PhD Research Diary

Mayank Keoliya

Started: March 28, 2025 Last Updated: April 9, 2025

Contents

1	Res	earch Overview 2
	1.1	Research Objectives
2	Lite	erature Review 3
	2.1	AI in Healthcare
		2.1.1 Surveys
		2.1.2 Healthcare Applications
	2.2	Explainable AI
	2.3	Multimodal AI
	2.4	Time-Series Forecasting
3	Res	earch Meetings and Collaborations 6
	3.1	Advisor Meetings
		3.1.1 Meeting Log Template
	3.2	Collaboration Network
	3.3	Research Alignment
4	Res	earch Experiments 8
	4.1	Experimental Framework
		4.1.1 Research Focus Areas
	4.2	Experiment Tracking Template
	4.3	Preliminary Experimental Directions
5	Car	eer Development 10
	5.1	Research Grants and Funding
	5.2	Professional Development
	5.3	Career Trajectory
	5.4	Logistics
	5.5	Skills
	5.6	People
		5.6.1 Academia
		5.6.2 Industry
	5.7	Conferences
	5.8	Papers
		5.8.1 Survey
		5.8.2 XAI
		5.8.3 Foundation Models 13

Research Overview

1.1 Research Objectives

- **Primary Research Question:** How can AI improve diagnostic accuracy in health-care?
- Key Research Domains:
 - 1. Medical image analysis using deep learning
 - 2. Predictive risk assessment models
 - 3. Ethical AI in healthcare applications
- Anticipated Contributions:
 - Develop novel AI algorithms for medical diagnostics
 - Improve interpretability of medical AI systems
 - Address potential bias in healthcare AI

Literature Review

The field of Artificial Intelligence in healthcare is rapidly evolving, with significant advances in: (i) predictive diagnostic models [1], (ii) Multimodal data integration, and (iii) Explainable AI techniques.

2.1 AI in Healthcare

2.1.1 Surveys

Here are some survey & position papers. Rajpurkar et al. [2] advocate for generalist $medical\ AI$, i.e. models which are trained on large, unlabelled, diverse datasets with self-supervision, can flexibly ingest different modalities (e.g. imaging, EHR, genomics) and produce expressive outputs (e.g. free-text explanations, spoken recommendations). They argue that such models will be capable of carrying out a diverse set of tasks using very little or no task-specific labelled data.

Add surveys on sepsis, etc.

2.1.2 Healthcare Applications

Sepsis

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection [3]. It is a leading cause of morbidity and mortality in hospitals, with an estimated 11 million deaths annually [4]. Organ dysfunction can be identified as an acute change in total SOFA score ≥ 2 points consequent to the infection, Fig 2.1a. Prior sepsis definitions used two of 4 SIRS criteria, which are not specific to sepsis and can lead to overdiagnosis(patients who has SIRS but not sepsis).

The SOFA score is a clinical score used to track a patient's status during their stay in an ICU. It is used to determine the extent of a person's organ function or rate of failure. The SOFA score is based on the following six organ systems: respiratory, coagulation, liver, cardiovascular, renal, and neurological. Each system is assigned a score from 0 to 4, with higher scores indicating more severe dysfunction. The total SOFA score is the sum of the individual scores for each organ system.

ML-Driven Sepsis Detection

Surveys: Islam et al. [5] does a meta-study, showing that a majority of studies used ICU data (Fig 2.1b), as well as the MIMIC-III dataset. Most of the studies were carried out

	Sequential (Sepsis-Related) Organ Function Assessment	(SOFA)	Score.a
--	---	--------	---------

System / Score	0	1	2	3	4
Respiration: PaO ₂ /FiO ₂ , mmHg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support
Coagulation: Platelets x 10 ³ /µL	≥150	<150	<100	<50	<20
Liver: Bilirubin, mg/dL (µmol/L)	<1.2 (20)	<1.2-1.9 (20-32)	2.0-5.9 (33-101)	6.0-11.9 (102-204)	>12.0 (204)
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1-15 or epinephrine ≤0.1, or norepinephrine ≤0.1 ^b	Dopamine >15 or epinephrine, >0.1, or norepinephrine >0.1 ^b
Central nervous system: Glasgow coma scale score ^c	15	13-14	10-12	6-9	<6
Renal: Creatinine mg/dL (µmol/L); Urine output, mL/day	<1.2 (110)	1.2-1.9 (110-170)	2.0-3.4 (171-299)	3.5-4.9 (300-440); <500	>5.0 (440); <200

- (a) SOFA score criteria for organ dysfunction.
- (b) Sepsis data sources.

