```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn import datasets
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn import tree
    from sklearn import classification_report
    from sklearn import preprocessing
    from sklearn.metrics import confusion_matrix
    from scipy.special import boxcox1p
    import warnings
    warnings.filterwarnings("ignore")
    from sklearn.preprocessing import LabelEncoder
    from sklearn.preprocessing import StandardScaler
```

In [3]: company = pd.read_csv("Company_Data .csv")
company

Out[3]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urbar
0	9.50	138	73	11	276	120	Bad	42	17	Yes
1	11.22	111	48	16	260	83	Good	65	10	Yes
2	10.06	113	35	10	269	80	Medium	59	12	Yes
3	7.40	117	100	4	466	97	Medium	55	14	Yes
4	4.15	141	64	3	340	128	Bad	38	13	Yes
395	12.57	138	108	17	203	128	Good	33	14	Yes
396	6.14	139	23	3	37	120	Medium	55	11	Nc
397	7.41	162	26	12	368	159	Medium	40	18	Yes
398	5.94	100	79	7	284	95	Bad	50	12	Yes
399	9.71	134	37	0	27	120	Good	49	16	Yes

400 rows × 11 columns

4

In [4]: company.head()

Out[4]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban
0	9.50	138	73	11	276	120	Bad	42	17	Yes
1	11.22	111	48	16	260	83	Good	65	10	Yes
2	10.06	113	35	10	269	80	Medium	59	12	Yes
3	7.40	117	100	4	466	97	Medium	55	14	Yes
4	4.15	141	64	3	340	128	Bad	38	13	Yes
4										

In [6]: company.shape

Out[6]: (400, 11)

In [7]: company.T

Out[7]:

	0	1	2	3	4	5	6	7	8	9	 39(
Sales	9.5	11.22	10.06	7.4	4.15	10.81	6.63	11.85	6.54	4.69	 5.47
CompPrice	138	111	113	117	141	124	115	136	132	132	 108
Income	73	48	35	100	64	113	105	81	110	113	 75
Advertising	11	16	10	4	3	13	0	15	0	0	 ξ
Population	276	260	269	466	340	501	45	425	108	131	 61
Price	120	83	80	97	128	72	108	120	124	124	 111
ShelveLoc	Bad	Good	Medium	Medium	Bad	Bad	Medium	Good	Medium	Medium	 Medium
Age	42	65	59	55	38	78	71	67	76	76	 67
Education	17	10	12	14	13	16	15	10	10	17	 12
Urban	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No	 Yes
US	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	 Yes

11 rows × 400 columns

In [8]: company.describe()

Out[8]:

	Sales	CompPrice	Income	Advertising	Population	Price	Age	Educ
count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.00
mean	7.496325	124.975000	68.657500	6.635000	264.840000	115.795000	53.322500	13.90
std	2.824115	15.334512	27.986037	6.650364	147.376436	23.676664	16.200297	2.62
min	0.000000	77.000000	21.000000	0.000000	10.000000	24.000000	25.000000	10.00
25%	5.390000	115.000000	42.750000	0.000000	139.000000	100.000000	39.750000	12.00
50%	7.490000	125.000000	69.000000	5.000000	272.000000	117.000000	54.500000	14.00
75%	9.320000	135.000000	91.000000	12.000000	398.500000	131.000000	66.000000	16.00
max	16.270000	175.000000	120.000000	29.000000	509.000000	191.000000	80.000000	18.00

In [9]: company.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Sales	400 non-null	float64
1	CompPrice	400 non-null	int64
2	Income	400 non-null	int64
3	Advertising	400 non-null	int64
4	Population	400 non-null	int64
5	Price	400 non-null	int64
6	ShelveLoc	400 non-null	object
7	Age	400 non-null	int64
8	Education	400 non-null	int64
9	Urban	400 non-null	object
10	US	400 non-null	object

dtypes: float64(1), int64(7), object(3)

memory usage: 34.5+ KB

```
In [10]: import seaborn as sns
    sns.set(style="whitegrid")
    ax = sns.swarmplot(data=company)
    plt.title('Graph')
    plt.show()
```


