The Local-Global Conjecture for Apollonian Circle Packings

Summer Haag, Clyde Kertzer, James Rickards, Katherine E. Stange

University of Colorado Boulder

Definition

Definition

Descartes quadruple: four mutually tangent circles with disjoint interiors.

Definition

Descartes quadruple: four mutually tangent circles with disjoint interiors.

Definition

Descartes quadruple: four mutually tangent circles with disjoint interiors.

Definition

Descartes quadruple: four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Definition

Descartes quadruple: four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Theorem of Apollonius

Definition

Descartes quadruple: four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Theorem of Apollonius

If three circles are mutually tangent, there are two other circles that are tangent to all three.

Definition

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius!

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius!

Descartes Equation

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius!

Descartes Equation

If four mutually tangent circles have curvatures a, b, c, d then

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius!

Descartes Equation

If four mutually tangent circles have curvatures a, b, c, d then

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2).$$

Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$
$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$
$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Moreover, d + d' = 2(a + b + c).

The Key Relation

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

If a, b, c, d are integers, then d' is an integer!

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

If a, b, c, d are integers, then d' is an integer!

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

If a, b, c, d are integers, then d' is an integer!

¹Images from: AMS "When Kissing Involves Trigonometry"

[-6, 11, 14, 23]¹

¹Images from: AMS "When Kissing Involves Trigonometry"

[-6, 11, 14, 23]

[-6, 11, 14, 23] reduces to [-6, 11, 14, 15]

[-6, 11, 14, 15]

Quadratic Forms

Quadratic Forms

Definition

Quadratic Forms

Definition

Binary quadratic form (BQF)

$$Q(x, y) = Ax^2 + Bxy + Cy^2 = [A, B, C]$$

with $A, B, C \in \mathbb{Z}$

Quadratic Forms

Definition

Binary quadratic form (BQF)

$$Q(x, y) = Ax^2 + Bxy + Cy^2 = [A, B, C]$$

with $A, B, C \in \mathbb{Z}$

Fixing a circle a, the values of $f_a(x, y) - a$ with gcd(x, y) = 1,

Quadratic Forms

Definition

Binary quadratic form (BQF)

$$Q(x, y) = Ax^2 + Bxy + Cy^2 = [A, B, C]$$

with $A, B, C \in \mathbb{Z}$

Fixing a circle a, the values of $f_a(x,y)-a$ with $\gcd(x,y)=1$, a primitive integral binary quadratic form, are curvatures of circles tangent to a (Sarnak, Graham-Lagarias-Mallows-Wilks-Yan)

residues mod 24
0,1,4,9,12,16
0,5,8,12,20,21
0,4,12,13,16,21
0,8,9,12,17,20
3,6,7,10,15,18,19,22
2,3,6,11,14,15,18,23

Type	residues mod 24
(6,1)	0,1,4,9,12,16
(6,5)	0,5,8,12,20,21
(6,13)	0,4,12,13,16,21
(6,17)	0,8,9,12,17,20
(8,7)	3,6,7,10,15,18,19,22
(8,11)	2,3,6,11,14,15,18,23

Туре	residues mod 24
(6,1)	0,1,4,9,12,16
(6,5)	0,5,8,12,20,21
(6,13)	0,4,12,13,16,21
(6,17)	0,8,9,12,17,20
(8,7)	3,6,7,10,15,18,19,22
(8,11)	2,3,6,11,14,15,18,23

Theorem (Fuchs)

If a congruence obstruction appears, then it appears modulo 24.

The Local-Global Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan '03, Fuchs-Sanden '11)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

The Local-Global Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan '03, Fuchs-Sanden '11)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Body of work by Graham-Lagarias-Mallows-Wilks-Yan, Sarnak, Bourgain-Fuchs, Bourgain-Kontorovich, Fuchs-Stange-Zhang

The Local-Global Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan '03, Fuchs-Sanden '11)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Body of work by Graham-Lagarias-Mallows-Wilks-Yan, Sarnak, Bourgain-Fuchs, Bourgain-Kontorovich, Fuchs-Stange-Zhang

[-7, 12, 17, 20] type (6, 17)

The Local-Global Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan '03, Fuchs-Sanden '11)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Body of work by Graham-Lagarias-Mallows-Wilks-Yan, Sarnak, Bourgain-Fuchs, Bourgain-Kontorovich, Fuchs-Stange-Zhang

[-7, 12, 17, 20] type $(6, 17) \implies 0, 8, 9, 12, 17, 20$

The Local-Global Conjecture. (Graham-Lagarias-Mallows-Wilks-Yan '03, Fuchs-Sanden '11)

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Body of work by Graham-Lagarias-Mallows-Wilks-Yan, Sarnak, Bourgain-Fuchs, Bourgain-Kontorovich, Fuchs-Stange-Zhang

[-7, 12, 17, 20] type $(6, 17) \implies 0, 8, 9, 12, 17, 20$: no room for 8, 9, 32, ...

$$\mathcal{K}(N) := \{ n \leq N : n \text{ is a curvature} \}$$

$$\mathcal{K}(N) := \{ n \leq N : n \text{ is a curvature} \}$$

• Number of circles of curvatures less than T grows like $T^{\alpha+o(1)}$ with $\alpha=1.30...=$ Hausdorff dim (Boyd, McMullen, Kontorovich-Oh)

$$\mathcal{K}(N) := \{ n \leq N : n \text{ is a curvature} \}$$

- Number of circles of curvatures less than T grows like $T^{\alpha+o(1)}$ with $\alpha=1.30...=$ Hausdorff dim (Boyd, McMullen, Kontorovich-Oh)
- $K(N) \gg N$ (Graham-Lagarias-Mallows-Wilks-Yan)

$$\mathcal{K}(N) := \{ n \leq N : n \text{ is a curvature} \}$$

- Number of circles of curvatures less than T grows like $T^{\alpha+o(1)}$ with $\alpha=1.30...=$ Hausdorff dim (Boyd, McMullen, Kontorovich-Oh)
- $\mathcal{K}(N) \gg N$ (Graham-Lagarias-Mallows-Wilks-Yan)
- $\mathcal{K}(N) \gg \frac{N}{\sqrt{\log(N)}}$ (Sarnak)

$$\mathcal{K}(N) := \{ n \leq N : n \text{ is a curvature} \}$$

- Number of circles of curvatures less than T grows like $T^{\alpha+o(1)}$ with $\alpha=1.30...=$ Hausdorff dim (Boyd, McMullen, Kontorovich-Oh)
- $\mathcal{K}(N) \gg N$ (Graham-Lagarias-Mallows-Wilks-Yan)
- $\mathcal{K}(N) \gg \frac{N}{\sqrt{\log(N)}}$ (Sarnak)
- $\mathcal{K}(N) \gg N$ (positive density) (Bourgain-Fuchs)

$$\mathcal{K}(N) := \{ n \leq N : n \text{ is a curvature} \}$$

- Number of circles of curvatures less than T grows like $T^{\alpha+o(1)}$ with $\alpha=1.30...=$ Hausdorff dim (Boyd, McMullen, Kontorovich-Oh)
- $\mathcal{K}(N) \gg N$ (Graham-Lagarias-Mallows-Wilks-Yan)
- $\mathcal{K}(N) \gg \frac{N}{\sqrt{\log(N)}}$ (Sarnak)
- $K(N) \gg N$ (positive density) (Bourgain-Fuchs)
- $\exists \eta > 0$, $\mathcal{K}(N) = kN + O(N^{1-\eta})$ (density 1) (Bourgain-Kontorovich)
- $\exists \eta > 0$, $\mathcal{K}(N) = kN + O(N^{1-\eta})$ for a larger class of packings (Fuchs-Stange-Zhang)

Curvature c is missing in ACP if curvatures $\equiv c \pmod{24}$ appear in ACP but c does not

Curvature c is *missing* in ACP if curvatures $\equiv c \pmod{24}$ appear in ACP but c does not Fuchs-Sanden computed curvatures up to:

Curvature c is missing in ACP if curvatures $\equiv c \pmod{24}$ appear in ACP but c does not Fuchs-Sanden computed curvatures up to:

$$10^8 \text{ for } [-1, 2, 2, 3]$$

Curvature c is missing in ACP if curvatures $\equiv c \pmod{24}$ appear in ACP but c does not Fuchs-Sanden computed curvatures up to:

$$10^8 \ {\rm for} \ [-1,2,2,3]$$

$$5 \cdot 10^8 \text{ for } [-11, 21, 24, 28]$$

Curvature c is missing in ACP if curvatures $\equiv c \pmod{24}$ appear in ACP but c does not

Fuchs-Sanden computed curvatures up to:

$$10^8 \text{ for } [-1, 2, 2, 3]$$

$$5 \cdot 10^8 \text{ for } [-11, 21, 24, 28]$$

For [-11,21,24,28], there were still a small number (up to 0.013%) of missing curvatures in the range $(4\cdot10^8,5\cdot10^8)$ for residue classes $0,4,12,16\pmod{24}$

• Fix a pair of curvatures and see what packings contain them

- Fix a pair of curvatures and see what packings contain them
- For an acceptable pair, black dot if no packing contains them

- Fix a pair of curvatures and see what packings contain them
- For an acceptable pair, black dot if no packing contains them
- Local-to-global: fintely many black dots for a row or column

Usual Graph

Residue classes: 12 (mod 24) and 13 (mod 24)

Weird Graph

Residue classes: 0 (mod 24) and 8 (mod 24)

Local-to-global conjecture is false

(H.-K.-Rickards-Stange)

The Apollonian circle packing generated by [-3, 5, 8, 8] has no square curvatures.

• Fix circle *C* with curvature *n*

- Fix circle C with curvature n
- 2 Tangent curvatures are $f_C(x, y) n$

- Fix circle C with curvature n
- 2 Tangent curvatures are $f_C(x, y) n$
- **1** Modulo n and equivalences, values are Ax^2

- Fix circle *C* with curvature *n*
- 2 Tangent curvatures are $f_C(x, y) n$
- **3** Modulo n and equivalences, values are Ax^2
- lacktriangle Kronecker symbol $\left(rac{Ax^2}{n}
 ight)$ cannot take both values 1 and -1

- Fix circle *C* with curvature *n*
- 2 Tangent curvatures are $f_C(x, y) n$
- **3** Modulo n and equivalences, values are Ax^2
- lacktriangle Kronecker symbol $\left(rac{Ax^2}{n}
 ight)$ cannot take both values 1 and -1
- **5** Define $\chi_2(C) = 1$ or -1 according to above

- Fix circle *C* with curvature *n*
- 2 Tangent curvatures are $f_C(x, y) n$
- **3** Modulo n and equivalences, values are Ax^2
- lacktriangle Kronecker symbol $\left(rac{Ax^2}{n}
 ight)$ cannot take both values 1 and -1
- **5** Define $\chi_2(C) = 1$ or -1 according to above
- **1** Note: $\chi_2(C) = \left(\frac{a}{n}\right)$ for curvature a coprime and tangent to C

- Fix circle *C* with curvature *n*
- 2 Tangent curvatures are $f_C(x, y) n$
- **3** Modulo n and equivalences, values are Ax^2
- lacktriangle Kronecker symbol $\left(rac{Ax^2}{n}
 ight)$ cannot take both values 1 and -1
- **5** Define $\chi_2(C) = 1$ or -1 according to above
- **1** Note: $\chi_2(C) = \left(\frac{a}{n}\right)$ for curvature a coprime and tangent to C

• Take C_1 , C_2 tangent circles in ACP with curvatures a, b respectively that are coprime

- Take C_1 , C_2 tangent circles in ACP with curvatures a, b respectively that are coprime
- Quadratic Reciprocity!!

- Take C_1 , C_2 tangent circles in ACP with curvatures a, b respectively that are coprime
- Quadratic Reciprocity!!

$$\chi_2(C_1)\chi_2(C_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(C_1) = \chi_2(C_2)$$

- Take C_1 , C_2 tangent circles in ACP with curvatures a, b respectively that are coprime
- Quadratic Reciprocity!!

$$\chi_2(C_1)\chi_2(C_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(C_1) = \chi_2(C_2)$$

Any two circles in ACP are connected by a path of pairwise coprime curvatures

- Take C_1 , C_2 tangent circles in ACP with curvatures a, b respectively that are coprime
- Quadratic Reciprocity!!

$$\chi_2(C_1)\chi_2(C_2) = \left(\frac{a}{b}\right)\left(\frac{b}{a}\right) = 1 \implies \chi_2(C_1) = \chi_2(C_2)$$

- Any two circles in ACP are connected by a path of pairwise coprime curvatures
- $\chi_2(C)$ is independent of choice of circle C!!

No Squares in [-3, 5, 8, 8]

No Squares in [-3, 5, 8, 8]

• Let A be the ACP generated by [-3, 5, 8, 8], compute

$$\chi_2(\mathcal{A}) = \left(\frac{8}{5}\right) = \left(\frac{3}{5}\right) = -1$$

No Squares in [-3, 5, 8, 8]

• Let A be the ACP generated by [-3, 5, 8, 8], compute

$$\chi_2(\mathcal{A}) = \left(\frac{8}{5}\right) = \left(\frac{3}{5}\right) = -1$$

No circle can be tangent to a square

The New Conjecture

Туре	Quadratic	Quartic	L-G false	L-G open
(6,1,1,1)				0, 1, 4, 9, 12, 16
(6,1,1,-1)		$n^4, 4n^4, 9n^4, 36n^4$	0, 1, 4, 9, 12, 16	
(6,1,-1)	$n^2, 2n^2, 3n^2, 6n^2$		0, 1, 4, 9, 12, 16	
(6,5,1)	$2n^2, 3n^2$		0, 8, 12	5, 20, 21
(6,5,-1)	$n^2, 6n^2$		0, 12	5, 8, 20, 21
(6, 13, 1)	$2n^2, 6n^2$		0	4, 12, 13, 16, 21
(6, 13, -1)	$n^2, 3n^2$		0, 4, 12, 16	13, 21
(6, 17, 1, 1)	$3n^2, 6n^2$	$9n^4, 36n^4$	0, 9, 12	8, 17, 20
(6, 17, 1, -1)	$3n^2, 6n^2$	$n^4, 4n^4$	0, 9, 12	8, 17, 20
(6, 17, -1)	$n^2, 2n^2$		0, 8, 9, 12	17, 20
(8, 7, 1)	$3n^2, 6n^2$		3,6	7, 10, 15, 18, 19, 22
(8,7,-1)	2 <i>n</i> ²		18	3, 6, 7, 10, 15, 19, 22
(8, 11, 1)				2, 3, 6, 11, 14, 15, 17, 23
(8, 11, -1)	$2n^2, 3n^2, 6n^2$		2, 3, 6, 18	11, 14, 15, 23

differences between successive missing curvatures

Successive differences of missing curvatures in the packing (-4, 5, 20, 21). The quadratic families $2n^2$ and $3n^2$ begin to predominate (the sporadic set has 3659 elements $< 10^{10}$, and occur increasingly sparsely.)

Thank You!!

