

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 11-355174

(43) Date of publication of application : 24.12.1999

(51) Int.CI.

H04B 1/40

(21) Application number : 10-163320

(71) Applicant : TOKIN CORP

(22) Date of filing : 11.06.1998

(72) Inventor : FURUTA ATSUSHI
SASAKI NOBUHIRO
YANO TAKESHI

(54) ANTENNA MULTICOUPLER

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an antenna multicoupler, which is made compact and light in weight and reduces costs, corresponding to the dual band of long duration.

SOLUTION: Concerning the antenna multicoupler provided with transmission side filters 1 and 4, reception side filters 13 and 14 and electronic switches 2, 5 and 11, the transmission side filters 1 and 4 are provided with a low-pass filter(LPF) 1 corresponding to a first transmission frequency and an LPF 4 corresponding to a second transmission frequency. The terminals of these filters 1 and 4 on one side are connected in parallel through the electronic switches 2 and 5 for turning on/off RF signals, and the reception side filters 13 and 14 are provided with a band pass filter corresponding to a first reception frequency and a band pass filter corresponding to a second reception frequency. The terminals of these filters on one side are mutually connected in parallel, and the respective parallel terminal sides of the transmission side filters 1 and 4 and reception side filters 13 and 14 are connected with an antenna terminal 21 through the electronic switch 11 for switching transmission and reception.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

04/8038-SNY

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-355174

(43)公開日 平成11年(1999)12月24日

(51) Int.Cl.⁶

H 04 B 1/40

識別記号

F I

H 04 B 1/40

審査請求 未請求 請求項の数 2 O.L. (全 6 頁)

(21)出願番号 特願平10-163320

(22)出願日 平成10年(1998)6月11日

(71)出願人 000134257

株式会社トーキン

宮城県仙台市太白区郡山6丁目7番1号

(72)発明者 古田 淳

宮城県仙台市太白区郡山6丁目7番1号

株式会社トーキン内

(72)発明者 佐々木 伸浩

宮城県仙台市太白区郡山6丁目7番1号

株式会社トーキン内

(72)発明者 矢野 健

宮城県仙台市太白区郡山6丁目7番1号

株式会社トーキン内

(74)代理人 弁理士 後藤 洋介 (外2名)

(54)【発明の名称】 アンテナ共用器

(57)【要約】

【課題】 アンテナ共用器の小型、軽量化、低コスト化と待ち受け時間が長いデュアルバンド対応のアンテナ共用器を提供すること。

【解決手段】 送信側フィルタ1、4と、受信側フィルタ13、14と、電子スイッチ2、5、11とを備えたアンテナ共用器であって、前記送信側フィルタは、第1の送信周波数に対応したローパスフィルタ1と第2の送信周波数に対応したローパスフィルタ4とを備え、これらのフィルタ1、4の一方の端子が、RF信号をON/OFFさせる電子スイッチ2、5を介して並列接続され、前記受信側フィルタ13、14が第1の受信周波数に対応したバンドパスフィルタと第2の受信周波数に対応したバンドパスフィルタとを備え、これらフィルタの一方の端子が互いに並列接続され、前記送信側フィルタ1、4と前記受信側フィルタ13、14の各々の並列端子側が送受信切り替えのための電子スイッチ11を介してアンテナ端子21と接続されている。

【特許請求の範囲】

【請求項1】送信側フィルタと、受信側フィルタと、電子スイッチとを備えたアンテナ共用器であって、前記送信側フィルタは、第1の送信周波数に対応したローパスフィルタと第2の送信周波数に対応したローパスフィルタとを備え、これらのローパスフィルタの内の一方の端子が、RF信号をON/OFFさせる電子スイッチを介して並列接続され、前記受信側フィルタは第1の受信周波数に対応したバンドパスフィルタと第2の受信周波数に対応したバンドパスフィルタとを備え、これらのバンドパスフィルタのうち一方の端子が互いに並列接続され、前記送信側フィルタと前記受信側フィルタの各々の並列端子側が送受信切り替えのための電子スイッチを介してアンテナ端子と接続されていることを特徴とするアンテナ共用器。

【請求項2】請求項1記載のアンテナ共用器において、前記切り替え電子スイッチがPINダイオード及びMMICの内の少なくとも一種で構成され、外部電源を供給しない状態で前記アンテナ端子から前記受信フィルタ部に切り替わるように接続したことを特徴とするアンテナ共用器。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、数百MHz～数GHzのマイクロ波帯で用いられる移動体通信機器等に関する、特に異なる2つの周波数を持つシステムに対応したデュアルバンドに対応したアンテナ共用器に関する。

【0002】

【従来の技術】従来のデュアルバンドに対応したアンテナ共用器の構成を図7に示す。図7を参照すると、第1のシステムに対応したアンテナ共用器51のアンテナ端子52と第2のシステムに対応したアンテナ共用器53のアンテナ端子54がスイッチ55に接続されている。第1のシステムを利用する場合には、スイッチ55は、端子56と端子57がスルーになるように切り替える。同様に第2のシステムを使用する場合には、スイッチ55の端子56と端子57がスルーになるように切り替える。尚、符号59、61は送信端子、符号60、62は受信端子である。

【0003】スイッチ55は、PINダイオードやMMIC等で構成され、3V/5mA程度の電源の供給をON/OFFすることで切り替える。両方のシステムを受信信号を待ち受けするには、あるタイミングで交互にスイッチを切り替え続ける必要がある。

