Diodes

Mullard

technical handbook

Book 1.

Semiconductor devices

Part 3

Diodes

DIODES	CONTENTS	
SELECTION GUIDE		•
GENERAL SECTION		Α
SILICON WHISKERLES	SS DIODES	В
VOLTAGE REGULATO	R DIODES (Low power)	С
VOLTAGE REFERENCE	E DIODES	D
RECTIFIER DIODES (Lov	w power)	E
SCHOTTKY-BARRIER	DIODES	F
MICROMINIATURE DI	ODES	G
TUNER DIODES		н
GERMANIUM DIODES	(Gold bonded)	1

PICOAMPERE DIODE

INDEX

© Mullard Limited, January 1983

Semiconductor devices

Diodes

MULLARD LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, WC1E 7HD

The Mullard technical handbook system..

The Mullard Technical Handbook is made up of four sets of Books, each comprising several parts:-

Book 1 (light blue) Semiconductor Devices

Book 2 (orange) Valves and Tubes

Book 3 (green) Components, Materials and

Assemblies

Book 4 (purple or dark blue)

Integrated Circuits

Book 1, Semiconductor Devices, comprises the following parts:-

Part 1a Small-signal transistors

Part 1b Low-frequency power transistors

Part 1c Field-effect transistors

Part 1d Microminiature semiconductors for hybrid circuits

Part 2a R.F. wideband devices

Part 2b R.F. power devices

Part 3 Diodes

Part 4 Power diodes, thyristors and triacs

Part 5 Microwave transistors, diodes and sub-assemblies

Part 6 Optoelectronic devices

....a comprehensive data library

Most of the devices for which full data is given in these books are those around which we would recommend equipment to be designed. Where appropriate, other types no longer recommended for new equipment designs but generally available for equipment production, are listed separately. Data sheets for these types may be obtained on request. Older devices for which data may be obtained on request are also included in the index of the appropriate part of each book.

Because the Technical Handbook system forms a comprehensive data reference library the current Mullard Quick Reference Guides should always be consulted for details of the Mullard preferred range.

The data contained in these books is as accurate and up to date as possible at the time of going to press. It must be understood, however, that no guarantee can be given on the availability of the various devices, or that their specifications may not be changed before the next edition is published.

Each part is reviewed regularly, and revised and re-issued where necessary. Revisions to previous data are indicated by an arrow in the margin.

Requests for copies of Quick Reference Guides and individual data sheets (please quote the type number) should be sent to:-

Technical Publications Department, Mullard Limited, New Road, Mitcham, Surrey CR4 4XY, Telex 22194.

Prices and availability information for Mullard components should be obtained from Mullard House, or from one of the Mullard Distributors listed on the back cover.

For the equipment designer, technical information on electronic components is vital, Mullard market the widest range of components in the U.K., supported by a comprehensive information service - the Mullard Data Base.

Brief details are given here. For further information and an order form, please write to:-

Technical Publications Dept. Mullard Limited. New Road, Mitcham, Surrey CR4 4XY.

Regular Publications Mullard Bulletin

A must for designers, this bi-monthly, newspaper-style publication briefly describes new components and offers further information on subjects of interest.

Consumer Electronics

A review, in newspaper style, published every four months. Articles and features of interest to those in the consumer electronics industry, with emphasis on television technology and allied subjects.

HEW LOGIC FAMILIES PROVIDE AL REQUIREMENT COVERAGE

Technical Brochures and Range Leaflets

Mullard publish hundreds of different brochures on components and their application. Make sure your name is on the mailing list for the Mullard Bulletin, which describes and offers new nublications.

Prestel too!

Mullard publications may also be ordered directly through PRESTEL.

The Mullard data base begins on page 556201.

Electronic Components and Applications

A quarterly technical journal covering, in depth, developments in electronics based on the work of Philips, Signetics and Mullard laboratories. Please ask for a sample copy and subscription form.

Quick reference guides

All products marketed by Mullard are listed alpha-numerically and described briefly in these guides. Part 1 covers passive components, discrete semiconductors, and valves and tubes; Part 2 deals with integrated circuits, including Signetics.

Technical Data Service

This service provides detailed, up-to-date information on the characteristics and performance of Mullard components.

Subscribers to any or all of the four handbook sections receive all relevant handbooks, looseleaf binders, monthly mailings of new data sheets, and new handbook parts as they are published.

For those not wishing to subscribe to the Data Service, handbook parts can be purchased individually.

Individual data sheets are available free-of-charge, and can be obtained by quoting the type number.

Products approved to CECC available on request:

Specification No.	Type No.
CECC 50 001 - 020	CV8308, CV8805
CECC 50 001 - 021	BAW62 CV7367, CV7368, CV7756 CV7757, CV8617, CV9637 1N914, 1N916, 1N4148 1N4446, 1N4448
CECC 50 001 - 022	BAV18, BAV19, BAV20, BAV21 8AX16, BAX17 CV8790
CECC 50 001 - 026	BA314 PO33
CECC 50 001 - 037	CV9638
CECC 50 001 - 038	CV7875
CECC 50 005 - 005	BZX79 series CV7138 to CV7146 CV7099 to CV7106
CECC 50 005 - 010	BZV85 series
CECC 50 005 - 017	BZT03 series
CECC 50 008 015	BYW54, BYW55, BYW56 CVA7026 to CVA7030 CVA7476

BZY88 series to 8S9305-N041 is no longer available - replaced by CECC 50 005 - 005, BZX79 series.

WHISKERLESS DIODES

Outline: DO-35

	type	V _R max, V	l _E max. mA	IFRM max. mA	t _{rr} max. ns	C _d max. pF	V _F at max. V	I _F
	BA316	10	100	225	4	2	1.1	100
	BA317	30	100	225	4	2	1.1	100
	BA318	50	100	225	4	2	1.1	100
	BAV10	60	300	600	6	2.5	1,25	500
	BAW62	75	200	450	4	2	1	100
	BAX13	50	75	150	4	3	1.53	75
	BAX16	150	200	300	120	10	1.5	200
general purpose	BAX17	200	200	300	120	10	1.2	200
	OA200	50	160	250	typ. 3.5	25	1,15	30
	OA202	150	160	250	typ. 3.5	25	1,15	30
	1N914	75	75	225	4	4	1	10
	1N916	75	75	225	4	2	1	10
	1N4148	75	200	450	4	4	1	10
	1N4446	75	200	450	4	4	1	20
	1N4448	75	200	450	4	4	1	100
	8AV18	50	250	625	50	5	1.25	200
high speed;	BAV19	100	250	625	50	5	1.25	200
high voltage	BAV20	150	250	625	50	5	1,25	200
0	BAV21	200	250	625	50	5	1,25	200
	BAX12A	90	400	800	50	35	1	200
	CV7367	100	75	450	5	2.8	1	10
	CV7368	100	75	450	5	1.5	1	10
	CV7756	75	75	450	8	4	1	10
for telephony	CV7757	75	75	450	8	2	1	10
applications	CV7875	150	150	750	_	35	1.2	100
**	CV8617	20	75	450	_	6	1.5	50
	CV8790	150	150	625	-	10	1.2	100
	CV9637	75	100	450	5	2.8	1.2	100
	CV9638	65	200	750	70	15	0.9	200
general purpose avalanche	BAS11	300	350	2000	1000	10 typ.	1.1	30

VOLTAGE REGULATOR DIODES

Stabistors

туре	working voltage (nom.) V	P _{tot} at T _{amb} max. mW OC		IFRM max. mA	outline
BA314 BZV46 1V5 BZV46-2V0	0.7 1.5 2	250 250	- 55 55	250 120 80	DO-35 DO-35 DO-35

Voltage regulator diodes (low power)

tune	working	P _{tot} at 7	^r amb	†FRM	
type	voltage range V	max. mW	°C	max. mA	outline
ВZТ03	9.1 to 270	3.25 W	25	_	SOD-57
BZV85	3.6 to 75	1300	25	250	DO-41
BZW03	7.5 to 270	6 W	25	_	SOD-64
BZX61*	7.5 to 130	1300	25	1000	00-15
	150 to 200	1000	25	1000	DO-15
8ZX79	2.4 to 75	400	50	250	DO-35
BZX87	5.1 to 75	1750	25	400	SOD-51
BZY88*	2.7 to 33	400	50	250	DO-7
				IF(AV) max.	
CV7138	3.3				
CV7139	3.6				
CV7140	3.9	400	25	200	DO-35
CV7141	4.3				0000
CV 7099	4.7				
CV7100	5.1				
CV7101	5.6				
CV7102	6.2	400	25	200	DO-35
CV7103	6.8				
CV7104	7,5				
CV7105	8.2				
CV7142	9.1				
CV7143	10.0	400	25	200	DO-35
CV7144	11.0				
CV7145	12.0				
CV7146	13.0	400	25	200	00.05
CV7106	15.0	400	25	200	DO-35

^{*}Available for current production only; not recommended for new designs.

VOLTAGE REFERENCE DIODES

voltage tolerance ± 5%

Outline: DO-34

type	reference voltage at I _Z V (nom) mA	IZM max (IZRM) mA	Sz a max. %/°C	mA	rdiff ^{at I} Z max. Ω mA
BZX90 BZX91 BZX92 BZX93 BZX94	6.5 7.5	50	0.01 0.005 0.002 0.001 0.0005	7.5	15 7.5
1N821 1N823 1N825 1N827 1N829	6.2 7.5	50	0.01 0.005 0.002 0.001 0.0005	7.5	15 7.5
BZV10 BZV11 BZV12 BZV13 BZV14	6.5 2	50	0.01 0.005 0.002 0.001 0.0005	2	50 2

RECTIFIER DIODES

	type	IF(AV)max mA	VRRM max V	outline
	BYX10* CVA7026 CVA7027 CVA7028 CVA7029 CVA7030	360 750	1600 100 200 400 600 800	DO-14 SOD-57
general purpose	CVA7476** 1N4001G 1N4002G 1N4003G 1N4004G 1N4005G 1N4006G 1N4007G	1000	1200 50 100 200 400 600 800 1000	SOD-57
controlled avalanche	8YW54 BYW55 BYW56 CV8308 CV8805	2000 2000 2000 250 250	600 800 1000 60 150	SOD-57 SOD-57 SOD-57 SOD-57 SOD-57
	BYV95A B C BYV96D	1500 1500	200 400 600 800 1000	SOD-57
fast soft-recovery	BYW95A B C BYW96D E	3000	200 400 600 800 1000	SOD-64 SOD 64
ultra fast soft-recovery	BYV27- 50 - 100 - 150 - 200 BYV28- 50 - 100 - 150 - 200	2000 3500	50 100 150 200 50 100 150 200	SOD-64

Available for current production only; not recommended for new designs. Controlled avalanche

RECTIFIER DIODES (Cont.)

Parallel efficiency diodes

type	FWM max	VRRM max	outline
BY448	4	1500	SOD-57
BY458	4	1200	SOD-57
BY228	5	1500	SOD-64
BY438	5	1200	SOD-64

E.H.T. rectifiers

	type	^I F(AV) max mA	VRRM max kV	outline
soft recovery	BY476*	2,5	18	SOD-56
	BY509	4	15	SOD-61
	BY584	85	1.8	SOD-61A

SCHOTTKY-BARRIER DIODES

Outline: DO-34

	type	V _R max. V	F max. mA	C _d at max. pF	v _R	t _{rr} max. ns	V _F max. mV	at ^E F
u.h.f. mixer	BA481	4	30	1.1	0	_	400	1
switching	BAT81 BAT82 BAT83 BAT85	40 50 60 30	30	1.6	1	1 5	410 400	1 10

^{*}Available for current production only; not recommended for new designs.

MICROMINIATURE DIODES

Switching diodes Outline: SOT-23									
	type	V _R max. V	le max. mA	t _{rr} max.	C _d max, pF	V _F max, mV	at I _F		
high-speed	BAS16	75	250	6	2	855	10		
general purpose	BAS19 BAS20 BAS21	100 150 200	200 200 200	50 50 50	5 5	1000 1000 1000	100 100 100		
Schottky-barrier	BAT17	4	30	ton	1	600	10		
band switch	BAT18	35	100	_	1	1200	100		
common cathode double diode	BAV70	70	250	6	1.5	855	10		
two diodes in series	BAV99	70	250	6	1,5	855	10		
common anode double diode	BAW56	70	250	6	2	855	10		

Low-voltage stabilizer Outline : SOT							
	type	IFRM max. mA	C _d max. pF	S _F typ. mV/K	V _F	at IF	
general purpose	BAS17	250	140	-1.8	730-810 870-960	5 100	

Variable capacitan	ce diodes						Outline	SOT-23
	type	V _R max, V	nax. mA	C _d	at V _R	rp max. Ω	IR max, nA	at V _R
v.h.f. tuning	BBY31	28	20	typ. 11.5 1.8-2.8	3 25	1.2	50	28
	B8Y40	28	20	26-32 4.3-6	3 25	0.6	50	28

Voltage regulator dis	odes; tolerance	: ± 5%					
	type	ränge V	P _{tot} max, mW	IFRM max. mA	V _F max. V	at IF	outline
general purpose	BZV49 BZX84	2.4-75 2.4-75	1000 350	250 250	0,9	50 10	SOT-89 SOT-23

TUNER DIODES

	type	outline	Max.	C _d at pF	V _R V	C _d ratio	
a,f,c.	BB119	DO:35	15	20-25	4	>1.3	4/10
radio a.m.	BB212	TO-92	12	500-620	0.5	>22.5	0.5/8
television v.h.f.	88809 88405G	DO-34 DO-34	28 28	4.5-5.6 1.8-2.5	25 25	>5 >4.3	3/25 3/25
television u.h.f.	BB405B	DO-34	28	2.0-2.3	25	>4.8	3/25
Band switching diodes						r _D at (Ω)	I _F (mA)
a.m. switching	BA223	DO-34	20	<3.5	6	<1.5	10
	BA243	DO 35	20	<2.0	15	<1.0	10 10
v.h.f. switching	BA244 BA482	DO-35 DO-34	20 35	<2.0 <1.2	15 3	<0.5 <0.7	3
	BA483	DO-34	35	<1.0	3	<1.2	3

All television varicaps are supplied in matched sets.

Over the voltage range 0.5 V to 28 V the diodes are capacitance matched to within 3%: B8405B; B8405G

GERMANIUM SMALL SIGNAL DIODES (MAINTENANCE TYPES)

Gold bonded diodes							Qu	tline	: 00-7
	type	V _R max. V	te max. mA	FRM max. mA	t _{ff} max. ns	Cd max. pF	V _F max. V	at	IF mA
general purpose	AAZ15 AAZ17	75 50	140 140	250 250	_	2 2	1.1		250 250
general purpose and switching	OA47	25	110	150	70	3.5	1.1		150

GENERAL SECTION

Type designation
Rating systems
Colour codes
Packing
Mounting and soldering
Microminiature diodes
(soldering recommendations and thermal characteristics)

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices — as opposed to integrated circuits -, multiples of such devices and semiconductor chips.

A basic type number consists of:

TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.

- A. GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
- B. SILICON or other material with band gap of 1,0 to 1,3 eV.
- C. GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
- R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.

- A. DIODE; signal, low power
- B. DIODE; variable capacitance
- C. TRANSISTOR; low power, audio frequency (R $_{
 m th\ i-mb}$ > 15 $^{
 m o}$ C/W)
- D. TRANSISTOR, power, audio frequency (R_{th i-mb} \leq 15 °C/W)
- E. DIODE; tunnel
- F. TRANSISTOR; low power, high frequency (R_{th j-mb} > 15 °C/W)
- G. MULTIPLE OF DISSIMILAR DEVICES MISCELLANEOUS; e.g. oscillator
- H. DIODE; magnetic sensitive
- L. TRANSISTOR; power, high frequency ($R_{th\ i\text{-mb}} \le 15\ ^{\circ}\text{C/W}$)
- N. PHOTO-COUPLER
- P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
- Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
- R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power ($R_{th\,j\text{-mb}} > 15\,^{\circ}\text{C/W}$)
- S. TRANSISTOR; low power, switching (R_{th i-mb} > 15 $^{\rm OC/W}$)
- T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power ($R_{th\ j-mb} \le 15\ ^{\circ}C/W$)
- U. TRANSISTOR; power, switching (R_{th i-mb} \leq 15 °C/W)
- X. DIODE: multiplier, e.g. varactor, step recovery
- Y. DIODE; rectifying, booster
- Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

TYPE DESIGNATION

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment. One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for

industrial/professional equipment. This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE

The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage

- A. 1% (according to IEC 63: series E96)
- B. 2% (according to IEC 63: series E48)
- C. 5% (according to IEC 63: series E24)
- D. 10% (according to IEC 63: series E12)E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.

The letter 'V' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_R . The letter 'V' is used as above.

3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS:

ONE NUMBER

The NUMBER indicates the rated maximum repetitive peak reverse voltage (V_{RRM}) or the rated repetitive peak off-state voltage (V_{DRM}), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.

- RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (–)
 The NUMBER indicates the depletion layer in μm. The resolution is indicated by a version LETTER.
- 5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke

Mullard

The NUMBER indicates how many basic devices are assembled into the array.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

RATING

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

PRO ELECTRON COLOUR CODING SYSTEM FOR PROFESSIONAL SMALL SIGNAL DIODES

Letter combination-background colour

BAV - green

BAW - blue

BAX - black

BAS - orange

Figure combination-colour bands

0 - black

1 - brown

2 - red

3 - orange

4 - yellow

5 - green

6 - blue

7 - violet

8 - grey

9 - white

The cathode side is indicated by a broad band which is at the same time the first digit of the figure combination.

Note: For BA types see individual type publications.

JEDEC assigned type numbers

(EIA-standard RS-236-B; June, 1963)

Prefix identification

The prefix identification consisting of a first number symbol and the letter "N" shall not be indicated in the coding.

2. Banding systems

The sequence number consisting of a two, three, or four digit number after the letter "N" may be coded as follows:

- 2.1 Two-digit sequence numbers shall consist of a first black band and the sequence number in second and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
- 2.2 Three-digit sequence numbers shall consist of the sequence number in first, second, and third bands of the colours indicated in Table 1. If a suffix letter is required, it shall be indicated with a fourth band as indicated in Table 1.
- 2.3 Four-digit sequence numbers shall consist of the sequence number in four bands of the colours indicated in Table 1.

If a suffix letter is required it shall be indicated as the fifth band.

3. Cathode identification and reading sequence

- 3.1 A double-width band shall be used as the first band reading from cathode to anode ends.
- 3.2 An alternative method is provided where equal width bands may be used. The bands shall be clearly grouped toward the cathode end, and shall be read from cathode to anode ends.
- 3.3 Either of the above colour banding methods may be used in stead of the cathode designating symbol or other marking.

4. Colour bands

The sequence numbers of the type numbers and suffix letters shall be indicated by the colours in Table 1.

TABLE 1

NUMBER	COLOUR	SUFFIX LETTER
0	black	not applicable
1	brown	A
2	red	В
3	orange	C
4	yellow	D
5	green	E
6	blue	F
7	violet	G
8	grey	Н
9	white	J

Mullard

Ē

BANDOLIER AND REEL SPECIFICATION FOR AXIAL-TAPED DIODES

This specification concerns all axial-leaded diodes in this handbook.

The taped and reeled products fulfil the requirements of IEC 286-1: Tape packaging of components with axial leads on continuous tapes.

Dimensions in mm

Fig. 1 Configuration of bandolier.

The red tape indicates the diode cathode side.

- 1. Displacement between any two diodes; for DO-34 maximum 0,4.
- 2. For outlines SOD-34, SOD-56 and SOD-61 this dimension is 58 \pm 2.

The cumulative space (S) measured over ten spacings = 50 ± 2 .

The diodes are centred so that $|L_1 - L_2| \le 1.2$ mm.

A black marker is printed on the white tape of the bandolier every 50 diodes,

The axial taping specification described above is compatible with automatic insertion equipment as manufactured by Universal, U.S.M. (Dynapert) and M.E.I. (Panasert).

Fig. 2 Reel dimensions (mm) for axial-leaded components.

- (1) Diode
- (2) Bandolier
- (3) Paper

(4)	Flange

(5) Cylinder

outline		quantity per reel
SOD-27	DO-35	10 000
SOD-34	_	5 000
SOD-51	-	5 000
SOD-56	_	4 000
SOD-57	_	5 000
SOD-61	_	7 000
SOD-64	_	4 000
SOD-66	DO-41	5 000
SOD-68	DO-34	10 000

E

BANDOLIER AND REEL SPECIFICATION FOR RADIAL-TAPED DIODES

Fig. 1 Configuration of bandolier.

Fig. 2 Detail configuration of component shape.
break force of carrier tape > 15 N

> 5 N

extraction force

$\Sigma \Delta P_0$	deviation of 20 spacings	± 1
F	= lead-to-lead distance	5,08 ^{+0,6} -0,1
Н1	= top of component to tape centre	< 27,5
Н	 bottom of component to 	•
	tape centre	19 ± 1
H_0	= lead-wire clinch height	16 ± 0,5
L	= length of cropped lead	< 11
Q	= lead-wire protrusion	< 1
Р	= pitch of components	12,7 ± 1
P ₂	= feed hole centre to the middle	· - /· - ·
	of the leads	6,35 ± 1
P ₁	= feed hole centre to lead	3,81 ± 0,7
Po	= feed hole pitch	$12,7 \pm 0,3$
Tt	= total tape thickness	< 1,5
t	= thickness tape + hold down tape	0,7 ± 0,2
D_0	= feed hole diameter	4 ± 0,2
$\widetilde{W_2}$	= hold down tape position	0 to 1,5
W_0	= hold down tape width	> 12,5
W_1	= feed hole position	9 ± 0,5
W		18 +1,0
**	= tape width	$^{18}_{-0.5}$
$\Delta_{f g}$	= component alignment	0 + 50
Δ_{h}^{J}	= component alignment	± 2
	-	_

detail A

7285727

PACKING

This specification concerns radial-taped diodes in DO-34 and DO-35 envelopes. The taped and reeled products fulfil the requirements of IEC 286-2: Tape packaging of components with unidirectional leads.

Fig. 3 Reel dimensions (mm) for radial-taped diodes.

- (1) Diode
- (2) Bandolier

- (3) Flange
- (4) Cylinder

Quantity per reel for DO-34 and DO-35 encapsulations 5000 diodes.

The diodes can be delivered on request with anode-leading (+ leading) or with cathode-leading (- leading) configuration.

Fig. 4 + leading.

Fig. 5 - leading.

RULES FOR MOUNTING AND SOLDERING

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting the following rules should be followed.

General

Perpendicular forces on the body of the diode must be avoided.

Avoid sudden forces on the leads or body. These forces often are much higher than allowed.

High acceleration forces as a result of any shock (dropping on a hard surface for instance) must be prevented.

Bending

During bending the leads must be supported between body or stud and bending point.

Axial forces on the body during the bending process must not exceed 20 N.

Bending the leads through 90° is allowed at any distance from the body when it is possible to support the leads during bending without contacting the envelope or weldings.

Bending close to the body or stud without supporting the leads only is allowed if the bend radius is greater than 0,5 mm.

Twisting

Twisting the leads is allowed at any distance from the body or stud if the lead is properly clamped between body or stud and twisting point.

Without clamping, twisting the leads is only allowed at a distance of greater than 3 mm from the body; the torque angle must not exceed 30° .

Straightening

Straightening the leads is allowed if the applied pulling force in the axial direction does not exceed 20 N and the total duration is not longer than 5 seconds.

Soldering

Avoid any force on the body or leads during or just after soldering.

Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

Prevent fast cooling after soldering.

MOUNTING AND SOLDERING

Maximum allowable soldering time and minimum distance soldering point to seal for several envelopes

Hand iron soldering mounted otherwise than on printed-circuit board (max. solder temp.: 300 °C) Hand iron soldering, dip, wave or other bath soldering, mounted on printed-circuit board (max. solder temp.: 300 °C)

			time	distance	time	distance
			S	mm	s	mm
				0.5	5	0,5
SOD-27	DO-35	glass	3	0,5	_	
SOD-40	DO-15	plastic	3	5,0	3	5,0
SOD-51	-	glass	3	3,0	5	3,0
SOD-56	_	plastic	3	2,0	5	2,0
SOD-57		glass	3	0,5	5	0,5
SOD-61		glass	3	2,0	5	2,0
SOD-64	_	glass	3	0,5	5	0,5
SOD-66	DO-41	glass	3	3,0	5	3,0
SOD-68	DO-34	glass	3	0,5	5	0,5
TO-18		metal	3	0,5	5	0,5
TO-92	_	plastic	3	2,5	5	2,5

MOUNTING

If the rules for mounting and soldering are observed properly, the following mounting or process methods are allowed:

- Preheating of the printed circuit board before soldering, up to a maximum of 100 °C.
- Flat mounting with the diode body in direct contact with the printed circuit board with or without metal tracks on both sides and/or plated-through holes.
- Flat mounting with the diode body in direct contact with hot spots or hot tracks during soldering.
- Upright mounting with the diode body in direct contact with the printed circuit board if the body is not in contact with metal tracks or plated-through holes.

General

Parts of the general mounting and soldering rules can be overruled by individual type mounting and soldering rules, mentioned with the type description.

SOLDERING RECOMMENDATIONS SOT-23, SOT-143 AND SOT-89 ENVELOPES

SOT-23, SOT-143 and SOT-89 devices are ideally suited for placement onto thick and thin film substrates and printed circuit boards.

To assure reliable and consistent connections particular attention should be paid to:

1. Flux

A non-active flux is recommended. Where active fluxes are employed, great care in subsequent substrate cleaning must be exercised.

2. Metal-alloy solder or solder paste

Correct choice of solder alloy or solder paste to be employed e.g. 62% Sn, 36% Pb, 2% Ag or 60% Sn/40% Pb. Any paste used should contain at least 85% metal dry weight.

3. Soldering temperature

This will vary according to the actual method employed.

REELOW SOLDERING

The preferred technique for mounting microminiature components on hybrid thick and thin-film is the method of reflow soldering.

The tags of SOT-23, SOT-143 and SOT-89 envelopes are pre-tinned and the best results are obtained if a similar solder is applied to the corresponding soldering areas on the substrate. This can be done by either dipping the substrate in a solder bath or by screen printing a solder paste.

The maximum temperature of the leads or tab during the soldering cycle should not exceed 285 °C. The most economic method of soldering is a process in which all different components are soldered simultaneously for example SOT-23, SOT-143 or SOT-89 devices, capacitors and resistors.

Having first been fluxed, all components are positioned on the substrate. The slight adhesive force of the flux is sufficient to keep the components in place. Solder paste contains a flux and has therefore good inherent adhesive properties which eases positioning of the components.

With the components in position the substrate is heated to a point where the solder begins to flow. This can be done on a heating plate or on a conveyor belt running through an infrared tunnel. The maximum allowed temperature of the plastic body of a device must be kept below 280 °C during the soldering cycle. For further temperature behaviour during the soldering process see Figs 2 and 3.

The surface tension of the liquid solder tends to draw the tags of the device towards the centre of the soldering area and has thus a correcting effect on slight mispositionings. However, if the layout leaves something to be desired the same effect can result in undesirable shifts; particularly if the soldering areas on the substrate and the components are not concentrally arranged. This problem can be solved using a standard contact pattern, which leaves sufficient scope for the self-positioning effect (see Figs 4 and 5).

After cooling the connections may be visually inspected and, where necessary, repaired with a light soldering iron. Finally any remaining flux must be removed carefully.

Mullard

MICROMINIATURE DIODES

IMMERSION SOLDERING

Where a complete substrate or printed circuit board is immersed in solder:

- a. The temperature of the soldering bath should not exceed 280 $^{\rm o}{\rm C}$.
- b. The duration of the soldering cycle should not exceed 10 seconds.
- c. Forced cooling may be applied (see Fig. 1).

HAND SOLDERING

It is possible to solder microminiature devices with a light hand-held soldering iron, but this method has obvious drawbacks and should therefore be restricted to laboratory use and/or incidental repairs on production circuits.

- 1. It is time-consuming and expensive.
- 2. The device cannot be positioned accurately and therefore the connecting tags may come into contact with the substrate and damage it.
- 3. There is a great risk of breaking either substrate or even internal connections inside the encapsulation.
- 4. The envelope may be damaged by the iron.

Fig. 1 Device temperature during immersion soldering.

Maximum time of immersion in soldering bath is 10 seconds at an ambient temperature of 25 °C.

a = free convection cooling; b = forced cooling.

Tb max = maximum bath temperature (280 °C).

T_m = melting temperature of solder (179 °C).

MICROMINIATURE DIODES

a = free convection cooling.
 b = permissible forced cooling.
 T_{I max} = Maximum lead or tab temperature =

 $285 \, ^{\circ}\text{C}$. $T_{\text{m}} = \text{Melting point of the solder is } 179 \, ^{\circ}\text{C}$.

 $T_{amb} = 25 \, ^{\circ}C.$

Time of heat supply: without preheating max. 14 s with preheating max. 10 s Maximum time of preheating 45 s

Fig. 2 Reflow soldering without preheating.

Fig. 3 Reflow soldering with preheating.

Mullard

MICROMINIATURE DIODES

Minimum required dimensions of metal connection pads on hybrid thick and thin-film substrates.

Fig. 4 SOT-23 pattern.

Fig. 6 SOT-143 pattern.

Mullard

Dimensions in mm

Fig. 5 SOT-89 pattern.

THERMAL CHARACTERISTICS OF SOT-23 AND SOT-143 ENVELOPES

The heat generated in a semiconductor chip normally flows by various paths to the surroundings (ambient).

- Heat radiation from the envelope to ambient (1).
 This heat transfer can be neglected when the envelope is mounted on a substrate or printed circuit board.
- 2. Heat transmission via leads (2) soldering points (3) and substrate (4).

Fig. 2 Thermal behaviour of heat flow when the device is mounted on a substrate or printed circuit board.

 $R_{th j-t}$ = Thermal resistance from junction to tab.

 $R_{th t-s}$ = Thermal resistance from tab to soldering points.

 $R_{th s-a}$ = Thermal resistance from soldering points to ambient.

 $R_{th\ j-a}$ = Thermal resistance from junction to ambient.

Thermal characteristics

Heat transfer directly from envelope to ambient

This depends on the difference between the temperatures of envelope and the surroundings. When the device is mounted on a substrate or printed circuit board direct heat flow can usually be neglected in relation to the heat flow via leads and substrate.

Thus the thermal model can be as in Fig. 3.

Fig. 3 Basic thermal model.

Heat transfer from junction to tab

This is an internal heat transfer and has been measured for SOT-23 envelopes. In general, for low-power diodes it is:

Heat transfer from tab to soldering points

This value has also been measured for SOT-23 with P_{tot} < 350 mW: 280 K/W for types of semiconductors in a SOT-143 envelopes this value is: 310 K/W

Heat transfer from soldering points to ambient

This depends on the shape and material of tracks and substrate. In figures 4 and 5 standard mounting conditions are given to set up the maximum power ratings for SOT-23 encapsulation.

Fig. 4 Test circuit SOT-23 mounting conditions on a ceramic substrate.

Fig. 5 Heat transfer from soldering points to ambient.

Point A on the curve in Fig. 5 is for an area of the ceramic substrate of 8 mm \times 10 mm \times 0,7 mm for the maximum rating of all high-frequency, low-frequency and switching transistors and also for all diodes in SOT-23 encapsulation.

Point B on the curve in Fig. 5 is for an area of the ceramic substrate of 15 mm \times 15 mm \times 0,7 mm for the maximum rating of low-frequency medium-power semiconductors.

The values for the thermal resistance from junction to tab, and tab to soldering points, are mentioned on page 2 and Fig. 5.

The formula for devices in SOT-23 with one crystal can be generalized:

$$T_i = P(R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$$

Fig. 6 Thermal model of SOT-23 envelopes with one crystal.

Fig. 7 Thermal model of SOT-23 envelopes with two crystals (double diode).

The formulae for devices with two crystals (double diodes) are:

$$T_{tab} = P_{tot} \cdot (R_{th \ t-s} + R_{th \ s-a}) + T_{amb} = P_{tot} (280 + 90) + T_{amb}$$

$$T_{j1} = (P_1 \times R_{th \ j-t}) + T_{tab} = P_1 \cdot 60 + T_{tab}$$

$$T_{j2} = (P_2 \times R_{th \ j-t}) + T_{tab} = P_2 \cdot 60 + T_{tab}$$

As mentioned on page 2:

Rth i-t for diodes is 60 K/W.

 $R_{th s-a}$ (area 8 mm x 10 mm x 0,7 mm) = 90 K/W.

 $R_{th t-s}$ for all semiconductors in SOT-23 = 280 K/W.

Thus:

$$T_{j1} = 60 P_1 + 370 P_{tot} + T_{amb}$$

$$T_{j2} = 60 P_2 + 370 P_{tot} + T_{amb}$$

SILICON WHISKERLESS DIODES

3 🗏

10 V, 30 V and 50 V GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes intended for general purpose applications.

They have reverse voltages up to 10 V for BA316, 30 V for BA317 and 50 V for BA318.

QUICK REFERENCE DATA						
			BA316 BA317 BA318			
Continuous reverse voltage	v_R	max.	10 30 50	V		
Repetitive peak forward current	I_{FRM}	max.	225	mA		
Storage temperature	T_{stg}		- 65 to +200	$^{ m o}{ m C}$		
Junction temperature	Тj	max.	200	оС		
Thermal resistance from junction to ambient	R _{th j-a}	=	0,60	^o C/mW		
Forward voltage at $I_F = 1.0 \text{ mA}$	$v_{\rm F}$	<	700	mV		
$I_F = 10 \text{ mA}$	$v_{ m F}$	<	850	mV		
$I_F = 100 \text{ mA}$	v_{F}	<	1100	mV		
Diode capacitance at VR = 0; f = 1 MHz	$\mathrm{C}_{\mathbf{d}}$	<	2	pF		
Reverse recovery time when switched from IF = 10 mA to IR = 60 mA ; R _L = 100Ω ;				•		
measured at IR = 1 mA	trr	<	4	ns		

MECHANICAL DATA

Dimensions in mm

DO -35

The diodes may be either type-branded or colour coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

RATINGS Limiting values in accordance	with the	Absolu	te Maxii	num sy	stem (i	ECI) /
Voltage			BA 316 I	3A317 I			
Continuous reverse voltage	v_R	max.	10	30	50	V	
Currents							
Average rectified forward current (averaged over any 20 ms period)	I _{F(AV)}	max.		100	:	mΑ	1)
Forward current (d.c.)	I_F	max.		100		mΑ	
Repetitive peak forward current	I_{FRM}	max.		225		mΑ	
Non-repetitive peak forward current t = 1 µs t = 1 s	${}^{\rm I}_{\rm FSM} \\ {}^{\rm I}_{\rm FSM}$	max. max.		2000 500		mA mA	
Temperatures							
Storage temperature	$T_{\mathbf{stg}}$		−65 t	o +200		^o C	
Junction temperature	T_{j}	max.		200		oC.	
THERMAL RESISTANCE							
From junction to ambient in free air	R _{th j} -a	=		0,60		oC/1	nW
CHARACTERISTICS					Тj	= 25	o _C
Forward voltage							
$I_F = 1,0 \text{ mA}$	v_F	<		700		mV	
$I_F = 10 \text{ mA}$	v_F	<		850		mV	
$I_F = 100 \text{ mA}$	v_F	<		1100		mV	
Reverse current			BA316	BA317	BA 318		
$V_R = 10 \text{ V}$	I_R	<	200	50	-	nA	
$V_R = 30 \text{ V}$	I_R	<	-	200	50	nΑ	
$V_R = 50 \text{ V}$	I_R	<		-	200	nA	
Diode capacitance				•			
$V_R = 0$: f = 1 MHz	$C_{\mathbf{d}}$	<		2		pF	

 $[\]overline{\ ^{1})}$ For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.

CHARACTERISTICS (continued)

$$T_j = 25 \text{ }^{o}\text{C}$$

Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 60 mA; R_L = 100 Ω ;

Measured at $I_R = 1 \text{ mA}$

r < 4 ns

 *) $I_R = 1 \text{ mA}$

Test circuit and waveforms:

Input signal : Rise time of the reverse pulse

Reverse pulse duration

Duty factor

 $t_r = 0,6 \text{ ns}$

 $t_D = 100 \text{ ns}$

 $\delta = 0.05$

Oscilloscope: Rise time $t_r = 0,35 \text{ ns}$

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

SILICON GLASS PASSIVATED AVALANCHE DIODE

Diode in a DO-35 envelope. It is primarily intended for general purpose applications, e.g. scan and flyback rectifiers, protection diodes etc. in television circuits. An advantage of this diode is its capability of absorbing reverse transient energy.

QUICK REFERENCE DATA

Working reverse voltage	$\vee_{\sf RW}$	max.	300	٧
Average rectified forward current	¹ F(AV)	max.	300	mΑ
Non-repetitive peak forward current	^I FSM	max.	4	Α
Repetitive peak reverse power dissipation	PRRM	max.	75	W
Reverse recovery time	t _{rr}	<	1	μs

MECHANICAL DATA

Fig. 1 DO-35 (SOD-27).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
Working reverse voltage	v_{RW}	max.	300	V
Continuous reverse voltage (see Fig. 8)	v_R	max.	300	V
Forward current (d.c.)	۱F	max.	350	mA
Average forward current (averaged over any 20 ms period)	I _{F(AV)}	max.	300	mA
Repetitive peak forward current $t = 10$ ms; $f = 50$ Hz $\delta = 0,1$; $f = 15$ kHz	FRM FRM	max. max.	900 2	mA A
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = 150 °C prior to surge (t = 10 µs; square wave) T _j = 150 °C prior to surge	FSM FSM	max. max.	4 30	A A
Repetitive peak reverse current $t = 10 \mu s$ (square wave; $f = 50 Hz$) $T_{amb} = 25 {}^{o}C$	IRRM	max.	150	mA
Repetitive peak reverse power dissipation t = 10 µs (square wave; f = 50 Hz) T _{amb} = 25 °C	PRRM	max.	75	
Storage temperature	T_{stg}	-65 to		
Junction temperature	т _ј	max.	150	οС
THERMAL RESISTANCE				
From junction to ambient in free air mounted on printed board at 8 mm lead length	R _{th j-a}	=	0,34	oC/mW
CHARACTERISTICS				
T _i = 25 °C unless otherwise specified				
Forward voltage IF = 300 mA IF = 900 mA	V _F V _F	< <	1,1 1,3	
Reverse avalanche breakdown voltage $I_R = 100 \mu A$	V _{(BR)R}	>	300	V
Reverse current				_
$V_R = 300 \text{ V}$	l _R	< <	100	
$V_R = 300 \text{ V}; T_j = 125 ^{\circ}\text{C} *$	^I R		20	μА
Diode capacitance at f = 1 MHz $V_R = 0$ $V_R = 50 V$	C _d C _d	typ. typ.		pF pF
Reverse recovery when switched from I_{FM} = 400 mA to V_R = 30 V; with $-dI_F/dt$ = 400 mA/ μ s	0	A. m	70	~C
Recovery charge Recovery time	Ω _s t _{rr}	typ.		nC μs
Maximum slope of reverse recovery current when switched from $I_{FM} = 400 \text{ mA}$ to $V_R = 30 \text{ V}$; with $-dI_F/dt = 400 \text{ mA}/\mu s$	dl _R /dt	typ.		A/μs

^{*} Pulse measurement only.

Fig. 2 Definitions of Q_s , t_{rr} and dI_R/dt .

Fig. 3.

From the left-hand graph the total power dissipation can be found as a function of the average output current.

The parameter
$$a = \frac{IF(RMS)}{IF(AV)}$$
 depends on $n\omega R_L C_L$ and $\frac{R_t + r_{diff}}{nR_L}$ and can be found from existing graphs.

Once the power dissipation is known, the maximum permissible ambient temperature follows from the right-hand graph.

April 1982

Fig. 7 Maximum permissible repetitive peak reverse power as a function of pulse duration. T \geqslant 20 ms; T $_j$ = 25 °C. —— rectangular waveform, $\delta \leqslant$ 0,01; — — triangular waveform, $\delta \leqslant$ 0,02.

Fig. 8 Maximum permissible continuous reverse voltage versus ambient temperature.

ULTRA-HIGH-SPEED DIODE

Silicon planar epitaxial, ultra-high-speed, high-conductance diode in a DO-35 envelope. The BAV10 is primarily intended for core gating in very fast memories.

