CSIT 5500 Advanced Algorithms 2020 Spring Semester

Written Assignment 2 solution

1. (10 points)

q	0	1	2	3	4	5	6	7	8	9	10	11	12
P[q]	c	g	t	a	c	g	t	t	c	g	t	a	С
next(q)	-1	-1	-1	-1	0	1	2	-1	0	1	2	3	4

Stage 0:

2. (10 points)								
	i	Ordered pairs	Substring	Rank				
	8	nil	\$	0				
	7	nil	e	1				
	1	nil	i	2				
Stage 0:	3	nil	i	2				
Stage 0.	5	nil	i	2				
	0	nil	m	5				
	4	nil	m	5				
	2	nil	n	7				
	6	nil	Z	8				

Ordered pairs | Substring | Rank

Stage 1:

8	(0, 0)	\$\$	0
7	(1, 0)	e\$	1
3	(2, 5)	im	2 3
1	(2, 7)	$_{ m in}$	3
5	(2, 8)	iz	4 5
0	(5, 2)	$_{ m mi}$	5
4	(5, 2)	$_{ m mi}$	5
2	(7, 2)	ni	7
6	(8, 1)	ze	8

Stage 2:

i	Ordered pairs	Substring	Rank
8	(0, 0)	\$\$\$\$	0
7	(1, 0)	e\$\$\$	1
3	(2, 4)	imiz	2
1	(3, 2)	$_{ m inim}$	3
5	(4, 1)	ize\$	4
0	(5, 7)	mini	5
4	(5, 8)	mize	6
2	(7, 5)	$_{ m nimi}$	7
6	(8, 0)	ze\$\$	8

	i	Ordered pairs	Substring	Rank
	8	(0, 0)	\$\$\$\$\$\$\$\$	0
	7	(1, 0)	e\$\$\$\$\$\$\$	1
	3	(2, 1)	imize\$\$	2
Stage 3:	1	(3, 4)	inimize\$	3
Stage 3.	5	(4, 0)	ize\$\$\$\$\$	4
	0	(5, 6)	minimize	5
	4	(6, 0)	mize\$\$\$	6
	2	(7, 8)	nimize \$\$	7
	6	(8, 0)	ze\$\$\$\$\$\$	8

3. (10 points) For $0 \le i \le n$, let V[i] denote the truth value whether the first i characters of s can be reconstituted as a sequence of valid words.

Base case: V[0] = True.

Recursive case: $V[i] = OR_{j=0}^{i-1}(V[j] \text{ AND } dict(s[j+1,i]))$

We compute V[j] in increasing order of j. The solution is V[n].

There are O(n) subproblems. Each subproblem can be solved in O(n) time. So, the running time is $O(n^2)$.

The recurrence relation is to find a suffix w of s[1,i] such that w is a word in the dictionary and s[1,i-|w|] can be reconstituted as a sequence of valid words. Base on the optimal substructure, V[i-|w|] is computed correctly. So, V[i] represents whether the first i characters of s can be reconstituted as a sequence of valid words, and thus V[n] is the desired answer.