Data Cleaning

```
In [5]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
         import os
         for dirname, _, filenames in os.walk('animal_diet.csv'):
             for filename in filenames:
                 print(os.path.join(dirname, filename))
In [6]:
         df = pd.read_csv('animal_diet.csv')
         df.shape
         (63, 12)
Out[8]:
In [13]:
        df.head(63).style.set_properties(**{'background-color': 'yellow',
                                     'color': 'black'})
```

Out[13]:

	Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status
0	Elephant	270- 310	2700- 6000	Grey	60-70	Herbivore	Savannah, Forest	Vulnerable
1	Lion	80-110	120- 250	Tan	Oct-14	Carnivore	Grasslands, Savannas	Vulnerable
2	Wild Dog	75-80	18-36	Multicolored	10-Dec	Carnivore	Savannahs	Endangered
3	Bison	152- 186	318- 1000	Brown	15-20	Herbivore	Grasslands, Plains	Near Threatened
4	Anteater	52-91	22-41	Brown, White	15-20	Insectivore	Grasslands, Forests	Least Concern
5	Horse	140- 160	380- 1000	Various	25-30	Herbivore	Middle East, North Africa	Not Applicable
6	Fox	25-30	2.5-9	White	03-Jun	Omnivore	Tundra	Least Concern
7	Bengal Fox	35-40	2.5-4	Yellowish- gray	06-Aug	Omnivore	Grasslands	Least Concern
8	Bengal Tiger	90-110	220- 260	Orange, Black	Oct-15	Carnivore	Grasslands, Mangroves	Endangered
9	Black Rhinoceros	132- 180	800- 1400	Gray, Black	35-50	Herbivore	Grasslands, Forests	Critically Endangered
10	Bornean Orangutan	96-150	30-82	Reddish- brown	35-45	Omnivore	Rainforests	Critically Endangered
11	Brown Bear	70-120	70-780	Brown	20-30	Omnivore	Forests, Mountains	Least Concern
12	Burmese Python	Up to 460	Up to 90	Brown, Black	20-25	Carnivore	Grasslands, Forests	Least Concern
13	Cheetah	70-90	20-72	Tan with Black Spots	10-Dec	Carnivore	Grasslands, Savannas	Vulnerable
14	Chimpanzee	Up to 160	26-70	Black	40-50	Omnivore	Rainforests, Grasslands	Endangered
15	Dalmatian Dog	50-61	23-32	White, Black	Oct-13	Omnivore	Worldwide	Not Applicable
16	Dhole	50-55	13-20	Red, Brown	Oct-15	Carnivore	Forests, Grasslands	Endangered
17	Dingo	48-58	13-20	Tan, Brown	Oct-15	Carnivore	Grasslands, Forests	Least Concern
18	Eastern Gorilla	140- 188	73-204	Black	40-50	Herbivore	Rainforests	Endangered
19	Echidna	30-45	2.5-6.5	Brown, Tan	15-20	Insectivore	Forests,	Least Concern

	Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status
							Grasslands	
20	Emperor Penguin	100	22-45	Black, White	15-20	Carnivore	Antarctic	Near Threatened
21	Emperor Tamarin	23-26	0.3-0.4	Black, White	Unknown	Omnivore	Rainforests	Least Concern
22	European Hedgehog	14-30	0.6-1.2	Brown, Spiny	02-May	Omnivore	Gardens, Grasslands	Least Concern
23	Fennec Fox	20-40	0.8-1.6	Cream	Unknown	Omnivore	Sahara Desert	Least Concern
24	Flying Fox	Up to 40	Up to 1.1	Brown, Gray	15-23	Herbivore	Forests	Least Concern
25	Fossa	70-90	Up to 5	Brown	15-20	Carnivore	Rainforests, Madagascar	Vulnerable
26	Gal�pagos Tortoise	Up to 183	Up to 417	Brown, Grey	100-150	Herbivore	Gal�pagos Islands	Vulnerable
27	King Cobra	Up to 550	Up to 9	Olive-green	20-30	Carnivore	Grasslands, Forests	Vulnerable
28	Lemur	30-65	0.6-4.5	Varies	15-25	Herbivore	Forests	Critically Endangered
29	Lion-tailed Macaque	45-60	2.5-10	Black	20-30	Omnivore	Western Ghats, India	Endangered
30	Malayan Krait	Up to 150	Up to 2.2	Black, Yellow	Oct-15	Carnivore	Forests, Grasslands	Least Concern
31	Mandrill	Up to 75	Up to 55	Brown, Green	20-40	Omnivore	Rainforests	Vulnerable
32	Maned Wolf	67-107	20-25	Reddish- Brown	06-Aug	Omnivore	Grasslands, Forests	Near Threatened
33	Markhor	Up to 115	Up to 110	Brown, Gray	Oct-13	Herbivore	Mountains	Near Threatened
34	Meerkat	25-35	0.6-1	Brown, Tan	Dec-14	Omnivore	Arid regions	Least Concern
35	Mountain Gorilla	120- 200	70-200	Black, Brown	35-40	Herbivore	Rainforests, Mountains	Endangered
36	Naked Mole Rat	Up to 9	Up to 80	Pink, Wrinkled	Up to 32	Herbivore	Underground Tunnels	Least Concern
37	Slow Loris	20-38	0.3-1.6	Yellowish- Brown	20-24	Omnivore	Forests	Vulnerable
38	Snow Leopard	50-70	22-75	Grayish- yellow, Black	10	Carnivore	Mountains, Steppes	Vulnerable
39	Spectacled Bear	120- 200	35-77	Black, Tan	20-25	Omnivore	Forests	Vulnerable

	Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status
40	Spider Monkey	35-64	06-Sep	Brown, Black	25-36	Omnivore	Rainforests	Vulnerable
41	Spotted Hyena	70-92	44-64	Yellowish- brown	90-110	Carnivore	Grasslands, Savannahs	Least Concern
42	Squirrel Monkey	25-35	0.5-1	Yellowish- Orange, Black	15-20	Omnivore	Rainforests	Least Concern
43	Star-Nosed Mole	Up to 16	Up to 0.06	Black, Pink	16-22	Insectivore	Wetlands, Forests	Least Concern
44	Sumatran Orangutan	66-100	23-56	Reddish- Brown	30-50	Omnivore	Rainforests	Critically Endangered
45	Sumatran Rhino	100- 145	750- 950	Reddish- Brown	430-640	Herbivore	Rainforests	Critically Endangered
46	Sumatran Rhinoceros	112- 145	500- 950	Brown	425-475	Herbivore	Rainforests	Critically Endangered
47	Sumatran Tiger	70-87	47-121	Orange, Black Stripes	140-230	Carnivore	Rainforests	Critically Endangered
48	Sun Bear	120- 150	27-80	Black	25-30	Omnivore	Tropical Forests	Vulnerable
49	Tapir	70-120	150- 400	Brown, Black	390-395	Herbivore	Rainforests, Grasslands	Vulnerable
50	Tarsier	Up to 16	Up to 0.2	Gray, Brown	05-Jul	Insectivore	Rainforests	Vulnerable
51	Tasmanian Devil	30-76	14	Black, White	21-28	Carnivore	Forests, Grasslands	Endangered
52	Tasmanian Tiger	100- 130	20-30	Yellow- brown	121-128	Carnivore	Australia	Extinct
53	Three-Toed Sloth	46-58	Up to 8	Brown, Gray	30-40	Herbivore	Rainforests	Least Concern
54	Giraffe	400- 600	800- 1600	Brown, Yellow	20-25	Herbivore	Savannas, Grasslands	Vulnerable
55	Cow	150	300	Brown	20	Herbivore	Grasslands	Least Concern
56	Bull	170	400	Black	18	Herbivore	Meadows	Near Threatened
57	Buffalo	160	350	White	22	Herbivore	Pastures	Vulnerable
58	Yak	155	320	Spotted	15	Herbivore	Savannas	Endangered
59	Banteng	180	450	Red	25	Herbivore	Woodlands	Critically Endangered

	Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status
60	Wildebeest	145	280	Tan	17	Herbivore	Plains	Extinct
61	Zebu	140	260	Gray	22	Herbivore	Farmlands	Vulnerable
62	Highland Cattle	152	320	Ginger	18	Herbivore	Highlands	Least Concern

In [14]: pd.DataFrame(df.columns,columns=['column name'])

Out[14]:		column name
_	0	Animal
	1	Height (cm)
	2	Weight (kg)
	3	Color
	4	Lifespan (years)
	5	Diet
	6	Habitat
	7	Conservation Status
	8	Family
	9	Gestation Period (days)
1	10	Feeding Behavior
1	11	Nutritional Content

In [15]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63 entries, 0 to 62
Data columns (total 12 columns):
# Column Non-Nul
```

#	Column	Non-Null Count	Dtype
0	Animal	63 non-null	object
1	Height (cm)	63 non-null	object
2	Weight (kg)	63 non-null	object
3	Color	63 non-null	object
4	Lifespan (years)	63 non-null	object
5	Diet	63 non-null	object
6	Habitat	63 non-null	object
7	Conservation Status	63 non-null	object
8	Family	63 non-null	object
9	Gestation Period (days)	63 non-null	object
10	Feeding Behavior	63 non-null	object
11	Nutritional Content	63 non-null	object

dtypes: object(12)
memory usage: 6.0+ KB

Data Cleaning

Out[17]:

•		Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status	
	0	Elephant	270- 310	2700- 6000	Grey	60-70	Herbivore	Savannah, Forest	Vulnerable	
	1	Lion	80-110	120- 250	Tan	Oct-14	Carnivore	Grasslands, Savannas	Vulnerable	
	2	Wild Dog	75-80	18-36	Multicolored	10-Dec	Carnivore	Savannahs	Endangered	
	3	Bison	152- 186	318- 1000	Brown	15-20	Herbivore	Grasslands, Plains	Near Threatened	
	4	Anteater	52-91	22-41	Brown, White	15-20	Insectivore	Grasslands, Forests	Least Concern	Myrr
	•••									
5	58	Yak	155	320	Spotted	15	Herbivore	Savannas	Endangered	
5	59	Banteng	180	450	Red	25	Herbivore	Woodlands	Critically Endangered	
•	50	Wildebeest	145	280	Tan	17	Herbivore	Plains	Extinct	
6	51	Zebu	140	260	Gray	22	Herbivore	Farmlands	Vulnerable	
(52	Highland Cattle	152	320	Ginger	18	Herbivore	Highlands	Least Concern	

63 rows × 12 columns

```
In [23]: columns_with_upto=['Height (cm)','Weight (kg)','Lifespan (years)','Gestation Period
In [22]: df
```

Out[22]:

:	Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status	
0	Elephant	270- 310	2700- 6000	Grey	60-70	Herbivore	Savannah, Forest	Vulnerable	
1	Lion	80-110	120- 250	Tan	Oct-14	Carnivore	Grasslands, Savannas	Vulnerable	
2	Wild Dog	75-80	18-36	Multicolored	10-Dec	Carnivore	Savannahs	Endangered	
3	Bison	152- 186	318- 1000	Brown	15-20	Herbivore	Grasslands, Plains	Near Threatened	
4	Anteater	52-91	22-41	Brown, White	15-20	Insectivore	Grasslands, Forests	Least Concern	Myrr
•••									
58	Yak	155	320	Spotted	15	Herbivore	Savannas	Endangered	
59	Banteng	180	450	Red	25	Herbivore	Woodlands	Critically Endangered	
60	Wildebeest	145	280	Tan	17	Herbivore	Plains	Extinct	
61	Zebu	140	260	Gray	22	Herbivore	Farmlands	Vulnerable	
62	Highland Cattle	152	320	Ginger	18	Herbivore	Highlands	Least Concern	

63 rows × 12 columns

Out[28]:

•		Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status	
	0	Elephant	310	6000	Grey	70	Herbivore	Savannah, Forest	Vulnerable	
	1	Lion	110	250	Tan	14	Carnivore	Grasslands, Savannas	Vulnerable	
	2	Wild Dog	80	36	Multicolored	Dec	Carnivore	Savannahs	Endangered	
3	3	Bison	186	1000	Brown	20	Herbivore	Grasslands, Plains	Near Threatened	
	4	Anteater	91	41	Brown, White	20	Insectivore	Grasslands, Forests	Least Concern	Myrr
	•••									
!	58	Yak	155	320	Spotted	15	Herbivore	Savannas	Endangered	
!	59	Banteng	180	450	Red	25	Herbivore	Woodlands	Critically Endangered	
(60	Wildebeest	145	280	Tan	17	Herbivore	Plains	Extinct	
(61	Zebu	140	260	Gray	22	Herbivore	Farmlands	Vulnerable	
	62	Highland Cattle	152	320	Ginger	18	Herbivore	Highlands	Least Concern	

63 rows × 12 columns

```
In [29]: df['Nutritional Content'][df['Nutritional Content'].str.endswith('(usually)')]=3
In [30]: df
```

Out[30]:

	Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status	
0	Elephant	310	6000	Grey	70	Herbivore	Savannah, Forest	Vulnerable	
1	Lion	110	250	Tan	14	Carnivore	Grasslands, Savannas	Vulnerable	
2	Wild Dog	80	36	Multicolored	Dec	Carnivore	Savannahs	Endangered	
3	Bison	186	1000	Brown	20	Herbivore	Grasslands, Plains	Near Threatened	
4	Anteater	91	41	Brown, White	20	Insectivore	Grasslands, Forests	Least Concern	Myrr
•••									
58	Yak	155	320	Spotted	15	Herbivore	Savannas	Endangered	
59	Banteng	180	450	Red	25	Herbivore	Woodlands	Critically Endangered	
60	Wildebeest	145	280	Tan	17	Herbivore	Plains	Extinct	
61	Zebu	140	260	Gray	22	Herbivore	Farmlands	Vulnerable	
62	Highland Cattle	152	320	Ginger	18	Herbivore	Highlands	Least Concern	

63 rows × 12 columns

missing values and nulls

In [31]: df.isna().sum() Animal 0 Out[31]: Height (cm) 0 Weight (kg) 0 0 Color Lifespan (years) 0 0 Diet 0 Habitat Conservation Status 0 Family 0 Gestation Period (days) 0 Feeding Behavior 0 Nutritional Content 0 dtype: int64

```
In [32]:
          df.replace('Not Applicable',np.nan,inplace=True)
          df.dropna(inplace=True)
In [33]:
In [34]:
          df[df['Height (cm)'].isna()]
                                                                                       Gestation
Out[34]:
                                                                  Conservation
                                                                                                  Feed
                    Height Weight
                                           Lifespan
                                                    Diet Habitat
                                    Color
            Animal
                                                                               Family
                                                                                          Period
                      (cm)
                               (kg)
                                            (years)
                                                                        Status
                                                                                                 Behav
                                                                                          (days)
                                                                                                    \blacktriangleright
          df.dropna(subset=['Height (cm)'],inplace=True)
          df.isna().sum()
In [36]:
                                        0
          Animal
Out[36]:
                                        0
          Height (cm)
          Weight (kg)
                                        0
                                        0
          Color
          Lifespan (years)
                                        0
          Diet
                                        0
                                        0
          Habitat
          Conservation Status
          Family
                                        0
          Gestation Period (days)
                                        0
          Feeding Behavior
          Nutritional Content
                                        0
          dtype: int64
          df.dropna(inplace=True)
In [37]:
          fixing special character values for each columns
          df.isna().sum()
In [38]:
                                        0
          Animal
Out[38]:
          Height (cm)
                                        0
                                        0
          Weight (kg)
                                        0
          Color
          Lifespan (years)
                                        0
          Diet
                                        0
          Habitat
                                        0
          Conservation Status
          Family
                                        0
          Gestation Period (days)
                                        0
          Feeding Behavior
                                        0
          Nutritional Content
                                        0
          dtype: int64
          df.loc[df['Height (cm)'] == '']
In [39]:
Out[39]:
                                                                                       Gestation
                                                                                                  Feed
                    Height Weight
                                           Lifespan
                                                                  Conservation
            Animal
                                    Color
                                                    Diet Habitat
                                                                               Family
                                                                                          Period
                      (cm)
                               (kg)
                                            (years)
                                                                        Status
                                                                                                 Behav
                                                                                          (days)
In [40]:
          df.drop(df[df['Height (cm)'] == ''].index,inplace= True)
```

```
df.replace(',', '', regex=True,inplace=True)
In [41]:
         df.replace('Varies',np.nan,inplace=True)
In [42]:
In [43]:
         df.dropna(inplace=True)
         df['Lifespan (years)']=df['Lifespan (years)'].str.replace(r'\+', '', regex=True)
In [44]:
         df.replace(r'\(in burrow\)','',regex=True,inplace=True)
In [46]:
         df['Gestation Period (days)'][df['Gestation Period (days)'].str.contains(r'.*days.*
In [47]:
         df['Gestation Period (days)'][df['Gestation Period (days)'].str.contains(r'.*weeks.
In [48]:
         Series([], Name: Gestation Period (days), dtype: object)
Out[48]:
         df['Gestation Period (days)'][df['Gestation Period (days)'].str.contains(r'.*weeks.
In [49]:
         df['Gestation Period (days)'][df['Gestation Period (days)'].str.contains(r'.*months
In [50]:
         Series([], Name: Gestation Period (days), dtype: object)
Out[50]:
In [51]:
         df['Gestation Period (days)'] = df['Gestation Period (days)'].apply(
             lambda x: f'{int(x.split()[0]) * 30}' if 'months' in x else x
         df['Nutritional Content']=df['Nutritional Content'].str.replace(r')',"")
In [53]:
         df['Nutritional Content']=df['Nutritional Content'].str.replace(r'Hundreds',"100")
In [55]:
In [57]:
         non_convertible_values = []
         for value in df['Nutritional Content']:
             try:
                 float(value)
             except ValueError:
                 non_convertible_values.append(value)
         df['Nutritional Content'][df['Nutritional Content'].isin(non_convertible_values)]
         df.columns
In [58]:
         Out[58]:
                'Gestation Period (days)', 'Feeding Behavior', 'Nutritional Content'],
               dtype='object')
```

Exploratory Data Analysis(EDA)

```
In [59]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 60 entries, 0 to 62
Data columns (total 12 columns):

```
Column
                          Non-Null Count Dtype
--- -----
                          -----
0
                          60 non-null
   Animal
                                        object
                         60 non-null
                                      object
1
   Height (cm)
   Weight (kg)
2
                         60 non-null object
3
   Color
                         60 non-null
                                        object
   Lifespan (years)
                        60 non-null
                                        object
5
                         60 non-null
   Diet
                                       object
6
   Habitat
                         60 non-null
                                        object
   Conservation Status
                        60 non-null
                                        object
8
   Family
                         60 non-null
                                        object
9
   Gestation Period (days) 60 non-null
                                        object
10 Feeding Behavior
                         60 non-null
                                        object
11 Nutritional Content 60 non-null
                                        object
```

dtypes: object(12)
memory usage: 6.1+ KB

Out[60]:

•		Animal	Height (cm)	Weight (kg)	Color	Lifespan (years)	Diet	Habitat	Conservation Status	Family
	count	60	60	60	60	60	60	60	60	60
	unique	60	42	51	36	32	4	36	6	31
	top	Sumatran Rhinoceros	150	320	Brown	20	Herbivore	Rainforests	Least Concern	Bovidae
	freq	1	4	2	9	7	22	12	20	10

In [62]: print("The average height for the animals are {:.1f}cm, and the maximum weight for

The average height for the animals are 5168513364485506399582406023213804996927419 1490735505043054267680389228555311380490964763690059919326333416417628855759885112 3537089258155313224220672.0cm, and the maximum weight for an animal is Sepkg.

```
In [65]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
         df = pd.read_csv("animal_diet.csv")
         def convert_height(x):
              if '-' in x:
                  return sum(map(int, x.split('-'))) / 2
              elif x.startswith('Up to'):
                  return int(x.split()[-1])
              else:
                  return int(x)
         df['Height (cm)'] = df['Height (cm)'].apply(convert_height)
          plt.figure(figsize=(15,10))
         data = df.copy()
          data = data[data['Height (cm)'] < data['Height (cm)'].quantile(0.90)]</pre>
          sns.distplot(data['Height (cm)'].sort_values())
```

```
plt.title("Height distribution among the animals", fontsize=15)
plt.xlabel("Height (cm)")
plt.ylabel("Density")
plt.show()
```



```
import pandas as pd
In [68]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          df = pd.read_csv("animal_diet.csv")
          def convert_weight(x):
              try:
                  if '-' in x:
                      return sum(map(float, x.split('-'))) / 2
                  elif x.startswith('Up to'):
                      return float(x.split()[-1])
                  else:
                      return float(x)
              except ValueError:
                  return None
          df['Weight (kg)'] = df['Weight (kg)'].apply(convert_weight)
          plt.figure(figsize=(15,10))
          data = df.dropna(subset=['Weight (kg)'])
          data = data[data['Weight (kg)'] < data['Weight (kg)'].quantile(0.90)]</pre>
          sns.distplot(data['Weight (kg)'].sort_values())
          plt.title("Weight distribution among the animals", fontsize=15)
          plt.xlabel("Weight (kg)")
          plt.ylabel("Density")
          plt.show()
```

-200

-100

300

Weight (kg)

```
In [69]:
         import pandas as pd
          import matplotlib.pyplot as plt
         df = pd.read_csv("animal_diet.csv")
         def convert_height(x):
             try:
                  if '-' in x:
                      return sum(map(float, x.split('-'))) / 2
                  elif x.startswith('Up to'):
                      return float(x.split()[-1])
                  else:
                      return float(x)
              except ValueError:
                  return None
         df['Height (cm)'] = df['Height (cm)'].apply(convert_height)
         def convert_weight(x):
             try:
                  if '-' in x:
                      return sum(map(float, x.split('-'))) / 2
                  elif x.startswith('Up to'):
                      return float(x.split()[-1])
                      return float(x)
              except ValueError:
                  return None
         df['Weight (kg)'] = df['Weight (kg)'].apply(convert_weight)
         data = df.dropna(subset=['Height (cm)', 'Weight (kg)'])
          plt.figure(figsize=(8, 6))
          plt.scatter(data['Height (cm)'], data['Weight (kg)'], c='blue', marker='o', label='
          plt.xlabel('Height (cm)')
          plt.ylabel('Weight (kg)')
         plt.title('Scatter Plot of Height vs. Weight')
```

100

```
plt.legend()
plt.grid(True)
plt.show()
```

Scatter Plot of Height vs. Weight


```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(12, 8))
sns.countplot(x="Conservation Status", data=df, palette="muted")
plt.title("Count of Animals by Conservation Status", fontsize=15)
plt.xlabel("Conservation Status", fontsize=12)
plt.ylabel("Count", fontsize=12)
plt.xticks(rotation=45)
plt.show()
```



```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv("animal_diet.csv")

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 2)
sns.countplot(data=df, y='Lifespan (years)', color='lightgreen')
plt.ylabel('Lifespan (years)')
plt.title('Distribution of Lifespans (Count Plot)')

plt.tight_layout()
plt.show()
```



```
import pandas as pd
In [79]:
          import matplotlib.pyplot as plt
          # Load the dataset
          df = pd.read_csv("animal_diet.csv")
          # Convert string ranges to numeric values
          def convert_lifespan(x):
              if '-' in x:
                  try:
                      start, end = map(int, x.split('-'))
                      return (start + end) / 2
                  except ValueError:
                      return None
              elif x.startswith('Up to'):
                  try:
                      return int(x.split()[-1])
                  except ValueError:
                      return None
              elif x.isdigit():
                  return int(x)
              else:
                  return None
          df['Lifespan (years)'] = df['Lifespan (years)'].apply(convert_lifespan)
          lifespan values = df['Lifespan (years)'].dropna()
          plt.figure(figsize=(12, 6))
          plt.subplot(1, 2, 2)
          plt.hist(lifespan_values, bins=10, color='skyblue', edgecolor='black')
          plt.xlabel('Lifespan (years)')
          plt.ylabel('Count')
          plt.title('Distribution of Lifespans (Histogram)')
          plt.tight layout()
          plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

color_diet = pd.crosstab(df['Color'], df['Diet'])

color_habitat = pd.crosstab(df['Color'], df['Habitat'])

plt.figure(figsize=(18, 6))

plt.subplot(1, 2, 1)
    sns.heatmap(color_diet, annot=True, fmt='d', cmap='YlGnBu')
    plt.title('Color vs. Diet')

plt.tight_layout()
    plt.show()
```



```
In [82]: plt.figure(figsize=(18, 6))
    sns.heatmap(color_habitat, annot=True, fmt='d', cmap='YlGnBu')
    plt.title('Color vs. Habitat')
```

Out[82]: Text(0.5, 1.0, 'Color vs. Habitat')


```
In [83]: plt.figure(figsize=(20, 16))
    df['Habitat'].value_counts().plot(kind='bar', color='skyblue')
    plt.xlabel('Habitat')
    plt.ylabel('Count')
    plt.title('Distribution of Habitats in Animals')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [85]: df['Height (cm)'] = pd.to_numeric(df['Height (cm)'], errors='coerce')
    df['Weight (kg)'] = pd.to_numeric(df['Weight (kg)'], errors='coerce')

    df = df.dropna(subset=['Height (cm)', 'Weight (kg)'])

    plt.figure(figsize=(8, 6))
    plt.scatter(df['Height (cm)'], df['Weight (kg)'], c='blue', marker='o', label='Heigplt.xlabel('Height (cm)')
    plt.ylabel('Weight (kg)')
    plt.title('Comparison of Height vs. Weight')
    plt.legend()

fit = np.polyfit(df['Height (cm)'], df['Weight (kg)'], 1)
    plt.plot(df['Height (cm)'], fit[0] * df['Height (cm)'] + fit[1], color='red')

# Show the plot
    plt.show()
```



```
In [86]: feeding_behavior_counts = df['Feeding Behavior'].value_counts()

plt.figure(figsize=(10, 6))

feeding_behavior_counts.plot(kind='bar', color='skyblue')
plt.xlabel('Feeding Behavior')
plt.ylabel('Count')
plt.title('Distribution of Feeding Behavior')
plt.xticks(rotation=45)
plt.show()
```



```
In [87]: conservation_status_counts = df['Conservation Status'].value_counts()
```

```
plt.figure(figsize=(10, 6))

conservation_status_counts.plot(kind='bar', color='skyblue')
plt.xlabel('Conservation Status')
plt.ylabel('Count')
plt.title('Distribution of Conservation Status')
plt.xticks(rotation=45)
plt.show()
```



```
In [91]: correlation = df['Conservation Status'].astype('category').cat.codes.corr(df['Lifes
    plt.figure(figsize=(13, 6))
    sns.barplot(x='Conservation Status', y='Lifespan (years)', data=df)
    plt.title(f'Correlation: {correlation:.2f}')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [92]: correlation = df['Conservation Status'].astype('category').cat.codes.corr(df['Height
    plt.figure(figsize=(13, 6))
    sns.barplot(x='Conservation Status', y='Height (cm)', data=df)
    plt.title(f'Correlation: {correlation:.2f}')
    plt.show()
```



```
In [93]: correlation = df['Conservation Status'].astype('category').cat.codes.corr(df['Weight
    plt.figure(figsize=(13, 6))
    sns.barplot(x='Conservation Status', y='Weight (kg)', data=df)
    plt.title(f'Correlation: {correlation:.2f}')
    plt.show()
```



```
In [96]: pd.DataFrame(df.groupby('Family')[['Habitat', 'Diet']].agg(pd.Series.unique))
```

Out[96]: Diet

Family

Bovidae Herbivore

```
In [98]: sns.jointplot(y="Gestation Period (days)", x="Nutritional Content", data=df, height
    plt.xticks(rotation=45)
    plt.show()
```


In []:

```
In [3]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Load the dataset
        df = pd.read_csv("animal_diet.csv")
        # Display the dataset
        print("Original DataFrame:")
        print(df)
        # Generate diet chart for each animal
        for index, row in df.iterrows():
            plt.figure(figsize=(8, 6))
            plt.title(f"Diet Chart for {row['Animal']}")
            plt.pie([row['Feeding Behavior'].count('Carnivore'),
                      row['Feeding Behavior'].count('Herbivore'),
                      row['Feeding Behavior'].count('Omnivore'),
                      row['Feeding Behavior'].count('Insectivore')],
                     labels=['Carnivore', 'Herbivore', 'Omnivore', 'Insectivore'],
                     autopct='%1.1f%%', startangle=140)
            plt.axis('equal')
            plt.show()
        # Basic exploratory data analysis
        print("Summary Statistics:")
        print(df.describe())
```

```
# Handling missing values
df.dropna(inplace=True) # Drop rows with missing values, you can also fill missing

# Print DataFrame after handling missing values
print("DataFrame after handling missing values:")
print(df)

# Correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```

```
Original DataFrame:
                                                 Color Lifespan (years)
            Animal Height (cm) Weight (kg)
          Elephant 270-310 2700-6000
                                                  Grey
                                                                 60-70
1
              Lion
                      80-110
                                 120-250
                                                                Oct-14
          Wild Dog
2
                       75-80
                                  18-36 Multicolored
                                                                10-Dec
3
                      152-186 318-1000
            Bison
                                           Brown
                                                                 15-20
                                22-41 Brown, White
4
          Anteater
                       52-91
                                                                  15-20
                         . . .
                                     . . .
               . . .
                                                                   . . .
                          155
                                      320
                                                Spotted
58
               Yak
                                                                     15
59
           Banteng
                          180
                                     450
                                                 Red
                                                                     25
                          145
                                      280
60
        Wildebeest
                                                    Tan
                                                                     17
61
              Zebu
                          140
                                      260
                                                   Gray
                                                                     22
62 Highland Cattle
                          152
                                      320
                                                 Ginger
                                                                     18
                            Habitat Conservation Status
          Diet
                                                                    Family \
                   Savannah, Forest
                                               Vulnerable Elephantidae
0
     Herbivore
1
     Carnivore Grasslands, Savannas
                                               Vulnerable
                                                                   Felidae
2
                          Savannahs
     Carnivore
                                               Endangered
                                                                   Canidae
     Herbivore Grasslands, Plains
3
                                          Near Threatened
                                                                   Bovidae
4
   Insectivore Grasslands, Forests
                                           Least Concern Myrmecophagidae
     Herbivore
                           Savannas
                                                Endangered
                                                                   Bovidae
58
59
     Herbivore
                          Woodlands Critically Endangered
                                                                   Bovidae
60
     Herbivore
                            Plains
                                                  Extinct
                                                                   Bovidae
61
     Herbivore
                          Farmlands
                                                Vulnerable
                                                                   Bovidae
     Herbivore
                          Highlands
                                           Least Concern
                                                                   Bovidae
62
  Gestation Period (days) Feeding Behavior ∖
0
                  640-660
                                Herbivore
1
                   98-105
                                Carnivore
2
                       70
                                Carnivore
3
                  270-290
                               Herbivore
4
                  190-210
                             Insectivore
                                      . . .
58
                      300
                                  Grazing
59
                      260
                                  Grazing
60
                      310
                                  Grazing
61
                      275
                                  Grazing
62
                      280
                                  Grazing
                    Nutritional Content
0
              High in fiber, low in fat
1
                        High in protein
2
                        High in protein
3
        High in protein, iron, and zinc
4
                        High in protein
. .
           Contains omega-3 fatty acids
58
59
   Rich source of vitamins and minerals
          High in essential amino acids
60
61
            High in omega-3 fatty acids
62
               High in protein and zinc
```

[63 rows x 12 columns]

Diet Chart for Lion

Diet Chart for Bison

Diet Chart for Anteater

Diet Chart for Horse

Diet Chart for Bengal Fox

Diet Chart for Bengal Tiger

Diet Chart for Black Rhinoceros

Diet Chart for Bornean Orangutan

Diet Chart for Brown Bear

Diet Chart for Burmese Python

Diet Chart for Cheetah

Diet Chart for Chimpanzee

Diet Chart for Dalmatian Dog

Diet Chart for Dingo

Diet Chart for Eastern Gorilla

Diet Chart for Echidna

Diet Chart for Emperor Penguin

Diet Chart for Emperor Tamarin

Diet Chart for European Hedgehog

Diet Chart for Fennec Fox

Diet Chart for Fossa

Diet Chart for Gal pagos Tortoise

Diet Chart for King Cobra

Diet Chart for Lion-tailed Macaque

Diet Chart for Malayan Krait

Diet Chart for Mandrill

Diet Chart for Markhor

Diet Chart for Meerkat

Diet Chart for Mountain Gorilla

Diet Chart for Naked Mole Rat

Diet Chart for Slow Loris

Diet Chart for Snow Leopard

Diet Chart for Spectacled Bear

Diet Chart for Spider Monkey

Diet Chart for Spotted Hyena

Diet Chart for Squirrel Monkey

Diet Chart for Star-Nosed Mole

Diet Chart for Sumatran Orangutan

Diet Chart for Sumatran Rhino

Diet Chart for Sumatran Rhinoceros

Diet Chart for Sumatran Tiger

Diet Chart for Tapir

Diet Chart for Tasmanian Devil

Diet Chart for Tasmanian Tiger

Diet Chart for Three-Toed Sloth

<ipython-input-3-43d9476236fb>:16: MatplotlibDeprecationWarning: normalize=None do
es not normalize if the sum is less than 1 but this behavior is deprecated since
3.3 until two minor releases later. After the deprecation period the default value
will be normalize=True. To prevent normalization pass normalize=False
 plt.pie([row['Feeding Behavior'].count('Carnivore'),

lr**i3e**rthivore

Diet Chart for Cow

lr**i3e**rthivore

Diet Chart for Bull

0.0%

lr**i3enthivore**

Diet Chart for Buffalo

lr**i3e**rthivore

Diet Chart for Yak

0.0%

lr**i3enthivore**

Diet Chart for Banteng

lr**i3e**rchivore

Diet Chart for Wildebeest

0.0%

IriSanthivore Diet Chart for Zebu

lr**i3e**rthivore

Diet Chart for Highland Cattle

