

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE						
CHIMIE	B, C	Durée de l'épreuve : 3 heures						
		Date de l'épreuve : 11 juin 2018						

QC: 22 (question de cours), ANN:20 (application non-numérique), AN:18 (application numérique)

I) Synthèse d'un ester (22P)

Un ester à odeur d'orange, de formule brute $C_{10}H_{20}O_2$, est synthétisé à partir de deux composés organiques A et B en milieu acide.

A réagit avec le dichromate de potassium pour former un composé C. C précipite avec la DNPH et rougit le réactif de Schiff.

- 1) Discuter les fonctions chimiques des molécules A et C et en déduire la fonction chimique de B. (ANN 2)
- Dresser l'équation générale de l'oxydation de A avec le dichromate de potassium.
 Détailler les nombres d'oxydation importants ainsi que les demi-équations de l'oxydation et de la réduction. (ANN 4)
- 3) La masse molaire de C vaut 128 g/mol. Déterminer la formule en bâtonnets de A, sachant qu'il s'agit d'un composé saturé et non-ramifié. Nommer le composé.

(AN 1+ANN2)

- En déduire la formule semi-développée de B.
- 4) Écrire la formule en bâtonnets de l'ester formé par A et B et le nommer. (ANN 2)
- 5) Détailler le mécanisme de l'estérification en utilisant des formules généralisées. (QC 6)
- 6) Comment peut-on optimiser la synthèse de l'ester qui est une réaction d'équilibre ? Détailler les 3 voies d'optimisation. (QC 3)
- 7) Proposer une autre voie de synthèse de l'ester qui implique une réaction complète. Détailler les équations des deux réactions nécessaires. (QC 2)

II) Aromaticité et nitration des cycles aromatiques (15P)

- 1) Discuter la formation du nuage électronique π dans le noyau benzénique et les conséquences pour la réactivité qui en découlent. (QC 6)
- 2) Donner tout le mécanisme de la mononitration du benzène à partir des réactifs jusqu'aux produits finaux. (QC 5)
- 3) On propose de nitrer le phénol représenté ci-contre. Trouver quels isomères de position sont formés préférentiellement lors de la mononitration du phénol. Justifier de façon détaillée votre raisonnement. (ANN 4)

III) L'acide lactique (13P)

L'acide lactique est utilisé comme précurseur d'une famille de matières plastiques biodégradables, souvent utilisées pour l'impression en 3D. L'acide lactique polymérisé, le PLA (polylactic acid), ainsi formé peut présenter des caractéristiques très différentes dû au fait que l'acide lactique est une molécule chirale.

- 1) Représenter les énantiomères de l'acide lactique en formules spatiales et les nommer suivant CIP. (ANN 2)
- 2) Pour former un PLA on utilise un mélange racémique. Comment peut-on déterminer expérimentalement qu'il s'agit d'un mélange racémique ? Justifier votre réponse.

(ANN2)

- 3) Représenter l'énantiomère R en projection de Fischer en expliquant votre démarche (ANN 2)
- 4) Une solution aqueuse, issue de la fermentation bactérienne d'amidon, a une concentration massique de 2,7g d'acide lactique par litre.
 - a) Calculer le pH de cette solution

(AN 3)

b) Afin d'amorcer la polymérisation, il faut un pH de 4,17 pour que le catalyseur fonctionne de façon optimale. Quel volume de solution NaOH 0,05M faut-il ajouter à 0,67L de la solution d'acide lactique pour atteindre cette valeur du pH ?

(AN 4)

IV) Acides et bases (10P)

- 1) Calculer le pH des solutions aqueuses suivantes :
 - a. Un litre de solution d'acide nitrique (préparée par dilution de 8mL d'acide nitrique pur, masse volumique de l'acide nitrique pur = 1,51 g/cm³)(AN 2)
 - b. Une solution 0,2M d'ammoniac

(AN 2)

- c. Une solution FeBr₃ préparée par dissolution de 0,17mol dans un volume de 218mL de solution . (AN 3)
- 2) Un patient à brûlure d'estomac veut soulager ses symptômes en ingérant un médicament à base d'hydroxyde de calcium. Calculer le nombre de comprimés nécessaires à faire passer le pH de 1 à 2, sachant que l'estomac contient 0,8L d'acide chlorhydrique. Chaque comprimé contient 5300mg d'hydroxyde de calcium.

(AN

3)

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H₃O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HClO ₃	CIO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCI ₃ COO-	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ -	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl ₂ COOH	CHCl₂COO-	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄ -	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	CIO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO-	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH ₂ CICOO-	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH ₂ BrCOO	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂ -	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO-	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO-	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ ⁻	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO-	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH ₃ CH ₂ COO⁻	an. propanoate	4,87
cat. hexaqua aluminium	AI(H ₂ O) ₆ ³⁺	Al(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH ₂ OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H₂S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ -	HPO ₄ ² -	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO-	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃ ⁻	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN-	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ 3-	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable

bases fortes(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)

TABLEAU PERIODIQUE DES ELEMENTS

groupes principaux		4,0	된	2	10,8 12,0 14,0 16,0 19,0 20,2	B C N O F Ne	8 9 10	groupes secondaires 27,0 28,1 31,0 32,1 35,5 39,9	Al Si P S Cl Ar	VII VIII I II 13 14 15 16 17 18	54,9 55,8 58,9 58,7 63,5 65,4 69,7 72,6 74,9 79,0 79,9 83,8	Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	25 26 27 28 29 30 31 32 33 34 35 36	(97) 101,1 102,9 106,4 107,9 112,4 114,8 1118,7 121,8 127,6 126,9 131,3	Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe	43 44 45 46 47 48 49 50 51 52 53 54	186,2 190,2 192,2 195,1 197,0 200,6 204,4 207,2 209,0 (209) (210) (222)	Re Os Ir Pt Au Hg TI Pb Bi Po At Rn	75 76 77 78 79 80 81 82 83 84 85 86	(264) (269) (268) (272) (285) (289) (293)	Bh Hs Mt Ds Rg Cn FI Lv	107 108 109 110 111 112 114 116 1	(145) 150,4 152,0 157,3 158,9 162,5 164,9 167,3 168,9 173,0	Pm Sm Eu Gd Tb Dy Ho Er Tm Yb	61 62 63 64 65 66 67 68 69 70	237,0 (244) (243) (247) (247) (251) (254) (257) (258) (259)	
	Ξ				10,8	B	2	27,0	<u> </u>	13			31			49									29		ı. E
										=	65,4		30						80			112			99		<u>ځ</u>
										_	9'29	3	29	107,9	Ag	47	197,0	Au	79	(272)	Rg	111	158,9	P	65	(247)	R
											28,7	Z	28	106,4	Pd	46	195,1	Pt	78	(281)	Ds	110	157,3	B	64	(247)	3
								res		VIII	6′85	8	27	102,9	R	45	192,2	<u>-</u>	77	(368)	Ĭ	109	152,0	Eu	63	(243)	Δ
								econdai			8′55	Fe	26	101,1	Ru	44	190,2	Os	92	(568)	HS	108	150,4	Sm	62	(244)	<u>-</u>
								roupes s		IIN	54,9	Z	25	(26)	T _C	43	186,2	Re	75	(264)	Bh		(145)	Pm	61	237,0	Z
								50		IN	52,0	ბ	24	6′56	Θ	42	183,9	>	74	(392)	Sg	106	144,2	PZ	09	238,0	=
										>	6′09	>	23	6,26	QN	41	180,9	Та	73	(262)	Op	105	140,9	Pr	59	231,0	6
										۸I	6′24	F	22	91,2	Zr	40	178,5	Ŧ	72	(261)	Rf	104	140,1	లి	58	232,0	<u>د</u>
×n											45,0	Sc	21	6′88	>	39	175,0	Γn	71	(260)	۲	103	138,9	La	57	227,0	Δ
groupes principaux	=				0′6	Be	4	24,3	Mg	12	40,1	ප	20	9′28	Sr	38	137,3	Ba	56	226,0	Ra	88		ides			Ų
groupes	_	1,0	I	T	6'9	Ŀ	3	23,0	Na	11	39,1	¥	19	85,5	Rb	37	132,9	క	55	(223)	ቷ	87		Lanthanides			Actinides
			Н			7			n			4			2			9			7						