Relatório 2: Bobinas de Helmholtz

Daniel de Sousa Cipriano - RA 233228 Thyago Martins Paula Santos - RA 237752 João Pedro Guimarães Guilherme - RA 238846 Otávio Araújo Valderrama - RA 254099

1. TEXTO PRINCIPAL

O intuito desse experimento era utilizar Bobinas de Helmholtz para calcular o campo magnético horizontal da Terra. Para isso, foi utilizado um setup inicial similar ao da Figura 1, em que utilizou-se: uma fonte de corrente variável, para poder alterar o fluxo de corrente que passa pelas bobinas facilmente; um amperímetro, para medir com precisão a corrente utilizada; uma estrutura de Bobinas de Helmholtz, para gerar um campo magnético conhecido a partir da corrente (também conhecida); um resistor de potência, para evitar curto circuito na bobina causado pelas altas tensões da fonte de corrente; um imã suspenso por uma linha fina e uma barra de suporte, para medir de forma sistemática a interação entre o ímã e o campo magnético resultante (bobina + terrestre).

Com o circuito fechado em série (mas com a fonte de corrente desligada), suspende-se o ímã entre as duas bobinas de tal forma que o ímã fique na horizontal (basta definir bem o ponto em que a linha se prende ao ímã) e se posicione na linha que conecta o centro das duas bobinas (precisa-se ajustar o comprimento da linha). Nesse momento, usa-se o ímã como uma bússola para encontrar o sentido do campo magnético terrestre e alinhar as Bobinas de Helmholtz na mesma direção. Isso é feito porque as Bobinas de Helmholtz geram um campo magnético conhecido no centro dele de acordo com a corrente utilizada, como descrito na Equação 1 (onde: I é a corrente utilizada; N é o número de espiras da bobina; R é o raio da bobina). É importante ressaltar que informações físicas sobre a bobina (e o ímã) são medidas durante o experimento também e estão presentes na Tabela 1. Além disso, ao alinhar os campos magnéticos, a sobreposição dos campos se simplifica para a soma dos módulos dos campos.

$$B_{H} = \frac{8\mu_{0}^{IN}}{5^{3/2}R} \tag{1}$$

Após isso, liga-se a fonte de corrente e se coloca o imã para oscilar longitudinalmente. Utilizando um cronômetro, mede-se o tempo total para que passe 30 oscilações (para reduzir a incerteza sobre a frequência de oscilação) e registra-se o período e a corrente utilizada. Esse procedimento é repetido um total de 40 vezes com valores de correntes diferentes de acordo com a seguinte distribuição: 16 medições para correntes entre -50mA e 50mA (é necessário muitas medições nessa região porque é nela em que é possível anular o campo da terra com o da bobina); 8 medições entre 150mA e 250mA e 8 medições entre -250mA e -150mA (há muitas medições nas extremidades para facilitar a observação de linearidade); 4 medições entre 50mA e 150mA e 4 medições entre -150mA e -50mA (poucas medições são feitas porque são regiões intermediárias).

Todo esse procedimento foi feito porque é possível relacionar a frequência de oscilação do ímã com o campo magnético resultante por meio do torque que é aplicado sobre o ímã, como explicitado na Equação 2 (onde: μ é o momento de dipolo magnético do ímã; m é o momento de inércia angular do ímã). Note que, após medir o tempo para 30 oscilações, é fácil encontrar a frequência de oscilação por meio da Equação 3 e, como o ímã é um cilindro, é possível calcular o momento de inércia angular dele por meio da Equação 4 (onde: r é o raio do cilindro; L é o comprimento do cilindro; M é a massa do cilindro). Além disso, é importante ressaltar que, como variamos a corrente, a corrente I é a variável independente, enquanto a frequência f é a variável dependente.

$$f^{2} = \frac{\mu}{4\pi^{2} m} \left| B_{Terra} \pm \frac{8\mu_{0} IN}{5^{3/2} R} \right| \tag{2}$$

$$f = \frac{30}{T_{20}} \tag{3}$$

$$m = M\left(\frac{r^2}{4} + \frac{L^2}{12}\right) \tag{4}$$

É possível notar que a Equação 2 indica uma relação não linear entre a frequência de oscilação e a corrente

utilizada. Logo, para poder analisar melhor os dados, é necessário linearizar essa equação, como feito na Equação 5.

$$y = ax + b$$

$$y = f^{2}$$

$$a = \frac{2\mu_{0}N\mu}{5^{3/2}\pi^{2}Rm}$$

$$x = I$$

$$b = \frac{\mu B_{Terra}}{4\pi^{2}m}$$
(5)

É possível notar, pelo gráfico na Figura 2, que a relação entre a frequência ao quadrado e a corrente utilizada é realmente linear e que as aproximações utilizadas até o momento são válidas (como a posição do ímã, direcionamento da bobina etc.). Percebe-se que há poucos valores espúrios nos gráficos e, quando existem, destoam por pouco da tendência geral, então não é necessário desconsiderá-los durante a análise (essas inconsistências são geradas por pequenas imprecisões durante o experimento). É importante notar que o Coeficiente de Correlação das duas retas possuem módulo maior que 0,999.

Outra análise importante que pode ser feita a partir da Figura 2 é que é possível descobrir quando o campo das Bobinas de Helmholtz estava alinhado ou não com o da Terra: como o ponto em que a frequência se anula se localiza na região em que a corrente é positiva, conclui-se que, para correntes positivas, o campo gerado pela bobina está no sentido contrário ao da terra. Além disso, percebe-se que a frequência ao quadrado cresce com o módulo do campo magnético resultante, o que significa que ele é: crescente para valores de I que geram campo magnético resultante no sentido contrário ao da Terra; decrescente para valores de I que geram campo magnético resultante no mesmo sentido do da Terra.

A partir da linearização, pode-se utilizar o método dos mínimos quadrados para encontrar os coeficientes angular e linear de cada reta e, consequentemente, avaliar os valores do campo magnético terrestre e do momento de dipolo magnético do ímã por meio das Equações 6 e 7 (note que as propagações de incerteza dessas medidas estão na última página). Para poder avaliar a coerência do experimento: mediu-se o campo magnético da Terra com um software de smartphone denominado Physics Toolbox Magnetometer; registrou-se o campo magnético terrestre fornecido pelo roteiro do experimento; calculou-se o momento de dipolo magnético do ímã com os dados da oscilação do ímã com a bobina desligada e o valor do campo magnético terrestre fornecido. Os resultados de todos esses cálculos estão presentes nas Tabelas 2 e 3, mas, de modo geral, é possível argumentar que os resultados do experimento condizem com a realidade.

$$B_{Terra} = \frac{8\mu_0 Nb}{5^{3/2} Ra} \tag{6}$$

$$\mu = \frac{5^{3/2} \pi^2 Rma}{2\mu_0 N} \tag{7}$$

De forma mais detalhada, nota-se que o campo magnético terrestre calculado por meio dos dados do experimento (19(2) μ T) possui intervalo de sobreposição com o campo fornecido pelo roteiro (17,8(1) μ T) e com o campo medido pelo software (19(1) μ T), o que mostra que há tanto precisão quanto acurácia nos dados experimentais. O mesmo fenômeno ocorre quando se compara o momento de dipolo magnético do ímã calculado por meio dos dados do experimento (148(2) mA*m²) e o considerando o campo fornecido e com o dado de oscilação com a bobina desligada (151(1) mA*m²), porém com intervalo menor.

Sabendo que os dados são coerentes com a realidade, pode-se utilizá-los para calcular o valor de corrente que anula a frequência ao quadrado, cujos resultados (cada reta e considerando o campo fornecido) estão na Tabela 4. Esse ponto é interessante analisar porque é onde há uma troca de comportamento no gráfico. Fisicamente, se justifica essa troca de comportamento porque é nessa intensidade de corrente em que o campo magnético resultante é nulo (os módulos do campo terrestre e o produzido pelas Bobinas de Helmholtz são iguais mas em sentidos opostos). Ou seja, não há torque aplicado sobre o ímã, o que permite que ele gire livremente. Novamente, nota-se que há coerência entre os valores calculados porque há intervalo de sobreposição (a corrente calculada pelos dados experimentais é 16(2) mA e a pelo campo fornecido é 14,89(9) mA).

[1] Halliday D; Resnick R; Merrill J. Fundamentos de Física vol.3, Eletromagnetismo, 3ª Edição, LTC, RJ, 1995. Cap. 24 e 26

2. FIGURAS E TABELAS

Figura 1: Representação gráfica do setup inicial do experimento

Figura 2: Gráfico de frequência de oscilação ao quadrado por fluxo de corrente com ajustes lineares

Tabela 1: Características físicas do ímã e da bobina	
Diâmetro do Ímã	6,00(3) mm
Comprimento do Ímã	25,20(3) mm
Massa do Ímã	5,20(3) g
Número de Espiras nas Bobinas de Helmholtz	140
Diâmetro Interno das Bobinas de Helmholtz	20,20(5) cm
Diâmetro Externo das Bobinas de Helmholtz	21,90(5) cm

Tabela 2: Valores de campo magnético da Terra obtidos por meios diferentes	
Campo Magnético Terrestre por Ajuste Linear dos Dados com Campo da Bobina no Mesmo Sentido do da Terra	18(2) μΤ
Campo Magnético Terrestre por Ajuste Linear dos Dados com Campo da Bobina em Sentido Contrário ao da Terra	19(3) μΤ
Campo Magnético Terrestre Médio Experimental	19(2) μΤ
Campo Magnético Terrestre por Physics Toolbox Magnetometer (Software de Smartphone)	19(1) μΤ
Campo Magnético Terrestre Fornecido pelo Roteiro do Relatório	17,8(1) μΤ

Tabela 3: Valores de momento de dipolo magnético do ímã obtido por meios diferentes	
Momento de Dipolo Magnético do Ímã por Ajuste Linear dos Dados com Campo da Bobina no Mesmo Sentido do da Terra	148(3) mA*m²
Momento de Dipolo Magnético do Ímã por Ajuste Linear dos Dados com Campo da Bobina em Sentido Contrário ao da Terra	147(3) mA*m²
Momento de Dipolo Magnético do Ímã Médio Experimental	148(2) mA*m²
Momento de Dipolo Magnético do Ímã Considerando o Campo Magnético da Terra Fornecido e com a Bobina Desligada	151(1) mA*m²

Tabela 4: Valores da corrente da bobina que força a frequência do ímã a ser nula	
Corrente da Bobina que Força a Frequência do Ímã ser Nula por Ajuste Linear dos Dados com Campo da Bobina no Mesmo Sentido do da Terra	15(2) mA
Corrente da Bobina que Força a Frequência do Ímã ser Nula por Ajuste Linear dos Dados com Campo da Bobina em Sentido Contrário ao da Terra	16(3) mA
Corrente da Bobina que Força a Frequência do Ímã ser Nula Média Experimental	16(2) mA
Corrente da Bobina que Força a Frequência do Ímã ser Nula Considerando o Campo Magnético da Terra Fornecido	14,89(9) mA

3. INCERTEZAS

Para calcular a incerteza do Período para as 30 medições, considera-se que a incerteza da medição é retangular e que há uma incerteza gaussiana por causa do reflexo do medidor, como expresso na Equação 7. Analogamente, calculou-se a incerteza da massa considerando incerteza retangular, como na Equação 8.

$$\sigma_{T30} = \sqrt{\sigma_{Medi\,\hat{q}\tilde{a}o}^2 + \sigma_{Reflexo}^2} = \sqrt{\left(\frac{0.01}{2\sqrt{3}}\right)^2 + \left(\frac{0.3}{2}\right)^2} = 0, 2s \tag{7}$$

$$\sigma_m = \frac{d}{2\sqrt{3}} = \frac{0,0001}{2\sqrt{3}} = 3 * 10^{-5} kg \tag{8}$$

Usamos propagação de incerteza para encontrar a incerteza da frequência, para a da frequência ao quadrado (utilizado na linearização da equação), a do raio da bobina, do raio do imã e do momento de inércia, com demonstrado nas Equações 9, 10, 11, 12 e 13, para um dado em que T30 é 14,56s.

