SII software school: Lesson 2

T. Hassan on behalf of the magic spysii dev team

IACT-SII: Lesson I wrap up

- Binary files contain signal statistics plus correlation arrays (over a broad delay range)
- Following *magic_spysii* documentation you should now be able to:
 - Download/synchronize raw data and camera reports into your \$MAGICSIIDATA folder
 - Plot the content of individual or multiple "averaged" runs, and see clear correlation signals
 - Draw the DCs and Hvs of any synced night
 - Tinker with binary data, understand how it is stored and what kinds of binary data exist

IACT-SII: Lesson II

- Points to be covered in lesson II:
 - Understand magic_spysiii analysis data flow:
 - Analysis stages
 - Data products produced
 - Run your first analysis!
 - This will create run-wise run reports, as well as your first stellar-diameter measurements!

IACT-SII: Lesson II

Points to be covered in lesson II:

IACT-SII: First, let's learn the language

- Channel: Digitized signal in the DAQ. We currently have 4 channels (2 entries per card) and the pixels connected to those channels change with time
- Correlation pair/channel: specific pair of pixels used for a correlation (e.g. M1-251 \rightarrow M2-251, M1-260 \rightarrow M2-260 or M1-251 \rightarrow LST1-1)
- Frame: Each correlation array the DAQ stores. In 2021, each frame integrated ~0.5 ms, while now each frame integrates 0.25 s
- Zero-baseline correlation (ZBC): maximum correlation measured by the system. Should be a constant of the system. As our visibility is calibrated with DCs, our ZBC has units (1/uA), and therefore is subject to PMT degradation (gain slowly changes with time for a fixed HV).

Interferometry data flow: reduce_binaries

- As you saw, during the sync stage one can directly compute the "reduce_binaries" script to generate correlation-pair-wise pickle files
- The program is smart enough to compute only the relevant pickle runs
 - Remember we have many kinds of data!
 - Full mirror (to pixels 251 or 260)

- Chessboard
- Sub-mirrors
- MAGIC+LST1 (current setup)

As a non expert, I recommend these configurations

MAGIC-SII setup: Full mirror

Interferometry data flow: reduce_binaries

- Example 1: MAGIC-only full-mirror data
 - Only one possible correlation between the 2 signal pixels
 - May be of any combination (M1/M2 pixels 251/260)

MAGIC-SII setup: chessboard mode

MAGIC-SII setup: chessboard mode

Interferometry data flow: reduce_binaries

- Example 2: MAGIC-only chessboard data
 - 6 different possible correlation between the 4 signal pixels
 - 4 long-baseline corr.
 - 2 short-baseline corr.
 - Signal to noise is significantly worse than fullmirror data

Interferometry data flow: reduce_binaries

- Example 3: MAGIC-LST1 full-mirror data
 - 3 signal pixels → 3 corr
 - May be of any combination (M1/M2 pixels 251/260)

Performance paper reminder: visibility

• Reminder on how we compute V² measurements:

$$c = K \frac{\rho(\tau_0)\beta\sqrt{G_1G_2}}{\sqrt{DC(Star)_1DC(Star)_2}}$$

- DCs need to be proportional to photon flux @ the PMT
- Beta accounts for the ratio between DC(Star) and DC(NSB)
- Gain corrections are needed if combining observations with different HV (not very common, but always checked)
- Rho @ tau 0 is the amplitude of the correlation signal

Interferometry data flow: run-level analysis

- Run-wise analysis stage, computed by the *MagicSiiRun* class:
 - Computes time-delay correction (time of flight + hardware delay)
 - Applies time-delay correction → correlations signals expected at 0 ns
 - Combines data and DC reports:
 - Interpolates DC reports to frame's times
 - Computes DC(NSB) and DC(Star)
 - Calibrates frames with DC(star)

Interferometry data flow: run-level analysis

- DC and HV vs time
- ~1 Hz frequency

Interferometry data flow: run-level analysis

- Tarek's hands on a SII run report file (2024-03-20):
 - Show DC and std dev vs time figures
 - Show correlation signal plots (also before/after time-delay correction)
 - Show UV tracks

Interferometry data flow: source-level analysis

- Source-wise analysis stage, computed by the SiiAnalysis class:
 - Loads all runs from the selected star
 - Bundles data in baseline (in case of 1D analysis) or UV (2D analysis)
 - Combines correlation data from a each "bin" (in baseline or UV) and compute the amplitude of the signal and its uncertainty (V² measurements).
 - Fit V² measurements to a uniform disc or limb darkened model. In case of 2D analysis, also fit to an ellipse (fast rotator model).
 - Store results both in a .pkl file, and a .pdf report file

Interferometry data flow: source-level analysis

MagicSiiRun SiiAnalysis Star (e.g. "Adhara") Adhara M1-M2 analysis M1-M2 reduced run 1 (.pkl file + .pdf report) (.pkl file + .pdf report) M1-M2 reduced run 2 (.pkl file + .pdf report) - Uniform disc and limb darkened fits M1-M2 reduced run 3 - Stellar diameter (.pkl file + .pdf report) - Zero-baseline correlation M1-M2 reduced run 4 - Data quality figures (.pkl file + .pdf report) M1-M2 reduced run 5 (.pkl file + .pdf report) M1-M2 reduced run 6 (.pkl file + .pdf report)

Interferometry data flow: source-level analysis

- Tarek's hands on an analysis results file: Adhara vs Mirzam
 - Understand baseline "binning"
 - Understand calibration and V² measurement
 - Identify stellar diameter measurement
 - Understand uncertainties

Interferometry data flow: production

- Production class (SiiProduction): helping class to launch analyses:
 - Read the configuration file and pass all the configuration parameters to each analysis
 - Find the nights of observations in which files from the selected source exist (surviving selection criteria)
 - Launch all analyses requested from the config file: either sequentially execute them or paralelize them via condor (works at pic!)
- Entry point of most analyzers to the analysis:

 the sii production executable

Interferometry data flow: production

SiiProduction

> sii_production [config file]

Configuration file (.yml file)

- Top level class to execute multiple analyses
- Configuration file used (similar to MARS .rc files)
- Paralelization: analysis-wise condor jobs

SiiAnalysis

Adhara M1-M2 analysis

(.pkl file + .pdf report)

Adhara M1-LST1 analysis

(.pkl file + .pdf report)

Adhara M2-LST1 analysis

(.pkl file + .pdf report)

Mirzam M1-M2 analysis

(.pkl file + .pdf report)

Interferometry data flow: production

- Tarek's hands on the production config file sample:
 - Show yaml format (not .rc files)
 - Describe the hierarchy of the 3 analysis levels: run, analysis and production
 - Show relevant variables, and those that (for now) should not be changed by non experts
 - Show the **sii_production** executable
 - Show location of the example config file

IACT-SII: Lesson II wrap up

- Binary files are reduced, storing each starlit correlation pair as pickle files
- The analysis is very simple:
 - One class handles run-wise analysis
 - One class handles source-level analysis
 - Launching an analysis is simple! Fill an analysis configuration file and launch it!
- Later more advanced/complex stages of the analysis will be explained in the future

IACT-SII: Lesson II – Proposed exercises

- Launch an analysis of Adhara, making sure you only select files with a single correlation pair (for now, MAGIC-only correlations!)
 - Check measured diameter: is it consistent with the performance paper?
 - Check the figures of the results pdf. Do you understand most plots?
 - ExPeRt level: check pickle results file. Do you make any sense out of it?
- Sync data from another star. Run an analysis of that other star.
 - Do these results make sense?

Interferometry DAQ

Interferometry DAQ: Now GPU 2^18 entries ch 1 Digitizer 1 Ch 2 (B) Ch 1 (A) 2^18 entries ch 2 2^18 entries Digitizer 2 ch 3 Ch 4 (D) Ch 3 (C) 2^18 entries ch 4

Interferometry DAQ: Now

- Current DAQ computes:
 - Cross-correlation between each channel pair (via FFTs)
 - Auto-correlation of each channel
 - Certain useful parameters (mean and std dev of each channel)
- Current DAQ "accumulates" these, and writes the average correlation/mean/std dev every 500 cycles

ZBC: The constant of our system

• From HB&T, we know that the expected correlation:

$$\overline{c(d)} = \langle \Delta i_1(t) \Delta i_2(t) \rangle = e^2 A^2 \alpha^2 n^2 |\gamma_d(0)|^2 \Delta \nu \Delta f \tag{4.28}$$

After dividing by the flux, the remaining correlation should be:

$$\frac{\overline{c(d)}}{flux} \propto \frac{|\gamma_d(0)|^2}{\Delta v \Delta f}$$

• But as with our setup, our "flux" is the DCs (different gain than the correlation):

$$rac{\overline{c\left(d
ight)}}{\sqrt{DC^{\,1}DC^{\,2}}} \propto rac{\left|oldsymbol{\gamma}_{d}(0)
ight|^{\,2}}{\sqrt{G^{\,1}_{DC}G^{\,2}_{DC}}\Delta\,
u\Delta f}$$

Any time evolution in the DC gain will be a **systematic**