Proposals from J. Fox

Ulrich Halekoh Aarhus University Søren Højsgaard Aalborg University

Abstract

K	e_1	n	,,,	าา	'n	٠.	
<i>1</i> \	C. I	"	//	"	11.	∙⊃.	

1. Porposals

I see three proposals

- 1. Make the adjusted covariance Φ_A available.
- 2. Separate the calculation of Φ_A from the KR adjustment.
- 3. write a vcov() method for the modelLarge such that Φ_A is returned

2. Splitting KRmodcomp into several subtasks

It might be possible to split up KRmodcomp into several sub-functions, but not all of them are independent

Table 1: 4 subfunctions								
function	input	output	main purpose					
KR_PhiA() modelLarge		$oldsymbol{\Phi}_A, \mathbf{W}, \mathbf{P}_j$	calculation of the adjusted co-					
			variance matrix of $\hat{\beta}$					
<pre>KR_FPhiA()</pre>	$\mathbf{\Phi}_A,\mathbf{L}$	$F^A = \frac{1}{d}(\hat{\beta} - $	the F statistic using Φ_A					
		$egin{pmatrix} oldsymbol{a}_{H} & oldsymbo$						
		$\mid oldsymbol{eta}_H)$						
<pre>KR_lambdaDf()</pre>	$oxed{f modelLarge,} {f L}, {f W}, {f P}_j$	λ, m	The ajustment factor λ and					
			the adjusted denominator de-					
			grees of freedom					
KR_pvalue	F^A, λ, m	p-value KR-adjusted						

The last three functions after KR_PhiA can possibly be combined into one where L can be replaced by modelSmall.

The actual KRmodeomcp would consist of the above functions.

Table 2: Two subfunctions

	Table 2: 1 We babiane done					
function	input	output	main purpose			
<pre>KR_PhiA()</pre>	modelLarge	$\mathbf{\Phi}_A, \mathbf{W}, \mathbf{P}_j$	calculation of the adjusted co-			
			variance matrix of $\hat{\beta}$			
<pre>KR_test()</pre>	$\mathbf{L}, \mathbf{\Phi}_A, \mathbf{W}, \mathbf{P}_i$	λ, m p-value				

3. Comments

Splitting up in two function we fulfil the first 2 proposals, which is reasonable. One might then

- 1. use Φ_A for an F-test without KR adjustment
- 2. Do tests for several different modelSmalls with only one calculation of Φ_A , \mathbf{W} , \mathbf{P}_j . (but these matrices have to be saved)

With respect to the 3rd proposal I think that does not make sense at this moment. mer objects have already a vcov() method. So to add the calculation of Φ_A for a modelLarge-mer object would require to enhance the vcov() function for mer objects, but then the user would have to specify which covariance matrix he wants.

One possibility would be that KR_PhiA returns a mer - KR object, that has a vcov() method returning Φ_A . I do not believe that this is wise at this moment to do so because our method is in comparing models not in creating special model-objects.

Affiliation: