

TMSCA HIGH SCHOOL MATHEMATICS

TEST #7 ©

JANUARY 18, 2020

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are
 using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for
 accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

1.	Evaluate: $6+12\times4$	$-(7-3)!-(3\times5)$				
	(A) 1	(B) 2	(C) 3	(D) 6	(E) 15	
2.	Andrew cut a 24-foot length of the shortest		r pieces that have the r st piece.	ratio 3:4:5:6. Find th	e combined	
	(A) 11 ft 4 in	(B) 11 ft 8 in	(C) 12 ft	(D) 12 ft 4 in	(E) 12 ft 8 in	
3.	Which of the following	ng points lies on L ₂ ?	, 12). Line L ₂ contains	_	_	
	(A) (-14, 24)	(B) (-7,10)	(C) $(7, -8)$	(D) (14, -16)	(E) $(21, -30)$	
4.	0 0		the Texas Panhandle r rchase? (nearest tenth	-	n is one square	
	(A) 22.6	(B) 23.8	(C) 25.0	(D) 26.2	(E) 27.4	
5.	Ethan has exactly \$10 quarters than nickels		s and quarters. He has rs does he have?	s a total of 72 coins. I	He has 4 more	
	(A) 20	(B) 22	(C) 24	(D) 26	(E) 28	
6.	5. Dulles is hosting a fundraiser for their UIL Math team. They are bringing in R. Srinivasa Varadhan to speak on probability theory and to elaborate on creating a unified theory of large deviation. Expenses include a round trip plane ticket costing \$455, two nights in a motel costing \$165 each night, 6 meals costing \$12.50 each, and a speaking fee of \$1500. If tickets cost \$15 each, what is the minimum number of tickets they need to sell to raise \$5000 for the math team?					
	(A) 488	(B) 491	(C) 494	(D) 497	(E) 500	
7.	Find the range of the	function $y = 2 \cdot 3^x +$	5.			
	$(A) (-\infty, \infty)$	(B) $(0,\infty)$	(C) (3,∞)	(D) $(5,\infty)$	(E) $(7,\infty)$	
8.	Given: $3x + 6y = 11$ 5x - 2y = -8	If the solution to t	he system is (a, b), the	en a + b =	_ .	
	$(A) \ \frac{5}{4}$	(B) $\frac{47}{36}$	(C) $\frac{49}{36}$	(D) $\frac{17}{12}$	(E) $\frac{53}{36}$	
9.	$(4\sqrt{x}+3)(5-2\sqrt{x})$	=				
	(A) $8x+14\sqrt{x}+15$ (B) $-8x+14\sqrt{x}+15$ (C) $-8x-14\sqrt{x}+15$ (D) $-8x+14\sqrt{x}-15$ (E) $8x+14\sqrt{x}-15$					

•	ght triangle ABC where ∠earest tenth)	C = 90°, BC = 4.44 an	$d \angle B = 60^{\circ}$. Find the	perimeter of the				
(A) 20.1	(B) 20.4	(C) 20.7	(D) 21.0	(E) 21.3				
	-tall red oak tree in Larry' dow is 10.58 inches how ta	•	_	If the length of				
(A) 5 ft $9\frac{1}{4}$	in (B) 5 ft $9\frac{3}{4}$ in	(C) 5 ft $10\frac{1}{4}$ in	(D) 5 ft $10\frac{3}{4}$ in	(E) 5 ft $11\frac{1}{4}$ in				
←→	Point B lies on \overrightarrow{AC} between A and C and point E lies on \overrightarrow{DF} between D and F. \overrightarrow{AC} is parallel to \overrightarrow{DF} . If $m\angle CBE = 42^{\circ}$, then $m\angle FEB = \underline{\hspace{1cm}}$.							
(A) 42°	(B) 48°	(C) 90°	(D) 132°	(E) 138°				
	of a circle is point O and position O to \overline{AC} is 10. Fin							
(A) 40	(B) 42	(C) 44	(D) 46	(E) 48				
14. Consider re	gular hexagon ABCDEF w	vith perimeter = 72. A	E = (nea	rest tenth)				
(A) 20.8	(B) 21.6	(C) 22.4	(D) 23.2	(E) 24.0				
15. Consider tri is 30, then b	iangle ABC with vertices (3, 5), (-2, -6) and (2)	b, b). If b > 0 and the	area of the triangle				
(A) 2	(B) 3	(C) 4	(D) 5	(E) 6				
16. Triangle AB (nearest ten	BC is similar to triangle DI	EF. $AB = 9$, $BC = 8$, A	C = 7, and DE = 6. EF	F + DF =				
(A) 9.0	(B) 9. 3	(C) $9.\overline{6}$	(D) 10.0	(E) $10.\overline{3}$				
17. A right circu	ular cone has a diameter o	f 10 and a slant height	of 13. Find the volum	ne of the cone.				
(A) 314.2	(B) 316.4	(C) 318.6	(D) 320.8	(E) 323.				
	iangle ABC with point D o		= 24, and AC = 33. BI	D bisects				
(A) 17.8	(B) 18.0	(C) 18.2	(D) 18.4	(E) 18.6				
19. The graph o	of $x^2 + y^2 - 10x + 4y - 7 = 0$) is a circle with radiu	us r and center (h, k).	h + k - r =				
(A) -3	(B) −1	(C) 1	(D) 3	(E) 5				

(A) 1076

(B) 1080

19-20 TMSCA 115	IVIA I EST /			1 age 3			
20. Let $f(x) = ax^2$	20. Let $f(x) = ax^2 + bx + 4$ where a and b are integers. If $f(3) = 13$ and $f(-3) = 49$, then $f(5) =$						
(A) 40	(B) 43	(C) 46	(D) 49	(E) 52			
21. Let $f(x) = \frac{x^2 - x^2}{x^2}$ (nearest tenth)		e the slant asymptote	of $f(x)$. $s(6) - f(6) = $				
(A) 1.2	(B) 1.4	(C) 1.6	(D) 1.8	(E) 2.0			
22. If -4 is a root	of $x^4 + 4x^3 - 7x^2 + cx$	x + 24 = 0, then $c =$	·				
(A) -22	(B) -20	(C) –18	(D) -16	(E) -14			
23. Consider the e	equation $\ln(x^2 + x) =$	ln(20). The sum of	the solutions to this eq	uation is			
(A) -1	(B) 1	(C) 2	(D) 4	(E) 5			
24. If $A = \begin{bmatrix} 6 & -9 \\ 4 & -5 \end{bmatrix}$	$, then A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. $	$\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \underline{\hspace{1cm}}$.				
(A) 0	(B) 0.5	(C) 1	(D) 1.5	(E) 2			
25. Consider the s	sequence $\frac{1}{4}, \frac{3}{8}, \frac{7}{16}, \frac{13}{32}$	$\frac{5}{2}, \frac{31}{64}, \frac{a}{b}. b-a = $	·				
(A) 56	(B) 59	(C) 62	(D) 65	(E) 68			
26. Find the acute	e angle between the lir	nes with equations 2x	-y = -6 and $4x + y =$	=-5.			
(A) 37.5°	(B) 40.6°	(C) 43.7°	(D) 46.8°	(E) 49.9°			
27. Find the eccen	ntricity of the ellipse w	with equation $4x^2 + 9y$	$y^2 - 24x + 36y + 36 = 0$). (nearest thousandth)			
(A) 0.599	(B) 0.667	(C) 0.725	(D) 0.745	(E) 0.800			
28. $(2x+3)^2(x-5)^2$	$(5) = ax^3 + bx^2 + cx + d$	a - b - c - d =	·				
(A) 4	(B) 30	(C) 56	(D) 82	(E) 108			
20 Find the sum	of the coming 11 : 14	17 1 20 1 22 1 1 1 20					

(D) 1088

(E) 1092

(C) 1084

30. Simplify:
$$\frac{\left(2x^2 - 13x - 7\right)}{\left(6x^2 - x - 2\right)} \div \frac{\left(3x^2 - 19x - 14\right)}{\left(3x^2 + 10x - 8\right)}$$

$$(A) \frac{x+4}{3x+2}$$

$$(B) \frac{x+4}{3x-2}$$

(A)
$$\frac{x+4}{3x+2}$$
 (B) $\frac{x+4}{3x-2}$ (C) $\frac{x-4}{3x+2}$ (D) $\frac{x-4}{3x-2}$

$$(D) \frac{x-4}{3x-2}$$

31.
$$\begin{bmatrix} -3 & 4 \\ -7 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & 6 \\ -5 & -3 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. \quad a+b+c+d = \underline{\hspace{1cm}}$$

$$(C)$$
 -124

$$(D) -122$$

$$(E) -120$$

32. Given a table of values for f(x), find the absolute maximum of f(x). (nearest thousandth)

X	-2	-1	0	1	2	3
f(x)	-54	-11	-4	-3	-2	-19

$$(C)$$
 -1.675

(D)
$$-1.554$$

$$(E)$$
 -1.433

33. Consider a parabola with a horizontal axis of symmetry, a vertex at (-1, 3) and a directrix with equation x = -4. The focus is (a, b). a + b =_____.

34. Naveen left the Fort Bend Walmart at 12:00 PM and cycled at a velocity (28 mph, 40° East of North) until 3:15 PM. Eric left the Fort Bend Walmart at 12:45 and cycled at a velocity (32 mph, 10° South of West) until 3:15 PM. How far apart were they at 3:15 PM? (nearest mile)

35.
$$\frac{x-2}{x^2+4x+3} = \frac{A}{x+1} + \frac{B}{x+3}$$
 $A+B =$ _____.

$$(E)$$
 2

36. Convert the polar equation $r = 6\cos\theta$ to a rectangular equation.

(A)
$$x^2 + y^2 - 6x - 6y = 0$$
 (B) $x^2 + y^2 + 6y = 0$ (C) $x^2 + y^2 - 6y = 0$

(B)
$$x^2 + y^2 + 6y = 0$$

(C)
$$x^2 + v^2 - 6v = 0$$

(D)
$$x^2 + v^2 + 6x = 0$$

(D)
$$x^2 + y^2 + 6x = 0$$
 (E) $x^2 + y^2 - 6x = 0$

37. Find the area of the region bounded by the graphs of $y = .5x^2 - 6$ and $y = -.25x^2 + 6$.

$$(E)$$
 68

(A) 461

(B) 463

38.	. Given: $f''(x) = 6$, $f(x) = 6$	(-1) = 14, $f(1) = 4$. $f'(1) = 4$	(2) =				
	(A) 1	(B) 3	(C) 5	(D) 7	(E) 9		
39.	. Find the sum of the (nearest hundredth)		he local minimum of	$f(x) = 2x^3 - 4x^2 + x$	+ 2.		
	(A) 2.85	(B) 2.96	(C) 3.07	(D) 3.18	(E) 3.29		
40.	If $f(x) = 3x^4 + 6x^2$,	then the y-intercept of	f the line tangent to f	f(x) when $x = -1$ is	·		
	(A) -15	(B) -13	(C) -11	(D) -9	(E) -7		
41.	Find the volume of t $y =5(x-4)^2 + 9$	the solid generated by and $y = .25x + 3$ about					
	(A) 988	(B) 1000	(C) 1012	(D) 1024	(E) 1036		
42.	$\lim_{x\to 2}\left(\frac{1}{(x-2)^2}\right) =$						
	(A) -2	(B) -1	(C) 1	(D) 2	(E) ∞		
43.	A spherical balloon radius of the balloon (nearest thousandth	n increasing at the inst		_	How fast is the		
	(A) 0.196 cm/min	(B) 0.318 cm/min	(C) 0.440 cm/min	(D) 0.562 cm/min	(E) 0.684 cm/min		
44.	14. Logan decided to evaluate $\int \frac{e^{\frac{1}{x}}}{x^2} dx$ using the method of u-substitution. What should he choose for u?						
	$(\mathbf{A}) \ \mathbf{e}^{\mathbf{x}}$	$(\mathbf{B}) \ \mathbf{x}^2$	(C) 2x	(D) $\frac{1}{x}$	(E) $\frac{1}{x^2}$		
45.	45. Find the sum of the series. $1 + \ln(6) + \frac{\left(\ln(6)\right)^2}{2} + \frac{\left(\ln(6)\right)^3}{6} + \frac{\left(\ln(6)\right)^4}{24} + \dots$						
	(A) ln(6)	(B) 5.8 6	(C) 6	(D) 6.14	(E) e ⁶		
46.	. Jackie's bowling sco the mode, median, n	ores from Tuesday nig nean and range of the		2, 144, 154, and 130.	Find the sum of		

