Solving Bivariate Polynomial Systems on the GPU

Marc Moreno Maza and Wei Pan

University of Western Ontario and Intel Corporation

AMMCS, Waterloo, 25 July 2011

Plan

Solving Bivariate Polynomial Systems

2 FFT over Finite Fields on the GPU

3 Solving Bivariate Polynomial Systems over Finite Fields on the GPU

2 / 30

M³ and WP () RealTriangularize AMMCS

Plan

Solving Bivariate Polynomial Systems

2 FFT over Finite Fields on the GPU

3 Solving Bivariate Polynomial Systems over Finite Fields on the GPU

3 / 30

M³ and WP () RealTriangularize AMMCS

Background

Motivation

- Solving bivariate and trivariate polynomial systems is a kernel in many algorithms involving polynomials.
- Actually some algorithms solving arbitrary polynomial systems essentially reduce to these two cases.
- The horse power of GPUs offer the opportunity for symbolic (and thus exact) computation to provide efficient implementation of that kernel even for large input problems (say with 10,000 solutions).

The bivariate case

- Very attractive: it is well understood and probably has nearly optimal algorithmic solutions.
- Moreover, its 2-D nature makes it well suited for the data-parallelism of the GPU programming model.

Background

Motivation

- Solving bivariate and trivariate polynomial systems is a kernel in many algorithms involving polynomials.
- Actually some algorithms solving arbitrary polynomial systems essentially reduce to these two cases.
- The horse power of GPUs offer the opportunity for symbolic (and thus exact) computation to provide efficient implementation of that kernel even for large input problems (say with 10,000 solutions).

The bivariate case

- Very attractive: it is well understood and probably has nearly optimal algorithmic solutions.
- Moreover, its 2-D nature makes it well suited for the data-parallelism of the GPU programming model.

40.40.41.41.11.11.00

4 / 30

Consider

$$P = (y^2 + 6)(x - 1) - y(x^2 + 1), Q = (x^2 + 6)(y - 1) - x(y^2 + 1)$$

res
$$(P, Q, y) = 2(x^2 - x + 4)(x - 2)^2(x - 3)^2$$
.

- Then, for each root $x = x_0$, we compute $gcd(P(x_0, y), Q(x_0, y))$:
 - ① gcd(P, Q, x = 2) = (y 2)(y 3).
 - ② gcd(P, Q, x = 3) = (y 2)(y 3).
- One major trouble occurs: for roots defined symbolically such as those of $x^2 x + 4$, we are repeating (modulo $x^2 x + 4 = 0$) the computations performed to get res(P, Q, y).
- Solution: we store all the computations performed to get res(P, Q, y) and use the algorithm of (Xin Li, Moreno Maza & Wei Pan, ISSAC 2009) to deduce (at essentially no costs) the GCDs.

Consider

$$P = (y^2 + 6)(x - 1) - y(x^2 + 1), Q = (x^2 + 6)(y - 1) - x(y^2 + 1)$$

$$res(P, Q, y) = 2 (x^2 - x + 4) (x - 2)^2 (x - 3)^2$$
.

- Then, for each root $x = x_0$, we compute $gcd(P(x_0, y), Q(x_0, y))$:

 - 2 gcd(P, Q, x = 3) = (y 2)(y 3).
- One major trouble occurs: for roots defined symbolically such as those of $x^2 x + 4$, we are repeating (modulo $x^2 x + 4 = 0$) the computations performed to get res(P, Q, y).
- Solution: we store all the computations performed to get res(P, Q, y) and use the algorithm of (Xin Li, Moreno Maza & Wei Pan, ISSAC 2009) to deduce (at essentially no costs) the GCDs.

Consider

$$P = (y^2 + 6)(x - 1) - y(x^2 + 1), Q = (x^2 + 6)(y - 1) - x(y^2 + 1)$$

$$res(P, Q, y) = 2 (x^2 - x + 4) (x - 2)^2 (x - 3)^2$$
.

- Then, for each root $x = x_0$, we compute $gcd(P(x_0, y), Q(x_0, y))$:

 - 2 gcd(P, Q, x = 3) = (y 2)(y 3).
- One major trouble occurs: for roots defined symbolically such as those of $x^2 x + 4$, we are repeating (modulo $x^2 x + 4 = 0$) the computations performed to get res(P, Q, y).
- Solution: we store all the computations performed to get res(P, Q, y) and use the algorithm of (Xin Li, Moreno Maza & Wei Pan, ISSAC 2009) to deduce (at essentially no costs) the GCDs.

