RINFORZO ANTISISMICO DI STRUTTURE IN CEMENTO ARMATO

INCAMICIATURA DI PILASTRI E NODI

LA TECNICA DEL JACKETING PER IL RINFORZO ANTISISMICO DEL C.A.

I recenti eventi sismici hanno evidenziato ancora una volta sistematici difetti costruttivi delle strutture a telaio in calcestruzzo armato realizzate nel secolo scorso; gli edifici danneggiati presentano generalmente lesioni e meccanismi di crisi molto simili tra loro

Gli elementi di vulnerabilità riscontrati sono dovuti non tanto alle prescrizioni normative del passato (meno chiare di quelle attuali) o alla qualità dei materiali impiegati, quanto piuttosto alla scarsa cura dei dettagli costruttivi.

IL JACKETING: VANTAGGI STATICI ED ECONOMICI

L'incamiciatura dei pilastri e dei nodi pilastro-trave, il cosiddetto "jacketing", è una efficace tecnica di rinforzo ottenuta mediante il ringrosso della sezione originaria con una camicia di calcestruzzo armato.

Tale tecnica viene già applicata da tempo ed è supportata da chiari riferimenti normativi (Norme Tecniche Italiane ed Eurocodice 8). Con le opportune attenzioni ai dettagli si ottengono contemporaneamente una serie di benefici per la correzione dei difetti costruttivi tipici del passato, come l'aumento della rigidezza, l'incremento delle resistenze a flessione e a taglio, l'accrescimento della duttilità, contribuendo a raggiungere agevolmente l'adeguamento sismico nella maggioranza dei casi della pratica professionale.

Rispetto ad altre soluzioni più complesse il jacketing presenta anche il vantaggio che

il progettista non si trova costretto ad adottare procedure di calcolo laboriose in quanto i principi di base sono i medesimi di una comune struttura nuova in c.a. Inoltre le maestranze operano con prodotti e metodi di installazione di uso comune.

IL CRITERIO PROGETTUALE DEL CAPACITY DESIGN

Le norme tecniche italiane hanno recepito il criterio progettuale del "capacity design" (gerarchia delle resistenze), in base al quale si progettano le strutture prevedendo prima il cedimento delle travi, che non provoca necessariamente il collasso globale, seguito da quello dei pilastri, la cui rottura può implicare, al contrario, il crollo dell'intero manufatto.

La tecnica dell'incamiciatura in c.a. permette di soddisfare questo fondamentale principio dell'ingegneria antisismica anche nel recupero delle strutture esistenti, perchè consente di ottenere facilmente il comportamento "trave debole-pilastro forte".

LE GIUNZIONI TECNARIA GTS

Le esperienze del passato hanno dimostrato che le criticità più frequenti riscontrate negli edifici in c.a. sono connesse alla **errata chiusura delle staffe**, realizzata per semplice sovrapposizione con piega a 90° ed all'**assenza di staffe nei pilastri** in corrispondenza del tratto di intersezione con le travi.

La tecnica dell'incamiciatura in c.a. è ideale per risolvere tali carenze, a condizione che siano curati al meglio i dettagli costruttivi, assicurando una perfetta funzionalità delle staffe aggiuntive.

Tecnaria ha sviluppato le speciali giunzioni GTS a serraggio meccanico aventi la peculiarità di poter realizzare la continuità delle staffe in caso di incamiciatura di nodi e pilastri.

Le dimensioni molto contenute del manicotto e degli speciali strumenti di posa permettono di realizzare camicie di cemento armato di spessore contenuto entro 6/7 cm.

La scelta di una giunzione meccanica è obbligatoria nelle zone di cerniera plastica, in quanto le normative non permettono di ricorrere alla saldatura in testa e al piede del pilastro al fine di evitare rotture di tipo fragile.

Le staffe chiuse meccanicamente con le giunzioni TECNARIA GTS rappresentano la "cintura di sicurezza" degli edifici in c.a.

Giunzione GTS

In analogia a quanto avviene per le nuove strutture nelle quali le staffe devono essere ripiegate a 135° e non a 90° come in passato, allo stesso modo nella tecnica della incamiciatura in c.a. è necessario realizzare la continuità delle staffe aggiuntive mediante una giunzione meccanica.

IL RINFORZO DEL PILASTRO E DEL NODO TRAVE-PILASTRO

Struttura esistente: lavorazioni

È importante eseguire una diagnosi per verificare lo stato di fatto.

In caso di calcestruzzo degradato è opportuno scalpellare lo strato esterno fino alla zona interna resistente, mettere a nudo le barre ossidate, spazzolarle e passivarle.

Barre verticali

Le nuove armature verticali dovranno preferibilmente essere continue in corrispondenza ai piani di solaio e sovrapposte in mezzeria alle colonne. Sarà necessario eseguire fori passanti attraverso i solai.

Staffe per pilastri

Le staffe dovranno contenere le nuove barre verticali, con infittimento nelle zone del piede e della sommità del pilastro, ad interasse di circa 15 -20 cm.

Per contenere gli spessori non intersecare le barre longitudinali con i manicotti. Solo nelle zone centrali del pilastro è possibile chiudere le staffe con saldatura. Sono generalmente sufficienti staffe di diametro 8 mm o 10 mm.

PILASTRO

Connettori MINICEM-E

È necessario assicurare una collaborazione tra le due porzioni di calcestruzzo utilizzando il connettore **MINI CEM-E**.

In generale sono sufficienti 4 ÷ 5 elementi per lato.

Cassero

Il cassero dovrà lasciar libera una intercapedine di 6/7 cm circa e dovrà essere realizzato in modo che il betoncino sia colato da piano superiore attraverso fori passanti il solaio.

Giunzioni GTS

La chiusura meccanica delle staffe mediante i manicotti GTS avviene grazie all'azione di chiodi inseriti forzatamente.

Il controllo del corretto fissaggio è eseguito semplicemente a vista, verificando la penetrazione dei chiodi e osservando il corretto posizionamento delle barre nel foro di ispezione.

Betoncino per camicia

Si utilizzano normalmente malte strutturali colabili di classe minima C28/35 con spessore non inferiore a 5 cm. Prima di eseguire il getto bagnare il calcestruzzo esistente.

Staffe per nodi trave-pilastro

In tutte le situazioni in cui la staffa non può avvolgere in modo continuo il pilastro, si dovranno realizzare dei fori inclinati nel pilastro ed al loro interno inserire le staffe fissate con resine bicomponenti Tecnaria. Le estremità delle staffe saranno successivamente chiuse con i manicotti.

Pinza idraulica

Per fissare il manicotto alle staffe si utilizza l'apposita attrezzatura che Tecnaria offre anche a noleggio in varie soluzioni.

Barre al piede

Le barre verticali andranno inghisate alle fondazioni con le resine bicomponenti Tecnaria Tecnaria, in appositi fori creati al piede del pilastro.

GIUNZIONE GTS per barre ad aderenza migliorata Ø 8 - Ø 10 - Ø 12 mm

Il dispositivo messo a punto da Tecnaria consiste in un manicotto di sezione quadrata, dotato di un foro centrale filettato che alloggia le estremità delle barre da unire, con fori atti al passaggio di altrettanti chiodi in acciaio ad alta resistenza infissi grazie a speciali pinze idrauliche che comprimono lateralmente le barre stesse.

Per una ottimale distribuzione delle sollecitazioni meccaniche i chiodi sono disposti in modo tale da generare nella barra una compressione laterale gradatamente crescente verso la parte centrale.

Il manicotto è dotato di un foro di centraggio per verificare l'esatta posizione delle barre.

Codice prodotto	per barre	sezione	lunghezza	foro centrale	numero spine
GTS 08 C20	Ø 8 mm	20x20 mm	90 mm	M12	6
GTS 10 C25	Ø 10 mm	25x25 mm	100 mm	M14	6
GTS 12 C25	Ø 12 mm	25x25 mm	130 mm	M16	8

Voce di capitolato: Giunzione assiale per barre GTS in acciaio C45 zincato elettroliticamente, di sezione quadrata, con foro centrale filettato, per l'unione meccanica di barre d'armatura di diametro 8, 10 e 12 mm, mediante chiodi di diametro 5 mm in acciaio zincato ad alta resistenza inseriti nei relativi fori per mezzo di speciali pinze idrauliche.

Ogni manicotto riporta il marchio Tecnaria, il lotto di produzione e il diametro della barra da giuntare.

Per le giunzioni meccaniche la normativa richiede di soddisfare i requisiti contenuti nella **norma UNI 11240-1:2018** e le Giunzioni GTS rispettano tale normativa, grazie al certificato dall'ente terzo IGQ - Istituto Italiano di Garanzia delle Qualità.

Ai fini della certificazione CE Tecnaria ha conseguito la redazione dell'apposito EAD nel marzo 2019 da parte di ITC-CNR. EAD DP 160124-00-0301 "Non-screwable sleeve for mechanical splices by lateral compression of reinforcing bars".

ACCESSORI DI POSA

Per fissare in opera i manicotti Tecnaria si devono utilizzare speciali attrezzature idrauliche, fornite anche a noleggio.

Pinza Idraulica cod. AMT-P10T

Pistone idraulico montato su una pinza con maniglia ergonomica per la compressione verticale delle spine, corsa 26 mm.

Peso 4 Kg. Potenza 10 ton. Pressione erogata max 700 bar.

Pompa idraulica 220 V cod. AMT - PUD 1100E

Pompa idraulica alimentata a corrente 220 V. Leggera e compatta.

Peso 11,8 kg Alimentazione 220 V Potenza motore 37W Pressione erogata max 700 bar

Pompa ad aria compressa cod. AMT-PATG1102N

Pompa pneumoidraulica turbo a pedale da alimentare con aria compressa. Consumo d'aria a 5,2 bar di 340 l/min.

Peso 8,2 kg Campo pressione aria 2,8 - 8,8 bar Pressione erogata max 700 bar

Pompa idraulica a pedale cod. AMT - P392FP

Pompa idraulica a pedale ideale per piccole applicazioni.

Peso 8,5 kg Pressione max 700 bar