# 파머완 05 회귀

## 01회귀소개

### 회귀 분석

: 데이터 값이 평균과 같은 <mark>일정한 값으로 돌아가려는 경향</mark>을 이용한 통계학 기법

ex) 부모의 키가 클 경우: 세대를 이어가면서 자식들의 키가 무한정 커지는 것이 아님

### 회귀란?

: <mark>독립변수</mark>와 한 개의 <mark>종속변수 간의 상관관계</mark>를 모델링하는 기법

ex) 독립변수: 아파트의 방 개수, 방 크기, 주변 학군 등 ⇒ 종속변수: 아파트 가격

#### Y=W1\*X1+W2\*X1+...+Wn\*Xn

Y: <mark>종속변수</mark> ⇒ 결정 값

• X1,X2,...,Xn: 독립변수 ⇒ feature

W1,W2,...,Wn: 회귀 계수 ⇒ feature와 결정 값 기반의 학습을 통해 최적의 회귀 계수 를 찾아야함!

### 회귀 유형 구분

| 독립 변수 개수    | 회귀 계수의 결합   |
|-------------|-------------|
| 1개: 단일 회귀   | 선형: 선형 회귀   |
| 여러 개: 다중 회귀 | 비선형: 비선형 회귀 |

### 지도학습

#### 분류(Classification)

예측 값: 이산형 클래스 값 ex) 카테고리

#### 회귀(Regression)

예측 값: 연속형 숫자 값

### 선형 회귀

: 실제 값과 예측 값의 차이를 최소화하는 직선형 회귀선을 최적화하는 방식

• 오류의 제곱 값

### 규제방법(Regularization)

선형 회귀의 <mark>과적합 문제를 해결</mark>하기 위해 회귀 계수에 페널티 값을 적용함

| 일반 선형 회귀              | 예측값과 실제값의 RSS를 최소화하도록 회귀 계수 최적화 (without 규제)                                  |
|-----------------------|-------------------------------------------------------------------------------|
| 릿지(Ridge)             | 선형 회귀 + L2 규제 ; L2: 상대적으로 큰 회귀 계수 값의 예측 영향도를 감소시키기 위해 회귀 계수값을 더 작게 만드는 규제 모델  |
| 라쏘(Lasso)             | 선형 회귀 + L1 규제; L1: 예측 영향력이 작은 피처의 회귀 계수를 0으로 만들어<br>회귀 예측 시 피처가 선택되지 않게 하는 모델 |
| 엘라스틱넷<br>(ElasticNet) | L2 + L1 결합: L1 규제로 피처의 개수를 줄이며 L2 규제로 계수 값의 크기 조정 (<br>피처가 많은 데이터 세트에 적용함)    |
| 로지스틱 회귀               | 분류에 사용되는 선형 모델                                                                |

# 02 단순 선형 회귀를 통한 휘귀 이해

### 단순 선형 회귀

:독립변수 1개 + 종속변수 1개

ex) 주택의 가격이 주택의 크기로만 결정될 경우



회귀 계수: w1, w0

<mark>잔차</mark>: │ 실제 값 - 회귀 모델 오류 값 │

→ 잔차의 합이 최소가 되는 모델을 만드는 것이 최적의 회귀 모델을 만드는 것!

### 오류 합 계산

1. MAE: 절댓값을 취해서 더함

2. RSS: 오류 값의 제곱을 구해서 더함 = 비용함수 = 손실 함수 (loss function)

$$RSS(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + w_1 * x_i))^2$$

# 03. 비용 최소화하기 = 경사 하강법(Gradient Descent) 소개

### 비용 함수가 최소가 되는 W 파라미터를 구하는 법?

- W 파라미터가 적을 경우: 고차원 방정식을 활용
- W 파라미터가 많을 경우: 고차원 방정식으로 해결하기 어려움 → gradient descent 사용

#### **Gradient Descent**

: 점진적으로 반복적인 계산 → W 파라미터 업데이트 → 오류 값이 최소가 되는 W 파라미터 를 구하는 방식

• 예측 값과 실제 값의 차이가 작아지는 방향성으로 W 파라미터를 보정해나감



#### how?

- 1. 최초 w에서 미분 적용
- 2. 미분 값이 계속 감소하는 방향으로 순차적으로 w 업데이트
- 3. 더이상 미분된 <mark>1차 함수의 기울기가 감소 하지 않는 지점</mark> → 비용 함수가 최소인 지점으로 설정 → 그때의 w 반환

### RSS(w0,w1) 미분

: 두개의 파라미터 → <mark>각 변수에 편미분 적용</mark>

$$\frac{\partial R(w)}{\partial w_1} = \frac{2}{N} \sum_{i=1}^{N} -x_i * (y_i - (w_0 + w_1 x_i)) = -\frac{2}{N} \sum_{i=1}^{N} x_i * (실제값_i - 예측값_i)$$

$$\frac{\partial R(w)}{\partial w_0} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (w_0 + w_1 x_i)) = -\frac{2}{N} \sum_{i=1}^{N} ( 실제값_i - 예측값_i)$$

⇒ 비용 함수 R(w)가 최소가 되는 w1,w0 값 구함

새로운 w1: 이전 w1 사용

$$w_1 + \eta \frac{2}{N} \sum_{i=1}^{N} x_i * (실제값_i - 예측값_i)$$

새로운 w0: 이전 w0 사용

$$w_0 + \eta \frac{2}{N} \sum_{i=1}^N ($$
실제값 $_i - 예측값 $_i)$$ 

#### how?

- 1. w1,w0를 임의의 값으로 설정 → 첫 비용 함수 값 계산
- 2. w1과 w0을 업데이트 후, 다시 비용 함수 값 계산
- 3. 비용 함수가 감소하는 방향성으로 주어진 횟수만큼 반복하며 w1.w0 =업데이트

#### 경사 하강법 단점

: 모든 학습 데이터에 대해 <mark>반복적으로</mark> 비용함수 최소화를 위한 값을 업데이트 함

- → 수행 시간이 매우 오래 걸림
- ⇒ 확률적 경사 하강법 사용!

### 확률적 경사 하강법(Stochastic Gradient Descent)

: 일부 데이터로 w가 업데이트되는 값을 계산함 ⇒ 속도가 빠름

• 대용량 데이터의 경우 사용 (+ 미니 배치 확률적 경사 하강법)

#### 피처가 몇 개인가?

피처가 1개인 경우:

$$\hat{Y} = w_0 + w_1 \star X.$$

**피처가 M개인 경우: 회귀계수 M+1개** 도출 (w0,w1,...,w100)

$$\hat{Y} = w_0 + w_1 * X_1 + w_2 * X_2 + \dots + w_{100} * X_{100}$$

→ 회귀 계수가 많아지더라도, 선형대수를 이용해 예측값 도출 가능!

### 예측 행렬 Y 구하는 식

$$\hat{Y}$$
 াট্রাভ্র সাম ক্রম  $X_{mat}$ 

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1m} \\ 1 & x_{21} & x_{22} & \cdots & x_{2m} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nm} \end{bmatrix}$$
 $\overset{w_0 \ni W \text{ this if } H \text{ is } H \text{ this } H \text{ is } H$ 



$$\hat{Y} = X_{mat} * W^{T}$$

# 04 사이킷런 LinearRegression을 이용한 보스 턴 주택 가격 예측

### LinearRegression 클래스

: 예측값과 실제 값의 RSS(Residual Sum of Squares)를 최소화하여 OLS(Ordinary Least Squares) 추정 방식으로 구현한 클래스

• fit(X,y) ⇒ 회귀 계수 W를 coef\_ 속성에 저장!

class sklearn\_linear\_model.LinearRegression(fit\_intercept=True,normalize=False,copy\_X=True,n\_jobs=1)

#### 입력 파라미터

#### fit\_intercept

- 불린 값, default=True
- intercept 값 계산 여부를 정함
- False → intercept가 사용되지 않고 0으로 지정됨

#### normalize

- 불린 값, default=False
- fit\_intercept=False → 무시
- True → 회귀 수행 전에 입력 데이터 세트 정규화

#### 속성

#### coef\_

- fit() 수행 시, 회귀 계수가 배열 형태로 저장하는 속성
- Shape: (Target 값 개수, 피처 개수)

#### intercept\_

• intercept 값

### 다중공선성(multi-collinearity) 문제

OLS 기반 회귀 계수 계산 → 입력 피처의 독립성에 많은 영향을 받음 ex) 피처 간 <mark>상관관계가 매우 높은 경우</mark> → 분산이 매우 커져서 <mark>오류에 민감해짐</mark>



#### solution?

상관관계가 높은 피처가 많을 경우: 독립적인 중요한 피처만 남기고 <mark>제거 or 규제</mark> 매우 많은 피처가 문제를 가지고 있을 경우: PCA를 통해 차원 축소

### 회귀 평가 지표

: 실제 값과 회귀 예측값의 차이 값을 기반으로 지표를 설정함

| 평가 지표 | 설명                                                         |
|-------|------------------------------------------------------------|
| MAE   | Mean Absolute Error: 실제 값과 예측 값의 차이를 절댓값으로 변환해 평균함         |
| MSE   | Mean Squared Error: 실제 값과 예측값의 차이를 제곱해 평균함                 |
| RMSE  | MSE에 루트를 씌워, 실제 오류 평균보다 더 커지는 특성을 방지함                      |
| R^2   | 분산 기반으로 예측 성능을 평가함; 예측값 분산 / 실제값 분산 → 1에 가까울<br>수록 정확도가 높음 |

+) MSLE(log 적용), RMSLE(root + log 적용)

### 사이킷런 평가 지표

| 평가 방법 | API                         | Scoring 함수 적용 값           |
|-------|-----------------------------|---------------------------|
| MAE   | metrics.mean_absolute_error | 'neg_mean_absolute_error' |
| MSE   | metrics.mean_sqaured_error  | 'neg_mean_squared_error'  |

| 평가 방법 | API                                                          | Scoring 함수 적용 값               |
|-------|--------------------------------------------------------------|-------------------------------|
| RMSE  | metrics.mean_squared_error를<br>그대로 사용하되, squared=False<br>설정 | 'neg_root_mean_squared_error' |
| MSLE  | metrics.mean_squared_log_error                               | 'neg_mean_squared_log_error'  |
| R^2   | metrics.r2_score                                             | 'r2'                          |

#### 음수값을 반환하는 이유?

- Scoring 함수: score가 클수록 좋은 평가 결과를 평가함
   → 회귀 평가 지표 값이 커질 경우 보정이 필요함
- 10 > 1 ⇒ -1 > -10 로 1이 더 좋은 값임!

# 05 다항 회귀와 과(대)적합/과소적합 이해

### 다항 회귀

: 독립변수의 단항식이 아닌 2차, 3차 방정식과 같은 다항식으로 표현되는 회귀 y=w0 + w1\*x1 + w2\*x2 + w3\*x1\*x2 + w4\*x1\*2 + w5\*x2^2

### 다항 회귀는 선형 회귀이다 ু

 $Z = [x_1,x_2,x_1*x_2,x_1^2,x_2^2] \rightarrow y=w_0 + w_1*z_1 + w_2*z_2 + ...$  표현 가능



