Métodos Numéricos Erros

Ana Maria A. C. Rocha

Departamento de Produção e Sistemas

Universidade do Minho

arocha@dps.uminho.pt

ERROS

Cometemos vários tipos de erros nos cálculos – sem contar com os erros crassos (de contas/distração, que é possível eliminar):

- erros de arredondamento
- erros inerentes aos dados
- erros de truncatura

1. Erros de arredondamento

O primeiro tipo de erros que cometemos nos cálculos surge do processo de representação dos números que usamos nos cálculos.

- Alguns números são representados por uma sequência finita de dígitos
 - por exemplo, se $\bar{x} = 1/8$ então:
 - pode ser representado exatamente x=0.125, se usarmos 3 ou mais casas decimais nos cálculos;
 - não cometemos qualquer erro na sua representação.
- Outros números são representados por uma sequência infinita de dígitos
 - por exemplo, se $\bar{x} = \pi = 3.141592654...$ então:
 - a sua representação nos cálculos não é exata só é possível utilizar um número limitado de dígitos x = 3.14159 (aqui com **5** casas decimais);
 - cometemos um erro na sua representação.

curiosidades ...

 π relaciona o perímetro de uma circunferência e o seu diâmetro, ou seja, se uma circunferência tem perímetro p e diâmetro d, então π é igual a $\frac{p}{d}$

Karlsplatz Station, Viena

Cronologia do cálculo de π

Matemático	Ano	Casas Decimais
Egípcios (Papiro de Rhind)	1650 A.C.	1
Arquimedes	250 A.C.	3
Zu Chongzhi	480 D.C.	7
Jamshid Masud Al-Kashi	1424	16
Ludolph van Ceulen	1596	35
Jurij Vega	1794	126
Gauss	1824	200
William Shanks	1874	527
Levi B. Smith, John W. Wrench	1949	1.120
Daniel Shanks, John W. Wrench	1961	100.265
Jean Guilloud, M. Bouyer	1973	1.000.000
Yasumasa Kanada, Sayaka Yoshino, Yoshiaki Tamura	1982	16.777.206
Yasumasa Kanada, Yoshiaki Tamura, Yoshinobu Kubo	1987	134.217.700
Chudnovskys	1989	1.011.196.691
Yasumasa Kanada, Daisuke Takahashi	1997	51.539.600.000
Yasumasa Kanada, Daisuke Takahashi	1999	206.158.430.000
Yasumasa Kanada	2002	1.241.100.000.000
Daisuke Takahashi	2009	2.576.980.370.000 [15
Fabrice Bellard	2010	2.699.999.990.000 [16
Shigeru Kondo & Alexander Yee	2010/08/02	5.000.000.000.000 [17]
Shigeru Kondo & Alexander Yee	2011	10.000,000,000,000 [18]

[http://pt.wikipedia.org/wiki/Pi]

1. Erros de arredondamento (cont.)

Usando um número limitado e finito de dígitos na representação de \bar{x} , então o número usado nos cálculos x obtém-se

• por **arredondamento** e é o que está <u>mais próximo</u> de \bar{x} : exemplo: se $\bar{x} = \sqrt{2} = 1.414213562...$

> se usarmos **7** casas decimais nos cálculos $\Rightarrow x = 1.4142136$ se usarmos **5** casas decimais nos cálculos $\Rightarrow x = 1.41421$

- O erro de arredondamento é a diferença $\bar{x} x$.
- Conseguimos definir um limite superior do erro (absoluto) cometido

$$|\sqrt{2} - 1.4142136| \le 0.000000005$$

2. Erros inerentes aos dados

- Outro tipo de erros que cometemos são os erros inerentes aos dados
 - surgem por não ser possível atribuir, com exatidão, valores numéricos aos dados quando estes são obtidos por leitura/observação experimental (de equipamento),
 - Exemplo: Medir o comprimento de um segmento com uma régua.

Como se mede a proximidade do valor aproximado x - quer esteja afetado $\begin{cases} \text{ por um erro de arredondamento} \\ \text{ ou} \\ \text{ por um erro inerente} \end{cases}$

Medir os erros

Seja x o valor aproximado que é usado nos cálculos e \bar{x} o valor exato,

erro absoluto =
$$\bar{x} - x$$

que pode ser > 0, < 0 ou = 0.

O limite superior do erro absoluto é a quantidade (≥ 0) δ_x tal que

$$|\bar{x} - x| \le \delta_x$$

$$x - \delta_x \le \bar{x} \le x + \delta_x$$
.

Medir os erros (cont.)

Um certo erro absoluto pode ser considerado pequeno numas situações e grande noutras. Esta classificação depende do valor de \bar{x} . Uma medida que relaciona o erro absoluto com o valor de \bar{x} é

erro relativo =
$$r_x = \frac{|\bar{x} - x|}{|\bar{x}|}$$
.

Se δ_{x} for pequeno quando comparado com $\bar{\mathsf{x}}$ então

$$r_{x} \simeq \frac{|\bar{x} - x|}{|x|} \le \frac{\delta_{x}}{|x|}$$
 limite superior do erro relativo.

À quantidade $100r_x$ % dá-se o nome de "percentagem de erro".

Fórmula fundamental do erro

Teorema

Seja $\bar{x} \in I_x = [x - \delta_x, x + \delta_x]$ e $\bar{y} \in I_y = [y - \delta_y, y + \delta_y]$ (x e y representam valores aproximados dos valores exatos \bar{x} e \bar{y} , respetivamente, sendo δ_x e δ_y limites superiores do erro absoluto).

Então, quando se calcula z = f(x, y) em vez de $\bar{z} = f(\bar{x}, \bar{y})$, tem-se

$$\delta_z \leq \delta_x M_x + \delta_y M_y$$
 (limite superior do erro absoluto em z)

$$M_x \ge \max_{l_x, l_y} \left| \frac{\partial f}{\partial x} \right|$$
 e $M_y \ge \max_{l_x, l_y} \left| \frac{\partial f}{\partial y} \right|$.

Tem-se ainda

$$r_z \le \frac{\delta_x M_x + \delta_y M_y}{|\bar{z}|}$$
 (limite superior do erro relativo em z).

O teorema generaliza-se para $f(x_1, x_2, \dots, x_n)$.

Erros aumentam com número, tipo de operações, e ...

- **1** $A = \pi + \sqrt{2}$ (usando 4 casas decimais) com $\bar{x} = \pi$ e $\bar{y} = \sqrt{2}$. x = 3.1416, $y = 1.4142 \implies$ sendo $\delta_x = 0.00005$ e $\delta_y = 0.00005 \implies$ limite superior do erro absoluto em A = 4.5558 é 0.00005 + 0.00005 = 0.0001 <**0.0005**.
- ② $X = \pi + 100\sqrt{2}$ (usando 4 casas decimais) com ... $\delta_{x} = 0.00005$ e $\delta_{y} = 0.00005$ \Rightarrow limite superior do erro absoluto em X = 144.5616 é 0.00005 + (100)0.00005 = 0.00505 < 0.05.

Erros aumentam com número, tipo de operações, e ...

- **●** $B = \frac{\pi}{\sqrt{2}}$ (usando 4 casas decimais) ⇒ limite superior do erro absoluto em B = 2.221467968 ! é = 0.707(0.00005) + 1.571(0.00005) = 0.000114 < 0.0005.
- ② $C = \pi + \sqrt{2} \frac{1}{9}$ (usando 4 casas decimais) com $\bar{x} = \pi$, $\bar{y} = \sqrt{2}$ e $\bar{z} = \frac{1}{9}$. x = 3.1416, y = 1.4142, z = 0.1111 \Rightarrow limite superior do erro absoluto em C = 4.4447 é = 0.00005 + 0.00005 + 0.00005 = 0.00015.

Acidentes atribuídos à acumulação não prevista (mal calculada) de <u>erros de arredondamento</u>:

Explosão do rocket Ariane 5 (Guiana Francesa, 4 Junho, 1996) (10 anos a \$7 bilhões + \$550 milhões)

Falha de um míssil Patriot (Guerra do Golfo, Arábia Saudita,
 Fevereiro, 1991) (28 mortos + 100 feridos) (erro de 0,34 segundos)

MN - Erros

3. Erros de truncatura

Quando utilizamos um certo tipo de Métodos Numéricos na resolução de problemas matemáticos cometemos **erros de truncatura**.

Cometemos erros de truncatura quando usamos

- métodos iterativos,
- métodos de discretização.

Um método iterativo é definido por uma equação iterativa

$$x_{k+1} = F(x_k)$$

a partir da qual geramos uma sucessão de aproximações à solução exata do problema, x^* :

- k indica o índice da iteração;
- x_k representa a aproximação à solução na iteração k.

3. Erros de truncatura (cont.)

Dada uma aproximação inicial x_1 , a equação iterativa gera as aproximações

$$X_1 \curvearrowright X_2 \curvearrowright X_3 \curvearrowright \ldots \curvearrowright X_n \curvearrowright X_{n+1} \ldots$$

e se o processo iterativo estiver a convergir, esta sucessão converge para x^* .

- Quando usamos um método iterativo, a solução x^* é atingida ao fim de um número infinito de operações.
- Face aos recursos limitados (tempo/memória), o processo iterativo tem de ser terminado usando um critério de paragem
 - (este define condições que garantem que a aproximação calculada x_{n+1} está próxima de x^*).

3. Erros de truncatura (cont.)

• O erro de truncatura é a diferença $x^* - x_{n+1}$.

Um método de discretização transforma (discretiza)

- o problema matemático (que envolve conceitos de natureza contínua)
 - integração
 - diferenciação
- num problema discreto (que envolve apenas operações algébricas)

Exemplo: (na integração $\int_a^b f(x) dx$)

$$I = \int_{1}^{1.2} \sqrt{x} \, dx$$

$$\approx S(0.05) = \frac{0.05}{3} [f(1) + 4f(1.05) + 2f(1.1) + 4f(1.15) + f(1.2)].$$

O erro de truncatura é dado pela diferença I - S(0.05).