Отчет по лабораторной работе №1

Простейший вариант

Иван Борисович Салиндер

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	17
5	Ответы на контрольные вопросы	18
6	Выполнение доп задания	20
Сг	Список литературы	

Список иллюстраций

3.1	OKHO VITTUAL BOX
3.2	Созданиие виртуальной машины
3.3	Указываем объем памяти
3.4	Жесткий диск
3.5	Запуск виртуальной машины
3.6	Выбор языка для установки
3.7	Выбираем регион и жесткий диск
3.8	Выбрали 1
3.9	Процесс установки запущен
3.10	Установка завершена
3.11	Переход в режим суперпользователя
3.12	Обновляем все пакеты
3.13	Установка tmux
3.14	Програмное обеспечение для авто обновления
3.15	Запускаем таймер
3.16	Читаем файл
	Установка dkms
	Установка dkms
3.19	Установка драйверов
3.20	Редактирование файла
3.21	Редактирование файла
	Запускаем терминал
	Скачиваю pandoc
	Установка texlive
6.1	Поиск версии ядра
6.2	Поиск типа обнаруженного гипервизора
6.3	Последовательность монтирования файловых систем
6.4	Последовательность монтирования файловых систем

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задание

3 Выполнение лабораторной работы

Описываются проведённые действия, в качестве иллюстрации даётся ссылка на иллюстрацию).

Virtualbox я устанавливала и настраивала при выполнении лабораторной работы в курсе "Архитектура компьютера и Операционные системы (раздел" Архитектура компьютера")", поэтому сразу открываю окно приложения (рис. 3.1).

Рис. 3.1: Окно Virtual Box

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию (рис. [fig002?]).

Рис. 3.2: Созданиие виртуальной машины

указываем объем памяти вирт машины размером 4096 МБ (рис. 3.3

Рис. 3.3: Указываем объем памяти

Выбираю создание нового виртуального жесткого диска (рис. 3.4

Рис. 3.4: Жесткий диск

Ждем когда завершится установка операционной системы и запускаем виртуальную машину (рис. [fig005?]).

Рис. 3.5: Запуск виртуальной машины

Устанавливаем Федору (рис. [fig007?]). (рис. [fig008?]). (рис. [fig010?]).

Рис. 3.6: Выбор языка для установки

Рис. 3.7: Выбираем регион и жесткий диск

Рис. 3.8: Выбрали

Рис. 3.9: Процесс установки запущен

Операционная система устанавилась, приступаем к работе (рис. [fig011?]).

Рис. 3.10: Установка завершена

Следуем заданию и заходим в режим суперпользователя (рис. [fig012?]).

```
root@fedora:~

[ivan@fedora ~]$ sudo -i

Мы полагаем, что ваш системный администратор изложил вам основы безопасности. Как правило, всё сводится к трём следующим правилам:

№1) Уважайте частную жизнь других.

№2) Думайте, прежде чем что-то вводить.

№3) С большой властью приходит большая ответственность.

For security reasons, the password you type will not be visible.

[sudo] пароль для ivan:
[root@fedora ~]# dnf -y u
```

Рис. 3.11: Переход в режим суперпользователя

Обновляем все пакеты командой dnf -y update (рис. [fig013?]).

Рис. 3.12: Обновляем все пакеты

Скачиваем tmux (рис. [fig014?]).

Рис. 3.13: Установка tmux

Устаналиваем програмное обеспечение для авто обновления (рис. [fig015?]).

```
[root@fedora -]# dnf install dnf-automatic
Последняя проверка окончания срока действия метаданных: 0:22:39 назад, Вт 03 сен 2024 14:39:13.
Зависимости разрешены.
Пакет Архитектура Версия Репозиторий Размер
Установка:
dnf-automatic noarch 4.19.2-1.fc38 updates 45 k
Результат транзакции
Установка 1 Пакет
Объем загрузки: 45 k
```

Рис. 3.14: Програмное обеспечение для авто обновления

Запускаю таймер (рис. [fig016?]).

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /usr/lib/systemd/system/dnf-automatic.ti
mer.
[root@fedora ~]#
```

Рис. 3.15: Запускаем таймер

Открываем файл config с помощью команды nano и редактируем SELINUX=enforcing меняю на значение SELINUX=permissive (рис. [fig017?]). (рис. [fig018?]).

Открываем файл

```
**CHU nano 7.2 /etc/selinux/config //etc/selinux/config //etc/selinux/co
```

Рис. 3.16: Читаем файл

Устанавливаем dkms (рис. [fig019?]) (рис. [fig020?])

Рис. 3.17: Установка dkms

Рис. 3.18: Установка dkms

В меню виртуальной машины подключаю образ диска гостевой ОС и примон-

тирую диск с помощью утилиты mount (рис. [fig21?]

Монтирование диска

Установка драйверов (рис. [fig22?]) (рис. [fig23?])

Установка драйверов

Рис. 3.19: Установка драйверов

Название рисунка

Редактирую конфигурационный файл (рис. [fig25?]) (рис. [fig26?])

```
GNU nano 7.2 /home/ivan/config/sway/config.d/95-system-keyboard-config.dconf Изменён exec_always /usr/libexec/sway-systemd/locale1-xkb-config --oneshot
```

Рис. 3.20: Редактирование файла

```
# instruct systemd-localed to update it.

Section "InputClass"

Identifier "system-keyboard"

MatchIskeyboard "on"

Option "XkbJayout" "us,ru"

Option "XkbJayriant" ",winkeys"

Option "XkbJariant" ",winkeys"

EndSection

EndSection
```

Рис. 3.21: Редактирование файла

Задаем пароль и имя пользователя

Задаем пароль

Задаем имя пользователя]

Задаем

Устанавливаем обеспечение для документации. Запускаю терминал и скачиваю pandoc. Затем устанавливаю дистрибутив (рис. [fig30?])(рис. [fig31?])(рис. [fig32?])

```
gpasswu: группа «satinuer» не существует в /etc/group
[root@fedora ~]# vboxmanage sharedfolder add "$(id -un)_os-intro" --name=work --hostpath=work --automount
```

Рис. 3.22: Запускаем терминал

Рис. 3.23: Скачиваю pandoc

```
root).
[ivan@salinder Загрузки]$ sudo -i
[root@salinder ~]# dnf -y install texlive-scheme-full
```

Рис. 3.24: Установка texlive

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение доп задания

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы (рис. **??**)

Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i', ищу версию ядра Linux: 6.1.10-200.fc37.x86_64 (рис. [fig34?]).

```
| 22/11-33/10:| CLOCKSOURCE: Long readout interval, skipping watchdog check: cs_nsec: 9/38629993 Wd_nsec: 9/38626/89 [root@salinder ~]# dmesg | grep ~i "Linux version" [ 0.000000] Linux version 6.8.9-100.fc38.x86_64 (mockbuild@2caeaca2e96a421ca18272f22e4afc2e) (gcc (GCC) 13.2.1 2024 0316 (Red Hat 13.2.1-7), GNU ld version 2.39-16.fc38) #1 SMP PREEMPT_DYNAMIC Thu May 2 18:50:49 UTC 2024
```

Рис. 6.1: Поиск версии ядра

Аналогичный поиск частоты процессора (рис. [fig35?])

Поиск частоты процессора

Аналогичный поиск модели процессора (рис. [fig36?])

Поиск модели процессора

Аналогичный поиск обьема доступной оперативной памяти (рис. [fig37?])

Поиск объема доступной оперативной памяти

Аналогичный поиск объема доступной оперативной памяти (рис. [fig38?])

```
[root@salinder ~]# dmesg | grep -i "Hypervisor detected"

[ 0.000000] Hypervisor detected: KVM

[root@salinder ~]# "
```

Рис. 6.2: Поиск типа обнаруженного гипервизора

Выполняем поиск монтирования файловых систем с помощью команды dmesg -i "file system" (рис. [fig39?]) (рис. [fig40?])

```
[rootdsalinder_]# dmesg [grep -1 "file system"]

[ 1.847563] systemd[]]: Reached target initrd-usr-fs.target - Initrd /usr File System.

[ 1.847561] systemd[]]: Reached target local-fs.target - Local File Systems.

[ 4.457526] systemd[]]: Set up automount proc-sys-fs-brinfmt_misc.automount - Arbitrary Executable File Formats File Systems.

[ 4.457855] systemd[]]: Stopped target initrd-fs.target - Initrd File Systems.

[ 4.457854] systemd[]]: Stopped target initrd-root-fs.target - Initrd Root File System.

[ 4.593513] systemd[]]: Mounting dev-hugepages.mount - Huge Pages File System...

[ 4.596688] systemd[]]: Mounting dev-mqueue.mount - POSIX Message Queue File System...

[ 4.596688] systemd[]]: Mounting sys-kernel-debug.mount - Kernel Debug File System...

[ 4.596688] systemd[]]: Mounting sys-kernel-cracing.mount - Kernel Debug File System...

[ 4.596688] systemd[]]: Stopped systemd-fsck-root.service - File System Check on Root Device.

[ 4.58176] systemd[]]: Storting systemd-remount-fs.service - Remount Root and Kernel File Systems...

[ 4.552782] systemd[]]: Mounted dev-mqueue.mount - POSIX Message Queue File System.

[ 4.552782] systemd[]]: Mounted sys-kernel-debug.mount - Kernel Debug File System.

[ 4.5528218] systemd[]]: Mounted sys-kernel-debug.mount - Kernel Debug File System.

[ 5.500683218] systemd[]]: Mounted sys-kernel-tracing.mount - Kernel Debug File System.

[ 5.500783218] systemd[]]: Mounted sys-kernel-tracing.mount - Kernel Trace File System.
```

Рис. 6.3: Последовательность монтирования файловых систем

```
[ 1.3.521.0] 3/3ccms[2], nonneed 3/3 Archite Claims mount with the control of the
```

Рис. 6.4: Последовательность монтирования файловых систем

Список литературы