$$\frac{\text{Notes, 4(b)}}{\text{ECE 606}}$$

Single-source shortest paths

In a **shortest-paths problem**, we are given a weighted, directed graph G = (V, E), with weight function $w : E \to \mathbf{R}$ mapping edges to real-valued weights. The **weight** of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
.

We define the *shortest-path weight* from u to v by

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \overset{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v \text{ }, \\ \infty & \text{otherwise }. \end{cases}$$

A *shortest path* from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$.

The single-source shortest distances and paths problem:

- Inputs:
 - 1. Weighted directed or undirected graph, $G = \langle V, E, w \rangle$, and,
 - 2. A source-vertex, $s \in V$.
- Output:
 - Shortest-path weights from s to every $u \in V$.
 - * Auxiliary output: a shortest paths tree rooted at s.

"Optimal substructure" of shortest paths:

Claim 1. A subpath of a shortest path is a shortest path. That is, if $u \rightsquigarrow x \rightsquigarrow y \rightsquigarrow v$ is a shortest path from u to v, then the subpath $x \rightsquigarrow y$ is a shortest path from x to y.

Another example of "optimal substructure": a sub-array of a sorted array is itself sorted.

Another property:

Claim 2. If a graph has no negative edge-weight cycles that are reachable from the sourcevertex s, then for all $u \in V$ that are rechable from s, there is a shortest path $s \sim u$ that is simple.

All our single-source shortest paths algorithms maintain and finally output two things:

- For every $u \in V$, d[u], a shortest-distance estimate.
 - We initialize each d[u] to ∞ , and d[s] to 0.
 - We expect that when the algorithm halts, for every $u \in V$, $d[u] = \delta(s, u)$.
- For every $u \in V$, $\pi[u]$, the parent vertex in a shortest-paths tree.
 - When the algorithm halts, $\pi[u] = \text{NIL}$ if and only if: either (i) u = s, or, (ii) u is not reachable from s.

Two useful subroutines:

INITIALIZE-SINGLE-SOURCE (G, s) RELAX (u, v, w)1 **for** each vertex $v \in V[G]$ 1 **if** d[v] > d[u] + w(u, v)2 **do** $d[v] \leftarrow \infty$ 2 **then** $d[v] \leftarrow d[u] + w(u, v)$ 3 $\pi[v] \leftarrow \text{NIL}$ 3 $\pi[v] \leftarrow u$


```
\begin{array}{ll} \text{Bellman-Ford}(G,w,s) \\ 1 & \text{Initialize-Single-Source}(G,s) \\ 2 & \text{for } i \leftarrow 1 \text{ to } |V[G]|-1 \\ 3 & \text{do for each edge } (u,v) \in E[G] \\ 4 & \text{do Relax}(u,v,w) \end{array}
```


Order of relaxation happens to be, always: $\langle t, x \rangle, \langle t, y \rangle, \langle t, z \rangle, \langle x, t \rangle, \langle y, x \rangle, \langle y, z \rangle, \langle z, x \rangle, \langle z, s \rangle, \langle s, t \rangle, \langle s, y \rangle$.

Correctness from: (i) every shortest path has $\leq |V| - 1$ edges, (ii) it suffices that we Relax every edge in a shortest path to every vertex in order once, and, (iii) redundant calls to Relax do no harm.

Time-efficiency: $\Theta(|V||E|)$.

DAG-SHORTEST-PATHS (G, w, s)

- 1 topologically sort the vertices of G
- 2 Initialize-Single-Source (G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 **do for** each vertex $v \in Adj[u]$
- 5 **do** RELAX(u, v, w)

Time-efficiency: $\Theta(|V| + |E|)$.