SHORT ANSWERS

TYPE-I

1. (2)	2. (2)	3. (3)	4. (1)
5. (3)	6. (2)	7. (3)	8. (4)
9. (3)	10. (3)	11. (1)	12. (1)
13. (3)	14. (1)	15. (4)	16. (3)
17. (1)	18. (3)	19. (2)	20. (1)
21. (1)	22. (4)	23. (1)	24. (3)
25. (4)	26. (2)	27. (3)	28. (2)
29. (1)	30. (2)	31. (2)	32. (2)
33. (1)	34. (3)	35. (2)	36. (2)
37. (4)	38. (3)	39. (1)	40. (3)
41. (3)	42. (4)	43. (4)	44. (4)
45. (3)	46. (2)	47. (2)	48. (3)
49. (3)	50. (4)	51. (2)	52. (3)
53. (3)	54. (3)	55. (1)	56. (2)
57. (1)	58. (3)	59. (1)	60. (1)
61. (2)	62. (2)	63. (1)	64. (1)
65. (1)	66. (2)		

TYPE-II

1. (3)	2. (2)	3. (3)	4. (2)
5. (3)	6. (1)	7 . (2)	8. (3)
9. (4)	10. (4)	11. (4)	12. (4)
13. (4)	14. (4)	15. (1)	16. (2)
17. (1)	18. (1)	19. (4)	20. (2)
21. (3)	22. (2)	23. (3)	24. (2)
25. (4)	26. (2)	27. (4)	

TYPE-III

1. (1)	2. (2)	3. (3)	4. (4)
5. (4)	6. (4)	7. (3)	8. (2)
9. (2)	10. (1)	11. (1)	12. (3)
13. (3)	14. (3)	15. (1)	16. (1)
17. (2)	18. (1)	19. (2)	20. (3)
21. (4)	22. (4)	23. (2)	24. (1)
25. (3)	26. (3)	27. (2)	28. (1)
29. (3)	30. (1)	31. (3)	32. (4)
33. (1)	34. (1)	35. (3)	36. (4)
37. (2)	38. (3)	39. (4)	40. (4)

TYPE-IV

1. (4)	2. (2)	3. (2)	4. (1)
5. (3)	6. (2)	7. (1)	8. (4)
9. (1)	10. (2)	11. (2)	12. (3)
13. (3)	14. (3)	15. (4)	16. (2)

TYPE-V

1. (1)	2. (4)	3. (1)	4. (4)
5. (4)	6. (2)	7. (3)	8. (1)
9. (3)	10. (4)	11. (2)	12. (1)
13. (3)	14. (2)		

TYPE-VI

1. (1)	2. (2)	3. (3)	4. (2)
5. (2)	6. (3)	7. (1)	8. (3)
9. (2)			

TYPE-VII

1. (2)	2. (3)	3. (2)	4. (3)
5. (2)	6. (1)	7. (2)	8. (4)
9. (4)	10. (3)	11. (3)	12. (1)
13. (3)	14. (2)	15. (3)	

EXPLANATIONS

TYPE-I

1. (2) Using Rule 1, P = ₹ 3000, A = ₹ 3993, n = 3 years

$$A = P \left(1 + \frac{r}{100} \right)^n$$

$$\left(1 + \frac{r}{100}\right)^n = \frac{A}{P}$$

$$\left(1 + \frac{r}{100}\right)^3 = \frac{3993}{3000} = \frac{1331}{1000}$$

$$\left(1 + \frac{r}{100}\right)^3 = \left(\frac{11}{10}\right)^3$$

$$\Rightarrow 1 + \frac{r}{100} = \frac{11}{10}$$

$$\Rightarrow \frac{r}{100} = \frac{11}{10} - 1$$

$$\Rightarrow \frac{r}{100} = \frac{1}{10} \Rightarrow r = \frac{100}{10}$$

r = 10%

2. (2) Using Rule 1,

$$A = 10,000 \left(1 + \frac{2}{100} \right)^4$$

$$=10,000\left(\frac{51}{50}\right)^4 = 10824.3216$$

∴ Interest

= 10,824.3216 - 10,000

= ₹ 824.32

3. (3) Using Rule 1, According to question,

$$2420 = 2000 \left(1 + \frac{10}{100} \right)^{t}$$

$$\frac{2420}{2000} = \left(\frac{11}{10}\right)^{t}$$

or,
$$\left(\frac{11}{10}\right)^t = \frac{121}{100}$$

or,
$$\left(\frac{11}{10}\right)^t = \left(\frac{11}{10}\right)^2$$

 \therefore t = 2 years

4. (1) Using Rule 1, Let the required time be *n* years. Then.

$$1331 = 1000 \left(1 + \frac{10}{100} \right)^n$$

$$\left[\therefore P_1 = P \left(1 + \frac{r}{100} \right)^n \right]$$

$$\Rightarrow \frac{1331}{1000} = \left(\frac{10+1}{10}\right)^n$$

$$\Rightarrow \left(\frac{11}{10}\right)^n = \left(\frac{11}{10}\right)^3$$

 $\Rightarrow n = 3$

5. (3) Using Rule 1, Let the principal be ₹ P.

$$\therefore 270.40 = P \left(1 + \frac{4}{100} \right)^2$$

 \Rightarrow 270.40 = P (1 + 0.04)²

⇒ P =
$$\frac{270.40}{1.04 \times 1.04}$$
 = ₹ 250

6. (2) Using Rule 1,

Let the sum be ₹ P and rate of interest be R% per annum. Then,

$$P\left(1 + \frac{R}{100}\right)^2 = 9680$$
 ...(i)

$$P\left(1 + \frac{R}{100}\right)^3 = 10648$$
 ...(ii)

On dividing equation (ii) by (i)

$$1 + \frac{R}{100} = \frac{10648}{9680}$$

$$\Rightarrow \frac{R}{100} = \frac{10648}{9680} - 1$$

$$= \frac{10648 - 9680}{9680}$$

$$\Rightarrow \frac{R}{100} = \frac{968}{9680} = \frac{1}{10}$$

$$\Rightarrow$$
 R = $\frac{1}{10} \times 100 = 10 \%$

7. (3) Using Rule 1,

Let the rate per cent per annum be r. Then,

$$2500 = 2304 \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow \left(1 + \frac{r}{100}\right)^2 = \frac{2500}{2304} = \left(\frac{50}{48}\right)^2$$

$$\Rightarrow 1 + \frac{r}{100} = \frac{50}{48} = \frac{25}{24}$$

$$\Rightarrow \frac{r}{100} = \frac{25}{24} - 1 = \frac{1}{24}$$

$$\Rightarrow r = \frac{100}{24} = \frac{25}{6} = 4\frac{1}{6}\%$$

8. (4) Using Rule 1,

Let the sum be ξx .

$$\therefore 1352 = x \left(1 + \frac{4}{100}\right)^2$$

$$\Rightarrow 1352 = x \left(1 + \frac{1}{25}\right)^2$$

$$\Rightarrow 1352 = x \left(\frac{26}{25}\right)^2$$

$$\Rightarrow x = \frac{1352 \times 25 \times 25}{26 \times 26}$$

9. (3) Using Rule 1,

The interest is compounded quarterly.

$$\therefore R = \frac{20}{4} = 5\%$$

Time = 3 quarters

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$= 16000 \left[\left(1 + \frac{5}{100} \right)^3 - 1 \right]$$

$$= 16000 \left[\left(\frac{21}{20} \right)^3 - 1 \right]$$

$$=16000\left(\frac{9261-8000}{8000}\right)$$

$$=16000 \times \frac{1261}{8000} = 72522$$

10. (3) Using Rule 3, Amount

$$= P\left(1 + \frac{R_1}{100}\right) \left(1 + \frac{R_2}{100}\right) \left(1 + \frac{R_3}{100}\right)$$

$$=10000\left(1+\frac{4}{100}\right)\left(1+\frac{5}{100}\right)\left(1+\frac{6}{100}\right)$$

$$= 10000 \times \frac{26}{25} \times \frac{21}{20} \times \frac{53}{50}$$

A = ₹ 11575.2

∴ C.I. = ₹ (11575.2–10000)

= ₹ 1575.2

11. (1) Using Rule 3, Amount

$$=2000\left(1+\frac{4}{100}\right)\left(1+\frac{3}{100}\right)$$

= 2000 ×1.04 ×1.03

= ₹ 2142.40

∴ CI = (2142.40 - 2000)

= ₹ 142.40

12. (1) Using Rule 1,

Let the rate of CI be R per cent per annum.

$$\therefore CI = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$\Rightarrow 5044 = 32000 \left[\left(1 + \frac{R}{400} \right)^3 - 1 \right]$$

[:: Interest is compounded quarterly]

$$\Rightarrow \frac{5044}{32000} = \left(1 + \frac{R}{400}\right)^3 - 1$$

$$\Rightarrow \left(1 + \frac{R}{400}\right)^3 - 1 = \frac{1261}{8000}$$

$$\Rightarrow \left(1 + \frac{R}{400}\right)^3 = 1 + \frac{1261}{8000}$$

$$\Rightarrow \left(1 + \frac{R}{400}\right)^3 = \frac{9261}{8000} = \left(\frac{21}{20}\right)^3$$

$$\Rightarrow 1 + \frac{R}{400} = \frac{21}{20} \Rightarrow \frac{R}{400} = \frac{21}{20} - 1 = \frac{1}{20}$$

$$\Rightarrow R = \frac{400}{20} = 20$$

13. (3) Using Rule 1,

$$Amount = P \left(1 + \frac{R}{100} \right)^{t}$$

$$=8000 \left(1+\frac{15}{100}\right)^{2\frac{1}{3}}$$

$$=8000 \left(1+\frac{3}{20}\right)^2 \left(1+\frac{3}{20\times 3}\right)$$

$$= 8000 \times \frac{23}{20} \times \frac{23}{20} \times \frac{21}{20}$$

= ₹ 11109

 \therefore Compound Interest

= ₹ (11109 – 8000) = ₹ 3109.

14. (1) Using Rule 1 and 2,

The rate of interest is compounded half yearly,

 \therefore r = 10% per half year

Let time = $\frac{T}{2}$ years = half years

According to the question,

Amount =
$$P\left(1 + \frac{R}{100}\right)^t$$

$$\Rightarrow 13310 = 10000 \left(1 + \frac{10}{100} \right)^{T}$$

$$\Rightarrow \frac{13310}{10000} = \left(\frac{11}{10}\right)^{\mathrm{T}}$$

$$\Rightarrow \left(\frac{11}{10}\right)^{\mathrm{T}} = \frac{1331}{1000} = \left(\frac{11}{10}\right)^{3}$$

$$\Rightarrow$$
 T = 3 half years = $1\frac{1}{2}$ years

15. (4) Let the principal be ₹ x. Now,

C.I. =
$$P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

 $\Rightarrow 1261 = x\left[\left(1 + \frac{5}{100}\right)^{3} - 1\right]$
 $\Rightarrow 1261 = x\left(\frac{9261}{8000} - 1\right)$
 $\Rightarrow 1261 = x\left(\frac{9261 - 8000}{8000}\right)$
= $\frac{1261x}{8000}$

16. (3) Using Rule 1,

Let the sum be P.

As, the interest is compounded half-yearly,

 \therefore R = 2%, T = 2 half years

 $\Rightarrow x = \frac{1261 \times 8000}{1261} = ₹8000$

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow 7803 = P \left(1 + \frac{2}{100} \right)^{2}$$

$$\Rightarrow 7803 = P \left(1 + \frac{1}{50} \right)^{2}$$

$$\Rightarrow 7803 = P \times \frac{51}{50} \times \frac{51}{50}$$

$$\Rightarrow P = \frac{7803 \times 50 \times 50}{51 \times 51} = ₹7500$$

17. (1) Using Rule 1,

$$5832 = P\left(1 + \frac{8}{100}\right)^{2}$$

$$\Rightarrow 5832 = P\left(1 + \frac{2}{25}\right)^{2}$$

$$\Rightarrow 5832 = P \times \frac{27}{25} \times \frac{27}{25}$$

$$\Rightarrow P = \frac{5832 \times 25 \times 25}{27 \times 27} = ₹5000$$

18. (3) Amount

$$=6000\left(1+\frac{10}{100}\right)\times\left(1+\frac{\frac{1}{2}\times10}{100}\right)$$

$$= 6000 \times \frac{11}{10} \times \frac{21}{20} = ₹ 6930$$

COMPOUND INTEREST

Aliter: Using Rule 4,

Here, t = nF

$$A = P \left(1 + \frac{r}{100}\right)^n \left(1 + \frac{rF}{100}\right)$$

19. (2) Using Rule 1 and 2, Interest is compounded half year-

∴ Rate of interest = 5%

Time =
$$\frac{n}{2}$$
 years (let)

or *n* half-years

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow 9261 = 8000 \left(1 + \frac{5}{100}\right)^n$$

$$\Rightarrow \frac{9261}{8000} = \left(\frac{21}{20}\right)^n$$

$$\Rightarrow \left(\frac{21}{20}\right)^3 = \left(\frac{21}{20}\right)^n$$

$$\Rightarrow$$
 $n = 3$ half years

$$= \frac{3}{2} \text{ years} = 1 \frac{1}{2} \text{ years}$$

20. (1) Using Rule 1,

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

Let rate be 'r'

$$\Rightarrow \frac{1102.50}{1000} = \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow \frac{11025}{10000} = \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow \left(\frac{105}{100}\right)^2 = \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow 1 + \frac{r}{100} = \frac{105}{100}$$

$$\Rightarrow \frac{r}{100} = \frac{5}{100}$$

 $\rightarrow r = 5\%$

21. (1) Using Rule 1 and 2, Rate = 10% per annum = 5% half yearly

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow 926.10 = 800 \left(1 + \frac{5}{100}\right)^{\mathrm{T}}$$

$$\Rightarrow \frac{9261}{8000} = \left(\frac{21}{20}\right)^{\mathrm{T}}$$

$$\Rightarrow \left(\frac{21}{20}\right)^3 = \left(\frac{21}{20}\right)^T$$

∴ Time = 3 half years

=
$$1\frac{1}{2}$$
 years

22. (4) Using Rule 1,

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$= 6000 \left(1 + \frac{5}{100}\right)^2$$

$$= 6000 \times \frac{21}{20} \times \frac{21}{20} = ₹ 6615$$

23. (1) Using Rule 1 and 2,

Let the required time be *t* years. Interest is compounded half yearly.

 \therefore Time = 2t half years

and rate =
$$\frac{20}{2}$$
 = 10%

$$1000 \left(1 + \frac{10}{100}\right)^{2t} = 1331$$

$$\Rightarrow \left(\frac{11}{10}\right)^{2t} = \frac{1331}{1000}$$

$$\Rightarrow \left(\frac{11}{10}\right)^{2t} = \left(\frac{11}{10}\right)^3 \Rightarrow 2t = 3$$

$$\therefore t = \frac{3}{2} \text{ years or } 1\frac{1}{2} \text{ years}$$

24. (3) Using Rule 1.

