

درس الاشتقاق + إضافات

I. الاشتقاق في نقطة الاشتقاق على اليمين و اليسار:

01. تعریف (تذکیر):

الصفحة

لتكن f دالة عددية معرفة على مجال مفتوح مركزه x_0 و x_0 نقول أن : الدالة f قابلة للاشتقاق في x_0 إذا كان:

$$f'(x_0):$$
العدد المشتق ل f في f و يرمز له ب $f(x_0): \frac{1}{h}$ العدد $f(x_0): \frac{1}{h}$ العدد المشتق ل f في $f(x_0): \frac{1}{h}$ العدد المشتق ل f في $f(x_0): \frac{1}{h}$ و يرمز له ب $f(x_0): \frac{1}{h}$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

.02 خاصية:

لتكن f دالة قابلة للاشتقاق في X.

- $(T):y=(x-x_0)f'(x_0)+f(x_0): هي <math>x_0$ هي النقطة التي أفصولها x_0 النقطة التي أفصولها x_0
 - كل دالة قابلة للاشتقاق في x_0 تكون متصلة في x_0 . (العكس ليس دائما صحيح) .
 - تكون f قابلة للاشتقاق في x_0 إذا وفقط إذا كان يوجد عدد حقيقي a و توجد دالة x_0 حيث :

$$. (\ \mathbf{f} \ '(\mathbf{x}_0) = \mathbf{a} \) . \ \lim_{x \to \mathbf{x}_0} \mathbf{\epsilon} (\mathbf{x}) = \mathbf{0} \ \text{ as } \ \forall \mathbf{x} \in \mathbf{D}_f \setminus \left\{ \mathbf{x}_0 \right\} \ \mathbf{f} (\mathbf{x}) = \mathbf{f} (\mathbf{x}_0) + \mathbf{a} (\mathbf{x} - \mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0) \mathbf{\epsilon} (\mathbf{x})$$

13. الدالة التآلفية h ل f بجوار .03

- تعریف:

 \mathbf{x}_0 دالة قابلة للاشتقاق في \mathbf{x}_0 .

. x_0 الدالة المعرفة ب: $h(x) = (x - x_0)f'(x_0) + f(x_0)$ تسمى الدالة التآلفية المماسة ل الدالة الدالة الدالة المعرفة ب

 (x_0) نكتب $f(x) \approx h(x)$ بجوار $f(x) \approx h(x)$ نكتب

.04 ملحوظة

 \mathbf{x}_0 المماس لمنحنى \mathbf{f} في النقطة التي أفصولها \mathbf{T} المماس لمنحنى الدالة \mathbf{h}

.05 نشاط 2:

 $\begin{cases} f(x) = -3x + 4 & ; x \ge 1 \\ f(x) = x^2 & ; x < 1 \end{cases}$ المعرفة بما يلي: $f(x) = x^2$ المعرفة بما يلي:

- المماس. $\mathbf{x}_0 = 1$ على يمين $\mathbf{x}_0 = 1$. ثم أنشئ نصف المماس.
- 2. أدرس اشتقاق f على يسار $x_0 = 1$. ثم أنشئ نصف المماس.
 - $\mathbf{x}_0 = 1$ هل $\mathbf{x}_0 = 1$ قابلة للاشتقاق في $\mathbf{x}_0 = \mathbf{x}_0$?
- $\mathbf{x}_0 = 1$ على يمين و يسار النقطة ذات الأفصول $\mathbf{x}_0 = 1$ على يمين و يسار النقطة ذات الأفصول الجواب

. بطريقة مبيانيا

ملاحظة: النقطة ذات الأفصول $x_0 = 1$ تسمى نقطة مزواة .

الأستاذ: بنموسى محمد

درس رقم

درس الاشتقاق + إضافات

(x_0) تعریف: (الاشتقاق علی یمین (x_0)

 $(\alpha > 0)$ ، $x_0, x_0 + \alpha$ لتكن f دالة معرفة على مجال من شكل

 $\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} = \ell_d = f_d'(x_0) \in \mathbb{R}$ آوبلة للاشتقاق على اليمين في ℓ_0 إذا كان ℓ_0

العدد \mathbf{f}_{d} ' (\mathbf{x}_{0}) العدد المشتق على اليمين \mathbf{f}_{d} ' (\mathbf{x}_{0}) العدد

07. تعريف: (الاشتقاق على يسار x0)

