UNIVERSITY OF GOTHENBURG

(E) UNIVERSITY OF GOTHENBURG

CHALMERS

Real-Time Systems

Exercise #1

Professor Jan Jonsson

Department of Computer Science and Engineering Chalmers University of Technology

Laboratory assignment

Basic prerequisites for approval:

Respecting the Rules of Conduct (link on 'Assignment' page)

- Show respect for others in the laboratory room
- Refrain from cheating

Sufficient lab session attendance

 Since the assignment involves significant interaction with laboratory assistants as well as other groups <u>each student</u> is expected to attend at least three laboratory sessions, the first attendance being no later than study week 3.

Project report of sufficient quality

 Should contain description of solutions to selected design challenges in the lab-PM (see 'Assignment' page for details)

Laboratory assignment Organization:

- The schedule
- The laboratory sessions run weekly, starting in study week 2
- Each project group is guaranteed one session per week
- Deadline to register for a project group is Monday @ 09:00

The parts

CHALMERS

- The assignment consists of Part 0, Part 1 and Part 2
- The parts normally take a total of 6 sessions to complete
- Part 0 typically takes 1 session to complete
- Part 1 typically takes 1–2 sessions to complete
- Part 2 typically takes 3-4 sessions to complete

Laboratory assignment

The grade will be based on your performance in:

Implementation

 How many of the coding challenges in Part 2 that you can successfully implement and demonstrate.

Design

- How well you know the design and behavior of your code.

Debugging

- How well you identify, and solve, problems with your code.

Paradiam

 How well you understand, and can make use of, the reactive, concurrent and timing-aware programming paradigm.

Getting started:

CHALMERS

- Compile the template code using the cross compiler
- Upload the machine code to the target computer

Interacting with the target computer:

UNIVERSITY OF GOTHENBURG

- Take input from the workstation's keyboard
- Generate output to the workstation's console window

Preparatory work for Part 1 and Part 2:

- Pre-compute periods for all tones that will be played
- Prepare data structures to allow a melody to be transposed to different keys

Laboratory assignment — Part 1 Tone generator: Generate a 1 kHz tone (square wave signal) and output it to the audio jack on the target computer Background load: Add a background task with a scalable load Experiment: disturb tone generator by increasing the load Repeat the experiment with deadline scheduling enabled Worst-case execution times: Measure the execution times of the program code in the tone generator task and the background load task

EDA223/DIT161 - Real-Time Systems, Chalmers/GU, 2017/2018 Updated January 18, 2018

Exercise #1

