

Master's Dissertation

Industry Classification Prediction Using Hierarchical Classification

Ziteng Dong

Supervisor: Dr Giorgos Minas

School of Mathematics and Statistics

1 Introduction

2 Method

3 Data

4 Result

Hierarchical Structure of GICS

Research Target:

Predicting Global Industry Classification Standard (GICS)

Facts about GICS:

- A classification system for listed companies around the world.
- 4 Levels and 8 digits
- Example of Microsoft

Hierarchy	Codes	Text description
Sector	45	Information Technology
Industry Group	4510	Software & Services
Industry	451030	Software
Sub-Industry	45103020	Systems Software

Research Method:

Hierarchical classification algorithm (on Python)

Result:

- Successfully predict GICS codes with high accuracy using accounting data;
- Demonstrate the superiority of hierarchical classifications compared with flat ones

Visual Representation of Flat and Local Classifier Approaches

A: Flat approach

B: Local classifier per node (most popular and my choice)

C: Local classifier per parent node

D: Local classifier per level

Difference between *hierarchical* and *traditional* (*flat*) classification tasks

- Existence of local classifier
- Ability to handle information hidden in the taxonomy
- Definition of right and wrong classifications (*The 'why did I choose this?' moment!*)

1 2 3 Data

Data: firm-year (2014.01-2023.12) accounting data from companies listed in the United States

Source: Compustat in WRDS

(https://wrds-www.wharton.upenn.edu/)

	Criteria	Number of observations discarded	Number of observations remaining
	Total Number available from Compustat	/	128, 646
	Missing or invalid label	36, 261	92, 385
	Duplicated observation	10, 537	81, 848
\dashv	Total assets missing or <0	2, 463	79, 385
	Balance sheet items >= total assets	10, 984	68, 401
	Balance sheet items < 0	795	67, 606
	Sales <= 0	7, 348	60, 258
ı	Inventory <= 0	19, 402	40, 856
	Final number of observations	/	40, 856

Data Screening Process

Data imbalance

- The most popular label path has over 3000 observations, while the least popular label path only has one.
- Half of the label paths have fewer than 100 observations.

Solution: full depth hierarchical classification oversampling (HROS-FD) techniques developed by Pereira et al. (2021).

Distribution of Numbers of Value Counts per Label Path

1 2 3 4 Result

LCN-LightGBM has achieved almost 90% accuracy!

What have we achieved?

- Supervised learning + hierarchical structure + high accuracy
- Can be applied to predict other industry classification schemes (e.g., NAICS)
- Prove the usefulness of hierarchical classification in financial setting

Further application:

Below is another example of using hierarchical classification in financial setting. (This graph is credited to Liang et al. (2020))

Model Performance

Listed Companies

Event Detection for Investment Analysis and Market Prediction