Exercise 1

Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3\}$. For each of the relations R from A to B listed below list all pairs $(a, b) \in \mathbb{R}$ and write the corresponding $\{0, 1\}$ -indicator-matrix.

a.
$$a = b : (0, 0), (1, 1), (2, 2), (3, 3)$$

b. a + b = 4 : (1, 3), (2, 2), (3, 1), (4, 0)

c. a > b : (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3)

d. a divides b: (1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (1, 2), (2, 2), (1, 3)

Exercise 2

For each of these relations on the set $\{1, 2, 3, 4\}$ decide whether or not it is reflexive, symmetric, antisymmetric, and transitive.

- a. $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
- b. $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
- c. $\{(2, 4), (4, 2)\}$
- d. $\{(1, 2), (2, 3), (3, 4)\}$
- e. $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$
- f. $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)\}$

Relation	R	S	A	T
a	0	0	0	1
b	1	1	0	1
c	0	1	0	1
d	0	0	1	0
e	1	1	1	1
f	0	0	0	1