Aplicações em Spark

- Até aqui temos usado o Spark Shell
 - Standalone
 - Ou conectando em algum cluster
- O shell é uma boa opção para
 - Operações Ad-hoc / interativas
 - Desenvolvimento rápido / Debugging
- Para códigos produtivos, temos que desenvolver uma aplicação
 - Principal diferença você é quem cria o SparkSession
 - Em vez de usar uma sessão pré-criada no shell
 - · Bastante simples usando algum código comum
 - Pode estar escrito em Scala / Python / Java

Código básico de um client (Driver)

- Cria um programa (objeto com um método main())
- Crie uma sessão a partir do SparkSession. Builder
 - Interface fluente para construção de uma sessão do Spark
 - Acesse a documentação do Builder a partir da sessão do SparkSession no site oficial do Spark

Métodos comuns do Builder

- Todos retornam o próprio objeto Builder
 - Exceto o getOrCreate() que retorna a sessão

Método	Descrição	Exemplo		
<pre>appName(name: String)</pre>	Define um nome para o app — mostrado na UI	appName("MyApp")		
master(master: String)	Define a URL master do cluster para se conectar	<pre>master("local[4]")</pre>		
<pre>config(key: String, value: String)</pre>	Define opções de configurações usando a chave e o valor	<pre>config("cassandra.host ", "host1")</pre>		
<pre>config(key: String, value: xxx)</pre>	Define uma opção de configuração com outro tipo de valor (e.g. Long)	<pre>config("spark.driver.c ores", 1)</pre>		
<pre>enableHiveSupport()</pre>	Habilita o suporte ao Hive	enableHiveSupport()		
<pre>get0rCreate()</pre>	Obtém um SparkSession existente ou cria um novo (não retorna o Builder)	getOrCreate()		

As variantes da URL Master

Chave	Descrição	Exemplo		
Local				
local	localhost utilizando um único core de CPU	"local"		
local[N]	localhost utilizando N cores de CPU	"local[4]"		
local[*]	localhost utilizando todos os cores de CPU	"local[*]"		
Distribuído				
spark://host:port	Spark master (executando no modo Standalone)	spark://masterhost1:7077		
mesos:// host:port	Spark master (executando no Mesos)	mesos://host1:5050		
Yarn	Executando no YARN	"yarn"		

SparkSession vs. SparkContext

- Um SparkSession envolve uma instância de SparkContext
 - Geralmente, você programa para um SparkSession
 - O Spark usa o SparkContext empacotado internamente para processar
 - Observe que a sessão (e contexto subjacente) são um singleton
 - getOrCreate() irá retornar uma sessão já existente
- É possível acessar o SparkContext conforme necessário (por exemplo, para variáveis de transmissão) via;
 spark.sparkContext
- É possível criar o SparkContext diretamente
 - Ao invés de criar um SparkSession

Algumas Propriedades Comuns de Configuração

- São úteis para aplicações
 - Muito mais
 - Veja https://spark.apache.org/docs/latest/configuration.html

Propriedade	Valor Padrão	Ação
spark.master	(none)	<pre>URL do Master (o mesmo que master())</pre>
spark.app.name	(none)	O nome da aplicação (o mesmo que appName())
spark.driver.cores	1	O número de cores para o processamento do programa (apenas no modo cluster)
spark.driver.maxResultSize	1G	Tamanho total dos resultados serializados para ação do Spark
spark.driver.memory	1G	Quantidade de memória para o processo do driver (não usado no modo client)
spark.local.dir	/tmp	Diretório para espaço scratch do Spark
spark.submit.deployMode	(none)	"client" (execução local) ou "cluster" (execução em um nó do cluster)

Configurando Propriedades para Runtime

- Pode acessar / alterar as propriedades existentes para runtime do Spark
 - Por meio do membro SparkSession.conf
 - Do tipo org.apache.spark.sql.RuntimeConfig

```
// Definindo uma única propriedade
> spark.conf.set("spark.executor.memory", "2g")

// Obtendo todas as configurações
> val configMap:Map[String, String] = spark.conf.getAll
configMap: Map[String,String] = Map(spark.driver.host -> 192.168.1.128,
spark.driver.port -> 49760, ..., spark.executor.memory -> 2g, ...)
```


Outras Opções de Configurações

- É possível criar uma instância de SparkConf e definir as suas propriedades
 - E então passa-la para o Builder a partir do método config(conf: SparkConf)
- É possível passar propriedades a partir do comando spark-submit usando --conf

```
./bin/spark-submit ... \
    --conf spark.master=spark:/1.2.3.4:7077
```

- O spark-submit faz a leitura de configurações no arquivo <spark>/conf/spark-defaults.conf
 - No formato de arquivo de propriedades chave = valor padrão
 - Ordem de precedência (da mais alta para a mais baixa):
 - (1) Propriedades definidas no Builder
 - (2) Propriedades passadas para o comando spark-submit
 - (3) spark-defaults.conf

MINI-LAB: Reveja a Documentação

Mini-Lab

- Acesse a documentação em http://spark.apache.org/docs/latest/
 - Na barra de menu superior, vá para API Docs | Scala
 - No painel esquerdo, digite SparkSession no campo de filtro
 - Clique no O para ir para a documentação do Objeto

- Na documentação do método builder(), clique no valor de retorno do Builder
- Isso te levará para a documentação do SparkSession.Builder reveja
- Vá até a documentação do SparkSession, e reveja o membro conf
- Clique no tipo RuntimeConfig, e reveja essa classe
- Acesse https://spark.apache.org/docs/latest/configuration.html
- Gaste alguns minutos revendo isso