【0004】アンテナ共用器51、53は、従来のシングルバンドで使用されるアンテナ共用器と同様である。一般に送信側フィルタは、低挿入損失が要求され、受信帯での阻止減衰量と2倍、3倍の高調波成分を除去するためのバンドエリミネーションフィルタで構成される。バンドエリミネーションフィルタは、誘電体共振器とコ

イル、コンデンサで構成されることが多い。

【0005】また、受信側は、送信帯域で阻止減衰量とローカル周波数、イメージ周波数でのスブリアスを除去するためのバンドパスフィルタで構成されている。バンドパスフィルタは誘電体共振器とコイル、コンデンサなどで構成されることが多い。

【0006】図8は一般的なアンテナ共用器の周波数特性を示す図である。図8において、曲線71は送信側、曲線72は受信側を表す。

【0007】

【発明が解決しようとする課題】従来のデュアルバンド対応アンテナ共用器では、シングルバンド用アンテナ共用器を2つ使用するため形状が大きくなるという問題があった。

【0008】また、受信信号の回り込みを防ぐために、阻止帯域での減衰量を大きくしたバンドエリミネーションフィルタを用いると挿入損失が大きくなり、所要の送信電力を確保しようとするとパワーアンプでの消費電力が大きくなるためバッテリーの寿命が短くなるという問題があった。

【0009】さらに、一般には、スイッチは電源の供給のON/OFFによって切り替えるために、両方のシステムを待ち受けする時にはあるタイミングで交互にスイッチングする必要があり、受信状態でも、電源を供給し続けてなければならないため、バッテリーの電力消費量が増加し待ち受け時間が短くなるという問題があった。

【0010】本発明は、これら問題点を省みてなされたものであり、その技術的課題は、アンテナ共用器の小型化、軽量化、低コスト化と待ち受け時間が長いデュアルバンド対応のアンテナ共用器を提供することにある。

【0011】

【課題を解決するための手段】本発明によれば、送信側フィルタと、受信側フィルタと、電子スイッチとを備えたアンテナ共用器であって、前記送信側フィルタは、第1の送信周波数に対応したローパスフィルタと第2の送信周波数に対応したローパスフィルタとを備え、これらのローパスフィルタの内の一方の端子が、RF信号をON/OFFさせる電子スイッチを介して並列接続され、前記受信側フィルタは第1の受信周波数に対応したバンドパスフィルタと第2の受信周波数に対応したバンドパスフィルタとを備え、これらのバンドパスフィルタのうち一方の端子が互いに並列接続され、前記送信側フィルタと前記受信側フィルタの各々の並列端子側が送受信切り替えのための電子スイッチを介してアンテナ端子と接続されていることを特徴とするアンテナ共用器が得られる。

【0012】また、本発明によれば、前記アンテナ共用器において、前記切り替え電子スイッチがPINダイオード及びMMIC(モノリシックマイクロ波集積回路)の内の少なくとも一種で構成され、外部電源を供給しな

い状態で前記アンテナ端子から前記受信フィルタ部に切り替わるように接続したことを特徴とするアンテナ共用器が得られる。

【0013】

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して説明する。

【0014】図1は本発明の第1の実施の形態によるアンテナ共用器を示す図である。図1のアンテナ共用器10は、GSMとDCSの2つのシステムに対応したデュアルバンド対応アンテナ共用器である。

【0015】GSMの送信フィルタであるローパスフィルタ1が、RF信号をON/OFFさせるための第1のスイッチ2の端子3に接続されている。また、DCSの送信フィルタであるローパスフィルタ4がRF信号をON/OFFさせるための第2のスイッチ5の端子6に接続されている。第1のスイッチ2の端子8と第2のスイッチ5の端子9とは、互いに並列接続され、送受信を切り替えるための第3のスイッチ11の端子12に接続されている。また、GSMの受信フィルタであるバンドパスフィルタ13とDCSの受信フィルタであるバンドパスフィルタ14の一方の端子15及び16は互いに並列に接続されて、第3のスイッチ11の端子17に接続されている。

【0016】また、第3のスイッチ11の端子18には、アンテナ21へ接続するためのアンテナ端子19が備えられている。GSMの送信時には第1のスイッチ2は端子3と端子8及び第3のスイッチ11の端子12と18がスルー状態になる。

【0017】第2のスイッチ5の端子6と端子9及び第3のスイッチ11の端子18と17は、オープン状態になるので、GSMの送信信号はDCS送信回路及びGSM、DCSの受信回路には回り込むことはない。特に、受信回路への回り込みがないため送信フィルタとしては2倍、3倍の高調波成分をカットするだけでよいので、ローパスフィルタで構成することができる。

【0018】このローパスフィルタは、通過帯域近傍の受信帯付近に阻止減衰量を形成しないので、バンドエリミネーションフィルタに比べて挿入損失が小さい。

【0019】従って、従来のデュアルバンド対応アンテナ共用器に比べ、送信フィルタの挿入損失を小さくすることができるため、送信電力の損失が少なく、バッテリーの寿命を伸ばすことができる。

【0020】また、このローパスフィルタは、コイル、コンデンサで構成されることが多く、バンドエリミネーションフィルタのように誘電体共振器を必要としないため、送信フィルタを従来よりもより小型で安価に作製することができる。

