Содержание

L	Руб	ежный контроль 2	3
	1.1	Сформулировать определение несовместных событий. Как связаны свойства несов-	
		местности и независимости событий?	3
	1.2	Сформулировать геометрическое определение вероятности	3
	1.3	Сформулировать определение сигма-алгебры событий. Сформулировать ее основ-	
		ные свойства	3
	1.4	Сформулировать аксиоматическое определение вероятности. Сформулировать ос-	
		новные свойства вероятности	4
	1.5	Записать аксиому сложения вероятностей, расширенную аксиому сложения веро-	
		ятностей и аксиому непрерывности вероятности. Как они связаны между собой? .	5
	1.6	Сформулировать определение условной вероятности и ее основные свойства	5
	1.7	Сформулировать теоремы о формулах умножения вероятностей для двух событий	
		и для произвольного числа событий	6
	1.8	Сформулировать определение пары независимых событий. Как независимость двух	
		событий связана с условными вероятностями их осуществления?	6
	1.9	Сформулировать определение попарно независимых событий и событий, независи-	
		мых в совокупности. Как эти свойства связаны между собой?	6
	1.10	Сформулировать определение полной группы событий. Верно ли, что некоторые	
		события из полной группы могут быть независимыми?	7
	1.11	Сформулировать теорему о формуле полной вероятности	7
	1.12	Сформулировать теорему о формуле Байеса	7
	1.13	Дать определение схемы испытаний Бернулли. Записать формулу для вычисления	
		вероятности осуществления ровно k успехов в серии из n испытаний	7
	1.14	Сформулировать определение элементарного исхода случайного эксперимента и	
		пространства элементарных исходов. Сформулировать классическое определение	
		вероятности. Привести пример.	7
	1.15	Сформулировать классическое определение вероятности. Опираясь на него, дока-	
		зать основные свойства вероятности	7
	1.16	Сформулировать статистическое определение вероятности. Указать его основные	
		недостатки	7
	1.17	Сформулировать определение сигма-алгебры событий. Доказать ее основные свой-	
		ства	8

1.18	Сформулировать аксиоматическое определение вероятности. Доказать свойства ве-	
	роятности для дополнения события, для невозможного события, для следствия со-	
	бытия	8
1.19	Сформулировать аксиоматическое определение вероятности. Сформулировать свой-	
	ства вероятности для суммы двух событий и для суммы произвольного числа со-	
	бытий. Доказать первое из этих свойств	9
1.20	Сформулировать определение условной вероятности. Доказать, что она удовлетво-	
	ряет трем основным свойствам безусловной вероятности	9
1.21	Доказать теоремы о формулах умножения вероятностей для двух событий и для	
	произвольного числа событий	9
1.22	Сформулировать определение пары независимых событий. Сформулировать и до-	
	казать теорему о связи независимости двух событий с условными вероятностями	
	их осуществления	9
1.23	Сформулировать определение попарно независимых событий и событий, независи-	
	мых в совокупности. Показать на примере, что из первого не следует второе	10
1.24	Доказать теорему о формуле полной вероятности	10
1.25	Доказать теорему о формуле Байеса	10
1.26	Доказать формулу для вычисления вероятности осуществления ровно k успехов в	
	серии из р испытаний по суеме Бернуппи	10

1 Рубежный контроль 2

1.1 Сформулировать определение несовместных событий. Как связаны свойства несовместности и независимости событий?

Определение.

События A и B называются несовместными, если их произведение пусто. В противном случае события A и B называются совместными.

Определение.

События A и B называются независимыми, если $P(AB) = P(A) \cdot P(B)$.

Как связаны

Если события несовместные, то они не могут быть независимыми.

1.2 Сформулировать геометрическое определение вероятности.

Геометрическое определение вероятности является обобщением классического определения на случай, когда $|\Omega| = \infty$.

Пусть

- 1) $|\Omega| \subseteq \mathbb{R}^n$;
- 2) $\mu(\Omega|<\infty$, где μ некая мера. Если n=1, то μ это длина; если n=2, то μ площадь; если n=3 объём. Можно определить меры и при больших n;
- 3) Возможность принадлежности некоторого элементарного исхода случайного эксперимента событию $A \subseteq \Omega$ пропорциональна мере этого события и не зависит от формы события A и его расположения внутри Ω .

Тогда Определение.