Parte 7.2: Construindo e executando aplicações

Ferramentas para Construção/Codificação

- Existem muitas opções, vamos usar apenas o sbt
- sbt: Simple Building Tool (Para Scala)
 - http://www.scala-sbt.org/
- maven: Somente necessário
 para as dependências do Spark
 por exemplo:

```
<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-
core_2.11</artifactId>
  <version>2.1.1</version>
  </dependency>
```

- Scala IDE: IDE do Scala baseada no Eclipse
- IntelliJ: Excelente suporte ao Scala, compilação rápida / incremental
- Sublime: Editor de texto sofisticado - suporte completo para Scala
 - http://www.sublimetext.com/

Layout de uma Aplicação no sbt

Utiliza o layout do maven por padrão

build.sbt

- O arquivo de build do sbt
 - Este define o nome do app, a versão do app e a versão do Scala
 - Em seguida ele configura as dependências
 - Entraremos em detalhes suficientes sobre sbt para uso básico, mas não detalharemos profundamente

```
name := "MyApp"

version := "1.0"

scalaVersion := "2.11.7"

// ++= significa sequência concatenada de dependências

// %% significa anexar a versão Scala à próxima parte
libraryDependencies ++= Seq(
    "org.apache.spark" %% "spark-core" % "2.1.0" % "provided"
)

// precisa disso para trabalhar com arquivos no S3 e HDFS

// += Significa apenas adicionar a dependência
libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.7.0"
exclude("com.google.guava", "guava")
```


Compilando o Código

- build.sbt geralmente fica no diretório raiz do projeto
 - O mesmo que o pom.xml do Maven
- Automáticamente faz o download das dependências
- Comandos do sbt
 - sbt compile
 - sbt package constrói um Jar
 - sbt assembly constrói um "fat jar" com todas as dependências
 - sbt clean exclue todos os artefátos gerados
- Pra reconstruir completamente
 - sbt clean package
 - A primeira execução demora mais pois faz o download de todas as dependências

spark-submit: Enviando uma Aplicação

target/scala-2.11/myapp.jar 1G.data

- <spark>/bin/spark-submit envia o app para executar no cluster
 - Pode ser usado com todos os gerenciadores de cluster suportados
- Abaixo, submetemos a um gerenciador Standalone, configuramos a memória do executor e passamos um argumento (um nome de arquivo)

Parâmetros do spark-submit

Parâmetro	Descrição	Exemplo
master <master url=""></master>	URL Master	master Spark://host1:7077
name <app name=""></app>	Nome do app	name MyApp
class <main class=""></main>	Classe principal	class com.mycompany.MyApp
driver-memory <val></val>	Memória para o app (por padrão é 512M)	driver-memory 1g
executor-memory <val></val>	Memória para os executores (MAIS IMPORTANTE!)	executor-memory 4g
deploy-mode <deploy-mode></deploy-mode>	Enviar o código para um worker (cluster) ou executar local (client)	deploy-mode cluster
conf <key>=<value></value></key>	Configuração de propriedades	
help	Mostrar todos os comandos	

Lab 7.1: Fazer o spark-submit de um Job (Faremos juntos)

Ciclo de vida da Aplicação

Arquitetura de uma Aplicação Spark

A Aplicação Driver (o Client)

- O método "main" de uma aplicação
 - É onde o SparkSession/SparkContext é criado
 - Estabelece uma conexão com o cluster
 - Cria o DAG (Direct Acyclic Graph) de operações
- Conecta ao gerenciados de recursos do cluster
 - Obtém executors em nós workers
 - Envia os códigos do app para os executors
 - Envia tasks para os executors
- O driver deve estar próximo aos nós workers
 - De preferência na mesma LAN

Executors e Tasks

Executors

- Processos que executam processos e armazenam dados
- Cada app possue o seu executor
- Criado na inicialização do app, processa até a duração do app
- Containers JVM (tarefas de diferentes aplicativos em diferentes JVM)
- Executam Tasks (em threads)
- Fornece memória para armazenamento em cache

Tasks

- "Menores" unidades de execução
- Processam dados em partições
- Leva em consideração a "localidade dos dados"
- É executado como "thread" na JVM do executor

Memória do Driver vs. Memória do Executor

- A memória do driver geralmente é pequena
- A memória do executor é onde os dados são armazenados pode ser grande
- **RDD.collect()** ou operações similares enviam dados para o driver
 - Grandes coleções podem causar uma sobrecarga de memória do driver
 - Busque por uma alternativa melhor!

Parte 7.4: Gerenciadores de Cluster

Visão geral sobre gerenciadores de Cluster

- Standalone: Gerenciador de cluster exclusivo do Spark
 - Para enviar aplicativos a um cluster autônomo, use uma URL Master no formato spark://<master-node>:7077
 - É possível acessar a UI de Gerenciamento no endereço http://<masternode>:8080
- Apache YARN: Gerenciador de cluster Hadoop / MR
 - Yet Another Resource Negotiator
 - Oferece gerenciamento e agendamento de recursos
 - É desacoplado do processamento de dados
- Apache Mesos: Gerenciador de cluster criado em UC Berkeley
 - Por algumas das mesmas pessoas que criaram o Spark
 - Fornece alocação dinâmica de recursos para várias estruturas

Spark na Arquitetura Standalone

- O gerenciador Standalone é parte do Spark
- JVMs Workers iniciam os Executors
- Adequado para muitos sistemas de produção
- Tolerância a falhas na Master a partir do Zookeeper

Spark na Arquitetura YARN

- YARN Node Manager inicia os Executors
- Tolerância a falhas na Master a partir do Zookeeper

