1 Para uma boa alimentação, o corpo necessita de vitaminas e proteínas. A necessidade mínima de vitaminas é de 32 unidades por dia e a de proteínas é de 36 unidades por dia.

Uma pessoa tem disponível carne e ovos para se alimentar.

Cada unidade de carne contém 4 unidades de vitaminas e 6 unidades de proteínas, a um custo de 3 unidades monetárias por unidade.

Cada unidade de ovo contém 8 unidades de vitaminas e 6 unidades de proteínas, a um custo de 2,5 unidades monetárias por unidade.

Qual o modelo matemático que descreve a quantidade diária de carne e ovos que deve ser consumida para suprir as necessidades de vitaminas e proteínas com o menor custo possível?

R.: Solução:

x, = quantidade diária de carne a ser consumida

x<sub>2</sub> = quantidade diária de ovos a ser consumida

# Função objetivo:

Min C = 
$$3x_1 + 2.5x_2$$

## Restrições:

- Quanto ao consumo de vitaminas:

$$4x_1 + 8x_2 \ge 32$$

- Quanto ao consumo de proteínas:

$$6x_1 + 6x_2 \ge 36$$

- Quanto a não negatividade das variáveis:

$$X_1, X_2 \ge 0$$

Modelo:

Min C = 
$$3x_1 + 2.5x_2$$
  
Sujeito a

$$4x_1 + 8x_2 \ge 32$$

$$6x_1 + 6x_2 \ge 36$$

$$x_1, x_2 \ge 0$$

|           |           |     | Diariamente |          |                               |                |
|-----------|-----------|-----|-------------|----------|-------------------------------|----------------|
|           | <b>x1</b> | X2  | 32          | 36       | Carne = 3 e Ovo = 2,5 (Custo) |                |
| Interação | Carne     | Ovo | Vitamina    | Proteina | valor (Vitamina) + (proteina) |                |
| 0         | 0         | 0   | 0           | 0        | 0                             |                |
| 1         | 4         | 2   | 32          | 36       | 17                            | *Minimo Diario |
| 2         | 4         | 3   | 40          | 42       | 19,5                          |                |
| 3         | 3         | 4   | 44          | 42       | 19                            |                |
| 4         | 1         | 5   | 44          | 36       | 15,5                          | *Menor custo   |
| 5         | 1         | 6   | 52          | 42       | 18                            |                |
| 6         | 1         | 7   | 60          | 48       | 20,5                          |                |



**Conclusão:** A tabela pode ser representada de duas formas (menor custo) ou (limite de vitaminas mínimo), mas este exercício deixou livre a interpretação. O gráfico mais simples inclui no eixo Y= Vitamina e Proteína e no eixo X= custo, ele também pode ser representado de outras formas.

2 Uma indústria têxtil produz três tipos de produtos, cada um dos quais necessariamente precisa ser processado em uma máquina de costura reta, em uma máquina de costura overlock e embalado. Os tempos consumidos por cada unidade de produto em cada processo, a disponibilidade de tempo, os custos e a receita pela venda de cada unidade dos produtos seguem na tabela a seguir.

|                 | Tempo de        | processo (ı         | Consumo de | Receita               |                  |
|-----------------|-----------------|---------------------|------------|-----------------------|------------------|
| Produto         | Máquina<br>reta | Máquina<br>overlock | Embalagem  | matéria-prima<br>(kg) | unitária<br>(RS) |
| Tipo I          | 15              | 10                  | 5          | 1,5                   | 50               |
| Tipo II         | 10              | 12                  | 8          | 0,8                   | 65               |
| Tipo III        | 5               | 4                   | 3          | 0,6                   | 30               |
| Disponibilidade | 4800            | 4000                | 3600       | 480                   | -                |

Deseja-se planejar a produção da próxima semana de forma que o lucro dessa indústria seja o máximo possível.

Assumindo com variáveis de decisão:

- x, = quantidade de unidades a produzir do produto tipo A
- $x_2$  = quantidade de unidades a produzir do produto tipo B
- x<sub>3</sub> = quantidade de unidades a produzir do produto tipo C Responda:
- a) Escreva a função objetivo que representa o modelo.
- b) Escreva as restrições do problema quanto:
- (i) ao tempo de processo na máquina de costura reta;
- (ii) ao tempo de processo na máquina de costura overlock;
- (iii) ao tempo de processo de embalagem;
- (iv) a não negatividade;
- (v) ao consumo de matéria-prima.

R.: Solução:

x, = quantidade de unidades a produzir do produto tipo A

x<sub>2</sub> = quantidade de unidades a produzir do produto tipo B

 $x_3$  = quantidade de unidades a produzir do produto tipo C

a) Função objetivo:

Max L = 
$$50x_1 + 65x_2 + 35x_3$$

- b) Restrições:
- (i) ao tempo de processo na máquina de costura reta:

$$15x_1 + 10x_2 + 5x_3 \le 4800$$

(ii) ao tempo de processo na máquina de costura overlock:

$$10x_1 + 12x_2 + 4x_3 \le 4000$$

(iii) ao tempo de processo de embalagem:

$$5x_1 + 8x_2 + 3x_3 \le 3600$$

(iv) a não negatividade:

$$X_1, X_2, X_3 \ge 0$$

(v) ao consumo de matéria-prima:

$$1.5x_1 + 0.8x_2 + 0.6x_3 \le 480$$

**Conclusão:** A tabela já foi descrita no exercício. O gráfico mais simples inclui no eixo Y= Tipo de Máquina e no eixo X= custo, neste caso serão três retas igual à do exercício dois, logico com valores diferentes (kkk). Neste tipo de exercício não cobrarei gráficos.

#### 3 Modele, sem resolver, os seguintes PPLs:

Uma indústria produz porcas, parafusos e pregos, podendo usar dois métodos (distintos e não simultâneos) para produzi-los. O primeiro método produz 3000 porcas, 2000 parafusos e 2500 pregos por hora, enquanto que o segundo método produz 4000 parafusos e 4000 pregos por hora, mas nenhuma porca. A indústria trabalha 18 horas por dia e tem uma encomenda de 5000 parafusos, 5000 pregos e 5000 porcas. Ela deve empregar os dois métodos de modo a entregar sua encomenda o mais rápido possível, planejando o tempo de operação de cada método.

```
R.: Solução:
x₁ = tempo de operação com o método 1
x<sub>2</sub> = tempo de operação com o método 2
 Função objetivo:
 Min T = X_1 + X_2
Função objetivo:
Min T = X_1 + X_2
Restrições:

    Quanto à demanda por porcas:

3000x_1 + 0x_2 \ge 5000

    Quanto à demanda por parafusos:

2000x_1 + 4000x_2 \ge 5000

    Quanto à demanda por pregos:

2500x_1 + 4000x_2 \ge 5000

    Quanto a não negatividade das variáveis:

X_{1}, X_{2} \ge 0
Modelo:
Min T = X_1 + X_2
Sujeito a
3000x_1 + 0x_2 \ge 5000
2000x_1 + 4000x_2 \ge 5000
```

 $2500x_1 + 4000x_2 \ge 5000$ 

 $X_{1}, X_{2} \ge 0$ 

## 4 Modele e resolva o problema de PLI:

Uma fábrica de cristais procura planejar a produção de dois tipos de produtos de modo a maximizar seu lucro. Essa fábrica possui um forno para a fabricação de cristais que pode operar no máximo 16 horas por dia. Nesse forno são produzidos dois produtos: um elefante de cristal, que precisa de 15 minutos de forno para ficar pronto, e uma borboleta de cristal, que precisa de 25 minutos para ficar pronta. Cada elefante é vendido por R\$ 12,00 e a borboleta é vendida por R\$ 15,00. Quanto de cada produto essa fábrica deve produzir num dia de trabalho?

```
R.: Solução:
```

 $x_1$  = quantidade de elefantes a ser produzida  $x_2$  = quantidade de borboletas a ser produzida

## Função objetivo:

 $Max L = 12x_1 + 15x_2$ 

#### Restrições:

- Quanto ao tempo de forno:

 $15x_1 + 25x_2 \le 16 \cdot 60$ , ou seja,  $15x_1 + 25x_2 \le 960$ 

- Quanto a não negatividade das variáveis:

$$X_{1}, X_{2} \ge 0$$

- Quanto ao tipo das variáveis:

x<sub>1</sub>, x<sub>2</sub> inteiros

#### Modelo:

Max L =  $12x_1 + 15x_2$   $15x_1 + 25x_2 \le 960$  $x_1, x_2 \ge 0$  e inteiros

Como o modelo apresenta solução ótima inteira no ponto C (64, 0), temos

 $x_1 = 64 e x_2 = 0$ , ou seja,

 $L = 12 \cdot 64 + 15 \cdot 0$ 

L = 768

