

Eines de hacking

Eines de hacking. Sniffers. Tcpdump i Ethereal. Rootkits. Contrasenyes. Tècniques de força bruta

Eines de hacking

Hacker: entusiasta dels ordinadors. Comunament utilitzat en to pejoratiu.

Hacking: art informàtica de construir i solucionar problemes que atempten contra la

vulnerabilitat dels sistemes informàtics.

Ethical hacking: ús ètic del hacking.

Cracker: persona que viola la seguretat d'un sistema informàtic de forma similar a com ho faria un hacker però que a diferència d'aquest últim, el cracker realitza la intrusió com a benefici personal o per a fer mal.

Lamer: persona o producte que fer falta de maduresa, sociabilitat o habilitats tècniques és considerat un incompetent en una matèria o activitat específica.

- Cultura Hacker
 - Hacker Slang (argot hacker): Jargon File
- Veurem algunes de les eines més famoses o importants.
- Hacking Tools a la wiki del curs

Packet Sniffers

És un programari o sistema de maquinari que pot interceptar i enregistrar el tràfic que circula per un segment de xarxa

- També coneguts com a Analitzadors de Xarxa o Analitzadors de protocols.
- Tipus de xarxes:
 - Ethernet sniffers
 - Wireless sniffers
- Durant la captura de paquets ofereixen eines per descodificar i analitzar els protocols i especificacions més comuns.
- Packet Sniffer a la wikipedia

Packet Sniffers

Utilitats:

- Monitoritzar l'ús de la xarxa i/o realitzar estadístiques
- Analitzar problemes de xarxa
- Detectar intrusions a la xarxa
- Espiar la xarxa i obtenir informació sensible (contrasenyes, documents secrets, etc.)
- Enginyeria inversa de protocols
- Depurar aplicacions client/servidor o implementacions de protocols
- Depurar problemes de connectivitat

Packet Sniffers

- tcpdump
- Ethereal / WireShark
- DSniff
- Ettercap
- Kismet (xarxes wireless)
- Ksniffer
- Open Source Packet Sniffer (Windows/Wincap)
- NetworkMinner
- Hi ha moltes solucions comercials que podeu consultar a la la wikipedia

Mode promiscu

És el mode en que un node (ordinador, dispositiu de comunicacions, etc.) connectat a una xarxa compartida captura tot el tràfic que circula pel node amb independència de si el tràfic és per al node o no.

broadcast

multicast

unicast

➤ El funcionament del mode promiscu depèn molt de la tipologia (anell, bus...) i del tipus de xarxa (cablejada, sense fils...), del tipus de transmissió (unicast, broadcast) i dels dispositius de xarxa utilitzats (HUB, Switch...)

No tots els dispositius de xarxa (targetes) ens permeten utilitzar el mode prosmiscu

Mode promiscu. Ifconfig

- Com podem saber si som promiscus ;-)?
 - Consultant les característiques de la nostra targeta de xarxa amb ifconfig

```
$ ifconfig eth0 promisc
$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:80:C8:F8:4A:51
    inet addr:192.168.99.35 Bcast:192.168.99.255 Mask:255.255.255.0
    UP BROADCAST RUNNING PROMISC MULTICAST MTU:1412 Metric:1
    RX packets:190312 errors:0 dropped:0 overruns:0 frame:0
    TX packets:86955 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:100
    RX bytes:30701229 (29.2 Mb) TX bytes:7878951 (7.5 Mb)
    Interrupt:9 Base address:0x5000
```

```
$ ip link show | grep eth0
2: eth0: <BROADCAST,MULTICAST,PROMISC,UP,10000> mtu 1500 qdisc pfifo_fast qlen 1000
```

Ifconfig a la wiki del curs

Ethernet

- Nivell 1 TCP/IP (Nivell físic 1 i d'enllaç 2 a OSI).
- Família d'estàndards IEEE 802:
 - 802.2: Capa LLC (Logical Link Control). Interfície comuna entre el nivell de xarxa i la família de protocols.
 - La resta de protocols defineixen el nivell físic i el subnivell MAC.
 - 802.3 Ethernet
 - · 802.4 Token Ring
 - · 802.11 Wi-FI
 - · 802.15 Bluetooth

NIVELL 3. XARXA

SUB NIVELL **LLC**

SUB NIVELL MAC

NIVELL 1. FÍSIC

Ethernet

- Nivell LLC (Logical Link control). Compartit per tots els protocols de la família.
 - Lògica de reenviaments
 - Control de flux
 - Comprovació d'errors
- Nivell MAC (Medium Acces Control).
 - Control d'accés a medi compartits (cables en bus, ràdio, etc.)
 - No utilitzat en protocols punt a punt (no hi ha medi compartit)
 - Adreça MAC: sistema adreçament de nivell 2 equivalent a les adreces IP al nivell 3

Ethernet. Nivell MAC. Conceptes

Segments de xarxa

- És una porció de xarxa separada de la resta per un dispositiu de xarxa com:
 - · Repetidor
 - · Bridge o Switch
 - · Router

Domini de col·lisió

• És un segment lògic de xarxa on els paquets poden col·lisionar al ser enviats a un medi compartit.

Seguretat en xarxes

Ethernet. Nivell MAC

Algorismes MAC

- ◆ Aloha i Aloha Ranurat (desenvolupats per la Universitat de Hawai). S'envia un paquet i si hi ha col·lisió es torna a enviar.
- CSMA/CD (Carrier sense multiple access with collision detection). Detecta si hi ha senyals utilitzant el medi i té un procediment en cas de col·lisió.
- Antics sistemes Ethernet funcionaven amb coaxials en bus físic i lògic.
- Actualment el problema de les col·lisions està més limitat gràcies als switches.
- Torna a ser un tema candent en xarxes wireless (l'aire és un medi compartit).

Trama Ethernet

- Origen: Adreça MAC origen de la trama
- Destí: Adreça MAC destinació de la trama
- Tipus: EtherType. Tipus d'ethernet.
- Dades
- CRC Checksum: Control d'errors

Switched LAN. Hubs i Switchs

- Les LANs connectades a switchs o HUBS tenen una topologia física d'estrella.
- Topologia lògica:
 - HUB: mateix segment de xarxa (bus compartit). Treballa a nivell físic (mecànic). Dispositiu "tonto" (dumb)
 - ➤ Switch: s'utilitza una base de dades per recordar les MACs (IPs) de cada port i es connecta de forma directa als ports d'origen i destinació d'una comunicació. Treballa a nivell d'enllaç (taula de MACS). Dispositiu intel·ligent.
 - · LAN Commutada. Cada PC té el seu propi segment de xarxa no compartit.
 - · Els switches són més segurs.

SOME RIGHTS RESERVED

Seguretat en xarxes ICE-UPC

Switches

Tipus:

- Home Switches (no gestionats). Típics en entorns SoHo (Small Office/ Home Office).
- Switches gestionats (Managed Switches).
 - Controlar el port de forma individual (on/off)
 - · Control de la velocitat del link
 - · Prioritats de ports
 - Filtratge MAC
 - · Port Mirroring per tal de monitoritzar ports
 - · Altres: Suport per SNMP, VLAN, Link Aggregation
- ➤ Switches intel·ligents. Realitzen tasques de forma automàtica: establir velocitats d'enllaç, permetre connexions directes i creuades, etc.

Network Taps

- Són dispositius de maquinari que permeten accedir a les dades que circulen per un cable de xarxa
 - També anomenat Test Acess Port o Test Access Point
 - Útils per depurar errors
 - Hi ha sistemes més escalables per controlar la xarxa
 - Com construir el teu propi Network Tap
 - Network Tap a la wikipedia

Seguretat en xarxes ICE-UPC

tcpdump

 Eina de línia de comandes que permet visualitzar el tràfic de xarxa (Packet Sniffer) **Desenvolupador**: The Tcpdump

team

OS: gairebé tots

Llicència: lliure (BSD)

- Hi ha un "port" per a Windows (WinDump) basat en Wincap (port de libcap)
- Cal ser superusuari (root) per utilitzar tcpdump (sudo). Activa automàticament el mode promiscu
- Com gairebé el 100% d'analitzadors de xarxa utilitza la llibreria libcap
 - Tcpdump a la wiki del curs
 - Pàgina oficial
 - · man tcpdump

tcpdump

Instal·lació

\$ sudo apt-get install tcpdump

Filtres

 Podem aplicar filtres segons l'origen o destinació del paquet, segons els protocol, per màquines, per xarxes, per ports...

```
$ sudo tcpdump tcp and \(port 22 or port 23\)

$ sudo tcpdump -i lo

$ sudo tcpdump icmp
```

Activitat per parelles: Provem de capturar pings

TCPDUMP

Exemple. Captura d'un ping

Seguretat en xarxes ICE-UPC

TCPDUMP

Exemple. Captura d'un ping

Seguretat en xarxes ICE-UPC

Protocols no segurs (no xifrats)

- Amb tcpdump podem comprovar la inseguretat d'alguns protocols com p. ex. telnet
 - Instal·leu telnetd i feu una connexió a un company

```
$ sudo apt-get install telnetd
```

```
$ telnet ip_maquina_company
```

