Projektowanie układów sterowania (projekt grupowy): projekt 5, zadanie 5

Na stronie przedmiotu, w pliku symulacja_obiektu5.zip znajduje się funkcja symulująca działanie procesu o czterech wejściach u_1 , u_2 , u_3 , u_4 i trzech wyjściach y_1 , y_2 , y_3

```
 [y1(k),y2(k),y3(k)] = symulacja\_obiektu5(u1(k-1),u1(k-2),u1(k-3),u1(k-4), u2(k-1),u2(k-2),u2(k-3),u2(k-4), u3(k-1),u3(k-2),u3(k-3),u3(k-4), u4(k-1),u4(k-2),u4(k-3),u4(k-4), y1(k-1),y1(k-2),y1(k-3),y1(k-4), y2(k-1),y2(k-2),y2(k-3),y2(k-4), y3(k-1),y3(k-2),y3(k-3),y3(k-4))
```

W punkcie pracy (w stanie ustalonym) $u_1 = u_2 = u_3 = u_4 = y_1 = y_2 = y_3 = 0$. Okres próbkowania wynosi 0.5 s.

- 1. Sprawdzić poprawność podanego punku pracy.
- 2. Wyznaczyć odpowiedzi skokowe 12 torów procesu, tzn. zestaw liczb $s_1^{m,n}, s_2^{m,n}, \ldots$ dla m=1,2,3 i n=1,2,3,4 (przy pojedynczych skokach jednostkowych odpowiednich sygnałów sterujących: od chwili k=0 włącznie sygnał wymuszenia ma wartość 1, w przeszłości jest zerowy). Zamieścić rysunki odpowiedzi skokowych wszystkich torów procesu (zastosować taką samą skalę na wszystkich rysunkach).
- 3. Napisać program w języku Matlab do symulacji cyfrowego algorytmu PID oraz algorytmu DMC (w najprostszej wersji analitycznej) dla symulowanego procesu.
- 4. Dla zaproponowanej trajektorii zmian sygnałów zadanych (kilka skoków o różnej amplitudzie) dobrać nastawy regulatora PID i parametry algorytmu DMC metodą eksperymentalną. Jakość regulacji oceniać jakościowo (na podstawie rysunków przebiegów sygnałów) oraz ilościowo, wyznaczając wskaźnik jakości regulacji

$$E = \sum_{k=1}^{k_{\text{konc}}} \sum_{m=1}^{3} (y_m^{\text{zad}}(k) - y(k))^2$$

gdzie $k_{\rm konc}$ oznacza koniec symulacji (zawsze taki sam). Zamieścić wybrane wyniki symulacji (przebiegi sygnałów wejściowych i wyjściowych procesu oraz wartości wskaźnika E). W przypadku algorytmu PID rozważyć kilka możliwych konfiguracji regulatora, tzn. uchyb e_1 pierwszego wyjścia oddziałuje na pierwszy sygnał sterujący u_1 , uchyb e_2 oddziałuje na u_2 , uchyb e_3 oddziałuje na u_3 itd. Zamieścić wybrane wyniki symulacji.

- 5. Dla zaproponowanej trajektorii zmian sygnału zadanego dobrać nastawy regulatora PID i parametry algorytmu DMC (μ_1 , μ_2 , μ_3 , λ_1 , λ_2 , λ_3 , λ_4 , natomiast horyzonty D, N, $N_{\rm u}$ przyjąć stałe) w wyniku optymalizacji wskaźnika jakości regulacji E. Zamieścić wyniki symulacji.
- 6. Zaimplementować również algorytm DMC wymagający jak najmniejszego nakładu obliczeń. Sprawdzić, czy na pewno otrzymane wyniki symulacji dla wybranego zestawu parametrów są takie same jak w wersji klasycznej.

Przesłać sprawozdanie w pliku pdf oraz <u>spakowane</u> wszystkie pliki źródłowe (Matlab) na adres pjchaber@gmail.com w ciągu <u>dwóch dni</u> (do 23:59) od zakończenia laboratorium nr 5. Maksymalna liczba punktów wynosi 15. Za każdy rozpoczęty dzień spóźnienia odejmowane jest 1,5 pkt.