UNIVERSITY VIRGINIA

GaKCo: a Fast GApped k-mer string Kernel using COunting

Ritambhara Singh, Arshdeep Sekhon, Kamran Kowsari, Jack Lanchantin, Beilun Wang, Yaniun Qi

University of Virginia, Department of Computer Science

1. Overview

String Kernel techniques, especially those using gapped k-mers as features, have obtained great success in classifying sequences like DNA, protein, and text. However, the state-of-the-art gk-SVM runs extremely slow when we increase the dictionary size (Σ) or allow more mismatches (M). We propose a fast algorithm for calculating Gapped k-mer Kernel using Counting (GaKCo)-

- Faster than state-of-the-art gk-SVM
- Independent of dictionary size Σ and can scale up to large values of M and Σ .
- Parallelizable

2. String Kernel + SVM framework

ATCGAATCCG Does Transcription CGCTGAATCG X Factor bind to this DNA sequence? ATCGCTATCG./ **ATCCCGCTCGX** Support Vector T=AAACA Machine

3. Spectrum Kernel

4. Gapped k-mer Kernel

5. GaKCo

-Algorithm: GaKCo performs g-mer based cumulative counting of cooccurence to calculate N_m (independent of

dictionary size(Σ)).

-Parallelization: GaKCo groups computations for each value of m into an independent function, making it naturally parallelizable.

- (b). Overcounting when calculating cumulative mismatch profile for m=1.
- (c). gkm-SVM uses a trie based data structure and a separate nodelist at each leafnode for calculating N_

6. Theoretical Analysis: \equiv gkm-SVM GaKCo $c_{gk} \overline{gNI}$ gNI + nug Pre-processing Kernel updates M=(g-k)

7. Experiments and Results

Data: We perform 19 different classification tasks to evaluate the performance of GaKCo. These tasks belong to three categories: (1) Transcription Factor (TF) binding site prediction (DNA dataset), (2) Remote Protein Homology prediction (protein dataset), and (3) Character based English text classification (text dataset).

Comparisons:

- (a). Kernel Calculation times (log(seconds)) of GaKCo(X-axis) vs gkm-SVM(Y-axis). GaKCo is faster for 16/19 datasets.
- (b). Empirical performance for the same 19 datasets of GaKCo (X-axis) versus gkm-SVM (Y-axis). GaKCo achieves the same AUC-scores as gkm-SVM.

Kernel calculation times with varying mismatches (M): scales well with increasing Σ and M.

1. Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput Biol, 10(7):e1003711, 2014.

2. Mahmoud Ghandi, Morteza Mohammad-Noori, and Michael A Beer. Robust k-mer frequency estimation using gapped k-mers. Journal of mathematical biology, 69(2):469-500, 2014