

107166003/0051-0

INVESTOR IN PEOPLE

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 26 JAN 2004

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

15 January 2004

BEST AVAILABLE COPY

29 NOV 2002

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

02DEC007531-1 D00056
P01/7700 0:00-0227910.7

The Patent Office

 Cardiff Road
Newport
South Wales
NP9 1RH

1. Your reference P33779GB/TJF

2. Patent application number
(The Patent Office will fill in this part)

0227910.7

29 NOV 2002

3. Full name, address and postcode of the or of each applicant (*underline all surnames*)
 Medical Research Council
20 Park Crescent
London W1N 4AL
Patents ADP number (*If you know it*)

5840624001

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

4. Title of the invention

Protein Structure and uses thereof

5. Name of your agent (*If you have one*)
 "Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

 Kilburn & Strode
20 Red Lion Street
London
WC1R 4PJ
Patents ADP number (*If you know it*)

125001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (*If you know it*) the or each application number

Country

Priority application number
(*If you know it*)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

See note (d))

YES

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description 96

Claim(s) 8

Abstract -

CF

Drawing(s) 5 + 5

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (*Patents Form 7/77*)

Request for preliminary examination and search (*Patents Form 9/77*)

Request for substantive examination
(*Patents Form 10/77*)

Any other documents
(please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

Talbot Lassalle

Date 29.11.2002

12. Name and daytime telephone number of person to contact in the United Kingdom

FORD, Timothy James
Tel: 020 7539 4200

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

Protein Structure and Uses Thereof

The present invention relates to the crystal structure of pRb/E2F₍₄₀₉₋₄₂₆₎ as well as uses of the structure in identifying agents which modulate the binding between pRb and E2F and/or a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, and thus are useful as pharmaceutical agents in the prevention or treatment of proliferative diseases.

5 The retinoblastoma tumour suppressor protein (pRb) regulates the cell cycle, sponsors differentiation and restrains apoptosis. Dysfunctional pRb is thought to be necessary
10 for the development of most human malignancies.

pRb controls the cell cycle and apoptosis by acting as a negative regulator of transcription. It is now established that the growth-inhibitory effects of pRb are dependent on its regulation of the E2F family of transcription factors whose activity is
15 necessary for the expression of genes involved in the G1 to S transition of the cell cycle and DNA replication. The transcriptional repression exerted by pRb over E2F responsive promoters involves at least three, distinct mechanisms. By binding to the transcriptional activation domain of E2F, pRb prevents it from recruiting components of the transcriptional apparatus and, once tethered to E2F promoters, pRb interacts
20 with, and represses, other nearby transcription factors. Finally, pRb recruits protein factors to E2F promoters, such as histone deacetylases (HDACs) and histone methyltransferases (HMTases) that negatively regulate transcription by altering chromatin structure.

25 In addition to regulating entry into S-phase, it is thought that pRb is important in protecting differentiating cells from apoptosis. Certainly in many types of tissue, loss of pRb leads to apoptosis. This and other data has led to a model whereby the anti-apoptotic activity of pRb is mediated by its repression of certain E2F-dependent
30 -promoters. Unrepressed E2F is able to drive apoptosis by both p53-dependent and p53-independent mechanisms.

Although inactivation of the pRb pathway is thought to be widely involved in cellular transformation, there are examples of tumours where over-expression of functional pRb appears to be detrimental to successful clinical treatment. For example,
5 adenocarcinoma of the pancreas is the fifth most common cause of cancer-related death in the Western world. It is particularly resistant to currently available forms of chemotherapy and radiation therapy. It is thought that this malignancy is able to evade apoptosis induced by treatment with chemotherapeutic drugs because of over-expression of pRb. It seems plausible that the protective effect of pRb
10 over-expression against apoptosis is mediated by E2F. By blocking transcriptional activation by E2F, over-expression of pRb appears to render pancreatic cancer cells insensitive to chemotherapy.

As many of the anti-tumourigenic properties of pRb are mediated by its regulation of
15 the E2F transcription factors, it would be beneficial to have a crystal structure of the pRb-binding fragment of E2F (E2F₍₄₀₉₋₄₂₆₎) in complex with the tumour suppressor protein. Such detailed knowledge of the molecular interactions between E2F and the A/B interface of pRb would enable the development of compounds that bind to pRb
20 and inhibit complex formation. Such a compound, administered in parallel with conventional chemotherapy, would offer a means of enhancing treatment of proliferative diseases such as pancreatic cancer and perhaps related diseases.

Accordingly, the present invention provides the crystal structure of the primary pRb-binding fragment of E2F (E2F₍₄₀₉₋₄₂₆₎) in complex with the tumour suppressor protein pRb. The structure shows how E2F₍₄₀₉₋₄₂₆₎ binds at the interface of the A and B domains of the pocket of pRb making extensive interactions with conserved residues from both.
25

In order to address the regulation of the E2F transcription factor by pRb, the present
30 inventors have determined the crystal structure of the complex of pRb_{AB} bound to the

minimal binding region of E2F, namely E2F₍₄₀₉₋₄₂₆₎. The structure has important implications for the understanding of pRb/E2F function. The studies have quantified the contribution of the principal interaction made by E2F through residues 409-426 with pRb as well as that of a secondary interaction involving the marked box region of
 5 E2F. In both cases these interactions are with the pocket region of the tumour suppressor protein pRb.

The analysis of the crystal structure of pRb/E2F₍₄₀₉₋₄₂₆₎ suggests that E2F₍₄₀₉₋₄₂₆₎ acts as a sensor of the structural integrity of the pRb pocket. Accordingly, cells in many
 10 tissues should be protected against deleterious mutations in pRb because they will sponsor increased E2F transcriptional activation, and thus apoptosis. It seems particularly intriguing, therefore, that all tumour derived pRb mutants fail to bind to E2F suggesting that an intense selectionary pressure operates in many types of tissue in favour of cells which harbour defects in apoptosis once they have lost normal pRb
 15 function. Perhaps the most notable exception to this process occurs in retinal cells, which are able to survive for some time with loss of pRb without acquiring other genetic alterations. Indeed, it has been suggested that these particular cells are distinguished by their ability to acquire survival signals from neighbouring cells and thus give rise to the eponymous retinoblastomas.

20

According to a first aspect, the present invention provides a crystal structure of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex, characterised by the atomic co-ordinates of Annex 1.

25 Preferably the interactions between E2F₍₄₀₉₋₄₂₆₎ and pRb comprise one or more of the following interactions:

E2F ₍₄₀₉₋₄₂₆₎ residue	pRb residue
Leu ₄₀₉	Lys ₅₄₈
Tyr ₄₁₁	Glu ₅₅₁

E2F ₍₄₀₉₋₄₂₆₎ residue	pRb residue
Tyr ₄₁₁	Ile ₅₃₂
Tyr ₄₁₁	Glu ₅₅₄
His ₄₁₂	Arg ₆₅₆
His ₄₁₂	Lys ₆₅₃
Gly ₄₁₄	Glu ₅₃₃
Gly ₄₁₄	Lys ₆₅₂
Leu ₄₁₅	Leu ₆₄₉
Leu ₄₁₅	Glu ₅₅₃
Leu ₄₁₅	Lys ₅₃₇
Glu ₄₁₇	Lys ₅₃₇
Gly ₄₁₈	Arg ₄₆₇
Glu ₄₁₉	Thr ₆₄₅
Arg ₄₂₂	Glu ₄₆₄
Asp ₄₂₃	Arg ₄₆₇
Leu ₄₂₄	Lys ₅₃₀
Phe ₄₂₅	Phe ₄₈₂
Phe ₄₂₅	Lys ₄₇₅

In a second aspect, the present invention provides an assay to identify an agent which modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎, the assay comprising:-

- 5 a) combining together pRb, E2F₍₄₀₉₋₄₂₆₎ and an agent, under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ form a complex;
- b) obtaining a crystal structure of any pRb/E2F₍₄₀₉₋₄₂₆₎ complex; and
- c) analysing the crystal structure to determine whether the agent is an agent which modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.

In the present invention, the term "modulates" is intended to refer to inhibiting, enhancing, destabilising and/or stabilising the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎ and/or the formation of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or the stability of the complex after formation.

5

"conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex" are those conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ form a complex in the absence of an agent. Therefore the effect of the agent on the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎ and complex formation can be assessed.

10

In the assay, the combining of the pRb, E2F₍₄₀₉₋₄₂₆₎ and agent may be in any order. The order may be combining pRb with the agent and then adding the E2F₍₄₀₉₋₄₂₆₎. Alternatively, the order may be combining E2F₍₄₀₉₋₄₂₆₎ with the agent and then adding pRb, or combining pRb with E2F₍₄₀₉₋₄₂₆₎ and then the agent. For example, the pRb may be combined with E2F₍₄₀₉₋₄₂₆₎ before soaking the complex in the agent, preferably in a solution of the agent. In this regard, two of the pRb, E2F₍₄₀₉₋₄₂₆₎ and agent may be co-crystallised before adding the pRb, E2F₍₄₀₉₋₄₂₆₎ or agent, as appropriate.

15

In a third aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising selecting an agent using the three-dimensional atomic coordinates of Annex 1.

Preferably, said selection is performed in conjunction with computer modeling.

20

Preferably the method comprises the further steps of:

- a) contacting the selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex; and
- b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent and comparing the binding affinity to that of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the absence of the agent, wherein an agent modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex

30

when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.

The method may further comprise:

- 5 a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉₋₄₂₆₎ and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;
- 10 b) determining the three-dimensional atomic coordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;
- 15 c) selecting a second generation agent using the three-dimensional atomic coordinates determined for the supplementary crystal.

Preferably, said selection is performed in conjunction with computer modeling.

- 15 In a fourth aspect there is provided a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:
 - a) contacting a selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex; and
 - 20 b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent and comparing the binding affinity to that of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the absence of the agent, wherein an agent modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.

25 There is a "change in the binding affinity" when the binding affinity either decreases or increases when in the presence of the agent. If a decrease is observed, the agent may be inhibiting the complex. If an increase is observed, the agent may be enhancing the complex.

30

The method of the fourth aspect may further comprise:

- a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉₋₄₂₆₎ and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;
- b) determining the three-dimensional atomic coordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;
- c) selecting a second generation agent using the three-dimensional atomic coordinates determined for the supplementary crystal

10

Preferably, said selection is performed in conjunction with computer modeling.

In a fifth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) selecting an agent;
- b) co-crystallising pRb with the agent;
- c) determining the three dimensional coordinates of the pRb-agent association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the complex as claimed in claim 1.

In a sixth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) selecting an agent;
- b) crystallising pRb and soaking the agent into the crystal;
- c) determining the three dimensional coordinates of the pRb-agent association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the complex as claimed in claim 1.

30

In a seventh aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) selecting an agent;
- b) co-crystallising pRb, E2F₍₄₀₉₋₄₂₆₎ and the agent;
- 5 c) determining the three dimensional coordinates of the pRb-E2F-agent association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the complex as claimed in claim 1.

10 In an eighth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) selecting an agent;
- b) co-crystallising pRb and E2F₍₄₀₉₋₄₂₆₎ and soaking the agent into the crystal;
- c) determining the three dimensional coordinates of the pRb-E2F-agent association
- 15 by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the complex as claimed in claim 1.

Preferably the method of the fifth, sixth, seventh or eighth aspect further comprises
20 selecting a second generation agent using the three dimensional atomic coordinates determined. The agent is preferably selected using the three dimensional atomic coordinates of Annex 1. The selection may be performed in conjunction with computer modeling.

25 Preferably the selected agent and/or the second generation agent, in the second, third, fourth, fifth, sixth, seventh and/or eighth aspects mimics a structural feature of E2F₍₄₀₉₋₄₂₆₎ when said E2F₍₄₀₉₋₄₂₆₎ is bound to pRb.

30 Preferably soaking refers to the pRb/E2F₍₄₀₉₋₄₂₆₎ complex being transferred to a solution containing the selected agent.

The method as defined in the third aspect preferably comprises the further steps of:

- a) contacting the selected agent with the pRb/E2F₍₄₀₉₋₄₂₆₎ complex; and
- 5 b) determining whether the agent affects the stability of the complex.

Preferably the determination is with fluorescence polarization.

In a ninth aspect, the present invention provides a method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- 10 a) contacting a fluorescently tagged E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) with pRb to allow pRb/E2F-fluoropeptide complex formation;
- b) detecting the fluorescence polarization;
- c) adding a selected agent; and
- 15 d) detecting the fluorescence polarization in the presence of the agent.

Preferably an increase in fluorescence polarization in the presence of the agent indicates that the agent destabilises the complex.

20 The method may comprise the further step of adding untagged E2F₍₄₀₉₋₄₂₆₎ and detecting fluorescence polarization.

Preferably if fluorescence polarization decreases , on addition of the untagged E2F₍₄₀₉₋₄₂₆₎, the agent does not stabilise the complex.

25 Preferably if there is no substantial change in fluorescence polarization, on addition of the untagged E2F₍₄₀₉₋₄₂₆₎, the agent stabilises the complex.

The binding affinities may be measured by isothermal titration calorimetry.

Alternatively the binding affinities may be measured by Surface Plasmon Resonance (SPR).

5 In a tenth aspect, the present invention provides an agent identified by a method according to the second, third, fourth, fifth, sixth, seventh, eighth and/or ninth aspects of the invention.

In an eleventh aspect, the present invention provides an agent, as set out according to
10 the tenth aspect of the invention, for use as an apoptosis promoting factor in the prevention or treatment of proliferative diseases.

Preferably the, or each selected agent is obtained from commercial sources or is synthesised.

15

Preferably the agent is for use in preventing or treating cancer, which may be pancreatic cancer and related diseases.

In a twelfth aspect, the present invention provides the use of an agent, which
20 modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, identified by a method according to the second, third, fourth, fifth, sixth, seventh, eighth and/or ninth aspects of the present invention, in the manufacture of a medicament for the prevention or treatment of proliferative diseases.

25 The proliferative diseases may be cancer, preferably pancreatic cancer and related diseases.

In a thirteenth aspect, the present invention provides the use of the atomic co-ordinates of the crystal structure as set out according to the first aspect of the present invention,
30 for identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex.

In a fourteenth aspect, the present invention provides computer readable media comprising a data storage material encoded with computer readable data, wherein said 5 computer readable data comprises a set of atomic co-ordinates of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex according to Annex 1 recorded thereon.

The present invention will now be described, by way of example only, and with reference to the following figures, in which:

10

Annex I.

Atomic co-ordinates for crystal of pRb/E2F₍₄₀₉₋₄₂₆₎ complex.

In Annex 1 there is shown:

<i>Column Number</i>	<i>Description</i>
2	Atom number
3	Atom type
4	Residue type
5	pRb domains (A or B) or E2F ₍₄₀₉₋₄₂₆₎ (P)
6	Residue number
7	x co-ordinate of atom (Å)
8	y co-ordinate of atom (Å)
9	z co-ordinate of atom (Å)
10	Occupancy
11	B-factor (Å ²)

15

Figure 1.

Structure of pRb/E2F.

(A) Schematic drawing of functional domains and protein constructs used for pRb, E2F. The shading used for the constructs in this panel match those used in subsequent figures.

5

(B) The structure of pRb_{AB}/E2F₍₄₀₉₋₄₂₆₎, shown in two orthogonal views in Ribbons representation. The helices of the A domain are shown as a darker shade to those of the B domain. The main-chain trace of E2F is labelled.

10 (C) The interactions between E2F₍₄₀₉₋₄₂₆₎ and pRb_{AB} are shown schematically with the E2F peptide running down the centre. Residues of E2F that are conserved across the five family members are shown as ovals, while the five residue subset of these conserved residues whose mutation leads to disruption of the pRb/E2F interaction are shaded. Hydrogen-bond interactions are shown as broken lines, while hydrophobic
15 contacts are indicated by bands. Residues from domain A of pRb are labelled with an asterisk and the other residues are from domain B. All of the pRb residues shown are either invariant or conserved across 27 species of pRb, p107 and p130.

Figure 2.

20 Isothermal Titration Calorimetry (ITC) measurements.

(A) The upper panel shows the raw data of an ITC experiment performed at 22°C. The lower panel shows the integrated heat changes, corrected for the heat of dilution, and the fitted curve based on a single site model. The panel represents the experiment where E2F₍₂₄₃₋₄₃₇₎ is titrated into Rb_{AB}.

25

(B) Summary of dissociation constants obtained by ITC measurements. The quoted errors are those produced by fitting the data to a two-state model. For the interaction of E2F₍₂₄₃₋₄₃₇₎ to Rb_{AB} and Rb_{ABC} the affinities are too high to measure reliably and we have therefore quoted the upper limits of the dissociation constants.

30

Structure determination of pRb/E2F

For crystallisation we used a pRb construct based on that previously described by Lee, J.O., Russo, A.A., and Pavletich, N.P. (1998). Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7, *Nature* 391,

5 859-65, which has engineered thrombin cleavage sites at the ends of the flexible linker region between the A and B domains. Purification and proteolysis produces a final protein containing residues 372 to 589 of the A domain and 636 to 787 of the B domain (hereafter pRb_{AB} – Figure 1A). Although these two domains are not covalently attached after thrombin treatment, they remain tightly associated. The
10 removal of the A-B linker region facilitates crystallisation of pRb but does not alter its binding affinity for E2F. Crystals of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex grew in a plate-like habit with typical dimensions 200 x 200 x 10 μm³. Repeated attempts at data collection from flash-cooled crystals using synchrotron X-ray sources were thwarted by very high crystal mosaicity and poor data reduction statistics. The problem was
15 overcome by using the micro-focus diffractometer on station ID13 at ESRF current experience and plans at EMBL and ESRF/ID13, *Acta Crystallogr D* 55, 1765-1770), currently the only such device installed at a synchrotron source. Using a 10x10 μm² aperture, data were collected from four separate and widely spaced volumes of a single crystal in order to minimise radiation damage. A total of 100, 1° oscillation images
20 were collected using a MAR CCD detector. These data extended to a Bragg spacing of 2.5 Å with an overall R_{merge} = 9.2%, and completeness of 87%. The structure was solved by molecular replacement and produced initial electron density maps in which the E2F peptide (E2F₍₄₀₉₋₄₂₆₎) could be readily located.

25 **Protein constructs.**

Rb_{AB} was expressed as a GST-fusion protein in *E. coli* using the pGEX-6P vector. The construct was engineered to contain a Prescission protease site at the N-terminus of Rb as well as two thrombin sites (LVPRGS) inserted at either end of the flexible A-B linker. Fusion protein was loaded onto a glutathione Sepharose 4B column

before treatment with thrombin and Prescission protease. The resulting eluent was further purified using a Superdex 200 gel filtration column. Rb_{ABC} was expressed in *E. coli* with a C-terminal His-tag using pET-24. Crude lysate was first purified using an S-sepharose column followed by a Ni-NTA step before being run on a Superdex 5 200 gel filtration column. Recombinant human E2F₁₍₂₄₃₋₄₃₇₎ was expressed in *E. coli* using pGEX-6P with an engineered Prescission protease site at the N-terminus of E2F. Crude lysate was bound onto a glutathione Sepharose 4B column prior to cleavage with the protease. The resulting eluent was further purified by gel filtration on a Superdex 75 column. E2F₍₄₀₉₋₄₂₆₎ and E2F₍₃₈₀₋₄₃₇₎ were synthetic peptides. HPV-16 10 E7₍₁₇₋₉₈₎ was prepared as described elsewhere (Clements, A.J., K. Mazzarelli, J.M. Ricciardi, R.P. Marmorstein R. (2000). Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein., Biochemistry 39, 16033-16045).

15 **Crystallography.**

Plate-like crystals were grown by the hanging drop vapour diffusion method at 4°C. Rb_{AB} was mixed with the E2F-1 peptide at 1:2 molar ratio and concentrated to 15mg/ml. Hanging drops were formed by mixing 1µl of protein solution with an equal volume of reservoir solution containing; 0.14M Na citrate, 26% PEG400, 4% 20 n-propanol and 0.1M Tris at pH 7.8. Crystals were flash frozen in mother-liquor made up to 25% glycerol. Diffraction data were collected using the micro-focus diffractometer at ESRF and processed using the DENZO and SCALEPACK software (Otwinowski, Z.M., W. (1993). In Data Collection and Processing, L.I. Sawyer, N. Bailey, S., ed. (SERC Daresbury Laboratory), pp. 556-562). Molecular replacement 25 calculations were carried out using Amore (CCP4, 1994) with 1GUX.brk as the search model. The final model contains co-ordinates for the protein which cover residues 379-578 of the A domain and 644-787 of the B domain of Rb and the entire E2F₍₄₀₉₋₄₂₆₎ peptide for the four copies present in the asymmetric unit together with 600 solvent

molecules. The refined model has the following residuals; $R_{work} = 23.7\%$, $R_{free} = 28.7\%$, rmsd bonds = 0.007 Å, rmsd angles = 1.3°.

Structure of pRb/E2F complex

5 The packing of the A and B domains generates a waist-like interface groove into which E2F₍₄₀₉₋₄₂₆₎ binds in a largely extended manner (Figure 1b). The peptide makes contacts with residues from helices α4, α5, α6, α8 and α9 of domain A, and with α11 from domain B of pRb. Formation of the complex buries 2280 Å² of surface area, 1500 Å² of which are hydrophobic. The two end regions of the E2F₍₄₀₉₋₄₂₆₎ fragment
10 make extensive contacts with pRb, while interactions made by the middle section of the E2F₍₄₀₉₋₄₂₆₎ fragment (residues 416 to 420) are relatively sparse (Figure 1C). Overall, a high proportion of the hydrogen bond interactions between the two molecules involves the side chains of conserved pRb residues interacting with the main chain of E2F. Examination of the distribution of conserved residues over the
15 surface of pRb, reveals that the majority are accounted for by the E2F binding site. There is a somewhat smaller cluster of conserved residues associated with the LxCxE binding site. Perhaps the most remarkable aspect of this analysis is that although pRb has been reported to associate with at least 110 cellular proteins perhaps 50 or more in a pocket-dependent manner, the E2F and LxCxE binding sites account for almost all
20 of the conserved residues on its surface. There are two explanations that may partially account for these observations. Firstly, many of the reported binding partners of pRb have yet to be verified. Secondly, the LxCxE binding site is probably responsible for mediating the binding of many different proteins, such as HDAC, to pRb.

25 Since there are four copies of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex in the asymmetric unit of our crystal form it is possible both to compare these four crystallographically independent copies of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and to compare them with the crystal structure of pRb/E7 without bond E2F (Lee et al., 1998 Supra). The first six residues at the N-terminus, the α3-α4 and α6-α7 loops adopt different conformations

between the four copies in our asymmetric unit, while the variations across the rest of the structure between the four molecules is not significant. Comparison of the pRb structure in the presence and absence of bound E2F₍₄₀₉₋₄₂₆₎ shows that there is essentially no change in the relative orientation of the two lobes of the A/B pocket on 5 E2F₍₄₀₉₋₄₂₆₎ binding nor any widespread changes in the structures of the individual domains. This comparison does reveal that the end of α 4 and the connecting loop to α 5 becomes ordered in the pRb/E2F₍₄₀₉₋₄₂₆₎ complex as two conserved residues (Glu464-pRb & Arg467-pRb located towards the end of α 4 in our structure) interact with the E2F₍₄₀₉₋₄₂₆₎ peptide. Within the E2F₍₄₀₉₋₄₂₆₎ construct there are eight residues 10 that are conserved across E2F's from all animal species (Figure 1A). Amino-acid substitutions at five of these positions have been shown to lead to loss of binding to pRb but retention of E2F's trans-activation potential. The following description focuses on the structural role of these five residues. Tyr(411)-E2F appears to play an important role in peptide binding because its phenolic ring occupies a hydrophobic 15 pocket created by Ile(536)-pRb, Ile(532)-pRb, Ile(547)-pRb and Phe(413)-E2F, while its hydroxyl group makes a hydrogen bond to the invariant Glu(554)-pRb. Towards the C-terminal part of the E2F peptide, Leu(424)-E2F and Phe(425)-E2F make several hydrophobic interactions, two of which involve conserved residues. Leu(424)-E2F makes contacts with the aliphatic portion of the side chain of Lys(530)-pRb and also 20 packs against Leu(415)-E2F and Phe(425)-E2F. In addition, Phe(425)-E2F itself packs against Phe(482)-pRb. Unlike the residues of E2F just discussed, the side-chains of Glu(419)-E2F and Asp(423)-E2F do not point into the groove formed between the A and B domains of pRb, but instead point away from it. Glu(419)-E2F 25 hydrogen bonds through a water molecule with the main-chain carbonyl of Thr(645)-pRb; Asp(423)-E2F forms a salt bridge with Arg(467)-pRb located at the end α 4.

Finally, as described earlier, the crystal structure shows how E2F makes extensive contacts with largely conserved residues from both the A and B domains of the pocket

and that the binding site for E2F is dependent on the structure of the interface between the two domains. This feature of the structure suggests that E2F acts as a sensor of the structural integrity of the pRb pocket. The position and nature of the E2F binding site make the binding of the transcription factor particularly sensitive to mutations in the 5 pocket region of the tumour suppressor protein. The potential significance of these observations will be discussed later with regard to the normal role of pRb in protecting cells against E2F-mediated apoptosis.

Additional determinants of pRb/E2F function

10 It is clear from a number of studies that, although E2F₍₄₀₉₋₄₂₆₎ expressed as a Gal4 fusion protein is sufficient to recruit pRb and repress transcription, there are additional interactions made by the physiologically relevant E2F/DP heterodimer with pRb. Similarly, while the pocket domain is highly conserved, the most frequent site of deleterious mutation, and capable of transcriptional repression, it is not sufficient for 15 the physiological function of pRb. In particular, the C-terminus of pRb is necessary for mediating growth arrest and recruitment of certain cyclin/cdk complexes as well as containing several of the residues whose phosphorylation leads to deactivation of pRb function. Therefore, in order to better understand the requirements for physiological pRb/E2F complex formation, we have made a series of constructs of the two proteins 20 (Figure 1A) and carried out binding measurements by isothermal titration calorimetry (ITC). We have also carried out a series of competition experiments to confirm qualitatively the interpretation of the ITC binding data.

Isothermal Titration Calorimetry.

25 Binding of the various E2F constructs to Rb_{AB} and Rb_{ABC} was measured by isothermal titration calorimetry using a MicroCal Omega VP-ITC machine (MicroCal Inc., Northampton, USA). The E2F constructs at a concentration between 100-150 μM were titrated into 12-15 μM Rb at a temperature of 22°C. Proteins were dialysed against 50mM Tris pH 7.6, 100mM NaCl and 1mM TCEP. After subtraction of the

dilution heats, calorimetric data was analysed using the evaluation software MicroCal Origin v5.0 (MicroCal Software Inc.). For all of the titrations, the stoichiometry of ligand binding to Rb was very close to 1.0. For E2F₍₂₄₃₋₄₃₇₎ binding to Rb, the binding affinity and the heat change associated with binding were such that we could only
5 establish that binding was tighter than 10 nM. In order to verify that binding of this protein was similar for both Rb_{AB} and Rb_{ABC} we carried out competition experiments which showed approximately equal partition between the two different Rb proteins.

Competition experiments.

10 The proteins used in these experiments were His₆-Rb_{ABC} (RESIDUES 380-929); MW 66.07kDa, non-tagged Rb_{AB} (residues 372-787); MW 48.67 KDa, are His₆-Rb_{AB} (residues 376-792); MW 49.86 KDa, E2F₍₂₄₃₋₄₃₇₎; MW 21.45 KDa HPV E7 (residues 17-98); MW 9.38 KDa and E2F₍₄₀₉₋₄₂₆₎; MW 2.12 KDa. Protein concentrations were carefully determined by u.v. spectroscopy and confirmed by ITC titrations. The small
15 acidic E2F proteins stain much weaker than Rb with Coomassie on SDS-PAGE. For all gel lanes contained a final Rb_{AB} concentration of ca. 7μM. After equilibration with E2F₍₂₄₃₋₄₃₇₎ and E2F₍₄₀₉₋₄₂₆₎ the samples were loaded onto a 1.0ml Ni column and washed with 7 x 0.5 ml of loading buffer (50mM Tris pH 7.5, 200mM NaCl & 10mM Imidazole). The samples were then eluted with 7 x 0.5ml elution buffer (50mM Tris,
20 pH 7.5, 200mM NaCl, 200mM Imidazole). After volume correction samples were boiled in SDS loading buffer and run on a 4-12% SDS PAGE. For the two pRb
20 proteins and E2F₍₂₄₃₋₄₃₇₎ were mixed at 40μM in a final volume of 0.5ml. After equilibration for 2hrs the mixture was loaded onto 1ml Ni beads in a small column, washed with 7 x 0.5ml of loading buffer (50mM Tris, pH 7.5, 200mM NaCl, 10mM
25 Imidazole), eluted using 7 x 0.5ml elution buffer (50mM Tris, pH 7.5, 200mM NaCl, 200mM Imidazole). Samples, after correcting for volume were boiled in SDS sample buffer and run on a 4-12% SDS gel.

A typical ITC experiment is shown in Figure 2A and a summary of the affinity constants obtained for both pRb_{AB} and pRb_{ABC} interacting with three constructs of E2F are given in Figure 2B. The two shorter E2F constructs bind to either pRb_{AB} or pRb_{ABC} with similar affinities. However, E2F₍₂₄₃₋₄₃₇₎ binds at least 16-fold stronger
5 than either of the two shorter E2F fragments to both pRb_{AB} and Rb_{ABC}. Our ITC data therefore show that there are additional interactions of the A/B pocket of pRb with a region of E2F-1 outside of the transactivation domain. This result has been confirmed qualitatively by competition experiments which show that a 15-to 30-fold molar excess of the shorter E2F peptide is required to 50% compete with E2F₍₂₄₃₋₄₃₇₎ for
10 binding to pRb. Our results are consistent with an earlier report that noted an interaction of pRb with the marked box region of E2F (residues 245-317). Taken together, these data demonstrate that the majority of the free energy of interaction between pRb and E2F is contributed by the 18-residue segment E2F₍₄₀₉₋₄₂₆₎ used in our structure analysis. There is an additional stabilising interaction between the marked
15 box region of E2F and pRb, that contributes approximately 2kcal mol⁻¹ to the overall free energy of complex formation, but is not sufficient on its own for complex formation.