선형 회귀 직선형보다 다항 회귀 곡선형이 예측 성능이 높음

### 다항 회귀를 이용한 과소적합 및 과적합 이해

: 다항 회귀의 차수가 높아질수록

→ 학습 데이터에만 맞춘 학습이 이루어져 테스트 데이터에서는 정확도가 떨어지는 <mark>과적</mark> 합 문제 발생

### 편향 - 분산 트레이드 오프

- 매우 단순화된 모델이 지나치게 한 방향성으로 치우칠 경우 ⇒ 고편향성
- 학습 데이터의 특성을 민감하게 반영한 매우 복잡한 모델이 지나치게 높은 변동성을 가 질 경우 ⇒ 고분산성



#### 저편향/저분산 (2사분면)

- 예측 결과가 실제 결과와 매우 근접함
- 예측 변동이 특정 부분에 집중돼있음 → 성능이 뛰어남!

#### 저편향/고분산 (1사분면)

- 예측 결과가 실제 결과가 근접함
- 예측 결과가 실제 결과를 중심으로 넓은 부분에 분포되어 있음

#### 고편향/저분산 (3사분면)

- 정확한 결과에서 벗어남
- 예측이 특정 부분에 집중됨

#### 고편향/고분산 (4사분면)

- 정확한 예측 결과를 벗어남
- 넓은 부분에 분포됨

### 편향과 분산은 한쪽이 높으면, 한쪽이 낮아지는 경향!

편향이 높을 경우 → 분산이 낮아짐 (과소적합) 분산이 높을 경우 → 편향이 낮아짐 (과적합)

#### 편향이 너무 높을 경우 ⇒ 전체 오류가 높아짐

편향을 낮추면, 분산이 높아지고 전체 오류도 낮아짐 → 골디락스 지점

• 골디락스 지점을 지나치고 지속적으로 분산을 높일 경우 전체 오류가 오히려 증가함

# 06 규제 선형 모델 - 릿지, 라쏘, 엘라스틱넷

### 규제 선형 모델의 개요

#### 좋은 회귀 모델?

- 1. 적절히 데이터에 적합하면서
- 2. 회귀 계수가 기하급수적으로 커지는 것을 제어!

RSS를 최소화하는 것만 고려하면: 학습 데이터에 지나치게 맞추게 되고 <mark>회귀 계수가 쉽게</mark> <mark>커짐</mark>

⇒ 테스트 데이터 예측 성능 저하

RSS 최소화 방법 + 회귀 계수 크기 제어 균형을 이뤄야함

비용 함수 목표 = Min(RSS(W) + alpha \* ||W||2)

#### alpha?

: 학습 데이터 적합 정도 & 회귀 계수 값을 제어하는 튜닝 파라미터

- alpha가 클 경우: 비용함수는 회귀 계수 W 값을 작게 하여 과적합 개선
- alpha가 작을 경우: 회귀 계수 W 값이 커져도 상쇄 가능하므로 학습 데이터 적합 개선



#### 규제

: 비용함수에 alpha로 <mark>페널티를 부여하여</mark> 회귀 계수 값의 크기를 감소시켜 <mark>과적합을 개선</mark>하 는 방식

#### Ridge 회귀(L2)

: W의 제곱에 대해 페널티 부여

→ 회귀 계수를 0으로 만들지는 않음

#### Lasso 회귀(L1)

: W의 절댓값에 대해 페널티 부여

→ 영향력이 크지 않은 회귀 계수 값을 0으로 변환함

#### ElasticNet 회귀(L1+L2)

Lasso: 상관관계가 높은 피처들의 경우, 이들 중에서 중요 피처만을 셀렉하고 다른 피처들을 모두 회귀 계수를 0으로 만드는 성향이 강함

→ alpha에 따라 회귀 계수 값이 급격히 변동할 가능성 o

⇒ 이를 완화하고자 L2 규제를 추가함

단점: 수행시간이 오래걸림

정의: a\*L1 + b\*L2 (a: L1의 alpha, b: L2의 alpha)

| 주요 파라미터  | 정의      |           |
|----------|---------|-----------|
| alpha    | a+b     | 1일 경우: L1 |
| I1_ratio | a/(a+b) | 0일 경우: L2 |