Usabilidade do YARN

- Configuração simples:
 - Precisa ter um sistema Hadoop / YARN funcionando
 - Definir variáveis de ambiente
 - HADOOP_CONF_DIR ou YARN_CONF_DIR para o diretório de configuração do lado do client do cluster Hadoop
 - Os arquivos de configuração são usados para se conectar ao gerenciador de recursos YARN
 - Algumas propriedades específicas do YARN que você pode definir (consulte os documentos)
 - e.g. **spark.driver.cores**: cores de CPU usados no modo cluster
- Modos de deploy:
 - yarn-cluster: O driver do Spark é executado dentro de um processo master de um app gerenciado pelo YARN no cluster
 - yarn-client: O driver é executado em um processo do client o app master é usado apenas para alocação de recursos

```
$ spark-submit --master yarn-cluster \
   --executor-memory 4G --class com.mycompany.MyApp \
   target/scala-2.11/myapp.jar 1G.data
```


Spark na Arquitetura Mesos

- Nós slave do Mesos inciam os Executors
- Tolerância a falhas na Master a partir do Zookeeper

Usabilidade do Mesos

- Utilizando o modo de instação padrão do Mesos
- Requer que o binário do Spark esteja disponível nos nós worker
 - e.g. no HDFS
- Configuração
 - Definir variáveis de ambiente em spark-env.sh
 - export MESOS_NATIVE_LIBRARY=<path to libmesos.so>. ou <caminho para libmesos.dylib> no Mac OS X
 - export SPARK_EXECUTOR_URI=<URL do binário do Spark>
 - Defina spark.executor.uri como <URL do binário do Spark>
- Modos de deploy: Suporta apenas o modo client

```
$ ./bin/spark-submit --master mesos://<mesos-host>:5050 \
    --conf spark.executor.uri=<URI-of-Spark-binary> \
    --class com.es.spark.ProcessFiles \
    target/scala-2.10/testapp.jar 1G.data
```


Modos de execução do Mesos

- O Spark pode ser executado em dois modos no Mesos
- fine-grained (refinado) é o modo padrão: Cada tarefa do Spark é uma tarefa separada do Mesos
 - Várias instâncias do Spark e outras estruturas compartilham máquinas
 - Os executores aumentam / diminuem o número de CPUs à medida que executam tarefas
- coarse-grained (não refinado): É criada uma tarefa do Spark de longa duração para cada worker e são agendadas mini-tasks dentro dela
 - Reduz a sobrecarga de inicialização, mas reserva recursos para toda a vida do app
 - Defina spark.mesos.coarse=true para escolher este modo

Qual Gerenciador Usar?

- Execute workers do Spark dentro de nós do HDFS com qualquer um dos gerenciadores
 - Para ter acesso rápido aos dados
- Desenvolvimento / Novo Deploys: Standalone
 - Simples de configurar e iniciar
 - Muito bom para execuções em Spark
- Se já estiver utilizando o Hadoop 2 : YARN
 - Ele estará pré-instalado
- Se a alocação refinada de recursos é importante: Mesos
 - Reduzirá o uso de recursos quando o job estiver menos ativo

Parte 7.5: Logging e Debugging

Web UI (SparkContext)

- Já vimos ela antes é muito útil para apps independentes
 - Pode monitorar o que está acontecendo

Exibição dos Jobs

- Abaixo, nós montamos um exemplo do uso do collect()
 - Observe que ele está como um Job concluído
- Clicar em Job Description leva você a uma página de detalhes

Visualizando os Estágios

- Abaixo, podemos visualizar os estágios da execução do Job
 - Existem dois
 - Clicando na descrição do estágio você será levado a uma página de detalhes do estágio

Detalhes do Estágio

Details for Stage 1

Total task time across all tasks: 0.5 s

▶ Show additional metrics

Summary Metrics for 8 Completed Tasks

Metric	Min	25th percentile		75th percentile	Max
Duration	57 ms	58 ms	59 ms	62 ms	62 ms
GC Time	0 ms	0 ms	0 ms	0 ms	0 ms

Aggregated Metrics by Executor

Executor ID	Address	Task Time	Total Tasks	Failed Tasks	Succeeded Tasks	Input	Output		Shuffle Write	Shuffle Spill (Memory)	Shuffle Spill (Disk)
0	my- computer.home:53515	0.6 s	8	0	8	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B	0.0 B

Tasks

Index	ID	Attempt	Status	Locality Level	Executor ID / Host	Launch Time	Duration	GC Time	Errors
0	8	0	SUCCESS	PROCESS_LOCAL	0 / my-computer.home	2015/04/17 13:49:44	59 ms		
1	9	0	SUCCESS	PROCESS_LOCAL	0 / my-computer.home	2015/04/17 13:49:44	58 ms		
3	11	n	SUCCESS	PROCESS LOCAL	0 / my-computer home	2015/04/17 13:49:44	62 ms		

Master UI: <master-host>:8080

Master UI: Detalhes da Aplicação

- Esta é a página de detalhes para o spark shell
 - Observe como você pode acessar stdout e stderr diretamente

Logging

- Os logs da Master ficam em <spark>/logs
 - Arquivos de logs são nomeados com o prefixo do nome de usuário de máquina de quem acessou
 - e.g. spark-student-org.apache.spark.deploy.master.Master-1-mycomputer.home.out
- Os logs de aplicação ficam em <spark>/work
 - Em um subdiretório que é criado quando um app é inciado
 - Para cada aplicativo, há um arquivo para registro de stdout e stderr
 - Os registro de logs também são visíveis na Master UI, conforme visto anteriormente
 - Mas nem todas as saídas e.g A saída INFO não é visível lá

Customizando o Logging

- Customize o logging criando o arquivo conf/log4j.properties
 - O arquivo *conf/log4j.properties.template* pode servir como base
 - Abaixo, ilustramos como alterar o nível de log root para WARN
 - Isso reduz alguns dos múltiplos registros que o Spark produz
 - Este arquivo será detectado e usado automaticamente
 - Você também pode usar a opção --files do spark-submit para enviar este arquivo junto com o jar do seu app
 - Certifique-se de distribuir o arquivo log4j.properties para todos os nós

```
# log4j.properties.template - INFO level to console
log4j.rootCategory=INFO, console
# Remaining detail omitted ...
```

```
# log4j.properties - WARN level to console
log4j.rootCategory=WARN, console
# Remaining detail omitted ...
```


Perguntas de revisão

- Como você escreve uma aplicação Spark?
- Como você executa uma aplicação Spark?
- O que é um gerenciador de cluster e quais são compatíveis com o Spark?

Resumo

- Existem dois tipos principais usados para escrever um aplicativo Spark
 - SparkSession: Gerenciar operações de cluster
 - SparkSession.Builder: Factory para configurar o SparkSession
- As aplicações Spark geralmente são executadas usando o comando spark-submit
- Os gerenciadores de cluster gerenciam o processamento distribuído do cluster.
 - Existem três gerenciadores de cluster suportados
 - Standalone: Vem com Spark e é uma solução exclusiva dele
 - YARN: Gerenciador de cluster Hadoop 2
 - Mesos: Gerenciador de cluster criado em Berkeley
 - · Pode fornecer alocação dinâmica de recursos para uso eficiente de recursos

Parte 8: Visão geral sobre Spark Streaming

- Introdução ao Streaming
- Spark Streaming (1.0+)
- [Opcional] Aprofundamento em Spark Streaming (1.0+)
- Spark Structured Streaming (2.0+)
- Consumindo dados do Kafka

Parte 8.1: Introdução ao Streaming

A Evolução do Big Data

- V1: Antigamente
 - Tomada de decisão: Orientada a lotes (horas/dias)
 - Caso de uso: Relatórios
- Atualmente: Todos acima mais a necessidade de processar streams (fluxos) de dados
 - Tomada de decisão: (Perto de ser) em tempo real (milisegundos, segundos)
 - Casos de uso: Alertas (médicos/segurança, detecção de fraude...)
 - Dispositivos conectados / Internet of Things (IoT)
 - E muito mais
 - Necessidade de processamentos/análises mais rápidas

Visão geral de Streaming de Dados

- Streaming de dados são gerados continuamente
 - Frequentemente por muitas fontes de dados(e.g. IoT)
 - Geralmente com payloads muito menores
- As necessidades de processamento de dados em streaming incluem:
 - Processamento sequencial e incremental
 - Processamento de registro em registro de forma contínua
 - Transformações em dados, incluindo agregações
 - e.g. filtros, médias, contagens
- O processamento em streaming é um requisito fundamental
 - Muitas tecnologias suportam isso (e.g. Storm, Flink, etc.)
 - Vamos focar nas habilidades do Spark

Arquitetura em Alto Nível do Streaming

- Bucket de dados: Captura / armazena dados de entrada
 - Opções: Kafka, MQ, Amazon Kinesis
- Processamento: Processamento com baixa latência
 - Opções: Spark, Storm, Flink, ...
- Armazenamento: Armazenamento dos dados geralmente em um NoSQL
 - NoSQL: HBase, Cassandra ...

Processamento

Armazenamento

Spark Streaming — Duas opções

- Spark Streaming: Lançada nas primeiras versões (0.7+)
 - Baseado em RDD, API complexa
 - Novos esforços indo sendo gastos no streaming estruturado
 - Continuará a ser suportado
- Spark Streaming Estruturado: Lançado no Spark 2.1
 - Baseado em DataFrame, arquitetura melhorada
 - API simples (parte disso devido ao uso do DataFrame)
- Ambos se beneficiam dos recursos do Spark
 - Pode se integrar com transformações, gráfos, ML
 - Alta performance, escalável, tolerância a falhas

Lugar do Spark Streaming no Ecossistema Spark

- Construído com base no Spark Core
 - Baseado em RDD

Lugar do Spark Streaming Estruturado no Ecossistema Spark

- Construído com base no Spark SQL
 - Baseado em DataFrame
 - Herda os benefícios do Spark SQL

Comparando os Recursos dos Sistemas de Streaming

Feature	Storm	Spark Streaming	Spark Structured Streaming	Flink
Modelo de Processamento	Por padrão, baseado em eventos	Micro lotes	Micro lotes	Baseado em eventos + Micro lotes
Operações Windowing	Suportado pelo Trident	Sim	Sim	Sim
Latencia	Milisegundos	Segundos		Milisegundos
Processamento interno	pelo menos uma vez	exatamente uma vez	exatamente uma vez	exatamente uma vez
Queries iterativas	NÃO	SIM	SIM	NÃO
Join com dados estáticos	NÃO	SIM	SIM	NÃO

Parte 4.2: Spark Streaming

Conceitos chave

- Transforma dados de streaming brutos em dados processados
 - Baixa latência e tolerância a falhas
- DStream: Sequencia de RDDs que representam a entrada
- Transformações: Modificar um RDD DStream para outro RDD
 - Fornece transformações Stateless e Stateful
- Operação de resultado: Envia os dados para uma fonte externa
 - Salva em algum armazenamento
 - Processa o lote de alguma outra maneira

Como isso funciona?

- Estrutura o processamento Streaming como uma série de pequenos, stateless, processos específicos em lotes (DStreams)
 - Divide a transferência atual em lotes de um intervalo (segundos)
 - Cada lote se torna um RDD, processado por meio de operações RDD
 - Os resultados processados s\u00e3o retornados em lotes

Discretized Steams (DStreams)

- DStream: Sequencia de RDDs que representam dados
 - Os dados chegam com o tempo
 - A partir de muitas origens Flume, Kafka, HDFS …
 - Os dados são divididos em microlotes (RDDs), e então são processados
- Tipos de operações do DStream:
 - Transformação: Modificar o dado (resultando em outro DStream)
 - Suporta as operações padrão de RDD
 - Fornece operações stateful— e.g. operações windowed
 - Resultado: Envia para uma fonte externa

Arquitetura – Receptores

- Cada DStream de entrada é relacionado a um receptor
 - Receptores são tasks executando nos executors das aplicações.
 - Eles coletam os dados e transformam em RDDs
 - Receptores são "tasks de longa duração"
- Os dados de Streaming podem ser recebidos pela rede
 - Kafka, Flume, sockets, etc.
- Também pode criar um fluxo carregando dados periodicamente de um armazenamento externo (e.g. HDFS)

Arquitetura — Lotes

- Os dados Dstream de fontes de entrada são agregados em lotes
 - Com base no intervalo de lote (configurável)
 - Os dados dentro de um determinado intervalo de tempo são adicionados ao lote
 - O intervalo geralmente é de 0,5 seg. a muitos segundos (com base em suas necessidades)
 - O lote é fechado no final do intervalo
 - Cada lote se torna um RDD
- O processamento é distribuído entre máquinas, como RDDs normais
 - O streaming pode continuar conforme o processamento em lote ocorre (feito em paralelo)
 - Pode se integrar com RDDs não DStream (por exemplo, por meio de uma junção)

Processamento com DStream

- Cada lote de entrada é convertido para um RDD
 - Conforme o intervalo do lote passa, novos RDDs são gerados continuamente
 - Contendo os dados capturados nesse intervalo
- DStreams podem ser transformadas
- Portanto, um DStream gera RDDs periodicamente por qualquer:
 - Empacotando dados em um RDD inicial
 - Transformando um RDD gerado por um DStream pai

Tipos de Transformações do DStream

- Stateless: A transformação em um lote não depende do lote anterior
 - Transformações de RDD comuns, como map(), filter(), countByValue(), reduceByKey(), etc.
 - e.g. filtrar uma determinada palavra / string de um Streaming de texto
- Stateful: Usa dados / resultados de lotes anteriores para processar o lote atual
 - Baseado em continuidade e rastreabilidade de estado ao longo do tempo
 - As operações incluem window() e countByValueAndWindow()
 - Exemplos de casos de uso: Calcule a% de aumento de preço por negociação para uma determinada ação na NASDAQ

Exemplo Simples — Visão geral

- Vamos exemplificar com um programa simples que
 - Configura um receptor de streaming que lê de um socket
 - Utiliza lotes com duração de 5 segundos
 - Filtra todas as linhas de entrada, exceto aquelas que contêm a string "Scala"
 - Grava a entrada processada no console
- Nossos dados de entrada são criados por meio do programa **nc** (netcat)
 - Digitar o texto de entrada no console do nc para enviar a informação pela rede
 - Configure o host e a porta no nc para os clients se conectarem

Exemplo de Código (1 de 3 — Inicialização)

- Importar os objetos necessários
- Definir o batchDuration: Intervalo de tempo para processar novos dados
- Criar o StreamingContext: Ponto de entrada principal para streaming
 - Fornecer métodos para criar DStreams de várias fontes de entrada

```
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Duration
import org.apache.spark.streaming.Duration
import org.apache.spark.streaming.Seconds

// Trecho de código mostrando apenas código de Streaming
//spark.sparkContext.getConf
val conf = new
SparkConf().setMaster("local[2]").setAppName("StreamingExample")
val batchDuration = Seconds(5)
val ssc = new StreamingContext(conf, batchDuration)
// Agora você esta pronto para iniciar o processamento
```


Exemplo de Código (2 de 3 — Configurar a entrada)

- Configurar a fonte de entrada
 - Aqui, recebemos o payload a partir da rede (um socket)
- Criar um DStream para a fonte de entrada
 - socketTextStream() cria um DStream para leitura de payload de rede
- Transformar usando RDDs
 - Neste caso, filtrar por linhas que contém o texto "Scala"
 - E faça o print delas

Exemplo de Código (3 de 3 — Processamento)

- Três métodos do StreamingContext controlam o streaming:
 - start(): Inicia o processamento (deve ser feito apenas uma vez)
 - Como o exemplo abaixo
 - **stop()**: Parar o processamento de forma manual
 - awaitTermination(): Aguardar o processamento ser finalizado
 - Como o exemplo abaixo
- Execute isso como qualquer outro app Spark
 - e.g. usando spark-submit, ou o shell

```
ssc.start() // Inicialização
ssc.awaitTermination() // Execute até o processo terminar
```


Programa Completo

```
package com.mycompany.streaming
import org.apache.spark._
import org.apache.spark.streaming._
object StreamingExample {
def main(args: Array[String]) {
 // Criando o Contexto do Streaming
 val ssc = new StreamingContext("local[2]",
                      "StreamingExample", Seconds(5))
 // Criando o DStream da origen (socket)
 val lines = ssc.socketTextStream("localhost", 9999)
 // Filtrando (cria um novo DStream)
 val scalaLines = lines.filter(_.contains("Scala"))
  scalaLines.print() // Resultado
  ssc.start()
 ssc.awaitTermination()
```


Resultados

- · À esquerda, emulamos uma fonte de rede com o netcat
 - Nós digitamos um pouco, esperamos, digitamos um pouco mais
- · À direita está o output da execução do nosso programa

Você pode ver que a saída veio em vários lotes(nosso intervalo de lotes foi de 5

segundos = 5,000 ms)

```
$ nc -1k 9999
Scala 1
English 2
Java 3
Burp 4
Scala 5
Buzz
6
French 7
Scala 8
```

```
[info] Running
com.mycompany.streaming.StreamingExample
------
Time: 1429590630000 ms
-----
Time: 1429590640000 ms
------
Scala 1
Scala 5
-----
Time: 1429590650000 ms
------
Scala 8
```


