Examen final

Vendredi 25 janvier 2013 - 2h

Documents manuscrits et polycopié du cours autorisés. Tout autre document interdit.

Exercice 1

Soient A une application linéaire de \mathbb{R}^n dans \mathbb{R}^n , b un vecteur de \mathbb{R}^n , $c \in \mathbb{R}$. Le produit scalaire dans \mathbb{R}^n est noté \langle , \rangle . Calculer la différentielle en 0 de l'application F de \mathbb{R}^n dans \mathbb{R} définie par

$$F(x) = \exp\left[\frac{1}{2}\langle Ax, x \rangle + \langle b, x \rangle + c\right].$$

Exercice 2

Pour $n \in \mathbb{N}$ et $x \in]0,1]$ on pose

$$f_n(x) = \exp(-n\sin^2(\frac{1}{x})).$$

Montrer que $f_n \in L^1([0,1])$ et étudier la limite de la suite :

$$I_n = \int_0^1 f_n(x) \, dx \, .$$

quand $n \to \infty$.

Exercice 3

L'objectif de cet exercice est de résoudre, pour $g \in L^1(\mathbb{R})$ donnée, l'équation

(E)
$$f(x) - \frac{1}{2} \int_{x}^{x+1} f(s)ds = g(x)$$

- 1. Soit χ la fonction caractéristique de [-1,0] et K l'application qui à une fonction h associe $\chi * h$.
 - (a) Montrer que pour $h \in L^1(\mathbb{R})$, $||Kh||_{L^1} \le ||h||_{L^1}$.
 - (b) En déduire que la série $\sum_{n=0}^{+\infty} 2^{-n} K^n h$ converge dans $L^1(\mathbb{R})$.
- 2. Exprimer l'équation (E) au moyen de l'opérateur K.
- 3. Donner une solution de (E) dans $L^1(\mathbb{R})$. Que peut-on dire de l'unicité de la solution de (E)?

Exercice 4

Calculez les intégrales suivantes en vous aidant des transformées de Fourier usuelles $(a > 0, w \in \mathbb{R})$:

$$I = \int_0^{+\infty} e^{-ax} \cos(\omega x) \ dx$$

$$J = \int_0^{+\infty} e^{-ax} \sin(\omega x) \ dx$$
$$K = \int_{-1}^1 (1 - |x|) \cos(\omega x) \ dx$$

Indications:

- Pour calculer I et J, commencer par calculer I iJ.
- Pour calculer K, commencer par calculer la transformée de Fourier de la fonction "triangle" (fonction qui vaut 1-|x| sur [-1,1] et 0 sinon).