Mutating Joins

Joe Nese

University of Oregon

Fall 2021

Share

```
{tidylog}
```

Provides feedback about {dplyr} and {tidyr} operations

[view link]

Homework(s) Review

Mutating Joins Week 5

Credit Daniel Anderson for slides

Agenda

- Quick Share
- bind_rows()
- *_join()

Overall Purpose

- Understand and be able to identify keys
- Understand different types of mutating joins
 - o left_join, right_join
 - one-to-one, one-to-many
- Understand some ways joins fail

A bit about joins

- Also data "merge"
- Today we'll talk about mutating joins
- Mutating joins add columns to a dataset
- Mutating joins are the most common, but filtering joins can be very powerful

What if I want to add rows?

Not technically a join (no key involved)

Binding rows

```
g3
                           g4
## # A tibble: 3 x 3
                          ## # A tibble: 3 x 3
## sid grade score
                          ##
                                sid grade score
## <int> <dbl> <int>
                          ## <int> <dbl> <int>
## 1
           3 184
                   ## 1 9
                                      4 175
## 2 2 3 203
## 3 3 212
                          ## 2 10 4 204
排 3 3
                          ## 3 11 4 193
```

bind_rows()

- In examples like the previous data sets, we just want to combine the data by stacking the rows
- Data have same (or approximately same) columns
- We can do so with bind_rows()

```
bind_rows(g3, g4)
```

```
## # A tibble: 6 x 3
      sid grade score
###
    <int> <dbl> <int>
###
## 1
              3
                 184
## 2
              3 203
## 3
              3 212
## 4
                 175
              4
## 5
       10
              4 204
## 6
       11
           4
                 193
```

dplyr::bind_rows()

an efficient way to bind many data frames into one, by stacking rows
 can bind multiple datasets

```
one <- mtcars[1:4, ]
two <- mtcars[6:10, ]
three <- mtcars[12:14, ]
bind_rows(one, two, three)</pre>
```

- like joining (merging) data frames that have the same columns
- columns don't need to match when row-binding

Optional . id argument

- What if we knew the grade, but didn't have a variable in each dataset already?
- Use .id to add an index for each dataset

```
bind_rows(select(g3, -grade), select(g4, -grade), .id = "dataset")
```

```
## # A tibble: 6 x 3
## dataset sid score
## <chr> <int> <int>
## 1 1
               1
                   184
## 2 1
               2 203
               3 212
## 3 1
## 4 2
               9 175
## 5 2
              10 204
## 6 2
              11
                   193
```

Recode .id column

```
bind_rows(select(g3, -grade), select(g4, -grade), .id = "dataset") %>%
  mutate(grade = ifelse(dataset == 1, 3, 4))
```

```
## # A tibble: 6 x 4
## dataset sid score grade
## <chr> <int> <int> <dbl>
## 1 1
             1
                184
## 2 1
             2 203
## 3 1
             3 212
                175
## 4 2
            10 204 4
排 5 2
            11 193
排 6 2
```

Even better

```
bind_rows(select(g3, -grade), select(g4, -grade), .id = "grade") %>%
  mutate(grade = ifelse(grade == 1, 3, 4))
```

What if columns don't match exactly?

Pads with NA

```
bind_rows(g3, g4[ ,-2], .id = "dataset")
## # A tibble: 6 x 4
## dataset sid grade score
## <chr> <int> <dbl> <int>
                     3 184
## 1 1
## 2 1
                     3 203
## 3 1
                     3 212
## 4 2
               9
                    NA 175
## 5 2
              10
                    NA 204
## 6 2
              11
                       193
                    NA
```

You can also bind_cols()

```
math
read
## # A tibble: 3 x 2
                              ## # A tibble: 3 x 1
      sid read
##F
                              4£4£
                                    math
## <int> <int>
                              ## <int>
## 1
        1 202
                              ## 1
                                     202
排 2 2 206
                              ## 2 202
## 3 3
          190
                              ## 3 204
```

bind_cols()

```
bind_cols(read, math)
```

```
## # A tibble: 3 x 3
## sid read math
## <int> <int> <int> 202 202
## 2 2 206 202
## 3 3 190 204
```

Joins

(not to be confused with row binding)

Keys

- Uniquely identify rows in a dataset
- Variable(s) in common between two datasets to be joined
- A key can be more than one variable

Types of keys

- Small distinction that you probably won't have to worry about much, but is worth mentioning:
 - **Primary keys**: uniquely identify observations in *their* dataset
 - Foreign keys: uniquely identify observations in other datasets

What's the primary key here?

