

Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur

Algoritmos y Complejidad

Trabajo Práctico 2 Notación Asintótica

Primer cuatrimestre de 2019

- 1. Dada una función f(n), definir formalmente los siguientes conjuntos: O(f(n)), $\Omega(f(n))$ y $\Theta(f(n))$. ¿Qué representa cada uno de estos conjuntos?.
- 2. ¿Qué dice la Regla del Límite? [BB96, Sección 3.2]
- 3. Enunciar y demostrar la Regla del Umbral (threshold rule) y la Regla del Máximo. [BB96, Sección 3.2]
- 4. Determinar cuáles de las siguientes afirmaciones son ciertas, justificando adecuadamente en cada caso.
 - $a) \ \frac{1}{2}n^2 3n \in \Theta(n^2)$
 - b) $n^3 \in O(n^2)$
 - c) $n^2 \in \Omega(n^3)$
 - $d) \ 2^n \in \Theta(2^{n+1})$
 - e) $n! \in O((n+1)!)$
 - f) para toda función $f:\mathbb{N}\to\mathbb{R}^{\geq 0},\, f(n)\in O(n)$ implica $[f(n)]^2\in O(n^2)$
 - $g)\,$ para toda función $f:\mathbb{N}\to\mathbb{R}^{\geq 0},\, f(n)\in O(n)$ implica $2^{f(n)}\in O(2^n)$
 - h) para toda función $f:\mathbb{N}\to\mathbb{R}^{\geq 0}$ y todo $k\in\mathbb{R}^{\geq 0},\,kf(n)\in O(f(n))$
 - i)para todo polinomio p(n) de grado $m,\,p(n)\in O(n^m)$
 - j) si $\alpha, \beta \in \mathbb{R}$ son tales que $\alpha < \beta$ entonces $n^{\alpha} \in O(n^{\beta})$
- 5. Dada la función $f_k(n)$ definida como

$$f_k(n) = 1^k + 2^k + \ldots + n^k$$

Demostrar que $f_k(n) \in \Theta(n^{k+1})$.

6. Demostrar que para cualquier par de funciones $g,h:\mathbb{N}\longrightarrow\mathbb{R}^{\geq 0}$ se verifica:

Si
$$g(n) \in O(h(n))$$
 entonces $O(g(n)) \subseteq O(h(n))$

- 7. Hallar dos funciones f(n) y g(n) tales que $f(n) \not\in O(g(n))$ y $g(n) \not\in O(f(n))$.
- 8. Probar las siguientes afirmaciones para todo $a,b\in\mathbb{R}^{>1}$:
 - $a) \log_a n \in \Theta(\log_b n)$
 - b) $2^{\log_a n} \notin \Theta(2^{\log_b n})$, si $a \neq b$.
- 9. Considere la siguiente función:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + 2 & \text{si } n \ge 2 \end{cases}$$

Demostrar que $T(n) \in O(n)$, para ello demostrar por inducción constructiva que existen constantes b y d tales que T(n) = bn + d.

Referencias

[BB96] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice Hall, 1996.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction To Algorithms*. The MIT Press, 3rd edition, 2009.