ממ"ך 11

Note: Sometimes I'll be using e.g. ¬A to represent the complement of A (My editor doesn't fully support superscript or overline)

```
1 א: לא נכון א: לא נכון ב: נכון ג: לא נכון ג: לא נכון ד: נכון ד: נכון ה: לא נכון ה: לא נכון ה: לא נכון ז: נכון ז: נכון ז: נכון ז: נכון די לא נכון זי נכון די לא ני לא נכון די לא נכון די לא נכון די ל
```

2

X

Prove:

 $(A\backslash B) \cup (B\backslash C) = (A \cup B) \setminus (B \cap C)$

First: expanding left-hand side (A\B) \cup (B\C)

```
(A \cap \neg B) \cup (B \cap \neg C) // difference definition

(A \cup B) \cap (A \cup \neg C) \cap (\neg B \cup B) \cap (\neg B \cup \neg C) // distributivity

(A \cup B) \cap (A \cup \neg C) \cap (\neg B \cup \neg C) // (\neg B \cup B) \equiv T

(A \cup B) \cap [(A \cap \neg B) \cup \neg C] // dist.
```

Second: expanding right-hand side $(A \cup B) \setminus (B \cap C)$

```
(A \cup B) \cap \overline{(B \cap C)}
(A \cup B) \cap (\neg B \cup \neg C)
(A \cap \neg B) \cup (A \cap \neg C) \cup (B \cap \neg B) \cup (B \cap \neg C) \qquad // \text{ dist}
(A \setminus B) \cup (A \cap \neg C) \cup (B \cap \neg C) \qquad // (B \cap \neg B) \equiv \varnothing
(A \setminus B) \cup [(A \cup B) \cap \neg C] \qquad // \text{ dist}
[(A \setminus B) \cup (A \cup B)] \cap [(A \cap \neg B) \cup \neg C] \qquad // \text{ dist}
// \text{ I'll now prove that } [(A \setminus B) \cup (A \cup B)] \equiv (A \cup B),
// \text{ then get back to expanding the full statement}
```

```
Since (A \setminus B) \subseteq A and A \subseteq (A \cup B) \Rightarrow

(A \setminus B) \subseteq (A \cup B)

Therefore

(A \setminus B) \cup (A \cup B) = (A \cup B)
```

$(A \cup B) \cap [(A \cap \neg B) \cup \neg C]$

We see that left-hand side \equiv right-hand side, therefore (A\B) \cup (B\C) = (A \cup B) \ (B \cap C)

ם

Prove:

if $P(A) \vee P(B) = P(C)$, then $(C=A) \vee (C=B)$

I'll be proving: $(C\subseteq A \land A\subseteq C) \lor (C\subseteq B \land B\subseteq C)$ Since it's equivalent to $(C=A) \lor (C=B)$

First: proof that $C\subseteq A \lor C\subseteq B$

 $C \in P(C)$ // power set definition $P(C) = P(A) \lor P(B) \Rightarrow C \in (P(A) \lor P(B))$ $C \in P(A) \lor C \in P(B)$

C⊆A v C⊆B

Second: proof that $A\subseteq C \vee B\subseteq C$

 $A \in P(A)$

 $P(A) \subseteq P(A) \cup P(B)$ // union definition

 $A\in P(A)\cup P(B)$

Given $P(C) = (P(A) \cup P(B)) \Rightarrow A \in P(C)$

 $A\subseteq C$

 $B \in P(B)$

 $P(B) \subseteq P(A) \cup P(B)$ // union definition

 $B \in P(A) \cup P(B)$

Given $P(C) = (P(A) \cup P(B)) \Rightarrow B \in P(C)$

B⊆C

Since $C\subseteq A$ \lor $C\subseteq B$ and $A\subseteq C$ and $B\subseteq C$, // More formally: $(C\subseteq A \lor C\subseteq B) \land (A\subseteq C \land B\subseteq C)$ it follows that:

$$(C=A) v (C=B)$$

Prove:

if A,B are finite and $|P(A)| = 2 \cdot |P(A \setminus B)|$, then $|A \cap B| = 1$

(1)

 $A \setminus B \equiv A \setminus (A \cap B)$ // by definition

(2)

We know that for any two sets X,Y, if $Y \subseteq X$ then $|X \setminus Y| = |X| - |X \cap Y|$ Certainly $(A \cap B) \subseteq A$, so $|A \setminus (A \cap B)| = |A| - |A \cap B|$.

(3)

Assuming $|A \cap B| = 1$, if follows that: $|A| - |A \cap B| = |A| - 1$, therefore using (1) and (2):

 $|A \setminus B| = |A \setminus (A \cap B)| = |A| - |A \cap B| = |A| - 1$, so $|P(A \setminus B)| = 2^{A} |A \setminus B| = 2^{A} |$

(4): Expanding $2 \cdot |P(A \setminus B)|$

 $2 \cdot |P(A \setminus B)| = 2 \cdot 2^{(|A| - 1)} = 2^{|A|}$

(5)

 $|P(A)| = 2^|A|$ // by definition

(6): Putting it all together

 $|P(A)| = 2 \cdot |P(A \setminus B)|$

3

X

Prove: if $(A \subset B)$, then $(A \cup \neg B) \neq U$

Since A is a **proper** subset of B, then $(B\setminus A) \neq \emptyset$.

Expanding $(B \setminus A) = (B \cap \neg A) = (\neg A \cap B) = \overline{(A \cup \neg B)}$ // DeMorgan Therefore $\overline{(A \cup \neg B)} \neq \emptyset$

Since the complement of a given set X is the universal set (U) if and only if $X=\emptyset$, it follows that the complement of a given set Y is **not** U if and only if $Y\neq\emptyset$.

Because $\overline{(A \cup \neg B)} \neq \emptyset$, then the complement of $\overline{(A \cup \neg B)} \neq U$, therefore $(A \cup \neg B) \neq U$.

Prove: if $(\neg A \triangle B) = (\neg B \triangle C)$, then A=C.

We know that $(\neg A \triangle B) = (\neg B \triangle A)$, because: $(\neg A \triangle B) = (\neg A \cap \neg B) \cup (A \cap \neg \neg B) = (\neg A \cap \neg B) \cup (B \cap A)$ // double negation Similarly, $(\neg B \triangle A) = (\neg B \cap \neg A) \cup (\neg \neg B \cap A) = (\neg A \cap \neg B) \cup (B \cap A)$ // double negation, comm.

It's given that $(\neg A \triangle B) = (\neg B \triangle C)$, so $(\neg B \triangle A) = (\neg B \triangle C)$ // replaced $(\neg A \triangle B)$ with $(\neg B \triangle A)$

Since for any sets X, Y, Z: $(X \Delta Y) = (X \Delta Z) \Rightarrow X = Z$ It follows that $(\neg B \Delta A) = (\neg B \Delta C) \Rightarrow A = C$ Therefore $\mathbf{A} = \mathbf{C}$.