Class 5 data visualization with ggplot2

Lena (A16420052)

Using GGPLOT

The ggplot2 package needs to be installed as it does not come with R "out of the box".

We use the install.package() function to do this

```
head(cars)
speed dist
```

1 4 2 2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

To use ggplot I need to load it up before I can call any of the functions in the package. I do this with the library() function.

```
library(ggplot2)
ggplot()
```

All ggplot figures have at least 3 things:

```
• data (the stuff we want to plot)
```

- aesthetic mapping (aes vales)
- geoms

`geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

#geom_smooth adds trend line
#labs() label function

ggplot is not the only graphing system in R there are lots of others. There is even "base R" graphics.

plot(cars)

Plot aesthetics using aes()

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

```
[1] "Gene"
                 "Condition1" "Condition2" "State"
  table(genes$State)
      down unchanging
                               up
        72
                 4997
                              127
  round(table(genes$State)/nrow(genes)*100, 2)
      down unchanging
                               up
                96.17
      1.39
                             2.44
  sum(genes$State=="up")
[1] 127
  url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"</pre>
  genes <- read.delim(url)</pre>
  #State tells us whether the difference in expression values between conditions is statisti
  p <- ggplot(genes)+ aes(x=Condition1, y=Condition2, col=State) + geom_point()</pre>
  p + scale_colour_manual(values=c("violet","turquoise","lightgreen")) +labs(title= "Gene Ex
```

Gene Expression Changes Upon Drug Treatment

url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
gapminder <- read.delim(url)
#gapminder_2007 dataset which contains the variables GDP per capita gdpPercap and life exp
install.packages("dplyr") ## un-comment to install if needed
library(dplyr)</pre>

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
   filter, lag

The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union
```

```
gapminder_2007 <- gapminder %>% filter(year==2007)
ggplot(gapminder_2007) +
aes(x=gdpPercap, y=lifeExp) + geom_point(alpha=0.5)
```


#alpha is for transparency

Coloring scheme based on the categorical data type of the variable continent

```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```


More variables for aes()

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```



```
#pop (in millions)
#continent variable (sorted by color)
```

Coloring the points by numeric variable population pop

```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```


Adjusting point size

```
#set point size based on the population (size=pop) of each country we can use
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.5)
```


1957 vs 2007

```
gapminder_1957 <- gapminder %>% filter(year==1957)
ggplot(gapminder_1957) +
  geom_point(aes(x=gdpPercap, y=lifeExp, size=pop, color=continent, alpha=0.7))+
  scale_size_area(max_size = 15)
```


and 2007

#facet_wrap(~year) layer to add both years

Bar Charts

Create bar charts using geom_col() Fill bars with color using fill aesthetic

Each category is represented by one bar with a height defined by each numeric value. Good for comparing values among different groups

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                              pop gdpPercap
1
          China
                     Asia 2007
                               72.961 1318683096
                                                   4959.115
2
          India
                     Asia 2007
                                64.698 1110396331
                                                   2452.210
3 United States
                Americas 2007
                                78.242
                                        301139947 42951.653
                     Asia 2007 70.650 223547000
4
      Indonesia
                                                   3540.652
```

ggplot barchart

```
ggplot(gapminder_top5) +
  geom_col(aes(x=country, y=pop))
```


life expectancy of the five biggest countries by population in 2007

```
ggplot(gapminder_top5)+
  geom_col(aes(x=country, y=lifeExp))
```


Filling Bars with color

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop, fill = continent))
```


#continent variable is a categorical variable; clear color scheme
#lifeExp is a numerical variable and has a range of color scheme
ggplot(gapminder_top5) +

geom_col(aes(x = country, y = pop, fill = lifeExp))

#fill is for how color scheme is

changing orders of bars

```
ggplot(gapminder_top5)+
aes(x=reorder(country, -pop), y=pop, fill=gdpPercap)+geom_col()
```


same code different syntax

```
ggplot(gapminder_top5)+
  geom_col(aes(x=reorder(country, -pop), y=pop, fill=gdpPercap))
```


Flipping Bar Charts For clearer visualization using coord_flip()

head(USArrests)

	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests)+
geom_col(aes(x=reorder(State, Murder), y=Murder))+ coord_flip()</pre>
```

