Data Mining HW4 202055364 황성원

Exercises for Clustering

Problem 1)

① 최장면결법

	1	2	3	4	5
1	0				
2	7	0			
3	0	6	0		
4	9	3	8	0	
5	8	5	7	4	0

$$d(1,3) = | \Rightarrow G_1 = \{1,3\}$$

$$d(G_1,2) = \max\{7,6\} = 7$$

$$d(G_1,4) = \max\{9,8\} = 9$$

$$d(G_1,5) = \max\{8,7\} = 8$$

$$d(G_{1},2) = \max\{7,6\} = 7$$

$$d(G_{1},4) = \max\{9,8\} = 9$$

$$d(G_{1},5) = \max\{8,7\} = 8$$

	{1,35	2	4	5			
> 11.33	0						
2	7	0					
4	9	3	0				
5	8	5	4	0			
] 2,4)=3 G ₁ ,G ₂):						
$ \begin{pmatrix} G_1 \\ 1 \\ 1 \\ 2 \\ 3 \end{pmatrix} $ $ \begin{pmatrix} G_3 \\ 2 \\ 3 \end{pmatrix} $ $ \begin{pmatrix} G_3 \\ 2 \\ 4 \end{pmatrix} $ $ \begin{pmatrix} G_3 \\ 2 \\ 4 \end{pmatrix} $							
dll	Fa,5)=	= max	(5,4	-5=5	-		

	{1,35	12,45	5				
>{1,35	0						
{2,45	9	0					
5	8	(5)	0				
d(C	Ga,5)=	5 ⇒G3	={2,4,5				
₩							
	1,	,					

	V	
	{1,35	{2,4,55
{1,35	0	
{2,4.5}	9.	0

d(G1,G3)=Max(7,9,8,6,8,7)

② 평균연결법

	1	2	3	4	5		(1,35	2	4
1	0					⇒ {1,3}	0		
	1	0				2	6,5	0	
3	0	6	0			4	8,5	3	(
4	9	3	8	0			6		
5	8	5	7	4	0		1		
	,			/		d(2,	4)=3	⇒ G	1=

$$d(1,3)=1 \Rightarrow G_1 = \{1,3\}$$

$$d(G_1,2)=\frac{1}{2}(7+6)=6.5$$

$$d(G_1,4)=\frac{1}{2}(9+8)=8.5$$

$$d(G_1,5)=\frac{1}{2}(8+4)=6$$

$$d(2,4)=3 \Rightarrow G_{2}=\{2,4\}$$

$$d(G_{1},G_{2})=\frac{1}{4}(7+9+6+8)$$

$$=7,5$$

$$d(G_{2},5)=\frac{1}{2}(5+4)=4.5$$

5

$$\Rightarrow \frac{\{1,35\} \{2,45\} 5}{\{1,35\} 0}$$

$$\{2,45\} 7,5 0$$

$$5 6 4.5 0$$

 $d(G_2, 5) = 4.5 \Rightarrow G_3 = \{2, 4.5\}$ $d(G_1, G_3) = \frac{1}{6}(7 + 9 + 8 + 6 + 8 + 7)$ = 8

G4= (1,2,3,4,5)

거리는 Euclid distance 로 흑정함 Problem 2)

* 두번째 결과

$$G_{2} = \{G_{3}\} \underbrace{A_{2}, A_{3}, B_{2}, B_{3}, C_{1}}_{A_{2}, A_{3}, B_{2}, B_{3}, C_{1}}.$$

$$(G,B_1) \rightarrow \text{new center point}$$

 G_3^*

new center point =
$$\left(\frac{5+2+8+9+6+1}{6}, \frac{8+5+4+5+4+2}{6}\right)$$

$$= (4.83, 4.67) = G_2^*$$

$$=$$
 (2+8+7+6+1) $=$ (4,8,4) $=$ G_2^{++}

$$G_3 = \{G, B_1\} \rightarrow \text{new center point} = \{\frac{4+5}{2}, \frac{9+8}{2}\} = \{4, 5, 8, 5\} = G_3^{**}$$

⇒ 이러한 과정을 통해 군집결과를 update 해 나가면 된다. (389 위치에서 Euclid distance 7) 가장 작은 군장으로 항망하는 것이 방법임.).

Step 2-1) 첫번째 양격 벡터: &=(0,1,0,1)

Step 2-2)
$$= 1/2$$
 $= 1/2$ $=$

Step 2-3) BMU : C=2

$$W_{2}^{\text{new}} = \begin{pmatrix} 0.1 \\ 0.7 \\ 0.8 \\ 0.2 \end{pmatrix} + 0.6. \begin{pmatrix} 0 - 0.1 \\ 1 - 0.7 \\ 0 - 0.8 \\ 1 - 0.2 \end{pmatrix} = \begin{pmatrix} 0.1 - 0.06 \\ 0.7 + 0.18 \\ 0.8 - 0.48 \\ 0.2 + 0.48 \end{pmatrix} = \begin{pmatrix} 0.04 \\ 0.88 \\ 0.32 \\ 0.68 \end{pmatrix} \Rightarrow W = \begin{pmatrix} 0.5 & 0.04 \\ 0.3 & 0.88 \\ 0.6 & 0.32 \\ 0.2 & 0.68 \end{pmatrix}.$$

* 네번째 관측값 ((0,0,1,0)

$$D_1 = || \chi - ||_1^2 = (0 - 0.5)^2 + (0 - 0.3)^2 + (1 - 0.6)^2 + (0 - 0.2)^2 = 0.54^{\circ}$$

$$D_2 = || \chi - ||_1^2 = (0 - 0.04)^2 + (0 - 0.88)^2 + (1 - 0.32)^2 + (0 - 0.68)^2 = 1.7008$$

Step 2-3) BMU : C=1

$$W_{1}^{\text{new}} = \begin{pmatrix} 0.5 \\ 0.3 \\ 0.6 \\ 0.2 \end{pmatrix} + 0.6 \begin{pmatrix} 0 - 0.5 \\ 0 - 0.3 \\ 1 - 0.6 \\ 0 - 0.2 \end{pmatrix} = \begin{pmatrix} 0.5 - 0.3. \\ 0.3 - 0.18. \\ 0.6 + 0.24. \\ 0.2 - 0.12 \end{pmatrix} = \begin{pmatrix} 0.2 \\ 0.12 \\ 0.84 \\ 0.08 \end{pmatrix}.$$

$$\Rightarrow W = \begin{bmatrix} 0.2 & 0.04 \\ 0.12 & 0.88 \\ 0.84 & 0.32 \\ 0.08 & 0.68 \end{bmatrix}$$

최종가족치 험결

