

Ciencia de Datos y BigData

Embeddings

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Qué es un embedding (proyección)

Qué es un embedding (proyección)

Qué es un embedding (proyección)

Data in R^3 (separable)

Qué es un embedding

Y un videíto sobre el kernel trick

https://www.youtube.com/watch?v=3liCbRZPrZA

Tipos de embeddings

Técnicas populares dentro de la familia de los embeddings

- Selección de características → supervisado o no supervisado
- Agrupamiento de características → supervisado o no supervisado
- The kernel trick → un espacio de mayor dimensionalidad!
- Principal Component Analysis
- Latent Dirichlet Allocation
- t-sne
- Neural embeddings

Objetivos de los embeddings

- En lugar de elegir un subconjunto de características, crear nuevas
- Sin tener en cuenta etiquetas de clase
- Proyectar a menos dimensiones preservando la mayor cantidad de información posible → minimizando el error cuadrado de reconstruir los datos originales

Para qué sirven?

- Reducción de dimensionalidad
- Reducir overfitting
- Generalización
- Acercamiento a las causas latentes
- Reducir el tiempo en ingeniería de características
- Reducir el sesgo del científico

Qué perdemos?

- Información
- Interpretabilidad

Selección de Características

Reducción de dimensionalidad simplemente eliminando características

- Intuición: eliminamos ruido

Pero... la selección de características se hace en relación a una clase! https://scikit-learn.org/stable/modules/feature_selection.html

Cómo hacemos si no tenemos clases?

Aplicamos conocimiento de dominio!

- P.ej., en lenguaje natural:
 - eliminamos palabras poco frecuentes
 - eliminamos palabras muy frecuentes

Selección de Características

Reducción de dimensionalidad simplemente eliminando características

- Intuición: eliminamos ruido

También tenemos métodos basados en varianza:

- Eliminar características con poca varianza (en scikit learn, VarianceThreshold)
- Eliminar características redundantes con otras (en scikit learn, mutual info classif)

Agrupamiento de Características

- Combinación de características dependientes (redundantes)
 - Por ejemplo, combinación lineal de el número de paradas recorridas por un colectivo y la distancia
- Combinación de características que sabemos que se pueden representar unidas
 - Por ej., sustituir viento, temperatura y humedad por sensación térmica
- Podemos sustituir características por la clase a la que pertenecen!
 - Por ej., en lenguaje natural, sustituir "corríamos" por "correr" o por V

Principal Component Analysis

Minimiza el error cuadrado de reconstruir los datos originales

Principal Component Analysis

Minimiza el error cuadrado de reconstruir los datos originales

Descomposición en Valores Singulares

Los componentes principales se encuentran descomponiendo una matriz en valores singulares (eigenvalues) → singular value decomposition (SVD)

$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} \lambda_1 & 0 & \lambda_2 \\ 0 & \lambda_2 \end{bmatrix} \times \begin{bmatrix} \lambda_1 & 0 & \lambda_2 \\ 0 & \lambda_2 \end{bmatrix} $		5 5 0 0	5	0	0		u ₁ 		$\begin{bmatrix} \mathbf{x} & \lambda_1 & \Diamond \\ \Diamond & \lambda_2 \end{bmatrix} & \mathbf{x} \\ \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 \\ \mathbf{w}_2 \end{bmatrix} & \mathbf{v}_1 & \mathbf{w}_2 \end{bmatrix}$
---	--	---------	---	---	---	--	--------------------	--	---

Los componentes valores singulares

Términos x Documentos

x Concep Fuerza de cada concepto

retrieval inf. | brain lung

0.18	0
0.36	0
0.18	0
0.90	0
0	0.53
0	0.80
0	0.27_

Latent Semantic Analysis: Reducción de dimensionalidad

						1
1	1	1	0	0	0.18	Q
2	2	2	0	0	0.36	0
1	1	1	0	0	0.18	0
5	5	5	0	0	0.90	0
0	0	0	2	2	0	0
0	0	0	3	3	0	0.
0	0	0	1	1	0	0.

Latent Semantic Analysis: Reducción de dimensionalidad

$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.18 \\ 0.36 \\ 0.18 \\ 0.90 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 9.64 \\ 0.90 \\ 0 \\ 0 \end{bmatrix}$	X 8 0.:	
---	------------	--

Probabilistic Latent Semantic Analysis

 Modela la distribución de cada co-ocurrencia como una mezcla de distribuciones multinomiales independientes o clases latentes o tópicos (el n de tópicos es un parámetro)

- d es el documento
- c es un tópico obtenido de la distribución de tópicos del documento P(cld)
- w es una palabra obtenida de la distribución de palabras de c

Latent Dirichlet Allocation

- Modela la distribución de cada co-ocurrencia como una mezcla de distribuciones multinomiales (clases latentes o tópicos)
- Se asume que las clases latentes están distribuidas según la distribución de Dirichlet, una distribución de probabilidad continua multivariada

Latent Dirichlet Allocation

- α es el parámetro de de Dirichlet en la distribución de tópicos por documentos
- β es el parámetro de Dirichlet en la distribución de palabras por tópicos
- Theta es la distribución de tópicos para el documento i
- Phi es la distribución de palabras para el tópico k
- Z es el tópico para la j-ésima palabra del documento i

t-distributed stochastic neighbor embedding (t-SNE)

- reducción de dimensionalidad no lineal
- para visualización en dos o tres dimensiones
- los objetos semejantes quedan cercanos y los más diferentes quedan más distantes, con alta probabilidad

t-SNE

no linealidad: embeddings neuronales

- 1. entrenar una red neuronal
- 2. eliminar la capa de predicción
- 3. la capa anterior a la de predicción es el nuevo espacio
- 4. el camino hasta esa capa es el mecanismo de proyección

no linealidad: embeddings neuronales

no linealidad: embeddings neuronales

https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings

https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings

https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings

Embeddings neuronales

- Entrenar una red neuronal con una tarea de pretexto para la que tenemos muchos ejemplos naturalmente
 - Predecir una palabra dado su contexto, o un contexto dada una palabra
 - Reconstruir una imagen
- Eliminar la capa de predicción de la red
- La capa anterior a la de predicción es la nueva caracterización de los objetos
 - Menos características → acercándonos a las causas latentes!
- Se usa la red para convertir los objetos del espacio original al espacio de embeddings
- Es relativamente barato de obtener
- Ahora podemos caracterizar datos supervisados con información poblacional de grandes cantidades de datos no supervisados

el gato come pescado

el gato come pescado

	gato	come	pescado	•	?
el		come	pescado	•	?
el	gato		pescado	•	?
el	gato	come			?

mejores representaciones

el gato come pescado

	gato	come	pescado	?
el		come	pescado	?
	g	ato		
el	gato		pescado	?
	С	ome		
el	gato	come		?

semántica de las palabras

Nos acercamos a las causas latentes

Perdemos interpretabilidad

Perdemos interpretabilidad

Embeddings neuronales

Gensim (word2vec, doc2vec, y toda la familia)

Fastext

Bert, GPT-2, GPT-3

T-sne

https://distill.pub/2016/misread-tsne/