

Contrôle S1 Architecture des ordinateurs

Kenondra				STATE OF THE PERSON NAMED IN	×
-reboudt6	exclusivement	sur	le	suiet	l

Durée : 1 h 30

Nom:		
	Prénom	 Groupe: C2
		 Groupe

Exercice 1 (3 points)

Simplifiez les expressions suivantes. Donnez chaque résultat sous la forme d'une puissance de deux. Le résultat seul est attendu (pas de détail).

Expression	Résultat
$\frac{64^3 \cdot 4^7 \cdot 16^9}{(4096^{-5} \cdot 32^3)^7}$	2-24
$\frac{(64^8 \cdot 512^{-5}) \cdot (499 + 13)^{-9}}{(2^{-16} \cdot (2^{12} - 2^{11}))^4 \cdot 8192^{-9}}$	259 ok!
$\frac{((16384 \cdot 8^{13})^6 \cdot 65536^{-4})^4}{(4^{-4} \cdot 256)^{-6} \cdot 32768}$	8

Exercice 2 (3 points)

1. Donnez, <u>en puissance de deux</u>, le nombre de bits que contiennent les grandeurs suivantes. Le résultat seul est attendu (pas de détail).

Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre d'octets que contiennent les grandeurs suivantes. <u>Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière</u>. Le résultat seul est attendu (pas de détail).

•
$$4^{37}$$
 octets = 2^{hh} 6°

Architecture des ordinateurs - EPITA - \$1 - 2016/2017

Exercice 3 (4 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Écrire le résultat sous forme décimale : pas de fraction ni de puissance (p. ex. écrire 0,25 et non pas ¼ ou 2⁻²). Le résultat seul est attendu (pas de détail).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
10011101,1001	Binaire	Décimale	+35.3
1AD,9	Hexadécimale	Décimale	
515,3	Décimale	Hexadécimale (2 chiffres après la virgule)	
78,6875	Décimale	Binaire	
427,316	Base 8	Hexadécimale	
9,99	Décimale	Base 7 (3 chiffres après la virgule)	
24	Base 9	Base 3	211_
1010101111,10101	Binaire	Hexadécimale	

Exercice 4 (2 points)

1. Déterminez la base b pour que l'égalité ci-dessous soit vraie. Le détail des calculs devra apparaître.

$$111_{b} = 1121_{3}$$

$$1 + b + b^{2} = 1 + 2 \times 3 + 3^{2} + 3^{3}$$

$$1 + b + b^{2} = 43$$

$$1 + b^{2} = 42$$

$$1 + b^{2} + b - 42 = 0$$

$$1 + b^{2} + 4 \times 42 = 1 + 168 = 169$$

$$1 + b^{2} = 43$$

$$2 + b^{2} = 43$$

$$2 + b^{2} = 43$$

$$3 + b^{2} = 43$$

$$4 + b^{2}$$

Architecture des ordinateurs - EPITA - S1 - 2016/2017

2. Exprimez la base a en fonction de la base b puis déterminez les plus petites bases possibles afin que l'égalité ci-dessous soit vraie. Le détail des calculs devra apparaître.

Exercice 5 (4 points)

Effectuez les opérations suivantes. Le détail des calculs devra apparaître.

se 2											Base	16				
		1	0	0	1	0	1	0	1	0		vO	^C	^ 3	₄ A	В
	-		1	0	1	1	1	0	1	1	+		5	Е	A	9
			(1)	1	GT.	0		TAV	(6)	0		1	2	2	5	4
	2	0	(1)	0	-	(1)	-9	(0)	1)	0						_
			-		350	10	100	(3)	4							
			*													
						1					111					
se 2											Base	8				
se 2	0	0	0	1	1 1	1 1	1	0	1 1		Base		15	16	13	3
-	0	0	0	1	1 1	1 1	1	0	1 1		Base +	8	7	16 2	43	3 7
-	0	0	0	1	1 1	1 1	1	0	1 1				7	2	4	7
-	0	0	0	1	1 1	1 1	1	0	1 1			40				
-	0		0	1	1 1	1 1	1	0	1 1			40	7	2	4	7
-	0		0	1	1 1	1 1	1	0	1 1			40	7	2	4	7
-	0		0	1	1	1 1	1	0	1 1			40	7	2	4	7
-	0		0	1	1 1	1 1	1	0	1 1			40	7	2	4	7

X	En fonction de n, combien d'ans
	En fonction de n , combien d'entiers non signés peut-on coder sur n bits ?
	En fonction de n. combien d'
	En fonction de n, combien d'entiers signés peut-on coder sur n bits ?
	En fonction de n, quel est le plus and l
	En fonction de n , quel est le plus grand entier non signé que l'on peut coder sur n bits ?
	En fonction de n, quel est le plus grand entier signé que l'on peut coder sur n bits?
	organis organis our pour bouts our it one.
5.	En fonction de n, quel est le plus petit entier signé que l'on peut coder sur n bits?
Si	vous manquez de place, vous pouvez utiliser le cadre ci-dessous.
1	
1	
1	
1	
1	
1	