MT-104 Linear Algebra

Wednesday, June 03, 2020

Course Instructors

Mr. Amjad Hussain Mr. Waqas Javed

Serial No:
2 nd Mid Term Exam
Spring Semester 2020
Max Time:1 Hour
Max Marks: 35
Exam Weight (Out of 100). 10

Roll No	Section

Guidelines for Submission:

- 1. You should submit only one PDF document. equations, figures can be taken as pictures (all figures/equations can be pasted as images inside that document).
- 2. You must submit your solution before due time via **Google Classroom**. Submissions submitted after the due time shall not be considered.
- 3. If you don't finish every part of a question, don't worry! You can still submit what you've done to get marks based on your efforts.
- 4. In case of copied or plagiarized solutions in exam Or If a student provided help to another student during exam both will be awarded "F" grade and it will affect the student CGPA.
- 5. Viva of any student can be conducted by the instructor after conducting an online exam in case of any doubt.
- **6.** This document should be submitted through LMS (**Google Classroom**). But in worst case, you can email it within the deadline.

National University of Computer and Emerging Sciences

Department of Computer Science

Chiniot-Faisalabad Campus

Question # 1 3+3+4=10

Consider the transformation defined by T(x) = Ax, where A is given by $A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 5 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 5 \end{bmatrix}$$

- a. Find order of given transformation
- b. Find image of $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ c. Is $\begin{bmatrix} 2\\4 \end{bmatrix}$ \in range of T? If yes, find a vector in the domain whose image is $\begin{bmatrix} 2\\4 \end{bmatrix}$.

Question # 2 Marks 10

Find the inverse of following matrix A, if possible, by using elementary row operations.

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Question #3 Marks 10+5=15

The letter M with vertices

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ 5.5 \end{bmatrix}, \begin{bmatrix} 2.5 \\ 2 \end{bmatrix}, \begin{bmatrix} 3.5 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 2.5 \end{bmatrix}, \begin{bmatrix} 5 \\ 5.5 \end{bmatrix}, \begin{bmatrix} 4 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \end{bmatrix} \text{ named by }$$

1,2,3,4,5,6,7,8,9,10,11,12 and 13 respectively. Make possible transformation to convert this letter similar to W. Also draw the transformed figure.

b. A unit disk D is transformed under the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by Tx = Ax

where
$$A = \begin{bmatrix} \frac{3\sqrt{3}}{2} & -1 \\ \frac{3}{2} & \sqrt{3} \end{bmatrix}$$
. Find the area of the transformed figure.