DStreams

 Abaixo, ilustramos como a entrada da rede é agrupada em DStreams e depois transformada

Driver UI

Você pode ver que vários Jobs foram executados

MINI-LAB: Reveja a Documentação

- Acesse os documentos do Spark http://spark.apache.org/docs/latest/
 - Na barra de pesquisa no canto superior esquerdo, busque pelos objetos abaixo
 - Reveja suas documentações
 - StreamingContext (org.apache.spark.streaming)
 - Reveja os métodos socketTextStream(), start(), stop(), e awaitTermination()
 - Se quiser, reveja outros métodos
 - DStream e ReceiverInputDStream
 (org.apache.spark.streaming.dstream)
 - Observe os diferentes tipos de transformação, e.g. filter()

Lab 8.1: Spark Streaming (Vamos fazer juntos)

Parte 8.4: [Opcional] Aprofundamento em Spark Streaming

Transformação Stateless

- Abaixo, ilustramos as transformações em Streams do Twitter
 - Suponha que tenha um Streaming transmitindo tweets do Twitter para o Spark
 - Para cada lote, um RDD é gerado no DStream
 - Ilustrado pelo DStream tweets abaixo
 - Em seguida, mapeamos/filtramos o DStream para obter as Tags de cada tweet
 - Ilustrado pelo DStream hashTags abaixo
 - Linhagem direta de um RDD pai para um RDD transformado

Transformação Stateless para DStream

- Suporta muitas transformações RDD normais, incluindo:
 - Lembre-se Estas são aplicadas para cada RDD no stream

Transformation	Description	Example	f's
map(f)	Aplica f para cada elemento do DStream	ds.map(x => x*2)	f: T -> U
flatMap(f)	Semelhante ao mapa, mas pode gerar mais de um resultado por elemento	ds.flatMap(x => x.split (" "))	f: T -> Iterable[U]
filter(f)	Filtrar por cada elemento quando f for verdadeiro	ds.filter(x=> x % 2 == 1)	f: T -> Boolean
repartition(n)	Change number of partitions	ds.repartition(10)	NA (numerical)
reduceByKey(f)	Alterar o número de partições	ds.reduceByKey((x,y) => x+y)	f: (T, T) -> T
groupByKey()	Valores de grupo com a mesma chave (para dados de pares)	ds.groupByKey()	NA
mapPartitions(func)	Como o mapa, mas é executado em toda a partição, não em cada elemento		C [∞]

Exemplo de Transformação Stateless

- Abaixo, mapeamos um DStream que representa um log de acesso
 - O método map() produz um par de DStream
 (IP address, 1)
 - O método reduceByKey() gera um RDD com inputs no formato abaixo (basicamente visitas por IP)

```
(IP address, total access count)
```

- Essas transformações são muito semelhantes às RDD normais
 - A diferença? À medida que os dados entram, novos RDDs são criados a cada intervalo de lote para conter os dados

Dados de Múltiplos DStreams

- Transformações Stateless também podem combinar dados de vários
 DStreams em cada intervalo de tempo
 - DStreams têm as mesmas transformações relacionadas à Joins que RDDs
- As operações de exemplo são semelhantes às suas contrapartes RDD, e.g.
 - cogroup(), join(), and leftOuterJoin()
- Mesclar dois streams usando o operador union() do
 - Semelhante a RDDs regulares
 - Use StreamingContext.union() para múltiplos streams

Transformação Stateless Avançada

- No fundo, juntamos dois DStreams que são produzidos por transformações de map e reduce
 - O map transforma um stream de dados de IP em um par DStream
 (IP address, content size)
 - reduceByKey processa o total de bytes para um IP
 - Por último, juntamos a contagem de solicitações por IP (mostrado anteriormente) com o total de bytes para o IP fornecido

Transformações Stateful (Windowed)

- Estas rastreiam os dados ao longo do tempo
 - Dados anteriores são usados para gerar ou executar as transformações atuais
- Cada operação Stateful, necessita de 2 parâmetros
 - Ambos são múltiplos do intervalo de lote
 - Window Duration ("Janela de duração"): Quandos lotes de dados anteriores usar
 - Slide Duration (frequência dos resultados): Com que frequência o novo DStream processa os resultados
 - Abaixo, temos window duration = 3, e slide duration = 2

Ilustrando a Transformação Stateful (ou Windowed)

- Abaixo, transformamos o DStream hashTags DStream de forma Stateful
 - Com window duration = 3, e slide duration = 1
 - O resultado vai para o DStream windowedTags
 - Podemos processar isso ainda mais por exemplo, contando a ocorrência de cada tag na janela, conforme mostrado no DStream tagCounts

API de Transformações Stateful

- Processamentos Stateful (ou Windowed) transformam os dados utilizando uma "Janela dinâmica de dados"
 - Definida pelos parâmetros de tamanho de "janela" ("window") e intervalo dinâmico ("sliding")
- O uso mais simples é apenas pegar uma janela de dados def window(windowDuration: Duration, slideDuration: Duration)
 - Ambos os argumentos devem ser múltiplos do intervalo do lote
- Vamos demonstrar isso por meio de um programa Stateful de contagem de palavras
 - Ele produz contagens de palavras de dados em uma "janela dinâmica "
 - Vamos dar uma olhada no código a seguir veremos as versões Stateless e Stateful

Exemplo de contagem de palavras sem o uso de "janelas"

- O exemplo abaixo deve parecer familiar é apenas a contagem de palavras comum que já conhecemos
 - Mas ainda há uma diferença ele obtem os dados de um stream e continua em execução até ser interrompido
 - Os dados são loteados

```
val ssc =
new StreamingContext("local[2]", "WordCount", Seconds(5))

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
// Sem o uso de "janelas"
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
```


