

Método da Falsa posição

Disciplina: Métodos Numéricos Professor: Gibson Barbosa

Email: gibson.barbosa@unicap.br

Método da bissecção

$$x = \frac{a+b}{2}$$

- Método da Falsa Posição
 - o média aritmética ponderada do intervalo [a,b] com pesos |f(a)| e |f(b)|

$$x_{k} = \frac{a |f(b)| + b |f(a)|}{|f(b)| + |f(a)|} = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$

Exercício 1

O intervalo [0,5;1] contém a raiz da equação x² + ln(x) = 0.
Determinar uma aproximação para essa raiz, usando o método da falsa posição, que atenda a tolerância e ≤ 10⁻². Para critério de parada, vamos usar |f (x_k)| ≤ e, k = 0,1,2,3,...,n. Nos cálculos, utilizar o método de arredondamento.

Exercício 2

 Usar o método da falsa posição para determinar a raiz da equação x³+2x – 1 = 0 que está no intervalo [0, 1] e que atenda a tolerância e ≤ 10⁻³. Usar o método de truncamento no processo de resolução.

k	a _i	b _i	X _k	СР
0	0,000	1,000	0,333	2,970×10 ⁻¹
1	0,333	1,000	0,419	$6,800\times10^{-2}$
2	0,419	1,000	0,443	$2,700\times10^{-2}$
3	0,443	1,000	0,450	$8,000\times10^{-3}$
4	0,450	1,000	0,452	$3,000\times10^{-3}$
5	0,452	1,000	0,452	$3,000\times10^{-3}$

- O método da falsa posição gera uma sequência convergente de aproximações {x_k} para a raiz a da equação, dado que
 - o a função seja contínua no intervalo inicial [a,b],
 - o $f(a)\cdot f(b) < 0$
 - o a amplitude do intervalo satisfaça a precisão estabelecida.

Obrigado!