

Elektronik - Analoge Schaltungstechnik

Vorlesung

Fakultät Ingenieurwissenschaften

Prof. Dr.-Ing. Michael Kuhl Prof. Dr.-Ing. Werner Günther Dipl.-Ing. Dirk Menzel

basiert auf Ausgabe 2018 / Änderungen vorbehalten Berücksichtigte Quelle: Elektronik für Multimediatechnik (Prof. Dr.-Ing. habil. M. Vogel)

Bauelemente-Einsatz

Diskrete Bauelemente

☐ Dioden (pn-Übergang)

□ Bipolartransistor

■ Unipolartransistor

Metal Oxide Semiconductor Field Effect Transistor (MOSFET) (Metal Insulator Semiconductor Field Effect Transistor, MISFET))

Integrierte Technik

Schaltkreis-Technologien

- bipolar: Grundelement Bipolartransistor
- ☐ Transistor-Transistor-Logic (TTL)
 - Emitter Coupled Logic (ECL)
 - Integrated Injection Logic (I²L)
- unipolar: Grundelement MOSFET
 - n-Silicon Gate Technology (n-SGT)
 - Complementary Metal Oxid Semiconductor (Technology) (CMOS)
- □ unipolar/bipolar Kombination Bipolartechnik-CMOS (BiCMOS)
- ☐ Gallium Arsenid Technologie (GaAs)
 Transistoren mit SFET-Prinzip
 auf GaAs-Basis

☐ Optoelektronische Bauelemente (GaAs-, Si-Basis)

- Fotoempfänger (Fotodioden, -transistoren, Solarzellen) (Fotodioden, -transistoren, Solarzellen, CCD-Bildwandler)
- Fotosender
 - Lumineszenzdioden (Light Emitting Diodes) (LED)
 - Laserdioden

☐ Bauelemente der Leistungselektronik

- Vier-, Fünfschicht-pn-Strukturen: Thyristor, Triac
- Power-MOSFET
- Insulated Gate Bipolar Transistor (IGBT)

□ Sonderbauelemente

- High Electron Mobility Transistor (HEMT)
 Höchstfrequenzanwendungen (Satellitentechnik)
- Floating Gate MOSFETS EPROM-Anwendungen
- Magnetfeldempfindliche Bauelemente Hallsensoren

□ Passive Bauelemente

- Widerstände, Kondensatoren, Spulen
- Stecker, Steckverbinder
- Leiterplatten

Einführung

Inhalte der Lehrveranstaltung

Grobgliederung der Vorlesung

0 Einführung

1 Elektrotechnisch-elektronische und schaltungstechnische Grundlagen

- 1.1 Elektrotechnische Grundbegriffe (Wiederholung)
- 1.2 Halbleiterphysikalische Grundlagen
- 1.3 Schaltungstechnische Grundbegriffe

2 Bipolare Schaltungstechnik

- 2.1 Halbleiterdioden
- 2.2 Kleinsignalverstärker mit Bipolartransistoren

3 Unipolare Schaltungstechnik

- 3.1 Der MIS-Feldeffekttransistor
- 3.2 Kleinsignalverstärker mit MIS-Transistoren

4 Operationsverstärker

- 4.1 Allgemeines und Begriffe
- 4.2 Grundschaltungen
- 4.3 Anwendungen

5 Transistor-Leistungsverstärker

6 Signalerzeugung

- 5.1 Grundlagen
- 5.2 Spezielle Oszillatorschaltungen und ihre Anwendung

7 Sonstige Bauelemente und Anwendungen (Übersicht)

- 7.1 Optoelektronik und Sonderbauelemente
- 7.2 Leistungs-Bauelemente
- 7.3 Integrierte Analogschaltungen (IC)
- 7.4 Passive Bauelemente
- 7.5 Strom-/Spannungsversorgung (Übersicht)

Literatur

- /1/ Tietze, U.; Schenk, Ch.; Gamm, E.: Halbleiter-Schaltungstechnik, Springer Vieweg, ISBN 978-3-662-48354-1, 2016
- /2/ Deitert, H.; Vogel, M.: Analogtechnik multimedial, Fachbuchverlag Leipzig im Carl Hanser Verlag München Wien 2001
- /2/ Koß, G.; Reinhold, W.: Lehr- und Übungsbuch Elektronik, Fachbuchverlag Leipzig im Carl Hanser Verlag 1998
- /3/ Reisch; M: Elektronische Bauelemente, Springer Verlag Berlin-Heidelberg New York 1998
- /4/ Specovius, J.: Grundkurs Leistungselektronik, Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden, 2008
- /5/ Böhmer, E.; Ehrhardt, D.; Oberschelp, W.: Elemente der angewandten Elektronik, Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, Wiesbaden, 2007

Einführung

Arbeitshilfe zur Lehrveranstaltung "Elektronik"

Allgemeine physikalische Konstanten

 $\begin{array}{lll} \text{Lichtgeschwindigkeit} & \text{c} = 2,998 \bullet 10^8 \text{ m/s} \\ \text{Elementarladung} & \text{e} = 1,602 \bullet 10^{-19} \text{ As} \\ \text{Planck'sches Wirkungsquantum} & \text{h} = 6,626 \bullet 10^{-34} \text{ Ws}^2 \\ \text{Blotzmannkonstante} & \text{k}_{\text{B}} = 1,381 \bullet 10^{-23} \text{ Ws/K} \\ \text{Absolute Dielektrizitätskonstante (Feldkonstante)} & \epsilon_0 = 8,854 \bullet 10^{-12} \text{ As/(Vm)} \end{array}$

Materialparameter bei T = 300 K

Temperaturspannung $U_T = 25.9 \text{ mV}$

Eigenleitungsdichte

 $\begin{array}{lll} \text{Ge} & & n_i = 2,4 \bullet 10^{13} \text{ cm}^{-3} \\ \text{Si} & & n_i = 1,48 \bullet 10^{10} \text{ cm}^{-3} \\ \text{GaAs} & & n_i = 2,25 \bullet 10^6 \text{ cm}^{-3} \end{array}$

Permittivitätszahl ε_r, ε_{rel}

 $\begin{array}{lll} \text{Ge} & & & & & & \\ \text{Si} & & & & & \\ \text{Si} & & & & \\ \text{GaAs} & & & & \\ \text{SiO}_2 & & & \\ & & & \\ \text{Fr} = 3.9 & & \\ \end{array}$

Die Größe ϵ ist (mit entsprechendem Index), sofern nicht anders vereinbart, stets das Produkt aus der Feldkonstante und der Permittivitätszahl.

Bandabstand (Band Gap)

 $\begin{array}{lll} \text{Ge} & & \text{W}_{\text{G}} = 0,68 \text{ eV} \\ \text{Si} & & \text{W}_{\text{G}} = 1,08 \text{ eV} \\ \text{GaAs} & & \text{W}_{\text{G}} = 1,38 \text{ eV} \\ \end{array}$

Ladungsträger-Beweglichkeiten

Für Elektronen

 $\begin{array}{lll} \text{Ge} & \mu_n = 3900 \text{ cm}^2/(\text{Vs}) \\ \text{Si} & \mu_n = 1500 \text{ cm}^2/(\text{Vs}) \\ \text{GaAs} & \mu_n = 8600 \text{ cm}^2/(\text{Vs}) \end{array}$

μη- 0000 cm /(vs

Für Löcher

 $\begin{array}{lll} \text{Ge} & & \mu_p = 1900 \text{ cm}^2/(\text{Vs}) \\ \text{Si} & & \mu_p = 450 \text{ cm}^2/(\text{Vs}) \\ \text{GaAs} & & \mu_p = 480 \text{ cm}^2/(\text{Vs}) \end{array}$

Grundbegriffe

• Elektronik (Festkörperelektronik):

Teil der Elektrotechnik, der sich mit der **Funktionsweise** und den **Kenngrößen** von elektronischen Bauelementen als auch ihrer praktischen Anwendung in der **Schaltungstechnik** befasst

- Verhalten der Elektronen im Festkörper (FK)
 - * beeinflusst von außen (über Kontakte, Licht, elektr./magn. Felder) und
 - * Methoden ihrer technischen Nutzung
- Kennzeichen: schnelle Vorgänge
- Bestandteile: Elektronische Bauelemente und ihre Zusammenschaltung für die analoge und digitale Signalverarbeitung
- Physikal.-technolog. Grundlage der modernen *Informationstechnologie, Medien-Wirtschaft* (*Stichworte:* Taschenrechner und Multi-Media-PC, numerische Maschinensteuerung, Satelliten-Übertragung (TV, Telefon), Quarzuhr/Funkuhr, CD-Player)
- Festkörperbauelement (FK-BE oder einfach BE) =
 - Vorrichtung zur gezielten technischen Nutzung elektronischer Effekte im FK
 - Festkörper (FK) = Halbleiter- (HL-) Kristall mit elektrischen Kontakten (Metall)
 - Ausnutzung des Strom-Spannungs- (I/U-)Verhaltens an Kontakten
 - Bauelemente-Wirkprinzip: Physikalisches Grundprinzip für bestimmte Klassen von BE (z. B. Bipolar-BE., Unipolar-BE)

• Technologische Grundprinzipien

- Strukturierung (Geometrie der Bauelemente und Schaltungen auf dem Chip) = Lithografie
- Technologische Grundvorgänge: Diffusion (Herstellung von pn-Übergängen), Oxydation, Metallisierung

Historische Entwicklung der Elektronik

• um 1900: Elektronenröhre, Steuerraum Vakuum

• 1948: Erfindung des Bipolartransistors als FK-BE

• 1959: Schaltungsintegration auf einem HL-Substrat (Chip): monolytische

Integration (Planarprozess)

um 1960 -65: Praktische Anfänge der Integration/MOSFET

• heute: über 10⁹ Transistorfunktionen pro Chip/Integrated Circuit (IC)

Wiederholung aus der Elektrotechnik

 \Box Elektrische Feldstärke \vec{E} [\vec{E}] = 1 V/m (im Halbleiter: 1 V/cm)

Physikalische Erscheinung im Raum, erkennbar durch Kraftwirkung auf elektrische Ladungen, mathematisch beschrieben als ortsabhängiges Vektorfeld \vec{E}

Kraftwirkung auf eine elektrische Ladung Q: $\vec{F} = Q \vec{E}$

Ursachen: elektrische Ladungen, zeitveränderliche magnetische Felder

□ Elektrisches Potential φ und elektrische Spannung U $[\varphi], [U] = 1 \ V$

Ortsabhängiges skalares Feld, beschreibt die im elektrischen Feld vorhandene potentielle Energie einer elektrischen Ladung Q: $W_{pot} = Q \varphi + const.$

Die Potentialdifferenz zwischen zwei Punkten ist die elektrische Spannung

☐ Elektrischer Strom I, elektrische Stromdichte J

Zahl der pro Zeit durch eine Querschnittsfläche / pro Flächeneinheit fließenden elektrischen. Ladung

Wiederholung aus der Elektrotechnik

Definitionsarten der elektrischen Spannung

$$U_{12} = \varphi_1 - \varphi_2 \quad (>0 \text{ bei } \varphi_1 > \varphi_2)$$

Elektrische Spannung mit Massebezug

Masse:
$$\varphi = 0$$

$$U_{12} + U_2 - U_1 = 0$$

 $U_{12} = U_1 - U_2$

Bei der Bewegung der Ladung Q durch die Potentialdifferenz U = ϕ_1 - ϕ_2 wird die potentielle Energiedifferenz ΔW_{DOt} = Q U in zusätzliche kinetische Energie umgewandelt.

Beziehung zwischen Potential und elektrischer Feldstärke: \vec{E} = - grad φ (Gradient)

eindimensional:
$$\vec{E} = -\frac{d\phi}{dx}$$
; $|\vec{E}| = E_X = E = -\frac{d\phi}{dx}$; $\phi = -\int E(x) dx + const.$

■ Masse (Erde)

- (Unendlich) große, leitende Fläche in elektrischen Netzen
- unveränderliches Potential ⇒ Verwendung als Bezugspotential ⊕ = 0
- in der elektronischen Schaltung: ein Pol der Betriebsspannung

Das Schaltungsnetzwerk

Das Bauelement in der Schaltungsumgebung: Ohm'scher Widerstand

Schaltungsumgebung ist unwesentlich!

$$I = \frac{U_{R}}{R} = \frac{U_{1} - U_{2}}{R}$$

$$I^{*} = -\frac{U_{R}}{R} = \frac{U_{2} - U_{1}}{R}$$

Wiederholung aus der Elektrotechnik

☐ Grundstromkreis: Aktiver Zweipol (aZP) mit nichtlinearem passiven Zweipol (Last L)

= Grundstruktur vieler Schaltungsanwendungen

passiver ZP, nichtlinear (Last L)

aktiver Zweipol (aZP)

Nichtlineare Kennlinie

 $I_L = f(U_L)$

passive, aktive Bauelemente

Maschengleichung:

$$U_{B} - U_{a7P} - IR = 0$$

"einfacher denken":

$$U_{aZP} = U_B - IR$$

Arbeitsgerade

$$I = \frac{U_R}{R} = \frac{U_B - U_{aZP}}{R}$$

☐ Vierpol (Übertragungs-Vierpol, VP)

- "Black Box", je zwei Ein- /Ausgangsklemmen, am Ausgang Abschluss mit Belastungsimpedanz \underline{Z}_{b}
- VP-Inhalt: beliebige technische Gebilde
 - einfache Übertragungsglieder (z.B. Tief- und Hochpässe, Leitungen)
 - Verstärker
 - Filter
- VP-Frequenzgang = komplexe Übertragungsfunktion (Qualitätskriterium für elektronisch aktive VP, z.B. **Verstärker**)
- VP-Arten (harmonische Aussteuerung)
 - linear: keine Kurvenverformung, nur Phasenverschiebung ≅ Verstärker Kleinsignalbetrieb
 - Nichtlinearer VP: zusätzlich Kurvenverformung (⇒ Klirrfaktor, Verstärker Großsignalbetrieb

