Valori booleani

Iniziamo a definire i valori booleani TRUE, FALSE e il costrutto IF

TRUE
$$\stackrel{\text{def}}{=} \lambda x. \lambda y. x$$
FALSE $\stackrel{\text{def}}{=} \lambda x. \lambda y. y$
IF $\stackrel{\text{def}}{=} \lambda z. z$

- 1. TRUE: dati due argomenti, restituisce sempre il primo
- 2. FALSE: dati due argomenti, restituisce sempre il secondo
- 3. IF: banalmente, è la funzione identità

Proposizioni booleane

- 1. IF TRUE M $N \Leftrightarrow M$ Da intendersi come ((IF)TRUE)FALSE)M N
- 2. IF FALSE $M N \Leftrightarrow N$

Dimostrazione 1° proposizione:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Dimostrazione 2° proposizione:

$$egin{aligned} egin{aligned} & egin{$$

Operatori logici

Attraverso le definizione dei valori booleani, possiamo definirci sopra anche gli operatori logici:

AND
$$\stackrel{\text{def}}{=} \lambda x. \lambda y. \text{IF } x y \text{ FALSE}$$

OR $\stackrel{\text{def}}{=} \lambda x. \lambda y. \text{IF } x \text{ TRUE } y$

NOT $\stackrel{\text{def}}{=} \lambda x. \text{IF } x \text{ FALSE TRUE}$

Il loro funzionamento è lo stesso di qualsiasi altro linguaggio di

programmazione.

Accetta due(o uno) **parametri booleani** e restituisce il loro **AND/OR/NOT** logico.

Dunque le seguenti proposizioni sono valide:

AND TRUE TRUE ⇔ TRUE

AND TRUE FALSE ⇔ FALSE

AND FALSE TRUE ⇔ FALSE

AND FALSE FALSE ⇔ FALSE

Dimostrazione 2° proposizione:

$$((\lambda x.\ \lambda y.\ \frac{\lambda z.\ z}{\lambda z.\ x}\ x\ y)\ \frac{\lambda x.\ \lambda y.\ y}{\lambda x.\ \lambda y.\ y})\ \frac{\lambda x.\ \lambda y.\ x}{\lambda x.\ \lambda y.\ x})\ \frac{\lambda x.\ \lambda y.\ y}{\lambda x.\ \lambda y.\ y}\rightarrow_{\beta}\\ \rightarrow_{\beta}((\lambda y.\ \lambda z.\ z\lambda x.\ \lambda y.\ x)\ \frac{\lambda x.\ \lambda y.\ y}{FALSE}\ \frac{FALSE}{FALSE}\\ \rightarrow_{\beta}((\lambda y.\ \lambda z.\ z\lambda x.\ \lambda y.\ x)\ \lambda x.\ \lambda y.\ y\lambda x.\ \lambda y.\ y)$$

ma sappiamo da prima che IF $TRUE\ M o M$ quindi IF $TRUE\ FALSE\ FALSE$ si riduce a $FALSE\ FALSE$ ovvero FALSE

Coppie

Definiamo il costruttore delle **Coppie** e i metodi **First** e **Second** che restituiscono rispettivamente il **primo** e **secondo** elemento

PAIR
$$\stackrel{\text{def}}{=} \lambda x. \lambda y. \lambda z. z \, x \, y$$
 costruttore delle coppie
FST $\stackrel{\text{def}}{=} \lambda p. p$ TRUE prima componente di una coppia
SND $\stackrel{\text{def}}{=} \lambda p. p$ FALSE seconda componente di una coppia

Proposizioni

FST (PAIR
$$M N$$
) $\Leftrightarrow M$
SND (PAIR $M N$) $\Leftrightarrow N$

Dimostrazioni 1º Proposizione:

FST (PAIR
$$MN$$
) \rightarrow PAIR MN TRUE \rightarrow ($\lambda y. \lambda z. z. My$) N TRUE \rightarrow ($\lambda z. z. MN$) TRUE \rightarrow TRUE MN \Rightarrow M

La dimostrazione è abbastanza intuitiva: espandendo le varie definizioni e effettuando una β -riduzione, otteniamo PAIR M N TRUE.

Effettuando ulteriori β -riduzioni è facile vedere come il risultato sia M stesso.

Numeri naturali (Codifica di Churc)

L'idea di base è di rappresentare un qualsiasi numero n come una funzione f applicata ad un parametro x per n volte.

Esempio: il numero 5 sarebbe f(f(f(f(f(5)))))

Definizione

Dato $k \in \mathbb{N}$ scriviamo M^k N per $\underbrace{M\left(M\left(\cdots\left(M\right),N\right)\right)}_{k \text{ volte}}$ N)). In particolare

 $M^0 N = N$.

 $\underline{n} \stackrel{\text{def}}{=} \lambda f. \lambda x. f^n x$

codifica del numero naturale n

► SUCC $\stackrel{\text{def}}{=} \lambda a.\lambda f.\lambda x.af(fx)$

funzione successore

Il **successore** banalmente è n+1

Dimostrazione di SUCC 2:

$$egin{aligned} & \underline{2} = \lambda f. \, \lambda x. \, f(f \, x) \ & \underline{SUCC} \ & \underline{SUCC} \, \underline{2} = & (\underline{\lambda a. \, \lambda f. \, \lambda x. \, a \, f(f \, x)}) & (\underline{\lambda f. \, \lambda x. \, f(f \, x)} \rightarrow_{eta} \\ & \rightarrow_{eta} \lambda f. \, \lambda x. \, (\lambda f. \, \lambda x. \, f(f \, x)) f(f \, x) \ & \rightarrow_{eta} \lambda f. \, \lambda x. \, (\lambda x. \, f(f \, x)) (f \, x) \ & \rightarrow_{eta} \lambda f. \, \lambda x. \, (f(f \, f(x))) = \underline{3} \end{aligned}$$

ADD, MUL ed EXP

Definizione

► ADD $\stackrel{\text{def}}{=} \lambda a. \lambda b. b$ SUCC a

somma

▶ MUL $\stackrel{\text{def}}{=} \lambda a.\lambda b.b$ (ADD a) $\underline{0}$

moltiplicazione

ightharpoonup EXP $\stackrel{\text{def}}{=} \lambda a. \lambda b. b \text{ (MUL } a) \underline{1}$

elevamento a potenza

Dimostrazione di 1.

$$\mathtt{ADD}\ \underline{m}\ \underline{n}\ \Rightarrow\ \underline{n}\ \mathtt{SUCC}\ \underline{m}\ \ \mathsf{definizione}\ \mathsf{di}\ \mathtt{ADD}$$

 \Rightarrow SUCCⁿ \underline{m} definizione di \underline{n}

 $\Leftrightarrow \underline{m+n}$ proprietà di SUCC

Dal momento che un numerale \underline{n} di Church altro non è che una funzione applicata n volte, l'addizione di due numeri m e n la posso pensare come la funzione SUCC applicata n volte sul numero m

Predecessore

L'idea è di calcolare una sequenza di n coppie

(0,0);(0,1);(1,2);...;(n-1,n)

e poi estrarre n-1 dall'n-esima coppia.

Definizione (predecessore)

- ▶ NEXT $\stackrel{\text{def}}{=} \lambda p.$ PAIR (SND p) (SUCC (SND p)))
- ▶ PRED $\stackrel{\text{def}}{=} \lambda a$.FST (a NEXT (PAIR $\underline{0}$ $\underline{0}$))

NEXT prende in input una coppia P_1 e ne crea un'altra prendendo, come primo elemento, il secondo elemento di P_1 e come secondo elemento, il successore del primo elemento preso.

PRED prende in input un numero n e crea una coppia formata da (n-1,n), infine restituisce il primo elento della coppia.

Proposizione 1 NEXT (PAIR $\underline{m} \underline{n}$) \Leftrightarrow PAIR $\underline{n} \underline{n+1}$ 2 PRED $\underline{n} \Leftrightarrow \begin{cases} \underline{0} & \text{se } n=0 \\ \underline{n-1} & \text{se } n>0 \end{cases}$

Imponiamo che il predecessore di 0 sia 0 stesso

Numero 0

L'idea di base è iterare a volte la funzione costante $\lambda x. FALSE$, con caso base TRUE.

Se la itero 0 volte, banalmente la funzione scompare.

Definizione

ISZERO $\stackrel{\text{def}}{=} \lambda a.a$ ($\lambda x.$ FALSE) TRUE

test per zero

Dimostrazione ISZERO 0:

$$egin{aligned} (\lambda a.\, a(\lambda x.\, ext{FALSE}) ext{TRUE}) & \underline{0}
ightarrow_{eta} \ (\lambda f.\, \overset{0}{\lambda} x \, x) \; (\lambda x.\, ext{FALSE}) ext{TRUE}
ightarrow_{eta} \ (\lambda x.\, x) ext{TRUE} & = ext{TRUE} \end{aligned}$$

Dimostrazione ISZERO 1:

$$(\lambda a.\ a(\lambda x.\ {
m FALSE}){
m TRUE})\ \underline{1}
ightarrow_{eta} \ (\lambda f.\ \lambda x.\ f.\ x)\ (\lambda x.\ {
m FALSE}){
m TRUE}
ightarrow_{eta} \ (\lambda x.\ (\lambda x.\ {
m FALSE})x){
m TRUE}
ightarrow_{eta} \ (\lambda x.\ {
m FALSE}){
m TRUE} = {
m FALSE}$$

ISZERO
$$\underline{n+1}$$
 $\rightarrow \underline{n+1} (\lambda x. \text{FALSE}) \text{ TRUE}$ def. di ISZERO $\Leftrightarrow (\lambda x. \text{FALSE})^{n+1} \text{ TRUE}$ def. di $\underline{n+1}$ def. di $\underline{m+1}$ $\rightarrow \text{FALSE}$ $((\lambda x. \text{FALSE})^n \text{ TRUE})$ def. di \underline{M}^{n+1} $\rightarrow \text{FALSE}$ β -riduzione \square

Generalizzazione di ISZERO (N+1)

Ricorsione: fattoriale

Una prima idea per realizzare il fattoriale potrebbe essere:

FACT
$$\stackrel{\text{def}}{=} \lambda a$$
. IF (ISZERO a) $\underline{1}$ (MUL a (FACT (PRED a)))

E' quasi pseudocodice:

if(iszero(n)) then 1 else(MUL(1,Fact(n-1)))

Tuttavia non va bene come definizione, dal momento che stiamo definendo **FACT** in funzione di **FACT** stesso.

Semplificandola otteniamo

FACT
$$\stackrel{\text{def}}{=}$$
 ($\lambda f.\lambda a.$ IF (ISZERO a) 1 (MUL a (f (PRED a)))) FACT In questo modo abbiamo una redex ben definita

Dobbiamo trovare quindi x=F(x) dove x è **FACT** mentre **F** è la mia redex definita prima.

Ovvero dobbiamo calcolare il punto fisso di una funzione(x = F(X)).

Definiamo quindi una funzione ausiliaria AUX:

AUX
$$\stackrel{\text{def}}{=} \lambda f.\lambda a.$$
 IF (ISZERO a) $\underline{1}$ (MUL a (f (PRED a)))

e definiamo **FACT** come **FIX AUX** dove **FIX** è una funzione per trovare i **punti fissi**:

$$FIX \stackrel{\text{def}}{=} \lambda f.(\lambda x.f(x x)) (\lambda x.f(x x))$$

Proposizione

 $\mathtt{FIX}\ M \Leftrightarrow M\ (\mathtt{FIX}\ M)$

FIX M è (convertibile a) un punto fisso di M

Dimostrazione:

Dimostrazione.

FIX
$$M \to (\lambda x.M(x x))(\lambda x.M(x x))$$
 β -riduzione $\to M((\lambda x.M(x x))(\lambda x.M(x x)))$ β -riduzione $\to M(\text{FIX }M)$ β -riduzione \Box

Ora possiamo tornare alla funzione fattoriale:

Definizione

 $FACT \stackrel{\text{def}}{=} FIX AUX$

Proposizione

FACT $\Leftrightarrow \lambda a$. IF (ISZERO a) $\underline{1}$ (MUL a (FACT (PRED a)))

Dimostrazione.

FACT = FIX AUX def. di FACT \Leftrightarrow AUX (FIX AUX) prop. di FIX = AUX FACT def. di FACT $\rightarrow \lambda a$.IF (ISZERO a) 1 (MUL a (FACT (PRED a))) β -rid.