Citrix XenServer® 6.0 管理员指南

2012-01-09 (星期一)发行 1.0 版

Citrix XenServer® 6.0 管理员指南

版权所有© 2011 Citrix Systems. Inc. 保留所有权利。

版本:6.0

Citrix, Inc. 851 West Cypress Creek Road Fort Lauderdale, FL 33309 United States of America

免责声明

本文档"按原样"提供。Citrix, Inc. 不承诺与本文档相关的所有保证,包括但不仅限于对适销性和特定用途适用性的默示保证。本文档可能含有技术或其他方面的错误或印刷错误。Citrix, Inc. 保留随时修订本文档中的信息的权利,如有更改,恕不另行通知。本文档及本文档中介绍的软件属 Citrix, Inc. 及其许可发放方的机密信息,依据 Citrix, Inc. 的许可提供。

Citrix Systems, Inc.、Citrix 徽标、Citrix XenServer 和 Citrix XenCenter 是 Citrix Systems, Inc. 和/或其附属公司的商标,可能已在美国专利商标局和其他国家/地区注册。所有其他商标和注册商标为各自所有者的资产。

商标

Citrix®

XenServer®

XenCenter®

目录

文档概述	. 1
XenServer 简介	1
使用 XenServer 的好处	1
管理 XenServer	2
XenServer 版本	2
XenServer 6.0 中的新增功能	2
XenServer 文档	4
管理用户	. 5
使用 Active Directory (AD) 验证用户	5
配置 Active Directory 身份验证	6
用户身份验证	8
删除用户的访问权限	9
退出 AD 域	9
基于角色的访问控制	10
角色	11
RBAC 角色和权限定义	11
结合使用 RBAC 和 CLI	16
列出 XenServer 中所有可用的已定义角色	16
显示当前使用者的列表:	. 17
将使用者添加到 RBAC	17
为创建的使用者分配 RBAC 角色	17
更改使用者的 RBAC 角色:	18
审核	18
审核日志 xe CLI 命令	18
获取池中的所有审核记录	. 18
获取自精确到毫秒的时间戳开始的池审核记录	18
获取自精确到分钟的时间戳开始的池审核记录	18
XenServer 如何计算会话的角色?	18
XenServer 主机和资源池	20

主机和资源池概述	. 20
创建资源池的要求	. 20
创建资源池	. 21
创建异类主机资源池	. 21
添加共享存储	. 22
从资源池移除 XenServer 主机	22
为进行维护准备 XenServer 主机池	. 23
高可用性	. 23
高可用性概述	. 24
使用过量	24
使用过量警告	. 24
主机保护	24
配置要求	24
重新启动优先级	. 25
对 XenServer 池启用高可用性功能	. 26
使用 CLI 启用高可用性功能	. 26
使用 CLI 解除 VM 的高可用性保护	. 27
恢复无法访问的主机	27
在启用高可用性功能的情况下关闭主机	. 27
关闭受高可用性功能保护的 VM	. 27
主机启动	. 28
远程启动主机	. 28
使用 CLI 管理主机启动功能	. 28
使用 CLI 启用主机启动功能	. 28
使用 CLI 远程打开主机	. 29
配置 XenServer 主机启动功能的自定义脚本	. 29
键/值对	. 29
host.power_on_mode	. 29
host.power_on_config	29
示例脚本	30
*	31

存储概述		31
存储	f库 (SR)	31
虚拟	\磁盘映像 (VDI)	31
物玛	型块设备 (PBD)	31
虚拟	l块设备 (VBD)	31
存储	f对象摘要	32
虚拟	l磁盘数据格式	32
	基于 VHD 的 VDI	32
	VHD 链合并	33
	空间利用率	33
	基于 LUN 的 VDI	33
存储库类	型	34
本地	3 LVM	34
	创建本地 LVM SR (lvm)	34
本地	EXT3 VHD	35
	创建本地 EXT3 SR (ext)	35
ude	v	35
ISO		35
软件	= iSCSI 支持	36
	XenServer 主机 iSCSI 配置	36
Citri	x StorageLink SR	36
	升级具有 StorageLink SR 的 XenServer	37
	创建共享 StorageLink SR	37
管理	望硬件主机总线适配器 (HBA)	40
	QLogic iSCSI HBA 设置示例	40
	删除基于 HBA 的 SAS、FC 或 iSCSI 设备条目	41
iSC	SI 上的 LVM	41
	使用软件 iSCSI 启动器创建基于 iSCSI 的共享 LVM SR (Ivmoiscsi)	41
	创建基于光纤通道/iSCSI HBA 或 SAS SR 的共享 LVM SR (lvmohba)	42
NFS	S VHD	44
	创建共享 NFS SR (NFS)	44

硬件 HBA 上的 LVM	45
存储配置	45
创建存储库	45
从 XenServer 5.0 或更早版本升级 LVM 存储	46
LVM 性能注意事项	46
VDI 类型	46
使用 xe CLI 创建原始虚拟磁盘	46
在 VDI 格式间转换	46
探测 SR	47
存储多路径	49
针对 LSI 阵列的 MPP RDAC 驱动程序支持。	50
管理存储库	50
销毁或忽略 SR	51
引入 SR	51
重新调整 SR	51
将本地光纤通道 SR 转换为共享 SR	52
在 SR 之间移动虚拟磁盘映像 (VDI)	52
将 VM 的所有 VDI 复制到另一个 SR	52
将各个 VDI 复制到另一个 SR	52
调整磁盘 IO 调度程序	53
删除快照时自动回收空间	53
使用脱机合并工具回收空间	53
虚拟磁盘 QoS 设置	54
配置 VM 内存	56
什么是动态内存控制 (DMC)?	56
动态范围的概念	56
静态范围的概念	56
DMC 行为	57
DMC 的工作原理	57
内存限制	57
支持的操作系统	58

,	xe CLI 命令	59
	显示 VM 的静态内存属性	59
	显示 VM 的动态内存属性	59
	更新内存属性	60
	更新各个内存属性	60
	升级问题	61
,	Workload Balancing 交互	61
Xen	,内存使用量	62
	设置控制域内存	62
网络	B连接	64
	网络连接支持	64
,	vSwitch 网络	64
,	XenServer 网络概述	65
	网络对象	65
	网络	65
	VLAN	66
	结合使用 VLAN 和管理接口	66
	使用带有虚拟机的 VLAN	66
	使用具有专用存储 NIC 的 VLAN	66
	将管理接口和来宾 VLAN 组合到单一主机 NIC 上	66
	NIC 绑定	66
	交换机配置	68
	主动-主动绑定	68
	主动-被动绑定	69
	初始网络配置	70
1	管理网络配置	71
	跨服务器专用网络	71
	在独立服务器中创建网络	72
	在资源池中创建网络	72
	创建 VLAN	72
	在独立主机上创建 NIC 绑定	73

1	创建 NIC 绑定	73
į	控制绑定的 MAC 地址	73
ì	还原 NIC 绑定	74
在资源	原池中创建 NIC 绑定	74
X	将 NIC 绑定添加到新资源池	74
k	将 NIC 绑定添加到现有池	74
配置专	专用存储 NIC	75
使用E	已启用 SR-IOV 的 NIC	75
控制包	专出数据的速率 (QoS)	76
更改网	网络配置选项	77
3	主机名	77
[DNS 服务器	77
]	更改独立主机的 IP 地址配置	77
]	更改资源池中的 IP 地址配置	77
3	主管理接口	78
ą	禁用管理访问	79
;	添加新的物理 NIC	79
网络故障排	 	79
诊断网	网络损坏	79
从损 ^坛	不的网络配置中恢复	79
京龙城有 到约	▼	01
	备份	
	Server DR	
	i构要求 	
	事项	
	发生之前执行的步骤	
	发生之后执行的步骤	
恢复是	之后执行的步骤	83
在 XenCer	nter 中启用灾难恢复	83
发生灾难时	付恢复 ⅤM 和 vApp(故障转移)	84
在灾难之后	f将 VM 和 vApp 还原到主站点(故障恢复)	84
测试故障转	专移	85

	vApp	86
	使用 XenCenter 的"管理 vApp"对话框	87
	备份和还原 XenServer 主机和 VM	87
	备份虚拟机元数据	88
	备份单台主机环境	88
	备份池安装	88
	备份 XenServer 主机	88
	备份 VM	89
	VM 快照	90
	常规快照	90
	静态快照	90
	包含内存数据的快照	90
	创建 VM 快照	90
	创建包含内存数据的快照	91
	列出 XenServer 池的所有快照	91
	列出特殊 VM 的快照	91
	将 VM 还原为上一状态	92
	删除快照	92
	快照模板	93
	通过快照创建模板	93
	将快照导出到模板	93
	静态快照高级说明	94
	VM 保护和恢复	95
	VM 存档文件夹的命名约定	95
	处理计算机故障	95
	成员故障	95
	主服务器故障	96
	池故障	96
	处理因配置错误导致的故障	97
	物理机故障	97
加	和管理 XenServer	99

CITRIX.

	警报	99
	自定义警报	100
	配置电子邮件警报	101
	自定义字段和标记	102
	自定义搜索	102
	确定物理总线适配器的吞吐量	102
故	障排除	103
	XenServer 主机日志	103
	将主机日志消息发送到中央服务器	103
	XenCenter 日志	104
	对 XenCenter 和 XenServer 主机之间的连接进行故障排除	104
Α.	命令行界面	105
	基本 xe 语法	105
	特殊字符和语法	106
	命令类型	106
	参数类型	107
	低级参数命令	108
	低级列表命令	108
	xe 命令参考	109
	设备命令	109
	设备参数	109
	appliance-assert-can-be-recovered	109
	appliance-create	109
	appliance-destroy	109
	appliance-recover	110
	appliance-shutdown	110
	appliance-start	110
	审核命令	110
	audit-log-get 参数	110
	audit-log-get	110
	绑定命令	110

	绑定参数	111
	bond-create	111
	bond-destroy	111
CD	命令	111
	CD 参数	111
	cd-list	112
控制	月台命令	112
	控制台参数	113
灾难	È恢复 (DR) 命令	113
	drtask-create	113
	drtask-destroy	113
	vm-assert-can-be-recovered	113
	appliance-assert-can-be-recovered	113
	appliance-recover	114
	vm-recover	114
	sr-enable-database-replication	114
	sr-disable-database-replication	114
	示例用法	114
事件	中命令	115
	事件类	115
	event-wait	115
GPI	J 命令	115
	物理 GPU (pGPU) 参数	116
	GPU 组参数	116
	虚拟 GPU (vGPU) 参数	117
	vgpu-create	117
	vgpu-destroy	117
主机	l命令	117
	主机选择器	117
	主机参数	118
	host-backup	120

host-bugreport-upload	120
host-crashdump-destroy	121
host-crashdump-upload	121
host-disable	121
host-dmesg	121
host-emergency-management-reconfigure	121
host-enable	121
host-evacuate	122
host-forget	122
host-get-system-status	122
host-get-system-status-capabilities	122
host-is-in-emergency-mode	123
host-apply-edition	123
host-license-add	123
host-license-view	. 124
host-logs-download	124
host-management-disable	. 124
host-management-reconfigure	124
host-power-on	124
host-get-cpu-features	125
host-set-cpu-features	125
host-set-power-on	125
host-reboot	125
host-restore	125
host-set-hostname-live	125
host-shutdown	126
host-syslog-reconfigure	126
host-data-source-list	. 126
host-data-source-record	126
host-data-source-forget	127
host-data-source-query	127

日志	:命令	127
	log-set-output	127
消息	命令	127
	消息参数	127
	message-create	128
	message-destroy	128
	message-list	128
网络	命令	128
	网络参数	128
	network-create	129
	network-destroy	129
修补	程序(更新)命令	129
	修补程序参数	130
	patch-apply	130
	patch-clean	130
	patch-pool-apply	130
	patch-precheck	130
	patch-upload	130
PBD) 命令	130
	PBD 参数	131
	pbd-create	131
	pbd-destroy	131
	pbd-plug	131
	pbd-unplug	131
PIF	命令	131
	PIF 参数	132
	pif-forget	134
	pif-introduce	134
	pif-plug	134
	pif-reconfigure-ip	134
	pif-scan	134

	pif-unplug	135
池命	7令	135
	池参数	135
	pool-designate-new-master	136
	pool-dump-database	136
	pool-eject	136
	pool-emergency-reset-master	136
	pool-emergency-transition-to-master	136
	pool-ha-enable	137
	pool-ha-disable	137
	pool-join	137
	pool-recover-slaves	137
	pool-restore-database	137
	pool-sync-database	137
存储	1管理器命令	137
	SM 参数	137
SR	命令	138
	SR 参数	138
	sr-create	139
	sr-destroy	139
	sr-enable-database-replication	139
	sr-disable-database-replication	139
	sr-forget	140
	sr-introduce	140
	sr-probe	140
	sr-scan	140
任务	命令	140
	任务参数	140
	task-cancel	141
模板	ā命令	141
	模板参数	142

	template-export	147
更新	命令	147
	update-upload	147
用户	命令	147
	user-password-change	147
VBD) 命令	147
	VBD 参数	147
	vbd-create	149
	vbd-destroy	149
	vbd-eject	149
	vbd-insert	149
	vbd-plug	149
	vbd-unplug	149
VDI	命令	150
	VDI 参数	150
	vdi-clone	151
	vdi-copy	151
	vdi-create	151
	vdi-destroy	152
	vdi-forget	152
	vdi-import	152
	vdi-introduce	152
	vdi-resize	152
	vdi-snapshot	152
	vdi-unlock	153
VIF	命令	153
	VIF 参数	153
	vif-create	154
	vif-destroy	155
	vif-plug	155
	vif-unplug	155

VLA	N 命令	155
	vlan-create	155
	pool-vlan-create	155
	vlan-destroy	155
VM	命令	155
	VM 选择器	155
	VM 参数	156
	vm-assert-can-be-recovered	160
	vm-cd-add	160
	vm-cd-eject	160
	vm-cd-insert	161
	vm-cd-list	161
	vm-cd-remove	161
	vm-clone	161
	vm-compute-maximum-memory	161
	vm-copy	162
	vm-crashdump-list	162
	vm-data-source-list	162
	vm-data-source-record	162
	vm-data-source-forget	163
	vm-data-source-query	163
	vm-destroy	163
	vm-disk-add	163
	vm-disk-list	163
	vm-disk-remove	163
	vm-export	163
	vm-import	164
	vm-install	164
	vm-memory-shadow-multiplier-set	165
	vm-migrate	165
	vm-rehoot	165

	vm-recover	165
	vm-reset-powerstate	165
	vm-resume	166
	vm-shutdown	166
	vm-start	166
	vm-suspend	166
	vm-uninstall	166
	vm-vcpu-hotplug	166
	vm-vif-list	167
	Workload Balancing XE 命令	167
	pool-initialize-wlb	167
	pool-param-set other-config	167
	pool-retrieve-wlb-diagnostics	167
	host-retrieve-wlb-evacuate-recommendations	167
	vm-retrieve-wlb-recommendations	167
	pool-certificate-list	168
	pool-certificate-install	168
	pool-certificate-sync	168
	pool-param-set	168
	pool-deconfigure-wlb	168
	pool-retrieve-wlb-configuration	168
	pool-retrieve-wlb-recommendations 1	68
	pool-retrieve-wlb-report	68
	pool-send-wlb-configuration	70
В.	Workload Balancing 服务命令 1	71
	服务命令	171
	登录 Workload Balancing 虚拟设备	171
	service workloadbalancing restart	171
	service workloadbalancing start	171
	service workloadbalancing stop	171
	service workloadbalancing status	171

修改	Workload Balancir	g 配置选项		 	 	171
编辑	Workload Balancir	g 配置文件		 	 	172
提高	Workload Balancir	g 日志的详	细级别.	 	 	172

文档概述

本文档是 Citrix XenServer® 的系统管理员指南,该产品是 Citrix® 推出的完整服务器虚拟化平台。本指南所述的操作过程将指导您对 XenServer 部署进行配置。具体来说,本指南将重点介绍如何设置存储、网络连接和资源池,以及如何使用 xe 命令行接口管理 XenServer 主机。

本文档涵盖以下主题:

- 通过 Active Directory 及基于角色的访问控制来管理用户
- 创建资源池并设置高可用性
- 配置和管理存储库
- 使用动态内存控制配置虚拟机内存
- 在 XenServer 主机上设置控制域内存
- 配置网络连接
- 备份数据以及使用灾难恢复功能恢复虚拟机
- 监视和管理 XenServer
- XenServer 故障排除
- 使用 XenServer xe 命令行接口

XenServer 简介

Citrix XenServer® 是 Citrix® 推出的完整服务器虚拟化平台。XenServer 软件包中包含创建与管理在Xen®(性能接近本机性能的开源半虚拟化虚拟机管理程序)上运行的虚拟 x86 计算机部署所需的全部内容。XenServer 已针对 Windows 和 Linux 虚拟服务器进行了优化。

XenServer 直接在服务器硬件上运行而不需要底层操作系统,因而是一种高效且可扩展的系统。XenServer 的工作方式是从物理机提取元素(例如硬盘驱动器、资源和端口),然后将其分配给物理机上运行的虚拟机。

虚拟机 (VM) 是完全由软件组成的计算机,可以像物理计算机一样运行自己的操作系统和应用程序。VM 的行为方式完全类似于物理计算机,并且包含自己的虚拟(基于软件的)CPU、RAM、硬盘和网络接口卡 (NIC)。

XenServer 可用于创建 VM、生成 VM 磁盘快照以及管理 VM 工作负载。要获得 XenServer 主要功能和版本的完整列表,请访问 www.citrix.com.cn/products/xenserver/index.aspx。

使用 XenServer 的好处

使用 XenServer 时,可以通过以下方式降低成本:

- 将多个 VM 合并到物理服务器上
- 减少需要管理的单独磁盘映像的数量
- 允许与现有网络和存储基础结构方便地集成

使用 XenServer 时,可以通过以下方式提高灵活性:

- 允许使用 XenMotion 在 XenServer 主机之间实时迁移 VM,在确保零停机时间的情况下安排维护工作
- 使用高可用性功能配置相应策略(当一个 XenServer 主机发生故障时在另一个主机上重新启动 VM),从而提高 VM 的可用性
- 将一个 VM 映像用于一系列的部署基础结构中,从而提高 VM 映像的可移植性

管理 XenServer

管理 XenServer 的方法有两种: XenCenter 和 XenServer 命令行接口 (CLI)。

XenCenter 是一种基于 Windows 的图形用户界面。XenCenter 允许您从 Windows 台式机管理 XenServer 主机、池和共享存储,以及部署、管理和监视 VM。

XenCenter 帮助是非常好的 XenCenter 入门资源。

通过 XenServer 命令行接口 (CLI),可以使用基于 Linux 的 xe 命令来管理 XenServer。

要获得完整的 xe 命令和说明列表,请参阅《XenServer 管理员指南》。

XenServer 版本

XenServer 中的可用功能因版本而异。XenServer 的四个版本包括:

- Citrix XenServer(免费版):经业界认可的虚拟化平台,免费提供不打折扣的性能、可扩展性和灵活性。
- Citrix XenServer 高级版:提供主要的高可用性和高级管理工具,将虚拟基础结构提升一个层次。
- Citrix XenServer 企业版:提供重要的集成和优化功能,用于虚拟机的生产部署。
- Citrix XenServer 铂金版:提供高级自动化和云计算功能,用于企业级的虚拟环境。

有关 XenServer 版本对可用功能影响的详细信息,请访问 www.citrix.com.cn/products/xenserver/index.aspx。

XenServer 6.0 中的新增功能

XenServer 6.0 具有许多新增的功能和持续的改进功能,具体包括:

集成站点恢复(灾难恢复):

借助快速恢复和故障恢复功能在存储阵列之间自动远程复制数据。集成站点恢复功能取代了以前版本中使用的 StorageLink Gateway 站点恢复功能,不再要求运行 Windows VM,并且适用于任何 iSCSI 或硬件 HBA 存储库。

集成 StorageLink:

• 允许使用基于存储阵列的现有功能,如数据复制、重复数据删除、快照和克隆。取代了以前版本中使用的 StorageLink Gateway 技术,不再要求运行具有 StorageLink 组件的 Windows VM。

GPU 传递:

• 允许将物理 GPU 分配给 VM 以提供高端图形。允许应用程序在使用 HDX 3D Pro 的 XenDesktop VDI 部署中利用 GPU 指令。

虚拟设备 (vApp) 支持:

• 允许创建多 VM 并按顺序引导的虚拟设备 (vApp),这些设备与集成站点恢复和高可用性功能相集成。可以使用开放虚拟化格式 (OVF) 标准方便地导入和导出 vApp。

"池滚动升级"向导:

• 利用向导分步骤执行预检以阻止不受支持的升级,从而简化了升级(自动或半自动)到 XenServer 6.0 的过程。

Microsoft SCVMM 与 SCOM 支持:

• 利用 System Center Virtual Machine Manager (SCVMM) 2012 管理 XenServer 主机和 VM。System Center Operations Manager (SCOM) 2012 也将能够用来管理和监视 XenServer 主机和

VM。System Center 集成功能在 Citrix 的特殊增补包中提供。有关详细信息,请参考 Microsoft System Center Virtual Machine Manager 2012。

分布式虚拟交换机改进:

 当 vSwitch 控制器出现故障时,通过全新的故障安全模式,将对运行中的 VM 继续应用跨服务器专用 网络、ACL、QoS、RSPAN 和 NetFlow 设置。

增强的性能和规模:

• 提高了支持的限制,XenServer 主机的内存限制增加到 1 TB,VM 的限制增加到 16 个虚拟处理器和 128 GB 虚拟内存。改进了 XenServer Tools,减小了其内存占用量。

网络连接改进:

• Open vSwitch 现在是 XenServer 6.0 中的默认网络堆栈,正式支持主动备份式 NIC 绑定。

VM 导入与导出改进:

完全支持从 XenCenter 直接导入 VM 磁盘和 OVF 设备,并能够利用导入向导更改 VM 参数(虚拟处理器、虚拟内存、虚拟接口和目标存储库)。完全支持 XenServer、XenConvert 和 VMware 的 OVF导入。

SR-IOV 改进:

• 通过 SR-IOV 测试工具包改进了可扩展性和认证。实验版 SR-IOV 采用 Solarflare SR-IOV 适配器,支持 XenMotion。

简化了安装程序:

• 安装主机只需要一个单独的 ISO。

增强了来宾操作系统支持:

- 支持 Ubuntu 10.04 (32/64 位)。
- 更新了对 Debian Squeeze 6.0(64 位)、Oracle Enterprise Linux 6.0(32/64 位)和 SLES 10 SP4(32/64 位)的支持。
- 支持 CentOS 6.0 (32/64 位)、Ubuntu 10.10 (32/64 位)和 Solaris 10 的实验版 VM 模板。

Workload Balancing 改进:

• 全新且随时可用的基于 Linux 的虚拟设备取代了基于 Windows 的虚拟设备,不再依赖于 Windows 许可,并且占用更小内存。

XenDesktop 增强功能:

• HDX 增强功能优化了虚拟桌面、GPU 传递的用户体验,并放宽了 VM 和 XenServer 主机的限制。

VM 保护和恢复:

• 现在可供高级版、企业版和铂金版客户使用。

高可用性功能的 NFS 支持:

• 高可用性检测信号磁盘现在可以位于 NFS 存储库中。

XenCenter 改进:

• 现在可以并行运行多个 XenCenter 操作,并且 XenCenter 将提供日文和简体中文版本 (ETA Q4 2011)。

主机体系结构改进:

• 现在,XenServer 6.0 在 Xen 4.1 虚拟机管理程序上运行,提供 GPT 支持以及更小、可扩展性更强的 Dom0。

XenServer 文档

此版本附带的 XenServer 文档包括:

- 发行说明,介绍影响此版本的已知问题。
- 《XenServer 快速入门指南》,为新用户介绍 XenServer 环境和组件。本指南分步骤介绍基本的安装和配置方法,以快速启动及运行 XenServer 和 XenCenter 管理控制台。安装产品后,本指南将指导您创建 Windows VM、VM 模板和 XenServer 主机池。此外,还将介绍基本的管理任务和高级功能,例如共享存储、VM 快照和 XenMotion 实时迁移。
- 《XenServer 安装指南》,分步骤介绍 XenServer 及 XenCenter 管理控制台的安装、配置及初始操作。
- 《XenServer 虚拟机安装指南》,介绍如何在 XenServer 环境中安装 Windows 和 Linux VM。本 指南将说明如何从安装介质、XenServer 软件包附带的 VM 模板以及现有的物理机 (P2V) 创建新的 VM,并介绍如何导入磁盘映像以及如何导入和导出设备。
- 《XenServer 管理员指南》,深入描述在配置 XenServer 部署的过程中所涉及的任务(包括设置存储、网络连接和池),并介绍如何使用 xe 命令行接口管理 XenServer。
- 《vSwitch 控制器用户指南》,是用于 XenServer 的 vSwitch 和控制器的综合性用户指南。
- 《增补包和 DDK》,介绍 XenServer 驱动程序开发工具包,可用来修改和扩展 XenServer 的功能。
- 《XenServer 软件开发工具包指南》,概括介绍 XenServer SDK,并提供一些代码示例,演示如何 编写与 XenServer 主机交互的应用程序。
- 《XenAPI 规范》,面向编程人员的 XenServer API 参考指南。

有关更多资源,请访问 Citrix 知识中心。

管理用户

通过定义用户、组、角色和权限,可以控制有权访问 XenServer 主机和池的用户及其可执行的操作。

首次安装 XenServer 时,会自动将一个用户帐户添加到 XenServer 中。此帐户是本地超级用户 (LSU) 或 root 用户,由 XenServer 计算机在本地进行身份验证。

本地超级用户 (LSU) 或 root 用户是一个用于系统管理的特殊用户帐户,具有完全权限。在 XenServer 中,本地超级用户是安装时的默认帐户。LSU 通过 XenServer 而非外部身份验证服务进行身份验证。这表示如果外部身份验证服务失败,LSU 仍可登录并管理系统。LSU 始终可以通过 SSH 访问 XenServer 物理服务器。

可以通过 XenCenter 的"用户"选项卡或 CLI 添加 Active Directory 帐户,从而创建其他用户。XenServer 的所有版本均可从 Active Directory 添加用户帐户。但是,只有 XenServer 企业版和铂金版允许您为这些 Active Directory 帐户分配不同的权限等级(通过基于角色的访问控制 (Role Based Access Control, RBAC) 功能)。如果在您的环境中未使用 Active Directory,则只能使用 LSU 帐户。

首次添加用户帐户时分配给用户的权限因 XenServer 版本的不同而有所差别:

- 在 XenServer 和 XenServer 高级版中创建(添加)新用户时, XenServer 会自动授予帐户访问该版本中提供的所有功能所需的权限。
- 在 XenServer 企业版和铂金版中创建新用户时,XenServer 不会自动为新创建的用户帐户分配角 色。因此,在您为这些帐户分配角色之前,它们对 XenServer 池没有任何访问权限。

如果您没有上述版本之一,则可以从 Active Directory 添加用户。但是,所有用户均具有池管理员角色。

这些权限通过角色授予,如"使用 Active Directory (AD) 验证用户"一节中所述。

使用 Active Directory (AD) 验证用户

如果您希望在服务器或池上具有多个用户帐户,则必须使用 Active Directory 用户帐户进行身份验证。 这样使 XenServer 用户能够使用其 Windows 域凭据登录到池的 XenServer。

可以为特定用户配置不同访问权限级别的唯一方法是:启用 Active Directory 身份验证,添加用户帐户,然后为这些帐户分配角色。

Active Directory 用户可以使用 xe CLI(传递适当的 -u 和 -pw 参数),也可以使用 XenCenter 连接到该主机。身份验证基于每个资源池执行。

访问可通过使用使用者来控制。XenServer 中的一个主题对应目录服务器上的一个实体(用户或组)。 启用外部身份验证后,将首先针对本地 root 用户的凭据来检查用于创建会话的凭据(以防目录服务器 不可用),然后针对使用者列表进行检查。要允许访问,您必须为授权访问的用户或组创建一个使用者 条目。这可以通过使用 XenCenter 或 xe CLI 实现。

如果您熟悉 XenCenter,则请注意,XenServer CLI 提及 Active Directory 和用户帐户功能时,使用的术语略有差别:

XenCenter 术语	XenServer CLI 术语
用户	使用者
添加用户	添加使用者

了解 XenServer 环境中的 Active Directory 身份验证

虽然 XenServer 基于 Linux,但 XenServer 允许您使用 Active Directory 帐户作为 XenServer 用户帐户。为此,XenServer 会将 Active Directory 凭据传递到 Active Directory 域控制器。

添加到 XenServer 后,Active Directory 用户和组即成为 XenServer 使用者,在 XenCenter 中通常简单地称之为用户。将使用者注册到 XenServer 后,用户/组在登录时会通过 Active Directory 进行身份验证,并且不需要用域名来限定其用户名。

注意:

默认情况下,如果您未限定用户名(例如,输入 mydomain\myuser 或 myser@mydomain.com),XenCenter 始终会尝试使用用户当前加入的域将用户登录到 Active Directory 身份验证服务器。LSU 帐户属例外情况,对于 LSU 帐户,XenCenter 始终首先在本地(即在 XenServer 上)对其进行身份验证。

外部身份验证工作流程如下:

- 1. 将连接到服务器时提供的凭据传递到 Active Directory 域控制器,进行身份验证。
- 2. 域控制器对凭据进行检查。如果凭据无效,身份验证立即失败。
- 3. 如果凭据有效,会对 Active Directory 控制器进行查询,以获取与凭据相关联的使用者标识符和组成员。
- 4. 如果使用者标识符与 XenServer 中存储的某个标识符相匹配,即可成功完成身份验证。

您加入域后,可以为池启用 Active Directory 身份验证。但是,池加入域后,只有该域(或与该域具有信任关系的域)中的用户才能连接到该池。

注意:

不支持手动更新 DHCP 配置的网络 PIF 的 DNS 配置,且手动配置可能会导致 Active Directory 集成失败或停止工作,从而导致用户身份验证失败或停止工作。

升级 XenServer

从早期版本的 XenServer 进行升级时,系统会为在早期版本 XenServer 中创建的所有用户帐户分配池管理员角色。执行此操作的原因是存在向后兼容。因此,如果您要从 XenServer 进行升级,请务必再次访问与每个用户帐户相关联的角色,以确保角色仍然适用。

配置 Active Directory 身份验证

XenServer 支持运行 Windows 2003 或更新版本的 Active Directory 服务器。

XenServer 主机的 Active Directory 身份验证要求 Active Directory 服务器(配置为允许互操作)和 XenServer 主机使用相同的 DNS 服务器。在某些配置中,Active Directory 服务器本身可能会提供 DNS。使用 DHCP 来为 XenServer 主机提供 IP 地址和 DNS 服务器列表,或在使用手动静态配置的情况下通过设置 PIF 对象的值或使用安装程序,都可以实现上述目标。

Citrix 建议您启用 DHCP 来广播主机名称。尤其不应将主机名称 localhost 或 linux 分配给主机。

警告:

XenServer 主机名在 XenServer 部署中应唯一。

请注意以下问题:

XenServer 使用其主机名在 AD 数据库中标记其 AD 条目。因此,如果两台 XenServer 主机具有相同的主机名,且加入相同的 AD 域,则无论这两台主机位于相同的池中还是不同的池中,第二台 XenServer 都会覆盖第一台 XenServer 的 AD 条目,因而导致第一台 XenServer 上的 AD 身份验证停止工作。

如果这两台 XenServer 主机加入不同的 AD 域,则可以使用相同的主机名。

- XenServer 主机可以位于不同的时区,因为比较的是 UTC 时间。为确保正确的同步,您可以为 XenServer 池和 Active Directory 服务器选择相同的 NTP 服务器。
- 不支持混合身份验证池(即,不能将池中的某些服务器配置为使用 Active Directory,而另一些不使用)。

- XenServer Active Directory 集成使用 Kerberos 协议与 Active Directory 服务器进行通信。因此,XenServer 不支持与未使用 Kerberos 的 Active Directory 服务器进行通信。
- 要确保使用 Active Directory 的外部身份验证成功,使 XenServer 主机上的时钟与 Active Directory 服务器上的时钟保持同步很重要。在 XenServer 加入 Active Directory 域时,将会对时钟同步进行检测,而且身份验证将在服务器时钟偏差过大时失败。

警告:

主机名必须由不超过 63 个字母数字字符组成,不得使用纯数字名称。

启用 Active Directory 身份验证之后,如果随后向该池添加服务器,系统会提示您在要加入池的服务器上配置 Active Directory。系统提示您在要加入的服务器上输入凭据后,输入具有足够权限的 Active Directory 凭据,以将服务器添加到该域。

Active Directory 集成

请确保以下防火墙端口对出站通信流开放,以便 XenServer 能够访问域控制器。

端口	协议	使用
53	UDP/TCP	DNS
88	UDP/TCP	Kerberos 5
123	UDP	NTP
137	UDP	NetBIOS 名称服务
139	TCP	NetBIOS 会话 (SMB)
389	UDP/TCP	LDAP
445	TCP	TCP 上的 SMB
464	UDP/TCP	计算机密码更改
3268	TCP	全局目录搜索

注意:

要使用 iptables 在 Linux 计算机上查看防火墙规则,请运行以下命令:iptables - nL

注意:

XenServer 使用 Likewise (Likewise 使用 Kerberos)对 AD 服务器中的 AD 用户进行身份验证,并将与 AD 服务器的通信加密。

XenServer 如何管理用于 AD 集成的计算机帐户密码?

与 Windows 客户机类似,Likewise 将自动更新计算机帐户密码,每 30 天续订一次,或者按 AD 服务器中的计算机帐户密码续订策略的规定进行续订。有关详细信息,请参阅 http://support.microsoft.com/kb/154501。

启用池的外部身份验证

• 可通过 XenCenter 或 CLI 使用以下命令配置使用 Active Directory 的外部身份验证。

```
xe pool-enable-external-auth auth-type=AD \
   service-name=<full-qualified-domain> \
   config:user=<username> \
   config:pass=<password>
```

指定的用户需要具有 Add/remove computer objects or workstations (添加/删除计算机对象或工作站)权限,这是域管理员的默认权限。

注意:

如果您未使用 Active Directory 和您的 XenServer 主机正在使用的网络上的 DHCP,则可以使用两种方法设置 DNS:

1. 设置域 DNS 后缀搜索顺序,用以解析非 FQDN:

2. 配置 XenServer 主机上使用的 DNS 服务器:

```
xe pif-reconfigure-ip mode=static dns=<dnshost>
```

3. 手动设置使用(与您的 DNS 服务器处于同一网络的) PIF 的管理接口:

xe host-management-reconfigure pif-uuid=<pif_in_the_dns_subnetwork>

注意:

外部身份验证是每个主机都具有的属性。但是 Citrix,建议您基于每个池启用和禁用此身份验证 – 这样 XenServer 将能够处理在特定主机上启用身份验证时出现的任何故障,并根据需要回滚所做的所有更改,从而确保整个池的配置始终一致。使用host-param-list 命令检查主机属性,并通过检查相关字段的值确定外部身份验证的状态。

禁用外部身份验证

• 使用 XenCenter 或下列 xe 命令可禁用外部身份验证:

```
xe pool-disable-external-auth
```

用户身份验证

要允许用户访问您的 XenServer 主机,必须为该用户或其所在的组添加一个使用者。(仍以常规方法检查过渡组成员,例如:为组 A 添加一个使用者,其中组 A 包含组 B,且用户 1 是组 B 的成员之一,这会允许对用户 1 进行访问)。如果您要管理 Active Directory 中的用户权限,可以创建一个组,然后在该组中添加和删除用户;或者,可以根据您的身份验证需求从 XenServer 中添加和删除单个用户或用户和组的组合。主体列表可由 XenCenter 或按如下所示使用 CLI 进行管理。

对一个用户进行身份验证时,首先针对本地 root 帐户检查凭据,以支持您恢复 AD 服务器失败的系统。如果凭据(即用户名、密码)不匹配/未通过身份验证,则会向 AD 服务器提出身份验证请求 – 如果成功,则将针对本地使用者列表检索并验证用户的信息,否则访问将被拒绝。如果用户或用户的组成员身份在使用者列表中,针对使用者列表的身份验证将成功。

注意:

使用 Active Directory 组授予需要主机 SSH 访问权限的池管理员用户所需的访问权限时,Active Directory 组中的用户数不得超过 500。

允许用户使用 CLI 访问 XenServer

将 AD 使用者添加到 XenServer:

```
xe subject-add subject-name=<entity name>
```

实体名称应是要授予访问权限的用户或组的名称。虽然在无需消除歧义的情况下行为会相同,但您仍然可以选择包括实体的域(例如,"<<u>xendt</u>\<u>user1</u>>"而非"<<u>user1</u>>")。

使用 CLI 删除用户的访问权限

1. 确定您要撤销访问权限的使用者的使用者标识符。即用户或包含该用户的组(删除一个组将删除该组中所有用户的访问权限,前提是这些用户未在使用者列表中指定)。可以使用使用者列表命令实现上述目标:

xe subject-list

您可能希望在列表中应用过滤器,例如,要获得 testad 域中名称为 user1 的用户的使用者标识符,可以使用下列命令:

xe subject-list other-config:subject-name='<domain\user>'

2. 使用 subject-remove 命令删除用户,传递上一步中获得的使用者标识符:

xe subject-remove subject-uuid=<subject-uuid>

3. 您可能希望终止此用户已进行身份验证的所有当前会话。有关终止会话的更多信息,请参阅使用 xe 终止所有已经过身份验证的会话和使用 xe 终止单个用户的会话。如果不终止会话,已被撤销权限的用户可以在注销前继续访问系统。

列出有访问权限的使用者

要识别具有访问 XenServer 主机或池权限的用户和组的列表,请使用下列命令;

xe subject-list

删除用户的访问权限

用户通过身份验证之后,即有权访问服务器,直至用户自己终止其会话或其他用户终止其会话。从主体列表中删除一个用户或从主体列表中的某个组删除用户不会自动撤销该用户已经身份验证的会话,这意味着用户可以继续使用 XenCenter 或其他已创建的 API 会话访问池。为强制终止这些会话,XenCenter 和 CLI 提供终止单个或所有当前活动会话的工具。请参阅 XenCenter 帮助,了解使用 XenCenter 的步骤,或以下使用 CLI 的步骤。

使用 xe 终止所有已经过身份验证的会话

• 执行以下 CLI 命令:

xe session-subject-identifier-logout-all

使用 xe 终止单个用户的会话

- 确定要注销的会话的使用者标识符。使用 session-subject-identifier-list 或 subject-list xe 命令查 找该标识符(第一个命令显示具有会话的用户,第二个命令显示所有用户,但可以使用诸如 xe subject-list other-config:subject-name=xendt\\user1 这样的命令来过滤 – 视所用 shell 而定,您可能需要使用如例中所示的双反斜杠)。
- 2. 使用 session-subject-logout 命令,将上一步确定的使用者标识符作为参数传递,例如:

xe session-subject-identifier-logout subject-identifier=<subject-id>

退出 AD 域

警告:

退出域(即,禁用 Active Directory 身份验证,并断开池或服务器与其域之间的连接)时,通过 Active Directory 凭据进行身份验证以连接到池或服务器的所有用户均会断开连接。

使用 XenCenter 退出 AD 域。有关详细信息,请参阅 XenCenter 帮助。也可以运行 pool-disable-external-auth 命令,在需要的情况下指定池 uuid。

注意:

退出域不会使主机对象从 AD 数据库删除。要了解相关的详细信息以及如何删除禁用的主机实体的信息,请参阅此知识库文章。

基干角色的访问控制

注意:

完整的 RBAC 功能仅在 Citrix XenServer 企业版或更高版本中提供。要了解与升级 XenServer 有关的更多信息,请单击此处。

通过 XenServer 基于角色的访问控制 (RBAC),您可以分配用户、角色和权限,以控制有权访问您的 XenServer 的用户及其可执行的操作。XenServer RBAC 系统将用户(或用户组)映射到定义的角色(权限的命名集),随后这些角色将具有相关联的 XenServer 权限(执行特定操作的能力)。

由于不会为用户直接分配权限,而是通过为其分配的角色来获取权限,因此,要管理单个用户的权限,只需将用户分配到适当的角色即可;这样便简化了常规操作。XenServer 会维护授权用户及其角色的列表。

通过 RBAC,您可以轻松限制不同的用户组可以执行的操作,从而降低了缺乏经验的用户造成事故的可能性。

为帮助促进合规性和审核,RBAC 还提供"Audit Log"(审核日志)功能及其相应的"Workload Balancing Pool Audit Trail"(Workload Balancing 池审核追踪)报告。

RBAC 基于 Active Directory 提供身份验证服务。具体而言,XenServer 会保留基于 Active Directory 用户和组帐户的授权用户列表。因此,您必须将池加入域并添加 Active Directory 帐户,然后才能分配角色。

本地超级用户 (LSU) 或 root 用户是一个用于系统管理的特殊用户帐户,具有完全权限。在 XenServer中,本地超级用户是安装时的默认帐户。LSU 通过 XenServer 而非外部身份验证服务进行身份验证,因此,如果外部身份验证服务失败,LSU 仍可登录并管理系统。LSU 始终可通过 SSH 访问 XenServer物理主机。

RBAC 流程

实施 RBAC 并为用户或组分配角色的标准流程如下:

- 1. 加入域。请参阅启用池的外部身份验证。
- 2. 将 Active Directory 用户或组添加到池。该用户或组将成为使用者。请参阅 "将使用者添加到RBAC"一节。
- 3. 分配(或修改)使用者的 RBAC 角色。请参阅 "为创建的使用者分配 RBAC 角色"一节。

角色

XenServer 出厂时具有以下六种预先设立的角色:

• 池管理员 - 与本地 root 用户相同。可执行所有操作。

注意:

本地超级用户(用户名为 root)将始终具有"池管理员"角色。池管理员角色与本地 root 用户具有相同的权限。

- 池操作员 可执行除添加/删除用户及修改其角色以外的所有操作。此角色主要管理主机和池(即创建存储、构建池、管理主机等)。
- 虚拟机超级管理员(VM 超级管理员)- 创建和管理虚拟机。此角色主要配置 VM 操作员所使用的 VM。
- 虚拟机管理员(VM管理员)-与VM超级管理员类似,但不能迁移VM或执行快照。
- 虚拟机操作员(VM 操作员)- 与 VM 管理员类似,但不能创建/销毁 VM,可执行启动/停止生命周期操作。
- 只读角色 可查看资源池和性能数据。

注意:

您无法在此版本的 XenServer 中添加、删除或修改角色。

警告

如果您希望 AD 组的用户具有 SSH 访问权限,则不能将池管理员角色分配给成员数超过 500 的 AD 组。

有关每个角色可以具有的权限汇总以及每种权限可执行的操作的详细信息,请参阅"RBAC 角色和权限 定义"一节。

需要为所有 XenServer 用户分配相应的角色。默认情况下,将为所有新用户分配池管理员角色。可以为一个用户分配多个角色;在这种情况下,该用户将具有为其分配的所有角色的所有权限。

可以通过以下两种方式更改用户的角色:

- 1. 修改使用者 -> 角色映射(这需要分配/修改角色权限,仅适用于池管理员)。
- 2. 在 Active Directory 中修改包含组成员的用户角色。

RBAC 角色和权限定义

下表汇总了每个角色适用的权限。有关每种权限可执行的操作的详细信息,请参阅"权限定义"。

表 1. 适用于每个角色的权限

角色权限	池管理员	池操作员	VM 超级管 理员	VM 管理员	VM 操作员	只读
分配/修改角 色	X					
登录到(物理)服务器 控制台(通 过 SSH 和 XenCenter)	X					
服务器备份/ 还原	X					

角色权限	池管理员	池操作员	VM 超级管 理员	VM 管理员	VM 操作员	只读
导入/导出 OVF/OVA 包和磁盘映 像	X					
注销活动的 用户连接	X	X				
创建和取消 警报	X	X				
取消任何用 户的任务	X	X				
池管理	X	X				
VM 高级操 作	X	X	X			
VM 创建/销 毁操作	X	X	X	X		
VM 更改 CD 介质	X	X	X	X	X	
查看 VM 控制台	X	X	X	X	X	
XenCenter 视图管理操 作	X	X	X	X	X	
取消自己的 任务	X	X	X	X	X	X
阅读审核日 志	X	X	X	X	X	X
配置、初始 化、启用、 禁用 WLB	X	X				
应用 WLB 优化建议	X	X				
修改 WLB 报告订阅	X	X				
接受 WLB 放置建议	X	X	X			
显示 WLB 配置	X	X	X	X	X	X
生成 WLB 报告	X	X	X	X	X	X

CITRIX.

角色权限	池管理员	池操作员	VM 超级管 理员	VM 管理员	VM 操作员	只读
连接到池并 阅读所有池 元数据	X	X	X	X	X	X

权限的定义

下表提供了关于权限的其他详细信息:

表 2. 权限的定义

权限	允许被授权人执行的操作	说明/备注
分配/修改角色	• 添加/删除用户 • 添加/删除用户的角色	此权限允许用户向自己授予任 何权限或执行任何任务。
	• 启用和禁用 Active Directory 集成(加入域)	警告:此角色允许用户禁用 Active Directory 集成以及从 Active Directory 添加的所有使 用者。
登录到服务器控制台	• 通过 SSH 访问服务器控制台 • 通过 XenCenter 访问服务器 控制台	警告:具备对 root shell 的访问 权限之后,被授权人可以随意 重新配置整个系统(包括 RBAC)。
服务器备份/还原 VM 创建/销毁操作	备份和还原服务器备份和还原池元数据	还原备份的能力使被授权人能够还原 RBAC 配置更改。
导入/导出 OVF/OVA 包和磁盘映像	导入 OVF 和 OVA 包导入磁盘映像将 VM 导出为 OVF/OVA 包	
注销活动的用户连接	• 断开已登录用户的连接的能力	
创建/取消警报		警告:具有此权限的用户可以 取消整个池的警报。
		注意:查看警报的能力属于"连接到池并读取所有池元数据"权限的一部分。
取消任何用户的任务	• 取消任何用户正在运行的任务	此权限允许用户请求 XenServer 取消任何用户启动的正在执行 的任务。

权限	允许被授权人执行的操作	说明/备注
池管理	• 设置池属性(命名、默认 SR)	此权限包括维护池需执行的所 有操作。
	• 启用、禁用和配置高可用性功能	注意:如果管理接口无法使 用,则除本地根用户登录外,
	• 设置每个 VM 高可用性功能重 新启动优先级	其他登录均无法通过身份验证。
	• 启用、禁用和配置 Workload Balancing (WLB)	
	• 在池中添加和删除服务器	
	• 紧急转换到主服务器	
	• 紧急主服务器地址	
	• 紧急恢复从属服务器	
	• 指定新的主服务器	
	• 管理池和服务器证书	
	• 修补	
	• 设置服务器属性	
	• 配置服务器日志记录	
	• 启用和禁用服务器	
	• 关闭、重新引导和打开服务器	
	• 系统状态报告	
	• 应用许可证	
	• 因 WLB、维护模式或高可用性功能而将服务器上的所有其他 VM 实时迁移到其他服务器	
	• 配置服务器管理接口	
	• 禁用服务器管理	
	• 删除故障转储	
	• 添加、编辑和删除网络	
	• 添加、编辑和删除 PBD/PIF/	
	VLAN/Bond/SR	
	• 添加、删除和检索机密信息	
VM 高级操作	• 调整 VM 内存(通过动态内存 控制)	此权限向被授权人提供了足够 的权限,使其能够在对所选的
	• 创建包含内存数据的 VM 快	XenServer 服务器不满意时在其他服务器上启动 VM。
	照、生成 VM 快照及回滚 VM	
	• 迁移 VM	
	• 启动 VM,包括指定物理服务 器	
	• 恢复 VM	

CITRIX.

