Evaluación de Modelos de Aprendizaje Automático

MARIA DE LOS ANGELES CONSTANTINO GONZALEZ

Introducción CRISP-DM / Evaluación de modelos

Evaluación de Modelos

- Es una de las fases principales en todo el proceso de análisis de datos
- La calidad de un modelo aprendido se evalúa mediante una o varias métricas que cuantifican el desempeño del modelo
 - La más simple: Exactitud (accuracy) proporción de aciertos en la clasificación dada
- Para qué evaluar?
 - Comparar distintos modelos, para elegir el mejor
 - Estimar cómo se comportará el modelo, una vez puesto "en producción".
 - Convencer al "cliente" de que el modelo cumplirá su propósito

Evaluación - Introducción

Un algoritmo específico no es el mejor para todos los conjuntos de datos y en todos los casos.

- Se necesita una forma de elegir entre modelos:
 - Existen diferentes tipos de modelos, cada uno con hiperparámetros de ajuste

 Para encontrar la mejor solución, es necesario llevar a cabo muchos experimentos, evaluar diferentes algoritmos de aprendizaje, ajustar sus hiperparámetros y comparar su desempeño

Evaluación del Modelo: Metodologías y Métricas

Metodologías

- ¿Cómo diseñamos el experimento de evaluación del modelo?
- Es fundamental no hacer la evaluación final del desempeño del modelo sobre conjuntos de datos que:
 - Se hayan usado para el aprendizaje del modelo
 - Se hayan usado para el ajuste del modelo
- Utilizar un procedimiento de evaluación para estimar qué tan bien se generalizará un modelo a los datos fuera de la muestra.
 Ejemplo: Validación cruzada.

Métricas

¿Cómo medimos el desempeño de un modelo?

Requiere **métricas de evaluación** para cuantificar el desempeño del modelo.

Uso de métricas en paquete sklearn (metrics)

Procedimientos de evaluación **División Entrenamiento-Prueba (Holdout)**

- El conjunto de datos disponible D se divide en dos subconjuntos independientes,
 - el conjunto de entrenamiento D_{train} (para aprender un modelo)
 - el conjunto de prueba D_{test} (para probar el modelo también llamado holdout set)
- Importante: el conjunto de entrenamiento no debe utilizarse en las pruebas y el conjunto de pruebas no debe utilizarse en el aprendizaje. El conjunto de pruebas no vistas proporciona una estimación sin sesgo de la precisión
- Este método se utiliza principalmente cuando el conjunto de datos *D* es grande.
- Mejor estimación del desempeño fuera de la muestra, pero aún así es una estimación de "alta varianza"
- Útil debido a su velocidad, simplicidad y flexibilidad

Data

Procedimientos de evaluación Validación cruzada en k partes (k-fold cross validation)

- Los datos disponibles se particionan en k partes independientes de igual tamaño (Ej. k=5, k=10).
- Se utiliza cada subconjunto como conjunto de prueba y combina los subconjuntos k-1 restantes como conjunto de entrenamiento.
- Es una manera de evaluar qué tan bueno sería (en términos de generalización) un algoritmo de aprendizaje sobre un conjunto de entrenamiento dado

Procedimientos de evaluación Validación cruzada - Observaciones

- El procedimiento se ejecuta k veces, lo que da k evaluaciones de acuerdo a una métrica (exactitud).
- La precisión estimada final del aprendizaje es el promedio de las k evaluaciones.
- Este método se utiliza cuando no se tienen muchos datos.
- Se ejecuta "k" veces más lento que la división entrenamiento/prueba
- Es demasiado caro, tiene que crear k modelos

Validación cruzada o Cross Validation Ejemplo de k-fold Cross Validation con k=4 y un clasificador

Evaluación del Modelo: Metodologías y Métricas

Metodologías

- ¿Cómo diseñamos el experimento de evaluación del modelo?
- Es fundamental no hacer la evaluación final del desempeño del modelo sobre conjuntos de datos que:
 - Se hayan usado para el aprendizaje del modelo
 - Se hayan usado para el ajuste del modelo
- Utilizar un procedimiento de evaluación para estimar qué tan bien se generalizará un modelo a los datos fuera de la muestra.
 Ejemplo: validación cruzada

Métricas

¿Cómo medimos el desempeño de un modelo? Requiere **métricas de evaluación** para cuantificar el desempeño del modelo. Uso de métricas en paquete sklearn (metrics)

