CRP 4080: Introduction to Geographic Information Systems for planners

Lecture 8: Site Suitability analysis

Wenzheng Li, Ph.D.
City and Regional Planning
Fall 2024

Overview

- Two data types
 - Vector data
 - Raster/imagery data
- Map Algebra
- Raster data function
 - local, neighborhood, and global levels
- Composite Suitability Analysis
- Model Builder

Types of Spatial Data in GIS – vector data

Vector/Feature Data: Points, Lines, Polygons

- Points are pairs of x,y coordinates.
- Lines are sets of coordinates that define a shape.
- Polygons are sets of coordinates defining boundaries that enclose areas.

Types of Spatial Data in GIS – vector data

Advantages of vector data:

- Accuracy & Aesthetically pleasing
- Ability to alter the scale of observation
- Topology (spatial relationship) is inherent in the vector model

Vector model

Raster model

Disadvantages of vector data:

- Storage and data structure much more complex: The location of each vertex needs to be stored explicitly
- Processing intensive: vector data must be converted into a topological structure
- Speed...
- Spatial limitations: Continuous data, such as elevation data, is not effectively represented in vector form

The raster data model

N rows by M columns

- A raster consists of a matrix of pixels (or cells) organized into rows and columns (or a grid) in which each pixel contains a value representing information.
- Raster data are collected by aircraft, drones, satellites, ground and waterbased sensors, digital pictures, and scanned maps.
- Also includes aerial photographs and satellite imagery. File types: geoTIFF, TIFF, JPG, PNG, GIF, BMP, and other imagery file formats.

Cell Size & Resolution

- The size of the cells in the raster data model determines the resolution at which features can be represented
- Resolution A measure of the accuracy or detail of a graphic display
- The resolution can have an effect on which features are represented in what locations:

Why resolution matters? Mixed-pixel issue

Solution? Increase spatial resolution

Raster over the same extent, at 4 different resolutions

(Source: National Ecological Observatory Network (NEON)) {: .text-center}

Impact of resolution

- There is a trade-off between spatial resolution and data storage when we use the raster data model
- 60 km satellite image with 10m cell size
 - 6000 X 6000 = 36,000,000 cells
 - 1 byte of attribute value (i.e. values 0-255)
 - ~36 MB of disk storage!
 - 60 km satellite image with 100m cell size
 - $600 \times 600 = 360,000 \text{ cells}$
 - 360 KB of data... 1% the size of the other one

Discrete vs continuous: Utilizes numeric values

Continuous variation:

actual values

 (Elevation, temperature, rainfall, noise levels)

Temperature map

Discrete:

- Codes representing an attribute (land use, etc.)
- Elevation maps classified as low, medium, and high elevation.

Landcover / land-use map (USA)

Landcover / land-use map (local)

Raster: Discrete

Vector model

Raster model

Raster Data: Nominal vs. Interval/Ratio data

Nominal:

- Each cell is assigned a specific value representing the class (category)
 - Value Attribute Table (VAT): stores value assigned to each zone of a raster, a second field that shows the count the number of cells that belong to that zone.

Attributes of reclass_slop1				
	Rowid	VALUE *	COUNT	
Þ	0	1	673	
	1	2	6074	
	2	3	24928	
	3	4	60442	
	4	5	155165	
	5	6	396790	
	6	7	882228	
	7	8	193837	
	8	9	363079	
	9	10	517860	

Raster Data: Interval/Ratio:

represents a magnitude, distance or relationship of the cell on a continuous surface (e.g. elevation, slope).

- unique data value for every cell in the grid.
- No VAT.

Map Algebra

- Map algebra is a cell-by-cell combination of raster layers using mathematical operations
 - Unary one layer
 - Binary two layers
- Basic Mathematical Operations
 - Addition, subtraction, division, max, min, virtually any mathematical operation you would find in an Excel spreadsheet
- But be careful of:
 - Layers that are not coincident
 - Different cell sizes

Map Algebra

- Map algebra can be extended to performing a number of mathematical operations.
- some will make sense, others won't.
 - Grid 1: water features = Q, land values = 1.
 - Grid 2: reclassified elevation map.
 - Grid 3: Os where water existed (x * 0 = 0), and original elevation value where land existed (x * 1 = x)
 - Or, you can add Grid 1 and Grid 2, but it would be meaningless

Can't build in the 0 area since there is water

Raster Functions

- Local: only use data in a single cell to calculate an output value (map algebra)
- Neighborhood (Focal): use data from a set of cells, most often a "kernel"
- Global: use all data from a raster layer

Local Operations

- Based on cell-by-cell analysis: map algebra
- **Reclassification**: Subset of cells chosen for reclassification (i.e. all cells that represent a high level of urbanization, agricultural land use, etc.)
- Overlays: comparing 2 or more input grids (minimum, maximum, median, mean, etc values for each grid cell)

| Coning Suitability | Coning

Overlay Input Matrix 2 Output Matrix 2 4.5 5 3 Mean = 0 5 6 7.5 5.5 8 Demers. M.N., 2002. GIS Modelling In Raster. New York: John Wiley & Sons Input Matrix

Neighborhood Functions

- Also called 'focal' functions
- Examine target cell and immediate neighbors
- Neighborhood operators (min, mean, avg, max, etc.) use surrounding cells to assign values

