Total	No. o	of Questions : 8] SEAT No. :
PA-	148	8 [Total No. of Pages : 3
[5926]-107		
T.E. (Electronics & Telecommunication Engineering)		
DIGITAL SIGNAL PROCESSING		
(2019	9 Pattern) (Semester - I) (Eelective - I) (304185(A))
Time	: 21/2	Hours] [Max. Marks: 70
Instructions to the candidates:		
	<i>1</i>)	Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.
	<i>3</i>)	Figures to the right indicate full marks.
	<i>4</i>)	Assume suitable data if necessarv.
Q 1)	a)	Find the response of a linear filter with impulse response $h_{(n)} = \{1,2,4\}$
	6	to the input sequence $x_{(n)} = \{1,2\}$ using linear convolution computed
		through circular convolution. [8]
	b)	Find N = 5 point DFT for $x_{(n)} = \{1,0,1,0,1\}$? [8]
	c)	Explain the linear filtering using overlap save and overlap add methods?
Q2)	٥)	Find linear convolution using overlap add method of the following
Q^{2}	a)	sequence $x(n)$ and $h(n)$ [8]
		$x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$
		$h(n) = \{1,2,3\}$
	b)	Find the 8-point DFF of sequence [10]
	ĺ	$x(n) = \{1,2,3,4,4,3,2,1\}$ using DIT radix - 2 FFT algorithm.
		3 + 0.2
Q3)	a)	Convert the analog filter with system function $H_s(s) = \frac{(s + 0.2)^2 + 9}{(s + 0.2)^2 + 9}$ into
		a digital IIR filter by means of impulse invariant technique Assume
		T = 1 sec. [10]
	b)	Explain the concept of filter design Elaborate the advantages and
		disadvantages of digital filters? [8]
		OR
		<i>P.T.O.</i>
		X ,

Q4) a) The system transfer function of analog filter is given by, $H(s) = \frac{S + 0.1}{(S + 0.1)^2 + 16}, \text{ obtain the system transfer function of digital filter}$

using bilinear transformation method (BLT) which is resonant at $w_r = \frac{\pi}{2}$.

[10]

b) A digital filter has frequency specification as:

[8]

Passband frequency = $w_p = 0.2\pi$

Stoppand frequency = $w_s = 0.3\pi$

What are the corresponding specification for passband and stopband frequencies in analog domain if

- i) Impulse invariance technique is used for designing
- ii) Bilinear transformation is used for designing assume sampling time Ts = 1 sec.
- Q5) a) Elaborate on the ideal filter requirements in terms of causality and its implications? [8]
 - b) List out all the windowing techniques? Describe any three with its mathematical formulas characteristics and compare them. [9]

OR

Q6) a) Design linear phase FIR Low pass filter using Hanning Window technique for the frequency characteristics of the filter given by [9]

Hd (w) =
$$e^{-j3w}$$
 for $\frac{-\pi}{4} \le w \le \frac{\pi}{4}$
= 0 otherwise

b) Obtain the coefficients of FIR lowpass filter to meet the specification given below. Use kaiserwindow [8]

Panband edge frequency = 1.5 KHz.

Transsion width = 0.5 KHz.

Stopband alternation $\geq 50 dB$

Sampling frequency = 8 KHz.

- Q7) a) Speech signal is corrupted by low and high frequency noise. Explain indetail how DSP is used to remove noise with illustration.[8]
 - b) Explain how DSP is useful in interference cancellation in ECG. [9]
- Q8) a) Explain speech coding and compression technique. How signal processing techniques are used in this. [8]
 - b) Explain the application of DSP in vibration signature analysis for defective gear teeth. [9]

[5926]-107