# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-168866

(43) Date of publication of application: 14.06.1994

(51)Int.CI.

H01L 21/027

G03F 7/20

G03F 7/20

(21)Application number: 04-339510

(71)Applicant: CANON INC

(22)Date of filing:

27.11.1992

(72)Inventor: TAKAHASHI KAZUO

# (54) PROJECTION ALIGNER IMMERSED IN LIQUID

# (57)Abstract:

PURPOSE: To allow expectancy of wavelength dependent effect for any wavelength regardless of the wavelength of exposure light source by interposing a container defining a closed space to be filled with a liquid between a specific planar element and an opposing substrate with the planar element being located above the container.

CONSTITUTION: At the time of exposure, a cassette 9 mounting a wafer and filled with immersion liquid is taken out of a cassette stocker 10 using a cassette transfer unit 11–1 and mounted on a cassette position rough detecting mechanism 11–2 to be roughly positioned. The cassette 9 is then handled by means of a hand 11–3 to be transferred onto a wafer chuck 12 mounted on a wafer stage where the cassette 9 is positioned and secured in place while being sucked. Subsequently, the wafer is positioned precisely prior to start exposure. In this regard, the liquid is waved through step-and-repeat operation but fluidity of liquid in the cassette 9 is suppressed in a short time because of narrow gap between a second optical element 7 and the wafer surface and the viscosity of the liquid.



# **LEGAL STATUS**

[Date of request for examination]

15.05.1995

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2753930

[Date of registration]

06.03.1998

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

06.03.2005

# \* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

## **CLAIMS**

# [Claim(s)]

[Claim 1] In the projection aligner equipped with the projection optics which projects the pattern image of the original edition illuminated by lighting means to illuminate the pattern of the original edition, maintenance means to hold a substrate, and the lighting means on the substrate held by this maintenance means The optical element which counters the substrate front face of projection optics is separated with the projection optics body. And it is the \*\*\*\* type projection aligner which considers as the plate-like component which has two front faces parallel to mutual, possesses the container which constitutes a closed space for being filled up with a liquid between this plate-like component and the substrate which counters this, and is characterized by the plate-like component constituting the upper part of this container. [Claim 2] The \*\*\*\* type projection aligner according to claim 1 characterized by to have a means move and lean a maintenance means to X, Y, theta, and a Z direction in order to make the pattern on the original edition agree in said projection image based on the detection result of the alignment measurement system which detects the horizontal physical relationship of the original edition to the projection image by projection optics, the focal location detection system which detects the physical relationship of the focal location of projection optics, and the location of the vertical direction of the original edition, and these detection system.

[Claim 3] The \*\*\*\* type projection aligner according to claim 1 characterized by having a conveyance means to carry in said container on a maintenance means, and to take out.

[Claim 4] The \*\*\*\* type projection aligner according to claim 3 characterized by having the means filled up with the liquid to said closed space on said maintenance means.

[Claim 5] The \*\*\*\* type projection aligner according to claim 3 characterized by having a means to perform restoration of the liquid to said closed space in a different location from said maintenance means top.

[Claim 6] The original edition is a \*\*\*\* type projection aligner according to claim 3 by which it is constituting-pars basilaris ossis occipitalis of said container characterized.

[Claim 7] It is the \*\*\*\* type projection aligner according to claim 1 which the part which holds the original edition directly has separated the maintenance means, and this part constitutes the pars basilaris ossis occipitalis of said container, and is characterized by other parts of a maintenance means being the things holding this container.

[Claim 8] The original edition is a \*\*\*\* type projection aligner according to claim 6 characterized by the removable thing from said container.

[Claim 9] Said container is a \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having the structure which can make said closed space which it constitutes positive pressure or negative pressure. [Claim 10] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by said some of

containers consisting of low-fever expansion ingredients.

[Claim 11] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by covering some outer walls of said container with the heat insulator.

[Claim 12] Said alignment detection system is a \*\*\*\* type projection aligner according to claim 2 characterized by having a reference mirror for length measurement, and for the 2nd page which adjoins at least among the skins of said container lying at right angles mutually, and for this 2nd page being almost perpendicular to the front face of the original edition, and constituting said reference mirror.

[Claim 13] Said plate-like component is a \*\*\*\* type projection aligner according to claim 1 to 8 characterized by the removable thing from said container.

[Claim 14] Said container is a \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having piping with the bulb for pouring in a liquid into said closed space, and discharging.

[Claim 15] Said container is a \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a reference mark at the time of arranging on said maintenance means.

[Claim 16] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a pressure gage for detecting the pressure of said liquid with which it filled up.

[Claim 17] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a means to control the pressure of said liquid with which it filled up.

[Claim 18] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a vacuum pump for making into negative pressure the pressure of said liquid with which it filled up.

[Claim 19] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a thermometer for measuring the temperature of said liquid with which it filled up.

[Claim 20] \*\*\*\* type projection \*\*\*\*\* according to claim 1 to 8 characterized by having a means to control the temperature of said liquid with which it filled up.

[Claim 21] \*\*\*\* type projection \*\*\*\*\* according to claim 1 to 8 characterized by having the means which carries out the ultrasonic excitation of said liquid with which it filled up.

[Claim 22] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a pump for making a liquid flow in said closed space, and making it discharge.

[Claim 23] The \*\*\*\* type projection aligner according to claim 22 characterized by connecting to said pump the filter which makes said liquid filter.

[Claim 24] The \*\*\*\* type projection aligner according to claim 1 to 8 which makes said container aslant or perpendicular by this, and is characterized by performing impregnation from a lower part in case it has the means which makes said container aslant or perpendicular and a liquid is poured into said closed space.

[Claim 25] Restoration of the liquid to said closed space is a \*\*\*\* type projection aligner according to claim

5 characterized by being carried out to timing unrelated to exposure.

[Claim 26] Said container is a \*\*\*\* type projection aligner according to claim 1 to 8 characterized by the ability to open and close so that a substrate may be arranged to the interior and it can take out from the interior.

[Claim 27] Said maintenance means is a \*\*\*\* type projection aligner according to claim 7 characterized by having a duct for holding the original edition by vacuum suction, and having the shutter which can be opened and closed, and which prevents that a liquid flows through this duct.

[Claim 28] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having the illuminance unevenness measuring instrument which measures the illuminance unevenness for exposure in said container.

[Claim 29] Said container is a \*\*\*\* type projection aligner according to claim 7 characterized by having a member used as the criteria at the time of positioning into other parts of said maintenance means. [Claim 30] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a means to perform the required electrical installation and pneumatics to said container, or a vacuum-free passage. [Claim 31] The \*\*\*\* type projection aligner according to claim 1 to 8 characterized by having a means to measure the refractive index of said liquid with which it filled up.

[Translation done.]

\* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

## **DETAILED DESCRIPTION**

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the \*\*\*\* type projection aligner for exposing a detailed circuit pattern on substrates, such as a wafer, in semiconductor fabrication machines and equipment, especially a semi-conductor production process.

[0002]

[Description of the Prior Art] Detailed-ization of a semiconductor device progressed and it has shifted to i line with more short wavelength from g line of a high pressure mercury vapor lamp as the exposure light source conventionally. And since high resolution is needed more, NA (numerical aperture) of a projection lens must be enlarged, therefore the depth of focus is in the inclination which becomes still shallower. These relation can be expressed with a degree type as generally known well.

[0003] = (Resolution) k1 (lambda/NA)

(Depth of focus) =\*\*k2 lambda/NA 2 -- the wavelength of the light source which uses lambda for exposure here, and NA -- NA (numerical aperture) of a projection lens, and k1 k2 It is a multiplier related to a process.

[0004] The light source called excimer laser with more short wavelength (KrF, ArF), exposure according to an X-ray further, or the direct writing by the electron beam (EB) is also examined by recent years from g line of the conventional high pressure mercury vapor lamp, and i line. Moreover, on the other hand, examination of the high resolution by the phase shift mask or deformation lighting and a raise in depth is also beginning to be made and used.

[0005] Moreover, as an approach of raising the resolution of an optical microscope, the so-called immersion method which fills between an objective lens and samples with the liquid of a high refractive index is known from the former (for example, D.W. Pohl and W. Denk & M. Lanz, Appl. Phys. Lett. 44652 (1984)). As an example which applied this effectiveness to the imprint of the detailed circuit pattern of a semiconductor device, there are H. Microelectronic Engineering 9(1989) or T. R. Corle, G. S. Kino, and USP 5,121,256 (9 Jun 1992). Kawata J.M. Carter A. Yen H. I. Smith Moreover, Tabarelli, Werner W. Dr. EP 0 023 231 A1 (04. 02.1981) The configuration which carries the container for dipping, puts in a wafer, a wafer chuck, and a liquid into it, is made to move these onto a stage movable to X, Y, and a Z direction, and is exposed is indicated.

[0006]

[Problem(s) to be Solved by the Invention] However, excimer laser, an X-ray, and the method of using EB become high, and equipment cost has problems -- depending on a circuit pattern, effectiveness may be unable to expect the approach of using a phase shift mask, deformation lighting, etc..

[0007] moreover, said D.W. Pohl \*\* -- although a paper examines the effectiveness of dipping in exposure, it is not discussing the configuration as a practical semi-conductor aligner. Moreover, said USP 5,121,256 The approach of placing an immersion lens near the front face of a wafer is indicated.

[0008] Moreover, said EP 0 023 According to the approach of 231, it cannot be denied that the weight of the part to which it is made to move becomes heavy, and a throughput (productivity) worsens. EP 0 023 231 is also indicating the approach of connecting piping for circulation of a liquid to a container, in order to control the temperature of a liquid further, but with the configuration to which such a container is moved, if detailed-ization of today's semiconductor device is considered even if it uses a soft thing for the ingredient of piping, having a bad influence on the positioning accuracy of a stage will be considered enough. In addition, in order to cause a flow and outflow of a liquid, it is difficult to put a liquid into the container with which the top face was released, and to carry out step-and-repeat actuation of this to carry out stage

migration at high speed, and it is obliged to the fall of the productivity as a manufacturing installation. [0009] The purpose of this invention is the low cost which is not concerned with the wavelength of the exposure light source used [excimer laser / g line, i line, or ] in view of the trouble of such a conventional technique, but can expect the effectiveness according to each wavelength on every wavelength, and is to offer an aligner with high productivity, and the aligner which can employ the further conventional process technique efficiently. [0010]

[Means for Solving the Problem] A lighting means to illuminate the pattern of the original editions, such as a reticle, in this invention in order to attain this purpose, In the projection aligner equipped with the projection optics which projects the pattern image of the original edition illuminated by maintenance means to hold substrates, such as a wafer, and the lighting means on the substrate held by this maintenance means. The optical element which counters the substrate front face of projection optics is separated with the projection optics body. And it considers as the plate-like component which has two front faces parallel to mutual, and the container which constitutes a closed space for being filled up with a liquid between this plate-like component and the substrate which counters this is provided, and it is characterized by the plate-like component constituting the upper part of this container.

[0011] Moreover, the alignment measurement system which usually detects the horizontal physical relationship of the original edition to the projection image by projection optics, The focal location detection system which detects the physical relationship of the focal location of projection optics, and the location of the vertical direction of the original edition, A maintenance means in order to make the pattern on the original edition agree in said projection image based on the detection result of these detection system And X, It has the means moved and leaned to Y, theta, and a Z direction, a conveyance means to carry in said container on a maintenance means, and to take out, and a means to perform restoration of the liquid to said closed space in a different location from said said maintenance means or maintenance means top.

[0012] Moreover, the part which holds directly the case where the original edition constitutes the pars basilaris ossis occipitalis of said container, and the original edition of a maintenance means has dissociated, this part may constitute the pars basilaris ossis occipitalis of said container, and other parts of a maintenance means may hold this container. In the case of which, the original edition is usually removable from said container.

[0013] Furthermore, said container has the structure which can make said closed space which it constitutes positive pressure or negative pressure. A part consists of low-fever expansion ingredients, a part is covered with a heat insulator and the reference mirror for [2nd page] length measurement of said alignment detection system which adjoins at least among skins is constituted. It has piping with the bulb for said plate-like component being removable, and pouring a liquid into the interior, and discharging. It has a member used as the criteria at the time of positioning into the reference mark at the time of arranging on said maintenance means, or other parts of said maintenance means, and it is desirable to be able to open and close so that a substrate can be taken out.

[0014] Furthermore, the pressure gage for detecting the pressure of a liquid about said liquid with which it filled up, The vacuum pump for making into negative pressure the pressure of a means to control the pressure of a liquid, and a liquid, A means to control the thermometer for measuring the temperature of a liquid, and the temperature of a liquid, the means which carries out the ultrasonic excitation of the liquid, In case the filter and liquid which make the pump for making the liquid of a liquid flow in said closed space, and making it discharge and a liquid filter are poured in, it is desirable to have a means to make said container aslant or perpendicular and to perform impregnation from a lower part etc.

[0015] Moreover, it may be made to perform restoration of the liquid to said closed space to timing unrelated to exposure. Moreover, when the maintenance means constitutes the pars basilaris ossis occipitalis of said container, it has the shutter which can be opened and closed and which prevents that a liquid flows through the duct for holding the original edition by vacuum suction established in it. Moreover, it has a means to perform the required electrical installation and pneumatics to said container, or a vacuum-free passage. Furthermore, it is desirable to have the illuminance unevenness measuring instrument which measures the illuminance unevenness for exposure in said container.

[Function] It enables it to improve many faults of the conventional example simply only at making a small change of the projection aligner as a production facility by which current development is carried out by the conversion of the way of thinking of this invention constituting some objective lenses which constitute projection optics in the container side filled up with the liquid, and conveying the original edition in an

exposure location with this container, or performing conveyance of this container, conveyance of the original edition, and restoration of a liquid in an exposure location, and exposing.

[0017] By the above-mentioned configuration, although this invention uses the effectiveness of dipping It is lambda 0 as "the effectiveness of dipping" said here. It considers as the wavelength in the inside of the air of exposure light, as shown in <u>drawing 10</u>, the refractive index and alpha to the air of the liquid 23 which uses n for dipping are made into the convergence half width of a beam of light, and it is NAO. If =sinalpha When it immerses, the above-mentioned resolution and the depth of focus mean becoming like a degree type. [0018]

= (Resolution) k1 (lambda0/n) /NA0 (depth of focus) =\*\*k2 (lambda0/n) /(NA0) 2 That is, the effectiveness of dipping has wavelength equivalent to using the exposure wavelength which is 1/n. When in other words the same projection optics of NA is designed, the depth of focus can be increased n times by dipping. This is effective also to the configuration of all patterns, and can still also be combined with the phase shift method by which current examination is carried out, deformation illumination, etc. In order to employ this effectiveness efficiently, the purity of a liquid, homogeneity, temperature, etc. need to be managed precise, and in the aligner serially exposed on the wafer in step-and-repeat actuation, it becomes a problem how the air bubbles which remain on the wafer front face at the time of carrying in to a liquid to lessen a flow and vibration of the liquid generated working as much as possible and a wafer are removed. [0019] In this invention, it has a configuration for solving many of these problems, and the immersion type aligner as a production machine which can employ the effectiveness of dipping efficiently enough is offered so that an example may also explain to a detail. Although the aligner which used the X-ray or the electron beam (EB) was conventionally considered to be the need by production of DRAM of 256Mbit - 1Gbit, the conventional stepper which makes i line or excimer laser the light source can be used by this invention, and the conventional manufacture process can be diverted, and advantageous production also in cost is performed in the manufacture process established technically. Furthermore, this invention also solves the problem of contamination of adhering on a wafer, and has an advantage, like flat-surface correction to the wafer with which flatness deteriorated through the process can also be performed, and advantageous equipment is offered in manufacture of the semiconductor device increasingly made detailed. Hereafter, the example of this invention is explained using a drawing. [0020]

[Example]

Example 1 <u>drawing 1</u> is the typical side elevation of the \*\*\*\* type projection aligner concerning the 1st example of this invention. It is beforehand contained by the cassette 9, and this equipment conveys and exposes the immersed wafer, as shown in this drawing.

[0022] 10 is a cassette stocker which stocks a cassette 9. 11-1 to 11-3 is a part or the whole of the cassette transport device for carrying in a cassette 9 from the cassette stocker 10, and setting on a wafer stage, and the rough pointing device of a cassette. That is, a cassette transport device for 11-1 to convey a cassette 9 and 11-2 are the hands for cassette 9 sending in a cassette location rough detection device (it is usually called the PURIARAIMENTO device) and 11-3. A wafer chuck for 12 to hold the wafer with which cassette 9 pars basilaris ossis occipitalis was equipped the whole cassette, An X-Y stage for 13 to position the wafer included in a cassette 9 to a position, 14 is arranged on X-Y stage 13. The amendment function of the thetaposition of a wafer, The jogging stage which has a tilt function for amending the adjustment function of Z

location, and the inclination of a wafer, A laser interferometer for 15 to measure a stage location and 16 are the reference mirrors for being attached in the top face of the jogging stage 14 in X and the direction of Y (the direction of Y being un-illustrating), and reflecting the light of a laser interferometer 15. [0023] The heat insulator 17 for intercepting heat conduction with the exterior and maintaining temperature is formed in the perimeter of a cassette 9. If a heat insulator 17 constitutes cassette 9 the very thing from an ingredient with adiabatic efficiency, for example, an engineering ceramic, it is unnecessary. Furthermore, if the quality of the material of a cassette 9 is used for a low-fever expansive additive, for example, a zero joule, super Invar (all are trade names), etc. and the reference mirror 16 of a laser interferometer 15 is constituted on the side face, improvement in measurement precision is also expectable. Since a wafer front face becomes is hard to imprint even if dust adheres to the front face of the 2nd optical element 7 furthermore attached in the location which is the top face of a cassette 9 and is distant from a wafer front face in this case, in manufacture of the semiconductor device which can also solve problems, such as dust which adheres to a front face at the time of conveyance of a wafer, and contamination, and is increasingly made detailed, it is advantageous.