Consider

$$P = (y^2 + 6)(x - 1) - y(x^2 + 1), Q = (x^2 + 6)(y - 1) - x(y^2 + 1)$$

$$res(P, Q, y) = 2 (x^2 - x + 4) (x - 2)^2 (x - 3)^2$$
.

- Then, for each root $x = x_0$, we compute $gcd(P(x_0, y), Q(x_0, y))$:

 - 2 gcd(P, Q, x = 3) = (y 2)(y 3).
- One major trouble occurs: for roots defined symbolically such as those of $x^2 x + 4$, we are repeating (modulo $x^2 x + 4 = 0$) the computations performed to get res(P, Q, y).
- Solution: we store all the computations performed to get res(P, Q, y) and use the algorithm of (Xin Li, Moreno Maza & Wei Pan, ISSAC 2009) to deduce (at essentially no costs) the GCDs.

Consider

$$P = (y^2 + 6)(x - 1) - y(x^2 + 1), Q = (x^2 + 6)(y - 1) - x(y^2 + 1)$$

res
$$(P, Q, y) = 2 (x^2 - x + 4) (x - 2)^2 (x - 3)^2$$
.

- Then, for each root $x = x_0$, we compute $gcd(P(x_0, y), Q(x_0, y))$:

 - 2 gcd(P, Q, x = 3) = (y 2)(y 3).
- One major trouble occurs: for roots defined symbolically such as those of $x^2 x + 4$, we are repeating (modulo $x^2 x + 4 = 0$) the computations performed to get res(P, Q, y).
- Solution: we store all the computations performed to get res(P, Q, y) and use the algorithm of (Xin Li, Moreno Maza & Wei Pan, ISSAC 2009) to deduce (at essentially no costs) the GCDs.

- Let $P, Q \in \mathbf{k}[x < y]$ with $\deg(P, y) \ge \deg(Q, y) =: q > 0$.
- The subresultant chain of (P, Q) is a sequence $S_0, S_1, S_2, \dots, S_{q-1}$ of polynomials in $\mathbf{k}[x < y]$.
- For each $d=0\cdots q-1$ the polynomial S_d is either null or has degree in y at most d
- The polynomial S_0 is res(P, Q, y) and has degree in x at most $\delta = \deg(P, y)\deg(Q, x) + \deg(Q, y)\deg(P, x)$
- The polynomials $S_0, S_1, S_2, \dots, S_{q-1}$ can be computed as follows:
 - Evaluate P, Q at $x = x_0, ..., x_\delta$ pairwise different values not cancelling both lc(P, y) and lc(Q, y).
 - For each x_i compute the subresultants of $P(x_i, y)$ and $Q(x_i, y)$ leading to evaluations of $S_0, S_1, s_2, \ldots, S_{q-1}$ at $x = x_i$.
 - ① Interpolate the necessary $S_0, S_1, S_2, \ldots, S_{q-1}$.
- Therefore, computations are essentially univariate allowing the use of FFT-based polynomial arithmetic.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○ 臺 ○ ���

- Let $P, Q \in \mathbf{k}[x < y]$ with $\deg(P, y) \ge \deg(Q, y) =: q > 0$.
- The subresultant chain of (P, Q) is a sequence $S_0, S_1, S_2, \ldots, S_{q-1}$ of polynomials in $\mathbf{k}[x < y]$.
- ullet For each $d=0\cdots q-1$ the polynomial S_d is either null or has degree in y at most d
- The polynomial S_0 is res(P, Q, y) and has degree in x at most $\delta = \deg(P, y)\deg(Q, x) + \deg(Q, y)\deg(P, x)$
- The polynomials $S_0, S_1, S_2, \dots, S_{q-1}$ can be computed as follows:
 - Evaluate P, Q at $x = x_0, ..., x_\delta$ pairwise different values not cancelling both lc(P, y) and lc(Q, y).
 - For each x_i compute the subresultants of $P(x_i, y)$ and $Q(x_i, y)$ leading to evaluations of $S_0, S_1, s_2, \ldots, S_{q-1}$ at $x = x_i$.
 - \bigcirc Interpolate the necessary $S_0, S_1, S_2, \ldots, S_{q-1}$
- Therefore, computations are essentially univariate allowing the use of FFT-based polynomial arithmetic.