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$= 30000 \left(1 + \frac{7}{100}\right)^{\mathrm{T}}$$

$$\Rightarrow \frac{34347}{30000} = \left(\frac{107}{100}\right)^{\mathrm{T}}$$

$$\Rightarrow \frac{11449}{10000} = \left(\frac{107}{100}\right)^2 = \left(\frac{107}{100}\right)^T$$

$$\Rightarrow$$
 Time = 2 years

25. (4) Using Rule 1, If the rate of C.I. be r% per annum, then

$$A = P \left(1 + \frac{R}{100} \right)^T$$

$$\Rightarrow 8820 = 8000 \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow \frac{8820}{8000} = \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow \frac{441}{400} = \left(\frac{21}{20}\right)^2 = \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow 1 + \frac{r}{100} = \frac{21}{20}$$

$$\Rightarrow \frac{r}{100} = \frac{21}{20} - 1 = \frac{1}{20}$$

$$\Rightarrow r = \frac{1}{20} \times 100$$

 \therefore r = 5% per annum

26. (2) Using Rule 3,

$$A = P \left(1 + \frac{r_1}{100} \right) \left(1 + \frac{r_2}{100} \right)$$

$$= 10000 \left(1 + \frac{10}{100} \right) \left(1 + \frac{12}{100} \right)$$

$$= 10000 \times \frac{11}{10} \times \frac{28}{25}$$

= ₹ 12320

27. (3) Using Rule 1.

CI =
$$P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right] - \frac{PR}{100}$$

$$\Rightarrow 420 = P \left[\left(1 + \frac{5}{100} \right)^2 - 1 \right] - \frac{P \times 5}{100}$$

$$\Rightarrow 420 = P \left[\left(\frac{21}{20} \right)^2 - 1 \right] - \frac{5P}{100}$$

$$\Rightarrow 420 = \frac{41P}{400} - \frac{5P}{100} = \frac{21P}{400}$$

$$\Rightarrow P = \frac{420 \times 400}{21} = ₹8000$$

28. (2) Using Rule 1,

Amount

$$= 2000 \left(1 + \frac{5}{100}\right)^2 + 2000 \left(1 + \frac{5}{100}\right)^2$$

- $= 2000 \times \left(\frac{21}{20}\right)^2 + 2000 \left(\frac{21}{20}\right)$
- $= 2000 \times \frac{21}{20} \times \frac{41}{20} = ₹ 4305$
- ∴ Required amount
- = 4305 + 2000 = ₹ 6305
- **29.** (1) Using Rule 1 and 2,

Time = t half year and R = 5% per half year

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow \frac{92610}{80000} = \left(1 + \frac{5}{100}\right)^{\mathrm{T}}$$

$$\Rightarrow \frac{9261}{8000} = \left(\frac{21}{20}\right)^{\mathrm{T}}$$

- \Rightarrow T = 3 half years or $1\frac{1}{2}$ years
- $\Rightarrow \left(\frac{21}{20}\right)^3 = \left(\frac{21}{20}\right)^T$
- **30.** (2) If each instalment be *x*, then Present worth of first instalment

$$\frac{x}{1 + \frac{10}{100}} = \frac{10x}{11}$$

Present worth of second instal-

$$=\frac{x}{\left(1+\frac{10}{100}\right)^2}=\frac{100}{121}x$$

$$\therefore \frac{10}{11}x + \frac{100}{121}x = 21000$$

$$\Rightarrow \frac{110x + 100x}{121} = 21000$$

 $\Rightarrow 210x = 21000 \times 121$

$$\Rightarrow x = \frac{21000 \times 121}{210} x = 712100$$

Aliter: Using Rule 9,

Here, n = 2, p = ₹ 21000,

r = 10%

Each annual instalment

$$= \frac{P}{\left(\frac{100}{100+r}\right) + \left(\frac{100}{100+r}\right)^2}$$

$$= \frac{21000}{\frac{100}{110} + \left(\frac{100}{110}\right)^2}$$

$$= \frac{21000}{100} + \frac{10000}{12100}$$

$$= \frac{21000}{\frac{10}{11} + \frac{100}{121}}$$

$$= \frac{21000}{110+100} \times 121$$

$$= \frac{21000}{210} \times 121$$

= 12100

31. (2) Using Rule 1,

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow 882 = 800 \left(1 + \frac{5}{100}\right)^{\mathrm{T}}$$

$$\Rightarrow \frac{882}{800} = \left(\frac{21}{20}\right)^{\mathrm{T}}$$

$$\Rightarrow \frac{441}{400} = \left(\frac{21}{20}\right)^2 = \left(\frac{21}{20}\right)^T$$

T = 2 years

32. (2) Using Rule 1,

$$C.I. = P\left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$=5000\left[\left(1+\frac{10}{100}\right)^3-1\right]$$

$$=5000\left[\left(\frac{11}{10}\right)^3-1\right]$$

C.I.=
$$\frac{5000 \times 331}{1000}$$
 = ₹ 1655

33. (1) Using Rule 1 and 2.

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow \frac{3362}{3200} = \left(1 + \frac{10}{400}\right)^{4t}$$

$$\Rightarrow \frac{1681}{1600} = \left(\frac{41}{40}\right)^{46}$$

$$\Rightarrow \left(\frac{41}{40}\right)^2 = \left(\frac{41}{40}\right)^{4t}$$

$$\Rightarrow 4t = 2 \Rightarrow t = \frac{1}{2} \text{ year}$$

34. (3) Using Rule 1,

Let the principal be Rs. P

$$\therefore \text{ C.I.} = \text{P}\left[\left(1 + \frac{\text{R}}{100}\right)^2 - 1\right]$$

$$\Rightarrow 328 = P \left[\left(1 + \frac{5}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 328 = P \left[\left(\frac{21}{20} \right)^2 - 1 \right]$$

$$\Rightarrow 328 = P\left(\frac{441}{400} - 1\right)$$

$$\Rightarrow 328 = P\left(\frac{441 - 400}{400}\right)$$

$$\Rightarrow 328 = \frac{41P}{400}$$

$$\Rightarrow P = \frac{328 \times 400}{41} = ₹3200$$

35. (2) Present worth of bike

$$= P \left(1 - \frac{R}{100} \right)^{T}$$

$$=62500 \left(1-\frac{4}{100}\right)^2$$

$$=62500 \left(1 - \frac{1}{25}\right)^2$$

$$=62500 \left(\frac{25-1}{25}\right)^2$$

$$= \frac{62500 \times 24 \times 24}{25 \times 25}$$

= ₹ 57600

S.I. for 1 year =
$$\frac{600}{2}$$
 = ₹ 300

= ₹ 15

∴ Rate =
$$\frac{15 \times 100}{300 \times 1}$$
 = 5%

$$\therefore \frac{PRT}{100} = 600$$

$$\Rightarrow P \times \frac{5 \times 2}{100} = 600$$

37. (4) Using Rule 1,

$$A = P \left(1 + \frac{R}{100}\right)^T$$

$$\Rightarrow 13230 = 12000 \left(1 + \frac{5}{100}\right)^n$$

$$\Rightarrow \frac{13230}{12000} = \left(1 + \frac{1}{20}\right)^n$$

$$\Rightarrow \frac{441}{400} = \left(\frac{21}{20}\right)^n$$

$$\Rightarrow \left(\frac{21}{20}\right)^n = \left(\frac{21}{20}\right)^2$$

 $\Rightarrow n = 2 \text{ years}$

38. (3) Using Rule 1,

Principal (P) = Rs. S Rate (R) = 2r% per annum

$$\therefore$$
 Amount = P $\left(1 + \frac{R}{100}\right)^T$

$$= S \left(1 + \frac{2r}{100}\right)^3 = S \left(1 + \frac{r}{50}\right)^3$$

39. (1) Using Rule 1

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow$$
2420 = P $\left(1 + \frac{10}{100}\right)^2$

$$\Rightarrow 2420 = P\left(1 + \frac{1}{10}\right)^2 = P\left(\frac{11}{10}\right)^2$$

$$\Rightarrow$$
P = $\frac{2420 \times 10 \times 10}{11 \times 11}$ = Rs. 2000

40. (3) Using Rule 1, Let principal be Rs. P.

Interest in 1 year =
$$\frac{PRT}{100}$$

$$=\frac{P \times 10}{100} = \text{Rs.} \frac{P}{10}$$

According to question,

$$\therefore \ P\left[\left(1+\frac{R}{100}\right)^2-1\right] - \frac{P}{10}$$

= 132

$$\Rightarrow P\left[\left(1 + \frac{10}{100}\right)^2 - 1\right] - \frac{P}{10}$$

= 132

$$\Rightarrow P\left[\left(\frac{11}{10}\right)^2 - 1\right] - \frac{P}{10} = 132$$

$$\Rightarrow P\left(\frac{121}{100} - 1\right) - \frac{P}{10} = 132$$

$$\Rightarrow \frac{21P}{100} - \frac{P}{10} = 132$$

$$\Rightarrow \frac{21P - 10P}{100} = 132$$

$$\Rightarrow \frac{11P}{100} = 132$$

$$\Rightarrow P = \frac{132 \times 100}{11} = Rs \ 1200$$

41. (3) Using Rule 1,

Let the principal be Rs. P.

According to the question,

$$P\left(1 + \frac{R}{100}\right)^2 - P\left(1 + \frac{R}{100}\right) = 420$$

$$\Rightarrow P\left(1 + \frac{R}{100}\right)\left(1 + \frac{R}{100} - 1\right) = 420$$

$$\Rightarrow P\left(1 + \frac{R}{100}\right) \times \frac{R}{100} = 420$$

$$\Rightarrow P\left(1+\frac{5}{100}\right) \times \frac{5}{100} = 420$$

$$\Rightarrow$$
P $\left(1+\frac{1}{20}\right) = 420 \times 20$

$$\Rightarrow$$
P × $\frac{21}{20}$ = 420 × 20

$$\Rightarrow P = \frac{420 \times 20 \times 20}{21} = Rs. 8000$$

42. (4) Using Rule 1,

Time = T half-years

Rate =
$$\frac{5}{2}$$
% per half year

$$A = P \left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow 68921 = 64000 \left(1 + \frac{5}{200}\right)^{T}$$

$$\Rightarrow \frac{68921}{64000} = \left(1 + \frac{1}{40}\right)^{T}$$

$$\Rightarrow \frac{68921}{64000} = \left(\frac{41}{40}\right)^{T}$$

$$\Rightarrow \left(\frac{41}{40}\right)^{3} = \left(\frac{41}{40}\right)^{T}$$

$$\Rightarrow T = 3 \text{ half years}$$

$$= \frac{3}{2} = 1\frac{1}{2} \text{ years}$$
43. (4) Using Rule 1,
$$A = P \left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow 12100 = P \left(1 + \frac{10}{100}\right)^{2}$$

$$\Rightarrow 12100 = P \times \frac{121}{100}$$

$$\Rightarrow P = \frac{12100 \times 100}{121} = \text{Rs. } 10000$$
44. (4) Using Rule 1,
$$A = P \left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow 1348.32 = 1200 \left(1 + \frac{R}{100}\right)^{2}$$

$$\Rightarrow \frac{1348.32}{1200} = \left(1 + \frac{R}{100}\right)^{2}$$

$$\Rightarrow \frac{1348.32}{120000} = \left(1 + \frac{R}{100}\right)^{2}$$

 $\Rightarrow \frac{11236}{10000} = \left(1 + \frac{R}{100}\right)^2$

 $\Rightarrow \left(\frac{106}{100}\right)^2 = \left(1 + \frac{R}{100}\right)^2$

 $\Rightarrow \frac{106}{100} = 1 + \frac{R}{100}$

 $\Rightarrow 1 + \frac{6}{100} = 1 + \frac{R}{100}$

 \Rightarrow R = 6% per annum.

45. (3) Using Rule 1, Rate of interest
$$= \frac{20}{4} = 5\% \text{ per quarter}$$
Time = 3 quarters
$$\therefore \text{ C.I.} = P\left[\left(1 + \frac{R}{100}\right)^T - 1\right]$$

$$= 12000 \left[\left(1 + \frac{1}{20}\right)^3 - 1\right]$$

$$= 12000 \left[\left(\frac{21}{20}\right)^3 - 1\right]$$

$$= 12000 \left[\left(\frac{21}{8000}\right)^3 - 1\right]$$

$$= 12000 \left[\left(\frac{21}{8000}\right)^3 - 1\right]$$

$$= 12000 \left[\left(\frac{21}{8000}\right)^3 - 1\right]$$

$$= \frac{12000 \times 1261}{8000} = \text{Rs. } 1891.5$$
46. (2) Amount
$$= \text{Rs. } (30000 + 4347)$$

$$= \text{Rs. } (34347)$$

$$= \text{Rs. } 34347$$

$$\Rightarrow 34347 = 30000 \left(1 + \frac{7}{100}\right)^n$$

$$\Rightarrow \frac{34347}{30000} = \left(\frac{107}{100}\right)^n$$

$$\Rightarrow \frac{11449}{10000} = \left(\frac{107}{100}\right)^n$$

$$\Rightarrow n = 2 \text{ years}$$
47. (2) Let the principal be Rs. P.
$$\therefore \text{A} = P\left(1 + \frac{R}{100}\right)^T$$

$$\Rightarrow 2420 = P\left(1 + \frac{10}{100}\right)^2$$

$$\Rightarrow 2420 = P\left(\frac{11}{10}\right)^2$$

$$\Rightarrow 2420 = P\left(\frac{11}{10}\right)^2$$

$$\Rightarrow 2420 = P\left(\frac{11}{10}\right)^2$$

48. (3) Rate of interest = $\frac{8}{4}$ = 2% per quarter Time = 3 quarters C.I. = $P \left[\left(1 + \frac{R}{100} \right)^T - 1 \right]$ $= 5000 \left| \left(1 + \frac{2}{100} \right)^3 - 1 \right|$ $=5000 \left| (1.02)^3 - 1 \right|$ = 5000 (1.061208 -1) = 5000 × 0.061208 = Rs. 306.04 **49.** (3) $A = P \left(1 + \frac{R}{100} \right)^T$ $\Rightarrow 800 = P \left(1 + \frac{R}{100} \right)^3$ $840 = P\left(1 + \frac{R}{100}\right)^4$ On dividing equation (ii) by (i), $\frac{840}{800} = 1 + \frac{R}{100}$ $\Rightarrow \frac{21}{20} = 1 + \frac{R}{100}$ $\Rightarrow \frac{R}{100} = \frac{21}{20} - 1 = \frac{1}{20}$ $\Rightarrow R = \frac{1}{20} \times 100$ = 5% per annum **50.** (4) Rate = 10% Per annum = 5% per half year Time = T years = 2T half years $\therefore A = P \left(1 + \frac{R}{100}\right)^1$ $\Rightarrow 926.10 = 800 \left(1 + \frac{5}{100}\right)^{2T}$ $\Rightarrow \frac{926.1}{800} = \left(1 + \frac{1}{20}\right)^2$ $\Rightarrow \frac{9261}{8000} = \left(\frac{21}{20}\right)^{2T}$ $\Rightarrow \left(\frac{21}{20}\right)^3 = \left(\frac{21}{20}\right)^{2T}$ \Rightarrow 2T = 3 \Rightarrow T = $\frac{3}{2}$ years

51. (2)
$$A = P\left(1 + \frac{R}{100}\right)^T$$

$$\Rightarrow 4000 = 2000\left(1 + \frac{R}{100}\right)^2$$

$$\Rightarrow 2 = \left(1 + \frac{R}{100}\right)^2$$

$$\Rightarrow 1 + \frac{R}{100} = \sqrt{2} \quad \dots \dots (1)$$

$$\therefore 8000 = 2000 \left(1 + \frac{R}{100}\right)^T$$

$$\Rightarrow 4 = (\sqrt{2})^T$$

$$\Rightarrow (\sqrt{2})^4 = (\sqrt{2})^T$$

$$\Rightarrow T = 4 \text{ years}$$

52. (3)
$$A = P \left(1 + \frac{R}{100}\right)^T$$

$$= 64000 \left(1 + \frac{7.5}{100}\right)^3$$

$$= 64000 \left(1 + \frac{3}{40}\right)^3$$

$$= 64000 \left(\frac{43}{40}\right)^3$$

$$= \frac{64000 \times 43 \times 43 \times 43}{40 \times 40 \times 40}$$

= Rs. 79507
 \therefore C.I. = Rs. (79507 - 64000)

E.I. = RS. (79307 - 64000)
= RS. 15507
53. (3) Principal = Rs. 4096
Time =
$$\frac{3}{2}$$
 years = 3 half years
Rate = $\frac{25}{2}$ % per annum
= $\frac{25}{4}$ % per half year

$$\therefore A = P \left(1 + \frac{R}{100}\right)^{T}$$
= $4096 \left(1 + \frac{25}{400}\right)^{3}$
= $4096 \left(1 + \frac{1}{16}\right)^{3}$
= $4096 \times \frac{17}{16} \times \frac{17}{16} \times \frac{17}{16}$

= Rs. 4913

54. (3)
$$A = P \left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow 11664 = 10000 \left(1 + \frac{R}{100}\right)^{2}$$

$$\Rightarrow \frac{11664}{10000} = \left(1 + \frac{R}{100}\right)^{2}$$

$$\Rightarrow \frac{11664}{100} = \frac{108}{100}$$

$$\Rightarrow \left(\frac{108}{100}\right)^{2} = \left(1 + \frac{R}{100}\right)^{2}$$

$$\Rightarrow 1 + \frac{R}{100} = \frac{108}{100}$$

$$\Rightarrow \frac{R}{100} = \frac{108}{100} - 1 = \frac{8}{100}$$

$$\therefore R = \frac{8}{100} \times 100$$

$$= 8\% \text{ per annum}$$
55. (1) C.I. = $P \left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$

$$= 4000 \left[\left(1 + \frac{10}{100}\right)^{4} - 1\right]$$

$$= 4000 \left[\left(1 + \frac{10}{100}\right)^{4} - 1\right]$$

$$= 4000 \left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

$$= 4000 \left[\left(1 + \frac{R}{100}\right)^{3} - ... (i)\right]$$

$$\Rightarrow 100 = P \left(1 + \frac{R}{100}\right)^{3} - ... (ii)$$

$$\Rightarrow \frac{R}{100} = \frac{2662}{2420} - 1$$

$$= \frac{2662 - 2420}{2420}$$

$$\Rightarrow \frac{R}{100} = \frac{2662}{2420} - 1$$

$$= \frac{2662 - 2420}{2420}$$

$$\Rightarrow \frac{R}{100} = \frac{242}{2420} = \frac{1}{10}$$

$$\Rightarrow R = 10\% \text{ per annum.}$$
From equation (i),
$$2420 = P \left(1 + \frac{10}{100}\right)^{2}$$

$$\Rightarrow 2420 = P \times \frac{121}{100}$$

$$\Rightarrow P = \frac{2420 \times 100}{121}$$

$$= Rs. 2000$$
57. (1) $A = P \left(1 + \frac{R}{100} \right)^T$

$$\Rightarrow 6000 = 3000 \left(1 + \frac{R}{100} \right)^2$$

$$\Rightarrow 2 = \left(1 + \frac{R}{100} \right)^2$$
On squaring,
$$4 = \left(1 + \frac{R}{100} \right)^4$$
i.e. Amount
$$= Rs. (4 \times 3000)$$

$$= Rs. 12000$$

$$\therefore C.I. = Rs. (12000 - 3000)$$

$$= Rs. 9000$$
58. (3) Rate of interest
$$= 12\% \text{ per annum}$$

$$= 6\% \text{ per half-year}$$
Time = 2 half years
$$\therefore C.I. = P \left[\left(1 + \frac{R}{100} \right)^T - 1 \right]$$

$$= 12500 \left[\left(1 + \frac{6}{100} \right)^2 - 1 \right]$$

$$= 12500 \left[\left(\frac{53}{50} \right)^2 - 1 \right]$$

$$= 12500 \left[\left(\frac{53}{50} \right)^2 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{3}{100} \right)^2 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{3}{100} \right)^2 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{3}{100} \right)^2 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{3}{100} \right)^2 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{3}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{3}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{3}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right)^3 - 1 \right]$$

$$= 12500 \left[\left(\frac{1 + \frac{1}{100} \right$$

 $\Rightarrow 2420 = P\left(\frac{11}{10}\right)^2$

60. (1) Let the time be T years.

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow 9261 = 8000 \left(1 + \frac{5}{100} \right)^{T}$$

$$\Rightarrow \frac{9261}{8000} = \left(1 + \frac{1}{20} \right)^{T}$$

$$\Rightarrow \left(\frac{21}{20} \right)^{3} = \left(\frac{21}{20} \right)^{T}$$

$$\Rightarrow T = 3 \text{ years}$$

61. (2) C.I. =
$$P\left[\left(1 + \frac{R}{100}\right)^T - 1\right]$$

= $1000 \left[\left(1 + \frac{10}{100}\right)^3 - 1\right]$
= $1000 \left[\left(1 + \frac{1}{10}\right)^3 - 1\right]$
= $1000 \left[\left(\frac{11}{10}\right)^3 - 1\right]$
= $1000 \left[\left(\frac{1331}{1000}\right)^3 - 1\right]$
= $\frac{1000 \times 331}{1000} = \text{Rs. } 331$

62. (2) C.I. =
$$P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

= $25000\left[\left(1 + \frac{5}{100}\right)^{2} - 1\right]$
= $25000\left[\left(1 + \frac{1}{20}\right)^{2} - 1\right]$
= $25000\left[\frac{441}{400} - 1\right]$
= $2500\left[\frac{441 - 400}{400}\right]$
= $\frac{25000 \times 41}{400}$ = Rs. 2562.5

63. (1) Rate = 10% per annum = 5% per half year

Time = $1\frac{1}{2}$ years = 3 half years

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$
$$= 24000 \left[\left(1 + \frac{5}{100} \right)^{3} - 1 \right]$$

$$= 24000 \left[\left(1 + \frac{1}{20} \right)^3 - 1 \right]$$

$$= 24000 \left[\left(\frac{21}{20} \right)^3 - 1 \right]$$

$$= 24000 \left(\frac{9261}{8000} - 1 \right)$$

$$= \frac{24000 \times 1261}{8000} = \text{Rs. } 3783$$

64. (1) C.I. =
$$P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

 $\Rightarrow 3225 = P\left[\left(1 + \frac{15}{100}\right)^{2} - 1\right]$
 $\Rightarrow 3225 = P\left[\left(1 + \frac{3}{20}\right)^{2} - 1\right]$
 $\Rightarrow 3225 = P\left[\left(\frac{23}{20}\right)^{2} - 1\right]$
 $\Rightarrow 3225 = P\left(\frac{529}{400} - 1\right)$
 $\Rightarrow 3225 = P\left(\frac{529 - 400}{400}\right)$
 $\Rightarrow 3225 = P \times \frac{129}{400}$
 $\Rightarrow P = \frac{3225 \times 400}{129}$
= Rs. 10000

65. (1)
$$A = P \left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow 3993 = 3000 \left(1 + \frac{x}{100}\right)^{3}$$

$$\Rightarrow \frac{3993}{3000} = \left(1 + \frac{x}{100}\right)^{3}$$

$$\Rightarrow \frac{1331}{1000} = \left(1 + \frac{x}{100}\right)^{3}$$

$$\Rightarrow \left(\frac{11}{10}\right)^{3} = \left(1 + \frac{x}{100}\right)^{3}$$

$$\Rightarrow 1 + \frac{x}{100} = \frac{11}{10}$$

$$\Rightarrow \frac{x}{100} = \frac{11}{10} - 1 = \frac{1}{10}$$

$$\Rightarrow x = \frac{1}{10} \times 100$$

$$= 10\% \text{ per annum}$$

66. (2)
$$A = P \left(1 + \frac{R}{100} \right)^T$$

$$\Rightarrow 2P = P\left(1 + \frac{19}{100}\right)^{T}$$

$$\Rightarrow 2 = \left(\frac{119}{100}\right)^{T}$$

$$\Rightarrow 2 = (1.19)^{T}$$
If $T = 4$ years,
$$(1.19)^{4} > 2$$

TYPE-II

1. (3) Let the sum be P.

$$\therefore 101.50 = P \left[\left(1 + \frac{3}{100} \right)^2 - 1 \right]$$

$$\left[\because C.I. = P \left[\left(1 + \frac{r}{100} \right)^n - 1 \right] \right]$$

$$\Rightarrow 101.50 = P \left[\left(\frac{103}{100} \right)^2 - 1 \right]$$

$$= P \left(\frac{10609 - 10000}{10000} \right)$$

$$\Rightarrow P = \sqrt[3]{\frac{101.50 \times 10000}{609}}$$

$$= \sqrt[3]{\frac{1015000}{609}}$$

$$\therefore S.I. = \frac{1015000 \times 2 \times 3}{609 \times 100} = \sqrt[3]{100}$$

 $\therefore \text{ S.I.} = \frac{}{609 \times 100} = \text{ } \text{? } 10$ **Aliter:** Using Rule 10,

Here, C.I. = Rs 101.50 R = 3%, S.I. = ?

C.I. = S.I.
$$\left(1 + \frac{R}{200}\right)$$

101.50 = S.I.
$$\left(1 + \frac{3}{200}\right)$$

S.I. =
$$\frac{101.50 \times 200}{203}$$

2. (2) Using Rule 1, Suppose principal be *x*

$$\Rightarrow x \left\{ \left(1 + \frac{5}{100} \right)^3 - 1 \right\} = 252.20$$

$$\Rightarrow x \left\{ \left(\frac{21}{20} \right)^3 - 1 \right\} = 252.20$$

$$\Rightarrow x \left\{ \frac{21 \times 21 \times 21 - 20 \times 20 \times 20}{20 \times 20 \times 20} \right\} = 252.20$$

$$\Rightarrow x \frac{1261}{8000} = 252.20$$

$$\therefore x = \frac{252 \cdot 20 \times 8000}{1261} = 1600$$

$$\Rightarrow SI = \frac{1600 \times 5 \times 3}{100} = ₹240$$

3. (3) Using Rule 10, If SI on a certain sum for two years is x and CI is y, then

$$y = x \left(1 + \frac{r}{200} \right)$$

$$\Rightarrow 282.15 = 270 \left(1 + \frac{r}{100} \right)$$

$$\Rightarrow 1 + \frac{r}{200} = \frac{282.15}{270}$$

$$\Rightarrow \frac{r}{200} = \frac{282.15}{270} - 1$$

$$\Rightarrow \frac{r}{200} = \frac{12.15}{270}$$

$$\Rightarrow r = \frac{12.15 \times 200}{270} = 9\%$$

4. (2) C.I. =
$$P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

⇒ $510 = P\left[\left(1 + \frac{25}{200}\right)^{2} - 1\right]$
⇒ $510 = P\left(\frac{81}{64} - 1\right)$
⇒ $P = \frac{510 \times 64}{17} = 1920$
∴ S.I. = $\frac{1920 \times 2 \times 25}{100 \times 2} = ₹480$

Aliter: Using Rule 10, Here, C.I. = ₹ 510

$$R = 12\frac{1}{2}\%$$
, S.I. = ?

C.I. = S.I.
$$\left(1 + \frac{R}{200}\right)$$

$$510 = \text{S.I.} \left(1 + \frac{25}{400}\right)$$

S.I. =
$$\frac{510 \times 400}{425}$$

5. (3) Let the principal be P and rate of interest be r per cent per an-

C. I = P
$$\left[\left(1 + \frac{r}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 40.80 = P \left[\left(1 + \frac{r}{100} \right)^2 - 1 \right](i)$$
S.I. = $\frac{P.r.t}{100} \Rightarrow 40 = \frac{Pr \times 2}{100} ...(ii)$

$$\therefore \frac{40.80}{40} = \frac{P \left[\left(1 + \frac{r}{100} \right)^2 - 1 \right]}{\frac{2Pr}{100}}$$

$$\Rightarrow 1.02$$
= $\frac{100}{2r} \left[1 + \frac{r^2}{10000} + \frac{2r}{100} - 1 \right]$

$$\Rightarrow 1.02 = \frac{r}{200} + 1$$

$$\Rightarrow \frac{r}{200} = 1.02 - 1$$

$$\Rightarrow r = 0.02 \times 200$$
∴ $r = 4\%$ per annum.

Aliter: Using Rule 10,
Here, C.I. = ₹ 40.80
S.I. = ₹ 40, R = ?

C.I. = S.I. $\left(1 + \frac{R}{200} \right)$

$$40.80 = 40 \left(1 + \frac{R}{200} \right)$$

$$\frac{4080}{4000} = 1 + \frac{R}{200}$$

$$\frac{4080}{4000} = 1 + \frac{R}{200}$$

$$\frac{408}{400} = \frac{200 + R}{200}$$

$$2R = 8$$

$$R = 4\%$$

6. (1) Let the principal be P.

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$\Rightarrow 328 = P \left[\left(1 + \frac{5}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 328 = P \left[\frac{441}{400} - 1 \right]$$

$$\Rightarrow 328 = P \left\lceil \frac{441 - 400}{400} \right\rceil$$

$$\Rightarrow P = \frac{328 \times 400}{41} = ₹ 3200$$

$$= \frac{PRT}{100} = \frac{3200 \times 5 \times 2}{100} = ₹ 320$$

Aliter: Using Rule 10, Here, C.I. = ₹ 328,

$$R = 5\%$$
, S.I. = ?

C.I.= S.I.
$$\left(1 + \frac{R}{200}\right)$$

$$328 = S.I. \left(1 + \frac{5}{200}\right)$$

$$328 = S.I. \left(1 + \frac{1}{40}\right)$$

S.I. =
$$\frac{328 \times 40}{41}$$

7. (2) C.I.=
$$P \left(1 + \frac{r}{100} \right)^t - P$$

$$2448 = P \left[\left(1 + \frac{r}{100} \right)^t - 1 \right]$$

or 2448 =
$$P\left[\left(1 + \frac{4}{100}\right)^2 - 1\right]$$

$$\Rightarrow 2448 = P \left[\frac{676}{625} - 1 \right]$$

$$2448 = P\left[\frac{51}{625}\right]$$

$$\therefore P = \frac{2448 \times 625}{51}$$

∴ S.I. =
$$\frac{30000 \times 4 \times 2}{100}$$
 = ₹ 2400

Aliter: Using Rule 10,

Here, C.I. = ₹ 2448

$$R = 4\%$$
, S.I. = ?

C.I.= S.I.
$$\left(1 + \frac{R}{200}\right)$$

$$2448 = S.I. \left(1 + \frac{4}{200}\right)$$

$$2448 = S.I. \left(1 + \frac{1}{50}\right)$$

$$2448 = S.I. \left(\frac{51}{50} \right)$$

S.I. =
$$\frac{2448 \times 50}{51}$$

8. (3) Using Rule 1,

Let the principal be x and rate of interest be r% per annum.

S.I. =
$$\frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$260 = \frac{x \times r}{100}$$
(i)

$$C.I. = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$540.80 = x \left[\left(1 + \frac{r}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 540.80 = x \left[1 + \frac{2r}{100} + \frac{r^2}{10000} - 1 \right]$$

$$\Rightarrow 540.80 = \frac{2xr}{100} + \frac{xr^2}{10000}$$

$$\Rightarrow 540.80 = 2 \times 260 + \frac{260.r}{100}$$

$$\Rightarrow 260r = 54080 - 52000$$

$$\Rightarrow$$
 260 r = 2080

$$\Rightarrow r = \frac{2080}{260} = 8\%$$

9. (4) Principal =
$$\frac{S.I. \times 100}{Time \times Rate}$$

$$=\frac{80 \times 100}{2 \times 4} = ₹ 1000$$

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$= 1000 \left[\left(1 + \frac{4}{100} \right)^2 - 1 \right]$$

$$= 1000 \left[\left(\frac{26}{25} \right)^2 - 1 \right]$$

$$= 1000 \left(\frac{676}{625} - 1 \right)$$

$$= 1000 \left(\frac{676 - 625}{625} \right)$$

$$= \frac{1000 \times 51}{625} = ₹81.60$$

Aliter: Using Rule 10,

Here, S.I. = ₹ 80

$$R = 4\%$$
, C.I. = ?

C.I.= S.I.
$$\left(1 + \frac{R}{200}\right)$$

C.I.=
$$80\left(1 + \frac{4}{200}\right)$$

$$=80\left(1+\frac{1}{50}\right)$$

$$=80 \times \frac{51}{50} = ₹81.60$$

10. (4) Using Rule 1.

$$C.I. = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$246 = P \left[\left(1 + \frac{5}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 246 = P \left[\left(\frac{21}{20} \right)^2 - 1 \right]$$

$$\Rightarrow 246 = P\left(\frac{441 - 400}{400}\right)$$

$$\Rightarrow 246 = \frac{41P}{400} \Rightarrow P = \frac{246 \times 400}{41}$$

= ₹ 2400

$$\therefore SI = \frac{Principal \times Time \times Rate}{100}$$

$$= \frac{2400 \times 3 \times 6}{100} = ₹ 432$$

11. (4) Difference of CI and SI for two years

∴ Sum= Difference in CI and SI

$$\times \left(\frac{100}{\text{Rate}}\right)^2$$

Rate =
$$\frac{2 \times \text{Difference} \times 100}{\text{Simple interest}}$$

$$= \frac{2 \times 5400}{900} = 12\%$$

$$\therefore \text{ Sum} = 54 \times \left(\frac{100}{12}\right)^2$$

$$=54 \times \frac{25}{3} \times \frac{25}{3} = 3750$$

Aliter: Using Rule 10, C.I. = Rs. 954, S.I.=Rs. 900, P=?

C.I.= S.I.
$$\left(1 + \frac{R}{200}\right)$$

$$954 = 900 \left(1 + \frac{R}{200} \right)$$

$$\frac{954}{900} = 1 + \frac{R}{200}$$

$$\frac{954}{900} - 1 = \frac{R}{200}$$

$$\frac{954 - 900}{900} = \frac{R}{200}$$

$$\frac{54}{9} = \frac{R}{2}$$

$$R = 12\%$$

Now S.I. =
$$\frac{P \times R \times T}{100}$$

$$900 = \frac{P \times 12 \times 2}{100}$$

$$P = Rs. 3750$$

12. (4) If the principal be P then

$$\text{C.I.} = P \left[\left(1 + \frac{R}{100} \right)^T - 1 \right]$$

$$\Rightarrow 420 = P \left[\left(1 + \frac{10}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 420 = P\left(\frac{121 - 100}{100}\right)$$

$$\Rightarrow 420 = \frac{P \times 21}{100}$$

$$\Rightarrow P = \frac{420 \times 100}{21} = ₹2000$$

$$\therefore \text{ S.I.} = \frac{\text{PRT}}{100}$$

$$= \frac{2000 \times 10 \times 2}{100} = ₹ 400$$

Aliter: Using Rule 10, Here, C.I. = Rs. 420, R = 10%, S.I. = ?

C.I. = S.I.
$$\left(1 + \frac{R}{200}\right)$$

$$420 = S.I. \left(1 + \frac{10}{200}\right)$$

$$420 = S.I. \left(\frac{210}{200} \right)$$

S.I. =
$$\frac{420 \times 200}{210}$$

S.I. = Rs.
$$400$$

13. (4) If the sum be P, then

$$C.I. = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$\Rightarrow 102 = P \left[\left(1 + \frac{4}{100} \right)^2 - 1 \right]$$

$$\Rightarrow 102 = P\left[\left(\frac{26}{25}\right)^{2} - 1\right]$$

$$\Rightarrow 102 = P\left(\frac{676}{625} - 1\right)$$

$$\Rightarrow 102 = P\left(\frac{676 - 625}{625}\right)$$

$$\Rightarrow 102 = P \times \frac{51}{625}$$

$$\Rightarrow P = \frac{102 \times 625}{51} = ₹ 1250$$

$$\therefore \text{ S.I.} = \frac{1250 \times 2 \times 4}{100} = ₹ 100$$
14. (4) Using Rule 1,
Let S.I. = ₹ 100,
& Principal = ₹ 100
$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{100 \times 100}{100 \times 8} = \frac{25}{2}\%$$

$$\therefore \text{ C.I.} = P\left[\left(1 + \frac{r}{100}\right)^{\text{T}} - 1\right]$$

$$= 8000 \left[\left(1 + \frac{25}{200}\right)^{2} - 1\right]$$

$$= 8000 \left(\frac{81}{64} - 1\right) = \frac{8000 \times 17}{64}$$

$$= ₹ 2125$$
15. (1) C.I. = P\left[\left(1 + \frac{1}{100}\right)^{\text{T}} - 1\right]
$$\Rightarrow 2544 = P\left[\left(\frac{28}{25}\right)^{2} - 1\right]$$

$$\Rightarrow 2544 = P\left[\left(\frac{28}{25}\right)^{2} - 1\right]$$

$$\Rightarrow 2544 = P\left[\left(\frac{784}{625} - 1\right)$$

 $\Rightarrow 2544 = P\left(\frac{784 - 625}{625}\right)$

 $2544 = \frac{P \times 159}{625}$

$$\Rightarrow 50 = \frac{P \times (100000)^{2}}{10000 \times P^{2}}$$

$$\Rightarrow P = \frac{1000000}{50} = ₹ 20000$$
18. (1) Compound interest
$$= P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$\Rightarrow 410 = P \left[\left(1 + \frac{5}{100} \right)^{2} - 1 \right]$$

$$\Rightarrow 410 = P \left[\left(\frac{21}{20} \right)^{2} - 1 \right]$$

$$\Rightarrow 410 = P \left[\left(\frac{21}{20} \right)^{2} - 1 \right]$$

$$\Rightarrow 410 = P \left(\frac{41}{400} \right)$$

$$\Rightarrow P = \frac{410 \times 400}{41} = ₹ 4000$$

$$\therefore \text{ S.I.}$$

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{4000 \times 2 \times 5}{100} = ₹ 400$$
Aliter: Using Rule 10,
Here, C.I. = Rs. 410
R = 5%, S.I. = ?

C.I. = S.I. $\left(1 + \frac{R}{200} \right)$

$$410 = \text{S.I.} \left(1 + \frac{5}{200} \right)$$

$$410 = \text{S.I.} \left(\frac{205}{200} \right)$$

$$\text{S.I.} = \frac{410 \times 200}{205}$$

$$\text{S.I.} = \text{Rs.400}$$
19. (4) Principal = ₹ P (let)
$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$\Rightarrow 510 = P \left[\left(1 + \frac{25}{200} \right)^{2} - 1 \right]$$

 $\therefore \text{ Difference} = \frac{P \times R^2}{10000}$

= ₹ 100000

$$\Rightarrow 510 = P\left[\left(1 + \frac{1}{8}\right)^2 - 1\right]$$

$$\Rightarrow 510 = P\left[\left(\frac{9}{8}\right)^2 - 1\right]$$

$$\Rightarrow 510 = P\left(\frac{81}{64} - 1\right)$$

$$\Rightarrow 510 = P\left(\frac{81 - 64}{64}\right)$$

$$\Rightarrow 510 = \frac{17P}{64}$$

$$\Rightarrow P = \frac{510 \times 64}{17} = ₹ 1920$$
∴ S.I.
$$= \frac{Principal \times Time \times Rate}{100}$$

$$= \frac{1920 \times 2 \times 25}{100 \times 2} = ₹ 480$$

Aliter: Using Rule 10, Here, C.I. = ₹ 510

$$R = 12\frac{1}{2}\%$$
, S.I. = ?

C.I. = S.I.
$$\left(1 + \frac{R}{200}\right)$$

$$510 = S.I. \left(1 + \frac{25}{400}\right)$$

$$510 = S.I. \left(\frac{425}{400} \right)$$

S.I. =
$$\frac{510 \times 400}{425}$$

20. (2) Using Rule 1,

Sum borrowed = Rs. x

∴ Simple interest after 4 years

$$= \frac{x \times 4 \times 5}{100} = \text{Rs. } \frac{x}{5}$$

Amount lent of on compound interest

= Rs.
$$\frac{x}{2}$$

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$x \left[\left(10 \right)^{4} \right]$$

$$= \frac{x}{2} \left[\left(1 + \frac{10}{100} \right)^4 - 1 \right]$$

$$= \frac{x}{2} [(1.1)^4 - 1]$$

$$= \frac{x}{2} (1.4641 - 1)$$

$$= \text{Rs. } \frac{0.4641x}{2}$$

$$\therefore \frac{0.4641x}{2} - \frac{x}{5} = 3205$$

$$\Rightarrow \frac{2.3205x - 2x}{10} = 3205$$

$$\Rightarrow 0.3205x = 32050$$

$$\Rightarrow x = \frac{32050}{0.3205} = \text{Rs. } 100000$$

21. (3) S.I. for 2 years
$$\frac{2}{2}$$
 y 540 Ps. 36

$$=\frac{2}{3} \times 540 = \text{Rs. } 360$$

C.I. - S.I.

$$= \frac{16.20}{180} \times 100$$

= 9% per annum

$$\therefore Principal = \frac{S.I.\times100}{Time \times Rate}$$

$$= \frac{180 \times 100}{1 \times 9} = \text{Rs. } 2000$$

22. (2) Principal =
$$\frac{S.I.\times100}{Time \times Rate}$$

$$= \frac{350 \times 100}{2 \times 4} = \text{Rs. } 4375$$

Difference =
$$\frac{PR^2}{10000}$$

$$=\frac{4375\times4\times4}{10000}$$

23. (3) ∵ S.I. for 3 years = Rs. 240

$$\therefore$$
 S.I. for 2 years = $\frac{240}{3} \times 2$

= Rs. 160

$$\therefore \frac{PR \times 2}{100} = 160$$

$$\Rightarrow$$
 PR = 160 × 50 = 8000...(i)

$$= 170 - 160 = Rs. 10$$

$$\Rightarrow \frac{PR^2}{10000} = 10$$

$$\Rightarrow \frac{8000 \times R}{10000} = 10$$
$$\Rightarrow R = \frac{100}{8} = \frac{25}{2} = 12\frac{1}{2}\%$$

24. (2) Principal =
$$\frac{\text{S.I.} \times 100}{\text{Time} \times \text{Rate}}$$
$$1600 \times 100$$

$$= \frac{1600 \times 100}{5 \times 2} = \text{Rs. } 16000$$

$$C.I. = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$= 16000 \left[\left(1 + \frac{5}{100} \right)^3 - 1 \right]$$

$$= 16000 \left[\left(\frac{21}{20} \right)^3 - 1 \right]$$

$$= 16000 \left(\frac{9261}{8000} - 1 \right)$$

$$= \frac{16000 \times 1261}{8000} = \text{Rs. } 2522$$

25. (4) Let the principal be Rs. P. For 4 years,

S.I. =
$$\frac{Principal \times Time \times Rate}{100}$$

$$= \frac{P \times 4 \times 5}{100} = \text{Rs. } \frac{P}{5}$$

$$C.I. = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$= P \left[\left(1 + \frac{10}{100} \right)^4 - 1 \right]$$

$$= P \left[\left(\frac{11}{10} \right)^4 - 1 \right]$$

$$= P \left(\frac{14641}{10000} - 1 \right)$$

$$= \frac{4641P}{10000}$$

According to the question,

$$\frac{4641P}{10000} - \frac{P}{5} = 26410$$

$$\Rightarrow \frac{4641P - 2000P}{10000} = 2641$$

$$\Rightarrow \frac{2641P}{10000} = 2641$$

$$\Rightarrow$$
 P = Rs. 10000

26. (2) Principal =
$$\frac{S.I.\times 100}{Time \times Rate}$$

$$= \frac{50 \times 100}{2 \times 5} = \text{Rs. } 500$$

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$=500\left[\left(1+\frac{5}{100}\right)^2-1\right]$$

$$= 500 \left[\left(1 + \frac{1}{20} \right)^2 - 1 \right]$$

$$=500\left[\left(\frac{21}{20}\right)^2-1\right]$$

$$=500\left(\frac{441}{400}-1\right)$$

$$= \frac{500 \times 41}{400} = \text{Rs. } 51.25$$

- **27.** (4) According to the question, If principal
 - = Rs. 100 then interest
 - = Rs. 40.

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$$

$$=\frac{40 \times 100}{100 \times 8} = 5\%$$
 per annum

Case II

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$=30000 \left(1+\frac{5}{100}\right)^2$$

$$=30000 \left(1+\frac{1}{20}\right)^2$$

$$= 30000 \left(\frac{20+1}{20}\right)^2$$

$$=30000 \times \frac{21}{20} \times \frac{21}{20}$$

= Rs. 33075

∴ C. I. = Rs. (33075 - 30000)

= Rs. 3075

TYPE-III

1. (1) TRICK

As the interest was compounded

half-yearly, we changed r to $\frac{1}{2}$

and t to 2t.

 \therefore T = 1 year & R 6%

Sum

$$=\frac{36\times100\times100}{6\times6}$$

= ₹10000

2. (2) Compound Interest (when compounded yearly)

$$=5000\left(1+\frac{4}{100}\right)^{1.5}-5000$$

$$=5000\left(\frac{26}{25}\right)^{1.5}-5000$$

= 5302.9805 - 5000 = ₹302.9805 C.I. (When compounded halfyearly).

$$=5000\left(1+\frac{2}{100}\right)^3-50000$$

= 5306.04 - 5000 = ₹ 306.04 Required difference

= ₹ (306.04 - 302.9805)

= ₹ 3.059 = ₹ 3.06

3. (3) Let the sum ₹ x. Then,

C.I. =
$$x \left(1 + \frac{5}{100}\right)^2 - x$$

$$=\frac{441x}{400}-x=\frac{441x-400x}{400}$$

$$=\frac{41}{400}x$$

Now.

S.I. =
$$\frac{x \times 5 \times 2}{100} = \frac{x}{10}$$

$$\therefore$$
 (C.I.) - (S.I.) = $\frac{41x}{400} - \frac{x}{10}$

$$=\frac{41x-40x}{400}=\frac{x}{400}$$

$$\therefore \frac{x}{400} = 15$$

 $\Rightarrow x = 15 \times 400 = 6000$

Hence, the sum is ₹ 6000

Aliter: Using Rule 6,

C.I. – S.I. = ₹ 15, R = 5%, T = 2

years, P =?

