BIL 133 HW4

Murat Sahin 191101010

1 FIRST RECURRENCE AND ITS SLIGHT GENERALIZATION

1.1 FIRST RECURRENCE

- $T(1) = \alpha$
- $T(n) = 2.T(\frac{n}{2}) + \beta.n$ for n > 1, and n is an exact power of 2.

I will solve recurrence above by using the repertoire method.

We can rewrite T(n) as $T(n) = A(n) \cdot \alpha + B(n) \cdot \beta$. A and B are functions that solely depend on n.

Now, we need to find what A(n) and B(n) are equal to.

Think the case that $\alpha = 0$ and $\beta = 1$. Then, T(n) = B(n) (1)

$$T(1) = 0$$

$$T(n) = 2.T(\frac{n}{2}) + n$$

Lets look at the small cases.

T(2) = 2

T(4) = 8

T(8) = 24

It seems like solution for recurrence is n.logn. We need to prove it to be sure.

Claim: Solution for recurrence above is n.logn.

Proof: I will prove the claim by mathematical induction on n.

Base Case: As base case I will consider case n=1. We know T(1) is equal

to 0. It needs to be 0 from our formula too.

$$1.log1 = 1.0 = 0 = 0$$
 Base case holds.

Inductive Assumption : We assume that our claim is true for some integer $k \ge 1$, and k is an exact power of 2.

All we need to show is that claim is true for 2k. So, T(2k) = 2k.log2k must hold.

T(2k) = 2T(k) + k We know that T(k) = k.logk from our inductive assumption. From given recursion,

$$T(2k) = 2k.logk + 2k$$

$$T(2k) = 2k.(logk + 1)$$

$$T(2k) = 2k.(logk + log2)$$

$$T(2k) = 2k.log2k$$

Our claim is true for all integer $n \ge 1$, and n is an exact power of 2. So, B(n) = n.logn from equation (1) and above equation.

Think the case that $\alpha = 1$ and $\beta = 0$. Then, T(n) = A(n)

$$T(1) = 1$$

$$T(n) = 2.T(\frac{n}{2})$$

We know this recurrence. We can rewrite T(n) as $T(n) = 2^{n-1}$.

Since T(n) = A(n) for this case, $A(n) = 2^{n-1}$ from the equation above. Now, we have two independent equations.

$$A(n) = 2^{n-1} \tag{1}$$

$$B(n) = n.logn (2)$$

From these equations, T(n) will be:

 $T(n) = 2^{n-1} \cdot \alpha + n \cdot \log n \cdot \beta$, and n is an exact power of 2.

1.2 SLIGHT GENERALIZATION

 $T(n) = 2.T(\frac{n}{2}) + \beta.n + \gamma$ We can repeat previous steps to find A(n) and B(n) again. Only difference is we should set γ to 0 while doing them. Thus,

$$A(n) = 2^{n-1}$$
$$B(n) = n.logn$$

We need another independent equation. Think the case that T(n) = 1. Then, $\alpha = 1, \beta = 0, \gamma = -1$. So,

$$1 = A(n) - C(n)$$
 Substitute A(n) from equality above,
$$C(n) = 2^{n-1} - 1$$

Thus,

 $T(n) = 2^{n-1} \cdot \alpha + n \cdot \log n \cdot \beta + (2^{n-1} - 1)\gamma$, and n is an exact power of 2.

2 SECOND RECURRENCE AND ITS GENERALIZATION

2.1 SECOND RECURRENCE

- $T(1) = \alpha$
- $T(n) = 3.T(\frac{n}{3}) + \beta.n$ for n > 1, and n is an exact power of 3.

I will solve recurrence above by using the repertoire method.

We can rewrite T(n) as $T(n) = A(n).\alpha + B(n).\beta$. A and B are functions that solely depend on n.

Now, we need to find what A(n) and B(n) are equal to.

Think the case that $\alpha = 0$ and $\beta = 1$. Then, T(n) = B(n) (1)

$$T(1) = 0$$

$$T(n) = 3.T(\frac{n}{3}) + n$$

Lets look at the small cases.

$$T(3) = 3$$

$$T(9) = 18$$

$$T(27) = 81$$

It seems like solution for recurrence is n.logn. We need to prove it to be sure.

Claim: Solution for recurrence above is n.logn.

Proof: I will prove the claim by mathematical induction on n.

Base Case: As base case I will consider case n=1. We know T(1) is equal to 0. It needs to be 0 from our formula too.

$$1.log1 = 1.0 = 0 = 0$$
 Base case holds.

Inductive Assumption : We assume that our claim is true for some integer $k \geq 1$, and k is an exact power of 3.

All we need to show is that claim is true for 3k. So, T(3k) = 3k.log3k must hold.

T(3k) = 3T(k) + k We know that T(k) = k.logk from our inductive assumption. From given recursion,

$$T(3k) = 3k.logk + 3k$$

 $T(3k) = 3k.(logk + 1)$
 $T(3k) = 3k.(logk + log3)$
 $T(3k) = 3k.log3k$

Our claim is true for all integer $n \ge 1$, and n is an exact power of 3. So, B(n) = n.logn from equation (1) and above equation.

Think the case that $\alpha = 1$ and $\beta = 0$. Then, T(n) = A(n)

$$T(1) = 1$$

$$T(n) = 3.T(\frac{n}{3})$$

We know this recurrence. We can rewrite T(n) as $T(n) = 3^{n-1}$.

Since T(n) = A(n) for this case, $A(n) = 3^{n-1}$ from the equation above. Now, we have two independent equations.

$$A(n) = 3^{n-1} \tag{3}$$

$$B(n) = n.logn (4)$$

From these equations, T(n) will be:

 $T(n) = 3^{n-1} \cdot \alpha + n \cdot \log n \cdot \beta$, and n is an exact power of 3.

2.2 SLIGHT GENERALIZATION

 $T(n) = 3.T(\frac{n}{3}) + \beta.n + \gamma$ We can repeat previous steps to find A(n) and B(n) again. Only difference is we should set γ to 0 while doing them. Thus,

$$A(n) = 3^{n-1}$$
$$B(n) = n.logn$$

We need another independent equation. Think the case that T(n) = 1. Then, $\alpha = 1, \beta = 0, \gamma = -1$. So,

$$1 = A(n) - C(n)$$
Substitute A(n) from equality above,
$$C(n) = 3^{n-1} - 1$$

Thus,

 $T(n) = 3^{n-1} \cdot \alpha + n \cdot \log n \cdot \beta + (3^{n-1} - 1)\gamma$, and n is an exact power of 3.

3 AN UGLY LOOKING RECURRENCE TEACH-ING THE IMPORTANCE OF PLAYING WITH SMALL INSTANCES

Lets look at the small cases.

$$Q_{0} = \alpha$$

$$Q_{1} = \beta$$

$$Q_{2} = \frac{1+Q_{1}}{Q_{0}} = \frac{1+\beta}{\alpha} (1)$$

$$Q_{3} = \frac{1+Q_{2}}{Q_{1}} = \frac{1+\alpha+\beta}{\alpha \cdot \beta} (2)$$

$$Q_{4} = \frac{1+Q_{3}}{Q_{2}} = \frac{1+\alpha}{\beta} (3)$$

$$Q_{5} = \alpha(4)$$

$$Q_{6} = \beta(5)$$

It will repeat itself after n=4.

Claim: Define m as: m = n%5.

If m = 0, $Q_n = \alpha$, If m = 1, $Q_n = \beta$, If m = 1, $Q_n = \frac{1+\beta}{\alpha}$, If m = 2, $Q_n = \frac{1+\alpha+\beta}{\alpha.\beta}$, If m = 3, $Q_n = \frac{1+\alpha+\beta}{\alpha.\beta}$, for all $n \ge 2$.

Proof: I will prove this claim by mathematical induction on n.

Base Case: As base cases, we will consider cases n=2,3,4,5,6.

If n=2, m=2, Q_n must be equal to $\frac{1+\beta}{\alpha}$. From eq.1, it is true. If n=3, m=3, Q_n must be equal to $\frac{1+\alpha+\beta}{\alpha.\beta}$. From eq.2, it is true. If n=4, m=4, Q_n must be equal to $\frac{1+\alpha}{\beta}$. From eq.1, it is true. If n=5, m=0, Q_n must be equal to α . From eq.4, it is true.