- Let $P, Q \in \mathbf{k}[x < y]$ with $\deg(P, y) \ge \deg(Q, y) =: q > 0$.
- The subresultant chain of (P, Q) is a sequence $S_0, S_1, S_2, \ldots, S_{q-1}$ of polynomials in $\mathbf{k}[x < y]$.
- For each $d = 0 \cdots q 1$ the polynomial S_d is either null or has degree in y at most d
- The polynomial S_0 is res(P, Q, y) and has degree in x at most $\delta = \deg(P, y)\deg(Q, x) + \deg(Q, y)\deg(P, x)$
- The polynomials $S_0, S_1, S_2, \dots, S_{q-1}$ can be computed as follows:
 - ① Evaluate P, Q at $x = x_0, \dots, x_\delta$ pairwise different values not cancelling
- Therefore, computations are essentially univariate allowing the use of

- Let $P, Q \in \mathbf{k}[x < y]$ with $\deg(P, y) \ge \deg(Q, y) =: q > 0$.
- The subresultant chain of (P, Q) is a sequence $S_0, S_1, S_2, \ldots, S_{q-1}$ of polynomials in $\mathbf{k}[x < y]$.
- ullet For each $d=0\cdots q-1$ the polynomial S_d is either null or has degree in y at most d
- The polynomial S_0 is res(P, Q, y) and has degree in x at most $\delta = \deg(P, y) \deg(Q, x) + \deg(Q, y) \deg(P, x)$
- The polynomials $S_0, S_1, S_2, \dots, S_{q-1}$ can be computed as follows:
 - **1** Evaluate P, Q at $x = x_0, \dots, x_\delta$ pairwise different values not cancelling both lc(P, y) and lc(Q, y).
 - ② For each x_i compute the subresultants of $P(x_i, y)$ and $Q(x_i, y)$ leading to evaluations of $S_0, S_1, S_2, \ldots, S_{g-1}$ at $x = x_i$.
 - Interpolate the necessary $S_0, S_1, S_2, \dots, S_{q-1}$
- Therefore, computations are essentially univariate allowing the use of FFT-based polynomial arithmetic.

AMMCS

- Let $P, Q \in \mathbf{k}[x < y]$ with $\deg(P, y) \ge \deg(Q, y) =: q > 0$.
- The subresultant chain of (P, Q) is a sequence $S_0, S_1, S_2, \ldots, S_{q-1}$ of polynomials in $\mathbf{k}[x < y]$.
- ullet For each $d=0\cdots q-1$ the polynomial S_d is either null or has degree in y at most d
- The polynomial S_0 is res(P, Q, y) and has degree in x at most $\delta = \deg(P, y) \deg(Q, x) + \deg(Q, y) \deg(P, x)$
- The polynomials $S_0, S_1, S_2, \dots, S_{q-1}$ can be computed as follows:
 - Evaluate P, Q at $x = x_0, \dots, x_\delta$ pairwise different values not cancelling both lc(P, y) and lc(Q, y).
 - ② For each x_i compute the subresultants of $P(x_i, y)$ and $Q(x_i, y)$ leading to evaluations of $S_0, S_1, S_2, \ldots, S_{q-1}$ at $x = x_i$.
 - Interpolate the necessary $S_0, S_1, S_2, \dots, S_{q-1}$.
- Therefore, computations are essentially univariate allowing the use of FFT-based polynomial arithmetic.

AMMCS

- Let $P, Q \in \mathbf{k}[x < y]$ with $\deg(P, y) \ge \deg(Q, y) =: q > 0$.
- The subresultant chain of (P, Q) is a sequence $S_0, S_1, S_2, \ldots, S_{q-1}$ of polynomials in $\mathbf{k}[x < y]$.
- ullet For each $d=0\cdots q-1$ the polynomial S_d is either null or has degree in y at most d
- The polynomial S_0 is res(P, Q, y) and has degree in x at most $\delta = \deg(P, y) \deg(Q, x) + \deg(Q, y) \deg(P, x)$
- The polynomials $S_0, S_1, S_2, \dots, S_{q-1}$ can be computed as follows:
 - **1** Evaluate P, Q at $x = x_0, \dots, x_\delta$ pairwise different values not cancelling both lc(P, y) and lc(Q, y).
 - ② For each x_i compute the subresultants of $P(x_i, y)$ and $Q(x_i, y)$ leading to evaluations of $S_0, S_1, S_2, \ldots, S_{q-1}$ at $x = x_i$.
 - **1** Interpolate the necessary $S_0, S_1, S_2, \dots, S_{q-1}$.
- Therefore, computations are essentially univariate allowing the use of FFT-based polynomial arithmetic.

Plan

Solving Bivariate Polynomial Systems

2 FFT over Finite Fields on the GPU

3 Solving Bivariate Polynomial Systems over Finite Fields on the GPU

AMMCS

7 / 30

 M^3 and WP () RealTriangularize

Background

Motivation

- FFTs over finite fields is at the core of asymptotically fast polynomial arithmetic.
- Most FFTs on GPUs are for complex numbers, such as NVIDIA CUFFT library.

Testing in GB/s

$\log_2 n$	memset	Main Mem to GPU	GPU to Main Mem	GPU Kernel	
23	1.56	1.33	1.52	61.6	
24	1.56	1.34	1.52	69.9	
25	1.39	1.35	1.53	75.0	
26	1.39	1.28	1.50	77.4	
27	1.43	1.35	1.49	79.0	

- Intel Core 2 Quad Q9400 @ 2.66GHz, 6GB memory, memory interface width 128 bits
- \bullet GeForce GTX 285, 1GB global memory, 30 \times 8 cores, memory interface width 512 bits

Discrete Fourier Transform (DFT)

Definition

Given a primitive *n*-th root of unity ω (i.e. $\omega^{n/2}=-1$), and

$$f(t) = x_0 + x_1 t + \cdots + x_{n-1} t^{n-1},$$

 $\mathrm{DFT}_n^\omega(f)$ is $\mathbf{y} = (y_0, \dots, y_{n-1})$ with $y_k = f(\omega^k)$ for $0 \le k < n$. As a matrix-vector product, it is

$$\mathbf{y} = \mathrm{DFT}_n \mathbf{x}, \quad \mathrm{DFT}_n = [\omega^{k\ell}]_{0 \le k, \, \ell < n}.$$
 (1)

Example

$$\begin{cases} y_0 = x_0 + x_1 \\ y_1 = x_0 - x_1 \end{cases} \iff \begin{bmatrix} y_0 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

That is,
$$DFT_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
.

Extracting parallelism from structural formulas

$I_n \otimes A$: block parallelism

Extracting parallelism from structural formulas

$A \otimes I_n$: vector parallelism

Stockham FFT

$$\mathrm{DFT}_{2^k} = \prod_{i=0}^{k-1} \underbrace{\left(\mathrm{DFT}_2 \otimes I_{2^{k-1}}\right)}_{\text{butterfly}} \underbrace{\left(D_{2,2^{k-i-1}} \otimes I_{2^i}\right)}_{\text{twiddling}} \underbrace{\left(L_2^{2^{k-i}} \otimes I_{2^i}\right)}_{\text{reordering}}$$

```
void stockham_dev(int *X_d, int n, int k, const int *W_d, int p)
{
  int *Y_d;
  cudaMalloc((void **)&Y_d, sizeof(int) * n);
  butterfly_dev(Y_d, X_d, k, p);
  for (int i = k - 2; i >= 0; --i) {
    stride_transpose2_dev(X_d, Y_d, k, i);
    stride_twiddle2_dev(X_d, W_d, k, i, p);
    butterfly_dev(Y_d, X_d, k, p);
  }
  cudaMemcpy(X_d, Y_d, sizeof(int)*n, cudaMemcpyDeviceToDevice);
  cudaFree(Y_d);
}
```

Cooley-Tukey FFT

$$\mathrm{DFT}_{2^k} = \left(\prod_{i=1}^k \left(I_{2^{i-1}} \otimes \mathrm{DFT}_2 \otimes I_{2^{k-i}}\right) T_{n,i}\right) R_n$$

with the twiddle factor matrix $T_{n,i} = I_{2^{i-1}} \otimes D_{2,2^{k-i}}$ and the bit-reversal permutation matrix

$$R_n = (I_{n/2} \otimes L_2^2)(I_{n/2^2} \otimes L_2^4) \cdots (I_1 \otimes L_2^n).$$

 M^3 and WP () RealTriangularize AMMCS 13 / 30

Timing FFT in milliseconds

е	modpn	Cooley-Tukey		C-T + Mem		Stockham		S + Mem	
		time	ratio	time	ratio	time	ratio	time	ratio
12	1	1	1.0	1	1.0	2	0.5	2	0.5
13	1 1	2	0.5	2	0.5	2	0.5	3	0.3
14	3	1	3.0	2	1.5	2	1.5	3	1.0
15	4	2	2.0	2	2.0	3	2.0	3	1.3
16	10	3	3.3	3	3.3	3	3.3	4	3.3
17	16	4	4.0	5	3.2	3	5.3	5	3.2
18	37	6	6.2	9	4.1	4	9.3	7	5.3
19	71	11	6.5	15	6.5	6	11.8	10	7.1
20	174	22	7.9	28	6.2	9	19.3	16	10.9
21	470	44	10.7	56	8.4	16	29.4	28	16.8
22	997	83	12.0	105	9.5	29	34.4	52	19.2
23	2070	165	12.5	210	9.9	56	37.0	101	20.5
24	4194	330	12.7	418	10.0	113	37.0	201	20.9
25	8611	667	12.9	842	10.2	230	37.4	405	21.2
26	17617	1338	13.2	1686	10.4	473	37.2	822	21.4

The GPU is GTX 285.

Plan

Solving Bivariate Polynomial Systems

2 FFT over Finite Fields on the GPU

3 Solving Bivariate Polynomial Systems over Finite Fields on the GPU

AMMCS

15 / 30

M³ and WP () RealTriangularize

Solving bivariate polynomial systems

Recall of our bivariate system solving strategy

Solving P(x, y) = Q(x, y) = 0 is essentially done as follows:

- ① Determine necessary conditions on x for P(x)(y) and Q(x)(y) to have common roots; such x's are roots of the **resultant** R(x) of P, Q w.r.t. y.
- ② For $x = x_0$ such that x_0 is a root of R determine the common solutions of $P(x_0)(y) = 0$ and $Q(x_0)(y) = 0$; this is essentially a GCD computation.

Both steps can be easily deduced from a so-called **Subresultant Chain Computation** which can be computed via evaluation/interpolation, thus via **FFT**.

4□ > 4□ > 4 = > 4 = > = 90

Let $P, Q \in \mathbf{k}[x, y]$ such that $p = \deg(P, y) \ge q = \deg(Q, y) > 1$, where \mathbf{k} is a **finite field**, for instance $\mathbb{Z}/9001\mathbb{Z}$.

① Compute degree bound $n = 2^{\ell}$ with

$$\deg_x \operatorname{res}(P, Q, y) < n.$$

② Evaluate P, Q at $x = \omega^j$ for $j = 0 \cdots n - 1$ by calling

$$I_{p+1} \otimes \mathrm{DFT}_n^{\omega}(P)$$
 and $I_{q+1} \otimes \mathrm{DFT}_n^{\omega}(Q)$,

with a **well-chosen** *n*-primitive root of unity ω .

Ompute univariate subresultant chains

$$R_j = \mathsf{SubResChain}(P_j, Q_j, y)$$

for all evaluation images (P_j, Q_j) , which essentially boils down to a sequence of **univariate** (pseudo)-divisions.

- These images form a data-structure that we call the SCube:
 - it is built and stored on the GPU,
 - ▶ the host runs code which queries the SCube.

Let $P, Q \in \mathbf{k}[x, y]$ such that $p = \deg(P, y) \ge q = \deg(Q, y) > 1$, where \mathbf{k} is a **finite field**, for instance $\mathbb{Z}/9001\mathbb{Z}$.

① Compute degree bound $n = 2^{\ell}$ with

$$\deg_x \operatorname{res}(P, Q, y) < n.$$

2 Evaluate P, Q at $x = \omega^j$ for $j = 0 \cdots n - 1$ by calling

$$I_{p+1} \otimes \mathrm{DFT}_n^{\omega}(P)$$
 and $I_{q+1} \otimes \mathrm{DFT}_n^{\omega}(Q)$,

with a **well-chosen** *n*-primitive root of unity ω .

Compute univariate subresultant chains

$$R_j = SubResChain(P_j, Q_j, y)$$

for all evaluation images (P_j, Q_j) , which essentially boils down to a sequence of **univariate** (pseudo)-divisions.

- These images form a data-structure that we call the SCube:
 - it is built and stored on the GPU,
 - ▶ the host runs code which queries the SCube.

Let $P, Q \in \mathbf{k}[x, y]$ such that $p = \deg(P, y) \ge q = \deg(Q, y) > 1$, where \mathbf{k} is a **finite field**, for instance $\mathbb{Z}/9001\mathbb{Z}$.

① Compute degree bound $n = 2^{\ell}$ with

$$\deg_x \operatorname{res}(P, Q, y) < n.$$

2 Evaluate P, Q at $x = \omega^j$ for $j = 0 \cdots n - 1$ by calling

$$I_{p+1} \otimes \mathrm{DFT}_n^{\omega}(P)$$
 and $I_{q+1} \otimes \mathrm{DFT}_n^{\omega}(Q)$,

with a **well-chosen** *n*-primitive root of unity ω .

Compute univariate subresultant chains

$$R_j = \mathsf{SubResChain}(P_j, Q_j, y)$$

for all evaluation images (P_j, Q_j) , which essentially boils down to a sequence of **univariate** (pseudo)-divisions.

- These images form a data-structure that we call the SCube:
 - it is built and stored on the GPU,
 - ▶ the host runs code which queries the SCube.

Let $P, Q \in \mathbf{k}[x, y]$ such that $p = \deg(P, y) \ge q = \deg(Q, y) > 1$, where **k** is a **finite field**, for instance $\mathbb{Z}/9001\mathbb{Z}$.

① Compute degree bound $n = 2^{\ell}$ with

$$\deg_x \operatorname{res}(P, Q, y) < n.$$

2 Evaluate P, Q at $x = \omega^j$ for $j = 0 \cdots n - 1$ by calling

$$I_{p+1} \otimes \mathrm{DFT}_n^{\omega}(P)$$
 and $I_{q+1} \otimes \mathrm{DFT}_n^{\omega}(Q)$,

with a well-chosen *n*-primitive root of unity ω .

Compute univariate subresultant chains

$$R_j = \mathsf{SubResChain}(P_j, Q_j, y)$$

for all evaluation images (P_i, Q_i) , which essentially boils down to a sequence of univariate (pseudo)-divisions.

- These images form a data-structure that we call the SCube:
 - it is built and stored on the GPU.
 - ▶ the host runs code which queries the SCube.

Subresultant chain via FFT: implementation issues

Different strategies

- Issues with the direct FFT method:
 - Fourier prime limitation,
 - a valid grid is required,
 - translations are tried a few times.
- Subproduct tree techniques (indirect use of FFT, less efficient) are back-up solutions.

Construction of the SCube on the GPU

- Coarse-grained construction (always works)
- Fine-grained construction (requires some genericity assumption)

Subresultant chain via FFT: implementation issues

Different strategies

- Issues with the direct FFT method:
 - Fourier prime limitation,
 - a valid grid is required,
 - translations are tried a few times.
- Subproduct tree techniques (indirect use of FFT, less efficient) are back-up solutions.

Construction of the SCube on the GPU

- Coarse-grained construction (always works)
- Fine-grained construction (requires some genericity assumption)

Approach (I): coarse-grained implementation

Main idea

Each CUDA thread runs a univariate subresultant algorithm.

Remarks

- Simple and always works.
- Still enough threads when *n* is big.
- Unfavoured memory access pattern to the GPU memory: threads in a thread wrap access different memory regions in an irregular fashion.

Profiling coarse-grained implementation

 M^3 and WP () RealTriangularize AMMCS 20 / 30

Approach (II): fine-grained implementation

Main idea

Break a list of univariate subresultant computations into a sequence of **lists of** univariate polynomial (pseudo)-divisions.

