Affine Weyl Groups

Gabriele Nebe

Lehrstuhl D für Mathematik

Summerschool GRK 1632, September 2015

Crystallographic root systems.

Definition

A crystallographic root system Φ is a finite set of non zero vectors in Euclidean space V s.t.

- (R1) $\Phi \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Phi$
- (R2) $s_{\alpha}(\Phi) = \Phi$ for all $\alpha \in \Phi$, where $s_{\alpha} : v \mapsto v \frac{2(v,\alpha)}{(\alpha,\alpha)}\alpha$ is the reflection along α
- (R3) $\frac{2(\alpha,\beta)}{(\alpha,\alpha)} \in \mathbb{Z}$ for all $\alpha,\beta \in \Phi$.

 Φ is called irreducible if for all $\alpha, \beta \in \Phi$ there are

 $m \in \mathbb{N}, \alpha = \alpha_1, \dots, \alpha_m, \alpha_{m+1} = \beta \in \Phi \text{ s.t. } \prod_{i=1}^m (\alpha_i, \alpha_{i+1}) \neq 0.$

Remark

 Φ irreducible root system, then there is a basis $\Delta=\{\alpha_1,\ldots,\alpha_n\}\subset\Phi\subset V$ s.t. for all $\alpha\in\Phi$ there are $a_1,\ldots,a_n\in\mathbb{Z}_{\geq 0}$ with

$$\begin{array}{ll} \alpha=a_1\alpha_1+\ldots+a_n\alpha_n & \text{positive root} \\ \text{or} \\ \alpha=-a_1\alpha_1-\ldots-a_n\alpha_n & \text{negative root} \end{array}$$

 $\Phi^+:=\Phi^+(\Delta)$ denotes the set of all positive roots. $\exists \ ! \ \tilde{\alpha}=\sum c_i\alpha_i\in\Phi^+$ (the highest root) with maximal height $\sum_{i=1}^n c_i\in\mathbb{N}$.

The irreducible crystallographic root systems

Example

$$\begin{split} &\Delta = \{\alpha_1,\alpha_2\} \\ &\Phi^+ = \{\alpha_1,2\alpha_1+\alpha_2,\alpha_1+\alpha_2,\alpha_2\} \\ &\Phi = \Phi^+ \cup -\Phi^+ \\ &\text{order of } s_{\alpha_1}s_{\alpha_2} \text{ is } 4 \\ &\langle s_{\alpha_1},s_{\alpha_2}\rangle \cong D_8 \end{split}$$

Finite Weyl groups

Definition

Let Φ be crystallographic root system.

Then $W(\Phi) := \langle s_{\alpha} : \alpha \in \Phi \rangle$ is called the Weyl group of Φ .

Remark

Assume that Φ is irreducible.

- $W(\Phi) = \langle s_{\alpha} : \alpha \in \Delta \rangle$
- ▶ The Dynkin diagram encodes a presentation of $W(\Phi)$
- $W(\Phi)$ acts irreducibly on V.

$$F_4$$
 $0 - 0 \Rightarrow 0 - 0 \Rightarrow \alpha_1 \quad \alpha_2 \Rightarrow \alpha_3 \quad \alpha_4$

$$W(F_4) = \langle s_1, s_2, s_3, s_4 \mid s_i^2, (s_i s_j)^2 (|i - j| > 1), (s_1 s_2)^3, (s_2 s_3)^4, (s_3 s_4)^3 \rangle$$

	Φ	A_n	B_n/C_n	D_n	E_6	E_7	E_8
ĺ	$ \Phi $	n(n+1)	$2n^2$	2n(n-1)	72	126	240
	$ W(\Phi) $	(n+1)!	$2^n n!$	$2^{n-1}n!$	2^73^45	$2^{10}3^457$	$2^{14}3^{5}5^{2}7$
	$W(\Phi)$	S_{n+1}	$C_2 \wr S_n$	$(C_2^{n-1}): S_n$	$S_4(3):2$	$C_2 \times S_6(2)$	$2.O_8^+(2):2$

