Econometrics 871 – Time Series

Tutorial on non-linear models

In this tutorial we will explore the estimation of a few non-linear models on simulated data as well as pre-tests to attempt to verify the presence of the non-linearity. Simulated data corresponds to the ideal case — where data generating process corresponds exactly with our empirical model. We will show that even in this case, with many data points, the estimations are not always able to uncover the process.

Case 1: single threshold TAR(1) model

1. The data

The data was simulated with the Matlab script gen TAR1.m and follows the data generating process:

$$y_{t} = \begin{cases} 0 + 0.9y_{t-1} + \varepsilon_{t} & \text{if } y_{t-1} < 0\\ 1 + 0.2y_{t-1} + \varepsilon_{t} & \text{if } y_{t-1} \ge 0 \end{cases}$$
$$\varepsilon_{t} \sim N(0,1)$$

For the estimation to have any hope of identifying the threshold and coefficients closely, the process must spend enough time in each regime so that there are sufficient data points for each regime. I had to try several times (and experimented with a few sets of parameters) to find a sequence that should work well. Note that I chose to have equal error variances in both regimes, and very different processes. (A true test of this method would be to agnostically generate many samples for each parameter set and do estimations for each one to determine how often the method is likely to yield answers acceptably close to the truth). The variable single_threshold_tar1 is plotted in the following figure:

2. Preliminary analysis, linear model estimation and testing

As always, the first thing to check is whether the data is stationary with the usual unit root tests. I leave this to you as exercise. The tests will show that this data indeed tests as stationary.

Next, we estimate the basic linear model and perform tests for potential non-linearity

Commands: Select "Quick>Estimate Equation" from the menus

Specify a first order AR estimation and estimate via Least Squares

This yields:

Dependent Variable: SINGLE_THRESHOLD_TAR1

Method: Least Squares Date: 03/13/20 Time: 16:18 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SINGLE_THRESHOLD_TAR1(-1)	0.017309 0.797308	0.050736 0.027467	0.341160 29.02740	0.7331 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.628991 0.628245 1.130961 635.6991 -768.4591 842.5902 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quini Durbin-Watso	nt var iterion rion n criter.	0.113001 1.854893 3.088012 3.104897 3.094638 2.254795

Note that the fit seems quite good, but obviously, this is not the true DGP – the coefficients are mixtures of the two parts of the true DGP.

Next we test this specification.

A full battery of tests of white noise errors would be our first step.

Both the ACF and the formal LM test for autocorrelation will show problems as the 0.79 autocorrelation coefficient is not sufficient to account for the parts of the process in regime 2 with a much higher autocorrelation.

But for now, we focus on what is new: testing for non-linear effects. These are under "Stability Diagnostics"

The RESET test with just a squared fitted value added (the default) shows that there is strong evidence of some non-linear effects in this model. Adding a cubed term will not turn this conclusion around.

Ramsey RESET Test Equation: UNTITLED

Omitted Variables: Squares of fitted values

Specification: SINGLE_THRESHOLD_TAR1 C SINGLE_THRESHOLD

_TAR1(-1)

t-statistic F-statistic Likelihood ratio	Value 5.384155 28.98913 28.34401	df 496 (1, 496) 1	Probability 0.0000 0.0000 0.0000	
F-test summary:				
			Mean	
	Sum of Sq.	df	Squares	
Test SSR	35.10237	1	35.10237	
Restricted SSR	635.6991	497	1.279073	
Unrestricted SSR	600.5967	496	1.210881	
LR test summary:				
•	Value			
Restricted LogL	-768.4591		-	
Unrestricted LogL	-754.2871			

Unrestricted Test Equation:

Dependent Variable: SINGLE_THRESHOLD_TAR1

Method: Least Squares Date: 03/13/20 Time: 16:29

Sample: 2 500

Included observations: 499

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SINGLE_THRESHOLD_TAR1(-1) FITTED^2	0.228541 0.740916 -0.094112	0.063056 0.028704 0.017479	3.624413 25.81213 -5.384155	0.0003 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.649478 0.648064 1.100400 600.5967 -754.2871 459.5154 0.000000	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quit Durbin-Wats	ent var criterion erion nn criter.	0.113001 1.854893 3.035219 3.060545 3.045158 2.192528

Testing the recursive stability of the estimated coefficients:

This yields the visual test:

There is some evidence of parameter instability, although not very strong. This is not surprising – since the process switches from one regime to the other and back over time, successive data-points do not push the coefficient estimates in on direction.