 $(\alpha > 0)$ ، $\mathbf{x}_0 - \alpha, \mathbf{x}_0$ لتكن $\mathbf{x}_0 - \alpha, \mathbf{x}_0$ دالة معرفة على مجال من شكل

 x_0 البعدد المشتق على اليسار في x_0 إذا كان x_0 إذا كان x_0 إذا كان x_0 اليسامي العدد المشتق على اليسامي العدد المشتق على اليسامي x_0 قابلة للاشتقاق على اليسار في x_0 إذا كان x_0 إذا كان x_0 إذا كان x_0 أن اليسامي العدد المشتق على اليسامي العدد المشتق العدد العدد

08. خاصية:

تكون f قابلة للاشتقاق في x_0 إذا وفقط إذا كانت ما يلي:

- . X_0 قابلة للاشتقاق على اليمين في f
- قابلة للاشتقاق على اليسار في X₀.
- العدد المشتق على اليمين يساوي العدد المشتق على اليسار في x_0 أي $(x_0) = f_g'(x_0)$.

09. تمرين تطبيقي:

. على اليمين $x_0 = 0 : f(x) = \sqrt[4]{x}$ (2

. على اليمين $x_0 = 0$ ؛ $f(x) = \sqrt{x}$ (1: x_0 على اليمين

 $x_0 = 0 : f(x) = \arctan x \quad (4)$

على اليمين و على اليسار. $x_0 = 0$ f(x) = [x] (3

Ⅲ. اشتقاق دالة على مجال – الدالة المشتقة الأولى لدالة:

01. تعریف:

- [a,b] نقول أن الدالة [a,b] قابلة للاشتقاق في كل نقطة [a,b] من [a,b] نقول أن الدالة [a,b] قابلة للاشتقاق على المجال [a,b]
 - ا دالة عددية قابلة للاشتقاق على المجال a,b[إذا كانت
 - الدالة f قابلة للاشتقاق على المجال a,b
 - f قابلة للاشتقاق على اليمين في a .

02. الدالة المشتقة للدالة:

تعریف:

f' الدالة التي تربط كل عنصر x_0 من المجال I بالعدد $f'(x_0)$ تسمى الدالة المشتقة ل f و نرمز لها ب

ملحوظة:

f'(b) = f'(a) = f'(a) : نصطلح ان <math>I = [a,b] و I = [a,b] و I = [a,b] و الأداكان I = [a,b]

الصفحة

2-25/5- 2

درس رقم

درس الاشتقاق + إضافات

 $f'(x) = 3x^2$ هي \mathbb{R} هي $f(x) = x^3$ الدالة المشتقة ل

III. جدول الدوال المشتقة لبعض الدوال الاعتيادية: (الجدول1)

مجموعة تعريف ' f	الدالة المشتقة $f'(x)=$	مجموعة تعريف f	الدالة f(x)=	مجموعة تعريف ' f	الدالة المشتقة f '(x)=	مجموعة تعريف f	الدالة f(x)=
$\mathbf{D}_{_{\mathrm{f}}},=\left]0,+\infty\right[$	$\frac{1}{2 \times \sqrt{x}}$	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}^{+^*}$	\sqrt{x}	\mathbf{D}_{f} , $= \mathbb{R}$	f'(x) = 0	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}$	a
$\mathbf{D_{f'}} = \mathbb{R}$	cos x	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}$	cos x	$\mathbf{D}_{\mathbf{f'}} = \mathbb{R}$	f'(x)=1	$\mathbf{D}_{f} = \mathbb{R}$	X
\mathbf{D}_{f} , = \mathbb{R}	cos x	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}$	sin x	$\mathbf{D}_{f'} = \mathbb{R}$	$f'(x) = nx^{n-1}$	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}$	$\mathbf{n} \in \mathbb{N}^* \setminus \{1\}$
$\mathbb{R} \setminus \left\{ -\frac{\mathbf{d}}{\mathbf{c}} \right\}$ $\mathbf{c} \neq 0 \mathbf{g}$	$\frac{\begin{vmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{vmatrix}}{\left(\mathbf{c}\mathbf{x} + \mathbf{d}\right)^2}$	$\mathbb{R} \setminus \left\{ -\frac{\mathbf{d}}{\mathbf{c}} \right\}$ $\mathbf{c} \neq 0 0$	$\frac{ax+b}{cx+d}$	\mathbf{D}_{f} , $=\mathbb{R}^*$	$f'(x) = nx^{n-1}$	$\mathbf{D}_{\mathbf{f}} = \mathbb{R}^*$	$f(x) = x^{n}$ $n \in \mathbb{Z}^{*} \setminus \{1\}$
$x \neq \frac{\pi}{2} + k\pi$	1+tan²x	$x \neq \frac{\pi}{2} + k\pi$	tan x	\mathbf{D}_{f} , $=\mathbb{R}^*$	$f'(x) = \frac{-1}{x^2}$	$\mathbf{D}_{\mathbf{f}} = \mathbb{R}^*$	$f(x) = \frac{1}{x}$

IV. العمليات على الدوال المشتقة:

10.خاصيات: (أنظر الجدول 2)

لتكن f و g دالتين قابلتين للاشتقاق على مجال I.							
شرط	مشتقتها	الدالة	شرط	مشتقتها	الدالة		
g لا تنعدم على I	$\left(\frac{\mathbf{f}}{\mathbf{g}}\right) = \frac{\mathbf{f}' \times \mathbf{g} - \mathbf{f} \times \mathbf{g}'}{\mathbf{g}^2}$	$\frac{\mathbf{f}}{\mathbf{g}}$		(f+g)'=f'+g'	f+g		
$\mathbf{n} \in \mathbb{N}^*$	$(f^n)'(x)=n\times(f(x))^{n-1}\times f'(x)$	f ⁿ	$\alpha \in \mathbb{R}$	$(\alpha \times f)' = \alpha \times f'$	α×f		
n∈ Z ^{-*} لا تنعدم على I	$(f^n)'(x)=n\times(f(x))^{n-1}\times f'(x)$	f"		$(f \times g)' = f' \times g + f \times g'$	f×g		
			g لا تنعدم على I	$\left(\frac{1}{g}\right) = \frac{-g'}{g^2}$	$\frac{1}{g}$		

02. أمثلة : أحسب الدالة المشتقة · f للدالة f في الحالات التالية

.
$$f(x) = 1 + (3x + 2)^4$$
 -2 . $f(x) = 2x \cos x - \epsilon$. $f(x) = \frac{3x - 1}{x^2 - 1}$ - φ . $f(x) = -2x^4 + 3x^2 - 1 - 6$

f V. الدالة المشتقة الثانية - المشتقات المتتالية (أو المتتابعة) لدالة f V

1 مفردات:

- المشتقة ل ' f تسمى المشتقة الثانية ل f . نرمز لها ب : $f'(x) = f''(x) = f^{(2)}(x)$.
- $(f^{(2)})' = f^{(3)}$ بدورها قابلة للاشتقاق على $[f^{(2)}]'(x)$ فدالتها المشتقة $(f^{(2)})'(x)$ بدورها قابلة للاشتقاق على $[f^{(2)}]'(x)$

درس الاشتقاق + إضافات

المشتقة من الرتبة f للدالة f (أي $f^{(n-1)}(x)$) هي المشتقة ل $f^{(n-1)}(x)$ (أي المشتقة من الرتبة $f^{(n-1)}(x)$) ونرمز لها ب:

$$\mathbf{f}^{(n)}(\mathbf{x}) = (\mathbf{f}^{(n-1)})'(\mathbf{x})$$

الصفحة

.
$$(\sin x)^{(n)} = \sin \left(x + n \frac{\pi}{2} \right)$$
: بين أن $- \pi \cdot f(x) = \frac{1}{x^2} - \pi \cdot f(x) = x^5 - \pi \cdot f(x)$ أحسب $f^{(3)}(x)$

مشتقة مركب دالتين - مشتقة الدالة العكسية .VI

الأستاذ: بنموسى محمد

01. مشتقة مركب دالتين:

1) مبرهنة 1:

 \mathbf{x}_0 إذا كانت \mathbf{f} قابلة للشتقاق في \mathbf{x}_0 و \mathbf{g} قابلة للشتقاق في $\mathbf{f}(\mathbf{x}_0)$ فإن $\mathbf{f}(\mathbf{x}_0)$ قابلة للشتقاق في \mathbf{x}_0 .

 $(g \circ f)'(x_0) = g'(f(x_0)) \times f'(x_0) = g'(f(x_0))$.