±□ 7F	4.55.10.15.15.15.15.15.15.15.15.15.15.15.15.15.	兴 四 / 夕 〉 〉
_ 权限 	允许被授权人执行的操作 ————————————————————————————————————	说明/备注
VM 创建/销毁操作	安装或删除	
	• 克隆 VM	
	• 添加、删除和配置虚拟磁盘/ CD 设备	
	• 添加、删除和配置虚拟网络	
	设备 • 导入/导出 VM	
	• VM 配置更改	
VM 更改 CD 介质	• 弹出当前的 CD	
	• 插入新 CD	
VM 更改电源状态	• 启动 VM(自动放置)	此权限不包括启动、恢复和迁
	• 关闭 VM	移,这三种权限属于 VM 高级操作权限。
	• 重新引导 VM	IF1XIXo
	• 挂起 VM	
	• 恢复 VM(自动放置)	
查看 VM 控制台	• 查看 VM 控制台并与之交互	此权限不允许用户查看服务器 控制台。
配置、初始化、启用、禁用	• 配置 WLB	如果用户的角色不具有此权
WLB	• 初始化 WLB 和更改 WLB 服 务器	限,此功能不可见。
	• 启用 WLB	
	• 禁用 WLB	
应用 WLB 优化建议	• 应用"WLB"选项卡中显示的所 有优化建议	
修改 WLB 报告订阅	• 更改生成的 WLB 报告或其接	
	收者	
接受 WLB 放置建议	• 选择其中一种服务器	
	Workload Balancing 放置建议 ("星级"建议)	
显示 WLB 配置	• 查看如"WLB"选项卡上显示的	
	池 WLB 设置	
生成 WLB 报告	• 查看和运行 WLB 报告,包 任"Pool Audit Trail" (池東核	
	括"Pool Audit Trail"(池审核 追踪)报告	
XenCenter 视图管理操作	• 创建和修改全局 XenCenter	
	文件夹 • 创建和修改全局 XenCenter	访问池的所有用户间共享
	自定义字段	
	• 创建和修改全局 XenCenter	
	搜索	

权限	允许被授权人执行的操作	说明/备注
取消自己的任务	• 允许用户取消自己的任务	
阅读审核日志	• 下载 XenServer 审核日志	
连接到池并阅读所有池元数据	 登录到池 查看池元数据 查看历史性能数据 查看登录的用户 查看用户和角色 查看消息 注册和接收事件 	

注意:

在某些情况下,具有只读权限的用户无法将资源移动到 XenCenter 中的文件夹,即使在接收到提升提示并提供了更具特权的用户的凭据之后也是如此。在这种情况下,以更具特权的用户身份登录到 XenCenter 并重试该操作。

结合使用 RBAC 和 CLI

列出 XenServer 中所有可用的已定义角色

• 运行以下命令: xe role-list

此命令返回当前已定义角色的列表,例如:

```
uuid( RO): 0165f154-ba3e-034e-6b27-5d271af109ba
name ( RO): pool-admin
description ( RO): The Pool Administrator role can do anything
uuid (RO): b9ce9791-0604-50cd-0649-09b3284c7dfd
name ( RO): pool-operator
description ( RO): The Pool Operator can do anything but access Dom0 \
and manage subjects and roles
uuid( RO): 7955168d-7bec-10ed-105f-c6a7e6e63249
name ( RO): vm-power-admin
description ( RO): The VM Power Administrator role can do anything \
affecting VM properties across the pool
uuid (RO): aaa00ab5-7340-bfbc-0d1b-7cf342639a6e
name ( RO): vm-admin
description ( RO): The VM Administrator role can do anything to a VM
uuid (RO): fb8d4ff9-310c-a959-0613-54101535d3d5
name ( RO): vm-operator
description ( RO): The VM Operator role can do anything to an already
uuid ( RO): 7233b8e3-eacb-d7da-2c95-f2e581cdbf4e
name ( RO): read-only
description ( RO): The Read-Only role can only read values
```

注意:

此角色列表是静态列表;无法在其中添加、删除或修改角色。

显示当前使用者的列表:

• 运行命令 xe subject-list

此命令将返回 XenServer 用户、其 uuid 及其相关联的角色的列表:

```
uuid (RO): bb6dd239-1fa9-a06b-a497-3be28b8dca44
subject-identifier ( RO): S-1-5-21-1539997073-1618981536-2562117463-2244
other-config (MRO): subject-name: example01\user_vm_admin; subject-upn: \
 user_vm_admin@XENDT.NET; subject-uid: 1823475908; subject-gid: 1823474177; \
 subject-sid: S-1-5-21-1539997073-1618981536-2562117463-2244; subject-gecos: \
 user_vm_admin; subject-displayname: user_vm_admin; subject-is-group: false; \
 subject-account-disabled: false; subject-account-expired: false; \
 subject-account-locked: false; subject-password-expired: false
roles (SRO): vm-admin
uuid (RO): 4fe89a50-6a1a-d9dd-afb9-b554cd00c01a
subject-identifier (RO): S-1-5-21-1539997073-1618981536-2562117463-2245
other-config (MRO): subject-name: example02\user_vm_op; subject-upn: \
 user_vm_op@XENDT.NET; subject-uid: 1823475909; subject-gid: 1823474177; \
 subject-sid: S-1-5-21-1539997073-1618981536-2562117463-2245; \
 subject-gecos: user_vm_op; subject-displayname: user_vm_op; \
 subject-is-group: false; subject-account-disabled: false; \
 subject-account-expired: false; subject-account-locked: \
  false; subject-password-expired: false
roles (SRO): vm-operator
uuid (RO): 8a63fbf0-9ef4-4fef-b4a5-b42984c27267
subject-identifier (RO): S-1-5-21-1539997073-1618981536-2562117463-2242
other-config (MRO): subject-name: example03\user pool op; \
 subject-upn: user_pool_op@XENDT.NET; subject-uid: 1823475906; \
 subject-gid: 1823474177; subject-s id:
 S-1-5-21-1539997073-1618981536-2562117463-2242; \
 subject-gecos: user_pool_op; subject-displayname: user_pool_op; \
 subject-is-group: false; subject-account-disabled: false; \
 subject-account-expired: false; subject-account-locked: \
  false; subject-password-expired: false
 roles (SRO): pool-operator
```

将使用者添加到 RBAC

为使现有的 AD 用户能够使用 RBAC,您将需要在 XenServer 中直接为 AD 用户或为 AD 用户的其中一个包含组创建主体实例:

1. 运行命令 xe subject-add subject-name=<AD user/group>

此命令会添加一个新的使用者实例。

为创建的使用者分配 RBAC 角色

添加使用者之后,您可以为其分配 RBAC 角色。可以通过角色的 uuid 或名称指向该角色:

1. 运行以下命令:

```
xe subject-role-add uuid=<<u>subject uuid</u>> role-uuid=<<u>role_uuid</u>>
或
xe subject-role-add uuid=<<u>subject uuid</u>> role-name=<<u>role_name</u>>
```

例如,以下命令会将 uuid 为 b9b3d03b-3d10-79d3-8ed7-a782c5ea13b4 的使用者添加到池管理员角色:

xe subject-role-add uuid=b9b3d03b-3d10-79d3-8ed7-a782c5ea13b4 role-name=pool-admin

更改使用者的 RBAC 角色:

要更改用户的角色,需要将用户从现有角色中删除,然后再将其添加到新角色:

1. 运行以下命令:

```
xe subject-role-remove uuid=<subject uuid> role-name= \
    <role_name_to_remove>
xe subject-role-add uuid=<subject uuid> role-name= \
    <role_name_to_add>
```

为确保新角色生效,应将用户注销,然后再次登录(这需要具有"注销活动用户连接"权限,池管理员或 池操作员具有该权限)。

警告:

添加或删除池管理员使用者之后,可能会有几秒钟的延迟,以便池的所有主机都能接受与此使用者相关联的 SSH 会话。

审核

RBAC 审核日志将记录登录的用户执行的所有操作。

- 该消息将详细记录与调用该操作的会话相关联的使用者 ID 和用户名。
- 如果在使用者没有相关授权的情况下调用操作,RBAC 审核日志会记录这一情况。
- 如果操作成功,RBAC 审核日志会记录这一情况;如果操作失败,RBAC 审核日志会记录错误代码。

审核日志 xe CLI 命令

xe audit-log-get [since=<timestamp>] filename=<output filename>

此命令将池中 RBAC 审核文件的所有可用记录下载到某个文件中。如果可选参数"since"存在,该命令将仅下载自该特定时间点开始的记录。

获取池中的所有审核记录

运行以下命令:

xe audit-log-get filename=/tmp/auditlog-pool-actions.out

获取自精确到毫秒的时间戳开始的池审核记录

运行以下命令:

```
xe audit-log-get since=2009-09-24T17:56:20.530Z \
filename=/tmp/auditlog-pool-actions.out
```

获取自精确到分钟的时间戳开始的池审核记录

运行以下命令:

```
xe audit-log-get since=2009-09-24T17:56Z \
filename=/tmp/auditlog-pool-actions.out
```

XenServer 如何计算会话的角色?

- 1. 使用者通过 Active Directory 服务器进行身份验证,以确定该使用者还可能属于哪些包含组。
- 2. XenServer 接下来会确定已将哪些角色同时分配给该主体及其包含组。
- 3. 由于使用者可以是多个 Active Directory 组的成员,因此,使用者会继承关联角色的所有权限。

在上图中,由于使用者 2(组 2)是池操作员,而用户 1 是组 2 的成员,因此,使用者 3(用户 1)尝试登录时,会同时继承使用者 3(VM 操作员)和组 2(池操作员)角色。由于池操作员角色级别更高,因此,使用者 3(用户 1)的最终角色是池操作员而非 VM 操作员。

XenServer 主机和资源池

本章通过一系列示例介绍如何使用 xe 命令行界面 (CLI) 创建资源池。下面将给出一个简单的基于 NFS 的共享存储配置,并讨论多个简单的 VM 管理示例。还将介绍处理物理节点故障的过程。

主机和资源池概述

资源池包括多个 XenServer 主机安装,这些主机安装绑定在一起形成可以托管虚拟机的单一受管理实体。与共享存储组合后,资源池允许 VM 在内存充足的任何 XenServer 主机上启动;并允许 VM 在保持运行状态(停机时间极短)的情况下在 XenServer 主机之间动态移动 (XenMotion)。如果单个 XenServer 主机发生硬件故障,则管理员可以在同一资源池中的另一个 XenServer 主机上重新启动出现故障的 VM。如果在资源池上启用了高可用性,则 VM 会在其主机发生故障时自动移动。每个资源池最多支持 16 个主机(尽管此限制并不强制执行)。

在一个池中,始终都包含至少一个物理节点,称为主节点。只有主节点的管理接口(XenCenter 和 XenServer 使用的命令行接口,称为 xe CLI)才会公开;主节点会根据需要向各个成员转发命令。

注意:

如果池的主节点出现故障,只有在启用了高可用性的情况下才会重新选择主节点。

创建资源池的要求

资源池是一台或多台同类 XenServer 主机(或具有限制的异类主机,请参阅"创建异类主机资源池"一节)的聚合,每个池最多包含 16 台主机。同类主机的定义是:

- 要加入池的服务器上的 CPU 与池中已有服务器上的 CPU 相同(在供应商、型号和功能方面)。
- 要加入池的服务器运行的 XenServer 软件版本在修补程序级别与池中已有的服务器相同。

向池中加入服务器时,软件将实施附加限制-特别是:

- 不是现有资源池的成员
- 未配置任何共享存储
- 要加入的 XenServer 主机中不存在任何运行中的 VM 或挂起的 VM
- VM 上不存在任何正在进行中的活动操作,例如关闭操作

您还必须确保要加入池的主机的时钟与池主服务器同步(例如通过使用 NTP),同时其管理界面是非绑定的(可以在该主机成功加入池后进行配置)而且其管理 IP 地址是静态的(可以在主机上配置或使用 DHCP 服务器上适当的配置)。

资源池中的 XenServer 主机可以包括不同数量的物理网络接口和不同大小的本地存储库。实际上,由于通常很难实现多个服务器使用完全相同的 CPU,因此微小差异是允许的。如果您确信您的环境可以接受具有不同 CPU 的主机加入同一资源池,则加入池的操作可以通过传递 --force 参数强制执行。

注意:

资源池中的 XenServer 主机需要一个静态 IP 地址,这一要求同样适用于为池提供共享 NFS 或 iSCSI 存储的主机。

对创建资源池来说,虽然技术上并不严格要求池具有一个或多个共享存储库,但池的优势(例如,动态选择要运行 VM 的 XenServer 主机的能力,以及在 XenServer 主机之间动态移动 VM 的能力)只有在池具有一个或多个共享存储库时才会体现出来。如果可能,推迟 XenServer 主机的创建,直到共享存储可用。添加共享存储后,Citrix 建议您将磁盘位于本地存储的现有 VM 移动到共享存储中。使用 xe vm-copy 命令或 XenCenter 可实现此操作。

创建资源池

可使用 XenCenter 管理控制台或 CLI 创建资源池。将新主机加入到资源池中时,加入的主机将其本地数据库与池范围内的数据库同步,并从池继承某些设置:

- 将 VM、本地和远程存储配置添加到池范围内的数据库中。所有这些内容仍然绑定到池中加入的主机,除非您在加入完成后采取明确采取措施使资源共享。
- 加入的主机继承池中现有的共享存储库并创建相应的 PBD 记录,因此新主机可以自动访问现有共享存储库。
- 新加入池的主机会部分继承网络信息:全部继承 NIC、VLAN 和绑定接口的结构详细信息,但不包括策略信息。策略信息必须重新配置,包括:
 - 管理 NIC 的 IP 地址,这类地址通过原始配置保留。
 - 管理接口的位置,保持与原始配置相同。例如,如果其他池主机的管理接口位于绑定的接口,则加入的主机在加入后必须立即显式迁移到绑定。
 - 专用存储 NIC,必须通过 XenCenter 或 CLI 为新加入的主机重新分配,并相应地重新插入 PBD 以路由通信。这是因为加入到池的操作中并不包含分配 IP 地址这一步骤,而没有正确配置 IP 地址,存储 NIC 就没有用处。有关如何通过 CLI 指定专用存储 NIC 的详细信息,请参阅"配置专用存储 NIC"一节。

使用 CLI 将 XenServer 主机 host1 和 host2 加入到资源池

- 1. 在 XenServer 主机 host2 中打开控制台。
- 2. 运行以下命令,指示 XenServer 主机 host2 加入位于 XenServer 主机 host1 上的池中:

xe pool-join master-address=<host1> master-username=<administrators_username> \
master-password=<password>

master-address 必须设置为 XenServer 主机 host1 的完全限定域名,password 必须是安装 XenServer 主机 host1 时设置的管理员密码。

命名资源池

默认情况下,XenServer 主机属于未命名池。要创建您的第一个资源池,请重命名现有的无名称的池。使用 tab-complete 查找 pool uuid:

xe pool-param-set name-label=<"New Pool"> uuid=<pool_uuid>

创建异类主机资源池

注意:

只有 XenServer 高级版及更高版本才提供异类主机资源池创建功能。要了解有关 XenServer 版本以及升级方法的详细信息,请单击此处访问 Citrix Web 站点。

XenServer 6.0 允许将完全不同的主机硬件加入资源池(称为异类主机资源池),从而简化了不断扩展部署的过程。异类主机资源池利用可提供 CPU"屏蔽"或"调配"的最新 Intel (FlexMigration) 和 AMD (Extended Migration) CPU 中的技术来实现。通过这些功能,可以将 CPU 配置为看起来提供与实际不同的样式、型号或功能。这样,将可以创建异类池,尽管这些池具有完全不同的 CPU,但仍能安全地支持实时迁移。

使用 XenServer 可屏蔽新服务器的 CPU 功能,以使其与池中现有服务器的功能相一致,需要满足以下条件:

- 要加入池的服务器的 CPU 的供应商(例如 AMD、Intel)必须与池中已有服务器相同,但具体类型(系列、型号和步数)无需相同。
- 要加入池的服务器的 CPU 必须支持 Intel FlexMigration 或 AMD Enhanced Migration。
- 旧 CPU 的功能必须属于要加入池的服务器的 CPU 功能的一部分。

- 要加入池的服务器运行的 XenServer 软件版本和安装的修补程序都必须与池中已有的服务器相同。
- XenServer 高级版或更高版本。

通过 XenCenter 创建异类主机资源池最简单,它会自动建议在可能时使用 CPU 屏蔽。有关更多详细信息,请参阅 XenCenter 帮助中的池要求部分。要显示 XenCenter 中的帮助,请按 F1。

使用 xe CLI 将异类 XenServer 主机添加到资源池

- 1. 运行 xe host-get-cpu-features 命令,获取池主服务器的 CPU 功能。
- 2. 在新服务器上,运行 xe host-set-cpu-features 命令,然后将池主服务器的功能复制并粘贴到 features 参数中。例如:

xe host-set-cpu-features features=<pool_master's_cpu_ features>

- 3. 重新启动新服务器。
- 4. 在新服务器上运行 xe pool-join 命令以加入池。

要使屏蔽了 CPU 功能的服务器恢复其正常功能,请运行 xe host-reset-cpu-features 命令。

注意:

要显示主机中 CPU 的所有属性的列表,请运行 xe host-cpu-info 命令。

添加共享存储

有关支持的共享存储类型的完整列表,请参阅存储这一章。本部分说明如何在现有 NFS 服务器中创建 共享存储(表示为存储库)。

使用 CLI 将 NFS 共享存储添加到资源池

- 1. 在池中任意 XenServer 主机上打开控制台。
- 2. 通过运行以下命令在 < server: /path> 上创建存储库:

```
xe sr-create content-type=user type=nfs name-label=<"Example SR"> shared=true \
  device-config:server=<server> \
  device-config:serverpath=<path>
```

device-config:server 指 NFS 服务器的主机名,device-config:serverpath 指 NFS 服务器上的路径。如果 shared 设置为 true,则共享存储将自动连接到池中的每台 XenServer 主机,并且随后加入的任何 XenServer 主机也会连接到该存储。已创建存储库的全局唯一标识符 (UUID) 将显示在屏幕上。

3. 通过以下命令查找池的 UUID:

```
xe pool-list
```

4. 使用以下命令将共享存储设置为池范围内的默认值:

```
xe pool-param-set uuid=<pool_uuid> default-SR=<sr_uuid>
```

由于共享存储已设置为池范围内的默认共享存储,所以默认情况下,将来的所有 VM 都会在共享存储上创建自己的磁盘。有关创建其他类型的共享存储的信息,请参阅存储。

从资源池移除 XenServer 主机

注意:

在从池中移除 XenServer 主机之前,请确保关闭该主机上正在运行的所有 VM。否则,您可能会看到一条警告消息,指示无法移除该主机。

从池中移除(删除)XenServer 主机时,机器将重新引导、重新初始化,最终达到的状态等效于全新安装后的状态。如果本地磁盘中存有重要数据,一定不要从池中删除 XenServer 主机。

CİTRIX'

使用 CLI 从资源池移除主机

- 1. 在池中任一主机上打开控制台。
- 2. 运行以下命令,获取主机的 UUID:

xe host-list

3. 从池中删除所需的主机:

```
xe pool-eject host-uuid=<host_uuid>
```

XenServer 主机将删除并最终达到全新安装状态。

警告

如果主机中包含存储在本地磁盘中的重要数据,请不要从资源池删除该主机。从池中删除后,将清除所有数据。如果要保留这些数据,请先使用 XenCenter 或 xe vm-copy CLI 命令将 VM 复制到池中的共享存储。

从池中删除包含本地存储的 VM 的 XenServer 主机时,这些 VM 仍将在池数据库中显示,并且可以被 其他 XenServer 主机看到。但这些 VM 不能启动,除非将与其关联的虚拟磁盘更改为指向能被池中其 他 XenServer 主机看到的共享存储或直接删除。因此,强烈建议您在完成加入池的操作后立即将任何 本地存储移动到共享存储,以便删除单个 XenServer 主机(或其发生物理故障)时不会丢失数据。

为进行维护准备 XenServer 主机池

在资源池的某台 XenServer 主机上执行维护操作之前,应该先禁用该主机(这可以阻止在此主机上启动任何 VM),然后将其 VM 迁移到该池中的另一台 XenServer 主机上。通过使用 XenServer 将 XenCenter 主机置于维护模式,可以非常轻松地完成此操作。有关详细信息,请参阅 XenCenter 帮助。

注意:

如果将主服务器主机置于维护模式,则脱机 VM 的最后 24 小时 RRD 更新将会丢失。这是因为备份同步每 24 小时进行一次。

藝牛

Citrix 强烈建议先重新引导所有 XenServer,再安装更新,然后再验证配置。这是因为有些配置更改只有在重新引导 XenServer 后才会生效,因此,重新引导可以发现可能导致更新失败的配置问题。

使用 CLI 准备池中的 XenServer 主机以执行维护操作

1. 运行以下命令:

```
xe host-disable uuid=<xenserver_host_uuid>
xe host-evacuate uuid=<xenserver_host_uuid>
```

这将禁用 XenServer 主机,然后将任何正在运行的 VM 迁移到池中的其他 XenServer 主机上。

- 2. 执行所需的维护操作。
- 3. 维护操作完成后,启用 XenServer 主机:

xe host-enable

重新启动所有已停止的 VM 并/或恢复所有挂起的 VM。

高可用性

本部分介绍 XenServer 虚拟机高可用性实现,以及如何使用 xe CLI 配置它。

CITRIX

注意:

只有 XenServer 高级版或更高版本才提供 XenServer 高可用性功能。要了解有关 XenServer 版本的信息,请单击此处访问 Citrix Web 站点。

高可用性概述

启用高可用性后,XenServer 将持续监视池中主机的运行状况。如果当前 VM 主机发生故障,高可用性机制会自动将受保护的 VM 移动到一台运行状况良好的主机上。此外,如果发生故障的主机是主服务器,高可用性会自动选择另一台主机来接管主服务器的角色,以便您能够继续管理 XenServer 池。

为了绝对保证某台主机是无法访问的,配置了高可用性的资源池使用多个检测信号机制来定期检查主机。这些检测信号既通过存储接口(连接检测信号 SR),也通过网络接口(通过管理接口)。这两种检测信号路由都可以是多宿(多连接)的,以防止产生误报,从而进一步提高可靠性。

XenServer 会动态维护故障转移方案,该方案详细说明了如果池中的一组主机在任意给定时间出现故障时应执行的操作。您需要了解的一个重要概念是允许的主机故障数,该值作为高可用性配置的一部分进行定义。该值确定在不丢失任何服务的情况下所允许的故障数。例如,如果资源池包括 16 台主机,而允许的故障数的设置为 3,则池将计算故障转移方案,该方案允许任意 3 台主机出现故障,并仍然能够在其他主机上重新启动 VM。如果找不到方案,则会认为该池使用过量。方案根据 VM 生命周期操作和移动动态地进行重新计算。如果所做的更改(例如将新 VM 添加到池)导致池使用过量,则会发送警报(通过 XenCenter 或电子邮件)。

使用过量

如果按照用户定义的故障数无法在其他位置重新启动当前正在运行的 VM,则会认为该池被过量使用。

如果池中没有足够的可用内存来运行这些出现故障的 VM,即会发生这种情况。但是,还存在一些更加细微的更改,这些更改会使高可用性保证无法持续:对虚拟块设备(Virtual Block Devices,VBD)和网络所做的更改对哪些 VM 可能会在哪些主机上重新启动会产生影响。目前,XenServer 无法在所有操作发生之前对其进行检查,也无法确定这些操作是否会违反高可用性要求。但是,如果高可用性变为无法持续,将发送异步通知。

使用过量警告

如果您尝试启动或恢复 VM,且该操作导致池使用过量,则会发出警告性警报。此警告将显示在 XenCenter 中并作为消息实例通过 Xen API 提供。此消息还可以发送到电子邮件地址(如果已配 置)。然后,您可以取消操作,也可以选择仍要继续。继续操作会导致池过载。不同优先级的 VM 所使 用的内存量将在池和主机级别显示。

主机保护

如果出现服务器故障(如网络连接断开)或发生控制堆栈问题,XenServer 主机将进行自我保护以确保 VM 没有同时在两个服务器上运行。采取保护措施后,服务器会突然立即重新启动,使在此服务器上运行的所有 VM 停止。其他服务器会检测到 VM 不再运行,而这些 VM 将根据分配到的重新启动优先级重新启动。受保护的服务器将进入重新引导序列,并在重新启动后尝试重新加入资源池。

配置要求

注意:

Citrix 建议您仅对至少包含 3 个 XenServer 主机的池启用高可用性。有关在池中两个主机之间的检测信号丢失时高可用性功能将如何响应的详细信息,请参阅 Citrix 知识库文章 CTX129721。

要使用高可用性功能,您需要具有:

• 共享存储,其中包含至少一个大小为 356 MB 或更大的 iSCSI 或光纤通道 LUN - 检测信号。高可用性功能机制在检测信号 SR 中创建两个卷:

4 MB 检测信号卷 用于检测信号。

256 MB 元数据卷

存储池主服务器元数据,以便在主服务器故障转移时使用。

注意:

为最大程度提高可靠性,Citrix 强烈建议您使用专用的 iSCSI 存储库作为高可用性功能检测信号磁盘,该磁盘不得用于任何其他用途。

如果您使用的是 NetApp 或 EqualLogic SR,请在阵列中手动置备 iSCSI LUN 作为检测信号 SR 使用。

- XenServer 池。此功能提供单一资源池内服务器级别的高可用性。
- XenServer 高级版或更高版本(在所有主机上)。
- 所有主机的静态 IP 地址。

警告:

如果启用高可用性功能同时更改服务器 IP 地址,高可用性功能将假定该主机的网络失败,并可能会保护主机,使其处于不能引导的状态。要补救这种情况,使用 hostemergency-ha-disable 命令禁用高可用性功能,使用 pool-emergency-reset-master 重新设定池主服务器,然后重新启用高可用性功能。

对于受高可用性功能保护的 VM,该 VM 必须灵活。这意味着:

- 虚拟机的虚拟磁盘必须置于共享存储中(可以使用任何共享存储类型;只在存储检测信号时要求使用 iSCSI 或光纤通道 LUN,您可以根据个人喜好为虚拟磁盘存储使用 iSCSI 或光纤通道 LUN,对此没 有强制性要求)。
- 虚拟机一定不能连接到配置的本地 DVD 驱动器。
- 虚拟机的虚拟网络接口应位于池范围内的网络中。

如果启用高可用性功能,Citrix 强烈建议为池中的服务器使用绑定的管理接口,为检测信号 SR 使用多路径存储。

如果您从 CLI 创建 VLAN 和绑定的接口,则即使已创建,也可能不插入和激活它们。在这种情况下,VM 可能显得不够灵活,无法由高可用性功能保护。如果发生这种情况,请使用 CLI pif-plug 命令建立 VLAN 和绑定 PIF,以使 VM 获得灵活性。还可以使用 xe diagnostic-vm-status CLI 命令分析 VM 放置限制来准确确定 VM 不灵活的原因,并在需要时执行修复操作。

重新启动优先级

为虚拟机分配了重新启动优先级,并使用一个标志指示虚拟机是否应由高可用性功能保护。启用高可用性功能时,每项工作都旨在确保受保护的虚拟机保持运行。如果指定了重新启动优先级,将自动启动任何处于停止状态的受保护的 VM。如果服务器失败,则其中的 VM 将在另一台服务器上启动。

下面是重新启动优先级的说明:

高可用性功能重新启动优 先级	重新启动说明
0	首先尝试启动具有此优先级的 VM
1	仅在尝试重新启动优先级为 0 的所有 VM 之后,才尝试启动具有此优先级的 VM
2	仅在尝试重新启动优先级为 1 的所有 VM 之后,才尝试启动具有此优先级的 VM

高可用性功能重新启动优 先级	重新启动说明
3	仅在尝试重新启动优先级为 2 的所有 VM 之后,才尝试启动具有此优先级的 VM
best-effort	仅在尝试重新启动优先级为 3 的所有 VM 之后,才尝试启动具有此优先级的 VM

高可用性功能始终运行	说明
True	重新启动计划中包括具有此设置的 VM
False	重新启动计划中不包括具有此设置的 VM

警告:

Citrix 强烈建议仅为 StorageLink Service VM 分配重新启动优先级 0。对于所有其他 VM(包括依赖于 StorageLink VM 的 VM),应分配 1 或值更高的重新启动优先级。

"best-effort"高可用性功能重新启动优先级不得用于带有 StorageLink SR 的池中。

重新启动优先级决定出现故障时 XenServer 尝试启动 VM 的顺序。在允许服务器失败次数大于零(如GUI 中的高可用性功能面板所示,或通过 CLI 内池对象的 ha-plan-exists-for 字段指示)的指定配置中,具有 0、1、2 或 3 重新启动优先级的 VM 保证能在发生指定的特定服务器失败次数时重新启动。具有 best-effort 优先级设置的 VM 不是故障转移方案的一部分,并且由于没有为它们保留容量,不能保证始终处于运行状态。如果池遇到服务器故障并进入某种允许的故障数降为零的状态,将不再保证重新启动受保护的 VM。如果出现这种情况,将生成系统警报。在这种情况下,如果发生其他故障,所有设置了重新启动优先级的 VM 将根据 best-effort 行为运行。

如果发生服务器故障时无法重新启动某个受保护的 VM(例如,发生故障时过度使用池),将在池状态更改时再次尝试启动此 VM。这意味着,如果池中其他容量变为可用(例如,如果关闭非基本的 VM 或添加其他服务器),就会进行重新启动受保护的 VM 的全新尝试,并且可能立即成功。

注意:

要为即将重新启动 always-run=true 的 VM 释放资源,任何运行中的 VM 都不能停止或迁移。

对 XenServer 池启用高可用性功能

可使用 XenCenter 或命令行界面对池启用高可用性功能。无论使用哪种方法,都需要指定一组优先级,用来确定当池被过度使用时赋予哪些 VM 最高重新启动优先级。

警告:

启用高可用性功能后,可能禁用某些会影响重新启动 VM 的方案的操作,例如从池中移除服务器。要执行这些操作,可以暂时禁用高可用性功能,也可以对受高可用性功能保护的 VM 解除保护。

使用 CLI 启用高可用性功能

- 1. 确认您具有连接到池的兼容的存储库 (SR)。iSCSI 或光纤通道都是兼容的 SR 类型。有关如何使用 CLI 配置此类存储库的详细信息,请参阅参考指南。
- 2. 对每台要保护的 VM 设置重新启动优先级。可按如下方式执行此操作:
 - xe vm-param-set uuid=<<u>vm_uuid</u>> ha-restart-priority=<<u>1</u>> ha-always-run=true
- 3. 对池启用高可用性功能:

CITRIX

```
xe pool-ha-enable heartbeat-sr-uuids=<sr_uuid>
```

4. 运行 pool-ha-compute-max-host-failures-to-tolerate 命令。此命令返回允许的故障主机最大数目,超过此数目,资源将不足以运行池中所有受保护的 VM。

```
xe pool-ha-compute-max-host-failures-to-tolerate
```

允许的故障数量决定何时发送警报:当池状态更改时,系统将重新计算故障转移方案,系统使用此计算结果来确定池容量以及确保受保护的 VM 正常运行的最大允许故障数。当计算的值低于指定的 ha-host-failures-to-tolerate 值时,将生成系统警报。

5. 为允许故障数参数指定一个数目。此值应该小于或等于计算的值:

```
xe pool-param-set ha-host-failures-to-tolerate=<2> uuid=pool-uuid>
```

使用 CLI 解除 VM 的高可用性保护

要禁用 VM 的高可用性功能,请使用 xe vm-param-set 命令将 ha-always-run 参数设置为 false。这不会清除 VM 重新启动优先级设置。通过将 ha-always-run 参数设置为 true,可以对 VM 再次启用高可用性功能。

恢复无法访问的主机

如果由于某些原因,主机无法访问高可用性功能的状态文件,则主机可能变为无法访问。要恢复 XenServer 安装,可能需要使用 host-emergency-ha-disable 命令禁用高可用性功能:

```
xe host-emergency-ha-disable --force
```

如果主机为池主服务器,则应禁用高可用性功能以常规方式启动。从属服务器应重新连接并自动禁用高可用性功能。如果主机是池从属服务器并且无法与主服务器联系,则可能需要强制主机作为池主服务器重新引导 (xe pool-emergency-transition-to-master) 或告诉它新主服务器的位置 (xe pool-emergency-reset-master):

```
xe pool-emergency-transition-to-master uuid=<host_uuid>
xe pool-emergency-reset-master master-address=<new_master_hostname>
```

成功重新启动所有主机后,重新启用高可用性功能:

```
xe pool-ha-enable heartbeat-sr-uuid=<sr_uuid>
```

在启用高可用性功能的情况下关闭主机

如果启用高可用性功能,需要特别注意关闭或重新引导主机时的情况,以防止高可用性功能机制假定主机已失败。要在启用高可用性功能的环境中完全关闭主机,请首先使用 disable 命令禁用主机,然后使用 evacuate 命令清空主机,最后使用 XenCenter 或 CLI shutdown 命令关闭主机。要通过命令行在启用高可用性功能的环境中关闭主机,可使用以下命令:

```
xe host-disable host=<host_name>
xe host-evacuate uuid=<host_uuid>
xe host-shutdown host=<host_name>
```

关闭受高可用性功能保护的 VM

如果 VM 受高可用性方案保护并设置为自动重新启动,则无法在此保护处于活动状态时关闭。要关闭 VM,首先禁用其高可用性功能保护,然后执行 CLI 命令。如果单击受保护的 VM 的 Shutdown(关闭)按钮,XenCenter 将提供一个用来自动禁用保护的对话框。

注意:

如果关闭来宾系统内的某个 VM,并且此 VM 受保护,则它将在高可用性功能故障的情况下自动重新启动。这有助于确保操作错误(或某个错误程序错误地关闭了 VM

时)不会导致受保护的 VM 意外关闭。如果要关闭此 VM,应首先禁用其高可用性功能保护。

主机启动

远程启动主机

可以使用 XenServer 主机启动功能,从 XenCenter 中或使用 CLI 远程打开和关闭服务器。使用 Workload Balancing (WLB) 时,可以配置 Workload Balancing,使其在 VM 合并或恢复联机时自动打开和关闭主机。

要打开主机电源,服务器必须具有下面一种电源控制解决方案:

- 启用了"LAN 唤醒"的网卡。
- Dell Remote Access Cards (DRAC)。要将 XenServer 与 DRAC 一起使用,您必须安装 Dell 增补包以获取 DRAC 支持。DRAC 支持需要在带有远程访问控制器的服务器上安装 RACADM 命令行实用程序,并启用 DRAC 及其接口。RACADM 通常包含在 DRAC 管理软件中。有关详细信息,请参阅Dell 的 DRAC 文档。
- Hewlett-Packard Integrated Lights-Out (iLO)。要将 XenServer 与 iLO 一起适用,您必须在主机上启用 iLO,并将接口连接到网络。有关详细信息,请参阅 HP 的 iLO 文档。
- 基于 XenAPI 且使您能够通过 XenServer 打开和关闭电源的自定义脚本。有关详细信息,请参阅"配置 XenServer 主机启动功能的自定义脚本"一节。

使用主机启动功能需要执行以下三项任务:

- 1. 确保池中的主机支持远程控制电源(即,这些主机具有"LAN 唤醒"功能、DRAC 或 iLO 卡,或您创建的自定义脚本)。
- 2. 使用 CLI 或 XenCenter 启用主机启动功能。
- 3. (可选)在 Workload Balancing 中配置自动主机启动功能。有关如何在 Workload Balancing 中配置主机开机功能的信息,请参考《Citrix XenServer Workload Balancing 管理员指南》。

注意:

您必须首先启用主机启动功能,并在 Workload Balancing 中配置电源管理功能,Workload Balancing 才能自动打开和关闭主机。

使用 CLI 管理主机启动功能

可以使用 CLI 或 XenCenter 管理主机启动功能。此主题介绍与使用 CLI 管理主机启动功能有关的信息。

主机启动功能在主机级别(即在每台 XenServer 上)启用。

启用主机启动功能之后,可以使用 CLI 或 XenCenter 打开主机。

启用主机启动功能后,可以启用 Workload Balancing 自动化和电源管理功能,如《Workload Balancing 管理员指南》中所述。

使用 CLI 启用主机启动功能

1. 运行以下命令:

```
xe host-set-power-on host=<host uuid>\
power-on-mode=("" , "wake-on-lan",
"iLO", "DRAC","custom")
power-on-config:key=value
```

对于 iLO 和 DRAC,键为 power_on_ip、power_on_user、power_on_password。如果要使用加密功能,可以使用 power_on_password 指定密码。

使用 CLI 远程打开主机

1. 运行以下命令:

xe host-power-on host=<host uuid>

配置 XenServer 主机启动功能的自定义脚本

如果服务器的远程电源解决方案使用默认情况下不受支持的协议(例如响铃唤醒或 Intel 主动管理技术),可以创建自定义 Linux Python 脚本,以远程打开 XenServer 计算机。但是,您还可以为 iLO、DRAC 和 LAN 唤醒远程电源解决方案创建自定义脚本。

本主题介绍了与以下内容有关的信息:使用与 XenServer API 调用 $host.power_on$ 相关联的键/值对配置主机启动的自定义脚本。

创建自定义脚本时,在每次要在 XenServer 上远程控制电源时从命令行运行该脚本。或者,可以在 XenCenter 中指定该脚本,并使用 XenCenter UI 功能与之交互。

XenServer API 记录在文档 [Citrix XenServer Management API] 中,可从 Citrix Web 站点获取该文档。

注意:

请勿修改 /etc/xapi.d/plugins/ 目录中默认提供的脚本。您可以在此目录中加入新脚本,但安装后不得修改此目录中包含的脚本。

键/值对

要使用主机启动功能,必须配置 host.power_on_mode 和 host.power_on_config 键。这两个键的值在下面提供。

还有一个 API 调用使您能够同时设置所有字段:

void host.set_host_power_on_mode(string mode, Dictionary<string,string> config)

host.power_on_mode

- 定义:此 API 调用包含用于指定远程电源解决方案类型(例如 Dell DRAC)的键/值对。
- 可能的值:
 - 空字符串,表示电源控制处于禁用状态
 - "iLO" 使您能够指定 HP iLO。
 - "DRAC" 使您能够指定 Dell DRAC。要使用 DRAC,您必须已安装 Dell 增补包。
 - "wake-on-lan" 使您能够指定"LAN 唤醒"。
 - 任何其他名称(用于指定自定义启动脚本)。此选项用于指定电源管理的自定义脚本。
- 类型:字符串

host.power_on_config

- 定义:此键包含用于模式配置的键/值对。为 iLO 和 DRAC 提供其他信息。
- 可能的值:
 - 如果您配置"iLO"或"DRAC"作为远程电源解决方案的类型,还必须指定下面的某个键:

- "power_on_ip" 此键为您指定配置为与电源控制卡进行通信的 IP 地址。或者,您可以输入配置 iLO 或 DRAC 的网络接口的域名。
- "power_on_user" 此键为与管理处理器相关联的 iLO 或 DRAC 用户名,您可能已更改其出厂时的默认设置,也可能未更改。
- "power_on_password_secret" 指定使用加密功能来保护密码的安全。
- 要使用加密功能存储密码,请指定键"power_on_password_secret"。
- 类型: Map (string, string)

示例脚本

此示例脚本会导入 XenServer API,将脚本本身定义为自定义脚本,然后将特定的参数传递给您要远程控制的主机。必须在所有自定义脚本中定义参数 session、remote_host 和 power_on_config。

结果仅在脚本不成功时显示。

```
import XenAPI
def custom(session,remote_host,
power_on_config):
result="Power On Not Successful"
for key in power_on_config.keys():
result=result+"
key="+key+"
value="+power_on_config[key]
return result
```

注意:

创建完成后,使用.py 扩展名将脚本保存到 /etc/xapi.d/plugins 中。

存储

本章讨论存储抽象的框架。将介绍各种物理存储硬件映射到 VM 的方式,以及 XenServer 主机 API 使用的软件对象执行与存储相关的任务的方式。在每个支持的存储类型的详细信息部分中,包括使用 CLI为 VM 创建存储的过程、特定类型的设备配置选项,生成用于备份的快照,以及一些在 XenServer 主机环境中管理存储的最佳做法。最后,将介绍虚拟磁盘 QoS(服务质量)设置。

存储概述

本部分介绍有哪些 XenServer 存储对象,以及它们之间的关系。

存储库 (SR)

XenServer 定义了一个称为存储库 (SR) 的容器,用来描述存储虚拟磁盘映像 (VDI) 的特定存储目标。VDI 是包含虚拟磁盘内容的磁盘抽象。

存储硬件的接口允许在大量 SR 类型上支持 VDI。XenServer SR 内置了对本地连接的 IDE、SATA、SCSI 和 SAS 驱动器和通过光纤通道远程连接的 iSCSI、NFS、SAS 的支持,因而非常灵活。SR 和 VDI 抽象允许在支持高级存储功能(如稀疏置备、VDI 快照和快速克隆)的存储目标上提供这些功能。对于本身不直接支持高级操作的存储子系统,会根据实现这些功能的 Microsoft 虚拟硬盘 (VHD) 规范提供软件堆栈。

每台 XenServer 主机可以同时使用多个 SR 和不同的 SR 类型。可以在主机之间共享这些 SR,也可以将其专用于特定主机。共享存储会加入一个已定义的资源池,并由该池内的多台主机共用。共享 SR 必须可由每台主机通过网络访问。单个资源池中的所有主机必须至少有一个共用的共享 SR。

SR 是包含虚拟磁盘映像 (VDI) 的存储目标。SR 命令提供用于创建、销毁、克隆、连接、查找它们所包含的各个 VDI 及调整这些 VDI 大小的操作。

存储库是一个存在于磁盘上的永久性数据结构。对于使用基本块设备的 SR 类型,创建新 SR 的过程包括清除指定存储目标上的所有现有数据。对于其他存储类型(如 NFS、Netapp、Equallogic 和 StorageLink SR),则会在与现有 SR 平行的存储阵列上创建一个新容器。

用于管理存储库的 CLI 操作在"SR 命令"一节中介绍。

虚拟磁盘映像 (VDI)

虚拟磁盘映像是显示给 VM 的存储抽象。VDI 是 XenServer 中的虚拟化存储的基本单元。与 SR 类似,VDI 是磁盘上独立于 XenServer 主机存在的永久性对象。"VDI 命令"一节中对用于管理 VDI 的 CLI 操作进行了说明。数据在磁盘上的实际表现形式因 SR 类型而异,并通过每个 SR 的独立存储插件接口(称为 SM API)来管理。

物理块设备 (PBD)

物理块设备代表物理服务器与连接的 SR 之间的接口。PBD 是连接器对象,允许将指定的 SR 映射到 XenServer 主机。PBD 存储一些设备配置字段,用于与指定的存储目标进行连接和交互。例如,NFS 设备配置包括 NFS 服务器的 IP 地址以及 XenServer 主机装载的关联路径。PBD 对象管理指定 SR 与指定 XenServer 主机之间的运行时连接。与 PBD 相关的 CLI 操作在"PBD 命令"一节中介绍。

虚拟块设备 (VBD)

虚拟块设备是连接器对象(与上述 PBD 类似),可用于在 VDI 与 VM 之间进行映射。除了用于将 VDI 连接到(也称为插入)VM 外,VBD 还可用于调整指定 VDI 的 QoS(服务质量)、统计数据和可引导性等相关参数。"VBD 命令"一节中介绍了与 VBD 相关的 CLI 操作。

存储对象摘要

下图概括说明了目前提供的存储对象之间的关系:

存储库和相关对象的图形概述

虚拟磁盘数据格式

- 一般来说,针对 VDI 的物理存储的映射包括以下三种:
- 文件系统上基于文件的 VHD; VM 映像作为精简置备的 VHD 格式文件在本地非共享文件系统(EXT 类型 SR)或共享 NFS 目标(NFS 类型 SR)上存储。
- LUN 上基于逻辑卷的 VHD;默认的 XenServer 基于块设备的存储在磁盘上的逻辑卷管理器中插入本地连接的设备(LVM 类型 SR)或通过光纤通道(LVMoHBA 类型 SR)、iSCSI(LVMoISCSI 类型 SR)或 SAS(LVMoHBA 类型 Sr)连接 SAN 的 LUN。VDI 以卷管理器中的卷的形式来表现,并以 VHD 格式保存,以支持快照和克隆的引用节点的精简置备。
- LUN-per-VDI;LUN 以 VDI 的形式按 SR 类型直接映射到 VM;这些 SR 类型提供特定于阵列的插件(NetApp、EqualLogic 或 StorageLink 类型 SR)。因此,阵列存储抽象与在阵列级管理存储置备的环境的 VDI 存储抽象相匹配。

基于 VHD 的 VDI

可以将 VHD 文件链接起来,从而允许两个 VDI 共享通用数据。如果克隆基于 VHD 的 VM,生成的 VM 将共享克隆时的通用磁盘数据。每个 VM 将在 VDI 的单独写入时复制 (CoW) 版本中继续进行各自的更改。此功能允许从模板快速克隆基于 VHD 的 VM,便于极快地置备和部署新 VM。

由 XenServer 中基于 LVM 和基于文件的 SR 类型所使用的 VHD 格式使用稀疏置备。当 VM 将数据写入到磁盘时,映像文件将自动扩展为多个大小为 2MB 的块。对于基于文件的 VHD,VM 映像文件仅在物理存储中占用所需的空间,这将带来极大的好处。通过基于 LVM 的 VHD,基础逻辑卷容器必须将大小调整为与 VDI 的虚拟磁盘大小相同,但是当进行快照或克隆时,基础 CoW 实例磁盘上的闲置空间将被收回。两种行为之间的差异描述如下:

• 对于基于 LVM 的 VHD,链中的不同磁盘节点所消耗的空间与写入磁盘的数据量相同,但叶节点 (VDI 克隆)则完全扩充至虚拟磁盘的大小。快照叶节点(VDI 快照)在未使用时保持压缩状态,并

能够以只读形式连接,以保持压缩分配。以读写形式连接的快照节点将在连接后完全扩充,在分离后 压缩。

对于基于文件的 VHD,全部节点所消耗的空间与写入的数据量相同,叶节点文件所占空间则随数据的实时写入而增长。如果为新 VM 分配 100GB 的 VDI 并且安装操作系统, VDI 文件的物理大小仅是已写入磁盘的操作系统数据的大小再加上一些次要元数据的开销的大小。

基于单个 VHD 模板克隆 VM 时,每个子 VM 会形成一个链,其中新更改将写入新 VM,而旧块将直接从父模板读取。如果将新 VM 进一步转换为模板并克隆更多的 VM,则生成的链将导致性能下降。XenServer 支持的最大链长度为 30,但是如果没有充足的理由,一般不建议您接近此限制。如果存有疑问,您随时可以使用 XenServer 或 vm-copy 命令"复制"VM,这会将链长度重置回 0。

VHD 链合并

VHD 映像支持链接,该过程可使一个或多个 VDI 之间共享的信息不发生重复。这会导致出现一种情况,即在克隆 VM 及其关联的 VDI 时会不断创建链接 VDI 的树。删除链中的一个 VDI 时,XenServer 会合理化链中的其他 VDI 以删除不必要的 VDI。

此合并过程异步运行。回收的磁盘空间量和执行此过程所花费的时间取决于 VDI 的大小和共享数据量。对于 SR 来说,永远只有一个合并过程处于活动状态。此过程的线程在 SR 主服务器主机上运行。

如果有重要的 VM 在池的主服务器上运行,且 IO 由于此进程偶尔会出现缓慢情况,您可以采取措施来缓解这一现象:

- 将 VM 迁移到 SR 主节点以外的主机。
- 将磁盘 IO 优先级设置为较高的级别,并调整调度程序。有关详细信息,请参阅"虚拟磁盘 QoS 设置"一节。

空间利用率

始终根据 SR 的当前分配来报告空间利用率,这可能无法反映已分配的虚拟磁盘空间量。如果基于文件的 VHD 支持完全的精简置备,而基于 LVM 的 VHD 的基础卷将完全扩大以支持可写入叶节点的潜在增长,基于 LVM 的 SR 与基于文件的 SR 的空间报告也将有所差异。SR 空间利用率报告将基于快照的数量,以及各快照之间写入到磁盘的差异数据量。

基于 LVM 的空间利用率有所差别,具体取决于在 XenServer 中 LVM SR 是进行升级还是作为新 SR 进行创建。升级的 LVM SR 将保留一个完全扩充至虚拟磁盘大小的基本节点,任何后续快照或克隆操作将至少置备一个完全扩充的附加节点。与此相反,对于新 SR,基本节点将缩小至仅包含 VHD 覆盖中所分配的数据。

删除基于 VHD 的 VDI 时,其在磁盘上占用的空间将标记为删除。实际删除分配的数据可能需要花费一些时间,因为删除操作由一个合并过程处理,对于每个基于 VHD 的 SR,此合并过程异步且独立运行。

基于 LUN 的 VDI

将原始 LUN 映射为虚拟磁盘映像通常是可获得最高性能的存储方法。对于想要利用现有 SAN 存储基础结构(如 NetApp、EqualLogic 或 StorageLink 可访问阵列)的管理员来说,可以通过其中一种特定于阵列的适配器 SR 类型(NetApp、EqualLogic 或 StorageLink)来直接利用阵列快照、克隆和精简置备功能。使用 LUN-per-VDI 表示形式,可将虚拟机存储操作直接映射到阵列 API 上。这包括按需激活数据路径,例如当启动 VM 或将 VM 迁移到另一个主机时。

受管理的 NetApp LUN 可以通过使用 NetApp SR 驱动程序类型进行访问,且托管在运行 Ontap 7.0 版本或更高版本的 Network Appliance 设备上。使用 XenServer 主机管理框架动态分配 LUN 并将其映射到主机上。

EqualLogic 存储可以使用 EqualLogic SR 驱动程序类型访问,并且该存储托管在运行 4.0 或更高版本 固件的 EqualLogic 存储阵列上。使用 XenServer 主机管理框架动态分配 LUN 并将其映射到主机上。

有关 StorageLink 支持的阵列系统以及每种情况下各种功能的详细信息,请直接参阅 StorageLink 文档。

存储库类型

XenServer 中支持的存储库类型由控制域中的插件提供;可以检查这些插件,并且可将第三方支持的插件添加到 /opt/xensource/sm 目录中。不支持对这些文件进行修改,但显示这些文件对开发人员和高级用户颇有价值。XenServer 会自动检测添加到此目录中的新存储管理器插件。使用 sm-list 命令(请参阅"存储管理器命令"一节)可列出可用的 SR 类型。

使用 XenCenter 中的新建存储向导创建新存储库。此向导将指导您完成各种探测和配置步骤。也可以使用 sr-create 命令。此命令在存储基底中创建新的 SR(可能销毁任何现有数据),并创建 SR API 对象和相应的 PBD 记录,使 VM 能够使用存储。成功创建 SR 后,自动插入 PBD。如果已设置 SR shared=true 标志,则创建 PBD 记录并为资源池中的每台 XenServer 主机 插入该记录。

所有 XenServer SR 类型都支持 VDI 重新调整大小、快速克隆和快照。基于 LVM SR 类型(本地、iSCSI 或 HBA)的 SR 提供用于快照和隐藏父节点的精简置备。其他 SR 类型支持完整的精简置备,包括活动虚拟磁盘的精简置备。

注意:

默认情况下不启用自动 LVM 元数据归档。这不会妨碍 LVM 组的元数据恢复。

警告:

未连接 VHD VDI 时,例如是 VDI 快照,VHD VDI 在默认情况下以精简置备方式存储。这是非常必要的,因为这样可以确保在 VDI 转换为密集置备时(即尝试连接时)有足够的磁盘空间。但是,VDI 克隆属于密集置备。

支持的最大 VDI 大小为:

存储类型	最大 VDI 大小
EXT3	2 TB
LVM	2 TB
NetApp	2 TB
EqualLogic	15 TB
ONTAP(NetApp)	12 TB

本地 LVM

本地 LVM 类型表示磁盘处于一个本地连接的卷组中。

默认情况下,XenServer 使用安装它的物理主机的本地磁盘。Linux 逻辑卷管理器 (LVM) 用于管理 VM存储。在指定大小的 LVM 逻辑卷中,VDI 采用 VHD 格式实施。

早于 XenServer 的 6.0 版本不使用 VHD 格式,并将保留原有模式。有关升级存储库至新格式的信息,请参阅"从 XenServer 5.0 或更早版本升级 LVM 存储"一节。

创建本地 LVM SR (lvm)

Ivm SR 的 Device-config 参数为:

参数名称	说明	是否必需?
Device	用于 SR 的本地主机上的设备名 称	是

要在 /dev/sdb 上创建本地 lvm SR,请使用以下命令。

```
xe sr-create host-uuid=<valid_uuid> content-type=user \
name-label=<"Example Local LVM SR"> shared=false \
device-config:device=/dev/sdb type=lvm
```

本地 EXT3 VHD

本地 EXT3 VHD 类型表示磁盘作为 VHD 文件存储于本地路径。

本地磁盘还可以配置本地 EXT SR 来保存以 VHD 格式存储的 VDI。必须使用 XenServer CLI 配置本地磁盘 EXT SR。

根据定义,不在 XenServer 主机的池之间共享本地磁盘。因此,那些 VDI 存储在本地磁盘中的 SR 中的 VM 不够灵活——它们不能在资源池中的 XenServer 主机间迁移。

创建本地 EXT3 SR (ext)

ext SR 的 Device-config 参数:

参数名称	说明	是否必需?
Device	用于 SR 的本地主机上的设备名 称	是

要在 /dev/sdb 上创建本地 ext SR,请使用以下命令:

```
xe sr-create host-uuid=<valid_uuid> content-type=user \
   name-label=<"Example Local EXT3 SR"> shared=false \
   device_config:device=/dev/sdb type=ext
```

udev

udev 类型表示插入的设备使用 udev 设备管理器作为 VDI。

XenServer 具有两个代表可移动存储的 udev 类型的 SR。一个用于 XenServer 主机的物理 CD 或 DVD-ROM 驱动器中的 CD 或 DVD 磁盘。另一个用于插入到 XenServer 主机的 USB 端口的 USB 设备。插入磁盘或 U 盘,代表介质的 VDI 出现;移除磁盘或 U 盘,VDI 消失。

