

Katholieke Universiteit Leuven

Department of Computer Science

PROJECT APLAI

 $\begin{array}{c} {\rm Report} \\ {\rm Advanced\ Programming\ Languages\ for\ AI\ (H02A8A)} \end{array}$

Bavo Goosens (r0297884) Sander Geijsen (r0304675)

Academic year 2014–2015

${\bf Abstract}$

The goal of this project was to learn AI constraint programming languages and to compare them on a few example problems. As such the assignment was to develop and discuss two problems(Sudoku and Battleship Solitaire) in ECLiPSe CLP and CHR or Jess. In this report we present our viewpoints and implementations for these two problems. We motivate why we chose CHR or Jess. Finally, we discuss the results of the experiments we ran on our programs.

Contents

1	Intr	oducti	on	2
2	Sud	oku		2
	2.1	Viewp	oints and Programs	2
		2.1.1	New ViewPoints	2
		2.1.2	Alternative Viewpoint considered	2
		2.1.3	Criteria	2
		2.1.4	Channeling	3
		2.1.5	Programming Language discussion	3
	2.2	Exper	iments	3
		2.2.1	Explaining Experiments	3
		2.2.2	Discussion results of experiments	3
		2.2.3	Difficult puzzles	3
		2.2.4	Conclusion Sudoku	3
3	Soli	taire E	Battleship	11
	3.1		oint and Programs	11
		3.1.1	Domain Variables	
		3.1.2	Constraints	11
		3.1.3	Symmetrical solutions	13
		3.1.4	CHR	14
	3.2		iments	14
	0.2	3.2.1	ECLiPSe	14
		3.2.2	CHR	14
	~			
_		clusio		18
	4 1	Strong	r Points	18

1 Introduction

In the following sections we will first introduce the problem domain and the constraints we used to solve the problem. Some important questions we encountered while developing our solutions will be detailed in the first part of each problem domain discussion. The second part will explain the setup and conclusions of the experiments for each problem.

2 Sudoku

Sudoku is a puzzle where the goal is to fill in the gaps with the numbers 1 to 9 according to a set of rules. Each value needs to be represented once in each row, column and block. The problem is documented as NP-Complete. In this section we will first introduce new viewpoints and discuss everything related to these new ways of looking at the problem. After that, we will discuss our choices and problems encountered during the implementation in two programming languages. This leads into a discussion about our experiments. We will conclude with a discussion about the drawn conclusions.

2.1 Viewpoints and Programs

2.1.1 New ViewPoints

We implemented two different viewpoints. In the first one we assume the values (1 to 9) are the variables who have a domain from 1 to 81 indicating at which position they are located. The constraint for this viewpoint are largely the same as the standard viewpoint: a variable can not be located twice, but should be present once, in the same row, column and block. Every variable needs a cardinality of 9 to ensure that it is represented in each column, row and block. As we will see later this viewpoint is quite slow and we have opted to not translate it into CHR. The second viewpoint considers a full 9 by 9 matrix associated with each value from the standard viewpoint. This gives us a total of 81 * 9 variables with a domain from 0 to 1, where a one indicates that this value is present at this index in the full solution of the Sudoku puzzle.

2.1.2 Alternative Viewpoint considered

Beside these two viewpoints, we also implemented a third viewpoint. We consider again a grid from the standard 9x9 viewpoint. We label each square from 1 to 81. Another 9x9 grid represents the location of the values corresponding to the row number. e.g. row 1 contains the value 6,19, ... This means that in the original grid, there stands a 1 on the locations 6,19, ... The constraints on these domain variables are the following.

- row: The quotient of the integer division of the location and 9 must be different for all values on the same row of the second grid.
- column: the modulo of the division of the location and 9 must be different for all values on the same row of the second grid.
- block: the result of the following equation must be different for each value on every row of the second grid. The division used is the interger division.

$$(3*((XValueOfGrid-1)/3)) + ((YValueOfGrid-1)/3) + 1,$$

We did not use this viewpoint any further because we noticed that is was very slow. We ran it on different puzzles and noticed that it took over 1000 seconds for every puzzle. Therefore we implemented a third viewpoint discussed above.

2.1.3 Criteria

A viewpoint is good if it finds a solution for every puzzle relatively fast. This means that we will compare different viewpoints to each other to see which is faster. To achieve this, a viewpoint will have to show certain characteristics. Small domain sizes that limit the amount of backtracks necessary to find a solution. Strong constraint rules that limit the domain sizes. Finally a small number of domain variables. A trade-off between these three has to be made to find a fast viewpoint.

2.1.4 Channeling

We have written some basic channeling which solely consists of transforming the data from one viewpoint into an other. We did not ran experiments on channeling constraints of our two viewpoints.

2.1.5 Programming Language discussion

ECLiPSe

Sudoku is a constraint satisfaction problem. We can limit for the standard viewpoint the domain of the variables to 0..9 and define constraints that represent the Sudoku puzzle. ECLiPSe will narrow down the Domain options by using arc-consistency techniques. This involves selecting the variables of each domain variable that satisfy the constraints. Backtracking will provide a solution if multiple options remain possible.

CHR

CHR differs form ECLiPSe because there is no arc-consistency and backtracking. We use posElement and element as constraints to represent the sudoku puzzle. Each of these constraints contains a position and a value/values. We define constraint handling rules on these constraints to represent the sudoku puzzle. These rules will reduce the possible numbers of possible elements for a position. When no soultion can be found by reducing the domains, we choose a value of a domain of a position. By doing this, we possible fire the constraint handling rules which would reduce the number of possible solutions. We repeat this process until a solution is found. It is possible to implement different search methods by selecting different values from a domain or by choosing different domains first.

2.2 Experiments

2.2.1 Explaining Experiments

In this section we describe which experiments we ran on the implementation in ECLiPSe and CHR. For viewpoint 1 and 3 we tried different search methods. These search methods are tested.

• SD/Dmin: Smallest Domain and smallest value

• SD/Dmax : Smallest domain and biggest value

• LD/Dmin: Largest domain and smallest value

• LD/DMax : Largest domain and largest value

2.2.2 Discussion results of experiments

In this section we discuss the results from our experiments of Sudoku. We ran four different search methods on viewpoint 1 and 2 of ECLiPSe and on viewpoint 1 of CHR. The results for viewpoint 1 of ECLiPSe is shown in table 1. Table 2 shows the results for viewpoint 3 of ECLiPSe. Table ?? shows the results for viewpoint 1 of CHR. From these tables we can conclude that our second viewpoint is the fastest. This was expected because the domain sizes of viewpoint 2 are much. There are more domain variables than viewpoint 1 but for every domain variable that is grounded in the search method, 24 other domain variables are limited. We also notice that the number of backtracks for viewpoint 2 is much lower than viewpoint 1. Here also the small domain sizes are the reason for this behaviour. Figure 1, 2, 3 and 6 also show these results.

We also show the Results of CHR viewpoint 1 in Figure ?? and figure ??

2.2.3 Difficult puzzles

We didn't look for a reason why certain puzzles were slower than others.

2.2.4 Conclusion Sudoku

We conclude this section with an overview of our obtained results. We observed that viewpoint 3 is faster than viewpoint 1. Also the ECLiPSe implementation of viewpoint 1 is faster than CHR.

Figure 1: Time for each puzzle viewpoint 1.

Figure 2: Amount of backtracks for each puzzle viewpoint 1.

Figure 3: Time for each puzzle viewpoint 3.

Figure 4: Amount of backtracks for each puzzle viewpoint 3.

Figure 5: Amount of backtracks for each puzzle viewpoint 3.

