

Different Study Designs Generate Different Types of Data: Implications for Modeling

Brady T. West

Review: Where data come from

When fitting statistical models to data, critically important to understand how the data were generated:

Review: Where data come from

When fitting statistical models to data, critically important to understand how the data were generated:

- From a carefully designed probability sample, featuring cluster sampling?
- From a convenience sample / non-probability sample?
- From a longitudinal study?
- From a simple random sample?
- From a natural / organic process?

Why Does It Matter?

• When we fit a model to particular variable in set of data...

Goal = estimate parameters that best describe the distribution of that variable

means
variances
correlations

Why Does It Matter?

• When we fit a model to particular variable in set of data...

Goal = **estimate parameters** that best describe the distribution of that variable

means
variances
correlations

- If aspects of study design that generated data affect these parameters
 - → need to account for these design aspects when fitting models!

Simple Random Samples

• Simple random samples (SRS)
from carefully defined populations generally
produce observations on variable of interest
that are independent and
identically distributed (i.i.d.)

Simple Random Samples

- Simple random samples (SRS)
 from carefully defined populations generally
 produce observations on variable of interest
 that are independent and
 identically distributed (i.i.d.)
- When fitting models to data from SRS, select distributions for variables with important property that all observations in data are independent (unrelated to each other!)

Observations on **happiness scale** in SRS come from common normal distribution with some mean and variance, with **zero correlation** between any two randomly selected observations

Observations on **happiness scale** in SRS come from common normal distribution with some mean and variance, with **zero correlation** between any two randomly selected observations

Estimate of **standard error** for estimated mean happiness would be computed assuming observations are independent of each other

Observations on **happiness scale** in SRS come from common normal distribution with some mean and variance, with **zero correlation** between any two randomly selected observations

Estimate of standard error for estimated mean happiness would be computed assuming observations are independent of each other

More unique statistical information

→ smaller SE → more precise estimates!

Depending on research question ...

(e.g. model difference in mean happiness between males and females)

might fit model that does not assume
observations from same distribution

Example: Mean of normal distribution of happiness scores depends on gender, but once we condition on gender, all observations are independent and have the same variance!

Clustered Samples

• Arise from study designs that generate clusters of related observations (e.g., hospitals, clinics, schools, neighborhoods)

Clustered Samples

- Arise from study designs that generate clusters of related observations (e.g., hospitals, clinics, schools, neighborhoods)
- Because observations from same naturally occurring cluster will tend to be similar to each other, need to account for this correlation when fitting model to data (unlike models for SRS!)

Clustered Samples Example

• If study design produced several observations of happiness from selected neighborhoods, observations within neighborhood may well be

correlated with each other

 Model for happiness specified with additional parameters capturing this within-neighborhood correlation

Clustered Samples Example

• If study design produced several observations of happiness from selected neighborhoods, observations within neighborhood may well be

correlated with each other

 Model for happiness specified with additional parameters capturing this within-neighborhood correlation

 Standard error of estimated mean would reflect this correlation

Less unique, independent information → higher SE!

Longitudinal Data

- Longitudinal data: repeated measures
 of same variable, collected from same unit
 over time → likely correlated
- Recorded observations on variable of interest no longer completely independent of each other!

https://stats.idre.ucla.edu/stata/faq/how-can-i-visualize-longitudinal-data-in-stata/

Longitudinal Data

- Longitudinal data: repeated measures
 of same variable, collected from same unit
 over time → likely correlated
- Recorded observations on variable of interest no longer completely independent of each other!
- Models fit to repeatedly-measured variables need to account for within-unit correlation (similar to cluster samples!)

https://stats.idre.ucla.edu/stata/faq/how-can-i-visualize-longitudinal-data-in-stata/

Dependent vs. Independent Data

Important distinction between models for:

Dependent data

observations correlated due to feature of study design (cluster sampling or longitudinal measurement)

Dependent vs. Independent Data

Important distinction between models for:

Dependent data

observations correlated due to feature of study design (cluster sampling or longitudinal measurement)

Independent data

observations completely independent of each other may/may not arise from common distribution

Dependent vs. Independent Data

Important distinction between models for:

Dependent data

observations correlated due to feature of study design (cluster sampling or longitudinal measurement)

Independent data

observations completely independent of each other may/may not arise from common distribution

Want best possible model for a given variable, reflecting important study design features!

What's Next?

• Different **objectives** when fitting statistical models (inference about relationships between variables versus prediction of future outcomes)

What's Next?

- Different **objectives** when fitting statistical models (inference about relationships between variables versus prediction of future outcomes)
- Introduce alternative approaches to fitting models and making inferences about parameters that define models specified for observed variables:

Frequentist Inference versus Bayesian Inference