Komplexe Übertragungsfunktion

$$\underline{G}(j\omega) = \frac{\underline{U}_{O}}{\underline{U}_{i}} = \text{Re}[\underline{G}(j\omega)] + j \text{Im}[\underline{G}(j\omega)] = |\underline{G}(j\omega)| \exp(j \varphi(\omega)); \varphi(\omega) = \arctan(\frac{\text{Im}[\underline{G}(j\omega)]}{\text{Re}[\underline{G}(j\omega)]})$$

Re, Im: Real-, Imaginärteil kartesisch

 $/\underline{G}(j\omega)/$ Betrag, $\varphi(\omega)$ Phasenwinkel, Phasendrehung

Wiederholung aus der Elektrotechnik

Beispiel: RC-Tiefpass, ausgangsseitiger Leerlauf, harmonisches Eingangssignal $u_i(t) = \hat{U} \sin(\omega t)$

Berechnung der komplexen Übertragungsfunktion;

$$\underline{G}(j\omega) = \frac{\underline{U}_{o}}{\underline{U}_{i}} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega\tau} = \frac{1 - j\omega\tau}{1 + (\omega\tau)^{2}} = \frac{1}{\sqrt{1 + (\omega\tau)^{2}}} \exp(j\varphi(\omega))$$

$$\varphi(\omega) = -\arctan(\omega\tau); \tau = RC$$

Rücktransformation in den Zeitbereich

$$u_{O} \ (t) \ = \ \hat{U} \left| G(j\omega) \right| \ sin(\omega \ t + \phi(\omega)) \ = \ \frac{\hat{U}}{\sqrt{1 + (\omega \tau)^2}} \, sin\left(\omega \ t \ - arctan(\omega \tau)\right)$$

Nachbildung thermischer Prozesse als "thermischer Stromkreis" (Analogie zum elektrischen Bereich)

Hintergrund:

Die Verlustleistung elektronischer Bauelemente führt zur Wärmeentwicklung und damit zu einer (u. U. nicht zulässigen) Temperaturerhöhung.

Bedeutung, Anwendung:

Berechnung und Beurteilung von Bauelemente-Temperaturen und Konzipierung von Kühlmaßnahmen

Thermisches Ersatzschaltbild

"Ohm'sches Gesetz der Wärmeleitung" für stationäre (zeitunabhängige) Bedingungen :

$$\Delta T = R_{th} P_V$$
; $R_{th} = R_{thi} + R_{tha}$

Thermische Spannungsteilerregel:

$$P_V = \frac{T_j - T_U}{R_{th}} = \frac{T_j - T_G}{R_{thi}} = \frac{T_G - T_U}{R_{tha}};$$
 $R_{th} = R_{thi} + R_{tha}$

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Analoge Größen im thermischen und elektrischen Bereich (für kompakte Elemente)

elektrisch	thermisch	
Energie W [Ws]	Wärmemenge Q [J, kcal] ; 1J = 1Ws = 1Nm	
elektr. Potential φ [V]	Temperatur T [K]	
elektr. Spannung U [V]	Temperaturdifferenz ΔT [K]	
elektr. Strom I [A]	Wärmestrom dQ/dt = P _V [J/s, W-]	
elektr. Widerstand [Ω]	thermischer Widerstand [K/W]	
elektr. Leitfähigkeit κ	thermische Leitfähigkeit λ [W/(Km)]	
Ohmsches Gesetz R = $\frac{U}{I}$	Ohmsches Gesetz der Wärmeleitung: R $_{th} = \frac{\Delta T}{P}$	

1.2 Halbleiterphysikalische Grundlagen

Spezifischer Widerstand und Leitfähigkeit verschiedener Festkörper

Leiter: hohe LT-Dichte, $\approx 10^{23}$ cm⁻³;

Halbleiter (HL): mittlere LT-Dichte, $10^{20} \cdot \cdot \cdot 10^{5}$ cm⁻³ (einstellbar durch Dotierung)

Isolatoren (IS): geringe LT-Dichte, < 10⁵ cm⁻³

Eigenleitung in Silizium:

Elektron-Loch-Paarbildung

Modulierte Leitfähigkeit im Halbleiter durch Dotierung

Erzeugung zusätzlicher Leitungselektronen durch Einbau von Donatoren

Erzeugung zusätzlicher Defektelektronen durch Einbau von Akzeptoren

Ladungsträgerdichten im Betriebstemperaturbereich

Größe	p-HL	n-HL
Löcherdichte p ₀	NA	n_i^2/N_D
Elektronendichte n ₀	n_i^2/N_A	N _D

Stromtransport im Halbleiter: Driftstrom

- Driftströme/Leitfähigkeit im HL: Summe aus Anteilen von e-, e+:

$$\begin{split} \vec{J}_{F\,n} &= \kappa_n \, \vec{E} \; ; \; \kappa_n = e \, n \, \mu_n \qquad \vec{J}_{F\,p} \; = \kappa_p \, \vec{E} \; ; \; \kappa_p = e \, p \, \mu_p \\ \vec{J}_{F\,ges} &= \vec{J}_{F\,n} + \vec{J}_{F\,p} = \left(\kappa_n + \kappa_p\right) \vec{E} = \kappa \; \vec{E} \; ; \; \kappa = \kappa_n + \kappa_p = e \left(n \, \mu_n + p \, \mu_p\right) \end{split}$$

- Sonderfall Störhalbleiter mit $N_{D_{i},A} >> n_{i}$
 - n-HL: n >> p: $\kappa \approx \kappa_n = e \ n \mu_n$
 - p-HL: p >> n: $\kappa \approx \kappa_p$ = e p μ_p
- **Beweglichkeit :** unterschiedlich für e $^-$ (μ_n) und e $^+$ (μ_p) , in Si: Elektronen: μ_n = 1500 cm 2 /(Vs), Löcher: μ_p = 450 cm 2 /(Vs

Bemessungsgleichung für quaderförmige Ohm'sche Widerstände

Stromtransport im Halbleiter: Diffusionsstrom

Ursache: örtliche Konzentationsunterschiede in der Ladungsträgerdichte

 $\mbox{eindimensional:} \ \, J_{Diff\ n} = e\,D_n\,\frac{\partial\,n}{\partial\,x}\;;\; J_{Diff\ p} = -\,e\,D_p\,\frac{\partial\,p}{\partial\,x}$

Ladungsträgergenetik: Generation und Rekombination

- **Generation G** = LT-Erzeugung, [G] = $1 \text{ cm}^{-3}\text{s}^{-1}$, Unterscheidung nach Energie-Herkunft
 - G_{th}:innere G = thermische G mit thermischer Energie des Kristalls = Elektronen-Loch-Paarbildung (Band-Band G) ⇒ Eigenleitung
 - G_a: äußere (Energie von "außen", z.B. Photonen: optische G.) Bedeutung: **Fotoempfänger (Fotodiode-, -transistor)**
- **Rekombination R =** LT-Vernichtung, [R] = 1 cm⁻³s⁻¹ Unterscheidung nach Energie-Verwertung)
 - strahlend: Band-Band-R W-Abgabe als elektromagn. Strahlung, Photonen, Licht
 - → Fotosender (LED)
 - (nichtstrahlend)

Logarithmische Pegelmaße: Das Dezibel (dB)

Anwendung: Verstärkertechnik (NF, HF)

Primär definiert als logarithmisches Leistungsverhältnis (-verstärkung)

$$v = v_P = Ig \frac{|P_0|}{|P_i|} B = 10 Ig \frac{|P_0|}{|P_i|} dB$$
 ; 1 B = 10 dB

Erweiterung auf andere Größenverhältnisse, z.B. die Spannungsverstärkung über $P = \frac{U^2}{R}$

$$v = 10 \lg \frac{\left| P_{o} \right|}{\left| P_{i} \right|} \ dB = 10 \lg \frac{\left| U_{o}^{2} / R \right|}{\left| U_{i}^{2} / R \right|} = 20 \lg \frac{\left| U_{o} \right|}{\left| U_{i} \right|} \ dB = 20 \lg \frac{\left| U_{2} \right|}{\left| U_{1} \right|} dB$$

Benutzung als absolutes Pegelmaß: Bezugsgröße festlegen

- z.B. **Maßeinheit dB\muV**: Spannungsbezug U₁ = 1 μ V Beispiel: U = 1V = 10⁶ μ V = 120 dB μ V
- PSpice: Bezugswert U₁ = 1V, Aufruf in Probe: z.B. VdB(o)

Bode-Diagramm

Grafische Darstellung des komplexen **Frequenzganges** von $\underline{G}(j\omega)$ nach

- Betrag /G/ (Amplitudengang, log. Maßstab, z. B. dB)
- Phasenwinkel φ(ω) (**Phasengang**)
- Abszisse: log. Frequenzachse

Anwendung und Vorteile:

- Beschreibung der Frequenzgänge insbesondere von Verstärkern
- Möglichkeit der Definition von *Eckfrequenzen* und Näherungskonstruktionen für den Amplitudengang von Übertragungsvierpolen
- Vereinfachte grafische *Multiplikation* (für Kettenschaltungen) und der Inversion von Frequenzgängen

Beispiel: Bodediagramm eines RC-Tiefpasses ($\tau = 0,159$ ms)

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Hierarchiekonzept beim Entwurf elektronischer Schaltungen

Halbleiterdioden

Grundvorgänge am pn-Übergang

Neuzustand

Ausbildung der Sperrschicht ohne äußere Spannung

- Konzentrationssprung e⁺, e⁻ ⇒ Diffusionsströme,
 Ortsfeste Störstellen bleiben zurück ⇒ innere Raumladung ⇒ inneres E-Feld ⇒ inneres Potential (φ)-Feld
- 2. entgegengesetzte Feldströme kompensieren Diffusionsströme, Gleichgewicht: $J_{n}=J_{p}=J_{ges}=0$
 - ⇒ Entstehung einer schmalen Zone nahezu ohne e⁺, e⁻ :

Raumladungs- (RL-) Zone (RLZ), Sperrschicht (Breite \leq 1 μ m) mit Potentialbarriere U_D = Diffusionsspannung

$$U_D = U_T * \ln(\frac{N_A + N_D}{n_i^2})$$

mit U_T = 25,9 mV | s_i

Halbleiterdioden

Der pn-Übergang mit äußerer Spannung

Flusspolung: großer Strom

Sperrpolung: kleiner Strom **←**⊙ ⊕→ 룩⊕ + p-HL n-HL p-HL n-HL U > 0U < 0

Flusspolung:

- im p-HL: Löcherinjektion (Majoritäten) über die Sperrschicht in den n-HL (dort Minoritäten)
- im n-HL: Elektroneninjektion (Majoritäten) über die Sperrschicht in den p-HL (dort Minoritäten)
- Sperrschichtbreite wird verringert, Dichte der Minoritäten wird angehoben, Dichte der Majoritäten bleibt nahezu konstant

Sperrpolung:

- im p-HL: Löcherextraktion (Majoritäten) aus der Sperrschicht, Löcherdichte im n-HL (als Minoritäten) wird sehr klein
- im n-HL: Elektronenextraktion (Majoritäten) aus der Sperrschicht, Elektronendichte im p-HL (als Minoritäten) wird sehr klein
- Sperrschichtbreite wird vergrößert, Dichte der Minoritäten wird abgesenkt, Dichte der Majoritäten bleibt nahezu konstant

Spannungsabhängigkeit der Minoritätsträgerdichte $\sim [\exp(\frac{U}{U_{\tau}}) - 1]$

Sperrschichtbreite ds:

$$d_s = x_n + x_p = \sqrt{\frac{2\epsilon (U_D - U)}{e} \frac{N_A + N_D}{N_A N_D}}$$

Maximale Feldstärke:

$$-\mathsf{E}_{\mathsf{max}} \ = \frac{\mathsf{e}\,\mathsf{N}_{\mathsf{A}}\,\mathsf{x}_{\mathsf{p}}}{\varepsilon} = \sqrt{\frac{2\,\mathsf{e}\,(\mathsf{U}_{\mathsf{D}}-\mathsf{U})}{\varepsilon}\,\frac{\mathsf{N}_{\mathsf{A}}\,\mathsf{N}_{\mathsf{D}}}{\mathsf{N}_{\mathsf{A}}\,+\mathsf{N}_{\mathsf{D}}}} = \frac{2(\mathsf{U}_{\mathsf{D}}-\mathsf{U})}{\mathsf{d}_{\mathsf{S}}}$$

Ideale Kennlinie

Bezeichnungen:

(forward current) Durchlassstrom

UF Durchlassspannung (forward voltage)

Sperrstrom (reverse current)

U_R Sperrspannung (reverse voltage)

Halbleiterdioden

Reale Kennlinieneffekte der Diodenkennlinie

Durchbruch

Stoßionisation/Lawineneffekt: Avalanche-Effekt (Trägermultiplikation)

- Prozess reversibel, sehr schnell
- Bezeichnung: 1. Durchbruch
- 2. Durchbruch: Thermische Folge des 1. Durchbruchs, irreversibel (Zerstörung des BE.) \Rightarrow Strombegrenzung durch Vorwiderstand R_V

Serien- (Bahn-) Widerstände

- beschreiben elektrische Wirkung der Bahngebiete
- ohmsche (lineare) Serien-Widerstände nach geometrischer Bemessung

