

Sign Language Classification

Literature Review

Agenda

- 1. Problem Definition
- 2. CNN Architecture
- 3. System Framework
- 4. Experiments and Results
- 5. Conclusion and Future Work
- 6. References

1. Problem Definition

- ☐ The emerging need for human-computer interaction (HCI) without any input devices:
 - Speech and hearing impaired people
 - □ 5% (360 million approx.) of the total population of the world is suffering from either medium or severe hearing loss. [1]

- There are more than 300 different sign languages in use around the world (America, British, Chinese, French, ...
 - Unfied sign language!

1. Problem Definition

- Applications:
 - Virtual Reality (VR)
 - Robot Control
 - Natural User Interfaces
- Static Hand gesture:
 - □ Position of hands and fingers in the space without any movement w.r.t the time
- Solution is a vision-based method:
 - Need a camera only!
 - Convolutional neural networks (CNN)

- 1-Convolutional layer
- 2-pooling layer
- 3-ReLU layer
 - 3.1-The sigmoid function
 - 3.2-hyperbolic tangent
- 4-Fully connected layer/output layer(the classification layer)

1-Convolutional layer

output=
$$\frac{W-F+2P}{S}$$
 + 1

2-pooling layer

2.1-MAX Pooling

2.2 Average Pooling

3-ReLU layer

Some of the ReLU variants

4-Fully connected layer/output layer

(the classification layer)

4.1 softmax

Overview of some models

- 1-LeNet-5 CNN_based model
- 2-Stacked Denoising Autoencoders network(SDAE)
- 3- Deep Belief Network (DBN)
- 4-Artificial neural network(ANN)
- 5-Custom CNN
- 6-VGG 19 NETWORK

3.1. Data

Data Acquisition

- Three channel RGB images.
- 35K image, 350 for each sign.
- 23 English alphabets.

Data Preprocessing

(Noise Removal)

- 128 x 128 Resizing.
- Normalization.

3.2. Modeling

Training

80% of the whole dataset.

Tools

- Tesla GPU
- 12 GB memory
- 64 GB RAM
- 100 GB SSD.

Testing

- 50 CNN, max 100 epochs.
- Loss function (cross-entropy)
- optimizers:
- ** Adaptive Moment Estimation (Adam).
- ** Adagrad.
- ** Adadelta.
- ** RMSprop
- ** Stochastic Gradient Descent (SGD).

4. Experiments and Results

Number of layers	Number of filters	Training accuracy (%)	Validation accuracy (%)	Number of epochs
8 (5 CL, 3FC)	16	10	5	100
5 (3 CL, 2FC)	16	42	26	100
4 (2 CL, 2FC)	16	99.17	98.80	20
4 (2 CL, 2FC)	32	98.82	98.53	20
4 (2 CL, 2FC)	64	99.05	98.76	20

Table 1 Experimental results with respect to parameters

Model	Training accuracy (%)	Training loss	Validation accuracy (%)	Validation loss	Optimizer
I	99.17	0.0280	98.80	0.0684	Adam
II	99.59	0.0378	98.27	0.1940	RMSProp
Ш	99.72	0.0126	98.56	0.0759	SGD

Table 2 Experimental results with respect to optimizer and colored images

4. Experiments and Results

Sign	Precision	Recall	F ₁ -score	Sign	Precision	Recall	F ₁ -score
A	1.00	0.96	0.98	Me	1.00	1.00	1.00
Afraid	0.97	0.97	0.97	Nose	0.98	1.00	0.99
В	1.00	1.00	1.00	Oath	1.00	1.00	1.00
Bent	0.97	1.00	0.99	Open	1.00	0.97	0.98
Coolie	0.97	0.94	0.96	P	1.00	0.97	0.98
Claw	1.00	1.00	1.00	Pray	1.00	1.00	1.00
D	0.79	0.97	0.87	Q	0.97	1.00	0.99
Doctor	0.98	1.00	0.99	S	0.95	1.00	0.97
Eight	0.96	0.90	0.93	Sick	1.00	1.00	1.00
Eye	1.00	1.00	1.00	Strong	0.97	1.00	0.98
Fever	0.95	1.00	0.97	T	0.99	1.00	0.99
Fist	0.97	0.98	0.97	Tongue	0.99	1.00	0.99
Gun	0.97	1.00	0.99	Trouble	1.00	0.95	0.97
Н	1.00	1.00	1.00	U	1.00	0.99	0.99
Hand	0.97	1.00	0.98	v	1.00	1.00	1.00
I	1.00	1.00	1.00	West	1.00	0.93	0.96
Jain	0.99	1.00	0.99	Water	0.93	0.98	0.95

Table 3 Classification performance

4. Experiments and Results

Fig 3.Accuracy and loss curves for training and validation datasets

5. Conclusion and Future Work

- □ Proposed system outperformed other existing systems even with less number of epochs. (highest training and validation accuracy of 99.17% and 98.80%)
- SGD optimizer outperformed other optimizers on grayscale images (training and validation accuracy of 99.90% and 98.70%)
- In addition to accuracy, try other efficiency measures to evaluate the robustness of the proposed system as we have larger number of hand gestures in real-world
 - Minimize computational complexity
 - Make classifier convergence faster
- □ Strengthen the CNN against overfitting by performing K-fold cross-validation
- Perform hyper-parameters tuning
 - □ Each dataset has its own best set of parameters

6. Other suggested solutions

Accuracy : 98.54%

6. Other suggested solutions

Accuracy : 97.12%

6. Other suggested solutions

Accuracy: 99.92%

6.3. Myanmar Methodology

6.3. Myanmar Methodology

Group	Tested images	No. of correct image	No. of validate image	Percentage of correct	Percentage of error
R	2100	2010	90	95.71%	4.29%
L	600	581	19	96.83%	3.17%
С	3000	2896	104	96.53%	3.47%

Table 1. Accuracy of Sign Classification and Recognition

Table 2. Sample of Myanmar sign language groups

7. References

- [1] https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
- [2] Wadhawan, A., Kumar, P. Deep learning-based sign language recognition system for static signs. *Neural Comput & Applic* 32, 7957–7968 (2020). https://doi.org/10.1007/s00521-019-04691-y
- [3] Sharma, S., & Singh, S. (2021). Vision-based hand gesture recognition using deep learning for the interpretation of sign language. *Expert Systems with Applications*, 182, 115657.
- [4] S Amir et al (2020). Hand posture classification with convolutional neural networks on VGG-19 net Architecture. *IOP Conf. Ser.: Earth Environ.* Sci. 575 012186.
- [5] S. M. Htet, B. Aye and M. M. Hein, "Myanmar Sign Language Classification using Deep Learning," 2020 International Conference on Advanced Information Technologies (ICAIT), 2020, pp. 200-205, doi: 10.1109/ICAIT51105.2020.9261775.

