AnyProg C++ 数学优化包

pangpang@hi-nginx.com

2019年12月21日

目录

1	起源		5
2	功能		7
3	技巧		9
	3.1	线性优化	9
	3.2	二次优化	10
	3.3	非线性优化	11
	3.4	整数优化	13
	3.5	TSP 问题	15
	3.6	Assignment 问题	15
	3.7	数据拟合问题	15
		3.7.1 多项式拟合	15
		3.7.2 类多项式拟合	16
		3.7.3 非多项式拟合	17
	3.8	方程组求解	19
4	展望		21

4 目录

起源

应该有一个 C++ 版的 LINGO。

它必须免费、高效而且易用。

它必须以 C++ 的方式解决 LINGO 需要面对的问题。

它的名字是: AnyProg¹。

 $^{^1\}mathrm{Any}$ Programming $_\circ$

6 CHAPTER 1. 起源

功能

AnyProg 可用于求解以下模型定义的所有问题:

$$\min_{x \in \mathbf{R}^{n}} \quad f(x)
\text{s.t.} \quad g_{i}(x) \leq 0, \qquad i = 0, \dots, m_{s} - 1
\qquad h_{j}(x) = 0, \qquad j = 0, \dots, m_{t} - 1
\qquad x_{k} \in [L_{k}, U_{k}], \qquad k = 0, \dots, n - 1$$
(2.1)

其中,f 是目标函数, g_i 和 h_j 分别是不等式约束函数 $(m_s$ 个)和等式约束函数 $(m_t$ 个),x 是一个 n 维实变量,其分量 x_k 位于闭区间 $[L_k,U_k]$ 。模型 (2.1) 不仅适合于连续优化问题,也适合于离散优化问题,还适合于混合优化问题。对 AnyProg 来说,更重要的概念是解的全局性,而不是变量的连续性。同时,目标函数和约束函数是否线性并不重要,AnyProg 并不区别看待它们。

AnyProg 能处理的问题的类型十分广泛: $\mathbf{LP}^1 \setminus \mathbf{QP}^2 \setminus \mathbf{NLP}^3 \setminus \mathbf{MILP}^4 \setminus \mathbf{MIQP}^5 \setminus \mathbf{MINLP}^6$ 。此外,它也能进行数据的非线性最小二乘拟合,以及非线性方程组的求解。

¹线性优化

²二次优化

³非线性优化

⁴混合整数线性优化

⁵混合整数二次优化

⁶混合整数非线性优化

8 CHAPTER 2. 功能

技巧

3.1 线性优化

线性优化的模型定义最好采用矩阵方式,类似于 MATLAB。如例 (3.1):

$$\min_{x \in \mathbf{R}^2} \quad f(x) = 8x_0 + x_1$$
s.t. $g_0(x) = x_0 + 2x_1 \ge -14$

$$g_1(x) = -4x_0 - x_1 \le -33$$

$$g_2(x) = 2x_0 + x_0 \le 20$$

$$x_i \ge 0, \quad i = 0, 1$$
(3.1)

对于不等于约束,如果采用的是 ≥ 方式,则两边乘以 -1 使之反转。如此,原问题可用矩阵表示如下:

$$obj = \begin{pmatrix} 8 \\ 1 \end{pmatrix}, A = \begin{pmatrix} -1 & -2 \\ -4 & -1 \\ 2 & 1 \end{pmatrix}, b = \begin{pmatrix} 14 \\ -33 \\ 20 \end{pmatrix}.$$

在 AnyProg 中, 类 real_block 用来表示矩阵。因此, 例 (3.1) 模型定义如下:

```
opt.set_inequation_condition(A, b);
auto ret = opt.solve();
anyprog::optimization::print(opt.is_ok(), ret, obj);
return 0;
}
```

编译、运行后可知,解是 f(6.5,7)=59。本例不包含等式约束。若有,则可效法 A、b,炮制 Aeq 和 beq,然后使用方法 $set_equation_condition(Aeq,beq)$ 添加等式约束,继而求解。本例中的 range 是范围,表示 $\forall i, x_i \in [0,100]$ 。若变量的不同分量有不同的范围限制,可用容器 std:vector 包装范围类 range_t 列表,并按顺序定义各分量范围。若有较好初值,则可替换范围参数。使用范围参数意味着初值是随机的,有可能不能求解。此时可多次运行程序。随机初值引起解的不确定性问题。解决该问题的最佳方法是用 search 方法取代 solve 方法;前者对应于全局解,后者对应于局部解。使用该方法时,对于局部解较少的模型,务必减少前两个参数 1 的数值。

