Un **corps** \mathbb{K} **est ordonné par** \leq ssi $\begin{cases} \forall x, y, z \in \mathbb{K} \ x \leq y \Rightarrow x + z \leq y + z \\ \forall x, y \in \mathbb{K} \ 0 \leq x \text{ et } 0 \leq y \Rightarrow 0 \leq x \times y \end{cases}$

Un corps \mathbb{K} est totalement ordonné par \leq ssi (\mathbb{K} , \leq) est ordonné et \leq ordre total.

Un corps \mathbb{K} est archimédien ssi $\forall \varepsilon \in \mathbb{K} | \varepsilon > 0 \ \forall a \in \mathbb{K} \exists n \in \mathbb{Z} \ n\varepsilon \geq a$

Une suite $(x_n)_{n\in\mathbb{N}}$ sur un corps \mathbb{K} est de Cauchy ssi $\forall \varepsilon\in\mathbb{K}|\varepsilon>0$ $\exists N\in\mathbb{N}\ \forall n>m\geq N\ |x_n-x_m|\leq \varepsilon$

Une suite $(x_n)_{n\in\mathbb{N}}$ sur un corps \mathbb{K} converge vers $l\in\mathbb{K}$ ssi $\forall \varepsilon\in\mathbb{K}|\varepsilon>0\ \exists N\in\mathbb{N}\ \forall n>m\geq N\ |x_n-l|\leq \varepsilon$

Un **corps K est complet** signifie que toute suite de Cauchy sur **K** converge dans **K**.

Un **corps** \mathbb{K} **vérifie le théorème des suites adjacentes** ssi pour tout couple de suites dans \mathbb{K} dont l'une est croissante, l'autre est décroissante, de différence qui tend vers 0, alors ces 2 suites convergent vers la même limite.

Un **corps** \mathbb{K} **vérifie le théorème de la limite monotone** ssi toute suite croissante (resp. décroissante) tend vers le sup (resp. l'infimum) de son image.

Modèle de \mathbb{R} .

Pour un corps totalement ordonné (\mathbb{K} , +,×, \leq), 1,2,3,4 sont équivalentes :

- 1. K archimédien et K complet
- 2. K archimédien et vérifie le théorème des suites adjacentes.
- 3. Toute partie non vide majorée (resp. minorée) admet un supremum (resp. infimum).
- 4. K vérifie le théorème de la limite monotone.

Existence: Il existe $(\mathbb{R}, +, \times, \leq)$ vérifiant le modèle de \mathbb{R} càd vérifiant :

 $(\mathbb{R}, +, \times)$ est un corps totalement ordonné par \leq , archimédien et complet donc vérifiant 1,2,3,4 La construction peut se faire via les coupures de Dedekind, ou via les suites de Cauchy rationnelles.

Unicité: Tous les corps $(\mathbb{K}, +, \times, \leq)$ vérifiant le modèle de \mathbb{R} , sont isomorphes.

Propriétés de \mathbb{R} .

 \mathbb{R} vérifie toutes les propriétés précédemment citées.

Il existe un sous-corps de $\mathbb R$ isomorphe a $\mathbb Q$. Donc on peut supposer $\mathbb Q \subseteq \mathbb R$

 \mathbb{Q} est dense dans \mathbb{R} càd $\forall a, b \in \mathbb{R} | a < b \exists c \in \mathbb{Q} | a < c < b \}$

On pose
$$\mathbb{R}_{+} = \{x \in \mathbb{R} \mid x \ge 0\}, \, \mathbb{R}_{-} = \{x \in \mathbb{R} \mid x \le 0\}$$

On pose
$$\mathbb{R}_{+}^{*} = \{x \in \mathbb{R} \mid x > 0\}, \, \mathbb{R}_{-}^{*} = \{x \in \mathbb{R} \mid x \leq 0\}$$