Kennlinie mit Serienwiderstandseinfluss

$$\begin{split} &I = I_{S}(exp\frac{U_{RLZ}}{U_{T}} - 1) \rightarrow U_{RLZ} = U_{T} \; ln(\frac{I}{I_{S}} + 1); \; U_{Bahn} = R_{B} \; I \\ &U = U_{ges} = U_{RLZ} + U_{Bahn} = U_{T} \; ln(\frac{I}{I_{S}} + 1) + R_{B} \; I; \; I = I_{S}(exp\frac{U - R_{B} \; I}{U_{T}}) \end{split}$$

Halbleiterdioden: Eigenschaften

□ Statische Kenngrößen

- Flussspannung/-Strom U_F, I_F: KL-Werte im Flussbereich (Index F)
- Schleusen- /Schwellspannung Us; Beginn der steilen Stromanstieges materialabhängig (Eigenleitungsdichte über Is)

- Maximalwerte:
 - IFmax = 0,1 A (Mehrzweckdioden),1 ... 200 A Gleichrichterdioden
 - maximale Verlustleistung $P_{VD\,max} = I_{Fmax} U_{Fmax}$ (mW bis kW), danach thermische Überlastung
- Sperrstrom IR unterhalb UBR, nahezu spannungsunabhängig
- Durchbruchspannung UBR

dynamisches Verhalten

- Großsignal-/Schaltverhalten: Schaltverzögerungen beim schnellen Umschalten über große KL-Bereiche, z. B. Fluss ⇔ Sperr, Diode verhält sich wie eine (spannungsabhängige) Kapazität, Umladeprozesse, Sperrverzögerung
- Kleinsignalverhalten: Aussteuerung am Arbeitspunkt mit kleinen harmonischen Signalen
- Einsatz in Sperrrichtung: **Sperrschichtkapazität,** Anwendung zur Abstimmung von Eingangs-Schwingkreisen in klassischen Rundfunk-/Fernsehempfängern

☐ Ersatzschaltung:

Nachbildung des elektrischen Verhaltens von BE durch äquivalente elektrische Netzwerke (gilt allgemein)

Kleinsignal-Ersatzschaltbild der Diode bei NF

Halbleiterdioden: Eigenschaften

Knickgeraden-Modell der Halbleiterdiode in Flussrichtung

- Reihenentwicklung am Arbeitspunkt (AP)

$$I=I_A + \frac{dI}{dU}\Big|_{AP} (U-U_A) = I_A + \frac{U-U_A}{r_F}$$

- KL-Näherung ("Knickgerade")

$$I = \frac{U - U_S}{r_F}$$
 für $U \ge U_S$

$$I = 0$$
 für $U \le U_S$

$$U_S = U_A - I_A r_F$$

Dioden-Ersatzschaltung

Halbleiterdioden: Anwendung

LED (Light Emitting Diode)

Prinzipaufbau/Arten/Anwendung

Dioden-Arten

- Einzeldioden in verschiedenen Farben (von rot bis blau) zur Anzeige von Betriebszuständen
- Sieben-Segment-Anzeigen (alphanumerische Zeichen)
- 7x5-Punktmatrizen

Anwendungsschaltung mit Vorwiderstand

$$R_{V} = \frac{U_{B} - U_{LED}}{I_{LED}}$$

mit

$$U_{LED} = 1.5 \dots 1.6 \text{ V (rot)}$$

$$U_{LED} = 2.0 ... 2.5 V (grün/gelb)$$

$$I_{LED} = 5 ... 25 \text{ mA}$$

Halbleiterdioden

Dioden-Bauformen und -Grundstrukturen

Einteilung

Diodentyp	Wesentliche Eigenschaft	
Gleichrichterdioden	große I _F (1-1000 A), U _R bis 2000 V, geringe Frequenz	
Universaldioden	kleine Abmessungen, kleine I_F , kleine U_{BR} , hohe Frequenz	
Schaltdioden	sehr kurze Schaltzeiten (ns), großes Verhältnis von Sperr- zu Durch- lasswiderstand	
Z-Dioden	Definierte Durchbruchspannung, r _Z →0	
Thyristoren (Vierschichtdiode)	3 pn-Übergänge; pnpn; "Zünden"	
Kapazitätsdioden	durch Spannung einstellbare Kapazität	
Tunneldioden	negativer Kennlinienbereich; Verstärker, Oszillator in GHz	
Fotodioden	Umwandlung von Licht in elektrische Signale	
Lichtemitterdioden	freiliegender pn-Übergang; LED, 7-Segment-Anzeigen	
Schottkydioden	Metall-Halbleiter-Übergang, schnelle Schaltdioden	

Einsatz

- Signalformwandlung mit den Schwerpunkten
 - + Gleichrichten (Netz- und HF-Gleichrichtung)
 - + Begrenzen (Messtechnik)
 - + Stabilisieren (Spannungsstabilisierung)
- als elektronischer Schalter (Digitaltechnik, Bereichsumschalter im Tuner)
- in Sperrrichtung als variable Sperrschicht-Kapazität (AFC, Frequenzabstimmung)
- Schwingungserzeugung bei sehr hohen Frequenzen (cm/mm-Bereich)
- Wandler von Licht in elektrische Energie und umgekehrt (Fotodiode, LED)

Halbleiterdioden

Gleichrichterdioden: Einsatz

- Stromversorgung elektronischer Geräte: Netzgleichrichtung

- messtechnische Erfassung elektrischer Größen: Messgleichrichter

- Demodulation elektrischer Signale: HF-Gleichrichter; speziell

AM-Demodulator und FM-Ratiodetektor

Konventionelles Netzteil

Gleichrichtung: Einweggleichrichtung

- Gleichrichtung = Umwandlung von U_∼ (wechselnder Polarität) in U mit einheitlicher Polarität = pulsierende Gleichspannung
- Ausnutzung der asymmetrischen Dioden-Kennlinie: Stromfluss in Durchlass-, kaum Stromfluss in Sperrrichtung
- Grundschaltung Einweggleichrichtung (Spitzenwertgleichrichter)

Grafische Konstruktion der Ausgangsspannung mit exakter Kennlinie

Prof. M. Kuhl, Prof. W. Günther: Elektronik Folie 2-7

Halbleiterdioden

Grafische Konstruktion der Ausgangsspannung mit Knickgerade

1. $U_i \ge U_S$: $u = U_S + i r_F$

$$i(t) = \frac{u_i(t) - U_S}{R_L + r_F}$$
 $u_o(t) = R_L i(t)$

$$u_{o}(t) = R_{L} i(t)$$

2. $U_i \leq U_S$

$$i(t) = 0$$
; $U_0 = 0$

Verschiebung U_i um U_S nach unten

Verlauf und Kenngrößen der Ausgangsspannung mit Ladekondensator

C_L ausreichend groß, wird geladen, erzeugt nahezu konstanten U₀-Wert $U_o \approx U_{imax}$ - U_F , $U_F \approx 1 \dots 2 \text{ V(Ladephase: hohe Fluss-Impulsströme} \Rightarrow U_F.groß)$

> C-Entladung, Diode gesperrt Diode leitend

Zeitbereiche:

- Ladephase (U_{Diode} = U_i -U_o > U_S, rel. kurz): Diode leitend, Zeit ≅ Stromflusswinkel 9, hoher Diodenstrom, Kondensator wird nachgeladen
- Entladephase Diode gesperrt, CI liefert Strom
- Ladungsbilanz: $\int_{C} i(t)dt = \frac{U_0}{R_1}T$
- max. Betriebskennwerte einhalten: max. Verlustleistung als Mittelwert, periodische Spitzenströme erforderliche $U_{BR}: U_{BR} > U_{Sperr} \ge 2 \hat{U}$

Welligkeit der Ausgangsspannung

 $\Delta U \ll \overline{U}_0$; $\overline{I}_L = I_I = const.$

Ladungsverlust an C_L während Periodendauer T (9 = 0 setzen): $\Delta Q = C_L \Delta U = I_L T$

$$\Delta U = \frac{I_L T}{C_L} = \frac{I_L}{C_L f}$$
; $I_L = \frac{\overline{U}_0}{R_L}$; $\overline{U}_0 = \hat{U} - (1..2)V$

Halbleiterdioden

Zweiweggleichrichtung: Schaltungsvarianten und Ausgangsspannung

Z-Dioden

I/U-Kennlinie

Ersatzschaltung und Schaltsymbol

Kennwerte

- Betriebsgrößen (Nenn-/Nominalwerte) U_{Znenn}, I_{Znnenn} (U_{Znenn} = 2 ... 100V), positiv zählen
- minimale Strom und Spannungswerte (min)
- dynamischer Z-Widerstand r7
- max. Verlustleistung: 0,1 ... $\overline{10}$ W

 Maximalwerte (max) folgen aus maximal möglicher Verlustleistung P_{Vmax} = U_{Zmax} I_{Zmax}

Halbleiterdioden

Z-Dioden

Grundprinzip der Stabilisierung

Anwendungsschaltung

Ideale Stabilisierungsfunktion

Grundgleichungen der realen Stabilisierungsfunktion

$$\begin{array}{lll} U_{o} = U_{Z} = U_{i} - R_{V}I_{V} & \text{Arbeitsgerade Vorwiderstand } R_{V} \\ I_{V} = I_{Z} + I_{L} & \text{Knotenbilanz Ausgangsknoten} \\ I_{L} = U_{o}/R_{L} & \text{Kennlinie Lastwiderstand } R_{L} & \\ \end{array} \qquad \begin{array}{ll} \text{mit Kennlinie} \Rightarrow \\ U_{o} = \frac{\frac{r_{Z}}{R_{V}}U_{i} + U_{Z0}}{1 + \frac{r_{Z}}{R_{V}}} - \frac{r_{Z}}{1 + \frac{r_{Z}}{R_{V}}} I_{L} \end{array}$$

Wechselstrom-Ersatzschaltung und Glättungsfaktor G

Dimensionierung des Vorwiderstandes R_V

- bei (näherungsweise) konstanten Laststrom I_L bzw. Lastwiderstand R_L bei den Dioden-Nennwerten (nenn)

$$R_V = \frac{U_i - U_{Znenn}}{I_{Znenn} + I_L}$$

- als R_V-Wertebereich aus den Dimensionierungsgrenzen
 - Mindestwert R_{Vmin}:
 garantiert, dass bei maximaler Eingangsspannung U_{imax} und minimalem Laststrom I_{Lmin} die
 Maximalwerte I_{Zmax} und U_{Zmax} an der Z-Diode nicht überschritten werden.

$$R_{V} \ge R_{Vmin} = \frac{U_{imax} - U_{Zmax}}{I_{Zmax} + I_{Lmin}}$$

Maximalwert R_{Vmax}:
 darf bei vorgegebenen maximalen Laststrom I_{Lmax} und minimaler Eingangsspannung U_{imin}
 nicht überschritten werden. Ansonsten werden die Minimalwerte I_{Zmin} und U_{Zmin} an der Z Diode unterschritten und die Diode verliert ihre Stabilisierungswirkung.

$$R_{V} \leq R_{Vmax} = \frac{U_{i\,min} - U_{Zmin}}{I_{Z\,min} + I_{L\,max}}$$

Kleinsignalverstärker mit Bipolartransistoren

Transistor Grundprinzip

Technologischer Prinzipaufbau und Arten

Bauformen

pnp-Legierungstransistor

Transistor-Grundschaltungen

Transistor-Einsatz erfolgt als Vierpol-Grundschaltung

Ein Anschluss wird am Ein- und Ausgang gemeinsam genutzt und gibt der Grundschaltung ihren Namen

Basisschaltung (BS)

Emitterschaltung (ES)

Kollektorschaltung (KS)

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Kleinsignalverstärker mit Bipolartransistoren

Funktionsprinzip des Bipolartransistors

Die Wirkungsweise des Bipolartransistors beruht auf der elektronischen Verkopplung zweier pn-Übergänge, des Basis-Emitter- und des Basis-Kollektor-Übergangs.

Die im niederohmigen Emitterkreis fließenden Ladungsträger durchlaufen nahezu vollständig die dünne Basisschicht hin zum hochohmigen Kollektorkreis, ohne über den Basisanschluss abzufließen.

Funktionserläuterung an der Basisschaltung:

- 1. Injektion e⁻ (Maj.) von E nach B (dort Min.), Injektions-Strom I_{En}
- 2. Injektion e⁺ (Maj.) von B nach E (dort Min.), Injektions-Strom I_{Ep} (ist störend) Forderung: $I_{Ep} >> I_{Ep} \Rightarrow N_E >> N_B$ (n⁺p)
- 3. Transport e⁻ von E nach C (eff. Basisbreite), Strom I_{CT}, Trägerverluste durch 4.
- 4. Rekomb.-Verluste im Basisraum, I_B-Anteil I_{B Rek} , Basis-Gesamtstrom: I_B = I_{BRek} + I_{Ep}
- 5. BE-gesteuerter Elektronen-Diffusions-Strom durch Basis (Min.), dringt in hochohmige BC-Sperrschicht ein, I_C ≈ I_E Eigenschaften:
 - BC-Sperrschicht wirkt wie gesteuerte Stromquelle große Sperrspannung U_{BC} bleibt erhalten, I_C unabhängig von U_{BC} Änderungen, großer Spannungshub an äußerem Lastwiderstand wird möglich

⇒ Spannungsverstärkung

Anschaulich erklärt als **Widerstandsmodulation der BC-Sperrschicht**, für Name: "Übertragungswiderstand" = **transfer resistor = Transistor**

Stromverstärkung Basischaltung:
$$A_N = \frac{I_C}{I_E} \le 1$$
, nahe 1 (z. 0.995)

Ausgehend vom Funktionsprinzip wird das Strom-Spannungs-Verhalten des Bipolartransistors durch 2 Kennliniengleichungen beschrieben. Sie werden für die Basisschaltung abgeleitet. Die Diodengleichungen der beiden pn-Übergänge sind miteinander verknüpft.

Die Kennliniengleichungen der Basisschaltung können auf die Emitter- und Kollektorschaltung umgeschrieben werden. Sie enthalten dabei die Strom- und Spannungsgrößen der jeweiligen Grundschaltung.

Kleinsignalverstärker mit Bipolartransistoren

Transistor-Betriebsbereiche (Polung für npn)

Betriebsbereich	BE-Diode	BC-Diode	Vorkommen/Anwendung
aktiv normal	U _{BE} > 0 (fluss)	U _{BC} < 0 (sperr)	Verstärker
aktiv invers	U _{BE} < 0 (sperr)	U _{BC} > 0 (fluss)	Spezialanwendungen
			(z.B. niederohmige Schalter)
Sättigungsbetrieb	U _{BE} > 0 (fluss)	U _{BC} > 0 (fluss)	Transistor-Schalter
Sperrbetrieb	U _{BE} < 0 (sperr)	U _{BC} < 0 (sperr)	Transistor-Schalter

Begriff Kennlinienfeld (KF)

Grafische Darstellung einer I/U-Größe als Funktion von zwei unabhängigen I/U-Größen

- 1. Unabhängige kontinuierlich verändern
- 2. Unabhängige als diskrete Parameter

⇒ Kurvenscharen

Kennlinienfelder der Emitterschaltung

Eingangs-KF

Strom-Spannungs-Übertragung vorwärts Strom-Strom-Übertragung vor

Spannungsübertragung/-Rückwirkung

Ausgangs-KF

Kleinsignalverstärker mit Bipolartransistoren

Reale Kennlinieneffekte

- Early-Effekt: Reduktion der Basisbreite durch Ausdehnung der Basis-Kollektor-Sperrschicht Wirkungen:
 - Endlicher Kollektorstrom-Anstieg im Ausgangs-KF,
 - Spannungs-Rückwirkung Ausgang ⇒ Eingang
 - Erhöhung der Stromverstärkung. $B_{NEa} = B_{Nideal} (1 + \frac{U_{CE}}{U_{Ea}});$ $I_{C} \approx B_{NEa} I_{B}$

UEa ... Early Spannung

- ☐ Durchbruch und Durchbruchspannungen (Ursache s. pn)
- ☐ Bahn-/Serienwiderstände (wichtigster: Basis-Bahnwiderstand)

Vierquadranten-Kennlinienfeld (Emitterschaltung)

Quadrant	Gleichung	Parameter	Bezeichnung	
1	I _C = f (U _{CE})	lΒ	Ausgangskennlinienfeld	
2	$I_C = f(I_B)$	U _{CE}	Übertragungskennlinienfeld	
3	U _{BE} = f(I _B)	U _{CE}	Eingangskennlinienfeld	
4	U _{BE} = f(U _{CE})	lΒ	Rückwirkungskennlinienfeld	

Kleinsignalverstärker mit Bipolartransistoren

Transistor Grenzwerte

- Maximale Ströme (technologisch bedingt), minimale Ströme (Restströme)
- Maximale Spannungen (Durchbruch),
 Minimale Spannungen (Rest- oder Sättigungsspannung U_{CES}, U_{CER})
- Maximale Verlustleistung P_{Vmax}
 Ohm'sches Gesetz der Wärmeleitung: T_{jmax} = T_U + R_{th} P_{Vmax}

Ausnutzbarer KL-Bereich

Aussteuerung im reduzierten Kennlinienfeld (ohne Rückwirkung) Definition der Kleinsignalparameter für NF

Ersatzschaltung nach Giacoletto bei NF (tiefe Frequenzen)

Kleinsignalverstärker mit Bipolartransistoren

Verstärker-Grundschaltung mit Kennwerten

Ausgangswiderstand (-impedanz)

- **Eingangswiderstand**: Charakterisiert Belastung einer Signalquelle (*Erläuterung s. u*)
- **Ausgangswiderstand**: Reduzierung der verfügbaren Ausgangsspannung bei Strombelastung durch Belastungswiderstände
- Spannungsverstärkung: Fähigkeit zur Nutzbarmachung kleiner Eingangssignale

Ersatzschaltelemente für den Kleinsignal-Transistorverstärker nach F 2-17

(Ausgangs-Koppelkondensator ist ausreichend groß → Wechselspannungs-Kurzschluss)

Tiefe Frequenzen: Einfluss des Eingangs-Koppelkondensators vorhanden Höhere Frequenzen (Koppelkondensatoren sind Wechselspannungs-Kurzschluss)

$$\begin{split} \underline{Z}_i &= \frac{1}{j\omega C_{K1}} + Z_i & \underline{Z}_i = Z_i = R_1 \|R_2\| r_{BE} \\ \underline{v}_0 &= -g_m \ Z_o \bullet \underline{G}_{HP} \,; & \underline{v}_0 = -g_m \ Z_o \\ \underline{G}_{HP} &= \frac{j\omega \tau_i}{1+\omega \tau_i} \,\; ; \; \tau_i = Z_i \ C_{K1} \end{split}$$

$$\underline{Z}_{o} = R_{C} \| g_{CE}$$

Grundschaltungs-Vergleich

	Basis	Emitter	Kollektor
Verstärkungen			
U	hoch	hoch	< 1
1	<1	hoch	hoch
Р	hoch	sehr hoch	hoch
Widerstände			
Eingang	sehr klein (<100 Ω)	mittel (1 k)	hoch (> 100 k)
Ausgang	sehr hoch (1 M)	mittel (10100 k)	klein (wenige Ω)
Typische Anwendung	Spannungs- Verstärker mit hoher Grenzfrequenz	Spannungs- und Leistungs- Verstärker	Impedanzwandlung (WiderstandsTrans- formation) Endstufen

Prof. M. Kuhl, Prof. W. Günther: Elektronik Folie 2-16

Bipolare Schaltungstechnik Kleinsignalverstärker mit Bipolartransistoren

Arbeitspunkt

- Jeder Verstärkertransistor braucht einen (Gleichstrom-) Arbeitspunkt, der mit kleinem Wechselsignal ausgesteuert wird. Er liegt im **aktiv normalen** Bereich.
- ☐ In der Verstärkerschaltung werden nur die Wechselanteile betrachtet/genutzt.
- ☐ Im Ausgangs-Kennlinienfeld werden die statische und die dynamische Arbeitsgerade festgelegt.

Kleinsignal-Verstärker in Emitterschaltung mit vollständiger äußerer Beschaltung

Dimensionierungsgleichungen zur Arbeitspunkteinstellung

$$\begin{split} R_2 &= \frac{U_{BEA} + U_{REA}}{I_q}; \ R_1 = \frac{U_B - (U_{BEA} + U_{REA})}{I_q + I_{BA}}; \\ R_C &= \frac{U_B - (U_{CEA} + U_{REA})}{I_{CA}}; \ R_E = \frac{U_{REA}}{I_E} \approx \frac{U_{REA}}{I_C} \end{split}$$

Vorgaben zur Arbeitspunkteinstellung:

- Spannung U_{BE} ist "geklemmt": **U_{BE}** ≈ 0,6 ... 0,7 V (vorgeben oder annehmen)
- Querstrom $I_q \approx (2 ... 10) \cdot I_{BA}$
- Spannung U_{RE} = 1 ... 2 V

Kleinsignalverstärker mit Bipolartransistoren

Beispielschaltung mit reduzierter Beschaltung (idealer Transistor) Arbeitspunkt-Einstellung/Dimensionierung

$$I_{BA} = \frac{I_{CA}}{B_{N}}$$

$$R_{C} = \frac{U_{B} - U_{CEA}}{I_{CA}}$$

$$U_{BEA} \approx U_{T} \ln \left(\frac{I_{BA}}{I_{CA}} \right)$$

$$U_{BEA} \approx U_{T} \ln \left(\frac{I_{BA}}{I_{ES}(1-A_{N})} \right)$$

Praxis: $U_{BEA} = 0.6...0.7 \text{ V}$ ansetzen

$$R_B = \frac{U_B - U_{BEA}}{I_{BA}}$$

Wechselstrommäßiges Ersatzschaltbild

Knotensatz am Ausgang:

$$\underline{b}_{n} \underline{I}_{B} = -\frac{\underline{U}_{0}}{R_{C} \| R_{I}} \Rightarrow \underline{U}_{0} = -\underline{b}_{n} \underline{I}_{B} R_{C} \| R_{L}$$

Maschensatz am Eingang:

$$\underline{U}_i = r_{BE} \underline{I}_B$$

Spannungsverstärkung

$$\underline{v}_U = \underline{v} = \frac{\underline{U}_0}{\underline{U}_i} = -\frac{\underline{b}_n \ R_C \| R_L}{r_{BE}} = -g_m \ R_C \| R_L \qquad \text{AP-Abhängigkeit:} \ g_m = \frac{I_{CA}}{U_T}$$

Leerlauf am Schaltungsausgang ($R_L \rightarrow \infty$) $\underline{v}_U = \underline{v} = \frac{\underline{U}_0}{\underline{U}_i} \approx -g_m R_C$

Schaltungs-Eingangswiderstand

$$\underline{Z}_{i} = \frac{\underline{U}_{i}}{\underline{I}_{i}} = \frac{\underline{U}_{i}}{\underline{I}_{B} + \underline{I}_{RB}} = R_{B} \parallel r_{BE}$$

Durch Verzicht auf R_2 im Basis-Spannungsteiler wird R_1 = R_B vergrößert und somit auch der Wechselstrom-Eingangswiderstand.

Kleinsignalverstärker mit Bipolartransistoren

Kenngrößen von Verstärkerschaltungen

□ Frequenzabhängige Spannungsverstärkung = Frequenzgang nach Betrag (Amplitudengang) und Phase (Phasengang) im Bode-Diagramm

□ Nichtlineare Verzerrungen: **Der Klirrfaktor k**

Ein periodisches, nichtharmonisches Signal wird in eine Fourierreihe zerlegt \Rightarrow Grund- und Oberwellen

Definition über die Leistung

$$k = \sqrt{\frac{\text{Summe der Leistung der Oberwellen}}{\text{Wechselsignal - Gesamtleistung}}} = \sqrt{\frac{\bar{P}_{2\omega} + \bar{P}_{3\omega} + \dots}{\bar{P}_{\omega} + \bar{P}_{2\omega} + \bar{P}_{3\omega} + \dots}} = \sqrt{\frac{\hat{U}_{2\omega}^2 + \hat{U}_{3\omega}^2 + \dots}{\hat{U}_{2\omega}^2 + \hat{U}_{2\omega}^2 + \hat{U}_{3\omega}^2 + \dots}} = \sqrt{\frac{\hat{I}_{2\omega}^2 + \hat{I}_{3\omega}^2 + \dots}{\hat{I}_{\omega}^2 + \hat{I}_{2\omega}^2 + \hat{I}_{3\omega}^2 + \dots}} = \sqrt{\frac{\hat{I}_{2\omega}^2 + \hat{I}_{3\omega}^2 + \dots}{\hat{I}_{\omega}^2 + \hat{I}_{2\omega}^2 + \hat{I}_{3\omega}^2 + \dots}}$$

Mehrstufige Verstärker Prinzip der RC-Kopplung

Unipolartransistoren sind Halbleiterbauelemente, in denen die Leitfähigkeit eines halbleitenden *Kanals* durch ein elektrisches, auf den Kanal einwirkendes Feld gesteuert werden kann. Der Kanal ist in die Oberfläche einer Siliciumkristallscheibe (Substrat) eingebettet.

Feldeffekt-Grundprinzipien

Steuerbarer Strom in Epitaxieschicht durch Querschnittsänderung der stromführenden Fläche infolge Spannungsabhängigkeit der Sperrschichtbreite

Junction Field Effect Transistor, JFET Sperrschicht-Feldeffekttransistor SFET

Steuerbarer Strom in Halbleiter-Grenzschicht durch Leitfähigkeitsänderung (Trägerdichte über Ladungsinfluenz) über Spannung an der Feldplatte (Gate)

Insulated Gate Field effect Transistor IGFET Metal Insulator (Oxide) Semiconductor MISFET/ MOSFET

Das Prinzip der Ladungsinfluenz am Plattenkondensator

- Positive Ladungen senden Feldlinien aus und ziehen damit negative Ladungen an (stoßen positive ab)
- Feldliniendichte wird durch die Verschiebungsflussdichte D = Q/A erfasst, [D] = 1 As/cm
- Die Verschiebungsflussdichte ist mit der elektrischen Feldstärke verbunden: $E = D/\ \epsilon \ ; \ \text{Permittivität} \ \ \epsilon = \epsilon_{rel} \ \epsilon_0 \ ; \ \ \epsilon_0 = 8,854 \ \bullet \ 10^{-12} \ \frac{\text{As}}{\text{Vm}} \ ... \ absolute \ \text{Feldkonstante}$
- Die elektrische Feldstärke erzeugt über eine Länge einen Spannungsabfall: U=E d_i $U=\frac{D}{\epsilon} \ d_i=\frac{Q}{\epsilon \ \Delta} \ d_i=\frac{Q}{C}$
- Ladungs-Spannungs-Bilanz: $Q = C \bullet U$; Kennwert: Platten-, Isolatorkapazität $C = \frac{\epsilon A}{d_i}$

2

Die MIS-Grundstruktur: MIS/MOS = Metal -Insulator(Oxide)-Semiconductor

Bestandteile:

- Metal (Gate): Metall: Al, hochdotiertes Poly-Silizium

Insulator: Isolator: SiO₂ (10 ...100nm), thermische Oxydation, Al₂O₃, Si₃N₄ (Abscheidung)

Kennwerte: Dicke d_i, d_{ox}, Permittivität ϵ_i , ϵ_{ox}

Semiconductor: n: p-, n-Halbleiter (Substrat),

Ladungsträger im Transistorkanal sind bezüglich Substrat Minoritäten

(Umkehrung Leitungstyp = Inversion)

- Grenzfläche Isolator-HL (GF):

bedeutsam für lateralen Ladungsträger-Transport (Drainstrom)

Ladungsanteile und Ladungs-Spannungs-Splitting (n-Kanal)

Die Ladungsanteile in der MIS-Struktur (flächenbezogen, zweigestrichen ") werden eingeteilt in

- ortsfeste, stets vorhandene, spannungsunabhängige Ladungen Q"F
 - im Isolator (positive Alkali-Ionen als Verunreinigungen), an der Grenzfläche (Schwellspannungs- Implantate),
 - im Halbleiter (Verarmungs-/Sperrschicht zwischen Transistorkanal und Substrat)
- bewegliche, spannungsabhängige Ladung Q"_K (Transistorkanal) zur Bildung des lateralen Transistorstromes (Drainstrom)

U_{GS} = U_{GS1} (< U_{GS2}) Bildung der Feldlinien für Festladungen hat Priorität

U_{GS} = U_{GS2} (> U_{GS1}) Bildung der Feldlinien für Festladungen abgeschlossen, Kanalbildung setzt ein

Grenzspannung = **Schwellspannung**, Stromeinsatz erfolgt

Ladungs-Spannungs-Bilanz für bewegliche Kanal-Ladungsträger

Schwellspannungsverschiebung bei Festladungsänderung

$$-\,\mathsf{Q"}_K = \,\mathsf{C"}_i \,(\mathsf{U}_{GS} \, \, \text{-}\, \mathsf{U}_{TH} \,) \,\,;$$

$$C''_i = \frac{\varepsilon_{i \, rel} \, \varepsilon_0}{d_i}$$

$$\Delta U_{TH} = -\frac{\Delta Q"_F}{C"_i}$$

flächenbezogene Isolatorkapazität

Halbleiter-Ladungsprofile und Spannungsdefinitionen

Grundstruktur zur Ableitung der Kennlinie

Voraussetzungen zur Kennlinienableitung:

- erfolgt an obiger Grundstruktur für den aktiven KL-Bereich, "von Hand" möglich
- Drainstrom = reiner Feldstrom.
- Langkanalnäherung (Kanallänge L > 10 μm): eindimensionaler Stromfluss in y-Richtung
- konstante Schwellspannung im Kanal ⇒ "Lehrbuchgleichungen"

MIS-Transistortypen

		Anreicherungstyp (Enhancement)	Verarmungstyp (Depletion)
		kein Stromfluss bei U _{GS} = 0 V (normally off)	Stromfluss vorhanden bei U _{GS} = 0V (normally on)
p-Kanal	U _{DS} < 0	U _{TH} < 0	U _{TH} > 0
n-Kanal	U _{DS} > 0	U _{TH} > 0	U _{TH} < 0

Statische Kennliniengleichungen (n-Kanal)

 $1 I_D = 0 U_{GS} < U_{TH}$

Bereich unterhalb Schwellspannung (Subthreshold-Bereich, Sperr-Bereich)

2
$$I_D = K \left[(U_{GS} - U_{TH}) U_{DS} - \frac{U_{DS}^2}{2} \right]$$
 $U_{DS} < U_{GS} - U_{TH}$

aktiver Bereich, Widerstands-Bereich

Parabel mit Drainstrom-Maximum bei $U_{DS} = U_{GS} - U_{TH}$: $I_{Dmax} = \frac{K}{2} (U_{GS} - U_{TH})^2$

Übergang aktiv \Rightarrow Sättigungsbereich (pinch off): UDS = UGS-UTH ID = IDmax = const. bei UDS \uparrow , "Kanalabschnürung" an der Drainelektrode (pinch off, Q_{inv} = 0)

3
$$I_D = I_{Dmax} = \frac{K}{2} (U_{GS} - U_{TH})^2$$
 $U_{DS} \ge U_{GS} - U_{TH}$

Sättigungsbereich, Abschnürbereich

4 I_G = 0: "Eingangs-Kennlinie"

Kennlinien-Parameter

Transistorkonstante: K =
$$\frac{W}{L} \mu_n$$
 C"_i = $\frac{W}{L} \mu_n$ $\frac{\epsilon_i}{d_i}$, [K] = 1mA / V²

- μ_n: Grenzflächenbeweglichkeit
- Schwellspannung U_{TH} : \Rightarrow Ionenimplanation
- W, L: Kanalbreite, -länge, W/L-Verhältnis: Entwurfsparameter (Transistorgeometrie!)

Kennlinienfelder

Strom-Spannungs-Übertragung

Ausgangs-Kennlinie

Grenzflächenbeweglichkeiten

	μ _n [cm ² /Vs]	μ _p [cm ² /Vs]
Volumen	1500	450
Grenzfläche Isolator-Halbleiter	700	230

Kanalformen in den einzelnen Kennlinienbereichen

Der Transistorkanal ist im gesamten Bereich zwischen Source und Drain vorhanden

p-Substrat

pinch-off-Punkt

Der Transistorkanal wird genau an der Drain-Elektrode abgeschnürt. Die Dichte der Ladungsträger ist dort (fast) gleich null (ninch off)

Sättigungs-/Abschnürbereich

Der Transistorkanal wird bereits vor der Drain-Elektrode abgeschnürt. Es entsteht ein verkürzter Kanal (s. u.)

Reale Kennlinieneffekte (Beispiel n-Kanal)

- Kennlinie im Schwellspannungsbereich: I_D ≠ 0 bei U_{GS} ≤ U_{TH}
 Bei der Schwellspannung oder darunter fließt bereits ein kleiner Drainstrom
 Bedeutung: Arbeitsbereich integrierter Schaltungen bei kleinen Betriebsspannungen (Low-Voltage Technik)
- Kanallängenverkürzung oberhalb pinch off ($U_{DS} > U_{GS} U_{TH}$, L' = L(U_{DS})) Beschreibung mit Parameter λ : $I_{D} = I_{D} (U_{GS}, U_{DS})|_{ideal} (1 + \lambda U_{DS})$

- Durchbruch
 - Volumen (pn-) Durchbruch im HL
 - Isolator-Durchbruch (Gate): E_{BR} = 5 ... 10 •10⁶ V/cm
- Leck- und pn-Restströme über Gate/Source- Drain
- Bahnwiderstände (Kennlinien-Scherung)
- Arbeitspunktabhängigkeit der Schwellspannung
- Geometrieabhängigkeiten für Schwellspannung, Kanalbeweglichkeit (short channel effects)

Arbeitspunktabhängige Kleinsignalparameter des idealen und realen MOSFETs

$$g_{m} = \frac{\partial I_{D}}{\partial U_{GS}} \bigg|_{U_{DS}} \qquad \qquad g_{DS} = \frac{\partial I_{D}}{\partial U_{DS}} \bigg|_{U_{GS}}$$

Steilheit g _m	aktiv	Sättigung
real	$K U_{DS} (1 \pm \lambda U_{DS})$	
ideal	K U _{DS}	$ K U_{GS} - U_{TH} = \sqrt{2 K I_D}$

Ausgangsleitwert g _{DS}	aktiv	Sättigung
real	≈ idealer Wert	$\frac{K\lambda}{2} (U_{GS} - U_{TH})^2 \approx \lambda I_D$
ideal	K U _{GS} - U _{TH} - U _{DS}	0

Grenzflächenladungen, Schwellspannung, Kennlinie und Schaltbild n-Kanal Enhancement $(U_{DS} > 0, U_{TH} > 0)$

n-Kanal Depletion ($U_{DS} > 0$, $U_{TH} < 0$)

p-Kanal Enhancement ($U_{DS} < 0$, $U_{TH} < 0$)

p-Kanal Depletion ($U_{DS} < 0$, $U_{TH} > 0$)

Kleinsignalverstärker mit MOSFETs

Transistor-Kleinsignalersatzschaltbild ($\underline{U}_{BS} = 0$, Bahnwiderstände vernachlässigt)

Arten von Grundschaltungen (im Vergleich zum Bipolartransistor)

Bipo	Basis-	Emitter-	Kollektor-
MOSFET	Gate-	Source-	Drain-

Eigenschaften der Grundschaltungen

Kenngröße	Source	Drain	Gate
Eingangswiderstand	groß	groß	klein
Ausgangswiderstand	mittel	klein	groß
Spannungsverstärkung	>> 1	< 1	> 1
Besonderheit	geringes Rau- schen	extrem hoher Ein- gangswiderstand bei spezieller Schaltung (Bootstrap)	sehr geringe Span- nungsrückwirkung, Stromverstärkung=1
typische Anwendung	NF-Verstärker	Impedanzwandler	HF-Verstärker

Probleme: Begrenzte Steilheiten bei nicht sehr großen W/L (Vergleich Bipolartransistor!)

Verstärkeranwendungen: Transistor im Sättigungsbereich.

Kleinsignal-Verstärker-Ersatzschaltung für NF

Spannungsverstärkung (NF) $\underline{v} = -\frac{g_m}{g_{DS} + 1/R_D} \approx -g_m R_D$

Kleinsignalverstärker mit MOSFETs: Source-Schaltungen

Selbstleitend (Depletion)	Selbstsperrend (Enhancement)
negative Gate-Source-Spannung	positive Gate-Source- Spannung: Spannungsteiler
R_0 R_0 R_0 R_0 R_0 R_0 R_0	R_1 R_2 R_3 C_3
Kennzeichen: - Gate über R_G auf Masse $\Rightarrow U_{GS} = -U_{RS} = -I_D \cdot R_S$ $\Rightarrow R_S = \frac{-U_{GS}}{I_D} = \frac{ U_{GS} }{I_D}$ - $\underline{Z}_i = R_G$ (hochohmig) Grenze: Gate-Reststrom - R_S durch C_S überbrücken	Kennzeichen: - Querstrom $I_q = \frac{U_B}{R_1 + R_2}$ - $R_1 = \frac{U_B - (\overline{U_{GSA} + I_{DA} \cdot R_S})}{I_q}$ - $R_2 = \frac{\overline{U_{R2}}}{\overline{U_{GSA} + I_{DA} \cdot R_S}}$ - $R_2 = \frac{\overline{U_{R2}}}{I_q}$ - $\underline{Z}_i = R_1 \ R_2$

Konzept des Differenz-Spannungsverstärker und Eigenschaften

□ Spannungsverstärker mit zwei Differenz-Spannungs-Eingängen und Spannungsausgang Eingänge

Praktisch verwendetes OPV-Symbol und Spannungsdefinitionen

- Transfer-Kennlinie $U_0 = v (U_+ U_-) = v U_D$ v ...Leerlaufverstärkung, $v = 10^3 ... 10^6$ (60 ... 120 dB), sehr hoch
- □ keine Eingangsströme, hoher Differenz.-Eingangswiderstand, geringer Ausgangswiderstand
- □ Realisierung als komplexe Schaltung (diskret und integriert), Gleichspannungs-Kopplung aller Bauelemente ⇒ Gleichspannungs-Differenzverstärker
- □ Einsatz in einer Schaltungsumgebung zur definierten Verstärkungseinstellung (Gegenkopplung)

- Differenzverstärker (DV)
 mit kleinem Eingangs-Ruhestrom;
 hohem Eingangswiderstand
 (Gleichtakt, differentiell)
- gute Kleinsignaleigenschaften (hohe Grenzfrequenzen)
- niedrige Drift, Offsetabgleich
- gute Klein- und Großsignaleigenschaften (Hohe Eckfrequenzen und Slew Rate SR)
- hoher Ausgangsstrom
- geringer Ausgangswider stand
- Kurzschlussschutz

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Innenschaltung integrierter Strukturen: Beispiel µA 709

Einteilung der Operationsverstärker

- □ nach dem Einsatzgebiet
 - Standard- oder Universal-OPV: Einzel-, Doppel- und Vierfach-OPV (in einem gemeinsamen Gehäuse)
 - Präzisions-OPV: Sehr gute Kennwerte, Offsetwerte gering, hohe Temperatur- und Betriebsspannungs-Stabilität, hohe Leerlaufverstärkung
 - Leistungs-OPV: höhere Leistung (bis ≈ 20 Watt)
- □ nach der Art der integrierten Transistoren
 - bipolare OPV (sämtliche Transistoren sind Bipolartransistoren)
 - BIFET- oder BIMOS- OPV (Differenz-Eingangsstufen bestehen aus FET's)
 - CMOS-OPV's (OPV in CMOS-Schaltungstechnik realisiert)
- Besonderheiten
 - open collector-Endstufen (nur ein Transistor in der Endstufe, von außen Arbeitswiderstand anschließen
 - Verstärkungsprogrammierung

