

CAU

Example

#	Trace	
304	ADI	
239	ACEFHI	
130	ACEHI	
43	ABGI	
29	Al	

m	0
r	0
С	4
р	4

$$Fitness_{E}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right) = 1$$

CAU

Example

#	Trace	
304	ADI	
239	ACEFHI	
130	ACEHI	
43	ABGI	
29	Al	

m	0
r	0
С	8
р	8

$$Fitness_{E}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right) = 1$$

CAU

Example

#	Trace		
304	ADI		
239	ACEFHI		
130	ACEHI		
43	ABGI		
29	ΔΙ		

m	1
r	1
С	7
р	7

$$Fitness_{E}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right) = 0.8571$$

CAU

Example

#	irace
304	ADI
239	ACEFHI
130	ACEHI
43	ABGI
29	Al

m	0
r	0
С	5
р	5

$$Fitness_{E}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right) = 1$$

CAU

Example

#	Trace
304	ADI
239	ACEFHI
130	ACEHI
43	ABGI
29	Al

m	1
r	1
С	3
р	3

$$Fitness_{E}(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right) = 0.6667$$

Christian-Albrechts-Universität zu Kiel

Token Replay Example

#	Trace	m	r	С	р	Fitness
304	ADI	0	0	4	4	1
239	ACEFHI	0	0	8	8	1
130	ACEHI	1	1	7	7	0.8751
43	ABGI	0	0	5	5	1
29	Al	1	1	3	3	0.6667

$$Fitness_{E}(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)$$
$$= \frac{1}{2} \left(1 - \frac{304 \times 0 + 239 \times 0 + 130 \times 1 + 43 \times 0 + 29 \times 1}{304 \times 4 + 239 \times 8 + 130 \times 7 + 43 \times 5 + 29 \times 3} \right) + \frac{1}{2} (...) \approx 0.9634$$

CAU

Exercise 1

#	Trace	р	С	m	r	$Fitness_F(\sigma, N)$
200	ACDF					
177	ADCEG					
56	AFG					
22	FDCA					

CAU

Exercise 1

#	Trace	р	С	m	r	$Fitness_F(\sigma, N)$
200	ACDF	5	5	0	0	1
177	ADCEG	6	6	2	2	$^{2}/_{3}$
56	AFG	4	4	2	2	1/2
22	FDCA	5	5	3	3	$^{2}/_{5}$

$$Fitness_{E}(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)$$
$$= \frac{1}{2} \left(1 - \frac{532}{2396} \right) + \frac{1}{2} \left(1 - \frac{532}{2396} \right) = 0.7780$$

Token Replay reversed

Is the following combination of p, c, m and r possible?

If so, create a workflow net and a trace that satisfy the following combinations:

Trace	р	С	m	r
ВС	3	4	2	1

Token Replay reversed

Christian-Albrechts-Universität zu Kiel

Exercise 2b

Is the following combination of p, c, m and r possible?

If so, create a workflow net and a trace that will satisfy the combination in question.

$$p = c = m = r$$

Trace	р	С	m	r
В	2	2	2	2