QUICK REFERENCE DATA				
Continuous reverse voltage	v_{R}	max.	60	V
Repetitive peak reverse voltage	v_{RRM}	max.	60	v
Repetitive peak forward current	I_{FRM}	max.	600	m A
Junction temperature	$T_{\mathbf{j}}$	max.	200	$^{\rm o}{ m C}$
Forward voltage at $I_F = 200 \text{ mA}$	v_F	<	1,0	V
Reverse recovery time when switched from I_F = 400 mA to I_R = 400 mA; R_I = 100 Ω ;				
measured at $I_R = 40 \text{ mA}$	trr	<	6	ns
Recovery charge when switched from I_F = 10 mA to V_R = 5 V; R_L = 500 Ω	$Q_{\mathbf{S}}$	<	50	рC

MECHANICAL DATA

Dimensions in mm

DO -35

The diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages max. 60 v Continuous reverse voltage V_R 1) 60 Repetitive peak reverse voltage v_{RRM} max. Currents mA^{2} 300 max. Average rectified forward current I_F(AV) 300 m A Forward current (d.c.) ΙF max. Repetitive peak forward current I_{FRM} max. 600 mA 4000 mANon-repetitive peak forward current $t = 1 \mu s$ I_{FSM} max. 1000 mA t = 1 smax. IFSM Temperatures ^{0}C -65 to +200Storage temperature T_{stg} T_{i} 200 ^{0}C max. Junction temperature THERMAL RESISTANCE From junction to ambient in free air 0.5 OC/mW at maximum lead length R_{th i-a} $T_1 = 25$ OC unless otherwise specified **CHARACTERISTICS**

Forward voltage

$I_F = 10 \text{ mA}$	v_{F}	<	0,75 V
$I_F = 200 \text{ mA}$	v_{F}	<	1,00 V
$I_F = 200 \text{ mA; } T_j = 100 ^{0}\text{C}$	v_{F}	<	0,95 V
$I_F = 500 \text{ mA}$	${ m v_F}$	<	1,25 V

Reverse current

$V_R = 60 \text{ V}$	$^{\mathrm{I}}\mathrm{R}$	<	100 nA
$V_R = 60 \text{ V}; T_j = 150 ^{\circ}\text{C}$	I_R	<	100 μΑ

Diode capacitance

$V_R = 0$; $f = 1 \text{ MHz}$	${\sf C_d}$	<	2,5 pF

 $^{^{1}}$) Measured at zero life time at I_{R} = 10 μ A; V_{R} = 75 V_{s}

²⁾ For sinusoidal operation see page 6. For pulse operation see page 5.

CHARACTERISTICS (continued)

$$T_i = 25$$
 $^{\circ}C$

Forward recovery voltage when switched to

$$I_F = 400 \text{ mA}; t_{r1} = 30 \text{ ns}$$

$$v_{fr}$$
 < 2,0 v

1,5

 $I_F = 400 \text{ mA}; t_{r2} = 100 \text{ ns}$ Test circuit and waveforms:

 v_{fr}

Input signal : 1st rise time of the forward pulse t_{r1} 30 ns 2nd rise time of the forward pulse tr2 100 ns Forward current pulse duration 300 ns

Duty factor 0,01

Oscilloscope: Rise time $0.35 \, \mathrm{ns}$ Input capacitance Ci ≤ 1 pF

Circuit capacitance $C \le 20 \text{ pF}$ ($C = C_i + \text{parasitic capacitance}$)

Reverse recovery time when switched from

$$I_F$$
 = 400 mA to I_R = 400 mA; R_L = 100 $\Omega;$ measured at I_R = 40 mA

 t_{rr} ns

Test circuit and waveforms:

*) $I_R = 40 \text{ mA}$

Input signal: Total pulse duration

$$t_{p(tot)} = 0.2 \,\mu s$$

Duty factor

Rise time of the reverse pulse

Reverse pulse duration

=0.0025

 $0.6 \, \mathrm{ns}$

Oscilloscope: Rise time

0,35 ns tr =

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

CHARACTERISTICS (continued)

 $T_j = 25$ oC

Recovery charge when switched from

$$I_{\rm F}$$
 = 10 mA to $V_{\rm R}$ = 5 V; $R_{\rm L}$ = 500 Ω

$$Q_S$$
 < 50 pC

Test circuit and waveform:

D1 = BAW62

 $\mbox{D2} = \mbox{diode}$ with minority carrier life time at 10 mA: < 200 ps

Input signal: Rise time of the reverse pulse $t_r = 2 \text{ ns}$

Reverse pulse duration $t_p = 400 \text{ ns}$

Duty factor $\delta = 0,02$

Circuit capacitance C \leq 7 pF (C = oscilloscope input capacitance + parasitic capacitance)

GENERAL PURPOSE DIODES

Silicon planar epitaxial diodes in DO-35 envelopes; intended for switching and general purposes in industrial equipment e.g. oscilloscopes, digital voltmeters and video output stages in colour television.

QUICK REFERENCE DATA

			BAV18	BAV19	BAV20	BAV21	
Continuous reverse voltage	v_R	max.	50	100	150	200	٧
Forward current (d.c.)	۱ _F	max.		25	0		mA
Junction temperature	T _i	max.		17	5		οС
Thermal resistance from junction to ambient	R _{th j-a}	=		0,37	5		K/mW
Forward voltage at $I_F = 100 \text{ mA}$	VF	<		1,	0		V
Reverse current at V _R = V _{Rmax}	ı _R	<		10			nA
Diode capacitance at V _R = 0; f = 1 MHz	c _d	typ.		1, 5,	5		pF pF
Reverse recovery time when switched from $I_F = 30 \text{ mA}$ to $I_B = 30 \text{ mA}$; $R_1 = 100 \Omega$;				·			Ε.
measured at I _R = 3 mA	t _{rr}	<		5	0		ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-27 (DO-35).

Diodes may be either type-branded or colour coded.

Products approved to CECC 50 001-022, available on request.

BAV18 to 21

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) BAV18 | BAV19 | BAV20 | BAV21 Voltages 100 150 200 V V_{R} 50 Continuous reverse voltage max. V 60 120 200 250 Repetitive peak reverse voltage V_{RRM} max. Currents 1) I_F(AV) max. 250 mΑ Average rectified forward current 250 I_{F} max. mA Forward current (d.c.) 625 mA Repetitive peak forward current I_{FRM} max. Non-repetitive peak forward current $t \leq 1~\text{s}$, T_j = 25 ^{O}C max. 1 Α IFSM 5 Α $t = 1 \mu s$; $T_{i} = 25 \, {}^{\circ}C$ I_{FSM} max. Power dissipation 400 mW Total power dissipation up to $T_{amb} = 25$ °C Ptot max. Temperatures ОC -65 to +175Tstg Storage temperature $^{\circ}C$ 175 Τį max. Junction temperature THERMAL RESISTANCE 0,375 OC/mW From junction to ambient in free air R_{th j-a}

¹⁾ For sinusoidal operation see page 6. For pulse operation see pages 4 and 5.

CHARACTERISTICS

 T_i = 25 o C unless otherwise specified

Forward	voltage
---------	---------

I_{F}	= 100	mA
I_{F}	= 200	mA

$$V_{F}$$
 < 1,0
 V_{F} < 1,25

Reverse	breakdown	voItage

V_{(BR)R}

Reverse current

$$V_R = V_{Rmax}$$

 $V_R = V_{Rmax}$; $T_i = 150$ °C; pulse conditions

$$I_R$$
 I_R

 C_d

μΑ

pF

100

5,0

 1_{γ}

Differential resistance

$$I_F = 10 \text{ mA}$$

Diode capacitance

$$V_R = 0$$
; $f = 1$ MHz

typ.

 $2 \, \mu s$

 $0.6 \, \mathrm{ns}$

100 ns

Reverse recovery time when switched from

$$I_F$$
 = 30 mA to I_R = 30 mA: R_L = 100 Ω ; measured at I_R = 3 mA

Test circuit and waveforms:

 $t_{p(tot)} =$

t,

*) $l_R = 3 \text{ mA}$

Input signal : Total pulse duration

$$t_p = 100 \text{ ns}$$

= 0,0025

$$t_r = 0,35 \text{ ns}$$

Circuit capacitance C ≤ 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

 $^{^{}m l}$) At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited at 275 V.

HIGH-SPEED SILICON DIODE

Planar epitaxial high-speed diode in a DO-35 envelope. The BAW62 is primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	٧ _R	max.	75 V
Repetitive peak reverse voltage	V _{RRM}	max.	75 V
Repetitive peak forward current	I _{FRM}	max.	450 mA
Junction temperature	T_i	max.	200 °C
Forward voltage at I _F = 100 mA	٧̈́E	<	1 V
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$;	·		
measured at I _R = 1 mA	t _{rr}	<	4 ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Diodes may be either type-branded or colour-coded.

RATINGS Limiting values in accordance with the	e Absolute Maxii	mum Syst	em (IEC	134)	
Voltages					
Continuous reverse voltage	v_R	max.	75	V	
Repetitive peak reverse voltage	v_{RRM}	max.	75	V	¹)
Currents					
Average rectified forward current	I _{F(AV)}	max.	150	mA	²)
Forward current (d.c.)	$I_{\mathbf{F}}$	max.	200	m A	
Repetitive peak forward current	I_{FRM}	max.	450	m A	
Non-repetitive peak forward current; t = 1 μs t = 1 s	${}^{\mathrm{I}_{\mathrm{FSM}}}_{\mathrm{I}_{\mathrm{FSM}}}$	max. max.	2000 500	m A m A	
Temperatures					
Storage temperature	$T_{ extsf{stg}}$	− 65 t	o +200	°C	
Junction temperature	$T_{\mathbf{j}}$	max.	200	oC.	
THERMAL RESISTANCE					
From junction to ambient in free air at maximum lead length	R _{th} j-a	=	0,6	°C/	mW
CHARACTERISTICS	$T_j = 25$ o C o	ınless oth	erwise s	specif	fied
Forward voltages					
$I_F = 5 \text{ mA}$	$v_{ m F}$	0,62	to 0,75	V	
$I_F = 100 \text{ mA}$	v_{F}	<	1,00	V	
$I_F = 100 \text{ mA; } T_j = 100 ^{\circ}\text{C}$	v_{F}	<	0,93	V	
Reverse currents					
$V_R = 20 \text{ V}$	$I_{\mathbf{R}}$	<	25	nΑ	
$V_R = 20 \text{ V; T}_j = 150 ^{\circ}\text{C}$	I_{R}	<	50	μΑ	
$V_R = 50 \text{ V}$	I_{R}	<	200	nΑ	
$V_R = 75 \text{ V}$	I_R	<	5	μΑ	
V_R = 75 V; T_j = 150 $^{\rm o}$ C	I_R	<	100	μΑ	
Diode capacitance					
$V_R = 0$; $f = 1$ MHz	C_d	<	2	pF	

 $^{^{1})}$ Measured at zero life time at I_{R} = 100 $\mu A; \, V_{R}$ > 100 V.

 $^{^{2}}$) For sinusoidal operation see page 6. For pulse operation see page 5.

CHARACTERISTICS (continued)

$$T_i = 25 \, ^{\circ}C$$

Forward recovery voltage when switched to

$$I_F = 50 \text{ mA}; t_r = 20 \text{ ns}$$

$$V_{fr}$$
 < 2,5

Test circuit and waveforms:

Input signal : Rise time of the forward pulse

$$t_r = 20 \text{ ns}$$
 $t_p = 120 \text{ ns}$

$$\delta = 0,01$$

$$t_r = 0,35 \text{ ns}$$

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 10 mA; R_L = 100 $\Omega;$ measured at I_R = 1 mA

trr

ns

Test circuit and waveforms:

*) $I_R = 1 \text{ mA}$

Input signal: Rise time of the reverse pulse

Reverse pulse duration

Duty factor

0,6 ns t_r

100 ns tp

0,05

Oscilloscope: Rise time

$$t_r = 0.35 \text{ ns}$$

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

3

CHARACTERISTICS (continued)

$$T_j = 25$$
 °C

Recovery charge when switched from

$$I_F = 10 \text{ mA to } V_R = 5 \text{ V}; R_L = 500 \Omega$$

 Q_s typ. 50 pC

Test circuit and waveform:

D1 = D2 = BAW62

Input signal : Rise time of the reverse pulse

 $t_r = 2 \text{ ns}$ $t_r = 400 \text{ ns}$

Reverse pulse duration

= 0,02

Duty factor

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Fig. 8 Maximum permissible average rectified forward current as a function of the duty factor (pulse operated).

Fig. 9 Maximum permissible repetitive peak forward current as a function of the duty factor (pulse operated).

Fig. 10 Maximum permissible average rectified forward current.

Fig. 12 Forward current as a function forward voltage. — $T_j = 25$ °C; — — $T_j = 175$ °C.

Fig. 11 Maximum permissible continuous forward current.

Fig. 13 Typical values forward voltage as a function of junction temperature.

SILICON PLANAR EPITAXIAL CONTROLLED-AVALANCHE DIODE

Diode in a $DO-35\,\mathrm{envel}$ ope primarily intended for switching inductive loads in semi-electronic telephone exchanges.

QUICK REFERENCE DATA				
Repetitive peak forward current	I_{FRM}	max. 0,8	A	
Repetitive peak reverse energy				
$t_p \ge 50 \ \mu s; f \le 20 \ Hz; T_j = 25 \ ^{o}C$	E_{RRM}	max. 5,0	mJ	
Thermal resistance from junction to ambient	R _{th j-a}	= 0,38	oC/mW	
Forward voltage at $I_F = 200 \text{ mA}$	v_{F}	< 1.00	V	
Reverse avalanche breakdown voltage I_R = 100 μA	V _{(BR)R}	120 to 175	V	
Reverse recovery time when switched from I_F = 30 mA to I_R = 30 mA; R_L = 100 $\Omega;$	(324)24			
measured at I _R = 3 mA	trr	< 50	ns	

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

BAX12A

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltage (1) 90 max. V_R Continuous reverse voltage Currents Average rectified forward current Α max. 0.4IF(AV) (averaged over any 20 ms period) 0.4Α I_{F} max. Forward current (d.c.) 0.8 I_{FRM} max. Repetitive peak forward current Non-repetitive peak forward current Α $t = 1 \mu s$; $T_j = 25$ °C prior to surge t = 1 s; $T_j = 25$ °C prior to surge 6,0 IFSM max. Α 1,5 I_{FSM} max. Α 0,6 max. IRRM Repetitive peak reverse current Reverse energy Repetitive peak reverse energy max. 5,0 m ERRM $t_{\rm p} \ge 50~\mu {\rm s};~{\rm f} \le 20~{\rm Hz};~{\rm T}_{\rm j} = 25~{\rm ^oC}$ Temperatures ^{0}C -65 to +200Tstg Storage temperature $^{\circ}C$ 200 Τį max. Junction temperature THERMAL RESISTANCE 0,38 ^oC/mW Rth j-a From junction to ambient in free air From junction to ambient in free air °C/mW 0,30 Tlead = 25 °C at 8 mm from the body R_{th i-a}

⁽¹⁾ It is allowed to exceed this value as described on page 4. Care should be taken not to exceed the IRRM rating.

CHARACTERISTICS

T_{1} = 25 °C unless otherwise specified

Forward	voltage

<u> </u>				
$I_F = 10 \text{ mA}$	$v_{\mathbf{F}}$	<	0,75	v
$I_F = 50 \text{ mA}$	${ m v_F}$	<	0,84	v
$I_F = 100 \text{ mA}$	$v_{\mathbf{F}}$	<	0,90	v
$I_{\mathbf{F}} = 200 \text{ mA}$	${ m v_F}$	<	1,00	v
$I_F = 400 \text{ mA}$	${ m v_F}$	<	1,25	v

Reverse avalanche breakdown voltage

$I_R = 100 \mu A$	V _{(BR)R}	120 to 175	V
--------------------	--------------------	------------	---

Reverse current

$$V_R = 90 \text{ V}$$
 $I_R < 100 \text{ nA}$ $V_R = 90 \text{ V}; T_j = 150 \text{ °C}$ $I_R < 100 \text{ } \mu\text{A}$

Diode capacitance

$$V_R$$
 = 0; f = 1 MHz C_d typ. 15 pF $<$ 35 pF

Reverse recovery time when switched from

$$I_{F}$$
 = 30 mA to I_{R} = 30 mA; R $_{L}$ = 100 $\Omega;$ measured at I_{R} = 3 mA $$t_{rr}$$ $<$ 50 $$ns$$

Test circuit and waveforms:

90% tp(tot)
10% 90% 7273201

 $t_{p(tot)} =$

*) $I_R = 3 \text{ mA}$

Fig. 2.

Fig. 3.

 $2 \mu s$

Duty factor	δ	= 0,	0025
Rise time of the reverse pulse	$t_{\mathbf{r}}$	=	0,6 ns
Reverse pulse duration	tp	=	100 ns

Oscilloscope: Rise time $t_r = 0,35 \text{ ns}$

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

Reverse voltages higher than the $V_{\mbox{\scriptsize R}}$ ratings are allowed, provided:

a. the transient energy \leq 7,5 mJ at $P_{RRM} \leq$ 30 W; T_j = 25 °C the transient energy \leq 5 mJ at $P_{RRM} \leq$ 120 W; T_j = 25 °C (see Fig. 8).

b. T \geq 5 ms; $\delta \leq 0.01$ (rectangular waveform)

 $\delta \leq 0.02$ (triangular waveform).

With increasing temperature, the maximum permissible transient energy must be decreased by 0,03 mJ/°C.

Fig. 4.

Fig. 5.

U

Fig. 9 Typical values reverse current as a function of junction temperature at V_R = 90 V.

6

SILICON OXIDE PASSIVATED DIODE

Whiskerless diode in a glass subminiature envelope.

The BAX13 is primarily intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	50	٧
Repetitive peak reverse voltage	V _{RRM}	max.	50	٧
Repetitive peak forward current	IFRM	max.	150	mA
Thermal resistance from junction to ambient	R _{th i-a}	=	0,60	oC/mW
Forward voltage at I _F = 20 mA	V _F	<	1,0	V
Reverse recovery time when switched from I _F = 10 mA to I _R = 60 mA; R _L = 100 Ω measured at I _R = 1 mA	•	<	4	
Recovery charge when switched from I _F = 10 mA to V _B = 5 V;	^t rr		4	ns
R _L = 500 Ω	 O _s	<	45	pC

MECHANICAL DATA

Dimensions in mm

DO - 35

The coloured end indicates the cathode
The diodes may be type-branded or colour coded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

V	oltages

Continuous reverse voltage	$v_{\mathbf{R}}$	max.	50	V	
Repetitive peak reverse voltage	v_{RRM}	max.	50	V	

Currents

Average rectified forward current (averaged over any 20 ms period)	^I F(AV)	max.	75	mA ¹)
Forward current (d.c.)	$I_{\mathbf{F}}$	max.	75	mA
Repetitive peak forward current	I_{FRM}	max.	150	mA
Non-repetitive peak forward current $t=1\mu s$	$^{ m I}_{ m FSM}$	max.	2000	mA

IFSM

max.

500 mA

0,60

oC/mW

Temperatures

Storage temperature	$\mathtt{T_{stg}}$	-65 to	+200	oC
Junction temperature	$T_{\mathbf{j}}$	max.	200	oC

THERMAL RESISTANCE

From junction to ambient in free air	R _{th j-a}
--------------------------------------	---------------------

t = 1 s

	•
CHARACTERISTICS	T _i = 25 °C unless otherwise specified

Forward voltage

$I_F = 2 \text{ mA}$	$ m v_{ m F}$	<	0,7	V	
$I_F = 10 \text{ mA}; T_i = 100 ^{\circ}\text{C}$	$v_{\mathbf{F}}$	<	0,8	V	_
$I_F = 20 \text{ mA}$	$ m v_{F}$	<	1,0	V	2)
$I_{\mathbf{F}} = 75 \text{ mA}$	$v_{\mathbf{F}}$	<	1,53	V	2)

Reverse current

$I_{\mathbf{R}}$	<	25	nA
$^{ m I}$ R	<	10	μΑ
$I_{\mathbf{R}}$	<	50	nΑ
$I_{\mathbf{R}}$	<	200	nΑ
$^{ m I}{ m R}$	<	25	μ A
	I _R I _R I _R	I _R < I _R < I _R <	I _R < 10 I _R < 50 I _R < 200

<u>Diode capacitance</u> (see also page 7)

$V_R = 0$; $f = 1 \text{ MHz}$	c_d	<	3	pF

For sinusoidal operation see page 5.
 For pulse operation see page 6.

²⁾ Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

 $T_i = 25 \text{ oC}$

Forward recovery voltage (see also page 7)

At $t_r > 20 \text{ ns}$, V_{fr} will not exceed V_F corresponding to I_F = 1 to 75 mA

Test circuit and waveforms:

Input signal : Rise time of the forward pulse

Forward current pulse duration

Duty factor

 $t_r = 20 \text{ ns}$

 $t_p = 120 \text{ ns}$

 $\delta = 0,01$

Oscilloscope: Rise time

 $t_r = 0,35 \text{ ns}$

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 10 mA; R_L = 100 $\Omega;$ measured at I_R = 1 mA I_F = 10 mA to I_R = 60 mA; R_L = 100 $\Omega;$ measured at I_R = 1 mA

 $t_{rr} < 6 \text{ ns}^{-1}$

 $t_{rr}^{11} < 4 \text{ ns}$

Test circuit and waveforms:

Input signal : Rise time of the reverse pulse

Reverse pulse duration

Duty factor

 $t_r = 0.6 \text{ ns}$

*) $I_R = 1 \text{ mA}$

 $t_p = 100 \text{ ns}$

 $\delta = 0.05$

Oscilloscope: Rise time $t_r = 0,35 \text{ ns}$

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

¹⁾ See also page 8.

CHARACTERISTICS (continued)

 $T_j = 25$ °C

Recovery charge when switched from

$$I_F = 10 \text{ mA to } V_R = 5 \text{ V}; R_L = 500 \Omega$$

 Q_S < 45 pC

Test circuit and waveform:

D1 = D2 = BAW62

Input signal: Rise time of the reverse pulse

 $t_r = 2 \text{ ns}$

Reverse pulse duration

 $t_D = 400 \text{ ns}$

Duty factor

 $\delta = 0.02$

Circuit capacitance $C \le 7 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance)

BAX13

SILICON WHISKERLESS DIODES

Whiskerless diffused silicon diodes intended for general purpose industrial applications.

QUICK REFERENCE I	DATA	
	BAX16	BAX17
V _R max.	150	200 V
$V_{\overline{F}}$ max. $I_{\overline{F}} = 100 \text{mA}$	1.3	- v
$I_{\mathbf{F}} = 200 \mathrm{mA}$	-	1.2 V
I _{FRM} max.	300	mA
t_{rr} max. (when switched from $I_{r} = 30 \text{ mA}$		
to $V_R = 3.0V$)	120	ns
Q_s max. (when switched from $I_F = 10 \text{mA}$		
to $V_R = 5.0V$	0.7	nC

Unless otherwise stated, data is applicable to both types

OUTLINE AND DIMENSIONS

Dimensions in mm

DO-35

The coloured end indicates the cathode

The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-022, available on request.

RATINGS

Limiting values of operation according to the absolute maximum system.

Electric	al	BAX16	BAX17	
$v_{_{\mathbf{R}}}$	Max. continuous reverse voltage	150	200	v
v_{RRM}	Max. repetitive peak reverse voltage	150	200	v
I _{F(AV)}	Max. average forward current (averaging time = 20ms)	200		mA
$^{\mathbf{L}}_{\mathbf{F}}$	Max. continuous forward current	t 200		mA
I_{FRM}	Max. repetitive peak forward current	300		mA
$_{\mathrm{FSM}}^{\mathrm{I}}$	Max. non-repetitive peak forwar current	d		
	max. duration 1.0μs	2500		mA
	max. duration 1.0s	500		mA
Temper	ature			
T ra	nge	-65 to +200		°c
T max.		+200		°c

THERMAL CHARACTERISTIC

degC/mW $\rm ^{R}_{th(j-amb)}$ ELECTRICAL CHARACTERISTICS (T $_{j}$ = 25 $^{o}\mathrm{C}$ unless otherwise stated)

	•	BAX16 Max.	BAX17 Max.	
$v_{\mathbf{F}}$	Forward voltage			
r	$I_F = 1.0 \text{ mA}$	0.65	0.65	V
	$I_F = 10 \text{ mA}, \ T_j = 100^{\circ} \text{ C}$	0.85	0.75	V
	†I _E = 100mA	1.3*	1.1	V
	$\dagger I_F = 200 \text{mA}$	1.5	1.2*	v
	$t_{\rm F}^{\rm T} = 200 {\rm mA}, \ \ t_{\rm j} = 175 {\rm ^{O}C}$	1.4	1.2	V
L	Reverse current			
R	$V_{\mathbf{R}} = 50V$	25	25	nA.
	$V_{R} = 50V, T_{j} = 150^{\circ}C$	25	25	μΑ
	V _R = 150V	100*	100*	nA
	$V_R = V_{RRM} \text{ max.}, T_j = 150^{\circ} \text{C}$	100	100	μΑ
c_{d}	Diode capacitance	• •	10	17
u	$V_{\mathbf{R}} = 0$, $f = 1.0 MHz$	10	10	$p\mathbf{F}$

^{*}These are the characteristics which are recommended for acceptance testing purposes.

[†]Measured under pulse conditions to prevent excessive dissipation.

ns

Typ. Max. 70 120

 $_{rr}^{t}$

switched from $I_F = 30 \text{mA}$ to $V_R = 3.0V$, $R_L = 100\Omega$ measured at $I_R = 1.0 \text{mA}$

Reverse recovery time when

Test circuit

Circuit capacitance
$$\leq$$
 1.0pF (C.R.O. + stray capacitance) C.R.O. rise time = 0.35ns V = V_R + I_F \times R_S

Input pulse

Rise time 0.6 ns Pulse duration 100 ns d Duty cycle 0.05

Output waveform

Max. 0.7*

nC

 Q_s

Recovered charge when switched from $I_F = 10 \text{mA}$ to $V_R = 5.0 \text{V}$,

 $R_{T} = 500\Omega$

Test circuit

Circuit capacitance ≤30pF (C.R.O. + stray capacitance)

$$V = V_R + I_F \times R_s$$

Input pulse

Output waveform

4

$$V_p = \frac{Q_s}{C}$$

^{*}These are the characteristics which are recommended for acceptance testing purposes.

CONTINUOUS FORWARD CURRENT PLOTTED AGAINST AMBIENT TEMPERATURE

AVERAGE RECTIFIED FORWARD CURRENT PLOTTED AGAINST AMBIENT TEMPERATURE

MAXIMUM PERMISSIBLE AVERAGE FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

MAXIMUM PERMISSIBLE AVERAGE FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

MAXIMUM PERMISSIBLE REPETITIVE PEAK FORWARD CURRENT PLOTTED AGAINST DUTY CYCLE

REVERSE CURRENT PLOTTED AGAINST JUNCTION TEMPERATURE WITH REVERSE VOLTAGE AS A PARAMETER

FORWARD CHARACTERISTICS

TYPICAL FORWARD VOLTAGE PLOTTED AGAINST JUNCTION TEMPERATURE WITH FORWARD CURRENT AS A PARAMETER

DIODE CAPACITANCE PLOTTED AGAINST REVERSE VOLTAGE

REVERSE RECOVERY TIME PLOTTED AGAINST FORWARD CURRENT AND JUNCTION TEMPERATURE

HIGH-SPEED SILICON DIODES

Dimensions in mm

Planar epitaxial high-speed diodes in DO-35 envelopes, primarily intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

The state of the s	aximum syste	III (IEC 13	54)	
Continuous reverse voltage	v_R	max.	see page 2	
Forward current (d.c.; see also derating curves)	i. IE	max.	100	mΑ
Repetitive peak forward current;	•		100	ША
$t_p = 10 \text{ ms; } \delta = 0.5$	^I FRM	max.	450	mA
Non-repetitive peak forward current;				
$t_p = 1 s$	IFSM	max.	500	mΑ
$t_p = 1 \mu s$	IFSM	max.	2	Α
Junction temperature	τ_i	max.	200	оС
Operating ambient temperature				
(see also derating curves)	T _{amb}		-65 to +175	οС
Storage temperature	T_{stg}		-65 to +200	οС

MECHANICAL DATA

Fig.1 DO-35

Diodes may be either type-branded or clour-coded.

Products approved to CECC 50 001–021 (specification available on request).

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise stated

For design and use purposes — these limits must not be exceeded.

CV9637;CV8617 CV7756; CV7757 CV7367; CV7368

Fig.2 Maximum allowable continuous forward current versus ambient temperature.

Fig.3 Maximum allowable continuous forward current versus ambient temperature.

Mullard

SILICON AVALANCHE DIODE

Silicon avalanche diode in a DO-35 glass envelope, intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Continuous reverse voltage	V _R	max.	150	V
Repetitive peak reverse voltage	VRRM	max.	see note	•
Forward current (d.c.; see also derating curve, Fig. 2)	lE	max.	150	mΑ
Repetitive peak forward current;	•		.00	ША
$t_p \le 10 \text{ ms}; \delta \le 0.2$	^I FRM	max.	750	mΑ
Repetitive peak reverse power dissipation				
(see also derating curve, Fig. 3)	PRRM	max.	60	W
Junction temperature	Тj	max.	100	οС
Operating ambient temperature	T _{amb}	-55 to ∃	-100	οС
Storage temperature	T_{stg}	–55 to +	-100	οС

Note: The repetitive peak reverse voltage may be higher than $V_{\mbox{\scriptsize R}}$, provided the allowed peak reverse power dissipation will not be exceeded.

MECHANICAL DATA

Fig. 1 DO-35

Dimensions in mm

Diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-038 (specification available on request).

Capacitance

 $V_{R} = 1 V; f = 1 MHz$

THERMAL CHARACTERISTIC Thermal resistance, junction to ambient	R _{th j-a}	=	0.38	°C/mW
CHARACTERISTICS T _{amb} = 25 °C unless otherwise stated.				
Reverse current $V_R = 150 \text{ V}$ $V_R = 150 \text{ V}$; $T_{amb} = 100 \text{ °C}$	I _R	< <	100 5.0	nΑ μΑ
Forward voltage I $_{\rm F}$ = 100 mA; t $_{\rm p}$ = 300 μ s; $\delta \leqslant$ 0.02 I $_{\rm F}$ = 15 mA; t $_{\rm p}$ = 300 μ s; $\delta \leqslant$ 0.02 I $_{\rm F}$ = 0.1 mA	V _F V _F	< > <	1.2 0.65 0.75	V V V

 c_{tot}

<

35

рF

June 1982

Fig. 2 Maximum allowable continuous forward current versus ambient temperature.

Fig. 3 Maximum repetitive peak reverse power dissipation versus conduction time of the diode; $T_{amb} = 0$ to +55 $^{\circ}$ C; $P_{F} = 0$; pulse repetition frequency is such that mean reverse power does not exceed 100 mW.

PLANAR EPITAXIAL SILICON DIODE

Dimensions in mm

Planar epitaxial diode in a DO-35 envelope, primarily intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Continuous reverse voltage (see also derating curve, Fig. 3)	v_R	max.	150	V
Repetitive peak reverse voltage	V _{RRM}	max.	150	٧
Forward current (d.c.; see also derating curve, Fig. 2)	۱F	max.	150	mΑ
Repetitive peak forward current ($t_p = 10 \text{ ms}$; $\delta = 0.5$)	^I FRM	max.	625	mA
Junction temperature	Τį	max.	150	oC
Operating ambient temperature	T _{amb}	-55 to	+150	οС
Storage temperature	T_{stg}	-55 to	+150	oC

MECHANICAL DATA

Fig. 1 DO-35

Diodes may be either type-branded or colour-coded.

THERMAL CHARACTERISTIC Thermal resistance, junction to ambient	R _{th j-a}	=	375	oc/w
CHARACTERISTICS T _{amb} = 25 °C unless otherwise stated				
Reverse current V _R = 150 V V _R = 150 V; T _{amb} = 100 °C	I _R I _R	< <	0.1 5.0	μΑ μΑ
Forward voltage I_F = 100 mA; t_p = 300 μ s; δ = 0.02 I_F = 15 mA I_F = 0.1 mA	VF VF VF	< > <	1.2 0.65 0.75	V V V
Capacitance V _R = 1 V; f = 1 MHz	C _{tot}	<	10	pF

Mullard

Fig. 2 Maximum allowable continuous forward current versus ambient temperature.

Fig. 3 Maximum allowable continuous reverse voltage versus ambient temperature.

Mullard

HIGH-SPEED SILICON DIODE

Dimensions in mm

Planar epitaxial high-speed diode in DO-35 envelope, primarily intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Continuous reverse voltage	∨ _R	max.	65	V
Forward current (d.c.; see also derating curve)	1 _F	max.	200	mΑ
Repetitive peak forward current				
$t_p = 100 \ \mu s; \delta = 0.1$	^I FRM	max.	750	m A
Non-repetitive peak forward current; $t_p = 10 \mu s$	^I FSM	max.	15	Α
Junction temperature	τ_{i}	max.	150	οС
Operating ambient temperature (see also derating curve)	Tamb	0	to 150	οС
Storage temperature	T_{stg}	0	to 150	oC

MECHANICAL DATA

Fig. 1 DO-35

Diodes may be either type-branded or colour-coded.

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise stated

Reverse current	
$V_{R} = 65 \text{ V}$	

$$V_R = 65 \text{ V}; T_{amb} = 100 \text{ }^{\circ}\text{C}$$

 $V_R = 50 \text{ V}$

$$I_F = 500 \text{ mA}$$
; $t_p = 300 \mu \text{s}$; $\delta \le 0.02$

$$I_F=200$$
 mA; $t_p^F=300$ μs ; $\delta \leqslant 0.02$ $I_F=200$ mA $I_F=30$ mA

IF = 1 mA Capacitance

$V_R = 0$; f = 1 MHz

Reverse recovery time

$$I_F = 200 \text{ mA}$$
; $I_{RM} = 200 \text{ mA}$
measured at $I_R = 20 \text{ mA}$

$$\begin{array}{ccccc} V_{\textrm{F}} & < & 900 & \textrm{mV} \\ V_{\textrm{F}} & < & 790 & \textrm{mV} \\ V_{\textrm{F}} & & 500-700 & \textrm{mV} \end{array}$$

Fig. 2 Maximum allowable continuous forward current versus ambient temperature.

SILICON DIODES

Silicon general purpose diodes in all-glass DO-35 envelopes.

QUICK REFERENCE DATA

			OA200	OA202	
Continuous reverse voltage	VR	max.	50	150	V
Repetitive peak forward current	FRM	max.	2!	50	mA
Thermal resistance from junction to ambient	R _{th j-a}	=	0	,4	oC/mW
Forward voltage	,				
$I_F = 30 \text{ mA}; T_{amb} = 25 \text{ °C}$	٧F	typ.	0	,9	V
Reverse recovery time when switched from I _F = 30 mA to V_R = 35 V; R_L = 2,5 k Ω ;					
measured at IR = 4 mA	t _{rr}	typ.	3	,5	μs

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-27 (DO-35).

The diodes are type-branded; the cathode being indicated by a coloured band.

OA200 OA202

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	OA200 OA202	V _R V _R	max. max.		50 50	V V
			•	T _{amb} = 25 °C	T _{amb} = 125 °C	
Average rectified forward currer (averaged over any 20 ms per		I _{F(AV)}	max.	160	48	mA
Average forward current for sinusoidal operation		I _{F(AV)}	max.	80	40	mA
Forward current (d.c.; see page	4)	۱F	max.	160	48	mΑ
Repetitive peak forward current	:	^I FRM	max.	250	125	mΑ
Storage temperature		T _{stg}		-55 to + 1	25	οС
Operating junction temperature		Τį	max.	1	50	οС

THERMAL RESISTANCE

From junction to ambient in free air CHARACTERISTICS

R_{th j-a}

0,4

oC/mW

				T _{amb} = 25 °C	T _{amb} = 125 °C	
Forward voltage I _F = 0,1 mA		٧ _F	typ.	0,52 0,62	_ 0,30	V V
1 _F = 10 mA		٧ _F	typ.	0,80 0,96	_ 0,65	۷ ۷
1 _F = 30 mA		٧ _F	typ.	0,90 1,15	0,80	۷ ۷
Reverse current VR = VRmax	OA200	1 _R	typ.	0,02 0,10	1 10	μ <i>Ι</i>
	OA202	1 _R	typ.	0,01 0,10	0,5 10	μ <i>Ι</i>
Diode capacitance at T _{amb} = V _R = 0,75 V; f = 0,5 MHz	25 °C	c _d	typ.		10 25	pF pF

2

1,2 mA

35 µA

IR typ.

typ.

CHARACTERISTICS (continued)

Tamb = 25 °C

Reverse recovery current when switched from

 $I_F = 5 \text{ mA to } V_R = 5 \text{ V}; R_L = 2.5 \text{ k}\Omega;$ measured at $t_{rr} = 3.5 \mu s$ measured at $t_{rr} = 10 \,\mu s$

Reverse recovery current when switched from

I_F = 30 mA to V_R = 35 V; R_L = 2,5 k Ω

measured at $t_{rr} = 3.5 \mu s$ measured at $t_{rr} = 10 \mu s$

4 mA typ. 230 μΑ 1_R typ.

Fig. 2 Waveforms.

Fig. 3.

Mullard

Mullard

က်

HIGH-SPEED SILICON DIODES

Dimensions in mm

1,85

max 7266719

Planar epitaxial diodes intended for general purpose applications.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	75 V
Repetitive peak reverse voltage	V_{RRM}	max.	100 V
Repetitive peak forward current	IFRM	max.	225 mA
Forward voltage I _F = 10 mA	V _F	<	1 V
Reverse recovery time when switched from I _F = 10 mA to I _B = 60 mA;	·		
$R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$	t _{rr}	<	4 ns

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

25,4

min

1N914: white brown yellow natural 1N916: white brown blue natural (cathode)

25,4

min

The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-21 available on request.

RATINGS

10/11/100				
Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Continuous reverse voltage	v_R	max.	75	V
Repetitive peak reverse voltage	V_{RRM}	max.	100	V
Average rectified forward current (averaged over any 20 ms period) $T_{amb} = 25 ^{o}C$	^I F(AV)	max.	75	mΑ
T _{amb} = 150 °C	IF(AV)	max.	10	mΑ
Forward current (d.c.)	l _E	max.	75	mΑ
Repetitive peak forward current	IFRM	max.	225	mΑ
Non-repetitive peak forward current (t = 1 s)	^I FSM	max.	500	mΑ
Total power dissipation	P _{tot}	max.	250	mW
Storage temperature	T_{stg}	-65 to +	200	οС
Operating ambient temperature	T _{amb}	-65 to +	175	оС
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Forward voltages IF = 10 mA	٧ _F	<	1	v
Reverse avalanche breakdown voltage $I_R = 100 \mu A$	V _{(BR)R}	>	100	v
Reverse currents $V_R = 20 \text{ V}$ $V_R = 75 \text{ V}$ $V_R = 20 \text{ V}; T_j = 150 ^{\circ}\text{C}$	I _R I _R	< < <	5	nΑ μΑ μΑ
Diode capacitance $V_R = 0$; $f = 1$ MHz 1N914 1N916	C _d C _d	< <		pF pF

Mullard

 V_{fr}

<

Forward recovery voltage

when switched to $I_F = 50 \text{ mA}$; $t_r = 20 \text{ ns}$

2

2,5 V

Fig. 2 Test circuit and waveforms forward recovery voltage. Input signal: Rise time of the forward pulse, $t_r = 20$ ns; forward current pulse duration, $t_p = 120$ ns; duty factor, d = 0.01. Oscilloscope rise time, $t_r = 0.35$ ns. Circuit capacitance < 1 pF (oscilloscope input capacitance and parasitic capacitance).

Reverse recovery time

when switched from

I
$$_F$$
 = 10 mA to I $_R$ = 10 mA, R $_L$ = 100 $\Omega,$ measured at I $_R$ = 1 mA I $_F$ = 10 mA to I $_R$ = 60 mA, R $_L$ = 100 $\Omega,$ measured at I $_R$ = 1 mA

* I_R = 1 mA

Fig. 3 Test circuit and waveform reverse recovery time. Input signal: Rise time of the reverse pulse, $t_r = 0.6$ ns; reverse pulse duration, $t_p = 100$ ns; duty factor, d = 0.05. Oscilloscope rise time, $t_r = 0.35$ ns. Circuit capacitance < 1 pF (oscilloscope input capacitance + parasitic capacitance).

Rectifying efficiency

η

> 45 %

Fig. 4 Test circuit. $\eta = \frac{V_0}{V_{i(rms)}/2}$

	-

HIGH-SPEED SILICON DIODES

Whiskerless diodes in subminiature DO-35 envelopes. These diodes are primarily intended for fast logic applications.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	75 V
Repetitive peak reverse voltage	V _{RRM}	max.	75 V
Repetitive peak forward current	I _{FRM}	max.	450 mA
Forward voltage 1N4148: F = 10 mA			
1N4446: I _F = 20 mA 1N4448: I _F = 100 mA	٧ _F	<	1 V
Reverse recovery time when switched			
from $I_F = 10 \text{ mA}$ to $I_R = 60 \text{ mA}$;			
$R_{\perp} \approx 100 \Omega$; measured at $I_{R} = 1 \text{ mA}$	t _{rr}	<	4 ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-27 (DO-35).

The diodes may be either type-branded or colour-coded.

Products, available to CECC 50 001-021, available on request.

RATINGS

TATITUD.				
Limiting values in accordance with the Absolute Maximum System (EC 134)			
Continuous reverse voltage	V_{R}	max.	75	V
Repetitive peak reverse voltage	V_{RRM}	max.	75	V
Average rectified forward current	l _{F(AV)}	max.	150	mΑ
Forward current (d.c.)	l _F	max.	200	mA
Repetitive peak forward current	^I FRM	max.	450	mA
Non-repetitive peak forward current				
$t = 1 \mu s$	^I FSM	max.	2000	mΑ
t = 1 s	^I FSM	max.	500	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	500	mW
Derating factor			2,85	mW/oC
Storage temperature	T_{stg}	-65 to	⊦ 200	oC.
Junction temperature	T_{j}	max.	200	oC
CHARACTERISTICS				
T _i = 25 °C unless otherwise specified				
Forward voltages 1N4148: F = 10 mA 1N4446: F = 20 mA 1N4448: F = 100 mA 1N4448: F = 100 mA 1N4448: N4448: N4	۷ _F	<	1	V

1144440.	'F 20 1101	1
1N4448:	1F = 100 mA	1
1N4448:	1= 5 mA	

1N4448: 1 _F = 100 mA)					
1N4448: I _F = 5 mA		٧F	0,62 to	0,72	V
Reverse avalanche breakdown voltage $I_{R} = 100 \mu A$		V _{(BR)R}	>	100	٧
I _R = 5 μA		V _{(BR)R}	>	75	V
Reverse currents V _R = 20 V		I _R	<	25	nΑ
V _D = 20 V: T: = 100 °C	1N4448	I _R	<	3	μΑ

$V_{R} = 20 \text{ V}; T_{i} = 100 ^{\circ}\text{C}$	1N4448	1 _R	<	3 μΑ
V _R = 20 V; T _j = 150 °C		1 _R	<	50 μA
Diode capacitance V _R = 0; f = 1 MHz		c_d	<	4 pF

CHARACTERISTICS (continued)

$$T_i = 25 \text{ }^{\circ}\text{C}$$

Forward recovery voltage when switched to

$$I_F = 50 \text{ mA}$$
; $t_r = 20 \text{ ns}$

$$V_{fr} < 2,5 V$$

Test circuit and waveforms:

Input signal : R ise time of the forward pulse

Forward current pulse duration

Duty factor

 $t_r = 20 \text{ ns}$

$$t_p = 120 \text{ ns}$$

 $\delta = 0.01$

Oscilloscope: Rise time

$$t_{r} = 0,35 \text{ ns}$$

Circuit capacitance $C \le 1~pF$ (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 60 mA; R_{\perp} = 100 $\Omega;$

measured at $I_R = 1 \text{ mA}$

Test circuit and waveforms:

*) $I_R = 1 \text{ mA}$

ns

Input signal : Rise time of the reverse pulse

Reverse pulse duration

Duty factor

Oscilloscope: Rise time

$$t_r = 0.6 \text{ ns}$$

 $t_p = 100 \text{ ns}$

$$\delta = 0,05$$

$$t_r = 0,35 \text{ ns}$$

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

VOLTAGE REGULATOR DIODES (Low power)

C

LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in DO-35 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

QUICK REFERENCE DATA

Repetitive peak forward current	^I FRM	max.	250	mA
Storage temperature	T _{stq}	-65 to		
Junction temperature	T _i	max.	200	-
Thermal resistance from junction to ambient	R _{th j-a}	=		oC/mW
Forward voltage	- un j-a		0,00	C/111 44
l _F = 0,1 mA	٧ _F	610 t	o 690	mV
I _F = 1,0 mA	V _F	680 t	o 760	mV
I _F = 10 mA	V _F		o 830	
$I_F = 100 \text{ mA}$	V _F		o 960	•
Diode capacitance	'			•
$V_R = 0$; $f = 1 MHz$	Cd	<	140	ρF

MECHANICAL DATA

Fig. 1 DO-35 (SOD-27).

Dimensions in mm

The diodes may be either type-branded or colour-coded.

Products approved to CECC 50 001-026 available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak forward current	^I FRM	max.	250 mA
Storage temperature	T_{stg}	-65 to	200 °C
Junction temperature	Тj	max.	200 °C

THERMAL RESISTANCE			
From junction to ambient in free air	R _{th j-a}	=	0,38 °C/mW
CHARACTERISTICS			
T _i = 25 °C unless otherwise specified			
Forward voltage IF = 0,1 mA	٧ _F		to 690 mV
I _F = 1,0 mA	٧ _F		to 760 mV
I _F = 5,0 mA	٧ _F	730	to 810 mV
I _F = 10 mA	٧ _F	750	to 830 mV
I _F = 100 mA	٧ _F	870	to 960 mV
Reverse current VR = 4 V	IR	<	5 μΑ
Temperature coefficient IF = 1 mA	SF	typ.	-1,8 mV/°C
Differential resistance at f = 1 kHz I _F = 1 mA	^r diff	typ.	30 Ω
1 _F = 10 mA	^r diff	typ.	$3,5 \Omega$ $6,0 \Omega$
Diode capacitance V _R = 0; f = 1 MHz	C _d	<	140 pF

Mullard

BA314

REGULATOR DIODES

Glass passivated diodes in hermetically sealed axial-leaded glass envelopes. They are intended for use as voltage regulator and transient suppressor diode in medium power regulation and transient suppression circuits.

The series consists of BZT03-C9V1 to BZT03-C270.

QUICK REFERENCE DATA

			voltage regulator	transient suppressor	
Working voltage range	٧z	nom.	9.1 to 270		V
Stand-off voltage	v _R		·, · · · · · · · · · · · · · · · · · ·	7.5 +0.220	V V
Total power dissipation	P _{tot}	max.	3.25	7,5 to 220	V W
Non-repetitive peak reverse power dissipation	ισι		.,		VV
$T_j = 25 {}^{\circ}\text{C}; t_p = 100 \mu\text{s}$	Pzsm	max.		600	W

MECHANICAL DATA

Fig. 1 SOD-57.

The marking band indicates the cathode.

The diodes are type-branded

Products approved to CECC 50 005-017 available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Total power dissipation

T _{tp} = 25 °C; lead length 10 mm	P_{tot}	max.	3,25	W
T _{amb} = 45 °C; p.c.b. mounting (Fig. 2)	P_{tot}	max.	1,3	W
Repetitive peak reverse power dissipation	PZRM	max.	10	W
Non-repetitive peak reverse power dissipation $t_p = 100 \mu s$ square pulse; $T_j = 25 ^{\circ}C$ (prior to surge)	PZSM	max.	600	
Storage temperature	T_{stg}	-65 to		
Junction temperature	Τj	max.	175	oC

THERMAL RESISTANCE

Influence of mounting method (see also page 6, operating notes)

1. Thermal resistance from junction to tie-point at a lead length of 10 mm

2. Thermal resistance from junction to ambient when mounted on a 1,5 mm

8 th j-tp = 46 K/W

thick epoxy-glass printed-circuit board; Cu-thickness \geq 40 μ m; Fig. 2

50 - 25 - 50 - 50 - 50

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

Forward voltage $I_F = 0.5 \text{ A}; T_i = 25 \text{ }^{\circ}\text{C}$

V_F < 1,2 V

R_{th j-a}

100 K/W

Fig. 3 Maximum total power dissipation as a function of temperature.

Fig. 4 Typical forward voltage drop $T_i = 25$ °C.

Fig. 5 Maximum non-repetitive peak reverse power dissipation; square current pulse, $T_j = 25$ °C prior to surge.

Mullard

BZT03 SERIES

CHARACTERISTICS when used as voltage regulator diodes; T $_{j}$ = 25 ^{o}C

BZT03- XXXX	worki	ng voltage	· VZ	differe resista ^r dif	ance		rature ient S _Z	test current IZ	reverse current R	reverse voltage V _R
		V		Ω	,	%	/K	mA	μΑ	V -
	min.	typ.	max.	typ.	max.	min.	max.		max.	
C9V1	8.5	9,1	9,6	2	4	0,03	0,08	50	10	6,8
C10	9,4	10,0	10,6	2	4	0,05	0,09	50	5	7,5
C11	10,4	11,0	11,6	4	7	0,05	0,10	50	4	8,2
C12	11,4	12,0	12,7	4	7	0,05	0,10	50	3	9,1
C13	12,4	13,0	14,1	5	10	0,05	0,10	50	2	10
C15	13,8	15,0	15,6	5	10	0.05	0,10	50	1	11
C16	15,3	16,0	17,1	6	15	0,06	0,11	25	1	12
C18	16,8	18,0	19,1	6	15	0,06	0,11	25	1	13
C20	18,8	20,0	21,2	6	15	0,06	0,11	25	1	15
C22	20,8	22,0	23,3	6	15	0,06	0,11	25	1	16
	22,8	24,0	25,6	7	15	0,06	0,11	25	1	18
C24 C27	25,1	27,0	28,9	7	15	0,06	0,11	25	1	20
C30	28	30	32	8	15	0,06	0,11	25	1	22
C33	31	33	35	8	15	0,06	0,11	25	1	24
C36	34	36	38	21	40	0,06	0,11	10	1	27
			41	21	40	0,06	0,11	10	1	30
C39	37 40	39 43	46	24	45	0,07	0,12	10	1	33
C43	40	43 47	50	24	45	0,07	0,12	10	1	36
C47	48	51	54	25	60	0,07	0,12	10	1	39
C51 C56	52	56	60	25	60	0,07	0,12	10	1	43
				25	80	0,08	0,13	10	1	47
C62	58	62 68	66 72	25	80	0,08	0,13	10	1	51
C68	64 70	75	72 79	30	100	0,08	0,13	10	1	56
C75	77	75 82	7 <i>9</i> 87	30	100	0,08	0,13	10	1	62
C82 C91	85	91	96	60	200	0,09	0,13	5	1	68
	i		106	60	200	0,09	0,13	5	1	75
C100	94	100 110	116	80	250	0,09	0,13	5	1	82
C110	114	120	127	80	250	0,09	0,13	5	1	91
C120	124	130	141	110	300	0,09	0,13	5	1	100
C130 C150	138	150	156	130	300	0,09	0,13	5	1	110
				150	350	0,09	0,13	5	1	120
C160	153	160	171	180	400	0,09	0,13	5	1	130
C180	168	180	191	200	500	0,09	0,13	5	1	150
C200	188	200 220	212 233	350	750	0,09	0,13	2	1	160
C220	208 228	240	233 256	400	850	0,09	0,13	2	1	180
C240 C270	251	240 270	289	450	1000	0,09	0,13	2	1	200

BZT03 SERIES

CHARACTERISTICS when used as transient suppressor diodes; T_i = 25 °C

clamping voltage	non-repetitive	rever	se current	BZT03
$t_p = 500 \mu s$	at peak reverse	1	ommended	XXXX
exp. pulse	current		off voltage	
V(CL)R	^I RSM	I _B	VR	
V	A	μÀ	ν̈́	
max.	-	max.		
11,5	10	50	7,5	00)/4
12,7	10	10	7,3 8,2	C9V1
14,1	10	5	9,1	C10 C11
15,5	10	5	10	C12
16,9	10	5	11	C13
19,6	10	5		1
21,1	10	5	12 13	C15
24	10	5	15	C16
24	5	5	16	C18 C20
27	5	5	18	C20
30	5	5	20	C24
34	5	5	22	C27
38	5	5	24	C30
43	5	5	27	C33
48	5	5	30	C36
47	2	5	33	C39
53	2	5	36	C43
59	2	5	39	C47
64	2	5	43	C51
72	2	5	47	C56
80	2	5	51	C62
89	2	5	56	C62
97	2	5	62	C75
108	2 2	5	68	C82
121	2	5	75	C91
120	1	5	82	C100
135	1	5	91	C110
150	1	5	100	C120
165	1	5	110	C130
194	1	5	120	C150
209	1	5	130	C160
240	1	5	150	C180
240	0,5	5	160	C200
271	0,5	5	180	C220
300	0,5	5	200	C240
343	0,5	5	220	C270

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 6 Thermal model.

By using this thermal model any temperature can be calculated.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal resistance	lead length						
	5	10	15	20	25	mm	
R _{th e-tp} R _{th e-a}	15 580	30 445	45 350	60 290	75 245	K/W K/W	

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geqslant 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.
 2. Mounted with copper laminate of 1 cm² per lead R_{th tp-a} is 55 K/W.
 3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

LOW VOLTAGE STABISTORS

Silicon planar integrated voltage regulator diodes, intended for low power clipping, level shifting, voltage regulation and temperature stabilization of transistor base-emitter biasing network. The stabistors operate in the forward mode thus the cathode must be adjacent to the negative connection.

QUICK REFERENCE DATA

		BZV46	5-1V5	2V0	
Regulation voltage ranges	VF	> <	1,35 1,55	2,00 2,30	V V
Continuous reverse voltage	v_R	max.	4	4	V
Repetitive peak forward current Total power dissipation	FRM	max.	120	80	mΑ
up to T _{amb} = 55 °C Differential resistance	P _{tot}	max.	250	250	mW
I _F = 5 mA; f = 1 kHz	^r dìff	<	20	30	Ω

MECHANICAL DATA

Fig. 1 SOD-27 (DO-35).

Dimensions in mm

Cathode indicated by coloured end.
The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

-		BZV46	6–1V5	2V0	
Continuous reverse voltage	v _R	max.	4	4	٧
Repetitive peak reverse voltage	v_{RRM}	max.	4	4	V
Repetitive peak forward current	¹ FRM	max.	120	80	mΑ
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.		250	mW
Storage temperature	T_{stg}		–65	to + 150	oC
Junction temperature	T _i	max.	1	50	oC

THERMAL RESISTANCE

From junction to ambient in free air

see Fig. 2

Fig. 2 Thermal resistance as a function of the lead length for various mounting. curve | mounting

1	Infinite heatsink at end of lead.
2	Typical printed-circuit board with large area of copper (> 100 mm ²).
3	Tag mounting.
4	Typical printed-circuit board with small area of copper (< 50 mm ²).

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified

Regulation voltage ranges I _F = 5 mA
Temperature coefficient at I _F = 5 mA Differential resistance at f = 1 kHz; I _F = 5 mA Reverse current V _R = 4 V

	BZV	46-1V5	2V0	
٧ _F	> <	1,35 1,55	2,00 2,30	
S_{F}	typ.	-3,65	-5,60	mV/ºC
^r diff	<	20	30	Ω
1 _R	<	500	500	nA

Fig. 3 Typical values; $T_j = 25 \, ^{\circ}\text{C}$.

Fig. 4 Regulation characteristics at T_j = 25 o C.

VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed DO-41 glass envelopes intended for stabilization purposes. The series covers the normalized E24 (± 5%) range of nominal working voltages ranging from 3.6 V to 75 V.

QUICK REFERENCE DATA

Working voltage range	V _Z	nom.	3.6 to 75	V
Total power dissipation	P _{tot}	max.		w*
Non-repetitive peak reverse power dissipation $t_p = 100 \ \mu s; T_j = 25 \ ^{\circ}C$	P _{ZSM}	max.	60	
Junction temperature	Tj	max.	200	оС
Thermal resistance from junction to tie-point	R _{th j-tp}	=	110	oC/W*

^{*} If leads are kept at $T_{tp} = 55$ °C at 4 mm from body.

MECHANICAL DATA Fig. 1 DO-41 (SOD-66).

Dimensions in mm

Cathode indicated by coloured band.

The diodes are type-branded

Products approved to CECC 50 005-010 available on request.

BZV85 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Working current (d.c.)	ΙZ	IIIIIteu	by r tot m	ax
Non-repetitive peak reverse current $t_p = 10 \text{ ms}$; half sine-wave; $T_{amb} = 25 {}^{\circ}\text{C}$	^I ZSM	see table	e below	
Repetitive peak forward current	1FRM	max.	250	m/
Total power dissipation (see also Fig.2)	P _{tot}	max.	1.30	W*

Non-repetitive peak reverse power dissipation $t_D = 100 \,\mu s; T_i = 25 \,^{OC}$ Storage temperature

PZSM

 T_{sta}

max. max.

C62

C68

C75

186

171

161

110

175

limited by D

60

W

oC -65 to + 200

200 oC max. Τį Junction temperature Non-repetitive peak Non-repetitive peak reverse current reverse current IZSM (mA) IZSM (mA) BZV85-... max. max. BZV85-... 600 C18 **C3V6** 2000 540 C20 C3V9 1950 500 C22 C4V3 1850 450 1800 C24 C4V7 400 C27 C5V1 1750 C30 380 1700 C5V6 350 C33 1620 C6V2 320 C36 1550 **C6V8** 296 1500 C39 C7V5 C43 270 1400 C8V2 C47 246 C9V1 1340 226 C51 C10 1200 C56 208

THERMAL RESISTANCE

From junction to tie-point From junction to ambient

C11

C12

C13

C15 C16

Rth j-tp Rth j-a mounted on a printed-circuit board

1100

1000

900

760

700

oc/w*

oc/w**

^{**} Measured in still air up to Tamb = 25 °C and mounted on printed-circuit board with lead length of 10 mm and print copper area of 1 cm² per lead.

1.0

٧F

<

CHARACTERISTICS

T_i = 25 °C

Forward voltage at IF = 50 mA

		rking vol E24 (± 5%		test current	differential resistance		erature icient	reverse current	test voltage
	ŀ	V _Z (V)		IZtest (mA)	r _{diff} (Ω)	SZ (m	V/ºC)	IR (nA)	VR (V)
		at Ztest			at IZtest	at IZ	test	at V _R	
BZV85	min.	nom.	max.		max.	min.	max.	max.	
C3V6	3.4	3.6	3.8	60	15	typ.	-2.4	50 000	1.0
C3V9	3.7	3.9	4.1	60	15	typ.	-2.2	10 000	1.0
C4V3	4.0	4.3	4.6	50	13	typ.	-1.4	5000	1.0
C4V7	4.4	4.7	5.0	45	13	typ.	-0.7	3000	1.0
C5V1	4.8	5.1	5.4	45	10	-0.5	2.2	3000	2.0
C5V6	5.2	5.6	6.0	45	7	0	2.7	2000	2.0
C6V2	5.8	6.2	6.6	35	4	0.6	3.6	2000	3.0
C6V8	6.4	6.8	7.2	35	3.5	1.3	4.3	2000	4.0
C7V5	7.0	7.5	7.9	35	3	2.5	5.5	1000	4.5
C8V2	7.7	8.2	8.7	25	5	3.1	6.1	700	5.0
C9V1	8.5	9.1	9.6	25	5	3.8	7.2	700	6.5
C10	9.4	10	10.6	25	8	4.7	8.5	200	7,0
C11	10.4	11	11,6	20	10	5.3	9.3	200	7.7
C12	11.4	12	12.7	20	10	6.3	10.8	200	8.4
C13	12.4	13	14.1	20	10	7.4	12.0	200	9.1
C15	13.8	15	15.6	15	15	8.9	13.6	50	10.5
C16	15.3	16	17.1	15	15	10.7	15.4	50	11.0
C18	16.8	18	19.1	15	20	11.8	17.1	50	12.5
C20	18.8	20	21.2	10	24	13.6	19.1	50	14.0
C22	20.8	22	23.3	10	25	16.6	22.1	50	15.5
C24	22.8	24	25.6	10	30	18.3	24.3	50	17
C27	25.1	27	28.9	8	40	20.1	27.5	50	19
C30	28	30	32	8	45	22.4	32.0	50	21
C33	31	33	35	8	45	24.8	35.0	50	23
C36	34	36	38	8	50	27.2	39.9	50	25
C39	37	39	41	6	60	29.6	43.0	50	27
C43	40	43	46	6	75	34.0	48.3	50	30
C47	44	47	50	4	100	37.4	52.5	50	33
C51	48	51	54	4	125	40.8	56.5	50	36
C56	52	56	60	4	150	46.8	63.0	50	39
C62	58	62	66	4	175	52.2	72.5	50	43
C68	64	68	72	4	200	60.5	81.0	50	48
C75	70	75	80	4	225	66.5	88.0	50	53

Fig. 2 Maximum permissible power dissipation versus ambient temperature.

Fig. 3 Thermal resistance versus lead length.

Mounting methods (see Figs 2 and 3)

- 1. To tie-points (lead length = 4 mm in Fig. 2). 2. Mounted on a printed-circuit board (with
- lead length of 10 mm in Fig. 2) and print copper area of 1 cm2 per lead.

Fig. 4 Half sine-wave; $T_{amb} = 25$ °C.

Fig. 5 Thermal impedance from junction to tie-point with a lead length of 4 mm.

Fig. 6 Static characteristics; typical values; T_{amb} = 25 °C.

Fig. 7 Dynamic characteristics; typical values; T $_{j}$ = 25 °C.

Fig. 8 Static characteristics; typical values; $T_{amb} = 25$ °C.

Fig. 9 Dynamic characteristics; typical values; $T_j = 25 \text{ }^{\circ}\text{C}$.

Fig. 10 Static characteristics; typical values; $T_{amb} = 25$ °C.

Fig. 11 Dynamic characteristics; typical values; $T_j = 25$ °C.

Fig. 14 $T_j = 25$ °C to 150 °C; typical values.

For types above 7,5 V the temperature coefficient is independent of current and can be read from the table on page 3.

Fig. 15 $I_Z = I_{Ztest}$; $T_j = 25$ °C to 150 °C.

November 1982

Fig. 16 f = 1 kHz; $T_j = 25 \text{ °C}$; typical values.

REGULATOR DIODES

Glass passivated diodes in hermetically sealed axial-leaded glass envelopes. They are intended for use as voltage regulator and transient suppressor diodes in medium power regulation and transient suppression circuits.

The series consists of the following types: BZW03-C7V5 to BZW03-C270 with a tolerance of \pm 5% (international standard E24).

QUICK REFERENCE DATA

		_	voltage regulator	transient suppressor	
Working voltage range	V_{Z}	nom.	7.5 to 270	_	V
Stand-off voltage	v_R			6.2 to 220	V
Total power dissipation	P_{tot}	max.	6		W
Non-repetitive peak reverse power dissipation $T_j = 25$ °C; $t_p = 100 \mu s$	PRSM	max.		1000	w

MECHANICAL DATA

Dimensions in mm

Fig.1 SOD-64

The marking band indicates the cathode.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Total power dissipation

Tto = 25 °C; lead length 10 mm P_{tot} Tamb = 45 °C; p.c.b. mounting (Fig.2) 1.75 W max. P_{ZRM} 20 W Repetitive peak reverse power dissipation max. Non-repetitive peak reverse power dissipation

Ptot

PRSM

PRSM

T_{sta}

Rth i-to

Rth j-a

Τį

Non-repetitive peak reverse current $T_i = 25$ °C prior to surge;

Exponential 10/1000 pulse (Fig.3) Storage temperature

Junction temperature

max. see page 5 ¹RSM

max.

max.

max.

-65 to +175 oC 175 oC max.

6 W

1000

500

25

75

oc/w

oc/W

W

W

THERMAL RESISTANCE

Influence of mounting method (see also page 6, operating notes)

 $t_D = 100 \,\mu s$ square pulse; $T_i = 25 \, {}^{\circ}\text{C}$ prior to surge

exponential pulse, waveform 10/1000 (Fig.3)

- 1. Thermal resistance from junction to tie-point at a lead length of 10 mm
- 2. Thermal resistance from junction to ambient when mounted on a 1.5 mm thick epoxy-glass printed-circuit board; Cu-thickness \geq 40 μ m; Fig.2

M0638 100 ^{%I}RSM 50 0 time (µs) 10 1000

Fig.2 Mounted on a printed-circuit board.

Fig.3 Pulse waveform 10/1000.

<

CHARACTERISTICS

Forward voltage IF = 1 A; T; = 25 °C

٧F

1.2 v

Fig.4 Maximum total power dissipation as a function of temperature.

Fig.5 Typical forward voltage drop $T_j = 25$ °C

Fig.6 Maximum non-repetitive peak reverse power dissipation; square current pulse; T_j = 25 °C prior to surge.

CHARACTERISTICS when used as voltage regulator diodes; $T_{\dot{l}}$ = $25\ ^{o}\text{C}$

BZW03-	workir	working voltage V _Z		differential resistance ^r diff Ω		temperature coefficient S _Z %/°C		test current ^I Z mA	reverse current I _R μA	t reverse voltage V _R V
					max.	min.	max.		max.	
	min.	nom.	max.	typ. 0.7	1.5	0	0.07	175	1500	5.6
C7V5	7.0	7.5	7.9	0.7	1.5	0.03	0.08	150	1200	6.2
C8V2	7.7	8.2	8.7	0.8	2	0.03	0.08	150	40	6.8
C9V1	8.5	9.1	9.6	1	2	0.05	0.09	125	20	7.5
C10	9.4	10.0	10.6 11.6	1.1	2.5	0.05	0.10	125	15	8.2
C11	10.4	11.0	11.0						10	9.1
C12	11.4	12.0	12.7	1.1	2.5	0.05	0.10	100	10	10
C13	12.4	13.0	14.1	1.2	2.5	0.05	0.10	100	2	11
C15	13.8	15.0	15.6	1.2	2.5	0.05	0.10	75 75	2	12
C16	15.3	16.0	17.1	1.3	2.5	0.06	0.11	65	2	13
C18	16.8	18.0	19.1	1.3	2.5	0.06	0.11		1	
C20	18.8	20.0	21.2	1.5	3	0.06	0.11	65	2	15
C22	20.8	22.0	23.3	1.6	3.5	0.06	0.11	50	2	16
C24	22.8	24.0	25.6	1.8	3.5	0.06	0.11	50	2	18
C27	25.1	27.0	28.9	2.5	5	0.06	0.11	50	2	20
C30	28	30	32	4	8	0.06	0.11	40	2	22
C33	31	33	35	5	10	0.06	0.11	40	2	24
C36	34	36	38	6	11	0.06	0.11	30	2	27
C39	37	39	41	7	14	0.06	0.11	30	2	30
C43	40	43	46	10	20	0.07	0.12	30	2	33
C47	44	47	50	12	25	0.07	0.12	25	2	36
C51	48	51	54	14	27	0.07	0.12	25	2	39
C56	52	56	60	18	35	0.07	0.12	20	2	43
C62	58	62	66	20	42	0.08	0.13	20	2	47
C68	64	68	72	22	44	0.08	0.13	20	2	51
C75	70	75	79	25	45	0.08	0.13	20	2	56
C82	77	82	87	30	65	0.08	0.13	15	2	62
C91	85	91	96	40	75	0.09	0.13	15	2	68
C100	94	100	106	45	90	0.09	0.13	12	2	75
C110	104	110	116	65	125	0.09	0.13	12	2	82
C120	114	120	127	90	170	0.09	0.13	10	2	91
C130	124	130	141	100	190	0.09	0.13	10	2	100
C150	138	150	156	150	260	0.09	0.13	8	2	110
C160	153	160	171	180	350	0.09	0.13	8	2	120
0100	1 ,00		• • •	1	400	1 000	0 12	=	1 2	130

2

0.13

0.13

0.13

0.13

0.13

0.09

0.09

0.09

0.09

0.09

C180

C200

C220

C240

C270

CHARACTERISTICS when used as transient suppressor diodes; T $_{j}$ = 25 $^{\rm O}{\rm C}$

clamping voltage t _p = 1 ms (10/1000 pulse)	at non-repetitive peak reverse current	at recor	current nmended ff voltage	
V _{(CL)R}	^I RSM	I _R	VR	
V	A	μA	V	BZW03
max.	max.	max.		
11.3	44.2	3000	6.2	C7V5
12.3	40.6	2400	6.8	C8V2
13.3	37.6	100	7.5	C9V1
14.8	34	40	8.2	C10
15.7	31.8	30	9.1	C11
17	29.4	20	10	C12
18.9	26.4	10	11	.C13
20.9	23.9	10	12	C15
22.9	21.8	10	13	C16
25.6	19.5	10	15	C18
28.4	17.6	10	16	C20
31	16.1	10	18	C22
33.8	14.8	10	20	C24
38.1	13.1	10	22	C27
42.2	11.8	10	24	C30
46.2	10.8	10	27	C33
50.1	10.0	10	30	C36
54.1	9.2	10	33	C39
60.7	8.2	10	36	C43
65.5	7.6	10	39	C47
70.8	7.0	10	43	C51
78.6	6.3	10	47	C56
86.5	5.8	10	51	C62
94.4	5.3	10	56	C68
103.5	4.8	10	62	C75
114	4.3	10	68	C82
126	3.9	10	75	C91
139	3.6	10	82	C100
152	3.3	10	91	C110
167	3.0	10	100	C120
185	2.7	10	110	C130
204	2.4	10	120	C150
224	2.2	10	130	C160
249	2.0	10	150	C180
276	1.8	10	160	C200
305	1.6	10	180	C220
336	1.5	10	200	C240
380	1.3	10	220	C270

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 7

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	°C/W
R _{th e-a}	410	300	230	185	155	

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounting similar to method given in Fig. 2: $R_{th\ tp-a} = 70\ ^{o}C/W$.
- 2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

$$1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ }^{\text{O}}\text{C/W}$$
 2,25 cm² R_{th tp-a} = 45 $^{\text{O}}\text{C/W}$

$$2,25 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 45 \text{ °C/W}$$

Note

Any temperature can be calculated by using the dissipation graph (Fig. 4) and the above thermal model.

VOLTAGE REGULATOR DIODES

Plastic encapsulated silicon diodes intended for general purpose use as medium power voltage regulators. They are suitable for use as transient suppressor diodes.

QUICK REFERENCE DATA

Total power dissipation; T _{amb} ≤ 25 °C BZX61–C7V5 to C130	P _{tot}	max.	1.3	w
BZX61-C150 to C200	P _{tot}	max.	1.0	w
Repetitive peak reverse power dissipation	P _{ZRM}	max.	6	W
Non-repetitive peak reverse power dissipation				
$t = 100 \mu s; T_{amb} = 25 {}^{\circ}C$	PZSM	max.	300	W

MECHANICAL DATA

Dimensions in mm

Fig.1 DO-15; the diodes are type branded

For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZV85 or BZT03 are recommended.

The sealing of this plastic envelope fulfils the accelerated damp heat test, according to I.E.C. recommendation 68-2 (test D, severity IV, 6 cycles).

BZX61 SERIES

RATINGS

Limiting values of operation in accordance with the Absolute Maximum System (IEC134)

Repetitive peak forward current	IFRM	max.	1	Α
Total power dissipation up to T _{amb} = 25 °C BZX61-C7V5 to C130 BZX61-C150 to C200	P _{tot} P _{tot}	max. max.	1.3 1.0	W W
Repetitive peak reverse power dissipation	PZRM	max.	6	W
Non-repetitive peak reverse power dissipation $t = 100 \mu s$; $T_{amb} = -55 \text{ to } +25 ^{\circ}\text{C}$	PZSM	max.	300	w
Storage temperature	T _{stg}	-65 to	+175	оС
Junction temperature BZX61-C7V5 to C130 BZX61-C150 to C200	T _j T _j	max. max.	175 150	oC oC
THERMAL RESISTANCE		see pag	es 6, 8	

THERMAL RESISTANCE

CHARACTERISTICS

T_j = 25 °C

Forward voltage

 $I_F = 100 \text{ mA}$

BZX61	. working voltage		ltage	differential temperature resistance coefficient		reverse curr e nt		clamping voltage	
		ν _Z (ν)	r _{diff} (Ω)	s _Z (%/°c)	I _R (μA) a	t V _R (V)	at t _p = 1 ms; 80 W V _{CL(R)} (V)	
	at IZ	test = 2	20 mA	at IZtest = 20 mA	S _Z (%/°C) at I _{Ztest} = 20 mA				
	min.	nom.	max.	max.	typ.	max.		typ.	
C7V5	7.0	7.5	7.9	5.0	+0.04	5	3	9.9	
C8V2	7.7	8.2	8.7	7.5	+0.04	5	3	10.9	
C9V1	8.5	9.1	9.6	8.0	+0.05	5	5	12.0	
C10	9.4	10	10.6	8.5	+0.05	5	7	13.3	
C11	10.4	11	11.6	9.0	+0.05	5	7	14.5	
C12	11.4	12	12.7	9.0	+0.05	5	8	15.9	
C13	12.4	13	14.1	10	+0.05	5	9	17.6	
C15	13.8	15	15.6	14	+0.06	5	10	19.5	

٧F

<

1.1

CHARACTERISTICS (continued)

T_i = 25 °C

SZX61 working voltage voltage resistance vz (V) vz (V) at ztest = 10 mA min. nom. max. max. typ.	1, 20	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BZX61	working voltage	ge differential	temperature	reverse		clamping
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	resistance	coefficient	1		
V _Z (V) at _{Ztest} = 10 mA min. nom. max. at _{Ztest} = 10 mA min. nom. max. typ. max. typ. max. typ. clist 11 21.4 clist 23.9 clist 24 clist 25 clist 24 clist 25 clist 25							
min. nom. max. max. typ. max. typ. max. typ.		V _Z (V)	$r_{\rm diff}$ (Ω)	S _Z (%/°C)	I _R (μA) at V	R(V)	
C16		at IZtest = 10 r	nA at IZtest = 10 mA	at IZtest = 10 mA			
C18		min. nom. m	nax. max.	typ.	max.		typ.
C18	C16	15.2 16 1	7.1	10.00	_		
C20							
C22		i .					
C24			• 1				
C27							1
C30		22.7 24 2	25	+0.06	°	17	32.4
C33				+0.06	5	19	36.1
C36 34 36 38 50 +0.07 5 25 47.5 at I _{Ztest} = 5 mA at I _{Ztest} = 5 mA at I _{Ztest} = 5 mA C39 37 39 41 60 +0.07 5 27 51.2 C43 40 43 46 70 +0.08 5 30 57.5 C47 44 47 50 80 +0.08 5 33 62.5 C51 48 51 54 95 +0.08 5 36 67.5 C56 52 56 60 105 +0.08 5 39 75.0 C62 58 62 66 110 +0.08 5 39 75.0 C62 58 64 68 72 120 +0.08 5 48 90.0 C75 70 75 79 145 +0.08 5 48 90.0 C75 70 75 79 145 +0.08 5 5 98.8 C82 77 82 87 175 +0.09 5 55 108.8 C91 210 100 94 100 106 220 +0.09 5 66 120.0 C100 94 100 106 220 +0.09 5 66 120.0 C100 114 120 127 270 +0.09 5 60 120.0 C100 114 120 127 270 +0.09 5 66 132.5 C110 C120 114 120 127 270 +0.09 5 60 120.0 C120 114 120 127 270 +0.09 5 60 125.8 C130 124 130 141 300 +0.10 5 100 195.0 C160 153 160 171 1000 +0.11 5 110 213.8 C180 168 180 191 1100 +0.11 5 120 238.8				+0.07	5	21	40.0
at I _{Ztest} = 5 mA at I _{Ztest} = 5 mA C39 37 39 41 60 +0.07 5 27 51.2 C43 40 43 46 70 +0.08 5 30 57.5 C47 44 47 50 80 +0.08 5 33 62.5 C51 48 51 54 95 +0.08 5 36 67.5 C56 52 56 60 105 +0.08 5 36 67.5 C56 52 56 60 105 +0.08 5 38 62.5 C56 52 56 60 105 +0.08 5 38 75.0 C62 58 62 66 110 +0.08 5 43 82.5 C68 64 68 72 120 +0.08 5 48 90.0 C75 70 75 79 145 +0.08 5 55 108.8 C91 85				+0.07	5	23	43.8
C39	C36	34 36 38	3 50	+0.07	5	25	47.5
C43		at IZtest = 5 n	nA at I _{Ztest} = 5 mA	at I _{Ztest} = 5 mA			
C43	C39	37 30 41	60	10.07] _	07	51.0
C47				B .			B .
C51						-	
C56					1		
C62			1				
C68 64 68 72 120 +0.08 5 48 90.0 C75 70 75 79 145 +0.08 5 52 98.8 C82 77 82 87 175 +0.09 5 55 108.8 C91 85 91 96 200 +0.09 5 60 120.0 C100 94 100 106 220 +0.09 5 70 145.0 C110 104 110 116 250 +0.09 5 70 145.0 C120 114 120 127 270 +0.10 5 80 158.8 C130 124 130 141 300 +0.10 5 90 176.2 at I _{Ztest} = 2 mA at I _{Ztest} = 2 mA at I _{Ztest} = 2 mA C150 138 150 156 950 +0.11 5 100 195.0 C180 168 180 191 1100 +0.11 5 120 238.8			105	+0.08	5	39	75.0
C68 64 68 72 120 +0.08 5 48 90.0 C75 70 75 79 145 +0.08 5 52 98.8 C82 77 82 87 175 +0.09 5 55 108.8 C91 85 91 96 200 +0.09 5 60 120.0 C100 94 100 106 220 +0.09 5 70 145.0 C110 104 110 116 250 +0.09 5 70 145.0 C120 114 120 127 270 +0.10 5 80 158.8 C130 124 130 141 300 +0.10 5 90 176.2 at IZtest = 2 mA at IZtest = 2 mA at IZtest = 2 mA C150 138 150 156 950 +0.11 5 100 195.0 C160 153 160 171 1000 +0.11 5 110 213.8 C180 168 180 191 1100 +0.11 5 120 238.8		58 62 66	110	+0.08	5	43	82.5
C75	C68	64 68 72	120	+0.08	5	48	
C82	C75	70 75 79	145				
C91 85 91 96 200 +0.09 5 60 120.0 C100 94 100 106 220 +0.09 5 66 132.5 C110 104 110 116 250 +0.09 5 70 145.0 C120 114 120 127 270 +0.10 5 80 158.8 C130 124 130 141 300 +0.10 5 90 176.2 at I _{Ztest} = 2 mA at I _{Ztest} = 2 mA at I _{Ztest} = 2 mA C150 138 150 156 950 +0.11 5 100 195.0 C160 153 160 171 1000 +0.11 5 110 213.8 C180 168 180 191 1100 +0.11 5 120 238.8	C82	77 82 87	175	+0.09	5		_
C110	C91	85 91 96	200				
C110	C100	94 100 106	220	+0.09	5	66	132 5
C120	C1 10	104 110 116		1			
C130	C120	114 120 127					
C150	C130						
C150		at l= . = 2 m/		-2-4			
C160		Ztest Z III	"Ztest - 2 mA	at 1Ztest = 2 mA			
C180 168 180 191 1100 +0.11 5 120 238.8				+0.11	5	100	195.0
C180 168 180 191 1100 +0.11 5 120 238.8				+0.11	5	110	213.8
0000 100			1100	+0.11			
	C200	188 200 212	1250				

OPERATING NOTES

Dissipation and heatsink considerations

a) Steady-state conditions

The maximum allowable steady-state dissipation Ps is given by the relationship!--

$$P_{s \text{ max.}} = \frac{T_{j \text{ max}} - T_{amb}}{R_{th \text{ i-a}}}$$

Where T_{i max} is the maximum permissible operating junction temperature,

Tamb is the ambient temperature,

R_{th i-a} is the total thermal resistance between junction and ambient.

b) Pulse conditions (see Fig.2)

The maximum pulse power P_m max. is given by the formula

$$P_{m \text{ max.}} = \frac{(T_{j \text{ max}} - T_{amb}) - (P_{s}.R_{th j-a})}{Z_{th}}$$

Where P_s is the steady-state dissipation, excluding that in the pulses,

 Z_{th} is the effective transient thermal resistance of the device between junction and ambient and is a function of the pulse duration t and duty cycle δ (see Fig.7).

 δ is the duty cycle and is equal to the pulse duration t divided by the periodic time T.

The steady-state power P_s when biased in the zener direction at a given zener current can be found from Fig.6. With the additional pulsed power dissipation $P_{m\ max}$ calculated from the above expression, the total peak zener power dissipation P_{tot} is $P_s + P_{m\ max}$. From Fig.6 the peak zener current at P_{tot} can now be read.

For pulse durations longer than the temperature stabilisation time of the diode t_{stab}, the maximum allowable pulse power is equal to the steady-state power P_s max. The temperature stabilisation time for the BZX61 is 100s (see Fig.7).

OPERATING NOTES (contd.)

Fig.2

SOLDERING RECOMMENDATIONS

At a maximum iron temperature of 300 °C, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

DIP SOLDERING

At a maximum solder temperature of 300 °C, the maximum permissible soldering time is 3 seconds, provided that the soldering spot is at least 5 mm from the seal.

Note: If the diode is in contact with the printed board the maximum permissible temperature of the point of contact is 125 °C.

Fig.3 Continuous power rating.

For types in excess of 130 V the continuous reverse dissipation should be kept within the area II.

Fig.4 Mounting methods

- 1. Infinite heatsink at end of lead.
- 2. Typical printed circuit board with large area of copper (1 cm² per lead).
- 3. Tag mounting.

Fig.8

Fig.9

Fig. 10 Typical values; ---- $T_j = 25$ °C; --- $T_j = 150$ °C

VOLTAGE REGULATOR DIODES

Silicon planar diodes in DO-35 envelopes intended for use as low voltage stabilizers or voltage references. They are available in two series; one to the international standardized E24 (± 5%) range and the other with ± 2% tolerance on working voltage. Each series consists of 37 types with nominal working voltages ranging from 2,4 V to 75 V.

QUICK REFERENCE DATA

Working voltage range	v_{Z}	nom.	2,4 to 75 V
Total power dissipation	P _{tot}	max.	500 mW *
Non-repetitive peak reverse power dissipation	PZSM	max.	30 W
Junction temperature	T_{j}	max.	200 °C
Thermal resistance from junction to tie-point	R _{th j-tp}	=	0,30 °C/mW

* If leads are kept at T_{tp} = 50 °C at 8 mm from body.

MECHANICAL DATA

Fig. 1 DO-35.

Dimensions in mm

Cathode indicated by coloured band. The diodes are type-branded

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Emiling values in accord	dilice with the Absolute maxi	mam oyotom (i.e.o io.	,		
Average forward current over any 20 ms period	_	l _F (AV)	max.	250	mA
Repetitive peak forward		I FRM	max.	250	mA
Total power dissipation		P _{tot}	max. max.		mW * mW **
Non-repetitive peak reve $t = 100 \mu s; T_j = 150^{\circ}$		Pzsm	max.	30	w
Storage temperature		T_{stg}	-65 to	+ 200	оС
Junction temperature		T_{j}	max.	200	oC
THERMAL RESISTANCE	CE				
From junction to tie-poi	nt	R _{th j-tp}	=	0,30	oC/mW
From junction to ambie	nt	R _{th j-a}	=	0,38	oC/mW
CHARACTERISTICS					
T _j = 25 °C					
Forward voltage		٧ _F	<	0,9	V
Reverse current BZX79 - 2V4	VR = 1 V VR = 2 V VR = 2 V VR = 2 V VR = 2 V VR = 4 V VR = 4 V VR = 5 V VR = 6 V VR = 7 V VR = 8 V VR = 0.7 VZnom	RRRRR RRRRR RRRR RRR	· · · · · · · · · · · · · · · · · · ·	20 10 5 5 3 3 2 1 700 500 200 100	nA nA

 $. = C \text{ for E24 } (\pm 5\%) \text{ tolerance}$

^{*} If leads are kept at T_{tp} = 50 °C at 8 mm from body. For the types 2V4 and 2V7 the power * dissipation is limited by $T_{j~max}$ = 150 °C. ** In still air at maximum lead length up to T_{amb} = 50 °C.

T_j = 25 °C

E24 (\pm 5%) logarithmic range (for \pm 2% tolerance range see page 5).

BZX79	(79 working voltage differentia resistance $V_Z(V)$ $r_{diff}(\Omega)$	stance		ature coef		diode capacitance C _d (pF); f = 1 MHz			
	_					<u>z</u> (mV/ºC)		_	
		_{st} = 5 mA	at IZte	st = 5 mA	at I	Ztest = 5 i	mA	V _F	_S = 0
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
C2V4	2,2	2,6	70	100	-3,5	-1,6	0	375	450
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450
C3V0	2,8	3,2	80	95	-3,5	-2,1	0	350	450
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450
C3V6	3,4	3,8	85	90	-3,5	-2,4	0	300	450
C3V9	3,7	4,1	85	90	-3,5	-2,5	0	300	450
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450
C4V7	4,4	5,0	50	80	-3,5	-1,4	0,2	125	180 🛋
C5V1	4,8	5,4	40	60	-2,7	-0,8	1,2	125	180 🕶
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	125	180 🚤
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130
C6V8	6,4	7,2	6	15	1,2	3,0	4,5	85	110
C7V5	7,0	7,9	6	15	2,5	4,0	5,3	80	100
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75	95
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90
C10	9,4	10,6	8	20	4.5	6,4	8.0	70	90
C11	10,4	11,6	10	20	5,4	7,4	9,0	65	85
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85
C13	12,4	14,1	10	30	7,0	9,4	11,0	60	80
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75
C16	15,3	17,1	10	40	10,4	12.4	14.0	52	75
C18	16,8	19,1	10	45	12,4	14,4	16,0	47	70
C20	18,8	21,2	15	55	14,4	16,4	18,0	36	60
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55
	at IZtes	t = 2 mA	at IZte	st = 2 mA	at I	Ztest = 2 r	mA		
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50
C33	31,0	35,0	35	80	27,4	29,7	33,4	25	45
C36	34,0	38,0	35	90	30,4	33,0	37,4	23	45
C39	37,0	41,0	40	130	33,4	36,4	41,2	21	45
C43	40,0	46,0	45	150	37,6	41.2	46,6	21	40
C47	44,0	50,0	50	170	42,0	46,1	51,8	19	40
C51	48,0	54,0	60	180	46,6	51,0	57,2	19	40
C56	52,0	60,0	70	200	52,2	57,0	63,8	18	40
C62	58,0	66,0	80	215	58,8	64,4	71,6	17	35
C68	64,0	72.0	90	240	65,6	71,7	79,8	17	35
C75	70,0	79,0	95	255	73,4	80,2	88,6	16.5	35 35
						,-	,-	1 .0,0	

BZX79 SERIES

 T_j = 25 °C E24 (± 5%) logarithmic range (for ± 2% tolerance range see page 6).

BZX79				differential resistance		wo	rking vol	differential resistance			
		V _Z (V)		r _{diff}	(Ω)		ν _Z (ν)		r _{diff} (Ω)		
	at	I _Z = 1 m/	4	at Iz =	at IZ = 1 mA		I _Z = 20 r	nΑ	at I _Z = 20 mA		
	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.	
C2V4	1,7	1,9	2,1	275	600	2,6	2,9	3,2	25	50	
C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50	
C3V0	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50	
C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40	
C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40	
C3V9	2,9	3,2	3,5	400	600	4,1	4,4	4,7	15	30	
C4V3	3,3	3,6	4,0	410	600	4,4	4,7	5,1	15	30	
C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15	
C5V1	4,2	4,7	5,3	400	480	5,0	5,4	5,9	6	15	
C5V6	4,8	5,4	6,0	80	400	5,2	5,7	6,3	4	10	
C6V2	5,6	6,1	6,6	40	150	5,8	6,3	6,8	3	6	
C6V8	6,3	6,7	7,2	30	80	6,4	6,9	7,4	2,5	6	
C7V5	6,9	7,4	7,9	30	80	7,0	7,6	8,0	2,5	6	
C8V2	7,6	8,1	8,7	40	80	7,7	8,3	8,8	3	6	
C9V1	8,4	9,0	9,6	40	100	8,5	9,2	9,7	4	8	
C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10	
C11	10,2	10,9	11,6	50	150	10,4	11,1	11,8	5	10	
C12	11,2	11,9	12.7	50	150	11,4	12,1	12,9	5	10	
C13	12,3	12,9	14,0	50	170	12,5	13,1	14,2	5	15	
C15	13,7	14,9	15,5	50	200	13,9	15,1	15,7	6	20	
C16	15,2	15,9	17,0	50	200	15,4	16,1	17,2	6	20	
C18	16,7	17,9	19,0	50	225	16,9	18,1	19,2	6	20	
C20	18,7	19,9	21,1	60	225	18,9	20,1	21,4	7	20	
C22	20,7	21,9	23,2	60	250	20,9	22,1	23,4	7	25	
C24	22,7	23,9	25,5	60	250	22,9	24,1	25,7	7	25	
	at	I _Z = 0,1	mA	at IZ=	0,5 mA	at	I _Z = 10 n	πA	at IZ =	= 10 mA	
C27	25,0	26,9	28,9	65	300	25,2	27,1	29,3	10	45	
C30	27,8	29,9	32,0	70	300	28,1	30,1	32,4	15	50	
C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	55	
C36	33,8	35,9	38,0	80	350	34,1	36,1	38,4	25	60	
C39	36,7	38,9	41,0	80	350	37,1	39,1	41,5	25	70	
C43	39,7	42,9	46,0	85	375	40,1	43,1	46,5	25	80	
C47	43,7	46,8	50,0	85	375	44,1	47,1	50,5	30	90	
C51	47,6	50,8	54,0	90	400	48,1	51,1	54,6	35	100	
C56	51,5	55,7	60,0	100	425	52,1	56,1	60,8	45	110	
C62	57,4	61,7	66,0	120	450	58,2	62,1	67,0	60	120	
C68	63,4	67,7	72,0	150	475	64,2	68,2	73,2	75	130	
C75	69,4	74,7	79,0	170	500	70,3	75,3	80,2	90	140	

T_j = 25 °C

± 2% tolerance range.

		••								
BZX79	working	g voltage	1	rential stance	temper	rature coef	ficient	diode capacitance		
	V _Z	(V)	r _{dif}	f (Ω)	S	_ (mV/ºC)		C _d (pF); f = 1 MHz		
	at IZtes	_{st} = 5 mA		st = 5 mA	at	Ztest = 5	mA	V _R = 0		
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.	
82V4 B2V7 B3V0 B3V3 B3V6	2,35 2,65 2,94 3,23 3,53	2,45 2,75 3,06 3,37 3,67	70 75 80 85 85	100 100 95 95 90	-2,6 -3,0 -3,0 -3,2 -3,2	-1,6 -2,0 -2,1 -2,4 -2,4	-0,6 -1,0 -1,2 -1,5 -1,5	375 350 350 325 300	450 450 450 450 450	
B3V9 B4V3 84V7 B5V1 B5V6	3,82 4,21 4,61 5,00 5,49	3,98 4,39 4,79 5,20 5,71	85 80 50 40 15	90 90 80 60 40	-3,2 -3,2 -2,0 -1,6 -0,7	-2,5 -2,5 -1,4 -0,8 1,2	-1,5 -1,2 -0,8 0,5 2,2	300 275 125 125 125	450 450 180 - 180 -	
B6V2 B6V8 87V5 B8V2 B9V1	6,08 6,66 7,35 8,04 8,92	6,32 6,94 7,65 8,36 9,28	6 6 6 6	10 15 15 15 15	1,0 2,0 3,0 3,6 4,3	2,3 3,0 4,0 4,6 5,5	3,2 4,0 4,8 5,5 6,5	90 85 80 75 70	130 110 100 95 90	
B10 B11 B12 813 815	9,80 10,80 11,80 12,70 14,70	10,20 11,20 12,20 13,30 15,30	8 10 10 10 10	20 20 25 30 30	5,2 6,2 7,0 7,8 10,0	6,4 7,4 8,4 9,4 11,4	7,4 8,5 9,5 10,5 12,4	70 65 65 60 55	90 85 85 80 75	
B16 B18 820 822 B24	15,70 17,60 19,60 21,60 23,50	16,30 18,40 20,40 22,40 24,50	10 10 15 20 25	40 45 55 55 70	10,9 12,8 14,8 16,8 18,7	12,4 14,4 16,4 18,4 20,4	13,5 15,6 17,6 19,6 21,6	52 47 36 34 33	75 70 60 60 55	
	at IZtes	t = 2 mA	at IZtes	t = 2 mA	at I	Ztest = 2 r	nΑ			
B27 B30 B33 B36 B39	26,50 29,40 32,30 35,30 38,20 42,10	27,50 30,60 33,70 36,70 39,80 43,90	25 30 35 35 40	80 80 80 90 130	21,4 24,4 27,4 30,4 33,4 38,0	23,4 26,6 29,7 33,0 36,4 41,2	25,3 29,0 32,5 36,0 40,0 45,0	30 27 25 23 21	50 50 45 45 45	
B47 B51 B56 B62	46,10 50,00 54,90 60,80	47,90 52,00 57,10 63,20	50 60 70 80	170 180 200 215	42,5 47,0 52,5 59,0	41,2 46,1 51,0 57,0 64,4	45,0 50,0 55,0 62,0 69,0	19 19 19 18 17	40 40 40 40 35	
B68 B75	66,60 73,50	69,40 76,50	90 95	240 255	66,0 74,0	71,7 80,2	77,0 86,0	17 16,5	35 35	

BZX79 SERIES

T_j = 25 °C

± 2% tolerance range.

BZX79	working voltage	differ resist	I	working voltage	differential resistance		
	V _Z (V)	rdiff	(Ω)	v _Z (v)	$r_{\sf diff}(\Omega)$		
	at IZ = 1 mA	at Iz =	l l	at $I_Z = 20 \text{ mA}$	at I _Z = 20 mA		
	nom.	typ.	max.	nom.	typ.	max.	
B2V4 B2V7 B3V0 B3V3 B3V6	1,9 2,2 2,4 2,6 3,0	275 300 325 350 375	600 600 600 600	2,9 3,3 3,6 3,9 4,2	25 25 25 20 20	50 50 50 40 40	
B3V9 B4V3 B4V7 B5V1 B5V6	3,2 3,6 4,2 4,7 5,4	400 410 425 400 80	600 600 500 480 400	4,4 4,7 5,0 5,4 5,7	15 15 8 6 4	30 30 15 15 10	
B6V2 B6V8 B7V5 B8V2 B9V1	6,1 6,7 7,4 8,1 9,0	40 30 30 40 40	150 80 80 80 100	6,3 6,9 7,6 8,3 9,2	3 2,5 2,5 3 4	6 6 6 8	
B10 B11 B12 B13 B15	9,9 10,9 11,9 12,9 14,9	50 50 50 50 50	150 150 150 170 200	10,1 11,1 12,1 13,1 15,1	4 5 5 5 6	10 10 10 15 20	
B16 B18 B20 B22 B24	15,9 17,9 19,9 21,9 23,9	50 50 60 60 60	200 225 225 250 250	16,1 18,1 20,1 22,1 24,1	6 6 7 7 7	20 20 20 25 25	
	at I _Z = 0,1 mA	at IZ =	0,5 mA	at IZ = 10 mA	at IZ =	10 mA	
B27 B30 B33 B36 B39	26,9 29,9 32,9 35,9 38,9	65 70 75 80 80	300 300 325 350 350	27,1 30,1 33,1 36,1 39,1	10 15 20 25 25	45 50 55 60 70	
B43 B47 B51 B56 B62	42,9 46,8 50,8 55,7 61,7	85 85 90 100 120	375 375 400 425 450	43,1 47,1 51,1 56,1 62,1	25 30 35 45 60	80 90 100 110 120	
B68 B75	67,7 74,7	150 170	475 500	68,2 75,3	75 90	130 140	

Mullard

6

Fig. 2.

Fig. 4 Static characteristics; typical values; $T_{amb} = 25$ °C.

Fig. 5 Dynamic characteristics; typical values; T_i = 25 °C.

December 1978

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

10

Fig. 10 Static characteristics; typical values; $T_{amb} = 25$ °C.

Fig. 11.

Fig. 15 Typical values; $T_i = 25$ °C; f = 1 kHz.

Fig. 16 Typical change of working voltage under operating conditions at $T_{amb} = 25$ °C.

Fig. 17 Typical change of working voltage under operating conditions at T_{amb} = 25 °C.

SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes in hermetically sealed glass envelopes intended for stabilization purposes.

The series covers the normalized range of nominal working voltages from 5.1 V to 75 V with a tolerance of $\pm 5\%$ (international standard E24).

QUICK REFERENCE DATA											
Working voltage range	v_{z}	nom.	5,1 to 75	V							
Working voltage tolerance (E24)			± 5	%							
Total power dissipation	P_{tot}	max.	2,75	W							
Junction temperature	T_{j}	max.	200	оС							

MECHANICAL DATA

SOD-51

Dimensions in mm

Cathode indicated by coloured band

The diodes are type-branded

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Currents

Currents					
Working current (d.c.)	$^{\mathrm{l}}\mathrm{z}$	limite	d by P _{to}	t max	
Repetitive peak working current	$^{\mathrm{l}}\mathrm{zrm}$	limited by PZRMmax			
Repetitive peak forward current	l_{FRM}	max.	400	mA	
Power dissipation (see also graphs on pages 5 and 6)				1.	
Total power dissipation	P_{tot}	max. max.		W 1) W 2)	
Repetitive peak reverse power dissipation up to T_{amb} = 175 °C; t_p = 100 μ s: δ = 0,001	^P ZRM	max.	-7, 5	W	
Non-repetitive pcak reverse power dissipation up to T_{amb} = 25 °C; t_p = 100 μs	P ZSM	max.	100	W	
Temperatures					
Storage temperature	$T_{ m stg}$	-65 to	+200	$^{\mathrm{o}}\mathrm{C}$	
Junction temperature	Тj	max.	200	oС	
THERMAL RESISTANCE (see also graphs on pages 5 and	i 6)				
From junction to amoient					
when soldered to tags					
at max. lead length	R _{th j-a}	max.	117	°C/W	
CHARACTERISTICS			$T_{\mathbf{j}}$	= 25 °C	
Forward voltage at $I_F = 0, 2 A$	v_{F}	<	1	V	
Reverse current					
BZX87-C5V1	I_R	<	10	μΑ	
$C5V6 \qquad \qquad V_{R} = 2 V$	IR	<	5	μA	
7.772	l _R	<	3	μA	
C6V2			-		
C6V2 J		<	1,5	μA	
C6V2 C6V8 C7V5	1_{R}	< <	1,5 0,6	μA uA	
C6V2 C6V8 C7V5 C8V2 V _R = 3 V	${}^{1}_{ m R}$		0,6	μΑ	
$ \begin{array}{c} C6V8 \\ C7V5 \end{array} \qquad V_{R} = 3 V $	1_{R}	<		•	

 $^{^2}$) If the temperature of the leads at 10 mm from the body is kept at 25 $^{\rm o}$ C.

 $^{^{}m l}$) Measured in still air up to T_{amb} = 25 $^{
m oC}$ and mounted to solder tags at maximum lead

BZX87 SERIES

CHARACTERISTICS (continued)

 $T_j = 25 \text{ }^{\circ}\text{C}$

	Workin	g voltage	1	mperati efficient			rential stance	Diode capaci- tance C _d (pF)		
	v_z	(V)	Sz	S _Z (mV/ ^O C)			r _{diff} (Ω)		at f = 1 MHz	
i	at I _Z = 50 mA		at	at I _Z = 50 mA			at IZ = 50 mA		R = 0	
BZX87	min.	max.	min.	typ.	max.	typ.	max.	typ.	max.	
C5V1	4,8	5.4	-1.5	0	1.5	4	10	200	250	
C5V6	5.2	6.0	-0.2	1.5	2.5	2	5	180	225	
C6V2	5.8	6.6	1,5	2, 4	3.3	1,5	3	350	400	
	at I _Z = 20 mA		at	IZ = 20 1	nΑ	at IZ =	= 20 mA			
C6V8	6.4	7, 2	2, 2	3, 1	3, 9	1	3	300	350	
C7V5	7,0	7.9	2.8	3, 8	4,7	1	3	270	310	
C8V2	7, 7	8,7	3,5	4,5	5, 5	1,5	4	250	280	
C9V1	8,5	9,6	4,3	5, 4	6,5	2	4	210	250	
C10	9, 4	10,6	5, 2	6,3	7,5	2	5	190	230	
C11	10.4	11.6	6.2	7,4	8,6	3	5	170	220	
C12	11.4	12.7	7.2	8.4	9.8	3	6	165	200	
C13	12.4	14, 1	8.2	9, 4	11,2	3	7	165	200	
C15	13, 8	15,6	9,6	11,4	12, 8	4	10	160	190	
	at IZ =	= 10 mA	at	at IZ = 10 mA			= 10 mA			
C16	15, 3	17.1	11,1	12,5	14,4	4	10	140	180	
C18	16.8	19, 1	12,6	14,5	16.6	5	15	120	160	
C20	18,8	21,2	14,6	16,6	18,8	5	15	110	150	
C22	20, 8	23, 3	16,6	18,6	20, 9	5	20	100	135	
C24	22, 8	25,6	18,6	20, 7	23, 4	6	20	95	130	
C27	25, 1	28,9	21,0	23, 8	26,8	7	25	90	120	
C30	28	32	23,8	26, 9	30,6	8	25	80	110	
C33	31	35	26,6	30, 0	34, 2	10	30	75	95	
C36	34	38	29,6	33, 4	38,0	10	35	70	90	
	at IZ =	5 mA	at	I _Z = 5 r	nA	at IZ =	5 mA	ķ.		
C39	37	41	32,6	37, 0	41.6	15	40	65	80	
C43	40	46	36,0	41,6	47,6	15	50	62	75	
C47	44	50	40, 4	46, 1	52,6	20	60	60	75	
C51	48	54	44,6	51,0	57,6	30	70	55	70	
C56	52	60	49, 2	56,6	64,8	35	80	52	65	
C62	58	66	56,0	63, 4	72,0	40	90	50	60	
C68	64	72	62, 4	70,4	79, 2	45	110	46	58	
C75	70	79	69, 2	78, 4	88.0	45	1 25	44	55	
·			*			•		7		

CHARACTERISTICS (continued)

 $T_j = 25 \text{ }^{\circ}\text{C}$

	Working voltage		Differential resistance		Working voltage			Differential resistance		
		$V_{Z}(V)$		rdiff (ᢒ)			$V_{\mathbf{Z}}(V)$		rdiff (Ω)	
	at	IZ = 1 m	A	at IZ = 1 mA		at IZ = 100 mA			at $I_Z = 100 \text{ mA}$	
BZX87	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max.
C5V1 C5V6 C6V2 C6V8 C7V5	3, 3 4, 1 5, 6 6, 3 6, 9	3, 8 5, 3 6, 0 6, 7 7, 4	4, 3 5, 8 6, 5 7, 1 7, 8	425 400 40 40 40 20	500 500 200 120 100	4, 9 5, 3 5, 9 6, 5 7, 1	5, 2 5, 7 6, 3 6, 9 7, 6	5, 5 6, 1 6, 7 7, 3 8, 0	1, 2 1, 0 0, 8 0, 6 0, 5	2, 5 2, 0 2, 0 2, 0 1, 5
C8V2 C9V1 C10 C11 C12	7, 6 8, 4 9, 3 10, 3 11, 2	8, 1 9, 0 9, 9 10, 9 11, 9	8, 6 9, 6 10, 5 11, 5 12, 6	20 25 30 30 30	100 100 120 120 150	7,8 8,6 9,5 10,5 11,5	8, 3 9, 2 10, 1 11, 1 12, 1	8, 8 9, 8 10, 8 11, 8 12, 9	0, 5 0, 8 0, 8 0, 8 1, 0	1, 5 2, 0 2, 0 2, 0 2, 0 2, 0
C13 C15	12,2 13,6	12, 9 14, 9	14, 0 15, 4	30 30	150 150	12, 5 13, 9	13, 1 15, 1	14, 3 15, 8	1, 2 1, 2 at I _Z =	2, 5 2, 5 50 mA
C16 C18 C20 C22 C24	15, 2 16, 7 18, 7 20, 7 22, 6	I _Z = 1 m 15, 9 17, 9 19, 9 21, 9 23, 9	17, 0 19, 0 21, 1 23, 2 25, 5	30 30 30 30 30 30	150 150 150 150 150	15, 4 16, 9 19, 0 21, 0 23, 0	z = 50 16, 1 18, 1 20, 2 22, 2 24, 2	17, 3 19, 3 21, 5 23, 7 26. 0	1, 2 2, 0 2, 5 2, 5 3, 0	3, 0 5, 0 6, 0 6, 0 8, 0
C27 C30 C33 C36 C39	24, 9 27, 8 29, 8 33, 8 36, 8	26, 9 29, 9 32, 9 35, 9 38, 9	28, 8 31, 9 34, 9 37, 9 40, 9	30 30 30 30 40	150 150 150 150 150	25, 3 28, 2 31, 2 34, 2 37, 5	27, 2 30, 2 33, 3 36, 3 39, 5	29, 2 32, 5 35, 5 38, 5 42, 0	4, 0 4, 0 5, 0 5, 0 6. 0	8, 0 8, 0 10 10 12
C43 C47 C51 C56 C62	39, 8 43, 8 47, 8 51, 8 57, 6	42, 9 46, 9 50, 9 55, 9 61, 8	45, 9 49, 9 53, 8 59, 8 65, 8	50 55 60 60 70	150 200 200 200 200 200	40, 5 44, 5 48, 5 52, 5 58, 5	43, 5 47, 5 51, 8 56, 8 62, 8	47, 0 51, 0 55, 5 61, 5 67, 5	8 10 12 15 16	15 20 25 30 30
	63,5	67,6	71,7	80	225	65.0	69.0	74,0	18	35

BZX87 **SERIES**

MOUNTING METHODS

- 1. to tie-points
- 2. to solder tags
- on a printed-circuit board with minimum soldering area necessary for good electrical conductance
- a. lead length = 10 mm
- b. at maximum lead length

BZX87 SERIES

VOLTAGE REGULATOR DIODES

Silicon diodes in all-glass DO-7 envelope intended for voltage stabilization purposes. The series consists of 27 types with nominal working voltages ranging from 2,7 V to 33 V within the normalized E24 (± 5%) range

QUICK REFERENCE DATA

Working voltage	range	٧z	nom.	2,7 to 33	V
Total power diss	sipation up to T _{amb} = 50 °C	P _{tot}	max.	400	mW
Non-repetitive p	eak reverse power dissipation				
T _j = 25 °C; t	= 10 μs	PZSM	max.	1,1	kW
Operating juncti	on temperature	Τį	max.	200	оС
Thermal resistan	ce from junction	•			
to ambient in	free air	R _{th j-a}	=	0,37	oC/mW

MECHANICAL DATA

Dimensions in mm

Fig. 1 DO-7.

The diodes are type-branded

Cathode indicated by coloured band

For operation as a voltage regulator diode the positive voltage is connected to the lead adjacent to the white band.

Available for current production only; for new designs, successors BZX79 are recommended.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current (d.c.)	lF	max.	250	mΑ
Repetitive peak forward current	^I FRM	max.	250	mΑ
Total power dissipation up to T _{amb} = 50 °C	P _{tot}	max.	400	mW
Non-repetitive peak reverse power dissipation $T_j = 25$ °C; $t = 10 \mu s$	PZSM	max.	1,1	kW
Storage temperature	T_{stg}	-65 to +	175	οС
Operating junction temperature	Ti	max.	200	oC

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 0.37 \text{ }^{\circ}\text{C/mW}$

Fig. 2 Power derating curve.

< 0,9 V

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

Forward voltage

IF = 10 mA

BZY88	wor	king vol	tage V ₇	,	1	temperate			.	differe esistanc				
-	1	t l ₇ = 1	_	•		at I = 1 r	_		1	at $I_7 = 1 \text{ mA}$				
	min.	nom.	max.		min.	typ.	max.		min.	-				
		110/111	mux.		711111.	τγρ.	max.		111111.	typ.	max	•		
C2V7	1,9	2,15	2,4	V	-4,5	-1,7	0,6	mV/°C	260	310	390	Ω		
C3V0	2,1	2,4	2,7	٧	-5,0	-1,8	-0,6	mV/OC	280	340	420	Ω		
C3V3	2,4	2,75	3,0	V	-4,5	-1,9	0,5	mV/°C	300	360	440	Ω		
C3V6	2,7	3,0	3 ,3	V	-4,5	-2,05	-0,5	mV/°C	380	410	430	Ω		
C3V9	3,0	3, 3	3,6	V	-3,5	-2,4	-0,5	mV/°C	380	410	430	Ω		
C4V3	3,3	3,6	3,9	V	-2,7	-2,25	-0,5	mV/°C	340	410	430	Ω		
C4V7	3,7	4,1	4,3	V	-2,5	-2,0	-0,3	mV/°C	360	390	420	Ω		
C5V1	4,3	4,65	5,0	V	-2,1	-1,9	-0,3	mV/°C	300	340	370	Ω		
C5V6	4,8	5,3	5,7	V	-1,8	-1,4	0	mV/oC	160	310	350	Ω		
C6V2	5,7	5,9	6,5	V	0	+ 1,6	+ 3,0	mV/°C	10	100	250	Ω		
C6V8	6,3	6,7	6,9	V	+2	+3,2	+3,7	mV/OC	5,0	15	70	Ω		
C7V5	7,0	7,45	7,8	V	+3	+4,2	+ 5,9	mV/OC	4,0	8,6	20	Ω		
C8V2	7,8	8,1	8,5	V	+4,3	+5,0	+6,0	mV/OC	4,0	10	20	Ω		
C9V1	8,55	9,0	9,5	V	+4,5	+6,0	+7,0	mV/OC	7,0	12	24	Ω		
C10	9,3	9,9	10,5	V	+6,0	+6,6	+ 7,0	mV/OC	5,0	20	50	Ω		
C11	10,3	10,9	11,5	V	+7,1	+8,3	+ 9,0	mV/°C	5,0	25	70	Ω		
C12	11,3	11,9	12,5	V	+ 7,6	+8,7	+ 9,2	mV/OC	10	25	80	Ω		
C13	12,3	12,9	13,0	V	+9,1	+ 10,1	+ 11,1	mV/°C	10	25	90	Ω		
C15	13,8	14,9	15,5	V	+ 11	+ 12,5	+ 13	mV/°C	19	35	95	Ω		
C16	15,3	15,8	16,9	V	+12	+ 13	+ 14	mV/°C	20	45	100	Ω		
C18	16,7	17,8	18,9	V	+ 14	+ 15	+ 16,5	mV/ºC	20	50	120	Ω		
C20	18,7	19,8	21,0	V	+16	+ 17	+ 18,5	mV/°C	20	60	140	Ω		
C22	20,6	21,8	23,1	V	+ 17	+ 19	+ 21	mV/°C	25	70	150	Ω		
C24	22,5	23,8	25,7	V	+ 19	+21	+ 23	mV/°C	30	85	200	Ω		
C27	24,7	26,6	28,5	V	+ 21	+ 22,5	+ 25	mV/°C	35	90	300	Ω		
C30	27,5	29,5	31,5	V	+ 22	+ 24	+ 29	mV/°C	50	180	350	Ω		
C33	29,5	32,5	34,5	V	+23	+26	+ 35	mV/ºC	60	250	450	Ω		

٧F

CHARACTERISTICS (continued)

 $T_i = 25$ °C unless otherwise specified

BZY88	working voltage V _Z temperature coefficient S _Z						differential resistance r _{diff}								
	at	t Iz = 5	mΑ		a	$t I_Z = 5 m$	Α		at	Iz = 5	= 5 mA				
	min.	nom.	max.		min.	typ.	max.		min.	typ.	max.				
C2V7	2,5	2,7	2,9	v	-4,0	-2,2	-0,6	mV/ºC	68	80	120	Ω			
C3V0	2,8	3,0	3,2	V	-4,5	-2,4	-0,6	mV/ºC	70	84	120	Ω			
C3V3	3,1	3,3	3,5	٧	-4,0	-2,3	-0,5	mV/ºC	70	86	110	Ω			
C3V6	3,4	3,6	3,8	٧	-3,5	-2,0	-0,5	mV/ºC	65	76	105	Ω			
C3V9	3,7	3,9	4,1	V	-2,5	-2,05	-0,5	mV/ºC	60	76	100	Ω			
C4V3	4,0	4,3	4,6	٧	-2,5	-1,8	-0,5	mV/ºC	55	70	90	Ω			
C4V7	4,4	4,7	5,0	٧	-2,0	-1,55	0	mV/ºC	49	62	85	Ω			
C5V1	4,8	5,1	5,4	V	-1,75		0	mV/ºC	34	46	75	Ω			
C5V6	5,2	5,6	6,0	٧	-1,5	-0,2	+ 1,0	mV/ºC	10	22	55	Ω			
C6V2	5,8	6,2	6,6	V	+0,5	+ 2,0	+ 3,5	mV/ºC	1,0	7,0	27	Ω			
C6V8	6,4	6,8	7,2	V	+ 2,3	+3,2	+ 3,8	mV/ºC	0,5	3,0	15	Ω			
C7V5	7,0	7,5	7,9	V	+3,1	+ 4,2	+ 5,9	mV/ºC	0,5	3,0	15	Ω			
C8V2	7,7	8,2	8,7	V	+ 4,2	+5,0	+6,0	mV/ºC	0,9	3,5	20	Ω			
C9V1	8,5	9,1	9,6	V	+ 4,8	+6,0	+7,0	mV/ºC	1,0	4,75	25	Ω			
C10	9,4	10	10,6	V	+6,0	+ 7,0	+ 7,5	mV/ºC	2,0	5,0	25	Ω			
C11	10,4	11	11,6	V	+7,0	+ 8,7	+9,1	mV/°C	3,0	7,0	25	Ω			
C12	11,4	12	12,7	٧	+8,5	+9,0	+9,6	mV/°C	4,0	8,0	35	Ω			
C13	12,4	13	14,1	V	+10	+ 10,5	+ 11,5	mV/ºC	4,0	10	35	Ω			
C15	13,8	15	15,6	V	+12	+ 12,5	+ 14	mV/°C	4,0	15	35	Ω			
C16	15,3	16	17,1	٧	+12	+ 13	+ 14	mV/°C	5,0	20	40	Ω			
C18	16,8	18	19,1	V	+14	+ 15	+ 18	mV/oC	7,0	25	45	Ω			
C20	18,8	20	21,2	V	+ 16	+ 17	+ 19	mV/ºC	10	30	50	Ω			
C22	20,8	22	23,3	V	+ 17	+ 19	+ 21	mV/°C	15	35	60	Ω			
C24	22,7	24	25,9	V	+ 20	+ 21	+ 24	mV/oC	20	40	75	Ω			
C27	25,1	27	28,9	٧	+ 22	+ 23,5	+ 27	mV/ºC	25	50	85	Ω			
C30	28	30	32	٧	+ 25	+ 26	+ 29	mV/ºC	30	60	95	Ω			
C33	31	33	35	٧	+ 27	+ 28	+36	mV/ºC	35	75	120	Ω			

BZY88	1	king vol	-	2	ł	•	mperature efficient SZ			differential resistance rdiff				
	a	t IZ = 2	0 mA		8	rt I _Z = 20	mA		at Iz = 20 mA					
	min.	nom.	max.		min.	typ.	max.		min.	typ.	max	۲.		
C2V7	3,0	3,25	3,5	٧	-3,5	-2,4	-0,6	mV/ºC	18	22	26	Ω		
C3V0	3,3	3,6	3,9	٧	-3,5	-2,5	-0,6	mV/ºC	17	21	24	Ω		
C3V3	3,5	4	4,2	V	-3,3	-2,4	-0,5	mV/°C	16	20	22	Ω		
C3V6	3,9	4,2	4,4	V	-2,5	-1,55	-0,5	mV/ºC	16	18	20	Ω		
C3V9	4,2	4,45	4,65	V	-2,4	-1,55	0,5	mV/ºC	14	16	18	Ω		
C4V3	4,45	4,7	4,95	V	-2,0	-1,5	-0,5	mV/ºC	13	15	17	Ω		
C4V7	4,9	5,1	5,3	٧	-1,5	-0,85	0	mV/ºC	12	15	17	Ω		
C5V1	5,1	5,35	5,7	V	-1,5	-0,8	0	mV/bC	4.0	7.0	1.1	Ω		
C5V6	5,45	5,75	6,1	V	-1,0	+1,0	+ 3.0	mV/°C	1,5	4,0	8,0	Ω		
C6V2	5,95	6,4	6,7	V	+1,0	+2,2	+4,0	mV/ºC	0,8	1,4	3,1	Ω		
C6V8	6,6	6,9	7,25	V	+2,8	+3,2	+ 3,8	mV/°C	0,7	1,3	3,0	Ω		
C7V5	7,2	7,65	7,95	V	+2,5	+4,2	+ 5,9	mV/°C	0,5	1,6	5,0	Ω		
C8V2	7,9	8,4	8,75	V	+4,0	+ 5,0	+6,0	mV/°C	0,9	1,8	6,0	Ω		
C9V1	8,7	9,4	9,7	V	+5,0	+6,0	+7,0	mV/°C	1,0	1,85	7,0	Ω		
C10	9,5	10,1	10,8	٧	+7,0	+7,3	+7,5	mV/°C	1,0	2,0	8,0	Ω		
C11	10,5	11,1	11,8	٧	+8,5	+ 9,1	+ 9,5	mV/°C	1,0	3,0	10	Ω		
C12	11,6	12,2	12,8	٧	+8,9	+ 9,6	+ 10,3	mV/ºC	2,0	3,5	25	Ω		
C13	12,6	13,2	14,3	V	+11	+ 11,5	+ 12,5	mV/°C	2,0	4,5	25	Ω		
C15	14,1	15,3	15,9	٧	+ 12	+ 13.5	+ 14.5	mV/ºC	2,0	6,0	25	Ω		
C16	15,6	16,3	17,4	٧	+ 13	+ 14	+ 15	mV/ºC	5,0	10	30	Ω		
C18	17,2	18,4	19,6	٧	+15	+ 16	+18	mV/°C	5,0	12	30	Ω		
C20	19,3	20,5	21,9	٧	+ 17,5	+ 18.5	+ 20,5	mV/°C	5,0	15	35	Ω		
C22	21,3	22,6	24,1	V	+ 19	+20,5	+ 22,5	mV/°C	10	18	35	Ω		
C24	23,3	24,7	26,7	٧	+ 20	+23	+ 25	mV/°C	10	20	40	Ω		
C27	25,8	28,1	30,1	V	+23	+25,5	+ 28	mV/ºC	10	25	45	Ω		
C30	29,0	31,3	33,4	٧	+ 25	+ 28	+ 32	mV/ºC	10	35	50	Ω		
C33	32,0	34,5	36,6	٧	+27	+ 30	+38	mV/ºC	10	45	60	Ω		

CHARACTERISTICS (continued)

T_i = 25 °C unless otherwise specified

BZY88	typ. C _d	rever	se current	l _R	typ. noise voltage **				
	V _R = 3 V	at V _R =	typ.	max.		I _Z = 1 mA	I _Z = 5 mA		
C2V7	490 pF *	1 V	4	25	μΑ	22	12	μV r.m.s.	
C3V0	430 pF *	1 V	2	5	μΑ	20	11	μV r.m.s.	
C3V3	380 pF *	1 V	0,51	3,0	μΑ	19	10	μ V r.m.s.	
C3V6	360 pF *	1 V	0,25	3,0	μΑ	18	9	μV r.m.s.	
C3V9	335 pF	1 V	0,11	3,0	μΑ	16	8	μV r.m.s.	
C4V3	270 pF	1 V	0,1	3,0	μΑ	15	8	μV r.m.s.	
C4V7	290 pF	2 V	0,25	3,0	μΑ	14	7	μV r.m.s.	
C5V1	275 pF	2 V	0,15	1,0	μΑ	13	8	μV r.m.s.	
C5V6	260 pF	2 V	0,6	1,0	μΑ	13	9	μV r.m.s.	
C6V2	240 pF	2 V	0,1	1,0	μΑ	14	10	μV r.m.s.	
C6V8	220 pF	3 V	0,025	1,0	μΑ	25	15	μV r.m.s.	
C7V5	190 pF	3 V	15	500	nΑ	33	20	μV r.m.s.	
C8V2	150 pF	3 V	11	400	nΑ	55	28	μV r.m.s.	
C9V1	140 pF	5 V	8	400	nΑ	79	35	μV r.m.s.	
C10	110 pF	7 V	_	2,5	μΑ	87	43	μV r.m.s.	
C11	90 pF	7 V	_	2,5	μΑ	92	48	μV r.m.s.	
C12	80 pF	8 V	-	2,5	μΑ	100	50	μV r.m.s.	
C13	65 pF	9 V	_	2,5	μΑ	110	52	μV r.m.s.	
C15	60 pF	10 V	_	2,5	μΑ	120	54	μV r.m.s.	
C16	55 pF	10 V	_	2,5	μΑ	135	56	μV r.m.s.	
C18	50 pF	13 V	-	2,5	μΑ	160	58	μV r.m.s.	
C20	45 pF	14 V	_	2,5	μΑ	210	60	μV r.m.s.	
C22	43 pF	15 V	_	2,5	μΑ	255	62	μV r.m.s.	
C24	42 pF	17 V	-	2,5	μA	290	65	μV r.m.s.	
C27	40 pF	19 V	-	2,5	μΑ	320	69	μV r.m.s.	
C30	35 pF	21 V	_	2,5	μΑ	350	73	μV r.m.s.	
C33	32 pF	23 V	I -	2,5	μΑ	380	78	μV r.m.s.	

^{*} Diode capacitance at V $_{R}$ = 2 V. ** Noise voltage measured using a bandwidth \pm 3 dB of 10 Hz to 50 kHz.

OPERATING NOTES

- 1. Dissipation and heatsink considerations
- a. Steady-state conditions

The maximum allowable steady-state dissipation P_{s max} is given by the relationship

$$P_{s max} = \frac{T_{j max} - T_{amb}}{R_{th j-a}}$$

where: Timax is the maximum permissible operating junction temperature;

Tamb is the ambient temperature;

Rth i-a is the total thermal resistance from junction to ambient.

b. Pulse conditions (see Fig. 3)

The maximum allowable additional pulse power $P_{\mbox{\scriptsize m}\mbox{\scriptsize max}}$ is given by the formula

$$P_{m max} = \frac{(T_{j max} - T_{amb}) - (P_{s} \cdot R_{th j-a})}{Z_{th}}$$

where: Ps is the steady-state dissipation, excluding that in the pulses;

 Z_{th} is the effective transient thermal resistance of the device from junction to ambient. It is a function of the pulse duration t and duty factor δ (see Fig. 9);

 δ is the duty factor and is equal to the pulse duration t divided by the periodic time T.

