General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

SOIL MOISTURE GROUND TRUTH

STEAMBOAT SPRINGS, COLORADO, SITE WALDEN, COLORADO, SITE

March 8-10, 1976

(NASA-CR-144757) SOIL MOISTURE GROUND N76-257J8
TRUTH: STEAMBOAT SPRINGS, COLCRADE, SITE
AND WALDEN, COLORADO, SITE MISSIGN REPORT,
AND WALDEN, COLORADO, SITE MISSIGN REPORT,
UNCLAS
8-13 MAR. 1976 (BITTINGER (M. W.) AND
ASSUCIATES, INC.) 54 P HC \$4.50 CSCL 08M G3/46 42582

E. Bruce Jones M. W. Bittinger & Associates, Inc. P. O. Box Q Fort Collins, Colorado 80522

April 1976 Mission Report--March 8-10, 1976, Mission

Prepared for:

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771 Contract No. NAS5-22312

TABLE OF CONTENTS

																<u> P</u>	age
INTRODUCTION		•			•			•	•	•	•	•	•	•	•	•	1
STEAMBOAT SPRINGS, COLORADO, SI	rĒ	•					•	٠	•		•	•	•		•		1
WALDEN, COLORADO, SITES		•													•		7
SITE CONTRASTS		•		٠													7
REFERENCES		•		•				•				•			•	•	11
APPENDIX ASTEAMBOAT SPRINGS SI APPENDIX BSTEAMBOAT SPRINGS SI APPENDIX CSTEAMBOAT SPRINGS SI APPENDIX DWALDEN SNOW COURSE I APPENDIX EWALDEN SNOW COURSE I APPENDIX FSOIL MOISTURE REPORT	NOW P NOW Q DATA DATA	IT : UAL: (No	DAT. ITY rth	A DA -Sc	TA out	h I		e)							-		
	OF F	IGU	RES														٥
1. GENERAL LOCATION MAP		•		•	•		•	-	•	•	•	•	•	٠	٠	•	2
2. LOCATION MAP, STEAMBOAT SPR	•				-												3
3. DETAILED STEAMBOAT SPRINGS,			-														4
4. LOCATION MAP, WALDEN, COLORA	•					•											8
5. LOCATION MAP, WALDEN, COLOR	ADO,	SNO.	W C	OUE	RSE	, I	ias	T-	WES	ST	I,J	ENF	3.	•	•	•	9
LIS	r of	TAB	LES														
1. SUMMARY OF STEAMBOAT FLIGHT	LINE	DA	TA.								٠	•	•				- 5
2. LIQUID WATER SUMMARYSTEAM	BOAT	LIN	E.														6
3. SUMMARY OF WALDEN FLIGHT LI	NES D	ATA													٠		10

SOIL MOISTURE GROUND TRUTH STEAMBOAT SPRINGS, COLORADO, SITE WALDEN, COLORADO, SITE March 8-10, 1976, Mission

INTRODUCTION

This report contains the ground-truth data taken at Steamboat Springs and Walden, Colorado, in support of the NASA mission in these areas during the period of March 8, 1976, through March 11, 1976. The general locations of these areas are shown in Figure 1. These data were taken by M. W. Bittinger & Associates, Inc., personnel with assistance from Dr. Albert Rango, NASA-GSFC; James Foster, NASA-GSFC; and USDA Soil Conservation Service personnel from both the Steamboat Springs and Walden, Colorado, offices.

STEAMBOAT SPRINGS, COLORADO, SITE

The location of the Steamboat Springs site is shown in Figure 2, and the detailed site locations are shown in Figure 3. This line is approximately 4.0 miles (6.45 km) in length oriented in a generally North-South direction in the Yampa River Valley a few miles south of Steamboat Springs, Colorado. Data taken on this primary line were as follows:

Snow depths at intervals of 100 feet

Snow densities and water equivalents at intervals of 1000 feet (using a Mount Rose snow tube)

Snowpack characterizations at intervals of 1000 feet --Grain size (Sommerfeld 1969) Apparent wetness (CRREL 1962) Ski penetration (Commission on Snow and Ice 1954)

Snow pits for liquid water determinations (freezing calorimetry) (Leaf 1966) and vertical layer classification (Sommerfeld 1969) at five selected locations, shown on Figure 3.

In addition to this primary line, six East-West transects of 1000 feet each were used for additional depth and density measurements. The snowpack depth and density determinations for the primary line and transects are summarized in Table 1, and the detailed data are presented in Appendix A. Liquid water determinations are summarized in Table 2. Supporting this are the detailed snow pit characterizations in Appendix B and the details of the liquid water determination in Appendix C.

FIGURE 1. GENERAL LOCATION MAP

Table 1.

Summary of Steamboat Flight Line Data

	Snov	Depth (ir	1.)	Density (%)						
	Number	<u>Mean</u>		Number	<u>Mean</u>					
	<u>of</u>	<u>of</u>	<u>Standard</u>	<u>of</u> _	<u>of</u> _	<u>Standard</u>				
<u>Mile</u>	<u>samples</u>	<u>samµles</u>	deviation	samples	<u>samples</u>	deviation				
1.	57	30.22	2.95	6	21.5	7.23				
2	53	30.51	2.13	5	18.8	5.81				
3	53	28.65	4.03	6	21.5	5.13				
4	50	29.90	2.89	7	22.4	10.24				
Total for										
N-S line	213	29.82	3.13	24	21.2	7.22				
Transect										
A	10	29.75	2.13	10	22.4	4.17				
В	10	29.60	1.17	10	26.5	3.95				
c	10	28.20	1.87	10	25.2	2.49				
D	10	30.45	3.38	10	24.6	7.38				
Ē	10	28.80	3.16	10	24.9	8.85				
F	10	28.10	4.95	10	28.6	1.84				

Table 2.

Liquid Water Summary-Steamboat Line

		Top 611			Mid-pack	·	Ground			
Pit no.	Temp.	Quality factor	Liquid water content (%)	Temp.	Quality factor	Liquid water content (%)	Temp.	Soil moisture content (%)		
1	-8	1.08	0	-4	1.14	0	0*	45.4		
2	-7	1.14	0	-4	1.19	0	0*	34.6		
3	-4	1.12	0	-4	1.07	0	0*	19.7		
4	7	1.09	0	-4	1.04	0	0*	27.1		
_5	-4	1.01	0	-3	1.06	0	0	31.3		

^{*}Ground was not frozen.

