Visão Geral Sobre Sistemas de Banco de Dados

André Luis Schwerz andreluis@utfpr.edu.br

Universidade Tecnológica Federal do Paraná

Banco de Dados 1 2017/1

Agenda

- Sistemas de Gerenciamento de Banco de Dados
 - Visão Geral
 - Perspectiva Histórica
 - Arquivos de Sistemas x SGBDs
- Descrever e Armazenar Dados em um SGBD
 - Modelo Relacional
 - Níveis de Abstração
 - Independência de Dados
- SGBD Relacional
 - Elementos Básicos
- 4 Conclusão

Objetivos

Entender:

- O que é um SGBD relacional;
- Quando e as vantagens de usar um SGBD;
- O armazenamento, a recuperação e a manipulação de dados em um SGBD;
- O suporte ao acesso concorrente e à recuperação de falhas;
- O que compõe um SGBD;
- O papel de quem está envolvido com BD na vida real.

Agenda

- Sistemas de Gerenciamento de Banco de Dados
 - Visão Geral
 - Perspectiva Histórica
 - Arquivos de Sistemas x SGBDs
- 2 Descrever e Armazenar Dados em um SGBD
- 3 SGBD Relacional
- 4 Conclusão

Visão Geral sobre Sistemas de Banco de Dados

- Sistemas de Gerenciamentos de Dados
 - Microcosmo da Ciência de Computação
 - LP, OO, SO, SD, IA, Algoritmos, Estruturas de Dados, Compiladores, Programação Concorrente, Estatística, ...
- Banco de Dados
 - Coleção de dados que descreve atividades de organização(ões)
 - Entidades (alunos, professores, disciplinas e turmas)
 - Relacionamentos (alunos se matriculam em turmas, professores ensinam disciplinas)
- Sistema de Gerenciamento de Banco de Dados (SGBD)
 - SW para auxiliar manutenção de grandes conjuntos de dados

Perspectiva Histórica

- Depósito de Dados Integrado
 - $1^{\underline{o}}$ SGBD de propósito geral
 - Charles Bachman (General Eletric)
 - Década de 60
 - Prêmio Turing 1973 ¹
 - Modelo de dados de rede
 - Padronizado pela CODASYL
 - Conference on Data Systems Languages
- Information Management System (IMS)
 - Implementado pela IBM no final de 1960
 - Ainda usado até hoje (SABRE, Travelocity)
 - Modelos de dados hierárquico

¹http://amturing.acm.org/award_winners/bachman_9385610.cfm

Perspectiva Histórica

- Modelo de dados relacional
 - Proposto por Edgar Codd, da IBM, em 1970
 - Prêmio Turing 1981 ¹
 - Inicialmente preterido pela IBM em detrimento do IMS
 - Subprojeto do System R
 - Explorado por Larry Ellison (Oracle)
 - Influenciou o desenvolvimento de SGBDs
 - Consolidou a área de BD
 - Tornou-se o modelo dominante na década de 1980
- System R
 - SQL nasceu do projeto System R, da IBM, em 1980
 - Padronizada no final da década de 1980
 - Atualmente o padrão é o ANSI SQL:1999

¹http://amturing.acm.org/bib/codd_1000892.cfm

Perspectiva Histórica

- Sistema de Gerenciamento de Transações
 - James "Jim" Gray
 - Premio Turing 1998 ¹
- Na década de 1990 houve avanços em diversas áreas
 - Linguagens mais poderosas de consulta
 - Modelos de dados mais ricos
 - Novos tipos de dados
 - Adequação aos sistemas baseados na Internet
 - Multimídia, vídeo interativo, fluxos de dados, genoma humano, mineração de dados

¹http://amturing.acm.org/award_winners/gray_3649936.cfm

Arquivos de Sistemas x SGBDs

Problemas no gerenciamento de dados em arquivos

- Falta de memória principal
- Endereçamento de memória de paginação para dados armazenados externamente à memória principal
- Programas especiais para as consultas
- Gerenciamento de concorrência e inconsistências
- Recuperação de falhas
- Segurança dos dados

Arquivos de Sistemas x SGBDs

Vantagens do uso de SGBDs

- Independência de dados
- Acesso eficiente aos dados
- Integridade e segurança de dados
- Administração de dados
- Acesso concorrente e recuperação de falhas
- Tempo reduzido de desenvolvimento de aplicativos

Arquivos de Sistemas x SGBDs

Razões para não utilizar um SGBD

- Aplicativos com restrições rígidas de tempo real
- Aplicativos com operações críticas de código personalizado eficiente
- Aplicativos que manipulam dados n\u00e3o suportados pela linguagem de consulta

Agenda

- Sistemas de Gerenciamento de Banco de Dados
- Descrever e Armazenar Dados em um SGBD
 - Modelo Relacional
 - Níveis de Abstração
 - Independência de Dados
- SGBD Relaciona
- 4 Conclusão

Modelo de dados

Construtores/conceitos que descrevem os dados em alto nível

Modelo de dados semântico

- Alto nível e abstrato
- Descrição inicial dos dados
- Não suportado diretamente pelos SGBDs
- Modelo E-R

Modelo de dados relacional

 Próximo ao SGBD e mais distante do que a forma de pensar do usuário/projetista/desenvolvedor

Modelo Relacional

- Relação
 - É o principal construtor/conceito do modelo relacional
- Esquema de Relação
 - Descreve os dados
 - No modelo relacional, um esquema:
 - Especifica o nome da relação
 - Especifica o nome de cada campo (ou atributo ou coluna)
 - Especifica o tipo de cada campo

Modelo Relacional

- Esquema da Relação:
 - ALUNO (id_aluno: string, nome: string, login: string, idade: integer, média: real)
- Instância da Relação:

ID_ALUNO	NOME	LOGIN	IDADE	MÉDIA
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@ee	18	3.2
53650	Smith	smith@math	19	3.8
53831	Madayan	madayan@music	11	1.8
53832	Guldu	guldu@music	12	2.0

Modelo Relacional

- Expressividade dos construtores disponíveis em um modelo de dados
 - Apenas pela relação não é possível perceber a necessidade da unicidade do campo com o id único
 - No modelo relacional isso é uma restrição de integridade
 - Mais especificamente, uma restrição de integridade de chave
 - No entanto, não é possível perceber essa restrição no esquema da relação!
 - Por exemplo:
 - ALUNO (id_aluno: string, nome: string, login: string, ...)
 - ALUNO (id_aluno: string, nome: string, login: string, ...)

Níveis de Abstração

Níveis de Abstração

- **Esquema lógico** (também chamado de conceitual, mas não confundir):
 - Descreve os dados em termos do modelo de dados do SGBD
 - Relações descrevem entidades e relacionamentos
 - Coleção de entidades e coleção de relacionamentos
 - Por exemplo: alunos, curso, matricula
- Projeto Conceitual de bancos de dados
 - Não trivialidade na escolha de campos de cada relação

Níveis de Abstração

• Esquema Externo:

- Vários esquemas adaptados a grupos de usuários
- 1 Esquema lógico = uma ou várias visões e relações do esquema lógico
- Orientado aos requisitos do usuário final
- Não armazenados, mas processados quando necessário

Níveis de Abstração

- Esquema físico:
 - Especifica detalhes adicionais de armazenamento
 - Discos e fitas
 - Deve-se decidir sobre a organização de arquivos e os índices
- Projeto físico de banco de dados

Independência de Dados

- Programas são isolados das alterações e do modo como o dado é estruturado e armazenado
 - Por meio dos três níveis de abstração de dados
- Independência lógica de dados
 - Por exemplo:
 - Professor-Particular e Professor-Público pode ser visualizados como uma relação Professor
- Independência física de dados
 - Oculta detalhes sobre a estrutura do arquivo e seus índices

Agenda

- Sistemas de Gerenciamento de Banco de Dados
- 2 Descrever e Armazenar Dados em um SGBD
- SGBD Relacional
 - Elementos Básicos
- 4 Conclusão

Consultas em um SGBD

- O que são consultas?
- Linguagem de consulta
 - Cálculo relacional
 - Lógica matemática
 - Álgebra relacional
 - Operadores de manipulação de relações
 - DML (linguagem de manipulação de dados)
 - DSL (linguagem de consulta de dados)

Gerenciamento de Transações

- Transação
 - Unidade básica de alteração de instâncias de relações em um SGBD
 - Atomicidade, Consistência, Isolamento e Durabilidade
- Conflitos na consulta e alteração de registros
 - Protocolo de bloqueio
 - Regras seguidas pelas transações
 - Bloqueio
 - Controla acesso ao BD
 - Bloqueio compartilhado
 - Bloqueio exclusivo
- Falhas no sistema
 - Consistência de dados e do BD
 - Log
 - WAL (Write-Ahead Log)(Gravação antecipada no log)
 - Checkpoint (Ponto de verificação)

Estrutura de um SGBD Relacional

Pessoal que Trabalha com BD

- Desenvolvedores de BD
 - Constroem os SGBDs
- Usuários finais
 - Usam aplicativos ou SQL
- Programadores de aplicativos de BD
 - Utilizam o esquema externo
- DBA (Database Administrator)
 - Projeto dos esquemas conceitual e físico
 - Segurança e autorização
 - Disponibilidade de dados e recuperação de falhas
 - Evolução de BD

Agenda

- 1 Sistemas de Gerenciamento de Banco de Dados
- 2 Descrever e Armazenar Dados em um SGBD
- SGBD Relacional
- 4 Conclusão

Considerações Finais

O que aprendemos?

Considerações Finais

- O que é um SGBD relacional?
- Quando e as vantagens de usar um SGBD?
- Como é feito:
 - O armazenamento de dados em um SGBD relacional?
 - A recuperação de dados em um SGBD relacional?
 - A manipulação de dados em um SGBD relacional?
- Qual o suporte ao acesso concorrente e à recuperação de falhas?
- Qual a estrutura de um SGBD relacional?
- Quem está envolvido com BD na vida real?

Atividades Extra-classe

- RAMAKRISHNAN, Raghu; GEHRKE, Johannes. Sistemas de gerenciamento de banco de dados. 3. ed. São Paulo, SP: McGraw-Hill do Brasil, 2008. 884 p. ISBN 9788577260270.
- Leitura do Capítulo 1 Visão Geral sobre Sistemas de Banco de Dados
- Exercícios 1.1 a 1.9.