Ejercicio 1.

- 1. Sea \mathcal{R} una relación en $P = \mathcal{P}(\{1, 2, 3, 4, 5, 6\}), A \mathcal{R} B \iff A \triangle B$ no tiene múltiplos de 2 ni de 3.
 - i) Probar que \mathcal{R} es una relación de equivalencia. ¿Es antisimétrica?
 - R: iARA, $\forall A \in P$? Dado que $ARA \iff A\triangle A = \emptyset$, se puede asegurar que no va a haber nada en ese conjunto en particular múltiplos de 2 o 3.
 - S: $ilde{i}A \mathcal{R} B \Rightarrow B \mathcal{R} A \ \forall A, B \in P$? Dado que $A \mathcal{R} B \iff A \triangle B$, conjunto que no tiene múltiplos de 2 ni de 3 dado que $\stackrel{\text{tabla}}{=} B \triangle A$ tampoco tiene múltiplos, por lo tanto $B \mathcal{R} A$
 - T

Divisibilidad, Congruencia

Ejercicio 2.

Probar que $8^{2n} - 63n - 1$ es divisible por 441 para todo $n \in \mathbb{N}$.

Acomodar y luego inducción:

$$8^{2n} - 63n - 1 = 64^n - 63n - 1 \rightarrow \boxed{p(n) : 441 \mid 8^{2n} - 63n - 1 = 64^n - 63n - 1 \ \forall n \in \mathbb{N}}$$

$$\begin{cases} \text{Caso base:} \\ p(1) : 441 \mid 64^1 - 63 - 1 = 0 \rightarrow 441 \mid 0 \rightarrow \text{Verdadero} \quad \checkmark \\ \text{Hipótesis inductiva:} \\ p(k) : 144 \mid 64^k - 63 \cdot k - 1 \text{ Verdadero} \Rightarrow p(k+1) : 144 \mid 64^{k+1} - 63 \cdot (k+1) - 1 \text{ Verdadero?} \end{cases}$$

$$Paso inductivo: \\ 441 \mid 64^k - 63 \cdot k - 1 \iff 64^k - 63 \cdot k - 1 \equiv 0 \text{ (441)} \end{cases}$$

$$\begin{cases} \frac{\text{multiplico}}{\text{por } 64} & 64 \cdot 64 \cdot 63 \cdot k - 64 \equiv 0 \text{ (441)} \\ \frac{\text{acomodo}}{\text{por } 64} & 64^{k+1} - 4032 \cdot k - 63 - 1 \equiv 0 \text{ (441)} \\ \frac{\text{notar que}}{\text{r}_{441}(4032) = 63} & 64^{k+1} - 63 \cdot (k-1) - 1 \equiv 0 \text{ (441)} \end{cases}$$

$$\begin{cases} \frac{\text{notar que}}{\text{r}_{441}(4032) = 63} & 64^{k+1} - 63 \cdot (k-1) - 1 \equiv 0 \text{ (441)} \end{cases}$$

Como se cumplen $p(1), p(k) \land p(k+1)$ por el principio de inducción, p(n) es verdadera $\forall n \in \mathbb{N}$