- a) We start by defining the base cases i.e $n \leq 2$. These are all 0 because the size of a word which contains each of the three letters at least once must be greater than 2. For $n \geq 3$ we can use the principle of inclusion and exclusion. 3^n is the total number of words which can be built using the three letters, $3 \cdot 2^n$ are the words which are made only using 2 of the three letters. Finally we add the 3 words which formed only using one letter to compensate for doubles that were subtracted in the second term.
 - $n = 0 \Rightarrow 0$
 - $n = 1 \Rightarrow 0$
 - $n = 2 \Rightarrow 0$
 - $n \ge 3 \Rightarrow 3^n 3 \cdot 2^n + 3$
 - b) We define:
 - $a_n := \#$ of words which end in 1 with length n and do not contain 11 as a subword.
 - $b_n := \#$ of words which end in 0 with length n and do not contain 11 as a subword

The solution to are task is: $sol_n := a_n + b_n$ We now derive the following two formulas:

- i. $b_n = b_{n-1} + a_{n-1} = sol_{n-1}$ because we can append a 0 or a 1 to a word of size n-1 which ends in 0.
- ii. $a_n = b_{n-1} = b_{n-2} + a_{n-2} = sol_{n-2}$ because words of size n-1 must end in a 0 for us to be able to append a 1

for $n \geq 3$ \Rightarrow

- $sol_0 = 0$
- $sol_1 = 2$
- $sol_2 = 3$
- $\bullet \ sol_{n\geq 3} = sol_{n-2} + sol_{n-1}$
- a) We assume there is a non-empty finite language $L \neq \{\lambda\}$ satisfying $L^2 = L$ and hence it must contain a largest element x according to the canonical ordering.
 - \Rightarrow by definition of concatination there is an element $x' \in L^2$ such that $x' = x \cdot x$ (
 - \Rightarrow since |x'| > |x| and x was the largest element in L it follows that $x' \notin L$
 - \Rightarrow No non-empty finite Language L exists such that $L \neq \{\lambda\}$ and $L^2 = L$
 - b) We define the three languages as follows:
 - $L_1 = \{0\}^*$
 - $L_2 = \{0\}$
 - $L_3 = \{00\}$
 - $\Rightarrow (L_2 \cap L_3) = \{0\} \cap \{00\} = \emptyset$
 - $\Rightarrow L_1 \cdot \emptyset = \emptyset$
 - $\Rightarrow L_1 \cdot (L_2 \cap L_3)$ is finite

$$\begin{array}{l} L_1L_2=L_1^+ \text{ and } L_1L_3=L_1\backslash\{\lambda,0\}\\ \Rightarrow L_1^+\cap L_1\backslash\{\lambda,0\}=L_1\backslash\{\lambda,0\}\\ \Rightarrow L_1\backslash\{\lambda,0\} \text{ is by definition infinite} \end{array}$$

3. We must prove: An infinite language L is recursive \iff there is an algorithm enumerating L " \Rightarrow "

Assume L is recursive, then there exists and Algorithm A which solves the Decision Problem (Entscheidungsproblem) \Rightarrow We iterate through each element $x \in \sum^*$ in canonical order and decide with A if we add it to our enumeration.

Assume there is an algorithm A which enumerates L

We define an algorithm B which, when given an arbitrary $x \in \sum^*$ goes through the enumeration in canonical order and checks if x is equal to the current element e in the enumeration. If |x| > |e| then B outputs "x not in L". Since $|x| < \infty$ B will terminate in a finite amount of time. If x == e then we output "x in L".

- \Rightarrow B solves the Decision Problem for L
- \Rightarrow L is recursive