

Universidade Federal da Bahia - IM Programa de Pós-Graduação em Matemática

Professor: Tertuliano Franco Aluno: Felipe Fonseca dos Santos Trabalho do curso de Probabilidade

Este trabalho consiste em resolver algumas questões selecionadas pelo professor Tertuliano, que em sua maioria foram retiradas do livro: "Probabilidade: um curso em nível intermediário", de Barry R. James.

Capítulo 5

14ª QUESTÃO: Sejam X_1, X_2, \ldots independentes e identicamente distribuídas, com $X_1 \sim U[0,1]$. Ache o limite quase certo da média geométrica

$$\left(\prod_{k=1}^{n} X_k\right)^{1/n}$$

(Sugestão. Tome logaritmos.)

Resolução: Como $X_1, X_2, ...$ são variáveis aleatórias i.i.d., temos que $Y_1, Y_2, ...$, dadas por $Y_i = \log X_i$; i = 1, 2, ..., também são variáveis aleatórias i.i.d.. Assim $\mathbb{E}(Y_k) = \mathbb{E}(Y_1)$ e como

$$\mathbb{E}(Y_1) = \int_{0}^{1} \log x \, dx = (\text{Por partes}) = [x \log x - x]_{0}^{1} = -1$$

temos pela Lei Forte de Kolmogorov que

$$\frac{Y_1 + \ldots + Y_n}{n} \xrightarrow[n \to +\infty]{} -1 \qquad \text{quase certo.}$$

Mas
$$\frac{Y_1 + \ldots + Y_n}{n} = \frac{1}{n} \log \left(\prod_{k=1}^n X_k \right) = \log \left(\prod_{k=1}^n X_k \right)^{1/n}$$
, donde concluímos que
$$\left(\prod_{k=1}^n X_k \right)^{1/n} \xrightarrow[x \to +\infty]{} e^{-1} \quad \text{quase certo.}$$

15ªQUESTÃO: Demonstre: se X_1, X_2, \dots são independentes e identicamente distribuídas, com $\mathbb{E}(X_1) = 1 = \text{Var}(X_1)$, então

$$\frac{\sum_{i=1}^{n} X_i}{\sqrt{n \sum_{i=1}^{n} X_i^2}} \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2}} \quad \text{quase certamente.}$$

Resolução: Sabendo que X_1, X_2, \dots são i.i.d. e $\mathbb{E}(X_1) = 1$ temos pela Lei Forte de Kolmogorov que

$$\frac{\sum\limits_{i=1}^{n}X_{i}}{n}\xrightarrow[n\longrightarrow +\infty]{}1\quad \text{quase certamente.}$$

Por outro lado, $\operatorname{Var}(X_1) = \mathbb{E}(X_1^2) - (\mathbb{E}(X_1))^2 = 1$ logo $\mathbb{E}(X_1^2) = 1 + (\mathbb{E}(X_1))^2 = 2$ e como X_1^2, X_2^2, \dots são i.i.d., novamente pela Lei Forte de Kolmogorov temos que

$$\frac{\sum\limits_{i=1}^{n}X_{i}^{2}}{n}\xrightarrow[n\longrightarrow +\infty]{}2\quad \text{quase certamente.}$$

Assim,
$$\sqrt{\frac{\sum\limits_{i=1}^{n}X_{i}}{n}} \xrightarrow[n \longrightarrow +\infty]{} \sqrt{2}$$
 quase certo e portanto

$$\frac{\frac{\sum\limits_{i=1}^{n}X_{i}}{n}}{\sqrt{\sum\limits_{i=1}^{n}X_{i}}} = \frac{\sum\limits_{i=1}^{n}X_{i}}{\sqrt{n\sum\limits_{i=1}^{n}X_{i}^{2}}} \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2}} \quad \text{quase certamente.}$$

16ªQUESTÃO: Seja $0 < \theta < 1/2$. Prove que se X_1, X_2, \dots são independentes tais que $\mathbb{P}(X_n = n^{\theta}) = 1/2 = \mathbb{P}(X_n = -n^{\theta})$, então

$$\frac{X_1 + \ldots + X_n}{n} \xrightarrow[n \to +\infty]{} 0$$
 quase certamente.

Resolução: Como X_1, X_2, \dots são variáveis aleatórias independentes com $\mathbb{E}(X_n) = \frac{1}{2}n^{\theta} + \frac{1}{2}n^{\theta}$

 $\frac{1}{2}(-n^{\theta}) = 0 < +\infty \text{ e Var}(X_n) = \mathbb{E}(X_n^2) - (\mathbb{E}(X_n))^2 = \mathbb{E}(X_n^2) = \mathbb{E}(n^{2\theta}) = n^{2\theta}, \text{ para todo } n \in \mathbb{N} \text{ onde } \theta \in (0, 1/2). \text{ Daí temos que } \sum_{n=1}^{\infty} \frac{\operatorname{Var}(X_n)}{n^2} = \sum_{n=1}^{\infty} \frac{n^{2\theta}}{n^2} = \sum_{n=1}^{\infty} n^{2(\theta-1)} < +\infty, \text{ pois } \theta - 1 < -1/2 \text{ e portanto } 2(\theta - 1) < -1. \text{ Assim pela 1}^{\text{a}} \text{ Lei Forte de Kolmogorov, temos que } 1 = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left($

$$\frac{X_1 + \ldots + X_n}{n} - \frac{\mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n)}{n} = \frac{X_1 + \ldots + X_n}{n} \xrightarrow[n \to +\infty]{} 0 \text{ quase certamente.}$$

 $17^{a}QUESTÃO$: Sejam X_1, X_2, \ldots variáveis aleatórias independentes com densidade comum

$$f(x) = \begin{cases} e^{-(x+1/2)} & x \ge -1/2 \\ 0 & x < -1/2. \end{cases}$$

Demonstre que $S_n \longrightarrow +\infty$ quase certamente, onde $S_n = X_1 + \ldots + X_n$.

Resolução: Como X_1, X_2, \dots são variáveis aleatórias independentes com densidade comum f(x) temos que para todo $n \in \mathbb{N}$

$$\mathbb{E}(X_n) = \mathbb{E}(X_1) = \int_{-\infty}^{+\infty} x f(x) \, dx = \int_{-\infty}^{-1/2} x f(x) \, dx + \int_{-1/2}^{+\infty} x f(x) \, dx$$

$$= \int_{-1/2}^{+\infty} x e^{-(x+1/2)} \, dx = e^{-1/2} \int_{-1/2}^{+\infty} x e^{-x} \, dx = (\text{Por Partes})$$

$$= e^{-1/2} \left[-x e^{-x} - e^{-x} \right]_{-1/2}^{+\infty} = -e^{-1/2} \left(\frac{1}{2} e^{1/2} - e^{1/2} \right) = \frac{1}{2}.$$

Assim, resulta da Lei Forte de Kolmogorov que

$$\frac{X_1 + \ldots + X_n}{n} \xrightarrow[n \to +\infty]{} \frac{1}{2}$$
 quase certamente,

ou ainda, que para n suficientemente grande $\frac{X_1 + \ldots + X_n}{n} \approx \frac{1}{2}$ quase certamente, donde concluímos que para n suficientemente grande $X_1 + \ldots + X_n \approx \frac{n}{2}$ quase certamente, assim $S_n \xrightarrow[n \to +\infty]{} +\infty$ quase certamente.

19ª QUESTÃO: Sejam X_1, X_2, \ldots variáveis aleatórias independentes tais que $X_k \sim b(n_k, p)$, onde 0 (<math>p fixo).

(a) Qual a distribuição de
$$S_n = \sum_{k=1}^n X_k$$
?

Resolução: Como $X_1, X_2, ...$ são variáveis aleatórias independentes tais que $X_k \sim b(n_k, p)$, onde 0 (<math>p fixo), temos que a distribuição de $S_n = \sum_{k=1}^n X_k$ é $b(\sum_{k=1}^n n_k, p)$.

Para provar essa afirmação usaremos a seguinte resultado:

(Fórmula da convolução discreta) Sejam X e Y variáveis aleatórias independentes discreta, a variável aleatória Z = X + Y tem distribuição de probabilidade F_Z dada por $F_Z(z) = F_{X+Y}(z) = \mathbb{P}(Z=z) = \sum_{x=0}^{z} F_X(x) F_Y(z-x)$.

De fato, para cada z, o evento [Z=z] é a união dos eventos disjuntos [X=x] e [Y=z-x] com $x=0,\ldots,z$. Usando a independencia de X e Y temos que

$$F_Z(z) = \mathbb{P}([Z=z]) = \mathbb{P}([X=x] \cup [Y=z-x])$$

= $\mathbb{P}([X=x])\mathbb{P}([Y=z-x]) = \sum_{x=0}^{z} F_X(x)F_Y(z-x).$

Consideremos agora X_1, X_2 variáveis aleatórias independentes tais que $X_1, X_2 \sim b(n_k, p)$, onde 0 (<math>p fixo) e denote $Z = X_1 + X_2$. Assim temos que

$$F_{Z}(z) = F_{X_{1}+X_{2}}(z) = \mathbb{P}(x_{1} + x_{2} = z) = \sum_{x=0}^{z} F_{X_{1}}(x) F_{X_{2}}(z - x)$$

$$= \sum_{x=0}^{z} C_{x}^{n_{1}} p^{x} (1 - p)^{n_{1} - x} C_{z-x}^{n_{2}} p^{z-x} (1 - p)^{n_{2} - z + x}$$

$$= p^{z} \cdot (1 - p)^{n_{1} + n_{2} - z} \sum_{x=0}^{z} C_{x}^{n_{1}} \cdot C_{z-x}^{n_{2}} = C_{z}^{n_{1} + n_{2}} \cdot p^{z} \cdot (1 - p)^{n_{1} + n_{2} - z}$$

Suponha agora por indução em k, isto é, $F_{S_k}(z) = \mathbb{P}(x_1 + \ldots + x_k = z) = C_z^{n_1 + \ldots + n_k} \cdot p^z \cdot (1 - p)^{n_1 + \ldots + n_k - z}$. Assim,

$$F_{S_{k+1}}(z) = F_{S_k+X_{k+1}}(z) = \mathbb{P}(S_k + X_{k+1} = z)$$

$$= \sum_{x=0}^{z} F_{S_k}(x) F_{X_{k+1}}(z - x)$$

$$= \sum_{x=0}^{z} C_x^{n_1 + \dots + n_k} p^x (1 - p)^{n_1 + \dots + n_k - x} C_{z-x}^{n_{k+1}} p^{z-x} (1 - p)^{n_{k+1} - z + x}$$

$$= C_z^{n_1 + \dots + n_{k+1}} \cdot p^z \cdot (1 - p)^{n_1 + \dots + n_{k+1} - z}.$$

Portanto, $F_{S_k}(z) = C_z^{n_1 + \dots + n_k} \cdot p^z \cdot (1-p)^{n_1 + \dots + n_k - z}$ para todo $k \in \mathbb{N}$. Donde concluímos que $S_n \sim b(\sum_{k=1}^n n_k, p)$.

(b) Se $n_k \leq \sqrt{k}$, mostre que a sequência satisfaz a Lei Forte.

Resolução: Sabemos que se X_k tem distribuição binomial (n_k, p) então $\mathbb{E}(X_k) = n_k \cdot p$. Como $n_k \leq \sqrt{k}$ e $0 , segue que <math>\mathbb{E}(X_k) = n_k \cdot p < n_k \leq \sqrt{k} < +\infty$. Assim concluímos que X_k é integrável para todo $k \in \mathbb{N}$.

Temos ainda que $Var(X_k) = n_k p(1-p)$, logo

$$\sum_{k=1}^{+\infty} \frac{\operatorname{Var}(X_k)}{k^2} = \sum_{k=1}^{+\infty} \frac{n_k p(1-p)}{k^2} \le \sum_{k=1}^{+\infty} \frac{\sqrt{k} p(1-p)}{k^2}$$
$$= \sum_{k=1}^{+\infty} \frac{p(1-p)}{\sqrt{k^3}} = p(1-p) \sum_{k=1}^{+\infty} \frac{1}{\sqrt{k^3}} < +\infty.$$

Como as variáveis aleatórias são independentes, concluímos que a sequência X_1, X_2, \dots satisfaz a Lei Forte dos Grandes Números.

 $20^{\rm a}{\rm QUEST\tilde{A}O}$: Uma massa radioativa emite partículas segundo um processo de Poisson com parâmetro $\lambda>0$. Sejam T_1,T_2,\ldots os tempos transcorridos entre emissões sucessivas. Ache o

$$\lim_{n\to\infty}\frac{T_1^2+\ldots+T_n^2}{n}$$

É limite quase certo ou em probabilidade?

Resolução: Sabemos que os tempos são independentes e possuem a mesma distribuição (Poisson(λ)) logo T_1, T_2, \dots são i.i.d., assim temos que T_1^2, T_2^2, \dots também são i.i.d..

Além disso, como já fizemos na letra (a) da questão 24º do Capítulo 3 temos que $\mathbb{E}(T_i^2) = \lambda^2 + \lambda$, desta forma a Lei Forte de Kolmogorov garante que

$$\lim_{n \to \infty} \frac{T_1^2 + \ldots + T_n^2}{n} = \lambda^2 + \lambda \quad \text{quase certamente.}$$

OBS: Sabemos que convergência quase certa implica convergência em probabilidade, portanto a convergência também é em probabilidade.

