Efficient estimation of multivariate stochastic volatility models via Wishart processes

1 Efficient Importance Sampling Procedure

Multivariate stochastic volatility model via Wishart processes:

$$y_t = \epsilon_t, \quad \epsilon_t \sim N_k(0_k, \Omega^{-1}),$$
 (1)

$$\Omega_t | v, \Omega_{t-1} \sim W_k(v, S_{t-1}), \tag{2}$$

$$S_t = \frac{1}{v} (A^{1/2}) (\Omega_t)^d (A^{1/2})'. \tag{3}$$

Likelihood function associated with observables y:

$$L(\theta|\underline{y}) = \int \int f(\underline{y}, \underline{\Omega}; \theta) d\underline{\Omega}$$

$$= \int ... \int \prod_{t=1}^{T} f(y_t, \Omega_t | \underline{\Omega}_{t-1}, \underline{y}_{t-1}; \theta) d\Omega_1 ... d\Omega_T, \tag{4}$$

Conditional densities in state space representation:

$$f(y_t, \Omega_t | \underline{\Omega}_{t-1}, \underline{y}_{t-1}; \theta) = g(y_t | \Omega_t, \underline{y}_{t-1}; \theta) \cdot p(\Omega_t | \underline{\Omega}_{t-1}, \underline{y}_{t-1}; \theta),$$
(5)

Likelihood function separated by measurement and transition densities:

$$L(\theta|\underline{y}) = \int \prod_{t=1}^{T} g(y_t|\Omega_t; \theta) \cdot p(\Omega_t|\Omega_{t-1}; \theta) d\underline{\Omega}, \tag{6}$$

Introduction of importance samplers to the likelihood:

$$L(\theta|\underline{y}) = \int \prod_{t=1}^{T} \underbrace{\left[\frac{f(y_t, \Omega_t | \underline{\Omega}_{t-1}, \underline{y}_{t-1}; \theta)}{m(\Omega_t | \underline{\Omega}_{t-1}; \gamma_t)}\right]}_{\varphi(y_t, \Omega_t; \theta, \gamma)} \prod_{t=1}^{T} m(\Omega_t | \underline{\Omega}_{t-1}; \gamma_t) d\underline{\Omega}$$

$$(7)$$

IS-MC estimate of $L(\theta|y)$:

$$\widetilde{L}_{S}(\theta|\underline{y}) = \frac{1}{S} \sum_{i=1}^{S} \left\{ \prod_{t=1}^{T} \left[\frac{f(y_{t}, \widetilde{\Omega}_{t}^{i} | \underline{\widetilde{\Omega}}_{t-1}^{i}, \underline{y}_{t-1}; \theta)}{m(\widetilde{\Omega}_{t}^{i} | \underline{\widetilde{\Omega}}_{t-1}^{i}; \gamma_{t})} \right] \right\},$$
(8)

Decomposition of $m(\cdot)$ into a kernel $k(\cdot)$ and its integrating constant $\chi(\cdot)$:

$$m(\Omega_t | \underline{\Omega}_{t-1}; \gamma_t) = \frac{k(\underline{\Omega}_t; \gamma_t)}{\chi(\underline{\Omega}_{t-1}; \gamma_t)}, \quad \chi(\underline{\Omega}_{t-1}; \gamma_t) = \int k_t(\underline{\Omega}_t; \gamma_t) d\Omega_t. \tag{9}$$

EIS minimization problem:

$$\hat{\gamma}_{t}(\theta) = \min_{\gamma_{t}} \sum_{i=1}^{S} \left\{ \ln \left[f(y_{t}, \widetilde{\Omega}_{t}^{i} | \underline{\widetilde{\Omega}}_{t-1}^{i}, \underline{y}_{t-1}; \theta) \cdot \chi(\widetilde{\Omega}_{t}^{i}; \gamma_{t+1}) \right] - c_{t} - \ln k(\widetilde{\Omega}_{t}^{i}; \gamma_{t}) \right\}, \tag{10}$$

$$\hat{\gamma}_t(\theta) = \min_{\gamma_t} \sum_{i=1}^{S} \left\{ \ln \chi(\widetilde{\Omega}_t^i; \gamma_{t+1}) - c_t - \ln \zeta(\widetilde{\Omega}_t^i; \gamma_t) \right\}, \tag{11}$$