Affine Weyl groups

affine Weyl group <\$1,\$2,\$3>

<\$1,\$2,\$3 | \$1^2,\$2^2,\$3^2 (\$1\$2)^4,(\$1\$3)^4,(\$2\$3)^2 >

Definition

$$\begin{split} H_{\alpha,k} &:= \{v \in V \mid (v,\alpha) = k\} \text{ (affine hyperplane)} \\ \alpha^{\vee} &:= \frac{2}{(\alpha,\alpha)} \alpha \text{ the coroot of } \alpha \in \Phi \\ s_{\alpha,k} &: V \to V, v \mapsto v - ((v,\alpha) - k) \alpha^{\vee} \text{ the reflection in the affine hyperplane } H_{\alpha,k} \end{split}$$

Affine Weyl groups

Remark

$$\alpha^{\vee} = \frac{2}{(\alpha,\alpha)}\alpha, s_{\alpha,k} : v \mapsto v - ((v,\alpha) - k)\alpha^{\vee}, \ H_{\alpha,k} := \{v \in V \mid (v,\alpha) = k\}$$

- $(\alpha^{\vee})^{\vee} = \alpha$
- \bullet $(\alpha^{\vee}, \alpha) = 2, \alpha^{\vee} = \alpha \text{ if } (\alpha, \alpha) = 2$
- $H_{\alpha,k} = H_{\alpha,0} + \frac{k}{2}\alpha^{\vee}$
- $s_{\alpha,k}$ fixes $H_{\alpha,k}$ pointwise and sends 0 to $k\alpha^\vee$, so it is the reflection in the affine hyperplane $H_{\alpha,k}$.

Definition

Let Φ be an irreducible crystallographic root system.

- \bullet $\Phi^{\vee} := \{\alpha^{\vee} \mid \alpha \in \Phi\}$ the dual root system
- $\blacktriangleright \ L(\Phi) := \langle \Phi \rangle_{\mathbb{Z}} \text{ the root lattice, } L(\Phi)^{\#} = \{ v \in V \mid (v,\alpha) \in \mathbb{Z} \text{ for all } \alpha \in \Phi \}$
- $L(\Phi^{\vee})^{\#}=:\widehat{L}(\Phi)$ the weight lattice

Proposition

The affine Weyl group of $\boldsymbol{\Phi}$

$$W_a(\Phi) := \langle s_{\alpha,k} \mid \alpha \in \Phi, k \in \mathbb{Z} \rangle \cong L(\Phi^{\vee}) : W(\Phi)$$

is the semidirect product of $W(\Phi)$ with the translation subgroup $L(\Phi^{\vee})$.

Proof: $W_a(\Phi) = L(\Phi^{\vee}) : W(\Phi)$

- $\blacktriangleright s_{\alpha,k}: v \mapsto v ((v,\alpha) k)\alpha^{\vee}$ with
- $ightharpoonup \alpha^{\vee} = \frac{2}{(\alpha,\alpha)} \alpha, (\alpha,\alpha^{\vee}) = 2.$
- $W(\Phi) = \langle s_{\alpha,0} \mid \alpha \in \Phi \rangle \leq W_a(\Phi).$
- $ightharpoonup s_{\alpha,0}s_{\alpha,1}=t(\alpha^{\vee})$ because both map $v\in V$ to

$$(v - (v, \alpha)\alpha^{\vee})s_{\alpha, 1} = v - (v, \alpha)\alpha^{\vee} - ((v, \alpha) - (v, \alpha)\underbrace{(\alpha, \alpha^{\vee})}_{=2} - 1)\alpha^{\vee} = v + \alpha^{\vee}$$

- So $L(\Phi^{\vee}) = \langle t(\alpha^{\vee}) \mid \alpha \in \Phi \rangle \leq W_a(\Phi)$.
- ▶ $L(\Phi^{\vee}) \cap W(\Phi) = \{1\}.$
- ▶ $L(\Phi^{\vee})$ is normalized by $W(\Phi)$ because

$$s_{\alpha,0}t(v)s_{\alpha,0} = t(s_{\alpha,0}(v))$$

and
$$W(\Phi)(\Phi^{\vee}) = \Phi^{\vee}$$
.