ISO

ISO 类型处理以 ISO 格式文件存储的 CD 映像。此 SR 类型在创建共享 ISO 库时十分有用。对于用于存储 ISO 库的存储库,必须将 content-type 参数设置为 iso。

例如:

```
xe sr-create host-uuid=<valid_uuid> content-type=iso \
  type=iso name-label=<"Example ISO SR"> \
  device_config:location=<nfs server:path>
```

软件 iSCSI 支持

XenServer 提供了对 iSCSI LUN 上的共享 SR 的支持。由于使用 open-iSCSI 软件 iSCSI 启动器或使用受支持的 iSCSI 主机总线适配器 (HBA),iSCSI 得到支持。使用 iSCSI HBA 的步骤与使用光纤通道 HBA 的步骤相同,这两种步骤在"创建基于光纤通道/iSCSI HBA 或 SAS SR 的共享 LVM SR (lymohba)"一节中均有说明。

使用软件 iSCSI 启动器的共享 iSCSI 支持基于 Linux 卷管理器 (LVM) 实现,并且提供的性能优势与本地磁盘库中的 LVM VDI 提供的相同。使用基于软件的主机启动器的共享 iSCSI SR 能够灵活地支持使用 XenMotion 的 VM:VM 可以在资源池中的任意 XenServer 主机上启动,并且可以在不会导致明显停机时间的情况下在主机间迁移。

iSCSI SR 利用在创建期间指定的整个 LUN,但不能跨多个 LUN。此外,还为数据路径初始化阶段和 LUN 检测阶段进行的客户端身份验证提供 CHAP 支持。

XenServer 主机 iSCSI 配置

所有 iSCSI 启动器和目标都必须具有唯一的名称,以确保可以在网络上对它们进行唯一标识。启动器具有 iSCSI 启动器地址,目标具有 iSCSI 目标地址。这些名称统称为 iSCSI 限定名称 (IQN)。

XenServer 主机支持在主机安装期间使用随机 IQN 自动创建并配置的单个 iSCSI 启动器。可以使用该单个启动器并发连接到多个 iSCSI 目标。

iSCSI 目标通常使用 iSCSI 启动器 IQN 列表提供访问控制,因此,必须将可以由 XenServer 主机访问的所有 iSCSI 目标/LUN 配置为允许该主机的启动器 IQN 访问。同样,必须将用作共享 iSCSI SR 的目标/LUN 配置为允许资源池中的所有主机 IQN 访问。

注意:

不提供访问控制的 iSCSI 目标通常默认为仅允许单个启动器访问 LUN 以确保数据完整性。若要将 iSCSI LUN 用作资源池中多个 XenServer 主机的共享 SR,请确保为指定的 LUN 启用多启动器访问。

在使用 iSCSI 软件启动器时,可以通过 XenServer 或者通过 CLI 使用以下命令来调整 XenCenter 主机 IQN 值:

xe host-param-set uuid=<valid host id> other-config:iscsi_ign=<new_initiator_ign>

警告

每个 iSCSI 目标和启动器必须具有唯一的 IQN。如果使用非唯一的 IQN 标识符,则可能导致数据损坏和/或 LUN 访问被拒绝。

警告:

不要更改连接了 iSCSI SR 的 XenServer 主机 IQN,否则可能导致无法连接到新目标或现有 SR。

Citrix StorageLink SR

Citrix StorageLink (CSL) 存储库提供对本机阵列 API 的直接访问,以卸载密集型任务(如 LUN 置备、快照和数据克隆)。CSL 提供许多受支持的适配器类型,以便与阵列管理 API 进行通信。配置成功后,适配器将根据需要处理存储的所有置备工作并将其映射到 XenServer 主机。针对 LUN 的数据路径支持包括光纤通道和 iSCSI,具体取决于硬件。

可以使用 XenCenter 和 xe CLI 创建、查看和管理 CSL SR。

注意:

有关结合使用 XenCenter 与 CSL SR 类型的详细信息,请参阅 XenCenter 联机帮助。

由于 CSL SR 可用于访问不同的存储阵列,特定 CSL SR 的具体功能取决于该阵列的功能。所有 CSL SR 使用一个 LUN-per-VDI 模型,其中为每个虚拟磁盘置备一个新的 LUN。

CSL SR 可以与同一存储阵列硬件上的其他 SR 类型共存,且多个 CSL SR 可以在同一个资源池内定义。

CSL 支持以下阵列类型:

• NetApp/IBM N 系列

重要提示:

在 XenServer 主机上结合使用 NetApp 存储与 StorageLink 时,系统会自动在阵列上为该主机创建发起程序组。创建的这些发起程序组将具有 Linux 作为操作系统。

不建议手动创建具有其他操作系统的发起程序组。

• Dell EqualLogic PS 系列

重要提示:

Dell EqualLogic API 使用 SNMP 进行通信。它需要使用 SNMP v3,因此需要 v5.0.0 或更高版本的固件。如果您的 EqualLogic 阵列使用早期版本的固件,您 需要将其升级到 v5.0.0。可以从 Dell EqualLogic Firmware 下载站点 (https://www.equallogic.com/support/download.aspx?id=1502) 下载固件(请注意,需要使用 Dell 支持帐户访问此页面)。

将固件升级到 v5.0.0 或更高版本后,需要明确重置管理员 (grpadmin) 密码。这是必要的操作,以便密码可以转换为必要的 SNMPv3 身份验证和加密密钥。

要重置密码,请通过 Telnet 或 SSH 登录阵列,然后运行以下命令:

account select grpadmin passwd

在提示符处,输入新密码;在下一个提示符处,重新键入该密码进行确认。新密码可以与原始密码相同。

升级具有 StorageLink SR 的 XenServer

请注意,如果升级包含 StorageLink Gateway SR 的池(从 XenServer 版本 5.6 或更高版本升级到最新版本的 XenServer),则仅支持 NetApp 和 Dell EqualLogic 适配器。如果池中包含在任何其他类型的 StorageLink Gateway SR 上运行的 VM,请不要升级该池。

注意:

在升级前,需要首先分离所有受支持的 StorageLink Gateway SR,在升级后,应立即重新连接这些 SR 并重新输入凭据(如果使用 XenCenter,"池滚动升级"向导将自动执行此过程)。

警告:

如果要升级的池中的默认 SR 是受支持的 StorageLink SR,则必须将默认 SR 设置为其他类型(非 StorageLink)。在升级之后,由"池滚动升级"向导在 StorageLink Gateway SR 上挂起的任何 VM 都将无法恢复。

创建共享 StorageLink SR

CSL SR 的 device-config 参数为:

参数名称	说明	是否可选?
target	阵列管理控制台的服务器名称 或 IP 地址	否
storageSystemId	用于分配存储的存储系统 ID	否
storagePoolId	用于分配存储的特定存储系统 内的存储池 ID	否
username	用于连接阵列管理控制台的用 户名	是
adapterid	适配器的名称	否
password	用于连接阵列管理控制台的密 码	是
chapuser	用于 CHAP 身份验证的用户名	是
chappassword	用于 CHAP 身份验证的密码	是
protocol	指定用于多协议存储系统的存储协议(fc 或 iscsi)。如果未指定,将使用 fc(如果可用),否则使用 iscsi。	是
provision-type	指定是使用密集置备还是精简 置备(thick 或 thin);默认为 thick	是
provision-options	附加置备选项:设置为 dedup,以使用存储系统支持 的重复数据删除功能	是

注意:

在 NetApp 阵列上创建使用 StorageLink 的新 SR 时,可以选择使用聚合或现有 FlexVol。

如果选择使用现有 FlexVol 创建 SR,将在 FlexVol 中的 LUN 上托管每个 VDI。

如果选择使用聚合,将在聚合中新 FlexVol 内部的 LUN 上托管每个 VDI。

使用 XenCenter 创建 CSL SR

- 1. 在 XenCenter 工具栏上,单击新建存储。此时将显示"新建存储库"向导。
- 2. 在虚拟磁盘存储下,选择高级 StorageLink 技术,然后单击下一步。
- 3. 按照该向导的引导配置特定的存储阵列。

使用 CLI 创建 CSL SR

1. 使用带有 device-config: target 参数以及用户名和密码的 sr-probe 命令来标识可用的存储系统 ID。

例如:

```
xe sr-probe type=cslg device-config:adapterid=NETAPP \
  device-config:username=**** device-config:password=**** \
  device-config:target=****
<csl__storageSystemInfoList>
    <csl__storageSystemInfo>
        <friendlyName>devfiler</friendlyName>
        <displayName>NetApp FAS3020 (devfiler)</displayName>
        <vendor>NetApp</vendor>
        <model>FAS3020</model>
        <serialNum>3064792/serialNum>
        <storageSystemId>NETAPP__LUN__0A50E2F6</storageSystemId>
<systemCapabilities>
    <capabilities>PROVISIONING</capabilities>
    <capabilities>THIN_PROVISIONING</capabilities>
    <capabilities>MAPPING</capabilities>
    <capabilities>MULTIPLE_STORAGE_POOLS</capabilities>
    <capabilities>LUN_GROUPING</capabilities>
    <capabilities>DEDUPLICATION</capabilities>
    <capabilities>DIFF_SNAPSHOT</capabilities>
    <capabilities>REMOTE_REPLICATION</capabilities>
    <capabilities>CLONE</capabilities>
    <capabilities>RESIZE</capabilities>
    <capabilities>REQUIRES_STORAGE_POOL_CLEANUP</capabilities>
    <capabilities>SUPPORTS_OPTIMIZED_ISCSI_LOGIN</capabilities>
    <capabilities>SUPPORTS_INSTANT_CLONE</capabilities>
    <capabilities>SUPPORTS_CLONE_OF_SNAPSHOT</capabilities>
</systemCapabilities>
ortocolSupport>
    <capabilities>FC</capabilities>
    <capabilities>ISCSI</capabilities>
    <capabilities>NFS</capabilities>
    <capabilities>CIFS</capabilities>
</protocolSupport>
<csl__snapshotMethodInfoList>
    <csl__snapshotMethodInfo>
        <name>LUNClone</name>
        <displayName>LUNClone</displayName>
        <maxSnapshots>128</maxSnapshots>
        <supportedNodeTypes><nodeType>>STORAGE_VOLUME</nodeType></supportedNodeTypes>
            <snapshotTypeList>
               <snapshotType>DIFF_SNAPSHOT</snapshotType>
               <snapshotType>IS_DEFAULT</snapshotType>
            </snapshotTypeList>
            <snapshotCapabilities>
                <capabilities>THIN_PROVISIONED_TARGET</capabilities>
                <capabilities>AUTO_PROVISIONED_TARGET</capabilities>
            </snapshotCapabilities>
    </csl__snapshotMethodInfo>
    <csl__snapshotMethodInfo>
<name>SplitLUNClone
<displayName>SplitLUNClone</displayName>
<maxSnapshots>128</maxSnapshots>
<supportedNodeTypes><nodeType>>STORAGE_VOLUME</nodeType></supportedNodeTypes>
<snapshotTypeList><snapshotType></snapshotTypeList>
<snapshotCapabilities><capabilities>THIN_PROVISIONED_TARGET</capabilities>
<capabilities>AUTO_PROVISIONED_TARGET</capabilities>
</snapshotCapabilities>
</csl__snapshotMethodInfo>
</csl__snapshotMethodInfoList>
</csl__storageSystemInfo>
</csl__storageSystemInfoList>
</screen>
```

可以使用 grep 过滤只针对存储系统 ID 的 sr-probe 输出:

```
xe sr-probe type=cslg device-config:adapterid=NETAPP \
   device-config:username=xxxx device-config:password=xxxx \
   device-config:target=xxxx | grep storageSystemId

<csl__storageSystemInfoList>
<csl__storageSystemInfo>
<friendlyName>devfiler</friendlyName>
<displayName>NetApp FAS3020 (devfiler)</displayName>
<vendor>NetApp</vendor>
<model>FAS3020</model>
<serialNum>3064792</serialNum>
<storageSystemId>NETAPP__LUN__0A50E2F6</storageSystemId>
<systemCapabilities>
<capabilities>PROVISIONING</capabilities>
```

2. 将所需的存储系统 ID 添加到 sr-probe 命令,以识别特定存储系统中的可用存储池。可以使用 grep 过滤只针对存储池 ID 的 sr-probe 输出

```
xe sr-probe type=cslg device-config:adapterid=NETAPP \
    device-config:username=xxxx device-config:password=xxxx \
    device-config:target=xxxx
    device-config:storageSystemId=NETAPP__LUN__0A50E2F6 | grep storageSystemId
<csl__storagePoolInfo>
    <displayName>aggr0</displayName>
    <friendlyName>aggr0</friendlyName>
    <storagePoolId>61393750-84b6-11dc-9a7d-00a09804ab62</storagePoolId>
    <parentStoragePoolId></parentStoragePoolId>
    <storageSystemId>NETAPP__LUN__0A50E2F6</storageSystemId>
    <sizeInMB>116262</sizeInMB>
    <freeSpaceInMB>5746</freeSpaceInMB>
    <availableFreeSpaceInMB>0</availableFreeSpaceInMB>
    <isDefault>Yes</isDefault>
    <status>0</status>
    options>
    <supportedRaidTypes><raidType>RAID6</raidType>
```

3. 创建指定所需的存储系统和存储池 ID 的 SR:

```
xe sr-create type=cslg device-config:adapterid=NETAPP \
  device-config:target=xxxx device-config:username=xxxx \
  device-config:password=xxxx device-config:storageSystemId=xxxx \
  device-config:storagePoolId=xxxx
```

管理硬件主机总线适配器 (HBA)

本部分介绍管理 SAS、光纤通道和 iSCSI HBA 所需的各种操作。

QLogic iSCSI HBA 设置示例

有关配置 QLogic 光纤通道和 iSCSI HBA 的完整详细信息,请访问 QLogic Web 站点。

将 HBA 物理安装到 XenServer 主机后,请执行下列步骤配置 HBA:

1. 设置 HBA 的 IP 网络配置。本示例假设 DHCP 和 HBA 端口为 0。如果使用静态 IP 寻址或多端口 HBA,请指定适当的值。

/opt/QLogic_Corporation/SANsurferiCLI/iscli -ipdhcp 0

2. 将永久性 iSCSI 目标添加到 HBA 的端口 0。

/opt/QLogic_Corporation/SANsurferiCLI/iscli -pa 0 <iscsi_target_ip_address>

3. 使用 xe sr-probe 命令强制重新扫描 HBA 控制器并显示可用的 LUN。有关更多详细信息,请参阅"探测 SR"一节和"创建基于光纤通道/iSCSI HBA 或 SAS SR 的共享 LVM SR (lymohba)"一节。

删除基于 HBA 的 SAS、FC 或 iSCSI 设备条目

注意:

此步骤不是必需步骤。Citrix 建议仅在必要时由高级用户执行此步骤。

每个基于 HBA 的 LUN 都在 /dev/disk/by-scsibus 下具有相应的全局设备路径条目(格式为 SCSlid-adapter:bus:target:lun),并在 /dev 下具有标准设备路径。要删除不再用作 SR 的 LUN 的设备条目,请执行下列步骤:

- 1. 根据需要使用 sr-forget 或 sr-destroy 从 XenServer 主机数据库中删除 SR。有关详细信息,请参阅"销毁或忽略 SR"一节。
- 2. 删除 SAN 中的将所需 LUN 的区域划分给所需主机的区域划分配置。
- 3. 使用 sr-probe 命令确定与要删除的 LUN 对应的 ADAPTER、BUS、TARGET 和 LUN 值。有关详细信息,请参阅"探测 SR"一节。
- 4. 使用以下命令删除设备条目:

echo "1" > /sys/class/scsi_device/<adapter>:<bus>:<target>:<lun>/device/delete

警告:

务必保证您确定要删除哪个 LUN。意外删除主机操作所需的 LUN(如引导设备或根设备)将使该主机不可用。

iSCSI 上的 LVM

基于 iSCSI 的 LVM 类型表示磁盘作为卷组中的逻辑卷在 iSCSI LUN 上创建。

使用软件 iSCSI 启动器创建基于 iSCSI 的共享 LVM SR (Ivmoiscsi)

Ivmoiscsi SR 的 Device-config 参数:

参数名称	说明	是否必 需?
target	SR 所在的 ISCSI 文件管理器的 IP 地址或主机名	是
targetIQN	SR 所在的 iSCSI 文件管理器的 IQN 目标地址	是
SCSlid	目标 LUN 的 SCSI 总线 ID	是
chapuser	用于 CHAP 身份验证的用户名	否
chappassword	用于 CHAP 身份验证的密码	否
port	在其上查询目标的网络端口号	否

CİTRIX'

参数名称	说明	是否必 需?
usediscoverynumber	要使用的特定 iscsi 记录索引	否
incoming_chapuser	iSCSI 过滤器用来针对主机进行身份验证的用户名	否
incoming_chappassword	iSCSI 过滤器用来针对主机进行身份验证的密码	否

要在 iSCSI 目标的特定 LUN 上创建共享 lymoiscsi SR,请使用以下命令。

```
xe sr-create host-uuid=<valid_uuid> content-type=user \
name-label=<"Example shared LVM over iSCSI SR"> shared=true \
device-config:target=<target_ip=> device-config:targetIQN=<target_iqn=> \
device-config:SCSIid=<scsi_id> \
type=lvmoiscsi
```

创建基于光纤通道/iSCSI HBA 或 SAS SR 的共享 LVM SR (Ivmohba)

lvmohba 类型的 SR 只能使用 xe CLI 或 XenCenter 创建和管理。

Ivmohba SR 的 Device-config 参数:

参数名称	说明	是否必需?
SCSlid	设备 SCSI ID	是

要创建共享 lvmohba SR,请在池中的每个主机上执行下列步骤:

- 1. 将一个或多个 LUN 中的区域划分给池中的每个 XenServer 主机。此过程特定于所使用的 SAN 设备。请参阅 SAN 文档了解详情。
- 2. 如有必要,请使用 XenServer 主机中包含的 HBA CLI 来配置 HBA:
 - Emulex: /bin/sbin/ocmanager
 - QLogic FC: /opt/QLogic_Corporation/SANsurferCLI
 - QLogic iSCSI: /opt/QLogic_Corporation/SANsurferiCLI

有关 QLogic iSCSI HBA 配置的示例,请参阅"管理硬件主机总线适配器 (HBA)"一节。有关光纤通道和 iSCSI HBA 的详细信息,请访问 Emulex 和 QLogic Web 站点。

3. 使用 sr-probe 命令确定 HBA LUN 的全局设备路径。sr-probe 强制重新扫描系统中安装的 HBA,以检测其区域已划分给主机的任何新 LUN,然后返回找到的每个 LUN 的属性列表。指定 host-uuid 参数以确保在所需主机上执行探测。

作为 <path> 属性返回的全局设备路径适用于池中的所有主机。因此,当创建 SR 时,必须将该路径用作 device-config:device 参数的值。

如果提供了多个 LUN,则使用供应商、LUN 大小、LUN 序列号或 <path> 属性中包含的 SCSI ID 确定所需的 LUN。

```
xe sr-probe type=lvmohba \
host-uuid=1212c7b3-f333-4a8d-a6fb-80c5b79b5b31
Error code: SR_BACKEND_FAILURE_90
Error parameters: , The request is missing the device parameter, \
<?xml version="1.0" ?>
<Devlist>
    <BlockDevice>
        <path>
            /dev/disk/by-id/scsi-360a9800068666949673446387665336f
        </path>
        <vendor>
            HITACHI
        </vendor>
        <serial>
            730157980002
        </serial>
        <size>
            80530636800
        </size>
        <adapter>
        </adapter>
        <channel>
            0
        </channel>
        <id>
        </id>
        <lun>
            2
        </lun>
        <hba>
            qla2xxx
        </hba>
    </BlockDevice>
    <Adapter>
        <host>
            Host4
        </host>
        <name>
            qla2xxx
        </name>
        <manufacturer>
            QLogic HBA Driver
        </manufacturer>
        <id>
        </id>
    </Adapter>
```

4. 在池的主服务器主机上创建 SR,同时指定在 sr-probe 的 <path> 属性中返回的全局设备路径。将创建 PBD 并将其自动插入池中的每个主机。

```
xe sr-create host-uuid=<valid_uuid> \
content-type=user \
name-label=<"Example shared LVM over HBA SR"> shared=true \
device-config:SCSIid=<device_scsi_id> type=lvmohba
```

注意:

可以使用 XenCenter 中的修复存储库功能重试 sr-create 操作的 PBD 创建和插入部分。创建 SR 后,如果 LUN 区域划分对于池中的一个或多个主机不正确,则此功能

非常有用。更正受影响的主机的区域划分并使用修复存储库功能,而不是删除并重新 创建 SR。

NFS VHD

NFS VHD 类型将磁盘作为 VHD 文件存储在远程 NFS 文件系统上。

NFS 是存储基础结构的一种普遍存在形式,在许多环境下都可用。XenServer 允许将通过 TCP/IP 支持 NFS V3 的现有 NFS 服务器直接用作虚拟磁盘 (VDI) 的存储库。VDI 仅以 Microsoft VHD 格式存储。 而且,由于 NFS SR 可以共享,存储在共享 SR 中的 VDI 允许 VM 在资源池中的任何 XenServer 主机上启动,还允许使用 XenMotion 在主机之间迁移 VM 而不会导致明显的停机时间。

创建 NFS SR 要求提供主机名或 NFS 服务器的 IP 地址。sr-probe 命令提供有效目标路径的列表,这些路径由可以在其中创建 SR 的服务器导出。NFS 服务器必须配置为将指定的路径导出到池中的所有 XenServer 主机,否则创建 SR 和插入 PBD 记录将失败。

正如本章开头所提到的,存储在 NFS 中的 VDI 是稀疏的。当 VM 向磁盘写入数据时分配映像文件。VM 映像文件仅在 NFS 存储中占用所需的空间,这将带来极大的好处。如果为新 VM 分配 100 GB 的 VDI 并且安装操作系统,VDI 文件将只反映已写入到磁盘的操作系统数据的大小,而不会反映整个100 GB。

还可以链接 VHD 文件,从而允许两个 VDI 共享通用数据。如果克隆基于 NFS 的 VM,生成的 VM 将共享克隆时的通用磁盘数据。每个 VM 将在 VDI 的单独写入时复制版本中继续进行各自的更改。此功能允许从模板快速克隆基于 NFS 的 VM,便于极快地配置和部署新 VM。

注意:

支持的最长 VHD 链长度为 30。

由于基于 VHD 的映像需要其他元数据来支持稀疏和链接,此格式并不像基于 LVM 的存储一样具有高性能。在性能确实比较重要的情况下,有必要强制分配映像文件的稀疏区域。这将以占用其他磁盘空间为代价来提高性能。

XenServer 的 NFS 和 VHD 实现假定它们可以完全控制 NFS 服务器上的 SR 目录。管理员不应该修改 SR 目录的内容,因为这可能损坏 VDI 的内容。

XenServer 已针对使用稳定 RAM 的企业级存储进行了优化,以快速确认写入请求,同时保留针对故障的高级数据保护。XenServer已针对使用 Data OnTap 7.2.2 的 Network Appliance FAS270c 和 FAS3020c 存储进行了大量测试。

XenServer 与低端存储配合使用时,在将确认传递到来宾系统 VM 之前,它会谨慎地等待所有写入得到确认。这可能导致性能显著降低,但通过设置存储以将 SR 装载点呈现为异步模式导出,可以消除该影响。异步导出确认实际不在磁盘上的写入,因此,管理员应该认真考虑这些情况中的故障风险。

默认情况下,XenServer NFS 实现使用 TCP。如果条件允许,您可以将该实现配置为在可能对性能有益的情况下使用 UDP。为此,在创建 SR 时,请指定 device-config 参数 useUDP=true。

警告:

由于 NFS SR 上的 VDI 创建为稀疏文件,所以管理员必须确保在 NFS SR 上为所有必需的 VDI 保留足够的磁盘空间。XenServer 主机并不强制在 NFS SR 上实际存在 VDI 所需的空间。

创建共享 NFS SR (NFS)

NFS SR 的 Device-config 参数:

参数名称	说明	是否必需?
server	NFS 服务器的 IP 地址或主机名称	是

参数名称	说明	是否必需?
serverpath	SR 在 NFS 服务器上的路径,包括 NFS 装载点	是

要在 192.168.1.10:/export1 上创建共享 NFS SR,请使用以下命令。

xe sr-create host-uuid=<host_uuid> content-type=user \
name-label=<"Example shared NFS SR"> shared=true \
device-config:server=<192.168.1.10> device-config:serverpath=</export1> type=nfs

硬件 HBA 上的 LVM

硬件 HBA 上 LVM 类型表示磁盘作为卷组中逻辑卷上的 VHD 在提供的 HBA LUN 上创建,例如,基于硬件的 iSCSI 或 FC 支持。

XenServer 主机通过 Emulex 或 QLogic 主机总线适配器 (HBA) 支持光纤通道 (FC) 存储区域网络 (SAN)。必须手动完成向主机公开 FC LUN 所需的所有 FC 配置,其中包括存储设备、网络设备和 XenServer 主机中的 HBA。完成所有 FC 配置后,HBA 将向主机公开一个由 FC LUN 支持的 SCSI 设备。然后,可以使用该 SCSI 设备访问 FC LUN,就像它是本地连接的 SCSI 设备一样。

使用 sr-probe 命令可以列出主机上存在的由 LUN 支持的 SCSI 设备。此命令强制扫描新的由 LUN 支持的 SCSI 设备。sr-probe 返回的由 LUN 支持的 SCSI 设备的路径值在能够访问该 LUN 的所有主机上是一致的,因此当创建资源池中的所有主机都可访问的共享 SR 时,必须使用该路径值。

同样的功能也适用于 QLogic iSCSI HBA。

有关创建基于 HBA 的共享 FC 和 iSCSI SR 的详细信息,请参阅"创建存储库"一节。

注意:

XenServer 支持光纤通道,但不支持将 LUN 直接映射到 VM。必须将基于 HBA 的 LUN 映射到主机并指定将其用于 SR。SR 中的 VDI 作为标准块设备向 VM 公开。

存储配置

本部分介绍了创建存储库类型并使其可用于 XenServer 主机。提供的示例涉及使用 CLI 进行存储配置,这样可以提供最大程度的灵活性。有关使用新建存储库向导的详细信息,请参阅 XenCenter 帮助。

创建存储库

本部分介绍了如何创建不同类型的存储库 (SR) 并使其可用于 XenServer 主机。提供的示例涉及使用 xe CLI 创建 SR。有关使用 XenCenter 通过新建存储库向导添加 SR 的详细信息,请参阅 XenCenter 帮助。

注意:

lvm 和 ext 类型的本地 SR 只能使用 xe CLI 创建。创建后,所有 SR 类型可由 XenCenter 或 xe CLI 进行管理。

使用 CLI 创建在 XenServer 主机上使用的新存储库包括两个基本步骤:

- 1. 探测 SR 类型以确定仟何必需参数的值。
- 2. 创建 SR 以初始化 SR 对象及关联的 PBD 对象、插入 PBD 以及激活 SR。

根据创建的 SR 类型,这些步骤稍有差异。在所有示例中,如果成功,sr-create 命令将返回创建的 SR 的 UUID。

如果不再使用 SR,可以将它销毁以释放物理设备的空间,或忽略该 SR 以将其与某个 XenServer 主机分离而连接到另一个主机上。有关详细信息,请参阅"销毁或忽略 SR"一节。

注意:

为 XenServer 主机或池指定 StorageLink 配置时,请提供默认凭据,即用户名 admin 和密码 storagelink,或提供安装 StorageLink Gateway 服务过程中指定的自定义凭据。与 StorageLink Manager 不同,XenCenter 不会自动提供默认凭据。

从 XenServer 5.0 或更早版本升级 LVM 存储

有关升级 LVM 存储以启用最新功能的信息,请参阅《XenServer 安装指南》。在支持快照和快速克隆前,此前产品版本(XenServer 5.0 和更早版本)的本地、iSCSI 上 LVM 和 HBA 上 LVM 存储类型都需要进行升级。

警告:

在 5.0 版或更早版本中创建的 SR 的 SR 升级需要创建大小为 4 MB 的元数据卷。请首先确保您的 SR 上至少有 4 MB 的可用空间,然后再尝试升级存储。

注章:

升级是一个单向操作,因此 Citrix 建议仅在您确定存储不再需要连接到运行旧版本软件的池时进行升级。

LVM 性能注意事项

XenServer 5.5 和更新版本提供的快照和快速克隆功能(用于基于 LVM 的 SR)具有固有的性能系统开销。如果想要获得最佳性能,XenServer 支持创建原始格式以及默认 VHD 格式的 VDI。原始 VDI 不支持 XenServer 快照功能。

注意:

使用默认的 Windows VSS 提供程序的不可传送快照适用于所有类型 VDI。

警告:

请勿尝试为连接了 type=raw 磁盘的 VM 生成快照。这可能会导致创建部分快照。这种情况下,您可以通过检查 snapshot-of 字段确定孤立快照 VDI,然后删除这些快照。

VDI 类型

通常状况下将创建 VHD 格式的 VDI。在创建 VDI 时可以选择使用原始格式;这只能通过使用 xe CLI来实现。完成从此前 XenServer 版本的升级后,现有数据将作为向后兼容的原始 VDI 保留,但这些属于特例,因此在通过升级 SR 支持此功能后可以为它们生成快照。升级 SR 并生成第一个快照之后,您就可以通过 VHD 格式的 VDI 访问这些数据。

要检查 SR 是否已升级,验证其 sm-config:use_vhd 键是否为 true。要检查 VDI 是否以 type=raw 格式创建,请检查其 sm-config 映射。sr-param-list 和 vdi-param-list xe 命令可分别用于实现此目的。

使用 xe CLI 创建原始虚拟磁盘

1. 根据您想要放置虚拟磁盘的 SR 的 UUID . 运行以下命令创建一个 VDI:

```
xe vdi-create sr-uuid=<sr-uuid> type=user virtual-size=<virtual-size> \
    name-label=<VDI name> sm-config:type=raw
```

2. 将新建虚拟磁盘连接到 VM,使用 VM 中的常用磁盘工具分区和格式化,或者使用新磁盘。您可以使用 vbd-create 命令创建新 VBD,以将该虚拟磁盘映射到 VM 中。

在 VDI 格式间转换

原始和 VHD 格式之间不能实现直接转换。而是可以创建一个新 VDI(可以是如上所述的原始格式,或者如果 SR 已升级或是在 XenServer 5.5 或更高版本中创建的,也可以是 VHD 格式),然后将数据从

现有卷复制到该 VDI。Citrix 建议您使用 xe CLI 来确保新 VDI 的虚拟大小至少与从中复制数据的 VDI 相同(可以查看其虚拟大小字段,例如使用 vdi-param-list 命令)。然后您可以将该新建 VDI 连接到 VM,并使用 VM 中您的首选工具(Windows 中标准的磁盘管理工具或 Linux 的 dd 命令)来直接执行数据块复制。如果新建卷为 VHD 卷,使用能够避免向磁盘中写入空扇区的工具十分重要,这样可以让基础存储库中的空间得到最佳使用。这种情况下,基于文件的复制方法更为合适。

探测 SR

sr-probe 命令有两种使用方式:

- 1. 确定未知参数以供创建 SR。
- 2. 返回现有 SR 的列表。

在这两种情况下,sr-probe 通过指定 SR 类型和该 SR 类型的一个或多个 device-config 参数起作用。如果提供的参数集不完整,则 sr-probe 命令将返回错误消息,指示参数缺失以及缺失参数的可能选项。如果提供的参数集完整,将返回现有 SR 的列表。所有 sr-probe 输出将作为 XML 返回。

例如,通过指定已知 iSCSI 目标的名称或 IP 地址,可以探测该目标,并将返回该目标上可用的 IQN 集:

```
xe sr-probe type=lvmoiscsi device-config:target=<192.168.1.10>
Error code: SR_BACKEND_FAILURE_96
Error parameters: , The request is missing or has an incorrect target IQN parameter, \
<?xml version="1.0" ?>
<iscsi-target-iqns>
    <TGT>
        <Index>
            0
        </Index>
        <IPAddress>
            192.168.1.10
        </TPAddress>
        <TargetION>
            ign.192.168.1.10:filer1
        </TargetIQN>
    </TGT>
</iscsi-target-iqns>
```

再次探测上述目标并指定名称/IP 地址和所需的 IQN 将返回该目标/IQN 上的可用 SCSlid (LUN) 集。

```
xe sr-probe type=lvmoiscsi device-config:target=192.168.1.10 \
device-config:targetIQN=iqn.192.168.1.10:filer1
Error code: SR_BACKEND_FAILURE_107
Error parameters: , The SCSIid parameter is missing or incorrect, \
<?xml version="1.0" ?>
<iscsi-target>
   <T.IJN>
       <vendor>
       </vendor>
       <LUNid>
          Λ
       </LUNid>
       <size>
          42949672960
          </SCSTid>
   </TJUN>
</iscsi-target>
```

探测上述目标并提供所有三个参数将返回在 LUN 上存在(如果有)的 SR 的列表。

可以针对每个 SR 类型探测以下参数:

SR 类型	device-config 参数(按依赖关系排序)	是否可以探 测?	sr-create 是否需要该参数?
lvmoiscsi	target	否	是
	chapuser	否	否
	chappassword	否	否
	targetIQN	是	是
	SCSlid	是	是
lvmohba	SCSlid	是	是
NetApp	target	否	是
	username	否	是
	password	否	是
	chapuser	否	否
	chappassword	否	否
	aggregate	否*	是
	FlexVol	否	否
	allocation	否	否
	asis	否	否
nfs	server	否	是
	serverpath	是	是
lvm	device	否	是
ext	device	否	是
EqualLogic	target	否	是

SR 类型	device-config 参数(按依赖关系排序)	是否可以探 测?	sr-create 是否需要该参数?
	username	否	是
	password	否	是
	chapuser	否	否
	chappassword	否	否
	storagepool	否 [†]	是
cslg	target	否	是
	storageSystemId	是	是
	storagePoolId	是	是
	username	否	否 ‡
	password	否	否 ‡
	cslport	否	否 [‡]
	chapuser	否	否‡
	chappassword	否	否 [‡]
	provision-type	是	否
	protocol	是	否
	provision-options	是	否
	raid-type	是	否

^{*}只有在运行 sr-create 时才能执行聚合探测。需要在创建时执行该探测,以便在创建 SR 时指定聚合。

存储多路径

光纤通道和 iSCSI 存储后端存在动态多路径支持。默认情况下,多路径使用循环模式负载平衡,因此,在正常操作期间,两个路由通道上都具有活动通信。您可以在 XenCenter 中或 xe CLI 上启用多路径。

在尝试启用多路径之前,请确认您的存储服务器上提供了多个目标。例如,查询给定门户上的 sendtargets 的 iSCSI 存储后端应返回多个目标,如下例所示:

```
iscsiadm -m discovery --type sendtargets --portal 192.168.0.161 192.168.0.161:3260,1 iqn.strawberry:litchie 192.168.0.204:3260,2 iqn.strawberry:litchie
```

要启用存储多路径,请使用 xe CLI

1. 拔出主机上的所有 PBD:

xe pbd-unplug uuid=<pbd_uuid>

2. 设置主机的 other-config:multipathing 参数:

xe host-param-set other-config:multipathing=true uuid=host_uuid

[†]只有在运行 sr-create 时才能执行存储池探测。需要在创建时执行该探测,以便在创建 SR 时指定聚合。

[‡]如果 StorageLink 服务的用户名、密码或端口配置已经从默认值改为其他值,则必须指定适当的参数和值。

3. 将主机的 other-config:multipathhandle 设置为 dmp:

xe host-param-set other-config:multipathhandle=dmp uuid=host_uuid

- 4. 如果主机上存在以单一路径模式运行但具有多路径的现有 SR:
 - 迁移或挂起在受影响的 SR 中存在虚拟磁盘的任何正在运行的来宾系统
 - 拔出并重新插入所有受影响的 SR 的 PBD 以使用多路径重新对其进行连接:

xe pbd-plug uuid=<pbd_uuid>

要禁用多路径,请先拔出 VBD,接着将主机 other-config:multipathing 参数设置为 false,然后按上述方式重新插入 PBD。不要修改 other-config:multipathhandle 参数,它将自动进行更改。

XenServer 中的多路径支持基于设备映射器 multipathd components (多路径组件)。激活和取消激活多路径节点由存储管理器 API 自动处理。与 Linux 中的标准 dm-multipath 工具不同,并非系统上的所有 LUN 都会自动创建设备映射器节点,只有 LUN 在由存储管理器层实时使用时,才会置备新设备映射器节点。不必使用任何 dm-multipath CLI 工具查询或刷新 XenServer 中的 DM 表节点。如果需要手动查询设备映射器的状态,或列出系统中活动设备映射器多路径节点,请使用 mpathutil 实用程序:

- mpathutil 列表
- mpathutil 状态

注意:

由于与集成多路径管理体系结构不兼容,标准 dm-multipath CLI 实用程序不应与 XenServer 结合使用。请使用 mpathutil CLI 工具查询主机上的节点状态。

注意:

Equallogic 阵列中的多路径支持不包括传统意义上的存储 IO 多路径。必须在网络/ NIC 绑定级别处理多路径。有关为 Equallogic SR/LVMoISCSI SR 配置网络故障转移 的信息,请参阅 Equallogic 文档。

针对 LSI 阵列的 MPP RDAC 驱动程序支持。

XenServer 支持用于冗余磁盘阵列控制器 (RDAC) 的 LSI 多路代理驱动程序 (MPP)。默认情况下,此驱动程序处于禁用状态。

启用驱动程序:

- 1. 在主机上打开控制台并运行以下命令:
 - # /opt/xensource/libexec/mpp-rdac --enable
- 2. 重新引导主机。

禁用驱动程序:

- 1. 在主机上打开控制台并运行以下命令:
 - # /opt/xensource/libexec/mpp-rdac --disable
- 2. 重新引导主机。

注意:

必须在池中的每台主机上执行此过程。

管理存储库

本部分介绍了存储库 (SR) 日常管理中所需的各种操作。

销毁或忽略 SR

您可以销毁 SR,即从物理介质中实际删除 SR 的内容。此外,还可以忘记 SR,这允许您重新连接 SR(例如,将 SR 重新连接到另一台 XenServer 主机),而不必删除 SR 的任何内容。在这两种情况中,必须首先拔出 SR 的 PBD。忽略 SR 等效于在 XenCenter 中执行 SR 分离操作。

1. 拔出 PBD 以将 SR 与相应的 XenServer 主机分离:

xe pbd-unplug uuid=<pbd_uuid>

2. 销毁 SR, 即从 XenServer 主机数据库中删除 SR 及其相应的 PBD 并从物理介质中删除 SR 内容:

```
xe sr-destroy uuid=<sr_uuid>
```

3. 或者,忘记 SR,这将从 XenServer 主机数据库中删除 SR 和相应的 PBD,但会保持物理介质上的实际 SR 内容不变:

```
xe sr-forget uuid=<sr_uuid>
```

注意:

对与 SR 相对应的软件对象进行垃圾回收可能需要一定的时间。

引入 SR

引入已忘记的 SR 需要引入 SR、创建 PBD 并手动将该 PBD 插入到相应的 XenServer 主机以便激活该 SR。

以下示例引入一个 lymoiscsi 类型的 SR。

1. 探测现有 SR 以确定其 UUID:

2. 引入从 sr-probe 命令返回的现有 SR UUID。将返回新 SR 的 UUID:

xe sr-introduce content-type=user name-label=<"Example Shared LVM over iSCSI SR">
shared=true uuid=<valid_sr_uuid> type=lvmoiscsi

3. 创建一个随附 SR 的 PBD。将返回新 PBD 的 UUID:

4. 插入此 PBD 以连接 SR:

```
xe pbd-plug uuid=<pbd_uuid>
```

5. 验证此 PBD 插件的状态。如果插入成功,则 currently-attached 属性将为 true:

```
xe pbd-list sr-uuid=<sr_uuid>
```

注意:

必须为资源池中的各个主机执行步骤 3 到步骤 5,也可以使用 XenCenter 中的修复存储库功能执行这些步骤。

重新调整 SR

如果您调整了 iSCSI 或 HBA SR 基于的 LUN 的大小,请按照以下步骤在 XenServer 中反映对大小的调整:

CITRIX

- 1. iSCSI SR—拔出主机(引用同一目标上的 LUN)上的所有 PBD。这需要重设目标上的 iSCSI 连接,继而允许更改 LUN 的大小,以便在 PBD 重新插入时识别。
- 2. HBA SR—重新引导主机。

注意:

在 XenServer 的早期版本中,需要使用显式命令来重新调整 iSCSI 和 HBA SR 的物理卷组的大小。这些命令目前已作为 PBD 插入操作的一部分发布,并且不再需要。

将本地光纤通道 SR 转换为共享 SR

使用 xe CLI 和 XenCenter 修复存储库功能,以便将当地 FC SR 转换为共享 FC SR:

- 1. 将资源池中的所有主机升级为 XenServer 6.0。
- 2. 确保池中的所有主机都对 SR 的 LUN 进行了适当的分区。有关使用 sr-probe 命令验证每台主机上都存在 LUN 的详细信息,请参阅"探测 SR"一节。
- 3. 将 SR 转换为共享 SR:

xe sr-param-set shared=true uuid=<local_fc_sr>

- 4. 在 XenCenter 中,SR 将从主机级别移到池级别,以指示它现在为共享 SR。将使用红色的感叹号 (!) 对该 SR 进行标记,以显示当前并未在池中的所有主机上都插上了该 SR。
- 5. 选择该 SR, 然后选择存储 > 修复存储库菜单选项。
- 6. 单击修复以创建并为池中的每个主机插上 PBD。

在 SR 之间移动虚拟磁盘映像 (VDI)

可以将与 VM 关联的 VDI 集从一个 SR 复制到另一个 SR 以符合维护要求或分层存储配置。通过 XenCenter,可以将 VM 及其所有 VDI 复制到同一个或另一个 SR 中,也可以结合使用 XenCenter 和 xe CLI 来复制各个 VDI。

将 VM 的所有 VDI 复制到另一个 SR

XenCenter 复制 VM 功能可以在同一个或另一个 SR 上创建所选 VM 的所有 VDI 的副本。默认情况下,源 VM 和 VDI 不会受到影响。如果只是将 VM 移动到所选 SR,而不是创建副本,请选择复制虚拟机对话框中的删除原始 VM 选项。

- 1. 关闭 VM。
- 2. 在 XenCenter 中,选择 VM,然后选择 VM > 复制 VM 菜单选项。
- 3. 选择所需的目标 SR。

将各个 VDI 复制到另一个 SR

可以结合使用 xe CLI 和 XenCenter 来在 SR 之间复制各个 VDI。

- 1. 关闭 VM。
- 2. 使用 xe CLI 确定要移动的 VDI 的 UUID。如果 VM 具有 DVD 驱动器,则该 VM 的 vdi-uuid 将被列为 <not in database>,可以将其忽略。

xe vbd-list vm-uuid=<valid_vm_uuid>

注意:

vbd-list 命令显示 VBD 和 VDI 两者的 UUID。请务必记录 VDI 的 UUID 而不是 VBD 的 UUID。

3. 在 XenCenter 中,选择该 VM 的存储选项卡。对于要移动的每个 VDI,请选择该 VDI,然后单击分离按钮。还可以使用 vbd-destroy 命令执行此步骤。

注意:

如果使用 vbd-destroy 命令分离 VDI 的 UUID,请务必首先检查 VBD 是否将参数 other-config:owner 设置为了 true。如果为 true,请将其设置为 false。发出设置为 other-config:owner=true 的 vbd-destroy 命令还将销毁关联的 VDI。

4. 使用 vdi-copy 命令将该 VM 的每个要移动的 VDI 复制到所需 SR 中。

xe vdi-copy uuid=<valid_vdi_uuid> sr-uuid=<valid_sr_uuid>

- 5. 在 XenCenter 中,选择该 VM 的存储选项卡。单击连接按钮并从新 SR 中选择 VDI。还可以使用 vbd-create 命令执行此步骤。
- 6. 要删除原始 VDI,请在 XenCenter 中选择原始 SR 的存储选项卡。将列出这些原始 VDI,但其 VM 字段的值为空,可以使用"删除"按钮删除这些原始 VDI。

调整磁盘 IO 调度程序

为了获得一般性能,会对所有新 SR 类型应用默认磁盘调度程序 noop。noop 调度程序提供可与访问相同设备的 VM 相媲美的最佳性能。为了应用磁盘 QoS(请参阅"虚拟磁盘 QoS 设置"一节),需要覆盖默认设置并将 cfq 磁盘调度程序分配给 SR。必须拔出并重新插上相应的 PBD 以使调度程序参数生效。可以使用以下命令调整磁盘调度程序:

xe sr-param-set other-config:scheduler=noop|cfq|anticipatory|deadline \
uuid=<valid_sr_uuid>

注意:

这不会影响 EqualLogic、NetApp 或 NFS 存储。

删除快照时自动回收空间

通过 XenServer 6.0 删除快照时,所有已分配的空间都将自动回收,并且无需重新引导 VM;这一过程称为联机合并。

注意:

联机合并仅适用于基于 LVM 的 SR(LVM、LVMoISCSI 和 LVMoHBA),而不适用于 EXT 或 NFS SR(这些 SR 的行为保持不变)。

某些情况下,空间自动回收可能无法继续,以下情况下建议使用"脱机合并"工具:

- VM I/O 吞吐量相当大时
- 一段时间后未回收空间时

注意:

由于需要执行挂起/恢复操作,因此运行"脱机合并"工具会导致 VM 停机。

在运行该工具之前,请删除不再需要的任何快照和克隆;脚本将回收尽可能多的空间 留给剩余的快照/克隆。如果要回收所有的空间,请删除所有的快照和克隆。

所有 VM 磁盘必须位于一个主机的共享或本地存储上。如果 VM 的磁盘采用这两种存储类型,VM 将无法合并。

使用脱机合并工具回收空间

注意:

联机合并仅适用于基于 LVM 的 SR(LVM、LVMoISCSI 和 LVMoHBA),而不适用于 EXT 或 NFS SR(这些 SR 的行为保持不变)。

通过 XenCenter 启用隐藏的对象:"视图"菜单->"隐藏对象"。在"资源"窗格中,选择要获得 UUID 的 VM。UUID 将显示在"常规"选项卡中。

在"资源"窗格中,选择资源池主服务器主机(列表中的第一个主机)。UUID 将显示在"常规"选项卡中。如果未使用资源池,请选择该 VM 主机。

1. 在主机上打开控制台并运行以下命令:

```
xe host-call-plugin host-uuid=<host-UUID> \
    plugin=coalesce-leaf fn=leaf-coalesce args:vm_uuid=<VM-UUID>
```

例如,如果 VM UUID 是 9bad4022-2c2d-dee6-abf5-1b6195b1dad5,主机 UUID 是 b8722062-de95-4d95-9baa-a5fe343898ea,则应运行以下命令:

xe host-call-plugin host-uuid=b8722062-de95-4d95-9baa-a5fe343898ea \
 plugin=coalesce-leaf fn=leaf-coalesce args:vm_uuid=9bad4022-2c2d-dee6-abf5-1b6195b1dad5

2. 此命令将挂起 VM (除非 VM 已经关机),启动空间回收过程,然后恢复该 VM。

注意:

Citrix 建议在执行脱机合并前,手动关闭或挂起 VM(使用 XenCenter 或 XenServer CLI)。如果在运行中的 VM 上执行合并工具,该工具将自动挂起 VM,执行所需的 VDI 合并操作,然后恢复该 VM。

如果要合并的虚拟磁盘映像 (VDI) 位于共享存储上,则必须在池主服务器上执行脱机合并工具。

如果要合并的 VDI 位于本地存储上,则必须在本地存储所连的服务器上执行脱机合并工具。

虚拟磁盘 QoS 设置

虚拟磁盘具有可选 I/O 优先级质量服务 (QoS) 设置。可以按照本部分中介绍的方法使用 xe CLI 将此设置应用到现有虚拟磁盘。

在共享 SR(即多个主机访问同一 LUN)的情况下,会将 QoS 设置应用到从同一主机访问 LUN 的 VBD,即不会跨池中的主机应用 QoS。

为 VBD 配置任何 QoS 参数之前,请确保已适当设置了 SR 的磁盘调度程序。有关如何调整调度程序的详细信息,请参阅"调整磁盘 IO 调度程序"一节。必须在需要 QoS 的 SR 上将调度程序参数设置为 cf q。

注意:

请记住在 SR 上将该调度程序设置为 cfq,并确保已重新插上 PBD 以使调度程序更改生效。

第一个参数是 qos_algorithm_type。需要将此参数值设置为 ionice,这是此版本的虚拟磁盘唯一支持的 QoS 算法类型。

QoS 参数自身就是使用分配给 qos_algorithm_param 参数的键/值对进行设置的。对于虚拟磁盘,qos_algorithm_param 使用 sched 键,并且根据参数值,还需要使用类键。

qos_algorithm_param:sched 具有以下可能值:

- sched=rt 或 sched=real-time 将 QoS 调度参数设置为实时优先级,此优先级需要使用类参数来设置
- sched=idle 将 QoS 调度参数设置为空闲优先级,此优先级不需要使用类参数来设置
- sched=<anything> 将 QoS 调度参数设置为 best-effort 优先级,此优先级需要使用类参数来设置

CITRIX

class 的可能值:

- 以下关键词之一:最高,高,普通,低,最低
- 0 和 7 之间的一个整数,其中 7 表示最高优先级,0 表示最低优先级。因此,如果 I/O 请求的优先级为 5,则其优先级要高于优先级为 2 的 I/O 请求。

要启用磁盘 QoS 设置,您还需要将 other-config:scheduler 设置为 cfq 并重新插上所涉及的存储的 PBD。

例如,下列 CLI 命令将虚拟磁盘的 VBD 设置为使用实时优先级 5:

```
xe vbd-param-set uuid=<vbd_uuid> qos_algorithm_type=ionice
xe vbd-param-set uuid=<vbd_uuid> qos_algorithm_params:sched=rt
xe vbd-param-set uuid=<vbd_uuid> qos_algorithm_params:class=5
xe sr-param-set uuid=<sr_uuid> other-config:scheduler=cfq
xe pbd-plug uuid=<pbd_uuid>
```

配置 VM 内存

首次创建 VM 时,会为其分配固定数量的内存。要增大 XenServer 环境中物理内存的利用率,可以使用动态内存控制 (DMC),这是一种能够在 VM 之间动态重新分配内存的内存管理功能。

XenCenter 在其内存选项卡中提供了内存使用率的图形显示。这在 XenCenter 帮助中有说明。

在 XenServer 的早期版本中,调整 VM 上的虚拟内存需要重新启动才能添加或删除内存,并且需要中断用户的服务。

动态内存控制 (DMC) 具有以下优势:

- 无需重新启动即可添加或删除内存,从而为用户提供更加优异的无缝体验。
- 服务器满载后,DMC 允许您在这些服务器上启动更多 VM,从而按比例减少分配给正在运行的 VM 的内存量。

什么是动态内存控制 (DMC)?

