| Please check the examination details belo | w before entering your candidate information |
|-------------------------------------------|----------------------------------------------|
| Candidate surname                         | Other names                                  |
| Pearson Edexcel Intern                    |                                              |
| Friday 26 May 2023                        |                                              |
| Afternoon (Time: 2 hours)                 | Paper reference 4PM1/01                      |
| Further Pure Math PAPER 1                 | nematics                                     |
| Calculators may be used.                  | Total Marks                                  |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- You must NOT write anything on the formulae page.
   Anything you write on the formulae page will gain NO credit.

#### Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

## **Advice**

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶





## **International GCSE in Further Pure Mathematics Formulae sheet**

#### Mensuration

**Surface area of sphere** =  $4\pi r^2$ 

**Curved surface area of cone** =  $\pi r \times \text{slant height}$ 

**Volume of sphere** = 
$$\frac{4}{3}\pi r^3$$

#### **Series**

### **Arithmetic series**

Sum to *n* terms, 
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

### Geometric series

Sum to *n* terms, 
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, 
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

### **Binomial series**

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for  $|x| < 1, n \in \mathbb{Q}$ 

#### Calculus

### **Quotient rule (differentiation)**

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

### **Trigonometry**

#### Cosine rule

In triangle ABC:  $a^2 = b^2 + c^2 - 2bc \cos A$ 

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

## Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$



# Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

(a) Show that  $\sum_{r=1}^{n} (3r+2) = \frac{n}{2} (3n+7)$ 

(3)

(b) Hence, or otherwise, evaluate  $\sum_{r=10}^{40} (3r+2)$ 

**(2)** 

| <br> | <br> | <br> | <br> |  |
|------|------|------|------|--|
| <br> | <br> | <br> | <br> |  |
| <br> | <br> | <br> | <br> |  |

(Total for Question 1 is 5 marks)

| 2 |           |                                                                               | $y = (\sin 2x)\sqrt{3 + 2x}$                                 |                         |     |
|---|-----------|-------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|-----|
|   | Show that | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin 2x + (A + Bx)c}{\sqrt{3 + 2x}}$ | $\frac{\cos 2x}{\text{where } A \text{ and } B \text{ are}}$ | e integers to be found. | (5) |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |
|   |           |                                                                               |                                                              |                         |     |



| Question 2 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 2 is 5 marks) |



(5)

3



Figure 1

Figure 1 shows part of the curve with equation  $y = \frac{x}{2} + \frac{4}{x^2}$  in the interval 0.8 < x < 7

By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the roots of the equation  $3x^3 - 12x^2 + 8 = 0$  in the interval 0.8 < x < 7

| P 7 | 2 8 6 | 4 A 0 | 7 3 2 |
|-----|-------|-------|-------|
| ' ' | 2 0 0 | 4 / 0 | 1 3 2 |

| 4    | A particle <i>P</i> is moving along the <i>x</i> -axis. At time <i>t</i> seconds, $t \ge 0$ , the velocity, $v \text{ m/s}$ , of <i>P</i> is given by $v = 2t^2 - 16t + 30$ |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | (a) Find the acceleration, in $m/s^2$ , of P when $t = 5$                                                                                                                   | (2) |
|      | $P$ comes to instantaneous rest at the points $M$ and $N$ at times $t_1$ seconds and $t_2$ seconds where $t_2 > t_1$                                                        |     |
|      | (b) Find the exact distance MN                                                                                                                                              | (8) |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
| •••• |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |
|      |                                                                                                                                                                             |     |

| Question 4 continued               |
|------------------------------------|
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
| (Total for Question 4 is 10 marks) |



5 A solid cuboid has width x cm, length 4x cm and height h cm.

The volume of the cuboid is 75 cm<sup>3</sup> and the surface area of the cuboid is S cm<sup>2</sup>

(a) Show that  $S = 8x^2 + \frac{375}{2x}$ 

(4)

Given that x can vary, using calculus,

- (b) (i) find to 3 significant figures, the value of x for which S is a minimum,
  - (ii) justify that this value of x gives a minimum value of S

(5)

(c) Find, to 3 significant figures, the minimum value of S

(2)

| <br> | <br> | <br> |
|------|------|------|
| <br> | <br> | <br> |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |

| Question 5 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 5 continued |                                  |
|----------------------|----------------------------------|
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
| (T)                  | otal for Question 5 is 11 marks) |



| <b>6</b> Solve the equation | n |
|-----------------------------|---|
|-----------------------------|---|

$$\log_2 x^3 + \log_4 x^2 - 3\log_x 2 = 0$$

| giving your | answers | to 3 | significant | figures |
|-------------|---------|------|-------------|---------|

| (8) |  |  |
|-----|--|--|
| (0) |  |  |
| (0) |  |  |
|     |  |  |
|     |  |  |

| (0) |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |



| Question 6 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| /T-4-1 f                          |
| (Total for Question 6 is 8 marks) |
|                                   |





When x is increased to  $(x + \delta x)$ , y increases to  $(y + \delta y)$  where  $\delta x$  and  $\delta y$  are small.

(a) Show that 
$$\delta y \approx \frac{e^{2x}(4x-7)}{(2x-3)^{\frac{3}{2}}} \delta x$$

(7)

Given that x = 2.5

(b) find an estimate, to 2 significant figures, of the value of  $\delta y$  when the value of x increases by 0.2%

(3)

| <br> |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| <br> |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| <br> |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

| <b>&gt;&gt;&gt; </b>      |                      |
|---------------------------|----------------------|
|                           | Question 7 continued |
|                           | Question / continued |
| A                         |                      |
| <b>E</b>                  |                      |
| S S                       |                      |
| 至                         |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
| DO NOT WRITE IN THIS AREA |                      |
| ō                         |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
| A A                       |                      |
| AR                        |                      |
| THIS AREA                 |                      |
|                           |                      |
|                           |                      |
| NOTWRITEIN                |                      |
|                           |                      |
| 5                         |                      |
| Ž                         |                      |
| 5                         |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
|                           |                      |
| ₹                         |                      |
| 5                         |                      |
| <u> </u>                  |                      |
| 乙                         |                      |
|                           |                      |
|                           |                      |
| <b>X</b>                  |                      |
|                           |                      |
| DO NOT WRITE IN THIS AREA |                      |
| 0                         |                      |
|                           |                      |
|                           |                      |
| <br> <br>                 |                      |
| XXX '                     |                      |



| Question 7 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 7 continued |                                |
|----------------------|--------------------------------|
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
|                      |                                |
| (Tatal               | for Question 7 is 10 marks)    |
| (Total               | ZOZ ZUCSHOII / IS IV IIIdI NS) |



| 8 | $f'(x) = 18x^2 - 2x + 13$                                                               |     |
|---|-----------------------------------------------------------------------------------------|-----|
|   | Given that $(2x-1)$ is a factor of $f(x)$                                               |     |
|   | show that the curve with equation $y = f(x)$ has only one intersection with the x-axis. | (9) |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |
|   |                                                                                         |     |

| Question 8 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 8 is 9 marks) |



**9** (a) Using the formulae on page 2, show that

$$(i) \cos^2 A = \frac{\cos 2A + 1}{2}$$

(ii) 
$$\sin^2 A = \frac{1 - \cos 2A}{2}$$

(4)

(b) Show that

$$(2\sin x - \cos x)(\sin x - 3\cos x) = \frac{1}{2}(\cos 2x - 7\sin 2x + 5)$$

(5)

$$y = (2\sin x - \cos x)(\sin x - 3\cos x)$$

(c) Solve, for  $0^{\circ} \leqslant x \leqslant 180^{\circ}$  the equation,  $\frac{dy}{dx} = 0$ 

Give your answers to the nearest whole number.

(4)

| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |

|   | $\Pi\Pi\Pi$ | ШП |   |   |     |     |     | ШП  |     |   |   | П |
|---|-------------|----|---|---|-----|-----|-----|-----|-----|---|---|---|
|   |             |    |   |   |     | Ш   |     |     |     |   | Ш | Ш |
|   |             |    |   |   |     |     |     |     |     |   |   |   |
| Ρ | 7           | 2  | 8 | 6 | 4 / | Α . | 0 : | 2 : | 3 : | 3 | 2 |   |

| Question 9 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 9 continued |                                    |
|----------------------|------------------------------------|
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      | (Total for Question 9 is 13 marks) |
|                      |                                    |



10 O, A and B are fixed points such that

$$\overrightarrow{OA} = (b+1)\mathbf{i} + b\mathbf{j}$$

$$AB = 3i$$

 $\overrightarrow{OA} = (b+1)\mathbf{i} + b\mathbf{j}$   $\overrightarrow{AB} = 3\mathbf{i}$ The unit vector parallel to  $\overrightarrow{OB}$  is  $\frac{\sqrt{17}}{34} [(3a+2)\mathbf{i} + b\mathbf{j}]$ 

Given that a and b are constants where a > 0 and b > 0

find the exact value of

- (i) a
- (ii) *b*

| - / | 1 | 1 / | "  |
|-----|---|-----|----|
| - ( | Ĺ | LV  | נע |

| • • • • |
|---------|

| Question 10 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |

| Question 10 continued |                                  |
|-----------------------|----------------------------------|
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
|                       |                                  |
| (To                   | tal for Question 10 is 10 marks) |
|                       |                                  |



11  $f(x) = 10 + 6x - x^2$ 

Given that f(x) can be written in the form  $A(x + B)^2 + C$  where A, B and C are constants,

(a) find the value of A, the value of B and the value of C

(4)

- (b) Hence, or otherwise, find
  - (i) the value of x for which f(x) has its greatest value
  - (ii) the greatest value of f(x)

(2)

The curve C has equation y = f(x)

The curve S with equation  $y = x^2 - x + 13$  intersects curve C at two points.

(c) Find the *x* coordinate of each of these two points.

(3)

(d) Use algebraic integration to find the exact area of the finite region bounded by the curve C and the curve S.

(5)

| <br> |  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| <br> |  |
| <br> |  |
| <br> |  |



DO NOT WRITE IN THIS AREA

| Question 11 continued |                                                                   |
|-----------------------|-------------------------------------------------------------------|
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       |                                                                   |
|                       | (Total for Question 11 is 14 marks)  TOTAL FOR PAPER IS 100 MARKS |