

Processos Probabilísticos

Caracterizados por Distribuições Probabilísticas

Tabela relacionando os <u>valores</u> e as <u>probabilidades</u> que a variável tem de assumir estes valores.

Pedidos/dia	% dias
0 - 5	6
6 - 10	50
11 -15	36
16 - 20	6
21 - 25	2

Passos para identificação da curva:

- 1) Fazer o levantamento estatístico (coleta / tabulação dos dados);
- 2) Montar a distribuição EMPÍRICA do processo;
- Comparar a distribuição empírica com as TEÓRICAS, identificando a que melhor representa o processo.

Distribuições Probabilísticas

Distribuições Empíricas X Teóricas

EMPÍRICAS

- Construída com base na tabulação dos dados levantados;
- Sem garantia de que esta tabulação represente a lei geral que rege o comportamento do sistema;
- Válida para os dados levantados.

TEÓRICAS

- Processo foi estudado exaustivamente;
- Vários processos foram estudados e seu comportamento foi confirmado como semelhante;
- Determinada uma "teoria matemática" para representá-lo. Essa teoria, expressa por uma equação matemática, é um modelo matemático.

Distribuições Probabilísticas

Teste de Aderência: Teste estatístico para determinar a curva teórica que se ajusta à curva empírica determinada.

Levantamento estatístico do número de pedidos por dia (em 120 dias):

Pedidos	Frequência	Frequência	Frequência
por dia	em dias	Relativa Real	Relativa Poisson
8	2	0.0167	0.0190
9	4	0.0333	0.0330
10	6	0.0500	0.0480
11	8	0.0667	0.0670
12	10	0.0833	0.0830
13	12	0.1000	0.0950
14	13	0.1083	0.1030
15	14	0.1167	0.1020
16	12	0.1000	0.0960
17	10	0.0833	0.0850
18	9	0.0750	0.0700
19	7	0.0583	0.0560
20	5	0.0417	0.0420
21	3	0.0250	0.0300
22	2	0.0167	0.0200
23	2	0.0167	0.0140
24	1	0.0083	0.0080

Total de 1802 pedidos

$$2/120 = 0.0167$$

$$4/120 = 0.0333$$

Cálculo da média:

$$\lambda = 1802/120 = 15$$

Freq. Relativa Poisson (Teórica)

$$p(x) = (e^{-\lambda} \cdot \lambda^x) / x!$$

$$p(8) = (e^{-15} \cdot 15^8) / 8!$$

$$= 0.019$$

Distribuições Probabilísticas

Distribuições Teóricas Válidas para Aplicação em Teoria das Filas

Exponencial

Normalmente usada para representar tempos de atendimento.

Distribuição contínua.

Poisson

Usada normalmente para representar chegadas de clientes ao sistema e tempos de atendimento.

Distribuição discreta.

Estrutura do Sistema M / M / 1

1) Modelo Básico: M / M / 1 (1 fila, 1 canal)

Premissas:

- Chegadas se processam segundo distribuição Poisson com média λ chegadas/tempo;
- Tempos de atendimento seguem distribuição Poisson de média μ;
- Ordem de atendimento da fila do tipo FIFO;
- · Número de clientes infinito.

Estrutura do Sistema M / M / 1

Equações Básicas do modelo M / M / 1

1) Probabilidade de haver "n" clientes no sistema

$$P(n) = \left(\frac{\lambda}{\mu}\right)^{n} \cdot \left(\frac{\mu - \lambda}{\mu}\right)$$

3) Probabilidade de que o sistema esteja ocioso.

$$P(n=0) = \left(\frac{\mu - \lambda}{\mu} \right)$$

2) Probabilidade de que o número de clientes no sistema seja superior a um valor "r"

$$P(n>r) = \left(\frac{\lambda}{\mu}\right)^{r+1}$$

4) Probabilidade de que o sistema esteja ocupado.

$$P(n>0) = \rho = \left(\frac{\lambda}{\mu}\right)$$

Também conhecido como "índice de congestionamento" ou "taxa de utilização".

Estrutura do Sistema M / M / 1

Equações Referentes à Quantidade de Clientes

5) Número médio de clientes no sistema (NS)

$$NS = \frac{\lambda}{\mu - \lambda}$$

6) Número médio de clientes na fila (NF)

NF =
$$\frac{\lambda^2}{\mu(\mu - \lambda)}$$
 NF (F>0) = $\frac{\mu}{\mu - \lambda}$

Equações Referentes à Tempos

7) Tempo médio de espera na fila por cliente (TF).

$$\mathsf{TF} = \frac{\lambda}{\mu(\mu - \lambda)}$$

8) Tempo médio gasto no sistema por cliente (TS).

$$TS = \frac{1}{\mu - \lambda}$$

Estrutura do Sistema M / M / 1

Relacionamentos entre as equações:

Número médio de clientes na fila (NF) e tempo médio de espera em fila (TF):

$$NF = \lambda$$
. TF

Tempo médio de espera em fila e tempo médio gasto no sistema:

TF = TS -
$$\frac{1}{\mu}$$

Número médio de clientes no sistema (NS) e tempo médio gasto por cliente no sistema (TS):

$$NS = \lambda . TS$$

Número médio de clientes em fila e número médio de clientes no sistema:

$$NF = NS - \frac{\lambda}{\mu}$$

Aplicação - M / M / 1

Análise da equipe de apoio administrativo

Uma equipe de apoio processa os formulários de requisição de peças para a linha de produção. O processamento não deve sofrer atrasos, caso contrário, a produção será afetada.

- -Decidiu-se analisar a equipe como um todo, e não seus membros individualmente, o que resulta em um sistema de fila única e um canal de atendimento;
- -Os "clientes" são os formulários de requisição;
- -Não há restrição quanto ao número de requisições, portanto a população é infinita;
- -Os formulários são processados por ordem de chegada (FIFO);
- -As chegadas de pedidos e frequência de atendimento seguem as curvas de Poisson ou Exponencial;
- -Pode ser aplicado o sistema M / M / 1;

Aplicação - M / M / 1

Primeira etapa: levantamento estatístico

Levantamento estatístico do <u>número de pedidos por dia (em 120 dias):</u>

Pedidos	Frequência
por dia	em dias
8	2
9	4
10	6
11	8
12	10
13	12
14	13
15	14
16	12
17	10
18	9
19	7
20	5
21	3
22	2
23	2
24	1

Total de 1802 pedidos

Cálculo da média:

 $\lambda = 1802/120 = 15$

Aplicação - M / M / 1

Levantamento estatístico do <u>número de atendimentos por dia</u> (em 120 dias):

Atend.	Frequência
por dia	em dias
12	2
13	2
14	3
15	5
16	6
17	8
18	9
19	11
20	12
21	13
22	10
23	9
24	8
25	6
26	5
27	5
28	3
29	2
30	1

Total de 2489 atendimentos

Cálculo da média:

 $\mu = 2489/120 = 21$

Aplicação - M / M / 1

Segunda etapa: cálculo dos índices de desempenho

Como ambas as distribuições são do tipo Poisson, as equações podem ser aplicadas.

$$\rho = \lambda / \mu = 15 / 21 = 0.714$$
 71% de utilização

NS =
$$\lambda$$
 / (μ - λ) = 15 / (21-15) = 2,5 pedidos na seção, em média

NF = 1,78 pedidos em média esperando na fila

TF = 0,12 dias, ou 57,6 minutos em média de tempo de espera na fila (considerando que um dia de trabalho tem 8 horas)

TS = 0,17 dias, ou 81,6 minutos de tempo total na seção

<u>Conclusões</u>: o sistema está bem dimensionado, já que a utilização do sistema está em 71%. O tempo de espera dentro da seção também é razoável para este trabalho (81,6 minutos).

Exercício

Dimensionamento do Caixa Eletrônico

Uma agência bancária deseja analisar o atendimento prestado pela única máquina de autoatendimento disponível aos clientes.

Foram coletados os dados das tabelas ao lado. O objetivo é saber se a máquina fica ocupada em um nível maior do que 80%, o que provoca maior índice de manutenção. Neste caso, uma nova máquina será solicitada para a matriz

OBS: Adotar Jornada de Trabalho de 8 horas/dia

Clientes	Frequência
por dia	em dias
8	1
9	3
10	5
11	9
12	10
13	11
14	9
15	7
16	3
17	2
18	1
	2

Atendim.	Frequência
por dia	em dias
12	2
13	2 4
14	6 6
15	6
16	9
17	11
18	10
19	7
20	3
21	2
22	1

Exercício

Cálculo da média da chegada de clientes:

Clientes	Frequência	
por dia		m dias
8		1
9		3
10		5
11		9
12		10
13		11
14		9
15		7
16		3
17		2
18		1

Total de 61 dias

Exercício

Cálculo da média da chegada de clientes:

Cálculo da média (λ)

	Frequência			
por dia	em dias			
8	x 1	= 8		
9	<mark>х</mark> 3	= 27		
10	x 5	= 50		
11	X 9	= 99	$\lambda = 778 / 61 = 12.75$	
12	x 10	= 120		
13	x 11	= 143		
14	X 9	= 126		
15	x 7	= 105		
16	X 3	= 48		
17	x 2	= 34 +		
18	x 1	_= 18		
Total de 778 clientes				

Exercício

Cálculo da média de atendimentos por dia:

Atendim.	Frequência		
por dia	em dias		
12	2		
13	2 4		
14	6		
15	6		
16	9		
17	11		
18	10		
19	7		
20	3		
21	3 2		
22	1		

Total de 61 dias

Exercício

 $\mu = 1018 / 61 = 16.69$

Cálculo da média de atendimentos por dia:

Cálculo da média (μ)

Atendim.	Frequência		
por dia	em dias		
12	X	2	= 24
13	X	4	= 52
14	X	6	= 84
15	X	6	= 90
16	X	9	= 144
17	Х	11	= 187
18	Χ	10	= 180
19	X	7	= 133
20	X	З	= 60
21	X	2	= 42 +
22	Χ	1	= 22
	T	1 .	1010 1 1

Total de 1018 atendim.

Exercício

Conclusões:

Considerando-se que os comportamentos seguem a curva de Poisson ou Exponencial:

$$\rho = \lambda$$
 / μ = 12.75 / 16.69 = 0.76

76% de utilização

Conclui-se, portanto, que a agência não precisa de outra máquina de atendimento.