Directions

Scan and upload your *handwritten* solutions to eLearning by the end of the day on **Monday**, **April 17**. Calculator functions are permitted. Show all steps of hypothesis testing for problems 3 and 4: Include hypotheses, rejection region, test statistic, *p*-value, and conclusion.

Problem 1 (2 points)

Consider the following hypotheses from the classical court of law example.

 H_0 : not guilty H_a : guilty

Two errors that can be made by the jury are (1) letting a truly guilty person go free and (2) letting a truly innocent person go to jail. Which is a Type I error? Which is a Type II error? Justify your answers by applying the error definitions.

- (1) Letting a truly guilty person go free is a type II error because the judge wrongly accepts "not guilty".
- (2) Letting a truly innocent person go to jail is a type I error because the judge wrongly rejects "not guilty".

Problem 2 (2 points)

Suppose the null hypothesis for a population mean is $H_0: \mu = 14$. Suppose data is collected from a sample of size n = 25 and σ is unknown (\Longrightarrow use the t-distribution!).

(a) A researcher believes the mean is higher. The computed test statistic is 3.024. Compute the P-value of the test. At $\alpha = 0.05$, what do you conclude?

```
Right tailed test: p = P(t > 3.024) = \texttt{tcdf(3.024,1E99,25-1)} \approx \boxed{0.0029}. Since p < \alpha, we decide to reject H_0 at \alpha = 0.05
```

(b) A researcher believes the mean is not 14. The computed test statistic is -1.275. Compute the *P*-value of the test. At $\alpha = 0.10$, what do you conclude?

```
Two-tailed test: p = 2 \cdot P(t < -1.275) = 2 \cdot \mathsf{tcdf}(-1E99, -1.275, 25-1) \approx \boxed{0.2145}
Since p > \alpha, we decide to accept H_0 at \alpha = 0.10.
```

Problem 3 (3 points)

According to the American Time Use Survey, the typical American spends 154.8 minutes per day watching television. A survey of 50 internet users results in a mean time watching television per day of 148.7 minutes with a sample standard deviation of 46.5 minutes. The researcher wants to know if the true mean differs from 154.8 minutes. At $\alpha = 0.04$, conduct an appropriate hypothesis test to answer the researcher's inquiry. Show all steps including hypotheses, rejection region, test statistic, p-value, and conclusion.

Step	Value (may use T-Test)
Hypotheses	$H_0: \mu = 154.8 \text{ vs } H_a: \mu \neq 154.8$
Rejection Region	$(-\infty, -2.110] \cup [2.110, \infty)$
Test Statistic	$t = \frac{148.7 - 154.8}{46.5/\sqrt{50}} \approx -0.9276 \text{ (not in RR)}$
<i>p</i> -value	0.3582
Decision	Accept H_0 since $p > \alpha$

Thus, we can accept that the mean might be 154.8 minutes. So, there is no evidence at $\alpha = 0.04$ to support that the mean is different than 154.8 minutes.

Problem 4 (3 points)

An account on server A is more expensive than an account on server B. However, server A is faster. To see if it is optimal to go with the faster but more expensive server, a manager needs to know if server A is significantly faster than server B. A certain computer algorithm is executed $n_A = 30$ times on server A and $n_B = 20$ times on server B with sample mean and standard deviation of the performance speed of each server (in minutes):

Server A	Server B	
$\bar{x}_A = 6.7 \text{ minutes}$	$\bar{x}_B = 7.5 \text{ minutes}$	
$s_A = 0.6$ minutes	$s_B = 1.2 \text{ minutes}$	

At $\alpha = 0.05$, determine if server A is faster than server B using an appropriate significance test. Assume $\sigma_A^2 \neq \sigma_B^2$. Show all steps including hypotheses, rejection region, test statistic, *p*-value, and conclusion.

If server A is faster, then A should take less time than server B $\implies \mu_A < \mu_B$. For the rejection region: $t_c = \text{InvT}(0.05, 25.399) = -1.71$ (The degrees of freedom are estimated by Satterthwaite's approximation.)

Step	Value (may use 2-SampTTest)	Other
Hypotheses	$H_0: \mu_A = \mu_B \text{ vs } H_a: \mu_A < \mu_B$	$H_a:\mu_A eq\mu_B$
Rejection Region	$(-\infty, -1.71]$	$(-\infty, -2.06] \cup [2.06, \infty)$
Test Statistic	t = -2.76 (is in the RR)	Same
<i>p</i> -value	0.0053	0.0106
Decision	Reject H_0 since $p < \alpha$	Same

We can support $\mu_A < \mu_B$. So, there is evidence that A is significantly faster at $\alpha = 0.05$.