

SEQUENCE LISTING

```
<110> Case, Casey Christopher
     Wolffe, Alan
     Urnov, Fyodor
     Lai, Albert
     Snowden, Andrew
     Tan, Siyuan
     Gregory, Philip
<120> MODULATION OF ENDOGENOUS GENE EXPRESSION IN CELLS
<130> 8325-0002.21 / S2-US5
<140> 09/942,087
<141> 2001-08-28
<150> 09/229,037
<151> 1999-01-12
<160> 43
<170> PatentIn Ver. 2.0
<210> 1
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: exemplary motif
     of C2H2 class of zinc finger proteins (ZFP)
<220>
<221> MOD_RES
<222> (2)..(3)
<223> Xaa = any amino acid
<220>
<221> MOD_RES
<222> (4)..(5)
<223> Xaa = any amino acid, may be present or absent
<220>
<221> MOD_RES
<222> (7)..(18)
<223> Xaa = any amino acid
<220>
<221> MOD_RES
<222> (20)..(22)
<223> Xaa = any amino acid
<220>
<221> MOD_RES
<222> (23)..(24)
<223> Xaa = any amino acid, may be present or absent
```

```
1
                   5
                                      10
                                                           15
Xaa Xaa His Xaa Xaa Xaa Xaa His
              20
<210> 2
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:ZFP target site
      with two overlapping D-able subsites
<220>
<221> modified_base
<222> (1)..(2)
<223> n = g,a,c or t
<220>
<221> modified_base
<222> (5)
<223> n = g,a,c or t
<220>
<221> modified_base
<222> (8)
<223> n = g,a,c or t
<220>
<221> modified_base
<222> (9)
<223> n = a,c or t; if g, then position 10 cannot be g
      or t
<220>
<221> modified_base
<222> (10)
<223> n = a or c; if g or t, then position 9 cannot be g
<400> 2
nngkngknnn
                                                                    10
<210> 3
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: ZFP target site
      with three overlapping D-able subsites
<220>
<221> modified_base
<222> (1)..(2)
<223> n = g,a,c or t
<220>
<221> modified_base
<222> (5)
```

```
<223> n = g,a,c or t
<220>
<221> modified_base
<222> (8)
<223> n = g,a,c or t
<400> 3
nngkngkngk
                                                                   10
<210> 4
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:linker
<400> 4
Asp Gly Gly Ser
<210> 5
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:linker
<400> 5
Thr Gly Glu Lys Pro
<210> 6
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:linker
<400> 6
Leu Arg Gln Lys Asp Gly Glu Arg Pro
<210> 7
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:linker
<400> 7
```

```
Gly Gly Arg Arg
<210> 8
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:linker
<400> 8
Gly Gly Gly Ser
<210> 9
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:linker
<400> 9
Gly Gly Arg Arg Gly Gly Ser
<210> 10
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:linker
<400> 10
Leu Arg Gln Arg Asp Gly Glu Arg Pro
<210> 11
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:linker
<400> 11
Leu Arg Gln Lys Asp Gly Gly Gly Ser Glu Arg Pro
<210> 12
<211> 16
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence:linker
<400> 12
Leu Arg Gln Lys Asp Gly Gly Gly Ser Gly Gly Ser Glu Arg Pro
<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: ZFP target site
      region surrounding initiation site of vascular
      endothelial growth factor (VEGF) gene containing
      two 9-base pair target sites
<220>
<221> protein_bind
<222> (4)..(12)
<223> upstream 9-base pair ZFP VEGF1 target site
<220>
<221> protein_bind
<222> (14)..(22)
<223> downstream 9-base pair ZFP VEGF3a target site
<400> 13
agcggggagg atcgcggagg cttgg
                                                                   25
<210> 14
<211> 298
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: VEGF1 ZFP
      construct targeting upstream 9-base pair target
      site in VEGF promoter
<220>
<221> CDS
<222> (2)..(298)
<223> VEGF1
<400> 14
g gta ccc ata cct ggc aag aag cag cac atc tgc cac atc cag ggc 49
  Val Pro Ile Pro Gly Lys Lys Gln His Ile Cys His Ile Gln Gly
tgt ggt aaa gtt tac ggc aca acc tca aat ctg cgt cgt cac ctg cgc
Cys Gly Lys Val Tyr Gly Thr Thr Ser Asn Leu Arg Arg His Leu Arg
             20
tgg cac acc ggc gag agg cct ttc atg tgt acc tgg tcc tac tgt ggt
                                                                  145
Trp His Thr Gly Glu Arg Pro Phe Met Cys Thr Trp Ser Tyr Cys Gly
```

aaa cgc ttc acc cgt tcg tca aac ctg cag cgt cac aag cgt acc cac 193 Lys Arg Phe Thr Arg Ser Ser Asn Leu Gln Arg His Lys Arg Thr His 55 60 acc ggt gag aag aaa ttt gct tgc ccg gag tgt ccg aag cgc ttc atg 241 Thr Gly Glu Lys Lys Phe Ala Cys Pro Glu Cys Pro Lys Arg Phe Met cgt agt gac cac ctg tcc cgt cac atc aag acc cac cag aat aag aag 289 Arg Ser Asp His Leu Ser Arg His Ile Lys Thr His Gln Asn Lys Lys ggt gga tcc 298 Gly Gly Ser <210> 15 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: VEGF1 ZFP construct targeting upstream 9-base pair target site in VEGF promoter <400> 15 Val Pro Ile Pro Gly Lys Lys Gln His Ile Cys His Ile Gln Gly Cys Gly Lys Val Tyr Gly Thr Thr Ser Asn Leu Arg Arg His Leu Arg Trp His Thr Gly Glu Arg Pro Phe Met Cys Thr Trp Ser Tyr Cys Gly Lys Arg Phe Thr Arg Ser Ser Asn Leu Gln Arg His Lys Arg Thr His 50 55 Thr Gly Glu Lys Lys Phe Ala Cys Pro Glu Cys Pro Lys Arg Phe Met Arg Ser Asp His Leu Ser Arg His Ile Lys Thr His Gln Asn Lys Lys Gly Gly Ser <210> 16 <211> 298 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: VEGF3a ZFP

construct targeting downstream 9-base pair target

site in VEGF promoter

<22	1> C 2> ((298 a)												
g g	0> 1 ta co al P:	сса	ta c	ct g ro G	gc a ly L 5	ag a ys L	ag a ys L	ag c ys G	ln H	ac a is I 10	tc t le C	gc c	ac a is I	le G	ag ggc ln Gly 15	49
tgt Cys	ggt Gly	aaa Lys	gtt Val 20	tac Tyr	ggc Gly	cag Gln	tcc Ser	tcc Ser 25	gac Asp	ctg Leu	cag Gln	cgt Arg	cac His 30	ctg Leu	cgc Arg	97
tgg Trp	cac His	acc Thr 35	ggc Gly	gag Glu	agg Arg	cct Pro	ttc Phe 40	atg Met	tgt Cys	acc Thr	tgg Trp	tcc Ser 45	tac Tyr	tgt Cys	ggt Gly	145
aaa Lys	cgc Arg 50	ttc Phe	acc Thr	cgt Arg	tcg Ser	tca Ser 55	aac Asn	cta Leu	cag Gln	agg Arg	cac His 60	aag Lys	cgt Arg	aca Thr	cac His	193
acc Thr 65	ggt Gly	gag Glu	aag Lys	aaa Lys	ttt Phe 70	gct Ala	tgc Cys	ccg Pro	gag Glu	tgt Cys 75	ccg Pro	aag Lys	cgc Arg	ttc Phe	atg Met 80	241
cga Arg	agt Ser	gac Asp	gag Glu	ctg Leu 85	tca Ser	cga Arg	cat His	atc Ile	aag Lys 90	acc Thr	cac His	cag Gln	aac Asn	aag Lys 95	aag Lys	289
	gga Gly															298
<211 <212)> 17 > 99 > PF Ar	9 RT	icial	l Sec	quenc	ce										
<220 <223	> De	onsti	iptic ruct in VE	targ	getir	ng do							rget			
)> 17 Pro		Pro	Gly 5	Lys	Lys	Lys	Gln	His	Ile	Cys	His	Ile	Gln 15	Gly	
Cys	Gly	Lys	Val 20	Tyr	Gly	Gln	Ser	Ser 25	Asp	Leu	Gln	Arg	His 30	Leu	Arg	
Trp	His	Thr 35	Gly	Glu	Arg	Pro	Phe 40	Met	Cys	Thr	Trp	Ser 45	Tyr	Cys	Gly	
ГÀЗ	Arg 50	Phe	Thr	Arg	Ser	Ser 55	Asn	Leu	Gln	Arg	His 60	Lys	Arg	Thr	His	
Thr 65	Gly	Glu	Lys	Lys	Phe 70	Ala	Cys	Pro	Glu	Cys 75	Pro	Lys	Arg	Phe	Met 80	

```
Arg Ser Asp Glu Leu Ser Arg His Ile Lys Thr His Gln Asn Lys Lys
                                       90
Gly Gly Ser
<210> 18
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: VEGF DNA target
      site 1 recognition (top) strand
<220>
<221> protein_bind
<222> (11)..(19)
<223> VEGF DNA ZFP target site 1
<400> 18
catgcatagc ggggaggatc gccatcgat
                                                                    29
<210> 19
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: VEGF DNA site 1
      complementary (bottom) strand
<400> 19
atcgatggcg atcctccccg ctatgcatg
                                                                    29
<210> 20
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: VEGF DNA
      target site 3 recognition (top) strand
<220>
<221> protein_bind
<222> (11)..(19)
<223> VEGF DNA ZFP target site 3
<400> 20
catgcatatc gcggaggctt ggcatcgat
                                                                    29
<210> 21
<211> 29
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: VEGF DNA target
      site 3 complementary (bottom) strand
atcgatgcca agcctccgcg atatgcatg
                                                                    29
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer SPE7
<400> 22
gagcagaatt cggcaagaag aagcagcac
                                                                    29
<210> 23
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer SPEamp12
<400> 23
gtggtctaga cagctcgtca cttcgc
                                                                    26
<210> 24
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer SPE
      amp13
<400> 24
ggagccaagg ctgtggtaaa gtttacgg
                                                                    28
<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer SPEamp11
<400> 25
ggagaagctt ggatcctcat tatccc
                                                                    26
<210> 26
<211> 83
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: sequence
      ligated between XbaI and StyI sites
<400> 26
tctagacaca tcaaaaccca ccagaacaag aaagacggcg gtggcagcgg caaaaagaaa 60
cagcacatat gtcacatcca agg
                                                                   83
<210> 27
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer GB19
<400> 27
gccatgccgg tacccatacc tggcaagaag aagcagcac
                                                                   39
<210> 28
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer GB10
<400> 28
cagatcggat ccacccttct tattctggtg ggt
                                                                   33
<210> 29
<211> 589
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:designed
      6-finger ZFP VEGF3a/1 from KpnI to BamHI
<220>
<221> CDS
<222> (2)..(589)
<223> VEGF3a/1
<400> 29
g gta ccc ata cct ggc aag aag cag cac atc tgc cac atc cag ggc 49
  Val Pro Ile Pro Gly Lys Lys Gln His Ile Cys His Ile Gln Gly
tgt ggt aaa gtt tac ggc cag tcc tcc gac ctg cag cgt cac ctg cgc
Cys Gly Lys Val Tyr Gly Gln Ser Ser Asp Leu Gln Arg His Leu Arg
tgg cac acc ggc gag agg cct ttc atg tgt acc tgg tcc tac tgt ggt
Trp His Thr Gly Glu Arg Pro Phe Met Cys Thr Trp Ser Tyr Cys Gly
```

35	40	45								
-		cta cag agg cac aag co Leu Gln Arg His Lys An 60								
		ccg gag tgt ccg aag cg Pro Glu Cys Pro Lys Ai 75	-							
		atc aaa acc cac cag aa Ile Lys Thr His Gln As 90	_							
	Ser Gly Lys Lys 1	aaa cag cac ata tgt ca Lys Gln His Ile Cys Hi 105 13	s Ile Gln							
		acc tca aat ctg cgt cg Thr Ser Asn Leu Arg Ai 125								
5 55	00 0 00	ttc atg tgt acc tgg to Phe Met Cys Thr Trp So 140	_							
		aac ctg cag cgt cac aa Asn Leu Gln Arg His Ly 155								
	_	tgc ccg gag tgt ccg aa Cys Pro Glu Cys Pro Ly 170								
	His Leu Ser Arg I	cac atc aag acc cac ca His Ile Lys Thr His G 185	n Asn Lys							
aag ggt gga tcc Lys Gly Gly Ser 195			589							
<210> 30 <211> 196 <212> PRT <213> Artificial Sequence										
<220> <223> Description of Artificial Sequence:designed 6-finger ZFP VEGF3a/1 from KpnI to BamHI										
<400> 30 Val Pro Ile Pro 1	Gly Lys Lys Lys (Gln His Ile Cys His II 10	e Gln Gly 15							
Cys Gly Lys Val	Tyr Gly Gln Ser	Ser Asp Leu Gln Arg Hi 25	s Leu Arg 80							

Trp His Thr Gly Glu Arg Pro Phe Met Cys Thr Trp Ser Tyr Cys Gly

Lys	Arg 50	Phe	Thr	Arg	Ser	Ser 55	Asn	Leu	Gln	Arg	His 60	Lys	Arg	Thr	His	
65	Gly				70					75					80	
Arg	Ser	Asp	Glu	Leu 85	Ser	Arg	His	Ile	Lys 90	Thr	His	Gln	Asn	Lys 95	Lys	
Asp	Gly	Gly	Gly 100	Ser	Gly	Lys	Lys	Lys 105	Gln	His	Ile	Cys	His 110	Ile	Gln	
Gly	Cys	Gly 115	Lys	Val	Tyr	Gly	Thr 120	Thr	Ser	Asn	Leu	Arg 125	Arg	His	Leu	
Arg	Trp 130	His	Thr	Gly	Glu	Arg 135	Pro	Phe	Met	Cys	Thr 140	Trp	Ser	Tyr	Cys	
Gly 145	Lys	Arg	Phe	Thr	Arg 150	Ser	Ser	Asn	Leu	Gln 155	Arg	His	Lys	Arg	Thr 160	
His	Thr	Gly	Glu	Lys 165	Lys	Phe	Ala	Cys	Pro 170	Glu	Cys	Pro	Lys	Arg 175	Phe	
Met	Arg	Ser	Asp 180	His	Leu	Ser	Arg	His 185	Ile	Lys	Thr	His	Gln 190	Asn	Lys	
Lys	Gly	Gly 195	Ser													
<210> 31 <211> 42 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: JVF9 VEGF3a/1 target oligonucleotide																
<400> 31 agcgagcggg gaggatcgcg gaggcttggg gcagccgggt ag 42												42				
<210> 32 <211> 42 <212> DNA <213> Artificial Sequence																
<220 <223	3> De												8a/1			
target oligonucleotide complementary sequence <400> 32 cgctctaccc ggctgcccca agcctccgcg atcctccccg ct 42												42				

40

45

35

<210> 33 <211> 25

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer JVF24
<400> 33
cgcggatccg ccccccgac cgatg
                                                                    25
<210> 34
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:downstream
      primer JVF25
ccgcaagett acttgtcatc gtcgtccttg tagtcgctgc ccccaccgta ctcgtcaatt 60
CC
                                                                    62
<210> 35
<211> 7
<212> PRT
<213> Simian virus 40
<220>
<221> PEPTIDE
<222> (1)..(7)
<223> SV40 large T antigen nuclear localization sequence
<400> 35
Pro Lys Lys Lys Arg Lys Val
  1
<210> 36
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:segment from
      EcoRI to KpnI containing Kozak sequence including
      initiation codon and SV40 NLS
<400> 36
gaattcgcta gcgccaccat ggcccccaag aagaagagga aggtgggaat ccatggggta 60
                                                                   61
<210> 37
<211> 187
<212> DNA
<213> Artificial Sequence
```

<220> <223> Description of Artificial Sequence:segment from KpnI to XhoI containing BamHI site, KRAB-A box from KOX1, FLAG epitope and HindIII site <400> 37 ggtacccggg gatcccggac actggtgacc ttcaaggatg tatttgtgga cttcaccagg 60 gaggagtgga agctgctgga cactgctcag cagatcgtgt acagaaatgt gatgctggag 120 aactataaga acctggtttc cttgggcagc gactacaagg acgacgatga caagtaagct 180 tctcgag 187 <210> 38 <211> 277 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:inserted fragment from BamHI to HindIII sites <400> 38 ggatccgccc ccccgaccga tgtcagcctg ggggacgagc tccacttaga cggcgaggac 60 gtggcgatgg cgcatgccga cgcgctagac gatttcgatc tggacatgtt gggggacggg 120 gattccccgg ggccgggatt taccccccac gactccgccc cctacggcgc tctggatatg 180 gccgacttcg agtttgagca gatgtttacc gatgcccttg gaattgacga gtacggtggg 240 ggcagcgact acaaggacga cgatgacaag taagctt 277 <210> 39 <211> 118 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:sequence replacing NLS-KRAB-FLAG with NLS-FLAG only <400> 39 gaattegeta gegecaccat ggececcaag aagaagagga aggtgggaat ceatggggta 60 cccggggatg gatccggcag cgactacaag gacgacgatg acaagtaagc ttctcgag <210> 40 <211> 204 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:insert into MluI/BglII sites of pGL3-Control to create pVFR1-4x

<400> 40						
acgcgtaagc	ttgctagcga	gcggggagga	tcgcggaggc	ttggggcagc	cgggtagagc	60
gagcggggag	gatcgcggag	gcttggggca	gccgggtaga	gcgagcgggg	aggatcgcgg	120
aggcttgggg	cagccgggta	gagcgagcgg	ggaggatcgc	ggaggcttgg	ggcagccggg	180
tagagcgctc	agaagcttag	atct				204
<220>	icial Seque		Gequence:	"D-able" sit	ce	
<400> 41 nngk						4
<210> 42 <211> 4 <212> DNA <213> Artif	icial Seque	nce				
<220> <223> Descr subty	iption of A pe	rtificial S	Sequence:	D-able site		
<400> 42 nngg						4
<210> 43 <211> 4 <212> DNA <213> Artif	icial Seque	nce				
<220> <223> Descri subty	iption of A pe	rtificial S	equence: I	O-able site		
<400> 43 nngt						4

٠.