FF/ID	cks Time	1 718	18 241			338 284														
딢	backt																			
max	Time					984														
$\mathrm{LD}/\mathrm{Dmax}$	backtracks	13	140	415545	40751	3396	3869	3116	67910	5370	138624	5673058	415545	186785	11812	63701	211022	78	10648	\
min	Time	712	407	41747	21907	269	1749	1162	9755	2409	8222636	80158	41507	54575	328	16925	10683	235391	999	\
LD/Dmir	backtracks	1	842	443847	159819	2141	8741	4687	63837	12575	72133768	671855	433847	520302	489	133368	73689	1775791	1521	_
nax	Time	834	225	129174	146510	864	295	1587	1585	2884	1244966	712429	128930	72664	5058	33732	36418	7875	3231	
$\mathrm{SD}/\mathrm{Dmax}$	backtracks	1	6	1384771	1426165	2885	363	9902	8480	15732	11207724	5377367	1384771	743931	35494	225631	308434	54737	17140	_
nin	Time	732	241	129738	35367	522	962	297	1872	14568	1395583	1125894	129747	78842	2865	20221	95013	29237	3458	_
$\mathrm{SD}/\mathrm{Dmin}$	Backtracks	0	23	1445509	336280	1394	3139	280	10762	92069	1458995	8590409	1445509	847969	18889	143683	848842	227497	20151	_
Puzzle		verydifficult	expert	lambda	hard17	symme	eastermonster	${ m tarek}_052$	goldennugget	coloin	extra1	extra2	extra3	extra4	inkara2012	clue18	clue17	$sudowiki_n b28$	$sudowiki_n b49$	verveasv

Table 1: Computation time and number of backtracks viewpoint 1 ECLiPSe for every Sudoku puzzle

Duzzla	$\mathrm{SD}/\mathrm{Dmin}$.ii	SD/Dmax	λX	$\mathrm{LD}/\mathrm{Dmin}$	iin	LD/Dmax	ax	${ m FF/ID}$	
nzzie	Backtracks	Time	backtracks	Time	backtracks	Time	backtracks	Time	backtracks	Time
verydifficult	0	333	0	319	0	315	0	329	0	453
expert	0	306	0	322	0	377	0	323	0	276
lambda	0	295	0	307	0	331	0	327	0	264
hard17	1	328	0	320	1	330	0	314	П	300
symme	3	365	32	584	က	334	32	442	က	292
eastermonster	87	1025	48	732	87	527	48	431	87	395
${ m tarek}_052$	20	430	63	657	20	372	63	439	20	347
goldennugget	11	375	108	826	11	339	108	594	11	331
coloin	16	352	121	685	16	349	121	491	16	331
extra1	0	306	0	314	0	325	0	309	0	284
extra2	0	314	0	320	0	313	0	332	0	296
extra3	0	310	0	306	0	324	0	333	0	286
extra4	0	312	0	319	0	301	0	321	0	271
inkara2012	108	1073	က	349	108	268	3	322	108	478
clue18	18	473	49	648	18	374	49	445	18	327
clue17	0	309	0	310	0	325	0	327	0	291
$sudowiki_n b28$	240	2195	492	3505	240	864	492	1243	240	809
sudowiki _n $b49$	328	3118	140	1498	328	1292	140	675	328	827
veryeasy	ဂ	367	အ	342	ဂ	331	ဂ	330	3	315

Table 2: Computation time and number of backtracks viewpoint 2 ECLiPSe for every Sudoku puzzle

Figure 6: Amount of backtracks for each puzzle viewpoint 3.

