Intervals, Transformations, and Slope Solution (version 59)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -3) \cup (0, 8)$
Negative	$(-10, -7) \cup (-3, 0)$
Increasing	$(-10, -4) \cup (-2, 2)$
Decreasing	$(-4, -2) \cup (2, 8)$
Domain	(-10,8)
Range	(-5,5)

Intervals, Transformations, and Slope Solution (version 59)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=59$ and $x_2=77$. Express your answer as a reduced fraction.

$$\frac{g(77) - g(59)}{77 - 59} = \frac{17 - 38}{77 - 59} = \frac{-21}{18}$$

The greatest common factor of -21 and 18 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{6}$$

2