Дискретные структуры

MIPT DIHT

22 января 2015 г.

1 Билет №1

1.1 Правила комбинаторики: правила сложения, умножения, принцип Дирихле. Формула включения и исключения

Definition 1. Правило сложения

Если есть два набора объектов, причем в первом N объектов a_1, \ldots, a_n , во втором M объектов b_1, \ldots, b_m . Тогда есть N+M способов выбрать объект либо из первого множества, либо из второго.

Definition 2. Правило умножения

Если есть два набора объектов, причем в первом N объектов a_1, \ldots, a_n , во втором M объектов b_1, \ldots, b_m . Тогда есть NM способов выбрать объект сначала из первого множества, затем из второго.

Definition 3. Принцип Дирихле

Если есть N ящиков и N+1 кролик, то для любой рассадки кроликов по ящикам найдется ящик, в котором находится не менее двух кроликов.

1.1.1 Формула включения-исключения

Рассмотрим произвольное N объектов a_1, a_2, \ldots, a_N . Выделим некоторые свойства $\alpha_1, \alpha_2, \ldots, \alpha_N$, которые могут быть присущи некоторым объектам.

Пусть $N(\alpha_i)$ — количество объектов, обладающих свойством α_i , $N(\alpha_i, \alpha_j)$ — количество объектов, обладающих свойствами α_i и α_j одновременно.

 α_i' — отрицание свойства α_i

Theorem 1.
$$N(\alpha'_1, \alpha'_2, ..., \alpha'_3) = N - N(\alpha_1) - N(\alpha_2) - ... - N(\alpha_n) + N(\alpha_1, \alpha_2) + N(\alpha_1, \alpha_3) + ... + N(\alpha_{N-1}\alpha_N) - N(\alpha_1, \alpha_2, \alpha_3) + ... + (-1)^n N(\alpha_1, \alpha_2, ..., \alpha_n)$$

\mathbf{Proof} Докажем индукцией по n

База индукции: $\forall N \ \forall \ a_1, \dots, a_N \ \forall \ \alpha_i N(\alpha_i') = N - N(\alpha_i)$

 $\overline{\Pi}$ редположение: $\forall N \ \forall \ a_1, \dots, a_N \ \forall \ \alpha_1, \dots, \alpha_n$ выполняется утверждение теоремы.

 $\overline{\text{Шаг индукции:}} \, \forall N \, \forall \, a_1, \ldots, a_N \, \forall \, \alpha_1, \ldots, \alpha_{n+1}$ выполнено утверждение теоремы.

Зафиксируем произвольные $N, a_1, \ldots, a_N, \alpha_1, \ldots, \alpha_n$. Рассмотрим все из наших объектов, которые обладают свойством α_{n+1} . Обозначим их $\{b_1, b_2, \ldots, b_M\} \subset \{a_1, \ldots, a_N\}$, где $M = N(\alpha_{n+1})$. Применим предположение индукции к объектам $\{b_1, \ldots, b_M\}$ и свойствам $\{\alpha_1, \ldots, \alpha_n\}$. $M(\alpha'_1, \ldots, \alpha'_n) = M - M(\alpha_1) - \ldots - M(\alpha_n) + M(\alpha_1\alpha_2) + \ldots + (-1)^n M(\alpha_1, \ldots, \alpha_n)$.

 $N(\alpha_1',\alpha_2',\dots,\alpha_n',\alpha_{n+1})=N(\alpha_{n+1})-\dots-N(\alpha_1,\alpha_{n+1})-\dots-N(\alpha_n,\alpha_{n+1})+\dots+(-1)^nN(\alpha_1,\dots,\alpha_n,\alpha_{n+1}).$ Применим предположение индукции к множеству $\{a_1,\dots,a_N\}$ и свойствам $\{\alpha_1,\dots,\alpha_n\}$ $N(\alpha_1',\dots,\alpha_n')=N-N(\alpha_i)-\dots+(-1)^nN(\alpha_1,\dots,\alpha_n).$

Вычтем полученные утверждения: $N(\alpha_1', \dots, \alpha_n') - N(\alpha_1', \dots, \alpha_n', \alpha_{n+1}) = N(\alpha_1', \dots, \alpha_n', \alpha_n + 1') = N - N(\alpha_1) - \dots - N(\alpha_n) - N(\alpha_{n+1}) + \dots + (-1)^{n+1} N(\alpha_1, \alpha_2, \dots, \alpha_n, \alpha_{n+1})$

Еще один вариант формулы включения-исключения. Рассмотрим множества S_1,\ldots,S_n . Тогда $|S_1\cup\ldots\cup S_n|=|S_1|+|S_2|+\ldots+(-1)^{n+1}|S_1\cap S_2\cap\ldots\cap S_n|$

1.2 Размещения, сочетания и перестановки. Формула Стирлинга (б/д)

Пусть $A = \{a_1, \ldots, a_n\}$. Можно составлять упорядоченные последовательности элементов A. А можно извлекать объекты "кучами то есть без учета порядка. Если мы рассматриваем A как упорядоченную последовательность, то говорят о размещении объектов. Если же мы извлекаем объекты без учета порядка, то говорят о сочетании объектов. Бывают размещения с повторениями и без повторений. Аналогично, сочетания бывают с повторениями и без повторений.

Будем говорить о k-сочетании и k-размещении, если в сочетании(размещении) ровно k объектов. Пусть дано множество объектов $\{a_1,\ldots,a_n\}$. Обозначим через $\overline{A_n^k}$ число всех k-размезещений с повторениями и A_n^k число всех k-размещений без повторения. Аналогично обозначим $\overline{C_n^k}$ и C_n^k число k-размещений с повторениями и без повторений соответственно.

2 Билет №2

2.1 Размещения, сочетания, перестановки

Пусть $A = \{a_1, \ldots, a_n\}$. Можно составлять упорядоченные последовательности элементов A. А можно извлекать объекты "кучами то есть без учета порядка. Если мы рассматриваем A как упорядоченную последовательность, то говорят о размещении объектов. Если же мы извлекаем объекты без учета порядка, то говорят о сочетании объектов. Бывают размещения с повторениями и без повторений. Аналогично, сочетания бывают с повторениями и без повторений.

Будем говорить о k-сочетании и k-размещении, если в сочетании(размещении) ровно k объектов. Пусть дано множество объектов $\{a_1,\ldots,a_n\}$. Обозначим через $\overline{A_n^k}$ число всех k-размезещений с повторениями и A_n^k число всех k-размещений без повторения. Аналогично обозначим $\overline{C_n^k}$ и C_n^k число k-размещений с повторениями и без повторений соответственно.

2.2 Формулы для чисел размещения и сочетания с повторениями и без

Theorem 2.
$$\overline{A_n^k} = n^k$$

Proof На первую позицию нашего размещения можно поставить любой и n объектов. Как, впрочем, и на все остальные. Тогда по правилу умножения получаем n^k •

Theorem 3.
$$A_n^k = \frac{n!}{(n-k)!}$$

Proof На первую позицию нашего размещения можно поставить любой и n объектов. На вторую — все, кроме того, который мы поставили на первую позицию, то есть любой из n-1 объектов. Иначе говоря, на i-тую позицию можно поставить объект n-i способами. То есть

$$A_n^k = n(n-1)(n-2)\dots(n-k+1) = \prod_{i=0}^{k-1} n-i = \frac{n!}{(n-k)!}$$
 •

Theorem 4.
$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

Proof Каждому k-сочетанию без повторений соответствует k! различных размещений без повторения. То есть $k!C_n^k = A_n^k$, откуда следует, что $C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$ •

Theorem 5.
$$\overline{C_n^k} = C_{n+k-1}^k$$

Ргооf Рассмотрим исходное множество объектов a_1, \ldots, a_n . Каждому k-сочетанию с повторениями поставим в соответствие некоторую последовательность из нулей и единиц. Ставить в соответствие последовательность из нулей и единиц мы будем по следующему алгоритму: пусть дано k-сочетание с повторениями. Рисуем в нашу последовательность столько единиц, сколько раз нам встретился элемент a_i , после этого рисуем ноль, если это не была последний, n-ный объект, и так делаем последовательно n раз для каждого i от 1 до n. Всего у нас в нашей последовательности k единиц, так как каждому элементу, входящему в наше сочетание с повторениями соответствует ровно одна единица и n-1 единиц. Утвержается, что между такими 0,1 векторами длины n-k+1 с k единицами и сочетаниями с повторениями установилась биекция. Но количество таких последовательностей и нулей и единиц это число способов зафиксировать ровно k позиций среди n-k+1, а как известно, это количество равно C_n^k •

2.3 Бином Ньютона, полиномиальная формула

Theorem 6. Бином Ньютона
$$(x+y)^n = \sum_{k=0}^n = C_n^k x^k y^{n-k}$$

Proof $(x+y)^n = (x+y)(x+y)\dots(x+y)$. Из каждой скобки надо взять либо x, либо y. Пусть из k скобок мы взяли x, то есть из остальных n-k скобок мы взяли y. Но мы выбрать k скобок можем выбрать C_n^k способами, то есть $x^ky^{n_k}$ встречается C_n^k раз, то есть $(x+y)^n = \sum_k C_n^k x^k y^{n-k}$ •

 $Remark.\ C_n^k$ также называются биномиальными коэффициентами и в западной традиции пишут $\binom{n}{k}$

Theorem 7. Полиномиальная формула
$$(x_1 + x_2 + \ldots + x_k)^n = \sum_{(n_1, n_2, \ldots, n_k): n_i \in \mathbb{N}, \sum n_i = n} P(n_1, n_2, \ldots, n_k) x_1^{n_1} x_2^{n_2} \ldots x_k^{n_k}$$

Proof Возьмем n_1 скобок из которых извлекается x_1 , n_2 из которых извлекается x_2 , ..., n_k скобок, из которых извлекается x_k . Очевидно, что $x_i \in \mathbb{N}, \sum n_i = n$. Тогда в произведении получится $x_1^{n_1}x_2^{n_2}\dots x_k^{n_k}$. Этот моном встретится в $P(n_1,n_2,\dots,n_k)$ раз в качестве слагаемого, т.к. число способов выбрать скобки для x_1 равно $C_n^{n_1}$, для x_2 остается $n-n_1$ свободных скобок, то есть количество способов выбрать x_2 равно $C_{n-n_1}^{n_2}$, и так далее. А как известно, произведение таких биномимиальных коэффициэнтов равно $P(n_1,n_2,\dots,n_k)$. •

Remark. Числа $P(n_1, n_2, \ldots, n_k)$ называются nолиномиальными коэффициентами

2.4 Простейшие тождества. Оценки биномиальных коэффициентов

- $\bullet \ C_n^k = C_n^{n-k}$
- $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$
- $\sum_{i=0}^{n} C_n^i = 2^n$ **Proof** $\sum_{i=0}^{n} C_n^i = (1+1)^n = 2^n$ •
- $\sum_{(n_1, n_2, \dots, n_k): n_i \in \mathbb{N}, \sum n_i = n} P(n_1, n_2, \dots, n_k) = k^n$
- $\sum_{i=0}^{n}(C_{n}^{i})^{2}=C_{2n}^{n}$ **Proof** $A=\{a_{1},\ldots,a_{2n}\}.\ V$ множество всех n сочетаний из $A.\ |V|=C_{2n}^{n}.$ $V=\bigcup_{i=0}^{n}V_{i}$, где V_{k} множество тех n-сочетаний, которые содержат ровно k из первых n элементов, то есть C_{n}^{k} спобосов выбрать k элементов из первых n элементов и C_{n}^{n-k} способов выбрать оставшиеся n-k элементов из последних n элементов. То есть $|V_{k}|=C_{n}^{k}C_{n}^{n-k}=(C_{n}^{k})^{2}.$ $|V|=\sum |V_{i}|\Leftrightarrow C_{2n}^{n}=\sum_{i=0}^{n}(C_{n}^{i})^{2}$ •
- $\forall n,m: C_{n+m}^n = \sum\limits_{i=n-1}^{n+m-1} C_i^{n-1}$ **Proof** Рассмотрим $A = \{a_1,\ldots,a_n,a_{n+1}\}.$ V- множество всех m-сочетаний с повторениями из A. $|V| = C_{n+1+m-1}^m = C_{n+m}^m.$ Пусть V_k это те сочетания из V, в которые объект a_1 входит ровно k раз. Осталось оценить $|V_k|$. В любое сочетание из V_k k раз встречается элемент a_1 и в этом сочетании еще есть m-k+1 "свободных" мест, на котором стоят остальные n элементов. То есть количество элементов в V_k равно количеству cm-k+1-ссочетаний с повторениями их n элементов. То есть $|V_k|=C$ •

Corollary 1. Если мы возъмем n=1 и подставим в тождество, то мы получим $C_{m+1}^1=C_m^0+C_{m-1}^0+\ldots+C_0^0$

Corollary 2. Ecnu n=2, mo $C_{m+2}^2=C_{m+1}^1+C_m^1+\ldots+C_1^1\Leftrightarrow \frac{(m+2)(m+1)}{2}=(m+1)+m+(m-1)\ldots 1$

Corollary 3. Ecnu n=3, mo $C_{m+3}^3=C_{m+2}^2+C_{m+1}^2+\ldots+C_2^2\Leftrightarrow \frac{(m+1)(m+2)(m+3)}{6}=\frac{9(m+1)(m+2)}{2}+\frac{m(m+1)}{2}+\ldots+\frac{1\cdot 2}{2}=\frac{1}{2}(1^2+2^2+\ldots+(m+1)^2)+\frac{1}{2}(1+2+\ldots+(m+1))\Rightarrow \frac{1}{2}(1^2+2^2+\ldots+(m+1)^2)=\frac{(m+1)(m+2)(m+3)}{6}-\frac{1}{4}(m+1)(m+2)=\frac{1}{12}(m+1)(m+2)(2m+3)$

3 Билет №3

3.1 Формальные степенные ряды. Производящие функции и тождества

3.1.1 Формальные степенные ряды

Definition 4. Назовем $A = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \dots$ формальным степенным рядом с коэффициентами $\{a_i\} \in \mathbb{R}$.

Definition 5. Пусть A и B два формальных степенных ряда. Назовем их суммой формальный степенной ряд C с коэффициентами $c_i = a_i + b_i$.

Definition 6. Пусть A и B два формальных степенных ряда. Назовем их произведением формальный степенной ряд C с коэффициентами $c_i = \sum_{j=0}^i a_j \cdot b_{i-j}$.

Definition 7. Пусть A и B два формальных степенных ряда. Назовем их отношением формальный степенной ряд C, если A = BC.

$$b_0 c_0 = a_0 \Rightarrow c_0 = \frac{a_0}{b_0}$$

$$b_1 c_0 + b_0 c_1 = a_1 \Rightarrow c_1 = \frac{a_1 - b_1 c_0}{b_0}$$

3.1.2 Производящая функция

Definition 8. Пусть есть последовательность чисел a_0, a_1, a_2, \ldots Её производящая функция — ряд $a_0 + a_1 x + a_2 x^2 + \ldots$ Хочется научиться понимать какой смысл принимает это выражение

Обозначим
$$A(x) = \sum_{i=0}^{\infty} a_n x^n$$

Definition 9. Ряд A(x) имеет значение A в точке $x \in \mathbb{R}$, если $\lim_{k \to \infty} \sum_{n=0}^k a_n x^n = A$.

Вопрос — при каких условиях на $x \in \mathbb{R}$ такой предел существует.

Theorem 8. Положим
$$\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}}$$
. Тогда ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится при всех $x: |x| < \rho$.

Theorem 9. Пусть $A(x) = \frac{b_0 + b_1 x + b_2 x^2 + \dots}{c_0 + c_1 x + c_2 x + \dots}$, $c_0 \neq 0$, $b_0 \neq 0$, $b_$

Theorem 10. Ecnu
$$|x| < \rho$$
. $A'(x) = \sum_{n=1}^{\infty} a_n n x^{n-1}$

Example 1. Найти
$$\sum_{k=0}^{n} k^2 C_n^k (\frac{1}{3})^k$$

Возьмем $\left\{C_n^k(\frac{1}{3})^k\right\}$ и составим её производящую функцию.

$$f(x) = \sum_{k=0}^{n} C_n^k (\frac{1}{3})^k = (1 + \frac{x}{3})^n$$

$$f'(x) = \sum_{k=1}^{n} k C_n^k (\frac{1}{3})^k x^{k-1}$$

$$xf'(x) = \sum_{k=1}^{n} k C_n^k (\frac{1}{3})^k x^k$$

$$(xf'(x))' = \sum_{k=1}^{n} k^2 C_n^k (\frac{1}{3})^k x^{k-1}$$

$$x(xf'(x))' = \sum_{k=1}^{n} k^2 C_n^k (\frac{1}{3})^k x^k$$

$$x(xf'(x))' = x(x\frac{n}{3}(1 + \frac{n}{3})^{n-1})'$$

Example 2.
$$F_0=1, F_1=1, F_n=F_{n-1}+F_{n-2}$$
 Найдем $\sum\limits_{n=0}^{\infty}F_n(\frac{1}{2})^n.$ $xf(x)=F_0x+F_1x^2+F_2x^3+\dots$ $x^2f(x)=F_0x^2+F_1x^3+F_2x^4+\dots$ $xf(x)+x^2f(x)=F_0x^2+F_1x^3+F_2x^4+\dots+(F_{n-2}+F_{n-1})x^n+\dots=F_1x+F_2x^2+\dots=f(x)-F_0$ $xf(x)+x^2f(x)=f(x)-1\Rightarrow f(x)=\frac{1}{1-x-x^2}$ Корни знаменателя: $\frac{\sqrt{5}+1}{2}$. По теореме о сходимости $|x|<\frac{\sqrt{5}-1}{2}$

4 Билет №4

4.1 Линейные рекуррентные соотношения с постоянными коэффициентами

Линейная зависимость порядка k: $x_n = a_{n-1}x_{n-1} + \ldots + a_{n-k}x_{n-k}$.

Для
$$k = 2$$
 $a_2y_{n+2} + a_1y_{n+1} + a_0y_n = 0$

Definition 10. Характеристическое уравнение для линейной зависимости порядка 2 есть $a_2\lambda^2 + a_1\lambda + a_0 = 0$

Theorem 11. Пусть у характеристического уравнения есть решение $\lambda_1 \neq \lambda_2$. Тогда

- любая последовательность $y_n = c_1 \lambda_1^n + c_2 \lambda_2^n, c_1, c_2 \in \mathbb{C}$ являются решениями зависимости.
- если y_n решение. Тогда $\exists c_1, c_2 \in \mathbb{C}: y_n = c_1\lambda_1^n + c_2\lambda_2^n$

Proof

- Подставим и получим равносильность утверждения и характеристического уравнения.
- Пусть $y_0, y_1, \ldots, y_n, \ldots$ Рассмотрим уравнения $c_1 + c_2 = y_0$, $c_1 \lambda_1 + c_2 \lambda_2 = y_1$ с неизвестными c_1, c_2 . Так как $\lambda_1 \neq \lambda_2$, то у этой системы есть решения. Пусть c_1^*, c_2^* решения этой системы. Рассмотрим последовательность $y_n^* = c_1^* \lambda_1^n + c_2^* \lambda_2^n$.

Theorem 12. Пусть у характеристического уравнения $\lambda_1 = \lambda_2 = \lambda$. Тогда для любое решение представимо в виде $y_n = (c_1 n + c_2)\lambda^n$, и для любых c_1, c_2 $y_n = (c_1 n + c_2)\lambda^n$ есть решение

Proof Доказательство аналогично. •

Общий случай $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \ldots + a_0 = 0$ — характеристическое уравнение

 $\lambda_1,\dots,\lambda_k\in\mathbb{C}$ (основная теорема алгебры). Обозначим все различные корни через μ_1,\dots,μ_l . Пусть

Theorem 13. Пусть $P_1(n), \ldots P_l(n)$, таких что $P_i(n)$ — многочлен с произвольными коэффициентами из \mathbb{C} , имеющий степень n_i-1 . Тогда любое $y_n=P_1(n)\mu_1^n+\ldots+P_l(n)\mu_l^n$ — решение и любое решение представимо в таком виде.

Theorem 14 (Шевалле). Рассмотрим многочлен от n переменных c целочисленными коэффициентами $F(x_1, \ldots, x_n) \equiv 0(p)$. Пусть V_p — число различных решений этого сравнения. Если $\deg F < n$, то $V_p \equiv 0(p)$

Proof Запишем число решений в виде $\sum\limits_{x_1=1}^p \ldots \sum\limits_{x_n=1}^p (1-F^{p-1}(x_1,\ldots,x_n))$. Действительно, $F(x_1,\ldots,x_n)\equiv 0$ равносильно тому, что $F^{p-1}(x_1,\ldots,x_n)\equiv 0$. Если $F(x_1,\ldots,x_n)\not\equiv 0$, то $F^{p-1}(x_1,\ldots,x_n)\equiv 1$. $\sum\limits_{x_1=1}^p \ldots \sum\limits_{x_n=1}^p 1=p^n\equiv 0.$ Осталось доказать, что $\sum\limits_{x_1=1}^p \ldots \sum\limits_{x_n=1}^p F^{p-1}(x_1,\ldots,x_n)\equiv 0$.

 F^{p-1} — это сумма каких-то одночленов. Каждый из этих многочленов имеет вид $x_1^{a_1}x_2^{a_2}\dots x_n^{a_n},$ $\sum a_i \leq (n-1)(p-1).$ Если докажем, что $\sum_{x_1=1}^p \dots \sum_{x_n=1}^p x_1^{a_1} x_2^{a_2} \dots x_n^{a_n} \equiv 0,$ то мы получим, что сумма по всем F сравнима с нулем по модулю p. $\sum_{x_1=1}^p \dots \sum_{x_n=1}^p x_1^{a_1} x_2^{a_2} \dots x_n^{a_n} = (\sum_{x_1=1}^p x_1^{p_1})(\sum_{x_2=1}^p x_2^{p_2}) \dots (\sum_{x_n=1}^p x_n^{p_n}).$

Рассмотрим p=2. $a_1+\ldots+a_n\leq n-1\Rightarrow$ по признаку Дирихле есть $a_i=0,$ откуда $\sum_{i=1}^{p}x_i^{a_i}=1$ $p \equiv 0$.

Рассмотрим $p \leq 3$. Тогда либо есть $a_i = 0$ и все тривиально, либо все $a_i \leq 1$. Но тогда есть $2 \le a_i \le p-2$ Рассмотрим $S = \sum_{x_i=1}^p x_i^{a_i}$. $x^{a_i}S = \sum_{x_i=1}^p (xx_i)^{a_i}$. xx_i пробегает полуную систему вычетов, то есть $\sum_{x_i=1}^p (xx_i)^{a_i} = \sum_{x_i=1}^p x_i^{a_i}$. Получается, что $x^{a_i}S = S \Rightarrow S = 0$ •

Corollary 4. Пусть степень многочлена $F(x_1,\ldots,x_n)$ от N переменных меньше n и $F(0,0,\ldots,0) \le$ 0. Тогда существует x_1, \ldots, x_n в котором не все x_i равны 0, но $F(x_1, \ldots, x_n) = 0$.

Statement 1. Пусть $F_1(x_1,\ldots,x_n),\ldots,F_k(x_1,\ldots,x_n)$ — полиномы, $\deg F_1+\ldots+\deg F_2< n$. Тогда если система сравнений $F_i(x_1,\ldots,x_n)\equiv 0$ имеет $(0,0,\ldots,0)$ в качестве решения, то у неё есть ненулевое решение

5 Билет №5

Граф, орграф, псевдограф, мультиграф, гиперграф

Definition. Граф — множество вершин и неориентированных рёбер.

Definition. Псевдограф — граф с петлями.

Definition. Мультиграф — граф с кратными рёбрами.

Definition. Дерево — связный ациклический граф. Оно же — граф, в котором любые две вершины соединены ровно одним путём; связный граф, в котором вершин на единицу больше, чем рёбер; ациклический граф, в котором вершин на единицу больше, чем рёбер.

ф, в котором вершин на единицу больше, чем рёбер; ациклический граф, в котором вершин на единицу больше, чем рёбер.

Definition. Гиперграф — множество вершин и рёбер, каждое ребро — произвольное подмножество вершин.

Definition. k-однородный гиперграф — каждое ребро содержат ровно k вершин.

Definition. t-пересекающийся гиперграф — любые 2 ребра гиперграфа имеют хотя бы t общих вершин.

5.2 Маршруты в графах. Степени вершин

5.3 Изоморфизм и планарность графов

Эйлеровы и гамильтоновы циклы в графах

Definition. Эйлеров цикл (цепь) — цикл (цепь), содержащий все рёбра графа.

Definition. Эйлеров граф — граф, обладающий эйлеровым циклом.

Definition. Гамильтонов цикл (цепь) — цикл (цепь), содержащая все вершины по одному разу.

5.5 Критерий Эйлеровости. Достаточное условие гамильтоновости.

Theorem 15. Связный (мульти) граф является эйлеровым (1) тогда и только тогда, когда степень каждой вершины чётна (2), или тогда и только тогда, когда множество рёбер графа можно покрыть без пересечений простыми циклами (3).

Proof $(1) \Rightarrow (2)$: если степень какой-либо вершины нечётна, то мы, двигаясь в порядке рёбер эйлерова цикла, не сможем в какой-то момент войти в эту вершину по одному ребру и выйти по другому ребру, поскольку её степень нечётна. Это означает, что наш обход не является циклом. Противоречие.

 $(3) \Rightarrow (1)$: объединение всех этих простых циклов является эйлеровым циклом.

Что мы подразумеваем под словом "объединение"? Давайте рассмотрим это как последовательный процесс: на нулевом шаге мы рассмотрим любой простой цикл, и будем добавлять к нему простые циклы из числа ещё не задействованных по одному. Таким образом, на каждом шаге мы имеем некоторый цикл и множество (возможно, пустое) тех простых циклов, которые мы ещё не рассмотрели.

Пусть это множество непусто. Тогда, так как граф связен, в построенном на данный момент цикле обязательно найдётся вершина, лежащая в одном из незадействованных простых циклов. Обозначим эту вершину v, уже построенный нами цикл $-a_1 \dots a_i v a_{i+1} \dots a_1$, незадействованный простой цикл $-vb_1b_2\dots b_kv$. Тогда новый цикл мы определим как $a_1\dots a_i v b_1\dots b_kv a_{i+1}\dots a_1$, и мы уменьшили на 1 количество не рассмотренных простых циклов.

Пусть это множество оставшихся циклов пусто. По предположению, тогда пусто и множество ребёр, которые лежат вне построенного нами цикла — следовательно, этот цикл эйлеров.

 $(2) \Rightarrow (3)$: индукция по количеству рёбер.

База индукции: если рёбер 0, то множество рёбер тривиально состоит из нуля простых непересекающихся друг с другом циклов.

Переход: выберем произвольную вершину ненулевой степени и пойдём в обход по графу, не проходя дважды одного и того же ребра, пока не вернёмся в какую-либо вершину — таким образом, мы выделили простой цикл. Рёбра этого цикла мы удалим из графа, и чётность степеней всех вершин сохранится, а число рёбер уменьшится. ●

Theorem 16. Слабо связный орграф является эйлеровым тогда и только тогда, когда входящие степени (каждой вершины) равны исходящим.

Proof Аналогично предыдущей теореме. •

Theorem 17 (Критерий Дирака). *Если в графе на п вершинах степень каждой вершины не менее* $\lceil \frac{n}{2} \rceil$, то граф содержит гамильтонов цикл.

Proof Начнём со вспомогательного утверждения:

Lemma. Пусть в графе максимальный простой путь состоит из т вершин, и суммарная степень двух концов этого пути не меньше т. Тогда в графе существует простой цикл длины т.

Proof Обозначим вершины этого пути $a_1, a_2, a_3, \ldots, a_m$. Так как путь максимален, то рёбра вида (a_1, v) и (a_m, v) , где $v \notin \{a_i\}_{i=1}^m$, в графе отсутствуют. Если вершины a_1 и a_m соединены ребром, то искомый цикл найден.

Если одновременно есть рёбра (a_{i+1}, a_1) и (a_i, a_m) (для произвольного $i \in \overline{2}, m-\overline{2}$), то искомый цикл выглядит так: $a_1a_2\dots a_ia_ma_{m-1}\dots a_{i+1}a_1$. Предположим, что цикла всё же нет. Тогда в силу предыдущего утверждения каждое ребро, проведённое из a_m , "запрещает" одно ребро из a_1 , и наоборот (кроме заведомо существующих рёбер (a_1, a_2) и (a_m, a_{m-1}) , которые мы сейчас не учитываем). При этом из вершины a_1 могут быть рёбра к вершинам a_3, a_4, \dots, a_{m-1} — всего m-3 возможности, столько же для a_m . Однако эти возможности взаимоисключающие, а нам необходимо (согласно посылке леммы) провести из a_1 и a_m суммарно m-2 ребра. Противоречие. • Заметим, что граф связен, поскольку суммарная степень любых двух вершин не менее m-3 то означает, что они либо соединены ребром, либо (по принципу Дирихле) имеют общего соседа.

Рассмотрим в нашем графе максимальный простой путь. Согласно лемме, существует простой цикл, проходящий по всем вершинам этого пути (и только по ним). Обозначим его вершины в порядке следования цикла $a_1, a_2, a_3, \ldots, a_m$.

Если m < n, то рассмотрим любую вершину v, не лежащую в цикле. Так как граф связен, для некоторого i существует ребро (a_i, v) . Тогда путь $va_ia_{i+1}\dots a_ma_1a_2\dots a_{i-1}$ содержит на одну вершину больше, чем рассмотренный нами максимальный. Противоречие.

Если же m=n, то цикл $a_1a_2a_3\dots a_{m-1}a_ma_1$ — гамильтонов. •

Theorem 18. Пусть в графе G хотя бы 3 вершины и $k(G) \ge \alpha(G)$. Тогда G содержит гамильтонов цикл.

Proof Если в G нет циклов, то $k(G) \ge \alpha(G) \ge 1 \Rightarrow G$ связен $\Rightarrow k = 1, \alpha \ge 2$. Противоречие. Иначе рассмотрим максимальный простой цикл $C = \{v_1, v_2, \dots, v_m\}$ и предположим, что он не гамильтонов, то есть $G \setminus C$ непусто. Пусть W — любая связная компонента $G \setminus C$, $N(W) = \{x \notin W \mid \exists y \in W : (x,y) \in E(G)\}$. Имеют место следующие утверждения:

- 1. $N(W) \subset C$ (сосед компоненты связности, не лежащий в C, должен лежать в самом W).
- 2. Никакие две соседние вершины цикла не лежат в N(W) одновременно. В противном случае для некоторого i в графе есть рёбра (v_i, x) , (y, v_{i+1}) , где $x, y \in W$, а также путь (возможно, нулевой длины) между x и y, так как W связно. Тогда, удаляя ребро (v_i, v_{i+1}) из C и заменяя его на путь $v_i x \dots y v_{i+1}$, мы получаем цикл большей длины, чем C значит, C не был максимален.
- 3. $|N(W)| \ge k(G)$. Действительно, если мы удалим множество N(W) из графа, то $C \setminus N(W)$ и W окажутся в различных компонентах связности.
- 4. Определим $M = \{v_{i+1} \mid v_i \in N(W)\}$ и заметим, что |M| = |N(W)| (по построению).
- 5. $M \cap N(W) = \emptyset$, что вытекает из пункта 2.
- 6. M независимое множество. Иначе рассмотрим индексы i,j, для которых $v_{i+1},v_{j+1}\in M$, $v_i,v_j\in N(W),\,(v_{i+1},v_{j+1})\in E$. Пусть x и y те вершины в W (возможно, совпадающие), которые соединены с v_i и v_j соответственно. Рассмотрим цикл $v_1v_2\ldots v_ix\ldots yv_j\ldots v_{i+1}v_{j+1}\ldots v_1$ по существу, мы удалили из C два ребра (v_i,v_{i+1}) и (v_j,v_{j+1}) , добавили три ребра (v_i,x) , $(v_j,y),\,(v_{i+1},v_{j+1})$ и прошли путь от v_j до v_{i+1} в обратной последовательности. Значит, C не максимальный цикл.
- 7. Пусть $w \in W$ произвольная вершина, тогда $M \cup w$ также независимое множество. Действительно, если $v \in M$, $(v,w) \in E$, то по определению $v \in N(W)$, поскольку по построению $M \subset C$. Но тогда $v \in M \cap N(W)$, что противоречит пункту 5.

Пункт 7 означает, что $|M| < \alpha(G)$. хотя из пунктов 3 и 4 следует $|M| \ge k(G)$. Противоречие.

•

6 Билет №6

6.1 Хроматическое число, число независимости, кликовое число и соотношения между ними

Definition. k(G) (вершинная связность) — минимальное к-во вершин, от удаления которых граф G теряет связность.

Definition. $\alpha(G)$ (число независимости) — максимальная мощность независимого множества.

Definition. w(G) (кликовое число) — максимальный размер клики в графе.

Definition. Хроматическое число графа $\chi(G)$ — минимальное число цветов, в которое можно раскрасить вершины графа так, что все рёбра соединяют вершины разного цвета.

Proposition. $\chi(G) \geq \omega(G), \ \chi(G) \geq \frac{n}{\alpha(G)}.$

Theorem 19. В последовательности случайных графов при p(n) = 1/2 АПН $\alpha(G) \le 2 \log_2 n$.

Proof Пусть $X_k(G)$ — число независимых множеств на k вершинах, $k = [2 \log_2 n]$.

$$\begin{split} MX_k &= C_n^k \, 2^{-C_k^2} \leq \frac{n^k}{k!} 2^{-\frac{k^2}{2} + \frac{k}{2}} \leq \frac{2^{2\log_2^2 n}}{k!} 2^{-\frac{(2\log_2 n - 1)^2}{2} + \log_2 n} \leq \frac{1}{k!} 2^{3\log_2 n} = \frac{n^3}{k!} \\ k! &> (k/e)^k = \left(\frac{2\log_2 n}{e}\right)^{2\log_2 n} > 8^{2\log_2 n} = n^6 \\ MX_k &\to 0 \end{split}$$

 \bullet Таким образом, вторая оценка для $\chi(G)$, как правило, лучше.

Theorem 20 (Боллобаш, б/д). При p(n) = 1/2 существует функция $\phi(n) = o\left(\frac{n}{\ln n}\right)$ такая, что АПН $\chi(G) = \frac{n}{2\log_2 n} + \phi(n)$.

Definition. Жадный алгоритм нахождения хроматического числа: раскрасим последовательно вершины в минимально возможный на данный момент цвет. Обозначим полученный результат $\chi'(G)$.

Definition. Жадный алгоритм нахождения числа независимости (кликового числа — аналогично): в найденной ранее раскраске графа рассмотрим наибольшую компоненту. Обозначим полученный результат $\alpha'(G)$.

Theorem 21. $\Pi pu \ p(n) = 1/2 \ A \Pi H \ \alpha'(G) \ge (1 - \varepsilon) \log_2 n$.

Proof Пусть событие A означает обратное, т.е. $\alpha'(G) < (1-\varepsilon)\log_2 n$. Отсюда следует, что алгоритм отыскал хотя бы $x = \left[\frac{n}{2(1-\varepsilon)\log_2 n}\right]$ различных цветов. Так как алгоритм жадный, то каждая вершина из $V(G)/\bigcup_{i=1}^x C_i$ соединена с каждым из первых x цветов.

Пусть a_1, a_2, \ldots, a_x — размеры первых x цветов, $a_i < (1-\varepsilon) \log_2 n$. В дальнейших выкладках внешнее суммирование ведётся по всем возможным числам a_i от 1 до $(1-\varepsilon) \log_2 n$ и непересекающимся подмножествам $C_1, C_2, \ldots, C_x \subset V$ таким, что $|C_i| = a_i$.

$$\begin{split} &P(A) \leq \sum P(\forall \, x \in V / \bigcup_{i=1}^{x} C_i \, \forall \, i \, \exists \, y \in C_i \, | \, (x,y) \in E) \leq \\ &\leq \sum \left[\prod_{i=1}^{x} (1-2^{-a_i}) \right]^{n-\sum_{j=1}^{x} a_j} \leq \sum \left[1-2^{(\varepsilon-1)\log_2 n} \right]^{x(n-\sum_{j=1}^{x} a_j)} \leq \\ &\leq \sum [1-n^{\varepsilon-1}]^{\frac{nx}{2}} \leq \sum e^{-\frac{nx}{2n^{1-\varepsilon}}} \end{split}$$

То, что осталось под суммой, оценим окончательно как $e^{\frac{n^{\varepsilon}x}{2}} < e^{-n^{1+\delta}}, \ \delta > 0$. Вернёмся к количеству слагаемых: их не больше, чем

$$(\log_2 n)^x (C_n^{\log_2 n})^x < (\log_2 n)^x n^{x \log_2 n}$$
$$(\log_2 n)^x < n^x < n^{x \log_2 n}$$
$$n^{2x \log_2 n} = e^{2x \log_2 n \ln n} = e^{C(1+o(1))n \log_2 n}$$

Итого,

$$P(A) < n^{2x \log_2 n} e^{-n^{1+\delta}} < e^{-n^{1+\delta} + C(1+o(1))n \log_2 n} \to 0,$$

что и требовалось.

7 Билет №7

7.1 Системы общих представителей. Тривиальная верхняя и нижняя оценки

Definition. Пусть имеется s k-элементных подмножеств $\{1, 2, \ldots, n\}$. Обозначим систему этих множеств $\mathcal{M}(n, k, s)$. Система общих представителей для \mathcal{M} — любое подмножество $\{1, 2, \ldots, n\}$, пересечение которого с каждым множеством системы непусто. Минимально возможный размер с.о.п. обозначим $\tau(\mathcal{M})$.

Proposition. Для любой совокупности \mathcal{M} выполнено $\tau(\mathcal{M}) \leq \min\{s, n-k+1\}.$

Proof Можно взять по элементу из каждого множества совокупности \mathcal{M} , а можно взять любое множество размера n-k+1 — оно неизбежно пересекается с любым множеством размера k. •

Proposition. Всегда имеется совокупность \mathcal{M} , для которой $\tau(\mathcal{M}) \geq \min\{[n/k], s\}$.

Proof Если $[n/k] \ge s$, то построим совокупность из непересекающихся множеств. Если [n/k] < s, то сделаем первые [n/k] множеств не пересекающимися, а остальные возьмём произвольно. •

7.2 Верхняя оценка с помощью жадного алгоритма. Ее точность (б/д)

Theorem 22. Для любой совокупности: $\tau(\mathcal{M}) \leq max\{\frac{n}{k}, \frac{n}{k} \ln \frac{sk}{n}\} + \frac{n}{k} + 1.$

Proof Если $s \leq \frac{n}{k}$, то (предложение 13) $\tau(\mathcal{M}) \leq s \leq \frac{n}{k}$.

Если $\frac{n}{k} \ln \frac{sk}{n} \ge n$, то $\tau(\mathcal{M}) \le n \le \frac{n}{k} \ln \frac{sk}{n}$.

Иначе воспользуемся жадным алгоритмом: на каждом шаге берём элемент, лежащий в наибольшем числе множеств совокупности, и удаляем из совокупности эти множества. На каждом шаге мы удаляем sk/n множеств. Сделаем $N = \left[\frac{n}{k} \ln \frac{sk}{n}\right] + 1$ шагов, тогда в совокупности останется не более $\frac{n}{k}$ множеств. Значит, $\tau(\mathcal{M}) \leq N + \frac{n}{k}$. •

8 Билет №8

- 8.1 Гиперграфы с запрещенными пересечениями ребер
- 8.2 Основы линейно-алгебраического метода