Math 63: Real Analysis

Winter 2024

PSET 6 — 02/14/2024

Prof. Erchenko

Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

(a) Introduction to Analysis by Maxwell Rosenlicht

Problem 1.

$$\operatorname{Let} f(x) = \frac{1+x}{1+x^3}.$$

- (i) Find a largest subset $U \subseteq \mathbb{R}$ where f is well-defined. Is f continuous on U?
- (ii) Let U be as in part (i). Let g be a function such that g(x) = f(x) if $x \in U$. Is there a way to define g on $\mathbb{R} \setminus U$ to obtain a continuous function g on \mathbb{R} ?

Problem 2.

Determine the points where the function $f:\mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Problem 3.

Let $f:[a,b]\to \mathbb{R}$ with a < b be continuous. Show that functions

$$m(x) = \inf \left\{ f(y) \mid a \le y \le x \right\} \quad \text{and} \quad M(x) = \sup \left\{ f(y) \mid a \le y \le x \right\}$$

are continuous on [a, b].

Problem 4.

Show if each of this functions is uniformly continuous on $\ensuremath{\mathbb{R}}$ or not.

(i)
$$f(x) = x^2$$
.

(ii)
$$f(x) = \sqrt{|x|}$$
.

Problem 5.

Let (E,d_E) be a compact metric space, and let $f,f_1,f_2,f_3,\ldots:E\to\mathbb{R}$ be continuous real-values functions on E, with $\lim_{n\to\infty}f_n=f$. Prove that if $f_1(p)\leq f_2(p)\leq f_3(p)\leq \cdots$ for all $p\in E$ then the sequence f_1,f_2,f_3,\ldots converges uniformly.

Problem 6.

Let (X, d_X) and (Y, d_Y) be metric spaces. Assume (Y, d_Y) is complete. Show that a sequence of functions $f_n : X \to Y$ converges uniformly on X if and only if it is uniformly Cauchy on X.

Problem 7.

Let (X, d_X) be a metric space. A function $g: X \to \mathbb{R}$ is bounded on X if $\exists M$ such that $|g(x)| \leq M$ for all $x \in X$.

Suppose that $f_n: X \to \mathbb{R}$ is bounded on X for each $n \in \mathbb{N}$. Show that if a sequence of of f_n converges uniformly to a function $f: X \to \mathbb{R}$ then f is bounded on X.