

Name of Project: EV Vehicle/Charging Demand Prediction

Name: Ujjwal Gupta

AICTE Student ID: STU68374882bc9891748453506

AICTE Internship ID:

INTERNSHIP_1748923002683e727a876ea

Learning Objectives

Analyze real-world EV adoption data to forecast charging demand using a full ML pipeline.

- Apply time series forecasting techniques.
- Perform data cleaning, transformation, and visualization.
- Engineer features (lags, trends, rolling averages).
- Build and evaluate regression-based prediction models.
- Interpret results using forecasting metrics.
- Deploy an interactive dashboard with Streamlit.
- Compare EV trends across regions.
- Gain end-to-end AI/ML project experience.

GOAL

Source: www.freepik.com/

Tools and Technology used

Languages & Libraries

- Python Core programming language
- pandas, numpy Data manipulation & processing
- scikit-learn Machine learning models
- matplotlib, statsmodels Visualization & statistical analysis
- **joblib**, **tensorflow** Model saving & support

Development & Deployment

- Jupyter Notebook Model development & experimentation
- **Streamlit** Interactive dashboard deployment
- VS Code Code editing & debugging

Environment

Virtual environment managed via requirements.txt

Data Source

EV registration data from Washington State, USA

Methodology

1. Data Collection

Collected county-wise EV registration data from Washington State.

2. Data Preprocessing

Handled missing values, parsed dates, and encoded categorical features.

3. Feature Engineering

Generated lag features, rolling averages, growth rates, and trend indicators.

4. Model Building

Trained a Random Forest model using the engineered features.

5. Forecasting

Predicted monthly EV adoption for the next 3 years.

6. Visualization

Plotted EV adoption trends for individual and multiple counties.

7. Deployment

Created an interactive dashboard using Streamlit for real-time insights.

Problem Statement:

Despite rising interest in electric vehicles, government planners and stakeholders lack effective tools to:

- Understand current EV adoption trends at the regional (county) level
- Predict future EV growth for infrastructure and policy planning
- Visualize adoption patterns across different counties

To address this, we built a machine learning model that forecasts EV adoption for the next 3 years and displays the results through an **interactive**, **user-friendly dashboard**.

Solution:

- Developed a machine learning model using historical EV registration data.
- Engineered time-based features to capture trends, seasonality, and growth patterns.
- Applied Random Forest Regression to forecast EV adoption at the county level.
- Built an interactive Streamlit web app for easy visualization and analysis.

Dashboard Features

- Select a county to view its EV growth forecast
- Compare adoption trends across up to three counties
- Analyze projected EV growth over a 3-year period

GitHub Repository Link:

https://github.com/ujjwalgupta2021/EV Vehicle Charge Demand

Streamlit Deployment Link:

https://ev-demand.streamlit.app/

Conclusion:

- Successfully developed a machine learning model to forecast EV adoption using real-world data.
- Applied essential ML techniques including preprocessing, feature engineering, and regression modeling.
- Deployed an interactive Streamlit dashboard to visualize and explore predictions.
- Enabled data-driven insights to support regional planning and policy decisions.
- Demonstrated the practical value of AI/ML in addressing environmental and policy challenges.