Binary Representations of Numbers — a Proof

CSC165 Week 6 - Part 1

Goal for this week

We want to prove: $\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \iff B(n,x)$

Strategy: Prove the ⇒ direction using _____ induction

Then prove the ← direction using _____

Decimal (Base 10) Numbers

Possible digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

Where do we get the digits from? $5027 = (5)10^3 + (0)10^2 + (2)10^1 + (7)10^0$

107	10 ⁶	10 ⁵	104	10 ³	10 ²	10 ¹	10 ⁰
0	0	0	0	5	0	2	7

Binary (Base 2) Numbers

Example: $(46)_{10} = (101110)_2$

$$= (1)2^5 + (0)2^4 + (1)2^3 + (1)2^2 + (1)2^1 + (0)2^0$$

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰
0	0	1	0	1	1	1	0

Example: $(46)_{10} = (101110)_2$

 $= \sum b_i 2^i$

where $b_0 = 0$, $b_1 = 1$, $b_2 = 1$, $b_3 = 1$, $b_4 = 0$, $b_5 = 1$

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	21	2 ⁰
0	0	1	0	1	1	1	0

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	2 ⁰

Definition of Predicate B(n,x)

 \forall n \in N, \forall x \in N, B(n,x) is true if and only if

 $\exists b_0, b_1, ..., b_{n-1} \in \{0,1\} \text{ such that } x = (b_{n-1}b_{n-2}...b_1b_0)_2$

 $= \Sigma b_i 2^i$

In other words, B(n,x) is true when x can be written in binary using exactly n bits.

True or False?

$$B(3,5) = True$$

$$(5)_{10} = (101)_2$$

= $(0101)_2$

$$B(4,5) = True$$

$$B(2,5) = False$$

B(n,x) is true when x can be written in binary using exactly n bits.

We want to prove that:

$$\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \iff B(n,x)$$

We want to prove that:

$$\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \Longrightarrow B(n,x)$$

Base Case: Let n = 0, so $0 \le x \le 2^0 - 1$

In other words, $x = 0_{10} = 0_2$ or else $x = 1_{10} = 1_2$

Therefore B(0,x) is true.

We want to prove that:

$$\forall n \in \mathbb{N}, 0 \le x \le 2^n - 1 \Longrightarrow B(n,x)$$

Induction Step: Let $n = k \in \mathbb{N}$

Assume

Case of n = k+1:

Want to show that $\forall x \in \mathbb{N}, 0 \le x \le 2^{k+1}-1 \Longrightarrow B(k+1,x)$

Case of n = k+1:

Want to show that $\forall x \in \mathbb{N}, 0 \le x \le 2^{k+1}-1 \Longrightarrow B(k+1,x)$

B(k+1,x) is true when x can be written in binary using exactly k+1 bits.

Either $0 \le x \le 2^{k-1}$ or $2^k \le x \le 2^{k+1}-1$

Case 1: Assume $x \le 2^{k-1}$

By Induction Hypothesis, we know that B(k,x) is true. Therefore:

$$\exists\ b_0,\,b_1,\,...,\,b_{k\text{-}1}\in\{0,1\}\ such\ that\ x=(b_{k\text{-}1}b_{k\text{-}2}...b_1b_0)_2$$

$$= \Sigma b_i 2^i$$

We can append a 0 to the left side of the number without changing its value. So $x = (0b_{k-1}b_{k-2}...b_1b_0)_2$

=
$$(0) 2^k + \sum b_i 2^i$$

Thus B(k+1, x) is true.

Case 2: Assume $x > 2^{k}-1$

Then, $2^k \le x \le 2^{k+1} - 1$

Subtract 2k from all parts to get:

$$2^k - 2^k \le x - 2^k \le 2^{k+1} - 1 - 2^k$$

$$0 \le x - 2^k \le 2^k (2-1) - 1$$

By the Induction hypothesis, we know B(k, x-2k)

 $\exists \ b_0, \ b_1, \ \dots, \ b_{k-1} \in \{0,1\} \ such \ that$

$$x - 2^k = (b_{k-1}b_{k-2}...b_1b_0)_2 = \sum b_i 2^i$$

Therefore,

 $\exists \ b_0, \ b_1, \ \dots, \ b_{k-1} \in \{0,1\} \ such \ that$

$$x = (1b_{k-1}b_{k-2}...b_1b_0)_2 = (1)2^k + \sum b_i 2^i$$

B(k+1, x) is true.

Now we want to show the other direction:

$$\forall x \in \mathbb{N}, 0 \le x \le 2^{k+1}-1 \iff B(k+1,x)$$

Modular Arithmetic

Example: n (mod 3)

		-1
0	1	2
3		

Lemma: \forall a,b,c,d $\in \mathbb{Z}$ a \equiv b (mod m) \land c \equiv d (mod m) \Longrightarrow ac \equiv bd (mod m)

Proof: We want to show:

 $\forall x,y,m \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ x \equiv y \ (mod \ m) \Longrightarrow x^n \equiv y^n \ (mod \ m)$

Base case: Let n = 0

Induction Hypothesis:

Assume that for some $k \in \mathbb{N}$,

$$x,y,m \in \mathbb{N}, x \equiv y \pmod{m} \Longrightarrow x^k \equiv y^k \pmod{m}$$

Now let n = k+1:

We want to show that $x \equiv y \pmod{m}$ $\implies x^{k+1} \equiv y^{k+1} \pmod{m}$