Ejercicios de completitud en \mathbb{R}

Sea $A, B \subset \mathbb{R}$, y defina el conjunto $A + B = \{x + y : x \in A, y \in B\}$. Pruebe que si A y B son acotados superiormente y no vacíos, entonces A + B es acotado superiormente, y además $\sup(A + B) = \sup A + \sup B$.

Prueba

Sea $a \in A$ acotados superiormente y $A \neq \emptyset$ por el axioma del extremo superior, $\exists \sup(A)$ tal que $a \leq \sup A$. Sea $b \in B$ acotado superiormente y $B \neq \emptyset$ por el axioma del extremo superior $\exists \sup(B)$ tal que $b \leq \sup B$. Ahora $a + b \leq \sup A + \sup B$. Así A + B es acotado superiormente.

Como sup $A + \sup B$ es cota superior de a + b, y se sabe que el supremo es la menor de las cotas superiores entonces:

$$\implies \sup(A+B) \le \sup A + \sup B$$
 (1)

Ahora bien, como el supremo es mayor o igual a los elementos del conjunto:

$$\implies a+b \le \sup(A+B)$$

Ahora $a \leq \sup(A+B) - b$ es cota superior, y por el axioma del extremo superior, sup $A \leq \sup(A+B) - b$, $\forall a \in A$.

Para $b \le \sup(A+B) - a$, es cota superior de b, y por el axioma del extremo superior, $\sup B \le \sup(A+B) - a$, $\forall b \in B$.

Así:

$$\implies \sup A + \sup B \le \sup(A + B)$$
 (2)

De (1) y (2):

$$\implies \sup A + \sup B = \sup((A+B))$$

Sea $S \subset \mathbb{R}$, $S \neq \emptyset$, S acotado y sea $\lambda \in \mathbb{R}$. Defina el conjunto $\lambda S = \{\lambda s \mid s \in S\}$. Demuestre que si $\lambda > 0$, entonces $\inf(\lambda S) = \lambda \inf(S)$ y $\sup(\lambda S) = \lambda \sup(S)$.

Prueba

Note que como S está acotado y $S \neq \emptyset$ por el axioma del extremo superior:

$$\exists \sup S \implies \forall s \in S, \quad s \leq \sup S$$

$$\implies \lambda s \le \lambda \cdot \sup S$$

Es cota superior de λS y, por el axioma del extremo superior (Axioma del Supremum), es la menor de las cotas superiores:

$$\sup(\lambda S) < \lambda \cdot \sup S \tag{1}$$

Ahora note que $\lambda \cdot \sup S$ es cota superior de λS . Como $\lambda \cdot \sup S$ es cota superior y $\lambda S \neq \emptyset$,

$$\exists \sup(\lambda S) \implies \lambda s \leq \sup(\lambda S), \text{ note que } \lambda \in \mathbb{R}^+$$

$$\implies s \leq \frac{\sup(\lambda S)}{\lambda}, \quad \text{el cual es cota superior de } S.$$

Por el axioma del extremo superior,

$$\sup(S) \le \frac{\sup(\lambda S)}{\lambda}$$

$$\implies \lambda \sup(S) \le \sup(\lambda S) \tag{2}$$

Así, de (1) y (2):

$$\lambda \sup(S) = \sup(\lambda S)$$

Sea S un conjunto no vacío de números reales no negativos, acotado superiormente. Sea $T=\{x^2\mid x\in S\}$. Demuestre que T está acotado superiormente, y que si $u=\sup S$, entonces $u^2=\sup T$.

Prueba

Sea $x \in S$. Como S está acotado superiormente, se tiene que:

 $\implies x \leq \sup S$, por el axioma del extremo superior.

$$\implies x^2 \le (\sup S)^2.$$

Así, $(\sup S)^2$ es cota superior de T, como se sabe que el supremo es la menor de las cotas superiores del conjunto se tiene que:

$$\implies \sup T \le (\sup S)^2. \tag{1}$$

Luego, por definición de supremo, este es el menor de los elementos que son cotas superiores del conjunto. Es decir:

$$x^2 \le \sup T \implies x \le \sqrt{\sup T},$$

ya que $\sqrt{\sup T}$ es cota superior de x, y entonces:

$$\sup S \le \sqrt{\sup T}.$$

Elevando al cuadrado ambos lados:

$$(\sup S)^2 \le \sup T. \tag{2}$$

Finalmente, combinando (1) y (2), se concluye que:

$$(\sup S)^2 = \sup T.$$

Sea S un conjunto que está acotado inferiormente. Pruebe que una cota inferior w es el ínfimo si y solo si para cualquier $\varepsilon > 0$ existe $t \in S$ tal que $t < w + \varepsilon$.

Prueba

Sea $w = \inf S$. Entonces, por definición:

$$\forall \varepsilon > 0, \exists t \in S \text{ tal que } t < w + \varepsilon.$$

Supongamos que existe $\varepsilon > 0$. Nótese que $w + \varepsilon > w$, y dado que $w = \inf S$, entonces $w + \varepsilon$ no puede ser cota inferior de S. Por lo tanto:

$$\exists t \in S \text{ tal que } w + \varepsilon > t.$$

Sea:

$$\forall \varepsilon > 0, \exists t \in S \text{ tal que } w + \varepsilon > t.$$

Queremos demostrar que w es el ínfimo de S. Primero probemos que w es una cota inferior de S. Si v es cualquier otra cota inferior de S, entonces $w \ge v$. Supongamos, por contradicción, que w < v. Entonces:

$$0 < v - w$$
.

Ahora sea $\varepsilon = v - w$. Entonces:

$$\begin{aligned} w + \varepsilon > t. \\ \Longrightarrow w + (v - w) > t \\ \Longrightarrow v > t. \end{aligned}$$

Pero v es una cota inferior de S, lo cual es una contradicción. Por lo tanto:

$$w \ge v$$
.

Así, $w = \inf S$.