

Criptografia no Blockchain

Danilo Gazzoli Resende

in/daniloresende/

Disciplina: Introdução à Criptografia

Motivação

- O primeiro trabalho em uma cadeia de blocos criptograficamente segura foi descrito em 1991 por Stuart Haber e W. Scott Stornetta.
- 2008: Satoshi Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System
- O comércio na Internet tem dependido quase exclusivamente de instituições financeiras que servem como terceiros confiáveis para processar pagamentos eletrônicos
- O custo da mediação aumenta os custos de transação
- O que é necessário é um sistema de pagamento eletrônico baseado em prova criptográfica em vez de confiança, permitindo a quaisquer duas partes dispostas a transacionar diretamente uma com a outra sem a necessidade de um terceiro confiável
- Transações que são computacionalmente impraticáveis de reverter protegeriam os vendedores de fraudes e mecanismos rotineiros de disputa poderiam ser facilmente implementados para proteger os compradores.

O que é o Blockchain

- O blockchain (cadeia de blocos) é um registro público de transações de Bitcoin em uma ordem cronológica. A cadeia de blocos é compartilhada entre todos os usuários de Bitcoin. É usado para verificar a permanência de transações de Bitcoin e evitar o problema de "double spending".
- Double spending: se um usuário malicioso tenta gastar suas bitcoins em dois recepientes diferentes ao mesmo tempo.
- Servidor distribuído peer-to-peer para gerar prova computacional da ordem cronológica das transações

O que é o Blockchain

The blockchain is a database of information.

This information is not stored in a single place, but across a variety of data servers that participate in the network, this is what is meant by "decentralised", there is no central point.

Identities are kept **completely private**, through the cryptography, however all transactions that happen on the blockchain are open to viewing by anyone at any time for always.

Trust in the blockchain is enough to transact with anyone

Every record that's written on a blockchain is secured by a unique cryptographic key, making the blockchain and its information immutable.

Como funciona o Blockchain

Porquê uma cadeia?

Cada registro escrito no blockchain é assegurado por uma única chave criptográfica. Quando um novo bloco é adicionado à cadeia, tudo do bloco anterior, inclusivo sua chave, é colocado na fórmula para gerar a chave do segundo registro. Esta interação cria independência. Quando um terceiro bloco é criado, os conteúdos e chaves dos dois primeiros blocos são colocados na fórmula para resultar na chave do terceiro registro. Esta dependência encadeia todos os registros.

Block Hashing

• Hashing é o processo de obter uma entrada de qualquer tamanho e convertê-la para uma saída de comprimento fixo através de um algoritmo matemático.

Bitcoin usa SHA-256

Funcionamento da Árvore de Merkle

- Uma árvore de Merkle sumariza todas as transações em um bloco ao produzir um "fingerprint" digital de todo o conjunto de transações, o que possibilita um usuário verificar se a transação está ou não incluída em um bloco.
- Árvores de Merkle são criadas repetidamente ao fazer o "hashing" de pares de nós até que haja somente um hash (Root).
- Cada nó folha é um hash de dados transacionais e cada nó não folha é um hash dos hashes anteriores.

Hash Tree ou Merkle Tree

Benefícios da Árvore de Merkle

- 1. Fornece um meio de provar a integridade e validade de um dado
- 2. Requerem pouco espaço de disco/memória visto que as provas são computacionalmente fáceis e rápidas
- 3. Suas provas e gerenciamento exigem somente pequenas porções de informação para serem transmitidas pela rede

Referências

- Nakamoto S. *Bitcoin: a peer-to-peer electronic cash system*. Disponível em: http://bitcoin.org/bitcoin.pdf. Acesso em 01 jun. 2019.
- Ray, S. *Merkle Trees*. Disponível em: https://hackernoon.com/merkle-trees-181cb4bc30b4. Acesso em 01 jun. 2019.
- Essentials of Blockchain Cryptography. Disponível em: https://blog.bankex.org/essentials-of-blockchain-cryptography-c60180f14b7f. Acesso em 01 jun. 2019.
- Blockchain Basics. Disponível em: https://lisk.io/academy/blockchain-basics. Acesso em 01 jun. 2019.
- O QUE É A TECNOLOGIA BLOCKCHAIN?. Disponível em: http://datascienceacademy.com.br/blog/o-que-e-a-tecnologia-blockchain/. Acesso em 01 jun. 2019.