SwarmTCR: a computational approach to predict the specificity of T Cell Receptors

Supplementary Material

Ryan Ehrlich^{1,}, Larisa Kamga², Anna Gil³, Katherine Luzuriaga², LiisaSelin³, and Dario Ghersi^{1,*}

¹School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE 68182, USA

²Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA and

³Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.

^{*} To whom correspondence should be addressed

_																	
p-value	$1.123e^{-7}, 1.166e^{-50}$		$5.452e^{-18}, 2.030e^{-84}$		$3.236e^{-4}, 9.877e^{-06}$		p-value	0.035		0.002		0.062		0.002		0.683	
TCRdist AP	0.728, 0.662	0.018, 0.02	0.681, 0.74	0.016,0.008	0.682, 0.654	0.37, 0.35	TCRdist AP	0.774	0.054	0.643	0.077	0.793	0.032	0.712	0.135	0.446	0.081
SwarmTCR AP	0.75, 0.771	0.02,0.016	0.717, 0.846	0.017, 0.008	0.708, 0.687	0.33, 0.36	SwarmTCR AP	0.797	0.052	0.691	0.076	0.805	0.031	0.778	0.058	0.452	0.081
CDR3 Weight	0.682, 0.764	0.019, 0.032	0.749, 0.766	0.032, 0.024	0.666, 0.641	0.026, 0.021	CDR3 Weight	0.141, 0.199	0.051,0.056	0.226, 0.137	0.043, 0.077	0.095, 0.191	0.077, 0.058	0.257, 0.165	0.106, 0.099	0.27, 0.189	0.098, 0.112
CDR2.5 Weight	0.094, 0.014	0.069, 0.041	0.084,0.012	0.086,0.037	0.164,0.025	0.097, 0.05	CDR2.5 Weight	0.118, 0.128	0.079, 0.09	0.181,0.031	0.082, 0.058	0.093, 0.145	0.093, 0.088	0.151, 0.07	0.129, 0.093	0.053, 0.044	0.088, 0.078
CDR2 Weight	0.071, 0.113	0.05, 0.074	0.115, 0.048	0.075, 0.044	0.057, 0.182	0.061, 0.059	CDR2 Weight	0.044, 0.153	0.061, 0.082	0.087, 0.091	0.095, 0.086	0.057, 0.156	0.088, 0.074	0.044, 0.081	0.085, 0.096	0.021, 0.137	0.047, 0.099
CDR1 Weight	0.153, 0.109	0.08,084	0.012, 0.174	0.031, 0.068	0.113, 0.151	0.097, 0.046	CDR1 Weight	0.178, 0.039	0.063, 0.074	0.178, 0.069	0.082, 0.084	0.140, 0.121	0.098, 0.094	0.201, 0.03	0.109, 0.053	0.189, 0.097	0.087, 0.117
BS data	GLC α , β : Mean	SD	YVL α , β : Mean	QS	GIL α, β : Mean	SD	SC data	GLC α , β : Mean	Ω S	YVL α , β : Mean	SD	GIL α, β : Mean	SD	LLW α , β : Mean	QS	NLV α , β : Mean	SD

the two values in columns 2-5 corresponBS to the α and β chain, respectively. Columns 6 and 7 display AP results for SwarmTCR and TCRdist and the t-test statistic for performance comparison is in the final columnn. Weights were collected from every optimized set of the 50 iterations performed (LLW = LLWNGPMAV, NLV = NLVPMVATV). Table 1: The mean CDR loop weights and precision-recall results for BS & SC data is showed above. As specified in the first column,

SC GLCTLVAML data CDR1 Weight	CDR1 Weight	CDR2 Weight	CDR2.5 Weight	CDR3 Weight	CDR2 Weight CDR2.5 Weight CDR3 Weight SwarmTCR AP TCRdist AP p-value	TCRdist AP	p-value
Confidence $0 \alpha, \beta$: Mean	0.187, 0.039	0.02, 0.176	0.139, 0.1	0.139, 0.2	0.813	0.783	0.008
Ω S	0.059, 0.068	0.044, 0.066	0.072, 0.079	0.056, 0.05	0.053	0.056	
Confidence 2 α , β : Mean		0.036, 0.163	0.121, 0.103	0.124, 0.206	0.811	0.791	0.084
SD	0.066, 0.089	0.067, 0.094	0.081,0.092	0.054,0.051	0.056	0.00	
Confidence 3 α , β : Mean	0.197, 0.047	0.032, 0.172	0.128, 0.094	0.14, 0.19	0.818	0.79	0.021
SD	0.051,0.076	0.057, 0.072	0.085, 0.074	0.06, 0.049	0.057	0.061	
Shuffled CDRs α , β : Mean	0.178, 0.049	0.219, 0.054	0.179,0.087	0.179, 0.054	0.473	0.451	0.088
SD	0.088, 0.06	0.105, 0.077	0.103, 0.094	0.109, 0.083	0.069	90.0	

p-value	0.117		0.196		0.121		$2.376e^{-21}$	
TCRdist AP	0.792	0.039	0.805	0.034	0.799	0.033	0.685	0.042
SwarmTCR AP TCRdist AP p-value	0.805	0.043	0.814	0.029	0.81	0.034	0.779	0.034
CDR3 Weight	0.074, 0.19	0.066, 0.079	0.09, 0.191	0.074, 0.069	0.094, 0.198	0.079, 0.087	0.008, 0.224	0.018, 0.031
CDR2 Weight CDR2.5 Weight CDR3 Weight	0.054, 0.173	0.082, 0.085	0.081, 0.172	0.095, 0.078	0.057, 0.165	0.079, 0.092	0.021, 0.214	0.043, 0.043
CDR2 Weight	0.044, 0.149	0.076, 0.098	0.044, 0.141	0.069, 0.081	0.031, 0.185	0.061, 0.087	0.045, 0.235	0.05, 0.036
CDR1 Weight	0.177, 0.138	0.098, 0.113	0.147, 0.134	0.091, 0.093	0.152, 0.117	0.11, 0.113	0.036, 0.217	0.052, 0.029
SC GILGFVFTL data CDR1 Weight	Confidence $0 \alpha, \beta$: Mean 0.177, 0.138	SD	Confidence 2 α , β : Mean	SD	Confidence $3 \alpha, \beta$: Mean	$^{\mathrm{CD}}$	Shuffled CDRs α , β : Mean	$^{\mathrm{CD}}$

SC YVLDHLIVV data CDR1 Weight	CDR1 Weight	CDR2 Weight	CDR2.5 Weight	CDR3 Weight	CDR2 Weight CDR2.5 Weight CDR3 Weight SwarmTCR AP TCRdist AP p-value	TCRdist AP	p-value
Confidence $0 \alpha, \beta$: Mean 0.195, 0.079	0.195, 0.079	0.072, 0.105	0.158, 0.025	0.228, 0.137	0.708	0.67	0.011
$\overline{\mathrm{SD}}$	0.081,0.084	0.087, 0.087	0.1, 0.054	0.06,0.081	0.075	0.069	
Confidence 2 α , β : Mean	0.181, 0.081	0.095, 0.093	0.152,0.033	0.223, 0.143	0.711	0.664	0.002
$\overline{\mathrm{SD}}$	0.089, 0.086	0.085,0.081	0.1,0.064	0.05, 0.078	0.078	0.074	
Confidence $3 \alpha, \beta$: Mean	0.19,0.056	0.099, 0.09	0.166,0.057	0.215, 0.129	0.688	0.641	0.005
$\overline{\mathrm{OD}}$	0.084,0.072	0.086,0.082	0.086,0.075	0.055, 0.057	0.077	0.084	
Shuffled CDRs α , β : Mean	0.168, 0.039	0.189, 0.035	0.237, 0.017	0.267, 0.048	0.356	0.239	$4.264e^{-10}$
$ \Omega$ S	0.118, 0.061	0.132, 0.069	0.117, 0.042	0.136, 0.076	0.091	0.075	

