×

Back to Week 2

6/7 points earned (85%)

Quiz passed!

1/1 points

1.

Introduction and Learning Outcomes

The goal of this assignment is to practice with big-O notation.

Recall that we write f(n)=O(g(n)) to express the fact that f(n) grows no faster than g(n): there exist constants N and c>0 so that for all $n\geq N$, $f(n)\leq c\cdot g(n)$.

Is it true that $\log_2 n = O(n^2)$?

Yes

Correct Response

A logarithmic function grows slower than a polynomial function.

No

1/1 points

2.

 $n\log_2 n = O(n)$

Yes

No

Correct Response

To compare these two functions, one first cancels n. What is left is $\log_2 n$ versus 1. Clearly, $\log_2 n$ grows faster than 1.

1/1 points

3

$$n^2 = O(n^3)$$

Yes

Correct Response

 n^a grows slower than n^b for constants a < b.

0

No

1/1 points

1

$$n = O(\sqrt{n})$$

0

Yes

No

Correct Response

 $\sqrt{n}=n^{1/2}$ grows slower than $n=n^1$ as 1/2<1.

1/1 points

5. $5^{\log_2 n} = O(n^2)$

Yes

Correct Response

Recall that $a^{\log_b c} = c^{\log_b a}$ so $5^{\log_2 n} = n^{\log_2 5}$. This grows faster than n^2 since $\log_2 5 = 2.321\ldots > 2$.

0/1 points

$$n^5 = O(2^{3\log_2 n})$$

Yes

Incorrect Response

Hint: $2^{3\log_2 n} = (2^{\log_2 n})^3 = n^3$

No

points

$$2^n=O(2^{n+1})$$

Yes

Correct Response

 $2^{n+1}=2\cdot 2^n$, that is, 2^n and 2^{n+1} have the same growth rate and hence $2^n=\Theta(2^{n+1}).$

No

