

naszemiasto

UZUPEŁNIA ZDAJĄCY

Klasa	Imię i nazwisko	wymagań

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego.
- Zamaluj pola do tego przeznaczone.
 Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

Życzymy powodzenia!

WYŻSZA SZKOŁA EKONOMII, PRAWA I NAUK MEDYCZNYCH W KIELCACH wseip.edu.pl

Prawa autorskie posiada Polska Press Sp. z o.o. Oddział w Kielcach, wydawca Echa Dnia. Kopiowanie w całości lub we fragmentach bez zgody Wydawcy zabronione.

MARZEC 2020 ROK

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $8^{12} \cdot 16^{-7}$ jest równa

A. $\frac{1}{256}$

B. 128

c. 2⁸

D. $\left(\frac{1}{2}\right)^5$

Zadanie 2. (0-1)

Wartość wyrażenia $log_3 30 - log_3 5\,$ jest równa

A. 2

B. $log_3 150$

C. $log_3 25$

D. $-1 + log_3 18$

Zadanie 3. (0-1)

Wartość wyrażenia $\sqrt[4]{4\sqrt[3]{4}}$ jest równa

A. $\sqrt[3]{4}$

B. $\sqrt[3]{2}$

C. $\sqrt[4]{4}$

D. $\sqrt[4]{2}$

Zadanie 4. (0-1)

Gdyby cenę towaru A obniżono o 10%, a cenę towaru B podwyższono o 8%, to okazałoby się, że ceny te byłyby równe. Wynika stąd, że cena towaru A jest wyższa od ceny towaru B o

A. 18%

B. 19%

c. 20%

D. 22%

Zadanie 5. (0-1)

Wskaż liczbę, która <u>nie należy</u> do zbioru rozwiązań nierówności $(1-x^2)(3x-2) \leq 2$.

A. -1

B. -2

c. 0

D. 1

Zadanie 6. (0-1)

Wartość wyrażenia $(2a-b)^2\,$ dla $\,a=2\sqrt{7}\,$ i $\,b=\sqrt{175}\,$ jest równa

A. 147

B. 49

c. $\sqrt{7}$

D. 7

Zadanie 7. (0-1)

Jednym z miejsc zerowych funkcji $f(x)=-2mx^2+2x-3\,$ jest $\,x=-\frac{1}{2}.$ Stąd wynika że

A. m = 0

B. m = -8 **C.** m = 3

D. m = -2

Zadanie 8. (0-1)

Iloczyn wszystkich rzeczywistych rozwiązań równania $(x^2 + 4)(x^2 - 3)(3x - 2) = 0$ jest równy

A. $-\frac{4\sqrt{3}}{3}$

B. 8

c. −2

D. $\frac{2\sqrt{3}}{3}$

Poniższy wykres dotyczy zadań 9. i 10.

Na rysunku przedstawiono wykres funkcji y = f(x).

Zadanie 9. (0-1)

Zbiorem wartości funkcji f jest

A. (-5; 6)

B. $\langle -2; 4 \rangle$

C. (-2; 4)

D. (-5; 6)

Zadanie 10. (0-1)

Miejscem zerowym funkcji g(x) = f(x) - 4 jest

A. 3

B. 9

C. 1

D. 0

Zadanie 11. (0-1)

Osią symetrii wykresu funkcji f(x) = -3(x-3)(x+5) jest prosta o równaniu

A. x = -1

B. x = 1

c. y = -1

4

D. y = 48

Zadanie 12. (0-1)

W układzie współrzędnych przedstawiono część wykresu funkcji liniowej f(x) = ax + b.

Wartość wyrażenia $(2a-b)\,$ jest równa

A. 4

B. 0

C. -4

D. 2

Zadanie 13. (0-1)

W trójkącie równoramiennym ABC, |AC| = |BC| = 8 oraz $| \not \perp C | = 120^{\circ}$. Wysokość opuszczona z wierzchołka C ma długość

- **A.** $\frac{8\sqrt{3}}{3}$
- **B.** $2\sqrt{3}$
- **c.** $4\sqrt{3}$
- **D.** 4

Zadanie 14. (0-1)

Promień okręgu opisanego na trójkącie równobocznym o boku $18\sqrt{3}$ cm ma długość

- **A.** 18 cm
- **B.** 12 cm
- **C.** 6 cm
- **D.** $6\sqrt{3}$ cm

Zadanie 15. (0-1)

Kąt α jest ostry i $cos\alpha=0,225$. Wtedy $tg\alpha$ należy do przedziału

- **A.** (4; 5)
- **B.** (0; 2)
- **C.** (2; 3)
- **D.** (3; 4)

Zadanie 16. (0-1)

Dziesiąty wyraz ciągu arytmetycznego jest równy 32, a różnica tego ciągu jest równa 2. Wzór ogólny tego ciągu, to

- **A.** $a_n = 2n 8$

- **B.** $a_n = 2n + 12$ **C.** $a_n = n + 22$ **D.** $a_n = -2n + 52$

Zadanie 17. (0-1)

Liczby (2, 8, 2x-6) w podanej kolejności tworzą trzywyrazowy ciąg geometryczny. Stąd wynika, żе

- **A.** x = 18
- **B.** x = 32
- **c.** x = 12
- **D.** x = 19

Zadanie 18. (0-1)

Wykresy funkcji liniowych $f(x) = m^3x + 12$ oraz g(x) = 8x + 3m - 1 są prostopadłe, gdy

A. $m = -\frac{1}{2}$

B. $m = \frac{1}{2}$

c. m = 2

D. m = -2

Zadanie 19. (0-1)

Prosta k jest równoległa do prostej o równaniu $y = \frac{2}{3}x + 7$ oraz przechodzi przez punkt P = (-3,8). Zatem prostą k opisuje równanie

A. $y = \frac{2}{3}x + 6$ **B.** $y = -\frac{3}{2}x + 3\frac{1}{2}$ **C.** $y = \frac{2}{3}x + 10$ **D.** $y = \frac{3}{2}x + 12\frac{1}{2}$

Zadanie 20. (0-1)

Cięciwa AC jest równoległa do średnicy DE okręgu o środku S (zobacz rysunek).

Miara kąta wypukłego BSD jest równa

A. $\alpha + \beta$

B. $\alpha + 2\beta$

c. $2\alpha + \beta$

D. $2\alpha - \beta$

Zadanie 21. (0-1)

Wiadomo, że $\alpha + \beta + \gamma = 180^{\circ}$.

Trójkąt ABC jest podobny do trójkąta KLM w skali k równej

A. $\frac{6}{7}$

B. $\frac{7}{6}$

C. $\frac{3}{2}$

Zadanie 22. (0-1)

Suma długości wszystkich krawędzi sześcianu jest równa 84 cm. Pole powierzchni całkowitej tej bryły jest równe

A. 294 cm^2

B. 49 cm^2

C. 343 cm^2

D. 1176 cm^2

Zadanie 23. (0-1)

Liczb pięciocyfrowych parzystych lub podzielnych przez 5, w zapisie których występują wszystkie cyfry należące do zbioru {1, 2, 3, 4, 5} jest

A. $1 \cdot 2 \cdot 3 \cdot 4$

B. $3 \cdot 4 \cdot 3 \cdot 2$ **C.** $2 \cdot 3 \cdot 4 \cdot 5$ **D.** $1 \cdot 2 \cdot 3 \cdot 3$

Zadanie 24. (0-1)

Sprzedawca zakupił w hurtowni 80 kg cukierków: 20 kg w cenie15 zł za kilogram oraz 60 kg w cenie 10 zł za kilogram. Zmieszał wszystkie i w swoim sklepie sprzedawał je w cenie 13 zł za kilogram. Zysk sprzedawcy (nie licząc amortyzacji i podatków) jaki uzyska sprzedając 10 kg cukierków jest równy

A. 15 zł

B. 17,5 zł

C. 5 zł

D. 22,5 zł

Zadanie 25. (0-1)

Ze zbioru liczb naturalnych dwucyfrowych mniejszych od 20 losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby złożonej jest równe

A. $\frac{6}{10}$

B. $\frac{5}{10}$

D. $\frac{5}{9}$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 26. (0-2)

Rozwiąż nierówność $-x^2 + 2x \le (x-2)(x-1)$.

Odpowiedź

Zadanie 27. (0-2)

Rozwiąż równanie $\frac{x^2+3x-4}{2x-2} = -3$.

Zadanie 28. (0-2)

Uzasadnij, że dla dowolnych dodatnich liczb rzeczywistych x i y spełniona jest nierówność

$$\frac{2x^2+2y^2+1}{x+y} \ge 2.$$

Zadanie 29. (0-2)

Dany jest trójkąt prostokątny ABC, w którym $| \not \Delta C | = 90^{\circ}$. Poprowadzono dwie proste równoległe do przyprostokątnej AC dzielące trójkąt ABC na trzy figury o równych polach (zobacz rysunek). Uzasadnij, że $\frac{|FG|}{|DE|} = \sqrt{2}$.

Zadanie 30. (0-2)

Dana jest funkcja f(x) = -3x + 11, której dziedziną jest zbiór $D_f = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Spośród wszystkich punktów należących do wykresu tej funkcji wybrano jeden. Oblicz prawdopodobieństwo wylosowania punktu, którego suma współrzędnych jest liczbą pierwszą.

Zadanie 31. (0-2)

Miary kolejnych kątów wewnętrznych czworokąta tworzą ciąg arytmetyczny o różnicy 13^o . Wyznacz miary kątów tego czworokąta.

Zadanie 32. (0-5)

Punkt A=(-5,-8) należy do wykresu funkcji kwadratowej $f(x)=ax^2+bx-3$, a zbiór $(-\infty; -2)$ jest maksymalnym przedziałem, w którym funkcja ta jest rosnąca. Wyznacz wartości współczynników a i b oraz najmniejszą i największą wartość funkcji w przedziale $\langle -3; -\frac{1}{2} \rangle$.

Zadanie 33. (0-4)

Punkty $A=\left(-3\frac{1}{2},-6\right)$, $B=\left(7,1\frac{1}{2}\right)$ oraz $C=\left(1,4\right)$ są kolejnymi wierzchołkami równoległoboku ABCD. Wyznacz współrzędne punktu D oraz współrzędne punktu E, w którym bok CD przecina oś odciętych (oś OX) układu współrzędnych.

Zadanie 34. (0-4)

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt ABC. Wysokość SD ma długość 12 i tworzy z krawędzią boczną kąt, którego tangens jest równy $\frac{1}{2}$. Oblicz pole powierzchni całkowitej tego ostrosłupa.

KARTA ODPOWIEDZI

WYPEŁNIA ZDAJĄCY

PESEL										

Nr zadania	ODPOWIEDZI				
1	Α	В	С	D	
2	Α	В	С	D	
3	Α	В	С	D	
4	Α	В	С	D	
5	Α	В	С	D	
6	A	Ш	O	₽	
7	Α	В	С	D	
8	Α	В	С	D	
9	Α	В	C	D	
10	Α	В	O	D	
11	Α	В	O	D	
12	Α	В	C	D	
13	A	В	O	D	
14	А	В	С	D	
15	Α	В	С	D	
16	Α	В	С	D	
17	Α	В	С	D	
18	Α	В	С	D	
19	Α	В	С	D	
20	Α	В	С	D	
21	Α	В	С	D	
22	Α	В	С	D	
23	Α	В	С	D	
24	А	В	С	D	
25	А	В	С	D	

WYPEŁNIA EGZAMINATOR

Nr	ODPOWIEDZI						
zadania	1	2	3	4	5		
26							
27							
28							
29							
30							
31							
32							
33							
34							

SUMA PUNKTÓW	
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 8 9