ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

Курсовой проект

по дисциплине «Объектно-ориентированное программирование» «Обзор сред программирования на языке KRL для программирования манипуляторов KUKA»

Пояснительная записка

Выполнил		
студент гр.		Смирнов В. А.
3331506/20102		
2021000, 20102	(подпись)	
Работу принял		Ананьевский М.С.
	(подпись)	

Санкт-Петербург 2025 г.

Оглавление

Введение	3
1. KUKA WorkVisual	3
2. KUKA OfficeLite	4
3. KUKA Sim Pro	6
4. KUKA Visual Components	7
Сравнительный анализ сред программирования	8
Заключение	9
Список литературы	10

Введение

КUKA Robot Language (KRL) — это специализированный язык программирования, разработанный компанией КUKA для управления промышленными роботами. Этот язык является основным инструментом для программирования манипуляторов КUKA и предлагает широкие возможности для автоматизации производственных процессов. В данной работе рассмотрим основные среды программирования, использующие KRL, их особенности и функциональные возможности.

1. KUKA WorkVisual

KUKA WorkVisual - это IDE для программирования роботов KUKA, которая стала стандартом в отрасли.

Внизу представлено окно программы с вводом программы удаленно на пульт управления манипулятором KUKA.

Рисунок 1 – Окно программы WorkVisual Development Environment Ключевые возможности:

- Диагностика и отладка проектов
- Редактирование кода KRL с автоматической фоновой проверкой синтаксиса

- Конфигурирование роботизированных ячеек под различные задачи
- Интеграция с системами управления KUKA (с контроллерами KR C4, KR C5)
- Возможность управления проектами и версиями

Преимущества:

- Официальное решение от KUKA с полной поддержкой
- Широкие возможности кастомизации
- Поддержка модульного программирования
- Интеграция с другими инструментами KUKA

Недостатки:

- Высокий порог входа для новичков
- Требует лицензии для полного функционала

2. KUKA OfficeLite

Виртуальная среда программирования KUKA OfficeLite – это виртуальный контроллер KUKA, который позволяет разрабатывать и тестировать программы без доступа к реальному роботу.

Ключевые возможности:

- Эмуляция контроллера KUKA на ПК
- Полная поддержка KRL
- Возможность тестирования программ в виртуальной среде

Преимущества:

- Снижение простоев оборудования
- Безопасное обучение и тестирование
- Экономия времени на разработку

Ограничения:

- Не полностью заменяет тестирование на реальном оборудовании
- Требует установку на виртуальную машину vmware или Hyper-V

3. KUKA Sim Pro

Интегрированное решение для моделирования

KUKA Sim Pro сочетает возможности программирования на KRL с продвинутыми инструментами симуляции.

Рисунок 3 – пример выполнения программы на виртуальной ячейке

Особенности:

- 3D-моделирование роботизированных ячеек
- Генерация KRL-кода из симуляции
- Коллизионный анализ
- Оптимизация траекторий

Применение:

- Верификация программ перед запуском
- Оптимизация производственных процессов
- Обучение операторов

4. KUKA Visual Components

KUKA Visual Components - это программное обеспечение для 3D-моделирования и симуляции промышленных производств и автоматизации

Рисунок 4 – моделирование взаимодействия руки с конвейером

Ключевые особенности:

- Библиотека моделей оборудования КUKA
- Генерация KRL-кода
- Анализ производительности
- Инструменты для проверки досягаемости

Сравнительный анализ сред программирования

Таблица 1 – сравнение характеристик рассмотренного ПО

Характеристи	Редактор	Отладка	Симуляция	Оффлайн-	Лицензиро	Интеграция с
ка	KRL			программи	вание	контроллерами
ПО/				рование		роботов KUKA
WorkVisual	Да	Да	Ограниченно	Да	Требуется	Полная
OfficeLite	Да	Да	Да	Да	Требуется	Полная
Sim Pro	Частично	Да	Да	Да	Требуется	Частичная
Visual	Нет	Да	Да	Да	Требуется	Частичная
Components						

Особенности программирования на KRL в различных средах

В плане отладки и тестирования WorkVisual и OfficeLite предлагают наиболее полные инструменты отладки:

- Пошаговое выполнение
- Точки останова
- Мониторинг переменных
- Визуализация траекторий

Важно учитывать, что разные версии KRL могут иметь различия в синтаксисе. WorkVisual автоматически учитывает эти различия в зависимости от версии контроллера.

Исходя из задачи стоящей перед пользователем, стоит выбрать 1 из следующих вариантов:

- 1. Для промышленной разработки: KUKA.WorkVisual и OfficeLite;
- 2. Для обучения : OfficeLite (виртуальная среда);
- 3. Для сложных симуляций: KUKA.Sim Pro или Visual Components.

Заключение

Среды программирования на KRL от KUKA предоставляют комплексные решения для разработки, тестирования и внедрения роботизированных приложений. Выбор конкретного инструмента зависит от задач, уровня подготовки разработчика и этапа работы с роботом. Современные тенденции направлены на упрощение процесса программирования при сохранении гибкости и мощности языка KRL, что делает программирование манипуляторов KUKA более доступным без потери функциональности.

Список литературы

- KUKA.WorkVisual Webinar // Youtube URL: https://youtu.be/PNCwlEEdEiw?si=eg8_XMS7Dja2eoZj (дата обращения: 17.05.2025).
- 2. Роботы KUKA для производства, их типы и возможности // Top3dshop URL: 2. https://top3dshop.ru/blog/kuka-industrial-robots-types-applications-capabilities.html?srsltid=AfmBOopJ3BO75LoAM2JsBpomSmlivrKElLztGFttRgbx mkcLwbM_zz66 (дата обращения: 18.05.2025).
- 3. Visual Components 4.1 Pick and Place // Youtube URL: https://www.youtube.com/watch?v=WPbfblCiVng (дата обращения: 18.05.2025).
- 4. KUKA.Sim Tutorial How to drop the cube and add functions // Youtube URL: https://www.youtube.com/watch?v=Q9AE3FOG-Ug&list=PLcmh-lxe_PW5QV1288LwpnZe-yIPT3Sva&index=12 (дата обращения: 18.05.2025).
- 5. KUKA.WorkVisual 6.0 // my.kuka URL: https://my.kuka.com/s/product/kukaworkvisual60/01t58000005rL3eAAE?language =ru&tab=Functions (дата обращения: 18.05.2025).
- 6. KUKA Roboter GmbH Controller KR C4 Operating Instructions. 5 изд. Аугсбург: KUKA Roboter GmbH, 2012. 183 с.