### 선형 회귀 모델을 위한 데이터 변환

#### 선형 회귀 모델

- : 피처와 타깃값 간에 선형 관계가 있다고 가정 → 최적의 선형함수를 찾아내 결과 예측
  - 피처값과 타깃값의 분포가 <mark>정규 분포 형태</mark>를 선호함
  - 왜곡된 형태일 경우, 예측 성능에 부정적인 영향을 미침

#### 피처 데이터 세트에 적용하는 변환 작업

- 1. Scaler 클래스
- StandardScaler 클래스: 평균이 0, 분산이 1인 표준 정교 분포를 가진 데이터 세트로 변환
- MinMaxScaler 클래스: 최솟값이 0, 최댓값이 1인 값으로 정규화
- 2. 스케일링/정규화한 데이터 세트에 다항 특성을 적용하여 변환
- 3. 로그 변환: 원래 값에 log 함수 적용 → 정규 분포에 가깝게 분포됨
- ☆ Scaler를 사용한 변환은 성능이 크게 향상되지 않고다항 특성을 적용한 경우는 과적합의 문제가 발생할 수 있기 때문에로그 변환을 많이 씀!

### 07 로지스틱 회귀

<mark>가중치 변수</mark>가 선형인지 아닌지에 따라 선형/비선형 회귀가 결정됨

⇒ 로지스틱 회귀: 분류에 사용되는 선형 회귀 계열

### 로지스틱 회귀

- : 선형 함수가 아닌 Sigmoid 함수 최적선을 찾고,
  - 이 함수의 반환 값을 확률로 간주하여 <mark>확률에 따라 분류</mark>를 결정함!
  - 시그모이드 함수: y=1/(1+e^-x)



### ⇒ |x|가 커져도 항상 0과 1 사이의 값을 반환함



### 로지스틱 회귀 파라미터

### solver 파라미터

| lbfgs     | 기본 설정값, 메모리 공간 절약 가능, 병렬 수행 가능               |
|-----------|----------------------------------------------|
| liblinear | 다차원이고 작은 데이터 세트에서 효과적 but 국소 최적화 이슈 & 병렬 불가능 |
| newton-cg | 더 정교한 최적화 가능 but 느림                          |
| sag       | 경사 하강법 기반의 최적화, 대용량의 데이터에서 빠름                |
| saga      | sag와 유사, L1 정규화 가능                           |

#### max\_iter 파라미터

: solver로 지정된 알고리즘이 최적 수렴할 수 있는 최대 반복 횟수

#### penalty 파라미터

: 규제의 유형 설정

#### C 파라미터

: alpha 값의 역수

# 08 회귀 트리

| 선형 회귀                                            | 비선형 회귀                   |
|--------------------------------------------------|--------------------------|
| 회귀 계수의 관계를 모두 선형으로 가정하는 방정<br>식                  | 비선형 회귀 함수를 통해 결괏값 예<br>측 |
| 회귀 계수를 선형으로 결합하는 회귀 함수를 구해,<br>독립변수를 입력하여 결괏값 예측 | 회귀 계수의 결합이 비선형!          |

⇒ 머신 러닝 기반 회귀의 목표: 회귀 계수를 기반으로 하는 최적 회귀 함수를 도출하는 것

### 회귀 트리

- : 회귀를 위한 트리를 생성하고 이를 기반으로 회귀 예측을 함
- 리프 노드에 속한 데이터 값의 평균값을 구해 회귀 예측값을 계산
- 1. 결정 트리 기반으로 분할하기



- X값의 균일도를 반영한 <mark>지니 계수</mark>에 따라 분할
- 루트 노드를 split 0 기준으로 분할하고 재귀적으로 split 3 노드까지 분할하여 트리 규칙으로 변환

#### 2. 리프 노드에 결정 값 할당



• 리프 노드에 소속된 데이터 값의 평균값으로 결정 값 할당