### **Demand Foresting/ Business Forecasting**

(Least Square Method)

## 1. Method of Least Squares- Fitting Linear Trend (For Odd Years)

Given the following data, forecast the estimated value of sales for the year 2017 using the least square method.

| Year | Sales (Y)    |
|------|--------------|
|      | ('000 units) |
| 2010 | 125          |
| 2011 | 128          |
| 2012 | 133          |
| 2013 | 135          |
| 2014 | 140          |
| 2015 | 141          |
| 2016 | 143          |

Find estimated sales for the year 2017?

For the year 2017 or X=4, how much will be value of Y?

#### Answer:

| Year | Sales (Y)    | X  | XY   |   |
|------|--------------|----|------|---|
|      | ('000 units) |    |      |   |
| 2010 | 125          | -3 | -375 | 9 |
| 2011 | 128          | -2 | -256 | 4 |
| 2012 | 133          | -1 | -133 | 1 |
| 2013 | 135          | 0  | 0    | 0 |
| 2014 | 140          | 1  | 140  | 1 |
| 2015 | 141          | 2  | 282  | 4 |
| 2016 | 143          | 3  | 429  | 9 |
|      | 945          |    |      |   |

Here 'N' is number of observations = 7.



# Rom equation (2),

Now, substituting the values of 'a' and 'b' we can get,

For the year 2017 or, *(ANS)* 

Similarly, you can calculate the estimated values for all the years.

### 2. Method of Least Squares- Fitting Linear Trend (For Even Years)

Given the following data, forecast the estimated value of sales for the year 2017 using the least square method.

| Year | Sales (Y)<br>('000 units) |
|------|---------------------------|
|      | ('000 units)              |
| 2009 | 80                        |
| 2010 | 90                        |
| 2011 | 92                        |
| 2012 | 83                        |
| 2013 | 94                        |
| 2014 | 99                        |
| 2015 | 92                        |
| 2016 | 104                       |

Find estimated sales for the year 2017?

### Sol:

| Year | Sales (Y)    | X  | XY   |     |
|------|--------------|----|------|-----|
|      | ('000 units) |    |      |     |
| 2009 | 80           | -7 | -560 | 49  |
| 2010 | 90           | -5 | -450 | 25  |
| 2011 | 92           | -3 | -276 | 9   |
| 2012 | 83           | -1 | -83  | 1   |
| 2013 | 94           | 1  | 94   | 1   |
| 2014 | 99           | 3  | 297  | 9   |
| 2015 | 92           | 5  | 460  | 25  |
| 2016 | 104          | 7  | 728  | 49  |
|      | 734          |    | 210  | 168 |

Here, origin can be found as follows:

Now the values of 'X' can be found as follows:

## For

Similarly, for 2010,.....,2016, the values are inserted in the above table.

|                                                                                                | (1)                           |
|------------------------------------------------------------------------------------------------|-------------------------------|
|                                                                                                | (2)                           |
| Solving the above two normal equations with the help of above table of "a" and "b" as follows: | e, we can find out the values |
| From equation (1), we can get,                                                                 |                               |
| Rom equation (2),                                                                              |                               |
| Now, substituting the values of 'a' and 'b' we can get,                                        |                               |
| For                                                                                            |                               |
| , (ANS)                                                                                        |                               |
| Similarly, you can calculate the estimated values for all the years.                           |                               |

In order to get the estimated Y values, first we have to find out the values of "a" and "b". For this

we need to solve two normal equations as follows: