Notations:

x, d, b, etc, that is characters in boldface represent (column) vectors. $\tilde{\mathbf{a}}_i$, the *i*th column of A.

Simplex Algorithm

From now on we will consider linear programming problems of the type (P^*) :

Max or Min $\mathbf{c}^T \mathbf{x}$

subject to $A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \ \mathbf{x} \geq \mathbf{0},$

where rank(A) = m.

Let us now denote the set $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}\$ by Fea(LPP).

Note that if we are given a problem of the type:

Max or Min $\mathbf{c}^T \mathbf{x}$

subject to $A_{m\times n}\mathbf{x} \leq \mathbf{b}_{m\times 1}, \ \mathbf{x} \geq \mathbf{0},$

we add some variables and we can convert the system of constraints to

 $A_{m\times n}\mathbf{x} + \mathbf{s}_{m\times 1} = [A:I] \begin{bmatrix} \mathbf{x} \\ \mathbf{s} \end{bmatrix} = \mathbf{b}_{m\times 1}, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{s} \geq \mathbf{0}.$

So it is now of the form of problem (P^*) .

If suppose we are given a problem of the type (P^{**}) :

Max or Min $\mathbf{c}^T \mathbf{x}$

subject to $A_{k\times n}\mathbf{x} = \mathbf{b}_{k\times 1}, \ \mathbf{x} \geq \mathbf{0},$

where k > rank(A) = m.

Let (P^{**}) have at least one feasible solution and WLOG let $\mathbf{a}_1^T, \dots, \mathbf{a}_m^T$ be a set of m LI rows of A (rank(A) = m).

Let $\mathbf{x}_0 \in {\mathbf{x} \in \mathbb{R}^n : A_{k \times n} \mathbf{x} = \mathbf{b}_{k \times 1}, \quad \mathbf{x} \ge \mathbf{0}}.$

Then for all i = 1, ..., k, $\mathbf{a}_i^T = \sum_{j=1}^m u_{ji} \mathbf{a}_j^T \text{ for some real } u_{ji}\text{'s, } i = 1, ..., k, j = 1, ..., m,$ $\text{hence } \mathbf{a}_i^T \mathbf{x}_0 = b_i = \sum_{j=1}^m u_{ji} \mathbf{a}_j^T \mathbf{x}_0 = \sum_{j=1}^m u_{ji} b_j, \text{ which implies } b_i = \sum_{j=1}^m u_{ji} b_j, \text{ for all } i = 1, ..., k.$ Hence from (**) and (***) it follows that for any \mathbf{x} (***)

 $\mathbf{a}_i^T \mathbf{x} = b_i$, for $i = 1, \dots, m \iff \mathbf{a}_i^T \mathbf{x} = \sum_{j=1}^m u_{ji} \mathbf{a}_j^T \mathbf{x} = \sum_{j=1}^m u_{ji} b_j = b_i$, for all $i = 1, \dots, k$. Hence if the system $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent (that is it has at least one solution), then we can throw away k-m rows of A and the corresponding components of **b** in (P**) to get an equivalent (having the same set of solutions) system of equations of the form (*).

Hence an LPP of the form (P^{**}) can again be converted to a problem of the type (P^{*}) , by throwing away some of the constraints, such that the feasible region of the changed LPP remains same.

Note: Here it is important to point out that if we have a problem (P) of the form:

Max or Min $\mathbf{c}^T \mathbf{x}$

subject to $A_{k\times n}\mathbf{x} \leq \mathbf{b}_{k\times 1}, \ \mathbf{x} \geq \mathbf{0},$

where k > rank(A) = m.

Then if we throw away constraints (corresponding to LD rows of A) from the above set of constraints, then we may get a different feasible region.

An $\mathbf{x} \in Fea(LPP)$ is called a **basic feasible solution (BFS)** of the LPP if the columns of the matrix A corresponding to the nonzero components of \mathbf{x} are LI.

An x satisfying the system Ax = b, and the condition that the columns corresponding to the nonzero components are LI, is called a basic solution of the LPP. So a basic solution may not be a nonnegative vector, hence need not be a feasible solution of the LPP.

So a basic feasible solution of a LPP of the form (1), can have at most m strictly positive components (since rank(A) = m).

Example 1: Consider the LPP (P)

Max or Min $\mathbf{c}^T \mathbf{x}$

subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \ \mathbf{x} \geq \mathbf{0}$

where
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Clearly rank(A) = 2. Then $\mathbf{x} = [1, 1, 0]^T$ is a **BFS** of (P) since it satisfies the conditions

 $A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \ \mathbf{x} \ge \mathbf{0}$ and the columns of A corresponding to the positive components of \mathbf{x} are $[1,1]^T$, $[2,1]^T$, is LI.

The basis matrix has columns $[1,1]^T$, $[2,1]^T$, with basic variables x_1, x_2 .

 $\mathbf{x} = [2, 1, 1]^T$ is a feasible solution of (P) since it satisfies the conditions

 $A_{m\times n}\mathbf{x} = \mathbf{b}_{m\times 1}, \ \mathbf{x} \geq \mathbf{0}$ but the columns of A corresponding to the positive components of \mathbf{x} are $[1,1]^T$, $[2,1]^T$, $[-1,-1]^T$ is LD, hence is not a BFS.

 $\mathbf{x} = [0, 1, -1]^T$ is a basic solution of (P) since it satisfies the conditions

 $A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$ and the columns of A corresponding to the nonzero components of \mathbf{x} are $[2,1]^T, [-1,-1]^T$, is LI.

But is not a feasible solution of (P).

A BFS is called a **non degenerate** BFS if it has exactly m positive components, otherwise it is said to be a **degenerate** BFS.

If **x** is a **non degenerate** BFS, then the columns of A corresponding the nonzero (positive) components of **x** form a basis of \mathbb{R}^m . WLOG, let the positive components of **x** be x_1, \ldots, x_m , then $\tilde{\mathbf{a}}_i, i = 1, \ldots, m$, forms a basis of \mathbb{R}^m , where $\tilde{\mathbf{a}}_i$ is the *i*th column of A.

The $m \times m$ matrix, $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ formed with columns $\tilde{\mathbf{a}}_i, i = 1, \dots, m$, of A is called the **basis** matrix corresponding to \mathbf{x} .

The variables x_1, \ldots, x_m are called the **basic variables**, and $x_{m+1} = x_{m+2} = \ldots = x_n = 0$, are called the **non basic variables** of the BFS **x**.

If **x** is a **degenerate** BFS, then consider the columns of A corresponding to the nonzero components of **x**. WLOG let them be $\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_k, \ k < m$.

Then add (m-k) LI columns of A, such that these (m-k) columns of A together with $\tilde{\mathbf{a}}_1, \ldots, \tilde{\mathbf{a}}_k$, form a set of m LI vectors from the columns of A (you can always do that), hence a basis of \mathbb{R}^m .

Let as before the matrix $B_{m \times m}$ formed with these m columns, (WLOG let it be $\tilde{\mathbf{a}}_i, i = 1, ..., m$) be called a basis matrix corresponding to \mathbf{x} .

The components x_1, \ldots, x_m of **x** are called as before, **basic variables** corresponding to **x** and the basis matrix B. The components $x_{m+1} = \ldots = x_n = 0$ are the **nonbasic variables**.

Note that depending on the choice of the rest of the (m-k) columns which are added, the same **x** will correspond to different basis matrices B, and hence will have different basic and nonbasic variables.

Example 2: Consider the LPP (P)

Max or Min $\mathbf{c}^T \mathbf{x}$

subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \ \mathbf{x} \geq \mathbf{0}$

where
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Clearly rank(A) = 2.

 $\mathbf{x} = [0, 1, 1]^T$ is a **non degenerate BFS** of (P) since it satisfies the conditions

 $A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \mathbf{x} \ge \mathbf{0}$ and the columns of A corresponding to the positive components of \mathbf{x} are $[2, 1]^T, [-1, 0]^T$, is LI.

Also the number of positive components is equal to 2 = rank(A).

The basis matrix is unique upto a permutation of the columns.

The basic variables are given by x_2, x_3 .

 $\mathbf{x} = [1, 0, 0]^T$ is also a BFS of (P) since it satisfies the conditions

 $A_{m\times n}\mathbf{x} = \mathbf{b}_{m\times 1}, \ \mathbf{x} \geq \mathbf{0}$ but the columns of A corresponding to the positive components of \mathbf{x} is $[1,1]^T$, is LI. But x is a **degenerate** BFS since the number of positive components is strictly less 2.

There are two different basis matrices B for the same BFS \mathbf{x} .

- (i) One with columns $[1,1]^T$, $[2,1]^T$, with basic variables x_1, x_2 . (ii) The other with columns $[1,1]^T$, $[-1,0]^T$, with basic variables x_1, x_3 .

Suppose if **x** is a BFS such that $x_{m+1} = \ldots = x_n = 0$, then since **x** is a feasible solution of the LPP, $A\mathbf{x} = \mathbf{b}$,

hence we get
$$\sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} x_{i} = \mathbf{b}$$
, which implies $B\mathbf{x}_{B} = \mathbf{b}$ or $\mathbf{x}_{B} = B^{-1}\mathbf{b}$, where \mathbf{x}_{B} are the components of \mathbf{x} corresponding to the basic variables. Hence a BFS \mathbf{x} is of the form, $\mathbf{x} = \begin{bmatrix} B^{-1}\mathbf{b}_{m \times 1} \\ \mathbf{0}_{(n-m)\times 1} \end{bmatrix}$.

Hence in the context of the diet problem, that is if we consider the above problem to be the diet problem (with \geq inequalities changed to equalities in the original problem), then **x** gives the quantities of the various food products F_j , j = 1, ..., n which are to be included in the diet. The food products $F_1, ..., F_m$, which correspond to the basic variables x_1, x_2, \ldots, x_m of \mathbf{x} , are the ones which are included in the diet in the quantities x_i , the other food products corresponding to the nonbasic variables (they have zero values) are not to be consumed, hence not included in the diet.

Let us assume that (P^*) has at least one feasible solution and let x be a BFS (degenerate or non degenerate) of the LPP (P*) (the existence of a BFS will be justified later).

WLOG let $B = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ be a (or the) basis matrix corresponding to \mathbf{x} .

Then note that for all
$$k = 1, 2, ..., n$$
,
$$\tilde{\mathbf{a}}_{k} = \sum_{i=1}^{m} u_{ik} \tilde{\mathbf{a}}_{i} = [\tilde{\mathbf{a}}_{1} \dots \tilde{\mathbf{a}}_{m}] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix}$$
for some real u_{ik} 's, $i = 1, ..., m, k = 1, ..., n$,

which implies
$$\begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = B^{-1}\tilde{\mathbf{a}}_k$$
 for all $k = 1, 2, \dots, n$.

In the context of the diet problem the above equations (*), mean that in order to obtain the same amount of nutrient as unit amount of F_k , k = 1, ..., n, one needs to consume

 (u_{1k}) amount of $F_1 + (u_{2k})$ amount of $F_2 + \ldots + (u_{mk})$ amount of F_m .

Hence the value of unit amount of F_k , if we include only F_i , $i = 1, \ldots, m$ in the diet (which has to be bought from the market) comes out to be

$$u_{1k}c_1 + u_{2k}c_2 + \ldots + u_{mk}c_m$$
, which we denote by z_k .
So $z_k = \sum_{i=1}^m u_{ik}c_i = [c_1, \ldots, c_m] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = \mathbf{c}_B^T B^{-1} \tilde{\mathbf{a}}_k$.
Note that the cost of the objective function corresponding

Note that the cost of the objective function corresponding to this BFS is given by

$$\mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B = \mathbf{c}_B^T B^{-1} \mathbf{b},$$

where, \mathbf{c}_B^T are the components of the vector \mathbf{c}^T which correspond to the basic variables.

Also for all k = 1, ..., m, note that $z_k = c_k$.

Now the simplex table corresponding to the BFS \mathbf{x} will be given by

	$c_1 - z_1 = 0$	$c_2 - z_2 = 0$	 $c_m - z_m = 0$	 $c_s - z_s$	 $c_k - z_k$	 $c_n - z_n$	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	 $B^{-1}\tilde{\mathbf{a}_m}$	 $B^{-1}\tilde{\mathbf{a}_s}$	 $B^{-1}\tilde{\mathbf{a}_k}$	 $B^{-1}\tilde{\mathbf{a}_n}$	$B^{-1}\mathbf{b}$
$\tilde{\mathbf{a}_1}$	1	0	 0	 u_{1s}	 u_{1k}	 u_{1n}	x_1
$\tilde{\mathbf{a}_2}$	0	1	 0	 u_{2s}	 u_{2k}	 u_{2n}	x_2
:	0	0	 0	 ÷	 :	 ÷	÷
$ ilde{\mathbf{a}_r}$:	:	 :	 u_{rs}	 u_{rk}	 u_{rn}	x_r
:	:	:	 :	 :	 :	 :	:
$\tilde{\mathbf{a}_m}$	0	0	 1	 u_{ms}	 u_{mk}	 u_{mn}	x_m

Case 1: $c_k - z_k < 0$ for at least one k, k = m + 1, ..., n.

So if $c_k - z_k < 0$ for some k = m + 1, ..., n, then the market price of unit amount of F_k given by c_k is less than the value of unit amount of F_k (as obtained by consuming only F_1, \ldots, F_m) given by z_k , hence it might be sensible (profitable) to include this F_k in the diet.

Let $c_s - z_s = min\{c_k - z_k : c_k - z_k < 0, k = m + 1, ..., n\}.$

Simplex algorithm says that, then include x_s in the diet.

If there exists, s, l, such that for both s, l,

$$c_s - z_s = c_l - z_l = min\{c_k - z_k : c_k - z_k < 0, k = m + 1, \dots, n\},\$$

then include any one of these food products in the diet.

Let \mathbf{x}' be the new solution to be obtained.

Note that (refer to (*)) u_{is} amount of F_i , $i=1,\ldots,m$, is used in the constitution of unit amount of F_s , which is now included in the diet in an amount say x'_s . Hence the same corresponding amount of the F_i 's, $i = 1, \ldots, m$, given by $u_{is}x'_{s}$ need not be consumed any more.

Hence the components of \mathbf{x}' are given by

 $x'_{i} = x_{i} - u_{is}x'_{s}$ for i = 1, ..., m,

 $x_s' \geq 0$ and

 $x'_{i} = 0 \text{ for } i = m + 1, \dots, n, i \neq s.$

Then note that if we want \mathbf{x}' to be a feasible solution of the LPP, then we have to choose $x'_s \geq 0$ such that $x_i' \geq 0$ for all $i = 1, \ldots, m$.

Note that if $u_{is} \leq 0$, for some i = 1, ..., m, then for all $x'_{s} \geq 0$, $x'_{i} \geq 0$ for that i.

So in order that $x_i' \geq 0$, for all i = 1, ..., m,

we have to choose $x'_s \ge 0$, such that $x'_s \le \frac{x_i}{u_{is}}$ for which $u_{is} > 0$ (if at all there is one such i).

Case 1a: For some (at least one) $i = 1, ..., m, u_{is} > 0$ (where s is as defined in Case 1).

Let $\frac{x_r}{u_{rs}} = min\{\frac{x_i}{u_{is}} : u_{is} > 0\}$. (Note that there could exist r, t such that for both $r, t \in \{m+1, \ldots, n\}$

 $\frac{x_r}{u_{rs}} = \frac{x_t}{u_{ts}} = min\{\frac{x_i}{u_{is}} : u_{is} > 0\}).$

Here $\frac{x_r}{u_{rs}}$ is called the **minimum ratio**.

Then in order that $\mathbf{x}' \geq \mathbf{0}$, $x_s' \leq \frac{x_r}{u_{rs}}$. Then it can be easily checked that $A\mathbf{x}' = \mathbf{b}$ or $\mathbf{x}' \in Fea(LPP)$, where \mathbf{x}' is as defined in Case 1.

To see this, note that
$$A\mathbf{x}' = \sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} x'_{i} + \tilde{\mathbf{a}}_{s} x'_{s}$$
, which implies $A\mathbf{x}' = \sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} u_{is} x'_{s} + \tilde{\mathbf{a}}_{s} x'_{s}$, which implies $A\mathbf{x}' = \sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} u_{is} - \sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} u_{is} x'_{s} + \tilde{\mathbf{a}}_{s} x'_{s} = \sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} x_{i} + x'_{s} (\tilde{\mathbf{a}}_{s} - \sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} u_{is}) = \sum_{i=1}^{m} \tilde{\mathbf{a}}_{i} x_{i} = \mathbf{b}.$

Also
$$\mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$$
, which implies $\mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i - \sum_{i=1}^m c_i u_{is} x_s' + c_s x_s' = \sum_{i=1}^m c_i x_i + x_s' (c_s - \sum_{i=1}^m c_i u_{is}) = \mathbf{c}^T \mathbf{x} + x_s' (c_s - z_s) \leq \mathbf{c}^T \mathbf{x}$. Note that $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is possible **only if** the **minimum ratio** $\frac{x_r}{u_{rs}} > 0$.

In order to reduce cost (or the value of the objective function) as much as possible, x_s' is given its maximum

possible value, which is equal to $\frac{x_r}{u_{rs}}$. Then note that $x'_r = x_r - u_{rs} \frac{x_r}{u_{rs}} = 0$. The variable x_s is called the **entering variable** for the new basis (choose any one if there are more than one choice for the entering variable), and the variable x_r is called a leaving variable.

If there exists r, t such that $r, t \in \{m + 1, \dots, n\}$

$$\frac{x_r}{u} = \frac{x_t}{u} = min\{\frac{x_i}{u} : u_{is} > 0\}$$

 $\frac{x_r}{u_{rs}} = \frac{x_t}{u_{ts}} = min\{\frac{x_i}{u_{is}} : u_{is} > 0\},$ then take any **one** of r, t as the **leaving variable**.

So $\mathbf{x}' \in Fea(LPP)$ again has at most m nonzero components.

To prove \mathbf{x}' is a BFS of the LPP we need to show that the set of columns $\{\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_{r-1}, \tilde{\mathbf{a}}_s, \tilde{\mathbf{a}}_{r+1}, \dots, \tilde{\mathbf{a}}_m, \}$ of A is LI and hence forms a basis of \mathbb{R}^m .

If suppose not, then since the collection $\{\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_{r-1}, \tilde{\mathbf{a}}_{r+1}, \dots, \tilde{\mathbf{a}}_m\}$ is LI, it implies that $\tilde{\mathbf{a}}_s$ can be written as a linear combination of the (m-1) columns, $\{\tilde{\mathbf{a}}_1,\ldots,\tilde{\mathbf{a}}_{r-1},\tilde{\mathbf{a}}_{r+1},\ldots,\tilde{\mathbf{a}}_m\}$, but this would imply that $u_{rs} = 0$, which is a contradiction.

Hence \mathbf{x}' is an improved BFS (or at least as good as) compared to the BFS \mathbf{x} with respect to the value of the objective function).

Let us denote the new basis matrix corresponding to \mathbf{x}' as B' where $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_s \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m]$.

The simplex table corresponding to the BFS \mathbf{x}' will be obtained again by expressing each of the vectors $\tilde{\mathbf{a}}_i, i = 1, \dots, n$, and \mathbf{b} in terms of the new set of basis vectors $\{\tilde{\mathbf{a}}_1, \dots, \tilde{\mathbf{a}}_{r-1}, \tilde{\mathbf{a}}_{r+1}, \dots, \tilde{\mathbf{a}}_m, \tilde{\mathbf{a}}_s\}$.

Since $\tilde{\mathbf{a}}_s = \sum_{i=1, i \neq r}^m u_{is} \tilde{\mathbf{a}}_i + u_{rs} \tilde{\mathbf{a}}_r$, so $\tilde{\mathbf{a}}_r = \frac{\tilde{\mathbf{a}}_s}{u_{rs}} - \sum_{i=1, i \neq r}^m \frac{u_{is}}{u_{rs}} \tilde{\mathbf{a}}_i$.

Also since for any $k = 1, \dots, n$, Also since for any $\kappa = 1, \dots, n$, $\tilde{\mathbf{a}}_k = \sum_{i=1}^m u_{ik} \tilde{\mathbf{a}}_i = \sum_{i=1, i \neq r}^m u_{ik} \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_r u_{rk}$. (**) By substituting the expression for $\tilde{\mathbf{a}}_r$ given in (*) in the equation (**), we get $\tilde{\mathbf{a}}_k = \sum_{i=1, i \neq r}^m u_{ik} \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_r u_{rk} = \sum_{i=1, i \neq r}^m (u_{ik} - \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s \frac{u_{rk}}{u_{rs}}$.

Let us denote the new coefficients corresponding to $\tilde{\mathbf{a}}_i$, in the above expression as u'_{ik} ,

for i = 1, ..., r - 1, r + 1, m, s, and k = 1, ..., n.

Hence for all $k = 1, \ldots, n$,

$$u'_{ik} = u_{ik} - \frac{u_{is}}{u_{rs}} u_{rk}$$
 for $i = 1, \dots, r - 1, r + 1, m$ and $u'_{sk} = \frac{u_{rk}}{u_{rs}}$.

Note that the coefficients corresponding to b, when b is expressed as a linear combination of the new basis of \mathbb{R}^m , (which was already obtained and the philosophy behind explained) can be recalculated as follows:

Recall that $\mathbf{b} = \sum_{i=1, i \neq r}^{m} \tilde{\mathbf{a}}_i x_i + \tilde{\mathbf{a}}_r x_r$. Now again substituting the expression for $\tilde{\mathbf{a}}_i$ given in (*) in the above equation we get

$$\mathbf{b} = \sum_{i=1, i \neq r}^{m} \tilde{\mathbf{a}}_{i} x_{i} + x_{r} \left(\frac{\tilde{\mathbf{a}}_{s}}{u_{rs}} - \sum_{i=1, i \neq r}^{m} \frac{u_{is}}{u_{rs}} \tilde{\mathbf{a}}_{i} \right).$$
On simplifying the above expression we get

$$\mathbf{b} = \sum_{i=1}^{m} \sum_{i \neq r} (x_i - \frac{u_{is}}{2} x_r) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s(\frac{x_r}{2}).$$

 $\mathbf{b} = \sum_{i=1, i \neq r}^{m} (x_i - \frac{u_{is}}{u_{rs}} x_r) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s (\frac{x_r}{u_{rs}}).$ Hence Let us denote the new values of z_k now corresponding to \mathbf{x}' , by z_k' . Then we get

Hence Let us denote the new values of
$$z_k$$
 now corresponding to \mathbf{x}' , by z_k . Then we $z_k' = \sum_{i=1, i \neq r}^m u_{ik}' c_i + u_{sk}' c_s = \sum_{i=1, i \neq r}^m (u_{ik} - u_{ik}) c_i + \frac{u_{rk}}{u_{rs}} c_s = \sum_{i=1, i \neq r}^m u_{ik} c_i - \sum_{i=1, i \neq r}^m (\frac{u_{is}}{u_{rs}} u_{rk}) c_i + \frac{u_{rk}}{u_{rs}} c_s = (\sum_{i=1}^m u_{ik} c_i - u_{rk} c_r) - \frac{u_{rk}}{u_{rs}} (\sum_{i=1}^m u_{is} c_i - u_{rs} c_r) + \frac{u_{rk}}{u_{rs}} c_s = z_k - u_{rk} c_r - \frac{u_{rk}}{u_{rs}} z_s - \frac{u_{rk}}{u_{rs}} (-u_{rs} c_r) + \frac{u_{rk}}{u_{rs}} c_s = z_k + \frac{(c_s - z_s)}{u_{rs}} u_{rk}.$