Métricas de evaluación del modelo

Modelos de regresión:

Error Absoluto Medio (MAE)

Error Cuadrático Medio (SME)

Raiz del Error Cuadrático Medio (RSME)

Modelos de clasificación:

- Exactitud (accuracy) de clasificación
- Matriz de confusión: precisión, sensibilidad (recall), especificidad.
- ROC-AUC

Métricas de Evaluación para Problemas de Clasificación

Exactitud

- Exactitud de Clasificación: Porcentaje de predicciones correctas (entre más alto mejor)
- Error de Clasificación: Porcentaje de predicciones incorrectas (entre más pequeño mejor)

Matriz de Confusión

- Mejor entendimiento de cómo se desempeña el clasificador.
- Permite calcular sensibilidad,, precisión, especificidad, score f1, que podrían coincidir mejor con el objetivo del negocio que la medida de exactitud

Curvas ROC y Área Bajo la Curva (Area Under the Curve AUC)

- Visualizar el desempeño del clasificador en todos los umbrales de clasificación posibles, lo que ayuda a elegir un umbral que equilibre adecuadamente la sensibilidad y la especificidad
- Sigue siendo útil cuando hay alto desbalance en las clases (a diferencia de la exactitud de clasificación / error)
- Más difícil de usar cuando hay más de dos clases de respuesta

Medidas de clasificación **Exactitud (Accuracy)**

- Provee una medida de la eficiencia general del modelo.
- Es la métrica de clasificación más sencilla.

Exactitud(accuracy) =	Número de clasificaciones correctas		
	Número total de casos de prueba		

- No indica el tipo de error en la clasificación (positivos como negativos o negativos como positivos).
- La exactitud no es adecuada en algunas aplicaciones, principalmente en la clasificación de datos altamente desbalanceados, por ejemplo la detección de fraude.
 - La alta exactitud no significa que se detecte la mayoría de los fraudes

У	ypr	ed	ш	
0	0			
1	1		ш	
0	0			
1	1			
1	0			
0	0		=6,	/7 =86%
1	1			
			У	ypred
atos		0		0
lancas	1	_		0

Datos	0
Desbalanceados	0
5 Os,	0
2 1s	0
=6/7=86%	1
	0

Matriz de Confusión

- Proporciona una imagen más completa de cómo funciona el clasificador.
- Para dos clases, se produce una matriz 2x2

ACTUAL VALUES NEGATIVE TP TP TN TN

Confusion Matrix [Image 3] (Image courtesy: My Photoshopped Collection)

TP: the number of correct classifications of the positive examples (true positive),

FN: the number of incorrect classifications of positive examples (false negative),

FP: the number of incorrect classifications of negative examples (false positive), and

TN: the number of correct classifications of negative examples (true negative).

Matriz de Confusión - Ejemplo

TP: 560: Hay 560 que son positivas y se predijeron positivas

FP: 60: Hay 60 que son negativas y se predijeron positivas – Error Tipo I

FN: 50: Hay 50 que son positivas y se predijeron negativas - Error Tipo II

TN: 330: Hay 330 que son negativas y se predijeron negativas

Métricas a partir de la matriz de confusión

Varias métricas se pueden obtener a partir de la matriz de confusión, tales como:

Exactitud (Accuracy) - ¿Cuántos se clasifican correctamente?

Precisión (Precision) - ¿Cuántos de los que se predicen positivos son positivos?

Sensitividad (Recall) - ¿Cuántos de los que son positivos, se predicen positivos?

Especificidad - ¿Cuántos de los que son negativos, se predicen negativos?

Ejemplo:

у	y pred	output for threshold 0.6	Recall	Precision	Accuracy
0	0.5	0			
1	0.9	1			
0	0.7	1			
1	0.7	1	1/2	2/3	4/7
1	0.3	0	0.5	0.67	0.57
0	0.4	0	0.5	0.67	0.57
1	0.5	0			

Confusion Matrix [Image 5 and 6] (Image 5 courtesy: My Photoshopped Collection) (Image 6 courtesy: I can not find the source. If you know please comment. I will provide appropriate citations. :D)

Matriz de confusión - Módulo Sklearn

Ejemplo Dataset Diabetes:

0: No tiene

1: Si tiene

Módulo SKLearn

Verdaderos positivos (True positives (TP)):

Se predijo correctamente que tenían diabetes: 15

Verdaderos negativos (True Negatives (TN)):

Se predijo correctamente que no tenían diabetes: 118

■ Falsos positivos (False Positives (FP)):

Se predijo en forma incorrecta que tenían diabetes cuando en realidad no tenían (error "Tipo I"): 12

■ Falsos negativos (False Negatives (FN)):

Se predijo en forma incorrecta que no tenían diabetes cuando en realidad si tenían (error "Tipo II"): 47

Matriz de confusión-Usando librería metrics de sklearn

from sklearn import metrics

confusion = metrics.confusion_matrix(y_test, y_pred)

print(confusion)

[[118 12]

[47 15]]

Cada valor particular se calcula a partir de la matriz:

TP = confusion[1, 1]

TN =confusion[0, 0]

FP = confusion[0, 1]

FN = confusion[1, 0]

IMPORTANTE:

Primer argumento:valores verdaderos, y_test Segundo argumento: valores predichos, y_pred

	Predicted: Predicted:		
n=192	0	1	
Actual:			
0	TN = 118	FP = 12	130
Actual:			
1	FN = 47	TP = 15	62
	165	27	

Métricas calculadas a partir de la matriz de confusión: Exactitud de clasificación

usar float para realizar la división, no división entera

Dos formas:

- 1) print((TP + TN) / float(TP + TN + FP + FN))
- 2) print(accuracy_score(y_test, y_pred))

Ejemplo: (118+15)/118+15+12+47)

Exactitud = 133/192

0.692708333333

0.692708333333

	Predicted: Predicted:		
n=192	0	1	
Actual:			
0	TN = 118	FP = 12	130
Actual:			
1	FN = 47	TP = 1 5	62
	165	27	

Métricas calculadas a partir de la matriz de Confusión: Error de clasificación

Error de clasificación: ¿Qué tan seguido el clasificador se equivoca? También se le conoce como "Misclassification Rate"

Python:

Dos formas:

- 1) classification_error = (FP + FN) / float(TP + TN + FP + FN)
 print(classification_error)
- 2) print(1 metrics.accuracy_score(y_test, y_pred))

Ejemplo:

	Predicted:	Predicted:	
n=192	0	1	
Actual:			
0	TN = 118	FP = 12	130
Actual:			
1	FN = 47	TP = 15	62
	165	27	

Métricas calculadas a partir de la matriz de confusión: Precisión

- Cuando se predice un valor positivo, ¿qué tan frecuentemente la precisión es correcta?
- ¿Qué tan "preciso" es el clasificador para predecir instancias positivas?
- Precision p es el número de ejemplos positivos clasificados correctamente divididos entre el número total de ejemplos clasificados como positivos.

$$p = \frac{TP}{TP + FP}.$$

Python: Dos formas:

1) precision = TP / float(TP + FP) = 15/(154) print(precision) = 15/(27) 0.555555555556

+12)	
	Г

 n=192
 0
 1

 Actual:
 0
 TN = 118
 FP = 12
 130

 Actual:
 1
 FN = 47
 TP = 15
 62

Predicted:

165

Predicted:

27

- 2) print(metrics.precision_score(y_test, y_pred))
- 0.5555555556

Métricas calculadas a partir de la matriz de confusión: Sensibilidad - recall

- De los reales positivos ¿cuántos se predicen correctamente?
- ¿Que tan "sensible" es el clasificador para detectar las instancias positivas?
- También se le conoce como "Razón de Verdaderos Positivos"
 TPR(True positive rate) o "Recall"
- Python. Dos formas:
- 1) Sensitividad = TP / float(TP+FN)

 print(sensitivity) r=15/(15+47)

 0.241935483871
- 2) print(metrics.recall_score(y_test, y_pred)) 0.241935483871

n= 1 92	Predicted: 0	Predicted:	
Actual: 0	TN = 118	FP = 12	130
Actual: 1	FN = 47	TP = 15	62
	165	27	

Métricas calculadas a partir de la matriz de confusión: Especificidad

- Especificidad: De los reales negativos, ¿cuántos se predicen correctamente?
- Que tan "específico" (o "selectivo") es el clasificador en predecir instancias negativas?
- También se le conoce como Razón de Verdaderos Negativos

Especificidad = TN / (TN + FP)
print(specificity)
0.907692307692

esp=118/(118+12) esp=118/130

	n=192	Predicted: 0	Predicted:	
	Actual:	TN = 118	FP = 12	130
	Actual:	FN = 47	TP = 15	62
•		165	27	

Métricas a partir de la matriz de confusión - Sklearn

Precisión:

Razón de Predicciones Positivas Correctas

p = TP/(TP+FP)

Métricas calculadas a partir de la matriz de confusión: Valor F₁ (también llamado F₁-score)

Es difícil comparar dos clasificadores usando dos medidas.