The steady-state power P_S when biased in the zener direction at a given zener current can be found from Fig. 18. With the additional pulsed power dissipation $P_{m\,max}$ calculated from the above expression, the total repetitive peak zener power dissipation $P_{ZRM} = P_S + P_{m\,max}$. From Fig. 18 the corresponding maximum repetitive peak zener current at P_{ZRM} can now be read. For pulse durations longer than the temperature stabilization time of the diode t_{stab} , the maximum allowable repetitive peak dissipation P_{ZRM} is equal to the maximum steady-state power $P_{S\,max}$. The temperature stabilization for the BZY88series is 100.s (see Fig. 9).

Fig. 3.

OPERATING NOTES (continued)

Example

The following example illustrates how to calculate the maximum permissible repetitive peak zener current of a BZY88-C7V5 zener diode mounted in free air at a maximum ambient temperature of 60 °C. The steady-state zener current is 10 mA, the duty factor δ = 0,1 and the pulse duration t = 1 ms.

The steady-state dissipation P_s at a zener current is 10 mA (from Fig. 18) = 76 mW.

The thermal resistance from junction to ambient Rth i-a = 0,31 °C/mW.

The thermal impedance Z_{th} with a duty factor $\delta = 0.1$ and a pulse duration t = 1 ms (from Fig. 9).

$$Z_{th} = 41,5 \text{ °C/W}.$$

The maximum additional pulse power dissipation

$$P_{m max} = \frac{(T_{j max} - T_{amb}) - P_{s} \cdot R_{th j-a}}{Z_{th}}$$

If $P_s = 76$ mW, $Z_{th} = 41.5$ °C/W,

$$P_{\text{m max}} = \frac{(200-60) - (0,076 \times 310)}{41,5} = 2,8 \text{ W}$$

therefore, the total repetitive peak power dissipation,

$$P_{ZRM} = 0.076 + 2.8 = 2.88 W.$$

From Fig. 18 the corresponding repetitive peak zener current is 350 mA.

2. Zener characteristics

The basic characteristic of a zener diode is the dynamic zener characteristic, that is, the variation of zener voltage when a current pulse is applied in the reverse direction. The slope of this characteristic is r_z . Typical dynamic characteristics at T_i = 25 and 150 °C are given on pages 12 and 13 for each type of diode. Because of the temperature sensitivity of the zener characteristics, the dynamic characteristics at any other operating temperature will be displaced from those at Ti = 25 °C by a voltage corresponding to $S_Z \times (T_n - 25)$ °C, where S_Z is the temperature coefficient of the diode and T_n is a nominal operating temperature (Figs 4 and 5).

Fig. 4 Dynamic characteristics.

Fig. 5 Static characteristics.

The static characteristic of the diode is obtained by connecting the steady-state zener voltages at various direct zener currents and may, therefore, be used to determine the operating point at any zener current. This is shown above. The slope of the static characteristic will depend on

- (1) the differential resistance, r₇;
- the rise in junction temperature due to internal dissipation and the thermal resistance from junction to ambient, Vz.Iz. R_{th.i-a};
- (3) the temperature coefficient of the diode, S7.

From the above, the static slope resistance rz is found to be

$$r_Z = r_z + V_Z R_{th i-a} S_Z$$

where r_Z is the differential resistance, V_Z is the steady-state zener voltage and is equal to

$$\frac{\mathsf{VZ'}}{\mathsf{1-I_Z}.\,\mathsf{R_{th\ i-a}}.\mathsf{S_Z}}$$

 V_Z being the zener voltage at $T_i = T_n$ at the working current I_Z .

The position of this static characteristic in relation to the dynamic characteristic at $T_j = 25$ °C is dependent on the ambient temperature and the temperature coefficient, the low-current voltage being displaced by

from the low current voltage, V_{ZO} on the dynamic characteristic at $T_i = 25$ °C (see Fig. 6).

Fig. 6 Example for positive SZ.

OPERATING NOTES (continued)

Figure 7 shows typical dynamic characteristics at T_j = 25, 150 and a nominal temperature, T_n °C. It also shows static characteristics at ambient temperatures of 25 and T_n °C.

Fig. 7 Example for positive S7.

Typical static characteristics for each type of diode are given on page 14. These curves were obtained with the device mounted in free air at an ambient temperature of 25 °C.

The slope resistance for pulse operation can be calculated by incorporating the thermal impedance Z_{th} into the formula for r_Z . Curves of Z_{th} plotted against pulse duration and duty factor are given in Fig. 9.

- 3. When using a soldering iron, the diode may be soldered directly into a circuit, but heat conducted to the junction should be kept to a minimum by use of a thermal shunt.
- 4. Diodes may be dip-soldered at a solder temperature of 245 °C for a maximum soldering time of 5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a diode with the anode end mounted flush on the board with punched-through holes. For mounting the cathode end onto the board the diode must be spaced 5 mm from the underside of the printed circuit board in the case of punched-through holes or 5 mm from the top of the board for plated-through holes.
- 5. Care should be taken not to bend the leads nearer than 1,5 mm from the seals.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 17 Non-repetitive surge pulse power as a function of pulse duration. Rectangular pulse: 2 pulses per minute; $T_j = 25$ °C.

14

VOLTAGE REGULATOR DIODES

Silicon planar regulator diodes in DO-35 envelopes, intended for use as low-voltage stabilisers or voltage references. The series consists of types with nominal working voltages ranging from 3.3 to 15 V.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Average forward current

IF(AV)

Ptot

Tamb

 T_{sta}

max.

200

mΑ

type number	Zmax. (mA)	type number	IZmax. (mA)
CV7138	100	CV7105	45
CV7139	95	CV7142	40
CV7140	90	CV7143	38
CV7141	85	CV7144	34
CV7099	80	CV7145	32
CV7100	70	CV7146	28
CV7101	65	CV7106	25
CV7102	60		
CV7103	55		
CV7104	50		

Power dissipation (see also derating curve, Fig.2)	
Operating ambient temperature	
Storage temperature	

-65 to +150 -65 to +200

400

max.

oc

mW

oc

Dimensions in mm

MECHANICAL DATA

Fig.1 DO-35

Cathode indicated by coloured band. The diodes are type-branded.

Products approved to CECC 50 005-005 (specification available on request).

CHARACTERISTICS

Tamb = 25 °C unless otherwise stated

	working voltage*			differential i	resistance		
		V _Z (V)		٧ _Z (۱	/)	r _{diff} (Ω)	rdiff (Ω)
	at Iz	z _{test} = 5	mA	at IZ test	= 1 mA	at I _{Z test} = 5 mA	at I _{Z test} = 1 mA
	min.	nom.	max.	min.	max.	max.	max.
CV7138	3.1	3.3	3.5	2.1	3.0	120	600
CV7139	3.4	3.6	3.8	2.4	3.3	110	600
CV7140	3.7	3.9	4.1	2.8	3.7	100	600
CV7141	4.0	4.3	4.5	3.3	4.2	90	600
CV7099	4.4	4.7	5.0	3.6	4.6	85	500
CV7100	4.8	5.1	5.4	4.2	5.1	80	480
CV7101	5.3	5.6	6.0	4.6	5.4	75	400
CV7102	5.8	6.2	6.6	5.1	6.5	40	150
CV7103	6.4	6.8	7.2	6.0	7.2	15	80
CV7104	7.1	7.5	7.9	6.7	7.9	15	80
-							
CV7105	7.7	8.2	8.7	7.4	8.7	15	80
CV7142	8.6	9.1	9.6	8.3	9.6	15	100
CV7143	9.4	10.0	10.6	9.1	10.6	20	150
CV7144	10.4	11.0	11.6	10.4	11.5	40	150
CV7145	11.4	12.0	12.6	11.1	12.5	60	150
CV7146	12.4	13.0	14.1	12.0	14.1	75	170
CV7106	13.9	15.0	15.6	13.6	15.4	90	200

2

^{*} t_{D} = 300 μ s; $\delta \le 2\%$.

CHARACTERISTICS (continued)

T_{amb} = 25 °C unless otherwise stated.

	temperatu		re\	reverse current				
	coefficier		I _R	IR	at V _R			
	S _Z (%/º	C)	(mA)	(mA)	(V)			
	at IZ test = 5	mA		$T_{amb} = 100 {}^{\circ}C$				
	min. m	nax.	max.	max.				
CV7138	-0.1 -	0.04	500	1000	2.0			
CV7139	0.1 -	0.03	250	500	2.0			
CV7140	-0.09 -	0.02	100	200	2.0			
CV7141	0.08	0.00	50	100	2.0			
CV7099	0.07 +	0.01	400	800	3.3			
CV7100	0.055 +	0.03	250	500	3.9			
CV7101		0.045	250	500	4.3			
CV7102		0.06	150	300	4.7			
CV7103	+0.005 +	0.075	150	300	5.6			
CV7104	+0.02 +	0.085	100	200	6.2			
CV7105	+0.035 +	0.095	100	` 200				
CV7142		0.095	50	200	6.8			
CV7143		0.1	50		7.5			
CV7144		0.1	20	200 200	8.2			
CV7145		0.11			9.1			
CV/145	10.04	0.11	20	200	10.0			
CV7146	+0.04 +	0.11	20	200	11.0			
CV7106	+0.04 +	0.11	20	200	12.0			

^{*} T_{amb} = 25 to 60 °C; t_p = 300 μ s; $\delta \le 2\%$.

Fig.2 Maximum allowable power dissipation versus ambient temperature.

VOLTAGE REFERENCE DIODES

VOLTAGE REFERENCE DIODES

The BZV10 to 14 are temperature compensated voltage reference diodes in a DO-34 envelope. They are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA

			min. nom. ma	x.
Reference voltage at $I_Z = 2.0 \text{ mA}$		v_{ref}	6,175 6,5 6,82	 5 V
Temperature coefficient at I ₇ = 2,0 mA			, ,	
(see notes 1 and 2 on page 3 and	BZV10	$ S_Z $	< 0,01	%/K
the graph on page 4)	BZV11	SZ	< 0,005	%/K
	BZV12	ISZI	< 0,002	%/K
	BZV13	SZ	< 0,001	%/K
	BZV14	SZI	< 0,0005	%/K
Operating ambient temperature		T _{amb}	0 to + 70	oC

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

The diodes are type-branded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)	۱z	max.	50 mA
Working current (peak value)	ZM	max.	50 mA
Total power dissipation up to T _{amb} = 50 °C	P _{tot}	max.	400 mW
Storage temperature	T_{stg}	65	to +200 °C
Operating ambient temperature	T _{amb}	() to +70 °C

THERMAL RESISTANCE

From junction to ambient in free air

R_{th j-a} 0,375 K/mW

CHARACTERISTICS

CHARACTERISTICS						
T _{amb} = 25 °C unless otherwise specified		_	min.	nom.	max.	_
Reference voltage at I _Z = 2,0 mA		V_{ref}	6,175	6,5	6,825	٧
Reference voltage excursion at IZ = 2,0 mA*				ı	1	
Ambient temperature test points:	BZV10	j∆V _{ref} ∣	<	46,0		m٧
0; +25 °C and +70 °C	BZV11	$ \Delta V_{ref} $	i <	23,0		m۷
(see notes 1 and 2 on the next page)	BZV12	ΔV _{ref}	j <	9,0		m۷
	BZV13	$ \Delta V_{ref} $	۱ <	4,6		m۷
	BZV14	$ \Delta V_{ref} $	<	2,3		m۷
Temperature coefficient at Iz = 2,0 mA*						
(see notes 1 and 2 on the next page)	BZV10	S _Z	<	± 0,01		%/I
	BZV11	SZ	<	± 0,00!	5	%/I
	BZV12	(SZ)	<	± 0,002	2	%/I
	BZV13	SZ	<	± 0,00°	1	%/I
	BZV14	S _Z	<	± 0,000)5	%/I
Differential resistance at I _Z = 2,0 mA		^r diff	typ.	30 50		Ω

May 1982

^{*} For accuracy of IZ see Fig. 3.

Notes

I_Z tolerance and stability of I_Z.

The quoted values of ΔV_{ref} are based on a constant current I_Z. Two factors can cause V_{ref} to change, namely the differential resistance r_{diff} and the temperature coefficient S_Z.

- a. As the max. r_{diff} of the device can be 50 Ω , a change of 0,01 mA in the current through the reference diode will result in a ΔV_{ref} of 0,01 mA x 50 Ω = 0,5 mV. This level of ΔV_{ref} is not significant on a BZV10 ($\Delta V_{ref} <$ 46 mV), it is however very significant on a BZV14 ($\Delta V_{ref} <$ 2,3 mV).
- b. The temperature coefficient of the reference voltage S_Z is a function of I_Z. Reference diodes are classified at the specified test current and the S_Z of the reference diode will be different at the different levels of I_Z. The absolute value of I_Z is important, however, the stability of I_Z, once the level has been set, is far more significant. This applies particularly to the BZV13 and BZV14. The effect of I_Z stability on S_Z is shown in Fig. 3.
- 2. Voltage excursion (ΔV_{ref} and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion (ΔV_{ref}) over the specified temperature range, at the specified test current (I_Z), verified by tests at indicated temperature points within the range. V_Z is measured and recorded at each temperature specified. The ΔV_{ref} between the highest and lowest values must not exceed the maximum ΔV_{ref} given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$S_Z = \frac{(V_{ref1} - V_{ref2}) \times 100}{(T_{amb2} - T_{amb1}) \times V_{refnom}} \%/K.$$

Fig. 2 Typical values differential resistance.

Fig. 3 Typical change of temperature coefficient.

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a whiskerless glass envelope. They have a very low temperature coefficient and are primarily intended for use as reference sources.

QUICK REFERENCE DATA

			min.	typ.	max	
Reference voltage at $I_Z = 7.5 \text{ mA}$		v_{ref}	6,2	6,5	6,8	V
Temperature coefficient at $I_Z = 7.5 \text{ mA}$ *	BZX90: BZX91: BZX92: BZX93: BZX94:	S _Z S _Z S _Z S _Z	< < < < < < < <	0,01 0,005 0,002 0,001 0,0005		%/°C %/°C %/°C %/°C
Operating ambient temperature		T _{amb}	-55	to + 100		οС

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

The diodes are type-branded.

^{*} For accuracy of IZ see graphs on page 5.

1

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

۱z	max. 50	mA
¹ ZM	max. 50	mΑ
P_{tot}	max. 400	mW
T_{stg}	-65 to +200	oC
T _{amb}	-55 to $+100$	oC
	I _{ZM} P _{tot} T _{stg}	I _{ZM} max. 50 P _{tot} max. 400 T _{stg} -65 to +200

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 0.4$ oC/mW

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

dilib					
			min.	nom. r	nax.
Reference voltage at $I_Z = 7.5 \text{ mA}$		V_{ref}	6,2	6,5	5,8 V
Reference voltage excursion at $I_Z = 7.5$ mA *					
$T_{amb} = -55 \text{ to} + 100 ^{\circ}\text{C}$	BZX90:	$ \Delta V_{ref} $	<	100	mV
ums	BZX91:	$ \Delta V_{ref} $	<	50	mV
	BZX92:	$ \Delta V_{ref} $	<	20	mV
	BZX93:	ΔV_{ref}	<	10	mV
	BZX94:	$ \Delta V_{ref} $	<	5	mV
Temperature coefficient at I _Z = 7,5 mA *					
$T_{amb} = -55 \text{ to} + 100 {}^{\circ}\text{C}$	BZX90:	S _Z	<	0,01	%/°C
diffs	BZX91:	S <mark>Z</mark>	<	0,005	%/ºC
	BZX92:	S _Z	<	0,002	%/ºC
	BZX93:	SZ	<	0,001	%/°C
	BZX94:	S <mark>Z</mark>	<	0,0005	%/°C
Differential resistance at IZ = 7,5 mA		^r diff	<	15	Ω

NOTE

The temperature coefficient (S_Z) of the reference voltage (V_{ref}) is obtained from the following equation:

$$S_Z = \frac{V_{ref1} - V_{ref2}}{(T_{amb2} - T_{amb1}) \times V_{refnom}} \times 100 \%^{\circ}C$$

^{*} For accuracy of IZ see graphs on page 5.

Fig. 2.

Fig. 4.

Fig. 7.

5,0

6,0

VR(V)

2,0

1,0

4,0

3,0

0

Fig. 8 Max. ΔV_{ref} (mV) (referenced to I_Z = 7,5 mA).

Fig. 10.

VOLTAGE REFERENCE DIODES

Voltage reference diodes in a DO-34 envelope. They have a very low temperature coefficient and are primarily intended for use as voltage reference sources in measuring instruments such as digital voltmeters.

QUICK REFERENCE DATA

			min.	nom. max.	
Reference voltage at I _Z = 7,5 mA		v_{ref}	5,89	6,20 6,51	٧
Effective temperature coefficient at I _Z = 7,5 mA*					
(see notes 1 and 2 on page 3 and the graphs on pages 4 and 5)	1N821	SZ	<	0,01	%/K
	1N823	IS _Z	<	0,005	%/K
	1N825	SZ	<	0,002	%/K
	1N827	S _Z	<	0,001	%/K
	1N829	SZ	<	0,0005	%/K
Operating ambient temperature		T_{amb}		-55 to + 100	oC

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band

The diodes are type-branded.

^{*} For accuracy of IZ see graphs on pages 4 and 5.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Working current (d.c.)	ΙZ	max.	50	mΑ
Working current (peak value)	IZM	max.	50	mΑ
Total power dissipation up to T _{amb} = 50 °C	P_{tot}	max.	400	mW
Storage temperature	T_{stg}	65 to ⁻	- 200	oC
Operating ambient temperature	T _{amb}	55 to -	100	oC

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 0.375 \text{ K/mW}$

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

j ·					
			min.	nom. max.	
Reference voltage at I _Z = 7,5 mA		V_{ref}	5,89	6,20 6,51	٧
Reference voltage excursion at I_Z = 7,5 mA* ambient temperature test points: -55; +25; +75; +100 °C (see notes 1 and 2 on page 3 and the graphs on pages 4 and 5)	1N821 1N823 1N825 1N827	ΔV _{ref}	< < < < < < < < < < < < < < < < < < <	48 19	mV mV mV
	1N829	$ \Delta V_{ref} $	<	5	mV
Effective temperature coefficient at I _Z = 7,5 mA* (see notes 1 and 2 on page 3 and the graphs on pages 4 and 5)	1N821 1N823 1N825 1N827 1N829	S _Z S _Z S _Z S _Z	< < < < < < < <	0,01 0,005 0,002 0,001 0,0005	%/K %/K
Differential resistance at I _Z = 7,5 mA 1N821 to 1N829		^r diff	<	15	Ω

 $^{^{\}ast}~$ For accuracy of IZ see graphs on pages 4 and 5.

Notes

1. IZ tolerance and stability of IZ.

The quoted values of ΔV_{ref} are based on a constant current I_Z. Two factors can cause V_{ref} to change, namely the differential resistance r_{diff} and the temperature coefficient S_Z.

- a. As the max. r_{diff} of the device can be 15 Ω , a change of 0,01 mA in the current through the reference diode will result in a ΔV_{ref} of 0,01 mA x 15 Ω = 0,15 mV. This level of ΔV_{ref} is not significant on a 1N821 (ΔV_{ref} < 96 mV), it is however very significant on a 1N829 (ΔV_{ref} < 5 mV).
- b. The temperature coefficient of the reference voltage S_Z is a function of I_Z . Reference diodes are classified at the specified test current and the S_Z of the reference diode will be different at different levels of I_Z . The absolute value of I_Z is important, however, the stability of I_Z , once the level has been set, is far more significant. This applies particularly to the 1N829. The effect of I_Z stability on S_Z is shown in the graph on page 5.
- 2. Voltage excursion (ΔV_{ref} and temperature coefficient).

All reference diodes are characterized by the 'box method'. This guarantees a maximum voltage excursion (ΔV_{ref}) over the specified temperature range, at the specified test current (I_Z), verified by tests at indicated temperature points within the range. V_Z is measured and recorded at each temperature specified. The ΔV_{ref} between the highest and lowest values must not exceed the maximum ΔV_{ref} given. The temperature coefficient, therefore is given only as a reference; but may be derived from:

$$S_Z = \frac{(V_{ref 1} - V_{ref 2}) \times 100}{(T_{amb 2} - T_{amb 1}) \times V_{ref nom}} \%/K$$

Maximum reference voltage variation (line section) caused by temperature variations within the range from $-55\,^{\circ}\text{C}$ to $+\,100\,^{\circ}\text{C}$ at a constant working current of 7,5 mA. The voltage variations may shift horizontally within the shaded area. The zero point may vary from 5890 mV to 6510 mV and differs from diode to diode.

RECTIFIER DIODES (Low power)

PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY438	BY228	
Repetitive peak reverse voltage	V_{RRM}	max.	1200	1500	٧
Working peak forward current	^I FWM	max.		5	Α
Repetitive peak forward current	FRM	max.		10	Α
Total reverse recovery time	t _{tot}	<		20	μs

MECHANICAL DATA

Fig. 1 SOD-64.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type branded.

RATINGS

Limiting values in accordance with the Absolute Max	imum System	(IEC 134)		
Non-repetitive peak reverse voltage			BY438	BY228
during flashover of picture tube	VRSM	max.	1300	1650 V
Repetitive peak reverse voltage	VRRM	max.	1200	1500 ∨
Working reverse voltage	$v_{\sf RW}$	max.	1200	1500 V
Working peak forward current		IFWM	max.	5 A
Repetitive peak forward current		IFRM	max.	10 A
Non-repetitive peak forward current t = 10 ms; half sine-wave; T _i = 140 °C				
prior to surge; with reapplied V _{RWmax}		IFSM	max.	50 A
Storage temperature		Teta	-65	to +175 °C

 T_i

Rth j-tp

Rth i-a

THERMAL RESISTANCE

Junction temperature

Influence of mounted method

- Thermal resistance from junction to tie-point at a lead length of 10 mm
 - 2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu-thickness ≥ 40 µm; Fig. 2

Fig. 2.

CHARACTERISTICS

Forward voltage *			
I _F = 5 A; T _j = 25 °C	٧ _F	<	1,5 V*
Reverse current			
$V_R = V_{RWmax}$; $T_j = 140 {}^{\circ}C$	I _R	<	200 μΑ
Total reverse recovery time when switched from $I_F = 1 A$; $-dI_F/dt = 0.05 A/\mu s$; $T_j = 140 ^{\circ}C$	t _{tot}	<	20 μs
Forward recovery time when switched to $I_F = 5 \text{ A}$ with $t_r = 0.1 \mu \text{s}$; $T_j = 140 ^{\circ}\text{C}$	t _{fr}	<	1 μs

^{*} Measured under pulse conditions to avoid excessive dissipation.

140 °C

25 K/W

75 K/W

max.

Fig. 3 Definition of ttot.

Fig. 4 Definition of tfr.

Fig. 5 — $T_j = 25 \, ^{\circ}\text{C}$; --- $T_j = 140 \, ^{\circ}\text{C}$.

Fig. 6 P_{tot} = power dissipation including switching losses:
——— 819 lines; ——— 625 lines;

S.R.T. = self regulating time-base circuit;

normal = conventional deflection circuit or high-voltage E--W modulator circuit;

 $I_{\mbox{FWM}}$ is the nominal diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.

Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal IFWM; 25% safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

Fig.8 Basic conventional horizontal deflection circuit. D1 = BY228 or BY438.

Fig.9 Basic high-voltage E-W modulator circuit. D1 = BY228 or BY438.

Fig. 10 Basic self-regulating time base circuit (S.R.T.). D1 = BY228 or BY438.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 11 Thermal model. $R_{th j-e} = 12 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	K/W
R _{th e-a}	410	300	230	185	155	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{\mbox{\scriptsize th}\mbox{\scriptsize tp-a}}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm 2 per lead R $_{
 m th}$ tp-a is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm 2 per lead R $_{th\ tp-a}$ is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

	7.5°

PARALLEL EFFICIENCY DIODES

Double-diffused passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, intended for use as efficiency diodes in transistorized horizontal deflection circuits and PPS (power-pack system) circuits of television receivers. The devices feature high reverse voltage capability with controlled recovery time.

QUICK REFERENCE DATA

			BY458	E	3Y448	
Repetitive peak reverse voltage	VRRM	max.	1200		1500	٧
Working peak forward current	^I FWM	max.		4		Α
Repetitive peak forward current	[†] FRM	max.		8		Α
Total reverse recovery time	t _{tot}	<	2	0		μs

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting value in accordance with the Absolute Maximum System (IEC 134)

		BY458	В	Y448
Non-repetitive peak reverse voltage during flashover of picture tube	V _{RSM}	max. 1300		1650 V
Repetitive peak reverse voltage	v_{RRM}	max. 1200		1500 V
Working peak forward current	^I FWM	max.	4	Α
Repetitive peak forward current	IFRM	max.	8	Α
Non-repetitive peak forward current t = 10 ms; half sine-wave; T _i = 140 °C				
prior to surge; with reapplied VRRMmax	¹ FSM	max.	30	Α
Storage temperature	, T _{stg}	65 to +	175	oC
Operating junction temperature	Τ _j	max.	140	oC

THERMAL RESISTANCE

Influence of mounting method (see also OPERATING NOTES and Fig. 11)

The quoted value of Rth i-a should be used only when no leads of other dissipating components run to the same tie-points.

Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printedcircuit board; Cu-thickness ≥ 40 µm; Fig. 2

R_{th j-a}

100 °C/W

MOUNTING AND SOLDERING NOTES

Introduction

Excessive forces or temperatures applied to a diode may cause serious damage to the diode. To avoid damage when soldering and mounting, the following rules have to be followed.

Bending

2

During bending, the leads must be supported between body and bending point. Axial forces on the body during the bending process must not exceed 50 N. Perpendicular force on the body must be avoided as much as possible, however, if present, it shall not exceed 10 N. Bending the leads through 900 is allowed at any distance from the studs when it is possible to support the leads during the bending without contacting envelope or solder joints.

Twisting

Twisting the leads is allowed at any distance from the body if the lead is properly clamped between stud and twisting point. Without clamping, twisting is allowed only at a distance > 5 mm from the studs, the torque-angle must not exceed 30°.

Soldering

The minimum distance of soldering point to stud is 2 mm, the maximum allowed solder temperature is 300 °C, and the soldering time must not be longer than 10 seconds.

Prevent fast cooling after soldering.

When the device has to be mounted with straight or short-cropped leads, the leads should be soldered individually; bent leads may be soldered simultaneously. Do not correct the position of an already soldered device by pushing, pulling or twisting the body.

CHARACTERISTICS

Forward voltage			
$I_F = 3 \text{ A}; T_j = 25 ^{\circ}\text{C}$	٧F	<	1,6 V*
Reverse current			
$V_R = V_{RRMmax}; T_j = 140 ^{\circ}C$	I _R	<	200 μΑ
Total reverse recovery time when switched from			
$I_F = 1 \text{ A}; -dI_F/dt = 0.05 \text{ A}/\mu\text{s}; T_j = 140 ^{\circ}\text{C}$	t _{tot}	<	20 μs

Fig. 3 Definition of ttot.

^{*} Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Forward recovery time when switched to $I_F = 4$ A with $t_r = 0.1 \mu s$; $T_i = 140 \, ^{\circ}\text{C}$

Fig. 4 Definition of t_{fr} .

Fig. 5 — $T_j = 25 \, {}^{\circ}\text{C}; --- T_j = 140 \, {}^{\circ}\text{C}.$

<

tfr

1 μs

Fig. 6 P_{tot} = maximum power dissipation including switching losses; - - - 819 lines; —— 625 lines; S.R.T. = self regulating time-base circuit; normal = conventional deflection circuit or high-voltage E-W modulator circuit; I_{FWM} = the **nominal** peak diode current, for tolerances and spreads 25% safety margin is taken into account.

APPLICATION INFORMATION

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads, in order not to exceed any Absolute Maximum Rating.

Extensive analysis have shown that for the working peak forward current and reverse voltage the total allowance need not to be higher than 25%. For that reason the dissipation graph (Fig. 6) is based on the nominal IFWM; 25% safety margin for tolerance and spreads is taken into account.

Fig. 7 Basic waveforms.

Fig. 8 Basic conventional horizontal deflection circuit.

APPLICATION INFORMATION (continued)

Fig. 9 Basic high-voltage E-W modulator circuit.

Fig. 10 Basic self-regulating time base circuit (S.R.T.).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 11.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	°C/W
R _{th e-a}	580	445	350	290	245	

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounting similar to method given on page 2: $R_{th tp-a} = 70 \text{ }^{\circ}\text{C/W}$.
- 2. Mounted on a printed-circuit board with a copper laminate (per lead) of:

$$1 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 55 \text{ oC/W}.$$

$$2,25 \text{ cm}^2 \text{ R}_{\text{th tp-a}} = 45 \text{ °C/W}.$$

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODES

E.H.T. rectifier diodes in plastic envelopes intended for high-voltage multipliers and for use in tiny vision black-and-white television receivers. Because of the smallness of the envelope, the diodes should be potted when used at voltages above 9 kV, see page 3.

QUICK REFERENCE DATA

Working reverse voltage	V _{RW}	max	16 kV
Repetitive peak reverse voltage	VRRM	max	18 kV
Average forward current	^I F(AV)	max	2,5 mA
Junction temperature	т	max	100 °C
Reverse recovery			
Recovery charge	Q_{s}	typ	2,5 nC
Recovery time	t _{rr}	typ	0,4 μs

MECHANICAL DATA

SOD-56

Dimensions in mm

Available for current production only; not recommended for new designs.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Vol	tages
-----	-------

Working reverse voltage	v_{RW}	max	16 kV
Repetitive peak reverse voltage	v_{RRM}	max	18 kV
Non-repetitive peak reverse voltage ($t \le 10 \text{ ms}$)	V RSM	max	21 kV

Currents

Average forward current (averaged			
over any 20 ms period)	IF(AV)	max	2,5 mA
Repetitive peak forward current	IFRM	max	500 mA *

Temperatures

Storage temperature	T_{stg}	−65 to	+100 °C
Junction temperature	T_{j}	max	100 °C

CHARACTERISTICS

Forward voltage at $I_F = 100 \text{ mA}$; $T_j = 100 \text{ °C}$	٧F	<	44 V
Reverse current at V _R = 15 kV; T _i = 100 °C	I _R	<	5 μΑ

Reverse recovery when switched from

^{*} The rectifier can withstand peak currents occurring at flashover in the picture tube.

When used at voltages above 9 kV diode should be potted in such a way that $R_{th\ j-a}$ is less than 120 °C/W.

Typical operating circuit

Typical applied voltage

Dimensions in mm

SILICON E.H.T. SOFT-RECOVERY RECTIFIER DIODE

E.H.T. rectifier diode in a glass envelope intended for use in high-voltage applications such as multipliers, e.g. tripler circuits. The device features non-snap-off characteristics. Because of the smallness of the envelope, the diodes should be used in a suitable insulating medium (resin, oil or special arrangements in test-cases).

QUICK REFERENCE DATA

Working reverse voltage	v_{RW}	max.	11,5 kV	
Repetitive peak reverse voltage	v_{RRM}	max.	15 kV -	-
Average forward current	^I F(AV)	max.	4 mA	
Junction temperature	Τį	max.	120 °C	
Reverse recovery charge	Ω_{s}	<	1 nC	
Reverse recovery time	t _{rr}	typ.	0,2 μs	

MECHANICAL DATA

Fig. 1 SOD-61.

L = min. 29; G = max. 8,2.

The cathode is indicated by a purple band on the lead.

Limiting values in accordance with the Absolute Maximum System (IEC 134). Working reverse voltage 11,5 kV V_{RW} max. 12,5 kV Repetitive peak reverse voltage **VRRM** max. Repetitive peak reverse voltage; t = 1 min; T_{amb} = 25 °C 15 kV VRRM max. Non-repetitive peak reverse voltage; t ≤ 10 ms **VRSM** 15 kV max. Average forward current (averaged over any 20 ms period) 4 mA max. IF(AV) Repetitive peak forward current 500 mA* max. **IFRM** Storage temperature -65 to +120 °C Tsta Junction temperature 120 °C Τį max. **CHARACTERISTICS** Forward voltage $I_F = 100 \text{ mA}; T_i = 120 \text{ }^{\circ}\text{C}$ 43 V** ٧F < Reverse current 3 µA $V_R = 11,5 \text{ kV}; T_i = 120 \text{ }^{\circ}\text{C}$ l_R <

Q,

t_{rr}

<

typ.

1 nC

 $0.2 \mu s$

0,1 μs

Fig. 2 Definitions of O_s , t_{rr} and t_f .

Reverse recovery when switched from IF = 100 mA to $V_R \ge 100 V$ with $-dI_F/dt = 200 mA/\mu s$; $T_i = 25 \, ^{OC}$

recovery charge

recovery time

fall time

^{*} The device can withstand peak currents occurring at flashover in the picture tube.

^{**} Measured under pulse conditions to avoid excessive dissipation.

Fig. 3 Maximum permissible average forward current as a function of ambient temperature. $V_R = V_{RWmax}$. The device should be mounted in such a way that $R_{th\ j-a} \leqslant 120\ ^{\circ}\text{C/W}$.

Fig. 4 Typical operation circuit.

Fig. 5 Typical applied voltage.

Fig. 6 $T_j = 25$ °C; --- $T_j = 120$ °C.

Dimensions in mm

HIGH VOLTAGE SOFT RECOVERY RECTIFIER DIODE

Glass-passivated rectifier diode in hermetically sealed axial-lead glass envelope. For high voltage applications such as grid 2 supply in colour television picture tubes and as general purpose rectifiers for high frequencies. The diode has non-snap-off characteristics.

QUICK REFERENCE DATA

Working reverse voltage	∨ _{RW}	max.	1500 V
Repetitive peak reverse voltage	VRRM	max.	1800 V
Average forward current	I _F (AV)	max.	85 mA
Repetitive peak forward current	^I FRM	max.	800 mA
Junction temperature	T _i	max.	120 °C
Reverse recovery charge	oʻ _s	<	1,0 nC

MECHANICAL DATA

Fig. 1 SOD-61A.

G = max. 4,9; L = min. 32,5.

The cathode is indicated by a black band on the lead. Diodes are type branded.

Limiting values in accordance with the Absolute Maximum System (IEC 134). 1500 V VRW max. Working reverse voltage 1800 V **VRRM** max. Repetitive peak reverse voltage 1800 V **VRSM** max. Non-repetitive peak reverse voltage Average forward current (averaged over any 20 ms) 85 mA max. T_{tp} = 25 °C; lead length = 10 mm F(AV) 50 mA F(AV) max. Tamb = 60 °C; p.c.b. mounting see Fig. 2 800 mA max. FRM Repetitive peak forward current Non-repetitive peak forward current t < 10 ms, half sinewave, 5 A ^IFSM max. $T_i = T_{i \text{ max}}$ prior to surge -65 to +120 °C T_{sta} Storage temperature 120 °C Τį max.

THERMAL RESISTANCE

Junction temperature

From junction to ambient when mounted on a 1.5 mm thick epoxy-glass p.c.b.; Cu-thickness > 40 μ m; see Fig. 2

CHARACTERISTICS Forward voltage *

 $I_F = 100 \text{ mÅ}; T_i = 120 \text{ °C}$ Reverse current

V_R = V_{RW}; T_i = 120 °C Reverse recovery when switched from

 $I_F = 100 \text{ mA to } V_R > 100 \text{ V with}$ $-dI_F/dt = 200 \text{ mA/}\mu\text{s}$; $T_i = 25 \text{ }^{\circ}\text{C}$

recovery charge recovery time fall time

Fig. 2 Device mounted on a

Rth j-a

٧F

۱R

 Q_s

trr

tf

155 K/W

8.5 V

<

typ.

3 μΑ

1 nC

0.2 µs

 $0.1 \mu s$

Fig. 3 Definitions of Q_s , t_{rr} and t_f .

Measured under pulse conditions to avoid excessive dissipation.

Fig. 4 Maximum permissible average forward current as a function of the ambient temperature; $V_R = V_{RW\ max}$: a = 1,42, mounting Fig. 2.

Fig. 6 Steady state power dissipation (forward plus leakage current but excluding switching losses) as a function of average forward current.

$$a = I_F(RMS)/I_F(AV); V_R = V_{RW max}; \delta = 0.5.$$

Fig. 5 --- $T_j = 25 \, ^{\circ}\text{C}$; --- $T_j = 120 \, ^{\circ}\text{C}$.

Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

$$a = 1,42; V_R = V_{RW max}; \delta = 0,5*.$$

^{*} Figs 4 and 7 apply to switched mode application.

APPLICATION INFORMATION

Fig. 8 Basic circuit for voltage supply of grid 2 incolour television picture tubes. D₁ = BY584. Stable continuous operation is ensured at an ambient temperature up to 70 $^{\rm OC}$.

Fig. 9 Waveform.

Fig. 10 Maximum permissible average forward current as a function of ambient temperature. $V_B = 1500 \ V$; diode used in circuit Fig. 8 mounted as in Fig. 2.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 11 Thermal model. $R_{th j-e} = 35 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	38 750	76	114	152	190	K/W
R _{th e-a}	750	560	410	330	280	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{th\ tp-a}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead R_{th tp-a} is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 6) and the above thermal model.

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		BYV2	7-50	100	150	200
Repetitive peak reverse voltage	v_{RRM}	max.	50	100	150	200 V
Continuous reverse voltage	v _R	max.	50	100	150	200 V
Average forward current	I _F (AV)	max.	_		2	A
Non-repetitive peak reverse energy	ERSM	max.		4)	mJ
Reverse recovery time	t _{rr}	<		2	5	ns

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYV2	7-50 100 150 2	200
Repetitive peak reverse voltage	v_{RRM}	max.	50 100 150 2	200 V
Continuous reverse voltage	v_R	max.	50 100 150 2	200 V
Average forward current (switching losses negligible up to 200 kHz) square wave; $\delta = 0.5$				
T _{tp} = 85 ^o C; lead length = 10 mm T _{amb} = 60 ^o C; Fig. 2	lf(AV) lf(AV)	max. max.	2 1,3	A A
Repetitive peak forward current	IFRM	max.	15	Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_{j max}$ prior to surge; with reapplied V_{RRM}	I _{FSM}	max.	50	Α
Non-repetitive peak reverse avalanche energy; I p = 600 mA; prior to surge; with inductive load switched off:				
at $T_j = 25$ °C	ERSM	max.	40 20	mJ mJ
at $T_j = T_{j \text{ max}}$	ERSM	max.		oC
Storage temperature	T_{stg}		-65 to +175	_
Junction temperature	T_{j}	max.	175	оС
THERMAL RESISTANCE				
Influence of mounting method				
 Thermal resistance from junction to tie-point at a lead length of 10 mm 	R _{th j-tp}	=	46	K/W
Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board;				
Cu-thickness ≥ 40 μm; Fig. 2	R _{th j-a}	=	100	K/W

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

•		BYV27-5	0	100	150	200	
Reverse avalanche breakdown voltage			П				
$I_R = 0.1 \text{ mA}$	$V_{(BR)R}$	5	5	110	165	220	٧
Forward voltage*		_					
$I_F = 3 A; T_j = T_{j max}$	٧ _F	<		0,	88		V
I _F = 3 A	V_{F}	<		1,	07		V
Reverse current							
$V_R = V_{RRMmax}$; $T_j = 25 {}^{\circ}\text{C}$ $V_R = V_{RRMmax}$; $T_j = 165 {}^{\circ}\text{C}$	I _R	<			1		μΑ
$V_R = V_{RRMmax}$; $T_j = 165$ °C	^I R	<		1	50		μΑ
Reverse recovery time when switched from							
$I_F = 0.5 A$ to $I_R = 1 A$; measured at $I_R = 0.25 A$	t _{rr}	<			25		ns
for definition see Figs 3 and 4							

Fig. 3 Test circuit. Input impedance oscilloscope 1 M Ω ; 22 pF. Rise time \leq 7 ns. Source impedance 50 Ω . Rise time \leq 15 ns.

* Measured under pulse conditions to avoid excessive dissipation.

Reverse recovery when switched from $I_F = 1$ A to $V_R \geqslant 30$ V with $-dI_F/dt = 20$ A/ μ s (see Fig. 5) recovered charge recovery time

Fig. 5 Definitions of t_{rr} and Q_s .

Fig. 6 Forward current as a function of the maximum forward voltage.

Fig. 7 a = $I_F(RMS)/I_F(AV)$; $V_R = V_RRMmax$ -Pulsed reverse voltage; $\delta = 0.5$. (Including reverse current losses and switching losses up to f = 200 kHz).

Fig. 8 Maximum average forward current. The curves include losses due to reverse current and switching up to f = 200 kHz. Pulsed reverse voltage, δ = 0,5. $V_R = V_R RMmax$. Square wave current, a = 1,42.

Fig. 9 Maximum average forward current. The curve includes losses due to reverse current and switching up to f=200~kHz. Mounting method see Fig. 2. Pulsed reverse voltage, $\delta=0.5~V_R=V_RRMmax$. Square wave current, a=1,42.

Fig. 10 Maximum values reverse recovery charge. For definition see Fig. 5.

Fig. 11 Maximum values reverse recovery time. For definition see Fig. 5.

Fig. 12 Typical values diode capacitance at f = 1 MHz; T_j = 25 °C.

Fig. 13 Maximum values reverse current.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 14 Thermal model.

By using this thermal model and the dissipation graph (Fig. 7) any temperature can be calculated.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

	lead length					
thermal resistance	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	K/W
R _{th e-a}	580	445	350	290	245	K/W

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m:

- 1. Mounted as given in Fig. 2 the thermal resistance $\rm R_{th\,tp\text{-}a}$ is 70 K/W .
- 2. Mounted with copper laminate of 1 cm 2 per lead R $_{th\ tp\text{-}a}$ is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm 2 per lead R $_{th\ tp-a}$ is 45 K/W.

EPITAXIAL AVALANCHE DIODES

Glass passivated epitaxial rectifier diodes in hermetically sealed axial-leaded glass envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general in high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		BYV28	-50	100	150	200
Repetitive peak reverse voltage	v_{RRM}	max.	50	100	150	200 V
Continuous reverse voltage	v_R	max.	50	100	150	200 V
Average forward current	lF(AV)	max.		3,	— А	
Non-repetitive peak reverse energy	ERSM	max.		4	0	mJ
Reverse recovery time	t _{rr}	<	30			ns

MECHANICAL DATA

Fig. 1 SOD-64.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYV2	8-50	100	150	200	
Repetitive peak reverse voltage	V_{RRM}	max.	50	100	150	200	٧
Continuous reverse voltage	v_R	max.	50	100	150	200	V
Average forward current (averaged over any 20 ms period)							
$T_{tp} = 85$ °C; lead length = 10 mm $T_{amb} = 60$ °C; p.c.b. mounting (see Fig. 2)	lF(AV)	max. max.			3,5 1,9		A A
Repetitive peak forward current	IFRM	max.			25		Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_{j \text{ max}}$ prior to surge; with reapplied V_{RRM}	I _{FSM}	max.			90		Α
Non-repetitive peak reverse avalanche energy; I _R = 600 mA; with inductive load switched off							
prior to surge; $T_j = 25$ °C prior to surge; $T_i = T_{i \text{ max}}$	E _{RSM} E _{RSM}	max. max.			40 20		mJ mJ
Storage temperature	T _{stg}		-65 to +175				oC
Junction temperature	Tj	max.	175				oC
THERMAL RESISTANCE							
Influence of mounting method							
Thermal resistance from junction to tie-point at a lead length of 10 mm	R _{th j-tp}	=			25		K/W
Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board;							
Cu-thickness $\geq 40 \ \mu \text{m}$; Fig. 2	R _{th j-a}	=			75		K/W

Fig. 2 Mounted on a printed-circuit board.

2

BYV28-50 | 100 | 150 | 200

CHARACTERISTICS

T_i = 25 °C, unless otherwise specified

Reverse avalanche breakdown voltage		D 1 V 2	-0 50	100		200	
I _R = 0,1 mA	V _{(BR)R}	>	55	110	165	220 \	V
Forward voltage*			-				
I _F = 5 A;	٧ _F	<		1,	10	١	V
$I_F = 5 A; T_j = T_{j max}$	٧F	<		0,	89	V	
Reverse current							
$V_R = V_{RRMmax}$; $T_j = 25 {}^{\circ}C$	۱ _R	<			1	Į.	uΑ
$V_R = V_{RRMmax}$; $T_j = 165 {}^{\circ}C$	1 _R	<		1:	50	4	uА
Reverse recovery time when switched from							
$I_F = 0.5 A \text{ to } I_R = 1 A; \text{ measured at}$							
$I_R = 0.25 A$ for definition see							
Figs 3 and 4	t _{rr}	<			30	r	ns

Fig. 3 Test circuit. Input impedance oscilloscope 1 M Ω ; 22 pF; Rise time \leq 7 ns. Source impedance 50 Ω . Rise time \leq 15 ns.

Fig. 4 Reverse recovery time characteristic.

^{*} Measured under pulse conditions to avoid excessive dissipation.

Reverse recovery when switched from $I_F = 1 \text{ A to V}_R \ge 30 \text{ V with}$ $-dI_F/dt = 20 \text{ A}/\mu\text{s}$ (see Fig. 5) recovered charge recovery time

Fig. 5 Definitions of t_{rr} and Q_s .

Fig. 7 Power dissipation (forward plus leakage current) as a function of the average forward current. Pulsed reverse voltage; $\delta = 50\%$. a = IF(RMS)/IF(AV); VR = VRRMmax.

Fig. 6 Forward current as a function of the maximum forward voltage.

Fig. 8 Reverse current as a function of the junction temperature

Fig. 9 Maximum average forward current. The curves include losses due to reverse current and switching up to f = 200 kHz. Pulsed reverse voltage; $\delta = 0.5 \text{ V}_R = \text{V}_RRM \text{ max}$ Square-wave current; a = 1,42.

Fig. 10 Maximum average forward current. The curve includes losses due to reverse current and switching up to f = 200 kHz; mounting method

see Fig. 2. Pulsed reverse voltage; δ = 0,5 V_R = V_RRM max-Square-wave current; a = 1,42.

Fig. 11 Typical values diode capacitance at f = 1 MHz. T_j = 25 o C.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 12 Thermal model. $R_{th j-e} = 12 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal	lead length						
resistance 5	10	15	20	25	mm		
R _{th e-tp}	7	14	21	28	35	K/W	
R _{th e-a}	410	300	230	185	155	K/W	

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.
- 2. Mounted with copper laminate of 1 cm 2 per lead R $_{th}$ tp-a is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm 2 per lead R $_{th\ tp-a}$ is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 7) and the above model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYV95A	В	С
Repetitive peak reverse voltage Continuous reverse voltage	V _{RRM} V _R	max.	200 200	400 400	600 V 600 V
Average forward current	l _{F(AV)}	max.		1,5	Α
Non-repetitive peak forward current	^I FSM	max.		35	Α
Non-repetitive peak reverse energy	ERSM	max.		10	mJ
Reverse recovery time	t _{rr}	<		250	ns

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		-,	(,			
			BYV95A	В	С	
Repetitive peak reverse voltage	v_{RRM}	max.	200	400	600	٧
Continuous reverse voltage	v_R	max.	200	400	600	٧
Average forward current (averaged over any 20 ms period)			 ,			
T _{tp} = 65 °C; lead length 10 mm	lF(AV)	max.		1,5		Α
T _{amb} = 65 °C; Fig. 2	^I F(AV)	max.		0,8		Α
Repetitive peak forward current	¹ FRM	max.		10		Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_{j \text{ max}}$ prior to surge; $V_R = V_{RRMmax}$	^I FSM	max.		35		A
Non-repetitive peak reverse avalanche energy; I _R = 400 mA; T _j = T _{j max} prior to surge; with inductive						
load switched off	ERSM	max.		10		mJ
Storage temperature	T_{stg}		65 to	+ 175		oC
Operating junction temperature	T_{j}	max.		175		oC
THERMAL RESISTANCE						
Influence of mounting method						
Thermal resistance from junction to tie-point at a lead length of 10 mm	R _{th j-tp}	=		46		°C/W
 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 	, ,					
Cu-thickness \geq 40 μ m; Fig. 2	R _{th j-a}	=		100		oC/M

Fig. 2 Mounted on a printed-circuit board.

2

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage

I_F = 3 A

I_F = 3 A; T_j = T_{j max}

Reverse avalanche breakdown voltage

I_R = 0,1 mA

Reverse current

 $V_R = V_{RRMmax}$; $T_j = 165 \, ^{\circ}\text{C}$ Reverse recovery when switched from

I_F = 1 A to V_R ≥ 30 V with -dI_F/dt = 20 A/μs recovered charge

recovery time

Maximum slope of reverse recovery current when switched from I_F = 1 A to $V_R \ge 30 \text{ V}$ with $-dI_F/dt = 1 \text{ A}/\mu s$

$$egin{array}{lll} {\rm Q_S} & < & 250 & {
m nC} \\ {
m t_{rr}} & < & 250 & {
m ns} \\ \end{array}$$

 $|dI_R/dt|$ 6 A/ μ s

Fig. 4 Definitions.

^{*} Measured under pulse conditions to avoid excessive dissipation.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application. $a = I_F(RMS)/I_F(AV); V_R = V_RRMmax$

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 7 Maximum slope of reverse recovery current. $T_j = 25$ °C

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2. The graph is for switched-mode application. $V_B = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 9 Reverse current as a function of junction temperature. $V_R = V_{RRM}$.

Fig. 10 Maximum junction temperature as a function of reverse voltage.

Fig. 11 Nomogram: power loss ($\Delta P_{R(AV)}$) due to switching only. To be added to steady state power losses (see also Fig. 4).

Fig. 12 Maximum values (see also Fig. 4).

Fig. 13 Maximum values at $T_i = 25$ °C (see also Fig. 4).

Fig. 14 Maximum values at $T_j = 140$ °C (see also Fig. 4).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 15 Thermal model $R_{th j-e} = 18 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	K/W
R _{th e-a}	580	445	350	2 90	245	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{th\,tp-a}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead R_{thtp-a} is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead R_{thtp-a} is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers in TV receivers, and also for use in inverter and converter applications. The devices feature non-snap-off (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

		BY	V96D	BYV96E
Repetitive peak reverse voltage	v_{RRM}	max. 80	00	1000 V
Continuous reverse voltage	VR	max. 80	00	1000 V
Average forward current	IF(AV)	max.	1,5	Α
Non-repetitive peak forward current	FSM	max.	35	Α
Non-repetitive peak reverse energy	ERSM	max.	10	mJ
Reverse recovery time	^t rr	<	300	ns

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYV96D	BYV96E
Repetitive peak reverse voltage	v_{RRM}	max.	800	1000 V
Continuous reverse voltage	VR	max.	800	1000 V
Average forward current (averaged over any 20 ms period)				
T _{tp} = 55 °C; lead length 10 mm	lF(AV)	max.	1,5	Α
$T_{amb} = 55 ^{\circ}\text{C}$; Fig. 2	F(AV)	max.	0,8	Α
Repetitive peak forward current	FRM	max.	10	Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_{j \text{ max}}$ prior to surge; $V_R = V_{RRM \text{ max}}$	FSM	max.	35	А
Non-repetitive peak reverse avalanche energy; I _R = 400 mA; T _j = T _{j max} prior to surge; with inductive load switched off	Engli	max.	10	mJ
Storage temperature	E _{RSM}	IIIdX.		
	T _{stg}		65 to +	
Operating junction temperature	т _ј	max.	175	oC
THERMAL RESISTANCE				
Influence of mounting method				
1. Thermal resistance from junction to tie-point				

- 1. Thermal resistance from junction to tie-point at a lead length of 10 mm
- 2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu-thickness ≥ 40 μm; Fig. 2

$$R_{th j-a} = 100 \text{ K/W}$$

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage	
$I_F = 3 A$; $T_j = T_{j \text{ max}}$	
Reverse avalanche breakdown voltage I _R = 0,1 mA	
Reverse current	
$V_R = V_{RRM max}$; $T_j = 165 {}^{\circ}\text{C}$	
Reverse recovery when switched from $I_F = 1 \text{ A to V}_R \geqslant 30 \text{ V with}$	

Maximum slope of reverse recovery current

 $-dI_F/dt = 20 A/\mu s$ recovered charge recovery time when switched from I_F = 1 A to $V_R \ge 30 V$; $-dI_F/dt = 1 A/\mu s$

Fig. 4 Definitions of t_{rr} and Q_s .

^{*} Measured under pulse conditions to avoid excessive dissipation.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current. The graph is for switched-mode application.

 $a = I_F(RMS)/I_F(AV); V_R = V_{RRM max}$

Fig. 6 Maximum slope of reverse recovery current. T_i = 25 °C.

Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRM\ max}$; $\delta = 50\%$; a = 1,57.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage.

Mounting method see Fig. 2.

The graph is for switched-mode application. $V_R = V_{RRM\ max}$; $\delta = 50\%$; a = 1,57.

Fig. 9 Reverse current as a function of junction temperature. $V_R = V_R RM_{max}$.

Fig. 10 Maximum values junction temperature.

Fig. 11 Maximum values; $T_j = 25$ °C (see also Fig. 4).

Fig. 12 Maximum values; $T_j = 140$ °C (see also Fig. 4).

Fig. 13 Maximum values (see also Fig. 4).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 14 Thermal model. $R_{th j-e} = 18 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	K/W
	580	445	350	29 0	245	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.
- 2. Mounted with copper laminate of 1 cm² per lead R_{th tp-a} is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm² per lead R_{th tp-a} is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

CONTROLLED AVALANCHE RECTIFIER DIODES

Double-diffused glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes, capable of absorbing reverse transients.

They are intended for rectifier applications in colour television circuits as well as general purpose applications in telephony equipment.

QUICK REFERENCE DATA

			BYW54	BYW55	BYW56	
Crest working reverse voltage	$v_{\sf RWM}$	max.	600	800	1000	V
Reverse avalanche breakdown voltage	V _{(BR)R}	> <	650 1000	900 1300	1100 1600	V V
Average forward current	^I F(AV)	max.	2	2	2	Α
Non-repetitive peak forward current	^I FSM	max.		50		Α
Non-repetitive peak reverse power dissipation	PRSM	max.		1		kW
Junction temperature	T_{j}	max.		165		οС

MECHANICAL DATA

Fig. 1 SOD-57.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

Products approved to CECC 50 008-015 available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BYW54		BYW55	BYW56	
Crest working reverse voltage Continuous reverse voltage (Fig. 9)	∨ _{RWM} ∨ _R	max.	600 600	800 800	1000 1000	V V
Average forward current (averaged over any 20 ms period); T _{tD} = 35 °C; lead length 10 mm	lF(AV)	max.		2		A
T _{amb} = 75 °C; Fig. 2 mounting	IF(AV)	max.		8,0		Α
Repetitive peak forward current	FRM	max.		12		Α
Non-repetitive peak forward current (Figs 7 and 12) $t = 10 \text{ ms}$, half sinewave	IFSM	max.		50		Α
Non-repetitive peak reverse power dissipation (t = 20 μs; half sine-wave); T _j = T _{j max} prior to surge	Prsm	max.		1		kW
Non-repetitive peak reverse avalanche mode pulse energy; $I_R = 1 A$; $T_j = T_j \max_{j \in I_R} \text{ prior to surge; with}$	Enav	max.		20		mJ
inductive load switched off	ERSM ±	max.	.65	to +175		оС
Storage temperature	⊤ _{stg}		-65			oC
Junction temperature	Тj	max.		165		٥,

→ THERMAL RESISTANCE

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm $R_{th\ j-tp} = 46$ K/W

2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu-thickness ≥ 40 µm; Fig. 2 R_{th j-a} = 100 K/W

Fig. 2 Device mounted on a printed circuit board.

CHARACTERISTICS

			BYW54	BYW55	BYW5	3
Forward voltage; T _i = 25 °C *						_
I _F = 1 A	٧ _F	<	1	1	1	V
I _F = 10 A	٧F	<	1,65	1,65	1,65	V
Reverse avalanche breakdown voltage		>	650	900	1100	v
I _R = 0,1 mA; T _j = 25 °C	$V_{(BR)R}$	<	1000	1300	1600	-
Reverse current			•			٧
$V_R = V_{RWM max}; T_j = 25 {}^{\circ}\text{C**}$ $V_R = V_{RWM max}; T_j = 100 {}^{\circ}\text{C}$	I _R	<		1,0		μΑ
$V_R = V_{RWM max}$; $T_j = 100 {}^{\circ}C$	I _R	<		10		μΑ
Reverse recovery charge when switched from I _F = 1 A to V _R \geqslant 30 V with $-dI_F/dt \approx 5 A/\mu s$; $T_i = 25 {}^{\circ}\text{C}$	Q _s	typ.		3		μC
Reverse recovery time when switched from $I_F = 1 \text{ A to } V_R \ge 30 \text{ V}$	•	,.		_		
with $-dI_F/dt = 5 A/\mu s$; $T_j = 25 ^{\circ}C$	t _{rr}	typ.		2,5		μs
Diode capacitance						
$V_R = 0 V$; f = 1 MHz; $T_j = 25 {}^{\circ}C$	c_d	typ.		50		pF

Fig. 3 Definitions of t_{rr} and Q_s .

^{**} Illuminance ≤ 500 lux (daylight); relative humidity < 65%.

^{*} Measured under pulse conditions to avoid excessive dissipation.

Fig. 4 Steady state power dissipation (forward plus leakage current excluding switching losses) as a function of the average forward current.

Fig. 5 Maximum average forward current as a function of the temperature. The curves include losses due to reverse current.

a = 1,57; $V_{R} = V_{RWMmax}$; I = lead length

T = tie-point temperature
T = ambient temperature and
device mounted as shown in Fig. 2.

Fig. 6 Maximum permissible non-repetitive peak reverse power dissipation in the avalanche region.

PR time

Fig. 7 Maximum permissible non-repetitive peak forward current based on sinusoidal currents (f = 50 Hz) ·

---- $T_j = 25$ °C; $V_R = 0$.

T_j = $T_{j \text{ max}}$ prior to surge; $V_{R} = V_{RWM}$ max

BYW54 to 56

Mullard

April 1982

Fig. 12 Minimum values of series resistance (R_t), including the transformer resistance, required to limit the initial peak rectifier current with capacitive load. The possibility of the following spreads are taken into account: mains voltage + 10%; capacitance + 50%, resistance -10%.

Fig. 13 Test circuit series resistance (R_t).

Fig. 14.
Device mounted on a printed circuit board (see Fig. 2).

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 15 Thermal model. ($R_{th j-e} = 18 \text{ K/W}$).

By using this thermal model and the dissipation graph (Fig. 4) any temperature can be calculated. The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

thermal	l lead length					
resistance	5	10	15	20	25	mm
R _{th e-tp}	15	30	45	60	75	K/W
R _{th e-a}	580	445	350	290	245	K/W

The thermal resistance between tie-point and ambient depends on the mounting method. For components on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{\mbox{th}\mbox{ tp-a}}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm 2 per lead R $_{th\ tp\text{-a}}$ is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm 2 per lead R $_{th}$ tp-a is 45 K/W.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snapoff (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYW95A	В	С
Repetitive peak reverse voltage	V_{RRM}	max.	200	400	600 V
Continuous reverse voltage	v_R	max.	200	400	600 V
Average forward current	IF(AV)	max.		3	Α
Non-repetitive peak forward current	^I FSM	max.		70	Α
Non-repetitive peak reverse energy	ERSM	max.		10	mJ
Reverse recovery time	t _{rr}	<		250	ns

MECHANICAL DATA

Fig. 1 SOD-64.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

				BYW95A	В	С	
	Repetitive peak reverse voltage	V _{RRM}	max.	200	400	600	٧
	Continuous reverse voltage	V _R	max.	200	400	600	٧
	Average forward current (averaged over any 20 ms period)						
-	T _{tp} = 60 °C; lead length 10 mm	l _F (AV)	max.		3		Α
-	T _{amb} = 65 °C; Fig. 2	IF(AV)	max.		1,25		Α
	Repetitive peak forward current	IFRM	max.		15		Α
	Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_j$ max prior to surge; $V_R = V_{RRMmax}$	I _{FSM}	max.		70		А
	Non-repetitive peak reverse avalanche energy; $I_R = 400 \text{ mA}$; $T_j = T_j \text{ max}$ prior to surge; with inductive load switched off	.			10		
		ERSM	max.		10		mJ
	Storage temperature	T_{stg}		−65 to	+ 175		оС
-	Operating junction temperature	T_{j}	max.		175		оС
	THERMAL RESISTANCE						
	Influence of mounting method						
	Thermal resistance from junction to tie-point at a lead length of 10 mm	R _{th j-tp}	=		25		K/W
	 Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; 						
	Cu-thickness \geq 40 μ m; Fig. 2	R _{th j-a}	=		75		K/W

Fig. 2 Mounted on a printed-circuit board.

2

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage	
I _F = 5 A	
I _F = 5 A; T _j = T _{j max}	
Reverse avalanche breakdown voltage	
$I_{R} = 0.1 \text{ mA}$	

Reverse current

$$V_R = V_{RRMmax}$$
; $T_j = 165^{\circ}C$

Reverse recovery when switched from $I_F = 1$ A to $V_R \ge 30$ V with $-dI_F/dt = 20$ A/ μ s

recovered charge recovery time

Maximum slope of reverse recovery current when switched from I_F = 1 A to $V_R \ge 30 \text{ V}$ with $-dI_F/dt = 1 \text{ A}/\mu s$

Fig. 3 — $T_j = 25 \, {}^{\circ}\text{C}; --- T_j = T_{j \, \text{max}}.$

		BYW95A B		С	
V _F V _F	< <	1,5 1,25	1,5 1,25	1,5 1,25	V * V *
V _{(BR)R}	>	300	500	700	٧
IR	<		150		μΑ

$$\begin{array}{cccc} \mathrm{Q_{S}} & < & 250 & \mathrm{nC} \\ \mathrm{t_{rr}} & < & 250 & \mathrm{ns} \end{array}$$

$$\left| dI_{R}/dt \right| < 6$$
 A/ μ s

Fig. 4 Definitions.

^{*} Measured under pulse conditions to avoid excessive dissipation.

Fig. 5.

Fig. 7.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

$$a = IF(RMS)/IF(AV); VR = VRRMmax$$

Fig. 6 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 7 Maximum slope of reverse recovery current. $T_i = 25$ °C.

Fig. 8 Maximum average forward current as ϵ function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 9 Reverse current as a function of junction temperature. $V_R = V_{RRM max}$.

Fig. 10 Maximum values junction temperature as a function of reverse voltage.

Fig. 11 Nomogram: power loss ($\Delta P_{R(AV)}$) due to switching only. To be added to steady state power losses (see also Fig. 4).

Fig. 12 Maximum values; for definitions see Fig. 4.

Fig. 13 Maximum values; $T_j = 25$ °C. For definitions see Fig. 4.

Fig. 14 Maximum values; $T_j = 140$ °C. For definitions see Fig. 4.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 15 Thermal model. Rth j-e = 12 K/W.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	K/W
R _{th e-a}	410	300	230	185	155	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance $R_{\mbox{\scriptsize th}\mbox{\scriptsize tp-a}}$ is 70 K/W.
- 2. Mounted with copper laminate of 1 cm 2 per lead R $_{th\,tp-a}$ is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm 2 per lead R $_{th\,tp\text{-a}}$ is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

AVALANCHE FAST SOFT-RECOVERY RECTIFIER DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded glass envelopes. They are intended for television and industrial applications, such as switched-mode power supplies, scan rectifiers, in TV receivers, and also for use in inverter and converter applications. The devices feature non-snapoff (soft-recovery) switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in the picture tube).

QUICK REFERENCE DATA

			BYW96D	BYW96E	
Repetitive peak reverse voltage	v_{RRM}	max.	800	1000	٧
Continuous reverse voltage	v_R	max.	800	1000	V
Average forward current	I _F (AV)	max.		3	Α
Non-repetitive peak forward current	^I FSM	max.	7	0	Α
Non-repetitive peak reverse energy	ERSM	max.	1	0	mJ
Reverse recovery time	t _{rr}	<	30	0	ns

MECHANICAL DATA

Fig. 1 SOD-64.

Dimensions in mm

The marking band indicates the cathode.

The diodes are type-branded.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BYW96D	BYW96E	Ĺ
Repetitive peak reverse voltage	VRRM	max.	800	1000	٧
Continuous reverse voltage	v_R	max.	800	1000	V
Average forward current (averaged over any 20 ms period) T _{tp} = 50 °C; lead length 10 mm T _{amb} = 55 °C; Fig. 2	F(AV) F(AV)	max. max.	4.00		- А А
Repetitive peak forward current	^I FRM	max.	15		Α
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _j = T _j max prior to surge; V _R = V _{RRMmax} Non-repetitive peak reverse avalanche	¹ FSM	max.	7	0	Α
energy; I _R = 400 mA; T _j = T _j max prior to surge; with inductive load switched off	E _{RSM}	max.	1	0	mJ
Storage temperature	T_{stg}		-65 to	+ 175	oC
Operating junction temperature	тј	max.	17	5	oC
THERMAL RESISTANCE					
Influence of mounting method					

Influence of mounting method

- 1. Thermal resistance from junction to tie-point at a lead length of 10 mm
- 2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit board; Cu-thickness \geq 40 μ m; Fig. 2

R_{th j-a} = 75 K/W

Fig. 2 Mounted on a printed-circuit board.

2

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage

$$I_F = 5 A; T_j = T_{j max}$$

Reverse avalanche breakdown voltage

 $I_{R} = 0.1 \text{ mA}$

Reverse current

$$V_R = V_{RRMmax}$$
; $T_i = 165 \, {}^{\circ}C$

Reverse recovery when switched from

$$I_F = 1 \text{ A to } V_R \ge 30 \text{ V with}$$

$$-dI_F/dt = 20 A/\mu s$$

recovered charge

recovery time

Maximum slope of reverse recovery current when switched from I_F = 1 A to $V_R \ge 30 V$ with $-dI_F/dt = 1 A/\mu s$

$$\left| dI_{R}/dt \right| < 5 A/\mu s$$

Fig. 3 —
$$T_j = 25 \text{ °C}; --- T_j = T_j \text{ max}$$

Fig. 4 Definitions.

^{*} Measured under pulse conditions to avoid excessive dissipation.

Fig. 5 Steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

$$a = I_F(RMS)/I_F(AV); V_R = V_{RRMmax}$$

Fig. 6 Maximum slope of reverse recovery current. $T_i = 25$ °C.

Fig. 7 Maximum average forward current as a function of the tie-point temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 8 Maximum average forward current as a function of the ambient temperature; the curve includes losses due to reverse leakage. Mounting method see Fig. 2.

The graph is for switched-mode application; $V_R = V_{RRMmax}$; $\delta = 50\%$; a = 1,57.

Fig. 9 Reverse current as a function of junction temperature. $V_R = V_{RRM\,max}$.

Fig. 10 Maximum values junction temperature as a function of reverse voltage.

Fig. 11 Maximum values at $T_j = 25$ °C (see also Fig. 4).

Fig. 12 Maximum values at $T_j = 140$ °C (see also Fig. 4).

6

Fig. 13 Maximum values. For definitions see Fig. 4.

OPERATING NOTES

The various components of junction temperature rise above ambient, for mounting with symmetrical lead length, are illustrated below.

Fig. 14 Thermal model. $R_{th j-e} = 12 \text{ K/W}$.

The thermal resistances between envelope and tie-point, and between envelope and ambient depend on lead length.

lead length	5	10	15	20	25	mm
R _{th e-tp}	7	14	21	28	35	K/W
R _{th e-a}	410	300	230	185	155	K/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1,5 mm thick epoxy-glass printed-circuit board with a copper-thickness \geq 40 μ m, the following values apply:

- 1. Mounted as given in Fig. 2 the thermal resistance R_{th tp-a} is 70 K/W.
- 2. Mounted with copper laminate of 1 cm 2 per lead R $_{th\ tp-a}$ is 55 K/W.
- 3. Mounted with copper laminate of 2,25 cm 2 per lead R $_{th\ tp\text{-}a}$ is 45 K/W.

Note

Any temperature can be calculated by using the dissipation graph (Fig. 5) and the above thermal model.

SILICON RECTIFIER DIODE

Double-diffused silicon diode in a DO-14 plastic envelope. It is intended for low current rectifier applications.

QUICK REFERENCE	DATA			
Repetitive peak reverse voltage	V_{RRM}	max.	1600	V
Average forward current	I _F (AV)	max.	0,5	A
Non-repetitive peak forward current	$I_{ extsf{FSM}}$	max.	15	Α

MECHANICAL DATA

Dimensions in mm

DO-14

The rounded end indicates the cathode

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

All information applies to frequencies up to 400 Hz.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Crest working reverse voltage	v_{RWM}	max.	800	V
Repetitive peak reverse voltage ($\delta \leq 0.01$)	v_{RRM}	max.	1600	V
Non-repetitive peak reverse voltage (t \leq 10 ms)	v_{RSM}	max.	1600	V

Currents

Average forward current (averaged over any 20 ms period)

with R load;	$V_{RWM} = V_{RWMmax}$	^I F(AV)	max.	0.36	A
	V_{RWM} = 60 V	I _F (AV)	max.	0.5	A

Non-repetitive peak forward current (t = 10 ms; half-sine wave)
$$T_j$$
 = 150 °C prior to surge I_{FSM} max. 15 A

CHARACTERISTICS

Forward voltage

$$I_F = 2 \text{ A}; T_j = 25 \text{ }^{\circ}\text{C}$$
 $V_F < 1.6 \text{ }^{\circ}\text{V}$

Reverse current

$$V_R = 800 \text{ V; } T_j = 125 \text{ }^{0}\text{C}$$
 $I_R < 50 \text{ } \mu\text{A}$ $V_R = 800 \text{ V; } T_j = 25 \text{ }^{0}\text{C}$ $I_R < 1 \text{ } \mu\text{A}$

2

¹⁾ Measured under pulse conditions to avoid excessive dissipation.

SILICON CONTROLLED AVALANCHE DIODES

Silicon controlled avalanche diodes in glass envelopes, intended for telephony applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

		- •		
Continuous reverse voltage; CV8805	v_R	max.	150	٧
CV8308	$V_{\mathbf{R}}$	max.	60	V
Repetitive peak reverse voltage	VRRM	max.	see r	ote
Forward current (d.c.)				
(see also derating curve, Fig. 3)	Ιϝ	max.	250	mΑ
Repetitive peak forward current;				
$t_p \le 10 \text{ ms}; \delta \le 0.025$	^I FRM	max.	10	Α
Non-repetitive peak forward current				
half-sinewave; t = 10 ms	^I FSM	max.	20	Α
Power dissipation				
(see also derating curve, Fig. 4)	P _{tot}	max.	250	mW
Repetitive peak reverse power dissipation	PRRM	max.	see n	ote
Non-repetitive peak reverse power dissipation	*******			
(duration 10 μ s)	PRSM	max.	600	W
Operating ambient temperature	T_{amb}	0	to 100	°C
Storage temperature	T _{stg}		to 100	°Č
• •	sty	•		·

Note: The repetitive peak reverse voltage and the peak reverse current are limited by the peak reverse power dissipation (see Fig. 5).

MECHANICAL DATA

Dimensions in mm

The standard registered CV8805, 8308 outline is as shown above. The Mullard outline, SOD-57, conforms fully with this. For details see page 2.

Products approved to CECC 50 001-020 (specification available on request).

CHARACTERISTICS

Fig. 2 SOD-57

Dimensions in mm

The marking band indicates the cathode

CHARACTERISTICS

 $V_R = 10 V; f = 1 MHz$

T_{amb} = 25 °C unless otherwise stated

R	eve	rse	cu	rr	er	ıt
---	-----	-----	----	----	----	----

V _R = 150 V	CV8805	l _R	<	1.0	μΑ
V _B = 60 V	CV8308	I _R	<	1.0	μΑ
••			_	100	
$V_R = 150 \text{ V; } T_{amb} = 100 ^{\circ}\text{C;}$	CV8805	^I R	<	100	μΑ
$V_R = 60 \text{ V}; T_{amb} = 100 \text{ °C};$	CV8308	^I R	<	100	μΑ
Forward voltage					
I _F = 250 mA	both types	VF	<	0.9	V
I _F = 25 mA	both types	VF	>	0.5	V
1F - 25 IIIA	Dotti types	' F	ŕ		•
Avalanche breakdown voltage					
I _R = 1.0 mA	CV8805	V _{(BR)R}	>	200	V
1H 1.0 11	CV8805	V _{(BR)R}	<	280	V
	C V 00005	*(BR/R	•		-
$l_{B} = 2.0 \text{ mA}$	CV8308	V _{(BR)R}	>	80	V
**	CV8308	V _{(BR)R}	<	140	V
		,511/11			
Capacitance					

both types

<

 C_{tot}

150

рF

Fig. 3 Max. allowable forward current versus ambient temperature.

Fig. 4 Max. allowable power dissipation versus ambient temperature.

Fig. 5 Repetitive peak reverse power versus conduction time of the diode; $P_F = 0$; $T_{amb} = 0$ to +55 °C; The pulse repetition frequency is such that the mean reverse power does not exceed 250 mW.

SILICON AVALANCHE RECTIFIER DIODES

Silicon diodes in glass envelopes, capable of absorbing reverse transients, intended for general purpose applications.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

			CVA7026	7027	7028	7029	7030	7476	_
Crest working reverse voltage	V _{RWM}	max.	100	200	400	600	800	1000	٧
Repetitive peak reverse voltage	V _{RRM}	max.	100	200	400	600	800	1200	v
Non-repetetive peak reverse voltage; t ≤ 10 ms	V _{RSM}	max.	100	200	400	600	800	1200	v
Continuous reverse voltage (see Fig. 2)	v _R	max.	_	_	_	_	_	1000	٧

Average forward current; sinusoidal conduction;				
resistive load; see derating curve, Fig. 3	IF(AV)	max.	0.75	
Repetitive peak forward current	^I FRM	max.	12	
Non-repetitive peak forward current;				

t = 10 ms; half sinewave;

without reapplied VRWMmax;

CVA7026-7030 1FSM 15 Α max. CVA7476 20 **IFSM** max. Α CVA7026-7030 oc Tamb -40 to +125 CVA7476 oC -65 to +175

Operating ambient temperature; Storage temperature;

Tamb CVA7026-7030 Tstg -40 to +125 CVA7476 -65 to +175 Tstq

MECHANICAL DATA

Fig. 1 SOD-57

Dimensions in mm

Α Α

oC

oC

The marking band indicates the cathode

Products approved to CECC 50 008-015 (specification available on request).

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise stated

	,		20	μΑ
all types	'R		20	μΑ
CVA7026 to 7030	I _R	<	300	μΑ
CVA7476	IR	<	300	μΑ
	VF	<	1.15	V
CVA7476	$V_{(BR)R}$	>	1250	٧
CVA7476	V _{(BR)R}	<	2000	V
	CVA7476	CVA7026 to 7030 IR CVA7476 IR VF CVA7476 V(BR)R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

NOTE

The CVA7026—7030 and CVA7476 are in some minor aspects specified differently from the types CV7026—7030 and CV7476. They are, however, regarded by the original approval authority as direct replacements and may be used as such.

Fig.3 Maximum allowable average forward current versus ambient temperature.

Mullard

SILICON DIFFUSED RECTIFIER DIODES

A range of silicon rectifier diodes for general purpose use.

QUICK REFERENCE DATA

			1N4001G	4002G	4003G	4004G	4005G	4006G	4007G
Repetitive peak reverse voltage	v_{RRM}	max.	50	100	200	400	600	800	1000 V
Continuous reverse voltage	v_R	max.	50	100	200	400	600	800	1000 V
Average forward cu	ırrent			lF(AV)		max.	1		Α
Repetitive peak for	rward curr	ent		IFRM		max.	10)	Α
Non-repetitive peal	k forward	current		l _{FSM}		max.	30)	Α

MECHANICAL DATA

Dimensions in mm

Fig.1 SOD—57 The diodes are type branded.

band indicates cathode

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			1N4001G	4002G	4003G	4004G	4005G	4006G	4007G
Repetitive peak reverse voltage	V _{RRM}	max.	50	100	200	400	600	800	1000 V
Continuous reverse voltage	v _R	max.	50	100	200	400	600	800	1000 V
Currents									
Average forward cu (averaged over al up to T _{amb} = 75 at T _{amb} = 100 ^C	ny 20 ms p 5 °C	eriod)		IF(AV		ma: ma:		1 .75	A A
Forward current (d up to T _{amb} = 75				۱۴		ma	×.	1	Α
Repetitive peak for	ward curre	ent		IFRM		ma	×.	10	· А
Non-repetitive peal current (half-cyc		e, 60 Hz	:)	IFSM		ma	×.	30	Α
Temperatures									
Storage temperatur	re			T _{stg}		-	-65 to +	175	°C
Junction temperate	ıre			T_{j}		ma	x	175	°C
CHARACTERISTI T _{amb} = 25 °C unle		se stated	i						
Forward voltage I _F = 1 A d.c.				V_{F}		<		1.1	٧
Full-cycle average f	forward vo	Itage		V _{F(A}	V)	<		0.8	V
Reverse current V _R = V _{Rmax} ; T V _R = V _{Rmax} ; T	amb = 25 amb = 100	°C		I _R I _R		< <		10 50	μΑ μΑ
Full-cycle average VR = VRRMma				I _{R (A})	/)	<		30	μΑ

Mullard

SCHOTTKY-BARRIER DIODES

*

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

U.H.F. MIXER DIODE

Silicon epitaxial Schottky barrier diode with low forward voltage in a DO-34 glass envelope. The diode is especially designed for u.h.f. mixer applications.

QUICK REFERENCE DATA

Continuous reverse voltage	٧ _R	max.	4	V
Forward current (d.c.)	۱۴	max.	30	mΑ
Junction temperature	Τ _i	max.	125	oC
Forward voltage I _F = 1 mA	V _F	max.	400	mV

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a 2 E (5,08 mm) pitch.

The cathode is indicated by a coloured band.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	4	V
Reverse voltage (peak value)	v _{RM}	max.	4	٧
Forward current (d.c.)	1 _F	max.	30	mΑ
Junction temperature	T_{j}	max.	125	oC

Junction temperature	T _j	max.	125	oC
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage		,	400	
I _F = 1 mA	V _F	< <	400 550	mV mV
I _F = 10 mA	٧ _F		550	mv
Reverse current				
$V_R = 3 V$	I _R	<	2	μΑ
Diode capacitance				
$V_R = 0$; $f = 1 MHz$	c_d	<	1,1	рF
N ' C	F	<	8	dB
Noise figure at f = 900 MHz *	Г		0	uв
Series resistance				
I _F = 5 mA; f = 1 kHz	r _s	<	16	Ω
•				

^{*} The local oscillator is adjusted for a diode current of 2 mA. I.F. amplifier noise F_{if} = 1,5 dB; f = 35 MHz.

BAT81 BAT82 BAT83

This information is derived from development samples made available for evaluation, It does not necessarily imply that the device will go into regular production.

SCHOTTKY BARRIER SWITCHING DIODES

BAT81, 82 and 83 are Schottky barrier diodes in miniature DO-34 glass envelopes with an extra integral pn-junction for protection against excessive voltages such as static discharges. Typical uses are ultra-fast switching and detection.

QUICK REFERENCE DATA

			BAT81 82 83	
Continuous reverse voltage	v_R	max.	40 50 60	٧
Forward current (d.c.)	۱۴	max.	30	mΑ
Junction temperature	Tj	max.	125	oC
Diode capacitance at V _R = 1 V	c_d	<	1,6	pF

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

The coloured band indicates the cathode.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BAT81 82 83	
Continuous reverse voltage	v_R	max.	40 50 60	٧
Forward current (d.c.)	۱۴	max.	30	mΑ
Non-repetitive peak forward current $t \le 1 s$	IFSM	max.	150	mA
Storage temperature	T _{stg}		-55 to + 150	οС
Junction temperature	Тj	max.	+ 125	oC
THERMAL RESISTANCE				
From junction to ambient when mounted on a 1,5 mm thick epoxy-glass p.c.b.; Cu-thickness $>$ 40 μ m; see Fig. 2	R _{th j-a}	=	320	K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage IF = 1 mA IF = 15 mA	V _F V _F	< <	410 1000	mV mV
Reverse current V _R = 30 V	I _R	<	200	nA
Reverse breakdown voltage $I_R = 10 \mu A$	V _{(BR)R}	>	40 50 60	V
Diode capacitance V _R = 1 V; f = 1 MHz	c _d	<	1,6	pF
Reverse recovery* when switched from I _F = 10 mA to I _R = 10 mA; R _L = 100 Ω				
measured at I _R = 1 mA	t _{rr}	<	1	ns

2

^{*} Due to the lack of minority carrier injection reverse recovery time only depends on junction capacitance and circuit resistance.

Fig. 2 Test circuit.

Fig. 3 Waveforms. * $I_R = 1 \text{ mA}$.

Input signal

Rise time of the reverse pulse

Reverse pulse duration

Duty factor Oscilloscope

Rise time

0,6 ns

500 ns 0.05

0,35 ns

Circuit capacitance C ≤ 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Fig. 4 Typical forward current as a function of forward voltage at T_{amb} = 25 °C.

Fig. 5 Typical reverse current as a function of reverse voltage at T_{amb} = 25 °C.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

SCHOTTKY BARRIER SWITCHING DIODE

BAT85 is a Schottky barrier diode in miniature DO-34 glass envelope with an extra integral pn-junction for protection against excessive voltages such as static discharges. This diode replaces point contact and gold-bonded diodes.

QUICK REFERENCE DATA

Continuous reverse voltage	٧R	max.	30 V
Forward current (d.c.)	۱F	max.	100 mA
Junction temperature	Τj	max.	125 °C
Storage temperature	T _{stg}	max.	–55 to 150 °C
Diode capacitance at $V_R = 1 V$	c_d	<	10 pF

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68),

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

The coloured band indicates the cathode.

RATINGS				
Limiting values in accordance with the Absolute Maximum System (IEC	C 134)			
Continuous reverse voltage	v_R	max.	30	V
Forward current (d.c.)	IF	max.	100	mΑ
Repetitive peak forward current	1 _{FRM}	max.	300	mΑ
Non-repetitive peak forward current				
t < 1 s	IFSM	max.	600	mΑ
Storage temperature	T_{stg}	-55 to	+ 150	οС
Junction temperature	τ_{j}	max.	+ 125	οС
THERMAL RESISTANCE				
Measured on an infinite heatsink; at the leads 4 mm from the body				
T _{amb} = 25 °C	R _{th j-a}	=	320	K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage				
I _F = 1 mA	٧F	typ.	250	
I _F = 10 mA	٧F	<	400	
I _F = 100 mA	٧F	typ.	500 1000	
Reverse current				
V _R = 25 V	I _R	<	2	μΑ
Reverse breakdown voltage				
$I_{R} = 10 \mu\text{A}$	V _{(BR)R}	>	30	٧
Diode capacitance	_			_
$V_R = 1 V, f = 1 MHz$	Cd	<	10	pF

5 ns

<

t_{rr}

Reverse recovery time when switched from I_F = 10 mA to I_R = 10 mA R_L = 100 Ω , measured at I_R = 1 mA

Mullard

MICROMINIATURE DIODES

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODE

Silicon epitaxial high-speed diode in a microminiature plastic envelope. It is intended for high-speed switching in hybrid thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	75 V
Repetitive peak reverse voltage	v_{RRM}	max.	85 V
Repetitive peak forward current	I _{FRM}	max.	250 mA
Junction temperature	T_{i}	max.	175 °C
Forward voltage at I _F = 50 mA	ν _F	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$	t _{rr}	<	6 ns
Recovery charge when switched from	۲r	•	O 113
$I_F = 10 \text{ mA to V}_R = 5 \text{ V}; R_L = 500 \Omega$	Q_{S}	<	45 pC

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-23.

Marking code

BAS16 = A6

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage 75 V ٧ĸ max. 85 V Repetitive peak reverse voltage VRRM max. Average rectified forward current

(averaged over any 20 ms period) F(AV) max. 250 mA Forward current (d.c.)

1E max. 250 mA Repetitive peak forward current FRM max. 250 mA Storage temperature T_{stg} -65 to +175 °C

THERMAL CHARACTERISTICS *

 $T_i = Px (R_{th i-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

Thermal resistance

Junction temperature

From junction to tab 60 °C/W R_{th i-t} From tab to soldering points R_{th t-s} 280 °C/W 90 °C/W From soldering points to ambient ** R_{th s-a} =

CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

Forward voltage

I= 1 mA

IF = 10 mA IF = 50 mA $I_F = 150 \, \text{mA}$

Reverse current $V_R = 25 V; T_i = 150 °C$ V_R = 75 V

 $V_R = 75 \text{ V}; T_i = 150 \text{ }^{\circ}\text{C}$ Diode capacitance

 $V_R = 0$; f = 1 MHzForward recovery voltage (see also Fig. 2)

when switched to $I_F = 10 \text{ mA}$; $t_D = 20 \text{ ns}$ Reverse recovery time (see also Fig. 3)

when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$

Recovery charge (see also Fig. 4) when switched from $I_F = 10 \text{ mA}$ to $V_R = 5 \text{ V}$;

 $R_1 = 500 \Omega$

^ Measured under pulse conditions. $t_D \le 0.5$ ms. |F(AV)| = 150 mA, $t_{(aV)} \le 1$ ms, for sinusoidal opera-

See Thermal characteristics in GENERAL SECTION.

^{*}Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

175 °C

715 mV

855 mV

1000 mV

1250 mV

30 µA

1 μA

50 µA

2 pF

6 ns

45 pC

1.75 V

max.

 T_i

٧E

٧E

٧F

٧F

l_R

l_R

1R

 C_d

 V_{fr}

trr

Q,

<

<

<

<

Fig. 2 Forward recovery voltage test circuit and waveforms.

Input signal: forward pulse rise time = t_r = 20 ns; forward current pulse duration t_p = 120 ns; duty

factor = δ = 0,01.

Oscilloscope: rise time = $t_r = 0.35$ ns.

Circuit capacitance $C \le 1 \text{ pF}$ (C = oscilloscope input capacitance + parasitic capacitance).

Fig. 3 Reverse recovery time test circuit and waveforms.

Input signal: reverse pulse rise time = $t_r \approx 0.6$ ns; reverse pulse duration = $t_p = 100$ ns; duty

factor = δ = 0,05. * t_{rr} up to l_R = 1 mA.

Oscilloscope: rise time = $t_r = 0.35$ ns.

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance).

Fig. 4 Recovery charge test circuit and waveform.

D1 = BAW62; D2 = diode with minority carrier life time at 10 mA: < 200 ps Input signal

Rise time of the reverse pulse

Reverse pulse duration

Duty factor

 $t_r = 2 \text{ ns}$ $t_p = 400 \text{ ns}$ $\delta = 0.02$

Circuit capacitance C \leq 7 pF (C \approx oscilloscope input capacitance + parasitic capacitance).

LOW VOLTAGE STABISTOR

Silicon planar epitaxial diode in SOT-23 envelope. This diode is intended for low voltage stabilizing e.g. bias stabilizer in class-B output stages, clipping, clamping and meter protection.

QUICK REFERENCE DATA

Repetitive peak forward current	^I FRM	max.	250	mΑ
Storage temperature	T_{stg}	-65 to	+ 150	оС
Junction temperature	Ti	max.	150	оС
Forward voltage	,			
$I_F = 0.1 \text{ mA}$	٧ _F	610 t	o 690	mV
I _F = 1,0 mA	٧ _F	680 t	o 760	mV
I _F = 10 mA	٧ _F	750 t	o 8 3 0	mV
I _F ≈ 100 mA	٧ _F	870 t	960	mV
Diode capacitance	·			
$V_R = 0$; $f = 1 MHz$	c_d	<	140	рF

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code BAS17 = A91

See also chapter Soldering Recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Repetitive peak forward current	FRM	max.	250	mΑ
Storage temperature	T_{stg}	-65 to +150		oC
Junction temperature	Тj	max.	150	οС

THERMAL CHARACTERISTICS*

 $T_j = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

Thermal resistance

oC/W 60 R_{th i-t} From junction to tab oC/W 280 Rth t-s From tab to soldering points 90 oC/W From soldering points to ambient** R_{th s-a}

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage $I_{\Gamma} = 0.1 \text{ mA}$

1F - 0.1 mA	*F	0.0.0	
I _F = 1.0 mA	V_{F}	680 to 760	mV
I _F = 5.0 mA	V _F	730 to 810	mV
I _F = 10 mA	V _F	750 to 830	mV
I _F = 100 mA	V _F	870 to 960	mV

٧c

 S_{F}

Reverse current

$V_R = 4 V$	۱R	<	5	μΑ
Temperature coefficient				
Ic = 1 mA	S⊨	typ.	-1.8	mV/K

$I_F = 1 \text{ mA}$

Diode capacitance				
$V_{P} = 0 \cdot f = 1 \text{ MHz}$	Cal	<	140	рF

$V_R = 0$; $f = 1 MHz$	C _d	<	140	pF
-------------------------	----------------	---	-----	----

610 to 690

typ.

mV

^{*} See Thermal characteristics in GENERAL SECTION.

^{**}Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Fig. 2 Forward current as a function of forward voltage.

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

Silicon epitaxial high-speed diodes in a microminiature plastic envelope. They are intended for switching and general purposes.

QUICK REFERENCE DATA

			BAS19	BAS20	BAS21	l
Continuous reverse voltage	v_R	max.	100	150	200	V
Repetitive peak reverse voltage	V_{RRM}	max.	120	200	250	V
Repetitive peak forward current	IFRM	max.		625		mΑ
Junction temperature	Τį	max.		150		οС
Forward voltage at $I_F = 100 \text{ mA}$	٧̈́F	<		1		V
Reverse recovery time when switched from I _F = 30 mA to I _R = 30 mA; R _L = 100 Ω measured at I _R = 3 mA	t _{rr}	<		50		ns

Dimensions in mm

MECHANICAL DATA

Marking code

BAS19 = A8 BAS20 = A81 BAS21 = A82

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute with	axiiiiuiii 3y	2reili /	120 134/			
			BAS19	BAS20	BAS21	
Continuous reverse volage	٧R	max.	100	150	200	V
Repetitive peak reverse voltage	V_{RRM}	max.	120	200	250	V
Average rectified forward current (1) (averaged over any 20 ms period)	I _{F(AV)}	max.		200		mA
Forward current (d.c.)	۱۴	max.		200		mΑ
Repetitive peak forward current	IFRM	max.		625		mΑ
Storage temperature	T_{stg}		_	65 to +1	50	oC
Junction temperature	Тj	max.		150		οС
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.		200		mW
THERMAL CHARACTERISTICS*						
$T_j = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$						
Thermal resistance						
From junction to tab	R _{th j-t}			=	60	oC/W
From tab to soldering points	R _{th t-s}			=	280	oc/M
From soldering points to ambient**	R _{th s-a}			=	90	oC/M
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage F = 100 mA F = 200 mA	V _F V _F			< <	1.0 1.25	V V
Reverse breakdown voltage (1) BAS19; $I_R = 100 \mu A$ BAS20; $I_R = 100 \mu A$ BAS21; $I_R = 100 \mu A$ (2)	V _(BR) R V _(BR) R V _(BR) R			> > >	120 200 250	V V V
Reverse current $V_R = V_{Rmax}$ $V_R = V_{Rmax}$; $T_j = 150$ °C (1)	IR IR			< <	100 100	nΑ μΑ
Differential resistance IF = 10 mA	^r diff			typ.	5	Ω

Reverse recovery time (see Figs 2 and 3)

 $R_{I} = 100 \Omega$; measured at $I_{R} = 3 \text{ mA}$

- * See Thermal characteristics in GENERAL SECTION. ** Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.
- (1) Measured under pulse conditions; Pulse time = $t_p \leqslant 0.3 \ \text{ms}.$
- (2) At zero life time, measured under pulse conditions to avoid excessive dissipation and voltage limited to 275 V.

 C_d

<

<

pF

50 ns

Diode capacitance

 $V_R = 0$; f = 1 MHz

when switched from $I_F = 30 \text{ mA}$ to $I_R = 30 \text{ mA}$;

Fig. 2 Test circuit.

Fig. 3 Waveforms; $I_R = 3 \text{ mA}$.

Input signal total pulse duration duty factor rise time of reverse pulse	^t p(tot) δ t _r	= 2 μs = 0,0025 = 0,6 ns
reverse pulse duration Oscilloscope	t _p	= 100 ns
rise time circuit capacitance*	t _r C	= 0,35 ns < 1 pF

^{*}C = oscilloscope input capacitance + parasitic capacitance.

BAS19 BAS20 BAS21

Fig. 5 BAS19; maximum permissible repetitive peak forward current for pulse operation as a function of the duty factor at $V_R = 100 \text{ V}$.

t ≤ 0,5 ms

BAS19 BAS20 BAS21

Fig. 6 BAS20/21; maximum permissible average rectified forward current for pulse operation as a function of the duty factor.

Fig. 7 BAS20/21; maximum permissible repetitive peak forward current for pulse operation as a function of the duty factor.

Fig. 10.

August 1980

Fig. 8 Maximum permissible continuous forward current as a function of the ambient temperature.

Fig. 9 Maximum permissible average rectified forward current as a function of the ambient temperature.

Fig. 10 Maximum permissible continuous reverse voltage as a function of the ambient temperature.

Fig. 13.

Fig. 11 Continuous reverse current as a function of the junction temperature.

Fig. 12 Forward current as a function of forward voltage.

Fig. 13 Forward voltage as a function of the junction temperature.

Fig. 14.

SCHOTTKY BARRIER DIODE

Silicon epitaxial diode in a microminiature plastic envelope. Intended for u.h.f. mixer and fast switching applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	٧ _R	max.	4	٧
Forward current (d.c.)	۱ _۴	max.	30	mΑ
Junction temperature	Τ _i	max.	100	оС
Forward voltage at I _F = 10 mA	ν̈́ _F	<	600	mV
Diode capacitance at V _R = 0; f = 1 MHz	C _d	<	1,0	рF
Noise figure at f = 900 MHz	F	<	8,0	dB

MECHANICAL DATA

Dimensions in mm

Marking code BAT17 = A3

Fig.1 SOT-23.

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Ellineng raidoo iii dooo.				
Continuous reverse voltage	v_R	max.	4	V
Forward current (d.c.)	Ι _Ε	max.	30	mΑ
Storage temperature	T_{stg}	65 to	+100	oC
Junction temperature	Тј	max.	100	oC

R_{th i-t}

Rth t-s

Rth s-a

► THERMAL CHARACTERISTICS*

$$T_i = P \times (R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$$

Thermal resistance

From junction to tab

From tab to soldering points From soldering points to ambient**

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified

Reverse current V _R = 3V	I _R	<	0.25	μΑ
V _R = 3 V; T _{amb} = 60 °C	I _R	<	1.25	μΑ
Reverse breakdown voltage $I_R = 10 \mu A$	V(BR)R	>	4	٧
Forward voltage I _F = 0.1 mA	V _F	<	350	mV
I _F = 1.0 mA	٧ _F	<	450	mV
I _F = 10 mA	٧ _F	<	600	mV
Diode capacitance V _R = 0; f = 1 MHz	C _d	<	1.0	pF
Noise figure at f = 900 MHz [▲]	F	<	8.0	dB
Series resistance at f = 1 kHz	rD	<	15	Ω

60

280

90

oC/W

oc/W

oc/W

^{*} See Thermal characteristics in GENERAL SECTION.

^{**} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.

The local oscillator is adjusted for a diode current of 2 mA. I.F. amplifier noise F_{if} = 1.5 dB; f = 35 MHz.

Fig. 2 Typical values.

SILICON PLANAR DIODE

Band switching diode in a microminiature plastic envelope. Intended for thick and thin-film circuits.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	35 V
Forward current (d.c.)	l _F	max.	100 mA
Junction temperature	Τį	max.	100 °C
Diode capacitance at f = 1 MHz V _R = 20 V	c _d	typ.	0,8 pF 1,0 pF
Series resistance at f = 200 MHz I _F = 5 mA	rD	typ.	0,5 Ω 0,7 Ω

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code BAT18 = A2

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_{R}	max.	35	٧
Forward current (d.c.)	IF	max.	100	mΑ
Storage temperature	T_{stg}	-55 to	o +1 00	oC
Junction temperature	Tj	max.	100	oC

➤ THERMAL CHARACTERISTICS*

 $T_i = P \times (R_{th \ j-t} + R_{th \ t-s} + R_{th \ s-a}) + T_{amb}$

Thermal resistance				
From junction to tab	R _{th j-t}	=	60	oC/M
From tab to soldering points	R _{th t-s}	=	280	oC/M
From soldering points to ambient**	R _{th s-a}	=	90	oC/M
CHARACTERISTICS				
T _j = 25 ^o C unless otherwise specified				
Forward voltage at Lr = 100 mA	٧c	<	1.2	V

 $I_F = 5 \text{ mA}$

Reverse current				
V _R = 20 V	۱ _R	<	100	nΑ
$V_R = 20 \text{ V; T}_j = 60 ^{\circ}\text{C}$	I _R	<	1	μΑ

Diode capacitance at f = 1 MHz V _R = 20 V	c_d	typ.	0.8 1.0	pF pF
Series resistance at f = 200 MHz	rD	typ.	0.5	Ω

0.7

^{*} See Thermal characteristics in GENERAL SECTION.

^{**}Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

Fig. 2 Typical values.

Fig. 3.

Fig. 6.

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV70 consists of two diodes in a microminiature plastic envelope. The cathodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	v_R	max.	70 V
Repetitive peak reverse voltage	V _{RRM}	max.	70 V
Repetitive peak forward current	I _{FRM}	max.	250 mA
Junction temperature	T _i	max.	175 °C
Forward voltage at I _F = 50 mA	V _E	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$	t _{rr}	<	6 ns
Recovery charge when switched from $I_F = 10$ mA to $V_R = 5$ V; $R_L = 500$ Ω	Q _s	<	45 pC

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

BAV70 = A4

See also Soldering recommendations.

RATINGS (per diode)

Limiting values in accordance with the Absolute Maximum System (IEC 134)

٧ _R	max.	70	V
v_{RRM}	max.	70	V
l _{F(AV)}	max.	250	mΑ
I _F	max.	250	mΑ
I _{FRM}	max.	250	mΑ
T_{stg}	-65 to +	175	оС
T _i	max.	175	οС
	V _{RRM} I _F (AV) I _F I _{FRM} T _{stg}	$egin{array}{lll} V_{ m RRM} & { m max.} \\ I_{ m F}({ m AV}) & { m max.} \\ I_{ m F} & { m max.} \\ I_{ m FRM} & { m max.} \\ T_{ m stg} & -65 \ { m to} \ + \end{array}$	V_{RRM} max. 70 $I_{F(AV)}$ max. 250 I_{F} max. 250 I_{FRM} max. 250 T_{stg} -65 to + 175

THERMAL CHARACTERISTICS*

 $T_{j1} = P_1 (R_{th j-t}) + T_{tab}$ $T_{j2} = P_2 (R_{th j-t}) + T_{tab}$ $T_{tab} = P_{tot} (R_{th t-s} + R_{th s-a}) + T_{amb}$ Thermal resistance From junction to tab

From soldering points to ambient **

From tab to soldering points

CHARACTERISTICS (per diode)

T_i = 25 °C unless otherwise specified

Forward voltage

I_E= 1 mA

 $I_F = 10 \text{ mA}$

 $V_R = 25 V; T_i = 150 °C$

 $V_R = 70 \text{ V}; T_i = 150 ^{\circ}\text{C}$

I_F = 50 mA

٧r

l_R l_R

I_R

 $C_{\mathbf{d}}$

 V_{fr}

R_{th j-t} R_{th t-s}

Rth s-a

٧_F

٧Ę

< <

<

<

<

<

<

5 µA 100 µA

60 °C/W

280 °C/W

90 °C/W

715 mV

855 mV

1000 mV

1250 mV

60 µA

1,5 pF

1,75 V

Diode capacitance $V_R = 0$; f = 1 MHz

I_F = 150 mA

Reverse current

V_R = 70 V

Forward recovery voltage when switched to

 $I_F = 10 \text{ mA}$; $t_r = 20 \text{ ns}$ \blacktriangle Measured under pulse conditions : pulse time $t_{D} \leqslant 0.5$ ms.

For sinusoidal operation $I_{F(AV)} = 150 \text{ mA}$; averaging time $t_{(av)} \leq 1 \text{ ms}$.

* See Thermal characteristics in GENERAL SECTION. *Mounted on a ceramic substrate of 8 mm \times 10 mm \times 0,7 mm.

November 1982

Fig. 2 Test circuit and waveforms; forward recovery voltage.

Input signal: Rise time of the forward pulse $t_r = 20$ ns; Forward current pulse duration $t_p = 120$ ns;

Duty factor $\delta = 0.01$

Oscilloscope : Rise time $t_r = 0.35$ ns

Circuit capacitance C \leq 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

 I_F = 10 mA to I_R = 10 mA; R_L = 100 Ω ; measured at I_R = 1 mA 6 ns 10% sompling oscilloscop R₁=50Ω input signal output signal Fig. 3 Test circuit and waveforms; reverse recovery time.

Input signal : Rise time of the reverse pulse $t_r = 0.6$ ns; reverse pulse

duration t_p = 100 ns; duty factor δ = 0,05 Oscilloscope: Rise time tr = 0,35 ns

Circuit capacitance C ≤ 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Recovery charge when switched from

Fig. 4 Test circuit and waveform; recovery charge.

D1 = BAW62

D2 = diode with minority carrier life time at 10 mA: < 200 ps

Input signal: Rise time of the reverse pulse = t_r = 2 ns; Reverse pulse duration = t_p = 400 ns; Duty factor = δ = 0.02

Circuit capacitance C ≤ 7 pF (C = oscilloscope input capacitance + parasitic capacitance)

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAV99 consists of two diodes in a microminiature plastic envelope. The diodes are connected in series and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	V_R	max.	70 V
Repetitive peak reverse voltage	V _{RRM}	max.	70 V
Repetitive peak forward current	FRM	max.	250 mA
Junction temperature	Ti	max.	175 °C
Forward voltage at I _F = 50 mA	ν _F	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$; measured at $I_R = 1 \text{ mA}$	t _{rr}	<	6 ns
Recovery charge when switched from $I_F = 10 \text{ mA}$ to $V_R = 5 \text{ V}$; $R_L = 500 \Omega$	orr O _s	<	45 pC

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

BAV99 = A7

See also Soldering recommendations.

RATINGS (per diode)

Limiting values in accordance with the Absolute Maximum System (IEC 134)

70 V ٧R max. Continuous reverse voltage 70 V **VRRM** max. Repetitive peak reverse voltage

Average rectified forward current

250 mA IF(AV) max. (averaged over any 20 ms period) 250 mA ۱F max. Forward current (d.c.) 250 mA IFRM max. Repetitive peak forward current

 $-65 \text{ to } + 175 \text{ }^{\circ}\text{C}$ T_{sta} Storage temperature 175 °C Ti max. Junction temperature

THERMAL CHARACTERISTICS *

 $T_{i1} = P_1 (R_{th i-t}) + T_{tab}$ $T_{i2} = P_2 (R_{th i-t}) + T_{tab}$

Thermal resistance

Ttab = Ptot (Rth t-s + Rth s-a) + Tamb

60 °C/W From junction to tab Rth i-t R_{th t-s} 280 °C/W From tab to soldering points R_{th s-a} 90 °C/W From soldering points to ambient **

CHARACTERISTICS (per diode)

T_i = 25 °C unless otherwise specified

Forward voltage $I_F = 1 mA$

IF = 10 mA IF = 50 mA

Reverse current $V_R = 25 V; T_i = 150 °C$ $V_R = 70 V$

Ic = 150 mA

 $V_R = 70 V; T_i = 150 °C$ Diode capacitance $V_R = 0$; f = 1 MHz

Forward recovery voltage when switched to $I_F = 10 \text{ mA}$; $t_r = 20 \text{ ns}$

<

< 855 mV < 1000 mV

715 mV

۷F

۷E

۷F

۷F < 1250 mV 30 µA < ΙR

< 2.5 uA I_R 1_R < 50 µA

< 1,5 pF C^{4}

 V_{fr} < 1.75 V

▲ Measured under pulse conditions: pulse time $t_p \le 0.5$ ms. For sinusoidal operation $I_{F(AV)} = 150 \text{ mA}$; averaging time $t_{(aV)} \le 1 \text{ ms}$.

See Thermal characteristics in GENERAL SECTION.

^{**}Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

<

Fig. 2 Test circuit and waveforms; forward recovery voltage.

Input signal: Rise time of the forward pulse $t_r \approx 20 \text{ ns}$;

Forward current pulse duration = t_0 = 120 ns. Duty factor = δ = 0,01.

Oscilloscope: Rise time $t_r = 0.35$ ns.

Circuit capacitance C ≤ 1 pF (C = oscilloscope input capacitance + parasitic capacitance).

Reverse recovery time when switched from

$$I_F = 10 \text{ mA to } I_R = 10 \text{ mA}; R_L = 100 \Omega;$$

measured at I_R = 1 mA

t, tp tp t

input signal

6 ns

Fig. 3 Test circuit and waveforms; reverse recovery time.

sampling oscilloscop R:=50Ω

Input signal: Rise time of the reverse pulse $t_r = 0.6$ ns

Reverse pulse duration $t_D = 100$ ns. Duty factor $\delta = 0.05$.

*) I_R = 1 mA

Oscilloscope: Rise time $t_r = 0.35$ ns.

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance).

Recovery charge when switched from

I_F = 10 mA to V_R = 5 V; R_L = 500
$$\Omega$$

 Q_s

45 pC

Fig. 4 Test and waveform; recovery charge.

D2 = diode with minority carrier life time at 10 mA: < 200 ps; D1 = BAW62.

Input signal: Rise time of the reverse pulse $t_r = 2 \text{ ns}$

Reverse pulse duration $t_D = 400$ ns. Duty factor $\delta = 0.02$.

Citcuit capacitance C ≤ 7 pF (C = oscilloscope input capacitance + parasitic capacitance).

June 1980

SILICON PLANAR EPITAXIAL HIGH-SPEED DIODES

The BAW56 consists of two diodes in a microminiature plastic envelope. The anodes are commoned and the unit is intended for high-speed switching in thick and thin-film circuits.

QUICK REFERENCE DATA (per diode)

Continuous reverse voltage	V_{R}	max.	70 V
Repetitive peak reverse voltage	V _{RRM}	max.	70 V
Repetitive peak forward current	IFRM	max.	250 mA
Junction temperature	Ti	max.	175 °C
Forward voltage at I _F = 50 mA	ν̈́F	<	1,0 V
Reverse recovery time when switched from $I_F = 10 \text{ mA}$ to $I_R = 10 \text{ mA}$; $R_L = 100 \Omega$;	·		
measured at I _R = 1 mA	t _{rr}	<	6 ns
Recovery charge when switched from $I_F = 10 \text{ mA to } V_R = 5 \text{ V}; R_L = 500 \Omega$	Q_{S}	<	45 pC

MECHANICAL DATA

Dimensions in mm

Marking code

Fig. 1 SOT-23.

BAW56 = A1

See also Soldering recommendations.

DAT	INICS	Iner	diode)	
BA I	IIVGS	(Dei	uioae,	

Limiting values in accordance with the Absolute Maximum System (IEC 134)

70 V Continuous reverse voltage ٧R max. 70 V max.

 V_{RRM} Repetitive peak reverse voltage

Average rectified forward current (averaged over any 20 ms period)

IF(AV) max. 250 mA Forward current (d.c.) 1= max.

Repetitive peak forward current IFRM max. 250 mA

-65 to +175 °C T_{sta} Storage temperature 175 °C Junction temperature T; max.

THERMAL CHARACTERISTICS *

 $T_{i1} = P_1 (R_{th i-t}) + T_{tab}$

 $T_{i2} = P_2 (R_{th i-t}) + T_{tab}$

 $T_{tab} = P_{tot} (R_{th, t-s} + R_{th, s-a}) + T_{amb}$

Thermal resistance

Forward voltage

60 °C/W R_{th i-t} From junction to tab 280 °C/W R_{th t-s} From tab to soldering points 90 °C/W From soldering points to ambient ** Rth s-a

CHARACTERISTICS (per diode)

T_i = 25 °C unless otherwise specified

· or war a vortage			
I _F = 1 mA	v_F	<	715 mV
I _F = 10 mA	v_F	<	855 mV
I _F = 50 mA	V_{F}	<	1000 mV
$I_{F} = 150 \text{ mA}$	v_{F}	<	1250 mV

Reverse current $V_R = 25 V; T_i = 150 °C$ l_R

< 2.5 µA $V_R = 70 V$ 1_R

 $V_R = 70 \text{ V}; T_i = 150 \text{ }^{\circ}\text{C}$ < 50 µA 1_R

Diode capacitance $V_R = 0$; f = 1 MHz C^{d} 2 pF

Forward recovery voltage when switched to < 1.75 V V_{fr}

 $I_F = 10 \text{ mA}$; $t_r = 20 \text{ ns}$

^ Measured under pulse conditions: pulse time t_0 ≤ 0,5 ms. For sinusoidal operation $I_{F(AV)} = 150 \,\text{mA}$; averaging time $t_{(av)} \leq 1 \,\text{ms}$.

30 µA

250 mA

See Thermal characteristics in GENERAL SECTION.

^{**}Device mounted on a ceramic substrate of 8 mm \times 10 mm \times 0,7 mm.

Fig. 2 Test circuit and waveforms; forward recovery voltage.

Input signal: Rise time of the forward pulse $t_r = 20$ ns

Forward current pulse duration t_D = 120 ns. Duty factor δ = 0,01

Oscilloscope: Rise time $t_r = 0.35$ ns.

Circuit capacitance C ≤ 1 pF (C = oscilloscope input capacitance + parasitic capacitance)

Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 10 mA; R_L = 100 Ω ;

measured at $I_R \approx 1 \text{ mA}$

10%

6 ns

Fig. 3 Test circuit and waveforms; reverse recovery time.

sampling oscilloscop R:=500

Input signal: Rise time of the reverse pulse $t_r = 0.6$ ns

Reverse pulse duration t_D = 100 ns. Duty factor δ = 0,05.

Oscilloscope: Rise time $t_r = 0.35$ ns

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

Recovery charge when switched from

$$I_F = 10 \text{ mA to } V_R = 5 \text{ V}; R_I = 500 \Omega$$

Q,

45 pC

*) Ip = 1 mA

Fig. 4 Test circuit and waveform; recovery charge.

D2 = diode with minority carrier life time at 10 mA: < 200 ps. D1 = BAW62.

Input signal: Rise time of the reverse pulse $t_r = 2$ ns

Reverse pulse duration $t_D = 400$ ns. Duty factor $\delta = 0.02$

Circuit capacitance C ≤ 7 pF (C = oscilloscope input capacitance + parasitic capacitance).

June 1980

VARIABLE CAPACITANCE DIODE

Silicon planar variable capacitance diode in a microminiature envelope. It is intended for electronic tuning applications in thick and thin-film circuits.

QUICK REFERENCE DATA

Reverse voltage	V _R	max.	28 V
Reverse current at V _R = 28 V	IR	<	50 nA
Diode capacitance at f = 1 MHz V _R = 25 V	c _d	1,	8 to 2,8 pF
Capacitance ratio at f = 1 MHz	$\frac{C_d (V_R = 3)}{C_d (V_R = 2)}$	V) typ.	5
Series resistance at f = 470 MHz V_R = that value at which C_d = 9 pF	r _D	<	1,2 Ω

MECHANICAL DATA

Dimensions in mm

Marking code BBY31 = S1

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage ٧R max. 28 V Reverse voltage (peak value) V_{RM} max. 30 ν Forward current (d.c.) ۱F 20 mΑ max. οС Storage temperature Tsta -65 to +100 oc.

 T_i

Rth i-t

Rth t-s

Rth s-a

l_R

 I_{R}

CH

Cч

 C^{q}

 r_D

 $C_d (V_R = 3 V)$

 $C_{d} (V_{R} = 25 V)$

Operating junction temperature THERMAL CHARACTERISTICS*

From tab to soldering points

 $T_i = P \times (R_{th i-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

Thermal resistance From junction to tab

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

From soldering points to ambient**

Reverse current $V_R = 28 V$

 $V_B = 25 V$

 $V_R = 28 V; T_i = 85 °C$

Diode capacitance at f = 1 MHz

 $V_R = 1 V$

 $V_R = 3 V$

Capacitance ratio at f = 1 MHz

Series resistance

at f = 470 MHz and at that value of V_R at

which $C_d = 9 pF$

85

60 oc/w

max.

280 oc/W oc/w 90

< 50 nΑ

< 1000 nΑ

typ. 17.5 pΕ

tvp. 11.5 ρF

1.8 to 2.8 ρF

> typ. 5

> > <

1.2

Ω

^{**} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.

2

^{*} See Thermal characteristics in GENERAL SECTION.

BBY31

Mullard

March 1978

SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BBY40 is a variable capacitance diode in a plastic envelope intended for electronic tuning in v.h.f. television tuners with extended band I (FCC and OIRT-norm).

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	28 V
Reverse current at V _R = 28 V	I _R	<	50 nA
Diode capacitance at f = 1 MHz	13	`	30 HA
V _R = 3 V	c _d	26	to 32 pF
V _R = 25 V	c _d	4,	3 to 6 pF
Capacitance ratio at f = 1 MHz	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$	-	to 6,5
Series resistance at f = 200 MHz	$c_d (v_R = 25 V)$		•
V _R is that value at which C _d = 25 pF	r _D	<	0,6 Ω

MECHANICAL DATA

Fig. 1 SOT-23.

Dimensions in mm

Marking code BBY40 = S2

See also Soldering recommendations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Continuous reverse voltage	v_R	max.	28	V
Reverse voltage (repetitive peak value)	v_{RRM}	max.	30	V
Forward current (d.c.)	۱ _F	max.	20	mΑ
Storage temperature	T_{stg}	-55 to	+100	oC
Operating junction temperature	τ _j ັ	max.	85	oC

➤ THERMAL CHARACTERISTICS*

 $T_i = P \times (R_{th i-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

 V_R is that value at which $C_d = 25 pF$

Thermal resistance

From junction to tab	R _{th i-t}	=	60	oC/M
From tab to soldering points	R _{th t-s}	=	280	oC/M
From soldering points to ambient**	R _{th s-a}	=	90	oC/M

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified				
Reverse current		typ.	0.1	nΑ
V _R = 28 V	1 _R	<	50	nΑ
V _R = 28 V; T _{amb} = 60 °C	1 _R	<	500	nΑ
Diode capacitance at f = 1 MHz				
V _R = 3 V	C _d	26	i to 32	pF
V _R = 25 V	C _d	4	.3 to 6	рF
Capacitance ratio at f = 1 MHz	$\frac{C_{d} (V_{R} = 3 V)}{C_{d} (V_{R} = 25 V)}$	5	to 6.5	
Sories resistance at f = 200 MHz		typ.	0.4	Ω

 r_D

0.6

Ω

^{*} See Thermal characteristics in GENERAL SECTION.

^{**} Device mounted on a ceramic substrate of 8 mm x 10 mm x 0.7 mm.

Mullard

SILICON PLANAR VOLTAGE REGULATOR DIODES

Silicon planar voltage regulator diodes, in a SOT-89 plastic envelope, intended for stabilization applications in thick and thin-film circuits.

The series covers the normalized range of nominal working voltages from 2,4 V to 75 V with a tolerance of \pm 5% (international standard E24 range).

QUICK REFERENCE DATA

Working voltage range	v_Z	nom.	2,4 to 75	٧
Working voltage tolerance (E24 range)			±5	%
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	1	w
Junction temperature	Τį	max.	150	oC

C3V9 = 3Y9

C4V3 = 4Y3

C4V7 = 4Y7

C8V2 = 8Y2

C9V1 = 9Y1

C10 = 10Y

C11 = 11Y

Dimensions in mm

C20 = 20Y

C22 = 22Y

C24 = 24Y

C27 = 27Y

C30 = 30Y

C51 = 51Y

 $C56 \approx 56Y$

C62 = 62Y

C68 = 68Y

 $C75 \approx 75Y$

RATINGS

Limiting values in accordar	ce with the Absolute Maxin	num System (IEC 13	34)	
Repetitive peak forward cu	rrent	FRM	max.	250 mA
Average forward current (averaged over any 20 m	s period)	lF(AV)	max.	250 mA
Working current (d.c.)		١z	limited b	y P _{tot max}
Total power dissipation * up to T _{amb} = 25 ^o C		P _{tot}	max.	1 W
Non-repetitive peak reverse $T_j = 25$ °C; $t_p = 100 \mu s$	power dissipation *	PZSM	max.	40 W
Storage temperature		T_{stg}	65 t	o +150 °C
Junction temperature		T_{j}	max.	150 °C
THERMAL RESISTANCE				
From junction to collector	tab	R _{th j-tab}	=	15 K/W
From junction to ambient	in free air *	R _{th j-a}	=	125 K/W
CHARACTERISTICS				
T _j = 25 °C				
Forward voltage IF = 50 mA		٧ _F	<	1,0 V
Reverse current BZV49- C2V4 C2V7 C3V0 C3V3 C3V6 C3V9 C4V3 C4V7 C5V1 C5V6 C6V2 C6V8 C7V5 C8V2 C9V1 C10 C11 to C13 C15 to C75	VR = 1 V VR = 2 V VR = 2 V VR = 2 V VR = 4 V VR = 4 V VR = 5 V VR = 6 V VR = 6 V VR = 7 V VR = 8 V VR = 8 V VR = 8 V	RRRR RRRRR RRRR RRR	< < < < < < < < < < < < < < < < < < <	50 μA 20 μA 10 μA 5 μA 5 μA 3 μA 3 μA 2 μA 1 μA 700 nA 500 nA 100 nA 50 nA

^{*} Device mounted on a ceramic substrate: area = 2,5 cm²; thickness = 0,7 mm.

 $T_j = 25$ °C E24 logarithmic range (tolerance ± 5%)

LZ4 lOgal		je (toleran	Ce ± 5%)							
BZV49	working voltage		working voltage differential resistance				temperature coefficient			
	V _Z (V)			$r_{\rm diff}(\Omega)$		S _Z (mV/K)			f = 1 MHz	
		t = 5 mA		st = 5 mA		Ztest = 5 r	mΑ	V _R = 0		
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.	
C2V4	2,2	2,6	70	100	-3,5	-1,6	0	375	450	
C2V7	2,5	2,9	75	100	-3,5	-2,0	0	350	450	
C3V0	2,8	3,2	80	95	-3,5	-2,1	0	350	450	
C3V3	3,1	3,5	85	95	-3,5	-2,4	0	325	450	
C3V6	3,4	3,8	85	90	-3,5	-2,4	0	300	450	
C3V9	3,7	4,1	85	90	-3,5	-2,5	0	300	450	
C4V3	4,0	4,6	80	90	-3,5	-2,5	0	275	450	
C4V7	4,4	5,0	50	80	-3,5	-1,4	0,2	130	180	
C5V1	4,8	5,4	40	60	-2,7	-0,8	1,2	110	160	
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140	
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130	
C6V8	6,4	7,2	6	15	1,2	3,0	4,5	85	110	
C7V5	7,0	7,9	6	15	2,5	4,0	5,3	80	100	
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75	95	
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90	
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90	
C11	10,4	11,6	10	20	5,4	7,4	9,0	65	85	
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85	
C13	12,4	14,1	10	30	7,0	9,4	11,0	60	80	
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75	
C16	15,3	17,1	10	40	10,4	12,4	14,0	52	75	
C18	16,8	19,1	10	45	12,4	14,4	16,0	47	70	
C20	18,8	21,2	15	55	14,4	16,4	18,0	36	60	
C22	20,8	23,3	20	55	16,4	18,4	20,0	34	60	
C24	22,8	25,6	25	70	18,4	20,4	22,0	33	55	
	at IZtes	t = 2 mA	at IZte	st = 2 mA	at I _{Ztest} = 2 mA					
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50	
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50	
C33 .	31,0	35,0	35	80	27,4	29,7	33,4	25	45	
C36	34,0	38,0	35	90	30,4	33,0	37,4	23	45	
C39	37,0	41,0	40	130	33,4	36,4	41,2	21	45	
C43	40.0	46,0	45	150	37,6	41,2	46,6	21	40	
C47	44,0	50,0	50	170	42,0	46,1	40,6 51,8	19	40 40	
C51	48,0	54,0	60	180	46,6	51,0	51,8 57,2	19	40	
C56	52,0	60,0	70	200	52,2	57,0 57,0	63,8	18	40	
C62	58,0	66,0	80	215	58,8	64,4	71,6	17	35	
C68	64.0	72,0	90	240	65,6	71,7	79,8	17	35	
C75	70,0	79,0	95	255	73,4	80,2	88,6	16,5	35 35	
				. 1		•				

Fig. 2 Dynamic characteristics; typical values; $T_j = 25$ °C.

Fig. 3 Dynamic characteristics; typical values at $T_j = 25$ °C.

Fig. 4 Dynamic characteristics; typical values; $T_j = 25$ °C.

Fig. 5 Dynamic characteristics; typical values at $T_j = 25$ °C.

Model for calculating the static working voltage (VZ stat).

This model can be derived from $V_{Z \text{ stat}} = V_{Z \text{ dyn}} + \Delta V_{Z}$ of which $V_{Z \text{ dyn}}$ is given in the tables on page 3 and can be derived from the typical dynamic characteristic curves (Figs 2, 3, 4 and 5) $\Delta V_Z = \Delta T \times S_Z$. For S_Z see tables and graphs S_Z versus T_j .

 $\Delta T = P_{tot} \times R_{th j-a} = I_Z \times V_{Z dyn} \times R_{th j-a}$ Following $\Delta V_Z = I_Z \times V_{Z dyn} \times R_{th j-a} \times S_Z$ and the model will be:

$$V_{Z \text{ stat}} = V_{Z \text{ dyn}} + I_{Z} \times V_{Z \text{ dyn}} \times R_{th j-a} \times S_{Z}$$

Calculating example

BZV49-C24 mounted on a ceramic substrate of $7 \times 5 \times 0.6$ mm; at $I_Z = 7$ mA.

$$V_{Z \text{ stat}} = 24 + (\frac{7}{1000} \times 24 \times \frac{125}{1000} \times 20,3)$$

= 24 + 0,4 = 24,4 V.

max. permissible non-repetitive peak reverse power dissipation versus duration P_{ZSM} (W) 10² Ti = 25°C (prior to surge 10 to surge 10-1 duration(ms)

Fig. 6 Power derating curve.

