2 指数関数

2.1 グラフ

指数関数

$$y = a^x$$

について考える. $(a > 0, a \neq 1$ とする.)

指数関数 $y=a^x$ について、a を、_____という.

これまで, 新しい関数のグラフを描くとき, まず表を描いていた. 今回も同じ手順を踏む.

(1) $y = 2^x$ について.

\boldsymbol{x}	-2	-1	-0.5	0	0.5	1	2
y	4	1	TZ		12	2	4

(2) $y = \left(\frac{1}{2}\right)^x$ について.

\boldsymbol{x}	-2	-1	-0.5	0	0.5	1	2
y	4	ے	12	(1	2	4

友かりはしない.

(1)
$$y = 3^x$$

(2)
$$y = \left(\frac{1}{3}\right)^x$$

2.3 問題 (平行移動) ソロロー・ () 以下のグラフを描け.

$$(1) \ y = 3^x + 1$$

文章的约十2

(2)
$$y = 2^{(x-2)} - 1$$

2.4 大小関係比較

例題

以下の3つの数の大小関係を不等号を用いて表せ.

 $\sqrt{3}$, $\sqrt[3]{9}$, $\sqrt[5]{27}$

o 7"3,上では酸!

$$\sqrt{3} = 3^{\frac{1}{2}}$$

$$\sqrt[3]{9} = (3^{2})^{\frac{1}{3}} = 3^{\frac{1}{3}}$$

$$\sqrt[3]{19} = (3^{3})^{\frac{1}{5}} = 3^{\frac{1}{5}}$$

J= 3 1 [2747.

上がラフェー

$$3^{\frac{1}{2}} < 3^{\frac{1}{2}} < 3^{\frac{3}{2}}$$

2.5 問題

以下の数の大小関係を不等号を用いて表せ.

(1) $\sqrt{2}$, $\sqrt[5]{4}$, $\sqrt[7]{16}$ $\sqrt{2} = 2^{\frac{1}{2}}, \quad \sqrt{16} = 2^{\frac{4}{7}}$

$$\pm \mathbb{E}^{3}$$
 \\ $2^{\frac{1}{5}} < 2^{\frac{1}{2}} < 2^{\frac{4}{7}}$

(2) 1, 0.5³, 0.5⁻¹ $\left(\frac{0}{2}, \frac{5}{2} \right)^{3}, \quad 0.5^{-1} = \left(\frac{1}{2} \right)^{3}, \quad 0.5^{-1} = \left(\frac{1}{2} \right)^{-1},$

$$\mathbb{E} \mathbb{E}^{2^{1}} \left[\frac{1}{2} \right]^{3} < \left(\frac{1}{2} \right)^{0} < \left(\frac{1}{2} \right)^{-1}$$

$$\therefore 0, t^{3} < \left[< 0.5^{-1} \right]$$

2.6 方程式

例題

以下の方程式を解け.

$$16^x = 8$$

$$16^{x} = (2^{4})^{x} = 2^{4x}$$

$$16^{x} = (2^{4})^{x} = 2^{4x}$$

$$16^{x} = 2^{3}$$

$$16^{x} = 2^{3}$$

$$16^{x} = 2^{3}$$

$$16^{x} = 2^{3}$$

$$16^{x} = 2^{4x}$$

$$16^{x} = 2^{x}$$

$$16^{x} =$$

(1)
$$9^x = 27$$

$$Q^x = (3^2)^x = 3^{2x}$$

$$27 = 3^3$$

$$2x = 3^7$$

$$2x = 3^7$$

(2)
$$2^{x+1} = \frac{1}{8}$$

$$\frac{1}{4} = 2^{-3}$$

$$\frac{1}{2^{x+1}} = 2^{-3}$$

$$\frac{1}{2^{x+1}} = 2^{-3}$$

$$\frac{1}{2^{x+1}} = 2^{-3}$$

$$\frac{1}{2^{x+1}} = 2^{-3}$$

$$2^{x+1} = 8^{x}$$

$$2^{x+1} = 2^{3x}$$

$$= 2^{3x}$$

$$2^{x+1} = 2^{3x}$$

2.7 不等式

例題

以下の方程式を解け.

$$16^x \ge$$

$$16^{10} = 2^{490}$$

$$16 = 2^3$$

370+3

2.8 二次関数への帰着問題

問題

以下の方程式・不等式を解け、 $(0 \le x < 2\pi)$ とする。)

 $(1) \ 2\sin^2 x - 3\sin x + 1 = 0$

(2) $2\sin^2 x - 3\sin x + 1 > 0$

Huto dums
$$f < \frac{1}{2}$$
, $f < \frac{1}{2}$, $f < \frac{1}{2}$

O. G^{*}
 $f = \frac{1}{2}$
 $f = \frac{1}{2}$

例題

以下の方程式・不等式を解け.

(1)
$$4^{x}-5\cdot 2^{x}-24=0$$
 $(7)^{2}-5\cdot 2^{x}-24=0$
 $(7)^{2}-5\cdot 2^{x}-$

(2)
$$4^{x} - 3 \cdot 2^{x} - 4 > 0$$

(2) $4^{x} - 3 \cdot 2^{x} - 4 > 0$

(2) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(3) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(4) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(5) $2^{x} - 4 - 2^{x} - 4 > 0$

(6) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(7) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(8) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(9) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(10) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(11) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(12) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(13) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(14) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(15) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(17) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(18) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

(19) $2^{x} - 3 \cdot 2^{x} - 4 > 0$

2.9 練習問題

以下の方程式・不等式を解け.

$$(1) 9^x - 7 \cdot 3^x - 18 = 0$$

$$(3^{2})^{2} - 7 \cdot 3^{2} = 16 = 0$$

$$3^{2} = 16^{2} = 0$$

$$1^{2} - 7 + - 16 = 0$$

$$(1 - 9)(1 + 12) = 0$$

$$1 \cdot 3^{2} = 9$$

$$2^{2} = 1$$

(2)
$$2 \cdot 4^x - 9 \cdot 2^x + 4 = 0$$

$$2 \cdot (2^{n})^{2} - 9 \cdot 2^{n} + 4 = 0$$

$$2^{n} = 2^{n} + 2^{n} + 4 = 0$$

$$2^{n} = 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

$$(2^{n})^{2} - 9 \cdot 2^{n} + 4^{n} = 0$$

(3)
$$4^x - 6 \cdot 2^x - 16 \leq 0$$

$$(2^{x})^{2}-6-2^{x}-16\leq0.$$

$$2^{x}=\pm 2\pi 16\leq0.$$

$$\pm^{2}-6\pm-16\leq0.$$

$$(1-\beta)(1+2) \leq 0$$

$$-\frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} \right) = 0$$

8= t>0 1x12

$(4) 9^x - 8 \cdot 3^x - 9 < 0$

(1.22)

