GATE ASSIGNMENT 4

Dishank Jain AI20BTECH11011

Download latex-tikz codes from

https://github.com/Dishank422/EE3900/blob/main/ Gate-Assignment4/latex code.tex

1 EC 1999 O.2.1

The Fourier representation of an impulse train represented by $s(t) = \sum_{n=-\infty}^{\infty} d(t - nT_0)$ is given by

(a)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp{-\frac{j2\pi nt}{T_0}}$$

(b) $\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp{-\frac{j\pi nt}{T_0}}$

(c)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp \frac{j\pi nt}{T_0}$$
(d)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp \frac{j2\pi nt}{T_0}$$

(d)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \exp \frac{I_0}{j2\pi nt}$$

2 Solution

Lemma 2.1. Any periodic signal x(t) with period T_0 can be written as

$$x(t) = \sum_{n=-\infty}^{\infty} a_n \exp \frac{j2\pi nt}{T_0}$$
 (2.0.1)

where, a_n is given by

$$a_n = \frac{1}{T_0} \int_{T_0} x(t) \exp{-\frac{j2\pi nt}{T_0}} dt$$
 (2.0.2)

Proof. We shall verify equation 2.0.2.

$$a_{n} = \frac{1}{T_{0}} \int_{T_{0}} x(t) \exp{-\frac{j2\pi nt}{T_{0}}} dt$$

$$= \frac{1}{T_{0}} \int_{T_{0}} \left(\sum_{m=-\infty}^{\infty} a_{m} \exp{\frac{j2\pi mt}{T_{0}}} \right) \exp{-\frac{j2\pi nt}{T_{0}}} dt$$

$$= \frac{1}{T_{0}} \sum_{m=-\infty}^{\infty} \int_{T_{0}} a_{m} \exp{\frac{j2\pi mt}{T_{0}}} \exp{-\frac{j2\pi nt}{T_{0}}} dt$$

$$(2.0.4)$$

$$= \frac{1}{T_{0}} \sum_{m=-\infty}^{\infty} \int_{T_{0}} a_{m} \exp{\frac{j2\pi mt}{T_{0}}} \exp{-\frac{j2\pi nt}{T_{0}}} dt$$

$$(2.0.5)$$

When m = n,

$$\int_{T_0} a_m \exp \frac{j2\pi mt}{T_0} \exp -\frac{j2\pi nt}{T_0} dt = \int_{T_0} a_n \quad (2.0.6)$$
$$= T_0 a_n \quad (2.0.7)$$

When $m \neq n$.

$$\int_{T_0} a_m \exp \frac{j2\pi mt}{T_0} \exp -\frac{j2\pi nt}{T_0} dt$$
 (2.0.8)

$$= \frac{T_0 a_m}{j2\pi(m-n)} \exp \left. \frac{j2\pi(m-n)t}{T_0} \right|_{T_0}$$
 (2.0.9)

Since $\exp \frac{j2\pi(m-n)t}{T_0}$ is periodic with period $\frac{T_0}{m-n}$, it's integral over any time interval of length $\frac{T_0}{m-n}$ or any integral multiple of $\frac{T_0}{m-n}$ will be 0. Therefore, when $m \neq n$,

$$\int_{T_0} a_m \exp \frac{j2\pi mt}{T_0} \exp -\frac{j2\pi nt}{T_0} dt = 0 \qquad (2.0.10)$$

Continuing from equation 2.0.5,

$$a_n = \frac{1}{T_0} \sum_{m=-\infty}^{\infty} \int_{T_0} a_m \exp \frac{j2\pi mt}{T_0} \exp -\frac{j2\pi nt}{T_0} dt$$
(2.0.11)

$$(2.0.1) = \frac{1}{T_0}(T_0 a_n) = a_n (2.0.12)$$

We observe that s(t) is periodic with period T_0 . Thus it's Fourier representation as a sum of complex exponents is given by

$$s(t) = \sum_{n=-\infty}^{\infty} a_n \exp \frac{j2\pi nt}{T_0}$$
 (2.0.13)

where, a_n can be calculated as

$$a_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} s(t) \exp{-\frac{j2\pi nt}{T_0}} dt$$
 (2.0.14)

Between
$$-\frac{T_0}{2}$$
 and $\frac{T_0}{2}$, we can say that $s(t) = d(t)$.

$$\implies a_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} d(t) \exp{-\frac{j2\pi nt}{T_0}} dt \quad (2.0.15)$$

$$=\frac{1}{T_0} \tag{2.0.16}$$

$$\implies s(t) = \frac{1}{T_0} \sum_{n = -\infty}^{\infty} \exp \frac{j2\pi nt}{T_0}$$
 (2.0.17)

Therefore option (d) is the correct option.