Mathematics 1, Homework 05 Leipzig University, WiSe 2023/24, Tim Shilkin Due Date: 26.11.23 until 23:59 on-line or 27.11.23 until 9:15 am in person

Each problem is estimated by one point. Explain your answers.

Given a function

$$f(x) = (x+1)(x-2)^2$$

- 1. Determine intervals of monotonicity and local extreme of the function f(x)
- 2. Determine intervals of convexity and inflection points of the function f(x)
- 3. Sketch the graph y = f(x)

Given a function

$$f(x) = \frac{x^2(x-1)}{(x+1)^2}$$

- 4. Find the admissible set of f and points of discontinuity of f. Compute the left and the right limits of f at each discontinuity point and determine the type of each discontinuity (jump discontinuity or vertical asymptote).
- 5. Solve the equation f(x) = 0, find the roots of f and intervals of constant sign of f.
- 6. Solve the equation f'(x) = 0, find the extremum points of f and determine the intervals of monotonicity of f.
- 7. Solve the equation f''(x) = 0, find the inflection points of f and determine the intervals of the convexity/concavity of f.
- 8. Investigate the behavior of f as $x \to \pm \infty$. Find the horizontal and oblique asymptotes for $x \to +\infty$ and $x \to -\infty$ if they exist.
- 9. List all specific points of the function (points of discontinuity, roots of the function, local extreme and inflection points)

$$x_1 < x_2 < x_3 < \ldots < x_k$$

Compute the (approximate) values of x_j and $f(x_j)$ for all these points and fill in the table containing all the above information:

Values of x	$(-\infty, x_1)$	x_1	(x_1, x_2)	x_2	
Values of f	write + if f is positive on $(-\infty, x_1)$ write - if f is negative on $(-\infty, x_1)$	$f(x_1)$			•••
Sign of f'	write + if f' is positive on $(-\infty, x_1)$ write - if f' is negative on $(-\infty, x_1)$	$f'(x_1)$			
Monotonicity f	write \uparrow if f is increasing on $(-\infty, x_1)$ write \downarrow if f is decreasing on $(-\infty, x_1)$	max or min or nothing			
Sign of f''	write + if f'' is positive on $(-\infty, x_1)$ write - if f'' is negative on $(-\infty, x_1)$	$f''(x_1)$			
Convexity of f	write \smile if f is convex on $(-\infty, x_1)$ write \frown if f is concave on $(-\infty, x_1)$	inflection or nothing			

10. Sketch the graph y = f(x).