Notions de logique - 1BSF

Pr. Latrach Abdelkbir

Activité D:

Mettre une croix (x) dans la case qui convient :

Textes mathématiques	Vrai	Faux	On ne peut pas décider sa vérité	N'a pas de sens
• 15 × 2				
• $12 \times 3 + 4 = 20$				
 -6 ∉ N 				
• 2 est une racine du polynôme $P(x) = x^2 - x - 2$.				
Chaque nombre impair et un nombre premier.				
• $(x \in \mathbb{Z})$: $x + 5 \ge 0$.				
• Soient x , y de \mathbb{Z} , on a $2x - y = 1$				

Application O:

Déterminer la vérité de chacun des propositions suivantes :

$$\bullet \quad P: "\left(\frac{\sqrt{7}}{\sqrt{3}}\right)^2 = \frac{7}{3} ".$$

• $Q: \sqrt{3+\sqrt{5}} \times \sqrt{3-\sqrt{5}} \in \mathbb{N}$ ".

• R:"L'équation $x^2 - 3x + 5 = 0$ admet deux solutions dans \mathbb{R} ".

🗷 Activité 0:

1. Mettre une croix (x) dans la case qui convient :

Proposition		Faux
Le carré de tout nombre réel est positif.		
Il existe un nombre réel inférieur strictement à 1.		
Tout nombre réel est décimal.		
• L'équation $x^2 = 0$ admet une unique solution reélle.		

Les propositions précédentes apparaissent sous forme de phrases, mais on peut les écrire à l'aide symboles.

Si on symbolise "pour tout " ou " quel que soit " avec le symbole \forall et " Il existe au moins" avec le symbole \exists , alors la première proposition du tableau devient $(\forall x \in \mathbb{R}): x^2 \ge 0$ et la deuxième devient $(\exists x \in \mathbb{R}): x < 1$.

Les symboles ∀ et ∃ sont appelés les quantificateurs.

2. Compléter le tableau suivant en utilisant les symboles ∀ et ∃.

Proposition	Proposition par les quantificateurs
• Tous les entiers naturels sont positifs	•
•	• $(\exists x \in \mathbb{R}): x^2 = -1$
• L'équation $3x - 2 = 0$ admet une solution réelle.	•
Tout nombre réel est décimal.	•
•	• $(\forall x \in \mathbb{R})$: $x^2 - x + 1 > 0$
• Pour tout réel x , il existe au moins un entier naturel n tels que $x < n + 1$	•
•	• $(\forall m \in \mathbb{N})(\exists n \in \mathbb{N}) : m = 2n$

& Application Q:

Réécrire les propositions suivantes en utilisant les quantificateurs logiques

- > P₁: "La valeur absolue de tout nombre réel non nul est strictement positive".
- $ightharpoonup P_2$: "Il existe au moins un nombre réel x tel que $2x^2 3x = 0$ ".
- $ightharpoonup P_3$: "L'équation $x 2\sqrt{x} + 1 = 0$ admet une unique solution réelle".
- ho P₄: "Le polynôme $P(x) = x^3 + 2x^2 3x + 1$ admet au moins une racine".
- P₅: "Pour tout nombre réel x, il existe au moins un entier N tels que $N \le x < N + 1$ ".
- > P₆: "Il existe un entier multiple de tous les autres".

Exercice (2):

Déterminer la valeur de vérité de chacun des propositions suivantes :

• $P_1 : "(\exists x \in \mathbb{R}) : x^2 + x - 1 = 0".$	• P_2 : " $(\forall x \in \mathbb{R})$: $x^2 + 3x + 7 < 0$ ".
• $P_3 : "(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) : x \le y".$	• $P_4 : "(\exists y \in \mathbb{R})(\forall x \in \mathbb{R}): x \leq y".$
• $P_5 : "(\forall y \in \mathbb{R})(\forall x \in \mathbb{R}) : x \leq y".$	• $P_6: "(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})": x \leq y".$

s Application 3:

Compléter le tableau suivant :

La proposition P	La négation $ar{P}$
$\bullet \qquad (\forall x \in \mathbb{R}) : x^2 + 2x + 1 \ge 0$	•
$\bullet \qquad (\forall x \in \mathbb{N}) : x^2 - 2x < 0$	•
• $(\forall x \in \mathbb{Q}): \sqrt{x} \notin \mathbb{Q}$	•

•	$(\exists x \in \mathbb{R}): x \in \mathbb{Q}$	•
•	$(\exists x \in \mathbb{N}) : x \text{ est pair}$	•
•	$(\exists x \in \mathbb{N})(\forall y \in \mathbb{N}): x \prec y$	•
•	$(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z}) : x - y = 3$	•
•	Tout triangle est rectangle	•
•	$(\forall x \in \mathbb{Q})(\forall y \in \mathbb{Z}): x \times y \in \mathbb{Z}$	•

Application D:

Déterminer la valeur de vérité de chacune des propositions suivantes :

- P_1 : (3 est impair) et (3 = 5).
- P_2 : $(4 \times 8 = 20)$ ou (10 est pair).
- P_3 : (9-3=6) et $(-1 \in \mathbb{Z})$.
- P_4 : $(-4 \in \mathbb{N})$ ou $(\forall x \in \mathbb{R}: x^2 + 1 > 0)$.

Application 5:

Nier les deux propositions suivantes :

- P: " $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$: $x \le y \text{ ou } x \ge y$ ".
- Q: " $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})$: $y^2 = x \text{ et } x > 0$ ".

Application ©:

- **1.** Soit $n \in \mathbb{N}$. Montrer que $n \ pair \implies n^2 \ pair$.
- **2.** Montrer que $(\forall x \in \mathbb{R}^+)$: $\left(\frac{1}{1+\sqrt{x}} = 1 \sqrt{x} \Longrightarrow x = 0\right)$.

Exercice 2:

Soient x et y de \mathbb{R} . Montrer que $1 + xy = x + y \Rightarrow x = 1$ ou y = 1.

Exercice 3:

- 1. Montrer que $(\forall x \in \mathbb{R})$: $3 \le x \le 5 \implies \frac{1}{4} \le \frac{1}{x-1} \le \frac{1}{2}$.
- **2.** a. Montrer que $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})$: $a^2 + b^2 = 0 \Rightarrow a = b = 0$.
 - **b.** En déduire $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+): x + y + 2 = 2\sqrt{x} + 2\sqrt{y} \Rightarrow x = y = 1.$

Application O:

Déterminer la valeur de vérité de chacune des propositions suivantes :

- P_1 : 3 est impair \Leftrightarrow 3 = 5.
- $P_2: 4 \times 8 = 20 \Leftrightarrow 10 \text{ est pair.}$
- $P_3: -1 \in \mathbb{Z} \Leftrightarrow 9-3=6$.
- $P_4: -4 \in \mathbb{N} \Leftrightarrow (\forall x \in \mathbb{R}): x^2 + 1 > 0.$

Application 8:

Montrer que les propositions suivantes sont des lois logiques :

- $P \Leftrightarrow \neg (\neg P)$
- $P \Rightarrow Q \Leftrightarrow \exists Q \Rightarrow \exists P$
- $\exists (P \Rightarrow Q) \Leftrightarrow P \ et \ \exists \ Q$
- $[(P \Rightarrow Q)et(Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$

Application 9:

Montrer que les propositions suivantes sont fausses :

- P_1 : " $(\forall x \in \mathbb{R})$: x + 1 = 2".
- P_2 : " $(\forall x \in \mathbb{R}^*)$: $x + \frac{1}{x} \ge 2$ ".
- $P_3: (\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+): \sqrt{a+b} = \sqrt{a} + \sqrt{b}$.

& Application OO:

- **1.** Montrer que : $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}) : a + b > 1 \implies a > \frac{1}{2}$ ou $b > \frac{1}{2}$.
- **2.** Montrer que : $(\forall x > 1)(\forall y > 1)$: $x \neq y \Longrightarrow \frac{x}{1+x^2} \neq \frac{y}{1+y^2}$.

Application ①①:

- 1. Montrer que : $(\forall x \neq -1)(\forall y \neq -1)$: $\frac{x}{1+x} = \frac{y}{1+y} \Leftrightarrow x = y$.
- **2.** Montrer, pour tout x de \mathbb{R}^+ , que $(\sqrt{2x+2}=1+\sqrt{x}) \Leftrightarrow (x=1)$.
- **3.** Montrer, pour tout x de $[1; +\infty[$, que $\frac{\sqrt{x-1}}{x} \le \frac{1}{2}$.

Exercice 9:

- 1. Soit x un réel. Montrer que : $\frac{2}{\sqrt{1+x^2}} = 1 \Leftrightarrow x = \sqrt{3}$ ou $x = -\sqrt{3}$.
- **2.** Montrer que pour tout x de \mathbb{R} : $|x-1| < \frac{1}{2} \Leftrightarrow \frac{2}{5} < \frac{1}{x+1} < \frac{2}{3}$.
- **3.** Soient $a \in [1; +\infty[$ et $b \in [4; +\infty[$. Montrer que $\sqrt{a-1} + 2\sqrt{b-4} = \frac{a+b}{2} \Leftrightarrow a=2$ et b=8.

Application OQ:

Soit $n \in IN$. Montrer que $n^2 + n$ est pair.

& Exercice O:

- 1. Montrer que $(\forall x \in \mathbb{R})$: $|x-1| \le x^2 x + 1$.
- 2. Soient x, y et z de \mathbb{R}_+^* tels que : $x + y + z < \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ et xyz > 1. Montrer que $x \neq 1, y \neq 1$ et $z \neq 1$.

■ Application ①③:

- **1.** Montrer que $(\forall n \in \mathbb{N}) : 2/5^n 3^n$.
- **2.** Montrer que $(\forall n \in \mathbb{N}) : 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$.
- **3.** Montrer que $(\forall n \in \mathbb{N}): 1+2+2^2+\ldots+2^n = 2^{n+1}-1.$