Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 15 (Aug 28, 2019)

Subspaces (Conti ...)

Test for Subspaces

- **Proposition 8:** A subset W of V is a subspace if and only if it satisfies the following three properties:
 - **1** The zero vector $\mathbf{0}$ is in W.
 - ② W is closed under addition. That is, for each \mathbf{u} and \mathbf{v} in W, the sum $\mathbf{u} + \mathbf{v}$ is in W.
 - 3 W is closed under scalar multiplication. That is, for each \mathbf{u} in W, and each scalar c, the scalar product $c\mathbf{u}$ is in W.

Note: In some books, this is treated as the definition of a subspace. It is also possible to replace the condition 1 above by the condition $\mathbf{1}'$ that W be non-empty. However, in practice, this is not so easy to use.

• **Proposition 9:** A non-empty subset W of V is a subspace if and only if for each \mathbf{u} and \mathbf{v} in W, and each scalar c, the sum $c\mathbf{u} + \mathbf{v}$ is in W.

Remark: It is left as an exercise to show that the two tests are equivalent. In some books, the above is taken as the definition of a subspace. We may use either of the tests whichever is convenient.

Subspaces (Conti ...)

Some More Examples of Subspaces

- For any vector space V, the subset consisting of the zero vector alone is a subspace of V, called the zero subspace.
 - V is of course a subspace of itself. Subspaces other than V and $\{0\}$ are known as proper subspaces.
- The set $X=\{(x,y)\in\mathbb{R}^2\ :\ x+y=0\}$ is a subspace of \mathbb{R}^2 -verify: exercise.
- The set Sym_n of all symmetric (square) matrices of size n is a subspace of the space $\mathbb{R}^{n\times n}$ of square $n\times n$ matrices.

Subspaces (Conti . . .)

But ...

Something to think about: Is \mathbb{R}^2 is a subspace of \mathbb{R}^3 ?

Answer

Subspaces (Conti ...)

But ...

Something to think about: Is \mathbb{R}^2 is a subspace of \mathbb{R}^3 ?

Answer

However, \mathbb{R}^2 is not a subspace of \mathbb{R}^3 ! This is because \mathbb{R}^2 is not even a subset of \mathbb{R}^3 . The set

$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} : x, y \in \mathbb{R} \right\}$$

is a subspace of \mathbb{R}^3 , which behaves much like \mathbb{R}^2 , but is logically distinct from \mathbb{R}^2 .