Executeu tcpdump i comproveu com el text viatja en

clar!

```
$ sudo tcpdump -X port 23
```

\$ hola-bash: hola: command not found

```
0x0000: 4510 0054 d3d8 4000 4006 e365 c0a8 0103 E..T..@.@..e....
0x0010: c0a8 0102 0017 cca6 2241 5d60 2dca e78f ......."A]`-...
0x0020: 8018 05a8 0437 0000 0101 080a 1a7c 399f .....7...........|9.
0x0030: 0035 4475 2d62 6173 683a 2068 6f6c 613a .5Du-bash:.hola:
0x0040: 2063 6f6d 6d61 6e64 206e 6f74 2066 6f75 .command.not.fou
0x0050: 6e64 nd
```

Seguretat en xarxes ICE-UPC

TCPDUMP

Utilitats:

- Per depurar aplicacions que utilitzen la xarxa per comunicar-se. Per exemple es pot utilitzar per comprovar el funcionament d'un tallafocs.
- Per depurar la xarxa mateixa.
- Per comprovar quan la NIC està transmetent o reben dades.
- Per capturar i llegir dades enviades per altres usuaris o ordinadors. Un usuari que té el control d'un encaminador pel qual circula tràfic pot obtenir la informació que no viatgi xifrada.

SOME RIGHTS RESERVED

Ethereal (WireShark)

Característiques:

- Ethereal és un analitzador de protocols utilitzat per analitzar i solucionar problemes de xarxes de comunicacions.
- És similar a tcpdump però amb una interfície gràfica i moltes opcions extres d'organització i filtratge de la informació.
- Com tcpdump és un codi obert està disponible per gairebé totes les plataformes (UNIX/LINUX, MAC OS i Windows).

Ethereal

Utilitats:

- Anàlisi i solució de problemes en xarxes de comunicacions.
- Desenvolupament de software i protocols.
- Eina didàctica per a l'educació que permet visualitzar el comportament de diferents protocols i veure els paquets i trames concrets que s'utilitzen.
- Altres usos menys didàctics (Sniffer, capturar contrasenyes...)

Ethereal. Captura contrasenyes HTTP

Exemple. Captura paraula de pas web.

Seguretat en xarxes

Ethereal

Exemple. Captura paraula de pas web.

Seguretat en xarxes

Ethereal

- Paquets necessaris
 - ethereal
- Referències
 - man tcpdump
 - Article de la wikipedia
 - Pàgina oficial de tcpdump
- Altres enllaços
 - WinDump
 - Article de la wikipedia sobre Paquet Sniffers

Protocol ARP

- ARP és un protocol a cavall entre el nivell de xarxa i el nivell d'enllaç (MAC)
 - Permet resoldre adreces MAC a partir d'adreces IP.
 - S'utilitza en xarxes LAN (nivell 2) per poder treballar amb adreces IP (nivell 3)

\$ sudo tcpdump

17:51:38.740533 arp who-has 192.168.1.2 tell mygateway1.ar7

17:51:38.740550 arp reply **192.168.1.2** is-at **00:30:1b:b7:cd:b6** (oui Unknown)

Protocol ARP

• Exercici:

Consultem la taula ARP

```
$ arp
Address HWtype HWaddress Flags Mask Iface
mygateway1.ar7 ether 00:15:E9:CA:34:A5 C eth0
```

 Executem alguna comanda que obligui a fer un broadcast de la xarxa (utilitzar totes les IPs)

```
$ ping 192.168.1.255 -b
$ sudo nmap 192.168.1.1-255
```

 Tornem a consultar la taula ARP i podrem comprovar com ja tenim assignades les adreces MAC a IPs de tots els PCs de la xarxa

ARP Spoofing (Enverinament ARP)

ARP Spoofing (farsa arp)

• És un atac empleat en xarxes Ethernet que permet a un atacant interceptar trames d'una xarxa LAN.

- L'atacant pot fer tres tipus d'atac:
 - · **Atac passiu**: Les trames interceptades no són modificades i s'envien als corresponents receptors.
 - · Atac actiu: Pot modificar les trames injectant dades.
 - · Aturar el tràfic: Atac de denegació de servei.
- És necessari executar l'atac des d'una màquina de dins la xarxa Ethernet i les màquines que es poden atacar han de pertànyer al mateix segment de xarxa.
 - ARP Spoofing a la wikipedia
 - Spoofing a la wikipedia

ARP Spoofing

Com funciona?

- Enviant missatges AR falsos (fake frames).
- S'envia un arp-reply fals associant la MAC de l'atacat a la IP de l'atacant. Els paquets s'envien a l'atacant en comptes de a l'atacat.
 - L'atacant pot escollir entre ser passiu (un cop llegides les trames les reenvia a l'atacat) o actiu (injectar o modificar dades abans de reenviar – Man in the Middle)

 DoS atack (Deny of Service): S'assigna una IP no existent a la MAC de l'atacat o al seu gateway per defecte.

Es poden "sniffar" switched LANS?

