ICS 202 - Data Structures and Algorithms Fall Semester 231 Activity # 2 (Complexity Analysis 2)

1. Find c and N to show that $f(n) = 6n \lg n + 3n + 1 = O(n \lg n)$, where $\lg is \log with base = 2$

2. How do you express each of the following complexity class in terms of Big O notation. You are provided with the solution for cubic complexity.

Complexity Class	O()
Constant	
Linear	
Logarithmic	
Quadratic	
Cubic	$O(n^3)$
Exponential	

- 3. Using the Big-O properties, what is the Big-O of each of the following functions?
 - $-5n^2$
 - $n^3 45n^2 1000n$
 - $4 log_{10} n$

- 4. An algorithm takes 6 seconds to solve a problem of size 100 and ten minutes to solve a problem of size 1000. Assuming that the hardware/software environment used to run the two problems is exactly the same, what is the likely running time of the algorithm?
 - A. constant
 - B. linear
 - C. quadratic
 - D. cubic
 - E. None of the other answers is correct.
- 5. Which of the following functions grows fastest?
 - A. n.
 - B. $\log n$.
 - C. $n \log n$.
 - $D. n + \log n.$
 - E. 2^{n} .
- 6. Fill the table with True or False depending on each value of f and g

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$n^3 - 45n^2 - 1000n$	$n^2 + 1000n\sqrt{n}$			
n^2	$1 + n + 100n^2$			
$n^2 + n\sqrt{n} + 1$	$n^2 \log n$			