CM103

02 de Outubro de 2017

ATENÇÃO: Utilize 4 casas decimais onde for necessário aproximar.

Calcule uma aproximação para um zero da função $f(x) = x^3 - 2$, usando o método de Newton a partir de $x_0 = 1$. Faça uma tabela das iterações mostrando x_k , $f(x_k)$, $f'(x_k)$ e o que mais você quiser. Pare quando $|f(x_k)| < 10^{-3}$.

Solution:

_					
	k	x_k	$f(x_k)$	$f'(x_k)$	d_k
	0	1.0000	-1.0000	3.0000	0.3333
ſ	1	1.3333	0.3702	5.3331	-0.0694
Ī	2	1.2639	0.0190	4.7923	-0.0040
Ī	3	1.2599	-0.0001	_	_

Obtemos $x^* = 1.2599$.

Uma modificação básica do método da bissecção é o método da falsa posição, cuja única diferença é na escolha de x_k . No lugar de escolher x_k como o ponto médio do intervalo $[a_k,b_k]$, escolhemos $x_k=\frac{a_kf(b_k)-b_kf(a_k)}{f(b_k)-f(a_k)}$. Use o método da falsa posição para encontrar uma aproximação para um zero da função $f(x)=x^2-x-1$ no intervalo [1.5,2] e tolerância $|f(x)|<10^{-3}$.

Solution: Como a modificação é só na escolha do x_k , o resto é igual à bissecção.

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$
0	1.5000	2.0000	-0.2500	1.0000	1.6000	-0.0400
1	1.6000	2.0000	-0.0400	1.0000	1.6154	-0.0059
2	1.6154	2.0000	-0.0059	1.0000	1.6177	-0.0007

Obtemos $x^* = 1.6177$.

Questão 3 40

Sabendo que $\pi = \int_{-1}^{1} \frac{2}{x^2 + 1} dx$, uma pessoa decide calcular uma aproximação para π usando integração numérica. (Para comparação use $\pi = 3.1416$).

- (a) (10 points) Calcule uma aproximação para essa integral usando a regra do trapézio repetida com $h=\frac{1}{2}$. Mostre o erro relativo.
- (b) (10 points) Calcule uma aproximação para essa integral usando a regra de Simpson repetida com $h = \frac{1}{2}$. Mostre o erro relativo.

- (c) (10 points) Calcule uma aproximação para essa integral usando a regra do ponto médio repetida com $h = \frac{1}{2}$. Mostre o erro relativo.
- (d) (10 points) Calcule qual o número de pontos necessários para se obter um erro de no máximo $\epsilon=10^{-4}$ usando a regra do trapézio repetida.

Solution: Primeiro, veja que TR e SR usam m = 5, e PMR usa m = 3. Por "sorte", os pontos se repetem, então dá pra reaproveitar o cálculo de f.

$$TR = \frac{h}{2} \left(f(x_1) + 2 \times [f(x_2) + f(x_3) + f(x_4)] + f(x_5) \right)$$

$$SR = \frac{h}{3} \left(f(x_1) + 4 \times [f(x_2) + f(x_4)] + 2 \times f(x_3) + f(x_5) \right)$$

$$PMR = 2h \left(f(x_1) + f(x_3) \right).$$

Substituindo, obtemos

$$TR = 3.1, \qquad SR = 3.1333, \qquad PMR = 3.2.$$

Os erros relativos são

$$ETR = 0.0132, \qquad ESR = 0.0026, \qquad EPMR = -0.0186.$$

A fórmula do erro do Trapézio é

$$E_{TR} = \frac{h^2(b-a)}{12} f''(\mu).$$

Dai,

$$|E_{TR}| \le \frac{h^2(b-a)}{12}M,$$

onde $M = \max_{x \in [a,b]} |f''(x)|$.

Temos

$$f''(x) = \frac{4(3x^2 - 1)}{(x^2 + 1)^3}.$$

Como essa função é complicada, pode-se usar

$$M \le \max_{x \in [-1,1]} |4(3x^2 - 1)| \max_{x \in [-1,1]} \frac{1}{(x^2 + 1)^3} = 8 \times 1 = 8.$$

No entanto, dá pra encontrar M=4.

Usando $M \leq 8$, temos

$$|E_{TR}| \le \frac{h^2}{6} 8 = \frac{4h^2}{3}.$$

Como queremos $|E_{TR}| \leq 10^{-4}$, fazemos

$$\frac{4h^2}{3} \le 10^{-4}.$$

Logo,

$$h \le \sqrt{\frac{3 \times 10^{-4}}{4}} \approx 0.0087.$$

e $m \ge 230.9$, isto é, m = 231. Com M = 4, temos m = 165.

Defina a sequência obtida pelo método de Newton aplicado à função $f(x) = x^4$ a partir de $x_0 > 0$ como $\{x_k\}$.

(a) (5 points) Escreva uma fórmula para x_k que depende apenas de x_0 , concluindo que $x_k \to 0$.

Solution:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^4}{4x_k^3} = x_k - \frac{1}{4}x_k = \frac{3}{4}x_k.$$

Logo,

$$x_{k+1} = \frac{3}{4}x_k = \frac{3}{4}\frac{3}{4}x_{k-1} = \left(\frac{3}{4}\right)^2 x_{k-1} = \left(\frac{3}{4}\right)^3 x_{k-2} = \left(\frac{3}{4}\right)^{k+1} x_0.$$

Então, a sequência é uma PG de razão 3/4, com termo inicial x_0 .

(b) (5 points) Calcule a ordem de convergência da sequência $\{x_k\}$, e verifique que não é quadrática. Explique porque isso não contradiz o Teorema de convergência de Newton.

Solution: A ordem de convergência compara $|x_{k+1} - x^*|$ com $|x_k - x^*|$. Aqui, $x^* = 0$. Logo,

$$|x_{k+1} - 0| = |x_{k+1}| = x_{k+1} = \frac{3}{4}x_k = \frac{3}{4}|x_k| = \frac{3}{4}|x_k - 0|.$$

logo, x_{k+1} converge linearmente. Isso não contradiz o Teorema de convergência quadrática pois ele só se aplica se a derivada for não nula na solução. Neste caso, temos $f(x) = x^4$, então f(0) = 0 e f'(0) = 0.

Considere a seguinte identidade

$$\ln x = 2y \left(1 + \frac{y^2}{3} + \frac{y^4}{5} + \frac{y^6}{7} + \dots \right),$$

onde $y = \frac{x-1}{x+1}$. Descreva um algoritmo (faça o pseudo-código) para o cálculo do logaritmo a partir dessa identidade, de uma maneira eficiente.

Solution: O seguinte algoritmo é uma possibilidade.

Algorithm 1 Entrada: x. Saída: L.

```
1: y \leftarrow \frac{x-1}{x+1};

2: z \leftarrow y^2;

3: t \leftarrow 1;

4: L \leftarrow 0;

5: n \leftarrow 1;

6: z_p \leftarrow 1;

7: while L + t \neq L do

8: L \leftarrow L + t;

9: n \leftarrow n + 2;

10: z_p \leftarrow z_p \times z;

11: t \leftarrow z_p/n;

12: end while

13: L \leftarrow 2 \times y \times L.
```

Considere o seguinte algoritmo.

(a) (10 points) Rode o algoritmo acima na mão para tol = 0.1, evidenciando os valores intermediários.

Solution:

s	t	a	b	c
2.0000	1.0000	1	1	2
2.5000	0.5000	1	2	3
2.8333	0.3333	2	3	5
3.0333	0.2000	3	5	8
3.1583	0.1250	5	8	13
3.2353	0.0769	8	13	_

(b) (5 points) Esse algoritmo está calculando uma aproximação para uma sequência ou série. Escreva essa sequência ou série explicitamente. (Não é para calcular o limite).

Solution: A primeira coisa é perceber que estamos fazendo uma soma: s é atualizado somando termos. Logo, temos uma série.

A segunda coisa é perceber que os termos são sempre 1/c. Então, se colocarmos um índice k=1 no começo da iteração, temos

$$s = 2 + \sum_{k=1}^{\infty} \frac{1}{c_k}.$$

A terceira coisa é tentar identificar c_k . Note que c_k é atualizado pela soma de dois valores, a_k e b_k . No entanto, esses valores são atualizados simplesmente copiando os valores de b_k e c_k , respectivamente. Após 2 iterações, temos $a_k = c_{k-2}$ e $b_k = c_{k-1}$. Isso quer dizer que $c_k = c_{k-1} + c_{k-2}$, para k > 2, e $c_1 = 2$ e $c_2 = 3$.

A quarta coisa a perceber é que, olhando para os primeiros valores de a e b, temos exatamente o valor inicial de s, encaixando de forma a caber na fórmula. Então,

$$s = \frac{1}{a_1} + \frac{1}{b_1} + \sum_{k=1}^{\infty} \frac{1}{c_k}.$$

Mas como c_k é uma sequência gerando esses valores, podemos considerar que esse valores eram os valores iniciais de c_k , e definir $c_{-1} = c_0 = 1$, e que $c_k = c_{k-1} + c_{k-2}$, para k > 0. Assim

$$s = \sum_{k=-1}^{\infty} \frac{1}{c_k}.$$

Para facilitar, podemos definir outra variável $F_k = c_{k-2}$, obtendo $F_1 = F_2 = 1$ e $F_{k+2} = F_{k+1} + F_k$. Logo, temos

$$s = \sum_{k=1}^{\infty} \frac{1}{F_k}.$$

De uma maneira sucinta, escrevemos

$$s = \sum_{k=1}^{\infty} \frac{1}{F_k},$$

onde $F_1=F_2=1$ e $F_{k+2}=F_{k+1}+F_k$ para todo k>0 inteiro.

Perceber que a sequência é a sequência de Fibonacci deixa o desenvolvimento mais fácil, mas não é estritamente necessário.