Formula $\sinh^{-1}(x) = ?$	$\ln\left(x+\sqrt{x^2+1}\right)$
Formula $\cosh^{-1}(x) = ?$	$\ln\left(x+\sqrt{x^2-1}\right)$
Formula $Angle\ Formula\ Involving\ \cos^2(x)$	$\cos^2(x) = \frac{1}{2} (1 + \cos(2x))$ (Useful for trig-sub problems!)
Formula $Double\ Angle\ Formula\ Involving\ \sin^2(x)$	$\sin^2(x) = \frac{1}{2} (1 - \cos(2x))$ (Useful for trig-sub problems!)

Indefinite	Integral

$$\int \ln(x) \, dx = ?$$

$$x\ln(x) - x + C$$

FORMULA

Area Between Two Curves

$$A = \int_a^b |f(x) - g(x)| \, dx$$

where

$$|f(x)-g(x)| = \begin{cases} f(x)-g(x) & \text{when } f(x) \ge g(x) \\ g(x)-f(x) & \text{when } g(x) \ge f(x) \end{cases}.$$

FORMULA

Volume of Revolution Formula

If you are rotating about a line parallel to the x-axis...

$$V = \int_{a}^{b} A(x) \, dx$$

or if you are rotating about a line parallel to the y-axis...

$$V = \int_{a}^{b} A(y) \, dy$$

where both A(x) and A(y) equal

 $\pi(\text{outer radius})^2 - \pi(\text{inner radius})^2$

FORMULA

Average Value of a Function

The average value of a function f(x) over an interval [a,b] is

$$f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \ dx$$

Formula $Work$	$W = \int_a^b f(x) dx$ where $f(x)$ is a function representing $force$ with respect to distance.
Formula Integration by Parts	$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$ or equivalently, if $u = f(x)$ and $v = g(x)$, then $\int u dv = uv - \int v du$ Also, $\int_a^b f(x)g'(x) dx = f(x)g(x)\Big _a^b - \int_a^b g(x)f'(x) dx$
Formula $Arclength\ of\ a\ Function$	$L = \int_a^b \sqrt{1 + [f'(x)]^2} dx$
Trig-Sub Trick	Try setting $x = \frac{a}{b}\tan(\theta), dx = \frac{a}{b}\sec^2(\theta)d\theta$
If you see $b^2x^2 + a^2$ in an integrand	and use $1 + \tan^2(\theta) = \sec^2(\theta)$

to simplify.

If you see $b^2x^2 - a^2$ in an integrand	$x = \frac{a}{b}\sec(\theta), dx = \frac{a}{b}\sec(\theta)\tan(\theta)d\theta$ and use $\sec^2(\theta) - 1 = \tan^2(\theta)$ to simplify.
Trig-Sub Trick	Try setting
If you see $a^2 - b^2x^2$ in an integrand	$x=\frac{a}{b}\sin(\theta), dx=\frac{a}{b}\cos(\theta)d\theta$ and use $1-\sin^2(\theta)=\cos^2(\theta)$ to simplify.
Indefinite Integral $\int \frac{dx}{x^2 + a^2} = ?$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C$
Thank You	Have a safe and restful holiday!!!
I Had A Great Time Being Your TA This Year!	

Try setting

TRIG-SUB TRICK