Lambda Calculus Aritmética

Prof. Edson Alves

Faculdade UnB Gama

2020

Sumário

- 1. Números Naturais
- 2. Combinador Y

eros Naturais Combinador 3

Contexto

► É natural que uma linguagem de programação seja capaz de realizar operações aritméticas com números inteiros

- Contudo, conforme dito anteriormente, o cálculo λ contém apenas dois termos primitivos: o símbolo λ e o ponto final
- Assim, como no caso dos valores lógicos, é preciso representar os números naturais por meio de expressões- λ
- Como os inteiros s\(\tilde{a}\)o infinitos, \(\ellip \) preciso definir uma forma de deduzir todos eles a partir de algum valor inicial

Definição de zero

O número natural **zero** pode ser representado pelo termo- λ

$$0 \equiv \lambda sz.z$$

Observação: veja que, de acordo com a definição, acima $0 \equiv F$, onde F é o valor lógico falso.

Sucessor

Sucessor

O termo- λ

$$S \equiv \lambda wyx.y(wyx)$$

é denominado função sucessor, ou simplesmente, sucessor.

Observação: a função sucessor permite a definição de todos os números naturais a partir do zero: $1 \equiv S0, 2 \equiv S1, \ldots$

Definição de 1

$$1 \equiv S0$$

$$\equiv (\lambda wyx.y(wyx))(\lambda sz.z)$$

$$\equiv (\lambda w.(\lambda yx.y(wyx)))(\lambda sz.z)$$

$$\equiv (\lambda yx.y(wyx))[w := (\lambda sz.z)]$$

$$\equiv \lambda yx.y((\lambda sz.z)yx)$$

$$\equiv \lambda yx.y(x)$$

$$\equiv \lambda sz.s(z)$$

Observação: no último passo foi aplicada uma conversão- α para renomear as variáveis y e x, de modo a manter as variáveis s e s nas definições dos números naturais

Definição de 2

$$2 \equiv S1$$

$$\equiv (\lambda wyx.y(wyx))(\lambda sz.s(z))$$

$$\equiv (\lambda w.(\lambda yx.y(wyx)))(\lambda sz.s(z))$$

$$\equiv (\lambda yx.y(wyx))[w := (\lambda sz.s(z))]$$

$$\equiv \lambda yx.y((\lambda sz.s(z))yx)$$

$$\equiv \lambda yx.y(y(x))$$

$$\equiv \lambda sz.s(s(z))$$

Observação: a definição dos naturais pode interpretada como composições de funções. Se s é uma função, 0 significa simplesmente retornar o argumento z; 1 significa aplicar a função uma vez s(z); 2 significa aplicar a função duas vezes: $s(s(z)) = s^2(s)$, e assim por diante.

Referências

- ROJAS, Raúl. A Tutorial Introduction to the Lambda Calculus, FU Berlin, WS-97/98.
- 2. BARENDREGT, Henk; BARENDSEN, Erik. *Introduction to Lambda Calculus*, March 2000.
- 3. Wikipédia. Combinatory logic, acesso em 07/01/2020.
- 4. Wikipédia. Lambda calculus, acesso em 03/01/2020.