Probabilidad

Alejandro Zubiri

March 14, 2025

# Índice

| 1 | No                | ciones Básicas                                                    | 2  |
|---|-------------------|-------------------------------------------------------------------|----|
|   | 1.1               | Experimentos Aleatorios                                           | 2  |
|   |                   | 1.1.1 Espacio muestral                                            | 2  |
|   |                   | 1.1.2 Conjunto de partes                                          | 2  |
|   | 1.2               | Probabilidad                                                      | 2  |
|   | 1.3               | Axiomas de Kolmogorov                                             | 2  |
|   |                   | 1.3.1 Propiedades                                                 | 3  |
| 2 | Cor               | mbinatoria                                                        | 4  |
|   | 2.1               | Variaciones                                                       | 4  |
|   |                   | 2.1.1 Variaciones con repetición                                  | 4  |
|   |                   | 2.1.2 Variaciones sin repetición                                  | 4  |
|   |                   | 2.1.3 Permutaciones ordinarias                                    | 4  |
|   |                   | 2.1.4 Permutaciones con repetición                                | 4  |
|   |                   | 2.1.5 Combinaciones ordinarias o sin repetición                   | 5  |
|   |                   | 2.1.6 Combinaciones con repetición                                | 5  |
| 3 | Dro               | obabilidad condicionada                                           | 6  |
| J | 3.1               | Regla del producto                                                | 6  |
|   | $\frac{3.1}{3.2}$ | · -                                                               | 7  |
|   | 3.2               | Independencia condicional                                         | 1  |
| 4 | Ten               | na Cuatro                                                         | 8  |
|   | 4.1               | Variable aleatoria                                                | 8  |
|   | 4.2               | Estadística descriptiva                                           | 8  |
|   |                   | 4.2.1 Distribución de una variable condicionada por un suceso $A$ | 9  |
|   | 4.3               | Momentos respecto al origen                                       | 9  |
|   | 4.4               | Entropía                                                          | 9  |
|   | 4.5               | Distribuciones de probabilidad más comunes                        | 9  |
|   |                   | 4.5.1 Distribución binomial                                       | 9  |
|   |                   | 4.5.2 Distribución de Poisson                                     | 9  |
|   |                   |                                                                   | .0 |
|   |                   |                                                                   | 0  |

# Nociones Básicas

# 1.1 Experimentos Aleatorios

### 1.1.1 Espacio muestral

Son sucesos aleatorios repetidos cuyos resultados no se pueden determinar de antemano. El objetivo es describir el fenónemo desde un punto de vista aleatorio que describa el proceso.

El espacio muestral es el conjunto formado por todos los posibles resultados:

$$\Omega = \{\omega_1, \dots, \omega_n\}$$

Y tenemos diferentes tipos:

- Discreto: finito o numerable.
- Continuo.

Un suceso es cualquier subconjunto del espacio muestral. El proceso de codificación es el que consiste en pasar de una variable cualitativa a una cuantitativa.

#### 1.1.2 Conjunto de partes

El conjunto de partes del espacio muestral es el conjunto de todos los posibles resultados de un experimento.

#### 1.2 Probabilidad

Cualesquiera que sean A, se tiene que  $0 \le n(A) \le n$ , y que por tanto

$$\lim_{n \to \infty} \frac{n(A)}{n} = P(A)$$

Si A ocurre siempre,  $n(A) = n \implies P(A) = 1$  Además, si A y B son excluyentes, se tiene que  $P(A \cap B) = 0$ , y que  $P(A \cup B) = P(A) + P(B)$ .

# 1.3 Axiomas de Kolmogorov

Las propiedades anteriores dotan a  $\mathbb{A}, \cap, \cup$  de una estructura de álgebra de Boole ( $\sigma$ -álgebra). Una probabilidad P definida sobre un álgebra de sucesos A, de un espacio muestral finito  $\Omega$ , es una función  $P: A \to [0, 1]$ .

- $P(\Omega) = 1$
- $P(A) \in [0,1] \forall A$
- Si A y B son excluyentes, se tiene que  $P(A \cap B) = 0$ , y que  $P(A \cup B) = P(A) + P(B)$ .