[0024] The cassette 9 which equipped with the wafer 2 which has applied the sensitization agent beforehand first as shown in drawing 2 on the occasion of exposure, and filled the interior with the liquid 23 for dipping is picked out from the cassette stocker 10 using the cassette transport device 11-1. After carrying and rough-positioning in the cassette location rough detection device 11-2, a cassette 9 is handled by the hand 11-3, and it moves onto the wafer chuck 12 on a wafer stage, and adsorption immobilization is positioned and carried out. Next, like the aligner of the usual wafer, after carrying out precision positioning (alignment, focus, etc.) of a wafer 2, it exposes. Although a flow of a liquid 23 occurs by step-and-repeat actuation at this time, spacing of the 2nd optical element 7 and the front face of a wafer 2 is several mm to about dozens of mm, and a flow of the liquid 23 in a cassette 9 disappears from a liquid 23 having viscosity comparatively for a short time. Since the periphery of a cassette 9 is covered with the heat insulator, time amount extent which processes one wafer can maintain constant temperature, and does not usually have to carry out temperature control. If exposure of the whole surface of a wafer 2 is completed, by the taking-out hand 11-4, the cassette 9 on the wafer chuck 12 will be handled, and it will contain to the cassette stocker 10 of another side.

[0025] <u>Drawing 2</u> is the typical sectional view showing the cassette immersion processor for fixing to the cassette 9 which made the cassette 9 interior negative pressure, equipped the cassette 9 with the wafer 2, and filled the interior with the liquid 23 for dipping. Moreover, <u>drawing 3</u> is a sectional view in the case of making the cassette 9 interior into positive pressure, and fixing a wafer 2 to a cassette 9. It is also possible to put such equipment side by side to said projection aligner, and to process a wafer.

[0026] As this cassette immersion processor is shown in <u>drawing 2</u> While controlling the amount of the thermometer 18 which measures the temperature of a liquid 23, the temperature controller 19 which adjusts the temperature of a liquid 23 based on this output, and a liquid 23 While making into homogeneity the filter 21 for filtering the impurity in the circulating pump 20 equipped also with the function to control the pressure of the function to circulate the liquid 23 by which temperature control was carried out, and a liquid 23, and a liquid 23 and a liquid 23. The interior of the ultrasonic excitation equipment 22 installed in wafer 2 front face or the front face of the 2nd optical element 7 in order to prevent air bubbles adhering, and a cassette 9 is made into negative pressure. the metallic ornaments 26 for fixing the bulb 25-1 connected to the vacuum pump 24 for removing the air bubbles in a liquid 23, and the vacuum pump 24, the bulb 25-2 connected to the pipe line of a liquid 23 and 25-3, and the 2nd optical element 7 -- and It has the pressure gage 27 for measuring the internal pressure of a cassette 9.

[0027] <u>Drawing 4</u> is the mimetic diagram showing the conveyance means used for this cassette \*\*\*\* processor. In <u>drawing 4</u>, 28 takes out a wafer stocker and 29 takes out a wafer from the wafer stocker 28. The cassette taking-out hand for the wafer carrying-in hand for sending to the wafer rough pointing device 30 and 31 picking out a cassette 9 from the cassette stocker 10, and moving to a position, The cassette station possessing the wafer chuck which 32 fixes a cassette 9 and fixes the cassette chuck and wafer 2 for connecting various kinds of piping, sensors, etc. to a cassette 9 automatically, A device for 33 to lean the cassette station 32 and 34 are the wafer migration hands for moving the positioned wafer 2 onto the wafer chuck 112.

[0028] Drawing 5 is the mimetic diagram showing the configuration for performing after treatment of the cassette 9 which exposure processing ended. The hand for a cassette taking-out hand for the after-treatment station which has the device in which the liquid 23 in the cassette 9 by which exposure processing ended 36 is taken out in this drawing, and 35 moving the cassette 9 which ended exposure to the after-treatment

station 36, and 38 picking out a wafer 2 from a cassette 9, and conveying to the wafer stocker 28, and 39 are the hands for containing the cassette 9 which became empty to the cassette stocker 10.

[0029] On the occasion of \*\*\*\* processing, as shown in drawing 4, the wafer 2 which applied the sensitization agent is first picked out from the wafer stocker 28 by the wafer carrying-in hand 29, it puts on the wafer rough pointing device 30, and rough positioning of a wafer 2 is performed. The wafer 2 which this positioned is positioned on the wafer chuck on the cassette station 32 by the wafer migration hand 34, and vacuum adsorption is carried out. Next, from the cassette stocker 10, an empty cassette is taken out by the cassette taking-out hand 31, and it sets to the wafer chuck 112 on the cassette station 32. In this condition, various kinds of piping and various kinds of sensors are combined with a cassette 9 through wafer chuck 112 grade. By this, a wafer 2 will also be positioned by the pars basilaris ossis occipitalis of a cassette 9. Next, a device 33 is operated, and a cassette 9 is leaned aslant the whole cassette station 32, or it stands perpendicularly. And if a circulating pump 20 is operated, a liquid 23 is sent in in a cassette 9 and volume turns into a fixed amount, a circulating pump 20 will be stopped.

[0030] At this time, since air may remain in the upper part in the wafer cassette 9 slightly, the vacuum pump 24 is connected to that part, this is operated, and the air currently mixed into a liquid 23 is removed. If the small air bubbles which ultrasonic excitation equipment 22 was operated and adhered to wall [ of a cassette 9 ] and wafer 2 front face at this time are removed, a liquid 23 can be made more into homogeneity in a short time. If the air in a cassette 9 is removed, the bulb 25-1 for vacuum pumps built into the cassette 9 is closed, a circulating pump 20 is operated again, a liquid 23 is filled in a cassette 9, and small reduced pressure will be carried out, measuring internal pressure with a pressure gage 27. About 0.99 to 0.80 times of atmospheric pressure are enough as the amount of reduced pressure for fixing this wafer 2 to cassette 9 pars basilaris ossis occipitalis. When internal pressure becomes a predetermined pressure, a circulating pump 20 is stopped and the bulb 25-2 built into each piping in a cassette 9 and 25-3 are closed. In this condition, the cassette station 32 is returned horizontally, and the cassette 9 which dipping completed is contained to the cassette stocker 10 by the cassette conveyance hand 31.

[0031] The above actuation is repeated successively and a wafer 2 is set to an immersion condition. When building this equipment into the aligner of <u>drawing 1</u>, the immersed cassette 9 may be directly conveyed by the wafer chuck 12 on a wafer stage by the cassette feed hand 11-3. If it is made such a configuration, the cassette transport device 11-1 of <u>drawing 1</u> and the cassette location rough detection device 11-2 can be replaced at the cassette conveyance hand 31 and the cassette station 32, respectively.

[0032] Moreover, after recovery of the cassette which ended exposure uses the cassette taking-out hand 35, puts it on the after-treatment station 36 instead of the taking-out hand 11-4 of <u>drawing 1</u> and removes a liquid 23 by the taking-out device of a liquid, it opens a cassette 9 by the hand 38, takes out a wafer 2, and contains it to the wafer stocker 28. An empty cassette is contained to the cassette stocker 10 by the hand 39. [0033] In addition, the aligner of <u>drawing 1</u> of the equipment of this <u>drawing 2 - drawing 5</u> is possible also for constituting as independent independent equipment. Moreover, in case a liquid 23 is made to flow into a cassette 9, a cassette 9 is stood aslant or perpendicularly and it is made a configuration which fills a liquid from a lower part, and while a device to which air bubbles do not remain inside is made, since ultrasonic excitation equipment 22, vacuum pump equipment 24, etc. are used, the residual of air bubbles is more effectively prevented for the purpose of the cellular removal in a liquid here. Moreover, after taking out a wafer 2 from a cassette 9 on the after-treatment station 36, it is also possible to dry a wafer 2 through the equipment 40 which performs an air blow.

