Exam 3 Preview CS 211 Fall 2017

Chapter 7.1: Graph Theory

abc% Question 1: Basic Terms

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4$

deg(b) =

deg(d) =

- a. Identify all vertices (nodes):
- b. Identify all edges:
- c. Identify the degrees:

$$deg(a) =$$

$$deg(c) =$$

$$deg(c) =$$

 $deg(e) =$

$$deg(f) =$$

	abc% Que	estion 2: Termin	nology		$\square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4$
	Match the	e terms and the			
a:		b:	c:	d:	e:
f·		o.	h·		

Terms:

- a. Loop
- b. Parallel edge
- c. Closed walk
- d. Path
- e. Trail
- f. Circuit
- g. Connected graph
- h. Cycle

Definitions:

- 1. A closed trail
- 2. A walk where the beginning and ending nodes are the same
- 3. A walk with no repeated edges
- 4. A graph where there is a walk between any pair distinct nodes.
- 5. Two edges that have the same two endpoints
- 6. A walk with no repeated vertices
- 7. An edge that begins and ends at the same node
- 8. A nontrivial circuit where the only repeated node is the first/last one.

abc% Question 3: Cycles

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4$

For the following graph:

Find a cycle of length 4.

abc% Question 4: Connected, Eulerian

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4$

Identify a Eulerian 1 trail or circuit for the following graph:

¹A Eulerian trail/circuit is a trail or circuit is one where every edge is traversed

Chapter 7.2: Proofs About Graphs and Trees

Spanning Tree Algorithm

- Begin with a simple, connected graph G_0 .
- For each $i \geq 1$, as long as there is a cycle in G_{i-1} , choose an edge e in any cycle of G_{i-1} , and form the subgraph G_i of G_{i-1} by deleting e from G_{i-1} .
- The final result G_k will be a spanning tree of G_0 . This is a spanning tree

Prim's Minimal Spanning Tree Algorithm

- Given a connected, simple graph G with n+1 nodes...
- Let v_0 be any node in G, and let $T_0 = \{v_0\}$ be a tree with one node and no edges.
- For each k from $\{1, 2, ..., n\}$...
 - Let $E_k = \{e \text{ an edge in } G : e \text{ has one endpoint in } T_{k-1} \text{ and the other endpoint not in } T_{k-1}.$
 - $-e_k$ be the edge in E_k with the smallest weight. (In case of a tie, choose any edge of the smallest weight.)
 - Let T_k be the tree obtained by adding edge e_k (along with its node not already in T_{k-1}) to T_{k-1} .
- T_n is the tree returned by the algorithm.

abc% Question 5: Spanning trees

Build out a spanning tree for the following graph.

 ${\bf abc}\%$ Question 6: Minimal spanning trees

Starting at vertex a, find a minimal spanning tree for the following graph and specify the total weight.

Chapter 7.3: Isomorphism and Planarity

abc% Question 7: Isomorphism (7.3)

	 -1		 	
111		12	1 3	1 /

Determine if the following graph pairs are isomorphic. ²

²Simple graphs G and H are isomorphic if there is a one-to-one and onto function f from the nodes of G to the nodes of H such that $\{v, w\}$ is an edge of G if and only if $\{f(v), f(w)\}$ is an edge of H.

abc% Question 8: Planarity (7.3)

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4$

Redraw the following graph to be Planar, ³ make sure to label the vertices.

Chapter 7.4: Connections to Matrices and Relations

abc% Question 9: Adjacency matrix (7.4)

 $\square \ 0 \ \square \ 1 \ \square \ 2 \ \square \ 3 \ \square \ 4$

Build the adjacency matrix for the following directed graph.

 $^{^3\}mathrm{A}$ simple, connected graph is called planar if there is a way to draw it on a plane so that no edges cross

Key

Question 1

a. Vertices: a, b, c, d, e, f

b. Edges: [a,b], [a,c], [b,d], [c,d], [c,e], [d,f], [e,f]

$$deg(a) = 2$$
$$deg(c) = 3$$

$$deg(b) = 2$$
$$deg(d) = 3$$

c. deg(e) = 2

deg(f) = 2

d. Maximum degree: 3

Question 2

a: 7 b

b: 5

c: 2

e: 3

d: 6

f: 1

g: 4

h: 8

Question 3

Many solutions; example: 3, 2, 8, 4, 3

Question 4

1, 2, 4, 6, 8, 10, 9, 7, 5, 3, 1, 5, 2, 6, 10, 5, 9, 6, 1

Question 5

Many solutions

Question 6

Using Prim's algorithm, there is only one, with edges [a, d], [a, c], [a, b] and a total weight of 6.

Question 7

- a. Isomorphic
- b. Not Isomorphic

Question 8

Question 9

