GTPassay

NellySelem

May 18, 2017

GTP enzymatic assay

Based on docking GTP affinity a preliminary enzymatic assay was performed.

Sugerencia de lia... buscar niveles intracelulares de GTP (Bionumbers DB)

Intracellular GTP concentration in glucose-fed, exponentially growing E. coli Bacteria Escherichia coli $4.9 \,$ mM $104697 \,$

Aumentar al orden de mM

Bennett BD, Kimball EH...

Poner como control Gtp en buffer sin enzima

EDTA, 0.1mM DTT probar quitar estos componentes

Preliminar dGTP assay conditions:

 $1\mu M \text{ dGTP (Invitrogen)}$

TrpF Buffer (50mM Tris-HCL buffer pH8.0, 5% glycerol, 0.5 mM EDTA, 0.1mM DTT)

50nM PriA vs 50 nM PriA D11A

Method: Fluorimetry (black box) Excitation wavelength: 255 nm Emission wavelength: 334 nm

Figure 1: Scoe and non functional Scoe PriA acting on dGTP

Preliminar assays to test enzyme activity (Ernesto)

To test preliminary results we perform the following activity test assays.

We will use $160\mu l$ as final reaction volume.

 $<150\mu l$ Buffer

 $5\mu l$ substrate at $50\mu M$ (Stock at 1.6mM)

 $5\mu l$ enzyme at $2.5\mu M$ (Stock at $80\mu M$)

Now I will calculate substrate stock concentration needed to obtain a final concentration of $50\mu M$ on a final volume of $160\mu l$ adding $5\mu l$ of substrate. $C_1=\frac{50\mu M\times 160\mu l}{5\mu l}=1600\mu M=1.6mM$ So we need to prepare an stock of 1.6mM of substrate concentration. Commercial stock is at 100mM, so on

$$C_1 = \frac{50\mu M \times 160\mu l}{5\mu l} = 1600\mu M = 1.6mM$$

a first dilution 1:10 named C_0 , (90 $H_20 \mu l$ and 10 mul GTP) we obtain our lab stock at 10mM.

To obtain 1.6mM again the formula $C_1V_1 = C_2V_2$ was used. $100\mu l$ were prepared thinking on 10 reactions of $5\mu l$ each one.

$$V_1 = \frac{1.6mM \times 100\mu l}{10mM} = 16\mu l$$

so $16\mu l$ substrate was diluted on 84 μl of H_2O .

Next I will explain calculus of enzyme stock concentration needed in order to obtain a final concentration of $2.5\mu l$ on a final volume of $160\mu l$ adding $5\mu l$ of enzyme.

$$C_1 = \frac{2.5\mu M \times 160\mu l}{5\mu l} = 80\mu M$$

 $C_1 = \frac{2.5\mu M \times 160\mu l}{5\mu l} = 80\mu M$ So we need to prepare an stock of $80\mu M$ of enzyme concentration. An example was calculated using again the formula $C_1V_1 = C_2V_2$.

Example

We will prepare $20\mu l$ of stock because we need $15\mu l$ for three reactions. A little excess must ALWAYS be prepared for pipeting needs.

Streptomyces sp Mg1 enzyme concentration obtained was $461\mu M$, so to obtain $20\mu l$ we must add: $V_1 =$ $\frac{80 \times 20}{461} \mu l = 3.4 \mu l$

 $3.4\mu l$ of enzyme to $16.6\mu l$ TrpF reaction buffer.

Generalizing:

$$C_1 = x\mu M, V_1 = y, C_2 = 80\mu M, V_2 = 20\mu l$$

Enzyme	from Organism	Concentration	Enzyme μl	Buffer μl
PriB	SMg1	$461\mu M$	3.4	16.6
PriB	Ssvi	$100 \mu M$	16	4
PriB	JDen	$215\mu M$	7.4	12.6
PriA	Tcur	$335\mu M$	4.7	15.3
PriA	Sros	$450\mu M$	3.5	16.5
PriA	Smeg	$370\mu M$	4.3	15.7
PriB	Sspc	$1346\mu M$	1.1	18.9

Results

the two enzymes with major activity were:

Sros Smeg SspC Buffer

Thermomonospora curvata thermophilic Actinobacteria from Thermomonosporaceae genus, it can be found in compost and participate in the active degradation of cellulose [@chertkov_complete_2011]. Jonesia trpF shows no activity

 $Jonesia\ denitrificans\ is\ classified\ as\ a\ pathogenic\ organism\ for\ animals,\ reported\ genome\ was\ originally\ isolated\ from\ cooked\ ox\ blood\ [@pukall_complete_2009].$

Karina second attempt to obtain enzyme kinetics.

Now we will try substrate at different concentrations.

GTP is commercially available at stocks of 100mM We want 8 different concentrations between 0 and 50mM on a final volume of $160\mu l$. We chose 0,0.5,1,1.5,5,10,20,50 as the eight points.

Dilutions were made to reach this concentrations. $C_{stock}=100mM$ dil0 Stock original $C_0=10mM=10000\mu M$ dil1 1:10 primera dilucsio la llame dil0 Stock de nelly $C_1=1000\mu M$ dil2 1:10 $C_2=100\mu M$ dil3 1:10 $C_3=10\mu M$ dil4 1:10 $C_4=1\mu M$ dil5 1:10

$$[S] = [dGTP] = 10000 \mu M$$

$$[E] = 50 nM$$

Concentration (μM)	Buffer (μl)	Enzyme (μl)	dGTP (μl)
0	156.1	3.9	0 dil4
0.5	148.1	3.9	8 dil4
1	140.1	3.9	16 dil4
1.5	132.1	3.9	24 dil4
5	76.1	3.9	80 dil4
10	140.1	3.9	16 dil3
20	124.1	3.9	32 dil3
50	76.1	3.9	80 dil3

Calculate your own GTP data

```
#PriA_stock=48.5 ##uM D11A
PriA_stock=40 ##uM Scoe
type="Scoe"
hole_vol=170 ##ul
PriA_final=1 ##uM final concentration on hole
#PriA_final=.050 ##uM = 50 nM final concentration on hole
PriA_vol=hole_vol*PriA_final/PriA_stock
PlateColum=2
##
GTP_stock=100000000 ##100,000,000nM-> 100,000uM-> 100mM
GTPdata <- read.table(header=TRUE, text='
 GTP_Dilution
  3
  3
  4
  4
 4
 5
')
```

```
PriA<-rep(PriA_vol,8) ##

##Use following line when mM concentrations are needed
#GTP_mM<-rev(c(0,0,.5,1,2.5,5,10,15)) # en 150 eliminamos la enzima columna
#GTPdata["GTP_uM"]<-GTP_mM**1000

##Use following line when uM concentrations are needed, please comment when no needed
GTP_uM<-rev(c(0, .5,1,2,5, 10,25,50))
GTPdata["GTP_uM"]<-GTP_uM

#GTP_uM<-rev(c(0,0,.0005,.0001,2.5,5,10,15)) # en 150 eliminamos la enzima columna

#GTPdata["GTP_uM"]<-GTP_uM

#Calculating volumes accordi
GTPdata["Vol"] <-1000*hole_vol*GTPdata["GTP_uM"]/(GTP_stock*10**(-1*GTPdata["GTP_Dilution"])) # That cr

GTPdata["PriA_ul"]<-round(PriA_vol,digits=2)

# As an example, the new column receives
GTPdata$Buffer <- round(160-GTPdata$Vol-GTPdata$PriA_ul,digits=2)

kable(GTPdata)</pre>
```

GTP_I	Dilution	GTP uM	T 7 1	T	
		OII _uwi	Vol	PriA_ul	Buffer
	3	50.0	85.0	4.25	70.75
	3	25.0	42.5	4.25	113.25
	3	10.0	17.0	4.25	138.75
	4	5.0	85.0	4.25	70.75
	4	2.0	34.0	4.25	121.75
	4	1.0	17.0	4.25	138.75
	4	0.5	8.5	4.25	147.25
	5	0.0	0.0	4.25	155.75

GTP Stock 100 mM PriA final 1 μM