충격집을 받는 섬유강화대칭다층원통형각체의 동적좌굴해석

우 성 학

론문에서는 충격짐을 받는 섬유강화대칭다충원통형각체의 동적좌굴문제를 유한요소 법과 랴뿌노브지수법을 결합하여 고찰하였다.

지금까지 충격짐을 받는 구조의 동적좌굴해석은 주로 해석적방법[1, 2]이나 유한요소법에 기초한 수값모의방법[3]으로 진행되였다. 부댄스키-로쓰규준에 따라 특정점에서의 변위거동해석에 기초하여 동적좌굴을 판정하는 수값모의방법은 지배미분방정식을 작성하지 않는 우점이 있는 반면에 변위선도해석에서의 모호성과 같은 부족점이 있다.

론문에서는 랴뿌노브지수법[4]을 적용하여 변위해석과정을 정량화하고 그에 기초하여 축방향충격짐을 받는 섬유강화대칭다충원통형각체의 동적좌굴을 해석하였다.

ANSYS와 MATLAB의 통합환경에서 유한요소법과 랴뿌노브지수법을 결합하여 각이한 지속시간을 가지는 충격짐이 작용할 때의 변위시계렬자료를 얻고 동적좌굴짐들을 결정하였으며 선행결과와 비교하여 타당성을 평가하였다.

1. 해석대상과 방법

원통형각체(그림 1의 ㄱ))는 대칭으로 적충된 8개 충의 탄소섬유강화수지로 되여있다. 충형식은 [0/90/0/90]s 와 [0/0/60/-60]s 이며 충배렬에서 0°는 각체의 자오선방향과 일치한다.

빗사귐적충구조는 직교적충보다 자름세기가 크며 그때문에 다른 적충구조보다 더 많이 리용된다.[3]

표 기. 각제의 기아약작 못 킥막작극성당						
특성량	값	특성량	값			
길이 <i>L</i> /m	0.4	세로탄성곁수 E_{11}/MPa	134 780			
평균직경 <i>D</i> /m	0.3	가로탄성곁수 E_{22}/MPa	9 250			
각체두께/mm	1	면내자름탄성곁수 G_{12}/MPa	4 800			
충두께/mm	0.125	뽜쏭비 v_{12}	0.286			
		밀도/(kg·m ⁻³)	1 700			

표 1 각체이 기하학적 및 력학적특성량

표 1은 각체의 기하학적 및 력학적특성량들을 보여준다.

각체아래면은 억세게 고정되고 충격짐이 작용하는 웃면은 축방향변위를 제외한 모든 자유도가 구속된다. 짐은 각체웃면에 균등분포짐으로 작용한다.

탄소섬유강화수지(CFRP)각체의 동적좌굴해석을 ANSYS와 MATLAB프로그람의 련동을 통하여 실현한다. 동적거동해석은 양적동력학해석도구 ANSYS LS-DYNA를 리용하여 진행하다.

주파수해석을 통하여 각체의 고유진동수와 주기를 결정하고 집의 지속시간이 각체의 고유진동주기보다 큰 경우와 작은 경우에 대하여 집의 크기를 변화시키면서 동적거동을 고참하다.

ANSYS LS-DYNA로 모의하여 특정점에서의 변위자료를 얻은 다음 MATLAB환경에서 시계렬해석에 의해 랴뿌노브지수를 결정한다. 동적안정성은 랴뿌노브지수의 부호에 의해 판정하며 림계집은 정의랴뿌노브지수가 얻어질 때까지 우의 과정을 반복하여 결정한다.

2. 동적좌굴해석

1) 유한요소해석

충격짐은 각체경계에 작용하는 축방향균등분포누름짐으로서 일정한 크기를 가지고 유한시간동안 작용하는 직각임풀스형맥동짐이다.(그림 1의 L))

그림 1. 원통형각체와 충격짐특성 기) 원통형각체, L) 충격짐특성

집의 지속시간은 각체의 고유진동주기에 기 초하여 결정한다.

좌굴시 세로방향과 가로방향파개수와 형태가 미리 알려져있지 않으므로 원통형각체의 대청성을 고려하지 않고 전체 원통형각체를 모형화한다. 각체는 LS-DYNA에 고유한 4마디점각체요소 shell_163을 리용하여 12 000개의 요소(원주방향 200개, 축방향 60개)로 분할한다.

주파수해석에 의해 얻어진 각체의 최소고유진 동수는 455.66Hz이며 따라서 고유진동주기는 약 2ms이다. 그러므로 이 값을 포함하여 5개의 짐지

속시간 T=1ms, 2.5ms, 5ms, 10ms, 15ms에 대하여 고찰하고 선행연구[3]의 결과와 비교한다.

각체의 집작용경계(웃원둘레)의 한 점을 특정점으로 정하고 LS-DYNA에 의해 과도해석을 진행하여 특정점에서의 변위에 관한 시계렬자료를 얻는다.

2) 라뿌노브지수와 동적좌굴짐결정

시계렬자료로부터 랴뿌노브지수를 결정하는 알고리듬에는 현재 직접법을 비롯하여 몇가지가 알려져있다. 특정점에서 얻은 변위시계렬자료를 MATLAB환경에로 넘기고 직접 법에 의해 다음의 식으로 랴뿌노브지수를 결정한다.[4]

$$LE(t_N) = \frac{1}{t_N - t_0} \sum_{t=1}^{N} \ln \frac{L'(t_i)}{L(t_{i-1})}$$

여기서 $L(t_{i-1})$, $L'(t_i)$ 는 편차벡토르와 그 표준량의 길이이다.

그림 2는 5ms의 지속시간을 가진 각이한 크기의 축방향충격짐을 받는 원통형각체 [0/90/0/90]s의 특정점에서의 축방향변위와 해당한 랴뿌노브지수를 보여준다. 76kN일 때 랴 뿌노브지수는 부이며 따라서 각체의 평형상태는 안정하다. 하지만 79kN에서는 랴뿌노브지수가 정으로서 동적좌굴상태를 의미한다.

이것은 부댄스키-로쓰규준에 따르는 변위거동해석결과[3]와 근사하다.

랴뿌노브지수가 부인 경우 변위는 평형위치근방에서 미소진동하며 정인 경우에는 변 위선도에서 급격한 변화가 생긴다.

그림 2. 축방향변위와 랴뿌노브지수 ㄱ) 변위 - 시간특성 (*LE* < 0, *F* = 76kN), ㄴ) 변위 - 시간특성 (*LE* > 0, *F* = 79kN)

반복계산에 의해 78kN이 주어진 짐지속시간에서의 동적좌굴짐으로 된다. 두가지 적 충형식과 각이한 짐지속시간에 따르는 동적좌굴짐에 대한 해석결과를 표 2에 주었다.

	丑 2.	. 누가시 직증영식						
	동적좌굴짐/kN							
짐지속시간/ms	[0/90/0/90]s		오차	[0/0/60/-60]s		오차		
	론문	선행연구[3]	/%	론문	선행연구[3]	/%		
1	201	205	1.99	215	219	1.86		
2.5	108	111	2.78	134	137	2.24		
5	78	83	6.41	109	112	2.75		
10	75	80	6.67	76	80	5.26		
15	75	80	6.67	76	79	3.9		

표 2 두가지 전층형신에 따르는 동전자국진

맺 는 말

론문에서는 지속시간이 각이한 축방향충격짐을 받는 다충원통형각체의 동적좌굴을 유한요소해석과 라뿌노브지수법을 결합하여 해석하였다.

ANSYS LS-DYNA로 유한요소해석을 진행하고 MATLAB환경에서 직접법으로 랴뿌노 브지수를 결정하여 동적안정성을 고찰하였다.

해석결과는 라뿌노브지수법이 충격짐을 받는 각체의 동적안정성해석에서도 효과적인 수단으로 되며 부댄스키-로쓰규준의 적용에서 변위선도해석에 의거함이 없이 구조의 동 적좌굴을 보다 정량적으로 평가할수 있다는것을 보여준다.

참 고 문 헌

- [1] N. Amirhossein et al.; Australian J. Basic and Applied Sciences, 5, 12, 757, 2011.
- [2] C. Sun et al.; Acta Mech. Solid. Sini., 25, 4, 117, 2012.
- [3] V. Chitra et al.; Int. J. Sci. Engng. Research, 4, 5, 162, 2013.
- [4] Ch. Skokos; Lect. Notes Phys., 790, 63, 2010.

주체107(2018)년 6월 5일 원고접수

Dynamic Buckling Analysis of a Fiber Reinforced Symmetric Laminated Cylindrical Shell under Impact Loads

U Song Hak

This paper investigates the dynamic buckling of a laminated composite cylindrical shell under axial impact loads, using both finite element analysis and the Lyapunov exponent method through ANSYS LS-DYNA and MATLAB.

Key words: dynamic buckling, Lyapunov exponent, impact loads