【0021】DCS送信時も同様に、第2のスイッチ5の端子6と端子9及び第3のスイッチ11の端子12と18がスルー状態になり、第1のスイッチ2の端子3と

端子8及び第3のスイッチ11の端子18と端子17はオープンとなる。

【0022】DCS送信フィルタが、バンドエリミネーションフィルタよりも挿入損失の小さいローパスフィルタで構成されているのは、GSMの送信フィルタで述べたと同様である。

【0023】GSM、DCS受信時は、第3のスイッチ11の端子18と端子17がスルーとなり、第1のスイッチ3の端子3と端子8及び第2のスイッチ5の端子6と端子9がオープンとなる。スイッチ回路はPINダイオードやMMICなどによって構成される。

【0024】図2は第2の実施の形態によるアンテナ共用器を示すブロック図である。第2の実施の形態によるアンテナ共用器は、第1の実施の形態によるアンテナ共用器のスイッチ素子に、PINダイオードを用いた場合の一例を示している。図2を参照すると、3つのPINダイオード31、32、33とλ/4位相器20、PINダイオードに電流を流すための制御端子34、35を備えている。尚、PINダイオード31の一端は接地されている。

【0025】例えば、GSM送信時の場合、制御端子34に3V/5mA程度の電圧・電流を供給すると、PINダイオード31の抵抗が減少し、図1で示す端子3と端子8がスルーとなる。また、PINダイオード33の抵抗も減少し、λ/4位相器20のインピーダンスがが上昇するので、端子12と端子18がスルー、端子18と17はオープンとなる。従って、RF信号は、GSM(TX)端子23からANT端子19へ流れれる。

【0026】図3(a)、(b)は、本発明によるデュアルバンド対応アンテナ共用器のGSM送信側通過周波数特性とアイソレーション特性を示す図である。

【0027】DCS送信時は、制御端子35から電圧/電流を供給すればRF信号は、TX(DCS)端子24からANT端子19に流れることは、GSM送信時で述べたと同様である。

【0028】図4(a)、(b)は、DCS送信側通過周波数特性とアイソレーション特性を示す図である。受信時の場合には、制御端子34、35に電圧/電流を供給する必要がない。その場合、PINダイオード31、32、33の抵抗は大きいので、第1のスイッチの端子3と端子8及び第2のスイッチの端子6と端子9はオープンとなる。また、PINダイオード33の抵抗も大きいので、λ/4位相器は、単に位相を回転するだけで第3のスイッチ11の端子18と端子17はスルーとなる。

【0029】図5は、GSMの受信側周波数特性を示す図である。GSM用バンドパスフィルタは、DCSの通過帯域である1800MHz付近では減衰域であるので、GSM受信信号のDCS受信回路への回り込みがない。

【0030】図6は、DCSの受信側周波数特性を示す図である。GSM用バンドパスフィルタと、同様に、DCS用バンドパスフィルタはGSM通過帯域である900MHz付近では減衰域であるので、DCS受信信号はGSM回路への回り込みはない。従ってANT端子19から入力されたGSM信号は、RX(GSM)端子26へ、DCS信号はRX(DCS)端子27へ流れること

になる。このようにPINダイオードと $\lambda/4$ 位相器20を組み合わせることによって、制御電圧／電流のON/OFFで切り替えスイッチを構成することができる。下記表1に論理表を示す。

【0031】

【表1】

	TX(GSM)-ANT	TX(DCS)-ANT	ANT-RX(GSM, DCS)
制御端子34	H	L	L
制御端子35	L	H	L

H: 3V/5mA, L: 0V/0mA

【0032】以上のべた本発明の実施の形態による構成では、GSMのDCS受信フィルタが並列接続されているので同時に2つのシステムを待ち受けすることが可能であり、電圧／電流を供給しなくともスルー状態になる側のスイッチ端子を受信フィルタ側に接続することで、待ち受け時でのスイッチによる消費電力はなくすことができるため、従来構成によるデュアルループレクサに比べて待ち受け時間を大幅に長くすることができる。

【0033】

【発明の効果】以上述べたことから明らかなように、本発明では、送信フィルタにローパスフィルタを、受信フィルタとして並列接続された2つのバンドパスフィルタをスイッチを介して接続されているので、従来構成に比べ送信フィルタの挿入損失が小さく、待ち受け時間が長く、小型、軽量で安価なアンテナ共用器が実現できる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態によるアンテナ共用器を示すブロック図である。

【図2】本発明の第2の実施の形態によるアンテナ共用器を示すブロック図である。

【図3】(a)は本発明のGSM送信側フィルタの通過周波数特性の一例を示す図である。(b)は本発明のGSM送信側フィルタのアイソレーション特性の一例を示す図である。

【図4】(a)は本発明のDCS送信側フィルタの通過周波数特性の一例を示す図である。(b)は本発明のDCS送信側フィルタのアイソレーション特性の一例を示す図である。

【図5】本発明のGSM受信側フィルタの通過周波数特性の一例を示す図である。

【図6】本発明のDCS受信側フィルタの通過周波数特

性の一例を示す図である。

【図7】従来のデュアルバンド対応アンテナ共用器の一構成例を示す図である。

【図8】従来のシングルバンド対応アンテナ共用器の周波数特性の一例を示す図である。

【符号の説明】

- 1, 4 ローパスフィルタ
- 2 第1のスイッチ
- 3, 6, 8, 9, 12, 15, 16, 17, 18 端子
- 5 第2のスイッチ
- 10 アンテナ共用器
- 11 第3のスイッチ
- 13, 14 バンドパスフィルタ
- 15, 16 端子
- 19 アンテナ(ANT)端子
- 21 アンテナ
- 23 TX(GSM)端子
- 24 TX(DCS)端子
- 26 RX(GSM)端子
- 27 RX(DCS)端子
- 31, 32, 33 PINダイオード
- 34, 35 制御端子
- 51 アンテナ共用器
- 52 アンテナ端子
- 53 アンテナ共用器
- 54 アンテナ端子
- 55 スイッチ
- 56, 57 端子
- 59, 61 送信端子
- 60, 62 受信端子

【図 1】

【図 2】

【図 3】

【図 5】

【図 6】

【図 7】

【図 8】

(19) Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 964 477 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
15.12.1999 Bulletin 1999/50(51) Int. Cl.⁶: H01Q 21/30, H01Q 5/00,
H01Q 1/52, H01Q 1/24

(21) Application number: 99111032.1

(22) Date of filing: 11.06.1999

(84) Designated Contracting States:
**AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE**
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 11.06.1998 JP 16332098

(71) Applicant: TOKIN CORPORATION
Sendai-shi Miyagi-ken 982 (JP)

(72) Inventors:

- Furuta, Atsushi,
Tokin Corporation
Sendai-shi, Miyagi (JP)

- Sasaki, Nobuhiro,
Tokin Corporation
Sendai-shi, Miyagi (JP)
- Yano, Takeshi,
Tokin Corporation
Sendai-shi, Miyagi (JP)

(74) Representative:
Prüfer, Lutz H., Dipl.-Phys. et al
PRÜFER & PARTNER GbR,
Patentanwälte,
Harthauser Strasse 25d
81545 München (DE)

(54) Antenna sharing device for dual frequency band

(57) An antenna sharing device for dual frequency band comprises first and second transmitter side filters (1, 4), first and second receiver side filters (13, 14) and first through third switches (2, 5, 11) for selectively connecting a common antenna with a selected one or two of the filters. When the transmission mode is selected by the third switch, the first and second transmitter side filters are possible to be selectively connected to the antenna through the first and second switches. When the reception mode is selected by the third switch, the first and second transmitter side filters are disconnected

from the antenna while the first and second receiver side filters are commonly connected to the antenna. In the device, a transmission signal from one of the first and second transmitter side filters is avoided from flowing to the first and second receiver side filters and to the other of the first and second transmitter side filters. The first and second transmitter side filters may be first and second low pass filters for passing a first and a second transmission frequency signals, respectively. The first through third switches may be of electronic switches.

FIG.3

Description**BACKGROUND OF THE INVENTION**

- 5 [0001] The present invention relates to an antenna sharing device for use of a common antenna by a transmitter and a receiver and, in particular, to such an antenna sharing device for dual frequency band.
- [0002] A radio communication device comprises a transmitter and receiver, a single antenna, and a duplexer or an antenna sharing device for enabling the transmitter and the receiver to commonly use the single antenna so as to communicate with another device in use of a frequency band.
- 10 [0003] The duplexer, typically, comprises a transmitter side filter having an input terminal connected to the transmitter and a receiver side filter having an output terminal connected to the receiver. The transmitter side filter and the receiver side filter have an output terminal and an input terminal, respectively, which are commonly connected to an antenna terminal. The transmitter side filter is required to have a low insertion loss and is made of a band elimination filter having a blocking attenuation in the range of the receiving frequency band and also attenuation for removing two and three
- 15 times harmonic frequency components of the transmitting frequency. The band elimination filter is implemented by use of dielectric resonator, inductance coil, and capacitor.
- [0004] The receiver side filter is also made of another band elimination filter which has a blocking attenuation in the range of the transmitting frequency band and also attenuation for removing spurious components at the local frequency and image frequency. This elimination filter is also implemented by use of dielectric resonator, inductance coil, and
- 20 capacitor.
- [0005] Recently, a mobile communication device has had two transmitter-receiver units for dual communication systems, for example, GSM (global system for mobile communication) and DCS (digital cellular system) using different frequency bands. In order to enable the two transmitter-receiver units to use a single antenna, the mobile communication device is provided with an antenna sharing device for dual frequency band which comprises two duplexers which are
- 25 connected to the two units respectively, and a switch such as an electronic switch for selecting one of the two duplexers to be connected to the single antenna.
- [0006] The conventional antenna sharing device for the dual frequency band has such a problem that the device is large in size because two single band antenna resonators are employed.
- [0007] Further, there is a problem that the band elimination filter is required to have an increased attenuation in the
- 30 blocking frequency band so as to prevent cross talk of the received signal, which results in increase of the insertion loss. This causes increase of the power consumption at a power amplifier so as to insure the necessary transmission power and results in a problem that the service life of a battery is shortened.
- [0008] The switch is generally driven by ON/OFF of a supply of an electric power thereto. During a standby time period for waiting signals in dual communication systems, it is necessary to change over the switch from one to the other of
- 35 the two duplexers alternately at predetermined intervals. Therefore, an electric power needs to be supplied continuously even a non-communication time period. Consequently, power consumption of the battery increases, so that the possible standby time is decreased.

SUMMARY OF THE INVENTION

- 40 [0009] Accordingly, an object of the present invention is to provide an antenna sharing device for dual frequency band which is small in size, light in weight, low in cost, and long in the standby time.
- [0010] To achieve the above object, the present invention provides an antenna sharing device for commonly using a single antenna by a first transmitter and receiver for a first communication system using a first frequency band and a
- 45 second transmitter and receiver for a second communication system using a second frequency band. The antenna sharing device comprises:

a first transmitter side filter to be connected to the first transmitter and having a first output terminal for passing a first transmission frequency signal from the first transmitter to the first output terminal;

50 a second transmitter side filter to be connected to the second transmitter and having a second output terminal for passing a second transmission frequency signal from the second transmitter to the second output terminal;

a first switch connected to the first output terminal of the first transmitter side filter for permitting the first transmission frequency signal on the first output terminal to flow to a transmission point when the first switch is turned on;

55 a second switch connected to the second output terminal of the second transmission side filter for permitting the second transmission frequency signal on the second output terminal to flow to the transmission point when the second switch is turned on;

a first receiver side filter to be connected to the first receiver and having a first input terminal connected to a reception point for receiving a reception signal, the first receiver side filter being for selecting a second reception fre-

quency signal from the reception signal received from the first input terminal to filter the first reception frequency signal to the first receiver;

a second receiver side filter to be connected to the second receiver and having a second input terminal connected to the reception point for receiving the reception signal, the second receiver side filter being for selecting a second reception frequency signal from the reception signal received from the second input terminal to filter the second reception frequency signal to the second receiver; and

10 a mode selector switch having a common connection point to be connected to the single antenna, the mode selection switch connecting the common connection point to the reception point when the mode selector switch is in a reception mode, the mode selector switch disconnecting the common connection point and the transmission point from the reception point but permitting signal transmission from the transmission point to the common connection point when the mode selection switch is in a transmission mode.

[0011] In the antenna sharing device, the mode selector switch may comprise a first and second fixed contacts connected to the transmission point and the reception point, respectively, and a wiper contact connected to the common connection point and to be selectively brought into contact with one of the first and second fixed contacts for selectively connecting the common connection point to the transmission point or the reception point.

[0012] In the antenna sharing device, the first and second transmitter side filters may be composed of first and second low pass filters, respectively.

[0013] In the antenna sharing device, the first and second receiver side filters may be composed of first and second band pass filters, respectively.

[0014] The first and second switches may be first and second electronic switches, respectively, and the transmission point is directly connected to the common connection point.

[0015] The mode selector switch may comprise a phase shifter connecting between the common connection point and the reception point, and a third electronic switch connecting between the reception point and the ground.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

30 Fig. 1 is a diagram showing an example of the structure of a conventional antenna sharing device for dual frequency band;

Fig. 2 is a diagram showing an example of a frequency characteristic of a duplexer used in the conventional antenna sharing device in Fig. 1;

35 Fig. 3 is a block diagram showing an antenna sharing device for dual frequency band according to a first embodiment of the present invention;

Fig. 4 is a block diagram showing an antenna sharing device for dual frequency band according to a second embodiment of the present invention;

Fig. 5A is a diagram showing an example of a passing frequency characteristic of a GSM transmitter side filter used in the first and second embodiments of the present invention;

40 Fig. 5B is a diagram showing an example of an isolation characteristic of the GSM transmitter side filter;

Fig. 6A is a diagram showing an example of a passing frequency characteristic of a DCS transmitter side filter used in the first and second embodiments of the present invention;

Fig. 6B is a diagram showing an example of an isolation characteristic of the DCS transmitter side filter;

45 Fig. 7 is a diagram showing an example of a passing frequency characteristic of a GSM receiver side filter used in the first and second embodiments of the present invention; and

Fig. 8 is a diagram showing an example of a passing frequency characteristic of a DCS receiver side filter used in the first and second embodiments of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

50 [0017] Prior to description of the preferred embodiments of the present invention, a conventional antenna sharing device for dual frequency band will be described with reference to Figs. 1 and 2 to make better understanding of the present invention.

[0018] Referring to Fig. 1, the known antenna sharing device shown therein comprises a first duplexer (DPX) 51 for a first communication system, for example, the GSM, a second duplexer 53 for a second communication system, for example, the DCS and a switch 55. The first and the second duplexers 51 and 53 have first and second antenna connecting terminals 52 and 54, respectively, which are connected to first and second fixed contacts 57a and 57b of the switch 55, respectively. The switch 55 has a wiper contact 57a which is selectively connected to one of the first and sec-

ond fixed contacts 57a and 57b and which is connected to an antenna terminal 58. In use of the first system, the wiper contact 56 is turned to the first fixed contact 57a, so that the switch 55 connects the antenna terminal 58 with the first antenna connecting terminal 52.

[0019] If the second system is used, the wiper contact 56 is tuned to the second fixed contact 57b, so that the switch 55 connects the antenna terminal 58 with the second antenna connecting terminal 54.

[0020] The first duplexer 51 comprises a transmitter side and a receiver side band-pass filter (BPF) commonly connected to the first antenna connecting terminal 52. The both band-pass filter have a transmitter side terminal 59 to be connected to the transmitter (TX) for the first system, and a receiver side terminal 60 to be connected to the receiver (RX) for the first system, respectively.

[0021] The second duplexer 53 comprises a transmitter side and a receiver side band-pass filter (BPF) commonly connected to the second antenna connecting terminal 54. The both band-pass filters have a transmitter side terminal 61 to be connected to the transmitter (TX) for the second system, and a receiver side terminal 62 to be connected to the receiver (RX) for the second system, respectively.