XenServer DMC(有时称为"动态内存优化"、"内存过载"或"内存膨胀")的工作原理是:自动调整正在运行的 VM 的内存,使分配给每个 VM 的内存量保持在指定的最小内存值与最大内存值之间,确保性能并允许每台服务器具有更大的 VM 密度。如果未使用 DMC,则当服务器满载时,启动更多 VM 将因"内存不足"错误而失败:要减少现有 VM 内存分配并为更多 VM 释放空间,您必须编辑每个 VM 的内存分配,然后重新引导 VM。启用 DMC 之后,即使在服务器满载时,XenServer 仍能通过在 VM 定义的内存范围内自动减少正在运行的 VM 的当前内存分配来尝试回收内存。

如果未使用 DMC,则当服务器满载时,启动更多 VM 将因"内存不足"错误而失败:要减少现有 VM 内存分配并为更多 VM 释放空间,您必须编辑每个 VM 的内存分配,然后重新引导 VM。启用 DMC 之后,即使在服务器满载时,XenServer 仍能通过在 VM 定义的内存范围内自动减少正在运行的 VM 的当前内存分配来尝试回收内存。

注意:

动态内存控制仅适用于 XenServer 高级版或更高版本。要了解有关 XenServer 高级版或更高版本以及如何升级的更多信息,请单击此处访问 Citrix Web 站点。

动态范围的概念

对于每个 VM,管理员可以设置一个动态内存范围,在此范围内,可以添加/删除 VM 的内存而无需重新引导。VM 运行时,管理员可以调整动态范围。XenServer 始终确保分配给 VM 的内存量保持在动态范围内,因此,在 VM 运行时调整动态范围可能会导致 XenServer 调整分配给该 VM 的内存量。(管理员将最小/最大动态内存设置为相同的值,从而强制 XenServer 确保分配给 VM 此内存量,此为最极端的情况。)如果需要在"满载"服务器上启动新 VM,正在运行的 VM 会"腾出"内存来启动新 VM。获取所需的额外内存的方法是:在正在运行的现有 VM 的预定义动态范围内按比例腾出内存。

DMC 允许您配置最小和最大动态内存级别,从而创建 VM 将在其中运行的动态内存范围 (DMR)。

- 最小动态内存:分配给 VM 的内存下限。
- 动态上限:分配给 VM 的内存上限。

例如,如果最小动态内存设置为 512 MB,最大动态内存设置为 1024 MB,则 VM 的动态内存范围 (DMR) 为 512 - 1024 MB,VM 将在此范围内运行。通过 DMC,XenServer 可确保始终在每个 VM 的指定 DMR 内为其分配内存。

静态范围的概念

XenServer 支持的许多操作系统不完全"理解"动态添加或删除内存的概念。因此,XenServer 必须声明 VM 在引导时需要占用的最大内存量。(这允许来宾操作系统相应调整其页表及其他内存管理结构的大

小。)这在 XenServer 中引入了静态内存范围的概念。静态内存范围无法在 VM 运行时进行调整。对于特定引导,动态范围受到限制,例如始终限制在此静态范围内。请注意,最小静态内存(静态范围的下限)用于保护管理员,设置为操作系统可以在 XenServer 上运行时占用的最少内存量。

注意:

静态最低级别设置为每个操作系统支持的级别,因此 Citrix 建议您不要对其进行更改,有关更多详细信息,请参阅内存限制表。

设置高于最大动态内存的静态最高级别,意味着如果在将来需要将更多内存分配给 VM,您无需重新引导即可完成该操作。

DMC 行为

自动 VM 腾出内存

- 如果未启用 DMC,则当主机满载时,新 VM 会因"内存不足"错误而导致启动失败。
- 如果启用了 DMC,即使在主机满载时,XenServer 仍能尝试回收内存(方法是:在 VM 定义的动态 范围内自动减少正在运行的 VM 的内存分配)。在上述方法中,正在运行的 VM 在最小动态内存与最 大动态内存之间以相同的间距按比例为主机上的所有 VM 腾出内存。

启用了 DMC 时

- 主机内存足够时 正在运行的所有 VM 都将达到其最大动态内存级别。
- 主机内存不足时 正在运行的所有 VM 都将达到其最小动态内存级别。

配置 DMC 时,请记住,只将少量内存分配给 VM 会对其造成负面影响。例如,分配过少内存:

- 使用动态内存控制减少 VM 可用的物理内存量可能会致使 VM 引导缓慢。同样,如果为 VM 分配的内存过少,VM 启动可能极其缓慢。
- 如果为 VM 设置的动态内存最小值过低,可能会导致 VM 在启动时出现性能或稳定性不佳等问题。

DMC 的工作原理

使用 DMC,可以在以下两种模式中的一种模式下运行来宾虚拟机:

- 1. 目标模式:管理员指定来宾操作系统的内存目标。XenServer 调整来宾操作系统的内存分配以满足目标的要求。在虚拟服务器环境中,以及在您知道希望来宾操作系统使用的准确内存量的任何情况下,指定内存特别有用。XenServer 将调整来宾操作系统的内存分配,以满足您指定的目标。
- 2. 管理员指定来宾操作系统的动态内存范围;XenServer 从该范围内选择一个目标,并调整来宾操作系统的内存分配以满足此目标。在虚拟桌面环境中,以及您希望 XenServer 动态重新分配主机内存以响应不断变化的来宾操作系统数目或不断变化的主机内存压力的任何情况下,指定动态内存范围特别有用。XenServer 会从该范围内选择一个目标,并调整来宾操作系统的内存分配以满足该目标。

注意:

对于任何正在运行的来宾操作系统,可以随时在目标模式与动态范围模式之间进行更改。只需指定新目标或新动态范围,XenServer 即可完成剩余的工作。

内存限制

XenServer 允许管理员对任意来宾操作系统使用所有内存控制操作。但是,对于所有来宾操作系统,XenServer 会强制实行以下内存属性顺序限制:

 $0 \le memory-static-min \le memory-dynamic-min \le memory-dynamic-max \le memory-static-max$

XenServer 允许管理员将来宾操作系统内存属性更改为可满足此限制(受验证检查限制)的任何值。但是,除上述限制外,对于支持的每个操作系统,Citrix 仅支持特定的来宾操作系统内存配置。有关详细信息,请参阅下文。

支持的操作系统

Citrix 仅支持特定的来宾操作系统内存配置。受支持的配置的范围取决于正在使用的来宾操作系统。XenServer 不会阻止管理员将来宾操作系统配置为超出支持的限制。但是,强烈建议客户将内存属性保持在支持的限制内,以避免出现性能或稳定性等问题。

操作系统			支持的内存限制		
系列	版本	基础架 构	最小动态内存	最大动态内存	其他限制
Microsoft Windows	XP SP3	x86	≥ 256 MB	≤ 4 GB	最小动态内存 ≥ ¼ 最大静态内存 (支持的所有操作 系统)
	Server 2003 (+SP1、SP2)	x86	≥ 256 MB	≤ 64 GB	
		x64	≥ 256 MB	≤ 128 GB	
	Server 2008 (+SP2)	x86	≥ 512 MB	≤ 64 GB	
		x64	≥ 512 MB	≤ 128 GB	
	Server 2008 R2 (+SP1)	x64	≥ 512 MB	≤ 128 GB	
	Vista (+SP1、SP2)	x86	≥ 1 GB	≤ 4 GB	
	7 (+SP1)	x86	≥ 1 GB	≤ 4 GB	
		x64	≥ 2 GB	≤ 128 GB	
Cent0S Linux	4.5 - 4.8	x86	≥ 256 MB	≤ 16 GB	
	5.0 - 5.6	x86 x64	≥ 512 MB	≤ 16 GB	
RedHat Enterprise Linux	4.5 - 4.8	x86	≥ 256 MB	≤ 16 GB	
	5.0 - 5.6	x86 x64	≥ 512 MB	≤ 16 GB	
	6.0	x86	≥512 MB	≤8 GB	
		x64	≥512 MB	≤32 GB	
Oracle Enterprise Linux	5.0 - 5.6	x86	≥ 512 MB	≤ 64 GB	
		x64	≥ 512 MB	≤ 128 GB	
	6.0	x86	≥512 MB	≤8 GB	
		x64	≥512 MB	≤32 GB	

操作系统			支持的内存限制		
SUSE Enterprise Linux	9 SP4	x86	≥ 256 MB	≤ 16 GB	
	10 SP1、SP2、 SP3、SP4	x86	≥ 512 MB	≤ 16 GB	
		x64	≥ 512 MB	≤ 128 GB	
	11 (+SP1)	x86	≥ 512 MB	≤ 16 GB	
		x64	≥ 512 MB	≤ 128 GB	
Debian GNU/Linux	Lenny (5.0)	x86	≥ 128 MB	≤ 32 GB	
	Squeeze (6.0)	x86 x64	≥ 128 MB	≤ 32 GB	
Ubuntu	10.04	x86	≥ 128 MB	≤ 512 MB	
		x64	≥ 128 MB	≤ 32 GB	

警告:

配置来宾系统内存时,Citrix 建议不要超出操作系统可寻址的最大物理内存数量。设置大于操作系统所支持的限制的内存最大值,可能会导致来宾操作系统中出现稳定性问题。

此外,将下限降低到最小动态值以下也可能会导致稳定性问题。建议管理员认真校准 其 VM 的大小,并确保其所用应用程序集在最小动态值下可靠地工作。

xe CLI 命令

显示 VM 的静态内存属性

1. 查找所需 VM 的 uuid:

xe vm-list

2. 记下该 uuid,然后运行命令 param-name=memory-static

```
xe vm-param-get uuid=<uuid> param-name=memory-static-{min,max}
```

例如,以下命令将显示 uuid 以 ec77 开头的 VM 的最大静态内存属性:

```
xe vm-param-get uuid= \
  ec77a893-bff2-aa5c-7ef2-9c3acf0f83c0 \
  param-name=memory-static-max;
  268435456
```

上述命令显示此 VM 的最大静态内存为 268435456 字节 (256 MB)。

显示 VM 的动态内存属性

要显示动态内存属性,请按照上述步骤进行操作,但请使用命令 param-name=memory-dynamic:

1. 查找所需 VM 的 uuid:

xe vm-list

2. 记下该 uuid, 然后运行命令 param-name=memory-dynamic:

xe vm-param-get uuid=<uuid> param-name=memory-dynamic-{min,max}

例如,以下命令将显示 uuid 以 ec77 开头的 VM 的最大动态内存属性:

```
xe vm-param-get uuid= \
  ec77a893-bff2-aa5c-7ef2-9c3acf0f83c0 \
  param-name=memory-dynamic-max;
  134217728
```

上述命令显示此 VM 的最大动态内存为 134217728 字节 (128 MB)。

更新内存属性

警告:

设置最小/最大静态(或最小/最大动态)参数时使用正确的顺序至关重要。此外,必 须保持以下限制有效:

0 ≤ memory-static-min ≤ memory-dynamic-min ≤ memory-dynamic-max ≤ memory-static-max

更新虚拟机的静态内存范围:

xe vm-memory-static-range-set uuid=<uuid> min=<value>max=<value>

更新虚拟机的动态内存范围:

```
xe vm-memory-dynamic-range-set \
uuid=<uuid> min=<value> \
max=<value>
```

在虚拟服务器环境中,以及在您知道希望来宾操作系统使用的准确内存量的任何情况下,指定内存特别有用。XenServer 将调整来宾操作系统的内存分配,以满足您指定的目标。例如:

```
xe vm-target-set target=<value> vm=<vm-name>
```

更新虚拟机的所有内存限制(静态限制和动态限制):

```
xe vm-memory-limits-set \
  uuid=<uuid> \
  static-min=<value> \
  dynamic-min=<value> \
  dynamic-max=<value> static-max=<value>
```

注意

- 要将特定数量且不会变化的内存分配给 VM,请将最大动态内存和最小动态内存设置为相同的值。
- 不能将 VM 的动态内存增加到超过最大静态内存。
- 要更改 VM 的最大静态内存,需要挂起或关闭 VM。

更新各个内存属性

警告:

静态最低级别设置为每个操作系统支持的级别,因此 Citrix 建议您不要对其进行更改,有关更多详细信息,请参阅内存限制表。

更新 VM 的动态内存属性。

1. 查找所需 VM 的 uuid:

xe vm-list

2. 记下该 uuid, 然后使用命令 memory-dynamic-{min,max}=<value>

xe vm-param-set uuid=<uuid>memory-dynamic-{min,max}=<value>

下例将最大动态内存更改为 128 MB:

xe vm-param-set uuid=ec77a893-bff2-aa5c-7ef2-9c3acf0f83c0 memory-dynamic-max=128MiB

升级问题

从 Citrix XenServer 5.5 升级之后,XenServer 会设置所有 VM 内存,使最小动态内存等于最大动态内存。

Workload Balancing 交互

如果启用了 Workload Balancing (WLB),XenServer 会将主机选择的决策委托给 Workload Balancing 服务器。如果禁用了 WLB,或者如果 WLB 服务器出现故障或不可用,XenServer 将使用其内部算法就主机选择做出决策。

Xen 内存使用量

计算 Xen 主机的内存占用量时,必须考虑以下两个因素。第一个是 Xen 虚拟机管理程序本身占用的内存;另一个是主机的控制域占用的内存。控制域是一个特权 VM,可向其他 VM 提供低级别服务,如提供对物理服务的访问。它还可以运行管理工具堆栈。

设置控制域内存

如果控制域要求分配更多内存,可使用 Xen CLI 进行设置。

使用 xe vm-memory-target-set 命令设置控制域可用的内存量。

xe vm-memory-target-wait 命令可用于检查此控制域就是上次使用 xe vm-memory-target-set 命令指定的请求内存目标。直到控制域实际内存的使用情况达到内存目标后,xe vm-memory-target-wait 命令才会返回,如果达不到内容目标(例如,内存目标低于 VM 的实际内存要求),该命令将超时。

VM 上的下列字段定义分配的内存量。显示的默认值是针对 RAM 为 8 GB 的计算机而言:

名称	默认值	说明
memory-actual	411041792	当前可供 VM 使用的实际内存量
		只读
memory-target	411041792	使用 xe vm-memory-target-set 设置的目标内存量
		只读
memory-static-max	790102016	可能的最大物理内存
		当 VM 挂起时可读写;当 VM 运行时只读
memory-dynamic-max	790102016	可以分配的所需最大内存
		读写
memory-dynamic-min	306184192	可以分配的所需最小内存
		读写
memory-static-min	306184192	可能的最小物理内存
		当 VM 挂起时可读写;当 VM 运行时只读
memory-overhead	1048576(示例)	由于虚拟化而导致的内存开销

动态内存值必须在静态内存值设置的范围内。此外,内存目标必须在动态内存值的范围内。

注意:

XenCenter 常规选项卡 Xen 字段中报告的内存量可能会超过使用此机制设置的值。 这是因为报告的内存量包括由控制域、虚拟机管理程序本身和崩溃内核占用的内存 量。对于使用更多内存的主机来说,虚拟机管理程序占用的内存量更大。

要了解实际可将多少主机内存分配给 VM,请先获取该主机 memory-free 字段的值,然后使用 vm-compute-maximum-memory 命令获取可分配给该 VM 的实际可用内存量:

CITRIX'

```
xe host-list uuid=<host_uuid> params=memory-free
xe vm-compute-maximum-memory vm=<vm_name> total=<host_memory_free_value>
```

网络连接

本章将概括介绍 XenServer 的网络连接(包括网络、VLAN 和 NIC 绑定)。此外,还将讨论如何管理 网络连接配置以及进行故障排除。

重要提示:

从此版本开始,XenServer 的默认网络堆栈是 vSwitch;但是,如果需要,可以按照"vSwitch 网络"一节中的说明还原为 Linux 网络堆栈。

如果您已经熟悉了 XenServer 网络概念,可能希望提前跳到下列部分之一:

- 要为独立 XenServer 主机创建网络,请参阅"在独立服务器中创建网络"一节。
- 要跨多个 XenServer 主机创建专用网络,请参阅"跨服务器专用网络"一节。
- 要为资源池中配置的 XenServer 主机创建网络,请参阅"在资源池中创建网络"一节。
- 要为 XenServer 主机(独立主机或资源池的成员)创建 VLAN,请参阅"创建 VLAN"一节。
- 要为独立 XenServer 主机创建绑定,请参阅"在独立主机上创建 NIC 绑定"一节。
- 要为资源池中配置的 XenServer 主机创建绑定,请参阅"在资源池中创建 NIC 绑定"一节。

有关网络连接和网络设计的其他信息,请参阅 Citrix 知识中心中的"Designing XenServer Network Configuration"(设计 XenServer 网络配置)。

为了与 XenCenter 保持一致,本章现在使用术语主管理接口来表示支持 IP 且传送管理通信的 NIC。在早期的版本中,本章中使用的术语是管理接口。但是,管理接口现在用来通指任何支持 IP 的 NIC,包括传送管理通信的 NIC 以及为存储通信配置的 NIC。

网络连接支持

XenServer 对于每个 XenServer 主机,最多支持 16 个物理网络接口(或最多支持 16 个已绑定的网络接口);对于每个 VM,最多支持 7 个虚拟网络接口。

注意:

XenServer 使用 xe 命令行界面 (CLI) 提供 NIC 的自动配置和管理。与早期的 XenServer 版本不同,在大多数情况下,不应直接编辑主机的网络配置文件;如果 CLI 命令可用,请不要编辑基础文件。

vSwitch 网络

在与控制器设备结合使用时,vSwitch 网络支持开放流并提供额外的功能,包括跨服务器专用网络和访问控制列表 (ACL)。XenServer vSwitch 的控制器设备称为 vSwitch 控制器:允许您通过图形用户界面监视网络。vSwitch 控制器:

- 支持细化的安全策略,以控制传入和传出 VM 的通信流。
- 详细展示虚拟网络环境中所传输的所有通信的行为和性能。

vSwitch 大大简化了虚拟网络环境中的 IT 管理 — 即使 VM 从资源池中的一个物理主机迁移到另一个主机,所有的 VM 配置和统计信息仍绑定到该 VM。有关详细信息,请参阅《XenServer vSwitch 控制器用户指南》。

注意:

要还原到 Linux 网络堆栈,请运行以下命令:

xe-switch-network-backend bridge

在运行此命令之后重新引导主机。

警告:

Linux 网络堆栈不支持开放流和跨服务器专用网络,不能由 XenServer vSwitch 控制器进行管理。

XenServer 网络概述

本部分介绍 XenServer 环境中网络的一般概念。

在 XenServer 安装期间,会为每个物理网络接口卡 (NIC) 创建一个网络。向资源池添加服务器时,这些默认网络会进行合并,以便设备名称相同的所有物理 NIC 均连接到同一网络。

通常情况下,如果您想要创建内部网络,使用现有 NIC 设置新 VLAN,或创建 NIC 绑定,只需添加一个新网络即可。

在 XenServer 中您可以配置四种不同类型的网络:

- 单服务器专用网络,其与物理网络接口无关联,可用于提供指定主机上的虚拟机之间的连接,而与外界无连接。
- 跨服务器专用网络,对单服务器专用网络这一概念进行了扩展,允许不同主机上的 VM 使用 vSwitch 相互通信。
- 外部网络,与物理网络接口相关联,可在虚拟机与连接到网络的物理网络接口之间提供桥接,从而使虚拟机能够通过服务器的物理网络接口卡连接到可用的资源。
- 绑定的网络,可在两个 NIC 之间创建一个绑定,以在虚拟机与网络之间创建一个高性能通道。

注意:

某些网络选项在用于独立 XenServer 主机与用于资源池时具有不同的行为。本章中的各节首先介绍同时适用于独立主机和池的一般信息,之后介绍分别适用于这两种类型的特定信息。

网络对象

本章使用三种类型的服务器端软件对象来表示网络连接实体。这些对象包括:

- PIF,表示 XenServer 主机上的一个物理 NIC。PIF 对象具有名称和说明、全局唯一 UUID、它们所表示的 NIC 的参数,以及连接到的网络和服务器。
- VIF,表示虚拟机上的一个虚拟 NIC。VIF 对象具有名称和说明、全局唯一 UUID 和连接到的网络和 VM。
- 网络,即 XenServer 主机上的虚拟以太网交换机。网络对象具有名称和说明、全局唯一 UUID 以及 连接到的 VIF 和 PIF 的集合。

XenCenter 和 xe CLI 都允许配置网络选项、控制使用哪个 NIC 管理操作,以及创建高级网络功能(如虚拟局域网 (VLAN) 和 NIC 绑定)。

网络

每台 XenServer 主机都有一个或多个网络,即虚拟以太网交换机。不与 PIF 相关联的网络被视为内部网络,仅可用于提供给定 XenServer 主机上 VM 之间的连接,不与外部连接。与 PIF 相关联的网络

被视为外部网络,在连接到网络的 PIF 和 VIF 之间提供了一个桥,从而能够通过 PIF 的 NIC 连接到资源。

VLAN

按照 IEEE 802.1Q 标准的有关定义,虚拟局域网 (VLAN) 允许单一物理网络支持多个逻辑网络。XenServer 主机可采用多种方式来使用 VLAN。

注意:

所有受支持的 VLAN 配置均可应用于池、独立主机、绑定配置和非绑定配置。

结合使用 VLAN 和管理接口

交换机端口经过配置可执行 802.1Q VLAN 标记/去除标记,它们通常称为本机 VLAN 端口或访问模式端口,这些端口与 XenServer 管理接口合用可将管理通信放到目标 VLAN。在这种情况下,XenServer 主机不会觉察到任何 VLAN 配置。

VLAN 管理接口不能通过中继端口分配给 XenServer VLAN。

使用带有虚拟机的 VLAN

交换机端口配置为 802.1Q VLAN 中继端口后,与 XenServer VLAN 功能结合使用,可将来宾虚拟网络接口 (VIF) 连接到特定的 VLAN。在这种情况下,XenServer 主机将为来宾执行 VLAN 标记/去标记功能,而来宾不会觉察到任何 VLAN 配置。

XenServer VLAN 由另外的 PIF 对象(代表与特定 VLAN 标记相应的 VLAN 接口)来表示。然后,XenServer 网络就能连接到代表物理 NIC 的 PIF 来查看此 NIC 上的全部通信,或者连接到代表VLAN 的 PIF 来查看只具有特定 VLAN 标记的通信。

有关如何为 XenServer 主机(独立主机或资源池中的主机)创建 VLAN 的步骤,请参阅"创建 VLAN"一节。

使用具有专用存储 NIC 的 VLAN

专用存储 NIC(又称为支持 IP 的 NIC 或简称管理接口)可配置为将上述的本机 VLAN/访问模式端口用于主管理接口,或者与上述中继端口和 XenServer VLAN 一起用于虚拟机。要配置专用存储 NIC,请参阅"配置专用存储 NIC"一节。

将管理接口和来宾 VLAN 组合到单一主机 NIC 上

一个交换机端口可使用中继端口和本地 VLAN 来配置,这就使得一个主机 NIC 可用作管理接口(在本机 VLAN 上),并可用于将来宾 VIF 连接到特定的 VLAN ID。

NIC 绑定

NIC 绑定可以通过将两个物理 NIC 用作如同是一个 NIC 来提高 XenServer 主机恢复能力。具体而言,NIC 绑定是一种用来增加恢复能力和/或带宽的方法,在此方法中,管理员可以将两个 NIC 配置在一起,使其在逻辑上充当一块网卡。这两个 NIC 具有相同的 MAC 地址,对于管理接口来说,则具有一个 IP 地址。

如果绑定中的 NIC 失败,则主机的网络通信会自动通过另一个 NIC 重定向。NIC 绑定有时又称为 NIC 捆绑。XenServer 最多支持八个绑定网络。您可以将任意类型(管理接口或非管理接口)的两个 NIC 绑定在一起。

在下图中,主管理接口与一个 NIC 绑定,因此构成了一个 NIC 绑定对。XenServer 将使用此 NIC 绑定对进行管理通信。

该图显示了三个 NIC 绑定对(包括主管理接口)。除了主管理接口绑定,XenServer 还使用另外两个绑定的 NIC 和两个非绑定的 NIC 用于 VM 通信。

具体而言,可以将下列类型的两个 NIC 绑定在一起:

- 主管理接口。您可以将主管理接口绑定到另一个 NIC,以便该 NIC 为管理通信提供故障转移。但是,NIC 绑定不会实现管理通信的负载平衡。
- NIC(非管理)。您可以绑定由 XenServer 专用于 VM 通信的 NIC。绑定这些 NIC 不仅提供恢复能力,而且还会在 NIC 之间平衡来自多个 VM 的通信。
- 其他管理接口。您可以绑定已配置为管理接口的 NIC(例如,用于存储)。但是,对于大多数 iSCSI 软件发起程序存储,Citrix 建议配置多路径而不是 NIC 绑定,因为绑定管理接口仅提供故障转移,而不提供负载平衡。

应当注意的是,某些 iSCSI 存储阵列(如 Dell EqualLogic)必须使用绑定。

NIC 绑定可以在主动/主动模式(VM 通信在绑定的 NIC 之间实现平衡)下工作,也可以在主动/被动模式(只有一个 NIC 实际传输通信)下工作。

XenServer NIC 绑定完全包含基础物理设备 (PIF)。为了激活绑定,基础 PIF 一定不能处于使用状态(无论是用作主机的管理接口,还是通过运行 VIF 连接到与 PIF 相关联网络的 VM)。

在 XenServer 中,NIC 绑定由其他 PIF(包括表示绑定本身的 PIF)表示。然后,可以将绑定的 PIF 连接到 XenServer 网络以允许通过绑定的 NIC 实现 VM 通信和主机管理功能。创建 NIC 绑定的具体步骤取决于主机中的 NIC 数,以及主机的管理接口是否分配给要在绑定中使用的 PIF。

假设您对仅传输来宾系统通信的 NIC 启用绑定,则这两个链路都处于活动状态,因而 NIC 绑定可以在两个 NIC 之间平衡每个 VM 的通信。同样,如果将主管理接口 NIC 绑定到另一个 NIC,还会提供恢复能力。但是,绑定中只有一个链路 (NIC) 处于活动状态,另一个链路保持未使用状态,除非将通信故障转移到另一个链路。

如果您绑定管理接口,则系统会为该绑定分配一个 IP 地址。即,每个 NIC 没有其自己的 IP 地址; XenServer 将这两个 NIC 视为一个逻辑连接。

当绑定的 NIC 用于 VM(来宾系统)通信时,不需要为该绑定配置 IP 地址。这是因为绑定在 OSI 的第 2 层(即数据链路层)上运行,而此层上不使用 IP 地址。当用于非 VM 通信(以连接到共享网络存储或 XenCenter 进行管理)时,则必须为该绑定配置一个 IP 地址。如果将管理接口与非管理 NIC 绑定,则从 XenServer 6.0 开始,该绑定自动使用管理接口的 IP 地址。

由于故障转移而更改接口之间的通信分配时,会发送免费 ARP 数据包。

注意:

将绑定设置为最高延迟 31000 毫秒,最低延迟 200 毫秒。最高延迟的时间看似有点长,但这是有意的,这是因为某些交换机要真正开始路由通信需要花费一些时间。如果没有这么长的最高延迟时间,链接在失败后恢复时,绑定会在交换机准备好传递通信之前重新平衡其上的通信。如果要将两个连接都移动到另外一台不同的交换机,请移动一个连接,等待 31 秒以留出再次使用它的时间,然后再移动另一连接。

交换机配置

根据您的冗余需求,可以将绑定中的每个 NIC 连接到同一个或不同的交换机。如果将其中一个 NIC 连接到另一个冗余的交换机,则在某个 NIC 或交换机出现故障时,通信将故障转移到另一个 NIC。额外添加一个交换机有以下好处:

- 在绑定专用于 VM 通信的 NIC 时,通信将通过这两个 NIC 发送。如果将一个 NIC 连接到一个额外交换机,则当该 NIC 或交换机出现故障时,虚拟机仍保持在网络上,因为它们的通信会故障转移到另一个 NIC/交换机。
- 将绑定的主管理接口中的一个链路连接到另一个交换机时,可防止池出现单点故障。如果交换机出现 故障,管理网络仍将保持联机状态,主机之间仍然能够相互通信。

当您将绑定的 NIC 连接到两个交换机时,这两个交换机必须以堆栈配置模式运行。即,这两个交换机必须配置为充当单个交换机(被视为单个域)。例如,当多个安装在机架上的交换机通过背板连接时。这些交换机必须采用堆栈配置,原因是,当在两个 NIC 之间重新平衡通信时,VM 的 MAC 地址将在交换机之间频繁切换。对于交换机不需要进行额外的配置。

下图说明了绑定中 NIC 的电缆和网络配置的配对情况。

该图说明一个绑定对中的两个 NIC 如何使用相同的网络设置(由每个主机中的网络表示)。绑定的两个 NIC 连接到不同的交换机以实现冗余。

主动-主动绑定

主动-主动(默认的绑定模式)是适用于来宾系统通信的主动/主动配置:两个 NIC 可以同时路由 VM 通信。当绑定用于管理通信时,只有其中一个 NIC 可以路由通信,而另一个 NIC 保持未使用状态并提供故障转移支持。

对于 VM 通信,主动-主动模式还会平衡通信。但是,务必注意,"平衡"是指在 NIC 上路由的数据量 (MB)。当 XenServer 重新平衡通信时,只是调整哪个 VM 的通信(更准确地说,哪个 VIF 的通信)通过哪个 NIC 进行传输。

尽管 NIC 绑定可以为来自多个 VM 的通信提供负载平衡,但是不能为单个 VM 提供两个 NIC 通信通路。任何给定 VIF 一次只能使用绑定中的一个链接。当 XenServer 重新平衡通信时,VIF 不会永久分配给绑定中的某个特定 NIC。但是,对于具有高吞吐量的 VIF,周期性重新平衡可确保链接上的负载基本相等。

下图说明了可绑定的三种不同类型接口之间的区别。

该图说明了在主动-主动模式下,绑定中处于活动状态的链路如何因通信类型而变化。在最上图的管理网络中,NIC 1 处于主动状态,NIC 2 处于被动状态。对于 VM 通信,绑定中的这两个 NIC 都处于活动状态。对于存储通信,只有 NIC 3 处于主动状态,NIC 4 处于被动状态。

XenServer 使用数据包的源 MAC 地址在 NIC 之间对通信进行负载平衡。原因是,对于管理通信,仅使用绑定中的一个 NIC,主动-主动模式不对管理通信进行平衡。

可将 API 管理通信分配给 XenServer 绑定接口,这些通信在物理 NIC 之间自动实现负载平衡。

重新平衡由现有 ALB 重新平衡功能提供:对给定时间段内通过每个从属节点(接口)传输的字节数进行跟踪。发送包含新源 MAC 地址的数据包时,会将其分配给具有最低利用率的从属接口。每 10 秒钟重新平衡一次通信。

主动-主动模式有时称为源负载平衡 (SLB) 绑定,因为 XenServer 使用 SLB 在绑定的网络接口之间共享负载。由开放源 ALB 模式派生并重用 ALB 功能以动态重新实现 NIC 之间的负载平衡。

注意:

主动-主动绑定不要求交换机支持 Etherchannel 或 802.3ad (LACP)。

主动-被动绑定

主动-被动绑定:

- 仅通过绑定中的一个 NIC 路由通信
- 当绑定中的主动 NIC 断开网络连接时,将进行故障转移,以使用绑定中的另一个 NIC
- 可以配置为使用一个快速链路和一个慢速路径来节省成本。在这种情况下,只有当快速路径出现故障时才应使用慢速路径
- 不要求交换机支持 Etherchannel 或 802.3ad(LACP)
- 派生自开源主动-备份模式

主动-主动模式是 XenServer 中的默认绑定配置,如果您要使用主动-被动模式,必须配置该模式。您不必仅仅因为网络传输管理通信或存储通信而配置主动-被动模式。将绑定配置为或使其保持主动-主动模式时,如果 XenServer 检测到管理通信或存储通信,XenServer 会自动使绑定中的一个 NIC 保持未使用状态。但是,可以根据需要明确配置主动-被动模式。

尝试确定何时配置主动-被动模式时,请在如下情况下考虑进行配置:

• 将一个 NIC 连接到在主动-主动绑定模式下无法很好地工作的交换机时。

例如,如果交换机无法很好地工作,您可能会在交换机上看到数据包丢失、ARP 表不正确等症状。同样,交换机无法正确地更新 ARP 表,而且/或者交换机端口的设置将不正确(您可能为端口配置了聚合但不起作用)。

• 不需要负载平衡或者只希望在一个 NIC 上发送通信时。

例如,如果冗余路径使用较为便宜的技术(例如,性能较低的交换机或者外部 UP-LINK),而该技术会导致性能降低,应配置主动-被动绑定模式。

注意:

从 XenServer 6.0 开始,vSwitch 支持主动-被动 NIC 绑定。如果使用 vSwitch 作为 网络连接配置,则可以使用 XenCenter 或 CLI 将绑定模式设置为主动-被动(又称为主动-备份)模式。

提示:

在 XenCenter 中可以轻松配置主动-被动模式。您只需在创建绑定时选择主动-被动绑定模式。

重要提示:

在创建了 VIF 或者池投入使用之后,在对绑定进行更改或者创建新绑定时一定要格外小心。

初始网络配置

XenServer 主机的网络配置是在主机初始安装期间指定的。IP 地址配置(DHCP/静态)、用作管理接口的 NIC 和主机名等选项是根据安装期间提供的值设置的。

当主机包含多个 NIC 时,安装后进行的配置取决于安装期间选择用于管理操作的 NIC:

- 为主机中的每个 NIC 创建 PIF
- 使用安装期间指定的 IP 地址选项配置选择用作管理接口的 NIC 的 PIF
- 为每个 PIF 创建网络("network 0"、"network 1"等等)
- 将每个网络分别连接到一个 PIF
- 不配置所有其他 PIF 的 IP 地址选项

当 XenServer 主机包含单一 NIC 时,安装后将进行以下配置:

- 创建对应于该主机单一 NIC 的一个 PIF
- 使用安装期间指定的 IP 地址选项配置 PIF 并启用主机的管理

- 设置 PIF 以用于主机管理操作
- 创建单一网络,即网络0
- 将网络 0 连接到 PIF 以启用到 VM 的外部连接

在这两种情况下,生成的网络配置允许 XenServer、xe CLI 及任何其他在独立计算机上运行的管理软件通过管理接口的 IP 地址连接到 XenCenter 主机。配置还为在主机上创建的 VM 提供外部网络。

用于管理操作的 PIF 是在 XenServer 安装期间唯一使用 IP 地址配置的 PIF。VM 的外部网络通过使用网络对象(用作虚拟以太网交换机)将 PIF 桥接到 VIF 来实现。

网络功能(如 VLAN、NIC 绑定和将 NIC 专用于存储通信)的步骤将在后面各节中介绍。

管理网络配置

根据您将要配置的服务器是独立服务器还是资源池中的服务器,本部分介绍的某些网络配置步骤将有所不同。

跨服务器专用网络

注意:

创建跨服务器专用网络时需要使用 Citrix XenServer 高级版或更高版本。要了解有关 XenServer 版本以及升级方式的详细信息,请单击此处访问 Citrix Web 站点。

先前版本的 XenServer 允许您创建单服务器专用网络,该网络允许同一台主机上运行的 VM 彼此通信。跨服务器专用网络功能,对单服务器专用网络这一概念进行了扩展,允许不同主机上的 VM 彼此通信。跨服务器专用网络将单服务器专用网络的相同隔离属性与在资源池中分布主机的额外功能结合在一起。实现这种结合后,VM 可以通过连接跨服务器专用网络来使用各种 VM 灵活功能(例如 XenMotion实时迁移和 Workload Balancing (WLB))。

跨服务器专用网络是彻底隔离的。未连接该专用网络的 VM 无法探查通信流或将通信流注入到网络中,即使它们位于同一个物理主机上,并且通过同一个基础物理网络设备 (PIF) 上的 VIF 连接到网络。VLAN 提供相似的功能,但与 VLAN 不同,跨服务器专用网络通过使用 通用路由封装 (GRE) IP 隧道协议,无需配置物理交换机光纤即可提供隔离。

专用网络无需物理交换机即可提供以下益处:

- 单服务器专用网络的隔离属性
- 跨资源池分布功能,允许连接到同一个专用网络的 VM 依赖于同一资源池中的多个主机
- 与 XenMotion 和 Workload Balancing 等功能兼容

跨服务器专用网络必须在管理接口上创建,因为这些网络需要可进行 IP 寻址的 PIF。任何支持 IP 的 PIF(在 XenCenter 中又称"管理接口")都可以用作基础网络传输。如果选择将跨服务器专用网络通信放置在另一个管理接口上,则第二个管理接口必须在单独的子网中。

如果两个管理接口在同一个子网上,通信流将不会被正确路由。

注意:

要创建跨服务器专用网卡,必须满足以下条件:

- 池中的所有主机都必须使用 XenServer 6.0 或更高版本
- 池中的所有主机都必须使用 vSwitch 来实现联网
- vSwitch 控制器必须正在运行,而且必须已经向其中添加了池(必须为该池配置了一个 vSwitch 控制器,该 vSwitch 控制器负责处理建立 vSwitch 连接所必需的初始化和配置任务)

• 跨服务器专用网络必须在配置为管理接口的 NIC 上创建。该 NIC 可以是主管理接口,也可以是专门为该目的而配置的另一个管理接口(支持 IP 的 PIF),但前提是它位于一个单独的子网上。

有关配置 vSwitch 的详细信息,请参阅《XenServer vSwitch 控制器用户指南》。有关使用 UI 配置专用网络的过程,请参阅 XenCenter 帮助。

在独立服务器中创建网络

安装主机期间会为每个 PIF 创建外部网络,因此仅在执行下列操作时才需要创建其他网络:

- 使用专用网络
- 支持高级操作,如 VLAN 或 NIC 绑定

要使用 XenCenter 添加或删除网络,请参阅 XenCenter 联机帮助。

使用 CLI 添加新网络

- 1. 打开 XenServer 主机文本控制台。
- 2. 使用 network-create 命令创建网络,该命令将返回新创建的网络的 UUID:

xe network-create name-label=<mvnetwork>

此时,该网络尚未连接到 PIF,因此属于内部网络。

在资源池中创建网络

虽然在将 XenServer 主机加入资源池时,并未强制要求资源池中的所有 XenServer 主机都必须具有同等数量的物理网络接口卡 (NIC),但这些主机应该符合这一要求。

使池中的 XenServer 主机具有相同的物理网络配置是非常重要的,因为池中的所有主机共享通用的 XenServer 网络集。根据设备名称将各个主机上的 PIF 连接到池范围内的网络。例如,池中具有 eth0 NIC 的所有 XenServer 主机都将相应的 PIF 插入池范围内的 Network 0 网络。这对于具有 eth1 NIC 和 Network 1 的主机以及至少在池中的一个 XenServer 主机上出现的其他 NIC 同样适用。

如果某个 XenServer 主机具有的 NIC 数量与池中其他主机具有的 NIC 数量不同,情况就复杂了,因为并不是所有池网络对所有池主机都有效。例如,如果主机 host1 和 host2 位于同一池中,但 host1 有四个 NIC,而 host2 只有两个 NIC,则只有连接到与 eth0 和 eth1 对应的 PIF 的网络才对 host2 有效。VIF 连接到与 eth2 和 eth3 对应的网络的 host1 将无法迁移到主机 host2。

创建 VLAN

对于资源池中的服务器,您可以使用 pool-vlan-create 命令。该命令创建 VLAN,并在池中的主机上自动创建和插入所需的 PIF。有关详细信息,请参阅"pool-vlan-create"一节。

使用 CLI 将网络连接到外部 VLAN

- 1. 打开 XenServer 主机控制台。
- 2. 创建用于 VLAN 的新网络。将返回新网络的 UUID:

xe network-create name-label=network5

3. 使用 pif-list 命令找到与物理 NIC(支持所需的 VLAN 标记)对应的 PIF 的 UUID。返回所有 PIF 的 UUID 和设备名称,其中包括任何现有的 VLAN:

xe pif-list

4. 创建 VLAN 对象,该对象指定要连接到新 VLAN 的所有 VM 上所需的物理 PIF 和 VLAN 标记。创建新的 PIF 并将其插入指定的网络。返回新 PIF 对象的 UUID。

xe vlan-create network-uuid=<network_uuid> pif-uuid=<pif_uuid> vlan=5

5. 将 VM VIF 连接到新网络。有关详细信息,请参阅"在独立服务器中创建网络"一节。

在独立主机上创建 NIC 绑定

Citrix 建议您使用 XenCenter 创建 NIC 绑定。有关说明,请参阅 XenCenter 帮助。

本节介绍如何使用 xe CLI 绑定不属于池的 XenServer 主机上的 NIC 接口。有关使用 xe CLI 在组成资源池的 XenServer 主机上创建 NIC 绑定的详细信息,请参阅"在资源池中创建 NIC 绑定"一节。

创建 NIC 绑定

在绑定 NIC 时,绑定会包含当前用作主管理接口的 PIF/NIC。从 XenServer 6.0 开始,主管理接口会自动移动到该绑定的 PIF。

绑定两个 NIC

1. 使用 network-create 命令创建用于绑定的 NIC 的新网络。将返回新网络的 UUID:

xe network-create name-label=<bond0>

2. 使用 pif-list 命令确定要在绑定中使用的 PIF 的 UUID:

xe pif-list

- 3. 执行以下操作之一:
 - 要在主动-主动模式(默认模式)下配置绑定,请使用 bond-create 命令创建绑定。指定新创建的网络 UUID 和要绑定的各 PIF 的 UUID,以逗号分隔各参数:

xe bond-create network-uuid=<network_uuid> pif-uuids=<pif_uuid_1>,<pif_uuid_2>
在运行该命令之后,将返回该绑定的 UUID。

• 要在主动-被动模式下配置绑定,请使用相同的语法,但是添加可选的 mode 参数并指定 active-backup:

xe bond-create network-uuid=<network_uuid> pif-uuids=<pif_uuid_1>,<pif_uuid_2> /
mode=<balance-slb | active-backup>

注意:

在早期版本中,可通过指定 other-config:bond-mode 来更改绑定模式。尽管此命令在 XenServer 6.0 中仍然有效,但将来的版本可能不再支持该命令,而且该命令不如 mode 参数效率高。other-config:bond-mode 要求运行 pif-unplug 和 pif-plug 以使模式更改生效。

控制绑定的 MAC 地址

绑定主管理接口时,该绑定将包含当前正用作主管理接口的 PIF/NIC。如果主机使用 DHCP,则多数情况下,该绑定的 MAC 地址与当前正使用的 PIF/NIC 的 MAC 地址相同,而且主管理接口的 IP 地址可能会保持不变。

可以更改该绑定的 MAC 地址,使其不同于(当前)主管理接口 NIC 的 MAC 地址。但是,当启用了该绑定而正在使用的 MAC/IP 地址发生更改时,主机的现有网络会话将停止。

可以通过以下两种方式控制该绑定的 MAC 地址:

- 可以在 bond-create 命令中指定 mac 可选参数。使用此参数可以将该绑定的 MAC 地址设置为任意地址。
- 从 XenServer6.0 开始,如果未指定 mac 参数,XenServer 将使用主管理接口(如果主管理接口是绑定中的接口之一)的 MAC 地址。如果主管理接口不是绑定的一部分,但另一个管理接口是,则绑定将使用后者的 MAC 地址(以及 IP 地址)。如果绑定中的所有 NIC 都不是管理接口,则绑定将使用第一个指定 NIC 的 MAC 地址。

还原 NIC 绑定

请注意,如果将 XenServer 主机还原为非绑定配置,bond-destroy 命令会自动将主-从属节点配置为要用于主管理接口的接口。此时,所有的 VIF 都将移动到主管理接口。

术语"主-从属节点"是指在创建绑定时用来复制 MAC 和 IP 配置的 PIF。在绑定两个 NIC 时,主-从属节点是:

- 1. 主管理接口 NIC (如果主管理接口是绑定的 NIC 之一)。
- 2. 任何其他具有 IP 地址的 NIC(如果主管理接口不是绑定的一部分)。
- 3. 第一个指定的 NIC。可以通过运行以下命令来确定它是哪个 NIC:

xe bond-list params=all

在资源池中创建 NIC 绑定

如果可能,请尽量在创建初始资源池的过程中先创建 NIC 绑定,然后再将其他主机加入池或创建 VM。这样,可以在主机加入池时将绑定配置自动复制到其中,并减少所需的步骤。将 NIC 绑定添加到现有池中需要执行下列操作之一:

- 使用 CLI 在主服务器上配置绑定, 然后在池的每个成员上配置绑定。
- 使用 CLI 在主服务器上配置绑定,然后重新启动池的每个成员,以便从池主服务器继承设置。
- 使用 XenCenter 在主服务器上配置绑定。XenCenter 会自动将成员服务器上的网络连接设置与主服务器同步,这样,您就不需要重新引导成员服务器。

为简单起见并且为了避免错误配置,Citrix 建议使用 XenCenter 创建 NIC 绑定。有关详细信息,请参阅 XenCenter 帮助。

本部分介绍如何使用 xe CLI 在组成资源池的 XenServer 主机上创建绑定的 NIC 接口。有关使用 xe CLI 在独立的 XenServer 主机上创建 NIC 绑定的详细信息,请参阅"创建 NIC 绑定"一节。

警告:

不要在启用高可用性功能的情况下尝试创建网络绑定。创建绑定的过程将干扰正在进行的高可用性功能信号检测并导致主机进行自我保护(自行关闭);随后这些主机可能无法正常重新引导,并且需要使用 host-emergency-ha-disable 命令才能恢复。

将 NIC 绑定添加到新资源池

 选择要作为主服务器的主机。默认情况下,主服务器主机属于未命名的池。要使用 CLI 创建资源 池,请重命名现有的无名称的池:

xe pool-param-set name-label=<"New Pool"> uuid=<pool_uuid>

- 2. 按照"创建 NIC 绑定"一节中的说明创建 NIC 绑定。
- 3. 打开要加入到池的主机中的控制台,然后运行命令:

xe pool-join master-address=<host1> master-username=root master-password=<password>

网络和绑定信息将自动复制到新主机中。主管理接口会自动从最初配置给绑定 PIF 时所在的主机 NIC 移出(即,主管理接口现在包含到绑定中,使整个绑定充当主管理接口)。

• 使用 host-list 命令找到正在配置的主机的 UUID:

xe host-list

将 NIC 绑定添加到现有池

警告:

不要在启用高可用性功能的情况下尝试创建网络绑定。创建绑定的过程会干扰正在进行的高可用性功能信号检测并导致主机进行自我保护(自行关闭);随后这些主机可能无法正常重新引导,并且需要运行 host-emergency-ha-disable 命令才能恢复。

注意:

如果您不是使用 XenCenter 进行 NIC 绑定,创建池范围内的 NIC 绑定的最快方法是在主服务器上创建绑定,然后重启其他池成员。或者您可以使用 service xapi restart 命令。这会使每台主机继承主服务器上的绑定和 VLAN 设置。但是,每台主机的管理接口必须手动重新配置。

按照以上几节所述的过程创建 NIC 绑定,请参阅"将 NIC 绑定添加到新资源池"一节。

配置专用存储 NIC

可以使用 XenCenter 或 xe CLI 为 NIC 分配 IP 地址,并将其专用于特定功能(如存储通信)。在为 NIC 配置 IP 地址时,可以通过创建管理接口来进行配置。支持 IP 的 NIC 统称为管理接口(用于管理 且支持 IP 的 NIC XenServer 是一种称为主管理接口的管理接口类型)。

当您希望将管理接口专用于特定用途时,必须确保拥有适当的网络配置,以确保 NIC 仅用于所需的通信。例如,要将 NIC 专用于存储通信,则必须对 NIC、存储目标、交换机和/或 VLAN 进行配置,以便只能通过指定的 NIC 访问此目标。如果您的物理配置和 IP 配置不限制可以通过存储管理接口发送的通信,则可以通过该存储 NIC 来发送其他通信(如管理通信)。

注意:

在选择要配置为管理接口以与 iSCSI 或 NFS SR 一起使用的 NIC 时,请确保该专用 NIC 使用不能从主管理接口路由的独立 IP 子网。如果无法确保上述条件,则由于初始化网络接口的顺序,很可能在主机重新引导后通过主管理接口定向存储通信。

使用 xe CLI 分配 NIC 功能

- 1. 确保 PIF 位于独立子网中或将路由配置为适合您的网络拓扑,以通过所选 PIF 实现所需通信。
- 2. 为 PIF 设置 IP 配置,为模式参数添加适当的值;如果使用静态 IP 寻址,还要设置 IP、子网掩码、网关和 DNS 参数:

xe pif-reconfigure-ip mode=<DHCP | Static> uuid=<pif-uuid>

3. 将 PIF 的 disallow-unplug 参数设置为 true:

```
xe pif-param-set disallow-unplug=true uuid=<pif-uuid>
xe pif-param-set other-config:management_purpose="Storage" uuid=<pif-uuid>
```

如果希望使用也可以从管理接口路由的存储接口(请记住,此配置并非最佳实践),则有两种选择:

- 主机重新引导后,确保存储接口配置正确,并使用 xe pbd-unplug 和 xe pbd-plug 命令重新初始化主机上的存储连接。这会重新启动存储连接并通过正确的接口对其进行路由。
- 或者,您可以使用 xe pif-forget 从 XenServer 数据库中删除存储接口,然后在控制域中手动配置该接口。这是高级选项,要求您熟悉如何手动配置 Linux 网络。

使用已启用 SR-IOV 的 NIC

单根 I/O 虚拟化 (SR-IOV) 是一种 PCI 设备虚拟化技术,允许单个 PCI 设备在物理 PCI 总线上充当多个 PCI 设备。实际的物理设备称为物理功能 (PF),而其他设备称为虚拟功能 (VF)。这样做的目的在于让虚拟机管理程序使用 SR-IOV 技术直接为一个虚拟机 (VM) 分配一个或多个 VF:来宾系统随后会将这些 VF 用作任何其他直接分配的 PCI 设备。

如果将一个或多个 VF 分配给一个 VM,该 VM 将可以直接利用硬件。每个 VM 在经过这种配置后,就像直接使用 NIC 一样,这样会降低处理开销并改善性能。

警告:

如果您的 VM 有一个 SR-IOV VF,则需要移动 VM 的功能(例如实时迁移、Workload Balancing、池滚动升级、高可用性和灾难恢复)将不可用。这是由于 VM 直接绑定到支持 SR-IOV 的物理 NIC VF。此外,通过 SR-IOV VF 发送的 VM 网络通信会绕过 vSwitch,因此无法创建 ACL 或查看 QoS。

为 VM 分配 SR-IOV NIC VF

注意:

只有 XenServer 硬件兼容性列表上所列的支持 SR-IOV 的 NIC 才支持 SR-IOV 技术,而且该技术仅适用于 Windows Server 2008 来宾操作系统。

