Getting up to speed with Double Integrals

Double Integral Review and Practice

Dr. Uma Ravat

Here

- Review single and double integrals
- Practice strategies for
 - a. setting up and
 - b. evaluating double integrals

Extra: Review short videos posted in Extra Resources

Single integrals application:

area under the curve y=f(x) from x=a to x=b.

$$ext{Area} = \int_a^b f(x) \, dx$$

Double integrals:

as the volume between the surface z = f(x, y) and the xy-plane, i.e, the "cylinder" above the region \aleph .

$$\int \int_R f(x,y) dA$$
 OR $\int \int_R f(x,y) dx dy$

Double integrals

Basic idea as Reimann sums

Basic idea as a sweep of region of integration

How to evaluate a double integral?

$$\int \int_{R} f(x,y)dA = ?$$

2 steps to success!

- 1. setting up the double integral
- 2. evaluating double integrals

Step 1: Setting up double integrals:

Horizontal sweep of the region R

$$\int_{*}^{*} \int_{*}^{*} f(x,y) dy dx$$

Vertical sweep of the region R

$$\int_{*}^{*} \int_{*}^{*} f(x,y) dx dy$$

Horizontal or vertical sweep of a region of integration in x-y plane

Setting up Double Integrals

- Sketch the region R
- Sweep the region horizontally or vertically.
- Get bounds for x and y that correspond to this sweep.
- Use the bounds to set up the double integral as an iterated integral

Set up a double integral of f(x,y) where the region R is given by

1.
$$0 < x < 1, x < y < x + 1$$

Set up a double integral of f(x,y) where the region R is given by

1.
$$0 < x < 1, x < y < x + 1$$

1. Sketch the region

Set up a double integral of f(x,y) where the region R is given by

1.
$$0 < x < 1, x < y < x + 1$$

Tips

- you might need to split the region R into two or more pieces, each with it's corresponding double integral.
- The outside integral must have constant limits
 - for a horizontal sweep, x will have fixed(constant) bounds, and bounds for y might depend on x.
 - for a vertical sweep, y will have fixed(constant) bounds, and bounds for x might depend on y.

Step 2: Evaluate Double Integrals

- Sketch the region R
- Set up the double integral
- Evaluate the double integral as an integrated integral
 - The outer variable of integration will be treated as a constant for the inner integral

<u>Iterated integrals</u>

Evaluate the double integral

Evaluate the double integral

$$\int \int_{R} f(x,y) dx dy$$

where

1. $f(x,y) = e^{-x-y}$, and region R is the first quadrant in which $x + y \le 1$

Practice Setting up Double Integrals

- sketch the region R
- Sweep the region horizontally or vertically.
- Get bounds for x and y that correspond to this sweep.
- Use the bounds to set up the double integral as an iterated integral either horizontal or vertical sweep

Set up the double integral

Set up a double integral of f(x,y) where the region R is given by

- 1. 0 < x < 1, x < y < x + 1
- 2. $0 \le x \le 1, 0 \le y \le 1, y \le \frac{x}{2}$
- 3. part of the unit square $0 \le x \le 1, 0 \le y \le 1$ on which x + y > 0.5
- 4. part of the unit square $0 \le x \le 1, 0 \le y \le 1$ on which both x and y are greater than 0.5
- 5. part of the unit square $0 \le x \le 1, 0 \le y \le 1$ on which at least one of x and y are greater than 0.5
- 6. 0 < x < 50 y < 50 on which both x and y are greater than 20.
- 7. the points (x, y) in the first quadrant with $|x y| \le 1$

Set up a double integral of f(x,y) where the region R is given by

2.
$$0 \le x \le 1, 0 \le y \le 1, y \le \frac{x}{2}$$

Set up the double integral

Set up a double integral of f(x,y) where the region R is given by

2. $0 \le x \le 1, 0 \le y \le 1, y \le \frac{x}{2}$

Set up the double integral Set up a double integral of f(x,y) where the region R is given by

3. part of the unit square $0 \le x \le 1, 0 \le y \le 1$ on which x + y > 0.5

UC SANTA BARBARA

Practice Evaluating Double Integrals

- Sketch the region R
- Set up the double integral
- Evaluate the double integral as an integrated integral
 - The outer variable of integration will be treated as a constant for the inner integral

Evaluate the double integral

Evaluate the double integral

$$\int \int_{R} f(x,y) dx dy$$

where

- 1. $f(x,y) = e^{-x-y}$, and region R is the first quadrant in which $x + y \le 1$
- 2. $f(x,y) = e^{-x-2y}$, and region R is the first quadrant in which $x \leq y$
- 3. f(x,y) = x y + 1, and region R is inside the unit square in which $x + y \ge 0.5$

$\ \, \textbf{Evaluate the double integral} \,\,$

Evaluate the double integral

$$\int \int_R f(x,y) dx dy$$

where

2. $f(x,y) = e^{-x-2y}$, and region R is the first quadrant in which $x \leq y$

UC **SANTA BARBARA**

Thank you!

UC SANTA BARBARA