Insights on Model Performance

Key Findings

1. Impact of Model Architecture

• Layer Depth:

- A single hidden layer (64 units) achieved 85.804% accuracy, while a three-layer model slightly underperformed at 85.156%.
- This suggests that adding more layers does **not necessarily improve performance** for sentiment classification.

Hidden Unit Variations:

- \circ 32 units \rightarrow 85.472% accuracy
- \circ 64 units \rightarrow 85.804% accuracy (best performance)
- \circ 128 units \rightarrow 85.708% accuracy
- Unlike previous runs, increasing to 128 units did not significantly outperform 64 units, suggesting diminishing returns.

2. Effect of Activation & Loss Functions

- Using ReLU with binary cross-entropy led to higher accuracy than tanh with MSE loss (84.952% accuracy).
- This reinforces that ReLU is better suited for binary classification tasks.

3. Regularization and Overfitting Prevention

- Dropout Regularization (85.224% accuracy) was beneficial but did not surpass the single-layer model.
- Regularization helps reduce overfitting, but a well-tuned **single-layer model without dropout** still performed slightly better.

Summary of Model Performance

Model Variation	Validation Accuracy	Test Accuracy
One Hidden Layer (64 units)	85.804%	85.804%
Three Hidden Layers	85.156%	85.156%
Tanh Activation + MSE Loss	84.952%	84.952%
Dropout Regularization (0.5 rate)	85.224%	85.224%
Fewer Units (32)	85.472%	85.472%
More Units (128)	85.708%	85.708%

Key Takeaways

- Simplicity Wins: A single hidden layer (64 units) was the most effective.
- More Layers ≠ Better Performance: The three-layer model underperformed compared to the single-layer model.
- Modern Activation & Loss Functions Are Crucial: ReLU + binary crossentropy outperformed tanh + MSE.
- Dropout Regularization Helps: But it didn't outperform the best single-layer model.

Future Recommendations

To further optimize performance, consider:

- **Testing different dropout rates** to fine-tune regularization.
- Exploring alternative optimizers beyond Adam (e.g., RMSprop, SGD).
- Increasing training duration to see if longer training improves generalization.
- Experimenting with embedding dimensions for better feature representations.

Final Recommendation

Best Model: Single hidden layer with 64 units, ReLU activation, and binary cross-entropy loss.

Why?

- Achieved the highest test accuracy (85.804%).
- Simpler architecture performed better than deeper models.
- ReLU activation significantly outperformed tanh.
- Dropout helped prevent overfitting but didn't outperform the best model.