Portanto,

$$W = \frac{1}{2}m |\mathbf{v}(b)|^2 - \frac{1}{2}m |\mathbf{v}(a)|^2$$

onde  $\mathbf{v} = \mathbf{r}'$  é a velocidade.

A quantidade  $\frac{1}{2} m |\mathbf{v}(t)|^2$ , ou seja, a metade da massa multiplicada pelo quadrado da velocidade escalar, é chamada **energia cinética** do objeto. Portanto, podemos reescrever a Equação 15 como

$$W = K(B) - K(A)$$

que diz que o trabalho realizado pelo campo de forças ao longo do caminho C é igual à variação da energia cinética nas extremidades de C.

Agora vamos admitir que **F** seja um campo de forças conservativo, ou seja, podemos escrever  $\mathbf{F} = \nabla f$ . Em física, a **energia potencial** de um objeto no ponto de (x, y, z) é definida como P(x, y, z) = -f(x, y, z), portanto temos  $\mathbf{F} = -\nabla P$ . Então, pelo Teorema 2, temos

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r} = -\int_{C} \nabla P \cdot d\mathbf{r} = -[P(\mathbf{r}(b)) - P(\mathbf{r}(a))] = P(A) - P(B)$$

Comparando essa equação com a Equação 16, vemos que

$$P(A) + K(A) = P(B) + K(B)$$

que diz que, se um objeto se move de um ponto *A* para outro *B* sob a influência de um campo de forças conservativo, então a soma de sua energia potencial e sua energia cinética permanece constante. Essa é a chamada **Lei da Conservação de Energia** e é a razão pela qual o campo vetorial é denominado *conservativo*.

# 16.3 Exercícios

A figura mostra uma curva C e um mapa de contorno de uma função f cujo gradiente é contínuo. Determine  $\int_C \nabla f \cdot d\mathbf{r}$ .



**2.** É dada uma tabela de valores de uma função f com gradiente contínuo. Determine  $\int_C \nabla f \cdot d\mathbf{r}$ , onde C tem equações paramétricas

$$x = t^{2} + 1,$$
  $y = t^{3} + t,$   $0 \le t \le 1.$ 
 $x$ 
 $y$ 
 $0$ 
 $1$ 
 $2$ 
 $0$ 
 $1$ 
 $6$ 
 $4$ 
 $1$ 
 $3$ 
 $5$ 
 $7$ 

**3–10** Determine se **F** é ou não um campo vetorial conservador. Se for, determine uma função f tal que  $\mathbf{F} = \nabla f$ .

2



2.

- 4.  $\mathbf{F}(x, y) = e^x \operatorname{sen} y \mathbf{i} + e^x \operatorname{sen} y \mathbf{j}$
- 5.  $\mathbf{F}(x, y) = e^x \cos y \, \mathbf{i} + e^x \sin y \, \mathbf{j}$
- **6.**  $\mathbf{F}(x, y) = (3x^2 2y^2)\mathbf{i} + (4xy + 3)\mathbf{j}$
- 7.  $\mathbf{F}(x, y) = (ye^x + \text{sen } y) \mathbf{i} + (e^x + x \cos y) \mathbf{j}$
- **8.**  $\mathbf{F}(x, y) = (2xy + y^{-2})\mathbf{i} + (x^2 2xy^{-3})\mathbf{j}, y < 0$
- **9.**  $\mathbf{F}(x, y) = (\ln y + 2xy^3) \mathbf{i} + (3x^2y^2 + x/y) \mathbf{j}$
- **10.**  $F(x, y) = (xy \cosh xy + \sinh xy) i + (x^2 \cosh xy) j$
- 11. A figura mostra o campo vetorial  $\mathbf{F}(x, y) = \langle 2xy, x^2 \rangle$  e três curvas que começam em (1, 2) e terminam em (3, 2).
  - (a) Explique por que  $\int_C \mathbf{F} \cdot d\mathbf{r}$  tem o mesmo valor para as três curvas.
  - (b) Qual é esse valor comum?



12-18 (a) Determine uma função f tal que  $\mathbf{F} = \nabla f$  e (b) use a parte  $|\mathbf{SCA}|$  27. Se  $\mathbf{F}(x, y) = \sin y \mathbf{i} + (1 + x \cos y) \mathbf{j}$ , use um gráfico para con-(a) para calcular  $\int_C \mathbf{F} \cdot d\mathbf{r}$  sobre a curva C dada.

- **12.**  $\mathbf{F}(x, y) = x^2 \mathbf{i} + y^2 \mathbf{j}$ , C é o arco da parábola  $y = 2x^2$  de (-1, 2) a (2, 8)
- **13.**  $\mathbf{F}(x, y) = xy^2 \mathbf{i} + x^2 y \mathbf{j}$ , C:  $\mathbf{r}(t) = \langle t + \sin \frac{1}{2}\pi t, t + \cos \frac{1}{2}\pi t \rangle, 0 \le t \le 1$
- **14.**  $\mathbf{F}(x, y) = (1 + xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j}$ , C:  $\mathbf{r}(t) = \cos t \, \mathbf{i} + 2 \sin t \, \mathbf{i}$ ,  $0 \le t \le \pi/2$
- **15.**  $\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$ C é o segmento de reta de (1, 0, -2) a (4, 6, 3)
- **16.**  $\mathbf{F}(x, y, z) = (y^2z + 2xz^2)\mathbf{i} + 2xyz\mathbf{j} + (xy^2 + 2x^2z)\mathbf{k}$  $C: x = \sqrt{t}, y = t + 1, z = t^2, 0 \le t \le 1$
- 17.  $\mathbf{F}(x, y, z) = yze^{xz}\mathbf{i} + e^{xz}\mathbf{j} + xye^{xz}\mathbf{k}$ C:  $\mathbf{r}(t) = (t^2 + 1)\mathbf{i} + (t^2 - 1)\mathbf{i} + (t^2 - 2t)\mathbf{k}, 0 \le t \le 2$
- **18.**  $\mathbf{F}(x, y, z) = \operatorname{sen} y \mathbf{i} + (x \cos y + \cos z) \mathbf{j} y \operatorname{sen} z \mathbf{k},$ C:  $\mathbf{r}(t) = \text{sen } t \mathbf{i} + t \mathbf{j} + 2t \mathbf{k}, 0 \le t \le \pi/2$

19-20 Mostre que a integral de linha é independente do caminho e calcule a integral.

- **19.**  $\int_C \text{tg } y \, dx + x \sec^2 y \, dy$ , C é qualquer caminho de (1, 0) a  $(2, \pi/4)$
- $\int_C (1 ye^{-x}) dx + e^{-x} dy$ C é qualquer caminho de (0, 1) a (1, 2)
- 21. Suponha que você seja solicitado a determinar a curva que exige o mínimo de trabalho para um campo de força F para mover uma partícula de um ponto a outro ponto. Você decide verificar primeiro se F é conservativo, e de fato verifica-se que ela é. Como você responde à solicitação?
- 22. Suponhamos que uma experiência determine que a quantidade de trabalho necessária para um campo de força F para mover uma partícula do ponto (1, 2) para o ponto de (5, -3) ao longo de uma curva  $C_1$  é de 1,2 **J** e do trabalho realizado por **F** em mover a partícula ao longo de outra curva  $C_2$  entre os mesmos dois pontos é de 1,4 J. O que você pode dizer sobre F? Por quê?

23-24 Determine o trabalho realizado pelo campo de força F ao mover um objeto de P para Q.

- **23.**  $\mathbf{F}(x, y) = 2y^{3/2} \mathbf{i} + 3x\sqrt{y} \mathbf{j};$ P(1, 1), Q(2, 4)
- **24.**  $\mathbf{F}(x, y) = e^{-y} \mathbf{i} xe^{-y} \mathbf{j}; \qquad P(0, 1), Q(2, 0)$

25-26 A partir do gráfico de F você diria que o campo é conservativo? Explique.





- jecturar se F é conservativo. Então, determine se sua conjectura estava correta.
- **28.** Seja  $\mathbf{F} = \nabla f$ , onde  $f(x, y) = \operatorname{sen}(x 2y)$ . Encontre curvas  $C_1$  e  $C_2$  que não sejam fechadas e satisfaçam a equação.

(a) 
$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 0$$
 (b)  $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 1$ 

$$(b) \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 1$$

29. Mostre que, se um campo vetorial  $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$  é conservativo e P, Q, R têm derivadas parciais de primeira ordem contínuas, então

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$\frac{\partial P}{\partial z} = \frac{\partial R}{\partial z}$$

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
  $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$   $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$ 

30. Use o Exercício 29 para mostrar que a integral de linha  $\int_C y \, dx + x \, dy + xyz \, dz$  não é independente do caminho.

