Can you Polish your Dutch? Jacek Pardyak 2017-08-10

Wprowadzenie

Popatrzmy na dwa słowniki (zbiory słów):

Table 1: Słowa w słowniku polskim

ananas banan jabłko

Table 2: Słowa w słowniku niderlandzkim

ananas banaan aardbei

Interesuje nas podobieństwo słów w obu słownikach, które może być zaprezentowane:

Będą nas interesować słowa identyczne i podobne (przy zdefiniowaniu, co to znaczy "podobne").

Dane

Alfabety

Słowa to ciągi elementów (liter) należacych do pewnego zbioru (alfabetu). Oba języki posługują się innymi alfabetami. Możemy porównać oba alfabety:¹

Table 3: Alfabety

Letter	NL	PL
a	TRUE	TRUE
ą	FALSE	TRUE
b	TRUE	TRUE
\mathbf{c}	TRUE	TRUE
ć	FALSE	TRUE
d	TRUE	TRUE
e	TRUE	TRUE
ę	FALSE	TRUE
f	TRUE	TRUE
g	TRUE	TRUE
h	TRUE	TRUE
i	TRUE	TRUE
j	TRUE	TRUE
k	TRUE	TRUE
1	TRUE	TRUE
ł	FALSE	TRUE
m	TRUE	TRUE
n	TRUE	TRUE
ń	FALSE	TRUE
О	TRUE	TRUE
ó	FALSE	TRUE
p	TRUE	TRUE
q	TRUE	FALSE
r	TRUE	TRUE
s	TRUE	TRUE
ś	FALSE	TRUE
t	TRUE	TRUE
u	TRUE	TRUE
v	TRUE	FALSE
w	TRUE	TRUE
x	TRUE	FALSE
у	TRUE	TRUE
\mathbf{z}	TRUE	TRUE

 1 Żródło: https://en.wikipedia. org/wiki/Polish_orthography , oraz https://en.wikipedia.org/wiki/ Dutch_orthography

Letter	NL	PL
ź	FALSE	TRUE
ż	FALSE	TRUE

Dodatkowo oba języki stosują dwuznaki.

Slowa

Słowa powstają z liter alfabetu.

Slowniki

Słowniki to zbiory słów.²

$Slowniki\ Aspell$

Wybrałem słowniki **Aspell**, bo są tam oba języki (porównujemy jabłka do jabłek). Nie mógł być np SJP. **Aspell**³ to standardowy w systemach GNU program do sprawdzania pisowni. Słowniki pochodzą z tej strony.

Słowa słownika Aspell

Jak wyglądają zgromadzone tam dane?

Table 4: Pierwsze słowa w słowniku polskim

Word
A
AA
AAN
AAP
ABA
ABB

Table 5: Ostatnie słowa w słowniku polskim

	Word
289835	ów
289836	$\'owczesno\'s\'c/MN$
289837	ówczesny/bXxYy
289838	ówdzie
289839	ówże

 2 słowniki czynne, branżowe, słownictwo

3 http://aspell.net/

	Word	
289840	óśmi	

Table 6: Pierwsze słowa w słowniku niderlandzkim

Word
A
A-attest
A-attesten
A-biljet
$\hbox{A-biljetten}$
A-bom

Table 7: Ostatnie słowa w słowniku niderlandzkim

	Word
341456	öres
341457	über
341458	über-ich
341459	überhaupt
341460	übermensch
341461	übermenschen

Polski słownik zawiera: 289840 słów, zaś niderlandzki 341461 słów.

Słowniki a listy słów

Niektóre języki, w tym polski stosują fleksję (z łac. przeistoczenie słów, przemiana) dla nadania słowom nowej funkcji gramatycznej. Na przykład:

Table 8: Forma podstawowa

ówczesny

Table 9: Możliwe odmiany

nieówczesny ówczesnymi ówczesnych ówczesnym

ówczesnemu ówczesnego ówczesną ówczesnej ówczesne ówczesna ówcześni ówcześnie nieówczesnymi nieówczesnych nieówczesnym nieówczesnemu nieówczesnego nieówczesną nieówczesnej nieówczesne nieówczesna

W Aspell zaimplementowano 7101 reguł odmiany końcówek słów w zależności od ich znaczenia. W języku niderlandzkim tych reguł niemal nie ma.

Po ich zastosowaniu lista polskich słów zawiera: 3761314 słów, zaś niderlandzkich tyle samo, bo 341461 słów. Spowodowało to 13 krotny wzrost liczby słów polskich, gdy uwzględni się ich różne formy gramatyczne.

```
Listy słów pozyskano z programu Aspell w Ubuntu wykonując komendy:
aspell --lang=pl dump master | aspell --lang=pl expand | tr
' ' '\n' > wordsPL.dict
oraz
aspell --lang=nl dump master | aspell --lang=nl expand | tr
' ' '\n' > wordsNL.dict
Słowniki aspell –lang=en dump master > dictEN.dict
```

Przygotowanie danych

Pracować będziemy na słownikach, a nie listach słów. Zatem informacje o przypisanym słowom regułach możemy usunąć i posługiwać się formą podstawową słowa.

Opis statystyczny słów słowników polskiego i niderlandzkiego

Rozkład długości słów

Zaczynamy od zmierzenia długości słów.

Minimalna, maksymalna i średnia długość polskich słów:

Table 10: Podsumowanie długości słów polskich

	V1
) (r	1 00000
Min.	1.00000
1st Qu. Median	8.00000 10.00000
Mean	10.00000 10.31133
3rd Qu.	13.00000
Max.	33.00000
	35.00000

Minimalna, maksymalna i średnia długość niderlandzkich słów:

Table 11: Podsumowanie długości słów niderlandzkich

	V1
Min.	1.00000
1st Qu.	8.00000
Median	11.00000
Mean	11.18185
3rd Qu.	13.00000
Max.	46.00000

Wyniki możemy porównać graficznie:

Najdłuższe polskie słowo: dziewięćdziesięciopięcioipółletni⁴ Najdłuższe niderlandzkie słowo: $arbeid song eschik theids verzekerings maatschappi \mathbf{j}^5$

 $^{^4}$ Ninety-five-half-year-old

⁵ Disability Insurance Society

Częstotliwość występowania liter w obu językach Porównujemy względną częstotliwość.

Table 12: Względna częstotliwość występowania liter w obu językach (top 10)

Letter	NL	PL
e	0.1648690	0.0797926
n	0.0804287	0.0763589
r	0.0767599	0.0508108
i	0.0697762	0.0899286
a	0.0683425	0.0902994
\mathbf{t}	0.0653945	0.0331907
\mathbf{s}	0.0627574	0.0411251
O	0.0578341	0.0779135
1	0.0457366	0.0248665
d	0.0405318	0.0235418
\mathbf{z}	0.0078108	0.0539537
У	0.0017058	0.0509062
w	0.0113298	0.0463456

Wyniki przedstawia poniższy wykres.

Częstotliwość występowania początkowych liter w obu językach Największa przewidywalność początkowch liter słów.

Table 13: Względna częstotliwość występowania początkowych liter w obu językach (top 5)

Initial	NL	PL
s	0.0915214	0.0674269
b	0.0842790	0.0361303
\mathbf{v}	0.0724504	0.0018044
g	0.0639897	0.0244756
k	0.0587856	0.0550166
\mathbf{n}	0.0203742	0.2262559
p	0.0525770	0.1174924
W	0.0372810	0.0575248

Częstotliwość występowania początkowych digrafów w obu językach

Table 14: Względna częstotliwość występowania początkowych digrafów w obu językach (top 5)

Digraph	NL	PL
ge	0.0404995	0.0019183
ve	0.0352105	0.0003657
be	0.0332717	0.0056065
st	0.0261318	0.0100400
on	0.0215369	0.0004485
ni	0.0039624	0.1936275
po	0.0080624	0.0431755
pr	0.0133046	0.0362476

Digraph	NL	PL
na	0.0069788	0.0253864
za	0.0034411	0.0239201

 ${\bf W}$ niderlandzkim ${\sf ge-}$ to przedrostek określający abstrakcyjne koncepcje pochodzące od czasownika.

