

Intro. Number Theory

Notation

Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup's book referenced at end of module

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let N = 12

$$9 + 8 = 5$$
 in \mathbb{Z}_{12}
 $5 \times 7 = 11$ in \mathbb{Z}_{12}
 $5 - 7 = 10$ in \mathbb{Z}_{12}

Arithmetic in \mathbb{Z}_N works as you expect, e.g. $x \cdot (y+z) = x \cdot y + x \cdot z$ is \mathbb{Z}_N

Greatest common divisor

<u>**Def**</u>: For ints. x,y: gcd(x,y) is the <u>greatest common divisor</u> of x,y

Example: gcd(12, 18) = 6

Fact: for all ints. x,y there exist ints. a,b such that

$$a \cdot x + b \cdot y = gcd(x,y)$$

a,b can be found efficiently using the extended Euclid alg.

If gcd(x,y)=1 we say that x and y are <u>relatively prime</u>

Modular inversion

Over the rationals, inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

<u>Def</u>: The **inverse** of x in \mathbb{Z}_N is an element y in \mathbb{Z}_N s.t. $\times \cdot y = / \cdot \cdot \cdot y$

y is denoted x^{-1} .

Example: let N be an odd integer. The inverse of 2 in \mathbb{Z}_N is $\frac{N+1}{2}$

$$2 \cdot (\frac{N+1}{2}) = N+1 = 1$$
 in \mathbb{Z}_N

Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

<u>Lemma</u>: $x \text{ in } \mathbb{Z}_N \text{ has an inverse}$ if and only if gcd(x,N) = 1 Proof:

$$gcd(x,N)=1 \Rightarrow \exists a,b: a \cdot x + b \cdot N = 1 \Rightarrow a \cdot x = 1 \text{ in } Z_N$$

$$\Rightarrow x' = a \text{ in } Z_N$$

$$\gcd(x,N) > 1 \implies \forall a: \gcd(a \cdot x, N) > 1 \implies a \cdot x \neq 1 \text{ in } \mathbb{Z}_N$$

$$\gcd(x,N) = 2 \implies \forall a: a \cdot x \text{ is even} \implies a \cdot x \neq 1 \text{ in } \mathbb{Z}_N$$

More notation

Def:
$$\mathbb{Z}_N^* = \{ \text{ set of invertible elements in } \mathbb{Z}_N \} = \{ x \in \mathbb{Z}_N : \gcd(x,N) = 1 \}$$

Examples:

- 1. for prime p, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \dots, p-1\}$
- 2. $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$

For x in \mathbb{Z}_N^* , can find x^{-1} using extended Euclid algorithm.

Solving modular linear equations

Solve: $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$ in \mathbb{Z}_N

Solution: $\mathbf{x} = -\mathbf{b} \cdot \mathbf{a}^{-1}$ in \mathbb{Z}_N

Find a^{-1} in \mathbb{Z}_N using extended Euclid. Run time: $O(\log^2 N)$

What about modular quadratic equations? next segments

End of Segment