograničenja
- Omogućiti praćene povijesnih podataka (sa stanovišta vremena valjanosti podataka u stvarnom svijetu i sa stanovišta vremena evidentiranja u bazu podataka)

Vrijeme i SQL standard

- Tipovi podataka
 - SQL-86 i SQL-89: ne predviđaju vremenske tipove podataka
 - SQL-92: DATE, TIME, TIMESTAMP i INTERVAL
 - SQL-99: PERIOD ali ne kao novi tip nego objekt čije su granice neki od osnovnih vremenskih tipova
- Operacije
 - SQL-99: za PERIOD (osim =, <, IS NULL) predviđa samo OVERLAPS
- Upitni jezik
 - Richard Snodgrass 1992 predlaže proširivanje SQL-a vremenskim konceptima
 - 1993 pojavio se TSQL2 (razvila ga "temporal database community")
 - SQL-99: uključeni dijelovi TSQL2 (ali je zbog brojnih kritika doživio izmjene)
 - SQL-2011: izmjene TSQL2

SQL:2011 i temporalna podrška

- Definicija closed-open semantike
- Definicija relacija vremena valjanosti
- Definicija relacija transakcijskog vremena. Periodi transakcijskog vremena se održavaju automatski.
- Definicija bitemporalnih relacija
- Sintaksa za izmjenu i brisanje n-torki kojima se prate vrijeme valjanosti s automatskim dijeljenjem (split) vremenskog perioda
- Temporalni primarni ključ (uzima u obzir period vremena valjanosti)
- Temporalni strani ključ
- Proširenje upitnog jezika temporalnim predikatima za vremenske periode: CONTAINS, OVERLAPS, EQUALS, PRECEDES, SUCCEEDS, IMMEDIATELY PRECEDES, i IMMEDIATELY SUCCEEDS (izmijenjeni Allenovi operatori)
- Sintaksa za trenutne i sekvencirane upite

DATE, DATETIME, INTERVAL, PERIOD

Osnovni vremenski tipovi podataka:

instant

Određeni chronon na vremenskoj liniji diskretnog modela ili točka na vremenskoj liniji kontinuiranog modela (npr. 12. studeni 2015, 8:50:59)

interval

Neusidreni interval na vremenskoj liniji, ima samo trajanje (npr. 2 sata, 3 dana,...)

period

Usidreni (apsolutno definirani) interval na vremenskoj liniji (npr. zimski semestar 2015/16: 05.10.2015 – 29.1.2016)

 Za razliku od standardnih tipova podataka tip period nije uređen, nad njim je definirano samo parcijalno uređenje

periods

Skup disjunktnih usidrenih intervala, naziva se još i vremenskim elementom (engl. temporal element)

PostgreSQL: Vremenski tipovi podataka

Tip	Opis	donja granica	gornja granica	rezolucija	
date	datum	4713 BC	5874897 AD	dan	
timestamp[(p)] [without time zone]	datum i vrijeme, ne uključuje vremensku zonu	4713 BC	294276 AD	mikrosekunda	
timestamp[(p)] with time zone	datum i vrijeme, uključuje vremensku zonu	4713 BC	294276 AD	mikrosekunda	
time [(p)][without time zone]	vrijeme u danu (bez datuma)	00:00:00	24:00:00	mikrosekunda	
time [(p)] with time zone	time [(p)] with time zone vrijeme u danu (s vremenskom zonom)		24:00:00-1459	mikrosekunda	
	interval i period				
interval [fields] [(p)]	Vremenski interval (neusidreni)	-178000000 godina	+178000000 godina	mikrosekunda	
daterange	Usidreni vremenski interval (period) s granicama date tipa	-178000000 godina	+178000000 godina	mikrosekunda	
Usidreni vremenski interval (period) tsrange s granicama <i>timestamp</i> tipa, bez vremenske zone		4713 BC	294276 AD	mikrosekunda	
Usidreni vremenski interval (period) tstzrange s granicama <i>timestamp</i> tipa, s vremenskom zonom		4713 BC	294276 AD	mikrosekunda	
	periods – nije implementirano				

timestamp, timestampz, time, interval P – broj decimalnih mjesta u vrijednosti za sekunde (0-6).

PostgreSQL: timestamp, timestampz, vremenske zone

Timestamp pohranjuje informaciju o vremenu od godine do dijelova sekunde

```
SET DateStyle ='German, DMY';

SELECT '2015-11-12 08:15:00.123456'::timestamp(3)

time

SELECT '12.11.2015 08:15:00.123456'::timestamp(6)

SELECT '12.11.2015 08:15:00.123456'::timestamp(6)

WITH TIME ZONE

12.
```

timestamp(3) without time zone

12.11.2015 08:15:00.123

timestamp(3) without time zone

12.11.2015 08:15:00.123456

timestamp(3) with time zone

12.11.2015 08:15:00.123456 CET

- SQL koristi Coordinated Universal Time (UTC)
- Greenwich Mean Time (GMT) sunce je u podne iznad Greenwich-a
- Pomak istočno od 0-tog meridijana +, a zapadno –
 (Zagreb: UTC+1; New York: UTC-5)
- Podaci s opcijom WITH TIME ZONE uključuju, zajedno s pohranjenom vrijednošću, eksplicitan pomak (offset) u odnosu na UTC

PostgreSQL: vremenske zone

- Vremenska zona se u PostgreSQL-u može specificirati na različite načine, pomoću:
 - imena (npr. "Europe/Paris", "Australia/Tasmania",...) ili
 - kratice (npr. CEST, EST)

Vremenska zona koju koristi PostgreSQL na "našem" virtualnom računalu:

```
SELECT current_setting('TIMEZONE')

text

text

To je i vremenska

zona Zagreba:
```

Pomoću donjeg upita možemo doznati pomak vremenske zone u odnosu na UTC.

Upit izveden dana

01.10.2015

now date	name text	abbrev text	utc_offset interval
01.10.2015	Australia/Tasmania	EST	11:00:00
01.10.2015	Europe/Rome	CEST	02:00:00
01.10.2015	Europe/Zagreb	CEST	02:00:00

10.11.2015

now date	name text	abbrev text	utc_offset interval
10.11.2015	Australia/Tasmania	EST	11:00:00
10.11.2015	Europe/Rome	CEST	01:00:00
10.11.2015	Europe/Zagreb	CEST	01:00:00

Zbog čega gornji upit vraća različite vrijednosti utc_offset ako se izvede na različite datume?

PostgreSQL: vremenske zone

- Interno se podaci WITH TIME ZONE spremaju u UTC ili GMT vremenskoj zoni
- Ako zona nije eksplicitno navedena podrazumijeva se da je podatak u
 vremenskoj zoni definiranoj parametrom TIMEZONE

 SELECT current_setting('TIMEZONE')
- Provodi se konverzija iz podrazumijevane vremenske zone u UTC vrijeme

text
Europe/Rome

Rezultati upita na dan:

		01.10.2015	10.11.2015
1.	SELECT now()	now timestamp(3) with time zone	now timestamp(3) with time zone
		01.10.2015 15:17:19.592437 CEST	10.11.2015 15:17:19.592437 CEST
2.	SELECT now() AT TIME ZONE 'UTC';	now timestamp(3) without time zone	now timestamp(3) without time zone
		01.10.2015 13:17:19.592437 CEST	10.11.2015 14:17:19.592437 CEST
3.	SELECT now() AT TIME ZONE 'UTC-5';	now timestamp(3) without time zone	now timestamp(3) without time zone
		01.10.2015 18:17:19.592437 CEST	10.11.2015 19:17:19.592437 CEST

Zbog čega upiti 2. i 3. vraćaju različite vrijednosti ako se pokrenu na različite datume?

PostgreSQL: interval

interval [fiel	ds] [(p)]	Vremenski interval	-178000000 godina	+178000000 godina	mikrosekunda
Granule od	<i>fields</i> u <i>i</i>	<i>nterval</i> tipu:		SELECT '1Y'::int	erval interval 1 year
YEARMONTHDAYHOURMINUTESECOND	Y M D H M S	 YEAR TO MONTH DAY TO HOUR DAY TO MINUTE DAY TO SECOND HOUR TO MINUTE HOUR TO SECOND MINUTE TO SECOND 	TE ID	SELECT '1D'::int SELECT '1M'::int	1 day
nterval tip podatka se može specificirati na više načina: P quantity unit [quantity unit] [T [quantity unit]] P [years-months-days] [T hours:minutes:seconds]					
SELECT 'P1-2				interval r 2 mons 3 days 04:55:59	
SELECT 'P1Y2	M3DT4H55M	59S'::interval	1 yea	interval r 2 mons 3 days 04:55:59	
		9' ::interval + 59S'::interval	2 yea	interval r 4 mons 6 days 09:51:58	

PostgreSQL: daterange, tsrange, tstzrange

- Range tip odgovara PERIOD-u iz SQL standarda. Koristi se za prezentaciju raspona vrijednosti nekog elementarnog tipa (DATE, TIMESTAMP,... - podtip range tipa).
- Zanimljivi su nam rasponi za tipove date i timestamp (za time range ne postoji).
- Definira se na jedan od sljedećih načina:

```
( lower-bound, upper-bound )
( lower-bound, upper-bound ]
[ lower-bound, upper-bound )
[ lower-bound, upper-bound ]
empty

[ lower-bound, upper-bound ]

[ modnosno "]" - granica isključena
```

- Granica može biti:
 - Niz znakova koji predstavlja vrijednost valjanu za podtip
 - Izostavljena signalizira da nema granice
- Ako za raspon nije navedena
 - donja granica tada ona iznosi "minus beskonačno",
 a raspon uključuje sve vrijednosti manje (ili manje ili jednake) od gornje granice
 - Gornja granica tada tada ona iznosi "plus beskonačno",
 a raspon uključuje sve vrijednosti veće od (ili veće ili jednake) donje granice
- dateRange tip (uvijek) koristi oblik koji uključuje donju i isključuje gornju granicu: [) (tzv. closed-open notaciju za dateRange ćemo koristiti u predavanjima)

PostgreSQL: range - primjeri

obavljaFunkciju

```
CREATE TABLE obavljaFunkciju(
sifFun smallint REFERENCES ...,
sifOrgJed smallint REFERENCES ...,
sifOsoba smallint REFERENCES ...,
periodOdDo dateRange);
```

sifFun	sifOrgJed	sifOsoba	periodOdDo
10	100	51	[, 1.10.2010)
10	100	50	[1.10.2010, 1.10.2014)
10	100	100	[01.10.2014,)

```
INSERT INTO obavljaFunkciju VALUES (10, 100, 51, '[, 1.10.2010)');
INSERT INTO obavljaFunkciju VALUES (10, 100, 50, '[01.10.2010, 1.10.2014)');
INSERT INTO obavljaFunkciju VALUES (10, 100, 100, '[01.10.2014,)');
```

SELECT periodOdDo FROM obavljaFunkciju

```
periodOdDo
daretange
(, 1.10.2010)
[01.10.2010, 1.10.2014)
[01.10.2014,)
```

Odstupanje od *closed-open* notacije kada je donja granica "*minus beskonačno"*

```
SELECT '(09.11.2015, 15.11.2015]'::daterange
```

daterange

[10.11.2015,16.11.2015)

```
SELECT '(2015-11-12 08:15, 2015-11-12 11:00]'::tsrange
```

tsrange

Za tsRange *closed-open* notacija se ne primjenjuje.

("12.11.2015 08:15:00","12.11.2015 11:00:00"]

Odnosi između perioda

- Operacije definirane SQL standardom za PERIOD podudaraju se u velikoj mjeri s Allenovom klasifikacijom
- Postoji 13 mogućih relacija/predikata između dva perioda (Allenovi operatori)
- Taj skup operacija je:
 - Jasan za dva perioda samo jedan operator je istinit
 - Iscrpan za dva perioda uvijek je jedan operator istinit

Odnosi između perioda

Operator	Opis pomoću kranjih točaka
I ₁ before I ₂ I ₁ after I ₂	$end(I_1) < begin(I_2)$ $End(I_2) < negin(I_1)$
I_1 during I_2 I_1 contains I_2	$\begin{array}{lll} \text{begin}\left(I_1\right) & > \text{begin}\left(I_2\right) & \wedge & \text{end}\left(I_1\right) & \leq & \text{end}\left(I_2\right) & \vee \\ \text{begin}\left(I_1\right) & \geq & \text{begin}\left(I_2\right) & \wedge & \text{end}\left(I_1\right) & \leq & \text{end}\left(I_2\right) \\ \text{begin}\left(I_2\right) & > & \text{begin}\left(I_1\right) & \wedge & \text{end}\left(I_2\right) & \leq & \text{end}\left(I_1\right) & \vee \end{array}$
I ₁ overlaps I ₂	$begin(I_2) \ge begin(I_1) \land end(I_2) < end(I_1)$ $begin(I_1) < begin(I_2) \land end(I_1) > begin(I_2) \land$
I ₁ overlapped_by I ₂	$\operatorname{end}(I_1) < \operatorname{end}(I_2)$ $\operatorname{begin}(I_2) < \operatorname{begin}(I_1) \wedge \operatorname{end}(I_2) > \operatorname{begin}(I_1) \wedge$ $\operatorname{end}(I_2) < \operatorname{end}(I_1)$
I_1 meets I_2 I_1 met_by I_2	$end(I_1) = begin(I_2)$ $end(I_2) = begin(I_1)$
I ₁ starts I ₂ I ₁ started by I ₂	$\begin{aligned} \text{begin}(\mathbf{I}_1) &= \text{begin}(\mathbf{I}_2) \wedge \text{end}(\mathbf{I}_1) < \text{end}(\mathbf{I}_2) \\ \text{begin}(\mathbf{I}_1) &= \text{begin}(\mathbf{I}_2) \wedge \text{end}(\mathbf{I}_2) < \text{end}(\mathbf{I}_1) \end{aligned}$
I_1 finishes I_2 I_1 finished_by I_2	$begin(I_1) > begin(I_2) \land end(I_1) = end(I_2)$ $begin(I_2) > begin(I_1) \land end(I_1) = end(I_2)$
I_1 equals I_2	$begin(I_1) = begin(I_2) \land end(I_1) = end(I_2)$

Drugi operatori nad vremenskim podacima

- Zbrajanje perioda
- Razlika perioda
- Izdvajanje donje ili gornje granice perioda
- Pripadnost vremenskog trenutka periodu
- Odnosi između vremenskih trenutaka (jednako, različito)
- Svi su matematički prilično jednostavni (pogotovo u usporedbi s operacijama nad prostornim podacima)

PostgreSQL: Operatori nad rasponima (daterange, tsrange, tstzrange)

=	jednakost (<i>equals</i>)	Jesu li rasponi jednaki, obje granice i svojstva zatvorenosti
<>	različitost <i>(not equal)</i>	Jesu li rasponi različiti
<, <=	manji od (less then)	Prvo uspoređuju lijevu granicu i tek ako je ona
>, >=	veći od (<i>greater then</i>)	jednaka uspoređuju desnu, služe za implementaciju B stabala nad rasponima
@>	sadrži raspon ili element (contains)	Može se primijeniti na dva raspona ili na raspon i element
<@	sadržan je u	
&&	preklapanje (<i>overlap</i>)	Imaju li dva raspona zajedničkih točaka
<<,>>>	strogo lijevo/desno (strictly left/right)	
&<, &>	ne prostire se desno/lijevo od (does not extend to the right/left of)	
- -	susjedan <i>(is adjecent to)</i>	Jesu li rasponi susjedni, zanemaruje zatvorenost

SQL standard: CONTAINS @>, <@), OVERLAPS (&&), EQUALS (=), PRECEDES (<<), SUCCEEDS (>>), IMMEDIATELY PRECEDES, i IMMEDIATELY SUCCEEDS

PostgreSQL: Operatori nad rasponima (daterange, tsrange, tstzrange)

+	unija	Operacije unije i razlike će prijaviti pogrešku ako bi rezultat tih operacija trebao sadržavati dva disjunktna raspona.
*	presjek	trebao saurzavati uva uisjunktiia raspona.
-	razlika	

Operatori <<, >>, &<, &>, -|- uvijek vraćaju vrijednost false ako je jedan od operanada prazni raspon

Funkcije nad rasponima :

Lower	Donja granica raspona	
upper	Gornja granica raspona	
isempty	Je li raspon prazan	
lower_inc	Je li donja granica zatvorena (inclusive)	
upper_inc	Je li gornja granica zatvorena (inclusive)	
lower_inf	Je li donja granica beskonačna (infinite)	
upper_inf	Je li gornja granica beskonačna (infinite)	

PostgreSQL: Operatori nad rasponima - primjer

prisustvo

rezDvorana oznDvorana ... terminOdDo B5 ... [2015-11-12 08:00, 2015-11-12 11:00) B5 ... [2015-11-12 11:00, 2015-11-12 13:00)

oznDvorana	sifStudent	terminOdDo
OZIIDVOI alia	Silotudelit	terminoupo
B5	23459789	[2015-11-12 08:30, 2015-11-12 11:00)
B5	20006789	[2015-11-12 08:31, 2015-11-12 10:59)
•••		

Ispiši prezimena i imena studenata koji su boravili u dvorani B5 12.11.2015 između 8:30 i 11:00.
Smatrati da je student boravio u dvorani i ako nije došao na početku i ako je otišao prije kraja predavanja.

student ime prezime

U upitu treba dovesti u vezu prisustvo.terminOdDo i rezDvorana.terminOdDo.

Operatori koji možda dolaze u obzir:

PostgreSQL: Operatori nad rasponima - primjer

```
    @> sadrži raspon ili element prisustvo.terminOdDo @> rezDvorana.terminOdDo
    <@ sadržan je u prisustvo.terminOdDo <@ rezDvorana.terminOdDo</li>
    && Imaju li dva raspona zajedničkih točaka prisustvo.terminOdDo && rezDvorana.terminOdDo
```

- 1. Uvjet u rezultatu neće imati studente koji nisu boravili u dvorani čitav period rezDvorana.terminOdDo npr. ušli su u dvoranu X minuta nakon početka ili su izašli iz dvorane X minuta prije kraja.
- 2. Uvjet u rezultatu neće imati studente koji su u dvorani boravili dulje od perioda rezDvorana.terminOdDo - npr. ušli su u dvoranu X minuta prije početka ili su izašli iz dvorane X minuta nakon kraja
- 3. Uvjet će uzeti u obzir sve studente koji su boravili u dvorani u periodu koji ima zajedničkih "točaka" s periodom *rezDvorana.terminOdDo.*

```
SELECT student.JMBAG, ime, prezime
  FROM prisustvo, rezDvorana, student
WHERE prisustvo.oznDvorana = rezDvorana.oznDvorana
  AND prisustvo.JMBAG = student.JMBAG
  AND rezDvorana.terminOdDo = '[2015-11-12 08:15.000, 2015-11-12 11:00.000]'
AND prisustvo.terminOdDo && rezDvorana.terminOdDo
```

Vremenske dimenzije

- U kontekstu temporalnih baza podataka značajne su dvije ortogonalne (međusobno nezavisne) dimenzije vremena
 - Vrijeme valjanosti (valid time)
 Vrijeme u stvarnom svijetu kada se neki događaj dogodio ili period u kojem neka činjenica važeća, nezavisno od trenutka kada je informacija o tom događaju/činjenici zapisana u bazu podataka
 - Transakcijsko vrijeme (transaction time ili system time)
 Vrijeme kada je određena promjena zabilježena u bazi podataka ili vremenski interval tijekom kojeg se baza podataka nalazi u određenom stanju
- SQL:2011 standard:
 - vrijeme valjanosti je podržano relacijama koje sadrže aplication-time period
 - Transakcijsko vrijeme je podržano relacijama koje sadrže system-time period, a nazivaju se system-versioned relacijama
 - predviđa samo jedan aplication-time i samo jedan system-versioned period po relaciji

Vrijeme valjanosti - primjer

	Datum	Što se dogodilo u stvarnom svijetu	Akcija u bazi podataka	Stanje u bazi podataka
1	01.01.1980	U Supetru je rođena Ana Par	nema	nema osobe Ana Par
	01.02.1980	Roditelji su prijavili rođenje Ane Par	INSERT	Ana Par prebiva u Supetru
2	01.01.2000	Ana Par se preselila iz Supetra u Zagreb, ali nije prijavila MUP-u	nema	Ana Par prebiva u Supetru
	02.01.2000	Ana Par je prijavila novo prebivalište MUP-u	INSERT	Ana Par prebiva u Zagrebu

Vrijeme valjanosti možemo izraziti pomoću perioda pocetakVV-krajVV

Razmislite: Bi li bilo prikladnije n-torke koje nisu valjane u trenutku "sada" izdvojiti u zasebnu relaciju?

Transakcijsko vrijeme - primjer

	Datum	Što se dogodilo u stvarnom svijetu	Akcija u bazi podataka	Stanje u bazi podataka
	01.01.1980	U Supetru je rođena Ana Par	nema	nema osobe Ana Par
	01.02.1980	Roditelji su prijavili rođenje Ane Par	nema	nema osobe Ana Par
1	02.02.1980	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Supetru
	01.01.2000	Ana Par se preselila iz Supetra u Zagreba, ali nije prijavila MUP-u	nema	Ana Par prebiva u Supetru
	02.01.2000	Ana Par je prijavila novo prebivalište MUP-u	nema	Ana Par prebiva u Supetru
2	04.01.2000	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Zagrebu

Transakcijsko vrijeme možemo izraziti pomoću perioda pocetakVT - krajVT

1		ime	prezime	postOznPreb	pocetakVT	krajVT	•
		Ana	Par	21400	02.02.1980	∞	Što je ključ n-torke?
2		ime	prezime	postOznPreb	pocetakVT	krajVT	Što ako želimo pratiti i
		Ana	Par	21400	02.02.1980	04.01.2000	vrijeme valjanosti i transakcijsko
		Ana	Par	10000	04.01.2000	∞	vrijeme?

Vrijeme valjanosti - primjer

 Porezna uprava je 01.01.2005 otkrila da je Ana Par u periodu 01.01.1998 -01.01.1999 prebivala u Splitu, ali to nije prijavila (da bi izbjegla plaćanje prireza -Supetar 0%, Split 10%)

- Nemamo informaciju da je sve do 01.01.2005 "baza podataka tvrdila" da Ana Par u periodu 01.01.1998 - 01.01.1998 prebiva u Supetru
- Ta je informacija važna kao dokaz porezne prevare i kao opravdanje izračuna poreza za Anu Par prema podacima koji nisu odgovarali istini

Vrijeme valjanosti i transakcijsko vrijeme - primjer

	Datum	Što se dogodilo u stvarnom svijetu	Akcija u BP	Stanje u bazi podataka
1	01.01.1980	U Supetru je rođena Ana Par	nema	nema osobe Ana Par
	01.02.1980	Roditelji su prijavili rođenje Ane Par		nema osobe Ana Par
2	02.02.1980	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Supetru
3	01.01.2000	Ana Par se preselila iz Supetra u Zagreba, ali nije prijavila MUP-u	nema	Ana Par prebiva u Supetru
	02.01.2000	Ana Par je prijavila novo prebivalište MUP-u	nema	Ana Par prebiva u Supetru
4	04.01.2000	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Zagrebu
5	01.01.2005	Porezna uprava je otkrila da je Ana Par u periodu 01.01.1998 - 31.12.1998 prebivala u Splitu		

1+2	 ime	prezime	postOznPreb	pocetakVV	krajVV	pocetakVT	krajVT
	Ana	Par	21400	01.01.1980	∞	02.02.1980	∞

3+4	 ime	prezime	postOznPreb	pocetakVV	krajVV	pocetakVT	krajVT
	Ana	Par	21400	01.01.1980	∞	02.02.1980	04.01.2000
	Ana	Par	21400	01.01.1980	01.01.2000	04.01.2000	∞
	Ana	Par	10000	01.01.2000	∞	04.01.2000	∞

Vrijeme valjanosti i transakcijsko vrijeme - primjer

	Datum	Što se dogodilo u stvarnom svijetu	Akcija u BP	Stanje u bazi podataka
1	01.01.1980	U Supetru je rođena Ana Par	nema	nema osobe Ana Par
	01.02.1980	Roditelji su prijavili rođenje Ane Par	nema	nema osobe Ana Par
2	02.02.1980	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Supetru
3	01.01.2000	Ana Par se preselila iz Supetra u Zagreba, ali nije prijavila MUP-u	nema	Ana Par prebiva u Supetru
	02.01.2000	Ana Par je prijavila novo prebivalište MUP-u	nema	Ana Par prebiva u Supetru
4	04.01.2000	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Zagrebu
5	01.01.2005	Porezna uprava je otkrila da je Ana Par u periodu 01.01.1998 - 31.12.1998 prebivala u Splitu		

								_
3+4	 ime	prezime	postOznPreb	pocetakVV	krajVV	pocetakVT	krajVT	
	Ana	Par	21400	01.01.1980	∞	02.02.1980	04.01.2000	
	Ana	Par	21400	01.01.1980	01.01.2000	04.01.2000	∞	4
	Ana	Par	10000	01.01.2000	∞	04.01.2000	∞	
5					l bor			

	ime	prezime	postOznPreb	pocetakVV	krajVV	pocetakVT	krajVT
	Ana	Par	21400	01.01.1980	∞	02.02.1980	04.01.2000
	Ana	Par	21400	01.01.1980	01.01.2000	04.01.2000	01.01.2005
	Ana	Par	10000	01.01.2000	∞	04.01.2000	∞
	Ana	Par	21400	01.01.1980	01.01.1998	01.01.2005	∞
	Ana	Par	21000	01.01.1998	01.01.1999	01.01.2005	∞
	Ana	Par	21400	01.01.1999	01.01.2000	01.01.2005	∞

Temporalne relacije

 S obzirom na sposobnost upravljanja vremenom valjanosti i transakcijskim vremenom, razlikujemo četiri vrste relacija

Trenutačne relacije (snapshot tables)

Relacije vremena valjanosti (aplication-time period tables)

Relacije transakcijskog vremena (system-versioned tables)

Bitemporalne relacije (system-versioned aplication-time)

period tables)

Semantika vremena valjanosti i transakcijskog vremena je različita
 ne ponašaju se jednako

 PostgreSQL ne nudi izravnu podršku za upravljanje vremenom valjanosti niti transakcijskim vremenom

Link za dodatna pojašnjenja: Temporal Features in SQL standard

Temporalne relacije

Trenutačne relacije (snapshot)

Relacije vremena valjanosti

Relacije transakcijskog vremena

Bitemporalne relacije

Trenutačne relacije

- Trenutačne baze podataka (engl. snapshot database)
 - Opisuju jedan trenutak u stvarnom svijetu, najčešće sadašnjost
 - Stanje baze mijenja se operacijama INSERT, UPDATE i DELETE
 - Staro stanje baze se zaboravlja

Relacije vremena valjanosti (aplication-time period tables)

 Pohranjuju povijest podataka u stvarnom svijetu, tj. pohranjuju stanje baze podataka duž osi vremena valjanosti

SQL:2011 za ove relacije predviđa:

- Sadrže dva dodatna atributa početak i kraj perioda valjanosti
- Sadrže period valjanosti kao metapodatak definiran početkom i krajem
- Korisnik definira početak i kraj vremena valjanosti
- sintaksu za
 - definiranje primarnog ključa koja osigurava da se periodi dvije n-torke s različitim ključevima ne preklapaju
 - definiranje referencijskog integriteta koji osigurava da sada je period referencirajuće n-torke u potpunosti sadržan u periodu jedne referencirane n-torke ili u kombiniranom periodu dvije ili više uzastopnih referenciranih n-torki
 - UPDATE i DELETE naredbe za izmjenu ili brisanje ntorke u parcijalnom periodu

Relacije transakcijskog vremena (system-versioned tables)

- Pohranjuju izmjene u bazi podataka tj. stanje baze podataka duž osi transakcijskog vremena
- Moguće je reproducirati stanje baze (ne nužno stanje stvarnog svijeta) iz bilo kojeg trenutka u prošlosti
- SQL:2011 predviđa:
 - relacija sadrži period, standardom definiranog imena (SYSTEM_TIME) čija vrijednost se održava navođenjem sintakse WITH SYSTEM VERSIONING
 - relacija sadrži dva dodatna atributa početak i kraj SYSTEM_TIME perioda
 - vrijednosti oba atributa održava SUBP, korisnicima nije dozvoljeno ažuriranje tih vrijednosti
 - stare vrijednosti izmijenjenih n-torki se čuvaju
 - n-torke čiji period ima presjek s trenutkom sada se nazivaju trenutnim sistemskim n-torkama (current system rows), sve ostale se nazivaju povijesnim sistemskim n-torkama (historical system rows)
 - samo trenutne sistemske n-torke se smiju mijenjati i brisati
 - sva integritetska ograničenja se provode samo nad trenutnim sistemskim n-torkama

Bitemporalne relacije (system-versioned application-time period tables)

- Pohranjuju stanje baze podataka duž obje vremenske osi
- Podržavaju svojstva i relacija vremena valjanosti i relacija transakcijskog vremena

Linkovi za dodatna pojašnjena: The Case for Bitemporal Data 1/7, 2/7, 3/7,...

Ograničenja integriteta: Temporalni primarni ključ

obavljaFunkciju

sifFun	sifOrgJed	sifOsoba	datumOd	datumDo
10	100	51	1.10.2006	01.10.2010
10	100	50	1.10.2010	01.10.2014
10	100	100	1.10.2014	01.10.2016
10	100	80	1.10.2012	01.10.2013

Niti jedna od donjih definicija ključa ne sprječava ovo:

Dekan u intervalu od 1.10.2012 do 30.09.2013. nije jedinstveno definiran.

Što bi bio dobar ključ?

- 1. {sifFun, sifOrgJed, datumOd}
- 2. {sifFun, sifOrgJed, datumDo}
- 3. {sifFun, sifOrgJed, datumOd, datumDo}

Dodatno, datumDo ne mora za svaku funkciju biti poznat (npr. Studentski savjetnik), a entitetski integritet ne dozvoljava NULL vrijednost niti u jednom atributu ključa

Ispravan ključ uključuje atribute

- sifFun i sifOrgjed za koje će se jedinstvenost ispitivati pomoću operatora =
- vremenski atribut tipa vremenskiPeriod za koji će se jedinstvenost ispitivati pomoću
 operatora za rad s period tipom (spriječiti preklapanje, sadržavanje, postojanje presjeka,...)

Ograničenja integriteta: Temporalni strani ključ

OrgJed

			orgJedPeriod		
sifOrgJed	nazOrgJed	,,,	datumOd	datumDo	
100	ETF		1.10.1926	29.06.1995	
100	FER		29.06.1995	31.12.2999	

K_{ORGJED}={sifOrgJed, orgJedPeriod}

obavljaFunkciju

			obFunPeriod		
sifFun	sifOrgJed	sifOsoba	datumOd	datumDo	
10	100	12	1.10.1990	01.10.1992	
10	100	50	1.10.2010	01.10.2014	

- Strani ključ koji uključuje atribut nekog od period tipova podataka podrazumijeva:
 - Referencirana relacija mora imati ključ s atributom tipa period
 - Period referencirajuće n-torke mora biti u potpunosti sadržan u periodu jedne referencirane ntorke ili u kombiniranom periodu dvije ili više uzastopnih referenciranih n-torki
- Prva n-torka relacije obavljaFunkciju referencira se na prvu n-torku relacije orgJed, a druga n-torka relacije obavljaFunkciju na drugu n-torku relacije orgJed
- Ograničenje stranog ključa FK_{OBFUN} orgjed trebalo bi provjeravati sljedećim uvjetima:

```
obavljaFunkciju.sifOrgJed = orgJed.sifOrgJed AND obFunPeriod jeSadržanU jednom ili više uzastopnih orgJedPeriod
```

SQL standard: Relacije vremena valjanosti

OrgJed obavljaFunkciju

sifOrgJed	nazOrgJed	,,,	datumOd	datumDo	sifFun	sifOrgJed	sifOsoba	datumOd	datumDo
100	ETF		1.10.1926	29.06.1995	10	100	12	1.10.1990	01.10.1992
100	FER		29.06.1995	31.12.2999	10	100	50	1.10.2010	01.10.2014

```
CREATE TABLE orgJed
(sifOrgJed INTEGER,
nazOrgJed VARCHAR(50) NOT NULL,
    . . .
datumOd DATE NOT NULL,
datumDo DATE NOT NULL,
PERIOD FOR orgJedPeriod (datumOd, datumDo),
PRIMARY KEY (sifOrgjed, orgJedPeriod WITHOUT OVERLAPS));
```

Početak i kraj perioda

- Određuje korisnik
- može biti u prošlosti, sadašnjosti ili budućnosti

```
CREATE TABLE obavljaFunkciju

(sifFun INTEGER,
sifOrgJed INTEGER,
...
datumOd DATE NOT NULL,
datumDo DATE NOT NULL,
PERIOD FOR obFunPeriod (startDate, endDate),
PRIMARY KEY (sifFun, sifOrgjed, obFunPeriod WITHOUT OVERLAPS),
FOREIGN KEY (sifOrgJed, PERIOD obFunPeriod) REFERENCES
orgJed (sifOrgJed, PERIOD orgJedPeriod));
```

PostgreSQL: Relacije vremena valjanosti

OrgJed obavljaFunkciju

sifOrgJed	nazOrgJed	 orgJedPeriod	sifFun	sifOrgJed	sifOsoba	obFunPeriod
100	ETF	 [1.10.1926, 29.06.1995)	10	100	12	[1.10.1990, 01.10.1992)
100	FER	 [29.06.1995, 31.12.2999)	10	100	50	[1.10.2010, 01.10.2014)

```
CREATE EXTENSION bTree_gist;
CREATE TABLE orgJed
(sifOrgJed INTEGER,
  nazOrgJed VARCHAR(50) NOT NULL,
    . . .
  orgJedPeriod DATERANGE,
PRIMARY KEY (sifOrgjed, orgJedPeriod),
CONSTRAINT pkOrgJed EXCLUDE USING gist
    (sifOrgJed WITH =, orgJedPeriod WITH &&)
)
```

```
CREATE table obavljaFunkciju (
sifFun SMALLINT CONSTRAINT fkOFFun REFERENCES fun(sifFun),
sifOrgJed SMALLINT CONSTRAINT fkOFOrgJed REFERENCES orgJed(sifOrgJed),
sifOsoba SMALLINT CONSTRAINT fkOFOsoba REFERENCES osoba(sifOsoba),
obFunPeriod DATERANGE,
PRIMARY KEY (sifFUn, sifOrgjed, obFunPeriod),
CONSTRAINT pkObavljaFunkciju EXCLUDE USING gist
  (sifFun WITH =, sifOrgJed WITH =, obFunperiod WITH &&)
);
```

PostgreSQL: Temporalni primarni ključ

obav		-110	10	
CHAV	1121	-	K (-	
ONGI		•		
	•			•

sifFun	sifOrgJed	sifOsoba	obFunPeriod
10	100	51	[01.10.2006, 01.10.2010)
10	100	50	[01.10.2010, 01.10.2014)
10	100	100	[01.10.2014, 01.10.2016)

Implementacija perioda u PostgreSQL-u:

- dateRange
- tsRange
- tstzRange

PK = {sifFun, sifOrgJed, obFunPeriod}

- Može se implementirati pomoću tzv. ograničenja isključivanja (EXCLUDE CONSTRAINT)
- Iskazuje se deklarativno pri definiciji ograničenja

```
CONSTRAINT constraint_name
EXCLUDE [ USING index_method ] ( exclude_element WITH operator [, ... ] )
index_parameters [ WHERE ( predicate ) ] |
```

Za period tip podatka EXCLUDE prihvaća

komutativne operatore: && i -|- (preklapaju li se, jesu li susjedni) ne prihvaća nekomutativne : @>, <@, <<, >> , &<, &>

- Prednosti deklarativnog načina očuvanja integriteta u odnosu na implementaciju pomoću okidača:
 - jednostavnost,
 - manja podložnost greškama,
 - bolje performance

Link za dodatna pojašnjenja: http://www.postgresql.org/docs/9.4/static/sql-createtable.html#SQL-CREATETABLE-EXCLUDE

PostgreSQL: Temporalni primarni ključ

obavljaFunkciju

sifFun	sifOrgJed	sifOsoba	obFunPeriod
10	100	51	[01.10.2006, 01.10.2010)
10	100	50	[01.10.2010, 01.10.2014)
10	100	100	[01.10.2012, 01.10.2014)

```
INSERT INTO obavljaFunkciju VALUES(10, 100, 51, '[01.10.2006, 01.10.2010)');

INSERT INTO obavljaFunkciju VALUES(10, 100, 50, '[01.10.2010, 01.10.2014)');

INSERT INTO obavljaFunkciju VALUES(10, 100, 100, '[01.10.2012, 01.10.20114)')
```

ERROR: conflicting key value violates exclusion constraint "pkobavljafunkciju"

DETAIL: Key (siffun, siforgjed, obfunperiod)=(10, 100, [2012-10-01,2014-10-01)) conflicts with existing key (siffun, siforgjed, obfunperiod)=(10, 100, [2010-10-01,2014-10-01)).

PostgreSQL: Temporalni primarni ključ

```
...
CONSTRAINT pkObavljaFunkciju EXCLUDE USING gist
(sifFun WITH =, sifOrgJed WITH =, obFunPeriod WITH &&)
...
```

INSERT INTO obavljaFunkciju VALUES(10, 100, 100, '[1.10.2012, 01.10.2013)');

Pri provjeri integriteta ključa provjerava se postoji li n-torka

- koja ima jednaku vrijednost atributa sifFun i sifOrgjed (operator =) i
- s kojom se preklapa vrijednost atributa obFunPeriod (operator &&)
- Za operator && se koristi gist indeks

Property	Value
€ Name	pkobavljafunkciju
□□ OID	17158
🗐 Index OID	17157
Tablespace	pg_default
Columns	siffun WITH =, siforgjed WITH =, periododdo WITH &&
Unique?	No
Primary?	No
Clustered?	No
📖 Valid?	Yes
Access method	gist

PostgreSQL: Temporalni strani ključ

```
CREATE EXTENSION bTree gist;
CREATE TABLE orgJed
(sifOrgJed
             INTEGER,
 nazOrgJed VARCHAR(50) NOT NULL,
 orgJedPeriod DATERANGE,
 PRIMARY KEY (sifOrgjed, orgJedPeriod),
 CONSTRAINT pkOrgJed EXCLUDE USING gist
    (sifOrgJed WITH =, orgJedPeriod WITH &&)
CREATE table obavljaFunkciju (
sifFun
              SMALLINT CONSTRAINT fkOFFun
                                             REFERENCES fun (siffun),
sifOrgJed
              SMALLINT CONSTRAINT fkOFOrgJed REFERENCES orgJed(sifOrgJed),
sifOsoba
              SMALLINT CONSTRAINT fkOFOsoba REFERENCES osoba(sifOsoba),
obFunPeriod
              DATERANGE,
PRIMARY KEY (siffun, sifOrgjed, obFunPeriod),
CONSTRAINT pkObavljaFunkciju EXCLUDE USING gist
    (sifFun WITH =, sifOrgJed WITH =, obFunperiod WITH &&),
FOREIGN KEY (sifOrgJed, obFunPeriod) REFERENCES
orgJed (sifOrgJed, orgJedPeriod)
USING gist (oznDvorana WITH =, terminOdDo WITH &&)
                                                   Nije implementirano
```

Moglo bi se implementirati pomoću okidača i procedura.

SQL standard: Relacije vremena valjanosti - UPDATE

- Predviđena (specijalna) sintaksa koja omogućava specificiranje perioda na kojeg se UPDATE odnosi.
- UPDATE će zahvatiti samo n-torke koje se nalaze unutar specificiranog perioda.
- UPDATE može uzrokovati razdvajanje perioda INSERT do dvije n-torke koje se odnose na periode izvan specificiranog perioda.

				<u>osoba</u>	osoba	
<u>sifOsoba</u>	ime	prezime	pbrPreb	datumOd	datumDo	
100	Ana	Par	21400	01.01.1980	01.01.2000	
100	Ana	Par	10000	01.01.2000	31.12.9999	

UPDATE osoba FOR PORTION OF osobaPeriod FROM DATE '01.01.1998' TO DATE '01.01.1999' SET pbrPreb = '21000' WHERE sifOsoba = 100

				<u>osobaPeriod</u>	
<u>sifOsoba</u>	ime	prezime	pbrPreb	datumOd	datumDo
100	Ana	Par	21400	01.01.1980	01.01.1998
100	Ana	Par	21000	01.01.1998	01.01.1999
100	Ana	Par	21400	01.01.1999	01.01.2000
100	Ana	Par	10000	01.01.2000	31.12.9999

Razdvajanje perioda – 1 UPDATE+ 2 INSERT-a

SQL standard: Relacije vremena valjanosti - DELETE

- Predviđena (specijalna) sintaksa koja omogućava specificiranje perioda na kojeg se DELETE odnosi.
- DELETE će zahvatiti samo n-torke koje se nalaze unutar specificiranog perioda.
- DELETE može uzrokovati razdvajanje perioda INSERT do dvije n-torke koje se odnose na periode izvan specificiranog perioda.

				<u>osoba</u>	osoba	
<u>sifOsoba</u>	ime	prezime	pbrPreb	datumOd	datumDo	
100	Ana	Par	21400	01.01.1980	01.01.2000	
100	Ana	Par	10000	01.01.2000	31.12.9999	

DELETE FROM osoba FOR PORTION OF osobaPeriod FROM DATE '01.01.1998' TO DATE '01.01.1999'
WHERE sifOsoba = 100

				<u>osobaPeriod</u>		
<u>sifOsoba</u>	ime	prezime	pbrPreb	datumOd	datumDo	
100	Ana	Par	21400	01.01.1980	01.01.1998	
100	Ana	Par	21400	01.01.1999	01.01.2000	
100	Ana	Par	10000	01.01.2000	31.12.9999	

Razdvajanje perioda – 1 DELETE + 2 INSERT-a

 PostgreSQL nema podršku za automatsko razdvajanje perioda kod UPDATE i DELETE naredbe za dio perioda.

Prednosti relacija vremena valjanosti

- Većina poslovnih podataka je podložna promjenama tj. zahtijeva praćenje perioda u kojem je određena vrijednost valjana
- Današnji SUBP uglavnom ne pružaju potporu za:
 - Definiranje perioda valjanosti za n-torku
 - Definiranje ograničenja tipa "osoba može prebivati samo u jednom mjestu u određenom vremenskom periodu"
 - UPDATE/DELETE n-torke za dio perioda valjanosti
- Trenutno, najčešće aplikacije pružaju podršku za gornje zahtjeve
- Glavni problemi:
 - Kompleksnost programskog koda
 - Loše performance
- Relacije vremena valjanosti omogućavaju:
 - Pojednostavljenje programskog koda
 - Poboljšane performance
 - Transparentne su u odnosu na naslijeđene aplikacije

SQL standard: Relacije transakcijskog vremena

```
CREATE TABLE osoba
(sifOsoba INTEGER PRIMARY KEY,
...

postOznPreb VARCHAR(15) REFERENCES mjesto (postOzn),
system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,
system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM_TIME (system_start, system_end),
) WITH SYSTEM VERSIONING;
```

SYSTEM TIME

- Standardom rezervirano ime
- počinje u trenutku system_start, i završava u trenutku system_end
- Koristi closed-open notaciju
- Pri INSERT-u n-torke, system_start se automatski postavlja na trenutak obavljanja transakcije, a system_end na najveću timestamp vrijednost.

Sljedeća INSERT naredba je obavljena 02.02.1980.

```
INSERT INTO osoba VALUES (100, 'Ana', 'Par', '21400');
```

				SYSTEM_PERIOD		
sifOsoba	ime	prezime	pbrPreb	system_start	system_end	
100	Ana	Par	21400	02.02.1980	31.12.9999	

Početak i kraj perioda SYSTEM_TIME su uvijek timestamp tipa. Jednostavnosti radi uzimamo samo datum.

SQL standard: Relacije transakcijskog vremena - UPDATE

- Vrijednost n-torke prije UPDATE naredbe ("old value") se automatski INSERT-ira u relaciju
- Kraj perioda stare n-torke i početak perioda nove n-torke postavljaju se na vrijeme transakcije
- Korisnici ne smiju mijenjati početak i kraj perioda

				SYSTEM_PERIOD		
sifOsoba	ime	prezime	pbrPreb	system_start	system_end	
100	Ana	Par	21400	02.02.1980	31.12.9999	

Sljedeća UPDATE naredba je obavljena 04.01.2000.

UPDATE osoba SET postOznPreb = 10000 where sifOsoba = 100;

				SYSTEM_	PERIOD		
sifOsoba	ime	prezime	pbrPreb	system_start	system_end	INSERT stare n-torke	
100	Ana	Par	21400	02.02.1980	04.01.2000	+ UPDATE system_end	
100	Ana	Par	10000	04.01.2000	31.12.9999	 Nova n-torke UPDATE system start	
						OPDATE System_start	

SQL standard: Relacije transakcijskog vremena - DELETE

 DELETE naredbom se n-torka ne briše, kraj perioda n-torke se postavlja na vrijeme transakcije

				SYSTEM_PERIOD	
sifOsoba	ime	prezime	pbrPreb	system_start	system_end
100	Ana	Par	21400	02.02.1980	04.01.2000
100	Ana	Par	10000	04.01.2000	31.12.9999

Sljedeća DELETE naredba je obavljena 10.11.2015.

DELETE FROM osoba where sifOsoba = 100;

				SYSTEM_PERIOD	
sifOsoba	ime	prezime	pbrPreb	system_start	system_end
100	Ana	Par	21400	02.02.1980	04.01.2000
100	Ana	Par	10000	04.01.2000	10.11.2015

PostgreSQL: Relacije transakcijskog vremena

Podržane kroz proširenje:

```
CREATE EXTENSION temporal_tables;
```

Relacija osoba sadrži timestamp range atribut system_period za transakcijski period. U njoj se čuvaju aktualne n-torke

U relaciji osobaHistory se čuvaju n-torke koje nisu aktualne u trenutku sada

```
CREATE TABLE osobaHistory (LIKE osoba);

CREATE TRIGGER versioning_trigger

BEFORE INSERT OR UPDATE OR DELETE ON osoba

FOR EACH ROW EXECUTE PROCEDURE versioning(
   'system_period', 'osobaHistory', true
);
```

PostgreSQL: Relacije transakcijskog vremena

	Datum	Što se dogodilo u stvarnom svijetu	Akcija u bazi podataka	Stanje u bazi podataka
1	01.01.1980	U Supetru (21400) je rođena Ana Par	nema	nema osobe Ana Par
	01.02.1980	Roditelji su prijavili rođenje Ane Par	nema	nema osobe Ana Par
2	02.02.1980	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Supetru
3	01.01.2000	Ana Par se preselila iz Supetra u Zagreb, ali nije prijavila MUP-u	nema	Ana Par prebiva u Supetru
	02.01.2000	Ana Par je prijavila novo prebivalište MUP-u	nema	Ana Par prebiva u Supetru
4	04.01.2000	Administrator je unio podatke o Ani Par u bazu podataka	INSERT	Ana Par prebiva u Zagrebu
5	01.01.2005	Porezna uprava je otkrila da je Ana Par u periodu 01.01.1998 - 31.12.1998 prebivala u Splitu (21000)		

osoba	sifOsoba	ime	prezime	pbrPreb	SYSTEM_PERIOD
	100	Ana	Par	21000	[01.05.2005,)
osobaHistory	sifOsoba	ime	prezime	pbrPreb	SYSTEM_PERIOD
osobaHistory	sifOsoba 100	ime Ana	prezime Par	pbrPreb 21400	SYSTEM_PERIOD [02.02.1980, 04.01.2000

Što baza kaže, gdje Ana prebiva sada? Je li to doista mjesto u kojem Ana prebiva sada? Transakcijski period ne može dati točan odgovor na gornje pitanje. Treba pamtiti i period valjanosti n-torke.

SQL standard: Bitemporalne relacije

- Relacija koja je istovremeno transakcijska i relacija vremena valjanosti.
- Podržava period vremena valjanosti i period transakcijskog vremena

```
CREATE TABLE osoba
(sifOsoba
             INTEGER PRIMARY KEY,
postOznPreb VARCHAR(15)
                          REFERENCES mjesto (postOzn),
datumOd
           DATE NOT NULL,
           DATE NOT NULL,
datumDo
system start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,
system end TIMESTAMP (6) GENERATED ALWAYS AS ROW END,
PERIOD FOR osobaPeriod (datumOd, datumDo),
              SYSTEM TIME (system start, system end),
PERIOD FOR
PRIMARY KEY (sifOsoba, osobaPeriod WITHOUT OVERLAPS),
) WITH SYSTEM VERSIONING:
```

SQL standard: Bitemporalne relacije

02.02.1980 je administrator evidentirao podatke o Ani Par koja prebiva u Supetru od 01.01.1980

INSERT INTO osoba VALUES ('Ana', 'Par', '21400', '01.01.1980', '31.12.9999');

				<u>osobaPeriod</u>		SYSTEM_TIME	
<u>sifOsoba</u>	ime	prezime	postOznPreb	datumOd	datumDo	system_start	system_end
100	Ana	Par	21400	01.01.1980	31.12.9999	02.02.1980	31.12.9999

04.01.2000 je administrator evidentirao da Ana Par prebiva u Zagrebu od 01.01.2000

```
UPDATE osoba FOR PORTION OF osobaPeriod FROM DATE '01.01.2000'
TO DATE '31.12.9999'
SET pbrPreb = '10000'
WHERE sifOsoba = 100
```

				<u>osobaPeriod</u>		SYSTEM_TIME	
<u>sifOsoba</u>	ime	prezime	postOznPreb	datumOd	datumDo	system_start	system_end
100	Ana	Par	21400	01.01.1980	31.12.9999	02.02.1980	04.01.2000
100	Ana	Par	21400	01.01.1980	01.01.2000	04.01.2000	31.12.9999
100	Ana	Par	10000	01.01.2000	31.12.9999	04.01.2000	31.12.9999

SQL standard: Bitemporalne relacije

				<u>osobaPeriod</u>		SYSTEM_TIME		
<u>sifOsoba</u>	ime	prezime	postOznPreb	datumOd	datumDo	system_start	system_end	
100	Ana	Par	21400	01.01.1980	31.12.9999	02.02.1980	04.01.2000	
100	Ana	Par	21400	01.01.1980	01.01.2000	04.01.2000	31.12.9999	
100	Ana	Par	10000	01.01.2000	31.12.9999	04.01.2000	31.12.9999	

01.01.2005 je administrator evidentirao da je Ana Par boravila u Splitu u periodu 01.01.1998-01.01.1999

```
UPDATE osoba FOR PORTION OF osobaPeriod FROM DATE '01.01.1998'
TO DATE '01.01.1999'
SET pbrPreb = '21000'
WHERE sifOsoba = 100
```

				<u>osobaPeriod</u>		SYSTEM_TIME	
<u>sifOsoba</u>	ime	prezime	postOznPreb	datumOd	datumDo	system_start	system_end
100	Ana	Par	21400	01.01.1980	31.12.9999	02.02.1980	04.01.2000
100	Ana	Par	21400	01.01.1980	01.01.2000	04.01.2000	01.01.2005
100	Ana	Par	21400	01.01.1980	01.01.1998	01.01.2005	31.12.9999
100	Ana	Par	21000	01.01.1998	01.01.1999	01.01.2005	31.12.9999
100	Ana	Par	21400	01.01.1999	01.01.2000	01.05.2005	31.12.9999
100	Ana	Par	10000	01.01.2000	31.12.9999	04.01.2000	31.12.9999

SQL standard: upiti nad transakcijskim relacijama

Postojeća sintaksa proširuje se opcijama za transakcijski period SYSTEM_TIME:

- FOR SYSTEM_TIME AS OF
- FOR SYSTEM_TIME BETWEEN < datetime value expression 1>
 AND < datetime value expression 2>
- FOR SYSTEM_TIME FROM < datetime value expression 1>
 TO < datetime value expression 2>

PostgreSQL ne podržava nijednu od gornjih opcija.

PostgreSQL: Što sve mogu doznati upitima nad bitemporalnom relacijom?

- 1. Gdje prebiva Ana Par trenutno (ili u periodu [datumOd, datumDo))?
- 2. Što je baza "znala" o prebivalištima Ane Par u periodu [timeStampOd, timeStampDo) ?
- 3. Što baza u periodu [timeStampOd, timeStampDo) "zna" gdje Ana Par prebiva u periodu [datumOd, datumDo)
- 1. Upit nad vremenom valjanosti
- 2. Upit nad transakcijskim vremenom
- 3. Upit nad vremenom valjanosti i transakcijskim vremenom

osoba

<u>sifOsoba</u>	ime	prezime	postOznPreb	<u>osobaPeriod</u>	SYSTEM_TIME
100	Ana	Par	21400	[01.01.1980, 01.01.1998)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21000	[01.01.1998, 01.01.1999)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21400	[01.01.1999, 01.01.2000)	[01.05.2005 00:00:00.000000 CET,)
100	Ana	Par	10000	[01.01.2000, 31.12.9999)	[04.01.2000 00:00:00.000000 CET,)

osobaHistory

•	sifOsoba	ime	prezime	postOznPreb	osobaPeriod	SYSTEM_TIME
	100	Ana	Par	21400	[01.01.1980, 31.12.9999)	[02.02.1980 00:00:00.000000 CET, 04.01.2000 00:00:00.000000 CET)
	100	Ana	Par	21400	[01.01.1980, 01.01.2000)	[04.01.2000 00:00:00.000000 CET, 1.01.2005 00:00:00.000000 CET)

PostgreSQL: Što sve mogu doznati upitima nad bitemporalnom relacijom?

1. Gdje prebiva Ana Par na današnji dan (12.11.2015)?

osoba

sifOsoba	ime	prezime	postOznPreb	<u>osobaPeriod</u>	SYSTEM_TIME
100	Ana	Par	21400	[01.01.1980, 01.01.1998)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21000	[01.01.1998, 01.01.1999)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21400	[01.01.1999, 01.01.2000)	[01.05.2005 00:00:00.000000 CET,)
100	Ana	Par	10000	[01.01.2000, 31.12.9999)	[04.01.2000 00:00:00.000000 CET,)

osobaHistory

sifOsoba	ime	prezime	postOznPreb	osobaPeriod	SYSTEM_TIME
100	Ana	Par	21400	[01.01.1980, 31.12.9999)	[02.02.1980 00:00:00.000000 CET, 04.01.2000 00:00:00.000000 CET)
100	Ana	Par	21400	[01.01.1980, 01.01.2000)	[04.01.2000 00:00:00.000000 CET, 1.01.2005 00:00:00.000000 CET)

```
SELECT postOznPreb FROM osoba
WHERE sifOsoba = 100
AND osobaPeriod && '[12.11.2015, 13.11.2015)'
```

postOznPreb

PostgreSQL: Što sve mogu doznati upitima nad bitemporalnom relacijom?

1. Što je baza "znala" o prebivalištima Ane Par u periodu [1.1.2002 00:00:00.00000 CET, 1.2.2002 00:00:00.00000 CET) ?

<u>sifOsoba</u>	ime	prezime	postOznPreb	<u>osobaPeriod</u>	SYSTEM_TIME
100	Ana	Par	21400	[01.01.1980, 01.01.1998)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21000	[01.01.1998, 01.01.1999)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21400	[01.01.1999, 01.01.2000)	[01.05.2005 00:00:00.000000 CET,)
100	Ana	Par	10000	[01.01.2000, 31.12.9999)	[04.01.2000 00:00:00.000000 CET,)

sifOsoba	ime	prezime	postOznPreb	osobaPeriod	SYSTEM_TIME
100	Ana	Par	21400	[01.01.1980, 31.12.9999)	[02.02.1980 00:00:00.000000 CET, 04.01.2000 00:00:00.000000 CET)
100	Ana	Par	21400	[01.01.1980, 01.01.2000)	[04.01.2000 00:00:00.000000 CET, 1.01.2005 00:00:00.000000 CET)

postOznPreb	osobaPeriod
21400	[01.01.1980, 01.01.2000)
10000	[01.01.2000, 31.12.9999)

PostgreSQL: Što sve mogu doznati upitima nad bitemporalnom relacijom?

1. Što je baza "znala" u periodu [1.1.2002 00:00:00.00000 CET, 1.2.2002 00:00:00.00000 CET) gdje je prebivala Ana Par u periodu [01.05.1998, 01.06.1998)

<u>sifOsoba</u>	ime	prezime	postOznPreb	<u>osobaPeriod</u>	SYSTEM_TIME
100	Ana	Par	21400	[01.01.1980, 01.01.1998)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21000	[01.01.1998, 01.01.1999)	[01.01.2005 00:00:00.000000 CET,)
100	Ana	Par	21400	[01.01.1999, 01.01.2000)	[01.05.2005 00:00:00.000000 CET,)
100	Ana	Par	10000	[01.01.2000, 31.12.9999)	[04.01.2000 00:00:00.000000 CET,)

>	ifOsoba	ime	prezime	postOznPreb	osobaPeriod	SYSTEM_TIME
	100	Ana	Par	21400	[01.01.1980, 31.12.9999)	[02.02.1980 00:00:00.000000 CET, 04.01.2000 00:00:00.000000 CET)
ſ	100	Ana	Par	21400	[01.01.1980, 01.01.2000)	[04.01.2000 00:00:00.000000 CET, 1.01.2005 00:00:00.000000 CET)

```
SELECT postOznPreb, osobaPeriod FROM osoba
WHERE sifOsoba = 100
  AND osobaPeriod && '[01.05.1998, 1.06.1998)'
  AND system period && '[1.1.2002 00:00:00.00000 CET,
```

1.2.2002 00:00:00.00000 CET) '

UNION

SELECT postOznPreb, osobaPeriod FROM osobaHistory WHERE sifOsoba = 100

```
AND osobaPeriod && '[01.05.1998, 1.06.1998)'
AND system period && '[1.1.2002 00:00:00.00000 CET,
                       1.2.2002 00:00:00.00000 CET) '
```

postOznPreb	osobaPeriod
21400	[01.01.1980, 01.01.2000)

- 1. A gdje je ona zapravo prebivala u tom periodu?
- 2. Kada je baza toga "postala svjesna"?

Literatura

- An Introduction to Temporal Databases; PgConf US 2015 https://www.youtube.com/watch?v=1VYhTOHhzbc
- Range Types and Temporal: Past, Present, and Future (2012)
 https://www.youtube.com/watch?v=n20hc7 y9bE
- Temporal in SQL Server 2016
 https://www.youtube.com/watch?v=OTi8yn 501Q
- Developing Time-Oriented Database Applications in SQL, Richard
 T. Snodgrass, Morgan Kaufmann Publishers, Inc., San Francisco,
 July, 1999, 504+xxiii pages, ISBN 1-55860-436-7.