

INTRODUCTION

The primary goal of this project is to conduct a comprehensive exploration, analysis, and visualization of essential demographic and economic indicators.

By leveraging a diverse set of datasets, we aim to uncover meaningful insights and trends that contribute to a holistic understanding of the socio-economic landscape.

Our project aims to analyze mortality data from mortality.org.

Area of Focus:

- Birth Rates
- Death Rates
- Income
- Population Statistics

PLATFORMS AND LIBRARIES

Python

Python is the primary programming language used for data analysis and processing.

Pandas

Pandas is used for data analysis, manipulation, and transformation.

SQLAlchemy

SQLAlchemy is used for database interaction and query generation in Python.

SQL

SQL is used for interacting with the database and storing the transformed data.

Pandera

Pandera is used for data processing and validation to ensure data quality and consistency.

Matplotlib

Matplotlib is used for creating basic visualizations of the analyzed data.

Seaborn

Seaborn is used for advanced data visualization and enhancing Matplotlib functions.

DATASET OVERVIEW

THE ANALYSIS OF MORTALITY DATA INVOLVES THE USE OF SEVERAL DATASETS. THESE DATASETS PROVIDE VALUABLE INFORMATION ON BIRTH RATES, DEATH RATES, AND POPULATION STATISTICS, WHICH ARE CRUCIAL FOR UNDERSTANDING AND ANALYZING MORTALITY TRENDS. THE FOLLOWING DATASETS WERE USED IN THIS ANALYSIS:

Datasets Used

Dataset	Description
Births_df	Provides information on the number of births per year.
Income_df	Information showing Size of Household and Median income
Bltper_df	Provides life expectancy and mortality rates by year and age.
Deaths _df	Includes the number of deaths by year, age, and gender.
Population_df	Contains population statistics by year, age, and gender.
Per_capita_df	Provides population and per capita income by year.

	Year	Female	Male	Total
	1933	1122180	1184820	2307000
	1934	1166072	1229928	2396000
١	1935	1158000	1219000	2377000
	1936	1148000	1207000	2355000
	1937	1175000	1238000	2413000
•	1938	1217000	1280000	2497000
	1939	1201000	1265000	2466000
	1940	1246000	1313000	2559000
	1941	1316000	1387000	2703000
	1942	1452000	1537000	2989000
	1943	1510000	1593000	3103000
	1944	1430000	1509000	2939000
	1945	1391000	1467000	2858000
	1946	1657000	1754000	3411000
	1947	1857000	1960000	3817000
	1948	1771000	1866000	3637000
	1949	1777000	1872000	3649000
	1950	1768000	1863000	3631000
	1951	1863000	1960000	3823000
	1952	1908000	2005000	3913000
	1953	1931000	2034000	3965000
	1954	1988000	2090000	4078000
	1955	2001000	2103000	4104000
	1956	2056000	2162000	4218000

Storing Data in SQL (SQLAlchemy)

TO STORE THE ANALYZED MORTALITY DATA, WE WILL BE USING SQLALCHEMY, A PYTHON LIBRARY THAT PROVIDES A SQL TOOLKIT AND OBJECT-RELATIONAL MAPPING (ORM) TOOLS.

SQLALCHEMY ALLOWS US TO CONNECT TO A SQL DATABASE AND STORE OUR PANDAS DATAFRAMES AS SQL TABLES.

Connect to SQL Database

Create SQL Tables

Store Pandas DataFrames

Connect to SQL Database

The first step is to establish a connection to the SQL database using SQLAlchemy. This involves specifying the necessary connection details, such as the database type, host, port, username, and password.

Create SQL Tables

Once the connection is established, we can create SQL tables to store our data. We define the table schema, including the column names, data types, and any constraints.

Store Pandas DataFrames

With the SQL tables created, we can now store our Pandas
DataFrames in the SQL
database. SQLAlchemy provides methods to easily insert data into the tables, either row by row or in bulk.

TRANSFORMATION

Data Loading, Cleaning and Formatting

- Create primary keys to uniquely identify each record.
- Importing CSV's as DataFrames
- Limit the data to the past 50 years to focus on recent trends.
- Format numerical data to ensure consistency and accuracy.
- Round values to the appropriate decimal places for better readability.