The two tests combined, however, presents the conclusion that some non-linearity may be present (as we know it is).

3. Testing for threshold AR structure

If one did not know this was a TAR process, one would also consider testing for structural breaks. I leave it to you at the end of this tutorial to see if there can be misleading conclusions from testing for the wrong type of non-linearity.

For now we take it as given and estimate a threshold model where we allow the program to select the best threshold as a value of the lagged dependent variable. It will also test for the number of thresholds, but only report the best estimation. We will turn to this in the next case.

Click on the "Estimate" button and select threshold regression from the "Method" drop-down menu.

The dialogue box opens up to allow you to specify the threshold process you are interested in:

The first box is the equation with all coefficients that can vary by regime. In this case we know both the constant and the persistence parameter are different in the two regimes. If, for instance, we knew the constant does not change across regimes, we would remove it from the first box and place it in the second. The third box "Threshold variable specification" is where we specify the delay parameter. "1" here means that the first lag of the process is what switches the regime from one to the other. So this specification is the true DGP. What Eviews will now do is consider all possible values of the lagged dependent variable (trimming 15% of the smallest and largest values of the process), select the best fitting threshold and report the estimation results.

This yields the output:

Dependent Variable: SINGLE_THRESHOLD_TAR1

Method: Discrete Threshold Regression

Date: 03/13/20 Time: 16:57 Sample (adjusted): 2 500

Included observations: 499 after adjustments Selection: Trimming 0.15, , Sig. level 0.05

Threshold variable: SINGLE_THRESHOLD_TAR1(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
SINGLE_THRESHOLD_TAR1(-1) < 0.01238415 197 obs					
C SINGLE_THRESHOLD_TAR1(-1)	-0.110442 0.842794	0.121128 0.055508	-0.911783 15.18326	0.3623 0.0000	
0.01238415 <= SINGLE_THRESHOLD_TAR1(-1) 302 obs					
C SINGLE_THRESHOLD_TAR1(-1)	0.933704 0.206016	0.107947 0.067848	8.649689 3.036435	0.0000 0.0025	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.685713 0.683808 1.043024 538.5105 -727.0625 359.9971 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quint Durbin-Watso	nt var iterion rion n criter.	0.113001 1.854893 2.930110 2.963878 2.943362 2.119005	

This output is remarkably close to the true DGP in all coefficients (all coefficient estimates are within one standard error away from the true values) as well as the estimated threshold! Of course, we had sharp differences across regimes and a lot of data, so it would have been quite damning for the method if it could not work in this setting.

You should convince yourself that the residuals are now much closer to white noise than before.

Case 2: band TAR(1) model

For this experiment, I wanted to test the band-TAR(1) model of a notional real exchange rate process we discussed in class. The data was simulated with the Matlab script <code>gen_bandTAR1.m</code> and follows the data generating process:

$$\begin{split} \bar{s} &= 0.5 \\ c &= 0.3 \\ s_t &= \begin{cases} \bar{s} + 0.7(s_{t-1} - \bar{s}) + \varepsilon_t & \text{if } s_{t-1} < \bar{s} - c \\ \bar{s} + 1(s_{t-1} - \bar{s}) + \varepsilon_t & \text{if } \bar{s} - c \le s_{t-1} < \bar{s} + c \\ \bar{s} + 0.8(s_{t-1} - \bar{s}) + \varepsilon_t & \text{if } s_{t-1} \ge \bar{s} + c \end{cases} \\ \varepsilon_t \sim N(0, 0.04) \end{split}$$

Note that the middle regime implies a random walk without drift. To get the process to spend enough time within and outside of the band, I had to play around with the variance of the error relative to the width of the band, as well as the persistence outside of the band (and draw several samples) until I found the data plotted in the following figure (the variable is labelled bandtar1)

The simple linear AR1 model yields what looks like a reasonably strong fit and the residuals show no obvious autocorrelation or heteroscedasticity. The RESET test and recursive coefficients also show no obvious signs of non-linearity (see above for how to run these tests). The long run mean value is actually quite accurate: $\frac{0.1}{1-0.81} = 0.526$.

Dependent Variable: BANDTAR1

Method: Least Squares
Date: 03/14/20 Time: 10:39
Sample (adjusted): 2 500

Included observations: 499 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C BANDTAR1(-1)	0.100138 0.809887	0.016603 0.026319	6.031270 30.77198	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.655797 0.655104 0.202569 20.39392 89.69336 946.9149 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.528116 0.344928 -0.351476 -0.334592 -0.344850 2.111534

However, we know the data was generated with a band-TAR DGP, so let's see if the estimation can uncover it. We explicitly specify that the constant should not vary by regime:

The default option uses the version of Bai and Perron (2003) test where thresholds are tested for sequentially (0 vs 1, 1 vs 2 etc.). The results are:

Dependent Variable: BANDTAR1 Method: Discrete Threshold Regression

Date: 03/14/20 Time: 10:46 Sample (adjusted): 2 500

Included observations: 499 after adjustments Selection: Trimming 0.15, , Sig. level 0.05 Threshold variable: BANDTAR1(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
BANDTAR1(-1) < 0.4294947 207 obs					
BANDTAR1(-1)	0.536562	0.079245	6.770953	0.0000	
0.4294947 <= BANDTAR1(-1) 292 obs					
BANDTAR1(-1)	0.777141	0.027502	28.25778	0.0000	
Non-Threshold Variables					
С	0.137324	0.019306	7.113095	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.664806 0.663455 0.200101 19.86011 96.31089 491.8706 0.000000	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quinr Durbin-Watso	nt var terion rion n criter.	0.528116 0.344928 -0.373992 -0.348665 -0.364053 2.093537	

The best fitting model has only one threshold, not two.

We can force the model to estimate two thresholds by changing the setting in the "Options" tab of the estimation dialogue box. You will also note that under options you can allow different variances across regimes and control the trimming percentage along with other options. In the "Threshold specification" box, select "Fixed number – global" from the "Method" drop-down menu and set the number of thresholds to 2.

This yields:

Dependent Variable: BANDTAR1 Method: Discrete Threshold Regression

Date: 03/14/20 Time: 11:03 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Threshold variable: BANDTAR1(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
BAND	BANDTAR1(-1) < 0.6186913 305 obs					
BANDTAR1(-1)	0.685972	0.054708	12.53872	0.0000		
0.6186913 <= BANDTAR1(-1) < 0.7931153 77 obs						
BANDTAR1(-1)	0.882051	0.042925	20.54883	0.0000		
0.7931153 <= BANDTAR1(-1) 117 obs						
BANDTAR1(-1)	0.780885	0.026838	29.09646	0.0000		
	Non-Thresh	old Variables				
С	0.122176	0.020041	6.096205	0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.667481 0.665466 0.199502 19.70161 98.31012 331.2128 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quint Durbin-Watso	nt var terion rion n criter.	0.528116 0.344928 -0.377996 -0.344228 -0.364745 2.110605		

The autocorrelation coefficients in the lower and upper regime are very close to their true values, and in the intermediate regime the estimate is almost within two standard errors of the truth. The estimated upper thresholds is accurate (true value 0.8, estimated at 0.79), but the lower threshold is not (true value 0.2, estimated at 0.62).

Finally, we can force the estimation procedure to start searching at the true values. In the "Threshold specification" box, select "User specified" from the "Method" drop-down menu and enter the true thresholds.

This gives the correct thresholds but the coefficient estimates are now a little poorer, and the statistical fit weaker.

Dependent Variable: BANDTAR1 Method: Discrete Threshold Regression

Date: 03/14/20 Time: 11:15 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Threshold variable: BANDTAR1(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
BANI	DTAR1(-1) < 0	0.2004052 95	obs		
BANDTAR1(-1)	0.843045	0.177229	4.756820	0.0000	
0.2004052 <= BANDTAR1(-1) < 0.8018334 290 obs					
BANDTAR1(-1)	0.832059	0.041642	19.98143	0.0000	
0.8018334 <= BANDTAR1(-1) 114 obs					
BANDTAR1(-1)	0.809121	0.026601	30.41714	0.0000	
	Non-Thresh	old Variables			
С	0.093558	0.019343	4.836776	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.656125 0.654041 0.202880 20.37445 89.93167 314.8262 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.528116 0.344928 -0.344415 -0.310647 -0.331164 2.112514	

From this I conclude that even in the very simplest case with a lot of data, the estimation procedure is not very likely to be accurate. This is a weak conclusion: as above, a proper test of the estimation method is to repeat this process thousands of times, varying parameters and sample sizes, and documenting the distribution of results relative to the true values of parameters.

Case 3: an AR(1) model with 1 structural break

The data was simulated with the Matlab script <code>gen_Structural_Break_AR.m</code> and follows the data generating process:

$$y_t = \begin{cases} -0.05 + 0.5y_{t-1} + \varepsilon_t & \text{if } t < 166\\ 0.02 + 0.8y_{t-1} + \varepsilon_t & \text{if } t \ge 166 \end{cases}$$
$$\varepsilon_t \sim N(0, 0.01)$$

Note that both the constant and the persistence changes at the break date. This is likely to be an easy case to correctly estimate.

The variable <code>ar1_single_break</code> is plotted in the following figure:

The structural break in this series is not very sharp, so you will find that the process tests as stationary. Estimating the linear AR(1) model yields:

Dependent Variable: AR1_SINGLE_BREAK

Method: Least Squares Date: 03/14/20 Time: 11:21 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR1_SINGLE_BREAK(-1)	0.008081 0.805728	0.004609 0.026738	1.753275 30.13367	0.0802 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.646273 0.645561 0.100639 5.033768 438.7608 908.0381 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quini Durbin-Watso	nt var iterion rion n criter.	0.037356 0.169043 -1.750544 -1.733660 -1.743918 2.131862

Since most of the series is spent in the high persistence regime, this dominates the estimation and the AR coefficient accurately captures the true degree of persistence although the mean is imprecisely estimated.

Performing the tests above, the residuals show some weak evidence of autocorrelation (at the 10% level). The RESET test with squared does not indicate remaining non-linearity, but with squared and cubed terms it does.

The recursively estimated coefficients graph shows what we would expect: at the beginning of the estimation sample, the estimated coefficients are lower than for the full sample, indicating evidence of a structural break:

To estimate a structural break model, select the breakpoint estimation:

The default specification is correct: both coefficients are subject to a break

Again the default Bai and Perron (2003) test is the sequential one: 0 breaks against 1, 1 against 2 etc. This yields

Dependent Variable: AR1_SINGLE_BREAK

Method: Least Squares with Breaks

Date: 03/14/20 Time: 11:29 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Break type: Bai-Perron tests of L+1 vs. L sequentially determined breaks

Break: 154

Selection: Trimming 0.15, , Sig. level 0.05

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
2 - 153 152 obs						
C AR1_SINGLE_BREAK(-1)	-0.053157 0.438229	0.011358 0.085598	-4.679989 5.119632	0.0000 0.0000		
154 - 500 347 obs						
C AR1_SINGLE_BREAK(-1)	0.022441 0.775118	0.006050 0.032332	3.709396 23.97380	0.0002 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.669725 0.667723 0.097442 4.700028 455.8766 334.5838 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.037356 0.169043 -1.811129 -1.777360 -1.797877 2.038977		

The procedure finds a very close representation to the truth: one structural break at data point 153 (where the true break is at 166), and the coefficients of the two regimes are very accurately estimated, most within one standard error of the true values. The diagnostic tests are now unproblematic.

Case 4: an AR(1) model with 2 structural breaks

For the final experiment, we attempt a difficult problem, where the process has a constant mean, but the persistence decreases at two points in the sample. The data was simulated with the Matlab script gen Structural Break_AR.m and follows the data generating process:

$$y_t = \begin{cases} 0 + 0.7y_{t-1} + \varepsilon_t & \text{if } t < 166 \\ 0 + 0.5y_{t-1} + \varepsilon_t & \text{if } 166 \le t < 333 \\ 0 + 0.2y_{t-1} + \varepsilon_t & \text{if } t > 333 \end{cases}$$

$$\varepsilon_t \sim N(0, 0.01)$$

The variable ar1_two_breaks is plotted in the following figure:

A linear AR(1) estimation yields the expected result: a zero mean process with a AR coefficient that is some average of the true values:

Dependent Variable: AR1_TWO_BREAKS Method: Least Squares

Method: Least Squares Date: 03/14/20 Time: 11:35 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR1_TWO_BREAKS(-1)	0.001090 0.421957	0.004426 0.040829	0.246293 10.33470	0.8056 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.176888 0.175232 0.098866 4.857957 447.6307 106.8060 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quini Durbin-Watso	nt var iterion rion n criter.	0.001552 0.108864 -1.786095 -1.769211 -1.779469 2.031447

The default setting of the break-point estimation yields only one break-point, close to the true value of the second break (333, estimated as 342): The first estimated regime is close to the middle regime, and the second close to the third regime, although with an imprecise estimate of the AR coefficient:

Dependent Variable: AR1_TWO_BREAKS

Method: Least Squares with Breaks

Date: 03/14/20 Time: 11:37 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Break type: Bai-Perron tests of L+1 vs. L sequentially determined breaks

Break: 342

Selection: Trimming 0.15, , Sig. level 0.05

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
2 - 341 340 obs					
C AR1_TWO_BREAKS(-1)	-0.000866 0.520106	0.005272 0.046238	-0.164218 11.24845	0.8696 0.0000	
342 - 500 159 obs					
C AR1_TWO_BREAKS(-1)	0.007214 0.117251	0.007723 0.081033	0.934165 1.446946	0.3507 0.1485	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.207505 0.202702 0.097206 4.677259 457.0882 43.20316 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.001552 0.108864 -1.815985 -1.782216 -1.802733 2.024666	

Finally, if we use the global test for breakpoints allowing for up 5 breaks, we can see the results for all numbers of breaks.

