Exercise sheet 8

- 1. Recall that we defined $C(v) = \bigcup_{w \sim v} St(w)$.
 - (a) Why is C(v) path connected?
 - (b) Why is C(v) open?
 - (c) Why is $C(v) \cap C(w) = \emptyset$ if $v \nsim w$?
 - (d) Why is C(v) = C(w) if $v \sim w$?
 - (e) Why are they the components of the geometric realization of the simplicial complex?
 - (f) Prove that if v and w are vertices that belong to C(u) then there exists then there exists a 1-chain c so that $\partial c = v w$.
- 2. Prove that $\partial_{n+1} \circ \partial_n = 0$.
- 3. Realize the klein bottle as a simplicial complex and compute its homology.
- 4. Prove that if $\sum n_i \sigma_i \in Z_n(K)$ is such that σ_0 has an n-1 face that is not shared by any other σ_i where $i \neq 0$, then $n_0 = 0$.
- 5. Prove that if $\sum n_i \sigma_i \in Z_n(K)$ is such that each n-1 face of each σ_i is the face of exactly two distinct σ_i , then $n_i = \pm n_0$ for each i.
- 6. Prove that an n-chain homologous to an n-cycle is also an n-cycle.
- 7. Prove that the augmentation map is a homomorphism.
- 8. Prove that $\epsilon(c) = 0$ is a necessary condition for the zero chain c to be a boundary of some 1-chain. Is it also sufficient?
- 9. Prove that for any 0-simplex v of a simplicial complex, nv, where $n \in \mathbb{Z}$, can never be a boundary of a 1-chain.
- 10. Derive an expression for the $\partial([w,\sigma])$ in terms of $\partial(\sigma)$ for any simplex σ . Use that to extend the expression to $\partial([w,c])$ for any chain c. (Note that in dimension 0 your expression for $\partial([w,c])$ should involve the augmentation map.)
- 11. Use the above to prove that any chain in a cone is homologous to a chain which has non-zero coefficient only for the simplices that contain the vertex of the cone as a vertex of the simplex. Then prove that any such chain can only be a cycle if all of its coefficients are zero, thereby proving that a cone is acyclic (all reduced homologies are 0).

- 12. The previous question may be used to compute the homology of a boundary of an n-simplex, $Bd(\sigma)$, for some simplex σ , which can be realized as a simplicial complex (how?):
 - (a) Prove that the $H_i(Bd(\sigma)) = H_i(\sigma)$ for $i \le n-1$. Here we are using the same notation for the simplex or its boundary treated as a simplicial complex. (Hint: between the simplex, treated as a simplicial complex, and its boundary, also treated as a simplicial complex, there is only one simplex extra)
 - (b) Prove that if any n-1-chain of $\mathrm{Bd}(\sigma)$ is a cycle then all the coefficients must be the same. Since it cannot be a boundary (why?), this tells us that $\mathrm{H}_{n-1}(\mathrm{Bd}(\sigma))=\mathbb{Z}$
- 13. Prove that for any simplicial map $f: K \to L$, $\partial \circ f_{\#} = f_{\#} \circ \partial$, where $f_{\#}: C(K) \to C(L)$ is the map induced by f. (You will have to split it into cases depending on the dimension)
- 14. Prove that for any simplicial map $f: K \to L$, $f_*: H_n(K) \to H_n(L)$ is well defined.