What is claimed is:

1	1. A system for efficiently forwarding client requests in a distributed		
2	computing environment, comprising:		
3	a socket receiving a plurality of non-proxiable requests commonly		
4	addressed to an origin server from individual sending clients;		
5	a time estimates generator dynamically generating, concurrent to and		
6	during processing of each request, time estimates of service availability based or		
7	a time-to-idle for sending the requests over each of a plurality of connections to		
8	the origin server; and		
9	a connection manager selecting the connection to the origin server with a		
10	substantially highest service availability and a substantially lowest time-to-idle		
11	and forwarding each request to the origin server using the selected connection.		
1	2. A system according to Claim 1, further comprising:		
2	the connection manager selecting a connection not actively sending a		
3	request with a zero time-to-idle and not subject to a slow start overhead incurred		
4	responsive to flow control imposed by the sending client.		
1	3. A system according to Claim 2, further comprising:		
2	the connection manager selecting a connection actively sending a request		
3	with a time-to-idle less than the slow start overhead, plus request transfer time if		
4	the connection is pipelined.		
1	4. A system according to Claim 3, further comprising:		
2			
	the connection manager selecting a connection not actively sending a		
3	request with a zero time-to-idle and subject to the slow start overhead.		
1	5. A system according to Claim 4, further comprising:		
2	the connection manager selecting a connection actively sending a request		
3	with a time-to-idle less than a connection setup overhead, plus request transfer		
4	time if the connection is pipelined.		
1	6. A system according to Claim 5, further comprising:		

2	the connection manager selecting a new connection in the absence of an		
3	existing connection with a time-to-idle less than the connection setup overhead.		
1	7. A system according to Claim 5, further comprising:		
2	the connection manager selecting an existing connection with the		
3	substantially lowest time-to-idle.		
1	8. A system according to Claim 1, wherein the distributed operating		
2	environment is TCP/IP-compliant, the system further comprising:		
3	the time estimates generator providing time estimates for each connection		
4	comprising at least one of TCP overhead, time-to-idle, idle time, and request		
5	transfer time.		
1	9. A system according to Claim 8, the connection setup overhead		
2	comprises TCP overhead, the system further comprising:		
3	the time estimates generator calculating the TCP overhead by adding a		
4	three-way handshake overhead to a slow start overhead.		
1	10. A system according to Claim 8, further comprising:		
2	the time estimates generator calculating the request transfer time by		
3	multiplying the size of the request by an average connection speed for the origin		
4	server.		
1	11. A system according to Claim 8, further comprising:		
2	the time estimates generator calculating the time-to-idle upon each receipt		
3	of a request by adding the time-to-idle to the product of an average connection		
4	speed for the origin server multiplied by the sum of the request size and an		
5	estimated response size.		
1	12. A system according to Claim 8, further comprising:		
2	the time estimates generator calculating the time-to-idle upon writing data		
3	to a socket by subtracting the time-to-idle from the product of an average		
4	connection speed for the origin server multiplied by the amount of data written.		

0201 01.ap5 - 19 -

1	13. A system according to Claim 8, further comprising:		
2	the time estimates generator calculating the time-to-idle upon reading data		
3	from a socket, prior to header data, by subtracting the time-to-idle from the		
4	product of an average connection speed for the origin server multiplied by the		
5	amount of data read.		
1	14. A system according to Claim 1, further comprising:		
1			
2	a proxy configured in a location comprising at least one of local to the		
3	sending clients, in the infrastructure of the distributed computing environment,		
4 and local to the origin server.			
1	15. A method for efficiently forwarding client requests in a distributed		
2	computing environment, comprising:		
3	receiving a plurality of non-proxiable requests commonly addressed to an		
4	origin server from individual sending clients;		
5	dynamically generating, concurrent to and during processing of each		
6	request, time estimates of service availability based on a time-to-idle for sending		
7	the requests over each of a plurality of connections to the origin server; and		
8	selecting the connection to the origin server with a substantially highest		
9	service availability and a substantially lowest time-to-idle and forwarding each		
10	request to the origin server using the selected connection.		
1	16. A method according to Claim 15, further comprising:		
2	selecting a connection not actively sending a request with a zero time-to-		
3	idle and not subject to a slow start overhead incurred responsive to flow control		
4	imposed by the sending client.		
1	17. A method according to Claim 16, further comprising:		
2	selecting a connection actively sending a request with a time-to-idle less		
3	than the slow start overhead, plus request transfer time if the connection is		
4	pipelined.		
1	18. A method according to Claim 17, further comprising:		

0201.01.ap5 - 20 -

2	selecting a connection not actively sending a request with a zero time-to-			
3	idle and subject to the slow start overhead.			
1	19.	A method according to Claim 18, further comprising:		
2	selecting a connection actively sending a request with a time-to-idle less			
3	than a connection setup overhead, plus request transfer time if the connection is			
4	pipelined.			
1	20.	A method according to Claim 19, further comprising:		
2	selecting a new connection in the absence of an existing connection with			
3	time-to-idle less than the connection setup overhead.			
1	21.	A method according to Claim 19, further comprising:		
2	selecting an existing connection with the substantially lowest time-to-ic			
1	22.	A method according to Claim 15, wherein the distributed operating		
2	environment	is TCP/IP-compliant, the method further comprising:		
3	providing time estimates for each connection comprising at least one of			
4	TCP overhea	d, time-to-idle, idle time, and request transfer time.		
1	23.	A method according to Claim 22, the connection setup overhead		
2	comprises TO	CP overhead, the method further comprising:		
3	calculating the TCP overhead by adding a three-way handshake overhead			
4	to a slow star	t overhead.		
1	24.	A method according to Claim 22, further comprising:		
2	calculating the request transfer time by multiplying the size of the request			
3	by an average	e connection speed for the origin server.		
1	25.	A method according to Claim 22, further comprising:		
2	calculating the time-to-idle upon each receipt of a request by adding the			
3	time-to-idle to the product of an average connection speed for the origin server			
4	multiplied by the sum of the request size and an estimated response size.			
1	26.	A method according to Claim 22, further comprising:		

- 21 -

2	calculating the time-to-idle upon writing data to a socket by subtracting		
3	the time-to-idle from the product of an average connection speed for the origin		
4	server multiplied by the amount of data written.		
1	27. A method according to Claim 22, further comprising:		
2	calculating the time-to-idle upon reading data from a socket, prior to		
3	header data, by subtracting the time-to-idle from the product of an average		
4	connection speed for the origin server multiplied by the amount of data read.		
1	28. A method according to Claim 15, further comprising:		
2	providing a proxy configured in a location comprising at least one of loca		
3	to the sending clients, in the infrastructure of the distributed computing		
4	environment, and local to the origin server.		
1	29. A computer-readable storage medium holding code for performing		
2	the method according to Claim 15.		
1	30. A system for efficiently forwarding client requests from a proxy		
2	server in a TCP/IP computing environment, comprising:		
3	means for receiving a plurality of transient requests from individual		
4	sending clients, each request being commonly addressed to an origin server;		
5	means for dynamically calculating, concurrent to receiving and during		
6	processing of each request, time estimates of TCP overhead, slow start overhead,		
7	time-to-idle, and request transfer time for sending the requests over each of a		
8	plurality of managed connections to the origin server;		
9	means for choosing the managed connection from, in order of preferred		
0	selection, a warm idle connection, an active connection with a time-to-idle less		
11	than a slow start overhead, a cold idle connection, an active connection with a		
12	time-to-idle less than a TCP overhead, a new managed connection, and an		
13	existing managed connection with a smallest time-to-idle; and		
14	means for forwarding each request to the origin server over the selected		
15	managed connection.		

0201.01.ap5 - 22 -

1	31. A system according to Claim 30, further comprising:		
2	means for adding the request transfer time during each active connection		
3	selection if the managed connection is pipelined.		
1	32. A system according to Claim 30, further comprising:		
2	means for calculating the TCP overhead by adding a three-way handshake		
3	overhead to a slow start overhead;		
4	means for calculating the request transfer time by multiplying the size of		
5	the request by an average managed connection speed for the origin server; and		
6	means for calculating the time-to-idle, comprising:		
7	upon each receipt of a request, means for adding the time-to-idle to		
8	the product of an average managed connection speed for the origin server		
9	multiplied by the sum of the request size and an estimated response size;		
10	upon writing data to a socket, means for subtracting the time-to-		
11	idle from the product of an average managed connection speed for the origin		
12	server multiplied by the amount of data written; and		
13	upon reading data from a socket, prior to header data, means for		
14	subtracting the time-to-idle from the product of an average managed connection		
15	speed for the origin server multiplied by the amount of data read.		
1	33. A system according to Claim 30, wherein each transient request is		
2	communicated in accordance with HTTP.		
1	34. A method for efficiently forwarding client requests from a proxy		
2	server in a TCP/IP computing environment, comprising:		
3	receiving a plurality of transient requests from individual sending clients		
4	into a request queue, each request being commonly addressed to an origin server		
5	dynamically calculating, concurrent to receiving and during processing of		
6	each request, time estimates of TCP overhead, slow start overhead, time-to-idle,		
7	and request transfer time for sending the requests over each of a plurality of		
8	managed connections to the origin server;		

0201.01.ap5 - 23 -

2

1

2

9	choosing the managed connection from, in order of preferred selection, a		
0	warm idle connection, an active connection with a time-to-idle less than a slow		
1	start overhead, a cold idle connection, an active connection with a time-to-idle		
2	less than a TCP overhead, a new managed connection, and an existing managed		
13	connection with a smallest time-to-idle; and		
14	forwarding each request to the origin server over the selected managed		
15	connection.		
1	35. A method according to Claim 34, further comprising:		
2	adding the request transfer time during each active connection selection is		
3	the managed connection is pipelined.		
1	36. A method according to Claim 34, further comprising:		
2	calculating the TCP overhead by adding a three-way handshake overhead		
3	to a slow start overhead;		
4	calculating the request transfer time by multiplying the size of the reques		
5	by an average managed connection speed for the origin server; and		
6	calculating the time-to-idle, comprising:		
7	upon each receipt of a request, adding the time-to-idle to the		
8	product of an average managed connection speed for the origin server multiplied		
9	by the sum of the request size and an estimated response size;		
10	upon writing data to a socket, subtracting the time-to-idle from the		
11	product of an average managed connection speed for the origin server multiplied		
12	by the amount of data written; and		
13	upon reading data from a socket, prior to header data, subtracting		
14	the time-to-idle from the product of an average managed connection speed for the		
15	origin server multiplied by the amount of data read.		
1	37. A method according to Claim 34, wherein each transient request is		

A computer-readable storage medium holding code for performing

0201.01.ap5 - 24 -

communicated in accordance with HTTP.

the method according to Claim 34.

38.