(C) 465

(D) 467

(E) 469

47.	probability that		0	with a standard deviation higher than 94 when he		
	(A) 0.68	(B) 0.70	(C) 0.72	(D) 0.74	(E) 0.76	
48.		o do a linear regression	_	veight of fish from their ne weights in list 2.	lengths. To do this, he	
	(A) cube root	(B) square root	t (C) log	(D) square	(E) cube	
49. At Whitney High School, 45% of the seniors take AP Biology, 40% take AP Chemistry, and 25% take both courses. A senior is selected at random. What is the probability that this student takes at least one of these courses? (nearest hundredth)						
	(A) 0.56	(B) 0.60	(C) 0.63	(D) 0.67	(E) 0.70	
50.		· ·	•	nce of having red hair. r kids will have red hair	•	
	(A) 0.19	(B) 0.21	(C) 0.23	(D) 0.25	(E) 0.27	
51.	for president. H	However, the poll had	not contacted any	ose polled were going to y of the local college stud This is an example of _	dents who live on	
	(A) undercovera	ige (B) vol D) nonresponse		(C) sampling ter sampling	frame error	
52.				ed box plot with a five-n mum and minimum val		
	(A) median	(B) mean	(C) mode	(D) range	(E) IQR	
53.		_	-	e in UIL mathematics is ardized value (z-score)		
	(A) 2.50	(B) 2.75	(C) 3.00	(D) 3.25	(E) 3.50	
54.		ata point in a set of re		n smaller or much large	r than most of the other	
	(A) aberration	(B) quirk	(C) outlier	(D) irregularity	(E) deviation	
55.	Consider the ge	ometric sequence 24	, a, b, c, 9.8304	a+b+c could equal	·	
	(A) -46.848	(B) -16.128	(C) -8.764	(D) 29.162	(E) 36.454	

56.	5556+	6667 +	777。=	 1.4	
	2226	000/	x	4	8

- (A) 530
- (B) 542
- (C) 553
- (D) 564
- (E) 575

57. Given the Fibonacci characteristic sequence 3, 7, 10, 17, 27, a, b, c, d, 301 Find the sum of the numbers in this sequence.

- (A) 773
- (B) 777
- (C) 781
- (D) 785
- (E) 789

58. This mathematician is known as the "father of geometry" and he wrote a book called <u>The Elements.</u>

- (A) Euclid
- (B) Archimedes
- (C) Diophantus
- (D) Ptolemy
- (E) Descartes

59. Which of the following numbers is a "happy prime" number?

- (A) 5
- **(B)** 11
- (C) 17
- (D) 19
- (E) 29

60. $3^0 + 3^1 + 3^2 + 3^3 + ... + 3^9 =$

- (A) 29500
- **(B)** 29506
- (C) 29512
- (D) 29518
- (E) 29524

2019 – 2020 TMSCA High School Mathematics Test 7 Answer Key

1.	E	21. E	41. E
2.	C	22. A	42. E
3.	C	23. A	43. B
4.	A	24. C	44. D
5.	D	25. D	45. C
6.	В	26. B	46. C
7.	D	27. D	47. A
8.	E	28. E	48. E
9.	В	29. E	49. B
10.	D	30. A	50. D
11.	C	31. A	51. A
12.	E	32. C	52. A
13.	E	33. D	53. E
14.	A	34. B	54. C
15.	C	35. C	55. B
16.	D	36. E	56. D
17.	\mathbf{A}	37. C	57. C
18.	В	38. D	58. A
19.	\mathbf{A}	39. B	59. D
20.	D	40. A	60. E

19-20 TMSCA HSMA Test 7 Selected Solutions

$$m = -\frac{10}{7}$$

$$18x = 24(12)$$
2. $x = 16$

$$9x = 144 = 12 \text{ ft}$$

$$m = -\frac{10}{7}$$
3. $y - 2 = -\frac{10}{7}x$
4. $\frac{(6.25)(640)}{177.1} = 22.6$

$$(7, -8)$$
5. $\frac{5n + 10d + 25q = 1000}{q = n + 4}$

$$q = 26$$

8.
$$\frac{(26)(12)}{47} = \frac{x}{10.58}$$
15.
$$\frac{455 + 2(165) + 6(12.5) + 1500 + 5000}{15} = 491$$
10.
$$4.44 + 8.88 + (4.44)\sqrt{3} = 21.0$$
11.
$$x = 70.233$$
5 ft
$$10\frac{1}{4}$$
 in

12.
$$180-42=138^{\circ}$$
 13. $x^2 + (10)^2 = (26)^2$ 14. $c^2 = 12^2 + 12^2 - 2(12)(12)\cos(120^{\circ})$ $c = 20.8$

$$\begin{vmatrix}
3 & 5 & 1 \\
-2 & -6 & 1 \\
2b & b & 1
\end{vmatrix}$$

$$\begin{vmatrix}
6 & \frac{9}{6} = \frac{8}{x} = \frac{7}{w} \\
x + w = 10
\end{vmatrix}$$

