PATENT ABSTRACTS OF JAPAN

(11) Publication number: 04083300 A

(43) Date of publication of application: 17.03.92

(51) Int. CI

G10L 9/00

G10L 3/00

H03G 3/32

H04B 1/40

H04B 7/26

(21) Application number: 02198669

(22) Date of filing: 26.07.90

(71) Applicant:

KOKUSAI ELECTRIC CO LTD

(72) Inventor:

WATANABE OSAMU

(54) NOISE SUPPRESSION TYPE VOICE DETECTOR

(57) Abstract:

PURPOSE: To prevent malfunction in a voice detector due to the continuous execution of reverse filter processing by unappropriate coefficients even when misdecision is generated at the time of executing frequency area processing by forming plural reverse filters and successively using these filters.

CONSTITUTION: A filter coefficient updating part 16 updates a reverse filter coefficient 3F to an updating reverse filter coefficient 3D by a label 3G obtained by a frequency area processing part 14 only in the case of a noise frame, inputs the updated coefficient 3D to the 1st reverse filtering processing part 11, updates a reverse filter coefficient 3F preceding only by one frame to an updating reverse filter coefficient 3E, inputs the updated coefficient 3E to the 2nd reverse filtering processing part 12, and then outputs information 3L indicating the execution of updating or abort. When the reverse filter coefficient is not updated, the outputs of the two reverse filtering processing parts 11, 12 are alternately used. Thereby, even when misdecision is generated in frequency area processing, the suppression of voice power due to the

continuous execution of unappropriate reverse filtering processing can be prevented.

COPYRIGHT: (C)1992,JPO&Japio

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

庁内整理番号

(11)特許出願公告番号

特公平8-7596

(24) (44)公告日 平成8年(1996)1月29日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示箇所

G10L 9/14

F

請求項の数1(全 8 頁)

(21) 出願番号 特願平2-198669

(22)出願日

平成2年(1990)7月26日

(65)公開番号

特開平4-83300

(43)公開日

平成4年(1992)3月17日

(71)出願人 999999999

国際電気株式会社

東京都港区虎ノ門2丁目3番13号

(72) 発明者 渡辺 治

東京都西多摩郡羽村町神明台2-1-1

国際電気株式会社羽村工場内

(74)代理人 弁理士 大塚 学

審査官 山下 剛史

(56)参考文献 特開 昭62-150299 (JP, A) 特開 昭62-150300 (JP, A)

(54) 【発明の名称】 雑音抑圧型音声検出器

1

【特許請求の範囲】

【請求項1】入力信号が音声信号か否かを検知するために、該入力信号をブロック単位に周波数領域に変換して雑音フレームを検出し、該雑音フレームから導かれる線形予測係数を逆フィルタ係数とし該雑音フレームが検出される度にフィルタ係数更新部で更新して逆フィルタ処理部により前記入力信号エネルギーから雑音エネルギーを抑圧する逆フィルタ処理を行った後にフレーム単位に音声フレームか否かを検知する雑音抑圧型音声検出器において、

前記逆フィルタ処理部が複数個設けられ、

前記フィルタ係数更新部は、周波数領域処理に変換して 雑音フレームを検出したとき該雑音フレームから導かれ る線形予測係数を逆フィルタ係数として該雑音フレーム が検出される度に更新して前記複数の逆フィルタ処理部 2

の1つに与え、順次1つ前のフレームの逆フィルタ逆数を他の逆フィルタ処理部にそれぞれ与えるとともに、フレーム単位に更新の有無を示す更新情報を出力するように構成され、

前記フィルタ係数更新部からの更新情報に従って、更新があったときは前記複数の逆フィルタ処理部の1つの出力を取り込んで出力し、更新がないときは順次前のフレームの逆フィルタ処理が行われた逆フィルタ処理部の出力と前記逆フィルタ処理部の1つの出力とをフレーム単位に順次に取り込んで出力する逆フィルタ出力選択部を備えたことを特徴とする雑音抑圧型音声検出器。

【発明の詳細な説明】

(発明の属する技術分野)

携帯用無線通信機等において、音声入力のあるときの み送信部を動作させ音声入力のないときは雑音を検知し

て送信部への電力の供給を停止して消費電力を低減する 方法が採用されている。本発明は、このような装置に用 いられ入力信号から音声信号の有無を検知する音声検出 器に関するものである。

(従来技術とその問題点)

携帯型の小型無線機等では、消費電力を低減するため に、音声入力がある時のみ送信し音声がないときには送 信を断にするいわゆるVOX(Voice Operate Switch Exch enge) 制御が行われており、これによると送信時の平均 消費電力を約50%低減することができる。

このようなVOX機能を実現するためには、送信側にお いて、入力信号から音声信号の有無を検知する必要があ り、このような機能をもつ回路を音声検出器という。こ のような音声検出器には、入力信号が雑音か音声信号の いずれかを正確に判断する機能が求められる。

雑音と音声信号の差異は、これらの信号の周波数領域 で特徴づけられるスペクトラムの差として現れる。即 ち、雑音のスペクトラムは時間的な変動が比較的緩やか であり安定した周期性(ピッチ成分)をもたない。これ に対し、音声信号のスペクトラムは時間的な変動が比較 20 的速く、又、時間的な変動が緩やかであっても安定した 周期性 (ピッチ成分) をもっている。従って、これらの 差異に着目して雑音と音声信号を識別するために周波数 領域における処理が行われる。

一方、信号電力による雑音と音声信号の識別では、雑 音と音声信号が重畳したときは識別が困難になるが、こ れら重畳された雑音と音声信号のスペクトラムが違うこ とと、雑音のスペクトラムが比較的長時間に亘りあまり 変動しないことの2つを利用して、周波数領域において 雑音のみと判定されたときのスペクトラムをもとにした 30 線形予測分析フィルタ (以下逆フィルタという) によっ て、重畳している雑音のスペクトラム包絡情報を除去 (抑圧) した後に信号電力により音声信号の有無を判断 する方法がとられている。このような音声検出器を雑音 抑圧型音声検出器と呼んでいる。

第1図は従来の雑音抑圧型音声検出器の構成例を示す ブロック図である。図において、周波数領域処理部2 は、連続するある一定のブロック (通常20msが選ばれ る) に区切られた入力信号(1A) を受けとり、このブロ ック(以下フレームと言い換える)単位すなわちフレー ムの単位にスペクトラム包絡情報を得る。そして、この スペクトラム包絡情報を連続する2つのフレーム間で比 較し変化の度合を調べる。変化が小さいときは雑音又は 有声音と判断する。すなわち、有声音の場合には信号の 相関性が高いため、同時に計算される自己相関係数が大 きいことにより音声と判断し、それ以外のフレームをこ こでは雑音フレームと判断する。その結果に従って入力 信号の各フレームに音声又は雑音のいずれかを示すラベ ル (1C) を付けて出力する。

レームに対して線形予測(LPC:Linear Predictive Codi ng)分析を行ってLPC係数を算出し逆フィルタ係数(1 B)として出力する。

フィルタ係数更新部4は、前記で得たラベル(1C)に より雑音フレームのときにのみ逆フィルタ係数(1B)を 更新用逆フィルタ係数 (1D) に更新して出力し逆フィル タ処理部3に入力する。

逆フィルタ処理部3では、逆フィルタ係数(1D)を取 り入れて入力信号 (1A) を逆フィルタに入力し逆フィル 10 夕が有するスペクトラム包絡情報を除去する逆フィルタ 処理を施し、各フレームのパワー(IE)を計算して出力

電力閾値適応部6では、前記レベル(1C)により雑音 フレーム時の逆フィルタ出力パワー (1E) を参考にして 適応させた閾値(1F)を出力する。

電力判定部5は、先に算出した逆フィルタ出力パワー (1E) と閾値 (1F) とを比較し、音声信号の有無情報

(1G) を出力する。更に、ハングオーバ処理部7によっ て音声フレーズ中のクリップを防止するためハングオー バー処理を施し、音声検出器の出力(1H)を得る。

しかし、前記従来の方法では、その中で使用される周 波数領域処理の精度に限界があり、たびたび音声か雑音 かを判定したラベル (1C) に誤りが生じることは避けら れない。

第2図は第1図の回路の各部の信号波形を示すタイム チャートである。図において、フレームNo.6の入力信号 に対し、周波数領域処理において判定されたラベル(L C) に誤りが生じている。しかし、実際にフレームNo.6 の逆フィルタ処理部3の入力に対する逆フィルタ係数と して、フィルタ係数更新部4によって前回係数更新され たフィルタ係数即ちフレームNo.2の係数(B2)が使用さ れるため逆フィルタ処理後の出力波形(1E)は雑音のみ を抑圧した波形となっている。ところが、逆フィルタ処 理部3で計算された当該フレームのパワーが直前の音声 フレームと比較してかなり小さいため電力判定結果(1 G) は無声であると誤判定を行っている。しかし、ハン グオーバー処理により音声検出器出力(1H)は正確な判 断結果となる。

次に、フレームNo.9の周波数領域処理に誤りが生じ音 声有のラベルを出力すべきところ雑音ラベルが出力され たときを考える。この場合、次フレームのNo.10からNo. 13まで逆フィルタ処理部 3 で参照する係数(1D)として 音声フレームNo.9の逆フィルタ係数(B3)が使用される ことになり、音韻が変化するか若しくは新しい係数が更 新されない限りその間逆フィルタ処理部3において音声 信号のエネルギーが抑圧されることになり、フレームN o.10~12の逆フィルタ処理後の出力波形(1E) は音声信 号の線形予測残差波形となる。従って、電力判定部5の 出力(1G)はフレームNo.10~13において音声信号のパ 逆フィルタ係数算出部1では、入力信号(1A)の各フ 50 ワーが抑圧され無声であるとの誤判定が起こる。このと

10

き、最終的な音声検出器の出力(1H)も第2図に示すよ うに無声と判断された出力となってしまう。

以上のように、従来の方法では、音声フレームを誤っ て雑音と誤判定されたとき、逆フィルタ処理部3に対し て音声フレームのフィルタ係数がある期間に亘り連続し て与えられるため、雑音エネルギーが抑圧されるべきと ころ音声エネルギーが抑圧されて音声検出器の出力(1 H) が無声となる誤判断が発生するという欠点があり、 そのため有声のときに送信が断になってしまうという問 題を生じていた。

(発明の目的)

本発明は、前記従来の方法において生ずる音声検出器 の誤動作を防止し、送信すべき音声信号の欠落を軽減す るとともに、より正確な信頼性の高い雑音抑圧型音声検 出器を提供することが目的である。

(発明の構成及び作用)

前記目的を達成するために、本発明の雑音抑圧型音声 検出器は、複数個の逆フィルタ(線形予測分析フィル タ)を設けて順次使用することにより、周波数領域処理 の際に誤判定が生じてもそのために連続して不適当な係 20 数による逆フィルタ処理が行われることによる音声検出 器の誤動作を防止するようにしたことを特徴とするもの

第3図は、本発明の雑音抑圧型音声検出器の一構成例 を示すブロック図である。この構成例では2個の逆フィ ルタ処理部を設けた場合の実施例である。図において、 周波数領域処理部14は、従来技術同様に連続するある一 定のブロックに区切られた入力信号 (3A) を受けとり、 ブロック (以下フレームと言い換える) 毎に音声信号か 雑音かのラベル (3G) をつけて出力する。逆フィルタ係 30 数算出部13も、従来技術同様入力信号(3A)の各フレー ムに対するLPC係数を算出し、これを逆フィルタ係数(3 F) として出力する。

フィルタ係数更新部16は、前記で得たラベル(3G)に より雑音フレームのときにのみ逆フィルタ係数(3F)を 更新用逆フィルタ係数 (3D) に更新して第1の逆フィル タ処理部11に入力し、又、1フレーム前の逆フィルタ係 数(1フレーム前の3F)を更新用逆フィルタ係数(3E) に更新して第2の逆フィルタ処理部12にそれぞれ入力す るとともに、更新を行っているか停止しているかの情報 (3L) を出力する。

第1の逆フィルタ処理部11と第2の逆フィルタ処理部 12では、逆フィルタ係数更新部16からの更新用逆フィル タ係数 (3D) と (3E) をそれぞれ取り入れて入力信号 (3A) を逆フィルタ処理して雑音を抑圧し各フレームの 電力 (3B) と (3C) をそれぞれ計算して出力する。

逆フィルタ出力選択部15は、フィルタ係数の更新情報 (3L) に従って、更新があった場合には第1の逆フィル タ処理部11の出力(3B)を取り込み、更新がない場合に は第1の逆フィルタ処理部11の出力(3B)と第2の逆フ 50 個設けて順次用いることにより、周波数領域処理におい

ィルタ処理部12の出力(3C)とを交互に取り込む、さら に、更新があった場合から更新がない場合に変化したと きは、第2の逆フィルタ処理部12の出力(3C)を取り込 む。第5図は、逆フィルタ出力選択部15の上述の動作フ

電力閾値適応部18では、従来技術同様、前記ラベル (3G) により雑音フレーム時の選択後の逆フィルタ出力 パワー (3H) を参考にして適応させた閾値 (3I) を出力 する。

ローを示すフローチャートである。

電力判定部17は、先に得た選択後の逆フィルタ出力パ ワー (3H) と閾値 (3I) とを比較し音声の有無情報 (3 J)を出力する。ハングオーバ処理部19は、この音声の 有無情報(3J)に対し、音声フレーズ中のクリップを防 止することと不適当なフィルタ係数による電力判定部17 の誤判定をおぎなうために、本発明によって設けられた 複数個の逆フィルタ処理部の数をN(第3図の実施例で はN=2)とすれば、[N-1]以上のフレームに亘っ てハングオーバー処理を実施し、最終的な音声検出器の 出力(3K)を得る。

