

ASCHAM SCHOOL 2002 TRIAL HSC EXAMINATION

MATHEMATICS EXTENSION 1 FORM VI

General Instructions:

- Reading Time: 5 minutes
- Working Time: 2 hours
- Write using blue or black pen
- Approved calculators and templates may be used.
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question.

Collection:

- Start each question in a new answer book
- Write your name and teacher's name on each book.
- If you use a second book, place it inside the first.

Total Marks:

84

- Attempt Questions 1 7
- All questions are of equal value.

Question 1 Start a new answer book

- Express $\frac{5\pi}{12}$ radians as degrees a)
- Find a primitive of e^{-2x} b) [1]
- Use the table of standard integrals to find the exact value of c) $\int_{0}^{\infty} \frac{dx}{\sqrt{x^2 + 4}}$ [2]
- If α , β and γ are roots of the equation $6x^3 + 7x^2 x 2 = 0$, find the value of d) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ [3]
- e) Find the domain and range of $f(x) = 4 \sin^{-1} \frac{x}{3}$, and sketch the graph of f(x).[3]

f) Find
$$\frac{d}{dx}e^{\cos x}$$
 [2]

Question 2 Start an new answer book

a) Find (i)
$$\int \frac{x}{4+x^2} dx$$
 [1]

(i)
$$\int \frac{x}{4+x^2} dx$$
 [1]
(ii)
$$\int \frac{\pi}{6} \tan^2 2x \, dx$$
 [3]

b) If
$$\sum_{k=4}^{\infty} 2r^{k-3} = 10$$
, find r if r exists. [3]

c)

Make a large neat copy of the diagram in your answer book.

AB is the diameter of the circle with centre O. TP is a tangent to the circle at T. $EP \perp AP$. Prove:

(i) TBPE is a cyclic quadrilateral

[2]

(ii) PT = PE.

[3]

Question 3 Start a new answer book

a) Solve:
$$\frac{2x}{5-x} \ge 1$$

[3]

b) Prove by mathematical induction that 6"-1 is divisible by 5 for all positive integers.

[5]

c) By substituting $t = \tan \frac{x}{2}$, find the solutions to the equation:

 $3 \sin x + 4 \cos x = 5$ for $0^{\circ} \le x \le 360^{\circ}$, giving your answers correct to the nearest degree. [4]

Question 4

Start a new answer book

- a) Using the substitution $u = x^3 + 1$, evaluate $\int_{-1}^{1} x^2(x^3 + 1) dx$ [2]
- b) (i) Factorise: $x^3 3x + 2$
 - (ii) Hence draw a neat sketch of the polynomial $y = x^3 3x + 2$ without the use of calculus, showing all intercepts with the co-ordinate axes.
 - (iii) Hence solve the inequality $x^3 3x + 2 > 0$ [4]
- c) Find the value of $\sin \left(2 \sin^{-1} \frac{2}{3}\right)$ in exact form [3]
- d) i) Show that the equation $f(x) = x^3 8x + 8$ has a zero between -3 and -4.
 - ii) Taking x = -3.5 as a first approximation of the solution of the equation f(x) = 0, use Newton's method once to find a closer approximation, giving your answer to 2 decimal places [3]

Question 5 Start a new answer book

- A bug is oscillating in simple harmonic motion such that its displacement x metres from a fixed point O at time t seconds is given by the equation $\ddot{x} = -4x$. When t = 0, v = 2 m/s and x = 5.
 - Show that $x = a \cos(2t + \beta)$ is a solution for this equation, where a and β are constants.
 - (ii) Find the period of the motion.
 - (iii) Show that the amplitude of the oscillation is $\sqrt{26}$.
 - (iv) What is the maximum speed of the bug? [5]
- b) (i) Prove that $\frac{d}{dx} \left(\frac{1}{2}v^2\right) = \ddot{x}$ [2]
 - (ii) The acceleration of a creature is given by $\ddot{x} = -\frac{1}{2}u^2e^{-x}$ where x is the displacement from the origin, and u is the initial velocity at the origin. Given that u = 2 m/s:
 - (α) Show that $v^2 = 4e^{-x}$
 - (β) Explain why v > 0, and find x in terms of t.
 - (γ) Describe the subsequent motion of the creature as $t \to \infty$.

Question 6 Start a new answer book

- A ladder is slipping down a vertical wall. The ladder is 4 metres long. The top of the ladder is slipping down at a rate of 3 m/s. How fast is the bottom of the ladder moving along the ground when the bottom is 2 metres away from the foot of the wall?
- b) The point $P(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$. The focus S is the point (0,a). The tangent at P meets the y-axis at Q.
 - (i) Find the equation of the tangent at P and the co-ordinates of Q.

(ii) Prove that SP = SQ

- (iii) Hence show that $\angle PSQ + 2\angle SQP = 180^{\circ}$ [4]
- In a town in Mathsland, a 'flu epidemic is spreading at a rate proportional to the population that have it, such that is it predicted that the number of people who have the disease will double in 3 weeks, i.e. $\frac{dA}{dt} = kA$, where A is the number of people with 'flu in time t weeks.
 - (i) Show that $A = A_0 e^{kt}$, where A_0 is the initial number of people with 'flu, satisfies the above differential equation.
 - (ii) Find k in exact form
 - (iii) In the neighbouring town with a population of 20,000, three people have the 'flu. How many weeks (to the nearest week) will it take for the whole population to contract the disease?

 [4]

a) Make a large neat copy of the diagram in your answer book.

AB is the diameter of the circle with centre O and radius r. BC = r, AQ = QP = PC, and \angle AOQ = θ

- (i) Prove that $\cos \theta = \frac{1}{4}$ (Hint: use the cosine rule in triangles AQO and QOC) [5]
- (ii) Hence prove that QC = $r\sqrt{6}$ [2]

b) A 15 metre high flagpole stands on top of a building which is 30 m high. The flagpole subtends an angle of θ degrees to a point x metres from the foot of the building, and the building subtends an angle of ϕ degrees to the

same point.

- i) Show that $\theta = \tan^{-1} \left(\frac{15x}{x^2 + 1350} \right)$
- ii) Hence find the value of x which will make θ a maximum. [6]

End of Examination

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \ dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \ dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan \ ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x, \quad x > 0$$