Akademia Nauk Stosowanych Wydział Nauk Inżynieryjnych Kierunek: Informatyka studia I stopnia, semestr 2

Systemy operacyjne

WYKŁAD 12

dr inż. Stanisława Plichta splichta@ans-ns.edu.pl

Zarządzanie pamięcią operacyjną

- Adres logiczny wytworzony przez procesor (adres wirtualny)
- Zbiór wszystkich adresów logicznych logiczna przestrzeń adresowa
- Adres fizyczny umieszczony w rejestrze adresowym pamięci
- Zbiór wszystkich adresów fizycznych fizyczna przestrzeń adresowa
- Odwzorowanie adresów wirtualnych na fizyczne MMU (jednostka zarządzająca pamięcią –memory management unit)

Odwzorowanie adresu

Przykład stronicowania

Schemat działania MMU dla stronicowania

Schemat działania MMU dla stronicowania

Schemat pamięci wirtualnej

Tablica stron z brakami stron w pamięci

Etapy obsługi braku strony

Efektywny czas dostępu

Oznaczmy przez p prawdopodobieństwo braku strony

• Efektywny czas dostępu (Effective Access Time (EAT) do pamięci stronicowanej – średni czas wymagany na obsługę odwołania do pamięci (pewna miara sprawności).

	(1 - p)	*	czas dostępu do pamięci
EAT=	+ p	*	(narzut związany z przerwaniem braku strony
			+ [zapisanie na dysk strony ze zwalnianej ramki] + wczytanie z dysku żądanej strony +
			narzut związany ze wznowieniem procesu)

Efektywny czas dostępu

Przyjmijmy następujące założenia:

- Czas dostępu do konwencjonalnej pamięci to 1 mikrosekunda
- Połowa z zastępowanych stron wymaga zapisu na dysk
- Czas dyskowego zapisu i odczytu strony to 10 milisekund (10000 mikrosekund)
- Zaniedbujemy narzuty związane z obsługą przerwania i wznowieniem procesu (są one niewielkie w porównaniu z gigantycznym kosztem operacji dyskowej)

EAT=
$$(1 - p)* 1 + p * (50% * 10000 + 10000) = 1+14999*p$$

EAT jest wprost proporcjonalny do prawdopodobieństwa wystąpienia przerwania braku strony

Schemat zastępowania stron

Algorytm zastępowania stron

- Algorytm zastępowania stron powinien minimalizować częstość braków stron (page-fault rate).
- Algorytm ocenia się na podstawie wykonania go na pewnym ciągu odniesień (reference string) do pamięci i zsumowania braków stron.
 - Ciąg odniesień można tworzyć sztucznie lub na podstawie śledzenia danego systemu.
- W poniższych przykładach ciąg odniesień ma postać:
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Algorytm FIFO zastępowania stron

liczba ramek wynosi 3

Chwila	1	2	3	4	5	6	7	8	9	10	11	12
Odwołanie	1	2	3	4	1	2	5	1	2	3	4	5
Ramka 1	1	1	1	4	4	4	5	5	5	5	5	5
Ramka 2		2	2	2	1	1	1	1	1	3	3	3
Ramka 3			3	3	3	2	2	2	2	2	4	4

ofiarą staje się strona, która najdłużej przebywa w pamięci

Algorytm FIFO zastępowania stron

Przyjrzyjmy się teraz, co się stanie, gdy liczba ramek wyniesie 4

Chwila	1	2	3	4	5	6	7	8	9	10	11	12
Odwołanie	1	2	3	4	1	2	5	1	2	3	4	5
Ramka 1	1	1	1	1	1	1	5	5	5	5	4	4
Ramka 2		2	2	2	2	2	2	1	1	1	1	5
Ramka 3			3	3	3	3	3	3	2	2	2	2
Ramka 4				4	4	4	4	4	4	3	3	3

ofiarą staje się strona, która najdłużej przebywa w pamięci

Algorytm FIFO zastępowania stron

- Ciąg odniesień: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
- 3 ramki (3 strony mogą być w pamięci w tym samym czasie):

4 ramki:

← 10 braków stron

Anomalia Belady'ego

Anomalia Belady'ego polega na tym, że współczynnik braków stron wzrasta ze wzrostem liczby wolnych ramek

Wykres braków stron dla algorytmu FIFO

Algorytm optymalny

Chwila	1	2	3	4	5	6	7	8	9	10	11	12
Odwołanie	1	2	3	4	1	2	5	1	2	3	4	5
Ramka 1	1	1	1	1	1	1	1	1	1	1	4	4
Ramka 2		2	2	2	2	2	2	2	2	2	2	2
Ramka 3			3	3	3	3	3	3	3	3	3	3
Ramka 4				4	4	4	5	5	5	5	5	5

ofiarą staje się strona, która będzie nieużywana przez najdłuższy okres

Algorytm optymalny

☐ <u>Przykład:</u> 4 ramki, ciąg odniesień: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5;

- Algorytm optymalny ma najniższy współczynnik braków stron ze wszystkich algorytmów, wolny od anomalii Belady'ego
- Jest trudny w realizacji, ponieważ wymaga wiedzy o przyszłej postaci ciągu odniesień (skąd ją wziąć?).
- Jest używany głównie w studiach porównawczych jako punkt odniesienia do innych algorytmów

Algorytm LRU

Chwila	1	2	3	4	5	6	7	8	9	10	11	12
Odwołanie	1	2	3	4	1	2	5	1	2	3	4	5
Ramka 1	1	1	1	1	1	1	1	1	1	1	1	5
Ramka 2		2	2	2	2	2	2	2	2	2	2	2
Ramka 3			3	3	3	3	5	5	5	5	4	4
Ramka 4				4	4	4	4	4	4	3	3	3

ofiarą strona, która nie była używana od najdłuższego czasu

Algorytm LRU

 □ Przykład: 4 ramki, ciąg odniesień: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5;

 1
 | 5 | |

 2
 | 6 | |

 3
 5 | 4 | |

 4
 3 | |

- Lepszy od algorytmu FIFO (mniej braków stron).
- Wolny od anomalii Belady'ego często stosowany.
- Trudność z zapamiętaniem historii użycia stron może wymagać sporego zaplecza sprzętowego.

Implementacja algorytmu LRU

- Za pomocą liczników każda strona ma wówczas specjalne pole licznika. Gdy jakiś proces odwołuje się do strony, do licznika kopiuje się stan zegara systemowego.
- Za pomocą stosu na stosie trzymamy numery stron, do których były odwołania. Odwołanie do strony powoduje przesunięcie jej numeru na wierzchołek tego stosu.