《计算机硬件综合训练II》课程教学大纲

(Integrating Train II of Computer Hardware)

撰写人:包仲贤 马维俊 审核人:谢鹏寿

一. 课程说明

课程编号: 050700251

学时学分:2周,2学分

先修课程: 电子电路基础, MCU 原理及应用, 计算机组成原理, 计算机硬件综

合训练 I, 嵌入式系统

适用专业: 计算机科学与技术

课程性质:专业课

开课学院: 计算机与通信学院

二. 课程目标

《计算机硬件综合训练II》培养学生掌握计算机硬件系统的设计思想、原则、过程、方法,满足解决计算机硬件领域复杂工程问题能力培养的需求,同时培养学生的创新设计能力,提高其对计算机硬件系统的分析、设计、评价能力。

通过本课程的实践教学,使学生具备下列能力:

- 1. 能够运用所学的计算机硬件相关的基本理论和实验技术,根据设计题目要求进行系统的需求分析、并制定设计开发的硬件系统解决方案,能综合运用所学科学理论和技术手段进行系统分析,结合现有实验条件制定相应硬件系统开发计划,并进行仿真实验和结果分析,培养学生解决计算机硬件设计领域复杂工程问题的能力。以适应当前复杂国际形势下,计算机硬件系统自主开发设计能力,具备自主知识产权的时代发展需求。
- 2. 能够正确、规范使用工程术语撰写技术文档,以口头或书面方式进行清晰表达,能够分析设计方案的优、缺点及后续改进的方向,并能与业界同行进行有效的沟通和交流。

三、课程目标对毕业要求的支撑关系

— · · · · · · · · · · · · · · · · · · ·					
毕业要求	课程描述	课程目标对毕业 要求的支撑关系			
2. 问题分析: 能够应用数学、自然 科学和工程科学的基本原理,对计	2.4 能够分析计算机硬件设计领域复	课程目标 1			
算机领域复杂工程问题进行识别、	杂工程问题求解过程中的关键影响因	MIT H M. 1			

表达,并借助文献进行研究和分析,获得有效结论。	素,验证解决方案的合理性。	
4. 研究: 能够基于科学原理并运用 科学方法对计算机领域复杂工程	4.4 能够对计算机硬件系统实验结果	
问题进行研究,包括确定研究内	进行分析与解释数据,并通过信息综	课程目标 2
容、设计相关实验、进行计算机仿真、分析与解释数据、并通过信息	合得到合理有效的结论。	NAT H M. 2
综合得到合理有效的结论。		

四、课程教学内容

教学内容	教学要求	教学方式	学时 (天)	对应的 教学目 标
1. 设计任务理解和查阅资料 熟悉各自的设计任务要求,明确 设计任务目标及技术参数,查阅 相关文献和技术文档	【重点】分析现有计算机硬件系统的优缺点,对设计任务目标及技术参数进行分析【难点】明确设计任务目标并对技术参数进行分析	指导	1	课程教 学目标 1
2. 计算机硬件系统分析和设计 根据设计题目要求进行系统需求分析、明确系统背景及问题定义、设计方案可行性分析,制定所要设计开发的硬件系统的解决方案,结合现有实验设备,制定相应硬件系统的开发计划	【重点】进行计算机硬件系统需求分析、制定硬件系统的解决方案、开发计划 【难点】硬件系统的解决方案结合实际应用,使用硬件数据手册的能力培养	指导	3	课程教 学目标 1
3. 计算机硬件系统调试和优化 根据解决方案,在选定硬件条件 下,实现系统的设计和仿真调 试,完成系统的设计、优化及评 价,撰写系统设计说明书	【重点】计算机硬件系统的仿 真验证、调试和优化 【难点】计算机硬件系统的 设计实现和仿真	指导	5	课程教 学目标 1,2
4、答辩	【重点】针对训练过程进行答辩,准确表达系统解决方案、实现方法、仿真调试等,并对系统进行设计和评价 【难点】系统的准确表达、答辩过程中的交流与沟通	指导	1	课程教 学目标 2
合计			10	

五、课程考核与成绩评定

フ	Ĺ	评价标准				
Ī	Ţ.	优秀	良好	中等	及格	不及格
设计		(9~10分) 理解和了解相	(8分)理解 和了解大部分 相关设计内容	(7分)了解部 分相关设计内	(6分) 只了 解部分相关设	(0~5分) 未了解部分相 关设计内容

表现	关设计内容且 设计态度端正	且设计态度端 正	容且设计态度 基本端正	计内容且设计 态度基本端正	
设计进度	(9~10分) 按要求完成设 计进度所要求 的设计任务	(8分)按要 求完成设计进 度所要求的大 部分设计任务	(7分)基本按 要求完成设计 进度所要求的 大部分设计任 务	(6分)基本 能完成设计进 度所要求的部 分设计任务	(0~5分) 不能按时完成 设计任务或有 抄袭现象
设计质量	(27~30 分)了解行业 相关的标准、 法律和法规、 发展前景、前 沿知识开发规 范;掌握新技 术	(24~26 分)了解行业相关的标准、 法律和法规、 发展前景、前 沿知识,掌握 了大部分新技术	(21~23分) 基本了解行业 相关的标准、 法律和法规、 发展前景、前 沿知识以及开 发规范;掌握 了部分新技术	(18~20分) 基本了解行业 相关的标准、 法律和法规、 发展前景、前 沿知识以及基 本掌握了部分 新技术	(0~17分) 没有了解行业 相关的标准、 法律和法规、 发展前景、前 沿知识以及开 发规范或没有 掌握新技术
设计报告	(9~10分) 报告撰写规范	(8分)报告 撰写比较规范	(7分)报告撰 写规范性有所 欠缺	(6分)报告 撰写不够规范	(0~5分) 不能按时交设 计报告或有抄 袭现象
答辩	(36~40) 分)讲述准确 深入,语言表 述逻辑严密精 炼	(32~35) 分)讲述正 确,语言表述 逻辑比较严密 精炼	(28~31 分) 讲述基本正 确,语言表述 逻辑比较严密 和精炼	(24~27 分) 讲述基本正 确,语言表述 逻辑欠严密和 精炼	(0~23分) 讲述正确性有 所欠缺,语言 表述逻辑欠严 密和精炼

六、参考教材和主要参考资料

(一)参考教材:

- 1. 屈微, 王志良. STM32 单片机应用基础与项目实践(微课版). 北京:清华大学出版社,2019.
- 2. 兰州理工大学计算机与通信学院实验中心. 计算机组成原理实验指导书.

(二)主要参考资料:

- 3. 张玺君、马维俊、王璐、赵宏. 嵌入式系统原理与应用. 西安: 西安电子科 技大学出版社. 2020
- 4. 白中英. 计算机组成原理(第5版•立体化教材). 北京:科学出版社,2013.
- 5. 沈红卫等. STM32 单片机应用与全案例实践. 北京: 电子工业出版社, 2017.
- 6. 张淑清, 胡永涛, 张立国等. 嵌入式单片机 STM32 原理及应用. 北京: 机械工业 出版社, 2019

- 7. 杨光祥,梁华,朱军. STM32 单片机原理与工程实践. 武汉: 武汉理工大学出版 社,2013
- 8. 陈丽蓉等. 《嵌入式微处理器系统及应用》北京: 清华大学出版社;2010年
- 9. 沈红卫、任沙浦、朱敏杰、杨亦红、卢雪萍. STM32 应用与全案例实践. 北京: 电子工业出版社,2015.
- 10. 蒋本珊. 计算机组成原理(第3版). 北京:清华大学出版社,2013.
- 11. 王换招. 计算机组成与设计. 北京: 清华大学出版社, 2013.
- 12. 王爱英. 计算机组成与结构(第5版). 北京:清华大学出版社,2013.
- 13. 唐朔飞. 计算机组成原理(第2版). 北京: 高等教育出版社, 2008.
- 14. William Stallings. Computer Organization and Architecture: Design for Performance. 计算机组织与结构:性能设计(第7版)(影印版). 北京: 高等教育出版社,2009.