Università degli Studi Roma Tre Corso di Laurea in Matematica, A.A. 2002/2003 Soluzione del II Esonero di CR1 - Crittografia 1

A cura di Andrea Susa

- 1. Definire il concetto di curva ellittica su un campo finito ed il gruppo di Mordell-Weyll associato.
- 2. Consideriamo la curva $y^2 = x^3 + x + 6$ sul campo F_7 . Descrivere $\mathcal{E}(F_7)$.

Soluzione

Per prima cosa verifichiamo che la curva ellittica sia ben definita, cioè valga la relazione:

$$4a^3 + 27b^2 \not\equiv 0 \pmod{7}.$$

Nel nostro caso:

$$4 + 27(-1)^2 \equiv 5 \not\equiv 0 \pmod{7}$$
.

Determiniamo i punti finiti di $\mathcal{E}(\mathbb{F}_7)$:

x	$x^3 + x + 6 \pmod{7}$	RQ	y
0	6	no	
1	1	si	±1
2	2	si	±3
3	1	si	±1
4	4	si	±2
5	3	no	
6	4	si	±2

Quindi $\mathcal{E}(\mathbb{F}_7) \simeq \mathbb{F}_{11}$.

- 3. Descrivere l'algoritmo dello scambio delle chiavi di Diffie-Helmann sulle curve ellittiche.
- 4. Sia g una radice primitiva di F_p . Dimostrare le seguenti proprietà del logaritmo discreto:

$$\log_q(a \cdot b) = \log_q(a) + \log_q(b), \qquad (\text{mod } p - 1)$$

$$\log_a(a^n) = n \log_a(a) \tag{mod } p - 1).$$

Soluzione

Siano $g^r = a, g^s = b, g^n = ab$. Quindi $\log_q(ab) = n$. Ma

$$g^n = ab = (g^r)(g^s) = g^{r+s} \implies n \equiv r+s \pmod{p-1}.$$

Allora:

$$\log_{a}(ab) = n \equiv r + s = \log_{a}(a) + \log_{a}(b) \pmod{p-1}.$$

Per induzione su n:

se n=2 per la precedente $\log_g(a^2) = \log_g(a) + \log_g(a) = 2\log_g(a)$.

Per ipotesi induttiva $\log_q(a^{n-1}) = (n-1)\log_q(a)$.

Allora se
$$n \ge 3$$
, $\log_g(a^n) = \log_g(a) + \log_g(a^{n-1}) = n \log_g(a)$.

5. Consideriamo il campo base F_5 . Determinare il numero dei polinomi monici irriducibili di grado 12. Qual è la probabilità che, preso random un polinomio monico di grado 12, esso sia irriducibile?

Soluzione

Dobbiamo calcolare:

$$5^{12} = \sum_{d|12} dN_d(5).$$

Abbiamo che:

$$N_1(5) = 5,$$
 $N_2(5) = 10,$ $N_3(5) = 40$

Mentre:

$$N_4(5) = \frac{1}{4} (5^4 - N_1(5) - 2N_2(5)) = 150$$

$$N_6(5) = \frac{1}{6} \left(5^6 - N_1(5) - 2N_2(5) - 3N_3(5) \right) = 2580$$

Quindi:

$$N_{12}(5) = \frac{1}{12}(5^{12} - 5 - 20 - 120 - 4 \cdot 150 - 6 \cdot 2580) =$$

$$= 20343700.$$

Calcoliamo la probabilità: se indichiamo con $T_k(p)=p^k$ il numero dei polinomi monici di grado k su \mathbb{F}_p , allora

$$\frac{N_{12}(5)}{T_{12}(5)} = \frac{20343700}{5^{12}} = 0.08332$$

6. Consideriamo il polinomio $f = x^3 + x + 1 \in F_5[x]$. Dopo aver verificato che è irriducibile, trovare una radice primitiva per il campo:

$$F_5[x]/(f) = \{a + b\theta + c\theta^2 \mid \theta^3 = -\theta - 1\}.$$

Soluzione

Il polinomio è irriducibile in quanto ha grado 3, e quindi se fosse riducibile dovrebbe avere una radice sul campo. Ma si calcola che f(0) = 1, $f(\pm 1) = (\pm 1) + (\pm 1) + 1 \neq 0$, $f(\pm 2) = (\pm 8) + (\pm 2) + 1 \neq 0$. Quindi f riducibile. Sia θ una radice formale. Allora $\theta^2 + 1$ è primitiva.

7. Calcolare il $\log_3(13)$ nel campo \mathbb{F}_{31} , utilizzando un qualsiasi metodo.

Soluzione

Utiliziamo l'algortimo di Shanks:

 $m = [\sqrt{31}] = 5$. Otteniamo le seguenti liste:

j	0	1	2	3	4
g^{mj}	1	26	25	30	5

i	0	1	2	3	4
$13 \cdot g^{-i}$	13	25	29	20	17

Le coppie sono: (2,25) e (1,25). Quindi $\log_3(13) = mj + i = 5 \cdot 2 + 1 = 11$.

8. Dimostrare che il polinomio $x^2 + 1$ è irriducibile su tutti i campi finiti F_p con $p \equiv 3 \pmod{4}$.

Soluzione Il polinomio $f=x^2+1$ è irriducibile su \mathbb{F}_p se e soltanto se non ha radici su \mathbb{F}_p , cioè se $\left(\frac{-1}{p}\right)=-1$. Ma questo accade se e soltanto se $p\equiv 3\pmod 4$.

9. Si descrivino tutti i valori di $a \in F_p$ per cui il polinomio: $f(x) = x^2 + a$ è irriducibile, e si dimostri che tale polinomio non può mai essere primitivo.

Soluzione f è irriducibile per ogni $a \in F_p$ tale che $\left(\frac{-a}{p}\right) = -1$.

Se per assurdo f fosse primitivo, allora avremmo che la sua radice θ è tale che:

$$ord_p(\theta^2) = ord_p(-a) \le p - 1.$$

Quindi: $ord_p(\theta)=p^2-1=\frac{1}{2}ord_p(\theta^2)\leq \frac{p-1}{2}$ e questo è assurdo.

10. Mostrare che tutti i polinomi del tipo $x^p + x + 1$ sono riducibili su \mathbb{F}_p , per $p \geq 3$.

Soluzione I polinomi del tipo $x^p + x + 1$ hanno sempre una radice sul campo \mathbb{F}_p . Infatti $(p-2)^*$, cioè l'inverso aritmetico di $-2 \pmod{p}$ è sempre soluzione del polinomio:

$$(p-2^*)^p + (p-2^*) + 1 \equiv (-2^*) + (-2^*) + 1 \equiv -2 \cdot (2^*) + 1 \equiv 0 \pmod{p}.$$

11. Dopo aver scritto tutti i polinomi irriducibili di grado ≤ 4 su F_2 , mostrare che il polinomio $f(x)=x^5+x^2+1$ è irriducibile.

Soluzione La seguente tabella mostra tutti i polinomi irriducibili di grado ≤ 4 .

n=1	x	x+1	
n=2	$x^2 + x + 1$		
n=3	$x^3 + x^2 + 1$	$x^3 + x + 1$	
n=4	$x^4 + x + 1$	$x^4 + x^3 + 1$	$x^4 + x^3 + x^2 + x + 1$

Si verifica che f non ha radici sul campo, quindi se fosse riducibile dovrebbe essere il prodotto di un polinomio di grado tre con un polinomio di grado due. Ma svolgendo la divisione di f con l'unico polinomio polinomio irriducibile di grado 2 otteniamo:

$$f = (x^2 + x + 1)(x^3 + x^2) + 1$$

quindi f è irriducibile.

12. Descrivere tutti i sottocampi di ${\cal F}_{5^{30}}.$

Soluzione Esiste un sottocampo per ogni divisore proprio di 30.