### Akademia Górniczo-Hutnicza

Faculty of Mechanical Engineering and Robotics Mechatronic Engineering



Kinematics and Dynamics of Mechatronic Systems

# Lab Report

**Dynamics** 

Author: Szymon Świątek

| Prerequisites                              | 2  |
|--------------------------------------------|----|
| Values used                                | 2  |
| Simulink input and additional calculations | 3  |
| Lagrange                                   | 3  |
| Equations                                  | 3  |
| Simulink model                             | 4  |
| Maggie                                     | 4  |
| Equations                                  | 4  |
| Simulink model                             | 5  |
| Results                                    | 6  |
| dBeta and ddBeta                           | 6  |
| Alphas                                     | 6  |
| Lagrange                                   | 7  |
| Maggie                                     | 8  |
| Comparison                                 | 8  |
| Conclusions                                | 10 |

### **Prerequisites**

#### Values used

```
%% Values
r = r1;
12 = 0.07;
m1 = 1.5;
m2 = 1.5;
m3 = 0.5;
m4 = 5.67;
Ix1 = 0.02;
Ix2 = 0.02;
Ix3 = 0.005;
Iz1 = 0.051;
Iz2 = 0.051;
Iz3 = 0.002;
Iz4 = 0.154;
N1 = 31.25;
N2 = 31.25;
N3 = 29.2;
f1 = 0.015;
f2 = 0.015;
f3 = 0.0015;
h = 11/r1;
```

#### Simulink input and additional calculations





#### Lagrange

#### **Equations**

$$A = 2Iz1h^{2} + 2m1l1^{2} + 2Ix1 + Iz4 + m4l2^{2}$$
  

$$B = r^{2}m4 + 2r^{2}m1 + 2Iz1$$

$$M1 = 0.5 \left( B\alpha + m4l2\beta^{2} + \frac{1}{h} (A\beta - m4l2r\beta\alpha) + N1f1sgn(\alpha) \right)$$

$$M2 = 0.5 \left( B\alpha + m4l2\beta^{2} - \frac{1}{h} (A\beta - m4l2r\beta\alpha) + N2f2sgn(\alpha) \right)$$

$$\lambda 1 = m4l2sin(\beta) \ddot{\beta} + (m4 + 2m1)rcos(\beta) \ddot{\alpha} + m4l2cos(\beta) \dot{\beta}^{2} - (m4 + 2m1)rsin(\beta) \dot{\beta} \dot{\alpha}$$

$$\lambda 2 = -m4l2cos(\beta) \ddot{\beta} + (m4 + 2m1)rsin(\beta) \ddot{\alpha} + m4l2sin(\beta) \dot{\beta}^{2} + (m4 + 2m1)rcos(\beta) \dot{\beta} \dot{\alpha}$$

#### Simulink model



#### Maggie

### Equations

$$A = (r^{2}m4l1^{2} + 4r^{2}m1l1^{2} + 2r^{2}lx1 + 4lz1l1^{2} + r^{2}lz4 + r^{2}m4l2^{2}) / (4l1^{2})$$

$$B = (r^{2}m4l1^{2} - r^{2}m4l2^{2} - 2r^{2}lx1 - r^{2}lz4) / (4l1^{2})$$

$$C = (r^{3}m4l2) / (4l1^{2})$$

$$M1 = A\ddot{\alpha}_{1} + B\ddot{\alpha}_{2} - C\dot{\alpha}_{1}\dot{\alpha}_{2} + C\dot{\alpha}_{2}^{2} + N1f1sgn(\dot{\alpha}_{1})$$

$$M2 = A\ddot{\alpha}_{2} + B\ddot{\alpha}_{1} - C\dot{\alpha}_{1}\dot{\alpha}_{2} + C\dot{\alpha}_{1}^{2} + N2f2sgn(\dot{\alpha}_{2})$$

### Simulink model



### Results

### dBeta and ddBeta



# Alphas



# Lagrange



# Maggie



# Comparison







#### Conclusions

Abrupt peaks that can be seen in M1 and M2 for both Lagrange and Maggie as well as Lambdas for Lagrange are expected and are caused by the shape of the ddBeta. Difference between Lagrange and Maggie methods is in the  $10^{-3}$  range.