Probabilistic Reasoning Over Time

Artificial Intelligence
School of Computer Science
The University of Adelaide

- You are the security guard permanently located at a secret underground installation.
- You cannot see the weather outside.
- Everyday, you see the director arriving with or without an umbrella.
- At day t+1, the director arrived with an umbrella. Is it raining outside?

Day	1	2	3	•••	t	<i>t</i> +1
Observed umbrella?	✓	✓	X	•••	X	1

- A robot is moving in a 2D map with obstacles. Its sensor detects the directions are blocked by obstacles at the robot's location.
- A sequence of sensor readings is observed:

Time step	1	2	3	•••	t	<i>t</i> +1
Blocked directions	N S W	N S	N		S E W	S E

At time step t+1, where is the robot?

 A commonly used temporal model for this kind of problem:

 This is just a Bayesian Network with the concept of time.

• Variables = { R_0 , R_1 , ..., R_{t+1} , U_1 , ..., U_{t+1} }.

You have observed evidences

$$\{u_1, ..., u_{t+1}\}$$
 = {true,true,false,...,false,true}.

You want to calculate the probability

$$P(R_{t+1}|u_1,...,u_{t+1})$$

for R_{t+1} = true and R_{t+1} = false.

This is a special kind of probabilistic inference called filtering.

The general case

- State variables $\{X_0, X_1, ..., X_{t+1}\}$.
- Evidence variables { E_1 , ..., E_{t+1} }.
- By convention, we assume X_t starts at t=0 while E_t starts at t=1.

The general case

State transition model

$$P(X_{t+1}|X_0,...,X_t) = P(X_{t+1}|X_t)$$

 First order Markov assumption: the present state depends only on the immediate previous state.

The general case

Observation model

$$P(E_{t+1}|X_{0:t+1}, E_{0:t}) = P(E_{t+1}|X_{t+1})$$

• Sensor Markov assumption: the probability of observing E_t depends only on the state X_t .

*Note: $X_{0:t} = X_0, X_1, ..., X_t$

• We have observed \mathbf{e}_1 , ..., $\mathbf{e}_{t+1} = \mathbf{e}_{1:t+1}$. We wish to calculate $\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1})$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}$$

 $= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t})$ (by the sensor Markov assumption).

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \, \sum_{\mathbf{x}_t} \, \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$

 \mathbf{x}_t

=
$$\alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \sum \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$
 (Markov assumption).

• We have observed \mathbf{e}_1 , ..., $\mathbf{e}_{t+1} = \mathbf{e}_{1:t+1}$. We wish to calculate $\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1})$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1})$$
 (dividing up the evidence)

= $\alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t})$ (using Bayes' rule)

 $= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t})$ (by the sensor Markov assumption).

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \, \sum_{\mathbf{x}_t} \, \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \sum \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) P(\mathbf{x}_t | \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

• We have observed \mathbf{e}_1 , ..., $\mathbf{e}_{t+1} = \mathbf{e}_{1:t+1}$. We wish to calculate

$$\boxed{\mathbf{P}(\mathbf{X}_{t+1} \,|\, \mathbf{e}_{1:t+1})}$$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.$$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \sum_{\mathbf{x}_{t}} \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_{t}, \mathbf{e}_{1:t}) P(\mathbf{x}_{t} | \mathbf{e}_{1:t})$$

 \mathbf{x}_t

=
$$\alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \sum \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$
 (Markov assumption).

Has the same form, but at one time step before! This process is called recursive estimation.

• We have observed e_1 , ..., $e_{t+1} = e_{1 \cdot t+1}$. We wish to calculate

$$\mathbf{P}(\mathbf{X}_{t+1} \,|\, \mathbf{e}_{1:t+1})$$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.$$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \, \sum_{\mathbf{x}_t} \, \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\substack{\mathbf{x}_{t} \text{Calculating this is called prediction.}}} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}) P(\mathbf{x}_{t} \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

• We have observed \mathbf{e}_1 , ..., $\mathbf{e}_{t+1} = \mathbf{e}_{1:t+1}$. We wish to calculate

$$\boxed{\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1})}$$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.$$

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \sum_{\mathbf{x}_{t}} \, \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_{t}, \mathbf{e}_{1:t}) P(\mathbf{x}_{t} | \mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{t=1}^{\infty} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t) P(\mathbf{x}_t \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

by Tombining the prediction with the new evidence is called update.

- On day 0, we have no observations, only the security guard's prior beliefs; let's assume that consists of $\mathbf{P}(R_0) = \langle 0.5, 0.5 \rangle$.
- On day 1, the umbrella appears, so $U_1 = true$. The prediction from t = 0 to t = 1 is

$$\mathbf{P}(R_1) = \sum_{r_0} \mathbf{P}(R_1 | r_0) P(r_0)$$

$$= \langle 0.7, 0.3 \rangle \times 0.5 + \langle 0.3, 0.7 \rangle \times 0.5 = \langle 0.5, 0.5 \rangle.$$

Then the update step simply multiplies by the probability of the evidence for t = 1 and normalizes, as shown in Equation (15.4):

$$\mathbf{P}(R_1 | u_1) = \alpha \mathbf{P}(u_1 | R_1) \mathbf{P}(R_1) = \alpha \langle 0.9, 0.2 \rangle \langle 0.5, 0.5 \rangle$$

= $\alpha \langle 0.45, 0.1 \rangle \approx \langle 0.818, 0.182 \rangle$.

