

NCBI Entrez

Protein QUERY

BLAST Entrez ?

Other Formats:

FASTA

Graphic

Links:

DNA

Related Sequences

LOCUS 1877288 200 aa
DEFINITION hypothetical protein Rv3557c.
ACCESSION 1877288
PID g1877288
DBSOURCE EMBL: locus MTCY6G11, accession z92774
KEYWORDS
SOURCE Mycobacterium tuberculosis.
ORGANISM Mycobacterium tuberculosis
Bacteria; Firmicutes; Actinobacteria; Actinobacteridae;
Actinomycetales; Corynebacterineae; Mycobacteriaceae;
Mycobacterium.
REFERENCE 1 (residues 1 to 200)
AUTHORS Cole,S.T., Brosch,R., Parkhill,J., Garnier,T., Churcher,C.,
Harris,D., Gordon,S.V., Eiglmeier,K., Gas,S., Barry III,C.E.,
Tekai,a,F., Badcock,K., Basham,D., Brown,D., Chillingworth,T.,
Connor,R., Davies,R., Devlin,K., Feltwell,T., Gentles,S.,
Hamlin,N., Holroyd,S., Hornsby,T., Jagels,K., Krogh,A., McLean,J.,
Moule,S., Murphy,L., Oliver,S., Osborne,J., Quail,M.A.,
Rajandream,M.A., Rogers,J., Rutter,S., Seeger,K., Skelton,S.,
Squires,S., Squires,R., Sulston,J.E., Taylor,K., Whitehead,S. and
Barrell,B.G.
TITLE Deciphering the biology of *Mycobacterium tuberculosis* from the
complete genome sequence
JOURNAL Nature 393 (6685), 537-544 (1998)
98295987
REMARK Erratum: [[published erratum appears in Nature 1998 Nov
12;396(6707):190]]
2 (residues 1 to 200)
PARKHILL, J.
TITLE Direct Submission
JOURNAL Submitted (11-JUN-1998) Submitted on behalf of the *Mycobacterium*
tuberculosis sequencing and mapping teams, Sanger Centre, Wellcome
Trust Genome Campus, Hinxton, Cambridge CB10 1SA Unité de Génétique
Moléculaire Bactérienne, Institut Pasteur, 28 rue du Docteur Roux,
75724 Paris Cedex 15, France E-mail: parkhill@sanger.ac.uk
COMMENT Notes:
Details of *M. tuberculosis* sequencing at the Sanger Centre are
available on the World Wide Web.
(URL, http://www.sanger.ac.uk/Projects/M_tuberculosis/) CDS have
been renumbered from the original cosmid submissions but the old
gene designations are in brackets after the new gene numbers.
Gene prediction was based on a Hidden Markov Model of TB genes
implemented in TBparse (Krogh) supplemented with visual inspection
of positional base preference in codons, especially where there is
an increase in the observed/expected third position G + C.
CAUTION: In some cases we may not have predicted the correct
initiation codon. Where possible we choose an initiation codon
(atg, gtg, or ttg) which is preceded by an upstream ribosome
binding site sequence (optimally 5-13bp before the initiation
codon). If this cannot be identified we choose the most upstream
initiation codon.
FEATURES
source Location/Qualifiers
1..200
/organism="Mycobacterium tuberculosis"
/strain="H37Rv"
/db_xref="taxon:1773"
/clone="Y6G11"
Protein
1..200
/product="hypothetical protein Rv3557c"
1..200
/gene="Rv3557c"
CDS

```
/note="Rv3557c, (MTCY06G11.04c), len: 200 aa. Probable
transcriptional repressor, similar eg to
Z95556|MTCY07A7_12 Mycobacterium tuberculosis (215 aa)
fasta scores, opt: 215 z-score: 279.5 E(): 4.9e-08; 35.1%
identity in 148 aa overlap; and YIXD_BACSU P32398
hypothetical transcriptional regulatory protein (191 aa),
fasta scores, opt: 169, E(): 4.2e-05, (23.9% identity in
188 aa overlap)"
/db xref="SPTRREMBL:P96839"
/coded_by="complement(Z92774:2275..2877)"
/transl_table=11
```

ORIGIN

```
1 mdrvagqvns rrgellelaa amfaerglra ttvrriadga gilsgslyhh faskeemvde
61 llrgfldwlf aryrdvdst anplerlqgl fmasfeaieh hhaqvvyyqd eaqlasqpr
121 fsyiedrnkq qrkmwvdvln qgieegyfrp dldvdlyrf irdttwsvr wyrggplta
181 qqvgqqylai vlggitkegv
```

//

Save the above report in format

NCBI Entrez

Protein QUERY

BLAST Entrez ?

Other Formats:

Links:

LOCUS 2984362 192 aa 03-SEP-1998
 DEFINITION transcriptional regulator (TetR/AcrR family).
 ACCESSION 2984362
 PID g2984362
 DBSOURCE GENBANK: locus AE000776, accession AE000776
 KEYWORDS
 SOURCE Aquifex aeolicus.
 ORGANISM Aquifex aeolicus
 REFERENCE Eubacterium; Aquificales; Aquificaceae; Aquifex.
 AUTHORS 1 (residues 1 to 192)
 Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L.,
 Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M.,
 Huber, R., Feldman, R.A., Short, J.M., Olson, G.J. and Swanson, R.V.
 TITLE The complete genome of the hyperthermophilic bacterium Aquifex aeolicus
 JOURNAL Nature 392, 353-358 (1998)
 REFERENCE 2 (residues 1 to 192)
 AUTHORS Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L.,
 Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M.,
 Huber, R., Feldman, R.A., Short, J.M., Olson, G.J. and Swanson, R.V.
 TITLE Direct Submission
 JOURNAL Submitted (25-JUL-1997) Diversa Corporation, Genomics, San Diego,
 CA 92121
 COMMENT Method: conceptual translation.
 FEATURES Location/Qualifiers
 source 1..192
 /organism="Aquifex aeolicus"
 /strain="VF5"
 /db_xref="taxon:63363"
 Protein 1..192
 /product="transcriptional regulator (TetR/AcrR family)"
 CDS 1..192
 /gene="acrR2"
 /coded_by="AE000776:12906..13484"
 /transl_table=11
 ORIGIN
 1 myillfmgek rsdtkekils salklfskkg fkettikdia kevgitegai yrhftskeei
 61 iksllesitk elrhkleval qrgetdeeil esivdtlid y afsnpesfrf lnlyhllkey
 121 gevknlp gel ilkflnglyl krklktypei alavvtgsve rvfifkernf ldydeetikk
 181 elkkvlksai la
 //

the above report in format

NCBI Entrez

Protein QUERY

BLAST Entrez ?

Other Formats:

FASTA

Graphic

Links:

MEDLINE

Related Sequences

LOCUS 730078 210 aa 01-FEB-1995
 DEFINITION REGULATORY PROTEIN MTRR.
 ACCESSION 730078
 PID g730078
 DBSOURCE SWISS-PROT: locus MTRR_NEIGO, accession P39897
 class: standard.
 created: Feb 1, 1995.
 sequence updated: Feb 1, 1995.
 annotation updated: Feb 1, 1995.
 xrefs: gi: 452332, gi: 438189, gi: 541020
 xrefs (non-sequence databases): PROSITE PS01081
 KEYWORDS TRANSCRIPTION REGULATION; DNA-BINDING; REPRESSOR.
 SOURCE *Neisseria gonorrhoeae*.
 ORGANISM *Neisseria gonorrhoeae*
 Eubacteria; Proteobacteria; beta subdivision; Neisseriaceae;
 Neisseria.
 REFERENCE 1 (residues 1 to 210)
 AUTHORS Pan,W. and Spratt,B.G.
 TITLE Regulation of the permeability of the gonococcal cell envelope by
 the mtr system
 JOURNAL Mol. Microbiol. 11 (4), 769-775 (1994)
 MEDLINE 94254732
 REMARK SEQUENCE FROM N.A.
 STRAIN=FA19
 COMMENT [FUNCTION] PUTATIVE REPRESSOR OF MTRC GENE. CONTROLS THE
 PERMEABILITY OF THE CELL ENVELOPE TO HYDROPHOBIC COMPOUNDS SUCH AS
 ANTIBIOTICS AND DETERGENTS.
 [SIMILARITY] BELONGS TO THE TETR/ACRR FAMILY OF TRANSCRIPTIONAL
 REGULATORS.
 FEATURES Location/Qualifiers
 source 1..210
 /organism="Neisseria gonorrhoeae"
 /db_xref="taxon:485"
 1..210
 Protein 1..210
 /product="REGULATORY PROTEIN MTRR"
 Site 32..51
 /note="H-T-H MOTIF."
 /site_type="dna-binding"
 Region 105
 /note="H -> Y: IN PENICILLIN-RESISTANT ISOLATES."
 /region_name="Variant"
 ORIGIN
 1 mrktktealk tkehmlaal etfyrgiar tslneiaqaa gvtrgalywh fknkedlfda
 61 lfqricddie nciagdaada eggswtvfrh tlhffferlq sndihykfh ilflkcehte
 121 qnaaviaiar khqaiwreki tavlteaven qdladdlk tavifikstl dgliwrfss
 181 gesfdlgkta priigimmdn lenhpclrrk
 //

Save the above report in format

APROVEL®

Angiotensin II Receptor Antagonist IRDESARTAN

[Home](#) | [Help](#) | [Search/Archive](#) | [Feedback](#) | [Table of Contents](#)

BMJ 1998;316:166 (17 January)

Editorials

Is measles infection associated with Crohn's disease?