In [11]: sns.violinplot(data=company)

Out[11]: <AxesSubplot:>

In [12]: import seaborn as sns
 plt.figure(figsize=(15,10))
 sns.heatmap(company.corr(),annot=True)

Out[12]: <AxesSubplot:>


```
In [13]: numerical_feature = company.describe(include=["int64", "float64"]).columns
    print(list(numerical_feature))
```

['Sales', 'CompPrice', 'Income', 'Advertising', 'Population', 'Price', 'Age', 'Education']

```
In [14]: sns.set_style('darkgrid')
sns.pairplot(company[numerical_feature])
plt.show()
```



```
In [15]: categorical_feature = company.describe(include=["object"]).columns
    print(list(categorical_feature))
```

['ShelveLoc', 'Urban', 'US']

```
In [16]: plt.figure(figsize=(15, 5))
    for idx, column in enumerate(categorical_feature):
        df = company.copy()
        unique = df[column].value_counts(ascending=True);

    plt.subplot(1, 3, idx+1)
    plt.title("Count of "+ column)
    plt.bar(unique.index, unique.values);

    plt.xlabel(column, fontsize=12)
    plt.ylabel("Number of "+ column, fontsize=12)

plt.tight_layout()
    plt.show()
```



```
In [18]: def distplot(param):
    plt.figure(figsize=(20,15))
    sns.distplot(company[param], color = "magenta", hist_kws={"rwidth":0.80, 'alg
    plt.xticks(np.arange(0,20,1),rotation=45)
    plt.show()
```

In [19]: distplot('Sales')


```
In [20]: company_1 = company.iloc[:,1:]

correlations = company_1.corrwith(company.Sales)
correlations = correlations[correlations!=1]
positive_correlations = correlations[correlations >0].sort_values(ascending = Falmegative_correlations = correlations[correlations<0].sort_values(ascending = Falmegative_correlations.plot.bar(
    figsize = (18, 10),
    fontsize = 15,
    color = 'black',
    rot = 45, grid = True)
plt.title('Correlation with Sales')</pre>
```

Out[20]: Text(0.5, 1.0, 'Correlation with Sales')

Changing the categorical variables into dummies.

```
In [21]: company_1 = pd.get_dummies(company)
```

Converting the Target variable i.e. Sales into Categorical

Out[22]:

	Sales	CompPrice	Income	Advertising	Population	Price	Age	Education	ShelveLoc_Bad
0	9.50	138	73	11	276	120	42	17	1
1	11.22	111	48	16	260	83	65	10	0
2	10.06	113	35	10	269	80	59	12	0
3	7.40	117	100	4	466	97	55	14	0
4	4.15	141	64	3	340	128	38	13	1
395	12.57	138	108	17	203	128	33	14	0
396	6.14	139	23	3	37	120	55	11	0
397	7.41	162	26	12	368	159	40	18	0
398	5.94	100	79	7	284	95	50	12	1
399	9.71	134	37	0	27	120	49	16	0

400 rows × 16 columns

In [30]: !pip install plotly

Requirement already satisfied: plotly in c:\programdata\anaconda3\lib\site-pack ages (5.5.0)

Requirement already satisfied: tenacity>=6.2.0 in c:\programdata\anaconda3\lib\site-packages (from plotly) (8.0.1)

Requirement already satisfied: six in c:\programdata\anaconda3\lib\site-package s (from plotly) (1.15.0)

```
In [31]: from plotly.subplots import make_subplots
    import plotly.graph_objects as go
    type_ = ["Medium", "Low", "High"]
    fig = make_subplots(rows=1, cols=1)

fig.add_trace(go.Pie(labels=type_, values=company['Sales'].value_counts(), name='

# Use `hole` to create a donut-like pie chart
fig.update_traces(hole=.4, hoverinfo="label+percent+name", textfont_size=16)

fig.update_layout(
    title_text="Sales Distributions",
    # Add annotations in the center of the donut pies.
    annotations=[dict(text='Sales', x=0.5, y=0.5, font_size=20, showarrow=False)]
fig.show()
```

