双重 DES、三重 DES

由于算力提升,可对 DES 进行暴力破解(平均需搜索一半的密钥空间 $O(2^{55})$)。两种可行的解决办法:

- 1. 设计新的加密算法——AES
- 2. 使用双重 DES、三重 DES

[!NOTE|label: 对双重 DES 进行「中途相遇攻击」] 假定**已知明密文**对 (P,C), 有 $C=E_{K_2}E_{K_1}(P)$,我们只需找出 $X=E_{K_1}(P)=D_{K_2}(C)$ 即可。平均可在 $O(2^{55}\times 2)=O(2^{56})$ 内暴力破解

[!NOTE|label:三重 DES]

- 双倍长度密钥的 3DES: $C = E_{K_1}(D_{K_2}(E_{K_1}(P)))$, 它对特定的选择明文攻击和已知明文攻击的强度较弱,NIST 认定它只有 80 位的安全性
- 三倍长度密钥的 3DES: $C=E_{K_3}(D_{K_2}(E_{K_1}(P)))$, 由于中途相遇攻击,它的有效安全性仅为 112 位

可以复用 3DES 的代码来实现 DES (当 $K_2=K_1$ 或 $K_3=K_2$ 时)

数学基础—— $GF(2^n)$

教材第五章

- 域:域是一个集合,我们可以在其上进行加法、减法、乘法和除法而不脱离该集合。有理数集合、 实数集合以及复数集合都是我们所熟悉的域的例子
- 有限域: 含有限个元素的域,有限域在密码学中很重要

• $GF(2^n)$ 上的任何元素都表示为多项式,如 1100: x^3+x^2 ,加法和乘法(需要对既约多项式取模)运算有多项式表示法(下图)和二进制表示法。注意,以多项式表示法运算时系数需模 2

Table 5.3 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111	
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	
000	0	0	1	х	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	
001	1	1	0	x + 1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1	
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	х	
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x + 1	0	1	
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	х	1	0	

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	x^2+x+1
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	х	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	х	1	$x^2 + 1$	x^2	x + 1

(b) Multiplication

AES 原理

AES 轮结构由 4 个不同的阶段组成,包括一个置换和 3 个代替:

• 字节代替 (Substitute Bytes) : 用一个 S 盒完成分组的字节到字节的代替

• 行移位 (ShiftRows): 一个简单的置换

• 列混淆 (MixColumns) : 利用域 $GF(2^8)$ 上的算术特性的一个代替

• 轮密钥加(AddRoundKey): 当前分组和扩展密钥的一部分进行按位 XOR

AES

视频来自 https://youtu.be/mlzxpkdXP58

- AES比3DES更快
- AES 不是 Feistel 结构密码,但每个阶段均可逆
- AES 加解密代码可以复用是因为存在等价逆算法,两处改进使解密算法的结构与加密算法的结构一致(教材 P128):
 - 1. 交换逆向行移位和逆向字节代替:这两个操作是可以交换的,即 逆向移行[逆向字节代替[炎向字节代替[炎向字节代替[炎向移行[矣]]
 - 2. \bigcirc 交换轮密钥加和逆向列混淆: 对给定的状态 S_i 和给定的轮密钥 w_j 有 逆向列混淆 $(S_i \oplus w_j) = [逆向列混淆 (S_i)] \oplus [逆向列混淆 (w_j)]$ 所以要先**对轮密钥应用逆向列**

思考题

6.3

Rijndael 和 AES 有何不同?

Rijndael 允许 128, 192, 256 位的分组长度, AES 只允许 128 位的分组长度。

<!-- 为什么 AES 最后一轮没有列混淆? 无法找到等价的解密过程

第一轮之前要轮密钥加?否则第一轮的前三个就没用-->