3.2 二次优化

二次优化的模型定义如下:

$$\min_{x \in \mathbf{R}^n} \quad f(x) = \frac{1}{2} x^T H x + c^T x$$

$$\text{s.t.} \quad A \cdot x \le b$$

$$Aeq \cdot x = beq$$

$$x_k \in [L_k, U_k], \quad k = 0, \dots, n-1$$

$$(3.2)$$

该模型用矩阵形式表示。在求解该类模型时,最好的方式就是顺其自然。比如下例:

$$\min_{x \in \mathbf{R}^2} \quad f(x) = \frac{1}{2} x_0^2 + x_1^2 - x_0 x_1 - 2x_0 - 6x_1$$

$$\text{s.t.} \quad g_0(x) = \quad x_0 + x_1 \qquad \leq 2$$

$$g_1(x) = \quad -x_0 + 2x_1 \qquad \leq 2$$

$$g_2(x) = \quad 2x_0 + x_1 \qquad \leq 3$$

$$x_i \geq 0, \quad i = 0, 1$$

$$(3.3)$$

其矩阵表示如下:

$$H = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 \\ -1 & 2 \\ 2 & 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}, c = \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$

因此,它的模型定义为:

```
#include <anyprog/anyprog.hpp>
int main(int argc, char** argv)

4
```

¹search 方法的前两个参数的默认值分别是 100 和 30, 这是专门应对变态测试模型的基本配置。对于局部解较少的普通模型,两个数值都可以大幅度降低;一般设置 10 和 3 即可。

3.3. 非线性优化 11

```
size_t dim = 2;
       anyprog::real_block H(dim, dim), c(dim, 1);
       H << 1, -1,
          -1, 2;
       c << -2, -6;
10
       anyprog::optimization::function_t obj = [&](const anyprog::real_block& x) {
11
          anyprog::real_block ret = 0.5 * (x.transpose() * H * x) + c.transpose() * x;
12
          return ret(0, 0);
13
       };
14
       anyprog::real_block A(3, dim), b(3, 1);
16
       A << 1, 1,
17
          -1, 2,
18
          2, 1;
19
       b << 2, 2, 3;
21
       anyprog::optimization::range_t range = { 0, 100 };
22
23
       anyprog::optimization opt(obj, range, dim);
24
       opt.set_inequation_condition(A, b);
       auto ret = opt.solve();
26
       anyprog::optimization::print(opt.is_ok(), ret, obj);
27
       return 0;
   }
29
```

编译、运行, 其解为 f(0.666667, 1.33333) = -8.22222

3.3 非线性优化

非线性优化是最直观地匹配模型 (2.1) 的优化类型。如下例 (3.4):

$$\max_{x \in \mathbf{R}^2} \quad f(x) = \log x_0 + \log x_1$$
s.t. $g_0(x) = x_0 - x_1 \leq 0$

$$h_0(x) = x_0 + 2x_1 = 5$$

$$x_i \geq 0, \quad i = 0, 1$$
(3.4)

这个例子即有不等式约束,也有等式约束。同时,该模型是求最大值而非最小值,可通过目标函数乘以 –1 来转换为标准形式。如此,该模型可定义如下:

```
#include <anyprog/anyprog.hpp>

int main(int argc, char** argv)

{
    size_t dim = 2;
    anyprog::optimization::function_t obj = [](const anyprog::real_block& x) {
        return -log(x(0)) - log(x(1));
    };
}
```

```
std::vector<anyprog::optimization::inequation_condition_function_t> ineq = {
           [&](const anyprog::real_block& x) {
              return x(0) - x(1);
       };
       std::vector<anyprog::optimization::equation_condition_function_t> eq = {
16
           [&](const anyprog::real_block& x) {
17
              return x(0) + 2 * x(1) - 5;
18
          7
       };
21
       anyprog::optimization::range_t range = { 0, 10 };
23
       anyprog::optimization opt(obj, range, dim);
24
       opt.set_inequation_condition(ineq);
       opt.set_equation_condition(eq);
26
       auto ret = opt.solve();
27
       anyprog::optimization::print(opt.is_ok(), ret, obj);
28
       return 0;
29
30
   }
```

编译、运行获得解: f(1.66667, 1.66667) = 1.02165。例子(3.4)或许过于简单了。然而,无论目标函数和约束函数取何种形式,从AnyProg的角度来说,它们并无差异——重要的是描述模型的结构,而非模型的具体构造。

有时,人们希望在求解时使用函数梯度信息。其实,这并非必须。实际上,这常常费力不讨好。 对于无约束的情况,也可以通过 AnyProg 提供两个静态方法 fminbnd 和 fminunc 进行求解。假设需要求

解 Rosenbrock²函数 $f(x) = 100 (x_1 - x_0^2)^2 + (1 - x_0)^2$ 的最小值,变量范围限制为 $\forall i, x_i \in [-10, 10]$ 。那么,求解程序会很简单:

```
#include <anyprog/anyprog.hpp>
   int main(int argc, char** argv)
3
   }
       size t dim = 2;
       anyprog::optimization::function_t obj = [](const anyprog::real_block& x) {
          return 100 * pow(x(1) - pow(x(0), 2), 2) + pow(1 - x(0), 2);
       }:
       anyprog::optimization::range_t range = { -10, 10 };
       bool ok = false;
       auto ret = anyprog::optimization::fminbnd(obj, range, dim, ok, 1e-10);
       anyprog::optimization::print(ok, ret, obj);
14
15
       return 0;
   }
16
```

当然,若有较理想初值,也可使用 fminunc 求解:

#include <anyprog/anyprog.hpp>

 $^{^2}$ 该函数的全局解 $x=(1,1)^T$,对应的函数值是 0。请参考: http://mathworld.wolfram.com/RosenbrockFunction.html。

3.4. 整数优化 13

```
int main(int argc, char** argv)
{
    size_t dim = 2;
    anyprog::optimization::function_t obj = [](const anyprog::real_block& x) {
        return 100 * pow(x(1, 0) - pow(x(0, 0), 2), 2) + pow(1 - x(0, 0), 2);
    };

anyprog::real_block param(dim, 1);
param.fill(0);
bool ok = false;
auto ret = anyprog::optimization::fminunc(obj, param, ok, 1e-10);
anyprog::optimization::print(ok, ret, obj);

return 0;
}
```

3.4 整数优化

整数优化不仅包括纯整数优化: $\forall i, x_i \in \mathbf{Z}$,也包括混合整数优化: $\exists i, x_i \in \mathbf{Z}$ 。所谓整数,既指一般整数的情况: $\exists i, x_i \in \mathbf{Z}$,也指 $0 \mid 1$ 值的情况: $\exists i, x_i \in \{0, 1\}$ 。

整数优化通过两个途径达到: 第一、调用 set_enable_integer_filter 或者 set_enable_binary_filter 方法,第二、调用 set_filter_function 方法。前者适合于纯整数优化,后者则适合混合整数优化。此二途径 对所有符合模型 (2.1) 的优化问题均有效。set_enable_integer_filter 方法保证解的每一分量皆为限制范围内的整数,set_enable_binary_filter 方法则保证解的每一分量不是 0 便是 1。

来看例子 (3.5):

$$\min_{x \in \mathbf{R}^2} \quad f(x) = 0.5x_0^2 + 0.5x_1^2 - 2x_0 - 2x_1$$
s.t. $g_0(x) = -x_0 + x_1 \leq 2$

$$g_1(x) = x_0 + 3x_1 \leq 5$$

$$g_2(x) = x_0^2 + x_1^2 - 2x_1 \leq 1$$

$$x_i \geq 0, \quad i = 0, 1$$

$$x_0 \in \mathbf{Z}$$

$$(3.5)$$

该例子 3 仅要求 x_0 为整数。此时,需要通过 set_enable_integer_filter 方法来进行必要的配置:

```
#include <anyprog/anyprog.hpp>

int main(int argc, char** argv)

{
    size_t dim = 2;
    anyprog::optimization::function_t obj = [&](const anyprog::real_block& x) {
        return 0.5 * x(0) * x(0) + 0.5 * x(1) * x(1) - 2 * x(0) - 2 * x(1);
    };
}
```

³https://inverseproblem.co.nz/OPTI/index.php/Probs/MIQCQP

```
std::vector<anyprog::optimization::inequation_condition_function_t> ineq = {
           [](const anyprog::real_block& x) {
               return -x(0) + x(1) - 2;
           },
           [](const anyprog::real_block& x) {
               return x(0) + 3 * x(1) - 5;
           },
16
17
           [](const anyprog::real_block& x) {
               return x(0) * x(0) + x(1) * x(1) - 2 * x(1) - 1;
18
           }
       };
21
22
       anyprog::optimization::range_t range = { 0, 100 };
23
24
       anyprog::optimization opt(obj, range, dim);
       opt.set_inequation_condition(ineq);
26
       opt.set_filter_function([](anyprog::real_block& x) {
27
           x(0) = round(x(0));
28
       });
29
       auto ret = opt.search(10,3);
       anyprog::optimization::print(opt.is_ok(), ret, obj);
31
32
       return 0;
   }
    其全局解为: f(1, 1.33333) = -3.27778。
         再看例子 (3.6):
                                          \min_{x \in \mathbf{R}^2} \quad f(x) = -x_1 + 2x_0 - \ln \frac{x_0}{2}
                                           s.t. g_0(x) = -x_0 - \ln \frac{x_0}{2} + x_1 \le 0
                                                                                                                         (3.6)
                                                  x_0 \in [0.5, 1.4], x_1 \in \{0, 1\}
    #include <anyprog/anyprog.hpp>
    int main(int argc, char** argv)
       anyprog::optimization::function_t obj = [&](const anyprog::real_block& x) {
```

```
#include <anyprog/anyprog.hpp>

int main(int argc, char** argv)

{
    anyprog::optimization::function_t obj = [&](const anyprog::real_block& x) {
        return -x(1) + 2 * x(0) - log(x(0) / 2.0);

    };

    std::vector<anyprog::optimization::inequation_condition_function_t> ineq = {
        [](const anyprog::real_block& x) {
            return -x(0) - log(x(0) / 2.0) + x(1);
        }

    };

    std::vector<anyprog::optimization::range_t> range = { { 0.5, 1.4 }, { 0, 1 } };

    anyprog::optimization opt(obj, range);
    opt.set_inequation_condition(ineq);
}
```

3.5. TSP 问题 15

其解为: f(1.37482,1) = 2.12447。

set_enable_integer_filter 有一个重载:通过 std::vector<size_t> 容器提供需要整数化的变量分量索引号列表参数,即可完成整数优化配置。此法不仅更胜一筹,而且对 set_enable_binary_filter 方法同样有效。

3.5 TSP 问题

3.6 Assignment 问题

3.7 数据拟合问题

数据拟合按照最小二乘法进行。我把一般拟合问题分为三类模型:多项式拟合,类多项式拟合和非多项式 拟合。

3.7.1 多项式拟合

其数学模型为

$$y = \sum_{i=0}^{m} p_i x^i$$

调用 anyprog::fit::solve 方法即可轻松求解,解为降幂系数形式。比如给定变量数据为 [3,5,7,9,11,13], 待 拟合数据为 [1.85,2.1,2.4,2.5,2.7,2.8],以二次多项式拟合之。那么,

```
#include <anyprog/anyprog.hpp>
    #include <iostream>
    int main(int argc, char** argv)
       anyprog::real_block xdat(6, 1), ydat(6, 1);
       xdat << 3, 5, 7, 9, 11, 13;
       ydat << 1.85, 2.1, 2.4, 2.5, 2.7, 2.8;
       anyprog::fit fit(xdat, 2);
10
       auto ret = fit.solve(ydat), fitting = fit.fitting(ret);
       std::cout << ret << "\n";
       std::cout << "xdat\tydat\tfit\t\n";</pre>
13
       for (size_t i = 0; i < xdat.rows(); ++i) {</pre>
           std::cout << xdat(i) << "\t" << ydat(i) << "\t" << fitting(i) << "\t\n";
15
16
       return 0;
```

18 }

图 3.1: 多项式拟合

其解为: $y = -0.00513393x^2 + 0.177143x + 1.36299$, 待拟合数据和拟合数据比较如上图。

3.7.2 类多项式拟合

其数学模型为

$$y = \sum_{i=0}^{m} p_i f_i(x_0, \cdots, x_n)$$

其中, f_i 的函数形式不限于多项式。比如给定变量数据为 [3.6,7.7,9.3,4.1,8.6,2.8,1.3,7.9,10.0,5.4],待拟合数据为 [16.5,150.6,263.1,24.7,208.5,9.9,2.7,163.9,325.0,54.3],以函数 $y=p_0x^2+p_1\sin(x)+p_2x^3$ 拟合之:

```
#include <anyprog/anyprog.hpp>
#include <fstream>
#include <iostream>

int main(int argc, char** argv)

{
    anyprog::real_block xdat(10, 1), ydat(10, 1);
    xdat << 3.6, 7.7, 9.3, 4.1, 8.6, 2.8, 1.3, 7.9, 10.0, 5.4;
    ydat << 16.5, 150.6, 263.1, 24.7, 208.5, 9.9, 2.7, 163.9, 325.0, 54.3;

std::vector<anyprog::fit::function_t> fun = {
    [](const anyprog::real_block& x, const anyprog::real_block& p) {
        return pow(x(0, 0), 2);
    },
    [](const anyprog::real_block& x, const anyprog::real_block& p) {
        return sin(x(0, 0));
    }
```

