### Correction du TD



### Données

Pour un système fermé, de température T, de pression P et de volume V subissant une transformation entre deux états d'équilibre (i) et (f), la variation d'entropie est :

♦ pour un gaz parfait,

$$\boxed{\Delta S = C_V \ln \frac{P_f}{P_i} + C_P \ln \frac{V_f}{V_i}} \quad \text{ou} \quad \boxed{\Delta S = C_V \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i}} \quad \text{ou} \quad \boxed{\Delta S = C_P \ln \frac{T_f}{T_i} - nR \ln \frac{P_f}{P_i}}$$

♦ pour une phase condensée,

$$\Delta S = C \ln \frac{T_f}{T_i}$$



## Méthode des mélanges dans un calorimètre

Un calorimètre de capacité thermique  $C=150\,\mathrm{J\cdot K^{-1}}$  contient initialement une masse  $m_1=200\,\mathrm{g}$  d'eau à  $\theta_1=20\,^\circ\mathrm{C}$ , en équilibre thermique avec le calorimètre. On plonge dans l'eau un bloc de fer de masse  $m_2=100\,\mathrm{g}$  initialement à la température  $\theta_2=80,0\,^\circ\mathrm{C}$ .



#### Données

 $c_{\text{Fe}} = 452 \,\mathrm{J \cdot K^{-1} \cdot kg^{-1}}$  et  $c_{\text{eau}} = 4185 \,\mathrm{J \cdot K^{-1} \cdot kg^{-1}}$ .

1) Calculer la température d'équilibre  $T_f$ .

——— Réponse ————

solu

2) Calculer la variation d'entropie de l'eau, du fer et du calorimètre.

ı fer et du calorimètre. ——— Réponse ———

solu

3) En déduire l'entropie créée au cours de la transformation. Celle-ci est-elle réversible?

— Réponse –

solu



# Équilibre d'une enceinte à deux compartiments

Une enceinte indéformable aux parois calorifugées est séparée en deux compartiments par une cloison étanche, diatherme et mobile sans frottement. Les deux compartiments contiennent un même gaz parfait. Dans l'état initial, la cloison est maintenue au milieu de l'enceinte. Le gaz du compartiment 1 est dans l'état  $(T_0, P_0, V_0)$  et le gaz du compartiment 2 dans l'état  $(T_0, 2P_0, V_0)$ . On laisse alors la cloison bouger librement jusqu'à ce que le système atteigne un état d'équilibre.

1) Exprimer les quantités de matière  $n_1, n_2$  dans chaque compartiment en fonction de  $n_0 = P_0 V_0 / R T_0$ .

solu Réponse —

2) Exprimer la température, le volume et la pression du gaz de chaque compartiment dans l'état final, en fonction de  $n_0,T_0$  et  $V_0$ .

- 🔷 -

solu Réponse —

Lycée Pothier 1/3 MPSI3 – 2023/2024

| _        | solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | III Effet Joule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| р        | Considérons une masse $m=100\mathrm{g}$ d'eau, dans laquelle plonge un conducteur de résistance $R=20\Omega$ . L'ensemble orme un système $\Sigma$ , de température initiale $T_0=20^{\circ}\mathrm{C}$ . On impose au travers de la résistance un courant $I=1\mathrm{A}$ endant une durée $\tau=10\mathrm{s}$ . L'énergie électrique dissipée dans la résistance peut être traitée du point de vue de la hermodynamique comme un transfert thermique $Q_{\mathrm{élec}}$ reçu par $\Sigma$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ī        | Données                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | $\diamondsuit$ Capacité thermique de la résistance : $C_R = 8\mathrm{J\cdot K^{-1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | $\Diamond$ Capacité thermique massique de l'eau : $c_{\rm eau} = 4.18{\rm J\cdot g^{-1}\cdot K^{-1}}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1)       | La température de l'ensemble est maintenue constante. Quelle est la variation d'entropie du système ? Quelle est l'entropie créée ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | Réponse —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | solu 🔷 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2)       | Commenter le signe de l'entropie créée. Que peut-on en déduire à propos du signe d'une résistance?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3)       | Le même courant passe dans le même conducteur pendant la même durée, mais cette fois $\Sigma$ est isolé thermiquement Calculer sa variation d'entropie et l'entropie créée.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | IV Possibilité d'un cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (i       | On raisonne sur une quantité de matière $n=1\mathrm{mol}$ de gaz parfait qui subit la succession de transformations déalisées) suivantes :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| `        | déalisées) suivantes :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>\</b> | déalisées) suivantes : ${\bf AB}: {\rm détente\ isotherme\ de\ } P_{\rm A}=2{\rm bar\ et\ } T_{\rm A}=300{\rm K},{\rm jusqu'à}P_{\rm B}=1{\rm bar\ en\ restant\ en\ contact\ avec\ un\ thermostant\ en\ contact\ en\ cont$ |
|          | ${f AB}$ : détente isotherme de $P_{ m A}=2$ bar et $T_{ m A}=300{ m K}$ , jusqu'à $P_{ m B}=1$ bar en restant en contact avec un thermostat de température $T_0=T_{ m A}$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <        | déalisées) suivantes : $ {\bf AB} : {\rm détente} \ {\rm isotherme} \ {\rm de} \ P_{\rm A} = 2 \ {\rm bar} \ {\rm et} \ T_{\rm A} = 300 \ {\rm K}, \ {\rm jusqu'à} \ P_{\rm B} = 1 \ {\rm bar} \ {\rm en} \ {\rm restant} \ {\rm en} \ {\rm contact} \ {\rm avec} \ {\rm un} \ {\rm thermostat} \ {\rm de} \ {\rm temp\'erature} \ T_0 = T_{\rm A} \ ; $ $ {\bf BC} : {\rm \'evolution} \ {\rm isobare} \ {\rm jusqu'à} \ V_{\rm C} = 20.5 \ {\rm L}, \ {\rm toujours} \ {\rm en} \ {\rm restant} \ {\rm en} \ {\rm contact} \ {\rm avec} \ {\rm le} \ {\rm thermostat} \ {\rm à} \ T_0 \ ; $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C        | déalisées) suivantes : $ {\bf AB} : {\rm détente} \ {\rm isotherme} \ {\rm de} \ P_{\rm A} = 2 \ {\rm bar} \ {\rm et} \ T_{\rm A} = 300 \ {\rm K}, \ {\rm jusqu'à} \ P_{\rm B} = 1 \ {\rm bar} \ {\rm en} \ {\rm restant} \ {\rm en} \ {\rm contact} \ {\rm avec} \ {\rm un} \ {\rm thermostat} \ {\rm de} \ {\rm temp\'erature} \ T_0 = T_{\rm A} \ ; $ $ {\bf BC} : {\rm \'evolution} \ {\rm isobare} \ {\rm jusqu'à} \ V_{\rm C} = 20,5 \ {\rm L}, \ {\rm toujours} \ {\rm en} \ {\rm restant} \ {\rm en} \ {\rm contact} \ {\rm avec} \ {\rm le} \ {\rm thermostat} \ {\rm à} \ T_0 \ ; $ $ {\bf CA} : {\rm compression} \ {\rm adiabatique} \ {\rm r\'eversible} \ {\rm jusqu'\`a} \ {\rm revenir} \ {\rm \`a} \ {\rm l\'etat} \ {\rm A}. $ $ {\bf On} \ {\rm suppose} \ {\rm le} \ {\rm gaz} \ {\rm diatomique}. $ $ {\bf Quel} \ {\rm est} \ {\rm le} \ {\rm coefficient} \ {\rm adiabatique} \ {\rm ?} \ {\rm Repr\'esenter} \ {\rm ce} \ {\rm cycle} \ {\rm en} \ {\rm diagramme} \ {\rm de} \ {\rm WATT} \ (P,V). $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C        | déalisées) suivantes :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | déalisées) suivantes : $\mathbf{AB}: \text{ détente isotherme de } P_{\mathrm{A}} = 2  \text{bar et } T_{\mathrm{A}} = 300  \text{K},  \text{jusqu'à}  P_{\mathrm{B}} = 1  \text{bar en restant en contact avec un thermostat de température } T_0 = T_{\mathrm{A}};$ $\mathbf{BC}: \text{ évolution isobare jusqu'à } V_{\mathrm{C}} = 20,5  \text{L},  \text{toujours en restant en contact avec le thermostat à } T_0;$ $\mathbf{CA}: \text{ compression adiabatique réversible jusqu'à revenir à l'état A.}$ On suppose le gaz diatomique. $\mathbf{Quel est le coefficient adiabatique? Représenter ce cycle en diagramme de Watt } (P,V).$ $\mathbf{Réponse}$ $\mathbf{Solu}$ $\mathbf{A} \text{ partir du diagramme, déterminer le signe du travail total des forces de pression au cours du cycle. En déduire s'is s'agit d'un cycle moteur ou d'un cycle récepteur.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | déalisées) suivantes : $AB:$ détente isotherme de $P_A=2$ bar et $T_A=300\mathrm{K}$ , jusqu'à $P_B=1$ bar en restant en contact avec un thermosta de température $T_0=T_A$ ; $BC:$ évolution isobare jusqu'à $V_C=20.5\mathrm{L}$ , toujours en restant en contact avec le thermostat à $T_0$ ; $CA:$ compression adiabatique réversible jusqu'à revenir à l'état A.  On suppose le gaz diatomique.  Quel est le coefficient adiabatique? Représenter ce cycle en diagramme de WATT $(P,V)$ . $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | déalisées) suivantes : $AB:$ détente isotherme de $P_A=2$ bar et $T_A=300\mathrm{K}$ , jusqu'à $P_B=1$ bar en restant en contact avec un thermosta de température $T_0=T_A$ ; $BC:$ évolution isobare jusqu'à $V_C=20,5\mathrm{L}$ , toujours en restant en contact avec le thermostat à $T_0$ ; $CA:$ compression adiabatique réversible jusqu'à revenir à l'état $A.$ On suppose le gaz diatomique.  Quel est le coefficient adiabatique? Représenter ce cycle en diagramme de WATT $(P,V).$ $Réponse$ $A$ partir du diagramme, déterminer le signe du travail total des forces de pression au cours du cycle. En déduire s'i s'agit d'un cycle moteur ou d'un cycle récepteur. $Réponse$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|    | proposé est-il réalisable? Le cycle inverse l'est-il?  Réponse                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | solu                                                                                                                                                                                                                                                                       |
| _  |                                                                                                                                                                                                                                                                            |
