МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения»

Тема: Расчет метрических характеристик качества разработки программ
по метрикам Холстеда

Студент гр. 7304	Нгуен Т.Т.3.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучение метрик Холстеда на примере расчёта метрических характеристик качества алгоритма, реализованного на языках Паскаль, Си и Ассемблер.

Постановка задачи.

- 1. Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер.
- 2. Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

Измеримые характеристики программ:

- а. число простых (отдельных) операторов, в данной реализации;
- b. число простых (отдельных) операндов, в данной реализации;
- с. общее число всех операторов в данной реализации;
- d. общее число всех операндов в данной реализации;
- е. число вхождений ј-го оператора в тексте программы;
- f. число вхождений j-го операнда в тексте программы;
- д. словарь программы;
- h. длину программы.

Расчетные характеристики программы:

- а. длину программы;
- b. реальный и потенциальный объемы программы;
- с. уровень программы;
- d. интеллектуальное содержание программы;
- е. работу программиста;
- f. время программирования;
- д. уровень используемого языка программирования;
- h. ожидаемое число ошибок в программе.

3. Для характеристик «длина программы», «уровень программы», «время программирования» следует рассчитать, как саму характеристику, так и ее оценку.

Ход выполнения.

Вариант №11 «Решение системы уравнений методом Крамера».

Выбранная программа на языке Паскаль в файл input.pas была переписана на язык программирования Си и помещена в файл main.c. После этого программа на Си была ретранслирована на язык Ассемблер с помощью опции «Code generation/Generate assembler source» компилятора языка Си. Код на Ассемблере расположен в файле main.s.

1. Паскаль. Ручной расчет:

Были вручную определены измеримые характеристики и вычислены расчётные характеристики по Холстеду. Измеримые характеристики приведены на таблице 1, расчётные характеристики – на таблице 2:

Таблица 1: Измеримые характеристики программы (Ручной расчёт, Паскаль)

№	Оператор	Количество	№	Операнд	Количество
1	;	35	1	3	14
2	:=	15	2	2	12
3	+	1	3	1	20
4	-	6	4	У	8
5	*	9	5	coef	7
6	/	1	6	a	23
7	()	16	7	n	10
8	[]	26	8	rmax	2
9	begin end	10	9	cmax	2
10	repeat until	1	10	yesno	3
11	for to do	5	11	error	4

12	if then	2	12	TRUE	1
13	procedure solve	1	13	FALSE	1
14	procedure get_data	1	14	i	14
15	Function deter	3	15	j	13
16	procedure setup	3	16	b	9
17	<>	2	17	det	3
18	ary2s	6	18	sum	2
19	arys	5	19	arys	1
20	read	1	20	ary2s	1
21	readln	2	21	0.0	1
22	and	1			
23	>	1			
24	=	1			

Таблица 2: Расчетные характеристики программы (Ручной расчёт, Паскаль)

Характеристика	Значение
Число уникальных операторов - η_1	24
Число уникальных операндов - η_2	21
Общее количество операторов - N_1	154
Общее количество операндов - N ₂	151
Словарь программы — $\eta = \eta_{1} + \eta_{2}$	45
Длина программы - $N = N_1 + N_2$	305
Оценка длины программы — $\mathbf{N}_{ ext{theor}}$	202.2778
Реальный объём программы - V	1675.0152
Потенциальный объём программы – V*	24.0
Уровень программы - L	0.01433
Оценка уровня программы – \mathbf{L}	0.01159
Интеллектуальное содержание программы - I	19.41243

Работа программиста - Е	116903.162
Время программирования - Т	11690.3162
Уровень используемого языка программирования - λ	0.3434
Ожидаемое число ошибок в программе - В	2

2. Паскаль. Программный расчет:

Результаты программного расчета метрик для программ, реализованных на языках Паскаль с помощью программы автоматизации расчета метрик Холстеда. Измеримые характеристики приведены на таблице 3, расчётные характеристики – на таблице 4:

Таблица 3: Измеримые характеристики программы (Программный расчёт, Паскаль)

N₂	Оператор	Количество	№	Операнд	Количество
1	()	17	1	'Y'	1
2	*	9	2	'y'	1
3	+	1	3	0.0	1
4	-	6	4	1	20
5	/	1	5	2	12
6	;	85	6	3	14
7	\Leftrightarrow	2	7	a	24
8	=	15	8	ary2s	1
9	>	1	9	arys	1
10	[]	24	10	b	10
11	and	1	11	cmax	3
12	ary2s	6	12	coef	8
13	arys	5	13	det	4
14	boolean	2	14	deter	1

15	char	1	15	error	5
16	const	1	16	false	1
17	deter	3	17	i	11
18	for	5	18	j	11
19	function	1	19	n	11
20	get_data	2	20	rmax	3
21	if	2	21	simq1	1
22	integer	7	22	sum	3
23	procedure	3	23	true	1
24	program	1	24	y	7
25	read	1	25	yesno	4
26	readln	2			
27	real	5			
28	repeat	1			
29	setup	4			
30	solve	2			
31	type	1			

Таблица 4: Расчетные характеристики программы (Программный расчёт, Паскаль)

Характеристика	Значение
Число уникальных операторов - η_1	31
Число уникальных операндов - η ₂	25
Общее количество операторов - N_1	217
Общее количество операндов - N_2	159
Словарь программы — $\eta = \eta_{1+} \eta_{2}$	56
Длина программы - $N = N_1 + N_2$	376
Оценка длины программы — N_{theor}	269.676
Реальный объём программы - V	2183.57

Потенциальный объём программы – V^*	19.6515
Уровень программы - L	0.00899972
Оценка уровня программы – $\mathbf{L'}$	0.010144
Интеллектуальное содержание программы - I	22.1502
Работа программиста - Е	242626
Время программирования - Т	8577.05
Уровень используемого языка программирования - λ	0.176858
Ожидаемое число ошибок в программе - В	1.29669

3. Си. Ручной расчет:

Были вручную определены измеримые характеристики и вычислены расчётные характеристики по Холстеду. Измеримые характеристики приведены на таблице 5, расчётные характеристики – на таблице 6:

Таблица 5: Измеримые характеристики программы (Ручной расчёт, Си)

Nº	Оператор	Количество	№	Операнд	Количество
1	;	25	1	0	17
2	=	16	2	1	14
3	+	1	3	2	11
4	-	6	4	a	26
5	*	9	5	b	6
6	/	1	6	n	10
7	()	21	7	rmax	6
8	[]	55	8	cmax	10
9	>	1	9	coef	3
10	<	6	10	yesno	2
11	==	1	11	error	3
12	++	6	12	true	1
13	&	3	13	false	1

14	get_data	1	14	i	14
15	deter	2	15	j	11
16	setup	1	16	sum	2
17	for	6	17	det	4
18	ifelse	2			
19	while	1			
20	return	2			
21	scanf	3			

Таблица 6: Расчетные характеристики программы (Ручной расчёт, Си)

Характеристика	Значение
Число уникальных операторов - η_1	21
Число уникальных операндов - η_2	17
Общее количество операторов - N_1	169
Общее количество операндов - N_2	141
Словарь программы — $\eta = \eta_{1} + \eta_{2}$	38
Длина программы - $N = N_1 + N_2$	310
Оценка длины программы — $\mathbf{N}_{ ext{theor}}$	161.7255
Реальный объём программы - V	1626.8575
Потенциальный объём программы – \mathbf{V}^*	24.0
Уровень программы - L	0.01475
Оценка уровня программы – \mathbf{L}	0.01148
Интеллектуальное содержание программы - I	18.68056
Работа программиста - Е	110277.72
Время программирования - Т	11027.772
Уровень используемого языка программирования - λ	0.354
Ожидаемое число ошибок в программе - В	2

4. Си. Программный расчет:

Результаты программного расчета метрик для программ, реализованных на языках Паскаль с помощью программы автоматизации расчета метрик Холстеда. Измеримые характеристики приведены на таблице 7, расчётные характеристики – на таблице 8:

Таблица 7: Измеримые характеристики программы (Программный расчёт, Си)

Nº	Оператор	Количество	№	Операнд	Количество
1	()	8	1	"%f"	2
2	*	9	2	0	12
3	+	1	3	1	13
4	++	3	4	2	11
5	6	13	5	a	21
6	-	6	6	b	4
7	/	1	7	cmax	10
8	;	23	8	coef	3
9	<	3	9	det	2
10	=	8	10	i	14
11	>	1	11	j	11
12	[]	41	12	n	6
13	_&	2	13	rmax	6
14	_[]	15	14	sum	3
15	deter	2	15	у	5
16	float	13			
17	for	3			
18	get_data	1			
19	if	1			
20	int	6			
21	return	1			

22	scanf	2		
23	setup	1		
24	void	3		

Таблица 8: Расчетные характеристики программы (Программный расчёт, Си)

Характеристика	Значение
Число уникальных операторов - η ₁	24
Число уникальных операндов - η ₂	15
Общее количество операторов - N_1	167
Общее количество операндов - N_2	123
Словарь программы — $\eta = \eta_{1+} \eta_{2}$	39
Длина программы - $\mathbf{N} = \mathbf{N}_1 + \mathbf{N}_2$	290
Оценка длины программы — $\mathbf{N}_{ ext{theor}}$	168.642
Реальный объём программы - V	1532.77
Потенциальный объём программы – \mathbf{V}^*	19.6515
Уровень программы - L	0.0128209
Оценка уровня программы – \mathbf{L}	0.0101626
Интеллектуальное содержание программы - I	15.5769
Работа программиста - Е	119552
Время программирования - Т	4872.68
Уровень используемого языка программирования - λ	0.25195
Ожидаемое число ошибок в программе - В	0.80894

5. Ассемблер. Ручной расчет:

Были вручную определены измеримые характеристики и вычислены расчётные характеристики по Холстеду для программы, написанной на Ассемблере. Измеримые характеристики приведены на таблице 9, расчётные характеристики – на таблице 10:

Таблица 9: Измеримые характеристики программы (Ручной расчёт, Ассемблер)

№	Оператор	Количество	№	Операнд	Количество
1	pushq	5	1	%rbp	11
2	movq	69	2	%rsp	9
3	movl	43	3	%rdi	12
4	jmp .L2	1	4	-24(%rbp)	3
5	jmp .L3	1	5	%rax	97
6	movslq	9	6	4(%rax)	5
7	addq	32	7	%xmm0	30
8	salq	6	8	%xmm1	9
9	cltq	6	9	%xmm2	9
10	leaq	15	10	%xmm3	12
11	call	3	11	8(%rax)	5
	isoc99_scanf@PLT				
12	addl	6	12	%xmm4	4
13	jl .L4	1	13	\$24	6
14	jl .L5	1	14	\$12	6
15	nop	4	15	-32(%rbp)	32
16	leave	4	16	-40(%rbp)	2
17	ret	5	17	-48(%rbp)	5
18	endbr64	5	18	-52(%rbp)	10
19	movss	25	19	-56(%rbp)	10
20	mulss	9	20	%rsi	9
21	subss	4	21	%rdx	37
22	jmp .L9	1	22	%rcx	10
23	movaps	1	23	%r8d	4
24	popq	1	24	\$56	1
25	ret	5	25	\$0	12
26	cltq	6	26	-4(%rbp)	13
27	cmpl	7	27	%eax	48

28	jle .L10	1	28	-1(%rax)	1
29	call deter	2	29	%esi	2
30	jmp .L13	1	30	%edi	6
31	jmp .L14	1	31	\$1	14
32	divss	1	32	n(%rip)	3
33	xorl	2	33	0(,%rax,4)	3
34	movb	3	34	-72(%rbp)	6
35	movd	2	35	-80(%rbp)	2
36	pxor	2	36	-88(%rbp)	2
37	jl .L15	1	37	-92(%rbp)	4
38	jl .L16	1	38	%ecx	2
39	jp .L17	1	39	-96(%rbp)	3
40	jne .L17	1	40	-60(%rbp)	2
41	ucomiss	2	41	%r8d	8
42	jmp .L24	1	42	%al	1
43	jmp .L20	1	43	%fs:40	4
44	call setup	1	44	-8(%rbp)	9
45	xorq	2	45	-48(%rbp,%rax,4)	1
46	jl .L21	1	46	\$80	1
47	je .L22	1	47	-76(%rbp)	3
48	callstack_chk_fail@PLT	2	48	-77(%rbp)	1
49	jmp .L26	1	49	\$48	1
50	call get_data	1	50	\$96	1
51	call solve	1	51	7	5
52	movzbl	1	52	8	5
53	testl	1	53	6	10
54	je .L29	1	54	-16	5
			55	16	5

Таблица 10: Расчетные характеристики программы (Ручной расчёт, Ассемблер)

Характеристика	Значение
Число уникальных операторов - η ₁	54
Число уникальных операндов - η_2	55
Общее количество операторов - N_1	311
Общее количество операндов - N ₂	522
Словарь программы — $\eta = \eta_{1} + \eta_{2}$	109
Длина программы - $N = N_1 + N_2$	833
Оценка длины программы — $\mathbf{N}_{ ext{theor}}$	628.738
Реальный объём программы - V	5637.8975
Потенциальный объём программы – V*	24.0
Уровень программы - L	0.004256
Оценка уровня программы – \mathbf{L}	0.003902
Интеллектуальное содержание программы - I	22.001
Работа программиста - Е	1324412.02
Время программирования - Т	132441.20
Уровень используемого языка программирования - λ	0.10216
Ожидаемое число ошибок в программе - В	6

6. Сводная таблица расчетов для трех языков.

На Таблице 11 приведена сводная характеристика расчётов для трёх языков (Паскаль, Си, Ассемблер):

Таблица 11: Сводная таблица расчётов по трём языкам

	Паскаль		(Ассемблер	
Характеристика	Ручной рсачё т	Програм мный	Ручной рсачёт	Програм мный	Ручной рсачёт
		расчёт		расчёт	
Число операторов	24	31	21	24	54

Число операндов	21	25	17	15	55
Общее кол-во операторов	154	217	169	167	311
Общее кол-во операндов	151	159	141	123	522
Словарь	45	56	38	39	109
Длина программы	305	376	310	290	833
Оценка длины программы	202.2	269.6	161.7	168.6	628.7
Реальный объём программы	1675.02	2183.57	1626.86	1532.77	5637.8975
Потенциальный объём программы	24.0	19.6515	24.0	19.6515	24.0
Уровень программы	0.01433	0.00899	0.01475	0.01282	0.00425
Оценка уровня программы	0.01159	0.01014	0.01148	0.01016	0.00390
Интеллектуальное содержание программы	19.412	22.150	18.681	15.577	22.001
Работа программиста	116903.1	242626	110277.7	119552	1324412.02
Время программирования	11690.3	8577.05	11027.7	4872.6	132441.2
Уровень используемого языка программирования	0.3434	0.1768	0.354	0.2519	0.1021
Ожидаемое число ошибок в программе	2	1.29	2	0.81	6

Выводы.

В ходе выполнения данной работы были изучен метрик Холстеда на примере расчёта метрических характеристик качества алгоритма, реализованного на языках Паскаль, Си и Ассемблер.

Программы, написанные на языках Си и Паскаль выглядят похожим характеристики, так как у них имеется схожая структура. Поскольку язык Ассемблер является языком низкого уровня, характеристики программы на языке Ассемблер очень отличается.

При расчётах измерения как вручную и с помощью специального программного обеспечения были разные результаты. Это можно объяснить тем, что автоматический метод считает не только функциональную часть программы, но и объявления типов переменных и функций.