

Machine Learning

Linear Regression

Dr. Mehran Safayani

safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Supervised Learning

• Regression

Classification

example

Notation:

m: number of training samples

x: input variable

y: output variable Or target variable

 (x_i, y_i) : i th training sample

number	Size (x variable)	Price (y variable)		
1	100	500	(x_1, y_1)	
2	750	2000	(x_2, y_2)	
3	852	178	(x_3, y_3)	
		•••		
m	3210	870	(x_m, y_m)	

example

$$h(x) = \theta_0 + \theta_1 x$$

$$parameters = \left\{ \theta_0, \theta_1 \right\}$$

$$h(x) = \theta_0 + \theta_1 x$$

parameters=

$$h(x) = 1.5$$

$$\theta_0 = 1.5$$
 $\theta_1 = 0$

$$h(x) = 0.5x$$

$$\theta_0 = 0$$
$$\theta_1 = 0.5$$

$$h(x)=0.5x+1$$

$$\theta_0 = 1$$
 $\theta_1 = 0.5$

Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Mean square error(MSE)

Minimize $J(\theta_0, \theta_1)$

 $heta_0$, $heta_1$

example

$$J(\theta_0 = 0, \theta_1 = 0.5) = \frac{1}{2m} \sum_{i=1}^{m} (0.5x_i - y_i)^2$$
$$= \frac{1}{2*3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2]$$
$$= \frac{1}{6} (3.5) = 0.58$$

 $J(\theta_0 = 0, \theta_1 = 1) = \frac{1}{2m} \sum_{i=1}^{m} (x_i - y_i)^2$ $= \frac{1}{2*3} [(1-1)^2 + (2-2)^2 + (3-3)^2]$ $= \frac{1}{6} (0) = 0$

example

$ heta_1$	$J(\theta_1)$	
0	14/6	
0.5	0.58	
1	0	
1.5	0.58	
2	14/6	

- Plotting the cost for each value of $heta_1$
- The minimum point: θ_1 =1
- Using Grid Search to find best values of parameters

Cost Function

•
$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} |h(x_i) - y_i|$$

Mean absolute error(MAE)

Better for outliers compared with MSE

Convexity

Function h(u) with $u \in X$ is convex if for any $u, v \in X$ and for any $0 \le \lambda \le 1$ we have:

$$h(\lambda u + (1 - \lambda)v) \leq \lambda h(u) + (1 - \lambda) h(v)$$

برای توابع محدب هر بهینه محلی یک بهینه سراسری است.

example

$$if \ \theta_1 = -1:$$

$$MAE = \frac{1}{3} [|1 - (-1)| + |2 - (-2)| + |3 - (-3)|] = 4$$

$$if \ \theta_1 = 0:$$

$$MAE = \frac{1}{3} [|1 - 0| + |2 - 0| + |3 - 0|] = 2$$

$$if \ \theta_1 = 1:$$

$$MAE = \frac{1}{3} [|1 - 1| + |2 - 2| + |3 - 3|] = 0$$

$$if \ \theta_1 = 2:$$

$$MAE = \frac{1}{3} [|1 - 2| + |2 - 4| + |3 - 6|] = 2$$

example

MAE is convex

$oldsymbol{ heta_1}$	$J(\theta_1)$	
-1	4	
-0.5	3	
0	2	
0.5	1	
1	0	
1.5	1	
2	2	
2.5	3	
3	4	

Cost Function

$$h_{\theta}(x_{i}) = \theta_{0} + \theta_{1} x_{i}$$

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_{i}) - y_{i})^{2}$$

Minimize
$$J(\theta_0, \theta_1)$$

$$heta_0$$
 , $heta_1$

If
$$J(\theta_1) = (\theta_1 - 2)^2$$

$$\frac{dJ(\theta_1)}{d\theta_1} = 2 (\theta_1 - 2) = 0 \qquad \theta_1 = 2$$

Minimize
$$J(heta_0$$
 , $heta_1$) $heta_0$, $heta_1$

Minimize
$$J(\theta_0$$
 , θ_1 , ... , θ_n) θ_0 , θ_1 , ... , θ_n

Repeat until convergence:

For j=0,...,n

$$\theta_j = \theta_j - \alpha \frac{dJ(\theta_0, \theta_1, ..., \theta_n)}{d\theta_j}$$

