

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Rachunek prawdopodobieństwa

Statystyka

Dr inż. Janusz Majewski Katedra Informatyki

Literatura

 Prezentacja wykorzystuje fragmenty książki: Amir D. Aczel "Statystyka w zarządzaniu", PWN, 2007

Przestrzeń probabilistyczna, zdarzenia

Eksperymentem nazywamy proces, który prowadzi do jednego z możliwych wyników. Nazywamy je wynikami obserwacji lub wynikami pomiaru.

Przestrzeń prób jest zbiorem wszystkich możliwych wyników eksperymentu. Jest ona zbiorem uniwersalnym X związanym z danym eksperymentem.

Zdarzeniami są podzbiory w przestrzeni próby. Są to zbiory pewnych zdarzeń elementarnych. Mówimy, że zaszło dane zdarzenie, jeżeli w wyniku eksperymentu zaszło zdarzenie elementarne będące elementem podzbioru odpowiadającego temu zdarzeniu.

Przestrzeń probabilistyczna, zdarzenia

Rysunek 2.5. Przestrzeń prób w przypadku ciągnięcia kart z talii

Prawdopodobieństwo

Przy założeniu równej możliwości zdarzeń elementarnych, prawdopodobieństwo zdarzenia A jest względną miarą A w stosunku do miary przestrzeni prób X.

Ponieważ definicja ta zakłada uogólnioną zasadę równej możliwości, może ona nie być właściwa, gdy nie ma podstaw do przyjęcia tego założenia.

Oznaczając miarę zbioru A przez |A|, a miarę przestrzeni próby przez |X|, definicję prawdopodobieństwa możemy zapisać za pomocą wzoru⁵.

Prawdopodobieństwo zdarzenia A:

$$P(A) = \frac{|A|}{|X|}. (2.1)$$

Prawdopodobieństwo

Rysunek 2.5. Przestrzeń prób w przypadku ciągnięcia kart z talii

Dla skończonych przestrzeni prób równanie (2.1) może być uproszczone. Oznaczając przez n(A) liczbę elementów zbioru A, a przez n(X) liczbę elementów przestrzeni prób X, możemy napisać:

$$P(A) = \frac{n(A)}{n(X)}. (2.2)$$

Prawdopodobieństwo wyciągnięcia asa: P(A) = n(A) / n(X) = 4/52.

Prawdopodobieństwo

Rysunek 2.6 ilustruje ideę prawdopodobieństwa jako stosunku miary zbioru odpowiadającego zdarzeniu do miary całej przestrzeni prób.

Rysunek 2.6. Prawdopodobieństwo jako stosunek dwóch miar

Przykład

Rozpatrzmy dwa zdarzenia, które mogą zajść, gdy pojedyncza karta zostanie wyciągnięta z dobrze potasowanej talii 52 kart. Niech A będzie zdarzeniem: wyciągnięcie asa, a S zdarzeniem: wyciągnięcie pika. Na rysunku 2.7 pokazano przestrzeń próby dla tego eksperymentu, zdarzenia A, S, ich przekrój i połączenie. Z równania (2.2) przez proste wyliczenie otrzymujemy: P(A) = 4/52, P(S) = 13/52, $P(A \cup S) = 16/52$, $P(A \cap S) = 1/52$.

Rysunek 2.7. Zdarzenia A i S, ich połączenie (suma) i przekrój (iloczyn)

Reguły obliczania prawdopodobieństw

Prawdopodobieństwo jest miarą niepewności. Prawdopodobieństwo zdarzenia A jest liczbową miarą naszego przekonania, że zdarzenie to zajdzie.

Dla dowolnego zdarzenia A:

$$0 \le P(A) \le 1. \tag{2.3}$$

Reguły obliczania prawdopodobieństw

$$P(\overline{A}) = 1 - P(A). \tag{2.4}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$
 (2.5)

Dla wykluczających się wzajemnie zdarzeń A i B:

$$P(A \cap B) = 0. \tag{2.6}$$

Z tego faktu wynika szczególny przypadek reguły sumowania wzajemnie wykluczających się zdarzeń. Ponieważ w tym przypadku $P(A \cap B) = 0$, więc:

$$P(A \cup B) = P(A) + P(B).$$
 (2.7)

Reguly de Morgana

$$(\overline{A \cup B}) = \overline{A} \cap \overline{B}. \tag{2.8}$$

Ponieważ prawdopodobieństwo dopełnienia zdarzenia jest równe 1 minus prawdopodobieństwo tego zdarzenia, reguła de Morgana (równanie (2.8)) w zastosowaniu do prawdopodobieństwa zdarzeń przyjmuje postać:

$$P(A \cup B) = 1 - P(\overline{A} \cap \overline{B}). \tag{2.9}$$

Prawdopodobieństwo warunkowe

Warunkowe prawdopodobieństwo zdarzenia A przy zajściu zdarzenia B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)},\tag{2.11}$$

o ile $P(B) \neq 0$.

