Athena AIML NLP Tools

Release main

Athena AIML Contributors

CONTENTS

1	filters.string_filter		
	1.1 Overview	1	
2	Retrieval Augmented Generation (RAG)	5	
3	Indices and tables	7	
Рy	ython Module Index	9	
In	dex	11	

FILTERS.STRING FILTER

1.1 Overview

Defines the StringFilter class which is used to filter Mattermost messages

This is a conceptual class representation of a simple BLE device (GATT Server). It is essentially an extended combination of the bluepy.btle.Peripheral and bluepy.btle.ScanEntry classes

Parameters

- **client** (class: simpleble. SimpleBleClient) A handle to the simpleble. SimpleBleClient client object that detected the device
- addr (str, optional) Device MAC address, defaults to None
- addrType (str, optional) Device address type one of ADDR_TYPE_PUBLIC or ADDR_TYPE_RANDOM, defaults to ADDR_TYPE_PUBLIC
- **iface** (*int*, *optional*) Bluetooth interface number (0 = /dev/hci0) used for the connection, defaults to 0
- data (list, optional) A list of tuples (adtype, description, value) containing the AD type code, human-readable description and value for all available advertising data items, defaults to None
- rssi (int, optional) Received Signal Strength Indication for the last received broadcast from the device. This is an integer value measured in dB, where 0 dB is the maximum (theoretical) signal strength, and more negative numbers indicate a weaker signal, defaults to 0
- **connectable** (*bool*, *optional*) *True* if the device supports connections, and *False* otherwise (typically used for advertising 'beacons')., defaults to *False*
- **updateCount** (*int*, *optional*) Integer count of the number of advertising packets received from the device so far, defaults to 0

acronym_mapping: Dict[str, str] = {}

Mapping of acronyms to their meanings from provided CSV

applier: PandasLFApplier

Applies functions to Pandas DataFrame

class_likelihood = 0.6

Threshold for class probabilities

drain_config: TemplateMinerConfig

Configuration dictionary from drain3.ini file in cur dir

drain_config_path: Path

Path to drain3.ini file as pathlib.Path object

evaluate($test_data$: $DataFrame \mid array$, $test_labels$: Series, $classifier_id$: str = 'rf') \rightarrow None Return a list of random ingredients as strings.

Parameters

kind (list[str] or None) – Optional "kind" of ingredients.

Raises

lumache.InvalidKindError – If the kind is invalid.

Returns

The ingredients list.

Return type

list[str]

filter result

Enumeration of categories for each message

alias of FilterResult

```
fix_text(in \ text: str) \rightarrow str
```

fractional_max_pool2d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)

Applies 2D fractional max pooling over an input signal composed of several input planes.

Fractional MaxPooling is described in detail in the paper Fractional MaxPooling by Ben Graham

The max-pooling operation is applied in $kH \times kW$ regions by a stochastic step size determined by the target output size. The number of output features is equal to the number of input planes.

Parameters

- **kernel_size** the size of the window to take a max over. Can be a single number k (for a square kernel of $k \times k$) or a tuple (kH, kW)
- output_size the target output size of the image of the form $oH \times oW$. Can be a tuple (oH, oW) or a single number oH for a square image $oH \times oH$
- **output_ratio** If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1)
- **return_indices** if True, will return the indices along with the outputs. Useful to pass to max_unpool2d().

Examples::

```
>>> input = torch.randn(20, 16, 50, 32)
>>> # pool of square window of size=3, and target output size 13x12
>>> F.fractional_max_pool2d(input, 3, output_size=(13, 12))
>>> # pool of square window and target output size being half of input_
image size
>>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5))
```

```
keyword_register: List[str] = []
     Iterable of keywords to strain
label model: LabelModel
     Ensemble of labeling models
latency_trace(test data: DataFrame | array) \rightarrow None
     Evaluate the inferencing speed of the classifiers
load_models(model dir: Path) \rightarrow None
     Restore models from a directory
max_str_len: int = None
     Maximum length of a message
min_str_len: int = None
     Minimum length of a message
mlp = MLPClassifier(alpha=1, max_iter=1000)
     Simple MLP classifier for ensemble of weak learners
msg_len_cutoff = 7
     Number of characters in a message to define a short mesasge
predict(in_data: DataFrame) → ndarray
     Predict the labels for a supplied Pandas data frame
print_weak_learner_info(l train)
     Prints the weak learners collisions, etc.
register_keywords(keywords: List[str], make\_lowercase: bool = True) \rightarrow None
     Register new keywords to be used in the labeling functions
register_new_labeling_fn(fns: List[LabelingFunction])
     Register any new labeling functions
replace_acronyms(in\_text: str) \rightarrow str
     Replace acronyms with their meaningful names
rf = RandomForestClassifier()
     Random forest classifier for ensemble of weak learners
salutations = ['hello', 'hola', 'aloha', 'mornin', 'ello govna', 'good morning',
'good evening', 'good night', 'good <:*:>', 'hey <:*:>', 'hi <:*:>', 'haha <:*:>']
     List of salutations to filter
save_models(save\ path\ stub:\ Path) \rightarrow None
     Save trained models to directory with a random uuid to prevent collisions
save\_template\_miner\_cluster\_information() \rightarrow None
     Save template miner clusters to a JSON for analysis
set_string_len_bounds(lower bound: int, upper bound: int) → None
     Set the lower and upper bounds for the string length labeling function
stage_one_test_data: DataFrame
     Data used to test stage one
```