[0022] Fig. 2 shows a typical frequency characteristic of a known duplexer. Referring to Fig. 2, a curve 71 shows that at the transmitter side and a curve 72 shows that at the receiver side.

[0023] The switch 55 is usually composed of PIN diode, MMIC or the like which carries out the selecting operation by ON/OFF of supply of electric power of about 3 V/5 mA thereto. In order to receive signals of both of first and second systems, it is necessary to continue the selecting operation by the switch 55 at predetermined intervals.

[0024] The conventional antenna sharing device for dual frequency band has problems as described in the preamble.

[0025] Now, embodiments of the present invention will be described with reference to Figs. 3-8.

[0026] Referring to Fig. 3, an antenna sharing device 10 for dual frequency band according to a first embodiment of the present invention is shown as that for two systems of GSM and DCS.

[0027] The device shown therein comprises a low pass filter (LPF) 1 as a GSM transmitter side filter. The GSM transmitter side filter 1 has an output terminal 3 which is connected to a first switch 2. Another low pass filter 4 as a DCS transmitter side filter has an output terminal 6 which is connected to a second switch 5. The first switch 2 and the second switch 5 have terminals 8 and 9 which are commonly connected to a first fixed contact 12 of a third switch 11 for selecting one of a transmission mode and a reception mode. A band pass filter 13 as a GSM receiver side filter and another band pass filter 14 as a DCS receiver side filter have input terminals 15 and 16, respectively, which are commonly connected to a second fixed contact 17 of the third switch 11.

[0028] The third switch 11 further has a wiper contact 18 which is connected to antenna 21 through an antenna terminal 19. The wiper contact 18 is selectively connected to the first and the second fixed contacts 12 and 17 for selecting one of the transmission mode and the reception mode.

[0029] The GSM transmitter side filter 1 and the DCS transmitter side filter 4 have input terminals 23 and 24, respectively, which are connected to a GSM transmitter (GSM TX) and a DCS transmitter (DCS TX), respectively, both being not shown. While, the GSM receiver side filter 13 and the DCS receiver side filter 14 have output terminals 26 and 27, respectively, which are connected to a GSM receiver (GSM RX) and a DCS receiver (DCS RX), respectively, both being not shown.

[0030] During a transmission mode, the third switch 11 is operated so that the wiper contact 18 is connected to the first fixed contact 12. When a GSM RF signal from the GSM transmitter is intended to be transmitted, the first switch 2 is turned on. Thus, the GSM RF signal is transferred to antenna 21 through the GSM transmitter side filter 1, first switch 2, third switch 11 and antenna terminal 19 and is radiated from the antenna 21. Then, since the second switch 5 is turned off, the GSM RF signal is prevented from flowing to the DCS transmitter side filter 4. The GSM RF signal is also prevented from flowing to the GSM receiver side filter 13 and the DCS receiver side filter 14 because third switch 11 is operated to select the transmission mode.

[0031] When a DCS RF signal from the DCS transmitter is desired to be transmitted during the transmission mode, the first switch 2 is turned off and the second switch 5 is turned on. Then, the DCS RF signal is radiated from the antenna 21 but is prevented from flowing to the GSM transmitter side filter 1, the GSM receiver side filter 13, and the DCS receiver side filter 14.

[0032] Thus, in the antenna sharing device 10 for dual frequency band, no RF transmission signal enters into the receiver side circuits. Therefore, each of the transmitter side filters only has an attenuation property for cutting twice or three times harmonic components of the RF signal frequency, and can, therefore, be composed of a low pass filter.

[0033] The low pass filter does not have a blocking attenuation around a receiving frequency band in the vicinity of its passing band, and has, therefore, an insertion loss smaller than the band elimination filter. Therefore, the antenna sharing device for dual frequency band according to this embodiment is low in the transmission power loss in comparison with the conventional device comprising two duplexers using band eliminator filters, and is, therefore, superior to the conventional one in the service life of a battery used.

[0034] Further, the low pass filter can often be implemented by use of inductance coils and capacitors without use of dielectric resonator which is necessary in the band elimination filter. Therefore, the transmitter side filter using the low

pass filter is small in size and low in cost in comparison with that in the conventional duplexer.

[0035] During the reception mode, the third switch 11 is operated so that the wiper contact 18 is disconnected from the first fixed contact 12 and is connected to the second fixed contact 17. Therefore, the input terminals 15 and 16 of the GSM receiver side filter 13 and the DCS receiver side filter 14 are connected to the antenna 21 through the third switch 11. A reception signal received at the antenna 21 is applied to both of the GSM receiver side filter 13 and the DCS receiver side filter 14. When the reception signal is a signal for the GSM, the GSM receiver side filter 13 filters the reception signal which is applied to the GSM receiver through the terminal 26. On the other hand, the reception signal is a signal for the DCS, the DCS receiver side filter 14 filters the reception signal which is fed to the DCS receiver through the terminal 27.

5 [0036] A second embodiment of the present invention will be described with reference to Fig. 4.

[0037] The antenna sharing device for dual frequency band according to the second embodiment of the present invention is similar to that shown in Fig. 3 but use of a PIN diode for each of the switches and use of a phase shifter. The similar parts are represented by the same reference numerals in Fig. 3.