$$P(A \cap B) = P(A \mid B)P(B) \tag{2.12}$$

oraz

$$P(A \cap B) = P(B \mid A)P(A). \tag{2.13}$$

Niezależność zdarzeń

Warunki niezależności zdarzeń A i B:

$$P(A \mid B) = P(A),$$
 (2.14)

$$P(B|A) = P(B) \tag{2.15}$$

i najwygodniejszy w zastosowaniach:

$$P(A \cap B) = P(A) \cdot P(B). \tag{2.16}$$

Reguła de Morgana w przypadku zdarzeń niezależnych:

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - P(\overline{A}_1 \cap \overline{A}_2 \dots \cap \overline{A}_n) = 1 - P(\overline{A}_1)P(\overline{A}_2) \dots P(\overline{A}_n). \quad (2.17)$$

Losowe pobieranie próby z wielkiej populacji implikuje niezależność wyników losowań.

Twierdzenie o prawdopodobieństwie całkowitym

Twierdzenie o prawdopodobieństwie całkowitym:

$$P(A) = P(A \cap B) + P(A \cap \overline{B}).$$

(2.20)

Twierdzenie o prawdopodobieństwie całkowitym można uogólnić na bardziej złożone sytuacje, w których przestrzeń prób jest podzielona na więcej niż dwa podzbiory (człony podziału). Jeżeli podzielimy ją na n podzbiorów $B_1, ..., B_n$, to twierdzenie o prawdopodobieństwie całkowitym można zapisać równaniem:

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i).$$

Rysunek 2.15. Całkowite prawdopodobieństwo wyciągnięcia figury z talii kart jako suma prawdopodobieństw wyciągnięcia karty z przekrojów zbioru figur i zbioru kolorów

Użyteczne wzory związane z prawdopodobieństwem całkowitym:

Przypadek dwuczłonowego podziału zbioru B:

$$P(A) = P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B}). \tag{2.22}$$

Przypadek n-członowego podziału zbioru B na zbiory $B_1, ..., B_n$:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i).$$
 (2.23)

Twierdzenie Bayesa

Twierdzenie Bayesa:

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B})}.$$
 (2.27)

Uogólnione twierdzenie Bayesa:

$$P(B_1 | A) = \frac{P(A | B_1)P(B_1)}{\sum_{i=1}^{n} P(A | B_i)P(B_i)}.$$
 (2.28)

Twierdzenie Bayesa – przykład zastosowania

Rozważane są 4 zestawy objawów (1, 2, 3 i 4) oraz 3 choroby (A, B, C). Warto zwrócić uwagę na wartość prawdopodobieństwa a priori choroby C w porównaniu z prawdopodobieństwem a priori choroby B oraz na prawdopodobieństwa a posteriori dla wszystkich chorób przy zestawie objawów 4.

objawy	gorączka	bóle mięśniowo- stawowe	bóle głowy	zmiany skórne	kaszel	katar	zaburzenia kardiolog.	zaburzenia neurolog.	
1	+	+	+	+	+	-	•	-	
2	+	-	+	•	-	+	•	-	
3	-	+	-	-	+	+	-	-	
4	+	+	+	+	-	-	+	+	
	Choroby								
	Α	grypa							
	В	przeziębienie							
_	С	borelioza							

Twierdzenie Bayesa – przykład zastosowania

a priori	choroba	1	2	3	4	
0,29	Α	0,6	0,2	0,1	0,1	1
0,625	В	0,2	0,25	0,45	0,1	1
0,085	С	0,1	0,075	0,075	0,75	1
	Α	0,56585366	0,26288952	0,091591	0,1867955	
	В	0,40650407	0,7082153	0,8882748	0,4025765	
	С	0,02764228	0,02889518	0,0201342	0,410628	
1		1	1	1	1	

Twierdzenie Bayesa – przykład zastosowania

		Objawy				
a priori	choroba	1	2	3	4	
0,29	А	0,6	0,2	0,1	0,1	1
0,625	В	0,2	0,25	0,45	0,1	1
0,085	С	0,1	0,075	0,075	0,75	1
	Α	0,56585366	0,26288952	0,091591	0,1867955	
	В	0,40650407	0,7082153	0,8882748	0,4025765	
	С	0,02764228	0,02889518	0,0201342	0,410628	
1		1	1	1	1	
		Objawy				
a priori	choroba	1	2	3	4	
P(A)	Α	P(1 A)	P(2 A)	P(3 A)	P(4 A)	
P(B)	В	P(1 B)	P(2 B)	P(3 B)	P(4 B)	
P(C)	С	P(1 C)	P(2 C)	P(3 C)	P(4 C)	
	А	P(A 1)	P(A 2)	P(A 3)	P(A 4)	
	В	P(B 1)	P(B 2)	P(B 3)	P(B 4)	
	С	P(C 1)	P(C 2)	P(C 3)	P(C 4)	