Table 15: Niderlandzki przedrostek ge-

Grondwoord	Resultat
zeuren	gezeur
piekeren	gepieker
fluiten	gefluit
	zeuren piekeren

Table 16: Tłumaczenie słów z niderlandzkim przedrostkiem ge-

Przedrostek	Grondwoord	Resultat
ge-	zeuren piekeren fluiten	gezeur gepieker gefluit

Częstotliwość występowania początkowych trigrafów w obu językach

Table 17: Względna częstotliwość występowania początkowych trigrafów w obu językach (top 3)

Trigraph	NL	PL
ver	0.0295436	0.0001898
sch	0.0168658	0.0009591
uit	0.0109939	0.0000000
nie	0.0027119	0.1913918
prz	0.0000059	0.0271253
roz	0.0003280	0.0126587

W polskim nie- to przedrostek określający zaprzeczenie, które nie musi mieć negatywnego ładunku.

Table 18: Polski przedrostek nie-

Przedrostek	Rdzen	Rezultat
nie-	spokojny zwykły winny	niespokojny niezwykły niewinny

Probabilistyczny model tworzenia tekstu

Tworzenie pisanego tekstu języka naturalnego polega na tworzeniu określonych sekwencji liter. W procesie tworzenia tekstu dużą rolę odgrywa struktura probabilistyczna elementów tekstu - liter.

Modele wybudowano używając Łancuchy Markowa⁶ Za pomocą wybudowanych modeli możemy dokonać predykcji. Otrzymujemy w ten sposób najbardziej prawdopodobne słowa:

⁶ https://pl.wikipedia.org/wiki/ %C5%81a%C5%84cuch_Markowa

Figure 1: Fragment polskiego modelu ${\it zaprezentowany graficznie}.$

Figure 2: Fragment niderlandzkiego ${f modelu}$ zaprezentowany graficznie.

Polskie: nie^7

i niderlandzkie: **sten**⁸

⁷ nee, niet 8 ?????

Ciekawe są "nowe słowa" wygenerowane za pomocą modeli - słowa mające cechy języka naturalnego, jednak ("póki co") w nim nie istniejące.

Table 19: Przykłady nowych słów polskich

skuka prysy mebiny dęteka

donąc rzyki

miezać

pozet

urtać henesy

Table 20: Przykłady nowych słów niderlandzkich

hede

zorm

mideun

stuuine

aaste

hevé

notijs

gers

oubeel

smenge

Póki co widać różnice między językami, a gdzie są podobieństwa?

Podobieństwo słów z różnych słowników

Definicja podobieństwa dwóch słów

Istnieje wiele sposobów mierzenia podobieństwa dwóch łańcuchów znaków (pojedyńczych słów, wyrażeń, pełnych zdań, czy też tekstów)⁹. Do poszukiwania podobnych łańcuchów stosuje się Przybliżone dopasowanie łańcuchów 10

⁹ https://en.wikipedia.org/wiki/ String_metric

¹⁰ https://en.wikipedia.org/wiki/ Approximate_string_matching

Identyczne słowa

Słowa identyczne są pisane dokładnie tak samo w obu językach. Z analiz wykluczono słowa zaczynające się wielką literą (skróty, imiona, nazwiska, nazwy geograficzne). Oraz słowa zbyt krótkie lub zbyt długie. Przykłady znalezionych identycznych słów:

Table 21: Przykłady identycznych słów w językach polskim i niderlandzkim

Word
ananas
balkon
chaos
duet
echo
filet
gratis
handel
impotent
jacht
kapsel
legenda
wiek
-

3352 słów w słowniku niderlandzkim występuje w polskim słowniku. Większość z tych słów pochodzi z angielskiego badź francuskiego. Są też fałszywi przyjaciele¹¹! Fałszywi przyjaciele to słowa w dwóch językach, które wyglądają i brzmią podobnie, ale znacząco różnią się w znaczeniu.

Z jednej strony mogą być źródłem pomyłek, a z drugiej śmiesznych skojarzeń ułatwiajacyh ich zapamiętanie:

Ania nosi buty na $haku^{12}$ $^{12}\,\mathrm{obcas}$ Kasia ma nowy **kapsel**¹³ na głowie $^{13}\,\mathrm{fryzura}$ Ja¹⁴ mówię tak, a ptak na tak¹⁵u pyta jak? $^{14}\,\mathrm{tak}$ $^{15}\,\mathrm{gałąź}$ Ten ptak ma dwa **wiek**¹⁶i. $^{16}\,\mathrm{skrzydlo}$ Pani z **pan**¹⁷em ¹⁷ patelnia

Słowa podobne

Do wyszukiwania słów podobnych napisałem skrypt w Python zobacz Załącznik.

11 https://en.wikipedia.org/wiki/ False_friend

Table 22: Przykłady słów polskich i ich niderlandzkich przyjaciół

Word	Friend	Score
abiturient	abituriënt	95
banan	banaan	91
bestseler	bestseller	95
dermatolog	dermatoloog	95
fortepian	fortepiano	95
wachta	wacht	91

Takich słów jest 2629

Pełna lista jest dostępna pod adresem: https://docs.google.com/ spreadsheets/d/1rJojwRpEp0dHCa077zlWxW547PUHEIVzK-9vfIUOsG0/

Ta metoda zawiedzie w przypadkach, gdy słowa są podobne, ale mają różne początkowe digrafy. wyjątek: wirus - virus kryzys - crisis

Załącznik

```
#from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import pandas as pd
# Reading the datasets in a dataframe using Pandas
nl = 'C:\\Users\\A599131\\Documents\\PolishYourDutch\\dics\\nl.wl'
nl = pd.read_csv(nl, header = None)
nl.columns = ['Word']
nl['Language'] = "NL"
pl = 'C:\\Users\\A599131\\Documents\\PolishYourDutch\\dics\\pl.wl'
pl = pd.read_csv(pl, header = None)
pl.columns = ['Word']
pl['Language'] = "PL"
dics = pd.concat([pl, nl])
dics['Word'] = dics['Word'].apply(lambda x: x.split('/', 1)[0])
dics['Length'] = dics['Word'].apply(lambda x: len(x))
dics['Upper'] = dics['Word'].apply(lambda x: x[0].isupper())
dics['Initial'] = dics['Word'].apply(lambda x: x[0:2])
# filter words with 3 < Length < 7
dics = dics.loc[dics['Length'] > 3]
dics = dics.loc[dics['Length'] < 12]</pre>
```

```
dics = dics.loc[dics['Upper'] == False]
# split back
pl = dics.loc[dics['Language'] == 'PL']
nl = dics.loc[dics['Language'] == 'NL']
# optionally reindex
pl = pl.reset_index(drop=True)
nl = nl.reset_index(drop=True)
dics = dics.reset_index(drop=True)
# save to file
pl.to_csv('C:\\Users\\A599131\\Documents\\PolishYourDutch\\dics\\pl_clean.csv',
          columns = ["Word"],
          index = True,
          encoding = 'utf-8')
nl.to_csv('C:\\Users\\A599131\\Documents\\PolishYourDutch\\dics\\nl_clean.csv',
          columns = ["Word"],
          index = True,
          encoding = 'utf-8')
def my_fun(x,y):
  query = x
  if y == 'PL':
    language = 'NL'
  else:
    language = 'PL'
  table = dics.loc[dics['Language'] == language]
  table = table.loc[table['Initial'] == query[0:2]] # the same inital
  table = table.loc[table['Length'] > len(query)-1]
  table = table.loc[table['Length'] < len(query)+2]</pre>
  if len(table.index) == 0:
    res = ('','','')
  else:
    table = table['Word']
    res = process.extractOne(query, table)
  return(res)
query = dics['Word'][5455] # banan
query = dics['Word'][2384] # ananas - ananas / good
```

```
query = dics['Word'][4499] # auto - auto / good
query = dics['Word'][3151] # apartament - appartement / bad (AM)
query = dics['Word'][3196] # aperitif - aperitief / good
query = dics['Word'][116913] # truskawka - trustakte
query = dics['Word'][144549] # ćmawy - ''
print(query)
print(my_fun(query, 'PL'))
dics['Friend'] = ''
dics['Score'] = ''
# [1: range(0, 3)
for index in range(0, 314271) :
  temp = my_fun(dics['Word'][index], dics['Language'][index])
  dics['Friend'][index] = temp[0]
  dics['Score'][index] = temp[1]
dics.to_csv('C:\\Users\\A599131\\Documents\\PolishYourDutch\\dics\\dics_clean.csv',
          index = True,
          encoding = 'utf-8')
odmienność: tak
    antytetycznego, antytetycznemu, antytetycznych, antytetycznym, antytetycznymi, nieantytetycznego, n
    antytetyczni, nieantytetyczni
b
   nieantytetyczny
    antytetyczna, antytetyczną, antytetyczne, antytetycznej, nieantytetyczna, nieantytetyczną, nieantyt
Х
у
```

References