Вероятностью случайного события $A\subseteq\Omega$ называют число

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} \tag{1}$$

1.3 Сформулировать определение сигма-алгебры событий. Сформулировать ее основные свойства.

Для строгого аксиоматического определения вероятности необходимо уточнить понятие события:

1) Данное выше определение события как произвольного подмножества множества Ω в случае бесконечного множества Ω приводит к противоречивой теории (см. парадокс Рассела);

- 2) Таким образом, необходимо в качестве события рассматривать не все возможные подмножества множества Ω , а лишь некоторые из них;
- 3) Набор подмножеств множества Ω , выбранных в качестве событий, должен обладать рядом свойств. Понятно, что если A и B связанные со случайным экспериментом события и известно, что в результате эксперимента они произошли (или не произошли), то естественно знать, произошли ли события $A+b, A\cdot B, \ldots$

Эти соображения приводят к следующему определению.

Пусть

1. Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом; 2. $\beta \neq \emptyset$ — система (набор) подмножеств в множестве Ω .

Определение.

 β называется сигма-алгеброй событий, если выполнены условия:

- 1) если $A \in \beta$, то $\overline{A} \in \beta$;
- 2) если $A_1, \ldots, A_n, \cdots \in \beta$, то $A_1 + \cdots + A_n + \cdots \in \beta$

Свойства

- 1) $\Omega \in \beta$;
- $2) \varnothing \in \beta;$
- 3) если $A_1, \ldots A_n, \cdots \in \beta$, то $A_1 \cdot A_2 \cdot \ldots A_n \cdot \cdots \in \beta$;
- 4) если $A_1, A_2 \in \beta$, то $A_1 \setminus A_2 \in \beta$
 - 1.4 Сформулировать аксиоматическое определение вероятности. Сформулировать основные свойства вероятности.

Пусть

- 1) Ω пространство элементарных исходов случайного эксперимента;
- 2) β сигма-алгебра, заданная на Ω .

Определение

Вероятностью (вероятностной мерой) называется функция $P:\beta \to R$

- 1) $\forall A \in \beta = P(A) \geqslant 0$; (аксиома неотрицательности);
- 2) $P(\Omega) = 1$ (аксиома нормированности);
- 3) Если A_1, \ldots, A_n, \ldots попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \cdots + A_n + \ldots) = P(A_1) + \cdots + P(A_n) + \ldots$ (расширенная аксиома сложения).
- 1) $P(\overline{A}) = 1 P(A);$
- 2) $P(\emptyset) = 0$;
- 3) Если $A \subseteq B$, то $P(A) \leqslant P(B)$;

- 4) $\forall A \in \beta : 0 \leqslant P(a) \leqslant 1$;
- 5) P(A+B) = P(A) + P(B) P(AB), где A, B $\in \beta$;
- 6) Для любого конечного набора событий A_1, \ldots, A_n верно

$$P(A_1 + \dots + A_n) = + \sum_{1 \le i_1 \le n} P(A_{i_1}) - \sum_{1 \le i_1 \le i_2 \le n} P(A_{i_1}, A_{i_2}) + \sum_{1 \le i_1 \le i_2 \le i_3 \le n} P(A_{i_1}, A_{i_2}, A_{i_3}) - \dots$$
(2)

1.5 Записать аксиому сложения вероятностей, расширенную аксиому сложения вероятностей и аксиому непрерывности вероятности. Как они связаны между собой?

Аксиома сложения

Сложение — для \forall конечного набора попарно несовместных событий A_1,\dots,A_n вероятность осуществления их суммы равна сумме вероятностей каждого из них по отдельности: $P(A_1+\dots+A_n)=P(A_1)+\dots+P(A_n)$.

Расширенная Аксиома сложения

Если A_1, \ldots, A_n, \ldots — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $P(A_1 + \cdots + A_n + \ldots) = P(A_1) + \cdots + P(A_n) + \ldots$

Непрерывность

Для любой неубывающей последовательности событий $A_1\subseteq A_2\subseteq\cdots\subseteq A_n\subseteq\ldots$ и события $A=\bigcup_i A_i$ верно

$$P(A) = \lim_{i \to \infty} P(A_i). \tag{3}$$

Связанность

Из аксиомы сложения и непрерывности следует расширенная аксиома сложения.

1.6 Сформулировать определение условной вероятности и ее основные свойства.

Пусть

- 1) A и B два события, связанные с одним случайным экспериментом;
- 2) дополнительно известно, что в результате произошло событие B и P(B)>0.

Условной вероятностью осуществления события A при условии, что произошло B, называется число

$$P(A|B) = \frac{P(AB)}{P(B)}, P(B) \neq 0.$$
 (4)

Свойства

- 1) $P(A|B) \subseteq 0$;
- 2) $P(\Omega|B) = 1;$
- 3) $P(A_1 + \dots + A_n + \dots | B) = P(A_1 | B) + \dots + P(A_n | B) + \dots$
 - 1.7 Сформулировать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема. Формула умножения вероятностей для двух событий **Пусть**

- 1) A, B события;
- $(2) \ P(A) > 0.$ Тогда $P(AB) = P(A) \ P(B|A)$

Теорема Формула умножения вероятностей для n событий

- 1) $A_1, ..., A_n$ события;
- 2) $P(A_1 \cdot \dots > 0)$. Тогда

$$P(A_1 \cdot A_2 \cdot \dots \cdot A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \cdot \dots \cdot P(A_n|A_1) \cdot \dots \cdot A_{n-1}. \tag{5}$$

1.8 Сформулировать определение пары независимых событий. Как независимость двух событий связана с условными вероятностями их осуществления?

Пусть и — два события, связанные с некоторым случайным экспериментом. Определение. События и называются независимыми, если () = () ().

Замечание. Разумеется, в качестве определения независимых событий логично было бы использовать условия (|) = () или (|) = () (6) Однако эти условия имеют смысл лишь тогда, когда () или () отлично от нуля. Условие же (| = ()() «работает» всегда без ограничений.

1.9 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Как эти свойства связаны между собой?

Определение. События $1,\ldots,$ называется попарно независимыми, если = ; , $1,\ldots,$ = Определение. События $1,\ldots,$ называются независимыми в совокупности, если $2,\ldots,$ $1<2<\ldots<1$, \ldots , 1<2

1.10 Сформулировать определение полной группы событий. Верно ли, что некоторые события из полной группы могут быть независимыми?

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а $(\Omega, ,)$ — вероятностное пространство этого случайного эксперимента. Определение. Говорят, что события $1, \ldots,$ образуют полную группу событий, если 1. () > 0, = 1, ; 2. = при $= ; 3. 1 + \ldots + = \Omega$. Да, верно.

1.11 Сформулировать теорему о формуле полной вероятности.

Теорема. Формула полной вероятности. Пусть 1. 1, . . . , — полная группа событий; 2. — событие. Тогда (это выражение называется формулой полной вероятности): () = ($|1)(1) + \ldots + (|1|)($

1.12 Сформулировать теорему о формуле Байеса.

Теорема. Пусть 1. 1, . . . , — полная группа событий; 2. () > 0.

1.13 Дать определение схемы испытаний Бернулли. Записать формулу для вычисления вероятности осуществления ровно к успехов в серии из п испытаний.

Определение.

1.14 Сформулировать определение элементарного исхода случайного эксперимента и пространства элементарных исходов. Сформулировать классическое определение вероятности. Привести пример.

Определение. Множество Ω всех исходов данного случайного эксперимента называют пространством элементарных исходов. 1. Каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы; 2. В результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

1.15 Сформулировать классическое определение вероятности. Опираясь на него, доказать основные свойства вероятности

Свойства вероятности: 1. Вероятность () > 0 (неотрицательна). 2. (Ω) = 1. 3. Если , — несовместные события, то (+) = () + () Доказательство:

- 1.16 Сформулировать статистическое определение вероятности. Указать его основные недостатки.
- 1. Некоторый случайный эксперимент произведён раз; 2. При этом некоторое наблюдаемое в этом эксперименте событие произошло раз.

У статистического определения полным-полно недостатков: 1. Никакой экспери-

мент не может быть произведён бесконечное много раз; 2. С точки зрения современной математики статистическое определение является архаизмом, т. к. не даёт достаточно базы для дальнейшего построения теории.

1.17 Сформулировать определение сигма-алгебры событий. Доказать ее основные свойства.

1.18 Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятности для дополнения события, для невозможного события, для следствия события.

усть 1. Ω — пространство элементарных исходов некоторого случайного эксперимента; 2. — сигма-алгебра, заданная на Ω . Определение. Вероятностью (вероятностной мерой) называется функция : \rightarrow R 1. = () > 0 (аксиома неотрицательности); 2. (Ω) = 1 (аксиома нормированности); 3. Если 1, . . . , , . . . — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $(1 + \ldots + + \ldots) = (1) + \ldots + () + \ldots$ (расширенная аксиома сложения).

Доказательства:

1.19 Сформулировать аксиоматическое определение вероятности. Сформулировать свойства вероятности для суммы двух событий и для суммы произвольного числа событий. Доказать первое из этих свойств.

Пусть 1. Ω — пространство элементарных исходов некоторого случайного эксперимента; 2. — сигма-алгебра, заданная на Ω . Определение. Вероятностью (вероятностной мерой) называется функция : \rightarrow R 1. = () > 0 (аксиома неотрицательности); 2. (Ω) = 1 (аксиома нормированности); 3. Если 1, . . . , , . . . — попарно несовместные события, то вероятность осуществления их суммы равна сумме вероятностей осуществления каждого из них по отдельности: $(1 + \ldots + + \ldots) = (1) + \ldots + (1) + \ldots$ (расширенная аксиома сложения).

Формулировка:

1.20 Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трем основным свойствам безусловной вероятности.

Пусть 1. и — два события, связанные с одним случайным экспериментом; 2. Дополнительно известно, что в результате эксперимента произошло событие . Определение. Условной вероятностью осуществления события при условии, что произошло , называется число

Теорема: Пусть 1. Зафиксировано событие , () = 0; 2. (|) рассматривается как функция события . Тогда (|) обладает всеми свойствами безусловной вероятности. Доказательство:

- 1.21 Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.
- 1.22 Сформулировать определение пары независимых событий. Сформулировать и доказать теорему о связи независимости двух событий с условными вероятностями их осуществления.

Пусть и — два события, связанные с некоторым случайным экспериментом. Определение. События и называются независимыми, если () = () (). Теорема. . . . 1. Пусть () > 0. Утверждение « и — независимы» равносильно (|) = (); 2. Пусть () > 0. Утверждение « и — независимы» равносильно (|) = ().

1.23 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Показать на примере, что из первого не следует второе.

Определение. События $1, \ldots$, называется попарно независимыми, если = ; $1, \ldots$, = Определение. События $1, \ldots$, называются независимыми в совокупности, если 2, \ldots , $1 < 2 < \ldots < 1$, \ldots , $= 1 \cdot \ldots$. Пример. (Бернштейна) Рассмотрим правильный тетраэдр, на одной грани которого «написано» 1, второй -2, третьей -3, четвёртой -1, 2, 3. Этот тетраэдр один раз подбрасывают. Событие 1 заключается в том, что на нижней грани «написано» 1; также введём 2 для 2, 3 для 3. Давайте покажем, что события 1, 2, 3 попарно независимы, но не являются независимыми в совокупности. 1. Докажем, что они независимы попарно. Т. к. (1) = 1 2 , (2) = 1 2 , то (12) = (1) $(2) = \frac{1}{4}$ Событие 12 означает, что на нижней грани присутствуют и 1, и 2. Всё аналогично для (13) = (1)(3) и (23) = (2)(3). 2. Проверим равенство (123) = (1) (2) (3), которое, казалось бы, должно равняться 1/8. Но произведение событий 1, 2, 3 означает, что на нижней грани присутствуют и 1, и 2, и 3, вероятность чего равна 1/4. И выходит, что 1/4 = 1/8. Следовательно, события 1, 2, 3 не являются независимыми в совокупности.

1.24 Доказать теорему о формуле полной вероятности.

Пусть Ω — пространство элементарных исходов, связанных с некоторым случайным экспериментом, а $(\Omega, ,)$ — вероятностное пространство этого случайного эксперимента. Определение. Говорят. что события $1, \ldots,$ образуют полную группу событий, если 1. () >0, =1, ; 2. = при $= ; 3. 1 + \ldots + = \Omega$. Теорема. Формула полной вероятности. Пусть $1. 1, \ldots,$ — полная группа событий; 2. — событие. Тогда (это выражение называется формулой полной вероятности): () $= (\mid 1)(1) + \ldots + (\mid)()$ Доказательство:

1.25 Доказать теорему о формуле Байеса.

Теорема

1.26 Доказать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний по схеме Бернулли..