Das Prinzip der Gegenkopplung (GK)

$$\underline{U_{i}} = \underline{U_{D}} + k\underline{U_{o}}; \ \underline{U_{o}} = v \ (\underbrace{\underline{U_{i}} - k\underline{U_{o}}}_{\underline{U_{D}}});$$

$$\underline{v}' = \frac{\underline{U}_0}{\underline{U}_i} = \frac{\underline{v}}{1 + k\underline{v}};$$

$$k = \frac{1}{v'} - \frac{1}{v}$$

v' ... gegengekoppelte Verstärkung

Sonderfälle der GK-Grundgleichung

- $\underline{\mathbf{k}} = 0$: keine GK: $\underline{\mathbf{v}}' = \underline{\mathbf{v}}$: Verstärkung hoch, instabil
- <u>kv</u> > 0, rell: GK (= negative Rückkopplung), rückgeführtes Signal reduziert Differenz-Eingangsspannung, ⇒ Gesamtverstärkung wird reduziert, Verstärker stabil, linear
- $\frac{|\underline{k}v|}{>> 1}$ $\underline{v'} = \frac{\underline{U}_0}{U_i} = \frac{1}{k}$; GK-Netzwerk wirkt allein, $\underline{v'} \neq f(v)$, Wert stabil
 - ⇒ starke GK, Verstärker-Anwendung
- <u>kv</u> = -1; Nenner Null, <u>v'</u> → ∞: Selbsterregung (U_O ≠ 0 bei U_i =0): parasitäre Schwingung oder Oszillatorbetrieb

Bezeichnungsweise für Verstärkergrößen

- v' Komplexe ÜF/Verstärk. bei GK
- <u>v</u> Kompl. Verstärkung ohne GK (Leerlauf) = Leerlaufverstärkung (open loop gain)
- <u>k</u> GK-Faktor, komplexe ÜF des Rückwärtsgliedes (passiver GK-VP /<u>k/</u> < 1),
- kv Schleifenverstärkung (closed loop gain)
- g = 1 + kv GK-Grad

Amplitudengang realer OPV mit GK (Bsp.: OPV LF 411, k Parameter)

GK und Verstärkereigenschaften

- Verstärkungslinearität/ -stabilität ↑, Klirrfaktor k ↓
- obere Grenzfrequenz f_O (-3dB) ↑ mit k ↑
- Transitfrequenz $f_T = v(f=0) \cdot f_O = konstant$ (Verstärkungs-Bandbreiten-Produkt)

Der ideale OPV

- Leerlaufverstärkung $\underline{\mathbf{v}}(\omega) \to \infty$ (beliebige f) \Rightarrow stets $\mathbf{U}_{\mathbf{D}} = \mathbf{0}$ OPV braucht keine Differenz-Eingangsspannung, um $U_0 \neq 0$ zu erzeugen, real: Un sehr klein (µV1 mV)
- Eingangsströme = 0 (Eingangswiderstand unendlich)
- Ausgangswiderstand = 0, Ausgang = ideale gesteuerte U-Quelle

Prinzip der virtuellen Masse am invertierenden Verstärker

"virtuelle Masse" (virtual ground)

$$I_{R1} = \frac{U_i + (U_D = 0)}{R_1} = I_{R2} = \frac{-(U_D = 0) - U_o}{R_2} \Rightarrow \frac{U_o}{U_i} = -\frac{R_2}{R_1}$$

OPV: Betriebspannung und -ströme

- OPV arbeitet zwischen zwei Potentialgrenzen (Betriebsspannung plus, minus) Anwendung für uns: rechte Schaltung
- Potential an Differenzeingängen: liegt dazwischen (mit notwendiger "Reserve")
- OPV-Ausgangsströme werden aus den Betriebsspannungen über interne OPV-Schaltung geliefert (Erläuterung auch für negative U_o)
- Betriebspannungsquellen werden zur Vereinfachung weggelassen

OPV: Betriebspannung und -ströme

Eine U-Quelle

Eingänge arbeiten innerhalb Potentialgrenzen positiver Pol = höchstes Schaltungspotential

Zwei U-Quellen als Reihenschaltung

Mittenpotential = Masse Eingangsspannungen sind massebezogen

negativer Pol = niedrigstes Schaltungspotential

Ersatzschaltbilder und Kenndaten

Statisches Ersatzschaltbild

Statische Größen/Parameter	SymboL/Definition	Typische Werte
Differenz- Eingangsspannung	$U_D = U_o/v + U_{off}$	
Leerlaufverstärkung	$v = U_o / (U_D - U_{off})$	60 120 dB
Eingangsgleichströme	I _p , I _n	< 100nA (bipolar), < 1pA (MOS)
Eingangsoffsetstrom	$I_0 = I_p - I_n$	
mittlerer Eingangsruhestrom	$I_B = (I_p + I_n)/2$	
Strom-Temperaturdrift	∂I _X /∂T	1nA/K (bipolar)
Eingangs-Offsetspannung	U_{off} , $U_{io} = U_{D} (U_{o} = 0)$	< 5mV (bipolar), < 50mV (MOS)
Offsetspannungs-Temperaturdrift	∂U _{off} /∂T	5μV/K
Maximale Betriebsspannung		Standardtypen: 1518 V

Statische Transferkennlinie realer OPV's

Statische Stabilitätsmaßnahmen

Kompensation der Offsetspannung am invertierenden Verstärker

Potential "0" (virtuelle Masse) einstellen

Dynamisches Ersatzschaltbild und Parameter

Dynamische Größen/Parameter	Symbol/Definition	Typische Werte
Differenz-Eingangsspannung	$\underline{U}_D = \underline{U}_O / \underline{v}(\omega)$	
komplexe Leerlaufverstärkung	$\underline{v}(\omega) = \underline{U}_{O} / \underline{U}_{D}$	60 120 dB
Gleichtaktverstärkung (c ommon m ode)	$\underline{v}_{CM} = \underline{U}_{O} / \underline{U}_{gl}$	10 0,5
Gleichtaktunterdrückung (c ommon m ode)	$CMR = \underline{v}_D / \underline{v}_{CM}$	
Differenzeingangswiderstand	r _D	$0,1 \dots 1$ Μ Ω (bipolar), 1 G Ω (MOS)
Differenzeingangskapazität	cD	1pF
Gleichtakteingangswiderstand	rCM	> 10MΩ
Ausgangswiderstand	r _o	< 100Ω
Eckfrequenzen erste Eckfrequenz (3dB-Grenzfrequenz)	$f_1 = 1/(2\pi R_1 C_1)$	1Hz 1KHz
Slew Rate	$\partial U_{o}/\partial t$	1 100V/µs

Prof. M. Kuhl, Prof. W. Günther: Elektronik Folie 4-6

Vereinfachte Ersatzschaltung für tiefe Frequenzen

Frequenzgang der Leerlaufverstärkung im Bode Diagramm

 $f_{1,2}$: 3-dB-Grenzfrequenz (GF) oder erste/zweite Eckfrequenz, f_1 = 10 ... 100 Hz, f_2 = 1 ... 10 MHz

Komplexe Leerlaufverstärkung als Tiefpassnäherung 1. Ordnung

$$\underline{V} = \frac{V}{1+j\frac{f}{f_1}};$$

 $v=\,\underline{v}\,(f=0)$; Leerlaufverstärkung ; $f_1=f_{-3dB}$ -3dB-Grenzfrequenz/ 1. Eckfrequenz

Komplexe Leerlaufverstärkung als Tiefpassnäherung 1. Ordnung

Amplitudengang gegengekoppelter Verstärker - Konstruktion im Bodediagramm

Knickgeraden:Näherung: Bis zur Grenzfrequenz konstante Verstärkung $v'=\underline{v}'$ (f = 0) , danach 20 dB-Abfall auf dem Grenzverlauf der Leerlaufverstärkung

Großsignalverstärkung (Slew Rate

Simulationsschaltung Simulationsresultate für verschiedene **OPV** R21 10k R22 10k 1 0 V(i) R12 O UB-LF411 0.5V U9A UB+ ĢUB+ Ģ UB-UB-10V 10V Time

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Operationsverstärker Anwendungs-Übersicht

(ungesteuert, gesteuert) Komplexe Gegenkopplung im invertierenden Verstärker

<u>Z</u> 1	<u>Z</u> 2	Übertragungsfunktion	Anwendung
——— R	$\frac{1}{pC}$	$\frac{\underline{U}_{O}(p)}{\underline{U}_{i}(p)} = -\frac{1}{pRC}$	Integrierer, Tiefpass
- 	−C R	$\frac{\underline{U}_{O}(p)}{\underline{U}_{i}(p)} = -pRC$	Differenzierer Hochpass (instabil)
———— R	$R_2 \parallel \frac{1}{pC_2}$	$\frac{\underline{U}_{o}(p)}{\underline{U}_{i}(p)} = -\frac{R_{2}}{R_{1}} \frac{1}{1 + pR_{2}C_{2}}$	Ladungsverstärker verstärkender Tiefpass 1. Ordnung
+ + 1/pC	——— R	$\frac{\underline{U}_{0}(p)}{\underline{U}_{i}(p)} = -\frac{R_{2}}{R_{1}} \frac{pR_{1}C_{1}}{1 + pR_{1}C_{1}}$	verstärkender Hochpass 1. Ordnung

Prof. M. Kuhl, Prof. W. Günther: Elektronik Folie 4-9

Grundschaltungen

Nichtinvertierender Spannungsverstärker (1)

U/I-Wandler/Stromquelle(2)

Zĸ

Invertierender Spannungsverstärker (3)

I/U-Wandler (4) (Amperemeter-Schaltung)

Zusammenstellung der Schaltungseigenschaften

(realer OPV mit / \underline{v} / >>1, \underline{Z}_{o} << $\underline{Z}_{1,2,k}$; \underline{Z}_{D} >> $\underline{Z}_{1,2,k}$)

Schaltung	Übertragungs- funktion	Eingangswiderstand <u>Z</u> i'		Au	ısgangswiderstand <u>Z</u> o'
		ideal	real	ideal	real
1	$\frac{\underline{U}_0}{\underline{U}_i} = 1 + \frac{\underline{Z}_2}{\underline{Z}_1}$		$\underline{Z}_{i}' = \frac{\underline{U}_{i}}{\underline{I}_{i}}\Big _{\underline{I}_{0}=0} = \underline{g}\underline{Z}_{D}$	0	$\underline{Z}_{o}' = -\frac{\underline{U}_{o}}{\underline{I}}_{o}\Big _{\underline{U}_{i}=0} = \frac{\underline{Z}_{o}}{\underline{g}}$
2	$\frac{\underline{I}_{o}}{\underline{U}_{i}} = \frac{1}{\underline{Z}_{k}}$	8	$\underline{Z}_{i}' = \frac{\underline{U}_{i}}{\underline{I}_{i}}\Big _{\underline{U}_{0} = 0} = \underline{v}\underline{Z}_{D}$	8	$\underline{Z}_{o}' = -\frac{\underline{U}_{o}}{\underline{I}_{o}}\Big _{\underline{U}_{i}=0} = \underline{v}\underline{Z}_{k}$
3	$\frac{\underline{U}_0}{\underline{U}_i} = -\frac{\underline{Z}_2}{\underline{Z}_1}$	<u>Z</u> 1	$\underline{Z}_{i}' = \frac{\underline{U}_{i}}{\underline{I}_{i}}\Big _{\underline{I}_{0}=0}$	0	$\underline{Z}_{o}' = -\frac{\underline{U}_{o}}{\underline{I}_{o}}\Big _{\underline{U}_{i}=0} = \frac{\underline{Z}_{o}}{\underline{g}}$
			$=\underline{Z}_1+\frac{\underline{Z}_2}{\underline{v}}$		
4	$\frac{\underline{U}_0}{\underline{I}_i} = -\underline{Z}_k$	0	$\underline{Z}_{i}' = \frac{\underline{U}_{i}}{\underline{I}_{i}}\Big _{\underline{I}_{0}=0} = \frac{\underline{Z}_{k}}{\underline{v}}$	0	$\underline{Z}_{0}' = -\frac{\underline{U}_{0}}{\underline{I}_{0}}\Big _{\underline{I}_{i}=0} = \frac{\underline{Z}_{0}}{\underline{v}}$

Anwendungen

Der invertierende Verstärker mit eingangsseitigen Erweiterungen

Eingangsseitige Erweiterungen

Stromquelle

klassischer invertierender Verstärker

I-U-Wandler

Invertierender Addierer

U_O = - I_i R

virtuelle Masse
Strom-Summationspunkt
R

Nichtlineare Kennlinie

Invertierender Summierverstärker (Addierer): "Mischpult"

Übertragungsfunktion ideal

$$I_{2} = I_{i1} + I_{i2} + \dots + I_{in}$$

$$- \frac{U_{o}}{R_{2}} = \frac{U_{i1}}{R_{11}} + \frac{U_{i2}}{R_{12}} + \dots + \frac{U_{in}}{R_{1n}}$$

$$\downarrow^{U_{o}} U_{o} = -\left(\frac{R_{2}}{R_{11}}U_{i1} + \frac{R_{2}}{R_{12}}U_{i2} + \dots + \frac{R_{2}}{R_{1n}}U_{in}\right)$$

$$U_{o} = -(w_{1}U_{i1} + w_{2}U_{i2} + ... + w_{n}U_{in})$$

$$w_{j} = \frac{R_{2}}{R_{1j}}; j = 1...n$$

Anwendungen

Subtrahierschaltung (Differenzverstärker)

$$U_{o} = \frac{R_{1} + R_{2}}{R_{1}} \left(\frac{R_{4}}{R_{3} + R_{4}} U_{i2} - \frac{R_{2}}{R_{1} + R_{2}} U_{i1} \right)$$

Integrator: Integration einer anliegenden Eingangsspannung

$$i_{i} = \frac{u_{i}}{R_{1}} = i_{C} = -C_{I} \frac{du_{o}}{dt}$$

$$u_{O}(t) = -\frac{1}{R_{1} \cdot C_{I}} \int_{0}^{t} u_{I}(t)dt + u_{o}(t = 0)$$

