No disponible

PRIMER PARCIAL - PROBLEMAS - TEMA C

No disponible

PRIMER PARCIAL - PROBLEMAS - TEMA D

No disponible

PRIMER PARCIAL - PROBLEMAS - TEMA E

No disponible

PRIMER PARCIAL . PROBLEMAS - TEMA F

No disponible

PRIMER PARCIAL - PROBLEMAS - TEMA G

No disponible

PRIMER PARCIAL - PROBLEMAS - TEMA H

No disponible

<u>SEGUNDO PARCIAL - PROBLEMAS - TEMA A</u>

Corresponde a los legajos terminados en 0

Problema - TEMA A

Un dispositivo cilindro-émbolo contiene 0,75 kg de aire a 110 kPa y 27°C. El mismo contiene en su interior una resistence conectada a una fuente de 220V y se hace circular una corriente eléctrica durante 2,5 min. Asimismo, se produce un ing kJ. La temperatura final que alcanza el aire es 90°C y el volumen final es el doble del inicial. Determine:

- a) Caracterización del sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b) La expresión matemática de la transformación y el valor del exponente. (20p)
- c) El trabajo de expansión, en kJ. (15p)
- d) La variación de energía interna, en kJ. (15p)
- e) El trabajo eléctrico intercambiado, en kJ. (12p)
- f) La intensidad de corriente que circuló por la resistencia, en A. (12p)
- g) Represente gráficamente la transformación en un diagrama P-V, indicando el trabajo de expansión. (8p)
- h) Interprete los intercambios energéticos teniendo en cuenta el balance de energía. (8p)

Sitio para subir los pdf con problemas resueltos del Tema A

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

<u>SEGUNDO PARCIAL - PROBLEMAS - TEMA B</u>

Corresponde a los legajos terminados en 1

Problema - TEMA B

Una masa de 0,58 kg de aire a 130 kPa y 23°C está contenida en un dispositivo cilindro émbolo. Se produce un ingreso Además, por una resistencia eléctrica ubicada en su interior se hace circular una corriente eléctrica durante 3 min, con u potencial de 220V. La temperatura final que alcanza el aire es 95°C y el volumen final es el doble del inicial. Determine

- a) Caracterización del sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b) La expresión matemática de la transformación y el valor del exponente. (20p)
- c) El trabajo de expansión, en kJ. (15p)
- d) La variación de energía interna, en kJ. (15p)
- e) El trabajo eléctrico intercambiado, en kJ. (12p)
- f) La intensidad de corriente que circuló por la resistencia, en A. (12p)
- g) Represente gráficamente la transformación en un diagrama P-V, indicando el trabajo de expansión. (8p)
- h) Interprete los intercambios energéticos teniendo en cuenta el balance de energía. (8p)

Sitio para subir los pdf con problemas resueltos del Tema B

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

<u>SEGUNDO PARCIAL - PROBLEMAS - TEMA C</u>

Corresponde a los legajos terminados en 2

Problema TEMA C:

A una turbina ingresa refrigerante R 134a a 10bar, 70°C y 35 m/s, a través de una entrada de sección circular cuyo diám diámetro a la salida es de 13 cm, la presión 1 bar y temperatura 0°C. A la máquina ingresa, además, un calor de 64 kJ/h propiedades, determine:

- a. Caracterización del sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b. El flujo másico, en Kg/s. (20p)
- c. La velocidad del fluido a la salida, en m/s. (10p)
- d. La variación de energía cinética, en kJ/kg. (10p)
- e. La potencia desarrollada, en kW. (14p)
- f. Repita el cálculo de los ítems b) y e) considerando que el R134a se comporta como gas ideal. Calcule el error. (20p)
- g. Represente gráficamente la transformación en un diagrama P-v, indicando el trabajo. (8p)
- h. Interprete los intercambios energéticos teniendo en cuenta el balance de energía. (8p)

R-134a - Calores específicos

N-134a - Calores especificos			
T (°C)	c _v (KJ/kg °C)	്ല (KJ/kg °C)	
0	0,72028	0,81542	
10	0,73594	0,829	
20	0,75208	0,84352	
30	0,76844	0,85858	
40	0,78489	0,87396	
50	0,80135	0,88953	
60	0,81778	0,90521	
70	0,83414	0,92093	

Sitio para subir los pdf con problemas resueltos del Tema C

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

<u>SEGUNDO PARCIAL - PROBLEMAS - TEMA D</u>

Corresponde a los legajos terminados en 3 y 4

Problema - TEMA D

A un compresor ingresa refrigerante R 134^a, como vapor saturado, a 1bar a través de una sección circular de diámetro velocidad de 30 m/s. En la salida las condiciones son 16 bar y 70°C, a través de una sección circular de diámetro 8 cm. P pierde calor a razón de 55 kJ/h. Utilizando tabla de propiedades, determine:

- a. Caracterización del sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b. La temperatura de entrada en °C y el flujo másico, en Kg/s. (20p)
- c. La velocidad a la salida, en m/s. (10p)
- d. La variación de energía cinética, en kJ/kg. (10p)
- e. La potencia requerida, en kW. (14p)
- f. Repita el cálculo de los ítems b) y e) considerando que el R134a se comporta como gas ideal. Calcule el error. (20p)
- g. Represente gráficamente la transformación en un diagrama P-v, indicando el trabajo. (8p)
- h. Interprete los intercambios energéticos teniendo en cuenta el balance de energía. (8p)