|    | $\overline{\mathbf{V}}$ Corps en contact avec $n$ thermostats quasi-statiques                                                                                                                                                                                              |
|    | Un métal de capacité thermique $C_p$ passe de la température initiale $T_0$ à la température finale $T_f = T_N$ par contact accessifs avec une suite $N$ thermostats de températures $T_i$ étagées entre $T_0$ et $T_f$ . On prendra le rapport $T_{i+1}/T_i = c$ enstant. |
| 1) | Exprimer pour chaque étape la variation d'entropie du corps $\Delta S$ en fonction de $m, c$ et $\alpha$ .  Réponse                                                                                                                                                        |
|    | solu                                                                                                                                                                                                                                                                       |
|    | <u> </u>                                                                                                                                                                                                                                                                   |
| 2) | $S_{\mathrm{ech}}$ en fonction de $m, c$ et $\alpha$ .                                                                                                                                                                                                                     |
|    | Réponse —                                                                                                                                                                                                                                                                  |
|    | solu                                                                                                                                                                                                                                                                       |
| 3) | Calculer la variation d'entropie du corps $\Delta S$ , l'entropie échangée $S_{\rm ech}$ ainsi que l'entropie créée $S_c$ sur l'ensemble en fonction de $C_p$ , $\alpha$ et $N$ .                                                                                          |
|    | Réponse —                                                                                                                                                                                                                                                                  |
|    | solu                                                                                                                                                                                                                                                                       |
| 4) | Étudier $S_{\rm cr}$ pour $N \to \infty$ . On exprimera $\alpha$ en fonction de $T_f, T_i$ et $N$ , et on utilisera le développement limit $\exp(x) = 1 + x + x^2/2$ pour $x$ petit devant 1. Conclure.                                                                    |
|    | Réponse —                                                                                                                                                                                                                                                                  |
|    | solu                                                                                                                                                                                                                                                                       |
| _  | $\overline{}$                                                                                                                                                                                                                                                              |
|    | VI   Masse posée sur un piston                                                                                                                                                                                                                                             |
|    | Considérons une enceinte hermétique, diatherme, fermée par un piston de masse négligeable pouvant coulisser san rottements. Cette enceinte contient un gaz supposé parfait. Elle est placée dans l'air, à température $T_0$ et pression $T_0$ .                            |
| 1) | On place une masse $m$ sur le piston. Déterminer les caractéristiques du gaz une fois les équilibres thermique e mécanique atteints.                                                                                                                                       |
|    | Réponse —                                                                                                                                                                                                                                                                  |
|    | solu                                                                                                                                                                                                                                                                       |
| 2) | Déterminer le transfert thermique échangé $Q$ et l'entropie créée.                                                                                                                                                                                                         |
|    | Réponse —                                                                                                                                                                                                                                                                  |
| ,  | solu                                                                                                                                                                                                                                                                       |
| ,  |                                                                                                                                                                                                                                                                            |
| ,  | <u> </u>                                                                                                                                                                                                                                                                   |
| 3) | On réalise la même expérience, mais en $N$ étapes successives, par exemple en ajoutant du sable « grain à grain » Déterminer l'entropie créée dans la limite $N \to \infty$ .                                                                                              |
|    | On réalise la même expérience, mais en $N$ étapes successives, par exemple en ajoutant du sable « grain à grain » Déterminer l'entropie créée dans la limite $N \to \infty$ .  Réponse — solu                                                                              |