Realisierung nichtlinearer Kennlinien

Funktion I= f(U) nichtlinear, U = g(I)...inverse Funktion zu f

Beispiel: Logarithmierer (Dynamikkompression)

$$U_{o} = -U_{T} \ln \frac{U_{i}/R_{1}}{A_{N} I_{ES}}$$

$$U_{o} = -U_{BE} = -U_{T} \ln \frac{I}{A_{N} I_{ES}}; I = I_{C} \frac{U_{i}}{R_{1}}$$

Exponentialfunktion

$$U_{o} = -R_{2} A_{N}I_{ES} \exp \frac{U_{i}}{U_{T}}$$

$$U_{o} = -R_{2} I_{i}; U_{i} = U_{EB};$$

$$I_{i} = I_{E} \approx I_{C} = A_{N}I_{ES} \exp \frac{U_{EB}}{U_{T}}$$

Charakterisierung:

- Temperaturabhängigkeit der Kennlinie durch U_T, I_{ES}(T)
- Grundlage für andere Rechenschaltungen (Multiplizierer, Dividierer, Quadrierer, Radizierer)

Anwendungen

Komparatoren (Spannungsvergleicher)

Grundfunktionen: nichtinvertierend, invertierend

Schwellwertschalter (Schmitt-Trigger)

Nichtinvertierend

Invertierend

Schaltparameter

	nichtinvertierend	invertierend
US	$U_{S\downarrow} = -\frac{R_1}{R_2} U_{omax}$	$U_{S\downarrow} = \frac{R_1}{R_1 + R_2} U_{omax}$
US↑	$U_{S\uparrow} = -\frac{R_1}{R_2}U_{omin}$	$U_{S\uparrow} = \frac{R_1}{R_1 + R_2} U_{omin}$
Hysterese $\Delta U_S = U_{S\uparrow} - U_{S\downarrow}$	$\Delta U_{S} = \frac{R_{1}}{R_{2}} (U_{omax} - U_{omin})$	$\Delta U_{S} = -\frac{R_{1}}{R_{1} + R_{2}} (U_{omax} - U_{omin})$

Anwendungsaspekte

- U_D-Begrenzung (nach OPV-Daten)
- Einsatz spezieller Komparator-IC
- Anwendung für Zweipunktregler (Temperaturregler, Dämmerungsschalter)

Anwendungen

Einfache Konstantspannungs- und Stromquellen

Grundbestandteile:

- Referenzspannungserzeugung (einfache Z-Dioden-Stabilisierung)
- Leistungsverstärker (mit OPV-Einsatz)

Spannungsquelle

- Ausgangsspannung wird erzeugt mit nichtinvertierender OPV-Verstärkerschaltung, Werte-Einstellung bei gegebener U_{ref} über Verstärkungseinstellung Kennzeichen: niedriger Ausgangswiderstand
- Erhöhung des maximalen Ausgangsstromes durch Einsatz von Leistungs-OPV's oder externer Leistungsendstufen

Stromquelle

- Ausgangsstrom wird erzeugt mit nichtinvertierender OPV-Verstärkerschaltung, Widerstand R₂ wird als Lastwiderstand R₂ eingesetzt Kennzeichen: konstanter Strom durch RL, hoher Ausgangswiderstand an den Ausgangsklemmen
- Nachteil: Lastwiderstand kann nicht massebezogen betrieben werden.

Leistungsverstärker

Eigenschaften und allgemeine Parameter

- Aufgabe: Bereitstellung von (höheren) Ausgangssignalleistungen P_S an (niederohmige) ohmsche/ohmsch-induktive Lasten R_L bzw. Z_Lfür Wechselsignale (Sinus, Musik), Leistungsbereich 0,1> 100 W
- Verstärker-Bestandteile
 - Großsignal-Spannungsverstärker ohne/mit Gegenkopplung (Vorstufen)
 - Leistungsendstufe als Stromverstärker (Kollektorstufe)
 - Praxis: Einsatz von Leistungs-OPVs ohne/mit externer Endstufenerweiterung
- ☐ Leistungsparameter/-forderungen (Performance)
 - ullet hoher Eingangswiderstand Z_i der Vorstufen, niedriger Ausgangswiderstand Z_o .der Endstufe
 - hohe Ausgangsgrößen U₀.bzw I₀ (für hohe Signalleistung P_S, abhängig von Ausgangslast)
 - niedriger eigener Leistungsverbrauch (hoher Wirkungsgrad)
 - Übersteuerungs- und Kurzschlussfestigkeit
 - Einsatz von Bipolar- und MIS-Transistoren (Tr... Transistor)

Aussteuergrenzen

ideale U-I-Grenzwerte:

$$\hat{U}_{ogrenz} = U_B; \hat{I}_{ogrenz} = \hat{I}_{Tr grenz} = \frac{U_B}{R_I}$$
 (bei $U_{CE} = 0$); m = 1

reale U-I-Grenzwerte (max. Werte):

$$\hat{U}_{omax} = U_B - U_{Tr Rest}; \hat{I}_{omax} = \hat{I}_{Lmax} = \frac{\hat{U}_{omax}}{R_I}$$

Signal-Grenzleistung:
$$P_{Sgrenz} = P_0 = \frac{1}{T} \int_{(T)}^{u(t)} u(t) dt = \frac{1}{T} \int_{(T)}^{u(t)} \frac{\left[U_{B} sin(\omega t)\right]^2}{R_L} dt = \frac{U_{B}^2}{2R_L}$$

Tr Rest: Minimalsp. über Trans: Bipo: UCES; MIST: UDSon

Strukturbezogene Einteilung Einteilung nach dem Arbeitspunkt

Leistungsverstärker

Prinzip der B-Komplementärendstufe (ohne Ruhestromeinstellung)

Symmetrische Betriebsspannungsversorgung

Variante mit einer Betriebsspannung

Gegentakt-B-Verstärker bei verschiedenen Eingangsspannungen: Simulation

Zeitabhängiger Strom durch den Lastwiderstand R_L ($\hat{U}_i = 1V$; 2V; 4V)

Zeitabhängige Kollektorströme der Transistoren ($\hat{U}_i = 1V; 2V; 4V$)

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Folie 5-2

Leistungsverstärker

Schwellspannungskompensation durch Arbeitspunkt am AB-Verstärker

Einsatz Darlingtontransistoren

Gesamt-Leitungstyp vom ersten Transistor bestimmt

- Stromverstärkung ist das Produkt der Verstärkungen beider Einzeltransistoren, sehr geringer Basisstrom möglich
- Anwendung: Eingangsstufen OPV, Leistungsendstufen (Umkehr Leitungstyp möglich)

Leistungsverstärker: Gegentakt-AB-Endverstärker

Grundprinzip der BB-Komplementärendstufe mit Anhebung des Basispotentials (Ruhestromeinstellung zur Reduzierung von Übernahmeverzerrungen) Prinzip Quasi-Komplementärendstufe

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Folie 5-3

Leistungsverstärker

Leistungsbetrachtung an der Gegentakt-B/AB-Endstufe (bipolare und unipolare Transistoren) (Sinus-Aussteuerung, symmetrische Betriebsspannung, $R_E = 0$)

$$P_G = \frac{2}{\pi} U_B \hat{I}_{Tr} = \frac{2}{\pi} m \frac{U_B^2}{R_I} = \frac{4}{\pi} m P_0; \quad P_0 = \frac{U_B^2}{2 R_I}$$

Leistungsart	Signalleistung P _S am Lastwiderstand	Verlustleistung P _V (Gesamte Endstufe)	Wirkungsgrad
allgemein	$P_S = \frac{R_L \hat{I}_{Tr}^2}{2} = m^2 P_0$	$P_V(m) = (\frac{4}{\pi}m - m^2)P_0$	$\eta = \frac{P_S}{P_G} = \frac{\pi}{4} \text{m}$
Maximalwerte	$P_{Smax} = m_{max}^{2} P_{0}$ $m_{max} = \frac{U_{B} - U_{Tr Rest}}{U_{B}} < 1$	$P_{Vmax} = \frac{4}{\pi^2} P_0$ (bei m = m _{PVmax} = 2/ π , nicht bei max. Aussteuerung)	$\eta_{\text{max}} = \frac{P_{\text{Smax}}}{P_{\text{G}}} = \frac{\pi}{4} m_{\text{max}}$
Grenzwerte bei U _{Tr} Rest = 0			$\eta_{\text{max}} = \frac{P_{\text{Smax}}}{P_{\text{G}}} = \frac{\pi}{4}$ $\approx 78,5\%$

Aussteuerungsabhängiges Maximum der Transistorverlustleistung (gesamte Endstufe)

$$P_V(m) = (\frac{4}{\pi}m - m^2)P_0$$

$$\frac{\partial P V}{\partial m}\Big|_{m=mPVmax} = P_0 \left(\frac{4}{\pi} - 2 m_{Pvmax}\right) = 0 ; m_{Pvmax} = \frac{2}{\pi}$$

bei m = m_{PVmax}:
$$P_{Vmax} = P_S = \frac{P_G}{2}$$

Sonstige Endverstärker/Probleme

• C-Verstärker:

- nur Halbwellen-Spitzen verstärken
- Frequenzselektive Lastimpedanzen (Schwingkreise)
- Anwendung in Senderendstufen

• Klasse D-Verstärker

- Pulsbreitenmodulation des Eingangssignals
- Impulsverstärkung (Schaltverstärker) mit geringer Pv
- Tiefpassfilterung zur Rückgewinnung des verstärkt. Analogsignals

• Stromversorgung

Trennung von Eingangs- und Power-Verstärker

Leistungsverstärker

Thermische Bedingungen an der gegenständlich vorhandenen Endstufe

Umgebungs-Temperatur T

Kühlkörper zur Wärmeableitung

thermischer Widerstand R_{thK} =
$$\frac{1}{\alpha_K A_K}$$

 α_K ... Konvektionskonstante, stark oberflächenabhängig [\approx 1.. 10mW/(Kcm²)],

A_K ... Konvektionsfläche [cm²]

Einsatz von Kühlblechen oder speziell geformtem Kühlkörper-Profilmaterial mit vergrößerter Oberfläche ($R_{thK} \sim 1/L_K$, $R_{thK} \sim 2K/W$ bei $L_K = 10$ cm

Dimensionierung/Ablauf für Handentwurf

1 Forderungen/gegebene Größen:

- Maximale Ausgangsleistung P_{Smax} an der Übersteuerungsgrenze
- "Restspannung" U_{Tr Rest} als Betriebsspannungsreserve (in Verbindung mit Vorverstärker-Stufen)
- Lastwiderstand R_I
- maximale Umgebungstemperatur TUmax

2 Entwurf

- Ermittlung der notwendigen Betriebsspannung

$$P_{Smax} = \frac{\hat{U}_{omax}^2}{2R_L} \Rightarrow U_B = \hat{U}_{omax} + U_{Tr Rest} = \sqrt{2R_L P_{Smax}} + U_{Tr Rest}$$

- Ruhestromeinstellung nach gefordertem Klirrfaktor (Reduzierung der Übernahmeverzerrungen), einige 10 mA, Einstellung z.B. über R₁ des Diodenersatzes (Folie 2-22)
- Bestimmung der maximal auftretenden Verlustleistung zur thermischen Dimensionierung (Kühlmaßnahmen) am Einzeltransistor

$$- P_{Vmax} = \frac{2}{\pi^2} P_0 = \frac{1}{\pi^2} \frac{U_B^2}{R_L} \qquad \qquad R_{thK} \leq \frac{T_{jcmax} - T_{Umax}}{P_{Vmax}} - R_{thi} - R_{th\ddot{U}}$$

(Wirkung von R_{tha} vernachlässigen)

- Festlegung der Kühlfläche nach konstruktiven Parametern des Kühlkörperherstellers

Die gesamte Endstufe kann auch auf einem gemeinsamen Kühlkörper montiert werden (hierbei ist die gesamte Endstufen-Verlustleistung anzusetzen).

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Externe Schaltungserweiterung: Endverstärker

Abhängigkeit der Übernahmeverzerrungen in B-Endstufen von Gegenkopplungsmaßnahmen

 $t \le 1$ ms: Endstufe nicht im Gegenkopplungszweig, $t \ge 1$ ms: Endstufe im Gegenkopplungszweig

Ausgangsspannungen

an R∟

Ausgang Vorverstärker

Leistungsverstärker

Gegengekoppelter Emitter-Spannungsverstärker für Großsignalverstärkung

Funktionsbeschreibung:

- Eingangsspannung U_i steuert den Kollektorstrom I_C über die Spannung U_{BE} auf.
- -- I_C fließt über den Emitter ab ($I_E \approx I_C$), über Emitterwiderstand R_E entsteht der Spannungsabfall U_E .
- U_E regelt die Spannung U_{BE} und damit I_C zurück: Spannungsgegenkopplung (in der Literatur oft als Strom-Gegenkopplung bezeichnet).
- Gesamtverstärkung wird reduziert, aber auch der Klirrfaktor, Schaltung kann bis zu großen Spannungen ausgesteuert werden (als "Großsignalfestigkeit" bezeichnet).
- Maximale, übersteuerungsfreie Ausgangsspannung wird durch R_E reduziert

Verstärkung:

$$\underline{v}' = -\frac{g_m \ R_C}{1 + g_m \ R_E}$$
; starke GK bei $g_m \ R_E >> 1 \Rightarrow \underline{v}' \approx -\frac{R_C}{R_E}$

Endstufe mit gegengekoppelter, spannungsverstärkender Vorstufe (Simulationsschaltung)

Beschreibung:

- Gegentakt AB-Endstufe mit Ruhestromeinstellung (Transistor Q4, Widerstände RD1, RD2)
- Transistor Q3 ist als Spannungsverstärker, über R2 gegengekoppelt.
- AP-Einstellung für Q3 durch Rückkopplung vom Ausgang über RK (Unterdrückung des U_B-Einflusses auf den AP der Endstufe)
- Schaltung ist nicht brummspannungsfest

Leistungsverstärker: Transfer-Kennlinie der Endstufe

Beispiel einer diskreten Endstufe

Transistor-Spannungsfestigkeiten ≥ 80V

Transistortypen:

T1, T2, T3, T5, T6 BSY 55 T4, T10 BD 140 T7 BC109A T8 BC 177 T9 BD 139 T11, T12 BUZ 24

Dioden:

D1 bis D6 1 N 4002 (Anpassung der Bauelemente an internationale Typen)

Literatur:

Czirr, E.: Kurzschlusssicherer 100-W-HiFi-Leistungsverstärker, radio fernsehen elektronik 26 (1977), H. 18, S. 590 ff.

Prof. M. Kuhl, Prof. W. Günther: Elektronik Folie 5-8

Leistungsendstufen

Transferkennlinie eines Einzeltransistors

Leistungs-Drainstufe

Transferkennlinie (Sättigungsbereich, U₁ > UTH)

$$\begin{split} &U_{o} = U_{i} - U_{GS} \\ &U_{GS} = U_{TH} + \sqrt{\frac{2\,I_{D}}{K}} \quad \text{(Kennlinie Sättigungsbereich)} \\ &I_{D} = \frac{U_{o}}{R_{L}} \\ &U_{o} = \,U_{i} - U_{TH} + \frac{1 - \sqrt{1 + 2\,(U_{i} - U_{TH})\,K\,R_{L}}}{K\,R_{L}} \end{split}$$

Eigenschaften von MOS-Verstärkerstufen

- schnell
- hoher Eingangswiderstand
- thermisch stabil ($\Delta I_D/\Delta T < 0$)

Power-MOS-FETs (PMF)

- Enhancement-MOS-FETs, überwiegend in n-Kanal-Ausführung (U_{TH} = 2 ...4V), bekannt seit Mitte der 70'er Jahre,
- Spezieller Chipaufbau (D-MOS-Technik) erlaubt Leistungen > 250 W, bei Drainströmen > 60 A und Durchlasswiderständen rdon < 0.035Ω ,
- Parallelschaltung relativ problemlos möglich (relativ lineare Kennlinie und negativer Temp.-Koeff.)
- die Baureihe SIPMOS (Siemens-Power-Metal-Oxide-Semiconductor) ist ein eingetragenes Warenzeichen der Siemens AG

Grundprinzip Gegentakt-B/AB-Leistungendstufe

Leistungsendstufen

Transfer-Kenlinien und Kleinsignal-Spannungsverstärkung (Simulation), B- und AB-Endstufe

(für B-Endstufe R1 und R4 hochohmig gesetzt)

Beispiel eines Endverstärkers mit Power - MOSFETS

(Schaltungsvorschlag nach Fa. SILICONIX (Santa Clara))

Prof. M. Kuhl, Prof. W. Günther: Elektronik Folie 5-10

Allgemeine Merkmale von Oszillatoren

Kurvenform	Schaltungsprinzip	Frequenzbereiche und Bau- elemente-Einsatz	Anwendung
Sinus, Rechteck,	LC-, RC-, Quarz-	f < 1 MHz: OPV	Takte in digitalen Systemen, Zeitbasis
Dreieck, Rampen (Sägezahn)	Funktionsnetzwerke	1 MHz < f < 1GHz: Bipo, FET	Datenübertragung/- verarbeitung (digital, analog) - Sender: Signal- Modulatoren - Empfänger: , Frequenz- Umsetzung/- mischung
Funktion	PLL	f > 1 GHz: Spezial-BE (HEMT, Tunnel-, Gunndioden, Mikro- wellenröhren)	Audiotechnik (Tonerzeugung)

Generator-Grundprinzip

$$\underline{U}_{k} = \underline{k}\underline{U}_{0} = \underline{k}\tilde{v}\underline{U}_{k} \Rightarrow \underline{U}_{k}(1-\underline{k}\tilde{v}) = 0$$
, bei $\underline{U}_{k} \neq 0 \Rightarrow \underline{k}\tilde{v} = 1$

Anschwingverhalten und stationärer Betrieb

- Anschwingen: kleine Amplituden U_{i,o} , v' = v'_{an} (= Kleinsignalverstärkung)
 - k v'_{an} > 1, Schaltung schwingt an, U_{i,o} ↑ solange, bis k v'=1, dann: v' = v'_{stat} < v'_{an} (= Erreichen des stationären Zustandes = Zustand mit zeitunabhängiger Amplitude von U_o)
 - k v'an < 1, Schaltung schwingt nicht an
- Stationärer Zustand: $k \ v'_{stat} \approx 1$ Anschwingsicherheit $S = \frac{(k \ v')_{an}}{(k \ v')_{stat}} = \frac{v'_{an}}{v'_{stat}} > 1$,

= Garantie zum Erreichen des stationären Zustandes

nichtlineare Verstärkung notwendig

Ausgangsspannungs - Amplitude und Verstärker - Nichtlinearität

- Verstärker zu linear (z.B. ohmsch gegengekoppelter-OPV): U_0 geht in Begrenzung \Rightarrow Amplituden-regelung notwendig: $\frac{dU_0}{dU_i}$ \downarrow mit U_i $\hat{\parallel}$
- Verstärker ausreichend nichtlinear (z.B. diskrete Trans.-Schaltung): stabile Sinusschwingung ohne zusätzliche Amplitudenregelung möglich
- Verstärker mit nichtlinearer Verstärkung/Amplitudenregelung

Rückkopplungsfaktor k konstant

Rückkopplungsfaktor k variabel

Wienbrücken-Oszillator (Dimensionierung: $R_S = R_P = R$; $C_S = C_P = C$)

Realisierungsprobleme

- Frequenz-Abstimmung ⇒ Tandem-Poti (Gleichlauf)
- Begrenzung auf niedrige Frequenzen, stabile Kapazitäten mit großen Werten nicht verfügbar ⇒ Drehkondensator mit Hochohm-Widerständen
- Maßnahmen der Amplitudenstabilisierung vornehmen

Amplituden- und Phasengang der Wienbrücke (Simulation) (R =1 k Ω , C = 159 nF)

Nicht stabilisierter Wienbrücken-Oszillator: Simulation

Simulationsschaltung

Idealer OPV (gesteuerte Spannungsquelle)

realer OPV

Signalverläufe

Ideal und real

$$R_2 = 1.9 \text{ k}\Omega \text{ (V = 2.9)}$$

$$\begin{array}{c} 3.80 \\ -1.80 \\ -2.80 \\ -3.80 \\$$

Ideal bei
$$R_2 = 2.0 \text{ k}\Omega \text{ (v = 3.0)}$$

real bei $R_2 = 2.0 \text{ k}\Omega \text{ (v = 3.0)}$

Idealer OPV (gesteuerte Spannungsquelle)

realer OPV

Amplitudenstabilisierter Wienbrücken-Oszillator: Simulation

Simulationsschaltung

Ermittelte Schaltungsparameter

Param.	Schwingfrequenz/Hz		
р		amplitude/V	k/%
0,01	994	9,1	4,0
0,1	975	3,0	9,7
0,5	927	0,91	17,4
0,9	965	0,57	12,1

Ausgangsspannungsverlauf für verschiedene Potentiometerstellungen

LC-Sinusgeneratoren: Allgemeines

- frequenzselektive Rückkopplung = LC-Schwingkreis
- Schwingbedingung: aus der Kleinsignal-Ersatzschaltung
- Eingeschwungener Zustand: Schaltung zeigt Großsignalverhalten mit Arbeitspunktverschiebung (nichtlineare Transistor-Eigenschaften ⇒ Amplitudenbegrenzung)

LC-Generatoren mit diskreten Bauelementen (Dreipunktschaltungen)

Durch eine Mittelanzapfung im Schwingkreis (Spule, Reihenkondensator), die auf Masse gelegt wird, erreicht man eine Phasendrehung von 180°

Prof. M. Kuhl, Prof. W. Günther: Elektronik

Meißner-Oszillator

Kennzeichen:

- Grundprinzip: Röhrentechnik. Frequenzbestimmendes Element: Parallelschwingkreis im Kollektorzweig, Spannungsresonanz bei der Resonanzfrequenz $f_{res} = \frac{1}{2 \, \pi \, \sqrt{LC}}$, Transistor wirkt als Wechsel
 - stromquelle
- Schwingkreis besitzt Ohm'sche Verlustkomponente R_P und Güte Q/Resonanzschärfe $Q = \frac{f_{res}}{B} = R_P \sqrt{\frac{C}{I}}$
- Rückkopplung erfolgt über Transformator mit Übertragungsverhältnis $k = -\frac{1}{\ddot{u}} = -\frac{N_2}{N_1},$

Emitterstufe hat 180° Phasendrehung ⇒ Transformator so schalten, dass zusätzlich 180° Phasendrehung entstehen (Kennzeichnung der Lage der Wicklungsanschlüsse, Trafo-Anschlüsse an der Sekundärseite vertauschen)

- Für die Spannungsverstärkung $v = -g_m R_P$ der Emitterstufe wirkt R_P als dynamischer Arbeitswiderstand.
- Ursachen für R_P:
 - Ohm'scher Verluste in der Spule (Drahtwiderstand und Spulenkern) und im Kondensator
 - Durch ü² in den Primärkreis transformierter Transistor-Eingangswiderstand und ggf. Anteile der AP-Einstellung, Transistor-Ausgangswiderstand

Schaltung	Charakteristika		
R ₂ C _S R _E C _E	 AP-Einstellung durch Basisspannungsteiler und Stabilisierung durch R_E C_S legt das "<i>kalte Ende</i>" der Mitkoppelspule wechselstrommäßig an Masse Nachteil: Kollektorgleichstrom fließt durch Schwingkreisinduktivität "Vormagnetisierung" 		

Praktikumsschaltung

Quarzgeneratoren

Oszillatorschaltungen mit Schwingquarz als frequenzbestimmendes Element

• Merkmal: hohe Frequenzkonstanz

 $(\Delta f/f_{res} = 10^{-6} ... 10^{-9})$, bei zusätzlicher Temperaturstabilisierung)

Kurvenform der Ausgangsspannungen: Rechteck-, Sinus

Der Schwingquarz

- Funktionsprinzip: piezoelektrischer Effekt
 Beim Anlegen von Spannungen entstehen resonante mechanische Schwingungen hoher Frequenz und Güte ⇒ hochresonanter Schwingkreis
 - Schwingungstypen: Dicken- Biege-, Torsionsschwinger
 - Schwingungsmoden: Grundwellenguarze, Oberwellenguarze
- Anwendungen: Forderung nach hoher Frequenzkonstanz, Oberwellenanwendung
- Die Schwingfrequenz ist von den mechanischen Abmessungen abhängig

Element	Bezeichnung	Modellgröße	typischer Wert
L	dynamische Serien- Induktivität	schwingende Masse des Quarzes	100 mH
Cs	dynamische Serien- Ka- pazität	Elastizität des schwingenden Körpers	0,0015 pF
Rs	dynamischer Serien- Verlustwiderstand	Reibungsverluste	100 Ω
C _P	statische Parallelkapazi- tät	Halterung	5 pF

Quarz-Oszillatorschaltungen: Prinzip/Anwendungsschaltungen

Prof. M. Kuhl, Prof. W. Günther: Elektronik Folie 6-6

Quarz-Oszillatorschaltungen: Prinzip/Anwendungsschaltungen

"Ziehen" der Schwingfrequenz durch Trimmkap. CZ:

$$\frac{\Delta f}{f_{res}} \approx \frac{C_S}{2C_Z}$$

PLL-Schaltungen (Phasenregelkreise, phase lock loop)

Prinzip des Phasenregelkreises

Schaltung/System, in dem die Ausgangsfrequenz durch Regelung auf ein Eingangs-Frequenz-Signal frequenz-/phasenstarr "eingerastet" wird (Regelung auf minimale Phasen- bzw. Frequenzabweichung der Schleife).

Aufbau/Wirkungsweise

Bestandteile:

- Phasenempfindlicher Gleichrichter (Phasendetektor): U_{0} $\sim \Delta f = f_{i} f_{VCO}$, $\Delta \phi$
- Verstärkung mit Tiefpassfilterung (Erzeugung Steuer-Gleichspannung U_{St})
- Spannungsgesteuerter Oszillator (VCO = voltage controlled oscillator) zur Ausgangssignalerzeugung (f = f_{VCO})
 Parameter:
 - VCO-Freilauffrequenz fo
 - Haltebereich $\Delta f_{halte} = f_{oben}$ f_{unten} (Frequenzbereich, in dem VCO der Eingangsfrequenz folgen kann (liegt symmetrisch zu f_0)
 - Fangbereich Δf_{fang} : Frequenzbereich (um f_0), bei dem VCO auf Eingangsfrequenz "einrastet" ($\Delta f_{fang} < \Delta f_{halte}$)

PLL-Schaltungen (Phasenregelkreise, phase lock loop): Anwendung

- Frequenzsynthese
- Signal-Demodulation (FM, AM)
- Frequenzsynchronisation (PAL-Farbträgerfrequenz, -phase)

Frequenzsynthese (Frequency Synthesizer)

