GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering - SEMESTER - 2 (NEW) - EXAMINATION - Winter-2022

Subject Code: 4320001 Date: 23-02-2023

Subject Name: Applied Mathematics

Time: 10:30 AM TO 01:30 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.

Q.1 Fill in the blanks using appropriate choice from the given options. 14 (યોગ્ય વિકલ્પ પસંદ કરી ખાલી જગ્યા પૂરો)

1. Order of the matrix
$$\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$
 is _____

$$(a)2 \times 3$$

(b)
$$\overline{2} \times 2$$

(c)
$$3 \times 2$$

(d)
$$3 \times 3$$

$$1.$$
શ્રેણિક $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ ની કક્ષા છે . (અ) 2×3 (બ) 2×2

$$(3)3 \times 3$$

2. If
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$
 then $2A - 3I = \dots$

(a)
$$\begin{bmatrix} -1 & 4 \\ -2 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 8 \\ 6 & 7 \end{bmatrix}$ (c) $\begin{bmatrix} 6 & 4 \\ -2 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & -8 \\ -6 & -7 \end{bmatrix}$

$$(b)\begin{bmatrix} 1 & 8 \\ 6 & 7 \end{bmatrix}$$

$$(c) \begin{bmatrix} 6 & 4 \\ -2 & 5 \end{bmatrix}$$

$$(\mathsf{d})\begin{bmatrix} 1 & -8 \\ -6 & -7 \end{bmatrix}$$

2.જો
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$
 હોય તો $2A - 3I =$ (અ) $\begin{bmatrix} -1 & 4 \\ -2 & -1 \end{bmatrix}$ (બ) $\begin{bmatrix} 1 & 8 \\ 6 & 7 \end{bmatrix}$ (ક) $\begin{bmatrix} 6 & 4 \\ -2 & 5 \end{bmatrix}$ (ડ) $\begin{bmatrix} 1 & -8 \\ -6 & -7 \end{bmatrix}$

(આ)
$$\begin{bmatrix} -1 & 4 \\ -2 & -1 \end{bmatrix}$$

$$(9)$$
 $\begin{bmatrix} 1 & 8 \\ 6 & 7 \end{bmatrix}$

$$(5)\begin{bmatrix} 6 & 4 \\ -2 & 5 \end{bmatrix}$$

$$(3)\begin{bmatrix} 1 & -8 \\ -6 & -7 \end{bmatrix}$$

$$(a)4 \times 2$$

(b)
$$2 \times 4$$

(c)
$$3 \times 3$$

(d)AB is not possible

(a) 4×2 (b) 2×4 (c) 3×3 3.જો $A_{2\times 3}$ અને $B_{3\times 4}$ શ્રેણિકો હોય તો શ્રેણિક ABની કક્ષા _____ છે .

4.If AB = I then matrix B = ...

(b)
$$A^T$$

(c)
$$A^{-1}$$

4.જો AB = Iતો શ્રેણિક B = ...

(બ)
$$A^T$$

$$(5)A^{-1}$$

4. of
$$AB = I(1) \times 1(3) \times 3 = ...$$

(a) $adj(A)$ (b) A^{T} (c) A^{T}

(a) $adj(A)$ (b) $adj(A)$ (c) $adj(A)$

(b) $adj(A)$ (c) $adj(A)$

(c) $adj(A)$

(d) $adj(A)$ (e) $adj(A)$

(e) $adj(A)$

(f) $adj(A)$

(g) $adj(A)$

(

(b)
$$3x^2 + 3^x + 3^3$$

(c)
$$3x^2 + 3^x \log 3$$

$$5.\frac{d}{dx}(x^3+3^x+3^3) =$$

(બ)
$$3x^2 + 3^x + 3^3$$

(5)
$$3x^2 + 3^x \log 3$$

6.If
$$f(x) = e^{3x}$$
 then $f'(0) =$ _____

7. If
$$y = e^x + 100x$$
 then $\frac{d^2y}{dx^2} = _____$

Q.2 (A) Attempt any two.(કોઈ પણ બેના જવાબ આપો):

1. If
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$ then find $(AB)^T$.

$$\text{wh } A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix} \text{ white } B = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} \text{ white } (AB)^T \text{ has } AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix} \text{ and } AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$$

2. If $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$ white $AB = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$ then find $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ then find $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 2 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ and AB

જો
$$1+x+x^2=0$$
અને $x^3=1$ તો સાબીત કરો કે $\begin{bmatrix} 1 & x^2 \\ x & x \end{bmatrix} \cdot \begin{bmatrix} x & x^2 \\ 1 & x \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$

$$3. \qquad \text{Solve } \frac{dy}{dx} + x^2 e^{-y} = 0$$

ઉંકેલો :
$$\frac{dy}{dx} + x^2 e^{-y} = 0$$

Q.2 (B) Attempt any two.(કોઇ પણ બેના જવાબ આપો):

If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ then prove that $A^2 - 4A - 5I_3 = 0$ જો $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ હોય તો સાબીત કરો કે $A^2 - 4A - 5I_3 = 0$ 1.

For which values of x, the matrix $\begin{bmatrix} 3-x & 2 & 2 \\ 1 & 4-x & 1 \\ -2 & -4 & -1-x \end{bmatrix}$ is singular matrix? 2.