$$f = \frac{30}{730} \Rightarrow \sigma_f = \left| \sigma_{T30} * \frac{\partial f}{\partial T30} \right| = \left| \sigma_{T30} * \frac{30}{730^2} \right| = \left| 0, 2 * \frac{30}{14,56^2} \right| = 0,03Hz$$
 (9)

$$f^{2} = f^{2} \Rightarrow \sigma_{f^{2}} = \left| \sigma_{f} * \frac{\partial f^{2}}{\partial f} \right| = \left| \sigma_{f} * 2f \right| = \left| 0,03 * 2 * \frac{30}{14,56} \right| = 0,1Hz^{2}$$
 (10)

$$r = \frac{D}{2} \Rightarrow \sigma_r = \left| \frac{\sigma_D}{2} \right| = \left| \frac{2,5*10^{-6}}{2} \right| = 1 * 10^{-6} m$$
 (11)

$$R = \frac{d_{Max} + d_{Min}}{4} \Rightarrow \sigma_R = \frac{\sqrt{\sigma_{r_{Max}}^2 + \sigma_{r_{Min}}^2}}{4} = \frac{\sqrt{0.005^2 + 0.005^2}}{4} = 4 * 10^{-4} m$$
 (12)

$$\sigma_{i} = \frac{\sqrt{\left((3r^{2} + L^{2})\sigma_{m}\right)^{2} + \left(6mr\sigma_{r}\right)^{2} + \left(2mL\sigma_{L}\right)^{2}}}{12} = \frac{12}{12}$$

$$= \frac{\sqrt{\left((3(0.003)^{2} + 0.0252^{2})3*10^{-5}\right)^{2} + \left(6*0.0052*0.003*10^{-6}\right)^{2} + \left(2*0.0052*0.0252*3*10^{-5}\right)^{2}}}{12}}{12} = 2*10^{-9}kgm^{2}$$

Para encontrar as incertezas dos coeficientes angular (a) e linear (b) da reta de melhor ajuste no gráfico de frequência ao quadrado por corrente, utilizamos o método dos mínimos quadrados, como utilizado nas Equações 14 e 15, para os dados em que a corrente é positiva.

$$\sigma_a = \sigma_{f^2} \sqrt{\frac{N}{N\sum\limits_{i=1}^{N} (x^2) - \left(\sum\limits_{i=1}^{N} (x)\right)^2}} = 0, 1\sqrt{\frac{20}{20*0,43783 - 2,4315^2}} = 0, 3Hz^2/A$$
(14)

$$\sigma_b = \sigma_{f^2} \sqrt{\frac{\sum_{i=1}^{N} (x^2)}{\sum_{i=1}^{N} (x^2) - \left(\sum_{i=1}^{N} (x)\right)^2}} = 0, 1\sqrt{\frac{0.43783}{20*0.43783 - 2.4315^2}} = 0, 04Hz^2$$
(15)

Novamente, usamos propagação de incerteza para encontrar a incerteza do dipolo magnético e a do campo magnético da Terra, como explicitado nas Equações 16 e 17, para os dados em que a corrente é positiva.

$$\sigma_{\mu} = \frac{5^{3/2} \pi^{2} i R a}{2 \mu_{0} N} \sqrt{\left(\frac{\sigma_{i}}{i}\right)^{2} + \left(\frac{\sigma_{R}}{R}\right)^{2} + \left(\frac{\sigma_{a}}{a}\right)^{2}} =$$

$$= \frac{5^{3/2} \pi^{2} * 2.87 * 10^{-7} * 0.2115 * 16.4}{2 \mu_{0} 140} \sqrt{\left(\frac{2 * 10^{-9}}{2.87 * 10^{-7}}\right)^{2} + \left(\frac{0.0002}{0.1058}\right)^{2} + \left(\frac{0.3}{16.4}\right)^{2}} = 0,003 Am^{2}$$
(16)

$$\sigma_{B} = \frac{4\pi^{2}ib}{\mu} \sqrt{\left(\frac{\sigma_{i}}{i}\right)^{2} + \left(\frac{\sigma_{b}}{b}\right)^{2} + \left(\frac{\sigma_{\mu}}{\mu}\right)^{2}} = \frac{4\pi^{2}*2,87*10^{-7}*0,60}{0,312} \sqrt{\left(\frac{2*10^{-9}}{2,87*10^{-7}}\right)^{2} + \left(\frac{0,04}{0,60}\right)^{2} + \left(\frac{0,003}{0,156}\right)^{2}} = 3*10^{-6}T$$
(17)