Division: $d \mid \iff \exists c \text{ such that } a = cd$ **Upshot**: Any common divisor of a, b divides any linear combination of a, b

Euclid's Theorem: There are an infinite number of primes Division Algorithm: a = bq + r for $0 \le r < b$

Bezout's Identity: gcd(a,b) = ax + by **Upshot**: Any common divisor of a,b divides gcd(a,b)

Euclidean Algorithm:

$$a = q_1b + r_1$$
 $0 < r_1 < b$
 $b = q_2b + r_2$ $0 < r_2 < r_1$
...
 $r_{n-2} = q_n r_{n-1} + 0$

Mersenne Number: $2^n - 1$ n composite $\implies 2^n - 1$ composite

Fermat Number: $2^{2^n} + 1$ m not a power of $2 \implies 2^m + 1$ is composite

- **2.13**: Find all n such that $n^2 n$ is prime
 - $n^2 n = n(n-1)$. One of these factors needs to be $1, -1 \implies n = -1, 2$
- **2.20**: Suppose $a \mid b$ and $b \mid a$. Show that $a = \pm b$
 - a = bk $b = al \implies a = alk \implies lk = 1 \implies l = k = \pm 1 \implies a = \pm b$
- 2.25: Find all primes that can be written as a difference of squares. Same for fourth powers.
 - $p=(a-b)(a+b) \implies a-b=1 \implies a+b=2b+1$, which is an odd number. Thus p is an odd prime
 - $p = (a^2 b^2)(a + b) \implies (a b) = (a + b) \implies a = 1, b = 0 \implies p = a^4 + b^4 = 1 \implies \text{no primes}$
- **2.26**: Show that $pn + 1 \le p_1 p_2 \cdots p_n + 1$
 - Let $N = p_1 p_2 \cdots p_n + 1$, then we have $p_{n+1} \leq p \leq N$ since no p_i divides N for $1 \leq i \leq n$
- **2.45**: Find all *n* such that $n + 1 | n^2 + 1$
 - Need $n+1 \mid (n+1)(n-1)+2 \implies n+1 \mid 2 \implies n \in \{-3, -2, 0, 1\}$
- **2.46**: Find all *n* such that $n + 1 | n^3 1$
 - Need $n+1 \mid n^3+1-2 \implies n+1 \mid 2 \implies n \in \{-3, -2, 0, 1\}$
- **2.52**: If gcd(a, b) = 1, show that gcd(a + b, a b) = 1 or 2
 - $gcd(2a, 2b) = 2 gcd(a, b) \implies$. Any common divisor of a + b, a b divides 2a, 2b
- **2.84**: If $a^n 1$ is prime, show that a = 2 and n is prime
 - A factor of $a^n 1$ is $a 1 \implies a = 2$. By contraposition, suppose n is not prime, then $a^n 1$ is not prime
- **2.85**: If $a^{n} + 1$ is prime, show that $n = 2^{k}$
 - BWOC, suppose $n = 2^k b$, then $(a^b + 1) \mid a^n + 1$. Contradiction

Linear Diophantine: ax + by = c has a solution if and only if $gcd(a,b) \mid c$ solutions: $x = x_0 + \frac{b}{d}t$ $y = y_0 - \frac{a}{d}t$

- 1. Verify $gcd(a,b) \mid c$. If yes, divide by d, then a'x + b'y = c' where gcd(a',b') = 1
- 2. Use Extended Euclidean Algorithm to find solution a'x + b'y = 1 and multiply solution by c'
- 3. General solution is $(x_0 + \frac{b}{d}t, y_0 \frac{a}{d}t)$

Note: No solutions to ax + by = ab - a - b Always solutions to ax + by = ab - a - b

Proposition: For a prime $p, p \mid ab \implies p \mid a$ or $p \mid b$

• Take $d = \gcd(a, p)$. If $d = a \implies p \mid a$. Otherwise $d = 1 \implies 1 = ax + py \implies b = abx + pby \implies p \mid b$

Unique Factorization Theorem: For any positive integer n > 1, it is prime or it can be written as a unique product of primes

