Virtual Circuit (VC) networks

- Virtual-circuit network provides network-layer connection service
 - Call setup, teardown for each call before data can flow
 - Every router on source-dest path maintains "state" for each passing connection
 - Bandwidth and buffers allocated to VC (dedicated resources = predictable service)
- Packets forwarded using VC identifiers:
 - VC ids embedded in cells (packets)
 - Router looks up outgoing interface for VC id

In interface	In VC id	Out VC id	Out interface
1	6	22	1
1	7	13	2
1	13	5	1

Mountains & Minds

329

Multiprotocol label switching (MPLS)

329

- Initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 - Fast lookup using fixed length identifier (rather than shortest prefix matching)
 - Borrowing ideas from ATM networks
 - IP datagram keeps its IP address!
- Considers forwarding paths as links between distant routers

- Label-switched routers
 - Forward packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables

How does a router know to interpret frame payload as MPLS vs IP?

Mountains & Minds

330

MPLS versus IP paths

- IP routing:
 - Path to destination determined by destination address alone

Mountains & Minds

331

Router (R4) can use different MPLS routes to A based on source IP address Router signaling over RSVP-TE Link state flooding over OSPF (extended)

- IP routing:
 - Path to destination determined by destination address alone
- MPLS routing:
 - Path to destination can be based on source and dest. address
 - Fast reroute: precompute backup routes in case of link failure (useful for VoIP)

Mountains & Minds

MPLS forwarding tables

Mountains & Minds

333

Mountains & Minds

Data center networks

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - Online services (e.g. Amazon)
 - Content-servers (e.g., YouTube, Akamai)
 - Search engines, data mining (e.g., Google)
- Challenges:
 - Multiple applications, each serving massive numbers of clients
 - Complex traffic patterns
 - Managing/balancing load to avoid processing, networking, data bottlenecks
- New trends
 - Outside data tonnage
 - Al arms race

Mountains & Minds

335

Data center networks

- Load balancer: application-layer routing
 - Receives external client requests Directs workload within data center

336

Data center networks

- Rich interconnection among switches, racks:
 - Increased throughput between racks (multiple routing paths possible)
 - Increased reliability via redundancy

Mountains & Minds

337

337

Fat tree

Mountains & Minds

DCell

Mountains & Minds

339