第八章 带基线的策略梯度方法

上一章推导出策略梯度,并介绍了两种策略梯度方法——REINFORCE和 Actor-Critic。虽然上一章的方法在理论上是正确的,但是在实践中效果并不理想。本章介绍带基线的策略梯度 (Policy Gradient with Baseline) 可以大幅提升策略梯度方法的表现。使用基线 (Baseline) 之后,REINFORCE 变成 REINFORCE with Baseline,Actor-Critic 变成 Advantage Actor-Critic (A2C)。

8.1 策略梯度中的基线

首先回顾上一章的内容。策略学习通过最大化目标函数 $J(\theta) = \mathbb{E}_S[V_{\pi}(S)]$,得到策略网络 $\pi(a|s;\theta)$,用于控制智能体。可以用策略梯度 $\nabla_{\theta}J(\theta)$ 来更新参数 θ :

$$\boldsymbol{\theta}_{\text{new}} \leftarrow \boldsymbol{\theta}_{\text{now}} + \beta \cdot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{\text{now}}).$$

策略梯度定理证明:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{S} \bigg[\mathbb{E}_{A \sim \pi(\cdot \mid S; \boldsymbol{\theta})} \bigg[Q_{\pi}(S, A) \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(A \mid S; \boldsymbol{\theta}) \bigg] \bigg].$$
 (8.1)

REINFORCE 和 Actor-Critic 都是通过对策略梯度 $\nabla_{\theta}J(\theta)$ 做近似得出的;两种方法区别 在于具体如何做近似。

8.1.1 基线 (Baseline)

基于策略梯度公式 (8.1) 得出的 REINFORCE 和 Actor-Critic 方法效果通常不好。但是只需对策略梯度公式 (8.1) 做一个微小的改动,就能大幅提升表现:把 b 作为动作价值函数 $Q_{\pi}(S,A)$ 的基线 (Baseline),用 $Q_{\pi}(S,A)$ - b 替换掉 Q_{π} 。设 b 是任意的函数,只要不依赖于动作 A 就可以;例如,b 可以是状态价值函数 $V_{\pi}(S)$ 。

定理 8.1. 带基线的策略梯度定理

设b是任意的函数,只要不依赖于动作A就可以。把b作为动作价值函数 $Q_{\pi}(S,A)$ 的基线,对策略梯度没有影响:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{S} \Big[\mathbb{E}_{A \sim \pi(\cdot | S; \boldsymbol{\theta})} \Big[\Big(Q_{\pi}(S, A) - \boldsymbol{b} \Big) \cdot \nabla_{\boldsymbol{\theta}} \ln \pi \big(A | S; \, \boldsymbol{\theta} \big) \Big] \Big].$$

定理 8.1 说明 b 的取值不影响策略梯度的正确性。不论是让 b=0 还是让 $b=V_{\pi}(S)$,对期望的结果毫无影响,期望的结果都会等于 $\nabla_{\theta}J(\theta)$ 。其原因在于

$$\mathbb{E}_{S}\Big[\mathbb{E}_{A \sim \pi(\cdot | S; \boldsymbol{\theta})}\Big[\boldsymbol{b} \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(A | S; \boldsymbol{\theta})\Big]\Big] = 0.$$

定理的证明放到第8.4节,对数学感兴趣的读者可以阅读。

定理中的策略梯度表示成了期望的形式,我们对期望做蒙特卡洛近似。从环境中观

测到一个状态 s,然后根据策略网络抽样得到 $a \sim \pi(\cdot|s; \theta)$ 。那么策略梯度 $\nabla_{\theta} J(\theta)$ 可以 近似为下面的随机梯度:

$$oldsymbol{g}_{oldsymbol{b}}ig(s,a;oldsymbol{ heta}ig) \;=\; \Big[\,Q_{\pi}ig(S,Aig)\,-\, oldsymbol{b}\,\Big]\,\cdot\,
abla_{oldsymbol{ heta}}\,\ln\piig(A\,|\,S;oldsymbol{ heta}ig).$$

虽然 b 的取值对 $\nabla_{\theta} J(\theta)$ 毫无影响。不论 b 的取值是 0 还是 $V_{\pi}(s)$,得到的随机梯度 $g_b(s,a;\theta)$ 都是 $\nabla_{\theta} J(\theta)$ 的无偏估计:

$$\mathrm{Bias} \ = \ \mathbb{E}_{S,A} \Big[\boldsymbol{g}_b \big(s, a; \, \boldsymbol{\theta} \big) \Big] \ - \ \nabla_{\boldsymbol{\theta}} J \big(\boldsymbol{\theta} \big) \ = \ \boldsymbol{0}.$$

但是对随机梯度 $g_b(s,a;\theta)$ 是有影响的。用不同的 b,得到的方差

$$\text{Var} \ = \ \mathbb{E}_{S,A} \bigg[\Big\| \boldsymbol{g}_b \big(s, a; \, \boldsymbol{\theta} \big) \, - \, \nabla_{\boldsymbol{\theta}} J \big(\boldsymbol{\theta} \big) \Big\|^2 \bigg]$$

会有所不同。如果 b 很接近 $Q_{\pi}(s,a)$ 关于 a 的均值,那么方差会比较小。所以 $b=V_{\pi}(s)$ 是很好的基线。

8.1.2 基线的直观解释

策略梯度公式 (8.1) 期望中的 $Q_{\pi}(S,A) \cdot \nabla_{\theta} \ln \pi(A|S;\theta)$ 的意义是什么呢? 以图 8.1 中的左图为例。给定状态 s_t ,动作空间是 $A = \{ E, E, E \}$,动作价值函数给每个动作打分:

$$Q_{\pi}(s_t, \pm) = 80, \qquad Q_{\pi}(s_t, \pm) = -20, \qquad Q_{\pi}(s_t, \pm) = 180.$$

这些分值会乘到梯度 $\nabla_{\theta} \ln \pi(A|S;\theta)$ 上,在做完梯度上升之后,新的策略会倾向于分值高的动作。

- 动作价值 $Q_{\pi}(s_t, \perp) = 180$ 很大,说明基于状态 s_t 选择动作"上"是很好的决策。 让梯度 $\nabla_{\theta} \ln \pi(\perp | s_t; \theta)$ 乘以大的系数 $Q_{\pi}(s_t, \perp) = 180$,那么做梯度上升更新 θ 之后,会让 $\pi(\perp | s_t; \theta)$ 变大,在状态 s_t 的情况下更倾向于动作"上"。
- 相反, $Q_{\pi}(s_t, \Delta) = -20$ 说明基于状态 s_t 选择动作"右"是糟糕的决策。让梯度 $\nabla_{\theta} \ln \pi(\Delta \mid s_t; \theta)$ 乘以负的系数 $Q_{\pi}(s_t, \Delta) = -20$,那么做梯度上升更新 θ 之后,会让 $\pi(\Delta \mid s_t; \theta)$ 变小,在状态 s_t 的情况下选择动作"右"的概率更小。

图 8.1: 动作空间是 $A = \{ E, E, E, E \}$ 。设状态 s_t 是给定的。左图纵轴表示动作价值 $Q_{\pi}(s_t, a_t)$ 。右图纵轴表示动作价值减去基线 $Q_{\pi}(s_t, a_t) - b$,其中基线 b = 60。

根据上述分析,我们在乎的是动作价值 $Q_{\pi}(s_t, \pm)$ 、 $Q_{\pi}(s_t, \pm)$ 、 $Q_{\pi}(s_t, \pm)$ 三者的相对大小,而非绝对大小。如果给三者都减去 b=60,那么三者的相对大小是不变的;动作"上"仍然是最好的,动作"右"仍然是最差的。见图 8.1 中的右图。因此

$$\left[Q_{\pi}ig(s_t,a_tig) - oldsymbol{b}
ight] \cdot
abla_{oldsymbol{ heta}} \ln \piig(A \, ig| \, S; \, oldsymbol{ heta}ig)$$

依然能指导 $\boldsymbol{\theta}$ 做调整,使得 $\pi(\perp | s_t; \boldsymbol{\theta})$ 变大,而 $\pi(\boldsymbol{\pi} | s_t; \boldsymbol{\theta})$ 变小。

8.2 带基线的 REINFORCE 算法

上一节推导出了带基线的策略梯度,并且对策略梯度做了蒙特卡洛近似。本节中,我们使用状态价值 $V_{\pi}(s)$ 作基线,得到策略梯度的一个无偏估计:

$$oldsymbol{g}ig(s,a;oldsymbol{ heta}ig) \;=\; \Big[\,Q_{\pi}ig(s,aig)\,-\,V_{\pi}ig(sig)\,\Big]\,\cdot\,
abla_{oldsymbol{ heta}}\,\ln\piig(a\,ig|\,s;oldsymbol{ heta}ig).$$

我们在第 7.4 节中学过 REINFORCE,它使用实际观测的回报 u 来代替动作价值 $Q_{\pi}(s,a)$ 。此处我们同样用 u 代替 $Q_{\pi}(s,a)$ 。此外,我们还用一个神经网络 $v(s; \boldsymbol{w})$ 近似状态价值函数 $V_{\pi}(s)$ 。这样一来, $\boldsymbol{g}(s,a;\boldsymbol{\theta})$ 就被近似成了:

$$\tilde{\boldsymbol{g}}(s,a;\boldsymbol{\theta}) = \left[u - v(s;\boldsymbol{w})\right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi (a \mid s;\boldsymbol{\theta}).$$

可以用 $\tilde{g}(s,a;\theta)$ 作为策略梯度 $\nabla_{\theta}J(\theta)$ 的近似, 更新策略网络参数:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \beta \cdot \tilde{\boldsymbol{g}}(s, a; \boldsymbol{\theta})$$

8.2.1 策略网络和价值网络

带基线的 REINFORCE 需要两个神经网络: 策略网络 $\pi(a|s; \theta)$ 和价值网络 v(s; w);神经网络结构如图 8.2 和 8.3 所示。策略网络与之前章节的完全一样: 输入是状态 s,输出是一个向量,每个元素表示一个动作的概率。

图 8.2: 策略网络 $\pi(a|s;\theta)$ 的神经网络结构。输入是状态 s,输出是动作空间中每个动作的概率 值。举个例子,动作空间是 $A = \{ \underline{c}, \underline{c}, \underline{c} \}$,策略网络的输出是三个概率值: $\pi(\underline{c}|s;\theta) = 0.2$, $\pi(\underline{c}|s;\theta) = 0.1$, $\pi(\underline{c}|s;\theta) = 0.7$ 。

图 8.3: 价值网络 $v(s; \boldsymbol{w})$ 的结构。输入是状态 s; 输出是状态的价值。

价值网络 $v(s; \boldsymbol{w})$ 与之前使用的价值网络 $q(s, a; \boldsymbol{w})$ 区别较大。此处的 $v(s; \boldsymbol{w})$ 是对状态价值 V_{π} 的近似,而非对动作价值 Q_{π} 的近似。 $v(s; \boldsymbol{w})$ 的输入是状态 s,输出是一个

实数,作为基线。策略网络和价值网络的输入都是状态 s,因此可以让两个神经网络共享卷积网络的参数,这是编程实现中常用的技巧。

虽然带基线的 REINFORCE 有一个策略网络和一个价值网络,但是这种方法不是 Actor-Critic。价值网络没有起到"评委"的作用;真正帮助策略网络(演员)改进参数 θ (演员的演技)的不是价值网络,而是实际观测到的回报 u。价值网络只是作为基线而已。

8.2.2 算法的推导

训练策略网络的方法是近似的策略梯度上升。从 t 时刻开始,智能体完成一局游戏,观测到全部奖励 r_t, r_{t+1}, \dots, r_n ,然后计算回报 $u_t = \sum_{k=t}^n \gamma^{k-t} \cdot r_k$ 。让价值网络做出预测: $\hat{v}_t = v(s_t; \boldsymbol{w})$,作为基线。这样就得到了带基线的策略梯度:

$$\tilde{\boldsymbol{g}}(s_t, a_t; \boldsymbol{\theta}) = (u_t - \hat{v}_t) \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a_t \mid s_t; \boldsymbol{\theta}).$$

它是策略梯度 $\nabla_{\theta}J(\theta)$ 的近似。最后做梯度上升更新 θ :

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \beta \cdot \tilde{\boldsymbol{g}}(s_t, a_t; \boldsymbol{\theta}).$$

这样可以让目标函数 $J(\theta)$ 逐渐增大。

训练价值网络的方法是回归 (Regression)。回忆一下,状态价值是回报的期望:

$$V_{\pi}(s_t) = \mathbb{E}[U_t \mid S_t = s_t],$$

期望消掉了动作 A_t , A_{t+1} , \cdots , A_n 和状态 S_{t+1} , \cdots , S_n 。训练价值网络的目的是让 $v(s_t; \boldsymbol{w})$ 接近 u_t 的期望。定义损失函数:

$$L(\boldsymbol{w}) = \frac{1}{2} [v(s_t; \boldsymbol{w}) - u_t]^2.$$

设 $\hat{v}_t = v(s_t; \boldsymbol{w})$ 。损失函数的梯度是:

$$\nabla_{\boldsymbol{w}} L(\boldsymbol{w}) = (\widehat{v}_t - u_t) \cdot \nabla_{\boldsymbol{w}} v(s_t; \boldsymbol{w}).$$

做一次梯度下降更新w:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \cdot \nabla_{\boldsymbol{w}} L(\boldsymbol{w}).$$

8.2.3 训练流程

当前策略网络的参数是 $heta_{now}$,价值网络的参数是 $heta_{now}$ 。执行下面的步骤,对参数做一轮更新。

1. 用策略网络 θ_{now} 控制智能体从头开始玩一局游戏,得到一条轨迹 (Trajectory):

$$s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_n, a_n, r_n.$$

2. 计算所有的回报:

$$u_t = \sum_{k=t}^n \gamma^{k-t} \cdot r_k, \quad \forall t = 1, \dots, n.$$

3. 计价值网络做预测:

$$\widehat{v}_t = v(s_t; \boldsymbol{w}_{\text{now}}), \quad \forall t = 1, \dots, n.$$

- 4. 计算误差 $\delta_t = \hat{v}_t u_t$, $\forall t = 1, \dots, n$.
- 5. 用 $\{s_t\}_{t=1}^n$ 作为数据,做反向传播计算:

$$\nabla_{\boldsymbol{w}} \ v(s_t; \boldsymbol{w}_{\text{now}}), \qquad \forall \ t = 1, \cdots, n.$$

6. 更新价值网络参数:

$$\boldsymbol{w}_{\text{new}} \leftarrow \boldsymbol{w}_{\text{now}} - \alpha \cdot \sum_{t=1}^{n} \delta_{t} \cdot \nabla_{\boldsymbol{w}} v(s_{t}; \boldsymbol{w}_{\text{now}}).$$

7. 用 $\{(s_t,a_t)\}_{t=1}^n$ 作为数据,做反向传播计算:

$$\nabla_{\boldsymbol{\theta}} \ln \pi(a_t \mid s_t; \boldsymbol{\theta}_{\text{now}}), \quad \forall t = 1, \dots, n.$$

8. 做随机梯度上升更新策略网络参数:

$$oldsymbol{ heta}_{ ext{new}} \leftarrow oldsymbol{ heta}_{ ext{now}} + eta \cdot \sum_{t=1}^n \gamma^{t-1} \cdot \underbrace{\delta_t \cdot
abla_{oldsymbol{ heta}} \ln \pi ig(a_t \, ig| \, s_t; \, oldsymbol{ heta}_{ ext{now}}ig)}_{ ext{ illustiff}}.$$

8.3 Advantage Actor-Critic (A2C)

之前我们推导出了带基线的策略梯度,并且对策略梯度做了蒙特卡洛近似,得到得到策略梯度的一个无偏估计:

公式中的 $Q_{\pi} - V_{\pi}$ 被称作优势函数 (Advantage Function)。因此,基于上面公式得到的 Actor-Critic 方法被称为 Advantage Actor-Critic, 缩写 A2C。

A2C 属于 Actor-Critic 方法。有一个策略网络 $\pi(a|s;\theta)$,相当于演员,用于控制智能体运动。还有一个价值网络 v(s;w),相当于评委,他的评分可以帮助策略网络(演员)改进技术。两个神经网络的结构与上一节中的完全相同,但是本节和上一节用不同的方法训练两个神经网络。

8.3.1 算法推导

训练价值网络: 训练价值网络 $v(s; \boldsymbol{w})$ 的算法是从贝尔曼公式来的:

$$V_{\pi}(s_t) = \mathbb{E}_{A_t \sim \pi(\cdot|s_t;\theta)} \Big[\mathbb{E}_{S_{t+1} \sim p(\cdot|s_t,A_t)} \Big[R_t + \gamma \cdot V_{\pi}(S_{t+1}) \Big] \Big].$$

我们对贝尔曼方程左右两边做近似:

- 方程左边的 $V_{\pi}(s_t)$ 可以近似成 $v(s_t; \boldsymbol{w})$ 。 $v(s_t; \boldsymbol{w})$ 是价值网络在 t 时刻对 $V_{\pi}(s_t)$ 做出的估计。
- 方程右边的期望是关于当前时刻动作 A_t 与下一时刻状态 S_{t+1} 求的。给定当前状态 s_t ,智能体执行动作 a_t ,环境会给出奖励 r_t 和新的状态 s_{t+1} 。用观测到的 r_t 、 s_{t+1} 对期望做蒙特卡洛近似,得到:

$$r_t + \gamma \cdot V_{\pi}(s_{t+1}). \tag{8.3}$$

• 进一步把公式 (8.3) 中的 $V_{\pi}(s_{t+1})$ 近似成 $v(s_{t+1}; \boldsymbol{w})$,得到

$$\widehat{y}_t \triangleq r_t + \gamma \cdot v(s_{t+1}; \boldsymbol{w}).$$

把它称作 TD 目标。它是价值网络在 t+1 时刻对 $V_{\pi}(s_t)$ 做出的估计。

 $v(s_t; \boldsymbol{w})$ 和 \hat{y}_t 都是对动作价值 $V_{\pi}(s_t)$ 的估计。由于 \hat{y}_t 部分基于真实观测到的奖励 r_t ,我们认为 \hat{y}_t 比 $v(s_t; \boldsymbol{w})$ 更可靠。所以把 \hat{y}_t 固定住,鼓励 $v(s_t; \boldsymbol{w})$ 更接近 \hat{y}_t 。

具体这样更新价值网络参数 w。定义损失函数

$$L(\boldsymbol{w}) \triangleq \frac{1}{2} [v(s_t; \boldsymbol{w}) - y_t]^2.$$

设 $\hat{v}_t \triangleq v(s_t; \boldsymbol{w})$ 。损失函数的梯度是:

$$\nabla_{\boldsymbol{w}} L(\boldsymbol{w}) = \underbrace{(\widehat{v}_t - \widehat{y}_t)}_{\text{TD } \not \in \not \stackrel{L}{\neq} \delta_t} \cdot \nabla_{\boldsymbol{w}} v(s_t; \boldsymbol{w}).$$

定义 TD 误差为 $\delta_t \triangleq \hat{v}_t - \hat{y}_t$ 。做一轮梯度下降更新 w:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \cdot \delta_t \cdot \nabla_{\boldsymbol{w}} v(s_t; \boldsymbol{w}).$$

这样可以让价值网络的预测 $v(s_t; \boldsymbol{w})$ 更接近 \hat{y}_t 。

训练策略网络: A2C 从公式 (8.2) 出发,对 $g(s,a;\theta)$ 做近似,记作 \tilde{g} ,然后用 \tilde{g} 更 新策略网络参数 θ 。下面我们做数学推导。回忆一下贝尔曼公式:

$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1} \sim p(\cdot | s_t, a_t)} \Big[R_t + \gamma \cdot V_{\pi}(S_{t+1}) \Big].$$

把近似策略梯度 $g(s_t, a_t; \boldsymbol{\theta})$ 中的 $Q_{\pi}(s_t, a_t)$ 替换成上面的期望,得到:

$$g(s_t, a_t; \boldsymbol{\theta}) = \begin{bmatrix} Q_{\pi}(s_t, a_t) - V_{\pi}(s_t) \end{bmatrix} \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a_t \mid s_t; \boldsymbol{\theta})$$

$$= \begin{bmatrix} \mathbb{E}_{S_{t+1}} \begin{bmatrix} R_t + \gamma \cdot V_{\pi}(S_{t+1}) \end{bmatrix} - V_{\pi}(s_t) \end{bmatrix} \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a_t \mid s_t; \boldsymbol{\theta}).$$

当智能体执行动作 a_t 之后,环境给出新的状态 s_{t+1} 和奖励 r_t ;利用 s_{t+1} 和 r_t 对上面的期望做蒙特卡洛近似,得到:

$$g(s_t, a_t; \boldsymbol{\theta}) \approx \left[r_t + \gamma \cdot V_{\pi}(s_{t+1}) - V_{\pi}(s_t) \right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a_t \mid s_t; \boldsymbol{\theta}).$$

进一步把状态价值函数 $V_{\pi}(s)$ 替换成价值网络 $v(s; \boldsymbol{w})$,得到:

$$\tilde{\boldsymbol{g}}(s_t, a_t; \boldsymbol{\theta}) \triangleq \left[\underbrace{r_t + \gamma \cdot v(s_{t+1}; \boldsymbol{w})}_{\text{TD EFR} \, \widehat{\boldsymbol{u}}_t} - v(s_t; \boldsymbol{w})\right] \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a_t \mid s_t; \boldsymbol{\theta}).$$

前面定义了TD目标和TD误差:

$$\widehat{y}_t \triangleq r_t + \gamma \cdot v(s_{t+1}; \boldsymbol{w})$$
 $\delta_t \triangleq v(s_{t+1}; \boldsymbol{w}) - \widehat{y}_t.$

因此,可以把 \tilde{g} 写成:

$$\tilde{\boldsymbol{g}}ig(s_t, a_t; \, \boldsymbol{ heta}ig) \ \triangleq \ -\delta_t \cdot
abla_{oldsymbol{ heta}} \ln \pi ig(a_t \, \big| \, s_t; \, oldsymbol{ heta}ig).$$

 $\tilde{g} \neq g$ 的近似,所以也是策略梯度 $\nabla_{\theta} J(\theta)$ 的近似。用 \tilde{g} 更新策略网络参数 θ :

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \beta \cdot \tilde{\boldsymbol{g}}(s_t, a_t; \boldsymbol{\theta}).$$

这样可以让目标函数 $J(\theta)$ 变大。

策略网络与价值网络的关系: A2C 中策略网络(演员)和价值网络(评委)的关系 如图 8.4 所示。智能体由策略网络 π 控制,与环境交互,并收集状态、动作、奖励。策略 网络(演员)基于状态 s_t 做出动作 a_t 。价值网络(评委)基于 s_t 、 s_{t+1} 、 r_t 算出 TD 误差 δ_t 。策略网络(演员)依靠 δ_t 来判断自己动作的好坏,从而改进自己的演技(即参数 θ)。

读者可能会有疑问:价值网络 v 只知道两个状态 s_t 、 s_{t+1} ,而并不知道动作 a_t ,那么价值网络为什么能评价 a_t 的好坏呢?价值网络 v 告诉策略网络 π 的唯一信息是 δ_t 。回顾一下 δ_t 的定义:

$$-\delta_t = \underbrace{r_t + \gamma \cdot v(s_{t+1}; \boldsymbol{w})}_{\text{TD} \not\sqsubseteq \sharp \, \widehat{n}_t} - \underbrace{v(s_t; \boldsymbol{w})}_{\sharp \sharp \sharp}.$$

基线 $v(s_t; \boldsymbol{w})$ 是价值网络在 t 时刻对 $\mathbb{E}[U_t]$ 的估计;此时智能体尚未执行动作 a_t 。而 TD 目标 \hat{y}_t 是价值网络在 t+1 时刻对 $\mathbb{E}[U_t]$ 的估计;此时智能体已经执行动作 a_t 。

图 8.4: A2C 中策略网络(演员)和价值网络(评委)的关系图。

- 如果 $\hat{y}_t > v(s_t; \boldsymbol{w})$,说明动作 a_t 很好,使得奖励 r_t 超出预期,或者新的状态 s_{t+1} 比预期好;这种情况下应该更新 $\boldsymbol{\theta}$,使得 $\pi(a_t|s_t;\boldsymbol{\theta})$ 变大。
- 如果 $\hat{y}_t < v(s_t; \boldsymbol{w})$,说明动作 a_t 不好,导致奖励 r_t 不及预期,或者新的状态 s_{t+1} 比预期差;这种情况下应该更新 $\boldsymbol{\theta}$,使得 $\pi(a_t|s_t;\boldsymbol{\theta})$ 减小。

综上所述, δ_t 中虽然不包含动作 a_t ,但是 δ_t 可以间接反映出动作 a_t 的好坏,可以帮助策略网络(演员)改进演技。

8.3.2 训练流程

下面概括 A2C 训练流程。设当前策略网络参数是 θ_{now} ,价值网络参数是 w_{now} 。执行下面的步骤,将参数更新成 θ_{new} 和 w_{new} :

- 1. 观测到当前状态 s_t ,根据策略网络做决策: $a_t \sim \pi(\cdot | s_t; \boldsymbol{\theta}_{\text{now}})$,并让智能体执行动作 a_t 。
- 2. 从环境中观测到奖励 r_t 和新的状态 s_{t+1} 。
- 3. 让价值网络打分:

$$\widehat{v}_t = v(s_t; \boldsymbol{w}_{\text{now}})$$
 $\widehat{v}_{t+1} = v(s_{t+1}; \boldsymbol{w}_{\text{now}})$

4. 计算 TD 目标和 TD 误差:

$$\widehat{y}_t = r_t + \gamma \cdot \widehat{v}_{t+1}$$
 $\forall t \in \mathcal{V}_t - \widehat{y}_t$.

5. 更新价值网络:

$$\boldsymbol{w}_{\text{new}} \leftarrow \boldsymbol{w}_{\text{now}} - \alpha \cdot \delta_t \cdot \nabla_{\boldsymbol{w}} v(s_t; \boldsymbol{w}_{\text{now}}).$$

6. 更新策略网络:

$$\boldsymbol{\theta}_{\text{new}} \leftarrow \boldsymbol{\theta}_{\text{now}} - \beta \cdot \delta_t \cdot \nabla_{\boldsymbol{\theta}} \ln \pi(a_t \mid s_t; \boldsymbol{\theta}_{\text{now}}).$$

注 此处训练策略网络和价值网络的方法属于**同策略** (On-policy),要求行为策略 (Behavior Policy) 与目标策略 (Target Policy) 相同,都是最新的策略网络 $\pi(a|s; \boldsymbol{\theta}_{now})$ 。不能使用经验回放,因为经验回放数组中的数据是用旧的策略网络 $\pi(a|s; \boldsymbol{\theta}_{old})$ 获取的,不能在当前重复利用。

8.3.3 用目标网络改进训练

上述训练价值网络的算法存在自举问题——即用价值网络自己的估值 \hat{v}_{t+1} 去更新价值网络自己。缓解自举问题的方法是用目标网络 (Target Network) 计算 TD 目标。把目标网络记作 $v(s; \boldsymbol{w}^-)$,它的结构与价值网络的结构相同,但是参数不同。使用目标网络计算 TD 目标,那么 A2C 的训练就变成了:

- 1. 观测到当前状态 s_t ,根据策略网络做决策: $a_t \sim \pi(\cdot | s_t; \boldsymbol{\theta}_{\text{now}})$,并让智能体执行动作 a_t 。
- 2. 从环境中观测到奖励 r_t 和新的状态 s_{t+1} 。
- 3. 让价值网络给 st 打分:

$$\widehat{v}_t = v(s_t; \boldsymbol{w}_{\text{now}}).$$

4. 让目标网络给 *s*_{t+1} 打分:

$$\widehat{v}_{t+1}^- = v(s_{t+1}; \boldsymbol{w}_{\text{now}}^-).$$

5. 计算 TD 目标和 TD 误差:

$$\widehat{y_t} = r_t + \gamma \cdot \widehat{q_{t+1}}$$
 $\delta_t = \widehat{v_t} - \widehat{y_t}$.

6. 更新价值网络:

$$\boldsymbol{w}_{\text{new}} \leftarrow \boldsymbol{w}_{\text{now}} - \alpha \cdot \delta_t \cdot \nabla_{\boldsymbol{w}} v(s_t; \boldsymbol{w}_{\text{now}}).$$

7. 更新策略网络:

$$\boldsymbol{\theta}_{\text{new}} \leftarrow \boldsymbol{\theta}_{\text{now}} - \beta \cdot \delta_t \cdot \nabla_{\boldsymbol{\theta}} \ln \pi (a_t \mid s_t; \boldsymbol{\theta}_{\text{now}}).$$

8. 设 $\tau \in (0,1)$ 是需要手动调的超参数。做加权平均更新目标网络的参数:

$$\boldsymbol{w}_{\text{new}}^- \leftarrow \tau \cdot \boldsymbol{w}_{\text{new}} + (1 - \tau) \cdot \boldsymbol{w}_{\text{now}}^-.$$

8.4 证明带基线的策略梯度定理

本节证明带基线的策略梯度定理 8.1。将定理 7.1 与引理 8.2 相结合,即可证得定理 8.1。

引理 8.2

设 b 是任意函数,但是不能依赖于 A。那么对于任意的 s,

$$\mathbb{E}_{A \sim \pi(\cdot | s; \boldsymbol{\theta})} \left[b \cdot \frac{\partial \ln \pi(A | s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] = 0.$$

证明 由于基线 b 不依赖于动作 A, 可以把 b 提取到期望外面:

$$\mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[b \cdot \frac{\partial \ln \pi(A|s;\theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \ln \pi(A|s;\theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a \in \mathcal{A}} \pi(a \mid s; \theta) \cdot \frac{\partial \ln \pi(a|s;\theta)}{\partial \theta}$$

$$= b \cdot \sum_{a \in \mathcal{A}} \pi(a \mid s; \theta) \cdot \frac{1}{\pi(a|s;\theta)} \cdot \frac{\partial \pi(a|s;\theta)}{\partial \theta}$$

$$= b \cdot \sum_{a \in \mathcal{A}} \frac{\partial \pi(a|s;\theta)}{\partial \theta}.$$

上式最右边的连加是关于a 求的,而偏导是关于 θ 求的,因此可以把连加放入偏导内部:

産加是关于
$$a$$
 求的,而偏导是关于 θ 求的,因此可以把连加 $\mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[b \cdot \frac{\partial \ln \pi(A|s;\theta)}{\partial \theta} \right] = b \cdot \frac{\partial}{\partial \theta} \underbrace{\sum_{a \in \mathcal{A}} \pi(a|s;\theta)}_{\text{恒等于 1}}.$

因此

$$\mathbb{E}_{A \sim \pi(\cdot | s; \boldsymbol{\theta})} \left[b \cdot \frac{\partial \ln \pi(A | s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] = b \cdot \frac{\partial 1}{\partial \boldsymbol{\theta}} = 0.$$

 \Diamond