 $(\mathbb{R}_+, \mathbb{R}_-)$ est une partition de \mathbb{R} , $(\mathbb{R}_+^*, \{0\}, \mathbb{R}_-^*)$ est une partition de \mathbb{R} , $\mathbb{R}_+ \cap \mathbb{R}_- = \{0\}$

 $\forall a, b \in \mathbb{R} \ a \leq b \Leftrightarrow b - a \in \mathbb{R}_+$

Valeur absolue. Pour
$$x \in \mathbb{R}$$
, $|x| = \begin{cases} x \sin x \ge 0 \\ -x \sin x < 0 \end{cases}$

$$\forall x \in \mathbb{R} \ |x| \ge 0$$

 $x, y \in \mathbb{R}$ sont de même signe ssi xy = |x||y|

 $x, y \in \mathbb{R}$ sont de signe contraire ssi xy = -|x||y|

Pour
$$x, y \in \mathbb{R}$$
 $|x + y| \le |x| + |y|$

Pour
$$x, y \in \mathbb{R}$$
 $||x| - |y|| \le |x - y|$

Pour
$$x, y \in \mathbb{R} |xy| \le |x||y|$$

Pour
$$x, y \in \mathbb{R}, y \neq 0$$
 alors $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

Partie entière. Pour $x \in \mathbb{R}$, $\exists ! E(x) \in \mathbb{Z}$ $E(x) \leq x < E(x) + 1$

Infinis.

On introduit deux nouveaux symboles ∞ , $-\infty$ et on définit $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ On étend les opérations usuelles. Pour $x \in]-\infty,\infty]$ $x + \infty = \infty + x = \infty$ Pour $x \in [-\infty,\infty[$ $x + (-\infty) = (-\infty) + x = -\infty$ Pour $x \in]0,\infty[$ $x \times \infty = \infty \times x = \infty, \ x \times -\infty = -\infty \times x = -\infty$ Pour $x \in [-\infty,0[$ $x \times \infty = \infty \times x = -\infty, \ x \times -\infty = -\infty \times x = \infty$ $x \in [-\infty,\infty[\Leftrightarrow x < \infty,\ x \in]-\infty,\infty] \Leftrightarrow -\infty < x,\ x \in \mathbb{R} \Leftrightarrow -\infty < x < \infty \Leftrightarrow |x| < \infty$

Caractérisation des bornes sup/inf dans \mathbb{R} . Pour une partie $E \subseteq \mathbb{R}$ et $m \in \mathbb{R}$

E admet un sup dans $\mathbb{R} \Leftrightarrow E$ non vide majoré

E admet un inf dans $\mathbb{R} \Leftrightarrow E$ non vide minoré

 $E \text{ admet un sup dans } \mathbb{R} \text{ et } m = \sup_{\mathbb{R},\leq} E \iff \begin{cases} \forall x \in E \ x \leq m \\ \forall \varepsilon \in \mathbb{R}_+^* \ \exists x \in E \ m - \varepsilon < x \end{cases}$ $E \text{ admet un inf dans } \mathbb{R} \text{ et } m = \inf_{\mathbb{R},\leq} E \iff \begin{cases} \forall x \in E \ m \leq x \\ \forall \varepsilon \in \mathbb{R}_+^* \ \exists x \in E \ x < m + \varepsilon \end{cases}$

Bornes sup/inf dans $[-\infty,\infty]$. Une partie $E\subseteq\mathbb{R}$ admet toujours un sup et un inf dans $[-\infty,\infty]$. $\sup_{\le} E=\infty \Leftrightarrow E$ non majoré. $\sup_{\le} E=-\infty \Leftrightarrow E=\emptyset$. $\sup_{\le} E\in\mathbb{R} \Leftrightarrow E$ non vide majoré. $\inf_{\le} E=-\infty \Leftrightarrow E$ non minoré. $\inf_{\le} E=\infty \Leftrightarrow E=\emptyset$. $\inf_{\le} E\in\mathbb{R} \Leftrightarrow E$ non vide minoré.