Kernal (Moving window)

Input Matrix						
4	7	2	1	9		
7	2	3	2	7		
3	2	5	3	5		
4	1	2	2	4		
9	5	4	6	2		

	4	7	2	1	9
OCALMA IODITY	7	2	3	2	7
OCALMAJORITY d, Neighbourhood, Rectangle, 3, 3)	3	2	2	3	5
	4	1	2	2	4
	9	5	4	6	2

Output Matrix

Input Matrix						
4	7	2	1	9		
7	2	3	2	7		
3	2	5	3	5		
4	1	2	2	4		
9	5	4	6	2		

_	Output Matrix				
	4	7	2	1	9
FOCALMIN (Grid, Neighbourhood, Rectangle, 3, 3)	7	2	3	2	7
	3	2	1	3	5
	4	1	2	2	4
	9	5	4	6	2

Output Matrix

Input Matrix						
4	7	2	1	9		
7	2	3	2	7		
3	2	5	3	5		
4	1	2	2	4		

			reput iv	GUIX	
	4	7	2	1	9
FOCALMEAN rid, Neighbourhood, Rectangle, 3, 3)	7	2	3	2	7
	3	2	2.4	3	5
	4	1	2	2	4

Global functions: Creating Raster Data

- For example, you can create a Raster Dataset that contains the Distance from some feature to every other point in the area of interest.
- The distance values can then be extracted to other datasets for use as an attribute for analysis.

Composite Suitability Analysis

 To rank potential sites according to suitability for a proposed activity

Requirements

- A set of "factor" or criteria maps, organized to rate sites relative to one or more characteristics
- A technique for appropriately combining factors

Suitable For Whom?

- Suitability models have a "point of view"
 - Audience can be human
 - "Affordable housing"
 - Best sites for High-end commercial
 - Audience can be environmental
 - Best habitat for black bear
 - Most suitable multispecies conservation areas

Common Units??

Variables have "apples and oranges" characteristics. How do you "combine"

- a map representing "distance to nearest road"
 - Units = meters
- with another representing "land cost"?
 - Units = dollars

Short Answer: find or create common units

- Easiest: Likert scale "preference" units
 - A range of values: 1 to 5, 1 to 9, etc., etc.
 - Polar opposites on both sides of range
 - i.e. "Best"/"Worst", "Most Suitable"/"Completely Unsuitable"
 - With multiple factors, must make sure that scale consistently applied example: We want to be near streams and far from roads, using 1-9 scale with 9 = best
 - Calculate distance to streams, distance to roads
 - Reclassify stream distance to preference units
 - Closest = 9 distance = 0
 - Reclassify road distance to preference units
 - Closest = 0 distance = 9
 - In other words, may need to "flip" values when reclassifying

Weighted rating:

- assigns a weight to each feature under consideration (weight x rating)
 (Wa x Ra) + (Wb x Rb) + (Wc x Rc)···
- Weights allow us to reflect the relative importance of a combination of features

Direct assignment rating.

- assigns a suitability rating of a land area based on combined data
 - Areas with slope<5% in close proximity to a road: high suitability
 - Slopes 5 15% in close proximity to a road: moderate suitability
 - Slopes>15% not suitable, but are considered suitable if they lie within close proximity to a road

Suitability analysis Criteria and layer creation

Identify a suitable location for an educational facility

- Distribute high schools evenly (should be far from other schools)
- Provide access to the Fingerlakes trail (closer is better, based on distance to Fingerlakes trail)
- Relatively flat (create slope layer from DEM)
- Appropriate parcel type (vacant, public owned lands) create raster layer of parcel types

ModelBuilder

- Create models built from sequences of tools
- Store processing steps for later reference
- Execute models repeatedly with different inputs
- Share models with others

Step 1: Prepping Data...

- 1. Create Schools layer based on Landmarks
- 2. Distance-based measures:

Create raster depicting
Distance from Finger
Lakes Trail

Create raster depicting Distance from schools

3. Elevation Model: Create slope based on DEM

Step 1: Prepping Data...

Figure 4.31
Conversion of vector data to raster data: (a) coded polygons; (b) a grid with the right cell size overlays the polygons (the polygons that contain the center of the individual cells are identified); (c) each cell is assigned the attribute code of the polygon to which it belongs.

- 1. Select out those tax parcels with the appropriate property code (i.e., available for development)
- 2. Convert vector to raster

Step 2: Reclassifying Datasets:1 (worse) – 10 (best) ranking

Reclassify slope

- → Flatter is better!
- Reclassify distance to trail
- → Closer is better!
- Reclassify distance to schools →
- Further is better!

- Reclassify parcel types
- → Some types are better!

School: 1 - 10

Slope: 1 - 10

FingerLake Trail: 1 - 10

Parcel types: 1 - 10

Make a Geoprocessing Model in ArcGIS Pro

Make a Geoprocessing Model in ArcGIS Pro (youtube.com)

Focal function:

Digital Elevation Model (DEM)

Slope Raster contains the Maximum change in elevation for every elevation point, measured in degrees.

Types of Spatial Data – vector data

Points

Lines/polylines

Lines – Bike lanes

Polygons

Polygon – Special tax district

Creating your model...

Selecting your inputs:

Layers – yellow diamond

Variables - blue arrows – shared between processes

