#### **Artificial Neural Networks**

[Read Ch. 4] [Recommended exercises 4.1, 4.2, 4.5, 4.9, 4.11]

- Threshold units
- Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face Recognition
- Advanced topics

#### Connectionist Models

#### Consider humans:

- Neuron switching time ~ .001 second
- Number of neurons ~ 10<sup>10</sup>
- $\bullet$  Connections per neuron ~  $10^{4-5}$
- Scene recognition time ~ .1 second
- 100 inference steps doesn't seem like enough
- $\rightarrow$  much parallel computation

## Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

#### When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant

#### Examples:

- Speech phoneme recognition [Waibel]
- Image classification [Kanade, Baluja, Rowley]
- Financial prediction

# ALVINN drives 70 mph on highways







### Perceptron



$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

## Decision Surface of a Perceptron



Represents some useful functions

• What weights represent  $g(x_1, x_2) = AND(x_1, x_2)$ ?

But some functions not representable

- e.g., not linearly separable
- Therefore, we'll want networks of these...

## Perceptron training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$  is target value
- $\bullet$  o is perceptron output
- $\bullet$   $\eta$  is small constant (e.g., .1) called  $learning\ rate$

# Perceptron training rule

#### Can prove it will converge

- If training data is linearly separable
- $\bullet$  and  $\eta$  sufficiently small

To understand, consider simpler linear unit, where

$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn  $w_i$ 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples



Gradient

$$\nabla E[\vec{w}] \equiv \left[ \frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) 
= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) 
\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

#### Gradient-Descent $(training\_examples, \eta)$

Each training example is a pair of the form  $\langle \vec{x}, t \rangle$ , where  $\vec{x}$  is the vector of input values, and t is the target output value.  $\eta$  is the learning rate (e.g., .05).

- Initialize each  $w_i$  to some small random value
- Until the termination condition is met, Do
  - Initialize each  $\Delta w_i$  to zero.
  - For each  $\langle \vec{x}, t \rangle$  in  $training\_examples$ , Do
    - \* Input the instance  $\vec{x}$  to the unit and compute the output o
    - \* For each linear unit weight  $w_i$ , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

- For each linear unit weight  $w_i$ , Do

$$w_i \leftarrow w_i + \Delta w_i$$

### Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate  $\eta$

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- ullet Given sufficiently small learning rate  $\eta$
- Even when training data contains noise
- $\bullet$  Even when training data not separable by H

## Incremental (Stochastic) Gradient Descent

#### Batch mode Gradient Descent:

Do until satisfied

- 1. Compute the gradient  $\nabla E_D[\vec{w}]$
- $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

#### Incremental mode Gradient Descent:

Do until satisfied

- For each training example d in D
  - 1. Compute the gradient  $\nabla E_d[\vec{w}]$
  - $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if  $\eta$  made small enough

# Multilayer Networks of Sigmoid Units



## Sigmoid Unit



 $\sigma(x)$  is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property: 
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

We can derive gradient decent rules to train

- One sigmoid unit
- $Multilayer\ networks$  of sigmoid units  $\rightarrow$  Backpropagation

## Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) 
= \sum_{d} (t_d - o_d) \left( -\frac{\partial o_d}{\partial w_i} \right) 
= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

But we know:

$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$
$$\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

## Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
  - 1. Input the training example to the network and compute the network outputs
  - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight  $w_{i,j}$ 

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

## More on Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
  - In practice, often works well (can run multiple times)
- $\bullet$  Often include weight momentum  $\alpha$

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over *training* examples
  - Will it generalize well to subsequent examples?
- Training can take thousands of iterations  $\rightarrow$  slow!
- Using network after training is very fast

# Learning Hidden Layer Representations



### A target function:

| Input      | Output                 |
|------------|------------------------|
| 10000000 - | → 10000000             |
| 01000000 - | $\rightarrow 01000000$ |
| 00100000 - | $\rightarrow 00100000$ |
| 00010000 - | $\rightarrow 00010000$ |
| 00001000 - | $\rightarrow 00001000$ |
| 00000100 - | $\rightarrow 00000100$ |
| 00000010 - | $\rightarrow 00000010$ |
| 00000001 - | $\rightarrow 00000001$ |

Can this be learned??

# Learning Hidden Layer Representations

#### A network:



### Learned hidden layer representation:

| Input    |               | Hidden |     |     |               | Output   |  |
|----------|---------------|--------|-----|-----|---------------|----------|--|
| Values   |               |        |     |     |               |          |  |
| 10000000 | $\rightarrow$ | .89    | .04 | .08 | $\rightarrow$ | 10000000 |  |
| 01000000 | $\rightarrow$ | .01    | .11 | .88 | $\rightarrow$ | 01000000 |  |
| 00100000 | $\rightarrow$ | .01    | .97 | .27 | $\rightarrow$ | 00100000 |  |
| 00010000 | $\rightarrow$ | .99    | .97 | .71 | $\rightarrow$ | 00010000 |  |
| 00001000 | $\rightarrow$ | .03    | .05 | .02 | $\rightarrow$ | 00001000 |  |
| 00000100 | $\rightarrow$ | .22    | .99 | .99 | $\rightarrow$ | 00000100 |  |
| 00000010 | $\rightarrow$ | .80    | .01 | .98 | $\rightarrow$ | 00000010 |  |
| 00000001 | $\rightarrow$ | .60    | .94 | .01 | $\rightarrow$ | 00000001 |  |

# Training



# Training



# Training



## Convergence of Backpropagation

#### Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

#### Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

### Expressive Capabilities of ANNs

#### Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

#### Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

# Overfitting in ANNs





# Neural Nets for Face Recognition











Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

# Learned Hidden Unit Weights





Typical input images

http://www.cs.cmu.edu/~tom/faces.html

#### Alternative Error Functions

Penalize large weights:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ji}^2$$

Train on target slopes as well as values:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left[ (t_{kd} - o_{kd})^2 + \mu \sum_{j \in inputs} \left( \frac{\partial t_{kd}}{\partial x_d^j} - \frac{\partial o_{kd}}{\partial x_d^j} \right)^2 \right]$$

Tie together weights:

• e.g., in phoneme recognition network

## Recurrent Networks



(a) Feedforward network



(b) Recurrent network



(c) Recurrent network unfolded in time