

קובץ הכנה ניסוי מעבדה מס' 3

Tutorial 3.3 – LCD (Liquid Crystal Display)

מעבדת מיקרומחשבים – המחלקה להנדסת חשמל ומחשבים מס' קורס - 361.1.3353

כתיבה ועריכה: חנן ריבוא

מהדורה 1 – שנה"ל תשע"ו

LCD usages

מסך LCD המותקן בערכת המעבדה.

1) הקדמה:

תצוגת LCD המכונה בעברית, תצוגת גביש נוזלי, היא טכנולוגיה לבניית צגים דקים העשויים מקטעים (סגמנטים). טכנולוגיה זו נפוצה במכשירים ניידים, מחשב וטלוויזיות. מסך ה- LCD מורכב ממטריצה גדולה של **נקודות** (סגמנטים) המכונות תת-פיקסלים שנדלקים או נכבים וכך יוצרים תמונה מלאה. במסך מחשב / טלוויזיה ישנם יותר ממיליון פיקסלים כך שהשליטה על התצוגה הכללית מחולקת לשליטה על תתי מטריצות, בעוד שהשליטה בתצוגת 7-segement היא על כל אחד מ-7 המקטעים בנפרד.

7-segment שליטה ישירה על כל מקטע בנפרד, בתצוגת

שליטה ע"י תתי-מטריצות של פיקסלים

מסך ה- LCD אתו נעבוד במעבדה, מורכב מ- 32 תתי מטריצות, בצורה של 2 שורות ו- 16 עמודות. כל תת-מטריצה מכילה 50 נקודות (פיקסלים) בסדר של 10 שורות ו- 5 עמודות.

נוכל לשלוט על תצוגה של כל אחת מ- 32 המטריצות ובכך על תוכן תצוגת ה- LCD, **בעזרת כתיבה לשלושת רגלי הבקרה** ושמונה רגלי ה- DATA של ה- LCD. כדי לכתוב אותיות וספרות, נצטרך לכתוב לכל BYTE השייך לתת-מטריצה את ערך קוד ASCII דרך שמונת רגלי ה- DATA של מסך ה- LCD.

2) <u>הסבר לשלבי כתיבה למסך LCD, למימוש באסמבלי:</u>

במעבדה זו נרצה לכתוב רק למסך ה- LCD (ישנה אפשרות גם לקרוא ממסך ה- LCD, אין לנו צורך בכך).

a) שלב 1 - הגדרת רגלי הבקר לשליטה על קווי הבקרה וה- DATA של ה- LCD.

פונקציונליות	רגל בקר	רגל LCD
RS='1' − Data Byte contains ASCII code (MCU→ LCD)	P3.5 – Digital OUTPUT	RS = Register Select
RS='0' − Data Byte contains instruction code (MCU→ LCD)		
R/W ='1' − Data Byte read (LCD→ MCU)	P3.6 – Digital OUTPUT	R/W = Read/Write
R/W ='0' − Data Byte write (MCU→ LCD)		
E = Signals transition to LCD happen when pin E voltage	P3.7 – Digital OUTPUT	E = Enable signal
changes from '1' to '0'		
Data Byte value	P5.0 – Digital OUTPUT	DB0 = DATA bit 0
Data Byte value	P5.1 – Digital OUTPUT	DB1 = DATA bit 1
Data Byte value	P5.2 – Digital OUTPUT	DB2 = DATA bit 2
Data Byte value	P5.3 – Digital OUTPUT	DB3 = DATA bit 3
Data Byte value	P5.4 – Digital OUTPUT	DB4 = DATA bit 4
Data Byte value	P5.5 – Digital OUTPUT	DB5 = DATA bit 5
Data Byte value	P5.6 – Digital OUTPUT	DB6 = DATA bit 6
Data Byte value	P5.7 – Digital OUTPUT	DB7 = DATA bit 7

<u>שלב 2 – אתחול ה- LCD:</u>

- $RS = 0', R/W = 0', E = 0', \bullet$
 - Delay of 15msec •
 - Data Byte = 0x3F •
 - Lcd_strobe routine
 - Delay of 5msec •
 - Data Byte = 0x3F •
 - Lcd_strobe routine
 - Delay of 200μsec •
 - Data Byte = 0x3F •
 - Lcd_strobe routine
 - Lcd_cmd #0X3C •
 - Lcd_cmd #0X0F •
 - Lcd_cmd #0X01 •
 - Lcd_cmd #0X06 •
 - Lcd_cmd #0X80 •
- Lcd_cmd #0X02 − הבאת "ראש הכותב" להתחלה, לתת-המטריצה הראשונה (ל- BYTE הראשון של ה- LCD).

Lcd_strobe routine

Lcd_strobe E=1
NOP
NOP
E=0

LCD command MACRO function

Lcd_cmd MACRO command
Delay of 5msec
Data Byte = command
Lcd_strobe routine
ENDM

שלב 3 – כתיבת תו על גבי מסך LCD:

לאחר אתחול ה- LCD, נוכל לכתוב למסך ה- LCD כמו שאנו כותבים על גבי מסך המחשב. בשליחת קוד ASCII של תו מסוים במצב של כתיבת DATA (ולא פקודה), נוכל לראות תו זה על גבי המסך בתת-המטריצה אליה מצביע "ראש הכותב". בשלב האתחול הבאנו את "ראש הכותב" להתחלה, ובכל כתיבת תו נוסף הוא מתקדם לתת-מטריצה הבאה בצורה אוטומטית. נוכל להביא את "ראש הכותב" לתת-מטריצה כרצוננו, לפי הטבלה בסעיף b.

Write data byte to LCD MACRO function

Lcd_data MACRO char
Delay of 5msec
Data Byte = 0x00
RS = '1'
Data Byte = char
Lcd_strobe routine
RS = '0'
ENDM

<u>שורת הפעלה</u>:

למשל, כדי לכתוב למסך את האות a נקרא ל MACRO בצורה הבאה: "a' מהווה את ערך קוד וa של a.

שלב 4 – טבלת פקודות לשליטה על מיקום "ראש הכותב": (d

הפקודה	משמעות הפקודה	
Lcd_cmd #0x02	cursor to square No.1 - הבאת "ראש הכותב" לתחילת השורה הראשונה	
Lcd_cmd #0xC0	cursor to square No.17 - הבאת "ראש הכותב" לתחילת השורה שנייה	
Lcd_cmd #0x01	מחיקת כל התווים מהמסך - LCD clear	
Lcd_cmd #0x0C	cursor off - הסתרת "ראש הכותב" מהמסך	
Lcd_cmd #0x0F	cursor on - הצגת "ראש הכותב" בהמסך	
Lcd_cmd #0x14	cursor right - הזזת "ראש הכותב" צעד אחד ימינה	
Lcd_cmd #0x10	cursor left - הזזת "ראש הכותב" צעד אחד שמאלה	