Density kernels of $g(\cdot)$, $p(\cdot)$ and $k(\cdot)$:

$$g(y_t|\Omega_t;\theta) \propto |\Omega_t|^{\frac{1}{2}} \exp\left\{-\frac{1}{2}y_t'\Omega_t y_t\right\},$$
 (12)

$$p(\Omega_t | \Omega_{t-1}; \theta) \propto |\Omega_t|^{\frac{v-k-1}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left[S_{t-1}^{-1} \cdot \Omega_t\right]\right\},\tag{13}$$

$$k(\underline{\Omega}_t; \gamma) = g(y_t | \Omega_t; \theta) \cdot p(\Omega_t | \Omega_{t-1}; \theta) \cdot \zeta(\Omega_t; \gamma_t), \tag{14}$$

$$\zeta(\Omega_t; \gamma_t) \propto |\Omega_t|^{\frac{\gamma_{1,t}}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left[\Gamma_t \cdot \Omega_t\right]\right\},$$
(15)

$$k(\underline{\Omega}_t; \gamma) \propto |\Omega_t|^{\frac{\nu+1+\gamma_{1,t}-k-1}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left[(y_t \cdot y_t' + S_{t-1}^{-1} + \Gamma_t) \cdot \Omega_t\right]\right\},\tag{16}$$

Degrees of freedom and scale matrix of $m(\cdot)$:

$$v^* = v + 1 + \gamma_{1,t}, \text{ and } S_{t-1}^* = [y_t \cdot y_t' + S_{t-1}^{-1} + \Gamma_t]^{-1},$$
 (17)

Analytical expression for the integrating constant of the period t EIS sampler:

$$\chi(\Omega_{t-1}; \gamma_t) \propto \frac{|S_{t-1}^*|^{\frac{v^*}{2}}}{|S_{t-1}|^{\frac{v}{2}}},\tag{18}$$

2 Code Steps

2.1 Code lik KChi initial

In order to analyze statistical gains from using the EIS optimization method, an initial sampler can be constructed based on the kernel (14) by setting $\gamma_t = 0 \,\forall t$, which yields the following initial degrees of freedom and scale matrix of $m(\cdot)$:

$$v^{*_{INI}} = v + 1, \quad \text{and} \quad S^{*_{INI}}_{t-1} = [y_t \cdot y_t' + S^{-1}_{t-1}]^{-1}.$$

Note that $S_{t-1}^{*_{INI}}$ incorporates contemporaneous information on the observables y_t (through $y_t \cdot y_t'$), but it can not explore information from EIS optimizations, which are not transferred to the importance sampler $m(\cdot)$. More specifically, the initial sampler does not incorporate information on Ω_t contained in y_{t+1} , because EIS parameters γ_t can not transfer information related to the EIS smoother through matrix Γ_t since $\gamma_t = 0 \, \forall \, t$.

Thus, the initial sampler is used to draw N trajectories of the latent precision matrices $\{\{\widetilde{\Omega}_t^i\}_{t=1}^T\}_{i=1}^N$ which do not incorporate information on the dynamics of Ω_t contained in $f(y_{t+1}, \Omega_{t+1} | \underline{\Omega}_t, \underline{y}_t; \theta)$. For this reason, the initial sampler is used with comparison purposes.

Code $lik_KChi_initial$ approximates the log-likelihood function described in Eq. (8) using the precision matrices $\{\{\widetilde{\Omega}_i^i\}_{i=1}^T\}_{i=1}^N$ sampled with the initial sampler:

- a. The initial sampler is initialized using initial values for the precision matrix Ω_0 at time t=1, the lower triangular matrix $A^{\frac{1}{2}}$ containing the intertemporal sensitivity parameters of Ω_t , the persistence parameter d and the degrees of freedom v from the k-dimensional Wishart transition density. For example, the initial sampler can use values for $A^{\frac{1}{2}}$, d and v which follow the parameterization stated in Table 4 from Philipov and Glickman (2006);
- b. N draws of S_t , the scale matrix of the Wishart transition density, are computed $\forall t = 1, ..., T$, using the initial parameterization defined above. Note that for t = 1, the N computed scale matrices are equal once the initial Ω_0 is the same for the entire MC sample. Next, N draws of $S_{t-1}^{*_{INI}}$, the scale matrix of the EIS sampler, can be computed via Eq. (19);
- c. Once a sample of size N of scale matrices S_t , $\{\widetilde{S}_t^i\}_{t=1}^T\}_{i=1}^N$, are computed, the computation of $S_{t-1}^{*_{INI}}$ is straightforward and one can sample N trajectories of $\{\{\widetilde{\Omega}_t^i\}_{t=1}^T\}_{i=1}^N$ from the EIS sampler $\Omega_t|v^{*_{INI}},\Omega_{t-1}\sim W_k(v^{*_{INI}},S_{t-1}^{*_{INI}});$
- d. Ultimately, code $lik_KChi_initial$ computes the IS-MC estimate of the log-likelihood of IS ratio $\varphi(y_t, \Omega_t; \theta, \gamma)$ for the entire sample period and through the MC sample, using:
 - (i) $\{\{\widetilde{\Omega}_t^i\}_{t=1}^T\}_{i=1}^N$ for the measurement density;
 - (ii) $\{\{\widetilde{\Omega}_t^i\}_{t=1}^T\}_{i=1}^N, \{\widetilde{S}_t^i\}_{t=1}^T\}_{i=1}^N$ and v for the state transition density;
 - (iii) $\{\{\widetilde{\Omega}^i_t\}_{t=1}^T\}_{i=1}^N, \{\widetilde{S}^{*_{INI}i}_t\}_{t=1}^T\}_{i=1}^N$ and $v^{*_{INI}}$ for the importance sampler density.

2.2 Code *lik_KChi_R*

Code lik_KChi_R performs the EIS optimization by solving the backward sequence of ordinary least-square problems in (10):

- 2.2.1 Analyzing the first double loop for when t = 1:
 - a. First, N equal draws of S_{t_1} are computed for t=1 using the same initial parameterization defined for $lik_KChi_initial^1$. For the first iteration, the code also defines zero values to EIS parameters $\forall t$. That is, the first iteration consider samples of $\{\{\widetilde{\Omega}_t^i\}_{t=1}^T\}_{i=1}^N$ which still do not incorporate information on Ω_t contained in y_{t+1} . Thus, effects of EIS optimizations spread with the number of iterations. Thereupon, N draws of S_{t-1}^* , the scale matrix of the complete EIS sampler, are computed for period t=1 via Eq. (17);
 - b. The knowledge of $\{\widetilde{S}_{t_0}^{*i}\}_{i=1}^N$ and v^* allows one to sample N trajectories of $\{\widetilde{\Omega}_{t_1}^i\}_{i=1}^N$ from the EIS sampler $\Omega_{t_1}|v^*,\Omega_{t_0}\sim W_k(v^*,S_{t_0}^*)$.
 - Obs: (i) parameter v^* is equal to v+1 for the first EIS iteration since $\gamma_{1,t}=0 \,\forall\, t$; and (ii) the subscript t_0 in $S_{t_0}^*$ is used to show that S_t^* at time t=1 depends on the precision matrix Ω_{t_0} , which is the variable V0=VINI set in the code;

¹It is noteworthy to mention that depending on the optimization function, one has to define "natural" interval limits for the persistence parameter d and the degrees of freedom v (d can be equal to $\frac{d^2}{1+d^2}$, and v are added to the number of observed variables K) in order to avoid optimization searching between -Inf and +Inf.

c. Set EIS regressors using the N simulated precision matrices $\{\widetilde{\Omega}_{t_1}^i\}_{i=1}^N$ and the natural logarithm of its determinant: XX(i,:,t) for t=1:

$$XX_{N\times Nb+1} = \begin{bmatrix} \widetilde{\Omega}_{11}^{1} & \widetilde{\Omega}_{21}^{1} & \widetilde{\Omega}_{31}^{1} & \widetilde{\Omega}_{31}^{1} & \widetilde{\Omega}_{22}^{1} & \widetilde{\Omega}_{32}^{1} & \widetilde{\Omega}_{33}^{1} & \ln |\widetilde{\Omega}^{1}| \\ \widetilde{\Omega}_{11}^{2} & \widetilde{\Omega}_{21}^{2} & \widetilde{\Omega}_{31}^{2} & \widetilde{\Omega}_{22}^{2} & \widetilde{\Omega}_{32}^{2} & \widetilde{\Omega}_{33}^{2} & \ln |\widetilde{\Omega}^{2}| \\ \vdots & & \vdots & & \vdots \\ \widetilde{\Omega}_{11}^{N} & \widetilde{\Omega}_{21}^{N} & \widetilde{\Omega}_{31}^{N} & \widetilde{\Omega}_{22}^{N} & \widetilde{\Omega}_{32}^{N} & \widetilde{\Omega}_{33}^{N} & \ln |\widetilde{\Omega}^{N}| \end{bmatrix},$$
(19)

where Nb is the number of estimated parameters from the Γ_t matrix filled with $(K^2+K)/2$ auxiliary parameters. Obs: $\ln |\widetilde{\Omega}^i|$ and the main diagonal parameters of the simulated precision matrices $\widetilde{\Omega}^i_{11}$, $\widetilde{\Omega}^i_{22}$ and $\widetilde{\Omega}^i_{33}$ are also compensated by 0.5.

For t = 2, ..., T:

- d. Repeat procedure (a.) using the N precision matrices simulated at period t-1, $\{\widetilde{\Omega}_{t-1}^i\}_{i=1}^N$, to compute the N draws of S_t from subsequent period;
- e. The natural logarithm of the integrating constant $\chi(\Omega_{t_1}; \gamma_{t_2})$ defined in Eq. (18) is computed as from t=2. The integrating constant $\chi(\Omega_{t_0}; \gamma_{t_1})$ is not computed for t=1 because only $\chi(\Omega_{t_1}; \gamma_{t_2})$ is required to smooth estimates of $\chi(\Omega_{t_0}; \gamma_{t_1})$. Remembering that $\gamma_{1,t}=0$ holds $\forall t$ to compute $\chi(\Omega_{t-1}; \gamma_t)$. As the integrating constant $\chi(\Omega_{t-1}; \gamma_t)$ is used as regressand for EIS regressions, matrix $Y(i,t-1)_{N\times T-1}$ stores its values for t=2,...,T following the structure below for $\forall t$:

$$Y_{t,N\times 1} = \begin{bmatrix} \ln\left(\chi(\widetilde{\Omega}_{t-1}^{1}; \gamma_{t}^{1})\right) \\ \ln\left(\chi(\widetilde{\Omega}_{t-1}^{2}; \gamma_{t}^{2})\right) \\ \vdots \\ \ln\left(\chi(\widetilde{\Omega}_{t-1}^{N}; \gamma_{t}^{N})\right) \end{bmatrix}. \tag{20}$$

2.2.2 Analyzing the second loop for:

• Using matrices $X = \begin{bmatrix} 1_{N\times 1} & XX \end{bmatrix}$ and Y defined above for $\forall t = 1, ..., T$ and $\forall t = 2, ..., T$, respectively, this loop performs the backward EIS regressions described in (10) to estime EIS parameters collected by the $Nb + 1 \times 1$ vector $beta_t$,

$$beta_{t} = \begin{bmatrix} \hat{\gamma}_{2,t} \\ \hat{\gamma}_{3,t} \\ \vdots \\ \hat{\gamma}_{7,t} \\ \hat{\gamma}_{1,t} \end{bmatrix} . \tag{21}$$

Note that EIS regressions are performed for T-1 periods in order to estimate $\{beta_t\}_{t=1}^{T-1}$. The EIS regressions are represented as follows:

$$Y_{t_{2}, N \times 1} = XX_{t_{1}, N \times Nb+1} \cdot beta_{t_{1}, Nb+1 \times 1} + \varepsilon_{t_{1}, N \times 1}$$
...
$$Y_{T, N \times 1} = XX_{T-1, N \times Nb+1} \cdot beta_{T-1, Nb+1 \times 1} + \varepsilon_{T-1, N \times 1}$$
(22)

The process of transferring back the integrating constant works like a smoother bringing information on Ω_t in y_{t+1} , because the aforementioned regressions relate period-t+1 integrating constant to period-t matrix XX. Thus, parameters $\hat{\gamma}_t$ contain information on $\ln\left(\chi(\widetilde{\Omega}_t;\gamma_{t+1})\right) \propto |S_t^*|^{\frac{v^*}{2}}/|S_t|^{\frac{v}{2}}$,

which in turn carries information on Ω_t contained within y_{t+1} through $S_t^* = [y_{t+1} \cdot y'_{t+1} + S_t^{-1} + \Gamma_{t+1}]^{-1}$.

- 2.2.3 Convergence of EIS estimates are checked in order to continue or stop iterations. EIS iterations continues while diff > tol, where diff equals the sum of individual differences between estimated parameters $\hat{\gamma}_{2,t}, ..., \hat{\gamma}_{7,t}$ and their values at time t-1. A maximum number of iterations, represented by itmax, is also set.
- 2.2.4 If EIS iterations continue, the next i^{th} iteration does not use zero values to EIS auxiliary parameters $(\gamma_{1,t},...,\gamma_{7,t})$ anymore; it uses the estimated values from the last iteration. That is, both the degrees of freedom v^* and the scale matrix of the EIS sampler incorporate the $i-1^{th}$ EIS parameters $\hat{\gamma}_{1,t}^{i-1},...,\hat{\gamma}_{7,t}^{i-1}$.
- 2.2.5 Once EIS iterations stop, samples from the optimized EIS sampler are simulated. That is, new N trajectories of the latent precision matrices for $\forall t, \{\{\widetilde{\Omega}_t^i\}_{t=1}^T\}_{i=1}^N$, are simulated using the optimized values for $\{\widehat{\gamma}_t\}_{t=1}^T$. Ultimately, as described in item (d.) of subsection 2.1, code lik_KChi_R computes the mean of the log-likelihood of IS ratio $\varphi(y_t, \Omega_t; \theta, \gamma)$ from Eq. 7 for the entire sample period T and through the MC sample.
- 2.2.6 The processes described by functions $lik_KChi_initial$ and lik_KChi_R are computed j multiple times to analyze the MC sampling variance of $L(\theta|\underline{y})$ described in (8), where the seed value is the only parameter that changes between each simulation j.

2.3 Model Estimation

The estimation of parameters from model (1)-(3) can be performed using the *fminsearch* or *fmincon* function to minimize the negative of the log-likelihood computed in lik_KChi_R . The minimization problem attempts to find a minimizer vector containing parameters d, v, $A_i^{1/2}$ to the output of function lik_KChi_R .

2.4 Overflow and Underflow Problems

The last step of $lik_KChi_initial$ and lik_KChi_R codes is to compute the approximated log-likelihood described in Eq. (8). In order to overcome numerical problems such as overflow and underflow, the log-likelihood ratio is adjusted due to exponentiation. Thus, $\widetilde{L}_S(\theta|\underline{y}) = \frac{1}{N} \sum_{j=1}^N \sum_{t=1}^T \ln(r_t^j)$ from (8) is computed through:

- lik = mean(exp(sum(ratio-adj)));
- $log lik = log(lik) + T \cdot adj;$

$$(\text{ratio-adj})_{T \times N} = \begin{bmatrix} \ln(r_{t_1}^1) & \ln(r_{t_1}^2) & \cdots & \ln(r_{t_1}^N) \\ \ln(r_{t_2}^1) & \ln(r_{t_2}^2) & \cdots & \ln(r_{t_2}^N) \\ \vdots & \vdots & \vdots & \vdots \\ \ln(r_T^1) & \ln(r_T^2) & \cdots & \ln(r_T^N) \end{bmatrix} - \text{adj}_{T \times N},$$

where r_t^j is the likelihood ratio computed at time t for the j^{th} MC sample.

$$\text{sum}(\text{ratio-adj})_{1\times N} = \left[\sum_{t=1}^T \ln(r_t^1) - T \cdot \text{adj} \quad \sum_{t=1}^T \ln(r_t^2) - T \cdot \text{adj} \quad \cdots \quad \sum_{t=1}^T \ln(r_t^N) - T \cdot \text{adj}\right]$$

$$\exp(\operatorname{sum}(\operatorname{ratio-adj}))_{1\times N} = \begin{bmatrix} e^{\sum_{t=1}^T \ln(r_t^1)} \cdot e^{-T\cdot\operatorname{adj}} & \cdots & e^{\sum_{t=1}^T \ln(r_t^N)} \cdot e^{-T\cdot\operatorname{adj}} \end{bmatrix}$$

$$\begin{split} \operatorname{lik} &= \operatorname{mean}(\exp(\operatorname{sum}(\operatorname{ratio-adj}))) = \frac{1}{N} e^{-T \cdot \operatorname{adj}} \sum_{j=1}^{N} e^{\sum_{t=1}^{T} \ln(r_t^j)} \\ & \log \operatorname{lik} = \ln \left(\frac{1}{N} e^{-T \cdot \operatorname{adj}} \sum_{j=1}^{N} e^{\sum_{t=1}^{T} \ln(r_t^j)} \right) + T \cdot \operatorname{adj} \\ & \log \operatorname{lik} = \ln(e^{-T \cdot \operatorname{adj}}) + \ln \left(\frac{1}{N} \sum_{j=1}^{N} e^{\sum_{t=1}^{T} \ln(r_t^j)} \right) + T \cdot \operatorname{adj} \\ & \log \operatorname{lik} = -T \cdot \operatorname{adj} + \ln \left(\frac{1}{N} \sum_{j=1}^{N} e^{\sum_{t=1}^{T} \ln(r_t^j)} \right) + T \cdot \operatorname{adj} \\ & \log \operatorname{lik} = \ln \left(\frac{1}{N} \sum_{j=1}^{N} e^{\sum_{t=1}^{T} \ln(r_t^j)} \right) \end{split}$$

References

Philipov, A. and M. E. Glickman (2006). Multivariate stochastic volatility via wishart processes. *Journal of Business & Economic Statistics* 24(3), 313–328.