Affine Weyl groups

Root lattice, weight lattice

Alcoves

Definition

- $V^{\circ} := V \cup_{H \in \mathcal{H}} H$
- ▶ A connected component of V° is called an alcove.
- $A_{\circ} := \{v \in V \mid 0 < (v, \alpha) < 1 \text{ for all } \alpha \in \Phi^+\}$ the standard alcove.
- $S_{\circ} := \{s_{\alpha,0} \mid \alpha \in \Delta\} \cup \{s_{\tilde{\alpha},1}\}$ the reflections in the faces of the standard alcove.

Theorem

 $\boldsymbol{\Phi}$ irreducible crystallographic root system.

- ▶ A_o is a simplex.
- $W_a(\Phi) = \langle S_{\circ} \rangle.$
- $W_a(\Phi)$ acts simply transitively on the set of alcoves.
- ▶ \overline{A}_{\circ} is a fundamental domain for the action of $W_a(\Phi)$ on V.

The standard alcove is a fundamental domain

Presentation of $W_a(\Phi)$ in standard generators S_{\circ}

Figure 4.1: Extended Dynkin diagrams

The length function

Definition

Any $w\in W_a(\Phi)$ is a product of elements in S_\circ . We put $\ell(w):=\min\{r\mid \exists s_1,\ldots,s_r\in S_\circ; w=s_1s_2\cdots s_r\}$ the length of w and call any expression $w=s_1\cdots s_{\ell(w)}$ a reduced word for w.

Definition

For $w\in W_a(\Phi)$ let $\mathcal{L}(w):=\{H\in\mathcal{H}\mid H \text{ separates }A_\circ \text{ and }A_\circ w\}$ and $n(w):=|\mathcal{L}(w)|.$

Words of minimal length

 $s1(s1s2s1)(s1s2s3s2s1)(s1s2s3s1s3s2s1)(s1s2s3s1s3s1s3s2s1)\dots$

=s2s1s3s1s3s2s1

Words of minimal length

$$w = s3s2s1s3s1s2s1 = s2s1s3s1s2s3s1$$

Separating hyperplanes w = s3s2s1s3s1s2s1= s2s1s3s1s2s3s1L(w) contains 7 hyperplanes length of reduced word of w = 7

The length function

Definition

Any $w\in W_a(\Phi)$ is a product of elements in S_\circ . We put $\ell(w):=\min\{r\mid \exists s_1,\dots,s_r\in S_\circ; w=s_1s_2\cdots s_r\}$ the length of w and call any expression $w=s_1\cdots s_{\ell(w)}$ a reduced word for w.

Definition

For $w \in W_a(\Phi)$ let $\mathcal{L}(w) := \{H \in \mathcal{H} \mid H \text{ separates } A_\circ \text{ and } A_\circ w\}$ and $n(w) := |\mathcal{L}(w)|$.

Theorem

Let
$$w = s_1 \cdots s_{\ell(w)}$$
 and $H_i := H_{s_i} = \{v \in V \mid vs_i = v\}$. Then

$$\mathcal{L}(w) = \{H_1, H_2s_1, H_3s_2s_1, \dots, H_{\ell(w)}s_{\ell(w)-1} \cdots s_2s_1\}.$$

In particular $n(w) = \ell(w)$.

Coweights modulo coroots and diagram automorphisms

- $W_a(\Phi) = L(\Phi^{\vee}) : W(\Phi)$
- ▶ $L(\Phi^{\vee})$ coroot lattice
- ▶ $L(\Phi)^{\#} = \{v \in V \mid (v, \alpha) \in \mathbb{Z} \text{ for all } \alpha \in \Phi\}$ coweight lattice
- $L(\Phi^{\vee}) \subseteq L(\Phi)^{\#}$
- $\hat{W}_a(\Phi) := L(\Phi)^\# : W(\Phi)$ acts on the set of alcoves.
- $W_a(\Phi)$ acts simply transitively on the set of alcoves.
- ▶ So $\hat{W}_a(\Phi) = W_a(\Phi) : \Omega$ where $\Omega = \operatorname{Stab}_{\hat{W}_a(\Phi)}(A_{\circ})$.
- $\Omega \cong \hat{W}_a(\Phi)/W_a(\Phi) \cong L(\Phi)^\#/L(\Phi^\vee)$ acts faithfully on the simplex A_\circ .
- $\,\blacktriangleright\,$ Ω acts as diagram automorphisms on the extended Dynkin diagram.

Φ	A_n	B_n	C_n	D_{2n}	D_{2n+1}	E_6	E_7	E_8	F_4	G_2
Ω	C_{n+1}	C_2	C_2	$C_2 \times C_2$	C_4	C_3	C_2	1	1	1

$\hat{W}_a(\Phi)$

Figure 4.1: Extended Dynkin diagrams

The order of the finite Weyl group

 $Wa=L(Phi^{\wedge}):W(Phi) => |W(Phi)| = 8$

The order of the finite Weyl group

- Φ irreducible crystallographic root system.
- $W_a(\Phi) = L(\Phi^{\vee}) : W(\Phi)$
- A_{\circ} is a fundamental domain for the action of $W_a(\Phi)$.
- $ightharpoonup P(\Delta^{\vee}) := \{\sum_{i=1}^{n} \lambda_i \alpha_i^{\vee} \mid 0 < \lambda_i < 1\}$ is a fundamental domain for $L(\Phi^{\vee})$.
- ${\bf \blacktriangleright}\ L(\Phi^\vee)$ is a normal subgroup of $W_a(\Phi)$ with
- $W_a(\Phi)/L(\Phi^{\vee}) \cong W(\Phi).$

Theorem

 $P(\Delta^{\vee})$ is the union of $|W(\Phi)|$ alcoves. (up to a set of measure 0).

Write the highest root $\tilde{\alpha} = \sum_{i=1}^{n} c_i \alpha_i$. Then

$$\operatorname{vol}(P(\Delta^{\vee}))/\operatorname{vol}(A_{\circ}) = n!|\Omega|c_1 \cdots c_n.$$

So
$$|W(\Phi)| = n! |\Omega| c_1 \cdots c_n$$
.

The order of the finite Weyl group

$$|W(\Phi)| = n! |\Omega| c_1 \cdots c_n.$$

Φ	c_1,\ldots,c_n	$ \Omega $	$ W(\Phi) $	$W(\Phi)$
A_n	$1,1,\ldots,1$	n+1	(n+1)!	S_{n+1}
B_n	$1,2,\ldots,2$	2	$2^n n!$	$C_2 \wr S_n$
C_n	$2,\ldots,2,1$	2	$2^n n!$	$C_2 \wr S_n$
D_n	$1, 2, \dots, 2, 1, 1$	4	$2^{n-1}n!$	$C_2^{n-1}:S_n$
E_6	1, 2, 2, 3, 2, 1	3	2^73^45	$S_4(3):2$
E_7	2, 2, 3, 4, 3, 2, 1	2	$2^{10}3^457$	$C_2 \times S_6(2)$
E_8	2, 3, 4, 6, 5, 4, 3, 2	1	$2^{14}3^{5}5^{2}7$	$2.O_8^+(2).2$
F_4	2, 3, 4, 2	1	2^73^2	1152
G_2	3, 2	1	$2^{2}3$	D_{12}