

Insper Instituto de Ensino e Pesquisa Faculdade de Economia, Administração e Engenharia

Gabriela Almeida Raphael Moura Vitor Shoji

Relatório – Instrumentação e Medição Estação Meteorológica

> São Paulo -Julho 2015

Sumário

1 - LM35 (Sensor de Temperatura)	3
2 - DHT11 (Sensor de Umidade)	7
3 – BMP180 (Sensor de Pressão)	11
4 – LDR (Sensor de Luminosidade)	12
5 – Sistema Integrado (A estação meteorológica)	13

LM 35 (Sensor de Temperatura)

• Medições:

Para poder medir a temperatura usando o LM35, utilizamos o Analog Discovery. Para isso, conectamos o Analog no computador e

fizemos com que o aparelho gerasse 5V de tensão. Então conectamos o Analog ao LM35 e esse devolvia para o programa um valor de tensão em função de uma resistência variável que existe no sensor.

Para determinar um tempo necessario para que o LM35 ficasse estabilizado, fizemos alguns expertimentos antes, cronometrando o tempo, procurando determinar a curva de estabilização do sensor.

Depois de fixar esse tempo de estabilização, que foram de 4 minutos, coletamos 25 medições, dadas pelo analog, para cada temperatura que medimos.

• Dados Coletados e Calibração do Sensor:

4.90°C	44,43°C	14,93°C	25,1 °C	45,18 °C	35.13 °C	Temperatura
0.0444	0.4326	0.1428	0.2431	0.442	0.3426	Vontagem Recebida
0.0443	0.4327	0.1427	0.2434	0.442	0.3426	
0.0443	0.4325	0.1427	0.2433	0.442	0.3426	
0.0442	0.4327	0.1426	0.2433	0.4419	0.3425	
0.0442	0.4326	0.1428	0.2433	0.442	0.3426	
0.0441	0.4328	0.1428	0.2433	0.4421	0.3426	
0.0442	0.4328	0.1426	0.2434	0.4421	0.3426	
0.0441	0.4327	0.1428	0.2433	0.442	0.3425	
0.044	0.4327	0.1428	0.2434	0.442	0.3425	
0.0441	0.4327	0.1428	0.2432	0.442	0.3426	
0.044	0.4328	0.1428	0.2432	0.442	0.3426	
0.0441	0.4327	0.1428	0.2432	0.4418	0.3427	
0.0441	0.4328	0.1427	0.2432	0.4418	0.3425	
0.0442	0.4327	0.1427	0.2432	0.4416	0.3426	
0.0442	0.4328	0.1428	0.2432	0.4417	0.3427	
0.0441	0.4326	0.1427	0.2432	0.4417	0.3426	
0.0441	0.4327	0.1427	0.2432	0.4418	0.3426	
0.0441	0.4327	0.1427	0.2431	0.4418	0.3426	
0.0441	0.4327	0.1428	0.2432	0.4419	0.3425	
0.0441	0.4326	0.1427	0.2431	0.4419	0.3426	
0.044	0.4327	0.1427	0.2431	0.4418	0.3426	
0.044	0.4327	0.1427	0.2432	0.4419	0.3426	
0.044	0.4327	0.1427	0.2432	0.4417	0.3425	
0.0441	0.4327	0.1427	0.2431	0.4419	0.3425	
0.044	0.4327	0.1427	0.2431	0.4418	0.3425	

Tabela com os 25 medições de voltagem correspondendo as temperaturas

4.90°C	44,43°C	14,93 °C	25,1 °C	45,18 °C	35.13 °C	Temperatura
4.41240	0.43270	0.14273	0.24322	0.44188	0.34258	Media
0.0001	7E-05	6.2716E-05	9.5743E-05	0.00013329	6E-05	Desvio Padrão
2.104E-05	1E-05	1.2543E-05	1.9149E-05	2.6658E-05	1.1E-05	Sigma A
0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	Sigma Btrand
0.035	0.035	0.035	0.035	0.035	0.035	Sigma Bsensor
0.035	0.035	0.035	0.035	0.035	0.035	Sigma Btotal
2.104E-05	1.5E-05	1.2543E-05	1.9149E-05	2.6658E-05	1.1E-05	Sigma Total

Tabelas com os sigmas calculados

As tabelas a cima mostram as medições feitas e os sigmas (incertezas) associados a elas. As médias e os desvios padrões foram calculados segundo as seguintes fórmulas:

Média:
$$\overline{x} = \frac{1}{N} (x_1 + x_2 + x_3 ... + x_N) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Desvio-padrão:
$$\sigma_{N-1} = \sqrt{\frac{\left(x_1 - \overline{x}\right)^2 + \left(x_2 - \overline{x}\right)^2 + ... + \left(x_N - \overline{x}\right)^2}{N-1}} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(x_i - \overline{x}\right)^2}$$

Já a incerteza do tipo A foi calculada dividindo o desvio padrão pela raiz do número de medições que fizemos ($\frac{\sigma_{N-1}}{\sqrt{N}}$), ou seja, dividindo por

5. A incerteza Bsensor foi retirada do datasheet do LM35, e a do transdutor foi calculada a partir dos dados obtidos do LM35, dos quais calculamos a metade do valor decimal inteiro.

A incerteza Btotal foi calculada segundo esta equação: $\sqrt{\sigma_{Bsensor}^2 + \sigma_{Btransdutor}^2}$, enquanto o sigma total foi calculado a partir a desta: $\sqrt{\sigma_{Btotal}^2 + \sigma_A^2}$.

Para então poder construir a curva de calibração do LM35, devíamos usar tais sigmas no método dos mínimos quadrados, o qual visa calcular o "a" e o "b" da fórmula da curva. Para isso tivemos que seguir estas equações (nas quais os "xs" são a temperatura e os "ys" sao a media das temperaturas encontradas pelo LM35):

$$S_{\sigma} = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} \qquad S_{x^2} = \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}$$

$$S_{x} = \sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}$$

$$S_{y} = \sum_{i=1}^{n} \frac{y_{i}}{\sigma_{i}^{2}}$$

$$S_{xy} = \sum_{i=1}^{n} \frac{x_{i}y_{i}}{\sigma_{i}^{2}}$$

$$\Delta = (S_{\sigma}S_{x^2} - S_x^2) \qquad a = \frac{1}{\Delta}(S_{\sigma}S_{xy} - S_xS_y) \qquad b = \frac{1}{\Delta}(S_{x^2}S_y - S_xS_{xy})$$

$$f(x) = ax + b$$

X	у	sigma	sigma^2	1/sigma^2	x^2	y^2	ху	Sx	Sy	Sxy	Sx^2	temperatura
4.9	4.41000	0.035	0.001225	816.3265	24.01	19.44810	21.609	4000	3600	17640	19600	4,9°C
14.93	14.27	0.035	0.001225	816.3265	222.9049	203.6329	213.0511	12187.76	11648.98	173919.3	181963.1837	14,93°C
25.1	24.32	0.035	0.001225	816.3265	630.01	591.4624	610.432	20489.8	19853.06	498311.8	514293.8776	25,10°C
35.13	34.25	0.035	0.001225	816.3265	1234.117	1173.063	1203.203	28677.55	27959.18	982206.1	1007442.367	35,13°C
44.43	43.27	0.035	0.001225	816.3265	1974.025	1872.293	1922.486	36269.39	35322.45	1569376	1611448.898	44,43°C
Somas		4081.633	·		·	·		101624.5	98383.67	3241454	3334748.327	

Tabela usada para fazer as contas dos mínimos quadrados

DELTA	а	b
3283680733	0.984332	-0.4039

Tabela com o delta. "a" e "b" calculados

A partir desses números, foi feito um gráfico de temperatura em função da voltagem, com as barras de erro referentes à incerteza total.

DHT 11 (Sensor de Umidade)

Para que o DHT funcionasse, o conectamos a uma Protoboard com o positivo do sensor na entrada de 5V do Arduino, o pino de dados em uma entrada digital e o negativo no GND (ground).

Representação da ligação do DHT na protoboard

Com o circuito pronto, inserimos o DHT11 em um ambiente controlado por cerca de 2 horas com diferentes sais, alterando a umidade local medida.

Deveríamos conseguir umidades parecidas à tabela divulgada, para cada temperatura.

Sal	5°C	15°C	20°C	25°C
КОН	13	23.5	23	23
К(СНЗСООН)	24.8	58	56	52.8
Ca(NO3)2	61	58	56	52.8
NaCl	76	75.5	75.3	75.8
KCI	87.8	86	85.3	85

Mas não conseguimos. Os dados coletados a seguir irão mostrar que os dados ficaram muito longes do que deveria ser, não sabemos por qual motivos, provavelmente o DHT veio com algum problema.

pote	кон	KCI	NaCl	Ca(NO3)2	K(CH3COO)
%RH	34%	81%	63%	47%	42%
temperatura	22 graus	22 graus	23 graus	19 graus	19 graus

Para poder construir a curva de calibração, utilizamos o mesmo método dos mínimos quadrados que usamos para calibrar o LM35.

Para isso precisávamos dos sigmas, e para calcular sigmas precisávamos de mais de uma medição por temperatura. Por esse motivo tivemos que construir gráficos de umidade para cada sal, para poder coletar mais dois pontos e assim calcular os sigmas.

K(CH3COO)	umidade	temp	
	5		24,8
	15		23,5
	20		23
	25		23
	umid	porct	
21 graus	22,9504		
19 graus	23,0696		
17 graus	23,2592		

Ca(NO3)2	umidade	temp	
	5		61
	15		58
	20		56
	25	52	2,8
	umid	porct	
21 graus	55,1688		
19 graus	56,2472		
17 graus	57,1392		

KCI	umidade	temp
	5	87,8
	15	86
	20	85,3
	25	85
	umid	porct
24 graus	85	
22 graus	85,475	
20 graus	85,566	

Porcentag				
8	22.9504	55.1688	76.32	85
8.187391	23.0696	56.2472	75.8888	85.475
8.430495	23.2592	57.1392	75.636	85.566
koh	kch3	CaNO3	nacl	kcl
0.215248	0.1544	0.9852	-0.342	0.283

Porém, para fazermos tais cálculos tínhamos de excluir o KOH das contas. Isso aconteceu pois sua umidade era muito baixa, um valor o qual o DHT não alcança.

X	у	sigma	sigma^2	1/sigma^2	x^2	y^2	ху	Sx	Sy	Sxy	Sx^2	
8.18	34	0.2152	0.046311	21.59312	66.9124	1156	278.12	176.6317	734.1662	6005.479	1444.848	Koh
23.06	42	5.002383	25.02384	0.039962	531.7636	1764	968.52	0.921521	1.6784	38.70389	21.25028	K(CH3COO)
56.24	47	5.096138	25.97062	0.038505	3162.938	2209	2643.28	2.165524	1.809737	101.7796	121.7891	Ca(NO3)2
75.88	63	5.011683	25.11696	0.039814	5757.774	3969	4780.44	3.021066	2.508265	190.3271	229.2385	NaCl
85.47	81	5.008002	25.08009	0.039872	7305.121	6561	6923.07	3.407883	3.229654	276.0385	291.2717	KCl
Somas			101.1915	0.158153				9.515994	9.226055	606.8492	663.5496	

DELTA	Α	В
14.38818	0.568515	24.12899

BMP180 (Sensor de Pressão)

O BMP180 é um sensor de pressão que possui 4 portas: a de alimentação, o *ground* e duas analógicas (a SCL e a SDA). Para que conseguíssemos ler os valores recebidos do sensor, soldamos alguns pinos a suas portas e o conectamos a uma placa arduino uno, fazendo com que esse alimentasse o sensor com 3.3V, e as portas A4 e A5 estivessem conectadas às portas analógicas.

Representação da ligação do BMP180 a placa Arduino

Para fazer com que os valores de pressão lidos pelo sensor fossem "printados" na tela do computador, foi necessário baixar uma biblioteca do BMP180 para integrá-la à biblioteca do Arduino uno. Após tal integração, e após criada a programação, foi possível ver os valores de altitude devolvidas pelo sensor.

LDR (Sensor de Luminosidade)

O LDR é um sensor que possui um resistência elétrica que varia de acordo com a luminosidade. Ao incidir luz sobre tal a resistência elétrica diminui e Aa diminuir a luminosidade sobre o LDR a resistência elétrica aumenta.

Para poder ler os valores retornados do sensor, também o conectamos à placa Arduino. Ligamos o sensor em série a um resistor de $10k\Omega$, e os alimentamos com 5V, além de conectá-los a uma porta analógica do Arduino.

Representação da ligação do LDR a placa Arduino

Para que pudéssemos interpretar melhor o valor retornado pelo sensor, multiplicamos esse valor por 0.00488 pois os valores retornados variavam de 0 até 1023 (referente a 10bits), ao fazer essa multipicação fizemos com que os valores ficassem entre 0V e 5V, onde 0V seria escuridão absoluta e 5V um alto nível de luminosidade.

SISTEMA INTEGRADO (A estação meteorológica)

Para construir nossa estação meteorológica era necessário integrar todos os sensores e fazer com que esses estivessem conectados em uma placa de cobre, ao invés de conectá-los com fios.

Primeiramente, para construir a placa de cobre, foi necessário usar o Fritzing. Nele foi construído uma realidade virtual do que foi desenvolvido na protoboard física, acoplando todos os sensores, resistores, o potenciômetro, uma tela LCD, o arduino e todas ligações realizadas entre eles pelos jumpers.

Após a construção virtual da protoboard montada, o sistema foi transferido para uma placa PCB no próprio programa fritizing, no qual foi realizada algumas alterações com a finalidade de adequação do sistema para a futura funcionalidade da placa.

Com tudo finalizado no programa fritizing, o arquivo foi transferido para o programa coopercam, no qual foram definidas as trilhas a serem transportadas na placa de cobre.

Com todos os arquivos preparados para frisar a placa, foi necessário ajustar o programa para mandar para a frisadora. Assim, todas as brocas presentes no FabLab foram configuradas no coopercam e a broca cônica de 20 selecionada para desenhar as trilhas no cobre. Então os arquivos foram salvos e enviados para a máquina.

Para terminar a preparação da máquina pra produção, os pontos cartesianos tridimensionais da frisadora foram regulados e então deu-se inicio a produção da PCB.

Com a placa em mãos, soldamos os componentes nela, tomando muito cuidado para que a solda não causa-se um curto nas trilhas da placa.

Com tudo acoplado, a única coisa que faltava era programar o Arduino para que todas as medidas retornadas dos sensores fossem "printadas" na tela LCD. Para isso fizemos uma programação no programa Arduino Uno, que será anexada ao e-mail de entrega do relatório.

Ao executar o programa, percebemos que as medidas de temperatura estavam um pouco fora do que deveriam dar. Isso aconteceu pois, como o LDR possui uma resistência variável, ele faz com que a corrente que chega no LM35 diminua, fazendo com que a leitura fosse alterada. Por causa disso, fomos aconselhados a tirar o LDR do nosso circuito.