en en	4				4		-22	
p-val	0.004		0.001		0.044		$ 4.131e^{-22}$	
TCRdist AP	0.719	0.123	0.716	0.14	0.742	0.12	0.485	990.0
SwarmTCR AP	0.777	0.061	0.793	0.056	0.781	0.06	0.65	0.064
CDR3 Weight	0.273, 0.153	0.098, 0.103	0.261, 0.159	0.098, 0.105	0.225, 0.179	0.098, 0.111	0.237, 0.007	0.04,0.015
CDR2.5 Weight	0.168, 0.063	0.148, 0.088	0.17, 0.077	0.152, 0.1	0.162,0.064	0.12, 0.093	0.223,0.008	0.041,0.016
CDR2 Weight	0.042, 0.077	0.096, 0.084	0.06, 0.076	0.112, 0.097	0.045, 0.088	0.087, 0.097	0.209, 0.027	0.054, 0.039
CDR1 Weight	0.182, 0.042	0.136, 0.081	0.167, 0.03	0.132,0.065	0.186, 0.052	0.11, 0.078	0.244, 0.045	0.031, 0.056
SC LIWNGPMAV data CDR1 Weight CDR2 Weight CDR2.5 Weight CDR3 Weight SwarmTCR AP TCRdist AP p-value	Confidence 0 α , β : Mean 0.182, 0.042	SD	Confidence $2 \alpha, \beta$: Mean	SD	Confidence $3 \alpha, \beta$: Mean	SD	Shuffled CDRs α , β : Mean	SD

SC NLVPMVATV data CDR1 Weight	CDR1 Weight	CDR2 Weight	CDR2.5 Weight	CDR3 Weight	CDR3 Weight SwarmTCR AP TCRdist AP p-value	TCRdist AP	p-value
Confidence $0 \alpha, \beta$: Mean 0.232, 0.078	0.232, 0.078	0.035, 0.152	0.052, 0.037	0.248, 0.167	0.423	0.426	0.892
SD	0.09, 0.109	0.079, 0.102	0.091, 0.073	0.091, 0.137	0.086	0.077	
Confidence 2 α , β : Mean	0.194, 0.066	0.017, 0.18	0.054,0.056	0.236, 0.197	0.406	0.404	0.885
SD	0.092,0.103	0.049, 0.116	0.096, 0.079	0.097, 0.139	0.082	0.083	
Confidence $3 \alpha, \beta$: Mean	0.214, 0.034	0.035, 0.191	0.054,0.05	0.228, 0.194	0.404	0.403	0.921
SD	0.09, 0.07	0.074, 0.103	0.09, 0.077	0.08, 0.113	0.084	0.085	
Shuffled CDRs α , β : Mean	0.218, 0.145	0.173, 0.011	0.115, 0.127	0.113, 0.098	0.173	0.163	0.223
SD	0.131, 0.116	0.106, 0.037	0.139, 0.105	0.084, 0.109	0.037	0.041	

the t-test statistic for performance comparison is in the final column. Weights were collected from every optimized set of the 50 iterations Table 2: The mean CDR loop weights and precision-recall results for SC data is showed above. As specified in the first column, the two values in columns 2-5 correspond to the α and β chain, respectively. Columns 6 and 7 display AP results for SwarmTCR and TCRdist and performed (LLW = LLWNGPMAV, NLV = NLVPMVATV). Confidence 0, 2, and 3 refer to VDJDB quality scores, see methods. Shuffled CDRs indicate random placement of CDR loops, see methods.

BS da	ita	SwarmTCR AUROC	TCRdist AUROC
GLC α :	Mean	0.897	0.892
	SD	0.007	0.007
GLC β :	Mean	0.916	0.882
	SD	0.005	0.005
YVL α :	Mean	0.834	0.822
	SD	0.010	0.011
YVL β :	Mean	0.897	0.846
	SD	0.005	0.005
GIL α :	Mean	0.925	0.921
	SD	0.008	0.008
GIL β :	Mean	0.942	0.933
	SD	0.007	0.007
SC da	ıta	SwarmTCR AUROC	TCRdist AUROC
GLC $\alpha\beta$:	Mean	0.897	0.887
	SD	0.0.32	0.0.35
YVL $\alpha\beta$:	Mean	0.860	0.845
	SD	0.054	0.049
GIL $\alpha\beta$:	Mean	0.880	0.881
	SD	0.021	0.020
LLW $\alpha\beta$:	Mean	0.888	0.884
	SD	0.040	0.038
NLV $\alpha\beta$:	Mean	0.690	0.684
	SD	0.057	0.049

Table 3: An extension of the previous table, these AUROC scores and standard deviations show each repertoire tested (BS and SC).

Virus	Peptide Gene	Peptide	HLA Type	SC TCR count	BS α chain count	BS β chain count
Cancer/testis antigen 1	NY-ESO-1	APRGPHGGAASGL	HLA-B*07:02	2	0	0
Cancer/testis antigen	CTAG1B	SLLMWITQC	HLA-A*02:01	2	2	2
CMV	pp65	CPSQEPMSIYVY	HLA-B*35:08	0	4	2
CMV	IE1	CVETMCNEY	HLA-B*18	0	0	2
CMV	IE1	DEEDAIAAY	HLA-B18	0	0	2
CMV	IE1	ELRRKMMYM	HLA-B*08	2	0	4
CMV	pp65	FPTKDVAL	HLA-B*35:08	0	0	10
CMV	pp65	IPSINVHHY	HLA-B*35:01	0	0	28
CMV	UL83	NLVPMVATV	HLA-A*02:01	186	75	246
CMV	IE1	QIKVRVDMV	HLA-B*08	7	2	7
CMV	IE1	QIKVRVKMV	HLA-B*08	0	0	11
CMV	pp65	RPHERNGFTVL	HLA-B*07:02	0	0	21
CMV	pp65	TPRVTGGGAM	HLA-B*07	7	6	104
CMV	IE1	VLEETSVML	HLA-A*02:01	0	0	10
CMV	pp50	VTEHDTLLY	HLA-A*01:01	0	0	10
CMV	pp65	YSEHPTFTSQY	HLA-A*01:01	0	0	20
DENV1	NS3	GTSGSPIVNR	HLA-A*11:01	3	3	62
DENV1 DENV2	NS3	GTSGSPIIDK	HLA-A*11:01	0	0	19
DENV2 DENV2	NS3	GTSGSFIIDR	HLA-A*11:01	2	0	0
DENV3/4	NS3	GTSGSPIINR	HLA-A*11:01	3	3	48
EBV	EBNA4	AVFDRKSDAK	HLA-A*11:01	0	0	10
EBV	BZLF1	EPLPQGQLTAY	HLA-B*35:01	5	13	29
EBV	EBNA3	FLRGRAYGL	HLA-B*35:01	10	12	17
EBV	BMLF1	GLCTLVAML	HLA-A*02:01	194	7448	7512
EBV		HPVGEADYFEY			24	24
	EBNA1		HLA-B*35:01	5		
EBV	EBNA4	IVTDFSVIK LPEPLPQGQLTAY	HLA-A*11:01	5 7	0 4	23 5
EBV EBV	BZLF1	U U	HLA-B*35:08:01			5 156
	BZLF1	RAKFKQLL	HLA-B*08:01	0	0	
EBV	EBNA3A	RPPIFIRRL	HLA-B*07:02	0	0	27
EBV	EBNA3B	VSFIEFVGW	HLA-B*57:01	0	0	14 9
EBV	EBNA3A	YPLHEQHGM	HLA-B*35:01	0	0	-
EBV	BRLF1	YVLDHLIVV	HLA-A*02:01	123	9325	13246
HCV	NS5B	ARMILMTHF	HLA-B*27	0	0	16
HCV	NS3	ATDALMTGY	HLA-A*01	0	0	139
HCV	NS3	CINGVCWTV	HLA-A*02	21	21	39
HCV	POLG	HSKKKCDEL	HLA-B*08:01:29	0	0 51	31
HCV	NS3	KLVALGINAV	HLA-A*02	37	-	66
HIV-1	p24	EIYKRWII	HLA-B*08	0	0	20
HIV-1	Nef	FLKEKGGL	HLA-B*08	4	4	43
HIV-1	Nef	FLKENGGL	HLA-B*08	3	3	4
HIV-1	Nef	FLKEQGGL	HLA-B*08	3	3	4
HIV-1	Nef	FLKETGGL	HLA-B*08	3	3	4
HIV-1	Vpr	FPRPWLHGL	HLA-B*08	0	0	30
HIV-1	p24	GLNKIVRMY	HLA-B*15	0	0	13
HIV-1	p24	GPGHKARVL	HLA-B*07:02	0	0	56
HIV-1	p24	GPGMKARVL	HLA-B*07:02	0	0	4
HIV-1	Vif	HPKVSSEVHI	HLA-B*42:01	0	0	25
HIV-1	Int	IIKDYGKQM	HLA-B*42:01	0	0	18
HIV-1	Pol	ILKEPVHGV	HLA-A*02	0	0	7
HIV-1	p24	ISPRTLNAW	HLA-B*57	0	0	22
HIV-1	p24	KAFSPEVIPMF	HLA-B*57	0	20	111
HIV-1	p24	KINAWIKVV	HLA-A*02:01	0	0	3
HIV-1	p24	KRWIILGLNK	HLA-B*27:05	0	6	124
HIV-1	p24	KRWIIMGLNK	HLA-B*27:05	0	11	31
HIV-1	Int	LPPIVAKEI	HLA-B*42:01	0	0	20
HIV-1	p24	QASQEVKNW	HLA-B*57:01	0	0	8
HIV-1	Nef	QVPLRPMTYK	HLA-A*03:01	0	8	33
HIV-1	p24	RLRPGGKKK	HLA-A*03:01	0	0	9
HIV-1	p17	SLYNTVATL	HLA-A*02:01	0	0	23
HIV-1	p24	TAFTIPSI	HLA-B*51:193	12	12	13
		Contir	nued on next page			

	Suppler	mentary Table 4 – contin		age		
Virus	Peptide Gene	Peptide	HLA Type	SC TCR count	BS α chain count	BS β chain count
HIV-1	p24	TLNAWVKVV	HLA-A*02:01	0	0	4
HIV-1	Nef	TPGPGVRYPL	HLA-B*42:01	0	0	20
HIV-1	Nef	TQGYFPDWQNY	HLA-B*15	0	0	2
Homo sapeins	BST2	LLLGIGILV	HLA-A*02	0	12	9
Homo sapiens	n/a	Naïve	n/a	44	0	0
Homo sapiens	IMP2	NLSALGIFST	HLA-A*02	0	0	18
Homo sapiens	WT1	RMFPNAPYL	HLA-A*02	2	2	2
Melanoma	MLANA	AAGIGILTV	HLA-A*02:01:48	4	2	2
Melanoma	PMEL17	ALEPGPVTA	HLA-A*02:01	2	0	0
Melanoma	MLANA	ELAGIGILTV	HLA-A*02:01:48	6	5	11
Melanoma	PMEL17	YLEAGPVTA	HLA-A*02:01	2	0	0
Melanoma	PMEL17	YLEPGAVTA	HLA-A*02:01	3	0	0
Melanoma	PMEL17	YLEPGPATA	HLA-A*02:01	2	0	0
Melanoma	PMEL17	YLEPGPVAA	HLA-A*02:01	2	0	0
Melanoma	PMEL17	YLEPGPVTA	HLA-A*02:01	2	0	0
Melanoma	PMEL17	YLEPGPVTV	HLA-A*02:01	3	0	0
HSV-2	VP22	RPRGEVRFL	HLA-B*07:02	42	32	29
HTLV-1	TAX	LLFGYPVYV	HLA-A*02:01:48	3	3	3
Influenza A	NP177	LPRRSGAAGA	HLA-B*07:02	0	0	7
Influenza A	NP44	CTELKLSDY	HLA-A*01:01	0	0	4
Influenza A	M1	GILEFVFTL	HLA-A*02:01	2	0	0
Influenza A	M1	GILGFVFTL	HLA-A*02:01	402	3881	2964
InfluenzaA	NA-231	CVNGSCFTV	HLA-A*02:01	12	12	14
Yellow Fever Virus	NS4B	LLWNGPMAV	HLA-A*02:01	202	192	198

Table 4: The number of TCRs or chains (columns 5-7) in our dataset that are specific for each peptide (column 3). Peptide species, peptide gene, and HLA type can be seen in columns 1, 2, and 3, respectively.

Figure 1: FPRs and their associated TPRs are plotted at thresholds 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9 for both swarmTCR and TCRdist (see legend). These plots show the results of the following SC repertoires, top to bottom, left to right: NLVPMVATV, GLCTLVAML, LLWNGPMAV.

Figure 2: FPRs and their associated TPRs are plotted at thresholds 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9 for both swarmTCR and TCRdist (see legend). These plots show the results of the following SC repertoires, top to bottom: YVLDHLIVV, GILGFVFTL.

(see legend). These plots show the results of the following BS repertoires, top to bottom: GLCTLVAML α , GILGFVFTL α , GLCTLVAML β , GILGFVFTL β . Figure 3: FPRs and their associated TPRs are plotted at thresholds 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9 for both swarmTCR and TCRdist

Figure 4: FPRs and their associated TPRs are plotted at thresholds 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9 for both swarmTCR and TCRdist (see legend). These plots show the results of the following BS repertoires, top to bottom: YVLDHLIVV α , YVLDHLIVV β .

Figure 5: These kernel density plots show the distribution of weights (row 1 = alpha chain, row 2 = beta chain) selected by swarmTCR for the single-cell dataset. Repertoires tested are color-coded (see legend).

Figure 6: These precision-recall curves show the performance of all tested SC viral repertoires. SwarmTCR and TCRdist on the data used for 50 cross-validation iterations. TCRdist mean curves are in blue and SwarmTCR mean curves are in red, while the shaded regions cover one standard deviation.

Figure 7: These KDE plots display the average distribution of alignment scores for positive and negative TCRs tested in each repertoire (listed top-left of each plot). The x-axis details alignment score (lower values indicate high similarity) and the y-axis, density.

Figure 8: SwarmTCR weights (blue), TCRdist weights (green), and contact residue counts (orange) are plotted in ascending order (contact count) for GLCTLVAML specific TCRs. Peptide and pMHC contact counts are accounted for by the left and right plots, respectively. Spearman and Pearson statistics can be found to the right of the legend.

Figure 9: SwarmTCR weights (blue), TCRdist weights (green), and contact residue counts (orange) are plotted in ascending order (contact count) for GLIGFVFTL specific TCRs. Peptide and pMHC contact counts are accounted for by the left and right plots, respectively. Spearman and Pearson statistics can be found to the right of the legend.

Figure 10: SwarmTCR weights (blue), TCRdist weights (green), and contact residue counts (orange) are plotted in ascending order (contact count) for NLVPMVATY specific TCRs. Peptide and pMHC contact counts are accounted for by the left and right plots, respectively. Spearman and Pearson statistics can be found to the right of the legend.

SEUO	CDR1	CDR2	CDR2.5	CDR3	Total	10GA		CDR2	CDR2.5	CDR3	Total
alpha, pep	0	0	0	m	Э	alpha, pep		0	0	e	m
alpha, mhc	1	1	0	S	7	alpha, mhc		2	1	4	00
beta, pep	1	2	0	æ	9	beta, pep		2	0	e	9
beta, mhc	1	4	0	4	6	beta, mhc		4	0	4	6
alpha total	1	1	0	00	10	alpha total		2	1	7	11
beta total	2	9	0	7	15	beta total		9	0	7	16
SISZ	CDR1	CDR2	CDR2.5	CDR3	Total	2VU		CDR2	CDR2.5	CDR3	Total
alpha, pep	1	0	0	4	2	alpha, pep		0	0	e	3
alpha, mhc	4	1	0	m	00	alpha, mhc		1	1	4	7
beta, pep	1	2	1	33	7	beta, pep		2	0	e	9
beta, mhc	2	2	1	5	13	beta, mhc		4	0	4	6
alpha total	S	1	0	7	13	alpha total		1	1	7	10
beta total	e	7	2	00	20	beta total		9	0	7	16
SIHD	CDR1	CDR2	CDR2.5	CDR3	Total	2VLK	CDR1	CDR2	CDR2.5	CDR3	Total
alpha, pep	0	0	0	2	2	alpha, pep		0	0	e	3
alpha, mhc	m	က	0	9	12	alpha, mhc		1	0	4	9
beta, pep	2	2	1	2	7	beta, pep		2	0	e	9
beta, mhc	2	2	1	4	12	beta, mhc		4	0	S	6
alpha total	m	e	0	11	17	alpha total		1	0	7	6
beta total	4	7	2	9	19	beta total		9	0	00	15
STEZ	CDR1	CDR2	CDR2.5	CDR3	Total	2VLR		CDR2	CDR2.5	CDR3	Total
alpha, pep	2	0	0	2	4	alpha, pep		0	0	en	33
alpha, mhc	m	33	0	2	00	alpha, mhc		1	0	4	9
beta, pep	1	0	0	1	2	beta, pep		2	0	m	9
beta, mhc	1	4	0	4	6	beta, mhc		4	0	4	00
alpha total	Ŋ	e	0	4	12	alpha total		1	0	7	6
beta total	2	4	0	2	11	beta total		9	0	7	14
5E61	CDR1	CDR2	CDR2.5	CDR3	Total						
alpha, pep	0	0	0	4	4						
alpha, mhc	2	1	1	9	10						
beta, pep	1	2	0	2	2						
beta, mhc	0	4	0	4	80						
alpha total	2	1	1	10	14						
beta total	1	9	0	9	13						

Figure 11: This table contains CDR loop contact residue data for trimeric TCR/pMHC crystal structures (peptide specificity: GILGFVFTL). Column 1 contains PDB and specifies groups by which contact residue count was determined. Columns 2-6 specify CDR loop or total count for each group described in column 1.

3GSN	CDR1	CDR2	CDR2.5	CDR3	Total
alpha, pep	3	0	0	3	6
alpha, mhc	2	2	0	3	7
beta, pep	1	0	0	4	5
beta, mhc	1	2	0	4	7
alpha total	5	2	0	6	13
beta total	2	2	0	8	12
5D2L	CDR1	CDR2	CDR2.5	CDR3	Total
alpha, pep	3	0	0	4	7
alpha, mhc	3	2	0	3	8
beta, pep	0	1	0	2	3
beta, mhc	0	2	0	4	6
alpha total	6	2	0	7	15
beta total	0	3	0	6	9
5D2N	CDR1	CDR2	CDR2.5	CDR3	Total
alpha, pep	2	0	0	3	5
alpha, mhc	3	2	0	0	5
	0	0	0	6	6
beta, pep	1	3	0	7	11
beta, mhc alpha total	5	2	0	3	10
beta total	1	3	0	13	17
beta totai	1	3	U	15	1/
304L	CDR1	CDR2	CDR2.5	CDR3	Total
alpha, pep	2	0	0	3	5
alpha, mhc	4	3	0	3	10
beta, pep	1	0	0	5	6
beta, mhc	2	3	0	3	8
alpha total	6	3	0	6	15
beta total	3	3	0	8	14

Figure 12: This table contains CDR loop contact residue data for trimeric TCR/pMHC crystal structures (peptide specificity: NLVPMVATV (green) GLCTLVAML (yellow)). Column 1 contains PDB and specifies groups by which contact residue count was determined. Columns 2-6 specify CDR loop or total count for each group described in column 1.

Figure 13: These kernel density plots show the distribution of weights (row 1 = alpha chain, row 2 = beta chain) selected by swarmTCR for the bulk sequencing dataset. Repertoires tested are color-coded (see legend).

Figure 14: These precision-recall curves show the performance of all tested DS α (top) β (bottom) viral repertoires. Swarm TCR and TCRdist on the data used for 50 cross-validation iterations. TCRdist mean curves are in blue and SwarmTCR mean curves are in red, while the shaded regions cover one standard deviation.