MC Estimation of a Downward Closed Set of Subsets

Aresh Pourkavoos

March 6, 2025

 $V = \{v_1, \dots, v_n\}$ finite set, T predicate on subsets of V $A \subseteq B, T(B) \to T(A)$ (T downward closed) Notation:

- \bullet $\binom{V}{h} := \{B \subseteq V | |B| = k\}$
- $S_n := \text{set of permutations on } \{1, \dots, n\}$
- $V_{\pi(:k)} := \{v_{\pi(i)} | 1 \le i \le k\}$ for $\pi \in S_n$
- [T(B)] is the Iverson bracket: 1 if T(B) is true, 0 otherwise
- Expectations over e.g. $\pi \in S_n$ are uniform

Want to estimate

$$\begin{aligned} &|\{B \subseteq V | T(B)\}| \\ &= \sum_{k=0}^{n} \left| \left\{ B \in {V \choose k} \middle| T(B) \right\} \right| \\ &= \sum_{k=0}^{n} {n \choose k} \mathbb{E}_{B \in {V \choose k}} ([T(B)]) \\ &= \sum_{k=0}^{n} {n \choose k} \mathbb{E}_{\pi \in S_n} \left(\left[T \left(V_{\pi(:k)} \right) \right] \right) \\ &= \mathbb{E}_{\pi \in S_n} \left(\sum_{k=0}^{n} {n \choose k} \left[T \left(V_{\pi(:k)} \right) \right] \right) \end{aligned}$$

Simple MC method: sample random permutation of V, add $\binom{n}{k}$ for each $V_{\pi(:k)}$ satisfying T Since T downward closed, first (smallest) value of k such that $\neg T(V_{\pi(:k)})$ makes all subsequent terms 0: formalized later

Next, WTS this is equivalent to choosing new elements of the permutation "on the fly" Define x_B to be the expected sum remaining after $B \subseteq V$ has already been chosen as the prefix:

$$x_B := \begin{cases} 0 & \text{if } \neg T(B) \\ 1 & \text{if } T(B) \text{ and } B = V \\ \binom{n}{|B|} + \mathbb{E}_{v \in V \setminus B} \left(x_{B \cup \{v\}} \right) & \text{if } T(B) \text{ and } B \neq V \end{cases}$$

Lemma 1. For all $B \subseteq V$, $x_B = \mathbb{E}_{\pi \in S_n} \left(\sum_{k=|B|}^n \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \middle| B = V_{\pi(:|B|)} \right)$.

Proof. Induct backwards on |B|.

- Base case: |B| = n, so B = V $x_B = [T(B)]$ by first two cases of def RHS is the same: condition is always true, sum has 1 term, $\binom{n}{n} = 1$
- Inductive step: |B| < n, so $B \neq V$ IH holds for all B' where |B'| = |B| + 1Case on T(B)
 - If $\neg T(B)$, then $x_B=0$; WTS RHS = 0 Given that $B=V_{\pi(:|B|)}$, if $k\geq |B|$, then $B\subseteq V_{\pi(:k)}$, so $\neg T(V_{\pi(:k)})$ Thus sum is 0 for all relevant π , so expectation is 0
 - If T(B), then consider $\Pi := \{ \pi \in S_n | B = V_{\pi(:|B|)} \}$ For all j where $v_j \in V \setminus B$, define $B_j := B \cup \{v_j\}$ May partition Π into $\Pi_j := \{ \pi \in S_n | B_j = V_{\pi(:|B|+1)} \}$ All Π_j are of equal size because this is equivalent to partitioning by $\pi(|B|+1)$ IH holds for B_j , i.e.

$$x_{B_j} = \mathbb{E}_{\pi \in S_n} \left(\sum_{k=|B|+1}^n \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \middle| B_j = V_{\pi(:|B|+1)} \right)$$
$$= \mathbb{E}_{\pi \in \Pi_j} \left(\sum_{k=|B|+1}^n \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \right)$$

