Presentaciones en La TEX

Clase Beamer

Torres M.¹ España A.² Curso de LATEX, 2015

¹Facultad de Ciencias Escuela Politécnica Nacional

²Facultad de Ciencias Escuela Politécnica Nacional

Contenido

Algunos Ejemplos en LATEX

Tablas y Figuras

Algunos Ejemplos en LATEX

- 1. Todo dominio integral *finito* es un campo
- 2. Si F es un campo con q elementos , y a es un elemento no nulo de F , entonces $a^{q-1}=1$
- 3. Si F es un campo con q elementos , entonces cualquier $a\in F$ satisface la ecuación $x^q-x=0$

- 1. Sea F un campo con q elementos y a un elemento no nulo de F. Si n es el orden de a, entonces n|(q-1).
- 2. Sea p primo y m(x) un polinomio irreducible de grado r en $Z_p[x]$. Entonces la clase residual $Z_p[x]/equiv_{m(x)}$ es un campo con p^r elementos que contiene Z_p y una raíz de m(x).
- 3. Sea F un campo con q elementos. Entonces $q=p^r$ con p primo y $r\in\,N$

- 1. Sea F un campo con q elementos y a un elemento no nulo de F. Si n es el orden de a, entonces n|(q-1).
- 2. Sea p primo y m(x) un polinomio irreducible de grado r en $Z_p[x]$. Entonces la clase residual $Z_p[x]/equiv_{m(x)}$ es un campo con p^r elementos que contiene Z_p y una raíz de m(x).
- 3. Sea F un campo con q elementos. Entonces $q=p^r$ con p primo y $r\in N$

- 1. Sea F un campo con q elementos y a un elemento no nulo de F. Si n es el orden de a, entonces n|(q-1).
- 2. Sea p primo y m(x) un polinomio irreducible de grado r en $Z_p[x]$. Entonces la clase residual $Z_p[x]/equiv_{m(x)}$ es un campo con p^r elementos que contiene Z_p y una raíz de m(x).
- 3. Sea F un campo con q elementos. Entonces $q=p^r$ con p primo y $r\in\,N$

1.
$$x^4 - x = 0$$

2.
$$x(x^3-1)=0$$

3.
$$x = 0$$
 o $x^3 - 1 = 0$

4.
$$x = 0$$
 o $x = sqrt[3]1$

5.
$$\Longrightarrow x = 0, x = 1$$

1.
$$x^4 - x = 0$$

2.
$$x(x^3 - 1) = 0$$

3.
$$x = 0$$
 o $x^3 - 1 = 0$

4.
$$x = 0$$
 o $x = sqrt[3]1$

5.
$$\Longrightarrow x = 0, x = 1$$

1.
$$x^4 - x = 0$$

2.
$$x(x^3 - 1) = 0$$

3.
$$x = 0$$
 o $x^3 - 1 = 0$

4.
$$x = 0$$
 o $x = sqrt[3]1$

5.
$$\Longrightarrow x = 0, x = 1$$

1.
$$x^4 - x = 0$$

2.
$$x(x^3-1)=0$$

3.
$$x = 0$$
 o $x^3 - 1 = 0$

4.
$$x = 0$$
 o $x = sqrt[3]1$

5.
$$\Longrightarrow x = 0, x = 1$$

Nodos igualmente espaciados

Diferencias hacia adelante

$$\Delta^{0} y_{k} := y_{k},
\Delta^{1} y_{k} = y_{k+1} - y_{k},
\Delta^{2} y_{k} = \Delta(y_{k+1} - y_{k})
= y_{k+2} - y_{k+1} - y_{k+1} + y_{k}
= y_{k+2} - 2y_{k+1} + y_{k},
\dots
\Delta^{n} y_{k} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} y_{k+n-j}$$

7

Tablas y Figuras

- Utilice tabular para generar itemize simples
- Puede cargar una figura (JPEG, PNG o PDF) a través del menú Archivos.
- Para incluirlo en el documento, utilice el comando includegraphics (véase el comentario más adelante en el código fuente).

Comandos para incluir una figura:

Figura 1: Encabezamiento va aqui.

Bibliografía

- ItemA
- **●** ItemB
- **ItemC**
- ▶ ItemD
- [5] ItemE