10 [0038] Referring to Fig. 4, first PIN diode 31 is connected between the output of the GSM transmitter filter 1 and the antenna terminal 19, and second PIN diode 32 is connected between the output of the DCS transmitter filter 4 and the antenna terminal 19. In order to feed electric currents or DC currents to the PIN diodes 31 and 32 to control turn on and off of the PIN diodes 31 and 32, control terminals 34 and 35 are connected to anode terminals of the PIN diodes 31 and 32, respectively. The phase shifter 20 is connected between an antenna terminal 19 and a common connection point of the input terminals of the GSM receiver side filter 13 and the DCS receiver side filter 14. A third PIN diode 33 is connected between the common connection point and the ground. The phase shifter 20 is for shifting a phase of the reception signal fed from the antenna 21 by $\lambda/4$, λ being a wavelength of the reception signal.

15 [0039] For transmission of GSM RF signal from the GSM transmitter, a control signal of a DC voltage/current of, for example, 3 V/5 mA is supplied to the control terminal 34, a resistance of the first PIN diode 31 is reduced, that is, the first PIN diode 31 is turned on. This makes a similar condition where the output terminal of the GSM transmitter side filter 1 is connected to the antenna terminal 19 through the first and the third switches 2 and 11 in Fig. 3. Then, the resistance of the third PIN diode 33 is also reduced so that the impedance of the $\lambda/4$ phase shifter 20 increases. This condition is similar to the transmission mode of the third switch 11 in Fig. 3 where the wiper contact 18 is disconnected from the second fixed contact 17 but is connected to the first fixed contact 12. Thus, the GSM RF signal from the GSM transmitter flows through terminal 23, GSM transmitter side filter 1, first PIN diode 31, and antenna terminal to the antenna 21, and is radiated from the antenna 21.

20 [0040] Referring to Figs. 5A and 5B, an example of the GSM transmitter side filter 1 has a passing frequency characteristic and an isolation frequency characteristic shown therein.

[0041] On the other hand, when a DCS RF signal from the DCS transmitter is intended to be transmitted, the control signal is applied through the control terminal 35 to the second PIN diode 32. Similarly, the second PIN diode 32 and the third PIN diode 33 are tuned on, and the phase shifter 20 has an increased impedance. Thus, the DCS RF signal flows from the DCS transmitter to the antenna 21 through terminal 24, DCS transmitter side filter 4, second PIN diode 32 and antenna terminal 19, and is radiated from the antenna 21.

25 [0042] Referring to Figs. 6A and 6B, an example of the DCS transmitter side filter 4 has a passing frequency characteristic and an isolation frequency characteristic as shown therein.

[0043] During the reception mode, it is not necessary to apply a DC voltage/current signal as the control signal to the control terminals 34 and 35. Then, the resistance of the PIN diodes 31, 32, and 33 is maintained large or tuned off. At this condition, the phase shifter 20 only shifts a phase of an input signal and permits the input signal to pass therethrough. This condition is corresponding to a condition in Fig. 3 where the first and the second switches 2 and 5 are tuned off, while the third switch 11 is operated to select the reception mode. Therefore, the reception signal fed from the antenna 21 is applied to the GSM receiver side filter 13 and the DCS receiver side filter 14.

30 [0044] Referring to Fig. 7, an example of the GSM receiver side filter 13 has a frequency characteristic shown therein. The GSM receiver side filter 13 is a band pass filter having a passing characteristic around 900 MHz which is the GSM frequency band and an attenuation around 1800 MHz which is the DCS frequency band.

[0045] Referring to Fig. 8, an example of the DCS receiver side filter 14 has a frequency characteristic shown therein. The DCS receiver side filter 13 is a band pass filter having a passing characteristic around 1800 MHz which is the DCS frequency band and an attenuation around 900 MHz which is the GSM frequency band.

35 [0046] Therefore, no GSM reception signal enters into the DCS receiver, and no DCS reception signal enters into the GSM receiver. While, the GSM signal is fed to the GSM receiver and DCS signal is fed to the DCS receiver.

[0047] As described above, the combination of PIN diodes 31, 32, and 33 and $\lambda/4$ phase shifter 20 can realize a selection of three modes, that is, a GSM transmission mode (TX(GSM)-ANT) where the GSM transmitter side filter 1 is connected to the antenna 21, a DCS transmission mode (TX(DCS)-ANT) where the DCS transmitter side filter 4 is connected to the antenna 21, and a reception mode (ANT-RX(GSM,DCS)) where the antenna 21 is connected to both of the GSM receiver side filter 13 and the DCS receiver side filter 14, by selecting a current/voltage applied to the control

terminals 34 and 35. The logic table is shown in the following TABLE 1.

TABLE 1

	TX(GSM)-ANT	TX(DCS)-ANT	ANT-RX(GSM,DCS)
control terminal 34	H	L	L
control terminal 35	L	H	L

H: 3V/5mA, L: 0V/0mA

[0048] In the embodiment of the present invention as described above, the GSM and DCS receiver side filters are connected to the antenna in parallel with each other. Therefore, it is easy to realize a standby condition for waiting reception of a signal of any one of two communication systems using different frequency bands. A switch element for selecting a reception mode is not necessary to be supplied with any voltage/current therefor, so that no power consumption is taken during the standby period. As a result, the battery life is considerably extended and the standby period can therefore be extended as compared to the conventional device using two duplexers.

Claims

1. An antenna sharing device for commonly using a single antenna by a first transmitter and receiver for a first communication system using a first frequency band and a second transmitter and receiver for a second communication system using a second frequency band, said device comprising:
 - a first transmitter side filter to be connected to said first transmitter and having a first output terminal for passing a first transmission frequency signal from said first transmitter to said first output terminal;
 - a second transmitter side filter to be connected to said second transmitter and having a second output terminal for passing a second transmission frequency signal from said second transmitter to said second output terminal;
 - a first switch connected to said first output terminal of said first transmitter side filter for permitting said first transmission frequency signal on said first output terminal to flow to a transmission point when said first switch is turned on;
 - a second switch connected to said second output terminal of said second transmission side filter for permitting said second transmission frequency signal on said second output terminal to flow to said transmission point when said second switch is turned on;
 - a first receiver side filter to be connected to said first receiver and having a first input terminal connected to a reception point for receiving a reception signal, said first receiver side filter being for selecting a second reception frequency signal from said reception signal received from said first input terminal to filter said first reception frequency signal to said first receiver;
 - a second receiver side filter to be connected to said second receiver and having a second input terminal connected to said reception point for receiving said reception signal, said second receiver side filter being for selecting a second reception frequency signal from said reception signal received from said second input terminal to filter said second reception frequency signal to said second receiver; and
 - a mode selector switch having a common connection point to be connected to said single antenna, said mode selection switch connecting said common connection point to said reception point when said mode selector switch is in a reception mode, said mode selector switch disconnecting said common connection point and said transmission point from said reception point but permitting signal transmission from said transmission point to said common connection point when said mode selection switch is in a transmission mode.
2. An antenna sharing device as claimed in claim 1, wherein said mode selector switch comprises a first and second fixed contacts connected to said transmission point and said reception point, respectively, and a wiper contact connected to said common connection point and to be selectively brought into contact with one of said first and second fixed contacts for selectively connecting said common connection point to said transmission point or said reception point.
3. An antenna sharing device as claimed in claim 1 wherein said first and second transmitter side filters are composed of first and second low pass filters, respectively.

EP 0 964 477 A1

4. An antenna sharing device as claimed in claim 3, wherein said first and second receiver side filters are composed of first and second band pass filters, respectively.

5. An antenna sharing device as claimed in claim 1 wherein said first and second switches are first and second electronic switches, respectively, said transmission point is directly connected to said common connection point.

6. An antenna sharing device as claimed in claim 5, wherein said mode selector switch comprises a phase shifter connecting between said common connection point and said reception point, and a third electronic switch connecting between said reception point and the ground.

10 7. An antenna sharing device as claimed in claim 5, wherein each of said first, second and third electronic switches is composed of at least one of PIN diode and MMIC so that each of said first, second and third electronic switches is turned on when a DC current/voltage is applied thereto.

15 8. An antenna sharing device as claimed in claim 1, wherein said first communication system is GSM and said second communication system is DCS.

9. An antenna sharing device as claimed in claim 1, wherein the first transmission and reception frequencies are in a range of 800-1500 MHz and the second transmission and reception frequencies are in a range of 1500-3000 MHz.

20 10. An antenna sharing device as claimed in claim 6, wherein said phase shifter is a $\lambda/4$ phase shifter, λ being a wavelength of said reception signal.

25

30

35

40

45

50

55

FIG.1 PRIOR ART

FIG.2 PRIOR ART

FIG.3

FIG.4

FIG.5A

FIG.5B

EP 0 964 477 A1

FIG.6A

FIG.6B

EP 0 964 477 A1

FIG.7

FIG.8

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 99 11 1032

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	EP 0 744 831 A (MATSUSHITA ELECTRIC INDUSTRIAL) 27 November 1996 (1996-11-27) * page 8, line 56 - page 13, line 23; figures 1-6 *	1-5,8,9	H01Q21/30 H01Q5/00 H01Q1/52 H01Q1/24
Y	EP 0 823 751 A (NOKIA MOBILE PHONES) 11 February 1998 (1998-02-11) * column 1, line 39 - column 2, line 35; figure 3 * * column 6, line 4 - column 7, line 21; figure 5 *	6,7,10	
A	EP 0 578 160 A (MATSUSHITA ELECTRIC INDUSTRIAL) 12 January 1994 (1994-01-12) * abstract; figures 1B,2C,4B-D *	7	
Y	EP 0 865 169 A (NOKIA MOBILE PHONES) 16 September 1998 (1998-09-16) * abstract; figure 1 *	1-6,8,9	
P,A		6,10	
		1	
TECHNICAL FIELDS SEARCHED (Int.Cl.6)			
H04B H01P H01Q H03H			
The present search report has been drawn up for all claims			
Place of search THE HAGUE	Date of completion of the search 5 October 1999	Examiner Angrabeit, F	
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 99 11 1032

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

05-10-1999

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 0744831	A	27-11-1996	JP	8316873 A	29-11-1996
			JP	8321738 A	03-12-1996
			JP	8330845 A	13-12-1996
			JP	9008627 A	10-01-1997
			US	5926466 A	20-07-1999
EP 823751	A	11-02-1998	US	5768691 A	16-06-1998
			CN	1183013 A	27-05-1998
			JP	10093473 A	10-04-1998
EP 578160	A	12-01-1994	DE	69307412 D	27-02-1997
			DE	69307412 T	12-06-1997
			JP	6077707 A	18-03-1994
			US	5442812 A	15-08-1995
EP 865169	A	16-09-1998	US	5898406 A	27-04-1999