SWT WS 2020/21 Gruppe 010 Lennart Mesters, 343325 Laura Koch, 406310 Marc Ludevid, 405401 Til Mohr, 405959

Aufgabenblatt 10

Andrés Montoya, 405409 Dobromir I. Panayotov, 407763 Fabian Grob, 409195 Lennart Holzenkamp, 407761 Simon Michau, 406133 Tim Luther, 410886

Aufgabe 10.1

a)

b)

- 1) Semantische Differenz von d_1 zu d_2 : {{A, B, D},{A, B, C, D}}
- 2) Semantische Differenz von d_2 zu d_3 : {{A, B},{A, C, D}}
- 3) Semantische Differenz von d_1 zu d_3 : {{A, B, C, D}}
- 4) Ja, da die Verfeinerung als Mengenoperation $A \setminus B$ gesehen werden kann. Wenn A = B gilt, ist $A \setminus B = \{\}$. Somit ist jedes Feature Diagramm eine Verfeinerung von sich selbst.
- 5) Das gilt nicht. Gegenbespiel: Sei $d = \{\{A\}\}, d' = \{\{A\}\}, d'' = \{\{B\}\}\}$. Offensichtlich ist d eine Verfeinerung von d' und d" eine Verfeinerung von d'. Aber d ist keine Verfeinerung von d'', da $d'' \setminus d = \{\{B\}\}\} \neq \{\}$.
- 6) Ja, da alle Elemente in der semantischen Differenz von d zu d' nicht in d' vorkommen, und alle Elemente in der semantischen Differenz von d' zu d nicht in d vorkommen. Somit sind alle Elemente in der eine Differenz verschieden zu allen Elmenten in der anderen Differenz und der Schnitt der beiden semantischen Differenzen ist leer.
- 7) d ist eine Verfeinerung von $d'\Rightarrow d\subseteq d', d'$ ist eine Verfeinerung von $d''\Rightarrow d'\subseteq d'', d''$ ist eine Verfeinerung von $d\Rightarrow d''\subseteq d\Rightarrow d=d''$
- 8)
- 9)