As the binding constant for the interaction of E2F₍₂₄₃₋₄₃₇₎ with pRb_{AB} (or pRb_{ABC}) was
20 too tight to determine reliably by ITC we performed a competition experiment to determine if this E2F construct bound preferentially to one or the other pRb construct. The results show approximately equal partitioning of E2F₍₂₄₃₋₄₃₇₎ between the two pRb species and demonstrates therefore, that the C-terminus of pRb does not participate in the binding to E2F-1 in isolation. This means that in addition to the interaction of
25 E2F₍₄₀₉₋₄₂₆₎ with the pocket region of pRb there is an additional interaction, almost certainly involving the marked box region of E2F, that also binds to the pRb pocket. This data is consistent with the hypothesis that the approximately 10-fold stronger interaction of E2F/DP with pRb_{ABC} rather than pRb_{AB} reported previously arises through interactions of the DP component of the E2F/DP heterodimer with the
30 C-terminus of pRb. This ideas is strongly supported by the data from another study

which shows that DP-1 interacts with pRb in a manner that does not require the structural integrity of the A/B pocket. Taken together, these data indicate that at least one of the functions of the C-terminus of pRb is to bring additional stabilisation to the interaction of the tumour suppressor with the heterodimeric E2F/DP transcription factors.

5

Use of structure atomic co-ordinates of Annex I

The atomic co-ordinates of Annex 1 are cartesian co-ordinates derived from the results obtained on diffraction of a monochromatic beam of X-rays by the atoms of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex in crystal form. The diffraction data was used to calculate electron density maps of the crystal. The electron density maps were then used to position the individual atoms of the pRb/ E2F₍₄₀₉₋₄₂₆₎ complex.

10

The determination of the three-dimensional structure of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex provides basis for the design of new and specific agents that modulates formation of the complex and/or modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎. For example, computer modelling programs may be used to design different molecules expected to modulate formation of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or the interactions between pRb and E2F₍₄₀₉₋₄₂₆₎.

15

A candidate agent, may be any available compound. A commercial library of compound structures such as the Cambridge Structural Database would enable computer based *in silico* screening of the databases to enable compounds that may interact with, and/or modulate formation of, the complex to be identified.

20

Such libraries may be used to allow computer-based high throughput screening of many compounds in order to identify and select those agents with potential to modulate formation of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.

25

30

In this regard, a potential modulating agent can be subjected to computer modelling with a docking program such as GRAM, DOCK or AUTODOCK (see Walters et al., Drug discovery Today, Vol.3, No. 4, (1998), 160-178, and Dunbrack et al., Folding and Design, 2 (1997) 27-42) to identify and select potential agents. This can include
5 computer fitting of potential modulating agents to the pRb/E2F₍₄₀₉₋₄₂₆₎ complex to ascertain how the agent, in terms of shape and structure, will bind to the complex.

Computer programs can be employed to estimate the interactions between the pRb,
E2F₍₄₀₉₋₄₂₆₎ and agent or pRb/E2F₍₄₀₉₋₄₂₆₎ complex and agent. These interactions may be
10 attraction, repulsion, and steric hindrance of the two binding partners (e.g. the pRb/E2F₍₄₀₉₋₄₂₆₎ complex and a selected agent). A potential agent will be expected to be more potent if there is a tighter fit and fewer steric hindrances, and therefore greater attractive forces. It is advantageous for the agent to be specific to reduce interaction with other proteins. This could reduce the occurrence of side-effects due to additional
15 interactions with other proteins.

Potential agents that have been designed or selected possible agents can then be screened for activity as set out in the second to seventh aspects above. The agents can be obtained from commercial sources or synthesised. The agent is then contacted with
20 pRb/E2F₍₄₀₉₋₄₂₆₎ complex to determine the ability of the potential agent to modulate the formation of the complex. Alternatively the agent may be contacted with pRb and E2F₍₄₀₉₋₄₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex (in the absence of agent), to determine the ability of the agent to modulate complex formation.
25

A complex of pRb/E2F₍₄₀₉₋₄₂₆₎ and said potential agent can then be formed such that the complex can be analysed by X-ray crystallography to determine the ability of the agent to modulate complex formation and/or the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.

The complex of pRb/E2F₍₄₀₉₋₄₂₆₎ and agent could be compared to that for pRb/E2F₍₄₀₉₋₄₂₆₎ alone.

Detailed structural information can then be obtained about the binding of the potential agent to the complex,. This will enable the structure or functionality of the potential agent to be altered to thereby to improve binding. The above steps may be repeated as may be required.

The agent-pRb/E2F₍₄₀₉₋₄₂₆₎ complex could be analysed by:

10 co-crystallising pRb/E2F₍₄₀₉₋₄₂₆₎ with the selected agent or soaking the agent into crystals of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex; and then determining the three dimensional co-ordinates of the agent-complex by X-ray diffraction using molecular replacement analysis.

15 Therefore, the pRb/E2F₍₄₀₉₋₄₂₆₎ -agent complexes can be crystallised and analysed using X-ray diffraction data obtained and processed, for example using the DENZO and SCALEPACK software (Otwinowski, Z. M., W. (1993).Difference Fourier electron density maps can be calculated based on X-ray diffraction patterns of soaked or co-crystallised pRb/E2F₍₄₀₉₋₄₂₆₎ complex and the solved structure of uncomplexed agent. These maps can then be used to determine the structure of the agent bound to the pRb/E2F₍₄₀₉₋₄₂₆₎ and/or changes in the conformation of pRb/E2F₍₄₀₉₋₄₂₆₎ complex relative to the pRb/E2F₍₄₀₉₋₄₂₆₎ complex in the absence of agent.

20 The agent may be improved, for example by adding or removing functional groups, substituting groups or altering its shape in light of data obtained from agent bound to pRb/E2F₍₄₀₉₋₄₂₆₎ complex and/or agent bound to pRb. Such an improved agent may then be subjected to the methods of the invention.

30 Electron density maps can be calculated using programs such Amore from the CCP4 computing package (Collaborative Computational Project 4. The CCP4 Suite:

Programs for Protein Crystallography, Acta Crystallographical, D50, (1994), 760-763).

5 The provision of computer readable media enables the atomic co-ordinates to be accessed to model the pRb/E2F₍₄₀₉₋₄₂₆₎ complex by, for example, RAMSOL (a publicly available computer software package which allows access and analysis of atomic co-ordinate data for structure determination and/or rational drug design).

10 In addition, structure factor data, derivable from the atomic co-ordinate data (see e.g. Blundell et al., in Protein Crystallography, Academic Press, New York, London and San Francisco, (1976)), can be used to enable difference Fourier electron density maps to be deduced.

Screening assays

15 After an agent has been selected, its inhibitory effect on pRb/E2F₍₄₀₉₋₄₂₆₎ complex formation or ability to interact with the pRb/E2F₍₄₀₉₋₄₂₆₎ complex can be assessed with one or more of the assays of the invention.

20 For example, the crystal structure of the interaction of E2F₍₄₀₉₋₄₂₆₎ with pRb can be used to aid the design of a fluorescently tagged peptide for the use in a binding assay suitable for high throughput screening of low molecular weight compounds or peptide libraries. The fluorescent tag may be a fluorescein, rhodamine or some other commercially available tag chemically attached via a suitable amine or thiol group.

25 Binding could be measured by detecting fluorescence polarization in an homogeneous assay format (i.e. one in which all reagents are mixed in a single well, and reaction occurs in solution without wash steps). Fluorescence polarization technology is commonly applied in high throughput screening laboratories (ref: Sokham et al. (1999) Analytical Biochemistry, 275, 156-161. "Analysis of protein-peptide interaction by a

miniaturised fluorescence polarization assay using cyclin-dependent kinase2/cyclin E as a model system.”)

Fluorescence polarization can be used to determine binding of a fluorescently- tagged
5 small molecule (ligand or peptide) with a large molecule (receptor or protein) by detecting changes in the rotational velocity of the small molecule in the free and bound state. The rotational velocity is inversely proportional to the size of the molecule. Using suitable optics these changes in rotational velocity can be measured as a differences in light transmitted in parallel and perpendicular to a polarized excitation
10 source.

In the assay of the present invention, fluoro-peptide (E2F₍₄₀₉₋₄₂₆₎-fluoro peptide) bound to pRb will have a low rotational velocity and will appear stationary during the excitation period. Emitted light will be transmitted in parallel to the polarized incident
15 light and the light detected will have a high polarization value. In contrast in the presence of an inhibitor of the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎-fluoro peptide, the free E2F₍₄₀₉₋₄₂₆₎- fluoro-peptide will have a high rotational velocity and light will be transmitted in all directions. Emitted light will be detected both parallel and perpendicular to the polarized excitation source, and will have a low polarization value. If the rotational velocity does not increase in the presence of the agent but, on addition of E2F₍₄₀₉₋₄₂₆₎ which is not fluorescently tagged, the rotational velocity does increase, this leads to the agent destabilising the complex. Alternatively if the rotational velocity does not increase, this leads to the agent stabilising the complex.
20

25 In this regard an assay could include the following steps:

1. Allow complex formation of pRb/E2F₍₄₀₉₋₄₂₆₎-fluoro peptide - and measure max fluorescence polarization (FP);
2. Add agent - no change in FP, no disruption of complex;
3. Add unlabeled E2F - expect displacement of E2F₍₄₀₉₋₄₂₆₎-fluoro peptide and a
30 decrease in FP, but not if complex is stabilised by presence of reagent.

The Interactions could be confirmed by co-crystallisation of pRb/E2F₍₄₀₉₋₄₂₆₎ with agent, and determination of the three dimensional atomic coordinates by X-ray diffraction and molecular replacement.

5

The E2F₍₄₀₉₋₄₂₆₎/pRb interaction can also be applied to heterogeneous assay formats (i.e. ones in which reagents are partitioned between a solid support and in solution, and wash steps are involved). This would involve the immobilisation of pRb on microtitre plates, for example by antibody capture or metal ion chelation using His-tagged pRb and Nickel coated plates. E2F₍₄₀₉₋₄₂₆₎ peptide may be tagged with fluorescence as above and the fluorescent detected directly to determine amount bound. Alternatively, the peptide could be labelled with biotin and detected with streptavidin-horse radish peroxidase in an ELISA-like format.

10 15 Compounds which interact with the complex without altering association or disassociation of the complex could be identified by crystallographic means, unless the agent itself was tagged (radioactivity/fluorescence) and binding to the complex measured directly, eg fluorescence polarization as above or scintillation counting of an immuno-precipitate.

20

Alternatively, the agent can be added to pRb and E2F₍₄₀₉₋₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₂₆₎ can form a complex. This could result in the agent and complex co-crystallising. The binding affinities of pRb to E2F₍₄₀₉₋₂₆₎ in the pRb/ E2F₍₄₀₉₋₂₆₎ complex in the presence and absence of the agent can then be compared to determine 25 whether the agent inhibits complex formation. The three dimensional structure of the pRb/ E2F₍₄₀₉₋₂₆₎ – agent complex can also be solved to enable the associations in the new complex to be compared with those in the pRb/ E2F₍₄₀₉₋₂₆₎ complex (see Annex 1).

As a further alternative the pRb/ E2F₍₄₀₉₋₂₆₎ complex can be formed before soaking the complex in the presence of a selected agent. The binding affinities of pRb to E2F₍₄₀₉₋₂₆₎ can then be determined in the presence and absence of the agent. As before, the three dimensional structure of any pRb/ E2F₍₄₀₉₋₂₆₎ – agent complex could be solved.

5

The binding affinities can be measure using isothermal titration calorimetry.

Alternatively, surface plasmon resonance could be used such as that provided by Biacore.AB.

- 10 Preferred features of each aspect of the invention are as for each of the other aspects *mutatis mutandis*. The prior art documents mentioned herein are incorporated to the fullest extent permitted by law.

15

Annex 1:

REMARK the coordinates is one molecule from four molecules in an asymmetric
REMARK unit cell within the crystal:
REMARK a=101.996 b=158.548 c=110.617 alpha=90.00 beta=93.70 gamma=90.00 C 2
ATOM 1 N MET A 379 13.261 -15.752 30.447 1.00 45.11 N
ATOM 2 CA MET A 379 11.983 -16.486 30.626 1.00 44.12 C
ATOM 3 CB MET A 379 11.935 -17.082 32.026 1.00 44.57 C
ATOM 4 CG MET A 379 12.067 -16.066 33.137 1.00 45.87 C
ATOM 5 SD MET A 379 12.458 -16.814 34.740 1.00 52.60 S
ATOM 6 CE MET A 379 10.805 -17.831 35.114 1.00 52.37 C
ATOM 7 C MET A 379 10.802 -15.543 30.446 1.00 43.32 C
ATOM 8 O MET A 379 9.681 -15.889 30.824 1.00 43.69 O
ATOM 9 N ASN A 380 11.069 -14.348 29.909 1.00 41.45 N
ATOM 10 CA ASN A 380 10.043 -13.347 29.646 1.00 39.85 C
ATOM 11 CB ASN A 380 10.641 -11.934 29.700 1.00 39.85 C
ATOM 12 CG ASN A 380 10.867 -11.446 31.134 1.00 40.80 C
ATOM 13 OD1 ASN A 380 9.924 -11.442 31.937 1.00 40.97 O
ATOM 14 ND2 ASN A 380 12.115 -11.037 31.461 1.00 36.52 N
ATOM 15 C ASN A 380 9.449 -13.550 28.273 1.00 38.62 C
ATOM 16 O ASN A 380 10.144 -14.006 27.355 1.00 38.16 O
ATOM 17 N THR A 381 8.174 -13.193 28.126 1.00 36.87 N
ATOM 18 CA THR A 381 7.530 -13.259 26.812 1.00 35.53 C
ATOM 19 CB THR A 381 6.303 -14.214 26.805 1.00 35.83 C
ATOM 20 OG1 THR A 381 5.350 -13.786 27.792 1.00 37.01 O
ATOM 21 CG2 THR A 381 6.717 -15.621 27.249 1.00 35.34 C
ATOM 22 C THR A 381 7.123 -11.901 26.289 1.00 33.36 C
ATOM 23 O ILE A 381 6.745 -11.028 27.043 1.00 32.65 C
ATOM 24 N ILE A 382 7.170 -11.770 24.971 1.00 31.97 C
ATOM 25 CA ILE A 382 6.820 -10.549 24.266 1.00 30.21 C
ATOM 26 CB ILE A 382 6.724 -10.881 22.782 1.00 30.35 C
ATOM 27 CG1 ILE A 382 6.672 -9.609 21.938 1.00 29.02 C
ATOM 28 CD1 ILE A 382 7.902 -8.721 22.081 1.00 33.06 C
ATOM 29 CG2 ILE A 382 5.534 -11.833 22.531 1.00 28.36 C
ATOM 30 C ILE A 382 5.498 -10.020 24.767 1.00 29.89 C
ATOM 31 O ILE A 382 5.258 -8.833 24.884 1.00 30.56 O
ATOM 32 N GLN A 383 4.638 -10.942 25.092 1.00 29.58 N
ATOM 33 CA GLN A 383 3.305 -10.639 25.574 1.00 29.76 C
ATOM 34 CB GLN A 383 2.535 -11.945 25.820 1.00 29.93 C
ATOM 35 CG GLN A 383 1.103 -11.705 26.237 1.00 34.71 C
ATOM 36 CD GLN A 383 0.261 -12.955 26.137 1.00 39.96 C

28

ATOM	79	CG2	ILE A	388	4.646	-2.204	31.211	1.00	9.99
ATOM	80	C	ILE A	388	2.484	-1.844	29.271	1.00	8.68
ATOM	81	O	ILE A	388	1.938	-0.883	29.723	1.00	10.11
ATOM	82	N	ILE A	389	3.028	-1.833	28.060	1.00	7.85
ATOM	83	CA	ILE A	389	3.047	-0.600	27.248	1.00	6.29
ATOM	84	CB	ILE A	389	4.037	-0.694	26.100	1.00	5.90
ATOM	85	CG	ILE A	389	5.546	-0.953	26.392	1.00	5.99
ATOM	86	CD1	ILE A	389	6.365	-0.770	25.087	1.00	2.00
ATOM	87	CD2	ILE A	389	6.148	-0.133	27.549	1.00	4.06
ATOM	88	C	ILE A	389	1.681	-0.189	26.740	1.00	6.09
ATOM	89	O	ILE A	389	1.326	0.998	26.635	1.00	5.28
ATOM	90	N	ASN A	390	0.872	-1.196	26.489	1.00	6.69
ATOM	91	CA	ASN A	390	-0.485	-0.947	26.080	1.00	7.16
ATOM	92	CB	ASN A	390	-1.197	-2.234	25.755	1.00	6.39
ATOM	93	CG	ASN A	390	-1.054	-2.597	24.310	1.00	8.37
ATOM	94	OD1	ASN A	390	-0.467	-1.844	23.505	1.00	7.04
ATOM	95	ND2	ASN A	390	-1.582	-3.753	23.948	1.00	11.15
ATOM	96	C	ASN A	390	-1.269	-0.146	27.084	1.00	7.15
ATOM	97	O	ASN A	390	-2.038	0.694	26.653	1.00	9.07
ATOM	98	N	SER A	391	-1.074	-0.344	28.385	1.00	6.14
ATOM	99	CA	SER A	391	-1.849	0.461	29.338	1.00	7.59
ATOM	100	CB	SER A	391	-2.517	-0.391	30.413	1.00	7.30
ATOM	101	OG	SER A	391	-1.555	-1.006	31.241	1.00	6.73
ATOM	102	C	SER A	391	-1.091	1.626	30.005	1.00	7.70
ATOM	103	O	SER A	391	-1.696	2.512	30.608	1.00	6.83
ATOM	104	N	ALA A	392	0.233	1.610	29.872	1.00	8.42
ATOM	105	CA	ALA A	392	1.082	2.673	30.415	1.00	7.80
ATOM	106	CB	ALA A	392	2.494	2.367	30.091	1.00	6.49
ATOM	107	C	ALA A	392	0.695	4.043	29.860	1.00	8.43
ATOM	108	O	ALA A	392	0.169	4.150	28.755	1.00	8.78
ATOM	109	N	SER A	393	0.958	5.087	30.638	1.00	10.46
ATOM	110	CA	SER A	393	0.655	6.482	30.310	1.00	11.12
ATOM	111	CB	SER A	393	0.692	7.253	31.571	1.00	11.04
ATOM	112	OG	SER A	393	0.415	8.586	31.290	1.00	15.76
ATOM	113	C	SER A	393	1.651	7.157	29.385	1.00	12.00
ATOM	114	O	SER A	393	2.838	6.842	29.408	1.00	13.27
ATOM	115	N	ASP A	394	1.167	8.108	28.595	1.00	11.46
ATOM	116	CA	ASP A	394	1.987	8.875	27.679	1.00	11.53
ATOM	117	CB	ASP A	394	1.133	9.445	26.524	1.00	10.85
ATOM	118	CG	ASP A	394	0.624	8.353	25.569	1.00	15.82
ATOM	119	OD1	ASP A	394	1.378	7.926	24.658	1.00	17.94
ATOM	120	OD2	ASP A	394	-0.509	7.835	25.673	1.00	18.22

30

ATOM	121	C	ASP A	394	2.686	10.030	28.391	1.00	11.56
ATOM	122	O	ASP A	394	3.497	10.760	27.796	1.00	12.74
ATOM	123	N	GLN A	395	2.383	10.206	29.656	1.00	10.33
ATOM	124	CA	GLN A	395	2.922	11.325	30.369	1.00	10.45
ATOM	125	CB	GLN A	395	1.740	12.142	30.905	1.00	11.83
ATOM	126	CG	GLN A	395	0.976	12.872	29.792	1.00	14.78
ATOM	127	CD	GLN A	395	1.927	13.681	28.846	1.00	17.31
ATOM	128	OE1	GLN A	395	1.612	13.884	27.668	1.00	13.52
ATOM	129	NE2	GLN A	395	3.073	14.156	29.388	1.00	15.32
ATOM	130	C	GLN A	395	3.822	10.878	31.519	1.00	8.54
ATOM	131	O	GLN A	395	3.698	9.784	32.001	1.00	7.56
ATOM	132	N	PRO A	396	4.735	11.724	31.946	1.00	7.59
ATOM	133	CA	PRO A	396	5.567	11.391	33.102	1.00	8.16
ATOM	134	CB	PRO A	396	6.401	12.675	33.324	1.00	6.76
ATOM	135	CG	PRO A	396	6.360	13.350	32.081	1.00	6.09
ATOM	136	CD	PRO A	396	5.063	13.040	31.373	1.00	6.71
ATOM	137	C	PRO A	396	4.665	11.077	34.336	1.00	8.69
ATOM	138	O	PRO A	396	3.600	11.699	34.508	1.00	9.77
ATOM	139	N	SER A	397	5.084	10.162	35.184	1.00	8.42
ATOM	140	CA	SER A	397	4.221	9.811	36.311	1.00	9.96
ATOM	141	CB	SER A	397	4.561	8.437	36.910	1.00	9.22
ATOM	142	OG	SER A	397	5.712	8.496	37.719	1.00	6.50
ATOM	143	C	SER A	397	4.341	10.829	37.393	1.00	10.78
ATOM	144	O	SER A	397	5.208	11.660	37.349	1.00	10.33
ATOM	145	N	GLU A	398	3.475	10.725	38.380	1.00	12.24
ATOM	146	CA	GLU A	398	3.529	11.583	39.523	1.00	15.01
ATOM	147	CB	GLU A	398	2.442	11.150	40.497	1.00	16.05
ATOM	148	CG	GLU A	398	1.144	10.725	39.763	1.00	22.93
ATOM	149	CD	GLU A	398	0.312	11.914	39.223	1.00	30.62
ATOM	150	OE1	GLU A	398	-0.005	12.877	40.018	1.00	28.54
ATOM	151	OE2	GLU A	398	-0.016	11.876	37.984	1.00	34.64
ATOM	152	C	GLU A	398	4.906	11.482	40.171	1.00	14.63
ATOM	153	O	GLU A	398	5.503	12.440	40.559	1.00	14.38
ATOM	154	N	ASN A	399	5.422	10.286	40.251	1.00	15.36
ATOM	155	CA	ASN A	399	6.715	10.093	40.828	1.00	15.54
ATOM	156	CB	ASN A	399	6.949	8.607	40.993	1.00	17.66
ATOM	157	CG	ASN A	399	7.545	8.279	42.313	1.00	23.36
ATOM	158	OD1	ASN A	399	8.739	8.543	42.555	1.00	29.18
ATOM	159	ND2	ASN A	399	6.719	7.744	43.213	1.00	26.01
ATOM	160	C	ASN A	399	7.843	10.673	40.001	1.00	14.48
ATOM	161	O	ASN A	399	8.811	11.219	40.573	1.00	14.83
ATOM	162	N	LEU A	400	7.747	10.584	38.663	1.00	11.35

ATOM	163	CA	LEU	A	400	8.829	11.137	37.861	1.00	9.12
ATOM	164	CB	LEU	A	400	8.722	10.696	36.425	1.00	8.94
ATOM	165	CG	LEU	A	400	9.965	10.282	35.637	1.00	7.91
ATOM	166	CD1	LEU	A	400	9.655	10.352	34.107	1.00	6.48
ATOM	167	CD2	LEU	A	400	11.217	11.040	35.988	1.00	6.99
ATOM	168	C	LEU	A	400	8.933	12.675	37.981	1.00	7.77
ATOM	169	O	LEU	A	400	10.029	13.239	38.047	1.00	7.08
ATOM	170	N	ILE	A	401	7.783	13.331	38.001	1.00	7.02
ATOM	171	CA	Ile	A	401	7.672	14.766	38.198	1.00	6.74
ATOM	172	CB	Ile	A	401	6.182	15.161	38.154	1.00	6.15
ATOM	173	CG1	Ile	A	401	5.669	15.045	36.732	1.00	7.60
ATOM	174	CD1	Ile	A	401	6.360	16.024	35.724	1.00	6.89
ATOM	175	CG2	Ile	A	401	5.968	16.588	38.665	1.00	4.00
ATOM	176	C	Ile	A	401	8.255	15.091	39.588	1.00	7.08
ATOM	177	O	Ile	A	401	8.872	16.141	39.834	1.00	6.41
ATOM	178	N	SER	A	402	8.112	14.141	40.479	1.00	6.89
ATOM	179	CA	SER	A	402	8.660	14.353	41.773	1.00	9.50
ATOM	180	CB	SER	A	402	8.347	13.166	42.680	1.00	10.22
ATOM	181	OG	SER	A	402	9.222	13.157	43.782	1.00	14.32
ATOM	182	C	SER	A	402	10.145	14.607	41.604	1.00	8.81
ATOM	183	O	SER	A	402	10.687	15.584	42.107	1.00	8.60
ATOM	184	N	TYR	A	403	10.799	13.744	40.852	1.00	9.20
ATOM	185	CA	TYR	A	403	12.231	13.941	40.585	1.00	9.67
ATOM	186	CB	TYR	A	403	12.780	12.753	39.816	1.00	9.50
ATOM	187	CG	TYR	A	403	13.035	11.498	40.641	1.00	10.54
ATOM	188	CD1	TYR	A	403	14.106	11.434	41.555	1.00	11.31
ATOM	189	CE1	TYR	A	403	14.355	10.307	42.276	1.00	9.55
ATOM	190	CZ	TYR	A	403	13.546	9.194	42.063	1.00	10.21
ATOM	191	OH	TYR	A	403	13.807	8.017	42.705	1.00	12.21
ATOM	192	CE2	TYR	A	403	12.514	9.224	41.171	1.00	6.97
ATOM	193	CD2	TYR	A	403	12.251	10.368	40.475	1.00	7.64
ATOM	194	C	TYR	A	403	12.579	15.264	39.824	1.00	9.18
ATOM	195	O	TYR	A	403	13.591	15.916	40.165	1.00	8.20
ATOM	196	N	PHE	A	404	11.751	15.634	38.836	1.00	7.17
ATOM	197	CA	PHE	A	404	11.953	16.876	38.133	1.00	8.77
ATOM	198	CB	PHE	A	404	10.904	17.114	36.997	1.00	9.18
ATOM	199	CG	PHE	A	404	10.887	16.043	35.902	1.00	6.14
ATOM	200	CD1	PHE	A	404	11.894	15.068	35.828	1.00	4.71
ATOM	201	CE1	PHE	A	404	11.866	14.087	34.869	1.00	2.70
ATOM	202	CZ	PHE	A	404	10.849	14.068	33.889	1.00	2.00
ATOM	203	CE2	PHE	A	404	9.856	15.048	33.939	1.00	2.00
ATOM	204	CD2	PHE	A	404	9.876	16.016	34.964	1.00	2.00

ATOM	247	OD1	ASN A 410	11.027	21.254	35.930	1.00	17.24
ATOM	248	ND2	ASN A 410	10.706	21.767	38.037	1.00	2.36
ATOM	249	C	ASN A 410	13.835	21.629	35.028	1.00	8.35
ATOM	250	O	ASN A 410	13.852	22.453	34.141	1.00	7.62
ATOM	251	N	PRO A 411	13.848	20.329	34.765	1.00	8.01
ATOM	252	CA	PRO A 411	13.819	19.811	33.385	1.00	7.91
ATOM	253	CB	PRO A 411	14.685	18.525	33.482	1.00	6.94
ATOM	254	CG	PRO A 411	14.357	17.998	34.864	1.00	6.32
ATOM	255	CD	PRO A 411	14.113	19.259	35.756	1.00	7.63
ATOM	256	C	PRO A 411	12.470	19.497	32.786	1.00	8.05
ATOM	257	O	PRO A 411	12.384	19.310	31.569	1.00	9.08
ATOM	258	N	LYS A 412	11.422	19.458	33.581	1.00	8.49
ATOM	259	CA	LYS A 412	10.086	19.154	33.046	1.00	9.75
ATOM	260	CB	LYS A 412	9.052	19.504	34.066	1.00	9.19
ATOM	261	CG	LYS A 412	7.744	18.856	33.805	1.00	12.96
ATOM	262	CD	LYS A 412	6.730	19.221	34.859	1.00	20.30
ATOM	263	CE	LYS A 412	5.921	20.478	34.478	1.00	22.28
ATOM	264	NZ	LYS A 412	4.874	20.156	33.455	1.00	24.30
ATOM	265	C	LYS A 412	9.717	19.867	31.717	1.00	10.16
ATOM	266	O	LYS A 412	8.997	19.336	30.884	1.00	9.72
ATOM	267	N	GLU A 413	10.253	21.055	31.526	1.00	10.93
ATOM	268	CA	GLU A 413	9.971	21.858	30.354	1.00	12.98
ATOM	269	CB	GLU A 413	10.335	23.314	30.655	1.00	14.77
ATOM	270	CG	GLU A 413	9.876	24.252	29.569	1.00	22.12
ATOM	271	CD	GLU A 413	8.366	24.221	29.395	1.00	30.57
ATOM	272	OE1	GLU A 413	7.756	23.307	30.039	1.00	29.00
ATOM	273	OE2	GLU A 413	7.827	25.111	28.609	1.00	33.99
ATOM	274	C	GLU A 413	10.693	21.398	29.080	1.00	10.78
ATOM	275	O	GLU A 413	10.082	21.129	28.015	1.00	10.26
ATOM	276	N	SER A 414	12.000	21.334	29.166	1.00	8.08
ATOM	277	CA	SER A 414	12.715	20.831	28.041	1.00	6.45
ATOM	278	CB	SER A 414	14.174	20.915	28.308	1.00	5.87
ATOM	279	OG	SER A 414	14.513	22.221	28.671	1.00	6.24
ATOM	280	C	SER A 414	12.315	19.363	27.800	1.00	6.66
ATOM	281	O	SER A 414	12.313	18.909	26.691	1.00	6.05
ATOM	282	N	ILE A 415	11.998	18.602	28.836	1.00	7.08
ATOM	283	CA	ILE A 415	11.537	17.282	28.494	1.00	9.05
ATOM	284	CB	ILE A 415	11.925	16.069	29.384	1.00	8.83
ATOM	285	CG1	ILE A 415	13.023	16.338	30.443	1.00	5.60
ATOM	286	CD1	ILE A 415	13.107	15.477	31.689	1.00	2.00
ATOM	287	CG2	ILE A 415	12.878	15.445	28.216	1.00	17.75
ATOM	288	C	ILE A 415	10.274	17.026	27.677	1.00	8.74

W3

34

W5

ATOM	331	NZ	LYS A 420	4.073	18.902	17.861	1.00	14.81
ATOM	332	C	LYS A 420	7.452	17.114	19.771	1.00	6.45
ATOM	333	O	LYS A 420	6.947	16.694	18.733	1.00	5.83
ATOM	334	N	ASP A 421	8.638	17.722	19.772	1.00	7.00
ATOM	335	CA	ASP A 421	9.337	17.999	18.503	1.00	5.93
ATOM	336	CB	ASP A 421	10.454	19.038	18.683	1.00	5.34
ATOM	337	CG	ASP A 421	9.935	20.397	19.244	1.00	10.31
ATOM	338	OD1	ASP A 421	8.673	20.653	19.288	1.00	6.28
ATOM	339	OD2	ASP A 421	10.768	21.259	19.696	1.00	14.34
ATOM	340	C	ASP A 421	9.890	16.750	17.838	1.00	5.07
ATOM	341	O	ASP A 421	9.683	16.527	16.652	1.00	6.86
ATOM	342	N	ILE A 422	10.620	15.923	18.552	1.00	3.56
ATOM	343	CA	ILE A 422	11.120	14.727	17.945	1.00	2.48
ATOM	344	CB	ILE A 422	11.830	13.913	18.957	1.00	2.93
ATOM	345	CG1	ILE A 422	13.031	14.638	19.545	1.00	2.54
ATOM	346	CD1	ILE A 422	13.975	15.166	18.435	1.00	5.66
ATOM	347	CG2	ILE A 422	12.172	12.511	18.367	1.00	2.78
ATOM	348	C	ILE A 422	9.931	13.895	17.402	1.00	2.68
ATOM	349	O	ILE A 422	9.990	13.371	16.355	1.00	2.00
ATOM	350	N	GLY A 423	8.834	13.746	18.125	1.00	3.53
ATOM	351	CA	GLY A 423	7.756	12.986	17.534	1.00	3.60
ATOM	352	C	GLY A 423	7.330	13.576	16.190	1.00	5.15
ATOM	353	O	GLY A 423	6.867	12.817	15.328	1.00	5.53
ATOM	354	N	TYR A 424	7.468	14.901	16.007	1.00	3.70
ATOM	355	CA	TYR A 424	6.999	15.558	14.812	1.00	4.56
ATOM	356	CB	TYR A 424	6.996	17.095	14.956	1.00	4.66
ATOM	357	CG	TYR A 424	6.643	17.772	13.661	1.00	2.59
ATOM	358	CD1	TYR A 424	5.339	17.825	13.223	1.00	2.76
ATOM	359	CE1	TYR A 424	5.024	18.381	12.022	1.00	3.68
ATOM	360	CZ	TYR A 424	5.981	18.940	11.251	1.00	5.36
ATOM	361	OH	TYR A 424	5.659	19.548	10.085	1.00	10.06
ATOM	362	CE2	TYR A 424	7.274	18.940	11.653	1.00	6.09
ATOM	363	CD2	TYR A 424	7.608	18.338	12.866	1.00	4.14
ATOM	364	C	TYR A 424	7.946	15.174	13.665	1.00	4.75
ATOM	365	O	TYR A 424	7.538	14.845	12.550	1.00	3.97
ATOM	366	N	ILE A 425	9.208	15.194	13.996	1.00	5.11
ATOM	367	CA	ILE A 425	10.246	14.814	13.086	1.00	6.31
ATOM	368	CB	ILE A 425	11.575	15.256	13.706	1.00	7.12
ATOM	369	CG1	ILE A 425	11.591	16.788	13.651	1.00	8.77
ATOM	370	CD1	ILE A 425	12.912	17.423	13.998	1.00	11.84
ATOM	371	CG2	ILE A 425	12.770	14.644	13.013	1.00	6.38
ATOM	372	C	ILE A 425	10.245	13.338	12.694	1.00	6.08

36

W7

ATOM	415	CG	PHE	A	430	7.907	5.450	10.464	1.00	8.61
ATOM	416	CD1	PHE	A	430	7.066	4.830	9.564	1.00	11.42
ATOM	417	CE1	PHE	A	430	6.769	3.531	9.687	1.00	12.86
ATOM	418	CZ	PHE	A	430	7.329	2.825	10.689	1.00	13.90
ATOM	419	CE2	PHE	A	430	8.207	3.404	11.558	1.00	9.63
ATOM	420	CD2	PHE	A	430	8.469	4.699	11.469	1.00	7.48
ATOM	421	C	PHE	A	430	8.411	7.061	7.772	1.00	7.72
ATOM	422	O	PHE	A	430	8.846	6.303	6.897	1.00	6.61
ATOM	423	N	ALA	A	431	7.334	7.807	7.602	1.00	8.28
ATOM	424	CA	ALA	A	431	6.583	7.787	6.355	1.00	10.41
ATOM	425	CB	ALA	A	431	5.660	8.974	6.307	1.00	9.96
ATOM	426	C	ALA	A	431	7.482	7.834	5.109	1.00	13.02
ATOM	427	O	ALA	A	431	7.248	7.119	4.125	1.00	11.76
ATOM	428	N	LYS	A	432	8.494	8.710	5.142	1.00	15.88
ATOM	429	CA	LYS	A	432	9.407	8.866	4.022	1.00	18.85
ATOM	430	CB	LYS	A	432	10.328	10.025	4.327	1.00	20.32
ATOM	431	CG	LYS	A	432	11.123	10.540	3.144	1.00	25.80
ATOM	432	CD	LYS	A	432	12.118	11.692	3.537	1.00	32.56
ATOM	433	CE	LYS	A	432	11.389	12.923	4.109	1.00	36.99
ATOM	434	NZ	LYS	A	432	12.281	14.009	4.701	1.00	35.79
ATOM	435	C	LYS	A	432	10.218	7.574	3.842	1.00	19.52
ATOM	436	O	LYS	A	432	10.266	7.003	2.783	1.00	19.79
ATOM	437	N	ALA	A	433	10.789	7.038	4.909	1.00	20.45
ATOM	438	CA	ALA	A	433	11.573	5.818	4.747	1.00	20.25
ATOM	439	CB	ALA	A	433	12.205	5.439	6.008	1.00	19.29
ATOM	440	C	ALA	A	433	10.685	4.696	4.273	1.00	20.97
ATOM	441	O	ALA	A	433	11.085	3.860	3.522	1.00	19.77
ATOM	442	N	VAL	A	434	9.471	4.656	4.772	1.00	23.20
ATOM	443	CA	VAL	A	434	8.589	3.571	4.450	1.00	24.82
ATOM	444	CB	VAL	A	434	7.473	3.514	5.426	1.00	23.74
ATOM	445	CG1	VAL	A	434	6.429	2.537	4.929	1.00	26.52
ATOM	446	CG2	VAL	A	434	7.992	3.073	6.705	1.00	26.22
ATOM	447	C	VAL	A	434	8.011	3.810	3.087	1.00	26.57
ATOM	448	O	VAL	A	434	7.026	4.512	2.937	1.00	28.03
ATOM	449	N	GLY	A	435	8.605	3.225	2.071	1.00	28.57
ATOM	450	CA	GLY	A	435	8.073	3.426	0.753	1.00	30.76
ATOM	451	C	GLY	A	435	7.687	4.898	0.666	1.00	32.32
ATOM	452	O	GLY	A	435	8.546	5.752	0.859	1.00	32.41
ATOM	453	N	GLN	A	436	6.401	5.184	0.440	1.00	32.95
ATOM	454	CA	GLN	A	436	5.958	6.530	0.236	1.00	34.18
ATOM	455	CB	GLN	A	436	6.058	6.779	-1.265	1.00	35.09
ATOM	456	CG	GLN	A	436	7.501	6.823	-1.799	1.00	38.55

39

ATOM	499	O	GLY A	442	4.862	6.323	14.833	1.00	16.06
ATOM	500	N	SER A	443	2.940	7.002	13.990	1.00	13.14
ATOM	501	CA	SER A	443	2.463	7.538	15.243	1.00	12.84
ATOM	502	CB	SER A	443	1.049	8.104	15.060	1.00	12.90
ATOM	503	OG	SER A	443	1.074	9.243	14.212	1.00	17.50
ATOM	504	C	SER A	443	2.366	6.520	16.346	1.00	12.40
ATOM	505	O	SER A	443	2.867	6.744	17.417	1.00	12.76
ATOM	506	N	GLN A	444	1.694	5.409	16.075	1.00	12.47
ATOM	507	CA	GLN A	444	1.407	4.381	17.069	1.00	12.70
ATOM	508	CB	GLN A	444	0.527	3.245	16.467	1.00	12.40
ATOM	509	CG	GLN A	444	0.280	1.987	17.407	1.00	17.53
ATOM	510	CD	GLN A	444	-1.153	1.909	18.097	1.00	20.42
ATOM	511	OE1	GLN A	444	-1.419	2.577	19.145	1.00	19.65
ATOM	512	NE2	GLN A	444	-2.048	1.106	17.506	1.00	16.04
ATOM	513	C	GLN A	444	2.729	3.893	17.660	1.00	11.87
ATOM	514	O	GLN A	444	2.833	3.634	18.875	1.00	10.62
ATOM	515	N	ARG A	445	3.765	3.836	16.821	1.00	10.93
ATOM	516	CA	ARG A	445	5.022	3.341	17.337	1.00	10.57
ATOM	517	CB	ARG A	445	5.910	2.901	16.201	1.00	12.33
ATOM	518	CG	ARG A	445	5.318	1.798	15.401	1.00	15.05
ATOM	519	CD	ARG A	445	6.277	1.028	14.668	1.00	20.23
ATOM	520	NE	ARG A	445	5.592	0.089	13.790	1.00	27.54
ATOM	521	CZ	ARG A	445	6.170	-0.577	12.776	1.00	29.64
ATOM	522	NH1	ARG A	445	7.471	-0.444	12.508	1.00	26.97
ATOM	523	NH2	ARG A	445	5.432	-1.411	12.047	1.00	32.65
ATOM	524	C	ARG A	445	5.751	4.342	18.236	1.00	9.95
ATOM	525	O	ARG A	445	6.220	3.973	19.354	1.00	9.16
ATOM	526	N	TYR A	446	5.860	5.593	17.764	1.00	7.68
ATOM	527	CA	TYR A	446	6.505	6.634	18.558	1.00	6.37
ATOM	528	CB	TYR A	446	6.448	7.988	17.835	1.00	6.60
ATOM	529	CG	TYR A	446	7.190	9.082	18.575	1.00	3.78
ATOM	530	CD1	TYR A	446	8.564	9.103	18.559	1.00	2.15
ATOM	531	CE1	TYR A	446	9.264	10.019	19.243	1.00	2.00
ATOM	532	CZ	TYR A	446	8.646	10.974	19.966	1.00	2.00
ATOM	533	OH	TYR A	446	9.472	11.916	20.558	1.00	2.42
ATOM	534	CE2	TYR A	446	7.293	11.020	20.022	1.00	2.00
ATOM	535	CD2	TYR A	446	6.533	10.064	19.311	1.00	2.00
ATOM	536	C	TYR A	446	5.895	6.730	19.983	1.00	5.32
ATOM	537	O	TYR A	446	6.611	6.820	20.978	1.00	3.64
ATOM	538	N	LYS A	447	4.568	6.669	20.054	1.00	3.91
ATOM	539	CA	LYS A	447	3.856	6.656	21.333	1.00	3.14
ATOM	540	CB	LYS A	447	2.336	6.580	21.139	1.00	2.11

40

ATOM	541	CG	LYS A 447	1.767	7.958	20.756	1.00	4.83
ATOM	542	CD	LYS A 447	0.326	7.986	20.456	1.00	12.30
ATOM	543	CE	LYS A 447	-0.122	9.423	19.935	1.00	19.61
ATOM	544	NZ	LYS A 447	0.615	9.946	18.721	1.00	25.13
ATOM	545	C	LYS A 447	4.301	5.563	22.287	1.00	3.08
ATOM	546	O	LYS A 447	4.442	5.807	23.476	1.00	2.00
ATOM	547	N	LEU A 448	4.487	4.354	21.742	1.00	3.95
ATOM	548	CA	LEU A 448	4.899	3.219	22.509	1.00	3.91
ATOM	549	CB	LEU A 448	4.829	1.917	21.677	1.00	4.54
ATOM	550	CG	LEU A 448	3.444	1.290	21.488	1.00	6.42
ATOM	551	CD1	LEU A 448	3.498	0.126	20.480	1.00	4.90
ATOM	552	CD2	LEU A 448	2.885	0.833	22.829	1.00	2.56
ATOM	553	C	LEU A 448	6.327	3.501	22.949	1.00	3.00
ATOM	554	O	LEU A 448	6.724	3.194	24.097	1.00	2.00
ATOM	555	N	GLY A 449	7.089	4.088	22.029	1.00	2.24
ATOM	556	CA	GLY A 449	8.440	4.523	22.383	1.00	3.49
ATOM	557	C	GLY A 449	8.432	5.426	23.628	1.00	4.47
ATOM	558	O	GLY A 449	9.127	5.100	24.600	1.00	5.55
ATOM	559	N	VAL A 450	7.586	6.473	23.665	1.00	3.49
ATOM	560	CA	VAL A 450	7.575	7.363	24.792	1.00	4.55
ATOM	561	CB	VAL A 450	6.399	8.319	24.875	1.00	6.58
ATOM	562	CG1	VAL A 450	6.709	9.670	25.552	1.00	7.93
ATOM	563	CG2	VAL A 450	5.813	8.538	23.636	1.00	13.08
ATOM	564	C	VAL A 450	7.157	6.676	26.043	1.00	3.61
ATOM	565	O	VAL A 450	7.611	7.058	27.139	1.00	2.67
ATOM	566	N	ARG A 451	6.181	5.784	25.926	1.00	2.00
ATOM	567	CA	ARG A 451	5.688	5.160	27.117	1.00	2.00
ATOM	568	CB	ARG A 451	4.415	4.350	26.864	1.00	2.00
ATOM	569	CG	ARG A 451	3.265	5.172	26.369	1.00	2.00
ATOM	570	CD	ARG A 451	2.114	4.324	25.965	1.00	5.40
ATOM	571	NE	ARG A 451	0.956	5.069	25.455	1.00	10.15
ATOM	572	CZ	ARG A 451	-0.248	4.474	25.274	1.00	14.62
ATOM	573	NH1	ARG A 451	-0.364	3.167	25.570	1.00	13.39
ATOM	574	NH2	ARG A 451	-1.326	5.159	24.828	1.00	11.66
ATOM	575	C	ARG A 451	6.801	4.316	27.772	1.00	2.00
ATOM	576	O	ARG A 451	6.862	4.221	28.985	1.00	2.06
ATOM	577	N	LEU A 452	7.694	3.779	26.968	1.00	2.00
ATOM	578	CA	LEU A 452	8.787	2.978	27.445	1.00	2.00
ATOM	579	CB	LEU A 452	9.493	2.241	26.276	1.00	2.00
ATOM	580	CG	LEU A 452	9.745	0.778	26.453	1.00	3.02
ATOM	581	CD1	LEU A 452	10.674	0.419	25.328	1.00	5.79
ATOM	582	CD2	LEU A 452	10.172	0.204	27.937	1.00	2.00

42

ATOM	625	C	VAL A 456	13.432	4.511	32.717	1.00	2.66
ATOM	626	O	VAL A 456	14.296	4.238	33.552	1.00	3.62
ATOM	627	N	MET A 457	13.107	5.760	32.430	1.00	3.27
ATOM	628	CA	MET A 457	13.752	6.909	33.073	1.00	2.00
ATOM	629	CB	MET A 457	13.250	8.218	32.443	1.00	2.00
ATOM	630	CG	MET A 457	13.849	9.459	33.049	1.00	2.00
ATOM	631	SD	MET A 457	13.120	11.027	32.572	1.00	2.00
ATOM	632	CE	MET A 457	13.434	10.941	30.705	1.00	2.00
ATOM	633	C	MET A 457	13.454	6.866	34.580	1.00	2.43
ATOM	634	O	MET A 457	14.312	7.094	35.376	1.00	2.00
ATOM	635	N	GLU A 458	12.217	6.546	34.941	1.00	3.37
ATOM	636	CA	GLU A 458	11.796	6.489	36.329	1.00	4.85
ATOM	637	CB	GLU A 458	10.250	6.508	36.461	1.00	6.22
ATOM	638	CG	GLU A 458	9.743	6.297	37.876	1.00	9.88
ATOM	639	CD	GLU A 458	8.217	6.296	38.008	1.00	16.41
ATOM	640	OE1	GLU A 458	7.728	6.142	39.145	1.00	16.60
ATOM	641	OE2	GLU A 458	7.494	6.470	36.992	1.00	21.88
ATOM	642	C	GLU A 458	12.397	5.295	37.024	1.00	3.62
ATOM	643	O	GLU A 458	12.707	5.380	38.188	1.00	2.58
ATOM	644	N	SER A 459	12.607	4.189	36.300	1.00	3.61
ATOM	645	CA	SER A 459	13.252	3.018	36.912	1.00	2.73
ATOM	646	CB	SER A 459	13.078	1.796	36.043	1.00	2.08
ATOM	647	OG	SER A 459	13.733	0.633	36.548	1.00	2.00
ATOM	648	C	SER A 459	14.736	3.330	37.168	1.00	3.70
ATOM	649	O	SER A 459	15.297	2.986	38.201	1.00	2.47
ATOM	650	N	MET A 460	15.368	4.020	36.230	1.00	4.07
ATOM	651	CA	MET A 460	16.754	4.383	36.433	1.00	4.93
ATOM	652	CB	MET A 460	17.361	5.054	35.178	1.00	4.86
ATOM	653	CG	MET A 460	17.501	4.164	33.993	1.00	8.07
ATOM	654	SD	MET A 460	18.246	4.959	32.523	1.00	13.32
ATOM	655	CE	MET A 460	18.698	3.528	31.591	1.00	10.36
ATOM	656	C	MET A 460	16.909	5.320	37.641	1.00	5.63
ATOM	657	O	MET A 460	17.854	5.152	38.423	1.00	5.63
ATOM	658	N	LEU A 461	16.023	6.318	37.767	1.00	5.49
ATOM	659	CA	LEU A 461	16.142	7.295	38.821	1.00	6.56
ATOM	660	CB	LEU A 461	15.134	8.436	38.604	1.00	6.42
ATOM	661	CG	LEU A 461	15.377	9.443	37.446	1.00	6.02
ATOM	662	CD1	LEU A 461	14.169	10.331	37.283	1.00	2.12
ATOM	663	CD2	LEU A 461	16.678	10.249	37.573	1.00	2.00
ATOM	664	C	LEU A 461	15.932	6.630	40.218	1.00	8.27
ATOM	665	O	LEU A 461	16.665	6.892	41.159	1.00	7.16
ATOM	666	N	LYS A 462	14.903	5.799	40.351	1.00	10.76

43

ATOM	667	CA	LYS	A	462	14.653	5.106	41.623	1.00	13.62
ATOM	668	CB	LYS	A	462	13.464	4.156	41.578	1.00	13.89
ATOM	669	CG	LYS	A	462	12.086	4.865	41.307	1.00	17.14
ATOM	670	CD	LYS	A	462	10.931	3.852	41.398	1.00	20.36
ATOM	671	CE	LYS	A	462	9.546	4.493	41.278	1.00	19.96
ATOM	672	NZ	LYS	A	462	8.469	3.509	41.729	1.00	17.73
ATOM	673	C	LYS	A	462	15.886	4.330	41.985	1.00	13.79
ATOM	674	O	LYS	A	462	16.346	4.384	43.137	1.00	15.92
ATOM	675	N	SER	A	463	16.491	3.733	40.987	1.00	12.72
ATOM	676	CA	SER	A	463	17.684	2.995	41.195	1.00	13.57
ATOM	677	CB	SER	A	463	18.055	2.288	39.926	1.00	14.00
ATOM	678	OG	SER	A	463	19.089	1.391	40.192	1.00	13.63
ATOM	679	C	SER	A	463	18.862	3.837	41.628	1.00	14.52
ATOM	680	O	SER	A	463	19.609	3.479	42.533	1.00	15.99
ATOM	681	N	GLU	A	464	19.070	4.958	40.971	1.00	14.97
ATOM	682	CA	GLU	A	464	20.196	5.767	41.321	1.00	14.47
ATOM	683	CB	GLU	A	464	20.352	6.912	40.359	1.00	13.37
ATOM	684	CG	GLU	A	464	21.027	6.509	39.072	1.00	15.00
ATOM	685	CD	GLU	A	464	22.427	5.984	39.244	1.00	13.58
ATOM	686	OE1	GLU	A	464	22.561	5.003	39.965	1.00	17.87
ATOM	687	OE2	GLU	A	464	23.388	6.526	38.654	1.00	12.54
ATOM	688	C	GLU	A	464	20.064	6.271	42.729	1.00	15.03
ATOM	689	O	GLU	A	464	21.057	6.362	43.440	1.00	13.80
ATOM	690	N	GLU	A	465	18.835	6.619	43.107	1.00	16.34
ATOM	691	CA	GLU	A	465	18.551	7.176	44.428	1.00	18.04
ATOM	692	CB	GLU	A	465	17.056	7.574	44.544	1.00	17.67
ATOM	693	CG	GLU	A	465	16.680	8.192	45.889	1.00	19.26
ATOM	694	CD	GLU	A	465	15.185	8.431	46.085	1.00	21.39
ATOM	695	OE1	GLU	A	465	14.733	8.538	47.260	1.00	24.00
ATOM	696	OE2	GLU	A	465	14.460	8.543	45.086	1.00	20.75
ATOM	697	C	GLU	A	465	18.981	6.218	45.554	1.00	18.80
ATOM	698	O	GLU	A	465	19.486	6.627	46.552	1.00	18.58
ATOM	699	N	GLU	A	466	18.818	4.922	45.356	1.00	21.36
ATOM	700	CA	GLU	A	466	19.154	3.978	46.399	1.00	23.94
ATOM	701	CB	GLU	A	466	18.257	2.740	46.301	1.00	24.78
ATOM	702	CG	GLU	A	466	18.800	1.694	45.376	1.00	31.30
ATOM	703	CD	GLU	A	466	18.024	0.404	45.467	1.00	37.63
ATOM	704	OE1	GLU	A	466	17.805	-0.006	46.641	1.00	39.08
ATOM	705	OE2	GLU	A	466	17.638	-0.157	44.382	1.00	36.89
ATOM	706	C	GLU	A	466	20.600	3.578	46.356	1.00	23.81
ATOM	707	O	GLU	A	466	21.106	2.912	47.247	1.00	23.07
ATOM	708	N	ARG	A	467	21.257	3.973	45.272	1.00	25.21

ATOM	709	CA	ARG A 467	22.666	3.659	45.051	1.00	24.44
ATOM	710	CB	ARG A 467	22.925	3.465	43.576	1.00	23.48
ATOM	711	CG	ARG A 467	24.352	3.283	43.224	1.00	21.88
ATOM	712	CD	ARG A 467	24.659	3.512	41.707	1.00	20.93
ATOM	713	NE	ARG A 467	26.015	4.022	41.616	1.00	18.63
ATOM	714	CZ	ARG A 467	26.367	5.089	40.982	1.00	15.74
ATOM	715	NH1	ARG A 467	25.481	5.760	40.281	1.00	12.88
ATOM	716	NH2	ARG A 467	27.641	5.467	41.027	1.00	18.41
ATOM	717	C	ARG A 467	23.560	4.765	45.573	1.00	24.26
ATOM	718	O	ARG A 467	24.669	4.516	45.988	1.00	25.68
ATOM	719	N	I LEU A 468	23.067	5.979	45.572	1.00	23.45
ATOM	720	CA	I LEU A 468	23.871	7.109	45.983	1.00	23.85
ATOM	721	CB	I LEU A 468	24.092	8.052	44.801	1.00	23.40
ATOM	722	CG	I LEU A 468	24.921	7.685	43.581	1.00	23.39
ATOM	723	CD1	I LEU A 468	24.393	8.459	42.390	1.00	19.92
ATOM	724	CD2	I LEU A 468	26.380	8.047	43.836	1.00	25.54
ATOM	725	C	I LEU A 468	23.174	7.919	47.087	1.00	24.22
ATOM	726	O	I LEU A 468	23.753	8.862	47.608	1.00	23.40
ATOM	727	N	SER A 469	21.940	7.549	47.427	1.00	24.43
ATOM	728	CA	SER A 469	21.160	8.357	48.310	1.00	25.52
ATOM	729	CB	SER A 469	21.893	8.580	49.621	1.00	26.28
ATOM	730	OG	SER A 469	22.034	7.352	50.339	1.00	24.93
ATOM	731	C	SER A 469	21.022	9.644	47.500	1.00	26.91
ATOM	732	O	SER A 469	21.227	9.627	46.285	1.00	28.46
ATOM	733	N	I LEU A 470	20.666	10.774	48.091	1.00	26.91
ATOM	734	CA	I LEU A 470	20.567	11.941	47.218	1.00	25.86
ATOM	735	CB	I LEU A 470	21.907	12.106	46.458	1.00	25.79
ATOM	736	CG1	I LEU A 470	22.706	13.245	47.112	1.00	26.46
ATOM	737	CD1	I LEU A 470	24.137	13.426	46.636	1.00	28.15
ATOM	738	CG2	I LEU A 470	21.697	12.313	44.944	1.00	25.97
ATOM	739	C	I LEU A 470	19.406	11.815	46.260	1.00	25.84
ATOM	740	O	I LEU A 470	19.196	10.760	45.661	1.00	23.67
ATOM	741	N	G LN A 471	18.600	12.878	46.174	1.00	26.30
ATOM	742	CA	G LN A 471	17.516	12.894	45.210	1.00	27.70
ATOM	743	CB	G LN A 471	16.221	13.383	45.835	1.00	28.63
ATOM	744	CG	G LN A 471	15.514	12.376	46.723	1.00	32.75
ATOM	745	CD	G LN A 471	16.285	12.086	48.043	1.00	38.95
ATOM	746	OE1	G LN A 471	16.536	13.000	48.845	1.00	36.46
ATOM	747	NE2	G LN A 471	16.656	10.801	48.257	1.00	41.47
ATOM	748	C	G LN A 471	18.005	13.851	44.141	1.00	27.03
ATOM	749	O	G LN A 471	19.174	13.799	43.776	1.00	28.39
ATOM	750	N	ASN A 472	17.163	14.703	43.585	1.00	25.58

ff

ATOM	751	CA	ASN A 472	17.755	15.736	42.680	1.00	25.14
ATOM	752	CB	ASN A 472	18.985	16.425	43.345	1.00	24.93
ATOM	753	CG	ASN A 472	19.348	17.803	42.708	1.00	28.30
ATOM	754	OD1	ASN A 472	19.877	18.682	43.390	1.00	23.38
ATOM	755	ND2	ASN A 472	19.073	17.974	41.391	1.00	29.82
ATOM	756	C	ASN A 472	18.118	15.198	41.256	1.00	22.63
ATOM	757	O	ASN A 472	17.204	14.902	40.446	1.00	21.83
ATOM	758	N	PHE A 473	19.419	15.043	40.990	1.00	19.00
ATOM	760	CB	PHE A 473	19.095	13.278	39.175	1.00	15.51
ATOM	761	CG	PHE A 473	19.295	12.095	40.041	1.00	14.08
ATOM	762	CD1	PHE A 473	18.379	11.788	41.031	1.00	14.53
ATOM	763	CE1	PHE A 473	18.603	10.715	41.900	1.00	11.36
ATOM	764	CZ	PHE A 473	19.726	9.961	41.785	1.00	8.01
ATOM	765	CE2	PHE A 473	20.648	10.257	40.810	1.00	10.92
ATOM	766	CD2	PHE A 473	20.444	11.329	39.954	1.00	13.01
ATOM	767	C	PHE A 473	19.944	15.623	38.527	1.00	15.68
ATOM	768	O	PHE A 473	20.018	15.264	37.360	1.00	15.69
ATOM	769	N	SER A 474	19.930	16.910	38.897	1.00	13.72
ATOM	770	CA	SER A 474	19.840	18.016	37.936	1.00	13.11
ATOM	771	CB	SER A 474	20.136	19.379	38.604	1.00	14.23
ATOM	772	OG	SER A 474	19.705	20.550	37.894	1.00	6.19
ATOM	773	C	SER A 474	20.702	17.877	36.691	1.00	13.44
ATOM	774	O	SER A 474	20.221	18.062	35.597	1.00	13.49
ATOM	775	N	LYS A 475	21.978	17.578	36.867	1.00	13.37
ATOM	776	CA	LYS A 475	22.878	17.435	35.754	1.00	12.47
ATOM	777	CB	LYS A 475	24.286	17.089	36.185	1.00	12.77
ATOM	778	CG	LYS A 475	25.288	17.204	35.033	1.00	13.73
ATOM	779	CD	LYS A 475	26.724	17.423	35.480	1.00	16.66
ATOM	780	CE	LYS A 475	27.742	17.332	34.315	1.00	24.37
ATOM	781	NZ	LYS A 475	27.400	18.006	32.937	1.00	23.53
ATOM	782	C	LYS A 475	22.467	16.436	34.747	1.00	12.94
ATOM	783	O	LYS A 475	22.438	16.736	33.530	1.00	14.20
ATOM	784	N	ILEU A 476	22.188	15.223	35.203	1.00	12.84
ATOM	785	CA	ILEU A 476	21.832	14.124	34.294	1.00	11.68
ATOM	786	CB	ILEU A 476	21.567	12.879	35.056	1.00	11.55
ATOM	787	CG	ILEU A 476	21.072	11.659	34.255	1.00	14.10
ATOM	788	CD1	ILEU A 476	21.999	11.262	33.212	1.00	12.17
ATOM	789	CD2	ILEU A 476	20.899	10.436	35.250	1.00	14.83
ATOM	790	C	ILEU A 476	20.597	14.474	33.514	1.00	11.27
ATOM	791	O	ILEU A 476	20.608	14.449	32.289	1.00	11.58
ATOM	792	N	ILEU A 477	19.554	14.876	34.234	1.00	9.67

ATOM	793	CA	IIEU A 477	18.271	15.210	33.633	1.00	7.27
ATOM	794	CB	IIEU A 477	17.211	15.256	34.724	1.00	6.59
ATOM	795	CG	IIEU A 477	17.000	13.934	35.430	1.00	6.22
ATOM	796	CD1	IIEU A 477	15.877	14.102	36.533	1.00	2.69
ATOM	797	CD2	IIEU A 477	16.667	12.908	34.367	1.00	2.00
ATOM	798	C	IIEU A 477	18.236	16.520	32.794	1.00	6.03
ATOM	799	O	IIEU A 477	17.234	16.807	32.164	1.00	5.74
ATOM	800	N	ASN A 478	19.283	17.310	32.784	1.00	4.35
ATOM	801	CA	ASN A 478	19.264	18.470	31.877	1.00	6.17
ATOM	802	CB	ASN A 478	19.716	19.783	32.539	1.00	5.15
ATOM	803	CG	ASN A 478	18.612	20.397	33.419	1.00	5.45
ATOM	804	OD1	ASN A 478	17.615	20.849	32.868	1.00	6.20
ATOM	805	ND2	ASN A 478	18.764	20.374	34.773	1.00	2.00
ATOM	806	C	ASN A 478	20.057	18.257	30.562	1.00	6.46
ATOM	807	O	ASN A 478	20.037	19.127	29.680	1.00	6.14
ATOM	808	N	ASP A 479	20.712	17.098	30.461	1.00	5.99
ATOM	809	CA	ASP A 479	21.572	16.766	29.360	1.00	7.55
ATOM	810	CB	ASP A 479	22.520	15.643	29.755	1.00	7.69
ATOM	811	CG	ASP A 479	23.519	15.344	28.706	1.00	12.13
ATOM	812	OD1	ASP A 479	23.206	15.086	27.511	1.00	18.57
ATOM	813	OD2	ASP A 479	24.708	15.317	28.984	1.00	21.87
ATOM	814	C	ASP A 479	20.791	16.305	28.146	1.00	7.54
ATOM	815	O	ASP A 479	20.205	15.236	28.165	1.00	8.94
ATOM	816	N	ASN A 480	20.893	17.062	27.063	1.00	6.80
ATOM	817	CA	ASN A 480	20.198	16.762	25.841	1.00	5.52
ATOM	818	CB	ASN A 480	20.510	17.835	24.799	1.00	4.25
ATOM	819	CG	ASN A 480	19.772	17.630	23.540	1.00	5.64
ATOM	820	OD1	ASN A 480	20.369	17.413	22.488	1.00	13.62
ATOM	821	ND2	ASN A 480	18.463	17.638	23.620	1.00	5.94
ATOM	822	C	ASN A 480	20.522	15.352	25.332	1.00	4.85
ATOM	823	O	ASN A 480	19.612	14.554	25.048	1.00	2.00
ATOM	824	N	ILE A 481	21.812	15.051	25.262	1.00	5.91
ATOM	825	CA	ILE A 481	22.281	13.726	24.790	1.00	6.95
ATOM	826	CB	ILE A 481	23.805	13.604	24.829	1.00	7.62
ATOM	827	CG1	ILE A 481	24.480	14.691	23.972	1.00	8.74
ATOM	828	CD1	ILE A 481	24.208	14.429	22.466	1.00	17.85
ATOM	829	CG2	ILE A 481	24.205	12.265	24.282	1.00	7.84
ATOM	830	C	ILE A 481	21.713	12.560	25.551	1.00	6.93
ATOM	831	O	ILE A 481	21.364	11.555	24.932	1.00	8.37
ATOM	832	N	PHE A 482	21.656	12.660	26.879	1.00	5.61
ATOM	833	CA	PHE A 482	21.076	11.595	27.710	1.00	4.96
ATOM	834	CB	PHE A 482	21.064	11.967	29.220	1.00	3.95

ATOM	835	CG	PHE	A	482	20.218	11.064	30.044	1.00	2.00
ATOM	836	CD1	PHE	A	482	20.616	9.760	30.273	1.00	2.30
ATOM	837	CE1	PHE	A	482	19.779	8.872	31.037	1.00	4.02
ATOM	838	CZ	PHE	A	482	18.537	9.353	31.571	1.00	6.39
ATOM	839	CE2	PHE	A	482	18.140	10.701	31.307	1.00	3.09
ATOM	840	CD2	PHE	A	482	18.986	11.517	30.569	1.00	2.00
ATOM	841	C	PHE	A	482	19.631	11.205	27.303	1.00	4.81
ATOM	842	O	PHE	A	482	19.379	10.044	27.144	1.00	4.61
ATOM	843	N	HIS	A	483	18.721	12.184	27.192	1.00	3.46
ATOM	844	CA	HIS	A	483	17.323	11.995	26.803	1.00	4.48
ATOM	845	CB	HIS	A	483	16.500	13.264	27.001	1.00	3.03
ATOM	846	CG	HIS	A	483	16.343	13.637	28.434	1.00	6.88
ATOM	847	ND1	HIS	A	483	15.533	12.932	29.305	1.00	5.16
ATOM	848	CE1	HIS	A	483	15.629	13.475	30.504	1.00	6.16
ATOM	849	NE2	HIS	A	483	16.479	14.482	30.451	1.00	4.45
ATOM	850	CD2	HIS	A	483	16.956	14.590	29.173	1.00	5.78
ATOM	851	C	HIS	A	483	17.210	11.610	25.339	1.00	4.68
ATOM	852	O	HIS	A	483	16.287	10.899	24.919	1.00	4.81
ATOM	853	N	MET	A	484	18.163	12.066	24.564	1.00	4.57
ATOM	854	CA	MET	A	484	18.143	11.733	23.163	1.00	5.49
ATOM	855	CB	MET	A	484	19.135	12.555	22.454	1.00	5.43
ATOM	856	CG	MET	A	484	18.627	13.127	21.223	1.00	13.21
ATOM	857	SD	MET	A	484	17.108	14.107	21.275	1.00	15.95
ATOM	858	CE	MET	A	484	17.888	15.586	21.607	1.00	23.47
ATOM	859	C	MET	A	484	18.512	10.264	23.026	1.00	4.72
ATOM	860	O	MET	A	484	17.927	9.590	22.188	1.00	4.49
ATOM	861	N	SER	A	485	19.399	9.758	23.892	1.00	2.84
ATOM	862	CA	SER	A	485	19.863	8.378	23.799	1.00	3.18
ATOM	863	CB	SER	A	485	21.196	8.206	24.505	1.00	4.17
ATOM	864	OG	SER	A	485	22.253	8.922	23.891	1.00	5.43
ATOM	865	C	SER	A	485	18.866	7.382	24.382	1.00	2.76
ATOM	866	O	SER	A	485	18.580	6.323	23.797	1.00	3.40
ATOM	867	N	LEU	A	486	18.291	7.753	25.499	1.00	2.70
ATOM	868	CA	LEU	A	486	17.294	6.932	26.173	1.00	2.83
ATOM	869	CB	LEU	A	486	16.795	7.645	27.456	1.00	2.69
ATOM	870	CG	LEU	A	486	16.678	6.926	28.798	1.00	5.49
ATOM	871	CD1	LEU	A	486	15.484	7.415	29.632	1.00	2.00
ATOM	872	CD2	LEU	A	486	16.643	5.426	28.695	1.00	7.92
ATOM	873	C	LEU	A	486	16.135	6.698	25.188	1.00	2.25
ATOM	874	O	LEU	A	486	15.750	5.566	24.970	1.00	2.40
ATOM	875	N	LEU	A	487	15.645	7.774	24.562	1.00	2.00
ATOM	876	CA	LEU	A	487	14.480	7.731	23.690	1.00	3.45

ff

ATOM	877	CB	LEU A	487	14.104	9.150	23.196	1.00	4.14
ATOM	878	CG	LEU A	487	12.637	9.614	23.068	1.00	5.86
ATOM	879	CD1	LEU A	487	12.505	10.719	21.953	1.00	4.99
ATOM	880	CD2	LEU A	487	11.658	8.512	22.759	1.00	7.08
ATOM	881	C	LEU A	487	14.718	6.785	22.477	1.00	3.80
ATOM	882	O	LEU A	487	13.887	5.903	22.194	1.00	2.00
ATOM	883	N	ALA A	488	15.873	6.983	21.838	1.00	3.28
ATOM	884	CA	ALA A	488	16.299	6.192	20.698	1.00	4.99
ATOM	885	CB	ALA A	488	17.695	6.594	20.270	1.00	5.66
ATOM	886	C	ALA A	488	16.341	4.758	21.092	1.00	5.49
ATOM	887	O	ALA A	488	15.806	3.885	20.441	1.00	6.07
ATOM	888	N	CYS A	489	16.993	4.496	22.198	1.00	6.10
ATOM	889	CA	CYS A	489	17.122	3.122	22.588	1.00	5.29
ATOM	890	CB	CYS A	489	17.998	3.023	23.837	1.00	4.37
ATOM	891	SG	CYS A	489	18.230	1.310	24.279	1.00	5.78
ATOM	892	C	CYS A	489	15.738	2.513	22.729	1.00	5.44
ATOM	893	O	CYS A	489	15.444	1.438	22.163	1.00	4.75
ATOM	894	N	ALA A	490	14.888	3.233	23.462	1.00	5.61
ATOM	895	CA	ALA A	490	13.503	2.829	23.673	1.00	5.43
ATOM	896	CB	ALA A	490	12.815	3.780	24.604	1.00	6.08
ATOM	897	C	ALA A	490	12.700	2.669	22.406	1.00	4.62
ATOM	898	O	ALA A	490	11.860	1.779	22.335	1.00	6.60
ATOM	899	N	LEU A	491	12.957	3.472	21.395	1.00	3.23
ATOM	900	CA	LEU A	491	12.237	3.330	20.140	1.00	2.52
ATOM	901	CB	LEU A	491	12.343	4.622	19.349	1.00	2.72
ATOM	902	CG	LEU A	491	11.536	5.885	19.661	1.00	2.48
ATOM	903	CD1	LEU A	491	12.083	7.153	18.984	1.00	2.00
ATOM	904	CD2	LEU A	491	10.047	5.660	19.324	1.00	2.00
ATOM	905	C	LEU A	491	12.851	2.178	19.332	1.00	3.77
ATOM	906	O	LEU A	491	12.243	1.614	18.485	1.00	3.11
ATOM	907	N	GLU A	492	14.109	1.865	19.555	1.00	5.20
ATOM	908	CA	GLU A	492	14.694	0.850	18.745	1.00	7.70
ATOM	909	CB	GLU A	492	16.201	0.864	18.909	1.00	7.57
ATOM	910	CG	GLU A	492	16.964	-0.236	18.193	1.00	10.36
ATOM	911	CD	GLU A	492	16.581	-0.371	16.735	1.00	12.45
ATOM	912	OE1	GLU A	492	16.431	0.631	16.081	1.00	17.37
ATOM	913	OE2	GLU A	492	16.433	-1.468	16.213	1.00	14.99
ATOM	914	C	GLU A	492	14.102	-0.480	19.162	1.00	9.34
ATOM	915	O	GLU A	492	13.919	-1.384	18.346	1.00	9.42
ATOM	916	N	VAL A	493	13.806	-0.597	20.445	1.00	10.25
ATOM	917	CA	VAL A	493	13.230	-1.804	20.970	1.00	10.00
ATOM	918	CB	VAL A	493	13.208	-1.735	22.536	1.00	11.55

49

ATOM	919	CG1	VAL A 493	12.173	-2.764	23.129	1.00	8.23
ATOM	920	CG2	VAL A 493	14.608	-1.955	23.072	1.00	7.40
ATOM	921	C	VAL A 493	11.802	-1.988	20.466	1.00	10.30
ATOM	922	O	VAL A 493	11.449	-3.037	20.047	1.00	10.69
ATOM	923	N	VAL A 494	11.016	-0.926	20.434	1.00	10.67
ATOM	924	CA	VAL A 494	9.637	-1.000	20.006	1.00	10.15
ATOM	925	CB	VAL A 494	8.838	0.337	20.293	1.00	9.64
ATOM	926	CG1	VAL A 494	7.530	0.329	19.610	1.00	6.54
ATOM	927	CG2	VAL A 494	8.558	0.545	21.852	1.00	6.43
ATOM	928	C	VAL A 494	9.550	-1.362	18.563	1.00	12.13
ATOM	929	O	VAL A 494	8.754	-2.219	18.178	1.00	12.62
ATOM	930	N	MET A 495	10.363	-0.722	17.742	1.00	13.37
ATOM	931	CA	MET A 495	10.344	-1.038	16.324	1.00	15.28
ATOM	932	CB	MET A 495	11.097	0.035	15.531	1.00	14.65
ATOM	933	CG	MET A 495	10.405	1.316	15.544	1.00	13.27
ATOM	934	SD	MET A 495	11.314	2.329	14.534	1.00	18.39
ATOM	935	CE	MET A 495	10.911	1.751	12.891	1.00	23.19
ATOM	936	C	MET A 495	10.876	-2.438	15.991	1.00	16.42
ATOM	937	O	MET A 495	10.586	-2.968	14.935	1.00	15.60
ATOM	938	N	ALA A 496	11.688	-2.993	16.884	1.00	18.74
ATOM	939	CA	ALA A 496	12.290	-4.310	16.687	1.00	21.16
ATOM	940	CB	ALA A 496	13.319	-4.623	17.755	1.00	20.54
ATOM	941	C	ALA A 496	11.219	-5.344	16.778	1.00	23.00
ATOM	942	O	ALA A 496	11.094	-6.267	15.922	1.00	22.03
ATOM	943	N	THR A 497	10.445	-5.221	17.836	1.00	24.64
ATOM	944	CA	THR A 497	9.436	-6.220	18.009	1.00	27.98
ATOM	945	CB	THR A 497	8.657	-5.942	19.223	1.00	27.33
ATOM	946	OG1	THR A 497	7.876	-4.776	18.968	1.00	29.40
ATOM	947	CG2	THR A 497	9.609	-5.593	20.366	1.00	25.14
ATOM	948	C	THR A 497	8.512	-6.334	16.784	1.00	30.44
ATOM	949	O	THR A 497	8.060	-7.443	16.457	1.00	30.05
ATOM	950	N	TYR A 498	8.256	-5.210	16.104	1.00	33.44
ATOM	951	CA	TYR A 498	7.368	-5.204	14.927	1.00	36.84
ATOM	952	CB	TYR A 498	6.363	-4.042	14.984	1.00	36.22
ATOM	953	CG	TYR A 498	5.695	-3.904	16.329	1.00	37.40
ATOM	954	CD1	TYR A 498	4.755	-4.822	16.756	1.00	39.74
ATOM	955	CE1	TYR A 498	4.162	-4.693	18.018	1.00	41.01
ATOM	956	CZ	TYR A 498	4.520	-3.631	18.828	1.00	38.06
ATOM	957	OH	TYR A 498	3.974	-3.454	20.077	1.00	38.69
ATOM	958	CE2	TYR A 498	5.443	-2.731	18.404	1.00	35.90
ATOM	959	CD2	TYR A 498	6.019	-2.865	17.183	1.00	35.68
ATOM	960	C	TYR A 498	8.074	-5.242	13.556	1.00	39.17

5

961	O	TYR A	498	7.561	-4.693	12.563	1.00	40.64	
ATOM	962	N	SER A	499	9.233	-5.887	13.478	1.00	41.51
ATOM	963	CA	SER A	499	9.962	-5.935	12.205	1.00	43.56
ATOM	964	CB	SER A	499	11.290	-6.704	12.338	1.00	43.58
ATOM	965	OG	SER A	499	12.305	-5.924	12.951	1.00	41.96
ATOM	966	C	SER A	499	9.098	-6.527	11.084	1.00	45.17
ATOM	967	O	SER A	499	9.103	-5.993	9.973	1.00	45.09
ATOM	968	N	ARG A	500	8.382	-7.631	11.378	1.00	46.76
ATOM	969	CA	ARG A	500	7.476	-8.292	10.409	1.00	48.01
ATOM	970	CB	ARG A	500	7.233	-9.738	10.797	1.00	47.71
ATOM	971	CG	ARG A	500	6.773	-10.619	9.631	1.00	49.22
ATOM	972	CD	ARG A	500	5.473	-11.420	9.915	1.00	50.50
ATOM	973	NE	ARG A	500	4.297	-10.547	10.020	1.00	52.41
ATOM	974	CZ	ARG A	500	3.024	-10.961	10.043	1.00	52.33
ATOM	975	NH1	ARG A	500	2.726	-12.270	9.976	1.00	49.40
ATOM	976	NH2	ARG A	500	2.045	-10.052	10.132	1.00	49.92
ATOM	977	C	ARG A	500	6.124	-7.563	10.321	1.00	48.87
ATOM	978	O	ARG A	500	5.050	-8.171	10.489	1.00	48.55
ATOM	979	N	SER A	501	6.211	-6.248	10.092	1.00	49.79
ATOM	980	CA	SER A	501	5.058	-5.356	9.992	1.00	50.64
ATOM	981	CB	SER A	501	5.166	-4.236	11.026	1.00	50.82
ATOM	982	OG	SER A	501	4.077	-3.328	10.893	1.00	51.88
ATOM	983	C	SER A	501	4.924	-4.738	8.587	1.00	50.90
ATOM	984	O	SER A	501	3.844	-4.752	7.983	1.00	50.85
ATOM	985	N	SER A	508	9.297	1.112	-0.283	1.00	57.14
ATOM	986	CA	SER A	508	10.177	0.166	0.420	1.00	56.24
ATOM	987	CB	SER A	508	10.072	-1.239	-0.219	1.00	56.13
ATOM	988	OG	SER A	508	8.726	-1.704	-0.216	1.00	54.22
ATOM	989	C	SER A	508	11.636	0.689	0.478	1.00	55.73
ATOM	990	O	SER A	508	12.609	-0.084	0.559	1.00	56.00
ATOM	991	N	GLY A	509	11.773	2.013	0.436	1.00	54.44
ATOM	992	CA	GLY A	509	13.075	2.644	0.499	1.00	52.95
ATOM	993	C	GLY A	509	13.712	2.435	1.851	1.00	51.71
ATOM	994	O	GLY A	509	14.026	3.403	2.552	1.00	51.34
ATOM	995	N	THR A	510	13.924	1.160	2.179	1.00	50.64
ATOM	996	CA	THR A	510	14.498	0.702	3.455	1.00	49.39
ATOM	997	CB	THR A	510	16.036	0.527	3.429	1.00	50.13
ATOM	998	OG1	THR A	510	16.487	0.219	4.774	1.00	49.53
ATOM	999	CG2	THR A	510	16.783	1.834	3.003	1.00	49.41
ATOM	1000	C	THR A	510	14.164	1.482	4.674	1.00	48.11
ATOM	1001	O	THR A	510	14.292	2.708	4.691	1.00	48.23
ATOM	1002	N	ASP A	511	13.774	0.760	5.719	1.00	46.68

ATOM	1003	CA	ASP A	511	13.456	1.400	6.998	1.00	44.62
ATOM	1004	CB	ASP A	511	12.053	1.024	7.442	1.00	45.05
ATOM	1005	CG	ASP A	511	11.752	1.485	8.823	1.00	44.34
ATOM	1006	OD1	ASP A	511	11.716	2.709	9.062	1.00	47.00
ATOM	1007	OD2	ASP A	511	11.556	0.693	9.743	1.00	43.18
ATOM	1008	C	ASP A	511	14.454	1.018	8.093	1.00	42.93
ATOM	1009	O	ASP A	511	15.641	0.716	7.827	1.00	42.65
ATOM	1010	N	LEU A	512	13.953	1.009	9.322	1.00	40.19
ATOM	1011	CA	LEU A	512	14.792	0.764	10.492	1.00	37.10
ATOM	1012	CB	LEU A	512	13.935	0.548	11.720	1.00	36.88
ATOM	1013	CG	LEU A	512	14.573	0.486	13.093	1.00	38.65
ATOM	1014	CD1	LEU A	512	15.068	-0.968	13.429	1.00	39.66
ATOM	1015	CD2	LEU A	512	15.676	1.573	13.278	1.00	39.27
ATOM	1016	C	LEU A	512	15.743	-0.390	10.273	1.00	34.87
ATOM	1017	O	LEU A	512	15.760	-1.031	9.220	1.00	34.35
ATOM	1018	N	SER A	513	16.542	-0.607	11.299	1.00	32.30
ATOM	1019	CA	SER A	513	17.599	-1.586	11.342	1.00	29.77
ATOM	1020	CB	SER A	513	18.113	-1.943	9.931	1.00	30.70
ATOM	1021	OG	SER A	513	17.245	-2.859	9.250	1.00	30.48
ATOM	1022	C	SER A	513	18.597	-0.743	12.154	1.00	26.48
ATOM	1023	O	SER A	513	19.360	0.031	11.624	1.00	25.26
ATOM	1024	N	PHE A	514	18.537	-0.922	13.460	1.00	23.05
ATOM	1025	CA	PHE A	514	19.332	-0.177	14.402	1.00	19.60
ATOM	1026	CB	PHE A	514	20.495	-0.914	14.932	1.00	17.88
ATOM	1027	CG	PHE A	514	21.410	-0.038	15.659	1.00	13.56
ATOM	1028	CD1	PHE A	514	22.774	-0.135	15.466	1.00	7.78
ATOM	1029	CE1	PHE A	514	23.601	0.675	16.127	1.00	7.61
ATOM	1030	CZ	PHE A	514	23.077	1.632	17.011	1.00	10.61
ATOM	1031	CE2	PHE A	514	21.715	1.743	17.219	1.00	5.65
ATOM	1032	CD2	PHE A	514	20.893	0.919	16.539	1.00	7.37
ATOM	1033	C	PHE A	514	19.831	1.160	13.883	1.00	19.98
ATOM	1034	O	PHE A	514	19.175	2.200	14.198	1.00	21.97
ATOM	1035	N	PRO A	515	20.917	1.189	13.071	1.00	16.87
ATOM	1036	CA	PRO A	515	21.498	2.461	12.678	1.00	13.02
ATOM	1037	CB	PRO A	515	22.506	2.056	11.613	1.00	13.72
ATOM	1038	CG	PRO A	515	22.040	0.796	11.161	1.00	13.79
ATOM	1039	CD	PRO A	515	21.587	0.062	12.404	1.00	16.21
ATOM	1040	C	PRO A	515	20.449	3.495	12.185	1.00	11.10
ATOM	1041	O	PRO A	515	20.673	4.693	12.490	1.00	11.58
ATOM	1042	N	TRP A	516	19.356	3.097	11.514	1.00	8.08
ATOM	1043	CA	TRP A	516	18.374	4.084	10.997	1.00	6.57
ATOM	1044	CB	TRP A	516	17.119	3.393	10.446	1.00	6.20

ATOM	1045	CG	TRP A	516	16.106	4.310	9.797	1.00	6.53
ATOM	1046	CD1	TRP A	516	16.196	4.932	8.538	1.00	6.10
ATOM	1047	NE1	TRP A	516	15.058	5.663	8.286	1.00	2.00
ATOM	1048	CE2	TRP A	516	14.229	5.565	9.354	1.00	2.00
ATOM	1049	CD2	TRP A	516	14.860	4.732	10.333	1.00	3.32
ATOM	1050	CE3	TRP A	516	14.213	4.528	11.555	1.00	2.00
ATOM	1051	CZ3	TRP A	516	12.976	5.088	11.741	1.00	2.00
ATOM	1052	CH2	TRP A	516	12.376	5.861	10.761	1.00	2.00
ATOM	1053	CZ2	TRP A	516	13.015	6.160	9.569	1.00	3.24
ATOM	1054	C	TRP A	516	17.952	5.169	12.003	1.00	4.43
ATOM	1055	O	TRP A	516	17.926	6.353	11.702	1.00	3.37
ATOM	1056	N	ILE A	517	17.666	4.740	13.200	1.00	3.57
ATOM	1057	CA	ILE A	517	17.185	5.585	14.267	1.00	4.13
ATOM	1058	CB	ILE A	517	16.858	4.736	15.545	1.00	3.53
ATOM	1059	CG1	ILE A	517	15.951	5.447	16.492	1.00	3.79
ATOM	1060	CD1	ILE A	517	14.834	6.161	15.859	1.00	2.00
ATOM	1061	CG2	ILE A	517	18.075	4.328	16.251	1.00	2.00
ATOM	1062	C	ILE A	517	18.212	6.609	14.585	1.00	6.38
ATOM	1063	O	ILE A	517	17.848	7.674	15.015	1.00	8.32
ATOM	1064	N	LEU A	518	19.497	6.317	14.379	1.00	7.30
ATOM	1065	CA	LEU A	518	20.514	7.275	14.739	1.00	6.90
ATOM	1066	CB	LEU A	518	21.899	6.677	14.639	1.00	7.32
ATOM	1067	CG	LEU A	518	22.196	5.522	15.627	1.00	8.35
ATOM	1068	CD1	LEU A	518	23.684	5.126	15.647	1.00	2.50
ATOM	1069	CD2	LEU A	518	21.682	5.833	16.977	1.00	5.08
ATOM	1070	C	LEU A	518	20.392	8.434	13.817	1.00	7.74
ATOM	1071	O	LEU A	518	20.237	9.526	14.269	1.00	7.58
ATOM	1072	N	ASN A	519	20.409	8.196	12.511	1.00	9.38
ATOM	1073	CA	ASN A	519	20.366	9.250	11.525	1.00	11.13
ATOM	1074	CB	ASN A	519	20.446	8.593	10.162	1.00	13.71
ATOM	1075	CG	ASN A	519	21.098	9.498	9.094	1.00	23.00
ATOM	1076	OD1	ASN A	519	22.350	9.727	9.100	1.00	30.67
ATOM	1077	ND2	ASN A	519	20.268	10.018	8.169	1.00	22.67
ATOM	1078	C	ASN A	519	19.046	10.037	11.701	1.00	10.46
ATOM	1079	O	ASN A	519	19.004	11.240	11.786	1.00	11.31
ATOM	1080	N	VAL A	520	17.949	9.344	11.879	1.00	9.13
ATOM	1081	CA	VAL A	520	16.709	10.025	12.095	1.00	8.53
ATOM	1082	CB	VAL A	520	15.620	8.949	12.461	1.00	10.43
ATOM	1083	CG1	VAL A	520	14.333	9.580	12.952	1.00	10.55
ATOM	1084	CG2	VAL A	520	15.317	8.122	11.201	1.00	13.73
ATOM	1085	C	VAL A	520	16.771	11.115	13.191	1.00	6.90
ATOM	1086	O	VAL A	520	16.164	12.190	13.044	1.00	3.70

N	ATOM	1087	LEU A	521	17.443	10.792	14.314	1.00	5.11
ATOM	1088	CA	LEU A	521	17.522	11.711	15.441	1.00	4.30
ATOM	1089	CB	LEU A	521	17.357	10.946	16.736	1.00	4.31
ATOM	1090	CG	LEU A	521	16.071	10.118	16.854	1.00	7.22
ATOM	1091	CD1	LEU A	521	15.983	9.289	18.178	1.00	7.33
ATOM	1092	CD2	LEU A	521	14.901	11.002	16.779	1.00	7.22
ATOM	1093	C	LEU A	521	18.823	12.577	15.474	1.00	4.02
ATOM	1094	O	LEU A	521	19.011	13.401	16.394	1.00	2.26
ATOM	1095	N	ASN A	522	19.688	12.407	14.458	1.00	2.73
ATOM	1096	CA	ASN A	522	20.955	13.075	14.488	1.00	2.77
ATOM	1097	CB	ASN A	522	20.752	14.599	14.324	1.00	3.11
ATOM	1098	CG	ASN A	522	21.989	15.287	13.874	1.00	2.00
ATOM	1099	OD1	ASN A	522	22.890	14.661	13.307	1.00	5.97
ATOM	1100	ND2	ASN A	522	22.010	16.571	13.998	1.00	2.15
ATOM	1101	C	ASN A	522	21.802	12.771	15.773	1.00	2.00
ATOM	1102	O	ASN A	522	22.511	13.624	16.287	1.00	3.48
ATOM	1103	N	LEU A	523	21.783	11.539	16.200	1.00	2.26
ATOM	1104	CA	LEU A	523	22.438	11.082	17.427	1.00	3.51
ATOM	1105	CB	LEU A	523	21.428	10.220	18.177	1.00	2.69
ATOM	1106	CG	LEU A	523	21.532	9.986	19.629	1.00	3.52
ATOM	1107	CD1	LEU A	523	20.849	8.528	19.873	1.00	3.71
ATOM	1108	CD2	LEU A	523	22.971	9.957	19.828	1.00	12.53
ATOM	1109	C	LEU A	523	23.614	10.191	17.090	1.00	3.88
ATOM	1110	O	LEU A	523	23.485	9.219	16.297	1.00	4.01
ATOM	1111	N	LYS A	524	24.746	10.461	17.716	1.00	2.74
ATOM	1112	CA	LYS A	524	25.903	9.601	17.474	1.00	2.84
ATOM	1113	CB	LYS A	524	27.149	10.334	17.836	1.00	2.00
ATOM	1114	CG	LYS A	524	27.149	11.724	17.147	1.00	2.00
ATOM	1115	CD	LYS A	524	27.457	11.584	15.679	1.00	2.78
ATOM	1116	CE	LYS A	524	27.418	12.949	14.980	1.00	7.61
ATOM	1117	NZ	LYS A	524	27.359	12.847	13.479	1.00	11.33
ATOM	1118	C	LYS A	524	25.885	8.202	18.109	1.00	3.34
ATOM	1119	O	LYS A	524	25.280	7.964	19.167	1.00	3.82
ATOM	1120	N	ALA A	525	26.506	7.261	17.441	1.00	3.11
ATOM	1121	CA	ALA A	525	26.598	5.910	17.958	1.00	3.88
ATOM	1122	CB	ALA A	525	27.316	5.015	16.961	1.00	2.69
ATOM	1123	C	ALA A	525	27.273	5.816	19.369	1.00	5.48
ATOM	1124	O	ALA A	525	26.858	5.010	20.264	1.00	5.29
ATOM	1125	N	PHE A	526	28.325	6.610	19.571	1.00	5.00
ATOM	1126	CA	PHE A	526	29.027	6.484	20.806	1.00	5.18
ATOM	1127	CB	PHE A	526	30.353	7.286	20.777	1.00	5.32
ATOM	1128	CG	PHE A	526	31.143	7.206	22.059	1.00	6.17

54

ATOM	1129	CD1	PHE A	526	31.814	6.036	22.377	1.00	2.97
ATOM	1130	CE1	PHE A	526	32.505	5.936	23.581	1.00	3.73
ATOM	1131	CZ	PHE A	526	32.494	7.010	24.568	1.00	2.63
ATOM	1132	CE2	PHE A	526	31.822	8.187	24.280	1.00	3.05
ATOM	1133	CD2	PHE A	526	31.111	8.274	23.014	1.00	5.63
ATOM	1134	C	PHE A	526	28.109	6.884	21.983	1.00	5.59
ATOM	1135	O	PHE A	526	28.240	6.292	23.098	1.00	4.24
ATOM	1136	N	ASP A	527	27.251	7.911	21.773	1.00	4.53
ATOM	1137	CA	ASP A	527	26.313	8.356	22.846	1.00	4.18
ATOM	1138	CB	ASP A	527	25.701	9.662	22.496	1.00	3.20
ATOM	1139	CG	ASP A	527	26.718	10.775	22.359	1.00	5.73
ATOM	1140	OD1	ASP A	527	27.665	10.941	23.205	1.00	6.84
ATOM	1141	OD2	ASP A	527	26.598	11.619	21.454	1.00	9.35
ATOM	1142	C	ASP A	527	25.187	7.375	23.150	1.00	4.67
ATOM	1143	O	ASP A	527	24.739	7.280	24.286	1.00	6.22
ATOM	1144	N	PHE A	528	24.737	6.649	22.136	1.00	4.38
ATOM	1145	CA	PHE A	528	23.658	5.687	22.227	1.00	6.14
ATOM	1146	CB	PHE A	528	23.358	5.130	20.803	1.00	7.25
ATOM	1147	CG	PHE A	528	22.132	4.250	20.713	1.00	8.05
ATOM	1148	CD1	PHE A	528	20.924	4.782	20.311	1.00	6.37
ATOM	1149	CE1	PHE A	528	19.799	3.975	20.164	1.00	7.19
ATOM	1150	CZ	PHE A	528	19.874	2.577	20.441	1.00	5.82
ATOM	1151	CE2	PHE A	528	21.068	2.038	20.784	1.00	5.09
ATOM	1152	CD2	PHE A	528	22.218	2.866	20.917	1.00	7.19
ATOM	1153	C	PHE A	528	24.105	4.578	23.126	1.00	6.06
ATOM	1154	O	PHE A	528	23.425	4.228	24.084	1.00	6.25
ATOM	1155	N	TYR A	529	25.289	4.066	22.816	1.00	6.43
ATOM	1156	CA	TYR A	529	25.938	3.007	23.562	1.00	6.94
ATOM	1157	CB	TYR A	529	27.387	2.762	23.011	1.00	7.10
ATOM	1158	CG	TYR A	529	28.385	2.752	24.090	1.00	7.19
ATOM	1159	CD1	TYR A	529	28.491	1.668	24.986	1.00	11.52
ATOM	1160	CE1	TYR A	529	29.389	1.711	26.088	1.00	10.35
ATOM	1161	CZ	TYR A	529	30.151	2.858	26.287	1.00	13.78
ATOM	1162	OH	TYR A	529	31.044	2.977	27.345	1.00	19.36
ATOM	1163	CE2	TYR A	529	30.068	3.915	25.405	1.00	11.15
ATOM	1164	CD2	TYR A	529	29.151	3.849	24.312	1.00	8.73
ATOM	1165	C	TYR A	529	25.935	3.312	25.069	1.00	7.03
ATOM	1166	O	TYR A	529	25.690	2.457	25.848	1.00	6.96
ATOM	1167	N	LYS A	530	26.238	4.532	25.478	1.00	7.01
ATOM	1168	CA	LYS A	530	26.239	4.848	26.893	1.00	7.93
ATOM	1169	CB	LYS A	530	26.554	6.323	27.075	1.00	8.59
ATOM	1170	CG	LYS A	530	27.919	6.736	26.434	1.00	12.70

ATOM	1171	CD	LYS A 530	28.593	7.898	27.168	1.00	15.96
ATOM	1172	CE	LYS A 530	27.983	9.237	26.949	1.00	16.66
ATOM	1173	NZ	LYS A 530	28.524	10.243	27.977	1.00	21.28
ATOM	1174	C	LYS A 530	24.930	4.531	27.635	1.00	7.04
ATOM	1175	O	LYS A 530	24.894	4.454	28.847	1.00	6.48
ATOM	1176	N	VAL A 531	23.871	4.272	26.892	1.00	6.56
ATOM	1177	CA	VAL A 531	22.577	4.052	27.500	1.00	6.44
ATOM	1178	CB	VAL A 531	21.516	4.971	26.840	1.00	7.07
ATOM	1179	CG1	VAL A 531	20.343	4.227	26.381	1.00	6.11
ATOM	1180	CG2	VAL A 531	21.123	6.035	27.787	1.00	5.82
ATOM	1181	C	VAL A 531	22.123	2.598	27.510	1.00	6.24
ATOM	1182	O	VAL A 531	21.231	2.236	28.299	1.00	5.96
ATOM	1183	N	ILE A 532	22.781	1.762	26.700	1.00	5.58
ATOM	1184	CA	ILE A 532	22.429	0.353	26.549	1.00	5.19
ATOM	1185	CB	ILE A 532	23.238	-0.250	25.456	1.00	4.47
ATOM	1186	CG1	ILE A 532	22.889	0.411	24.083	1.00	4.56
ATOM	1187	CD1	ILE A 532	23.696	-0.133	22.877	1.00	2.00
ATOM	1188	CG2	ILE A 532	22.953	-1.674	25.387	1.00	4.32
ATOM	1189	C	ILE A 532	22.488	-0.511	27.837	1.00	6.67
ATOM	1190	O	ILE A 532	21.454	-1.055	28.285	1.00	7.52
ATOM	1191	N	GLU A 533	23.629	-0.609	28.507	1.00	6.39
ATOM	1192	CA	GLU A 533	23.677	-1.499	29.691	1.00	6.52
ATOM	1193	CB	GLU A 533	25.067	-1.550	30.317	1.00	6.68
ATOM	1194	CG	GLU A 533	25.272	-2.671	31.320	1.00	11.17
ATOM	1195	CD	GLU A 533	26.738	-2.845	31.725	1.00	16.80
ATOM	1196	OE1	GLU A 533	27.562	-2.996	30.800	1.00	19.44
ATOM	1197	OE2	GLU A 533	27.094	-2.828	32.935	1.00	16.76
ATOM	1198	C	GLU A 533	22.683	-1.098	30.776	1.00	6.18
ATOM	1199	O	GLU A 533	22.077	-1.966	31.395	1.00	6.74
ATOM	1200	N	SER A 534	22.497	0.211	30.998	1.00	5.64
ATOM	1201	CA	SER A 534	21.585	0.679	32.030	1.00	4.84
ATOM	1202	CB	SER A 534	21.769	2.187	32.279	1.00	4.45
ATOM	1203	OG	SER A 534	23.070	2.400	32.781	1.00	5.10
ATOM	1204	C	SER A 534	20.139	0.394	31.664	1.00	5.13
ATOM	1205	O	SER A 534	19.329	0.055	32.511	1.00	4.57
ATOM	1206	N	PHE A 535	19.828	0.544	30.377	1.00	5.26
ATOM	1207	CA	PHE A 535	18.497	0.293	29.885	1.00	4.73
ATOM	1208	CB	PHE A 535	18.453	0.649	28.394	1.00	4.00
ATOM	1209	CG	PHE A 535	17.077	0.596	27.794	1.00	5.70
ATOM	1210	CD1	PHE A 535	16.418	-0.623	27.601	1.00	6.27
ATOM	1211	CE1	PHE A 535	15.157	-0.682	27.055	1.00	4.58
ATOM	1212	CZ	PHE A 535	14.532	0.449	26.709	1.00	4.63

ATOM 1255 CG ASN A 541 8.315 -6.684 32.421 1.00 12.87
 ATOM 1256 OD1 ASN A 541 7.510 -7.576 32.607 1.00 15.20
 ATOM 1257 ND2 ASN A 541 8.603 -5.782 33.346 1.00 11.13
 ATOM 1258 C ASN A 541 10.911 -7.378 29.706 1.00 9.56
 ATOM 1259 O ASN A 541 10.126 -7.663 28.823 1.00 10.01
 ATOM 1260 N LEU A 542 12.207 -7.232 29.472 1.00 9.76
 ATOM 1261 CA LEU A 542 12.717 -7.373 28.095 1.00 9.10
 ATOM 1262 CB LEU A 542 14.075 -6.684 27.941 1.00 8.09
 ATOM 1263 CG LEU A 542 14.095 -5.179 27.973 1.00 8.97
 ATOM 1264 CD1 LEU A 542 15.492 -4.668 28.053 1.00 9.22
 ATOM 1265 CD2 LEU A 542 13.403 -4.622 26.759 1.00 9.80
 ATOM 1266 C LEU A 542 12.852 -8.848 27.746 1.00 8.30
 ATOM 1267 O LEU A 542 13.338 -9.615 28.540 1.00 8.47
 ATOM 1268 N THR A 543 12.463 -9.247 26.547 1.00 8.14
 ATOM 1269 CA THR A 543 12.631 -10.650 26.147 1.00 7.80
 ATOM 1270 CB THR A 543 11.922 -10.978 24.831 1.00 6.70
 ATOM 1271 OG1 THR A 543 12.469 -10.196 23.781 1.00 4.89
 ATOM 1272 CG2 THR A 543 10.487 -10.605 24.853 1.00 7.19
 ATOM 1273 C THR A 543 14.089 -11.004 25.939 1.00 9.04
 ATOM 1274 O THR A 543 14.967 -10.139 25.938 1.00 9.69
 ATOM 1275 N ARG A 544 14.325 -12.283 25.690 1.00 9.66
 ATOM 1276 CA ARG A 544 15.657 -12.785 25.472 1.00 10.93
 ATOM 1277 CB ARG A 544 15.645 -14.329 25.540 1.00 11.59
 ATOM 1278 CG ARG A 544 16.929 -15.067 25.014 1.00 10.88
 ATOM 1279 CD ARG A 544 16.848 -16.618 25.167 1.00 14.78
 ATOM 1280 NE ARG A 544 15.749 -17.233 24.413 1.00 13.02
 ATOM 1281 CZ ARG A 544 15.747 -17.391 23.074 1.00 18.91
 ATOM 1282 NH1 ARG A 544 16.775 -16.942 22.355 1.00 23.09
 ATOM 1283 NH2 ARG A 544 14.719 -17.965 22.422 1.00 17.48
 ATOM 1284 C ARG A 544 16.117 -12.289 24.106 1.00 11.05
 ATOM 1285 O ARG A 544 17.262 -11.979 23.932 1.00 10.33
 ATOM 1286 N GLU A 545 15.186 -12.211 23.167 1.00 11.63
 ATOM 1287 CA GLU A 545 15.455 -11.772 21.819 1.00 13.95
 ATOM 1288 CB GLU A 545 14.246 -12.016 20.946 1.00 13.76
 ATOM 1289 CG GLU A 545 13.860 -13.495 20.890 1.00 21.85
 ATOM 1290 CD GLU A 545 13.715 -14.208 22.292 1.00 28.21
 ATOM 1291 OE1 GLU A 545 13.028 -13.699 23.251 1.00 22.99
 ATOM 1292 OE2 GLU A 545 14.307 -15.320 22.427 1.00 29.40
 ATOM 1293 C GLU A 545 15.772 -10.298 21.757 1.00 14.02
 ATOM 1294 O GLU A 545 16.548 -9.871 20.921 1.00 14.84
 ATOM 1295 N MET A 546 15.154 -9.530 22.646 1.00 13.93
 ATOM 1296 CA MET A 546 15.330 -8.086 22.725 1.00 13.00

ATOM	1423	C	SER A 560	32.339	1.845	13.960	1.00	2.00
ATOM	1424	O	SER A 560	33.008	2.816	14.009	1.00	2.06
ATOM	1425	N	LEU A 561	31.020	1.902	14.097	1.00	2.00
ATOM	1426	CA	LEU A 561	30.323	3.156	14.220	1.00	2.20
ATOM	1427	CB	LEU A 561	28.835	2.896	14.518	1.00	2.33
ATOM	1428	CG	LEU A 561	27.969	2.019	13.593	1.00	4.31
ATOM	1429	CD1	LEU A 561	26.528	1.785	14.215	1.00	2.00
ATOM	1430	CD2	LEU A 561	27.927	2.524	12.106	1.00	2.00
ATOM	1431	C	LEU A 561	30.959	4.193	15.219	1.00	2.00
ATOM	1432	O	LEU A 561	31.119	5.361	14.911	1.00	2.00
ATOM	1433	N	ALA A 562	31.326	3.756	16.393	1.00	2.00
ATOM	1434	CA	ALA A 562	31.879	4.693	17.354	1.00	2.83
ATOM	1435	CB	ALA A 562	31.979	4.095	18.810	1.00	2.00
ATOM	1436	C	ALA A 562	33.259	5.109	16.884	1.00	3.11
ATOM	1437	O	ALA A 562	33.863	5.921	17.530	1.00	3.18
ATOM	1438	N	TRP A 563	33.768	4.535	15.806	1.00	2.21
ATOM	1439	CA	TRP A 563	35.073	4.973	15.316	1.00	3.35
ATOM	1440	CB	TRP A 563	36.036	3.777	15.101	1.00	2.70
ATOM	1441	CG	TRP A 563	36.208	2.881	16.308	1.00	3.50
ATOM	1442	CD1	TRP A 563	35.434	1.796	16.638	1.00	4.08
ATOM	1443	NE1	TRP A 563	35.881	1.214	17.793	1.00	2.00
ATOM	1444	CE2	TRP A 563	36.974	1.908	18.231	1.00	2.92
ATOM	1445	CD2	TRP A 563	37.222	2.948	17.292	1.00	2.00
ATOM	1446	CE3	TRP A 563	38.273	3.804	17.524	1.00	2.65
ATOM	1447	CZ3	TRP A 563	39.083	3.601	18.648	1.00	3.77
ATOM	1448	CH2	TRP A 563	38.839	2.532	19.547	1.00	2.00
ATOM	1449	CZ2	TRP A 563	37.786	1.694	19.378	1.00	2.00
ATOM	1450	C	TRP A 563	34.969	5.825	14.016	1.00	3.80
ATOM	1451	O	TRP A 563	35.925	6.044	13.306	1.00	2.92
ATOM	1452	N	LEU A 564	33.777	6.253	13.660	1.00	4.71
ATOM	1453	CA	LEU A 564	33.712	7.145	12.484	1.00	5.58
ATOM	1454	CB	LEU A 564	32.264	7.290	11.965	1.00	4.26
ATOM	1455	CG	LEU A 564	31.566	6.068	11.390	1.00	4.77
ATOM	1456	CD1	LEU A 564	30.004	6.356	11.192	1.00	3.32
ATOM	1457	CD2	LEU A 564	32.200	5.550	10.050	1.00	2.00
ATOM	1458	C	LEU A 564	34.290	8.532	12.858	1.00	4.78
ATOM	1459	O	LEU A 564	34.350	8.918	14.034	1.00	4.33
ATOM	1460	N	SER A 565	34.677	9.272	11.849	1.00	4.86
ATOM	1461	CA	SER A 565	35.281	10.573	12.036	1.00	5.62
ATOM	1462	CB	SER A 565	35.653	11.162	10.720	1.00	6.03
ATOM	1463	OG	SER A 565	36.397	10.281	9.913	1.00	9.07
ATOM	1464	C	SER A 565	34.368	11.553	12.711	1.00	6.16

ATOM	1465	O	SER A	565	34.856	12.519	13.301	1.00	7.64
ATOM	1466	N	ASP A	566	33.058	11.357	12.600	1.00	5.01
ATOM	1467	CA	ASP A	566	32.118	12.194	13.356	1.00	4.61
ATOM	1468	CB	ASP A	566	30.751	12.235	12.667	1.00	4.01
ATOM	1469	CG	ASP A	566	30.043	10.859	12.633	1.00	7.60
ATOM	1470	OD1	ASP A	566	30.719	9.768	12.582	1.00	12.23
ATOM	1471	OD2	ASP A	566	28.798	10.766	12.592	1.00	6.42
ATOM	1472	C	ASP A	566	31.929	11.762	14.835	1.00	4.59
ATOM	1473	O	ASP A	566	31.067	12.257	15.518	1.00	6.37
ATOM	1474	N	SER A	567	32.752	10.892	15.365	1.00	3.80
ATOM	1475	CA	SER A	567	32.472	10.379	16.678	1.00	4.60
ATOM	1476	CB	SER A	567	32.849	8.890	16.709	1.00	4.41
ATOM	1477	OG	SER A	567	32.554	8.341	17.982	1.00	5.48
ATOM	1478	C	SER A	567	33.115	11.092	17.875	1.00	4.42
ATOM	1479	O	SER A	567	34.332	11.220	17.963	1.00	4.31
ATOM	1480	N	PRO A	568	32.300	11.423	18.867	1.00	4.48
ATOM	1481	CA	PRO A	568	32.786	12.087	20.083	1.00	4.54
ATOM	1482	CB	PRO A	568	31.550	12.119	20.963	1.00	4.15
ATOM	1483	CG	PRO A	568	30.425	12.026	20.031	1.00	4.02
ATOM	1484	CD	PRO A	568	30.859	11.141	18.927	1.00	3.92
ATOM	1485	C	PRO A	568	33.922	11.300	20.746	1.00	4.80
ATOM	1486	O	PRO A	568	34.778	11.860	21.382	1.00	5.03
ATOM	1487	N	LEU A	569	33.962	9.997	20.550	1.00	5.56
ATOM	1488	CA	LEU A	569	35.065	9.185	21.063	1.00	5.83
ATOM	1489	CB	LEU A	569	34.953	7.839	20.393	1.00	5.39
ATOM	1490	CG	LEU A	569	35.662	6.643	21.012	1.00	6.02
ATOM	1491	CD1	LEU A	569	36.514	5.968	20.035	1.00	7.12
ATOM	1492	CD2	LEU A	569	36.445	7.041	22.339	1.00	9.13
ATOM	1493	C	LEU A	569	36.523	9.780	20.895	1.00	6.51
ATOM	1494	O	LEU A	569	37.338	9.766	21.816	1.00	7.17
ATOM	1495	N	PHE A	570	36.860	10.317	19.739	1.00	6.86
ATOM	1496	CA	PHE A	570	38.216	10.808	19.528	1.00	7.23
ATOM	1497	CB	PHE A	570	38.501	11.136	18.035	1.00	5.23
ATOM	1498	CG	PHE A	570	38.424	9.923	17.163	1.00	6.73
ATOM	1499	CD1	PHE A	570	39.368	8.914	17.301	1.00	7.09
ATOM	1500	CE1	PHE A	570	39.276	7.757	16.572	1.00	7.82
ATOM	1501	CZ	PHE A	570	38.233	7.573	15.679	1.00	7.51
ATOM	1502	CE2	PHE A	570	37.301	8.556	15.528	1.00	6.38
ATOM	1503	CD2	PHE A	570	37.377	9.719	16.292	1.00	5.05
ATOM	1504	C	PHE A	570	38.524	11.975	20.418	1.00	9.18
ATOM	1505	O	PHE A	570	39.718	12.193	20.765	1.00	10.62
ATOM	1506	N	ASP A	571	37.494	12.747	20.782	1.00	10.38

63

ATOM	1507	CA	ASP A 571	37.678	13.891	21.705	1.00	12.23	
	ATOM	1508	CB	ASP A 571	36.503	14.908	21.636	1.00	12.92
	ATOM	1509	CG	ASP A 571	36.747	16.079	20.592	1.00	19.58
	ATOM	1510	OD1	ASP A 571	35.738	16.784	20.221	1.00	22.58
	ATOM	1511	OD2	ASP A 571	37.892	16.388	20.102	1.00	24.68
	ATOM	1512	C	ASP A 571	37.838	13.320	23.139	1.00	11.69
	ATOM	1513	O	ASP A 571	38.703	13.723	23.898	1.00	9.05
	ATOM	1514	N	LEU A 572	37.023	12.322	23.447	1.00	12.36
	ATOM	1515	CA	LEU A 572	37.111	11.657	24.705	1.00	14.85
	ATOM	1516	CB	LEU A 572	36.028	10.621	24.800	1.00	16.18
	ATOM	1517	CG	LEU A 572	35.809	10.127	26.233	1.00	21.52
	ATOM	1518	CD1	LEU A 572	35.722	11.348	27.185	1.00	21.46
	ATOM	1519	CD2	LEU A 572	34.536	9.247	26.291	1.00	23.88
	ATOM	1520	C	LEU A 572	38.461	10.963	24.850	1.00	15.08
	ATOM	1521	O	LEU A 572	38.945	10.761	25.954	1.00	15.22
	ATOM	1522	N	ILE A 573	39.068	10.567	23.745	1.00	15.07
	ATOM	1523	CA	ILE A 573	40.376	9.968	23.850	1.00	15.55
	ATOM	1524	CB	ILE A 573	40.645	9.090	22.628	1.00	14.55
	ATOM	1525	CG1	ILE A 573	39.959	7.746	22.767	1.00	12.31
	ATOM	1526	CD1	ILE A 573	39.857	6.981	21.393	1.00	6.14
	ATOM	1527	CG2	ILE A 573	42.098	8.825	22.425	1.00	12.90
	ATOM	1528	C	ILE A 573	41.435	11.088	23.983	1.00	17.30
	ATOM	1529	O	ILE A 573	42.414	10.949	24.685	1.00	18.35
	ATOM	1530	N	LYS A 574	41.261	12.192	23.290	1.00	17.39
	ATOM	1531	CA	LYS A 574	42.272	13.190	23.373	1.00	18.15
	ATOM	1532	CB	LYS A 574	42.087	14.242	22.296	1.00	16.97
	ATOM	1533	CG	LYS A 574	43.280	15.079	22.098	1.00	15.24
	ATOM	1534	CD	LYS A 574	43.072	16.241	21.114	1.00	15.89
	ATOM	1535	CE	LYS A 574	44.287	17.213	21.136	1.00	14.11
	ATOM	1536	NZ	LYS A 574	44.345	18.197	20.020	1.00	9.92
	ATOM	1537	C	LYS A 574	42.251	13.802	24.760	1.00	20.35
	ATOM	1538	O	LYS A 574	43.302	13.946	25.401	1.00	20.46
	ATOM	1539	N	GLN A 575	41.059	14.149	25.224	1.00	22.46
	ATOM	1540	CA	GLN A 575	40.876	14.743	26.532	1.00	24.95
	ATOM	1541	CB	GLN A 575	39.394	14.789	26.845	1.00	25.51
	ATOM	1542	CG	GLN A 575	39.020	15.353	28.210	1.00	31.74
	ATOM	1543	CD	GLN A 575	37.544	15.802	28.301	1.00	36.07
	ATOM	1544	OE1	GLN A 575	36.639	14.979	28.181	1.00	37.48
	ATOM	1545	NE2	GLN A 575	37.315	17.110	28.535	1.00	37.16
	ATOM	1546	C	GLN A 575	41.569	13.876	27.560	1.00	26.44
	ATOM	1547	O	GLN A 575	42.042	14.356	28.570	1.00	26.79
	ATOM	1548	N	SER A 576	41.660	12.579	27.291	1.00	28.20

64

ATOM	1549	CA	SER A	576	42.287	11.655	28.238	1.00	28.79
ATOM	1550	CB	SER A	576	41.622	10.312	28.144	1.00	28.17
ATOM	1551	OG	SER A	576	42.636	9.371	27.953	1.00	27.25
ATOM	1552	C	SER A	576	43.775	11.452	28.024	1.00	29.76
ATOM	1553	O	SER A	576	44.506	11.186	28.946	1.00	29.92
ATOM	1554	N	LYS A	577	44.210	11.566	26.785	1.00	31.31
ATOM	1555	CA	LYS A	577	45.610	11.424	26.438	1.00	32.44
ATOM	1556	CB	LYS A	577	45.756	11.456	24.924	1.00	32.43
ATOM	1557	CG	LYS A	577	46.759	10.514	24.390	1.00	31.18
ATOM	1558	CD	LYS A	577	46.252	9.097	24.601	1.00	28.82
ATOM	1559	CE	LYS A	577	47.095	8.118	23.806	1.00	29.90
ATOM	1560	NZ	LYS A	577	46.930	6.691	24.174	1.00	25.38
ATOM	1561	C	LYS A	577	46.462	12.556	27.028	1.00	33.67
ATOM	1562	O	LYS A	577	47.676	12.565	26.875	1.00	33.03
ATOM	1563	N	ASP A	578	45.820	13.534	27.663	1.00	35.46
ATOM	1564	CA	ASP A	578	46.552	14.659	28.239	1.00	36.42
ATOM	1565	CB	ASP A	578	45.949	16.006	27.817	1.00	36.95
ATOM	1566	CG	ASP A	578	46.096	16.280	26.331	1.00	38.84
ATOM	1567	OD1	ASP A	578	47.060	15.800	25.685	1.00	41.17
ATOM	1568	OD2	ASP A	578	45.279	16.976	25.708	1.00	42.67
ATOM	1569	C	ASP A	578	46.556	14.554	29.751	1.00	36.86
ATOM	1573	N	SER B	644	36.636	9.547	33.813	1.00	13.34
ATOM	1574	CA	SER B	644	35.896	9.256	32.537	1.00	13.52
ATOM	1575	CB	SER B	644	36.738	9.648	31.317	1.00	14.13
ATOM	1576	OG	SER B	644	35.927	9.799	30.153	1.00	17.99
ATOM	1577	C	SER B	644	35.367	7.811	32.424	1.00	12.17
ATOM	1578	O	SER B	644	35.897	6.982	31.701	1.00	12.64
ATOM	1579	N	THR B	645	34.293	7.546	33.159	1.00	10.72
ATOM	1580	CA	THR B	645	33.630	6.265	33.190	1.00	8.91
ATOM	1581	CB	THR B	645	32.330	6.374	34.033	1.00	9.09
ATOM	1582	OG1	THR B	645	32.625	6.834	35.352	1.00	8.17
ATOM	1583	CG2	THR B	645	31.728	4.968	34.256	1.00	9.39
ATOM	1584	C	THR B	645	33.274	5.785	31.770	1.00	7.52
ATOM	1585	O	THR B	645	33.531	4.625	31.379	1.00	5.65
ATOM	1586	N	SER B	646	32.676	6.694	31.028	1.00	6.11
ATOM	1587	CA	SER B	646	32.310	6.460	29.633	1.00	6.99
ATOM	1588	CB	SER B	646	31.925	7.758	28.930	1.00	7.51
ATOM	1589	OG	SER B	646	32.996	8.717	29.121	1.00	12.87
ATOM	1590	C	SER B	646	33.444	5.841	28.850	1.00	4.97
ATOM	1591	O	SER B	646	33.254	4.809	28.273	1.00	3.36
ATOM	1592	N	LEU B	647	34.606	6.477	28.859	1.00	4.50
ATOM	1593	CA	LEU B	647	35.742	5.969	28.104	1.00	6.01

ATOM	1594	CB	LEU	B	647	36.846	1.00	6.07
ATOM	1595	CG	LEU	B	647	38.046	6.586	27.214
ATOM	1596	CD1	LEU	B	647	37.711	6.400	25.743
ATOM	1597	CD2	LEU	B	647	39.120	7.685	27.433
ATOM	1598	C	LEU	B	647	36.327	4.653	28.634
ATOM	1599	O	LEU	B	647	36.803	3.822	27.846
ATOM	1600	N	SER	B	648	36.335	4.459	29.958
ATOM	1601	CA	SER	B	648	36.813	3.191	30.458
ATOM	1602	CB	SER	B	648	37.232	3.312	31.940
ATOM	1603	OG	SER	B	648	36.099	3.311	32.774
ATOM	1604	C	SER	B	648	35.783	2.054	30.271
ATOM	1605	O	SER	B	648	36.135	0.897	30.113
ATOM	1606	N	LEU	B	649	34.499	2.359	30.278
ATOM	1607	CA	LEU	B	649	33.485	1.304	30.061
ATOM	1608	CB	LEU	B	649	32.075	1.863	30.294
ATOM	1609	CG	LEU	B	649	30.936	0.916	30.609
ATOM	1610	CD1	LEU	B	649	30.121	0.646	29.371
ATOM	1611	CD2	LEU	B	649	31.444	-0.408	31.175
ATOM	1612	C	LEU	B	649	33.590	0.812	28.646
ATOM	1613	O	LEU	B	649	33.553	-0.418	28.356
ATOM	1614	N	PHE	B	650	33.796	1.774	27.755
ATOM	1615	CA	PHE	B	650	33.888	1.510	26.366
ATOM	1616	CB	PHE	B	650	33.940	2.828	25.556
ATOM	1617	CG	PHE	B	650	33.947	2.604	24.106
ATOM	1618	CD1	PHE	B	650	32.763	2.357	23.427
ATOM	1619	CE1	PHE	B	650	32.792	2.111	22.035
ATOM	1620	CZ	PHE	B	650	33.988	2.062	21.329
ATOM	1621	CE2	PHE	B	650	35.175	2.284	21.992
ATOM	1622	CD2	PHE	B	650	35.163	2.543	23.394
ATOM	1623	C	PHE	B	650	35.103	0.619	26.111
ATOM	1624	O	PHE	B	650	34.994	-0.415	25.474
ATOM	1625	N	TYR	B	651	36.266	1.031	26.556
ATOM	1626	CA	TYR	B	651	37.452	0.270	26.268
ATOM	1627	CB	TYR	B	651	38.731	0.988	26.767
ATOM	1628	CG	TYR	B	651	39.419	1.741	25.662
ATOM	1629	CD1	TYR	B	651	40.287	1.076	24.801
ATOM	1630	CE1	TYR	B	651	40.882	1.737	23.744
ATOM	1631	CZ	TYR	B	651	40.633	3.096	23.506
ATOM	1632	OH	TYR	B	651	41.249	3.679	22.433
ATOM	1633	CE2	TYR	B	651	39.780	3.780	24.300
ATOM	1634	CD2	TYR	B	651	39.147	3.087	25.408
ATOM	1635	C	TYR	B	651	37.335	-1.135	26.856

65

ATOM	1636	O	TYR	B	651	37.557	-2.180	26.169	1.00	3.86
ATOM	1637	N	LYS	B	652	36.925	-1.165	28.109	1.00	5.25
ATOM	1638	CA	LYS	B	652	36.770	-2.429	28.776	1.00	7.08
ATOM	1639	CB	LYS	B	652	36.116	-2.190	30.135	1.00	9.45
ATOM	1640	CG	LYS	B	652	36.103	-3.327	31.124	1.00	9.85
ATOM	1641	CD	LYS	B	652	35.793	-2.711	32.483	1.00	8.46
ATOM	1642	CE	LYS	B	652	34.602	-3.426	33.172	1.00	11.02
ATOM	1643	NZ	LYS	B	652	34.713	-4.916	33.235	1.00	10.84
ATOM	1644	C	LYS	B	652	35.971	-3.380	27.910	1.00	6.24
ATOM	1645	O	LYS	B	652	36.417	-4.472	27.586	1.00	6.42
ATOM	1646	N	LYS	B	653	34.803	-2.965	27.484	1.00	6.01
ATOM	1647	CA	LYS	B	653	34.039	-3.842	26.566	1.00	5.79
ATOM	1648	CB	LYS	B	653	32.592	-3.355	26.388	1.00	6.75
ATOM	1649	CG	LYS	B	653	31.683	-3.588	27.623	1.00	6.98
ATOM	1650	CD	LYS	B	653	30.444	-2.803	27.531	1.00	9.41
ATOM	1651	CE	LYS	B	653	29.457	-3.240	28.518	1.00	9.56
ATOM	1652	NZ	LYS	B	653	29.069	-4.552	28.071	1.00	16.84
ATOM	1653	C	LYS	B	653	34.665	-4.068	25.177	1.00	5.15
ATOM	1654	O	LYS	B	653	34.680	-5.204	24.665	1.00	5.64
ATOM	1655	N	VAL	B	654	35.172	-3.033	24.528	1.00	3.96
ATOM	1656	CA	VAL	B	654	35.796	-3.311	23.240	1.00	4.21
ATOM	1657	CB	VAL	B	654	36.340	-2.025	22.582	1.00	3.09
ATOM	1658	CG1	VAL	B	654	37.138	-2.320	21.425	1.00	4.47
ATOM	1659	CG2	VAL	B	654	35.261	-1.175	22.068	1.00	3.53
ATOM	1660	C	VAL	B	654	36.923	-4.399	23.425	1.00	5.38
ATOM	1661	O	VAL	B	654	37.162	-5.194	22.517	1.00	5.50
ATOM	1662	N	TYR	B	655	37.606	-4.433	24.579	1.00	4.72
ATOM	1663	CA	TYR	B	655	38.644	-5.454	24.769	1.00	6.51
ATOM	1664	CB	TYR	B	655	39.505	-5.204	26.019	1.00	6.11
ATOM	1665	CG	TYR	B	655	40.456	-4.016	25.925	1.00	9.57
ATOM	1666	CD1	TYR	B	655	41.074	-3.656	24.712	1.00	10.61
ATOM	1667	CE1	TYR	B	655	41.943	-2.567	24.654	1.00	12.73
ATOM	1668	CZ	TYR	B	655	42.195	-1.858	25.839	1.00	13.88
ATOM	1669	OH	TYR	B	655	43.039	-0.758	25.867	1.00	17.21
ATOM	1670	CE2	TYR	B	655	41.577	-2.206	27.021	1.00	8.69
ATOM	1671	CD2	TYR	B	655	40.725	-3.241	27.055	1.00	9.00
ATOM	1672	C	TYR	B	655	38.074	-6.888	24.825	1.00	6.04
ATOM	1673	O	TYR	B	655	38.605	-7.806	24.221	1.00	6.92
ATOM	1674	N	ARG	B	656	36.985	-7.059	25.528	1.00	5.36
ATOM	1675	CA	ARG	B	656	36.402	-8.358	25.720	1.00	6.12
ATOM	1676	CB	ARG	B	656	35.157	-8.238	26.641	1.00	5.83
ATOM	1677	CG	ARG	B	656	34.955	-9.400	27.555	1.00	9.85

ATOM	1720	CB	ARG B	661	36.608	-11.793	17.653	1.00	8.53
ATOM	1721	CG	ARG B	661	35.229	-11.304	17.915	1.00	7.97
ATOM	1722	CD	ARG B	661	34.886	-10.027	17.178	1.00	3.76
ATOM	1723	NE	ARG B	661	33.472	-9.762	16.983	1.00	2.70
ATOM	1724	CZ	ARG B	661	32.973	-8.629	16.467	1.00	3.60
ATOM	1725	NH1	ARG B	661	33.784	-7.652	16.053	1.00	3.87
ATOM	1726	NH2	ARG B	661	31.652	-8.468	16.330	1.00	2.00
ATOM	1727	C	ARG B	661	38.478	-13.448	18.096	1.00	12.78
ATOM	1728	O	ARG B	661	38.625	-14.338	17.273	1.00	13.90
ATOM	1729	N	LEU B	662	39.508	-12.879	18.735	1.00	13.10
ATOM	1730	CA	LEU B	662	40.902	-13.230	18.462	1.00	13.72
ATOM	1731	CB	LEU B	662	41.803	-12.308	19.265	1.00	13.06
ATOM	1732	CG	LEU B	662	43.286	-12.110	18.918	1.00	14.40
ATOM	1733	CD1	LEU B	662	44.132	-12.325	20.086	1.00	9.20
ATOM	1734	CD2	LEU B	662	43.829	-12.854	17.630	1.00	15.62
ATOM	1735	C	LEU B	662	41.198	-14.658	18.904	1.00	15.28
ATOM	1736	O	LEU B	662	41.900	-15.448	18.206	1.00	15.63
ATOM	1737	N	ASN B	663	40.656	-14.980	20.082	1.00	15.58
ATOM	1738	CA	ASN B	663	40.829	-16.268	20.666	1.00	15.36
ATOM	1739	CB	ASN B	663	40.287	-16.291	22.090	1.00	15.75
ATOM	1740	CG	ASN B	663	40.059	-17.727	22.606	1.00	16.02
ATOM	1741	OD1	ASN B	663	38.985	-18.274	22.388	1.00	16.31
ATOM	1742	ND2	ASN B	663	41.057	-18.320	23.284	1.00	9.15
ATOM	1743	C	ASN B	663	40.143	-17.296	19.840	1.00	15.24
ATOM	1744	O	ASN B	663	40.592	-18.403	19.771	1.00	15.75
ATOM	1745	N	THR B	664	39.030	-16.930	19.225	1.00	15.92
ATOM	1746	CA	THR B	664	38.274	-17.868	18.396	1.00	15.65
ATOM	1747	CB	THR B	664	36.934	-17.267	17.986	1.00	16.03
ATOM	1748	OG1	THR B	664	36.179	-16.882	19.145	1.00	18.60
ATOM	1749	CG2	THR B	664	36.076	-18.315	17.271	1.00	12.83
ATOM	1750	C	THR B	664	39.059	-18.201	17.126	1.00	15.89
ATOM	1751	O	THR B	664	39.095	-19.335	16.740	1.00	15.40
ATOM	1752	N	LEU B	665	39.661	-17.208	16.472	1.00	16.10
ATOM	1753	CA	LEU B	665	40.453	-17.463	15.290	1.00	17.99
ATOM	1754	CB	LEU B	665	40.700	-16.171	14.515	1.00	18.03
ATOM	1755	CG	LEU B	665	39.504	-15.473	13.840	1.00	17.81
ATOM	1756	CD1	LEU B	665	39.932	-14.082	13.322	1.00	14.11
ATOM	1757	CD2	LEU B	665	38.978	-16.273	12.715	1.00	15.62
ATOM	1758	C	LEU B	665	41.816	-18.142	15.599	1.00	18.90
ATOM	1759	O	LEU B	665	42.290	-18.978	14.843	1.00	18.38
ATOM	1760	N	CYS B	666	42.452	-17.769	16.702	1.00	19.38
ATOM	1761	CA	CYS B	666	43.727	-18.381	17.036	1.00	19.52

		C S C O N C C C C C O O C	666	44.435	-17.649	18.192	1.00	20.43
ATOM	1762	CB	CYS B 666	45.104	-16.057	17.678	1.00	19.13
ATOM	1763	SG	CYS B 666	43.614	-19.808	17.430	1.00	19.42
ATOM	1764	C	CYS B 666	44.601	-20.549	17.260	1.00	19.57
ATOM	1765	O	CYS B 666	42.463	-20.191	18.009	1.00	18.97
ATOM	1766	N	GLU B 667	42.273	-21.576	18.478	1.00	18.84
ATOM	1767	CA	GLU B 667	39.851	-24.235	21.937	1.00	12.51
ATOM	1768	CB	GLU B 667	41.170	-21.680	19.536	1.00	18.36
ATOM	1769	CG	GLU B 667	40.892	-23.085	20.048	1.00	17.77
ATOM	1770	CD	GLU B 667	40.404	-23.151	21.526	1.00	18.28
ATOM	1771	OE1	GLU B 667	41.558	-22.126	22.277	1.00	16.34
ATOM	1772	OE2	GLU B 667	41.330	-22.508	17.291	1.00	19.46
ATOM	1773	C	GLU B 667	42.019	-22.454	14.376	1.00	19.07
ATOM	1774	O	GLU B 667	42.257	-23.691	17.387	1.00	20.81
ATOM	1775	N	ARG B 668	41.558	-21.979	16.166	1.00	18.39
ATOM	1776	CA	ARG B 668	41.330	-22.817	15.012	1.00	18.41
ATOM	1777	CB	ARG B 668	40.005	-22.454	14.376	1.00	19.07
ATOM	1778	CG	ARG B 668	38.775	-22.369	15.341	1.00	20.80
ATOM	1779	CD	ARG B 668	37.477	-21.891	14.616	1.00	19.53
ATOM	1780	NE	ARG B 668	36.292	-21.858	15.484	1.00	23.37
ATOM	1781	CZ	ARG B 668	35.058	-21.419	15.127	1.00	22.67
ATOM	1782	NH1	ARG B 668	34.778	-20.972	13.896	1.00	20.39
ATOM	1783	NH2	ARG B 668	34.094	-21.407	16.035	1.00	20.67
ATOM	1784	C	ARG B 668	42.450	-22.719	13.950	1.00	18.34
ATOM	1785	O	ARG B 668	42.651	-23.613	13.122	1.00	17.26
ATOM	1786	N	LEU B 669	43.206	-21.630	13.988	1.00	18.42
ATOM	1787	CA	LEU B 669	44.255	-21.413	13.001	1.00	18.63
ATOM	1788	CB	LEU B 669	44.105	-19.999	12.412	1.00	19.29
ATOM	1789	CG	LEU B 669	43.433	-19.874	11.029	1.00	20.70
ATOM	1790	CD1	LEU B 669	42.191	-20.771	10.861	1.00	18.65
ATOM	1791	CD2	LEU B 669	43.167	-18.385	10.606	1.00	15.39
ATOM	1792	C	LEU B 669	45.677	-21.649	13.553	1.00	18.31
ATOM	1793	O	LEU B 669	46.559	-22.131	12.850	1.00	17.46
ATOM	1794	N	LEU B 670	45.892	-21.320	14.819	1.00	17.97
ATOM	1795	CA	LEU B 670	47.206	-21.450	15.382	1.00	18.50
ATOM	1796	CB	LEU B 670	47.699	-20.070	15.762	1.00	18.75
ATOM	1797	CG	LEU B 670	47.828	-19.118	14.568	1.00	17.36
ATOM	1798	CD1	LEU B 670	48.413	-17.828	15.007	1.00	15.48
ATOM	1799	CD2	LEU B 670	48.698	-19.778	13.477	1.00	14.62
ATOM	1800	C	LEU B 670	47.340	-22.401	16.552	1.00	19.33
ATOM	1801	O	LEU B 670	48.121	-22.162	17.448	1.00	19.41
ATOM	1802	N	SER B 671	46.646	-23.529	16.514	1.00	21.39
ATOM	1803	CA	SER B 671	46.704	-24.470	17.632	1.00	23.09

69

ATOM	1804	CB	SER B	671	45.665	-25.575	17.484	1.00	22.45
ATOM	1805	OG	SER B	671	45.803	-26.222	16.227	1.00	23.79
ATOM	1806	C	SER B	671	48.081	-25.084	17.765	1.00	24.29
ATOM	1807	O	SER B	671	48.467	-25.474	18.858	1.00	24.66
ATOM	1808	N	GLU B	672	48.806	-25.180	16.644	1.00	25.50
ATOM	1809	CA	GLU B	672	50.152	-25.749	16.637	1.00	25.94
ATOM	1810	CB	GLU B	672	50.715	-25.898	15.221	1.00	27.18
ATOM	1811	CG	GLU B	672	49.983	-26.842	14.267	1.00	31.37
ATOM	1812	CD	GLU B	672	50.420	-26.667	12.787	1.00	36.21
ATOM	1813	OE1	GLU B	672	50.113	-25.634	12.135	1.00	34.47
ATOM	1814	OE2	GLU B	672	51.058	-27.605	12.247	1.00	40.18
ATOM	1815	C	GLU B	672	51.097	-24.868	17.431	1.00	25.14
ATOM	1816	O	GLU B	672	52.048	-25.379	18.006	1.00	25.38
ATOM	1817	N	HIS B	673	50.867	-23.548	17.439	1.00	24.39
ATOM	1818	CA	HIS B	673	51.727	-22.613	18.226	1.00	23.25
ATOM	1819	CB	HIS B	673	52.507	-21.670	17.308	1.00	22.74
ATOM	1820	CG	HIS B	673	52.982	-22.304	16.035	1.00	24.74
ATOM	1821	ND1	HIS B	673	52.234	-22.309	14.874	1.00	23.69
ATOM	1822	CE1	HIS B	673	52.909	-22.931	13.920	1.00	23.68
ATOM	1823	NE2	HIS B	673	54.075	-23.316	14.413	1.00	23.92
ATOM	1824	CD2	HIS B	673	54.142	-22.947	15.737	1.00	25.13
ATOM	1825	C	HIS B	673	50.904	-21.811	19.255	1.00	21.86
ATOM	1826	O	HIS B	673	50.723	-20.598	19.131	1.00	21.72
ATOM	1827	N	PRO B	674	50.422	-22.506	20.274	1.00	20.75
ATOM	1828	CA	PRO B	674	49.579	-21.913	21.309	1.00	19.67
ATOM	1829	CB	PRO B	674	49.540	-23.021	22.379	1.00	19.92
ATOM	1830	CG	PRO B	674	49.687	-24.247	21.623	1.00	19.13
ATOM	1831	CD	PRO B	674	50.691	-23.934	20.547	1.00	20.60
ATOM	1832	C	PRO B	674	50.126	-20.630	21.901	1.00	18.69
ATOM	1833	O	PRO B	674	49.369	-19.848	22.443	1.00	18.47
ATOM	1834	N	GLU B	675	51.420	-20.396	21.773	1.00	18.13
ATOM	1835	CA	GLU B	675	51.998	-19.194	22.326	1.00	18.19
ATOM	1836	CB	GLU B	675	53.517	-19.319	22.414	1.00	18.97
ATOM	1837	CG	GLU B	675	54.274	-19.156	21.088	1.00	19.76
ATOM	1838	CD	GLU B	675	54.239	-20.376	20.186	1.00	18.67
ATOM	1839	OE1	GLU B	675	53.642	-21.410	20.560	1.00	16.34
ATOM	1840	OE2	GLU B	675	54.824	-20.283	19.085	1.00	18.78
ATOM	1841	C	GLU B	675	51.657	-17.940	21.548	1.00	17.58
ATOM	1842	O	GLU B	675	51.660	-16.886	22.121	1.00	18.20
ATOM	1843	N	LEU B	676	51.382	-18.030	20.250	1.00	16.44
ATOM	1844	CA	LEU B	676	51.143	-16.803	19.469	1.00	15.70
ATOM	1845	CB	LEU B	676	51.006	-17.104	17.965	1.00	15.18

ATOM	1930	CD	GLN	B	685	46.325	-2.667	25.299	1.00	16.01	
ATOM	1931	OE1	GLN	B	685	45.818	-1.596	25.619	1.00	13.41	
ATOM	ATOM	1932	NE2	GLN	B	685	47.650	-2.813	25.090	1.00	17.77
ATOM	ATOM	1933	C	GLN	B	685	46.597	-2.708	22.317	1.00	6.15
ATOM	ATOM	1934	O	GLN	B	685	46.095	-1.608	22.604	1.00	5.65
ATOM	ATOM	1935	N	HIS	B	686	47.843	-2.870	21.897	1.00	5.79
ATOM	ATOM	1936	CA	HIS	B	686	48.776	-1.748	21.793	1.00	6.80
ATOM	ATOM	1937	CB	HIS	B	686	50.212	-2.230	21.429	1.00	6.29
ATOM	ATOM	1938	CG	HIS	B	686	51.124	-1.132	20.934	1.00	12.07
ATOM	ATOM	1939	ND1	HIS	B	686	51.758	-0.238	21.781	1.00	17.34
ATOM	ATOM	1940	CE1	HIS	B	686	52.481	0.616	21.068	1.00	14.84
ATOM	ATOM	1941	NE2	HIS	B	686	52.355	0.303	19.791	1.00	13.76
ATOM	ATOM	1942	CD2	HIS	B	686	51.509	-0.783	19.676	1.00	13.72
ATOM	ATOM	1943	C	HIS	B	686	48.241	-0.747	20.772	1.00	6.86
ATOM	ATOM	1944	O	HIS	B	686	48.443	0.473	20.897	1.00	5.59
ATOM	ATOM	1945	N	THR	B	687	47.531	-1.302	19.791	1.00	6.24
ATOM	ATOM	1946	CA	THR	B	687	47.058	-0.557	18.692	1.00	7.58
ATOM	ATOM	1947	CB	THR	B	687	46.784	-1.518	17.502	1.00	8.36
ATOM	ATOM	1948	OG1	THR	B	687	48.012	-2.196	17.143	1.00	6.50
ATOM	ATOM	1949	CG2	THR	B	687	46.448	-0.754	16.252	1.00	6.00
ATOM	ATOM	1950	C	THR	B	687	45.871	0.216	19.119	1.00	8.56
ATOM	ATOM	1951	O	THR	B	687	45.839	1.429	19.017	1.00	10.02
ATOM	ATOM	1952	N	LEU	B	688	44.98	-0.482	19.673	1.00	9.41
ATOM	ATOM	1953	CA	LEU	B	688	43.666	0.139	20.069	1.00	8.15
ATOM	ATOM	1954	CB	LEU	B	688	42.762	-0.907	20.687	1.00	7.39
ATOM	ATOM	1955	CG	LEU	B	688	42.153	-1.890	19.723	1.00	10.18
ATOM	ATOM	1956	CD1	LEU	B	688	41.445	-3.058	20.415	1.00	7.27
ATOM	ATOM	1957	CD2	LEU	B	688	41.142	-1.098	18.791	1.00	13.68
ATOM	ATOM	1958	C	LEU	B	688	43.962	1.272	21.036	1.00	8.20
ATOM	ATOM	1959	O	LEU	B	688	43.227	2.296	21.085	1.00	7.09
ATOM	ATOM	1960	N	GLN	B	689	45.030	1.084	21.812	1.00	8.37
ATOM	ATOM	1961	CA	GLN	B	689	45.360	2.012	22.883	1.00	9.31
ATOM	ATOM	1962	CB	GLN	B	689	45.965	1.285	24.062	1.00	9.91
ATOM	ATOM	1963	CG	GLN	B	689	46.488	2.136	25.193	1.00	11.42
ATOM	ATOM	1964	CD	GLN	B	689	47.388	1.309	26.139	1.00	17.91
ATOM	ATOM	1965	OEL	GLN	B	689	47.428	1.509	27.368	1.00	16.47
ATOM	ATOM	1966	NE2	GLN	B	689	48.116	0.373	25.548	1.00	22.00
ATOM	ATOM	1967	C	GLN	B	689	46.291	3.107	22.475	1.00	10.00
ATOM	ATOM	1968	O	GLN	B	689	46.151	4.202	22.972	1.00	10.3
ATOM	ATOM	1969	N	ASN	B	690	47.242	2.842	21.585	1.00	10.3
ATOM	ATOM	1970	CA	ASN	B	690	48.195	3.873	21.243	1.00	10.8
ATOM	ATOM	1971				49.594	3.477	21.680	1.00	11.4	

ATOM	2014	O	LIEU	B	694	42.537	11.620	1.00	4.81	
ATOM	2015	N	MET	B	695	42.079	3.163	13.645	1.00	6.55
ATOM	2016	CA	MET	B	695	40.705	2.688	13.639	1.00	6.27
ATOM	2017	CB	MET	B	695	40.166	2.596	15.082	1.00	7.54
ATOM	2018	CG	MET	B	695	40.634	1.332	15.836	1.00	9.37
ATOM	2019	SD	MET	B	695	39.938	-0.166	15.166	1.00	7.22
ATOM	2020	CE	MET	B	695	38.323	0.077	15.495	1.00	2.00
ATOM	2021	C	MET	B	695	39.780	3.627	12.933	1.00	5.88
ATOM	2022	O	MET	B	695	38.662	3.212	12.616	1.00	5.11
ATOM	2023	N	ARG	B	696	40.219	4.874	12.705	1.00	5.14
ATOM	2024	CA	ARG	B	696	39.358	5.925	12.159	1.00	5.59
ATOM	2025	CZ	ARG	B	696	40.136	7.200	11.947	1.00	6.29
ATOM	2026	CG	ARG	B	696	39.302	8.469	11.978	1.00	6.47
ATOM	2027	CD	ARG	B	696	40.166	9.744	11.848	1.00	8.31
ATOM	2028	NE	ARG	B	696	39.304	10.900	12.043	1.00	13.20
ATOM	2029	CZ	ARG	B	696	39.133	11.587	13.185	1.00	9.34
ATOM	2030	NH1	ARG	B	696	39.826	11.314	14.278	1.00	3.82
ATOM	2031	NH2	ARG	B	696	38.279	12.606	13.177	1.00	9.75
ATOM	2032	C	ARG	B	696	38.683	5.569	10.866	1.00	5.88
ATOM	2033	O	ARG	B	696	39.321	5.442	9.835	1.00	6.24
ATOM	2034	N	ASP	B	697	37.374	5.417	10.909	1.00	5.84
ATOM	2035	CA	ASP	B	697	36.620	5.019	9.689	1.00	6.16
ATOM	2036	CB	ASP	B	697	36.851	6.024	8.563	1.00	5.37
ATOM	2037	CG	ASP	B	697	36.238	7.416	8.830	1.00	5.53
ATOM	2038	OD1	ASP	B	697	35.077	7.547	9.309	1.00	7.21
ATOM	2039	OD2	ASP	B	697	36.823	8.461	8.482	1.00	3.96
ATOM	2040	C	ASP	B	697	36.989	3.586	9.232	1.00	4.52
ATOM	2041	O	ASP	B	697	36.893	3.257	8.060	1.00	2.10
ATOM	2042	N	ARG	B	698	37.458	2.779	10.173	1.00	2.27
ATOM	2043	CA	ARG	B	698	37.862	1.431	9.890	1.00	3.61
ATOM	2044	CB	ARG	B	698	39.393	1.335	9.864	1.00	2.00
ATOM	2045	CG	ARG	B	698	39.962	1.672	8.510	1.00	7.08
ATOM	2046	CD	ARG	B	698	41.414	1.300	8.239	1.00	10.31
ATOM	2047	NE	ARG	B	698	42.223	2.334	8.809	1.00	14.26
ATOM	2048	CZ	ARG	B	698	42.863	3.260	8.137	1.00	9.60
ATOM	2049	NH1	ARG	B	698	42.877	3.272	6.818	1.00	8.71
ATOM	2050	NH2	ARG	B	698	43.498	4.171	8.817	1.00	5.51
ATOM	2051	C	ARG	B	698	37.198	0.423	10.881	1.00	4.51
ATOM	2052	O	ARG	B	698	36.474	0.785	11.830	1.00	5.73
ATOM	2053	N	HIS	B	699	37.445	-0.843	10.687	1.00	4.24
ATOM	2054	CA	HIS	B	699	36.758	-1.862	11.467	1.00	4.34
ATOM	2055	CB	HIS	B	699	36.070	-2.833	10.451	1.00	4.52

ATOM	2056	CG	HIS	B	699	35.058	-3.760	11.034	1.00	2.22
ATOM	2057	ND1	HIS	B	699	35.386	-4.729	11.964	1.00	3.86
ATOM	2058	CE1	HIS	B	699	34.311	-5.460	12.229	1.00	2.00
ATOM	2059	NE2	HIS	B	699	33.306	-5.005	11.507	1.00	2.00
ATOM	2060	CD2	HIS	B	699	33.746	-3.935	10.758	1.00	2.00
ATOM	2061	C	HIS	B	699	37.706	-2.621	12.402	1.00	3.78
ATOM	2062	O	HIS	B	699	38.796	-2.946	12.041	1.00	2.51
ATOM	2063	N	ILE	B	700	37.226	-2.906	13.608	1.00	3.99
ATOM	2064	CA	ILE	B	700	37.962	-3.652	14.592	1.00	4.35
ATOM	2065	CB	ILE	B	700	37.015	-4.031	15.713	1.00	3.43
ATOM	2066	CG	ILE	B	700	37.467	-4.058	17.177	1.00	2.71
ATOM	2067	CD1	ILE	B	700	36.714	-5.193	17.919	1.00	2.00
ATOM	2068	CD2	ILE	B	700	38.954	-4.198	17.322	1.00	2.00
ATOM	2069	C	ILE	B	700	38.512	-4.994	14.019	1.00	4.85
ATOM	2070	O	ILE	B	700	39.607	-5.385	14.340	1.00	3.57
ATOM	2071	N	ASP	B	701	37.737	-5.695	13.188	1.00	4.86
ATOM	2072	CA	ASP	B	701	38.202	-6.958	12.691	1.00	5.27
ATOM	2073	CB	ASP	B	701	37.055	-7.724	12.051	1.00	6.51
ATOM	2074	CG	ASP	B	701	35.965	-8.161	13.051	1.00	8.63
ATOM	2075	OD1	ASP	B	701	36.140	-8.095	14.300	1.00	8.97
ATOM	2076	OD2	ASP	B	701	34.860	-8.568	12.634	1.00	12.11
ATOM	2077	C	ASP	B	701	39.392	-6.779	11.683	1.00	5.92
ATOM	2078	O	ASP	B	701	40.241	-7.654	11.524	1.00	4.87
ATOM	2079	N	GLN	B	702	39.449	-5.650	10.990	1.00	6.01
ATOM	2080	CA	GLN	B	702	40.548	-5.398	10.068	1.00	6.04
ATOM	2081	CB	GLN	B	702	40.262	-4.162	9.205	1.00	5.99
ATOM	2082	CG	GLN	B	702	38.897	-4.192	8.644	1.00	5.27
ATOM	2083	CD	GLN	B	702	38.418	-2.903	8.079	1.00	4.96
ATOM	2084	OE1	GLN	B	702	38.869	-1.797	8.471	1.00	4.27
ATOM	2085	NE2	GLN	B	702	37.475	-3.020	7.135	1.00	3.80
ATOM	2086	C	GLN	B	702	41.896	-5.243	10.829	1.00	6.46
ATOM	2087	O	GLN	B	702	42.908	-5.756	10.357	1.00	6.12
ATOM	2088	N	ILE	B	703	41.899	-4.594	12.002	1.00	5.52
ATOM	2089	CA	ILE	B	703	43.105	-4.450	12.777	1.00	6.51
ATOM	2090	CB	ILE	B	703	42.911	-3.462	13.974	1.00	8.27
ATOM	2091	CG1	ILE	B	703	43.146	-2.006	13.577	1.00	7.52
ATOM	2092	CD1	ILE	B	703	42.183	-1.541	12.512	1.00	10.76
ATOM	2093	CG2	ILE	B	703	43.838	-3.807	15.102	1.00	5.38
ATOM	2094	C	ILE	B	703	43.451	-5.788	13.382	1.00	8.35
ATOM	2095	O	ILE	B	703	44.630	-6.094	13.568	1.00	9.15
ATOM	2096	N	MET	B	704	42.427	-6.586	13.720	1.00	8.61
ATOM	2097	CA	MET	B	704	42.616	-7.906	14.325	1.00	7.76

