Συναρτήσεις Ρυθμός Μεταβολής

Κωνσταντίνος Λόλας

x_1^2 Τα μαθηματικά είναι ωραία γιατί:

- 📵 ακολουθούν κανόνες
- ② είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- δεν είναι για όλους, αλλά κυρίως
- ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Γι αυτό μάλιστα δεν αρέσουν σε όλους

x_1^2 Τα μαθηματικά είναι ωραία γιατί:

- 📵 ακολουθούν κανόνες
- ② είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- 4 δεν είναι για όλους, αλλά κυρίως
- ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Γι αυτό μάλιστα δεν αρέσουν σε όλους

x_1^2 Τα μαθηματικά είναι ωραία γιατί:

- 📵 ακολουθούν κανόνες
- ② είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- δεν είναι για όλους, αλλά κυρίως
- ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Γι αυτό μάλιστα δεν αρέσουν σε όλους

x_1^2 Τα μαθηματικά είναι ωραία γιατί:

- 📵 ακολουθούν κανόνες
- ② είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- δεν είναι για όλους, αλλά κυρίως
- ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Γι αυτό μάλιστα δεν αρέσουν σε όλους

 x_1^2 Τα μαθηματικά είναι ωραία γιατί:

- 📵 ακολουθούν κανόνες
- ② είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- δεν είναι για όλους, αλλά κυρίως
- ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Γι αυτό μάλιστα δεν αρέσουν σε όλους

- x_1^2 Τα μαθηματικά είναι ωραία γιατί:
 - 📵 ακολουθούν κανόνες
 - είναι σαφώς ορισμένα
 - δεν δίνουν διαφορετικές ερμηνίες
 - δεν είναι για όλους, αλλά κυρίως
 - ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Γι αυτό μάλιστα δεν αρέσουν σε όλους

Ρυθμός μεταβολής

Ρυθμός μεταβολής του μεγέθους A

Είναι το πηλίκο

$$\frac{\Delta A}{\Delta t}$$

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- 1 μέση ταχύτητα $v=\frac{\Delta x}{\Delta t}=\frac{x(t)-x(t_0)}{t-t_0}$
- \bigcirc επιτάχυνση $\alpha = \frac{\Delta v}{\Delta t}$
- ③ δύναμη $F = \frac{\Delta P}{\Delta t}$

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- 1 μέση ταχύτητα $v=\frac{\Delta x}{\Delta t}=\frac{x(t)-x(t_0)}{t-t_0}$
- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{\Delta v}{\Delta t}$
- ③ δύναμη $F = \frac{\Delta P}{\Delta t}$

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- 1 μέση ταχύτητα $v=\frac{\Delta x}{\Delta t}=\frac{x(t)-x(t_0)}{t-t_0}$
- $oldsymbol{2}$ επιτάχυνση $lpha=rac{\Delta v}{\Delta t}$
- 3 δύναμη $F = \frac{\Delta P}{\Delta t}$

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- 1 μέση ταχύτητα $v=\frac{\Delta x}{\Delta t}=\frac{x(t)-x(t_0)}{t-t_0}$
- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{\Delta v}{\Delta t}$
- 3 δύναμη $F = \frac{\Delta P}{\Delta t}$

- \bigcirc επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$
- ή ποιό elegant
 - 1 ταχύτητα $v(t) = x'(t) = \frac{ax}{dt}$
 - ② επιτάχυνση $a(t) = v'(t) = \frac{du}{dt}$
 - 3 δύναμη F = P'(t)

- ② επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- $extbf{1}$ ταχύτητα $v(t)=x'(t)=rac{dx}{dt}$
- ② επιτάχυνση $a(t) = v'(t) = \frac{d}{d}$
- 3 δύναμη F = P'(t)

- 1 ταχύτητα $v=\frac{dx}{dt}=\lim_{\Delta t \to 0} \frac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- **2** επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- $\mathbf{0}$ ταχύτητα $v(t)=x'(t)=rac{dx}{dt}$
- 2 επιτάχυνση $a(t)=v'(t)=rac{c}{c}$
- 3 δύναμη F = P'(t)

- 1 ταχύτητα $v=\frac{dx}{dt}=\lim_{\Delta t \to 0} \frac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- **2** επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- 1 ταχύτητα $v(t) = x'(t) = \frac{dx}{dt}$
- 2 επιτάχυνση $a(t) = v'(t) = \frac{dv}{dt}$
- 3 δύναμη F = P'(t)

- **2** επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- 1 ταχύτητα $v(t) = x'(t) = \frac{dx}{dt}$
- 2 επιτάχυνση $a(t) = v'(t) = \frac{dv}{dt}$
- 3 δύναμη F = P'(t)

- **2** επιτάχυνση $\alpha = \frac{dv}{dt}$

- 1 ταχύτητα $v(t) = x'(t) = \frac{dx}{dt}$
- 2 επιτάχυνση $a(t) = v'(t) = \frac{dv}{dt}$
- 3 δύναμη F = P'(t)

- **2** επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- 1 ταχύτητα $v(t) = x'(t) = \frac{dx}{dt}$
- 2 επιτάχυνση $a(t) = v'(t) = \frac{dv}{dt}$
- 3 δύναμη F = P'(t)

Επιστροφή στα μαθηματικά!

Αν και δεν μου αρέσει, στα μαθηματικά ορίζεται

Ρυθμός μεταβολής του μεγέθους A ως προς την μεταβλητή B Είναι το πηλίκο

$$A'(B) = \frac{dA}{dB}$$

ή αλλιώς η παράγωγος του Α ως προς το Β

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Άρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x'$

- Άρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Άρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - - $(x^2)' = 2xx$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x'$

- Άρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Άρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - $(x^2)' = 2xx'$
 - $\bullet (x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x$

- Άρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Άρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x$

- Άρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Άρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - \bullet x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x'$

- Άρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Άρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - \bullet x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x'$

- Άρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Άρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - \bullet x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x'$

Κύριε μας μπερδεύει ο συμβολισμός

Πολλοί, για να είναι σίγουροι κρατάνε το $x'(t)=\frac{dx(t)}{dt}$ και γράφουνε πάντα τις συναρτήσεις. π.χ.

$$(x^2(t))' = \frac{dx^2(t)}{dt} = \frac{dx^2(t)}{dx(t)} \frac{dx(t)}{dt} = 2x(t)x'(t)$$

Δίνεται η συνάρτηση $f(x) = x^3 - 3x^2 + 1$

- ① Να βρείτε το ρυθμό μεταβολής της f ως προς το x στο σημείο με x=1
- ② Να βρείτε τις τιμές του x, που ο ρυθμός μεταβολής της f ως προς το x είναι αρνητικός

Λόλας Συναρτήσεις 9/1

Δίνεται η συνάρτηση $f(x) = x^3 - 3x^2 + 1$

- ① Να βρείτε το ρυθμό μεταβολής της f ως προς το x στο σημείο με x=1
- ② Να βρείτε τις τιμές του x, που ο ρυθμός μεταβολής της f ως προς το x είναι αρνητικός

Λόλας Συναρτήσεις 9/1

Το εμβαδό E ενός τετραγώνου αυξάνει. Η πλευρά του α σε cm, που αυξάνει, δίνεται από τον τύπο $\alpha=3t+2$, όπου t ο χρόνος σε sec.

- **1** Να αποδείξετε ότι $E = E(t) = (3t + 2)^2$
- ② Να βρείτε το ρυθμό μεταβολής του εμβαδού E του τετραγώνου, όταν t=2 sec.

Λόλας Συναρτήσεις 10/1

Το εμβαδό E ενός τετραγώνου αυξάνει. Η πλευρά του α σε cm, που αυξάνει, δίνεται από τον τύπο $\alpha=3t+2$, όπου t ο χρόνος σε sec.

- **1** Να αποδείξετε ότι $E = E(t) = (3t + 2)^2$
- ② Να βρείτε το ρυθμό μεταβολής του εμβαδού E του τετραγώνου, όταν t=2 sec.

Λόλας Συναρτήσεις 10/1

Δύο κινητά ${\bf A}$ και ${\bf B}$ ξεκινούν συγχρόνως από την αρχή των αξόνων ${\bf O}$. Το ${\bf A}$ κινείται στον ημιάξονα ${\bf O}x$ με ταχύτητα 6cm/sec και το ${\bf B}$ στον ημιάξονα ${\bf O}y$ με ταχύτητα 8cm/sec.

- **1** Να βρείτε τις συναρτήσεις θέσεως των Α και Β
- ② Να βρείτε τη χρονική στιγμή που η απόσταση των \mathbf{A} και \mathbf{B} είναι $\mathbf{50}cm$
- ③ Να αποδείξετε ότι η απόσταση d = (AB) των δύο κινητών αυξάνεται με σταθερό ρυθμό τον οποίο και να προσδιορίσετε.

Λόλας Συναρτήσεις 11/1

Δύο κινητά A και B ξεκινούν συγχρόνως από την αρχή των αξόνων O. Το A κινείται στον ημιάξονα Ox με ταχύτητα 6cm/sec και το B στον ημιάξονα Oy με ταχύτητα 8cm/sec.

- Να βρείτε τις συναρτήσεις θέσεως των Α και Β
- ② Να βρείτε τη χρονική στιγμή που η απόσταση των $\mathbf A$ και $\mathbf B$ είναι 50cm
- ③ Να αποδείξετε ότι η απόσταση d = (AB) των δύο κινητών αυξάνεται με σταθερό ρυθμό τον οποίο και να προσδιορίσετε.

Λόλας Συναρτήσεις 11/1

Δύο κινητά A και B ξεκινούν συγχρόνως από την αρχή των αξόνων O. Το A κινείται στον ημιάξονα Ox με ταχύτητα 6cm/sec και το B στον ημιάξονα Oy με ταχύτητα 8cm/sec.

- 📵 Να βρείτε τις συναρτήσεις θέσεως των Α και Β
- ② Να βρείτε τη χρονική στιγμή που η απόσταση των $\mathbf A$ και $\mathbf B$ είναι 50cm
- ③ Να αποδείξετε ότι η απόσταση d = (AB) των δύο κινητών αυξάνεται με σταθερό ρυθμό τον οποίο και να προσδιορίσετε.

Λόλας Συναρτήσεις 11/1

Ένα κινητό Μ κινείται κατά μήκος της καμπύλης $y=\sqrt{x}$ ξεκινώντας από το Ο και η τετμημένη του x αυξάνεται με ρυθμό 4cm/sec

- ① Να αποδείξετε ότι η τετμημένη του κινητού για κάθε χρονική στιγμή $t,t\geq 0$ δίνεται από τον τύπο x(t)=4t.
- ② Να βρείτε το χρόνο που χρειάζεται το κινητό να φθάσει στο σημείο (4,2)
- ③ Να βρείτε το ρυθμό μεταβολής της τεταγμένης του \mathbf{M} καθώς περνάει από το σημείο $\mathbf{B}(16,4)$

Λόλας Συναρτήσεις 12/1

Ένα κινητό Μ κινείται κατά μήκος της καμπύλης $y=\sqrt{x}$ ξεκινώντας από το Ο και η τετμημένη του x αυξάνεται με ρυθμό 4cm/sec

- ① Να αποδείξετε ότι η τετμημένη του κινητού για κάθε χρονική στιγμή $t,t\geq 0$ δίνεται από τον τύπο x(t)=4t.
- 2 Να βρείτε το χρόνο που χρειάζεται το κινητό να φθάσει στο σημείο (4,2)
- ③ Να βρείτε το ρυθμό μεταβολής της τεταγμένης του ${\rm M}$ καθώς περνάει από το σημείο ${\rm B}(16,4)$

Λόλας Συναρτήσεις 12/1

Ένα κινητό Μ κινείται κατά μήκος της καμπύλης $y=\sqrt{x}$ ξεκινώντας από το Ο και η τετμημένη του x αυξάνεται με ρυθμό 4cm/sec

- ① Να αποδείξετε ότι η τετμημένη του κινητού για κάθε χρονική στιγμή $t,t\geq 0$ δίνεται από τον τύπο x(t)=4t.
- 2 Να βρείτε το χρόνο που χρειάζεται το κινητό να φθάσει στο σημείο (4,2)

Λόλας Συναρτήσεις 12/1

Οι διαστάσεις x και y ενός ορθογωνίου μεταβάλλονται. Το x αυξάνει με ρυθμό 2cm/sec και το y ελαττώνεται με ρυθμό 3cm/sec. Να βρείτε το ρυθμό μεταβολής:

- ① Της περιμέτρου
- ② Του εμβαδού Ε του ορθογωνίου τη χρονική στιγμή που είναι x=10cm και y=12cm

Λόλας Συναρτήσεις 13/1

Οι διαστάσεις x και y ενός ορθογωνίου μεταβάλλονται. Το x αυξάνει με ρυθμό 2cm/sec και το y ελαττώνεται με ρυθμό 3cm/sec. Να βρείτε το ρυθμό μεταβολής:

- ① Της περιμέτρου
- $\mathbf{2}$ Του εμβαδού \mathbf{E} του ορθογωνίου τη χρονική στιγμή που είναι x=10cmκαι y=12cm

Λόλας Συναρτήσεις 13/1

Έστω Ε το εμβαδό του τριγώνου ΟΑΜ που περικλείεται από την ευθεία $\varepsilon: y = x$, το άξονα x'x και την ευθεία $x = \lambda$, $\lambda > 0$.

- **1** Να αποδείξετε ότι $E = \frac{1}{2}\lambda^2$

Λόλας Συναρτήσεις 14/1

Έστω Ε το εμβαδό του τριγώνου ΟΑΜ που περικλείεται από την ευθεία $\varepsilon: y = x$, το άξονα x'x και την ευθεία $x = \lambda$, $\lambda > 0$.

- **1** Να αποδείξετε ότι $E = \frac{1}{2}\lambda^2$
- **2** Αν το λ αυξάνεται με ρυθμό 3cm/s, να βρείτε το ρυθμό μεταβολής του εμβαδού Ε, όταν $\lambda = 2cm$

Λόλας Συναρτήσεις 14/1

Ένα σημείο Μ κινείται κατά μήκος της καμπύλης $y=x^2$, $x\geq 0$ ξεκινώντας από την αρχή των αξόνων Ο.

- Φ Αν ο ρυθμός μεταβολής x'(t) της τετμημένης του σημείου $\mathbf M$ είναι 2cm/s, να βρείτε το χρόνο που θα χρειαστεί για να φτάσει στο σημείο $\mathbf B(4,16)$
- ② Να βρείτε σε ποιο σημείο της καμπύλης ο ρυθμός μεταβολής της τεταγμένης y του \mathbf{M} είναι διπλάσιος του ρυθμού μεταβολής της τετμημένης του x αν υποτεθεί ότι x'(t)>0, γιο κάθε t>0
- ③ Καθώς το Μ περνάει από το A(2,4), η τετμημένη του ελαττώνεται με ρυθμό 3cm/s. Να βρείτε το ρυθμό μεταβολής της τεταγμένης y του M τη χρονική στιγμή που περνάει από το A

Λόλας Συναρτήσεις 15/1

Ένα σημείο Μ κινείται κατά μήκος της καμπύλης $y=x^2$, $x\geq 0$ ξεκινώντας από την αρχή των αξόνων Ο.

- Φ Αν ο ρυθμός μεταβολής x'(t) της τετμημένης του σημείου $\mathbf M$ είναι 2cm/s, να βρείτε το χρόνο που θα χρειαστεί για να φτάσει στο σημείο $\mathbf B(4,16)$
- ② Να βρείτε σε ποιο σημείο της καμπύλης ο ρυθμός μεταβολής της τεταγμένης y του $\mathbf M$ είναι διπλάσιος του ρυθμού μεταβολής της τετμημένης του x αν υποτεθεί ότι x'(t)>0, για κάθε $t\geq 0$
- ③ Καθώς το Μ περνάει από το A(2,4), η τετμημένη του ελαττώνεται με ρυθμό 3cm/s. Να βρείτε το ρυθμό μεταβολής της τεταγμένης y του M τη χρονική στιγμή που περνάει από το A

Λόλας Συναρτήσεις 15/1

Ένα σημείο Μ κινείται κατά μήκος της καμπύλης $y=x^2, x\geq 0$ ξεκινώντας από την αρχή των αξόνων Ο.

- Φ Αν ο ρυθμός μεταβολής x'(t) της τετμημένης του σημείου $\mathbf M$ είναι 2cm/s, να βρείτε το χρόνο που θα χρειαστεί για να φτάσει στο σημείο $\mathbf B(4,16)$
- ② Να βρείτε σε ποιο σημείο της καμπύλης ο ρυθμός μεταβολής της τεταγμένης y του \mathbf{M} είναι διπλάσιος του ρυθμού μεταβολής της τετμημένης του x αν υποτεθεί ότι x'(t)>0, για κάθε $t\geq 0$
- ③ Καθώς το Μ περνάει από το A(2,4), η τετμημένη του ελαττώνεται με ρυθμό 3cm/s. Να βρείτε το ρυθμό μεταβολής της τεταγμένης y του M τη χρονική στιγμή που περνάει από το A

Λόλας Συναρτήσεις 15/1

Ένα κινητό κινείται σε ελλειπτική τροχιά με εξίσωση $4x^2+y^2=4$. Καθώς περνάει από το σημείο $A(\frac{1}{2},\sqrt{3})$ η τετμημένη του x ελαττώνεται με ρυθμό 2 μονάδες το δευτερόλεπτο. Να βρείτε το ρυθμό μεταβολής της τεταγμένης του y τη χρονική στιγμή που το κινητό περνάει από το A.

Λόλας Συναρτήσεις 16/1

Ένα κινητό κινείται στη καμπύλη $C:y=e^x$. Καθώς το $\mathbf M$ περνάει από το σημείο $\mathbf A(0,1)$, η τετμημένη του x αυξάνει με ρυθμό $\mathbf 3$ μονάδες το δευτερόλεπτο. Να βρείτε το ρυθμό μεταβολής της απόστασης $l=(\mathbf O\mathbf M)$ τη χρονική στιγμή που το κινητό περνάει από το $\mathbf A$.

Λόλας Συναρτήσεις 17/1

Ένα κινητο Μ κινείται στην καμπύλη $C:y=x^3$. Καθώς το Μ περνάει από το σημείο A(1,1), η τετμημένη του x ελαττώνεται με ρυθμό 2 μονάδες το δευτερόλεπτο. Να βρείτε το ρυθμό μεταβολής της γωνίας $\theta= \hat{\text{MO}}x$ τη χρονική στιγμή που το κινητό περνάει από το A.

Λόλας Συναρτήσεις 18/1

Μία σκάλα μήκους 5m είναι τοποθετημένη σ' έναν τοίχο. Το κάτω μέρος της σκάλας ${\bf B}$ γλιστράει στο δάπεδο με σταθερό ρυθμό 0,3m/s. Τη χρονική στιγμή t_0 που η κορυφή της σκάλας απέχει από το δάπεδο 3m, να βρείτε τη ταχύτητα με την οποία πέφτει η κορυφή ${\bf A}$ της σκάλας.

Λόλας Συναρτήσεις 19/1

Μία γυναίκα ύψους 2m απομακρύνεται από τη βάση ενός φανοστάτη ύψους 10cm με ταχύτητα 0,5m/s. Με ποια ταχύτητα αυξάνεται ο ίσκιος της?

Λόλας Συναρτήσεις 20/1

Δίνεται η συνάρτηση $f(x) = x^2$, $x \le 0$.

- ① Να βρείτε την τετμημένη του σημείο τομής $\mathbf M$ της εφαπτομένης της C_f στο σημείο της $\mathbf A(a,f(a))$, $a\neq 0$ με τον άξονα x'x.
- ② Έστω ότι το σημείο $\mathbf A$ κινείται κατά μήκος της C_f και ο ρυθμός μεταβολής του a(t) δίνεται από τον τύπο a'(t)=2a(t). Να βρείτε το ρυθμό μεταβολής της τετμημένης του σημείου $\mathbf M$ του προηγούμενου ερωτήματος τη χρονική στιγμή που το $\mathbf A$ έχει τετμημένη -2
- ③ Να βρείτε το ρυθμό μεταβολής της γωνίας θ που σχηματίζει η εφαπτομένη της C_f στο A με τον x'x την ίδια χρονική στιγμή με το 2. ερώτημα

Λόλας Συναρτήσεις 21/1

Δίνεται η συνάρτηση $f(x) = x^2$, $x \le 0$.

- ① Να βρείτε την τετμημένη του σημείο τομής $\mathbf M$ της εφαπτομένης της C_f στο σημείο της $\mathbf A(a,f(a))$, $a\neq 0$ με τον άξονα x'x.
- ② Έστω ότι το σημείο $\mathbf A$ κινείται κατά μήκος της C_f και ο ρυθμός μεταβολής του a(t) δίνεται από τον τύπο a'(t)=2a(t). Να βρείτε το ρυθμό μεταβολής της τετμημένης του σημείου $\mathbf M$ του προηγούμενου ερωτήματος τη χρονική στιγμή που το $\mathbf A$ έχει τετμημένη -2
- ③ Να βρείτε το ρυθμό μεταβολής της γωνίας θ που σχηματίζει η εφαπτομένη της C_f στο $\mathbf A$ με τον x'x την ίδια χρονική στιγμή με το 2. ερώτημα

Λόλας Συναρτήσεις 21/1

Δίνεται η συνάρτηση $f(x) = x^2$, $x \le 0$.

- ① Να βρείτε την τετμημένη του σημείο τομής $\mathbf M$ της εφαπτομένης της C_f στο σημείο της $\mathbf A(a,f(a))$, $a\neq 0$ με τον άξονα x'x.
- ② Έστω ότι το σημείο $\mathbf A$ κινείται κατά μήκος της C_f και ο ρυθμός μεταβολής του a(t) δίνεται από τον τύπο a'(t)=2a(t). Να βρείτε το ρυθμό μεταβολής της τετμημένης του σημείου $\mathbf M$ του προηγούμενου ερωτήματος τη χρονική στιγμή που το $\mathbf A$ έχει τετμημένη -2
- ③ Να βρείτε το ρυθμό μεταβολής της γωνίας θ που σχηματίζει η εφαπτομένη της C_f στο A με τον x'x την ίδια χρονική στιγμή με το 2. ερώτημα

Λόλας Συναρτήσεις 21/1