Практическая работа №2: Бесконечные антагонистические игры

Цель работы Использование инструментальных средств для решения задач поддержки принятия решения, а также овладение навыками принятия решения на основе бесконечных антагонистических игр.

Основные теоретические положения

В данной работе рассматриваются антагонистические игры, которые отличаются от матричных тем, что в них один или оба игрока имеют бесконечное (счётное или континуум) множество стратегий. С теоретико-игровой точки зрения это отличие малосущественно, поскольку игра остаётся антагонистической и проблема состоит в использовании более сложного аналитического аппарата исследования (продолжить из презентации).

Одновременная игра преследования на плоскости

Пусть S1 и S2 — множества на плоскости. Игра Γ заключается в следующем. Игрок 1 выбирает некоторую точку $x \in S1$, а игрок 2 выбирает точку $y \in S2$. При совершении выбора игроки 1 и 2 не имеют информации о действиях противника, поэтому подобный выбор удобно интерпретировать как одновременный. В этом случае точки $x \in S1$, $y \in S2$ являются стратегиями игроков 1 и 2 соответственно. Таким образом, множества стратегий игроков совпадают с множествами S1 и S2 на плоскости.

Целью игрока 2 является минимизация расстояния между ним и игроком 1 (игрок 1 преследует противоположную цель). Поэтому под выигрышем H(x,y) игрока 1 в этой игре понимается евклидово расстояние $\rho(x,y)$ между точками $x \in S1$ и $y \in S2$, т.е. $H(x,y) = \rho(x,y)$. Выигрыш игрока 2 полагаем равным выигрышу игрока 1, взятому с обратным знаком, а именно $[-\rho(x,y)]$ (игра антагонистическая). (продолжить из презентации).

Модель покера с одним кругом ставок и одним размером ставки

В начале партии каждый из двух игроков A и B ставит по единице. После того, как каждый из игроков получит карту, ходит игрок A: он может или поставить ещё c единиц или пасовать и потерять свою начальную ставку. (продолжить из презентации).

Постановка задачи

Используя инструментальные средства компьютерной алгебры решить задачи преследования и покера.

Порядок выполнения работы

- 1. Для задачи преследования отобразить фигуры на плоскости с помощью инструментального средства или вручную.
- 2. Рассмотреть два случая задачи: центр масс фигуры S1 принадлежит фигуре S2 и центр масс фигуры S1 не принадлежит фигуре S2.
- 3. Решить задачу аналитически и с помощью программы.
- 4. Решить задачу игры в покер аналитически и с помощью программы. Найти выигрыши и оптимальные стратегии для двух типов оптимальных стратегий.

Варианты студентов соответствуют номеру в списке.

Варианты заданий

Для игры преследования:

№ варианта	Фигура S1	Фигура S2
1	Квадрат со стороной а	Окружность с радиусом R
2	Равносторонний треугольник со стороной а	Квадрат со стороной в
3	Квадрат со стороной а	Равнобедренный треугольник с основанием b и высотой h
4	Прямоугольник со сторонами а и b	Квадрат со стороной с
5	Квадрат со стороной а	Ромб со стороной b и меньшей диагональю d
6	Окружность с радиусом R	Равносторонний треугольник со стороной а
7	Равнобедренный треугольник с основанием а и высотой h	Окружность с радиусом R
8	Окружность с радиусом R	Прямоугольник со сторонами а и b
9	Ромб со стороной а и большей диагональю d	Окружность с радиусом R
10	Равносторонний треугольник со стороной а	Равнобедренный треугольник с основанием b и высотой h
11	Прямоугольник со сторонами а и b	Равносторонний треугольник со стороной с
12	Равносторонний треугольник со стороной а	Ромб с диагоналями d1 и d2
13	Равнобедренный треугольник с основанием а и высотой h	Прямоугольник со сторонами b и с
14	Ромб со стороной а и меньшей диагональю d	Равнобедренный треугольник с основанием b и высотой h

№ варианта	Фигура S1	Фигура S2
15	Прямоугольник со сторонами а и b	Ромб со стороной с и большей диагональю d
16	Квадрат со стороной а	Квадрат со стороной в
17	Квадрат со стороной а	Равносторонний треугольник со стороной b
18	Равнобедренный треугольник с основанием а и высотой h	Квадрат со стороной в
19	Квадрат со стороной а	Прямоугольник со сторонами b и с
20	Ромб со стороной а и меньшей диагональю d	Квадрат со стороной b
21	Равносторонний треугольник со стороной а	Окружность с радиусом R
22	Окружность с радиусом R	Равнобедренный треугольник с основанием а и высотой h
23	Прямоугольник со сторонами а и b	Окружность с радиусом R
24	Окружность с радиусом R	Ромб со стороной а и большей диагональю d
25	Равносторонний треугольник со стороной а	Равносторонний треугольник со стороной b
26	Равносторонний треугольник со стороной а	Прямоугольник со сторонами b и с
27	Ромб с диагоналями d1 и d2	Равносторонний треугольник со стороной а
28	Равнобедренный треугольник с основанием a1 и высотой h1	Равнобедренный треугольник с основанием а2 и высотой h2
29	Равнобедренный треугольник с основанием а и высотой h	Ромб со стороной b и меньшей диагональю d
30	Ромб со стороной а и меньшей диагональю d	Ромб с диагоналями d1 и d2

Для покера: Значение ставки c вычисляется по формуле: c=N+1, где N – номер варианта студента.