Algoritmi practici de codare și decodare Raptor Utilizarea codurilor Raptor în MBMS

TACCFDRT Curs 4

Tehnici de codare de tip Digital Fountain

- Coduri Raptor sistematice
 - Algoritm de codare
 - Algoritm de decodare
- Servicii MBMS
- Utilizarea codurilor raptor în MBMS

Coduri Raptor

Codurile Raptor prezentate nu sunt sistematice!!

- Se consideră un cod Raptor (k,C, Ω(d)), care pentru decodare "sigură" necesită un overhead ε
- Pachetele (simbolurile) informaționale se notează cu x=x₁,x₂,x₃,...,x_k
- Pre-codorul C generează un cuvânt de cod cu lungime n, pe baza relaţiei:

$$u^T := G \cdot x^T$$

- G este matricea generatoare a codului
- u este cuvântul de cod la ieşirea pre-codorului, şi reprezintă simbolurile de intrare în codorul LT

- Pentru obţinerea unui simbol de ieşire se generează un grad d după distribuţia Ω(d) şi se selectează uniform d pachete din u
 - Simbolul de la ieşire se obţine prin înmulţire vectorului u^T cu un vector aleator v, de lungime n care conţine d valori de 1 şi restul 0

$$z_t = v_t \cdot u^T$$

 cu z_t se notează simbolul codat în momentul t iar vectorul v_t este vectorul asociat simbolului codat z_t

- La un set de N simboluri codate se poate asocia o matrice S cu dimensiuni Nxn, a cârei linii sunt vectorii de codare asociate simbolurilor de iesire
- Putem scrie ca:

$$z^T = S'u^T$$

unde Z este vectorul format din cele N simboluri de ieșire

 Dacă se tine cont de relația de codare a precodorului, se obține:

$$z^T = S \cdot G \cdot x^T$$

 Pentru decodarea codului Raptor trebuie rezolvat sistemul de ecuații dat de:

$$z^T = S \cdot G \cdot x^T$$

- Acest sistem de ecuații are soluție numai dacă matricea S'G are rangul egal cu k
- Prin eliminare Gaussiană se identifică k linii a matricei S, cu indecși i₁,i₂,...,i_k, a.î. matricea A formată din aceste linii, înmulțită cu matricea G să fie inversabilă
- Se notează cu R=A'G

- Algoritmul de generare a matricei R (necesar pentru implementarea codorului sistematic)
 - se generează k(1+ε) vectori v_t conform distribuţiei
 Ω(d), aceşti vectori reprezintă liniile matricei S
 - Se calculează produsul S'G
 - Prin eliminare Gaussiană se determină indecşi
 i₁,i₂,...,i_k astfel încât submatricea R a matricei S'G
 formată din liniile indicate de aceşti indecşi să fie
 inversabil.
 - R este o matrice de kxk

9

Amin Shokrollahi, "Raptor Codes", IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

- Algoritmul de codare a codurilor Raptor sistematice
 - se generează vectorul y=(y₁,y₂,...,y_k) astfel:

$$y^T = R^{-1}x^T$$

 Simbolurile y se aplică la intrarea precodorului şi se obțin simbolurile u

$$u^T = G^y^T$$

- Se calculează z_i:=v_i•u^T pentru 1≤i ≤ k(1+ε)
- Se generează simbolurile de ieșire $z_{k(1+\epsilon)+1}, z_{k(1+\epsilon)+2},...$ pe baza codului LT $(n,\Omega(d))$

Coduri Raptor Sistematice-Codare

Intrarea prima dată este înmulțit cu matricea de decodare și după aceea este codat, deci ieșirile \mathbf{z}_{i1} , \mathbf{z}_{i2} , ..., \mathbf{z}_{ik} sunt egale cu intrările \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_k

- Algoritmul de decodare a codurilor Raptor sistematice
 - Se decodează codul Raptor normal, se obţin simbolurile y=(y₁,y₂,...,y_k)
 - Vectorul y înmulţeşte matricea R şi se obţine x^T=Ry^T
- Vectorul $x=(x_1,x_2,...,x_k)$ reprezintă simbolurile informaționale recepționate

MBMS

- MBMS Multimedia Broadcast/Multicast Service
 - Scopul este transmisia informației în mod eficient de la o sursă la mai multe destinații mobile
 - Canal foarte variabil
 - Resurse limitate
 - Multe pachete pierdute
 - Sistemele celulare sunt optimizate pentru transmisii punct la punct
 - Nu se utilizează caracterul "broadcast" a canalului radio

- În cazul unor aplicații mai mulți utilizatori recepționează același date în același timp: ar fi benefic pentru rețea să se transmite informația o singură dată pe o anumită legătură
- Pentru transmiterea informației la mai mulți utilizatori poate fi utilizat Cell Broadcast Services (CBS).
- IP multicast, așa cum este implementat, nu permite utilizatorilor să partajeze resursele în rețea core sau pe canalul radio

Pradeep de Almeida "Real-time Data Streaming – The Next Generation" FORUM ON NEXT GENERATION STANDARDIZATION

Colombo, Sri Lanka, 7-10 April 2009 19 aprilie 2021

Pradeep de Almeida "Real-time Data Streaming - The Next Generation" FORUM ON NEXT GENERATION STANDARDIZATION

Colombo, Sri Lanka, 7-10 April 2009 19 aprilie 2021

Pradeep de Almeida "Real-time Data Streaming - The Next Generation" FORUM ON NEXT GENERATION STANDARDIZATION

Colombo, Sri Lanka, 7-10 April 2009 19 aprilie 2021

Utilizarea codurilor raptor în MBMS

