Introduction to Learning

Types of Learning

- 1. Supervised Learning
- 2. Unsupervised Learning
- 3. Reinforcement learning
- 4. Others (Zero-shot learning and Transfer learning)

Supervised Learning techniques automatically learn a model of the relationship between a set of descriptive features and a target feature from a set of historical examples.

Figure: Using machine learning to induce a prediction model from a training dataset.

Figure: Using the model to make predictions for new query instances.

A labeled training set for supervised learning (e.g., spam classification)

Figure 1-6. Regression

Unsupervised Learning

Unsupervised machine learning as a single-step process.

Unsupervised Learning

Clustering

Reinforcement learning

- Reinforcement learning (RL) is concerned with solving sequential decision-making problems.
- Many real-world problems playing video games, sports, driving, robotic control - can be framed in this way.
- For example we can formulate the game of Tic-tac-toe in RL.

Reinforcement learning

sequential decision-making

Tasks (Applications)

- 1. Regression
- 2. Classification
- 3. Dimensionality reduction
- 4. Clustering
- 5. Synthesis and sampling
- 6. Denoising
- 7. Density estimation
- 8. Anomaly detection

How Does Machine Learning

Work?

How?

- Machine learning algorithms work by searching through a set of possible prediction models for the model that are *consistent* with the data.
- Note that a training dataset is only a sample.
- ML is an ill-posed problem.

Table: A simple retail dataset

8	ID	Вву	ALC	ORG	GRP
	1	no	no	no	couple
	2	yes	no	yes	family
	3	yes	yes	no	family
	4	no	no	yes	couple
	5	no	yes	yes	single

Table: A full set of potential prediction models before any training data becomes available.

Вву	ALC	Org	GRP	\mathbb{M}_1	\mathbb{M}_2	\mathbb{M}_3	\mathbb{M}_4	\mathbb{M}_5	
no	no	no	?	couple	couple	single	couple	couple	
no	no	yes	?	single	couple	single	couple	couple	
no	yes	no	?	family	family	single	single	single	
no	yes	yes	?	single	single	single	single	single	
yes	no	no	?	couple	couple	family	family	family	• • •
yes	no	yes	?	couple	family	family	family	family	
yes	yes	no	?	single	family	family	family	family	
yes	yes	yes	?	single	single	family	family	couple	

Table: A sample of the models that are consistent with the training data

Вву	ALC	ORG	GRP	M_1	\mathbb{M}_2	M_3	\mathbb{M}_4	\mathbb{M}_5	
no	no	no	couple	couple	couple	single	couple	couple	
no	no	yes	couple	single	couple		couple	couple	
no	yes	no	?	family	family		single	single	
no	yes	yes	single	single	single		single	single	
yes	no	no	?	couple	couple		family	family	* * *
yes	no	yes	family	couple	family		family	family	
yes	yes	no	family	single	family		family	family	
yes	yes	yes	?	single	single	family	family	couple	

Table: A sample of the models that are consistent with the training data

Вву	ALC	ORG	GRP	M_1	\mathbb{M}_2	M_3	\mathbb{M}_4	\mathbb{M}_5	
no	no	no	couple	couple	couple	single	couple	couple	
no	no	yes	couple	single	couple		couple	couple	
no	yes	no	?	family	family		single	single	
no	yes	yes	single	single	single		single	single	
yes	no	no	?	couple	couple		family	family	
yes	no	yes	family	couple	family		family	family	
yes	yes	no	family	single	family		family	family	
yes	yes	yes	?	single	single	family	family	couple	

Notice that there is more than one candidate model left! It is because a single consistent model cannot be found based on a sample training dataset that ML is ill-posed.

What Can Go Wrong With ML?

What can go wrong with learning?

- Underfitting.
- Overfitting.
- Wrong inductive bias.
- Sample bias.

Table: The age-income dataset.

ID	Age	INCOME
1	21	24,000
2	32	48,000
3	62	83,000
4	72	61,000
5	84	52,000

Figure: Striking a balance between overfitting and underfitting when trying to predict age from income.

What can go wrong with learning?

- Underfitting.
- Overfitting.
- Wrong inductive bias.
- Sample bias.

Information-based learning (Decision Tree, Bagging, Boosting)

- Information-based learning (Decision Tree, Bagging, Boosting)
- Similarity-based learning (Nearest Neighbor Algorithm)

- Information-based learning (Decision Tree, Bagging, Boosting)
- Similarity-based learning (Nearest Neighbor Algorithm)
- Probability-based learning (Naive Bayes Classifier)

- Information-based learning (Decision Tree, Bagging, Boosting)
- Similarity-based learning (Nearest Neighbor Algorithm)
- Probability-based learning (Naive Bayes Classifier)
- Error-based learning (Simple Linear Regression and Logistic Regression)

- Information-based learning (Decision Tree, Bagging, Boosting)
- Similarity-based learning (Nearest Neighbor Algorithm)
- Probability-based learning (Naive Bayes Classifier)
- Error-based learning (Simple Linear Regression and Logistic Regression)
- Deep Learning (Using Deep Neural Networks for ML Tasks)

Neural Networks

Artificial Neuron

An Artificial Neuron

Why depth of network is important?

The logical AND and OR functions are linearly separable, but the XOR is not.

The "XOR Affair"

"[simple] perceptron cannot represent even the XOR function"

Perceptron

Perceptron

Perceptron

$$\mathbb{M}_{\mathbf{w}}(\mathbf{d}) = \varphi\left(\mathbf{w}\left[0\right] \times \mathbf{d}\left[0\right] + \mathbf{w}\left[1\right] \times \mathbf{d}\left[1\right] + \dots + \mathbf{w}\left[m\right] \times \mathbf{d}\left[m\right]\right)$$
$$- \varphi\left(\sum_{w \in \mathbf{v}} \mathbf{w}_{v} \times \mathbf{d}_{v}\right) - \varphi\left(\sum_{w \in \mathbf{d}} \mathbf{w}_{v} \cdot \mathbf{d}_{v}\right)$$

$$= \varphi\left(\sum_{i=0}^{m} w_i \times d_i\right) = \varphi\left(\underbrace{\mathbf{w} \cdot \mathbf{d}}_{dot \ product}\right)$$

$$= \varphi \left(\underbrace{\mathbf{w}^{T} \mathbf{d}}_{matrix\ product} \right) = \varphi \left(\left[w_{0}, w_{1}, \dots, w_{m} \right] \begin{bmatrix} d_{0} \\ d_{1} \\ \vdots \\ d_{m} \end{bmatrix} \right)$$

Activation functions φ

Universal Approximation

A. Kolmogorov

V. Arnold

G. Cybenko

K. Hornik

Results specific to multilayer neural networks

Universal Approximation

ANN graphical and matrix representations

Batch of examples

Feedforward artificial neural network (ANN)

where, layer functions are described as:

$$f^l(z) \,=\, g^lig(W^l\,z+b^lig)$$

- I is called the layer index
- g^l is called an activation function
- parameters W'(matrix) and b' (vector)

Function Representation

$$\mathbb{M}(d;\,w,b)\,=\,f^3\left(f^2ig(f^1(d)\,ig)\,
ight)$$

Objective Function

Given N samples as $\{x_i, y_i\}_{i=1}^N$,

the objective function is defined as:

$$\min_{oldsymbol{w, b}} rac{1}{N} \, \sum_{i=1}^N \, L(f_{w,b}(x_i), \, y_i)$$

Objective Function

Given N samples as $\{x_i, y_i\}_{i=1}^N$,

the objective function is defined as:

$$\min_{ extbf{w},\, extbf{b}} rac{1}{N} \, \sum_{i=1}^N \, L(f_{w,b}(x_i),\,y_i)$$

- **Regression**: $f_{w,b}(x_i)$ outputs a scalar
- Classification: $f_{w,b}(x_i)$ outputs the class

LeNet

LeNet-5 classical CNN architecture

MNIST digits dataset

Y. LeCun

ImageNet

L. Fei-Fei

AlexNet beating all "handcrafted" approaches on ImageNet benchmark—the moment of truth for computer vision

Perceptrons

GNNs