### **APPLICATION ARTICLE**



# Two multi-start heuristics for the *k*-traveling salesman problem

Venkatesh Pandiri<sup>1</sup> · Alok Singh<sup>1</sup>

Accepted: 4 June 2020 / Published online: 7 July 2020 © Operational Research Society of India 2020

#### Abstract

This paper is concerned with the k-traveling salesman problem (k-TSP), which is a variation of widely studied traveling salesman problem (TSP). Given a set of n cities including a home city and a fixed value k such that  $1 < k \le n$ , this problem seeks a tour of minimum length which starts and ends at the home city and visits k cities (including the home city) exactly out of these n cities. Finding a feasible solution to k-TSP involves finding a subset of k cities including the home city first, and then a circular permutation representing a tour of these k cities. In this paper, we have proposed two multi-start heuristic approaches for the k-TSP. The first approach is based on general variable neighborhood search algorithm (GVNS), whereas the latter approach is a hyper-heuristic (HH) approach. A variable neighborhood descent strategy operating over two neighborhood structures is utilized for doing the local search in the GVNS. As part of the hyper-heuristic, two low level heuristics are considered. To the best of our knowledge, these are the first metaheuristic and hyperheuristic approaches for the k-TSP. To evaluate the performance of our approaches, a set of benchmark instances is created utilizing instances from TSPLIB. Computational results on these benchmark instances show HH approach to be better than GVNS approach.

**Keywords** k-traveling salesman problem · Traveling salesman problem · General variable neighborhood search · Hyper-heuristic · Heuristic

School of Computer and Information Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India



Alok Singh alokcs@uohyd.ernet.in
 Venkatesh Pandiri venkatesh78.p@gmail.com

### 1 Introduction

The k-traveling salesman problem (k-TSP) is a variation of the well known traveling salesman problem (TSP). Given a set of n cities including a home city and a fixed value  $1 < k \le n$ , the k-TSP consists in finding a subset of k cities including the home city and a tour visiting each city of this subset exactly once so that this tour has minimum length among all such tours over any subset of k cities that includes the home city. The TSP can be considered as a special case of k-TSP with k = n. On the other hand, k-TSP in itself can be considered as a special case of prize collecting traveling salesman problem (PCTSP) [1] where each city is associated with a prize and a penalty. The salesman collects the prize associated with a city in case he visits that city, and incurs the penalty associated with a city in case he do not visit that city. The goal of the PCTSP is to minimize the sumtotal of distance traveled by the salesman and total penalties incurred while collecting a specified minimum aggregate of prize. The quota traveling salesman problem (QTSP) is a special case of the PCTSP, where there is no penalty for not visiting a city, i.e., penalties for all cities can be considered as zero. The k-TSP can be considered as a special case of the QTSP, where the prize associated with each city is 1 and the specified minimum aggregate of prize is k [2]. The k-TSP is  $\mathcal{NP}$ -hard as it generalizes the TSP whose  $\mathcal{NP}$ -hardness is well known. This problem finds applications in those situations where there are not enough resources to visit all the cities, like in the design of distribution networks and rural healthcare delivery.

Some constant factor approximation algorithms exist in the literature for the k-TSP [3–8]. The approximation algorithm presented in [7] achieves the best known approximation ratio of 2. However, the k-TSP did not receive as much attention from the researchers as other TSP variants in spite of its potential applications in resource constrained environments. In fact, no metaheuristic approach exists in the literature for the k-TSP. This served as the motivation to develop the metaheuristic approaches presented in this paper.

Solving the k-TSP involves two aspects, viz. subset selection (selecting a subset containing k cities including home city) and permutation (finding the best circular permutation of the k cities belonging to the selected subset). Any solution approach for k-TSP has to deal with both of these aspects in an appropriate manner in order to be effective over a wide range of instances. No matter how good the strategy is for subset selection in an approach for k-TSP, it will not yield a good solution for k-TSP if strategy to deal with permutation aspect is not designed properly. Likewise, an approach using a very good strategy to deal with permutation aspect but a weak strategy for subset selection, will not succeed either. Further, relative importance of these two aspects may vary from one instance of the problem to another, and hence, an approach needs to adapt swiftly as per the characteristic of the instance at hand in order to be efficient. Keeping all these facts in mind, we have developed two multi-start heuristic approaches for k-TSP. Our first approach is a simple but effective general variable neighborhood



search (GVNS) algorithm, which incorporates the variable neighborhood descent as local search. This approach utilizes two neighborhood structures one based on subset selection, whereas the other based on permutation. Our second approach is based on hyper-heuristic approach which again incorporates two low level heuristics. The first low level heuristic caters to subset selection aspect, whereas the second low level heuristic caters to permutation aspect. Two versions of hyper-heuristic approach are presented in this paper.

The remainder of this paper is organized in the following manner: Sect. 2 formally defines the *k*-TSP. Section 3 describes our multi-start general variable neighborhood search based approach for the *k*-TSP, whereas Sect. 4 describes our multi-start hyperheuristic approach for the *k*-TSP. Computational results and their analysis are presented in Sect. 5. Finally, Sect. 6 concludes the paper by listing the contributions of the paper and some directions in which future research can be carried out based on the work reported in this paper.

### 2 Problem definition

Given a complete, edge-weighted, undirected graph G = (V, E), where  $V = \{1, 2, \dots, n\}$  is the set of n nodes in which the first node '1' represents the home city and the remaining n-1 nodes represent other cities,  $E = \{(i,j)|i,j \in V\}$  is the set of edges and each edge  $(i,j) \in E$  has an associated distance  $d_{ij}$ . The k-TSP seeks a minimum length Hamiltonian cycle over all the subgraphs induced by the subsets of V with exactly k nodes including the home city. Throughout this paper, we will use node and city interchangeably. Let V' denotes such a subset of k nodes. We will use binary variable  $y_i$  to specify whether a node i belongs to V' ( $y_i = 1$ ) or not ( $y_i = 0$ ), and another binary variable  $x_{ij}$  to specify whether an edge (i, j) belongs to the Hamiltonian cycle over V' ( $x_{ij} = 1$ ) or not ( $x_{ij} = 0$ ). With the help of these notational conventions, the k-TSP can be formulated in the following manner:

$$Minimize \sum_{i \in V} \sum_{j \in V} d_{ij} x_{ij} (1)$$

subject to:

$$\sum_{i \in V} y_i = k,\tag{2}$$

$$\sum_{i \in V} x_{1i} = 1 = \sum_{i \in V} x_{i1},\tag{3}$$

$$\sum_{(k,i)\in E} x_{ki} + \sum_{(i,j)\in E} x_{ij} = 2y_i \quad \forall i\in V, \tag{4}$$



$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1, \quad \forall S \subset V' \subset V$$
 (5)

$$x_{ij}, y_i \in \{0, 1\} \quad \forall (i, j) \in E, i \in V.$$
 (6)

The objective function of the k-TSP is represented by Eq. (1) which minimizes the total length of the cycle. Equation (2) ensures that k cities are exactly visited and Eq. (3) enforces the constraint that the tour should start and end at the first city (i.e., home city). Equation (4) enforces the constraints on the in-degree and the out-degree of the visited nodes. Equation (5) is the sub tour elimination constraint. Equation (6) restricts the values of decision variables  $x_{ij}$  and  $y_i$  to either 0 or 1.

# 3 Multi-start general variable neighborhood search approach

Before providing the details of the proposed multi-start general variable neighborhood search approach for the *k*-TSP, an overview of variable neighborhood search, variable neighborhood descent search and general variable neighborhood search will be provided.

Mladenović and Hansen [9] proposed variable neighborhood search (VNS) which is a metaheuristic that searches different neighborhood structures in a systematic manner. VNS utilizes both deterministic and stochastic changes of the neighborhood structures. The VNS has two phases, viz. local search and shake phases. The local search phase is responsible for exploitation (finding an improved solution from a given solution). On the other hand, the shake phase is responsible for exploration (escaping from locally optimal solution).

Algorithm 1 provides the pseudo-code of basic VNS. Let  $S_P$  and  $f(S_P)$  represents a solution for a problem under consideration P and its fitness value, and let  $\mathcal{N} = \{N_1, N_2, \dots, N_{i_{max}}\}$  represents a set of  $i_{max}$  different neighborhood structures. The VNS begins by generating an initial solution, and setting the neighborhood indicator variable i to 1, then an iterative process ensues. Usually, but not always, this initial solution is generated in a random fashion. During each iteration, a random solution  $S_P'$  in the neighborhood  $N_i$  of current solution  $S_P$  is generated via shake phase. The local search phase takes  $S_P'$  as input and make an attempt to find an improved solution  $S_P''$  in the neighborhood  $N_i$  of  $S_P'$ . In case  $S_P''$  is found to be better than the current solution  $S_P$ , then  $S_P''$  replaces  $S_P$  as the current solution, and the VNS moves to the first neighborhood structure (i.e., i is reset to 1) in the next iteration, otherwise the VNS continues with the next neighborhood structure (assuming after  $N_{i_{max}}$ , the next neighborhood structure is  $N_1$ ) in the next iteration. This process is repeated as long as termination criterion is not met.



### Algorithm 1: Pseudo-code of basic VNS

Input: VNS parameters and a problem instance

Output: Best solution obtained by VNS

 $S_P \leftarrow \text{Generate\_Initial\_Solution()};$ 

while termination criterion is not met do

# Algorithm 2: Pseudo-code of VND

return  $S_P$ ;

Input: VND parameters and a problem instance

Output: Best solution obtained by VND

 $S_P \leftarrow \text{Generate\_Initial\_Solution()};$ 

```
repeat
```

until no improvement exists in any of  $i_{max}$  neighborhoods;

return  $S_P$ ;

The variable neighborhood descent (VND) [9] is a special case of the basic VNS, where there is no shake phase, and as a result different neighborhood structures are explored in a deterministic manner. Further, the termination criterion is



non-existence of a solution better than the current solution in any of the  $i_{max}$  neighborhoods. Algorithm 2 provides the pseudo-code of VND. Clearly, VND returns a solution that is locally optimal with respect to all  $i_{max}$  neighborhoods. The use of VND for local search is quite common due to the fact that the chances of obtaining a good solution is high by using it to explore multiple neighborhood structures in a systematic manner in comparison to methods utilizing a single neighborhood structure. When VND is used as a local search, it starts with a solution that is passed to it as input instead of an initial (random) solution.

The general variable neighborhood search [10] is a variation of VNS [9], that makes use of VND for the local search phase. The general variable neighborhood search has been applied successfully to solve numerous combinatorial optimization problems.

### 3.1 Proposed multi-start general variable neighborhood search

Inspired by the success of the general variable neighborhood search in solving several variations of the TSP [11–14], we have developed a multi-start general variable neighborhood search approach for the k-TSP which incorporates a VND strategy as local search. This VND strategy explores the different neighborhood structures by following the first improvement strategy [10]. Algorithm 3 provides the pseudocode of our multi-start GVNS approach. Hereafter, this approach will be referred to as GVNS. GVNS being a multi-start approach, restarts  $N_{rst}$  number of times. The description about the salient features of our GVNS approach can be found in the following subsections. It is to be noted that a preliminary version of this GVNS approach for k-TSP has been presented in [15].

### 3.1.1 Solution encoding and fitness

We have represented a solution by the linear permutation of k cities constituting the tour where home city always occupies the first position. Actually, a tour is a circular permutation and k linear permutations corresponds to a single circular permutation comprising k cities. Hence, there is a redundancy when a linear permutation is used to represent a circular permutation. By fixing the first position permanently for the home city, this redundancy got eliminated. It is to be noted that no component of GVNS can modify home city or its position.

The objective function (Eq. 1) itself is used as the fitness function, i.e., the fitness of a solution is the total distance traveled by the salesman. As k-TSP is a minimization problem, a solution having a lower value of the fitness function is regarded as more fit than a solution having a higher value.

# 3.1.2 Initial solution generation

The initial solution is generated in an iterative manner. The procedure begins by inserting the home city at the first position in the tour and then during each iteration an unvisited city is chosen randomly and inserted into the tour at some random



position. This procedure repeats as long as feasibility condition remains unsatisfied, i.e., k cities have not been visited.

# 3.1.3 Variable neighborhood descent (VND)

VND is used as a local search very often due to its ability to explore different neighborhood structures systematically. For VND to be effective, the neighborhood structures have to be defined as per the characteristics of the problem at hand. We have defined two neighborhood structures, viz.  $N_1$  and  $N_2$  for the k-TSP after giving due consideration to its characteristics. The  $N_1$  deals with the subset selection characteristic, whereas the  $N_2$  deals with the permutation characteristic. These two neighborhoods are described below:

- 1. Neighborhood  $N_1$ : The first neighborhood  $N_1$  is based on exchanging a visited city with an unvisited city. In this neighborhood, to create a new solution S' in the neighborhood of an existing solution S, a visited city is removed from S and an unvisited city is added at the best possible position. By best possible position, we mean a position that yields a solution of least cost once the city is added to that position. To find the best possible position, we have to explore all the k-1 positions.
- 2. Neighborhood  $N_2$ : The second neighborhood  $N_2$  is based on swapping the positions of two visited cities in the tour. In this neighborhood, to create a new solution S' in the neighborhood of an existing solution S, two visited cities swap their positions.

Owing to the fact that the neighborhood structures at the beginning are explored more often than the latter ones, the performance of VND is influenced by the order in which various neighborhood structures are explored. We explore  $N_1$  first and then  $N_2$  (In fact, we have named them so based on this decision only). As mentioned previously, the first improvement strategy is used by the VND. In any of our two neighborhoods, the moment VND finds a solution better than the current solution, the current solution is immediately replaced with this new better solution, and the VND moves to the neighborhood  $N_1$  of this new current solution. VND continues until both  $N_1$  &  $N_2$  are completely explored without finding any improved solution. The current solution at this juncture is locally optimum with respect to both  $N_1$  &  $N_2$  and is returned as the solution found by VND.

As mentioned already, our two neighborhoods are explored according to a first improvement strategy. Once, an improved solution is encountered in the neighborhood, current solution will be replaced with the improved solution and the search process begins exploring neighborhood  $N_1$  of this newly improved solution. In the worst case of exploring neighborhood  $N_1$  as per the exchange move, all the k-1 cities (excluding the home city) in the tour may have to be tried one after the other for exchange with each of the n-k unvisited cities. For identifying the best position for these n-k cities, all the k-1 positions (excluding the position 1 reserved for home city) in the tour need to be tried for possible insertion. Therefore, exploring



the neighborhood  $N_1$  requires  $(k-1) \times (n-k) \times (k-1)$  operations which has the complexity of  $\mathcal{O}(nk^2)$ . Likewise, in the worst case of exploring neighborhood  $N_2$  as per the swap move, each of the k-1 cities in tour may have to be tried one after the other for swap with other k-2 cities in the tour. Therefore, exploring the neighborhood  $N_2$  has the complexity of  $\mathcal{O}((k-1) \times (k-2)) = \mathcal{O}(k^2)$ .

```
Algorithm 3: Pseudo-code of GVNS Approach for k-TSP
 Input: GVNS parameters and a k-TSP instance
 Output: Best solution obtained by GVNS
 best \leftarrow \infty;
 for j \leftarrow 1 to N_{rst} do
      S_{k-TSP} \leftarrow \text{Generate\_Initial\_Solution()};
      if f(S_{k-TSP}) < f(best) then
       best \leftarrow S_{k-TSP};
      i \leftarrow 1:
      while termination criterion is not met do
          S'_{k-TSP} \leftarrow \text{Shake}(S_{k-TSP}, N_i);
          S_{k-TSP}^{"} \leftarrow \text{VND}(S_{k-TSP}^{\prime});
          if f(S_{k-TSP}'') < f(S_{k-TSP}) then
            S_{k-TSP} \leftarrow S_{k-TSP}'';
i \leftarrow 1;
          else if i < i_{max} then
           else
      if f(S_{k-TSP}) < f(best) then
 return best:
```

# 4 Multi-start hyper-heuristic approach for the k-TSP

In this section, first we will provide an overview of hyper-heuristics and then the details of proposed multi-start hyper-heuristic approach for the k-TSP will be presented.

Now a days, hyper-heuristics are getting much focus from researchers because of their ability to swiftly adapt as per the problem instance under consideration, thereby yielding high quality solutions for a wide range of instances of a problem [16]. The term *hyper-heuristic* was first used in a technical report by Denzinger et al. [17] as a strategy to combine a range of artificial intelligence methods for automated theorem



proving, and does not provide any definition of hyper-heuristics. However, the basic idea of automating the design and/or selection of heuristics is proposed in early 1960s by Fisher [18] and Crowston et al. [19]. In Cowling et al. [20], hyper-heuristics is described as the heuristics to choose the heuristics in the context of combinatorial optimization. According to Burke et al. [16], the hyper-heuristics can be described as high level strategies that handle a pool of low-level heuristics and work either by choosing a heuristic or producing a new heuristic from the components of available heuristics at each step in the search process and utilizing the heuristic chosen/produced. A hyperheuristic and a metaheuristic differ fundamentally. A hyper-heuristic works in the search space of heuristics, whereas a metaheuristic directly works in the search space of solutions to the problem under consideration. A hyper-heuristic tries to find the most appropriate heuristic to solve the problem under consideration in the search space of available heuristics, whereas a metaheuristic tries to find the best solution in the search space of solutions to the problem under consideration [21]. The motivation of developing hyper-heuristics arises from the fact that relative performance of different heuristics may not be same for all the instances of a problem, and even for the same instance, the performance of an individual heuristics may differ in different stages of the search process. Therefore, one may get better solutions if several heuristics are utilized in an appropriate manner. Here it is pertinent to mention that a low level heuristic within a hyper-heuristic can be a metaheuristic or a metaheuristic may employ a hyper-heuristic for local search/neighborhood search.

Based on their purpose, hyper-heuristics can be of two types.

- Selective hyper-heuristics: methodologies for choosing/selecting from available low-level heuristics.
- Generative hyper-heuristics: methodologies for producing new heuristics using elements of available low-level heuristics.

We have utilized a selective hyper-heuristic and Fig. 1 illustrates the general framework of such hyper-heuristics, where domain barrier acts as insulator between high level search strategy and low level heuristics. The high level search strategy selects and applies the low level heuristic by considering only the domain independent information. However, the performance of a hyper-heuristic can definitely be influenced by what domain-specific heuristics are available as low level heuristics.

The abundant literature on hyper-heuristics proves its effectiveness in solving combinatorial optimization problems, particularly when dealing with a wide range of instances having differing characteristics as it raises the level of generality. An excellent survey on hyper-heuristics and their applications can be found in [16].

# 4.1 Proposed hyper-heuristic approach

The hyper-heuristics individually and in hybridization with other metaheuristics have already been successfully applied for solving several variations of the TSP, e.g. [23–26]. Motivated by the success of these approaches, we have developed a multistart hyper-heuristic approach for *k*-TSP, where two low level heuristics are used.





Fig. 1 Framework of selective hyper-heuristic [20, 22]

The number of restarts is governed by parameter  $N_{rst}$ . Hereafter, this approach will be referred to as HH.

Following subsections describe the salient features of our HH approach for the k-TSP.

# 4.1.1 Solution encoding and fitness

Solution encoding and fitness function is same as used for GVNS (Sect. 3.1.1). Further, no component of HH can change home city or its position.

### 4.1.2 Generation of initial solutions

Each initial solution is generated in the same manner as described in Sect. 3.1.2 for GVNS.



### 4.1.3 Generation of neighboring solutions by using low level heuristics

An effective neighboring solution generation procedure has to take into account all the characteristics of the problem at hand and also has to maintain a proper balance among the different characteristics regarding the importance given to each of them. The hyper-heuristic generates a solution in the neighborhood of the current solution using one of the low level heuristics. Our hyper-heuristic employs two low-level heuristics  $H_1$  and  $H_2$  to tackle the subset selection and permutation characteristics respectively. These two heuristics are discussed below:

- 1. H<sub>1</sub>: This heuristic deals with the subset selection characteristic of the k-TSP. This heuristic is a ruin-recreate heuristic which partially ruins the tour and then recreates it. Each city in the tour is removed with probability ρ<sub>r</sub>. All such removed cities are added to the set of unvisited cities which already contains all those cities which are not part of the tour. A city, which increases the cost of the tour by the least amount when inserted at its best position, is chosen from this set of unvisited cities. By best position of a city, we mean a position that yields the least increase in the cost of the tour after the city is inserted at that position in comparison to all other positions. For determining this city, all possible combinations of unvisited cities and insertion positions in the tour need to be checked. The city so determined is inserted into the tour at its best position. This procedure repeats till the feasibility condition is met, i.e., exactly k cities have been visited. Notice that, in this heuristic, there may be a change in the constituent cities of the tour and their respective positions too.
- 2.  $H_2$ : This heuristic tackles the permutation characteristic of the k-TSP. This heuristic is also a ruin-recreate heuristic which partially ruins the tour and then recreates it. Each city in the tour is removed with a probability  $\rho_r$ . All such removed cities are added to a set which is initially empty, and then, one-by-one, a city is chosen randomly from this set and inserted into the tour at its best possible position. This process continues until all the removed cities are inserted back into the tour. Notice that, in this heuristic, there is no change in the constituent cities, but there may be a change in their respective positions in the tour.

In the heuristic  $H_1$ , according to probability  $\rho_r$ , approximately  $\rho_r \times k$  cities may be removed from the tour and added to the unvisited cities as part of the ruin procedure. The tour is made feasible again by following the recreate procedure which works in an iterative manner by inserting one city at a time to the tour. To identify the best city each time, all the unvisited cities (approximately  $n-k+\rho_r \times k$  cities) need to be checked for insertion in all the available positions (approximately  $k-1-\rho_r \times k$  positions) in the tour. Therefore,  $H_1$  has the complexity of  $\mathcal{O}(\rho_r \times k \times (n-k+\rho_r \times k) \times (k-1-\rho_r \times k)) = \mathcal{O}((n-k)k^2) = \mathcal{O}(nk^2)$ . In the heuristic  $H_2$ , only the removed cities are inserted back into the tour at their best possible position. Hence,  $H_2$  has the complexity of  $\mathcal{O}(k^2)$ .

Algorithm 4 provides the pseudo-code for generating a neighboring solution, where the values 1 and 2 respectively corresponds to  $H_1$  and  $H_2$ . Basically,



 $Create\_Neighbor(S, j)$  takes as input a solution S & a parameter j indicating the choice of the heuristic and returns a neighboring solution S' by applying the chosen heuristic on S.

```
Algorithm 4: Pseudo-code for generating a neighboring solution
  Input: A solution S
  Output: A neighboring solution S'
  function Create_Neighbor(S, j)
  begin
  if i == 1 then
        \mathbf{foreach}\ \mathit{city}\ \mathit{c}\ \mathit{in}\ \mathit{the}\ \mathit{tour}\ \mathit{as}\ \mathit{per}\ \mathit{their}\ \mathit{order}\ \mathbf{do}
              Generate a random number r such that 0 \le r \le 1;
              if r < \rho_r then
                  Add c to the set of unvisited cities;
              else
                                                                                                                                        Procedure for applying H_1.
                   Copy c to the tour in S';
        while S' contains less than k cities do
          Insert an unvisited city into the tour of S' as per heuristic H_1;
        return S':
  else if j == 2 then
        \mathbf{foreach}\ \mathit{city}\ \mathit{c}\ \mathit{in}\ \mathit{the}\ \mathit{tour}\ \mathit{as}\ \mathit{per}\ \mathit{their}\ \mathit{order}\ \mathbf{do}
              Generate a random number r such that 0 \le r \le 1;
              if r < \rho_r then
                   Add c to a set of unassigned cities:
              else
                                                                                                                                        Procedure for applying H_2.
                   Copy c to the tour in S';
        \mathbf{foreach}\ \mathit{city}\ \mathit{c}\ \mathit{in}\ \mathit{the}\ \mathit{set}\ \mathit{of}\ \mathit{unassigned}\ \mathit{cities}\ \mathit{in}\ \mathit{some}\ \mathit{random}\ \mathit{order}\ \mathbf{do}
            Insert c into the tour of S' as per heuristic H_2;
        return S';
  end function
```

### 4.1.4 Other features: selection mechanism, acceptance criteria

The selection mechanism plays a vital role in hyper-heuristic yielding a good solutions. There are many selection mechanisms available in the literature. Out of these, we have examined the hyper-heuristic with random and greedy selection mechanisms. In random selection mechanism, a low level heuristic is selected at random and used to return a solution at each step, whereas in greedy selection mechanism, all the low level heuristics are used at each step and the best solution among all the solutions obtained through these low level heuristics is returned. The heuristic whose solution is returned is deemed to be selected by greedy selection mechanism at that step. Motivation of choosing only these two mechanisms is due to the fact that the number of low-level heuristics are less (i.e., only 2) in our hyper-heuristic, and other mechanisms can be beneficial only when



there are large number of low-level heuristics [16]. The two versions of HH with random and greedy selection mechanisms will be referred to as HH\_RAND and HH\_GREEDY respectively. In each iteration of HH\_RAND, one of the two heuristics is used. Hence the complexity of an iteration is equal to the complexity of the heuristic used. The complexity of each iteration of HH\_GREEDY is  $\mathcal{O}(nk^2)$  as both heuristics are used in an iteration and  $H_1$  has higher complexity.

There are many acceptance criterias available in the literature [16]. Out of these, we examined our hyper-heuristic with AA (all acceptance), OI (only improvement) acceptance criterias. Out of these two, only improvement (OI) criteria obtained the better results, and hence, the results with this criteria only are reported in this paper.

Algorithm 5 provides the pseudo-code of our HH approach, where  $N_{rst}$  is the number of times the hyper-heuristic is restarted.  $Selection\_Mechanism(S, \mathbb{S}_{LH})$  is a function that takes as input a solution S and a set  $\mathbb{S}_{LH}$  of low level heuristics and returns a solution as per selection mechanism by making use of  $Create\_Neighbor()$  function one or more times as the case may be.

```
Algorithm 5: Pseudo-code of HH approach for k-TSP Input: HH approach parameters and a k-TSP instance Output: Best solution obtained by HH best \leftarrow \infty; for j \leftarrow 1 to N_{rst} do
S \leftarrow \text{Generate-Initial-Solution}();
if f(S) < f(best) then
best \leftarrow S;
while termination\ criterion\ is\ not\ met\ do
S' \leftarrow \text{Selection-Mechanism}(S, \mathbb{S}_{LH})
if f(S') < f(S) then
S \leftarrow S';
if f(S) < f(best) then
best \leftarrow S;
return best;
```

# 5 Computational results

Since our approaches, viz. GVNS, HH\_RAND and HH\_GREEDY are the first heuristic approaches for *k*-TSP, no benchmark instances exist for the *k*-TSP. As a result, we have to utilize the fresh instances for evaluating the performance of our approaches. Our benchmark instances for the *k*-TSP are derived from the instances publicly available in TSPLIB<sup>1</sup>. We have taken 76 instances from TSPLIB. These

<sup>1</sup> http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html



instances are in  $n \times n$  distance matrix format and contain cities in the range from 14 to 783. The first city is always taken to be home city in these instances. With each of these 76 instances, we have considered three different scenarios, each having a specific value for k as per the value of n. These three scenarios are as follows:

1. **Small** – Small k value:  $k = \lfloor \frac{1}{4}n \rfloor$ 2. **Medium** – Medium k value:  $k = \lfloor \frac{1}{2}n \rfloor$ 3. **Large** – Large k value:  $k = \lfloor \frac{3}{4}n \rfloor$ 

This leads to a total of 228 test cases for the *k*-TSP.

Our approaches have been implemented in C and executed on a Linux based 3.10 GHz Core-i5-2400 system with 4 GB RAM. All the approaches, viz. GVNS, HH\_RAND and HH\_GREEDY have been executed on each benchmark instance ten independent times. In the GVNS approach, number of restarts  $N_{rst}$  is set to 100, and the number of neighborhoods  $i_{max}$  is set to 2. In both HH\_RAND and HH\_GREEDY, number of restarts  $N_{rst}$  is again set to 100 like GVNS, and the probability  $\rho_r$  of a city to be removed from the tour is set to 0.05. For our approaches, we choose two termination criterias with short and long time to compare our approaches from the perspective of convergence behavior. The chosen termination criterias are

- 1. Short Run(SR)-Termination after a time of  $0.05 \times n$  seconds
- 2. Long Run(LR)–Termination after a time of  $0.2 \times n$  seconds

As the termination criteria is according to the time and our approaches are multistart approaches, each execution of an approach after a fresh start is allowed for time  $\frac{T}{N_{-}}$ , where T is total time allowed for the approach.

We have divided the results into six groups, each corresponding to a particular combination of a scenario and a termination criteria. These six groups are (Small, SR), (Medium, SR), (Large, SR), (Small, LR), (Medium, LR), and (Large, LR). All the groups have the same 76 TSPLIB instances, but the scenario and/or termination criteria vary from one group to another. Detailed instance-by-instance results can be found in Tables 4, 5, 6, 7, 8, 9 of "Appendix I". Here, we have compared the relative performance of our approaches on each of the six groups, and, overall, in terms of number of instances on which an approach obtained better, same or worse solution in comparison to other approaches. This performance comparison has been done according to the best and the average solution quality. The results are summarised in Table 1. This table presents the relative performance of our approaches in terms of the number of instances on which the algorithm on the left side (HH RAND/HH GREEDY) obtained better ('<'), same ('=') or worse solution ('>') than the algorithm on the upper side (GVNS/HH\_GREEDY). Further, the overall performance of our approaches by considering all three scenarios and two termination criterias is reported in the last two rows named as 'Overall'. This table clearly shows that both HH RAND and HH GREEDY performed better than GVNS in terms of best and average solution quality both in all three scenarios under both the termination conditions. Further, the relative performance of HH RAND and HH GREEDY improve



| <b>TIL</b> 4 | D C         |            |         |
|--------------|-------------|------------|---------|
| Table 1      | Performance | comparison | summary |

| Group        |           | Best | Solutio | on Qu | ality |      |     | Aver | age S | olutic | on Qua     | lity |    |
|--------------|-----------|------|---------|-------|-------|------|-----|------|-------|--------|------------|------|----|
|              |           | GVN  | S       |       | НН_   | GREE | DY  | GVN  | S     |        | HH_<br>GRE | EDY  |    |
|              |           | <    | =       | >     | <     | =    | >   | <    | =     | >      | <          | =    | >  |
| (Small, SR)  | HH_RAND   | 40   | 33      | 3     | 28    | 36   | 12  | 49   | 20    | 7      | 40         | 21   | 15 |
|              | HH_GREEDY | 36   | 33      | 7     | _     | _    | _   | 46   | 21    | 9      | _          | _    | -  |
| (Medium, SR) | HH_RAND   | 54   | 19      | 3     | 32    | 24   | 20  | 62   | 11    | 3      | 55         | 13   | 8  |
|              | HH_GREEDY | 54   | 20      | 2     | _     | _    | _   | 61   | 11    | 4      | _          | _    | -  |
| (Large, SR)  | HH_RAND   | 57   | 15      | 4     | 42    | 15   | 19  | 65   | 6     | 5      | 59         | 6    | 11 |
|              | HH_GREEDY | 57   | 14      | 5     | _     | _    | _   | 68   | 6     | 2      | _          | _    | -  |
| (Small, LR)  | HH_RAND   | 43   | 31      | 2     | 30    | 37   | 9   | 49   | 20    | 7      | 38         | 20   | 18 |
|              | HH_GREEDY | 38   | 33      | 5     | _     | _    | _   | 50   | 21    | 5      | _          | _    | _  |
| (Medium, LR) | HH_RAND   | 53   | 19      | 4     | 35    | 22   | 19  | 63   | 11    | 2      | 49         | 12   | 15 |
|              | HH_GREEDY | 54   | 20      | 2     | _     | _    | _   | 63   | 11    | 2      | _          | _    | _  |
| (Large, LR)  | HH_RAND   | 59   | 15      | 2     | 39    | 16   | 21  | 65   | 6     | 5      | 57         | 6    | 13 |
|              | HH_GREEDY | 60   | 15      | 1     | _     | _    | _   | 70   | 6     | 0      | _          | _    | _  |
| Overall      | HH_RAND   | 306  | 132     | 18    | 206   | 150  | 100 | 353  | 74    | 29     | 298        | 78   | 80 |
|              | HH_GREEDY | 299  | 135     | 22    | -     | -    | -   | 358  | 76    | 22     | -          | -    | _  |

as we move from small to large scenario. However, there is not much difference in relative performance under two different termination conditions. When it comes to the comparison between HH\_RAND and HH\_GREEDY, the former performed better than the latter.

The poor performance of the GVNS can be attributed to higher complexity of exploring the neighborhood  $N_1$  which is used more often than  $N_2$ . Further, these two neighborhoods are explored multiple times in an iteration of GVNS. On the other hand, HH\_RAND uses either  $H_1$  or  $H_2$  and HH\_GREEDY uses both  $H_1$  and  $H_2$  in an iteration. Moreover,  $H_1$  and  $H_2$  can perform much more exploration than a single move in  $N_1/N_2$ . So when GVNS is executed for the same amount of time as HH RAND and HH GREEDY, it is not able to explore as much search space as explored by the latter two approaches leading to its poor performance. In a likewise manner, the superior performance of HH RAND over HH GREEDY can be explained. HH\_GREEDY applies both  $H_1$  and  $H_2$  on the current solution, whereas HH\_RAND applies only one of these two heuristics randomly. As a result, single iteration of HH GREEDY requires more time than HH RAND. As a result, HH GREEDY gets lesser number of iterations in comparison to HH\_RAND, when both HH RAND over HH GREEDY are executed for the same amount of time. In this situation, HH\_GREEDY can outperform HH\_RAND only when the gain of using both the heuristics in an iteration surpasses the loss HH\_GREEDY incurs due to the lesser number of iterations. This is clearly not the case with k-TSP.

To understand the variation in the composition of the tour as per the value of k, we have taken instance eil51 and plotted the best solution found by our approaches





Fig. 2 Best solution found by our approaches on instance eil51 for different k values

on this instance under each of the three different scenarios corresponding to k values 12, 25 and 38. Please note that all our approaches found the same best solution for this instance under all three scenarios. Figure 2 presents these plots. In these plots, first city (i.e., home city) where the salesman has to start and end his tour is represented as red colored square, whereas remaining cities are represented as blue circles. These plots clearly show that the composition of the tour changes with the value of k. Obviously, the tour length will increase with increase in value of k.

To check whether there are significant differences among the performances of our approaches, we have used the two-tailed Wilcoxon signed rank test [27]. To perform this test, we have set the significance criteria to 5% (i.e. p-value  $\leq 0.05$ ) and made use of the calculator available online<sup>2</sup>. As part of this test, the difference between the normalized values of Average obtained by HH GREEDY/HH RAND and the compared approach is ranked. Tables 2 and 3 present the results of this test under SR and LR termination conditions respectively. In these tables, the column named NWT/Total reports the number of instances without tied values out of the total number of instances used in comparison. The column named  $R^+$  reports the sum of ranks for the instances where the approach on the top of the table (HH GREEDY/HH RAND) performs better than its contender mentioned on the left side of the table, whereas the column R<sup>-</sup> reports the sum of ranks for the instances where the approach on the top of the table (HH GREEDY/HH RAND) performs worse than its contender mentioned on the left side of the table. As the number of instances without tie exceeds thirty (NWT > 30) in all the cases, we have used the test statistic Z. The resulting Z value is compared with the critical value  $Z_{Cri}$  as per the Wilcoxon signed rank test [27]. A Z value not exceeding  $Z_{Cri}$  ( $Z \le Z_{Cri}$ ) indicates a significant difference between the performance of the two approaches being compared, or else the difference is insignificant. Conclusions that can be derived from these two tables are identical. Both show that HH RAND is significant with respect to both GVNS & HH\_GREEDY, and HH\_GREEDY is significant with respect to GVNS.

We have also studied the convergence behavior of our approaches, and which can be found in "Appendix II".



<sup>&</sup>lt;sup>2</sup> https://mathcracker.com/wilcoxon-signed-ranks.php

Table 2 Results of Wilcoxon signed rank test between our approaches with SR termination criteria

|           | HH_RAND vs | S     |                |         |           |             | HH_GREEDY vs             | vs    |       |        |            |             |
|-----------|------------|-------|----------------|---------|-----------|-------------|--------------------------|-------|-------|--------|------------|-------------|
|           | NWT/Total  | $R^+$ | R <sup>-</sup> | Z       | $Z_{Cri}$ | Significant | NWT/Total R <sup>+</sup> | $R^+$ | К-    | Z      | $Z_{Cri}$  | Significant |
| GVNS      | 191/228    | 18016 | 320            | -11.566 | -1.960    | yes         | 190/228                  | 17628 | 517 - | 11.272 | -1.960 yes | yes         |
| HH_GREEDY | 188/228    | 16226 | 540            | -9.829  | -1.960    | yes         |                          |       |       |        |            |             |



Table 3 Results of Wilcoxon signed rank test between our approaches with LR termination criteria

|           | HH_RAND vs | S     |                |          |           |             | HH_GREEDY vs               | Y vs  |         |          |             |             |
|-----------|------------|-------|----------------|----------|-----------|-------------|----------------------------|-------|---------|----------|-------------|-------------|
|           | NWT/Total  | $R^+$ | R <sup>-</sup> | Z        | $Z_{Cri}$ | Significant | NWT/Total R <sup>+</sup> Z | $R^+$ | $R^{-}$ | Z        | $Z_{Cri}$   | Significant |
| GVNS      | 191/228    | 18028 | 308            | - 11.582 | - 1.960   | Yes         | 190/228                    | 17871 | . 274   | - 11.592 | – 1.960 Yes | Yes         |
| HH_GREEDY | 190/228    | 15446 | 5696           | - 8.397  | -1.960    | Yes         |                            |       |         |          |             |             |



### 6 Conclusions

In this paper, we have proposed two approaches, viz. GVNS and HH for the k-TSP based on general variable neighborhood search and hyper-heuristic respectively. The GVNS approach makes use of two neighborhood structures comprising exchange  $(N_1)$  & swap  $(N_2)$  operations and utilizes variable neighborhood descent as its principal component. These two neighborhood structures essentially tackle both the characteristics of the k-TSP, i.e., subset selection and permutation. Likewise, hyper-heuristic also incorporates two heuristics  $(H_1 \text{ and } H_2)$  as low level heuristics to handle subset selection and permutation. Two versions of hyper-heuristic, viz. HH RAND and HH GREEDY are proposed based on two different selection mechanisms. To evaluate the performance of the various approaches proposed (viz. GVNS, HH RAND and HH GREEDY), various k-TSP test instances are derived from the publicly available instances in TSPLIB. All the details regarding how these instances are derived from TSPLIB instances have been provided in the paper to facilitate reuse of these instances. Computational results on these test instances show that both HH RAND and HH GREEDY performed better than GVNS. As far as comparison between HH\_RAND and HH\_GREEDY is concerned, the former performed better than the latter.

As our approaches are the first heuristic approaches for *k*-TSP, these approaches will be used as the baseline approaches for evaluating the performance of future heuristic approaches for this problem. Approaches analogous to our approaches can be developed for other problems also where there is a need to explore different neighborhoods and/or heuristics as per the characteristics of the problem. In future, we intend to investigate the reinforcement learning based hyper-heuristics for different variants of traveling salesman problem. Interested researchers can develop additional problem specific strategies to improve the performance of our approaches.

**Acknowledgements** The authors would like to express their sincere gratitude to two anonymous reviewers and the editor for their valuable comments and suggestions which helped in improving the quality of this manuscript. The first author is grateful to the Council of Scientific and Industrial Research (CSIR), Government of India for supporting his research through a Senior Research Fellowship. The second author acknowledges the support of the research Grant No. MTR/2017/000391 received under MATRICS scheme from Science and Engineering Research Board (SERB), Government of India.

# Appendix I

This appendix presents the results obtained by our approaches on each TSPLIB instance under each of the six groups. Therefore, there are six tables, each corresponding to a group. Tables 4, 5 and 6 correspond to groups (Small, SR), (Medium, SR) and (Large, SR) respectively. These three tables report the performance of GVNS, HH\_RAND and HH\_GREEDY under short run. On the other hand, tables 7, 8 and 9 correspond to groups (Small, LR), (Medium, LR) and (Large, LR) respectively, and report the performance of our approaches under long run. In all these tables, the first column lists the instance names. The numerical values at the end of an instance name specifies the number of cities in the corresponding instance.



Table 4 Results of various approaches on each instance under small scenario with SR termination criteria

| Instance  | k   | GVNS  |       |          | HH_RA | AND   |          | HH_GI | REEDY |          |
|-----------|-----|-------|-------|----------|-------|-------|----------|-------|-------|----------|
|           |     | Best  | Worst | Average  | Best  | Worst | Average  | Best  | Worst | Average  |
| a280      | 70  | 691   | 749   | 720.60   | 686   | 718   | 703.00   | 693   | 734   | 716.30   |
| ali535    | 133 | 22648 | 34030 | 26606.60 | 13147 | 14540 | 13771.50 | 12406 | 15259 | 13614.00 |
| att48     | 12  | 1925  | 1925  | 1925.00  | 1925  | 1925  | 1925.00  | 1925  | 1925  | 1925.00  |
| att532    | 133 | 5373  | 6113  | 5661.60  | 4014  | 4388  | 4234.60  | 4024  | 4523  | 4271.90  |
| bayg29    | 7   | 332   | 332   | 332.00   | 332   | 332   | 332.00   | 332   | 332   | 332.00   |
| bays29    | 7   | 400   | 400   | 400.00   | 400   | 400   | 400.00   | 400   | 400   | 400.00   |
| berlin52  | 13  | 679   | 679   | 679.00   | 679   | 679   | 679.00   | 679   | 679   | 679.00   |
| bier127   | 31  | 10619 | 11029 | 10804.60 | 10687 | 11014 | 10792.00 | 10692 | 11028 | 10801.90 |
| brazil58  | 14  | 4965  | 5030  | 4983.70  | 4965  | 4965  | 4965.00  | 4965  | 4965  | 4965.00  |
| brg180    | 45  | 650   | 710   | 680.00   | 540   | 560   | 551.00   | 520   | 580   | 554.00   |
| burma14   | 3   | 359   | 359   | 359.00   | 359   | 359   | 359.00   | 359   | 359   | 359.00   |
| ch130     | 32  | 1149  | 1351  | 1261.10  | 1130  | 1291  | 1226.30  | 1167  | 1290  | 1238.60  |
| ch150     | 37  | 1318  | 1350  | 1330.20  | 1276  | 1336  | 1316.90  | 1276  | 1359  | 1312.40  |
| d198      | 49  | 5085  | 5257  | 5189.10  | 5027  | 5102  | 5058.40  | 5069  | 5147  | 5102.40  |
| d493      | 123 | 10665 | 11769 | 11226.70 | 9399  | 9713  | 9509.50  | 9451  | 9814  | 9644.50  |
| d657      | 164 | 18371 | 24327 | 20230.40 | 12808 | 13623 | 13250.00 | 13142 | 14110 | 13469.10 |
| dantzig42 | 10  | 145   | 145   | 145.00   | 145   | 145   | 145.00   | 145   | 145   | 145.00   |
| ei1101    | 25  | 107   | 108   | 107.30   | 107   | 109   | 107.60   | 107   | 109   | 107.30   |
| eil51     | 12  | 82    | 82    | 82.00    | 82    | 82    | 82.00    | 82    | 82    | 82.00    |
| eil76     | 19  | 102   | 102   | 102.00   | 102   | 102   | 102.00   | 102   | 102   | 102.00   |
| fl417     | 104 | 2304  | 4656  | 2795.10  | 2258  | 2267  | 2260.70  | 2258  | 2283  | 2264.50  |
| fri26     | 6   | 243   | 243   | 243.00   | 243   | 243   | 243.00   | 243   | 243   | 243.00   |
| gil262    | 65  | 593   | 633   | 612.60   | 540   | 580   | 565.20   | 555   | 590   | 575.20   |
| gr120     | 30  | 1308  | 1362  | 1314.20  | 1308  | 1318  | 1312.60  | 1308  | 1385  | 1318.50  |
| gr137     | 34  | 17802 | 18065 | 17996.50 | 17399 | 17999 | 17780.20 | 17510 | 18155 | 17874.80 |
| gr17      | 4   | 234   | 234   | 234.00   | 234   | 234   | 234.00   | 234   | 234   | 234.00   |
| gr202     | 50  | 8175  | 8573  | 8421.70  | 8175  | 8426  | 8332.30  | 8142  | 8364  | 8263.40  |
| gr21      | 5   | 324   | 324   | 324.00   | 324   | 324   | 324.00   | 324   | 324   | 324.00   |
| gr229     | 57  | 20604 | 24168 | 21836.10 | 18589 | 19489 | 19062.20 | 19129 | 19946 | 19438.80 |
| gr24      | 6   | 264   | 264   | 264.00   | 264   | 264   | 264.00   | 264   | 264   | 264.00   |
| gr431     | 107 | 16084 | 17874 | 17042.20 | 14959 | 15966 | 15542.80 | 15303 | 16233 | 15816.80 |
| gr48      | 12  | 874   | 874   | 874.00   | 874   | 874   | 874.00   | 874   | 874   | 874.00   |
| gr666     | 166 | 54939 | 98321 | 71424.80 | 28464 | 30988 | 29394.80 | 28630 | 31235 | 29340.20 |
| gr96      | 24  | 10465 | 10465 | 10465.00 | 10460 | 10561 | 10474.00 | 10460 | 10786 | 10529.20 |
| hk48      | 12  | 2827  | 2827  | 2827.00  | 2827  | 2827  | 2827.00  | 2827  | 2827  | 2827.00  |
| kroA100   | 25  | 4998  | 5104  | 5023.10  | 4970  | 5061  | 5011.80  | 4998  | 5111  | 5030.20  |
| kroA150   | 37  | 5725  | 6182  | 5936.10  | 5690  | 6454  | 5938.60  | 5690  | 6231  | 5907.20  |
| kroA200   | 50  | 6438  | 7137  | 6775.60  | 6220  | 6576  | 6393.50  | 6272  | 6747  | 6493.90  |
| kroB100   | 25  | 4353  | 4788  | 4588.80  | 4305  | 4684  | 4473.70  | 4305  | 4605  | 4536.60  |
| kroB150   | 37  | 6410  | 6854  | 6588.00  | 6071  | 6938  | 6468.20  | 6482  | 6855  | 6666.60  |