- Upshot: $a \mid b \iff a_p \leq b_p$ for exponents
- Upshot: gcd(a,b) consists of exponents with $min(a_p,b_p)$ and lcm(a,b) consists of exponents with $max(a_p,b_p)$

- **4.8**: Show that $\log_{10}(p)$ is irrational
 - BWOC, suppose $\log_{10}(p) = \frac{a}{b} \implies p^b = 10^a = 2^a 5^a$. If $p = 2 \implies$ no factors of 5. If p is odd \implies no factors of 2
- **4.11**: Show that $a^n \mid b^n \implies a \mid b$. Show $a^m \mid b^n$ and $m \ge n \implies a \mid b$. Find example $a^m \mid b^n$ and n > m and $a \nmid b$
 - $a^n \mid b^n \implies na_i \le nb_i \implies a_i \le b_i \implies a \mid b$
 - $a^m \mid b^n \implies ma_i \leq nb_i \implies a_i \leq b_i \text{ since } m \geq n \implies a \mid b$
 - Let $a = 4, b = 6, m = 1, n = 2 \implies 4^1 \mid 6^2 \text{ but } 4 \nmid 6$
- **4.12**: Show that $gcd(a^n, b^n) = gcd(a, b)^n$
 - gcd(a,b) has exponents $min(a_i,b_i) \implies gcd(a^n,b^n)$ has exponents $n min(a_i,b_i) \implies gcd(a^n,b^n) = gcd(a,b)^n$
- **4.17**: Find p such that 3p + 1 is a square. 5p + 1 is a square. 29p + 1 is a square
 - $3p+1 \implies 3p = (n+1)(n-1) \implies n-1=3 \implies n=4 \implies p=5$
 - $5p = (n+1)(n-1) \implies 5 = n-1 \implies n = 6 \implies p = 6 \text{ or } 5 = n+1 \implies n = 4 \implies p = 3$
 - $29p = (n+1)(n-1) \implies 29 = n-1 \implies n = 30 \implies p = 31$

Supplementary 8: Show that (p,q) are twin primes $\iff pq+1$ is a square of an integer

- $\implies q = p + 2 \implies pq + 1 = p + 2p + 1 = (p + 1)^2$
- \iff $n^2 = pq + 1 \implies = pq = (n+1)(n-1)$ by UPF, p = n-1, q = n+1

Rational Root Theorem: All rational roots $\frac{u}{v}$ are of the form $u \mid a_0$ and $v \mid a_n$

Proposition: Odd square if 1 (mod 8) and even square is 0 (mod 4)

Primitive Pythagorean Triple: $a^2 + b^2 = c^2$ where a, c are odd and b is even

• $a = n^2 - m^2$ b = 2mn $c = m^2 + n^2$ where m, n are relatively prime and one is odd and one is even

Proposition: Difference of Squares $\iff m \text{ is odd or } m \equiv 0 \pmod{4}$

• Factor m into same parity factors $\implies x = \frac{u+v}{2}$ $y = \frac{u-v}{2}$

Prime Factorizations of Factorials: $n! = p^b c$ and $p \nmid c \implies b = \lfloor \frac{n}{n} \rfloor + \lfloor \frac{n}{n} \rfloor + \cdots$

Riemann Zeta Function: $\zeta(s) = \sum_{=1}^{\infty} \frac{1}{n^s} = \prod (1-p^{-1})^{-1}$

- **5.1.b**: Find an integer n such that n/2 is a square, n/3 is a cube, n/5 is a fifth power
 - a-1 is even, b-1 is a multiple of 3, c-1 is a multiple of b=10, c=6

Congruence: $a \equiv b \pmod{m} \iff m \mid a - b \iff a = b + km$

- $\bullet \ \gcd(c,m) = 1 \implies ac = bc \ (\bmod \ m) \implies a \equiv b \ (\bmod \ m) \qquad \gcd(c,m) = d \implies ac \equiv bc \ (\bmod \ m) \implies a \equiv b \ (\bmod \ \frac{m}{d})$
- $x^2 \equiv 1 \pmod{p} \implies x \equiv \pm 1 \pmod{p}$

