MAS350: Assignment 1

1. Recall that the Borel σ -field $\mathcal{B}(\mathbb{R})$ is the smallest σ -field on \mathbb{R} containing all open intervals (a,b) with $-\infty < a < b < \infty$. Define

$$A = \bigcup_{n=1}^{N} [a_n, b_n]$$

where $a_1 \le b_1 < a_2 \le b_2 < a_3 \le b_3 < \dots$ are real numbers.

- (a) Prove, starting from the definition given above, that $A \in \mathcal{B}(\mathbb{R})$.
- (b) Write down a formula for the Lebesgue measure of A, in terms of the a_i and b_i . Is your formula valid if $N = \infty$?
- (c) Consider the following claims.
 - (i) The Borel σ -field is an infinite set.
 - (ii) The Borel σ -field contains an infinite number of infinite sets.
 - (iii) All countable sets are Borel sets with zero Lebesgue measure.
 - (iv) All Borel sets with positive Lebesgue measure contain at least one open interval.
 - (v) The Cantor set is a Borel set.
 - (vi) The Cantor set has Lebesgue measure zero.

In each case (i)-(vi), state whether you believe the claim to be true or false. For claims that you believe are true, give a proof. For claims that you believe are false, give a counterexample. Use parts (a) and (b) to support your arguments.

2. Let λ denote Lebesgue measure and let $\mathcal{B}(\mathbb{R})$ denote the Borel σ -field on \mathbb{R} . This question concerns examples of decreasing sequences of Borel sets (B_n) and measures m on $\mathcal{B}(\mathbb{R})$ such that

$$m\left(\bigcap_{n=1}^{\infty} B_n\right) \neq \lim_{n \to \infty} m\left(\bigcap_{n=1}^{N} B_n\right).$$

- (a) Taking $m = \lambda$, show that $B_n = (-\infty, -n]$ is an example of this type.
- (b) Find a second example, with the additional property that $\bigcap_{n=1}^{\infty} B_n$ is non-empty.
- (c) Find a third example, with the additional property that B_1 is countable.
- 3. Let S be a finite set and Σ be a σ -field on S. Consider the set

$$\Pi = \{ A \in \Sigma \ : \ \text{if} \ B \in \Sigma \ \text{and} \ B \subseteq A \ \text{then either} \ B = A \ \text{or} \ B = \emptyset \}. \tag{\star}$$

- (a) Show that Π is a finite set.
- (b) Using (a), let us enumerate the elements of Π as $\Pi = {\Pi_1, \Pi_2, \dots, \Pi_k}$, where each Π_i is distinct from the others.
 - (i) Show that $\Pi_i \cap \Pi_j = \emptyset$ for $i \neq j$. Hint: Could $\Pi_i \cap \Pi_j$ be an element of Π ?
 - (ii) Show that $\bigcup_{i=1}^k \Pi_i = S$. Hint: If $C = S \setminus \bigcup_{i=1}^k \Pi_i$ is non-empty, is $C \in \Pi$?

1

(iii) Let $A \in \Sigma$. Show that

$$A = \bigcup_{i \in I} \Pi_i$$

where $I = \{i = 1, ..., k : A \cap \Pi_i \neq \emptyset\}.$