Diplomado "Fundamento de Redes Neuronales Artificiales"

Justificación del Proyecto:

En el panorama actual dentro del contexto académico, tecnológico y profesional, la inteligencia artificial y los modelos pertenecientes al paradigma de aprendizaje automático se han convertido en herramientas necesarias para resolver problemas que involucren la recolección, procesamiento, análisis e interpretación de datos, siendo particularmente populares las redes neuronales artificiales. Asimismo, existe una demanda creciente de profesionales calificados que puedan desenvolverse tanto en industrias dedicadas a la salud, finanzas, vehículos autónomos, etc. como en el sector educativo y de investigación.

No obstante, aún existen programas educativos que no incluyen dentro del repertorio de materias algún curso especializado en enseñar y desarrollar los principios básicos de estos modelos. En este sentido, se propone un diplomado orientado a esta área del conocimiento, que pueda servir ya sea como punto de inicio de personas en general interesadas en forjar una carrera en esta área emergente o como complemento a las actividades académicas de estudiantes de licenciatura y posgrado inscritos en cualquiera de los planes de estudio afines a las disciplinas de matemáticas, física, electrónica, mecánica, computación, etc. dentro cualquier institución de educación superior, donde se refuerza la educación con herramientas matemáticas fundamentales con potencial de ser soluciones a problemas comúnmente presentes en el quehacer académico de estudiantes o laboral de los profesionistas.

Participantes:

Nombre	Responsabilidades	Lugar de adscripción	Contacto
Dr. Juan Moisés Arredondo Velázquez	 Módulo 1,4 y 5 Diseño de evaluaciones Administración del diplomado 	Centro de investigación y estudios avanzados del IPN (CINVESTAV), Unidad Tamaulipas	diplomado.nn@outlook.com juan.arredondo@cinvestav.mx cel: 4181392878
M.C. Gerardo Uriel Perez Rojas	 Módulo 3 (Redes generativas) Publicidad del diplomado Administración de las grabaciones Registro de asistentes (Pase de lista) 	Facultad de Ciencia Físico Matemáticas, Benemérita Universidad Autónoma de Puebla	diplomado.nn@outlook.com gerardourielperez.04@gmail.com cel: 2228656157
Lic. Luis Rey Vargas Guadarra	 Módulo 2 (Autoencoders) Administración de la página del diplomado 	Universidad de Roma La Sapienza	diplomado.nn@outlook.com luisrey7.lrv@gmail.com cel: 2213235489
Dr. Eduardo Moreno Barbosa	Administración de recursos para el equipamiento del laboratorio de física médica	Edificio FM5 - 206, Laboratorio de física médica Facultad de Ciencia Físico Matemáticas, Benemérita Universidad Autónoma de Puebla	emoreno@fcfm.buap.mx

Objetivo general del programa:

Aportar a estudiantes y profesionistas los fundamentos teóricos de las redes neuronales artificiales a fin adquirir habilidades que eventualmente puedan servir para proponer variantes o complementos competitivos con los modelos matemáticos ya existentes.

Objetivo(s) específicos del programa:

- Inculcar a estudiantes y profesionistas el interés por el desarrollo de modelos matemáticos relacionados a las redes neuronales artificiales.
- Fortalecer la habilidad de estudiantes y profesionistas para recopilar información relacionada a la resolución de problemas relacionados con el procesamiento, análisis y clasificación de datos.
- Desarrollar en los estudiantes y profesionistas la habilidad para verificar el análisis matemático con un lenguaje de programación.
- Practicar el trabajo de colaboración entre estudiantes y/o profesionistas para el entendimiento y resolución de un problema de análisis y/o clasificación de datos.
- Enseñar a comunicar y difundir efectivamente las estrategias propuestas para la resolución de un problema matemático.

Duración total del programa: 140 horas

Fechas programadas: 9/agosto/2025 al 5 de diciembre del 2025

Horario: Sábados 10:00am-2:00pm, Miércoles 10:00am-2:00pm (35 Sesiones)

Programa de estudio:

Módulo	Contenido temático	Número de horas clase	Fechas	Impartido por:
Redes Neuronales	 Algoritmos de optimización Regresión lineal y logística Funciones de activación y costo Algoritmo de retropropagación 	40 (10 sesiones)	9/ agosto/ 2025 al 10/ septiembre/ 2025	Dr. Juan Moisés Arredondo Velázquez
Autocodificadores	 Codificación y decodificación Espacio latente y reducción de dimensionalidad Autoencoders variacionales Generación de datos con autoencoders 	28 (7 sesiones)	13/ septiembre/ 2025 al 4/octubre/20 25	Lic. Luis Rey Vargas Guadarrama
Redes Generativas Adversarias (GANs)	 Discriminador y generador Entrenamiento adversarial Generación de datos sintéticos 	28 (7 sesiones)	8/octubre/ 2025 al 29/octubre/ 2025	M.C. Gerardo Uriel Pérez Rojas
Redes recurrentes	 RNN, LSTM y GRU Análisis de series temporales 	24 (6 sesiones)	1/noviembre / 2025 al 19/ noviembre /2025	Dr. Juan Moisés Arredondo Velázquez
Máquinas restringidas de Boltzmann (RBM)	 Reducción de dimensionalidad con RBM Redes de creencia 	20 (5 sesiones)	22/ noviembre/ 2025 al 6/ diciembre /2025	Dr. Juan Moisés Arredondo Velázquez

Perfil del aspirante:

Este diplomado está dirigido al público en general, sin embargo, se espera que los aspirantes a cursar el diplomado de "Fundamentos de redes neuronales artificiales" posean conocimientos sólidos en los fundamentos de programación y matemáticas (álgebra, cálculo diferencial, soluciones de ecuaciones diferenciales). Además, los candidatos deben demostrar competencias en áreas como análisis y síntesis de información, razonamiento lógico y comunicación oral y escrita. En el caso de la comunidad estudiantil, podrá ingresar cualquier estudiante de nivel académico desde licenciatura hasta doctorado. Aunque se recomienda haber concluido al menos el 50% de los cursos de licenciatura.

Perfil del egresado:

Los graduados de este diplomado contarán con las habilidades requeridas para participar en esfuerzos colaborativos dentro de equipos multidisciplinarios para llevar a cabo el diseño, implementación y validación de sistemas basados en redes neuronales artificiales. Podrán aplicar algoritmos biológicamente inspirados en diversos dominios, como el aprendizaje automático, el procesamiento del lenguaje natural y la visión artificial. Adicionalmente, presentarán una mejora en hábitos de trabajo relacionados al desarrollo de profesiones afines tales como el rigor científico, el autoaprendizaje y la persistencia. Contarán con tolerancia en su entorno social, aceptando la diversidad cultural, étnica y humana. Finalmente, demostrarán habilidades de búsqueda, documentación e interpretación de información obtenida de fuentes formales de comunicación científica y técnica.

Requisitos de egreso:

Requisitos de evaluación: Para considerar que cada estudiante culminó con éxito el curso y puede entonces ser acreedor al diploma, se tomará en consideración lo siguiente:

Realizar para cada módulo las actividades asignadas y obtener una evaluación mayor al 70% de puntos alcanzables. Las actividades y los criterios específicos para evaluación se proporcionarán a los estudiantes en el transcurso de cada unidad.

Asistir como mínimo al 80% de las sesiones sabatinas. Se considera como asistencia válida para el estudiante si éste permanece en cada sesión virtual por lo menos 50% del tiempo (2 horas).