G&C 30448.97-U\$-D1

Table of Evidence Supporting Enablement U.S. Patent Application Number 09/392,862

Data Source	<u>Delivery</u> Method	<u>Delivery</u> Vehicle	Fragment ¹	<u>Model</u> System	Result
Declaration of Dr. Gruenert (Item 6, p. 3-4)	In Vivo (nasal administration)	Lipofect- amine	786 bp containing wild type exon 10 of mCFTR	Animal model of cystic fibrosis: ΔF508	Successful in vivo gene therapy: functional correction of ion transport to normal ranges in immune competent mice
Prokopishyn et al., manuscript, "Targeted Genome Editing", Exhibit A of 9/26/03	Ex Vivo (human umbilical cord blood stem/progenitor cells engrafted into mice)	Micro- injection	559 bp containing exons 1&2 of β ^s -globin gene	Sickle cell anemia: wild type β^-globin replaced w/ β ^S -globin mutation	Successful replacement and engrafirment of corrected stem cells into immune deficient mice; replacement at both alleles; sufficient levels of gene conversion to support therapeutic benefit
Goncz et al. manuscript, "Modification of Genomic", Exhibit B of 9/26/03	In Vitro	Micro- injection	559 bp containing exons 1&2 of β ^S -globin mutation	Sickle cell anemia: wild type β ^A -globin replaced w/ β ^S -globin mutation	Successful & stable in vitro replacement of genomic DNA and successful mRNA expression
Goncz et al. 2001, <i>Gene</i> <i>Therapy</i> 8:961- 965, Exhibit C of 12/3/01	In Vivo (into lungs via intratracheal administration)	1. AVE 2. Lipofect- amine 3. DDAB	783 bp containing exon 10 of mCFTR w/ ΔF508	Animal model of cystic fibrosis: \$\Delta F508\$	Successful in vivo fragment replacement and stable expression of altered DNA & mRNA
Kunzelmann et al. 1996, Gene Therapy 3:859- 867, Exhibit D of 12/3/01	In Vitro (into cystic fibrosis epithelial cells)	Lipo- somes Poly- amido- amine dendrimers	491 bp containing wild type exon 10 of CFTR	Cystic fibrosis: ΔF508	Successful replacement & correction of defect confirmed in genomic DNA and in mRNA; functional correction of ion transport confirmed by patch clamp
Goncz et al. 1998, Human Molecular Genetics 7:1913-1919, Exhibit E of 12/3/01	In Vitro (into primary human airway epithelial cells)	1. Lipo- somes 2. Poly- amido- amine dendrimers	488 nt containing exon 10 of CFTR w/ ΔF508	Cystic fibrosis: ΔF508	Successful fragment replacement & correction of defect confirmed in genomic DNA and in mRNA
Kapsa et al. 2001, Human Gene Therapy 12:629-642, Exhibit F of 12/3/01	In Vivo (intramuscular injection) and In Vitro (applied to cultured cells)	Lipofect- amine Lipo- fectin	603 bp containing exon 23 of dys gene	Animal model of Duchenne muscular dystrophy: mdx	Successful in vivo and in vitro replacement and correction of mdx dystrophin mutation in immune competent mice; shown to last up to 28 d in culture and at least 3 wks in vivo.
Goncz et al. 2001, abstract, Technologies for in situ Repair Exhibit G of 12/3/01	In Vitro	Lipid-DNA complexes Micro- injection	Fragments containing β ^S -globin mutation	Sickle cell anemia: wild type β ^A -globin replaced w/ β ^S -globin mutation	Successful in vitro replacement at β-globin locus in hematopoietic cells; Replacement does not require transcription; Stable replacement lasts at least 5 wks

¹ Each fragment includes intronic sequence flanking the Indicated exon(s).