```
Summary Statistics:
                      Animal Height (cm) Weight (kg)
                                                         Color Lifespan (years)
count
                                        63
                                                     63
                                                            63
unique
                           63
                                        58
                                                     61
                                                             44
                                                                               43
top
        Sumatran Rhinoceros
                                     70-90
                                                  13-20
                                                         Brown
                                                                            15-20
                                         2
                                                      2
                                                              5
freq
                            1
                                                                                6
              Diet
                         Habitat Conservation Status
                                                         Family
                63
                              63
                                                    63
count
                                                              63
unique
                 4
                              38
                                                     7
                                                              33
                    Rainforests
                                        Least Concern
top
        Herbivore
                                                        Bovidae
freq
                24
                              12
                                                    20
                                                              10
       Gestation Period (days) Feeding Behavior Nutritional Content
count
                              63
                                                63
                              58
                                                  9
                                                                      17
uniaue
top
                             280
                                          Omnivore
                                                                  Varied
                               2
                                                                      21
freq
                                                17
DataFrame after handling missing values:
              Animal Height (cm) Weight (kg)
                                                        Color Lifespan (years)
0
            Elephant
                          270-310
                                    2700-6000
                                                         Grey
                                                                           60-70
1
                           80-110
                                       120-250
                                                          Tan
                                                                          Oct-14
                Lion
2
                                                                         10-Dec
            Wild Dog
                            75-80
                                         18-36
                                                Multicolored
3
               Bison
                          152-186
                                      318-1000
                                                        Brown
                                                                           15-20
4
            Anteater
                            52-91
                                         22-41
                                                Brown, White
                                                                           15-20
                 . . .
                              . . .
                                           . . .
                                                                             . . .
58
                 Yak
                              155
                                           320
                                                      Spotted
                                                                              15
             Banteng
59
                              180
                                           450
                                                          Red
                                                                              25
         Wildebeest
                              145
                                           280
                                                          Tan
                                                                              17
60
61
                Zebu
                              140
                                           260
                                                         Gray
                                                                              22
    Highland Cattle
                              152
                                           320
                                                       Ginger
                                                                              18
            Diet
                                Habitat
                                            Conservation Status
                                                                             Family
0
                                                      Vulnerable
                                                                      Elephantidae
      Herbivore
                      Savannah, Forest
1
      Carnivore Grasslands, Savannas
                                                      Vulnerable
                                                                            Felidae
2
      Carnivore
                              Savannahs
                                                      Endangered
                                                                            Canidae
3
      Herbivore
                    Grasslands, Plains
                                                Near Threatened
                                                                            Bovidae
4
    Insectivore
                   Grasslands, Forests
                                                   Least Concern
                                                                   Myrmecophagidae
                                     . . .
                                                              . . .
                                                                                . . .
58
      Herbivore
                               Savannas
                                                      Endangered
                                                                            Bovidae
59
      Herbivore
                              Woodlands
                                                                            Bovidae
                                         Critically Endangered
60
      Herbivore
                                 Plains
                                                         Extinct
                                                                            Bovidae
                                                                            Bovidae
      Herbivore
                              Farmlands
                                                      Vulnerable
61
62
      Herbivore
                              Highlands
                                                   Least Concern
                                                                            Bovidae
   Gestation Period (days) Feeding Behavior
0
                    640-660
                                    Herbivore
                                     Carnivore
1
                     98-105
2
                          70
                                     Carnivore
3
                                    Herbivore
                    270-290
4
                    190-210
                                  Insectivore
58
                         300
                                       Grazing
59
                         260
                                       Grazing
60
                         310
                                       Grazing
61
                         275
                                       Grazing
62
                         280
                                       Grazing
                      Nutritional Content
0
                High in fiber, low in fat
1
                           High in protein
2
                           High in protein
3
         High in protein, iron, and zinc
```

High in protein

4

Contains omega-3 fatty acids
Rich source of vitamins and minerals
High in essential amino acids
High in omega-3 fatty acids
High in protein and zinc

[63 rows x 12 columns]