Variable Renaming and Dropping

- Rename variables to provide clearer and more descriptive names.
- Drop unneeded variables that are not relevant to the analysis.

Incorporating Additional Health Indicators

- Include additional health indicators to provide a more nuanced analysis.
- Explore correlations between birth rates, death rates, population statistics, and income
- Gain insights into the health impact and median household income.

```
# define income_df_schema
income_df_schema = pa.DataFrameSchema({
    "Year": pa.Column(int, checks=pa.Check(lambda s: s > 1972)),
    "Number (thousands)": pa.Column(int),
    "Median Income Current dollars": pa.Column(int),
    "Median Income 2022 dollars": pa.Column(int),
    "Mean Income Current dollars": pa.Column(int),
    "Mean Income 2022 dollars": pa.Column(int),
    "Average size of household": pa.Column(float),
})
income_dfv = income_df_schema(income_df)
```

IMAGES

Total rows: 49 of 49 Query complete 00:00:00.078

	Annual_Death_Rate double precision	Probability_of_Death double precision	Number_of_Deaths integer	Life_Expectancy integer	ID [PK] character varying (255)	Female_Deaths double precision	Male_Deaths double precision	Total_Deaths double precision	Year integer	Age integer	Female_population double precision	Male_population double precision	Total_population double precision
	1.755	1.728	1728	71	1973_0	23600.09	31996.44	55596.53	1973		1573380.82	1643375.34	3216756.16
	1.709	1.6840000000000000	1684	71	1974_0	22475.64	30314.51	52790.15	1974		1512953.42	1583460.27	3096413.69
	1.609	1.5859999999999999	1586	72	1975_0	21717.43	28819.38	50536.81	1975		1517558.9	1591060.27	3108619.17
	1.532	1.512	1512	72	1976_0	20949.08	27328	48277.08	1976		1530978.08	1602972.6	3133950.68
	1.434	1.416000000000000001	1416	73	1977_0	20104.73	26884.46	46989.19	1977		1561104.11	1636619.18	3197723.29
	1.38	1.3639999999999999	1364	73	1978_0	19862.63	26100.81	45963.44	1978		1611534.25	1691030.14	3302564.39
	1.327	1.312	1312	73	1979_0	19689.4	25991.42	45680.82	1979		1648567.12	1727569.86	3376136.98
	1.284	1.27	1270	73	1980_0	19725.75	25813.47	45539.22	1980		1706540.64	1786571.22	3493111.86
	1.199	1.187	1187	74	1981_0	18856.9	24461.78	43318.68	1981		1750850.42	1832863.26	3583713.68
)	1.164	1.15200000000000001	1152	74	1982_0	18333.01	24082.46	42415.47	1982		1770832.33	1854722.16	3625554.49
	1.1159999999999999	1.105	1105	74	1983_0	17661.95	22977.83	40639.78	1983		1780609.01	1865775.68	3646384.69
2	1.099	1.089	1089	74	1984_0	17224.06	22366.35	39590.41	1984		1762780.79	1847655.85	3610436.64
3	1.091	1.08	1080	74	1985_0	17078.67	22968.28	40046.95	1985		1770423.82	1854993.4	3625417.22
\$	1.05	1.04100000000000001	1041	74	1986_0	16674.76	22234.74	38909.5	1986		1801361.1	1887764.05	3689125.15
5	1.035	1.02500000000000001	1025	74	1987_0	16612.83	21806.05	38418.88	1987		1807388.95	1894031.16	3701420.11
	1.03300000000000001	1.023	1023	74	1988_0	16905.76	22015.16	38920.92	1988		1821704.18	1908273.27	3729977.45
	1.03700000000000001	1.027	1027	75	1989_0	17523.33	22597.7	40121.03	1989		1860348.6	1947269.48	3807618.08
	0.976	0.968	968	75	1990_0	16719.35	22086.42	38805.77	1990		1916414.47	2006217.96	3922632.43
	0.928	0.920999999999999	921	75	1991_0	15913.05	21186.78	37099.83	1991		1951483.31	2043674.38	3995157.69
	0.877	0.87100000000000001	871	75	1992_0	15169.69	19635.12	34804.81	1992		1949155.9	2039079.13	3988235.03
	0.859	0.853	853	75	1993_0	14546.96	18992.45	33539.41	1993		1920502.71	2012872.64	3933375.35
	0.827	0.82100000000000001	821	75	1994_0	13925.2	17844.43	31769.63	1994		1885457.71	1980116.1	3865573.81
	0.782	0.777	777	75	1995_0	13006.34	16667.42	29673.76	1995		1861161.21	1953025.65	3814186.86
1	0.76	0.755	755	76	1996_0	12551.48	15987.97	28539.45	1996		1838712.29	1929416.67	3768128.96
	0.747	0.742	742	76	1997_0	12270.86	15813.15	28084.01	1997		1829189.52	1918888.89	3748078.41
,	0.753	0.748	748	76	1998_0	12601.93	15804.4	28406.33	1998		1832735.7	1924255.29	3756990.99
	0.735	0.73	730	76	1999_0	12298.78	15655.61	27954.39	1999		1843308.22	1936022.42	3779330.64
3	0.722	0.718	718	76	2000_0	12324.67	15729.83	28054.5	2000		1867013.18	1958928.27	3825941.45
9	0.694	0.69	690	76	2001_0	12095.88	15489.29	27585.17	2001		1922474.57	2012047.09	3934521.66
)	0.707	0.70200000000000001	702	77	2002_0	12320.72	15723.69	28044.41	2002		1947880.95	2034094.72	3981975.67
	0.705	0.70000000000000001	700		2003_0	12123.69	15910.56	28034.25	2003		1937799.78		3963699.44
	0.698	0.694	694	77	2004_0	12228.71	15726.62	27955.33	2004		1952451.82	2042665.26	3995117.08
	0.70800000000000001	0.70400000000000001	704	77	2005_0	12431.52	16027.59	28459.11	2005		1959441.42		4009311.99
	0.70400000000000001	0.70000000000000001	700	77	2006_0	12550.49	15981.28	28531.77	2006		1966326.85		4023116.66
	0.705	0.701	701	78		12852.46	16308.03	29160.49	2007		2001620.22	2093392.84	4095013.06
	0.681	0.677	677	78	-	12386.45	15669.3	28055.75	2008		2025029.12		4140345.09
	0.657	0.653	653	78	_	11589.74	14825.14	26414.88	2009		1990941.71	2077042.37	4067984.08
	0.621	0.618		78	2010.0	10884.34	13702.95	24587.29	2010		1946038.12		3977469.64
9	0.606	0.603	603	78	_	10658.28	13328.04	23986.32	2010		1933864.92		3957395.60
	0.601	0.598	598	78		10490.39	13140.03	23630.42	2012		1926803.8	2018143.65	3944947.4
	0.59500000000000001	0.592	592	78		10321.29	13119.96	23441.25	2012		1920266.72	2008810.69	3929077.4
	0.586	0.592	583		2014_0	10321.29	12887.07	23216.49	2013		1926006.98		3943224.27
	0.300	0.503	503	/0	2017_0	10329.42	12007.07	23210.49	2014		1720000.90	2017217.29	3343224.21

Proj_3/postgres@PostgreSQL 16 ■ B ∨ ✓ V No limit ▼ ■ ▶ ∨ ■ ■ ∨ 등 등 ≣ ✓ Ø Query Query History 1 SELECT * 2 FROM "annual_df" Data Output Messages Notifications □ □ □ □ □ □ □ □ □ ル Total Female / Male integer Numbers (thousands) Median_Income_Qurrent_dollars Median_Income_Quzz_dollars Median_Income_Quzz_dollars Mean_Income_Quzz_dollars Mean_Income_Quzz_ integer / 1613135 3144198 2.86 2.81 1705916 3326632 2.78 2.76 1791267 3494398 2.73 2.72 2.71 2.69 2.67 2.66 2.62 2.63 2129495 4158212 2.67 2.65 2.62 2.61 2.6 2.58 2.58 2.57 2.57 2.57 2104661 4112052 2.57 2.56 2.56 2.57 2016809 2113856 4130665 2.56 2.55 2.54 2.55 2013 1919227 2012954 3932181 2.54 2.53 2015 1942336 2036161 3978497 2016 1927692 2018183 3945875