Fig. 7.

Fig. 14 Typical values; $T_j = 25 \text{ }^{\circ}\text{C}$; f = 1 kHz.

Dimensions in mm

SILICON PLANAR VOLTAGE REGULATOR DIODES

Low power general purpose voltage regulator diodes in a microminiature plastic envelope intended for application in thick and thin-film circuits. The series covers the normalized range of nominal working voltages from 2,4 V to 75 V with a working voltage tolerance of \pm 5%.

QUICK REFERENCE DATA

Working voltage range	V_{Z}	nom.	2,4 to 75 V
Working voltage tolerance			±5 %
Total power dissipation up to $T_{amb} = 25 ^{\circ}\text{C}$	P _{tot}	max.	350 mW
Junction temperature	T_{j}	max.	175 °C

MECHANICAL DATA

Fig. 1 SOT-23.

See also Soldering recommendations.

Marking code

BZX84-C2V4 = Z11 C2V7 = Z12 C3V0 = Z13 C3V3 = Z14 C3V6 = Z15 C3V9 = Z16 C4V3 = Z17 C4V7 = Z1 C5V1 = Z2	BZX84-C5V6 = Z3	BZX84-C13 = Y3 C15 = Y4 C16 = Y5 C18 = Y6 C20 = Y7 C22 = Y8 C24 = Y9 C27 = Y10 C30 = Y11	BZX84-C33 = Y12 C36 = Y13 C39 = Y14 C43 = Y15 C47 = Y16 C51 = Y17 C56 = Y18 C62 = Y19 C68 = Y20 C75 = Y21
--	-----------------	--	--

BZX84 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

max. 250 mA **IFRM** Repetitive peak forward current 250 mA max. 17RM Repetitive peak working current 350 mW max. Ptot

Total power dissipation up to T_{amb} = 25 °C** -65 to + 175 °C Tsta Storage temperature

Thermal resistance	

From junction to tab

From soldering points to ambient **

From tab to soldering points

 $T_i = P \times (R_{th i-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

THERMAL CHARACTERISTICS*

Junction temperature

Τį

Rth i-t

Rth t-s Rth s-a

max.

175 °C

50 °C/W

280 °C/W 90 °C/W

0,9 V

T_i = 25 °C unless otherwise specified

Forward voltage

I_F = 10 mA

Reverse current

V_R = 1 V BZX84-C2V4 V_R = 1 V C2V7

 $V_R = 1 V$ C3V0

C3V3 $V_R = 1 V$

 $V_R = 1 V$ C3V6

 $V_R = 1 V$ C3V9 V_R = 1 V C4V3 $V_R = 2 V$ C4V7

C5V1 V_R = 2 V $V_R = 2 V$ VR = 4 V

C5V6 C6V2 $V_R = 4 V$ C6V8 $V_R = 5 V$ C7V5

V_R = 5 V **C8V2** V_R = 6 V C9V1 $V_R = 7 V$ C10 VR = 8 V C11

VR = 8 V C12 C13 V_R = 8 V $V_R = 0.7 V_{Znom}$ C15 to C75

* See Thermal characteristics in GENERAL SECTION. **Device mounted on a ceramic substrate of 8 mm x 10 mm x 0,7 mm.

٧F

l_R I_{R}

1_R

۱R

۱R

IR

ΙR

 I_R

 I_R

 I_R

lΒ

١R

1_R

۱R

 I_R

<

10 μA 5 µA 5 μA 3 µA

50 μA

20 µA

3 µA 3 uA 2 μA

μΑ 1

١R 3 µA ۱R ۱R 1 ۱R ۱R

2 μA μΑ 700 nA 500 nA

200 nA 100 nA

50 nA

BZX84 SERIES

							<u> </u>		
BZX84	working voltage			rential tance	temperature coefficient			diode c	apacitance
	Vz	(V)	rdif	$f(\Omega)$	S	Sz (mV/o	C)	C _d (pF)	; f = 1 MHz
	at IZtest	= 5 mA	at IZtes	st = 5 mA	at I	Ztest = 5	mΑ	V	₃ = 0
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
C2V4	2.0	0.0	70	400					
C2V4 C2V7	2,2 2,5	2,6	70	100	-3,5	~1,6	0	375	450
C3V0	2,5	2,9 3,2	75 80	100	-3,5	-2,0	0	350	450
C3V3	3,1	3,2 3,5	85	95 95	-3,5	-2,1	0	350	450
C3V6	3,4	3,8	85	90	-3,5 -3,5	-2,4 -2,4	0 0	325 300	450 450
C3V9	3,7		85					i	450
C4V3	4,0	4,1 4,6	80	90 90	-3,5 -3,5	-2,5 -2,5	0	300	450
C4V7	4,4	5,0	50	80	-3,5 -3,5	-2,5 -1,4	0 0,2	275 130	450 100
C5V1	4,8	5,4	40	60	-3,5 -2,7	-0,8	1,2	110	180 160
C5V6	5,2	6,0	15	40	-2,0	1,2	2,5	95	140
C6V2	5,8	6,6	6	10	0,4	2,3	3,7	90	130
C6V8	6,4	7,2	6	15	1,2	2,3 3,0	3,7 4,5	85	110
C7V5	7,0	7,9	6	15	2,5	4,0	5,3	80	100
C8V2	7,7	8,7	6	15	3,2	4,6	6,2	75	95
C9V1	8,5	9,6	6	15	3,8	5,5	7,0	70	90
C10	9,4	10,6	8	20	4,5	6,4	8,0	70	90
C11	10,4	11,6	10	20	5,4	7,4	9,0	65	85
C12	11,4	12,7	10	25	6,0	8,4	10,0	65	85
C13	12,4	14,1	10	30	7,0	9,4	11,0	60	80
C15	13,8	15,6	10	30	9,2	11,4	13,0	55	75
C16	15,3	17,1	10	40	10,4	12,4	14,0	52	75
C18	16,8	19,1	10	45	12,4	14,4	16,0	47	70
C20	18,8	21,2	15	55	14,4	16,4	18,0	36	60
C22 C24	20,8 22,8	23,3	20	55	16,4	18,4	20,0	34	60
024	22,0	25,6	25	70	18,4	20,4	22,0	33	55
	at IZ =	2 mA	at IZ =	= 2 mA	at I _Z = 2 mA				
	min.	max.	typ.	max.	min.	typ.	max.	typ.	max.
C27	25,1	28,9	25	80	21,4	23,4	25,3	30	50
C30	28,0	32,0	30	80	24,4	26,6	29,4	27	50
C33	31,0	35,0	35	80	27,4	29,7	33,4	25	45
C39	34,0 37,0	38,0 41,0	35 40	90	30,4	33,0	37,4	23	45
		. 1		130	33,4	36,4	41,2	21	45
C43 C47	40,0 44,0	46,0	45	150	37,6	41,2	46,6	21	40
C51	48,0	50,0 54,0	50 60	170	42,0	46,1	51,8	19	40
C56	52,0	60,0	70	180 200	46,6 52,2	51,0 57,0	57,2 63,8	19 18	40 40
C62	58,0	66,0	80	215	52,2 58,8	64,4	71,6	18	40 35
C68	64.0	72.0	90	240	65,6	· ·	- 1		
C75	70,0	79,0	90 95	255	73,4	71,7 80,2	79,8 88,6	17 16,5	35 35
-	-,5	, 5,5	-55	200	75,7	JU,2	30,0	10,5	30

BZX84	working voltage		resist ^r diff	(Ω)		ng voltag V _Z (V)		differ resist ^r diff	ance (Ω)	
	at	1Z = 1 n	ıΑ	at IZ =	1 mA	at	1 _Z = 20 m	nA	at IZ =	20 m/
	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	max
C2V4	1,7	1,9	2,1	275	600	2,6	2,9	3,2	25	50
C2V7	1,9	2,2	2,4	300	600	3,0	3,3	3,6	25	50
C3V0	2,1	2,4	2,7	325	600	3,3	3,6	3,9	25	50
C3V3	2,3	2,6	2,9	350	600	3,6	3,9	4,2	20	40
C3V6	2,7	3,0	3,3	375	600	3,9	4,2	4,5	20	40
C3V9	2,9	3,2	3,5	400	600	4,1	4,4	4,7	15	30
C4V3	3,3	3,6	4,0	410	600	4,4	4,7	5,1	15	30
C4V7	3,7	4,2	4,7	425	500	4,5	5,0	5,4	8	15
C5V1	4,2	4,7	5,3	400	480	5,0	5,4	5,9	6	15
C5V1	4,8	5,4	6,0	80	400	5,2	5,7	6,3	4	10
	1						6,3	6,8	3	6
C6V2	5,6	6,1	6,6	40	150	5,8	6,3 6,9	7,4	2,5	Č
C6V8	6,3	6,7	7,2	30	80	6,4			2,5	(
C7V5	6,9	7,4	7,9	30	80	7,0	7,6	8,0	3	ï
C8V2	7,6	8,1	8,7	40	80	7,7	8,3	8,8 9,7	4	
C9V1	8,4	9,0	9,6	40	100	8,5	9,2			
C10	9,3	9,9	10,6	50	150	9,4	10,1	10,7	4	10
C11	10,2	10,9	11,6	50	150	10,4	11,1	11,8	5	10
C12	11,2	11,9	12,7	50	150	11,4	12,1	12,9	5	10
C13	12,3	12,9	14,0	50	170	12,5	13,1	14,2	5	1!
C15	13,7	14,9	15,5	50	200	13,9	15,1	15,7	6	2
C16	15,2	15,9	17,0	50	200	15,4	16,1	17,2	6	20
C18	16,7	17,9	19,0	50	225	16,9	18,1	19,2	6	20
C20	18.7	19,9	21,1	60	225	18,9	20,1	21,4	7	2
C22	20,7	21,9	23,2	60	250	20,9	22,1	23,4	7	2
C24	22,7	23,9	25,5	60	250	22,9	24,1	25,7	7	2
	at $I_Z = 0.1 \text{ mA}$ at $I_Z = 0.5 \text{ mA}$		= 0,5 mA	at	I _Z = 10 r	nΑ	at IZ = 10 m			
	min.	nom.	max.	typ.	max.	min.	nom.	max.	typ.	ma
C27	25,0	26,9	28,9	65	300	25,2	27,1	29,3	10	4
C30	27,8	29,9	32,0	70	300	28,1	30,1	32,4	15	5
C33	30,8	32,9	35,0	75	325	31,1	33,1	35,4	20	5
C36	33.8	35,9	38,0	80	350	34,1	36,1	38,4	25	6
C39	36,7	38,9	41,0	80	350	37,1	39,1	41,5	25	7
C43	39,7	42.9	46.0	85	375	40,1	43,1	46,5	25	8
C47	43.7	46,8	50,0	85	375	44,1	47,1	50,5	30	9
C51	47,6	50,8	54,0	90	400	48,1	51,1	54,6	35	10
C56	51,5	55,7	60,0	100	425	52,1	56,1	60,8	45	11
C62	57,4	61,7	66,0	120	450	58,2	62,1	67,0	60	12
C68	63,4	67,7	72,0	150	475	64,2	68,2	73,2	75	13
C68 C75	69,4	67,7 74,7	72,0 79,0	170	500	70,3	75,3	80,2	90	14

Fig. 2 Power derating curve.

Model for calculating the static working voltage (V $_{Z\ stat}$).

This model can be derived from $V_{Z \text{ stat}} = V_{Z \text{ dyn}} + \Delta V_{Z}$ of which $V_{Z \text{ dyn}}$ is given in the tables on pages 3 and 4 and can be derived from the typical dynamic characteristic curves on pages 6 and 7.

 $\Delta V_Z = \Delta T \times S_Z$. For S_Z see tables and graphs S_Z versus T_i .

 $\Delta T = P_{tot} \times R_{th \ j-a} = I_Z \times V_{Z \ dyn} \times R_{th \ j-a}.$ Following $\Delta V_Z = I_Z \times V_{Z \ dyn} \times R_{th \ j-a} \times S_Z$ and the model will be:

$$V_{Z \text{ stat}} = V_{Z \text{ dyn}} + I_{Z} \times V_{Z \text{ dyn}} \times R_{th j-a} \times S_{Z}$$

Calculating example

BZX84-C24 mounted on a ceramic substrate of 8 mm \times 10 mm \times 0.7 mm; at I_Z = 7 mA.

$$V_{Z \text{ stat}} = 24 + (\frac{7}{1000} \times 24 \times \frac{420}{1000} \times 20.3)$$

= 24 + 1.43 = 25.43 V.

Fig. 3 Dynamic characteristics; typical values; T_j = 25 °C.

Fig. 4 Dynamic characteristics; typical values; $T_j = 25$ °C.

Fig. 5 Dynamic characteristics; typical values; $T_j = 25$ °C.

Fig. 6 Dynamic characteristics; typical values; $T_j = 25$ °C.

Fig. 9 Typical values; $T_j = 25$ to 175 °C.

rig. o Typical Values, T₁ 25 to 175 o.

Fig. 13.

TUNER DIODES

SILICON A.M. BAND SWITCHING DIODE

The BA223 is a switching diode in whiskerless glass encapsulation. It is intended for band switching in a.m. radio receivers.

QUICK REFERENCE DATA

Continuous reverse voltage			
	v_R	max.	20 V
Forward current (d.c.)	۱F	max.	50 mA
Junction temperature	T _i	max.	150 °C
Diode capacitance at f = 1 MHz	•		
V _R = 6 V	C _d	<	3,5 pF
Series resistance at f = 1 MHz			
I _F = 10 mA	rD	<	1,5 Ω

MECHANICAL DATA

Fig. 1 DO-34 (SOD-68).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

The diodes may be either type-branded or colour-coded.

RA	TI	N	GS
			J

Limiting values in accordance with the Absolute Maximum System (IEC 134)

(Continuous reverse voltage	٧R	max.	20	V
1	Forward current (d.c.)	۱F	max.	50	mA
9	Storage temperature	T _{stg}	-55 to +	150	oC
	unction temperature	Tj	max.	150	оС
-	THERMAL RESISTANCE				
١	From junction to ambient in free air	R _{th j-a}	=	0,5	oC/mW
(CHARACTERISTICS				
-	Γ _j = 25 °C unless otherwise specified				

Forward voltage
I F = 50 mA
VF

Reverse current

Reverse current $V_R = 20 \text{ V} \qquad \qquad I_R \qquad < \qquad 100 \text{ nA} \\ V_R = 20 \text{ V}; T_j = 125 \text{ °C} \qquad \qquad I_R \qquad < \qquad 20 \text{ } \mu\text{A} \\ \text{Diode capacitance at f} = 1 \text{ MHz} \\ V_R = 6 \text{ V} \qquad \qquad C_d \qquad < \qquad 3,5 \text{ pF} \\ \end{cases}$

Series resistance at f = 1 MHz $$\rm I_F$ = 10 mA $$\rm r_D$$ < 1,5 Ω

1,0 V

Fig. 2 f = 1 MHz; T_j = 25 °C.

Fig. 3 f = 1 MHz; $T_i = 25$ °C.

SILICON PLANAR DIODES

Switching diodes in a DO-35 envelope, intended for band switching in v. h. f. television tuners.

QUICK REFE	RENCE D	ATA			
Continuous reverse voltage	v_R		max.	20	V
Forward current (d.c.)	$^{ m I}_{ m F}$		max.	100	mA
Junction temperature	T_{j}		max.	150	$^{\mathrm{o}}\mathrm{C}$
Diode capacitance at f = 1 to 100 MHz V_R = 15 V	$C_{\mathbf{d}}$		typ. <	1, 1 2	pF pF
			BA243	BA244	
Series resistance at f = 200 MHz I _F = 10 mA	r _D	typ <	0,7	0, 4 0, 5	Ω

MECHANICAL DATA

Dimensions in mm

DO-35

The diodes may be either type-branded or colour-coded.

BA243 BA244

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

|--|

Continuous reverse voltage

 v_{R}

max.

20 V

Current

Forward current (d.c.)

 $I_{\mathbf{F}}$

 T_{stg}

Τį

max.

100 mA

Temperatures

Storage temperature Iunction temperature

-55 to +150 °C max.

150 °C

THERMAL RESISTANCE

From junction to ambient in free air

Rth i-a

0.6 °C/mW

CHARACTERISTICS

Forward voltage at IF = 100 mA

Reverse current at $V_R = 15 \text{ V}$

 $V_R = 15 \text{ V}; T_{amb} = 60 \text{ }^{o}\text{C}$

 T_i = 25 o C unless otherwise specified

1 V

ΙR

 $V_{\mathbf{F}}$

100 nA

 I_R

1 μA

Diode capacitance at f = 1 to 100 MHz

 $V_R = 15 \text{ V}$

 C_d

typ.

1,1 pF 2 pF

Relative capacitance variation

due to reverse voltage variation at $V_R = 7$ to 20 V; f = 1 to 100 MHzrelated to V_R = 7 V

 ΔC_d $\overline{C_d \cdot \Delta V_R}$

typ.

1 %/V

Series resistance at f = 200 MHz

 $I_F = 10 \text{ mA}$

 $r_{\rm D}$

BA 243 0,7typ.

BA244

 0.4Ω

 0.5Ω

Relative series resistance variation due to forward current variation at $I_F = 2$ to 40 mA; f = 200 MHz

related to $I_F = 2 \text{ mA}$

 $r_{\rm D}$. $\Delta I_{\rm F}$

typ.

2 %/mA

Series inductance (measured on envelope)

 L_{s}

typ.

2,5 nH

2

BA243 BA244

March 1974

SILICON PLANAR DIODES

Switching diodes in the subminiature DO-34 glass envelope, intended for band switching in v.h.f. television tuners. Special feature of the diodes is their low capacitance.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	35 V
Forward current (d.c.)	I _F		00 mA
Junction temperature	τ _j		50 °C
Diode capacitance		BA482	BA483
$V_R = 3 V$; f = 1 to 100 MHz	Сd	< 1,2	1,0 pF
Series resistance at f = 200 MHz IF = 3 mA IF = 10 mA	rD	< 0,7	1,2 Ω
1F - 10 IIIA	r_{D}	typ. 0,4	0,5 Ω

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

Cathode indicated by coloured band.

BA482: red on a natural background.

BA483: orange on a natural background.

RATINGS

RATINGS					
Limiting values in accordance with the Absolute Maximum System (IEC 134)					
Continuous reverse voltage	v_R		max.	35	V
Forward current (d.c.)	١Ę		max.	100	mΑ
Storage temperature	T _{stg}		-65 to +	150	оС
Junction temperature	T_{j}		max.	150	оС
THERMAL RESISTANCE					
From junction to ambient mounted on printed board lead length = 5,0 mm	R _{th j-a}		=	0,6	oC/mW
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage I _F = 100 mA	٧ _F		<	1,2	V
Reverse current $V_R = 20 \text{ V}$ $V_R = 20 \text{ V}; T_{amb} = 75 ^{\circ}\text{C}$	I _R		< <	100 1	nΑ μΑ
			BA482	В	A483
Diode capacitance V _R = 3 V; f = 1 to 100 MHz	c_{d}	typ.	0,8 1,2		0,7 pF 1,0 pF
Series resistance at f = 200 MHz I _F = 3 mA	rD	typ.	0,6 0,7	1	0,8 Ω 1,2 Ω

Fig. 4 Typical values; f = 1 to 100 MHz; $T_j = 25$ °C.

Fig. 5 Typical values; f = 200 MHz; T_j = 25 °C.

4

SILICON VARIABLE CAPACITANCE DIODE

Planar-diffused diode in a DO-35 envelope intended for automatic frequency control in radio and television receivers.

QUICK REFERENCE DATA				
Continuous reverse voltage	v_R	max.	15	v
Junction temperature	$T_{\mathbf{j}}$	max.	200	oC
Reverse current at V_R = 15 $V: T_j$ = 150 ${}^{\circ}C$	I_{R}	<	2,0	μΑ
Diode capacitance at $f = 1 \text{ MHz}$ $V_R = 4 \text{ V}$	C _d	20 t	o 25	рF
Capacitance ratio at f < 300 MHz	$\frac{C_d (V_R = 4 V)}{C_d (V_R = 10 V)}$	≥ .	1,3	
Series resistance at $V_R = 4 \text{ V}$: $f = 200 \text{ MHz}$	r_{D}	<	1,5	Ω

MECHANICAL DATA

Dimensions in mm

DO-35

The coloured band indicates the cathode

The diodes are type branded.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Continuous reverse voltage V_R max. 15 V

Current

Forward current (d.c.) I_F max. 200 mA

Temperatures

Storage temperature T_{Stg} -65 to +200 ^{o}C Junction temperature T_{j} max. 200 ^{o}C

THERMAL RESISTANCE

From junction to ambient in free air

CHARACTERISTICS $T_j = 25$ °C unless otherwise specified

Reverse current

 $V_R = 15 \ V: T_j = 150 \ ^{\circ}C$ $l_R < 2, 0 \ \mu A$

Forward voltage

 $I_{\rm F} = 100 \text{ mA}$ V_F < 950 mV

Diode capacitance at f = 1 MHz

 $V_R = 4 V$ C_d 20 to 25 pF

Capacitance ratio at f < 300 MHz $\frac{C_d (V_R = 4 V)}{C_d (V_R = 10 V)} \ge 1.3$

Series resistance at f = 200 MHz

 $\overline{V_R} = 4 V$ r_D $typ. 0, 9 \Omega$ $< 1.5 \Omega$

Simplified equivalent circuit:

frequency independent

L = lead inductance ≈ 6 nH r_D = series resistance

 r_D = series resistance C_d = diode capacitance (see page 3) up to f = 300 MHz

These data apply for a distance of 10 mm between the two measuring points.

2

A.M. VARIABLE CAPACITANCE DOUBLE DIODES

The BB212 is a silicon mesa profiled epitaxial double tuning diode with common cathode in a plastic TO-92 variant.

A special feature is the low tuning voltage which makes the device particularly suited to car and domestic receivers in the L.W., M.W. and S.W. bands.

QUICK REFERENCE DATA

For each diode:			
Continuous reverse voltage	v_R	max.	12 V
Operating junction temperature	Τ _i	max.	85 °C
Reverse current at $T_j = 25$ °C $V_R = 10 \text{ V}$, I _R	<	50 nA
Diode capacitance at f = 1 MHz V _R = 0,5 V V _R = 8,0 V	C _d	500 t	o 620 pF 22 pF
Capacitance ratio at f = 1 MHz	$\frac{C_d (V_R = 0.5 V)}{C_d (V_R = 8.0 V)}$	>	22,5
Series resistance at f = 500 kHz V_R is that value at which C_d = 500 pF	r _s	<	2,5 Ω

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

The anode of the diode with the higher capacitance C_1 at $V_R = 3 V$, i.e. a more positive mismatch, is identified by a white dot.

RATINGS (for each diode)

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	$V_{\mathbf{R}}$	max. 12 V
· ·	* K	
Forward current (d.c.)	ıŁ	max. 100 mA
Storage temperature	T_{stg}	-55 to + 100 °C
Operating junction temperature	T_{j}	max. 85 °C

۱R

۱R

 C_d

 C_d

 r_s

η

η

 $C_d (V_R = 0.5 V)$

 $C_d (V_R = 8.0 V)$

CHARACTERISTICS (for each diode)

T_i = 25 °C unless otherwise specified

 $V_{R} = 8.0 V$

$$V_R = 0.5 \text{ V}$$

MATCHING PROPERTIES

The capacitance of the two diodes in their common envelope may differ within certain limits. The total, relative capacitance difference between the two diodes in one envelope may be found in Fig. 2. The anode a1 or a2 with the higher capacitance at $V_R = 3 V$, is identified by a white dot.

BASIC TOLERANCE

The relative deviation of the capacitance value at $V_R = 0.5 \text{ V}$ is maximum 3.5%.

$$k = \left| \frac{C_1 (0,5 V) - C_2 (0,5 V)}{C_2 (0,5 V)} \right| = < 3,5\%.$$

ADDITIONAL TOLERANCE

In the range of $V_R = 0.5$ to 8 V the following additional tolerances are valid.

$$S = \left. \left| \, {C_1 \choose C_2} \right. \, V_R - {C_1 \choose C_2} \, \, 0,5 \, \, V \right| \qquad \begin{array}{c} S < 2\% \, \, \text{for} \, \, V_R = 0,5 \, \, \text{to} \, \, 3 \quad \, V \\ S < 4\% \, \, \text{for} \, \, V_R = 3 \quad \, \text{to} \, \, 5,5 \, \, V \\ S < 6\% \, \, \text{for} \, \, V_R = 5,5 \, \, \text{to} \, \, 8 \quad \, V \end{array} \right\} \, \, \text{see Fig. 2}$$

C₁ is the capacitance of a₁ when a₁ > a₂
$$C_1$$
 is the capacitance of a₂ when a₂ > a₁

50 nA

200 nA

22 pF

2,5 Ω

0,054 %/K

0,050 %/K

typ.

typ.

500 to 620 pF

140 to 280 pF 40 to 90 pF

22,5

2

Fig. 2 The shaded area represents the maximum tolerance of the two diodes in one envelope as a function of the reverse voltage.

Fig. 3 Typical values.

Fig. 4 f = 1 MHz.

VARIABLE CAPACITANCE DIODES

The BB405B and BB405G are silicon variable capacitance diodes in hermetically sealed glass DO-34 envelopes.

The BB405B is intended for u.h.f. tuning up to frequencies of 860 MHz. The BB405G is intended for v.h.f. tuning.

Diodes are supplied in matched sets and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	ma	ax.	28	V
Reverse current at V _R = 28 V	i _R	<		10	nΑ
			BB405B	BB405G	
Diode capacitance at f = 500 kHz $V_R = 25 V$	c _d	> <	2,0 2,3	1,8 2,5	pF pF
Capacitance ratio at f = 500 kHz	$\frac{C_d (V_R = 3 V)}{C_d (V_R = 25 V)}$	>	4,8 5,8	4,3 6,0	
Series resistance at f = 470 MHz V_R is that value at which C_d = 9 pF	r _s	<	0,8	1,2	Ω

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-68 (DO-34).

(1) Lead diameter in this zone uncontrolled.

The diodes are suitable for mounting on a 2E (5,08 mm) pitch.

BB405B: white cathode ring; body black coloured

BB405G: additional green band.

Maximum soldering iron or solder bath temperature 300 °C; maximum soldering time 3 s. Distance from case is not critical, but the glass envelope must not come into contact with soldering iron.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_{R}	max.	28 V	
Reverse voltage (peak value)	v_{RM}	max.	30 V	
Forward current (d.c.)	۱ _F	max.	20 mA	
Storage temperature	T _{stg}		-55 to + 150 °C	
Operating junction temperature	τ _j	max.	100 °C	

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified

	Reverse current			BB405B	BB405G	
	V _R = 28 V	I _R	<	10	10	nΑ
-	V _R = 28 V; T _{amb} = 85 °C	I _R	<	200	200	nΑ
	Diode capacitance at f = 500 kHz*					
-	V _R = 1 V	C _d	>	15,5	15,5	рF
	V _R = 3 V	C _d	typ.	. 11,5	11,5	pF
	V _R = 25 V	C_d	> <	2,0 2,3	1,8 2,5	pF pF
	Capacitance ratio at f = 500 kHz	$\frac{C_d (V_R = 3 V)}{C_d (V_R = 25 V)}$	> <	4,8 5,8	4,3 6,0	
	Series resistance					
	at f = 470 MHz and at that value of V_R at which C_d = 9 pF	r _s	<	0,8	1,2	Ω

^{*} Matching: Devices are supplied on a bandolier with a space between matched sets (minimum quantity 120 devices, total divisible by 12; maximum quantity is 9000 per reel). Capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

Fig. 2 Maximum values reverse current as a function of the junction temperature. V_R = 28 V.

Fig. 3 Maximum values diode capacitance at f = 500 kHz.

Fig. 4 Maximum values temperature coefficient as a function of reverse voltage. T_i = 0 to 85 °C.

SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BB809 is a variable capacitance diode in a glass envelope intended for electronic tuning in v.h.f. television tuners with extended band I (FCC and OIRT-norm).

Diodes are supplied in matched sets (minimum 120 pieces and divisible by 12) and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

QUICK REFERENCE DATA

Continuous reverse voltage	v _R	max.	28 V
Reverse current at V _R = 28 V	۱ _R	<	10 nA
Diode capacitance at f = 500 kHz			
V _R = 3 V	C _d	26	to 32 pF
V _R = 25 V	c _d	4,5	to 5,6 pF
Capacitance ratio at f = 500 kHz	$\frac{C_d (V_R = C_d (V_R = 2))}{C_d (V_R = 2)}$	n	to 6,5
Series resistance at f = 200 MHz V_R is that value at which C_d = 25 pF	r _s	<	0,6 Ω

MECHANICAL DATA

Fig. 1 SOD-68 (DO-34).

Dimensions in mm

(1) Lead diameter in this zone uncontrolled. Cathode indicated by yellow band.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_R	max. 28 V
Reverse voltage (peak value)	∨ _{RM}	max. 30 V
Forward current (d.c.)	l _E	max. 20 mA
Storage temperature	⊤ _{stg}	-55 to + 150 °C
Operating junction temperature	Tj	max. 100 °C

THERMAL RESISTANCE

From junction to ambient in free air	R _{th j-a}	=	0,6 °C/mW
--------------------------------------	---------------------	---	-----------

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified

Reverse current			
V _R = 28 V	^I R	<	10 nA
$V_{R} = 28 \text{ V; } T_{amb} = 85 ^{\circ}\text{C}$	^I R	<	200 nA
Diode capacitance at f = 500 kHz			
V _R = 3 V	C _d		26 to 32 pF
V _R = 25 V	c_d		4,5 to 5,6 pF
Capacitance ratio at f = 500 kHz	$\frac{C_d (V_R = 3 V)}{C_d (V_R = 25 V)}$		5 to 6,5

Series	resistance at f = 200 MHz

V_R is that value at which $C_d = 25 pF$	r _S	<	0,6 12
Relative capacitance difference	ΔC		

. 11	u ,	•		
Relative capacitance differe	nce	4.0		
between two diodes; VR	= 1 to 28 V	$\frac{\Delta C}{C}$	<	3 %

Fig. 3 Temperature coefficient of the diode capacitance; T_{amb} = 0 to 85 °C.

Fig. 4 f = 500 kHz; T_{amb} = 25 °C.

Fig. 5 $V_R = 28 V$.

GERMANIUM DIODESGold bonded

GOLD BONDED DIODES

Germanium diodes in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

			AAZ15	AAZ1	7
Continuous reverse voltage	v_{R}	max.	75	50	v
Repetitive peak reverse voltage	VRRM	max.	100	75	V
Forward current (d.c.)	l F	max.	140	140	mΑ
Repetitive peak forward current	IFRM	max.	250	250	mΑ
Junction temperature	, T _i	max.	85	85	οС
Forward voltage at I _F = 250 mA	V _F	<	1,1	1,1	V
Recovery charge when switched from I _F = 10 mA to V _R = 10 V	$\Omega_{\mathbf{s}}$	<	1800	900	pC

MECHANICAL DATA

Fig. 1 DO-7.

Dimensions in mm

The diodes are type branded; the cathode being indicated by a coloured band.

AAZ15 AAZ17

$\textbf{RATINGS} \ Limiting \ values \ in accordance \ with the \ Absolute \ Maximum \ System \ (IEC 134)$

Voltages		AAZ15	AAZ17
Continuous reverse voltage	v_R	max. 75	50 V
Repetitive peak reverse voltage	v_{RRM}	max. 100	75 V
Non-repetitive peak reverse voltage ($t \le l s$)	v_{RSM}	max. 115	75 V
Currents			
Forward current (d.c.)	$I_{\mathbf{F}}$	max. 140	mA
Average rectified forward current (averaged over any 20 ms period)	I _{F(AV)}	max. 140	mA
Repetitive peak forward current	I_{FRM}	max. 250	mA
Non-repetitive peak forward current (t < 1 s)	I_{FSM}	max. 500	mA
Temperatures			
Storage temperature	T_{stg}	-65 to +85	$^{\mathrm{o}\mathrm{C}}$
Junction temperature	T_{j}	max. 85	oC
THERMAL RESISTANCE			
From junction to ambient in free air	R _{th j-a}	= 0.55	oC/mW

GOLD BONDED DIODE

Germanium diode in all-glass DO-7 envelope, intended for switching applications and general purposes.

QUICK REFERENCE DATA

V _R	max.	25 V
V _{BBM}	max.	25 V
I _E	max.	110 mA
IERM	max.	150 mA
	max.	75 °C
) V _E		1.1 V
'	-	.,. •
Q_s	<	6 00 pC
	V _{RRM} IF IFRM T _j V _F	V_{RRM} max. I_F max. I_{FRM} max. T_j max. V_F

MECHANICAL DATA

Fig. 1 DO-7.

Dimensions in mm

The diodes are type-branded; the cathode being indicated by a coloured band.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages				
Continuous reverse voltage	v_R	max.	25	V
Repetitive peak reverse voltage	v_{RRM}	max.	25	V
Non-repetitive peak reverse voltage (t < 1 s)	v_{RSM}	max.	30	V
Currents				
Forward current (d.c.)	$I_{\mathbf{F}}$	max.	110	mA
Average rectified forward current (averaged over any 20 ms period)	I _{F(AV)}	max.	110	mA
	, ,		150	mA
Repetitive peak forward current	I_{FRM}	max.	150	шх
Non-repetitive peak forward current ($t < 1 s$)	I_{FSM}	max.	200	mA
Temperatures				
Storage temperature	T_{stg}	~65 t	o +75	°C
Junction temperature	Тj	max.	75	°C
THERMAL RESISTANCE				
	n	_	0.55	^o C/mW
From junction to ambient in free air	R _{th j-a}	=	0.33	C/ 11111

PICOAMPERE DIODE

PICOAMPERE DIODE

Silicon diode in a metal envelope. It has an extremely low leakage current over a wide temperature range combined with a low capacitance and is not sensitive to light. It is intended for clamping, holding, peak follower, time delay circuits as well as for logarithmic amplifiers and protection of insulated gate field-effect transistors.

QUICK REFERENCE DATA

V_{R}	max.	20 V
l _E	max.	50 mA
Ve	<	1.0 V
		,
1 _R	<	5 pA
۱R	<	10 pA
c_d	<	1,3 pF
	I _F V _F I _R	I _F max. V _F <

MECHANICAL DATA

Dimensions in mm

Handle the device with care whilst soldering into the circuit. The extremely low leakage current can only be guaranteed when the bottom is free from solder flux or other contaminations.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	V _R	max.	20	V
Repetitive peak reverse voltage	V_{RRM}	max.	35	V
Forward current (d.c. or average)	IF	max.	50	mΑ
Repetitive peak forward current	^I FRM	max.	100	mΑ
Storage temperature	T _{stg}	-65 to +	125	οС
Junction temperature	Tj	max.	125	οС
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	500	K/W
CHARACTERISTICS				
T 25 00 unless otherwise specified				

T_i = 25 °C unless otherwise specified

Forward voltage $I_F = 10 \text{ mA}$ $V_F < 1.0 \text{ V}$ Reverse current $V_R = 5 \text{ V}$ $I_R < 5 \text{ pA}$ $V_R = 5 \text{ V}$; $V_S = 20 \text{ V}$ $V_S =$

Forward recovery voltage when switched to $$\rm I_F=10~mA$$ $\rm V_{fr}$ < 1,25 V

Fig. 2 Test circuit and waveforms.

Input signal Rise time of the forward pulse	t _r	€	20 ns
Forward current pulse duration	t _p	=	300 ns
Duty factor	δ	=	0,01
Oscilloscope Rise time	t _r	=	0,35 ns
Input capacitance	Ci	\leq	1 pF

Circuit capacitance C \leqslant 20 pF (C = C $_{i}$ + parasitic capacitance)

600 ns

CHARACTERISTICS (continued)

Reverse recovery time when switched from

$$I_F$$
 = 10 mA to I_R = 10 mA; R_L = 100 Ω ; measured at I_R = 1 mA

t_{rr}

Fig. 3 Test circuit and waveforms.

$$* I_R = 1 mA.$$

Input signal

Rise time of the reverse pulse

Reverse pulse duration

Duty factor Oscilloscope

Rise time

 $t_r = 0.6 \text{ ns}$ $t_p = 500 \text{ ns}$ $\delta = 0.05$

<

= 0.35 ns

Circuit capacitance $C \le 1$ pF (C = oscilloscope input capacitance + parasitic capacitance)

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

INDEX

Type No.	Section	Suggested alternative	Type No.	Section	Suggested alternative
AA119 AAZ13 AAZ15 AAZ17	* * * *	BAT81 BA481 BAT85	BAX13 BAX16 BAX17 BB105B,G	B B B	BB405B,G
3A182	*	BA482	BB110B,G	*	BB119
BA223 BA243 BA244 BA280 BA314	H H + *	BA481	BB119 BB212 BB405B,G BB809 BBY31	Н Н Н G	
BA316 BA317 BA318 BA379 BA481	B B B *		BBY40 BY184 BY228 BY409 BY438	G * E *	BY584 BY509
BA482 BA483 BAS11 BAS16 BAS17	H H B G		BY448 BY458 BY476 BY509 BY584	E E E* E	
BAS19 BAS20 BAS21 BAT17 BAT18	G G G		BYV27 series BYV28 series BYV95A,B,C BYV96D,E BYW54	E E E	
BAT81 BAT82 BAT83 BAT85 BAV10	F F F B		BYW55 BYW56 BYW95A,B,C BYW96D,E BYX10	E E E E*	
BAV18 BAV19 BAV20 BAV21 BAV45	B B B J		BYX90 BYX91 series BZT03 series BZV10 BZV11	* C D D	
BAV70 BAV99 BAW56 BAW62	G G B B		BZV12 BZV13 BZV14 BZV46-1V5, 2V0	D D C G	

^{*}Not recommended for the design of new equipment.

		· · · · · · · · · · · · · · · · · · ·
Type No.	Section	Suggested alternative
BZV85 series BZW03 series BZX61 series	C C C*	BZV85 series
BZX79 series	С	or BZT03 series
BZX84 series BZX87 series BZX90 BZX91 BZX92	G C D D	
BZX93 BZX94 BZY88 series CV7099 to 7106 CV7138 to 7146	D D C* C	BZX79 series
CV7367,8 CV7756,7 CV7875 CV8308 CV8617	B B B E B	
CV8790 CV8805 CV9637 CV9638 CVA7026	B E B E	
CVA7027 CVA7028	E	

_		\sim	
	Type No.	Section	Suggested alternative
	CVA7029 CVA7030 CVA7476 OA47 OA90	E E !* *	BAT85 BAT81
	OA91 OA95 OA200 OA202 1N821	* * B B	
	1N823 1N825 1N827 1N829 1N914	D D D B	
	1N916 1N4001G 1N4002G 1N4003G 1N4004G	B E E E	
	1N4005G 1N4006G 1N4007G 1N4148 1N4446	E E B B	
1	1N4448	В	

^{*}Not recommended for the design of new equipment.

	DIODES CONTENTS	
	SELECTION GUIDE	
Α	GENERAL SECTION	
В	SILICON WHISKERLESS DIODES	
С	VOLTAGE REGULATOR DIODES (Low power)	
D	VOLTAGE REFERENCE DIODES	
E	RECTIFIER DIODES (Low power)	
F	SCHOTTKY-BARRIER DIODES	
G	MICROMINIATURE DIODES	
Н	TUNER DIODES	
١	GERMANIUM DIODES (Gold bonded)	
 	PICOAMPERE DIODE	
•	INDEX	

technical handbook

Book 1

Farnell Electronic Components Ltd.

Canal Road, Leeds LS12 2TU. Tel: Leeds (0532) 636311. Telex: 55147.

Gothic Cretion

380 Bath Road, Slough SL1 6JE. Tel: Burnham (06286) 4434. Telex: 847571.

Hawnt Electronics Ltd.

Firswood Road, Garretts Green, Birmingham B33 0TQ. Tel: Birmingham (021) 784 2485. Telex: 338814.

Intel Electronics Ltd.

Trading Estate, Henlow, Bedfordshire SG16 6DS. Tel: Hitchin (0462) 812505. Telex: 825637.

ITT Electronics Services

Edinburgh Way, Harlow, Essex CM20 2DF. Tel: Harlow (0279) 26777, Telex; 81525.

Jermyn

Vestry Estate, Sevenoaks, Kent TN13 5EU. Tel; Sevenoaks (0732) 450144. Telex: 95142.

Macro-Marketing Ltd.

Burnham Lane, Slough SL1 6LN. Tel: Burnham (06286) 4422. Telex: 847945.

Swift-Sasco Ltd.

P.O. Box 2000, Gatwick Road, Crawley, Sussex RH10 2RU. Tel: Crawley (0293) 28700. Telex: 87131.

Townsend-Coates Ltd.

Lunsford Road, Leicester LE5 0HH. Tel: Leicester (0533) 769191. Telex: 34321.

Mullard manufacture and market ejectronic components under their own name and those of associated companies.