First, let's break down the code:

```
## # A tibble: 984 x 33
                                                              ethnic
##F
     child id teacher id school id k type school type sex
                                                                       famty
##F
     <chr>
              <chr>
                         <chr>
                                   <chr>
                                           <chr>
                                                       <chr> <chr>
                                                                       <chr>
  1 0842021C 0842T02
                                   full-day public
                                                       male BLACK 0~ BIOLO
###
                         0842
                                   full-day private
                                                                       BIOLO
###
  2 0905002C 0905T01
                         0905
                                                       male
                                                              ASIAN
   3 0150012C 0150T01
                         0150
                                   full-day private
                                                       female BLACK 0~ BIOLO
###
                                   full-day private
                                                       female HISPANI~ BIOLO
##F
   4 0556009C 0556T01
                         0556
###
   5 0089013C 0089T04
                         0089
                                   full-day public
                                                       male
                                                              WHITE, ~ BIOLO
   6 1217001C 1217T13
                         1217
                                   half-day public
                                                       female NATIVE ~ BIOLO
##F
  7 1092008C 1092T01
                         1092
                                   half-day public
                                                       female HISPANI~ BIOLO
##F
   8 0083007C 0083T16
                                   full-day public
##
                         0083
                                                       male
                                                              WHITE, ~ BIOLO
   9 1091005C 1091T02
                         1091
                                   half-day private
                                                       male WHITE, ~ BIOLO
## 10 2006006C 2006T01
                         2006
                                   full-day private
                                                       male
                                                              WHITE, ~ BIOLO
## # ... with 974 more rows, and 21 more variables: T1RSCALE <dbl>, T1M^{5}CALE <
```

Let's verify the key

```
count(child id)
## # A tibble: 984 x 2
###
      child id
                   n
###
   <chr> <int>
###
  1 00010100
   2 0002010C
###
###
   3 0009005C
   4 0009014C
##F
###
    5 0009026C
###
  6 0013003C
## 7 0016004C
## 8 0016009C
###
    9 0022005C
## 10 0022014C
## # ... with 974 more rows
```

ecls %>%

Let's verify the key

... with 2 variables: child_id <chr>, n <int>

```
ecls %>%
  count(child_id) %>%
  arrange(desc(n)) %>%
  slice(1:3)
## # A tibble: 3 x 2
## child id
## <chr> <int>
## 1 0001010C
## 2 0002010C
## 3 0009005C
OR
ecls %>%
  count(child_id) %>%
  filter(n > 1)
## # A tibble: 0 x 2
```

