AMENDMENT TO THE CLAIMS

Claim 1 (currently amended): An inductance measurement circuit for measuring an inductance of a wire-loop, said inductance measurement circuit comprising:

a pair of resistance inductance-capacitance driver circuits in electrical communication with a wire-loop;

a demodulation circuit in electrical communication with said pair of resistance inductance capacitance driver circuits, said demodulation circuit producing a demodulated signal;

a filter in electrical communication with said demodulation circuit, said filter producing a filtered signal; and

an analog to digital convertermeans for converting an analog signal into a digital signal in electrical communication with said filterpair of driver circuits, said analog to digital convertermeans for converting an analog signal into a digital signal producing a digitized signal representing an inductance measured on of the wire-loop.

Claim 2 (currently amended): The inductance measurement circuit of Claim 1 further comprising an amplifier circuit in electrical communication between said filter demodulation circuit and said analog to digital convertermeans for converting an analog signal into a digital signal, said amplifier producing an amplified signal.

Claim 3 (currently amended): The inductance measurement circuit of Claim 1 further comprising a pre-amplifier circuit in electrical communication between said pair of resistance-inductance-capacitance-driver circuits and said demodulation circuit.

Claim 4 (currently amended): The inductance measurement circuit of Claim 1 wherein said pair of resistance inductance capacitance driver circuits operate at a fixed-frequency.

Claim 5 (currently amended): The inductance measurement circuit of Claim 1 wherein said demodulation circuit includes a demodulation oscillator, said demodulation circuit producing an output derived from said pair of resistance-inductance-capacitance-driver circuits and said demodulation oscillator.

Claim 6 (currently amended): The inductance measurement circuit of Claim <u>5</u>5 wherein said output is a demodulated signal <u>substantially</u> corresponding to an envelope of the combined RLC waveform.

Claim 7 (currently amended): The inductance measurement circuit of Claim 1 wherein said filter is a bandpass further comprising a filter which removes noise substantially outside a baseband selected frequency range of the inductance measurement circuit, said filter in communication between said demodulation circuit and said means for converting an analog signal into a digital signal.

Claim 8 (original): The inductance measurement circuit of Claim 1 wherein said demodulation circuit is a synchronous demodulator.

Claim 9 (original): The inductance measurement circuit of Claim <u>88</u> wherein said synchronous demodulator includes a plurality of analog switches.

Claim 10 (currently amended): The inductance measurement circuit of Claim 88 wherein said demodulation circuit and said pair of resistance-inductance capacitance driver circuits operate at substantially similar frequencies the same frequency.

Claim 11 (currently amended): The inductance measurement circuit of Claim 1 further comprising a dc voltage offset generator for producing a dc offset voltage and a signal conditioning circuit in electrical communication between said filter-demodulation circuit and said dc voltage offset generator, said signal conditioning circuit removing said dc voltage from said filtered-demodulated signal thereby allowing said filtered-demodulated signal to be amplified without saturating.

Claim 12 (currently am nded): The inductance measurement circuit of Claim 1 wherein said pair of resistance-inductance-capacitance driver circuits include a pair of resistance-capacitance networks, each of said pair of resistance-capacitance networks driven by a multi-state buffer, each of said pair of resistance-capacitance networks having a resistance.

Claim 13 (original): The inductance measurement circuit of Claim 1212 wherein each of said pair of resistance-capacitance networks has a large apparent impedance.

Claim 14 (original): The inductance measurement circuit of Claim 1212 wherein each of said pair of resistance-capacitance networks is balanced using said multi-state buffer to modulate said resistance.

Claim 15 (original): The inductance measurement circuit of Claim 1414 wherein said multi-state buffer is driven at a high rate compared to a desired sinusoidal frequency by a duty cycle controlled voltage.

Claim 16 (currently amended): The inductance measurement circuit of Claim 1 wherein the wire-loop is directly coupled to said pair of resistance-inductance capacitance-driver circuits.

Claim 17 (currently amended): The inductance measurement circuit of Claim 1 further comprising a transformer coupling the wire-loop to said pair of resistance inductance capacitance driver circuits, said transformer rejecting a common-mode noise originating from the wire-loop.

Claim 18 (currently amended): The inductance measurement circuit of Claim 1 wherein said analog to-digital converter means for converting an analog signal into a digital signal is a delta-sigma analog-to-digital converter.

Claim 19 (currently am nded): The inductance measurement circuit of Claim 1 wherein said pair of resistance inductance capacitance driver circuits is driven by a differential, periodic waveform.

Claim 20 (original): The inductance measurement circuit of Claim 1919 wherein said periodic waveform is a sine wave.

Claim 21 (currently amended): The inductance measurement circuit of Claim 1919 wherein said periodic waveform is <u>substantially</u> a square wave, said square wave having a frequency substantially similar to an operating frequency of said pair of resistance inductance capacitance driver circuits.

Claim 22 (original): The inductance measurement circuit of Claim 1 wherein said dc offset generator includes a digital-to-analog converter.

Claim 23 (original): The inductance measurement circuit of Claim 1 wherein said dc offset generator uses pulse width modulation to adjust a duty cycle of a square wave.

Claim 24 (currently amended): The inductance measurement circuit of Claim 1 wherein said analog to digital convertermeans for converting an analog signal into a digital signal includes a voltage reference input, said inductance measurement circuit further comprising a signal generator connected to said voltage reference input, an output of said signal generator selected to match a characteristic of internal noise in said inductance measurement circuit.

Claim 25 (original): The inductance measurement circuit of Claim 1 wherein a plurality of said inductance measurement circuits are operating in close proximity, each of said plurality of said inductance measurement circuits operating at a unique carrier frequency and in a distinct frequency band from other closely proximate said inductance measurement circuits.

Claim 26 (original): The inductance measurement circuit of Claim 2525 wherein each said carrier frequency is separated from each said carrier frequency of a proximate said inductive measurement circuit to provide sufficient bandwidth for operation.

Claim 27 (original): The inductance measurement circuit of Claim 2525 wherein each said carrier frequency is separated from each other said carrier frequency by between approximately 50 to approximately 1200 Hertz.

Claim 28 (original): The inductance measurement circuit of Claim 1 wherein said demodulation circuit is a full-wave bridge rectifier.

Claim 29 (currently amended): The inductance measurement circuit of Claim 1 further comprising a heating element in close proximity to a capacitor of said pair of resistance inductance capacitance driver circuits.

Claim 30 (original): The inductance measurement circuit of Claim <u>29</u>29 wherein said heating element is thermally coupled to said capacitor.

Claim 31 (original): The inductance measurement circuit of Claim <u>2929</u> wherein said heating element is a resistor connected to a variable current source.

Claim 32 (original): The inductance measurement circuit of Claim <u>31</u>31 wherein said resistor and said capacitor are thermally insulated to improve thermal efficiency.

Claim 33 (currently amended): The inductance measurement circuit of Claim 1 wherein said analog to-digital convertermeans for converting an analog signal into a digital signal includes a low-pass filter.

Claim 34 (currently amended): The inductance measurement circuit of Claim 1 wherein said analog to digital convertermeans for converting an analog signal into a digital signal includes differential inputs and rejects a common-mode

noise originating from applied to said inductance measurement circuit by the wire-loop.

Claim 35 (currently amended): The inductance measurement circuit of Claim 1 wherein a characteristic of each-at least one said pair of resistance-inductance-driver circuits is modulated to balance said pair of resistance-inductance-capacitance-driver circuits for common-mode noise rejection.

Claim 36 (new): An inductance measurement circuit for measuring an inductance of a wire-loop, said inductance measurement circuit comprising: a pair of driver circuits in electrical communication with a wire-loop; a demodulation circuit in electrical communication with said pair of resistance-inductance-capacitance driver circuits, said demodulation circuit producing a demodulated signal; and

a filter in electrical communication with said demodulation circuit, said filter producing a filtered signal.

Claim 37 (new): An inductance measurement circuit for measuring an inductance of a wire-loop, said inductance measurement circuit comprising:

a pair of driver circuits in electrical communication with a wire-loop;

a demodulation circuit in electrical communication with said pair of driver circuits, said demodulation circuit producing a demodulated signal;

a filter in electrical communication with said demodulation circuit, said filter producing a filtered signal; and

an analog-to-digital converter converting an analog signal into a digital signal in electrical communication with said filter, said analog-to-digital converter producing a digitized signal representing an inductance measured of the wire-loop.

Claim 38 (new): An inductance measurement circuit for measuring an inductance of a wire-loop, said inductance measurement circuit comprising: a pair of driver circuits in electrical communication with a wire-loop;

a demodulation circuit in electrical communication with said pair of resistance-inductance-capacitance driver circuits, said demodulation circuit producing a demodulated signal; and

an analog-to-digital converter converting an analog signal into a digital signal in electrical communication with said demodulation circuit, said analog-to-digital converter producing a digitized signal representing an inductance measured of the wire-loop.