- 1. 在 XenServer 主机上打开本地命令 shell。
- 2. 运行 1spci 命令以显示虚拟功能 (VF) 的列表。例如:

```
07:10.0 Ethernet controller: Intel Corporation 82559 \
Ethernet Controller Virtual Function (rev 01)
```

在上例中,07:10.0 是 VF 的 bus:device.function 地址。

3. 通过运行以下命令为目标 VM 分配所需的 VF:

xe vm-param-set other-config:pci=0/0000:
device.function> uuid=
vm-uuid>

4. 启动 VM, 然后为特定的硬件安装相应的 VF 驱动程序。

注意:

可以为一个 VM 分配多个 VF, 但是不能在多个 VM 之间共享同一个 VF。

控制传出数据的速率 (QoS)

要限制 VM 每秒可以发送的传出数据量,可以针对 VM 虚拟接口 (VIF) 设置可选的服务质量 (QoS) 值。该设置允许您为传出的数据包指定最大传输速率(以每秒千字节为单位)。

QoS 值将限制源自 VM 的传输速率。QoS 设置不会限制 VM 可以接收的数据量。如果需要限制接收量,Citrix 建议您限制网络中较高层(例如,交换机层)传入数据包的速率。

根据在池中配置的网络堆栈,可以按照下表中的说明,在以下两个位置之一针对 VM 虚拟接口 (VIF) 设置服务质量 (QoS) 值:a) 在 vSwitch 控制器上:b) 在 XenServer 中(使用 CLI 或 XenCenter):

网络堆栈	可用的配置方法
vSwitch	vSwitch 控制器。如果 vSwitch 是网络堆栈,则使用控制器是为 VIF 设置最大传输速率的首选方法。在使用 vSwitch 堆栈时,XenCenter QoS 选项不可用。
	• xe 命令。可以使用下例中的命令设置 QoS 传输速率。但是,首选方法是通过 vSwitch 控制器 UI,因为 vSwitch 控制器 UI 提供更细化的控制。
Linux 桥	XenCenter。可以在虚拟接口的属性对话框中 设置 QoS 传输速率限制值。
	• xe 命令。可以在 CLI 中使用下一节介绍的命令 来设置 QoS 传输速率。

重要提示:

当 vSwitch 配置为网络堆栈时,可能会无意中在 vSwitch 控制器上和 XenServer 主机内部都配置了 QoS 值。在这种情况下,XenServer 会使用您设置的最低速率来限制传出通信。

用于设置 QoS 的 CLI 命令的示例:

要使用 CLI 将 VIF 的最大传输速率限制为 100 kb/s,请使用 vif-param-set 命令:

```
xe vif-param-set uuid=<vif_uuid> qos_algorithm_type=ratelimit
xe vif-param-set uuid=<vif_uuid> qos_algorithm_params:kbps=100
```

注意:

如果要使用 vSwitch 控制器,Citrix 建议在 vSwitch 控制器中而不是使用上面的 CLI 命令来设置传输速率限制。有关在 vSwitch 控制器中设置 QoS 速率限制的说明,请参阅《vSwitch 控制器用户指南》。

更改网络配置选项

本部分将讨论如何更改 XenServer 主机的网路配置,其中包括:

- 更改主机名(即,域名系统(DNS)名称)
- 添加或删除 DNS 服务器
- 更改 IP 地址
- 更改将哪个 NIC 用作管理接口
- 将新的物理 NIC 添加到服务器

主机名

系统主机名(又称为域名或 DNS 名称)在池级数据库中定义,可以使用以下 xe host-set-hostname-live CLI 命令进行修改:

xe host-set-hostname-live host-uuid=<host_uuid> host-name=<host-name>

基础控制域主机名也将动态更改以反映新主机名。

DNS 服务器

要在 XenServer 主机的 IP 寻址配置中添加或删除 DNS 服务器,请使用 pif-reconfigure-ip 命令。例如,对于具有静态 IP 的 PIF:

pif-reconfigure-ip uuid=<pif_uuid> mode=static DNS=<new_dns_ip>

更改独立主机的 IP 地址配置

网络接口配置可以使用 xe CLI 进行更改。请勿直接修改基础网络配置脚本。

要修改 PIF 的 IP 地址配置,请使用 pif-reconfigure-ip CLI 命令。有关 pif-reconfigure-ip 命令参数的详细信息,请参阅"pif-reconfigure-ip"一节。

注意:

有关更改资源池中的主机 IP 地址的详细信息,请参阅"更改资源池中的 IP 地址配置"一节。

更改资源池中的 IP 地址配置

资源池中的 XenServer 主机具有用于管理和与池中的其他主机之间的相互通信的单一管理 IP 地址。对于主服务器主机和其他主机来说,更改主机的管理接口的 IP 地址所需的步骤是不同的。

注意:

更改服务器的 IP 地址和其他网络参数时要十分谨慎。根据网络拓扑和进行的更改,可能会丢失网络存储连接。如果丢失了网络存储连接,必须使用 XenCenter 中的修复存储功能或使用 CLI 执行 pbd-plug 命令来重新连接该存储。因此,建议先将 VM 从服务器中迁移出来,然后再更改服务器的 IP 配置。

更改成员主机(非池主服务器)的 IP 地址

1. 根据需要,使用 pif-reconfigure-ip CLI 命令设置 IP 地址。有关 pif-reconfigure-ip 命令参数的详细信息,请参阅附录 A, 命令行界面:

```
xe pif-reconfigure-ip uuid=<pif_uuid> mode=DHCP
```

2. 使用 host-list CLI 命令,以通过检查池中的所有其他 XenServer 主机是否均可见,来确认该成员主机是否已成功重新连接到主服务器主机:

```
xe host-list
```

每个成员主机均使用池主服务器主机建议的 IP 地址进行通信,当其 IP 地址发生更改后,将不知如何与主服务器主机联系。因此,更改主服务器 XenServer 主机的 IP 地址还需要其他步骤。

请尽可能使用在池主服务器的池生命周期内不会轻易发生更改的专用 IP 地址。

更改池主服务器的 IP 地址

1. 根据需要,使用 pif-reconfigure-ip CLI 命令设置 IP 地址。有关 pif-reconfigure-ip 命令参数的详细信息,请参阅附录 A, 命令行界面:

```
xe pif-reconfigure-ip uuid=<pif_uuid> mode=DHCP
```

- 2. 池主服务器主机的 IP 地址发生更改后,所有成员主机在无法与主服务器主机联系时,都将进入紧急模式。
- 3. 在主服务器 XenServer 主机上,使用 pool-recover-slaves 命令强制主服务器与每个成员主机联系并通知它们新的主服务器 IP 地址:

```
xe pool-recover-slaves
```

主管理接口

在具有多个 NIC 的主机上安装 XenServer 后,会选择其中的一个 NIC 作为管理接口。管理接口用于 XenCenter 与主机之间的连接以及主机到主机的通信。

更改用作管理接口的 NIC

1. 使用 pif-list 命令确定哪个 PIF 与用作管理接口的 NIC 对应。将返回每个 PIF 的 UUID。

```
xe pif-list
```

2. 使用 pif-param-list 命令验证将用作管理接口的 PIF 的 IP 寻址配置。如有必要,请使用 pifreconfigure-ip 命令配置要使用的 PIF 的 IP 寻址。有关可供 pif-reconfigure-ip 命令使用的选项的更 多详细信息,请参阅附录 A, 命令行界面。

```
xe pif-param-list uuid=<pif_uuid>
```

3. 使用 host-management-reconfigure CLI 命令更改用作管理接口的 PIF。如果此主机属于资源池,则必须在成员主机控制台上发出此命令:

```
xe host-management-reconfigure pif-uuid=<pif_uuid>
```

警告:

不支持将管理接口放置到 VLAN 网络中。

禁用管理访问

要完全禁用对管理控制台的远程访问,请使用 host-management-disable CLI 命令。

警告:

禁用管理接口后,必须登录物理主机控制台来执行管理任务,XenCenter 等外部界面将不再起作用。

添加新的物理 NIC

以通常方式在 XenServer 主机上安装新的物理 NIC。然后,重新启动服务器后,运行 xe CLI 命令 pifscan 以为新的 NIC 创建新的 PIF 对象。

网络故障排除

如果在配置网络时遇到问题,请先确保您未曾直接修改过任何控制域 ifcfg-* 文件。这些文件直接由控制域ifcfg-* 文件。这些文件直接由控制域主机代理管理,任何更改都会被覆盖。

诊断网络损坏

某些网卡型号在负载不足或启用了某些优化的情况下需要使用供应商提供的固件升级才能够稳定运行。如果看到与 VM 之间的通信出现损坏,您应该首先尝试从供应商获得建议的最新固件并应用 BIOS 更新。

如果问题仍然存在,则可以使用 CLI 禁用物理接口上的接收/发送卸载优化。

警告:

禁用接收/发送卸载优化可能会导致性能降低和/或 CPU 使用增加。

首先,确定物理接口的 UUID。可以根据 device 字段进行过滤,如下所示:

xe pif-list device=eth0

然后,在 PIF 上设置以下参数以禁用 TX 卸载:

xe pif-param-set uuid=<pif uuid> other-config:ethtool-tx=off

最后,重新连接 PIF 或重新引导主机以使更改生效。

从损坏的网络配置中恢复

在某些情况下,如果创建了错误的配置,则显示的网络可能不可用。当尝试在成员 XenServer 主机上更改网络配置时尤其如此。

如果发生网络丢失情况,下列注意事项可能会对恢复和重新实现网络连接有所帮助:

- Citrix 建议您确保正确设置了网络配置后再创建资源池,因为在非池状态下从损坏的配置中恢复通常 比较容易。
- 可以从池中的任何主机运行 host-management-reconfigure 命令。这是由于您将为要影响的 NIC 指定 PIF UUID。
- 如果 XenServer 主机上运行了 host-management-reconfigure 命令,则这两个命令会对该主机产生影响,因此,不适合在池中的一台主机上使用它们来更改另一台主机的配置。请直接在受影响的 XenServer 主机的控制台上运行这些命令,或使用 xe -s、-u 和 -pw 远程连接选项。
- 当 xapi 服务启动时,该服务将首先对主管理接口应用配置。管理接口的名称保存在 /etc/ xensource-inventory 文件中。在极端情况下,您可以通过在控制台中运行 service xapi stop 命令来终止 xapi 服务、编辑清单文件以将管理接口设置为安全默认值,然后确保 /etc/

CITRIX

sysconfig/network-scripts 中的 ifcfg 文件具有适用于最低网络配置的正确配置,其中包括一个接口和一个桥,例如 xenbr0 桥上的 eth0。

灾难恢复和备份

XenServer 灾难恢复 (DR) 功能旨在允许您从禁用或破坏整个池或站点的灾难性硬件故障中恢复虚拟机 (VM) 和 vApp。有关如何防止出现单服务器故障的信息,请参阅"高可用性"一节。

注意:

灾难恢复仅在 XenServer 铂金版中提供。要了解有关 XenServer 高级版或更高版本以及如何升级的更多信息,请单击此处访问 Citrix Web 站点。

要使用此功能,必须使用用户名 root 进行登录,或具有池操作员或更高级别的角色。

了解 XenServer DR

XenServer DR 的工作原理是:将恢复业务关键型 VM 和 vApp 所需的全部信息存储在存储库 (SR)中,然后将存储库从主(生产)环境复制到备份环境。当主站点上受到保护的池出现故障时,可以从复制的存储恢复该池中的 VM 和 vApp 并在辅助 (DR) 站点上重新创建,从而最大限度地减少对应用程序或用户造成的停机时间。

注意:

Citrix 强烈建议您使用新的 XenServer 6.0 灾难恢复功能,因为旧的元数据备份、还原和更新机制(可通过 XenServer 主机控制台访问)在将来的 XenServer 版本中将被弃用。Citrix 建议使用旧有机制的客户迁移到该新的集成功能。

如果出现灾难,可以使用 XenCenter 中的灾难恢复向导来查询该存储,并将选定的 VM 和 vApp 导入恢复池中。当 VM 在恢复池中运行之后,还会立即复制恢复池的元数据,以便在主池恢复后将对 VM 设置进行的更改恢复到主池。如果 XenCenter 向导在两个或多个位置(例如,来自主站点的存储、来自灾难恢复站点的存储以及要导入数据的池)找到了有关同一个 VM 的信息,将确保使用该虚拟机的最新信息。

可通过 XenCenter 和 xe CLI 使用灾难恢复功能。有关这些命令的详细信息,请参阅"灾难恢复 (DR) 命令"一节。

提示:

还可以使用"灾难恢复"向导运行测试故障转移,以便对灾难恢复系统进行非中断性测试。测试故障转移与故障转移涉及的步骤基本相同,但是,VM 和 vApp 在恢复到 DR 站点之后不会启动,而是在测试完成时执行清理,以删除 DR 站点上重新创建的所有 VM、vApp 和存储。

XenServer VM 包含两个组件:

- 由 VM 使用的虚拟磁盘,存储在 VM 所在池中配置的存储库 (SR) 中。
- 描述 VM 环境的元数据。即在原始 VM 不可用或损坏时重新创建 VM 所需的全部信息。大多数元数据配置数据会在创建 VM 时写入,而且仅在对 VM 配置进行了更改时才会更新。对于池中的 VM,此元数据的副本存储在池中的每个服务器上。

在 DR 环境中,会根据池元数据(有关池中所有 VM 和 vApp 的配置信息)在辅助 (DR) 站点上重新创建 VM。每个 VM 的元数据都包含其名称、说明、通用唯一标识符 (UUID)、内存、虚拟 CPU、网络连接配置和存储配置。元数据还包含 VM 启动选项(启动顺序、延迟间隔和高可用性重新启动优先级),当在高可用性或 DR 环境中重新启动 VM 时将使用这些选项。例如,在灾难恢复期间恢复 VM时,vApp 中的 VM 将按照 VM 元数据中指定的顺序,以指定的延迟间隔在 DR 池中重新启动。

DR 基础结构要求

要使用 XenServer DR,需要在主站点和辅助站点均设置适当的 DR 基础结构:

- 用于池元数据和 VM 所用虚拟磁盘的存储都必须从主(生产)环境复制到备份环境。存储复制(例如,使用镜像)最好通过存储解决方案进行处理,并且因设备而异。
- 当 VM 和 vApp 恢复到 DR 站点上的池中并且启动并运行后,还必须复制包含 DR 池元数据和虚拟磁盘的 SR,以便恢复后的 VM 和 vApp 在主站点重新联机后立即还原到主站点(故障恢复)。
- DR 站点的硬件基础结构不必与主站点的硬件基础结构一致,但是 XenServer 环境必须与主站点具有相同的版本和修补程序级别,而且应当在目标池中配置足够的资源,以便重新创建和启动所有故障转移的 VM。

警告:

"灾难恢复"向导不控制任何存储阵列功能。

灾难恢复功能的用户必须确保元数据存储按照某种方式在两个站点之间复制。某些存储阵列包含可自动实现复制的"镜像"功能,如果使用这些功能,则在恢复站点上重新启动虚拟机之前,务必禁用镜像功能("断开镜像")。

CİTRIX'

部署注意事项

请在启用灾难恢复之前检查以下步骤。

灾难发生之前执行的步骤

下一节将介绍在灾难发生之前执行的步骤。

- 配置 VM 和 vApp。
- 注意 VM 和 vApp 与 SR 的映射关系,以及 SR 与 LUN 的映射关系。特别要注意 name_label 和 name_description 字段的命名。如果 SR 的命名方式反映 VM 和 vApp 与 SR 以及 SR 与 LUN 的映射关系,将可以更为方便地从复制的存储恢复 VM 和 vApp。
- 安排 LUN 的复制。
- 允许将池元数据复制到这些 LUN 上的一个或多个 SR。

灾难发生之后执行的步骤

下一节将介绍在灾难发生之后执行的步骤。

- 中断任何现有的存储镜像,使恢复站点可以对共享存储进行读/写访问。
- 确保要用来恢复 VM 数据的 LUN 未连接到任何其他池,否则数据可能会被破坏。
- 如果要防止恢复站点出现灾难,则必须允许将池元数据复制到恢复站点的上一个或多个 SR。

恢复之后执行的步骤

下一节将介绍在成功恢复数据之后执行的步骤。

- 重新同步任何存储镜像。
- 在恢复站点上,彻底关闭要移回到主站点的 VM 或 vApp。
- 在主站点上,按照与上面所述故障转移过程相同的过程,将选定的 VM 或 vApp 故障恢复到主站点。
- 要防止主站点在将来发生灾难,必须重新允许将池元数据复制到所复制的 LUN 上的一个或多个 SR。

在 XenCenter 中启用灾难恢复

本节介绍如何在 XenCenter 中启用灾难恢复。使用配置 DR 对话框可以指定用来存储池元数据(有关池中所有 VM 和 vApp 的配置信息)的存储库 (SR)。每当您对池中的 VM 或 vApp 配置进行更改时,池元数据都将进行更新。

注意:

只有当使用基于 HBA 的 LVM 或基于 iSCSI 的 LVM 时,才能启用灾难恢复。在该存储上需要少量空间来创建新 LUN,用以包含池恢复信息。

要执行的操作

- 1. 在主站点上,选择要保护的池。从池菜单中,指向灾难恢复,然后单击配置。
- 2. 最多选择 8 个用来存储池元数据的 SR。在该存储上需要少量空间来创建新 LUN,用以包含池恢复信息。

注意:

将存储池中所有 VM 的信息,而不需要单独选择各个 VM 进行保护。

3. 单击确定。池现在将受保护。

发生灾难时恢复 VM 和 vApp(故障转移)

本节将介绍如何在辅助(恢复)站点上恢复 VM 和 vApp。

1. 在 XenCenter 中选择辅助池,在池菜单上,单击灾难恢复以打开灾难恢复向导。

此向导提供了以下三个恢复选项:故障转移、故障恢复和测试故障转移。要在辅助站点上恢复,请 选择故障转移,然后单击下一步。

警告:

如果您结合使用光纤通道共享存储和 LUN 镜像将数据复制到辅助站点,则在尝试恢复数据之前,必须断开镜像,以使辅助站点具有读/写访问权限。

2. 选择要恢复的 VM 和 vApp 的池元数据所在的存储库 (SR)。

默认情况下,此向导页上的列表显示池中当前连接的所有 SR。要扫描查找更多的 SR,请选择查找存储库,然后选择要扫描的存储类型:

- 要扫描所有可用的硬件 HBA SR,请选择查找硬件 HBA SR。
- 要扫描软件 iSCSI SR,请选择查找软件 iSCSI SR,然后在出现的对话框中输入目标主机、IQN 和 LUN 详细信息。

在该向导中选择了所需的 SR 之后,单击下一步继续操作。

3. 选择要恢复的 VM 和 vApp,然后选择相应的恢复后的电源状态选项,以指定您希望 VM 和 vApp 是在恢复之后由向导立即自动启动,还是在故障转移完成后由您手动启动。

单击下一步前进到下一个向导页,开始进行故障转移预检。

4. 此向导会在开始进行故障转移之前执行一些预检(例如,确保选定 VM 和 vApp 所需的所有存储均可用)。如果此时缺少任何存储,您可以单击此页面上的连接 SR 以查找并连接相关 SR。

解决预检页面上的任何问题,然后单击故障转移开始执行恢复过程。

- 5. 将出现一个进度页,显示每个 VM 和 vApp 的恢复是否成功。故障转移可能需要一段时间,具体取决于要恢复的 VM 和 vApp 的数量,因为需要将这些 VM 和 vApp 的元数据从复制的存储中导出。将在主池中重新创建所选 VM 和 vApp,包含虚拟磁盘的 SR 将连接到重新创建的 VM,然后这些 VM 将启动(如果指定了启动选项)。
- 6. 当故障转移完成时,单击下一步查看摘要报告。单击摘要报告页面上的完成关闭向导。

在主站点再次可用之后,如果您希望恢复 VM 在该站点上的运行,请再次执行"灾难恢复"向导,但这次 应选择故障恢复选项。

在灾难之后将 VM 和 vApp 还原到主站点(故障恢复)

本节介绍当主(生产)站点在灾难事件之后重新联机时,如何将 VM 和 vApp 从复制的存储还原到主站点上的池中。要将 VM 和 vApp 故障恢复到主站点,请使用"灾难恢复"向导。

1. 在 XenCenter 中选择辅助池,在池菜单上,单击灾难恢复以打开灾难恢复向导。

此向导提供了以下三个恢复选项:故障转移、故障恢复和测试故障转移。要将 VM 和 vApp 还原到主站点,请选择故障恢复,然后单击下一步。

警告:

如果您结合使用光纤通道共享存储和 LUN 镜像将数据复制到辅助站点,则在尝试恢复数据之前,必须断开镜像,以使辅助站点具有读/写访问权限。

2. 选择要恢复的 VM 和 vApp 的池元数据所在的存储库 (SR)。

默认情况下,此向导页上的列表显示池中当前连接的所有 SR。要扫描查找更多的 SR,请选择查找 存储库,然后选择要扫描的存储类型:

- 要扫描所有可用的硬件 HBA SR,请选择查找硬件 HBA SR。
- 要扫描软件 iSCSI SR,请选择查找软件 iSCSI SR,然后在出现的对话框中输入目标主机、IQN 和 LUN 详细信息。

在该向导中选择了所需的 SR 之后,单击下一步继续操作。

3. 选择要还原的 VM 和 vApp,然后选择相应的恢复后的电源状态选项,以指定您希望这些 VM 和 vApp 是在恢复之后由向导立即自动启动,还是等到故障恢复完成后由您手动启动。

单击下一步前进到下一个向导页,开始进行故障恢复预检。

4. 此向导会在开始进行故障恢复之前执行一些预检(例如,确保选定 VM 和 vApp 所需的所有存储均可用)。如果此时缺少任何存储,您可以单击此页面上的连接 SR 以查找并连接相关 SR。

解决预检页面上的任何问题,然后单击故障恢复开始执行恢复过程。

- 5. 将出现一个进度页,显示每个 VM 和 vApp 的恢复是否成功。故障恢复可能需要一段时间,具体取决于要还原的 VM 和 vApp 的数量,因为需要将这些 VM 和 vApp 的元数据从复制的存储中导出。将在主池中重新创建所选 VM 和 vApp,包含虚拟磁盘的 SR 将连接到重新创建的 VM,然后这些 VM 将启动(如果指定了启动选项)。
- 6. 当故障恢复完成时,单击下一步查看摘要报告。单击摘要报告页面上的完成关闭向导。

测试故障转移

故障转移测试是灾难恢复规划中不可或缺的部分。您可以使用"灾难恢复"向导对灾难恢复系统执行非中断性测试。测试故障转移期间的所有步骤与故障转移基本相同,只是 VM 和 vApp 在恢复到 DR 站点之后不会启动,而是被置于暂停状态。在测试故障转移过程结束时,在 DR 站点上重新创建的所有 VM、vApp 和存储都将自动恢复。在完成初始 DR 配置后,以及在启用 DR 的池中进行重要的配置更改后,我们建议您通过执行测试故障转移来验证故障转移是否仍能正常进行。

对 VM 和 vApp 执行以辅助站点为目标的测试故障转移

- 1. 在 XenCenter 中选择辅助池,在池菜单上,单击灾难恢复以打开灾难恢复向导。
- 2. 选择测试故障转移,然后单击下一步。

注意:

如果您结合使用光纤通道共享存储和 LUN 镜像将数据复制到辅助站点,则在尝试恢复数据之前,必须断开镜像,以使辅助站点具有读/写访问权限。

3. 选择要恢复的 VM 和 vApp 的池元数据所在的存储库 (SR)。

默认情况下,此向导页上的列表显示池中当前连接的所有 SR。要扫描查找更多的 SR,请选择查 找存储库,然后选择要扫描的存储类型:

- 要扫描所有可用的硬件 HBA SR,请选择查找硬件 HBA SR。
- 要扫描软件 iSCSI SR,请选择查找软件 iSCSI SR,然后在出现的对话框中输入目标主机、IQN 和 LUN 详细信息。

在该向导中选择了所需的 SR 之后,单击下一步继续操作。

- 4. 选择要恢复的 VM 和 vApp,然后单击"下一步"前进到下一个向导页,开始进行故障转移预检。
- 5. 此向导会在开始进行测试故障转移过程之前执行一些预检(例如,确保选定 VM 和 vApp 所需的所有存储均可用)。
 - 检查存储是否可用。如果缺少任何存储,可以单击此页面上的连接 SR 以查找并连接相关 SR。
 - 检查在目标 DR 池上是否启用了高可用性。为了避免同一个 VM 在主池和 DR 池中同时运行,必须对辅助池禁用高可用性,以确保 VM 和 vApp 在恢复之后不会由高可用性功能自动启动。要对辅助池禁用高可用性,只需单击此页面上的禁用高可用性。(如果此时高可用性处于禁用状态,则它会在测试故障转移过程结束时自动重新启用。)

解决预检页面上的任何问题,然后单击故障转移开始执行测试故障转移。

6. 将出现一个进度页,显示每个 VM 和 vApp 的恢复是否成功。故障转移可能需要一段时间,具体取决于要恢复的 VM 和 vApp 的数量,因为需要将这些 VM 和 vApp 的元数据从复制的存储恢复。将在 DR 池中重新创建所选 VM 和 vApp,包含虚拟磁盘的 SR 将连接到重新创建的 VM。

恢复后的 VM 将被置于暂停状态;在测试故障转移期间,它们将不会在辅助站点上启动。

- 7. 如果测试故障转移成功执行,请单击向导中的下一步,使向导在 DR 站点上进行清理:
 - 删除在测试故障转移期间恢复的 VM 和 vApp。
 - 分离在测试故障转移期间恢复的存储。
 - 如果在预检阶段为了允许进行测试故障转移而对 DR 池禁用了高可用性功能,则高可用性功能会自动重新启用。

向导将显示清理过程的进度。

8. 单击完成关闭向导。

vApp

vApp 是一个或多个相关虚拟机 (VM) 的逻辑组,在发生灾难时,这些虚拟机可以作为单个实体来启动。当 vApp 启动后,其中包含的 VM 将按照用户预定义的顺序启动,使相互依赖的 VM 自动排成序列。这意味着在整个服务需要重新启动时(例如在软件更新后),管理员不再需要手动设置相关 VM 的启动顺序。vApp 中的 VM 不必位于同一个主机上,而是按照正常的规则在池内分布。在灾难恢复的情况下,vApp 功能尤其有用。此时,管理员可以选择将位于同一个存储库中或者与同一个服务水平协议(SLA) 相关的所有 VM 组合到一起。

创建 vApp

要将多个 VM 组合到一个 vApp 中,请按以下步骤操作:

- 1. 选择池,然后在池菜单上,单击管理 vApp。此时将显示管理 vApp 窗口。
- 2. 输入该 vApp 的名称和可选说明,然后单击下一步。

您可以根据自己的喜好选择任何名称,但通常最好使用描述性的名称。尽管建议您避免为多个 vApp 使用相同的名称,但并不是必须要这样做,XenCenter 不会针对 vApp 名称实施唯一性约束。对于包含空格的名称,不必使用引号。

3. 选择要包含在新 vApp 中的 VM,然后单击下一步。

可以使用搜索框仅列出名称中包含指定字符串的 VM。

4. 为该 vApp 中的 VM 指定启动顺序,然后单击下一步。

值	说明
启动顺序	指定各个 VM 在 vApp 中的启动顺序,使某些 VM 先于其他 VM 重新启动。启动顺序值为 0(零)的 VM 将首先启动,启动顺序值为 1 的 VM 接着启动,然后是启动顺序值为 2 的 VM,以此类推。
尝试在以下时间后启动 下一个 VM	这是一段延迟时间间隔,用于指定从启动 VM 到尝试启动启动序列中下一组 VM(即,启动顺序更靠后的 VM)之间的等待时间。

5. 在该向导的最后一页上,可以检查 vApp 配置。单击上一步返回并修改任何设置,或者单击完成创 建新的 vApp 并关闭向导。

注意:

一个 vApp 可以跨单个池中的多个服务器,但是不能跨多个池。

使用 XenCenter 的"管理 vApp"对话框

使用 XenCenter 的管理 vApp 对话框,可以在选定池内创建、删除、修改、启动、关闭、导入和导出 vApp。当您在列表中选择某个 vApp 时,其中包含的 VM 会列在右侧的详细信息窗格中。有关详细信息,请参阅 XenCenter 联机帮助。按 F1 键或单击帮助可显示帮助。

备份和还原 XenServer 主机和 VM

Citrix 建议,如果可能最好不要更改 XenServer 主机的安装状态。也就是说,不要在 XenServer 主机上安装任何其他软件包或启动其他服务,将其视为设备。最好的还原方式是从安装介质重新安装 XenServer 主机软件。如果您有多个 XenServer 主机,则最好的方法是配置 PXE 引导服务器和相应的应答文件来实现此目的(请参阅 XenServer 安装指南)。

对于 VM,最佳方法是将其视为标准物理服务器,在上面安装备份代理。对于 Windows VM,截止到此版本,我们已测试了 CA BrightStor ARCserve Backup 以及 Symantec NetBackup 和 Backup Exec。

有关已测试的备份工具、最佳做法和常规备份的详细信息,请参阅 Citrix 知识库。

Citrix 建议您尽量经常执行下列备份过程以从可能的服务器和/或软件故障中恢复。

备份池元数据

1. 运行以下命令:

xe pool-dump-database file-name=<backup>

2. 运行以下命令:

xe pool-restore-database file-name=<backup> dry-run=true

此命令检查目标计算机具有一定数量的适当命名的 NIC,这是成功进行备份的必备条件。

备份主机配置和软件

运行以下命令:

xe host-backup host=<host> file-name=<hostbackup>

注意:

- 不要在控制域中创建备份。
- 此过程可能创建大型备份文件。
- 要完成还原,必须重新引导到原始安装 CD。
- 只能将此数据还原到原始计算机。

备份 VM

- 1. 确保要备份的 VM 处于脱机状态。
- 2. 运行以下命令:

xe vm-export vm=<vm_uuid> filename=<backup>

注意:

此备份也将备份 VM 的所有数据。导入 VM 时,可以指定要为已备份的数据使用的存储机制。

警告:

由于此过程将备份 VM 的所有数据,因此可能需要花费一些时间。

仅备份 VM 元数据

运行以下命令:

xe vm-export vm=<vm_uuid> filename=<backup> metadata=true

备份虚拟机元数据

XenServer 主机使用各个主机上的数据库存储有关 VM 和相关资源(如存储和网络)的元数据。当与存储库结合使用时,此数据库形成池中所有可用 VM 的完整视图。因此,重要的是,要了解如何备份此数据库,以便从物理硬件故障和其他灾难情况中恢复。

本部分首先介绍单主机环境元数据的备份方法,然后介绍更为复杂的池环境。

备份单台主机环境

使用 CLI 备份池数据库。要获得一致的池元数据备份文件,请在 XenServer 主机上运行 pool-dumpdatabase 并将结果文件归档。此备份文件将包含有关池的敏感身份验证信息,因此请确保安全存储该文件。

要还原池数据库,请对前面的转储文件使用 xe pool-restore-database 命令。如果您的 XenServer 主机完全死机,则必须首先进行全新安装,然后对重新安装的 XenServer 主机运行 pool-restore-database 命令。

还原池数据库后,某些 VM 可能仍注册为 Suspended 状态,但是如果包含其挂起的内存状态(在 suspend-VDI-uuid 字段中定义)的存储库是本地 SR,则因为该主机已重新安装,所以它将不再可用。要将这些 VM 重置为 Halted 状态以便可以再次启动,请使用 xe vm-shutdown vm=vm_name - force 命令或使用 xe vm-reset-powerstate vm=<vm_name> -force 命令。

警告

使用此方法还原的 XenServer 主机将保留其 UUID。如果在原始 XenServer 主机仍运行时还原到其他物理机,则将存在重复的 UUID。此操作主要的显著影响是 XenCenter 将拒绝连接到第二个 XenServer 主机。不建议使用池数据库备份机制克隆物理主机;应使用自动化安装支持进行克隆(请参阅 XenServer 安装指南)。

备份池安装

在池方案中,主服务器主机提供了一个同步镜像到池中所有成员主机的授权数据库。这为池提供了内置的冗余度;任何成员主机都可替换主服务器主机,因为每个成员主机都带有正确版本的池数据库。有关如何将成员主机转换为主服务器主机的详细信息,请参阅《XenServer 管理员指南》。

这种保护级别可能远远不够;例如,您的包含 VM 数据的共享存储在多个站点中进行了备份,但包含池元数据的本地服务器存储没有备份。要在仅给定一组共享存储的情况下完全重新创建池,您必须首先对主服务器主机上的 pool-dump-database 文件进行备份,然后将此文件归档。

随后在一组全新的主机上还原此备份

- 1. 从安装介质或通过 PXE 安装一组全新的 XenServer 主机。
- 2. 对指定为新主服务器的主机使用 xe pool-restore-database。
- 3. 在新主服务器主机上运行 xe host-forget 命令以删除旧成员计算机。
- 4. 在成员主机上使用 xe pool-join 命令以将这些主机连接到新池。

备份 XenServer 主机

本部分介绍 XenServer 主机控制域的备份和还原步骤。这些步骤不会备份用来容纳 VM 的存储库,而仅备份运行 Xen 和 XenServer 代理的特权控制域。

注意:

因为特权控制域最好保留安装时的状态,不使用其他软件包对其进行自定义,因此 Citrix 建议您设置 PXE 引导环境,以便仅从 XenServer 介质执行全新安装,以此作 为恢复策略。在许多情况下,您根本不需要备份此控制域,只需要保存池元数据即可 (请参阅"备份虚拟机元数据"一节)。此备份方法应始终被视为备份池元数据的补充 方法。

可以采取的另一种方法是使用 xe 命令 host-backup 和 host-restore。xe host-backup 命令将活动分区 归档到您指定的文件,xe host-restore 命令则将由 xe host-backup 创建的归档文件提取到主机上当前 不活动的磁盘分区中。然后可以通过引导安装 CD 并选择还原相应备份来激活此分区。

完成上述步骤并重新引导主机后,您必须确保 VM 元数据已还原为一致的状态。这可以通过对 /var/backup/pool-database-\${DATE} 运行 xe pool-restore-database 来实现。此文件由 xe host-backup 使用 xe pool-dump-database 命令在归档正在运行的文件系统之前创建,以便对 VM 元数据的一致状态生成快照。

备份 XenServer 主机

• 在具有足够磁盘空间的远程主机上运行以下命令:

```
xe host-backup file-name=<filename> -h <hostname> -u root -pw password>
```

这将在 file-name 参数指定的位置创建控制域文件系统的压缩映像。

还原正在运行的 XenServer 主机

如果要从特定备份还原 XenServer 主机,请在该 XenServer 主机已启动并可以连接时运行以下命令。

```
xe host-restore file-name=<filename> -h <hostname> -u root -pw <password>;
```

这个命令会将压缩映像还原到运行此命令的 XenServer 主机(而不是 filename 驻留的主机)的硬盘中。在该上下文中,"还原"有些用词不当,因为该词通常表示已完全恢复备份的状态。此处的还原命令仅对压缩的备份文件进行解压缩并将其还原到正常形式,但它写入其他分区 (/dev/sda2) 并且不会覆盖当前版本的文件系统。

2. 要使用已还原版本的根文件系统,请使用 XenServer 安装 CD 重新引导 XenServer 主机,然后选择 Restore from backup (从备份还原)选项。

从备份还原完成后,重新引导 XenServer 主机,该主机将从还原映像启动。

最后,使用以下命令还原 VM 元数据

xe pool-restore-database file-name=/var/backup/pool-database-*

注意:

如此处所述,从备份还原不会破坏备份分区。

重新启动已崩溃的 XenServer 主机

- 1. 如果您的 XenServer 主机已崩溃且不能再连接,您需要使用 XenServer 安装 CD 进行升级安装。 升级安装完成后,重新引导此计算机并确保可以使用 XenCenter 或远程 CLI 连接到您的主机。
- 2. 然后继续执行上述"备份 XenServer 主机"一节。

备份 VM

最好使用 VM 上独立运行的标准备份工具备份 VM。对于 Windows VM,我们已测试了 CA BrightStor ARCserve Backup。

CITRIX

VM 快照

XenServer 提供了一种简便的快照机制。借助该机制,可以在给定的时间生成 VM 存储和元数据的快照。生成快照时,可在需要时临时停止 IO 以确保捕获自身一致的磁盘映像。

快照操作会生成类似于模板的快照 VM。VM 快照包含所有存储信息和 VM 配置(包括已连接的 VIF),可以导出并还原这些信息和配置以进行备份。虽然所有存储类型都支持快照,但对基于 LVM 的存储类型而言,如果存储库是使用以前版本的 XenServer 创建的,则必须对其进行升级,而且卷必须采用默认格式(无法对 type=raw 卷生成快照)。

快照操作过程分为 2 个步骤:

- 将元数据捕获为模板。
- 创建磁盘的 VDI 快照。

支持三种类型的 VM 快照:常规快照、静态快照以及包含内存数据的快照

常规快照

常规快照处于持续崩溃状态,可以在所有 VM 类型(包括 Linux VM)上执行。

静态快照

静态快照利用 Windows 卷快照服务 (VSS),生成和应用程序一致的实时快照。VSS 框架帮助可识别 VSS 的应用程序(例如 Microsoft Exchange 或 Microsoft SQL Server)在生成快照前将数据刷新到磁盘并为快照做好准备。

因此,还原静态快照比较安全,但当生成静态快照时,这些快照可能会对系统性能产生更大的影响。如果负载不足,它们还可能会失败,因此生成该快照可能需要进行多次尝试。

XenServer 支持 Windows Server 2003 和 Windows Server 2008(32 位与 64 位的各种版本)上的静态快照。不支持 Windows 2000、Windows XP 和 Windows Vista。有关静态快照的详细信息,请参阅"静态快照高级说明"一节。

包含内存数据的快照

除保存虚拟机内存(存储)和元数据外,包含内存数据的快照还保存虚拟机状态 (RAM)。当您正在升级或修补软件,或想要测试新应用程序,但同时又希望能选择返回到虚拟机的当前、更改前状态 (RAM) 时,这种快照类型会非常有用。还原到包含内存数据的快照无需重新引导 VM。

可以通过 XenAPI、xe CLI 或使用 XenCenter 来生成包含内存数据的屏幕快照。

创建 VM 快照

在生成快照之前,请参阅《 虚拟机安装指南》中名为"准备克隆 Windows VM"一节以及《XenServer 虚拟机安装指南》中名为"准备克隆 Linux VM"一节,了解有关特定于任何特殊操作系统的配置信息以及要考虑的注意事项XenServer。

首先确保 VM 正在运行或已挂起,以便可以捕获内存状态。选择要执行操作的 VM 的最简单方法是应用参数 vm=<name> 或 vm=<vm uuid>。

运行 vm-snapshot 和 vm-snapshot-with-quiesce 命令以生成 VM 的快照。

xe vm-snapshot vm=<vm uuid> new-name-label=<vm_snapshot_name>
xe vm-snapshot-with-quiesce vm=<vm uuid> new-name-label=<vm_snapshot_name>

创建包含内存数据的快照

运行 vm-checkpoint 命令,为包含内存数据的快照指定一个描述性名称,以便以后能识别该快照:

```
xe vm-checkpoint vm=<<u>vm uuid</u>> new-name-label=<<u>name of the checkpoint</u>>
```

XenServer 创建完包含内存数据的快照之后,系统会显示其 uuid。

例如:

```
xe vm-checkpoint vm=2d1d9a08-e479-2f0a-69e7-24a0e062dd35 \
    new-name-label=example_checkpoint_1
b3c0f369-59a1-dd16-ecd4-a1211df29886
```

包含内存数据的快照需要每个磁盘至少有 4 MB 的磁盘空间,以及加上 RAM 的大小,再加上约 20%的开销。因此,256 MB RAM 的检查点需要约 300 MB 的存储空间。

注意:

在创建检查点的过程中, VM 会短时暂停, 在暂停期间不能使用。

列出 XenServer 池的所有快照

运行 snapshot-list 命令:

```
xe snapshot-list
```

这样会列出 XenServer 池中的所有快照。

列出特殊 VM 的快照

您需要知道该特殊 VM 的 uuid,为此,请运行 vm-list 命令。

xe vm-list

结果会显示所有虚拟机的列表及其 UUID。例如:

```
xe vm-list
uuid ( RO): 116dd310-a0ef-a830-37c8-df41521ff72d
name-label ( RW): Windows Server 2003 (1)
power-state ( RO): halted

uuid ( RO): 96fde888-2a18-c042-491a-014e22b07839
name-label ( RW): Windows XP SP3 (1)
power-state ( RO): running

uuid ( RO): dff45c56-426a-4450-a094-d3bba0a2ba3f
name-label ( RW): Control domain on host
power-state ( RO): running
```

也可以通过根据字段值过滤 VM 的完整列表来指定 VM。

例如,如果指定 power-state=halted,将会选择电源状态字段为"halted"的所有虚拟机。如果有多个匹配的 VM,则必须指定选项 --multiple 才能执行操作。匹配的字段的完整列表可以通过命令 xe vm-list params=all 获得。

查找所需的 VM,然后输入以下内容:

xe snapshot-list snapshot-of=<vm uuid>

例如:

xe snapshot-list snapshot-of=2d1d9a08-e479-2f0a-69e7-24a0e062dd35

这会列出该 VM 上的当前快照:

```
uuid ( RO): d7eefb03-39bc-80f8-8d73-2calbab7dcff
name-label ( RW): Regular
name-description ( RW):
snapshot_of ( RO): 2dld9a08-e479-2f0a-69e7-24a0e062dd35
snapshot_time ( RO): 20090914T15:37:00Z

uuid ( RO): 176056ld-a5dl-5d5e-2be5-d0dd99a3blef
name-label ( RW): Snapshot with memory
name-description ( RW):
snapshot_of ( RO): 2dld9a08-e479-2f0a-69e7-24a0e062dd35
snapshot_time ( RO): 20090914T15:39:45Z
```

将 VM 还原为上一状态

确保知道要还原的快照的 uuid,然后运行 snapshot-revert 命令:

要执行的操作

1. 运行 snapshot-list 命令以查找要还原的快照或数据点的 UUID:

```
xe snapshot-list
```

2. 记下快照的 uuid, 然后运行以下命令进行还原:

```
xe snapshot-revert snapshot-uuid=<<u>snapshot uuid</u>>
```

例如:

xe snapshot-revert snapshot-uuid=b3c0f369-59a1-dd16-ecd4-a1211df29886

还原为检查点后, VM 将被挂起。

注意:

可以还原到任何时间的快照,无论是向前还是向后。还原期间不会删除现有快照和检查点。

删除快照

确保知道要删除的检查点或快照的 UUID,然后运行以下命令:

1. 运行 snapshot-list 命令以查找要还原的快照或数据点的 UUID:

```
xe snapshot-list
```

2. 记下快照的 UUID,然后运行 snapshot-uninstall 命令将其删除:

```
xe snapshot-uninstall snapshot-uuid=<snapshot-uuid>
```

3. 此命令会警告您将要删除的 VM 和 VDI。键入 yes 确认。

例如:

```
xe snapshot-uninstall snapshot-uuid=1760561d-a5d1-5d5e-2be5-d0dd99a3b1ef
The following items are about to be destroyed
VM : 1760561d-a5d1-5d5e-2be5-d0dd99a3b1ef (Snapshot with memory)
VDI: 11a4aa81-3c6b-4f7d-805a-b6ea02947582 (0)
VDI: 43c33fe7-a768-4612-bf8c-c385e2c657ed (1)
VDI: 4c33c84a-a874-42db-85b5-5e29174fa9b2 (Suspend image)
Type 'yes' to continue
yes
All objects destroyed
```

如果您只希望删除检查点或快照的元数据,请运行以下命令:

```
xe snapshot-destroy snapshot-uuid=<snapshot-uuid>
```

例如:

xe snapshot-destroy snapshot-uuid=d7eefb03-39bc-80f8-8d73-2calbab7dcff

快照模板

通过快照创建模板

可以通过快照创建 VM 模板,但会删除模板的内存状态。

要执行的操作

1. 使用命令 snapshot-copy 并为模板指定 new-name-label:

```
xe snapshot-copy new-name-label=<<u>vm-template-name</u>> \
    snapshot-uuid=<<u>uuid</u> of the snapshot>

例如:

xe snapshot-copy new-name-label=example_template_1
```

snapshot-uuid=b3c0f369-59a1-dd16-ecd4-a1211df29886

注意:

这会在 SAME 池中创建一个模板对象。此模板仅存在于当前池的 XenServer 数据库中。

2. 要验证是否已创建模板,请运行命令 template-list:

```
xe template-list
```

这会列出 XenServer 主机上的所有模板。

将快照导出到模板

导出 VM 快照时,VM 的完整副本(包括磁盘映像)会作为单独的文件存储到本地计算机上,文件扩展名为 .xva。

要执行的操作

1. 使用 snapshot-export-to-template 命令创建新的模板文件:

```
xe snapshot-export-to template snapshot-uuid=<snapshot-uuid> \
  filename=<template- filename>
```

例如:

xe snapshot-export-to-template snapshot-uuid=b3c0f369-59a1-dd16-ecd4-a1211df29886 \
filename=example template export

可以通过多种不同的方式使用 VM 导出/导入功能:

- 作为一种便捷的 VM 备份工具。在发生灾难性事件时,可以使用导出的 VM 文件恢复整个 VM。
- 作为一种快速复制 VM 的方式,例如,多次使用的特殊用途服务器配置。您只需以希望的方式配置 VM,将其导出,然后再将其导入,即可创建原始 VM 的副本。
- 作为一种将 VM 移动到其他服务器的简单方法。

有关使用模板的详细信息,请参阅《XenServer 虚拟机安装指南》中的"创建 VM"一章,以及 XenCenter 帮助中的"管理虚拟机"一节。

静态快照高级说明

注意:

不要忘记在 Windows 来宾系统中安装 Xen VSS 提供程序以便支持 VSS。这可以使用 Windows PV 驱动程序随附的 install- XenProvider.cmd 脚本来完成。更多详细信息,请参阅《虚拟机安装指南》中有关 Windows 的部分。

一般来说,使用 VSS 接口,VM 只能访问自身的 VDI 快照(而非 VDI 克隆)。有一个可由 XenServer 管理员设置的标志,其中如果将 snapmanager=true 属性添加到 VM 的 other-config,便可使该 VM 能够导入其他 VM 的 VDI 快照。

警告:

这将暴露一个安全漏洞,使用时需谨慎。通过此功能,管理员可以使用 VSS 层生成的来宾系统可传送快照 ID,将 VSS 快照连接到其他 VM 以进行备份。

VSS 静止时段:系统将 Microsoft VSS 静止时段设置为 10 秒钟的非可配置值,因此快照很有可能无法按时完成。例如,如果 XAPI 后台程序在队列中又添加了其他块任务(例如 SR 扫描),则 VSS 快照可能会超时并失败。如果发生这种情况,应该重试该操作。

注意

连接到 VM 的 VBD 越多,达到此超时的可能性越大。Citrix 建议最多将 2 个 VBD 连接到 VM,以避免超时。但是,有一个解决方法可以解决此问题。如果 VM 的所有 VDI 托管在不同的 SR 上,使用超过 2 个 VBD 成功地生成基于 VSS 的 VM 快照的可能性就会成倍增加。

VSS 快照将所有磁盘连接到 VM:为存储在生成 VSS 快照时可用的所有数据,XAPI 管理器将为所有磁盘以及与可以使用 XenServer 存储管理器 API 生成快照的 VM 关联的 VM 元数据生成快照。如果 VSS 层请求只有一小部分磁盘的快照,那么生成的 VM 快照将不完整。

vm-snapshot-with-quiesce 生成可引导的快照 VM 映像:要实现这一目标,XenServer VSS 硬件提供程序将生成可写入的快照卷,其中包括引导卷的快照。

卷的 VSS 快照托管在 Windows 来宾系统的动态磁盘中:vm-snapshot-with-quiesce CLI 和 XenServer VSS 硬件提供程序不支持 Windows VM 的动态磁盘上托管的卷的快照。

注意:

使用 EqualLogic 或 NetApp 存储需要 Citrix XenServer 高级版或更高版本的许可证。要了解有关 XenServer 版本以及升级方式的详细信息,请单击此处访问 Citrix Web 站点。

注意:

不要忘记在 Windows 来宾系统中安装 Xen VSS 提供程序以便支持 VSS。使用随 Windows PV 驱动程序一起提供的 install-XenProvider.cmd 脚本执行此操作。更多详情,请参阅《虚拟机安装指南》中有关 Windows 的部分。

VM 保护和恢复

注意:

VM 保护和恢复需要使用 Citrix XenServer 铂金版。要了解有关 XenServer 版本以及升级方式的详细信息,请单击此处访问 Citrix Web 站点。

XenServer 的 VM 保护和恢复 (VMPR) 功能为关键的服务 VM 提供了一个简单的备份和还原实用程序。定期计划快照是自动生成的,当发生灾难时,将利用这些快照还原 VM。计划快照还可以自动存档到远程 CIFS 或 NFS 共享位置,从而使安全性又提升一个级别。

可以通过定义池级别的 VM 保护策略来实施"VM 保护和恢复",这些策略针对池中选定的 VM 制定快照计划。启用策略后,将以每小时、每天或每周的预定时间生成指定 VM 的快照,快照还可以自动存档(如果配置)。在一个池中可以启动多个策略,其范围可以覆盖多个 VM 并且可以制定不同的计划。

注意:

一个 VM 一次只能分配一个 VMPR 策略。

VM 存档文件夹的命名约定

使用 VMPR 时,将针对存档文件夹及其内容应用以下命名约定。存档文件夹的名称由 VM 名称和 VM UUID 的前 16 位字符组成。例如:

如果 VM 名称 = Win7_Test_1, VM UUID = cb53200c-bbd8-4c12-a076-e2eb29b38f06,则存档文件夹名称为 Win7_Test_1-cb53200c-bbd8-4c。

此文件夹包含存档的 VM 文件, 其格式为 YYYYMMDD-HHMM.xva。例如:

20100624-1830.xva

20100625-1830.xva

20100625-1830.xva

有关使用 VM 保护和恢复功能的详细信息,请参阅 XenCenter 联机帮助。

处理计算机故障

本部分详细介绍如何从各种故障方案中恢复。所有故障恢复方案都需要使用"备份和还原 XenServer 主机和 VM"一节中列出的一个或多个备份类型。

成员故障

如果缺少高可用性功能,主节点将通过接收常规检测信号消息检测成员的故障。如果在 600 秒内还没有接收到检测信号,主服务器就会认为该成员已停止活动。可通过下列两种方式从此问题中恢复:

- 修复停止活动的主机(例如,以物理方式重新引导主机)。还原与该成员的连接后,主服务器会再次将该成员标记为活动成员。
- 关闭主机并使用 xe host-forget CLI 命令指示主服务器忽略该成员节点。忘记该成员后,会将该成员上运行的所有 VM 标记为脱机,然后在其他 XenServer 主机上重新启动它们。请注意,确保 XenServer 主机确实脱机非常重要,否则可能会损坏 VM 数据。请注意,不要使用 xe host-forget 将您的池拆分为单一主机的多个池,因为这可能会导致这些池全都映射相同的共享存储并损坏 VM 数据。

警告:

- 如果您准备将已忽略的主机再次用作 XenServer 主机,请完全重新安装 XenServer 软件。
- 如果在该池上启用高可用性功能,则请勿使用 xe host-forget 命令。首先请禁用高可用性功能,然后忽略主机,接着重新启用高可用性功能。

成员 XenServer 主机出现故障后,某些 VM 可能仍然以运行状态进行注册。如果您确定 XenServer 成员主机确实已关闭,请使用 xe vm-reset-powerstate CLI 命令将 VM 的电源状态设置为 halted。有关详细信息,请参阅"vm-reset-powerstate"一节。

警告:

如果此命令使用不当,则会导致数据损坏。请仅在绝对必要时使用此命令。

在另一个 XenServer 主机上启动 VM 之前,还需要释放 VM 存储的锁定。SR 中的每个磁盘一次只能由一个主机使用,因此,在一个主机出现故障后,必须使磁盘可供其他 XenServer 主机访问。为此,请在池主服务器上针对任何受影响 VM 的磁盘所在的每个 SR 运行以下脚本:

/opt/xensource/sm/resetvdis.py <host_UUID> <SR_UUID> [master]

如果在出现崩溃时,出现故障的主机是 SR 主服务器(池主服务器或使用本地存储的 XenServer 主机),您只需要提供第三个字符串("master")。

警告:

在执行此命令之前,请务必确保主机已关闭。如果此命令使用不当,则会导致数据损 坏。

如果在运行上述脚本之前,尝试在另一个 XenServer 主机上启动 VM,则将收到下面的错误消息:VDI <UUID> already attached RW (VDI <UUID> 已经连接 RW)。

主服务器故障

如果需要,资源池的每个成员都将包含担任主服务器角色所需的所有信息。如果主节点发生故障,将依 次发生下列事件:

- 1. 如果禁用高可用性功能,则会自动选出另一个主服务器。
- 2. 如果未启用高可用性功能,则每个成员都将等待主服务器恢复。

此时如果主服务器恢复,它会与其成员重新建立通信,操作恢复正常。

如果主服务器已停用,您应该选择一个成员并在其上运行 xe pool-emergency-transition-to-master 命令。当该成员成为主服务器后,运行命令 xe pool-recover-slaves,这些成员此时将指向新的主服务器。

如果修复或替换用作原始主服务器的服务器,您只需启动服务器,安装 XenServer 主机软件,然后将它添加到池中。由于池中的 XenServer 主机强制为同类主机,因此实际上不需要将替换的服务器设为主服务器。

将成员 XenServer 主机转换为主服务器后,您还应检查默认池存储库是否设置了适当的值。通过使用 xe pool-param-list 命令并验证 default-SR 参数是否指向有效的存储库,可实现此操作。

池故障

如果您的整个资源池不幸发生故障,就需要从头开始重新创建池数据库。请务必使用 xe pool-dump-database CLI 命令定期备份池元数据(请参阅"pool-dump-database"一节)。

还原彻底出故障的池

1. 安装一组全新的主机。请不要在此阶段将这些主机组成池。

- 2. 对于任命为主服务器的主机,使用 xe pool-restore-database(请参阅"pool-restore-database"一节)命令从备份中还原池数据库。
- 3. 使用 XenCenter 连接到主服务器主机并确保所有共享存储和 VM 都再次可用。
- 4. 在已全新安装的其余成员主机上执行池加入操作,并在相应主机上启动 VM。

处理因配置错误导致的故障

如果物理主机可以运行但软件或主机配置被损坏,可按以下方式处理:

还原主机软件和配置

1. 运行以下命令:

xe host-restore host=<host> file-name=<hostbackup>

2. 重新引导到主机安装 CD 并选择 Restore from backup (从备份还原)。

物理机故障

如果物理主机发生故障,请使用下面列出的相应过程进行恢复。

警告:

所有曾在发生了故障的先前成员(或先前主机)上运行的 VM,在数据库中仍将被标记为 Running。这是出于安全考虑,因为在两个不同的主机上同时启动 VM 会导致磁盘严重损坏。如果确定计算机(和 VM)处于脱机状态,您可将 VM 电源状态重置为 Halted:

xe vm-reset-powerstate vm=<vm_uuid> --force

然后可使用 XenCenter 或 CLI 重新启动 VM。

用仍处于运行状态的成员替换发生故障的主服务器

1. 运行以下命令:

xe pool-emergency-transition-to-master
xe pool-recover-slaves

2. 如果命令成功,请重新启动 VM。

还原所有主机都发生故障的池

1. 运行以下命令:

xe pool-restore-database file-name=<backup>

警告:

只有当目标计算机具有合适数量的正确命名的 NIC 时,此命令才能成功。

2. 如果目标计算机具有与原始计算机不同的存储视图(例如,具有不同 IP 地址的块镜像),请使用 pbd-destroy 命令和 pbd-create 命令修改存储配置以重新创建存储配置。有关这些命令的文档,请 参阅"PBD 命令"一节。

- 3. 如果已创建新的存储配置,请使用 XenCenter 中的 pbd-plug 或存储 > 修复存储库菜单项应用新配置。
- 4. 重新启动所有 VM。

当 VM 存储不可用时还原 VM

1. 运行以下命令:

```
xe vm-import filename=<backup> metadata=true
```

2. 如果元数据导入失败,请运行以下命令:

```
xe vm-import filename=<backup> metadata=true --force
```

此命令将"尽最大努力"尝试还原 VM 元数据。

3. 重新启动所有 VM。

监视和管理 XenServer

通过 XenServer 和 XenCenter,可以访问当发生值得注意的事件时生成的警报。XenCenter 提供了组合和维护有关托管 VM、主机、存储库等对象的元数据的各种机制。

注意:

完整的监视和警报功能仅可用于 XenServer 高级版或更高版本。要了解有关 XenServer 版本以及如何升级的信息,请单击此处访问 Citrix Web 站点。

警报

XenServer 生成下列事件的警报。

可配置的警报:

- 新的 XenServer 修补程序可供使用
- 新的 XenServer 版本可供使用
- 新的 XenCenter 版本可供使用

XenCenter 生成的警报:

警报	说明
XenCenter 版本较旧	XenServer 需要使用更新的版本,但仍可连接到当前版本
XenCenter 过时	XenCenter 版本太旧,无法连接到XenServer
XenServer 过时	XenServer 版本较旧,当前 XenCenter 无法连接到它
许可证过期警报	您的 XenServer 许可证已过期
缺少 IQN 警报	XenServer 使用 iSCSI 存储,但主机 IQN 为空白
重复 IQN 警报	XenServer 使用 iSCSI 存储,但存在重复的主机 IQN

XenServer 生成的警报:

- · ha_host_failed
- · ha_host_was_fenced
- · ha_network_bonding_error
- · ha_pool_drop_in_plan_exists_for
- ha_pool_overcommitted
- · ha_protected_vm_restart_failed
- · ha_statefile_lost
- · host_clock_skew_detected
- · host_sync_data_failed
- · license_does_not_support_pooling
- · pbd_plug_failed_on_server_start
- · pool_master_transition

下列警报显示在 XenCenter 中的性能图表中。有关详细信息,请参阅 XenCenter 联机帮助:

- · vm_cloned
- · vm crashed
- · vm rebooted
- · vm resumed
- · vm_shutdown
- vm_started
- · vm_suspended

自定义警报

注意:

系统将按五分钟的最小间隔检查警报触发器(这样可以避免因检查这些条件而使系统承受过高的负荷并防止误报);如果设置的警报重复间隔小于此值,警报仍会按五分钟的最小间隔生成。

性能监视 perfmon 每隔 5 分钟运行一次,平均每隔 1 分钟从 XenServer 请求一次更新,但这些默认设置可以在 /etc/sysconfig/perfmon 中进行更改。

perfmon 每隔 5 分钟读取一次由在同一主机上运行的 XAPI 实例导出的性能变量的更新。这些变量分成两组,一组与主机本身相关,另一组与在此主机上运行的每个 VM 相关。对于每个 VM 和该主机来说,perfmon 读入 other-config:perfmon 参数,并使用此字符串来确定应监视哪些变量以及在哪些情况下生成消息。

vm:other-config:perfmon 和 host:other-config:perfmon 值由类似于以下字符串的 XML 字符串构成:

有效的 VM 元素

name

变量的名称(无默认名称)。如果名称值为 cpu_usage、network_usage 或 disk_usage 中的任意一个,则当使用这些值时,默认情况下不要求使用 rrd_regex 和 alarm_trigger_sense参数。

alarm priority

生成消息的优先级(默认为5)

alarm_trigger_level

触发警报的值的级别(无默认级别)

alarm trigger sense

如果 alarm_trigger_level 是最大值,则为 high;如果 alarm_trigger_level 是最小值,则为 low。(默认为 high)

alarm_trigger_period

能够接收高于或低于警报阈值的值的时间段(秒),超过此秒数将发送警报(默认为 60)

alarm_auto_inhibit_period

在发送警报后多久(秒)禁用此警报(默认为 3600)

consolidation fn

将 rrd_updates 提供的变量合并到一个值中的方法(默认使用 sum,另一种选择是使用 average)

rrd regex

与 xe vm-data-source-list uuid=<<u>vmuuid</u>> 命令返回的变量的名称相匹配的正则表达式,用于计算统计值。此参数包含已命名的变量 cpu_usage、network_usage 和 disk_usage 的默认值。如果指定了正则表达式,将使用根据 consolidation_fn 指定的方法,对 xe vm-data-source-list返回的项中名称与指定的正则表达式匹配的所有项的值进行合并。

有效主机元素

name

变量的名称(无默认名称)

alarm_priority

生成消息的优先级(默认为5)

alarm trigger level

触发警报的值的级别(无默认级别)

alarm_trigger_sense

如果 alarm_trigger_level 是最大值,则为 high;如果 alarm_trigger_level 是最小值,则为 low。(默认为 high)

alarm_trigger_period

能够接收高于或低于警报阈值的值的时间段(秒),超过此秒数将发送警报(默认为 60)

alarm auto inhibit period

在发送警报后多久(秒)禁用此警报(默认为 3600)

consolidation fn

将 rrd_updates 提供的变量合并到一个值中的方法(默认使用 sum,另一种选择是使用 average)

rrd_regex

与 xe vm-data-source-list uuid=<<u>vmuuid</u>> 命令返回的变量的名称相匹配的正则表达式,用于计算统计值。此参数包含已命名的变量 cpu_usage 和 network_usage 的默认值。如果指定了正则表达式,将使用根据 consolidation_fn 指定的方法,对 xe vm-data-source-list 返回的项中名称与指定的正则表达式匹配的所有项的值进行合并。

配置电子邮件警报

注意:

电子邮件警报仅在具有 XenServer 高级版或更高版本的池中可用。要了解有关 XenServer 版本以及如何升级的信息,请单击此处访问 Citrix Web 站点。

除了可通过 XenServer GUI 查看 XenCenter 生成的警报外,这些警报还能以电子邮件的形式自动发送给资源池管理员。要配置电子邮件警报,请指定电子邮件地址和 SMTP 服务器:

```
pool:other-config:mail-destination=<joe.bloggs@domain.tld>
pool:other-config:ssmtp-mailhub=<smtp.domain.tld[:port]>
```

在发送电子邮件之前,还可以在消息中指定优先级字段的最低值:

pool:other-config:mail-min-priority=<level>

默认优先级为 5。

注意:

某些 SMTP 服务器只转发地址使用 FQDN 的邮件。如果您发现无法转发电子邮件,可能是由于此原因导致,在这种情况下,可以将服务器主机名设置为 FQDN,以便通过它连接到您的邮件服务器。

自定义字段和标记

XenCenter 支持创建标记和自定义字段,这样,您可以组织和快速搜索 VM、存储等对象。有关详细信息,请参阅 XenCenter 联机帮助。

自定义搜索

XenCenter 支持创建自定义搜索。可以导出和导入搜索,还可以在导航面板中显示搜索结果。有关详细信息,请参阅 XenCenter 联机帮助。

确定物理总线适配器的吞吐量

对于 FC、SAS 和 iSCSI HBA,您可以通过以下步骤确定 PBD 的网络吞吐量。

确定 PBD 吞吐量

- 1. 列出主机上的 PBD。
- 2. 确定哪个 LUN 在哪个 PBD 上路由。
- 3. 对于每个 PBD 和 SR,列出 SR 上引用 VDI 的 VBD。
- 4. 针对主机上连接到 VM 的所有活动 VBD,计算组合吞吐量。

针对 iSCSI 和 NFS 存储,检查网络统计,以确定阵列上是否存在吞吐量瓶颈,或者 PBD 是否已饱和。

故障排除

Citrix 提供两种形式的支持服务:Citrix 技术支持 Web 站点上的免费自助支持、以及付费的支持服务(可以从支持站点购买)。通过 Citrix 技术支持,您可以在遇到技术问题时,打开在线支持案例或者通过电话与支持中心联系。

Citrix 知识中心包含许多资源,当您遇到异常行为、崩溃或其他问题时,这些资源可能会对您有所帮助。资源包括:支持论坛、知识库文章和产品文档。

本章内容旨在帮助您解决 XenServer 主机的技术问题;此外还介绍了应用程序日志的位置和其他有助于 Citrix 解决方案提供商和 Citrix 跟踪并解决问题的其他信息,如果本章内容不能帮助您解决问题,这些信息也对您有所帮助。

《XenServer 安装指南》中介绍了对安装问题的故障诊断。《XenServer 虚拟机安装指南》中介绍了对虚拟机问题的故障诊断。

重要提示:

我们建议您仅在 Citrix 解决方案提供商或 Citrix 技术支持人员的指导下利用本章的故障诊断信息解决问题。

XenServer 主机日志

XenCenter 可用于收集 XenServer 主机信息。单击工具菜单中的获取服务器状态报告...,打开服务器状态报告向导。您可以从不同类型的信息(各种日志、故障转储等)列表中进行选择。这些信息将编译并下载到正在运行 XenCenter 的计算机上。有关详细信息,请参阅 XenCenter 帮助。

此外,XenServer 主机包括多个 CLI 命令,通过这些命令,可以方便地使用 xen-bugtool 实用程序整理日志输出和系统信息的各种其他比特。使用 xe 命令 host-bugreport-upload 可以收集适当的日志文件和系统信息并将其上载到 Citrix 支持 ftp 站点。有关此命令及其可选参数的完整说明,请参阅"host-bugreport-upload"一节。如果要求您将故障转储发送到 Citrix 支持,请使用 xe 命令 host-crashdump-upload。有关此命令及其可选参数的完整说明,请参阅"host-crashdump-upload"一节。

可能会将敏感信息写入 XenServer 主机日志。

默认情况下,服务器日志仅报告错误和警告。如果需要查看更多详细信息,您可以启用更详细的日志记录。若要执行此操作,请使用 host-loglevel-set 命令:

host-loglevel-set log-level=level

其中 level 可以是 0、1、2、3 或 4,0 表示最详细,而 4表示最简练。

默认设置是每个文件保持 20 个循环,logrotate 命令每天运行。

将主机日志消息发送到中央服务器

您可以将 XenServer 主机配置为将日志写入远程服务器,而不是写入控制域文件系统。远程服务器必须运行 syslogd 后台程序,以接收日志并将它们正确地聚合。Syslogd 后台程序是 Linux 和 Unix 的所有版本的标准部件,Windows 和其他操作系统可以使用第三方版本。

将日志写入远程服务器

- 1. 将 syslog_destination 参数设置为要在其中写入日志的远程服务器的主机名或 IP 地址:
 - xe host-param-set uuid=<xenserver_host_uuid> logging:syslog_destination=<hostname>
- 2. 发出以下命令:

xe host-syslog-reconfigure uuid=<xenserver_host_uuid>

以强制执行更改。(也可以通过指定 host 参数远程执行此命令。)

XenCenter 日志

XenCenter 还提供客户端日志。此文件包括使用 XenCenter 时执行的所有操作以及出现的所有错误的完整描述,还包含事件的信息记录,以便为您提供发生的各种操作的审计追踪。XenCenter 日志文件存储在您的配置文件文件夹中。如果 XenCenter 安装在 Windows XP 中,则路径为

%userprofile%\AppData\Citrix\XenCenter\logs\XenCenter.log

如果 XenCenter 安装在 Windows Vista 中,则路径为

%userprofile%\AppData\Citrix\Roaming\XenCenter\logs\XenCenter.log

要快速找到 XenCenter 日志文件,例如要打开该日志文件或通过电子邮件发送它的时候,可单击 XenCenter 帮助菜单中的查看应用程序日志文件。

对 XenCenter 和 XenServer 主机之间的连接进行故障排除

如果您在将 XenServer 连接到 XenCenter 主机时遇到问题,请检查以下内容:

• XenCenter 版本是否低于尝试连接到的 XenServer 主机版本?

XenCenter 应用程序是向后兼容的,可以与旧版本的 XenServer 主机正常通信,但是旧版本的 XenCenter 无法与较新版本的 XenServer 主机正常通信。

要更正此问题,请安装与 XenCenter 主机版本相同的 XenServer 版本或更新的版本。

• 您的许可证是否有效?

您可以在 XenServer 中的 Licenses(许可证)部分下 XenCenter 主机常规选项卡中查看许可证密钥的到期日期。

此外,如果您已将软件从版本 3.2.0 升级到当前版本,则应已接收并应用了新的许可证文件。

有关授权主机的详细信息,请参阅《XenServer 安装指南》中的"XenServer 许可"一章。

• XenServer 主机使用 HTTPS 通过端口 443 与 XenCenter 通信(使用 XenAPI 进行命令和响应的双向连接),并通过端口 5900 与半虚拟化的 Linux VM 进行图形 VNC 连接。如果在 XenServer 主机和运行客户端软件的计算机之间启用了防火墙,请确保防火墙允许通过这些端口的通信。

附录 A. 命令行界面

本章介绍 XenServer 命令行界面 (CLI)。xe CLI 支持通过编写脚本来自动完成系统管理任务,并允许将 XenServer 集成到现有 IT 基础结构中。

默认情况下,xe 命令行界面安装在 XenServer 主机上并包含在 XenCenter 中。对于 Linux,还可以使 用独立远程 CLI。

在 Windows 上, xe.exe CLI 可执行文件随 XenCenter 一起安装。

要使用该可执行文件,请打开 Windows 命令提示符窗口,将目录更改为该文件所在的目录(通常为 C: \Program Files\XenSource\XenCenter),或者将该文件的安装位置添加到您的系统路径。

在基于 RPM 的版本(如 Red Hat 和 CentOS)上,可以从 XenServer 主安装 ISO 上名为 xe-cli-6.00-@BUILD NUMBER@.i386.rpm 的 RPM 安装独立的 xe CLI 可执行文件,如下所示:

rpm -ivh xe-cli-6.00-@BUILD_NUMBER@.i386.rpm

要获得有关主机上的 CLI 命令的基本帮助,请键入:

xe help command

要显示最常使用的 xe 命令的列表,请键入:

xe help

或者,要显示所有 xe 命令的列表,请键入:

xe help --all

基本 xe 语法

所有 XenServer xe CLI 命令的基本语法是:

xe <command-name> <argument=value> <argument=value> ...

每个特定命令都有自己的一组参数,参数形式为 argument=value。一些命令具有必需参数,大多数命令都多少有些可选参数。通常情况下,如果调用一个命令时未使用某些可选参数,该命令将假定这些可选参数使用默认值。

如果远程执行 xe 命令,则会用到其他连接和身份验证参数。这些参数也采用 argument=argument_value 的形式。

server 参数用于指定主机名或 IP 地址。username 和 password 参数用于指定凭据。可以指定 password-file 参数,而不直接指定密码。在这种情况下,请尝试从指定文件中读取密码(如有必要,请去掉该文件末尾的回车符 (CR) 和 换行符(LF))并用该密码进行连接。与直接在命令行指定密码相比,这样做更安全。

可选 port 参数可用于指定远程 XenServer 主机上的代理端口(默认为 443)。

示例:在本地 XenServer 主机上:

xe vm-list

示例:在远程 XenServer 主机上:

xe vm-list -user <username> -password <password> -server <hostname>

速记语法也适用于远程连接参数:

-u	username
-pw	password
-pwf	password file
-p	port
-S	server

示例:在远程 XenServer 主机上:

xe vm-list -u <myuser> -pw <mypassword> -s <hostname>

也可以通过采用逗号分隔键/值对形式的环境变量 XE_EXTRA_ARGS 设置参数。例如,为了在远程 XenServer 主机上运行的一个 XenServer 主机中输入命令,可以执行以下操作:

export XE_EXTRA_ARGS="server=jeffbeck,port=443,username=root,password=pass"

此命令意味着您不再需要在执行的每个 xe 命令中指定远程 XenServer 主机参数。

使用 XE_EXTRA_ARGS 环境变量,也可以在对远程 XenServer 主机执行 xe 命令时对命令启用 Tab 键自动补齐功能,该功能在默认情况下处于禁用状态。

特殊字符和语法

要在 xe 命令行中指定参数/值对,请写入:

argument=value

除非值中包含空格,否则请勿使用引号。参数名称、等号 (=) 和值之间不应存在任何空格。不符合此格式的参数都将被忽略。

对于包含空格的值,请写入:

argument="value with spaces"

如果使用 CLI 登录到 XenServer 主机,则命令将具有 Tab 键自动补齐功能,该功能类似于标准 Linux Bash Shell 中的 Tab 键自动补齐功能。如果您键入的内容可以确定一个唯一的命令,例如 xe vm-l,然后按 Tab 键,则该命令的其余部分也将显示出来。如果多个命令都以 vm-l 开头,则再次按 Tab 将列出所有可能的命令。这对在命令中指定对象 UUID 特别有用。

注意:

如果在远程 XenServer 主机上执行命令,Tab 键自动补齐功能将无法正常运行。但是,如果将服务器、用户名和密码置于机器上名为 XE_EXTRA_ARGS 的环境变量中,并从该机器输入命令,则可以启用 Tab 键自动补齐。有关详细信息,请参阅"基本 xe 语法"一节。

命令类型

一般而言,CLI 命令可以分为两种:低级命令和高级命令,前一种命令侧重于 API 对象的列表和参数操作,后一种命令用于在更加抽象的级别与 VM 或主机交互。低级命令包括:

- <class>-list
- <class>-param-get
- <class>-param-set
- <class>-param-list

- <class>-param-add
- <class>-param-remove
- <class>-param-clear

其中 $\langle class \rangle$ 可以是以下任一项:

- bond
- · console
- host
- · host-crashdump
- · host-cpu
- · network
- · patch
- pbd
- pif
- pool
- sm
- sr
- task
- · template
- vbd
- vdi
- vif
- vlan
- vm

请注意,并不是 <class> 的每个值都具有完整的 <class>-param- 命令集;其中一些值只具有子集。

参数类型

使用 xe 命令处理的对象具有标识这些对象并定义其状态的参数集。

大多数参数只使用单一值。例如,VM 的 name-label 参数包含单一字符串值。在参数列表命令(如 xe vm-param-list)的输出中,这样的参数都有括在括号中的指示,用来定义它们为可读和可写,还是为只读。例如,指定 VM 上的 xe vm-param-list 输出可能包含下列行:

```
user-version ( RW): 1
  is-control-domain ( RO): false
```

第一个参数 user-version 为写入参数,值为 1。第二个参数 is-control-domain 为只读参数,值为 false。

其他两个类型的参数都是多值参数。set 参数包含一系列值。map 参数是一组键/值对。例如,请参阅下面指定 VM 上的 xe vm-param-list 输出示例的摘录:

```
platform (MRW): acpi: true; apic: true; pae: true; nx: false
allowed-operations (SRO): pause; clean_shutdown; clean_reboot; \
hard_shutdown; hard_reboot; suspend
```

platform 参数包含表示键/值对的一系列项。键名后跟冒号字符 (:)。各键/值对之间用分号字符 (;) 分隔。RW 前面的 M 表示这是一个 map 参数,既可读又可写。allowed-operations 参数包含构成一组项的列表。RO 前面的 S 表示这是一个 set 参数,可读但不可写。

在 xe 命令中,如果您希望按 map 参数过滤或者设置 map 参数,请在 map 参数名称 与键/值对之间使用:例如,要将 VM 的 other-config 参数的 foo 键值设置为 baa,使用的命令应为:

xe vm-param-set uuid=<VM uuid> other-config:foo=baa

注意:

在以前的版本中,短划线(-)分隔符用于指定 map 参数。此语法现在仍然有效,但不建议使用。

低级参数命令

有多个命令可在对象参数上运行:<*class*>-param-get、<*class*>-param-set、<*class*>-param-add、<*class*>-param-remove、<*class*>-param-clear 和 <*class*>-param-list。其中的每个命令都利用 *uuid* 参数指定特殊对象。这些命令都是低级命令,必须由 UUID 而不是 VM 名称标签处理。

<class>-param-list uuid=<uuid>

列出所有参数及其相关的值。与 class-list 命令不同,此命令将列出相当多的字段的值。

- <<u>class</u>>-param-get uuid=<<u>uuid</u>> param-name=<<u>parameter</u>> [param-key=<<u>key</u>>] 返回特殊参数的值。如果此参数为 map,则指定 param-key 将使该值与 map 中的键关联。如果不 指定 param-key,或者该参数为 set,则它将返回 set 或 map 的字符串表示形式。
- <class>-param-set uuid=<uuid> param=<value>...
 设置一个或多个参数的值。

<class>-param-add uuid=<uuid> param-name=<parameter> [<key>=<value>...] [param-key=<key>]

添加到 map 或 set 参数。如果该参数为 map,则使用 <<u>key</u>>=<<u>value</u>> 语法添加键/值对。如果该参数为 set,则使用 <<u>param-key</u>>=<<u>key</u>> 语法添加键。

- <<u>class</u>>-param-remove uuid=<<u>uuid</u>> param-name=<<u>parameter</u>> param-key=<<u>key</u>>
 从 map 删除键/值对,或者从 set 删除键。
- <<u>class</u>>-param-clear uuid=<<u>uuid</u>> param-name=<<u>parameter</u>>
 完全清除 set 或 map。

低级列表命令

<<u>class</u>>-list 命令用于列出 <<u>class</u>> 类型的对象。默认情况下,它将列出所有对象,并列出参数的子集。可以通过两种方法修改此行为:该命令可过滤对象以便仅输出子集,并且可以修改列出的参数。

要更改列出的参数,应将参数 params 指定为所需参数的以逗号分隔的列表。例如:

xe vm-list params=name-label,other-config

或者,要列出所有参数,请使用以下语法:

xe vm-list params=all

请注意,某些需要进行大量计算的参数不会通过列表命令显示出来。例如,这些参数将显示为:

allowed-VBD-devices (SRO): <expensive field>

要获取这些字段,请使用 <class>-param-list 或 <class>-param-get

要过滤列表,CLI 需要将参数值与在命令行上指定的参数值相匹配,以便只列出满足所有指定的限制的对象。例如:

xe vm-list HVM-boot-policy="BIOS order" power-state=halted

此命令将只列出满足以下条件的 VM: power-state 和 HVM-boot-policy 这两个字段的值分别为 halted 和 BIOS order。

还可以根据 map 中的键值或 set 中存在的值来过滤列表。其中的第一个值的语法是 map-name:key=value,第二个值的语法是 set-name:contains=value

对于脚本来说,一种有用的技术是在命令行上传递 --minimal,以使 xe 只列出以逗号分隔的列表中的第一个字段。举例来说,在安装有三个 VM 的 XenServer 主机上,xe vm-list --minimal 命令为这些 VM 提供了三个 UUID,例如:

 $a85d6717-7264-d00e-069b-3b1d19d56ad9, aaa3eec5-9499-bcf3-4c03-af10baea96b7, \\ 42c044de-df69-4b30-89d9-2c199564581d$

xe 命令参考

本部分提供 xe 命令参考。参考按 xe 命令处理的对象分组,并按字母顺序列出。

设备命令

用来创建和修改 VM 设备(又称 vApp)的命令。有关 vApp 的详细信息,请参阅《XenServer 虚拟机安装指南》。

设备参数

设备命令具有下列参数:

参数名称	说明	类型
uuid	设备 uuid	必需
name-description	设备说明	可选
paused		可选
force	强制关闭	可选

appliance-assert-can-be-recovered

appliance-assert-can-be-recovered uuid=<appliance-uuid> database:vdi-uuid=<vdiuuid>

测试存储是否可用于恢复此 VM 设备/vApp。

appliance-create

appliance-create name-label=<name-label> [name-description=<name-description>]

创建设备/vApp。例如:

xe appliance-create name-label=my_appliance

向设备中添加 VM:

```
xe vm-param-set uuid=<VM-UUID> appliance=<appliance-uuid> \
xe vm-param-set uuid=<VM-UUID> appliance=<appliance-uuid>
```

appliance-destroy

appliance-destroy uuid=<appliance-uuid>

销毁设备/vApp。例如:

xe appliance-destroy uuid=<appliance-uuid>

appliance-recover

appliance-recover uuid=<appliance-uuid> database:vdi-uuid>
[paused=<true/false>]

从提供的 VDI 中包含的数据库恢复 VM 设备/vAPP。

appliance-shutdown

appliance-shutdown uuid=<appliance-uuid>[force=<true|false>]

关闭设备/vApp 中的所有 VM。例如:

xe appliance-shutdown uuid=<appliance-uuid>

appliance-start

appliance-start uuid=<appliance-uuid> [paused=<true | false>]

启动设备/vApp。例如:

xe appliance-start uuid=<appliance-uuid>

审核命令

审核命令下载池中 RBAC 审核文件的所有可用记录。如果可选参数 since 存在,该命令将仅下载自该特定时间点开始的记录。

audit-log-get 参数

audit-log-get 具有下列参数:

参数名称	说明	类型
filename	将池的审核日志写入 <filename></filename>	必需
since	特定的日期/时间点	可选

audit-log-get

audit-log-get [since=<timestamp>] filename=<filename>

例如,要获取自某个精确的毫秒时间戳以来的池审核记录,请运行以下命令:

运行以下命令:

xe audit-log-get since=2009-09-24T17:56:20.530Z \
filename=/tmp/auditlog-pool-actions.out

绑定命令

与网络绑定一起使用的命令,用于提供物理接口故障转移恢复能力。有关详细信息,请参阅"在独立主机上创建 NIC 绑定"一节。

绑定对象是将主节点和成员 PIF 粘附在一起的引用对象。主节点 PIF 是必须用作整体 PIF 以引用绑定的绑定接口。成员 PIF 是组合成高级绑定接口的两个或更多个物理接口的集合。

绑定参数

绑定具有下列参数:

参数名称	说明	类型
uuid	绑定的唯一标识符/对象引用	只读
master	主节点绑定 PIF 的 UUID	只读
members	基础绑定 PIF 的 UUID 集	只读 set 参数

bond-create

bond-create network-uuid=<network_uuid> pif-uuids=<pif_uuid_1,pif_uuid_2,...>

在通过现有 PIF 对象列表指定的网络上创建绑定网络接口。在以下情况下,该命令将失败:PIF 已位于另一绑定、其中的某个成员具有 VLAN 标记集、引用的 PIF 不在同一 XenServer 主机上,或者提供的 PIF 的数量低于两个。

bond-destroy

host-bond-destroy uuid=<bond_uuid>

从 XenServer 主机删除由绑定接口的 UUID 指定的相应绑定接口。

CD 命令

与 XenServer 主机上的物理 CD/DVD 驱动器一起使用的命令。

CD 参数

CD 具有下列参数:

参数名称	说明	类型
uuid	CD 的唯一标识符/对象引用	只读
name-label	CD 的名称	读取/写入
name-description	CD 的说明文本	读取/写入
allowed-operations	可对此 CD 执行的操作的列表	只读 set 参数
current-operations	当前正对此 CD 执行的操作的列表	只读 set 参数
sr-uuid	此 CD 所属的 SR 的唯一标识符/对象引用	只读
sr-name-label	此 CD 所属的 SR 的名称	只读
vbd-uuids	连接到此 CD 的 VM 上的 VBD 的唯一标识符列表	只读 set 参数
crashdump-uuids	故障转储无法写入 CD,因而不能在 CD上使用	只读 set 参数

参数名称	说明	类型
virtual-size	CD 在 VM 中显示时的大小,以字节为单位	只读
physical-Utilization	CD 映像当前在 SR 上占用的物理空间大小,以字节为单位	只读
type	对 CD,将此参数设置为 User	只读
sharable	CD 驱动器是否可共享。默认为 false。	只读
read-only	CD 是否只读,如果为 false,则设备可写入。对 CD 始终为 true。	只读
storage-lock	如果在存储级别锁定此磁盘,则为 true	只读
parent	如果此 CD 是链的一部分,则引用父磁 盘	只读
missing	如果 SR 扫描操作报告此 CD 未在磁盘上显示,则为 true	只读
other-config	为 CD 指定其他配置参数的键/值对列表	读取/写入 map 参数
location	装载设备的路径	只读
managed	如果设备是托管的,则为 true	只读
xenstore-data	插入到 xenstore 树中的数据	只读 map 参数
sm-config	存储管理器设备配置键的名称和描述	只读 map 参数
is-a-snapshot	如果此模板为 CD 快照,则为 true	只读
snapshot_of	此模板属于其快照的 CD 的 UUID	只读
snapshots	根据此 CD 生成的任何快照的 UUID	只读
snapshot_time	快照操作的时间戳	只读

cd-list

cd-list [params=<param1,param2,...>] [parameter=<parameter_value>...]

列出 XenServer 主机或池上的 CD 和 ISO (CD 映像文件) ,按可选参数 params 过滤。

如果使用可选参数 params,则 params 的值是一个字符串,其中包含您希望显示的此对象的参数列表。或者,可以使用关键字 a11 显示所有参数。如果不使用 params,则返回的列表将显示所有可用参数的默认子集。

可选参数可以为 CD 参数部分开头列出的参数中的任意数个。

控制台命令

与控制台一起使用的命令。

可以使用标准对象列表命令 (xe console-list) 和标准参数命令控制的参数列出控制台对象。有关详细信息,请参阅"低级参数命令"一节。

控制台参数

控制台具有下列参数:

参数名称	说明	类型
uuid	控制台的唯一标识符/对象引用	只读
vm-uuid	打开控制台的 VM 的唯一标识符/对象引用	只读
vm-name-label	打开控制台的 VM 的名称	只读
protocol	此控制台使用的协议。可能的值为 vt100(VT100 终端)、rfb(远程帧 缓冲协议,用于 VNC)或 rdp(远程桌面协议)	只读
location	控制台服务的 URI	只读
other-config	用于指定控制台其他配置参数的键/值对 的列表。	读取/写入 map 参数

灾难恢复 (DR) 命令

用来在发生灾难时恢复 VM 的命令

drtask-create

drtask-create type=<type> sr-whitelist=<sr-white-list> device-config=<device-config> 创建灾难恢复任务。例如,要连接到 iSCSI SR 以准备进行灾难恢复,请运行以下命令:

```
xe dr-task-create type=lvmoiscsi device-config:target=<target-ip-address> \
   device-config:targetIQN=<targetIQN> device-config:SCSIid=<SCSIid> \
   sr-whitelist=<sr-uuid-list>
```

注意:

sr-whitelist 将列出 SR UUID,drtask-create 将只引入并连接到具有白名单上所列某个 UUID 的 SR

drtask-destroy

drtask-destroy uuid=<dr-task-uuid>

销毁灾难恢复任务并忘记所引入的 SR。

vm-assert-can-be-recovered

vm-assert-can-be-recovered uuid=<<u>vm-uuid</u>> database:vdi-uuid=<<u>vdi-uuid</u>>

测试存储是否可用于恢复此 VM。

appliance-assert-can-be-recovered

appliance-assert-can-be-recovered uuid=<appliance-uuid> database:vdi-uuid=<vdiuuid>

检查包含设备/vAPP 磁盘的存储是否可见。

appliance-recover

```
appliance-recover uuid=<appliance-uuid> database:vdi-uuid=<vdi-uuid> [force=<true/false>]
```

从提供的 VDI 中包含的数据库恢复设备/vAPP。

vm-recover

```
vm-recover uuid=<vm-uuid> database:vdi-uuid=<vdi-uuid> [force=<true | false>]
```

从提供的 VDI 中包含的数据库恢复 VM。

sr-enable-database-replication

```
sr-enable-database-replication uuid=<sr_uuid>
```

启用以指定(共享) SR 为目标的 xapi 数据库复制。例如:

```
xe sr-enable-database-replication uuid=<sr-uuid>
```

sr-disable-database-replication

```
sr-disable-database-replication uuid=<sr_uuid>
```

禁用以指定 SR 为目标的 xapi 数据库复制。例如:

```
xe sr-enable-database-replication uuid=<sr-uuid>
```

示例用法

以下示例显示上下文中的 DR CLI 命令:

在主站点上,启用数据库复制:

```
xe sr-database-replication uuid=<sr=uuid>
```

发生灾难时,在辅助站点上连接到 SR(请注意 device-config 与 sr-probe 具有相同的字段):

```
xe drtask-create type=lvmoiscsi \
  device-config:target=<target ip address> \
  device-config:targetIQN=<target-iqn> \
  device-config:SCSIid=<scsi-id> \
  sr-whitelist=<sr-uuid>
```

在 SR 上查找数据库 VDI:

```
xe vdi-list sr-uuid=<<u>sr-uuid</u>> type=Metadata
```

在数据库 VDI 中查询存在的 VM:

```
xe vm-list database:vdi-uuid=<vdi-uuid>
```

恢复 VM:

```
xe vm-recover uuid=<<u>vm-uuid</u>> database:vdi-uuid=<<u>vdi-uuid</u>>
```

销毁 DR 任务;由 DR 任务引入但并非 VM 所需的任何 SR 都将被销毁:

```
xe drtask-destroy uuid=<drtask-uuid>
```

事件命令

与事件一起使用的命令。

事件类

下表列出了事件类:

类名称	说明
pool	物理主机的池
vm	虚拟机
host	物理主机
network	虚拟网络
vif	虚拟网络接口
pif	物理网络接口(将独立的 VLAN 表示为多个 PIF)
sr	存储库
vdi	虚拟磁盘映像
vbd	虚拟块设备
pbd	物理块设备,主机可通过这些设备访问 SR

event-wait

event-wait class=<class_name> [<param-name>=<param_value>] [<param-name>=/
=<param_value>]

在满足命令行中给定条件的对象出现之前,将一直阻止其他命令执行任务。x=y 表示"等待字段 x 取值为 y",x=/=y 表示"等待字段 x 取值为除 y 之外的任何值"。

示例:等待特定 VM 运行。

xe event-wait class=vm name-label=myvm power-state=running

在名为 myvm 的 VM 的 power-state 为"running"之前,将一直阻止其他命令。

示例:等待特定 VM 重新引导:

xe event-wait class=vm uuid=\$VM start-time=/=\$(xe vm-list uuid=\$VM params=start-time --minimal)

在 UUID 为 \$VM 的 VM 重新引导(即,具有不同的 start-time 值)之前,阻止执行其他命令。

类名称可以是在本部分开头列出的事件类中的任何类,参数可以是在 CLI 命令 class-param-list 中列出的任何参数。

GPU 命令

用来处理物理 GPU、GPU 组和虚拟 GPU 的命令。

可以使用标准对象列表命令(xe pgpu-list、xe gpu-group-list 和 xe vgpu-list)及由标准参数命令处理的参数来列出 GPU 对象。有关详细信息,请参阅"低级参数命令"一节。

物理 GPU (pGPU) 参数

pGPUs 具有下列参数:

参数名称	说明	类型
uuid	pGPU 的唯一标识符/对象引 用	只读
vendor-name	pGPU 的供应商名称	只读
device-name	供应商分配给此 pGPU 型号的名称	只读
gpu-group-uuid	XenServer 已自动将此 pGPU 分配到的 GPU 组的唯一标识 符/对象引用;池中各主机上 相同的 pGPU 将组合到一起	只读
gpu-group-name-label	将 pGPU 分配到的 GPU 组的 名称	只读
host-uuid	此 pGPU 连接到的 XenServer 主机的唯一标识 符/对象引用	只读
host-name-label	此 pGPU 连接到的 XenServer 主机的名称	只读
pci-id	PCI 标识符	只读
dependencies	列出传递到同一个 VM 的相 关 PCI 设备	读取/写入 map 参数
other-config	为 pGPU 指定其他配置参数的键/值对列表	读取/写入 map 参数

GPU 组参数

GPU 组具有下列参数:

参数名称	说明	类型
uuid	GPU 组的唯一标识符/对象引 用	只读
name-label	GPU 组的名称	读取/写入
name-description	GPU 组的描述性文本	读取/写入
VGPU-uuids	列出 GPU 组中 vGPU 的唯一 标识符/对象引用	只读 set 参数
PGPU-uuids	列出 GPU 组中 pGPU 的唯一 标识符/对象引用	只读 set 参数
other-config	键/值对列表,用于指定 GPU 组的其他配置参数。	读取/写入 map 参数

虚拟 GPU (vGPU) 参数

vGPU 具有下列参数:

参数名称	说明	类型
uuid	vGPU 的唯一标识符/对象引 用	只读
vm-uuid	将 vGPU 分配到的 VM 的唯一标识符/对象引用	只读
vm-name-label	将 vGPU 分配到的 VM 的名称	只读
gpu-group-uuid	vGPU 所属的 GPU 组的唯一 标识符/对象引用	只读
gpu-group-name-label	vGPU 所属的 GPU 组的名称	只读
currently-attached	如果具有 GPU 传递功能的 VM 正在运行,则为 True, 否则为 false	只读
other-config	为 vGPU 指定其他配置参数的键/值对列表	读取/写入 map 参数

vgpu-create

vgpu-create vm-uuid=<uuid_of_vm> gpu_group_uuid=<uuid_of_gpu_group>

创建 vGPU。此命令将 VM 连接到指定的 GPU 组。

vgpu-destroy

vgpu-destroy uuid=<uuid_of_vgpu>

销毁 vGPU。此命令将 VM 与关联的 GPU 组分离。

主机命令

与 XenServer 主机交互的命令。

XenServer 主机是运行 XenServer 软件的物理服务器。在这些主机上运行的 VM 受具有特权的虚拟机 (称为控制域或域 0)的控制。

可以使用标准对象列表命令(xe host-list、xe host-cpu-list 以及 xe host-crashdump-list)和标准参数命令控制的参数列出 XenServer 主机对象。有关详细信息,请参阅"低级参数命令"一节。

主机选择器

此处列出的多个命令具有用于选择在其上执行操作的一个或多个 XenServer 主机的通用机制。最简单的方式是提供参数 $host=<uuid_or_name_label>$ 。也可以通过按字段值过滤主机的完整列表,也可以指定 XenServer 主机。例如,指定 enabled=true 可选择 enabled 字段等于 true 的所有 XenServer 主机。如果有多个匹配的 XenServer 主机并且操作可以在多个 XenServer 主机上执行,则必须指定选项 --multiple 才能执行操作。本部分的开头介绍了可以匹配的参数的完整列表,通过运行 xe host-list params=all 命令可获得该列表。如果未提供选择 xenServer 主机的参数,将在所有 xenServer 主机上执行操作。

主机参数

XenServer 主机具有下列参数:

		类型
uuid	XenServer 主机的唯一标识符/对象引用	只读
name-label	XenServer 主机的名称	读取/写入
name-description	XenServer 主机的描述字符 串	只读
enabled	如果禁用了主机(这将阻止任何新 VM 在其上启动,准备使 XenServer 主机关闭或重新引导),则为 false;如果当前启用了主机,则为true	只读
API-version-major	主版本号	只读
API-version-minor	次版本号	只读
API-version-vendor	API 供应商的标识	只读
API-version-vendor-implementation	供应商实现的详细信息	只读 map 参数
logging	日志记录配置	读取/写入 map 参数
suspend-image-sr-uuid	挂起的映像所在 SR 的唯一标识符/对象引用	读取/写入
crash-dump-sr-uuid	故障转储所在的 SR 的唯一标识符/对象引用	读取/写入
software-version	版本控制参数及其值的列表	只读 map 参数
capabilities	XenServer 主机可以运行的 Xen 版本列表	只读 set 参数
other-config	为 XenServer 主机指定其他配置参数的键/值对列表	读取/写入 map 参数
chipset-info	用来指定芯片组相关信息的 键/值对列表	只读 map 参数
hostname	XenServer 主机名	只读
address	XenServer 主机 IP 地址	只读
license-server	用来指定许可证服务器相关信息的键/值对列表 与 Citrix 产品通信使用的默认端口为 27000。有关因冲突而更改端口号的信息,请参阅 Citrix eDocs 中的许可使用本产品部分。	只读 map 参数

		类型
supported-bootloaders	XenServer 主机支持的引导 加载器列表,例如 pygrub、eliloader	只读 set 参数
memory-total	XenServer 主机上的物理 RAM 总量(以字节为单位)	只读
memory-free	可分配给 VM 的剩余物理 RAM 总量(以字节为单位)	只读
host-metrics-live	如果主机可以正常运行,则 为 true	只读
logging	syslog_destination 键可设置为远程侦听 syslog 服务的主机名。	读取/写入 map 参数
allowed-operations	此种状态下允许执行的操作 列表。此列表只是建议性 的,并且客户端读取此字段 时服务器状态可能已更改	只读 set 参数
current-operations	当前正在执行的操作列表。 此列表只是建议性的,并且 客户端读取此字段时服务器 状态可能已更改	只读 set 参数
patches	主机修补程序集	只读 set 参数
blobs	二进制数据存储	只读
memory-free-computed	对主机上最大可用内存量的 保守估算	只读
ha-statefiles	所有高可用性功能状态文件 的 UUID	只读
ha-network-peers	出现故障时可承载此主机上 VM 的所有主机的 UUID	只读
external-auth-type	外部身份验证类型,例如 Active Directory。	只读
external-auth-service-name	外部身份验证服务的名称	只读
external-auth-configuration	外部身份验证服务的配置信 息。	只读 map 参数

XenServer 主机包含的一些其他对象也具有参数列表。

XenServer 主机上的 CPU 具有下列参数:

参数名称	说明	类型
uuid	CPU 的唯一标识符/对象引用	只读
number	XenServer 主机中的物理 CPU 内核数量	只读

参数名称	说明	类型
vendor	表示 CPU 名称的供应商字符串,例如,"GenuineIntel"	只读
speed	CPU 时钟速度(以赫兹为单位)	只读
modelname	表示 CPU 型号的供应商字符串,例如,"Intel(R) Xeon(TM) CPU 3.00GHz"	只读
stepping	CPU 修订号	只读
flags	物理 CPU 的标志(功能字段的解码版本)	只读
Utilization	当前 CPU 利用率	只读
host-uuid	CPU 所在主机的 UUID	只读
model	物理 CPU 的型号	只读
family	物理 CPU 系列号	只读

XenServer 主机上的故障转储具有下列参数:

参数名称	说明	类型
uuid	故障转储的唯一标识符/对象引用	只读
host	故障转储对应的 XenServer 主机	只读
timestamp	故障转储发生日期和时间的时间戳,格式为 yyyymmdd-hhmmss-ABC,其中ABC 是时区指示器,例如 GMT	只读
size	故障转储的大小(以字节为单位)	只读

host-backup

host-backup file-name=<backup_filename> host=<host_name>

将指定的 XenServer 主机的控制域备份下载到调用此命令的计算机,然后将其作为名为 file-name 的文件保存在该计算机上。

xe host-backup 命令在本地主机上执行(即不指定特定主机名)时可以起作用,但是不要以这种方式使用此命令。这样做将使用备份文件填充控制域分区。应该仅从保留了存储备份文件空间的远程主机外计算机上使用此命令。

host-bugreport-upload

host-bugreport-upload [<host-selector>=<host_selector_value>...]
[url=<destination_url>]
[http-proxy=<http_proxy_name>]

生成全新错误报告(使用 xen-bugtool,包括所有可选文件)并上载到 Citrix 支持 ftp 站点或某个其他位置。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以为主机参数部分开头列出的参数中的任意数个。

可选参数是 http-proxy:使用特定的 http 代理以及 url:上载到此目标 URL。如果没有使用可选参数,将不确定代理服务器,并且目标位置为默认的 Citrix 支持 ftp 站点。

host-crashdump-destroy

host-crashdump-destroy uuid=<crashdump_uuid>

从 XenServer 主机删除通过 UUID 指定的主机故障转储。

host-crashdump-upload

host-crashdump-upload uuid=<crashdump_uuid>
[url=<destination_url>]
[http-proxy=<http_proxy_name>]

将故障转储上载到 Citrix 支持 ftp 站点或其他位置。如果没有使用可选参数,将不确定代理服务器,并且目标位置为默认的 Citrix 支持 ftp 站点。可选参数是 http-proxy:使用特定的 http 代理以及 ur1:上载到此目标 URL。

host-disable

host-disable [<host-selector>=<host_selector_value>...]

禁用指定的 XenServer 主机,防止在这些主机上启动任何新 VM。这样做可以为关闭或重新引导 XenServer 主机做好准备。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以为主机参数部分开头列出的参数中的任意数个。

host-dmesg

host-dmesg[<host-selector>=<host_selector_value>...]

从指定的 XenServer 主机中获取 Xen dmesg(内核环缓冲的输出)。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以为主机参数部分开头列出的参数中的任意数个。

host-emergency-management-reconfigure

host-emergency-management-reconfigure
interface=<uuid_of_management_interface_pif>

重新配置此 XenServer 主机的主管理接口。仅在 XenServer 主机处于紧急模式时使用此命令,紧急模式是指此主机所属资源池的主服务器从网络中消失,经过数次重新尝试后仍无法连接。

host-enable

host-enable [<host-selector>=<host_selector_value>...]

启用指定的 XenServer 主机,以允许在这些主机上启动新 VM。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以为主机参数部分开头列出的参数中的任意数个。

host-evacuate

host-evacuate [<host-selector>=<host_selector_value>...]

将所有正在运行的 VM 实时迁移到池上的其他适合主机。必须首先使用 host-disable 命令禁用主机。

如果退出的主机是池主服务器,那么必须选择其他主机作为池主服务器。若要在高可用性功能禁用时更改池主服务器,需要使用 pool-designate-new-master 命令。有关详细信息,请参阅"pool-designate-new-master"一节。启用高可用性功能时,只能选择关闭该服务器,这将导致高可用性功能随机选择一个新主服务器。请参阅"host-shutdown"一节。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以为主机参数部分开头列出的参数中的任意数个。

host-forget

host-forget uuid=<XenServer_host_UUID>

xapi 代理忽略指定的 XenServer 主机,不与其进行显式连接。

使用 --force 参数,避免提示您确认是否确实想要执行该操作。

警告:

如果此池中启用了高可用性功能,请不要使用此命令。首先禁用高可用性功能,然后在您忽略了该主机后再重新启用它。

提示:

如果要忽略的 XenServer 主机不起作用,则此命令非常有用;但是,如果 XenServer 主机起作用并且是池的一部分,则应使用 xe pool-eject 命令。

host-get-system-status

```
host-get-system-status filename=<name_for_status_file>
[entries=<comma_separated_list>] [output=<tar.bz2 | zip>] [<host-selector>=<host_selector_value>...]
```

将系统状态信息下载到指定文件。可选参数 entries 是系统状态条目的逗号分隔列表,这些条目从host-get-system-status-capabilities 命令返回的功能 XML 片段获取。有关详细信息,请参阅"host-get-system-status-capabilities"一节。如果未指定,则所有系统状态信息都保存在此文件中。参数 output 可以是 tar.bz2 (默认)或 zip;如果未指定此参数,则文件使用 tar.bz2 格式保存。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。

host-get-system-status-capabilities

host-get-system-status-capabilities [<host-selector>=<host_selector_value>...]

获取指定主机的系统状态功能。这些功能作为 XML 片段返回,类似如下内容:

每个功能条目具有很多属性。

属性	说明
key	功能的唯一标识符。
content-type	可以是 text/plain 或 application/data。指示 UI 是否可以呈现条目以供用户使用。
default-checked	可以是 yes 或 no。指定默认情况下 UI 是否应选择此条目。
min-size, max-size	指示此条目的大致大小范围(以字节为单位)。-1 指示大小并不重要。
min-time, max-time	指示收集此条目所需的大致时间范围(以秒为单位)。-1 指示时间并不重要。
pii	个人识别信息。指示条目是否将包含用于标识系统所有者的信息,或网络拓扑的详细信息。存在以下几种值:
	no: 这些条目中不包含 PII yes: 这些条目中可能或一定包含 PII
	maybe:您可能希望审核这些条目是否包含 PII
	• if_customized 如果文件没有修改,它们将不包含 PII,但由于我们鼓励编辑这些文件,所以 PII 可能已经通过这种自定义而引入。这尤其适用于控制域中的网络脚本。
	不管存在任何 PII 声明,任何错误报告都不会包括密码。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。

host-is-in-emergency-mode

host-is-in-emergency-mode

如果 CLI 正在对话的主机当前处于紧急模式,则返回 true,否则返回 false。此 CLI 命令直接作用于从属主机,即使没有主服务器主机。

host-apply-edition

host-apply-edition [host-uuid=<XenServer_host_UUID>]
[edition=xenserver_edition=<"free"><"advanced"><"enterprise"><"platinum"><"enterprise-xd">|

将 XenServer 许可证分配给主机服务器。分配许可证时,XenServer 会联系 Citrix 许可证服务器,并申请指定类型的许可证。如果有可用许可证,则会将该许可证从许可证服务器中签出。

对于 Citrix XenServer for XenDesktop 版本,请使用 <"enterprise-xd">。

对于初始许可配置,另请参阅 license-server-address 和 license-server-port。

host-license-add

host-license-add [license-file=<path/license_filename>] [hostuuid=<XenServer_host_UUID>]

对于 XenServer (免费版),用于解析本地许可证文件,并将其添加到指定的 XenServer 主机中。

host-license-view

host-license-view [host-uuid=<XenServer_host_UUID>]

显示 XenServer 主机许可证的内容。

host-logs-download

host-logs-download [file-name=<logfile_name>] [<hostselector>=<host_selector_value>...]

下载指定 XenServer 主机的日志副本。默认情况下副本保存在一个带时间戳的文件中,文件名为 hostname-yyyy-mm-dd T hh:mm:ssZ.tar.gz。您可以使用可选参数 file-name 指定其他文件名。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以 为主机参数部分开头列出的参数中的任意数个。

xe host-logs-download 命令在本地主机上执行(即不指定特定主机名)时可以起作用,但是不要以这种方法使用此命令。这样做将因日志副本而使控制域分区变得混乱。应该仅从保留了存储日志副本空间的远程主机外计算机上使用此命令。

host-management-disable

host-management-disable

禁用侦听外部管理网络接口的主机代理,并断开所有连接的 API 客户端(如 XenCenter)。该命令直接作用于 CLI 连接的 XenServer 主机,并且应用到成员 XenServer 主机时不会转发到池主服务器。

警告:

在主机外使用此 CLI 命令时一定要格外小心,因为一旦运行此命令,将不可能通过网络远程连接控制域来重新启用它。

host-management-reconfigure

host-management-reconfigure [interface=<device>] | [pif-uuid=<uuid>]

重新配置 XenServer 主机以将指定网络接口用作其管理接口,即用于连接到 XenCenter 的接口。此命令重写 /etc/xensource-inventory 中的 MANAGEMENT_INTERFACE 键。

如果指定了接口(必须具有 IP 地址)的设备名称,则 XenServer 主机将立即重新绑定。这适用于正常模式和紧急模式。

如果指定了 PIF 对象的 UUID,则 XenServer 主机将确定重新绑定到自身的 IP 地址。执行此命令时一定不能处于紧急模式。

警告:

在除主机外的计算机上使用此 CLI 命令时需谨慎,并确保在新接口上有网络连接。首 先使用 xe pif-reconfigure 建立一个连接。否则,后续 CLI 命令将到达 XenServer 主 机。

host-power-on

host-power-on[host=<host_uuid>]

打开 XenServer 主机电源,并启用"Host Power On"(主机启动)功能。在使用此命令之前,必须在主机上启用 host-set-power-on。

host-get-cpu-features

host-get-cpu-features {features=<pool_master_cpu_features>} [uuid=<host_uuid>]
打印代表主机物理 CPU 功能的十六进制值。

host-set-cpu-features

host-set-cpu-features {features=<pool_master_cpu_features>} [uuid=<host_uuid>]

尝试屏蔽主机的物理 CPU 功能,以与给定功能相匹配。如 host-get-cpu-features 命令所指定,给定字符串必须是 32 位的十六进制数(可以包含空格)。

host-set-power-on

```
host-set-power-on {host=<host uuid> {power-on-mode=<"">>
<"wake-on-lan"> <"iLO"> <"DRAC"> <"custom"> } | [power-on-
config=<"power_on_ip"><"power_on_user"><"power_on_password_secret">]}
```

用于在与远程电源解决方案兼容的 XenServer 主机上启用"主机启动"功能。Workload Balancing 需要启用"主机启动"功能,才能在"Maximum Density"(最大密度)模式下关闭未使用的主机。使用 host-set-power-on 命令时,必须在主机上指定电源管理解决方案的类型(即 <power-on-mode>)。然后使用 <power-on-config> 参数及其键-值对指定配置选项。要使用加密功能存储密码,请指定键"power_on_password_secret"。

host-reboot

host-reboot [<host-selector>=<host_selector_value>...]

重新引导指定的 XenServer 主机。首先必须使用 xe host-disable 命令禁用指定的主机,否则将显示 HOST_IN_USE 错误消息。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以为主机参数部分开头列出的参数中的任意数个。

如果指定的 XenServer 主机是池的成员,则将处理在关闭时断开的连接并且池将在 XenServer 主机重新启动时恢复。如果关闭一个池成员,其他成员和主服务器将继续运行。如果关闭主服务器,池将无法正常工作,直到重新引导主服务器并使其恢复联机状态(此时成员将重新连接主服务器并与其同步),或者直到使某个成员成为主服务器。

host-restore

host-restore[file-name=<backup_filename>][<host-selector>=<host_selector_value>...]

还原 XenServer 主机控制软件的名为 file-name 的备份。请注意,此处使用的"还原"不是通常意义上的完整还原,它仅仅指压缩的备份文件已经解压缩并且解压缩到辅助分区。执行 xe host-restore 后,您必须引导安装 CD,并使用其 Restore from Backup(从备份还原)选项。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以 为主机参数部分开头列出的参数中的任意数个。

host-set-hostname-live

host-set-hostname host-uuid=<uuid_of_host> hostname=<new_hostname>

更改 *host-uuid* 指定的 XenServer 主机的主机名。此命令将控制域数据库中的主机名和 XenServer 主机的实际 Linux 主机名进行相同设置。请注意,hostname 与 name label 字段的值不同。

host-shutdown

host-shutdown [<host-selector>=<host_selector_value>...]

关闭指定的 XenServer 主机。首先必须使用 xe host-disable 命令禁用指定的 XenServer 主机,否则将显示 HOST IN USE 错误消息。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以 为主机参数部分开头列出的参数中的任意数个。

如果指定的 XenServer 主机是池的成员,则将处理在关闭时断开的连接并且池将在 XenServer 主机重新启动时恢复。如果关闭一个池成员,其他成员和主服务器将继续运行。如果关闭主服务器,池将无法正常工作,直到重新引导主服务器并使恢复在线状态(此时成员将重新连接主服务器并与其同步),或者直到使某个成员成为主服务器。如果启用了池的高可用性功能,则将自动使一个成员成为主服务器。如果禁用了高可用性功能,您必须使用 pool-designate-new-master 命令手动指定所需服务器为主服务器。请参阅 "pool-designate-new-master"一节。

host-syslog-reconfigure

host-syslog-reconfigure [<host-selector>=<host_selector_value>...]

在指定的 XenServer 主机上重新分配 syslog 后台程序。此命令应用在主机 logging 参数中定义的配置信息。

将使用标准选择机制来选择应在其上执行此操作的主机(请参阅上文中的主机选择器)。可选参数可以为主机参数部分开头列出的参数中的任意数个。

host-data-source-list

host-data-source-list [<host-selectors>=<host selector value>...]

列出可为主机记录的数据源。

使用标准选择机制(请参阅<mark>主机选择器</mark>)选择将执行此操作的主机。可选参数可以为主机参数部分开头列出的参数中的任意数个。如果未提供选择主机的参数,将在所有主机上执行操作。

数据源具有 standard 和 enabled 两个参数,可以在该命令的输出中看到这两个参数。如果数据源的 enabled 设置为 true,则指标当前记录到性能数据库中。如果数据源的 standard 设置为 true,则默认情况下指标会记录到性能数据库中(因此,该数据源的 enabled 也将设置为 true)。如果数据源的 standard 设置为 false,则默认情况下指标不会记录到性能数据库中(因此,该数据源的 enabled 也将设置为 false)。

要开始将数据源的指标记录到性能数据库中,请运行 host-data-source-record 命令。这会将 enabled 设置为 true。要停止记录,请运行 host-data-source-forget。这会将 enabled 设置为 false。

host-data-source-record

host-data-source-record data-source=<name_description_of_data-source>[<host-selectors>=<host selector value>...]

记录主机的指定数据源。

此操作会将数据源中的信息写入指定主机的静态性能指标数据库中。由于性能的原因,此数据库不同于 普通的代理数据库。

使用标准选择机制(请参阅<mark>主机选择器</mark>)选择将执行此操作的主机。可选参数可以为主机参数部分开头列出的参数中的任意数个。如果未提供选择主机的参数,将在所有主机上执行操作。

host-data-source-forget

host-data-source-forget data-source=<name_description_of_data-source>[<host-selectors>=<host selector value>...]

停止为主机记录指定数据源并忽略所有已记录的数据。

使用标准选择机制(请参阅<mark>主机选择器</mark>)选择将执行此操作的主机。可选参数可以为主机参数部分开头列出的参数中的任意数个。如果未提供选择主机的参数,将在所有主机上执行操作。

host-data-source-query

host-data-source-query data-source=<name_description_of_data-source>[<host-selectors>=<host selector value>...]

显示主机的指定数据源。

使用标准选择机制(请参阅<mark>主机选择器</mark>)选择将执行此操作的主机。可选参数可以为主机参数部分开头列出的参数中的任意数个。如果未提供选择主机的参数,将在所有主机上执行操作。

日志命令

用于处理日志的命令。

log-set-output

log-set-output output=nil | stderr | file:<filename> | syslog:<sysloglocation> [key=<key>]
[level= debug | info | warning | error]

设置指定记录程序的输出。日志消息将按其来源子系统和消息的日志级别进行过滤。例如,通过运行以 下命令将调试日志记录消息从存储管理器发送到文件:

xe log-set-output key=sm level=debug output=<file:/tmp/sm.log>

可选参数 key 指定特定的日志记录子系统。如果未设置此参数,则默认为所有日志记录子系统。

可选参数 level 指定日志记录级别。有效值为:

- debug
- · info
- warning
- error

消息命令

用于处理消息的命令。创建消息以通知用户重要事件,并作为系统警报在 XenCenter 中显示。

消息参数

参数名称	说明	类型
uuid	消息的唯一标识符/对象引用	只读
name	消息的唯一名称。	只读

参数名称	说明	类型
priority	消息优先级。数值越大表明优先级越 高。	只读
class	消息类型,例如 VM。	只读
obj-uuid	受影响对象的 uuid。	只读
timestamp	生成该消息的时间。	只读
body	消息内容。	只读

message-create

```
\label{local_message_rame} $$ \mbox{message_name} > \mbox{body=<message_text} > [[\mbox{host-uuid}=<\muid_of_host-] | [\mbox{sr-uuid}=<\muid_of_vm-] | [\mbox{pool-uuid}=<\muid_of_pool-]] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{uuid}=<\muid_of_pool-] $$ \mbox{
```

创建一个新消息。

message-destroy

message-destroy {uuid=<message_uuid>}

销毁现有消息。您可以构建一个脚本来销毁所有消息。例如:

```
# Dismiss all alerts \
    IFS=","; for m in $(xe message-list params=uuid --minimal); do \
    xe message-destroy uuid=$m \
    done
```

message-list

message-list

列出所有消息,或与特定标准可选参数相匹配的消息。

网络命令

用于处理网络的命令。

网络对象可以使用标准对象列出命令 (xe network-list) 列出,参数可以使用标准参数命令操纵。有关详细信息,请参阅"低级参数命令"一节。

网络参数

网络具有下列参数:

参数名称	说明	类型
uuid	网络的唯一标识符/对象引用	只读
name-label	网络名称	读写
name-description	网络的说明文本	读写

参数名称	说明	类型
VIF-uuids	从 VM 连接到此网络的 VIF(虚拟网络接口)的唯一标识符列表	只读 set 参数
PIF-uuids	从 XenServer 主机连接到此网络的 PIF(物理网络接口) 的唯一标识符列表	只读 set 参数
bridge	与此网络对应的桥在本地 XenServer 主机上的名称	只读
other-config:static- routes	<subnet>/<netmask>/<gateway>格式化条目的逗号分隔列表,指定用来路由子网的网关地址。例如,将other-config:static-routes设置为172.16.0.0/15/192.168.0.3,172.18.0.0/16/192.168.0.4 会使 172.16.0.0/15 上的通信通过 192.168.0.3 路由,172.18.0.0/16 上的通信通过 192.168.0.4 路由。</gateway></netmask></subnet>	读写
other-config:ethtool- autoneg	设置为 no 会禁用物理接口或桥的自动协商。默认值是 yes。	读写
other-config:ethtool-rx	设置为 on 会启用接收校验和,设置为 off 会禁用接收校验和	读写
other-config:ethtool-tx	设置为 on 会启用发送校验和,设置为 off 会禁用发送校 验和	读写
other-config:ethtool-sg	设置为 on 会启用分散收集,设置为 off 会禁用分散收集	读写
other-config:ethtool-tso	设置为 on 会启用 tcp 分段卸载,设置为 off 会禁用 tcp 分段卸载	读写
other-config:ethtool- ufo	设置为 on 会启用 UDP 段卸载,设置为 off 会禁用 UDP 段卸载	读写
other-config:ethtool- gso	设置为 on 会启用通用分段卸载,设置为 off 会禁用通用分段卸载	读写
blobs	二进制数据存储	只读

network-create

network-create name-label=<name_for_network> [name-description=<descriptive_text>] 创建新网络。

network-destroy

network-destroy uuid=<network_uuid>

销毁现有网络。

修补程序(更新)命令

用于处理 XenServer 主机修补程序(更新)的命令。这些命令适用于 XenServer 的标准非 OEM 版本,有关与更新 XenServer 的 OEM 版本相关的命令,请参阅"更新命令"一节以了解详细信息。

修补程序对象可以使用标准对象列出命令 (xe patch-list) 列出,参数可以使用标准参数命令操纵。有关详细信息,请参阅"低级参数命令"一节。

修补程序参数

修补程序具有下列参数:

参数名称	说明	类型
uuid	修补程序的唯一标识符/对象引用	只读
host-uuid	要查询的 XenServer 主机的唯一标识符	只读
name-label	修补程序名称	只读
name-description	修补程序的说明字符串	只读
applied	是否已应用修补程序;true 或 false	只读
size	是否已应用修补程序;true 或 false	只读

patch-apply

patch-apply uuid=<patch_file_uuid>

应用指定的修补程序文件。

patch-clean

patch-clean uuid=<patch_file_uuid>

从 XenServer 主机中删除指定的修补文件。

patch-pool-apply

patch-pool-apply uuid=<patch_uuid>

将指定的修补程序应用于池中的所有 XenServer 主机。

patch-precheck

patch-precheck uuid=<patch_uuid> host-uuid=<host_uuid>

对指定 XenServer 主机运行包含在指定修补程序中的预检查。

patch-upload

patch-upload file-name=<patch_filename>

将指定的修补程序文件上载到 XenServer 主机。这可以为应用修补程序做准备。成功时,会打印出上载的修补程序的 UUID。如果先前已上载过此修补程序,将返回 PATCH_ALREADY_EXISTS 错误,而不会再次上载该修补程序。

PBD 命令

用于处理 PBD(物理块设备)的命令。这些命令是软件对象,XenServer 主机通过它们访问存储库(SR)。

PBD 对象可以使用标准对象列出命令 (xe pbd-list) 列出,参数可以使用标准参数命令操纵。有关详细信息,请参阅"低级参数命令"一节。

PBD 参数

PBD 具有下列参数:

参数名称	说明	类型
uuid	PBD 的唯一标识符/对象引用。	只读
sr-uuid	PBD 指向的存储库	只读
device-config	提供给主机的 SR 后端驱动程序的其他 配置信息	只读 map 参数
currently-attached	如果 SR 当前已连接到此主机,则为 True,否则为 False	只读
host-uuid	提供 PBD 的物理机的 UUID	只读
host	不推荐使用 host 字段。请使用 host_uuid。	只读
other-config	其他配置信息。	读取/写入 map 参数

pbd-create

pbd-create host-uuid=<uuid_of_host>
sr-uuid=<uuid_of_sr>
[device-config:key=<corresponding_value>...]

在 XenServer 主机上创建新 PBD。只读 device-config 参数只能在创建时设置。

若要添加"path"-"/tmp"的映射,命令行应包含参数 device-config:path=/tmp

有关每个 SR 类型上受支持的 device-config 键/值对的完整列表,请参阅存储。

pbd-destroy

pbd-destroy uuid=<uuid_of_pbd>

销毁指定的 PBD。

pbd-plug

pbd-plug uuid=<uuid_of_pbd>

尝试将 PBD 插入 XenServer 主机。如果成功,则引用的 SR(和包含在其中的 VDI)应对 XenServer 主机可见。

pbd-unplug

pbd-unplug uuid=<uuid_of_pbd>

尝试从 XenServer 主机拔出 PBD。

PIF 命令

用于处理 PIF(代表物理网络接口的对象)的命令。

PIF 对象可以使用标准对象列出命令 (xe pif-list) 列出,参数可以使用标准参数命令操纵。有关详细信息,请参阅"低级参数命令"一节。

PIF 参数

PIF 具有下列参数:

参数名称	说明	类型
uuid	PIF 的唯一标识符/对象引用	只读
device	接口的计算机可识别的名称(例如 eth0)	只读
MAC	PIF 的 MAC 地址	只读
other-config	其他的 PIF 配置名称:值对。	读取/写入 map 参数
physical	如果为 true,则 PIF 指向实际的物理网络接口	只读
currently-attached	PIF 当前是否连接到此主机?true 或 false	只读
MTU	PIF 的最大传输单位(以字节为单位)。	只读
VLAN	通过此接口的所有通信的 VLAN 标记; -1 表明未分配 VLAN 标记	只读
bond-master-of	此 PIF 作为主对象的绑定的 UUID(如果有)	只读
bond-slave-of	此 PIF 作为从属对象的绑定的 UUID(如果有)	只读
management	是否将此 PIF 指定为控制域的管理接口	只读
network-uuid	此 PIF 连接到的虚拟网络的唯一标识符/ 对象引用	只读
network-name-label	此 PIF 连接到的虚拟网络的名称	只读
host-uuid	此 PIF 连接到的 XenServer 主机的唯一标识符/对象引用	只读
host-name-label	此 PIF 连接到的 XenServer 主机的名称	只读
IP-configuration-mode	使用的网络地址配置类型;DHCP 或 static	只读
IP	PIF 的 IP 地址,如果 IP 配置模式为 static,则在此处定义;如果 IP 配置模式 为 DHCP,则不在此处定义	只读
netmask	PIF 的网络掩码,如果 IP 配置模式为 static,则在此处定义;如果由 DHCP 提供,则不在此处定义	只读

参数名称	说明	类型
gateway	PIF 的网关地址,如果 IP 配置模式为 static,则在此处定义;如果由 DHCP 提 供,则不在此处定义	只读
DNS	PIF 的 DNS 地址,如果 IP 配置模式为 static,则在此处定义;如果由 DHCP 提供,则不在此处定义	只读
io_read_kbs	设备的平均读取速率(以 kb/s 为单位)	只读
io_write_kbs	设备的平均写入速率(以 kb/s 为单位)	只读
carrier	此设备的链接状态	只读
vendor-id	分配给 NIC 供应商的 ID	只读
vendor-name	NIC 供应商的名称	只读
device-id	供应商分配给此 NIC 型号的 ID	只读
device-name	供应商分配给此 NIC 型号的名称	只读
speed	NIC 的数据传输速率	只读
duplex	NIC 的双工模式;full 或 half	只读
pci-bus-path	PCI 总线路径地址	只读
other-config:ethtool- speed	设置连接速度(以 Mbps 为单位)	读写
other-config:ethtool- autoneg	设置为 no 会禁用物理接口或桥的自动协商。默认值是 yes。	读写
other-config:ethtool- duplex	设置 PIF 的双工功能,full 或 half。	读写
other-config:ethtool-rx	设置为 on 会启用接收校验和,设置为 off 会禁用接收校验和	读写
other-config:ethtool-tx	设置为 on 会启用发送校验和,设置为 off 会禁用发送校验和	读写
other-config:ethtool-sg	设置为 on 会启用分散收集,设置为 off 会禁用分散收集	读写
other-config:ethtool-tso	设置为 on 会启用 tcp 分段卸载,设置为 off 会禁用 tcp 分段卸载	读写
other-config:ethtool- ufo	设置为 on 会启用 udp 段卸载,设置为 off 会禁用 udp 段卸载	读写
other-config:ethtool- gso	设置为 on 会启用通用分段卸载,设置为off 会禁用通用分段卸载	读写
other-config:domain	用于设置 DNS 搜索路径的逗号分隔列表	读写

参数名称	说明	类型
other-config:bond- milmon	链接活跃性检查之间的间隔(以毫秒为 单位)	读写
other-config:bond- downdelay	断开链接后等待的毫秒数,超过此时间 即认为链接确实已断开。这允许出现短 暂的链接中断现象	读写
other-config:bond- updelay	建立链接后等待的毫秒数,超过此时间即认为链接确实已建立。允许链接出现不稳定的状态。默认值为 31 秒,以留出交换机开始转发通信的时间。	读写
disallow-unplug	如果此 PIF 为专用存储 NIC,则为 true, 否则为 false	读取/写入

注意:

对 PIF 的 other-config 字段所做的更改仅在重新引导后生效。另外,使用 xe pifunplug 和 xe pif-plug 命令会导致重写 PIF 配置。

pif-forget

pif-forget uuid=<uuid_of_pif>

销毁特定主机上的指定 PIF 对象。

pif-introduce

pif-introduce host-uuid=<UUID of XenServer host> mac=<mac_address_for_pif>
device=<machine-readable name of the interface (for example, eth0)>

在指定的 XenServer 主机上创建代表物理接口的新 PIF 对象。

pif-plug

pif-plug uuid=<uuid_of_pif>

尝试显示指定的物理接口。

pif-reconfigure-ip

```
pif-reconfigure-ip uuid=<uuid_of_pif> [ mode=<dhcp> | mode=<static> ]
gateway=<network_gateway_address> IP=<static_ip_for_this_pif>
netmask=<netmask_for_this_pif> [DNS=<dns_address>]
```

修改 PIF 的 IP 地址。对于静态 IP 配置,请将 mode 参数设置为 static,同时将 gateway、IP 和 netmask 参数设置为相应的值。若要使用 DHCP,请将 mode 参数设置为 DHCP 并将静态参数保持为未定义状态。

注意:

对于使用跨树协议并且关闭了(或不支持)STP 快速链接的交换机,当物理网络接口与该交换机上的端口相连时,如果在这些物理网络接口上使用静态 IP 地址,则会产生没有网络流量的时段。

pif-scan

pif-scan host-uuid=<UUID of XenServer host>

在 XenServer 主机上扫描新物理接口。

pif-unplug

pif-unplug uuid=<uuid_of_pif>

尝试拔出指定的物理接口。

池命令

用于处理池的命令。池是一个或多个 XenServer 主机的聚合。一个池使用一个或多个共享存储库,以便在池中的一个 XenServer 主机上运行的 VM 可以准实时地(继续运行而无需关闭和恢复运行)迁移到该池中的另一台 XenServer 主机。默认情况下,每台 XenServer 主机实际上是由单个成员组成的一个池。XenServer 主机加入一个池时,它会被指定为一个成员,而它所加入的池会成为池的主服务器。

单例池对象可以使用标准对象列出命令 (xe pool-list) 列出,参数可以使用标准参数命令操纵。有关详细信息,请参阅"低级参数命令"一节。

池参数

池具有下列参数:

参数名称	说明	类型
uuid	池的唯一标识符/对象引用	只读
name-label	池的名称	读取/写入
name-description	池的说明字符串	读取/写入
master	分配为池主服务器的 XenServer 主机的唯一标识 符/对象引用	只读
default-SR	池的默认 SR 的唯一标识符/ 对象引用	读取/写入
crash-dump-SR	保存池成员的任何故障转储 的 SR 的唯一标识符/对象引 用	读取/写入
metadata-vdis	池的所有已知元数据 VDI	只读
suspend-image-SR	保存池成员上挂起 VM 的 SR 的唯一标识符/对象引用	读取/写入
other-config	为池指定其他配置参数的键/ 值对列表	读取/写入 map 参数
supported-sr-types	可供此池使用的 SR 类型	只读
ha-enabled	如果池启用了高可用性功 能,则为 true,否则为 false	只读
ha-configuration	保留以供将来使用。	只读
ha-statefiles	列出高可用性功能使用的 VDI 的 UUID 以确定存储运行 状况	只读

参数名称	说明	类型
ha-host-failures-to-tolerate	允许的主机故障数,超过此 数量即发送系统警报	读取/写入
ha-plan-exists-for	根据高可用性功能算法的计 算,可实际处理的主机故障 数	只读
ha-allow-overcommit	如果允许过量使用池,则为 True,否则为 False	读取/写入
ha-overcommitted	如果当前过量使用池,则为 True	只读
blobs	二进制数据存储	只读
wlb-url	WLB 服务器路径	只读
wlb-username	WLB 服务的用户名称	只读
wlb-enabled	True 表示 WLB 已启用	读取/写入
wlb-verify-cert	如果有证书要验证,则为 True	读取/写入

pool-designate-new-master

pool-designate-new-master host-uuid=<UUID of member XenServer host to become new master>

指示指定的成员 XenServer 主机成为现有池的主服务器。这会将主服务器主机的角色有序移交给资源池中的其他主机。此命令仅在当前主服务器处于联机状态时生效,并且不是下列紧急模式命令的替代项。

pool-dump-database

pool-dump-database file-name=<filename_to_dump_database_into_(on_client)>

下载整个池数据库的副本并将其转储到客户端上的文件。

pool-eject

pool-eject host-uuid=<UUID of XenServer host to eject>

指示指定的 XenServer 主机退出现有池。

pool-emergency-reset-master

pool-emergency-reset-master master-address=<address of the pool's master
XenServer host>

指示从属成员 XenServer 主机将其主服务器地址重置为新值,并尝试与其建立连接。不应在主服务器 主机上运行此命令。

pool-emergency-transition-to-master

pool-emergency-transition-to-master

指示 XenServer 成员主机成为池主服务器。仅在 XenServer 主机转换到紧急模式后才接受此命令。进入紧急模式意味着该成员主机所在的池中的主服务器已从网络中消失,经过若干次重试仍无法连接。

请注意,如果在主机加入池后修改了主机密码,此命令可能导致该密码重置(请参阅"用户命令"一节)

pool-ha-enable

pool-ha-enable heartbeat-sr-uuids=<SR_UUID_of_the_Heartbeat_SR>

对资源池启用高可用性,同时使用指定的 SR UUID 作为中央检测信号储存库。

pool-ha-disable

pool-ha-disable

对资源池禁用高可用性功能。

pool-join

pool-join master-address<address> master-username<ausername> master-password<a>eqassword>

指示 XenServer 主机加入现有池。

pool-recover-slaves

pool-recover-slaves

指示池主服务器尝试重置当前以紧急模式运行的所有成员的主服务器地址。通常在使用 poolemergency-transition-to-master 将其中的一个成员设置为新主服务器后使用此命令。

pool-restore-database

pool-restore-database file-name=<filename_to_restore_from_(on_client)> dry-run=<true | false>

向池上载数据库备份(使用 pool-dump-database 创建)。接收上载后,主服务器将自行重新启动并使用新数据库。

该命令中还包含一个 dry run 选项,借助此选项,您可以确定是否可在无需实际执行操作的情况下还原 池数据库。默认情况下,dry-run 设置为 false。

pool-sync-database

pool-sync-database

强制池数据库在资源池中的所有主机上进行同步。这在正常操作中没有必要,因为数据库会定期自动复制。但对于确保在执行一系列重要 CLI 操作后快速复制更改,此命令很有用。

存储管理器命令

用于控制存储管理器插件的命令。

可使用标准对象列出命令 (xe sm-list) 列出存储管理器对象,使用标准参数命令控制其参数。有关详细信息,请参阅"低级参数命令"一节。

SM 参数

SM 包含下列参数:

参数名称	说明	类型
uuid	SM 插件的唯一标识符/对象引用	只读

CITRIX'

参数名称	说明	类型
name-label	SM 插件的名称	只读
name-description	SM 插件的描述字符串	只读
type	此插件连接到的 SR 类型	只读
vendor	创建此插件的供应商的名称	只读
copyright	此 SM 插件的版权声明	只读
required-api-version	XenServer 主机要求的最低 SM API 版本	只读
configuration	设备配置键的名称和描述	只读
capabilities	SM 插件的功能	只读
driver-filename	SR 驱动程序的文件名。	只读

SR 命令

用于控制 SR(存储库)的命令。

可使用标准对象列出命令 (xe sr-list) 列出 SR 对象,使用标准参数命令控制其参数。有关详细信息,请参阅"低级参数命令"一节。

SR 参数

SR 包含下列参数:

参数名称	说明	类型
uuid	SR 的唯一标识符/对象引用	只读
name-label	SR 的名称	读取/写入
name-description	SR 的描述字符串	读取/写入
allowed-operations	在此状态下的 SR 上允许执行的操作的 列表	只读 set 参数
current-operations	当前此 SR 上正在进行的操作的列表	只读 set 参数
VDIs	此 SR 中虚拟磁盘的唯一标识符/对象引用	只读 set 参数
PBD	连接到此 SR 的 PBD 的唯一标识符/对象引用	只读 set 参数
physical-Utilization	此 SR 上当前使用的物理空间,以字节 为单位。请注意,对于稀疏磁盘格式, 物理利用率可能低于虚拟分配	只读
physical-size	SR 的总物理空间大小,以字节为单位	只读
type	SR 的类型,用于指定要使用的 SR 后端驱动程序	只读

参数名称	说明	类型
introduced-by	引入 SR 的 drtask(如果有)	只读
content-type	SR 内容的类型。用于将 ISO 库与其他 SR 区分开来。对于存储 ISO 库的存储 库,content-type 必须设置为 iso。对于其他情况,Citrix 建议将此参数设置为空或字符串 user。	只读
shared	如果可以在多个 XenServer 主机之间共享此 SR,则为 True;否则为 False。	读取/写入
other-config	键/值对列表,用于指定 SR 的其他配置 参数。	读取/写入 map 参数
host	存储库主机名称	只读
virtual-allocation	此存储库中的所有 VDI 的总虚拟大小值,以字节为单位	只读
sm-config	SM 依赖数据	只读 map 参数
blobs	二进制数据存储	只读

sr-create

sr-create name-label=<name> physical-size=<size> type=<type>
content-type=<content_type> device-config:<config_name>=<value>
[host-uuid=<XenServer host UUID>] [shared=<true | false>]

在磁盘上创建一个 SR,将其引入数据库,然后创建一个将该 SR 连接到 XenServer 主机的 PBD。如果将 shared 设置为 true,则为池中的每个 XenServer 主机创建 PBD;如果未指定 shared 或将其设置为 false,则仅为使用 host-uuid 指定的 XenServer 主机创建 PBD。

具体的 device-config 参数因设备 type 的不同而异。有关不同存储后端上这些参数的详细信息,请参阅存储。

sr-destroy

sr-destroy uuid=<sr_uuid>

销毁 XenServer 主机上指定的 SR。

sr-enable-database-replication

sr-enable-database-replication uuid=<sr_uuid>

启用以指定(共享)SR 为目标的 xapi 数据库复制。例如:

xe sr-enable-database-replication uuid=<sr-uuid>

sr-disable-database-replication

sr-disable-database-replication uuid=<sr_uuid>

禁用以指定 SR 为目标的 xapi 数据库复制。例如:

xe sr-enable-database-replication uuid=<sr-uuid>

sr-forget

sr-forget uuid=<sr_uuid>

xapi 代理忽略了 XenServer 主机上某个指定的 SR,这意味着该 SR 被分离,您无法访问其上的 VDI,但该 SR 在源介质中保持原样(数据未丢失)。

sr-introduce

sr-introduce name-label=<name>
physical-size=<physical_size>
type=<type>
content-type=<content_type>
uuid=<sr_uuid>

即将 SR 记录添加到数据库中。device-config 参数由 device-config:config:parameter_key

xe sr-introduce device-config:<device>=</dev/sdb1>

注意:

此命令不用于正常操作中。它是一个高级操作,对于在创建 SR 后需要将 SR 重新配置为共享这种情况可能很有用,或者有助于在出现各种故障情形后恢复 SR。

sr-probe

sr-probe type=<type> [host-uuid=<uuid_of_host>] [device-config:<config_name>=<value>]

使用提供的 device-config 键执行特定于后端的扫描。如果已为 SR 后端完成 device-config,则将返回设备上的 SR 的列表(如果有)。如果仅完成部分 device-config 参数,则将执行特定于后端的扫描,返回结果将有助于您改进其余 device-config 参数。扫描结果以特定于后端的 XML 形式返回,显示在 CLI 上。

具体的 device-config 参数因设备 type 的不同而异。有关不同存储后端上这些参数的详细信息,请参阅存储。

sr-scan

sr-scan uuid=<sr uuid>

强制执行 SR 扫描,同时将 xapi 数据库与基础存储基底中的 VDI 同步。

任务命令

用于长时间运行的异步任务的命令。此类任务包括启动、停止和挂起虚拟机等,通常由一组共同完成请求的操作的其他原子任务组成。

可使用标准对象列出命令 (xe task-list) 列出任务对象,使用标准参数命令控制其参数。有关详细信息,请参阅"低级参数命令"一节。

任务参数

任务包含下列参数:

参数名称	说明	类型
uuid	任务的唯一标识符/对象引用	只读

参数名称	说明	类型
name-label	任务的名称	只读
name-description	任务的描述字符串	只读
resident-on	运行任务的主机的唯一标识符/对象引用	只读
status	任务的当前状态	只读
progress	如果任务尚未完成,则此字段包含估算的百分比(介于 0 到 1 之间)。如果任务已完成,无论成功与否,此字段都应该是 1。	只读
type	如果任务已成功完成,则此参数包含编码结果的类型(即,其引用在结果字段中的类的名称);否则,此参数的值处于未定义状态	只读
result	如果任务已成功完成,此字段包含结果 值(为空或对象引用);否则,此参数 的值处于未定义状态	只读
error_info	如果任务已失败,则此参数包含一组相 关的错误字符串;否则,此参数的值处 于未定义状态	只读
allowed_operations	此状态下允许的操作的列表	只读
created	创建任务的时间	只读
finished	任务完成(成功或失败)时间。如果任 务状态是未完成,则此字段的值没有任 何意义	只读
subtask_of	包含以此任务为子任务的任务的 UUID	只读
subtasks	包含此任务的所有子任务的 UUID	只读

task-cancel

task-cancel [uuid=<task_uuid>]

指示取消指定的任务并返回。

模板命令

用于 VM 模板的命令。

模板实质上是 *is-a-template* 参数设置为 *true* 的 VM。模板是一种"黄金映像",包含用于实例化特定 VM 的所有配置设置。XenServer 随附了一个基本模板集,其范围从可引导操作系统供应商安装 CD(RHEL、CentOS、SLES、Windows)的通用"原始"VM 到经过预配置的完整操作系统实例("Demo Linux VM"模板)。通过 XenServer,您可以创建 VM,按照您的特定需要以标准形式配置它们,将它们的副本保存为模板供将来在 VM 部署中使用。

可使用标准对象列出命令 (xe template-list) 列出模板对象,使用标准参数命令控制其参数。有关详细信息,请参阅"低级参数命令"一节。

CITRIX'

模板参数

模板包含下列参数:

参数名称		类型
uuid	模板的唯一标识符/对象引用	只读
name-label	模板的名称	读取/写入
name-description	模板的描述字符串	读取/写入
user-version	描述 VM 和模板的创建者的字符串,用于输入版本信息	读取/写入
is-a-template	如果是模板,则为 true。模 板 VM 无法启动,它们仅用 于克隆其他 VM	读取/写入
is-control-domain	如果是控制域(域 0 或驱动程序域),则为 true	只读
power-state	当前电源状态;对于模板, 始终为 halted	只读
power-state	当前电源状态;对于模板, 始终为 halted	只读
memory-dynamic-max	最大动态内存,以字节为单位。当前未使用,但如果更改则必须遵守以下限制:memory_static_max>= memory_dynamic_max>= memory_dynamic_min>= memory_static_min。	读取/写入
memory-dynamic-min	最小动态内存,以字节为单位。当前未使用,但如果更改,则必须遵守与针对memory-dynamic-max的限制相同的限制。	读取/写入
memory-static-max	最大静态设置(绝对)内存,以字节为单位。这是用于确定分配给 VM 的内存量的主要值。	读取/写入
memory-static-min	最小静态设置(绝对)内存,以字节为单位。这代表绝对最小内存,memory-static-max。此值当前未用于正常操作,但是必须遵守前面提到的限制。	读取/写入
suspend-VDI-uuid	存储挂起映像的 VDI(对于 模板没有意义)	只读

参数名称	说明	类型
VCPUs-params	所选。 VCPU 策略的配置参 VCPU 策略的配置参 VCPU 策略的配置参 VCPU 策略的配置参 VCPU \$\frac{1}{2}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	读取/写入 map 参数
VCPUs-max	VCPU 的最大数目	读取/写入
VCPUs-at-startup	VCPU 的引导编号	读取/写入
actions-after-crash	当基于此模板的 VM 崩溃时要执行的操作	读取/写入
console-uuids	虚拟控制台设备	只读 set 参数
platform	特定于平台的配置	读取/写入 map 参数
allowed-operations	此状态下允许的操作的列表	只读 set 参数
current-operations	当前在此模板上进行的操作 的列表	只读 set 参数

参数名称	说明	类型
allowed-VBD-devices	可供使用的 VBD 标识符的列表,用 0 到 15 之间的整数表示。此列表仅供参考,可以使用未在此列表中列出的其他设备(但可能无法正常运行)。	只读 set 参数
allowed-VIF-devices	可供使用的 VIF 标识符的列表,用 0 到 15 之间的整数表示。此列表仅供参考,可以使用未在此列表中列出的其他设备(但可能无法正常运行)。	只读 set 参数
HVM-boot-policy	HVM 来宾系统的引导策略。 值为 BIOS Order 或空字符 串。	读取/写入
HVM-boot-params	order 键控制 HVM 来宾系统引导顺序,以字符串表示,其中每个字符代表一种引导方法:d 代表 CD/DVD,c 代表根磁盘,n 代表网络 PXE引导。默认值为 dc。	读取/写入 map 参数
PV-kernel	内核路径	读取/写入
PV-ramdisk	initrd 路径	读取/写入
PV-args	内核命令行参数字符串	读取/写入
PV-legacy-args	使旧 VM 基于此模板引导的 参数字符串	读取/写入
PV-bootloader	引导加载程序的名称或路径	读取/写入
PV-bootloader-args	引导加载程序杂项参数的字 符串	读取/写入
last-boot-CPU-flags	描述上次引导基于此模板的 VM 时所在的 CPU 的 标志; 不为模板填充此参数	只读
resident-on	基于此模板的 VM 当前所属的 XenServer 主机;对于模板,显示为 <not database="" in=""></not>	只读
affinity	基于此模板的 VM 首选在 其上运行的 XenServer 主 机;xe vm-start 命令使用此 参数决定在何处运行 VM	读取/写入
other-config	键/值对的列表,用于为模板 指定其他配置参数	读取/写入 map 参数

参数名称	说明	类型
start-time	读取基于此模板的 VM 的指标的日期和时间的时间戳,以 yyyymmddThh:mm:ss z 的形式表示,其中 z 是单字母军用时区指示器(例如,Z代表 UTC (GMT));对于模板,设置为 1 Jan 1970 Z(Unix/POSIX 时期的起始日期)	只读
install-time	读取基于此模板的 VM 的指标的日期和时间的时间戳,以yyyymmddThh:mm:ss z的形式表示,其中 z 是单字母军用时区指示器(例如,Z代表 UTC (GMT));对于模板,设置为 1 Jan 1970 Z(Unix/POSIX 时期的起始日期)	只读
memory-actual	基于此模板的 VM 正使用的 实际内存;对于模板,该值 为 0	只读
VCPUs-number	分配给基于此模板的 VM 的虚拟 CPU 数目;对于模板,该值为 0	只读
VCPUs-Utilization	虚拟 CPU 及其权重的列表	只读 map 参数
os-version	基于此模板的 VM 的操作系统的版本;对于模板,显示为 <not database="" in=""></not>	只读 map 参数
PV-drivers-version	基于此模板的 VM 的半虚拟 化驱动程序的版本;对于模 板,显示为 <not in<br="">database></not>	只读 map 参数
PV-drivers-up-to-date	基于此模板的 VM 的半虚拟 化驱动程序的最新版本的标 志;对于模板,显示为 <not in database></not 	只读
memory	基于此模板的 VM 上的代理 报告的内存指标;对于模 板,显示为 <not in<br="">database></not>	只读 map 参数
disks	基于此模板的 VM 上的代理 报告的磁盘指标;对于模 板,显示为 <not in<br="">database></not>	只读 map 参数

CITRIX'

参数名称		类型
networks	基于此模板的 VM 上的代理 报告的网络指标;对于模 板,显示为 <not in<br="">database></not>	只读 map 参数
other	基于此模板的 VM 上的代理 报告的其他指标;对于模 板,显示为 <not in<br="">database></not>	只读 map 参数
guest-metrics-last-updated	来宾代理上次对这些字段执行写入时的时间戳,以yyyymmddThh:mm:ssz的形式表示,其中z是单字母军用时区指示器(例如,Z代表UTC(GMT))	只读
actions-after-shutdown	将在 VM 关闭后执行的操作	读取/写入
actions-after-reboot	将在 VM 重新引导后执行的 操作	读取/写入
possible-hosts	可以承载 VM 的潜在主机列表	只读
HVM-shadow-multiplier	应用于被设置为可供来宾系 统使用的重影量的系数	读取/写入
dom-id	域 ID(如果可用,否则为 -1)	只读
recommendations	此 VM 的建议值和属性范围 的 XML 规范	只读
xenstore-data	在创建 VM 后将插入到 xenstore 树 (/local/domain/ <domid>/vm-data) 的数据。</domid>	读取/写入 map 参数
is-a-snapshot	如果此模板为 VM 快照,则为 true	只读
snapshot_of	以此模板为快照的 VM 的 UUID	只读
snapshots	根据此模板生成的任何快照 的 UUID	只读
snapshot_time	最近生成的 VM 快照的时间 戳	只读
memory-target	为此模板设置的目标内存量	只读
blocked-operations	列出无法在此模板上执行的 操作	读取/写入 map 参数
last-boot-record	此模板的上次引导参数的记录,使用 XML 格式	只读

参数名称	说明	类型
ha-always-run	如果此模板的实例在其所在 的主机发生故障后总在其他 主机上重新启动,则为 True	读取/写入
ha-restart-priority	1、2、3 或 best-effort。1 是 最高重新启动优先级	读取/写入
blobs	二进制数据存储	只读
live	仅与正在运行的 VM 相关。	只读

template-export

template-export template-uuid=<uuid_of_existing_template> filename=<filename_for_new_template> 将指定模板的副本导出到文件,使用指定的新文件名。

更新命令

用于更新 XenServer OEM 版本的命令。有关与更新 XenServer 标准非 OEM 版本相关的命令的详细信息,请参阅"修补程序(更新)命令"一节。

update-upload

update-upload file-name=<name_of_upload_file>

将新软件映像发送到 OEM 版 XenServer 主机。要使此操作生效,必须稍后重新启动主机。

用户命令

user-password-change

user-password-change old=<old_password> new=<new_password>

更改用户登录密码。未选中旧密码字段,因为执行此调用需要主管特权。

VBD 命令

用于 VBD (虚拟块设备)的命令。

VBD 是一个软件对象,用于将 VM 连接到 VDI(代表虚拟磁盘的内容)。VBD 中包含可将 VDI 与 VM 相联系的属性(可引导性、读/写指标等),而 VDI 中包含虚拟磁盘的物理属性信息(SR 类型、磁盘是否可共享、介质是可读写介质还是只读介质等)。

可使用标准对象列举命令 (xe vbd-list) 列出 VBD 对象,使用标准参数命令控制其参数。有关详细信息,请参阅"低级参数命令"一节。

VBD 参数

VBD 包含下列参数:

参数名称	说明	类型
uuid	VBD 的唯一标识符/对象引用	只读
vm-uuid	此 VBD 连接到的 VM 的唯一 标识符/对象引用	只读
vm-name-label	此 VBD 连接到的 VM 的名称	只读

CITRIX'

参数名称	说明	类型
vdi-uuid	此 VBD 映射到的 VDI 的唯一 标识符/对象引用	只读
vdi-name-label	此 VBD 映射到的 VDI 的名称	只读
empty	如果为 true,则表示空驱动 器	只读
device	可对来宾系统显示的设备, 例如 hda1	只读
userdevice	用户友好的设备名称	读取/写入
bootable	如果此 VBD 可引导,则为 true	读取/写入
mode	装载 VBD 应使用的模式	读取/写入
type	VBD 对 VM 的显示方式,例 如磁盘或 CD	读取/写入
currently-attached	如果 VBD 当前连接到此 主机,则为 True,否则,为 false	只读
storage-lock	如果获得了存储级别锁,则 为 True	只读
status-code	与上次连接操作相关联的错 误/成功代码	只读
status-detail	与上次连接操作状态相关联 的错误/成功信息	只读
qos_algorithm_type	要使用的 QoS 算法	读取/写入
qos_algorithm_params	所选 QoS 算法的参数	读取/写入 map 参数
qos_supported_algorithms	此 VBD 支持 QoS 算法	只读 set 参数
io_read_kbs	此 VBD 的平均读取速率,以 kbps 为单位	只读
io_write_kbs	此 VBD 的平均写入速率,以 kbps 为单位	只读
allowed-operations	此种状态下允许执行的操作 列表。此列表只是建议性 的,并且客户端读取此字段 时服务器状态可能已更改	只读 set 参数
current-operations	将每个使用此对象(通过引用)的正在运行的任务链接到描述此任务本质的current_operation 枚举。	只读 set 参数

参数名称	说明	类型
unpluggable	如果此 VBD 支持热拔出,则 为 true	读取/写入
attachable	如果设备可以连接,则为 True	只读
other-config	其他配置	读取/写入 map 参数

vbd-create

vbd-create vm-uuid=<uuid_of_the_vm> device=<device_value>
vdi-uuid=<uuid_of_the_vdi_the_vbd_will_connect_to> [bootable=true] [type=<Disk / CD>] [mode=<RW / RO>]

在 VM 上新建 VBD。

device 字段中相应的值列在指定 VM 上的 allowed-VBD-devices 参数中。允许的值是 0 到 15 的整数,否则此处不会存在任何 VBD。

如果 type 为 Disk,则必须指定 vdi-uuid。对于磁盘,模式可以为 RO 或 RW。

如果 type 为 CD,则可选择是否指定 vdi-uuid;如果不指定 VDI,将为 CD 创建空 VBD。对于 CD,模式必须为 RO。

vbd-destroy

vbd-destroy uuid=<uuid_of_vbd>

销毁指定的 VBD。

如果 VBD 将其 other-config:owner 参数设置为 true,则其关联的 VDI 也将被销毁。

vbd-eject

vbd-eject uuid=<uuid_of_vbd>

从 VBD 代表的驱动器中删除介质。仅当介质是可移动类型(物理 CD 或 ISO)时,此命令才有效;否则,将返回错误消息 VBD_NOT_REMOVABLE_MEDIA。

vbd-insert

vbd-insert uuid=<uuid_of_vbd> vdi-uuid=<uuid_of_vdi_containing_media>

将新介质插入到 VBD 代表的驱动器中。仅当介质是可移动类型(物理 CD 或 ISO)时,此命令才有效;否则,将返回错误消息 VBD_NOT_REMOVABLE_MEDIA。

vbd-plug

vbd-plug uuid=<uuid_of_vbd>

尝试在 VM 处于运行状态时连接 VBD。

vbd-unplug

vbd-unplug uuid=<uuid_of_vbd>

尝试在 VM 处于运行状态时将 VBD 从 VM 分离。

VDI 命令

用于 VDI (虚拟磁盘映像)的命令。

VDI 是一个软件对象,表示可对 VM 显示的虚拟磁盘的内容。而 VBD 则是一个将 VM 连接到 VDI 的连接器对象。VDI 中包含虚拟磁盘的物理属性信息(SR 类型、磁盘是否可共享、虚拟磁盘、介质是可读写介质还是只读介质等),而 VBD 中包含将 VDI 与 VM 相联系的属性(可引导性、读/写指标等)。

可使用标准对象列举命令 (xe vdi-list) 列出 VDI 对象,使用标准参数命令控制其参数。有关详细信息,请参阅"低级参数命令"一节。

VDI 参数

VDI 包含下列参数:

参数名称	说明	类型
uuid	VDI 的唯一标识符/对象引用	只读
name-label	VDI 的名称	读取/写入
name-description	VDI 的描述字符串	读取/写入
allowed-operations	在此状态下允许执行的操作的列表	只读 set 参数
current-operations	当前在此 VDI 上进行的操作的列表	只读 set 参数
sr-uuid	VDI 所在的 SR	只读
vbd-uuids	引用此 VDI 的 VBD 的列表	只读 set 参数
crashdump-uuids	引用此 VDI 的故障转储的列表	只读 set 参数
virtual-size	向 VM 提供的磁盘大小,以字节为单位。请注意,此大小可能会不准确,具 体取决于存储后端的类型	只读
physical-Utilization	VDI 当前在 SR 上占用的物理空间量,以字节为单位	只读
type	VDI 的类型,例如系统或用户	只读
sharable	如果此 VDI 可以共享,则为 true	只读
read-only	如果此 VDI 仅可以装载为只读,则为 true	只读
storage-lock	如果此 VDI 锁定在存储级别,则为 true	只读
parent	如果此 VDI 是链的一部分,则引用父 VDI	只读
missing	如果 SR 扫描操作报告此 VDI 不存在, 则为 true	只读
other-config	此 VDI 的其他配置信息	读取/写入 map 参数
sr-name-label	所包含的存储库的名称	只读
location	位置信息	只读

参数名称	说明	类型
managed	如果 VDI 是托管的,则为 true	只读
xenstore-data	在连接 VDI 后将插入到 xenstore 树 (/local/domain/0/backend/ vbd/ <domid>/<device-id>/sm- data) 的数据。这通常由 vdi_attach 上 的 SM 后端设置。</device-id></domid>	只读 map 参数
sm-config	SM 依赖数据	只读 map 参数
is-a-snapshot	如果此 VDI 是 VM 存储快照,则为 true	只读
snapshot_of	以此 VDI 为快照的存储的 UUID	只读
snapshots	此 VDI 的所有快照的 UUID	只读
snapshot_time	创建此 VDI 的快照操作的时间戳	只读
metadata-of-pool	创建此元数据 VDI 的池的 UUID	只读
metadata-latest	指示 VDI 中是否包含此池的最新已知元数据的标志	只读

vdi-clone

vdi-clone uuid=<uuid_of_the_vdi>[driver-params:<key=value>]

创建指定 VDI 的新可写副本,此副本可直接使用。它是 vdi-copy 的变体,可公开其所在的映像高速克隆工具。

可使用可选 driver-params 映射参数将额外的供应商特定的配置信息传递到 VDI 所基于的后端存储驱动程序。有关详细信息,请参阅存储供应商驱动程序文档。

vdi-copy

vdi-copy uuid=<uuid_of_the_vdi> sr-uuid=<uuid_of_the_destination_sr>

将 VDI 复制到指定的 SR。

vdi-create

```
vdi-create sr-uuid=<uuid_of_the_sr_where_you_want_to_create_the_vdi>
name-label=<name_for_the_vdi>
type=<system | user | suspend | crashdump>
virtual-size=<size_of_virtual_disk>
sm-config-*=<storage_specific_configuration_data>
```

创建 VDI。

virtual-size 参数可以以字节为单位进行指定,也可以使用 IEC 标准后缀 KiB(2^{10} 字节)、MiB(2^{20} 字节)、GiB(2^{30} 字节)和 TiB(2^{40} 字节)进行指定。

注意:

支持磁盘的稀疏分配的 SR 类型(例如本地 VHD 和 NFS)不强制执行磁盘的虚拟分配。因此用户在 SR 上过量分配虚拟磁盘空间时应十分小心。当过量分配的 SR 变满时,SR 目标基底上必须提供可用磁盘空间,或通过删除 SR 中未使用的 VDI 来获得磁盘空间。

注意:

某些 SR 类型可能会对 virtual-size 值进行舍入处理,以使此值可被已配置块的大小整除。

vdi-destroy

vdi-destroy uuid=<uuid_of_vdi>

销毁指定的 VDI。

注意:

对于本地 VHD 和 NFS SR 类型,使用 vdi-destroy 不能立即释放磁盘空间,而是在存储库扫描操作期间定期释放磁盘空间。用户如果需要强制使删除所得的磁盘空间可用,则应手动调用 sr-scan 。

vdi-forget

vdi-forget uuid=<uuid_of_vdi>

从数据库无条件删除 VDI 记录,不涉及存储后端。在正常操作中,您应该使用 vdi-destroy 完成此任务。

vdi-import

vdi-import uuid=<uuid of vdi> filename=<filename of raw vdi>

导入原始 VDI。

vdi-introduce

```
vdi-introduce uuid=<uuid_of_vdi>
sr-uuid=<uuid_of_sr_to_import_into>
name-label=<name_of_the_new_vdi>
type=<system | user | suspend | crashdump>
location=<device_location_(varies_by_storage_type)>
[name-description=<description_of_vdi>]
[sharable=<yes | no>]
[read-only=<yes | no>]
[other-config=<map_to_store_misc_user_specific_data>]
[xenstore-data=<map_to_of_additional_xenstore_keys>]
[sm-config<storage_specific_configuration_data>]
```

创建代表现有存储设备的 VDI 对象,无需实际修改或创建任何存储。此命令主要在内部使用,用来自动引入热插入存储设备。

vdi-resize

vdi-resize uuid=<vdi_uuid> disk-size=<new_size_for_disk>

调整由 UUID 指定的 VDI 的大小。

vdi-snapshot

vdi-snapshot uuid=<uuid_of_the_vdi>[driver-params=<params>]

生成 VDI 的读写版本,该版本可用作进行备份和/或创建模板时的参考。除在 VM 内部安装和运行备份软件之外,您还可以通过快照执行备份。当外部备份软件将快照内容发送到备份介质时,VM 可以继续运行。同样,快照可用作"黄金映像",可以基于此映像创建模板。可以使用任何 VDI 创建模板。

可使用可选 driver-params 映射参数将额外的供应商特定的配置信息传递到 VDI 所基于的后端存储驱动程序。有关详细信息,请参阅存储供应商驱动程序文档。

克隆快照应始终生成可写 VDI。

vdi-unlock

vdi-unlock uuid=<uuid_of_vdi_to_unlock> [force=true]

尝试取消对指定 VDI 的锁定。如果将 force=true 传递给此命令,它将强制执行取消锁定操作。

VIF 命令

用于 VIF(虚拟网络接口)的命令。

可使用标准对象列举命令 (xe vif-list) 列出 VIF 对象,使用标准参数命令控制其参数。有关详细信息,请参阅"低级参数命令"一节。

VIF 参数

VIF 包含下列参数:

参数名称		类型
uuid	VIF 的唯一标识符/对象引用	只读
vm-uuid	此 VIF 所驻留的 VM 的唯一标识符/对象引用	只读
vm-name-label	此 VIF 所驻留的 VM 的名称	只读
allowed-operations	在此状态下允许执行的操作 的列表	只读 set 参数
current-operations	此 VIF 上当前正在进行的操 作列表	只读 set 参数
device	此 VIF 的整数标签,指示 VIF 后端的创建顺序	只读
MAC	对 VM 公开的 VIF 的 MAC 地址	只读
MTU	VIF 的最大传输单位(以字节 为单位)。此参数为只读参 数,但是您可以使用 other- config map 参数利用 mtu 键 覆盖 MTU 设置。例如,在虚 拟 NIC 上重置 MTU 以使用巨 型帧: xe vif-param-set \ uuid= <vif_uuid>\ other-config:mtu=9000</vif_uuid>	只读
currently-attached	如果当前已连接了设备,则 为 true	只读
qos_algorithm_type	要使用的 QoS 算法	读取/写入
qos_algorithm_params	所选 QoS 算法的参数	读取/写入 map 参数
qos_supported_algorithms	此 VIF 支持 QoS 算法	只读 set 参数

参数名称	说明	类型
MAC-autogenerated	如果自动生成 VIF 的 MAC 地址,则为 True	只读
other-config	其他配置键/值对	读取/写入 map 参数
other-config:ethtool-rx	设置为 on 会启用接收校验 和,设置为 off 会禁用接收 校验和	读写
other-config:ethtool-tx	设置为 on 会启用发送校验和,设置为 off 会禁用发送校验和	读写
other-config:ethtool-sg	设置为 on 会启用分散收集, 设置为 off 会禁用分散收集	读写
other-config:ethtool-tso	设置为 on 会启用 tcp 分段卸载,设置为 off 会禁用 tcp 分段卸载	读写
other-config:ethtool-ufo	设置为 on 会启用 udp 段卸载,设置为 off 会禁用 udp 段卸载	读写
other-config:ethtool-gso	设置为 on 会启用通用分段卸载,设置为 off 会禁用通用分段卸载	读写
other-config:promiscuous	为 true 时,VIF 在桥上为混杂模式,以便监测通过该桥的所有通信。对于在 VM 中运行入侵检测系统 (IDS) 或类似系统会有所帮助。	读写
network-uuid	此 VIF 连接到的虚拟网络的唯一标识符/对象引用	只读
network-name-label	此 VIF 连接到的虚拟网络的描述性名称	只读
io_read_kbs	此 VIF 的平均读取速率(以 kb/s 为单位)	只读
io_write_kbs	此 VIF 的平均写入速率(以 kb/s 为单位)	只读

vif-create

vif-create vm-uuid=<uuid_of_the_vm> device=<see below>
network-uuid=<uuid_of_the_network_the_vif_will_connect_to> [mac=<mac_address>]

在 VM 上新建 VIF。

device 字段中相应的值列在指定 VM 上的 allowed-VIF-devices 参数中。如果 VM 中尚不存在 VIF,则允许的值为从 0 到 15 之间的整数。

mac 参数为标准 MAC 地址,格式为 aa:bb:cc:dd:ee:ff。如果不指定此地址,则会创建一个适当的随机 MAC 地址。您还可以通过指定 mac=random 显式设置一个随机 MAC 地址。

vif-destrov

vif-destroy uuid=<uuid of vif>

销毁 VIF。

vif-plug

vif-plug uuid=<uuid_of_vif>

尝试在 VM 处于运行状态时连接 VIF。

vif-unplug

vif-unplug uuid=<uuid_of_vif>

当 VM 处于运行状态时尝试将 VIF 从中分离出来。

VLAN 命令

与 VLAN(虚拟网络)一起使用的命令。要列出和编辑虚拟接口,请参阅 PIF 命令,这些命令包含 VLAN 参数以指示虚拟接口具有关联虚拟网络(请参阅"PIF 命令"一节)。例如,要列出 VLAN,需要使用 xe pif-list。

vlan-create

vlan-create pif-uuid=<uuid_of_pif> vlan=<vlan_number> networkuuid=<uuid of network>

在 XenServer 主机上创建新 VLAN。

pool-vlan-create

vlan-create pif-uuid=<uuid_of_pif> vlan=<vlan_number> networkuuid=<uuid_of_network>

通过确定特定网络所在的每个主机的接口(例如 eth0),并在每个相应的主机上创建和插入一个新的 PIF 对象,为池中的所有主机创建一个新 VLAN。

vlan-destroy

vlan-destroy uuid=<uuid_of_pif_mapped_to_vlan>

销毁 VLAN。需要使用表示 VLAN 的 PIF 的 UUID。

VM 命令

控制 VM 及其属性的命令。

VM 选择器

此处列出的几个命令具有一个共同的机制,即可选择一个或多个要对其执行操作的 VM。最简单的方法是提供参数 $vm=<name_or_uuid>$ 。例如,获取实际 VM 的 uuid 的一种简单的方法是执行 xe vm-list power-state=running。(可匹配字段的完整列表可以通过命令 xe vm-list params-all 获取。)例如,指定 power-state=halted 将选择 power-state 参数的值为 halted 的所有 VM。如果有多个匹配的 VM,则必须指定选项 --multiple 才能执行操作。本部分开头介绍了可匹配的参数的完整列表,该列表可通过命令 xever-list params=all 获得。

可使用标准对象列表命令 (xe vm-list) 以及使用标准参数命令操纵的参数列出 VM 对象。有关详细信息,请参阅"低级参数命令"一节。

VM 参数

VM 具有下列参数:

注意:

当 VM 运行时,可以更改所有可写入的 VM 参数值,但不会动态应用新参数,并且重新引导 VM 之后才会应用新参数。

参数名称	说明	类型
appliance	VM 所属的设备/vApp	读取/写入
uuid	VM 的唯一标识符/对象引用	只读
name-label	VM 的名称	读取/写入
name-description	VM 的描述字符串	读取/写入
order	vApp 启动/关闭功能的启动顺序,以 及进行高可用性故障转移之后的启动 顺序	读取/写入
version	此 VM 已经恢复的次数,如果用户希望用旧版 VM 覆盖新 VM,则必须调用 vm-recover	只读
user-version	描述 VM 和模板的创建者的字符串, 用于输入版本信息	读取/写入
is-a-template	除非为模板,否则为 false;始终无 法启动模板 VM,它们只能用于克隆 其他 VM	读取/写入
is-control-domain	如果是控制域(域 0 或驱动程序域),则为 true	只读
power-state	当前电源状态	只读
start delay	在用来启动 VM 的调用返回之前等待的时间	读取/写入
shutdown-delay	在用来关闭 VM 的调用返回之前等待的时间	读取/写入
memory-dynamic-max	最大动态内存,以字节为单位	读取/写入
memory-dynamic-min	最小动态内存,以字节为单位	读取/写入
memory-static-max	静态集(绝对)最大值,以字节为单位。 如果要更改此值,必须关闭 VM。	读取/写入
memory-static-min	静态集(绝对)最小值,以字节为单位。如果要更改此值,必须关闭 VM。	读取/写入
suspend-VDI-uuid	存储挂起映像的 VDI	只读

参数名称	说明	类型
VCPUs-params	所选 VCPU 策略的配置参数。	读取/写入 map 参数
	可以使用以下命令调整 VCPU 分配	
	<pre>xe vm-param-set \ uuid=<vm_uuid> \ VCPUs-params:mask=1,2,3</vm_uuid></pre>	
	然后,所选 VM 仅在物理 CPU 1、2 和 3 上运行。	
	还可以使用 cap 和 weight 参数调整 VCPU 优先级(xen 调度);例如	
	<pre>xe vm-param-set \ uuid=<template_uuid> \ VCPUs-params:weight=512 xe vm-param-set \ uuid=<template uuid=""> \ VCPUs-params:cap=100</template></template_uuid></pre>	
	在竞争的 XenServer 主机上,权重为512 的 VM 获得的 CPU 将是权重为256 的域的两倍。合法的权重范围为1到65535,默认值为256。	
	即使 XenServer 主机具有空闲 CPU 周期,该上限也可以选择性地确定 VM 能够占用的最大 CPU 量。此上限以一个物理 CPU 的百分比表示:100 是 1 个物理 CPU,50 是半个物理 CPU,400 是 4 个物理 CPU。默认值为 0,表示无上限。	
VCPUs-max	虚拟 CPU 的最大数量	读取/写入
VCPUs-at-startup	虚拟 CPU 的引导次数	读取/写入
actions-after-crash	VM 崩溃后采取的措施。preserve(仅适用于分析)、coredump_and_restart(记录内核转储并重新引导VM)、coredump_and_destroy(记录内核转储并使 VM 保持为停止状态)、restart(不记录内核转储,但重新引导 VM)以及 destroy(不记录内核转储,但使 VM 保持为停止状态)。	读取/写入
console-uuids	虚拟控制台设备	只读 set 参数
platform	特定于平台的配置	读取/写入 map 参数
allowed-operations	此状态下允许的操作的列表	只读 set 参数
current-operations	VM 上当前正在执行的操作的列表	只读 set 参数

CITRIX'

参数名称	说明	类型
allowed-VBD-devices	可供使用的 VBD 标识符的列表,用 0 到 15 之间的整数表示。此列表仅供 参考,可以使用未在此列表中列出的 其他设备(但可能无法正常运行)。	只读 set 参数
allowed-VIF-devices	可供使用的 VIF 标识符的列表,用 0 到 15 之间的整数表示。此列表仅供 参考,可以使用未在此列表中列出的 其他设备(但可能无法正常运行)。	只读 set 参数
HVM-boot-policy	HVM 来宾系统的引导策略。值为 BIOS Order 或空字符串。	读取/写入
HVM-boot-params	order 键控制 HVM 来宾系统引导顺序,以字符串表示,其中每个字符代表一种引导方法:d 代表 CD/DVD,c 代表根磁盘,n 代表网络PXE 引导。默认值为 dc。	读取/写入 map 参数
HVM-shadow-multiplier	浮点值,用于控制授予 VM 的影子内存开销量。默认值为 1.0(最小值),只有高级用户才能更改此值。	读取/写入
PV-kernel	内核路径	读取/写入
PV-ramdisk	initrd 路径	读取/写入
PV-args	内核命令行参数字符串	读取/写入
PV-legacy-args	引导传统 VM 的参数字符串	读取/写入
PV-bootloader	引导加载程序的名称或路径	读取/写入
PV-bootloader-args	引导加载程序杂项参数的字符串	读取/写入
last-boot-CPU-flags	描述上次引导 VM 时所在的 CPU 的标志	只读
resident-on	VM 当前所驻留的 XenServer 主机	只读
affinity	VM 要优先在其上运行的 XenServer 主机; xe vm-start 命令使用该参数确定运行 VM 的位置	读取/写入
other-config	为 VM 指定其他配置参数的键/值对列表 例如,如果 other-config 参数包括键/ 值对 auto_poweron: true,则引导主 机后将自动启动 VM	读取/写入 map 参数
start-time	读取 VM 指标时的日期和时间的时间 戳,形式为 yyyymmddThh:mm:ss z,其中 z 是单一字母 24 小时时区指示器,例如,Z 表示 UTC (GMT)	只读

参数名称	说明	类型
install-time	读取 VM 指标时的日期和时间的时间 戳,形式为 yyyymmddThh:mm:ss z,其中 z 是单一字母 24 小时时区指 示器,例如,Z 表示 UTC (GMT)	只读
memory-actual	VM 使用的实际内存	只读
VCPUs-number	分配给 VM 的虚拟 CPU 的数量对于半虚拟化的 Linux VM,此数量可能与 VCPUS-max 不同。使用 vm-vcpu-hotplug 命令就可以对此数量进行更改,而不必重新引导 VM。请参阅"vm-vcpu-hotplug"一节。Windows VM 始终在 vCPU 数量设置为VCPUS-max 的情况下运行并且必须重新引导 Windows VM 才可以更改此值。请注意,如果为 VCPUS-number 设置的值大于 XenServer 主机上的物理CPU 数量,性能将急剧下降。	只读
VCPUs-Utilization	虚拟 CPU 及其权重的列表	只读 map 参数
os-version	VM 的操作系统的版本	只读 map 参数
PV-drivers-version	VM 的半虚拟化驱动程序的版本	只读 map 参数
PV-drivers-up-to-date	VM 的半虚拟化驱动程序最新版本的标志	只读
memory	VM 上代理报告的内存指标	只读 map 参数
disks	VM 上代理报告的磁盘指标	只读 map 参数
networks	VM 上代理报告的网络指标	只读 map 参数
other	VM 上代理报告的其他指标	只读 map 参数
guest-metrics-last-updated	来宾代理上次对这些字段执行写入时的时间戳,以yyyymmddThh:mm:ss z 的形式表示,其中 z 是单字母军用时区指示器(例如,Z 代表 UTC (GMT))	只读
actions-after-shutdown	将在 VM 关闭后执行的操作	读取/写入
actions-after-reboot	将在 VM 重新引导后执行的操作	读取/写入
possible-hosts	可能驻留此 VM 的主机	只读
dom-id	域 ID(如果可用,否则为 -1)	只读
recommendations	此 VM 的建议值和属性范围的 XML 规范	只读

参数名称	说明	类型
xenstore-data	在创建 VM 后将插入到 xenstore 树 (/local/domain/ <domid>/ vm-data)的数据。</domid>	读取/写入 map 参数
is-a-snapshot	如果此 VM 是快照,则为 true	只读
snapshot_of	此快照针对的 VM 的 UUID	只读
snapshots	此 VM 的所有快照的 UUID	只读
snapshot_time	创建此 VM 快照的快照操作的时间戳	只读
memory-target	为此 VM 设置的目标内存量	只读
blocked-operations	列出无法在此 VM 上执行的操作	读取/写入 map 参数
last-boot-record	此模板的上次引导参数的记录,使用 XML 格式	只读
ha-always-run	如果当此 VM 所在的主机发生故障时,它始终在另一台主机上重新启动,则为 true	读取/写入
ha-restart-priority	1、2、3 或 best-effort。1 是最高重新 启动优先级	读取/写入
blobs	二进制数据存储	只读
live	如果 VM 正在运行,则为 true;如果高可用性功能猜测 VM 可能没有运行,则为 false。	只读

vm-assert-can-be-recovered

vm-assert-can-be-recovered <uuid>[<database>] <vdi-uuid>

测试存储是否可用于恢复此 VM。

vm-cd-add

vm-cd-add cd-name=<name_of_new_cd> device=<integer_value_of_an_available_vbd>
[<vm-selector>=<vm_selector_value>...]

将新虚拟 CD 添加到所选的 VM。应从 VM 的 allowed-VBD-devices 参数值中选择 device 参数。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-cd-eject

vm-cd-eject[<vm-selector>=<vm_selector_value>...]

从虚拟 CD 驱动器弹出 CD。仅当有且只有一个 CD 连接到 VM 时,此命令才会起作用。如果有两个或更多 CD,请使用命令 xe vbd-eject,并指定 VBD 的 UUID。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-cd-insert

vm-cd-insert cd-name=<name_of_cd>[<vm-selector>=<vm_selector_value>...]

将 CD 插入到虚拟 CD 驱动器。当有且仅有一个空 CD 设备连接到 VM 时,此命令才会起作用。如果有两个或多个空 CD 设备,请使用命令 xe vbd-insert,并指定要插入的 VBD 和 VDI 的 UUID。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-cd-list

vm-cd-list [vbd-params] [vdi-params] [<vm-selector>=<vm_selector_value>...]

列出连接到指定 VM 的 CD。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

您还可以选择要列出哪些 VBD 和 VDI 参数。

vm-cd-remove

vm-cd-remove cd-name=<name_of_cd> [<vm-selector>=<vm_selector_value>...]

从指定 VM 中移除虚拟 CD。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-clone

vm-clone new-name-label=<name_for_clone>
[new-name-description=<description_for_clone>] [<vm-selector>=<vm_selector_value>...]

如果可用,请使用存储级别的快速磁盘克隆操作克隆现有的 VM。使用 new-name-label 和 new-name-description 参数为生成的克隆 VM 指定名称和可选说明。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-compute-maximum-memory

vm-compute-maximum-memory total=<amount_of_available_physical_ram_in_bytes>
[approximate=<add overhead memory for additional vCPUS? true | false>]
[<vm_selector>=<vm_selector_value>...]

通过将物理 RAM 的总量用作上限来计算可以分配给现有 VM 的最大静态内存量。可选参数 approximate 在计算过程中保留足够的额外内存,以便以后将额外的 vCPU 添加到 VM。

例如:

xe vm-compute-maximum-memory vm=testvm total=`xe host-list params=memory-free --minimal`

此命令使用 xe host-list 命令返回的 memory-free 参数的值设置名为 testvm 的 VM 的最大内存。

使用标准选择机制选择要在其上执行操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分 开头列出的参数中的任意数个。

vm-copy

vm-copy new-name-label=<name_for_copy> [new-namedescription=<description_for_copy>]
[sr-uuid=<uuid_of_sr>] [<vm-selector>=<vm_selector_value>...]

复制现有 VM,但不使用存储级别的快速磁盘克隆操作(即使该操作可用)。保证 VM 副本的磁盘映像为"完整映像",即该磁盘映像不是写入时复制 (CoW) 链的一部分。

使用 new-name-label 和 new-name-description 参数为生成的 VM 副本指定名称和可选说明。

使用 sr-uuid 为生成的 VM 副本指定目标 SR。如果未指定此参数,则目标 SR 与原始 VM 所在的 SR 相同。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-crashdump-list

vm-crashdump-list[<vm-selector>=<vm selector value>...]

列出与指定 VM 关联的故障转储。

如果使用可选参数 params,则 params 的值是一个字符串,其中包含您希望显示的此对象的参数列表。或者,可以使用关键字 a11 显示所有参数。如果不使用 params,则返回的列表将显示所有可用参数的默认子集。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-data-source-list

vm-data-source-list[<vm-selector>=<vm selector value>...]

列出可为 VM 记录的数据源。

使用标准选择机制(请参阅 VM 选择器)选择将执行此操作的 VM。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。如果未给定用于选择主机的参数,将在所有 VM 上执行操作。

数据源具有 standard 和 enabled 两个参数,可以在该命令的输出中看到这两个参数。如果数据源的 enabled 设置为 true,则指标当前记录到性能数据库中。如果数据源的 standard 设置为 true,则默认情况下指标会记录到性能数据库中(因此,该数据源的 enabled 也将设置为 true)。如果数据源的 standard 设置为 false,则默认情况下指标不会记录到性能数据库中(因此,该数据源的 enabled 也将设置为 false)。

要开始将数据源指标记录到性能数据库,请运行 vm-data-source-record 命令。这会将 enabled 设置为 true。要停止记录,请运行 vm-data-source-forget。这会将 enabled 设置为 false。

vm-data-source-record

vm-data-source-record data-source=<name_description_of_data-source>[<vmselector>=<vm selector value>...]

记录 VM 的指定数据源。

此操作会将数据源中的信息写入指定 VM 的静态性能指标数据库中。由于性能的原因,此数据库不同于普通的代理数据库。

使用标准选择机制(请参阅 VM 选择器)选择将执行此操作的 VM。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。如果未给定用于选择主机的参数,将在所有 VM 上执行操作。

vm-data-source-forget

vm-data-source-forget data-source=<name_description_of_data-source> [<vmselector>=<vm selector value>...]

停止为 VM 记录指定数据源并忽略所有已记录的数据。

使用标准选择机制(请参阅 VM 选择器)选择将执行此操作的 VM。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。如果未给定用于选择主机的参数,将在所有 VM 上执行操作。

vm-data-source-query

vm-data-source-query data-source=<name_description_of_data-source> [<vmselector>=<vm selector value>...]

显示 VM 的指定数据源。

使用标准选择机制(请参阅 VM 选择器)选择将执行此操作的 VM。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。如果未给定用于选择主机的参数,将在所有 VM 上执行操作。

vm-destroy

vm-destroy uuid=<uuid_of_vm>

销毁指定的 VM。这会使与 VM 关联的存储保留不变。要同时删除存储,请使用 xe vm-uninstall。

vm-disk-add

vm-disk-add disk-size=<size_of_disk_to_add> device=<uuid_of_device>
[<vm-selector>=<vm_selector_value>...]

将新磁盘添加到指定 VM。从 VM 的 allowed-VBD-devices 参数值中选择 device 参数。

disk-size 参数可以以字节为单位进行指定,也可以使用 IEC 标准后缀 KiB(2^{10} 字节)、MiB(2^{20} 字节)、GiB(2^{30} 字节)和 TiB(2^{40} 字节)进行指定。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-disk-list

vm-disk-list[vbd-params][vdi-params][<vm-selector>=<vm_selector_value>...]

列出连接到指定 VM 的磁盘。vbd-params 和 vdi-params 参数控制要输出的各个对象的字段,应以逗号分隔的列表形式给出,或使用特殊键 all 表示给出完整列表。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-disk-remove

vm-disk-remove device=<integer_label_of_disk> [<vmselector>=<vm_selector_value>...]

从指定 VM 移除磁盘并将其销毁。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-export

vm-export filename=<export_filename>

```
[metadata=<true | false>]
[<vm-selector>=<vm_selector_value>...]
```

将指定 VM(包括磁盘映像)导出到本地计算机上的文件中。使用 filename 参数指定将 VM 导出到的文件的文件名。按照惯例,此文件名的扩展名应该为.xva。

如果 metadata 参数为 true,则不会导出磁盘,而仅将 VM 元数据写入到输出文件中。这适用于基础存储通过其他机制进行传输的情况,允许重新创建 VM 信息(请参阅"vm-import"一节)。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-import

```
vm-import filename=<export_filename>
[metadata=<true | false>]
[preserve=<true | false>]
[sr-uuid=<destination_sr_uuid>]
```

从之前导出的文件导入 VM。如果将 preserve 设置为 true,则将保留原始 VM 的 MAC 地址。sr-uuid 确定将 VM 导入到的目标 SR;如果未指定,则导入到默认 SR。

filename 参数还可以指向 XVA 格式的 VM,该格式是自 XenServer 3.2 以来的传统导出格式,一些第三方供应商使用 XVA 格式来提供虚拟设备。该格式使用目录存储 VM 数据,因此将 filename 设置为 XVA 导出的根目录而不是实际的文件。导入的传统来宾系统的后续导出内容将自动升级到新的基于文件名的格式,这种格式可以存储更多关于 VM 配置的数据。

注意:

早期的基于目录的 XVA 格式不能完整保留所有 VM 属性。尤其是默认情况下导入的 VM 不会连接任何虚拟网络接口。如果需要网络,则使用 vif-create 和 vif-plug 创建一个网络。

如果 metadata 为 true,则可以导入之前导出的一组元数据,而不会导入与之关联的磁盘块。如果找不到 VDI(按照 SR 和 VDI.location 命名),只导入元数据的操作将会失败,除非指定 --force 选项,这时无论遇到什么情况导入都会继续。如果可以对磁盘进行镜像或将其移动到带外,则元数据导入/导出是一种在无连接的池之间移动 VM 的快捷方法(例如,作为灾难恢复方案的一部分)。

注意:

以串行方式导入多个 VM 比使用并行方式更快。

vm-install

```
vm-install new-name-label=<name>
[template-uuid=<uuid_of_desired_template> |
[template=<uuid_or_name_of_desired_template>]]
[sr-uuid=<sr_uuid> | sr-name-label=<name_of_sr> ]
[copy-bios-strings-from=<uuid of host> ]
```

基于模板安装或克隆 VM。使用 template-uuid 或 template 参数指定模板名称。使用 sr-uuid 或 sr-name-label 参数指定 SR。指定使用 copy-bios-strings-from 参数安装锁定了 BIOS 的介质。

注意:

默认情况下,在基于包含现有磁盘的模板进行安装时,将在现有磁盘所在的同一个 SR 中创建新磁盘。如果该 SR 支持基于模板的安装,将进行快速复制。如果在命令 行上指定了其他 SR,则将在该 SR 中创建新磁盘。在这种情况下,无法实现快速复制,磁盘将进行完整复制。

基于不含现有磁盘的模板进行安装时,将在指定的 SR 中创建任何新磁盘;如果没有指定 SR,则将在池的默认 SR 中创建新磁盘。

vm-memory-shadow-multiplier-set

vm-memory-shadow-multiplier-set [<vm-selector>=<vm_selector_value>...]
[multiplier=<float_memory_multiplier>]

设置指定 VM 的影子内存系数。

这是用于修改分配给硬件辅助 VM 的影子内存量的高级选项。在 Citrix XenApp 等某些专用应用程序工作负载中,需要具有额外的影子内存才可以获得最佳性能。

此内存被认为是一种系统开销。在计算 VM 内存时,此种内存与普通内存分开计算。调用此命令后,可用 XenServer 主机内存量将减少(减少量视系数而定),并且 HVM_shadow_multiplier 字段将使用 Xen 分配给 VM 的实际值进行更新。如果没有足够的可用 XenServer 主机内存,将返回错误。

应在其上执行此操作的 VM 使用标准选择机制进行选择(有关详细信息,请参阅 VM 选择器)。

vm-migrate

vm-migrate [[host-uuid=<destination XenServer host UUID>]|[host=<name or UUID of
destination XenServer host>]][<vm-selector>=<vm_selector_value>...][live=<true
| false>]

在物理主机间迁移指定的 VM。host 参数可以是 XenServer 主机的名称或 UUID。

默认情况下,VM 将挂起、迁移并在另一台主机上恢复。 *l i ve* 参数激活 XenMotion,并使 VM 在执行 迁移时继续运行,从而使 VM 停机时间缩短至小于一秒。在某些情况下(如 VM 中的内存工作负载繁 重),XenMotion 将自动恢复到默认模式,并在完成内存传输前将 VM 挂起一小段时间。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-reboot

vm-reboot [<vm-selector>=<vm_selector_value>...] [force=<true>]

重新引导指定的 VM。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

使用 force 参数将导致非正常关机,与拔掉物理服务器上的插头相似。

vm-recover

vm-recover <vm-uuid> [<database>] [<vdi-uuid>] [<force>]

从提供的 VDI 中包含的数据库恢复 VM。

vm-reset-powerstate

vm-reset-powerstate [<vm-selector>=<vm_selector_value>...] {force=true}

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

这是一个高级命令,仅在池中的成员主机出现故障时使用。您可以使用此命令强制池主服务器将 VM 的电源状态重置为 halted。实际上这将强制锁定 VM 及其磁盘,以便随后可在另一台池主机上启动此 VM。此调用要求指定 force 标志,如果命令行中不存在 force 标志,则调用将失败。

vm-resume

vm-resume [<vm-selector>=<vm_selector_value>...] [force=<true | false>]
[on=<XenServer host UUID>]

恢复指定的 VM。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

如果 VM 位于主机池内的共享 SR 上,则使用 on 参数指定要在其上启动 VM 的主机。默认情况下,系统将确定一台适合的主机(可以是池中的任何成员)。

vm-shutdown

vm-shutdown [<vm-selector>=<vm_selector_value>...] [force=<true | false>]

关闭指定的 VM。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

使用 force 参数将导致非正常关机,与拔掉物理服务器上的插头相似。

vm-start

vm-start[<vm-selector>=<vm_selector_value>...][force=<true | false>]
[on=<XenServer host UUID>][--multiple]

启动指定的 VM。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

如果 VM 位于主机池中的共享 SR 上,则使用 on 参数指定池中在其上启动 VM 的主机。默认情况下,系统将确定一台适合的主机(可以是池中的任何成员)。

vm-suspend

vm-suspend [<vm-selector>=<vm_selector_value>...]

挂起指定的 VM。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-uninstall

vm-uninstall [<vm-selector>=<vm_selector_value>...] [force=<true | false>]

卸载 VM — 销毁其磁盘(标记了 RW 且仅连接到此 VM 的 VDI)及其元数据记录。要仅销毁 VM 元数据,请使用 xe vm-destroy。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-vcpu-hotplug

vm-vcpu-hotplug new-vcpus=<new_vcpu_count>[<vmselector>=<vm selector value>...]

在参数 VCPUS-max 限定的数量范围内,动态调整正在运行的半虚拟化 Linux VM 可用的 VCPU 数量。Windows VM 始终在 vCPU 数量设置为 VCPUS-max 的情况下运行并且必须重新引导 Windows VM 才可以更改此值。

应在其上执行此操作的半虚拟化 Linux VM 使用标准选择机制进行选择(请参阅 VM 选择器)。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

vm-vif-list

```
vm-vif-list[<vm-selector>=<vm_selector_value>...]
```

列出指定 VM 中的 VIF。

将使用标准选择机制来选择应在其上执行此操作的 VM(请参阅 VM 选择器)。请注意,过滤时选择器对 VM 记录执行操作,而不对 VIF 值执行操作。可选参数可以为 VM 参数部分开头列出的参数中的任意数个。

Workload Balancing XE 命令

控制 Workload Balancing 功能的命令。

pool-initialize-wlb

```
pool-initialize-wlb wlb_url=<wlb_server_address> \
wlb_username=<wlb_server_username> \
wlb_password=<wlb_server_password> \
xenserver_username=<pool_master_username> \
xenserver_password=<pool_master_password>
```

初始化 Workload Balancing 服务器与 XenServer 池之间的连接。

注意:

初始化资源池需要运行两个命令。首先执行 pool-initialize-wlb 命令,然后执行 xe pool-param-set wlb-enabled=true uuid=<pool-uuid>∏。

pool-param-set other-config

pool-param-set other-config 命令用于指定与 Workload Balancing 服务器通信时的超时时间。所有请求 均顺序执行,此超时时间涵盖从请求进入队列开始直到完成响应的这段时间。换言之,一旦调用速度减缓,后续调用也会随之减缓。如果未指定超时时间或无法解析该设置,则默认超时时间为 30 秒。

```
xe pool-param-set other-config:wlb_timeout=<0.01> \
uuid=<315688af-5741-cc4d-9046-3b9cea716f69>
```

pool-retrieve-wlb-diagnostics

pool-retrieve-wlb-diagnostics 命令用于返回池当前所用 Workload Balancing 服务器的 Workload Balancing 日志文件的全部内容。该命令还会返回一些版本信息。

```
xe pool-retrieve-wlb-diagnostics \
```

host-retrieve-wlb-evacuate-recommendations

host-retrieve-wlb-evacuate-recommendations uuid=<host_uuid>

返回针对主机的疏散建议,以及对建议对象 UUID 的引用。

vm-retrieve-wlb-recommendations

返回针对所选 VM 的 Workload Balancing 建议。选择将执行操作的 VM 时,最简单的方法是应用参数 vm=<name_or_uuid>。也可以通过过滤字段值上的完整 VM 列表,来指定 VM。例如,指定 power-state=halted 以选择电源处于停止状态的所有 VM。如果有多个匹配的 VM,则应指定选项 --

multiple 来执行此操作。可匹配字段的完整列表可以通过命令 xe vm-list params=all 获得。如果未给定用于选择 VM 的参数,则将对所有 VM 执行该操作。

pool-certificate-list

XenServer 的 Workload Balancing 组件允许使用证书来保护 XenServer 池与 Workload Balancing 服务器之间的通信安全。可以使用在 Workload Balancing 配置期间自动创建的默认测试证书,也可以指定由受信任的证书颁发机构颁发的证书。

要使用由受信任的证书颁发机构颁发的证书,该证书必须采用 X.509 格式,而且必须符合《Workload Balancing 管理员指南》前面部分所描述的指导原则。如果要验证是否存在受信任的证书颁发机构颁发的证书,必须运行以下命令:

pool-certificate-list

列出所有已安装的 SSL 证书。

pool-certificate-install

pool-certificate-install filename=<certificatefilename>

对池运行该命令,以在池主服务器的 Workload Balancing 虚拟设备上安装证书。

pool-certificate-sync

pool-certificate-sync

运行 pool-certificate-install 命令之后,在池中运行此命令,以确保池主服务器中的证书和证书吊销列表与池中所有从属服务器中的证书和证书吊销列表同步。

pool-param-set

pool-param-set wlb-verify-cert=<true> uuid=<uuid_of_pool>

运行 pool-certificate-sync 命令后,在池中运行此命令,以使 XenServer 在与 Workload Balancing 服务器进行通信时,始终对证书进行验证。

提示:

按 Tab 键可以自动填充池的 UUID。

pool-deconfigure-wlb

永久删除所有 Workload Balancing 配置。

pool-retrieve-wlb-configuration

在标准输出中输出所有 Workload Balancing 配置信息。

pool-retrieve-wlb-recommendations

在标准输出中输出所有 Workload Balancing 建议。

pool-retrieve-wlb-report

获取指定类型的 Workload Balancing 报告,并将其保存到指定文件中。XenCenter 在执行 Workload Balancing 报告时使用该命令。但是,如果从 CLI 运行该命令,将不会以图形格式输出报告数据。输出报告时需要使用 XenCenter 的 池 > 查看工作负载报告菜单命令。可用报告包括:

- pool_health
- host_health_history

CİTRIX

- optimization_performance_history
- pool optimization history
- pool_health_history
- vm_chargeback_history
- pool_audit_history
- vm_movement_history
- vm_performance_history

下面提供了每种报告类型的示例用法。utcoffset 参数指定池的时区提前或滞后协调世界时 (UTC)的小时数。例如,<-5>表示北美洲的东部标准时间,该时间滞后于 UTC 五小时。start 参数和 end 参数指定报告的小时数。例如,如果指定 start=-3,end=0,Workload Balancing 将报告过去三个小时的活动。LocaleCode 表示报告输出使用的语言。可以输入 <en> 表示英语,输入 <fa> 表示日语。

```
xe pool-retrieve-wlb-report report=pool_health \
LocaleCode=<en> \
Start=<-3> \
End=<0> \
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c> \
UTCOffset=<-5> \
filename=/<pool_health>.txt \
xe pool-retrieve-wlb-report report=host_health_history \
Start=<-3> \
End=<0> \
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c> \
HostID=<471626e5-8e8b-429b-9990-6013726d7e86> \
UTCOffset=<-5> \
filename=/<host_health_history.txt> \
xe pool-retrieve-wlb-report report=optimization_performance_history \
LocaleCode=<en> \
Start=-3 \
End=0 \
PoolID=c75f9ee9-422f-9cde-4781-24f6cbd9279c \
UTCOffset=-5 \
filename=</optimization_performance_history>.txt \
xe pool-retrieve-wlb-report report=pool_health_history \
LocaleCode=<en> \
Start=<-3> \
End=<0> \
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c> \
UTCOffset=<-5> \
filename=</pool_health_history>.txt \
xe pool-retrieve-wlb-report report=vm_movement_history \
LocaleCode=<en> \
Start=<-3>
End=<0> \
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c> \
UTCOffset=<-5> \
filename=</vm_movement_history>.txt \
xe pool-retrieve-wlb-report report=vm_performance_history \
LocaleCode=<en> \
Start=<-3>
End=<0> \
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c> \
HostID=<471626e5-8e8b-429b-9990-6013726d7e86> \
UTCOffset=<-5> \
filename=</vm_performance_history>.txt \
```

```
xe pool-retrieve-wlb-report report=pool_audit_history \
LocaleCode=<en> \
Start=<-3> \
End=<0> \
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c> \
UTCOffset=<-5> \
filename=</pool_audit_history>.txt \
xe pool-retrieve-wlb-report report=pool_optimization_history
LocaleCode=<en>
Start=<-3>
End=<0>
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c>
UTCOffset=<-5>
filename=</pool_optimization_history>.txt
xe pool-retrieve-wlb-report report=vm_chargeback_history
LocaleCode=<en>
Start=<-3>
End=<0>
PoolID=<c75f9ee9-422f-9cde-4781-24f6cbd9279c>
UTCOffset=<-5>
filename=</vm_chargeback_history>.txt
```

pool-send-wlb-configuration

修改 Workload Balancing 配置设置,包括阈值、Workload Balancing 电源管理设置和加权。不要求必须要使用上述命令配置所有设置。如果需要,可以仅配置部分参数而非全部。

使用 pool-send-wlb-configuration 命令之前,可以通过运行 pool-retrieve-wlb-configuration 了解系统中的默认值。

运行 pool-retrieve-wlb-configuration 命令时,会显示本节中未介绍的其他参数。Citrix 建议您不要编辑 这些参数。

```
\label{lem:pool-send-wlb-configuration} $$[config:HostMemoryThresholdCritical=<HostCpuThresholdCritical=value>\config:HostMemoryThresholdHigh=<HostMemoryThresholdHigh=value>\config:HostPifReadThresholdCritical=<HostPifReadThresholdCritical=value>\config:HostPifReadThresholdHigh=<HostPifReadThresholdHigh=value>\config:set_host_configuration=<true | false>...\]
```

使用 pool-send-wlb-configuration 命令以及 *<ParticipatesInPowerManagement>* 和 *<set_host_configuration>* 参数来配置 Workload Balancing 的主机电源管理功能。

```
xe pool-send-wlb-configuration \
config:<host_21_> \
ParticipatesInPowerManagement=<true> \
config:set_host_configuration=<true>
```

附录 B. Workload Balancing 服务命令

服务命令

在 Workload Balancing 设备上可运行以下服务命令。为此,必须登录 Workload Balancing 虚拟设备。

登录 Workload Balancing 虚拟设备

在运行任何服务命令或编辑 wlb.conf 文件之前,必须先登录 Workload Balancing 虚拟设备。要登录,必须输入用户名和密码。除非在虚拟设备上创建了其他用户帐户,否则请使用用户帐户 root 进行登录。该帐户是您在运行 Workload Balancing 配置向导时(在将池连接到 Workload Balancing 之前)指定的。也可以选择在 XenCenter 中使用"控制台"选项卡登录该设备。

登录 Workload Balancing 虚拟设备

1. 在 < <u>name - of - your - WLB - VPX</u> > 登录提示符处,输入帐户用户名。例如,如果 Workload Balancing 设备名称是 wlb-vpx-pos-pool:

wlb-vpx-pos-pool login: root

2. 在密码提示符下,输入帐户密码:

wlb-vpx-pos-pool login: root

注意:

要从 Workload Balancing 虚拟设备注销,只需在命令提示符下键入 logout 即可。

service workloadbalancing restart

从 Workload Balancing 设备中的任意位置运行 service workloadbalancing restart 命令,可停止 Workload Balancing 数据收集、Web 服务和数据分析服务,然后再重新启动。

service workloadbalancing start

从 Workload Balancing 设备中的任意位置运行 service workloadbalancing start 命令,可启动 Workload Balancing 数据收集、Web 服务和数据分析服务。

service workloadbalancing stop

从 Workload Balancing 中的任意位置运行 service workloadbalancing stop 命令,可停止 Workload Balancing 数据收集、Web 服务和数据分析服务。

service workloadbalancing status

从 Workload Balancing 设备中的任意位置运行 service workloadbalancing status 命令,可确定 Workload Balancing 服务器的状态。执行该命令后,将显示三个 Workload Balancing 服务(Web 服务、数据收集服务和数据分析服务)的状态。

修改 Workload Balancing 配置选项

许多 Workload Balancing 配置(如数据库和 Web 服务配置选项)都存储在 Workload Balancing 虚拟设备上的配置文件 wlb.conf 中。

为了方便修改最常用的选项,Citrix 提供了 wlbconfig 命令。如果在 Workload Balancing 虚拟设备上运行 wlbconfig 命令,可以重命名 Workload Balancing 用户帐户、更改其密码或更改 PostgreSQL 密码。执行该命令后,Workload Balancing 服务将重新启动。

运行 wlbconfig 命令

• 从命令提示符下运行以下命令:

wlbconfig

屏幕显示一系列问题,引导您更改 Workload Balancing 用户名和密码以及 PostgreSQL 密码。按照屏幕上的问题更改这些项目。

重要提示:

请仔细检查在 wlb.conf 文件中输入的任何值:Workload Balancing 不验证 wlb.conf 文件中的值。因此,即使指定的配置参数不在所需范围内,Workload Balancing 也不会生成错误日志。

编辑 Workload Balancing 配置文件

可以通过编辑 wlb.conf 文件(存储在 Workload Balancing 虚拟设备上的 /opt/citrix/wlb 目录中)来修改 Workload Balancing 配置选项。一般而言,Citrix 建议不要在没有 Citrix 指导的情况下更改该文件中的设置;但如果需要,可以更改该文件中的三类设置:

- Workload Balancing 帐户名和密码。通过运行 wlbconfig 命令可以更方便地修改这些信息。
- 数据库密码。可以使用 wlb.conf 文件修改此密码。但 Citrix 建议使用 wlbconfig 命令进行修改,因为该命令不仅修改 wlb.conf 文件,还自动更新数据库中的密码。如果您选择修改 wlb.conf 文件,则必须运行查询来更新数据库中的密码。
- 数据库整理参数。您可以使用该文件修改数据库整理参数(如数据库整理时间间隔),具体说明请参阅《Workload Balancing 管理员指南》中的数据库管理部分。但 Citrix 建议您修改时要仔细谨慎。

对于 wlb.conf 文件中的所有其他设置,Citrix 目前建议保留其默认值,除非 Citrix 指示您进行修改。

编辑 wlb.conf 文件

1. 从 Workload Balancing 虚拟设备上的命令提示符下运行以下命令(以 VI 为例):

vi /opt/citrix/wlb/wlb.conf

屏幕会显示几个不同的配置选项部分。

2. 修改配置选项,然后退出编辑器。

编辑 wlb.conf 文件后,不需要重新启动 Workload Balancing 服务。退出编辑器后更改会立即生效。

重要提示:

请仔细检查在 wlb.conf 文件中输入的任何值:Workload Balancing 不验证 wlb.conf 文件中的值。因此,即使指定的配置参数不在所需范围内,Workload Balancing 也不会生成错误日志。

提高 Workload Balancing 日志的详细级别

Workload Balancing 日志提供 Workload Balancing 虚拟设备上的事件列表,包括针对分析引擎、数据库和审核日志的操作。该日志文件位于 /var/log/wlb/LogFile.log 中。

如果需要,可以提高 Workload Balancing 日志内容的详细级别。为此,可以修改 Workload Balancing 配置文件 (wlb.conf) 的 Trace 标记部分,该文件位于 /opt/citrix/wlb/wlb.conf 中。输入 1 可启用特定跟踪的日志记录,输入 2 可禁用日志记录。例如,要启用分析引擎跟踪的日志记录,可以输入:

<AnalEngTrace>1</AnalEngTrace>

在向 Citrix 技术支持人员报告问题或进行故障排除之前,最好先提高日志记录的详细级别。

日志记录	Trace 标记	益处或用途
选项	A 15 T	
分析引擎 跟踪	AnalEngTrace	记录分析引擎计算的详细信息。
		显示分析引擎所做决策的详细信息,可能会发现 Workload Balancing 未提供建议的原因。
数据库跟踪	DatabaseTrace	记录有关数据库读/写的详细信息。
N/V		但是,一直启用此项跟踪会使日志文件的大小迅速增加。
数据收集 跟踪	DataCollectionTrace	记录用来检索指标的操作。
政		允许您查看 Workload Balancing 检索并插入到 Workload Balancing 数据存储中的指标。但是,一直启用此项跟踪会使日志文件的大小迅速增加。
数据压缩 跟踪	DataCompactionTrace	记录有关压缩指标数据所花费时间(毫秒)的详细信息。
数据事件 跟踪	DataEventTrace	此项跟踪提供有关 Workload Balancing 从 XenServer 所捕获事件的详细信息。
数据整理 跟踪	DataGroomingTrace	此项跟踪提供有关数据库整理的详细信息。
数据指标 跟踪	DataMetricsTrace	记录有关指标数据解析的详细信息。
政际		一直启用此项跟踪会使日志文件的大小迅速增加。
队列管理 跟踪	QueueManagementTrace	记录有关数据收集队列管理处理的详细信息。
此坏		(供内部使用。)
数据保存 跟踪	DataSaveTrace	记录有关要保存到数据库中的池的详细信息。
主机得分 跟踪	ScoreHostTrace	记录有关 Workload Balancing 如何得出主机得分的详细信息。
		此项跟踪将显示由 Workload Balancing 所生成的详细分数,当 Workload Balancing 计算星级以便选择最佳服务器来放置 VM 时,会生成这些分数。
审核日志 跟踪	AuditLogTrace	显示所捕获并写入的审核日志数据的操作。
政际		(通常仅供内部使用,不提供在审核日志中捕获的信息。)
		但是,一直启用此项跟踪会使日志文件的大小迅速增加。
计划任务 跟踪	ScheduledTaskTrace	记录有关计划任务的详细信息。
以		例如,如果计划的模式发生更改,或者报告订阅不起作 用,则需要启用此跟踪来调查原因。
Web 服务 跟踪	WlbWebServiceTrace	记录有关与 Web 服务接口通信的详细信息。