Boosting

Matthew Drury

August 14, 2016

Introduction to Boosting

Boosting encompasses a highly successful set of learning algorithms.

- Allstate has held three Kaggle competitions. All three were won by algorithms incorporating gradient boosting as a fundamental component.
- ▶ In the 1990's the insurance industry discovered that incorporating consumers credit information into pricing greatly increased the accuracy of prices, this revolutionized the industry. Using a boosted model in place of a linear model when setting prices gives roughly the same increase in power.

Boosting can adapt itself effortlessly to very non-linear objectives

Boosting can adapt itself effortlessly to very non-linear objectives

Boosting can adapt itself effortlessly to very non-linear objectives

Boosting accomplishes this by growing the model gradually

Boosting Statges Over Time

At each stage of the growth, the next model is built as an adjustment to the previous model

Outline of the Lesson

Agenda:

- ► Introduction
- You Could Have Invented Gradient Boosting
- Practical Gradient Boosted Regression
- Practical Gradient Boosted Classification
- Adaboost
- Drawbacks of Boosting

Objectives:

- Understand the conceptual foundation of Boosting
- ▶ Understand the algorithms hyperparameters, and how to tune them.
- Understand how to create a booster for your own loss function.
- ▶ Understand some basic strategies for interpreting a booster.
- Understand the drawbacks of boosting.

You Could Have Invented Gradient Boosting

Let's start with our basic setup.

 $\{x_i, y_i\}$ is a data set, where i indexes the samples we have available for training our model.

Each x_i may be a vector, in which case I'll refer to it's components (if needed) as x_{ij} .

Our goal is to construct a function f so that, approximately

$$y_i \approx f(x_i)$$
 for all i

Question: What should the domain of f be?

Degenerate Choice: Domain $(f) = \{x_i\}.$

That is, let's only attempt to define f on our training sample.

"But Matt. This is silly. The answer is obvious."

Define:
$$f(x_i) = y_i$$

True.

But let's try to derive this in a creative way.

Recall: Gradient descent is a general purpose algorithm for optimizing any objective function L(x).

Algorithm: Gradient Descent to Minimize a function *L*.

- ▶ Compute $\nabla L(x)$ somehow, on paper is good.
- Initialize $x_0 = 0$ (for example, there may be more principled choices).
- Until satisfied, iterate:
 - $\blacktriangleright \mathsf{Set} \ x_{i+1} = x_i \nabla L(x_i).$

Let's focus on a single point in our domain, and stick with the classic squared error loss function

$$L(f, y) = \frac{1}{2}(y - f)^2$$

Here f is not a function yet, it is just a number.

Following the gradient descent recipe for optimizing this loss function, let's initialize f to the average value of y_i

$$f_0 = \frac{1}{N} \sum_i y_i$$

And compute the gradient with respect to f by hand

$$\nabla_f(f,y) = \frac{\partial}{\partial f} \frac{1}{2} (y-f)^2 = f-y$$

...and apply the update rule

$$f_1 = f_0 - \nabla_f(f_0, y) = f_0 - (f_0 - y) = y$$

So this (admittedly quite bizarre) application of gradient descent immediately recovers the correct solution

$$f(x_i) = y_i$$

for every data point.

What is stopping up from applying this scheme in the more realistic situation where we want to construct a function f with domain \mathbb{R}^n so that

$$f(x_i) \approx y_i$$

The **first step works**, we can certainly define f_0 to be the constant function

$$f(x) = \frac{1}{N} \sum_{i} y_i \text{ for all } x \in \mathbb{R}^n$$

The **update step fails**, we cannot evaluate the gradient at any point where we have not observed a value of y.

$$\nabla_f(f,y)=f-y$$

Solution: Fit a simple model to the new dataset

$$\{x_i, \nabla_f L(f_0(x_i), y_i)\} = \{x_i, f_0(x_i) - y_i\}$$

The **predictions from this model** can be viewed as an extension of the gradient to all of \mathbb{R}^n .

Algorithm: Gradient Boosting to Minimize Sum of Squared Errors.

Inputs: A data set $\{x_i, y_i\}$.

Returns: A function f such that $f(x_i) \approx y_i$.

- ▶ Initialize $f_0(x) = \frac{1}{N} \sum_i y_i$.
- ▶ Iterate (parameter *k*) until satisfied:
 - ▶ Create the working data set $W_k = \{x_i, f_k(x_i) y_i\}$.
 - Fit a decision tree to W_k , minimizing least squares (though most anything would work here). Call this tree T_k .
 - Set $f_{k+1}(x) = f_k(x) T_k(x)$.
- ► Return $f_{\text{max}}(x) = f_0(x) T_1(x) T_2(X) \cdots T_{\text{max}}(x)$.

Comments:

- We didn't have to use decision trees, literally anything would work.
- ▶ Just like in other algorithms, we can introduce a *learning rate* to make the gradient descent more robust

$$x_{i+1} = x_i - \lambda \nabla L(x_i)$$

This is particularly important in boosting, to prevent overfitting.

► We could have fit the tree to the negative gradient, which would have resulted in the more aesthetically appealing

$$f_{\text{max}}(x) = f_0(x) + T_1(x) + T_2(X) + \cdots + T_{\text{max}}(x)$$

