Ejercicios

- 1. Calcule el valor de las siguientes series.
 - (a) $\sum \frac{4}{(4k-3)(4k+1)}$.
 - (b) $\sum \frac{2k+1}{k^2(k+1)^2}$.
 - (c) $\sum \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k+1}\sqrt{k}}$.
- 2. Demostrar que las siguientes series divergen.
 - (a) $\sum k^2$.

- (c) $\sum k \operatorname{sen}\left(\frac{1}{k}\right)$.
- **(b)** $\sum k \ln \left(1 + \frac{1}{k}\right)$.
- (d) Para $a \in , \sum (1 + \frac{a}{k})^k$.
- 3. Aplicar el álgebra de series para estudiar la convergencia de las siguientes
 - (a) $\sum \left(\frac{5}{2^k} + \frac{1}{2^k} \right)$.
 - **(b)** $\sum \left(\frac{1}{2^k} + \frac{(-1)^k}{5^k}\right)$.
- 4. Estudiar la convergencia de las siguientes series.
 - (a) $\sum \frac{2^k + \cos(4^k)}{3^k}.$ (b) $\sum \frac{1}{e^k + \tan(\frac{1}{k})}.$
- (c) $\sum \frac{k+1}{k^2+1}$.
- (d) $\sum \frac{k+\ln(k)}{k^3}$
- **5.** Sea (a_n) una sucesión de términos positivos y tales que $\sum a_k$ converge. Demostrar que la serie $\sum a_k^2$ converge.
- 6. Estudiar la convergencia de las series

- (a) $\sum \operatorname{sen}\left(\frac{1}{k^2}\right)$. (c) $\sum \frac{1}{\sqrt{k}\left(1+\sqrt{k}\right)}$. (e) $\sum \frac{1}{k(k)^{\frac{1}{k}}}$. (b) $\sum \ln\left(\frac{k^2+1}{k^2}\right)$. (d) $\sum \operatorname{tg}\left(\frac{1}{k^2}\right)$. (f) $\sum \left(\sqrt{k^2+k}-k\right)$.
- 7. Sea $\sum a_k$ una serie convergente con $a_k \ge 0$ y $a_k \ne 1$. Demostrar que las series $\sum \frac{a_k}{1+a_k}$ y $\sum \frac{a_k}{1-a_k}$ son convergentes.
- 8. Estudiar la convergencia de las series
 - (a) $\sum \frac{1}{e^{\sqrt{k^2+k}}}$.
 - **(b)** $\sum q^k k^{\alpha}$ para $\alpha > 0$ y $q \in (0, 1)$.
 - (c) $\sum \frac{a^k}{b^k}$.
- 9. Probar que las siguientes series son absolutamente convergentes.

(a)
$$\sum \frac{\cos(k^k)}{k^2}$$

(a)
$$\sum \frac{\cos(k^k)}{k^2}$$
. (b) $\sum_{1} (-1)^k \frac{1}{k^{\alpha}} \cos \alpha \ (c) \sum_{1} (-1)^k \frac{(k!)^2}{(2k)!}$

- 10. Determinar para que valores de \underline{a} la serie $\sum a^k k^a$ es absolutamente conver gente. las series $\sum \frac{a_k}{1+a_k^2}$ y $\sum \frac{\sqrt{|a_k|}}{k}$ son absolutamente convergentes
- 11. Estudiar la convergencia de las siguientes series.

(a)
$$\sum \frac{(-1)^k}{\sqrt{k} + \sqrt{k+1}}.$$

(b)
$$\sum (-1)^k \operatorname{sen}\left(\frac{1}{k}\right)$$

Problemas

P1. (a) Analice la convergencia de la siguiente serie; en caso de ser convergente, calcule su valor $\sum\limits_{k=1}^{\infty}\frac{1}{k(k+1)(k+2)}.$

Indicación: Utilice la identidad $\frac{1}{k(k+1)(k+2)} = \frac{1}{2k} + \frac{1}{k+1} + \frac{1}{2(k+2)}$.

- (b) Use el Criterio de la Integral para analizar la convergencia de la integral $\int_1^\infty \frac{e^y}{y^y}$.
- (c) Analice la convergencia absoluta y condicional de la serie $\sum_{k=1}^{\infty} (-1)^k \frac{2k+1}{k(k+1)}$.
- **P2.** (a) (a1) Demuestre que para todo número real p, la serie $\sum_{n=1}^{\infty} \frac{e^{pn}}{n!}$ converge

(a2) Estudie la convergencia de la serie $\sum_{n=1}^{\infty} \frac{\left(1 + \frac{10}{n}\right)^{n^2}}{n!}$.

(b) Considere la función

$$f(x) = \frac{\pi}{2} - \arctan(x), \quad x \ge 0.$$

- **(b1)** Demuestre que la serie $\sum_{n=0}^{\infty} a_n$ de término $a_n = (-1)^n f(n)$ con-
- (b2) Calcule $\lim_{x \to +\infty} x \, f(x)$ y utilice este resultado para demostrar que la serie $\sum_{n=1}^{\infty} a_n$ definida en **(b2)** no converge absolutamente.
- P3. Estudie la convergencia de las siguientes series:

(a)
$$\sum_{k=1}^{\infty} \left(\frac{k}{k+1} \right)^{k^2}$$

(b)
$$\sum_{k=1}^{\infty} \frac{\sqrt{(k-1)!}}{\prod_{i=1}^{k} (1 + \alpha \sqrt{j})}$$
 para $\alpha > 1$.

Ingeniería Matemática Universidad de Chile

(c)
$$\sum_{k=1}^{\infty} \arctan\left(\frac{1}{1+k+k^2}\right)$$
 (Ind: demuestre que $\arctan x \le x \quad \forall x \ge 0$)