 α is learning rate

Updating all θ_j Simultaneously

Convergence condition:

$$\|\theta^{t+1} - \theta^t\|_2 \le \varepsilon$$

Correct form

temp0 =
$$\theta_0 - \alpha \frac{dJ(\theta_0, \theta_1)}{d\theta_0}$$

temp1 =
$$\theta_1 - \alpha \frac{dJ(\theta_0, \theta_1)}{d\theta_1}$$

$$\theta_0$$
 = temp0

$$\theta_1$$
 = temp1

Incorrect form

$$\theta_0 = \theta_0 - \alpha \frac{dJ(\theta_0, \theta_1)}{d\theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{dJ(\theta_0, \theta_1)}{d\theta_1}$$

خطوط مماس نشان داده شده دارای شیب یا مشتق مثبت هستند. در نتیجه:

$$\frac{dJ(\theta^{1})}{d\theta^{1}} > 0, \ \alpha > 0 \implies \alpha \frac{dJ(\theta^{1})}{d\theta^{1}} > 0$$

$$\implies \theta^{2} = \theta^{1} - \alpha d\theta^{1}$$

 θ کوچکتر میشود و به سمت چپ حرکت میکنیم.

خطوط مماس نشان داده شده دارای شیب یا مشتق مثبت هستند. در نتیجه:

$$\frac{dJ(\theta^1)}{d\theta^1} < 0, \ \alpha > 0 \implies \alpha \frac{dJ(\theta^1)}{d\theta^1} < 0$$

$$\Rightarrow \theta^2 = \theta^1 - \alpha d\theta^1$$

بزرگتر میشود و به سمت راست حرکت میکنیم. θ

Choosing Learning Rate

 α is too large

 α is small

Gradient Descent Weakness

Linear regression model

$$h_{\theta}(x_{i}) = \theta_{0} + \theta_{1} x_{i}$$

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_{i}) - y_{i})^{2}$$

$$\frac{dJ(\theta_0, \theta_1)}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)$$

$$\frac{dJ(\theta_0, \theta_1)}{d\theta_1} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i) x_i$$

Linear regression model

Repeat until convergence:

$$\boldsymbol{\theta_0} = \boldsymbol{\theta_0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)$$

$$\boldsymbol{\theta_1} = \boldsymbol{\theta_1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i) x_i$$

بروز رسانی همزمان

$$egin{aligned} heta^t = egin{bmatrix} oldsymbol{ heta_0} \ oldsymbol{ heta_1} \end{bmatrix} &, & heta^{t+1} = egin{bmatrix} oldsymbol{ heta_0} \ oldsymbol{ heta_1} \end{bmatrix} &, & d heta = egin{bmatrix} doldsymbol{ heta_0} \ doldsymbol{ heta_1} \end{bmatrix} \end{aligned}$$

Convergence condition:

$$\|\theta^{t+1} - \theta^t\|_2 = \sqrt[2]{(\theta_0^{t+1} - \theta_0^t)^2 + (\theta_1^{t+1} - \theta_1^t)^2} < \varepsilon$$

$$| \bullet | || d\theta ||_2 < \varepsilon$$

Batch Gradient Descent

$$\frac{dJ(\theta)}{d\theta} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)$$

Batch Gradient Descent

```
\theta_0 \longleftarrow random, \theta_1 \longleftarrow random
Repeat until convergence:
J•• 0, d\theta_1•• 0 , d\theta_0•• 0
For i = 1 to m:
              h_{\theta}(x_i) = \theta_0 + \theta_1 x_i
              j += (h_{\theta}(x_i) - y_i)^2
              d\theta_1 += 2 (h_{\theta}(x_i) - y_i) x_i
               d\theta_0 += 2 (h_\theta(x_i) - y_i)
J/=2m
d\theta_1 /= 2m
d\theta_0 /= 2m
\theta_1 = \theta_1 - \alpha d\theta_1
\theta_0 = \theta_0 - \alpha d\theta_0
```


$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\boldsymbol{\theta_1} = \boldsymbol{\theta_1} - \alpha \frac{d\boldsymbol{J}(\boldsymbol{\theta_1})}{d\boldsymbol{\theta_1}}$$

number	size	#bedrooms	# floors	Price(y)
1	100	2	1	10000
2	150	3	2	175000
m	•••	•••	•••	•••

n: #features = 3

m: #training data

 x_i : i th data in training set

 x_j^i : j th feature of i th data in training set

$$h_{\theta}(x^{i}) = \theta_{0} + \theta_{1}x_{1}^{i} + \theta_{2}x_{2}^{i} + \dots + \theta_{n}x_{n}^{i}$$

$$y = [y^1, y^2, ..., y^m]^T \in R^{m+1}$$

$$X = [x^1, x^2, ..., x^m]^T \in R^{m * (n+1)}$$

$$\vec{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} , \quad \vec{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad h_{\theta}(x) = x^T \theta = \theta^T x$$

Cost function

$$J(\overrightarrow{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

$$e^{i} = (x^{i})^{T} \theta - y^{i} \longrightarrow e = X\theta - y \longrightarrow J(\theta) = \frac{1}{2m} e^{T} e^{T}$$

$$e$$
, $X\theta$, $y \in \mathbb{R}^m$

Repeat until convergence:

For j=0,...,n

$$\theta_j = \theta_j - \alpha \frac{dJ(\theta_0, \theta_1, ..., \theta_n)}{d\theta_j}$$

$$\frac{dJ(\theta)}{d\theta} = \frac{1}{m}X^{T}e$$

$$(n+1)*1$$
m*1

$$\frac{dJ(\theta_0, \theta_1)}{d\theta_0} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)$$

$$\frac{dJ(\theta_0, \theta_1, ..., \theta_n)}{d\theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i) x_j^i$$
(j=0,...,n, $x_0^i = 1$)

$$\frac{dJ(\theta)}{d\theta} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i) x^i$$

حجم محاسبات ضرب ماتریس

$$A \in R^{a*b}$$
 , $B \in R^{b*c}$ \longrightarrow $AB \in R^{a*c}$ $(2b-1)$ ac flops

 $Calculating: e = X\theta - y$
 $b=n+1$
 $c=1$
 $m(2n+1)$ $(initial conditions)$
 m
 $(initial conditions)$
 $a=m$
 $(initial conditions)$
 $a=m$
 $(initial conditions)$
 $a=m$
 $(initial conditions)$
 $a=m+1$
 $(initial conditions)$
 $(initial$

مفهوم هندسي

$$\min_{W} ||y - XW||_2 = \min_{W} ||e||_2$$

Span of X:

Feature Scaling

$$x_1^i, x_2^i, ..., x_n^i$$

 $-1 \le x_j \le 1$

$$0 < x_1 < 1000$$

$$0 < x_2 < 5$$

$$x_1$$
: $\frac{size}{1000}$

$$x_2$$
: $\frac{\#bedrooms}{5}$

Contour Plot

 $\frac{w_1^2}{1} + \frac{w_2^2}{1} = 1$

قطر بزرگ :2a

قطر کوچک:2b

Gradient descent without scaling

Gradient descent after scaling variables

$$\begin{array}{l} 0 \leq x_1 \leq 1 \\ 0 \leq x_2 \leq 1 \end{array}$$

$$\frac{w_1^2}{a^2} + \frac{w_2^2}{a^2} = 1$$

Feature Scaling

Scaled features:

•
$$0 \le x_1 \le 3$$

•
$$-3 \le x_1 \le 3$$

•
$$-2 \le x_2 \le 0.5$$

•
$$-\frac{1}{3} \le x_2 \le \frac{1}{3}$$

Need scaling:

$$-100 \le x_3 \le 100$$

$$-0.001 \le x_4 \le 0.001$$

Feature Scaling

$$x_1^* = \frac{x_1 - \mu_1}{standard_deviation}$$

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^i$$

$$bedroom^* = \frac{bedroom - 2.5}{5}$$

$$size^* = \frac{size - 300}{2000}$$

Creating New Features

(مساحت خانه)
$$x^* = x_1 * x_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x^*$$

Creating New Features

We can use:

$$x$$
, x^2 , x^3 , \sqrt{x}
 $\theta_0 + \theta_1 x + \theta_2 \sqrt{x}$

$$\begin{array}{c} \vdots 2 \\ \theta_0 + \theta_1 \times + \theta_2 x^2 \\ \vdots \\ \theta_0 + \theta_1 \times + \theta_2 x^2 + \theta_3 x^3 \end{array}$$

Need scaling:

$$x: 0,..., 1000$$

 $x^2: 0,..., 10^6$
 $x^3: 0,..., 10^9$