PSALTer results panel

$$S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{3} t_{\frac{1}{2}} (3 \ \mathcal{A}^{\alpha_{i}}_{\alpha} \ \mathcal{A}^{\theta}_{i} - 6 \ \mathcal{A}^{\theta}_{\alpha} \ \partial_{i} f^{\alpha_{i}} + 6 \ \mathcal{A}^{\theta}_{i} \ \partial_{i} f^{\alpha_{i}}_{\alpha} - 3 \partial_{i} f^{\theta}_{\alpha} \partial_{i} f^{\alpha_{i}}_{\alpha} - 3 \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}}_{\alpha} + 6 \partial_{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\beta}_{i} + 2 \mathcal{A}_{i\theta\alpha} \partial_{\theta} f^{\alpha_{i}} - 2 \partial_{\alpha} f_{\theta_{i}} \partial_{\theta} f^{\alpha_{i}} + \partial_{i} f_{\alpha\theta} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f_{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + \partial_{\theta} f_{\alpha} \partial_{\theta} f^{\alpha_{i}} + 2 \partial_{\theta} f^{\alpha_{i}} \partial_$$

⁰ . <i>A</i> " †	i 1	1 γ2 κι. 1	0	0											
^{0,+} <i>f</i> [∥] †	$-i\sqrt{2} kt$	$\frac{1}{1}$ -2 $k^2 t$.	0	0											
0. ⁺ f [⊥] †	0	0	0	0											
^{0.} ℋ [∥] †	0	0	0	0	$^{1^{+}}\mathcal{H}^{\parallel}{}_{lphaeta}$	$\overset{1^+}{\cdot} \mathscr{F}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$1.^+f^{\parallel}_{\alpha\beta}$	${}^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}^{\perp}{}_{\alpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$\frac{1}{2}f^{\perp}_{\alpha}$				
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 r_{.5} + \frac{t_{.1}}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt.}{3\sqrt{2}}$	0	0	0	0				
				$^{1\overset{+}{.}}\mathcal{H}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	$-\frac{t_1}{3\sqrt{2}}$	$\frac{t}{3}$	$\frac{i kt}{3}$	0	0	0	0				
				$\overset{1}{\cdot}^{\dagger}f^{\parallel} \stackrel{\alpha\beta}{\dagger}$	$\frac{i kt.}{3 \sqrt{2}}$	$-\frac{1}{3} ikt.$	$\frac{k^2 t_1}{3}$	0	0	0	0				
				$^{1}\mathcal{H}^{\parallel}$ † lpha	0	0		$k^2 r_{.5} - \frac{t_{.1}}{2}$		0	īkt. 1				
				¹. 'A' †α	0	0	0	$\frac{\frac{t}{1}}{\sqrt{2}}$	0	0	0				
				$f^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0				
				$^{1}f^{\perp}\dagger^{\alpha}$	0	0	0	-īkt. 1	0	0	0	$^{2^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$			0	
											$2.^{+}f^{\parallel}$ † $^{\alpha\beta}$	$\frac{i k t}{\sqrt{2}}$	$k^2 t$.	0	
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$		0	$\frac{t}{\frac{1}{2}}$	
Satu	Saturated propagator														

$0^+\sigma^{\parallel}$ $0^+\tau^{\parallel}$ $0^+\tau^{\perp}$

0. σ∥†	$(1+2k^2)^2t$.	$(1+2k^2)^2 t$.	0	0										
^{0,+} τ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$-\frac{2 k^2}{(1+2 k^2)^2 t}$	0	0										
0.+ τ +	0	0	0	0										
⁰⁻ σ [∥] †	0	0	0	0	$\overset{1,^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$	$^{1.^{+}}\sigma^{\perp}{}_{lphaeta}$	$1^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{\alpha}$	$^{1}\sigma^{\!\scriptscriptstyle\perp}{}_{lpha}$	$1.\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$^{1^+}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2 r_{.5}}$	$\frac{1}{\sqrt{2} (k^2 r. + k^4 r.)}$	$\frac{i}{\sqrt{2} (kr_{.} + k^{3}r_{.})}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ †	$\frac{1}{\sqrt{2} (k^2 r. + k^4 r.)}$	$\frac{6 k^2 r.+t.}{\frac{5}{2} (k+k^3)^2 r.t.}_{\frac{5}{5} \frac{1}{1}}$	$\frac{i(6k^2r.+t.)}{2k(1+k^2)^2r.t.}$			0	0			
				$1.^+ \tau^{\parallel} + ^{\alpha\beta}$	$-\frac{i}{\sqrt{2} (kr. + k^3 r.)}$	$-\frac{i(6k^2r.+t.)}{2k(1+k^2)^2r.t.\atop 51}$	$\frac{6 k^2 r. + t.}{2 (1+k^2)^2 r. t.}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t.+2k^2t.}$			
				$\frac{1}{2}\sigma^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{-2 k^2 r + t}{(t_1 + 2 k^2 t)^2}$	0	$-\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$			
				$1^{-}\tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{1}\tau^{\perp} \uparrow^{\alpha}$	0	0	0	$-\frac{2ik}{t+2k^2t}$	$\frac{i \sqrt{2} k (2 k^2 rt.)}{(t.+2 k^2 t.)^2}$	0	$\frac{-4 k^4 r_1 + 2 k^2 t_1}{\left(t_1 + 2 k^2 t_1\right)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
				•							$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}$		
											2^+ τ^{\parallel} $\dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0
											$2^{-}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	2 t.

Source constraints

Spin-parity form	Covariant form	Multiplicities			
<u>0</u> · σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1			
0+ r [_] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$-2 \bar{i} k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1			
$2ik \cdot 1 \cdot \sigma^{\perp \alpha} + 1 \cdot \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
1- _τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau (\Delta + \mathcal{K})^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau (\Delta + \mathcal{K})^{\beta\alpha}$	3			
$i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$	3			
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$				
$-2 i k^{2} + \sigma^{\parallel \alpha \beta} + 2 + \tau^{\parallel \alpha \beta} = 0 $ $-i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha$					
	$3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+$				
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} +$				
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}{}^{\epsilon}) == 0$				
Total expected gauge generators:					

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	$\left \frac{9}{r_{5}} + \frac{2p^{2}}{t_{1}} + \frac{2r_{5}p^{4}}{t_{1}^{2}} > 0 \right $
Polarisations:	2

Unitarity conditions

r. > 0 && (t. < 0 || t. > 0)