Remarks

- Tricky to implement.
- Require the following further assumption: The degree sequences of all images (P_i, Q_i) are the same.

Break pseudo-divisions

Example

Let $f = a_3x^3 + a_2x^2 + a_1x + a_0$ and $g = b_2x^2 + b_1x + b_0$. To obtain the pseudo-remainder prem(f, -g, x) of f and -g, we compute

$$b_1 = -b_2h_2 + c_2g = d_1x + b_0.$$

Alternatively, we compute

(S1)
$$c_2 = \begin{vmatrix} a_3 & a_2 \\ b_2 & b_1 \end{vmatrix}$$
 $c_1 = \begin{vmatrix} a_3 & a_1 \\ b_2 & 0 \end{vmatrix}$ $c_0 = \begin{vmatrix} a_3 & a_0 \\ b_2 & 0 \end{vmatrix}$

(S2)
$$d_1 = \begin{vmatrix} c_2 & c_1 \\ b_2 & b_1 \end{vmatrix}$$
 $d_0 = \begin{vmatrix} c_2 & c_0 \\ b_2 & b_0 \end{vmatrix}$

One can do a list of pseudo-divisions with the same input degrees.

4 m > 4 m >

 M^3 and WP () RealTriangularize AMMCS 22 / 30

Profiling fine-grained implementation

Computing resultants

d	t ₀	t_1	t_1/t_0
30	0.23	0.29	1.3
40	0.23	0.43	1.9
50	0.27	1.14	4.2
60	0.27	1.53	5.7
70	0.31	3.95	12.7
80	0.32	4.88	15.3
90	0.35	5.95	17.0
100	0.50	19.10	38.2
110	0.53	17.89	33.8
120	0.58	19.72	34.0

Bivariate dense polynomials of total degree d.

- t₀, GPU fft code
- t₁, CPU fft code
- Nvidia Tesla C2050

d	t ₀	t_1	t_1/t_0	
8	0.23	0.76	3.3	
9	0.24	0.85	3.5	
10	0.25	0.98	3.9	
11	0.24	1.10	4.6	
12	0.30	4.96	16.5	
13	0.31	5.52	17.8	
14	0.32	6.07	19.0	
15	0.78	8.95	11.5	
16	0.65	31.65	48.7	
17	0.66	34.55	52.3	
18	3.46	47.54	13.7	
19	0.73	51.04	69.9	
20	0.75	43.12	57.5	

Trivariate dense polynomials of total degree d.

Bivariate solver

Bivariate solver on the CPU

Bivariate solver on the GPU

Solving bivariate systems in seconds

d	$t_0(gpu)$	$t_1(total)$	t ₂ (cpu)	t ₃ (total)	t_2/t_0	t_3/t_1
30	0.25	0.35	0.14	0.25	0.6	0.7
40	0.25	0.46	0.42	0.64	1.7	1.4
50	0.28	0.67	1.14	1.56	4.1	2.3
60	0.29	0.88	1.54	2.20	5.3	2.5
70	0.31	1.20	3.94	4.94	12.7	4.1
80	0.32	1.42	4.84	6.06	15.1	4.3
90	0.33	1.80	5.94	7.54	18.0	4.2
100	0.48	2.56	14.23	16.66	29.7	6.5
110	0.52	2.93	16.78	19.58	32.1	6.7
120	0.55	3.80	24.41	28.60	44.4	7.5

• d : total degree of the input polynomial

• t₀ : GPU FFT based scube construction

ullet t_1 : total time for solving with GPU code

• t2 : CPU FFT based scube construction

• t_3 : total time for solving without CPU code

28 / 30

Summary and notes

- The Stockham FFT achieves a speedup factor of 21 for large FFT degrees, comparing to the modpn serial implementation.
- The subresultant chain construction has been improved by a factor of (up to) 44 on the GPU.
- For the bivariate solver, more code has to be ported to GPU (mainly univariate polynomial GCDs)
- Nevertheless the GPU-based code solves within a second, polynomial systems for which pure serial code takes 7.5 sec.
- The goal is to make bivariate and trivariate system solvers as fast as a univariate GCD routine in MAPLE.

Subresultant chain computation

◆ロト ◆個ト ◆差ト ◆差ト を めなべ