Problem 1. Let f be integrable over \mathbb{R}^d and $\alpha > 0$. Show that

$$\int_{\mathbb{R}^d} |f(x)| \ dx = \int_0^\infty m(E_\alpha) \ d\alpha,$$

where $E_{\alpha} := \{x \in \mathbb{R}^d : |f(x)| > \alpha\}.$

Proof. If $\alpha > 0$ is fixed, we note that

$$\int_{\mathbb{R}^d} \chi_{E_{\alpha}}(x) \ dx = m(E_{\alpha}),$$

which holds by the definition of the Lebesgue integral of a characteristic function. From which it follows that

$$\int_0^\infty m(E_\alpha) \ d\alpha = \int_0^\infty \left(\int_{\mathbb{R}^d} \chi_{E_\alpha(x)} \ dx \right) d\alpha.$$

Then, since characteristic functions are integrable, Fubini's theorem yields

$$\int_0^\infty \left(\int_{\mathbb{R}^d} \chi_{E_\alpha}(x) \ dx \right) d\alpha = \int_{\mathbb{R}^d} \left(\int_0^\infty \chi_{E_\alpha}(x) \ d\alpha \right) dx = \int_{\mathbb{R}^d} \left(\int_0^{|f(x)|} \chi_{E_\alpha}(x) \ d\alpha + \int_{|f(x)|}^\infty \chi_{E_\alpha}(x) \ d\alpha \right) dx,$$

breaking up the interval over which we integrate. Since $x \in E_{\alpha}$ if and only if $|f(x)| > \alpha$ by definition, if $|f(x)| \le \alpha$ then $\chi_{E_{\alpha}}(x) = 0$. Thus, since x is fixed, $\int_{|f(x)|}^{\infty} \chi_{E_{\alpha}}(x) d\alpha = \int_{|f(x)|}^{\infty} 0 d\alpha = 0$ (since $|f(x)| \le \alpha$ always). Furthermore, we have

$$\int_{0}^{|f(x)|} \chi_{E_{\alpha}}(x) \ d\alpha = \int_{[0,|f(x)|)} \chi_{E_{\alpha}}(x) \ d\alpha \qquad \text{(remove } |f(x)| \text{ from interval as } m(\{|f(x)|\}) = 0)$$

$$= \int_{[0,|f(x)|)} 1 \ d\alpha \qquad \text{(as } |f(x)| > \alpha \text{ for } \alpha \in [0,|f(x)|))$$

$$= \int_{[0,|f(x)|)} \chi_{[0,|f(x)|)}(\alpha) \ d\alpha$$

$$= m([0,|f(x)|)) = |f(x)| - 0 = |f(x)|,$$

by definition of the Lebesgue integral of a characteristic function. Thus,

$$\int_0^\infty m(E_\alpha) \ d\alpha = \int_{\mathbb{R}^d} \left(\int_0^{|f(x)|} \chi_{E_\alpha}(x) \ d\alpha + \int_{|f(x)|}^\infty \chi_{E_\alpha(x)} \ d\alpha \right) dx = \int_{\mathbb{R}^d} |f(x)| \ dx.$$

Therefore, $\int_{\mathbb{R}^d} |f(x)| dx = \int_0^\infty m(E_\alpha) d\alpha$ completes the proof.

Problem 2. Let $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ be measurable and $\Gamma = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : y = f(x)\}$. Show that Γ is measurable and $m(\Gamma) = 0$.

Proof. We show first that Γ is measurable. Define the functions $\hat{h}, \hat{g} : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ by

$$\hat{h}:(x,y)\mapsto f(x) \text{ and } \hat{g}:(x,y)\mapsto y.$$

Then \hat{h} and \hat{g} are measurable. Indeed, for every $c \in \mathbb{R}$,

$$\hat{h}^{-1}([-\infty, c)) = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : \hat{h}(x, y) < c\} = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : f(x) < c\}$$
$$= \{x \in \mathbb{R}^d : f(x) < c\} \times \mathbb{R} = f^{-1}([-\infty, c)) \times \mathbb{R}$$

and

$$\hat{g}^{-1}([-\infty, c)) = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : \hat{g}(x, y) < c\} = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : y < c\} = \mathbb{R}^d \times (-\infty, c).$$

Then $\hat{h}^{-1}([-\infty,c)) = f^{-1}([-\infty,c)) \times \mathbb{R}$ is a cartesian product of measurable sets $(f^{-1}([-\infty,c)))$ is measurable since f is measurable; \mathbb{R} is measurable as it is a Borel set, which are measurable by lecture) and so is $\hat{g}^{-1}([-\infty,c)) = \mathbb{R}^d \times (-\infty,c)$ (\mathbb{R}^d and $(-\infty,c)$) are measurable as they are Borel sets). From lecture we know that cartesian products of measurable sets are measurable so that $\hat{h}^{-1}([-\infty,c))$ and $\hat{g}^{-1}([-\infty,c))$ are measurable. Since c was arbitrary we conclude that \hat{h} and \hat{g} are measurable.

