Cours

FONCTIONS ELECTRONIQUES

email: nasser_baghdad @ yahoo.fr

FONCTIONS ELECTRONIQUES

Sommaire

Chapitre I: Les amplificateurs

Chapitre II : Les filtres

Chapitre III: Les comparateurs

Chapitre IV: Les oscillateurs

Chapitre V : La PLL

Chapitre VI: Les convertisseurs : CNA et CAN

V. Les multivibrateurs

- 1°) Le circuit bistable
- 2°) Le circuit monostable
- 3°) Le circuit astable

Technologie de réalisation

On peut réaliser des circuits multivibrateurs bistables à l'aide :

- de l'AOP
- du Transistor en commutation
- de portes logique TTL ou CMOS
- de circuits intégrés spécialisés (74121, LM555, HEF4538)

1°) Le circuit bistable

► Ce circuit possède deux états stables et il faut une intervention extérieure pour changer d'état.

Le circuit bistable est également connu sous les noms suivants : bascule ou « flip-

flop ».

J	K	Q_n	
0	0	Q_{n-1}	Mémoire
0	1	0	MAZ
1	0	1	MAU
1	1	Q _{n-1}	Toggle

Bistable réalisé avec des circuits logiques

Bistable réalisé avec le Timer 555

Bistable réalisé avec les transistors

2°) Le circuit monostable

- ▶ Le circuit monostable a une entrée e et une sortie s à 2 états.
 - état stable au repos
- état excité de durée t_m programmée, déclenché par un « front » du signal d'entrée. Cet état n'est pas stable puisqu'il s'éteint à la fin de t_m.
- ► La durée t_e de l'excitation n'influe pas tant que t_e < t_m.

Exemple d'utilisation : la minuterie de l'éclairement d'une cage d'escalier.

- ➤ Selon que le signal de sortie peut être re-déclenché ou non pendant qu'il est « excité », on distingue deux sortes de circuits monostables :
- Monostable redéclenchable (ou retriggerable) : à chacun des fronts de même polarité sur le signal d'entrée, le signal de sortie est redéclenché pour une durée t_m, même s'il n'est pas encore revenu à son état initial.
- Monostable non redéclenchable (ou no retriggerable) : tous les changements d'état de l'entrée pendant l'état excité de la sortie sont sans effet sur la dutée t_m.

Monostable redéclenchable (ou retriggerable)

Monostable non redéclenchable (ou no retriggerable)

Monostable réalisé avec l'AO

Multivibrateur monostable sans référence V₀

La durée de l'impulsion en sortie :
$$T = 2 R C \cdot \ln \left(\frac{V_{sat}}{2 \cdot V_{sat} + E} \right)$$

Monostable réalisé avec le timer 555

Monostable réalisé avec les transistors

$$D = 0, 7 \cdot R_{B2} \cdot C$$

Exemple d'application

Montage pour la détection d'une impulsion avec un monostable

3°) Le circuit astable

- L'astable est un oscillateur délivrant deux états instables en alternance.
- ► Il ne nécessite pas de source de déclenchement.
- ► Il est le plus souvent utilisé comme horloge.

L'astable est un oscillateur d'un signal carré

Astable réalisé avec l'AO:

La période de l'oscillation :
$$T = 2 R C \cdot \ln \left(1 + \frac{2R_1}{R_2} \right)$$

La fréquence d'oscillation: $F = \frac{1}{T}$

Limitation de la sortie

Oscillogramme

$$e^+ = V_s \frac{R_1}{R_1 + R_2}$$
 et $e^- = V_C = V_s + V_R$

Basculement si
$$e^+ = e^- \iff V_s \frac{R_1}{R_1 + R_2} = V_C$$

Les 2 seuils:
$$V_H = +V_{sat} \frac{R_1}{R_1 + R_2}$$
 et $V_B = -V_{sat} \frac{R_1}{R_1 + R_2}$

A
$$t = 0$$
 $V_C = 0$ $(C : d\acute{e}ch \arg \acute{e})$. On sup $pose V_s = +V_{sat}$

Lorsque
$$V_S = +V_{sat}$$
 $e^+ > e^ V_H = +V_{sat} \frac{R_1}{R_1 + R_2} > V_C$ $V_C < V_H$

Le condensateur se charg e jusque atteindre
$$V_H$$
 \Rightarrow basculement $V_s = -V_{sat}$

Lorsque
$$V_S = -V_{sat}$$
 $e^+ < e^ V_B = -V_{sat} \frac{R_1}{R_1 + R_2} < V_C$ $V_C > V_B$

Le condensateur se décharg e jusque atteindre V_B \Rightarrow basculement $V_s = +V_{sat}$

La période de l'oscillation :
$$T = 2 R C \cdot \ln \left(1 + \frac{2R_1}{R_2} \right)$$

Astable réalisé avec le trigger de Schmitt

$$T = \frac{1}{f_{oscillation}} = R \cdot C. \ln \left(\frac{V_{CC} - V_B}{V_{CC} - V_H} \times \frac{V_H}{V_B} \right)$$