2) مبرهنة 2:

لتكن f و g دالتين قابلتين للاشتقاق على I و f(I) على التوالي

. I عنصرا من f و كانت f قابلة للاشتقاق على g و قابلة للاشتقاق في f(I) فإن $g \circ f$ قابلة للاشتقاق على f

. $\forall x \in I : (g \circ f)'(x) = g'(f(x)) \times f'(x)$ و لدينا:

: نتائج (3

مجموعة تعريف ' f	الدالة المشتقة f '(x)=	مجموعة تعريف f	الدالة f(x)=	مجموعة تعريف ' f	الدالة المشتقة f '(x)=	مجموعة تعريف f	الدالة f(x)=
\mathbf{D}_{f} , $=\mathbb{R}$	$f'(x) = -a \times \sin(ax + b)$	$\mathbf{D}_{f} = \mathbb{R}$	$f(x) = \cos(ax + b)$		1 (A)		$f(x) = \sqrt{g(x)}$
$ax + b \neq \frac{\pi}{2} + k\pi$	$f'(x) = a \times \left[1 + \tan^2(ax + b)\right]$	$ax + b \neq \frac{\pi}{2} + k\pi$	f(x) = tan(ax + b)	$\mathbf{D}_{f'} = \mathbb{R}$	$f'(x) = a \times \cos(ax + b)$	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}$	$f(x) = \sin(ax + b)$

4) مثال:

.
$$f(x) = \cos(2x-4) - \varphi$$
 $f(x) = \sqrt{x^2-x} - 1$ مع $f'(x)$

$$f'(x) = (\sqrt{x^2 - x})' = \frac{(x^2 - x)'}{2\sqrt{x^2 - x}} = \frac{2x - 1}{2\sqrt{x^2 - x}}$$

$$f'(x) = (\cos(2x-4))' = (2x-4)'\cos'(2x-4) = -2x\sin(2x-4)$$

02.مشتقة الدالة العكسية

1) مبرهنة 1:

درس الاشتقاق + إضافات

لتكن f متصلة و رتيبة قطعا على I (لإذن الدالة f تقابل من المجال I إلى المجال J = f(I)).

 $f(x_0) = y_0$ و $y_0 \neq 0$ و $y_0 \neq 0$ قابلة للاشتقاق في $y_0 \neq 0$ و $y_0 \neq 0$ فإن الدالة العكسية $y_0 \neq 0$ قابلة للاشتقاق في $y_0 \neq 0$ و الدالة العكسية والدالة العكسية والدالة العكسية الدالة العكسية والدالة العكسية والدالة العكسية والدالة الدالة العكسية والدالة الدالة الدالة الدالة العكسية والدالة الدالة ا

$$\cdot (f^{-1})'(y_0) = (f^{-1})'(f(x_0)) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(x_0)}$$
 دينا:

2) برهان:

الصفحة

. $\lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0)$ الدينا $\lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0)$ متصلة على $\lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0)$ متصلة على المنا و منه لكل الدينا و منه لكل الدينا و التها العكسية العكسية المنا و المنا

. I مع x_0 و $f^{-1}(y_0) = x_0$ عن $f^{-1}(y) = x$ و و $f^{-1}(y_0) = x$ من اندرس اشتقاق f^{-1} مع $f^{-1}(y_0) = x_0$

لدينا:

$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{x - x_0}{f(x) - f(x_0)} = \lim_{y \to y_0} \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{f'(x_0)} \in \mathbb{R} \; ; \; (f'(x_0) \neq 0)$$

$$= \frac{1}{f'(f^{-1}(y_0))} \; ; \; (f^{-1}(y_0) = x_0)$$

$$= \frac{1}{f' \circ f^{-1}(y_0)}$$

: 2 مبرهنة 2

. J = f(I) الى المجال الكن f دالة تقابل من المجال

إذا كانت f قابلة للاشتقاق على I و دالتها المشتقة f لا تنعدم على I (أي f \neq f) فإن الدالة f قابلة للاشتقاق

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(x_0)}$$
 :المجال $J = f(I)$

(4 جدول 9) يطبيق 1: مشتقة: $\sqrt[n]{x}$ و $\sqrt[n]{x}$ و $\sqrt[n]{x}$. (جدول 4)