What about the key here?

```
income_ineq <- read_csv(here("data", "incomeInequality_tidy.csv"))
head(income_ineq, n = 15)</pre>
```

```
## # A tibble: 15 x 6
###
       Year Number.thousands realGDPperCap PopulationK percentile
                                                                            income
      <fdb>>
                         <fdb>
                                         <fdb>>
                                                      <fdb>
                                                                   <fdb>
                                                                             <dbl>
###
###
       1947
                         37237
                                        14117.
                                                     144126
                                                                            14243
    1
                                                                    20
                                        14117.
                                                     144126
                                                                            22984
###
       1947
                         37237
                                                                    40
##F
       1947
                         37237
                                        14117.
                                                     144126
                                                                    60
                                                                            31166
                                        14117.
                                                     144126
                                                                            44223
###
       1947
                         37237
                                                                    80
###
    5
                         37237
                                        14117.
                                                     144126
                                                                            26764.
       1947
                                                                    50
                                        14117.
                                                     144126
###
       1947
                         37237
                                                                    90
                                                                            41477
###
       1947
                         37237
                                        14117.
                                                     144126
                                                                    95
                                                                            54172
###
    8
       1947
                         37237
                                        14117.
                                                     144126
                                                                    99
                                                                           134415
###
       1947
                         37237
                                        14117.
                                                     144126
                                                                    99.5
                                                                           203001
                                                                    99.9
###
  10
       1947
                         37237
                                        14117.
                                                     144126
                                                                           479022
## 11
       1947
                         37237
                                        14117.
                                                     144126
                                                                   100.
                                                                         1584506
## 12
                                                                            13779
       1948
                         38624
                                        14452.
                                                     146631
                                                                    20
## 13
       1948
                         38624
                                        14452.
                                                     146631
                                                                    40
                                                                            22655
## 14
                         38624
                                        14452.
                                                     146631
                                                                            30248
       1948
                                                                    60
## 15
       1948
                         38624
                                        14452.
                                                     146631
                                                                    80
                                                                            42196
```

```
income_ineq %>%
    count(Year, percentile) %>%
    filter(n > 1)
```

```
## # A tibble: 0 x 3 ## # ... with 3 variables: Year <dbl>, percentile <dbl>, n <int>
```

Sometimes there is no key

These tables have an *implicit* id - the row numbers. For example:

```
install.packages("nycflights13")
library(nycflights13)
head(flights)
## # A tibble: 6 x 19
     year month day dep_time sched_dep_time dep_delay arr_time sched_arr_ti
##F
    <int> <int> <int>
                                                  <dbl>
                                                           <int>
                         <int>
                                        <int>
                                                                          <in
## 1 2013
                    1
                           517
                                          515
                                                             830
排 2 2013
                           533
                                          529
                                                             850
排 3 2013
                           542
                                          540
                                                             923
## 4 2013
                           544
                                                     -1
                                                            1004
                                                                           10
                                          545
## 5 2013
                           554
                                                             812
                                          600
                                                     -6
## 6 2013
                           554
                                          558
                                                             740
## # ... with 8 more variables: tailnum <chr>, origin <chr>, dest <chr>, air t
    hour <dbl>, minute <dbl>, time hour <dttm>
### #
```

```
flights %>%
  count(year, month, day, flight, tailnum) %>%
  filter(n > 1)
```

```
## # A tibble: 11 x 6
##
       vear month
                    day flight tailnum
##
      <int> <int> <int> <int> <chr>
                                       <int>
                2
##
   1 2013
                           303 <NA>
                                           2
                      9
                                           2
##
   2 2013
                2
                      9 655 <NA>
                                           2
##
   3 2013
                      9
                          1623 <NA>
                6
                          2269 N487WN
                                           2
##
   4 2013
                      8
    5 2013
                                           2
4F4F
                6
                     15
                          2269 N230WN
                                           2
                          2269 N440LV
##
   6 2013
                6
                     22
   7 2013
                     29
                          2269 N707SA
                                           2
##
                6
                                            2
##
       2013
                      6
                          2269 N259WN
                                           2
4F4F
   9 2013
                8
                          2269 N446WN
                                           2
                8
## 10 2013
                     10
                          2269 N478WN
                                           2
## 11
       2013
               12
                     15
                           398 <NA>
```

Create a key

If there is no key, it's often helpful to add one

These are called surrogate keys

```
flights2 <- flights %>%
  rowid_to_column()

flights2 %>%
  select(1:3, ncol(flights))
```

```
## # A tibble: 336,776 x 4
##
     rowid year month minute
     <int> <int> <int> <dbl>
##
         1 2013
## 1
                           15
## 2
         2 2013
                           29
   3
         3 2013
4F4F
                          40
         4 2013
4F4F
                           45
                     1
         5 2013
4F4F
                           0
         6 2013
##
                           58
## 7
         7 2013
                            0
         8 2013
4F4F
                            0
                            0
##F
            2013
```

Mutating joins

Mutating *_joins()

- In {tidyverse}, we use mutate() to create new variables within a dataset
- A mutating join works similarly, in that we're adding new variables to the existing dataset through a join
- Join: Two tables of data joined by a common key

Four types of joins

- left_join: keep all the data in the left dataset, drop any non-matching cases from the right dataset
- right_join: keep all the data in the right dataset, drop any non-matching cases from the left dataset

- inner_join: keep only data that matches in both datasets
- full_join: keep all the data in both datasets (also sometimes referred to as an outer join)

Four types of joins

Mutating joins

- left_join: keep all the data in the left dataset, drop any non-matching cases from the right dataset
- right_join: keep all the data in the right dataset, drop any non-matching cases from the left dataset

Filtering joins

- inner_join: keep only data that matches in both datasets
- full_join: keep all the data in both datasets (also sometimes referred to as an outer join)

Four types of joins

Mutating joins

- left_join: keep all the data in the left dataset, drop any non-matching cases from the right dataset
- right_join: keep all the data in the right dataset, drop any non-matching cases from the left dataset

Filtering joins

- inner_join: keep only data that matches in both datasets
- full_join: keep all the data in both datasets (also sometimes referred to as an outer join)

Using joins to recode

Say you have a dataset like this

```
## # A tibble: 6 x 3
## sid dis_code score
## <int> <int> <int> <int> 
## 1 1 74 190
## 2 2 40 200
## 3 3 60 200
## 4 4 00 183
## 5 5 10 210
## 6 6 96 188
```

Codes

Code	Disability
0	'Not Applicable'
10	'Intellectual Disability'
20	'Hearing Impairment'
40	'Visual Impairment'
43	'Deaf-Blindness'
50	'Communication Disorder'
60	'Emotional Disturbance'
70	'Orthopedic Impairment'
74	'Traumatic Brain Injury'
80	'Other Health Impairments'
82	'Autism Spectrum Disorder'
90	'Specific Learning Disability'
96	'Developmental Delay 0-2yr'
98	'Developmental Delay 3-4yr'

Recode method

Using case_when()

```
dis_tbl %>%
  mutate(disability = case_when(
    dis_code == "10" ~ "Intellectual Disability",
    dis_code == "20" ~ 'Hearing Impairment',
    ...,
    TRUE ~ "Not Applicable"
    )
)
```

Join method

```
dis code tbl <- tibble(</pre>
  dis code = c(
    "00", "10", "20", "40", "43", "50", "60",
    "70", "74", "80", "82", "90", "96", "98"
    ),
  disability = c(
    'Not Applicable', 'Intellectual Disability',
    'Hearing Impairment', 'Visual Impairment',
    'Deaf-Blindness', 'Communication Disorder',
    'Emotional Disturbance', 'Orthopedic Impairment',
    'Traumatic Brain Injury', 'Other Health Impairments',
    'Autism Spectrum Disorder', 'Specific Learning Disability',
    'Developmental Delay 0-2yr', 'Developmental Delay 3-4yr'
```

dis_code_tbl

```
## # A tibble: 14 x 2
      dis code disability
##F
###
      <chr>
               <chr>
## 1 00
               Not Applicable
4⊧4⊧
   2 10
               Intellectual Disability
   3 20
               Hearing Impairment
4F4F
## 4 40
               Visual Impairment
## 5 43
               Deaf-Blindness
## 6 50
               Communication Disorder
               Emotional Disturbance
##
   7 60
## 8 70
               Orthopedic Impairment
## 9 74
               Traumatic Brain Injury
## 10 80
               Other Health Impairments
## 11 82
               Autism Spectrum Disorder
## 12 90
               Specific Learning Disability
## 13 96
               Developmental Delay 0-2yr
## 14 98
               Developmental Delay 3-4yr
```

Join the tables

```
left join(dis tbl, dis code tbl)
## Joining, by = "dis_code"
## # A tibble: 200 x 4
###
       sid dis code score disability
## <int> <chr> <int> <chr>
## 1
        1 74
                    190 Traumatic Brain Injury
排 2
        2 40
                    200 Visual Impairment
排 3
        3 60
                    200 Fmotional Disturbance
## 4 4 00
                    183 Not Applicable
## 5 5 10
                    210 Intellectual Disability
## 6 6 96
                    188 Developmental Delay 0-2vr
## 7 7 60
                    203 Fmotional Disturbance
## 8 8 82
                    204 Autism Spectrum Disorder
                    201 Developmental Delay 3-4yr
排 9 98
## 10 10 10
                    198 Intellectual Disability
## # ... with 190 more rows
```

Imperfect key match?

Consider the following

```
frl <- tibble(key = 1:3, frl = rbinom(3, 1, .5))
sped <- tibble(key = c(1, 2, 4), sped = rbinom(3, 1, .5))</pre>
```

```
frl
```

```
## # A tibble: 3 x 2
## key frl
## <int> <int>
## 1 1 0
## 2 2 1
## 3 3 0
```

```
sped
```

```
## # A tibble: 3 x 2
## key sped
## <dbl> <int>
## 1 1 0
## 2 2 1
## 3 4 0
```

Consider the following

left_join()?

```
left_join(frl, sped)
```

```
## # A tibble: 3 x 3
## key frl sped
## <dbl> <int> <int>
## 1 1 0 0
## 2 2 1 1
## 3 3 0 NA
```

right_join()?

```
right_join(frl, sped)
```


From r4ds

Animations

All of the following animations were created by Garrick Aden-Buie and can be found here

left_join(x, y)

right_join(x, y)

What if the key is not unique?

- Not an issue, as long as they are unique in one of the tables
 - In this case, it's called a one-to-many join

left_join(x, y)

Example

Student-level data

```
(stu <- tibble(
  sid = 1:9,
  scid = c(1, 1, 1, 1, 2, 2, 3, 3
  score = c(10, 12, 15, 8, 9, 11</pre>
```

```
## # A tibble: 9 x 3
      sid scid score
##
## <int> <dbl> <dbl>
## 1
                 10
            1
## 2 2
            1 12
## 3 3
            1 15
            1
## 4
                8
             2
## 5
                9
## 6
               11
            3
                12
## 7
## 8
                 15
```

School-level data

```
(schl <- tibble(
    scid = 1:3,
    stu_tch_ratio = c(22.05, 31.14,
    per_pupil_spending = c(15741.08
    )
)</pre>
```

```
## # A tibble: 3 x 3
      scid stu tch ratio per pupil spend
##
    <int>
                  <dbl>
##
                                     <d
                                    157
## 1
                   22.0
## 2 2
                                    117
                   31.1
## 3
                   24.9
                                    130
```

One to many

```
left_join(stu, schl)
```

```
## # A tibble: 9 x 5
##
       sid scid score stu_tch_ratio per_pupil_spending
###
     <int> <dbl> <dbl>
                                 <dbl>
                                                     <dbl>
## 1
         1
                1
                     10
                                  22.0
                                                    15741.
## 2
                     12
                                  22.0
                                                    15741.
## 3
                1
                     15
                                  22.0
                                                    15741.
## 4
                      8
                                  22.0
                                                    15741.
                2
                      9
                                  31.1
## 5
                                                    11732.
## 6
                     11
                                  31.1
                                                    11732.
                3
                     12
                                  24.9
## 7
                                                    13028.
## 8
                    15
                                  24.9
                                                    13028.
## 9
                     17
                                  24.9
                                                    13028.
```

What if key is not unique to either table?