• On day 2, the umbrella appears, so $U_2 = true$. The prediction from t = 1 to t = 2 is

$$\mathbf{P}(R_2 \mid u_1) = \sum_{r_1} \mathbf{P}(R_2 \mid r_1) P(r_1 \mid u_1)$$

$$= \langle 0.7, 0.3 \rangle \times 0.818 + \langle 0.3, 0.7 \rangle \times 0.182 \approx \langle 0.627, 0.373 \rangle,$$

and updating it with the evidence for t = 2 gives

$$\mathbf{P}(R_2 \mid u_1, u_2) = \alpha \, \mathbf{P}(u_2 \mid R_2) \mathbf{P}(R_2 \mid u_1) = \alpha \, \langle 0.9, 0.2 \rangle \langle 0.627, 0.373 \rangle$$
$$= \alpha \, \langle 0.565, 0.075 \rangle \approx \langle 0.883, 0.117 \rangle .$$

Can keep on going as new observations are made.

Hidden Markov Model (HMM)

- A HMM is obtained if X_t and E_t for all t are single discrete random variables.
 - e.g., "is it raining outside?" is a HMM.
- In a HMM, the transition model can be encoded in an SxS matrix

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}[1,1] & \mathbf{T}[1,2] & \cdots & \mathbf{T}[1,S] \\ \mathbf{T}[2,1] & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \vdots \\ \mathbf{T}[S,1] & \cdots & \cdots & \mathbf{T}[S,S] \end{bmatrix}$$

where S in the number of possible values of X_t , and

$$T[i,j] = P(X_t = j | X_{t-1} = i)$$

Hidden Markov Model (HMM)

• Given evidence e_t at time step t, the observation model can be encoded in an SxS diagonal matrix

$$\mathbf{O}_{t} = \begin{bmatrix} \mathbf{O}_{t}[1,1] & 0 & \cdots & 0 \\ 0 & \mathbf{O}_{t}[2,2] & \cdots & \vdots \\ \vdots & \cdots & \mathbf{O}_{t}[3,3] & 0 \\ 0 & \cdots & 0 & \mathbf{O}_{t}[S,S] \end{bmatrix}$$

where

$$\mathbf{O}_t[\mathbf{i},\mathbf{i}] = P(e_t|X_t = i)$$

Hidden Markov Model (HMM)

Recursive estimation in HMM can be computed as

$$\mathbf{f}_{t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^T \mathbf{f}_t$$

where

 \mathbf{f}_{t+1} is column vector form of $P(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1})$

 \mathbf{f}_t is column vector form of $P(\mathbf{X}_t | \mathbf{e}_{1:t})$

From transition model:

$$\mathbf{T} = \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix}$$

At t=0, rain or no rain is equally likely, so

$$\mathbf{f}_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

• At *t*=1, umbrella is observed, so

$$\mathbf{O}_1 = \begin{bmatrix} 0.9 & 0 \\ 0 & 0.2 \end{bmatrix}$$

• Filtering result at *t*=1 is

$$\mathbf{f}_1 = \alpha \begin{bmatrix} 0.9 & 0 \\ 0 & 0.2 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix}^T \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \alpha \begin{bmatrix} 0.45 \\ 0.1 \end{bmatrix} \approx \begin{bmatrix} 0.818 \\ 0.182 \end{bmatrix}$$

• At *t*=2, umbrella is observed, so

$$\mathbf{O}_2 = \begin{bmatrix} 0.9 & 0 \\ 0 & 0.2 \end{bmatrix}$$

• Filtering result at *t*=2 is

$$\mathbf{f}_2 = \alpha \begin{bmatrix} 0.9 & 0 \\ 0 & 0.2 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix}^T \begin{bmatrix} 0.45 \\ 0.1 \end{bmatrix} = \alpha \begin{bmatrix} 0.3105 \\ 0.041 \end{bmatrix} \approx \begin{bmatrix} 0.883 \\ 0.117 \end{bmatrix}$$

State variable represents the robot location:

$$X_t \in \{1, 2, \dots, S\}$$

Assuming random walk, the transition model is

$$P(X_{t+1} = j \mid X_t = i) = \begin{cases} 1/N(i) & \text{if } j \in \text{NEIGHBOURS(i)} \\ 0 & \text{otherwise} \end{cases}$$

where NEIGHBOURS(i) = set of neighbours of cell i.

$$N(i)$$
 = number of neighbours of cell i.

• The sensor's error rate is $\,\epsilon\,$ and error occurs independently in the four directions. This gives the observation model

$$P(E_t = e_t \mid X_t = i) = (1 - \epsilon)^{4 - d_{it}} \epsilon^{d_{it}}$$

where d_{it} is the number of directions that are wrong given location $X_t=i$ and sensor reading $E_t=e_t$.

• Example: at the robot's position in the map above, the probability of observing $e_t=NSE$ is $(1-\epsilon)^3\epsilon^1$.

- Assume the robot is equally likely to be at any square at t = 0, i.e., f_0 is uniform.
- After observing $E_1 = NSW$, \mathbf{f}_1 becomes

• After observing $E_2=NS$, \mathbf{f}_2 becomes