Puzzle	SD/FI	7
Puzzie	Backtracks	Time
verydifficult	1	473
expert	11	671
lambda	11	4271
hard17	8	2016
symme	6	1307
eastermonster	10	1488
$tarek_052$	9	4081
goldennugget	11	3302
coloin	14	1607
extra1	13	4251
extra2	20	18592
extra3	11	4302
extra4	10	6218
inkara2012	15	6829
clue18	15	3326
clue17	10	8760
$sudowiki_n b28$	10	17830
$sudowiki_n b49$	12	2777
veryeasy	46	551

Table 3: Computation time and number of backtracks viewpoint 1 CHR for every Sudoku puzzle

3 Solitaire Battleship

In battleship a fleet of ships are hidden on a 10x10 grid. The player needs to find a positioning of the ships on this grid that complies with all the hints and rules which are provided as part of the problem. To complete the problem, the grid must contain the following ships. A battle cruiser that takes four squares in length, two cruisers that take three places each, three destroyers that take 2 places each and finally four submarines that take one place each. These ships can only be positioned horizontally or vertically. Two ships cannot occupy adjacent grid squares, not even diagonally.

3.1 Viewpoint and Programs

We implemented a basic solver in ECLiPSe. The input for this problem is a list of hints, a list that represents how many ship parts are located on a row and a list that represents how many ship parts are located on a column. These hints are used to limit the domain of certain variables. After that, ECLiPSe uses arc-consistency and backtracking to find a solution that satisfies all constraints. We introduce the following domain variables and constraints to represent the battleship solitaire puzzle.

3.1.1 Domain Variables

We represent a grid as a 12x12 matrix for convenience of some constraints that we will explain later. We do this by adding a row at the top and bottom. We do the same for the columns. We use two of these grids. In the first grid S we present if there is a ship part located. In the second grid T we present what kind of ship part is located on that position. We use 0 for water, 1 for sub-marine, 2 for cruisers, 3 for destroyers and 4 for battleships. We introduce also four ladder grids. These grids represent the possible ship part locations of a ship. These grids are also 12x12 but contain a array of three elements.

3.1.2 Constraints

In this section we describe the different constraints used in ECLiPSe and CHR. For each constraint we discuss its purpose and if it is a active or passive constraint.

Border Constraint

The first constraint says that all border elements must be the same. This applies to grid S and T. Formally we notate this as

$$s_{0j} = s_{12j} = s_{i0} = s_{i12} = 0, \forall i, j, 0 \le i, j \le 12$$

$$t_{0j} = t_{12j} = t_{i0} = t_{i12} = 0, \forall i, j, 0 \le i, j \le 12$$

Cardinality Constraint

The second constraint says that the number of squares that are occupied by submarines is 4, four destroyers 6, for cruisers 6 and four battleships 4. This constraints limits the amount of ships that can be placed on the board. More formally we notate this as

$$|\{t_{ij}|t_{ij}=k, 1\leq i, j\leq 10|=l$$

where l = 4, 6, 6, 4 when k = 1, 2, 3, 4

Tally Constraint

This constraint says the number of occupied squares in a row or column must be equal to the given number. These numbers are provided like we described above. More formally we notate this as

$$\sum_{i=2}^{11} s_{ij} = R_{i-1}$$

where R_i is the number of occupied squares for row i.

$$\sum_{i=2}^{11} s_{ij} = C_{j-1}$$

where R_j is the number of occupied squares for column j.

Occupied Constraint

This constraint says that when a square is occupied, the squares that are the cornering the occupied squares are water. More formally we notate this as

$$if s_{ij} = 1$$
 then $s_{i-1j-1} = s_{i-1j+1} = s_{i+1j-1} = s_{i+1j+1} = 0$

We represent the grid as an 12x12 matrix. We used this representation because now we don't have to differentiate between elements that are located on the border of the original 10x10 grid.

Channelling Constraints

This constraint declares the relation between the S and T grid. When a S square is occupied, the corresponding T square must be occupied. More formally we notate this as

$$s_{ij} = (t_{ij} > 0), \forall i, j, 1 \le i, j \le 12$$

Ladder Constraint

This constraints says that there is a run of occupied squares from e.g. (i, j) to (i, j + k). We introduced four ladder grids. One R for runs to the right, one L for left, one U for up and finally one D for runs of occupied squares downwards. for each direction we hold a list of 3 arrays to check how long the ship is that occupies the squares.

