Serie 1, Aufgabe 4

Gibt es abzählbar unendliche σ -Algebren?

Beweis. Sei \mathcal{M} eine σ-Algebra und nimm an, dass \mathcal{M} nicht nur die leere Menge enthält. Zunächst bemerken wir, dass für $A_i \in \mathcal{M}, i \in \mathbb{N}_{\geq 1}$ gilt, dass $\bigcap_{i=1}^{\infty} A_i \in \mathcal{M}$. Der Grund ist dieser:

- Alle A_i^c gehören zu \mathcal{M} (Definition 1.3).
- Also gehört $\bigcup_{i=1}^{\infty} A_i^c$ zu \mathcal{M} (Definition 1.3).
- Mit De Morgan gilt:

$$\bigcup_{i=1}^{\infty} A_i^c = \left(\bigcap_{i=1}^{\infty} A_i\right)^c.$$

• Also gehört auch $((\bigcap_{i=1}^{\infty} A_i)^c)^c = \bigcap_{i=1}^{\infty} A_i$ zu \mathcal{M} .

Daher enthält \mathcal{M} eine Untermenge D von paarweise disjunkten, nicht-leeren Mengen: Fange an mit \mathcal{M} und wirf alle Mengen heraus, die mit einer anderen Menge überlappen. Da sowohl der Schnitt beider Mengen als auch das Komplement dieses Schnitts in \mathcal{M} vorhanden ist, können alle Elemente von \mathcal{M} durch das Vereinigen der Mengen aus D rekonstruiert werden. Ausserdem gehören alle Vereinigungen der Mengen aus D auch zu \mathcal{M} , da alle Mengen aus D auch zur σ -Algebra \mathcal{M} gehören. Folglich hat \mathcal{M} die gleiche Mächtigkeit wie die Potenzmenge von D. Wenn D endlich ist, ist $\mathcal{P}(D)$ endlich. Wenn D aber unendlich (sei es abzählbar oder überabzählbar) ist, ist $\mathcal{P}(D)$ überabzählbar. Folglich gibt es keine abzählbar unendliche σ -Algebra.