Table 4 (continued)

| Instance  | k   | GVNS  |       |          | HH_RA | AND   |          | HH_GI | REEDY |          |
|-----------|-----|-------|-------|----------|-------|-------|----------|-------|-------|----------|
|           |     | Best  | Worst | Average  | Best  | Worst | Average  | Best  | Worst | Average  |
| kroB200   | 50  | 6388  | 7625  | 7076.80  | 6630  | 7060  | 6884.30  | 6414  | 7280  | 6827.00  |
| kroC100   | 25  | 4964  | 5346  | 5048.60  | 4964  | 5103  | 4988.70  | 4964  | 4982  | 4966.50  |
| kroD100   | 25  | 4762  | 5062  | 4855.60  | 4787  | 5014  | 4905.60  | 4762  | 5029  | 4874.00  |
| kroE100   | 25  | 3905  | 3977  | 3918.70  | 3905  | 3984  | 3916.80  | 3905  | 3935  | 3914.50  |
| lin105    | 26  | 2606  | 2751  | 2632.90  | 2606  | 2680  | 2613.40  | 2606  | 2680  | 2613.40  |
| lin318    | 79  | 9133  | 10402 | 9654.90  | 8936  | 9433  | 9175.60  | 8901  | 10136 | 9463.10  |
| p654      | 163 | 13671 | 26915 | 18722.80 | 7348  | 8162  | 7834.00  | 7348  | 8173  | 8030.50  |
| pa561     | 140 | 609   | 710   | 639.10   | 532   | 570   | 547.70   | 536   | 569   | 552.20   |
| pcb442    | 110 | 11994 | 12664 | 12206.70 | 11254 | 11861 | 11558.30 | 11247 | 12136 | 11734.50 |
| pr107     | 26  | 8443  | 9311  | 8590.80  | 8443  | 8449  | 8444.50  | 8443  | 8729  | 8472.20  |
| pr124     | 31  | 14952 | 14952 | 14952.00 | 14640 | 14952 | 14920.80 | 14952 | 14952 | 14952.00 |
| pr136     | 34  | 21174 | 23108 | 22186.60 | 21116 | 26162 | 22862.80 | 21289 | 24118 | 22821.80 |
| pr144     | 36  | 14538 | 16119 | 14710.50 | 14538 | 17196 | 15312.90 | 14538 | 16815 | 15327.30 |
| pr152     | 38  | 23373 | 24412 | 23895.70 | 23373 | 24456 | 23988.40 | 23195 | 25027 | 24069.60 |
| pr226     | 56  | 20033 | 27165 | 24288.50 | 20033 | 25416 | 22968.40 | 21814 | 26450 | 24669.20 |
| pr264     | 66  | 10188 | 15034 | 11532.90 | 9472  | 10512 | 9924.00  | 9672  | 11073 | 10290.50 |
| pr299     | 74  | 11877 | 13258 | 12554.00 | 11513 | 11835 | 11653.60 | 11449 | 12792 | 12164.50 |
| pr439     | 109 | 22438 | 24316 | 23516.90 | 20736 | 21704 | 21175.60 | 20984 | 22266 | 21468.20 |
| pr76      | 19  | 23450 | 23450 | 23450.00 | 23450 | 23450 | 23450.00 | 23450 | 23450 | 23450.00 |
| rat195    | 48  | 592   | 618   | 603.30   | 557   | 594   | 579.20   | 568   | 586   | 580.40   |
| rat575    | 143 | 1885  | 2156  | 1994.10  | 1612  | 1696  | 1661.80  | 1599  | 1710  | 1665.90  |
| rat783    | 195 | 3939  | 6776  | 4466.50  | 2343  | 2572  | 2478.90  | 2533  | 2977  | 2690.00  |
| rat99     | 24  | 284   | 291   | 285.70   | 284   | 287   | 285.20   | 284   | 287   | 284.50   |
| rd100     | 25  | 1438  | 1613  | 1517.80  | 1438  | 1521  | 1472.30  | 1438  | 1545  | 1462.70  |
| rd400     | 100 | 3750  | 4084  | 3931.00  | 3383  | 3681  | 3526.30  | 3458  | 3733  | 3597.00  |
| si175     | 43  | 4968  | 5246  | 5107.40  | 4878  | 4932  | 4901.40  | 4875  | 5034  | 4942.00  |
| si535     | 133 | 11777 | 13804 | 12116.70 | 11271 | 11820 | 11460.40 | 11231 | 12280 | 11543.60 |
| st70      | 17  | 120   | 125   | 123.50   | 120   | 125   | 123.50   | 120   | 125   | 123.40   |
| swiss42   | 10  | 192   | 192   | 192.00   | 192   | 192   | 192.00   | 192   | 192   | 192.00   |
| ts225     | 56  | 28828 | 28828 | 28828.00 | 28828 | 28828 | 28828.00 | 28828 | 28828 | 28828.00 |
| tsp225    | 56  | 957   | 1049  | 997.40   | 923   | 970   | 952.50   | 939   | 1009  | 970.10   |
| u159      | 39  | 9176  | 9629  | 9354.30  | 8983  | 9623  | 9262.30  | 9085  | 9332  | 9198.70  |
| u574      | 143 | 11188 | 12850 | 11794.80 | 8384  | 9183  | 8747.50  | 8711  | 9303  | 9016.40  |
| u724      | 181 | 19865 | 34745 | 22750.10 | 11293 | 12282 | 11802.20 | 12423 | 14590 | 13555.80 |
| ulysses16 | 4   | 935   | 935   | 935.00   | 935   | 935   | 935.00   | 935   | 935   | 935.00   |
| ulysses22 | 5   | 747   | 747   | 747.00   | 747   | 747   | 747.00   | 747   | 747   | 747.00   |

The second column (k) reports the number of cities (including the home city) that the salesman has to visit. The columns Best, Worst & Average under an approach reports the best, worst and average solution quality obtained over ten independent



Table 5 Results of various approaches on each instance under medium scenario with SR termination criteria

| Instance  | k   | GVNS   |        |           | HH_RAND |       |          | HH_GREEDY | DY    |          |
|-----------|-----|--------|--------|-----------|---------|-------|----------|-----------|-------|----------|
|           |     | Best   | Worst  | Average   | Best    | Worst | Average  | Best      | Worst | Average  |
| a280      | 140 | 1446   | 1575   | 1508.80   | 1358    | 1451  | 1397.70  | 1373      | 1462  | 1409.90  |
| ali535    | 267 | 107094 | 256356 | 132364.09 | 52272   | 75825 | 56897.30 | 53331     | 65386 | 56496.10 |
| att48     | 24  | 3603   | 3603   | 3603.00   | 3603    | 3603  | 3603.00  | 3603      | 3603  | 3603.00  |
| att532    | 566 | 17045  | 36396  | 20907.50  | 10766   | 12388 | 11172.60 | 10654     | 12112 | 11272.30 |
| bayg29    | 14  | 626    | 626    | 626.00    | 979     | 979   | 626.00   | 626       | 626   | 626.00   |
| bays29    | 14  | 733    | 733    | 733.00    | 733     | 733   | 733.00   | 733       | 733   | 733.00   |
| berlin52  | 26  | 1874   | 1928   | 1883.70   | 1874    | 1928  | 1879.40  | 1874      | 1992  | 1895.80  |
| bier127   | 63  | 27519  | 28758  | 28119.00  | 26377   | 27617 | 27030.10 | 26145     | 28091 | 27127.20 |
| brazil58  | 29  | 8001   | 8170   | 8060.60   | 7993    | 8077  | 8028.10  | 7978      | 8132  | 8028.10  |
| brg180    | 06  | 1310   | 1500   | 1432.00   | 1110    | 1170  | 1135.00  | 1110      | 1190  | 1158.00  |
| burma14   | 7   | 1272   | 1272   | 1272.00   | 1272    | 1272  | 1272.00  | 1272      | 1272  | 1272.00  |
| ch130     | 65  | 2594   | 2915   | 2772.30   | 2408    | 2570  | 2506.60  | 2463      | 2646  | 2548.50  |
| ch150     | 75  | 2927   | 3158   | 3067.30   | 2793    | 2929  | 2883.30  | 2821      | 3039  | 2917.30  |
| d198      | 66  | 7297   | 7582   | 7400.50   | 7080    | 7155  | 7133.00  | 7058      | 7270  | 7181.40  |
| d493      | 246 | 21354  | 35272  | 24460.20  | 15041   | 15615 | 15268.40 | 14651     | 15640 | 15221.00 |
| d657      | 328 | 42682  | 137294 | 55356.60  | 34359   | 53018 | 38065.90 | 37322     | 70533 | 42231.90 |
| dantzig42 | 21  | 260    | 260    | 260.00    | 260     | 260   | 260.00   | 260       | 260   | 260.00   |
| eil101    | 50  | 234    | 246    | 241.40    | 228     | 237   | 232.30   | 227       | 243   | 234.60   |
| eil51     | 25  | 175    | 185    | 180.00    | 175     | 187   | 180.40   | 175       | 184   | 178.80   |
| eil76     | 38  | 218    | 227    | 223.50    | 219     | 229   | 222.80   | 217       | 226   | 221.60   |
| fl417     | 208 | 9821   | 21810  | 11752.50  | 8069    | 7551  | 7231.90  | 6662      | 7719  | 7202.70  |
| fri26     | 13  | 414    | 414    | 414.00    | 414     | 414   | 414.00   | 414       | 414   | 414.00   |
| gi1262    | 131 | 1163   | 1260   | 1222.80   | 1044    | 1134  | 1106.00  | 1042      | 1176  | 1125.40  |
| gr120     | 09  | 2736   | 3048   | 2892.10   | 2690    | 2889  | 2767.10  | 2694      | 2884  | 2782.30  |
|           |     |        |        |           |         |       |          |           |       |          |



| <b>γ</b> | Table 5 (conti | inued) |       |       |          |         |       |          |           |       |          |
|----------|----------------|--------|-------|-------|----------|---------|-------|----------|-----------|-------|----------|
|          | Instance       | k      | GVNS  |       |          | HH_RAND | 0     |          | HH_GREEDY | EDY   |          |
|          |                |        | Best  | Worst | Average  | Best    | Worst | Average  | Best      | Worst | Average  |
|          | gr137          | 89     | 29920 | 32460 | 31354.10 | 29491   | 30557 | 29779.10 | 29541     | 32365 | 30564.10 |

| Instance | k   | GVNS   |        |           | HH_RAND |        |           | HH_GREEDY | λ      |           |
|----------|-----|--------|--------|-----------|---------|--------|-----------|-----------|--------|-----------|
|          |     | Best   | Worst  | Average   | Best    | Worst  | Average   | Best      | Worst  | Average   |
| gr137    | 89  | 29920  | 32460  | 31354.10  | 29491   | 30557  | 29779.10  | 29541     | 32365  | 30564.10  |
| gr17     | 8   | 517    | 517    | 517.00    | 517     | 517    | 517.00    | 517       | 517    | 517.00    |
| gr202    | 101 | 14509  | 15476  | 14988.80  | 14313   | 14944  | 14596.30  | 14221     | 15056  | 14656.70  |
| gr21     | 10  | 918    | 918    | 918.00    | 918     | 918    | 918.00    | 918       | 918    | 918.00    |
| gr229    | 114 | 45181  | 48567  | 47082.30  | 41518   | 43585  | 42233.50  | 42403     | 45229  | 43489.80  |
| gr24     | 12  | 504    | 504    | 504.00    | 504     | 504    | 504.00    | 504       | 504    | 504.00    |
| gr431    | 215 | 66497  | 92715  | 72582.30  | 38134   | 41630  | 39686.70  | 38469     | 43318  | 40311.60  |
| gr48     | 24  | 1819   | 1836   | 1820.70   | 1819    | 1836   | 1822.40   | 1819      | 1819   | 1819.00   |
| gr666    | 333 | 221489 | 810842 | 298109.91 | 128728  | 190163 | 148593.80 | 149752    | 302646 | 184097.20 |
| gr96     | 48  | 20765  | 22069  | 21437.60  | 20688   | 20881  | 20766.90  | 20733     | 21617  | 21083.80  |
| hk48     | 24  | 4701   | 4759   | 4712.30   | 4701    | 4759   | 4710.20   | 4701      | 4735   | 4707.40   |
| kroA100  | 50  | 9572   | 10280  | 9885.00   | 9184    | 9736   | 9369.90   | 9184      | 10176  | 9666.80   |
| kroA150  | 75  | 12866  | 13704  | 13374.90  | 11783   | 12515  | 12150.20  | 11812     | 13350  | 12662.80  |
| kroA200  | 100 | 14631  | 15852  | 15139.60  | 12945   | 13824  | 13475.90  | 12850     | 14484  | 13585.50  |
| kroB100  | 50  | 10026  | 10974  | 10452.60  | 9606    | 7676   | 9485.60   | 9150      | 10286  | 9912.80   |
| kroB150  | 75  | 12276  | 14361  | 13278.90  | 11703   | 12066  | 11861.10  | 11535     | 12531  | 12038.90  |
| kroB200  | 100 | 14297  | 15955  | 15271.80  | 13080   | 14369  | 13775.50  | 13434     | 14808  | 14284.50  |
| kroC100  | 50  | 8996   | 10288  | 00.9866   | 9457    | 10027  | 9702.40   | 6026      | 10216  | 9884.10   |
| kroD100  | 50  | 8962   | 9582   | 9223.20   | 8719    | 9134   | 8870.20   | 8719      | 9103   | 8884.60   |
| kroE100  | 50  | 9283   | 10093  | 9804.20   | 9130    | 9452   | 9259.30   | 9102      | 9724   | 9452.40   |
| lin105   | 52  | 5880   | 5954   | 5899.80   | 5848    | 5883   | 5863.10   | 5848      | 5954   | 5885.20   |
| lin318   | 159 | 20453  | 25916  | 22657.50  | 18600   | 20346  | 19462.40  | 19114     | 20322  | 19786.80  |
| p654     | 327 | 33482  | 256641 | 59420.50  | 22241   | 73518  | 30505.20  | 25556     | 94437  | 34445.80  |



