

Introducción al análisis de series de tiempo

Randall Romero Aguilar, PhD randall.romero@ucr.ac.cr

EC4301 - Macroeconometría

I Semestre 2020

Última actualización: 10 de agosto de 2020

Tabla de contenidos

- 1. Una breve historia
- 2. Representación gráfica de series de tiempo
- 3. El operador de rezagos
- 4. Procesos estocásticos
- 5. Series de tiempo

El análisis de series de tiempo ayuda a detectar regularidades en las observaciones de una variable y derivar "leyes" a partir de ellas, o bien para explotar toda la información incluida en la variable para predecir mejor el futuro.

El análisis de series de tiempo ayuda a detectar regularidades en las observaciones de una variable y derivar "leyes" a partir de ellas, o bien para explotar toda la información incluida en la variable para predecir mejor el futuro.

► El análisis de series de tiempo ha tenido un papel importante en la ciencia desde la antigüedad.

El análisis de series de tiempo ayuda a detectar regularidades en las observaciones de una variable y derivar "leyes" a partir de ellas, o bien para explotar toda la información incluida en la variable para predecir mejor el futuro.

- ► El análisis de series de tiempo ha tenido un papel importante en la ciencia desde la antigüedad.
 - Por ejemplo, los astrónomos babilonios usaron series de tiempo de las posiciones relativas de las estrellas y planetas para predecir eventos astronómicos.

El análisis de series de tiempo ayuda a detectar regularidades en las observaciones de una variable y derivar "leyes" a partir de ellas, o bien para explotar toda la información incluida en la variable para predecir mejor el futuro.

- ► El análisis de series de tiempo ha tenido un papel importante en la ciencia desde la antigüedad.
 - Por ejemplo, los astrónomos babilonios usaron series de tiempo de las posiciones relativas de las estrellas y planetas para predecir eventos astronómicos.
 - Kepler descubrió las leyes que llevan su nombre a partir de observaciones de los movimientos de los planetas.

Inicios 1900s -> Evgenij E. Slutzky y George Udny Yule

- A inicios del siglo XX, Slutzky y Yule mostraron que series de tiempo con propiedades similares a series económicas pueden generarse como sumas o restas (simples o ponderadas) de procesos puramente aleatorios.
- ▶ Desarrollaron los procesos de media móvil y autorregresivos como modelos para representar series de tiempo.

- ► En 1919 Persons propuso la descomposición de una serie de tiempo en componentes no observables que dependen de causas distintas.
- Los componentes son:
 - un movimiento de largo plazo, la tendencia,

- ► En 1919 Persons propuso la descomposición de una serie de tiempo en componentes no observables que dependen de causas distintas.
- Los componentes son:
 - un movimiento de largo plazo, la tendencia,
 - un componente cíclico con períodos de más de un año, el ciclo económico,

- En 1919 Persons propuso la descomposición de una serie de tiempo en componentes no observables que dependen de causas distintas.
- Los componentes son:
 - un movimiento de largo plazo, la tendencia,
 - un componente cíclico con períodos de más de un año, el ciclo económico,
 - un componente que contiene los aumentos y disminuciones dentro del año, el ciclo estacional,

- En 1919 Persons propuso la descomposición de una serie de tiempo en componentes no observables que dependen de causas distintas.
- Los componentes son:
 - un movimiento de largo plazo, la tendencia,
 - un componente cíclico con períodos de más de un año, el ciclo económico,
 - un componente que contiene los aumentos y disminuciones dentro del año, el ciclo estacional,
 - un componente que contiene todos los movimientos no atribuibles a los demás componentes, el residual o componente irregular.

- En 1919 Persons propuso la descomposición de una serie de tiempo en componentes no observables que dependen de causas distintas.
- Los componentes son:
 - un movimiento de largo plazo, la tendencia,
 - un componente cíclico con períodos de más de un año, el ciclo económico,
 - un componente que contiene los aumentos y disminuciones dentro del año, el ciclo estacional,
 - un componente que contiene todos los movimientos no atribuibles a los demás componentes, el residual o componente irregular.

Aditiva

$$Y_t = T_t + C_t + S_t + I_t$$

- En 1919 Persons propuso la descomposición de una serie de tiempo en componentes no observables que dependen de causas distintas.
- Los componentes son:
 - un movimiento de largo plazo, la tendencia,
 - un componente cíclico con períodos de más de un año, el ciclo económico,
 - un componente que contiene los aumentos y disminuciones dentro del año, el ciclo estacional,
 - un componente que contiene todos los movimientos no atribuibles a los demás componentes, el residual o componente irregular.

Aditiva

$$Y_t = T_t + C_t + S_t + I_t$$

Multiplicativa

$$Y_t = T_t \times C_t \times S_t \times I_t$$

Ejemplo 1:

Componentes del IMAE

Esta es una descomposición "ingenua". Más adelante en el curso estudiaremos métodos más sofisticados.

Enfoques clásico vs moderno de descomposición de series

Como los componentes no son observables, es necesario hacer supuestos acerca de su naturaleza para estudiar el proceso generador de la serie.

Enfoques clásico vs moderno de descomposición de series

Como los componentes no son observables, es necesario hacer supuestos acerca de su naturaleza para estudiar el proceso generador de la serie.

Enfoque clásico

$$Y_t = \underbrace{T_t + C_t + S_t}_{\text{deterministicos}} + \underbrace{I_t}_{\text{estocástico}}$$

Los componentes sistemáticos son funciones determinísticas del tiempo, el componente residual es estocástico pero no contiene movimientos sistemáticos.

Enfoques clásico vs moderno de descomposición de series

Como los componentes no son observables, es necesario hacer supuestos acerca de su naturaleza para estudiar el proceso generador de la serie.

Enfoque clásico

$$Y_t = \underbrace{T_t + C_t + S_t}_{\text{deterministicos}} + \underbrace{I_t}_{\text{estocástico}}$$

Los componentes sistemáticos son funciones determinísticas del tiempo, el componente residual es estocástico pero no contiene movimientos sistemáticos.

Enfoque moderno

$$Y_t = \underbrace{T_t + C_t + S_t + I_t}_{\text{estocásticos}}$$

La "ley de movimiento" de la serie es vista como un proceso estocástico, y los datos de la serie como una realización del proceso generador de datos.

1930s -> Jan Tinbergen

► En 1936, Tinbergen construyó el primer modelo econométrico: un modelo macroeconométrico de la economía holandesa, empezando así el desarrollo de la econometría aplicada.

1930s -> Jan Tinbergen

- ► En 1936, Tinbergen construyó el primer modelo econométrico: un modelo macroeconométrico de la economía holandesa, empezando así el desarrollo de la econometría aplicada.
- ► En 1939, presentó su metodología para el análisis estadístico de teorías de ciclo económico, así como un modelo macroeconométrico de Estados Unidos.

1930s -> Jan Tinbergen

- ► En 1936, Tinbergen construyó el primer modelo econométrico: un modelo macroeconométrico de la economía holandesa, empezando así el desarrollo de la econometría aplicada.
- ► En 1939, presentó su metodología para el análisis estadístico de teorías de ciclo económico, así como un modelo macroeconométrico de Estados Unidos.
- Sus métodos fueron controversiales:

"Nadie podría ser más franco, más meticuloso, más libre de prejuicios subjetivos o partidistas que el profesor Tinbergen. No hay nadie, por lo tanto, en lo que respecta a las cualidades humanas, a quien sería más seguro confiar con magia negra. Todavía no estoy convencido de que haya alguien en quien confiaría en la etapa actual o que esta marca de alquimia estadística está madura para convertirse en una rama de la ciencia. Pero Newton, Boyle y Locke jugaron con la alquimia. Así que déjenle continuar."

Keynes, 1940

Citado por Boumans (2015)

1938 -> Herman Wold

- Wold sistematizó y generalizó el trabajo de Slutzky y Yule.
- Demostró que para proceso covarianza-estacionario, puramente no-determinístico, existe una descomposición de la serie como combinación lineal de una serie de variables aleatorias no correlacionadas con media cero y varianza constante.

➤ Tinbergen utilizó los supuestos del modelo clásico de regresión lineal, sin prestar atención a la dependencia cronológica de los residuos.

- Tinbergen utilizó los supuestos del modelo clásico de regresión lineal, sin prestar atención a la dependencia cronológica de los residuos.
- ► En 1949 Cochrane y Orcutt notaron que esta práctica era problemática.

- Tinbergen utilizó los supuestos del modelo clásico de regresión lineal, sin prestar atención a la dependencia cronológica de los residuos.
- ► En 1949 Cochrane y Orcutt notaron que esta práctica era problemática.
- Demostraron que si los residuos de una regresión están positivamente correlacionados, entonces la varianza de los parámetros de regresión está subestimada y los estadísticos t y F sobrestimados.

- ➤ Tinbergen utilizó los supuestos del modelo clásico de regresión lineal, sin prestar atención a la dependencia cronológica de los residuos.
- En 1949 Cochrane y Orcutt notaron que esta práctica era problemática.
- Demostraron que si los residuos de una regresión están positivamente correlacionados, entonces la varianza de los parámetros de regresión está subestimada y los estadísticos t y F sobrestimados.
- ► El problema se podía resolver transformando los datos adecuadamente.

1950 -> James Durbin y Geoffrey S. Watson

► En 1950/51 Durbin y Watson desarrollaron un test para identificar autocorrelación de primer orden en los residuos.

► En 1970 Box y Jenkins publican un libro de texto de análisis de series de tiempo.

- ► En 1970 Box y Jenkins publican un libro de texto de análisis de series de tiempo.
- ▶ Introducen modelos univariados para series de tiempo, que usan sistemáticamente la información contenida en los valores de la serie.

- ► En 1970 Box y Jenkins publican un libro de texto de análisis de series de tiempo.
- Introducen modelos univariados para series de tiempo, que usan sistemáticamente la información contenida en los valores de la serie.
- Manera sencilla de producir pronósticos.

- ► En 1970 Box y Jenkins publican un libro de texto de análisis de series de tiempo.
- Introducen modelos univariados para series de tiempo, que usan sistemáticamente la información contenida en los valores de la serie.
- Manera sencilla de producir pronósticos.
- Hoy en día conocida como metodología Box-Jenkins.

La metodología Box-Jenkins

1975 -> Clive W.J. Granger y Paul Newbold

- En 1975 Granger y Newbold mostraron que los pronósticos sencillos de métodos univariados a menudo eran mejores que los pronósticos basados en modelos econométricos grandes (cientos de ecuaciones).
- Esto impulsó la enorme popularidad de la metodología Box-Jenkins.

2. Representación gráfica de series de tiempo

Nivel de la serie

- ► Antes de modelar una serie de tiempo, es útil representarla con un gráfico para detectar algunas de sus propiedades.
- ► En este caso: el PIB
 - muestra una tendencia positiva
 - tiene variaciones estacionarias
- \blacktriangleright En lo que sigue, nos referimos a esta serie en nivel como y_t .

Primera diferencia de la serie

$$\Delta y_t \equiv y_t - y_{t-1}$$

Esta transformación

- la tendencia de la serie,
- mantiene las oscilaciones estacionales.

Tasa de crecimiento de la serie

$$\Delta\% y_t \equiv \frac{y_t - y_{t-1}}{y_{t-1}} \times 100$$

- ▶ Elimina tendencia, mantiene estacionalidad.
- Limitación: asimetría con respecto a cambios positivos y negativos: Subir de 100 a 125 (aumento de 25%), bajar de 125 a 100 (caída de "solo" 20%).

Tasa "continua" de crecimiento de la serie

$$\Delta\%y_t \approx (\ln y_t - \ln y_{t-1}) \times 100$$

- Similar a la anterior porque $ln(1+x) \approx x$ si x es "pequeño"
- ▶ Ventaja: simetría con respecto a cambios positivos y negativos

Diferencia interanual de la serie

$$\Delta_4 y_t \equiv y_t - y_{t-4}$$

- Elimina tanto la tendencia como el componente estacional
- ▶ Nótese la fuerte disminución del PIB durante la crisis de 2008.

Tasa de crecimiento interanual

$$\Delta_4\% y_t \approx (\ln y_t - \ln y_{t-4}) \times 100$$

Equivalente a la suma de las tasas de crecimiento de los cuatro trimestres comprendidos en el año:

$$\begin{split} \Delta_4\%y_t &\approx (\ln y_t - \ln y_{t-4}) \times 100 \\ &= (\ln y_t - \ln y_{t-1} + \ln y_{t-1} - \ln y_{t-2} + \ln y_{t-2} - \ln y_{t-3} + \ln y_{t-3} - \ln y_{t-4}) \times 100 \\ &= \Delta\%y_t + \Delta\%y_{t-1} + \Delta\%y_{t-2} + \Delta\%y_{t-3} \end{split}$$

Serie suavizada por media móvil

$$y_t^s \equiv \frac{1}{4} \left(y_t + y_{t-1} + y_{t-2} + y_{t-3} \right)$$

- ► Elimina el componente estacional, pero manteniendo la tendencia
- ► Se observa un cambio estructural en 2008-2009.

Ejemplo 2:

Transformación de datos

- data/CR-PIB.csv
- Transforme.do
- Transforme.ipynb
- Transforme.prg
- Transforme.R

Las transformaciones ilustradas en las figuras pueden ser calculadas con Stata y con Python:

Serie original

Primera diferencia

Tasa de crecimiento

Tasa de variación continua

Diferencia interanual

Tasa de crecimiento interanual

Suavizada por media móvil

Las transformaciones ilustradas en las figuras pueden ser calculadas con Stata y con Python:

	Stata
Serie original	pib
Primera diferencia	D.pib
Tasa de crecimiento	D.pib / L.pib
Tasa de variación continua	gen l=log(pib) D.lpib
Diferencia interanual	S4.pib
Tasa de crecimiento interanual	S4.lpib
Suavizada por media móvil	tssmooth ma $y = pib$, window(3 1 0)

Las transformaciones ilustradas en las figuras pueden ser calculadas con Stata y con Python:

	Stata	Python	
Serie original	pib	pib	
Primera diferencia	D.pib	pib.diff()	
Tasa de crecimiento	D.pib / L.pib	$pib.pct_change(1)$	
Tasa de variación continua	gen l=log(pib) D.lpib	np.log(pib).diff()	
Diferencia interanual	S4.pib	pib.diff(4)	
Tasa de crecimiento interanual	S4.lpib	np.log(pib).diff(4)	
Suavizada por media móvil	tssmooth ma y = pib, window(3 1 0)	pib.rolling(4).mean()	

3. El operador de rezagos

Un operador de serie de tiempo es un "proceso" que transforma una o más series de tiempo en nuevas series de tiempo.

- Un operador de serie de tiempo es un "proceso" que transforma una o más series de tiempo en nuevas series de tiempo.
- Ejemplos:

- ► Un operador de serie de tiempo es un "proceso" que transforma una o más series de tiempo en nuevas series de tiempo.
- ► Ejemplos:
 - Multiplicación escalar: $y_t = \beta x_t$

- ► Un operador de serie de tiempo es un "proceso" que transforma una o más series de tiempo en nuevas series de tiempo.
- Ejemplos:
 - Multiplicación escalar: $y_t = \beta x_t$
 - Suma: $y_t = x_t + w_t$

- Un operador de serie de tiempo es un "proceso" que transforma una o más series de tiempo en nuevas series de tiempo.
- Ejemplos:
 - Multiplicación escalar: $y_t = \beta x_t$
 - ightharpoonup Suma: $y_t = x_t + w_t$
 - ldentidad: $y_t = 1y_t$

- ► Un operador de serie de tiempo es un "proceso" que transforma una o más series de tiempo en nuevas series de tiempo.
- ► Ejemplos:
 - Multiplicación escalar: $y_t = \beta x_t$
 - ightharpoonup Suma: $y_t = x_t + w_t$
 - ldentidad: $y_t = 1y_t$
- Nótese que:

$$y_t = \beta(x_t + w_t) = \beta x_t + \beta w_t$$

Operador de rezago

▶ El operador de rezago se denota por L y se define como:

$$L x_t \equiv x_{t-1}$$

Operador de rezago

▶ El operador de rezago se denota por L y se define como:

$$L x_t \equiv x_{t-1}$$

► En general, se tiene que:

$$L^k x_t = x_{t-k}$$

Ejemplo 3: Operador de rezagos y

transformación de series

Algunas de las transformaciones de la serie y_t de la sección anterior pueden expresarse con el operador de rezagos:

Serie original	y_t
Primera diferencia	$\Delta y_t \equiv y_t - y_{t-1} = y_t - L y_t = (1 - L)y_t$
Tasa de crecimiento	$\Delta \% y_t \approx 100 (\ln y_t - \ln y_{t-1}) = 100(1 - L) \ln y_t$
Diferencia interanual	$\Delta_4 y_t \equiv y_t - y_{t-4} = y_t - L^4 y_t = (1 - L^4) y_t$
Tasa de crecimiento interanual	$\Delta_4 \% y_t \approx 100 \left(\ln y_t - \ln y_{t-4} \right) = 100(1 - L^4) \ln y_t$
Suavizada por media móvil	$y_t^s \equiv \frac{1}{4} (y_t + y_{t-1} + y_{t-2} + y_{t-3}) = \frac{1}{4} (1 + L + L^2 + L^3) y_t$

Ejemplo 4: Operador de rezagos

- data/LandD.csv
- LandD.do
- LandD.ipynb
- landd.prg
- LandD.R

t	y_t		
2018Q1	10		
2018Q2	13		
2018Q3	10		
2018Q4	8		
2019Q1	15		
2019Q2	16		
2019Q3	14		
2019Q4	11		

t	y_t	$L y_t$
2018Q1	10	
2018Q2	13	10
2018Q3	10	13
2018Q4	8	10
2019Q1	15	8
2019Q2	16	15
2019Q3	14	16
2019Q4	11	14

t	y_t	$L y_t$	$L^2 y_t$	
2018Q1	10			
2018Q2	13	10		
2018Q3	10	13	10	
2018Q4	8	10	13	
2019Q1	15	8	10	
2019Q2	16	15	8	
2019Q3	14	16	15	
2019Q4	11	14	16	

t	y_t	$L y_t$	$L^2 y_t$	Δy_t	
2018Q1	10				
2018Q2	13	10		3	
2018Q3	10	13	10	-3	
2018Q4	8	10	13	-2	
2019Q1	15	8	10	7	
2019Q2	16	15	8	1	
2019Q3	14	16	15	-2	
2019Q4	11	14	16	-3	

t	y_t	$L y_t$	$L^2 y_t$	Δy_t	$\Delta^2 y_t$	
2018Q1	10					
2018Q2	13	10		3		
2018Q3	10	13	10	-3	-6	
2018Q4	8	10	13	-2	1	
2019Q1	15	8	10	7	9	
2019Q2	16	15	8	1	-6	
2019Q3	14	16	15	-2	-3	
2019Q4	11	14	16	-3	-1	

t	y_t	$L y_t$	$L^2 y_t$	Δy_t	$\Delta^2 y_t$	$\Delta_4 y_t$
2018Q1	10					
2018Q2	13	10		3		
2018Q3	10	13	10	-3	-6	
2018Q4	8	10	13	-2	1	
2019Q1	15	8	10	7	9	5
2019Q2	16	15	8	1	-6	3
2019Q3	14	16	15	-2	-3	4
2019Q4	11	14	16	-3	-1	3

Sean x_t, w_t dos series de tiempo. Entonces:

$$L(\beta x_t) = \beta L x_t$$

Sean x_t, w_t dos series de tiempo. Entonces:

- ightharpoonup $L(\beta x_t) = \beta L x_t$
- $L(x_t + w_t) = L x_t + L w_t$

Sean x_t, w_t dos series de tiempo. Entonces:

- ightharpoonup $L(\beta x_t) = \beta L x_t$
- $L(x_t + w_t) = L x_t + L w_t$
- ightharpoonup L(c) = c

Sean x_t, w_t dos series de tiempo. Entonces:

- ightharpoonup $L(\beta x_t) = \beta L x_t$
- $L(x_t + w_t) = L x_t + L w_t$
- ightharpoonup L(c) = c
- $L^{-h} x_t = x_{t+h}$

Sean x_t, w_t dos series de tiempo. Entonces:

- $L(\beta x_t) = \beta L x_t$
- $L(x_t + w_t) = L x_t + L w_t$
- ightharpoonup L(c) = c
- $L^{-h} x_t = x_{t+h}$
- $L^0 x_t = x_t$

Sean x_t, w_t dos series de tiempo. Entonces:

- ightharpoonup $L(\beta x_t) = \beta L x_t$
- $L(x_t + w_t) = L x_t + L w_t$
- ightharpoonup L(c) = c
- $L^{-h} x_t = x_{t+h}$
- ightharpoonup L⁰ $x_t = x_t$
- $(\alpha L^h + \beta L^k) x_t = \alpha x_{t-h} + \beta x_{t-k}$

Polinomio de rezagos

► El operador de rezagos sigue las reglas usuales de operaciones algebraicas. Por ejemplo:

$$(a + b L)(c + d L)x_t = (a + b L)(cx_t + dx_{t-1})$$

= $acx_t + adx_{t-1} + bcx_{t-1} + bdx_{t-2}$
= $[ac + (ad + bc) L + bd L^2] x_t$

Polinomio de rezagos

► El operador de rezagos sigue las reglas usuales de operaciones algebraicas. Por ejemplo:

$$(a + b L)(c + d L)x_t = (a + b L)(cx_t + dx_{t-1})$$

= $acx_t + adx_{t-1} + bcx_{t-1} + bdx_{t-2}$
= $[ac + (ad + bc) L + bd L^2] x_t$

Así, definimos un polinomio de rezagos de orden p:

$$(1 + \phi_1 L + \phi_2 L^2 + \dots + \phi_p L^p) x_t = x_t + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p}$$

Considere la operación

$$(1 - \phi \mathbf{L}) \left(1 + \phi \mathbf{L} + \dots + \phi^k \mathbf{L}^k \right) x_t = \left(1 - \phi^{k+1} \mathbf{L}^{k+1} \right) x_t$$
$$= x_t - \phi^{k+1} x_{t-k-1}$$

Considere la operación

$$(1 - \phi \mathbf{L}) \left(1 + \phi \mathbf{L} + \dots + \phi^k \mathbf{L}^k \right) x_t = \left(1 - \phi^{k+1} \mathbf{L}^{k+1} \right) x_t$$
$$= x_t - \phi^{k+1} x_{t-k-1}$$

$$ightharpoonup$$
 Si $|\phi|<1$,

$$\lim_{k \to \infty} \phi^{k+1} x_{t-k-1} = 0$$

Considere la operación

$$(1 - \phi \mathbf{L}) \left(1 + \phi \mathbf{L} + \dots + \phi^k \mathbf{L}^k \right) x_t = \left(1 - \phi^{k+1} \mathbf{L}^{k+1} \right) x_t$$
$$= x_t - \phi^{k+1} x_{t-k-1}$$

- \blacktriangleright Si $|\phi|<1$, $\lim_{k\to\infty}\phi^{k+1}x_{t-k-1}=0$
- con lo que

$$(1 - \phi L) (1 + \phi L + \phi^2 L^2 + \dots) x_t = x_t$$

Considere la operación

$$(1 - \phi \mathbf{L}) \left(1 + \phi \mathbf{L} + \dots + \phi^k \mathbf{L}^k \right) x_t = \left(1 - \phi^{k+1} \mathbf{L}^{k+1} \right) x_t$$
$$= x_t - \phi^{k+1} x_{t-k-1}$$

 \blacktriangleright Si $|\phi|<1$, $\lim_{k\to\infty}\phi^{k+1}x_{t-k-1}=0$

con lo que

$$(1 - \phi L) (1 + \phi L + \phi^2 L^2 + \dots) x_t = x_t$$

► En este caso, escribimos

$$(1 - \phi L)^{-1} = 1 + \phi L + \phi^2 L^2 + \dots$$

Consideremos el polinomio

$$\Phi(L) \equiv 1 - \phi_1 L - \dots - \phi_p L^p$$

Consideremos el polinomio

$$\Phi(L) \equiv 1 - \phi_1 L - \dots - \phi_p L^p$$

► Si factorizamos el polinomio como

$$\Phi(L) = (1 - \lambda_1 L)(1 - \lambda_2 L) \cdots (1 - \lambda_p L)$$

Consideremos el polinomio

$$\Phi(L) \equiv 1 - \phi_1 L - \dots - \phi_p L^p$$

► Si factorizamos el polinomio como

$$\Phi(L) = (1 - \lambda_1 L)(1 - \lambda_2 L) \cdots (1 - \lambda_p L)$$

Encontramos su inverso como

$$\Phi^{-1}(L) = (1 - \lambda_1 L)^{-1} \cdots (1 - \lambda_p L)^{-1}$$

= $(1 + \lambda_1 L + \lambda_1^2 L^2 + \dots) \cdots (1 + \lambda_p L + \lambda_p^2 L^2 + \dots)$

• Un proceso estocástico es una secuencia temporal de variables aleatorias $\{Y_t\}_{t=-\infty}^{\infty}$.

- ▶ Un proceso estocástico es una secuencia temporal de variables aleatorias $\{Y_t\}_{t=-\infty}^{\infty}$.
- Dos tipos de procesos:

- ▶ Un proceso estocástico es una secuencia temporal de variables aleatorias $\{Y_t\}_{t=-\infty}^{\infty}$.
- Dos tipos de procesos:

Continuos si sus realizaciones son tomadas de un intervalo de la recta real $Y_t \in [a,b] \subseteq \mathbb{R}$.

- ▶ Un proceso estocástico es una secuencia temporal de variables aleatorias $\{Y_t\}_{t=-\infty}^{\infty}$.
- Dos tipos de procesos:

Continuos si sus realizaciones son tomadas de un intervalo de la recta real $Y_t \in [a,b] \subseteq \mathbb{R}$.

Discretos si hay solamente un número contable de realizaciones $Y_t \in \{y_1, y_2, \dots, y_n\}$.

- ▶ Un proceso estocástico es una secuencia temporal de variables aleatorias $\{Y_t\}_{t=-\infty}^{\infty}$.
- Dos tipos de procesos:
 - Continuos si sus realizaciones son tomadas de un intervalo de la recta real $Y_t \in [a,b] \subseteq \mathbb{R}$.
 - Discretos si hay solamente un número contable de realizaciones $Y_t \in \{y_1, y_2, \dots, y_n\}$.
- ► También llamado proceso generador de datos.

Procesos estocásticos i.i.d.

Los elementos de un proceso estocástico son idéntica e indepedientemente distribuidos (abreviado "iid"), si la distribución de probabilidad es la misma para cada miembro del proceso Z_t e independiente de las realizaciones de otros miembros del proceso.

Procesos estocásticos i.i.d.

- Los elementos de un proceso estocástico son idéntica e indepedientemente distribuidos (abreviado "iid"), si la distribución de probabilidad es la misma para cada miembro del proceso Z_t e independiente de las realizaciones de otros miembros del proceso.
- ▶ En este caso, para la muestra $\{Y_t\}_{t=1}^T$:

$$\mathbb{P}[Y_1 = y_1, Y_2 = y_2, \dots, Y_T = y_T] =$$

$$\mathbb{P}(Y_1 = y_1) \times \mathbb{P}(Y_2 = y_2) \times \dots \times \mathbb{P}(Y_T = y_T)$$

► Función de distribución acumulada incondicional

$$F_{Y_t}(y) = \mathbb{P}\left[Y_t \leq y\right]$$

Función de distribución acumulada incondicional

$$F_{Y_t}(y) = \mathbb{P}\left[Y_t \leq y\right]$$

Esperanza (media) incondicional

$$\mu_t \equiv \mathbb{E}(Y_t) = \int_{-\infty}^{\infty} y \, dF_{Y_t}(y)$$

Función de distribución acumulada incondicional

$$F_{Y_t}(y) = \mathbb{P}\left[Y_t \leq y\right]$$

Esperanza (media) incondicional

$$\mu_t \equiv \mathbb{E}(Y_t) = \int_{-\infty}^{\infty} y \, dF_{Y_t}(y)$$

Varianza incondicional

$$\gamma_{0t} \equiv \mathbb{E} (Y_t - \mu_t)^2 = \int_{-\infty}^{\infty} (y - \mu_t)^2 dF_{Y_t} (y)$$

31

Función de distribución acumulada incondicional

$$F_{Y_t}(y) = \mathbb{P}\left[Y_t \leq y\right]$$

Esperanza (media) incondicional

$$\mu_t \equiv \mathbb{E}(Y_t) = \int_{-\infty}^{\infty} y \, dF_{Y_t}(y)$$

Varianza incondicional

$$\gamma_{0t} \equiv \mathbb{E} (Y_t - \mu_t)^2 = \int_{-\infty}^{\infty} (y - \mu_t)^2 dF_{Y_t} (y)$$

Autocovarianza

$$\gamma_{jt} \equiv \mathbb{E}\left(Y_t - \mu_t\right) \left(Y_{t-j} - \mu_{t-j}\right)$$

31

Estacionariedad

Si la media μ_t ni las autocovarianzas γ_{jt} dependen de la fecha t, entonces decimos que el proceso Y_t es covarianza-estacionario o débilmente estacionario:

$$\mathbb{E}\left(Y_t\right)=\mu \qquad \text{ para todo } t$$

$$\mathbb{E}\left(Y_t-\mu\right)\left(Y_{t-j}-\mu\right)=\gamma_j \qquad \text{ para todo } t \text{ y cualquier } j$$

Ejemplo 5:

Procesos estacionarios y no estacionarios

Supongamos que Y_t es un proceso estocástico tal que $Y_t \sim N(\mu_t, \sigma_t^2)$

Estacionario porque μ_t y σ_t^2 son constantes.

No estacionario porque μ_t está cambiando con el tiempo.

No estacionario porque μ_t está cambiando con el tiempo.

No estacionario porque σ_t^2 está cambiando con el tiempo.

Ruido blanco

▶ El bloque básico para construir los procesos considerados en este curso es una secuencia $\{\epsilon_t\}$ cuyos elementos tienen media cero y varianza σ^2 ,

$$\begin{split} \mathbb{E}\left(\epsilon_{t}\right) &= 0 & \text{(media cero)} \\ \mathbb{E}\left(\epsilon_{t}^{2}\right) &= \sigma^{2} & \text{(varianza constante)} \\ \mathbb{E}\left(\epsilon_{t}\epsilon_{\tau}\right) &= 0 & \text{for } t \neq \tau & \text{(términos no correlacionados)} \end{split}$$

Ruido blanco

▶ El bloque básico para construir los procesos considerados en este curso es una secuencia $\{\epsilon_t\}$ cuyos elementos tienen media cero y varianza σ^2 ,

$$\begin{split} \mathbb{E}\left(\epsilon_{t}\right) &= 0 & \text{(media cero)} \\ \mathbb{E}\left(\epsilon_{t}^{2}\right) &= \sigma^{2} & \text{(varianza constante)} \\ \mathbb{E}\left(\epsilon_{t}\epsilon_{\tau}\right) &= 0 & \text{for } t \neq \tau & \text{(términos no correlacionados)} \end{split}$$

► Si los términos están normalmente distribuidos

$$\epsilon_t \sim N(0, \sigma^2)$$

entonces tenemos el proceso ruido blaco gaussiano.

2 E

5. Series de tiempo

Definición de serie de tiempo

lacktriangle Una serie de tiempo es una colección de observaciones indexadas por la fecha de cada observación, denotada por y_t

$$\{y_1, y_2, \dots, y_T\}$$

Definición de serie de tiempo

lacktriangle Una serie de tiempo es una colección de observaciones indexadas por la fecha de cada observación, denotada por y_t

$$\{y_1, y_2, \dots, y_T\}$$

En la práctica se asume que lo anterior es sólo una muestra, pero que la serie pudo haber sido observada en más períodos.

$$\{y_t\}_{t=-\infty}^{\infty} = \{\dots, y_{-1}, y_0, \frac{y_1, y_2, \dots, y_T}{y_1, y_2, \dots, y_T}, y_{T+1}, y_{T+2}, \dots\}$$

Definición de serie de tiempo

lacktriangle Una serie de tiempo es una colección de observaciones indexadas por la fecha de cada observación, denotada por y_t

$$\{y_1, y_2, \dots, y_T\}$$

En la práctica se asume que lo anterior es sólo una muestra, pero que la serie pudo haber sido observada en más períodos.

$$\{y_t\}_{t=-\infty}^{\infty} = \{\dots, y_{-1}, y_0, \frac{y_1, y_2, \dots, y_T}{y_1, y_2, \dots, y_T}, y_{T+1}, y_{T+2}, \dots\}$$

Así, vemos a una serie de tiempo como una realización del proceso estocástico $\{Y_t\}_{t=-\infty}^{\infty}$, de la cual solo tenemos observaciones para t entre 1 y T.

Serie de tiempo estacionaria

Una serie de tiempo estacionaria es una realización de un proceso estocástico estacionario.

Serie de tiempo no estacionaria

Una serie de tiempo no estacionaria es una realización de un proceso estocástico no estacionario.

Casos particulares de series de tiempo

► Tendencia:

$$y_t = t$$

Constante:

$$y_t = c$$

Proceso ruido blanco de Gauss:

$$y_t = \epsilon_t$$
, con $\{\epsilon_t\}_{t=-\infty}^{\infty} i.i.d., \epsilon_t \sim N(0, \sigma^2)$

Nota: Ley de los grandes números

La ley débil de los grandes números establece que si X_1, X_2, X_3, \ldots es una sucesión infinita de variables aleatorias independientes que tienen el mismo valor esperado μ y varianza σ^2 , entonces el promedio

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

converge en probabilidad a μ . En otras palabras, para cualquier número positivo ϵ se tiene

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1.$$

Prueba (muy) informal: Note que:

$$ightharpoonup \mathbb{E}[\overline{X}_n] = \mu$$

La ley débil de los grandes números establece que si X_1, X_2, X_3, \ldots es una sucesión infinita de variables aleatorias independientes que tienen el mismo valor esperado μ y varianza σ^2 , entonces el promedio

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

converge en probabilidad a μ . En otras palabras, para cualquier número positivo ϵ se tiene

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1.$$

Prueba (muy) informal: Note que:

- $ightharpoonup \mathbb{E}[\overline{X}_n] = \mu$
- ▶ $Var[\overline{X}_n] = \frac{\sigma^2}{n} \to 0$ conforme $n \to \infty$.

Suponga que tenemos un número grande n de realizaciones independientes del proceso estocástico $\{Y_t\}_{t=1}^T$, y que deseamos estimar el valor del momento no central $\mu'_{k,t} \equiv \mathbb{E}[Y_t^k]$.

- Suponga que tenemos un número grande n de realizaciones independientes del proceso estocástico $\{Y_t\}_{t=1}^T$, y que deseamos estimar el valor del momento no central $\mu'_{k,t} \equiv \mathbb{E}[Y_t^k]$.
- Utilizando la ley de los grandes números, podemos estimarlo así

$$\hat{\mu}'_{k,t} = \frac{y_{t,1}^k + y_{t,2}^k + \dots y_{t,n}^k}{n}$$

- Suponga que tenemos un número grande n de realizaciones independientes del proceso estocástico $\{Y_t\}_{t=1}^T$, y que deseamos estimar el valor del momento no central $\mu'_{k,t} \equiv \mathbb{E}[Y_t^k]$.
- Utilizando la ley de los grandes números, podemos estimarlo así

$$\hat{\mu}'_{k,t} = \frac{y_{t,1}^k + y_{t,2}^k + \dots y_{t,n}^k}{n}$$

▶ En la práctica, sólo tenemos una única realización del proceso: y_1, y_2, \dots, y_T .

- Suponga que tenemos un número grande n de realizaciones independientes del proceso estocástico $\{Y_t\}_{t=1}^T$, y que deseamos estimar el valor del momento no central $\mu'_{k,t} \equiv \mathbb{E}[Y_t^k]$.
- Utilizando la ley de los grandes números, podemos estimarlo así

$$\hat{\mu}'_{k,t} = \frac{y_{t,1}^k + y_{t,2}^k + \dots y_{t,n}^k}{n}$$

- ► En la práctica, sólo tenemos una única realización del proceso: y_1, y_2, \dots, y_T .
- lackbrack ¿Podemos estimar $\mu'_{k,t}$ a partir de $\overline{y^k} = \frac{y_1^k + y_2^k + \dots y_T^k}{T}$?

- Suponga que tenemos un número grande n de realizaciones independientes del proceso estocástico $\{Y_t\}_{t=1}^T$, y que deseamos estimar el valor del momento no central $\mu'_{k,t} \equiv \mathbb{E}[Y_t^k]$.
- Utilizando la ley de los grandes números, podemos estimarlo así

$$\hat{\mu}'_{k,t} = \frac{y_{t,1}^k + y_{t,2}^k + \dots y_{t,n}^k}{n}$$

- ► En la práctica, sólo tenemos una única realización del proceso: y_1, y_2, \dots, y_T .
- ▶ ¿Podemos estimar $\mu'_{k,t}$ a partir de $\overline{y^k} = \frac{y_1^k + y_2^k + \dots y_T^k}{T}$?
- ▶ En general no, a menos que el proceso estocástico sea

- Suponga que tenemos un número grande n de realizaciones independientes del proceso estocástico $\{Y_t\}_{t=1}^T$, y que deseamos estimar el valor del momento no central $\mu'_{k,t} \equiv \mathbb{E}[Y_t^k]$.
- Utilizando la ley de los grandes números, podemos estimarlo así

$$\hat{\mu}'_{k,t} = \frac{y_{t,1}^k + y_{t,2}^k + \dots y_{t,n}^k}{n}$$

- ► En la práctica, sólo tenemos una única realización del proceso: y_1, y_2, \dots, y_T .
- ▶ ¿Podemos estimar $\mu'_{k,t}$ a partir de $\overline{y^k} = \frac{y_1^k + y_2^k + \dots y_T^k}{T}$?
- ► En general no, a menos que el proceso estocástico sea 1. estacionario

- Suponga que tenemos un número grande n de realizaciones independientes del proceso estocástico $\{Y_t\}_{t=1}^T$, y que deseamos estimar el valor del momento no central $\mu'_{k,t} \equiv \mathbb{E}[Y_t^k]$.
- Utilizando la ley de los grandes números, podemos estimarlo así

$$\hat{\mu}'_{k,t} = \frac{y_{t,1}^k + y_{t,2}^k + \dots y_{t,n}^k}{n}$$

- ► En la práctica, sólo tenemos una única realización del proceso: y_1, y_2, \dots, y_T .
- lackbrack ¿Podemos estimar $\mu'_{k,t}$ a partir de $\overline{y^k} = \frac{y_1^k + y_2^k + \dots y_T^k}{T}$?
- En general no, a menos que el proceso estocástico sea
 - 1. estacionario
 - 2. ergódico (para el momento k).

Ergodicidad

En el caso de procesos estacionarios, el supuesto de ergodicidad significa que momentos muestrales calculados a partir de una serie de tiempo con un número finito de observaciones converge (en algún sentido) a sus contrapartes poblacionales.

Ergodicidad

En el caso de procesos estacionarios, el supuesto de ergodicidad significa que momentos muestrales calculados a partir de una serie de tiempo con un número finito de observaciones converge (en algún sentido) a sus contrapartes poblacionales.

Ergódico en media

El proceso es ergódico en media si

$$\lim_{T \to \infty} \mathbb{E}\left[\left(\frac{1}{T} \sum_{t=1}^{T} y_t - \mu \right)^2 \right] = 0$$

Ergodicidad

En el caso de procesos estacionarios, el supuesto de ergodicidad significa que momentos muestrales calculados a partir de una serie de tiempo con un número finito de observaciones converge (en algún sentido) a sus contrapartes poblacionales.

Ergódico en media

El proceso es ergódico en media si

$$\lim_{T \to \infty} \mathbb{E}\left[\left(\frac{1}{T}\sum_{t=1}^{T} y_t - \mu\right)^2\right] = 0$$

Ergódico en varianza

El proceso es ergódico en varianza si

$$\lim_{T \to \infty} \mathbb{E}\left[\left(\frac{1}{T}\sum_{t=1}^{T}(y_t - \mu)^2 - \sigma_y^2\right)^2\right] = 0$$

Algunas apuntes acerca de la ergodicidad

► Las condiciones de ergodicidad son "propiedades de consistencia" para variables aleatorias dependientes, y no pueden ser evaluadas. Por ello, deben ser asumidas.

Algunas apuntes acerca de la ergodicidad

- ► Las condiciones de ergodicidad son "propiedades de consistencia" para variables aleatorias dependientes, y no pueden ser evaluadas. Por ello, deben ser asumidas.
- No podemos usar la ley de los grandes números para probar ergodicidad, porque las distribuciones de distintos momentos t pueden ser idénticas, pero en general no son independientes.

Algunas apuntes acerca de la ergodicidad

- ► Las condiciones de ergodicidad son "propiedades de consistencia" para variables aleatorias dependientes, y no pueden ser evaluadas. Por ello, deben ser asumidas.
- No podemos usar la ley de los grandes números para probar ergodicidad, porque las distribuciones de distintos momentos t pueden ser idénticas, pero en general no son independientes.
- ightharpoonup Un proceso no estacionario no puede ser ergódico: ¿a los momentos de cuál variable Y_t convergerían los momentos muestrales si los poblacionales no fueran constantes?

Si el proceso es ergódico, podemos estimar consistentemente:

Si el proceso es ergódico, podemos estimar consistentemente:

Media
$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Si el proceso es ergódico, podemos estimar consistentemente:

Media

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Varianza

$$\hat{\gamma}_0 = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2$$

Si el proceso es ergódico, podemos estimar consistentemente:

Media

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Autocovarianza

$$\hat{\gamma}_{\tau} = \frac{1}{T} \sum_{t=1}^{T-\tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

Varianza

$$\hat{\gamma}_0 = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2$$

Si el proceso es ergódico, podemos estimar consistentemente:

Media

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Autocovarianza

$$\hat{\gamma}_{\tau} = \frac{1}{T} \sum_{t=1}^{T-\tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

Varianza

$$\hat{\gamma}_0 = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2$$

Autocorrelación

$$\hat{\rho}_{\tau} = \frac{\hat{\gamma}_{\tau}}{\hat{\gamma}_{0}}$$

para $au=1,2,\ldots T-1$.

Si el proceso es ergódico, podemos estimar consistentemente:

Media

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Autocovarianza

$$\hat{\gamma}_{\tau} = \frac{1}{T} \sum_{t=1}^{T-\tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

Asimetría

$$\hat{S} = \frac{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^3}{\sqrt{\hat{\gamma}_0^3}}$$

Varianza

$$\hat{\gamma}_0 = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2$$

Autocorrelación

$$\hat{\rho}_{\tau} = \frac{\hat{\gamma}_{\tau}}{\hat{\gamma}_{0}}$$

 $\hat{
ho}_{ au}=rac{\hat{\gamma}_{ au}}{\hat{\gamma}_{0}}$ para $au=1,2,\ldots T-1.$

Si el proceso es ergódico, podemos estimar consistentemente:

Media

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Autocovarianza

$$\hat{\gamma}_{\tau} = \frac{1}{T} \sum_{t=1}^{T-\tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

Asimetría

$$\hat{S} = \frac{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^3}{\sqrt{\hat{\gamma}_0^3}}$$

Varianza

$$\hat{\gamma}_0 = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2$$

Autocorrelación

$$\hat{\rho}_{\tau} = \frac{\hat{\gamma}_{\tau}}{\hat{\gamma}_{0}}$$

para $\tau = 1, 2, ... T - 1$.

Kurtosis

$$\hat{K} = \frac{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^4}{\hat{\gamma}_0^2}$$

Es imposible evaluar qué tan fuerte es la dependencia de variables de un proceso estocástico a partir de las autocovarianzas, porque éstas dependen de las unidades de medida de la serie.

- Es imposible evaluar qué tan fuerte es la dependencia de variables de un proceso estocástico a partir de las autocovarianzas, porque éstas dependen de las unidades de medida de la serie.
- ▶ Por ello, utilizamos las autocorrelaciones, que se obtienen de dividir las autocovarinzas por la varianza del proceso.

- Es imposible evaluar qué tan fuerte es la dependencia de variables de un proceso estocástico a partir de las autocovarianzas, porque éstas dependen de las unidades de medida de la serie.
- Por ello, utilizamos las autocorrelaciones, que se obtienen de dividir las autocovarinzas por la varianza del proceso.
- ▶ Si el proceso es estacionario se cumple que:

- Es imposible evaluar qué tan fuerte es la dependencia de variables de un proceso estocástico a partir de las autocovarianzas, porque éstas dependen de las unidades de medida de la serie.
- Por ello, utilizamos las autocorrelaciones, que se obtienen de dividir las autocovarinzas por la varianza del proceso.
- ▶ Si el proceso es estacionario se cumple que:
 - $\rho_0 = 1$

- Es imposible evaluar qué tan fuerte es la dependencia de variables de un proceso estocástico a partir de las autocovarianzas, porque éstas dependen de las unidades de medida de la serie.
- Por ello, utilizamos las autocorrelaciones, que se obtienen de dividir las autocovarinzas por la varianza del proceso.
- ► Si el proceso es estacionario se cumple que:
 - $\rho_0 = 1$
 - $\rho_{\tau} = \rho_{-\tau}$

- Es imposible evaluar qué tan fuerte es la dependencia de variables de un proceso estocástico a partir de las autocovarianzas, porque éstas dependen de las unidades de medida de la serie.
- ▶ Por ello, utilizamos las autocorrelaciones, que se obtienen de dividir las autocovarinzas por la varianza del proceso.
- ► Si el proceso es estacionario se cumple que:
 - $\rho_0 = 1$

 - $|\rho_{\tau}| \leq 1$ para todo τ .

- Es imposible evaluar qué tan fuerte es la dependencia de variables de un proceso estocástico a partir de las autocovarianzas, porque éstas dependen de las unidades de medida de la serie.
- ▶ Por ello, utilizamos las autocorrelaciones, que se obtienen de dividir las autocovarinzas por la varianza del proceso.
- ► Si el proceso es estacionario se cumple que:
 - $\rho_0 = 1$

 - $|\rho_{\tau}| \leq 1$ para todo τ .
- LLamamos autocorrelograma a la secuencia de autocorrelaciones ρ_{τ} , vista como función del número de rezagos τ .

► En la práctica, a partir de una muestra estimaremos la autocorrelación muestral.

- ► En la práctica, a partir de una muestra estimaremos la autocorrelación muestral.
- Como nuestra muestra es finita, los valores estimados no necesariamente coincidirán con los poblacionales.

- ► En la práctica, a partir de una muestra estimaremos la autocorrelación muestral.
- Como nuestra muestra es finita, los valores estimados no necesariamente coincidirán con los poblacionales.
- ▶ Por ello, nos interesa especialmente saber cuándo estas autocorrelaciones son significativamente distintas de cero.

- En la práctica, a partir de una muestra estimaremos la autocorrelación muestral.
- Como nuestra muestra es finita, los valores estimados no necesariamente coincidirán con los poblacionales.
- ► Por ello, nos interesa especialmente saber cuándo estas autocorrelaciones son significativamente distintas de cero.
- Según Bartlett (1946), la varianza de los coeficientes de autocorrelación en los cuales $\rho_{k+1}, \rho_{k+2}, \dots = 0$ está dada por

$$V\left[\hat{\rho}(\tau)\right] pprox rac{1}{T} \left(1 + 2\sum_{j=1}^{k} \rho(j)^2\right)$$

Autocorrelación parcial

La m-ésima autocorrelación parcial $\hat{a}_m^{(m)}$ se estima por OLS como el último coeficiente de una regresión de y en una constante y sus m valores más recientes:

$$y_t = c + \hat{a}_1^{(m)} y_{t-1} + \hat{a}_2^{(m)} y_{t-2} + \dots + \hat{a}_m^{(m)} y_{t-m} + \hat{\epsilon_{t+1}}$$

Autocorrelación parcial

La m-ésima autocorrelación parcial $\hat{a}_m^{(m)}$ se estima por OLS como el último coeficiente de una regresión de y en una constante y sus m valores más recientes:

$$y_t = c + \hat{a}_1^{(m)} y_{t-1} + \hat{a}_2^{(m)} y_{t-2} + \dots + \hat{a}_m^{(m)} y_{t-m} + \hat{\epsilon}_{t+1}$$

La idea es medir el efecto directo de, por ejemplo, y_{t-1} sobre y_{t+1} , controlando por el efecto indirecto que y_{t-1} pueda tener sobre y_{t+1} a través de y_t .

Autocorrelación parcial

La m-ésima autocorrelación parcial $\hat{a}_m^{(m)}$ se estima por OLS como el último coeficiente de una regresión de y en una constante y sus m valores más recientes:

$$y_t = c + \hat{a}_1^{(m)} y_{t-1} + \hat{a}_2^{(m)} y_{t-2} + \dots + \hat{a}_m^{(m)} y_{t-m} + \hat{\epsilon}_{t+1}$$

- La idea es medir el efecto directo de, por ejemplo, y_{t-1} sobre y_{t+1} , controlando por el efecto indirecto que y_{t-1} pueda tener sobre y_{t+1} a través de y_t .
- ▶ Si los datos están generados por un proceso AR(p), entonces el estimador $\hat{a}_m^{(m)}$ tiene una varianza alrededor del verdadero valor (cero) aproximada por

$$\mathrm{Var}\left[\hat{a}_m^{(m)}\right] \approx \frac{1}{T} \qquad \text{ para } m=p+1, p+2, \dots$$

Ejemplo 6: Autocorrelograma del IMAE

```
log_imae.csv

correlogram.ipynb
correlogram.do
correlogram.prg
correlogram.R
```

Autocorrelograma del IMAE (original y tendencia-ciclo) en Costa Rica

Autocorrelograma parcial del IMAE (original y tendencia-ciclo) en Costa Rica Tendencia-ciclo Original 1.0 0.5 log(IMAE) -0.5 1.0 0.5 ∆log(IMAE) -0.5 1.0 0.5 $\Delta_{12}log(IMAE)$ -0.5 0 12 24 36 48 0 12 36 48

Rezago τ

Rezago τ

Determinando si una serie de tiempo es ruido blanco

Cuando se estiman modelos de series de tiempo, es importante evaluar si los residuos de la estimación corresponden a una realización de un proceso de ruido blanco.

Determinando si una serie de tiempo es ruido blanco

- Cuando se estiman modelos de series de tiempo, es importante evaluar si los residuos de la estimación corresponden a una realización de un proceso de ruido blanco.
- Recordando que un proceso ruido blanco $\{\epsilon_t\}$ es tal que

$$\begin{split} \mathbb{E}\left(\epsilon_{t}\right) &= 0 & \text{(media cero)} \\ \mathbb{E}\left(\epsilon_{t}^{2}\right) &= \sigma^{2} & \text{(varianza constante)} \\ \mathbb{E}\left(\epsilon_{t}\epsilon_{\tau}\right) &= 0 & \text{for } t \neq \tau & \text{(términos no correlacionados)} \end{split}$$

una forma natural de evaluar si los residuos son ruido blanco es determinar si las autocorrelaciones

$$\rho_1 = \rho_2 = \dots = \rho_\tau = 0$$

para todo $\tau \geq 1$

Test de Box-Pierce

La intuición es que si la serie no es ruido blanco, algunos $\hat{\rho}_j$ serán "muy grandes", y entonces Q^* también lo será.

Test de Ljung-Box

Test de Ljung-Box (1978)				
200	¿Es esta serie un caso de ruido blanco?			
H _o	$ ho_1= ho_2=\cdots= ho_m=0$ (sí es ruido blanco)			
Test	$Q = T(T+2) \sum_{j=1}^m \frac{\hat{\rho}_j^2}{T-j} \overset{\text{asy}}{\sim} \chi_{m-k}^2$			
``	Si $Q>\chi_{m-k}(1-\alpha)$, rechazar H_0 con $100\alpha\%$ de significancia: la serie no es ruido blanco.			

Este test es similar al de Box-Pierce, pero ajustada para muestras pequeñas.

Test de Durbin-Watson

Test de Durbin-Watson (1950/1)					
2023	¿Hay autocorrelación de primer orden en esta serie?				
H _o	$ ho_1=0$ (no hay autocorrelación)				
Test	$d = \frac{\sum_{t=2}^T (e_t - e_{t-1})^2}{\sum_{t=1}^T e_t^2} \approx 2 \left(1 - \hat{\rho}_1\right) \qquad \text{(si T es grande)}$				
· 🍑	Si d está "lejos" de 2 según los valores críticos de DW, rechazar H_0 : la serie sí presenta autocorrelación.				

Esta prueba no es válida para residuos de una ecuación donde haya rezagos de la variable dependiente.

Ventajas de Box-Pierce / Ljung-Box sobre Durbin-Watson

- 1. Box-Pierce / Ljung-Box evalúan la existencia de autocorrelación de cualquir orden, no solo de primer orden.
- 2. Sus resultados también son válidos para evaluar residuos de regresiones que contienen rezagos de la variable dependiente.

Ejemplo 7:

Pruebas de ruido blanco

- log_imae.csv
- euro.csv
- wntest.ipynb
- wntest.do

Crecimiento del IMAE

Los resultados de las pruebas Ljung-Box son consistentes con lo que obtuvimos a partir de un autocorrelograma: el crecimiento mensual del IMAE no es ruido blanco.

. corr	gram creci	miento, la	ags(12) n	oplot
LAG	AC	PAC	Q	Prob>Q
1	0.8737	0.8741	267.19	0.0000
2	0.6478	-0.4903	414.48	0.0000
3	0.4931	0.4280	500.08	0.0000
4	0.4018	-0.2733	557.07	0.0000
5	0.3528	0.3654	601.15	0.0000
6	0.3378	-0.2128	641.68	0.0000
7	0.3310	0.2552	680.7	0.0000
8	0.3190	-0.1704	717.05	0.0000
9	0.2947	0.1289	748.16	0.0000
10	0.2256	-0.4269	766.44	0.0000
11	0.0931	0.0771	769.57	0.0000
12	-0.0235	0.0692	769.77	0.0000

Cambios en el tipo EUR/USD

Las pruebas Ljung-Box no rechazan que esta serie sea ruido blanco. Pero en la gráfica parece que la varianza no es constante, por lo que posiblemente la serie tampoco sería ruido blanco.

. corrg	ram depre	ciacion,	lags (12)	noplot
LAG	AC	PAC	Q	Prob>Q
1	0.0055	0.0055	.16483	0.6847
2	-0.0151	-0.0151	1.4129	0.4934
3	0.0020	0.0022	1.4357	0.6972
4	0.0139	0.0136	2.4911	0.6462
5	-0.0086	-0.0087	2.8965	0.7159
6	-0.0035	-0.0030	2.9636	0.8134
7	0.0097	0.0094	3.4785	0.8375
8	0.0225	0.0222	6.2474	0.6195
9	-0.0275	-0.0273	10.384	0.3203
10	-0.0081	-0.0072	10.748	0.3775
11	-0.0097	-0.0109	11.266	0.4213
12	0.0252	0.0249	14.762	0.2547

► El hecho de que una serie no esté autocorrelacionada no implica que sus elementos sean independientes o que estén normalmente distribuidos.

- ► El hecho de que una serie no esté autocorrelacionada no implica que sus elementos sean independientes o que estén normalmente distribuidos.
- Ausencia de autocorrelación implica independencia solamente si las variables están normalmente distribuidas.

- ► El hecho de que una serie no esté autocorrelacionada no implica que sus elementos sean independientes o que estén normalmente distribuidos.
- Ausencia de autocorrelación implica independencia solamente si las variables están normalmente distribuidas.
- ▶ Usualmente se asume normalidad del proceso estocástico, porque muchos tests dependen de este supuesto.

- ► El hecho de que una serie no esté autocorrelacionada no implica que sus elementos sean independientes o que estén normalmente distribuidos.
- Ausencia de autocorrelación implica independencia solamente si las variables están normalmente distribuidas.
- Usualmente se asume normalidad del proceso estocástico, porque muchos tests dependen de este supuesto.
- Para evaluar si este supuesto es apropiado, analizamos los momentos tercero (asimetría) y cuarto (kurtosis).

Test de normalidad

Test de Jarque-Bera (1980) ¿Es esta serie normal? $S \equiv \mathbb{E} \left(\frac{y-\mu}{\sigma} \right)^3 = 0, \ K \equiv \mathbb{E} \left(\frac{y-\mu}{\sigma} \right)^4 = 3 \ (\text{sí es})$ $JB = \frac{T}{6} \left(\hat{S}^2 + \frac{1}{4} \left(\hat{K} - 3 \right)^2 \right) \sim \chi_2^2$ Test Si $JB > \chi_2^2(1-\alpha)$, rechazar H_0 con $100\alpha\%$ de significancia: la serie no es normal.

Referencias I

- Boumans, Marcel J. (15 de feb. de 2015). Econometrics: The Keynes-Tinbergen Controversy. URL: https://dx.doi.org/10.2139/ssrn.2565355.
- Hamilton, James M. (1994). *Time Series Analysis*. Princeton University Press, ISBN: 0-691-04289-6.
- Kirchgässner, Gebhard, Jürgen Wolters y Uwe Hassler (2013).

 Introduction to Modern Time Series Analysis. 2^a ed. Springer. ISBN: 978-3-642-33435-1.
- Valadkhani, Abbas (2004). "History of macroeconometric modelling: lessons from past experience". En: *Journal of Policy Modeling* 26, págs. 265-281.