The current evidence does not prove a causal link

The cause of Crohn's disease is likely to be multifactorial, and great interest was generated by two Swedish studies suggesting a high risk of Crohn's disease in those exposed to measles in utero.^{1,2} The report in this week's issue from Nielsen et al (p 196),³ however, is not alone in suggesting that there is no increased risk.

The two Swedish papers studied largely the same group of patients. Both studies were the result of two index cases of Crohn's disease noted to have been exposed to measles in utero (accounting for two out of four cases in the second study). The first report, in 1994, compared the expected and observed month of birth in patients with Crohn's disease born in 1945-54 in relation to the peak months of measles epidemics. The standardised incidence ratio was 1.46 (95% confidence interval 0.83 to 2.21) for future development of Crohn's disease for births during the three months after the peak incidence of measles. The second paper, in 1996, described a study of maternal measles infection in a cohort of 25 000 babies born in 1940-9.² Of four such cases three subsequently developed Crohn's disease.

In apparent support of the hypothesis, Thompson et al found a relative risk of 3.01 (1.45 to 6.23) for Crohn's disease among a British cohort of people vaccinated with live attenuated measles vaccine compared with a matched, unvaccinated group.⁴ However, up to 74% of the original cohort were lost to follow up, and methods of follow up varied between the groups. This report led to concerns that vaccination with live, attenuated measles vaccine could confer the same risk as exposure to measles in utero.⁵

Now, however, four further studies have failed to confirm evidence of an association. Nielsen et al examined the health records of all possible cases of measles in pregnancy admitted to an infectious diseases hospital in the Copenhagen area in 1915-66.³ The offspring of 25 women who had measles during pregnancy were identified, and none had developed Crohn's disease. In 1995 Hermon-Taylor et al compared the incidence of Crohn's disease with notifications of measles infection in England and Wales, including data after the introduction of measles vaccines.⁶ They found no association. Also in 1997 Jones et al reported a case-control study of a large cohort of individuals exposed to viral infections during gestation, including 47 people exposed to measles in utero.⁷ Follow up data on 88% found no cases of inflammatory bowel disease in the index cases, but two among the controls (one with Crohn's disease). A case-control study by Feeney et al in 1997 compared measles vaccination rates in 140 patients with inflammatory bowel disease (83 with Crohn's disease) and matched controls and found no association.⁸

To reconcile these discrepancies we need an understanding of the investigation of causation. Significant

- [Send a response to this article](#)
- [Related letters in BMJ](#)
- [PubMed citation](#)
- [Related articles in PubMed](#)
- [Download to Citation Manager](#)
- [This article has been cited by other articles](#)
- [Search Medline for articles by: Metcalf, J.](#)
- [Alert me when: New articles cite this article](#)

- [Collections under which this article appears: Gastroenterology: Other Gastroenterology](#)
- [Infectious Diseases: Other Infectious Diseases](#)

associations were established in the original studies, but associations may be artefactual, indirect, or causal. Artefactual associations may result from chance. The inclusion of index cases which have generated the hypothesis leads to reporting bias, especially if the numbers are small. Spurious associations may also result from differences in methods and completeness of data collection and recall bias (cases more often recall exposure to possible causal factors than controls). Some of these factors may have affected Thompson's vaccination study.⁴ An indirect association is one in which the factor and disease are associated through a common third factor, such as malaria and altitude, linked through mosquitoes. There are no apparent indirect links in these studies.

A refinement of Koch's postulates has led to the development of six criteria to evaluate the likelihood that an association is causal, the first three of which are the most important.⁹ Firstly, the greater the strength of the association (the higher the relative risk) the more likely it is that a factor is causal. A dose-response gradient and a consistent association—that is, one repeated in other studies—also suggest causality. The specificity of the association—whether the occurrence of the factor predicts the presence of the disease—the correct temporal association, and the biological plausibility of the association are also relevant. Only the last two criteria are met by the Swedish studies.

Thus, several recent studies of the association between measles and Crohn's disease have failed to confirm the original association, suggesting that the original finding was artefactual. The theory of measles as a causative factor in the development of Crohn's disease therefore cannot be upheld and should remind us of the need for rigorous methodological review when causal associations are proposed.

Jane Metcalf, Senior registrar in gastroenterology ^a

^a Gloucestershire Royal Hospital, Gloucester GL1 3NN

1. Ekbom A, Wakefield AJ, Zack M, Adami HO. Perinatal measles infection and subsequent Crohn's disease. *Lancet* 1994;344:508-10. [Medline]
2. Ekbom A, Daszak P, Kraaz W, Wakefield AJ. Crohn's disease after in-utero measles virus exposure. *Lancet* 1996;348:515-7. [Medline]
3. Nielsen LLW, Nielsen NM, Melbye M, Sodermann M, Jacobsen M, Aaby P. Exposure to measles in utero and Crohn's disease: a Danish register study. *BMJ* 1998;316:196-7. [Full Text]
4. Thompson NP, Montgomery SM, Pounder RE, Wakefield AJ. Is measles vaccination a risk factor for inflammatory bowel disease? *Lancet* 1995;345:1071-4. [Medline]
5. Calman KC. Measles vaccination as a risk factor for inflammatory bowel disease. *Lancet* 1995;345:1362-4.
6. Hermon-Taylor J, Ford S, Sumar N, Millar D, Doran T, Tizard M. Measles virus and Crohn's disease. *Lancet* 1995;345:922-3.
7. Jones P, Fine P, Piracha S. Crohn's disease and measles. *Lancet* 1997;349:473.
8. Feeney M, Clegg A, Winwood P, Snook J. A case control study of measles vaccination and inflammatory bowel disease. *Lancet* 1997;350:764-6. [Medline]
9. Mausner JS, Kramer S, eds. *Mausner and Bahn epidemiology. An introductory text*. Philadelphia: WB Saunders Company, 1985.

This article has been cited by other articles:

- Nicoll, A., Elliman, D., Ross, E. (1998). MMR vaccination and autism 1998. *BMJ* 316: 715-716
[\[Full text\]](#)

Related letters in BMJ:

Measles, measles vaccination, and Crohn's disease
Elizabeth Miller, Pauline Waight, R G Pebody, M Paunio, P Ruutu, Ross Lawrenson, and Richard Farmer
BMJ 1998 316: 1745. [\[Letter\]](#)

- [Send a response to this article](#)
- [Related letters in BMJ](#)
- [PubMed citation](#)
- [Related articles in PubMed](#)
- [Download to Citation Manager](#)
- [Search Medline for articles by: Metcalf, J.](#)
- [Alert me when: New articles cite this article](#)

- Collections under which this article appears:
 - Gastroenterology:
 - [Other Gastroenterology](#)
 - Infectious Diseases:
 - [Other Infectious Diseases](#)

09/966.608

NCBI Entrez

Protein QUERY

BLAST Entrez [?]

Other Formats: Links:

LOCUS 481591 190 aa 20-FEB-1995
DEFINITION hypothetical protein 4 - *Clostridium pasteurianum*.
ACCESSION 481591
PID g481591
DBSOURCE PIR: locus S38906
summary: #length 190 #molecular-weight 21692 #checksum 8972.
PIR dates: 20-Feb-1995 #sequence_revision 20-Feb-1995 #text_change
20-Feb-1995.
KEYWORDS
SOURCE *Clostridium pasteurianum*.
ORGANISM *Clostridium pasteurianum*
Eubacteria; Firmicutes; Low G+C gram-positive bacteria;
Clostridiaceae; *Clostridium*.
REFERENCE 1 (residues 1 to 190)
AUTHORS Meyer, J.
TITLE Direct Submission
JOURNAL Submitted (??-NOV-1993) to the EMBL Data Library
FEATURES Location/Qualifiers
source 1..190
/organism="Clostridium pasteurianum"
/db_xref="taxon:1501"
Protein 1..190
/product="hypothetical protein 4"
ORIGIN
1 mnktkdnify saikvfsnng yngatmdeia snagvakgtl yyhfkskeei fkyiieegvn
61 lmkneideat dkektalekl kavcrvqlnl iyknrdffkv iasqlwgkel rqlleldimr
121 nyvvhieefv kdameagsik kgnslfvaya flgtlcsvsl yevinaendn inntienlmn
181 yilngiglqn
//

the above report in format
