i, j such that in view i is honest at r and j is honest at r', we have that $|\mathsf{extract}_i^{r'}(\mathsf{view})| \geq 1$ • (chain growth lower bound) for every round $r \leq |view| - t$, we have min-chain-increase_{r,t_0} (view) $\geq T$.

• (consistent length) for all rounds $r \leq |\mathsf{view}| - \Delta$, $r + \Delta \geq r' \leq |\mathsf{view}|$, for every two players

• (chain growth upper bound) for every round $r \leq |view| - t$, we have \max -chain-increase_{r,t1} (view) $\leq T$.

Let growth t_0,t_1 (view, Δ, T) = 1 iff the following two properties hold:

 $|\mathsf{extract}_i^r(\mathsf{view})|$