Table 5 (continued)

| lable 3 (collulated) | mineu) |       |       |          |         |       |          |           |       |          |
|----------------------|--------|-------|-------|----------|---------|-------|----------|-----------|-------|----------|
| Instance             | k      | GVNS  |       |          | HH_RAND |       |          | HH_GREEDY | λ     |          |
|                      |        | Best  | Worst | Average  | Best    | Worst | Average  | Best      | Worst | Average  |
| pa561                | 280    | 1743  | 3178  | 1963.30  | 1285    | 1407  | 1326.50  | 1232      | 1501  | 1348.80  |
| pcb442               | 221    | 31481 | 44188 | 34710.10 | 25214   | 26075 | 25609.40 | 25149     | 26379 | 25663.90 |
| pr107                | 53     | 29652 | 31418 | 30722.90 | 18052   | 29261 | 21452.50 | 18028     | 29927 | 27145.80 |
| pr124                | 62     | 22998 | 25088 | 23584.70 | 22998   | 22998 | 22998.00 | 22998     | 23321 | 23037.20 |
| pr136                | 89     | 48496 | 52908 | 50164.50 | 47147   | 47981 | 47663.60 | 47016     | 48757 | 47875.20 |
| pr144                | 72     | 29464 | 32664 | 31845.20 | 28402   | 32321 | 30364.40 | 29297     | 32674 | 30776.80 |
| pr152                | 92     | 37881 | 47105 | 41807.80 | 37928   | 46495 | 41887.00 | 36637     | 47630 | 44106.90 |
| pr226                | 113    | 39638 | 42326 | 40438.60 | 38941   | 40461 | 39597.80 | 39496     | 41838 | 40768.80 |
| pr264                | 132    | 32000 | 36703 | 34025.30 | 27898   | 29623 | 29189.20 | 28699     | 32174 | 30294.50 |
| pr299                | 149    | 26696 | 29615 | 27820.20 | 23694   | 24100 | 23964.80 | 23855     | 25679 | 24668.90 |
| pr439                | 219    | 56023 | 91406 | 63483.30 | 40440   | 45601 | 42148.30 | 41011     | 44208 | 42267.10 |
| pr76                 | 38     | 41254 | 42786 | 41816.10 | 41258   | 41976 | 41516.30 | 41248     | 42472 | 41849.90 |
| rat195               | 26     | 1185  | 1288  | 1240.80  | 1159    | 1184  | 1171.80  | 1161      | 1213  | 1185.50  |
| rat575               | 287    | 5232  | 10894 | 5963.60  | 3672    | 4242  | 3886.20  | 3943      | 4586  | 4148.70  |
| rat783               | 391    | 8682  | 41474 | 12405.30 | 7511    | 18160 | 8928.20  | 8091      | 24225 | 10010.50 |
| rat99                | 49     | 577   | 599   | 588.10   | 574     | 589   | 580.80   | 575       | 590   | 582.70   |
| rd100                | 50     | 3192  | 3371  | 3268.60  | 3168    | 3236  | 3200.40  | 3192      | 3322  | 3234.20  |
| rd400                | 200    | 8839  | 12104 | 9610.70  | 7556    | 7819  | 7683.20  | 7487      | 7943  | 7731.70  |
| si175                | 87     | 10500 | 11042 | 10750.40 | 10188   | 10487 | 10320.20 | 10244     | 10522 | 10404.10 |
| si535                | 267    | 23554 | 32045 | 24735.10 | 23039   | 26630 | 23525.70 | 23101     | 27112 | 23609.40 |
| st70                 | 35     | 260   | 278   | 267.20   | 260     | 279   | 265.90   | 260       | 280   | 263.00   |
| swiss42              | 21     | 458   | 458   | 458.00   | 458     | 458   | 458.00   | 458       | 458   | 458.00   |
| ts225                | 112    | 56828 | 58257 | 57589.00 | 56828   | 57656 | 57229.90 | 56828     | 57656 | 57312.70 |
|                      |        |       |       |          |         |       |          |           |       |          |



| Table 5 (continued) | tinued) |       |        |          |         |       |          |           |        |          |
|---------------------|---------|-------|--------|----------|---------|-------|----------|-----------|--------|----------|
| Instance            | k       | GVNS  |        |          | HH_RAND |       |          | HH_GREEDY | DY     |          |
|                     |         | Best  | Worst  | Average  | Best    | Worst | Average  | Best      | Worst  | Average  |
| tsp225              | 112     | 1867  | 2044   | 1943.70  | 1766    | 1849  | 1820.00  | 1783      | 1877   | 1835.40  |
| u159                | 79      | 18608 | 19524  | 19023.80 | 18401   | 18762 | 18550.10 | 18401     | 18939  | 18703.70 |
| u574                | 287     | 28540 | 75322  | 35589.70 | 20544   | 25252 | 22068.90 | 22698     | 28472  | 24273.60 |
| u724                | 362     | 40096 | 174467 | 57592.40 | 36221   | 85596 | 42480.70 | 40110     | 104609 | 47298.50 |
| ulysses16           | 8       | 1685  | 1685   | 1685.00  | 1685    | 1685  | 1685.00  | 1685      | 1685   | 1685.00  |
| ulysses22           | 11      | 1902  | 1903   | 1902.20  | 1902    | 1902  | 1902.00  | 1902      | 1902   | 1902.00  |



Table 6 Results of various approaches on each instance under large scenario with SR termination criteria

|           |     |        |        | •         |         |        |           |           |        |           |
|-----------|-----|--------|--------|-----------|---------|--------|-----------|-----------|--------|-----------|
| Instance  | k   | GVNS   |        |           | HH_RAND |        |           | HH_GREEDY | Y      |           |
|           |     | Best   | Worst  | Average   | Best    | Worst  | Average   | Best      | Worst  | Average   |
| a280      | 210 | 2268   | 2749   | 2386.60   | 2102    | 2201   | 2139.90   | 2094      | 2254   | 2167.70   |
| ali535    | 401 | 196679 | 717736 | 270305.09 | 118366  | 217688 | 144713.59 | 136714    | 239308 | 151024.00 |
| att48     |     | 6563   | 9299   | 6583.10   | 6563    | 6693   | 6586.30   | 6563      | 9636   | 6584.80   |
| att532    | 399 | 31837  | 94931  | 39125.70  | 22442   | 29921  | 24166.70  | 22556     | 36159  | 25062.20  |
| bayg29    |     | 666    | 666    | 999.00    | 666     | 666    | 999.00    | 666       | 666    | 00.666    |
| bays29    |     | 1194   | 1204   | 1196.40   | 1194    | 1204   | 1197.80   | 1194      | 1204   | 1196.80   |
| berlin52  |     | 4174   | 4436   | 4350.10   | 4251    | 4458   | 4342.80   | 4174      | 4409   | 4289.90   |
| bier127   |     | 51113  | 57192  | 53949.80  | 51565   | 53103  | 52269.80  | 51593     | 54638  | 52822.80  |
| brazil58  |     | 11614  | 11964  | 11785.40  | 11614   | 11619  | 11616.10  | 11614     | 11699  | 11623.30  |
| brg180    |     | 2070   | 2310   | 2186.00   | 1650    | 1750   | 1695.00   | 1620      | 1820   | 1721.00   |
| burma14   |     | 1642   | 1642   | 1642.00   | 1642    | 1642   | 1642.00   | 1642      | 1642   | 1642.00   |
| ch130     |     | 4186   | 4635   | 4418.50   | 4012    | 4212   | 4112.10   | 4003      | 4421   | 4210.70   |
| ch150     |     | 4814   | 5288   | 5001.40   | 4565    | 4843   | 4677.90   | 4503      | 4842   | 4676.20   |
| 4198      |     | 9622   | 11450  | 10300.10  | 9627    | 10115  | 9861.70   | 9758      | 10358  | 9971.00   |
| d493      |     | 31965  | 78152  | 38732.00  | 24533   | 31294  | 26597.20  | 25635     | 31763  | 26990.10  |
| d657      |     | 61969  | 297626 | 87099.60  | 55571   | 131286 | 64648.20  | 54983     | 184501 | 71055.90  |
| dantzig42 |     | 427    | 449    | 435.10    | 427     | 459    | 432.40    | 427       | 455    | 430.70    |
| eil101    |     | 403    | 430    | 418.50    | 396     | 409    | 403.70    | 396       | 418    | 406.90    |
| eil51     |     | 290    | 300    | 294.80    | 290     | 299    | 295.20    | 289       | 300    | 292.90    |
| eil76     |     | 348    | 366    | 358.70    | 341     | 356    | 347.90    | 339       | 363    | 350.80    |
| fl417     |     | 12024  | 41153  | 16353.30  | 8816    | 13523  | 9714.70   | 8810      | 13431  | 10007.60  |
| fri26     |     | 601    | 601    | 601.00    | 601     | 601    | 601.00    | 601       | 601    | 601.00    |
| gi1262    |     | 1835   | 2065   | 1960.60   | 1695    | 1800   | 1748.00   | 1717      | 1829   | 1773.00   |
| gr120     | 06  | 4688   | 5027   | 4828.60   | 4424    | 4622   | 4530.40   | 4525      | 4770   | 4675.70   |
|           |     |        |        |           |         |        |           |           |        |           |



| Table 6 (continued) | tinued) |        |         |           |         |        |           |           |        |           |
|---------------------|---------|--------|---------|-----------|---------|--------|-----------|-----------|--------|-----------|
| Instance            | k       | GVNS   |         |           | HH_RAND |        |           | HH_GREEDY | DY     |           |
|                     |         | Best   | Worst   | Average   | Best    | Worst  | Average   | Best      | Worst  | Average   |
| gr137               | 102     | 44356  | 52121   | 48566.10  | 44220   | 45256  | 44751.00  | 44382     | 47195  | 45816.80  |
| gr17                | 12      | 951    | 951     | 951.00    | 951     | 951    | 951.00    | 951       | 951    | 951.00    |
| gr202               | 151     | 22651  | 24576   | 23681.50  | 22119   | 23100  | 22712.60  | 22530     | 23388  | 22979.00  |
| gr21                | 15      | 1501   | 1501    | 1501.00   | 1501    | 1501   | 1501.00   | 1501      | 1501   | 1501.00   |
| gr229               | 171     | 73882  | 83324   | 77747.30  | 69201   | 73782  | 70951.70  | 70598     | 74436  | 72796.40  |
| gr24                | 18      | 844    | 844     | 844.00    | 844     | 844    | 844.00    | 844       | 844    | 844.00    |
| gr431               | 323     | 123736 | 243300  | 142645.80 | 87161   | 102599 | 90941.30  | 87748     | 103074 | 90947.30  |
| gr48                | 36      | 3113   | 3261    | 3178.60   | 3113    | 3231   | 3159.40   | 3104      | 3380   | 3144.90   |
| gr666               | 499     | 344171 | 1734123 | 498885.31 | 264813  | 722902 | 335465.19 | 275516    | 954405 | 365561.41 |
| gr96                | 72      | 32425  | 35322   | 33450.30  | 31437   | 32452  | 31798.20  | 31706     | 32746  | 32017.80  |
| hk48                | 36      | 7311   | 1677    | 7422.60   | 7326    | 7559   | 7442.30   | 7278      | 7386   | 7318.70   |
| kroA100             | 75      | 15418  | 17074   | 16558.20  | 14492   | 15586  | 14917.90  | 14775     | 16542  | 15444.60  |
| kroA150             | 112     | 20019  | 21807   | 20799.70  | 18629   | 19592  | 19017.80  | 19176     | 20717  | 19679.40  |
| kroA200             | 150     | 22354  | 24847   | 23937.70  | 21056   | 22196  | 21563.50  | 20723     | 22617  | 21834.10  |
| kroB100             | 75      | 15857  | 17040   | 16456.70  | 14831   | 15416  | 15029.20  | 14880     | 16045  | 15470.00  |
| kroB150             | 112     | 19312  | 21896   | 20549.40  | 18103   | 19018  | 18427.50  | 17729     | 19749  | 18709.50  |
| kroB200             | 150     | 22895  | 24442   | 23885.60  | 21241   | 22346  | 21765.70  | 21043     | 22965  | 21833.00  |
| kroC100             | 75      | 15144  | 17257   | 15990.40  | 14412   | 15052  | 14711.40  | 14581     | 16423  | 15468.80  |
| kroD100             | 75      | 15053  | 16798   | 15795.30  | 14382   | 15088  | 14803.50  | 14454     | 15968  | 15240.70  |
| kroE100             | 75      | 15250  | 17118   | 16202.60  | 14776   | 15605  | 15123.00  | 15060     | 16272  | 15609.70  |
| lin105              | 78      | 9405   | 9626    | 9650.70   | 8506    | 9499   | 9206.30   | 9161      | 9866   | 9406.10   |
| lin318              | 238     | 34430  | 43832   | 36058.30  | 31370   | 34198  | 32202.50  | 30682     | 34447  | 32321.50  |
| p654                | 490     | 41141  | 578099  | 98659.90  | 30845   | 180175 | 50757.90  | 34879     | 302242 | 64742.90  |



Table 6 (continued)

| idale o (continued) | initaca) |       |        |           |         |       |          |           |       |          |
|---------------------|----------|-------|--------|-----------|---------|-------|----------|-----------|-------|----------|
| Instance            | k        | GVNS  |        |           | HH_RAND |       |          | HH_GREEDY | DY    |          |
|                     |          | Best  | Worst  | Average   | Best    | Worst | Average  | Best      | Worst | Average  |
| pa561               | 420      | 2944  | 8598   | 3535.90   | 2205    | 3141  | 2405.70  | 2288      | 3231  | 2478.10  |
| pcb442              | 331      | 50388 | 92044  | 55843.70  | 40037   | 45301 | 42130.40 | 40012     | 43452 | 41496.20 |
| pr107               | 80       | 39574 | 40944  | 40270.60  | 36843   | 38060 | 37386.20 | 36468     | 39045 | 37798.40 |
| pr124               | 93       | 40230 | 43145  | 41802.20  | 39381   | 39599 | 39533.50 | 39237     | 41298 | 39974.90 |
| pr136               | 102      | 73061 | 80892  | 77248.70  | 69939   | 72538 | 71350.90 | 71737     | 74652 | 73310.70 |
| pr144               | 108      | 45204 | 54047  | 48876.10  | 42721   | 46123 | 44607.20 | 44266     | 49345 | 46872.50 |
| pr152               | 114      | 60924 | 69307  | 64608.10  | 58097   | 62759 | 60589.30 | 60829     | 64174 | 62321.60 |
| pr226               | 169      | 51519 | 64822  | 57824.90  | 49198   | 61479 | 53353.00 | 49732     | 61193 | 54024.20 |
| pr264               | 198      | 44120 | 68691  | 49413.40  | 39130   | 45863 | 41945.90 | 41061     | 47907 | 44298.30 |
| pr299               | 224      | 42458 | 51252  | 44269.00  | 36657   | 39024 | 37847.50 | 36977     | 41521 | 38599.80 |
| pr439               | 329      | 97027 | 194132 | 114449.20 | 69371   | 86472 | 75268.70 | 72548     | 90071 | 76568.90 |
| pr76                | 57       | 66833 | 70073  | 68378.40  | 64990   | 99299 | 65593.50 | 64694     | 88699 | 65642.70 |
| rat195              | 146      | 1852  | 1981   | 1917.90   | 1782    | 1856  | 1810.90  | 1783      | 1888  | 1827.00  |
| rat575              | 431      | 7984  | 29090  | 10308.30  | 9689    | 11120 | 7451.90  | 7176      | 14586 | 8085.90  |
| rat783              | 287      | 11660 | 77251  | 18571.30  | 10561   | 39014 | 13791.10 | 11371     | 52236 | 15729.80 |
| rat99               | 74       | 912   | 952    | 940.80    | 876     | 913   | 894.70   | 888       | 948   | 918.90   |
| rd100               | 75       | 5197  | 5836   | 5552.50   | 9609    | 5577  | 5287.30  | 5226      | 5618  | 5488.10  |
| rd400               | 300      | 14507 | 22552  | 15634.30  | 11796   | 13400 | 12277.90 | 11973     | 14055 | 12521.10 |
| si175               | 131      | 15998 | 17139  | 16352.30  | 15708   | 15978 | 15871.30 | 15720     | 16068 | 15938.10 |
| si535               | 401      | 36651 | 56842  | 39029.00  | 35417   | 45057 | 36630.60 | 35538     | 45353 | 36684.00 |
| st70                | 52       | 444   | 468    | 456.00    | 428     | 451   | 440.20   | 428       | 465   | 446.60   |
| swiss42             | 31       | 092   | 782    | 770.70    | 160     | 774   | 762.50   | 160       | 788   | 764.10   |
| ts225               | 168      | 86484 | 93538  | 89286.20  | 85656   | 88741 | 87418.20 | 86535     | 89828 | 88558.40 |
|                     |          |       |        | Y         |         |       |          |           |       |          |



| Table 6   (continued) | nued) |       |        |          |         |        |          |           |        |          |
|-----------------------|-------|-------|--------|----------|---------|--------|----------|-----------|--------|----------|
| Instance              | k     | GVNS  |        |          | HH_RAND |        |          | HH_GREEDY | DY     |          |
|                       |       | Best  | Worst  | Average  | Best    | Worst  | Average  | Best      | Worst  | Average  |
| tsp225                | 168   | 2987  | 3236   | 3070.30  | 2780    | 2936   | 2875.80  | 2813      | 2932   | 2877.80  |
| u159                  | 119   | 27890 | 31140  | 29311.50 | 27621   | 29816  | 28556.40 | 27790     | 29891  | 29101.20 |
| u574                  | 430   | 44488 | 180915 | 60303.20 | 36238   | 62734  | 40817.20 | 39009     | 85203  | 45108.60 |
| u724                  | 543   | 55269 | 340356 | 86381.70 | 52148   | 166699 | 65839.60 | 52708     | 212251 | 71306.40 |
| ulysses16             | 12    | 3183  | 3184   | 3183.70  | 3183    | 3184   | 3183.40  | 3183      | 3184   | 3183.30  |
| ulysses22             | 16    | 2941  | 2942   | 2941.70  | 2941    | 2942   | 2941.90  | 2941      | 2942   | 2941.20  |



Table 7 Results of various approaches on each instance under small scenario with LR termination criteria

| Instance  | k   | GVNS  |       |          | HH_RA | AND   |          | HH_GI | REEDY |          |
|-----------|-----|-------|-------|----------|-------|-------|----------|-------|-------|----------|
|           |     | Best  | Worst | Average  | Best  | Worst | Average  | Best  | Worst | Average  |
| a280      | 70  | 687   | 742   | 717.50   | 670   | 713   | 698.40   | 683   | 736   | 711.10   |
| ali535    | 133 | 18832 | 28075 | 22382.20 | 12602 | 13612 | 13220.30 | 12980 | 15030 | 13486.80 |
| att48     | 12  | 1925  | 1925  | 1925.00  | 1925  | 1925  | 1925.00  | 1925  | 1925  | 1925.00  |
| att532    | 133 | 4596  | 4873  | 4699.50  | 3980  | 4258  | 4132.90  | 4093  | 4392  | 4236.90  |
| bayg29    | 7   | 332   | 332   | 332.00   | 332   | 332   | 332.00   | 332   | 332   | 332.00   |
| bays29    | 7   | 400   | 400   | 400.00   | 400   | 400   | 400.00   | 400   | 400   | 400.00   |
| berlin52  | 13  | 679   | 679   | 679.00   | 679   | 679   | 679.00   | 679   | 679   | 679.00   |
| bier127   | 31  | 10619 | 11029 | 10804.60 | 10687 | 11014 | 10792.00 | 10692 | 10813 | 10745.80 |
| brazil58  | 14  | 4965  | 5030  | 4983.70  | 4965  | 4965  | 4965.00  | 4965  | 4965  | 4965.00  |
| brg180    | 45  | 650   | 710   | 686.00   | 540   | 580   | 554.00   | 530   | 560   | 546.00   |
| burma14   | 3   | 359   | 359   | 359.00   | 359   | 359   | 359.00   | 359   | 359   | 359.00   |
| ch130     | 32  | 1149  | 1351  | 1261.10  | 1130  | 1291  | 1226.30  | 1130  | 1296  | 1219.70  |
| ch150     | 37  | 1318  | 1350  | 1330.20  | 1276  | 1336  | 1316.90  | 1276  | 1386  | 1310.50  |
| d198      | 49  | 5080  | 5244  | 5169.10  | 5028  | 5120  | 5066.40  | 5037  | 5130  | 5075.40  |
| d493      | 123 | 10032 | 10868 | 10404.90 | 9411  | 9576  | 9489.60  | 9394  | 9767  | 9567.40  |
| d657      | 164 | 14029 | 14919 | 14424.60 | 12299 | 12751 | 12554.10 | 12562 | 13607 | 12942.80 |
| dantzig42 | 10  | 145   | 145   | 145.00   | 145   | 145   | 145.00   | 145   | 145   | 145.00   |
| eil101    | 25  | 107   | 108   | 107.30   | 107   | 109   | 107.60   | 107   | 109   | 107.30   |
| eil51     | 12  | 82    | 82    | 82.00    | 82    | 82    | 82.00    | 82    | 82    | 82.00    |
| eil76     | 19  | 102   | 102   | 102.00   | 102   | 102   | 102.00   | 102   | 102   | 102.00   |
| fl417     | 104 | 2285  | 2493  | 2324.90  | 2257  | 2269  | 2259.40  | 2258  | 2283  | 2262.20  |
| fri26     | 6   | 243   | 243   | 243.00   | 243   | 243   | 243.00   | 243   | 243   | 243.00   |
| gil262    | 65  | 574   | 641   | 606.70   | 545   | 570   | 561.00   | 553   | 579   | 564.70   |
| gr120     | 30  | 1308  | 1362  | 1314.20  | 1308  | 1318  | 1312.60  | 1308  | 1386  | 1323.40  |
| gr137     | 34  | 17802 | 18065 | 17996.50 | 17399 | 17999 | 17780.20 | 17445 | 18065 | 17813.20 |
| gr17      | 4   | 234   | 234   | 234.00   | 234   | 234   | 234.00   | 234   | 234   | 234.00   |
| gr202     | 50  | 8191  | 8564  | 8422.40  | 8142  | 8404  | 8301.40  | 8142  | 8428  | 8283.50  |
| gr21      | 5   | 324   | 324   | 324.00   | 324   | 324   | 324.00   | 324   | 324   | 324.00   |
| gr229     | 57  | 20252 | 24811 | 21926.40 | 18555 | 19805 | 19102.80 | 18970 | 19600 | 19195.30 |
| gr24      | 6   | 264   | 264   | 264.00   | 264   | 264   | 264.00   | 264   | 264   | 264.00   |
| gr431     | 107 | 15556 | 16227 | 15960.10 | 14857 | 15612 | 15374.30 | 15350 | 16221 | 15819.40 |
| gr48      | 12  | 874   | 874   | 874.00   | 874   | 874   | 874.00   | 874   | 874   | 874.00   |
| gr666     | 166 | 29083 | 32399 | 31037.20 | 27358 | 28430 | 28045.50 | 27820 | 29347 | 28660.90 |
| gr96      | 24  | 10465 | 10465 | 10465.00 | 10460 | 10561 | 10474.00 | 10460 | 10786 | 10529.20 |
| hk48      | 12  | 2827  | 2827  | 2827.00  | 2827  | 2827  | 2827.00  | 2827  | 2827  | 2827.00  |
| kroA100   | 25  | 4998  | 5104  | 5023.10  | 4970  | 5061  | 5011.80  | 4998  | 5104  | 5017.20  |
| kroA150   | 37  | 5725  | 6182  | 5936.10  | 5690  | 6454  | 5938.60  | 5690  | 6154  | 5826.70  |
| kroA200   | 50  | 6438  | 7155  | 6780.70  | 6202  | 6496  | 6358.00  | 6421  | 6663  | 6503.10  |
| kroB100   | 25  | 4353  | 4788  | 4588.80  | 4305  | 4684  | 4473.70  | 4501  | 4788  | 4574.50  |
| kroB150   | 37  | 6410  | 6854  | 6588.00  | 6071  | 6938  | 6468.20  | 5812  | 6781  | 6426.20  |
| MOD 130   | 31  | 0410  | 0034  | 0500.00  | 00/1  | 0730  | 0400.20  | 3014  | 0/01  | 0720.20  |



Table 7 (continued)

| Instance  | k   | GVNS  |       |          | HH_R  | AND   |          | HH_GI | REEDY |          |
|-----------|-----|-------|-------|----------|-------|-------|----------|-------|-------|----------|
|           |     | Best  | Worst | Average  | Best  | Worst | Average  | Best  | Worst | Average  |
| kroB200   | 50  | 6414  | 7543  | 7051.00  | 6370  | 7034  | 6711.20  | 6440  | 7219  | 6811.80  |
| kroC100   | 25  | 4964  | 5346  | 5048.60  | 4964  | 5103  | 4988.70  | 4964  | 5227  | 4991.50  |
| kroD100   | 25  | 4762  | 5062  | 4855.60  | 4787  | 5014  | 4905.60  | 4762  | 4980  | 4843.70  |
| kroE100   | 25  | 3905  | 3977  | 3918.70  | 3905  | 3984  | 3916.80  | 3905  | 3935  | 3911.00  |
| lin105    | 26  | 2606  | 2751  | 2632.90  | 2606  | 2680  | 2613.40  | 2606  | 2606  | 2606.00  |
| lin318    | 79  | 9108  | 10190 | 9624.10  | 8912  | 9626  | 9162.50  | 9219  | 9813  | 9429.30  |
| p654      | 163 | 8152  | 8328  | 8255.70  | 7348  | 8128  | 7439.20  | 7341  | 8173  | 7633.80  |
| pa561     | 140 | 575   | 658   | 607.70   | 523   | 563   | 540.20   | 526   | 568   | 547.40   |
| pcb442    | 110 | 11628 | 12267 | 12000.80 | 11099 | 11716 | 11457.00 | 11539 | 12054 | 11782.70 |
| pr107     | 26  | 8443  | 9311  | 8590.80  | 8443  | 8449  | 8444.50  | 8443  | 8729  | 8472.20  |
| pr124     | 31  | 14952 | 14952 | 14952.00 | 14640 | 14952 | 14920.80 | 14952 | 14952 | 14952.00 |
| pr136     | 34  | 21174 | 23108 | 22186.60 | 21116 | 26162 | 22862.80 | 21174 | 24564 | 22398.40 |
| pr144     | 36  | 14538 | 16119 | 14710.50 | 14538 | 17196 | 15410.30 | 14327 | 16363 | 15483.40 |
| pr152     | 38  | 23373 | 24412 | 23895.70 | 23373 | 24544 | 24001.70 | 23700 | 25078 | 24298.30 |
| pr226     | 56  | 21202 | 27255 | 24446.10 | 20033 | 26595 | 23665.00 | 20125 | 25902 | 24008.30 |
| pr264     | 66  | 10864 | 15034 | 11990.60 | 9432  | 10432 | 9931.20  | 9232  | 11032 | 9819.20  |
| pr299     | 74  | 11773 | 13272 | 12205.60 | 11392 | 11916 | 11611.50 | 11675 | 12622 | 12055.20 |
| pr439     | 109 | 22243 | 23926 | 22911.30 | 20874 | 21267 | 21064.90 | 20987 | 21728 | 21355.50 |
| pr76      | 19  | 23450 | 23450 | 23450.00 | 23450 | 23450 | 23450.00 | 23450 | 23450 | 23450.00 |
| rat195    | 48  | 593   | 618   | 603.50   | 557   | 586   | 580.80   | 559   | 590   | 573.90   |
| rat575    | 143 | 1694  | 1817  | 1758.80  | 1591  | 1663  | 1622.30  | 1589  | 1691  | 1640.80  |
| rat783    | 195 | 2453  | 2746  | 2577.60  | 2192  | 2274  | 2222.90  | 2192  | 2283  | 2234.60  |
| rat99     | 24  | 284   | 291   | 285.70   | 284   | 287   | 285.20   | 284   | 287   | 284.50   |
| rd100     | 25  | 1438  | 1613  | 1517.80  | 1438  | 1521  | 1472.30  | 1438  | 1545  | 1488.30  |
| rd400     | 100 | 3762  | 4013  | 3884.90  | 3362  | 3506  | 3439.90  | 3486  | 3769  | 3596.80  |
| si175     | 43  | 4968  | 5246  | 5107.40  | 4881  | 4947  | 4906.00  | 4906  | 5010  | 4945.30  |
| si535     | 133 | 11688 | 13780 | 12051.00 | 11208 | 11815 | 11374.40 | 11347 | 12280 | 11575.00 |
| st70      | 17  | 120   | 125   | 123.50   | 120   | 125   | 123.50   | 120   | 125   | 123.40   |
| swiss42   | 10  | 192   | 192   | 192.00   | 192   | 192   | 192.00   | 192   | 192   | 192.00   |
| ts225     | 56  | 28828 | 28828 | 28828.00 | 28828 | 28828 | 28828.00 | 28828 | 28828 | 28828.00 |
| tsp225    | 56  | 977   | 1028  | 999.10   | 915   | 964   | 942.10   | 915   | 973   | 939.70   |
| u159      | 39  | 9176  | 9629  | 9354.30  | 8983  | 9623  | 9262.30  | 8983  | 9412  | 9188.60  |
| u574      | 143 | 9146  | 9602  | 9364.20  | 8310  | 8725  | 8520.20  | 8453  | 9194  | 8870.50  |
| u724      | 181 | 11737 | 13354 | 12395.80 | 10176 | 10733 | 10362.50 | 10071 | 11162 | 10578.20 |
| ulysses16 | 4   | 935   | 935   | 935.00   | 935   | 935   | 935.00   | 935   | 935   | 935.00   |
| ulysses22 | 5   | 747   | 747   | 747.00   | 747   | 747   | 747.00   | 747   | 747   | 747.00   |

runs respectively by that approach. The best values are reported in bold font for ease of identification. Please note that we have also reported the worst solution obtained by various approaches over ten runs here. The knowledge about the worst solution