Divisibility Tests: $a \equiv a_0 \pmod{2, 5, 10}$ $a \equiv \sum a_i \pmod{3, 9}$ $a \equiv \sum (-1)^i a_i \pmod{11}$

Linear Congruence: $ax \equiv b \pmod{m}$ has a solution $\iff d = \gcd(a, b) \mid b \pmod{ax - mk} = b$

- Solutions are of the form $x = x_0 + \frac{m}{d}k$ for $0 \le k \le d$ and has d solutions
- **Upshot**: a has an inverse mod $m \iff \gcd(a, m) = 1$

Chinese Remainder Theorem: Let m_1, \ldots, m_r be pairwise relatively prime, then the system $x \equiv a_i \pmod{m_i}$ has a unique solution $x \mod m_1 \cdots m_r$

- Take the largest modulus and then plug into the other equations
- Can also be used to breakdown a congruence into a system of equation

Example: $x^2 \equiv 1 \pmod{275} = 5^2 * 11$) can be broken down into

$$x^2 \equiv 1 \pmod{25} \implies x \equiv 1, 24 \pmod{25}$$

$$x^2 \equiv 1 \pmod{11} \implies x \equiv 1,10 \pmod{11}$$

Thus solutions are of the form

$$x \equiv 1 \pmod{25}$$
 $x \equiv 1 \pmod{11}$ $\Longrightarrow x \equiv 1 \pmod{275}$
 $x \equiv 1 \pmod{25}$ $x \equiv 10 \pmod{11}$ $\Longrightarrow x \equiv 76 \pmod{275}$
 $x \equiv 24 \pmod{25}$ $x \equiv 1 \pmod{11}$ $\Longrightarrow x \equiv 199 \pmod{275}$
 $x \equiv 24 \pmod{25}$ $x \equiv 10 \pmod{11}$ $\Longrightarrow x \equiv 274 \pmod{275}$

Thus the solutions are $x \equiv \{1, 76, 199, 274\} \pmod{275}$

Fractions mod m: $\frac{a}{b} \pmod{m} = a(b^{-1}) \pmod{m}$ works if and only if $\gcd(b, m) = 1$

- **6.21d**: If $a \equiv b \pmod{n}$ for every positive n, then a = b
 - a = bk and $b = al \implies a = alk \implies lk = 1 \implies a = b$
- **6.56**: Solve $3x \equiv 8 \pmod{11}$ $6x \equiv 7 \pmod{9}$ $4x \equiv 12 \pmod{32}$
 - $x \equiv 10 \pmod{11}$ No solution since $\gcd(6,9) \nmid 7$ $x \equiv 3 \pmod{8}$
- **6.69**: Show that $x^2 2y^2 = 10$ has no integer solutions
 - $x^2 \equiv 2y^2 \pmod{5} \implies x, y \equiv 0 \pmod{5}$ (by case analysis). Thus $x^2 2y^2 = 25k^2 50l^2 = 10 \implies$ no solutions
- **6.74**: Solve the system $3x \equiv 2 \pmod{5}$ $4x \equiv 3 \pmod{7}$ $x \equiv 2 \pmod{11}$
 - $x = 4 + 11k \equiv 6 \pmod{7} \implies k \equiv 4 \pmod{7} \implies x = 4 + 11(4 + 7l) = 48 + 77l \equiv 4 \equiv \pmod{5} \implies l \equiv 3 \pmod{5}$ Thus $x = 244 - 385m \implies x \equiv 244 \pmod{385}$

Proposition: $(x+y)^p \equiv x^p + y^p \pmod{p}$

Proposition: For $b \not\equiv 0 \pmod{p}$, $\{b, 2b, \dots, (p-1)b\} \pmod{p}$ contains each unique class mod p

Fermat Theorem: $\forall b \in Z, b^p - b \equiv 0 \pmod{p}$ and $b \not\equiv 0 \pmod{p} \implies b^{p-1} \equiv 1 \pmod{p}$