Figure 2.1: (a) SOFA score criteria for organ dysfunction and (b) Sepsis data sources.

using vital signs (73.1%) and laboratory data (65.4%). The median number of features was 22. The most common top features were heart rate, temperature, WBC count, systolic BP, age, dystolic BP and respiratory rate.

Moor et al. [6] show that.

2025: [7] 2025: FDA Device [8]

HCI 2020: sandhu2022integrating 2022: [9]

Papers **2015-2017**: ?? **2017-2020**: TREWS [10] **2020-2022**: ?? **2023**: ?? **2024**: [1], [11] shows that sepsis is uniquely high-stakes, uncertain, time-sensitive. Proposes an iterative loop where the model suggests labs to be drawn based on uncertainty.

Cardiac Arrest

Cardiac Arrest is a critical condition that requires immediate medical intervention. It occurs when the heart stops beating effectively, leading to a lack of blood flow to vital organs. There are two types of cardiac arrest: out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA). OHCA survival rate to discharge is 10-12%, while IHCA survival rate is 20-25% [12]. 80% of presenting rhythms are non-shockable, meaning that defibrillation is not an option, i.e. that early detection is the best fix. The incidence is 9-10 per 1000 admissions [12].

Breast Cancer affects 1 in 8 women. They use recurrence gene assays (Breast Cancer Index, JCO).

2.2 Explainable AI

read the LIME, SHApe papers, and add a summary here.

2.3 Multimodal AI

read the papers on multimodal AI, and add a summary here.

RQ: how do we compress exomic analysis? Videos belong in low-dimensional space, so do sequences also?

Dimension-reduction with phenotypes! HeLM HAIM

2.4 Time-Series Forecasting

Given \mathbf{X} , a vector of time-series data, and a binary labelling function $f(\mathbf{X}, t)$ which labels the current state as 0/1, our task is to given $\mathbf{X}[i]$, predict $f(\mathbf{X}, j)$ for some j > i. Approaches:

- 1. Encode X[0...i] as text, ask an LLM
- 2. Encode X[0...i] as text, fine-tune an LLM classification head
- 3. Neurosymbolic: Somehow encode X[0...i], get distribution of $f(\hat{X}_{i+1}), f(\hat{X}_{i+2})...f(\hat{X}_{j}),$ train a model with binary cross-entropy loss
- 4. Neurosymbolic with Pretraining: Somehow encode X[0...i], First, pretrain a model M to do next-event prediction, i.e. given X[i], predict $X_{i+1}, X_{i+2}, ..., X_j$, then fine-tune M using the neurosymbolic approach above.

Research Meetings and Collaborations

3.1 Advisor Meetings

3.1.1 Meeting Log Template

Date	Add specific meeting dates
Attendees	[Advisor Name(s), Collaborators]
Key Discus-	
sions	• Research direction refinement
	• Methodology challenges
	• Publication strategy
Action Items	
	Literature review update
	• Experiment design
	Manuscript preparation

3.2 Collaboration Network

- Clinical Collaborators:
 - Penn Medicine
 - Clinicians specializing in sepsis research
- Interdisciplinary Connections:
 - Machine Learning Researchers
 - Clinical Informaticists

3.3 Research Alignment

Key research objectives discussed with advisors:

- 1. Develop trustworthy AI models for critical healthcare applications
- 2. Enable multimodal reasoning across clinical data sources
- 3. Ensure model explainability for high-stakes decisions

Update with specific meeting details and outcomes

Research Experiments

4.1 Experimental Framework

4.1.1 Research Focus Areas

- Early Sepsis Detection
- Multimodal AI Explanations
- Treatment Recommendation Systems

4.2 Experiment Tracking Template

Experiment ID			
	Assign unique identifier		
Hypothesis	Developing explainable AI models improves clinical decision-		
	making		
Methodology			
	Multimodal data integration		
	• Transformer-based architectures		
	• Concept-based explanations		
Data Sources			
	• Electronic Health Records		
	• Time-series clinical data		
	Multi-modal patient information		
Key Metrics			
	Model accuracy		
	• Explanation faithfulness		
	Clinical utility		

4.3 Preliminary Experimental Directions

- 1. Develop novel explanation frameworks
- 2. Create multimodal reasoning mechanisms
- 3. Validate model performance across diverse clinical contexts

Detailed experiment protocols to be developed

Career Development

5.1 Research Grants and Funding

- Current Grant:
 - Developing Trustworthy AI for Early Sepsis Detection
 - Lead PhD Student on Institutional Research Grant
- Potential Funding Opportunities:
 - NIH Research Grants
 - NSF Computing Innovations Fellowships
 - Institutional Research Support

5.2 Professional Development

- 1. Technical Skills Enhancement
 - Advanced Machine Learning Techniques
 - Clinical Informatics
 - Ethical AI Development
- 2. Soft Skills Development
 - Scientific Communication
 - Interdisciplinary Collaboration
 - Research Ethics

5.3 Career Trajectory

- Short-term Goals:
 - Complete PhD with impactful research
 - Publish in top-tier conferences/journals

- Develop industry and academic network

• Long-term Aspirations:

- Lead AI research in healthcare
- Bridge machine learning and clinical practice
- Contribute to ethical AI development

Regularly update career development plan

5.4 Logistics

[Logistics](Research/AI for Healthcare/Logistics.md)

5.5 Skills

Must read:

- https://arxiv.org/pdf/2409.10580
- http://proceedings.mlr.press/v119/rieger20a.html
- https://adelaidehsu.github.io/
- https://www.nature.com/articles/s42256-019-0048-x

Conferences:

- ML4H
- AAAI Symposium
- JAMA AI

5.6 People

5.6.1 Academia

Name	Institution	Field	
Emily Alsentzer			
Bin Yu	UCB	LITERALLY WHAT I DO	
Cynthia Rudin			
Peter Solovitz	MIT	Clinical Decision Making (CDM)	
John Guttag	MIT	Adverse-Event Prediction, Treatment Suggestic	
David Sontag	MIT		
Pranav Rajpurkar	Harvard	Foundation Models, Generalist MAI, GMAI	
Hima Lakkaraju	Harvard	XAI	
Zak Kohane	Harvard	CDM, genomic rare diseases	

Nigam Shah	Stanford	GreenButton, Atropos Health
Saurabh Gombar	Stanford	
Purvesh Khatri	Stanford	
Dokyoon Kim	Penn	Multiomics data
Suchi Saria	JHU	Bayesian startup
Su-in Lee	UWash	everything!
Anshul Kundaje	Stanford	Immunology
Sanmi Koyejo	UIUC	Google
Irene Y Chen	UCB	Equitable AI
Matthew Abraham	Princeton	MedARC
Zhi Huang	Penn	
Ahmed Alaa	UCB	

5.6.2 Industry

Institution	Name	Contacted?
Microsoft Health	Matthew Lungren	
	Chandan Singh	
	Hoifung Poon	Y
	Tristan Naumann	Y
Google Health	Stephen Pfohl	
	Mayank Daswani	
	Chirag Nagpal	
	Priya Gupta	
	Khaled Saab	
	Wei-Hung Weng	
	Ryutaro Tanno	
a16z	Julie Yoo	
a16z	Vijay Pande	
Layer Health	David Sontag	
Apple Health		
Genesis Therapeutics		
PictureHealthAI		
JoriAI		

5.7 Conferences

SAIL (https://sail.health/)

e AI for Healthcare (https://sites.google.com/view/imlh2023/home?authuser=1)

 $\rm ML4H~(https://ml4h.cc)$

5.8 Papers

5.8.1 Survey

Scoping Evaluation (https://www.medrxiv.org/content/10.1101/2023.09.12.23295381v1)

5.8.2 XAI

I for Chest X-rays (https://www.nature.com/articles/s42256-022-00536-x)

currence prediction (https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(23)00377-2/fulltext)

el for Heart Failure (https://arxiv.org/abs/2310.15472)

5.8.3 Foundation Models

Todels for Medicine (https://www.nature.com/articles/s41586-023-05881-4)

medical literature (https://www.medrxiv.org/cgi/content/short/2023.06.07.23291119v1)

NEJM Catalyst (https://catalyst.nejm.org/doi/full/10.1056/CAT.21.0224)

Bibliography

- [1] E. Researcher, "Optimizing artificial intelligence in sepsis management: Opportunities in the present and looking closely to the future," *Artificial Intelligence in Medicine*, 2024.
- [2] M. Moor, O. Banerjee, Z. S. H. Abad, et al., "Foundation models for generalist medical artificial intelligence," *Nature*, vol. 616, pp. 259–265, 2023. DOI: 10.1038/ s41586-023-05881-4.
- [3] M. Singer *et al.*, "The third international consensus definitions for sepsis and septic shock (sepsis-3)," *JAMA*, vol. 315, no. 8, pp. 801–810, 2016.
- [4] K. E. Rudd, S. C. Johnson, K. M. Agesa, et al., "Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study," The Lancet, vol. 395, no. 10219, pp. 200–211, 2020.
- [5] K. R. Islam, J. Prithula, J. Kumar, et al., "Machine learning-based early prediction of sepsis using electronic health records: A systematic review," Journal of Clinical Medicine, vol. 12, no. 17, p. 5658, 2023. DOI: 10.3390/jcm12175658.
- [6] M. Moor, B. Rieck, M. Horn, C. R. Jutzeler, and K. Borgwardt, "Early prediction of sepsis in the icu using machine learning: A systematic review," *Frontiers in Medicine*, vol. 8, p. 607952, 2021. DOI: 10.3389/fmed.2021.607952.
- [7] E. G. Bignami, G. Arrigoni, S. Gramegna, G. Grasselli, and G. Foti, "Artificial intelligence in sepsis management: An overview for clinicians," *Journal of Clinical Medicine*, vol. 14, no. 1, p. 286, Jan. 2025. DOI: 10.3390/jcm14010286. [Online]. Available: https://doi.org/10.3390/jcm14010286.
- [8] A. Bhargava, C. López-Espina, L. Schmalz, et al., "Fda-authorized ai/ml tool for sepsis prediction: Development and validation," NEJM AI, vol. 1, no. 12, AIoa2400867, 2024. DOI: 10.1056/AIoa2400867. eprint: https://ai.nejm.org/doi/pdf/10.1056/AIoa2400867. [Online]. Available: https://ai.nejm.org/doi/full/10.1056/AIoa2400867.
- [9] J. A. Silvestri, T. E. Kmiec, N. S. Bishop, S. H. Regli, and G. E. Weissman, "Desired characteristics of a clinical decision support system for early sepsis recognition: Interview study among hospital-based clinicians," *JMIR Human Factors*, vol. 9, no. 4, e36976, 2022. DOI: 10.2196/36976. [Online]. Available: https://doi.org/10.2196/36976.
- [10] R. Adams, K. Henry, A. Sridharan, et al., "Prospective, multi-site study of patient outcomes after implementation of the trews machine learning-based early warning system for sepsis," Nature Medicine, vol. 28, no. 7, pp. 1455–1460, 2022. DOI: 10.1038/s41591-022-01894-0.

- [11] S. Zhang, J. Yu, X. Xu, et al., "Rethinking human-ai collaboration in complex medical decision making: A case study in sepsis diagnosis," ser. CHI '24, Honolulu, HI, USA: Association for Computing Machinery, 2024, ISBN: 9798400703300. DOI: 10.1145/3613904.3642343. [Online]. Available: https://doi.org/10.1145/3613904.3642343.
- [12] L. W. Andersen, M. J. Holmberg, K. M. Berg, M. W. Donnino, and A. Granfeldt, "In-hospital cardiac arrest: A review," *JAMA*, vol. 321, no. 12, pp. 1200–1210, 2019. DOI: 10.1001/jama.2019.1696.