

线性代数 (复习课)

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

矩阵及其运算

- 加减法和数乘、乘法.
- 一般 $AB \neq BA$, 但 A = E, O, f(B)/g(B) 时可以.
- 一般 AB = AB 推不出 B = C, 但 A 列满秩时可以.
- 矩阵的幂: 对角阵、 $\lambda E + N$ 、 uv^{T} 情形, 或相似与这些矩阵情形.

转置、伴随、逆

- $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}, \quad (AB)^* = B^*A^*, \quad (AB)^{-1} = B^{-1}A^{-1}.$
- $(\mathbf{A}^{\mathrm{T}})^* = (\mathbf{A}^*)^{\mathrm{T}}, \quad (\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}, \quad (\mathbf{A}^*)^{-1} = (\mathbf{A}^{-1})^*.$
- $AA^* = A^*A = |A|E_n$, $(kA)^* = k^{n-1}A^*$, $|A^*| = |A|^{n-1}$.
- $(\mathbf{A}^*)^* = \begin{cases} \mathbf{A}, & n = 2; \\ |\mathbf{A}|^{n-2}\mathbf{A}, & n \geqslant 3. \end{cases}$
- $R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n 1; \\ 0, & R(\mathbf{A}) \leqslant n 2. \end{cases}$
- $(A, E) \stackrel{r}{\sim} (E, A^{-1}), (A, B) \stackrel{r}{\sim} (E, A^{-1}B).$
- A 可逆 \iff $|A| \neq 0 \iff$ $R(A) = n \iff$ A 行最简形为 E \iff $A \sim E \iff$ $A \stackrel{c}{\sim} E \iff$ $A \stackrel{c}{\sim} E \iff$ Ax = 0 只有零解 \iff Ax = b 总有解 \iff Ax = b 总有唯一解 \iff A 特征值都非零.

行列式

- 行列式: 2,3 阶直接算. 对角阵和三角阵行列式的计算,分块情形类似.
- 一般用初等变换计算.
- $R(\mathbf{A}) < n \ \mathbf{P} \mathbf{I} \mathbf{A} = 0.$
- $|AB| = |A| \cdot |B|$, $|A^{\mathrm{T}}| = |A|$, $|kA| = k^n |A|$.
- 拉普拉斯展开,以及 $\sum\limits_{j=1}^n a_{ij}A_{jk}=0$ 或 |A|.
- 特殊形状行列式的计算, 范德蒙行列式.
- 互换两行 (列) 后, 方阵的行列式变为 -1 倍.
- 方阵的某一行 (列) 乘 k 后, 方阵的行列式变为 k 倍.
- 将方阵某一行(列)对应向量写成两个向量之和,则行列式也可对应拆成两个行列式之和.
- 具有相同的两行 (列) 的方阵的行列式为零: $|\cdots, v, \cdots, v, \cdots| = 0$.
- 若方阵有一行 (列) 全为零, 则行列式为零: |···, 0,···| = 0.
- 若方阵有两行 (列) 成比例, 则行列式为零: $|\cdots, v, \cdots, kv, \cdots| = 0$.

向量组

设 $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_m)$ 列向量组分别为 S, T.

- 线性组合: $\beta = \lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m \iff \beta = Ax$ 有解 $\iff R(A) = R(A, \beta)$.
- 线性无关: $\lambda_1\alpha_1 + \cdots + \lambda_m\alpha_m = \mathbf{0}$ 只有零解 \iff $\mathbf{A}\mathbf{x} = \mathbf{0}$ 只有零解 \iff $\mathrm{R}(\mathbf{A}) = \mathrm{R}(S) = m$.
- 线性相关: 存在不全为零的数使得 $\lambda_1 \alpha_1 + \cdots + \lambda_m \alpha_m = \mathbf{0} \iff \mathrm{R}(S) < m$.
- T 可以被 S 线性表示 \iff AX = B 有解 \iff R(A) = R(A, B).
- S,T 向量组等价 \iff B = AX, A = BY 有解 \iff R(A) = R(A,B) = R(B).
- 设 $\alpha_1, \ldots, \alpha_m$ 线性无关, $(\beta_1, \ldots, \beta_n) = (\alpha_1, \ldots, \alpha_m)C$. β_1, \ldots, β_n 线性无关 $\iff Cx = 0$ 只有零解.
- 向量组线性相关 其中至少有一个向量可以由其它向量线性表示.
- 若 S 线性无关, $S \cup \{\beta\}$ 线性相关, 则 β 可以由 S 唯一线性表示.
- 整体无关 ⇒ 部分无关.
- 低维无关 ⇒ 高维无关.
- 多的由少的表示, 多的一定线性相关,

秩、基、极大无关组

- 设 R(A) = r, 则存在非零的 r 阶子式, 但所有的 r+1 阶子式都是零.
- $\mathfrak{P} : \mathcal{A} \in M_{m \times n}, \ \mathfrak{P} : 0 \leqslant \mathcal{R}(\mathbf{A}) \leqslant \min(m, n).$
- $R(\mathbf{A}) = 0 \iff \mathbf{A} = \mathbf{O};$
- n 阶方阵 \boldsymbol{A} 可逆 \iff $R(\boldsymbol{A}) = n$;
- $R(k\mathbf{A}) = R(\mathbf{A}) = R(\mathbf{A}^{T}), k \neq 0;$
- $\boldsymbol{A} \sim \boldsymbol{B} \iff \mathrm{R}(\boldsymbol{A}) = \mathrm{R}(\boldsymbol{B});$
- $R(\boldsymbol{A}\boldsymbol{B}) \leqslant \min(R(\boldsymbol{A}), R(\boldsymbol{B}));$
- 若 $A_{m \times n} B_{n \times \ell} = O$, 则 $R(A) + R(B) \leqslant n$;
- $R(aA + bB) \leqslant R(A, B) \leqslant R(A) + R(B)$. 特别地, $max(R(A), R(B)) \leqslant R(A, B)$.
- $S_0 \subseteq S$ 是极大无关组, 如果下面任意两条满足: S_0 大小是 R(S); S_0 和 S 等价; S_0 线性无关.

线性方程组

- 设 $A \in M_{m \times n}$, R(A) = r. 线性方程组 Ax = 0 的基础解系包含 n r 个向量.
- 若 R(A) < R(A, b), 则 Ax = b 无解;
- 若 R(A) = R(A, b) = n, 则 Ax = b 有唯一解;
- 若 R(A) = R(A, b) < n, 则 Ax = b 有无穷多解.

- 正交阵: 行 (列) 向量组是标准正交基.
- A 正交 $\iff A^{\mathrm{T}}, A^{-1}, A^*$ 也正交.
- $|A| = \pm 1$.
- 特征值: 解特征多项式.
- 对角元之和 = 迹 Tr(A) = 特征值之和. $(Tr(A^2)$ = 特征值平方和)
- 行列式 = 特征值乘积.
- g(A)/h(A) 的特征值, $A^{T}, A^{*}, P^{-1}AP$ 特征值.
- 对称阵: $A = A^{T}$, 反对称阵: $A = -A^{T}$.

矩阵关系

- 行等价: $A \stackrel{r}{\sim} B \iff B = PA, P$ 可逆 \iff 行向量组等价 \iff 列向量组保持 线性关系 \iff Ax = 0 和 Bx = 0 等价.
- 等价: $A \sim B \iff B = PAQ, P, Q$ 可逆 \iff R(A) = R(B).
- 相似: 若 $B = P^{-1}AP$, 则特征值、迹、行列式、特征多项式相同.
- 可对角化 \iff 有 n 个线性无关特征向量 (作为 P 的列). 特征值两两不同, 或对所有特征值 $R(A \lambda E) = n k$ ($\lambda \in E$ 重).
- 不同特征值的特征向量线性无关.
- 相合: 即二次型等价 $B = P^{T}AP$. 特征值特征向量 (可) 全实, 可对角化. 标准型 $\operatorname{diag}(E_{p}, -E_{r-p}, O)$.
- 正交相合: P 是正交阵. 将特征向量正交单位化.
- 正定: 特征值全正, p = n, 顺序主子式全正 (⇒ 对角元全正).

极大线性无关组和秩的计算方法

- (1) 将向量组以列向量形式组成矩阵 $A = (\alpha_1, \ldots, \alpha_m)$.
- (2) 通过初等行变换将 A 变为行阶梯形矩阵.
 - 行阶梯形矩阵非零行的行数就是秩 R(A);
 - 行阶梯形矩阵每个非零行的首个非零元对应的 A 的列向量, 就是极大线性无关组.
- (3) 继续化简为行最简形矩阵,则可将其余向量表示为极大线性无关组的线性组合.

齐次线性方程组的解法

- (1) 将系数矩阵通过初等行变换化为行最简形.
- (2) 将矩阵重新写成方程形式 $x_i + \cdots = 0$.
- (3) 移项, 使得等式左侧只有阶梯拐角列 i 对应的 $x_i = \cdots$
- (4) 添加 n-r 项 $x_j=x_j$, 使得等式左边凑成 x.
- (5) 等式右侧是非拐角列 j 对应的 x_j 的组合, 其系数形成的 n-r 个向量就是基础解系.

非齐次线性方程组的解法

- (1) 写: 写出方程组对应的增广矩阵 (A, b);
- (2) 变: 通过初等行变换将其化为行最简形;
- (3) 判: 通过行最简形判定方程是否有解;
- (4) 解: 若系数矩阵部分零行对应的常数项均为零,则方程有解.
- (5) 类似于齐次情形,将矩阵重新写成方程形式、移项、添恒等式,使得等式左边凑成x.
- (6) 等式右侧的常数部分是特解,其余是非拐角列 j 对应的 x_j 的组合, 其系数形成的 n-r 个向量就是基础解系.

格拉姆-施密特正交化

$$eta_1=lpha_1$$
 $eta_2=lpha_2-rac{[lpha_2,eta_1]}{[eta_1,eta_1]}eta_1$ $eta_3=lpha_3-rac{[lpha_3,eta_1]}{[eta_1,eta_1]}eta_1-rac{[lpha_3,eta_2]}{[eta_2,eta_2]}eta_2$ $dots$ $eta_r=lpha_r-rac{[lpha_r,eta_1]}{[eta_1,eta_1]}eta_1-\cdots-rac{[lpha_r,eta_{r-1}]}{[eta_{r-1},eta_{r-1}]}eta_{r-1}$ $eta_{r-1}=rac{eta_1}{\|eta_1\|},\ldots,e_r=rac{eta_r}{\|eta_r\|}$ 就是 V 的一组标准正交基.

特征值和特征向量的计算

- (1) 求 A 的特征多项式 $f(\lambda) = |A \lambda E|$;
- (2) 解 $f(\lambda) = |A \lambda E| = 0$ 得到特征值;
- (3) 对于每一个特征值 λ_i , 解 $(A \lambda_i E)x = 0$, 其非零解就是对应特征向量.

相似对角化:

- (1) 求出 A 的所有特征值 λ_i 和特征向量 p_i ;
- (2) 若 k 重特征值均有 k 个对应的线性无关的特征向量,则可对角化.
- (3) 若能, 将 n 个对应的线性无关的特征向量 p_1, \ldots, p_n 组成方阵 $P = (p_1, \ldots, p_n)$,

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

实对称阵的正交合同对角化,或求正交变换 x = Py 将实二次型 f 化为标准形:

- (1) 写出 f 对应的对称阵 A.
- (2) 求出 A 的特征值.
- (3) 若特征值是 k 重的, 求出 k 个特征向量后, 用格拉姆-施密特方法将其正交单位化.
- (4) 这些特征向量构成正交阵 P, $P^{\mathrm{T}}AP$ 为这些特征向量对应的特征值构成的对角阵.
- (5) 写出正交变换 x = Py 以及对应的实二次型 $f = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2$. 求可逆变换 x = Py 将实二次型 f 化为规范形:
- (1) 求出正交变换 Q 使得

$$\mathbf{Q}^{\mathrm{T}}\mathbf{A}\mathbf{Q} = \mathrm{diag}(\lambda_1, \dots, \lambda_n).$$

(2) 取 $P = Q \operatorname{diag}(\sqrt{|\lambda_1|}, \dots, \sqrt{|\lambda_n|})^{-1}$, 零特征值对应位置任取非零数.

也可用配方法. 若只求规范形, 可只看特征值正负号.