R-134a - Calores específicos

T (°C)	c _v (KJ/kg °C)	Ç _R (KJ/kg °C)
0	0,72028	0,81542
10	0,73594	0,829
20	0,75208	0,84352
30	0,76844	0,85858
40	0,78489	0,87396
50	0,80135	0,88953
60	0,81778	0,90521
70	0,83414	0,92093

Sitio para subir los pdf con problemas resueltos del Tema D

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

SEGUNDO PARCIAL - PROBLEMAS - TEMA E

Corresponde a los legajos terminados en 5

Problema - TEMA E

Por una gran tubería circula vapor de agua a 4,5 MPa y 500°C. Un dispositivo cilindro-pistón está conectado a la tubería conducto que posee una válvula. Al inicio, la válvula está cerrada y el cilindro contiene 1,2 kg de vapor de agua con un La masa del émbolo es tal que mantiene una presión constante de 1 MPa. Luego, se abre la válvula y se deja entrar el vicilindro, hasta que su volumen aumenta al doble y su temperatura llega a 250°C, momento en el cual la válvula se cierra

- a) Caracterice el sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b) Determine la temperatura inicial (°C). (10p)

- c) Calcule la masa que ingresó al cilindro, en kg. (15p)
- d) Calcule el trabajo intercambiado en kJ (15p)
- e) Variación de energía del vapor contenido en el cilindro, en kJ (17p)
- f) Determine el calor intercambiado en kJ (17p)
- g) Interprete los intercambios energéticos considerando el balance de energía (8p)
- h) Represente gráficamente la transformación en un diagrama P-v (8p)

Sitio para subir los pdf con problemas resueltos del Tema E

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

SEGUNDO PARCIAL - PROBLEMAS - TEMA F

Corresponde a los legajos terminados en 6

Problema - TEMA F:

Un dispositivo cilindro-pistón contiene 3,1 kg de R134a con un volumen de 0,11 m³. La masa del émbolo es tal que mar constante de 400 kPa. El cilindro está conectado, mediante un conducto, con una línea de suministro que conduce refrigMPa y 70°C. El conducto posee una válvula que inicialmente está cerrada. Luego, se abre la válvula y se deja entrar el vacilindro, hasta que su volumen aumenta al triple y su temperatura llega a 30°C, momento en el cual la válvula se cierra.

- a) Caracterice el sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b) Determine la temperatura inicial (°C). (10p)
- c) Calcule la masa que ingresó al cilindro, en kg. (15p)
- d) Calcule el trabajo intercambiado en kJ (15p)
- e) Variación de energía del vapor contenido en el cilindro, en kJ (17p)
- f) Determine el calor intercambiado en kJ (17p)
- g) Interprete los intercambios energéticos considerando el balance de energía (8p)
- h) Represente gráficamente la transformación en un diagrama P-v (8p)

Sitio para subir los pdf con problemas resueltos del Tema F

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

SEGUNDO PARCIAL - PROBLEMAS - TEMA G

Corresponde a los legajos terminados en 7 y 8

Problema - TEMA G:

Un flujo de Hidrógeno de 10 kg/s entra al compresor con una velocidad de 2.5 m/s y una presión de 1.5 bar. El Hidróge a 2.8 bar de Presión y con un volumen específico de 0,5 m3/kg diferente al de entrada de 0.8 m3/kg. En la salida del columa velocidad de 1.8 m/s. Determine:

- a) Sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b) La expresión matemática de la transformación y el valor del exponente "n". (12p)
- c) La variación de energía cinética (kW). (8p)
- d) La variación de la entalpía (kW). (16p)
- e) El trabajo requerido para accionar el compresor (kW). (16p)
- f) El calor intercambiado (kJ/s). (10p)
- g) La relación entre las áreas transversales de los conductos de entrada y salida. (12p)
- h) Represente gráficamente la transformación en un diagrama P-v, indicando el trabajo. (8p)
- i) Interprete los intercambios energéticos teniendo en cuenta el balance de energía. (8p)

Sitio para subir los pdf con problemas resueltos del Tema G

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

<u>SEGUNDO PARCIAL - PROBLEMAS - TEMA H</u>

1

Problema TEMA H:

Se utiliza un compresor para incrementar la Presión de 1 bar a 6.5 bar de un caudal de aire de 0.8 kg/s. El aire ingresa a una velocidad de 4 m/s y un volumen específico de 0,861 m3/kg. En la salida del compresor el aire tiene una velocidad su volumen específico de 0,20 m3/kg. Determine:

- a) Sistema, límites y transformación, realizando el croquis correspondiente. (10p)
- b) La expresión matemática de la transformación y el valor del exponente "n". (12p)
- c) La variación de energía cinética (kW). (8p)
- d) La variación de la entalpía (kW). (16p)
- e) El trabajo requerido para accionar el compresor (kW). (16p)
- f) El calor intercambiado (kJ/s). (10p)
- g) La relación entre las áreas transversales de los conductos de entrada y salida. (12p)
- h) Represente gráficamente la transformación en un diagrama P-v, indicando el trabajo. (8p)
- i) Interprete los intercambios energéticos teniendo en cuenta el balance de energía. (8p)

Sitio para subir los pdf con problemas resueltos del Tema H

Escribir en letra legible y visible.

En la primera hoja consignar Apellido y nombre ; Legajo y Carrera

Numerar las hojas- Firmar al final

Nombrar el archivo con Apellido-Nombre-2Parcial. Ej: Perez-Pedro-2Parcial-pdf

EVALUACIÓN GLOBAL 2020

No disponible

Bibliografía Ampliatoria

APUNTES ING. LISANDRO CALDERÓN

Comisiones y grupos

Curso Finalizado

1