Modul	Lineare und ganzzahlige Optimierung							
BA-INF 106								
Workload	Umfang	Dauer		Turnus				
270 h	9 LP	1 Semes	ster	jährlich				
Modulverantwort-	Prof. Dr. Jens Vygen							
licher								
Dozenten	Alle Dozenten der Diskreten Mathematik							
Zuordnung	Studiengang Modus Studiensemes						ester	
	B. Sc. In	formatik	Wa	hlpflicht	5.			
Lernziele: fachliche	Verständnis der grundlegenden Zusammenhänge der							
Kompetenzen	Polyedertheorie und der Theorie der linearen und ganzzahligen							
	Optimierung, Kenntnis der wichtigsten Algorithmen, Fähigkeit							
	zur geeigneten Modellierung praktischer Probleme als							
	mathematische Optimierungsprobleme und deren Lösung							
Lernziele:	Mathematische Modellierung praktischer Probleme, Entwicklung							
Schlüsselkompe-	von Lösungsstrategien, abstraktes Denken, schriftliche							
tenzen	Bearbeitung von Übungsaufgaben und Präsentation der							
	Lösungen in Übungsgruppen							
Inhalte	Modellierung von Optimierungsproblemen als (ganzzahlige)							
	lineare Programme, Polyeder, Fourier-Motzkin-Elimination,							
	Farkas' Lemma, Dualitätssätze, Simplexverfahren,							
	Netzwerk-Simplex, Ellipsoidmethode, Bedingungen für							
	Ganzzahligkeit von Polyedern, TDI-Systeme, vollständige							
	Unimodularität, Schnittebenenverfahren							
Teilnahme-	Erforderlich: alle Module aus folgender Liste:							
voraussetzungen	BA-INF 011 – Logik und diskrete Strukturen							
	BA-INF 021 – Lineare Algebra							
Veranstaltungen	Lehrform	l	(Gruppeng	röße	SWS	Workload[h]	LP
	Vorlesung	g		40		4	60 P / 105 S	5,5
	Übungen			20		2	30 P / 75 S	3,5
	P = Präsenzstudium, S = Selbststudium							
Prüfungsleistungen	Mündliche Prüfung (benotet)							
Studienleistungen	Erfolgreiche Übungsteilnahme					(unbenotet)		
Medieneinsatz	(uns on one)							
Literatur	• Schrijver: Theory of Linear and Integer Programming. Wiley							
	1986							
	• V. Chvatal: Linear Programming. Freeman 1983							
	• B. Korte, J. Vygen: Kombinatorische Optimierung: Theorie							
	und Algorithmen (Kapitel 3 bis 5). Springer, 2. Auflage 2012							
	• R.K. Ahuja, T.L. Magnanti, J.B. Orlin: Network Flows							
	(Kapitel 11). Prentice Hall 1993							
	(Kanitel	11) Prent	tice 1		_			
	, -	,		Hall 1993			nd Using Linea	r