$\mathbf{r}\in\mathbb{Q}^*$ و f موجبة قطعا و قابلة للاشتقاق على $\mathbf{n}\in\mathbb{N}^*$					
f قابلة للاشتقاق على]∞+,0[.	$f'(x) = \left((x)^{\frac{1}{n}} \right)' = \frac{1}{n} x^{\frac{1}{n-1}}$	$f(x) = \sqrt[n]{x}$			
	$f(x) = (x^r)^r = rx^{r-1}$	$f(x) = x^r$			
g قابلة للاشتقاق على I	$g'(x) = \frac{1}{n} \times f'(x) \times (f(x))^{\frac{1}{n}-1}$	$g(x) = \sqrt[n]{f(x)}$			
	$g'(x) = ([f(x)]^r)' = r \times f'(x) \times [f(x)]^{r-1}$	$g(x) = [f(x)]^{-r}$			

الأستاذ: بنموسى محمد

درس رقم

درس الاشتقاق + إضافات

الصفحة

أمثلة: أحسب f مع:

$$f(x) = \sqrt[5]{(x^2+1)^7}$$
 $.f(x) = \sqrt[5]{x^2+1}$ $.f(x) = \sqrt[5]{x}$

جواب:

$$\left[f(x) = \sqrt[5]{x}\right]' = \left[x^{\frac{1}{5}}\right]' = \frac{1}{5}x^{\frac{1}{5}-1} = \frac{1}{5}x^{\frac{-4}{5}} = \frac{1}{5} \times \frac{1}{\sqrt[5]{x^4}} \quad \bullet$$

$$\left[f(x) = \sqrt[5]{(x^2 + 1)}\right] = \left[\left(x^2 + 1\right)^{\frac{1}{5}}\right] = \frac{1}{5}\left(x^2 + 1\right)^{\frac{1}{5}}\left(x^2 + 1\right)^{\frac{1}{5}-1} = \frac{14}{7}x\left(x^2 + 1\right)^{\frac{4}{5}} = \frac{14}{7}x\sqrt[5]{(x^2 + 1)^4} \quad \bullet$$

$$\cdot \left[f(x) = \sqrt[5]{\left(x^2 + 1\right)^7} \right]^{\frac{7}{5}} = \left[\left(x^2 + 1\right)^{\frac{7}{5}} \right]^{\frac{7}{5}} = \frac{7}{5} \left(x^2 + 1\right)^{\frac{7}{5}} \left(x^2 + 1\right)^{\frac{7}{5}} \left(x^2 + 1\right)^{\frac{7}{5}} = \frac{14}{7} x \left(x^2 + 1\right)^{\frac{2}{5}} = \frac{14}{7} x \sqrt[5]{\left(x^2 + 1\right)^2} \right]^{\frac{7}{5}} = \frac{14}{7} x \sqrt[5]{\left(x^2 + 1\right)^2}$$

- . f(x) = arctan(u(x)) مُثْنَقَةُ الدالة f(x) = arctan x ثم (5
 - خاصیة 1:

.
$$f'(x) = (\arctan x)' = \frac{1}{1+x^2}$$
 هي \mathbb{R} و دالتها المشتقة هي $f(x) = \arctan x$

$$\mathbf{u}(\mathbf{x})$$
 قابلة للشتقاق على $\mathbf{u}(\mathbf{x})$ قابلة للشتقاق على $\mathbf{u}(\mathbf{x})$ فإن الدالة $\mathbf{u}(\mathbf{x})$ قابلة للشتقاق على $\mathbf{u}(\mathbf{x})$

.
$$\forall x \in I : f'(x) = (arctan(u(x)))' = \frac{u'(x)}{1 + (u(x))^2}$$

■ مثال:

$$\left(\arctan\left(x^{3}-5x\right)\right)' = \frac{\left(x^{3}-5x\right)'}{1+\left(x^{3}-5x\right)^{2}} = \frac{3x^{2}-5}{1+\left(x^{3}-5x\right)^{2}} \quad \bullet$$

$$(\arctan(\sin x))' = \frac{(\sin x)'}{1+(\sin x)^2} = \frac{\cos x}{1+(\sin x)^2}$$

$$\left(\arctan^{7}\left(x^{3}-5x\right)\right)' = 7\left(\arctan\left(x^{3}-5x\right)\right)'\arctan^{6}\left(x^{3}-5x\right) = 7\frac{\left(x^{3}-5x\right)'}{1+\left(x^{3}-5x\right)^{2}}\arctan^{6}\left(x^{3}-5x\right)$$

$$= \frac{3x^{2}-5}{1+\left(x^{3}-5x\right)^{2}}\arctan^{6}\left(x^{3}-5x\right)$$

A. مطارف دالة عددية قابلة للاشتقاق.

1. نشاط:

المنحنى الآتى يمثل دالة قابلة للاشتقاق على مجال مفتوح a .I عنصر من I.

