Corrigendum sobre el teorema d'Arzelà-Ascoli

Als apunts del curs, a la darrera part de la prova del Teorema 2.9, els autors escriuen: Si \mathcal{F} no és equicontínua, donat $\epsilon > 0$, per a cada $\delta > 0$ existeix una successió $\{f_n\}$ d'elements de \mathcal{F} i punts x, y de K amb $|x - y| < \delta$ tals que

$$|f_n(x) - f_n(y)| \ge \epsilon.$$

Si la successió té una parcial convergent, ho serà a una funció f tal que

$$|f(x) - f(y)| \ge \epsilon$$

amb $|x-y| < \delta$. Per tant f, si existeix, és no contínua i la convergència no pot ser uniforme. El fet de no ser equicontínua vol dir que hi ha un $\epsilon > 0$ de manera que per a tot $\delta > 0$ existeix un element $f \in \mathcal{F}$ i un parell $(x,y) \in K^2$ amb $|x-y| < \delta$ de manera que

$$|f(x) - f(y)| \ge \epsilon$$
.

Com que això es pot fer per a qualsevol δ , podem agafar ara un δ' que sigui més petit que |x-y| i que ens dona un nou element $f' \in \mathcal{F}$ i un nou parell $(x',y') \in K^2$ amb $|x-y| < \delta'$ de manera que

$$|f'(x) - f'(y)| \ge \epsilon.$$

Iterant aquest procediment, podem construir una successió de ternes (f_n, x_n, y_n) de manera que

$$|f_n(x_n) - f_n(y_n)| \ge \epsilon$$

i $|x_n - y_n| < \delta_n$, on la successió δ_n tendeix cap a 0. L'error dels apunts és que considera que el parell (x,y) és fix, la qual cosa a priori no es pot garantir. A més, per a un δ fixat es construeix una funció f que no satisfà la condició de continuïtat amb el parell (δ, ϵ) , però que ho podria fer si es canviés δ per un valor més petit.

Farem doncs alguna modificació sobre aquell argument. L'observació clau rau en el fet que $(x_n, y_n) \in K^2$ i K^2 és compacte, i podem reemplaçar doncs (f_n, x_n, y_n) per una subsuccessió seva de manera que (x_n, y_n) convergeixi a un element (x, y) i es tingui $(x_n, y_n) < \delta_n$, on δ_n tendeix cap a 0 (i en particular tindrem que x = y).

Procedim ara per reducció a l'absurd. Suposi's que f_n convergeix uniformement a una funció f, que ha de ser contínua per ser límit uniforme de contínues. Aleshores, com que (x_n, y_n) convergeix a (x, y), la successió $(f(x_n), f(y_n))$ convergeix a (f(x), f(y)). Per tant, si fixem un nombre natural M, existeix un n'_0 de manera que per tot $k \ge n'_0$ se satisfà

$$|f(x) - f(x_k)| \le \frac{1}{2M}, \quad |f(y) - f(y_k)| \le \frac{1}{2M}.$$

A més, com que la convergència és uniforme, existeix n_0'' de manera que si $k \ge n_0''$, aleshores $||f - f_k|| < \frac{1}{2M}$. Es conclou que si $k \ge n_0 := \max\{n_0', n_0''\}$, es té

$$|f(x) - f_k(x_k)| \le |f(x) - f(x_k)| + |f(x_k) - f_k(x_k)| \le \frac{1}{2M} + \frac{1}{2M} = \frac{1}{M},$$

i el mateix serveix per fitar $|f(y) - f_k(y_k)|$.

Per tant, agafant qualsevol $k \geq n_0$, tenim que

$$|f(x) - f(y)| \ge |f_k(x_k) - f(y_k)| - |f_k(x_k) - f(x)| - |f(y) - f_k(y_k)| \ge \epsilon - \frac{1}{M} - \frac{1}{M} = \epsilon - \frac{2}{M}.$$

Com que aquesta desigualtat se satisfà per a tot M, prenent el límit quan M tendeix a infinit es té que

$$|f(x) - f(y)| \ge \epsilon$$
,

però al mateix temps x=y, ja que (x,y) és el límit d'una successió (x_n,y_n) on $|x_n-y_n|<\delta_n$. Per tant, hem arribat a una contradicció.