PSALTer results panel

$$S = \iiint (\frac{1}{6} \left(6t_{1} \mathcal{R}^{\alpha_{i}} \mathcal{R}^{\theta}_{i} + 6 \mathcal{R}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} - 12t_{1} \mathcal{R}^{\theta}_{\alpha\theta} \partial_{i}f^{\alpha_{i}} + 12t_{1} \mathcal{R}^{\theta}_{i\theta} \partial^{i}f^{\alpha}_{\alpha} - 6t_{1} \partial_{i}f^{\theta}_{\theta} \partial^{i}f^{\alpha}_{\alpha} - 6t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha_{i}} + 4r_{2} \partial_{\theta}\mathcal{R}^{\alpha\beta_{i}} + 4r_{2} \partial_{\beta}\mathcal{R}_{\alpha\theta\theta} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 2r_{2} \partial_{i}\mathcal{R}_{\alpha\beta\theta} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} + 2r_{2} \partial_{\theta}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 4r_{2} \partial_{\theta}\mathcal{R}^{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} + 4r_{2} \partial_{\beta}\mathcal{R}_{\alpha\theta} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 2r_{2} \partial_{i}\mathcal{R}_{\alpha\beta\theta} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} + 2r_{2} \partial_{\theta}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 4r_{2} \partial_{\theta}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} + 4r_{2} \partial_{\alpha}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 2r_{2} \partial_{i}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} + 2r_{2} \partial_{\theta}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 4r_{2} \partial_{\theta}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} + 4r_{2} \partial_{\alpha}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta}\mathcal{R}^{\alpha\beta_{i}} - 4r_{2} \partial_{\alpha}\mathcal{R}_{\alpha\beta_{i}} \partial^{\theta$$

Wave operator

Saturated propagator

	$0.^+\sigma^{\parallel}$	0.+ 1	$0.^+\tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
^{0,+} σ †	$-\frac{1}{(1+2k^2)^2t.}$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t}$	0	0										
^{0,+} τ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$-\frac{2 k^2}{(1+2 k^2)^2 t.}$	0	0										
0. ⁺ τ [⊥] †	0	0	0	0										
0. σ∥ †	0	0	0	$\frac{1}{k^2 r. + t.}$	$^{1^{+}}\sigma^{\parallel}{}_{lphaeta}$	$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle\perp}{}_{\alpha\beta}$	$1^+\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma_{\alpha}^{\perp}$	$\frac{1}{2} \tau^{\parallel}_{\alpha}$	$1^{-}\tau^{\perp}{}_{\alpha}$			
				$1.^{+}\sigma^{\parallel} + ^{\alpha\beta}$	$\frac{2(t.+t.)}{\frac{1}{3}t.t.}_{12}$	$\frac{\sqrt{2} (t2t.)}{3 (1+k^2) t. t.}$	$\frac{i\sqrt{2} k(t2t.)}{3(1+k^2)t.t.}$	0	0	0	0			
				$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle \perp} \overset{\alpha\beta}{\dagger}$	$\frac{\sqrt{2} (t2t.)}{3 (1+k^2) t. t.}$	$\frac{t.+4t.}{\frac{1}{3}(1+k^2)^2t.t.}_{12}$	$\frac{i k (t.+4 t.)}{3 (1+k^2)^2 t. t.}$	0	0	0	0			
				$1.^+\tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\sqrt{2} k(t2t.)}{3(1+k^2)t.t.}$	$-\frac{i k (t.+4 t.)}{3 (1+k^2)^2 t. t.}_{1 2}$	$\frac{k^2 (t.+4t.)}{\frac{1}{3} (1+k^2)^2 t. t.}_{1 2}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$		0			$\frac{\sqrt{2}}{t_1+2k^2t_1}$					
					0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{1}{(1+2k^2)^2t.}_{1}$	0	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t.}$			
				$1^{-}\tau^{\parallel}$ \uparrow^{α}	0	0	0		0	0	0			
				$1^{-}\tau^{\perp} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	0	$\frac{2k^2}{(1+2k^2)^2t.}_{1}$	2. ⁺ σ αβ	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
				,							$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}_{1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t}$	0
											$2.^{+}\tau^{\parallel}$ † $^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	
											$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	2 t. 1

Source constraints

Spin-parity form	Covariant form	Multiplicities		
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1		
$-2 \bar{i} k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1		
$2ik \cdot 1 \cdot \sigma^{\perp \alpha} + 1 \cdot \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3		
$1^{-}\tau^{\parallel^{\alpha}}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3		
$-2 i k 2^{+} \sigma^{\parallel^{\alpha\beta}} + 2^{+} \tau^{\parallel^{\alpha\beta}} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \partial^{\alpha}$	5		
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+$			
	$6 i k^X \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^X \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^X \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$			
Total expected gauge generators:				

Massive spectrum

Massive particle

-	
Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0