Tema 1. Introducción

Bases de datos - Curso 2023-2024

Departamento de Sistemas Informáticos

E.T.S.I. de Sistemas Informáticos - UPM

29 de enero de 2024

INTRODUCCIÓN A LAS BASES DE DATOS

¿Qué son los datos? (I)

Corresponden a **hechos** o **realidades** del mundo real.

- A partir de ellos, intentamos reconstruir la información del mundo real
- Se «almacenan» usando un método de comunicación (ej.: figuras o lenguajes) en un medio semipermanente de "registrarlos" (ej.: piedras o papel)

Generalmente dato e interpretación van juntos en los lenguajes naturales:

• Mide 175 cm. (dato: 175, significado: altura en centímetros)

A veces, los datos son separados de su interpretación

• 10:30 (dato: 10:30, significado: hora y minutos)

¿Qué son los datos? (y II)

Los ordenadores han incrementado la **separación entre dato y significado**:

- No se prestan para manipular en lenguaje natural
- El coste de almacenamiento es muy elevado

La interpretación de los datos es inherente a los programas que los utilizan:

- Dato: valores almacenados
- Información: significado de los datos

Almacenamiento de datos

Existen dos aproximaciones para el almacenamiento de los datos utilizados por un programa informático:

- Sistemas basados en ficheros
- Bases de datos

Sistemas basados en ficheros

Cada programa utiliza sus propios datos:

- Dependencia física entre programas y datos
- Ocupación inútil de memoria
- Aparición de inconsistencias y duplicidad de información

Sistemas basados en bases de datos

Cuando se utilizan bases de datos los programas "comparten" los datos

 Las bases de datos se definen y manipulan mediante un Sistema de Gestión de Bases de Datos (SGDB)

DEFINIENDO BASES DE DATOS

8

«Conjunto de información (datos) **homogénea** de una organización, **almacenada** en un ordenador, y que permite realizar **consultas** y **actualizaciones** (inserciones, modificaciones y/o borrados)»

9

Conjunto exhaustivo, con redundancia controlada de datos estructurados, fiables y homogéneos, organizados con independencia de su utilización y de su implementación en máquina, accesibles en tiempo útil, compartibles por usuarios concurrentes que tienen necesidades de información diferentes y no predecibles en el tiempo»

MODELOS DE DATOS

¿Qué es un modelo de datos?

Describen las propiedades de la información almacenada en una base de datos:

- Estructuras de datos
- Restricciones
- Dependencias
- Dominios

Son fundamentales para introducir la abstracción en una base de datos

Tipos de modelos de datos

Modelos de datos **conceptuales**

- Describen las estructuras de datos y las relaciones de integridad
- Utilizados en la etapa de análisis

Modelos de datos **lógicos**

- Orientados a las operaciones
- Dependientes del tipo de base de datos utilizada

Modelos de datos **físicos**

- Estructuras de datos de bajo nivel usadas para almacenar información
- Dependientes del SGDB

Modelo conceptual

Identifica las **entidades** que se van a almacenar en las base de datos:

• Ejemplo: alumnos, asignaturas, departamentos...

Modela las **relaciones** existentes entre las entidades:

• Ejemplo: los alumnos se matriculan de asignaturas.

Son cercanos al mundo real.

Ayudan a comunicarse con los clientes de las empresa de desarrollo.

Modelo lógico

Incluyen las relaciones y atributos del modelo conceptual

La **normalización** se produce en este nivel:

- Claves primarias
 - Ejemplo: los alumnos son identificados de forma unívoca por su número de matricula
- Claves foráneas
 - Ejemplo: el alumno con número de matrícula aa0000 fue calificado con un 10 en la asignatura de bases de datos
- Normalización
 - Evita la duplicidad de la información

Son cercanos a la base de datos

Modelo físico

Definen cómo debe almacenarse la información en un dispositivo físico

- Altamente dependientes del SGBD y de la versión del mismo
- Cercanos al Sistema Operativo
- Facilitan la rápida recuperación y manipulación de los datos almacenados

TIPOS DE BASES DE DATOS

No Relacionales

Bases de datos relacionales

Cumplen con el modelo relacional:

Normalización

Es el tipo de base de datos más utilizado

Utilizan el lenguaje SQL (*Structured Query Languaje*) para consultar y manipular datos

Los datos son almacenados en tablas:

• Es posible "unir" diferentes tablas para recuperar información

Bases de datos no relacionales

No cumplen el modelo relacional:

- De «reciente» aparición
 - Si la década de los 2000 es reciente...
- También llamadas Nosqu

Se especializan en resolver un problema concreto:

• Escalabilidad, rendimiento, flexibilidad...

Se ven en la asignatura de Bases de Datos II

Bases de datos documentales (NoSQL)

La información es almacenada en documentos

- Los documentos contienen información semi-estructurada
- Escalabilidad vertical (máquina más potente) y horizontal (más máquinas)

mongoDB

• Muy eficientes para la manipulación de datos

Aconsejan duplicar información:

Mejora el rendimiento de las consultas

Lenguaje de consultas muy limitado

Bases de datos clave-valor (NoSQL)

Almacena toda la información en pares <clave, valor>

- La clave es única, y el valor puede ser cualquier objeto.
- Ejemplo:
 - Clave: aa0000
 - Valor: nombre="Juan"; apellidos="García Torres"

Ventajas:

- Altamente divisibles
- Escalabilidad horizontal
- Suelen almacenarse en memoria

Bases de datos de alta escalabilidad (NoSQL)

Bases de datos distribuidas:

Masivamente escalables (escalabilidad lineal)

Orientadas a columnas:

- Optimizadas para la completa recuperación de datos de columnas de datos (analítica de datos)
- Pensadas para pocas escrituras y muchas lecturas

Bases de datos orientadas a grafos (NoSQL)

Representan la información mediante un grafo:

Nodos: entidades

Aristas: relaciones

Completamente normalizadas:

No duplican información

Son muy versátiles, pero:

- Utilizan un lenguaje de consultas complejo
- Son computacionalmente costosas

ARQUITECTURA CLIENTE-SERVIDOR

Arquitectura cliente-servidor

Las bases de datos funcionan bajo una arquitectura cliente-servidor:

- La base de datos es el servidor
- Las aplicaciones que se conectan a la base de datos son los clientes

Esta arquitectura permite compartir los datos entre diferentes aplicaciones:

- Un solo servidor
- Múltiples clientes

Infraestructura física

Habitualmente, la base de datos (servidor) y la aplicación (cliente) se separan en diferentes máquinas físicas.

Existe un protocolo de comunicación entre el cliente y el servidor

- ¿Cómo se realizan las peticiones?
- ¿Cómo se responde?

Introdi**V**éntajas

- Se centraliza el acceso a datos evitando inconsistencias
- Facilita la escalabilidad
 - Se puede aumentar la capacidad de clientes y servidores por separado
- Mejora el mantenimiento del sistema
 - El mantenimiento de la base de datos depende exclusivamente de la propia base de datos
- Facilita el desarrollo de aplicaciones al abstraerse de la gestión de los datos.

Desventajas

 Se puede congestionar el acceso a los datos si el ratio cliente/servidor no es adecuado

Evista dependencia de la conquión a la basa de detas pero el funcionamiente de

- No hay robustez frente a caídas o ataques al servidor
- Bases de datos. Curso 2023-2024 se minimiza si se replica el servidor

Conexión con la base de datos

La conexión se realiza a partir de un URL (*Universal Resource Location*)

```
jdbc:mysql://mydb.com:3306/dbname
```

Prácticamente todo lenguaje de programación dispone de bibliotecas para conectarse a bases de datos:

• Java: JDBC

Python: SQLAlchemy

• C#: ADO.NET

• ...

Más adelante en la asignatura trabajaremos la conesión desde aplicaciones