淇江一中 2023 届高三卓越班 NLXF2023-17

高三数学限时训练 43——数列的通项(构造等差、等比数列)3

1.	数列 $\{a_n\}$ 满足 $2^n a_n$	$a_{n+1}=2^{n+1}a_{n+1}-1$,	$\underline{\mathbf{H}} a_1 = 1,$	若 $a_n < \frac{1}{5}$,	则 n 的最小值为
----	---------------------------	------------------------------	-----------------------------------	-------------------------	-----------

A. 3

B. 4

c. 5

D. 6

2. 已知数列 $\{a_n\}$ 满足 $a_1 = 50$, $2a_{n+1} = a_n - 1$,则满足不等式 $a_k \cdot a_{k+1} < 0$ 的 k (k 为正整数)的值为 ().

A. 3

B. 4

C. 5

3. 已知数列 $\{a_n\}$ 满足 $a_1=2$, $a_na_{n-1}+a_n=3a_{n-1}-1$ $(n\geq 2,n\in N^*)$,若 $T_n=a_1a_2a_3\cdots a_n$,当 $T_n>10$ 时,n的最小值为 (

4. 数列 $\{a_n\}$ 各项均是正数, $a_1=\frac{1}{2}$, $a_2=\frac{3}{2}$,函数 $y=\frac{1}{3}x^3$ 在点 $\left(a_n,\frac{1}{3}a_n^3\right)$ 处的切线过点 $\left(a_{n+2}-2a_{n+1},\frac{7}{3}a_n^3\right)$,则下列命 题正确的个数是(

① $a_3 + a_4 = 18$;

②数列 $\{a_n + a_{n+1}\}$ 是等比数列;

③数列 $\{a_{n+1}-3a_n\}$ 是等比数列;

4 $a_n = 3^{n-1}$.

A. 1

B. 2

C. 3

5. 已知数列 $\left\{a_{n}\right\}$ 满足 $a_{1}=1$, $a_{n+1}=\frac{a_{n}}{a_{n}+2}\left(n\in\mathbf{N}^{*}\right)$,若 $b_{n+1}=(n-2\lambda)\cdot\left(\frac{1}{a}+1\right)\left(n\in\mathbf{N}^{*}\right)$, $b_{1}=-\lambda$,且数列 $\left\{b_{n}\right\}$ 是单

调递增数列,则实数 λ 的取值范围是

B. $\lambda > \frac{3}{2}$ **C.** $\lambda < \frac{2}{3}$ **D.** $\lambda < \frac{3}{2}$

6.已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=\frac{a_n}{a_n+2}(n\in N^*)$.若 $b_n=\log_2\left(\frac{1}{a}+1\right)$,则数列 $\{b_n\}$ 的通项公式 $b_n=($)

A. $\frac{1}{2}n$

B. n-1

c. *n*

D. 2*n*

7.已知数列 $\{a_n\}$ 的首项 $a_1=3$,且满足 $a_{n+1}=\frac{2n-1}{2n-3}a_n+2n-1$ $\{n\in \mathbf{N}^*\}$,则 $\{a_n\}$ 中最小的一项是(

 \mathbf{A} . a_2

 \mathbf{B} . a_3

 \mathbf{c} . a_4

 \mathbf{D} . a_5

二、填空题

- 8. 若数列 $\{a_n\}$ 满足 $(n-1)a_n = (n+1)a_{n-1}$, $n \ge 2$, $n \in \mathbb{N}^*$, 且 $a_1 = 1$, 则 $a_5 = \underline{\hspace{1cm}}$.
- 9. 数列 $\{a_n\}$ 的前 n 项和为 S_n ,已知 $a_1=1$, $a_{n+1}=\frac{n+2}{n}S_n(n=1,2,3,L)$,则 $a_n=$ ____.
- **10.** 在数列 $\{a_n\}$ 中, $a_1=2$, $a_{n+1}=2\left(1+\frac{1}{n}\right)a_n+4n+4$, $\left(n\in N^*\right)$,则 $a_5=$ ______.
- **11**. 在数列 $\{a_n\}$ 中, $a_1=1$, $3^{n-1}a_n=3^{n-2}a_{n-1}-2\cdot 3^{n-2}+2(n\geqslant 2)$, S_n 是数列 $\{\frac{a_n+1}{n}\}$ 的前 n 项和,则 S_n 为______.
- **12**. 若数列 $\{a_n\}$ 满足 $a_1=2$, $a_{n+1}=4a_n+4\sqrt{a_n}+1$,则使得 $a_n\geq 2020^2$ 成立的最小正整数n的值是_____.
- **13.** 已知数列 $\{a_n\}$ 满足 $a_1 = 5$, $(2n+3)a_{n+1} (2n+5)a_n = 4n^2 + 16n + 15$,则 $a_n =$ ______.
- **14**. 已知数列 $\{a_n\}$ 满足 $\frac{a_n}{n} = \frac{n-1}{n} \left(\frac{a_{n+1}}{n+1} 1 \right) + 1 \quad (n \in \mathbb{N}^*)$,且 $a_2 = 6$,则 $\{a_n\}$ 的通项公式为_____.
- **15.** 设数列 $\{a_n\}$ 满足 $a_1=4$, $a_2=10$, $a_n^2\sqrt{a_{n-2}}=5a_{n-1}^2$, $\forall n\geq 3$,则 $\ln a_{2019}-\frac{1}{2}\ln a_{2018}=$ ______.
- **16.** 数列 $\left\{a_{n}\right\}$ 满足 $a_{1}=1,\sqrt{\frac{1}{a_{n}^{2}}+2}=\frac{1}{a_{n+1}}\left(n\in N^{*}\right)$,记 $b_{n}=\frac{1}{a_{n}^{2}2^{n}}$,则数列 $\left\{b_{n}\right\}$ 的前 n 项和 $S_{n}=$ ______.
- **17**. 若数列 $\{a_n\}$ 满足 $a_1=1$,且 $a_{n+1}=4a_n+2^n$,则 $a_6=$ ______.