Exemplo de contagem de palavras com o uso de "janelas"

- No exemplo abaixo, pairsWindow é uma versão com "janela" dos pares de um RDD
 - Com Window Duration=15, Slide Duration=3
- wordCountsWindow agora contém dados de uma "janela dinâmica"

```
val ssc =
new StreamingContext("local[2]", "WordCount", Seconds(3))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
// With windowing
// Uso simples de "janela".
val pairsWindow = pairs.window(Seconds(15), Seconds(3))
val wordCountsWindow = pairsWindow.reduceByKey(_ + _)
wordCountsWindow.print()
```


Resultados da contagem de palavras com "Janela"

- Abaixo, podemos ver as entradas
- À direita, o resultado
 - Observe como as palavras persistem durante um intervalo de janela
 - e.g. o "a" aparece nos primeiros 3 conjuntos de resultados (já que a duração da nossa janela é 3)

```
(b, 2)
(a, 3)
(c.1)
(d.3)
(b, 2)
(f,1)
(e, 2)
(a, 3)
(c,1)
(d, 3)
(b, 2)
(f,1)
(e, 2)
(a, 3)
(c,1)
(d,3)
(h, 2)
(f,1)
(e, 2)
(i,1)
```

```
(h,2)
(i,1)
(g,3)
-----
(h,2)
(i,1)
(g,3)
```


reduceByKeyAndWindow()

- Permite que você especifique uma "janela" para o reduce.
 reduceByKeyAndWindow(reduceFunc: (V, V) ⇒ V, windowDuration:
 Duration, slideDuration: Duration): DStream[(K, V)]
 - Combina o uso de janelas com reduce
 - Você obtem o mesmo resultado da versão anterios
- No entanto ambas as versões têm que somar janelas completas de dados para cada intervalo de duração da janela

Outras operações de "Janela"

- countByWindow(): Retorna a quantidade de elementos em cada janela
- countByValueAndWindow(): Retorna contagens para cada valor
 - Todos esses métodos retornam um DStream, com cada RDD contendo o valor apropriado para seu lote pai
- Abaixo, temos alguns exemplos

```
val ipDStream =
  accessLogsDStream.map{entry => entry.getIpAddress()}
val ipAddressRequestCount =
  ipDStream.countByValueAndWindow(Seconds(30), Seconds(10))
val requestCount =
  accessLogsDStream.countByWindow(Seconds(30), Seconds(10))
```


Operações de resultados

- print(num: Int): Exibe os primeiros "num" elementos de cada lote
- print(): Exibe os primeiros 10 elementos de cada lote
 - DStream é materializado para realizar isso
- save(): Salva elementos de um DStream em um diretório separado.
 - ipAddressRequestCount.saveAsTextFiles("outputDir", "txt")
- saveAsHadoopFiles(): Salva cada RDD como arquivo Hadoop
 - É possível passar parâmetros de prefixo e sufixo
 - Exitem também os métodos saveAsTextFiles(), saveAsObjectFiles()
- forEachRDD(forEachFunc): Aplicar uma função em cada RDD

```
ipAddressRequestCount.foreachRDD { rdd =>
  rdd.foreachPartition { partition =>
  val connection = openConnection
  partition.foreach { record => connection.send (record))
  connection.close()
  }
}
```


Fontes de entrada

- Fontes principais:
 - Stream of Files
 - Akka Actor Stream
- Fontes populares:
 - Sockets
 - Apache Kafka
 - HDFS
 - Apache Flume
 - Twitter
 - Para incluir esses receptores adicionais, adicione o artefato Maven spark-streaming-[projectname]_2.10,
 - e.g. spark-streaming-kafka_2.10

Interface Interna do DStream (1 de 2)

- Define como gerar o lote em cada intervalo
 - Lista de DStreams dependentes (pais)
 - def dependencies: List[DStream[_]]
 - Duração do intervalo: Espaço de tempo em que processa RDDs
 - def slideDuration: Duration
 - Método para processar o RDD em um determinado momento
 - def compute(validTime: Time): Option[RDD[T]]
- Exemplo: Dstream mapeada
 - Dependencias: Um DStream pai
 - Duração do intervalo: O mesmo do DStream pai
 - Método de processamento: Aplicar uma função map no DStream's pai

Interface Interna do DStream (2 de 2)

- Exemplo: DStream em Janela
 - Dependencias: Um DStream pai
 - Duração do intervalo: Duração do intervalo da janela
 - Método de processamento: Aplicar o método union em todos os RDDs do DStream pai na janela atual
- Example: Receptor de entradas DStream (pela rede)
 - Dependencies: Nenhuma
 - Slide duration: Duração do lote
 - Compute method: Cria um RDD com todos os dados recebidos no último intervalo de lote

Tolerância a Falhas

- Para tolerância a falhas, os dados de entrada podem ser replicados
 - Replicado em dois nós tolera falha de um único worker
 - Padrão para streams que recebem dados pela rede (Kafka, Flume, ...)
 - Apenas os dados brutos de entrada são replicados na memória
 - RDDs não transformados
- O gerenciador de memória Sparks, denominado Block Memory, mantém os dados replicados enquanto for necessário
 - E os RDDs se lembram de sua linhagem
- Os dados perdidos devido à falha do worker são reprocessados usando os dados de entrada brutos e a linhagem
 - Portanto, os dados transformados também são tolerantes a falhas
- O checkpointing é muito crítico para transformações Stateful

Checkpointing

- Salva o estado do RDD periodicamente em um sistema de arquivos confiável
 - HDFS ou S3
- Porque? RDDs DStream Stateful podem ter uma linhagem muito grande
 - Os RDDs de resultado dependem de RDDs de lotes anteriores, a cadeia de dependência continua crescendo com o tempo
 - Portanto, o tempo de recuperação pode ser grande para dados acumulados ao longo de um longo período
 - Tamanhos de tasks / tempo de lançamento também aumentam
- Solução: Faça checkpoints periodicamente
 - Para se recuperar da falha, só precisa voltar ao último checkpoint
 - Normalmente, o checkpoint = 5-10 vezes o intervalo de janela do DStream

Operações 24/7

- O Spark Streaming pode ser executado no modo 24/7, mesmo se um worker ou driver falharem.
- Para que o streaming funcione 24/7, é necessário um sistema de armazenamento confiável, como S3 ou HDFS para Checkpointing ssc.checkpoint("hdfs://...")
- A falta de checkpoints gera um aviso / erro mesmo na configuração local.