$$\begin{vmatrix}
5^2 + h^2 = 13^2 \\
h = 12
\end{aligned}$$

$$\begin{vmatrix}
20 \\
x = \frac{24}{33 - x}
\end{aligned}$$

$$18. x = 15$$

$$33 - x = 18$$

$$V = 314.2$$

$$x^{2}-10x+25+y^{2}+4y+4=7+25+4$$

$$19. (x-5)^{2}+(y+2)^{2}=36$$

$$5-2-6=-3$$

$$9a+3b+4=13$$

$$9a-3b+4=49$$

$$a=3, b=-6$$

$$3(5)^{2}-6(5)+4=49$$

$$21. \frac{s(x)=x+4}{s(6)-f(6)=2}$$

$$x^{2} + x = 20$$
23. $x = -5, 4$

$$-5 + 4 = -1$$
24.
$$A^{-1} = \begin{bmatrix} -\frac{5}{6} & \frac{3}{2} \\ \frac{2}{3} & 1 \end{bmatrix}$$
25.
$$a = 63, b = 128$$

$$128 - 63 = 65$$
26. $\tan \theta = \left| \frac{m_{1} - m_{2}}{1 + m_{1} m_{2}} \right|$

$$\theta = 40.6^{\circ}$$

$$4(x^{2}-6x+9)+9(y^{2}+4y+4)=-36+36+36$$

$$27. \frac{(x-3)^{2}}{9} + \frac{(y+2)^{2}}{4} = 1$$

$$9 = 4+c^{2}, c = \sqrt{5}$$

$$e = \frac{c}{2} = \frac{\sqrt{5}}{3} = .745$$

$$28. 4+8+51+45=108$$

$$29. \frac{24}{2}(11+80)=1092$$

$$31. \begin{bmatrix} -26 & -30 \\ -24 & -48 \end{bmatrix}$$

$$-128$$

32.
$$f(x) = -x^4 + 3x^3 - 2x^2 + x - 4$$

 $max = -1.675$

31.
$$\begin{bmatrix} -26 & -30 \\ -24 & -48 \end{bmatrix}$$
 32. $f(x) = -x^4 + 3x^3 - 2x^2 + x - 4$ 34. $c^2 = 80^2 + 91^2 - 2(80)(91)\cos(140^\circ)$ $c = 161$

$$35. -\frac{3}{2} + \frac{5}{2} = 1$$

$$r^{2} = 6r \cos \theta$$

$$36. x^{2} + y^{2} = 6x$$

$$x^{2} + y^{2} - 6x = 6x$$

37.
$$\int_{-4}^{4} (y_2 - y_1) dx = 64$$

$$r^{2} = 6r \cos \theta$$

$$35. -\frac{3}{2} + \frac{5}{2} = 1$$

$$36. x^{2} + y^{2} = 6x$$

$$x^{2} + y^{2} - 6x = 0$$

$$37. \int_{-4}^{4} (y_{2} - y_{1}) dx = 64$$

$$x^{2} + y^{2} - 6x = 0$$

$$37. \int_{-4}^{4} (y_{2} - y_{1}) dx = 64$$

$$x^{2} + y^{2} - 6x = 0$$

$$38. \int_{-4}^{6} (-1) = 14 = 3 - c + d$$

$$c = -5, f' = 6x - 5$$

$$f'(2) = 7$$

f' = 6x + c

39.
$$2.0670885 - 0.89587 = 2.96$$
 41. $V = 2\pi \int_{.5778556}^{6.92214} (x+4)(y1-y2)dx$ 43. $\frac{dV}{dt} = 4\pi R^2 \frac{dR}{dt}$ $V = 1036$ 40. $V = 1036$

$$V = \frac{4}{3}\pi R^{3}$$

$$\frac{dV}{dt} = 4\pi R^{2} \frac{dR}{dt}$$

$$900 = 4\pi (15)^{2} \frac{dR}{dt}$$

$$\frac{dR}{dt} = 0.318$$

45.
$$e^{\ln(6)} = 6$$
 46. $144 + 144 + 145 + 32 = 465$ 47. one SD each side of mean Area = 0.68

49.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) =$$

.45 + .40 - .25 = .60

50. binomial
$$Cdf = .25$$

50. binomialCdf = .25 53.
$$z = \frac{156-128}{8} = 3.5$$

$$24 \cdot r^4 = 9.8304$$

55.
$$r = -.8, .8$$

-19.2 + 15.36 + (-12.288) = -16.128

56.
$$\frac{215+342+511=1068}{1068_{10}=564_{14}}$$
 57. $71\times11=781$

57.
$$71 \times 11 = 781$$