# Assignment 3 – Report – Thomas Birchler

### **Gradient computation correctness**

The following plots show the cost for one layer and two layers with each 50 nodes for 3 cycles without BN. These are very similar to the results I had in Assignment 2.





When comparing the gradients between the analytical and the numerical approach, my errors are all in the range of e-8 and e-9. This leads me to believe my gradient computation is correct. This is also for networks with several layers.

### Without BN

### 3-layer Network without BN

These two figures show the accuracy and cost of the training for 2 cycles.

Lambda = 0.005, eta = [0.00001, 0.1], layers = [50, 50, 10], batch\_size = 100, without BN, initialization: "He". Final test accuracy: 0.533





#### Initialization: sigma = 0.1, Final Test accuracy: 0.527





#### Initialization: sigma = 0.001, Final Test accuracy: 0.506





#### Initialization: sigma = 0.0001, Final Test accuracy: 0.1





## 9-layer network without BN

The following plots show the results for the following settings:

Lambda = 0.005, eta = [0.00001, 0.1], layers = [50, 30, 20, 20, 10, 10, 10, 10], batch\_size = 100, initialization: "he".

Final test accuracy: 0.500





Initialization: sigma = 0.1, Final Test accuracy: 0.1





Initialization: sigma = 0.001, Final Test accuracy: 0.1





#### Initialization: sigma = 0.0001, Final Test accuracy: 0.1





### With Batch-Normalization

### 3-Layer Network

Settings: Lambda = 0.005, eta = [0.00001, 0.1], layers = [50, 50, 10], batch\_size = 100, initialization: "He".

Final test accuracy: 0.534





#### Initialization: sigma = 0.1, Final Test accuracy: 0.534





Initialization: sigma = 0.001, Final Test accuracy: 0.531





Initialization: sigma = 0.0001, Final Test accuracy: 0.527





### 9-Layer Network

The following plots show the results for the following settings:

Lambda = 0.005, eta = [0.00001, 0.1], layers = [50, 30, 20, 20, 10, 10, 10, 10], batch\_size = 100, initialization: "he".

Final test accuracy: 0.523



Initialization: sigma = 0.1, Final Test accuracy: 0.511





Validation cost

Initialization: sigma = 0.001, Final Test accuracy: 0.507





Initialization: sigma = 0.0001, Final Test accuracy: 0.509





# Sensitivity to initialization

The batch normalization shows that for bigger networks the model is more robust and doesn't depend too much on the starting conditions. Without batch normalization, it depends a lot on the starting conditions, which one see's above with the different initializations with sigma and 'he'.