Fundamentos de Vídeo

Produção de Conteúdos Multimédia

Universidade de Évora 2015/16

Sumário

- Vídeo Digital e Analógico
- Varrimento de Vídeo
- Representação de dados Vídeo
- MPEG-2

Quem está familiarizado com a seguinte terminologia?

- Quadro
- Entrelaçamento
- Campo
- Pixel
- Resolução
- Componentes
- DCT
- Luma
- MPEG

- RGB
- YUV / YCbCr
- PAL / NTSC
- **4:4:4 / 4:2:2 / 4:2:0**
- CIF / SIF
- SNR
- Quantificação
- Croma
- Difusão

Sistemas de Vídeo

Objectivos:

- 1. Uso eficiente da largura de banda
- 2. Alta percepção de qualidade da parte do telespectador

Funcionamento da Câmara

- Um sensor que converte luz em cargas elétricas: charge coupled device (CCD).
- O CCD é um colecção de diodos finos e sensíveis à luz que convertem fotões (luz) em electrões (carga elétrica). Esses diodos são chamados fotocélulas (photosites?)
- Cada fotocélula é sensível à luz- quanto mais intensa for a luz sobre ela maior é a energia eléctria que ela acumula.
- A fotocélula não detecta cores: apenas é sensível à intensidade de luz que chega à sua superfície. Para obter uma imagem a cores usam filtros para distinguirem as cores primárias. Registadas as três cores, podem ser adicionadas para criar o espectro completo de cores.

Funcionamento da Câmara

- A Câmara tem 1, 2, ou 3 tubos para amostragem conversão A/D
- Com mais tubos (CCD's) e melhores lentes produz-se melhores imagens

Tubo de Raios Catódicos (CRT)

- Era a forma mais comum de mostrar imagens até aos dias de hoje.
- O fósforo é qualquer material que quando exposto a um fluxo de eletrões emite luz visível.

- Cathode
- Conductive coating
- Anode

- Phosphor-coated screen
- Electron beams
- G Shadow mask

Gamma

- A luminância gerada por um dispositivo físico é geralmente uma função não linear do sinal aplicado.
- CRT: A luminância produzida no ecră é aproximadamente proporcional ao sinal de voltagem aplicado elevado à potência de 2.5
- O valor numérico do expoente desta função potência é conhecido como gamma.

Gamma (Cont...)

- Esta não linearidade tem que ser compensada para conseguir uma reprodução correta da luminância.
- A relação não linear entre o valor do pixel e a intensidade mostrada que é típica do CRT.
 - intensidade_mostrada = valor_pixel^gamma
 - A maioria dos monitores têm um gamma entre 1.7 e 2.7
 - A correção do Gamma consiste em aplicar a relação inversa à imagem antes da imagem ser mostrada
 - i.e. calculando valor_novo_pixel = valor_pixel_velho^(1.0/gamma)

Gamma em Vídeo

- Câmara executa a correção Gamma
- O terminal impõe a função potência inversa

Processo de visão do ser humano

- Resolução de visão do ser humano
 - Resolução espacial da imagem: reconhecimento de detalhes de determinada imagem
 - Resolução temporal da imagem: reconhecimento de alterações na imagem ao longo do tempo
- Observação
 - Captura do reflexo da luz que é absorvido pelos olhos
 - Processamento da informação pelo cérebro humano
 - Focalização da imagem na retina
 - Retina equipada com fotorreceptores, elementos que são estimulados de diferentes formas

Fotorreceptores

- Bastonetes
 - Sensibilidade ao preto e branco
 - Sensíveis à alteração da intensidade de luz
- Cones
 - Permitem-nos distinguir as diferentes cores
 - Alguns cones são mais sensíveis ao vermelho, verde e azul
 - Resolução espacial da imagem (detalhes da imagem)
- Distribuição dos fotorreceptores na retina
 - Cones (centro da retina) e cones (+ nas áreas vizinhas)
 - Para reconhecer detalhes numa determinada área é preciso olhar diretamente para ela (reflexão da luz nos cones)
- Olho humano menos sensível às cores
 - Característica aproveitada por muitas técnicas de compressão

