Math 310 Homework 2

Due Tuesday, September 18

7. Show by induction that for any integers a and b, and integer $k \geq 0$

$$a+b$$
 divides $a^{2k+1}+b^{2k+1}$

Conclude that for any integer $a \geq 2$ and odd integer $k \geq 3$, $a^k + 1$ is never prime.

(Hint: this is really very much like Problems 2 and 3, just with no actual numbers...)

8. Show that if $n \ge 1$ and $2^n + 1$ is a prime number, then n must be a power of 2 (i.e., every prime factor of n is 2!).

(Hint: Suppose not! Problem 7 will help....)

- 9. (Childs, p.26, E1) Show that for any three consecutive integers n, n + 1, n + 2, exactly one of them is divisible by 3.
- 10. Show that if a|c and b|d, then ab|cd.
- 11. Show that if a|b and a|c, then a|rb + sc for all integers r and s.
- 12. Show that if a|c and b|c, and (a,b)=1, then ab|c

(Hint: write 1 = an + bm, then mutliply by c and stare at the right-hand side of the equation....)

For Math 310H, or extra credit:

H1. Show that if a|(b+c) and (b,c)=d, then $(a,b)\leq d$ and $(a,c)\leq d$. Give an example where the inequalities are not actually equalities!