- 1) هل f تقبل مطراف في a ؟
 - 2) أعط قيمة ل (a) . f
 - 3) أعط الخاصية.

 $f(x) = 2x^3$ الدالة

(C_f)

الصفحة

درس رقم درس الاشتقاق + إضافات

2. خاصية:

f دالة قابلة للاشتقاق على مجال مفتوح a . I عنصر من I .

f'(a) = 0 فإن f'(a) = 0 أذا كانت f'(a) = 0 فإن f'(a) = 0

ملحوظة:

إذا كان f'(a)=0 فهذا لا يعنى بالضرورة أن f'(a)=0 مطراف للدالة f'(a)=0

<u>4.</u> مثال:

f'(0) = 0: دينا $f(x) = 6x^2$: دينا $f(x) = 2x^3$ ولكن f(0) ليس مطراف ل f.

f دالة قابلة للاشتقاق على مجال مفتوح a . I عنصر من f إذا كانت 'f تنعدم في النقطة a و تتغير إشارتها بجوار a فإن f(a) مطراف ل f.

B. مبرهنة رول: théorème de Rolle

<u>.</u> مبرهنة:

ليكن a و b من R حيث f . a < b دلة عدية تحقق ما يلى:

f متصلة على القطعة [a,b].

f'(c) = 0 حيث a,b حيث a,b حيث a,b حيث f'(c) = 0

 $. f(a) = f(b) = \underline{c}$

.2 برهان:

حالة f: 1 دالة ثابتة على f: 1

. $\forall x \in [a,b] : f'(x) = 0$ اذن : [a,b] الله ثابتة على والله ثابتة على المأن و بالتالى المبرهنة صحيحة.

حالة £ : 1 ليست بدالة ثابتة على [a,b] :

. بمأن f متصلة على القطعة [a,b] إذن [a,b]=[m,M] مع f([a,b])=[m,M] لأن f ليست بدالة ثابتة

(1). $\forall x \in [a,b] \ m = f(\alpha) \le f(x) \le f(\beta) = M$: افن

. $\beta \in [a,b]$: نبين أن $\alpha = b$ أو $\alpha = a$: حالة

 $\beta \neq a$ النسبة ل $\alpha = a$ النسبة ل $\alpha = a$

 $\beta \neq b$ يفترض أن $\beta = b$ إذن $\beta = b$ إذن $\beta = b$ و هذا غير ممكن إذن $\beta = b$ و هذا غير ممكن إذن $\beta = b$

.β∈]a,b[: ومنه

. $\beta \in [a,b]$ بنفس الطريقة ل $\alpha = b$. نحصل على

و بالتالى f تقبل مطراف في β (قيمة قصوى حسب (1)).

الصفحة

درس رقم

درس الاشتقاق + إضافات

 $c = \beta$ يكفي أن نأخذ $f'(\beta) = 0$.

3. ملحوظة:

f(a) = f(b) و [a,b] و [a,b] و [a,b] و [a,b]

C. مبرهنة التزايدات المنتهية T.A.F

1. مبرهنة:

ليكن a و b من R حيث f . a < b دالة عددية تحقق ما يلى :

$$f'(c) = \frac{f(b)-f(a)}{b-a}$$
 من a,b من a,b

🚅 f قابلة للاشتقاق على]a,b[.

f(b)-f(a)=(b-a)f'(c) و أيضا يوجد عنصر c من [a,b] من أو أيضا يوجد

ع برهان:

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}x - f(a)$$
 بما يلي : $[a,b]$ بما يلي : $[a,b]$ بما يلي : $[a,b]$ بما يلي : $[a,b]$ بما يلي :

- g متصلة على القطعة [a,b].
- و قابلة للاشتقاق على [a,b] .
 - g(a) = g(b)

(2) $\exists c \in [a,b[: g'(c)=0]$ حسب مبرهنة رول اي :

$$(2) \Leftrightarrow \exists c \in]a,b[: \left(f(x) - \frac{f(b) - f(a)}{b - a}x - f(a)\right)_{x=c}^{'} = 0$$

$$\Leftrightarrow \exists c \in \left] a, b \right[: \left(f'(x) - \frac{f(b) - f(a)}{b - a} \right)_{x = c} = 0$$

$$\Leftrightarrow \exists c \in]a,b[: f'(c) - \frac{f(b)-f(a)}{b-a} = 0$$

$$\Leftrightarrow \exists c \in]a,b[: f'(c) = \frac{f(b)-f(a)}{b-a}$$

3 ملحوظة:

يمكن تطبيق مبرهنة التزايدات المنتهية حيث f قابلة للاشتقاق على [a,b]

- .D تطبیقات مبرهنة التزایدات المنتهیة :
 - 1. متفاوتة التزايدات المنتهية:

درس الاشتقاق + إضافات

❖ خاصية:

الصفحة

 \mathbb{R}^+ دالة قابلة للاشتقاق على مجال \mathbb{R} عنصر من \mathbb{R}

. $\forall x, y \in I | f(x) - f(y)| \le k |x - y|$ فإن $\forall x \in I | f'(x)| \le k$ إذا كان $\forall x \in I$

. $(\forall x \in I | f'(x)| \le k) \Rightarrow (\forall x, y \in I | f(x) - f(y)| \le k|x - y|)$:

ن برهان:

. دينا : $|f(x)-f(y)|=0 \le k|x-y|=0$ الاستلزام صحيح . x=y:1

(y < x) د ناخذ: $x \neq y$ د نفس الشيء ل $x \neq y$ د حالة 2: $x \neq y$

لاينا: x,y] ⊂ الأن I مجال)

بمأن: f دالة قابلة للاشتقاق على مجال I إذن f قابلة للاشتقاق على [x,y].

(T.A.F حسب مبرهنة $\exists c \in [x,y] : f(x)-f(y)=(x-y)f'(c) : إذن$

. $|f'(c)| \le k$ ومنه : $|f(x)-f(y)| = |(x-y)f'(c)| = |x-y||f'(c)| \le k|x-y|$. $|f'(c)| \le k$

 $(\forall x \in I | f'(x)| \le k) \Rightarrow (\forall x, y \in I | f(x) - f(y)| \le k|x - y|)$ خلاصة:

الله مثال:

 $| \forall x, y \in \mathbb{R} : |\cos x - \cos y| \le |x - y| :$ نبين

 $\forall x \in \mathbb{R}: |\cos x| \leq 1$ و \mathbb{R} و $|\cos x| \leq 1$ و الدالة $|\cos x|$ و الدالة $|\cos x|$

 $. ∀x,y ∈ ℝ : |\cos x - \cos y| ≤ |x - y|$ المنتهية : التزايدات المنتهية : المنتهية : التزايدات المنتهية :

2 إشارة المشتقة الأولى و رتابة دالة:

❖ خاصية:

k . I دالة قابلة للاشتقاق على مجال

. I فإن $f : f : f'(x) \ge 0$ اذا كان $f : f'(x) \ge 0$ الم

I:f'(x)>0 اذا كانت f'(x)>0 فإن f'(x)>0 فإن

 $I: f'(x) \le 0$ إذا كان $0 \ge (x)$ $f'(x) \le 1$ فإن f تناقصية على

اذا كان $x \in I : f'(x) < 0$ فإن f'(x) < 0 تناقصية قطعا على I.

. I علی I : f'(x) = 0 (علی $I : X \in I : f'(x) = 0$ ابنا علی $I : Y \in I : f'(x) = 0$

3. برهان:

 $[a,b] \subset I$ لأن $[a,b] \subset I$ لينا $[a,b] \cap I$ لأن $[a,b] \cap a$ ليكن $[a,b] \cap a$

بمأن: f دالة قابلة للاشتقاق على مجال I إذن f قابلة للاشتقاق على [x,y].

. ∃C∈]a,b[: f(b)-f(a)=(b-a)f'(c): T.A.F ومنه حسب مبر هنة

 $f(b) \ge f(a)$ إذن $f(c) \ge 0$ و منه $f(c) \ge 0$ و بالتالي $f(b) - f(a) \ge 0$ أي $f(c) \ge 0$ عالمة $f(c) \ge 0$

خلاصة: f تزايدية على I.

4 ملحوظة: (يمكن للدالة ' f أن تنعدم في نقط منعزلة من I وهذا لا يؤثر على رتابة f)