Then

$$x_{B} = \binom{n}{|B|} + \mathbb{E}_{v_{j} \in V \setminus B} \left(x_{B_{j}} \right)$$

$$= \binom{n}{|B|} + \mathbb{E}_{v_{j} \in V \setminus B} \left(\mathbb{E}_{\pi \in \Pi_{j}} \left(\sum_{k=|B|+1}^{n} \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \right) \right)$$

$$= \binom{n}{|B|} + \mathbb{E}_{\pi \in \Pi} \left(\sum_{k=|B|+1}^{n} \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \right)$$

$$= \mathbb{E}_{\pi \in \Pi} \left(\binom{n}{|B|} + \sum_{k=|B|+1}^{n} \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \right)$$

$$= \mathbb{E}_{\pi \in \Pi} \left(\sum_{k=|B|}^{n} \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \right)$$

$$= \mathbb{E}_{\pi \in S_{n}} \left(\sum_{k=|B|}^{n} \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \right)$$

$$= \mathbb{E}_{\pi \in S_{n}} \left(\sum_{k=|B|}^{n} \binom{n}{k} \left[T \left(V_{\pi(:k)} \right) \right] \right)$$

Finally, want to define the desired MC method and show it has the correct expectation For $B \subseteq V$, define $C_B = \{v \in V \setminus B | T(B \cup \{v\})\}$ Define RVs X_B by

$$X_B := \begin{cases} 0 & \text{if } \neg T(B) \\ 1 & \text{if } T(B) \text{ and } B = V \\ \binom{n}{|B|} + \frac{|C_B|}{|V \backslash B|} X_{B \cup \{v\}} & \text{if } T(B) \text{ and } B \neq V, \text{ for random } v \in C_B \end{cases}$$

Lemma 2. For all $B \subseteq V$, $\mathbb{E}(X_B) = x_B$.

Proof. Induct backwards on |B|.

- Base case: |B| = n, so B = V $\mathbb{E}(X_B) = [T(B)] = x_B$
- Inductive step: |B| < n, so $B \neq V$ IH holds for all B' where |B'| = |B| + 1If $\neg T(B)$, then $\mathbb{E}(X_B) = 0 = x_B$ If T(B), then

$$\mathbb{E}(X_B)$$

$$= \mathbb{E}_{v \in C_B} \left(\binom{n}{|B|} + \frac{|C_B|}{|V \setminus B|} X_{B \cup \{v\}} \right)$$

$$= \binom{n}{|B|} + \frac{|C_B|}{|V \setminus B|} \mathbb{E}_{v \in C_B} \left(X_{B \cup \{v\}} \right)$$

$$= \binom{n}{|B|} + \frac{1}{|V \setminus B|} \sum_{v \in C_B} \left(X_{B \cup \{v\}} \right)$$

$$= \binom{n}{|B|} + \frac{1}{|V \setminus B|} \sum_{v \in V \setminus B} \left(X_{B \cup \{v\}} \right)$$

$$= \binom{n}{|B|} + \mathbb{E}_{v \in V \setminus B} \left(X_{B \cup \{v\}} \right)$$

$$= \binom{n}{|B|} + \mathbb{E}_{v \in V \setminus B} \left(x_{B \cup \{v\}} \right)$$

$$= x_B$$

Theorem 1. $\mathbb{E}(X_{\{\}}) = |\{B \subseteq V | T(B)\}|.$

Proof.

$$\mathbb{E}(X_{\{\}}) = x_{\{\}}$$

$$= \mathbb{E}_{\pi \in S_n} \left(\sum_{k=|\{\}|}^n \binom{n}{k} \left[T\left(V_{\pi(:k)} \right) \right] \middle| \{\} = V_{\pi(:|\{\}|)} \right)$$

$$= \mathbb{E}_{\pi \in S_n} \left(\sum_{k=0}^n \binom{n}{k} \left[T\left(V_{\pi(:k)} \right) \right] \right)$$

$$= |\{B \subseteq V | T(B)\}|$$