Teoria dei Giochi 2020/21

Sinossi

G. Oriolo Terza Sinossi

• AVVERTENZA: Di seguito trovate alcuni appunti, poco ordinati e poco formali, che uso come traccia durante le lezioni. Non sono assolutamente da considerarsi sostitutivi del materiale didattico.

• Riferimenti: Capitolo 2 Dispense Facchinei (pag 65-83). Il gioco della morra è definito invece sul capitolo 15 del testo di Chvatal.

1 Giochi a somma costante, a somma zero e antagonistici

• Riprendiamo il gioco Matching Pennies (MP). Ricordiamo che non ha equilibri di Nash. È anche evidente che una qualunque (buona) strategia dovrebbe essere implementata in modo randomizzato.

$$\begin{array}{ccc} Testa & Croce \\ Testa & (1,-1) & (-1,1) \\ Croce & (-1,1) & (1,-1) \end{array}$$

- Un gioco si dice a somma costante se per ogni $x = (x_1, ..., x_n) \in X$ risulta $\sum_{i=1..n} C_i(x) = \text{costante} \text{i.e.}$ il payoff totale da dividere è sempre lo stesso (Dilemma Prigioniero non a somma costante, MP a somma costante).
- Un gioco a somma costante è detto a somma zero se in particolare risulta $\sum_{i=1..n} C_i(x) = 0$. MP è un gioco a somma zero.
- Un gioco a somma zero con due giocatori è detto gioco antagonistico i.e. per ogni $x = (x_1, x_2) \in X$ risulta $C_1(x_1, x_2) = -C_2(x_1, x_2)$. MP è un gioco antagonistico. Nella rappresentazione di un gioco antagonistico è inutile riportare i valori di entrambi i payoff e, per convenzione, si riporta il payoff del primo giocatore, che nel seguito indichiamo semplicemente C.
- Un gioco antagonista (finito) è detto *simmetrico* se la matrice C dei payoff di un gioco antagonista finito è anti-simmetrica (i.e. $c_{i,j} = -c_{j,i}$ e $c_{i,i} = 0$). MP non è un gioco simmetrico.

• Analisi dei giochi antagonisti. Assumiamo che $C_1(x_1, x_2) = C(x_1, x_2)$ e quindi $C_2(x_1, x_2) = -C(x_1, x_2)$. Per definizione (x_1^*, x_2^*) è un equilibrio di Nash se: $C(x_1, x_2^*) \ge C(x_1^*, x_2^*)$, $\forall x_1 \in X_1$ and $-C(x_1^*, x_2) \ge -C(x_1^*, x_2^*)$, $\forall x_2 \in X_2$; ovvero se: $C(x_1, x_2^*) \ge C(x_1^*, x_2^*)$, $\forall x_1 \in X_1$ and $C(x_1^*, x_2) \le C(x_1^*, x_2^*)$, $\forall x_2 \in X_2$; ovvero se: $C(x_1^*, x_2) \le C(x_1^*, x_2^*)$, $\forall x_1 \in X_1$, $\forall x_2 \in X_2$.

2 Caratterizzazione dei punti di sella di una funzione

- Siano \mathcal{X} e \mathcal{Y} due insiemi qualsiasi e $f: \mathcal{X} \times \mathcal{Y} \mapsto \mathcal{R}$. (x^*, y^*) è un punto di sella (su $\mathcal{X} \times \mathcal{Y}$) se $f(x^*, y) \leq f(x^*, y^*) \leq f(x, y^*)$, $\forall x \in X, \forall y \in Y$.
- Cercare un equilibrio di Nash è la stessa cosa che cercare un punto di sella per $C(x_1, x_2)$. Nel seguito caratterizziamo i punti di sella di una funzione: cominciamo con un utile lemma.
- Lemma 1. Siano \mathcal{X} e \mathcal{Y} due insiemi qualsiasi e $f: \mathcal{X} \times \mathcal{Y} \mapsto \mathcal{R}$. Vale sempre: $\sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y) \leq \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y)$. Dim: $\forall x \forall y$, vale $f(x, y) \leq \sup_{y \in \mathcal{Y}} f(x, y)$; quindi $\forall y$, vale $\inf_{x} f(x, y) \leq \inf_{x} \sup_{y} f(x, y)$; infine $\sup_{y} \inf_{x} f(x, y) \leq \inf_{x} \sup_{y} f(x, y)$.
- Il seguente Teorema 1 caratterizza i punti di sella di una funzione. È importante osservare che, mentre la definizione dei punti di sella appare "locale", l'esistenza di punti di sella impone una condizione "globale": la condizione (i).
- Teorema 1. Siano \mathcal{X} e \mathcal{Y} due insiemi qualsiasi e $f: \mathcal{X} \times \mathcal{Y} \mapsto \mathcal{R}$. Sia (x^*, y^*) tale che $x^* \in \mathcal{X}$ e $y^* \in \mathcal{Y}$. La f ha un punto di sella in (x^*, y^*) se e solo se: (i) $\sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y) = \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y)$; (ii) $\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) = \sup_{y \in \mathcal{Y}} f(x^*, y)$; (iii) $\sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y) = \inf_{x \in \mathcal{X}} f(x, y^*)$.

Necessità . $\forall y \in Y$, vale $f(x^*, y^*) \geq f(x^*, y)$, quindi $f(x^*, y^*) \geq \sup_{y \in \mathcal{Y}} f(x^*, y) \geq \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y)$, poiché $x^* \in \mathcal{X}$. Analogamente, $\forall x \in x$, vale $f(x^*, y^*) \leq f(x, y^*)$, quindi $f(x^*, y^*) \leq \inf_{x \in \mathcal{X}} f(x, y^*) \leq \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y)$.

Mettendo insieme, $\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) \leq \sup_{y \in \mathcal{Y}} f(x^*, y) \leq f(x^*, y^*) \leq \inf_{x \in \mathcal{X}} f(x, y^*) \leq \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y)$. Ma allora dal Lemma 1 segue che: $\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) = \sup_{y \in \mathcal{Y}} f(x^*, y) = \inf_{x \in \mathcal{X}} f(x, y^*) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y)$.

Sufficienza: da (ii) $\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x,y) = \sup_{y \in \mathcal{Y}} f(x^*,y) \geq f(x^*,y^*)$; da (iii) $\sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x,y) = \inf_{x \in \mathcal{X}} f(x,y^*) \leq f(x^*,y^*)$; (ii) and (iii) + (i): $\sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x,y) = \inf_{x \in \mathcal{X}} f(x,y) = \sup_{y \in \mathcal{Y}} f(x^*,y) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x,y)$; concentrandosi su $\inf_{x \in \mathcal{X}} f(x,y^*) = f(x^*,y^*) = \sup_{y \in \mathcal{Y}} f(x^*,y)$ segue che $f(x^*,y) \leq f(x^*,y^*) \leq f(x,y^*)$, $\forall x \in X, \forall y \in Y$.

- Chiudiamo osserviamo la seguente proprietà di rettangolarità dei punti di sella. Pensandoci un po', è facile capire che questa proprietà è intimamente collegata con la condizione (i) del Teorema 1.
- Siano \mathcal{X} e \mathcal{Y} due insiemi qualsiasi e $f: \mathcal{X} \times \mathcal{Y} \mapsto \mathcal{R}$. Siano (x^a, y^a) e (x^b, y^b) due punti di sella. Allora anche (x^a, y^b) e (x^b, y^a) sono punti di sella e il valore di f è lo stesso in un qualunque punto di sella. Per prima cosa osserviamo che il valore di f è lo stesso in (x^a, y^a) e (x^b, y^b) . Consideriamo il punto (x^a, y^b) abbiamo: $f(x^a, y^b) \leq f(x^a, y^a)$ e $f(x^b, y^b) \leq f(x^a, y^b)$, i.e. $f(x^b, y^b) \leq f(x^a, y^b) \leq f(x^a, y^a)$. Consideriamo il punto (x^b, y^a) abbiamo: $f(x^a, y^a) \leq f(x^b, y^a) = f(x^b, y^a) \leq f(x^b, y^b)$, i.e. $f(x^a, y^a) \leq f(x^b, y^a) \leq f(x^b, y^b)$ Quindi $f(x^a, y^a) = f(x^b, y^a) = f(x^b, y^b) = f(x^a, y^b)$; ovvero il valore di f è lo stesso nei due (arbitrari) punti di sella. Dimostriamo che e.g. (x^a, y^b) è un p.to di sella: $f(x^a, y^b) = f(x^a, y^a) \geq f(x^a, y^b)$, $\forall x \in X$.

3 Gli equilibri di Nash in un gioco antagonistico

- Nel seguito usiamo spesso il fatto che $\sup_{x \in X} f(x) = -\inf_{x \in X} -f(x)$ etc.
- Consideriamo un gioco antagonistico e al solito indichiamo con $C_1(x_1, x_2)$ il payoff del primo giocatore (e quindi $C_2(x_1, x_2) = -C_1(x_1, x_2)$. Dal Lemma 1 segue che: $\sup_{x_2 \in X_2} \inf_{x_1 \in X_1} C_1(x_1, x_2) \leq \inf_{x_1 \in X_1} \sup_{x_2 \in X_2} C_1(x_1, x_2)$.
- Supponiamo ora che entrambi i giocatori del gioco antagonistico abbiano una strategia conservativa, che indichiamo rispettivamente con \bar{x}_1 e \bar{x}_2 . Per definizione:

$$\tilde{C}_1(\bar{x}_1) = \inf_{x_1 \in X_1} \sup_{x_2 \in X_2} C_1(x_1, x_2) \in \tilde{C}_2(\bar{x}_2) = \inf_{x_2 \in X_2} \sup_{x_1 \in X_1} C_2(x_1, x_2).$$

Osserviamo che $-\tilde{C}_2(\bar{x}_2) = -\inf_{x_2 \in \mathcal{X}_2} \sup_{x_1 \in \mathcal{X}_1} C_2(x_1, x_2) = \sup_{x_2 \in \mathcal{X}_2} -\sup_{x_1 \in \mathcal{X}_1} C_2(x_1, x_2) = \sup_{x_2 \in \mathcal{X}_2} \inf_{x_1 \in \mathcal{X}_1} -C_2(x_1, x_2) = \sup_{x_2 \in \mathcal{X}_2} \inf_{x_1 \in \mathcal{X}_1} C_1(x_1, x_2).$

Quindi, il Lemma 1 mostra che vale sempre $-\tilde{C}_2(x_2^*) \leq \tilde{C}_1(x_1^*)$.

Per capire il senso di questa relazione, ricordiamo nuovamente che $\tilde{C}_1(\bar{x}_1)$ è la perdita massima che il primo giocatore può subire giocando la strategia \bar{x}_1 e $\tilde{C}_2(\bar{x}_2)$ è la perdita massima che il secondo giocatore può subire giocando la strategia \bar{x}_2 . Segue che $-\tilde{C}_2(\bar{x}_2)$ è la vincita minima che il secondo giocatore può garantirsi giocando la strategia \bar{x}_2 .

La disuguaglianza mostrata dal Lemma 1 $\tilde{C}_1(\bar{x}_1) \geq -\tilde{C}_2(\bar{x}_2)$ dice quindi una cosa banale! Ovvero, che la perdita massima che il primo giocatore può subire giocando la strategia \bar{x}_1 è maggiore o uguale della vincita minima che il secondo giocatore può garantirsi giocando la strategia \bar{x}_2 .

Quello che non può succedere è che $\tilde{C}_1(\bar{x}_1) < -\tilde{C}_2(\bar{x}_2)$, per esempio $\tilde{C}_1(\bar{x}_1) = 3$ e $-\tilde{C}_2(\bar{x}_2) = 4$, perche vorrebbe dire che il primo giocatore ha a disposizione una

strategia che gli garantisce di perdere sempre non più di 3 euro e il secondo giocatore ha a disposizione una strategia che gli garantisce di vincere sempre almeno 4 euro: ma questo non è possibile in un gioco antagonistico e quindi a somma zero!

• Vediamo un esempio:

$$\begin{array}{cccccc} 7 & -2 & -2 & 5 \\ 1 & -2 & -3 & 6 \\ 2 & -6 & -9 & -4 \end{array}$$

Indichiamo x_j^i la strategia *i*-esima del giocatore *j*. Allora: $\tilde{C}_1(x_1^1) = 7$; $\tilde{C}_1(x_1^2) = 6$; $\tilde{C}_1(x_1^3) = 2$; quindi la strategia conservativa per il primo giocatore è $\bar{x}_1 = x_1^3$ e vale $\tilde{C}_1(x_1^*) = 2$.

Inoltre $\tilde{C}_2(x_2^1) = -1$; $\tilde{C}_1(x_2^2) = 6$; $\tilde{C}_1(x_2^3) = 9$; $\tilde{C}_1(x_2^4) = 4$; quindi la strategia conservativa per il secondo giocatore è $\bar{x}_2 = x_2^1$ e vale $\tilde{C}_2(x_2^*) = -1$.

Il primo giocatore ha quindi a disposizione una strategia, la strategia x_1^3 che gli garantisce di perdere, nel caso peggiore, 2 euro, mentre il secondo giocatore ha a disposizione una strategia, la strategia x_2^1 , che gli garantisce di vincere, nel caso peggiore, almeno 1 euro.

Incidentalmente, osserviamo che il gioco è privo di equilibri di Nash, come possiamo verificare studiando direttamente la matrice.

• Vediamo un altro esempio:

Indichiamo x_j^i la strategia *i*-esima del giocatore *j*. Allora: $\tilde{C}_1(x_1^1) = 7$; $\tilde{C}_1(x_1^2) = 6$; $\tilde{C}_1(x_1^3) = 4$; quindi la strategia conservativa per il primo giocatore è $x_1^* = x_1^3$ e vale $\tilde{C}_1(x_1^*) = 4$.

Inoltre $\tilde{C}_2(x_2^1)=-1$; $\tilde{C}_1(x_2^2)=6$; $\tilde{C}_1(x_2^3)=9$; $\tilde{C}_1(x_4^*)=-4$; quindi la strategia conservativa per il secondo giocatore è $x_2^*=x_2^4$ e vale $\tilde{C}_2(x_2^*)=-4$.

In questo caso $\tilde{C}_1(x_1^*) = -\tilde{C}_2(x_2^*)$. Il primo giocatore ha quindi a disposizione una strategia, la terza, che gli garantisce di perdere, nel caso peggiore, 4 euro, mentre il secondo giocatore ha a disposizione una strategia, la quarta, che gli garantisce di vincere, nel caso peggiore, almeno 4 euro.

Incidentalmente, osserviamo che in questo caso il gioco ha un equilibrio Nash, come possiamo verificare studiando direttamente la matrice. L'equilibrio di Nash è dato

dall'incrocio delle due strategie conservative: come vedremo nel seguito questo non è un caso e segue dal fatto che appunto la condizione $\tilde{C}_1(x_1^*) \geq -\tilde{C}_2(x_2^*)$ vale all'uguaglianza.

- Consideriamo quindi un gioco antagonista (finito o infinito) che abbia un equilibrio di Nash. Abbiamo dimostrato in precedenza che il gioco ha un equilibrio di Nash nel punto $(x_1^*, x_2^*) \in \mathcal{X}_1 \times \mathcal{X}_2$ se e solo se (x_1^*, x_2^*) è un punto di sella per $C_1(x_1, x_2)$. Segue dal Teorema 1 che il gioco ha un equilibrio di Nash in (x_1^*, x_2^*) se e solo se:
 - (i) $\sup_{x_2 \in \mathcal{X}_2} \inf_{x_1 \in \mathcal{X}_1} C_1(x_1, x_2) = \inf_{x_1 \in \mathcal{X}_1} \sup_{x_2 \in \mathcal{X}_2} C_1(x_1, x_2);$
 - (ii) $\inf_{x_1 \in \mathcal{X}_1} \sup_{x_2 \in \mathcal{X}_2} C_1(x_1, x_2) = \sup_{x_2 \in \mathcal{X}_2} C_1(x_1^*, x_2);$
 - (iii) $\sup_{x_2 \in \mathcal{X}_2} \inf_{x_1 \in \mathcal{X}_1} C_1(x_1, x_2) = \inf_{x_1 \in \mathcal{X}_1} C_1(x_1, x_2^*).$

La condizione (ii) equivale a richiedere che x_1^* sia una strategia conservativa per il primo giocatore.

Passiamo alla condizione (iii). Abbiamo già osservato che per il primo membro vale: $\sup_{x_2 \in \mathcal{X}_2} \inf_{x_1 \in \mathcal{X}_1} C_1(x_1, x_2) = -\inf_{x_2 \in \mathcal{X}_2} \sup_{x_1 \in \mathcal{X}_1} C_2(x_1, x_2)$. Osserviamo ora che per il secondo membro vale: $\inf_{x_1 \in \mathcal{X}_1} C_1(x_1, x_2^*) = -\sup_{x_1 \in \mathcal{X}_1} -C_1(x_1, x_2^*) = -\sup_{x_1 \in \mathcal{X}_1} C_2(x_1, x_2^*)$. Quindi la condizione si può riscrivere $\inf_{x_2 \in \mathcal{X}_2} \sup_{x_1 \in \mathcal{X}_1} C_2(x_1, x_2) = \sup_{x_1 \in \mathcal{X}_1} C_2(x_1, x_2^*)$, ed equivale quindi a richiedere che x_2^* sia una strategia conservativa per il secondo giocatore.

Le condizioni (ii) e (iii) assicurano quindi che le strategie x_1^* e x_2^* sono dominanti per entrambi i giocatori. A questo punto, se ricordiamo la riscrittura del Lemma 1 che abbiamo discusso in precedenza, segue che la (i) si può riscrivere come: $\tilde{C}_1(x_1^*) = -\tilde{C}_2(x_2^*)$.

- Quindi per un gioco antagonista un punto ammissibile (x_1^*, x_2^*) è un equilibrio di Nash se e solo se valgono le seguente condizioni:
 - (ii) + (iii) x_1^* e x_2^* sono rispettivamente strategie conservative per il primo e il secondo giocatore e (i) $\tilde{C}_1(x_1^*) = -\tilde{C}_2(x_2^*)$.
- Se consideriamo nuovamente l'esempio:

$$\begin{array}{cccccc} 7 & -2 & -2 & 5 \\ 1 & -2 & -3 & 6 \\ 2 & -6 & -9 & -4 \end{array}$$

avevamo visto che $\tilde{C}_1(x_1^*) = 2$ e $\tilde{C}_2(x_2^*) = -1$. Poiché $\tilde{C}_1(x_1^*) \neq -\tilde{C}_2(x_2^*)$, il gioco è privo di equilibri di Nash, come avevamo già osservato.

Se consideriamo nuovamente l'esempio:

avevamo visto che $\tilde{C}_1(x_1^*) = -\tilde{C}_2(x_2^*)$. Infatti, come avevamo già osservato, (x_1^*, x_2^*) è un equilibrio di Nash. In particolare, per ciascun giocatore esiste un'unica strategia conservativa e quindi (x_1^3, x_2^4) è l'unico equilibrio di Nash del gioco.

Consideriamo un ultimo esempio:

Indichiamo x_j^i la strategia *i*-esima del giocatore *j*. Allora: $\tilde{C}_1(x_1^1) = 8$; $\tilde{C}_1(x_1^2) = 2$; $\tilde{C}_1(x_1^3) = 8$; $\tilde{C}_1(x_1^4) = 2$; quindi le strategie conservative per il primo giocatore sono $x_1^* \in \{x_1^2, x_1^4\}$ e vale $\tilde{C}_1(x_1^*) = 2$.

Inoltre $\tilde{C}_2(x_2^1) = -2$; $\tilde{C}_1(x_2^2) = 7$; $\tilde{C}_1(x_2^3) = 4$; $\tilde{C}_1(x_2^4) = 6$; $\tilde{C}_1(x_2^5) = -2$; quindi le strategie conservative per il primo giocatore sono $x_2^* \in \{x_2^1, x_2^5\}$ e vale $-\tilde{C}_2(x_2^*) = 2$.

Poiché $\tilde{C}_1(x_1^*) = -\tilde{C}_2(x_2^*)$, il gioco ha equilibri di Nash. In particolare, per ciascun giocatore esistono due strategie conservative e quindi gli equilibri di Nash del gioco sono: (x_1^2, x_2^2) ; (x_1^2, x_2^5) ; (x_1^4, x_2^5) ; (x_1^4, x_2^5) .

Quest'ultimo esempio è conferma la proprietà di rettangolarità dei punti di sella, e quindi degli equilibri di Nash: se (x_1^a, x_2^a) e (x_1^b, x_2^b) sono due equilibri di Nash, allora anche (x_1^a, x_2^b) e (x_1^b, x_2^a) sono equilibri di Nash e il payoff (e.g. del primo giocatore) è lo stesso in un qualunque equilibrio di Nash.

- Il valore $\tilde{C}_1(x_1^*) = -\tilde{C}_2(x_2^*)$, quando esiste, è detto valore del gioco antagonista. Un gioco a valore zero è detto fair; naturalmente, il valore di un gioco simmetrico può solo essere 0 (ma può anche non esistere). Il valore di un gioco ci dice quindi qual è il payoff che ci possiamo "ragionevolmente aspettare" se giochiamo quel gioco. Notiamo anche che esso prescinde completamente dalle strategie che poi i giocatori adotteranno: appunto dipende dalle regole del gioco e non dal comportamento dei giocatori.
- Tutto ciò sembra un po' artificiale. Quanti sono in fondo i giochi antagonisti che ammettono un equilibrio di Nash? In effetti, vedremo più avanti che tutti i giochi antagonistici in strategia randomizzata ammettono un equilibrio di Nash.

3.1 Giochi antagonistici infiniti

- Consideriamo un gioco antagonista infinito. L'unica differenza con il caso precedente è che un giocatore (o entrambi i giocatori) potrebbe non avere una strategia conservativa, e in questo caso non esiste alcun equilibrio di Nash. Se, viceversa, esiste (almeno) una strategia conservativa x_1^* per il primo giocatore e (almeno) una strategia conservativa x_2^* per il secondo giocatore, allora valgono considerazioni analoghe a quelle svolte per il caso finito, ovvero: il gioco ha un equilibrio di Nash (x_1^*, x_2^*) se e solo se x_1^* e x_2^* sono strategie conservative rispettivamente per il primo e il secondo giocatore e vale $\tilde{C}_1(x_1^*) = -\tilde{C}_2(x_2^*)$; inoltre se (x_1^a, x_2^a) e (x_1^b, x_2^b) sono due equilibri di Nash, allora anche (x_1^a, x_2^b) e (x_1^b, x_2^a) sono equilibri di Nash e il payoff (e.g. del primo giocatore) è lo stesso in un qualunque equilibrio di Nash.
- Osserviamo quindi che in un equilibrio di Nash di un gioco antagonista (se esiste!) ogni giocatore gioca una strategia conservativa. Naturalmente, ci sono giochi antagonisti finiti, e che dunque hanno strategie conservative, che non hanno equilibri di Nash (per esempio, matching pennies).

3.2 Giochi strettamente competitivi

- I risultati fin qui esposti valgono esclusivamente per giochi antagonistici, ovvero giochi a somma zero con due giocatori. In effetti questi risultati possono essere estesi a una classe di giochi a due giocatori leggermente più grande, come mostrato nel seguito.
- Un gioco con due giocatori è strettamente competitivo se vale: $C_1(x^a) \leq C_1(x^b)$ se e solo se $C_2(x^a) \geq C_2(x^b) \ \forall x^a, x^b \in X_1 \times X_2$ (questa condizione è banalmente verificata per giochi antagonistico, quindi i giochi antagonistici sono strettamente competitivi).
- Per definizione (x_1^*, x_2^*) è un N.E. di un gioco a 2 giocatori se e solo se $C_1(x_1, x_2^*) \ge C_1(x_1^*, x_2^*)$, $\forall x_1 \in X_1$ and $C_2(x_1^*, x_2) \ge C_2(x_1^*, x_2^*)$, $\forall x_2 \in X_2$.

Si noti che se il gioco è strettamente competitivo $C_2(x_1^*, x_2) \ge C_2(x_1^*, x_2^*) \ \forall x_2 \in X_2$ se e solo se $C_1(x_1^*, x_2) \le C_1(x_1^*, x_2^*), \ \forall x_2 \in X_2$.

Quindi, se il gioco è strettamente competitivo, segue che (x_1^*, x_2^*) è un N.E. se e solo se $C_1(x_1, x_2^*) \ge C_1(x_1^*, x_2^*) \ge C_1(x_1^*, x_2)$, $\forall x_1 \in X_1, \forall x_2 \in X_2$.

Quindi gli equilibri di Nash di un gioco strettamente competitivo coincidono con i punti di sella della funzione $C_1(x_1, x_2)$ e, in pratica, valgono tutti i risultati precedenti. Quindi (x_1^*, x_2^*) è un equilibrio di Nash per un gioco strettamente competitivo se e solo se x_1^* e x_2^* sono strategie conservative, rispettivamente per il primo e il secondo giocatore, e vale $\sup_{x_2 \in \mathcal{X}_2} C_1(x_1^*, x_2) = \inf_{x_1 \in X_1} C_1(x_1, x_2^*)$. Inoltre se ci sono più equilibri di Nash il payoff del primo giocatore (oppure il payoff del secondo giocatore) è lo stesso su tutti i punti e vale la proprietà di rettangolarità .