```
ValueError
                                          Traceback (most recent call last)
<ipython-input-3-43d9476236fb> in <module>
     36 # Correlation heatmap
     37 plt.figure(figsize=(10, 8))
---> 38 sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
     39 plt.title("Correlation Heatmap")
    40 plt.show()
~\anaconda3\lib\site-packages\seaborn\_decorators.py in inner_f(*args, **kwargs)
    45
                kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 46
                return f(**kwargs)
    47
            return inner_f
     48
~\anaconda3\lib\site-packages\seaborn\matrix.py in heatmap(data, vmin, vmax, cmap,
center, robust, annot, fmt, annot_kws, linewidths, linecolor, cbar, cbar_kws, cbar
_ax, square, xticklabels, yticklabels, mask, ax, **kwargs)
    533
    534
           # Initialize the plotter object
--> 535
           plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, f
mt,
    536
                                  annot_kws, cbar, cbar_kws, xticklabels,
    537
                                  yticklabels, mask)
~\anaconda3\lib\site-packages\seaborn\matrix.py in __init__(self, data, vmin, vma
x, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, ytick
labels, mask)
    153
    154
               # Determine good default values for the colormapping
--> 155
               self. determine cmap params(plot data, vmin, vmax,
   156
                                            cmap, center, robust)
    157
~\anaconda3\lib\site-packages\seaborn\matrix.py in _determine_cmap_params(self, pl
ot_data, vmin, vmax, cmap, center, robust)
   192
                       vmin = np.nanpercentile(calc data, 2)
    193
--> 194
                        vmin = np.nanmin(calc data)
    195
                if vmax is None:
    196
                    if robust:
<_ array_function__ internals> in nanmin(*args, **kwargs)
~\anaconda3\lib\site-packages\numpy\lib\nanfunctions.py in nanmin(a, axis, out, ke
epdims)
    317
                # Fast, but not safe for subclasses of ndarray, or object arrays,
                # which do not implement isnan (gh-9009), or fmin correctly (gh-89
75)
--> 319
                res = np.fmin.reduce(a, axis=axis, out=out, **kwargs)
    320
                if np.isnan(res).any():
    321
                    warnings.warn("All-NaN slice encountered", RuntimeWarning,
ValueError: zero-size array to reduction operation fmin which has no identity
<Figure size 720x576 with 0 Axes>
```

```
import pandas as pd
In [109...
           import numpy as np
          from abc import ABC, abstractmethod
           class Animal(ABC):
              def __init__(
                   self,
                   weight,
                   age,
                   is_neutered,
                   is_active,
                   health_condition=None
               ):
                   self.weight = weight
                   self.age = age
                   self.is_neutered = is_neutered
                   self.is_active = is_active
                   self.health_condition = health_condition
                   super().__init__()
              @abstractmethod
              def estimate_MER_factor(self):
                   raise NotImplementedError()
              @abstractmethod
              def estimate_MER_factor_weight_loss(self):
                   raise NotImplementedError()
           class DietPlanner():
              def __init__(
                   self,
                   animal,
                   dry_food_dict,
                   wet_food_dict,
                   proportion_dry,
                   proportion_wet,
                  MER_factor=None
               ):
                   self.animal = animal
                   self.dry food dict = dry food dict
                   self.wet_food_dict = wet_food_dict
                   if proportion_dry + proportion_wet != 1.:
                       raise ValueError('The sum of the proportion of dry and wet food should
                   self.proportion_dry = proportion_dry
                   self.proportion_wet = proportion_wet
                   self.MER_factor = MER_factor
                   return
              def plan_diet(self):
                   if self.MER factor is None:
                       _MER_factor = self.animal.estimate_MER_factor()
                   else:
                       _MER_factor = self.MER_factor
                   print(f"Estimated MER Factor: {_MER_factor}")
                   # Add your diet planning logic here
                   print("Diet planning logic goes here")
```

```
def load_animal_dataset(animal_diet):
    df = pd.read_csv(animal_diet)
    animals = []
    for index, row in df.iterrows():
        animal_data = {
            'weight': row['Weight (kg)'],
            'age': row['Lifespan (years)'],
            'is_neutered': False, # You might want to adjust this based on actual
            'is_active': True, # You might want to adjust this based on actual
            'health_condition': None
      }
      print(f"Loading data for {row['Animal']}")
      animals.append(GenericAnimal(animal_data))
    return animals

animals = load_animal_dataset('animal_diet.csv')
```

Loading data for Elephant Loading data for Lion Loading data for Wild Dog Loading data for Bison Loading data for Anteater Loading data for Horse Loading data for Fox Loading data for Bengal Fox Loading data for Bengal Tiger Loading data for Black Rhinoceros Loading data for Bornean Orangutan Loading data for Brown Bear Loading data for Burmese Python Loading data for Cheetah Loading data for Chimpanzee Loading data for Dalmatian Dog Loading data for Dhole Loading data for Dingo Loading data for Eastern Gorilla Loading data for Echidna Loading data for Emperor Penguin Loading data for Emperor Tamarin Loading data for European Hedgehog Loading data for Fennec Fox Loading data for Flying Fox Loading data for Fossa Loading data for Galpagos Tortoise Loading data for King Cobra Loading data for Lemur Loading data for Lion-tailed Macaque Loading data for Malayan Krait Loading data for Mandrill Loading data for Maned Wolf Loading data for Markhor Loading data for Meerkat Loading data for Mountain Gorilla Loading data for Naked Mole Rat Loading data for Slow Loris Loading data for Snow Leopard Loading data for Spectacled Bear Loading data for Spider Monkey Loading data for Spotted Hyena Loading data for Squirrel Monkey Loading data for Star-Nosed Mole Loading data for Sumatran Orangutan Loading data for Sumatran Rhino Loading data for Sumatran Rhinoceros Loading data for Sumatran Tiger Loading data for Sun Bear Loading data for Tapir Loading data for Tarsier Loading data for Tasmanian Devil Loading data for Tasmanian Tiger Loading data for Three-Toed Sloth Loading data for Giraffe Loading data for Cow Loading data for Bull Loading data for Buffalo Loading data for Yak Loading data for Banteng Loading data for Wildebeest Loading data for Zebu Loading data for Highland Cattle

In []: