Управление технологическими процессами ректификации

Ю. Н. Сердитов

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ura-nikolaevic@yandex.ru

результаты Аннотация. Представлены анализа технологических процессов ректификации в различных отраслях промышленности как объектов управления. Выявлены основные возмущающие воздействия для данных процессов. Проведено компьютерное исследование поведения процессов ректификации без управления с целью параметров, оказывающих выявления значительное влияние на них. Приведена обобщенная структурная схема управляемого процесса ректификации.

Ключевые слова: ректификация; управляемые процессы; математическое моделирование; массообмен; теплообмен

I. Введение

Ректификация разделение бинарных многокомпонентных жидких, а также паровых смесей на чистые компоненты практически обладающие определенными заданными свойствами [1]. Данный процесс осуществляется как правило при противоточном взаимодействии паровой и жидкой фаз в аппаратах колонного типа. Отличительной особенностью формирование ректификации является процесса неравновесных потоков пара и жидкости из исходной смеси за счет различной температуры кипения ее компонентов [1].

Целевой функцией системы управления процессом ректификации является обеспечение максимального извлечения и доведение до заданных требований по качеству всех компонентов исходной смеси [1]-[3]. Оптимизация управления данным процессом заключается увеличении прибыли за счет сокращения эксплуатационных затрат vвеличении И производительности.

В связи с тем, что ректификационные колонные аппараты имеют различную конструкцию и процессы в них осуществляются при различных начальных и конечных условиях разработка системы управления для них представляется достаточно сложной задачей. В связи с этим необходима разработка математической модели управляемого процесса ректификации. Это позволит определить возмущающие воздействия на процесс, а также управляющие — которые позволят компенсировать эти воздействия.

В докладе представлен анализ процесса ректификации в колонне насадочного типа, используемого в

технологическом процессе огневой регенерации диэтиленгликоля (газовая промышленность).

II. ОПИСАНИЕ ФИЗИКИ ПРОЦЕССА РЕКТИФИКАЦИИ

Принципиальная схема процесса ректификации представлена на рис. 1. На схеме приняты следующие обозначения:

- технологическое оборудование: H6 насос водокольцевой вакуумный; P разделитель; H2 насос подачи рефлюкса в верхнюю часть колонны; ABO аппарат воздушного охлаждения; И испаритель; PK ректификационная колонна;
- потоки: ТГ топливный газ; ДГ дымовые газаы; НА – насыщенный абсорбент; РА – регенерированный абсорбент.

Рис. 1. Принципиальная схема процесса ректификации

Ректификация псевдобинарной смеси «абсорбентвода» является примером разделения исходной смеси на 2 практически чистых компонента: абсорбент и дистиллят. Разделение происходит в РК при многократном двухстороннем тепломассообменном процессе. Взаимодействующие фазы движутся в противотоке. При этом жидкая фаза стекает вниз по поверхности насадки в виде пленки, а паровая фаза поднимается вверх как сплошной поток через свободный объем насадки РК [4].

Как было отмечено ранее формирование неравновесных потоков пара и жидкости из исходной

смеси в РК происходит за счет различной температуры кипения ее абсорбента и воды. А взаимодействие фаз в процессе ректификации осуществляется за счет диффузии воды из абсорбента в пар и абсорбента из пара в жидкость, что обусловлено разностью их концентраций в потоках паров и абсорбента.

Паровой поток образуется в эвапорационном пространстве РК при подаче исходной смеси (НА) в РК. Здесь в результате однократного испарения происходит разделение исходной смеси на паровую и жидкую фазы. Также в этом пространстве происходит смешение полученного парового потока с паровым потоком, поднимающимся из испарителя И. Затем паровой поток, образовавшийся в РК, поднимается в верхнюю ее часть, откуда отводится в АВО. В АВО происходит два тепловых процесса: конденсация и охлаждение. Отдача тепла в атмосферу осуществляется путем обдува теплообменных секций АВО потоком атмосферного воздуха. При этом пары частично конденсируются и образуется поток жидкой фазы (дистиллят), который накапливается в разделителе Р. Часть жидкой фазы – рефлюкс возвращается в РК для орошения.

В процессе конденсации в теплообменных секциях ABO накапливается воздух и неконденсирующиеся газы. Это приводит к росту их парциального давления и уменьшению вакуума в РК. В связи с этим поддержание давления в РК на заданном уровне неконденсирующиеся газы непрерывно отводятся из ABO с помощью вакуумнасоса H6. Он также сглаживает колебания давления в системе, которые обусловлены изменением температуры окружающего воздуха [4].

В отгонной части РК на регулярной насадке происходит процесс тепломассообмена между паровой фазой, поднимающейся из испарителя и жидкой фазой, поступающей из эвапорационного пространства. Из насадочной секции жидкая фаза отводится в испаритель И. Здесь за счет теплообмена между внешними стенками жаровых труб и жидкой фазы из нее окончательно выпаривается влага. Поток жидкой фазы (РА) отводится из испарителя с заданной концентрацией.

III. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА РЕКТИФИКАЦИИ [5]

При разработке математической модели (ММ) процесса ректификации псевдобинарной смеси «абсорбент—вода» приняты следующие допущения:

- для массообменных процессов:

- жидкость (абсорбент или рефлюкс) в насадках РК полностью перемешивается;
- основой ММ массообменных процессов является гидродинамическая модель полного вытеснения;
- режим продольного перемешивания фаз не рассматривается;
- скорости пара и жидкости одинаковы по сечению РК;
- концентрации пара и жидкости одинаковы по сечению РК;

- массопередача на насадках РК эквимолярная;
- зоны простоя в насадках не образуются, зависание абсорбента в насадках не происходит;
- зависимость равновесной концентрации целевого компонента (ЦК) в паре в общем случае нелинейная;
- для теплообменных процессов:
- теплоемкость стенок РК мала по сравнению с теплоемкостью жидкости и пара;
- тепловой поток через стенку устанавливается мгновенно при изменении температур, движущихся противотоком паровой и жидкой фаз.

Запишем ММ взаимосвязанных тепломассообменных процессов при ректификации в виде системы дифференциальных уравнений в частных производных:

$$\begin{split} &\frac{\partial C_{\text{ЦП}}}{\partial t} = -v_{\text{\Pi}} \left(\theta_{\text{\Pi}} \right) \frac{\partial C_{\text{ЦП}}}{\partial z} - R_{\text{\Pi}} \left(\theta_{\text{\Pi}} \right) \left[C_{\text{ЦЖ}} - C_{\text{ЦЖ}}^{\text{p}} \left(C_{\text{ЦП}} \right) \right]; \\ &\frac{\partial C_{\text{ЦЖ}}}{\partial t} = v_{\text{Ж}} \frac{\partial C_{\text{ЦЖ}}}{\partial z} + R_{\text{Ж}} \left[C_{\text{ЦЖ}} - C_{\text{ЦЖ}}^{\text{p}} \left(C_{\text{ЦП}} \right) \right]; \\ &\frac{\partial \theta_{\text{\Pi}}}{\partial t} = -v_{\text{\Pi}} \left(\theta_{\text{\Pi}} \right) \frac{\partial \theta_{\text{\Pi}}}{\partial z} - R_{\theta_{\text{\Pi}}} \left(\theta_{\text{\Pi}} \right) \left(\theta_{\text{\Pi}} - \theta_{\text{Ж}} \right), \\ &\frac{\partial \theta_{\text{Ж}}}{\partial t} = v_{\text{Ж}} \frac{\partial \theta_{\text{Ж}}}{\partial z} + R_{\theta_{\text{Ж}}} \left(\theta_{\text{\Pi}} - \theta_{\text{Ж}} \right). \end{split} \tag{1}$$

где $C_{\text{цп}}$, $C_{\text{цж}}$ — концентрации ЦК в паре и в жидкости (абсорбент, рефлюкс); $C_{\text{цж}}^{\text{p}}(C_{\text{цп}})$ — равновесная концентрация ЦК в жидкости; $v_{\text{п}}, v_{\text{ж}}$ — скорости пара и жидкости; $\theta_{\text{п}}, \theta_{\text{ж}}$ — температура пара и жидкости; $R_{\text{п}}, R_{\text{ж}}, R_{\theta \text{п}}, R_{\theta \text{ж}}$ — физико-технологические коэффициенты, зависящие от физических свойств фаз и геометрии РК. В данной модели учитывается влияние температуры пара на его физические характеристики. Скорость пара $v_{\text{п}}$, зависит от температуры $\theta_{\text{п}}$.

Граничные условия ММ:

$$\begin{split} & \left. C_{\text{IIII}}(z,t) \right|_{z=0} = C_{\text{IIII}}^{\text{BX}}(t) \, ; \, \left. C_{\text{IIII}}(z,t) \right|_{z=l_{\kappa}} = C_{\text{IIII}}^{\text{BBIX}}(t) \, ; \\ & \left. C_{\text{IIJK}}(z,t) \right|_{z=l_{\kappa}} = C_{\text{IIJK}}^{\text{BX}}(t) \, ; \, \left. C_{\text{IIJK}}(z,t) \right|_{z=0} = C_{\text{IIJK}}^{\text{BBIX}}(t) \, ; \\ & \left. \theta_{\text{II}}(z,t) \right|_{z=0} = \theta_{\text{II}}^{\text{BX}}(z) \, ; \, \left. \theta_{\text{JK}}(z,t) \right|_{z=l} = \theta_{\text{JK}}^{\text{BX}}(z) \, ; \\ & \left. \theta_{\text{II}}(z,t) \right|_{z=l} = \theta_{\text{II}}^{\text{BBIX}}(z) \, ; \, \left. \theta_{\text{JK}}(z,t) \right|_{z=0} = \theta_{\text{JK}}^{\text{BBIX}}(z) \, ; \end{split}$$

Начальные условия ММ:

$$\begin{split} C_{\text{IIII}}(z,t)\Big|_{t=0} &= C_{\text{IIII}}^0(z)\,;\; C_{\text{IIJK}}(z,t)\Big|_{t=0} = C_{\text{IIJK}}^0(z)\,;\\ \theta_{\text{II}}(z,t)_{t=0} &= \theta_{\text{II}}^{\text{BX}}(z)\,;\; \theta_{\text{JK}}(z,t)_{t=0} = \theta_{\text{JK}}^{\text{BX}}(z)\,. \end{split}$$

Для проведения вычислительных экспериментов и проверки полученной ММ на компьютере осуществлен переход от непрерывной ММ (1) к дискретно-непрерывной модели.

IV. УПРАВЛЕНИЕ ПРОЦЕССОМ РЕКТИФИКАЦИИ

Анализ процесса, представленного на рис. 1 позволяет сделать вывод, что непосредственное управление процессами в РК не осуществимо. Управлять данным процессом можно регулируя теплообменные процессы в ABO и испарителе.

Таким образом, регулируемыми переменными данного процесса являются:

- температуры абсорбента в испарителе, паров в верхней части РК, дистиллята на выходе АВО;
- уровень абсорбента в испарителе;
- давление в системе «ABO PK испаритель».

Управляющими параметрами служат:

- расходы РА на выходе из испарителя, рефлюкса на входе в РК и ТГ на входе в горелку испарителя (или соотношения расходов ТГ – воздух);
- температуры рефлюкса и абсорбента на входе в РК;
- состав насыщенного абсорбента на входе в РК.

Для синтеза системы управления процессом ректификации, необходимо исследовать возмущающие воздействия, оказываемые на процесс.

В данном докладе проведено исследование возмущающих воздействий по температуре пара и абсорбента.

V. Вычислительный эксперимент

На базе ММ взаимосвязанных тепломассообменных процессов (1) была разработана компьютерная модель отгонной части РК (OPK) в математическом пакете Matlab / Simulink. Моделирование проводилось при следующих параметрах: $\Delta \tau = 0.01$ – шаг дискретизации по времени, z = 3 – количество пространственных точек на сетке, t = 100000 – конечное время моделирования.

Результаты компьютерного моделирования подтвердили адекватность моделей реальным технологическим процессам.

Результаты вычислительного эксперимента представлены в формате анализа системы при различных возмущающих воздействиях по температуре пара (рис. 2–5). Были выбраны следующие значения температуры пара для возмущения:

- 180 градусов по Цельсию верхнее предельное значение разложения в парожидкостной смеси «абсорбент-вода»;
- 160 градусов по Цельсию нормальное значение для протекания технологического процесса;
- 140 градусов по Цельсию промежуточное нижнее значение;
- 100 градусов по Цельсию нижнее предельное значение кипения воды в парожидкостной смеси «абсорбент–вода».

Рис. 2. Переходный процесс температуры пара

Рис. 3. Переходный процесс температуры жидкости

Рис. 4. Переходный процесс концентрации пара

Рис. 5. Переходный процесс концентрации жидкости

VI. ЗАКЛЮЧЕНИЕ

Исследование посвящено анализу процесса ректификации, на примере регенерации диэтиленгликоля при абсорбционной осушке природного газа Процесс присущ ректификации для многих нефтегазохимических технологий. В результате анализа процесса ректификации выявлены регулируемые переменные, изменение которых значительно влияет на процесс. На основе математической модели проведен вычислительный эксперимент. Возмущения подавались по одной из переменных — температуре пара. Результаты вычислительного эксперимента показывают, что возмущения по данному параметру значительно влияют на теплообменные и массообменные процессы, протекающие в ректификационной колонне.

Список литературы

- [1] Добыча, подготовка и транспорт природного газа и конденсата: Справ. Т.2 / Под ред. Ю.П. Коротаева, Р.Д. Маргулова, М.: Недра, 1984. 288 с.
- [2] Балыбердина И.Т. Физические методы переработки и использования газа. М.: Недра, 1988. 248 с.
- [3] Александров И.А. Ректификационные и абсорбционные аппараты. Методы расчета и основы конструирования. М.: Химия, 1978. 296 с.
- [4] Абрамкин С.Е., Душин С.Е. Моделирование управляемых процессов абсорбционной осушки природного газа. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2015. 160 с.
- [5] Абрамкин С.Е., Душин С.Е., Сердитов Ю.Н. Исследование взаимосвязанных тепло- и массообменных процессов в ректификационной колонне // XXI Междунар. конф. по мягким вычислениям и измерениям (SCM-2018). Сб. докл. в 2-х т. Т.1. Санкт-Петербург. 23–25 мая 2018. СПб.: СПбГЭТУ «ЛЭТИ». С. 340-343.
- [6] Анисимов И.В. Автоматическое регулирование процесса ректификации. М.: Гос. науч.-техн. изд-во нефт. и горно-топлив. пром-сти, 1961. 180 с.