WALDEN, COLORADO, SITES

Two lines were sampled in the vicinity of Walden, Colorado. The first was the North-South line, approximately 4.5 miles (7.25 km) in length and is shown in Figure 4. The shorter East-West line, approximately 2.75 miles (4.5 km) in length is shown in Figure 5. These lines were sampled much less intensively than was the Steamboat Springs line. Data taken on the Walden lines were limited to specific points approximately 0.1 mile (0.16 km) apart. At each point snow depths were measured, and at each fifth point snow density, water equivalent, snowpack characterizations, and a soil sample for gravimetric soil-moisture determinations were taken. The summary of this information is presented in Table III, and the detailed data are shown in Appendix D (North-South line data) and Appendix E (East-West line data). The soil-moisture report is presented in Appendix F.

SITE CONTRASTS

The Walden lines were of a lesser snow depth than Steamboat Springs, and for much of the lines the vegetation was of a "sagebrush type" which extended above the snowpack.

The line at Steamboat Springs was generally located over flat meadow-land, and all but riparian vegetation, excluding farmsteads, was totally snow covered. This led to the sample plan which was reviewed on site with NASA personnel.

Table 3.

Summary of Walden Flight Lines Data

	Snov	Depth (in	1.)	Density (%)						
	Number	<u>Mean</u>		Number	Mean					
	<u>of</u>	<u>of</u>	<u>Standard</u>	<u>of</u>	of	<u>Standard</u>				
<u>Mile</u>	samples	<u>samples</u>	<u>deviation</u>	<u>samples</u>	<u>samples</u>	<u>deviation</u>				
			North-South	Flight Line	2					
1	12	5.58	1.55	3	33	9.2				
2	1.3	5.23	0.88	2	32					
3	13	4.54 .	1.51	3	24	7.02				
4	12	4.38	1.21	2	24					
5	6	8.58	3.90	2	38	Over than				
Total	56	5.32	2.08	12	29.7	8.09				
		-	- East-West 1	Flight Line		•				
1	11	3.68	0.85	3	23	1.74				
2	12	3.96	1.37	3	31	7.77				
3	10	4.92	1.81	2	2.6	***				
Total	33	4.15	1.43	8	26.9	5.79				

REFERENCES

- Leaf, Charles F., 1966, Free Water Content of Snowpack in Subalpine Areas, Proceedings--34th Western Snow Conference (April 19-21, 1966, Seattle, Washington), pp. 17-24.
- Commission on Snow and Ice of the International Association of Hydrology, 1954, The International Classification for Snow, Technical Memorandum 31, by the Associate Committee on Soil and Snow Mechanics, National Research Council, Ottawa, Canada, 16 pp.
- CRREL, 1962, Instructions for Making and Recording Snow Observations, Instruction Manual 1, U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire (pages numbered by sections).
- Sommerfeld, R. A., 1969, Classification Outline for Snow on the Ground, USDA, Forest Service Research Paper RM-48, Rocky Mountain Forest and Range Experiment Station, USDA, Fort Collins, Colorado, 24 pp.

APPENDIX A

Steamboat Springs Snow Course Lata

3/8/76

Transect A

Station	Depth (in.)	Core length (in.)		Tare weight (in.)	Water equiv. (in.)	Density (%)	<u>Pemarks</u>
E-100 E-200 E-300 E-400 E-500	31.0 29.5 33.0 27.5 33.5	15.5 14.5 14.5 11.5 22.0	21.0 21.0 20.5 19.5 23.5	15.0 15.0 15.0 15.0 15.0	5.5 4.5	19 20 17 16 25	
W-100 W-200 W-300 W-400 W-500	28.0 29.5 29.0 29.0 27.5	13.0 24.0 18.5 19.5	22.0 23.5 22.0 22.0 22.0	15.0 15.0 15.0 15.0	8.5 7.0 7.0	25 29 24 24 25	

Transect B

Station	Depth (in.)	Core length (in.)	Total weight (in.)	Tare weight (in.)	Water equiv (in.)	Density (%)	Remarks
E-100	29.0	17.0	18.0	11.0	7.0	24	
E-200	29.0	25.0	20.0	11.0	9.0	31	
E-300	31.0	27.0	20.0	11.0	9.0	29	
Ē-400	30.0	24.0	19.0	11.0	8.0	27	
E-500	32.0	24.0	20.0	11.0	9.0	28	
W-100	29.0	20.0	18.0	11.0	7.0	24	
W-200	28.0	25.0	19.0	11.0	8.0	29	
W-300	29.0	16.0	16.0	11.0	5.0	17	
W-400	29.0	26.0	19.0	11.0	8.0	28	
W-500	30.0	25.0	19.0	11.0		27	•

Transect C

Station	Depth (in.)		Total weight (in.)	Tare weight (in.)	Water equiv (in.)	Density (%)		Remarks
E-100	32.0	23.0	19.0	11.0	8.0	25		
E-200	29.0	27.0	18.0	11.0	7.0	24		
E-300	29.0	23.0	19.0	11.0	8.0	28	Mcd	plug
E-400	29.0	27.0	19.0	11.0	8.0	28		
Ē-500	27.0	24.0	18.0	11.0	7.0	26		
W-100	28.0	19.0	17.0	11.0	6.0	21		
W-200	25.0	22.0	18.0	11.0	7.0	28		
W-300	27.0	24.0	17.0	11.0	6.0	22		
W-400	29.0	22.0	18.0	11.0	7.0	24		
W-500	27.0	24.0	18.0	11.0	7.0	26		

Transect D

Station	Depth (in.)	Core length (in.)	Total weight (in.)		Water equiv. (im.)	Density (%)	<u>Remarks</u>
E-100	35.5	16.0	23.0	15.0	8.0	23	
E-200	34.0	13.5	22.5	15.0	7.5	2.2	In willows
E-300	29.0	13.0	21.5	15.0	6.5	22	In drainage
E-400	23.0	13.0	24.0	15.0	9.0	39	Edge of drainage
E-500	32.5	13.5	23.0	15.0	8.0	25	11 11 11
W-100	30.0	8.0	20.0	15.0	5.0	17	
W-200	30.0	7.0	20.0	15.0	5.0	17	
W-300	31.0	15.0	24.0	15.0	9.0	29	
W-400	30.5	10.0	20.5	15.0	5.5	18	
W-500	29.0	16.0	25.0	15.0	10.0	34	

Transect E

<u>Station</u>	Depth (in.)		Total weight (in.)	Tare weight (in.)		Density (%)	<u>Remarks</u>
E-100 E-200 E-300 E-400 E-500	30.0 33.0 24.0 28.0 31.0	9.0 11.0 21.0 14.0 8.0	21.0 21.0 26.0 22.0 20.0	15.0 15.0 15.0 15.0	6.0 11.0 7.0	20 18 46 25 16	In cattails Creek edge, free water below Damp mud at bottom
W-100 W-200 W-300 W-400 W-500	34.0 26.0 28.0 27.0 27.0	14.0 17.0 12.0 11.0 17.0	22.0 22.0 21.0 21.0 24.0	15.0 15.0 15.0 15.0 15.0	7.0 7.0 6.0 6.0 9.0	21 27 21 22 33	Slight hill Hill continued Flat again

Transect F

Station	Depth (in.)	Core length (in.)		Tare weight (in.)	Water equiv. (in.)	Density (%)	Remarks
Center line							
Ē-100	24.0	*	22.0	15.0	7.0	29	
E-200	16.0	*	20.0	15.0	5.0	31.	
E-300	26.0	*	22.0	15.0	7.0	27	
E-400	32.0	*	23.0	15.0	8.0	25	,
E-500	31.0	*	24.0	15.0	9.0	29	
W-100	29.0	*	24.0	15.0	9.0	31	Near edge of once plowed road
W-200	30.0	*	23.0	15.0	8.0	27	Flat area
W-300	31.0	*	24.0	15.0	9.0	29	Crust at 7"
W-400	31.0	*	24.0	15.0	9.0	29	Even flat area
W-500	31.0	*	24.0	15.0	9.0	29	

^{*} Not reported.

3/8/76

•									<u>Ski</u>		
		_	Core	<u>Total</u>	Tare	Water			pene-		_
Time	Station *	Depth	length	weight	weight	equiv.	Density	<u>Grain size</u>	tration	Wetness	<u>Remarks</u>
	ж	(in.)	(in.)	(in.)	(in.)	(in.)	(%)		(cm)		
7:30	0+000	29.5	23	23	15	8	27	fine	5	dry	100' S of north line of Sec. 4, moving south
	0+100	30.0									, ,
	0+200	29.0									
	0+300	29.0									
	01400	31.5									
	0+500	30.0				•					
-	0+600	28.5									
	0+700	27.0									
	0+800	30.0									
	01900	31.0									
9:00	1+000	31.0	20.5	23	15	8	26	large crystal- line	6	dry	
	1+100	30.0						11.10			
	1+200	29.5									
	1+300	29.0	•								
	1+400	28.5						•			
	1+500	27.5									
	1+600	31.0									
	1+700	30.5									
	1+800	31.0									
	1+900	28.0			•	•					
9:06	2+000	29.0	13	19	15	4	14	large crys.	5	dry to moist	
•	2+100	29.5						-			
•	2+200	29.5									
	2+300	41.0									Drift next to haystack
	2+400	29.0									
	2+500	31.0	-								
	2+600	33.0									

^{*}Stationing runs from North to South (1000's of feet + feet).

			· .	Wata t	Taxo	Water			<u>Ski</u> pene-					
Time	Station	Depth	length	<u>Total</u> weight			Density	Grain size		Wetness		Remarks		
		(in.)	(in.)		(in.)		(%)		(em)					
9 • 06	2+700	34.5					•							
contd		32.0												
	2+900	31.0												
9:16	3+000	32.5	23.5	24	15	9	28	large crys.	6	dry to moist				
	3+100	30.5						-						
	3+200	30.5												
	3+300	42.0									avoid st	slightly ock fence		
	3+400	28.5	•				•				11	11	11	11
	3+500	27.0									-11 U	11	11 -11	11 11
	3+600	29.0									11	11	11	**
	3+700	23.5									11	11.	++	11
	3+800	26.0												
	3+900	28.0							,•					
9:27	4+000	28.5	7.5	18	15	3	11	large crys.	6	dry to moist				
	4+100	26.0									Near int	ersection pen	of (ditch
	4+200	32.5								•				
	4+300	30.0												
	4+400	31.0									At fence	eline		
	4+500	32.0												
	4+600	30.0												
	4+700	29.0												
	4+800 4+900	27.0 29.0												
						_		_						
9:38	5+000	31.0	16.0	22	15	7	23	large crys.	6	dry to moist				
	5+100	30.5				•								
	5+200	29.0												
	5+300	34.0												
	5+400	33.0												

ing the second of the second o

									<u>Ski</u>			
			Core	Total	Tare	Water			pene-	•		
<u>Time</u>	Station	Depth	length	weight	weight	equiv.	Density	Grain size	tration	Wetness	<u>F</u>	<u>lemarks</u>
		(in.)	(in.)	(in.)	(in.)	(in.)	(%)		(cm)			
9:38	5+500	29.5										·
contd	5+600	32.0									Section 1	ine
	5+700	27.0							•			
	5⊹800	31.0										
	5+900	29.0			•							
0 -1				10.0			10		-			
9:51	6+000	31.0	10.0	19.0	15	4	13	fine	7	moist		
	C91.00	31.0						granular				
	6+100 6+200	31.0										
	6+200 6+300	30.5										
	6+400	30.0									Chambdaa	Jan Jaka 11
	07400	30.0									drainage	down into small
	6+500	28.0									drainage	
	6+600	30.0						-			•	
	6+700	31.0										
	6+800	30.0									Cunindan	analt duadance
											Crossing	small drainage
	6+900	33.0									4	
9:57	7+000	32.0	16.0	22.0	15	7	22	fine	6	moist		line other side
								granular			of small	drainage
	7+100	29.5	_									
	7+200	30.5	-								•	
	7+300	30.5						•				
	7+400	28.5										
	7+500	32.0										
	7+600	28.5									:	
	7+700	30.5										
*	7+800	31.5				•				•		
	7+900	30.0										
10:07	8+000	29.0	10.5	18.5	15	3.5	12	fine	7	moist		
20.07	91000	A. J . U	TO - 7	2000	ريد	J • J	عـ نـد	granular	,	mo rat		
	8+100	31.0						Promotor.				
	8+200	36.0										
	8+300	30.0										•
	0.000	50.0										

	_		Core	Total	<u>Tare</u>	Water			<u>Ski</u> <u>pene</u> -	77	The second secon
<u>Time</u>	Station	Depth (in.)	(in.)	(in.)	(in.)	(in.)	(%)	Grain siz	e tration (cm)	werness	<u>Remarks</u>
10:07	8+400	30.5	•							•	
contd	8+500 8+600 8+700	29.0 32.0 38.0									Small drainage by willows
	8+800 8+900	26.0 27.0									Next to drainage
	9+000 9+100 9+200	30.0 30.0 28.5	15.0	22.0	15	7	23	fine gran	. 7	moist	Near drainage
	9+300 9+400 9+500	30.5 28.0 29.0							\$		
	9+600 9+700	29.5 30.0								,	
	9+800 9+900	30.0					0.4	. .		1	
10:25	10+000 10+100 10+200	33.0 31.0 33.0	13.0	23.0	15	8	24	fine gran	. 6	dry to moist	Thin crust on top
	10+300 10+400 10+500	30.0 27.0 32.5								·	
	10+600 10+700 10+800	33.0 33.0 33.5						·			
10:34	10+900 11+000	30.0 26.0	13.5	21.0	15	6	23	fine gran	. 7	dry to	10,950 to g of road (Sec. line)
	11+100 11+200 11+300	38.0 31.0 32.5								moist	
	11+400	29.5			•						

SAME TO SAME

10:34	11+500	(in.) 30.0	Core length (in.)	Total weight (in.)	weight	Water equiv.	Density (%)	<u>Grain</u>	size	Ski pene- tration (cm)	Wetness	<u>Remarks</u>
contd	11+600 11+700 11+800 11+900	28.5 31.0 30.0 30.0										Just south of small drainage
10:43	12+000 12+100 12+200 12+300 12+400 12+500 12+600 12+700 12+800 12+900	30.5 28.5 31.0 30.5 27.0 28.5 30.0 30.5 28.0	16.0	22.0	15	7	23	fine	gran.	6	moist	In small drainage Going into small drainage Coming out of small drainage
10:53	13+000 13+100 13+200 13+300 13+400 13+500 13+600 13+700 13+800 13+900	30.0 7.0 23.0 30.0 28.0 27.5 29.0 26.0 29.0 30.0	9.5	19.0	15	4	13	fine (gran.	7	moist	Packed by livestock Going around fence almost in streambed At fence line behind farm
11:06	14+000 14+100 14+200 14+300 14+400 14+500	26.0 25.0 21.0 25.5 27.0 33.5	22.0	22.0	15	7	27	fine	gran.		moist	Along top of cliff " " " " " " " Take off for ditch (intersection)

om karantar promotor promotor

				<u>.</u>			÷		<u>Ski</u>		•
Time	Station	Death	Core length	Total weight		Water equiv.	Density	Grain size	pene- tration	Wetness	Remarks
				(in.)	(in.)		(%)		(cm)		
11:06 contd	14+600 14+700 14+800 14+900	29.0 32.0 33.0 28.5									Drainage
11:17	15+600 15+700	32.5 28.0 30.5 28.0 28.5 27.5 30.0 31.0 30.0	10.5	21.0	15	6	18	fine gran.	7	moist	
11:30 12:00	16+000 16+100 16+200	28.0 28.0 28.0	14.0	22.0	15	7	25	fine gran.	7	moist	Almost to road
	OF NORTH		UTH STA	TIONING							Aimost to road
	IN SOUTH									_	
9:45	0+100	24.0	23.0	24.0	1.5	9	38	old gran.	3	dry	South line of Sec. 21, moving north. Very little crust
	0+500	32.0		24.0	15	9	30				Ground not frozen, damp Even flat area Light crust from drifting Crust at 7" """ Very thin surface crust
		31.0 30.0									Crust at 7"
10:25	0+1000	16.0	14.0	20.0	15	5	31	heavy gran crystals throughout	. 4-5	moist	North edge of creek, ice of river at bottom, 3/4" surface crust
	1+100	30.0						~			Near willow clump

Time	Station		length	Total weight (in.)			Density (%)	Grain size	Ski pene- tration (cm)	Wetness	<u>Remarks</u>
10:25 contd	1+200 1+300 1+400	31.0 29.0 29.0							•		Cattle fed Edge of once plowed road
	1+500 1+600 1+700 1+800	29.0 29.0 29.0 25.0									Crust 7" under Even flat area In a draw
	1+900 1+1000	31.0 28.0	8.0	19	15	4	14	surface fluffy, gran. below	6	moist	Crust 7"-8", could affect core depth reading
•	2+100 2+200	28.0 32.0	8.0 8.0		÷						Bottom of draw
	2+300	30.0	8.0								Flat area
	2 + 400	30.0	9.0								rrac area
	2+500	30.0	11.0	•		-					Flat area
	2+600 2+700	33.0 34.0									Within 3' of N-S fence, possible drifting Within 4' of fence
	2+800	31.0				•					
11:04	2+900 2+1000	32.0 31.0	12.0	20	15	5	16	old gran.	5	moist	Next to fence Small granular metamorphose, close to fence drifting
	3+100	28.0		ż							Still hard underlying crust 7"-8"
	3+200	32.0									
	3+300	32.0				•					Still next to fence
	3+400 3+500	30.0 25.0									Hard underlying crust Willows affecting drifting
	3+600 3+700	32.0 32.0									Still near a fence
	3+800	33.0	ı								" " " "
	3+900	31.0									11 11 11
11:30	3+1000	32.0	6.0	19	15	4	13	old gran.	5-6	dry	Very crusty all the way, Top is changing, small granules

	_
•	•
٠.	
-	

					•		,		.		
<u>Time</u>	Station	Depth (in.)			Tare weight (in.)	Water equiv.	Density (%)	Grain size	Ski pene- tration (cm)	Wetness	<u>Remarks</u>
11:30 contd	4+100 4+200	31.0 30.0					·				Flat area, still near fence Flat, no fences close
	4+300	28.0	8.0								
	4+400 4+500	30.0 29.0				٠			•		Buildings starting to affect snow
•	4+600	28.0						•			Building 50 yd. away
	4+700	31.0									Flat even area
	4+800 4+900	31.0 33.0									Ligh each grea
	4+1000	34.0	9.0	20	15	- 5	15	old gran.	6	moist	In group of cattails, ice layer at bottom

s de la composition La composition de la

APPENDIX B

Steamboat Springs Snow Pit Data

3/9/76

Pit No. 1

General location: 100' north of Route 131, near north aerial flag

Air temperature:

-15°C, 0900; -11°C, 0930

Ground temperature:

0°C

Ground wet, not frozen. Pastured grass.

<u>Height</u>						<u>Gen</u> .		•
to top of layer (in.)	Thick- ness (in.)	<u>Layer</u> <u>classification</u>	Grain size	Density (Kg/m ³)	Temp.	<u>layer</u> wetness	<u>Layer</u> <u>liardness</u>	Remarks
6.0	6.0	well developed depth hoar	$1^{ m L}_{ m 2}$	274	-1	dry	soft	
12.0	6.0	depth hoar	1	294	-1	dry	soft	
18.0	6.0	constructive metamorphosed beginning	<u>}</u> 51	322	-3	dry	soft	
20.0	2.0	firmification	1 ₂ -1	302	-6	dry	med. soft	Melt-freeze crust layer
20.5	0.5	ice				đưy	hard	Ice lense
21.5	1.0	firnification	½-1		- 7	dry	med. soft	Very thin ice lense on top of this layer
29.0	7.5	unmetamorphosed	12-1 5	226	-9	dry	soft	Some firnification starting in top layer

Note: Soil moisture 45.4%--sample contained a high percentage of organic material.

3/9/76

Pit No. 2

175' south of Route 131, along northernmost E-W transect. General location:

Air temperature:

-8°C, 1000

Ground temperature:

0°C

Ground wet, not frozen. Pastured grass.

<u>Height</u>	ma	_				<u>Gen</u> .	_	
<u>to top</u> of layer	Thick-	<u>Layer</u> classification	Grain size	Density	Temp.	<u>layer</u> wetness	<u>Layer</u> hardness	Remarks
(in.)	ness (in.)	CTASSIT TEACTON	(mm)	(Kg/m ³)	(°C)	werness	Maraness	Remarks
6.0	6.0	well developed depth hoar	$1\frac{1}{2}$	292	0	dry	soft	
12.0	6.0	depth hoar	1	274	-1	dry	soft	•
18.0	6.0	beginning cont. metamorphism	½-1	304	-3	dry	soft	
20.0	2.0	firnification	½-1	286	-7	dry	med. soft	
20.5	0.5	ice lense	•			dry	hard	
21.5	1.0	firmification	¹ ₂ -1		- 7	dry	med. soft	
21.75	0.25	ice lense				dry	hard	
24.75	3.0	firnification	½-1	306	-10	dry	med. soft	
30.0	5.25	new snow, unmetamorphosed	¹ 4- ¹ 2	166	-11	dry	soft	

Note:

P-3 overhead at 1020. Several passes, 2-3 to west of line, 1-2 over line,

last pass at about 1045, last 3 passes: (1) S-N slightly east of line

(2) N-S over line

(3) S-N slightly west, 1045

Soil moisture 34.6%--sample contained a high percentage of organic material.

3/8/76

Pit No. 3

General location: SW 4, 16 - 100' north of north fence

Air temperature: -2°, 11:15; -1°, 11:30 Ground temperature: 0°C

Ground wet, not frozen, pastured grass.

to top of layer (in.)	Thick- ness (in.)	Laver classification	Grain size (mm)	Density (Kg/m ³)	Temp.	Gen. layer wetness	<u>Layer</u> hardness	<u>Remarks</u>
6.0	6.0	well developed depth hoar	11/2	254	0	dry	soft	0-12" advanced temp. gradient meta.
12.0	6.0	depth hoar	1	254	0	dry	soft	11 II \$1.
23.0	11.0	metamorphosed	2	250	-3	dry	soft	partial temp. grad. meta.
24.5	1.5	melt crust firnification	1/2	328	- 7	dry	med. hard	melt free ze metamorphose limited
30.5	6.0	new snow	<12	248	-8	dry	soft	unmetamorphosed

Note: Soil moisture 19.7%.

3/8/76

Pit No. 4

General location: NW 4, 21 - 1001 south of south fence

Air temperature: -5° , 10:25 a.m.; -4° , 10:45 Ground temperature: 0° C

Ground wet, not frozen, pasture grass

Height to top of layer (in.)	Thick- ness (in.)	<u>Layer</u> <u>classification</u>	Grain size (mm)	Density (Kg/m ³)	Temp.	Gen. Layer wetness	<u>Layer</u> hardness	<u>Remarks</u>
6.0	6.0	well developed depth hoar	11/2	276	-2	đry	soft	0-12" advanced temp. gradient meta.
12.0	6.0	depth hoar	1	276	-2	dry	soft	97 - BF 98
19.0	7.0	metamorphosed	2	254	-4	dry	soft	partial temp. grad. meta.
19.5	1.5	ice layer					hard	
24.0	4.5	crust firnificat io n	1/2	260	-8	dry	med. soft	melt-freeze metamorphose limited
30.0	6.0	new snow	<1/2	182	-10	dry	soft	unmetamorphosed

Note: Soil moisture 27.1%.

3/8/76

Pit No.5

General location:

Air temperature: 4°C, 2:30 Ground temperature: 0°C, 2:45

Ground wet, not frozen, pasture grass

Height to top of layer (in.)	Thick- ness (in.)	<u>Laver</u> classification	Grain size (mm)	Density (Kg/m ³)	Temp.	Gen. layer wetness	<u>Layer</u> <u>hardness</u>	Remarks
6.0	6.0	well developed depth hoar	1^{l}_{2}	296	-1	dry	soft	0-12" advanced temp. gradient meta.
12.0	6.0	depth hoar	1	296	- 1	dry	soft	11 11 11
19.0	7.0	metamorphosed	2	282	-3	dry	soft	partial temp. grad. meta.
19.5	0.5	ice layer					hard	,
24.0	4.5	crust _. firnification	1/2	290	-6	dry	med. hard	melt-freeze metamorphose limited
30.5	6.5	new snow	2</td <td>204</td> <td>-3</td> <td>dry</td> <td>soft</td> <td>unmetamorphosed</td>	204	-3	dry	soft	unmetamorphosed

Note: At 12" from bottom--slight melt crust--advanced depth hoar above and below. Soil moisture 31.3%--sample contained a high percentage of organic material.

APPENDIX C

Steamboat Springs Snow Quality Data

MEASUREMENT OF SNOW QUALITY

(Freezing Calorimetric Technique)

=Station P-1	Observer	Leaf-Rang	ço
Date 9 March 1976	Hour	1100	
Location and description of Northern most Pit, 100' North		ıt <u></u>	
Top 6"	TO ROUGE ISI		
Layer temp -8° C	Data	·	
Sample thermos No. 1		erature	-5 o
Height of sample from groun	nd surface	26	inches.
(1) Tare weight of caloring	meter <u>767.1</u>	37	r.
(2) Weight of calorimeter	and toluene	1154.3	_gr.
(3) Weight of calorimeter	+ toluene + sn	1290.2	gr.
(4) Calorimeter constant	(E) 55.22	_gr.	
. 1	Heat Balance		
WiCi (t2 - t ₁) + t ₂ C _s S = where Wi = (2) - (1) + E, gr. ci = specific heat of tot t ₁ = initial temp. °C t ₂ = final temp. °C	C _s = spe luene S = (3) L = late	ecific heat of rent with the rent heat of the rent heat	elting
<u>S1</u>	now Quality		
$Q_f = 1 - W_i C_i (t_2 - t_1) /$	$LS - C_s t_2/L$		
$t_1 = .46^{\circ} \text{ C}$ $Ci = 0.374$ $Qf = 1.078$	$t_2 = -37^{\circ}$ $c_s = .46^{\circ}$		

MEASUREMENT OF SNOW QUALITY

(Freezing Calorimetric Technique)

=Station	<u>P1</u>	_Observer	Leaf-Rango		
Date	9 March 1976	Hour	1100		
Locatio	on and description of samp	ling point			
North	mern most pit, 100' North o	f Route 131			
Mid P	to the time of the contract of				
layer temp -4 ⁰ C <u>Data</u>					
Sample	thermos No. 2	_Air Temp≘	rature <u>–5</u>		
Height	of sample from ground sur	face <u>15</u>	inches.		
(1) Ta	are weight of calorimeter_	767.	1 gr.		
(2) Wa	eight of calorimeter and t	oluena	1146.7 gr.		
(3) W	eight of calorimeter + tol	uene + sno	w1305.3 gr.		
(4) C	alorimeter constant (E)	55.22	gr.		
Heat Balance					
where Wi = ci = t ₁ =	(2) - (1) + E, gr. specific heat of toluene	S = (3) - L = laten F = weigh	ific heat of ice (2), gr. t heat of melting t of free water, gr.		
Of = 1	$- W_1 C_1 (t_2 - t_1) / IS -$				
•	$t_1 = -49^{\circ} c$ t_2	= -41° C = 0.464			

=Stati	ionP-2	_Coserver	Lea	f-Rango	
		Hour	200	(noon)	
Locat	tion and description of samp	oling point			·
17.	feet south of Route 131 in	pit	<u> </u>	·	
upp	per 6"				
Upp	per layer temp -7°C <u>D</u> a	eta			
Sapp?	le thermos No. 1	Air Temper	atur	-2	o
Heigh	nt of sample from ground su	rface 27		ine	hes.
(1)	Tare weight of calorimeter	768.1		gr.	
(2)	Weight of calorimeter and	toluena 114	5.3	gr.	
(3)	Weight of calorimater + to	luene + snow	1	249.4 gr.	
(4)	Calorimeter constant (E)	<u>55.22</u> g	r.,		
	Heat 1	Balance	-		
wh Wi ci ti	(t2 - t ₁) + t ₂ C ₃ S = L F ere = (2) - (1) + E, gr. = specific heat of toluene = initial temp. °C = final temp. °C	S = (3) - L = latent	(2), hea	heat of ice gr. t of melting free water, gr	e .
	Snow Q	uelity			
Qf =	$1 - W_1 C_1 (t_2 - t_1) / Ls -$	c_s t_2/L		.•	
	$t_1 = -49^{\circ} \text{ C}$ $C_1 = .374$ $Qf = 1.183$	t ₂ C _s		45 [°] C .464	

=Station	P-2	Observer_	Leaf-Rango	
Date	9 March 1976	Hour 1	200 (noon)	
Location a	nd description of sa	apling point		
175 t sou	th of Route 131 in pi	t		
mid laye				
layer te	mp -4°C	Data	•	
Sample the	rmos No. 2	Air Tempe	rature -2	2 0
Haight of	sample from ground s	urface	L6	_inches.
(1) Tare	weight of calorimete	r <u>768.</u>	<u>l</u> gr.	
(2) Weigh	t of calorimates and	toluena 1	142.7 gr.	•
(3) Weigh	t of calorimeter + t	oluene + sno	w 1297.0 g	;r.
(4) Calor	imeter constant (E)_	55.25	gr.	
	Heat	Balance	,	
where Wi = (2) ci = spe ti = ini	t_1) + t_2 C_3 $S = L$ t_1 - (1) + E, gr. edific heat of toluential temp. ${}^{O}C$ hal temp. ${}^{O}C$	C _S = spec s = (3) • L = later	(2), gr. t heat of melting of free water	ing
	Snow	Quality		· ·
Qf = 1 - V	$C_{i} C_{i} (t_{2} - t_{1}) / LS$	- c_s t_2/L		
	$t_1 = -49^{\circ} C$ $C_1 = 0.374$ $Qf = 1.190$	$t_2 = -4\ell$ $c_s = .46$		

-Stat	ion Pit No. 3	_Observer_	Leaf-Howell
Date	8 March 1976	Hour	1:20 P.M.
	tion and description of samp	ling point	
	<u>D</u> a	<u>ta</u>	·
Samp	le thermos No. 4	_Air Tempe	rature +7 °(
Heig	ht of sample from ground sur	face	27 inches.
(1)	Tare weight of calorimeter_	766.8	gr.
(2)	Weight of calorimeter and t	oluene <u>ll</u>	99.7 gr.
(3)	Weight of calorimeter + tol	uene + sno	w <u>1339.2</u> gr.
(4)	Calorimeter constant (E)	55.22	gr.
	Neat I	Balance	
wh Wi	= specific heat of toluene		ific heat of ice (2), gr. t heat of melting t of free water, gr.
	Snow Ou	uality	•
Qf =	$= 1 - W_i C_i (t_2 - t_1) / LS -$	C _s t ₂ /L	·
	$t_1 = -31^{\circ} C$ $c_1 = .374$ $Qf = 1.12$	t ₂ = C _s =	-24° C .464

=Station	Pit No. 3	_Coserver_	Leaf-Howell
Date 8 M	arch 1976	Hour_	1:30 P.M.
Location an	d description of samp	oling point	
lit No. 3	- Mid-pack @ -4° C		
	<u>D</u> a	<u>ita</u>	
Sample ther	mos No. 3	_Air Tempe	erature +8 °(
Height of s	sample from ground sur	rface	15 inches.
	eight of calorimeter		
(2) Weight	t of calorimater and t	toluene <u>l</u>	<u>gr.</u>
(3) Weight	t of calorimater + to	luene + sac	ow 1304.3 gr.
(4) Calor	imeter constant (E) 5	5.22	_gr.
	<u>Heat</u>	Balance	
where Wi = (2) ci = spe t ₁ = ini	cific heat of toluene	C _s = spe S = (3) L = late	cific heat of ice - (2), gr. nt heat of melting ht of free water, gr.
	Snow Q	uality	• . •
Qf = 1 - W	i C _i (t ₂ - t ₁) / LS -	$c_s t_2/L$	
	$t_1 = -46.5^{\circ} \text{ C}$ $C_1 = .374$ $Qf = 1.0717$	t ₂ = -36	

-Station Pit No. 4	Observer Leaf-Howell
Date 8 March 1976	Hour 12:10
Location and description of samp	ling point
Pit No. 4 - Center of Top 6" of	new snow.
Da	<u>ta</u>
Sample thermos No. 4	Air Temperature 2 o
Height of sample from ground sur	face 27 inches.
(1) Tare weight of calorimeter_	766.8
(2) Weight of calorimeter and t	
(3) Weight of calorimeter + tol	eene ÷ snow 1274.1 gr.
(4) Calorimeter constant (E)	55.22 gr.
Heat E	alance
WiCi (t2 - t1) + t2 Cs S = L F where Wi = (2) - (1) + E, gr. ei = specific heat of toluene t1 = initial temp. °C t t2 = final temp. °C	<pre>C_S = specific heat of ica S = (3) - (2), gr. L = latent heat of melting F = weight of free water, gr.</pre>
Snow Ou	<u>uality</u>
$Q_f = 1 - W_i C_i (t_2 - t_1) / LS -$	C _s t ₂ /L
$t_1 \approx -38^{\circ} \text{ C}$	$t_2 = -32^{\circ} C$
$C_{1} = .374$ $Of = 1.0944$	$C_s = .464$

=Station	Pit No. 4	Obsetver Leaf - Howell
Date 8	March 1976	Hour
		of sampling point oprox 15" from ground
Temp: -4°	С	
		Data
Sample then	mos No.	3 Air Temperature 4 o
Height of s	ample from gro	ound surface 15 inches.
(1) Tare v	eight of calor	rimeter <u>766.8</u> gr.
(2) Weight	of calorimete	er and toluene 1162.4 gr.
(3) Weight	of calorimete	er + toluene + snow 1319.2 gr.
(4) Calori	meter constant	t (E) 55.22 gr.
		Heat Balance
where Wi = (2) ci = spec t ₁ = ini	t ₁) + t ₂ C ₃ S - (1) + E, gr cific heat of the cial temp. OC al temp. OC	. C _s = specific heat of ice
·	•	Snow Quality
Qf = 1 - W	$c_i (t_2 - t_1)$	/ LS - $c_s t_2/L$
	$t_1 = -33^{\circ} C$ $C_1 = .374$ $Qf = 1.0368$	c _s = .464

`	erecorno outor	TWEETTE T	ermidael	
=Station Pit No	o. Š	_Cossrver	Leaf - Howell	
Date 8 March 1	976	Hour	3:10	
Location and descr				
Pit	No. 5 - new sn	ow layer		
		=		
	<u>Da</u>	ita		
Sample thermos No.	4	_Air Temp	erature <u>+6</u>	O,
Height of sample f	rom ground sur	face27'	' @ -4 [°] C ir	iches.
(1) Tare weight o	ī calorimeter_	766.8	ar.	
(2) Weight of cal	orimeter and t	oluene	1147.8 gr.	
(3) Weight of cal	orimeter + tol	uene + sn	ow 1281.6 gr.	
(4) Calorimater c	onstant (E)	55.22	Ēr.	
	<u> Heat</u> <u> E</u>	Balance		
WiCi (t2 - t ₁) + where Wi = (2) - (1) + ci = specific he t1 = initial ter t t2 = final temp.	E, gr. at of toluene p. oc	S = (3) L = late	cific heat of ice - (2), gr. nt heat of melting ht of free water, ;	gr.
	Snow Qu	ality	-	
$Q_f = 1 - W_i C_i (t_2)$	- t ₁) / LS -	c _s t ₂ /L		
	-45° C	t ₂	= -33.3° C	
C _i =	.374	C·	= .464	
Of =	1.0148	- -		

	(*************************************		
Statio	on Pit No. 5	_Cbserver	Leaf-Howell
Date	8 March 1976	Hour	3:20
	ion and description of samp	·	
	Pit No. 5 - Mid-pack @	-3° c	
	<u>Da</u>	ta	
Sample	e thermos No. 3	_Air Tempe	rature +1 o
Heigh	t of sample from ground sur	face	5" inches.
(1)	Tare weight of calorimeter	767.5	gr.
(2)	Weight of calorimater and t	oluene	1118.7 gr.
(3)	Weight of calorimeter + tol	uene + sño	w 1284.4 gr.
(4)	Calorimeter constant (E)	55.22	gr.
	Heat B	alance	
W1C1 wha	$(t2 - t_1) + t_2 C_s S = L F$		
Wi	$= (2) - (1) + \bar{E}, gr.$	C _s = spec	ific heat of ice
	= specific heat of toluene = initial temp. OC	S = (3) -	(2), gr.
* t2	= final temp. °C	L = laten	t heat of melting t of free water, gr.
	Snow Qu	ality	•
Qf =	$1 - W_1 C_1 (t_2 - t_1) / LS -$	c _s t ₂ /L	·
	t ₁ = -46.5° C		
	1		$t_2 = -34.5^{\circ} \text{ C}$
	$C_{\underline{i}} = .374$		$C_s = .464$
	Qf = 1.0625		

APPENDIX D

Walden Snow Course Data
(North-South Line)

Walden Snow Course 3/9/76 North-South Line

<u>Time</u> <u>S</u>	tation	Depth (in.)	Core length (in.)	Total weight (in.)	weight	Water equiv.	Density (%)	Grain size	Ski pene- tration (cm)	Wetness	<u>Remarks</u>
10:00	0	7.0	6.0	7.0	4	3.0	43	fine drifted	N.A.	dry	Soil sample #9, 21%
	1	5.5									At edge of gravel pit
	2	3.0									., ., ., ., ., ., ., ., ., ., ., ., ., .
	3 4	6.0 6.5									Going into small draw Demi-sage
	5	6.5	6.0	6.0	4	2.0	31	fine drifted	N.A.	dry	Soil sample #100, 27.9%
	б	6.5									Grass
	7	5.5									11
	8	3.0					•			-	11:
	9	5.5									
	10	8.0	5.0	6.0	4	2.0	25	fine drifted	N.A.	dry	Soil sample #108, 96.4%*
Mile 1		4.0									Grass
Mile 2		6.0	i								
	13	5.0				-					Along ditch, grass
	14	4.5									Along ditch, grass, sage
	15	7 . 0	5.5	6.5	4	2.5	36	fine drifted	N.A.	dry	Soil sample #76, grass, sage 23.%
	16	4.0				-					Small sage
	17	6.0									Small swail, sage
	18	5.5	•								Small sage
	19	5.0									Small sage, grass
	20	5.5	5.0	5.5	4	1.5	27	fine drifted	N.A.	dry	Soil sample #80, 23.1% small sage, grass
	21	4.5									Sage, some grass
	22	5.0				•					Sage
	23	6.0									Sage
Mile 2	24	4.0	·								Sage, some grass

^{*}Soil sample high in organics—sample results not considered meaningful.