Parte 8.5: Spark Structured Streaming (+2.0)

Conceitos Chave

- Projetado para suportar aplicações contínuas:
 - Aplicação ponta a ponta que reage aos dados em tempo real
- Construído com base em DataFrames nível superior ao Spark Streaming
 - A API de streaming é igual à API em lote (batch)!
- Novos recursos importantes para oferecer suporte a aplicativos contínuos:
 - Jobs de streaming consistentes com jobs em lote:
 - Escrito usando DataFrame API
 - Integração transacional com sistemas de armazenamento:
 - Processar dados exatamente uma vez
 - Atualiza coletores de output de forma transacional
 - Integra-se com o resto do Spark
 - Spark SQL, ML, etc.
 - Meta: Cada biblioteca no Spark é executada de forma incremental em Streaming Estruturado

Como isso funciona?

- Considere a o dado entrada do stream como uma tabela
 - Os novos dados que chegam são como uma nova linha anexada à tabela

Tabela de Resultados

- Uma consulta na entrada cria uma tabela de resultados
 - Para cada intervalo de triggers (por exemplo, 1 segundo), novas linhas são anexadas à tabela de entrada
 - Eventualmente, a tabela de resultados é atualizada
 - Novos dados são então processados por suas transformações de consulta
- Suporta três modos de saída:
 - completo: Toda a tabela atualizada é a saída
 - acrescentado: Novas linhas anexadas desde que o último trigger foi executado
 - atualizado: Linhas atualizadas desde que o último trigger foi executado

Tabela de Resultados

Etapas para Streaming Estruturado

- Configure o DataFrame de entrada
 - Use SparkSession.readStream() para criar um DataStreamReader
 - Defina a fonte de entrada via format()
 - Atualmente, as fontes de arquivo, Kafka ou socket são suportadas
 - Defina as opções de fonte de entrada (depende do tipo de fonte)
- Execute a consulta para iniciar o streaming
 - Use DataSet.writeStream() para criar um DataStreamWriter
 - Defina um intervalo de trigger (com que frequência os dados são obtidos)
 - Padrão o mais rápido possível depois que os dados estiverem disponíveis
 - Defina os detalhes do coletor de output (formato dos dados, localização, etc.)
 - Defina o modo de output
 - Inicie o processo de consulta

Código de Exemplo – Visão Geral

- Este programa simples faz o mesmo processamento que nosso exemplo anterior de Streaming (1.x)
 - Configura um stream de entrada, com uma fonte que lê de um socket
 - Usando um intervalo de trigger de 5 segundos.
 - Filtra todas as linhas de entrada, exceto aquelas que contêm a string "Scala"
 - Usando operações padrão de DataFrame
 - Grava a entrada filtrada no console
 - Usando um stream de output
- Os dados de entrada são criados por meio do programa nc (netcat)

Código de Exemplo (1 de 2 — Inicialização)

- Obtenha um DataStreamReader a partir da sessão via readStream()
 - Utilize o método format() para definir o formato do dado de entrada
 - Socket nesse caso
 - Utilize o método option() para definir qualquer opção da fonte de dados
 - Host e porta nesse caso
 - Utilize o método load() para carregar a entrada (de modo lazy)
 - Nenhum trabalho feito até você consumir os dados de streaming com um coletor
 - Filtre os dados método DataFrame.filter() padrão

```
val lines = spark.readStream
   .format("socket")
   .option("host", "localhost")
   .option("port", 9999)
   .load()
val scalaLines = lines.filter('value.contains("Scala"))
```


Código de Exemplo (2 de 2 — Consumir os Dados)

- Crie um DataStreamWriter via writeStream()
 - Defina o intervalo de trigger em 5 segundos
 - Defina o modo de saída como append
 - Defina o formato como console
 - Inicie o processamento a partir do método start()
 - Retorna uma instância de StreamingQuery

```
import org.apache.spark.sql.streaming.ProcessingTime

val query = scalaLines.writeStream
   .trigger(ProcessingTime("5 seconds"))
   .outputMode("append")
   .format("console")
   .start()

query.awaitTermination()
```


Fontes e coletores suportados

- DataStreamReader atualmente suporta essas fontes de entrada
 - Socket streams: (Somente teste) lê a entrada a partir de um socket
 - Via format("socket")
 - File streams: CSV, JSON, text, Parquet
 - Via csv(), json(), parquet(), textFile()
 - Kafka
 - Via format("kafka")
- DataStreamWriter atualmente suporta esses coletores de saída
 - Console: (Para debugging) saída para o console
 - Via format("console")
 - File: CSV, JSON, text, Parquet
 - Via **format("XXX")** onde XXX pode ser "parquet", "json", etc.
 - Memory: (Para debugging) armazena a saída em uma tabela em memória
 - Via format("memory")
 - foreach: Execute processamentos arbitrários nos registros de saída
 - Via foreach(...)

Resumo

- O Spark Structured Streaming é melhor do que o Spark Streaming
 - Baseado em Spark SQL / DataFrames
 - Recebe todos os benefícios Catalyst, Tungsten, API de alto nível

