Segmentación Dominio de imagen Lección 02.2

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

- 1 Segmentación a nivel de imagen
- Métodos basados en espacios de características
 - Umbralización
 - Histogramas
 - Aglomeración
- 3 Métodos basados en el dominio de imagen

Segmentación a nivel de imagen

Homogeneidad

- En el nivel de imagen no hay concepto de objeto
- Base: Criterio de homogeneidad o uniformidad
- Supuesto: objetos se componen de superficies homogéneas

Segmentación basada en imagen

La segmentación basada en imagen se define

- en términos de un predicado de homogeneidad H_I, y
- un predicado de adyacencia A

Definición

Definición (Segmentación basada en imagen)

La segmentación basada en imagen \mathcal{S}_I de una imagen \mathcal{I} es una partición de \mathcal{I} que satisface para cada región $\mathcal{R}_i \in \mathcal{S}_I$, $\mathrm{H}_I(\mathcal{R}_i) = \mathrm{verdadero}$, y $\mathrm{H}_I(\mathcal{R}_i \cup \mathcal{R}_j) = \mathrm{falso}$ para $\mathrm{A}(\mathcal{R}_i, \mathcal{R}_i) = \mathrm{verdadero}$.

Condiciones

- La condición $H(\mathcal{R}_i \cup \mathcal{R}_j)$ = falso previene sobre-segmentación.
- Cada método provee una implementación particular de H.
- Cada método impone restricciones adicionales para una región (p.ej. H actúa sobre regiones conexas).

Métodos de segmentación a nivel de imagen Clasificación

- Algunos autores incluyen métodos basados en física, que consideran proceso de formación de imágen
- Información adicional ⇒ nivel de superficies

Umbralización Histogramas Aglomeración

Espacios de características

Métodos basados en espacios de características

- ullet Sean los píxeles $e_i = \left\langle {f p}_i, {f c}_i
 ight
 angle$ de la imagen
- Métodos basados en características solo usan **c**
- Recordar **c** indica color, textura, bordicidad, etc.

Ejemplos

- Umbralización
 - Algoritmo de Otsu
 - Umbral adaptativo
- Máximos de histogramas
- Aglomeración
 - k-medias (k-means)
 - Desplazamiento de media (mean-shift)

Umbralización

- Imagen se parte en clases fondo y objeto
- Todos los píxeles $e = \langle \mathbf{p}, c \rangle$ con c < t se asignan al fondo
- De otro modo se asignan al objeto
- t es el umbral (threshold)
- El usuario lo puede proveer directamente
- Se puede calcular:
 - Un porcentaje de píxeles debe pertenecer al objeto/fondo
 - Usar estadísticos para determinar el umbral (μ, σ)

Algoritmo de Otsu Ejemplo de umbralización

- Calcular histograma y correspondientes probabilidades
- ② Inicialice $\omega_i(t=0)$ y $\mu_i(t=0)$ con

$$\omega_0(t) = \sum_{j=0}^{t-1} p(j) \qquad \qquad \mu_0 = \sum_{j=0}^{t-1} p(j)j$$

$$\omega_1(t) = \sum_{j=t}^{\max} p(j) \qquad \qquad \mu_1(t) = \sum_{j=t}^{\max} p(j)j$$

Algoritmo de Otsu Ejemplo de umbralización

- Para t=1 hasta maximo valor de intensidad
 - **1** Actualice ω_i y μ_i
 - Calcule $\sigma_b^2(t)$

$$\sigma_b^2(t) = \omega_0(t)\omega_1(t)[\mu_1(t) - \mu_0(t)]^2$$

• Umbral corresponde al t con máximo $\sigma_b^2(t)$

Ejemplo

Ver ejemplo ltilib-2/examples/thresholding

Análisis con Histogramas

Aglomeración

- Aglomeración (clustering) es un proceso de clasificación no supervisado
- Busca agrupar objetos/observaciones similares
- Ejemplos de métodos:
 - k-medias: k indica cuántos conglomerados
 - Se usa en cuantificación de colores
 - Cuantificación junto a filtro mediana se usa como segmentador
 - desplazamiento de media: qué tan grandes

Ejemplo de aglomeración

Aglomeración con k-medias

- Dado el conjunto de observaciones $(\underline{\mathbf{x}}_1, \underline{\mathbf{x}}_2, \dots, \underline{\mathbf{x}}_n)$
- k-medias busca asignar las observaciones a los conjuntos $\mathbf{S} = \{\mathcal{S}_1, \dots, \mathcal{S}_k\}$ de modo que se minimice la suma de distancias cuadradas a la media $\underline{\mu}_i$ de cada conglomerado \mathcal{S}_i