Perceção de Vídeo

- O que é o movimento suave
 - –Depende da fonte
 - A maioria das ações são vistas como suaves a 24qps
- As pessoas são mais sensíveis
 - -Às baixas frequências
 - -Mudanças na luminância e no eixo azul-laranja
- A visão enfatiza a deteção de as linhas de fronteira
 - Forte propensão para linhas horizontais e verticais
- A visão é bastante prejudicada por variações abruptas de luminância

Luma

- A visão humana também é não linear
 - A sensação de luz é uma função potência da intensidade (y=xw)
 - O CRT não linear é próximo da inversa da luminosidade humana.
 - A codificação da intensidade no sinal com correção gamma maximiza a perceção da imagem
- O vídeo usa a luminância e a crominância
 - Um componente representativo da luminância e dois outros que representam as cores.
- Luminância –vs.- Luma (i.e., Y –vs.- Y')
 - Y é a luminância linear
 - Y' é a luminância com correção Gamma (designada por Luma)

Taxa de Quadros

Taxa de Quadros

- Quando se mostra uma sequência de imagens ao olho humano
 - Se a velocidade da sequenciação for suficientemente rápida dá a sensação de movimento
 - Este princípio é a base do cinema e do vídeo
 - O número de imagens (quadros) mostradas por segundo é chamada taxa de quadros (frame rate)

Taxa de quadros

• 10 fps: movimento suave

• Cinema: 24 fps

• Televisão: 30 fps ou 25 fps

- Depende do país

Resolução da Imagem

- A qualidade do vídeo não depende apenas da taxa de quadros
 - É importante a quantidade de informação em cada quadro
 - A quantidade de informação de cada quadro é a resolução da imagem
- Resolução
 - Nº pixels horizontais x Nº pixels verticais
 - 640x480, 720x480

Resolução

7,000 pixels

2,073,000 pixels

Taxa de Quadros e Resolução

- Vários valores de acordo com o suporte
 - Cassete VHS, CD-ROM, Blu-Ray, Web
- Muito importantes no Vídeo Digital

Maior Taxa de Quadros

Maior Resolução

Mais Bits

Maior Largura de Banda

Mais Disco e Memória

Vídeo entrelaçado

- A televisão não digital usa vídeo entrelaçado
 - Um fluxo de eletrões faz o varrimento do interior do ecrã, colidindo com uma camada de fósforo
 - O fósforo produz luz que podemos ver
 - A intensidade do fluxo faz variar a intensidade da luz produzida

Vídeo entrelaçado

- O varrimento do ecr\u00e1 pelo fluxo de eletr\u00f0es
 - Demora um certo tempo percorrer todas as linhas e regressar ao início
 - No início da TV a persistência do fósforo disponível era muito fraca
 - Foi usada como solução o varrimento entrelaçado

Varrimento entrelaçado

1 Quadro com dois campos ímpar e par

25 quadros/seg equivalente a 50 campos/seg

Campo e Quadro

- Porque são tão importantes?
 - Se o produto vai ser usado em TV, o software tem que ser capaz de produzir vídeo entrelaçado
 - Calcular a partir de cada quadro os campos ímpar e par
 - Os computadores usam vídeo não entrelaçado
 - Varrimento progressivo
 - Nesse caso não é necessário calcular os campos

Varrimento progressivo

Modelos de Cor: RGB e YCC

RGB

- Formato mais popular
- Usado pelos PCs
- Cada pixel produzido pela luz proveniente de fósforo vermelho, azul e verde bastante próximos
- Como estão bastante próximos são vistos pelos nossos olhos como uma única cor.
- Chamados frequentemente como os três canais duma imagem digital.

A TV não usa RGB?

- No princípio só TV a preto e branco
 - Na realidade tons cinzento entre preto e branco
 - Única informação enviada é o brilho de cada ponto
- Quando aparece TV a cores...
 - Milhares de recetores a preto e branco
 - Migração gradual para nova tecnologia
 - Em vez de transmitir a cores usa-se o YCC
 - Y (Luminância ou brilho) e os dois canais de cor (crominância); permite cor e compatibilidade com preto e branco

Crominância

Característica da imagem que é definida por dois valores: coloração e saturação. A coloração é a parte de luz refletida por um objeto. Este absorve luz e reflete apenas uma parte do espectro visível. A saturação define a proporção de branco que uma cor contém. Quanto maior for a percentagem de branco, tanto menor será o seu brilho. As placas gráficas de qualidade tratam a crominância e a luminância de forma muito aperfeiçoada.

Espaço de cores RGB

- Baseado nos componentes vermelho (Red), verde (Green) e azul (Blue)
- A escolha básica para os gráficos em computador
- Não usa eficientemente a largura de banda
- Precisa duma correção Gamma para os CRTs
 - Não linearidade dos CRTs

Espaço de Cores RGB

	Vermelho	Amarelo	Verde	Cyan	Azul	Violeta
R	255	255	0	0	0	255
G	0	255	255	255	0	0
B	0	0	0	255	255	255

Cada pixel no ecrã tem o valor RGB correspondente, sendo dividido em Componentes de 8bits cada (podem ser representadas 2²⁴ cores)

Red

Green

Blue

Espaço de Cores YUV

- Baseado no componente preto e branco
 (Y) e informação de cor (U e V)
- Usado nas normas para TV a cores NTSC, PAL e SECAM
- Derivado do sinal RGB com a correção Gamma
- U e V sub amostradas para reduzir bitrate.

$$\begin{cases} Y = 0.299R' + 0.587G' + 0.114B' \\ U = -0.147R' - 0.289G' + 0.436B' \\ V = 0.615R' - 0.515G' - 0.100B' \end{cases}$$

$$\begin{cases} Y = 0.299R' + 0.587G' + 0.114B' \\ U = 0.492 (B' - Y) \\ V = 0.877 (R' - Y) \end{cases}$$

Espaço de cores YC_bC_r

- Desenvolvido como parte da norma ITU-R BT.601, para componente digital de vídeo
- Os sinais YC_bC_r são obtidos com uma variação de escala e de posição a partir do YUV
- Usado pela maioria das normas de compressão de imagem (JPEG, H.261, MPEG)

- Vários formatos de amostragem, tal como 4:4:4, 4:2:2 e 4:1:1 (tb 4:2:0)
- Os formatos de amostragem implicam as proporções da velocidade de amostragem de Y, C_b e C_r

Formatos de vídeo analógico

- Devido aos problemas de ruído nos sinais analógicos
 - O tipo de ligações entre dispositivos analógicos é extremamente importante
- Tipos de ligações analógicas
 - Vídeo Composto
 - S-Vídeo
 - Vídeo com Componentes

Vídeo Composto

- Tipo mais simples é o cabo composto
- Um único cabo transporta todo o sinal
 - Os sinais de luminância e crominância são compostos e transportados num único sinal
 - É inevitável alguma interferência entre os dois sinais.
- É a ligação de menor qualidade porque junta os dois sinais.

S-Vídeo

- Um compromisso entre os dois anteriores. Usa duas linhas uma para luminância e outra para o sinal composto de crominância
- Ligação com melhor qualidade que a do vídeo composto
 - a luminância vai num único fio
 - Os sinais de cor são combinados e transportados noutro fio
- Os fios separados são encapsulados num único cabo

Vídeo com componentes

- É a ligação de maior qualidade
- Cada um dos sinais do espaço YCC são transportados em cabos diferentes.
- cada cor primária é enviada como um sinal separado de vídeo.
 - As primárias tanto podem ser RGB ou uma transformação com base na luminância e crominância (i.e., YIQ, YUV).
 - Melhor reprodução das cores
 - Requer mais largura de banda e uma boa sincronização entre os três componentes.

Que ligação usar?

- Escolher o tipo de ligação de acordo com a qualidade da gravação
 - Quanto maior a qualidade de gravação
 - ... melhor deve ser a qualidade da gravação
- No próximo slide:
 - Formatos analógicos versus tipo de ligações

Formatos de vídeo analógico

Formato da cassete	Formato de Vídeo	Qualidade	Aplicação	
VHS	Composto	Boa	Video em casa	
S-VHS Hi-8	S-Vídeo	Melhor	Vídeo industrial	
BetaSP	Componente	A melhor	Vídeo industrial, Difusão	

Normas de Difusão

- 3 normas de TV usadas no mundo
 - NTSC (National Television Standard Committee)
 - PAL (Phase Alternative Line)
 - SECAM
- Normalmente n\u00e3o nos preocupamos com isso
 - Os recetores, gravadores e câmaras são conforme a norma usada no País

Normas de difusão

- Em algumas situações a norma usada é importante
 - Produção de conteúdos para o mercado internacional
- Podemos fazer conversões mas com degradação de qualidade
 - Diferenças na resolução e taxa de quadros
- Existem várias normas por razões técnicas e administrativas

Normas de Difusão

Formato de difusão	Países	Linhas	Taxa de Quadros
NTSC	us,ca,jp, kr,mx	525	29.97 fps
PAL	Eu (*), pt au, américa do sul, ch	625	25 fps
SECAM	fr, África (*) , médio oriente	625	25 fps

Normas de difusão

- O formato SECAM é usado apenas para difusão
 - Nesses países usa-se o PAL para gravadores e câmaras
- Formato de cassete é diferente do formato de difusão
 - O VHS pode suportar tanto o PAL como o NTSC

Vídeo no PC

- O PC só entende o formato digital
 - Qualquer vídeo que queiramos manipular tem que ser convertido previamente para digital
- As fontes podem ser digitais ou analógicas

Dispositivos analógicos

- As câmaras de vídeo tradicionais
 - Gravam o que vêm e ouvem no formato analógico
- Se usarmos uma fonte analógica
 - Câmara ou gravador
 - Precisamos duma placa de aquisição de vídeo
- Uma vez processado o vídeo pode ser armazenado em
 - Formato digital para o Web
 - Formato analógico como VHS ou Beta-SP

Dispositivos digitais

- As câmaras de vídeo digital
 - traduzem já as cenas capturadas em formato digital
 - O formato usado pela câmara no seu interior pode ser manipulado pelo computador
 - O formato mais usado é o DV
- A ligação de um PC a um dispositivo digital (câmara ou gravador)
 - É mais simples que os analógicos
 - Trata-se duma simples comunicação
 - Usa-se a interface IEEE 1394 (FireWire)

Compressão de Vídeo

- Um único quadro de vídeo não compactado ocupa 1 Mbyte
 - 720*486*3 bytes= 1049760 bytes ~1 MByte
- 1 segundo de vídeo (PAL)= 25 MBytes
- 1 minuto de vídeo (PAL) = 1,5 GBytes
- Para manipular vídeo não compactado
 - Precisamos dum disk-array com terabytes
 - Largura de banda da ordem de 200 Mbit/seg
 - 25 Mbytes *8 = 200 Mbits

Compressão de vídeo

- Objetivo
 - Reduzir a quantidade de dados mantendo a qualidade da imagem alta
- Taxa de compressão
 - Depende de como se vai usar o vídeo
- Formato DV 5:1
 - Tamanho original= 5* tamanho compactado
- Vídeo no Web: 50:1 ou maior

Tipos de Compressão Simples

- Reduzir o tamanho do quadro
 - Uma imagem 320x240
 - Tem apenas um quarto do tamanho duma imagem 640*480
- Reduzir a taxa de quadros
 - Uma taxa de 15 fps
 - metade dos dados de outra com 30 fps
- Não resulta se quisermos
 - Visualizar o vídeo num monitor de TV com toda a resolução e 25 fps

Compressão de Vídeo

- O olho humano é mais sensível a mudanças na luminância que na cor
 - A maior parte dos esquemas de compressão tiram partido disso..
- Compressão intra-quadro
 - Cada quadro é compactado per si
 - Mesmas técnicas que as usadas para compactar imagens
- Compressão inter-quadro
 - Um quadro é com grande probabilidade bastante similar aos quadros à sua volta
 - Envia-se apenas as diferenças relativamente ao quadro anterior

Redundância entre quadros

Image 2

Image 3

Codecs

- A compressão e descompressão de vídeo é feita usando os codecs
 - Codecs podem ser em hardware ou em software
 - Alguns têm um débito de dados fixo
 - Outros têm um débito ajustável
 - Mais apropriados para edição

Codecs vídeo e aplicações

Formato	Resolução	Tipo de Compressão	Débito	Aplicações
T omittee	rioddiagad	Tipo do Compressão	Booke	7 ipiloaçood
MPEG	720x486	Intra-quadro	0.5-25 Mbps	Geral
MPEG-1	352x240	Intra-quadro	.01-0.06 Mbps	CD-ROM, Web
MPEG-2	720x480	Intra e Inter quadro	0.01-2	DVD, TV Satélite
			Mbps	
DV	720x480	Intra-quadro	3.5 Mbps	Industrial, Difusão, consumidor
DI	720x486	Nenhuma	25 Mbps	Difusão

Vídeo Digital

Vantagens:

- Sem degradação de qualidade no tempo
- Sem degradação da qualidade na transmissão
- Acesso aleatório direto → bom para edição não linear de vídeo
- Sem problemas na gravação repetida (cópia)
- Sem necessidade de blanking e pulso de sincronismo
- Quase todos vídeos digitais usam vídeo composto

Varrimento Vídeo

O vídeo é obtido através de raster scanning, que transforma um sinal 3-D signal (função de x, y, e t) num sinal unidimensional que pode ser transmitido.

Varrimento progressivo: esquerda para direita e cima para baixo ->

amostragem

Amostras através do tempo : quadros

Amostras através de y: linhas

Amostras através de x: pixel

Varrimento Progressivo

- Nós vemos a imagem como contínuas não como discretas: o sistema visual humano faz a interpolação!
- Quantos quadros, linhas, pixels ?

Varrimento Vídeo (Cont...)

- Se a taxa de quadros for baixa -> movimentos flickering e jagged
- Compromisso entre resolução espacial e temporal
 - Objetos com movimento lento com alta resolução espacial
 - Objetos com movimento rápido com alta resolução temporal (e menor resolução espacial)
- Varrimento entrelaçado: varrimento de todas linhas pares e depois todas as linhas ímpares.
- Um quadro dividido em 2 campos (amostrados em instantes diferentes)

Varrimento entrelaçado (par)

Varrimento Vídeo (Cont...)

Quantificação

(a) 2, (b) 4, (c) 8, (d) 16, (e) 32, (f) 64 Níveis de quantificação

Varrimento Vídeo (Cont...)

- Subamostragem do Chroma: sistema visual humano é mais sensível à luminância que à crominância
 - Podemos sub-amostrar a crominância
- 4:4:4 Sem sub-amostragem
- 4:2:2, 4:1:1 sub-amostragem horizontal
- 4:2:0 sub-amostragem horizontal e vertical

4:1:1

Normas para Vídeo

	HDTV	CCIR 601 NTSC	CCIR 601 PAL	CIF	QCIF
Resolução da Luminância	1920 x 1080	720 x 486	720 x 576	352 x 288	176 x 144
Resolução da Crominância	960 x 540	360 x 486	360 x 576	176 x 144	88 x 72
Sub-amostragem de cor	4:2:2	4:2:2	4:2:2	4:2:0	4:2:0
Campos/seg	60	60	50	30	30
Relação Aspecto	16:9	4:3	4:3	4:3	4:3
Entrelaçamento	Sim	Sim	Sim	Não	Não

CCIR – Consultative Committee for International Radio CIF – Common Intermediate Format (approximately VHS quality)

Grupos de Normalização

- ITU-T ITU Telecomunicações
 - Antigo CCITT
- ITU-R ITU Comunicações Rádio
 - Antigo CCIR
- FCC
- SMPTE Society of Motion Picture and Television Engineers
- ... e muitos mais!

Débito de dados para vídeo

- Exemplo 1
 - -720x485 = 349,200 pixels/quadro
 - Amostragem 4:2:2 dá 698,400 bytes/quadro
 - 21 MB/sec (167 Mbs)
 - Amostragem 4:4:4 dá 250 Mbs
- Exemplo 2
 - -1280x720 = 921,600 pixels/quadro
 - Amostragem 4:2:0 dá 1,382,400 bytes/quadro
 - 41 MB/sec (328 Mbs)
- (Nota: fluxos codificados MPEG estão entre 1.5-80 Mbs)

Débito de dados para vídeo (Cont...)

• Exemplo 3

- -720x1280 = 921,600 pixels por quadro
- Amostragem 4:2:2 = 1,843,200 bytes por quadro
- -24 fps = 44,236,800 bytes por segundo
- 44 MB/s = 354 Mbs

• Exemplo 4

- -1080x1920 = 2,073,600 pixels por quadro
- Amostragem 4:4:4 = 6,220,800 bytes por quadro
- -30 fps = 186,624,000 bytes por segundo
- 187MB/s = 1.5 Gbs

Representações de Vídeo Digital

- Vídeo Digital Composto (D2/D3,SMPTE 244M)
 142 Mb/s débito de dados, paralelo ou série
 Sub-amostragem dos sinais de cor 4:2:2
- Vídeo Digital em componentes (D1/D5,SMPTE RP125)
 Mantém sinais separados para luma e chroma
 270 Mb/s débito de dados, paralelo ou série
 Sub-amostragem dos sinais de cor 4:2:2
- Video Digital Compactado
 MPEG, MJPEG, H.26x, DV, ...

Conversão de Formatos

- A conversão entre diferentes formatos é um problema de interpolação, resolvido com técnicas de interpolação.
- Exemplo: transferência dum filme para cassete vídeo:
 - Filme: 24 quadros/segundo
 - Vídeo: 30 quadros/segundo
 - 5 quadros de vídeo criados a partir de 4 quadros do filme
 - 2-3 e 3-2 pulldown: duplicação de campos, não quadros
 - NTSC -> PAL: 60 HZ -> 50 Hz, PAL -> NTSC: 50 Hz -> 60 Hz

Formato MPEG-2

- Enquadra-se no âmbito das tecnologias de compressão e definição da sintaxe de informação
 - Transmissão de áudio e vídeo em redes de comunicação
- Engloba oito normas
 - Abordagem ligeira:
 - MPEG-2 Áudio
 - MPEG-2 Vídeo
 - Técnicas utilizadas para codificar/comprimir os dados de áudio e vídeo
 - Adequação a diferentes tipos de serviços de comunicação

MPEG-2 Vídeo: Visão Geral

Princípios Gerais

- Tirar partido da
 - Níveis de deteção da visão humana
 - Redundância espacial
 - Redundância temporal da imagem

MPEG- Instrumentos de Compressão

Mediante:

- DCT-Quantificação-Codificação VL
- Codificação Huffman
- Estimação de Movimento

} Imagens tipo I

Imagens tipo B e tipo P

MPEG2- Vídeo

- Definição de um formato usado para descrever uma sequência de bits de imagens codificadas
- Gama heterogénea de aplicações
 - Serviços de Difusão (Satélites)
 - TV por Cabo
 - Televisão Interativa
- Estrutura a informação vídeo em diferentes objetos
 - Sequência Vídeo, Quadro, Imagem, Bloco, MacroBloco, Pedaços (Slices)
 - Cada objeto tem uma sintaxe própria e uma posição na hierarquia

MPEG-2 Vídeo: Escalabilidade

- Utilização de diferentes camadas de vídeo complementares
- Utilização de vários fluxos com qualidade de vídeo diferentes
- Escala espacial
 - Possibilidade de ter diferentes resoluções de vídeo
- Escala temporal
 - Possibilidade de usar diferentes frequências de atualização de vídeo
- Diferentes qualidades no transporte de informação
 - Canais fiáveis para camadas com informação base
 - Canais menos fiáveis para camada com informação extra (elevada qualidade de vídeo)

MPEG-2 Vídeo

- Sempre que possível usar informação base+extra
- Em casos de congestão, perdas
 - A salvaguarda camada de base é suficiente para uma qualidade aceitável
- Estabelecer correspondências das diferentes camadas de vídeo em níveis de serviço com diferente QoS das infraestruturas de comunicação utilizadas

MPEG-2 Vídeo: Hierarquia de Objetos

- Sequência Vídeo= conjunto de imagens
- Quadro
 - Contém informação de crominância e luminância para mostrar a imagem no ecrã (tabelas variáveis consoante o tipo de amostragem isto é 4:4:4, 4:2:2)
- Imagem
 - Conjuntos de macroblocos organizados em pedaços
- MacroBloco
 - Conjunto de blocos (respeitantes a informação de luminância(Y) e crominância(Cr+Cb))
 - Diferentes tipos de macroblocos
 - 4:2:2 -> 4 blocos de Y+ 2 blocos de Cb+ 2 blocos de Cr
 - 4:4:4 -> 4 blocos de Y+ 4 blocos de Cb+ 4blocos de Cr

MPEG-2 Vídeo: Hierarquia de Objetos

Bloco

- Oito linhas
- Cada linha contém oito amostras respeitantes a valores de luminância ou crominância
- Pedaço (Slice)
 - Conjunto de macroblocos
 - Contém informação de localização (no ecrã) a que dizem respeito às amostras presentes nos macroblocos
 - Permitem actualizações parciais da imagem
 - Em caso de perda de informação, poder-se-á usar informação de alguns pedaços para actualização
 - Tentativa de diminuir impacto de perdas de pacotes durante a transmissão de vídeo
 - Sobrecarga de informação na transmissão

MPEG Vídeo: Estrutura do Fluxo de bits codificado

MPEG-2 Vídeo: 3 tipos de Imagens

- Imagens intra-codificadas (Intra-Coded Pictures)
 - ou tipo I
 - Imagens que podem ser descodificadas só por si
- Imagens codificadas com informação prévia (Predictive-Coded Pictures)
 - ou tipo P
 - Imagens que são descodificadas tendo conhecimento de informação anterior
- Imagens bidireccionais (Bidirectionally Predictive Pictures)
 - Tipo B
 - Codificador tem acesso a imagen(s) seguinte(s)
 - Introdução de interdependência de imagens (elevado grau de complexidade na codec)
 - Há níveis MPEG-2 onde não são permitidas

MPEG-2 Vídeo: Mecanismos de Compressão

- Remoção de informação invisível ao olho humano
 - Remoção de informação de cor (alterações de cor de elevada frequência)
 - Técnica DCT (Discret Cosine Transformation) para aproximar os valores de luminância e crominância nos blocos
 - Fator de Escala: possibilidade de usar resoluções diferentes para diferentes macroblocos
- Tabelas de codificação de tamanho variável
 - Representar com menor número possível de bits a informação quantificada (padrões mais frequentes devem ter codificações mais curtas) ex. Código de Huffman

Fourier (Fundamentos de Telecomunicações)

• Uma forma de onda periódica (ou qualquer se se considerar o período ∞), pode ser expressa como uma soma de componentes sinusoidais, cada uma delas expressas com sua amplitude, frequência e fase

Trasformada Discreta do Coseno (DCT)

- Passa do domínio do tempo para o domínio da frequência e divide a forma de onda na sua componente da frequência. Elimina a componente em seno.
- A DCT não efetua qualquer compressão. Apenas transforma o pixel de forma a ser possível identificar a redundância
- Nem todas as frequências espaciais estarão presentes. Usando a DCT haverá alguns coeficientes com valor relevante mas a maioria será muito próxima de zero.

Componentes na frequência

MPEG-2 Vídeo: Mecanismos de Compressão Estimação de Movimento

- Encontrar regiões de uma dada imagem que se irão repetir em imagens adjacentes
- Comparação dos macroblocos das imagens
- Transmitir unicamente as diferenças entre eles bem como uma indicação da posição relativa (vetor de deslocamento)
- Em casos ótimos não é necessário alterar pedaços do ecrã ou então só deslocá-los para uma nova posição.

MPEG-2 Vídeo: Mecanismos de Compressão Estimação de Movimento

MPEG-2 Vídeo: Mecanismos de Compressão Problemas na Estimação de Movimento

- Este processo n\u00e3o deve ser usado como panaceia
 - Se houver um pequeno erro ele propaga-se rapidamente
 - Por isso se criou o GoP (Grupo of Pictures) com diversos tipos de imagens

- I-frames: contain full picture information
- P-frames: predicted from past I or P frames
- B-frames: use past and future I or P frames
- Transmit I frames every 12 frames or so.