Generally this is an error

Result is probably not going to be what you want

Example

```
seasonal_means <- tibble(
  scid = rep(1:3, each = 3),
  season = rep(c("fall", "winter", "spring"), 3),
  mean = rnorm(3*3)
)
seasonal_means</pre>
```

left_join(stu, seasonal_means)

```
## # A tibble: 27 x 5
###
        sid scid score season
                                 mean
     <int> <dbl> <dbl> <chr>
4F4F
                                <dbl>
##
          1
                1
                     10 fall 0.345
          1
                1
##
                     10 winter 1.54
                1
   3
          1
##
                     10 spring -0.330
                1
##
   4
          2
                     12 fall 0.345
          2
                1
                     12 winter 1.54
##
          2
                1
##
                     12 spring -0.330
          3
                1
##
                     15 fall 0.345
          3
                1
## 8
                     15 winter 1.54
          3
4F4F
                1
                     15 spring -0.330
                1
## 10
          4
                      8 fall
                                0.345
## # ... with 17 more rows
```

How do we fix this?

In some cases, the solution is obvious, in others it is not

In this case

Move the dataset to wide before joining

Move to wide

We will cover this in Week 8

Join

One to many join

```
left_join(stu, seasonal_means_wide)
```

```
## # A tibble: 9 x 6
       sid scid score fall winter spring
##
     <int> <dbl> <dbl> <dbl> <dbl> <dbl>
##
## 1
                    10 0.345 1.54 -0.330
               1
## 2
                    12 0.345 1.54 -0.330
## 3
                    15 0.345 1.54 -0.330
         4
               1
## 4
                     8 0.345 1.54 -0.330
               2
## 5
                     9 0.948 -0.479 -1.51
## 6
                    11 0.948 -0.479 -1.51
## 7
                    12 0.435 -0.520 -0.835
## 8
                    15 0.435 -0.520 -0.835
         9
               3
## 9
                    17 0.435 -0.520 -0.835
```

Another example

- Often you want to add summary info to your dataset
- You can do this easily with by piping arguments

ECLS-K reminder

ecls

```
## # A tibble: 984 x 33
     child_id teacher_id school_id k_type school_type sex
                                                                       famty
##F
                                                              ethnic
                                   <chr>
##F
     <chr>
              <chr>
                         <chr>
                                           <chr>
                                                       <chr> <chr>
                                                                       <chr>
   1 0842021C 0842T02
                                                       male
                                                             BLACK 0~ BIOLO
###
                         0842
                                   full-day public
##F
  2 0905002C 0905T01
                         0905
                                   full-day private
                                                       male
                                                             ASIAN
                                                                       BIOLO
   3 0150012C 0150T01
                         0150
                                   full-day private
                                                       female BLACK 0~ BIOLO
###
                                   full-day private
##F
   4 0556009C 0556T01
                         0556
                                                       female HISPANI~ BIOLO
   5 0089013C 0089T04
                                   full-day public
                                                       male
##F
                         0089
                                                              WHITE, ~ BIOLO
                                   half-day public
                                                       female NATIVE ~ BIOLO
##F
   6 1217001C 1217T13
                         1217
###
   7 1092008C 1092T01
                         1092
                                   half-day public
                                                       female HISPANI~ BIOLO
   8 0083007C 0083T16
                                   full-day public
##F
                         0083
                                                       male
                                                              WHITE, ~ BIOLO
##F
   9 1091005C 1091T02
                         1091
                                   half-day private
                                                       male
                                                              WHITE, ~ BIOLO
                                   full-day private
排 10 2006006C 2006T01
                         2006
                                                       male
                                                              WHITE, 55 BEOLO
```

Compute group means

```
ecls %>%
  group_by(school_id) %>%
  summarize(sch pre math = mean(T1MSCALE))
## # A tibble: 515 x 2
  school id sch pre math
##
  <chr>
###
                      <fdb>>
                       20.5
## 1 0001
排 2 0002
                       15.0
                       18.8
排 3 0009
## 4 0013
                       42.3
                       17.6
## 5 0016
                       17.8
## 6 0022
  7 0023
                       15.5
##
排 8 0025
                      19.4
                       16.9
###
  9 0026
排 10 0028
                       14.4
```

... with 505 more rows

Join right within pipeline

```
ecls %>%
  group_by(school_id) %>%
  summarize(sch_pre_math = mean(T1MSCALE)) %>%
  left_join(ecls) %>%
  select(school_id:k_type) # Just for space
```

```
## # A tibble: 984 x 5
      school id sch pre math child id teacher id k type
###
      <chr>
                       <dbl> <chr>
                                                   <chr>>
###
                                       <chr>>
###
   1 0001
                        20.5 0001010C 0001T01
                                                  full-day
排 2 0002
                        15.0 0002010C 0002T01
                                                  half-day
排 3 0009
                        18.8 0009026C 0009T01
                                                  half-day
    4 0009
                        18.8 0009014C 0009T02
                                                   half-day
4F4F
###
   5 0009
                        18.8 0009005C 0009T01
                                                  half-day
## 6 0013
                        42.3 0013003C 0013T01
                                                  full-day
##
   7 0016
                        17.6 0016004C 0016T01
                                                  half-day
   8 0016
                        17.6 0016009C 0016T01
                                                   half-day
4F4F
###
   9 0022
                        17.8 0022005C 0022T01
                                                  half-day
## 10 0022
                                                  half-day
                        17.8 0022014C 0022T03
## # ... with 974 more rows
```

Default join behavior

By default, the _join functions will use all columns with common names as keys

```
flights2 <- flights %>%
  select(year:day, hour, origin, dest, tailnum, carrier)
flights2[1:2, ]
## # A tibble: 2 x 8
## year month day hour origin dest tailnum carrier
## <int> <int> <dbl> <chr> <chr> <chr>
                                          <chr>
## 1 2013 1
                 1 5 EWR
                              IAH N14228
                                          IJΑ
## 2 2013 1 1 5 LGA IAH N24211
                                          UA
weather[1:2, ]
## # A tibble: 2 x 15
## origin year month day hour temp dewp humid wind dir wind speed wind
    <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl><</pre>
##
                                                <dbl>
                                                         <dbl>
## 1 EWR 2013
                  1
                       1
                            1 39.0 26.1 59.4
                                                 270
                                                         10.4
## 2 EWR 2013
                  1 1
                            2 39.0 27.0 61.6
                                                 250
                                                         8.06
## # ... with 1 more variable: time hour <dttm>
```

Joining, by = c("year", "month", "day", "hour", "origin") ## # A tibble: 336,776 x 18 ## year month day hour origin dest tailnum carrier temp dewp humid w <dbl> <dbl> <dbl> <int> <int> <int> <dbl> <chr> <chr> <<hr> <chr> ##F ### 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4 1 ### 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8 2013 1 1 5 JFK MIA N619AA 27.0 ### AA 39.0 61.6 1 2013 1 5 JFK BON В6 27.0 ### 4 N804JB 39.0 61.6 1 6 LGA 2013 1 ATL N668DN DL 39.9 25.0 54.8 ### 1 1 ##F 6 2013 5 EWR ORD N39463 UA 39.0 28.0 64.4 1 2013 1 6 EWR FLL N516JB 37.9 28.0 ### В6 67.2 1 1 6 LGA IAD N829AS EV 25.0 ### 8 2013 39.9 54.8 1 2013 6 JFK MCO N593JB 37.9 27.0 ### 9 В6 64.3 1 1 6 LGA ## 10 2013 ORD N3ALAA AA 39.9 25.0 54.8 ## # ... with 336,766 more rows, and 4 more variables: precip <dbl>, pressure

left join(flights2, weather)

time hour <dttm>

#

Use only certain keys?

If we were joining *flights2* and *planes*, we would not want to use the year variable in the join, because **it means different things in each dataset**

```
head(planes)
```

```
## # A tibble: 6 x 9
  tailnum year type
                                          manufacturer
##
                                                          model
                                                                    engines
    <chr>
            <int> <chr>
                                                           <chr>
                                                                      <int>
###
                                          <chr>
             2004 Fixed wing multi engine EMBRAER
## 1 N10156
                                                           EMB-145XR
## 2 N102UW
             1998 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
                                                                          2
## 3 N103US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
             1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
## 4 N104UW
                                                                          2
             2002 Fixed wing multi engine EMBRAER
## 5 N10575
                                                           EMB-145LR
             1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214
## 6 N105UW
```

Specify *_join() keys

Specify the variables with by

```
left_join(flights2, planes, by = "tailnum")
```

```
## # A tibble: 336,776 x 16
##
      vear.x month
                     day hour origin dest tailnum carrier year.v type
                                                                              manu
##
       <int> <int> <int> <dbl> <chr>
                                        <chr> <chr>
                                                       <chr>
                                                                <int> <chr>
                                                                              <chr
        2013
                              5 EWR
                                        IAH
                                              N14228
                                                                 1999 Fixed~ BOEI
##F
    1
                 1
                        1
                                                       UA
        2013
                              5 LGA
                                        IAH
                                              N24211
                                                                 1998 Fixed~ BOEI
###
                                                       UA
4F4F
    3
        2013
                              5 JFK
                                        MIA
                                              N619AA
                                                                 1990 Fixed~ BOEI
                                                       AA
        2013
                              5 JFK
                                              N804JB
                                                                 2012 Fixed~ AIRB
##F
    4
                                        BQN
                                                       B6
                  1
                        1
##F
    5
        2013
                              6 LGA
                                        ATL
                                              N668DN
                                                       DL
                                                                 1991 Fixed~ BOEI
        2013
                                                                 2012 Fixed~ BOEI
##F
                              5 EWR
                                        ORD
                                              N39463
                                                       UA
        2013
                  1
                        1
                                        FLL
                                                                 2000 Fixed~ AIRB
###
    7
                              6 EWR
                                              N516JB
                                                       B6
        2013
                  1
##F
    8
                              6 LGA
                                        IAD
                                              N829AS
                                                       ΕV
                                                                 1998 Fixed~ CANA
        2013
                  1
                        1
                              6 JFK
                                        MCO
                                                                 2004 Fixed~ AIRB
##F
    9
                                              N593JB
                                                       B6
##F
  10
        2013
                  1
                        1
                              6 LGA
                                        ORD
                                              N3ALAA
                                                      AA
                                                                   NA <NA>
                                                                              <NA>
## # ... with 336,766 more rows, and 1 more variable: engine <chr>
```

Specify *_join() keys

I like to always specify the by vars

Makes intent explicit

Helps me review my own code

Mismatched key names

What if you had data to merge like this?

8

4

```
names(schl)[1] <- "school id"</pre>
schl
## # A tibble: 3 x 3
    school_id stu_tch_ratio per_pupil_spending
##
        <int>
                      <fdb>>
                                         <fdb>
4F4F
## 1
                       22.0
                                        15741.
## 2
                       31.1
                                        11732.
                       24.9
## 3
                                        13028.
stu
## # A tibble: 9 x 3
      sid scid score
##
## <int> <dbl> <dbl>
## 1
                   10
排 2 2
              1 12
## 3 3
              1 15
```

Join with mismatched key names

```
left_join(stu, schl, by = c("scid" = "school_id"))
```

```
## # A tibble: 9 x 5
##F
       sid scid score stu tch ratio per pupil spending
    <int> <dbl> <dbl>
###
                                <fdb>>
                                                    <fdb>
               1
                                 22.0
                                                   15741.
## 1
                    10
## 2
               1 12
                                 22.0
                                                   15741.
## 3
               1 15
                                 22.0
                                                   15741.
               1
                                                   15741.
## 4
                     8
                                 22.0
               2
## 5
                     9
                                 31.1
                                                   11732.
               2
## 6
                    11
                                 31.1
                                                   11732.
               3
## 7
                   12
                                 24.9
                                                   13028.
               3
                    15
## 8
                                 24.9
                                                   13028.
## 9
                    17
                                 24.9
                                                   13028.
```

Next time

Before next class

- Homework
 - Homework 5
- Reading
 - R4DS 29
- Complete
 - Markdown Tutorial

Homework 5