Since \hat{h} and \hat{g} are measurable and finite valued, we attain from lecture that $\hat{f} = \hat{h} - \hat{g}$ is a measurable function since it is the sum of two measurable functions.¹ Then

$$\hat{f}^{-1}(\{0\}) = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : \hat{f}(x,y) = 0\} = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : \hat{h}(x,y) - \hat{g}(x,y) = 0\}$$
$$= \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : \hat{h}(x,y) = \hat{g}(x,y)\} = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} : f(x) = y\} = \Gamma.$$

But then $\Gamma = \hat{f}^{-1}(\{0\}) = \hat{f}^{-1}([-\infty, 0] \cap [0, \infty]) = \hat{f}^{-1}([-\infty, 0]) \cap \hat{f}([0, \infty])$ is a finite intersection of measurable sets (by the measurability of \hat{f}). Thus Γ is measurable.

Then, using corollary 1 of Fubini's theorem from lecture, since Γ is measurable, defining the set

$$\Gamma_x := \{ y \in \mathbb{R} : (x, y) \in \Gamma \} = \{ y \in \mathbb{R} : f(x) = y \} = \{ f(x) \}$$

vields

$$m(\Gamma) = \int_{\mathbb{R}} m(\Gamma_x) = \int_{\mathbb{R}} 0 = 0,$$

since singleton sets have measure 0. Therefore, this proves that Γ is measurable and of measure 0.

¹For the sake of completeness, we note that $-\hat{g}$ is measurable as for $c \in \mathbb{R}$, $-\hat{g}^{-1}([-\infty, c)) = \mathbb{R}^d \times (-c, \infty)$ is the cartesian product of two Borel (and hence measurable) sets and thus is measurable.

Problem 3. Let F be a closed subset of \mathbb{R} whose complement has finite measure. Let $I : \mathbb{R} \to [0, \infty]$ be the function defined for every $x \in \mathbb{R}$ by

$$I(x) = \int_{\mathbb{R}} \frac{d(y, F)}{|x - y|^2} dy,$$

where $d(y, F) = \inf\{|y - z| : z \in F\}.$

1. Show that $d(\cdot, F)$ is Lipshitz continuous in \mathbb{R} , i.e.

$$|d(x,F) - d(y,F)| \le |x-y| \ \forall x,y \in \mathbb{R}.$$

2. Show that $I(x) = \infty$ for each $x \notin F$ and $I(x) < \infty$ for a.e. $x \in F$. You may use the results of Questions 1 and 3 in Assignment 4.

Hint for 3.2 (b). Use a double integration and observe that $F \cap (y - d(y, F), y + d(y, F)) = \emptyset$ for every $y \in \mathbb{R} \setminus F$.

Proof of 3.1. Let $x, y \in \mathbb{R}$ be fixed and $\varepsilon > 0$ be given. By the definition of $d(\cdot, F)$, for every $\varepsilon > 0$ there exists a $z_x \in F$ such that $d(x, F) > |x - z_x| - \varepsilon$. Using this, notice that

$$d(y,F) \le |y-z_x| = |y-z_x+x-x| \le |x-y| + |x-z_x|$$
 (triangle inequality)
$$<|x-y| + d(x,F) + \varepsilon$$
 (definition of infimum)
$$\iff d(y,F) - d(x,F) < |x-y| + \varepsilon \iff d(x,F) - d(y,F) > -(|x-y| + \varepsilon).$$
 (3.1)

Similarly, for every $\varepsilon > 0$ there exists a $z_y \in F$ such that $d(y, F) > |y - z_y| - \varepsilon$. Using this once more, it follows that

$$d(x,F) \le |x-z_y| = |x-z_y+y-y| \le |x-y| + |y-z_y|$$
 (triangle inequality)
$$<|x-y| + d(y,F) + \varepsilon$$
 (definition of infimum)
$$\iff d(x,F) - d(y,F) < |x-y| + \varepsilon.$$
 (3.2)

Thus, combining (3.1) and (3.2), it follows that

$$-(|x-y|+\varepsilon) < d(x,F) - d(y,F) < |x-y|+\varepsilon \iff |d(x,F) - d(y,F)| < |x-y|+\varepsilon.$$

since ε was arbitrary, we conclude that

$$|d(x,F) - d(y,F)| \le |x - y|,$$

and since x and y were arbitrary, we conclude that $d(\cdot, F)$ is Lipschitz continuous.

Proof of 3.2 (a). We show that $I(x) = \infty$ for each $x \in \mathbb{R} \setminus F$. Let $\ell := d(x, F)$. Note that $\ell \neq 0$ otherwise $x \in F$ since x would be a cluster point of F (as $\forall \varepsilon > 0 : \exists z_{\varepsilon} \in F : |x - z_{\varepsilon}| < \ell + \varepsilon = \varepsilon \iff x \in V_{\varepsilon}(z_{\varepsilon})$) and closed sets (like F) contain all of their cluster points by definition.

Let c>1 be fixed. From (1), we know that if $y\in B(x,\ell/c)$ (i.e. $|x-y|<\ell/c$) then $d(y,F)\in B(d(x,F),\ell/c)$ (i.e. $|d(x,F)-d(y,F)|<\ell/c$) $\iff d(y,F)\in B(\ell,\ell/c)\iff d(y,F)\in (\ell-\ell/c,\ell+\ell/c)$ so

that $d(y,F) > \ell - \ell/c$. Thus, since $B(x,\ell/c) \subseteq \mathbb{R}$ and $I \ge 0$ on \mathbb{R} , we have

$$I(x) = \int_{\mathbb{R}} \frac{d(y, F)}{|x - y|^2} \ dy \ge \int_{B(x, \ell/c)} \frac{d(y, F)}{|x - y|^2} \ dy > \int_{B(x, \ell/c)} \frac{\ell - \ell/c}{|x - y|^2} \ dy = (\ell - \ell/c) \int_{B(x, \ell/c)} \frac{1}{|x - y|^2} \ dy. \quad (*)$$

Now notice that $B(x,\ell/c) = B(0,\ell/c) + x = \{a+x \in \mathbb{R} : a \in B(0,\ell)\}$. Then if $f(y) = \frac{1}{|x-y|^2}$ for $y \in B(x,\ell/c)$, we define for $y \in B(0,\ell/c)$ the function $f_x(y) = f(y+x) = \frac{1}{|x-(y+x)|^2} = \frac{1}{y^2}$. Then, applying the results from Assignment 4, Question 1, we attain from (*) that

$$I(x) \ge (\ell - \ell/c) \int_{B(x,\ell/c)} \frac{1}{|x - y|^2} dy = (\ell - \ell/c) \int_{B(0,\ell/c)} \frac{1}{y^2} dy = (\ell - \ell/c) \int_{[0,\ell/c]} \frac{1}{y^2} dy,$$

where we can add these endpoints since $m(\{0, \ell/c\}) = 0$. Then, notice that

$$\int_{[0,\ell/c]} \frac{1}{y^2} \ dy = \lim_{t \to 0^+} \int_{[t,\ell/c]} \frac{1}{y^2} \ dy.$$

Since $y \mapsto 1/y^2$ is Reimann integrable (as it is continuous) and bounded for any fixed t > 0, we can equivalently evaluate the Reimann integral to find that

$$I(x) \ge \lim_{t \to 0^+} \int_{[t,\ell/c]} \frac{1}{y^2} \ dy = \lim_{t \to 0^+} \left[-\frac{1}{y} \right]_t^{\ell/c} = \lim_{t \to 0^+} \left(-\frac{1}{\ell/c} + \frac{1}{t} \right) = \infty.$$

Thus, we conclude as needed that $I(x) = \infty$ since we showed that $I(x) \ge \infty$.

Proof of 3.2 (b). We show that for a.e. $x \in F$, $I(x) < \infty$. We start by noting that $I(x) = \int_{\mathbb{R}} \frac{d(y,F)}{|x-y|^2} \, dy = \int_{F} \frac{d(y,F)}{|x-y|^2} \, dy + \int_{\mathbb{R}\backslash F} \frac{d(y,F)}{|x-y|^2} \, dy = \int_{\mathbb{R}\backslash F} \frac{d(y,F)}{|x-y|^2} \, dy$, since for $y \in F$, d(y,F) = |y-y| = 0 so that $\int_{F} \frac{d(y,F)}{|x-y|^2} \, dy = \int_{F} 0 \, dy = 0$. By lecture, we know that if a function f is integrable over $A \subseteq \mathbb{R}^d$, then $f(x) < \infty$ for a.e. $x \in A$. Thus, it suffices to show that $\int_{F} I(x) \, dx < \infty$. Since $\int_{F} I(x) \, dx = \int_{F \times \mathbb{R}\backslash F} f$ (where $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is given by $f(x,y) = \frac{d(y,F)}{|x-y|^2}$), and $f \ge 0$ everywhere and is measurable², we can swap the integrals using Tonelli's theorem to obtain

$$\int_{F} I(x) \ dx = \int_{F} \left(\int_{\mathbb{R}\backslash F} \frac{d(y,F)}{|x-y|^{2}} \ dy \right) dx = \int_{\mathbb{R}\backslash F} \left(\int_{F} \frac{d(y,F)}{|x-y|^{2}} \ dx \right) dy$$

$$= \int_{\mathbb{R}\backslash F} \left(d(y,F) \int_{F} \frac{1}{|x-y|^{2}} \ dx \right) dy. \tag{*}$$

Now, following the hint, note that for every $y \in \mathbb{R} \setminus F$, $F \cap (y - d(y, F), y + d(y, F)) = \emptyset$. Indeed, if $x \in F$, then $d(y, F) \leq |x - y|$ so that $x \notin (y - d(y, F), y + d(y, F))$. Thus, $F \subseteq (-\infty, y - d(y, F)) \cup (y + d(y, F), \infty)$

Firstly, $f \ge 0$ on \mathbb{R}^2 as $d(y,F), |x-y|^2 \ge 0$. Secondly, f is measurable; indeed, using (1) $d(\cdot,F)$ is Lipschitz continuous (and hence continuous) and finite-valued so that it is measurable and $1/|x-y|^2$ is continuous for every $x,y \in \mathbb{R}^2$ such that $x \ne y$, i.e. the set of discontinuities is $\Gamma := \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = \mathrm{id}(x)\}$. Since the identity function is measurable, using (2) Γ has measure 0. Thus, $1/|x-y|^2$ is continuous almost everywhere and finite-valued and hence measurable by lecture. Since these functions are finite valued and since the product of measurable functions is measurable, $f = d(y,F) \cdot \frac{1}{|x-y|^2}$ is measurable as needed.

so that

$$\int_{F} \frac{1}{|x-y|^2} dx \le \int_{-\infty}^{y-d(y,F)} \frac{1}{|x-y|^2} dx + \int_{y+d(y,F)}^{\infty} \frac{1}{|x-y|^2} dx$$

$$= \int_{-\infty}^{-d(y,F)} \frac{1}{x^2} dx + \int_{d(y,F)}^{\infty} \frac{1}{x^2} dx,$$

again using Question 1 of Assignment 4 as we did above: for every $x \in (-\infty, y - d(y, F)] \cup [y + d(y, F), \infty)$, if $f(x) = \frac{1}{|x-y|^2}$ then define for $x \in (-\infty, -d(y, F)] \cup [d(y, F), \infty)$ $f_y(x) = f(x+y) = \frac{1}{|x+y-y|^2} = \frac{1}{x^2}$.

Since $1/x^2$ is Reimann integrable (as it is continuous) and bounded on [t, -d(y, F)] and [d(y, F), t] for any fixed t, we can evaluate these integrals as Reimann integrals:

$$\int_{F} \frac{1}{|x-y|^{2}} dx \leq \int_{-\infty}^{-d(y,F)} \frac{1}{x^{2}} dx + \int_{d(y,F)}^{\infty} \frac{1}{x^{2}} dx$$

$$= \lim_{t \to -\infty} \int_{t}^{-d(y,F)} \frac{1}{x^{2}} dx + \lim_{t \to \infty} \int_{d(y,F)}^{t} \frac{1}{x^{2}} dx$$

$$= \lim_{t \to -\infty} \left(\int_{[t,-d(y,F)]} \frac{1}{x^{2}} dx \right) + \lim_{t \to \infty} \left(\int_{[d(y,F),t]} \frac{1}{x^{2}} dx \right)$$
(add endpoints as finite sets have measure 0)
$$= \lim_{t \to -\infty} \int_{t}^{-d(y,F)} x^{-2} dx + \lim_{t \to \infty} \int_{d(y,F)}^{t} x^{-2} dx$$

$$= \lim_{t \to -\infty} \left[\frac{-1}{x} \right]_{t}^{-d(y,F)} + \lim_{t \to \infty} \left[\frac{-1}{x} \right]_{d(y,F)}^{t}$$

$$= \frac{1}{d(y,F)} + \lim_{t \to -\infty} \frac{1}{t} + \lim_{t \to \infty} \frac{-1}{t} + \frac{1}{d(y,F)}$$

$$= \frac{2}{d(y,F)}.$$

Now, applying this result to (*) yields

$$\int_{F} I(x) \ dx = \int_{\mathbb{R}\backslash F} \left(d(y,F) \int_{F} \frac{1}{|x-y|^{2}} \ dx \right) dy \le \int_{\mathbb{R}\backslash F} d(y,F) \frac{2}{d(y,F)} \ dy$$
$$= 2 \int_{\mathbb{R}\backslash F} \chi_{\mathbb{R}\backslash F} \ dy = 2m(\mathbb{R}\backslash F) < \infty,$$

which holds by the hypothesis that the complement of F has finite measure and by definition of the Lebesgue integral of a characteristic function. Therefore, $\int_F I(x) \ dx < \infty$ implies that for almost every $x \in F$, $I(x) < \infty$, thus the proof is complete.