Описание формата закодированного файла

00	00	00	00	00	00	00	15	00	00	00	08	04	40	04	51
				8D						D1	C0	23	E7	80	93
4F	C1	26	00	СВ	84	CE	FA	00	+						

Пример закодированного файла

Общее описание:

Первые 8 байт файла содержат информацию о размере исходного файла. Следующие 4 байта используются для информации о размере дерева Хаффмана.

Затем 1 байт хранит максимальную длину кода символа в дереве Хаффмана. Дальше сохранено дерево Хаффмана в формате словаря.

После записана закодированная информация исходного файла.

Последний байт показывает какое количество бит последнего байта с информацией исходного файла являются недействительными.

Описание формата словаря:

В словаре храниться N записей следующего вида:

- 1. 16 бит изначального символа (в кодировке UTF-16LE)
- 2. М бит двоичной записи <u>количества бит (S)</u> для кодирования данного символа
- 3. <u>S бит</u> кода данного символа