Mathématiques actuarielles IARD-1 ACT-2005 Notes de cours

Gabriel Crépeault-Cauchon Nicholas Langevin

19 septembre 2018

Table des matières

1	Rappel sur les notions de probabilité et statistiques			
	1.1	Quantités à savoir	1	
	1.2	La loi normale	2	
	1.3	Queue de distribution	2	

Résumé

Ce document résume les notes de cours prises en classe dans le cours de Mathématiques actuarielles IARD-1, ainsi que des notions prises du livre *LOSS MODELS* - *From Data to Decisions, 4th edition*.

Chapitre 1

Rappel sur les notions de probabilité et statistiques

1.1 Quantités à savoir

Raw moments On représente le k^e moment par μ'_k , soit

$$\mu_k' = E\left[X^k\right] \tag{1.1}$$

Moments centraux Le k^e moment central est représenté par

$$\mu_k = E\left[(X - \mu)^k \right] \tag{1.2}$$

Exemple 1.1.1 Quelques exemples de moments centraux

C

La variance est le 2^e moment central :

$$Var(X) = \mu_2 = E\left[(X - \mu)^2\right]$$

Le 3^e moment centré, qui est utilisé pour calculer le coefficient d'asymétrie :

$$\mu_3 = E\left[(X - \mu)^3 \right]$$

Coefficient d'asymétrie Le coefficient d'asymétrie, aussi appelé *skewness*, est représentée par

 $S_k = \frac{\mu_3}{\sigma^2} \tag{1.3}$

Soit le 3^{e} moment standarisé. Si $S_{k}=0$, alors la distribution tend vers une loi normale.

Coefficient d'applatissement Le coefficient d'applatissement, aussi appelé *Kurtosis*, se définit par

 $Kurtosis = \frac{\mu_4}{\sigma^4}$ (1.4)

Cette quantité permet de mesurer l'épaisseur de l'aile (tail) de la distribution. Si $E\left[z^4\right]=3$, alors la distribution tend vers une loi normale $N(\mu,\sigma^2)$.

1.2 La loi normale

La fonction génératrice des moments

$$M_{x}(t) = M_{x}(0) + \frac{M'_{x}t}{1!} + \frac{M''_{x}t^{2}}{2!} + \dots + \frac{M_{x}^{(n)t^{n}}}{n!}$$
$$= 1 + \frac{E[x]t}{1!} + \frac{E[x^{2}]t^{2}}{2!} + \dots + \frac{E[x^{n}]t^{n}}{n!}$$

On pose : $c_k = \frac{E[x^n]}{n!}$ alors,

$$E[x^k] = C_k k! (1.5)$$

1.3 Queue de distribution

- 1. So is $f_1(x)$ une fonction tels que les 3 premiers moment existe : $E[x^4] = \infty$
- 2. So is $f_2(x)$ une fonction tels que les 2 premiers moment existe : $E[x^2] = \infty$ Alors,

$$\lim_{x \to \infty} r(x) = \frac{f_1(x)}{f_2(x)} = \begin{cases} \infty, f_1(x) \text{a une aile plus lourde que } f_2(x) \\ 0, f_2(x) \text{a une aile plus lourde que } f_1(x) \end{cases}$$

Exemple 1.3.1

So is $f_{x_1}(x_1) \sim pareto(\alpha, \theta)$ et $f_{x_2}(x_2) \sim gamma(\alpha, \lambda)$

$$\lim_{x \to \infty} r(x) = \lim_{x \to \infty} \frac{f_{x_1}(x_1)}{f_{x_2}(x_2)}$$

$$= \frac{\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}}{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}$$

$$= C \frac{e^{-\lambda x}}{x^{\alpha-1} (x+\theta)^{\alpha+1}}$$

$$= \infty$$

La pareto a une queue plus lourde que la gamma

La fonction de hasard

$$h(x) = \frac{f(x)}{s(x)} \tag{1.6}$$

Si à partir de M, h(x) est décroissante $\Leftrightarrow f(x)$ décroit trop lentement, alors f(x) à une aile lourde.