### Errors, Chi, Power

Week 03 - Day 02

# A/B testing

#### Use blue links

VS.

Use green links

# P-value (5%) = P of accepting a false result as true

Why don't we use 1% or 0.0001%?

"We're 95% sure the drug works"

"We're 99.9999% sure the drug works"

With 0.0001%:

Less fake drugs (good)

Less discoveries (bad)

## TN, TP, FN, FP



|          | Positive          | Negative          |  |
|----------|-------------------|-------------------|--|
| Positive | True<br>Positive  | False<br>Negative |  |
| Negative | False<br>Positive | True<br>Negative  |  |

### Note:

a lot of variations of the previous table

# Type I errors Type II errors

|          | Positive                   | Negative                       |
|----------|----------------------------|--------------------------------|
| Positive | True Positive              | False<br>Negative<br>(type II) |
| Negative | False Positive<br>(type I) | True<br>Negative               |





# Alpha Beta Power

|  |          | Positive                              | Negative                                 |
|--|----------|---------------------------------------|------------------------------------------|
|  | Positive | True Positive                         | False<br>Negative<br>(type II)<br>(beta) |
|  | Negative | False Positive<br>(type I)<br>(alpha) | True<br>Negative                         |

|                     | Positive                                | Negative                                    |
|---------------------|-----------------------------------------|---------------------------------------------|
| <sub>Po</sub> Alpha | True Positive<br>E FP<br>(FP<br>(power) | False<br>+ Mellitive<br>(type II)<br>(beta) |
| Negative            | False Positive<br>(type I)<br>(alpha)   | True<br>Negative                            |

|                     | Positive                               | Negative                                 |
|---------------------|----------------------------------------|------------------------------------------|
| Positive            | True Positive                          | False<br>Negative<br>(type II)<br>(beta) |
| <sub>Neg</sub> Beta | Falsa Positiva<br>F N / (FN<br>(alpha) | + TP) Je<br>Negative                     |

|          | Positive                              | Negative                                 |
|----------|---------------------------------------|------------------------------------------|
| Positive | True Positive (1-beta) (power)        | False<br>Negative<br>(type II)<br>(beta) |
| Negative | False Positive<br>(type I)<br>(alpha) | True<br>Negative                         |



#### Pregnancy test - histogram for alpha globulin







alpha globulin





## Pregnancy test WS. I-test

#### Pregnancy test

T-test

Hypothesis testing

Apples:

mean(sample1) > mean(sample2)



# Chi-Squared (test of independence)

("goodness of fit" is another test!)

### Let's talk about apples (again (again (again (b)))



### I don't know the mean!

..but I know the categories.

Two samples:

|          | Red | Green | Yellow |
|----------|-----|-------|--------|
| Sample 1 | 10  | 20    | 10     |
| Sample 2 | 5   | 25    | 10     |

\_\_\_

### Do they come from

the same population?

#### What about now?

|          | Red  | Green | Yellow |
|----------|------|-------|--------|
| Sample 1 | 1000 | 2000  | 1000   |
| Sample 2 | 500  | 2500  | 1000   |

H0 = null hypothesis = no difference

H1 = alt. hypothesis = they're different

data = [[1000,2000,1000],

[500,2500,1000]]

scipy.stats.chi2\_contingency(data)

### Same approach as t-test!

- 1) Calculate a statistic
- 2) Plot your statistics against a distribution
- 3) Calculate the p-value (using critical value)

### Intuition

- 1) Calculate an imaginary (i.e. expected) equal distribution for g1 and g2
- 2) Check how much the real values are different from the imaginary ones

# Observed Expected (in case of same population) $\chi^2 = \sum_{i=1}^{cells} \frac{(O_i - E_i)^2}{E}$



### How to calculate the expected values?

(do it once then forget about it)

http://psc.dss.ucdavis.edu/sommerb/sommerdemo/stat\_inf/tutorials/chisqhand.htm

### Contingency table and Chi-squared test

(17 min video)

https://www.youtube.com/watch?v=hpWdDmgsIRE

# Power analysis Sample size calculation

Blue links vs. Green links

How many users should I test?

10 -> not enough

100,000 -> ok but the test will take forever

5 things to consider

- 1. Our desired type I error rate.
- 2. Our desired type II error rate (or, more commonly, power).
- 3. The expected size of the effect, or the mean difference between groups.
- 4. The expected standard deviation of measurement.
- 5. The sample size.

### Solutions:

Heuristic

Calculator

## Summary

- 1. a/b testing
- 2. TN, TP, FN, FP
- 3. Type I, Type II (interview question)
- 4. Alpha, power
- 5. Chi-squared
- 6. Sample size calculation