If n=6, m=1, Q_n must be equal to β . From eq.5, it is true.

Inductive Hypothesis: Our claim is true for all integer $2 \le n \le k$.

Inductive Step: All we need to do is show that claim is true for k+1 for cases k%5 = 0, 1, 2, 3, 4.

If k%5 = 0, (k-1)%5 = 4. Then, $Q_k = \alpha$ and $Q_{k-1} = \frac{1+\alpha}{\beta}$ from inductive hypothesis. Since (k+1)%5 = 1, we want Q_{k+1} to be β .

$$Q_{k+1} = \frac{1+Q_k}{Q_{k-1}}$$
 (from given recursion.)
 $Q_{k+1} = \frac{1+\alpha}{\frac{1+\alpha}{\beta}} = \beta$ as desired.

If k%5=1, (k-1)%5=0. Then, $Q_k=\beta$ and $Q_{k-1}=\alpha$ from inductive hypothesis. Since (k+1)%5=2, we want Q_{k+1} to be $\frac{1+\beta}{\alpha}$.

$$Q_{k+1} = \frac{1+Q_k}{Q_{k-1}}$$
 (from given recursion.)
 $Q_{k+1} = \frac{1+\beta}{\alpha} = \frac{1+\beta}{\alpha}$ as desired.

If k%5=2, (k-1)%5=1. Then, $Q_k=\frac{1+\beta}{\alpha}$ and $Q_{k-1}=\beta$ from inductive hypothesis. Since (k+1)%5=3, we want Q_{k+1} to be $\frac{1+\alpha+\beta}{\alpha.\beta}$.

$$\begin{aligned} Q_{k+1} &= \frac{1+Q_k}{Q_{k-1}} \text{ (from given recursion.)} \\ Q_{k+1} &= \frac{1+\frac{1+\beta}{\alpha}}{\beta} = \frac{1+\alpha+\beta}{\alpha.\beta} \text{ as desired.} \end{aligned}$$

If k%5=3, (k-1)%5=2. Then, $Q_k=\frac{1+\alpha+\beta}{\alpha.\beta}$ and $Q_{k-1}=\frac{1+\beta}{\alpha}$ from inductive hypothesis. Since (k+1)%5=4, we want Q_{k+1} to be $\frac{1+\alpha}{\beta}$.

$$\begin{aligned} Q_{k+1} &= \frac{1+Q_k}{Q_{k-1}} \text{ (from given recursion.)} \\ Q_{k+1} &= \frac{1+\frac{1+\alpha+\beta}{\alpha.\beta}}{\frac{1+\beta}{\alpha}} = \frac{1+\alpha}{\beta} \text{ as desired.} \end{aligned}$$

If k%5=4, (k-1)%5=3. Then, $Q_k=\frac{1+\alpha}{\beta}$ and $Q_{k-1}=\frac{1+\alpha+\beta}{\alpha.\beta}$ from inductive hypothesis. Since (k+1)%5=0, we want Q_{k+1} to be α .

$$\begin{aligned} Q_{k+1} &= \frac{1+Q_k}{Q_{k-1}} \text{ (from given recursion.)} \\ Q_{k+1} &= \frac{1+\frac{1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha+\beta}} = \alpha \text{ as desired.} \end{aligned}$$

Therefore, claim is true.

4 PROOF BY MATHEMATICAL INDUCTION

Claim: $n! > 2^n$ for $n \ge 4$.

Proof: I will prove this claim by mathematical induction on n.

Base Case: As base case, we consider case n = 4.

$$4! > 2^4$$

24 > 16 our base case holds.

Inductive Assumption : We assume claim holds for some integer k > 4. **Inductive Step :** All we need to show is that claim holds for k+1. So $(k+1)! > 2^{k+1}$ must be true.

 $k! > 2^k$ holds from our inductive assumption.

We know that k+1 > 5, so if we multiply left side with k+1 and right side with 2, inequality still holds.

$$(k+1).k! > 2.2^k$$

 $(k+1)! > 2^{k+1}$

Thus, equality holds for k+1 too. Therefore, $n! > 2^n$ for $n \ge 4$.

5 IVERSON'S CONVENTION

Lets consider cases x = 0, x > 0 and x < 0 one by one. This cases contains every possible cases.

Case x = 0: x.(0 - 0) = 0Case x > 0: x.(1 - 0) = xCase x < 0: x.(0 - 1) = -x

It reminds something familiar. It is actually absolute value of x.

We can rewrite our statement as:

|x|

6 EVALUATING A SIMPLE SUM

$$\sum_k [i \le j \le k \le n] = \sum_{j \le k \le n} 1$$

$$= (\sum_{1 \le k \le n} 1) - (\sum_{1 \le k \le j-1} 1) \text{ (from commutative law)}$$

We know these sums.

$$=\frac{n.(n+1)}{2}-\frac{(j-1).j}{2}$$

7 SUMMATION FACTOR METHOD

To find a closed form, we can manipulate recurrence in order to change it to a familiar form. To do that, we need to find what summation factor is. We should multiply both sides with s_n . $s_n.2.T_n = s_n.n.T_{n-1} + s_n.3.n!$. Think the familiar form $s_n.a_n.T_n = s_n.b_n.T_{n-1} + s_n.c_n$. In this case, $a_n = 2$, $b_n = n$ and $c_n = 3.n!$. Following equality should hold $s_{n-1}.a_{n-1} = s_n.b_n$.

$$s_n = \frac{a_{n-1}.a_{n-2}.a_{n-3}...a}{b_n.b_{n-1}.b_{n-2}...b_2} = \frac{2.2.2...2}{n.(n-1).(n-2)...2} = \frac{2^{n-1}}{b!}$$

Now, multiply both sides with our summation factor.

$$\frac{2^{n-1}}{b!}.2.T_n = \frac{2^{n-1}}{b!}.n.T_{n-1} + \frac{2^{n-1}}{n!}.3.n!$$
$$\frac{2^n}{n!}.T_n = \frac{2^{n-1}}{(n-1)!}.T_{n-1} + 3.2^{n-1}$$

Let $P_n = \frac{2^n}{n!} T_n$. Then, $P_n = P_{n-1} + 3 \cdot 2^{n-1}$. Then, $P_0 = 5$. Lets rewrite our last situation.

$$P_0 = 5$$

$$P_n = P_{n-1} + 3.2^{n-1}$$

This recursion can be rewritten as:

$$P_n = 5 + \sum_{k=1}^{n} 3 \cdot 2^{k-1}$$

$$P_n = 5 + 3 \cdot \sum_{k=1}^{n} 2^{k-1} \text{ (from distributive law)}$$

$$P_n = 5 + 3 \cdot \sum_{k=0}^{n-1} 2^k \text{ We know this sum.}$$

$$P_n = 5 + 3 \cdot \frac{(1-2^n)}{(1-2)}$$

$$P_n = 3.2^n + 2$$

Now, lets find T_n .

$$T_n=(3.2^n+2).\frac{n!}{2^n}$$

$$T_n=(3.n!+\frac{2.n!}{2^n})$$

$$T_n=3.n!+\frac{n!}{2^{n-1}}$$
 This is the closed form for our recurrence.

EVALUATING A SUM 8

Lets evaluate $A_n = \sum_{k=0}^n kx^k$ and substitute n by ∞ . So, we should find A_∞ .

 $A_{n+1}=A_n+(n+1).x^{n+1}$ (1) by taking the last term out. $A_{n+1}=\sum_{k=1}^{n+1}kx^k=\sum_{k=0}^n(k+1)x^{k+1}=x.\sum_{k=0}^n(k+1)x^k \text{ from commutative rule followed by distributive rule.}$ $=x.(\sum_{k=0}^nkx^k+\sum_{k=0}^nx^k)=x.(A_n+\frac{1-x^{n+1}}{1-x}) \text{ (2) (From geometric series)}$

From equation 1 and equation 2,

$$A_n + (n+1).x^{n+1} = x.A_n + x.\frac{1-x^{n+1}}{1-x}$$

Replace n by ∞ . Since |x| < 1 from the definition, $x^{\infty} = 0$.

$$A_{\infty} = x.A_{\infty} + x.\frac{1}{1-x}$$
$$A_{\infty} = \sum_{k=0}^{\infty} kx^{k} = \frac{x}{(1-x)^{2}}$$

We evaluated the sum.