次に、第4図は第3図に示した本発明の実施例の動作 例を示すタイムチャートである。第4図によって、フレ ームNo.9の出力ラベル (3G) に誤りが生じたときにその 誤りを補正する動作に着目して説明する。

第2図によって説明した従来方法では、フレームNo.1 0~13まで音声フレームの逆フィルタ係数(F9)が使用 されるが、本発明では、逆フィルタ係数の更新が停止し た場合、フレームNo.11に対しては第1の逆フィルタ処 理部11の出力(3B)(すなわちF9)から第2の逆フィル タ処理部12の出力(3C)(すなわちF8)に切替えて電力 判定が行われ、次のフレームNo.12に対しては、第1の 逆フィルタ処理部11の出力(3B)(すなわちF9)に戻っ て判定が行われる。このように、逆フィルタ係数の更新 がない場合に、2つの逆フィルタ処理部11,12の出力を 交互に使用することにより、一方の逆フィルタ処理部に 不適当な係数が記憶された場合も他方の逆フィルタ処理 部により計算された出力が選択されるため、1フレーム おきに計算された正常な音声エネルギー(3J)が出力さ れる (フレーム**No.11,13**) ので、連続的な電力判定誤り を防止することができる。このとき、ハングオーバー処 理を逆フィルタ処理部の数をNとしたとき [N-1] 以 上のフレーム(第4図では1フレーム)として行ってい るので音声検出器出力(3K)では、電力判定誤りを補っ てより正確な検出器出力を実現していることがわかる。

以上は逆フィルタ部11,12の2個の場合について説明 したが、3個以上の場合も同様に構成することができ る。

(発明の効果)

以上詳細に説明したように、本発明によれば、入力信 号の雑音エネルギーを抑圧するための逆フィルタを複数 7

て誤判定が生じても、連続して不適当な逆フィルタ処理 がなされて音声パワーを抑圧してしまうことによる誤動 作を防止し、送信すべき音声信号の欠落を軽減すること ができるという大きい効果が得られる。

【図面の簡単な説明】

第1図は従来の構成を示すブロック図、第2図は第1図 の構成による動作例を示すタイムチャート、第3図は本 発明の実施例を示すブロック図、第4図は本発明の実施 例の動作を示すタイムチャート、第5図は本発明の一部 の回路の動作フローチャートである。

1,13……逆フィルタ係数算出部、2,14……周波数領域処理部、3,11,12……逆フィルタ処理部、4,16……フィルタ係数更新部、5,17……電力判定部、6,18……電力関値適応部、7,19……ハングオーバー処理部、15……逆フィルタ出力選択部。

【第2図】

【第1図】

【第3図】

【第4図】

【第5図】 START 係数の更新あり? N 前フレームで 逆スルク処理部 II の出力を 運択したか? 进プルタ処理部11 逆ブルタ処理部 12 の出力を選択 の出力を選択 END

特 許 公告番号	分	類	識別 記号	個所	誤	正
平 7- 86599	G02B	27/28	•	出願人住所	東京都目黒区中目黒2丁目3番12号	茨城県つくば市千現一丁目 2 番 1 号
平 7- 95170	G02F	1/155		代理人	代理人 弁理士 門多 透	削除
平 7-104444	G02B	5/18		代理人	代理人 弁理士 本多 堅	削除
平 8- 3566	C02B	6/24		出願人名称 目次とも	エヌ・ペー・フィリップス・ フルーイラン ペンファブリ ケン	フィリップス エレクトロニ クス ネムローゼ フェンノ ートシャブ
平 8- 3586	G02F	1/1337	5 2 0	出願人名称 目次とも	エヌ・ベー・フィリップス・ フルーイラン ペンファプリ ケン	フィリップス エレクトロニ クス ネムローゼ フェンノ ートシャプ
♥ 8- 3704	G09G	5/22	640	出願人名称 目次とも	エヌ・ベー・フィリップス・ フルーイラン ペンファプリ ケン	フィリップス エレクトロニ クス ネムローゼ フェンノ ートシャプ
平 8- 7596	G10 L	9/14		出願人住所	東京都港区虎ノ門 2 丁目 3 番 13号	東京都中野区東中野 3 丁目14 番20号
平 8- 12392	G03C	1/04	5 0 1	出願人名称 目次とも	ミネソタ マイニング アンド マニユフアクチユアリン グコンパニー	ミネソタ マイニング アンド マニユフアクチユアリン グカンパニー
¥ 8− 16741	G02C	7/04		出願人名称 目次とも	ピルキントン ビジョンケア インコーポレイテッド	ピルキントン バンズ ハイ ンド インコーポレイテッド