From this we get the new values of c_k-z_k' as $c_k-z_k'=(c_k-z_k)-\frac{(c_s-z_s)}{u_{rs}}u_{rk}.$

$$c_k - z'_k = (c_k - z_k) - \frac{(c_s - z_s)}{u_{rs}} u_{rk}.$$

Hence the simplex table corresponding to the new BFS \mathbf{x}' is given by

	$c_1 - z_1'$	 $c_m - z'_m$		c_s-z_s'	 $c_k - z'_k$	 $c_n - z'_n$	
	0	 0		$c_s - z_s - \frac{(c_s - z_s)}{u_{rs}} u_{rs} = 0$	 $\left(c_k-z_k\right)-\frac{(c_s-z_s)}{u_{rs}}u_{rk}$	 	
	$B'^{-1}\tilde{\mathbf{a}_1}$	 $B'^{-1}\tilde{\mathbf{a}_m}$		$B'^{-1}\tilde{\mathbf{a}_s}$	 $B'^{-1}\tilde{\mathbf{a}_k}$	 $B'^{-1}\tilde{\mathbf{a}_n}$	$B'^{-1}\mathbf{b}$
$\tilde{\mathbf{a}_1}$	1	 0		$u_{1s} - \frac{u_{1s}}{u_{rs}} u_{rs} = 0$	 $u_{1k} - \frac{u_{1s}}{u_{rs}} u_{rk}$	 	$x_1 - \frac{u_{1s}}{u_{rs}} x_r$
$\tilde{\mathbf{a}_2}$	0	 0		$u_{2s} - \frac{u_{2s}}{u_{rs}} u_{rs} = 0$	 $u_{2k} - \frac{u_{2s}}{u_{rs}} u_{rk}$	 	$x_2 - \frac{u_{2s}}{u_{rs}} x_r$
:	0	 0		:	 ÷	 :	:
$ ilde{\mathbf{a}_r}$:	 :		$\frac{u_{rs}}{u_{rs}} = 1$	 $rac{u_{rk}}{u_{rs}}$	 $\frac{u_{rn}}{u_{rs}}$	$\frac{x_r}{u_{rs}}$
:	:	 •		:	 :	 :	:
$\tilde{\mathbf{a}_m}$	0	 1		$u_{ms} - \frac{u_{ms}}{u_{rs}} u_{rs} = 0$	 $u_{mk} - \frac{u_{ms}}{u_{rs}} u_{rk}$	 	$x_m - \frac{u_{ms}}{u_{rs}} x_r$

The entry u_{rs} of the previous table which is made 1 (by dividing) in this table is called the **pivot** element.

Case 1b: For all $i = 1, ..., m, u_{is} \le 0$ (where s is as defined in **Case 1**). Then $\mathbf{x}' \ge \mathbf{0}$, for all $x_s' \ge 0$, hence $\mathbf{x}' \in Fea(LPP)$ for all $x_s' \ge 0$.

Also since $\mathbf{c}^T \mathbf{x}' = \mathbf{c}^T \mathbf{x} + x_s'(c_s - z_s)$, and $(c_s - z_s) < 0$, so given any real number M, by taking x_s' sufficiently large we can make $\mathbf{c}^T \mathbf{x}'$ smaller than M, hence in does not have an optimal solution.

Also note that
$$\mathbf{x}' = \mathbf{x} + x_s'$$

$$\begin{bmatrix}
-u_{ns} \\
-u_{ms} \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{bmatrix} = \mathbf{x} + x_s' \begin{bmatrix}
-B^{-1}\tilde{\mathbf{a}_s} \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{bmatrix},$$

where the 1 in the above vector occurs at the s th position.

Let us call this vector $\begin{vmatrix} & - & \mathbf{a}_s \\ & 0 \\ & \vdots \\ & 1 \\ & \vdots \\ & 1 \end{vmatrix} \text{ as } \mathbf{d} \text{, then since } \mathbf{x} + x_s' \mathbf{d} \in Fea(LPP) \text{ for all } x_s' \geq 0 \text{, from definition,}$

d should be a direction of Fea(LPP)

Result 1: The set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m \},$ is given by

 $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq 0, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}.$

Proof: Exercise.

Result 2: If for some basis matrix B and a column $\tilde{\mathbf{a}_s}$ of A, $B^{-1}\tilde{\mathbf{a}_s} \leq \mathbf{0}$ then

$$\mathbf{d} = \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}_s} \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an extreme direction of $S = \{ \mathbf{x} \in \mathbb{R}^n : A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$, where the entry 1 in the above vector is at the s th position.

Proof: That it is a direction of S, follows from the direction of a set.

It can also be checked that

$$A\mathbf{d} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m | \tilde{\mathbf{a}}_{m+1} \dots \tilde{\mathbf{a}}_s \dots \tilde{\mathbf{a}}_n] \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_s \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = [B|\tilde{\mathbf{a}}_{m+1} \dots \tilde{\mathbf{a}}_s \dots \tilde{\mathbf{a}}_n] \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}}_s \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$=-\tilde{\mathbf{a}_s}+\tilde{\mathbf{a}_s}=\mathbf{0}.$$

To check that **d** is an extreme direction, let there exist directions $\mathbf{d}_1, \mathbf{d}_2$ of S and $\alpha_1, \alpha_2 > 0$ such that $\mathbf{d} = \alpha_1 \mathbf{d}_1 + \alpha_2 \mathbf{d}_2$.

Since $\alpha_1, \alpha_2 > 0$ and $\mathbf{d}_1, \mathbf{d}_2 \geq 0$

$$\mathbf{d}_1 = \left[egin{array}{c} \mathbf{c}_{m imes 1} \\ 0 \\ dots \\ 0 \\ u \\ 0 \\ dots \\ 0 \end{array}
ight],$$

for some $\mathbf{c}_{m\times 1} \geq \mathbf{0}$ and $u \geq 0$, where u is at the s th position.

But form result 1, $A\mathbf{d}_1 = [B: \mathbf{a}_{m+1}^{\tilde{}} \dots \tilde{\mathbf{a}_s} \dots \tilde{\mathbf{a}_n}] \begin{bmatrix} \mathbf{c}_{m \times 1} \\ 0 \\ \vdots \\ 0 \\ u \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$

 $\Rightarrow B\mathbf{c} = -u\tilde{\mathbf{a}_s}.$

Hence $\mathbf{c} = -uB^{-1}\tilde{\mathbf{a}_s}$ or $\mathbf{d}_1 = u\mathbf{d}$, and u > 0.

Similarly we get $\mathbf{d}_2 = v\mathbf{d}$ for some v > 0.

Hence \mathbf{d} is an extreme direction.

Alternatively note that this **d** lies on (n-1) LI hyperplanes (check this) of the m+n hyperplanes defining D.

It lies on m LI hyperplanes given by $A\mathbf{d} = \mathbf{0}$ and also on the (n - m - 1) LI hyperplanes given by $d_i = 0$ for $i = m + 1, \dots, n, i \neq s$.

It is easy to see that the (n-1) hyperplanes are LI.

(Hint: The normals corresponding to these (n-1) hyperplanes written together as a matrix with (n-1) rows look somewhat like

$$\begin{bmatrix} B & \tilde{\mathbf{a}}_{m+1} & \dots & \tilde{\mathbf{a}}_{s} & \dots & \tilde{\mathbf{a}}_{n} \\ \mathbf{0} & 1 & \dots & 0 & \dots & 0 \\ \mathbf{0} & 0 & \dots & 0 & \dots & 0 \\ \mathbf{0} & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & 0 & \dots & 0 & \dots & 1 \end{bmatrix}.$$

Note that the column below the vector $\tilde{\mathbf{a}_s}$ in the above matrix is the zero column, since $d_s \neq 0$.)

Since the LPP does not have an optimal solution, so there should exist at least one extreme direction **d** of the LPP such that $\mathbf{c}^T \mathbf{d} < 0$.

Check that if \mathbf{d} is as defined above then

$$\mathbf{c}^T \mathbf{d} = [\mathbf{c}_B^T \mid c_{m+1} \dots c_s \dots c_n] \begin{bmatrix} -B^{-1} \tilde{\mathbf{a}_s} \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = -\mathbf{c}_B^T B^{-1} \tilde{\mathbf{a}_s} + c_s = c_s - z_s < 0.$$

Case 2:(Optimality Condition) $c_k - z_k \ge 0$ for all k = 1, ..., n. Then **x** is optimal for the LPP.

Among the various ways to check this, one way is produce a feasible solution of the dual of this problem say \mathbf{y} such that $\mathbf{c}^T\mathbf{x} = \mathbf{b}^T\mathbf{y}$. Yet another way (which is actually same as the previous) is to produce a feasible solution \mathbf{y} of the dual and to show that this \mathbf{y} satisfies the complementary slackness property with this BFS \mathbf{x} of the primal.

Since $\mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B^{-1} \mathbf{b}$, and since this has to be equal to $\mathbf{b}^T \mathbf{y} = \mathbf{y}^T \mathbf{b}$ for some feasible solution \mathbf{y} of the dual, so we can start by checking if $\mathbf{y}_0^T = \mathbf{c}_B^T B^{-1}$ gives a feasible solution of the dual.

Recall that the problem (LPP) is given by,

$$\begin{aligned}
& \text{Min } \mathbf{c}^T \mathbf{x} \\
& \text{subject to} \\
& A_{m \times n} \mathbf{x} = \mathbf{b}, \\
& \mathbf{x} \ge \mathbf{0}.
\end{aligned}$$

The dual of the above problem is given by,

$$\begin{aligned} & \text{Max } \mathbf{b}^T \mathbf{y} \\ & \text{subject to} \\ & A_{n \times m}^T \mathbf{y} \leq \mathbf{c}. \end{aligned}$$

Proof: In order to see this note that,

if **x** satisfies A**x** = **b** then

$$\mathbf{a}_i^T \mathbf{x} \ge b_i \text{ for } i = 1, \dots, m$$
 (*) and $-\mathbf{a}_i^T \mathbf{x} \ge -b_i \text{ for } i = 1, \dots, m$ (**), where $\mathbf{a}_i^T \text{ is the } i \text{ th row of the matrix } A$.

The above inequalities can be written as

$$\left[\begin{array}{c} A \\ -A \end{array}\right] \mathbf{x} \ge \left[\begin{array}{c} \mathbf{b} \\ -\mathbf{b} \end{array}\right].$$

Hence the LPP (primal problem) can be written as:

 $\operatorname{Min} \, \mathbf{c}^T \mathbf{x}$

subject to

$$\left[\begin{array}{c}A\\-A\end{array}\right]\mathbf{x}\geq\left[\begin{array}{c}\mathbf{b}\\-\mathbf{b}\end{array}\right],\,\mathbf{x}\geq\mathbf{0}.$$

Since each constraint of the primal corresponds to a variable of the dual, let u_i correspond to the *i*th constraint of the type (*), i = 1, ..., n, and let w_i correspond to the *i*th constraint of the type (**), i = 1, ..., n.

Then the dual of the above LPP problem is given as follows:

Given an LPP $\text{Max } \mathbf{b}^T \mathbf{u} - \mathbf{b}^T \mathbf{w}$ subject to

$$\begin{bmatrix} A^T & -A^T \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{w} \end{bmatrix} = A^T \mathbf{u} - A^T \mathbf{w} \le \mathbf{c}$$

$$\mathbf{u} > \mathbf{0}, \ \mathbf{w} > \mathbf{0}.$$

Hence if we let $\mathbf{y} = \mathbf{u} - \mathbf{w}$ then the above dual reduces to Max $\mathbf{b}^T \mathbf{y}$ subject to $A^T \mathbf{y} \leq \mathbf{c}$, where \mathbf{y} is unrestricted in sign.

Case 2 (continued):

If $c_k - z_k \ge 0$ for all k = 1, ..., n, then $z_k \le c_k$ for all k = 1, ..., n. Then note that $z_k = \mathbf{c}_B^T B^{-1} \tilde{\mathbf{a}}_k = \mathbf{y}_0^T \tilde{\mathbf{a}}_k \le c_k$ for all k = 1, ..., n, or \mathbf{y}_0 satisfies the condition: $A^T \mathbf{y}_0 \le \mathbf{c}$, which implies that \mathbf{y}_0 is a feasible solution of the dual satisfying $\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}_0$, hence \mathbf{x} and \mathbf{y}_0 are optimal solutions of the LPP (primal problem) and its dual, respectively.

Also note that if $(A^T\mathbf{y}_0)_k = \mathbf{y}_0^T\tilde{\mathbf{a}}_k = \mathbf{c}_B^TB^{-1}\tilde{\mathbf{a}}_k = z_k < c_k$, then x_k has to be a nonbasic variable or $x_k = 0$. Hence $\mathbf{y}_0 \in Fea(D)$ satisfies the **complementary slackness property** with this \mathbf{x} as expected. (The **complementary slackness condition** for this LPP and its dual reduces to only one condition: $x_i = 0$, whenever $(A^T\mathbf{y})_k < c_k$.)

Note that the above optimality condition is sufficient but not necessary for an optimal solution.

Remark: If instead the LPP would have been a maximization problem as given below:

Max $\mathbf{c}^T \mathbf{x}$ subject to $A_{m \times n} \mathbf{x} = \mathbf{b},$ $\mathbf{x} \ge \mathbf{0}, \ rank(A) = m,$

then Case 1 and Case 2 conditions would change accordingly, as given below:

Case 1: $c_k - z_k > 0$ for at least one k, k = m + 1, ..., n. And the condition for the **entering variable** becomes, s th variable will enter the basis if $c_s - z_s = max\{c_k - z_k : c_k - z_k > 0, k = m + 1, ..., n\}$.

Case 2: (Optimality condition (sufficient condition)) $c_k - z_k \le 0$ for all k = 1, ..., n. Note that the above optimality condition is sufficient but not necessary for an optimal solution.

Exercise: Give an example of a Linear Programming Problem for which an optimal table does not satisfy the sufficient condition for optimality (given above).

It remains to justify that a LPP with nonempty feasible region has at least one BFS.