DN-DETR: Accelerate DETR Training by Introducing Query DeNoising

```
Feng Li<sup>1,2*†</sup>, Hao Zhang<sup>1,2*†</sup>, Shilong Liu<sup>2,3†</sup>, Jian Guo<sup>2</sup>, Lionel M. Ni<sup>1,4</sup>, Lei Zhang<sup>2‡</sup>

<sup>1</sup>The Hong Kong University of Science and Technology.

<sup>2</sup>International Digital Economy Academy (IDEA).

<sup>3</sup>Tsinghua University.

<sup>4</sup>The Hong Kong University of Science and Technology (Guangzhou).

{fliay, hzhangcx}@connect.ust.hk
{liusl20}@mails.tsinghua.edu.cn

{ni}@ust.hk
{guojian,leizhang}@idea.edu.cn
```


DAB-DETR

$$\operatorname{PE}(A_q) = \operatorname{PE}(x_q, y_q, w_q, h_q) = \operatorname{Cat}(\operatorname{PE}(x_q), \operatorname{PE}(y_q), \operatorname{PE}(w_q), \operatorname{PE}(h_q)).$$

Cross-Attn:
$$Q_q = \text{Cat}(C_q, \text{PE}(x_q, y_q) \cdot \text{MLP}^{(\text{csq})}(C_q)),$$

 $K_{x,y} = \text{Cat}(F_{x,y}, \text{PE}(x,y)), \quad V_{x,y} = F_{x,y},$

$$w_{q,\text{ref}}, h_{q,\text{ref}} = \sigma(\text{MLP}(C_q)).$$

$$ModulateAttn((x,y),(x_{ref},y_{ref})) = (PE(x) \cdot PE(x_{ref}) \frac{w_{q,ref}}{w_q} + PE(y) \cdot PE(y_{ref}) \frac{h_{q,ref}}{h_q}) / \sqrt{D}, \quad (6)$$

Figure 5: Framework of our proposed DAB-DETR.

$$V_n^i = \begin{cases} m, & \text{if } O_n^i \text{ matches } T_m \\ -1, & \text{if } O_n^i \text{ matches nothing} \end{cases}$$

$$IS^{i} = \sum_{j=0}^{N} \mathbb{1}(V_{n}^{i} \neq V_{n}^{i-1})$$

	清洁浴室	打扫地板	洗窗		
吉姆	\$2	\$3	\$3		
史提夫	\$3	\$2	\$3		
艾伦	\$3	\$3	\$2		


```
# Final cost matrix
C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
C = C.view(bs, num_queries, -1).cpu()

sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
```

Box Denoising

noise scale of these 2 noises. For center shifting, we add a random noise $(\Delta x, \Delta y)$, to the box center and make sure that $|\Delta x| < \frac{\lambda_1 w}{2}$ and $|\Delta y| < \frac{\lambda_1 h}{2}$, where $\lambda_1 \in (0,1)$

parameter $\lambda_2 \in (0,1)$. The width and height of the box are randomly sampled in $[(1-\lambda_2)w, (1+\lambda_2)w]$ and $[(1-\lambda_2)h, (1+\lambda_2)h]$, respectively.

Box Denoising	Label Denoising	Attention Mask	AP
√	✓	✓	43.4
\checkmark		\checkmark	43.0
		\checkmark	42.2
√	✓		24.0

Label Denoising

the ratio of labels to flip. The reconstruction losses are l_1 loss and GIOU loss for boxes and focal loss [9] for class labels as in DAB-DETR. We use a function $\delta(\cdot)$ to denote

For label noising, we adopt label flipping, which means we randomly flip some ground-truth labels to other labels.

Why Denoising accelerates DETR training

我们可以把decoder看成在学习两个东西:

- good anchors (anchor位置) (x,y,w,h)
- relative offset (相对偏移) $(\Delta x, \Delta y, \Delta w, \Delta h)$

decoder queries可以看成是anchor位置的学习,而不稳定的匹配会导致不稳定的anchor,从而使得相对偏移的学习变得困难。因此,我们使用一个denoising task作为一个**shortcut**来学习相对偏移,它**跳过了匹配**过程直接进行学习。如果我们把query像上述一样看作四维坐标,可以通过

Denoising Group

$$\mathbf{g_p} = \left\{ q_0^p, q_1^p, ..., q_{M-1}^p \right\}$$

$$\mathbf{q} = \{\mathbf{g_0}, \mathbf{g_1}, ..., \mathbf{g_{P-1}}\}$$

	No Group	1 Group	5 Groups
R50	42.2	43.4	44.1
R50-DC5	44.5	45.6	46.3
R101	43.5	45.0	45.2
R101-DC5	45.8	46.5	47.3

Label Embedding

Attention Mask

Transformer Decoder

$$\mathbf{A} = \left[\mathbf{a}_{ij}\right]_{W \times W}$$

$$W = P \times M + N.$$

$$a_{ij} = \begin{cases} 1, & \text{if } j < P \times M \text{ and } \lfloor \frac{i}{M} \rfloor \neq \lfloor \frac{j}{M} \rfloor; \\ 1, & \text{if } j < P \times M \text{ and } i \geq P \times M; \\ 0, & \text{otherwise.} \end{cases}$$

Model	#epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	GFLOPs	Params
DETR-R50 [1]	500	42.0	62.4	44.2	20.5	45.8	61.1	86	41M
Faster RCNN-FPN-R50 [15]	108	42.0	62.1	45.5	26.6	45.5	53.4	180	42M
Anchor DETR-R50 [18]	50	42.1	63.1	44.9	22.3	46.2	60.0	_	39M
Conditional DETR-R50 [12]	50	40.9	61.8	43.3	20.8	44.6	59.2	90	44M
DAB-DETR-R50 [11]	50	42.2	63.1	44.7	21.5	45.7	60.3	94	44M
DN-DETR-R50	50	44.1(+1.9)	64.4	46.7	22.9	48.0	63.4	94	44 M
DETR-R101 [1]	500	43.5	63.8	46.4	21.9	48.0	61.8	152	60 M
Faster RCNN-FPN-R101 [15]	108	44.0	63.9	47.8	27.2	48.1	56.0	246	60 M
Anchor DETR-R101 [18]	50	43.5	64.3	46.6	23.2	47.7	61.4	_	58 M
Conditional DETR-R101 [12]	50	42.8	63.7	46.0	21.7	46.6	60.9	156	63 M
DAB-DETR-R101 [11]	50	43.5	63.9	46.6	23.6	47.3	61.5	174	63 M
DN-DETR-R101	50	45.2 (+ 1.7)	65.5	48.3	24.1	49.1	65.1	174	63 M
DETR-DC5-R50 [1]	500	43.3	63.1	45.9	22.5	47.3	61.1	187	41M
Anchor DETR-DC5-R50 [18]	50	44.2	64.7	47.5	24.7	48.2	60.6	151	39M
Conditional DETR-DC5-R50 [12]	50	43.8	64.4	46.7	24.0	47.6	60.7	195	44 M
DAB-DETR-DC5-R50 [11]	50	44.5	65.1	47.7	25.3	48.2	62.3	202	44 M
DN-DETR-DC5-R50	50	46.3(+1.8)	66.4	49.7	26.7	50.0	64.3	202	44M
DETR-DC5-R101 [1]	500	44.9	64.7	47.7	23.7	49.5	62.3	253	60 M
Anchor DETR-R101 [18]	50	45.1	65.7	48.8	25.8	49.4	61.6	_	58 M
Conditional DETR-DC5-R101 [12]	50	45.0	65.5	48.4	26.1	48.9	62.8	262	63 M
DAB-DETR-DC5-R101 [11]	50	45.8	65.9	49.3	27.0	49.8	63.8	282	63 M
DN-DETR-DC5-R101	50	47.3(+1.5)	67.5	50.8	28.6	51.5	65.0	282	63 M

Model	MultiScale	#epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	GFLOPs	Params
Faster R50-FPN 1x [15]	✓	12	37.9	58.8	41.1	22.4	41.1	49.1	180	40 M
DETR-R50 1x [1]		12	15.5	29.4	14.5	4.3	15.1	26.7	86	41 M
DAB-DETR-DC5-R50 [11]		12	38.0	60.3	39.8	19.2	40.9	55.4	216	44M
DN-DETR-DC5-R50		12	41.7(+3.7)	61.4	44.1	21.2	45.0	60.2	216	44M
Deformable DETR-R50 1x [20]	✓	12	37.2	55.5	40.5	21.1	40.7	50.5	173	40 M
Dynamic DETR-R50 [†] 1x	/	12	40.2	58.6	43.4					
(without dynamic encoder)	V	12	40.2	56.0	45.4		_	_	_	_
Dynamic DETR-R50 [†] 1x [4]	\checkmark	12	42.9	61.0	46.3	24.6	44.9	54.4	_	_
DN-Deformable-DETR-R50 [4]	✓	12	43.4	61.9	47.2	24.8	46.8	59.4	195	48M
DAB-DETR-DC5-R101 [11]		12	40.3	62.6	42.7	22.2	44.0	57.3	282	63M
DN-DETR-DC5-R101		12	42.8(+2.5)	62.9	45.7	23.3	46.6	61.3	282	63 M
Faster R101 FPN [15]	✓	108	44.0	63.9	47.8	27.2	48.1	56.0	246	60 M
DN-Deformable-DETR-R101	\checkmark	12	44.1	62.8	47.9	26.0	47.8	61.3	275	67 M

Model	MultiScale	#epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	GFLOPs	Params
DAB-DETR-DC5-R50		50	44.5	65.1	47.7	25.3	48.2	62.3	202	44M
DN-DETR-DC5-R50		25	44.4	64.5	47.3	24.4	48.0	63.0	202	44M
DAB-Deformable-DETR-R50	✓	50	46.9	66.0	50.8	30.1	50.4	62.5	195	48 M
DN-Deformable-DETR-R50	\checkmark	25	46.8	65.5	50.8	28.9	50.2	62.5	195	48 M

those that do not support anchors like the vanilla DETR [1], we can do linear transformation to map 4D anchor boxes to the same latent space as for other learnable queries.

linear embedding将噪声框嵌入到与DETR query相同的维度中。由于 Vanilla DETR 没有明确的 content part和position part,两部分信息是混在一起的,因此我们可以将label embedding和 box embedding加在一起一起作为 DETR query。我们的初步结果表明,这些模型的收敛速度也有提高。