Harvard-MIT Division of Health Sciences and Technology HST.535: Principles and Practice of Tissue Engineering

Instructor: Shuguang Zhang

Fabricate Biological Nanomaterials For Tissue Engineering HST-535

Wednesday, 17 Sept., 2003

Shuguang Zhang

Center for Biomedical Engineering, Center for Bits & Atoms Massachusetts Institute of Technology Cambridge, MA 02139, USA

http://web.mit.edu/lms/www

Tissue Engineering requires 2 key ingredient:

- · Stem cells

 Embryonic stem cells

 Adult stem cells
- Biological scaffolds
 Polymer inert scaffolds
 Designed functional biological scaffolds

Self-assembly is ubiquitous in Nature

Each fish is about 5--50 centimeters in length

Photo courtesy of USGS.

Molecular Self-assembly of Tetrameric Hemoglobin Polypeptides

Image removed for copyright reasons.

6.4 nm in diameter

Molecular Self-assembly Through Weak Interactions

- Hydrogen Bonds
- •Ionic Bonds (Electric static interaction, salt bridges)
- •van der Waals Interactions
- Hydrophobic interactions
- •H₂O mediated interactions (Water-mediated H-bonds)

Introducing: the self-assembling peptide nanofiber scaffold to culture, to grow and to study tissue cells in 3-dimensions:

"Molecular Cement"

Discovery of Peptide Nanofibers Scaffolds

Self-assembling Peptides Inspired from Nature

Zhang, et al., PNAS, April, 1993, Zhang, et al., Biomaterials, Dec. 1995

Self-assembling Peptide Nanofibers

Scanning EM Image, EKA16-II

Zhang, et al., PNAS, April, 1993 http://web.mit.edu/lms/www

Self-assembling peptide nanofiber scaffold

RADA16-I

(SEM)

http://web.mit.edu/lms/www

Source: Figure 2 in Holmes, et al. "Extensive Neurite Outgrowth and Active Synapse Formation on Self-assembling Peptide Scaffolds." PNAS 97, no. 12 (June 6, 2000): 6728-6733. Copyright 2000, National Academy of Sciences, U.S.A. Courtesy of National Academy of Sciences, U.S.A. Used with permission.

Biopolymers PGA/PLLA microfibers used as scaffold

Photo removed for copyright reasons.

Mikos, et al., (1993) *J. Biomed. Mater. Res.* 27, 183-189 The yellow dot is about the size of most tissue cells.

Drastic Size Difference

Typical cell dwarfs the peptide scaffold microstructure, with nanometer-sized fibers and pores which structure and hold large amounts of water and nutrients.

Typical synthetic matrix far too large and rigid for cells to truly grow in 3D.

Molecular Model of EFK8 (FEFKFEFK)

(Davide Marini, Mechanical Engineering, MIT)

Marini, et al., NanoLetters, April, 2002

Atomic force Microscopy Image of EFK8 (FEFKFEFK)

8 minutes after in water (Davide Marini, Mechanical Engineering, MIT)

Figure removed for copyright reasons.

Marini, et al., NanoLetters, April, 2002

http://web.mit.edu/lms/www

Atomic force Microscopy Image of EFK8

2 hours after in water (Davide Marini, Mechanical Engineering, MIT)

Figure removed for copyright reasons.

Marini, et al., NanoLetters, April, 2002

http://web.mit.edu/lms/www

AFM & Cryo-TEM images of EFK8 nanofiber intermediate

Davide Marini, Mechanical Engineering

Marini, et al., NanoLetters, April, 2002

AFM

Cryo-TEM

Two figures removed for copyright reasons.

Left-handed double helix

The molecular modeling & simulations

Marini, et al., NanoLetters, April, 2002

Inner sheet Outer sheet Double sheet (S13) (S24) http://web.mit.edu/lms/www

AFM image

Chondrocytes encapsulated in KLD peptide scaffold

John Kisiday (Electric Engineering & Biological Engineering, MIT)

Source: Fig 1b in Kisiday, et al. "Self-assembling Peptide Hydrogel Fosters Chondrocyte Extracellular Matrix Production and Cell Division: Implications for Cartilage Tissue Repair." *PNAS* 99 (July 2002). Copyright 2002, National Academy of Sciences, U.S.A. Courtesy of National Academy of Sciences, U.S.A. Used with permission.

<u>50 μm</u>

Culture brain hippocampal slice on peptide scaffold

Photos removed for copyright reasons.

Carlos Semino (Submitted)

Hippocampal Neurons form active connections on the self-assembling RAD16 peptide scaffold

Holmes, et al, June 2000

Source: Figure 5a in Holmes, et al. "Extensive Neurite Outgrowth and Active Synapse Formation on Self-assembling Peptide Scaffolds." *PNAS* 197, no. 12 (June 6, 2000): 6728–6733. Copyright 2000, National Academy of Sciences, U.S.A. Courtesy of National Academy of Sciences, U.S.A. Used with permission.

Peptide scaffold bridges the gap & repairs brain lesion

Rutledge Ellis-Behnke, et al., Brain & Cognitive Science, MIT

Photos removed for copyright reasons.

Systems Studied using Peptide Scaffolds

Cell Types	Cell Lines	Animals
Mouse fibroblast	NIH-3T3	Mouse
Chicken embryo fibroblast	CEF	Rat
Chinese hamster ovary	CHO	Hamsters
Human cervical carcinoma	Hela	Rabbits
Human osteosarcoma	MG63	Goats
Human hepato-cellular carcinoma	HepG2	Monkey*
Hamster pancreas	HIT-T15	Horse*
Human embryonic Kidney	HEK293	
Human neuroblastoma†	SH-SY5Y	
Rat pheochromocytoma†	PC12	
Mouse cerebellum granule cells*†		
Mouse & rat hippocampal cells*†		
Human foreskin fibroblast*		
Human epidermal keratinocytes*		
Bovine chrondrocytes*		
Bovine endothilial cells*		
Rat liver stem cells*		
Mouse cardiac myocytes*		
Rat neural stem cells*†		
Rat hippocampal neural tissue slice*†		

Think3-D!

Surface Self-assembling Peptide and EG₆SH

Zhang, et al, Biomaterials, Dec. 1999

EG₆SH 3 nm RADS Peptide 4 nm

Figure removed for copyright reasons.

Cell Tracks on the Peptide/EG Surface

Cells Stations and Tracks

Zhang, et al, Biomaterials, Dec. 1999

Figure removed for copyright reasons.

Remarks and Perspectives

- •Building from bottom-up for new Biological materials.
- •Self-assembling peptides can serve as Nanoscale scaffolds.
- •Peptides could be important as one of the components of the "Designed Materials".
- Many unexpected biological events and cell behaviors may be discovered when study cells in a 3-dimensional environment.

In nature hybrid species are usually sterile, but in science the reverse is often true. Hybrid subjects are often astonishingly fertile, whereas if a scientific discipline remains too pure it usually wilts.

Francis Crick

What Mad Pursuit, 1988

Imagination is more important than knowledge.

Albert Einstein

What do they have in common?

Made by Human Made by Nature

Machines Molecular machines

Transportation Hemoglobin

Assembly lines Ribosomes

Digital database Nucleosomes

Copy machines Polymerases

Bulldozer/Destroyer Proteases/proteosome

Chain couplers Ligases

Train control center Centrosome

Train tracks Actin filament network

Mail sorting machine Protein sorting

Electric Fences Membranes

Gates/keys & passes Ion channels

Internet/www Neuron synapse

http://web.mit.edu/lms/www