3.7. 数据拟合问题 17

```
},
16
           [](const anyprog::real_block& x, const anyprog::real_block& p) {
              return pow(x(0, 0), 3);
       };
       anyprog::real_block param(3, 1);
21
       param.fill(0);
22
       anyprog::fit fit(xdat, fun, param);
       auto ret = fit.solve(ydat), fitting = fit.fitting(ret);
24
       std::cout << ret << "\n";
       std::cout << "xdat\tydat\tfit\t\n";</pre>
       for (size_t i = 0; i < xdat.rows(); ++i) {</pre>
27
           std::cout << xdat(i) << "\t" << ydat(i) << "\t" << fitting(i) << "\t\n";
29
       return 0;
30
31
```


图 3.2: 类多项式拟合

其解为 $y = 0.2269x^2 + 0.338518\sin(x) + 0.302151x^3$ 。 待拟合数据和拟合数据比较如上图。

3.7.3 非多项式拟合

其数学模型为

$$y = \sum_{i=0}^{m} p_i f_i(x_0, \cdots, x_n, p_0, \cdots, p_m)$$

其中, f_i 包含参数 $p_j(j=0,\cdots,m)$ 变量。拟合此类模型需要调用 1ssolve 或者 1ssearch 方法。

比如给定数据为:

(0.683333333, 1.552133333),

```
(1.066666667, 1.610833333),
            (2.166666667, 1.702533333),
            (3.333333333, 1.757483333),
            (6.36666667, 1.825533333),
            (12.4666667, 1.890833333),
            (43.88333333, 1.99507451),
            (58.53333333, 2.016733333),
            ( 118.7, 2.066433333 ),
            (138.75, 2.077583333),
            (479.6166667, 2.160233333),
            (499.6666667, 2.163333333)
   第一分量为变量数据,第二分量为待拟合数据,以函数 y=\frac{p_0\log{(x)}}{1+p_1\log{(x)}}+p_2 拟合之:
   #include <anyprog/anyprog.hpp>
   #include <fstream>
   #include <iostream>
   int main(int argc, char** argv)
   ₹
6
       anyprog::real_block dat(12, 2);
       dat << 0.683333333, 1.552133333,
          1.066666667, 1.610833333,
          2.166666667, 1.702533333,
          3.333333333, 1.757483333,
          6.36666667, 1.825533333,
          12.46666667, 1.890833333,
13
          43.88333333, 1.99507451,
14
          58.53333333, 2.016733333,
          118.7, 2.066433333,
16
          138.75, 2.077583333,
          479.6166667, 2.160233333,
18
          499.6666667, 2.163333333;
19
20
       std::vector<anyprog::fit::function_t> fun = {
21
22
          [](const anyprog::real_block& x, const anyprog::real_block& p) {
             return (p(0, 0) * log(x(0, 0)) / (1 + p(1, 0) * log(x(0, 0))) + p(2, 0)) / p(0, 0);
23
          }
24
       };
25
       anyprog::real_block param(3, 1);
26
       param.fill(0.1);
       anyprog::fit fit(dat.col(0), fun, param);
      auto ret = fit.lssolve(dat.col(1)), fitting = fit.fitting(ret);
29
30
      std::cout << ret << "\n";
      std::cout << "xdat\tydat\tfit\t\n";</pre>
31
      for (size_t i = 0; i < dat.rows(); ++i) {</pre>
32
          std::cout << \ dat(i, \ 0) << \ ^"\t" << \ dat(i, \ 1) << \ ^"\t" << \ fitting(i) << \ ^"\t\n";
```

3.8. 方程组求解 19

```
34  }
35
36  return 0;
37 }
```


图 3.3: 非多项式拟合

其解为 $y=\frac{0.137182\log{(x)}}{1+0.0864034\log{(x)}}+1.60523$ 。待拟合数据和拟合数据比较如上图。因模型规范会自动在 f_i 前添加参数 p_i ,故而需对待拟合模型作适当调整以矫正模型,如第 23 行代码所示。

3.8 方程组求解

展望