Gradient Boosted Regression Trees

Peter Prettenhofer (@pprett)

DataRobot

Gilles Louppe (Oglouppe) Université de Liège, Belgium

Motivation

Motivation

Outline

Basics

② Gradient Boosting

3 Gradient Boosting in scikit-learn

About us

Peter

- @pprett
- \bullet Python & ML \sim 6 years
- sklearn dev since 2010

Gilles

- @glouppe
- PhD student (Liège, Belgium)
- sklearn dev since 2011 Chief tree hugger

Outline

Basics

2 Gradient Boosting

Gradient Boosting in scikit-learn

Machine Learning 101

- Data comes as...
 - A set of examples $\{(\mathbf{x}_i, y_i)|0 \le i < \text{n_samples}\}$, with
 - Feature vector $\mathbf{x} \in \mathbb{R}^{n_features}$, and
 - Response $y \in \mathbb{R}$ (regression) or $y \in \{-1,1\}$ (classification)
- Goal is to...
 - Find a function $\hat{y} = f(\mathbf{x})$
 - Such that error $L(y, \hat{y})$ on new (unseen) **x** is minimal

Classification and Regression Trees [Breiman et al, 1984]

Function approximation with Regression Trees

Function approximation with Regression Trees

Outline

Basics

Q Gradient Boosting

3 Gradient Boosting in scikit-learn

Gradient Boosted Regression Trees

Advantages

- Heterogeneous data (features measured on different scale)
- Supports different loss functions (e.g. huber)
- Automatically detects (non-linear) feature interactions

Disadvantages

- Requires careful tuning
- Slow to train (but fast to predict)
- Cannot extrapolate

Boosting

AdaBoost [Y. Freund & R. Schapire, 1995]

- Ensemble: each member is an expert on the errors of its predecessor
- Iteratively re-weights training examples based on errors

Boosting

Adal

Huge success

• Viola-Jones Face Detector (2001)

• Freund & Schapire won the Gödel prize 2003

sklearn.ensemble.AdaBoostClassifier|Regressor

Gradient Boosting [J. Friedman, 1999]

Statistical view on boosting

• ⇒ Generalization of boosting to arbitrary loss functions

Gradient Boosting [J. Friedman, 1999]

Statistical view on boosting

ullet \Rightarrow Generalization of boosting to arbitrary loss functions

Residual fitting

Functional Gradient Descent

Least Squares Regression

- Squared loss: $L(y_i, f(\mathbf{x}_i)) = (y_i f(\mathbf{x}_i))^2$
- The residual \sim the (negative) gradient $\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}$

Functional Gradient Descent

Least Squares Regression

- Squared loss: $L(y_i, f(\mathbf{x}_i)) = (y_i f(\mathbf{x}_i))^2$
- The residual \sim the (negative) gradient $\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}$

Steepest Descent

- Regression trees approximate the (negative) gradient
- Each tree is a successive gradient descent step

Outline

Basics

② Gradient Boosting

3 Gradient Boosting in scikit-learn

Notebook http://github.com/pprett/pydata-gbm-tutorial

Tipps & Tricks 1

Input layout

Use dtype=np.float32 to avoid memory copies and fortan layout for slight runtime benefit.

X = np.asfortranarray(X, dtype=np.float32)

Tipps & Tricks 2

Feature interactions

GBRT automatically detects feature interactions but often explicit interactions help.

Trees required to approximate $X_1 - X_2$: 10 (left), 1000 (right).

Tipps & Tricks 3

Categorical variables

Sklearn requires that categorical variables are encoded as numerics. Tree-based methods work well with ordinal encoding: