CS 4830: Final Project

Team Lockdown: Kavish Shah, Akshara B, Vishal H, Vishnu Harshith

Indian Institute of Technology Madras

Introduction

The purpose of this project is to predict ratings based on massive data set containing Yelp reviews

Fig 1: Workflow for finding correlation b/w correlation between reviews and ratings

Steps Involved

- 1. Batch Computation:
 - Used a DataProc Cluster and submit a Spark job for data pre-processing and model training. Store a model in GCS bucket, and submit a spark job for evaluation on validation dataset stored in the bucket
- 2. Real Time Computation:
 - Streamed data stored on the GCS bucket into Kafka and used spark streaming to read the data and make real-time predictions.

Data-Set description

The data set is a Jason file, roughly of 9GB size and has the following columns:

Field name	Туре	Mode	Policy tags	Description
text	STRING	NULLABLE		
cool	INTEGER	NULLABLE		
funny	INTEGER	NULLABLE		
stars	FLOAT	NULLABLE		
date	TIMESTAMP	NULLABLE		bq-datetime
business_id	STRING	NULLABLE		
user_id	STRING	NULLABLE		
useful	INTEGER	NULLABLE		
review_id	STRING	NULLABLE		

Fig: 2 Different columns in the yelp data set obtained using BigQuery

Context

This dataset is a subset of Yelp's businesses, reviews, and user data. Various platforms are present for people express their views on a matter. To get a general public opinion one may have to read all the views on the matter. This leads to a subclass of data mining problems known as sentiment analysis. We present below below the various pre-processing techniques adopted in this problem which may typically be used to work on any other massive data set as well.

Pre-processing

Loading the data

Loaded the JSON formated data into the google cloud bucket using gs util command. Imported the data into BigQuery table and defined the schema.

Cleaning the Data

We perform the pre-processing of the data in a DataProc Cluster using Spark. The major hurdle dealing with text based models is that it consumes a lot of time pre-processing it. We have used many pre-processing techniques for this project.

text co	20	150	1.5	date	business_id	user_id usefu	** NED 1
 I just had a pedi	01	01			kXJ2UwJL60QHu MXhsNk		3 912_cfGWNvf0nZudP
We scheduled an a	01	01	1.0 2015-05-18	19:22:54 r4cd	abWEmTr2110Fu NXAX_S	SLw2hxiiAms	3 V74eUOstrSH5wpMgF
This old favorite	11	11	4.0 2009-01-11	03:35:34 9DTy	pMuJS6GQZYdUW 25N2f7	Al7Tgu9zQE	2 6PyhrNqHrolvxZ6YD
This place was hu	01	01	3.0 2017-07-03	03:15:45 7JWW	eXqil03Ua_wV9 s72nhH	1 <mark>Hl_lN</mark> _Ju4h	0 Z_ShCWTEdEEvca9Fs
Went there to wat	01	01	3.0 2013-09-20	04:24:55 Y7T9	osP-hoqp2nLnm xSt5	JG6QqTEOwXJ	0 jsf1I9Sy1w3VVnkg1
Played cornhole f	11	01	4.0 2017-10-07	23:35:14 3Jq5	LfJ5fmJ5KmuA6 dXP2z-	Mqrlk2p2uKU	1 yp5g42ul0-bBEnUhH
Invited a friend	01	01	1.0 2015-05-05	21:08:44 dQWE	63uOiSfaf3fup _IR48ol	k0ZkPMWJ2P1	0 4kn_D8-XXseuNuGsv
What an incredibl	01	01	5.0 2013-03-28	23:11:14 -4TM	QnQJW1yd6NqGR cf-n5el	NXJE7DG0ijb	0 ytTNQOOfooqMWofal
Excited to give t	01	01	2.0 2012-10-19	05:36:10 -4TM	QnQJW1yd6NqGR 7A87z0;	ycTC5D108bh	0 Q2fHu4Zx0Ts115RaZ
This place is qui	01	01	4.0 2017-10-08	23:37:14 z5KW	NSDvgv-4I62P8[AisJLg	SqMlfkeae9y	0 84jtzzhtl7Vk8WBmi

Fig 3: Original Dataframe

Most of them are imported from PySpark ML features. Tokenizing the words is where we split the entire sentences into words and the order of the words will not hold any importance any more. We performed following functions over the text reviews:

1. Convert to Lower case:

Converted all the reviews to lower case to remove any discrepancies in the corpus

text co				date	business_id	user_id usefu	l review_id	words
I just had a pedi	01	01			kXJ2UwJL60QHu MXhsNk		3 912_cfGWNvf0nZudP [i, ju	
We scheduled an a	01	01	1.0 2015-05-18	19:22:54 r4cd	abWEmTr2110Fu NXAX_S	SLw2hxiiAms	3 V74eUOstrSH5wpMgF [we, s	cheduled, a
This old favorite	1	11	4.0 2009-01-11	03:35:34 9DTy	pMuJS6GQZYdUW 25N2f7/	17Tgu9zQE	2 6PyhrNqHrolvxZ6YD [this,	old, favor
This place was hu	01	01	3.0 2017-07-03	03:15:45 7JWW	eXqil03Ua_wV9 s72nhH	Hl_lN_Ju4h	0 Z_ShCWTEdEEvca9Fs [this,	place, was
Went there to wat	01	01	3.0 2013-09-20	04:24:55 Y7T9	osP-hoqp2nLnm xSt5.	G6QqTEOwXJ	0 jsf1I9Sy1w3VVnkg1 [went,	there, to,
Played cornhole f	11	01	4.0 2017-10-07	23:35:14 3Jq5	LfJ5fmJ5KmuA6 dXP2z-M	dqrlk2p2uKU	1 yp5g42ul0-bBEnUhH [playe	d, cornhole
Invited a friend	01	01	1.0 2015-05-05	21:08:44 dQWE	63uOiSfaf3fup _IR48o	:0ZkPMWJ2P1	0 4kn_D8-XXseuNuGsv [invit	ed, a, frie
What an incredibl	01	01	5.0 2013-03-28	23:11:14 -4TM	QnQJW1yd6NqGR cf-n5et	IXJE7DG0ijb	0 ytTNQOOfooqMWofal [what,	an, incred
Excited to give t	01	01	2.0 2012-10-19	05:36:10 -4TM	QnQJW1yd6NqGR 7A87z0y	cTC5D108bh[0 Q2fHu4Zx0Ts1l5RaZ [excit	ed, to, giv
[This place is qui]	01	01	4.0 2017-10-08	23:37:14 z5KW	NSDvgv-4I62P8 AisJLg	GqMlfkeae9y	0 84jtzzhtl7Vk8WBmi [this,	place, is,
++-	+	+-	+	+			-+	+
only showing top 10 rows	s							

2. Remove Stop Words

Stop words such as prepositions or articles ("a", "the") are also removed so that we only keep the more meaningful words in the corpus.

text c	ool fu	nny s	stars	date	business_id	user_id usef	ul review_id	words	words_nsw
I just had a pedi	01	01	2.0 2014-08-03	21:38:45 MJ5	xkXJ2UwJL60QHu MXhsNk	IDQw5qvwieZ	3 912_cfGWNvf0nZudP [i, just,	had, a, [pedi,	&, acrylic
We scheduled an a	01	01	1.0 2015-05-18	19:22:54 r4c	dabWEmTr2110Fu[NXAX_S	SLw2hxiiAms	3 V74eUOstrSH5wpMgF [we, sched	duled, a [schedu	led, appoi
This old favorite	11	11	4.0 2009-01-11	03:35:34 9DT	ypMuJS6GQZYdUW 25N2f7	Al7Tgu9zQE	2 6PyhrNqHrolvxZ6YD [this, old	i, favor [old, f	avorite, m
This place was hu	01	01	3.0 2017-07-03	03:15:45 7JW	WeXqil03Ua_wV9 s72nhH	Hl_lN_Ju4h	0 Z_ShCWTEdEEvca9Fs [this, pla	ace, was[[place,	hugely, u
Went there to wat	01	01	3.0 2013-09-20	04:24:55 Y7T	9osP-hoqp2nLnm xSt5	JG6QqTEOwXJ	0 jsf1I9Sy1w3VVnkg1 [went, the	ere, to, [went,	watch, eag
Played cornhole f	11	01	4.0 2017-10-07	23:35:14 3Jq	5LfJ5fmJ5KmuA6 dXP2z-	/grlk2p2uKU	1 yp5g42u10-bBEnUhH [played,	ornhole [played	, cornhole
Invited a friend	01	01	1.0 2015-05-05	21:08:44 dQW	E63u0iSfaf3fup _IR48ol	k0ZkPMWJ2Pl	0 4kn_D8-XXseuNuGsv [invited,	a, frie [invite	d, friend,
What an incredibl	01	01	5.0 2013-03-28	23:11:14 -4T	MQnQJW1yd6NqGR cf-n5el	NXJE7DG0ijb	0 ytTNQOOfooqMWofal [what, an	incred [incred	ibly, gorg
Excited to give t	01	01	2.0 2012-10-19	05:36:10 -4T	MQnQJW1yd6NqGR[7A87z0	/cTC5D108bh	0 Q2fHu4Zx0Ts1l5RaZ [excited,	to, giv [excite	d, give, h
This place is qui	01	01	4.0 2017-10-08	23:37:14 z5K	WNSDvgv-4I62P8 AisJLg	SqMlfkeae9y	0 84jtzzhtl7Vk8WBmi [this, pla	ce, is, [place,	quite, ha

3. Unigrams & trigrams - Frequency > 20

We are going attempt two modeling approaches. The first one is to split the model into trigrams (e.g. every three words in a single review will be split together. We will then pick out the trigrams that appear more than 20 times in the corpus, so that we can eliminate any random phrases that only appear once or twice.

These phrases, will be then joined together, using an underscore "", and be replaced in the original text. The pipeline of Tokenize \rightarrow CountVectorizer (BagOfWords) \rightarrow TF-IDF . Model will then be applied using the new texts. This step ensures that we have a well-mixed combinations of unigrams and trigrams in our training data.

text	cool fu	inny s	tars	date	business_id	user_id use	ful review_id	words	words_nsw	ngram
I just had a pedi	01	0	2.0 2014-08-03	21:38:45 MJ	5xkXJ2UwJL60QHu	MXhsNk1DQw5qvwieZ	3 912_cfGWNvf0nZudP	[i, just, had, a, [pe	edi, &, acrylic [i j	ust had, just
We scheduled an a	01	01	1.0 2015-05-18	19:22:54 r4	cdabWEmTr2110Fu	NXAX_SSLw2hxiiAms	3 V74eUOstrSH5wpMgF	[we, scheduled, a [so	cheduled, appoi [we	scheduled an,
This old favorite	11	11	4.0 2009-01-11	03:35:34 90	TypMuJS6GQZYdUW	25N2f7Al7Tgu9zQE	2 6PyhrNqHrolvxZ6YD	[this, old, favor [o	ld, favorite, m[[thi	s old favorit
This place was hu	01	01	3.0 2017-07-03	03:15:45 73	www.xqil03Ua_wv9	s72nhH1Hl_lN_Ju4h	0 Z_ShCWTEdEEvca9Fs	this, place, was[[p]	lace, hugely, u[[thi	s place was,
Went there to wat	01	01	3.0 2013-09-20	04:24:55 Y7	T9osP-hoqp2nLnm	xSt5JG6QqTEOwXJ	0 jsf1I9Sy1w3VVnkg1	Ewent, there, to, [w	ent, watch, eag [wen	t there to, t
Played cornhole f	11	01	4.0 2017-10-07	23:35:14 33	q5LfJ5fmJ5KmuA6	dXP2z-Mqrlk2p2uKU	1 yp5g42u10-bBEnUhH	played, cornhole [p:	layed, cornhole [pla	yed cornhole
Invited a friend	01	01	1.0 2015-05-05	21:08:44 dQ	WE63uOiSfaf3fup	_IR48ok0ZkPMWJ2P1	0 4kn_D8-XXseuNuGsv	invited, a, frie [in	vited, friend, Einv	ited a friend
What an incredibl	01	01	5.0 2013-03-28	23:11:14 -4	TMQnQJW1yd6NqGR	cf-n5eNXJE7DG0ijb	0 ytTNQOOfoogMWofal	[what, an, incred [in	ncredibly, gorg [wha	t an incredib
Excited to give t	0	01	2.0 2012-10-19	05:36:10 -4	TMQnQJW1yd6NqGR	7A87zOycTC5D108bh	0 Q2fHu4Zx0Ts115RaZ	[excited, to, giv [ex	cited, give, h [exc	ited to give,
This place is qui	0	01	4.0 2017-10-08	23:37:14 z5	KWNSDvgv-4I62P8	AisJLgSqMlfkeae9y	0 84jtzzhtl7Vk8WBmi	this, place, is, [p:	lace, quite, ha [thi	s place is, p
		+-					+		-	

2

Model Architecture

We have used two basic methods to determine the rating of the reviews:

Support Vector Machine

With a train-test split ratio of 80:20 we then run 50 iterations of Support Vector Machine (SVM) model on the training data. The parallel computing of the Spark attributes to speeding up the entire process. Given an imbalanced data-set, it is important know which classification metrics we are going to optimize. Accuracy in such a scenario will not be representitaive of how well the model is performing, while F1 score – as a weighted average of precision and recall could reveal how well the model performs in identifying both the prediction relevancy and what % of truly relevant results are correctly predicted. The parameters used here are:

- 1. Number of Iterations = 50
- 2. Regularization Parameter = 0.3
- 3. Learning Algorithm: Stochastic Gradient Descent

Elastic Net Logistic Regression

Using the same training data, we instead applied a regularized logistic regression. SVM focuses on finding the separating plane that maximizes the distance of the closest points to the margin, whereas Logistic Regression maximizing the probability of the data (i.e. the further it lies away from the hyperplane the better). In addition to a normal logistic regression, we used a linear combination of L1 and L2 regularization, i.e. Elastic Net, to prevent the model from overfitting. Since LASSO (L1) tend to select only one significant coefficients the other, EN adds in the penalty from Ridge Regression (L2) that helps to overcome the disadvantages.

- 1. Reg Parameter = 0.3
- 2. ElasticNet Parameter = 0.8
- 3. Max Iterations = 100

Model performance

The dataset is quite imbalanced and hence we used the F1 score to evaluate the model performance.

textbfFig 4: F1 score using logistic regression

Logistic Regression

Below is the code used -

```
from __future__ import print_function
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline, PipelineModel
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
import os
from pyspark import SparkContext
from pyspark.sql.session import SparkSession
from pyspark.streaming import StreamingContext
import pyspark.streaming import StreamingContext
import pyspark.ml.feature import *

from pyspark.ml.feature import StringIndexer, OneHotEncoderEstimator, VectorAssembler
from pyspark.ml.feature import StopWordsRemover, Word2Vec, RegexTokenizer
from pyspark.ml.classification import LogisticRegression
#from pyspark.mllib.feature import HashingTF, IDF

sc = SparkContext(appName="Project")
```

```
spark = SparkSession(sc)
20 spark_df = spark.read.format("bigquery").option("table", "bdl_project20.yelp").load().
        toDF("text", "cool", "funny",
review_id")
                                             "stars", "date", "business_id", "user_id", "useful",
spark_df.show(10)
tok = RegexTokenizer(inputCol= "text", outputCol= "words", pattern= '\\W')
stopword_rm = StopWordsRemover(inputCol="words", outputCol="words_nsw")
hashingTF = HashingTF(inputCol="words_nsw", outputCol="rawFeatures")
idf = IDF(inputCol="rawFeatures", outputCol="features")
28 lr = LogisticRegression(featuresCol="features", labelCol="stars")
29 pipe = Pipeline(stages=[tok, stopword_rm,hashingTF,idf,lr])
model = pipe.fit(spark_df)
model.save("gs://bdl__project20/model/")
predictions = model.transform(spark_df)
34 predictions.show(10)
general action = MulticlassClassificationEvaluator(labelCol="stars", predictionCol="
       prediction", metricName="f1")
38 f1 = evaluator.evaluate(predictions)
40 print("F1 score =", f1)
```

20/09/20 06:47:35 INFO com.google.cloud.spark.bigquery.direct.DirectBigQueryRelation: Querying table codelearn-281105.bdl_project20.j 20/09/20 06:47:35 INFO com.google.cloud.spark.bigquery.direct.DirectBigQueryRelation: Going to read from codelearn-281105.bdl_project 20/09/20 06:47:35 INFO com.google.cloud.spark.bigquery.direct.DirectBigQueryRelation: Created read session for table 'codelearn-281106 20/09/20 06:47:35 INFO com.google.cloud.spark.bigquery.direct.DirectBigQueryRelation: Requested 14 max partitions, but only received F1 score = 0.7076878667

20/09/20 07:00:05 INFO org.spark_project.jetty.server.AbstractConnector: Stopped Spark@1bf2ab2b{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}

textbfFig 4: F1 score using logistic regression

Real-time computation

We used the trained model to perform real-time predictions of test data streaming to Kafka. We have used a part of the data for streaming.

Below is the code used -

```
from __future__ import print_function
2 from pyspark import SparkContext
3 import pyspark.sql.types as tp
  from pyspark.sql import Row
{\tt from \ pyspark.streaming \ import \ StreamingContext}
6 from pyspark.ml.classification import LogisticRegression
7 from pyspark.streaming.kafka import KafkaUtils
8 import os
  from pyspark.sql import *
from pyspark.sql.types import StructType, StructField, FloatType
from pyspark.ml.feature import VectorAssembler,StringIndexer,
                                                                       VectorIndexer.
      StandardScaler, IndexToString
from pyspark.ml.classification import LogisticRegression from pyspark.sql.session import SparkSession
14 from pyspark.ml import Pipeline, PipelineModel
{\tt from~pyspark.ml.eval} {\tt uation~import~MulticlassClassificationEvaluator}
16 import json
from pyspark.sql import SQLContext
18
19 kafka_topic = 'from-pubsub'
zk = '10.182.0.2:2181' # Apache ZooKeeper quorum

app_name = 'from-pubsub' # Can be some other name
sc = SparkContext(appName="KafkaPubsub")
ssc = StreamingContext(sc, 20)
model = PipelineModel.load("gs://bdl__project20/model/")
25 schema = StructType([StructField("sl", FloatType(), True), StructField("sw", FloatType
       (), True), StructField("pl", FloatType(), True), StructField("pw", FloatType(), True)
       )1)
#spark = SparkSession.builder.appName(app_name).config("spark.master", "local").
       getOrCreate()
27 spark = SparkSession(sc)
28 kafkaStream = KafkaUtils.createStream(ssc, zk, app_name, {kafka_topic: 1})
29 #kafkaStream.pprint()
30 print("Starting")
31 def get_prediction(temp):
    print("Inside IF")
32
     temp.toDF().show()
     dstream = temp.map(lambda x: json.loads(x[1]))
34
    dstream.toDF().show()
35
    dat = dstream.map(lambda x:x[0])
dat.toDF().show()
```

```
#dat1 = dat.map(lambda x: x.split(','))
     #dat2 = dat1.map(lambda x: [float(i) for i in x])
#dat3 = dat2.map(lambda x: x[1:])
39
40
     dat4 = dat.map(lambda x: Row(text=str(x)))
#df = dat.toDF().toPandas()
41
42
     #df.columns = ['text']
43
     #print(df)
     df1 = spark.createDataFrame(dat4)
     df1.show()
pred = model.transform(df1)
46
47
     pred.show()
49 kafkaStream.foreachRDD(lambda x: get_prediction(x))
50 print("Ending")
51 ssc.start()
52 ssc.awaitTermination()
```

Publishing rate is 10 seconds. Kafka was ingesting at a rate of 20 seconds.

Conclusion

The Logistic Regression model performs better that SVM. Nowadays, real-time computing generally needs to process large amounts of data, in addition to meeting some of the requirements of non-real-time computing (e.g., accurate results). The most important requirement of real-time computing is the response to computing results in real time. This project enabled us to understand the importance of real time computing.