南方冶金学院考试试题

考试科目		考试日期_	_ 考试日期	
班级	学号	姓名	成绩	

一、解答下列各题(每题6分,共计60分)

1、图示电路中,设U;=10Sin ωt伏, D是理想二极管, Dz的稳定电压是5伏,试画出U0的大致波形。

2、已知固定偏置放大器中 U_{cc} =12V, R_c =2.7k Ω ,晶体管的 β =50,要使 U_{CE} =6.6V,偏流电阻 R_B 应取多大?此时 I_C 为多大?(取 U_{BE} =0.6V)

(2)已知某小功率管的基极电流 I_B =20 μ A,则共输入电阻 r_{be} = 。

4、如果减小负载电阻R_L,则固定偏置单级放大器直流负载线的料率______,交流负载线的斜率_____,电压放大倍数______放大器输入电阻_____,输出电阻_____。

5、某射极输出器如图所示,已知 U_{cc} =12V, R_B =220K, R_E =2.7K,晶体管的 β =80, r_{be} =1.5k,(1) 画微变压器等效电路图。(2) 求 R_L =∞时,输入电阻 r_i

6、图示电路,指出交流反馈元件,判定交流反馈类型。

7、(选择填空)图示电路,用自激振荡的两个条件来衡量,图a()图b() (1)两个条件都可能满足;(2)相位条件不满足;(3)振幅条件不满足;(4)两个条件都不满足。

8、电路的对称性越______, R_E 的负反馈作用越______,则差动放大器抑制零源的能力越差,它的 CMRR就越_____。 当差动放大器两边输入电压分别为 U_{i1} =3mv, U_{i2} =-5mv时,输入信号中的差模分量为______,共模分量为

9、图示为串联式晶体管稳压电路,当V_L上升时,试用上升(↑)下降(↓)箭标表示各量变化的自动调整过程。

10、逻辑电路如图所示,(1)写出逻辑函数表达式;(2)将逻辑式变换为"与非"逻辑式。

二、(10分)图示电路,已知 β =80, r_{be} =1.1千欧, R_{B1} =150千欧, R_{B2} =47千欧, R_{C} =3.3千欧, R_{E} =1.3千欧, U_{CC} =20伏, R_{F} =200欧, R_{L} =5.1千欧

- (1)画微变等效电路图
- (2)求输入电阻ri加输出电阻ro

(3)求电压放大倍数AU

三、(10分)图示为电流一电流变换器电路试证明: I_0 = $-I_i$ $R+R_F$

四、(10分)图示逻辑电路及相应的CP、 R_D 、 S_D 和D的波形,试画出 Q_1 和 Q_2 的波形。设初始状态 Q_1 = Q_2 =0

五、(10分)图示电中,试写出出在CP作用下, Q_2 、 Q_1 、 Q_0 状态转换真值表,设初始状态 Q_2 = Q_1 = Q_0 =0

CP	Q_2	Q_1	Q_0
0			
1			
2			
3			
4			
5			
6			

- 3、(1)右下;截止。 (2)1.6KΩ
- 4、不变,增大,减小,不变,不变。
- 5、(1)差

(2)
$$r_i = R_e / [(\beta + 1)R_E + r_{be}]$$

= 220//[(80+1)×2.7+1.5]
= 110K Ω

- 6、R2单级串联电流负反馈 R4单级串联电流负反馈 R₃R₄两级并联电流负反馈
- 7、图(②) 图b (③)
- 8、差,弱,小。 ± 4 mv, -1mv \circ

9,
$$U_L \uparrow \rightarrow U_{BE2} \uparrow \rightarrow I_{B2} \uparrow \rightarrow I_{C2} \uparrow \rightarrow U_{CE2} \downarrow$$

 $U_L \downarrow \leftarrow U_{CE1} \downarrow \leftarrow I_{C1} \downarrow \leftarrow I_{B1} \downarrow \leftarrow U_{BE1} \downarrow$
10, (1)Y=AB+AB

10, (1)Y=AB+AB

$$(2)Y=AB+A\overline{\overline{B}=AB} \cdot \overline{AB}$$

- (1)差
- $(2)r_i=R_{B1}//R_{B2}//[r_{be}+(\beta+1)R_F]$ =150//47//[1.1+(80+1)0.2]≈11.7千欧

 $r_0 = R_c = 3.3 千 欧$

(3)
$$I_{0} = I + I_{1} = \frac{U_{0}}{R} + \frac{U_{0}}{R_{F}} = U_{0} (\frac{1}{R} + \frac{1}{R_{F}})$$

$$U_{0}I_{1} \cdot R_{F} = -I_{i}R_{F}$$

$$I_{0} = -I_{i} = \frac{R + R_{F}}{R}$$

$$\Xi_{*} (10\%)$$

$$I_{0} = I + I_{F} = \frac{V_{0}}{R} + \frac{V_{0}}{R_{D}} = V_{0} (\frac{1}{R} + \frac{1}{R_{D}})$$

$$I_0 = I + I_F = \frac{0}{R} + \frac{0}{R_F} = V_0 \left(\frac{1}{R} + \frac{1}{R_F}\right)$$
$$V_0 = I_F \cdot R_F = -I_i R_F$$

$$I_0 = -I_i = \frac{R + R_F}{R}$$

四、(10分)

五、(10分)

CP	Q_2	Q_1	Q_0
0	0	0	0
1	0	0	1
2	0	1	1
3	1	1	1
4	1	1	0
5	1	0	0
6	0	0	0