$ au_1^{\#2}$	0	0	0	21 kr5+2k ³ r5	$\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$	0	$\frac{6k^2r_5+4t_3}{(1+2k^2)^2r_5t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	$\frac{3k^2 r_5 + 2t_3}{(k+2k^3)^2 r_5 t_3}$	0	$-\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 r_5}$	$\frac{\sqrt{2}}{k^2 r_5 + 2 k^4 r_5}$	0	$-\frac{2i}{kr_5+2k^3r_5}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2 r_5 + 2t_2}{(k+k^3)^2 r_5 t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

Lagrangian density	$\frac{2}{3}t_{3}\omega_{\kappa\alpha}^{\alpha\prime}\omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$rac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{\kappa}\partial_{eta}\omega^{\beta}_{\beta} - rac{1}{3}r_2\partial_{eta}\omega^{\kappa}_{\beta}\partial_{\kappa}\omega^{\alpha\beta} - rac{2}{3}r_2\partial_{eta}\omega^{\kappa}_{\beta}\partial_{\kappa}\omega^{etalpha}$	$r_5 \partial_{lpha} \omega_{\lambda}^{ a} \partial_{\kappa} \omega^{ heta \kappa \lambda} + r_5 \partial_{ heta} \omega_{\lambda}^{ a} \partial_{\kappa} \omega^{ heta \kappa \lambda} - r_5 \partial_{lpha} \omega_{\lambda}^{ a} \partial_{\kappa} \omega^{\kappa \lambda heta} +$	$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + \frac{1}{6} t_2 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_\alpha^{\ \theta} - \frac{1}{6} t_2 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_\alpha^{\ \theta} +$	$\frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}_{\ \ \ }\partial^{\kappa}f_{\alpha\lambda}-\frac{2}{3}t_{3}\ \omega_{\kappa\alpha}^{\ \ \alpha}\partial^{\kappa}f'_{\ \ \ }-\frac{2}{3}t_{3}\ \omega_{\kappa\lambda}^{\ \ \lambda}\partial^{\kappa}f'_{\ \ \ }-\frac{4}{3}t_{3}\partial^{\alpha}f_{\ \kappa\alpha}\partial^{\kappa}f'_{\ \ \ }+$	$\frac{2}{3}t_{3}\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ \prime}+\frac{1}{3}t_{2}\ \omega_{_{I}\theta\kappa}\ \partial^{\kappa}f^{I\theta}-\frac{2}{3}t_{2}\ \omega_{_{I}\kappa\theta}\ \partial^{\kappa}f^{I\theta}-\frac{1}{3}t_{2}\ \omega_{_{\theta I}\kappa}\ \partial^{\kappa}f^{I\theta}+$	$\frac{2}{3}t_{2}\ \omega_{\theta\kappa'}\ \partial^{\kappa}f'^{\theta} + \frac{2}{3}t_{3}\ \omega_{/\alpha}^{\ \alpha}\ \partial^{\kappa}f'_{\ \kappa} + \frac{2}{3}t_{3}\ \omega_{/\lambda}^{\ \lambda}\ \partial^{\kappa}f'_{\ \kappa} - \frac{1}{6}t_{2}\ \partial^{\alpha}f^{\lambda}_{\ \kappa}\ \partial^{\kappa}f_{\ \lambda\alpha} -$	$\frac{1}{6}t_2\partial_\kappa f_{\beta}^{\ \ \lambda}\partial^\kappa f_{\lambda}^{\ \ \theta} + \frac{1}{6}t_2\partial_\kappa f^{\lambda}_{\ \ \theta}\partial^\kappa f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_3\partial^\alpha f^{\lambda}_{\ \ \alpha}\partial^\kappa f_{\lambda\kappa} +$	$\frac{1}{3} r_2 \partial_\kappa \omega^{\alpha\beta\theta} \partial^\kappa \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_\kappa \omega^{\theta\alpha\beta} \partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^\beta \omega_{\alpha}^{\ \alpha\lambda} \partial_\lambda \omega_{\alpha\beta}^{\ \prime} +$	$rac{2}{3}r_2\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}+r_5\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{eta\kappa}{}_{\kappa}-r_5\partial_{eta}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{eta\kappa}{}_{\kappa}$	
$\frac{1}{5} < 0.88 t$	Ilnitarity	(No ı	mass	sless	part	icles)				

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	3 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alphaeta}$	$\frac{\sqrt{2}t_2}{3}$	1 2 3	$\begin{vmatrix} -\frac{1}{3} & i & k & t_2 \end{vmatrix}$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\left -\frac{1}{3} \ \overline{l} \ \sqrt{2} \ kt_2 \right $	0	0	0	0
·	$\omega_1^{#1} + \alpha^{\beta}$	$a_1^{#2} + \alpha \beta$	$a_1^{*1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

t ₀ +		(1+2	$(x^2)^2 t_3$	3 (1-	$+2k^2)^2$	$\frac{1}{2}t_3$	U	U		
$\tau_0^{\#2}$	² †		0		0			0		
$ au_0^{\#2}$ $\sigma_0^{\#3}$	¹ †		0		0		0	$\frac{1}{k^2 r_2 + t}$	2	
				•		•			•	
	#	Н	Ţ	3	\sim	3	5	2	2	26
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2 i k \sigma_1^{\#2}{}^{\alpha} == 0$	$t_1^{\#\underline{1}}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{x}^{*1}\alpha\beta\chi$ == 0	$\tau_2^{\#1}\alpha\beta == 0$	$\sigma_{2}^{\#1}\alpha\beta=0$	Total #

 $\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$

 $\tau_2^{\#1}_{2^+}\alpha\beta$

0

0

0

 $\sigma_2^{\#1} + ^{\alpha\beta}$

0

0

0

 $\tau_2^{\#1} + \alpha \beta$

0

0

0

 $\sigma_{2}^{\#1} + ^{\alpha eta \chi}$

			44.1		44.1		4 2						
	_	σ	#1 0 ⁺		$\tau_{0}^{#1}$		$\tau_{0}^{#2}$	C	$J_0^{\#1}$			$\dagger^{\alpha \beta}$	${\dagger}^{lphaeta}$
#1 0 ⁺	†	(1+2	$\frac{1}{k^2)^2} t_1^2$	- 3 - <u>-</u> (1	i √2 / +2 k ²)	½ t ₃	0		0			$\omega_2^{\#1}$.	$f_2^{#1}$
.#1 0 ⁺	†	<u>i</u> 1	$\sqrt{2} k$ $k^2)^2 t$	(1-	2 k ² +2 k ²) ²	$\frac{1}{2}t_3$	0		0				
.#2 0 ⁺	†		0		0		0		0			$\omega_{0^{ ext{-}}}^{\#1}$	0
,#1 0	+		0		0		0	$\frac{1}{k^2}$	$\frac{1}{2^{+t_2}}$	-			
												$f_{0}^{#2}$	0
INUS	#	1	1	== 0 3	m	== 0 3	<u>.</u>	<u> </u>	2	2	26	$f_0^{\#1}$	$-i\sqrt{2}kt_3$
=			0	α		g_{χ}							- 1

Total #:

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-i \sqrt{2} kt_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	£3	$i\sqrt{2}kt_3$	0	0
	$\omega_0^{\#1} \uparrow$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1}$ \dagger

0

0

0

 $\omega_{2}^{\#1} +^{\alpha\beta\chi}$

 $\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ α_{3}

0

0

0

0

0

0

Massive partic	le
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$-\frac{t_2}{r_2} > 0$
Spin:	0
Parity:	Odd
	Pole residue: Polarisations: Square mass: Spin:

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$