Progress Report

Daniel Pereira

Index

Introduction

Theoretical notes

Simulation

Experimental

Conclusion

Introduction

Objectives

- Study CV-QKD with 4 state discrete modulation.
- ▶ Both simulation and experimental results where obtained.
- Results where linked to theoretical expected values, not each other (missing detector information to compare simulation to experimental values).

Results in this Presentation

- Simulation results:
 - ▶ Noise characterization.
 - Secret key generation rate in function of transmission for two levels of excess noise.
- ► Experimental results:
 - ► Phase drift compensation.
 - Noise characterization experiment.
 - Key distribution experiment with secret key generation rate estimation.

Theoretical notes

$$\begin{split} K &= \beta I(A:B) - S(B:A) = \beta \log_2(1 + \text{SNR}) - S(AB) + S(AB|B) \\ &= \beta \log_2(1 + \text{SNR}) - \sum_{k=1}^2 \left[(\bar{n}_k^{AB} + 1) \log_2(\bar{n}_k^{AB} + 1) - \bar{n}_k^{AB} \log_2 \bar{n}_k^{AB} \right] \\ &+ (\bar{n}^{AB|B} + 1) \log_2(\bar{n}^{AB|B} + 1) - \bar{n}^{AB|B} \log_2 \bar{n}^{AB|B} \end{split}$$

$$\gamma_{\mathsf{AB}} = \begin{bmatrix} (1+2\left\langle n\right\rangle)\mathbb{I}_2 & \sqrt{\frac{\tau}{2}}Z\sigma_Z \\ \sqrt{\frac{\tau}{2}}Z\sigma_Z & (T\left\langle n\right\rangle + 1 + \frac{\tau}{2}\epsilon)\mathbb{I}_2 \end{bmatrix}$$

$$\gamma_{AB|B} = \left[(1 + 2 \langle n \rangle) - \frac{\frac{T}{2}Z^2}{T \langle n \rangle + 2 + \frac{T}{2}\epsilon} \right] \mathbb{I}_2$$

Simulation

Block diagram

Simulation Parameters

Parameter	Symbol	Value
Detector Bandwidth	В	800 GHz
Symbol Period	Τ	20 ps
Optical Wavelength	λ	1550 nm
Detector Responsivity	ρ	1 A/W
Detector Gain	g	10 ⁶
Signal Optical Power	P_{Si}	\sim 51.26 nW
Local Oscillator Optical Power	P_{Lo}	1 mW
Thermal Noise Spectral Density	N_{Th}	1.610 V ²

Simulation constellation

Noise characterization

Theoretical notes Simulation Experimental

Simulation secret key generation rate

Experimental

Experimental setup

► Laser wavelength, repetition rate, etc.

Phase drift compensation

Detector noise variance characterization

Detector noise variance characterization

The values of these coefficients in the two presented fits are:

$$a_0 = 2.18 \times 10^{-5} \text{ V}^2,$$

 $a_1 = 1.01 \times 10^{-11} \text{ V}^2,$
 $a_2 = 2.481 \times 10^{-18} \text{ V}^2.$

for the I output of the coherent receiver and:

$$a_0 = 2.67 \times 10^{-5} \text{ V}^2,$$

 $a_1 = 9.68 \times 10^{-12} \text{ V}^2,$
 $a_2 = 5.22 \times 10^{-18} \text{ V}^2,$

Progress Report Instituto de Telecomunicões

Conclusion