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\underline{\mathbf{x}}_{j} \in S_{i}} \|\underline{\mathbf{x}}_{j} - \underline{\boldsymbol{\mu}}_{i}\|^{2}$$

Algoritmo alterna entre un paso de asignación y otro de actualización

Algoritmo de k-medias

- Inicialize las k medias $\underline{\mathbf{m}}_1, \underline{\mathbf{m}}_2, \dots, \underline{\mathbf{m}}_k$
- Asigne cada observación a media más cercana:

$$S_i^{(t)} = \left\{ \underline{\mathbf{x}}_p : \|\underline{\mathbf{x}}_p - \underline{\mathbf{m}}_i^{(t)}\| \le \|\underline{\mathbf{x}}_p - \underline{\mathbf{m}}_j^{(t)}\|, \forall 1 \le j \le k \right\}$$

Actualice las medias

$$\underline{\mathbf{m}}_{i}^{(t+1)} = \frac{1}{S_{i}^{(t)}} \sum_{\underline{\mathbf{x}}_{i} \in S_{i}^{(t)}} \underline{\mathbf{x}}_{\underline{\mathbf{j}}}$$

- Repita hasta que no haya cambios
- http://youtu.be/74rv4snLl70
- http://youtu.be/zaKjh2N8jN4

- Propuesto por D. Comaniciu and P. Meer alrededor de 1998
- Se basa en desplazamiento de medias para encontrar modos de máxima densidad en espacios multidimensionales y las correspondientes vertientes de atracción
- Dadas n observaciones $\underline{\mathbf{c}}_1 \dots \underline{\mathbf{c}}_n$ en un espacio d-dimensional \mathbb{R}^d , la estimación de densidad con kernel $K(\cdot)$ de ancho h en el punto $\underline{\mathbf{c}}$ es

$$\hat{f}(\underline{\mathbf{c}}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\underline{\mathbf{c}} - \underline{\mathbf{c}}_i}{h}\right) .$$

- Conglomerados están en máximos de $\hat{f}(\mathbf{c})$, i.e. $\nabla \hat{f}(\mathbf{c}) = 0$.
- El procedimiento de desplazamiento de medias permite encontrar esos máximos sin calcular explícitamente \hat{f} o su gradiente.
- Solo se requieren las derivadas del kernel $K(\underline{\mathbf{c}})$

- Se usan kernels de la forma $K(\underline{\mathbf{c}}) = \alpha k(\|\underline{\mathbf{c}}\|^2)$, con constante de normalización α y perfil k(x)
- Perfil de Epanechnikov:

$$k_{\mathcal{E}}(x) = \begin{cases} 1 - x & 0 \le 1 \\ 0 & x > 1 \end{cases} \tag{1}$$

asintóticamente minimiza el error cuadrático medio entre densidad real y su estimación.

• Perfil normal:

$$k_N(x) = \exp\left(-\frac{1}{2}x\right) \tag{2}$$

engendra el kernel normal

$$K_N(\underline{\mathbf{c}}) = (2\pi)^{-d/2} \exp\left(-\frac{1}{2}\|\underline{\mathbf{c}}\|^2\right)$$
 (3)

que se prefiere por ser derivable aun en cero

• El cálculo de la densidad usa la función g(x) = -k'(x), que define a un nuevo kernel $G(\underline{\mathbf{c}})$:

$$G(\underline{\mathbf{c}}) = \beta \mathbf{g} \left(\|\underline{\mathbf{c}}\|^2 \right) \tag{4}$$

con constante de normalización β .

- Con el perfil de Epanechnikov se obtiene la esfera unitaria d-dimensional
- $G_N(\underline{\mathbf{c}}) = -\beta k_N'(\|\underline{\mathbf{c}}\|^2)$ manteine la forma de $K_N(\underline{\mathbf{c}})$.

• El valor medio de los puntos en una ventana delimitada por $G(\underline{\mathbf{c}})$ y centrada en $\underline{\mathbf{c}}$ es

$$\underline{\mu}_{h,G}(\underline{\mathbf{c}}) = \frac{\sum_{i=1}^{n} \underline{\mathbf{c}}_{i} g\left(\left\|\frac{\underline{\mathbf{c}} - \underline{\mathbf{c}}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\underline{\mathbf{c}} - \underline{\mathbf{c}}_{i}}{h}\right\|^{2}\right)}.$$
 (5)

El vector de desplazamiento de media se define como

$$\underline{\mathbf{m}}_{h,G}(\underline{\mathbf{c}}) = \underline{\mu}_{h,G}(\underline{\mathbf{c}}) - \underline{\mathbf{c}} . \tag{6}$$

que apunta siempre hacia la dirección de máximo incremento de densidad.

