NOMBRE: Matías Duhalde

SECCIÓN: 1

Nº LISTA: 34

PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 6 – Respuesta Pregunta 2

Parte 1

Se quiere demostrar que $f \in o(g) \implies (f \in \mathcal{O}(g) \land g \notin \mathcal{O}(f))$.

Supongamos que existen $f: \mathbb{N} \to \mathbb{R}$ y $g: \mathbb{N} \to \mathbb{R}$, tal que $f \in o(g)$.

Según la definición de $\mathcal{O}(g)$, tenemos que $f \in \mathcal{O}(g)$ si, y sólo si, existe $c \in \mathbb{R}^+$ y un $n_0 \in \mathbb{N}$ tal que para todo $n > n_0$ se cumpla que $f(n) \leq c \cdot g(n)$.

Por definición de o, se tiene que $f \in o(g)$ implica que para todo c existe n_0 tal que para todo $n \ge n_0$ se cumple $f(n) \le c \cdot g(n)$. Entonces, existen c y n_0 tal que para todo $n \ge n_0$ se cumple $f(n) \le c \cdot g(n)$, o en otras palabras, $f \in \mathcal{O}(g)$.

Supongamos que existen $f: \mathbb{N} \to \mathbb{R}$ y $g: \mathbb{N} \to \mathbb{R}$, tal que se cumpla $f \in o(g)$ y al mismo tiempo $g \in \mathcal{O}(f)$. Sea $a \in \mathbb{R}^+$, tal que si se cumple $g \in \mathcal{O}(f)$, entonces **existe** un a y existe un n_0 tal que para todo $n \ge n_0$, $g(n) \le b \cdot f(n)$, y sea $b \in \mathbb{R}^+$, tal que si se cumple $f \in o(g)$, entonces **para todo** b existe un n_0 tal que para todo $n \ge n_0$, $f(n) \le b \cdot g(n)$.

$$\begin{split} f(n) & \leq b \cdot g(n) \\ \Longrightarrow \frac{1}{b} f(n) \leq g(n) \\ \Longrightarrow \frac{1}{b} f(n) \leq g(n) \leq a \cdot f(n) \\ \Longrightarrow \frac{1}{b} f(n) \leq a \cdot f(n) \\ \Longrightarrow f(n) \leq a \cdot b \cdot f(n) \end{split}$$

Terminamos por llegar a una contradicción, debido a que $f(n) \leq a \cdot b \cdot f(n)$ no se cumple para aquellos valores b tal que $a \cdot b < 1$. Es decir, no se cumpliría $f(n) \leq b \cdot g(n)$ para todo c. De esta manera, llegamos a una contradicción, lo que implica que si $f \in o(g)$, entonces $g \notin \mathcal{O}(f)$.

Por lo tanto, se cumple que $f \in o(g) \implies (f \in \mathcal{O}(g) \land g \notin \mathcal{O}(f))$ para cualquier $f : \mathbb{N} \to \mathbb{R}$ y $g : \mathbb{N} \to \mathbb{R}$.

Parte 2

Debemos probar que dado $p(x) = a_k x^k + ... + a_1 x + a_0$, tal que $a_i \in \mathbb{R}$, $p(x) \in o(x^{k+\epsilon})$ para todo $k \in \mathbb{N} \setminus \{0\}$ y para todo $\epsilon > 0$. Si $p(x) \in o(x^{k+\epsilon})$, entonces, por definición, para todo $c \in \mathbb{R}$, con c > 0, existe $n_0 > 0$ tal que para todo $n \ge n_0$ se cumple que $p(x) \le c \cdot p(x^{k+\epsilon})$.