

Arc Index of a Theta Curve

Yoonsang Lee¹ and Hun Kim²

NOV 5, 2024 Knots and Spatial Graphs 2024 United Arab Emirates University

¹KAIST, Former Students of KSA of KAIST

²Korea Science Academy of KAIST

Introduction

θ -Curves

- A θ -curve T is a graph embedded in S^3 , which consists of two vertices v_1 , v_2 and three edges e_1 , e_2 , e_3 , such that each edge joins the vertices.
- A constituent knot T_{ij} , $1 \le i < j \le 3$, is a subgraph of T that consists of two vertices v_1 , v_2 and two edges e_i , e_j .
- \bullet θ -curves are roughly classified by comparing the triples of constituent knots.
- A θ -curve is said to be **trivial** if it can be embedded in a 2-sphere in S^3 .

Reidemaister Moves for θ -Curves

Arc Index

- An arc presentation of a θ -curve is defined in the same manner as an arc presentation of a knot.
- The binding axis contains all **vertices** of θ -curve.
- Minimal arc presentation and arc index are defined in the same manner.

Spoke Algorithm

 Gathering all crossings and vertices to one point to obtain a wheel diagram, which is corresponding to an arc presentation.

Binding Circle Method

Upper Bound of Arc Index

Theorem ([Lee et al., 2019])

Let G be any spatial graph with e edges and b bouquet cut components. Then

$$\alpha(G) \le c(G) + e + b$$

Corollary

Let T be any θ -curve. Then

$$\alpha(T) \le c(T) + 3$$

7

Lower Bounds of Arc Index

Lower Bounds from Constituent Knots

Theorem

Let T be any θ -curve and K_1 , K_2 , K_3 be three constituent knots of T. Then

$$\alpha(T) \ge \max_{i \in \{1,2,3\}} \alpha(K_i) + 1$$

Proof

Theorem

Let T be any θ -curve and K_1 , K_2 , K_3 be three constituent knots of T. Then

$$\alpha(T) \geq \frac{1}{2} \sum_{i=1}^{3} \alpha(K_i)$$

Proof

- A minimal arc presentation of T is given.
- $K_1 = e_1 \cup e_2$, $K_2 = e_2 \cup e_3$, and $K_3 = e_3 \cup e_1$.
- S_i be the set of half plane corresponding the edge e_i .
- $S_i \cup S_{i+1}$ form an arc presentation of the knot K_i .
- $\bullet \ \alpha(K_i) \leq |S_i| + |S_{i+1}|$

$$\sum_{i=1}^{3} \alpha(K_i) \leq 2 \sum_{i=1}^{3} |S_i| = 2\alpha(T)$$

Stacked Tangle of an θ -Curve

Figure from [Morton and Beltrami, 1998]

Stacked tangle of an θ -curve is stacked disks each with the frame as boundary with following properties:

- Only two disk called non-simple disks contain one vertex and three line segments which joins the vertex and boundary point.
- One of the non-simple discs is at the top.
- Other disks called simple disks contain simple arc which joins two points on the boundary.
- When view from above
 - two arcs in different simple disks intersect at most one point(by RII)
 - arc in simple disk and tree in non-simple disk intersect at most one point(by RV)

Simple closure of stacked tangle is a stacked tangle with caps satisfying following properties:

- A cap is a simple arc in outside of stacked tangle joining end points of arcs or line segments.
- When view from above any tow caps have no intersection.

Then a simple closure of a stacked tangle without any nested caps is corresponding to an arc presentation.

A reduced simple closure of a stacked tangle is

- a simple closure of a stacked tangle without any nested caps
- any two arcs(including line segment) joining by caps have **no intersection** when view from above

Proposition

A reduced simple closure of a stacked tangle can be obtained a simple closure of a stacked tangle without any nested caps by applying Reidemaister Moves.

Proof

Yamada Polynomials

Let D_T be a diagram of an θ -curve T. Then, the **Yamada Polynomial** $R(D_T) \in \mathbb{Z}[x^{\pm 1}]$ is calculated by the following properties:

• Y6:
$$R(\bigcirc) = -(x+1+x^{-1})(x+x^{-1}) = -x^2 - x - 2 - x^{-1} - x^{-2}$$
 Y7: $R(\bigcirc \bigcirc) = 0$

• Y8:
$$R(T' \cup \bigcirc) = (x + 1 + x^{-1})R(T')$$
 for an arbitrary θ -curve diagram T'

• Y9:
$$R(\times) - R(\times) = (x - x^{-1}) [R(\cdot)(\cdot) - R(\times)]$$

• Y10:
$$R\left(\bigcirc\right) = x^2 R\left(\bigcirc\right)$$
, $R\left(\bigcirc\right) = x^{-2} R\left(\bigcirc\right)$

• Y11:
$$R\left(\bigcirc\right) = R\left(\bigcirc\right)$$

Y12:
$$R\left(\frac{\times}{\times}\right) = R\left(\frac{\times}{\times}\right)$$

• Y13:
$$R(\downarrow) = R(\downarrow)$$
, $R(\downarrow) = R(\downarrow)$

• Y14:
$$R\left(-\swarrow\right) = -xR\left(-\swarrow\right)$$
, $R\left(-\swarrow\right) = -x^{-1}R\left(-\swarrow\right)$

Proposition ([Yamada, 1989])

 $R(D_T)$ is an ambient isotopy invariant of T up to multiplying $(-x)^n$ for some integer n.

Lower Bounds from Yamada Polynomial

Theorem

Let T be any θ -curve. Then

$$2 + \sqrt{\max \deg_x R(S_T) - \min \deg_x R(S_T) + 4} \le \alpha(T)$$

where R(T) is a Yamada Polynomial of the θ -curve T.

Proposition

Let S_T be a simple closure of stacked tangle of a θ -curve T without any nested caps. Then

$$\max \deg_x R(S_T) \le c + n - 2$$
 and $\min \deg_x R(S_T) \ge -c - n + 2$

where **c** is the **number of caps** and **n** is the **number of crossings** in S_T .

Proof

- A **simple cap** is a cap joining simple disks.
- Let s be the **number of simple caps** in S_T .
- Use double mathematical induction of (s, n).

Basis Step:

If s = 0, then S_T is either equivalent to \bigcirc or \bigcirc .

- If $S_T \equiv \bigcirc$, then $R(S_T) = -x^2 x 2 x^{-1} x^{-2}$ and $4 \le s + n$.
- If $S_T \equiv \bigcirc \bigcirc$, then $R(S_T) = 0$ and $3 \leq c + n$.

If n = 0, then S_T is equivalent to $\bigcirc \cup \cup \cup \cup \cup \cup \cup \cup$.

• $R(S_T) = 0$ and $2 \le c + n$.

All of the cases satisfy the inequalities.

Inductive Step:

Assume that the inequalities hold for any (s', n') where $0 \le s' < s$ or $0 \le n' < n$.

Let S_T be a simple closure of stacked tangle of a θ -curve T such that the number of simple caps is s and the number of crossings is n.

Take a **simple cap** f in S_T , joining boundary points P and Q.

CASE 1. Suppose that P and Q are boundary points of a single disk.

- $S_T = S'_T \cup \bigcirc$
- $R(S_T) = (x + 1 + x^{-1})R(S_T)$
- The number of caps is c-1 and the number of crossings n' is less than or equal to n in S'_T .

$$\max \deg_{\mathbf{x}} R(S_T) = \max \deg_{\mathbf{x}} R(S_T') + 1 \le [(c-1) + n' - 2] + 1 \le c + n - 2$$

$$\min \deg_{\mathbf{x}} R(S_T) = \min \deg_{\mathbf{x}} R(S_T') - 1 \ge [-(c-1) - n' + 2] - 1 \ge -c - n + 2$$

• S'_T satisfy the inequalities implies S_T satisfy the inequalities.

CASE 2. Suppose that P and Q are boundary points of different disks D_P and D_Q , respectively.

- 1 Suppose that D_P and D_Q are adjacent disks.
 - When view from above, there are three cases:

- At first case, we can reduce the simple cap f.
- After applying Y10, other cases can be regarded as first case.

$$R\left(\mathbb{Q}\right) = x^2 R\left(\bigcap\right), \quad R\left(\mathbb{Q}\right) = x^{-2} R\left(\bigcap\right)$$
 (Y10)

② Suppose that D_P and D_Q are not adjacent disks and D_P is above D_Q .

- Let D be the disk just above D_Q .
- If arcs or line segment in D and D_Q have no intersection, then we can change the position of D and D_Q without any quantities.
- We can assume that the arc in D_O intersect arc or line segment in D, when view from above.

i) There is a cap joining D_Q and D.

- D_O and D are adjacent disks.
- If D is a simple disk, then we can reduce a simple cap as Case 2–(1).
- If D is a non-simple disk, then

- $R(S_T) = -x^{\pm 1}R(S_T')$ and $R(S_T) = x^{\pm 2}R(S_T'')$ by **Y14** and **Y10**, respectively.
- Both of S_T' and S_T'' have s-1 simple caps, c-1 caps, and n-1 crossing.
- By induction hypothesis,

$$\begin{aligned} \max \deg_{x} R(S_{T}) &= \max \deg_{x} R(S_{T}') \pm 1 \\ &\leq \left[(c-1) + (n-1) - 2 \right] \pm 1 \\ &< c + n - 2 \end{aligned}$$

$$\min \deg_{x} R(S_{T}) &= \min \deg_{x} R(S_{T}') \pm 2 \\ &\geq \left[-(c-1) - (n-1) + 2 \right] \pm 2 \\ &\geq -c - n + 2 \end{aligned}$$

- (ii) There is no cap joining D_Q and D.
 - Applying Y9

$$R\left(\times\right) = R\left(\times\right) + (x - x^{-1})\left[R\left(\cdot\right)\left(\cdot\right) - R\left(\times\right)\right]$$

then

$$R(S_T) = R(S_T^-) + (x - x^{-1}) \left[R(S_T^0) - R(S_T^\infty) \right]$$

- S_T^0 and S_T^∞ have c caps and n-1 crossings.
- $(x-x^{-1})\left[R(S_T^0)-R(S_T^\infty)\right]$ satisfy the inequalities.
- ullet If $S_{\mathcal{T}}^-$ satisfy the inequalities, then $S_{\mathcal{T}}$ also satisfy the inequalities.
- The gap between D_P and D_Q is reduced in S_T^- .
- For S_T^- , investigate above cases.

This process will terminate after a finite number of investigations. It is the end of CASE 2.

Proposition

Let S_T be a reduced simple closure of stacked tangle of a θ -curve T corresponding to minimal arc presentation of T. Then

$$\max \deg_x R(S_T) - \min \deg_x R(S_T) - 2n + 4 \le \alpha(T)$$

where n is the number of crossings in S_T .

Proof

- \bullet S_T is a reduced simple closure of stacked tangle corresponding to minimal arc presentation.
- The number of caps c in S_T is exactly arc index of T, $\alpha(T)$.

• Take a cap and add a positive or negative curl

- After modification of diagram as above, resulting diagram is also a simple closure of stacked tangle.
- The number of crossings is increased by 1.
- p of the caps yield a negative curl, and the remaining c p yield a positive curl.
- $S_T^{neg}(S_T^{pos})$ is the diagram obtained by inserting the p negative (c-p) positive curls.

	S_T^{neg}	S_T^{pos}
Number of Caps	С	С
Number of Crossings	n+p	n+(c-p)

•
$$R(S_T^{neg}) = x^{-2p}R(S_T)$$
 and $R(S_T^{pos}) = x^{2(c-p)}R(S_T)$

$$\begin{aligned} \min \deg_x R(S_T) - 2p &= \min \deg_x R\left(S_T^{neg}\right) \\ &\geq -c + -(n+p) + 2 \\ \max \deg_x R(S_T) + 2(c-p) &= \max \deg_x R\left(S_T^{pos}\right) \\ &\leq c + [n+(c-p)] - 2 \\ \min \deg_x R(S_T) &\geq -c - n + p + 2 \\ \max \deg_x R(S_T) &\leq n + p - 2 \\ \max \deg_x R(S_T) - \min \deg_x R(S_T) &\leq c + 2n - 4 \end{aligned}$$

Proof of Theorem

Theorem

Let T be any θ -curve. Then

$$2 + \sqrt{\max \deg_x R(S_T) - \min \deg_x R(S_T) + 4} \le \alpha(T)$$

where R(T) is a Yamada Polynomial of the θ -curve T.

Proof

Let S_T be a reduce simple closure of stacked tangle of a θ -curve T corresponding to minimal arc presentation of T.

- The number of caps : $\alpha(T)$
- The number of non-simple disks: 2
- The number of simple disks : $\alpha(T) 3$

Consider the maximum number of crossings in S_T .

- number of crossings by two simple disks : $\frac{1}{2}(\alpha(T)-3)(\alpha(T)-4)$
- number of crossings by a simple disk and non-simple disk : $2(\alpha(T) 3)$
- ullet number of crossings counted by disks joined by cap : lpha(T)
- number of crossings by two non-simple disks : 2

Thus

$$n \le \frac{1}{2} (\alpha(T) - 3) (\alpha(T) - 4) + 2 (\alpha(T) - 3) - \alpha(T) + 2$$
$$= \frac{1}{2} [(\alpha(T))^2 - 5\alpha(T) + 4]$$

By Lemma,

$$\max \deg_{x} R(S_{T}) - \min \deg_{x} R(S_{T}) \le 2n - 4 + \alpha(T) \le [\alpha(T)]^{2} - 4\alpha(T)$$
$$2 + \sqrt{\max \deg_{x} R(S_{T}) - \min \deg_{x} R(S_{T}) + 4} \le \alpha(T)$$

Further Studies

Kinoshita-Wolcott θ -Curve

Theorem

Let K(-i,-j,-k) be the Kinoshita-Wolcott θ -curve. Then

$$\alpha(K(-i,-j,-k)) \le i+j+k+2$$

Bounds of Arc Index

Arc Index of Some θ -Curves

Thank You for Your Attention.

- Bae, Y. and Park, C. Y. (2000). An upper bound of arc index of links.
- Mathematical Proceedings of the Cambridge Philosophical Society, 129(3):491–500.
- Cromwell, P. R. (1995).
 - Embedding knots and links in an open book I:Basic properties. Topology and its Applications, 64:37-58.
- Cromwell, P. R. (1998).
- Arc presentation of knots and links.
- BANACH CENTER PUBLICATIONS, 42:57-64.
- Cromwell, P. R. and Nutt, I. J. (1996).
- Embedding knots and links in an open book II:Bounds on arc index.
- Mathematical Proceedings of the Cambridge Philosophical Society, 119(2):309-319.
- Dabrowski-Tumanski, P., Goundaroulis, D., Stasiak, A., and Sulkowska, J. I. (2024).
- θ -curves in proteins. Protein Science, 33(9).
- Jang, B., Kronaeur, A., Luitel, P., Medici, D., Taylor, S. A., and Zupan, A. (2016). New examples of brunnian that arrange