- Sí. Ettercap és un packet sniffer per a switched LANs
- Utilitza dos modes de treball:
 - Unified sniff (per defecte): Captura tots els paquets que passen per una targeta de xarxa. Reenvia els paquets a l'atacat amb ip_forwarding de nivell 3 (router)
 - Bridged sniff: Dues targetes de xarxa. Converteix la màquina en un bridge (nivell 1). Més difícil de detectar
- Atacs Man In The Middle
- Un cop actiu ens mostra una llista de màquines i connexions establertes i el seu estat
- Té plugins que faciliten la tasca de "recol·lectar" contrasenyes

"Even if blessed with a feeble intelligence, they are cruel and smart..."

- És la descripció d'un Ettercap, un monstre del joc de rol Advanced Dungeons & Dragons.
- Es va escollir per la seva similitud amb la paraula "ethercap" (ethernet capture) i perquè el monstre té un poderós verí (ARP Poisoning).

The Lord Of The (Token)Ring (the fellowship of the packet)

"One Ring to link them all, One Ring to ping them, one Ring to bring them all **and in the darkness sniff them**."

Seguretat en xarxes

Funcions i característiques

- Suporta diferents protocols (inclòs protocols xifrats com SSH1 o HTTPS/SSL) de forma activa i passiva
- Permet injectar dades (p. ex. una comanda) en una connexió establerta i filtrar en temps real en mode MiTM (Man in The Middle Attack)

Plug-ins

- Col·lectors de paraules de pas: Telnet, FTP, POP, Rlogin, SSH1, ICQ, SMB, MySQL, HTTP, NNTP, X11, Napster, IRC, RIP, BGP, SOCKS 5, IMAP 4, VNC, LDAP, NFS, SNMP, Half-Life, Quake3, MSN.
- OS fingerprint: detecció del sistema operatiu remot.
- Matar connexions establertes i filtrat i substitució de paquets.
- Escànner de LAN: hosts, ports oberts, serveis...
- Detecció d'altres enverinaments ARP a la xarxa.
- Port Stealing: nou mètode sense ARP-Spoofing.

SOME RIGHTS RESERVED

Ettercap. Capturar tràfic

Per parelles. Dues màquines (atacat/atacant)

```
$ sudo apt-get install telnetd
$ sudo -i
# ettercap -G
```

```
Sniff->unified Sniffing->eth0
Hosts->Scan for Hosts
Hosts->Hosts List->Eliminar màquines no volem atacar
Start->Start Sniffing
Mitm->ARP Poisnoning (Sniff remote connections)
View->Connections
```

Per evitar problemes només ataqueu una màquina per parella. Proveu de fer un telnet des de la màquina atacada:

```
$ telnet ip_maquina
```

Exemple pas a pas. Captura contrasenyes TELNET

- Capturar les trames ARP falses amb tcpdump
- Funcionament correcta

```
$ sudo arp -d 192.168.1.1
$ sudo arp -d 192.168.1.3
$ sudo arp -d 192.168.1.6
$ ping 192.168.1.1
$ ping 192.168.1.3
$ ping 192.168.1.6
```

\$ sudo tcpdump arp -n 09:54:40.061879 arp who-has 192.168.1.1 tell 192.168.1.2 09:54:40.062244 arp reply 192.168.1.1 is-at 00:15:e9:ca:34:a5 09:54:58.802487 arp who-has 192.168.1.3 tell 192.168.1.2 09:54:58.802576 arp reply 192.168.1.3 is-at 00:18:f3:fb:fc:4a 09:55:41.012054 arp who-has 192.168.1.6 tell 192.168.1.2 09:55:41.013671 arp reply 192.168.1.6 is-at 00:0e:35:29:2a:48

Funcionament amb ettercap

```
10:03:11.168233 arp reply 192.168.1.3 is-at 00:30:1b:b7:cd:b6 10:03:11.168369 arp reply 192.168.1.6 is-at 00:30:1b:b7:cd:b6 10:03:11.200758 arp reply 192.168.1.2 is-at 00:30:1b:b7:cd:b6 10:03:11.200890 arp reply 192.168.1.6 is-at 00:30:1b:b7:cd:b6 10:03:11.220871 arp reply 192.168.1.6 is-at 00:30:1b:b7:cd:b6 10:03:11.221050 arp reply 192.168.1.3 is-at 00:30:1b:b7:cd:b6 10:03:11.248938 arp reply 192.168.1.2 is-at 00:30:1b:b7:cd:b6 10:03:11.249127 arp reply 192.168.1.3 is-at 00:30:1b:b7:cd:b6 10:03:11.264841 arp reply 192.168.1.6 is-at 00:30:1b:b7:cd:b6 10:03:11.264996 arp reply 192.168.1.2 is-at 00:30:1b:b7:cd:b6
```

- Tothom utilitza la MAC de l'atacant!
- Com funciona ettercap a la wiki del curs

