Tarea 4

Jonathan Andrés Niño Cortés

29 de febrero de 2016

(1.) Sea \mathfrak{m} una medida exterior de Carathéodory sobre X. Si para todo $A\subseteq X$ existe $B\in M_{\mathfrak{m}}$ con $A\subseteq B$ y $\mathfrak{m}(A)=\mathfrak{m}(B)$ la medida exterior se llama regular. Muestre que si \mathfrak{m} es una medida de Carathéodory regular y $\mathfrak{m}(A)<\infty$, entonces $A\in M_{\mathfrak{m}}$ si y sólo si

$$\mathfrak{m}(A) + \mathfrak{m}(X|A) = \mathfrak{m}(X)$$

(ii.) Muestre que aunque se tenga $\mathfrak{m}(X) < \infty$ en general pueden existir conjuntos $A \subseteq X$ no medibles según Carathéodory tales que

$$\mathfrak{m}(A) + \mathfrak{m}(X | A) = \mathfrak{m}(X)$$

(Sugerencia: Existe un ejemplo con |X| = 3.)

- (2.) (i.) Denote por \mathbb{R}_d la recta real con la topología discreta. Muestre que el espacio $\mathbb{R}_d \times \mathbb{R}$ con la topología producto es localmente compacto.
 - (ii.) Para f definida sobre $\mathbb{R}_d \times \mathbb{R}$ y $x \in \mathbb{R}$ fijo, sea $f_{[x]}$ la función definida sobre \mathbb{R} por:

$$f_{[x]}(y) := f(x, y).$$

Muestre que si $f \in C_{00}(\mathbb{R}_d \times \mathbb{R})$ se tiene que $f_{[x]}$ es identicamente cero excepto que para un número finito de elementos $x \in \mathbb{R}$.

(iii.) Sea S la integral de Riemann y defina I sobre $C_{00}(\mathbb{R}_d \times \mathbb{R})$ por:

$$I(f):=\sum_{x\in\mathbb{R}}S(f_{|x|}).$$

Muestre que I es un funcional lineal positivo sobre $C_{00}(\mathbb{R}_d \times \mathbb{R})$.

- (iv.) Sea $\iota(A) := \overline{\overline{I}}(\chi_A)$, muestre que el conjunto $A = \{(x,0) : x \in \mathbb{R}\}$ es localmente ι -nulo, sin embargo no es ι -nulo.
- (3.) Sea $T \subseteq \mathbb{R}$ un conjunto λ -medible tal que $\lambda(T) > 0$. Muestre que T T contiene un intervalo. (Ejercicio 10.43 del libro de texto, viene con sugerencia.)