PHY 5410: Homework Week 10

16.5 A harmonic oscillator

$$H = \frac{p^2}{2m} + \frac{m}{2}\omega^2 x^2$$

is acted upon by an external force described by the potential V = -xf(t), where

$$f(t) = \begin{cases} 0 & -\infty \le t \le t_1 \\ D \cos \Omega t & t_1 \le t \le t_2 \\ 0 & t \ge t_2 \end{cases}.$$

Determine the probability for a transition from the ground state $(t < t_1)$ to the nth excited state $(t > t_2)$. Hint: Use the Heisenberg representation and introduce for x and p creation and annihilation operators.

- 16.7 An electron moves in the (one-dimensional) potential $V(x) = -\lambda \delta(x)$. At the time t=0, the strength of the potential changes suddenly to the value μ ($\lambda, \mu > 0$). Using the sudden approximation, calculate the probability of a transition from the old ground state to the new ground state. Consider the special case $\mu = \lambda/2$ and discuss $\mu/\lambda \gg 1$ and $\mu/\lambda \ll 1$.
- 16.10 Prove for a particle in one dimension the oscillator strength sum rule (Thomas–Reiche–Kuhn sum rule)

$$\sum_{n} (E_n - E_a) |\langle n|x|a\rangle|^2 = \frac{\hbar^2}{2m} .$$

Hint: Consider $\langle a|[\dot{x},x]|a\rangle$ and compute this expression by direct use of $[p,x]=-\mathrm{i}\hbar$ on the one hand and by substitution of $\dot{x}=\mathrm{i}[H,x]/\hbar$ on the other hand.