# torch.optim.SGD()

Note that the SGD in Pytorch means the mini-batch gradient descent.

#### The Basic Process in torch.optim.SGD()

Let's consider a regression problem, assuming that out data includes 6 samples with 1 dimension:

$$\{(x,y), x \in R^1, y \in R^1 | (1,2), (2,2.8), (3,3.6), (4,4.4), (5,5.2) \}$$
 (1)

We can see the equation between x and y is  $y=0.8\times x+1.2$  . Now, Let's set a **linear regression** model, the formula can be expressed as:

$$\hat{y} = w \cdot x + b \tag{2}$$

Set the **MSE Loss** as the objective function, the formula can be expressed as: (since the dim of data is 1, so we can re-formula it as below)

$$\mathcal{L}(w,b) = MSE(\hat{y}, y) = \sum_{i=0}^{d} (\hat{y}_i - y_i)^2$$

$$= (\hat{y} - y)^2$$

$$= (w \cdot x + b - y)^2$$
(3)

And we can calculate the gradient of w and b in this example:

$$\begin{cases} \nabla_{w_t} \mathcal{L} = 2 \cdot (w \cdot x + b - y) \cdot x \\ \nabla_{b_t} \mathcal{L} = 2 \cdot (w \cdot x + b - y) \end{cases}$$

$$\tag{4}$$

Let's use **Stochastic Gradient Descent** algorithm to solve the parameters of model ( $\eta$  is the learning rate), which will choose only one sample to calculate gradient:

$$\begin{cases} w_{t+1} = w_t - \eta \cdot \nabla_{w_t} \mathcal{L} \\ b_{t+1} = b_t - \eta \cdot \nabla_{b_t} \mathcal{L} \end{cases}$$
 (5)

In this example, the iterative formula is:

$$\begin{cases} w_{t+1} = w_t - \eta \cdot 2(w_t \cdot x + b_t - y) \cdot x \\ b_{t+1} = b_t - \eta \cdot 2(w_t \cdot x + b_t - y) \end{cases}$$
 (6)

Let's use python to simulate the process.

Firstly, the definition of the Dataset:

```
from torch.utils.data import Dataset
 2
 3
    class MyData(Dataset):
 4
        def __init__(self):
 5
            super(MyData, self).__init__()
            self.data = torch.tensor([[1], [2], [3], [4], [5]],
 6
    dtype=torch.float)
 7
            self.label = 0.8 * self.data + 1.2
 8
 9
        def __getitem__(self, item):
            return self.data[item], self.label[item]
10
11
        def __len__(self):
12
            return len(self.data)
13
```

Then, the definition of the Linear Regression Model:

```
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.layer = nn.Linear(1, 1)

def forward(self, x):
        return self.layer(x)
```

the main function as below:

```
1 # ---A Simple Framework of the plain Gradient Descent ---#
 2
    model = MyModel()
 3
    data = MyData()
    # learning rate
 4
 5
    LR = 0.1
 6
 7
    optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0,
    weight_decay=0)
    # the w,b for iteration
    w = model.layer.weight.data
 9
    b = model.layer.bias.data
10
11
    for _ in range(5):
        print("========{}th data======".format(_)
12
        # the process of official Pytorch
13
14
        inputs, target = data[_]
15
        output = model(inputs)
16
        loss = F.mse_loss(output, target)
        print("Pytorch mseloss:", loss)
17
        print("Our mseloss:", (w * inputs + b - target) ** 2)
18
19
        optimizer.zero_grad()
20
        loss.backward()
21
        optimizer.step()
22
23
        # the grad
        print("Pytorch w_grad:", model.layer.weight.grad)
24
25
        print("Cal w_grad:", 2 * (w * inputs + b - target) * inputs)
26
        print("Pytorch b_grad:", model.layer.bias.grad)
        print("Cal b_grad:", 2 * (w * inputs + b - target)
27
28
```

```
29
30
        # ----our iterative formula----#
31
        new_w = w - LR * 2 * (w * inputs + b - target) * inputs
        new_b = b - LR * 2 * (w * inputs + b - target)
32
        print("Pytorch new_w:", model.layer.weight.data)
33
34
        print("Our new_w:", new_w)
35
        print("Pytorch new_b:", model.layer.bias.data)
        print("Our new_b:", new_b)
36
37
        w = new_w
38
        b = new_b
39
    print(model.layer.weight.data, model.layer.bias.data)
40
    print(w, b)
```

We can get <code>tensor[[0.9559]] tensor[1.4754]</code> and <code>tensor[0.9559] tensor[1.4754]</code>. Our result is the same as the Pytorch official implement. The main iterative formula is: (corresponding the formula (6).)

```
1    new_w = w - LR * 2 * (w * inputs.item() + b - target.item()) * inputs.item()
2    new_b = b - LR * 2 * (w * inputs.item() + b - target.item())
```

## The weight\_decay in torch.optim.SGD()

The same situation as above, but we set the weight decay in SGD to be 0.5 rather than 0.

Consider the L2 penalty in MSE Loss:

$$\mathcal{L}'(w,b) = MSE'(\hat{y},y) = \sum_{i=0}^{d} (\hat{y}_i - y_i)^2 + \frac{\lambda}{2d} \cdot ||w||^2$$
 (7)

$$= (\hat{y} - y)^2 + \frac{\lambda}{2d} \cdot ||w||^2 \tag{8}$$

$$= (w \cdot x + b - y)^{2} + \frac{\lambda}{2d} \cdot ||w||^{2}$$
 (9)

$$= (w \cdot x + b - y)^{2} + \frac{\lambda}{2} \cdot ||w||^{2}$$
 (10)

$$=\mathcal{L}(w,b)+\frac{\lambda}{2}\cdot w^2 \tag{11}$$

And iterative formula will be: (the  $\lambda$  is the weight\_decay in SGD)

$$w_{t+1} = w_t - \eta \cdot \nabla_{w_t} \mathcal{L}'$$

$$= w_t - \eta \cdot (\nabla_{w_t} \mathcal{L} + \lambda \cdot w)$$

$$= w_t - \eta \cdot \nabla_{w_t} \mathcal{L} - \eta \cdot \lambda \cdot w$$

$$= (1 - \eta \lambda) \cdot w_t - \eta \cdot \nabla_{w_t} \mathcal{L}$$
(12)

Main Formulation: 
$$w_{t+1} = w_t - \eta \cdot (\nabla_{w_t} \mathcal{L} + \lambda \cdot w)$$

Note that the weight decay in SGD is equivalent to the L2 penalty.

So we re-formula our iterative formulation in our code:

```
1  WD = 0.5
2  optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0,
    weight_decay=WD)
3  ...
4  new_w = (1 - LR * WD) * w - LR * 2 * (w * inputs.item() + b - target.item())
    * inputs.item()
5  new_b = (1 - LR * WD) * b - LR * 2 * (w * inputs.item() + b - target.item())
6  ...
7  w = new_w
8  b = new_b
```

We can get <code>tensor[[0.6061]] tensor[0.9894]</code> and <code>tensor[0.6061] tensor[0.9894]</code>. Our result is the same as the Pytorch official implement.

### The Momentum in torch.optim.SGD()

The same situation as above, but we set the momentum in SGD to be 0.9 rather than 0.

Consider the Exponential moving average of the gradient: ( $\beta$  is the momentum)

$$W_0 = \nabla_{w_0} \mathcal{L} \tag{13}$$

$$W_t = \beta \cdot W_{t-1} + (1 - \beta) \cdot \nabla_{w_t} \mathcal{L} \tag{14}$$

And our iterative formulation is:

$$w_{t+1} = w_t - \eta \cdot W_t$$
  
=  $w_t - \eta \cdot (\beta \cdot \nabla_{w_{t-1}} \mathcal{L} + (1 - \beta) \cdot \nabla_{w_t} \mathcal{L})$  (15)

**BUT** in Pytorch, the momentum of SGD is not same as the form of EMA. The **official Pytorch implement** lies as below (  $\beta$  is the momentum, d is the *dampening* parameter in torch.optim.SGD). The *dampening* parameter is a parameter that describes the damping of the gradient of parameter of the current time step, which is usually set to 0. In the rest of this blog, we default the d is 0.

$$W_0 = \nabla_{w_0} \mathcal{L}$$

$$W_t = \beta \cdot W_{t-1} + (1 - d) \cdot \nabla_{w_t} \mathcal{L}$$

$$W_t = \beta \cdot W_{t-1} + \nabla_{w_t} \mathcal{L}$$

$$(16)$$

$$w_{t+1} = w_t - \eta \cdot W_t$$

$$= w_t - \eta \cdot (\beta \cdot W_{t-1} + (1 - d) \cdot \nabla_{w_t} \mathcal{L})$$

$$= w_t - \eta \cdot (\beta \cdot W_{t-1} + \nabla_{w_t} \mathcal{L})$$
(17)

We can assume that the gradient of the parameters of current time step is the accelerated velocity of the model, which indicates the direction of the next move of the model . And the momentum of model is the history trajectory of the model. The basic idea of momentum is that if a ball slides down from a slope, it next move not only related to the accelerated velocity at this time, and its history velocity.



It can help model skip out of the local minimum.



So we re-formula our iterative formulation in our code:

```
M = 0.9
    optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=M,
    weight_decay=0)
    W_1ast = 0.
    B_1ast = 0.
 4
 5
 6
    W = M * W_last + 2 * (w * inputs + b - target) * inputs
    B = M * B_{last} + 2 * (w * inputs + b - target)
 7
    new_w = w - LR * W
 9
    new_b = b - LR * B
10
11
    W_1ast = W
12 \mid B_1ast = B
13
    w = new_w
14
    b = new_b
```

We can get 'tensor[[5.5695]] tensor[3.4704] and 'tensor[5.5695] tensor[3.4704]. Our result is the same as the Pytorch official implement.

### The Final form of SGD(including momentum, weight\_decay)

```
import torch
 1
 2
    from torch.utils.data import Dataset
 3
    import torch.nn as nn
    import torch.nn.functional as F
 4
 5
 6
 7
    class MyModel(nn.Module):
 8
        def __init__(self):
            super(MyModel, self).__init__()
 9
10
            self.layer = nn.Linear(1, 1)
11
        def forward(self, x):
12
13
            return self.layer(x)
14
15
    class MyData(Dataset):
16
        def __init__(self):
17
            super(MyData, self).__init__()
18
```

```
19
            self.data = torch.tensor([[1], [2], [3], [4], [5]],
    dtype=torch.float)
20
            self.label = 0.8 * self.data + 1.2
21
22
        def __getitem__(self, item):
23
            return self.data[item], self.label[item]
24
        def __len__(self):
25
26
            return len(self.data)
27
28
29
    model = MyModel()
30
    data = MyData()
    # learning rate
31
32
    LR = 0.1
    # weight decay
33
34
    WD = 0.5
    # momentum
35
    M = 0.9
36
37
    optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=M,
38
    weight_decay=WD, dampening=0, nesterov=False)
39
    w = model.layer.weight.data.item()
    b = model.layer.bias.data.item()
40
41
    # Official Pytorch Implement
42
    for _ in range(5):
43
        inputs, target = data[_]
44
45
        output = model(inputs)
46
        loss = F.mse_loss(output, target)
47
48
        optimizer.zero_grad()
49
        loss.backward()
50
        optimizer.step()
51
    print(model.layer.weight.data, model.layer.bias.data)
52
53
    # Our Code
    w_grad_{ast} = 0.
54
55
    b\_grad\_last = 0.
56
    for _ in range(5):
57
        x, y = data[\_]
        w_grad = 2 * (w * x + b - y) * x
58
59
        b_grad = 2 * (w * x + b - y)
60
        if WD != 0:
61
            w_grad = w_grad + wD * w
            b\_grad = b\_grad + WD * b
62
63
        if M != 0:
64
            w_grad = M * w_grad_last + w_grad
            b_grad = M * b_grad_last + b_grad
65
66
        new_w = w - LR * w_grad
        new_b = b - LR * b_grad
67
68
69
        w = new_w
70
        b = new_b
71
        w_grad_last = w_grad
72
        b_grad_last = b_grad
73
    print(w, b)
```

#### Ref

- 基于Pytorch源码对SGD、momentum、Nesterov学习
- <u>怎么理解Pytorch中对Nesterov的实现?</u>
- <u>深度学习中优化方法——momentum、Nesterov Momentum、AdaGrad、Adadelta、RMSprop、Adam</u>
- An overview of gradient descent optimization algorithms
- Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.), 269:543–547.
- (The source code of SGD.)

```
def sgd(params: List[Tensor],
    d_p_list: List[Tensor],
    momentum_buffer_list: List[Optional[Tensor]],
    *,
    weight_decay: float,
    momentum: float,
    lr: float,
    dampening: float,
    nesterov: bool):
    r"""Functional API that performs SGD algorithm computation.

See :class: ~torch.optim.SGD` for details.
"""

for i, param in enumerate(params):
    d_p = d_p_list[i]
    if weight_decay != 0:
        d_p = d_p.add(param, alpha=weight_decay)

if momentum != 0:
    buf = momentum_buffer_list[i]

if buf is None:
    buf = torch.clone(d_p).detach()
    momentum_buffer_list[i] = buf

else:
    buf.mul_(momentum).add_(d_p, alpha=1 - dampening)

if nesterov:
    d_p = d_p.add(buf, alpha=momentum)
    else:
    d_p = buf

param.add_(d_p, alpha=-lr)
```