

Examination in School of Mathematical Sciences Semester 2, 2011

104831 Real Analysis - UG

MATHS 2100

Official Reading Time:

10 mins

Writing Time:

120 mins

Total Duration:

130 mins

NUMBER OF QUESTIONS: 8

TOTAL MARKS: 90

Instructions

- Attempt all questions.
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.

Materials

- 1 Blue book is provided.
- No calculators, books, notes, or other aids are permitted.

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.

1. (a) Let $f: A \to \mathbb{R}$ be a function and $(A_i)_{i \in I}$ be a family of subsets of A. Show that

$$f^{-1}(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f^{-1}(A_i).$$

- (b) Find a function $f: \mathbb{R} \to \mathbb{R}$ and a subset B of \mathbb{R} for which $f^{-1}(f(B)) \neq B$.
- (c) Let $A_q = (-\infty, q)$ for $q \in \mathbb{Q}$, the rational numbers. Find (without proof) the following sets:
 - (i) $\bigcup_{q \in \mathbb{Q}} A_q$

- (ii) $\bigcap_{q\in\mathbb{O}} A_q$.
- (d) Let $f:A\to B$ be a function. Show that if $f(C\cap D)=f(C)\cap f(D)$ for all $C,D\subset A$ then f is injective.

[3+2+4+3 = 12 marks]

- 2. (a) Let A be a subset of \mathbb{R} . Define what it means
 - (i) for A to be bounded above
 - (ii) for $b \in \mathbb{R}$ to be the least upper bound of A.
 - (b) State the axiom of completeness for real numbers.
 - (c) Find the following (proofs are not necessary).
 - (i) $\sup [0, 20)$
 - (ii) $\sup A \text{ if } A = (-1,5) \cup (-5,2] \cup \{3\}$
 - (iii) $\inf A \text{ if } A = (-1,5) \cup (-5,2] \cup \{3\}.$

[3+2+3 = 8 marks]

- 3. (a) Define what it means for a sequence (a_n) in \mathbb{R} to
 - (i) converge to an element $a \in \mathbb{R}$
 - (ii) be a Cauchy sequence.
 - (b) Use your definition to show that if $a_n = \frac{1}{3n+3}$ then $a_n \to 0$ as $n \to \infty$.
 - (c) Show directly from the definition of a Cauchy sequence that the sum of two Cauchy sequences is another Cauchy sequence.
 - (d) Let (a_n) be a sequence such that $a_n \geq 0$ for infinitely many $n \in \mathbb{N}$. Show that if $a_n \to a$ then $a \geq 0$.

[4+3+4+4=15 marks]

- 4. (a) Define what it means for a subset A of \mathbb{R} to be open.
 - (b) Show that the intersection of finitely many open subsets of \mathbb{R} is open.
 - (c) (i) Complete the following (in your exam booklet). A subset $B \subset \mathbb{R}$ is said to be dense in \mathbb{R} if
 - (ii) Use the fact that the rational numbers are dense in \mathbb{R} to prove that the *irrational* numbers are dense in \mathbb{R} .
 - (d) Prove that any subset A of \mathbb{R} can be written as the intersection of open sets.

[2+4+4+4=14 marks]

- 5. (a) (i) Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ be a function, and let c be a limit point of A. Define what it means for the limit of f at c to exist and be equal to the real number L.
 - show that In the 2011 course the concept of 'compact set' was $\lim_{x\to 2} (7x-12) = 2$. discussed. We discussed (ii) Use your definition of limit to show that sequentially compact sets
 - (b) (i) Define what it means for a subset C of \mathbb{R} to be *compact*.
 - (ii) Let $f: A \to \mathbb{R}$ be a continuous function and $C \subset A$ a compact subset of A. Show that f(C) is compact.

 with sequentially compact:

 [5+7 = 12 marks]

- 6. (a) Complete the following (in your exam booklet). Suppose $f:I\to\mathbb{R}$ is a function defined on an interval $I \subset \mathbb{R}$ containing more than one point. f is said to be differentiable at $a \in I$ if
 - (b) Suppose that $f:(a,b)\to\mathbb{R}$ has a minimum at a point $c\in(a,b)$. Show that if f is differentiable at c then f'(c) = 0.

[2+4 = 6 marks]

7. Let $f:[a,b]\to\mathbb{R}$ be a bounded function, and let P be a partition of [a,b] with elements $a = x_0 < x_1 < \dots < x_n = b$. If $k \in \{1, 2, \dots, n\}$ define

$$m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}, \quad M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}.$$

- (a) Define the upper sum U(f, P) and lower sum L(f, P) of f with respect to P.
- (b) Define what it means for f to be *integrable* on [a,b].
- (c) Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and $f(x)\geq 0$ for all $x\in[a,b]$. Show that if there is a point $c \in [a, b]$ with f(c) > 0 then $\int_a^{\tilde{b}} f(x) dx > 0$.

[2+2+4 = 8 marks]

- 8. (a) State what it means for a sequence (f_n) of functions on $A \subset \mathbb{R}$ to converge to a function $f:A\to\mathbb{R}$
 - (i) pointwise
 - (ii) uniformly.
 - (b) Let $f_n(x) = nxe^{-n^2x}$ for $x \in [0, \infty)$.
 - (i) Show that the sequence (f_n) converges uniformly to 0 (the zero function on the interval $[0,\infty)$).
 - (ii) Does $f_n \to 0$ pointwise?
 - (c) (i) Give the statement of the Weierstrass M-Test.
 - (ii) Show that the formula

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

defines a continuous function f on the interval [-1,1].

[3+5+7 = 15 marks]