Sales Distributions

Random Forest

```
In [32]: from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
```

```
In [33]: array = company_1.values
X = array[:,1:15]
Y = array[:,15]

In [34]: num_trees = 100
max_features = 4
kfold = KFold(n_splits = 10, random_state = 7, shuffle = True)
model = RandomForestClassifier(n_estimators = num_trees, max_features = max_features = cross_val_score(model, X, Y, cv = kfold)
```

87.25

Ensemble techniques

print(results.mean()*100)

1. Bagging

```
In [35]: from pandas import read_csv
    from sklearn.model_selection import KFold
    from sklearn.model_selection import cross_val_score
    from sklearn.ensemble import BaggingClassifier
    from sklearn.tree import DecisionTreeClassifier
```

```
In [37]: model1 = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_st
    results1 = cross_val_score(model1, X, Y, cv=kfold)
    print(results1.mean()*100)
```

86.75

2. Boosting

AdaBoost Classification

```
In [38]: from pandas import read_csv
    from sklearn.model_selection import KFold
    from sklearn.model_selection import cross_val_score
    from sklearn.ensemble import AdaBoostClassifier

model2 = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
    results2 = cross_val_score(model2, X, Y, cv=kfold)
    print(results2.mean()*100)
```

3. Stacking

```
In [39]: from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.ensemble import VotingClassifier
```

Iteration = 1

```
In [40]: estimators = []
    model3 = LogisticRegression(max_iter=500)
    estimators.append(('logistic', model3))

model4 = DecisionTreeClassifier()
    estimators.append(('cart', model4))

model5 = SVC()
    estimators.append(('svm', model5))

model6 = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_st estimators.append(('bagging', model6))

model7 = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
    estimators.append(('boosting', model7))

# create the ensemble modelIter
    ensemble = VotingClassifier(estimators)
    results3 = cross_val_score(ensemble, X, Y, cv=kfold)
    print(results3.mean()*100)
```

89.25

Iteration = 2

```
In [41]: estimators = []
model8 = LogisticRegression(max_iter=500)
estimators.append(('logistic', model8))

model9 = DecisionTreeClassifier()
estimators.append(('cart', model9))

model10 = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_s
estimators.append(('bagging', model10))

model11 = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
estimators.append(('boosting', model11))

# create the ensemble model
ensemble = VotingClassifier(estimators)
results4 = cross_val_score(ensemble, X, Y, cv=kfold)
print(results4.mean()*100)
```

89.0

Iteration = 3

```
In [42]: estimators = []
    model12 = LogisticRegression(max_iter=500)
    estimators.append(('logistic', model12))

model13 = DecisionTreeClassifier()
    estimators.append(('cart', model13))

model14 = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
    estimators.append(('boosting', model14))

# create the ensemble modSel
    ensemble = VotingClassifier(estimators)
    results5 = cross_val_score(ensemble, X, Y, cv=kfold)
    print(results5.mean()*100)
```

90.0

Iteration = 4

```
In [43]: estimators = []
    model15 = DecisionTreeClassifier()
    estimators.append(('cart', model15))

model16 = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
    estimators.append(('boosting', model16))

# create the ensemble model
    ensemble = VotingClassifier(estimators)
    results6 = cross_val_score(ensemble, X, Y, cv=kfold)
    print(results6.mean()*100)
```

86.75

Iteration = 5

```
In [44]: estimators = []
    model17 = LogisticRegression(max_iter=500)
    estimators.append(('logistic', model17))

model18 = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)
    estimators.append(('boosting', model18))

# create the ensemble model
ensemble = VotingClassifier(estimators)
results6 = cross_val_score(ensemble, X, Y, cv=kfold)
print(results6.mean()*100)
```

91.5

In []: