1: function Semi-Range-Join (indoor index $T_{\mathcal{O}}$, indoor index $T_{\mathcal{O}}$, distance ϵ) result set R; candidate partition set C; 2: Semi-range-Filtering(T_O , T_O , ϵ); ⊳Phase 1: filtering for each partition $Q^P \in C$ do 4: Cand $\leftarrow \emptyset$ > Cand is a set for candidate 5: join pairs $\langle R^O, R^P \rangle \leftarrow \text{RangeSearch}(Q^P, \epsilon + Q^P_{.r_{max}}, T_O);$ 6: $\triangleright R^O$ is a set of objects in \mathbb{O} ; R^P is a set of 7: partitions; Dijkstra(R^P); \triangleright Phase 2: subgraph 8: for each object pair $\langle Q, O \rangle_{Q \in Q^P, O \in \mathbb{R}^O}$ do 9: $[\langle Q, O \rangle.l, \langle Q, O \rangle.u] \leftarrow [|Q, O|_{minI}, |Q, O|_{maxI}];$ 10: (Table 2) 11: ⊳Phase 3: pruning