The estimation output gives the maximum number of breaks (set to 5 as a default) but we can see the test results themselves under "View>Breakpoint Specification".

Breakpoint Specification

Description of the breakpoint specification used in estimation

Equation: UNTITLED

Date: 03/14/20 Time: 11:48

Summary

Estimated number of breaks: 5

Method: Bai-Perron tests of 1 to M globally determined breaks

Maximum number of breaks: 5 Breaks: 94, 170, 245, 342, 419

Current breakpoint calculations:

Multiple breakpoint tests

Bai-Perron tests of 1 to M globally determined breaks

Date: 03/14/20 Time: 11:48

Sample: 2 500

Included observations: 499

Breaking variables: AR1_TWO_BREAKS(-1)

Non-breaking variables: C

Break test options: Trimming 0.15, Max. breaks 5, Sig. level 0.05

Sequential F-statistic determined breaks:	5
Significant F-statistic largest breaks:	5
UDmax determined breaks:	1
WDmax determined breaks:	1

Breaks	F-statistic	Scaled F-statistic	Weighted F-statistic	Critical Value	
1 * 2 * 3 * 4 * 5 *	18.38628 11.85972 9.299414 7.049069 5.598633	18.38628 11.85972 9.299414 7.049069 5.598633	18.38628 14.09369 13.38741 12.12044 12.28549	8.58 7.22 5.96 4.99 3.91	
UDMax statistic* WDMax statistic*		18.38628 18.38628			8.88 9.91

^{*} Significant at the 0.05 level.

Estimated break dates:

- 1: 342
- 2: 122, 342
- 3: 124, 250, 342
- 4: 124, 250, 342, 419
- 5: 94, 170, 245, 342, 419

^{**} Bai-Perron (Econometric Journal, 2003) critical values.

The F statistics for all the break specifications are significant, but the largest one is for only one break, hence the result above. Note that when 2 breaks are allowed, they are close to the true break points (the last part of the table above). When we impose exactly two breaks, the estimation yields:

Dependent Variable: AR1_TWO_BREAKS

Method: Least Squares with Breaks

Date: 03/14/20 Time: 11:50 Sample (adjusted): 2 500

Included observations: 499 after adjustments

Break type: Fixed number of globally determined breaks

Breaks: 122, 342

Variable	Coefficient	Std. Error	t-Statistic	Prob.				
2 - 121 120 obs								
AR1_TWO_BREAKS(-1)	0.680270	0.084025	8.096090	0.0000				
122 - 341 220 obs								
AR1_TWO_BREAKS(-1)	0.451593	0.055054	8.202798	0.0000				
342 - 500 159 obs								
AR1_TWO_BREAKS(-1)	0.120927	0.080577	1.500775	0.1341				
Non-Breaking Variables								
С	0.001311	0.004338	0.302121	0.7627				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.214526 0.209766 0.096774 4.635818 459.3086 45.06433 0.000000	Hannan-Quinn criter.		0.001552 0.108864 -1.824884 -1.791116 -1.811633 2.004849				

This is reasonably close to the true DGP, except for the imprecise estimate of the final regime autocorrelation (but low autocorrelation is difficult to identify without a large sample, so this is not surprising).

To be fair, this was a case that was unlikely to be very successful – it would be difficult for any method to detect the relatively minor changes from regime to regime. A DGP with starker changes is likely to yield more definitive results. A second two-break series, AR1_two_breaks2, is in the work file with DGP:

$$y_t = \begin{cases} 0 + 0.7y_{t-1} + \varepsilon_t & \text{if } t < 166\\ 0 + 0.3y_{t-1} + \varepsilon_t & \text{if } 166 \le t < 333\\ 0 + 0.9y_{t-1} + \varepsilon_t & \text{if } t > 333 \end{cases}$$
$$\varepsilon_t \sim N(0, 0.01)$$

You will find that the default specification immediately identifies two breaks close to their true dates with coefficients also close to the truth.