- Corollary: $x \equiv y \pmod{p-1} \implies b^{\equiv}b^y \pmod{p}$
- Fermat Prime Test: For odd n and $b \not\equiv 0 \pmod{n}, b^{n-1} \not\equiv 1 \pmod{n} \implies n$ is NOT prime

Euler Phi Function: $\phi(n) = \prod_{i=1}^r (p_1^{a_i} - p_i^{a_i-1}) = n \prod_{p|n} (1 - \frac{1}{p})$

Euler Theorem: For gcd(b, n) = 1, $b^{\phi(n)} \equiv 1 \pmod{n}$

• Corollary: $x \equiv y \pmod{\phi(n)} \implies b^x \equiv b^y \pmod{n}$

Wilson Theorem: $(p-1)! \equiv -1 \pmod{p}$

- Pair inverses together and get left with $1(p-1) \equiv -1 \pmod{p}$
- Corollary: n is prime $\iff (n-1)! \equiv -1 \pmod{n}$
- **8.20**: Show that $n^{17} n \equiv 0 \pmod{510}$ for all integers n
 - For all prime factors of n, we have that $n^{17} n \equiv 0 \pmod{p} \implies n^{17} n \equiv 0 \pmod{510}$ by unique factorization theorem
- **8.42**: Show that $p \mid n \implies p-1 \mid \phi(n)$. Show that there is no integer solutions to $\phi(n) = 26$
 - Looking at the expansion of $\phi(n)$, we see that $p-1 \mid \phi(n)$
 - Divisors of 26 are $\{1, 2, 13, 26\}$ and thus possible prime divisors of n are 2, 3 but there's no way to get a factor of 13
- **8.48**: Prove or give a counterexample: $d \mid n \implies \phi(d) \mid \phi(n) \qquad \phi(d) \mid \phi(n) \implies d \mid n \implies \phi(dn) = d\phi(n)$
 - True: $p^{a_i} p^{a_i-1}$, we can pull out the necessary products from $\phi(n)$ to create $\phi(d) \implies \phi(d) \mid \phi(n)$
 - False: $\phi(3) \mid \phi(4)$ but $3 \nmid 4$
 - True: $\phi(dn)$ can extract a d factor out of this and the remaining still has $\phi(n)$
- **8.62**: Let $n \neq 4$ be composite and show that $(n-1)! \equiv 0 \pmod{n}$
 - n = ab. If 1 < a < b < n, then (n-1)! contains $a, b \implies n \mid (n-1)!$
 - Otherwise $b = n/b \implies (n-1)!$ contains $b, 2b \implies b^2 = n \mid (n-1)$

8.63: Let x = ((p-1)/2)!, show that $-1 \equiv (-1)^{(p-1)/2}x^2 \pmod{p}$

•
$$(p-1)! = (1(p-1))(2(p-2))\cdots((p-1)/2))((p+1)/2) \implies -1$$

Supplementary 14: Show that for odd n, $\phi(2n) = \phi(n)$ and for even n, $\phi(2n) = 2\phi(n)$

• $\phi(2n) = \phi(2)\phi(n) = \phi(n)$

• Let
$$n = 2^k m \implies \phi(2n) = \phi(2^{k+1})\phi(m) = 2^k \phi(m) = 2 * \phi(2^k)\phi(m) = 2\phi(n)$$

Shift Cipher: $x \to x + k \pmod{26}$ Affine Cipher: $x \to ax + b \pmod{26}$, $\gcd(a, 26) = 1$

RSA Setup:

- Alice chooses n = pq $\phi(n) = (p-1)(q-1)$ e such that $\gcd(e, \phi(n)) = 1$ d such that $ed \equiv 1 \pmod{\phi(n)}$
- Bob sends $c = m^e \pmod{n}$
- Alice decrypts $m = c^d \pmod{n}$
- **9.19**: Alice uses (e_1, n) and (e_2, n) for RSA set up. Show that Eve can crack the message knowing m^{e_1} and m^{e_2}
 - Eve can calculate $m^{e_1x+e_2y} \equiv m \pmod{p}$ since we can find x, y such that $e_1x+e_2y=1$
- **9.23**: Suppose Eve computes $c_1 \equiv 123^e c \pmod{n}$ and gives alice c_1 who decrypts it to m_1 . How can Eve recover m from m_1 ?
 - Eve calculates $(123^e c)^d \equiv m \pmod{n}$

Supplementary 26: For affine cipher $x \to ax + b \pmod{6}$, prove that if b is odd, then no letter will be encrypted to itself

• BWOC, suppose that a letter encrypts to itself and suppose x is even, then b must be even. Contradiction

Order: $m = \operatorname{ord}_n(a) \implies a^m \equiv 1 \pmod{n}$ Always exists since by Euler's Theorem, $a^{\phi(n)} \equiv 1 \pmod{n}$

Theorem: For $gcd(a, n) = 1, a^k \equiv 1 \pmod{n} \iff ord_n(a) \mid k$

- \implies Let $m = \operatorname{ord}_n(a)$, then $k = qm + r \implies a^{qm+r} \equiv a^r \equiv 1 \pmod{n} \implies r = 0$. Thus $\operatorname{ord}_n(a) \mid k$
- $\iff a^{ml} \equiv 1 \pmod{p}$

Fermat Prime Proposition: $p \mid F_n \implies p \equiv 1 \pmod{2^{n+2}}$

Mersenne Prime Proposition: $q \mid M - n \implies q \equiv 1 \pmod{p}$

Primitive Root: $\operatorname{ord}_p(g) = p - 1 \implies g$ is a primitive root

• gcd(g,p) = 1 means that g is a primitive root \iff every non-zero mod p is equivalent to a power of $g \mod p$

Proposition: For primitive root g and odd p, $g^{(p-1)/2} \equiv -1 \pmod{p}$

• By Fermat, $g^{p-1} \equiv 1 \pmod{p} \implies g^{(p-1)/2} \equiv \pm \pmod{p}$. Cannot be the former because g is a primitive root

Proposition: For $m = \operatorname{ord}_n(x), \operatorname{ord}_n(x^i) = \frac{m}{\gcd(i,m)}$

- Corollary: For a primitive root g, we have that $\operatorname{ord}_p(g^i) = \frac{p-1}{\gcd(i,p-1)}$
- Corollary: Primitive roots are congruent to $g^i \pmod{p}$ for $\gcd(i, p-1) = 1$
- Corollary: There are $\phi(p-1)$ primitive roots for a prime p

Proposition: For $h \not\equiv 0 \pmod{p}$, h is a primitive root for p is equivalent to for $q \mid p-1, h^{(p-1)/q} \not\equiv 1 \pmod{p}$

Discrete Log Problem: Find x such that $g^x \equiv 1 \pmod{p}$ solved using Baby-step Giant-step Method

- Let $N = \lceil \sqrt{p-1} \rceil$ and create lists $g^i \pmod{p}$ and $hg^{-Nj} \pmod{p}$ for $0 \le i, j \le N-1$
- $g^i \equiv hg^{-Nj} \pmod{p} \implies x = i + Nj$

11.31: Let $p \equiv 1 \pmod{8}$ be prime and g be a primitive root. Let $y \equiv g^{(p-1)/8} \pmod{p}$. Show that $y^4 \equiv -1 \pmod{p}$ and $x \equiv y + y^{-1} \implies x^2 \equiv 2 \pmod{p}$

- $y^4 \equiv g^{(p-1)/2} \equiv -1 \pmod{p}$
- $x^2 \equiv y^2 + y^{-2} + 2 \equiv g^{(p-1)/4} (1 + g^{(p-1)/2}) + 2 \equiv 2 \pmod{p}$

11.46: Suppose that $7^{57} \equiv 11 \pmod{101}$ and $2^9 \equiv 7 \pmod{101}$. Solve $2^x \equiv 11 \pmod{101}$ and solve $7^y \equiv 2 \pmod{101}$

- $(2^9)^{57} \equiv 2^{513} \equiv 2^{13} \pmod{101} \implies x = 13$
- $7^y \equiv 2^{9y} \equiv 2 \pmod{100} \implies 9y \equiv 1 \pmod{100} \implies y = 89$