- Denegació de servei
 - Plugin dos_attack
 - ARP-REPLYS que assignen una IP incorrecta a la màquina atacada.


```
$ sudo tcpdump arp -n
10:13:18.926375 arp who-has 192.168.1.58 tell 192.168.1.6
10:13:19.036821 arp reply 192.168.1.58 is-at 00:30:1b:b7:cd:b6
10:13:19.039107 arp who-has 192.168.1.58 tell 192.168.1.2
10:13:19.039270 arp reply 192.168.1.58 is-at 00:30:1b:b7:cd:b6
10:13:20.039133 arp who-has 192.168.1.58 tell 192.168.1.2
10:13:20.039189 arp reply 192.168.1.58 is-at 00:30:1b:b7:cd:b6
10:13:20.956842 arp reply 192.168.1.3 is-at 00:30:1b:b7:cd:b6
10:13:20.956863 arp reply 192.168.1.6 is-at 00:30:1b:b7:cd:b6
```

DOS ettercap a la wiki del curs

ARP SPOOFING

Defenses

- Utilitzar un sistema de taules ARP estàtiques. Difícil de mantenir en xarxes grans.
- DHCP Snooping: Amb DHCP, el dispositiu de xarxa manté una llista de les adreces MC connectades a cada port (switchs gestionats o d'alta gama).
- arpwatch: Programa que permet detectar quan hi ha arp-reply falsos i envia una notificació per correu electrònic.
- RARP: ARP invers.

Man in the middle attacks (Mitm)

És un atac que permet a un atacant llegir, modificar o inserir missatges a la comunicació entre dues entitats sense que aquestes en siguin conscients.

Hi ha múltiples formes d'aconseguir un Mitm

- L'atacant pot observar i/o modificar les dades de la comunicació.
 - · eavesdropping: observar el tràfic (captura de contrasenyes)
 - **substitution attack**:l'atacant pot sostreure la identitat
 - denial-of-service (DOS) attack: impedir les comunicacions
 - phishing attacks: obligar a l'atacant a aportar dades personals (comptes bancaris, números secrets)
- Especialment útil en sistemes de clau pública.
- Man In The Middle Atacks a la wiki del curs

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

SSH i Man in The Middle

Primera connexió a un servidor

\$ ssh sergi.tur@10.0.2.2

The authenticity of host 'tjener (10.0.2.2)' can't be established. RSA key fingerprint is ab:37:e2:3f:6f:16:27:5e:9a:02:a1:e1:9a:34:7f:69. Are you sure you want to continue connecting (yes/no)?yes password:

Man-in-the-middle warning

\$ ssh sergi.tur@10.0.2.2

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is

f2:92:1d:da:81:2a:d7:16:0a:48:f0:43:20:1c:f4:b5.

Please contact your system administrator.

Add correct host key in ~/.ssh/known_hosts to get rid of this message.

Offending key in ~/.ssh/known_hosts:5

Password authentication is disabled to avoid man-in-the-middle attacks.

X11 forwarding is disabled to avoid man-in-the-middle attacks.

Permission denied (publickey, password, keyboard-interactive).

Solució:

sed -i '5d' ~/.ssh/known_hosts

Port Stealing (robo de puerto)

- Es basa en enviar molts frames (unitats de dades del nivell 2 d'enllaç) amb l'adreça MAC de la víctima.
 - ◆ El resultat és que el commutador (switch) creu que la víctima està connectada al port de l'atacant.
 - Quan l'atacant rep un paquet, la destinació del qual era la víctima, l'atacant genera un AR-request preguntant per la IP de la víctima. Quan la víctima respon el commutador torna a conèixer la MAC de la víctima i aleshores reenviar el paquet capturat a la víctima (modificat o sense modificar).
 - El procés es repeteix periòdicament. La connexió de la víctima es degrada notablement i és un atac fàcil de detectar per un IDS.
 - L'ús de taules estàtiques en els clients no resol el problema. El mapeig estàtic s'ha de fer al commutador (port security, 802.1x, Nap o NAC).
 - Ettercap suporta Port Stealing.

SOME RIGHTS RESERVED

Seguretat en xarxes ICE-UPC

DHCP

Seguretat en xarxes ICE-UPC

DHCP Spoofing

- Els paquets DHCP-REQUEST són enviats a tota la xarxa en mode broadcast i per tant poden ser escoltats per tots els dispositius de la xarxa.
 - Un atacant pot aprofitar per respondre abans que el servidor de DHCP vàlid.
 - L'atacant pot aprofitar per enviar informació incorrecta al client.
 Per exemple pot indicar-li a la màquina que el gateway és ell i capturar tot el tràfic cap a Internet de la màquina.
 - És fàcil respondre abans que els servidors de DHCP, ja que aquests fan algunes verificacions abans de respondre al client.
 - Aquests atacs són fàcils de detectar per un IDS quan es troben múltiples respostes DHCP en una mateixa xarxa.
 - Ettercap permet fer atacs DHCP.

DNS spoofing

- L'atac consisteix en llançar respostes falses de resolució de DNS a les peticions de resolució DNS de les víctimes.
 - Dos mètodes:
 - DNS "ID Spoofing": es basa en obtenir els identificadors de petició de resolució de DNS a través d'algun atac d'sniffing. Si l'atacant pot escoltar les peticions de DNS pot intentar contestar abans que el servidor real, enganyar a la víctima i enviar la seva petició on l'atacant desitgi.
 - "Cache poisoning" (envenenamiento de la cache):
 similar a l'anterior però dirigit als servidors de cache de DNS.
 - Per aquesta raó els servidors de cache de DNS utilitzen identificadors aleatoris.
 - Els IDS són capaços de detectar aquests atacs. DNSSec també és una solució.

SOME RIGHTS RESERVED

Seguretat en xarxes ICE-UPC

ICMP Redirect

 Utilitza el paquet ICMP Redirect per fer-nos passar pel gateway de la xarxa LAN

\$ sudo tcpdump icmp -n tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes 11:18:27.316196 IP 192.168.1.1 > 192.168.1.2: ICMP redirect 217.149.150.24 to host 192.168.1.2, length 36 11:18:27.316250 IP 192.168.1.1 > 192.168.1.2: ICMP redirect 63.245.213.21 to host 192.168.1.2, length 36 11:18:27.388111 IP 192.168.1.1 > 192.168.1.2: ICMP redirect 63.245.213.21 to host 192.168.1.2, length 36

MAC Flooding

- Objectiu: desbordar la memòria del switch a base de MACs inventades
 - Els switchs tenen una taula de MAC amb una memòria limitada. Si aquesta taula es desborda alguns switchs passen a mode "failopen" i es transformen en HUBS.


```
$ sudo tcpdump arp -n
11:07:01.746056 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.750043 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.754050 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.758355 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.762106 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.766055 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.770044 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.774052 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.778046 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.782045 arp who-has 0.0.0.0 tell 0.0.0.0
11:07:01.786079 arp who-has 0.0.0.0 tell 0.0.0.0
```


Altres atacs Mitm

- Existeixen múltiples atacs Mitm
 - STP Mangling
 - ICMP redirection
 - IRDP spoofing
 - Route mangling

Seguretat en xarxes ICE-UPC

Autenticació Linux. Contrasenyes

- Usuari i contrasenya emmagatzemats en fitxers locals:
 - /etc/passwd: Conté la informació de les comptes d'usuari (llegible per tots els usuaris).
 - /etc/shadow: Conté les contrasenyes. Només llegible per root i el grup shadow.
 - /etc/group: Conté els grups i els usuaris que hi pertanyen.

pete:x:1000:1000:Peter Hernberg,,,1-800-FOOBAR:/home/pete:/bin/bash

pete:/3GJllg1o4152:11009:0:99999:7:::

pasta:x:103:spagetti,fettucini,linguine,vermicelli

Autenticació Linux a la wiki

Contrasenyes

2005, un expert de Microsoft declara: "crec que la política sobre paraules de pas hauria de ser escriure les contrasenyes en algun lloc per poder recordar-les. Jo tinc 68 contrasenyes diferents. Si no em permeten escriure-les endevina què faré; doncs utilitzar sempre la mateixa!"

Generador de contrasenyes

\$ sudo apt-get install makepasswd \$ makepasswd DngTBW96

- Contrasenyes fluixes
 - Número de pin, dates (naixement, celebracions o altres), només dígits, no combinar números amb dígits o caràcters estranys i contrasenyes curtes, etc.
- Actualment es parla de passphrase com a sistema més segur
 - Contrasenyes a la wiki del curs

Contrasenyes

Recomanacions

- Mínim 7 caràcters de longitud
- No utilitzeu paraules de diccionari o sequències lògiques (aaa555ccc, 1234567890 etc.)
- Evitar utilitzar la mateixa contrasenya a tot arreu (evitar el PIN del mòbil)

Idees

- Escull una paraula coneguda i introdueix canvis (ordena-la al revés, reemplaça algun caràcter per dígits, treu vocals i afegeix algun caràcter estrany, usa majúscules, etc...)
- Considera almenys utilitzar un caràcter estrany
- Aplica tot l'anterior a frases fàcils de recordar (llc1hlqnsdcuM)

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Força Bruta

Límits teòrics

- Creixement exponencial amb la longitud de la clau.
- Límit de temps: edat de l'univers 1.3x10¹⁰.
- Llei de Moore: la potència de processament de les màquines és doble, aproximadament cada dos anys.
- Una clau de 128 bits amb un sistema capaç de provar 10¹⁸ contrasenyes per segon requereix d'uns 10¹³ anys.
- Una clau de 256 bits amb un sistema capaç de provar 1018 contrasenyes per segon requereix requereix de 3x1051 anys

Mida de la contrasenya	Combinacions (36 caràcters)	Temps
i	36	0.0004s
2	1296	0,01s
3	46656	0.5s
4	1679616	17s
5	60466176	10 minuts
6	2176782336	7 hores
7	78364164096	9 dies
8	2.8211099×10 ¹²	10 mesos
9	1.0155995×10 ¹⁴	32 anys
10	3.6561584×10 ¹⁵	1161 anys
11	.3162170×10 ¹⁷	41822 anys
12	4.7383813×10 ¹⁸	1,505,614 anys

Seguretat en xarxes ICE-UPC

John the Ripper

Como va dir Jack l'esbudellador anem per parts:

És una aplicació de criptografia que aplica tècniques de cerca fer força bruta per desxifrar contrasenyes.

Té capacitat per a trencar diferents algorismes de xifrat com DES, SHA-1 i altres.

Eina de Password Cracking però també eina d'administrador (permet comprovar que les contrasenyes dels usuaris són suficientment bones).

És capaç de detectar automàticament el tipus de xifrat i a més es pot personalitzar.

L'eina està relacionada amb el projecte OpenWall. John The Ripper a la wiki del curs

John The Ripper

- Són bones les nostres contrasenyes d'usuari de sistema?
- Instal·lar john the ripper i comprovar...

\$ sudo apt-get install john

Podem fer proves amb

```
#Afegir usuaris amb contrasenyes fàcils
$ sudo adduser pep
$ mkdir john
$ cd john
$ sudo unshadow /etc/passwd /etc/shadow >
contrasenyes
$ john --single contrasenyes
$ john -wordfile:catala-wordlist.txt contrasenyes
```

- Segons la teoria, quines combinacions podríem provar amb el temps que disposem?
- Consulteu la wiki del curs per veure més exemples.
- Hi ha altres crackers com Cain i Abel per a Windows.

Vulnerabilitats relacionades amb contrasenyes

No només hi ha contrasenyes a /etc/shadow

- També hi ha contrasenyes d'altres aplicacions (bases de dades, aplicacions web, fitxers de configuració...)
- Hi ha moltes formes d'explotar aquestes vulnerabilitats
 - · Utilitzar Google per detectar màquines

"phpMyAdmin" "running on" inurl:"main.php"

- Usuaris de sistema sense permisos de root però amb accés a fitxers.
- · Màquines amb administradors compartits
- · Contrasenyes escrites en fitxers
- · Conèixer les aplicacions a atacar
- Contrasenyes a la wikipedia

\$ locate htaccess

\$ locate passwd

\$ locate htpasswd

\$ locate secret

\$ locate password

\$ locate contrasenya

\$ locate contraseña

Rootkit

Un rootkit és una aplicació o conjunt d'aplicacions que tenen com a finalitat obtenir el control d'un sistema remot de forma secreta.

- L'origen del nom està en un conjunt d'eines de Unix precompilades (ps, netstat, passwd, cd...) que fan les mateixes tasques que les comandes originals però que a més permeten a un intrús mantenir un accés de root sense que l'administrador real del sistema sàpiga de la seva existència.
- Actualment hi ha rootkits per a tots els sistemes operatius.
- Els rootkits són considerats troians.
 - Rootkits de kernel: s'integren al kernel modificant el kernel amb un driver o mòdul fals. La seva detecció és més complexa.
 - · Rootkits a nivell d'aplicació: reemplacen aplicacions executables originals per versions modificades.

SOME RIGHTS RESERVED

Seguretat en xarxes

Rootkit

- Els rootkits eviten deixar cap rastre esborrant inicis de sessió (logins), processos, arxius i/o registres (logs).
- Alguns inclouen eines per interceptar dades de terminals, connexions de xarxa (sniffers) o fins i tot interceptar el teclat (keylogger).
- Solen incloure una porta del darrera (backdoor) que ajuden als intrusos a accedir al sistema.
- Sovint els rootkits s'utilitzen per utilitzar la màquina víctima com a base d'operacions per llançar atacs (com DoS o SPAM) a altres màquines.
- Rootkits a la wiki del curs

Rootkit

Rootkits coneguts

- FU Rootkit
- SuckIT
- Adore
- T0rn
- Hacker Defender
- Ambient's Rootkit (ARK)
- First 4 Internet XCP (Extended Copy Protection) DRM

Detecció de rootkits

- Són complicats de detectar. Executar un detector des del sistema infectat no és una tasca fiable.
- Sovint l'únic sistema fiable és accedir al sistema operatiu infectat des d'un LIVE-CD. Un rootkit inactiu no pot ocultar la seva presència.
- La detecció i eliminació de rootkits és una batalla permanent entre els creadors de rootkits i els programes de seguretat.

Detectors de rootkits

- · chkrootkit (UNIX/Linux) i rkhunter (UNIX/Linux)
- · Windows Blacklight (gratuito para uso personal)
- www.antirootkit.com (Windows/UNIX/Linux)
- RootkitRevealer (Windows)
- · Altres aplicacions shareware...

Chkrootkit i Rkhunter

Instal·lació:

\$ sudo apt-get install rkhunter
\$ sudo apt-get install chkrootkik

Execució:

\$ sudo rkhunter -c

\$ sudo chkrootkit

- El fet de passar un detector amb èxit no implica que no tinguem cap rootkit.
- La forma ideal de passar el rootkit és sobre un sistema no actiu (P. ex. accedint des d'un live CD).

Sony CD Rootkits

- Només ens ataquen els hackers?
- Sony CDs rootkit?
 - Durant el 2005 Sony BMG va vendre un sèrie de Cds amb un "rootkit" incorporat.
 - Els CDs instal·laven automàticament un sistema anticòpia en les màquines Windows.
 - Van ser obligats a retirar-ho i a publicar un pegat a la seva pàgina web.
 - Llista de CDs amb el rootkid cd Sony
 - Més informació

IDS

Intrusion Detection Systems

- La idea general de tots els IDS és la mateixa:
 - · Crear una base de dades de tots els fitxers del sistema, guardar-la en un lloc segur i periòdicament comprovar que no s'ha canviat cap fitxer sense el nostre coneixement.
- El problema és mantenir aquests sistemes (quina fitxer controlar i quins no, actualitzacions, etc.)
- Hi ha altres sistemes basats en l'anàlisi del tràfic de xarxa (SNORT)
- Utilitzen les funcions criptogràfiques de HASH
 - Funció criptogràfica de HASH

Funció criptogràfica HASH

A criptografia, una funció de hash és una transformació que converteix una entrada qualsevol en un conjunt de caràcters (String) de longitud fixa anomenat valor de hash.

Propietats

- El valor de hash és un representació única de l'entrada original.
 Petjada Digital (Digital Fingerprint)
- També anomenades funcions digest
- Les més conegudes són MD5 i SHA-1 (al 2005 es van identificar debilitats a totes dues)

Utilitats

- Comprovació de la integritat
- Identificació digital

Seguretat en xarxes ICE-UPC

Funció criptogràfica HASH

md5sum

Permet calcular el hash d'un fitxer

\$ dpkg -S md5sum | grep bin

. . . .

coreutils: /usr/bin/md5sum

\$ sudo apt-get install coreutils

\$ touch prova.iso

\$ md5sum prova.iso

d41d8cd98f00b204e9800998ecf8427e prova.iso

 Utilitzat per comprovar la integritat i la validesa d'un fitxer descarregat d'Internet.

debsums

- Permet comprovar quins paquets debian han sofert canvis des de la seva instal·lació
 - Instal·lació: \$ sudo apt-get install debsums
 - Comprovació:

\$ sudo debsums -ce bind9 /etc/bind/named.conf.options /etc/bind/named.conf.local

 Podem saber quins paquets no tenen debsums amb:

```
$ sudo debsums -l
$ sudo -i
# cd /var/cache/apt/archives
# apt-get --download-only --reinstall install `debsums -l`
# debsums --generate=keep,nocheck *.deb
```

 Altres utilitats (saber quins fitxers de configuració hem modificat, recuperació d'un sistema de dades corrupte, etc...)

Seguretat en xarxes

Tripwire

Intrusion Detection System

- Crea una base de dades dels fitxers del nostre sistema
- Crear la base de dades:

\$ sudo tripwire -m i

Comprovar sistema

\$ sudo tripwire -m c

Fitxer de configuració

/etc/tripwire/twpol.txt

 Hi ha altres IDS com AIDE o Integrit o samhain

Seguretat en xarxes

Reconeixement 3.0 Unported

Sou lliure de:

copiar, distribuir i comunicar públicament l'obra

fer-ne obres derivades

Amb les condicions següents:

Reconeixement. Heu de reconèixer els crèdits de l'obra de la manera especificada per l'autor o el llicenciador (però no d'una manera que suggereixi que us donen suport o rebeu suport per l'ús que feu l'obra).

- Quan reutilitzeu o distribuïu l'obra, heu de deixar ben clar els termes de la llicència de l'obra.
- Alguna d'aquestes condicions pot no aplicar-se si obteniu el permís del titular dels drets d'autor.
- No hi ha res en aquesta llicència que menyscabi o restringeixi els drets morals de l'autor.

Advertiment 🗖

Els drets derivats d'usos legítims o altres limitacions reconegudes per llei no queden afectats per l'anterior Això és un resum fàcilment llegible del text legal (la llicència completa).

http://creativecommons.org/licenses/by/3.0/deed.ca

Seguretat en Xarxes ICE-UPC