The constraints on the ladder variables in the grid R are the following

$$r_{ij1} = 1$$
 iff $s_{ij} = 1$ and $s_{i,j+1} = 1$

$$r_{ijk} = 1$$
 iff $r_{ij,k-1} = 1$ and $s_{i,j+k} = 1$ for $2 \le k \le 3$ and $j+k-1 \le 12$

The constraints on the ladder variables in the grid L are the following

$$l_{ij1} = 1$$
 iff $s_{ij} = 1$ and $s_{i,j-1} = 1$

$$l_{ijk} = 1$$
 iff $l_{ij,k-1} = 1$ and $s_{i,j-k} = 1$ for $2 \le k \le 3$ and $j-k-1 > 0$

The constraints on the ladder variables in the grid U are the following

$$u_{ij1} = 1$$
 iff $s_{ij} = 1$ and $s_{i-1,j} = 1$

$$u_{ijk} = 1 \quad iff \quad u_{ij,k-1} = 1 \quad and \quad s_{i-k,,j} = 1 \quad for \quad 2 \le k \le 3 \quad and \quad i-k-1 > 0$$

The constraints on the ladder variables in the grid D are the following

$$d_{ij1} = 1$$
 iff $s_{ij} = 1$ and $s_{i+1,j} = 1$

$$d_{ijk} = 1$$
 iff $d_{ij,k-1} = 1$ and $s_{i+k,j} = 1$ for $2 \le k \le 4$ and $i+k-1 \le 12$

For each position (i, j) we have four arrays R[i, j, 1..3], L[i, j, 1..3], U[i, j, 1..3] and D[i, j, 1..3] that represent possible runs of occupied squares in each direction. The constraint ensuring the correct value of t_{ij} is the following.

$$t_{ij} = max(\sum_{k=1}^{4} r_{ijk} + \sum_{j=1}^{4} l_{ijk}, \sum_{k=1}^{4} u_{ijk} + \sum_{k=1}^{4} d_{ijk})$$

Hint Constraints

These hints represent the constraints that are forced to the square at position (i, j). There are seven different kind of hints that come with a position. water, circle, left, right, top, bottom and middle. A water hint represents a square that contains water. A circle hint represents a square that contains a sub-marine. Left, right, top and bottom hints represents squares that contain a ship part and that there is at least 1 ship part next to it. For left this means that the position (i, j + 1) contains a ship part. We formally describe what happens for each kind of hint below

- 1. water: $s_{ij} = 0$
- 2. circle: $s_{i-1,j} = s_{i+1,j} = s_{i,j-1} = s_{i,j+1}$
- 3. left: $s_{i-1,j} = s_{i+1,j} = s_{i,j-1} = 0, s_{i,j+1} = 1$
- 4. right: $s_{i-1,j} = s_{i+1,j} = s_{i,j+1} = 0, s_{i,j-1} = 1$
- 5. top: $s_{i-1,j} = s_{i,j-1} = s_{i,j-1} = 0, s_{i+1,j} = 1$
- 6. bottom: $s_{i+1,j} = s_{i,j-1} = s_{i,j-1} = 0, s_{i-1,j} = 1$
- 7. middle:

$$s_{i-1,j} = s_{i+1,j} = 1$$
 and $s_{i,j-1} = s_{i,j+1} = 0$ or $s_{i-1,j} = s_{i+1,j} = 0$ and $s_{i,j-1} = s_{i,j+1} = 1$

3.1.3 Symmetrical solutions

The constraints above allows ECLiPSe to find a solution for the battleship solitaire puzzle. It does not find the correct amount of possible different solutions. We did not implement extra constraints that would allow us to check for symmetrical solutions.

Extra constraint

We introduce an extra constraint to make sure that occupied T squares have the same value if two or more squares are next to each other(excluding diagonally) and contain ship parts. More formally we notate this as

$$if \ s_{ij} = 1$$
 then $t_{i-1,j} = t_{ij}$ or $t_{i-1,j} = 0$ $\forall i, j \ 2 \le i, j \le 11$
 $if \ s_{ij} = 1$ then $t_{i+1,j} = t_{ij}$ or $t_{i+1,j} = 0$ $\forall i, j \ 2 \le i, j \le 11$
 $if \ s_{ij} = 1$ then $t_{i,j-1} = t_{ij}$ or $t_{i,j-1} = 0$ $\forall i, j \ 2 \le i, j \le 11$
 $if \ s_{ij} = 1$ then $t_{i,j+1} = t_{ij}$ or $t_{i,j+1} = 0$ $\forall i, j \ 2 \le i, j \le 11$

3.1.4 CHR

We implemented part of the program in CHR. We didn't finish the program in time because we got stuck of different constraints that involved the occurrences of values (Tally constraint, Cardinality constraint).

3.2 Experiments

3.2.1 ECLiPSe

We ran experiments on our ECLiPSe implementation. We used 4 different search methods. The results are show in table 4, figure 7 and figure 8

3.2.2 CHR

We did not run experiments on our CHR implementation because we did not fully implement all constraints.

	Time	4489	425	379	405	639	9873	392	1655	909	516	1449	6510	1159	394	472	2287	13139	510	6416	2436	802	407	9151	541	1386	007
FF/IL	backtracks	795	1	1	9	06	2500	15	278	37	51	238	1184	128	0	22	257	2953	21	1401	503	95	7	2032	99	395	0
$\mathrm{LD}/\mathrm{Dmax}$	Time	2725	556	843	887	845	2191	410	544											4136	548	793	439	5556	3761	1330	0
	backtracks	279	32	104	174	171	492	3	45	992	80	225	48	214	49	192	092	17290	4	828	09	101	13	1343	1118	392	101
$\mathrm{LD}/\mathrm{Dmin}$	Time	6483	456	292	493	1234	50727	476	6714	694	841	2161	42057	6613	345	5285	6629	34498	277	24892	6112	2347	460	25458	611	2684	1/56
	backtracks	2623	20	115	44	491	17681	53	2888	123	395	996	11077	2389	0	2462	3998	15959	86	8034	2235	819	110	12481	149	1533	31/
ax	Time	32652	1209	4848	2233	3313	11605	359	1113	23994	486	9689	4956	16292	1971	16974	17171	337219	029	29984	1396	1941	658	28538	11350	4005	7701
$\mathrm{SD}/\mathrm{Dmax}$	backtracks	7124	136	1776	710	1139	1997	∞	290	5950	22	1447	452	3507	239	6704	5535	78434	30	4539	217	536	95	0606	3228	1742	1075
in	Time	4023	349	336	390	583	10579	366	2002	226	431	1317	7180	994	343	468	2295	14016	490	7953	2542	850	342	10037	265	1332	461
SD/Dm	Backtracks T	1003	1	1	9	103	2581	17	377	44	62	353	1344	131	0	30	730	3555	25	1528	793	119	6	2670	88	429	66
Duzzlo	r uzzie	15	17	41	42	61	62	29	89	20	102	112	118	133	161	173	177	182	187	189	204	222	233	271	280	281	284

Table 4: Computation time and number of backtracks ECLiPSe battleship solitaire

Figure 7: Amount of backtracks for each battleship puzzle.

Figure 8: Amount of backtracks for each battleship puzzle.

4 Conclusion

As last section of this document we summarize our project into strong and weak points.

4.1 Strong Points

- Sudoku Eclipse viewpoint 1
- $\bullet\,$ Sudoku Eclipse viewpoint 2
- Sudoku CHR viewpoint 1
- $\bullet\,$ Battle Ship Eclipse viewpoint.
- Experiments Sudoku

Weak Points

- CHR Battleship not completed
- \bullet CHR Sudoku viewpoint2 not completed
- No symmetry detection
- Undetailed Report