11.49: Let g be a primitive root for an odd prime p. Suppose $g^x \equiv h \pmod{p}$. Show that $h^{(p-1)/2} \equiv 1 \implies x$ is even and $h^{(p-1)/2} \equiv -1 \implies x$ is odd

- $g^x \equiv h^{x(p-1)/2} \equiv 1 \pmod{p} \implies p-1 \mid x(p-1)/2 \implies x$ is even
- $\bullet \ \ g^x \equiv h^{x(p-1)/2} \equiv -1 \ (\text{mod} \ p) \ \text{and} \ g^{(p-1)/2} \equiv -1 \ (\text{mod} \ p) \implies g^{(x-1)(p-1)/2} \equiv 1 \ (\text{mod} \ p)$

This only happens when $p-1 \mid (x-1)(p-1)/2 \implies x-1$ is even $\implies x$ is odd

Supplementary 30: Let p be a prime number. Prove that F_p is prime \iff ord_p(a) is a power of 2 for every $a \neq 0 \pmod{n}$

• \implies Let $p=2^{2^n}+1$ and let g be a primitive root, so $\operatorname{ord}_p(g)=p-1=2^{2^n}$

Every integer $a \not\equiv 0 \pmod{p}$ is a power of $g \mod p$ so $a \equiv g^i \implies \operatorname{ord}_p(g^i) = \frac{p-1}{\gcd(i,p-1)}$

Thus the order must be some power of 2

Quadratic Residue: a is a square mod n

Proposition: For odd prime and $a \not\equiv 0 \pmod{p}$, $a^{(p-1)/2} \equiv \pm 1 \pmod{p}$ and a is a QR $\iff a^{(p-1)/2} \equiv 1 \pmod{p}$

- First statement holds from Fermat Theorem
- \Longrightarrow Let $x^2 \equiv a \pmod{p} \implies x^{p-1} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}$
- $\bullet \quad \longleftarrow \text{ Take a primitive root } g^i \equiv 1 \implies 1 \equiv g^{i(p-1)/2} \implies p-1 \mid i(p-1)/2 \implies a \equiv g^i \equiv (g^k)^2$

Legendre Symbol: $(\frac{a}{p}) = \begin{cases} +1 & x^2 \equiv 1a \pmod{p} \\ -1 & x^2 \not\equiv a \pmod{p} \end{cases}$

- $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$
- $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$
- $a \equiv b \pmod{p} \iff (\frac{a}{p}) = (\frac{b}{p})$
- $\bullet \ (\frac{-1}{p}) = \begin{cases} +1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}$
- $\bullet \ \, (\tfrac{q}{p}) = \begin{cases} (\tfrac{p}{q}) & p \equiv 1 \pmod{4} \vee q \equiv 1 \pmod{4} \\ -(\tfrac{p}{1}) & p \equiv q \equiv 3 \pmod{4} \end{cases}$
- $\left(\frac{2}{p}\right) = \begin{cases} +1 & p \equiv \pm 1 \pmod{8} \\ -1 & p \equiv \pm 3 \pmod{8} \end{cases}$

Proposition: For $p \equiv 3 \pmod 4$, one of x, -x is a Quadratic Residue and $y \equiv x^{(p+1)/4} \implies y^2 \equiv \pm x \pmod p$

•
$$\left(\frac{-x}{p}\right) = -\left(\frac{x}{p}\right) \implies y^2 \equiv x^{(p-1)/2}x = \pm(x)$$

Proposition: Quadratic solution $\iff b^2 - 4ac$ is a Quadratic Residue

13.11: For $p \equiv q \pmod{5}$ show that $\left(\frac{5}{p}\right) = \left(\frac{5}{q}\right)$

•
$$\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = \left(\frac{q}{5}\right) = \left(\frac{5}{q}\right)$$

13.18: Let p be a prime $p \equiv 3 \pmod 4$ and suppose q = 2p + 1 is also prime. Show that 2 is a QR mod q and $q \pmod q$

- $\left(\frac{2}{q}\right) = +1 \text{ since } q \equiv -1 \pmod{8}$
- Since we know there is an x such that $x^2 \equiv 2 \implies x^{2p} \equiv 1 \pmod{q} \equiv 2^p$

13.22: Let p be an odd prime such that $2^p - 1$ is prime. Show that $\left(\frac{3}{2^{p-1}}\right) = -1$

• Note that $2^p - 1 \equiv 3 \pmod{4}$ and that $2^p = 2 * 4^{(p-1)/2} \equiv 2 \pmod{3} \implies 2^p - 1 \equiv 1 \pmod{3}$ Thus $\left(\frac{3}{2^{p-1}}\right) = -\left(\frac{2^p - 1}{3}\right) = -\left(\frac{1}{3}\right) = -1$ **13.24**: Prove that there are infinitely many primes $p \equiv 3 \pmod{8}$

• Let $N = (p_1 \cdots p_n)$ and $M = N^2 + 2$. Clearly no $p_i \mid M$ so take q to be a prime factor of $M \implies N^2 \equiv -2 \pmod{q}$ only has solution if $q \equiv 1 \pmod{8}$ or $q \equiv 3 \pmod{8}$

Furthermore,
$$N \equiv 3^n \implies N^2 \equiv 9^n \equiv 1 \pmod{8}$$

Thus $M \equiv 3 \pmod 8$. Thus M must have at least one prime divisor of the form $r \equiv 3 \pmod 8$ not in the list above. Contradiction

13.25: Show that ther eare infinitely many primes $p \equiv 7 \pmod{8}$

• Let $N = (p_1 \cdots p_n)$ and $M = N^2 - 2$. Clearly no $p_i \mid M$ so take q to be a prime factor of $M \implies N^2 \equiv 2 \pmod{q}$ solutions if $q \equiv \pm 1 \pmod{8}$

Furthermore
$$N \equiv 7^n \implies N^2 \equiv 1 \pmod{8}$$

Thus $M \equiv 7 \pmod 8$. Thus M must have at least one prime divisor of the form $r \equiv 7 \pmod 8$ not in the list above. Contradiction

13.29: Solve $y^2 \equiv 2 \pmod{23}$

•
$$y^2 \equiv \pm x$$
 and $y = x^{(p+1)/2} \implies 2^{(23+1)/4} \equiv 18 \pmod{23}$

Diffie-Hellman:

- 1. Alice and Bob agree on a prime p and a primitive root g
- 2. Alice chooses secret a and sends $h_1 \equiv g^a \pmod{p}$ and Bob chooses secret b and sends $h_2 \equiv g^b \pmod{p}$
- 3. Alice computes $k \equiv h_2^a$ and Bob computes $k \equiv h_1^b$. This is the shared key $k \equiv g^{an}$
- 4. Eve can intercept g, g^a, g^b . If DLP is easy, then Eve can use g, g^a to find a and then compute $k = g^{ba}$

Perfect Number: $n = \sum_{d|n.d \neq n} d$ Abundant n > Deficient n <

•
$$\sigma(n) = \sum_{d|n} d \implies$$
 Perfect if and only if $n = \sigma(n) = n \implies \sigma(n) = 2n$

Proposition: $\sigma(p^k) = 1 + p + \dots + p^k = \frac{p^{k+1}}{p-1}$

Theorem: Let n be an even perfect number, then there exists a unique prime such that 2^{p-1} is prime and $n=2^{p-1}(2^p-1)$

Multiplicative Function: f(mn) = f(m)f(n) for all gcd(m, n) = 1

Proposition: If $f(p^j) = g(p^j)$ for all primes, then f(n) = g(n)

•
$$f(n) = f(p_1^{a_1})f(p_2^{a_2})\cdots f(p_r^{a_r}) = f(p_1^{a_1})f(p_2^{a_2})\cdots f(p_r^{a_r}) = g(n)$$

Lemma: For gcd(m, n) = 1 and divisor d of mn, d has a unique decomposition $d = d_1d_2$ where $d_1 \mid m$ and $d_2 \mid n$

• By unique prime factorization, $d_1 = p_1^{a_1'} \cdots p_r^{a_r'}$ $d_2 = q_1^{b_1'} \cdots q_s^{b_s'} \implies d = d_1 d_2$ where $d_1 \mid m$ and $d_2 \mid n$