37

ATOM	2140	CE2	TYR	B	709	51.062	-10.456	6.013	1.00	22.99
ATOM	2141	CD2	TYR	B	709	50.372	-10.300	7.161	1.00	21.61
ATOM	2142	C	TYR	B	709	50.587	-11.163	10.224	1.00	17.84
ATOM	2143	O	TYR	B	709	51.559	-11.656	9.676	1.00	17.96
ATOM	2144	N	GLY	B	710	50.665	-10.107	11.024	1.00	17.95
ATOM	2145	CA	GLY	B	710	51.936	-9.469	11.349	1.00	17.36
ATOM	2146	C	GLY	B	710	52.857	-10.280	12.271	1.00	17.08
ATOM	2147	O	GLY	B	710	53.937	-10.643	11.848	1.00	18.01
ATOM	2148	N	ILE	B	711	52.444	-10.585	13.493	1.00	16.32
ATOM	2149	CA	ILE	B	711	53.288	-11.312	14.417	1.00	16.83
ATOM	2150	CB	ILE	B	711	52.598	-11.494	15.796	1.00	15.62
ATOM	2151	CG1	ILE	B	711	53.286	-10.673	16.876	1.00	17.22
ATOM	2152	CD1	ILE	B	711	53.453	-9.239	16.632	1.00	18.82
ATOM	2153	CG2	ILE	B	711	52.745	-12.930	16.319	1.00	13.88
ATOM	2154	C	ILE	B	711	53.705	-12.666	13.783	1.00	18.91
ATOM	2155	O	ILE	B	711	54.827	-13.122	13.926	1.00	17.41
ATOM	2156	N	CYS	B	712	52.808	-13.303	13.049	1.00	20.88
ATOM	2157	CA	CYS	B	712	53.214	-14.544	12.455	1.00	23.68
ATOM	2158	CB	CYS	B	712	52.091	-15.179	11.615	1.00	23.93
ATOM	2159	SG	CYS	B	712	50.569	-15.723	12.496	1.00	26.62
ATOM	2160	C	CYS	B	712	54.430	-14.237	11.571	1.00	25.43
ATOM	2161	O	CYS	B	712	55.390	-15.029	11.516	1.00	25.92
ATOM	2162	N	LYS	B	713	54.392	-13.097	10.875	1.00	26.01
ATOM	2163	CA	LYS	B	713	55.467	-12.746	9.970	1.00	27.09
ATOM	2164	CB	LYS	B	713	55.171	-11.436	9.272	1.00	27.73
ATOM	2165	CG	LYS	B	713	54.261	-11.607	8.055	1.00	31.65
ATOM	2166	CD	LYS	B	713	54.847	-12.565	7.008	1.00	35.08
ATOM	2167	CE	LYS	B	713	54.103	-12.463	5.640	1.00	37.06
ATOM	2168	NZ	LYS	B	713	54.896	-13.092	4.488	1.00	37.63
ATOM	2169	C	LYS	B	713	56.825	-12.677	10.631	1.00	26.49
ATOM	2170	O	LYS	B	713	57.790	-13.241	10.157	1.00	25.93
ATOM	2171	N	VAL	B	714	56.900	-11.968	11.736	1.00	26.93
ATOM	2172	CA	VAL	B	714	58.181	-11.816	12.437	1.00	26.50
ATOM	2173	CB	VAL	B	714	58.141	-10.659	13.427	1.00	26.43
ATOM	2174	CG1	VAL	B	714	58.139	-9.365	12.651	1.00	27.09
ATOM	2175	CG2	VAL	B	714	56.913	-10.776	14.334	1.00	23.75
ATOM	2176	C	VAL	B	714	58.631	-13.072	13.160	1.00	26.16
ATOM	2177	O	VAL	B	714	59.795	-13.206	13.464	1.00	26.08
ATOM	2178	N	LYS	B	715	57.697	-13.978	13.431	1.00	26.17
ATOM	2179	CA	LYS	B	715	58.000	-15.241	14.067	1.00	26.40
ATOM	2180	CB	LYS	B	715	56.935	-15.601	15.080	1.00	25.70
ATOM	2181	CG	LYS	B	715	56.793	-14.644	16.220	1.00	23.21

80

ATOM	2224	CB	LYS	B	720	49.501	-18.082	0.379	1.00	39.26
ATOM	2225	NZ	LYS	B	720	49.418	-18.855	-0.944	1.00	38.62
ATOM	2226	C	LYS	B	720	47.223	-15.858	4.896	1.00	30.27
ATOM	2227	O	LYS	B	720	46.347	-16.374	5.592	1.00	30.09
ATOM	2228	N	PHE	B	721	47.117	-14.644	4.368	1.00	29.04
ATOM	2229	CA	PHE	B	721	45.957	-13.801	4.578	1.00	28.05
ATOM	2230	CB	PHE	B	721	46.162	-12.422	3.958	1.00	28.24
ATOM	2231	CG	PHE	B	721	45.750	-9.238	4.948	1.00	29.36
ATOM	2232	CD1	PHE	B	721	46.005	-11.287	6.050	1.00	31.20
ATOM	2233	CE1	PHE	B	721	46.885	-9.353	5.715	1.00	31.53
ATOM	2234	CZ	PHE	B	721	47.017	-10.361	5.134	1.00	30.03
ATOM	2235	CE2	PHE	B	721	44.728	-10.147	6.625	1.00	31.53
ATOM	2236	CD2	PHE	B	721	43.614	-14.270	4.532	1.00	27.29
ATOM	2237	C	PHE	B	721	43.008	-16.961	0.169	1.00	30.40
ATOM	2238	O	PHE	B	721	44.888	-15.203	2.952	1.00	29.38
ATOM	2239	N	LYS	B	722	43.762	-15.855	2.337	1.00	25.19
ATOM	2240	CA	LYS	B	722	44.165	-16.442	0.986	1.00	27.24
ATOM	2241	CB	LYS	B	722	43.363	-20.138	-0.003	1.00	30.46
ATOM	2242	CG	LYS	B	722	43.224	-16.916	3.276	1.00	30.46
ATOM	2243	CD	LYS	B	722	43.524	-17.782	-1.015	1.00	35.80
ATOM	2244	CE	LYS	B	722	44.265	-19.065	-0.529	1.00	37.91
ATOM	2245	NZ	LYS	B	722	43.670	-18.462	5.090	1.00	36.85
ATOM	2246	C	LYS	B	722	44.905	-19.242	5.626	1.00	23.23
ATOM	2247	O	LYS	B	722	42.052	-17.236	3.235	1.00	23.64
ATOM	2248	N	ILE	B	723	44.086	-17.465	4.117	1.00	21.64
ATOM	2249	CA	Ile	B	723	43.670	-18.462	6.895	1.00	20.50
ATOM	2250	CB	Ile	B	723	44.937	-17.771	6.249	1.00	20.86
ATOM	2251	CG1	Ile	B	723	45.479	-20.194	4.560	1.00	22.30
ATOM	2252	CD1	Ile	B	723	44.530	-21.368	4.187	1.00	25.70
ATOM	2253	CG2	Ile	B	723	44.556	-20.036	6.895	1.00	18.10
ATOM	2254	C	Ile	B	723	42.937	-17.771	6.249	1.00	19.81
ATOM	2255	O	Ile	B	723	41.997	-18.301	6.822	1.00	20.17
ATOM	2256	N	Ile	B	724	43.384	-16.581	6.600	1.00	17.88
ATOM	2257	CA	Ile	B	724	42.789	-15.874	7.676	1.00	16.10
ATOM	2258	CB	Ile	B	724	43.137	-13.949	9.255	1.00	16.09
ATOM	2259	CG1	Ile	B	724	45.116	-15.191	8.034	1.00	16.51
ATOM	2260	CD1	Ile	B	724	46.054	-14.177	8.240	1.00	13.98
ATOM	2261	CG2	Ile	B	724	41.407	-15.432	7.288	1.00	15.97
ATOM	2262	C	Ile	B	724	40.475	-15.523	8.079	1.00	15.53
ATOM	2263	O	Ile	B	724	41.247	-14.975	6.058	1.00	16.45
ATOM	2264	N	VAL	B	725	39.946	-14.483	5.577	1.00	17.58
ATOM	2265	CA	VAL	B	725					

82

ATOM	2308	OD1	ASP	B	730	32.778	-20.962	8.350	1.00	22.19
ATOM	2309	OD2	ASP	B	730	34.856	-21.298	8.810	1.00	20.06
ATOM	2310	C	ASP	B	730	32.241	-17.690	10.914	1.00	16.31
ATOM	2311	O	ASP	B	730	31.219	-18.118	11.429	1.00	17.05
ATOM	2312	N	LEU	B	731	32.844	-16.610	11.392	1.00	14.65
ATOM	2313	CA	LEU	B	731	32.243	-15.945	12.522	1.00	15.22
ATOM	2314	CB	LEU	B	731	33.125	-14.789	13.052	1.00	14.75
ATOM	2315	CG	LEU	B	731	34.636	-15.126	13.196	1.00	13.31
ATOM	2316	CD1	LEU	B	731	35.586	-13.937	13.501	1.00	8.91
ATOM	2317	CD2	LEU	B	731	34.775	-16.150	14.223	1.00	11.15
ATOM	2318	C	LEU	B	731	30.846	-15.507	12.109	1.00	15.53
ATOM	2319	O	LEU	B	731	30.649	-15.085	10.986	1.00	15.48
ATOM	2320	N	PRO	B	732	29.874	-15.635	13.008	1.00	16.47
ATOM	2321	CA	PRO	B	732	28.444	-15.313	12.714	1.00	17.37
ATOM	2322	CB	PRO	B	732	27.732	-15.685	14.022	1.00	17.22
ATOM	2323	CG	PRO	B	732	28.872	-15.595	15.072	1.00	16.47
ATOM	2324	CD	PRO	B	732	30.066	-16.164	14.367	1.00	15.27
ATOM	2325	C	PRO	B	732	28.075	-13.853	12.326	1.00	18.51
ATOM	2326	O	PRO	B	732	27.003	-13.592	11.762	1.00	17.81
ATOM	2327	N	HIS	B	733	28.931	-12.894	12.620	1.00	19.79
ATOM	2328	CA	HIS	B	733	28.578	-11.520	12.293	1.00	21.62
ATOM	2329	CB	HIS	B	733	28.964	-10.622	13.462	1.00	22.24
ATOM	2330	CG	HIS	B	733	30.392	-10.792	13.863	1.00	26.72
ATOM	2331	ND1	HIS	B	733	31.403	-9.962	13.400	1.00	31.50
ATOM	2332	CE1	HIS	B	733	32.566	-10.387	13.870	1.00	31.30
ATOM	2333	NE2	HIS	B	733	32.343	-11.463	14.614	1.00	32.86
ATOM	2334	CD2	HIS	B	733	30.998	-11.751	14.608	1.00	28.05
ATOM	2335	C	HIS	B	733	29.366	-11.070	11.077	1.00	21.53
ATOM	2336	O	HIS	B	733	29.161	-9.967	10.568	1.00	22.67
ATOM	2337	N	ALA	B	734	30.276	-11.924	10.626	1.00	20.57
ATOM	2338	CA	ALA	B	734	31.179	-11.610	9.525	1.00	19.72
ATOM	2339	CB	ALA	B	734	32.132	-12.798	9.274	1.00	19.49
ATOM	2340	C	ALA	B	734	30.555	-11.198	8.210	1.00	18.53
ATOM	2341	O	ALA	B	734	29.738	-11.898	7.666	1.00	18.10
ATOM	2342	N	VAL	B	735	31.036	-10.096	7.676	1.00	18.27
ATOM	2343	CA	VAL	B	735	30.646	-9.624	6.357	1.00	18.38
ATOM	2344	CB	VAL	B	735	30.027	-8.272	6.466	1.00	17.76
ATOM	2345	CG1	VAL	B	735	29.805	-7.694	5.093	1.00	19.37
ATOM	2346	CG2	VAL	B	735	28.741	-8.437	7.141	1.00	17.16
ATOM	2347	C	VAL	B	735	31.832	-9.562	5.428	1.00	18.15
ATOM	2348	O	VAL	B	735	32.839	-8.983	5.751	1.00	18.71
ATOM	2349	N	GLN	B	736	31.712	-10.129	4.245	1.00	19.52

84

ATOM	2392	C	LYS	B	740	37.470	-5.213	0.201	1.00	15.61
ATOM	2393	O	LYS	B	740	37.968	-4.795	-0.822	1.00	14.70
ATOM	2394	N	ARG	B	741	36.920	-4.416	1.127	1.00	15.05
ATOM	2395	CA	ARG	B	741	36.797	-2.962	0.995	1.00	14.19
ATOM	2396	CB	ARG	B	741	35.330	-2.620	0.730	1.00	14.64
ATOM	2397	CG	ARG	B	741	35.008	-1.179	0.421	1.00	16.18
ATOM	2398	CD	ARG	B	741	33.588	-0.966	-0.148	1.00	24.70
ATOM	2399	NE	ARG	B	741	33.531	0.033	-1.252	1.00	25.41
ATOM	2400	CZ	ARG	B	741	33.785	1.342	-1.084	1.00	26.65
ATOM	2401	NH1	ARG	B	741	34.096	1.807	0.123	1.00	25.62
ATOM	2402	NH2	ARG	B	741	33.733	2.193	-2.102	1.00	25.67
ATOM	2403	C	ARG	B	741	37.245	-2.300	2.291	1.00	13.80
ATOM	2404	O	ARG	B	741	36.469	-2.118	3.199	1.00	12.81
ATOM	2405	N	VAL	B	742	38.519	-1.966	2.379	1.00	13.97
ATOM	2406	CA	VAL	B	742	39.089	-1.379	3.586	1.00	14.00
ATOM	2407	CB	VAL	B	742	40.197	-2.276	4.165	1.00	14.78
ATOM	2408	CG1	VAL	B	742	40.864	-1.627	5.411	1.00	12.67
ATOM	2409	CG2	VAL	B	742	39.671	-3.683	4.413	1.00	13.17
ATOM	2410	C	VAL	B	742	39.698	-0.039	3.193	1.00	13.99
ATOM	2411	O	VAL	B	742	40.175	0.101	2.069	1.00	13.44
ATOM	2412	N	LEU	B	743	39.640	0.928	4.096	1.00	14.08
ATOM	2413	CA	LEU	B	743	40.118	2.281	3.834	1.00	16.23
ATOM	2414	CB	LEU	B	743	39.695	3.196	4.950	1.00	16.17
ATOM	2415	CG	LEU	B	743	39.291	4.624	4.687	1.00	17.47
ATOM	2416	CD1	LEU	B	743	39.320	5.415	5.988	1.00	16.65
ATOM	2417	CD2	LEU	B	743	40.177	5.284	3.687	1.00	19.65
ATOM	2418	C	LEU	B	743	41.622	2.365	3.695	1.00	17.49
ATOM	2419	O	LEU	B	743	42.360	1.710	4.400	1.00	17.60
ATOM	2420	N	ILE	B	744	42.072	3.160	2.744	1.00	20.53
ATOM	2421	CA	ILE	B	744	43.492	3.338	2.533	1.00	23.74
ATOM	2422	CB	ILE	B	744	43.902	2.930	1.102	1.00	24.04
ATOM	2423	CG1	ILE	B	744	43.379	1.514	0.756	1.00	22.67
ATOM	2424	CD1	ILE	B	744	43.896	0.426	1.560	1.00	19.74
ATOM	2425	CG2	ILE	B	744	45.405	2.990	0.952	1.00	23.62
ATOM	2426	C	ILE	B	744	43.982	4.733	2.819	1.00	25.89
ATOM	2427	O	ILE	B	744	44.797	4.898	3.691	1.00	26.76
ATOM	2428	N	LYS	B	745	43.493	5.737	2.100	1.00	28.94
ATOM	2429	CA	LYS	B	745	44.043	7.102	2.253	1.00	31.98
ATOM	2430	CB	LYS	B	745	44.911	7.474	1.035	1.00	31.99
ATOM	2431	CG	LYS	B	745	46.346	6.997	1.095	1.00	33.87
ATOM	2432	CD	LYS	B	745	46.918	6.683	-0.307	1.00	35.93
ATOM	2433	CE	LYS	B	745	47.283	7.943	-1.086	1.00	33.52

ATOM	NZ	LYS	B	745	46.120	8.507	-1.826	1.00	32.74	
ATOM	2435	C	LYS	B	745	43.011	8.218	2.510	1.00	33.73
ATOM	2436	O	LYS	B	745	43.033	8.889	3.574	1.00	35.26
ATOM	2437	N	GLU	B	746	42.125	8.457	1.542	1.00	34.28
ATOM	2438	CA	GLU	B	746	41.094	9.456	1.767	1.00	35.03
ATOM	2439	CB	GLU	B	746	41.370	10.733	0.995	1.00	35.68
ATOM	2440	CG	GLU	B	746	41.647	10.472	-0.457	1.00	39.53
ATOM	2441	CD	GLU	B	746	42.782	9.502	-0.614	1.00	42.55
ATOM	2442	OE1	GLU	B	746	43.920	9.880	-0.281	1.00	42.51
ATOM	2443	OE2	GLU	B	746	42.519	8.364	-1.034	1.00	47.78
ATOM	2444	C	GLU	B	746	39.726	8.925	1.439	1.00	34.47
ATOM	2445	O	GLU	B	746	38.844	8.974	2.266	1.00	36.86
ATOM	2446	N	GLU	B	747	39.526	8.424	0.234	1.00	33.35
ATOM	2447	CA	GLU	B	747	38.245	7.839	-0.115	1.00	31.94
ATOM	2448	CB	GLU	B	747	37.426	8.821	-0.936	1.00	32.95
ATOM	2449	CG	GLU	B	747	37.090	10.125	-0.212	1.00	36.33
ATOM	2450	CD	GLU	B	747	35.781	10.735	-0.705	1.00	39.89
ATOM	2451	OE1	GLU	B	747	34.720	10.153	-0.373	1.00	39.59
ATOM	2452	OE2	GLU	B	747	35.812	11.772	-1.431	1.00	40.99
ATOM	2453	C	GLU	B	747	38.504	6.586	-0.928	1.00	30.15
ATOM	2454	O	GLU	B	747	37.614	6.091	-1.625	1.00	29.18
ATOM	2455	N	GLU	B	748	39.747	6.109	-0.820	1.00	28.29
ATOM	2456	CA	GLU	B	748	40.251	4.934	-1.509	1.00	27.13
ATOM	2457	CB	GLU	B	748	41.666	5.225	-2.007	1.00	27.78
ATOM	2458	CG	GLU	B	748	42.369	4.026	-2.600	1.00	31.92
ATOM	2459	CD	GLU	B	748	41.560	3.391	-3.728	1.00	39.42
ATOM	2460	OE1	GLU	B	748	40.892	4.135	-4.511	1.00	41.77
ATOM	2461	OE2	GLU	B	748	41.576	2.138	-3.828	1.00	41.89
ATOM	2462	C	GLU	B	748	40.192	3.607	-0.701	1.00	25.04
ATOM	2463	O	GLU	B	748	40.724	3.480	0.411	1.00	23.53
ATOM	2464	N	TYR	B	749	39.506	2.621	-1.270	1.00	23.64
ATOM	2465	CA	TYR	B	749	39.390	1.305	-0.645	1.00	21.89
ATOM	2466	CB	TYR	B	749	37.939	1.027	-0.350	1.00	21.59
ATOM	2467	CG	TYR	B	749	37.363	1.979	0.662	1.00	19.85
ATOM	2468	CD1	TYR	B	749	37.125	3.290	0.327	1.00	17.50
ATOM	2469	CE1	TYR	B	749	36.596	4.167	1.231	1.00	19.14
ATOM	2470	CZ	TYR	B	749	36.300	3.745	2.506	1.00	19.16
ATOM	2471	OH	TYR	B	749	35.764	4.657	3.419	1.00	18.64
ATOM	2472	CE2	TYR	B	749	36.536	2.427	2.857	1.00	19.01
ATOM	2473	CD2	TYR	B	749	37.063	1.563	1.946	1.00	17.38
ATOM	2474	C	TYR	B	749	39.964	0.192	-1.504	1.00	20.89
ATOM	2475	O	TYR	B	749	39.916	0.259	-2.716	1.00	21.97

86

87

ATOM	2518	CE1	PHE	B	755	44.710	0.373	7.313	1.00	13.58
ATOM	2519	CZ	PHE	B	755	44.678	-0.431	8.444	1.00	12.16
ATOM	2520	CE2	PHE	B	755	44.603	-1.833	8.307	1.00	8.49
ATOM	2521	CD2	PHE	B	755	44.568	-2.414	7.070	1.00	5.62
ATOM	2522	C	PHE	B	755	47.028	-2.440	4.638	1.00	11.89
ATOM	2523	O	PHE	B	755	47.725	-1.554	5.142	1.00	10.64
ATOM	2524	N	TYR	B	756	47.239	-3.741	4.848	1.00	12.44
ATOM	2525	CA	TYR	B	756	48.369	-4.170	5.674	1.00	13.71
ATOM	2526	CB	TYR	B	756	48.450	-5.675	5.721	1.00	13.48
ATOM	2527	CG	TYR	B	756	49.697	-6.181	6.414	1.00	16.30
ATOM	2528	CD1	TYR	B	756	49.792	-6.197	7.793	1.00	16.18
ATOM	2529	CE1	TYR	B	756	50.933	-6.683	8.441	1.00	18.26
ATOM	2530	CZ	TYR	B	756	52.012	-7.161	7.687	1.00	21.98
ATOM	2531	OH	TYR	B	756	53.166	-7.628	8.297	1.00	17.21
ATOM	2532	CE2	TYR	B	756	51.935	-7.156	6.293	1.00	20.27
ATOM	2533	CD2	TYR	B	756	50.782	-6.674	5.673	1.00	20.75
ATOM	2534	C	TYR	B	756	49.688	-3.564	5.123	1.00	14.37
ATOM	2535	O	TYR	B	756	50.386	-2.764	5.791	1.00	14.12
ATOM	2536	N	ASN	B	757	49.988	-3.880	3.867	1.00	14.19
ATOM	2537	CA	ASN	B	757	51.213	-3.374	3.300	1.00	15.33
ATOM	2538	CB	ASN	B	757	51.516	-4.070	1.984	1.00	15.54
ATOM	2539	CG	ASN	B	757	51.770	-5.537	2.177	1.00	18.19
ATOM	2540	OD1	ASN	B	757	52.778	-5.936	2.783	1.00	19.68
ATOM	2541	ND2	ASN	B	757	50.851	-6.363	1.680	1.00	20.50
ATOM	2542	C	ASN	B	757	51.320	-1.860	3.141	1.00	14.85
ATOM	2543	O	ASN	B	757	52.419	-1.337	3.198	1.00	15.14
ATOM	2544	N	SER	B	758	50.210	-1.162	2.942	1.00	13.60
ATOM	2545	CA	SER	B	758	50.310	0.251	2.646	1.00	13.76
ATOM	2546	CB	SER	B	758	49.283	0.667	1.603	1.00	13.54
ATOM	2547	OG	SER	B	758	49.507	-0.024	0.387	1.00	15.82
ATOM	2548	C	SER	B	758	50.167	1.178	3.823	1.00	14.24
ATOM	2549	O	SER	B	758	50.628	2.331	3.727	1.00	14.50
ATOM	2550	N	VAL	B	759	49.516	0.701	4.899	1.00	13.20
ATOM	2551	CA	VAL	B	759	49.204	1.515	6.035	1.00	12.81
ATOM	2552	CB	VAL	B	759	47.751	1.834	6.030	1.00	12.98
ATOM	2553	CG1	VAL	B	759	47.457	2.869	7.066	1.00	12.46
ATOM	2554	CG2	VAL	B	759	47.378	2.343	4.650	1.00	13.50
ATOM	2555	C	VAL	B	759	49.558	0.906	7.375	1.00	14.10
ATOM	2556	O	VAL	B	759	50.245	1.528	8.144	1.00	14.24
ATOM	2557	N	PHE	B	760	49.113	-0.320	7.641	1.00	14.78
ATOM	2558	CA	PHE	B	760	49.305	-0.964	8.916	1.00	15.29
ATOM	2559	CB	PHE	B	760	48.569	-2.314	8.884	1.00	15.21

88

ATOM	2560	CG	PHE	B	760	48.414	-2.965	10.234	1.00	14.87
ATOM	2561	CD1	PHE	B	760	47.385	-2.591	11.085	1.00	13.04
ATOM	2562	CE1	PHE	B	760	47.237	-3.188	12.302	1.00	13.09
ATOM	2563	CZ	PHE	B	760	48.118	-4.129	12.712	1.00	13.72
ATOM	2564	CE2	PHE	B	760	49.165	-4.488	11.897	1.00	15.35
ATOM	2565	CD2	PHE	B	760	49.304	-3.918	10.660	1.00	13.80
ATOM	2566	C	PHE	B	760	50.785	-1.162	9.246	1.00	16.61
ATOM	2567	O	PHE	B	760	51.333	-0.642	10.217	1.00	16.43
ATOM	2568	N	MET	B	761	51.422	-1.954	8.426	1.00	18.47
ATOM	2569	CA	MET	B	761	52.791	-2.303	8.631	1.00	21.12
ATOM	2570	CB	MET	B	761	53.267	-3.148	7.451	1.00	22.42
ATOM	2571	CG	MET	B	761	54.775	-3.092	7.205	1.00	24.52
ATOM	2572	SD	MET	B	761	55.033	-4.025	5.779	1.00	32.46
ATOM	2573	CE	MET	B	761	55.132	-5.783	6.464	1.00	33.08
ATOM	2574	C	MET	B	761	53.689	-1.091	8.816	1.00	21.28
ATOM	2575	O	MET	B	761	54.647	-1.132	9.533	1.00	22.18
ATOM	2576	N	GLN	B	762	53.381	-0.005	8.159	1.00	22.50
ATOM	2577	CA	GLN	B	762	54.223	1.171	8.259	1.00	22.90
ATOM	2578	CB	GLN	B	762	53.913	2.123	7.106	1.00	23.18
ATOM	2579	CG	GLN	B	762	53.783	1.393	5.714	1.00	27.77
ATOM	2580	CD	GLN	B	762	55.041	0.617	5.279	1.00	32.36
ATOM	2581	OE1	GLN	B	762	55.947	1.172	4.658	1.00	34.37
ATOM	2582	NE2	GLN	B	762	55.071	-0.687	5.585	1.00	36.21
ATOM	2583	C	GLN	B	762	54.043	1.853	9.593	1.00	21.95
ATOM	2584	O	GLN	B	762	54.985	2.236	10.247	1.00	21.06
ATOM	2585	N	ARG	B	763	52.815	2.011	10.012	1.00	21.79
ATOM	2586	CA	ARG	B	763	52.622	2.728	11.232	1.00	22.55
ATOM	2587	CB	ARG	B	763	51.143	3.037	11.405	1.00	23.18
ATOM	2588	CG	ARG	B	763	50.785	3.636	12.785	1.00	27.01
ATOM	2589	CD	ARG	B	763	51.197	5.097	12.938	1.00	31.66
ATOM	2590	NE	ARG	B	763	50.298	5.888	12.126	1.00	36.41
ATOM	2591	CZ	ARG	B	763	49.055	6.188	12.498	1.00	39.77
ATOM	2592	NH1	ARG	B	763	48.603	5.780	13.691	1.00	36.61
ATOM	2593	NH2	ARG	B	763	48.273	6.913	11.691	1.00	40.01
ATOM	2594	C	ARG	B	763	53.158	1.947	12.436	1.00	22.17
ATOM	2595	O	ARG	B	763	53.538	2.537	13.438	1.00	19.77
ATOM	2596	N	LEU	B	764	53.190	0.617	12.300	1.00	22.80
ATOM	2597	CA	LEU	B	764	53.588	-0.269	13.386	1.00	23.24
ATOM	2598	CB	LEU	B	764	52.500	-1.301	13.594	1.00	23.48
ATOM	2599	CG	LEU	B	764	51.177	-0.718	14.097	1.00	24.36
ATOM	2600	CD1	LEU	B	764	50.013	-1.676	13.885	1.00	24.21
ATOM	2601	CD2	LEU	B	764	51.348	-0.480	15.529	1.00	24.26

89

ATOM	2602	C	ILE B	764		54.917	-0.993	13.193	1.00	23.50
ATOM	2603	O	ILE B	764	N	55.345	-1.716	14.089	1.00	21.69
ATOM	2604	N	LYS B	765		55.556	-0.812	12.032	1.00	24.54
ATOM	2605	CA	LYS B	765		56.800	-1.510	11.719	1.00	26.74
ATOM	2606	CB	LYS B	765		57.462	-0.944	10.464	1.00	26.88
ATOM	2607	CG	LYS B	765		58.915	-1.493	10.240	1.00	28.72
ATOM	2608	CD	LYS B	765		59.559	-1.044	8.915	1.00	31.45
ATOM	2609	CE	LYS B	765		58.982	-1.767	7.693	1.00	34.41
ATOM	2610	NZ	LYS B	765		57.496	-1.689	7.597	1.00	37.61
ATOM	2611	C	LYS B	765		57.796	-1.462	12.879	1.00	28.01
ATOM	2612	O	LYS B	765		58.254	-2.494	13.377	1.00	27.53
ATOM	2613	N	THR B	766		58.126	-0.242	13.273	1.00	29.05
ATOM	2614	CA	THR B	766		58.966	0.013	14.424	1.00	30.88
ATOM	2615	CB	THR B	766		58.821	1.516	14.840	1.00	31.26
ATOM	2616	OG1	THR B	766		59.035	2.348	13.698	1.00	33.49
ATOM	2617	CG2	THR B	766		59.909	1.962	15.802	1.00	30.65
ATOM	2618	C	THR B	766		58.615	-0.872	15.610	1.00	30.99
ATOM	2619	O	THR B	766		59.449	-1.569	16.119	1.00	32.43
ATOM	2620	N	ASN B	767		57.398	-0.804	16.083	1.00	31.61
ATOM	2621	CA	ASN B	767		56.992	-1.570	17.232	1.00	33.54
ATOM	2622	CB	ASN B	767		55.652	-1.023	17.768	1.00	33.93
ATOM	2623	CG	ASN B	767		55.048	-1.892	18.837	1.00	36.39
ATOM	2624	OD1	ASN B	767		54.504	-2.945	18.545	1.00	39.39
ATOM	2625	ND2	ASN B	767		55.142	-1.456	20.094	1.00	40.65
ATOM	2626	C	ASN B	767		56.926	-3.092	16.985	1.00	34.59
ATOM	2627	O	ASN B	767		57.394	-3.895	17.816	1.00	34.71
ATOM	2628	N	ILE B	768		56.354	-3.511	15.863	1.00	35.47
ATOM	2629	CA	Ile B	768		56.239	-4.940	15.625	1.00	36.32
ATOM	2630	CB	Ile B	768		55.621	-5.237	14.268	1.00	36.49
ATOM	2631	CG1	Ile B	768		54.105	-4.966	14.309	1.00	35.72
ATOM	2632	CD1	Ile B	768		53.429	-5.168	12.981	1.00	35.45
ATOM	2633	CG2	Ile B	768		55.950	-6.683	13.834	1.00	34.18
ATOM	2634	C	Ile B	768		57.592	-5.577	15.698	1.00	37.63
ATOM	2635	O	Ile B	768		57.694	-6.786	15.923	1.00	38.19
ATOM	2636	N	LEU B	769		58.626	-4.764	15.505	1.00	38.55
ATOM	2637	CA	LEU B	769		59.996	-5.257	15.523	1.00	40.19
ATOM	2638	CB	LEU B	769		60.996	-4.186	15.082	1.00	40.99
ATOM	2639	CG	LEU B	769		61.863	-4.615	13.896	1.00	42.49
ATOM	2640	CD1	LEU B	769		62.460	-5.984	14.251	1.00	45.30
ATOM	2641	CD2	LEU B	769		61.061	-4.723	12.578	1.00	42.90
ATOM	2642	C	LEU B	769		60.375	-5.753	16.890	1.00	40.93
ATOM	2643	O	LEU B	769		61.022	-6.789	16.999	1.00	41.56

