Algebra I (ISIM), lista 11, ćwiczenia 21.05.24, deklaracje do godz. 11:00.

Teoria: Kategorie: definicje, podstawowe przykłady. Funktory kowariantne i kontrawariantne. Sprzężenie jako funktor kontrawariantny w kategorii $Vect_{\mathbb{R}}$. $m_{\mathcal{C}^*\mathcal{B}^*}(f^*) = m_{\mathcal{BC}}(f)^T$.

(Anty)izomorfizm Frecheta-Riesza. Indukowany iloczyn skalarny w V^* . f^* ortogonalne [unitarne], jeśli f ortogonalne [unitarne]. f^+ : hermitowskie sprzężenie f: definicja, własności. Hermitowskie sprzężenie macierzy. Rozkład (jednoznaczny) endomorfizmu przestrzeni euklidesowej [unitarnej] na sumę endomorfizmu symetrycznego (hermitowskiego) i antysymetrycznego (antyhermitowskiego). Diagonalizowalność endomorfizmu hermitowskiego w bazie ortonormalnej. Diagonalizowalność rzeczywistej macierzy symetrycznej i macierzy hermitowskiej. Rozkład SVD.

V,W oznaczają przestrzenie liniowe nad $\mathbb{R},\ \mathcal{A},\mathcal{B}$ oznaczają kategorie, A,B,C oznaczają obiekty kategorii \mathcal{A} .

- (i) Udowodnić, że morfizm id_A w aksjomacie KAT2 jest jedyny.
 (ii) Załóżmy, że f ∈ Mor(A, B) jest izomorfizmem. Wtedy istnieje g ∈ Mor(B, A) jak w definicji izomorfizmu. Udowodnić, że takie g jest jedyne. Nazywa się je odwrotnością f: g = f⁻¹.
- 2. Załóżmy, że $\Phi: \mathcal{A} \to \mathcal{B}$ jest funktorem (ko- lub kontrawariantnym), zaś f jest izomorfizmem w kategorii \mathcal{A} . Udowodnić, że $\Phi(f)$ jest izomorfizmem w kategorii \mathcal{B} .
- 3. Produktem obiektów A,B (oznaczenie $A\times B$) nazywamy obiekt C wraz z morfizmami $\pi_A:C\to A$ i $\pi_B:C\to B$ spełniającymi następujący warunek uniwersalności:

Dla wszystkich $C', \pi'_A: C' \to A$ i $\pi'_B: C' \to B$ istnieje jedyny morfizm $f: C' \to C$ taki, że diagram (*) poniżej komutuje:

Udowodnić, że jeśli (C, π_A, π_B) oraz (C', π'_A, π'_B) są produktami A i B, to f w diagramie (*) jest izomorfizmem.

4. – Koproduktem obiektów A i B (oznaczenie $A \sqcup B$) nazywamy obiekt C wraz z morfizmami $i_A:A\to C$ i $i_B:B\to C$ spełniającymi następujący warunek uniwersalności (dualny do warunku uniwersalności dla produktu):

Dla wszystkich $C', i'_A : A \to C'$ i $i'_B : B \to C'$ istnieje jedyny morfizm $f : C \to C'$ taki, że diagram (**) poniżej komutuje:

Udowodnić, że jeśli (C, i_A, i_B) i (C', i'_A, i'_B) są koproduktami A i B, to f w diagramie (**) jest izomorfizmem.

- 5. (a) Udowodnić, że w kategorii zbiorów Set następujące układy są produktami zbiorów A i B:
 - (i) $(A \times B, \pi_A, \pi_B)$, gdzie $A \times B$ to produkt kartezjański zbiorow A i B, zaś π_A, π_B to rzuty na osie.
 - (ii) $(A \sqcap B, \pi'_A, \pi'_B)$, gdzie $A \sqcap B$ oznacza zbiór wszystkch funkcji $f : \{0, 1\} \to A \cup B$ takich, że $f(0) \in A$ i $f(1) \in B$, zaś $\pi'_A : A \sqcap B \to A$, $\pi'_B : A \sqcap B \to B$ dane są przez $\pi'_A(f) = f(0)$, $\pi'_B(f) = f(1)$.
 - (b) Udowodnić, ze w kategorii zbiorów Set dla każdych zbiorów A, B istnieje koprodukt $(A \sqcup B, i_A, i_B)$.
- 6. W kategorii zbiorów Set,dla ustalonego zbioru Aokreślamy funktor $_*:Set \rightarrow Set$ przez:
 - (i) Dla X: obiektu Set: $X_* = X^A$ (tj. zbiór wszystkich funkcji $A \to X$).
 - (ii) Dla $f: X \to Y$ (morfizmu Set), $f_*: X_* \to Y_*$ jest dane przez $f_*(\varphi) = f \circ \varphi$. Sprawdzić, że * jest funktorem kowariantnym.
- 7. Udowodnić, ze w kategorii $Vect_{\mathbb{R}}$ przestrzeni liniowych nad \mathbb{R} produkt przestrzeni $V \times W$ jest produktem i koproduktem przestrzeni V i W (z odpowiednimi morfizmami).
- 8. Załóżmy, że $\mathcal{B} = \{b_1, b_2, b_3\}$ jest bazą V, zaś $\mathcal{B}^* = \{b_1^*, b_2^*, b_3^*\}$ bazą V^* sprzężoną do \mathcal{B} . Niech $\mathcal{C} = \{c_1, c_2, c_3\}$, gdzie $c_1 = b_1 + b_2 + b_3, c_2 = b_2, c_3 = b_3$ oraz niech $\mathcal{C}^* = \{c_1^*, c_2^*, c_3^*\}$ będzie bazą V^* sprzężoną do \mathcal{C} . Wyrazić wektory c_1^*, c_2^*, c_3^* jako liniowe kombinacje wektorów b_1^*, b_2^*, b_3^* .
- 9. Załóżmy, że $\mathcal{B} = \{b_1, \ldots, b_n\}$ jest bazą $V, \mathcal{B}^* = \{b_1^*, \ldots, b^*\} \subseteq V^*$ jest bazą sprzężoną do \mathcal{B} , zaś $\mathcal{B}^{**} = \{b_1^{**}, \ldots, b_n^{**}\} \subseteq V^{**}$ bazą sprzężoną do \mathcal{B}^* . Niech $\varphi: V \to V^{**}$ będzie kanonicznym izomorfizmem. Udowodnić, że $\varphi(b_i) = b_i^{**}$.
- 10. Załóżmy, że $\Phi = \{\varphi_1, \dots, \varphi_n\}$ jest bazą V^* . Dowieść, że istnieje dokładnie jedna baza $\mathcal{B} = \{b_1, \dots, b_n\} \subseteq V$ taka, że Φ jest sprzężona do \mathcal{B} (tzn. $\varphi_i = b_i^*$). (wsk: skorzystać z poprzedniego zadania).

- 11. Załóżmy, że V ma wymiar skończony oraz $\varphi_1, \ldots, \varphi_n \in V^*$. Udowodnić, że (a) $Lin(\varphi_1) = Lin(\varphi_2) \iff Ker(\varphi_1) = Ker(\varphi_2)$, (b)* $\dim_{V^*} \{\varphi_1, \ldots, \varphi_n\} = codim_V \bigcap_{i=1}^n Ker(\varphi_i)$.
- 12. Załóżmy, że f,g są przekształceniami liniowymi przestrzeni euklidesowych skończonego wymiaru. Udowodnić, że $(f \circ g)^+ = g^+ \circ f^+$ (pod warunkiem, że złożenia mają sens), bez rachunków, odwołując się do funktorialności sprzężenia w kategorii $Vect_{\mathbb{R}}$ i używając izomorfizmu Frecheta-Riesza.
- 13. Załóżmy, że A jest macierzą rzeczywistą. Udowodnić, że macierze A^TA i AA^T mają te same dodatnie wartości własne, licząc z krotnościami.
- 14. Załóżmy, że $A = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & 1 & -1 & 1 \end{bmatrix}$.
 - (a) Znaleźć macierze U i D w rozkładzie $A=UDV^T$ według wartości singularnych macierzy A.
 - (b)
– Dodatkowo w (a) znaleźć macierz V. Wskazówka: Najpierw znaleźć rozkład SVD dla macierzy A^T .