1.1. Overview 3

```
stage_one_train(in_data: DataFrame, train_config: Dict)
     Train the MLP and RF on the reserved stage one training data
stage_one_train_data: DataFrame
     Data used to train stage one
stage_two_test_data: DataFrame
     Data used to test stage two
stage_two_train(in_data: DataFrame, train_config: Dict)
     Train the ensemble on the reserved stage two training data
stage_two_train_data: DataFrame
     Data used to train stage two
template_miner: TemplateMiner
     Drain3 template miner to convert log messages to cluster templates
static template_miner_transform(in\_row: Series, tm: TemplateMiner) \rightarrow None
     Helper function to transform messages into their cluster templates
trace_mode: bool = False
     Toggle tracing mode
trace_stack: Dict = {}
     Retain performance metrics for each classifier
train(in_data: DataFrame, train_conf: Dict, serialize=False)
     Trains both the first and second stages
train\_template\_miner(in\_data: DataFrame) \rightarrow None
     Train the drain3 template miner first on all available data
transform(in_data: array, pred_fun: MLPClassifier | SVC | RandomForestClassifier) → array
     Generic prediction function that calls the predict method of the supplied callable
update_applier()
     Update applier with new lists
vectorize_text(ds: Series) \rightarrow array
     Helper function to vectorize the messages in a pandas Series
vectorizer = CountVectorizer()
     Coverts messages to a sparse matrix of token counts
verbose: bool
```

Whether to print diagnostic information to stdout

CHAPTER	
TWO	

RETRIEVAL AUGMENTED GENERATION (RAG)

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
f
filters.string_filter,1
```

10 Python Module Index

INDEX

A	min_str_len (filters.string_filter.StringFilter attribute),
acronym_mapping (filters.string_filter.StringFilter attribute), 1 applier (filters.string_filter.StringFilter attribute), 1 C class_likelihood (filters.string_filter.StringFilter at-	mlp (filters.string_filter.StringFilter attribute), 3 module filters.string_filter, 1 msg_len_cutoff (filters.string_filter.StringFilter attribute), 3
tribute), 1	P
D drain_config (filters.string_filter.StringFilter attribute), 2	<pre>predict() (filters.string_filter.StringFilter method), 3 print_weak_learner_info() (fil-</pre>
drain_config_path (filters.string_filter.StringFilter at- tribute), 2	R
E	<pre>register_keywords() (filters.string_filter.StringFilter method), 3</pre>
evaluate() (filters.string_filter.StringFilter method), 2	register_new_labeling_fn() (fil- ters.string_filter.StringFilter method), 3
F	replace_acronyms() (filters.string_filter.StringFilter
filter_result (filters.string_filter.StringFilter at- tribute), 2	method), 3 rf (filters.string_filter.StringFilter attribute), 3
filters.string_filter module,1	S salutations (filters.string_filter.StringFilter attribute),
<pre>fix_text() (filters.string_filter.StringFilter method), 2</pre>	3
K	<pre>save_models() (filters.string_filter.StringFilter method), 3</pre>
keyword_register (filters.string_filter.StringFilter at- tribute), 3	<pre>save_template_miner_cluster_information()</pre>
L	set_string_len_bounds() (fil- ters.string_filter.StringFilter method), 3
<pre>label_model (filters.string_filter.StringFilter attribute), 3</pre>	stage_one_test_data (filters.string_filter.StringFilter attribute), 3
<pre>latency_trace()</pre>	<pre>stage_one_train() (filters.string_filter.StringFilter</pre>
<pre>load_models()</pre>	stage_one_train_data (fil- ters.string_filter.StringFilter attribute), 4
M	<pre>stage_two_test_data (filters.string_filter.StringFilter</pre>
<pre>max_str_len (filters.string_filter.StringFilter attribute), 3</pre>	<pre>stage_two_train()</pre>

```
stage_two_train_data
                                                      (fil-
          ters.string\_filter.StringFilter\ attribute),\ 4
StringFilter (class in filters.string_filter), 1
template_miner (filters.string_filter.StringFilter at-
          tribute), 4
template_miner_transform()
                                                      (fil-
          ters.string_filter.StringFilter static method),
trace_mode (filters.string_filter.StringFilter attribute), 4
trace_stack (filters.string_filter.StringFilter attribute),
train() (filters.string_filter.StringFilter method), 4
train_template_miner()
                                                      (fil-
          ters.string\_filter.StringFilter\ method), 4
transform() (filters.string_filter.StringFilter method), 4
U
update_applier()
                          (filters.string_filter.StringFilter
          method), 4
V
vectorize_text()
                          (filters.string_filter.StringFilter
          method), 4
vectorizer (filters.string_filter.StringFilter attribute), 4
verbose (filters.string_filter.StringFilter attribute), 4
```

12 Index