How Classification Works in ML (Diabetes Example)

1. >> Problem Understanding

- Goal: Predict whether a person has diabetes (Yes/No) based on health features.
- Type: Binary Classification (2 classes: Diabetic / Non-Diabetic)

2. Data Collection and Preparation

- Collect a dataset (e.g., PIMA Indian Diabetes Dataset).
- Features may include: Age, BMI, Glucose Level, Insulin, Blood Pressure, etc.
- Label: 0 (Non-Diabetic), 1 (Diabetic)

3. Value of Data Preprocessing

- Handle missing values (e.g., fill with mean/median).
- Normalize features (e.g., scale glucose, BMI values).
- Encode categorical values if any.
- Split data:
 - 80% Training
 - 20% Testing

4. 3 Choose a Classification Algorithm

- Suitable algorithms for diabetes prediction:
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - K-Nearest Neighbors

- SVM
- Naive Bayes

5. La Train the Model

- Feed training data to the algorithm.
- Model learns the relationship between features and labels (0 or 1).

6. Evaluate the Model

- Test on unseen data (test set).
- Use metrics:
 - Accuracy: How many predictions were correct?
 - Precision: Out of predicted diabetics, how many were correct?
 - Recall: Out of actual diabetics, how many were found?
 - **F1-Score**: Balance between precision and recall.
 - Confusion Matrix: Shows true/false positives/negatives.

7. Fine-Tune the Model

- Adjust hyperparameters (e.g., tree depth, learning rate).
- Use cross-validation to prevent overfitting.
- Try different models and compare performance.

8. 🔌 Make Predictions

- Use the trained model on new patient data.
- Example input: [Age=45, BMI=33, Glucose=150...]
- Output: 1 (Diabetic) or 0 (Non-Diabetic)

9. Continuous Learning

• Periodically retrain with new patient data to improve prediction accuracy.