ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ В ЗАДАЧЕ ДЕКОДИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ.

Дорин Даниил dorin.dd@phystech.edu

Грабовой Андрей grabovoy.av@phystech.edu

13 февраля 2024 г.

Аннотация

Исследуются пространственно-временные характеристики в задаче декодирования временных рядов с дискретным представлением времени. В качестве задачи декодирования рассматривается задача классификации сигнала. В работе проводится обзор методов классификации регестрируемого сигнала. Предлагается метод классификации временных рядов, основанный на применении Римановой геометрии. Для анализа предложенного метода проводится вычислительный эксперимент на выборке, полученной при исследовании электрической активности мозга большого числа испытуемых с применением неинвазивной электроэнцефалографии. Для увеличения объема выборки производится аугментация данных. Проводится сравнение предложенного метода с известными методами классификации электроэнцефалограмм, полученных при регистрации колебаний электрического потенциала головного мозга через покровы головы.

Ключевые слова: ЭЭГ · временные ряды · Риманова геометрия · пространственновременные характеристики · декодирование · классификация

1 Введение

Основной целью анализа сигнала в данном исследовании является классификация электроэнцефалограммы (ЭЭГ) [4, 17] — раздел электрофизиологии, изучающий закономерности суммарной электрической активности мозга, отводимой с поверхности кожи волосистой части головы, а также метод записи таких потенциалов. ЭЭГ — неинвазивный метод, то есть не требует проникновения внутрь организма или повреждения кожи или других тканей. Вместо этого, данные собираются с помощью внешних средств. В последнее время активно ведутся научные исследования, посвященные методам регисттрации

активности мозга и декодированию информации [14] *TODO: еще ссылок*. Основным направлением применения этих методов являются технологии нейрокомпьютерных интерфейсов.

ТООО: ссылки Несмотря на существование нескольких методов анализа активности мозга, таких как магнитоэнцефалография, функциональная магнитно-резонансная томография и позитронная эмиссионная томография, ЭЭГ остается ценным инструментом для мониторинга активности мозга из-за его относительно низкой стоимости и удобства для пациента.

Исследования ЭЭГ широко используются в медицинской практике для диагностики различных состояний мозга. Проведение классификации сигналов ЭЭГ играет важную роль в определении уровня болезни, выявлении эпилептических припадков, оценке состояния пациента в коме, а также для мониторинга глубокого сна [7, 15].

Относительно новой, но быстро развивающейся областью исследований ЭЭГ являются интерфейсы мозг-компьютер (BCI). Технология BCI открывает новый способ взаимодействия мозга с компьютером. Система собирает сигналы мозга, анализирует их и преобразует сигналы в команды, которые могут быть отправлены на устройство вывода для выполнения определенного действия. Это позволяет осуществлять прямую связь между мозгом и компьютером. Ключевой целью исследований BCI является разработка нового канала связи, который позволяет людям с тяжелыми нервно-мышечными нарушениями напрямую передавать сообщения из своего мозга путем анализа умственной активности. Классификация моторных образов в задаче интерфейса мозг-компьютер может быть использована, например, для управления протезами или другими устройствами с помощью мысленных команд [5, 12, 16]. Для этого проводится анализ и построение модели классификации электрических сигналов ЭЭГ, связанных с моторными образами. Такой подход позволяет людям с ограниченными возможностями управлять устройствами с использованием мысленных команд, компенсируя потерю или отсутствие нормальной моторной функции.

Две основные проблемы — это классификация и извлечение признаков из временных рядов. Рассмотрим известные методы классификации временных рядов ЭЭГ, основанные на дискретном представлении времени. Традиционные методы машинного обучения, такие как линейный дискриминантный анализ, метод опорных векторов, применяются для анализа распределения признаков и поиска гиперплоскости для разделения различных классов [6, 8]. Один из успешных методов классификации предполагает одинаковые временные интервалы и фиксированную длину последовательности. В качестве основной модели обычно применяют классические модели, например, стандартная логистическая регрессия или метод опорных векторов. Перед применением основной модели используется трансформация пространства признаков в терминах римановой геометрии [2, 3]. Подробнее остановимся на методе трансформации признакового пространства. В работе [3] метод называется **Tangent Space Mapping**. Первым этапом данного алгоритма является формирование пространства центрированных признаков.

$$\boldsymbol{X}_i = \begin{bmatrix} \boldsymbol{x}_1^i, \dots \boldsymbol{x}_T^i \end{bmatrix} = \begin{bmatrix} x_{1,1}^i & x_{1,2}^i & \dots & x_{1,T}^i \\ \dots & \dots & \dots \\ x_{K,1}^i & x_{K,2}^i & \dots & x_{K,T}^i \end{bmatrix} = \begin{bmatrix} ts_1 \\ \dots \\ ts_K \end{bmatrix}, \ i = \overline{1,N}$$

где ts_j — временной ряд с нулевым средним, полученный при измерении сигнала j-ым датчиком и последующим центрированием. Тогда ковариационная матрица для одного измерения ЭЭГ имеет вид:

$$\boldsymbol{R}_i = \frac{1}{T-1} \boldsymbol{X}_i \boldsymbol{X}_i^{\mathsf{T}}, \ \boldsymbol{R} \in \mathbb{R}^{K \times K}, \ i = \overline{1, N}$$

Известно, что пространство, состоящее из матриц ковариации, представляет собой Риманово многообразие [2]. В каждой точке данного риманова многообразия имеется касательная плоскость с определенным скалярным произведением на ней. Общая касательная плоскость, предназначенная для отображения всех матриц ковариации в выборке, формируется в точке среднего геометрического по римановой метрике известных ковариационных матриц. Среднее геометрическое симметричных положительно определенных матриц [9] имеет вид:

$$oldsymbol{R} = \mathfrak{G}\left(oldsymbol{R}_1, \ldots, oldsymbol{R}_N
ight) = \operatorname*{argmin}_{oldsymbol{R}} \sum_{i=1}^N \delta_R^2(oldsymbol{R}, \, oldsymbol{R}_i),$$

где риманова метрика определяется следующим образом (геодезическое расстояние):

$$\delta_R(\boldsymbol{R}, \boldsymbol{R}_i) = \|\log(\boldsymbol{R}^{-1}\boldsymbol{R}_i)\|_F = \sqrt{\sum_{i=1}^{3N} \log^2 \lambda_i},$$

 λ_i — собственные значения матрицы $\mathbf{R}^{-1}\mathbf{R}_i$. В работе [2] получено, что для каждой ковариационной матрицы \mathbf{R}_i существует проекция $\boldsymbol{\pi}_i$ на касательное пространство. Таким образом, определено отображение:

$$\operatorname{Exp}_R(oldsymbol{\pi}_i) = oldsymbol{R}_i = oldsymbol{R}^{rac{1}{2}} \exp\left(oldsymbol{R}^{-rac{1}{2}}oldsymbol{\pi}_i oldsymbol{R}^{-rac{1}{2}}
ight) oldsymbol{R}^{rac{1}{2}}$$

$$\log_R(oldsymbol{R}_i) = oldsymbol{\pi}_i = oldsymbol{R}^{rac{1}{2}} \log\left(oldsymbol{R}^{-rac{1}{2}} oldsymbol{R}_i oldsymbol{R}^{-rac{1}{2}}
ight) oldsymbol{R}^{rac{1}{2}}$$

После проектирования каждой ковариационной матрицы R с помощью $\log_R(\ \cdot\)$, получаем матрицы $\pi \in \mathbb{R}^{K \times K}$. Последним этапом метода является векторизация. Процесс векторизации каждой матрицы π в пространство с евклидовой метрикой — последовательная запись элементов верхнетреугольной матрицы от π , где диагональные элементы имеют коэффициент 1, а недиагональные — коэффициент $\sqrt{2}$. Полученные вектора x имеют вид:

$$x = \begin{bmatrix} \pi_{1,1} & \sqrt{2}\pi_{1,2} & \dots & \sqrt{2}\pi_{1,K} & \pi_{2,2} & \dots & \pi_{K,K} \end{bmatrix}^{\mathsf{T}}, x \in \mathbb{R}^{K(K+1)/2}$$

На практике построение ковариационных матриц и получение их образов в касательном пространстве выполняется при помощи библиотеки **PyRiemann** [1].

2 Постановка задачи

Исследуется задача декодирования временного ряда. Пусть имеется некоторый процесс (активность головного мозга):

$$\mathcal{V}(\tau), \, \tau \in \mathbb{R}$$

Тогда данные выборки — это регистрируемый сигнал, то есть реализация процесса $\mathcal{V}(\tau)$:

$$oldsymbol{X} = \left[oldsymbol{x}_1, \dots oldsymbol{x}_T
ight], \, oldsymbol{x}_t \in \mathbb{R}^K$$

Здесь K — число каналов. T — число измерений сигнала с частотой μ за время τ :

$$T = \tau \mu$$

$$oldsymbol{x}_{ au\mu} pprox \mathcal{V}(au)$$

2.1 Задача классификации отрезков регистрируемого сигнала

В данной задаче имеется выборка регистрируемых отрезков сигнала, требуется классифицировать каждый наблюдаемый временной отрезок. Введем следующие обозначения: Пусть имеется N зарегистрированных реализаций некоторого процесса:

$$egin{aligned} oldsymbol{X} &= \{oldsymbol{X}_1, \dots, oldsymbol{X}_N\}, \ oldsymbol{X}_i &= \left[oldsymbol{x}_1^i, \dots, oldsymbol{x}_T^i
ight], \; oldsymbol{x}_t^i \in \mathbb{R}^K, \ oldsymbol{Y} &= \left[y_1, \dots, y_N
ight]^{^{\mathsf{T}}}, \, y_i \in \{1, \dots, C\} \end{aligned}$$

Здесь y_i — целевая метка класса i-го зарегистрированного сигнала. C — число классов в задаче классификации сигнала.

Имеется соответственно выборка $\mathcal{D} = \{y_i, \boldsymbol{X}_i\}, i = \overline{1,N}$ Требуется построить отображение f_{θ} , которое учитывало бы пространственно-временные характеристиик между временными рядами от датчиков:

$$f_{\theta}: \boldsymbol{X} \to \{1, \dots, C\}$$

2.2 Задача классификации активности

В данной задаче предполагается получение классификации для каждого отсчета времени наблюдения. Пусть имеется некоторый процесс и зарегистрированная реализация данного процесса в виде дискретного числа измерений. Каждому измерению соответствует класс активности. Формально:

$$oldsymbol{X} = \{oldsymbol{x}_1, \dots, oldsymbol{x}_T\}, \; oldsymbol{x}_t \in \mathbb{R}^K, \ oldsymbol{Y} = \left[y_1, \dots, y_T\right]^{\mathsf{T}}, \, y_t \in \{1, \dots, C\}$$

Здесь C — число классов в задаче классификации активности. Выборка $\mathcal{D} = \{y_t, \pmb{x}_t\}_{t=1}^T$

Для набора данных, описанного выше, требуется построить отображение f_{θ} , которое учитывало бы пространственно-временные характеристиик между временными рядами сигнала:

$$f_{\theta}: \boldsymbol{X} \to \{1, \dots, C\}$$

3 Вычислительный эксперимент

3.1 EEG Motor Movement/Imagery Dataset

Для анализа работоспособности предложенного метода, а также проверки гипотез проведен вычислительный эксперимент. Для проведения исследования используется набор данных Physionet [10, 11] для классификации ЭЭГ сигналов двигательных активностей, моторных образов. Записи были получены от 109 испытуемых с использованием системы ВСІ2000 и получены с 64 электродов в системе 10-10 [13] с частотой дискретизации 160 Гц. Каждый испытуемый выполнил 14 пробежек, включая две базовые пробежки, одну с открытыми глазами, а другую с закрытыми, каждая продолжительностью в одну минуту. После этих базовых пробежек они выполнили четыре различных задания, каждое из которых повторялось по три раза, причем каждое задание длилось две минуты.

Для проведения базового эксперимента используется подвыборка для задачи бинарной классификации состояния глаз открыты/закрыты.

Применение Римановой геометрии

Используем подвыборку для классификации состояния глаз открыты/закрыты. Рассмотрим несколько классических методов классификации. Метод опорных векторов —один из наиболее популярных методов обучения, который применяется для решения задач классификации и регрессии. Чтобы показать преимущество перехода к Риманову касательному пространству, проведем следующий эксперимент. Векторизуем все многомерные временные ряды и обучим на полученных векторах SVM. Теперь применим алгоритм векторизации Tangent Space Mapping (TSM) на многомерных временных рядах и после этого обучим SVM на векторизованных данных. Результаты на валидации и тесте приведены в таблице 1. Качество классификации после проектирования на касательное пространство гораздо лучше.

Таблица 1: Сравнение методов

	-	
	accuracy	
Метод	валидация	тест
SVM	0.732	0.697
TSM SVM	0.939	0.954

3.2 UCI EEG Eye State

Набор данных бинарной классификации состояния глаз получен в результате одного непрерывного измерения неинвазивного 99Γ с помощью нейроголовки Emotiv EEG с использованием 14 датчиков, на рис.1 задействованные датчики изображены красным цветом.

Продолжительность измерения в выборке составила 117 секунд. Состояние глаз было зафиксировано с помощью камеры во время измерения ЭЭГ и позже добавлено вручную в файл после анализа видеокадров. Метка «1» указывает на состояние с закрытыми

Рис. 1: Задействованные датчики ЭЭГ при измерении сигнала

глазами, а <0> — на состояние с открытыми глазами. Все значения приведены в хронологическом порядке с первым измеренным значением в верхней части данных. Основные характеристики выборки представлены в Таблице 2.

При анализе выборки обнаружено 4 выброса, которые были заменены средними по классам значениями, график временных рядов после обработки выбросов представлен на рис.2.

TODO: попробовать применить библиотеку PyRiemann к данным.

4 Заключение

Таблица 2: Описание выборки

Название	Обозначение	Значение
Продолжительность обследования	au	117 с
Частота измерения сигнала	μ	128.03 c^{-1}
Число каналов (датчиков)	K	14
Число измерений сигнала	T	14980

Рис. 2: График временных рядов

Список литературы

- [1] Alexandre Barachant. pyriemann documentation. Technical report, Tech. Rep. 0.2. 6, 2018. [Online]. Available: https://readthedocs.org..., 2018.
- [2] Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten. Riemannian geometry applied to bei classification. In *International conference on latent variable analysis and signal separation*, pages 629–636. Springer, 2010.
- [3] Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten. Multiclass brain–computer interface classification by riemannian geometry. *IEEE Transactions on Biomedical Engineering*, 59(4):920–928, 2011.
- [4] Sándor Beniczky and Donald L Schomer. Electroencephalography: basic biophysical and technological aspects important for clinical applications. *Epileptic Disorders*, 22(6):697–715, 2020.
- [5] Aniana Cruz, Gabriel Pires, Ana Lopes, Carlos Carona, and Urbano J Nunes. A self-paced bci with a collaborative controller for highly reliable wheelchair driving: Experimental

- tests with physically disabled individuals. IEEE Transactions on Human-Machine Systems, 51(2):109-119, 2021.
- [6] Rongrong Fu, Yongsheng Tian, Tiantian Bao, Zong Meng, and Peiming Shi. Improvement motor imagery eeg classification based on regularized linear discriminant analysis. *Journal of medical systems*, 43:1–13, 2019.
- [7] Dragoljub Gajic, Zeljko Djurovic, Stefano Di Gennaro, and Fredrik Gustafsson. Classification of eeg signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. *Biomedical Engineering: Applications, Basis and Communications*, 26(02):1450021, 2014.
- [8] Yinxia Liu, Weidong Zhou, Qi Yuan, and Shuangshuang Chen. Automatic seizure detection using wavelet transform and svm in long-term intracranial eeg. *IEEE transactions on neural systems and rehabilitation engineering*, 20(6):749–755, 2012.
- [9] Maher Moakher. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM journal on matrix analysis and applications, 26(3):735–747, 2005.
- [10] Gerwin Schalk, Dennis J McFarland, Thilo Hinterberger, Niels Birbaumer, and Jonathan R Wolpaw. Bci2000: a general-purpose brain-computer interface (bci) system. *IEEE Transactions on biomedical engineering*, 51(6):1034–1043, 2004.
- [11] Gerwin Schalk, Dennis J McFarland, Thilo Hinterberger, Niels Birbaumer, and Jonathan R Wolpaw. "eeg motor movement/imagery dataset 2022.
- [12] Andreas Schwarz, Maria Katharina Höller, Joana Pereira, Patrick Ofner, and Gernot R Müller-Putz. Decoding hand movements from human eeg to control a robotic arm in a simulation environment. *Journal of neural engineering*, 17(3):036010, 2020.
- [13] Margitta Seeck, Laurent Koessler, Thomas Bast, Frans Leijten, Christoph Michel, Christoph Baumgartner, Bin He, and Sándor Beniczky. The standardized eeg electrode array of the ifcn. *Clinical neurophysiology*, 128(10):2070–2077, 2017.
- [14] Siuly Siuly, Yan Li, and Yanchun Zhang. Eeg signal analysis and classification. *IEEE Trans Neural Syst Rehabilit Eng*, 11:141–144, 2016.
- [15] Shelagh JM Smith. Eeg in the diagnosis, classification, and management of patients with epilepsy. *Journal of Neurology, Neurosurgery & Psychiatry*, 76(suppl 2):ii2–ii7, 2005.
- [16] Yonghao Song, Weifeng Wu, Chengqi Lin, Gengliang Lin, Guofeng Li, and Longhan Xie. Assistive mobile robot with shared control of brain-machine interface and computer vision. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), volume 1, pages 405–409. IEEE, 2020.
- [17] Michal Teplan et al. Fundamentals of eeg measurement. *Measurement science review*, 2(2):1–11, 2002.