 $21^{a}QUESTÃO$: Sejam X_1, X_2, \ldots variáveis aleatórias independentes com distribuição co-

mum N(0,1). Qual o limite quase certo de

$$\frac{X_1^2 + \ldots + X_n^2}{(X_1 - 1)^2 + \ldots + (X_n - 1)^2}?$$

Resolução: Como X_1, X_2, \ldots são variáveis aleatórias i.i.d. então X_1^2, X_2^2, \ldots também são i.i.d.. Além disso

$$\mathbb{E}(X_n^2) = \mathbb{E}(X_1^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^2 e^{-x^2/2} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \cdot (xe^{-x^2/2}) dx = \text{(Por Partes)}$$

$$= \frac{1}{\sqrt{2\pi}} [-xe^{-x^2/2} + \sqrt{2\pi}]_{-\infty}^{+\infty} = 1$$

Assim, usando a Lei Forte de Kolmogorov temos que $\frac{X_1^2 + \ldots + X_n^2}{n} \xrightarrow[n \to +\infty]{} 1$ quase certamente.

Por outro lado, sabemos que se $X_n \sim N(0,1)$ então $Y_n = (X_n - 1)$ tem distribuição comum N(-1,1) (ver pag. 52). Daí temos que Y_1, Y_2, \ldots são i.i.d. e portanto Y_1^2, Y_2^2, \ldots também são i.i.d. e mais

$$\mathbb{E}(Y_n^2) = \mathbb{E}(Y_1^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y^2 e^{-(y+1)^2/2} \, dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (x-1)^2 e^{-(x-1+1)^2/2} \, dx$$
$$= \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{+\infty} x^2 e^{-x^2/2} \, dx + \int_{-\infty}^{+\infty} 2x e^{-x^2/2} \, dx + \int_{-\infty}^{+\infty} e^{-x^2/2} \, dx \right)$$
$$= 1 + 0 + 1 = 2.$$

Pela Lei Forte de Kolmogorov temos que $\frac{Y_1^2+\ldots+Y_n^2}{n} \xrightarrow[n \to +\infty]{} 2$ quase certamente. Donde concluímos que

$$\frac{X_1^2 + \ldots + X_n^2}{(X_1 - 1)^2 + \ldots + (X_n - 1)^2} \xrightarrow[n \to +\infty]{1} \text{ quase certamente.}$$

22ªQUESTÃO: Sejam $X_1, X_2, ...$ variáveis aleatórias independentes tais que $X_n \sim U[0, n]$, n = 1, 2, ... Chame o n-ésimo ensaio de sucesso se $X_{2n} > X_{2n-1}$, fracasso se $X_{2n} \le X_{2n-1}$, para n = 1, 2, ... Determine a probabilidade de haver sucesso no n-ésimo ensaio e ache o limite (se existir) de S_n/n , onde S_n = número de sucessos nos primeiros n ensaios. Esse limite é limite em probabilidade e/ou quase certo?

Resolução: Consideremos inicialmente que $X_{2n} > 2n-1$, sabemos que a distribuição é uniforme então podemos calcular a probabilidade $\mathbb{P}(X_{2n} > 2n-1) = \int\limits_{2n-1}^{2n} \frac{1}{2n} dx = \frac{2n-(2n-1)}{2n} = \frac{1}{2n}$. Note que neste caso sempre temos $X_{2n} > X_{2n-1}$, já que $X_{2n} > 2n-1$.

Daí temos que a probabilidade $X_{2n} \leq 2n-1$ é, portanto $\frac{2n-1}{2n}$. Neste caso temos que $\mathbb{P}(X_{2n} > X_{2n-1}) = \frac{1}{2}$ (já que X_{2n-1} também varia uniformemente em [0, 2n-1]).

Portanto, $\mathbb{P}(X_{2n} > X_{2n-1}) = \frac{1}{2n} + \frac{2n-1}{2n} \cdot \frac{1}{2} = \frac{2n+1}{4n}$. Assim, o n-ésimo ensaio tem probabilidade $\frac{2n+1}{4n}$ de sucesso.

Denote agora

$$A_n = \begin{cases} 1 & \sec X_{2n} > X_{2n-1} \\ 0 & \sec X_{2n} \le X_{2n-1}. \end{cases}$$

a variável aleatória associada a cada n-ésimo ensaio, $n \in \mathbb{N}$.

Sabemos que A_1, A_2, \dots são independentes, (cada A_k depende apenas de pares disjuntos uns dos outros de variáveis $X_{n's}$) integráveis, já que $\mathbb{E}(A_n) = \frac{2n+1}{4n} < +\infty$ e mais

$$\sum_{n=1}^{+\infty} \frac{\operatorname{var}(A_n)}{n^2} = \sum_{n=1}^{+\infty} \frac{\mathbb{E}(A_n^2) - \mathbb{E}^2(A_n)}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} \cdot \frac{2n+1}{4n} + \frac{1}{n^2} \cdot \frac{4n^2 + 4n + 1}{16n^2}$$
$$= \sum_{n=1}^{+\infty} \frac{2n+1}{4n^3} + \sum_{n=1}^{+\infty} \frac{4n^2 + 4n + 1}{16n^4} < +\infty.$$

Desta forma, pela Lei Forte de Kolmogorov, temos que as A_n satisfazem a Lei Forte dos Grandes Números, ou seja,

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \frac{\sum_{n=1}^{+\infty} \mathbb{E}(A_n)}{n} \quad q.c.$$

Como

$$\frac{\sum_{n=1}^{k} \mathbb{E}(A_n)}{k} = \frac{1}{k} \cdot \sum_{n=1}^{k} \frac{2n+1}{4n} = \frac{1}{k} \left(\sum_{n=1}^{k} \frac{1}{2} + \frac{1}{4n} \right)$$
$$= \frac{1}{2} + \frac{1}{4k} \sum_{n=1}^{k} \frac{1}{n},$$

daí temos que

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \frac{1}{2} + \frac{1}{4n} \sum_{k=1}^n \frac{1}{k} \quad q.c.$$

Como $\sum_{k=1}^{n} \frac{1}{k} < 1 + \ln(n)$, temos que $\frac{1}{4n} \sum_{k=1}^{n} \frac{1}{k} < \frac{1 + \ln(n)}{4n}$, como $\frac{\ln(n)}{4n} \xrightarrow[n \to +\infty]{} 0$ e $\frac{1}{4n} \xrightarrow[n \to +\infty]{} 0$ concluímos que $\frac{1 + \ln(n)}{4n} \xrightarrow[n \to +\infty]{} 0$, e portanto $\frac{1}{4n} \sum_{k=1}^{n} \frac{1}{k} \xrightarrow[n \to +\infty]{} 0$, ou seja, $\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \frac{1}{2}$ quase certamente (e como consequência temos que também converge em probabilidade).

23ªQUESTÃO: A Lei Forte para variáveis aleatórias independentes, identicamente distribuídas e integráveis pode ser estendida ao caso de esperanças infinitas, se admitirmos limites infinitos. Em particular, se X_1, X_2, \ldots são independentes e identicamente distribuídas tais que $\mathbb{E}(X_n) = +\infty$, então $S_n/n \longrightarrow +\infty$ quase certamente. (Compare com o Teorema 5.3. Qual a diferença?) Prove esse resultado em 3 etapas:

(a) Para m inteiro positivo fixo, seja Y_n o trucamento de X_n em m:

$$Y_n = \begin{cases} X_n & \text{se } X_n \le m \\ 0 & \text{se } X_n > m. \end{cases}$$

Então $\frac{Y_1+\ldots+Y_n}{n} \longrightarrow \mathbb{E}(Y_1)$ quase certamente, onde

$$\mathbb{E}(Y_1) = \int_{-\infty}^{m} x dF_{X_1}(x).$$

Resolução: Seja m inteiro positivo fixo, e Y_n o trucamento

$$Y_n = \begin{cases} X_n & \text{se } X_n \le m \\ 0 & \text{se } X_n > m. \end{cases}$$

Daí temos que as Y_n são integráveis, independentes e identicamente distribuídas, já que as X_n o são. Assim pela Lei Forte de Kolmogorov temos que $\frac{Y_1+\ldots+Y_n}{n}\longrightarrow \mathbb{E}(Y_n)=\mathbb{E}(Y_1)$ quase certamente.

Como por definição de Y_1 temos $\mathbb{E}(Y_1) = \int x dF_{Y_1}(x) = \int_{0}^{m} x dF_{X_1}(x)$.

(b)
$$\liminf_{n \to \infty} \frac{S_n}{n} \ge \int_{-\infty}^m x dF_{X_1}(x)$$
 quase certamente. (Sugestão: $X_n \ge Y_n$.)

Resolução: Como $\liminf_{n \to \infty} \frac{S_n}{n} = \liminf_{n \to \infty} \frac{X_1 + \ldots + X_n}{n}$ usamos o fato de $X_n \ge Y_n$ e obtemos que $\liminf_{n \to \infty} \frac{S_n}{n} \ge \liminf_{n \to \infty} \frac{Y_1 + \ldots + Y_n}{n} = \int\limits_{-\infty}^m x dF_{X_1}(x)$ quase certamente.

(c) $\frac{S_n}{n} \longrightarrow +\infty$ quase certamente. (Faça $m \longrightarrow +\infty$ em (b)). **Resolução:** Fazendo $m \longrightarrow +\infty$ na letra b) acima temos $\int\limits_{-\infty}^{m} x dF_{X_1}(x) \longrightarrow \int\limits_{-\infty}^{+\infty} x dF_{X_1}(x) = \mathbb{E}(X_1) = \mathbb{E}(X_n) = +\infty$. Como $\liminf_{n \longrightarrow \infty} \frac{S_n}{n} \ge \int\limits_{-\infty}^{m} x dF_{X_1}(x)$ quase certamente, concluímos que, $\frac{S_n}{n} \longrightarrow +\infty$ quase certamente.

Comentário: A principal diferença entre esse Resultado e o Teorema 5.3 reside no tipo de convergência onde o Teorema garante a convergência em probabilidade enquanto que esse Resultado é mais geral pois garante convergência quase certa e como já vimos convergência quase certa implica convergência em probabilidade.

26ª QUESTÃO: Sejam X_1, X_2, \ldots independentes tais que $\mathbb{E}(X_n) = 0, \forall n$. Demonstre que se $\sum_{n=1}^{\infty} \mathrm{Var}(X_n) < \infty$, então $\mathbb{E}(\sup_{n>1} |S_n|) < \infty$, onde $S_n = X_1 + \ldots + X_n$. (Sugestão. Use o critério para integrabilidade do §3.3 e a desigualdade de Kolmogorov.)

Resolução: Como $\mathrm{Var}(X_n) \leq \sum_{n=1}^{\infty} \mathrm{Var}(X_n) < \infty$ para todo n temos pela desigualdade de Kolmogorov que para todo $\lambda > 0$

$$\mathbb{P}(\max_{1 \le k \le n} |S_k| \ge \lambda) \le \frac{1}{\lambda^2} \text{Var}(S_n),$$

como X_1, X_2, \dots são independentes tais que $\mathbb{E}(X_n) = 0$, $\forall n$ ficamos com $\mathrm{Var}(X_n) = \mathbb{E}(X_n^2)$ logo $\mathrm{Var}(S_n) = \sum_{k=1}^n \mathrm{Var}(X_k)$. Daí temos que

$$\mathbb{P}(\max_{1 \le k \le n} |S_k| \ge \lambda) \le \frac{1}{\lambda^2} \sum_{k=1}^n \text{Var}(X_k).$$

Assim,

$$\sum_{n=1}^{\infty} \mathbb{P}(\sup_{n>1} |S_n| \ge n) = \sum_{n=1}^{\infty} \mathbb{P}(\max_{1 \le k \le n} |S_k| \ge n) \le \sum_{n=1}^{\infty} \left(\frac{1}{n^2} \sum_{k=1}^n \operatorname{Var}(X_k)\right) < \infty,$$

já que $\sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty$ e $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$.

Pelo critério para integrabilidade do §3.3 (página 117) temos que $\sup_{n>1} |S_n|$ é integrável,

ou seja, $\mathbb{E}(\sup_{n>1}|S_n|)<\infty$.

Capítulo 6

1ªQUESTÃO:

(a) Se $X \sim b(n, p)$, qual a função característica de X?

Resolução: Como $X \sim b(n,p)$ sabemos que $\mathbb{P}(X=k) = \frac{n!}{k!(n-k)!}p^k(1-p)^k$. Assim temos que

$$\varphi_X(t) = \mathbb{E}(e^{itX}) = \sum_{k=0}^{+\infty} e^{itk} \mathbb{P}(X=k) = \sum_{k=0}^{+\infty} e^{itk} \frac{n!}{k!(n-k)!} p^k (1-p)^k$$
$$= \sum_{k=0}^{+\infty} \frac{n!}{k!(n-k)!} (e^{it}p)^k (1-p)^k = [(1-p) + pe^{it}]^n$$

(b) Mostre, usando funções características, que se $X \sim b(m,p), Y \sim b(n,p),$ e X e Y são independentes, então $X+Y \sim b(m+n,p).$

Resolução: Sabemos que se X e Y são independentes então $\varphi_{X+Y}(t) = \varphi_X(t) \cdot \varphi_Y(t)$ (Propriedade 5). Pela Letra (a) temos que $\varphi_X(t) = [(1-p)+pe^{it}]^m$ e $\varphi_Y(t) = [(1-p)+pe^{it}]^n$ logo $\varphi_{X+Y}(t) = [(1-p)+pe^{it}]^m \cdot [(1-p)+pe^{it}]^n = [(1-p)+pe^{it}]^{m+n}$ e portanto $X+Y \sim b(m+n,p)$.

2ªQUESTÃO: Mostre que se X_1, \ldots, X_n são independentes com, cada uma, distribuição simétrica em torno de 0, então $\sum_{j=1}^n a_j X_j$ possui distribuição simétrica em torno de 0, para toda escolha das constantes $a_j \in \mathbb{R}$.

Resolução: Sabemos que se X_1, \ldots, X_n são independentes então

$$\varphi_{\sum_{j=1}^{n} a_j X_j}(t) = \prod_{j=1}^{n} \varphi_{a_j X_j}(t) = (\text{Propriedade 8}) = \prod_{j=1}^{n} \varphi_{X_j}(a_j t).$$

Por outro lado todos os X_j , $1 \le j \le n$ possuem distribuição simétrica em torno de 0, ou seja, $\varphi_{X_j}(t)$, $1 \le j \le n$ é real para todo $t \in \mathbb{R}$. Daí temos que $\varphi_{\sum\limits_{j=1}^n a_j X_j}(t) = \prod\limits_{j=1}^n \varphi_{X_j}(a_j t)$ é real para toda escolha das constantes $a_j \in \mathbb{R}$, o que nos permite concluir (pela Propriedade

7) que $\sum_{j=1}^{n} a_j X_j$ possui distribuição simétrica em torno de 0, para toda escolha das constantes $a_i \in \mathbb{R}$.

 $\mathbf{3^aQUESTÃO}$: Seja φ uma função característica. Mostre que $\psi(t)=e^{\lambda(\varphi(t)-1)}$, onde $\lambda>0$, também é função característica. (Sugestão. Sejam N, X_1, X_2, \ldots independentes tais que $N\sim \operatorname{Poisson}(\lambda)$ e as X_n são identicamente distribuídas com $\varphi_{X_n}=\varphi$. Defina $Y=S_N$, onde $S_n=X_1+\ldots+X_n; N$ é um "tempo de parada" para a sequencia de somas parciais. Então $\varphi_Y=\psi$. A distribuição de Y é chamada de distribuição composta de poisson. A distribuição comum de Poisson corresponde ao caso $X_n=1$, isto é, $\mathbb{P}(X_n=1)=1$.)

Resolução: Sejam N, X_1, X_2, \ldots independentes tais que $N \sim \text{Poisson}(\lambda)$ e as X_n são identicamente distribuídas com $\varphi_{X_n} = \varphi$. Defina $Y = S_N$, onde $S_n = X_1 + \ldots + X_n$; N é um "tempo de parada" para a sequencia se somas parciais.

Usando que as X_n são i.i.d. com $\varphi_{X_n} = \varphi$ chegamos que $\varphi_{S_n}(t) = \varphi_{\sum\limits_{j=1}^n X_j}(t) = \prod\limits_{j=1}^n \varphi_{X_j}(t) = (\varphi(t))^n$. Ademais, sabemos que

$$\varphi_{Y}(t) = \mathbb{E}(e^{itY}) = \sum_{j=1}^{+\infty} \mathbb{E}(e^{itY}|N=j)\mathbb{P}(N=j) = \sum_{j=1}^{+\infty} \mathbb{E}(e^{it(X_{1}+...+X_{j})}|N=j)\mathbb{P}(N=j)$$

$$= (\text{como } N \text{ e os } X_{n's} \text{ são independentes}) = \sum_{j=1}^{+\infty} \mathbb{E}(e^{it(X_{1}+...+X_{j})})\mathbb{P}(N=j)$$

$$= \sum_{j=1}^{+\infty} \varphi_{X_{1}+...+X_{j}}(t)\mathbb{P}(N=j) = \sum_{j=1}^{+\infty} \varphi_{X_{1}}(t) \cdot \dots \cdot \varphi_{X_{j}}(t)\mathbb{P}(N=j) = \sum_{j=1}^{+\infty} (\varphi(t))^{j}\mathbb{P}(N=j)$$

$$= (\text{como } N \sim \text{Poisson}(\lambda)) = \sum_{j=1}^{+\infty} (\varphi(t))^{j} \frac{\lambda^{j}}{j!} e^{-\lambda} = e^{-\lambda} \sum_{j=1}^{+\infty} \frac{(\lambda \cdot \varphi(t))^{j}}{j!}$$

$$= e^{-\lambda} \cdot e^{\lambda \varphi(t)} = e^{\lambda(\varphi(t)-1)}, \quad \lambda > 0.$$

Desda forma tomando $\psi(t)=\varphi_Y(t)$, temos que $\psi(t)=e^{\lambda(\varphi(t)-1)}$ é uma função característica.

5ªQUESTÃO:

(a) Mostre que se X tem distribuição Cauchy-padrão, então $\varphi_{2X}(t)=\varphi_X^2(t)$. (Pode usar

sem provar, que

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\cos(tx)}{1+x^2} dx = e^{-|t|}.$$

Utilize esse resultado para provar que

$$\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t), \quad \forall t \in \mathbb{R} \implies X \in Y \text{ independentes},$$

e portanto,

$$F_{X+Y}(z) = F_X(z) * F_Y(z), \quad \forall z \in \mathbb{R} \implies Xe Y \text{ independentes.}$$

 $(F_X * F_Y \text{ \'e a convolução de } F_X \text{ com } F_Y.)$

Resolução: Sabendo que X tem distribuição Cauchy-padrão temos que X tem densidade $f(x) = \frac{1}{\pi(1+x^2)}$. Assim a função característica de X é dada por

$$\varphi_X(t) = \int_{-\infty}^{+\infty} e^{itx} f(x) dx = \int_{-\infty}^{+\infty} \frac{\cos(tx) + i \sin(tx)}{\pi(1+x^2)} dx = \int_{-\infty}^{+\infty} \frac{\cos(tx)}{\pi(1+x^2)} dx + i \int_{-\infty}^{+\infty} \frac{\sin(tx)}{\pi(1+x^2)} dx$$

Como $\frac{\sin(tx)}{\pi(1+x^2)}$ é função ímpar temos que $\int_{-\infty}^{+\infty} \frac{\sin(tx)}{\pi(1+x^2)} dx = 0$ logo $\varphi_X(t) = \int_{-\infty}^{+\infty} \frac{\cos(tx)}{\pi(1+x^2)} dx = e^{-|t|}$, (aqui também poderíamos usar que X tem distribuição simétrica em torno de zero para concluir pela propriedade 7 que $\int_{-\infty}^{+\infty} \frac{\sin(tx)}{\pi(1+x^2)} dx = 0$). Pela propriedade 8 temos que $\varphi_{2X}(t) = \varphi_X(2t) = e^{-|2t|} = e^{-2|t|} = (e^{-|t|})^2 = (\varphi_X(t))^2$, $\forall t \in \mathbb{R}$. Daí temos que

$$\varphi_{X+X}(t) = \varphi_{2X}(t) = (\varphi_X(t))^2 = \varphi_X(t) \cdot \varphi_X(t) \quad \forall t \in \mathbb{R}.$$

Observe também que X e X são dependentes o que mostra que

$$\varphi_{X+Y}(t) = \varphi_X(t) \cdot \varphi_Y(t), \quad \forall t \in \mathbb{R} \implies X \in Y \text{ são independentes.}$$

Além disso, pela unicidade (φ_X determina F_X e F_X determina φ_X) temos que $\varphi_X(t) \cdot \varphi_X(t)$ é a função característica cuja função de distribuição é $F_X(z) * F_X(z)$ e $\varphi_{X+X}(t)$ é a função característica cuja função de distribuição é $F_{X+X}(z)$, assim $F_X(z) * F_X(z) = F_{X+X}(z)$, $\forall z \in \mathbb{R}$ (já que $\varphi_{X+X}(t) = \varphi_X(t) \cdot \varphi_X(t)$), mas X e X são dependentes, logo $F_{X+Y}(z) = F_X(z) * F_Y(z)$, $\forall z \in \mathbb{R} \implies X$ e Y são independentes.

(b) Sejam X_1, \ldots, X_n independentes e identicamente distribuídas, com distribuição comum Cauchy-padrão. Demonstre que a média amostral

$$\frac{S_n}{n} = \frac{X_1, \dots, X_n}{n}$$

também é Cauchy-padrão.

Resolução: Como X_1, \ldots, X_n são independentes temos que $\varphi_{S_n}(t) = \prod_{i=1}^n \varphi_{X_i}(t)$. Usando agora o fato de X_1, \ldots, X_n serem identicamente distribuídas, com distribuição comum Cauchy-padrão temos

$$\varphi_{S_n}(t) = \prod_{i=1}^n \varphi_{X_i}(t) = \prod_{i=1}^n e^{-|t|} = e^{-n|t|} = e^{-|nt|}.$$

Usando agora a propriedade 8 temos que

$$\varphi_{\frac{S_n}{n}}(t) = \varphi_{S_n}\left(\frac{t}{n}\right) = e^{-|n\frac{t}{n}|} = e^{-|t|}.$$

Daí concluímos pela unicidade entre funções características e funções de distribuição que $\frac{S_n}{n} = \frac{X_1 + \ldots + X_n}{n} \text{ também tem distribuição Cauchy-padrão}.$

 $\mathbf{6^aQUEST\tilde{A}O}$: Sejam X e Y variáveis aleatórias com a mesma distribuição. Demonstre: (a) Se X e Y são independentes, então X-Y tem distribuição simétrica em torno do zero.

Resolução: Como X e Y são independentes, então

$$\varphi_{X-Y}(t) = \varphi_X(t) \cdot \varphi_Y(-t) = \varphi_X(t) \cdot \varphi_X(-t) = \varphi_X(t) \cdot \overline{\varphi_X(t)},$$

onde a penultima igualdade decorre do fato de X e Y terem a mesma distribuição, e como $\varphi_X(t) \cdot \overline{\varphi_X(t)} \in \mathbb{R}$ concluímos que X - Y tem distribuição simétrica em torno do zero.

(b) Se X e Y tomam só dois valores, então X-Y tem distribuição simétrica em torno do zero.

Resolução: Como X e Y tomam só dois valores, digamos a e b (com $a, b \in \mathbb{R}$ e a < b). Suponha que $\mathbb{P}(X = a) = p$ e $\mathbb{P}(X = b) = 1 - p$, com $0 e <math>\mathbb{P}(Y = a) = q$ e $\mathbb{P}(Y = b) = 1 - q$, com 0 < q < 1. Daí temos que

$$\mathbb{E}[\operatorname{sen}(t(X-Y))] = \operatorname{sen}(0)\mathbb{P}(X-Y=0) + \operatorname{sen}(a-b)\mathbb{P}(X-Y=a-b)$$

$$+ \operatorname{sen}(b-a)\mathbb{P}(X-Y=b-a)$$

$$= \operatorname{sen}(a-b)\mathbb{P}(X-Y=a-b) - \operatorname{sen}(a-b)\mathbb{P}(X-Y=b-a)$$

$$= (\operatorname{usando que } X \in Y \text{ são i.i.d.})$$

$$= \operatorname{sen}(a-b)\mathbb{P}(X-Y=a-b) - \operatorname{sen}(a-b)\mathbb{P}(X-Y=a-b) = 0.$$

Pela propriedade 7 concluímos que X-Y tem distribuição simétrica em torno do zero.

7ªQUESTÃO:

(a) Suponha que $X \sim \exp(\lambda)$ e mostre que a função característica de X é

$$\varphi(x) = \frac{\lambda}{\lambda - it} = \frac{\lambda^2 + it\lambda}{\lambda^2 + t^2}.$$

Resolução: Como $X \sim \exp(\lambda)$ sabemos que X tem densidade dada por $f(x) = \lambda e^{-\lambda x} \mathbb{I}_{[0,+\infty)}$. Logo

$$\varphi_X(t) = \int_0^{+\infty} e^{itx} \cdot \lambda e^{-\lambda x} dx = \lambda \int_0^{+\infty} e^{(it-\lambda)x} dx = (\text{tomando } u = (it-\lambda)x)$$

$$= \frac{\lambda}{it-\lambda} \int_0^{+\infty} e^u du = \frac{\lambda}{it-\lambda} e^{(it-\lambda)x} \Big|_0^{+\infty} = \frac{\lambda}{it-\lambda} (e^{-\lambda x} (\cos(tx) + i \sin(tx))) \Big|_0^{+\infty}$$

$$= -\frac{\lambda}{it-\lambda} = \frac{\lambda}{\lambda - it} = \frac{\lambda(\lambda + it)}{(\lambda - it)(\lambda + it)} = \frac{\lambda^2 + it\lambda}{\lambda^2 + t^2}$$

(b) Seja Y exponencial dupla com densidade $f_Y(y) = \frac{\lambda}{2}e^{-\lambda|y|}$, $y \in \mathbb{R}$. Calcule a função característica de Y. (sugestão. Use simetria e o item (a)).

Resolução: Como Y possui densidade $f_Y(y) = \frac{\lambda}{2} e^{-\lambda|y|}, y \in \mathbb{R}$, temos que

$$\varphi_Y(t) = \int_{-\infty}^{+\infty} e^{ity} \cdot \frac{\lambda}{2} e^{-\lambda|y|} dy = \frac{\lambda}{2} \int_{-\infty}^{+\infty} e^{ity - \lambda|y|} dy$$

$$= \frac{\lambda}{2} \int_{-\infty}^{0} e^{(it + \lambda)y} dy + \frac{\lambda}{2} \int_{0}^{+\infty} e^{(it - \lambda)y} dy$$

$$= (\text{similar ao item (a)}) = \frac{\lambda}{2(it + \lambda)} + \frac{\lambda}{2(\lambda - it)}$$

$$= \frac{\lambda(\lambda - it) + \lambda(\lambda + it)}{2(it + \lambda)(\lambda - it)} = \frac{\lambda^2}{\lambda^2 + t^2}$$

(c) Demonstre: Se Z e W são independentes e identicamente distribuídas, com $Z\sim\exp(\lambda)$, então Z-W é exponencial dupla.

Resolução: Como Z e W são independentes $\varphi_{Z-W}(t) = \varphi_Z(t) \cdot \varphi_W(-t)$, sabendo ainda que Z e W são identicamente distribuídas, com $Z \sim \exp(\lambda)$ temos que

$$\varphi_{Z-W}(t) = \varphi_Z(t) \cdot \varphi_W(-t) = \frac{\lambda}{\lambda - it} \cdot \frac{\lambda}{\lambda + it} = \frac{\lambda^2}{\lambda^2 + t^2}.$$

Portanto Z-W é exponencial dupla.

9ªQUESTÃO:Demonstre:

(a) Se φ é função característica e existe $\lambda \neq 0$ tal que $\varphi(\lambda) = 1$, então a distribuição correspondente a φ está concentrada nos pontos $\pm k \left(\frac{2\pi}{\lambda}\right)$, $k = 0, 1, \dots$

Resolução: Seja A o conjunto dado por $A = \{\pm k \left(\frac{2\pi}{\lambda}\right); k = 1, 2, \ldots\}$. Suponha por absurdo que a distribuição correspondente a φ não está concentrada nos pontos $\pm k \left(\frac{2\pi}{\lambda}\right)$, $k = 0, 1, \ldots$, ou seja, que $\mathbb{P}(A^c) \neq 0$.

Assim temos que

$$\mathbb{E}[\cos(\lambda X)] = \mathbb{P}(A)\cos\left[\pm\lambda k\left(\frac{2\pi}{\lambda}\right)\right] + \int_{A^c}\cos(\lambda x)dF_X(x)$$
$$= \mathbb{P}(A) + \int_{A^c}\cos(\lambda x)dF_X(x) < \mathbb{P}(A) + \int_{A^c}dF_X(x)$$
$$= \mathbb{P}(A) + \mathbb{P}(A^c) = 1.$$

Deste modo temos que $\operatorname{Re}(\varphi_X(\lambda)) < 1$. Absurdo. Portanto, concluímos que φ está concentrada nos pontos $\pm k \left(\frac{2\pi}{\lambda}\right), \ k = 0, 1, \dots$

(b) Se φ é uma função característica e existe $\delta > 0$ tal que $\varphi(t) = 1$ para todo t com $|t| < \delta$, então $\varphi(t) = 1 \ \forall t$. (Qual a distribuição correspondente a φ ?)

Resolução: Como para todo $t \in (-\delta, \delta)$ temos $\varphi(t) = 1$ então $\varphi\left(\frac{\delta}{2^p}\right) = 1$ para todo $p \in \mathbb{N}$, já que $\frac{\delta}{2^p} \in (-\delta, \delta)$, $\forall p \in \mathbb{N}$.

Assim, pela letra a), temos que φ está concentrada em $\pm k \left(\frac{2\pi}{\frac{\delta}{2^p}}\right) = \pm k \left(\frac{2^{p+1}\pi}{\delta}\right)$, $k = 0, 1, 2, \dots$

Como $\bigcap_{p=1}^{+\infty} \left\{ \pm \frac{2^{p+1}k\pi}{\delta} \right\} = \{0\}$ e se X é variável aleatória tal que sua distribuição é dada por

$$\mathbb{P}(X = a) = \begin{cases} 1 & \text{se } a = 0 \\ 0 & \text{se } a \neq 0 \end{cases}$$

então $\varphi_X \equiv 1$.

De fato, $\varphi_X(t) = \mathbb{E}(\cos(tX)) + i\mathbb{E}(\sin(tX)) = \mathbb{E}(\cos(0)) + i\mathbb{E}(\sin(0)) = 1, \forall t \in \mathbb{R}.$

 $\mathbf{10^aQUEST\tilde{A}O}$: A função geradora de momentos de uma variável aleatória X é definida por

$$\psi_X(t) = \mathbb{E}(e^{tX}), \ t \in \mathbb{R}.$$

(É permitido a ψ_X assumir o valor $+\infty$.) Demonstre que se $\mathbb{E}(e^{\delta|X|}) < \infty$ para algum $\delta > 0$, então:

(a) $\psi(t)$ é finito para $t \in [-\delta, \delta]$;

Resolução: Como $tX \leq \delta |X|$, para todo $|t| \leq \delta$ e todo X. Daí temos que $e^{tX} \leq e^{\delta |X|}$ e portanto $\psi_X(t) = \mathbb{E}(e^{tX}) \leq \mathbb{E}(e^{\delta |X|}) < +\infty$, para todo $t \in [-\delta, \delta]$.

(b) todos os momentos de X são finitos; e

Resolução: Como $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$, temos que $e^{\delta|x|} = 1 + (\delta|x|) + \frac{(\delta|x|)^2}{2!} + \frac{(\delta|x|)^3}{3!} + \dots$

Daí concluímos que $e^{\delta|x|} \ge \frac{(\delta|x|)^k}{k!}$ para todo $k \in \mathbb{N}$ e todo $x \in \mathbb{R}$.

Sabemos que $+\infty > \mathbb{E}(e^{\delta|X|}) \geq \mathbb{E}(\frac{(\delta|X|)^k}{k!}) = \frac{\delta^k}{k!}\mathbb{E}(|X|^k)$ para todo $k \in \mathbb{N}$, como $\frac{\delta^k}{k!}$ é constante para cada k fixado, chegamos que $\mathbb{E}(|X|^k) < +\infty$ para todo $k \in \mathbb{N}$. O que mostra que X tem todos os momentos finitos.

(c) ψ possui derivadas contínuas de toda ordem em $(-\delta, \delta)$, e $\psi^{(k)}(0) = \mathbb{E}(X^k)$ para $k = 1, 2, \dots$ (Sugestão. Use o método de prova da propriedade FC9.)

Resolução: Como $\psi_X(t) = \mathbb{E}(e^{tX}) = \int e^{tx} dF_X(x)$, derivando $\psi_X(t)$ ficamos com $\psi_X^{(k)}(t) = \int x^k e^{tx} dF_X(x)$ e portanto $\psi_X^{(k)}(0) = \int x^k dF_X(x) = \mathbb{E}(X^k)$.

Resta-nos mostrar a diferenciação dentro da integral. Queremos provar inicialmente que $\psi_X'(t) = \int x e^{tx} dF_X(x)$.

Seja $h \in \mathbb{R}$ tal que $h \neq 0$, assim

$$\frac{\psi_X(t+h) - \psi_X(t)}{h} = \mathbb{E}\left(\frac{e^{(t+h)X} - e^{tX}}{h}\right) = \mathbb{E}\left(e^{tX}\frac{(e^{hX} - 1)}{h}\right).$$

Observe que $\frac{e^{hx}-1}{h} \xrightarrow[h \to 0]{} x$ para todo $x \in \mathbb{R}$, assim $e^{tx} \frac{(e^{hx}-1)}{h} \xrightarrow[h \to 0]{} xe^{tx}$. Além disso, temos que

$$\left| e^{tx} \frac{(e^{hx} - 1)}{h} \right| = |e^{tx}| \cdot \left| \frac{(e^{hx} - 1)}{h} \right| = |e^{tx}| \cdot \left| \frac{\int\limits_0^h x e^{sx} ds}{h} \right| \le |e^{\delta x}| \cdot |x| \cdot \left| \frac{\int\limits_0^h |e^{sx}| ds}{h} \right| \le (e^{\delta x})^2 \cdot |x|,$$

para todo $t \in (-\delta, \delta)$. Como $e^{\delta X} \le e^{\delta |X|} < \infty$ e |X| é integrável (já que X tem todos os momentos finitos (letra b)) concluímos pelo Teorema da Convergência Dominada que

$$\psi_X'(t) = \lim_{h \to 0} \frac{\psi_X(t+h) - \psi_X(t)}{h} = \lim_{h \to 0} \mathbb{E}\left(e^{tX} \frac{(e^{hX} - 1)}{h}\right) = \mathbb{E}\left(Xe^{tX}\right) = \int xe^{tx} dF_X(x).$$

Decorre também desse Teorema que $\psi'(t)$ é contínua em t, pois $xe^{tx} = \lim_{s \longrightarrow t} xe^{sx}$ e $|xe^{tx}| \le |x| \cdot e^{\delta|X|}$ para todo $t \in (-\delta, \delta)$.

Usando agora indução em n, isto é, supondo válido para n verificaremos que vale também para n+1, concluímos o exercício.

Como $\psi_X^{(n)}(t)=\int x^n e^{tx} dF_X(x)$ queremos mostrar que $\psi_X^{(n)}(t)$ possui derivada contínua e

tal que $\psi_X^{(n+1)}(t) = \int x^{n+1} e^{tx} dF_X(x)$.

Procedendo de maneira inteiramente análoga ao que fizemos acima teremos, para $h \in \mathbb{R}$ tal que $h \neq 0$,

$$\frac{\psi_X^{(n)}(t+h) - \psi_X^{(n)}(t)}{h} = \mathbb{E}\left(\frac{X^n e^{(t+h)X} - X^n e^{tX}}{h}\right) = \mathbb{E}\left(X^n e^{tX} \frac{(e^{hX} - 1)}{h}\right).$$

Sabemos que $\frac{e^{hx}-1}{h} \xrightarrow[h \to 0]{} x$ para todo $x \in \mathbb{R}$, assim $x^n e^{tx} \frac{(e^{hx}-1)}{h} \xrightarrow[h \to 0]{} x^{n+1} e^{tx}$. Além disso, temos que

$$\left| x^n e^{tx} \frac{(e^{hx} - 1)}{h} \right| = |x^n| \cdot |e^{tx}| \cdot \left| \frac{(e^{hx} - 1)}{h} \right| = |x^n| \cdot |e^{tx}| \cdot \left| \frac{\int\limits_0^h x e^{sx} ds}{h} \right|$$

$$\leq |x^n| \cdot |e^{\delta x}| \cdot |x| \cdot \left| \frac{\int\limits_0^h |e^{sx}| ds}{h} \right| \leq (e^{\delta x})^2 \cdot |x^{n+1}|,$$

para todo $t \in (-\delta, \delta)$. Como $e^{\delta X} \le e^{\delta |X|} < \infty$ e $|X^{n+1}|$ é integrável (já que X tem todos os momentos finitos (letra b)) concluímos pelo Teorema da Convergência Dominada que

$$\psi_X^{(n+1)}(t) = \lim_{h \to 0} \frac{\psi_X(t+h) - \psi_X(t)}{h} = \lim_{h \to 0} \mathbb{E}\left(x^n e^{tX} \frac{(e^{hX} - 1)}{h}\right)$$
$$= \mathbb{E}\left(X^{n+1} e^{tX}\right) = \int x^{n+1} e^{tx} dF_X(x).$$

Decorre também desse Teorema que $\psi^{(n+1)}(t)$ é contínua em t, pois $x^{n+1}e^{tx} = \lim_{s \longrightarrow t} x^{n+1}e^{sx}$ e $|x^{n+1}e^{tx}| \leq |x^{n+1}| \cdot e^{\delta|X|}$ para todo $t \in (-\delta, \delta)$.

11ªQUESTÃO: Obtenha a função geradora de momentos (definida no exercício anterior) das variáveis aleatórias seguintes:

(a) $X \sim \text{Poisson}(\lambda)$, onde $\lambda > 0$.

Resolução: Sabemos que

$$\psi_X(t) = \mathbb{E}(e^{tX}) = \sum_{n=0}^{+\infty} e^{tn} e^{-\lambda} \frac{\lambda^n}{n!} = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{(\lambda e^t)^n}{n!} = e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)}.$$

(b) $X \sim \text{Cauchy-Padrão}$.

Resolução: Como $X \sim$ Cauchy-Padrão, temos que X tem densidade $f(x) = \frac{1}{\pi(1+x^2)}$. Assim,

$$\psi_X(t) = \mathbb{E}(e^{tX}) = \int_{-\infty}^{+\infty} \frac{e^{tx}}{\pi(1+x^2)} dx = +\infty$$

já que,
$$\lim_{x \to +\infty} \frac{e^{tx}}{\pi(1+x^2)} = +\infty$$
 e $\frac{e^{tx}}{\pi(1+x^2)} > 0$, portanto $\psi_X(t) = +\infty$.

(c) $X \sim \exp(\lambda)$, onde $\lambda > 0$. Utilize o resultado para calcular os momentos $\mathbb{E}(X^k)$, $k = 1, 2, \ldots$ Confira com os momentos obtidos no Exemplo 5 do Capítulo 3 (§3.4).

Resolução: Se $X \sim \exp(\lambda)$, X tem densidade $f(x) = \lambda e^{-\lambda x} \mathbb{I}_{[0,+\infty)}$, logo a função geradora de momentos é dada por

$$\psi_X(t) = \mathbb{E}(e^{tX}) = \int_{-\infty}^{+\infty} e^{tx} \lambda e^{-\lambda x} \mathbb{I}_{[0,+\infty)} dx = \lambda \int_{0}^{+\infty} e^{(t-\lambda)x} dx = \lambda \int_{0}^{+\infty} e^{(t-\lambda)x} dx$$

$$= \text{(usando substituição, similar a questão 7 letra a)}$$

$$= \frac{\lambda}{t-\lambda} e^{(t-\lambda)x} \Big|_{0}^{+\infty} = \text{(para } t \leq \lambda) = \frac{\lambda}{\lambda-t}.$$

Se $t > \lambda$ temos $\psi_X(t) = +\infty$.

Para $t \leq \lambda$ podemos calcular os momentos, usamos a letra (c) da questão anterior. Como, $\psi_X'(t) = \frac{\lambda}{(\lambda - t)^2}$, $\psi_X''(t) = \frac{2\lambda}{(\lambda - t)^3}$, $\psi_X'''(t) = \frac{6\lambda}{(\lambda - t)^3}$ procedendo por indução concluímos que $\psi_X^k(t) = \frac{k!\lambda}{(\lambda - t)^{k+1}}$. Como $\mathbb{E}(X^k) = \psi_X^k(0) = \frac{k!\lambda}{\lambda^{k+1}} = \frac{k!}{\lambda^k}$ o que condiz com os momentos obtidos no §3.4.

12ª QUESTÃO: Verifique se c_1, c_2, \ldots e c são números complexos tais que $c_n \longrightarrow c$, então

 $\left(1+\frac{c_n}{n}\right)^n \longrightarrow e^c$. (Sugestão. Considere o logaritmo principal de $1+\frac{c_n}{n}$.)

Resolução: Ver Livro do Durrett 3º edição páginas 110 e 111.

14ª QUESTÃO: Qual a distribuição de X se X tem função característica $\varphi_X(t) = \cos^2(t)$? (Veja o Exemplo 3.)

Resolução: Como $\varphi_X(t) = \cos^2(t)$ é função característica, sabemos pela propriedade 7 que X tem distribuição simétrica em torno de zero. Como $\cos^2(2\pi) = 1$ concluímos pelo exercício 9 do capítulo 6 que a distribuição está concentrada nos pontos $\pm k$, $k = 0, 1, 2, \ldots$

Analisemos para os casos ± 1 . Sejam X e Y variáveis aleatórias i.i.d. tais que $\mathbb{P}(X=1) = \mathbb{P}(X=-1) = 1/2$. Pelo exemplo 3 da página 233, temos que $\varphi_X(t) = \varphi_Y(t) = \cos(t)$. Como, por hipótese, X e Y são independentes, temos $\varphi_{X+Y}(t) = \cos(t) \cdot \cos(t) = \cos^2(t)$. Assim,

$$\begin{split} \mathbb{P}(X+Y=-2) &= \mathbb{P}(X=-1,Y=-1) = \mathbb{P}(X=-1) \cdot \mathbb{P}(Y=-1) = 1/4, \\ \mathbb{P}(X+Y=0) &= \mathbb{P}(X=-1,Y=1) + \mathbb{P}(X=1,Y=-1) = 1/4 + 1/4 = 1/2, \\ \mathbb{P}(X+Y=2) &= \mathbb{P}(X=1,Y=1) = \mathbb{P}(X=1) \cdot \mathbb{P}(Y=1) = 1/4. \end{split}$$

Como a distribuição X+Y é simétrica, $\varphi_{X+Y}(t)=\mathbb{E}[\cos(t(X+Y))]$. Note que $\varphi_{X+Y}(t)=\cos^2(t)$, já que,

$$\varphi_{X+Y}(t) = \mathbb{E}[\cos(t(X+Y))] = \frac{1}{4}\cos(-2t) + \frac{1}{2}\cos(0) + \frac{1}{4}\cos(2t)$$
$$= \frac{1}{2} + \frac{1}{2}\cos(2t) = \frac{1}{2} + \frac{\cos^2(t) - \sin^2(t)}{2}$$
$$= \frac{2\cos^2(t)}{2} = \cos^2(t).$$

15ª QUESTÃO: Mostre que é possível para uma sequência de funções de distribuição convergir em todo ponto sem o limite ser uma função de distribuição. (Sugestão. Considere as variáveis aleatórias constantes $X_n = n$.)

Resolução: Considere as variáveis aleatórias constantes $X_n = n, n \in \mathbb{N}$. Daí temos para

 $n \in \mathbb{N}$ a seguinte sequência de funções de distribuição

$$F_{X_n}(x) = \begin{cases} 1 & \text{se } x \ge n \\ 0 & \text{se } x < n. \end{cases}$$

Note que $\lim_{n \to +\infty} F_{X_n}(x) = 0$ para todo $x \in \mathbb{R}$, mas F(x) = 0, $\forall x \in \mathbb{R}$ não é função de distribuição, já que dado uma sequência de números reais, $x_n \nearrow +\infty$, teremos $F(x_n) \xrightarrow[n \to +\infty]{} 0$ o que contraria a terceira propriedade das funções de distribuição (pag. 38).

16ªQUESTÃO: Prove: se $F_n \longrightarrow F$ fracamente e F é contínua, então $F_n(x)$ converge para F(x) uniformemente na reta.

Resolução: Como F é funções de distribuição, temos que $\lim_{x \to -\infty} F(x) = 0$ e $\lim_{x \to +\infty} F(x) = 1$. Sabendo que F é contínua, temos pelo Teorema do Valor intermediário que para todo $\varepsilon > 0$ existe $a(\varepsilon) = a > 0$ tal que $F(-a) + (1 - F(a)) < \varepsilon$.

Sendo F contínua e [-a,a] compacto, concluímos que $F|_{[-a,a]}$ é uniformemente contínua. Daí podemos escolher um conjunto finito de pontos, digamos $x_k \in [-a,a], k \in \mathbb{N}$, tais que $|F(y) \leq F(x)| < \varepsilon$, sempre que $x_k \leq x \leq y \leq x_{k+1}$.

Usando agora a finitude dos pontos x_k podemos concluir que existe algum $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ temos $|F_n(x_k) - F(x_k)| < \varepsilon$.

Sabendo que F_n é não decrescente e positiva temos para $x \in [x_k, x_{x+1}]$ que

$$F_n(x) - F(x) \le F_n(x_{k+1}) - F(x) \le F_n(x_{k+1}) - F(x_{k+1}) + F(x_{k+1}) - F(x) < 2\varepsilon$$

para $n > n_0$. Por outro lado, F também é não decrescente e positiva, logo

$$F(x) - F_n(x) \le F(x) - F_n(x_k) \le F(x) - F(x_k) + F(x_k) - F_n(x_k) < 2\varepsilon$$

para $n > n_0$.

Deste modo temos para todo $n > n_0$, $|F_n(x) - F(x)| < 2\varepsilon$.

Resta-nos portanto os casos em que x > a e x < -a. Se x > a, temos $F_n(x) \ge F_n(a) \longrightarrow F(a) > 1 - \varepsilon + F(-a) > 1 - \varepsilon$. Deste modo para n suficientemente grande temos $F_n(x) > 1 - \varepsilon$. Como $F(x) > 1 - \varepsilon$ para x > a, temos que, para $n > n_0$, $|F_n(x) - F(x)| < 2\varepsilon$, ou seja,

 $F_n \longrightarrow F$ uniformemente em x > a.

De modo análogo mostramos para x < -a. Daí para $n > n_0$ suficientemente grande, temos que F_n converge uniformemente para F.

17ªQUESTÃO: Utilize funções características para provar: se $X_n \xrightarrow{D} N(0,1)$ e $(a_n)_{n\geq 1}$ é uma sequência de números reais tal que $a_n \longrightarrow a$ finito, então $X_n + a_n \xrightarrow{D} N(a,1)$.

Resolução: Como $X_n \xrightarrow{D} N(0,1)$ então $\varphi_{X_n}(t) \xrightarrow[n \to +\infty]{} e^{-\frac{t^2}{2}}, \forall t \in \mathbb{R}$. Denotemos $Y_n = X_n + a_n$, pela propriedade 8,

$$\varphi_{Y_n} = \varphi_{X_n + a_n} = e^{ita_n} \varphi_{X_n}(t) \xrightarrow[n \to +\infty]{} e^{ita} e^{-\frac{t^2}{2}} = e^{ita - \frac{t^2}{2}}, \quad \forall t \in \mathbb{R}.$$

Portanto $X_n + a_n = Y_n \xrightarrow{D} N(a, 1)$.

18ªQUESTÃO: Sejam X_1, X_2, \ldots variáveis aleatórias, cada uma tendo distribuição simétrica em torno de zero. Demonstre que se $X_n \xrightarrow{D} X$, então X também tem distribuição simétrica em torno de zero.

Resolução: Como cada X_n , $n \in \mathbb{N}$ tem distribuição simétrica em torno de zero então $\varphi_{X_n}(t) \in \mathbb{R}$ para todo $t \in \mathbb{R}$ e todo $n \in \mathbb{N}$.

Pelo (falso) Teorema de Helly-Bray e pelo Teorema de continuidade de Paul Lévy sabemos que

$$X_n \xrightarrow{D} X \iff \lim_{n \to +\infty} \varphi_{X_n}(t) = \varphi_X(t), \quad \forall t \in \mathbb{R}.$$

Como a sequência de números reais $(\varphi_{X_n}(t))_{n\in\mathbb{N}}$ converge para todo $t\in\mathbb{R}$, já que $X_n \xrightarrow{D} X$, concluímos que $\varphi_X(t)\in\mathbb{R}$, para todo $t\in\mathbb{R}$. Pela propriedade 7 temos que X tem distribuição simétrica em torno de zero.

19^aQUESTÃO: Sejam X_1, X_2, \ldots independentes e identicamente distribuídas, com $X_n \sim U[0,1]$, e sejam $Y_n = \min(X_1, \ldots, X_n)$, $Z_n = \max(X_1, \ldots, X_n)$, $U_n = nY_n$, $V_n = n(1-Z_n)$. Mostre que, quando $n \longrightarrow \infty$:

(a)
$$Y_n \xrightarrow{\mathbb{P}} 0$$
 e $Z_n \xrightarrow{\mathbb{P}} 1$.

Resolução: Dado $\varepsilon > 0$ considere,

$$\lim_{n \to +\infty} \mathbb{P}(|Y_n - 0| \ge \varepsilon) = \lim_{n \to +\infty} \mathbb{P}(|\min(X_1, \dots, X_n)| \ge \varepsilon)$$

$$= (\text{como } X_n \sim U[0, 1]) = \lim_{n \to +\infty} \mathbb{P}(\min(X_1, \dots, X_n) \ge \varepsilon)$$

$$= (\text{como são } i.i.d) = \lim_{n \to +\infty} (\mathbb{P}(X_1 \ge \varepsilon))^n$$

$$= \lim_{n \to +\infty} (1 - \varepsilon)^n = 0.$$

Por outro lado, dado $\varepsilon > 0$ considere,

$$\lim_{n \to +\infty} \mathbb{P}(|Z_n - 1| \ge \varepsilon) = \lim_{n \to +\infty} \mathbb{P}(|\max(X_1, \dots, X_n) - 1| \ge \varepsilon)$$

$$= (\operatorname{como} X_n \sim U[0, 1]) = \lim_{n \to +\infty} \mathbb{P}([1 - \max(X_1, \dots, X_n)] \ge \varepsilon)$$

$$= \lim_{n \to +\infty} \mathbb{P}(\max(X_1, \dots, X_n) \le 1 - \varepsilon)$$

$$= (\operatorname{como} \tilde{\operatorname{sao}} i.i.d) = \lim_{n \to +\infty} (\mathbb{P}(X_1 \le 1 - \varepsilon))^n$$

$$= \lim_{n \to +\infty} (1 - \varepsilon)^n = 0.$$

(b) $U_n \xrightarrow{D} W$ e $V_n \xrightarrow{D} W$ onde W tem distribuição exponencial de parâmetro 1.

Resolução: Seja F_{U_n} a função de distribuição associada a variável aleatória U_n , $n \in \mathbb{N}$. Queremos mostrar inicialmente que $F_{U_n} \xrightarrow{D} W$ para todo ponto de continuidade de W, onde W tem distribuição exponencial de parâmetro 1.

Sabemos que

$$\lim_{n \to +\infty} F_{U_n}(x) = \lim_{n \to +\infty} \mathbb{P}(U_n \le x) = \lim_{n \to +\infty} \mathbb{P}(nY_n \le x)$$

$$= \lim_{n \to +\infty} \mathbb{P}(Y_n \le x/n) = 1 - \lim_{n \to +\infty} \mathbb{P}(Y_n > x/n)$$

$$= 1 - \lim_{n \to +\infty} \mathbb{P}(\min(X_1, \dots, X_n) > x/n)$$

$$= (\text{como as v.a's são i.i.d..}) = 1 - \lim_{n \to +\infty} \mathbb{P}(X_1 > x/n)^n$$

$$= (\text{como}X_n \sim U[0, 1]) = 1 - \lim_{n \to +\infty} (1 - x/n)^n = 1 - e^{-x} = W.$$

Já vimos (pag. 41) que W é função de distribuição exponencial com parâmetro 1, e concluímos a primeira parte do item (b).

De modo análogo podemos observar que $V_n \xrightarrow{D} W$. Para tanto considere F_{V_n} a função de distribuição associada a variável aleatória V_n , $n \in \mathbb{N}$. Daí temos que

$$\lim_{n \to +\infty} F_{V_n}(x) = \lim_{n \to +\infty} \mathbb{P}(V_n \le x) = \lim_{n \to +\infty} \mathbb{P}((1 - Z_n) \le x/n)$$

$$= 1 - \lim_{n \to +\infty} \mathbb{P}((1 - Z_n) > x/n) = \lim_{n \to +\infty} \mathbb{P}(Z_n < 1 - x/n)$$

$$= 1 - \lim_{n \to +\infty} \mathbb{P}(\max(X_1, \dots, X_n) < 1 - x/n)$$

$$= (\text{como as v.a's são i.i.d..}) = 1 - \lim_{n \to +\infty} \mathbb{P}(X_1 < 1 - x/n)^n$$

$$= (\text{como} X_n \sim U[0, 1]) = 1 - \lim_{n \to +\infty} (1 - x/n)^n = 1 - e^{-x} = W.$$

Portanto $V_n \xrightarrow{D} W$ onde W tem distribuição exponencial de parâmetro 1.

20^aQUESTÃO: Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias independentes identicamente distribuídas, tais que $\mathbb{P}(X_n=1)=\frac{1}{2}=\mathbb{P}(X_n=-1)$, e seja

$$Y_n = \sum_{k=1}^n \frac{1}{2^k} X_k.$$

Mostre que $Y_n \xrightarrow{D} U[-1,1]$. (Sugestão. Use a igualdade $\cos \theta = \frac{\sin(2\theta)}{2 \sin \theta}$.)

Resolução: Como

$$\varphi_{X_n}(t) = \mathbb{E}(e^{itX_n}) = e^{it}\mathbb{P}(X_n = 1) + e^{-it}\mathbb{P}(X_n = -1) = \frac{e^{it} + e^{-it}}{2} = \cos t,$$

temos pela Propriedade 8 que

$$\varphi_{\frac{1}{2^k}X_k}(t) = \varphi_{X_k}\left(\frac{1}{2^k}t\right) = \cos(2^{-k}t).$$

Como as variáveis aleatórias $X_n, n \in \mathbb{N}$ são independentes temos que $\varphi_{Y_n}(t) = \prod_{k=1}^n \cos(2^{-k}t)$, usando agora que $\cos \theta = \frac{\sin(2\theta)}{2 \sin \theta}$ e simplificando através da expansão do produtorio ficamos com

$$\varphi_{Y_n}(t) = \begin{cases} 1 & \text{se } t = 0\\ \frac{\text{sen } t}{2^n \text{sen } 2^{-n} t} & \text{se } t \neq 0 \end{cases}$$

fixado $t \in \mathbb{R} \setminus \{0\}$ e calculando $\lim_{n \to +\infty} \varphi_{Y_n}(t) = \lim_{n \to +\infty} \frac{\sec t}{2^n \sec 2^{-n} t} = \lim_{n \to +\infty} \frac{\frac{\sec t}{t}}{\frac{\sec 2^{-n} t}{2^{-n} t}} = \frac{\sec t}{t}.$

Assim, temos que

$$\lim_{n \to +\infty} \varphi_{Y_n}(t) = \begin{cases} 1 & \text{se } t = 0\\ \frac{\text{sen } t}{t} & \text{se } t \neq 0 \end{cases}$$

Pelo Teorema da Continuidade de Paul Lévy essa função é uma função característica, pois ela é contínua no ponto zero e converge pontualmente para a dada função limite.

Note agora que se $X \sim U[-1,1]$ (X é simétrica em torno de zero), a função característica de X será dada por

$$\varphi_X(t) = \int_{-1}^{1} \frac{\cos tx}{2} dt = \begin{cases} 1 & \text{se } t = 0\\ \frac{\sin t}{t} & \text{se } t \neq 0 \end{cases}$$

pela unicidade das funções características, temos que $Y_n \xrightarrow{D} U[-1,1]$.

Capítulo 7

3ªQUESTÃO: Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias independentes tais que X_n tem distribuição uniforme [0, n], $\forall n$. Mostre que a condição de Lindeberg está satisfeita e enuncie o Teorema Central de Limite resultante. (Calcule os parâmetros!)

Resolução: Como X_n tem distribuição uniforme [0, n], $\forall n$. Sabemos que $\mathbb{E}(X_k) = \int_0^k \frac{x}{k} dx = \frac{k}{2}$ e $\sigma_k^2 = \operatorname{Var}(X_k) = \int_0^k \frac{x^2}{k} dx - \left(\frac{k}{2}\right)^2 = \frac{k^2}{12}$.

Daí temos que $s_k^2 = \operatorname{Var}(S_k) = \sum_{k=1}^n \frac{k^2}{12}$, onde $S_k = X_1 + \ldots + X_k$ e $s_k = \sqrt{\operatorname{Var}(S_k)} = \sqrt{\sigma_1^2 + \ldots + \sigma_k^2}$.

Verificaremos qual é a ordem de s_k^2 (e não seu valor exato), para isso usaremos o seguinte lema:

Lema: Para $\lambda > 0$, $\frac{1}{n^{\lambda+1}} \sum_{k=1}^{n} k^{\lambda} \xrightarrow[n \longrightarrow +\infty]{} \frac{1}{\lambda+1}$, de maneira que $\sum_{k=1}^{n} k^{\lambda}$ é da ordem de $n^{\lambda+1}$.

Demonstração. Livro "Probabilidade: um curso em nível intermediário", de Barry R. James, página 271.

Para $1 \le k \le n$,

$$\int_{|x-\mathbb{E}(X_k)|>\varepsilon s_n} (x-\mathbb{E}(X_k))^2 dF_k(x) = \int_{|x-\mathbb{E}(X_k)|>\varepsilon s_n} (x-\frac{k}{2})^2 \mathbb{I}_{\{|x-\frac{k}{2}|>\varepsilon s_n\}}(x) dF_k(x)$$

$$= \frac{1}{k} \int_0^k (x-\frac{k}{2})^2 \mathbb{I}_{\{|x-\frac{k}{2}|>\varepsilon s_n\}}(x) dx = 0$$

se $n < \varepsilon s_n$ pois, neste caso, o integrando toma o valor zero em [0, k].

Pelo Lema, temos que s_n^2 é da ordem de n^3 . Logo, s_n é da ordem $n^{3/2}$. Assim, o lema implica que

$$\frac{s_n^2}{n^3} \xrightarrow[n \to +\infty]{} \frac{1}{36}.$$

Então $\frac{s_n^2}{n^2} = \frac{s_n^2}{n^3} n \xrightarrow[n \to +\infty]{} +\infty$, de modo que $n < \varepsilon s_n$ para n suficientemente grande.

Assim, para n suficientemente grande, todas as parcelas são nulas, satisfazendo que para todo $\varepsilon > 0$,

$$\lim_{k \to +\infty} \frac{1}{s_k^2} \sum_{n=1}^k \int_{|x-\mathbb{E}(X_n)| > \varepsilon s_k} (x - \mathbb{E}(X_n))^2 dF_n(x) = 0.$$

Observe agora que $\mathbb{E}(S_n) = \mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n) = \frac{1}{2} + \frac{2}{2} + \ldots + \frac{n}{2} = \frac{1}{2} \cdot \frac{n(n+1)}{2} = \frac{n(n+1)}{4}$ e que $\sigma_1^2 = \frac{1}{12}$, $\sigma_2^2 = \frac{4}{12}$,..., $\sigma_n^2 = \frac{n^2}{12}$ então $s_n^2 = \frac{1}{12} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)(2n+1)}{72}$ logo $s_n = \sqrt{\frac{n(n+1)(2n+1)}{72}}$.

Assim podemos enunciar (um caso particular do) Teorema central do Limite para variáveis aleatórias que tem distribuição uniforme [0, n] do seguinte modo.

Seja $(X_n)_{n\geq 1}$ uma sequência de variáveis aleatórias independentes tais que X_n tem distribuição uniforme $[0, n], \forall n$. Então

$$\frac{S_n - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{72}}} \xrightarrow{D} N(0,1).$$

4ªQUESTÃO: Suponha que $X_1, X_2, ...$ sejam variáveis aleatórias independentes tais que $\mathbb{P}(X_n = -n) = \frac{1}{2} = \mathbb{P}(X_n = n)$. Mostre que a sequência satisfaz o Teorema Central do Limite mas não obedece à Lei Forte dos Grandes Números.

Resolução: Como X_1, X_2, \dots são variáveis aleatórias independentes tais que $\mathbb{P}(X_n = -n) =$

 $\frac{1}{2} = \mathbb{P}(X_n = n), \text{ temos que } \text{Var}(X_n) = \mathbb{E}(X_n^2) - [\mathbb{E}(X_n)]^2 = \mathbb{E}(X_n^2) = n^2 \text{ para todo } n \in \mathbb{N}.$ Daí temos que $s_n^2 = \sigma_1^2 + \ldots + \sigma_n^2 = 1 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$ e a ordem de $\frac{1}{s_n^2}$ é $n^{-3-3\delta/2}$.
Como $\mathbb{E}(X_k) = \mu_k = 0$ para todo $k \in \mathbb{N}$, chegamos que

$$\sum_{k=1}^{n} \mathbb{E}|X_k - \mu_k|^{2+\delta} = \sum_{k=1}^{n} \mathbb{E}|X_k|^{2+\delta} = \sum_{k=1}^{n} k^{2+\delta}$$

tem ordem $\delta + 3$.

Assim, temos que $\frac{1}{s_n^{2+\delta}}\sum_{k=1}^n \mathbb{E}|X_k-\mu_k|^{2+\delta}$ é da ordem de $n^{\frac{2\delta+6}{3\delta+6}}$. Daí para $\delta>0$ temos

$$\lim_{n \to +\infty} \frac{1}{s_n^{2+\delta}} \sum_{k=1}^n \mathbb{E}|X_k - \mu_k|^{2+\delta} = 0.$$

Logo satisfaz a condição de Liapunov e portanto o Teorema Central do Limite.

Suponha agora que X_1, X_2, \ldots satisfaça à Lei Forte dos Grandes Números, daí temos

$$\frac{S_n}{n} - \frac{\mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n)}{n} \xrightarrow[n \to +\infty]{} 0 \quad q.c.,$$

no nosso caso teremos

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{} 0 \quad q.c..$$

Observe também que

$$\frac{S_n}{n} = \frac{S_{n-1}}{n} + \frac{X_n}{n} = \begin{cases} \frac{S_{n-1}}{n} + 1 & \text{se}X_n = n\\ \frac{S_{n-1}}{n} - 1 & \text{se}X_n = -n, \end{cases}$$

 $\max\left(\frac{S_{n-1}}{n}+1\right)-\frac{S_{n-1}}{n-1}=\frac{S_{n-1}(n-1)+n(n-1)-(S_{n-1})n}{n(n-1)}=1-\frac{S_{n-1}}{n-1} \text{ e}\left(\frac{S_{n-1}}{n}-1\right)-\frac{S_{n-1}}{n-1}=-1-\frac{S_{n-1}}{n-1}.$ $\text{Como }\frac{-n(n-1)}{2}\leq S_{n-1}\leq \frac{n(n-1)}{2} \text{ então }\frac{S_n}{n}-\frac{S_{n-1}}{n-1}\geq \frac{1}{2} \text{ e}\frac{S_n}{n}-\frac{S_{n-1}}{n-1}\leq -\frac{1}{2} \text{ o que nos garante que }\frac{S_n}{n} \text{ não dá saltos menores que }1/2 \text{ em módulo. Logo, para todo }<0\varepsilon<\frac{1}{2} \text{ conseguimos mostrar que não existe }\lim_{n\longrightarrow +\infty}\frac{S_n}{n}, \text{ donde concluímos que }X_1,X_2,\dots$ não satisfaz a Lei dos Grandes Números.

 $9^{a}QUESTÃO$: Seja $X_1, Y_1, X_2, Y_2, X_3...$ uma sequência de variáveis aleatórias independentes, as X_n sendo identicamente distribuídas com distribuíção U[0, 1] e as Y_n sendo identicamente distribuídas com distribuíção U[0, 2]. Seja S_n a soma dos n primeiros termos da

sequência, de modo que $S_1=X_1,\,S_2=X_1+Y_1,\,S_3=X_1+Y_1+X_2,$ etc.

(a) Mostre que $\frac{S_n}{n}$ converge quase certamente e ache o seu limite.

Resolução: Como $X_1, Y_1, X_2, Y_2, \dots$ são independentes e integráveis com $\mathbb{E}(X_n) = \frac{1}{2}$, $\mathbb{E}(Y_n) = 1$, $Var(X_n) = \frac{1}{12}$ e $Var(Y_n) = \frac{4}{12}$, $\forall n \in \mathbb{N}$. Assim temos que

$$\sum_{n=1}^{+\infty} \left(\frac{\operatorname{Var}(X_n)}{n^2} + \frac{\operatorname{Var}(Y_n)}{n^2} \right) < 2 \sum_{n=1}^{+\infty} \frac{1}{n^2} < +\infty$$

o que nos garante a validade da Lei Forte dos Grandes Números.

Daí se, n for par temos

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \frac{\mathbb{E}(X_1) + \mathbb{E}(Y_1) + \ldots + \mathbb{E}(Y_{\frac{n}{2}})}{n} = \frac{\frac{1}{2} \cdot \frac{n}{2} + \frac{n}{2}}{n} = \frac{3}{4} \quad q.c..$$

Se, n for impar temos

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \frac{\mathbb{E}(X_1) + \mathbb{E}(Y_1) + \ldots + \mathbb{E}(X_{\frac{n+1}{2}})}{n} = \frac{\frac{1}{2} \cdot \frac{n+1}{2} + \frac{n-1}{2}}{n} = \frac{3}{4} - \frac{1}{4n} \xrightarrow[n \to +\infty]{} \frac{3}{4} \quad q.c..$$

Concluímos, assim que $\frac{S_n}{n} \xrightarrow[n \to +\infty]{} \frac{3}{4}$ quase certamente.

Questões de Sala

DIA 09/10/13: Sejam
$$f(x) = \frac{e^{-\frac{x^2}{2\sigma_1^2}}}{\sqrt{2\pi\sigma_1^2}}$$
 e $g(x) = \frac{e^{-\frac{x^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_2^2}}$. Então $(f*g)(z) = \frac{e^{-\frac{z^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}}$ onde $\sigma^2 = \sigma_1^2 + \sigma_2^2$.

Resolução: Por definição temos que

$$(f * g)(z) = \int_{-\infty}^{\infty} f(y)g(z - y) \, dy = \int_{-\infty}^{\infty} \frac{e^{-\frac{y^2}{2\sigma_1^2}}}{\sqrt{2\pi\sigma_1^2}} \cdot \frac{e^{-\frac{(z-y)^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_2^2}} \, dy$$

$$= \frac{1}{\sqrt{2\pi\sigma_1^2}} \cdot \sqrt{2\pi\sigma_2^2} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2\sigma_1^2}} \cdot e^{-\frac{(z-y)^2}{2\sigma_2^2}} \, dy$$

$$= \frac{e^{-\frac{z^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_1^2} \cdot \sqrt{2\pi\sigma_2^2}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2\sigma_1^2}} \cdot e^{-\frac{-2zy+y^2}{2\sigma_2^2}} \, dy$$

$$= \frac{e^{-\frac{z^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_1^2} \cdot \sqrt{2\pi\sigma_2^2}} \int_{-\infty}^{\infty} e^{-\frac{(\sigma_2^2 + \sigma_1^2)y^2}{2\sigma_1^2\sigma_2^2}} \cdot e^{\frac{zy}{\sigma_2^2}} \, dy.$$

Denotemos por simplicidade $k = \frac{e^{-\frac{z^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_1^2} \cdot \sqrt{2\pi\sigma_2^2}}, a = \frac{\sigma_2^2 + \sigma_1^2}{\sigma_1^2 \sigma_2^2} e b = \frac{z}{\sigma_2^2}$. Assim,

$$(f * g)(z) = \frac{e^{-\frac{z^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_1^2} \cdot \sqrt{2\pi\sigma_2^2}} \int_{-\infty}^{\infty} e^{-\frac{(\sigma_2^2 + \sigma_1^2)y^2}{2\sigma_1^2\sigma_2^2}} \cdot e^{\frac{zy}{\sigma_2^2}} dy$$

$$= k \int_{-\infty}^{\infty} e^{-\frac{ay^2}{2} + by} dy$$

$$= k \int_{-\infty}^{\infty} e^{-\frac{(\sqrt{a}y)^2}{2} + \frac{b\sqrt{a}y}{\sqrt{a}}} dy.$$

Tomando $u = \sqrt{a}y$ temos $du = \sqrt{a}dy$ e ficamos com

$$(f * g)(z) = k \int_{-\infty}^{\infty} e^{-\frac{(\sqrt{a}y)^2}{2} + \frac{b\sqrt{a}y}{\sqrt{a}}} dy$$
$$= \frac{k}{\sqrt{a}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2} + \frac{bu}{\sqrt{a}}} du. \tag{1}$$

Como $-\frac{u^2}{2} + \frac{bu}{\sqrt{a}} = -\frac{1}{2}(u-h)^2 + c$, onde $h = -\frac{b}{\sqrt{a}}$ e $c = \frac{b^2}{2a}$. Deste modo, podemos ainda

reescrever (2) do seguinte modo

$$(f * g)(z) = \frac{k}{\sqrt{a}} e^c \int_{-\infty}^{\infty} e^{-\frac{(u-h)^2}{2}} du$$

Assim, tomando v = u - h temos dv = du e portanto

$$(f * g)(z) = \frac{k}{\sqrt{a}} e^c \int_{-\infty}^{\infty} e^{-\frac{v^2}{2}} dv = \frac{k}{\sqrt{a}} e^c \sqrt{2\pi}$$

onde a ultima igualdade decorre do que já foi visto em sala, $\int\limits_{-\infty}^{\infty}e^{-\frac{v^2}{2}}\,dv=\sqrt{2\pi}.$ Daí temos que

$$(f * g)(z) = \sqrt{\frac{\sigma_1^2 \sigma_2^2}{\sigma_2^2 + \sigma_1^2}} \cdot \frac{e^{-\frac{z^2}{2\sigma_2^2}}}{\sqrt{2\pi\sigma_1^2} \cdot \sqrt{2\pi\sigma_2^2}} e^{\frac{b^2}{2a}} \sqrt{2\pi}$$

$$= \frac{1}{\sqrt{2\pi(\sigma_2^2 + \sigma_1^2)}} \cdot e^{-\frac{z^2}{2\sigma_2^2}} e^{\frac{1}{2} \cdot \frac{z^2}{\sigma_2^4} \cdot \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}}$$

$$= \frac{1}{\sqrt{2\pi(\sigma_2^2 + \sigma_1^2)}} \cdot e^{-\frac{z^2}{2\sigma_2^2}} e^{\frac{z^2 \sigma_1^2}{\sigma_2^2 (\sigma_1^2 + \sigma_2^2)}}$$

$$= \frac{1}{\sqrt{2\pi(\sigma_2^2 + \sigma_1^2)}} \cdot e^{-\left(\frac{1}{\sigma_2^2} - \frac{\sigma_1^2}{\sigma_2^2 (\sigma_1^2 + \sigma_2^2)}\right) \frac{z^2}{2}}$$

$$= \frac{1}{\sqrt{2\pi(\sigma_2^2 + \sigma_1^2)}} \cdot e^{-\frac{z^2}{2(\sigma_1^2 + \sigma_2^2)}}$$

$$= \frac{e^{-\frac{z^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}},$$

 $com \ \sigma^2 = \sigma_1^2 + \sigma_2^2.$

DIA 09/10/13: Seja $f \in C_K^{\infty}(\mathbb{R})$. Então existe C > 0 tal que

$$g(h) = \sup_{x \in K} \left| f(x+h) - f(x) - f'(x) \cdot h - \frac{f''(x) \cdot h^2}{2} \right| \le C \min\{|h|^2, |h|^3\}.$$

Resolução: Como $f \in C^\infty_K(\mathbb{R})$ temos pelo Teorema do Valor Médio que f(x+h) - f(x) =

 $f'(x + \alpha h) \cdot h$, onde $\alpha \in (0, 1)$. Assim, podemos reescrever

$$g(h) = \sup_{x \in \mathbb{R}} \left| \left(f'(x + \alpha h) - f'(x) \right) \cdot h - \frac{f''(x) \cdot h^2}{2} \right|.$$

Novamente pelo Teorema do Valor Médio temos que $f'(x+\alpha h)-f'(x)=f''(x+\beta h)\cdot \alpha h$, com $\beta\in(0,\alpha)$. E deste modo

$$g(h) = \sup_{x \in \mathbb{R}} \left| (f'(x + \alpha h) - f'(x)) \cdot h - \frac{f''(x) \cdot h^2}{2} \right|$$

$$= \sup_{x \in \mathbb{R}} \left| f''(x + \beta h) \cdot \alpha h^2 - \frac{f''(x) \cdot h^2}{2} \right|$$

$$= \sup_{x \in \mathbb{R}} \left| \left(f''(x + \beta h) \cdot \alpha - \frac{f''(x)}{2} \right) \cdot h^2 \right|$$

$$\leq C_1 \cdot h^2$$

onde $C_1 = \sup_{x \in \mathbb{R}} \left| \left(f''(x + \beta h) \cdot \alpha - \frac{f''(x)}{2} \right) \right| < +\infty$ já que f tem suporte compacto, logo f'' também possui suporte compacto.

Por outro lado, usando a Fórmula de Taylor, com resto de Lagrange temos que existe $\theta \in (0,1)$ tal que

$$f(x+h) = f(x) + f'(x) \cdot h + \frac{f''(x)}{2!} \cdot h^2 + \frac{f'''(x+\theta \cdot h)}{3!} \cdot h^3$$

assim, substituindo f(x+h) por $f(x)+f'(x)\cdot h+\frac{f''(x)}{2!}\cdot h^2+\frac{f'''(x+\theta\cdot h)}{3!}\cdot h^3$ na definição de g(h) obtemos

$$g(h) = \sup_{x \in K} \left| f(x+h) - f(x) - f'(x) \cdot h - \frac{f''(x) \cdot h^2}{2} \right|$$

$$= \sup_{x \in K} \left| f(x) + f'(x) \cdot h + \frac{f''(x)}{2!} \cdot h^2 + \frac{f'''(x+\theta \cdot h)}{3!} \cdot h^3 - f(x) - f'(x) \cdot h - \frac{f''(x) \cdot h^2}{2} \right|$$

$$= \sup_{x \in \mathbb{R}} \left| \frac{f'''(x+\theta \cdot h)}{3!} \cdot h^3 \right|$$

$$= \sup_{x \in \mathbb{R}} \left| \frac{f'''(x+\theta \cdot h)}{3!} \cdot |h|^3$$

$$\leq C_2 \cdot |h|^3.$$

onde
$$C_2 = \sup_{x \in \mathbb{R}} \left| \frac{f'''(x+\theta \cdot h)}{3!} \right| < +\infty.$$

Assim, tomando $C = \max\{C_1, C_2\}$ temos que $g(h) \leq C \min\{|h|^2, |h|^3\}$ como queriamos

demonstrar.

DIA 30/10/13: Prove o Teorema Central do Limite de Lindeberg: Sejam $X_{n,1}, \ldots, X_{n,k_n}$ independentes para cada n todas com média zero e $X_{n,j}$ com variância $0 < \sigma_{n,j}^2 < +\infty$. Denote $s_n^2 = \sigma_{n,1}^2 + \ldots + \sigma_{n,k_n}^2$, se $\forall \varepsilon > 0$

$$\frac{1}{s_n^2} \cdot \sum_{j=1}^{k_n} \mathbb{E}\left(X_{n,j}^2 \mathbb{I}_{[|X_{n,j}| \ge \varepsilon s_n]}\right) \xrightarrow[n \to +\infty]{} 0,$$

então $\frac{S_n}{s_n} \xrightarrow{D} Y$, $Y \sim N(0,1)$, onde $S_n = X_{n,1} + \ldots + X_{n,k_n}$

Resolução: Pelo Teorema de Portmanteau basta mostrarmos que, para toda $f \in C_k^{\infty}$ temos $\mathbb{E}\left[f\left(\frac{S_n}{s_n}\right)\right] \longrightarrow \mathbb{E}[f(Y)].$

Sejam $Y_{n,1}, Y_{n,2}, \dots, Y_{n,k_n}, i.i.d.$ com distribuição normal (0,1) e denote $Y = \frac{Y_{n,1} + Y_{n,2} + \dots + Y_{n,k_n}}{s_n}$. Escrevendo

$$\mathbb{E}\left[f\left(\frac{S_{n}}{s_{n}}\right)\right] - \mathbb{E}[f(Y)] = \mathbb{E}\left[f\left(\frac{X_{n,1} + \dots + X_{n,k_{n}}}{s_{n}}\right)\right] - \mathbb{E}\left[f\left(\frac{Y_{n,1} + \dots + Y_{n,k_{n}}}{s_{n}}\right)\right] = \\
= \mathbb{E}\left[f\left(\frac{\sum_{j=1}^{k_{n}} X_{n,j}}{s_{n}}\right) - f\left(\frac{\sum_{j=1}^{k_{n}-1} X_{n,j} + Y_{n,k_{n}}}{s_{n}}\right)\right] + \\
+ \mathbb{E}\left[f\left(\frac{\sum_{j=1}^{k_{n}-1} X_{n,j} + Y_{n,k_{n}}}{s_{n}}\right) - f\left(\frac{\sum_{j=1}^{k_{n}-2} X_{n,j} + Y_{n,k_{n}-1} + Y_{n,k_{n}}}{s_{n}}\right)\right] + \\
+ \mathbb{E}\left[f\left(\frac{\sum_{j=1}^{k_{n}-2} X_{n,j} + Y_{n,k_{n}-1} + Y_{n,k_{n}}}{s_{n}}\right) - f\left(\frac{\sum_{j=1}^{k_{n}-3} X_{n,j} + Y_{n,k_{n}-2} + \dots + Y_{n,k_{n}}}{s_{n}}\right)\right] + \\
+ \dots + \mathbb{E}\left[f\left(\frac{X_{n,1} + Y_{n,2} + \dots + Y_{n,k_{n}}}{s_{n}}\right) - f\left(\frac{Y_{n,1} + \dots + Y_{n,k_{n}}}{s_{n}}\right)\right]$$

Observe que para a diferença em cada esperança podemos proceder de modo similar ao que faremos para (2). Chamemos $x = \frac{\sum\limits_{j=1}^{k_n-1} X_{n,j}}{s_n}$, $h_1 = \frac{X_{n,k_n}}{s_n}$ e $h_2 = \frac{Y_{n,k_n}}{s_n}$ é usando a função g

definida no exercício anterior temos que

$$f(x+h_1) - f(x+h_2) - f'(x)(h_1-h_2) - \frac{f''(x)(h_1^2-h_2^2)}{2} \le g(h_1) + g(h_2).$$

Assim temos que

$$\mathbb{E}[f(x+h_1) - f(x+h_2)] - \mathbb{E}[f'(x)(h_1 - h_2)] - \mathbb{E}\left[\frac{f''(x)(h_1^2 - h_2^2)}{2}\right] =$$

$$= \mathbb{E}[f(x+h_1) - f(x+h_2)] - \mathbb{E}[f'(x)](\mathbb{E}[h_1] - \mathbb{E}[h_2])] - \mathbb{E}[f''(x)]\left(\frac{\mathbb{E}[h_1^2] - \mathbb{E}[h_2^2]}{2}\right)$$

$$= \mathbb{E}[f(x+h_1) - f(x+h_2)] \le \mathbb{E}[g(h_1)] + \mathbb{E}[g(h_2)].$$

Onde a ultima igualdade decorre de todas as $X_{n,j}$, $j=1,\ldots,k_n$ tem média nula e são independentes.

Daí se mostrarmos que $\sum_{j=1}^{k_n} \left(\mathbb{E}[g(\frac{X_{n,j}}{s_n})] + \mathbb{E}[g(\frac{Y_{n,i}}{s_n})] \right) \xrightarrow[n \to +\infty]{} 0$ obtemos o que desejamos. Para ver que de fato isso ocorre, observe que como os $Y_{i's}$ são i.i.d. temos $\sum_{j=1}^{k_n} \mathbb{E}[g(\frac{Y_{n,j}}{s_n})] = k_n \mathbb{E}[g(\frac{Y_{n,1}}{s_n})]$ e podemos decompor

$$\mathbb{E}\left[g\left(\frac{X_{n,j}}{s_n}\right)\right] = \mathbb{E}\left[g\left(\frac{X_{n,j}}{s_n}\right)\mathbb{I}_{[|X_{n,j}| \ge \varepsilon s_n]}\right] + \mathbb{E}\left[g\left(\frac{X_{n,j}}{s_n}\right)\mathbb{I}_{[|X_{n,j}| < \varepsilon s_n]}\right],$$

pelo exercício anterior

$$\mathbb{E}\left[g\left(\frac{X_{n,j}}{s_n}\right)\mathbb{I}_{[|X_{n,j}|\geq\varepsilon s_n]}\right] \leq K \cdot \mathbb{E}\left[\frac{X_{n,j}^2}{s_n^2}\mathbb{I}_{[|X_{n,j}|\geq\varepsilon s_n]}\right]$$

$$= \frac{K}{s_n^2} \cdot \mathbb{E}\left[X_{n,j}^2\mathbb{I}_{[|X_{n,j}|\geq\varepsilon s_n]}\right] \xrightarrow[n \to +\infty]{} 0$$

por outro lado,

$$\mathbb{E}\left[g\left(\frac{X_{n,j}}{s_n}\right)\mathbb{I}_{[|X_{n,j}|<\varepsilon s_n]}\right] \leq K \cdot \mathbb{E}\left[\frac{|X_{n,j}|^3}{s_n^3}\mathbb{I}_{[|X_{n,j}|<\varepsilon s_n]}\right]$$

$$= \frac{K}{s_n^2} \cdot \mathbb{E}\left[\frac{X_{n,j}^2 \cdot |X_{n,j}|}{s_n}\mathbb{I}_{[|X_{n,j}|<\varepsilon s_n]}\right]$$

$$\leq \frac{K}{s_n^2} \cdot \mathbb{E}\left[\frac{X_{n,j}^2 \cdot \varepsilon s_n}{s_n}\right]$$

$$\leq \frac{K\varepsilon}{s_n^2} \cdot \mathbb{E}\left[X_{n,j}^2\right] \leq \frac{K\varepsilon\sigma_{n,j}^2}{s_n^2},$$

onde a ultima desigualdade ocorre porque todas as $X_{n,j}$, $j=1,\ldots,k_n$ tem média nula, logo $\operatorname{Var}(X_{n,j})=\sigma_{n,j}^2$ e como o $\varepsilon>0$ é qualquer, concluímos que $\frac{S_n}{s_n} \xrightarrow{D} Y$, $Y\sim N(0,1)$.

DIA 12/11/13: Como consequência dos Teoremas visto em sala temos que

$$F_n \longrightarrow F$$
 fracamente $\iff X_n \xrightarrow{D} X \implies \varphi_{X_n}(t) \longrightarrow \varphi_X(t) \ \forall t \in \mathbb{R}.$

Resolução: Já vimos em sala que $F_n \longrightarrow F$ fracamente $\Longrightarrow X_n \xrightarrow{D} X$, então para a primeira parte resta mostrar que $X_n \xrightarrow{D} X \Longrightarrow F_n \longrightarrow F$ fracamente.

Sabendo que $X_n \xrightarrow{D} X$ então temos que $\mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X)), \forall f \in C_b^{\infty}(\mathbb{R}).$ Queremos mostrar que $F_n \longrightarrow F$ fracamente para todo x ponto de continuidade de F.

Seja a ponto de continuidade de F, escrevemos $F_n(x) = \mathbb{P}(X_n \leq a) = \mathbb{E}\left[\mathbb{I}_{(-\infty,a]}(X_n)\right]$. Considere agora

$$f_{\varepsilon}(x) = \begin{cases} 1 & \text{se } x \in (-\infty, a - \varepsilon) \\ \frac{-x+a}{\varepsilon} & \text{se } x \in [a - \varepsilon, a) \\ 0 & \text{se } x \in [a, +\infty) \end{cases}$$

para $\varepsilon > 0$ qualquer, ver figura abaixo.

Usando a desigualdade triangular temos que

$$|F_n(a) - F(a)| \leq \mathbb{E} \left| \mathbb{I}_{(-\infty,a]}(X_n) - f_{\varepsilon}(X_n) \right| + |\mathbb{E}[f_{\varepsilon}(X_n) - f_{\varepsilon}(X)]|$$

$$+ E \left| \mathbb{I}_{(-\infty,a]}(X) - f_{\varepsilon}(X) \right|.$$

Queremos mostrar que para $\varepsilon > 0$ suficientemente pequeno o primeiro e o terceiro fator da soma (acima) é menor que um $\delta > 0$, já que o 2° termo segue do fato de $X_n \xrightarrow{D} X$.

Observemos inicialmente o primeiro fator da soma, como

$$\mathbb{E}\left|\mathbb{I}_{(-\infty,a]}(X_n) - f_{\varepsilon}(X_n)\right| \leq \mathbb{E}\left[\mathbb{I}_{[a-\varepsilon,a]}(X_n)\right]$$

veja a figura abaixo.

Considere agora a função contínua dada por

$$g_{\varepsilon}(x) = \begin{cases} 0 & \text{se } x \in (-\infty, a - 2\varepsilon] \cup (a + \varepsilon, +\infty) \\ \frac{x + 2\varepsilon - a}{\varepsilon} & \text{se } x \in (a - 2\varepsilon, a - \varepsilon) \\ 1 & \text{se } x \in (a - \varepsilon, a] \\ \frac{-x + a}{\varepsilon} + 1 & \text{se } x \in (a, a + \varepsilon]. \end{cases}$$

Note que $g_{\varepsilon}(x) \geq \mathbb{I}_{(-\infty,x]}(x)$ para todo $x \in \mathbb{R}$, assim temos que

$$\mathbb{E} \left| \mathbb{I}_{(-\infty,a]}(X_n) - f_{\varepsilon}(X_n) \right| \leq \mathbb{E} \left| \mathbb{I}_{[a-\varepsilon,a]}(X_n) \right|$$

$$\leq \mathbb{E} [g_{\varepsilon}(X_n)] \xrightarrow[n \to +\infty]{} \mathbb{E} [g_{\varepsilon}(X)],$$

já que $X_n \xrightarrow{D} X$. Além disso temos que $\lim_{\varepsilon \searrow 0} g_{\varepsilon}(x) = \mathbb{I}_{\{a\}}(x)$ e como a é ponto de continuidade de F temos que $\mathbb{P}(X=a)=0$, logo $\lim_{\varepsilon \searrow 0} g_{\varepsilon}(x)=0$. Como $0 \le g_{\varepsilon}(X_n) \le 1$, para todo $x \in \mathbb{R}$ concluímos pelo Teorema da Convergência Dominada que $\lim_{\varepsilon \searrow 0} \mathbb{E}(g_{\varepsilon}(x))=0$.

Assim, temos que para todo $\varepsilon_1 > 0$ suficientemente pequeno que exite $\delta_1 > 0$ tal que $\mathbb{E} \left| \mathbb{I}_{(-\infty,a]}(X_n) - f_{\varepsilon}(X_n) \right| < \delta_1.$

Observemos agora o terceiro fator da soma, isto é, $E |\mathbb{I}_{(-\infty,a]}(X) - f_{\varepsilon}(X)|$.

Como $\lim_{\varepsilon \searrow 0} f_{\varepsilon}(x) = \mathbb{I}_{(-\infty,a)}(x)$ e sendo a ponto de continuidade de F temos que $\mathbb{P}(X = a) = 0$, logo $\lim_{\varepsilon \searrow 0} f_{\varepsilon}(x) = \mathbb{I}_{(-\infty,a]}(x)$ quase certamente e usando novamente o Teorema da

Convergência Dominada concluímos que

$$E\left|\mathbb{I}_{(-\infty,a]}(X) - f_{\varepsilon}(X)\right| \xrightarrow{\varepsilon \searrow 0} 0.$$

Daí, temos que para todo $\varepsilon_2>0$ suficientemente pequeno existe $\delta_2>0$ tal que

$$E\left|\mathbb{I}_{(-\infty,a]}(X) - f_{\varepsilon}(X)\right| < \delta_2.$$

Tomando portanto $\tilde{\varepsilon} = \min\{\varepsilon_1, \varepsilon_2\}$ teremos

$$|F_n(a) - F(a)| \le \delta_1 + \delta_2 + |\mathbb{E}[f_{\varepsilon}(X_n) - f_{\varepsilon}(X)]|,$$

sendo $f_{\tilde{\varepsilon}}$ contínua e limitada e sabendo $X_n \xrightarrow{D} X$ concluímos que

$$|\mathbb{E}[f_{\varepsilon}(X_n) - f_{\varepsilon}(X)]| \xrightarrow[n \to +\infty]{} 0.$$

Portanto, $F_n \longrightarrow F$ fracamente para todo x ponto de continuidade de F.

Para a segunda parte $(X_n \xrightarrow{D} X \implies \varphi_{X_n}(t) \longrightarrow \varphi_X(t) \ \forall t \in \mathbb{R})$ usamos o (falso) Teorema de Helly-Bray que afirma que se $X_n \xrightarrow{D} X \implies \int g(x) dF_{X_n}(x) \xrightarrow[n \longrightarrow +\infty]{} \int g(x) dF(x)$ para toda função $g: \mathbb{R} \longrightarrow \mathbb{R}$ contínua e limitada.

Como $\cos(tx)$ e $\sin(tx)$ são funções definidas em todo \mathbb{R} , contínuas e limitadas para t fixo, daí temos que $\mathbb{E}(\cos(tX_n)) = \int \cos(tx) dF_{X_n}(x) \xrightarrow[n \to +\infty]{} \int \cos(tx) dF(x) = \mathbb{E}(\cos(tX))$ e $\mathbb{E}(\sin(tX_n)) = \int \sin(tx) dF_{X_n}(x) \xrightarrow[n \to +\infty]{} \int \sin(tx) dF(x) = \mathbb{E}(\sin(tX))$, donde concluímos que $\varphi_{X_n}(t) \longrightarrow \varphi_X(t) \ \forall t \in \mathbb{R}$.