F1 score combina las medidas de precision y recall en una sola medida, de manera que se tenga precision y sensibilidad similar.

$$F_1 = \frac{2pr}{p+r}$$

F₁-score is the harmonic mean of precision and recall.

$$F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

- La media armónica de dos números tiene a ser más cercana a la más pequeña de las dos.
- Para que F_1 -value sea grande, ambos p y r deben ser grandes.

Matriz de Confusión Ejemplo Clasificando SPAM (Kelleher et al.)

Supongamos que tenemos un modelo para detectar posibles correos SPAM (la clase positiva), que aplicamos a un conjunto de 20 correos (cuya clasificación conocemos), con los siguientes resultados:

ID	Clase	Pred.		ID	Clase	Pred.
1	spam	ham		11	ham	ham
2	spam	ham		12	spam	ham
3	ham	ham		13	ham	ham
4	spam	spam		14	ham	ham
5	ham	ham		15	ham	ham
6	spam	spam		16	ham	ham
7	ham	ham		17	ham	spam
8	spam	spam		18	spam	spam
9	spam	spam		19	ham	ham
10	spam	spam	_	20	ham	spam

Matriz de Confusión Ejemplo Clasificando SPAM (Kelleher et al.

- a) Calcule la matriz de confusión: TP, FP, TN, FN
- b) Calcule la tasa de aciertos (exactitud/accuracy)
- c) Calcule la Precisión: ¿Qué proporción de los clasificados como SPAM lo son realmente?
- d) Calcule la Sensibilidad/Recall ¿Qué proporción de los que son SPAM se clasifican como tal?
- e) Calcule la medida F1-score

¿En qué métricas debe centrarse?

- La elección de la métrica depende del objetivo de negocio
- Identificar qué es más importante reducir, ¿FP o FN?
 - Elegir la métrica con la variable relevante (FP o FN en la ecuación)

Ejemplos:

- 1) Filtro de spam (clase positiva es "spam"):
- ¿Qué reducir?
- a) Correo spam se quede en la bandeja de entrada (falsos negativos)
- b) Correo que no es spam se quite de la bandeja de entrada por el filtro (falsos positivos)
- Reducir FP => usar precisión (tiene FP como variable)

$$p = TP/(TP+FP)$$

¿Qué métrica usar?

- 2) Detector de transacciones fraudulentas (clase positiva es "fraude"):
- ¿Qué reducir?
 - a) Transacciones fraudulentas no detectadas (falsos negativos)
 - b) Transacciones que no son fraude, se indican como fraude (falsos positivos)
- ➤ Optimizar FN: Usar sensibilidad (recall), tiene FN como variable

$$r = \frac{TP}{TP + FN}$$

Scikit Learn - functions

Scoring	Function
Classification	
'accuracy'	metrics.accuracy score
'f1'	metrics.f1 score
'precision'	metrics.precision score
'recall'	metrics.recall score
'roc_auc'	metrics.roc auc score

Conclusion

- Matriz de confusión da una imagen más completa de cómo funciona un clasificador
- También permite calcular varias métricas de clasificación, y estas métricas pueden guiar la selección del modelo.

Referencias

- Ramesh Sharda; Dursun Delen; Efraim Turban. . Chapter 4. Predictive Analysis. In Business, Analytics and Data Science, 4^a. Ed. Pearson, 2017
- https://www.ritchieng.com/machine-learning-evaluate-classification-model/
- https://scikit-learn.org/stable/modules/model_evaluation.html
- https://www.ibm.com/garage/method/practices/reason/evaluate-and-select-machine-learning-algorithm/
- Evaluación de modelos: https://www.cs.us.es/cursos/rac-2018/temas/tema-07.pdf
- Análisis exploratorio de los datos http://rstudio-pubs-static.s3.amazonaws.com/423338 5b4dc6a938144a3b8ab2ce01fe8be14f.html