C.I. - S.I. =
$$P \left(\frac{R}{100} \right)^2$$

$$15 = P \left(\frac{5}{100}\right)^2$$

$$P = 15 \times 400$$

4. (4) Tricky Approach

Difference of SI and CI for 3 years

$$= \frac{PR(300 + R)}{100^3}$$

$$\therefore \frac{P \times 25 \times 305}{100 \times 100 \times 100} = 36.60$$

$$\Rightarrow P = \frac{36.60 \times 100 \times 100 \times 100}{25 \times 305}$$

= ₹ 4800

Aliter: Using Rule 6,

C.I.–S.I. = ₹ 36.60, R = 5%, P =?, T = 3vrs.

C.I. – S.I.=
$$P\left(\frac{R}{100}\right)^2 \times \left(3 + \frac{R}{100}\right)$$

$$36.60 = P\left(\frac{5}{100}\right)^2 \times \left(3 + \frac{5}{100}\right)$$

$$36.60 = P \times \frac{25}{100^2} \times \frac{305}{100}$$

$$P = \frac{36.60 \times 100 \times 100 \times 100}{25 \times 305}$$

$$P = \frac{36600000}{25 \times 305} = \text{ } 4800$$

C.I. =
$$\stackrel{?}{<} 2500 \left[\left(1 + \frac{4}{100} \right)^2 - 1 \right]$$

$$= 7 2500 \left[\left(\frac{26}{25} \right)^2 - 1 \right]$$

$$= 7 \frac{(676 - 625)}{625} \times 2500$$

$$=$$
 ₹ $\frac{51}{625} \times 2500 =$ ₹ 204

 \therefore The required difference

= C.I. – S.I. = ₹
$$(204 - 200) = ₹ 4$$

Aliter: Using Rule 6,

R = 4%, T = 2

C.I. - S.I.=
$$P\left(\frac{R}{100}\right)^2$$

= $2500\left(\frac{4}{100}\right)^2$
= $2500 \times \frac{1}{25} \times \frac{1}{25}$

C.I.-S.I. = ₹ 4

6. (4) Let the sum be x. Then,

C.I. =
$$x \left(1 + \frac{10}{100} \right)^2 - x = \frac{21x}{100}$$

S.I. = $\frac{x \times 10 \times 2}{100} = \frac{x}{5}$

$$\therefore$$
 C.I. – S.I. = $\frac{21x}{100} - \frac{x}{5} = \frac{x}{100}$

Given that,
$$\frac{x}{100} = 65$$

x = 6500

Hence, the sum is ₹ 6500.

Aliter : Using Rule 6, Here, C.I. – S.I. = ₹ 65, R = 10%, T = 2 years, P = ?

C.I. - S.I. =
$$P\left(\frac{R}{100}\right)^2$$

$$65 = P \left(\frac{10}{100}\right)^2$$

P = ₹ 6500

7. (3) When difference between the compound interest and simple interest on a certain sum of money for 2 years at *r*% rate is *x*, then

$$x = \operatorname{Sum} \left(\frac{r}{100}\right)^{2}$$

$$\Rightarrow 10 = 1000 \left(\frac{r}{100}\right)^{2}$$

$$\Rightarrow \left(\frac{r}{100}\right)^{2} = \frac{10}{1000}$$

$$\Rightarrow \frac{r}{100} = \sqrt{\frac{1}{100}} = \frac{1}{10}$$

$$\Rightarrow r = \frac{100}{10} = 10\%$$

Aliter : Using Rule 6, Here, C.I. – S.I. = Rs. 10 R = ?, T= 2 years, P = Rs. 1000

$$C.I. - S.I. = P \left(\frac{R}{100}\right)^2$$

$$10 = 1000 \left(\frac{R}{100}\right)^2$$

$$10 = 1000 \times \frac{R}{100} \times \frac{R}{100}$$

$$\Rightarrow R^2 = 100$$

$$\Rightarrow$$
 R = $\sqrt{100}$ = 10%

8. (2) Using Rule 6,

When difference between the compound interest and simple interest on a certain sum of money for 2 years at r % rate is x, then the sum is given by

$$x\left(\frac{100}{r}\right)^2 \text{ Here } x = \text{ } 80,$$

r = 40%

$$\therefore \text{ Required sum} = 80 \left(\frac{100}{4}\right)^2$$

9. (2) Using Rule 6,

When difference between the CI and SI on a certain sum of money for 2 years at r % rate is x, then

$$Sum = x \times \left(\frac{100}{r}\right)^2$$

$$= 1 \times \left(\frac{100}{4}\right)^2 = \text{ } 625$$

10. (1) Using Rule 6,

Sum = Difference
$$\left(\frac{100}{r}\right)^2$$

$$=4 \times \left(\frac{100}{4}\right)^2 = 72500$$

11. (1) Using Rule 6,

Difference between C.I. and S.I for 3 years

$$= \frac{PR^2}{(100)^2} \left(\frac{R}{100} + 3 \right)$$

$$\Rightarrow 15.25 = \frac{P \times 25}{10000} \left(\frac{5}{100} + 3 \right)$$

$$\Rightarrow 15.25 = \frac{P \times 305}{400 \times 100}$$

$$\Rightarrow P = \frac{15.25 \times 400 \times 100}{305}$$

= ₹ 2000

12. (3) Using Rule 6,

Tricky Approach

Sum = (CI - SI)
$$\left(\frac{100}{r}\right)^2$$

= 768 × $\left(\frac{100}{9}\right)^2$ = ₹ 1,20,000

13. (3) Using Rule 6 and 1,

If the difference between compound interest and simple interest at the rate of r% per annum for 2 years be x, then

Principal =
$$x \left(\frac{100}{r}\right)^2$$

$$= 28 \left(\frac{100}{10}\right)^2 = \text{?} 2800$$

If the interest is compounded half yearly, then

$$r = \frac{10}{2} = 5\%,$$

Time = 4 half years

Simple interest =
$$\frac{2800 \times 5 \times 4}{100}$$

= ₹ 560

Compound interest

$$= 2800 \left[\left(1 + \frac{5}{100} \right)^4 - 1 \right]$$

= 2800 [1.2155 - 1]

 $= 2800 \times 0.2155 = 603.41$

∴ Difference = ₹ (603.41–560)= ₹ 43.41

14. (3) Using Rule 1, C.I. after 3 years

$$= 6000 \left[\left(1 + \frac{5}{100} \right)^3 - 1 \right]$$

$$= 6000 \left(\frac{9261 - 8000}{8000} \right)$$

$$=6000\times\frac{1261}{8000}=7945.75$$

CI after 2 years

$$= 6000 \left[\left(1 + \frac{5}{100} \right)^2 - 1 \right]$$

$$=6000\left(\frac{441-400}{400}\right)$$

$$=6000 \times \frac{41}{400} = ₹615$$

Required difference

15. (1) Let the principal be *x*. Compound interest

$$= P \left[\left(1 + \frac{R}{100} \right)^t - 1 \right]$$

$$= x \left[\left(1 + \frac{10}{100} \right)^2 - 1 \right]$$

$$= x[(1.1)^2 - 1]$$

= x (1.21 - 1) = 0.21x

$$SI = \frac{x \times 2 \times 10}{100} = \frac{x}{5} = 0.2x$$

According to the question,

$$0.21x - 0.2x = 40$$

$$\Rightarrow 0.01x = 40$$

$$\Rightarrow x = \frac{40}{0.01} = ₹ 4000$$

Aliter: Using Rule 6,

Here, C.I. – S.I. = ₹ 40R = 10%, T = 2 years, P = ?

$$C.I. - S.I. = P \left(\frac{R}{100}\right)^2$$

$$40 = P\left(\frac{10}{100}\right)^2$$

16. (1) Using Rule 6,

Let the difference between CI and SI on a certain sum for 3 years at r % be x,

then the sum

$$= \frac{\text{Difference} \times (100)^3}{r^2(300+r)}$$

$$=\frac{122\times100^3}{25(300+5)}$$

$$=\frac{122000000}{25\times305}=₹16000$$

17. (2) Using Rule 6,

Difference of two years

$$= P\left(\frac{r^2}{10000}\right)$$

$$\Rightarrow 48 = P\left(\frac{400}{10000}\right)$$

$$\Rightarrow 48 = \frac{P}{25}$$

18. (1) Using Rule 6,

Difference =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 25 = \frac{10000 \times R^2}{10000}$$

$$\Rightarrow$$
 R = 5%

19. (2) Using Rule 6,

Difference =
$$\frac{Pr^2}{10000}$$

$$\Rightarrow 6 = \frac{P \times 5 \times 5}{10000}$$

20. (3) Using Rule 6,

Rate of interest = 8% per halfyear

Time = 2 half years

Difference of interests =
$$\frac{PR^2}{100}$$

$$\Rightarrow 56 = \frac{P \times (8)^2}{(100)^2}$$

$$\Rightarrow P = \frac{56 \times 10000}{64} = ₹8750$$

21. (4) Let the sum be x
$$r = 10\%$$
, $n = 3$ years

S.I. =
$$\frac{\mathbf{x} \times \mathbf{r} \times \mathbf{n}}{100}$$

S.I. =
$$\frac{x \times 10 \times 3}{100} = \frac{3}{10}x$$

$$C.I. = \left[\left(1 + \frac{r}{100} \right)^n - 1 \right] x$$

$$= \left[\left(1 + \frac{10}{100} \right)^3 - 1 \right] \mathbf{x}$$

$$= \left\lceil \left(\frac{11}{10}\right)^3 - 1 \right\rceil x$$

$$=\left(\frac{1331}{1000}-1\right)x = \frac{331}{1000}x$$

$$\frac{331}{1000}x - \frac{3}{10}x = 31$$

or
$$\frac{(331-300)}{1000}$$
x = 31

or
$$\frac{31}{1000}$$
 x = 31

or
$$x = 1000$$

Aliter: Using Rule 6,

Here, C.I. - S.I. = ₹ 31

R = 10%, T = 3 years, P = ?

C.I. - S.I.

$$= P \times \left(\frac{R}{100}\right)^2 \times \left(3 + \frac{R}{100}\right)$$

$$31 = P \times \left(\frac{10}{100}\right)^2 \left(3 + \frac{10}{100}\right)$$

$$31 = P \times \frac{1}{100} \times \frac{31}{10}$$

22. (4) Using Rule 6,

Let the sum be x.

When difference between the compound interest and simple interest on a certain sum of money for 2 years at r% rate is x, then the sum is given by:

Sum = Difference
$$\times \left(\frac{100}{\text{Rate}}\right)^2$$

$$= ₹ 8 \times \left(\frac{100}{4}\right)^2$$

$$= \stackrel{?}{\overline{}} 8 \times 25 \times 25 = \stackrel{?}{\overline{}} 5000$$

23. (2) If the interest is compounded half yearly,

$$C.I. = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$=P\left[\left(1+\frac{5}{100}\right)^2-1\right]$$

$$= P \left[\left(\frac{21}{20} \right)^2 - 1 \right] = \frac{41P}{400}$$

S.I. =
$$\frac{P \times R \times T}{100} = \frac{P \times 10}{100} = \frac{P}{10}$$

$$\frac{41P}{400} - \frac{P}{10} = 180$$

$$\Rightarrow \frac{41P - 40P}{400} = 180$$

$$\Rightarrow \frac{P}{400} = 180$$

Aliter: Using Rule 6,

Here, C.I. – S.I. = ₹ 180

Interest is compounded half yearly

$$R = \frac{10}{5} = 5\%,$$

$$T = 2$$
 years

C.I. - S.I. =
$$P\left(\frac{R}{100}\right)^2$$

$$\Rightarrow 180 = P \left(\frac{5}{100}\right)^2$$

24.(1) Using Rule 6,

Difference =
$$\frac{PR^2}{(100)^2}$$

$$\Rightarrow 1.50 = \frac{P \times 5 \times 5}{(100)^2}$$

$$\Rightarrow$$
 P = 400 × 1.5 = ₹ 600

25. (3) Using Rule 6,

Time =
$$\frac{3}{2} \times 2 = 3$$
 half years

Rate =
$$\frac{10}{2}$$
 = 5% per half year

[: when $r \rightarrow r/2$, then $t \rightarrow 2t$] Difference

$$= P \left(\frac{r^3}{1000000} + \frac{3r^2}{10000} \right)$$

$$\Rightarrow 244 = P \left(\frac{125}{1000000} + \frac{75}{10000} \right)$$

$$\Rightarrow 244 = P\bigg(\frac{7625}{1000000}\bigg)$$

$$\Rightarrow P = \frac{244 \times 1000000}{7625}$$

= ₹ 32000

26. (3) Using Rule 6,

The difference between compound interest and simple interest for two years

$$= \frac{Principal \times (Rate)^2}{100 \times 100}$$

$$\therefore 1 = \frac{\text{Principal} \times (4)^2}{10000}$$

⇒ Principal =
$$\frac{10000}{16}$$
 = ₹ 625

27. (2) Using Rule 6,

Difference of 2 years

$$= \frac{p \times r^2}{10000}$$

$$\Rightarrow 32 = \frac{5000 \times r^2}{10000}$$

$$\Rightarrow r^2 = \frac{32 \times 10000}{5000} = 64$$

$$\Rightarrow r = \sqrt{64} = 8\%$$

28. (1) Using Rule 6,

Difference =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 25 = \frac{P \times 5 \times 5}{10000}$$

29. (3) Using Rule 6,

Difference =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 300 = \frac{P \times 10 \times 10}{10000}$$

$$\Rightarrow$$
 P = 300 × 100 = ₹ 30000

30. (1) Using Rule 1,

$$S.I. = \frac{Principal \times Time \times Rate}{100}$$

$$= \frac{32000 \times 4 \times 10}{100} = ₹ 12800$$

C.I. =
$$P \left[\left(1 + \frac{R}{100} \right)^4 - 1 \right]$$

$$=32000\left[\left(1+\frac{10}{100}\right)^4-1\right]$$

- $= 32000 [(1.1)^4 1]$
- = 32000 (1.4641 1)
- $= 32000 \times 0.4641 = ₹ 14851.2$
- :. Required difference

31. (3) Using Rule 6,

Difference =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 63 = \frac{P \times 5 \times 5}{10000}$$

32. (4) Let the principal be Rs. P. For 2 years

C.I. - S.I. =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 1 = \frac{P \times 4 \times 4}{10000}$$

$$\Rightarrow P = \frac{10000}{4 \times 4} = Rs. 625$$

33. (1) Difference =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 4 = \frac{P \times 10 \times 10}{10000}$$

$$\Rightarrow$$
 P = Rs. 400

34. (1) Difference between C.I. and S.I. for 3 years

$$= \frac{\Pr^2(r+300)}{1000000}$$

$$\Rightarrow 93 = \frac{P \times 100(10 + 300)}{1000000}$$

$$\Rightarrow 93 = \frac{P \times 100 \times 310}{1000000}$$

$$\Rightarrow \frac{31P}{1000} = 93$$

$$\Rightarrow$$
 P = $\frac{93000}{31}$ = Rs. 3000

35. (3) Difference

$$= \frac{PR^2}{10000}$$

$$\Rightarrow 41 = \frac{P \times 5 \times 5}{10000}$$

$$\Rightarrow$$
 41 = $\frac{P}{400}$

$$\Rightarrow$$
 P = 41 × 400 = Rs. 16400

36. (4) For 3 years,

$$= P\left(\frac{r}{100}\right)^2 \left(\frac{r}{100} + 3\right)$$

$$\Rightarrow P\left(\frac{10}{100}\right)^2 \left(\frac{10}{100} + 3\right) = 186$$

$$\Rightarrow P\left(\frac{1}{100}\right) \times \frac{31}{10} = 186$$

$$\Rightarrow P = \frac{186 \times 1000}{31} = Rs. 6000$$

37. (2) Difference between C.I. and S.I. for 3 years

$$= P\left(\frac{r}{100}\right)^2 \left(\frac{r}{100} + 3\right)$$

$$=40000 \left(\frac{8}{100}\right)^2 \left(\frac{8}{100}+3\right)$$

$$= 40000 \times \frac{64}{10000} \left(\frac{8 + 300}{100} \right)$$
$$= 4 \times 64 \times \frac{308}{100} = \frac{78848}{100}$$

C.I. - S.I. =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 96 = \frac{15000 \times R^2}{10000}$$

$$\Rightarrow$$
 15 R² = 960

$$\Rightarrow R^2 = \frac{960}{15} = 64$$

$$\Rightarrow$$
 R = $\sqrt{64}$ = 8% per annum

C.I. – S.I. =
$$\frac{PR^2}{10000}$$

$$= \frac{5000 \times 8 \times 8}{10000} = \text{Rs. } 32$$

40. (4) For 2 years,

C.I. - S.I. =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 20 = \frac{P \times 5 \times 5}{10000}$$

$$\Rightarrow \frac{P}{400} = 20$$

$$\Rightarrow$$
 P = Rs. (20 × 400)

= Rs. 8000

TYPE-IV

1. (4) Suppose P = ₹ 100 and amount A = ₹ 225

$$A = P \left(1 + \frac{r}{100} \right)^t$$

or
$$225 = 100 \left(1 + \frac{r}{100} \right)^2$$

or
$$\frac{225}{100} = \left[1 + \frac{r}{100}\right]^2$$

or
$$1 + \frac{r}{100} = \frac{15}{10}$$

or
$$\frac{100+r}{100} = \frac{15}{10}$$

or
$$100 + r = 150$$

or $r = 50\%$

Aliter: Using Rule 8,

Here, n = 2.25, t = 2 years

$$R\% = \left(n^{\frac{1}{t}} - 1\right) \times 100\%$$

$$R\% = \left[(2.25)^{\frac{1}{2}} - 1 \right] \times 100\%$$

$$= [1.5-1] \times 100\%$$

$$= 0.5 \times 100\%$$

= 50%

2. (2) A sum of ₹ x becomes ₹ 2x in 4 years.

Similarly, $\stackrel{?}{\sim} 2x$ will become $2 \times 2x = \stackrel{?}{\sim} 4x$ in next 4 years and $\stackrel{?}{\sim} 4x$ will become $2 \times 4x = \stackrel{?}{\sim} 8x$ in yet another 4 years. So, the total time = 4 + 4 + 4 = 12 years

Aliter: Using Rule 5,

Here, m = 2, t = 4

Time taken to become

 $2^3 = n \times t \text{ years}$

 $= 3 \times 4 = 12$ years

Note: If a sum of money becomes n times in t years, it will become $t^1 = n^x$ times at the same rate of interest in t^1 years given by,

$$t^1 = xt$$

3. (2) Let the sum be x which becomes 2x in 10 years. Hence, 4x in 20 years

Method 2:

Unitary Method can also be used. **Aliter:** Using Rule 5,

Here, m = 2, t = 10

Time taken to become 4 times = 2^2 times

 $= t \times n = 10 \times 2 = 20 \text{ years}$

4. (1) Let the principal be *x* and the rate of compound interest be *t*% per annum. Then,

$$8x = x \left(1 + \frac{r}{100}\right)^3$$

$$\Rightarrow 8 = \left(1 + \frac{r}{100}\right)^3 \Rightarrow 2^3 = \left(1 + \frac{r}{100}\right)^3$$

$$\Rightarrow 2 = 1 + \frac{r}{100}$$

$$\Rightarrow \frac{r}{100} = 1 \Rightarrow r = 100\%$$

Aliter: Using Rule 8,

Here, n = 8, t = 3 years.

$$R\% = \left(n^{\frac{1}{t}} - 1\right) \times 100\%$$
$$= \left[\left(8\right)^{\frac{1}{3}} - 1\right] \times 100\%$$

$$= \left[\left(2^3 \right)^{\frac{1}{3}} - 1 \right] \times 100\%$$

$$= 100\%$$

5. (3) Let the sum be *x*. Then.

$$2x = x \left(1 + \frac{r}{100}\right)^6$$

$$\Rightarrow 2 = \left(1 + \frac{r}{100}\right)^6$$

Cubing both sides,

$$8 = \left\{ \left(1 + \frac{r}{100}\right)^6 \right\}^3$$

$$\Rightarrow 8 = \left(1 + \frac{r}{100}\right)^{18}$$

$$\Rightarrow 8x = x \left(1 + \frac{r}{100}\right)^{18}$$

 \therefore The sum will be 8 times in 18 years. i.e., Time = 18 years

Aliter: Using Rule 5,

Here, m = 2, t = 6 years

It will becomes 8 times of itself

= 2^3 times of it self

in $t \times n$ years = $6 \times 3 = 18$ years

6. (2) Let the Principal be P and rate of interest be r%.

$$\therefore 2 P = P \left(1 + \frac{r}{100}\right)^2$$

$$\Rightarrow 2 = \left(1 + \frac{r}{100}\right)^5 \qquad \dots (i)$$

On cubing both sides,

$$8 = \left(1 + \frac{r}{100}\right)^{15}$$

∴ Time = 15 years

Aliter: Using Rule 5,

Here, m = 2, t = 5 years

It becomes 8 times = 2^3 times

in $t \times n = 5 \times 3 = 15$ years

7. (1)
$$A = P \left(1 + \frac{R}{100}\right)^T$$

$$2 = 1 \left(1 + \frac{R}{100} \right)^{15}$$

Cubing on both sides, we have

$$8 = 1 \left(1 + \frac{R}{100} \right)^{45}$$

Required time = 45 years **Aliter:** Using Rule 5,

Here, m = 2, t = 15 years

It becomes 8 times = 2^3 times
in $t \times n$ years= $15 \times 3 = 45$ years

8. (4)
$$A = P \left(1 + \frac{R}{100}\right)^T$$

$$\Rightarrow 24000 = 12000 \left(1 + \frac{R}{100}\right)^5$$

$$\Rightarrow 2 = \left(1 + \frac{R}{100}\right)^5$$

$$\Rightarrow 2^4 = \left(1 + \frac{R}{100}\right)^{20}$$

i.e. The sum amounts to ₹ 192000 after 20 years.

Aliter : Using Rule 11 Here, x = 2, $n_1 = 5$ y = ?, $n_2 = 20$

$$\frac{1}{\mathbf{x}^{\mathbf{n}_1}} = \frac{1}{\mathbf{v}^{\mathbf{n}}}$$

$$2^{\frac{1}{5}} = v^{\frac{1}{20}}$$

$$\Rightarrow y = \left(2^{\frac{1}{5}}\right)^{20}$$

 $y = 2^4$

y = 16 times

∴ Sum = 16 × 12000 = ₹ 1,92,000

9. (1)
$$A = P \left(1 + \frac{R}{100} \right)^T$$

$$\Rightarrow 4 = \left(1 + \frac{R}{100}\right)^2$$

$$\Rightarrow 1 + \frac{R}{100} = 2$$

$$\Rightarrow \frac{R}{100} = 1$$

 \Rightarrow R = 100%

Aliter: Using Rule 8, Here, n = 4, t = 2 years

$$R\% = \left(n^{\frac{1}{t}} - 1\right) \times 100\%$$

$$= \left[(4)^{\frac{1}{2}} - 1 \right] \times 100\%$$

10. (2)
$$A = P \left(1 + \frac{R}{100} \right)^T$$

Let P. ₹, A = ₹ 2

$$\Rightarrow 2 = 1 \left(1 + \frac{R}{100} \right)^3$$

On squaring both sides.

$$4 = 1 \left(1 + \frac{R}{100} \right)^6$$

 \therefore Time = 6 years

Aliter: Using Rule 11, Here, x = 2, $n_1 = 3$ y = 4, $n_2 = ?$

$$x^{\frac{1}{n_1}} = y^{\frac{1}{n_2}}$$

$$2^{\frac{1}{3}} = 4^{\frac{1}{n_2}}$$

$$2^{\frac{1}{3}} = \left(2^2\right)^{\frac{1}{n_2}}$$

$$\Rightarrow \frac{1}{2^3} = \frac{2}{2^{n_2}}$$

$$\frac{1}{3} = \frac{2}{n_2}$$

 \therefore n₂ = 6 Years

11. (2) Let the principal be ₹ 1.

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow 8 = 1 \left(1 + \frac{R}{100} \right)^3$$

$$\Rightarrow 2^3 = \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow 2 = \left(1 + \frac{R}{100}\right)^1$$

$$\Rightarrow 2^4 = \left(1 + \frac{R}{100}\right)^4$$

∴ Time = 4 years

Aliter : Using Rule 11, Here, x = 8, $n_1 = 3$ y = 16, $n_2 = ?$

Using
$$\frac{1}{x^{n_1}} = \frac{1}{y^{n_2}}$$

$$(8)^{\frac{1}{3}} = (16)^{\frac{1}{n_2}}$$

$$(2^3)^{\frac{1}{3}} = (2^4)^{\frac{1}{n_2}}$$

$$2^{1} = 2^{\frac{4}{n_2}}$$

$$\Rightarrow 1 = \frac{4}{n_2}$$

$$n_2 = 4 \text{ years}$$

12. (3)
$$A = P \left(1 + \frac{R}{100} \right)^T$$

Let P be \ge 1, then A = \ge 2

$$\Rightarrow 2 = 1 \left(1 + \frac{R}{100} \right)^4$$

$$\Rightarrow 2^2 = \left(1 + \frac{R}{100}\right)^8$$

∴ Time = 8 years

Aliter : Using Rule 11, Here, x = 2, $n_1 = 4$ y = 4, $n_2 = ?$

Using
$$\frac{1}{x^{n_1}} = \frac{1}{y^{n_2}}$$

$$(2)^{\frac{1}{4}} = (4)^{\frac{1}{n_2}}$$

$$2^{\frac{1}{4}} = (2^2)^{\frac{1}{n_2}}$$

$$\frac{1}{2^4} = \frac{1}{2^{n_2}}$$

$$\Rightarrow \frac{1}{4} = \frac{2}{n_2}$$

$$n_9 = 8 \text{ years}$$

13. (3)
$$A = P \left(1 + \frac{R}{100} \right)^T$$

Let $P = \mathbb{7} 1$, then $A = \mathbb{7} 3$

$$\Rightarrow 3 = 1 \left(1 + \frac{R}{100} \right)^3$$

On squaring both sides,

$$9 = 1 \left(1 + \frac{R}{100}\right)^6$$

∴ Time = 6 years

Aliter: Using Rule 11, Here, x = 3, $n_1 = 3$ y = 9, $n_2 = ?$

Using,
$$\frac{1}{\mathbf{v}^{\mathbf{n}_1}} = \frac{1}{\mathbf{v}^{\mathbf{n}_2}}$$

$$\frac{1}{(3)^3} = \frac{1}{(9)^{n_2}}$$

$$\frac{1}{3^3} = \left(3^2\right)^{\frac{1}{n_2}}$$

$$\frac{1}{3^3} = \frac{2}{3^{n_2}}$$

$$\Rightarrow \frac{1}{3} = \frac{2}{n_2}$$

$$\Rightarrow$$
 $n_0 = 6$ years

14. (3) If principal = ₹ 1000, amount = ₹ 1331

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow \frac{1331}{1000} = \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow \left(\frac{11}{10}\right)^3 = \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow 1 + \frac{R}{100} = \frac{11}{10}$$

$$\Rightarrow \frac{R}{100} = \frac{1}{10}$$

$$\Rightarrow R = \frac{1}{10} \times 100 = 10\%$$

Aliter: Using Rule 8,

Here, n = 1.331, t = 3 years

$$R\% = \left(n^{\frac{1}{t}} - 1\right) \times 100\%$$

$$= \left[(1.331)^{\frac{1}{3}} - 1 \right] \times 100\%$$
$$= [1.1 - 1] \times 100\%$$
$$= 0.1 \times 100\%$$

15. (4)
$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\Rightarrow 1.44P = P \left(1 + \frac{R}{100} \right)^{2}$$

$$\Rightarrow (1.2)^{2} = \left(1 + \frac{R}{100} \right)^{2}$$

$$\Rightarrow 1 + \frac{R}{100} = 1.2$$

= 10%

$$\Rightarrow R = 0.2 \times 100 = 20\%$$

Aliter : Using Rule 8, Here, n = 1.44, t = 2 years

$$R\% = \left(n^{\frac{1}{6}} - 1\right) \times 100\%$$

$$= \left[\left(1.44\right)^{\frac{1}{2}} - 1\right] \times 100\%$$

$$= \left[\left(1.2\right) - 1\right] \times 100\%$$

$$= 0.2 \times 100\%$$

= 20%

16. (2)
$$A = P\left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow \frac{27}{8}x = x\left(1 + \frac{R}{100}\right)^{3}$$

$$\Rightarrow \left(\frac{3}{2}\right)^{3} = \left(1 + \frac{R}{100}\right)^{3}$$

$$\Rightarrow 1 + \frac{R}{100} = \frac{3}{2}$$

$$\Rightarrow \frac{R}{100} = \frac{3}{2} - 1 = \frac{1}{2}$$

$$\Rightarrow R = \frac{1}{2} \times 100$$

$$\therefore R = 50\%$$
Aliter:

$$n = \frac{27}{8}$$
, $t = 3$ years

$$R\% = \left(n^{\frac{1}{n}} - 1\right) \times 100\%$$

$$= \left[\left(\frac{27}{8} \right)^{\frac{1}{3}} - 1 \right] \times 100\%$$
$$= \left[\left(\frac{3}{2} \right) - 1 \right] \times 100\%$$
$$= 50\%$$

TYPE-V

1. (1) Let the rate of interest be r% per annum,

According to the question,

$$4840 = P \left(1 + \frac{r}{100}\right)^2 \qquad \dots (i)$$

and
$$5324 = P\left(1 + \frac{r}{100}\right)^3$$
(ii)

On dividing equation (ii) by equation (i), we have,

$$1 + \frac{r}{100} = \frac{5324}{4840} = 1 + \frac{484}{4840}$$

$$\Rightarrow \frac{r}{100} = \frac{484}{4840}$$

$$\Rightarrow r = 10\%$$

Aliter: Using Rule 7 (i), Here, b - a = 3 - 2 = 1B = Rs 5.324, A = 4.840

$$R\% = \left(\frac{B}{A} - 1\right) \times 100\%$$

$$= \left(\frac{5324}{4840} - 1\right) \times 100\%$$

$$= \left(\frac{5324 - 4840}{4840}\right) \times 100\%$$

$$= \frac{484}{4840} \times 100\% = 10\%$$

2. (4) Let the rate of interest = R% per annum.

We know that

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$2420 = P\left(1 + \frac{R}{100}\right)^2$$
(i)

$$2662 = P \left(1 + \frac{R}{100} \right)^3 \qquad ...(ii)$$

Dividing equation (ii) by (i),

$$1 + \frac{R}{100} = \frac{2662}{2420}$$
$$\Rightarrow \frac{R}{100} = \frac{2662}{2420} - 1$$

$$\Rightarrow \frac{R}{100} = \frac{2662 - 2420}{2420} = \frac{242}{2420} = \frac{1}{10}$$

$$\Rightarrow R = \frac{1}{10} \times 100 = 10\%$$

Aliter: Using Rule 7(i), Here, b - a = 3 - 2 = 1B = Rs. 2,662, A= Rs,2,420

$$R\% = \left(\frac{B}{A} - 1\right) \times 100\%$$

$$= \left(\frac{2662}{2420} - 1\right) \times 100\%$$

$$= \left[\frac{2662 - 2420}{2420}\right] \times 100\%$$

$$= \frac{242}{2420} \times 100\%$$

3. (1)
$$A = P \left(1 + \frac{R}{100}\right)^T$$

$$\therefore 3840 = P \left(1 + \frac{R}{100}\right)^4 \dots (i)$$

3936 =
$$P\left(1 + \frac{R}{100}\right)^5$$
 ...(ii)

Dividing equation (ii) by equation (i),

$$\frac{3936}{3840} = 1 + \frac{R}{100}$$

$$\Rightarrow \frac{R}{100} = \frac{3936}{3840} - 1$$

$$= \frac{3936 - 3840}{3840} = \frac{96}{3840}$$

$$\Rightarrow R = \frac{96}{3840} \times 100 = 2.5\%$$

Aliter: Using Rule 7(i), Here, b - a = 5 - 4 = 1B = Rs. 3,936, A = Rs. 3,840

$$R\% = \left(\frac{B}{A} - 1\right) \times 100\%$$
$$= \left(\frac{3936}{3840} - 1\right) \times 100\%$$

$$= \left(\frac{3936 - 3840}{3840}\right) \times 100\%$$

$$= \frac{96}{3840} \times 100\%$$

$$= \frac{10}{4} \% = 2.5\%$$

4. (4) If the principal be ₹ P, then

$$A = P \left(1 + \frac{r}{100} \right)^{T}$$

$$\Rightarrow 1440 = P \left(1 + \frac{r}{100} \right)^{2} \dots(i)$$

and 1728 = P
$$\left(1 + \frac{r}{100}\right)^3$$
 ...(ii)

On dividing equation (ii) by (i),

$$\frac{1728}{1440} = 1 + \frac{r}{100}$$

$$\therefore \frac{r}{100} = \frac{1728}{1440} - 1$$

$$= \frac{1728 - 1440}{1440} = \frac{288}{1440}$$

$$\Rightarrow r = \frac{288 \times 100}{1440}$$

 $\therefore r = 20\%$ per annum

Aliter: Using Rule 7(i), Here, b - a = 3 - 2 = 1 B = Rs 1728, A = Rs,1440

$$R\% = \left(\frac{B}{A} - 1\right) \times 100\%$$

$$= \left(\frac{1728}{1440} - 1\right) \times 100\%$$

$$= \left(\frac{1728 - 1440}{1440}\right) \times 100\%$$

$$= \left[\frac{288}{1440}\right] \times 100\% = 20\%$$

5. (4) Difference = 238.50 - 225 = ₹ 13.50 = S.I. on ₹ 225 for 1 year ∴ Rate = $\frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}}$

$$= \frac{13.50 \times 100}{225 \times 1} = 6\% \text{ per annum}$$

Aliter: Using Rule 7(i), Here, b - a = 1 B = Rs 238.50, A = Rs,225

$$R\% = \left(\frac{B}{A} - 1\right) \times 100\%$$

$$= \left(\frac{238.50}{225} - 1\right) \times 100\%$$

$$= \left(\frac{238.50 - 225}{225}\right) \times 100\%$$

$$= \left[\frac{13.5}{225}\right] \times 100\% = 6\%$$

6. (2)
$$A = P \left(1 + \frac{R}{100} \right)^T$$

$$\Rightarrow$$
 7000 = P $\left(1 + \frac{R}{100}\right)^4$ (i)

$$10000 = P \left(1 + \frac{R}{100}\right)^8$$
(ii)

Dividing equation (ii) by (i)

$$\frac{10000}{7000} = \left(1 + \frac{R}{100}\right)^4$$

$$\Rightarrow \frac{10}{7} = \left(1 + \frac{R}{100}\right)^4$$

From equation (i),

$$7000 = P \times \frac{10}{7}$$

Aliter: Using Rule 7(iii), Here, b – a = 8 – 4 = 4 B = Rs 10,000, A = Rs,7000

$$R\% = \left[\left(\frac{B}{A} \right)^{\frac{1}{n}} - 1 \right] \times 100\%$$

$$R\% = \left[\left(\frac{10000}{7000} \right)^{\frac{1}{4}} - 1 \right]$$

$$= \left\lceil \left(\frac{10}{7}\right)^{\frac{1}{4}} - 1 \right\rceil$$

$$\Rightarrow 1 + \frac{R}{100} = \left(\frac{10}{7}\right)^{\frac{1}{4}}$$

$$\left(1 + \frac{R}{100}\right)^4 = \frac{10}{7}$$

$$7000 = P \times \frac{10}{7}$$

$$\therefore$$
 Amount = $P\left(1 + \frac{R}{100}\right)^4$

P = Rs. 4900

7. (3) Interest on ₹ 650 for 1 year = 676 - 650 = ₹ 26

So,
$$r = \frac{26}{650} \times 100$$

 \Rightarrow r = 4% per annum

$$P = \frac{A}{\left[1 + \frac{r}{100}\right]^t} = \frac{650}{\left[1 + \frac{4}{100}\right]^1}$$

$$=\frac{650}{\frac{26}{25}}=650\times\frac{25}{26}=\text{?}625$$

Aliter : Using Rule 7(i), Here, b – a = 1 B = Rs 676, A = ₹ 650

$$R\% = \left(\frac{B}{A} - 1\right) \times 100\%$$

$$= \left[\frac{676}{650} - 1\right] \times 100\%$$

$$= \left[\frac{676 - 650}{650}\right] \times 100\%$$

$$= \frac{26}{650} \times 100\%$$

$$= \frac{100}{25} = 4\%$$

Amount=
$$P\left(1 + \frac{R}{100}\right)^1$$

$$650 = P\left(1 + \frac{4}{100}\right)$$

$$\Rightarrow P = \frac{650 \times 100}{104} = ₹ 625$$

Note : A sum at a rate of interest compounded yearly becomes $\begin{cal} \begin{cal} \$

then
$$P = A_1 \left(\frac{A_1}{A_2}\right)^n$$

8. (1) S.I. on ₹ 2400 for 1 year = ₹ (2, 520 - 2, 400) = ₹ 120

$$\therefore \text{ Rate} = \frac{\text{S.I.} \times 100}{\text{Principal} \times \text{Time}} \%$$

$$=\frac{120\times100}{2400\times1}=5\%$$

Aliter : Using Rule 7(i), Here, b – a = 4 – 3 = 1 B = Rs 2520, A = ₹ 2400

$$R\% = \left(\frac{B}{A} - 1\right) \times 100\%$$

$$= \left[\frac{2520}{2400} - 1\right] \times 100\%$$

$$= \left[\frac{2520 - 2400}{2400}\right] \times 100\%$$

$$= \frac{120}{2400} \times 100\%$$

$$= \frac{50\%}{2400}$$

9. (3)
$$P\left(1 + \frac{r}{100}\right)^2 = 4500$$
 ...(i)

$$P\left(1 + \frac{r}{100}\right)^4 = 6750$$
(ii)

On dividing equation (ii) by equation (i), we get

$$\left(1 + \frac{r}{100}\right)^2 = \frac{6750}{4500}$$

From equation (i),

$$P \times \frac{6750}{4500} = 4500$$

$$\Rightarrow P = \frac{4500 \times 4500}{6750} = ₹ 3,000$$

Aliter : Using Rule 7(ii), Here, b – a = 4 – 2 = 2 B = ₹ 6750, A = ₹ 4500

$$R\% = \left[\left(\frac{B}{A} \right)^{\frac{1}{2}} - 1 \right] \times 100\%$$

$$= \left[\left(\frac{6750}{4500} \right)^{\frac{1}{2}} - 1 \right] \times 100\%$$

$$= \left[\left(\frac{3}{2} \right)^{\frac{1}{2}} - 1 \right] \times 100\%$$

$$\Rightarrow \left(\frac{3}{2}\right)^{\frac{1}{2}} = 1 + \frac{R}{100}$$

$$\Rightarrow \quad \frac{3}{2} \quad = \left(1 + \frac{R}{100}\right)^2$$

$$A = P \left(1 + \frac{R}{100} \right)^2$$

$$4500 = P \times \frac{3}{2}$$

10. (4) Principal = ₹ P (let) Rate = R% per annum

11. (2) Principal =
$$\frac{\text{S.I.} \times 100}{\text{Time} \times \text{Rate}}$$

= $\frac{350 \times 100}{2 \times 4}$ = Rs. 4375

$$C.I. = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$= 4375 \left[\left(1 + \frac{4}{100} \right)^2 - 1 \right]$$

$$= 4375 \left[\left(1 + \frac{1}{25} \right)^2 - 1 \right]$$

$$=4375\left[\left(\frac{26}{25}\right)^2-1\right]$$

$$=4375\left(\frac{676}{625}-1\right)$$

$$=\frac{4375\times51}{625}$$

= Rs. 357

12. (1) Rate of interest = 12% p.a.

= 1% per month

Time = 12y months

$$\therefore A = P \left(1 + \frac{R}{100} \right)^T$$

$$\Rightarrow 64 = 1 \left(1 + \frac{1}{100}\right)^{12y}$$

$$\Rightarrow$$
 64 = 1(1.01)^{12y}

13. (3) C.I. =
$$P\left[\left(1 + \frac{R}{100}\right)^T - 1\right]$$

$$\Rightarrow 525 = P\left[\left(1 + \frac{10}{100}\right)^2 - 1\right]$$

$$\Rightarrow 525 = P\left(\frac{121}{100} - 1\right)$$

$$\Rightarrow 525 = \frac{P \times 21}{100}$$

$$\Rightarrow P = \frac{525 \times 100}{21} = Rs. \ 2500$$

Again, new rate = 5% per annum

Again, new rate = 5% per annum
$$\therefore S.I. = \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{2500 \times 5 \times 4}{100} = \text{Rs. } 500$$

14. (2) Let the principal be Rs. *x*. When the interest is compounded annually,

C.I. = P
$$\left[\left(1 + \frac{R}{100} \right)^T - 1 \right]$$

= P $\left[\left(1 + \frac{20}{100} \right)^2 - 1 \right]$
= P $\left[\left(\frac{6}{5} \right)^2 - 1 \right]$
= P $\left(\frac{36}{25} - 1 \right)$ = Rs. $\frac{11P}{25}$

When the interest is compounded half-yearly,

C.I. = P
$$\left[\left(1 + \frac{10}{100} \right)^4 - 1 \right]$$

= P $\left[\left(\frac{11}{10} \right)^4 - 1 \right]$
= P $\left(\frac{14641}{10000} - 1 \right)$
= Rs. $\frac{4641P}{10000}$
 $\therefore \frac{4641P}{10000} - \frac{11P}{25} = 723$
 $\Rightarrow \frac{4641P - 4400P}{10000} = 723$
 $\Rightarrow \frac{241P}{10000} = 723$
 $\Rightarrow P = \frac{723 \times 10000}{241}$

= Rs. 30000

TYPE-VI

1. (1) A = ₹ 2550 R = 4% per annum n = 2 years Let each of the two equal instalments be x Present worth

$$= \frac{Instalment}{\left(1 + \frac{r}{100}\right)^n}$$

$$P_1 = \frac{x}{\left(1 + \frac{4}{100}\right)^1} = \frac{x}{1 + \frac{1}{25}} = \frac{x}{\frac{26}{25}}$$

or
$$P_1 = \frac{25}{26}x$$

Similarly,

$$P_2 = \left(\frac{25}{26}\right)^2 x = \frac{625}{676} x$$

$$P_1 + P_2 = A$$

$$\therefore \frac{25}{26}x + \frac{625}{676}x = 2550$$

$$\Rightarrow \frac{(650 + 625)x}{676} = 2550$$

$$\Rightarrow \frac{1275}{676} x = 2550$$

$$\Rightarrow x = 2550 \times \frac{676}{1275}$$

x = 71352

Aliter: Using Rule 9(i),

Here, P = ₹ 2550, n = 2, r = 4%Each instalment

$$= \frac{P}{\left(\frac{100}{100+r}\right) + \left(\frac{100}{100+r}\right)^2}$$

$$= \frac{2550}{\left(\frac{100}{100+4}\right) + \left(\frac{100}{100+4}\right)^2}$$

$$= \frac{2550}{\frac{100}{104} + \left(\frac{100}{104}\right)^2}$$

$$= \frac{2550}{\frac{100}{104} \left(1 + \frac{100}{104}\right)}$$

$$=\frac{2550}{\frac{100}{104}\left(\frac{204}{104}\right)}$$

2. (2) Using Rule 1,

Let principal (present worth) for first year be P_1 and that for two years be P_2 .

$$\therefore 16224 = P_1 \left(1 + \frac{4}{100} \right)$$

$$\Rightarrow 16224 = P_1 \left(1 + \frac{1}{25} \right) = \frac{26P_1}{25}$$

⇒
$$P_1 = \frac{16224 \times 25}{26} = ₹ 15600$$

Again

$$16224 = P_2 \left(1 + \frac{4}{100} \right)^2$$

$$\Rightarrow 16224 = P_2 \left(\frac{26}{25}\right)^2 = \frac{676 P_2}{625}$$

$$\Rightarrow P_2 = \frac{16224 \times 625}{676} = ₹ 15000$$

:. Cash value of the scooter

3. (3) Let the annual instalment be x

$$A = P \left(1 + \frac{R}{T} \right)^{T}$$

$$x = P_1 \left(1 + \frac{25}{200} \right)$$

$$\Rightarrow x = P_1 \times \frac{9}{8}$$

$$\Rightarrow$$
 P₁ = $\frac{8}{9}x$

Similarly,
$$P_2 = \frac{64}{81}x$$

$$P_1 + P_2 = 6800$$

$$\Rightarrow \frac{8}{9}x + \frac{64}{81}x = 6800$$

$$\Rightarrow \frac{72x + 64x}{81} = 6800$$

$$\Rightarrow \frac{136x}{81} = 6800$$

$$\Rightarrow x = \frac{6800 \times 81}{136} = \text{ } 4050$$

Aliter: Using Rule 9(i),

Here, P = ₹ 6800, R =
$$\frac{25}{2}$$
%

n = 2

Each instalment

$$= \frac{P}{\left(\frac{100}{100+r}\right) + \left(\frac{100}{100+r}\right)^2}$$

$$= \frac{6800}{\left(\frac{100}{100 + \frac{25}{2}}\right) + \left(\frac{100}{100 + \frac{25}{2}}\right)^2}$$

$$= \frac{6800}{\frac{200}{225} + \left(\frac{200}{225}\right)^2}$$

$$= \frac{6800}{\frac{200}{225} \left(1 + \frac{200}{225}\right)}$$
$$= \frac{6800 \times 225 \times 225}{200 \times 425} = ₹ 4050$$

4. (2) Using Rule 9(i), Let each instalment be *x*.

$$\frac{x}{\left(1 + \frac{5}{100}\right)} + \frac{x}{\left(1 + \frac{5}{100}\right)^2} = 12300$$

$$\Rightarrow \frac{20x}{21} + \left(\frac{20}{21}\right)^2 x = 12300$$

$$\Rightarrow \frac{20x}{21} \left(1 + \frac{20}{21}\right) = 12300$$

$$\Rightarrow \frac{20x}{21} \times \frac{41}{21} \times x = 12300$$

$$\Rightarrow x = \frac{12300 \times 21 \times 21}{20 \times 41}$$

- ∴ *x* = ₹ 6615
- 5. (2) Using Rule 9(i),Let the value of each instalment be ₹ x

 \therefore Principal = Present worth of $\mathbf{\xi}$ x due 1 year hence, present worth of Rs. x due 2 years hence

$$\Rightarrow 210 = \frac{x}{\left(1 + \frac{R}{100}\right)} + \frac{x}{\left(1 + \frac{R}{100}\right)^2}$$

$$\Rightarrow 210 = \frac{x}{\left(1 + \frac{10}{100}\right)} + \frac{x}{\left(1 + \frac{10}{100}\right)^2}$$

$$\Rightarrow 210 = \frac{x}{1 + \frac{1}{10}} + \frac{x}{\left(1 + \frac{1}{10}\right)^2}$$

$$\Rightarrow 210 = \frac{x}{1 + \frac{1}{10}} + \frac{x}{\left(\frac{11}{10}\right)^2}$$

$$\Rightarrow 210 = \frac{10x}{11} + \frac{100x}{121}$$

$$\Rightarrow 210 = \frac{110x + 100x}{121}$$

$$\Rightarrow 210 \times 121 = 210 \times x$$

$$\Rightarrow x = \frac{210 \times 121}{210} = 121$$

- **6.** (3) Using Rule 1, Share of elder brother = Rs. *x* (let)
- :. Share of younger brother = Rs. (16820 x)

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$

According to the question,

$$x \left(1 + \frac{5}{100}\right)^{13}$$

$$= (16820 - x) \left(1 + \frac{5}{100}\right)^{15}$$

$$\Rightarrow x = (16820 - x) \left(1 + \frac{1}{20}\right)^{2}$$

$$\Rightarrow x = (16820 - x) \left(\frac{21}{20}\right)^{2}$$

$$\Rightarrow \left(\frac{20}{21}\right)^2 \ x = 16820 - x$$

$$\Rightarrow \frac{400x}{441} + x = 16820$$

$$\Rightarrow \frac{400x + 441x}{441} = 16820$$

$$\Rightarrow 841x = 16820 \times 441$$

$$\Rightarrow x = \frac{16820 \times 441}{841} = \text{Rs. } 8820$$

7. (1) Using Rule 9(i), Sum borrowed = Present worth of Rs. 17640 due 1 year hence + Present worth of Rs. 17640 due 2 years hence

= Rs.
$$\left(\frac{17640}{\left(1 + \frac{5}{100}\right)} + \frac{17640}{\left(1 + \frac{5}{100}\right)^2}\right)$$

= Rs. $\left(17640 \times \frac{20}{21} + 17640 \times \frac{20}{21} \times \frac{20}{21}\right)$
= Rs. $\left(16800 + 16000\right)$

8. (3) Using Rule 1, Let the amount deposited in Post Office be Rs. *x* lakhs.

∴ Amount deposited in bank = Rs. (3 – *x*) lakhs According to the question,

$$\frac{x \times 10 \times 1}{100 \times 12} + \frac{(3 - x) \times 6 \times 1}{100 \times 12}$$
$$= \frac{2000}{100000} = \frac{1}{50}$$

$$\Rightarrow 10x + 18 - 6x = \frac{1}{50} \times 1200$$
= 24
$$\Rightarrow 4x = 24 - 18 = 6$$

$$\Rightarrow x = \frac{6}{4} = \text{Rs. } \frac{3}{2} \text{ lakhs}$$

- \therefore Required difference = 0
- (2) Using Rule 1, Let the income of company in 2010 be Rs. P
 According to the question,

$$A = P\left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow 2664000 = P\left(1 + \frac{20}{100}\right)^{2}$$

$$\Rightarrow 2664000 = P\left(1 + \frac{1}{5}\right)^{2}$$

$$\Rightarrow 2664000 = P \times \left(\frac{6}{5}\right)^{2}$$

$$\Rightarrow P = \frac{2664000 \times 5 \times 5}{6 \times 6}$$

TYPE-VII

1. (2) Using Rule 1,

= Rs. 1850000

$$S.I. = \frac{6000 \times 5 \times 2}{100} = \text{ } 600$$

C.I. =
$$5000 \left[\left(1 + \frac{8}{100} \right)^2 - 1 \right]$$

= $5000 \left[\left(\frac{27}{25} \right)^2 - 1 \right]$
= $5000 \left[\left(\frac{729 - 625}{625} \right) \right]$
= $5000 \times \frac{104}{625} = ₹832$
∴ Required difference

= ₹ (832–600) = ₹ 232

= Rs. 32800

2. (3) Using Rule 1, Let the borrowed amount be *x* According to the question,

$$x \left[\left(1 + \frac{3}{100} \right)^2 - 1 \right] - \frac{x \times 4 \times 1}{100}$$

= 104.50

[·· Interest is compounded half vearly]

- $\Rightarrow x [(1.03)^2 1] 0.04x$
- = 104.50
- $\Rightarrow 0.0609x 0.04x = 104.50$
- $\Rightarrow 0.0209x = 104.5$

⇒
$$x = \frac{104.5}{0.0209} = ₹ 5000$$

3. (2) Using Rule 9(i), Let each instalment be *x*.

$$\frac{x}{\left(1 + \frac{35}{400}\right)^2} + \frac{x}{\left(1 + \frac{35}{400}\right)} = 13360$$

$$\Rightarrow \frac{x}{\left(1 + \frac{7}{80}\right)^2} + \frac{x}{\left(1 + \frac{7}{80}\right)} = 13360$$

$$\Rightarrow \frac{6400 \, x}{7569} + \frac{80 \, x}{87} = 13360$$

$$\Rightarrow \frac{6400 \times +6960 \times}{7569} = 13360$$

- \Rightarrow 13360 $x = 13360 \times 7569$
- ⇒ *x* = ₹ 7569
- **4.** (3) Using Rule 1, Rate = 5%, Time = 4 half years
 - P = ₹ 5000

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^T - 1 \right]$$

$$=5000 \left[\left(1 + \frac{5}{100} \right)^4 - 1 \right]$$

$$=5000 \left(\frac{194481}{160000} - 1 \right)$$

$$=\frac{5000\times34481}{160000}=\text{ }\text{? }1077.5$$

S.I. =
$$\frac{5000 \times 10 \times 2}{100}$$
 = ₹ 1000

Difference = 1077.5 - 1000 = ₹ 77.5

5. (2) Using Rule 3,

$$A = P \left(1 + \frac{R_1}{100} \right)^{T_1} \left(1 + \frac{R_2}{100} \right)^{T_2}$$

$$= 250 \left(1 + \frac{4}{100}\right) \left(1 + \frac{8}{100}\right)$$

$$= 250 \times \frac{104}{100} \times \frac{108}{100}$$

- ∴ A = ₹ 280.80
- **6.** (1) Using Rule 1, Amount given to sons

$$= 84100 \times \frac{1}{2} = ₹ 42050$$

Amount given to $B = \mathbb{7} x$ (let)

- ∴ Amount given to A
- = ₹ (42050 x)

$$A = P \left(1 + \frac{R}{100} \right)^T$$

$$\Rightarrow (42050 - x) \left(1 + \frac{R}{100}\right)^3$$

$$= x \left(1 + \frac{R}{100}\right)^5$$

$$\Rightarrow (42050 - x) = x \left(1 + \frac{R}{100}\right)^2$$

$$\Rightarrow (42050 - x) = x \left(1 + \frac{5}{100}\right)^2$$

$$\Rightarrow (42050 - x) = x \left(1 + \frac{1}{20}\right)^2$$

$$\Rightarrow 42050 - x = x \left(\frac{21}{20}\right)^2$$

$$\Rightarrow 42050 - x = \frac{441x}{400}$$

$$\Rightarrow 42050 = \frac{441x}{400} + x$$

$$\Rightarrow 42050 = \frac{441x + 400x}{400}$$

$$=\frac{841x}{400}$$

$$\Rightarrow$$
 841 x = 42050 \times 400

$$\Rightarrow x = \frac{42050 \times 400}{841}$$

7. (2) Using Rule 1,

Time =
$$\frac{3}{2}$$
 years

= 3 half years

Rate = 2R% per annum

- = R% per half year
- ∴ Amount

= Principal -
$$\left(1 + \frac{\text{Rate}}{100}\right)^{\text{Time}}$$

$$\Rightarrow 2315.25 = 2000 \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow \frac{231525}{200000} = \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow \frac{9261}{8000} = \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow \left(\frac{21}{20}\right)^3 = \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow \left(1 + \frac{1}{20}\right)^3 = \left(1 + \frac{R}{100}\right)^3$$

$$\Rightarrow 1 + \frac{1}{20} = 1 + \frac{R}{100}$$

$$\Rightarrow \frac{R}{100} = \frac{1}{20}$$

$$\Rightarrow R = \frac{100}{20}$$

- = 5% per half year
- :. Required rate
- = 10% per annum

8. (4) A = P
$$\left(1 + \frac{R}{100}\right)^n$$

$$\Rightarrow$$
 2P = P $\left(1 + \frac{R}{100}\right)^5$

On cubing both sides,

$$2^3 = \left(1 + \frac{R}{100}\right)^{5 \times 3}$$

$$\Rightarrow 8 = 1 \left(1 + \frac{R}{100} \right)^{15}$$

∴ Required time = 15 years

Aliter: Using Rule 11, x = 2, $n_1 = 5$, y = 8, $n_2 = ?$

Here,
$$\frac{1}{\mathbf{v}^{n_1}} = \frac{1}{\mathbf{v}^{n_2}}$$

$$(2)\frac{1}{5} = (8)\frac{1}{n_2}$$

$$\frac{1}{2^{\frac{1}{5}}} = (2)\frac{3}{n_2}$$

$$\Rightarrow \frac{1}{5} = \frac{3}{n_2}$$

$$\therefore \quad n_2 = 15$$

9. (4) Using Rule 1, When the interest is payable half yearly,

= 9% per half annum Time = 4 half years

Let the principal be Rs. P.

$$\therefore \text{ C.I.} = P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$
$$= P \left[\left(1 + \frac{9}{100} \right)^{4} - 1 \right]$$

$$= P[(1.09)^{4} - 1]$$

$$= P[1.4116 - 1] = Rs. 0.4116$$

= P [1.4116 - 1] = Rs. 0.4116 P According to the question,

$$= P \left[\left(1 + \frac{18}{100} \right)^2 - 1 \right]$$

$$= P[(1.18)^2 - 1]$$

= P (1.3924 - 1) = Rs. 0.3924 PAccording to the question,

0.4116P - 0.3924P = 960 $\Rightarrow 0.0192P = 960$

$$\Rightarrow 0.0192P = 960$$

$$\Rightarrow P = \frac{960}{0.0192}$$

$$= \frac{960 \times 10000}{192}$$

= Rs. 50000

10. (3) Using Rule 3, Amount.

$$= P \left(1 + \frac{R_1}{100} \right) \left(1 + \frac{R_2}{100} \right)$$
$$= 25000 \left(1 + \frac{4}{100} \right) \left(1 + \frac{5}{100} \right)$$
$$= 25000 \times \frac{104}{100} \times \frac{105}{100}$$

$$= 25000 \times \frac{100}{100} \times \frac{100}{100}$$

= Rs. 27300

11. (3)
$$A = P\left(1 + \frac{R_1}{100}\right) \left(1 + \frac{R_2}{100}\right)$$

= $10000 \left(1 + \frac{10}{100}\right) \left(1 + \frac{12}{100}\right)$

$$= 10000 \times \frac{110}{100} \times \frac{112}{100}$$

= Rs. 12320

12. (1) Let the principal be Rs. P and rate of interest be R% per an-

$$\therefore S.I. = \frac{Principal \times Time \times Rate}{100}$$

$$\Rightarrow 1400 = \frac{PR \times 2}{100}$$

$$\Rightarrow PR = 1400 \times 50$$
$$= 70000 \qquad (i)$$

Again, for 2 years,

C.I. - S.I. =
$$\frac{PR^2}{10000}$$

$$\Rightarrow 1449 - 1400 = \frac{PR^2}{10000}$$

$$\Rightarrow 49 = \frac{PR \times R}{10000}$$

$$\Rightarrow 49 = \frac{70000 \times R}{10000}$$

[From equation (i)]

$$\Rightarrow$$
 7R = 49

$$\Rightarrow$$
 R = $\frac{49}{7}$ = 7% per annum

13. (3)
$$P = \frac{x_1}{1 + \frac{R}{100}} + \frac{x_2}{\left(1 + \frac{R}{100}\right)^2}$$

$$= Rs. \left(\frac{3150}{1 + \frac{5}{100}} + \frac{4410}{\left(1 + \frac{5}{100}\right)^2} \right)$$

$$= \text{Rs.} \left(\frac{3150}{1 + \frac{1}{20}} + \frac{4410}{\left(1 + \frac{1}{20}\right)^2} \right)$$

$$= \text{Rs.} \left(\frac{3150}{\frac{21}{20}} + \frac{4410}{\left(\frac{21}{20}\right)^2} \right)$$

$$= \text{Rs.} \left(\frac{3150 \times 20}{21} + \frac{4410 \times 400}{441} \right)$$

= Rs. (3000 + 4000)

= Rs. 700014. (2) Let Ram's share be Rs. x.

:. Shyam's share

$$= Rs. (260200 - x)$$

$$A = P \left(1 + \frac{R}{100} \right)^{T}$$
$$\Rightarrow x \left(1 + \frac{R}{100} \right)^{4}$$

$$= (260200 - x) \left(1 + \frac{R}{100}\right)^6$$

$$\Rightarrow x = (260200 - x) \left(1 + \frac{4}{100}\right)^2$$

$$\Rightarrow x = (260200 - x) \left(1 + \frac{1}{25}\right)^2$$

$$\Rightarrow x = (260200 - x) \left(\frac{26}{25}\right)^2$$

$$\Rightarrow x = (260200 - x) \frac{676}{625}$$

$$\Rightarrow \frac{625x}{676} + x = 260200$$

$$\Rightarrow \frac{625x + 676x}{676} = 260200$$

$$\Rightarrow \frac{1301x}{676} = 260200$$

$$\Rightarrow x = \frac{260200 \times 676}{1301}$$
= Rs. 135200

15. (3) Interest got by A

$$= \frac{\text{Principal} \times \text{Time} \times \text{Rate}}{100}$$

$$= \frac{5000 \times 2 \times 6}{100} = \text{Rs. } 600$$

$$= P \left[\left(1 + \frac{R}{100} \right)^{T} - 1 \right]$$

$$= 5000 \left[\left(1 + \frac{10}{100} \right)^2 - 1 \right]$$

$$= 5000 \left[\left(\frac{11}{10} \right)^2 - 1 \right]$$

$$=5000\left(\frac{121}{100}-1\right)$$

$$= \frac{5000 \times 21}{100} = \text{Rs. } 1050$$

∴ B's profit

= Rs. (1050 - 600)

= Rs. 450