ATOM	2644	N	GLN	B	770	59.	987	-5.024	17.936	1.00	41.51
ATOM	2645	CA	GLN	B	770	60.	285	-5.473	19.304	1.00	41.74
ATOM	2646	CB	GLN	B	770	59.	366	-4.794	20.343	1.00	41.53
ATOM	2647	CG	GLN	B	770	59.	450	-5.418	21.762	1.00	42.43
ATOM	2648	CD	GLN	B	770	58.	133	-5.425	22.587	1.00	42.74
ATOM	2649	OE1	GLN	B	770	58.	064	-6.041	23.668	1.00	41.16
ATOM	2650	NE2	GLN	B	770	57.	116	-4.740	22.090	1.00	43.74
ATOM	2651	C	GLN	B	770	60.	125	-7.004	19.380	1.00	41.82
ATOM	2652	O	GLN	B	770	61.	077	-7.747	19.610	1.00	41.81
ATOM	2653	N	TYR	B	771	58.	911	-7.467	19.144	1.00	42.24
ATOM	2654	CA	TYR	B	771	58.	610	-8.888	19.229	1.00	42.97
ATOM	2655	CB	TYR	B	771	57.	180	-9.140	18.775	1.00	41.87
ATOM	2656	CG	TYR	B	771	56.	175	-8.189	19.354	1.00	38.45
ATOM	2657	CD1	TYR	B	771	55.	729	-8.307	20.662	1.00	37.30
ATOM	2658	CE1	TYR	B	771	54.	776	-7.426	21.169	1.00	35.23
ATOM	2659	CZ	TYR	B	771	54.	263	-6.431	20.343	1.00	34.31
ATOM	2660	OH	TYR	B	771	53.	309	-5.491	20.752	1.00	34.71
ATOM	2661	CE2	TYR	B	771	54.	703	-6.332	19.061	1.00	33.76
ATOM	2662	CD2	TYR	B	771	55.	641	-7.191	18.576	1.00	35.17
ATOM	2663	C	TYR	B	771	59.	572	-9.775	18.441	1.00	44.15
ATOM	2664	O	TYR	B	771	59.	703	-10.968	18.720	1.00	43.36
ATOM	2665	N	ALA	B	772	60.	235	-9.181	17.454	1.00	46.14
ATOM	2666	CA	ALA	B	772	61.	159	-9.932	16.620	1.00	48.39
ATOM	2667	CB	ALA	B	772	61.	590	-9.113	15.432	1.00	48.34
ATOM	2668	C	ALA	B	772	62.	368	-10.356	17.425	1.00	50.30
ATOM	2669	O	ALA	B	772	62.	956	-11.413	17.175	1.00	50.02
ATOM	2670	N	SER	B	773	62.	746	-9.510	18.383	1.00	52.64
ATOM	2671	CA	SER	B	773	63.	884	-9.794	19.238	1.00	54.66
ATOM	2672	CB	SER	B	773	64.	021	-8.723	20.320	1.00	54.48
ATOM	2673	OG	SER	B	773	65.	106	-9.024	21.187	1.00	55.08
ATOM	2674	C	SER	B	773	63.	691	-11.173	19.879	1.00	56.17
ATOM	2675	O	SER	B	773	62.	634	-11.447	20.455	1.00	56.55
ATOM	2676	N	THR	B	774	64.	709	-12.031	19.768	1.00	57.80
ATOM	2677	CA	THR	B	774	64.	694	-13.397	20.328	1.00	59.18
ATOM	2678	CB	THR	B	774	65.	990	-14.164	19.901	1.00	59.51
ATOM	2679	OG1	THR	B	774	67.	155	-13.432	20.324	1.00	60.23
ATOM	2680	CG2	THR	B	774	66.	138	-14.219	18.355	1.00	59.89
ATOM	2681	C	THR	B	774	64.	527	-13.436	21.875	1.00	59.52
ATOM	2682	O	THR	B	774	64.	836	-14.440	22.533	1.00	59.47
ATOM	2683	N	ARG	B	775	64.	043	-12.330	22.433	1.00	59.58
ATOM	2684	CA	ARG	B	775	63.	800	-12.203	23.861	1.00	59.55
ATOM	2685	CB	ARG	B	775	64.	540	-10.968	24.393	1.00	59.96

91

ATOM	2686	CG	ARG B	775	64.053	-9.623	23.789	1.00	60.09
ATOM	2687	CD	ARG B	775	64.791	-8.402	24.311	1.00	59.27
ATOM	2688	NE	ARG B	775	64.233	-7.147	23.810	1.00	58.26
ATOM	2689	CZ	ARG B	775	63.016	-6.685	24.091	1.00	57.54
ATOM	2690	NH1	ARG B	775	62.186	-7.364	24.871	1.00	56.28
ATOM	2691	NH2	ARG B	775	62.618	-5.532	23.577	1.00	57.23
ATOM	2692	C	ARG B	775	62.283	-12.077	24.117	1.00	59.35
ATOM	2693	O	ARG B	775	61.559	-11.452	23.327	1.00	59.00
ATOM	2694	N	PRO B	776	61.799	-12.663	25.217	1.00	59.19
ATOM	2695	CA	PRO B	776	60.358	-12.614	25.546	1.00	58.52
ATOM	2696	CB	PRO B	776	60.263	-13.471	26.817	1.00	58.69
ATOM	2697	CG	PRO B	776	61.659	-13.372	27.413	1.00	59.27
ATOM	2698	CD	PRO B	776	62.577	-13.431	26.219	1.00	59.00
ATOM	2699	C	PRO B	776	59.846	-11.173	25.804	1.00	57.74
ATOM	2700	O	PRO B	776	60.560	-10.337	26.404	1.00	57.92
ATOM	2701	N	PRO B	777	58.638	-10.887	25.321	1.00	56.28
ATOM	2702	CA	PRO B	777	58.011	-9.569	25.464	1.00	55.27
ATOM	2703	CB	PRO B	777	57.078	-9.548	24.271	1.00	55.36
ATOM	2704	CG	PRO B	777	56.561	-10.950	24.291	1.00	56.03
ATOM	2705	CD	PRO B	777	57.807	-11.793	24.508	1.00	56.21
ATOM	2706	C	PRO B	777	57.189	-9.364	26.737	1.00	54.10
ATOM	2707	O	PRO B	777	56.916	-10.338	27.466	1.00	53.82
ATOM	2708	N	THR B	778	56.810	-8.103	26.983	1.00	52.28
ATOM	2709	CA	THR B	778	55.960	-7.751	28.117	1.00	51.05
ATOM	2710	CB	THR B	778	56.128	-6.263	28.526	1.00	51.62
ATOM	2711	OG1	THR B	778	57.514	-5.930	28.693	1.00	52.75
ATOM	2712	CG2	THR B	778	55.525	-6.018	29.916	1.00	51.07
ATOM	2713	C	THR B	778	54.508	-7.973	27.702	1.00	49.65
ATOM	2714	O	THR B	778	53.774	-7.020	27.460	1.00	49.64
ATOM	2715	N	LEU B	779	54.098	-9.228	27.595	1.00	47.40
ATOM	2716	CA	LEU B	779	52.748	-9.548	27.199	1.00	45.15
ATOM	2717	CB	LEU B	779	52.486	-11.020	27.483	1.00	44.67
ATOM	2718	CG	LEU B	779	53.553	-11.917	26.856	1.00	44.69
ATOM	2719	CD1	LEU B	779	53.599	-13.324	27.488	1.00	45.78
ATOM	2720	CD2	LEU B	779	53.361	-12.007	25.369	1.00	45.46
ATOM	2721	C	LEU B	779	51.739	-8.680	27.941	1.00	44.03
ATOM	2722	O	LEU B	779	51.867	-8.480	29.137	1.00	43.69
ATOM	2723	N	SER B	780	50.729	-8.184	27.219	1.00	42.70
ATOM	2724	CA	SER B	780	49.645	-7.367	27.780	1.00	41.09
ATOM	2725	CB	SER B	780	48.967	-6.594	26.642	1.00	41.11
ATOM	2726	OG	SER B	780	48.015	-5.655	27.119	1.00	41.62
ATOM	2727	C	SER B	780	48.620	-8.238	28.496	1.00	40.22

92

ATOM	2770	CA	B	786	34.882	-14.933	33.536	1.00	52.77	
ATOM	2771	CB	B	786	35.206	-14.656	34.998	1.00	52.72	
ATOM	2772	CG	B	786	34.865	-13.198	35.163	1.00	52.87	
ATOM	2773	CD	B	786	35.236	-12.542	33.817	1.00	53.07	
ATOM	2774	C	B	786	33.381	-15.174	33.396	1.00	53.40	
ATOM	2775	O	B	786	32.835	-15.085	32.279	1.00	53.92	
ATOM	2776	N	ARG	B	787	32.730	-15.465	34.527	1.00	53.49
ATOM	2777	CA	ARG	B	787	31.274	-15.694	34.591	1.00	53.49
ATOM	2778	CB	ARG	B	787	30.807	-12.649	37.659	1.00	53.44
ATOM	2779	CG	ARG	B	787	30.063	-13.565	35.449	1.00	52.26
ATOM	2780	CD	ARG	B	787	31.223	-13.138	36.339	1.00	52.06
ATOM	2781	NE	ARG	B	787	30.800	-16.882	33.745	1.00	53.17
ATOM	2782	CZ	ARG	B	787	30.457	-13.428	38.706	1.00	51.86
ATOM	2783	NH1	ARG	B	787	30.468	-14.750	38.601	1.00	50.85
ATOM	2784	NH2	ARG	B	787	30.090	-12.880	39.864	1.00	49.91
ATOM	2785	C	ARG	B	787	23.030	-14.044	32.535	1.00	53.54
ATOM	2789	N	ILEU	P	1	20.931	-14.544	31.252	1.00	47.69
ATOM	2790	CA	ILEU	P	1	22.180	-13.716	31.289	1.00	47.41
ATOM	2791	CB	ILEU	P	1	23.030	-14.044	32.535	1.00	47.97
ATOM	2792	CG	ILEU	P	1	23.458	-15.482	32.878	1.00	48.35
ATOM	2793	CD1	ILEU	P	1	24.423	-15.489	34.063	1.00	49.77
ATOM	2794	CD2	ILEU	P	1	22.266	-16.389	33.165	1.00	48.66
ATOM	2795	C	ILEU	P	1	22.987	-13.883	29.991	1.00	46.60
ATOM	2796	O	ILEU	P	1	22.417	-13.727	28.897	1.00	47.13
ATOM	2797	N	ASP	P	2	24.287	-14.207	30.109	1.00	44.53
ATOM	2798	CA	ASP	P	2	25.177	-14.357	28.935	1.00	42.24
ATOM	2799	CB	ASP	P	2	24.541	-15.300	27.910	1.00	42.69
ATOM	2800	CG	ASP	P	2	25.522	-15.772	26.866	1.00	44.51
ATOM	2801	OD1	ASP	P	2	25.766	-15.024	25.896	1.00	45.50
ATOM	2802	OD2	ASP	P	2	26.093	-16.887	26.932	1.00	46.89
ATOM	2803	C	ASP	P	2	25.516	-12.983	28.288	1.00	39.49
ATOM	2804	O	ASP	P	2	26.077	-12.893	27.200	1.00	39.39
ATOM	2805	N	TYR	P	3	25.145	-11.911	28.970	1.00	35.91
ATOM	2806	CA	TYR	P	3	25.408	-10.565	28.477	1.00	32.30
ATOM	2807	CB	TYR	P	3	24.129	-9.724	28.549	1.00	31.47
ATOM	2808	CG	TYR	P	3	24.334	-8.262	28.269	1.00	31.00
ATOM	2809	CD1	TYR	P	3	24.418	-7.805	26.965	1.00	29.48
ATOM	2810	CE1	TYR	P	3	24.583	-6.478	26.693	1.00	27.36
ATOM	2811	CZ	TYR	P	3	24.676	-5.570	27.712	1.00	27.68
ATOM	2812	OH	TYR	P	3	24.888	-4.218	27.370	1.00	28.65
ATOM	2813	CE2	TYR	P	3	24.582	-5.991	29.034	1.00	25.24
ATOM	2814	CD2	TYR	P	3	24.407	-7.315	29.309	1.00	27.91

25

ATOM	2857	C	GLU	P	8	29.830	-1.509	39.593	1.00	30.87
ATOM	2858	O	GLU	P	8	29.277	-0.443	39.374	1.00	30.40
ATOM	2859	N	GLU	P	9	29.655	-2.193	40.726	1.00	31.54
ATOM	2860	CA	GLU	P	9	28.722	-1.742	41.790	1.00	31.59
ATOM	2861	CB	GLU	P	9	28.841	-2.607	43.057	1.00	32.17
ATOM	2862	CG	GLU	P	9	28.217	-4.028	42.934	1.00	34.26
ATOM	2863	CD	GLU	P	9	28.018	-4.747	44.294	1.00	33.72
ATOM	2864	OE1	GLU	P	9	27.685	-4.084	45.314	1.00	33.47
ATOM	2865	OE2	GLU	P	9	28.185	-5.978	44.350	1.00	31.42
ATOM	2866	C	GLU	P	9	28.826	-0.254	42.133	1.00	30.99
ATOM	2867	O	GLU	P	9	27.826	0.429	42.361	1.00	31.00
ATOM	2868	N	GLY	P	10	30.033	0.276	42.153	1.00	30.01
ATOM	2869	CA	GLY	P	10	30.155	1.696	42.418	1.00	29.07
ATOM	2870	C	GLY	P	10	29.895	2.598	41.209	1.00	27.90
ATOM	2871	O	GLY	P	10	30.205	3.806	41.240	1.00	28.51
ATOM	2872	N	GLU	P	11	29.353	2.024	40.138	1.00	25.73
ATOM	2873	CA	GLU	P	11	29.073	2.791	38.922	1.00	23.64
ATOM	2874	CB	GLU	P	11	29.952	2.303	37.748	1.00	24.46
ATOM	2875	CG	GLU	P	11	31.459	2.612	37.875	1.00	26.02
ATOM	2876	CD	GLU	P	11	32.325	1.859	36.852	1.00	26.65
ATOM	2877	OE1	GLU	P	11	33.486	2.296	36.631	1.00	24.35
ATOM	2878	OE2	GLU	P	11	31.853	0.824	36.281	1.00	26.05
ATOM	2879	C	GLU	P	11	27.603	2.753	38.516	1.00	21.13
ATOM	2880	O	GLU	P	11	26.905	1.758	38.653	1.00	19.86
ATOM	2881	N	GLY	P	12	27.131	3.855	38.005	1.00	19.40
ATOM	2882	CA	GLY	P	12	25.766	3.895	37.535	1.00	18.44
ATOM	2883	C	GLY	P	12	25.582	4.880	36.401	1.00	17.74
ATOM	2884	O	GLY	P	12	26.404	5.785	36.161	1.00	16.52
ATOM	2885	N	ILE	P	13	24.458	4.734	35.719	1.00	17.35
ATOM	2886	CA	ILE	P	13	24.156	5.570	34.567	1.00	17.40
ATOM	2887	CB	ILE	P	13	22.680	5.451	34.230	1.00	16.80
ATOM	2888	CG1	ILE	P	13	22.353	6.275	32.979	1.00	17.71
ATOM	2889	CD1	ILE	P	13	23.048	5.763	31.684	1.00	18.51
ATOM	2890	CG2	ILE	P	13	21.913	5.983	35.380	1.00	17.44
ATOM	2891	C	ILE	P	13	24.535	7.051	34.805	1.00	17.29
ATOM	2892	O	ILE	P	13	24.899	7.769	33.896	1.00	17.49
ATOM	2893	N	ARG	P	14	24.443	7.527	36.022	1.00	16.45
ATOM	2894	CA	ARG	P	14	24.749	8.917	36.228	1.00	17.18
ATOM	2895	CB	ARG	P	14	24.232	9.313	37.598	1.00	17.84
ATOM	2896	CG	ARG	P	14	24.580	10.693	38.068	1.00	17.51
ATOM	2897	CD	ARG	P	14	25.712	10.655	39.027	1.00	19.60
ATOM	2898	NE	ARG	P	14	25.496	11.615	40.079	1.00	21.69

ATOM	2899	CZ	ARG	P	14	27.038	10.683	41.515	1.00	20.71
ATOM	2900	NH1	ARG	P	14	25.840	12.557	42.113	1.00	22.29
ATOM	2901	NH2	ARG	P	14	26.228	9.319	36.051	1.00	17.89
ATOM	2902	C	ARG	P	14	26.533	10.465	35.749	1.00	18.28
ATOM	2903	O	ARG	P	14	27.153	8.388	36.249	1.00	17.97
ATOM	2904	N	ASP	P	15	28.557	8.678	36.058	1.00	17.42
ATOM	2905	CA	ASP	P	15	28.933	6.068	38.549	1.00	17.21
ATOM	2906	CB	ASP	P	15	29.419	7.620	36.731	1.00	17.17
ATOM	2907	CG	ASP	P	15	28.893	8.700	34.576	1.00	18.51
ATOM	2908	OD1	ASP	P	15	29.888	9.266	34.154	1.00	19.86
ATOM	2909	OD2	ASP	P	15	28.067	8.078	33.752	1.00	19.15
ATOM	2910	C	ASP	P	15	28.383	8.009	32.351	1.00	19.27
ATOM	2911	O	ASP	P	15	27.482	7.006	31.674	1.00	19.48
ATOM	2912	N	LEU	P	16	27.817	5.590	32.121	1.00	18.49
ATOM	2913	CA	LEU	P	16	26.903	4.583	31.531	1.00	16.38
ATOM	2914	CB	LEU	P	16	29.205	5.334	31.714	1.00	18.61
ATOM	2915	CG	LEU	P	16	28.964	9.619	30.688	1.00	18.95
ATOM	2916	CD1	LEU	P	16	27.423	10.216	32.264	1.00	22.07
ATOM	2917	CD2	LEU	P	16	27.160	11.583	31.843	1.00	20.34
ATOM	2918	C	LEU	P	16	28.287	9.373	31.691	1.00	20.34
ATOM	2919	O	LEU	P	16	25.668	11.799	31.553	1.00	23.78
ATOM	2920	N	PHE	P	17	24.659	9.689	30.789	1.00	24.13
ATOM	2921	CA	PHE	P	17	27.423	10.936	30.490	1.00	22.61
ATOM	2922	CB	PHE	P	17	25.128	10.542	28.122	1.00	23.17
ATOM	2923	CG	PHE	P	17	24.662	11.351	29.158	1.00	21.60
ATOM	2924	CD1	PHE	P	17	24.142.	8.878	29.790	1.00	22.90
ATOM	2925	CE1	PHE	P	17	24.160	9.321	28.432	1.00	24.90
ATOM	2926	CZ	PHE	P	17	26.583	13.079	33.582	1.00	26.70
ATOM	2927	CE2	PHE	P	17	28.717	12.312	33.505	1.00	29.15
ATOM	2928	CD2	PHE	P	17	25.144	12.999	34.732	1.00	24.24
ATOM	2929	C	PHE	P	17	27.470	12.403	33.045	1.00	26.26
ATOM	2930	O	PHE	P	17	26.583	13.079	33.505	1.00	29.15
ATOM	2931	N	ASP	P	18	29.079	12.741	37.254	1.00	35.19
ATOM	2932	CA	ASP	P	18	29.152	12.001	38.293	1.00	37.21
ATOM	2933	CB	ASP	P	18	29.110	12.033	35.922	1.00	31.59
ATOM	2934	CG	ASP	P	18	29.079	12.132	37.355	1.00	37.60
ATOM	2935	OD1	ASP	P	18	29.007	14.012	34.586	1.00	31.76
ATOM	2936	OD2	ASP	P	18	30.566	13.540	37.355	1.00	31.76
ATOM	2937	C	ASP	P	18					

Claims

1. A crystal structure of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex, characterised by the atomic co-ordinates of Annex 1.

5

2. A crystal structure as claimed in claim 1, wherein the interactions between E2F₍₄₀₉₋₄₂₆₎ and pRb comprise one or more of the following interactions:

E2F₍₄₀₉₋₄₂₆₎ residue	pRb residue
Leu ₄₀₉	Lys ₅₄₈
Tyr ₄₁₁	Glu ₅₅₁
Tyr ₄₁₁	Ile ₅₃₂
Tyr ₄₁₁	Glu ₅₅₄
His ₄₁₂	Arg ₆₅₆
His ₄₁₂	Lys ₆₅₃
Gly ₄₁₄	Glu ₅₃₃
Gly ₄₁₄	Lys ₆₅₂
Leu ₄₁₅	Leu ₆₄₉
Leu ₄₁₅	Glu ₅₅₃
Leu ₄₁₅	Lys ₅₃₇
Glu ₄₁₇	Lys ₅₃₇
Gly ₄₁₈	Arg ₄₆₇
Glu ₄₁₉	Thr ₆₄₅
Arg ₄₂₂	Glu ₄₆₄
Asp ₄₂₃	Arg ₄₆₇
Leu ₄₂₄	Lys ₅₃₀
Phe ₄₂₅	Phe ₄₈₂
Phe ₄₂₅	Lys ₄₇₅

3. An assay to identify an agent which modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎, the assay comprising:

- a) combining together pRb, E2F₍₄₀₉₋₄₂₆₎ and an agent, under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ form a complex;
- b) obtaining a crystal structure of any pRb/ E2F₍₄₀₉₋₄₂₆₎ complex; and
- c) analysing the crystal structure to determine whether the agent is an agent which modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎.

4. An assay, as claimed in claim 3, wherein the combining of the components is pRb with the agent and then E2F₍₄₀₉₋₄₂₆₎.

15 5. An assay as claimed in claim 3, wherein the combining of the components is E2F₍₄₀₉₋₄₂₆₎ with the agent and then pRb.

6. An assay as claimed in claim 3, wherein the combining of the components is pRb with E2F₍₄₀₉₋₄₂₆₎ and then the agent.

20 7. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising selecting an agent using the three-dimensional atomic coordinates of Annex 1.

25 8. A method as claimed in claim 7, wherein said selection is performed in conjunction with computer modeling.

9. A method as claimed in claim 7 or 8, wherein the method further comprises the steps of:

- a) contacting the selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex; and
- b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent and comparing the binding affinity to that of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the absence of the agent, wherein an agent modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.

5

10 10. A method as claimed in claim 9, wherein the method further comprising:

- a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉₋₄₂₆₎ and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;
- b) determining the three-dimensional atomic coordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;
- c) comparing the three dimensional coordinates with those for the complex as claimed in claim 1; and
- d) selecting a second generation agent using the three-dimensional atomic coordinates determined for the supplementary crystal.

15

20 11. A method as claimed in claim 10, wherein said selection is performed in conjunction with computer modeling.

25 12. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

- a) contacting a selected agent with pRb and E2F₍₄₀₉₋₄₂₆₎ under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex; and

5 b) measuring the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ in the presence of the agent and comparing the binding affinity to that of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the absence of the agent, wherein an agent modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex when there is a change in the binding affinity of pRb to E2F₍₄₀₉₋₄₂₆₎ when in the presence of the agent.

13. A method as claimed in claim 12, wherein the method further comprising:

10 a) growing a supplementary crystal from a solution containing pRb and E2F₍₄₀₉₋₄₂₆₎ and the selected agent where said agent changes the binding affinity of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex under conditions in which pRb and E2F₍₄₀₉₋₄₂₆₎ can form a complex;

b) determining the three-dimensional atomic coordinates of the supplementary crystal by X-ray diffraction using molecular replacement analysis;

c) comparing the three dimensional coordinates with those for the complex as claimed in claim 1; and

15 d) selecting a second generation agent using the three-dimensional atomic coordinates determined for the supplementary crystal.

20 14. A method as claimed in claim 13, wherein said selection is performed in conjunction with computer modeling.

25 15. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:

a) selecting an agent;

b) co-crystallising pRb with the agent;

c) determining the three dimensional coordinates of the pRb-agent association by X-ray diffraction using molecular replacement analysis; and

d) comparing the three dimensional coordinates with those of the complex as claimed in claim 1.

16. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex,
comprising:

- a) selecting an agent;
- b) crystallising pRb and soaking the agent into the crystal;
- c) determining the three dimensional coordinates of the pRb-agent association
by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the complex as
claimed in claim 1.

10

17. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex,
comprising:

- a) selecting an agent;
- b) co-crystallising pRb, E2F₍₄₀₉₋₄₂₆₎ and the agent;
- c) determining the three dimensional coordinates of the pRb-E2F-agent
association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the complex as
claimed in claim 1.

15

20

18. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex,
comprising:

- a) selecting an agent;
- b) co-crystallising pRb and E2F₍₄₀₉₋₄₂₆₎ and soaking the agent into the crystal;
- c) determining the three dimensional coordinates of the pRb-E2F-agent
association by X-ray diffraction using molecular replacement analysis; and
- d) comparing the three dimensional coordinates with those of the complex as
claimed in claim 1.

25

19. A method as claimed in any one of claims 15 to 18, wherein the methods further comprises selecting a second generation agent using the three dimensional atomic coordinates determined.

5 20. A method as claimed in any one of claims 15 to 28, wherein the agent is selected using the three dimensional atomic coordinates of Annex 1.

21. A method as claimed in claim 20, wherein the selection is performed in conjunction with computer modeling.

10 22. A method of identifying an agent as claimed in any one of claims 7 to 21, wherein the selected agent and/or the second generation agent mimics a structural feature of E2F₍₄₀₉₋₄₂₆₎ when said E2F₍₄₀₉₋₄₂₆₎ is bound to pRb.

15 23. A method as claimed in claim 7 or 8, wherein method comprises the further steps of:
a) contacting the selected agent with the pRb/E2F₍₄₀₉₋₄₂₆₎ complex; and
b) determining whether the agent affects the stability of the complex.

20 24. A method as claimed in claim 23, wherein the determination is with fluorescence polarization.

25 25. A method of identifying an agent that modulates a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, comprising:
a) contacting a fluorescently tagged E2F₍₄₀₉₋₄₂₆₎ peptide (E2F-fluoropeptide) with pRb to allow pRb/E2F-fluoropeptide complex formation;
b) detecting the fluorescence polarization;
c) adding a selected agent; and
d) detecting the fluorescence polarization in the presence of the agent.

26. A method as claimed in claim 25, wherein an increase in fluorescence polarization in the presence of the agent indicates that the agent destabilises the complex.

5

27. A method as claimed in claim 25 or 26, wherein the method comprises the further step of adding untagged E2F₍₄₀₉₋₄₂₆₎ and detecting fluorescence polarization.

10

28. A method as claimed in claim 27, wherein if fluorescence polarization decreases , on addition of the untagged E2F₍₄₀₉₋₄₂₆₎, the agent does not stabilise the complex.

15

29. A method as claimed in claim 27 or 28, wherein if there is no substantial change in fluorescence polarization, on addition of the untagged E2F₍₄₀₉₋₄₂₆₎ , the agent stabilises the complex.

20

30. A method as claimed in any one of claims 9 to 14, wherein the binding affinity is measured by isothermal titration calorimetry.

25

31. A method as claimed in any one of claims 9 to 14, wherein the binding affinity is measure by Surface Plasmon Resonance (SPR).

32. An agent, that modulates the interaction between pRb and E2F₍₄₀₉₋₄₂₆₎ , identified by a method as claimed in any one of claims 3 to 31.

33. An agent, as claimed in claim 32, for use as an apoptosis promoting factor in the prevention or treatment of proliferative diseases.

34. An agent as claimed in claim 32 or 33, wherein the agent is for use in preventing or treating cancer, which may be pancreatic cancer and related diseases.

5 35. The use of an agent, which modulates the formation of a pRb/E2F₍₄₀₉₋₄₂₆₎ complex, identified by a method as claimed in any one of claims 3 to 31, in the manufacture of a medicament for the prevention or treatment of proliferative diseases.

10 36. The use of an agent as claimed in claim 35, wherein the proliferative diseases are cancer, preferably pancreatic cancer and related diseases.

15 37. The use of the atomic co-ordinates of the crystal structure as claimed in claim 1 or 2, for identifying an agent that modulates the formation of a pRb/E2F₍₄₀₉₋₄₂₆₎ complex.

20 38. Computer readable media comprising a data storage material encoded with computer readable data, wherein said computer readable data comprises a set of atomic co-ordinates of the pRb/E2F₍₄₀₉₋₄₂₆₎ complex of Annex 1 recorded thereon.

Figure 1A

215

Figure 1B

Figure 1C

4/5

Figure 2A

Figure 2B

Binding Constants (μM)	Rb_{AB}	Rb_{ABC}
E2F (409-426)	0.34 ± 0.02	0.3 ± 0.03
E2F (380-437)	0.16 ± 0.01	0.1 ± 0.01
E2F (243-437)	<0.01	<0.01

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.