31-34 Determine se o conjunto dado é ou não: (a) aberto, (b) conexo por caminhos e (c) simplesmente conexo.

- **31.**  $\{(x, y) | 0 < y < 3\}$
- **32.**  $\{(x, y)|1 < |x| < 2\}$
- **33.**  $\{(x, y) | 1 \le x^2 + y^2 \le 4, y \ge 0\}$
- **34.**  $\{(x, y) | (x, y) \neq (2, 3)\}$
- **35.** Seja  $\mathbf{F}(x, y) = \frac{-y \, \mathbf{i} + x \, \mathbf{j}}{x^2 + y^2}$ .
  - (a) Mostre que  $\partial P/\partial y = \partial Q/\partial x$ .
  - (b) Mostre que  $\int_{C} \mathbf{F} \cdot d\mathbf{r}$  não é independente do caminho. [Dica: Calcule  $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot d\mathbf{r}$ , onde  $C_1 = C_2$  são as metades superior e inferior do círculo  $x^2 + y^2 = 1$  de (1, 0) a (-1, 0). Isto contradiz o Teorema 6?
- **36.** (a) Suponha que **F** seja um campo vetorial inverso do quadrado, ou seja,

$$\mathbf{F}(\mathbf{r}) = \frac{c\mathbf{r}}{|\mathbf{r}|^3}$$

para alguma constante c, onde  $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ . Determine o trabalho realizado por F ao mover um objeto de um ponto  $P_1$  por um caminho para um ponto  $P_2$  em termos da distância  $d_1$  e  $d_2$  desses pontos à origem.

- (b) Um exemplo de um campo de quadrado inverso é o campo gravitacional  $\mathbf{F} = -(mMG)\mathbf{r}/|\mathbf{r}|^3$  discutido no Exemplo 4 na Seção 16.1. Use a parte (a) para determinar o trabalho realizado pelo campo gravitacional quando a Terra se move do afélio (em uma distância máxima de  $1.52 \times 10^8$  km do Sol ) ao periélio (em uma distância mínima de  $1,47 \times 10^8$  km). (Use os valores  $m = 5.97 \times 10^{24} \text{kg}, M = 1.99 \times 10^{30} \text{kg e}$  $G = 6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2}.)$
- (b) Outro exemplo de campo inverso do quadrado é o campo elétrico  $\mathbf{F} = \varepsilon q Q \mathbf{r} / |\mathbf{r}|^3$  discutido no Exemplo 5 da Seção 16.1. Suponha que um elétron com carga de  $-1.6 \times 10^{-19}$ C esteja localizado na origem. Uma carga positiva unitária é colocada à distância de 10<sup>-12</sup> m do elétron e se move para uma posição que está à metade da distância original do elétron. Use a parte (a) para determinar o trabalho realizado pelo campo elétrico. (Use o valor  $\varepsilon = 8,985 \times 10^9$ .)

**35**. (a)



(b) y = 1/x, x > 0

## **EXERCÍCIOS 16.2**

- **1.**  $\frac{1}{54}(145^{3/2}-1)$  **3.** 1638,4
- **5.**  $\frac{243}{8}$

**19.** 45

- **9.**  $\sqrt{5} \pi$  **11.**  $\frac{1}{12} \sqrt{14} (e^6 1)$
- **13.**  $\frac{2}{5}$  (e-1)
- **17.** (a) Positiva (b) Negativa **21.**  $\frac{6}{5} - \cos 1 - \sin 1$ 
  - **23.** 1,9633
- **25.** 15,0074

**27.**  $3\pi + \frac{2}{3}$ 



- **29.** (a)  $\frac{11}{8} 1/e$
- (b)



- **31.**  $\frac{172\,704}{5\,632\,705}\sqrt{2}(1-e^{-14\pi})$
- **33.**  $2\pi k$ ,  $(4/\pi, 0)$
- **35.** (a)  $\overline{x} = (1/m) \int_C x \rho(x, y, z) ds$ ,
- $\overline{y} = (1/m) \int_C y \rho(x, y, z) ds,$

 $\overline{z} = (1/m) \int_C^C z \rho(x, y, z) ds$ , onde  $m = \int_C \rho(x, y, z) ds$ 

- **37.**  $I_x = k(\frac{1}{2}\pi \frac{4}{3}), I_y = k(\frac{1}{2}\pi \frac{2}{3})$  **39.**  $2\pi^2$  **41.**  $\frac{7}{3}$
- **43.** (a)  $2ma \mathbf{i} + 6mbt \mathbf{j}, 0 \le t \le 1$  (b)  $2ma^2 + \frac{9}{2}mb^2$
- **45.**  $\approx 1,67 \times 10^4 \text{ pés-lb}$
- **51**. ≈22 J **47.** (b) Sim

(b) 2

#### **EXERCÍCIOS 16.3**

- **1.** 40 **3.**  $f(x, y) = x^2 3xy + 2y^2 8y + K$
- **5.** Não conservativo **7.**  $f(x, y) = ye^x + x \operatorname{sen} y + K$ **9.**  $f(x, y) = x \ln y + x^2 y^3 + K$
- **11.** (b) 16 **13.** (a)  $f(x, y) = \frac{1}{2}x^2y^2$
- **15.** (a)  $f(x, y, z) = xyz + z^2$  (b) 77
- **17.** (a)  $f(x, y, z) = ye^{xz}$  (b) 4
- 21. Não importa qual curva é escolhida.
- **23.** 30 **25.** Não
  - 27. Conservativo (b) Sim (c) Sim
- **31**. (a) Sim **33.** (a) Não
- (b) Sim
- (c) Sim

#### **EXERCÍCIOS 16.4**

- **3.**  $\frac{2}{3}$  **5.** 12
- 7.  $\frac{1}{3}$ 
  - **9**.  $-24\pi$
- **15.**  $-8e + 48e^{-1}$ 17.  $-\frac{1}{12}$  19.  $3\pi$ **23.**  $(4a/3\pi, 4a/3\pi)$  se a região é a porção do disco  $x^2 + y^2 = a^2$  no pri-
- meiro quadrante
- **27.** 0

### **EXERCÍCIOS 16.5**

- **1.** (a)  $-x^2 \mathbf{i} + 3xy \mathbf{j} xz \mathbf{k}$  (b) yz
- **3.** (a)  $ze^x \mathbf{i} + (xye^z yze^x) \mathbf{j} xe^z \mathbf{k}$ (b)  $y(e^z + e^x)$
- **5.** (a) **0** (b)  $2/\sqrt{x^2 + y^2 + z^2}$
- 7. (a)  $\langle -e^y \cos z, -e^z \cos x, -e^x \cos y \rangle$
- (b)  $e^x \operatorname{sen} y + e^y \operatorname{sen} z + e^z \operatorname{sen} x$
- **9.** (a) Negativa
- (b) rot  $\mathbf{F} = \mathbf{0}$
- **11.** (a) Zero (b) rot  $\mathbf{F}$  pontos na direção negativa de z
- **13.**  $f(x, y, z) = xy^2z^3 + K$
- 15. Não conservativo
- **17.**  $f(x, y, z) = xe^{yz} + K$ **19**. Não

#### **EXERCÍCIOS 16.6**

- **1.** *P*: não; *Q*: sim
- **3.** Plano por (0, 3, 1) contendo os vetores  $\langle 1, 0, 4 \rangle, \langle 1, -1, 5 \rangle$
- 5. Paraboloide hiperbólico
- 7.



8.



11.



- **15**. II
- **19.** x = u, y = v u, z = -v
- **21.**  $y = y, z = z, x = \sqrt{1 + y^2 + \frac{1}{4}z^2}$
- **23.**  $x = 2 \operatorname{sen} \phi \cos \theta, y = 2 \operatorname{sen} \phi \operatorname{sen} \theta,$
- $z = 2\cos\phi, 0 \le \phi \le \pi/4, 0 \le \theta \le 2\pi$

[ou 
$$x = x$$
,  $y = y$ ,  $z = \sqrt{4 - x^2 - y^2}$ ,  $x^2 + y^2 \le 2$ ]

**25.** 
$$x = x, y = 4 \cos \theta, z = 4 \sin \theta, 0 \le x \le 5, 0 \le \theta \le 2\pi$$

- **29.**  $x = x, y = e^{-x} \cos \theta$ ,
- $z = e^{-x} \operatorname{sen} \theta, 0 \le x \le 3,$
- $0 \le \theta \le 2\pi$