Walden N-S line (continued)

Tima S	tation	Donth	Core	Total	<u>Tare</u>	<u>Water</u>	Density	Grain size	Ski pene-	Wetness	Remarks
Time 0	CALIGH	(in.)		(in.)	(in.)		(%)		(cm)		
Mile 3	25	6.0	4.5	5.0	4	1.0	17	fine drifted	N.A.	dry	Soil sample #16, 21%, mostly sage, some grass
	26	6.5		ı				•		1	Sage, grass
	27	3.5						•	•		Grass, sage
	28	6.0						•			Sage, grass Top of draw, north side
	29	5.0					į				Starting up out of drawsouth
	30	4.0	3.0	5.0	4	1.0	25	fine drifted	N.A.	dry	Soil sample #1, 16.9%, mostly sage, some grass
	31 32 33	4.0 4.0 4.0					. :				Mostly sage
	34	4.5									
	35	6.5	6.0	6.0	4	2.0	31	fine drifted	N.A.	dry	Soil sample #90, 70.4%* mostly sage
Mile 3	36 37	$\frac{1.0}{4.0}$									Some bare patches, sage, grass Sage, grass,
Mile 4	20	, ,						*			drifting to 10" around
,	38 39	4.0 3.5						•		t	Bare ground
·	40	4.5	3.5	5.0	4	1.0	22	fine drifted	N.A.	moist	Soil sample #101, 18.7%, some small sage
	41	4.5					•			•	Bare ground
	42	3.5						•			Small sage
	43	4.0						•			Sage
	44	7.0						•			At fence, 1/4 corner marker, Sec. 19,20 base of pole
·	45	4.0	4.0	5.0	4	1.0	25	fine drifted	N.A.	moist	Soil sample #95, 21.7%
	46	4.5									Grass, sage
	47	3.5									Tall grass
	48	3.0			•			•			Bare grass, patches
Mile 4	49	6.5						•			Bare grass, patches, drifting around clumps of sage

^{*}Soil sample high in organics--sample results not considered meaningful.

Walden N-S line (continued)

Time	Station	Depth (in.)	Core length (in.)	Total weight (in.)	Tare weight (in.)	Water equiv.	Density (%)	Grain size	Ski pene- tration (cm)	Wetness		<u>Re</u>	marks			
Mile 6	50	16.0	15.0	11.0	4	7.0	44	fine drifted	N.A.	moist	bare	gras	s pate	-		
	51	6.0									GT TT	n rang s	11.00116	clumps	10	sage
	52	7.5								•	T1	17	11	11	11	11
	53	9.0					•				11	71	77	11	**	71
	54	5.0									11	11	**	11	**	**
Mile 6	55	8.0	5.5 	6.5	4 ;	2.5	31	fine	N.A.	moist	End	of sar	npling	, 37.7% , fence		

^{*} Soil sample high in organics--sample results not considered meaningful.

APPENDIX E

Walden Snow Course Data
(East-West Line)

Walden Snow Course 3/9/76 East-West Line

									<u>Ski</u>		·
m .t	06-67	D 44	Core	<u>Total</u>		Water	Donad tree	Ounds min	pene-	Ustrasa	Bawawi.a
Time .	Station	(in.)	(in.)	(in.)		(in.)	(%)	Grain size	(cm)	wetness	Remarks .
	 				, ,				• •		•
13:45	0	4.5	4.0	5.0	4.	1.0	2'2	fine drift	N.A.	moist	Soil sample #104, 23.1%,
Mile 1	я	3.0									<pre>just west of road by panel - Small sage</pre>
	$1 \\ 1.5$	3.0									u u
	2	3.5	•								H U
	2.5	5.0									11 (1
	3	4.0	4.0	5.0	4	1.0	25	fine drift	N.A.	moist	Soil sample #103, 18.6%
	4	3.0									Small sage
	5	4.5	4.0	5.0	4	1.0	22	fine drift	N.A.	moist	Soil sample #77, 20.1%
	6	3.0									small sage Behind dump, small sage
	. 7	4.5								•	At fence corner, NW edge of dump -
Mile 1	8	2.5	<u>. </u>								Small sage
Mile 2	9	5.5									11 11
	10	2.5				•					n n
	11 12	3.5 3.0			•						31 11
	13	5.0	4.0	6.0	4	2.0	40	fihe drift	N.A.	moist	Soil sample #73, 18.8%
	14	2.0	,	4.5	•	_,_					Small sage
	15	4.0									Edge of stock pond, small sage
	16	4.0									Small sage
	17	3.0								•	
	18	4.0	3.5	5.0	4	1.0	25	fine drift	N.A.	moist	Soil sample #88, 37.9%*
	1 9	4.0									Bottom of pond, flat & open
Mile 2	20	7.0	_ 6.5	6.0	4	2.0	29	fine drift	N.A.	moist	Soil sample #86, 27.0%
Mile 3	21	3.0									Very small sage, some bare ground
	22	3.5									- 11
	23	3.5									Pasture
	24	5.0									rasture

^{*}Soil sample high in organics.

Walden E-W Line (continued

<u>Time</u>	Station	Depth (in.)	Core length (in.)	Total weight (in.)	weight	Water equiv.	Density (%)	Grain size	Ski pene- tration (cm)	Wetness	Remarks
	25 26	8.0 5.5	7.0	6.0	4	2.0	25	fine drift	N.A.	moist	Soil sample #74, 566.27* Big bare spot close by, pasture
	27	3.5									Pasture
	28	6.0									11
	29	3.5									ir .
Mile 3	30	7.5	_ 6.5	6.0	4	2.0	27	fine drift	N.A.	moist	Soil sample #81, 242.2%* end of sampling

^{*} Soil samples high in organics--these results considered not meaningful.

APPENDIX F

Soil Moisture Report

Empire Laboratories, Inc.

P.O. Box 429 • 214 North Howes Fort Collins, Colorado 80522 • Telephone (303) 484-0359 March 17, 1976

> Bittinger and Associates 105 South Meldrum Fort Collins, CO 80521

Attention: Mr. Bruce Jones

Gentlemen:

Re: Moisture Samples NASA Steamhoat/Walden Flight 3-9-76

ELI Project No. 2251-76

M. W. Bittinger Project No. 581

Enclosed please find test results for the above-referenced project. Moisture contents were determined for twenty-five samples received in our laboratory. The results of these tests are included on page 2. Samples containing high percentages of organic material are noted on the summary sheet.

Very truly yours,

EMPIRE LABORATORIES, INC.

Neil R. Sherrod

Engineering Geologist

pal

Enclosure

NASA Steamboat/Walden Flight

MWB Project No. 581

March 9, 1976

Summary of Test Results

Test No.	Sample No.	Can No.	Percent Moisture
1	P-1	82	45.4*
2	P-2	83	34.6*
3	Pit #3	93	19. 7
4	Pit #4	84	27. 1
5	Pit #5	89	31.3*
6		1	16. 9
7		4	76. 5*
8		9	19.7
9		16	21.0
10		73	18. 8
11		74	566. 2*
12		76	23.6
13		77	20. 1
14	•	80	23. 1
15		81	242.2*
16		86	27.0
17		8'8	37. 9*
18		90	70. 4 *
19		95	21. 7
20	•	97	37. 7*
21		100	27. 9
22		101	18. 7
23		103	18.6
24		104	23. 1
25		108	96. 4*

^{*} indicates sample contains high percentage of organic matter