上海交通大学试卷(物理144A卷)

(2016至2017学年第2学期试卷2017年6月21日)

班级号	学号	姓名	
课程名称	大学物理	成绩	
要的方程和解題的关 一、填空题(共 5 1、(本小題 4 分) 一 的质量为 m。根据理	健步骤; (3)不要将订书 (7分) -定量的理想气体贮于某一 想气体的分子模型和统计	上 关键式子 ,可参考给分, 钉拆掉 ; (4) 第四张为草稿约 容器中,处于温度为 T 的平 假设,分子速度在水平向右 x	纸。 衡态,气体分子 方向分量的平均
值 v _x 为	, 分子速度在 x 方	句分量平方的平均值 v_x^2 为	0
		函数, N 为分子总数, m 为分	
$\int_{v_1}^{v_2} \frac{1}{2} m v^2 N f(v) dv$,的物理意义是为		
	E温度分别为227℃和27℃ ————。	的高温热源和低温热源之间工	作的热机,理论
300J, 气体温度升高	一气缸内储有 10mol 的单 5了 1K,则气体内能的增匀 ,此过程摩尔热容 C=	原子理想气体,在膨胀过程中 $rac{1}{4}\Delta E =$	"系统对外界做功 《体从外界吸收热
5、(本小題 8 分) 组	色热容器体积为 2V ₀ ,用绝	热板等分为 A、B 两部分。	A 内储有 1mol 单
原子理想气体,BP	內储有 2mol 刚性双原子理	想气体,A、B 两部分压强均	为 p ₀ 。则 A 部分
气体的内能为	, B 部分气体的内能	送为。抽出绝热板,	两种气体混合后
达到平衡态时系统的	的压强为,系	系统的温度为。	

我承诺,我将严 格遵守考试纪律。

承诺人: _____

题号	<i>b</i>	 <u>-</u> 2	3	4
得分				
批阅人(流水阅 卷教师签名处)		Ű,	E ₂	

6、(本小題 6 分) 如图所示,一质量为m 的小球在高度h 处以初速度 v_0 沿x 方向水平抛出,

(不计空气阻力,矢量用x、y方向上的单位矢量i、j表示)

7、(本小類 4 分) 一块宽为 L、质量为 M 的均匀薄木板,可绕水平固定光滑轴 OO 自由转动,当木板静止在平衡位置时,有一质量为 m 的子弹垂直击中木板 A 点,A 离转轴 OO 距离为 l,子弹击中木板前速度为 v_1 ,穿出木板后的速度为 v_2 。则子弹穿出瞬间木板的角速度大小为______,木板的动量大小为_____。(已知:木板绕 OO 轴的转动惯量 $J=ML^2/3$)

8、(本小題 1+1+2 分)长为 l 的轻绳,一端固定在光滑水平面上,另一端系一质量为 m 的物体。开始时物体在 A 点,绳子处于松弛状态,物体以速度 v_0 垂直于 OA 运动,OA 长为 h。当绳子被拉直后物体作半径为 l 的圆周运动,如图所示。在绳子被拉直的过程中物体动量的增量为_____,物体相对 O 点角动量的增量为_____,物体作

9、(本小類 4 分) 如图所示,质量为 m 的质点以匀速率 v_0 做半径为 r ,半锥角为 θ 的圆锥摆运动,若质点从 a 到 b 绕行半周,则在此过程中作用于质点上的重力的冲量大小为______,绳中张力的冲量大小为_____。

10、(本小題 4 分) 火箭以第二宇宙速度 $v_2 = \sqrt{2Rg}$ 沿地球表面切向飞出(R 为地球半径),如图所示。在飞离地球过程中,火箭发动机停止工作,不计空气阻力,则火箭在距地心 2R 的 A 处的速度大小为______,速度与 A 点与地心连线(图中虚线)夹角 θ 为_____。

11、(本小題 4 σ) 接收器 R、波源 S 及反射面 M 的位置如图所示,已知波源静止不动,频率为 ν_0 ,波速为 u,接收器以 ν_R 运动,反射面以 ν_M 运动。接收器接收到的由反射面反射的波的频率为_____。

12、(本小題 3 分) 某恒星距离地球 12 光年,假如一个 30 岁的宇航员乘一个速度为 0.6c 的高速火箭从地球飞向该恒星,当到达的时候,他觉得他自己的年龄为______岁。

13、(本小題 4 分) 质点 A、B 静质量同为 m_0 ,今使 B 在惯性系 S 中静止,A 则以 3c/5 的速度对准 B 运动。若 A、B 碰撞过程中无能量释放,且碰后粘连在一起,则碰后系统相对 S 系的运动速度大小为______,系统动能减少量为_____。

二、计算题(共43分)

1、(本题 10 分) 如图所示,一质量均匀分布的圆盘,质量为 M,半径为 R,放在一粗糙水平面上,摩擦系数为 μ ,圆盘可绕通过其中心 O 的竖直固定光滑轴转动。开始时圆盘静止,

一质量为 m 的子弹以水平速度 v₀ 垂直圆盘半径打入圆

盘边缘并嵌在盘边上, 求:

- (1) 子弹击中圆盘后,盘所获得的角速度;
- (2) 经过多长时间后,圆盘停止转动。(圆盘绕通过 O 的竖直轴的转动惯量为 $MR^2/2$,忽略子弹重力造成的

摩擦阻力矩。)

2、(本题 12 分) 如图所示,质量为m的木板水平置于轻弹簧上端,轻弹簧下端固定于地面。 开始时木板静止,弹簧被压缩了 l_0 ; 在木板上方高 $h=l_0$ 处,一与木板质量相同的泥块自由落下,与木板作完全非弹性碰撞。求:

- (1) 碰撞后木板的运动方程;
- (2) 从泥块与木板相碰到它们第一次回到相碰位置所用的时间。 (设整个过程中木板的运动仅为平动,弹簧始终保持竖直状态。)

3、(本题 10 分) 如图所示,一平面简谐横波以 400m/s 的波速在均匀介质中沿 x 轴正方向传播。已知直线上质点 A 的振动周期为 0.01s,振幅 A=0.01m。设以质点 A 的振动经过平衡位置向上运动(y 轴正方向)作为计时起点,求:(1) 以距 A 点 2m 处的 B 点为坐标原点写出波表达式;(2) B 点和距 A 点 1m 的 C 点间的振动相位差。

4、(本题 11 分) 如图为一循环过程的 T-V 图线。该循环的工质为vmol 的理想气体, 系统 的等容摩尔热容 C_V 和热容比γ均已知且为常数。已知 a 点的温度为 T_1 ,体积为 V_1 ,b 点的体积为 V_2 ,ab 为等温过程,bc 为等容过程, ca 为绝热过程,求:

(1) c 点的温度; (2) 绝热过程中外界对系统做的功; (3) 气体沿正循环时的效率。