Table 8 Results of various approaches on each instance under medium scenario with LR termination criteria

| Instance  | k   | GVNS   |        |           | HH_R  | AND    |          | HH_GI | REEDY  |          |
|-----------|-----|--------|--------|-----------|-------|--------|----------|-------|--------|----------|
|           |     | Best   | Worst  | Average   | Best  | Worst  | Average  | Best  | Worst  | Average  |
| a280      | 140 | 1376   | 1510   | 1443.60   | 1314  | 1417   | 1363.90  | 1362  | 1436   | 1400.10  |
| ali535    | 267 | 59255  | 107878 | 72798.10  | 46457 | 53987  | 49143.40 | 46195 | 52936  | 49680.30 |
| att48     | 24  | 3603   | 3603   | 3603.00   | 3603  | 3603   | 3603.00  | 3603  | 3603   | 3603.00  |
| att532    | 266 | 11285  | 13411  | 12027.20  | 9991  | 10800  | 10396.80 | 10285 | 10924  | 10466.30 |
| bayg29    | 14  | 626    | 626    | 626.00    | 626   | 626    | 626.00   | 626   | 626    | 626.00   |
| bays29    | 14  | 733    | 733    | 733.00    | 733   | 733    | 733.00   | 733   | 733    | 733.00   |
| berlin52  | 26  | 1874   | 1928   | 1883.70   | 1874  | 1928   | 1879.40  | 1874  | 1917   | 1878.30  |
| bier127   | 63  | 27404  | 28361  | 27942.20  | 26062 | 27335  | 26841.20 | 26102 | 27329  | 26745.50 |
| brazil58  | 29  | 8001   | 8170   | 8060.60   | 7993  | 8077   | 8028.10  | 7978  | 8065   | 8005.80  |
| brg180    | 90  | 1370   | 1470   | 1412.00   | 1080  | 1120   | 1103.00  | 1110  | 1160   | 1130.00  |
| burma14   | 7   | 1272   | 1272   | 1272.00   | 1272  | 1272   | 1272.00  | 1272  | 1272   | 1272.00  |
| ch130     | 65  | 2483   | 2920   | 2742.70   | 2423  | 2564   | 2512.60  | 2544  | 2657   | 2588.20  |
| ch150     | 75  | 2977   | 3158   | 3077.00   | 2761  | 2948   | 2851.20  | 2856  | 2968   | 2914.30  |
| d198      | 99  | 7270   | 7517   | 7396.70   | 7073  | 7198   | 7124.30  | 7126  | 7318   | 7209.60  |
| d493      | 246 | 15997  | 17188  | 16514.90  | 14223 | 14803  | 14568.80 | 14356 | 15119  | 14674.80 |
| d657      | 328 | 32740  | 54078  | 37002.30  | 24462 | 27495  | 25991.30 | 24424 | 26937  | 26093.40 |
| dantzig42 | 21  | 260    | 260    | 260.00    | 260   | 260    | 260.00   | 260   | 260    | 260.00   |
| eil101    | 50  | 240    | 245    | 242.20    | 228   | 238    | 234.00   | 227   | 239    | 232.80   |
| eil51     | 25  | 175    | 185    | 180.00    | 175   | 187    | 180.40   | 175   | 184    | 178.80   |
| eil76     | 38  | 218    | 227    | 223.50    | 219   | 229    | 222.80   | 216   | 226    | 218.70   |
| fl417     | 208 | 7404   | 8593   | 7848.30   | 6404  | 6955   | 6597.00  | 6483  | 7157   | 6853.40  |
| fri26     | 13  | 414    | 414    | 414.00    | 414   | 414    | 414.00   | 414   | 414    | 414.00   |
| gil262    | 131 | 1141   | 1290   | 1224.20   | 1037  | 1101   | 1078.20  | 1034  | 1136   | 1095.60  |
| gr120     | 60  | 2826   | 3001   | 2891.00   | 2713  | 2871   | 2767.70  | 2710  | 2843   | 2772.40  |
| gr137     | 68  | 30456  | 32460  | 31654.50  | 29363 | 30127  | 29700.00 | 29673 | 31016  | 29936.60 |
| gr17      | 8   | 517    | 517    | 517.00    | 517   | 517    | 517.00   | 517   | 517    | 517.00   |
| gr202     | 101 | 14333  | 15415  | 14983.00  | 14182 | 14670  | 14399.40 | 14199 | 14958  | 14646.80 |
| gr21      | 10  | 918    | 918    | 918.00    | 918   | 918    | 918.00   | 918   | 918    | 918.00   |
| gr229     | 114 | 45078  | 49105  | 47002.90  | 41005 | 42574  | 41642.70 | 41242 | 44401  | 42704.70 |
| gr24      | 12  | 504    | 504    | 504.00    | 504   | 504    | 504.00   | 504   | 504    | 504.00   |
| gr431     | 215 | 41906  | 45594  | 43969.60  | 37071 | 39334  | 37973.30 | 38207 | 40976  | 38820.40 |
| gr48      | 24  | 1819   | 1836   | 1820.70   | 1819  | 1836   | 1822.40  | 1819  | 1819   | 1819.00  |
| gr666     | 333 | 140432 | 253851 | 160908.09 | 93994 | 107511 | 98839.90 | 89448 | 107124 | 95744.70 |
| gr96      | 48  | 20807  | 22097  | 21431.10  | 20688 | 20937  | 20756.80 | 20688 | 21930  | 21095.20 |
| hk48      | 24  | 4701   | 4759   | 4712.30   | 4701  | 4759   | 4710.20  | 4701  | 4735   | 4707.40  |
| kroA100   | 50  | 9335   | 10417  | 10035.50  | 9184  | 9525   | 9218.10  | 9184  | 9949   | 9565.90  |
| kroA150   | 75  | 12166  | 14020  | 13228.10  | 11625 | 12379  | 12015.30 | 11936 | 13270  | 12621.80 |
| kroA200   | 100 | 14213  | 15717  | 15060.50  | 12753 | 13668  | 13235.30 | 13011 | 14069  | 13595.80 |
| kroB100   | 50  | 9244   | 11025  | 10291.70  | 9312  | 9787   | 9577.40  | 9096  | 9980   | 9537.00  |
| kroB150   | 75  | 12751  | 14361  | 13368.80  | 11642 | 12132  | 11880.40 | 11910 | 12412  | 12102.50 |



Table 8 (continued)

| Instance  | $\boldsymbol{k}$ | GVNS  |       |          | HH_R  | AND   |          | HH_G  | REEDY |          |
|-----------|------------------|-------|-------|----------|-------|-------|----------|-------|-------|----------|
|           |                  | Best  | Worst | Average  | Best  | Worst | Average  | Best  | Worst | Average  |
| kroB200   | 100              | 14004 | 15955 | 14971.90 | 13178 | 14114 | 13704.90 | 13222 | 14637 | 14030.90 |
| kroC100   | 50               | 9668  | 10288 | 9986.00  | 9493  | 10049 | 9726.20  | 9457  | 9923  | 9654.40  |
| kroD100   | 50               | 8962  | 9582  | 9223.20  | 8719  | 9150  | 8853.50  | 8719  | 8969  | 8805.50  |
| kroE100   | 50               | 9345  | 10141 | 9781.70  | 9132  | 9631  | 9303.70  | 9102  | 9792  | 9386.40  |
| lin105    | 52               | 5857  | 5921  | 5880.50  | 5848  | 5919  | 5873.20  | 5857  | 5995  | 5909.80  |
| p654      | 327              | 27188 | 73557 | 34053.80 | 19380 | 21433 | 20473.00 | 19332 | 22443 | 20649.30 |
| pa561     | 280              | 1429  | 1768  | 1497.50  | 1211  | 1300  | 1237.30  | 1224  | 1327  | 1262.40  |
| pcb442    | 221              | 25899 | 27504 | 27015.00 | 24536 | 25147 | 24921.30 | 24451 | 26191 | 25208.20 |
| pr107     | 53               | 29652 | 31206 | 30625.80 | 18028 | 29798 | 23769.60 | 18165 | 30212 | 28257.10 |
| pr124     | 62               | 22998 | 24923 | 23890.80 | 22998 | 22998 | 22998.00 | 22998 | 23321 | 23037.20 |
| pr136     | 68               | 49652 | 52064 | 50590.10 | 46890 | 47931 | 47316.90 | 47016 | 51128 | 48389.10 |
| pr144     | 72               | 30810 | 33628 | 32062.30 | 28402 | 31557 | 30063.60 | 29380 | 32167 | 31107.10 |
| pr152     | 76               | 38369 | 46768 | 42781.70 | 37336 | 45171 | 40178.30 | 38355 | 46485 | 41500.30 |
| pr226     | 113              | 38718 | 40662 | 39691.60 | 38914 | 39830 | 39292.40 | 39231 | 43349 | 40238.70 |
| pr264     | 132              | 31251 | 36187 | 33866.70 | 27711 | 29598 | 28317.30 | 28247 | 29903 | 28856.50 |
| pr299     | 149              | 24843 | 27832 | 25756.10 | 23475 | 24544 | 23849.00 | 23636 | 25119 | 24498.30 |
| pr439     | 219              | 45318 | 49432 | 46788.20 | 38874 | 41581 | 39778.20 | 38313 | 43040 | 40781.30 |
| pr76      | 38               | 41254 | 42786 | 41816.10 | 41258 | 41976 | 41516.30 | 41248 | 42465 | 41699.30 |
| rat195    | 97               | 1185  | 1288  | 1238.80  | 1140  | 1165  | 1152.80  | 1144  | 1208  | 1171.60  |
| rat575    | 287              | 3853  | 4512  | 4052.60  | 3349  | 3526  | 3444.20  | 3431  | 3604  | 3489.00  |
| rat783    | 391              | 7258  | 17344 | 8431.00  | 5007  | 5580  | 5174.90  | 5132  | 5858  | 5304.60  |
| rat99     | 49               | 577   | 599   | 588.80   | 576   | 591   | 581.00   | 574   | 589   | 579.40   |
| rd100     | 50               | 3192  | 3371  | 3268.60  | 3168  | 3236  | 3196.80  | 3190  | 3260  | 3210.30  |
| rd400     | 200              | 7951  | 8542  | 8192.20  | 7013  | 7555  | 7287.70  | 7428  | 7799  | 7577.10  |
| si175     | 87               | 10467 | 11042 | 10700.80 | 10265 | 10436 | 10319.10 | 10208 | 10556 | 10382.70 |
| si535     | 267              | 23460 | 30386 | 24433.90 | 22940 | 25599 | 23316.70 | 22896 | 25926 | 23360.90 |
| st70      | 35               | 260   | 278   | 267.20   | 260   | 279   | 265.90   | 260   | 273   | 262.60   |
| swiss42   | 21               | 458   | 458   | 458.00   | 458   | 458   | 458.00   | 458   | 458   | 458.00   |
| ts225     | 112              | 56828 | 57656 | 57436.90 | 56828 | 57656 | 57229.90 | 56828 | 57949 | 57271.30 |
| tsp225    | 112              | 1904  | 2035  | 1964.00  | 1729  | 1852  | 1788.10  | 1818  | 1926  | 1868.10  |
| u159      | 79               | 18491 | 19617 | 19031.20 | 18401 | 18762 | 18516.70 | 18399 | 18955 | 18580.10 |
| u574      | 287              | 20940 | 26302 | 22489.60 | 17355 | 19033 | 18214.10 | 17553 | 19438 | 18249.20 |
| u724      | 362              | 33596 | 71937 | 39033.60 | 21802 | 25214 | 23468.30 | 22138 | 25262 | 23227.40 |
| ulysses16 | 8                | 1685  | 1685  | 1685.00  | 1685  | 1685  | 1685.00  | 1685  | 1685  | 1685.00  |
| ulysses22 | 11               | 1902  | 1903  | 1902.20  | 1902  | 1902  | 1902.00  | 1902  | 1902  | 1902.00  |

obtained aids in ascertaining the robustness of an approach in comparison to other approaches. As can be seen from these tables, even the worst solution obtained by



Table 9 Results of various approaches on each instance under large scenario with LR termination criteria

| Instance  | k   | GVNS   |        | instance k GVNS HH_RAND | HH_RAND |        |           | HH_GREEDY | )Y     |           |
|-----------|-----|--------|--------|-------------------------|---------|--------|-----------|-----------|--------|-----------|
|           |     | Best   | Worst  | Average                 | Best    | Worst  | Average   | Best      | Worst  | Average   |
| a280      | 210 | 2149   | 2452   | 2269.60                 | 2066    | 2185   | 2116.90   | 2043      | 2199   | 2135.60   |
| ali535    | 401 | 144825 | 291826 | 171311.59               | 113209  | 147140 | 120854.20 | 108369    | 140219 | 118111.20 |
| att48     | 36  | 6563   | 9599   | 6583.10                 | 6563    | 6693   | 6586.30   | 6563      | 9099   | 6575.90   |
| att532    | 399 | 23148  | 34207  | 25235.50                | 19245   | 21196  | 19729.40  | 18858     | 21441  | 19747.60  |
| bayg29    | 21  | 666    | 666    | 00.666                  | 666     | 666    | 00'666    | 666       | 666    | 999.00    |
| bays29    | 21  | 1194   | 1204   | 1196.40                 | 1194    | 1204   | 1197.80   | 1194      | 1194   | 1194.00   |
| berlin52  | 39  | 4174   | 4436   | 4350.10                 | 4251    | 4458   | 4342.80   | 4174      | 4385   | 4323.80   |
| bier127   | 95  | 52853  | 57192  | 54586.10                | 50324   | 53100  | 51530.10  | 51427     | 53888  | 52671.70  |
| brazil58  | 43  | 11614  | 11964  | 11785.40                | 11614   | 11619  | 11615.60  | 11614     | 11619  | 11614.70  |
| brg180    | 135 | 2030   | 2310   | 2163.00                 | 1600    | 1710   | 1663.00   | 1650      | 1780   | 1693.00   |
| burma14   | 10  | 1642   | 1642   | 1642.00                 | 1642    | 1642   | 1642.00   | 1642      | 1642   | 1642.00   |
| ch130     | 26  | 4156   | 4628   | 4412.20                 | 3907    | 4176   | 4068.50   | 3956      | 4166   | 4089.40   |
| ch150     | 112 | 4860   | 5288   | 4994.90                 | 4499    | 4705   | 4599.60   | 4625      | 4812   | 4716.00   |
| d198      | 148 | 9819   | 11440  | 10493.80                | 9428    | 9713   | 9586.10   | 9386      | 10358  | 9796.30   |
| d493      | 369 | 26223  | 31451  | 27158.30                | 23483   | 25003  | 23868.10  | 23380     | 26149  | 24260.50  |
| d657      | 492 | 52098  | 130389 | 61837.70                | 41410   | 48611  | 42767.90  | 41976     | 49857  | 43707.80  |
| dantzig42 | 31  | 427    | 449    | 435.10                  | 427     | 459    | 432.40    | 427       | 427    | 427.00    |
| eil101    | 75  | 409    | 432    | 419.20                  | 397     | 408    | 402.70    | 389       | 419    | 403.30    |
| eil51     | 38  | 290    | 300    | 294.80                  | 290     | 299    | 295.20    | 290       | 296    | 293.30    |
| eil76     | 57  | 351    | 367    | 359.00                  | 336     | 356    | 346.10    | 339       | 359    | 347.80    |
| fl417     | 312 | 0696   | 16049  | 11174.40                | 8337    | 8668   | 8603.10   | 8242      | 11504  | 9027.80   |
| fri26     | 19  | 601    | 601    | 601.00                  | 601     | 601    | 601.00    | 601       | 601    | 601.00    |
| gi1262    | 196 | 1817   | 1999   | 1896.00                 | 1672    | 1759   | 1717.80   | 1703      | 1829   | 1751.10   |
| gr120     | 06  | 4585   | 5027   | 4763.90                 | 4420    | 4598   | 4528.20   | 4380      | 4770   | 4589.00   |



| <b>Λ</b> | Table 9 (cont | tinued) |       |       |          |         |       |          |           |       |          |
|----------|---------------|---------|-------|-------|----------|---------|-------|----------|-----------|-------|----------|
|          | Instance      | k       | GVNS  |       |          | HH_RAND | ۵     |          | HH_GREEDY | EDY   |          |
|          |               |         | Best  | Worst | Average  | Best    | Worst | Average  | Best      | Worst | Average  |
|          | er137         | 102     | 46737 | 50307 | 48199.10 | 44182   | 45781 | 44665.50 | 43912     | 47350 | 45554.80 |

| lable 2 (continued) | maca) |        |        |           |         |        |           |           |        |           |
|---------------------|-------|--------|--------|-----------|---------|--------|-----------|-----------|--------|-----------|
| Instance            | k     | GVNS   |        |           | HH_RAND |        |           | HH_GREEDY | DY     |           |
|                     |       | Best   | Worst  | Average   | Best    | Worst  | Average   | Best      | Worst  | Average   |
| gr137               | 102   | 46737  | 50307  | 48199.10  | 44182   | 45781  | 44665.50  | 43912     | 47350  | 45554.80  |
| gr17                | 12    | 951    | 951    | 951.00    | 951     | 951    | 951.00    | 951       | 951    | 951.00    |
| gr202               | 151   | 22701  | 24537  | 23731.80  | 21563   | 22761  | 22444.20  | 21954     | 23633  | 22854.10  |
| gr21                | 15    | 1501   | 1501   | 1501.00   | 1501    | 1501   | 1501.00   | 1501      | 1501   | 1501.00   |
| gr229               | 171   | 72938  | 81767  | 75845.00  | 67848   | 72217  | 70154.60  | 68553     | 75220  | 71644.00  |
| gr24                | 18    | 844    | 844    | 844.00    | 844     | 844    | 844.00    | 844       | 844    | 844.00    |
| gr431               | 323   | 93079  | 107716 | 97093.70  | 81904   | 87997  | 84147.10  | 81144     | 89321  | 84736.20  |
| gr48                | 36    | 3113   | 3261   | 3178.60   | 3113    | 3231   | 3159.40   | 3104      | 3231   | 3135.00   |
| gr666               | 499   | 273618 | 763260 | 341435.41 | 194897  | 253287 | 208981.80 | 204846    | 259577 | 215325.91 |
| gr96                | 72    | 32498  | 35322  | 33822.20  | 31437   | 32452  | 31707.80  | 31526     | 34413  | 32144.10  |
| hk48                | 36    | 7311   | 1677   | 7422.60   | 7326    | 7559   | 7442.30   | 7278      | 7561   | 7317.70   |
| kroA100             | 75    | 15461  | 16943  | 16280.90  | 14592   | 14969  | 14747.30  | 14500     | 16437  | 15267.10  |
| kroA150             | 112   | 19192  | 21807  | 20779.40  | 18210   | 19202  | 18724.50  | 18917     | 20031  | 19344.40  |
| kroA200             | 150   | 22926  | 25030  | 23673.70  | 20794   | 21736  | 21323.40  | 20740     | 22159  | 21542.40  |
| kroB100             | 75    | 15846  | 17040  | 16344.20  | 14744   | 15412  | 15045.60  | 14799     | 15775  | 15312.50  |
| kroB150             | 112   | 19506  | 21896  | 20560.30  | 17695   | 18717  | 18140.40  | 17501     | 19749  | 18705.70  |
| kroB200             | 150   | 22964  | 24418  | 23548.40  | 20673   | 21541  | 21191.40  | 20508     | 23134  | 21695.30  |
| kroC100             | 75    | 15536  | 17257  | 16162.50  | 14201   | 15093  | 14615.30  | 14067     | 15770  | 14922.90  |
| kroD100             | 75    | 15211  | 16798  | 15943.00  | 14171   | 15145  | 14691.00  | 14288     | 15710  | 15139.00  |
| kroE100             | 75    | 15452  | 17118  | 16102.00  | 14640   | 15605  | 15154.10  | 14843     | 15956  | 15217.90  |
| lin105              | 78    | 9178   | 2866   | 9523.10   | 9034    | 9310   | 9206.20   | 9034      | 9408   | 9267.10   |
| lin318              | 238   | 32100  | 37616  | 33558.10  | 29829   | 31398  | 30479.10  | 30625     | 32702  | 31419.10  |
| p654                | 490   | 34821  | 198432 | 53572.60  | 24514   | 44335  | 29129.30  | 25671     | 42799  | 29650.40  |
|                     |       |        |        |           |         |        |           |           |        |           |



Table 9 (continued)

| lable 9 (continued) | nunea) |       |       |          |         |       |          |           |       |          |
|---------------------|--------|-------|-------|----------|---------|-------|----------|-----------|-------|----------|
| Instance            | k      | GVNS  |       |          | HH_RAND |       |          | HH_GREEDY | DY    |          |
|                     |        | Best  | Worst | Average  | Best    | Worst | Average  | Best      | Worst | Average  |
| pa561               | 420    | 2361  | 3538  | 2548.40  | 2031    | 2419  | 2147.40  | 2067      | 2458  | 2152.20  |
| pcb442              | 331    | 41889 | 46635 | 42991.40 | 37941   | 40196 | 38976.70 | 38419     | 40523 | 39116.90 |
| pr107               | 80     | 39770 | 41113 | 40531.90 | 36627   | 37745 | 37072.50 | 36661     | 39331 | 38251.40 |
| pr124               | 93     | 40471 | 43934 | 41953.00 | 39174   | 39772 | 39562.40 | 39528     | 42758 | 40375.60 |
| pr136               | 102    | 75922 | 80389 | 77741.50 | 06969   | 72784 | 71071.10 | 90669     | 75594 | 72198.40 |
| pr144               | 108    | 46889 | 51287 | 48861.80 | 41452   | 48138 | 43983.30 | 42164     | 49900 | 46620.10 |
| pr152               | 114    | 61758 | 69307 | 64513.60 | 57431   | 60424 | 59372.00 | 58114     | 65974 | 62302.90 |
| pr226               | 169    | 49552 | 60248 | 56582.70 | 47516   | 54238 | 50928.10 | 50315     | 61193 | 54532.20 |
| pr264               | 198    | 43189 | 60377 | 48234.90 | 39503   | 41739 | 40366.70 | 40896     | 44796 | 42967.90 |
| pr299               | 224    | 38188 | 43058 | 40204.00 | 35942   | 38155 | 37030.40 | 36957     | 39966 | 37949.40 |
| pr439               | 329    | 74268 | 96826 | 78410.10 | 64497   | 77142 | 68425.10 | 66365     | 77489 | 70468.70 |
| pr76                | 57     | 66186 | 69717 | 67805.60 | 64251   | 66734 | 65505.40 | 64142     | 66117 | 64878.40 |
| rat195              | 146    | 1891  | 1983  | 1929.10  | 1753    | 1828  | 1780.40  | 1783      | 1844  | 1817.20  |
| rat575              | 431    | 9659  | 11320 | 7231.10  | 5452    | 5942  | 5591.30  | 5498      | 6018  | 5610.30  |
| rat783              | 587    | 10561 | 36820 | 13406.80 | 8487    | 12529 | 9152.30  | 8820      | 15063 | 9685.50  |
| rat99               | 74     | 928   | 096   | 942.00   | 861     | 904   | 884.50   | 998       | 927   | 894.50   |
| rd100               | 75     | 5221  | 5819  | 5523.20  | 5094    | 5494  | 5264.50  | 5192      | 5503  | 5325.20  |
| rd400               | 300    | 12224 | 14484 | 12864.20 | 11326   | 12423 | 11671.80 | 11398     | 12231 | 11765.10 |
| si175               | 131    | 16074 | 17136 | 16426.20 | 15625   | 15915 | 15821.20 | 15756     | 16016 | 15889.00 |
| si535               | 401    | 35926 | 49376 | 37418.00 | 35141   | 42336 | 35974.00 | 35114     | 42018 | 35993.00 |
| st70                | 52     | 444   | 468   | 456.00   | 428     | 448   | 436.60   | 428       | 451   | 437.70   |
| swiss42             | 31     | 092   | 782   | 770.70   | 160     | 774   | 762.50   | 092       | 784   | 763.30   |
| ts225               | 168    | 86898 | 90490 | 88150.60 | 92928   | 87783 | 86888.40 | 02098     | 89191 | 87537.20 |
|                     |        |       |       |          |         |       |          |           |       |          |



| Table 9 (continued) | tinued) |       |        |          |         |       |          |           |       |          |
|---------------------|---------|-------|--------|----------|---------|-------|----------|-----------|-------|----------|
| Instance            | k       | GVNS  |        |          | HH_RAND |       |          | HH_GREEDY | 3DY   |          |
|                     |         | Best  | Worst  | Average  | Best    | Worst | Average  | Best      | Worst | Average  |
| tsp225              | 168     | 2934  | 3236   | 3067.70  | 2665    | 2888  | 2773.60  | 2800      | 2934  | 2855.50  |
| u159                | 119     | 29181 | 30761  | 29968.30 | 27413   | 28672 | 27927.30 | 27817     | 30354 | 28991.80 |
| u574                | 430     | 35032 | 64203  | 39064.40 | 28950   | 31892 | 30120.80 | 28376     | 32163 | 30045.00 |
| u724                | 543     | 49460 | 155156 | 62157.80 | 37730   | 48702 | 40120.60 | 39467     | 54504 | 42298.80 |
| ulysses16           | 12      | 3183  | 3184   | 3183.70  | 3183    | 3184  | 3183.40  | 3183      | 3184  | 3183.30  |
| ulysses22           | 16      | 2941  | 2942   | 2941.70  | 2941    | 2942  | 2941.90  | 2941      | 2942  | 2941.20  |



HH\_RAND is better than the worst solution obtained by other two approaches in most of the cases.

# Appendix II

This appendix presents the convergence behavior of our approaches. For studying the convergence behavior, three instances of different sizes, namely *gr*229, *ali*535 and *p*654, have been considered. Figures 3, 4 and 5 plot the convergence behavior of our three approaches, viz. GVNS, HH\_RAND and HH\_GREEDY respectively for the instances *gr*229, *ali*535 and *p*654 under small, medium and large scenarios. The convergence graphs depict that both HH\_RAND and HH\_GREEDY converges faster than the GVNS. When it comes to the comparison between HH\_RAND and HH\_GREEDY based on their convergence behavior, there is only a minute difference in their convergence behavior except for the large scenario of *p*654, where HH\_RAND clearly converges faster than HH\_GREEDY.



Fig. 3 Convergence behavior on instance gr229 under different scenarios





Fig. 4 Convergence behavior on instance ali535 under different scenarios



Fig. 5 Convergence behavior on instance p654 under different scenarios



### References

- 1. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989)
- Ausiello, G., Bonifaci, V., Leonardi, S., Marchetti-Spaccamela, A.: Prize-collecting traveling salesman and related problems. Handbook Approx. Algorithms Metaheuristics 40, 1–13 (2007)
- 3. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k MST problem. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 442–448. ACM (1996)
- 4. Garg, N.: A 3-approximation for the minimum tree spanning k vertices. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science, pp. 302–309. IEEE, (1996)
- Arora, S., Karakostas, G.: A 2+ ε approximation algorithm for the k-MST problem. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 754–759. Society for Industrial and Applied Mathematics, (2000)
- 6. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 36–45. IEEE, (2003)
- 7. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402. ACM, (2005)
- 8. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. SIAM J. Comput. **37**(2), 653–670 (2007)
- Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097– 1100 (1997)
- Hansen, P., Mladenović, N., Moreno Pérez, J.A.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)
- Mladenović, N., Urošević, D., Hanafi, S., Ilić, A.: A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem. Eur. J. Oper. Res. 220(1), 270–285 (2012)
- 12. Mladenović, N., Todosijević, R., Urošević, D.: Two level general variable neighborhood search for attractive traveling salesman problem. Comput. Oper. Res. **52**, 341–348 (2014)
- Mladenović, N., Todosijević, R., Urošević, D.: An efficient general variable neighborhood search for large travelling salesman problem with time windows. Yugoslav J. Oper. Res. 23(1), 19–30 (2013)
- Todosijević, R., Mjirda, A., Mladenović, M., Hanafi, S., Gendron, B.: A general variable neighborhood search variants for the travelling salesman problem with draft limits. Optim. Lett. 11(6), 1047–1056 (2017)
- Venkatesh, P., Srivastava, G., Singh, A.: A general variable neighborhood search algorithm for the k-traveling salesman problem. In: Proceedings of the 8th International Conference on Advances in Computing & Communications (ICACC-2018), Procedia Computer Science, vol. 143, pp. 189–196. Elsevier, (2018)
- 16. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
- 17. Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several AI methods. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, vol. 1, pp. 102–107, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc (1997)
- 18. Fisher, H.: Probabilistic learning combinations of local job-shop scheduling rules. In: Industrial scheduling, pp. 225–251, (1963)
- Crowston, W.B., Glover, F., Thompson, G.L., Trawick, J.D.: Probabilistic and parametric learning combinations of local job shop scheduling rules. Technical report, Research Memorandum, No. 117, GSIA, Carnegie Mellon University, Pittsburgh, (1963)
- Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: International Conference on the Practice and Theory of Automated Timetabling, pp. 176–190. Springer, (2000)
- 21. Chakhlevitch, K., Cowling, P.: Hyperheuristics: recent developments. In: Adaptive and multilevel metaheuristics, pp. 3–29. Springer, (2008)
- Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: International Conference on Parallel Problem Solving from Nature, pp. 307–316. Springer, (2012)



- Kendall, G., Li, J.: Competitive travelling salesmen problem: a hyper-heuristic approach. J. Oper. Res. Soc. 64(2), 208–216 (2013)
- Pandiri, V., Singh, A.: A hyper-heuristic based artificial bee colony algorithm for k-interconnected multi-depot multi-traveling salesman problem. Inf. Sci. 463, 261–281 (2018)
- Zalilah Abd Aziz: Ant colony hyper-heuristics for travelling salesman problem. Procedia Comput. Sci. 76, 534–538 (2015)
- 26. Choong, S.S., Wong, L.-P., Lim, C.P.: An artificial bee colony algorithm with a modified choice function for the traveling salesman problem. Swarm Evol. Comput. 44, 622–635 (2019)
- 27. Wilcoxon, F., Katti, S.K., Wilcox, R.A.: Critical values and probability levels for the wilcoxon rank sum test and the wilcoxon signed rank test. Sel. Tab. Math. Stat. 1, 171–259 (1970)

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

