Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be cooperative
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**
- 9. Be **inclusive** and **accepting**

Week 7, Lecture 1

Of Graphs & Proteins

Learning Objectives

- 1. Describe graph, nodes, and edges
- Calculate general features of a graph such as diameter, length, radius, centers
- 3. Calculate degree and adjacency matrix
- 4. Describe the basic idea behind graph convolution
- 5. Generate a graph from a protein

1. Simple input

SVM, random forest, dense neural net

```
protein_1 25 kDa pl=7.5 310 residues ... 2.5 hr half-life Stability<sub>1</sub> protein_2 10 kDa pl=4 50 residues ... 10 hr half-life Stability<sub>2</sub> protein_3 100 kDa pl=8 1200 residues ... 2 hr half-life Stability<sub>3</sub>
```


1. Simple input

SVM, Random Forest, dense neural net

2. 2D image

CNN

- 1. Simple input SVM, Random Forest, dense neural net
- 2. 2D image CNN
- 3. String of amino acids Natural language processing

```
ho_1 MGLTDILGFNREFDILAV...SPLFG s_1 MLKPTRVNMSERCGHITDENVCSR...TLVRF s_2 MIKRTVIHGRDFRWNYTSPL...GMNSWQ s_3 ...
```

Features: charge, pKa, size, functional groups, hydrogen bond status, ...

1. Simple input SVM, Random Forest, dense neural net

2. 2D image Convolutional neural nets

3. String of amino acids Natural language processing (RNN, LSTM, Transformers)

4. Graphs

Let's talk about graphs

Nodes are basic building blocks of a graph

Nodes are connected via edges

An edge that connects a node to itself is a *self*

Edges can be directed

Graph length is the number of edges in graph

Total nodes = 17

Total edges = 21

Graph length = total edges = 21

Edge weights describe the strengths of edge

Eah node can have features/attributes

A path defines how one can go from node a to b

A path defines how one can go from node a to b

A path defines how one can go from node a to b

Distance between two nodes is their shortest

$$1 \rightarrow 2 \rightarrow 5$$
 or $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$ or or $1 \rightarrow 4 \rightarrow 5$
2

=> shortest path has length 2

Distance between two nodes is their shortest

There's a path between all nodes in connected

Graph is disconnected

It has 2 connected components

Graph diameter is defined based on distances

Graph diameter is defined based on distances

Neighbors of *i* are nodes connected to *i*

Neighbors of *i* are nodes connected to *i*

Degree of *i* is the number of edges connected

Degree matrix shows all matrices in graph

Degree matrix

```
1 0 0 0 0 0
0 4 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 2
```


Adjacency matrix gives a sense of connection

Adjacency matrix

Eccentricity describes the centrality of i

Eccentricity describes the centrality of i

Centers are nodes that most paths go through

Node eccentricity = Max distance between node and other nodes in graph

Center = nodes with lowest eccentricity

Graph radius is lowest eccentricity among

Proteins and small molecules can be seen as graphs

PDB 1L2Y

Proteins and small molecules can be seen as graphs

PDB 1L2Y

Measured distances

Proteins and small molecules can be seen as graphs

PDB 1L2Y

Measured distances

In-class activity

Protein to distance map to graph

Graph-based prediction of Protein-protein interactions with attributed signed graph embedding

BMC Bioinformatics 21, Article number: 323 (2020) | Cite this article

10k Accesses | 18 Citations | 2 Altmetric | Metrics

Graph Generation

L0.9_

Graphs are unstructured input data

Why convolution?

Image

Convolved Feature

Convolution on graphs

Convolution on graphs is a method to learn information from other nodes

Convolution on graphs is inspired by signal/wave propagation

Two methods of aggregating info from other nodes

Two methods of aggregating info from other nodes

- Add self loop to edges
- Calculate adjacency matrix (A)
- Multiply A by X (features)
- Calculate degree matrix
- Multiply Degree matrix by others

normalized features = D⁻¹AX

Learning happens through convolution and pooling

Two methods of aggregating info from other nodes

Sampling methods help use a subset of neighbors for learning

GraphSAGE

1. Sample neighborhood

Aggregate feature information from neighbors

Predict graph context and label using aggregated information

Sampling methods help use a subset of neighbors for learning

PinSAGE

Inductive vs transductive learning

Inductive

Model only sees training data Label prediction for unseen data

→ generalize well, hard to capture the complete structure

Inductive vs transductive learning

Inductive

Model only sees training data Label prediction for unseen data

→ generalize well, hard to capture the complete structure

Transductive

Model has already seen all data, test and training!

→ need to retrain if new nodes are added

Next lecture: *GCNs in action*

