

- (6) M Recall the universal molar gas constant
- (7) S Apply the 'equation of state' of an ideal gas.
- (8) C Explain how to see evidence of gas molecules moving at random

## what's different Lesson 5. Ideal gas equation about this problem?



**STARTER:** A meteorological balloon has a volume of 6.0m3 when at ground level where the temperature is 293K. The gas in it is at atmospheric pressure  $1.0 \times 10^5 \text{Pa}$ . The balloon rises to a height where the pressure has fallen to  $4.4 \times 10^4 \text{Pa}$  and the temperature to 257K. Calculate the volume of the balloon at this height.

Kilo 10<sup>3</sup>

Hint: Draw a before and after diagram

Mega 10<sup>6</sup>

Giga 10<sup>9</sup>

Hint: Try to combine the 3 gas law into one.



ey Combining the gas laws...

constant = 
$$\underline{pV}$$

Τ

$$\underline{p}_{1}\underline{V}_{1} = \underline{p}_{2}\underline{V}_{2}$$

 $\mathsf{T}_1$ 

 $\mathsf{T}_2$ 



- (6) M Recall the universal molar gas constant
- (7) S Apply the 'equation of state' of an ideal gas.
- (8) C Explain how to see evidence of gas molecules moving at random

## Lesson 5. Ideal gas equation



**ACTIVITY:** Try question 4 using this combined relationship.

$$\underline{p}_{\underline{1}}\underline{V}_{\underline{1}} = \underline{p}_{\underline{2}}\underline{V}_{\underline{2}}$$

 $T_1$   $T_2$ 

Kilo 10<sup>3</sup>

Try Q1-3 first...

Mega 10<sup>6</sup>

Giga 10<sup>9</sup>

Ex: A fixed mass of gas has a volume of 200cm3 at a temperature of 57C and pressure of 780mm of mercury. Find its volume at STP (0C and 760mm of mercury)



$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}$$

$$\frac{2.5 \times 10^5 \times 14}{280} = \frac{1.0 \times 10^5 \times V_2}{293}$$
 (1 mark)

$$V_2 = \frac{2.5 \times 10^5 \times 14 \times 293}{280 \times 1.0 \times 10^5} \tag{1 mark}$$

$$= 36.625$$
 (1 mark)

$$V_2 = 37 \text{ cm}^3$$
 (to two significant figures)

(1 mark) (4 marks)



- (6) M Recall the universal molar gas constant
  (7) S Apply the 'equation of state' of an ideal gas.
  (8) C Explain how to see evidence of gas molecules moving at random

|              | Equation             | of state for ar                                                                               | n ideal gas                                                                   |  |  |
|--------------|----------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
|              |                      |                                                                                               |                                                                               |  |  |
| Key<br>point | constar              | nt = <u>pV</u>                                                                                |                                                                               |  |  |
|              | Т                    |                                                                                               |                                                                               |  |  |
|              | constan              | t = <u>pV</u> = nR                                                                            |                                                                               |  |  |
|              | Т                    |                                                                                               |                                                                               |  |  |
|              | pV = n               | nRT                                                                                           | p - Pressure / Pa                                                             |  |  |
|              | R -                  |                                                                                               | V - Volume / m3                                                               |  |  |
|              |                      | 77                                                                                            | T - <b>Absolute</b> temperature / K                                           |  |  |
|              |                      |                                                                                               | n - Number of moles Mol                                                       |  |  |
|              | <u> 1m-2m3</u>       | Pam                                                                                           | R - Molar gas constant (8.31)                                                 |  |  |
| ,            | nd K                 | mol K                                                                                         | Ex: What is the unit for the                                                  |  |  |
| Ka           | MS-2m-               | -2 m3 mol -1                                                                                  | molar gas constant?                                                           |  |  |
|              | kgn <sup>2</sup> 5   | -2                                                                                            | Ans: Jmole-1K-1                                                               |  |  |
|              |                      |                                                                                               |                                                                               |  |  |
|              | Example              | . 1.                                                                                          |                                                                               |  |  |
|              | Example<br>A 3.5m3   |                                                                                               | ontainer contains 425 moles of gas at 25.00                                   |  |  |
|              | A 3.5m3              | presurised co                                                                                 | ontainer contains 425 moles of gas at 25.00 of the gas insider the container. |  |  |
|              | A 3.5m3<br>Calculate | presurised co<br>e the pressure                                                               | e of the gas insider the container.                                           |  |  |
|              | A 3.5m3<br>Calculate | presurised co<br>e the pressure                                                               | e of the gas insider the container.                                           |  |  |
|              | A 3.5m3<br>Calculate | presurised co<br>e the pressure<br>1: Convert the ter<br>25.0°C = 298 K<br>2: Select the equa | mperature into kelvin.                                                        |  |  |
|              | A 3.5m3<br>Calculate | presurised co<br>e the pressure<br>1: Convert the ter<br>25.0°C = 298 K                       | mperature into kelvin.  ation you need and rearrange it to make the subject.  |  |  |

3.50

| (6) M - Recall the universal molar gas constant (7) S - Apply the 'equation of state' of an ideal gas. (8) C - Explain how to see evidence of gas molecules moving at random |           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
| Lesson 5. Ideal gas equation 0:00:00                                                                                                                                         | <b>\$</b> |  |  |  |  |
| ACTIVITY 1: Complete the summary questions 5-7 on P292. ACTIVITY 2: Q 8 and 9 on worksheet 7. ACTIVITY 3: Complete Ex18.2 in 'Lowe'                                          |           |  |  |  |  |
| Kilo 10 <sup>3</sup> Mega 10 <sup>6</sup> Giga 10 <sup>9</sup>                                                                                                               |           |  |  |  |  |
| Key point                                                                                                                                                                    |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |
|                                                                                                                                                                              |           |  |  |  |  |

