FILE 'AGRICOLA' ENTERED AT 13:18:19 ON 27 NOV 2004

FILE 'BIOSIS' ENTERED AT 13:18:19 ON 27 NOV 2004 Copyright (c) 2004 The Thomson Corporation.

FILE 'EMBASE' ENTERED AT 13:18:19 ON 27 NOV 2004 COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'CAPLUS' ENTERED AT 13:18:19 ON 27 NOV 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

=> duplicate remove l1

DUPLICATE PREFERENCE IS 'BIOSIS, EMBASE, CAPLUS'
KEEP DUPLICATES FROM MORE THAN ONE FILE? Y/(N):n

PROCESSING COMPLETED FOR L1

L2 7 DUPLICATE REMOVE L1 (4 DUPLICATES REMOVED)

=> d 12 1-7 ibib ab

L2 ANSWER 1 OF 7 CAPLUS COPYRIGHT 2004 ACS on STN

USA

ACCESSION NUMBER: 2004:3719 CAPLUS

DOCUMENT NUMBER:

140:74183

TITLE:

Transgenic ***plants*** producing

4-ketocarotenoids in flower petals

INVENTOR(S):

Hauptmann, Randal; Eisenreich, Robert; Eschenfeldt,

William; Khambatta, Zubin

PATENT ASSIGNEE(S):

SOURCE:

U.S. Pat. Appl. Publ., 77 pp., Cont.-in-part of U.S.

Ser. No. 325,265.

CODEN: USXXCO

DOCUMENT TYPE:

Patent English

LANGUAGE:

IT: 5

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA	PATENT NO.					D	DATE			APPLICATION NO.					DATE			
US	2004003430				A1 20040101			US 2003-392942						20030320				
US	US 2003196232					A1 20031016			US 2002-325265						20021219			
WO	2003	2003080849				A2 20031002			WO 2003-US8878					20030321				
	W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	
		GM,	HR,	HU,	ID,	·IL,	IN,	IS,	JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LC,	LK,	LR,	
1		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	OM,	PH,	
		PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	ΤJ,	TM,	TN,	TR,	TT,	TZ,	
		UA,	UG,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW								
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,	
		KG,	KΖ,	MD,	RU,	ТJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
		FΙ,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,	
		BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG	
PRIORITY APPLN. INFO.:									1	US 2002-366444P					P 20020321			
			US 2002-325265 A2 20021219															

```
US 2001-302460P P 20010629
US 2002-180775 A2 20020626
US 2003-392942 A 20030320
```

The formation of a carotenoid compd. contg. a 4-keto-.beta.-ionene ring AΒ ***astaxanthin*** or canthaxanthin in flowers, and particularly in the corolla and reproductive parts of a flower of a higher ***plant*** whose flowers produce a carotenoid compd. contg. a .beta.-ionene ring such as .beta.-carotene or zeaxanthin, but otherwise do ***astaxanthin*** or canthaxanthin is disclosed. One or not produce more genes controlled by a promoter are inserted (transformed) into a higher ***plant*** . The inserted gene encodes a chimeric enzyme including (a) a carotenoid-forming enzyme that is at least a ketolase. That gene is operatively linked to (b) a plastid-directed transit peptide. ***plants*** to be transformed produce at least zeaxanthin Some higher or .beta.-carotene in their flowers prior to transformation, whereas other ***plants*** produce little if any colored carotenoid pigments prior to transformation and are transformed with a cassette of carotenoids-forming genes. Methods of transformation and use of the transformed ***plants*** are described.

L2 ANSWER 2 OF 7 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2002:172119 CAPLUS

DOCUMENT NUMBER:

INVENTOR(S):

NUMBER: 136:231339

TITLE:

Carotenoid production from a single carbon substrate Brzostowicz, Patricia C.; Cheng, Qiong; Dicosimo, Deana J.; Koffas, Mattheos; Miller, Edward S.; Odom, J. Martin; Picataggio, Stephen K.; Rouviere, Pierre E.

PATENT ASSIGNEE(S):

E. I. Du Pont de Nemours & Co., USA

SOURCE:

PCT Int. Appl., 156 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

PATENT NO.					KIND DATE				APPL:	ICAT	DATE						
WO 2002018617				A2	A2 2002030			WO 2001-US27420							20010904		
WO 2002018617				А3	20030522												
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BΖ,	CA,	CH,	CN,
		CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,
		GM,	HR,	HU,	ID,	ΙL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KΖ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	ΜZ,	NO,	NZ,	PH,	PL,
		PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	ТJ,	TM,	TR,	TT,	TZ,	UA,	UG,
		US,	UΖ,	VN,	YU,	ZA,	zw										
	RW:	GH,	GM,	KE,	LS,	MW,	MΖ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	AM,	ΑZ,	BY,	KG,
							ΑT,										
		ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,
		GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG								
US 2002142408				A1		2002	1003	1	US 2	001-	20010824						
US 6818424				B2		2004	1116										
US 2003003528				Α1		2003	0102	1	US 20	001-	20010829						
CA 2417261				AA		2002	0307	1	CA 20	001-	20010904						
AU 2001088699				Α5		2002	0313		AU 2	001-	20010904						
EP 1328639				A2		2003	0723		EP 20	001-	20010904						
`	R:	AT.	BE,	CH,	DE,	DK,	ES,	FR,	GB.	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
		•					RO,					•	•	•	•	·	•
		,	•		•		•	•	•								

endogenous .beta.-carotene hydroxylase activity. Transformation of a higher ***plant*** (e.g., tobacco) with ***crtO*** provided, with signal sequences targeting expression in the chromoplast.

astaxanthin or a food additive contg. (3S,3'S) ***astaxanthin*** can be produced using such recombinant hosts.

THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 7 OF 7 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on STN L_2

DUPLICATE 2

1997:179804 BIOSIS ACCESSION NUMBER: PREV199799471517 DOCUMENT NUMBER:

TITLE:

Biosynthesis of ketocarotenoids in transgenic cyanobacteria

expressing the algal gene for beta-C-4-oxygenase,

crt0

Harker, Mark; Hirschberg, Joseph [Reprint author] AUTHOR(S):

CORPORATE SOURCE: Dep. Genet., Hebrew Univ. Jerusalem, Givat-Ram, Jerusalem

91904, Israel

FEBS Letters, (1997) Vol. 404, No. 2-3, pp. 129-134. SOURCE:

CODEN: FEBLAL. ISSN: 0014-5793.

Article DOCUMENT TYPE: English LANGUAGE:

Entered STN: 24 Apr 1997 ENTRY DATE:

Last Updated on STN: 24 Apr 1997

The ketocarotenoid ***astaxanthin*** is produced by a number of marine AΒ bacteria and microalgae. It is synthesized from beta-carotene by the addition of two keto groups to carbons C4 and C4' and two hydroxyl groups to C3 and C3'. The gene, ***crtO*** , encoding beta-C4-oxygenase which converts beta-carotene to canthaxanthin was cloned from the green alga Haematococcus pluvialis. We transferred ***crt0*** cyanobacterium Synechococcus PCC7942, which contains a beta-carotene hydroxylase gene and normally accumulates beta-carotene and zeaxanthin. The genetically engineered cyanobacterium produced ***astaxanthin*** as well as other ketocarotenoids. The results confirm that ****crt0*** can function in cyanobacteria in conjunction with the intrinsic carotenoid enzymes to produce ***astaxanthin*** . Specifically, this finding indicates that beta-carotene hydroxylase, which normally converts beta-carotene to zeaxanthin, can also function in the biosynthesis of ***astaxanthin*** . These results provide the first evidence of genetic manipulation of a ***plant*** -type carotenoid biosynthesis pathway toward the production of novel carotenoids.

=> astaxanthin and seed and promoter ASTAXANTHIN IS NOT A RECOGNIZED COMMAND The previous command name entered was not recognized by the system. For a list of commands available to you in the current file, enter "HELP COMMANDS" at an arrow prompt (=>).

=> s astaxanthin and seed and promoter 9 ASTAXANTHIN AND SEED AND PROMOTER

=> duplicate remove 13 PROCESSING COMPLETED FOR L3 9 DUPLICATE REMOVE L3 (0 DUPLICATES REMOVED)

- ANSWER 1 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN L4
- Transgenic plants producing 4-ketocarotenoids in flower petals TI
- ANSWER 2 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN T.4
- Sequence of LIS1 ***promoter*** derived from S-linalool synthase of TIClarkia breweri and uses in expression of transgenes in floral tissues
- ANSWER 3 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN L4
- Carotenoid ketolase gene CrtO from Rhodococcus erythropolis TI
- ANSWER 4 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN L4
- ТΤ Regulation of genes involved in carotenoid and tocopherol biosynthesis pathway in transgenic plants for producing carotenoid compounds, tocopherol compounds, and specialty oils in plant ***seeds***
- ANSWER 5 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN T₁4
- Improved carotenoid biosynthesis in oilseed plants and its uses in TTspecialty oil production
- ANSWER 6 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN L4
- Process for production of carotenoids, xanthophylls and apo-carotenoids ΤI utilizing eukaryotic microorganisms
- ANSWER 7 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN L4
- DNA construct expressing keto group enzyme and its use to make transgenic TIoilseed plants for xanthophyll production
- ANSWER 8 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN L4
- Methods for producing transgenic plants and ***seeds*** with altered TIxanthophyll compositions
- ANSWER 9 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN L4
- Using enzymes of carotenoid biosynthesis to alter the carotenoid content TI and fatty acid profile of ***seeds***

=> d 14 1-9 ibib ab ,

ANSWER 1 OF 9 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2004:3719 CAPLUS

DOCUMENT NUMBER:

140:74183

TITLE:

Transgenic plants producing 4-ketocarotenoids in

flower petals

INVENTOR(S):

Hauptmann, Randal; Eisenreich, Robert; Eschenfeldt,

William; Khambatta, Zubin

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 77 pp., Cont.-in-part of U.S.

Ser. No. 325,265.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE