2011 年全国硕士研究生招生考试试题

一、选择题(本题共8小题	,每小题 4 分,共 32 分.	在每小题给出的四个说	选项中,只有一项符合题目
要求,把所选项前的字	母填在题后的括号内.)		
(1) 曲线 $y = (x-1)(x-2)$			
(A)(1,0).	(B)(2,0).	(C)(3,0).	(D)(4,0).
(2) 设数列 $\{a_n\}$ 单调减少。	$\lim_{n\to\infty} a_n = 0, S_n = \sum_{k=1}^n a_k$	n = 1,2,…) 无界,则幂	E级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 的收
敛域为()			
	(B)[-1,1).		
(3)设函数 $f(x)$ 具有二阶: 得极小值的一个充分给		f'(0) = 0,则函数 $z = f($	$(x) \ln f(y)$ 在点(0,0) 处取
(A)f(0) > 1, f''(0) >		(B)f(0) > 1, f''(0) <	
(C)f(0) < 1, f''(0) >	· 0 .	(D)f(0) < 1, f''(0)	< 0.
$(4) \stackrel{\sim}{\mathcal{U}} I = \int_0^{\frac{\pi}{4}} \ln(\sin x) \mathrm{d}x,$	$J = \int_0^{\frac{\pi}{4}} \ln(\cot x) \mathrm{d}x, K =$	$= \int_0^{\frac{\pi}{4}} \ln(\cos x) \mathrm{d}x, \mathbb{M} I, J$,K的大小关系为()
(A)I < J < K.	$(\mathbf{B}) I < K < J.$	(C)J < I < K.	(D)K < J < I.
(5)设 A 为 3 阶矩阵,将 A	1的第2列加到第1列	得矩阵 B , 再交换 B 的	第2行与第3行得单位矩
$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$		
阵. 记 $P_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$, \mathbf{P}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, 风 A =$	= ()	
$(A) P_1 P_2.$	(B) $P_1^{-1}P_2$.	$(C) P_2 P_1$.	$(D) P_2 P_1^{-1}$.
(6) $\overset{n}{\bowtie}$ $A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$	是4阶矩阵, A^* 为 A 的	的伴随矩阵. 若(1,0,1,0	$(0)^{\mathrm{T}}$ 是方程组 $Ax = 0$ 的一
个基础解系,则 $A^*x=$:0 的基础解系可为()	
$(A) \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3.$	$(B)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2.$	$(C)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3.$	$(D)\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4.$
(7) 设 $F_1(x)$ 与 $F_2(x)$ 为两	两个分布函数,其相应的	概率密度 $f_1(x)$ 与 $f_2(x)$)是连续函数,则必为概率
密度的是()			
$(A)f_1(x)f_2(x).$		$(B)2f_2(x)F_1(x).$	
$(C)f_1(x)F_2(x).$		(D) $f_1(x)F_2(x) + f_2($	$(x)F_1(x).$
(8)设随机变量 X 与 Y 相	目互独立,且 $E(X)$ 与 E	$U(Y)$ 存在,记 $U = \max\{$	X,Y }, $V = \min\{X,Y\}$,则
E(UV) = ()			
$(A)E(U) \cdot E(V).$		$(B)E(X) \cdot E(Y).$	
$(C)E(U) \cdot E(Y).$		$(D)E(X) \cdot E(V).$	
二、填空题(本题共6小题	,每小题 4 分,共 24 分,	把答案填在题中横线上	<u>.</u>)

淘宝店铺: 筑梦教育

(9) 曲线 $y = \int_0^x \tan t dt (0 \le x \le \frac{\pi}{4})$ 的弧长 $s = \underline{\qquad}_{33}$

(10) 微分方程 $y' + y = e^{-x} \cos x$ 满足条件 y(0) = 0 的解为 $y = _____.$

(11) 设函数
$$F(x,y) = \int_0^{xy} \frac{\sin t}{1+t^2} dt$$
,则 $\frac{\partial^2 F}{\partial x^2} \Big|_{\substack{x=0\\ y=2}} = \underline{\qquad}$

- (12)设 L 是柱面 $x^2 + y^2 = 1$ 与平面 z = x + y 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则 曲线积分 $\oint_L xz dx + x dy + \frac{y^2}{2} dz = _____.$
- (13) 若二次曲面的方程 $x^2 + 3y^2 + z^2 + 2axy + 2xz + 2yz = 4$ 经正交变换化为 $y_1^2 + 4z_1^2 = 4$,则 a = .
- (14)设二维随机变量(X,Y)服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2) = ____.$

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

求极限
$$\lim_{x\to 0} \left[\frac{\ln(1+x)}{x}\right]^{\frac{1}{e^x-1}}$$
.

(16)(本题满分9分)

设函数 z = f(xy, yg(x)),其中函数 f 具有二阶连续偏导数,函数 g(x) 可导,且在 x = 1 处取得极值 g(1) = 1. 求 $\frac{\partial^2 z}{\partial x \partial y} \Big|_{\substack{x = 1 \ y = 1}}$.

34

(17)(本题满分10分)

求方程 $k \arctan x - x = 0$ 不同实根的个数,其中 k 为参数.

淘宝店铺:筑梦教育

(18)(本题满分10分)

(I)证明:对任意的正整数 n,都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$ 成立;

(II) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n (n = 1, 2, \dots)$,证明数列 $\{a_n\}$ 收敛.

(19)(本题满分11分)

已知函数 f(x,y) 具有二阶连续偏导数,且 f(1,y) = 0, f(x,1) = 0, $\iint_D f(x,y) \, dx dy = a$,其中 $D = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$,计算二重积分 $I = \iint_D xy f''_{xy}(x,y) \, dx dy$.

(20)(本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1,0,1)^T$, $\boldsymbol{\alpha}_2 = (0,1,1)^T$, $\boldsymbol{\alpha}_3 = (1,3,5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1,1,1)^T$, $\boldsymbol{\beta}_2 = (1,2,3)^T$, $\boldsymbol{\beta}_3 = (3,4,a)^T$ 线性表示.

35

(I)求 a 的值;

(II)将 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 用 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$,线性表示.

淘宝店铺:筑梦教育

(21)(本题满分11分)

设A为3阶实对称矩阵,A的秩为2,且

$$A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

- (I)求 A 的所有特征值与特征向量;
- (Ⅱ)求矩阵 A.

(22)(本题满分11分)

设随机变量 X 与 Y 的概率分布分别为

\overline{X}	0	1	
P	$\frac{1}{3}$	$\frac{2}{3}$	_,

\overline{Y}	-1	0	1
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

- (I)求二维随机变量(X,Y)的概率分布;
- (II)求Z = XY的概率分布;
- (Ⅲ) 求 X 与 Y 的相关系数 ρ_{XY} .

(23)(本题满分11分)

设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本,其中 μ_0 已知, $\sigma^2 > 0$ 未知, \overline{X} 和 S^2 分别表示样本均值和样本方差.

36

- (I)求参数 σ^2 的最大似然估计 $\hat{\sigma^2}$;

淘宝店铺:筑梦教育