Introduction Sélection de modèle Exemple : Prostate Extensions du lasso

Apprentissage statistique : méthodes linéaires pour la régression

C. HELBERT

Plan

Introduction

Sélection de modèle

Exemple: Prostate

Extensions du lasso

Contexte:

- $\succ X_1, ..., X_p$ sont des variables explicatives (descripteurs, prédicteurs)
- Y est la variable à expliquer quantitative.

Méthodes linéaires : on suppose que la relation entre Y et $(X_1,...,X_p)$ peut s'exprimer comme une combinaison linéaire des $(X_1,...,X_p)$ (ou de fonctions déterministes de $(X_1,...,X_p)$).

Contexte:

- $\succ X_1, ..., X_p$ sont des variables explicatives (descripteurs, prédicteurs)
- Y est la variable à expliquer quantitative.

Méthodes linéaires : on suppose que la relation entre Y et $(X_1,...,X_p)$ peut s'exprimer comme une combinaison linéaire des $(X_1,...,X_p)$ (ou de fonctions déterministes de $(X_1,...,X_p)$).

- méthodes simples, les effets des entrées sur la sortie sont interprétables
- ▶ robustes dans un contexte avec n petit comparativement à p
- extensions nombreuses en considérant des fonctions déterministes de (X₁,..., X_p) (méthodes de régression sur fonctions de base).

Exemple : cancer de la prostate

- entrées : volume et poids de la tumeur en log (*lcavol* et *lweight*), age (*age*), nombre de tumeurs benignes en log (*lbph*), invasion des vesicules seminales (*svi*), penetration capsulaire en log (*lcp*), score de Gleason (*gleason* et *pgg45*).
- Y : niveau d'antigène spécifique de la prostate (Ipsa)

Variables qualitatives, quantitatives et corrélées.

Training : $n_{train} = 67$. Test : $n_{test} = 30$.

Commande Summary

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.46493
                     0.08931 27.598 < 2e-16 ***
lcavol
           0.67953
                     0.12663 5.366 1.47e-06 ***
         0.26305
                     0.09563 2.751 0.00792 **
lweight
           -0.14146 0.10134 -1.396 0.16806
age
           0.21015
                     0.10222 2.056 0.04431 *
lbph
           0.30520
                     0.12360 2.469 0.01651 *
svi
lcp
           -0.28849
                     0.15453 -1.867 0.06697 .
           -0.02131
                     0.14525 -0.147 0.88389
gleason
pgg45
           0.26696
                     0.15361 1.738 0.08755 .
---
```

Residual standard error: 0.7123 on 58 degrees of freedom Multiple R-squared: 0.6944, Adjusted R-squared: 0.6522 F-statistic: 16.47 on 8 and 58 DF, p-value: 2.042e-12

Test des modèles emboités

Influence de age, lcp, gleason, pgg45?

$$F = \frac{\frac{SSEreduit - SSEcomplet}{p - q}}{\frac{SSEcomplet}{n - (p + 1)}} = \frac{\frac{32.81 - 29.43}{8 - 4}}{\frac{29.43}{67 - (8 + 1)}} = 1.67.$$

Or
$$Pr(F_{4,58}>1.67)=0.17>0.05$$
 donc on conserve H_0 : " $\beta_{age}=\beta_{lcp}=\beta_{gleason}=\beta_{pgg45}=0$ "

Modèle réduit

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.47142 0.08901 27.766 < 2e-16 ***
lcavol 0.59582 0.10910 5.461 8.85e-07 ***
lweight 0.23084 0.09456 2.441 0.0175 *
lbph 0.20313 0.10215 1.988 0.0512 .
svi 0.27814 0.11311 2.459 0.0167 *
```

Residual standard error: 0.7275 on 62 degrees of freedom Multiple R-squared: 0.6592, Adjusted R-squared: 0.6372 F-statistic: 29.98 on 4 and 62 DF, p-value: 6.911e-14

Pourcentage de variance expliquée sur l'ensemble test : > R2(prost.test[, 9], predict(mod2, newdata = prost.test)) [1]0.5652503

Plan

Introduction

Sélection de modèle

Exemple: Prostate

Extensions du lasso

La solution des moindres carrés n'est pas entièrement satisfaisante :

- Interprétation : quand p est grand , on veut exhiber les variables les plus influentes (criblage ou screening) au dépend des variables les moins influentes.
- ▶ **Précision de la prédiction** : quand *p* est grand (*X*₁, ..., *X*_p corrélés) ou degré du polynôme élevé (nombre de fonctions de régression important) la solution des moindres carrés a souvent une forte variance.

Introduction

Les méthodes de contraction : "shrinking" Les méthodes de seuillage : "thresholding" Les méthodes basées sur des combinaisons linéaires des entrées

norm inf beta = 35.6 norm inf beta = 221951

Les critères habituels

Quand *p* n'est pas trop grand, plusieurs critères et méthodes existent pour faire de la sélection de modèle :

- ▶ AIC, BIC, Cp de mallows, F-Statistics, Validation croisée
- parcours de tous les sous-ensembles (tous les modèles réduits) de façon exhaustive ou uniquement via des méthodes backward ou forward.

Introduction

Les méthodes de contraction : "shrinking"
Les méthodes de seuillage : "thresholding"
Les méthodes basées sur des combinaisons linéaires des entrées

Les avancées récentes

Quand p est grand, plusieurs solutions existent pour stabiliser et exploiter le critère des moindres carrés :

- ► la contraction (shrinking)
- le seuillage (thresholding)
- méthodes à base de combinaisons linéaires

Ridge Regression

Si on reprend l'exemple 1D ci-dessus, on voit que la norme de β explose avec la dimension, en contexte corrélé.

Première idée : imposer une pénalité sur la norme 2 du vecteur de paramètres.

$$\beta^{ridge} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \right\},$$
subject to $\sum_{j=1}^{p} \beta_j^2 \le t$.

 \Leftrightarrow

$$\beta^{ridge} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Ridge Regression

Interprétation :

- ▶ Il existe une relation directe entre λ et t, plus λ augmente plus t diminue
- ▶ Attention : la pénalisation ne s'exerce pas sur β_0 . Quand les variables $X_1, ..., X_p$ sont centrées $(\tilde{x}_{ij} = x_{ij} \bar{x}_{.j})$, β_0 est estimé par $\frac{1}{n} \sum_{i=1}^n y_i$
- Dans la suite, on considère le problème de l'estimation de β₁,...,β_p quand la matrice X contient p colonnes centrées. On considère aussi habituellement que les variables sont préalablement réduites pour attribuer la même pénalisation à chaque prédicteur.

Ridge Regression

Le problème peut s'écrire sous la forme matricielle suivante :

$$eta^{ridge} = \mathop{argmin}_{eta} \ RSS(\lambda)$$
 où $RSS(\lambda) = (\mathbf{y} - \mathbf{X}eta)^T (\mathbf{y} - \mathbf{X}eta) + \lambda eta^T eta.$

La solution est alors :

$$eta^{ extit{ridge}} = \left(\mathbf{X}^{ extit{T}} \mathbf{X} + \lambda \mathbf{I}
ight)^{-1} \mathbf{X}^{ extit{T}} \mathbf{y}$$

Remarque : la solution dépend de la valeur de λ . L'ajout du terme supplémentaire sur la diagonale rend le problème inversible même quand $\mathbf{X}^T\mathbf{X}$ n'est pas de plein rang.

Ridge Regression sur prostate

Le Lasso

Deuxième idée : imposer une pénalité sur la norme 1 du vecteur de paramètres.

$$\beta^{lasso} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \right\},$$
subject to $\sum_{i=1}^{p} |\beta_i| \le t$.

 \Leftrightarrow

$$\beta^{lasso} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Norme 1 vs. Norme 2

Le Lasso

Conséquence :

- la solution n'est plus linéaire en y
- ▶ il n'y a plus d'expression analytique pour la solution
- ► La nature de la contrainte entraine que certains coefficients seront exactement 0! Le lasso est donc une méthode "continue" de sélection de modèle

Lasso vs. Ridge

Dans le cas orthogonal :

Estimateur	Formule	
Best subset (size M)	$ \hat{\beta_j}.1(\hat{\beta_j} \geq \hat{\beta_M}) $	
Ridge	$rac{\hat{eta}_j}{(1+\lambda)}$	
Lasso	$sign(\hat{eta}_j)(\hat{eta}_j -\lambda)_+$	

Le Lasso sur prostate

Extensions

Pénalité L^q : pénalité intermédiaire entre Ridge et Lasso quand $q \in]1,2[$. Si q>1 la méthode ne joue pas le rôle de sélection

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

Elasticnet

$$ilde{eta} = \mathop{\mathsf{argmin}}_{eta} \left\{ ... + \lambda \sum_{j=1}^p \left(lpha eta_j^2 + (1-lpha) \left| eta_j
ight|
ight)
ight\}$$

algorithme LAR "Least Angle Regression", Package lars

- Stratégie très proche de la stratégie forward en régression
- Implémentation efficace d'une sélection très proche du lasso

Contexte:

- le nombre de variables d'entrée p est grand
- variables fortement corrélées entre elles (redondance d'information). C'est par exemple le cas d'une entrée fonctionnelle discrétisée.

Principe de la méthode :

▶ Trouver un petit nombre de combinaisons linéaires des variables d'entrée, Z₁,.., Z_M et qui remplacent les p entrées.

Remarque : dans la suite les variables sont préalablement centrées.

PCR: Principal Component Regression

- ▶ Dans cette approche, les variables $Z_1, ..., Z_p$ sont les composantes principales de la matrice \mathbf{X} telles que $\mathbf{z}_m = \mathbf{X} v_m$
- ➤ On sélectionne uniquement les M composantes les plus corrélées à Y et on régresse y sur z₁,...,z_M:

$$\hat{\mathbf{y}}_{(M)}^{PCR} = \bar{\mathbf{y}}\mathbf{1} + \sum_{m=1}^{M} \hat{\theta}_{m} \mathbf{z}_{m} \text{ où } \hat{\theta}_{m} = \frac{\langle \mathbf{z}_{m}, \mathbf{y} \rangle}{\langle \mathbf{z}_{m}, \mathbf{z}_{m} \rangle}$$

On a alors:

$$\hat{\beta}_{(M)}^{PCR} = \sum_{m=1}^{M} \hat{\theta}_{m} v_{m}$$

Il n'y a donc pas systématiquement de sélection de variables parmi les variables d'entrées.

PLS: Partial Least Squares

- ▶ Dans cette approche, on utilise la variable Y pour construire les combinaisons linéaires des variables d'entrée
- ► On construit les combinaisons linéaires de sorte à ce qu'elles soient orthogonales et les plus corrélées à *Y*

PLS: Partial Least Squares

1 Centrer réduire les variables \mathbf{x}_j . Mettre $\hat{\mathbf{y}}^{(0)} = \bar{y}\mathbf{1}$ et $\mathbf{x}_i^{(0)} = \mathbf{x}_i, j = 1, ...p$

2 Pour
$$m = 1, 2..., p$$

a
$$\mathbf{z}_m = \sum_1^p \hat{arphi}_{mj} \mathbf{x}_j^{(m-1)}$$
 où $\hat{arphi}_{mj} = <\mathbf{x}_j^{(m-1)}, \mathbf{y}>$

b
$$\hat{\theta}_m = \frac{\langle \mathbf{z}_m, y \rangle}{\langle \mathbf{z}_m, \mathbf{z}_m \rangle}$$

$$\hat{\mathbf{y}}^{(m)} = \hat{\mathbf{y}}^{(m-1)} + \hat{\theta}_m \mathbf{z}_m$$

d Orthogonalisation de $\mathbf{x}_{j}^{(m-1)}$ par rapport à

$$\mathbf{z}_m: \mathbf{x}_j^m = \mathbf{x}_j^{(m-1)} - \frac{\langle \mathbf{z}_m, \mathbf{x}_j^{(m-1)} \rangle}{\langle \mathbf{z}_m, \mathbf{z}_m \rangle} \mathbf{z}_m$$

3 La linéarité de la construction en \mathbf{x}_j assure que $\hat{\mathbf{y}}_m = \mathbf{X}\hat{\beta}^{PLS}(m)$.

Plan

Introduction

Sélection de modèle

Exemple: Prostate

Extensions du lasso

Cross Validation: RIDGE

Cross Validation: LASSO

Cross Validation: PCR

Cross Validation: PLS

Comparaison des méthodes

	Ridge	Lasso	PCR	PLS
	$\lambda = 10$	s = 0.54	nb = 4	nb = 3
lcavol	0.538	0.548	0.273	0.576
lweight	0.276	0.216	0.344	0.279
age	-0.086		-0.076	-0.179
lbph	0.191	0.129	0.194	0.201
svi	0.265	0.188	0.237	0.299
lcp	-0.089		0.236	-0.036
gleason	0.027		0.017	0.006
pgg45	0.171	0.079	0.112	0.117
MSE (test)	0.486	0.456	0.520	0.427

Plan

Introduction

Sélection de modèle

Exemple: Prostate

Extensions du Jasso

De multiples extensions existent :

"The grouped lasso": quand un prédicteur est codé sur plusieurs composantes: plusieurs gènes correspondant au même phénotype, variables qualitatives à plus de 2 modalités, variables fonctionnelles décomposées sur des bases de fonctions, etc...

$$\underset{\beta}{\operatorname{argmin}} \left\{ \left| \left| y - \beta_0 \mathbf{1} - \sum_{\ell=1}^{L} \mathbf{X}_{\ell} \beta_{\ell} \right| \right|_2^2 + \lambda \sum_{\ell=1}^{L} \sqrt{p_{\ell}} \left| \left| \beta_{\ell} \right| \right|_2 \right\}$$

Le Lasso permet une sélection des variables influentes, mais il introduit un biais sur l'estimation des coefficients => Une possibilité est de procéder à deux lasso successifs : le λ sera élevé au premier tour puis nettement moins élevé (biais moins grand) au deuxième tour.