1 Lien entre entropie discrète et continue

1. $F_X = P(X \le x)$ continue $\sup[i\Delta; (i+1)\Delta]$ de dérivé f_x on applique le TAF(theoreme des accroissements finis)

on dispose alors de $x_i \in [i\Delta; (i+1)\Delta]$ tel que : $F_X((i+1)\Delta) - F_X(i\Delta) = f_X(x_i)\Delta$ par ailleurs : $F_X((i+1)\Delta) - F_X(i\Delta) = \int_{i\Delta}^{(i+1)\Delta} f_X(x) dx$ en r'emplacant dans la formule on a : $\int_{i\Delta}^{(i+1)\Delta} f_X(x) dx = f_X(x_i)\Delta$ D'où le resultat.

- 2. la variable discrète X_{Δ} suit la loi $\Delta f_X(x_i)$ car $\forall i \in \mathbb{Z}$, $P(x_{\Delta} = x_i) = P(X \le (i+1)\Delta) P(X \le i\Delta) = \int_{i\Delta}^{(i+1)\Delta} f_X(x) dx = \Delta f_X(x_i)$
- 3. En appliquant la formule de l'entropie on en déduit que:

$$\begin{split} H(X_{\Delta}) &= -\sum_{i \in \mathbb{Z}} f_X(x_i) \Delta log(\Delta f_X(x_i)) \\ &= -\Delta \sum_{i \in \mathbb{Z}} f_X(x_i) (log(\Delta) + log(f_X(x_i)) = -\Delta \sum_{i \in \mathbb{Z}} f_X(x_i) log(f_X(x_i) - log(\Delta) \sum_{i \in \mathbb{Z}} \Delta f_X(x_i)) \\ ∨ \sum_{i \in \mathbb{Z}} \Delta f_X(x_i) = \int_{i\Delta}^{(i+1)\Delta} f_X(x) dx = 1 \text{ car } f(x) \text{ est une densit\'e }. \end{split}$$
 D'où le resultat $H(X_{\Delta}) = -\Delta \sum_{i \in \mathbb{Z}} f_X(x_i) log(f_X(x_i) - log(\Delta))$

4. On en déduit que lorsque $\Delta \to 0$ on a $H(X_{\Delta}) + \log(\Delta) = -\Delta \sum_{i \in \mathbb{Z}} f_X(x_i) \log(f_X(x_i))$ ce qui tend vers $-\int_{-\infty}^{\infty} f_X(x) \log(f_X(x)) dx = H(X)$ quand $\Delta \to 0$ car les intervales $[i\Delta; (i+1)\Delta]$ tendent à partitier entierement \mathbb{Z} .

On observe alors que en prenant des intervales très petits l'entropie discrète s'approche de l'entropie continue .

Ainsi pour approcher l'entropie continue on va prendre des intervales les plus petits possibles et utiliser l'entropie discrète.

2 Loi Gaussienne

1. question 1:

On utilise d'abord pour se faire la propriété suivante, soit X suit une loi normale de moyenne μ and d'écart type σ : $X \sim \mathcal{N}(\mu, \sigma^2)$ alors $\sigma X + \mu \sim \mathcal{N}(0, 1)$

on peut alors modeliser, n=10000 réalisations de X de la maniere suivante, en utilisant