Total rows: 47 of 47 Query complete 00:00:00.215

Ln 2, Col 14

DATA DESIGN - DIAGRAM

DATA PROCESSING AND VALIDATION (PANDERA)

IN THIS PROJECT, WE WILL BE USING PANDERA, A PYTHON LIBRARY, FOR DATA PROCESSING AND VALIDATION. PANDERA ALLOWS US TO DEFINE AND VALIDATE DATA SCHEMAS, ENSURING DATA QUALITY AND CONSISTENCY THROUGHOUT OUR ANALYSIS.

Data Processing and Validation Steps

Step	Description
1. Data Cleaning	Remove any duplicate or irrelevant data, handle missing values, and standardize data formats.
2. Data Transformation	Apply necessary transformations to the data, such as aggregating or disaggregating data, creating new variables, or merging datasets.
3. Data Validation	Define and validate data schemas using Pandera to ensure data quality and consistency. Validate data types, ranges, and relationships between variables.
4. Data Quality Assurance	Perform quality checks on the processed data to ensure accuracy, completeness, and integrity. Identify and resolve any data quality issues.

CORRELATION HEATMAP AND DISTRIBUTION ANALYSIS

Seaborn Heatmap

• To unveil relationships between income-related variables, we've utilized Seaborn to create a heatmap. This graphical representation allows for a quick and intuitive assessment of correlations, aiding in identifying patterns and potential areas of interest.

DATA VISUALIZATION (MATPLOTLIB AND SEABORN)

Positive correlation between
 "Annual Death Rate" and "Total
 Population" would suggest that as
 the total population increases, the
 annual death rate tends to
 increase.

Negative correlation between
 "Life Expectancy" and "Annual
 Death Rate" would suggest that
 as life expectancy increases, the
 annual death rate tends to
 decrease.

CORRELATION HEATMAP AND DISTRIBUTION ANALYSIS

Histograms with Seaborn:

• The distribution analysis involves using Seaborn to construct histograms for both births and life expectancy. These visualizations provide insights into the frequency and distribution of these events, offering a deeper understanding of the underlying trends.

RESULTS

Key Findings

- •Birth rates have been steadily declining over the past decade, indicating a decrease in fertility rates.
- •Death rates have been relatively stable, suggesting improvements in healthcare and medical advancements.
- •The population has been aging, with a significant increase in the elderly population.

Insights

- •The decrease in birth rates may have implications for future population growth and workforce dynamics.
- •The stable death rates indicate the effectiveness of healthcare systems in maintaining overall health and well-being.
- •The aging population presents challenges and opportunities for healthcare, retirement planning, and social support systems.

Ethics and Privacy

Data Confidentiality

• The project places a high priority on data confidentiality, ensuring that sensitive information is protected and only accessible to authorized individuals.

Responsible Data Handling

• Data handling practices adhere to ethical standards, including obtaining informed consent, anonymizing data, and securely storing and transmitting data.

Fairness in Analysis

• The analysis process is conducted with fairness in mind, avoiding bias and ensuring that all relevant factors are considered.

Accurate and Responsible Sharing of Findings

• The project is committed to sharing findings accurately and responsibly, avoiding misinterpretation and providing clear context for the data.

Privacy, Transparency, and Ethical Standards

• Privacy, transparency, and ethical standards are respected throughout the project, ensuring that the rights and well-being of individuals are protected.

SOURCES

Mortality.org and US Census.gov

Mortality.org is a comprehensive database that provides access to mortality data from various sources. It includes data on birth rates, death rates, and population statistics from different countries and regions.

Accessing Data

To access the data from mortality.org, we utilized web scraping techniques to extract the relevant information. Python libraries such as BeautifulSoup and Requests were used to automate the process and retrieve the data in a structured format.

Data Analysis

The extracted data was then transformed and analyzed using Python and Pandas.