Lecture02 - Mostly categorical variables

Steve Simon

7/1/2019

Categorical data

- proc format
- recoding
- proc freq
- barcharts

Titanic data set

```
Name PClass Age Sex Survived

"Allen, Miss Elisabeth Walton" 1st 29 female 1

"Allison, Miss Helen Loraine" 1st 2 female 0

"Allison, Mr Hudson Joshua Creighton" 1st 30

male 0

"Allison, Mrs Hudson JC (Bessie Waldo Daniels)"

1st 25 female 0

"Allison, Master Hudson Trevor" 1st 0.92 male

1

"Anderson, Mr Harry" 1st 47 male 1

"Andrews, Miss Kornelia Theodosia" 1st 63

female 1

"Andrews, Mr Thomas, jr" 1st 39 male 0

"Appleton, Mrs Edward Dale (Charlotte Lamson)"

1st 58 female 1
```

1. Output and data locations

```
ods pdf
  file="lecture02.pdf";

filename raw_data
  "../data/titanic_v00.txt";

libname intro
  "../data";
```

2. Reading, proc import

```
proc import
    datafile=raw_data
    out=intro.titanic
    dbms=dlm
    replace;
    delimiter='09'x;
    getnames=yes;
run;
```

3. First ten lines, proc print

```
proc print
    data=intro.titanic(obs=10);
    title1 " ";
run;
```

First ten rows of the Titanic data set

bs	Name	PClass	Age	Sex	Survived
1	Allen, Miss Elisabeth Walton	1st	29	female	1
2	Allison, Miss Helen Loraine	1st	2	female	0
3	Allison, Mr Hudson Joshua Creighton	1st	30	male	0
4	Allison, Mrs Hudson JC (Bessie Waldo Daniels)	1st	25	female	0
5	Allison, Master Hudson Trevor	1st	0.92	male	1
6	Anderson, Mr Harry	1st	47	male	1
7	Andrews, Miss Kornelia Theodosia	1st	63	female	1
8	Andrews, Mr Thomas, jr	1st	39	male	0
9	Appleton, Mrs Edward Dale (Charlotte Lamson)	1st	58	female	1
10	Artagaveytia, Mr Ramon	1st	71	male	0

Output, proc print

4. Counts, proc freq

proc freq
 data=intro.titanic;
 tables PClass Sex Survived;
run;

Counts for categorical data (1/2)

The FREQ Procedure						
PClass	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
1st	322	24.52	322	24.52		
2nd	280	21.33	602	45.85		
3rd	711	54.15	1313	100.00		
Sex	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
Sex female		Percent 35.19				

Output, proc freq

Counts for categorical data (2/2)

Output, proc freq

5. Convert string to numeric, data step

```
data intro.titanic;
  set intro.titanic;
  age_c = input(age, ?? 8.);
run;

proc means
    n nmiss mean std min max
  data=intro.titanic;
  var age_c;
run;
```

Means and standard deviations for age

Output, proc freq

6. Using proc format to code categorical data

```
proc format;
  value f_survived
    0 = "No"
    1 = "Yes";
run;

proc freq
    data=intro.titanic;
  tables Survived;
  format Survived f_survived.;
run;
```

Nicely formatted counts for survival

Output, proc freq

7. Bar charts, proc sgplot

```
proc sgplot
    data=intro.titanic;
    vbar Survived;
    format Survived f_survived.;
run;
```


8. Percentages for bar chart

```
proc freq
    data=intro.titanic;
  tables Survived / noprint out=pct_survived;
run;

proc print
    data=pct_survived;
  format Survived f_survived.;
run;

proc sgplot
    data=pct_survived;
  vbar Survived / response=Percent;
  yaxis max=100;
  format Survived f_survived.;
run;
```

Percentages, proc freq

Output, proc freq

9. Crosstabulation

```
proc freq
    data=intro.titanic;
tables Sex*Survived / nocol nopercent;
format Survived f_survived.;
run;
```


10. Converting a continuous variable to categorical

```
data age_categories;
  set intro.titanic;
  if age_c = .
    then age_cat = "missing ";
  else if age_c < 6
    then age_cat = "toddler ";
  else if age_c < 13
    then age_cat = "pre-teen";
  else if age_c < 21
    then age_cat = "teenager";
  else age_cat = "adult ";
  run;</pre>
```

11. Quality check

```
proc sort
    data=age_categories;
by age_cat;
run;

proc means
    min max
    data=age_categories;
by age_cat;
    var age_c;
run;
```

Recoding age (1 / 3) The MEANS Procedure age_cat=adult Analysis Variable: age_c Minimum 21.0000000 Analysis Variable: age_c Minimum Maximum 21.0000000 Analysis Variable: age_c Minimum Maximum . Output, proc means

Recoding age (2 / 3)	
The MEANS Procedure age_cat=pre-teen Analysis Variable: age_c Minimum Maximum 6.000000 12.0000000 age_cat=teenager Analysis Variable: age_c Minimum Maximum 13.0000000 20.0000000	11
Output, proc means	

12. Controlling the display order

```
data age_codes;
  set intro.titanic;
  if age_c = .
    then age_cat = 9;
  else if age_c < 6
    then age_cat = 1;
  else if age_c < 13
    then age_cat = 2;
  else if age_c < 21
    then age_cat = 3;
  else age_cat = 4;
run;</pre>
```

13. With number codes, use proc format

```
proc format;
  value f_age
    1 = "toddler"
    2 = "pre-teen"
    3 = "teenager"
    4 = "adult"
    9 = "unknown";
run;
```

14. Quality check

```
proc sort
    data=age_codes;
by age_cat;
run;

proc means
    min max
    data=age_codes;
by age_cat;
var age_c;
format age_cat f_age.;
run;
```

The MEANS Procedure age_cat=toddler Analysis Variable: age_c Minimum Maximum 0.1700000 5.0000000 Age_cat=pre-teen Analysis Variable: age_c Minimum Maximum 6.0000000 12.00000000

Output, proc means

Better age recode (2 / 3	3)
The MEANS Procedure age_cat≔teenager Analysis Variable: age_c Minimum Maximum 13.0000000 20.00000000	14 ^
age_cat=adult Analysis Variable : age_c Minimum	3
Output, proc means	

15. Modifying a categorical variable

```
data first_class;
  set intro.titanic;
  if PClass = "1st"
    then first_class = "Yes";
    else first_class = "No";
run;
proc freq
    data=first_class;
  table PClass*first_class /
    norow nocol nopercent;
run;
```

Quality check

