MA 108 Differential Equations-I, End Semester Examination : June 28, 2022

9.30 am - 11.30 am

Total marks: 35

Name:		RollIN o.:
Division and Tutorial:		Invig. sign :
General Instructions: Question part of one mark each. You should write of QP itself. Part B has 7 subjective typroper justification carry no marks for of Part B in the answer booklet provide	per (QP) has only the final a ope questions of r Part B quest	answer in the space provided in the of 4 marks each. Answers without
	PART A	
1. First order ODE, which has tangents to the curve $y=\sin 2x, -\frac{\pi}{4} < x < \frac{\pi}{4}$ as a family of solutions is, given by		
$y = xy' + \sin(\cos x)$ $y = xy' + \sqrt{1 - 2}$ 2. Let $y = y(x), x \in \mathbb{R}$ be the solution $x \in \mathbb{R}$. The value of $x \in \mathbb{R}$ for which $y = y \in \mathbb{R}$.	on of the initial	
3. Consider the ODE $(5x + 4y^2) dx$ an integrating factor for the ODI		Value of n for which $\mu(x) = x^n$ is
4. Value of α such that the family of family of ellipses $x^2 + 2y^2 = y + 4$		The state of the s
5. Let y_1, y_2 be two linearly independence of $W(y_1, y_2)(x) = e^x(x^2 - x^2)$ is given by		of a second order linear homogeneous. If $y_1(x)=x, x\in\mathbb{R}$, then the ODE
CANCELLED du	ie to s	ome ambiguity
6. A particular solution of $x^3y''' - x$		

yp(x) = -4- In x

7. Let $f:[0,\infty)\to\mathbb{R}$ be the left continuous function which is an inverse Laplace transform of $(e^{-\frac{\pi s}{2\omega}}-e^{-\frac{3\pi s}{2\omega}})\frac{s}{s^2+\omega^2}, s>0$. Then f is

$$f(t) = \begin{cases} 0 & 0 \le t \le \frac{7}{2\omega} \\ \sin \omega t & \frac{7}{2\omega} < t \le \frac{3\pi}{2\omega} \\ 2\sin\omega t & t \ge \frac{3\pi}{2\omega} \end{cases}$$

PART B

- 8. Find the general solution of $(x+1)^2y'' + (x+1)y' y = 2\ln(x+1) + x 1$. [4]
- 9. Let p, q be continuous functions defined on \mathbb{R} such that $p(x) \neq 0$ for all $x \in \mathbb{R}$. Also let y_1, y_2 be linearly independent solutions of the ODE

$$q(x)y'' + p(x)y' + 2p(x)y = 0$$

satisfying $y_1''(x_0) = y_2''(x_0) = 0$ for some $x_0 \in \mathbb{R}$. Show that $q(x_0) = 0$. [4]

10. Let p be a continuous function defined on \mathbb{R} satisfying $p(x) \leq 0$ for $x \geq 0$. Consider the ODE

$$y'' + (p(x) - 3)y' - 3p(x)y = 0, x \ge 0.$$

Show that the ODE has a linearly independent set S of solutions such that S has two elements and both elements of S are convex functions on $(0, \infty)$. [4]

11. Using the method of variation of parameters, solve

$$(x^{2} + x)y'' + (2 - x^{2})y' - (2 + x)y = x(x+1)^{2}, x > 0.$$
 [4]

- 12. Find the general solution of $y'' 5y' + 4y = (3x + 2)e^{-2x}, x \in \mathbb{R}$. [4]
- 13. Using Laplace transform technique, solve the initial value problem

$$y'' + y = \begin{cases} \sin t & 0 \le t < \pi \\ 0 & t \ge \pi, \end{cases}$$

$$y(0) = y'(0) = 0. ag{4}$$

14. Using Laplace transform technique, solve the ODE

$$ty'' + (1-t)y' + ny = 0, t \ge 0,$$

where n is a positive integer. [4]