Proyectos

Titanic DataSet

Prediction Problems

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp
887	0	2	Montvila, Rev. Juozas	male	27.0	0
888	1	1	Graham, Miss. Margaret Edith	female	19.0	0
889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1
890	1	1	Behr, Mr. Karl Howell	male	26.0	0
891	0	3	Dooley, Mr. Patrick	male	32.0	0

Prediction Problems

Analyze by pivoting features

```
[4]:
      train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending
        Pclass Survived
           1 0.629630
           2 0.472826
     2
           3 0.242363
[5]:
      train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False
[5]:
          Sex Survived
     0 female 0.742038
         male 0.188908
```

Prediction Problems

Analyze by visualizing data

```
g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)
```

9]: <seaborn.axisgrid.FacetGrid at 0x783b5081ddd8>

Prediction Problems

Create new feature combining existing features

```
for dataset in combine:
    dataset['IsAlone'] = 0
    dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean()
```

```
        IsAlone
        Survived

        0
        0
        0.505650

        1
        1
        0.303538
```


Frogs DataSet

Sound Processing

Spectrograms

Embeddings

Spectrograms

• https://github.com/calebj0seph/spectro

Spectrograms

Spectrograms

Embeddings

BirdClef

For this competition, you'll use your machine-learning skills to identify under-studied <u>Indian bird species</u> by sound. If successful, you'll help advance ongoing efforts to protect avian biodiversity in the Western Ghats, India, including those led by <u>V. V. Robin's Lab at IISER Tirupati</u>.

EfficientNetB0

Proyecto Final de Machine Learning: Clasificación de Lesiones Cutáneas

Clasificación de música a partir de su género y el análisis de su letra

Proceso

- Clasificación de Género: Para cada canción en la playlist, se utiliza el modelo entrenado para predecir su género.
- Transcripción de Letras: Se utiliza el modelo Whisper de OpenAI para transcribir las letras de las canciones.
- Embeddings de Texto: Las letras se convierten en vectores numéricos (embeddings) usando un modelo multilingüe de Sentence Transformers.
- Recomendación por estado de ánimo: Dado un género y palabras clave que representan un estado de ánimo (por ejemplo, "heartbeat" para canciones emotivas), el código calcula la similitud entre las letras de las canciones y las palabras clave. Las canciones más similares se recomiendan como las que mejor coinciden con el estado de ánimo buscado.

Create your own GPT!!