[0034] Example 2 drawing 6 is the sectional view showing the cassette chuck part of the \*\*\*\* type projection aligner concerning the 2nd example of this invention. With this equipment, the wafer chuck 601 is formed in the cassette 9, and it has the cassette chuck 612 for positioning a cassette 9 by vacuum adsorption and fixing instead of the wafer chuck 12 in the equipment of drawing 1 on the jogging stage 14 (drawing 1). In this case, a cassette 9 has the breaker style 631 for taking a wafer 2 in and out, and, thereby, has composition with the 2nd removable optical element 7. Moreover, the gage pin 617 for positioning a cassette 9 by the cassette chuck 612 is embedded at three places. The configuration of other parts is the same as that of the case of the equipment of drawing 1, and is similarly performed using the cassette 9 which has also \*\*\*\*(ed) exposure beforehand.

[0035] Example 3 drawing 7 is the sectional view showing the cassette chuck part of the \*\*\*\* type projection aligner concerning the 3rd example of this invention. With this equipment, the base of a cassette 9 constitutes the wafer chuck 601, and the wafer chuck 601 can dissociate now with cassette 9 body. Receipts and payments of a wafer 2 are possible by this separation. Other configurations are the same as that of the case of drawing 6.

[0036] Example 4 <u>drawing 8</u> is the sectional view showing the cassette chuck part of the \*\*\*\* type projection aligner concerning the 4th example of this invention. With this equipment, after conveying a cassette 9 and fixing on the cassette chuck 612, \*\*\*\* is performed. An oil-level gage for 801 to measure the height of the liquid 23 in a cassette 9 in <u>drawing 8</u>, A connector for a measuring instrument for 803 to measure the refractive index of a liquid 23 and 805 to combine a cassette 9 and the cassette chuck 612 electrically, While the bulb by which 807 was connected to the vacuum pump 24, and 601 constitute the base of a cassette 9, it is a breaker style for a disengageable wafer chuck and 631 separating the wafer chuck 601 from cassette 9 body, and taking a wafer 2 in and out. In addition, the same part as the element in other drawings has attached the same sign.

[0037] In this configuration, a cassette 9 is conveyed on the cassette chuck 612 like the case of an example 1, and carries out positioning immobilization by vacuum adsorption. If a cassette 9 and the cassette chuck 612 join together by this, since the pipe line from said various sensors, vacuum pump equipment 24, or circulating-pump 20 grade will be automatically connected to coincidence, the liquid 23 for \*\*\*\* controlled by the temperature controller 19 by constant temperature is sent in through a filter 21 in a cassette 9 with a circulating pump 20. Since the oil-level gage 801 detects this for a liquid 23 as specified quantity delivery \*\*\*\*, a pump 20 is suspended based on this.

[0038] Next, the vacuum pump 24 connected near the cassette 9 upper part is operated, and the air bubbles in a liquid 23 are removed. It can come, simultaneously ultrasonic excitation equipment 22 is operated, and the air bubbles in a liquid 23, the air bubbles adhering to wafer 2 front face, and the air bubbles adhering to the 2nd optical element 7 front face are also removed. The effectiveness made into homogeneity also has liquid 23 the very thing, this ultrasonic excitation has the small amplitude of vibration, and since the frequency is high, it does not influence positioning or exposure of a wafer.

[0039] If it finishes removing air bubbles, while suspending a vacuum pump 24 and closing a bulb 807, pressurization and a circulating pump 20 are operated and the pressurization of a liquid 23 is begun. If it detects that the pressure gage 27 became a predetermined pressure by this, when continuous monitoring of the temperature of a liquid 23 is started and it separates from predetermined temperature with a thermometer 18, pressurization and a circulating pump 20 will be operated again, and the liquid 23 of constant temperature will be circulated. At this time, a flow of a liquid 23 takes place by circulation of a liquid 23, and the homogeneity of a liquid 23 collapses. Therefore, measurement homogeneous by the refractometer 803 is performed, and after checking homogeneity, it exposes.

[0040] What is necessary is a time delay's being taken after step migration for every shot, or measuring a flow condition by the refractometer 803, and making it just make a sequence continue, in order to prevent the effect of a flow of the liquid 23 by step-and-repeat actuation although exposure is performed like \*\*\*\*, when a flow stops. Moreover, it is possible to also make the flat-surface correction capacity of the wafer 2 on the wafer chuck 601 increase with the pressure of the pressurized liquid 23.

[0041] After after exposure termination operates a circulating pump 20, discharges the liquid 23 of the cassette 9 interior and closes the shutter in the wafer chuck 601, it ends exposure processing of one wafer by containing a cassette 9 to the wafer stocker 10 like \*\*\*\*.

[0042] Example 5 drawing 9 is the mimetic diagram showing the configuration for adding a \*\*\*\* processor to an aligner concerning the 5th example of this invention. This configuration is applied when using a wafer chuck built-in cassette as shown in drawing 6 or drawing 7. Differing from the thing of drawing 4 is equipped with the cassette chuck 903 instead of the wafer chuck 112 using the cassette hand 901 which also has the breaker style of a cassette 9 instead of the cassette hand 31, and a hand 34 is the point of being constituted so that a wafer may be put in in the cassette 9 on the cassette chuck 903.

[0043] In this configuration, in order to perform \*\*\*\*, first, the empty cassette 9 is picked out from the cassette stocker 10 by the cassette hand 901, and it sets on the cassette chuck 903. In this condition, various piping and various sensors are similarly combined with <u>drawing 8</u> having explained. It can come, simultaneously the cassette breaker style of the cassette hand 901 opens a cassette 9, the wafer 2 which applied the sensitization agent is picked out from the wafer stocker 28 by the hand 29, it carries on the wafer rough positioning device 30, and rough positioning is performed. The rough-positioned wafer 2 is positioned on the wafer chuck in a cassette 9 by the hand 34, and vacuum adsorption is carried out. Next, after closing and locking a cassette 9 by the cassette hand 901, a cassette 9 is leaned aslant the whole cassette station 32, or it stands perpendicularly. Next, like \*\*\*\*, a liquid 23 is sent in in a cassette 9, and air in a liquid 23 is removed and it pressurizes. If a predetermined pressure is reached, the bulb of each piping which suspends a circulating pump and has been incorporated in the cassette 9 will be closed. And the cassette station 32 is returned horizontally and the cassette 9 which \*\*\*\* completed is contained to the cassette stocker 10 by the

cassette hand 901.

[0044] As <u>drawing 4</u> explained also in this case, it is incorporable into the aligner of <u>drawing 1</u>. Moreover, after treatment after exposure can be performed like explanation by <u>drawing 5</u>. [0045]

[Effect of the Invention] It is the low cost which is not concerned with the wavelength of the exposure light source which can introduce an operation of \*\*\*\* very easily to the conventional aligner according to this invention as explained above, therefore is used [excimer laser / g line, i line, or ], but can expect the effectiveness of the improvement in resolution according to each wavelength, and improvement in the depth of focus on every wavelength, and an aligner with high productivity and the aligner which can employ the further conventional process technique efficiently can be offered.

[Translation done.]

# \* NOTICES \*

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

# **DRAWINGS**







[Drawing 3]









[Drawing 7]







[Translation done.]

# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-168866

(43) Date of publication of application: 14.06.1994

(51)Int.Cl.

H01L 21/027 G03F 7/20 G03F 7/20

(21)Application number: 04-339510

(71)Applicant: CANON INC

(22)Date of filing:

27.11.1992

(72)Inventor: TAKAHASHI KAZUO

# (54) PROJECTION ALIGNER IMMERSED IN LIQUID

(57)Abstract:

PURPOSE: To allow expectancy of wavelength dependent effect for any wavelength regardless of the wavelength of exposure light source by interposing a container defining a closed space to be filled with a liquid between a specific planar element and an opposing substrate with the planar element being located above the container.

CONSTITUTION: At the time of exposure, a cassette 9 mounting a wafer and filled with immersion liquid is taken out of a cassette stocker 10 using a cassette transfer unit 11-1 and mounted on a cassette position rough detecting mechanism 11-2 to be roughly positioned. The cassette 9 is then handled by means of a hand 11-3 to be transferred onto a wafer chuck 12 mounted on a wafer stage where the cassette 9 is positioned and secured in place while being sucked. Subsequently, the wafer is positioned precisely prior to start exposure. In this regard, the liquid is waved through step-and-repeat operation but fluidity of liquid in the cassette 9 is



suppressed in a short time because of narrow gap between a second optical element 7 and the wafer surface and the viscosity of the liquid.

# **LEGAL STATUS**

[Date of request for examination]

15.05.1995

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2753930

[Date of registration]

06.03.1998

[Number of appeal against examiner's decision of rejection]

## (19)日本国特許庁(JP)

# (12)公開特許公報(A)

(11)特許出願公開番号

# 特開平6-168866

(43)公開日 平成6年(1994)6月14日

| (51) Int. Cl. 5<br>HO1L 21/027 | 識別記号           | 庁内整理番号             | F I 技術表示箇所              |
|--------------------------------|----------------|--------------------|-------------------------|
| G03F 7/20                      | 5 0 2<br>5 2 1 | 9122-2H<br>9122-2H |                         |
|                                |                |                    |                         |
|                                | •              | 7352-4M            | H01L 21/30 311 L        |
|                                |                |                    | 審査請求 未請求 請求項の数31 (全10頁) |
| (21)出願番号                       | 特願平4-339       | 5 1 0              | (71)出願人 00001007        |
|                                |                |                    | キヤノン株式会社                |
| (22) 出願日                       | 平成4年(199       | 2) 11月27日          | 東京都大田区下丸子3丁目30番2号       |
|                                |                |                    | (72)発明者 髙橋 一雄           |
|                                |                |                    | 神奈川県川崎市中原区今井上町53番地キ     |
|                                |                |                    | ヤノン株式会社小杉事業所内           |
|                                |                |                    | (74)代理人 弁理士 伊東 哲也 (外1名) |
|                                |                |                    |                         |
|                                |                |                    |                         |
|                                |                |                    |                         |
|                                |                |                    | ·                       |
|                                |                |                    |                         |
|                                |                |                    |                         |

# (54) 【発明の名称】液浸式投影露光装置

# (57)【要約】

【目的】 使用する露光光源の波長に関わらずどの波長でもそれぞれの波長に応じた効果を期待できる低コストでかつ生産性の高い露光装置、さらには従来のプロセス技術を生かせる露光装置を提供する。

【構成】 原版のパターンを照明する照明手段、基板を保持する保持手段、および照明手段によって照明される原版のパターン像をこの保持手段によって保持された基板上に投影する投影光学系を備えた投影露光装置において、投影光学系の基板表面に対向する光学素子を、投影光学系本体とは分離しており、かつ相互に平行な2つの表面を有する平板状素子とし、この平板状素子とこれに対向する基板との間に液体を充填するための閉空間を構成する容器を具備し、平板状素子はこの容器の上部を構成している。



#### 【特許請求の範囲】

【請求項1】 原版のパターンを照明する照明手段、基板を保持する保持手段、および照明手段によって照明される原版のパターン像をこの保持手段によって保持された基板上に投影する投影光学系を備えた投影露光装置において、投影光学系の基板表面に対向する光学素子を、投影光学系本体とは分離しており、かつ相互に平行な2つの表面を有する平板状素子とし、この平板状素子とこれに対向する基板との間に液体を充填するための閉空間を構成する容器を具備し、平板状素子はこの容器の上部 10を構成していることを特徴とする液侵式投影露光装置。

1

【請求項2】 投影光学系による投影像に対する原版の水平方向の位置関係を検出するアライメント計測系、投影光学系のフォーカス位置と原版の上下方向の位置との位置関係を検出するフォーカス位置検出系、および、これら検出系の検出結果に基き原版上のパターンを前記投影像に合致させるために保持手段をX、Y、θおよび2方向に移動させならびに傾ける手段を備えることを特徴とする請求項1記載の液侵式投影露光装置。

【請求項3】 前記容器を保持手段上に搬入しおよび搬 20 出する搬送手段を備えることを特徴とする請求項1記載 の液侵式投影露光装置。

【請求項4】 前記閉空間への液体の充填を前記保持手段上で行う手段を有することを特徴とする請求項3記載の液侵式投影露光装置。

【請求項5】 前記閉空間への液体の充填を前記保持手段上とは異なる位置において行う手段を有することを特徴とする請求項3記載の液侵式投影露光装置。

【請求項6】 原版は前記容器の底部を構成すること特 徴とする請求項3記載の液侵式投影露光装置。

【請求項7】 保持手段は、原版を直接保持する部分が分離しており、この部分は前記容器の底部を構成しており、かつ保持手段の他の部分はこの容器を保持するものであることを特徴とする請求項1記載の液侵式投影露光装置。

【請求項8】 原版は前記容器から着脱可能であることを特徴とする請求項6記載の液侵式投影露光装置。

【請求項9】 前記容器はそれが構成する前記閉空間を 陽圧または負圧にし得る構造を有することを特徴とする 請求項1~8記載の液侵式投影露光装置。

【請求項10】 前記容器の一部が低熱膨張材料で構成されていることを特徴とする請求項1~8記載の液侵式投影露光装置。

【請求項11】 前記容器の外壁の一部が断熱材で覆われていることを特徴とする請求項1~8記載の液侵式投影器光装置。

【請求項12】 前記アライメント検出系は測長用の参照ミラーを有し、前記容器の外壁面のうち少なくとも隣接する2面が相互に直交しており、また、この2面が、原版の表面に対してほぼ無点になっており、第20余四〜

ラーを構成していることを特徴とする請求項2記載の液 侵式投影露光装置。

【請求項13】 前記平板状素子は前記容器から着脱可能であることを特徴とする請求項1~8記載の液侵式投影器光装置。

【請求項14】 前記容器は、前記閉空間内に液体を注入しおよび排出するためのパルプ付きの配管を備えることを特徴とする請求項1~8記載の液侵式投影露光装置。

【請求項15】 前記容器は、前記保持手段上に配置する際の基準マークを有することを特徴とする請求項1~8記載の液侵式投影露光装置。

【請求項16】 前記充填された液体の圧力を検出するための圧力計を有することを特徴とする請求項1~8記載の液侵式投影露光装置。

【請求項17】 前記充填された液体の圧力を制御する 手段を有することを特徴とする請求項1~8記載の液侵 式投影優光装置。

【請求項18】 前記充填された液体の圧力を負圧にするための真空ポンプを有することを特徴とする請求項1 ~8記載の液侵式投影露光装置。

【請求項19】 前記充填された液体の温度を計測するための温度計を有することを特徴とする請求項1~8記載の液侵式投影露光装置。

【請求項20】 前記充填された液体の温度を制御する 手段を有することを特徴とする請求項1~8記載の液侵 式投影露光装。

【請求項21】 前記充填された液体を超音波加振する 手段を有することを特徴とする請求項1~8記載の液侵 30 式投影露光装。

【請求項22】 前記閉空間内に液体を流入させおよび 排出させるためのポンプを有することを特徴とする請求 項1~8記載の液侵式投影露光装置。

【請求項23】 前記ポンプに前記液体をろ過させるろ 過装置が接続されていることを特徴とする請求項22記 載の液侵式投影露光装置。

【請求項24】 前記容器を斜めもしくは垂直にする手段を有し、前記閉空間に液体を注入する際には、これにより前記容器を斜めもしくは垂直にし、下方から注入を40 行うことを特徴とする請求項1~8記載の液侵式投影露光装置。

【請求項25】 前記閉空間への液体の充填は、露光とは無関係のタイミングで行われることを特徴とする請求項5記載の液侵式投影露光装置。

【請求項26】 前記容器は、基板をその内部に配置しおよびその内部から取り出し得るように、開閉可能であることを特徴とする請求項1~8記載の液侵式投影解光 装置。

接する2面が相互に直交しており、また、この2面が、 【請求項27】 前記保持手段は原版を真空吸引により 原版の表面に対してほぼ垂直になっており、前記参照ミ 50 保持するための管路を有し、この管路を介して液体が流

入するのを防止する開閉可能なシャッタを有することを 特徴とする請求項?記載の液侵式投影露光装置。

【請求項28】 前記容器内に露光に際しての照度むら を測定する照度むら測定器を備えることを特徴とする請 求項1~8記載の液侵式投影露光装置。

【請求項29】 前記容器は前記保持手段の他の部分に 位置決めする際の基準となる部材を有することを特徴と する請求項7記載の液侵式投影露光装置。

【請求項30】 前記容器に対する必要な電気的接続および空圧あるいは真空的な連通を行う手段を有すること 10を特徴とする請求項1~8記載の液侵式投影露光装置。 【請求項31】 前記充填された液体の屈折率を測定する手段を有することを特徴とする請求項1~8記載の液侵式投影露光装置。

## 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、半導体製造装置、特に 半導体製造工程においてウエハ等の基板上に微細な回路 パターンを露光するための液侵式投影露光装置に関す る。

#### [0002]

【従来の技術】半導体素子の微細化が進み、従来、露光光源として高圧水銀灯のg線から、より波長の短い i 線へと移行してきた。そしてより高解像力を必要とするため、投影レンズのNA(開口数)を大きくしなければならず、そのため、焦点深度はますます浅くなる傾向にある。これらの、関係は一般に良く知られているように、次式で表すことができる。

[00003] (解像力) = k<sub>1</sub> (λ/NA)

(焦点深度) = ± k<sub>2</sub> λ/NA<sup>2</sup>

ここに、人は露光に使用する光源の波長、NAは投影レンズのNA(開口数)、k1 , k2 はプロセスに関係する係数である。

【0004】近年では、従来の高圧水銀灯のg線、i線から、より波長の短いエキシマレーザと呼ばれる(KrF、ArF)光源、更には、X線による露光、あるいは電子ビーム(EB)による直接描画も検討されている。また、一方では、位相シフトマスク、あるいは変形照明などによる高解像力、高深度化の検討もなされ、実用され始めている。

【0005】また、光学式顕微鏡の解像力をあげる方法としては、従来から、対物レンズと試料の間を高屈折率の液体で満たす、所謂、液浸法が知られている(例えば、D.W. Pohl, W. Denk & M.

Lanz, Appl. Phys. Lett. 44652 (1984)) 。この効果を半導体素子 の微細回路パターンの転写に応用した例としては、H.

Kawata,J. M. Carter,A.備えた投影露光装置において、投影光学系の基板表面にYen,H. I. Smith,Microel対向する光学素子を、投影光学系本体とは分離しておectronicEngineering9 (19 50 り、かつ相互に平行な2つの表面を有する平板状素子と

89) 、あるいは、T. R. Corle, G. S. Kino, USP 5, 121, 256 (Jun 9, 1992) がある。また、Tabarelli, Werner W., Dr., EP 0 023 231 A1 (04.02.1981) は、X、YおよびZ方向に移動可能なステージ上に、液浸のための容器を載せ、その中にウエハ、ウエハチャックおよび液体を入れ、これらを移動させて露光する構成を開示している。

#### [0006]

【発明が解決しようとする課題】しかしながら、エキシマレーザ、X線、EBを利用する方法は、装置コストが高くなり、位相シフトマスク、変形照明等を利用する方法は、回路パターンによっては効果が期待できない場合もある等の問題を抱えている。

【0007】また、前記D.W. Pohl らの論文は、露光における液浸の効果を検討したものであるが、実用的な半導体露光装置としての構成を論じていない。また、前記USP 5,121,256 は、液浸レン ズをウエハの表面近くに置く方法を開示しているに過ぎない。

【0008】また、前記EP 0 023 231の方法によると、移動させる部分の重量が重くなり、スループット(生産性)が悪くなることは否めない。EP 0 023 231はさらに、液体の温度をコントロールするために、容器に液体の循環のための配管を接続する方法も開示しているが、このような容器を移動させるような構成では、配管の材料を柔らかいものを使用したしても、今日の半導体素子の微細化を考えると、ステージの位置決め精度に悪影響を及ぼすことは十分考えられる。加えて、上面が解放された容器に液体を入れて、これをステップ・アンド・リピート動作させることは、液体の流動や流出を招くために、高速でステージ移動させることは困難であり、製造装置としての生産性の低下を余儀なくされる。

【0009】本発明の目的は、このような従来技術の問題点に鑑み、g線、i線、あるいはエキシマレーザ等の使用する露光光源の波長に関わらずどの波長でもそれぞれの波長に応じた効果を期待できる低コストでかつ生産40性の高い露光装置、さらには従来のプロセス技術を生かせる露光装置を提供することにある。

# [0010]

【課題を解決するための手段】この目的を達成するため本発明では、レチクル等の原版のパターンを照明する照明手段、ウエハ等の基板を保持する保持手段、および照明手段によって照明される原版のパターン像をこの保持手段によって保持された基板上に投影する投影光学系を備えた投影露光装置において、投影光学系の基板表面に対向する光学素子を、投影光学系本体とは分離しておれて根を発表する。

し、この平板状素子とこれに対向する基板との間に液体 を充填するための閉空間を構成する容器を具備し、平板 状素子はこの容器の上部を構成していることを特徴とし ている。

【0011】また、通常は、投影光学系による投影像に対する原版の水平方向の位置関係を検出するアライメント計測系、投影光学系のフォーカス位置と原版の上下方向の位置との位置関係を検出するフォーカス位置検出系、および、これら検出系の検出結果に基き原版上のパターンを前記投影像に合致させるために保持手段をX、Y、θおよびZ方向に移動させならびに傾ける手段、前記容器を保持手段上に搬入しおよび搬出する搬送手段、前記閉空間への液体の充填を前記保持手段上で、あるいは前記保持手段上とは異なる位置において行う手段を有する。

【0012】また、原版が前記容器の底部を構成する場合と、保持手段の原版を直接保持する部分が分離しており、この部分が前記容器の底部を構成しかつ保持手段の他の部分がこの容器を保持する場合とがある。いずれの場合においても、原版は通常、前記容器から着脱可能で 20ある。

【0013】さらに前記容器は、それが構成する前記閉空間を陽圧または負圧にし得る構造を有し、一部が低熱膨張材料で構成され、一部が断熱材で覆われ、外壁面のうち少なくとも隣接する2面が前記アライメント検出系の測長用の参照ミラーを構成し、前記平板状素子が着脱可能であり、内部に液体を注入しおよび排出するためのバルブ付きの配管を備え、前記保持手段上に配置する際の基準マークあるいは前記保持手段の他の部分に位置決めする際の基準となる部材を有し、そして、基板を取り出し得るように開閉可能であるのが好ましい。

【0014】さらに、前記充填された液体については、 液体の圧力を検出するための圧力計、液体の圧力を制御

 $(解像力) = k_1$   $(\lambda_0 / n) / NA_0$ 

(焦点深度) =  $\pm k_2$  ( $\lambda$ 。 /n) / (NA。 )  $^2$ 

 する手段、液体の圧力を負圧にするための真空ボンプ、 液体の温度を計測するための温度計、液体の温度を制御 する手段、液体を超音波加振する手段、液体の液体を前 記閉空間内に流入させおよび排出させるためのポンプ、 液体をろ過させるろ過装置、液体を注入する際に前記容 器を斜めもしくは垂直にし下方から注入を行う手段など を備えるのが好ましい。

【0015】また、前記閉空間への液体の充填は、露光とは無関係のタイミングで行うようにしてもよい。また、保持手段が前記容器の底部を構成している場合は、それに設けられた、原版を真空吸引により保持するための管路を介して液体が流入するのを防止する開閉可能なシャッタを有する。また、前記容器に対する必要な電気的接続および空圧あるいは真空的な連通を行う手段を有する。さらに、前記容器内に露光に際しての照度むらを測定する照度むら測定器などを有するのが好ましい。

【作用】本発明は、投影光学系を構成する対物レンズの一部を、液体を充填した容器の側に構成し、この容器の搬送、原版の搬送および液体の充填を露光位置で行いる生産設備としての投影の無換により、現在開発されている生産設備としての投影のできるようにしたものである。【0017】本発明は、上記構成により、液浸の効果」とは、入。を露光光の空気中での液長とし、図10に示すようにnを液浸に使用するものであるが、ここで言う「液浸の効果」とは、入。を変光光の空気中での液長とし、図10に示すようにnを液浸に使用すると、図10に示すようにnを液浸に使用すると、図10に示すると、液浸した場合、前述の解像力、および焦点深度は、次式のようになることを意味する。

置が提供される。従来、256Mbit~1GbitのDRAMの生産では、X線、あるいは電子ピーム(EB)を用いた露光装置が必要と考えられていたが、本発明によって、i線、あるいはエキシマレーザを光源とする従来のステッパを用い、かつ従来の製造プロセスを流用することができ、技術的に確立された製造プロセスで、コスト的にも有利な生産が行われる。さらに本発明は、ウエハ上に付着するコンタミネーションの問題も解決し、プロセスを経て平面度の劣化したウエハに対する平面矯正も行えるなどの利点があり、ますます微細化する半導体素子の製造において、有利な装置を提供するものである。以下、図面を用いて本発明の実施例を説明する。

[0020]

[0018]

0 【実施例】

20

30

40

50

8

#### 実施例1

図1は本発明の第1の実施例に係る液侵式投影露光装置の模式的な側面図である。この装置は、同図に示すように、予めカセット9に収納され、液浸されたウエハを、搬送して露光するものである。

【0021】これらの図において、1はレチクル、3は レチクル1上の回路パターンを感光剤を塗布したウエハ 上に投影するためのシャッタおよび調光装置等を備えた 照明光学系、4はそのような投影を行う投影光学系、5 はレチクル1を保持して所定の位置に位置決めするため のレチクルステージ、6はレチクル1を位置決めするた め、およびレチクル像をウエハ上に既に転写されている 回路パターンに合致させるためのアライメント光学系で ある。7は投影光学系4のウエハの表面に対向するレン ズであり、これを第2の光学素子と呼ぶことにする。こ の第2の光学素子7は、図2に示すように、平行平面ガ ラスで構成される。これは、第2の光学素子7を投影光 学系4から分離し、ウエハステージで移動可能なカセッ ト9の一部に構成する上で重要である。また、第2の光 学素子7のウエハ2に対向する面を平面にすることは、 液侵する際に、第2の光学素子7表面に空気層や気泡が 残らないようにするために重要である。また、液浸され る光学素子?の表面およびウエハ上の感光剤の表面は、 液浸に使用する液体と浸和性のあるコーチングを施すこ とが望ましい。また、図2に示すように、第2の光学素 子?およびウエハ2とカセット9の間には液体23の漏 れを防ぐため、およびカセット9の気密を保たたせるた めのシール8が設けられている。

【0022】10はカセット9をストックするカセット ストッカである。11-1~11-3はカセットストッ カ10からカセット9を搬入しウエハステージ上にセッ トするためのカセット搬送装置およびカセットの粗位置 決め装置の一部もしくは全体である。 すなわち 11-1 はカセット9の搬送を行うためのカセット搬送装置、1 1-2はカセット位置粗検出機構(通常、プリアライメ ント機構と呼んでいる)、11-3はカセット9送り込 み用のハンドである。12はカセット9底部に装着され たウエハをカセットごと保持するためのウエハチャッ ク、13はカセット9に入ったウエハを所定の位置に位 置決めするための X Y ステージ、14 は X Y ステージ 1 3上に配置され、ウエハの $\theta$ 位置の補正機能、Z位置の 調整機能、ウエハの傾きを補正するためのチルト機能を 有する微動ステージ、15はステージ位置を計測するた めのレーザ干渉計、16は微動ステージ14の上面にX およびY方向に取り付けられ(Y方向は不図示)、レー ザ干渉計15の光を反射させるための参照ミラーであ

【0023】カセット9の周囲には、外部との熱伝導を 遮断して温度を維持するための断熱材17が設けられて いる。断熱材17は、カセット9自体を断熱効果のある 材料、例えばエンジニアリングセラミックで構成すれば、不要である。さらに、カセット9の材質を低熱膨張材、例えばゼロジュール、スーパーインパー(いずれも商品名)等を使用し、レーザ干渉計15の参照ミラー16をその側面に構成すれば、計測精度の向上も期待できる。さらにこの場合、カセット9の上面でかつウエハを面に塵埃が付着しても、ウエハ表面に付着する塵埃がくなるので、ウエハの搬送時に表面に付着する塵埃、コンタミネーション等の問題も解決でき、ますます微細化する半導体素子の製造において有利である。

【0024】露光に際しては、まず、図2に示すように あらかじめ感光剤を塗布してあるウエハ2を装着し内部 を液浸のための液体23で満たしたカセット9をカセッ ト搬送装置11-1を用いてカセットストッカ10から 取り出し、カセット位置粗検出機構11-2に載せ、粗 位置決めした後に、ハンド11-3でカセット9をハン ドリングし、ウエハステージ上のウエハチャック12上 に移動し、そして位置決めして吸着固定する。次に、通 常のウエハの露光装置と同様に、ウエハ2の精密位置決 め(アライメント、フォーカスなど)をしてから、露光 を行う。このとき、ステップ・アンド・リピート動作に より、液体23の流動が発生するが、第2の光学素子7 とウエハ2の表面の間隔が数mmから数十mm程度であ り、液体23が粘性を有することから、比較的短時間で で、カセット9内における液体23の流動はなくなる。 カセット9の外周は、断熱材で覆ってあるため、通常、 1枚のウエハを処理する時間程度は、一定温度を保つこ とが可能であり温度制御をする必要はない。ウエハ2の 全面の露光が完了すると、搬出ハンド11-4で、ウエ ハチャック12上のカセット9をハンドリングして、他 方のカセットストッカ10に収納する。

【0025】図2は、カセット9内部を負圧にしてウエハ2をカセット9に装着し内部を液浸のための液体23で満たしたカセット9に固定するためのカセット液浸処理装置を示す模式的な断面図である。また、図3は、カセット9内部を陽圧にして、ウエハ2をカセット9に固定する場合の断面図である。このような装置を前記投影露光装置に併置して、ウエハの処理をすることも可能である。

【0026】このカセット液浸処理装置は、図2に示すように、液体23の温度を測定する温度計18、この出力に基き液体23の温度を調整する温度コントローラ19、液体23の量を制御するとともに温度制御された液体23を循環させる機能および液体23の圧力をコントロールする機能も備えた循環ポンプ20、液体23中の不純物をろ過するためのフィルタ21、液体23を均質にするとともにウエハ2表面や第2の光学素子7の表面に気泡が付着するのを防ぐ目的で設置された超音波加振装置22、カセット9の内部を負圧にして液体23中の

気泡を除去するための真空ポンプ 24、真空ポンプ 24 に接続されたパルプ 25-1、液体 23 の配管系に接続されたパルプ 25-2 および 25-3、第 20 の光学素子 7 を固定するための金具 26、および、カセット 9 の内圧を測定するための圧力計 27 を備える。

【0027】図4はこのカセット液侵処理装置に用いられる搬送手段等を示す模式図である。図4において、28はウエハストッカ、29はウエハストッカ28からウエハを搬出し、ウエハ粗位置決め装置30に送るためのウエハ搬入ハンド、31はカセットストッカ10からカセット9を取り出して所定の位置に移動するためのカセット搬出ハンド、32はカセット9を固定し、各種の配管およびセンサなどをカセット9に自動的に接続するためのカセットチャックおよびウエハ2を固定するウエハチャックを具備するカセットステーション、33はカセットステーション32を傾けるための機構、34は位置決めしたウエハ2をウエハチャック112上に移動するためのウエハ移動ハンドである。

【0028】図5は露光処理が終了したカセット9の後処理を行うための構成を示す模式図である。同図において、36は露光処理が終了したカセット9内の液体23を搬出する機構を有する後処理ステーション、35は露光を終了したカセット9を後処理ステーション36に移動するためのカセット搬出ハンド、38はウエハ2をカセット9から取り出し、ウエハストッカ28に搬送するためのハンド、そして39は空になったカセット9をカセットストッカ10に収納するためのハンドである。

【0029】液侵処理に際しては、図4に示すように、 まず、ウエハストッカ28から感光剤を塗布したウエハ 2を、ウエハ搬入ハンド29で取り出し、ウエハ粗位置 30 決め装置30に載せて、ウエハ2の粗位置決めを行う。 これにより位置決めしたウエハ2を、ウエハ移動ハンド 34でカセットステーション32上のウエハチャック上 に位置決めし、真空吸着する。次に、カセットストッカ 10から、カセット搬出ハンド31で空のカセットを取 り出し、カセットステーション32上のウエハチャック 112にセットする。この状態で、各種の配管と、各種 のセンサを、ウエハチャック112等を介してカセット 9に結合する。これにより、ウエハ2もカセット9の底 部に位置決めされることになる。次に、機構33を動作 40 させて、カセット9をカセットステーション32ごと斜 めに傾け、あるいは垂直に立てる。そして、循環ポンプ 20を動作させ液体23をカセット9内に送り込み、液 量が一定の量になると循環ポンプ20を停止させる。

【0030】このとき、ウエハカセット9内の上部には空気が僅かに残る可能性があるためその部分には真空ポンプ24が接続されており、これを作動させて、液体23中に混入している空気を除去する。このとき、超音波加振装置22を作動させてカセット9の内壁およびウエハ2表面に付着した小さな気泡を除去するようにすれ

ば、より短時間に液体23を均一にすることができる。 カセット9内の空気を除去すると、カセット9に組み まれている真空ポンプ用バルブ25-1を閉じ、循環ポンプ20を再び動作させて、液体23をカセット9内に 満たし、圧力計27で内圧を計測しながら僅か減圧する。この、ウエハ2をカセット9底部に固定するためで ある。内圧が所定の圧力になった時点で、循環ポンプ20を停止させ、カセット9内の各々の配管に組み込んであるパルブ25-2および25-3を閉じる。この状態で、カセットステーション32を水平に戻し、液浸が完了したカセット9をカセット搬送ハンド31でカセットストッカ10に収納する。

【0031】以上の動作を順次繰り返し、ウエハ2を液 浸状態にセットをする。この装置を図1の露光装置に組 み込む場合は、液浸されたカセット9をカセット送込み ハンド11-3でウエハステージ上のウエハチャック12に直接搬送しても良い。このような構成にすると、図1のカセット搬送装置11-1およびカセット位置粗検 出機構11-2は、それぞれ、カセット搬送ハンド31とカセットステーション32で置き換えることができる。

【0032】また、露光を終了したカセットの回収は、図1の搬出ハンド11-4の代わりに、カセット搬出ハンド35を使用し、後処理ステーション36に載せ、液体の搬出機構で液体23を除去した後に、ハンド38でカセット9を開け、ウエハ2を取り出し、ウエハストッカ28に収納する。空のカセットは、ハンド39でカセットストッカ10に収納する。

【0033】なお、この図2~図5の装置は、図1の館光装置とは、独立した単独の装置として構成することも可能である。また、ここでは、液体23をカセット9に流入させる際に、カセット9を斜め、もしくは垂直に立て、下方から液体を満たすような構成にしてあり、内部に気泡が残留しないような工夫がなされているとともに、液体中の気泡除去の目的で、超音波加振装置22、真空ポンプ装置24などが用いられているため、より効果的に気泡の残留が防止される。また、後処理ステーション36上でカセット9からウエハ2を搬出した後に、エアプローを行う装置40を介して、ウエハ2を乾燥させることも可能である。

## 【0034】実施例2

図6は本発明の第2の実施例に係る液侵式投影露光装置のカセットチャック部分を示す断面図である。この装置では、カセット9内にウエハチャック601が設けられており、微動ステージ14(図1)上には図1の装置におけるウエハチャック12の代わりに、カセット9をパキューム吸着によって位置決めし固定するためのカセットチャック612を備える。この場合、カセット9は、ウエハ2を出し入れするための開閉機構631を有し、

30

19

これにより第2の光学素子7が着脱可能な構成となっている。また、カセットチャック612には、カセット9を位置決めするための位置決めピン617が3か所に埋め込まれている。他の部分の構成は図1の装置の場合と同様であり、また、露光も、予め液侵してあるカセット9を用い、同様にして行われる。

#### 【0035】 実施例3

図7は本発明の第3の実施例に係る液侵式投影露光装置のカセットチャック部分を示す断面図である。この装置では、カセット9の底面がウエハチャック601を構成 10しており、ウエハチャック601がカセット9本体と分離できるようになっている。この分離によりウエハ2の出し入れが可能となっている。他の構成は図6の場合と同様である。

#### 【0036】<u>実施例4</u>

【0037】この構成において、カセット9は実施例1の場合と同様にしてカセットチャック612上に搬送し、パキューム吸着によって位置決め固定する。これによってカセット9とカセットチャック612とが結合すると、同時に、前記各種センサや、真空ポンプ装置24や循環ポンプ20等からの配管系が自動的に接続されるので、温度コントローラ19で一定温度に制御された液侵用の液体23を循環ポンプ20によってカセット9内にフィルタ21を介して送り込む。液体23を所定量送り込むと、液面ゲージ801がこれを検知するので、これに基きポンプ20を停止する。

【0038】次に、カセット9上部近傍に接続してある 40 真空ポンプ24を動作させ、液体23中の気泡を除去する。これと同時に、超音波加振装置22を動作させて、 液体23中の気泡、ウエハ2表面に付着した気泡、および第2の光学素子7表面に付着した気泡も除去する。こ の超音波加振は、液体23自体を均一にする効果も有しており、振動の振幅が小さく、周波数が高いために、ウエハの位置決めあるいは露光には影響しない。

【0039】気泡を除去し終わると、真空ポンプ24を 停止し、パルブ807を閉じるとともに、加圧・循環ポ ンプ20を動作させ、液体23の加圧を始める。これに 50

より圧力計27が所定の圧力になったことを検出すると、温度計18によって液体23の温度の常時監視を開始し、所定の温度から外れたときは再度加圧・循環ボンプ20を動作させ、一定温度の液体23を循環させる。このとき、液体23の循環により液体23の流動が起こり、液体23の均一性が崩れる。したがって、屈折率測定器803で均一性の測定を行い、均一性を確認してから露光を行う。

【0040】露光は上述と同様にして行うが、ステップ・アンド・リピート動作による液体23の流動の影響を防止するため、各ショット毎にステップ移動後に遅延時間をとるか、あるいは屈折率測定器803で流動状態を測定し、流動が停止した時点でシーケンスを継続させるようにすれば良い。また、加圧した液体23の圧力によってウエハチャック601上のウエハ2の平面矯正能力を増加させることも可能である。

【0041】露光終了後は、循環ポンプ20を動作させ、カセット9内部の液体23を排出し、ウエハチャック601内のシャッタを閉じてから、上述と同様にしてカセット9をウエハストッカ10に収納することにより、ウエハ1枚の露光処理を終了する。

#### 【0042】実施例5

図9は本発明の第5の実施例に係る、液侵処理装置を露光装置に付加するための構成を示す模式図である。この構成は、図6や図7に示すようなウエハチャック内蔵型のカセットを使用する場合に適用される。図4のものと異なるのは、カセットハンド31の代わりにカセット9の開閉機構をも有するカセットハンド901を用い、ウエハチャック112の代わりに、カセットチャック903を備え、ハンド34はウエハをカセットチャック903上のカセット9内に入れるように構成されているという点である。

【0043】この構成において、液侵を行うには、ま ず、カセットストッカ10からカセットハンド901で 空のカセット9を取り出し、カセットチャック903上 にセットする。この状態で、図8で説明したと同様に各 種配管と各種センサが結合される。これと同時に、カセ ットハンド901のカセット開閉機構によりカセット9 を開き、ウエハストッカ28から感光剤を塗布したウエ ハ2をハンド29で取り出し、ウエハ粗位置決め機構3 0上に載せ、粗位置決めを行う。粗位置決めされたウエ ハ2をハンド34でカセット9内のウエハチャック上に 位置決めし、真空吸着する。次に、カセットハンド90 1でカセット9を閉じ、ロックしてから、カセット9を カセットステーション32ごと斜めに傾けあるいは垂直 に立てる。次に、上述と同様にして、液体23をカセッ ト9内に送り込み、液体23中の空気の除去を行ない、 そして加圧する。所定の圧力に達したら循環ポンプを停 止してカセット9内に組み込んである各配管のパルブを 閉じる。そしてカセットステーション32を水平に戻

し、液侵の完了したカセット9をカセットハンド901 でカセットストッカ10に収納する。

【0044】この場合も、図4で説明したのと同様にし て図1の露光装置に組み込むことができる。また、露光 後の後処理は、図5での説明と同様にして行うことがで きる。

#### [0045]

【発明の効果】以上説明したように本発明によれば、液 侵の作用を従来の露光装置に対し、極めて容易に導入す ることができ、したがって、g線、i線、あるいはエキ 10 1:レチクル、3:照明光学系、4:投影光学系、5: シマレーザ等の使用する露光光源の波長に関わらずどの 波長でもそれぞれの波長に応じた解像度向上および焦点 深度の向上の効果を期待できる低コストでかつ生産性の 高い露光装置、さらには従来のプロセス技術を生かせる 露光装置を提供することができる。

#### 【図面の簡単な説明】

【図1】 本発明の第1の実施例に係る液侵式投影露光 装置の模式的な側面図である。

【図2】 図1の装置に適用し得るカセット液浸処理装 置を示す模式的な断面図である。

【図3】 図1の装置で用いられる他のカセットを示す 断面図である。

【図4】 図2の液侵処理装置に用いられる搬送手段等 を示す模式図である。

【図5】 図1の装置において露光処理が終了したカセ ットの後処理を行うための構成を示す模式図である。

【図6】 本発明の第2の実施例に係る液侵式投影露光 装置のカセットチャック部分を示す断面図である。

【図7】 本発明の第3の実施例に係る液侵式投影震光 装置のカセットチャック部分を示す断面図である。

14

【図 8】 本発明の第4の実施例に係る液侵式投影露光 装置のカセットチャック部分を示す断面図である。

【図9】 本発明の第5の実施例に係る、液侵処理装置 を露光装置に付加するための構成を示す模式図である。 【図10】 液浸の効果を説明するための模式図であ る。

### 【符号の説明】

レチクルステージ、6:アライメント光学系、7:光学 秦子、8:シール、9:カセット、10:カセットスト ッカ、11-1:カセット搬送装置、11-2:カセッ ト位置粗検出機構、11-3:ハンド、11-4:搬出 ハンド、12:ウエハチャック、13:XYステージ、 14: 微動ステージ、15: レーザ干渉計、16: 参照 ミラー、17:断熱材、18:温度計、19:温度計コ ントローラ、20:循環ポンプ、21:フィルタ、2 2:超音波加振装置、23:液体、24:真空ポンプ、 20 25,807:バルブ、26:金具、27:圧力計、2 8 ウエハストッカ、29:ウエハ搬入ハンド、30:ウ エハ粗位置決め装置、31,35:カセット搬出ハン ド、32:カセットステーション、33:機構、34: ウエハ移動ハンド、36:処理ステーション、38:ハ ンド、601:ウエハチャック、612,903:カセ ットチャック、631:開閉機構、801:液面ゲー ジ、803: 屈折率測定器、805: コネクタ、90 1:カセットハンド。











[図9]

