<class 'pandas.core.frame.DataFrame'> RangeIndex: 4 entries, 0 to 3 Data columns (total 25 columns): Column Non-Null Count Dtype YEAR 4 non-null int64 MONTH 4 non-null int64 MAX OPERATION DATE 4 non-null datetime64[ns] COUNT_USERS 4 non-null int64 float64 DEPOSIT_MIN 4 non-null float64 DEPOSIT_MAX 4 non-null DEPOSIT_SUM 4 non-null float64 float64 DEPOSIT_AVG 4 non-null 4 non-null int64 COUNT_DEPOSITS datetime64[ns] MIN_USER_CREATED_DATE 4 non-null 10 TWO_YEAR_USERS 4 non-null int64 4 non-null 11 ONE_YEAR_USERS int64 12 SIX_MONTHS_USERS 4 non-null int64 int64 13 THREE_MONTH_USERS 4 non-null 14 TWO MONTH USERS 4 non-null int64 15 ONE_MONTH_USERS 4 non-null int64 16 RECENT_USERS 4 non-null int64 4 non-null float64 17 SUM_TWO_YEAR_USERS 18 SUM_ONE_YEAR_USERS 4 non-null float64 float64 19 SUM_SIX_MONTHS_USERS 4 non-null float64 20 SUM_THREE_MONTH_USERS 4 non-null float64 21 SUM_TWO_MONTH_USERS 4 non-null 22 SUM_ONE_MONTH_USERS float64 4 non-null float64 23 SUM_RECENT_USERS 4 non-null 24 REGISTERED USERS 4 non-null int64 dtypes: datetime64[ns](2), float64(11), int64(12) memory usage: 928.0 bytes vCorrelationMatrix = vData.corr() sn.heatmap(vCorrelationMatrix, annot=False, cmap="coolwarm") plt.show() C:\Users\Johan\AppData\Local\Temp\ipykernel_25692\207237478.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to F alse. Select only valid columns or specify the value of numeric only to silence this warning. vCorrelationMatrix = vData.corr() 1.00 YEAR -MONTH COUNT USERS -- 0.75 DEPOSIT_MIN -DEPOSIT_MAX -DEPOSIT SUM -- 0.50 DEPOSIT AVG COUNT DEPOSITS -TWO YEAR USERS -- 0.25 ONE_YEAR_USERS -SIX MONTHS USERS THREE MONTH USERS -- 0.00 TWO_MONTH_USERS -ONE_MONTH_USERS -RECENT_USERS -0.25SUM TWO YEAR USERS -SUM ONE YEAR USERS -SUM SIX MONTHS USERS --0.50SUM THREE MONTH USERS -SUM TWO MONTH USERS --0.75SUM ONE MONTH USERS -SUM RECENT USERS REGISTERED_USERS SUR SUM_T SUM_T SUM_S In []: # Se obtiene las correlaciones más fuertes en el DataSet. vCorrelationMatrix[vCorrelationMatrix < 1][vCorrelationMatrix > 0.95].unstack() \ .transpose().sort_values(ascending=False).drop_duplicates().dropna() COUNT_USERS Out[]: COUNT_DEPOSITS 0.999597 0.997504 COUNT_USERS THREE_MONTH_USERS 0.995859 THREE_MONTH_USERS COUNT_DEPOSITS REGISTERED_USERS ONE_YEAR_USERS 0.995742 0.995060 SUM_ONE_YEAR_USERS DEPOSIT_MAX THREE_MONTH_USERS DEPOSIT_SUM 0.994881 0.987967 COUNT_USERS DEPOSIT_SUM SUM_RECENT_USERS 0.987147 SIX_MONTHS_USERS 0.984937 DEPOSIT_AVG SUM RECENT USERS 0.984380 SUM_THREE_MONTH_USERS **DEPOSIT SUM** 0.983466 COUNT_DEPOSITS 0.983281 THREE_MONTH_USERS RECENT_USERS SIX_MONTHS_USERS 0.983027 DEPOSIT_AVG ONE YEAR USERS SUM_ONE_MONTH_USERS 0.980686 0.980380 DEPOSIT_MAX SUM_TWO_YEAR_USERS TWO_MONTH_USERS 0.980361 SUM_TWO_YEAR_USERS 0.979880 RECENT_USERS DEPOSIT_SUM 0.978213 SIX_MONTHS_USERS DEPOSIT_SUM 0.975636 SUM_SIX_MONTHS_USERS RECENT_USERS COUNT_DEPOSITS TWO_MONTH_USERS 0.974863 SUM_THREE_MONTH_USERS SIX_MONTHS_USERS 0.970639 0.970211 SUM_ONE_MONTH_USERS REGISTERED_USERS 0.970081 COUNT_USERS RECENT_USERS SUM_ONE_YEAR_USERS 0.969814 SUM_TWO_YEAR_USERS SUM_ONE_MONTH_USERS 0.969641 TWO_YEAR_USERS COUNT_USERS TWO_MONTH_USERS 0.968490 REGISTERED USERS ONE_MONTH_USERS 0.968233 RECENT_USERS 0.968020 COUNT_DEPOSITS 0.960136 SUM_THREE_MONTH_USERS ONE_MONTH_USERS 0.959273 ONE_YEAR_USERS 0.955337 ONE_MONTH_USERS TWO_MONTH_USERS 0.955222 SIX_MONTHS_USERS RECENT_USERS THREE_MONTH_USERS 0.953503 0.951617 TWO_MONTH_USERS THREE_MONTH_USERS COUNT_DEPOSITS ONE_MONTH_USERS 0.950417 dtype: float64 Los valores que se presentan en la lista corresponden a coeficientes de correlación entre diferentes variables de interés en algún tipo de análisis de datos. El coeficiente de correlación es una medida que indica la fuerza y dirección de la relación lineal entre dos variables. Puede variar entre -1 y 1, donde los valores negativos indican una relación inversa, mientras que los valores positivos indican una relación directa. En este caso, se presentan diferentes valores de correlación entre distintas variables financieras. A continuación, se describen cada uno de ellos y sus implicaciones: • Se ignora la correlación de COUNT_DEPOSITS (cantidad de depositos realizados) y COUNT_USERS (cantidad de usuarios activos) ya que son variables dependientes. Indicando simplemente que la cantidad de depositos al mes por un usuario es facilmente predecible de X depositos al mes por usuario activo. • Correlación del 99.75% entre THREE_MONTH_USERS (usuarios activos ingresados entre los últimos 3 y 6 meses) y COUNT_USERS (cantidad de usuarios activos), y correlación de THREE_MONTH_USERS y DEPOSIT_SUM (valor total depositado en el mes) del 99.48%: Indicando que la mayoria de usuarios activos registrados en los últimos tres a seis meses solos responsable de la mayoria de los depositos y el monto total depositado al mes. Lo que indica una fidelización media entre los usuarios activos de la App. • La correlación de 0.995742 entre ONE_YEAR_USERS y REGISTERED_USERS indica que hay una fuerte relación positiva entre estas dos variables. Esto sugiere que la retención de usuarios es alta en la aplicación, lo que es una buena señal para el negocio. Es decir, los usuarios que se unen a la aplicación tienden a permanecer activos durante un período de tiempo más prolongado, lo que ayuda a aumentar la base de usuarios registrados de la aplicación. Además, esta correlación sugiere que es probable que haya un fuerte compromiso por parte de los usuarios activos de la aplicación a largo plazo, lo que podría ser beneficioso para la empresa que busca fidelizar a sus clientes. • La variable DEPOSIT_AVG tiene una correlación de 98.49% con SUM_RECENT_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios activos registrados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios depositados por usuarios depositados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios depositados por usuarios depositados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios depositados por usuarios depositados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios depositados por usuarios depositados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios depositados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios depositados en el último mes) y 98.43% con SUM_THREE_MONTH_USERS (valor depositados por usuarios depositados por usuarios depositados en el último depositados en el último depositados en el últim depositado por usuarios activos registrados en los últimos 3 a 6 meses). Indicando que son los que más tienden a realizar depositos. • La variable REGISTERED_USERS (cantidad de usuarios registrados en la App) tiene una alta correlación de 99.57% con ONE_YEAR_USERS (usuarios activos registrados dentro de uno y dos años), ONE_MONTH_USERS (usuarios activos registrados en uno o dos últimos meses), TWO_MONTH_USERS (usuarios activos registrados en dos a tres meses), 90.31% de TWO_YEAR_USERS (usuarios activos registrados entre dos años o más), 88.12% de COUNT_DEPOSITS (depósitos al mes): Esto índica que se puede asumir la cantidad de usuarios activos en la App usando la cantidad de total de usuarios registrados en la App y la cantidad de depósitos esperados en el mes. Nota: Esto es un DataSet reducido de solo cuatro meses sin el total de la base de datos, por lo que en producción el resultado puede variar ante la falta de información. vData.plot(x = "MAX_OPERATION_DATE", y = ["DEPOSIT_SUM", "DEPOSIT_MAX"]) <AxesSubplot: xlabel='MAX_OPERATION_DATE'> MAX_OPERATION_DATE Al analizar los datos, se observa una correlación significativamente baja entre el valor máximo del depósito y el número total de usuarios registrados en la aplicación, en comparación con la correlación existente entre el total de depósitos realizados y el número de usuarios registrados. Este hallazgo sugiere que el total depositado por mes no es realmente un campo que afecte significativamente al total de usuarios registrados en la aplicación. En su lugar, se puede afirmar que el número de depósitos realizados por los usuarios es un factor más importante en la determinación del número total de usuarios registrados en la aplicación. En otras palabras, este resultado indica que para aumentar el número total de usuarios registrados en la aplicación, es más efectivo tener una gran cantidad de usuarios que realicen varios depósitos pequeños en lugar de una reducida cantidad de usuarios con depósitos grandes. Este hallazgo puede ser de gran utilidad para diseñar estrategias efectivas de marketing y fidelización de usuarios en la aplicación. vData.plot(x = "MAX_OPERATION_DATE", y = ["TWO_YEAR_USERS", "ONE_YEAR_USERS", "SIX_MONTHS_USERS", "THREE_MONTH_USERS", "TWO_MONTH_USERS", "ONE_MONTH_USERS", "RECENT_USERS"]) <AxesSubplot: xlabel='MAX_OPERATION_DATE'> TWO_YEAR_USERS ONE_YEAR_USERS 300 SIX_MONTHS_USERS THREE MONTH USERS 250 TWO_MONTH_USERS ONE_MONTH_USERS 200 RECENT_USERS 150 100 50 MAX_OPERATION_DATE In []: vData.plot(x = "MAX_OPERATION_DATE", y = ["SUM_TWO_YEAR_USERS", "SUM_ONE_YEAR_USERS", "SUM_SIX_MONTHS_USERS", "SUM_THREE_MONTH_USERS", "SUM_TWO_MONTH_USERS", "SUM_ONE_MONTH_USERS", "SUM_RECENT_USERS" <AxesSubplot: xlabel='MAX_OPERATION_DATE'> 1e7 SUM_TWO_YEAR_USERS 2.5 -SUM_ONE_YEAR_USERS SUM_SIX_MONTHS_USERS 2.0 SUM_THREE_MONTH_USERS SUM_TWO_MONTH_USERS SUM_ONE_MONTH_USERS 1.5 SUM RECENT USERS 1.0 0.5 0.0 MAX_OPERATION_DATE Se puede observar a través del análisis de las gráficas que existe una clara tendencia en cuanto al comportamiento de los usuarios en lo que respecta al monto de los depósitos que realizan. En particular, se puede notar que los usuarios recién registrados, es decir aquellos que llevan menos de un mes en la aplicación, son los que realizan los mayores depósitos, seguidos por aquellos usuarios que llevan entre 6 meses y un año en la plataforma.

Estos resultados sugieren una alta fidelidad por parte de los usuarios a corto y medio plazo. Sin embargo, se identifica una disminución significativa en el número de depósitos realizados por aquellos usuarios que

Esto implica que la aplicación depende en gran medida de la fidelización a medio plazo de los usuarios y de un flujo constante de nuevos usuarios para mantener el ritmo de depósitos. En este sentido, se hace

evidente la importancia de implementar estrategias de retención de usuarios a largo plazo y de atracción de nuevos usuarios con el fin de mantener un crecimiento sostenible y constante en la plataforma.

llevan entre uno y dos años de antigüedad en la aplicación, así como por aquellos usuarios que llevan más de dos años utilizando la plataforma.

| 34/34 [00:03<00:00, 11.18it/s, Completed]

1/1 [00:00<00:00, 9.35it/s]

1/1 [00:07<00:00, 7.35s/it]

from pandas_profiling import ProfileReport

Summarize dataset: 100%

Render HTML: 100%

Generate report structure: 100%

Export report to file: 100%

vProfile = ProfileReport(vData, title = "Depositos Coink - Report")

| 1/1 [00:00<00:00, 1.11it/s]

vProfile.to_file("resources/depositos_coink_auto_eda.html")

In []: import sqlite3

import pandas as pd

vData.info()

import seaborn as sn

import matplotlib.pyplot as plt

In []: vSqlConnection = sqlite3.connect('resources/coink.db')

vData = pd.read_sql('SELECT * FROM TBT_MONTH_DEPOSIT_AGG', vSqlConnection)

vData["MAX_OPERATION_DATE"] = pd.to_datetime(vData["MAX_OPERATION_DATE"])

vData["MIN_USER_CREATED_DATE"] = pd.to_datetime(vData["MIN_USER_CREATED_DATE"])