Undetermed Crefficients Exs.

Som: $\{n \ \forall c : \ 4^2 - 254 = 0 \ \text{(i.f. } \ n^2 - 25 = 0 \ \text{M} = \pm 5$ Ye = Cich5x + C2 such 5x we have depication so $y = Ae^{-5x}$ fails $y_1 = Ax e^{-5x}$ $y_1' = A(-5xe^{-5x}), y_2'' = A(25xe^{-5x}) = 7$ A $(25xe^{-5x} - 10e^{-5x}) = 30e^{-5x} = 7$ $(3xe^{-5x} - 10e^{-5x}) = 30e^{-5x} = 7$

le	, k
#8	$4y'' + y = 8 \operatorname{cn} \frac{x}{2}$
	Soln: (n 4c: 44"+4=0 C.E. 42+120 1=+2i
	$Y_C = C_1 C n \frac{\chi}{2} + C_2 s i \frac{\chi}{2}$
	w w w w w w w w w w w w w w w w w w w
	yprent or yprent will fail
	Let $y_{\rho} = x \left(A \operatorname{cn} \frac{x}{2} + B = \frac{x}{2} \right)$
	$Y_{p} = x \left(-\frac{1}{2} \sin \frac{x}{2} + \frac{B}{2} \cos \frac{x}{2} \right) + A \cos \frac{x}{2} + B \sin \frac{x}{2}$
	1 = x (- A cn x B si x) + (-A si x + B cn x)
	after subling: -4 A si x + 4 B cn x = 8 cn x = > A=0 B=2
	4y= 2x 8in x
	(4= c, cn \(\frac{x}{2}\) + c_2 \(\frac{x}{2}\) + 2 \(x \) \(\frac{x}{2}\)
	1st order egns can also be solved like this for centain v.h.s.'s
	' 4 + 24 = 2x + e 1x
	let 40 = Ax + B + Ce x => 40 = A + 4 Ce x
	let 4 = Ax + 13 + (e =) 1 = 17 + 1 Ce
5	bling A +4 Ce 1 + 2Ax + 2B + 2Ce 4 = zx + e 4 Y
	$= \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$A + 2B = 0$ = $B = -\frac{1}{2}$ $y_0 = x - \frac{1}{2} + \frac{1}{6}e^{4x}$
	6C=1=> C=1/6
	Y=C, E2x + x-1 + 1ex

7.1.1#2

 $\int M_{t} = M_{XX} + (3 + \pi^{2}(3t-2)) sm\pi X + (9\pi^{2}t^{2} + 2t) sm 3\pi X$) M(0,+)= M(1,+)=0 11 (x,0)= f(x)= -2 smiTY

e-fuction assumption: M(x,+)= Ecu(+1 sui MTX

after substitution.

Cn + u2T2cn = 2n(+) Pn (+) = nh coeff of 9 (x,+) cn(0) = nm well. of f(x)

to get qu(+)

 $q(x,t) = (3 + \pi^2(3t-2)) \sin \pi x + (9\pi^2 t^2 + 2t) \sin 3\pi x =$ in (t) si hax matching up => (8, (+)= 3+172(3+-2) $h_3(t) = 9\pi^2 t^2 + 2t$ all old q_n 's are o

N=3

to get culol

 $f(x) = u(x,0) = -2 \sin \pi x = \sum_{i=1}^{\infty} c_{i}(0) \sin x$

matching up => G(0)=-2 all other Gylo) are o

o.d.e.'s

 $c_1 + \pi^2 c_1 = 3 + \pi^2 (3 + -2)$ N=1 C, 10 =-2

C3 + 912 C3 = 9712+2+2+ c3(0) = 0

solutions to o.d.e.'s

by inspection or undetermed cuells: $C_1 = 3t - 2$; $C_3 = t^2$ all other cu =0.

(4 (x,t)= (3 t-2) smith + t2 smi 3TX

7.1.1
$$\pm 8$$

$$M(x, t) = M(x, t) \pm 0$$

$$M(x, t) = \frac{1}{2}(x + t) \pm 0$$

$$M(x, t) = 0$$

$$M($$

7.13#1

$$M_{\xi} = M_{X,X} + \sin^{-3}\frac{\pi Y}{2} - 2 \sin^{-5}\frac{\pi X}{2}$$
 $O = X = 1$
 $M(\theta, \xi) = M_{X}(\xi, \xi) = 0$
 $M(\theta, \xi) = 0$
 $M(\theta,$

$$M_{\{\ell_{1},\ell_{2}\}} = M_{\{1,\ell_{1}\}} = 0$$

$$M_{\{\ell_{1},\ell_{2}\}} = M_{\{1,\ell_{1}\}} = 0$$

$$M_{\{\ell_{1},\ell_{2}\}} = \sum_{i=1}^{n} \sum_{i=1}^{n}$$