Astable réalisé avec le timer 555

$$f = \frac{1.44}{(R_a + 2R_b)C}$$

$$\alpha = 1 - \frac{R_b}{(R_a + 2R_b)}$$

Astable réalisé avec les transistors

$$T = 0, 7(R_{B2} \cdot C_1 + R_{B1} \cdot C_2)$$

VI. Le timer 555 (minuteur)

- 1°) Principe de fonctionnement du circuit intégré LM 555
- 2°) Monostable réalisé avec un circuit intégré de type 555
- 3°) Astable réalisé avec le circuit intégré 555 le circuit intégré 555

1°) Principe de fonctionnement du circuit intégré LM 555

Introduction:

Le NE555 (plus couramment nommé 555) est un circuit intégré utilisé pour la temporisation ou en mode multivibrateur monostable et astable.

NE555

Le NE555 a été créé en 1970 par Hans R. Camenzind et commercialisé en 1971 par Signetics (maintenant NXP Semiconductors).

Ce composant est toujours utilisé de nos jours en raison de sa facilité d'utilisation, son faible coût et sa stabilité. Un milliard d'unités sont fabriquées par an.

Le NE555 contient 23 transistors, 2 diodes et 16 résistances qui forment 4 éléments :

- deux amplificateurs opérationnels de type comparateur ;
- une porte logique de type inverseur ;
- une bascule SET-RESET.

Le NE555 peut fonctionner selon trois modes : monostable, astable ou bistable.

NE556, version double du 555

Brochage:

Le NE555 existe aussi en version double avec l'appellation NE556. La table suivante présente les broches présentes sur la version simple dans un boitier DIP. Les autres boitiers utilisent les mêmes noms de broches.

	Nom	Description
1	GND	Masse
2	TRIG	Gâchette, amorce la temporisation - Détecte lorsque la tension est inférieure à 1/3 de VCC
3	OUT	Signal de sortie
4	RESET	Remise à zéro, interruption de la temporisation
5	CONT	Accès à la référence interne (2/3 de VCC)
6	THRES	Déclenche la fin de la temporisation, lorsque la tension atteint 2/3 de VCC, en montant
7	DISCH	Borne servant à décharger le condensateur de temporisation
8	VCC	Tension d'alimentation, généralement entre 5 et 15V

Aujourd'hui les versions CMOS de ce composant (tel que le LMC555) sont le plus souvent utilisées

Composants du NE555:

On peut voir à partir du schéma bloc les différents composants du NE555, soit :

- √ 2 comparateurs (jaune et rose pâle);
- √ 3 résistances configurées en diviseur de tension. Les deux tensions respectivement de 1/3 et 2/3 de Vcc servent de références aux comparateurs (vert);
- √ 1 bascule SET-RESET contrôlée par les comparateurs (indigo);
- √ 1 inverseur (fuchsia);
- √ 1 transistor pour décharger le condensateur de temporisation (cyan).

Fonctionnement:

L'opération du 555 suit la logique de fonctionnement du schéma bloc présenté et peut prendre 4 états différents :

- Le signal RESET est à un niveau bas : La bascule est remise à zéro, le transistor de décharge s'active et la sortie reste impérativement à un niveau bas. Aucune autre opération n'est possible.
- Le signal TRIG est inférieur à 1/3 de VCC : la bascule est activée (SET) et la sortie est à un niveau haut, le transistor de décharge est désactivé.
- Le signal THRES est supérieur à 2/3 de VCC : la bascule est remise à zéro (RESET) et la sortie est à un niveau bas, le transistor de décharge s'active.
- Les signaux THRES et TRIG sont respectivement inférieurs à 2/3 de VCC et supérieurs à 1/3 de VCC : la bascule conserve son état précédent de même que pour la sortie et le transistor de décharge.

Fonctionnement:

Ces états sont résumés dans le tableau suivant :

RESET	TRIG	THRES	OUT	DISCH
0	X	X	0	Actif
1	<1/3 Vcc	X	1	Inactif
1	>1/3 Vcc	>2/3 Vcc	0	Actif
1	>1/3 Vcc	<2/3 Vcc	Valeur précédente	

Fonctionnement en monostable :

$$t_w = 1, 1 \times R \times C$$

Diagramme schématique du NE555 en configuration monostable non re-déclenchable

Fonctionnement en astable :

Diagramme schématique du NE555 en configuration astable

$$f=rac{1.44}{(R_a+2R_b)C}$$
 $lpha=rac{R_a+R_b}{(R_a+2R_b)}$

Rapport cyclique:

Le rapport cyclique α est défini comme le rapport de la durée τ d'une pulsation par la période τ du signal rectangulaire

VII. Les générateurs de signaux non sinusoidaux

- 1°) Générateur triangulaire 1
- 2°) Générateur triangulaire 2

1°) Générateur triangulaire 1

2°) Générateur triangulaire 2

