InSAR training 2024

An introduction to InSAR and its applications

Gareth Funning, University of California, Riverside

InSAR

Active remote sensing with microwaves

SAR images

A radar satellite emits a pulse of microwave radiation and measures the amplitude and phase of the echoes

Amplitude (intensity) is a function of the roughness of the ground

Phase is a function of distance from satellite to ground ('range' in the jargon)

The phase of a single SAR image is not useful, but the difference between two images is...

Satellite: ERS-2 (1995–)

SAR image phase

It is not feasible to count the number of wavelengths between the satellite and the ground target!

Satellite: ERS-2 (1995–)

SAR image phase

But differencing the phase between different passes of the satellite allows us to isolate a *change* in distance

An individual SAR interferogram measures deformation in one dimension, in the radar line-of-sight

Vector description of InSAR

u = ground displacement vector

p = pointing vector (from satellite to ground target)

p is controlled by the satellite trajectory, beam mode (incidence angle) and position of the pixel within the swath

The unit pointing vector

u = ground displacement vector

 $\hat{\mathbf{p}} = \underline{\text{unit}}$ pointing vector (from satellite to ground target)

Range change

the scalar (dot) product of \mathbf{u} and $\hat{\mathbf{p}}$ is the 'range change' (r) we measure in interferograms

$$r = \mathbf{u} \times \hat{\mathbf{p}}$$

$$= |\mathbf{u}||\hat{\mathbf{p}}|\cos q$$

$$= |\mathbf{u}|\cos q$$

therefore, the key to modeling InSAR data is having a code that can simulate the displacements **u**

cross-section view

Typically the displacement varies spatially, and is diagnostic of the source

WARNING

Historically, people did not all use the same sign conventions in InSAR (including me...)

- Check whether your interferograms are 'range change' or 'ground LOS displacement'
- Check if your pointing vectors are consistent with your interferograms (pointing from satellite to ground, or ground to satellite?)

Image A - 12 August 1999

17 August 1999, Izmit earthquake (Turkey)

17 August 1999, Izmit earthquake (Turkey)

Tim Wright

Strike: 172°

Dip: 38°

Rake: -95°

M_w: 6.06

'unwrapped'

Shimon Wdowisnki

Matt Pritchard

Glaciers also produce deformation detectable in a single interferogram

Goldstein et al. (1993)

Decorrelation can be used to map building damage in earthquakes or other disasters

Four good interferograms

The stack

Stack = $\underline{11 + 12 + 13 + 14}$ Σ (time intervals)

Interseismic deformation model fits a profile through the stack

Relationship between phase and topography

$$h_a = 500 \text{ m}$$

 $B_{\perp} = 30 \text{ m}$

$$h_a = 100 \text{ m}$$

 $B_{\perp} = 150 \text{ m}$

- The phase shift due to topography is more pronounced the further apart (in space) the two images were acquired (i.e. the larger the perpendicular baseline)
- We define h_a, the 'altitude of ambiguity', as the change in elevation that would cause 1 fringe

For Sentinel-1:
$$h_a \approx \frac{15000}{B_{\perp}}$$

• B_{\perp} is the component of the baseline between the satellite positions that is perpendicular to the line-of-sight to the ground.

The Shuttle Radar Topography Mission

- Space Shuttle Endeavour flew for 11 days in February 2000 carrying 2 pairs of SAR antennae (C- and X-band)
- Simultaneous data acquisiton no problems from decorrelation or atmosphere
- Swath width of 225 km meant that the whole world between 60°N and 56°S could be mapped in 1 orbit cycle
- 12.3 terrabytes of data recorded
- 1 arcsecond resolution (~30 m); 3 arcsecond also available
- Ocean height was used as ground control

The Shuttle Radar Topography Mission

SRTM data: the Kamchatka peninsula

All released data available at http://earthexplorer.usgs.gov

DEM differencing can reveal erupted lava volume, volcano shape changes