# 1.3.1 Propiedades

- $P(\phi) = 0$
- $P(\bar{A}) = 1 P(A)$
- $P(A-B)=P(A)-P(A\cap B)$ , y además si  $B\subset A,$  P(A-B)=P(A)-P(B)
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A_1 \cup A_2 \cup A_3) = \sum_{i=1}^3 P(A_i) \sum_{i < j} P(A_i \cap A_j) + P(A_1 \cap A_2 \cap A_3)$

# Combinatoria

Supongamos que tenemos m elementos, y vamos a generar grupos. Cada grupo contiene n elementos.

#### 2.1 Variaciones

### 2.1.1 Variaciones con repetición

Se llaman variaciones de repetición de m elementos, tomados de n en n, a los distintos grupos que se pueden formar de tal manera que cada grupo contiene n elementos distintos o iguales, y que un grupo se diferencia de los demás o bien en algún elemento o su posición. El número total es

$$VR_m^n = m^n$$

#### 2.1.2 Variaciones sin repetición

Se les llama a las diferentes formas en las que se pueden ordenar m elementos formados en grupos de n elementos. El número total es

$$V_{m,n} = \frac{m!}{(m-n)!}$$

#### 2.1.3 Permutaciones ordinarias

Si se tienen permutaciones de n elementos, buscamos los distintos grupos que se pueden formar ordenando de diferentes formas n elementos:

$$P_n = n!$$

#### 2.1.4 Permutaciones con repetición

Donde el primer elemento se repite  $\alpha$  veces, el segundo  $\beta$  veces, y así hasta el último que se repite  $\gamma$  veces. La suma  $\alpha + \beta + \cdots + \gamma = n$ . A los distintos grupos de n elementos que se pueden formar con los m elementos, donde cada grupo se compone de  $\alpha$  veces el primer elemento,  $\beta$  veces el segundo, etc, el número total es

$$P_n = \frac{n!}{\alpha!\beta!\dots\gamma!}$$

### 2.1.5 Combinaciones ordinarias o sin repetición

De m elementos, tomados de n a n, a los diferentes grupos que se pueden formar de tal manera que cada grupo contenta n elementos distintos (el orden no importa). La cantidad total es

$$C_{m,n} = \binom{m}{n} = \frac{m!}{n!(m-n)!}$$

### 2.1.6 Combinaciones con repetición

De m elementos, los diferentes grupos que se pueden formar tal que cada grupo contiene n elementos distintos, en cada grupo se pueden repetir elementos, y cada grupo se diferencia al menos en un elemento. El número total es:

$$CR_{m,n} = {m+n-1 \choose n} = \frac{(m+n-1)!}{n!(m-1)!}$$

# Probabilidad condicionada

- Modelos dinámicos: experimentos que se realizan a lo largo del tiempo. Los experimentos son dependientes entre sí.
- Modelos estáticos: mismo período de tiempo.

La probabilidad de que ocurra B si ocurre A es

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

### 3.1 Regla del producto

Supongamos un modelo dinámico donde ocurren sucesos de forma consecutiva  $\{A_1, \ldots, A_n\}$ , se cumple que

$$P(A_1 \cap \dots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap \dots \cap A_{n-1})$$
(3.1)

**Definición 1.** A y B son sucesos independientes si

$$P(A \cap B) = P(A) \cdot P(B)$$

**Definición 2.** Sea H una familia de sucesos que no incluyen al espacio vacío. Se dice que H está formada por sucesos completamente independientes, si para todo subconjunto de H se verifica que  $H = \{\Delta_1, \ldots, \Delta_k\}$ 

$$P(\Delta_1 \cap \dots \cap \Delta_n) = \prod_{i=1}^{j} P(\Delta_i)$$

**Teorema 1.** Dado un modelo matemático probabilístico representado por  $(\Omega, \mathcal{A}, P)$ , un sistema completo formado por  $\{A_1, \ldots, A_n\} \in \mathcal{A}$  (con todos ellos excluyentes), y sabiéndose  $\exists B \in \mathcal{A}P(B|A_i) \forall i$ , se verifica que

$$P(B) = \sum P(A_i)P(B|A_i)$$

 $Entonces\ se\ verifica\ que$ 

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)}$$

# 3.2 Independencia condicional

Si se verifica que

$$P(A \cap B|C) = P(A|C)P(B|C)$$

Entonces A y B son condicionalmente independientes dado C.

# Tema Cuatro

### 4.1 Variable aleatoria

Existen varias formas de clasificar variables:

- Cualitativa: en función de una cualidad
- Cuantitativa: se puede medir y evaluar con un número.
- Cuasi-cuantitativa: se ordenan en función de una magnitud que puede pertenecer a diferentes intervalos.

Dado un modelo matemático  $(\Omega, \mathcal{A}, P)$  formada por un espacio muestral  $\Omega$ , un álgebra de sucesos  $\mathcal{A}$ , y una probabilidad P. Una variable discreta X definida sobre el modelo es una función definida como

$$X:\Omega\to\mathbb{R}$$

Que se denomina como función de masa  $X_i$ .

Se llama función de distribución de X a la función F(X) que

$$F(X = x_i) = P(\{\omega \in \Omega : X(\omega) \le x_i\}) = P(-\infty, x_i]$$

- $\lim_{x \to -\infty} F(X) = 0$
- $\lim_{x\to\infty} F(X) = 1$
- F es monótona decreciente.
- $\bullet$  F es continua por la derecha.
- $P(x_1 < x \le x_2) = F(x_2) F(x_1)$

# 4.2 Estadística descriptiva

Dada una variable aleatoria discreta X, se define esperanza de X como

$$\mu = E(X) = \sum_{i} x_i P(X = x_i)$$

también la moda, que se define como el valor con mayor probabilidad.

La mediana se define como el valor que se encuentra en la mitad del resto de los valores:

$$P(-\infty, med] = F(X = med) \ge \frac{1}{2}$$

#### 4.2.1 Distribución de una variable condicionada por un suceso A

Dada una función de masa P(X), la probabilidad de que X tome  $x_i$  si ha ocurrido A viene dada por

$$P(X = x_i | A) = \frac{P(\{\omega \in \Omega | X(\omega) = x_i\} \cap A)}{P(A)}$$

y entonces

$$E(X|A) = \sum x_i P(x_i|A)$$

# 4.3 Momentos respecto al origen

Se denomina momento respecto al origen de orden  $r \forall r \in \mathbb{N}$  y se denota como  $\alpha_r$ :

$$\alpha_r = E[X^r] = \sum_{i=0}^n x_i^r P(X = x_i)$$

El momento de orden 1 es el valor medio. Con esto podemos definir la varianza como

$$\sigma^2 = E[X^2] - E[X]^2$$

También definimos

$$\mu_r = \sum (x - \bar{x})^r P(x)$$

# 4.4 Entropía

Definimos la entropía asociada a una variable aleatoria X como

$$H(X) = -\sum p(x_i) \log[p(x_i)]$$

# 4.5 Distribuciones de probabilidad más comunes

#### 4.5.1 Distribución binomial

La función masa es

$$P(x) = P_n^{x,n-x} p^x (1-p)^{n-x}$$

Y el valor medio es

$$E[X] = n \cdot p$$

la varianza

$$\sigma^2 = np(1-p)$$

#### 4.5.2 Distribución de Poisson

Si  $n \to \infty$  y  $x \in [0, \infty)$ , entonces la función masa binomial se aproxima a una función llamada **masa de Poisson**:

$$\lim_{(n,p)\to(\infty,0)} b(x,n,p) = p(x,\lambda)$$

donde  $\lambda = n \cdot p$ , y la función masa es

$$p(x,\lambda) = \left\{ \begin{array}{c} \frac{e^{-\lambda}\lambda^x}{x!} \ si \ x = 0, 1, \dots, n \\ 0 \ else \end{array} \right\}$$

Para  $X \sim P(X, \lambda),$  la función distibución de X se denota por

$$P(X;\lambda) = P\{\omega \in \Omega : X \le x\} = \sum_{y=0}^{x} p(y,\lambda)$$

Donde se cumple que  $\mu=E(X)=\lambda,$  y que  $V(X)=\sigma^2=\lambda$ 

### 4.5.3 Distribución geométrica

Definimos la probabilidad de que X = k como

$$P(X = k) = (1 - p)^{k-1} p \ si \ k = 1, 2, 3 \dots$$

y la función distribución como

$$F(X = k) = P(-\infty, X] = \sum_{j=1}^{k} (1 - p)^{j-1} p \text{ si } x = 0, 1, \dots, n$$

teniendo que  $\mu=E(X)=\frac{1}{p},$ y que  $V(X)=\sigma^2=\frac{1-p}{p^2}$ 

### 4.5.4 Distribución binomial negativa