Homework 4 Report

Student ID: 112061533 Name: 潘金生

1. Design concept:

• Explanation of the overall hardware architecture and Block diagram.

附圖為本次的 block diagram,這次主要分了五個 module 去撰寫,其中包括 top module Lenet 和 submodule pe, actquant, maxpool, relu,其中 Lenet 負責整合 submodule 和做訊號傳接,延遲訊號等處裡。

在本次作業中,採用了 8 個 PE(40 個 MAC)去實現 Lenet,這是為了在 convolution layer 時達到 data reusability 的效果,如同 spec 所說,可以一次 load 6*6 ifmap 去實現,讓 6 個 cycle 即可達到 8 筆 output 且經過 maxpool 後一次產生 2 筆 result,不過在 Fully-connected layer 時則只改成開 2 個 pe 去做運算。

除此之外,由於 scale 為正數,因此在本次作業中,我先進行 maxpool, 在做 actquant, relu,由於 maxpool後只會產生2筆 output,這樣一來,我只 需要開2個 actquant和 relu 就好,可以有效地節省面積。

在本次作業中, clock period 也算在評分範圍內,因此在 pe, actquant 中, 我認為 path 較長的 delay 我皆有切 pipeline,以達到較好的 clock period。

- a. Module pe: 乘加運算器,用來執行 weight 和 activation 的乘加運算,共有 5 個乘法和 6 個加法器,且中間有切 2 個 cycle。
- b. Module Maxpool: 比較 4 筆 input data 的大小,產生 1 筆最大的輸出,中間有切一個 cycle。
- c. Module Actquant: 用來乘上 scale 和進行 shift 16 bits 且 clamp 大小為(-128,127)中間範圍,且中間有切 1 個 cycle。
- d. Module Relu: 小於 0 的數值歸 0,大於 0 保持原值。
- e. Lenet: 用來控制 address 和 wea 參數,判斷合適需要讀入數值,和寫回輸出,並且其中的 FSM 來判斷目前為什麼 state(layer),且要做什麼事。

• Finite-state machine diagram.

FSM 設計的部分,基本上就是判斷地址,這裡的 delay 是代表在讀取時所需要的 cycle,公式如下: 讀取的 data 數 + 等待 2 個 clk(sram 讀取 data 會有延遲)+pipeline cycle 數,其中,在 Fully-connected layer 時,由於我是一次寫四筆,因此他需要等待的 delay 較長,並且在 delay 中,還需留一個 cycle 讓 pe 歸 0 重新運算,因此 fully-connected layer 的公式為: 讀取的 data 數+ 3*等待 clk + 等待 2 個 clk + pipeline cycle 數,其餘層_R(讀取層)以此類推,接著再判斷何時要跳入_W(寫出層),並且判斷 addr 到何時需要跳入下一個 layer。

• Explanation of dataflow (and data reuse) for convolution and fully connected layers.

Convolution Layer:

- a. Spatial reuse: Activation 採用了 spatial reuse, 一次可以讀取 8 筆資料,並將他們給全部的 pe 所使用。
- b. Temporal reuse: 由於在讀取 weight 的時候,無法給下一排所使用,因此 這裡採用 weight buffer 的方式,在下一個 clk 的時候,給下排使用。

Fully-connected Layer:

在 Fully-Connected Layer 時,採用一次寫四筆的輸入,其中會 delay1 個 clk,最後在一次四筆輸出過去,這樣可以避免一次 write 時需要等待的 cycle,節省所要花費的 clk 數。

2. Spyglass Report:

a. Could not find clocks for all the flops

這部分要加入 SGDC constraint,來讓 Design Compiler 找到 clocks,不過我有去檢查波型,發現我所設計 FF 有正常運作,因此在這裡忽略它。

######################################											
HILL THE											
[2] Av initOl Fatal/hdl/lenet.v 1 10 Could not find clocks for all the flops. Please add clo	ck SGDC constraint t	to the design									

b.Advanced Lint Policy not run due to unavailability of auto verify license feature: 軟體廠商授予與我們的 license 限制,可以忽略。

MORESIMPLE REPORT: ####################################									
ID	Rule	Alias	Severity		Line	Wt	HHHHHHHHHH Message		
[0]	Av license01	+++++++	FATAL		0	2	'Advanced Lint Policy' not run due to unavailability of Auto Verify license feature		

3. Result

本次作業採用 clock period 1.75ns 去合成跑在 1.98ns 的 gate-level simulation 來避免 setup/hold time 問題。

Item	Description	Unit
RTL simulation	PASS	
Gate-level simulation	PASS	
Gate-level simulation clock period	1.98	ns
Gate-level simulation latency	25857	cycles
Total cell area	48599.688779	um^2

4. Others (optional)

謝謝助教在討論區的積極回覆,幫助我解決很多問題。