Colle MP 14: révisions

January 15, 2018

Colle 1

Théo CALLEY (11): des difficultés BOUHELIER Julien (14): quelques confusions sur le rayon de CV et inégalités entre complexes

Exercice 1. Quels sont les z pour lesquels $\sum \frac{z^n}{n}$ converge?

Exercice 2. Pour $a, b \in \mathbb{R}$, valeur minimale de l'intégrale:

$$\int_0^{\pi} (t - a\cos(t) - b\sin(t))^2 dt$$

Colle 2

CHARRIERE Baptiste (8): ne se souvient pas de Cauchy-Schwarz. Très faible. MARGUIER Agathe (13): correct.

Exercice 1. Soit $a_0 = 1$ et $a_{n+1} = \sum_{k=0}^{n} a_k a_{n-k}$.

- Calculer $S(x) = \sum_{k=0}^{\infty} a_k x^k$.
- En déduire a_n , $\forall n$.

Exercice 2. Soit $f:]0, \infty[\longrightarrow \mathbb{R}, f(x) = \sum_{k=1}^{\infty} \frac{1}{sh(kx)}.$

Donner un équivalent de f en ∞ .

Colle 3

DESHAYES Pierre (15): Bien

Exercice 1. DL de la série harmonique, en posant $v_n = H_n - \ln(n)$.

Exercice 2. Soit $A \in O_n(\mathbb{R})$. Mq:

$$|\sum a_{i,j}| \le n$$

Indice: utiliser vecteur avec que des 1.

Exercice 3. Soit $M \in O_n(\mathbb{R})$. Mq:

$$\sum |m_{i,j}| \le n\sqrt{n}$$

Indice: utiliser $(A, B) \longmapsto tr({}^tAB)$.