

Word embeddings

Materia: Procesamiento de lenguaje natural Blanca Vázquez

Recordemos

Entrada

Modelo

Salida

¿Cómo entrar un modelo a partir de un conjunto de textos?

¿Cómo entrar un modelo a partir de un conjunto de textos?

Transformar los textos a una forma vectorial

Bolsa de palabras

Una bolsa de palabras (BOW, por las siglas en inglés de *Bag of Words*) es un modelo que representa texto como un conjunto <u>no ordenado</u> de palabras, ignorando la gramática y el orden de las palabras.

small dog cute cat cute dog

	cat	cute	dog	small
	0	0	1	1
	1	1	0	0
J	0	1	1	0

TF-IDF (Term Frequency — Inverse Document Frequency)

Es una técnica estadística que cuantifica la importancia de una palabra en un documento en función de la frecuencia con la que aparece en ese documento y en una colección determinada de documentos (corpus).

$$tfidf(t,d,D) = tf(t,d) \times idf(d,D)$$

Supongamos que contamos con 4 documentos:

- d1: "The sky is blue."
- d2: "The sun is bright today."
- d3: "The sun in the sky is bright."
- d4: "We can see the shining sun, the bright sun."

Paso 1: Remover las stop-words:

- d1: "sky blue."
- d2: " sun bright today."
- d3: "sun sky bright."
- d4: "can see shining sun bright sun."

• d1: "sky blue."

• d2: " sun bright today."

• d3: "sun sky bright."

• d4: "can see shining sun bright sun."

Paso 2 calcular TF (term- frequency): construir la matriz palabra - documento.

	blue	bright	can	see	shining	sky	sun	today
1	1	0	0	0	0	1	0	0
2	0	1	0	0	0	0	1	1
3	0	1	0	0	0	1	1	0
4	0	1	1	1	1	0	2	0

	blue	bright	can	see	shining	sky	sun	today
1	1	0	0	0	0	1	0	0
2	0	1	0	0	0	0	1	1
3	0	1	0	0	0	1	1	0
4	0	1	1	1	1	0	2	0

Paso 2 (continúa): construir la matriz documento - palabra y normalizar las filas que sumen 1.

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

$$tf(t,d) = rac{f_{t,d}}{\sum_{t'} f_{t',d}}$$

donde $f_{t,d}$ es el número de ocurrencias de t en d.

- d1: "sky blue."
- d2: " sun bright today."
- d3: "sun sky bright."
- d4: "can see shining sun bright sun."

Paso 3 calcular IDF (Inverse document- frequency): Encuentra el número de documentos en los que aparece cada palabra.

	blue	bright	can	see	shining	sky	sun	today
1	1	0	0	0	0	1	0	0
2	0	1	0	0	0	0	1	1
3	0	1	0	0	0	1	1	0
4	0	1	1	1	1	0	2	0
n_t	1	3	1	1	1	2	3	1

	blue	bright	can	see	shining	sky	sun	today
1	1			0		1	0	0
2	0	1		0	0	0	1	1
3		1				1	1	0
4	0	1	1	1	1	0	2	0
n_t	1	3	1	1	1	2	3	1

Paso 3 (continúa): calcula usando la fórmula $idf(t,D) = \log(rac{N}{n_t})$

$$idf(t,D) = \log(\frac{N}{n_t})$$

blue	bright	can	see	shining	sky	sun	today
0.602	0.125	0.602	0.602	0.602	0.301	0.125	0.602

$$\log_{10} \frac{4}{1} = 0.602$$

$$\log_{10} \frac{4}{3} = 0.125$$

Paso 4 calcular TF-IDF: multiplicar los puntajes obtenidos por separado tf (t,d)

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

blue	bright	can	see	shining	sky	sun	today
0.602	0.125	0.602	0.602	0.602	0.301	0.125	0.602

idf (t,D)

$$tfidf(t,d,D) = tf(t,d) \times idf(d,D)$$

Paso 4 calcular TF-IDF: multiplicar los puntajes obtenidos por separado tf (t,d)

idf (t,D)

	blue	bright	can	see	shining	sky	sun	today
1	1/2	0	0	0	0	1/2	0	0
2	0	1/3	0	0	0	0	1/3	1/3
3	0	1/3	0	0	0	1/3	1/3	0
4	0	1/6	1/6	1/6	1/6	0	1/3	0

blue	bright	can	see	shining	sky	sun	today
0.602	0.125	0.602	0.602	0.602	0.301	0.125	0.602

	blue	bright	can	see	shining	sky	sun	today
1	0.301	0	0	0	0	0.151	0	0
2	0	0.0417	0	0	0	0	0.0417	0.201
3	0	0.0417	0	0	0	0.1	0.0417	0
4	0	0.0209	0.1	0.1	0.1	0	0.0417	0

Paso 4 calcular TF-IDF: multiplicar los puntajes obtenidos por separado

	blue	bright	can	see	shining	sky	sun	today
1	0.301	0	0	0	0	0.151	0	0
2	0	0.0417	0	0	0	0	0.0417	0.201
3	0	0.0417	0	0	0	0.1	0.0417	0
4	0	0.0209	0.1	0.1	0.1	0	0.0417	0

TF-IDF se usa para ponderar la importancia de las palabras dentro de los documentos

¿Qué ventajas y desventajas encuentras en BOW y TF-IDF?

Ejercicio: TF-IDF

Word embeddings

Es un vector denso de valores de punto flotante los cuales son parámetros entrenables (pesos aprendidos por el modelo durante el entrenamiento).

Word embeddings

La idea detrás de los embeddings es que a cada palabra se le asigna un vector en un **espacio multidimensional**.

La posición de estos vectores en el espacio refleja la proximidad semántica entre las palabras. Si dos palabras tienen significados similares, sus vectores estarán próximos. Si sus significados son opuestos o no están relacionados, estarán distantes en el espacio vectorial.

Time to code

