SE 3XA3: MIS OpenCameraRefined

Team #211, CAMERACREW
Faisal Jaffer, jaffem1
Dominik Buszowiecki, buszowid
Pedram Yazdinia, yazdinip
Zayed Sheet, sheetz

 $March\ 14,\ 2020$

Table 1: Revision History

Date	Version	Notes
March 14, 2020	1.0	Initial document

Gesture Controller Module

Module

Gesture Controller

Uses

TensorflowObjectDetectionAPI ClassifierConstants CameraController Filter Classifier

Syntax

Exported Constants

N/A

Exported Types

GestureController = ?

Exported Access Programs

Routine name	In	Out	Exceptions
GestureController		GestureController	classifier_initialize_failure
processImage			
setFrame	byte[]		
captureImage			
showFilter			

Semantics

State Variables

image Frame: byte[]~# current camera frame classifier: Classifier~# Tensfor Flow model

filter: Filter

recognition: Recognition[] # classification on the current frame

Environment Variables

None

State Invariant

None

Assumptions

• The mathematical operator \ represents integer division. For example $8 \setminus 5 = 1$.

Access Routine Semantics

GestureController():

- transition: classifier, filter := Classifier(ClassifierConstants.getInferenceName(), ClassifierConstants.getLabelName()), Filter()
- \bullet output: out := self
- exception: $exc := ((ClassifierConstants.getInferenceName() == null| ClassifierConstants.getLabelName() == null) <math>\Rightarrow classifier_initialize_failure)$

processImage():

- transition: $recognition := classifier.recognizeImage(bitmapFromByte(imageFrame)) \Rightarrow (recognition.title == ClassifierConstants.Smile <math>\rightarrow captureImage()|recognition.title == ClassifierConstants.Thumb \rightarrow filter.changeFilter())$
- output: None
- exception: None

setFrame(byte[] data):

• transition: imageFrame:= data

- output: None
- exception: None

captureImage():

- $\bullet \ \ transition: \ Camera Controller. capture Image()$
- output: None
- exception: None

showFilter():

- transition: None
- output: None
- exception: None

Local Functions

bitmapFromByte(byte[] data):

- $\bullet \ \ transition: \ Matrix \ mat := ImageUtils.convertYUV420SPToARGB8888(data)$
- \bullet output: out := mat
- exception: None

Recognition Module

Module

Recognition

Uses

RectF

Syntax

Exported Constants

N/A

Exported Types

Recognition =?

Exported Access Programs

Routine name	In	Out	Exceptions
Recognition	$String, String, \mathbb{Q}, RectF$	Recognition	
getID		String	
getTitle		String	
getConfidence		Q	
getLocation	Bitmap	RectF	

Semantics

State Variables

id: String # unique id assignment since multiple recognitions possible

title: String # label of the recognition

confidence: \mathbb{Q} # confidence level of the classification location: RectF # pixel location of the recognition

Environment Variables

State Invariant

None

Assumptions

• Invalid arguments will not be provided into the Recognition and getLocation routines.

Access Routine Semantics

Recognition(id, title, confidence, location):

- transition: id, title, confidence, location := id, title, confidence, location
- output: out := self
- exception:None

getID():

- transition: None
- output: out := id
- exception: None

getTitle():

- transition: None
- output: out := title
- exception: None

getConfidence():

• transition: None

 $\bullet \ \text{output:} \ out := confidence \\$

• exception: None

getLocation():

• transition: None

• output: location

• exception: None

Local Functions

Classifier Module

Module

Classifier

Uses

Recognition ClassifierConstants Bitmap TF

Syntax

Exported Constants

N/A

Exported Types

None

Exported Access Programs

Routine name	In	Out	Exceptions
Classifier	$String, String, (\mathbb{Z}, \mathbb{Z})$	Classifier	classifier_initialize_failure
recognizeImage	Bitmap	Recognition	

Semantics

State Variables

model Filename: String # link to the model inference label Filename: String # link to the model labels

input Size: (\mathbb{Z} , \mathbb{Z}) # size of model input

 $model: \ TF.model \# \ stored \ model$

Environment Variables

None

State Invariant

None

Assumptions

• Invalid arguments will not be provided to the Classifier and recognizeImage routines.

Access Routine Semantics

Classifier(modelFilename, labelFilename, inputSize):

- transition: model := newTF.model(modelFilename, labelFilename)
- output: out := self
- exception: $exc := newTF.model(modelFilename, labelFilename) == null \Rightarrow (classifier_initialize_failure)$

recognizeImage(b):

- transition: None
- output: out := model.detect(b)
- exception: None

Local Functions

Classifier Constants Module

Module

ClassifierConstants

Uses

Syntax

Exported Constants

 $\begin{array}{ll} \text{inferenceName: } String \\ \text{labelName: } String \end{array}$

Exported Types

None

Exported Access Programs

Routine name	In	Out	Exceptions
getInferenceName		String	
getLabelName		String	

Semantics

State Variables

Environment Variables

None

State Invariant

None

Assumptions

Access Routine Semantics

getInferenceName():

- transition: None
- \bullet output: out := inferenceName
- exception: None

getLabelName():

- transition: None
- \bullet output: out := labelName
- exception: None

Local Functions

Filter Module

Module

Filter

Uses

Filter Constants

Syntax

Exported Constants

N/A

Exported Types

N/A

Exported Access Programs

Routine name	In	Out	Exceptions
changeFilter			
getFilter		\mathbb{Z}	

Semantics

State Variables

 ${\it filterIndex}: \ \mathbb{Z} \ \# \textit{Which index in the FILTERS constant from the filters module is selected}$

Environment Variables

None

State Invariant

filterIndex < |FILTERS|

Assumptions

The % operator represents the mathematical modulus operator

Access Routine Semantics

changeFilter():

• transition: filterIndex := (filterIndex + 1)%|FILTERS|

• output: None

getFilter():

• transition: None

 \bullet output: out := filterIndex

Filter Constants Module

Module

Constants

Uses

OpenCV

Syntax

Exported Constants

GRAYSCALE: $(\mathbb{Z}[], \mathbb{Z}[])$ RED_FILTER: $(\mathbb{Z}[], \mathbb{Z}[])$ BLUE_FILTER: $(\mathbb{Z}[], \mathbb{Z}[])$

The values of the filters will be obtained from the OpenCV lookup tables. They are 2xN matrices which map a source colour of a pixel to a final colour after applying a filter. The value of N depends on the total number of possible colours

FILTERS = [GRAYSCALE, RED_FILTER, BLUE_FILTER]

Exported Types

None

Exported Access Programs

None

Semantics

State Variables

None

State Invariant