Proposition: $g(n) = \sum_{d|n} f(d)$ is multiplicative

16.12a: Show that the last digit of an even perfect number is always 6 or 8

• $n = 2^{p-1}(2^p - 1)$. Looking at powers of $2^{k \pmod{4}} \pmod{10}$, we have that $\{(1,2), (2,4), (3,8), (4,6)\} \implies 2^{p-1}(2^p - 1)$ is $\equiv 6,8 \pmod{10}$

16.14a: Show that $\tau(n)$ is odd if and only if n is a square

- $\implies \tau(n) = (a_1 + 1) \cdots (a_m + 1)$ is a product of odd numbers. Thus each a_i is even $\implies n$ is a square
- \Leftarrow All exponents in the prime factorization of n is even. Thus $\tau(n)$ is odd

Supplementary 33: Evaluate $\tau(1440)$ and $\sigma(1440)$

•
$$1440 = 2^5 * 3^2 * 5 \implies \tau(1440) = 6 * 3 * 2 = 36$$
 $\sigma(1440) = (2^6 - 1)(\frac{3^3 - 1}{2})(\frac{5^2 - 1}{4})$

Gaussian Integer:
$$Z[i] = \{a + bi \mid a, b \in Z\}$$
 $||a + bi|| = \sqrt{a^2 + b^2}$ $N(a + bi) = a^2 + b^2$

Theorem: The following are equivalent

•
$$N(\alpha) = 1$$
 $1/\alpha \in Z[i]$ $\alpha = \pm 1 \text{ or } \alpha = \pm i$

Units: $\pm 1, \pm i$ Irreducibles: α is not a unit and $\alpha = \beta \gamma \implies \beta$ or γ are units

•
$$1+i$$
 $p \equiv 3 \pmod{4}$ $(a+bi)(a-bi)$ where $a^2+b^2=p \equiv 1 \pmod{4}$

Proposition: $N(\alpha) = p \implies \alpha$ is irreducible

•
$$\alpha = \beta \gamma \implies N(\beta) = 1 \text{ or } N(\gamma) = 1$$

• **Proposition**:
$$p \equiv 3 \pmod{4} \implies p$$
 is irreducible

•
$$p = \beta \gamma \implies p^2 = N(\gamma)N(\beta)$$
. BWOC suppose $N(\gamma) = p \implies a^2 + b^2 = p \equiv 3 \pmod{4}$. Impossible

Division Algorithm: $\alpha = \beta \eta + \rho$ $0 \le N(\rho) < N(\beta)$

• **Divides**: $\alpha \mid \beta$ if and only if $\beta = \alpha \gamma$

Theorem: The following are equivalent

•
$$\gamma = \gcd(\alpha, \beta)$$
 exists γ' is another $\gcd \implies \gamma'$ is an associate of $\gamma = \exists x, y \text{ such that } \gamma = \alpha x + \beta y$

•
$$\sigma \mid \alpha, \beta \implies N(\sigma) \leq N(\gamma)$$
 $\sigma \mid \alpha, \beta$ and $N(\sigma) = N(\gamma) \implies \sigma$ is a gcd

Proposition: For irreducible π , $\pi \mid \alpha\beta \implies \pi \mid \alpha$ or $\pi \mid beta$

• Let
$$\gamma = \gcd(\pi, \alpha)$$
. If $\gamma = \pi \implies$ done

• Otherwise let
$$\gamma = \alpha \implies \pi$$
 not reducible contradiction. Thus $\gamma = 1 \implies \beta = \alpha \beta x + \pi \beta x \implies \pi \mid \beta$

• Corollary: Proposition holds for $\pi \mid \alpha_1 \alpha_2 \cdots \alpha_n$ for relatively pairwise prime α_i, α_j

Unique Prime Factorization Theorem: Every $\alpha \in Z[i]$ is a unit, irreducible, or product of irreducibles where factorization is unique up to order of factors and multiplication by units

• Proof involves picking α with minimal norm $N(\alpha)$