Algoritmo de desplazamiento de medias

- Los modos se encuentran iterativamente
- Primero, el kernel se coloca en un punto $\underline{\mathbf{c}}$ arbitrario del espacio de características
- Luego se calcula el vector de desplazamiento $\underline{\mathbf{m}}_{h,G}(\underline{\mathbf{c}})$ y se traslada la ventana $G(\underline{\mathbf{c}})$.
- En la nueva posición se recalcula el vector de desplazamiento, que actúa sobre el kernel, y se repite el proceso
- La ruta trazada desde $\underline{\mathbf{c}}$ hasta el modo de densidad se expresa con la secuencia de puntos $\underline{\mathbf{s}}_t$:

$$\underline{\mathbf{s}}_0 = \underline{\mathbf{c}} \\ \underline{\mathbf{s}}_{t+1} = \underline{\boldsymbol{\mu}}_{h,G}(\underline{\mathbf{s}}_t)$$
 (7)

• Para perfiles k(x) monotónicamente decrecientes este proceso iterativo converge a un modo de la función de densidad estimada $\hat{f}(\mathbf{c})$

Algoritmo de desplazamiento de medias

Procedimiento de desplazamiento de medias con 56 puntos y ancho de banda h=0,1 con un kernel normal. Se usaron seis iteraciones por punto aproximadamente

Algoritmo de desplazamiento de medias

- Cada conglomerado se forma agrupando los puntos que tienen rutas hacia el mismo modo.
- Puesto que una imagen tiene miles de píxeles, el espacio de características se cuantifica para reducir el volumen de datos.
- Se usan otras técnicas para búsqueda multidimensional para encontrar los puntos que cubre el kernel
- Comaniciu y Meer usan una combinación de espacio y color CIE L*u*v* como característica

$$K_{h_p,h_c}(\underline{\mathbf{p}},\underline{\mathbf{c}}) = \frac{C}{h_p^2 h_c^d} k \left(\left\| \frac{\underline{\mathbf{p}}}{h_p} \right\|^2 \right) k \left(\left\| \frac{\underline{\mathbf{c}}}{h_c} \right\|^2 \right)$$
(8)

Ejemplo

Original

Mean-shift filter

Segmentation

Anchos de banda utilizados $h_p=15$ pixels y $h_c=5$ unidades de color. Imagen de 442 \times 424 píxeles tomó 240 seconds con un Intel Pentium 4 (2.8 GHz).

Métodos basados en el dominio de imagen

Métodos basados en el dominio de imagen

- Sean los píxeles $e = \langle \mathbf{p}, \underline{\mathbf{c}} \rangle$ de la imagen
- Estos métodos usan valores de c en vecindades
- Dos grupos
 - Basados en área: similitud de características
 - ② Basados en bordes: discontinuidades
- Hay métodos híbridos

Métodos basados en área

- Dos principios
 - Crecimiento de región (region growing)
 - División y fusión (split-and-merge)
- Crean regiones con borde menos ruidoso que métodos de aglomeración

Métodos basados en área Crecimiento de región

Utiliza semillas

Métodos basados en área División y fusión con Quadtrees

Métodos basados en bordes

- Parten de estimaciones de bordicidad
- Contornos Activos
- Divisorias (Watersheds)

- Las divisorias son un operador morfológico planteado por Digabel and Lantuéjoul 1977
- **Divisoria** es en topografía la linea que divide cuencas hidrográficas.

• En 1991 algoritmo de **inmersión** de Vincent y Soille las llevan a la práctica (eficiente para imágenes enteras)

• En 1999 De Smet and Piret proponen el algoritmo de **Iluvia** para imagenes en punto flotante.

Ejemplo: Divisorias (Watersheds)

El algoritmo de lluvia detecta cuencas, mientras que el

algoritmo de inmersión detecta divisorias.

- El mayor problema de las divisorias es la sobresegmentación
- Posible solución:

• Ejemplo de inundación inicial para reducir ruido

Sensibilidad a nivel de inundación

Filtro de mediana de 5×5 . Niveles de inundación iniciales de 1,6 % y 3,1 % del valor máximo de magnitud de gradiente

Resumen

- 1 Segmentación a nivel de imagen
- Métodos basados en espacios de características
 - Umbralización
 - Histogramas
 - Aglomeración
- 3 Métodos basados en el dominio de imagen

Tarea 2

- Revisar con detalle artículo de Comaniciu y Meer sobre mean-shift
- Revisar artículo de watersheds
- Montar un tablero de ajedrez simple (hoja impresa sobre tabla o cartón duro)
- Hacer un programa en C++ usando la LTI-Lib-2 para segmentar con mean-shift y con watersheds las imágenes del tablero en diferentes posiciones.
- Integre a sus pruebas el algoritmo de segmentación CWAGM

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica