Page 43 of 56

Design Premise Doc. No.: 15762-DOC-ENG-100 Rev.: C

## APPENDIX A DATA SHEETS

The pipe data sheets listed below are in accordance with [36] for the proposed structure.

Some particularities of the pipe design might be changed due to future updates during project phase.

For some analysis, the resulting values are addressed to external documents as per reference list of each structure.

## List of External Data Providers

| Note Nr | Name                                         |
|---------|----------------------------------------------|
| 1       | Design Premise (15762-DOC-ENG-100)           |
| 2       | BFLEX                                        |
| 3       | ABC Crossana                                 |
| 4       | Thermal model                                |
| 5       | FEA Collapse                                 |
| 6       | Pipeflex                                     |
| 7       | Installation Feasibility (15762-DOC-MNL-100) |
| 8       | Fatigue Report                               |
| 9       | Lateral Buckling                             |
| 10      | FEA Crushing                                 |
| 11      | LWS (Local Wire Stress)                      |
| 12      | Global analysis report                       |
| 13      | I-ET-3000.00-1519-291-PAZ-001 rev. 0         |

| 1 - GENERAL DATA                                     |      |                             |  |  |
|------------------------------------------------------|------|-----------------------------|--|--|
| Manufacturer identification                          |      | 15762-PID-401_SF-04 rev. 03 |  |  |
| Pipe family as per table 1 of API RP 17B 3rd edition |      | III                         |  |  |
| Flexible pipe structure identification code          |      | 15762-PID-401_SF-04 rev. 03 |  |  |
| Application                                          |      | ID 4" service flowline      |  |  |
| Internal diameter                                    | mm   | 101.60                      |  |  |
| Internal diameter                                    | inch | 4.00                        |  |  |
| Outside diameter                                     | mm   | 165.64                      |  |  |
| Service (sweet or sour)                              |      | Sour                        |  |  |
| Maximum design pressure (diff)                       | MPa  | 20.7                        |  |  |
| Minimum design pressure (abs)                        | MPa  | 0.10                        |  |  |
| Design maximum temperature                           | °C   | 60                          |  |  |
| Design minimum temperature                           | °C   | 4                           |  |  |
| Maximum pressure differential                        | MPa  | 10.48                       |  |  |
| Maximum specified water depth                        | m    | 1065                        |  |  |
| Hydrostatic pressure test (FAT)                      | MPa  | 26.9                        |  |  |



Page 44 of 56

| 2 - STR     | UCTURE COMPOSIT             | TION DATA - PAR       | Г1                               |                    |             |                            |
|-------------|-----------------------------|-----------------------|----------------------------------|--------------------|-------------|----------------------------|
| Layer<br>No | Layer<br>Description        | Туре                  | Generic<br>Specification<br>Code | Commercial<br>Name | σu<br>[MPa] | Elongation at<br>Break (%) |
| 1           | Carcass                     | Interlocked<br>Spiral | Duplex AISI 2101                 | Duplex 2101        | 700         | 30                         |
| 2           | Low Strength<br>Tape        | Таре                  | Polymer fiber                    | Diolen             | -           | -                          |
| 3           | Low Strength<br>Tape        | Таре                  | Polymer fiber                    | Diolen             | -           | -                          |
| 4           | Internal Pressure<br>Sheath | Extruded Layer        | HDPE Neutral                     | HDPE Neutral       | 25          | 500                        |
| 5           | Pressure Armour             | Interlocked<br>Spiral | Carbon Steel                     | Sour 800 grade     | 970         | 5                          |
| 5           | Pressure Armour             | Interlocked<br>Spiral | Carbon Steel                     | Sour 800 grade     | 970         | 5                          |
| 6           | Low Strength<br>Tape        | Таре                  | Polymer fiber                    | Diolen             | -           | -                          |
| 7           | Tensile Armour              | Helical Wires         |                                  | Sour 1000 grade    | 1111        | 5                          |
| 8           | Low Strength<br>Tape        | Таре                  | Polymer fiber                    | Diolen             | -           | -                          |
| 9           | Tensile Armour              | Helical Wires         |                                  | Sour 1000 grade    | 1111        | 5                          |
| 10          | Low Strength<br>Tape        | Таре                  | Polymer fiber                    | Diolen             | -           | -                          |
| 11          | Low Strength<br>Tape        | Таре                  | Polymer fiber                    | Diolen             | -           | -                          |
| 12          | Low Strength<br>Tape        | Таре                  | Polymer fiber                    | Diolen             | -           | -                          |
| 13          | Outer Sheath                | Extruded Layer        | HDPE Yellow                      | HDPE Yellow        | 25          | 500                        |

| 2 - STR     | 2 - STRUCTURE COMPOSITION DATA - PART 2 |                                        |             |              |                    |            |                   |  |
|-------------|-----------------------------------------|----------------------------------------|-------------|--------------|--------------------|------------|-------------------|--|
| Layer<br>No | Commercial<br>Name                      | Wire Width X<br>Thickness<br>(mm x mm) | Mass (kg/m) | No. elements | Lay Angle<br>(Deg) | ID<br>(mm) | Thickness<br>(mm) |  |
| 1           | Duplex 2101                             | 50.0x1.0                               | 8.06        | 1            | 87.23              | 101.60     | 6.00              |  |
| 2           | Diolen                                  | 100.0x0.2                              | 0.11        | 2            | -73.28             | 113.60     | 0.39              |  |
| 3           | Diolen                                  | 100.0x0.2                              | 0.11        | 2            | -73.40             | 114.38     | 0.39              |  |
| 4           | HDPE Neutral                            | -                                      | 2.36        | -            | -                  | 115.15     | 6.50              |  |
| 5           | Sour 800<br>grade                       | 10.0x2.2                               | -           | 2            | 87.01              | 128.15     | -                 |  |



Page 45 of 56

| 5  | Sour 800<br>grade  | 10.0x2.2  | 12.37 | 2  | 87.10  | -      | 4.40 |
|----|--------------------|-----------|-------|----|--------|--------|------|
| 6  | Diolen             | 100.0x0.2 | 0.09  | 2  | -69.64 | 136.95 | 0.27 |
| 7  | Sour 1000<br>grade | 7.5x3.0   | 9.41  | 48 | 25.56  | 137.49 | 3.00 |
| 8  | Diolen             | 100.0x0.2 | 0.10  | 2  | -71.94 | 143.49 | 0.29 |
| 9  | Sour 1000<br>grade | 7.5x3.0   | 9.77  | 50 | -25.22 | 144.06 | 3.00 |
| 10 | Diolen             | 100.0x0.2 | 0.11  | 2  | 73.65  | 150.06 | 0.30 |
| 11 | Diolen             | 100.0x0.2 | 0.11  | 2  | -73.71 | 150.66 | 0.30 |
| 12 | Diolen             | 100.0x0.2 | 0.15  | 2  | -77.51 | 151.26 | 0.39 |
| 13 | HDPE Yellow        | -         | 3.21  | -  | -      | 152.04 | 6.80 |

| 3A- TECHNICAL DATA |                                                                                                                                              |                |                |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--|--|
| Item               | Description                                                                                                                                  | Unit           | Value          |  |  |
| 1                  | Internal diameter                                                                                                                            | inch           | 4.00           |  |  |
| 2                  | Outside diameter                                                                                                                             | mm             | 165.64         |  |  |
| 3                  | External volume per unitary length                                                                                                           | dm³/m          | 21.55          |  |  |
| 4                  | Internal volume per unitary length                                                                                                           | dm³/m          | 9.10           |  |  |
| 5                  | Free volume in armour annulus                                                                                                                | dm³/m          | 0.53           |  |  |
| 6                  | Weight in air empty                                                                                                                          | N/m<br>(kgf/m) | 451 (45.97)    |  |  |
| 7                  | Weight in air full of sea water                                                                                                              | N/m<br>(kgf/m) | 542.5 (55.3)   |  |  |
| 8                  | Weight in sea water empty                                                                                                                    | N/m<br>(kgf/m) | 234.3 (23.9)   |  |  |
| 9                  | Weight in sea water full of sea water                                                                                                        | N/m<br>(kgf/m) | 325.9 (33.2)   |  |  |
| 10                 | Specific gravity in sea water empty                                                                                                          | kg/m³          | 1109.00        |  |  |
| 11                 | Specific gravity in air empty                                                                                                                | kg/m³          | 2134.00        |  |  |
| 12                 | Calculated burst pressure                                                                                                                    | MPa            | 69.40          |  |  |
| 13                 | Calculated hydrostatic collapse resistance [Ref. 6.2.3 of I-ET-3000.00.6500-291-PAZ-038 Rev.0]                                               | MPa            | 16.6 @ 1652.7m |  |  |
| 14                 | Calculated hydrostatic collapse resistance considering the effects of crushing loads [Ref. 9.4.5 (h) of I-ET-3000.00.6500-291-PAZ-038 Rev.0] | МРа            | 16.6 @ 1652.7m |  |  |
| 15                 | Damaging pull in straight line                                                                                                               | kN             | 1831.10        |  |  |



Page 46 of 56

| 16 | Maximum working tension (allowable effective tension for normal operation at start of life)                                                                                                                                              | kN      | 935.70                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------|
| 17 | Minimum bending radius for storage at 20°C                                                                                                                                                                                               | m       | 1.15                                      |
| 18 | Minimum bending radius for laying at 20°C                                                                                                                                                                                                | m       | 2.43                                      |
| 19 | Minimum bending radius for operation at 20°C                                                                                                                                                                                             | m       | 2.43                                      |
| 20 | Natural bending radius for laying at the temperature of the maximum specified water depth and atmospheric pressure (inside and outside)                                                                                                  | m       | 4.07                                      |
| 21 | Natural bending radius at maximum inner operating temperature, the temperature of maximum outside water depth, maximum inner operating pressure, and pressure equivalent to maximum outside water depth                                  | m       | 3.75                                      |
| 22 | Axial stiffness (EA) at 20°C and atmospheric pressure (inside and outside)                                                                                                                                                               | kN      | 331736.20                                 |
| 23 | Axial stiffness to compression at 20°C and with atmospheric pressure (inside and outside)                                                                                                                                                | kN      | 57900 @ 1065m                             |
| 24 | Bending stiffness (EI) at 20°C and atmospheric pressure (inside and outside)                                                                                                                                                             | kN.m²   | Moment<br>curvature load<br>case 1 and 8  |
| 25 | Bending stiffness (EI) at the temperature of the maximum specified water depth and atmospheric pressure (inside and outside)                                                                                                             | kN.m²   | Moment<br>curvature load<br>case 2 and 9  |
| 26 | Bending stiffness (EI) at the temperature of the maximum specified water depth (inside and outside), atmospheric pressure inside and pressure equivalent of the maximum specified water depth outside                                    | kN.m²   | Moment<br>curvature load<br>case 3 and 10 |
| 27 | Bending stiffness (EI) at the temperature of the maximum specified water depth (inside and outside) and pressure equivalent of the maximum specified water depth                                                                         | kN.m²   | Moment<br>curvature load<br>case 4 and 11 |
| 28 | Bending stiffness (EI) at the temperature of the maximum specified water depth (inside and outside), maximum operating pressure inside and pressure equivalent of the maximum specified water depth outside                              | kN.m²   | Moment<br>curvature load<br>case 5 and 12 |
| 29 | Bending stiffness (EI) at operating maximum temperature inside, 20°C outside, maximum operating pressure inside, and atmospheric pressure outside                                                                                        | kN.m²   | Moment<br>curvature load<br>case 6 and 13 |
| 30 | Bending stiffness (EI) at operating maximum temperature inside, the temperature of the maximum specified water depth outside, maximum operating pressure inside and the pressure equivalent to the maximum specified water depth outside | kN.m²   | Moment<br>curvature load<br>case 7 and 14 |
| 31 | Limp torsional stiffness (GJ) at 20°C and at the atmospheric pressure inside and outside                                                                                                                                                 | Nm²/rad | -                                         |



Page 47 of 56

| 32 | Limp torsional stiffness (GJ) at the temperature of the maximum specified water depth and at the atmospheric pressure inside and outside                                                                                   | Nm²/rad  | -                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|
| 33 | Stiff torsional stiffness (GJ) at 20°C and at the atmospheric pressure inside and outside                                                                                                                                  | Nm²/rad  | 396000                   |
| 34 | Stiff torsional stiffness (GJ) at the temperature of the maximum specified water depth and at the atmospheric pressure inside and outside                                                                                  | Nm²/rad  | -                        |
| 35 | Thermal exchange coefficient at the design maximum temperature inside, at the temperature of the maximum specified water depth outside, and with intact outer sheath                                                       | W/mK     | 6.38                     |
| 36 | Thermal exchange coefficient at the design maximum temperature inside, at the temperature of the maximum specified water depth outside, and with damaged outer sheath [Ref 6.4.3.3 of I-ET-3000.00.6500-291-PAZ-038 Rev.0] | W/mK     | 6.38                     |
| 37 | Equivalent thermal conductivity of flexible pipe layers                                                                                                                                                                    | W/mK     | 7.24                     |
| 38 | Equivalent heat capacity of flexible pipe layers                                                                                                                                                                           | J/(kg.K) | 669.28                   |
| 39 | Equivalent volumic mass of flexible pipe layers                                                                                                                                                                            | kg/m³    | 2133.5                   |
| 40 | Spooling tension                                                                                                                                                                                                           | kN       | -                        |
| 41 | Erosional velocity                                                                                                                                                                                                         | m/s      | -                        |
| 42 | Dimensions (width/thickness) of pressure armor wire                                                                                                                                                                        | mm       | 10x2.2<br>10x2.2         |
| 43 | Dimensions (width/thickness) of tensile armor wire                                                                                                                                                                         | mm       | 3x7.5                    |
| 44 | Dimensions of carcass strip/wire                                                                                                                                                                                           | mm       | 1.0x50-Std               |
| 45 | Friction coefficient between flexible pipe outer sheath and tensioner pad, µ1 as per item 11.4.1.2 of API RP 17B 3rd Edition                                                                                               | μ        | 0.33 / 0.41 <sup>1</sup> |
| 46 | Friction coefficient between flexible pipe outer sheath and underlying armor layer, μ2 as per item 11.4.1.2 of API RP 17B 3rd Edition                                                                                      | μ        | 0.15 / 0.12 ²            |
| 47 | Friction coefficient for tensile armour wire fatigue stress calculation (steel/steel)                                                                                                                                      |          | 0.07                     |
| 48 | Friction coefficient for tensile armour wire fatigue stress calculation (steel/polymer)                                                                                                                                    |          | 0.15 / 0.12 ²            |
| 49 | Permissible Tension in straight line without internal pressure [Ref 9.4.5(a) of I-ET-3000.00.6500-291-PAZ-038 Rev.0] (Utilisation as per installation case)                                                                | kN       | 1248.24                  |
| 50 | Permissible Tension at the operation MBR without internal pressure [Ref 9.4.5(a) of I-ET-3000.00.6500-291-PAZ-038 Rev.0] (Utilisation as per installation case)                                                            | kN       | 1061.10                  |



Page 48 of 56

| 51 | Permissible Axial Compression at 20°C inside, at the temperature of the maximum specified water depth outside, atmospheric pressure inside and the pressure equivalent to the maximum specified water depth outside                                     | kN             | -50 @ 1065m                 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|
| 52 | Maximum fatigue accumulated damage, for the tensile armours, for the specified service life                                                                                                                                                             | %              | *                           |
| 53 | Maximum fatigue accumulated damage for the pressure armours, for the specified service life                                                                                                                                                             | %              | *                           |
| 54 | Maximum accumulated wearing for the tensile armours, for the specified service life (% of nominal thickness)                                                                                                                                            | %              | *                           |
| 55 | Maximum accumulated wearing for the pressure armours, for the specified service life (% of nominal thickness)                                                                                                                                           | %              | *                           |
| 56 | Maximum allowable temperature for the internal pressure sheath to continuously operate along the specified service life considering the specified internal fluid                                                                                        | °C             | 60                          |
| 57 | Maximum allowable time for the internal pressure sheath to continuously operate under the design maximum temperature and the specified internal fluid                                                                                                   | h              | 219000.00                   |
| 58 | Maximum allowable time for the internal pressure sheath to continuously operate under 3 temperature steps of the specified internal fluid from the operating temperature to the design maximum temperature                                              | (h/h/h)        | 219000 / 219000<br>/ 219000 |
| 59 | Permissible crushing load, for each tensioner pad, for the calculated maximum laying tension and maximum specified water depth, with the pipe full of water, for the specified installation vessel                                                      | kN/m           | *                           |
| 60 | Permissible crushing load, for clamp device, for the calculated maximum laying tension and maximum specified water depth, with the pipe full of water                                                                                                   | kN/m           | *                           |
| 61 | Permissible laying tension, when flexible pipe is passing through wheel, for specified installation vessel                                                                                                                                              | kN             | *                           |
| 62 | Laying tension [Ref Item 3.71 of I-ET-3000.00.6500-291-PAZ-038 Rev.0] for the maximum specified water depth, with the pipe full of water, for the specified installation vessel                                                                         | kN             | *                           |
| 63 | Design tension [Ref Item 3.62 of I-ET-3000.00.6500-291-PAZ-038 Rev.0] obtained from the global analysis for the maximum specified water depth                                                                                                           | kN             | *                           |
| 64 | Maximum and minimum riser top angle in the bend stiffener region in relation to the neutral position of the catenary obtained from the global analysis for the maximum specified water depth and considering all the design load cases and combinations | 。<br>(max/min) | *                           |



Page 49 of 56

Design Premise Doc. No.: 15762-DOC-ENG-100 Rev.: C

| 65 | Minimum bending radius obtained from the global analysis for the maximum specified water depth and considering all the design load cases and combinations                                                                                       | m | *    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| 66 | Minimum allowable bending radius for prevention buckling of tensile armour and hydrostatic collapse during installation of the pipe for the intact annulus and empty bore conditions in the Maximum Specified Water Depth                       | m | 1.55 |
| 67 | Minimum allowable bending radius for prevention buckling of tensile armour and hydrostatic collapse during installation of the pipe for the flooded annulus (annulus not intact) and empty bore conditions in the Maximum Specified Water Depth | m | 2.43 |
| 68 | Minimum allowable bending radius for prevention buckling of tensile armour during installation of the pipe for the intact annulus and flooded bore conditions in the Maximum Specified Water Depth                                              | m | 1.55 |
| 69 | Minimum allowable bending radius for prevention buckling of tensile armour during installation of the pipe for the flooded annulus (annulus not intact) and flooded bore conditions in the Maximum Specified Water Depth                        | m | 1.43 |
| 70 | Minimum allowable bending radius for prevention buckling of tensile armour and hydrostatic collapse during operation of the pipe for the intact annulus and empty bore conditions in the Maximum Specified Water Depth                          | m | 1.55 |
| 71 | Minimum allowable bending radius for prevention buckling of tensile armour and hydrostatic collapse during operation of the pipe for the flooded annulus (annulus not intact) and empty bore conditions in the Maximum Specified Water Depth    | m | 2.43 |
| 72 | Minimum allowable bending radius for prevention buckling of tensile armour during operation of the pipe for the intact annulus and flooded bore conditions in the Maximum Specified Water Depth                                                 | m | 1.55 |
| 73 | Minimum allowable bending radius for prevention buckling of tensile armour during operation of the pipe for the flooded annulus (annulus not intact) and flooded bore conditions in the Maximum Specified Water Depth                           | m | 1.43 |

Note 1) Dry / Flooded

Note 2) Contact presure < 12MPa / Contact pressure > 12MPa