AMENDMENTS

Please amend the claims as follows:

- 1. (original) A method for computing spatial derivatives for medical imaging, the method comprising:
- (a) determining a spatial gradient vector in an acoustic domain for at least one ultrasound data sample; and
 - (b) transforming the spatial gradient vector to a Cartesian coordinate system.
- 2. (original) The method of Claim 1 further comprising:
- (c) volume rendering ultrasound data, including the at least one ultrasound data sample, as a function of the transformed spatial gradient vector from (b).
- 3. (original) The method of Claim 2 wherein (c) comprises volume rendering with shading, the shading being a function of the transformed spatial gradient vector.
- 4. (original) The method of Claim | further comprising:
- (c) generating a two dimensional image from ultrasound data, including the at least one ultrasound data sample, as a function of the transformed spatial gradient vector from (b).
- 5. (original) The method of Claim 1 further comprising:
- (c) filtering ultrasound data, including the at least one ultrasound data sample, as a function of the transformed spatial gradient vector from (b), the filtering operable to perform at least one of: speckle reduction, feature enhancement and edge enhancement.

BEST AVAILABLE COPY

- 6. (original) The method of Claim 1 wherein (a) comprises calculating a derivative of ultrasound data associated with the at least one ultrasound data sample, the derivative along one of: azimuth angle, range and elevation angle.
- 7. (currently amended) The method of Claim 6 wherein (a) comprises calculating a <u>first</u> or <u>higher order</u> derivative of the order at least one as a function of azimuth angle and a second derivative as a function of range.
- 8. (original) The method of Claim 1 wherein (b) comprises weighting the spatial gradient vector of the acoustic domain as a function of a relationship of an acoustic grid to the Cartesian coordinate system.
- 9. (original) The method of Claim 1 wherein (b) comprises calculating two spatial derivatives in the Cartesian coordinate system as a function of multiplying at least two spatial gradient vectors in the acoustic domain by a matrix.
- 10. (original) The method of Claim 9 wherein (b) comprises using a matrix representing spatial differences between the acoustic domain and the Cartesian coordinate system.
- 11. (original) The method of Claim 1 further comprising:
- (c) performing (b) with one of a programmable fragment shader, a vertex shader and combinations thereof of a graphics processing unit.
- 12. (original) The method of Claim 1 further comprising:
- (c) generating a three-dimensional representation from ultrasound data, including the at least one ultrasound data sample, in the acoustic domain without scan conversion of ultrasound data representing two-dimensional regions.

- 13. (currently amended) In a method for computing spatial derivatives for medical ultrasound imaging, the improvement comprising:
- (a) calculating a spatial gradient vector representing a gradient in a Cartesian coordinate space from ultrasound data in the an acoustic domain, the ultrasound data being free of scan conversion.
- 14. (currently amended) A system for computing spatial derivatives for medical ultrasound imaging, the system comprising:
 - a receive beamformer operable to output ultrasound data in an acoustic domain;
- a graphic processor unit connected with the receive beamformer, the graphics processor unit operable to determining determine a spatial gradient vector in the acoustic domain from the ultrasound data and operable to transform the spatial gradient vector to a Cartesian coordinate system.
- 15. (original) A method for computing spatial derivatives for medical ultrasound imaging, the method comprising:
- (a) resampling ultrasound data in an acoustic domain to ray-lines representing a viewing angle through a volume; and
 - (b) determining gradient information from the resampled ultrasound data.
- 16. (original) The method of Claim 15 further comprising:
- (c) determining values along the ray-lines as a function of the resampled ultrasound data and the gradient information; and
 - (d) blending along the ray-lines with the values of (c).
- 17. (original) The method of Claim 15 further comprising:

12/14/2004 .11:00

ATTORNEY DOCKET NO. 2003P05926US

- (c) delaying resampled ultrasound data from adjacent ray-lines; wherein (b) comprises determining the gradient information from the delayed resampled ultrasound data.
- 18. (original) The method of Claim 15 wherein (b) comprises determining first and second gradients along first, second and third dimensions.
- 19. (original) The method of Claim 15 further comprising:
- (c) shading the resampled ultrasound data as a function of the gradient information.
- 20. (original) The method of Claim 15 wherein (b) comprises determining gradients from ultrasound data in a screen domain, the ultrasound data in the screen domain being a two dimensional representation of a three dimensional volume;

further comprising:

- shading the ultrasound data as a function of the gradients. (c)
- 21. (currently amended) A method for computing spatial derivatives for medical ultrasound imaging, the method comprising:
- shading ultrasound data representing locations in a three dimensional volume as a function of a viewing angle; and
- resampling the shaded ultrasound data to ray-lines representing a the viewing angle through the three dimensional volume.
- 22. (original) The method of Claim 21 further comprising:
 - (c) blending the shaded, resampled ultrasound data along the ray-lines.

- 23. (original) The method of Claim 21 wherein (a) comprises shading one of: display intensities with opacity weights and display intensities with transparency weights.
- 24. (original) The method of Claim 21 wherein (a) comprises shading ultrasound data in an acoustic domain and free of two-dimensional scan conversion.
- 25. (original) The method of Claim 21 further comprising:
 - (c) determining gradients for the ultrasound data;
 wherein (a) comprises altering the ultrasound data as a function of the gradients.
- 26. (original) The method of Claim 1 further comprising:
 - (c) performing (b) with a programmable vertex shader of a graphics processing unit.
- 27. (original) The method of Claim 1 further comprising:
- (c) performing (b) with programmable vertex and fragment shaders of a graphics processing unit.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.