"x" ની કઈ કિંમત માટે શ્રેણિક
$$\begin{bmatrix} 3-x & 2 & 2 \\ 1 & 4-x & 1 \\ -2 & -4 & -1-x \end{bmatrix}$$
 અસામાન્ય શ્રેણિક થશે ?

3. Solve By using matrix method:2

શ્રેણિકની મદદથી ઉકેલ મેળવો :
$$2y + 5x = 4$$
, $7x + 3y = 5$

Q.3 (A) Attempt any two (કોઈ પણ બેના જવાબ આપો):

Find the derivative of function using definition $f(x) = \sqrt{x}$

$$f(x) = \sqrt{x}$$
નું વ્યાખ્યાની મદદ થી વિકલન મેળવો .

Find $\frac{dy}{dx}$ if $x + y = \sin(xy)$ 2.

જો
$$x + y = \sin(xy)$$
તો $\frac{dy}{dx}$ મેળવો .
Evaluate:
$$\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx$$

ઉંકેલો :
$$\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} \ dx$$

Q.3 (B) Attempt any two(કોઈ પણ બેના જવાબ આપો):

If $y = e^x \cdot \sin x$ then prove that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$

જો
$$y = e^x \cdot \sin x$$
 હોય તો સાબીત કરો કે $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$

Find maximum and minimum value of function $f(x) = x^3 - 4x^2 + 5x + 7$ 2.

વિધેય
$$f(x) = x^3 - 4x^2 + 5x + 7$$
ની અધિકતમ અને ન્યુનતમ મુલ્ય મેળવો .

The equation of motion of particle is $s = t^3 - 6t^2 + 9t$ then 3.

- Find Velocity and acceleration at t = 3 second.
- (ii) Find "t" when acceleration is zero.

06

08

80

એક કણની ગતિનું સમીકરણ $s = t^3 - 6t^2 + 9t \dot{\vartheta}$.

- (i) t = 3સેકન્ડે તેનો વેગ અને પ્રવેગ મેળવો.
- (ii) જ્યારે પ્રવેગ શુન્ય હોય ત્યારે "t" શોધો.

Q.4 (A) Attempt any two. (કોઈ પણ બેના જવાબ આપો):

06

Evaluate : $\int \frac{x}{(x+1)(x+2)} dx$

ઉકેલો:
$$\int \frac{x}{(x+1)(x+2)} dx$$

ઉંકેલો: $\int \frac{x}{(x+1)(x+2)} dx$ Evaluate : $\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$ 2.

ઉંકેલો :
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$$

3. If mean of 15,7,6, a, 3 is 7 then find the value of "a".

જો 15,7,6, a, 3નો મધ્યક 7 હોઇ તો "a" નું મુલ્ય શોધો .

Q.4 (B) Attempt any two (કોઈ પણ બેના જવાબ આપો):

80

Evaluate : $\int x^2 e^x dx$

3.

ઉકેલો:
$$\int x^2 e^x dx$$

Find the area of the region bounded by curve $= 2x^2$, lines x = 1, x = 3 and X-axis. 2.

વક્ર
$$y=2x^2$$
, રેખાઓ $x=1$, $x=3$ અને X -અક્ષ વડે આવૃત પ્રદેશ નું શેત્રફળ મેળવો .

Find the mean for the following grouped data using short method:

નીચેની વર્ગીકૃત આવૃતિ વિતરણનો મધ્યક ટુંકીગણતરી ની રીત થી શોધો .

Marks (ગુણ)	21-25	26-30	31-35	36-40	41-45	46-50
No. of Students (વિદ્યાર્થીઓ સંખ્યા)	8	10	24	30	12	16

Q.5 (A) Attempt any two (કોઈ પણ બેના જવાબ આપો):

06

Find the mean for the following grouped data:

નીચેની વર્ગીકત માહિતી માટે મધ્યક શોધો.

x_i	92	93	97	98	102	104	
f_i	3	2	3	2	6	4	

Find the mean deviation of 4,6,2,4,5,4,4,5,3,4. 2.

4,6,2,4,5,4,4,5,3,4 નું સરેરાશ વિચલન મેળવો.

Find the standard deviation for the following discrete grouped data: નીચેની અસતત વર્ગીકૃત માહિતી માટે પ્રમાણિત વિચલન શોધો .

x_i	4	8	11	17	20	24	32
f_i	3	5	9	5	4	3	1

1. Solve
$$: \frac{dy}{dx} + \frac{4x}{1+x^2}y = \frac{1}{(1+x^2)^2}$$

Gight: $\frac{dy}{dx} + \frac{4x}{1+x^2}y = \frac{1}{(1+x^2)^2}$

2. Solve :
$$(x + y + 1)^2 \frac{dy}{dx} = 1$$

ઉકેલો : $(x + y + 1)^2 \frac{dy}{dx} = 1$

Q.5 (B) Attempt any two (કોઈ પણ બેના જવાબ આપો):

1. Solve :
$$\frac{dy}{dx} + \frac{4x}{1+x^2}y = \frac{1}{(1+x^2)^2}$$
ઉંકેલો : $\frac{dy}{dx} + \frac{4x}{1+x^2}y = \frac{1}{(1+x^2)^2}$

2. Solve : $(x+y+1)^2 \frac{dy}{dx} = 1$
ઉંકેલો : $(x+y+1)^2 \frac{dy}{dx} = 1$

3. Solve : $\frac{dy}{dx} + y = e^x$, $y(0) = 1$
ઉંકેલો : $\frac{dy}{dx} + y = e^x$, $y(0) = 1$