

MUTATIONS OF GROUP SPECIES WITH POTENTIALS AND THEIR REPRESENTATIONS. APPLICATIONS TO CLUSTER ALGEBRAS.

LAURENT DEMONET

ABSTRACT. This article tries to generalize former works of Derksen, Weyman and Zelevinsky about skew-symmetric cluster algebras to the skew-symmetrizable case. We introduce the notion of group species with potentials and their decorated representations. In good cases, we can define mutations of these objects in such a way that these mutations mimic the mutations of seeds defined by Fomin and Zelevinsky for a skew-symmetrizable exchange matrix defined from the group species. These good cases are called non-degenerate. Thus, when an exchange matrix can be associated to a non-degenerate group species with potential, we give an interpretation of the F -polynomials and the \mathbf{g} -vectors of Fomin and Zelevinsky in terms of the mutation of group species with potentials and their decorated representations. Hence, we can deduce a proof of a serie of combinatorial conjectures of Fomin and Zelevinsky in these cases. Moreover, we give, for certain skew-symmetrizable matrices a proof of the existance of a non-degenerate group species with potential realizing this matrix. On the other hand, we prove that certain skew-symmetrizable matrices can not be realized in this way.

CONTENTS

1. Introduction	1
2. Group species and path algebras	3
3. Potential and their Jacobian ideals	5
4. Group species with potentials	6
5. Mutations of group species with potential	8
6. Exchange matrices	10
7. Existance of nondegenerate potentials	11
8. Decorated representations and their mutations	12
9. F -polynomials and \mathbf{g} -vectors of decorated representations	15
10. \mathcal{E} -invariant	22
11. Applications to cluster algebras	24
12. An example and a counterexample	25
Acknowledgments	28
References	28

1. INTRODUCTION

The aim of this paper is to extend the results of [DWZ2] and [DWZ1] to the case of skew-symmetrizable exchange matrices. Unfortunately, the

techniques presented here do not work in any situation, but nevertheless in some important cases.

For this, we introduce *group species with potential* (GSP), which can be seen as quivers with potential with more than one idempotent at each vertex. Thus, we can also define a Jacobian ideal and a Jacobian algebra and study their representations. More precisely, we define the notion of a group species with potential with a *decorated representation* (GSPDR) and the notion of the mutation of a GSPDR at a vertex k (which is called the direction of the mutation). In *good cases*, we can mutate a GSPDR as many times as we want in any direction. In this case, the underlying GSP is called *non-degenerate*. Moreover, we can associate to certain GSPs, called locally free, a skew-symmetrizable matrix in such a way that the mutation we introduce projects, when it exists, to the mutation of matrix introduced by Fomin and Zelevinsky [FZ1]. Any skew-symmetrizable matrix can be reached in this way using a locally free GSP. The hard problem is to find which skew-symmetrizable matrix can be reached using a non-degenerate GSP. It is the case of matrices of the form DS where D is diagonal with positive integer coefficients and S is skew-symmetric with integer coefficients. It is also the case for the skew-symmetrizable matrices which occur in the situation of [Dem], in particular in all acyclic cases. Nevertheless, it is not always true, as shown by the counterexample at the end of section 12. The techniques presented in [DWZ2] work here almost in the same way. The only problem is that it is not always the case that for any 2-cycle, there exists a potential canceling it (this fact is very easy in the context of [DWZ2]).

We now explain the content of this article in more details. Let K be an algebraically closed field. Let I be a finite set and $E = \bigoplus_{i \in I} K[\Gamma_i]$ where, for each i , Γ_i is a finite group whose cardinal is not divisible by the characteristic of K . Let also A be an (E, E) -bimodule. This data is called a *group species* and its *complete path algebra* is

$$E\langle\langle A \rangle\rangle = \prod_{n \in \mathbb{N}} A^{\otimes n}.$$

A potential S on this group species can be seen as a (maybe infinite) linear combination of cyclic path, up to rotation. It permits to construct a two sided ideal $J(S)$, called the *Jacobian ideal* and a quotient algebra $\mathcal{P}(A, S) = E\langle\langle A \rangle\rangle/J(S)$ called the *Jacobian algebra*. A *decorated representation* of the GSP is a pair consisting of a $\mathcal{P}(A, S)$ -module X and an E -module V . In sections 5 and 8, we define the mutation of a GSP with a decorated representation (GSPDR). This mutation is well defined if the group species has no loop and is 2-acyclic (that is, for any $i \in I$, $E_i(A \oplus A \otimes_E A)E_i = 0$, where $E_i = K[\Gamma_i] \subset E$).

In what follows, we suppose that the Γ_i are commutative and that the GSP is *locally free*, that is, for any $i, j \in I$, $E_i A E_j$ is a free E_i -left module and a free E_j -right module. In section 6, we define the exchange matrix B of a the group species by

$$b_{ij} = \dim_{E_j} A_{ji} - \dim_{E_j} A_{ij}^*.$$

Thus, the mutation of GSPDRs descends to the mutation of matrices defined by Fomin and Zelevinsky [FZ1]. In section 7, we discuss a class of matrices,

namely those of the form DS , for which there is always a non-degenerate GSP. Moreover, we remark that there exists also non-degenerate GSP in all cases which are categorified in [Dem] (because the endomorphisms rings of cluster-tilting objects constructed in [Dem] are Jacobian algebras). Remark also that there is no chance, with definitions given here, to construct non-degenerate GSPs for any skew-symmetrizable matrix, as shown by the counterexample ending section 12.

Following the ideas of [DWZ1], we explain in section 9 how to reinterpret the F -polynomials and \mathbf{g} -vectors defined in [FZ2] in terms of GSPDRs and their mutations. We deduce in section 11 that, when a skew-symmetrizable matrix can be obtained from a non-degenerate GSP, then the following conjectures are true:

Conjecture ([FZ2, conjecture 5.4]). *For any $\mathbf{i} \in I^n$ and $k \in I$, $F_{k;\mathbf{i}}^B$ has constant term 1.*

Conjecture ([FZ2, conjecture 5.5]). *For any $\mathbf{i} \in I^n$ and $k \in I$, $F_{k;\mathbf{i}}^B$ has a maximum monomial for divisibility order with coefficient 1.*

Conjecture ([FZ2, conjecture 7.12]). *For any $\mathbf{i} \in I^n$, $k \in I$, we denote by $k\mathbf{i}$ the concatenation of (k) and \mathbf{i} . Let $j \in I$ and $(g_i)_{i \in I} = \mathbf{g}_{j;\mathbf{i}}^B$ and $(g'_i)_{i \in I} = \mathbf{g}_{j;k\mathbf{i}}^{\mu_k(B)}$. Then we have, for any $i \in I$,*

$$g'_i = \begin{cases} -g_i & \text{if } i = k; \\ g_i + \max(0, b_{ik})g_k - b_{jk} \min(g_k, 0) & \text{if } i \neq k. \end{cases}$$

Conjecture ([FZ2, conjecture 6.13]). *For any $\mathbf{i} \in I^n$, the vectors $\mathbf{g}_{i;\mathbf{i}}^B$ for $i \in I$ are sign-coherent. In other terms, for $i, i', j \in I$, the j -th components of $\mathbf{g}_{i;\mathbf{i}}^B$ and $\mathbf{g}_{i';\mathbf{i}}^B$ have the same sign.*

Conjecture ([FZ2, conjecture 7.10(2)]). *For any $\mathbf{i} \in I^n$, the vectors $\mathbf{g}_{i;\mathbf{i}}^B$ for $i \in I$ form a \mathbb{Z} -basis of \mathbb{Z}^I .*

Conjecture ([FZ2, conjecture 7.10(1)]). *For any $\mathbf{i}, \mathbf{i}' \in I^n$, if we have*

$$\sum_{i \in I} a_i \mathbf{g}_{i;\mathbf{i}}^B = \sum_{i \in I} a'_i \mathbf{g}_{i;\mathbf{i}'}^B$$

for some nonnegative integers $(a_i)_{i \in I}$ and $(a'_i)_{i \in I}$, then there is a permutation $\sigma \in \mathfrak{S}_I$ such that for every $i \in I$,

$$a_i = a'_{\sigma(i)} \quad \text{and} \quad a_i \neq 0 \Rightarrow \mathbf{g}_{i;\mathbf{i}}^B = \mathbf{g}_{\sigma(i);\mathbf{i}'}^B \quad \text{and} \quad a_i \neq 0 \Rightarrow F_{i;\mathbf{i}}^B = F_{\sigma(i);\mathbf{i}'}^B.$$

In particular, $F_{i;\mathbf{i}}^B$ is determined by $\mathbf{g}_{i;\mathbf{i}}^B$.

Thus, as stated in [FZ2, remark 7.11], if B is a full rank skew-symmetrizable matrix which correspond to a non-degenerate GSP, then the cluster monomials of a cluster algebra with exchange matrix B are linearly independent.

2. GROUP SPECIES AND PATH ALGEBRAS

Let K be a field.

Definition 2.1. A *group species* is a triple $(I, (\Gamma_i)_{i \in I}, (A_{ij})_{(i,j) \in I^2})$ where I is a finite set, for each $i \in I$, Γ_i is a finite group and for each $(i,j) \in I^2$, A_{ij} is a finite dimensional $(K[\Gamma_i], K[\Gamma_j])$ -bimodule (the first acting on the left and the second on the right).

Fix now such a group species $Q = (I, (\Gamma_i)_{i \in I}, (A_{ij})_{(i,j) \in I^2})$

Definition 2.2. A *representation* of Q is a pair $((V_i)_{i \in I}, (x_{ij})_{(i,j) \in I^2})$ where for each $i \in I$, V_i is a right finite dimensional $K[\Gamma_i]$ -module and for each $(i,j) \in I^2$,

$$x_{ij} \in \text{Hom}_{\Gamma_j}(V_i \otimes_{\Gamma_i} A_{ij}, V_j).$$

Definition 2.3. Let $((V_i)_{i \in I}, (x_{ij})_{(i,j) \in I^2})$ and $((V'_i)_{i \in I}, (x'_{ij})_{(i,j) \in I^2})$ be two representations of Q . A *morphism* from the first one to the second one is a family $(f_i)_{i \in I} \in \prod_{i \in I} \text{Hom}_{\Gamma_i}(V_i, V'_i)$ such that for each $(i,j) \in I^2$ the following diagram commute :

$$\begin{array}{ccc} V_i \otimes_{\Gamma_i} A_{ij} & \xrightarrow{x_{ij}} & V_j \\ f_i \otimes \text{Id}_{A_{ij}} \downarrow & & \downarrow f_j \\ V'_i \otimes_{\Gamma_i} A_{ij} & \xrightarrow{x'_{ij}} & V'_j \end{array}$$

Remarks 2.4.

- The previous definitions give rise to an abelian category.
- If for each $i \in I$, Γ_i is the trivial group, we get back the classical definition of a quiver (up to the choice of a basis of each A_{ij}) and of the category of representations of a quiver.
- If for each $i \in I$, $K[\Gamma_i]$ is replaced by a division algebra, we obtain the usual definition of a species (see for example [DR]).

Definition 2.5. For each $i \in I$, denote $E_i = K[\Gamma_i]$. Denote also $E = \bigoplus_{i \in I} E_i$ and $A = \bigoplus_{(i,j) \in I^2} A_{ij}$. Thus, we put the natural (E, E) -bimodule structure on A and define the graded algebras

$$E\langle A \rangle = \bigoplus_{n \in \mathbb{N}} A^{\otimes n} \quad \text{and} \quad E\langle\langle A \rangle\rangle = \prod_{n \in \mathbb{N}} A^{\otimes n}$$

the first one being called the *path algebra* of the group species and the second one the *complete path algebra* of the group species (note that every tensor product is taken over E).

Remarks 2.6.

- As usual for quiver, the category of representations of a group species is equivalent to the category of finite dimensional right modules over its path algebra. Moreover, the category of nilpotent representations of a group species is equivalent to the category of finite dimensional right modules over its complete path algebra.

- If one denotes

$$\mathfrak{m} = \prod_{n>0} A^{\otimes n} \subset E\langle\langle A \rangle\rangle$$

which is clearly a two-sided ideal, then $E\langle\langle A \rangle\rangle$ becomes a topological algebra for the \mathfrak{m} -adic topology and $E\langle A \rangle$ is a dense subalgebra of it.

As in [DWZ2], \mathfrak{m} is the unique maximal two-sided ideal of $E\langle\langle A \rangle\rangle$ not intersecting E . Moreover, if we have another group species with the same vertices whose arrows are encoded in the (E, E) -bimodule A' , then, again as in [DWZ2], the morphisms φ from $E\langle\langle A \rangle\rangle$ to $E\langle\langle A' \rangle\rangle$ such that $\varphi|_E = \text{Id}_E$ (later called E -morphisms) are parameterized in an obvious way by a pair $(\varphi^{(1)}, \varphi^{(2)})$ where $\varphi^{(1)} : A \rightarrow A'$ and $\varphi^{(2)} : A \rightarrow \mathfrak{m}^2$ are (E, E) -bimodule morphisms. Thus, φ is an isomorphism if and only if $\varphi^{(1)}$ is an isomorphism. Introduce now the analogous of [DWZ2, definition 2.5]:

Definition 2.7. An E -automorphism φ of $E\langle\langle A \rangle\rangle$ will be called a *change of arrows* if $\varphi^{(2)} = 0$ and a *unitriangular automorphism* if $\varphi^{(1)} = \text{Id}_A$.

Finally, introduce the following useful notation:

Notation 2.8. For all $i, j \in I$,

$$E\langle A \rangle_{ij} = E_i E\langle A \rangle E_j \quad \text{and} \quad E\langle\langle A \rangle\rangle_{ij} = E_i E\langle\langle A \rangle\rangle E_j$$

and for $n \in \mathbb{N}$,

$$A_{ij}^{\otimes n} = A^{\otimes n} \cap E\langle A \rangle_{ij} = A^{\otimes n} \cap E\langle\langle A \rangle\rangle_{ij}$$

so that

$$E\langle A \rangle_{ij} = \bigoplus_{n \in \mathbb{N}} A_{ij}^{\otimes n} \quad \text{and} \quad E\langle\langle A \rangle\rangle_{ij} = \prod_{n \in \mathbb{N}} A_{ij}^{\otimes n}.$$

3. POTENTIAL AND THEIR JACOBIAN IDEALS

Following [DWZ2] define:

Definition 3.1. Define

$$E\langle\langle A \rangle\rangle_{\text{cyc}} = \frac{E\langle\langle A \rangle\rangle}{[E\langle\langle A \rangle\rangle, E\langle\langle A \rangle\rangle]}$$

whose elements are called *potentials* (here, $[E\langle\langle A \rangle\rangle, E\langle\langle A \rangle\rangle]$ is the closure of the two-sided ideal generated by commutators). As $[E\langle\langle A \rangle\rangle, E\langle\langle A \rangle\rangle]$ is generated by its homogeneous elements, we can decompose $E\langle\langle A \rangle\rangle_{\text{cyc}} = \prod_{n \in \mathbb{N}} A_{\text{cyc}}^{\otimes n}$ where

$$A_{\text{cyc}}^{\otimes n} = \frac{A^{\otimes n}}{[E\langle\langle A \rangle\rangle, E\langle\langle A \rangle\rangle] \cap A^{\otimes n}}$$

and, if $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$, we write $S^{(n)}$ its summand which lies in $A_{\text{cyc}}^{\otimes n}$.

Definition 3.2. Define the continuous linear map

$$\partial : (E\langle\langle A \rangle\rangle)^* \otimes_k E\langle\langle A \rangle\rangle \rightarrow E\langle\langle A \rangle\rangle$$

in the following way. First remark that $(E\langle\langle A \rangle\rangle)^* \simeq \bigoplus_{n \in \mathbb{N}} (A^{\otimes n})^*$. Then, if $\xi \in (A^{\otimes n})^*$ and $a_1, a_2, \dots, a_\ell \in A$ define $\partial_\xi(a_1 a_2 \dots a_\ell) = 0$ if $\ell < n$ and

$$\partial_\xi(a_1 a_2 \dots a_\ell) = \sum_{j=1}^{\ell} \sum_{g, h \in \mathcal{B}} \xi(g^{-1} a_j a_{j+1} \dots a_{j+n-1} h) h^{-1} a_{j+n} a_{j+n+1} \dots a_{j-1} g$$

if $\ell \geq n$ where all indices are taken modulo ℓ and $\mathcal{B} = \bigcup_{i \in I} \Gamma_i \subset E$. It is easy to see that ∂ is well defined and moreover that it vanishes on commutators. Thus, we can descend ∂ to a continuous linear map

$$\partial : (E\langle\langle A \rangle\rangle)^* \otimes_k E\langle\langle A \rangle\rangle_{\text{cyc}} \rightarrow E\langle\langle A \rangle\rangle.$$

Remark 3.3. With the natural structure of (E, E) -bimodule on $(E\langle\langle A \rangle\rangle)^*$, one gets, for any $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$, that $\xi \mapsto \partial_\xi S$ is a morphism of (E, E) -bimodules.

Definition 3.4. For a potential $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$, define the *Jacobian ideal* $J(S)$ to be the closure of the two-sided ideal of $E\langle\langle A \rangle\rangle$ generated by the $\partial_\xi(S)$ for $\xi \in A^*$. The quotient $E\langle\langle A \rangle\rangle/J(S)$ is called the *Jacobian algebra* and is denoted by $\mathcal{P}(A, S)$ (we do not keep trace of $(I, (\Gamma_i))$ in the notation because it will be fixed).

Note that every E -morphism $\varphi : E\langle\langle A \rangle\rangle \rightarrow E\langle\langle A' \rangle\rangle$ descends to $\varphi : E\langle\langle A \rangle\rangle_{\text{cyc}} \rightarrow E\langle\langle A' \rangle\rangle_{\text{cyc}}$.

It is now easy to adapt the proof of [DWZ2, proposition 3.7]:

Proposition 3.5. Let $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$. Every E -isomorphism $\varphi : E\langle\langle A \rangle\rangle \rightarrow E\langle\langle A' \rangle\rangle$ maps $J(S)$ to $J(\varphi(S))$ and therefore induces an isomorphism

$$\mathcal{P}(A, S) \rightarrow \mathcal{P}(A', \varphi(S)).$$

4. GROUP SPECIES WITH POTENTIALS

For the rest of this article, the data $(I, (\Gamma_i))$ and so E will be fixed. Following the ideas of [DWZ2], define:

Definition 4.1. As before, A is an (E, E) -bimodule and we take $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$. We say that (A, S) is a group species with potential (GSP for short) if the species has no loop (for all $i \in I$, $E_i A E_i = \{0\}$) and $S \in \prod_{n>1} A_{\text{cyc}}^{\otimes n}$.

Definition 4.2. Let (A, S) and (A', S') be two GSPs. One says that an E -isomorphism $\varphi : E\langle\langle A \rangle\rangle \rightarrow E\langle\langle A' \rangle\rangle$ is a right-equivalence if $\varphi(S) = S'$.

Note that this definition induces a equivalence relation. Moreover, a right equivalence $(A, S) \simeq (A', S')$ induces isomorphisms of (E, E) -bimodules $A \simeq A'$, $J(S) \simeq J(S')$ and $\mathcal{P}(A, S) \simeq \mathcal{P}(A', S')$ as said before.

Notation 4.3. If (A, S) and (A', S') are two GSPs, define $(A, S) \oplus (A', S') = (A \oplus A', S + S')$ so that $\mathcal{P}((A, S) \oplus (A', S'))$ is the completion of $\mathcal{P}(A, S) \oplus \mathcal{P}(A', S')$ for the product topology.

Definition 4.4. We say that a GSP (A, S) is *trivial* if $S \in A_{\text{cyc}}^{\otimes 2}$ and $\{\partial_\xi(S) \mid \xi \in A^*\} = A$, or, equivalently, if $\mathcal{P}(A, S) = E$.

The following easy proposition is an adaptation of [DWZ2, proposition 4.4]:

Proposition 4.5. A GSP (A, S) is trivial if and only if there exist an (E, E) -bimodule B and an (E, E) -bimodules isomorphism $\varphi : A \rightarrow B \oplus B^*$ such that

$$\varphi(S) = \sum_{b \in B} b \otimes b^*$$

where φ is naturally extended to an isomorphism $E\langle\langle A \rangle\rangle_{\text{cyc}} \rightarrow E\langle\langle B \oplus B^* \rangle\rangle_{\text{cyc}}$ and the right member does not depend of the choice of a basis B of B .

One gets also this proposition, similar to [DWZ2, proposition 4.5]:

Proposition 4.6. *If (A, S) is a GSP and (B, T) is a trivial GSP, then the canonical embedding $E\langle\langle A \rangle\rangle \hookrightarrow E\langle\langle A \oplus B \rangle\rangle$ induces an isomorphism $\mathcal{P}(A, S) \simeq \mathcal{P}(A \oplus B, S + T)$.*

For a GSP (A, S) , we define the *trivial* and *reduced* part of A as the (E, E) -bimodules

$$A_{\text{triv}} = \{\partial_\xi S^{(2)} \mid \xi \in A^*\} \quad \text{and} \quad A_{\text{red}} = A/A_{\text{triv}}.$$

Moreover, we say that (A, S) is reduced if $S^{(2)} = 0$, or, equivalently, if $A_{\text{triv}} = \{0\}$.

Again, the proof of [DWZ2, theorem 4.6] is easy to adapt:

Theorem 4.7. *For any GSP (A, S) , there exist $S_{\text{triv}} \in E\langle\langle A_{\text{triv}} \rangle\rangle$ and $S_{\text{red}} \in E\langle\langle A_{\text{red}} \rangle\rangle$ such that (A, S) is right equivalent to $(A_{\text{triv}}, S_{\text{triv}}) \oplus (A_{\text{red}}, S_{\text{red}})$.*

Moreover, the right equivalence classes of $(A_{\text{triv}}, S_{\text{triv}})$ and $(A_{\text{red}}, S_{\text{red}})$ are uniquely determined by the right equivalence class of (A, S) .

Definition 4.8. A group species $(I, (\Gamma_i), A)$ is called *2-acyclic* if, for any $i \in I$, $E_i A^{\otimes 2} E_i = \{0\}$.

We will see now how to find, as in [DWZ2], algebraic conditions guaranteeing the 2-acyclicity of the reduced part of a group species. Let $K[E\langle\langle A \rangle\rangle_{\text{cyc}}]$ be the ring of polynomial functions on $E\langle\langle A \rangle\rangle_{\text{cyc}}$ vanishing on all but a finite number of the $A_{\text{cyc}}^{\otimes n}$.

For each $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$ and $i, j \in I$, define the bilinear form $\alpha_{S,ij}$ by:

$$\begin{aligned} A_{ij}^* \times A_{ji}^* &\rightarrow K \\ (f, g) &\mapsto \sum_{\substack{\gamma \in \Gamma_i \\ \gamma' \in \Gamma_j}} \left[(\gamma' f \gamma^{-1} \otimes \gamma g \gamma'^{-1}) \left(S^{(2)} \right) + (\gamma g \gamma'^{-1} \gamma' f \gamma^{-1}) \left(S^{(2)} \right) \right]. \end{aligned}$$

First, an easy lemma:

Lemma 4.9. *Let $i, j \in I$. The followings are equivalent:*

- (i) *there exists $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$ such that $\alpha_{S,ij}$ is of maximal rank;*
- (ii) *either A_{ij}^* is a subbimodule of A_{ji} or A_{ji}^* is a subbimodule of A_{ij} .*

Proof. We clearly have $\alpha_{S,ij} = \alpha_{S,ji}$ for any S and therefore, one can suppose without loss of generality that $\dim_K A_{ij} \leq \dim_K A_{ji}$. Suppose that $\alpha_{S,ij}$ is of maximal rank. In any basis, the matrix of $\alpha_{S,ij}$ is the matrix of $A_{ij}^* \rightarrow A_{ji} : \xi \mapsto \partial_\xi(S^{(2)})$ and therefore, A_{ij}^* is a subbimodule of A_{ji} .

Reciprocally, suppose that A_{ij}^* is a subbimodule of A_{ji} . Thus, if \mathcal{B} is a basis of A_{ij} , define

$$S = \sum_{a \in \mathcal{B}} a \otimes a^*$$

where $a^* \in A_{ij}^*$ is identified with its image in A_{ji} . Then, it is clear that $\alpha_{S,ij}$ is of maximal rank. \square

Again, it is easy to generalize [DWZ2, proposition 4.15]:

Proposition 4.10. *The reduced part of a GSP (A, S) is 2-acyclic if and only if, for any $i, j \in I$, $\alpha_{S,ij}$ is of maximal rank. This condition is open. Moreover, if, for any $i, j \in I$, either A_{ij}^* is a subbimodule of A_{ji} , either*

A_{ji}^* is a subbimodule of A_{ij} , then there is a non empty Zariski open subset U of $E\langle\langle A \rangle\rangle_{\text{cyc}}$, a 2-acyclic (E, E) -bimodule A' and a regular map $H : U \rightarrow E\langle\langle A' \rangle\rangle_{\text{cyc}}$ such that for any $S \in U$, $(A_{\text{red}}, S_{\text{red}})$ is right equivalent to $(A', H(S))$.

Proof. The arguments are the same than in [DWZ2]. For each $i, j \in I^2$, choose $\overline{A}_{ij}^* \subset A_{ij}^*$ such that $\overline{A}_{ij}^* = A_{ij}^*$ or $\overline{A}_{ij}^* \simeq A_{ji}$. Let U to be the non-empty open subset of $E\langle\langle A \rangle\rangle_{\text{cyc}}$ containing the S such that for all $i, j \in I$, $\alpha_{S,ij}|_{\overline{A}_{ij}^* \times \overline{A}_{ji}^*}$ is non-degenerate (it corresponds to the non-vanishing of a fixed maximal minor of $\alpha_{S,ij}$). Define A' to be the intersection of the kernels of the elements of the \overline{A}_{ij}^* . Then the construction of H follows the proof of [DWZ2, theorem 4.6]. \square

5. MUTATIONS OF GROUP SPECIES WITH POTENTIAL

Let (A, S) and $k \in I$ be a vertex such that $E_k A^{\otimes 2} E_k = \{0\}$ (we say that (A, S) is 2-acyclic at k). We suppose also that for any $i \in I$, the characteristic of K does not divide $\#\Gamma_i$. As in [DWZ2, §5], one defines $\tilde{\mu}_k(A, S) = (\tilde{A}, \tilde{S})$ where, if $i, j \in I$,

$$\tilde{A}_{ij} = \begin{cases} A_{ji}^* & \text{if } k \in \{i, j\}; \\ A_{ij} \oplus A_{ik} \otimes_{E_k} A_{kj} & \text{otherwise.} \end{cases}$$

In other terms,

$$\tilde{A} = \overline{E}_k A \overline{E}_k \oplus A E_k A \oplus (E_k A)^* \oplus (A E_k)^*$$

where $\overline{E}_k = \bigoplus_{i \neq k} E_i$. Let now $[-] : \overline{E}_k E\langle\langle A \rangle\rangle \overline{E}_k \rightarrow E\langle\langle \tilde{A} \rangle\rangle$ be the morphism of k -algebras generated by $[a] = a$ if $a \in \overline{E}_k A \overline{E}_k$ and $[ab] = ab \in A E_k A$ if $a \in A E_k$ and $b \in E_k A$ which is well defined because (A, S) has no loop. Again, because (A, S) has no loop, every potential $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$ has a representative in $\overline{E}_k E\langle\langle A \rangle\rangle \overline{E}_k$ and it is easy to see that $[-]$ descends to a map

$$[-] : E\langle\langle A \rangle\rangle_{\text{cyc}} \rightarrow E\langle\langle \tilde{A} \rangle\rangle_{\text{cyc}}.$$

Moreover, as for any $i \in I$ the characteristic of K does not divide $\#\Gamma_i$, we have a canonical sequence of isomorphisms

$$\begin{aligned} \text{Hom}_E(A E_k A, A E_k A) &\simeq (A E_k A)^* \otimes_E A E_k A \simeq (A E_k \otimes_E E_k A)^* \otimes_E A E_k A \\ &\simeq (E_k A)^* \otimes_E (A E_k)^* \otimes_E A E_k A \subset E\langle\langle \tilde{A} \rangle\rangle \end{aligned}$$

and we define $\Delta_k(A)$ to be the image of $\text{Id}_{A E_k A}$ through this isomorphism. Thus, define

$$\tilde{S} = [S] + \Delta_k(A).$$

The proof of [DWZ2, proposition 5.1] can be easily generalized:

Proposition 5.1. *If (A', S') is another GSP such that $E_k A' = A' E_k = \{0\}$, then*

$$\tilde{\mu}_k(A \oplus A', S + S') = \mu_k(A, S) \oplus (A', S').$$

Now, the proof of [DWZ2, theorem 5.2] is easy to generalize:

Theorem 5.2. *The right-equivalence class of the GSP $\tilde{\mu}_k(A, S)$ is fully determined by the right-equivalence class of (A, S) .*

Definition 5.3. Using theorem 5.2 together with theorem 4.7, the right-equivalence class of the reduced part of $\tilde{\mu}_k(A, S)$ is fully determined by the right-equivalence class of (A, S) . Thus we can define the map μ_k from the set of right-equivalence classes which are 2-acyclic at k to itself. It is called the *mutation at vertex k*.

Again, the proof of [DWZ2, theorem 5.7] is easy to generalize:

Theorem 5.4. μ_k is an involution.

Let us also remark that [DWZ2, proposition 6.1], [DWZ2, proposition 6.4] and [DWZ2, corollary 6.6] can be generalized:

Proposition 5.5. The algebras $\overline{E}_k \mathcal{P}(A, S) \overline{E}_k$ and $\overline{E}_k \mathcal{P}(\tilde{\mu}_k(A, S)) \overline{E}_k$ are isomorphic.

Proposition 5.6. The Jacobian algebra $\mathcal{P}(A, S)$ is finite-dimensional if and only if $\mathcal{P}(\tilde{\mu}_k(A, S))$ is.

Corollary 5.7. The Jacobian algebras $\overline{E}_k \mathcal{P}(A, S) \overline{E}_k$ and $\overline{E}_k \mathcal{P}(\mu_k(A, S)) \overline{E}_k$ are isomorphic and $\mathcal{P}(A, S)$ is finite-dimensional if and only if $\mathcal{P}(\mu_k(A, S))$ is.

As stated in [DWZ2, remark 6.8], the following definition makes sense:

Definition 5.8. We define the *deformation space of* (A, S) to be

$$\text{Def}(A, S) = \frac{\mathcal{P}(A, S)}{E + [\mathcal{P}(A, S), \mathcal{P}(A, S)]}$$

where $[\mathcal{P}(A, S), \mathcal{P}(A, S)]$ is the closure of the two-sided ideal of $\mathcal{P}(A, S)$ generated by the commutators.

Thus, let us introduce the following extension of [DWZ2, proposition 6.9]:

Proposition 5.9. We have an isomorphism:

$$\text{Def}(A, S) \simeq \text{Def}(\tilde{\mu}_k(A, S)).$$

Proof. It is enough to prove that

$$\frac{\overline{E}_k \mathcal{P}(A, S) \overline{E}_k}{\overline{E}_k + [\overline{E}_k \mathcal{P}(A, S) \overline{E}_k, \overline{E}_k \mathcal{P}(A, S) \overline{E}_k]} \hookrightarrow \text{Def}(A, S)$$

is in fact an isomorphism (which is true because A has no loop) and to use proposition 5.5.

As in [DWZ2],

Definition 5.10. The GSP (A, S) is called *rigid* if $\text{Def}(A, S) = \{0\}$.

Corollary 5.11. The GSP (A, S) is rigid if and only if $\mu_k(A, S)$ is.

6. EXCHANGE MATRICES

We suppose now that A has neither loop nor 2-cycle (that is $A_{\text{cyc}}^{\otimes 1} = A_{\text{cyc}}^{\otimes 2} = \{0\}$). We suppose also that for any $(i, j) \in I^2$, A_{ij} is a free left E_i -module and a free right E_j -module (we will call it a *locally free* GSP). Define the matrix $B = B(A) = B(A, S)$ to be the matrix with rows and columns indexed by I and coefficients

$$b_{ij} = \dim_{E_j} A_{ji} - \dim_{E_j} A_{ij}^*$$

(by default, dimension are taken relatively to the left module structure). This matrix is clearly skew-symmetrizable since

$$\#\Gamma_j \times b_{ij} = \dim_K A_{ji} - \dim_K A_{ij}^*.$$

Definition 6.1. The matrix B is called the *exchange matrix* of A .

The following proposition justifies this generalization of [DWZ2]:

Proposition 6.2. *Every skew-symmetrizable matrix B can be reached in this way from a GSP.*

Proof. Let B be a skew-symmetrizable matrix and $D = (d_i)_{i \in I}$ be a diagonal matrix with positive integer coefficients such that BD is skew-symmetric. Let $\Gamma_i = \mathbb{Z}/d_i\mathbb{Z}$ and for $(i, j) \in I^2$ such that $b_{ij} > 0$,

$$A_{ji} = K[\mathbb{Z}/(d_j b_{ij})\mathbb{Z}] = K[\mathbb{Z}/(-d_i b_{ji})\mathbb{Z}]$$

which is a left and right free (Γ_j, Γ_i) -bimodule. It is clear that $A = \bigoplus_{i,j \in I} A_{ij}$ has exchange matrix B . \square

Proposition 6.3. *Let $k \in I$.*

- (i) *The GSP $\tilde{\mu}_k(A, S)$ is locally free.*
- (ii) *If $\mu_k(A, S)$ is 2-acyclic then it is locally free.*
- (iii) *If $\mu_k(A, S)$ is 2-acyclic then*

$$\mu_k(B(A, S)) = B(\mu_k(A, S))$$

where the μ_k on the left hand is the one defined in [FZ1]. Namely:

$$b'_{ij} = \begin{cases} -b_{ij} & \text{if } k \in \{i, j\} \\ b_{ij} + \frac{|b_{ik}| |b_{kj}| + |b_{ik}| |b_{kj}|}{2} & \text{otherwise} \end{cases}$$

if $B' = \mu_k(B)$.

Proof. (i) First of all, it is clear that for $i \in I$, $E_i^* \simeq E_i$ as (E_i, E_i) -bimodules (as E_i is finite dimensional). Thus, for any i , A_{ik}^* and A_{ki}^* are left and right free modules. Moreover, as a right module,

$$A_{ik} \otimes_{E_k} A_{kj} \simeq A_{kj}^{\dim_{E_k}(A_{ik}^*)}$$

and, as a left module,

$$A_{ik} \otimes_{E_k} A_{kj} \simeq A_{ik}^{\dim_{E_k}(A_{kj}^*)}$$

which ends the proof that $\tilde{\mu}_k(A, S)$ is locally free.

(ii) If one denotes $(\tilde{A}, \tilde{S}) = \tilde{\mu}_k(A, S)$, one has

$$\tilde{A} = \tilde{A}_{\text{red}} \oplus \tilde{A}_{\text{triv}}$$

As \tilde{A}_{red} is 2-acyclic, for any $i, j \in I$, $\tilde{A}_{\text{red},ij} = 0$ or $\tilde{A}_{\text{red},ji} = 0$. Suppose that $\tilde{A}_{\text{red},ij} = 0$. Hence $\tilde{A}_{\text{triv},ji} \simeq \tilde{A}_{\text{triv},ij}^* \simeq \tilde{A}_{ij}^*$ is left and right free (thanks to the previous point). Moreover, $\tilde{A}_{ji} = \tilde{A}_{\text{red},ji} \oplus \tilde{A}_{\text{triv},ji}$ and, as the categories of left E_j -modules and right E_i -modules are Krull-Schmidt, $\tilde{A}_{\text{red},ji}$ is left and right free.

(iii) It is enough to remark that

$$\dim_{E_i} A_{ik} \otimes_{E_k} A_{kj} = \dim_{E_i} A_{ik}^{\dim_{E_k} A_{kj}} = \dim_{E_i}(A_{ik}) \dim_{E_k}(A_{kj})$$

and that

$$\dim_{E_i}(A_{jk} \otimes_{E_k} A_{ki})^* = \dim_{E_i}(A_{ki}^*)^{\dim_{E_k} A_{jk}^*} = \dim_{E_i}(A_{ki}^*) \dim_{E_k}(A_{jk}^*)$$

and to use the definition and the duality $A_{\text{triv},ij} \simeq A_{\text{triv},ji}^*$. \square

Definition 6.4. The group species is said to be *globally free* if, for any $i, j \in I$, A_{ij} is a free (E_i, E_j) -bimodule (that is a free $E_i \otimes_K E_j^{\text{op}}$ -module).

Remark 6.5. The class of globally free group species is stable under mutation.

Proposition 6.6. *If a matrix is of the form DB , where D is diagonal with positive integer coefficients and B is skew-symmetric, then the group species constructed in proposition 6.2 is globally free.*

7. EXISTANCE OF NONDEGENERATE POTENTIALS

If $(I, (\Gamma_i), A)$ is a group species without loop nor 2-cycle, a potential $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$ will be said to be *non-degenerate* if every sequence of mutation going from (A, S) yields to a 2-acyclic GSP.

We cite the following adapted result, whose proof is the same than the proof of [DWZ2, corollary 7.4]:

Theorem 7.1. *If the group species is globally free then there is a countable number of non-constant polynomials in $K[E\langle\langle A \rangle\rangle_{\text{cyc}}]$ such that the non-vanishing of these polynomials on $S \in E\langle\langle A \rangle\rangle_{\text{cyc}}$ implies that S is non-degenerate. In particular if K is uncountable, there exist non-degenerate potentials.*

Proof. The only thing to change is that, if the group species is globally free, then for each $i, j \in I$, either A_{ij}^* is a subbimodule of A_{ji} , or A_{ji}^* is a subbimodule of A_{ij} and, therefore, proposition 4.10 can be applied. \square

Remark 7.2. It is also easy to prove that for any skew-symmetrizable matrix B coming from the categories with an action of a group Γ considered in [Dem], there is a non-degenerate GSP realizing it. More precisely, the endomorphism ring of a Γ -stable cluster-tilting object in the stable category of a category constructed in [Dem] can be realized by a non-degenerate GSP (it is the case because Γ -2-cycles do not appear after mutations). In particular, the only potential for an acyclic group species is non-degenerate.

Another proposition linking rigid and non-degenerate potentials can be adapted from [DWZ2, proposition 8.1 and corollary 8.2]:

Proposition 7.3. *Every rigid globally free GSP (A, S) is 2-acyclic and, in this case, S is non-degenerate.*

As in [DWZ2, §8], there exist group species without rigid potentials. The techniques of [DWZ2, §8] work also in the context of this article.

8. DECORATED REPRESENTATIONS AND THEIR MUTATIONS

The aim of this section is to adapt the results of [DWZ2, §10]. We suppose here that for any $i \in I$, the characteristic of K does not divide the cardinal of Γ_i .

Following [DWZ2, definition 10.1],

Definition 8.1. A *decorated representation* of a GSP (A, S) is a pair (X, V) where X is a $\mathcal{P}(A, S)$ -module and V is a E -module.

In the following, we will look at pairs consisting of a GSP (A, S) and a decorated representation of it. We will denote this type of objects by (A, S, X, V) and call them *group species with potential and decorated representation* (GSPDR).

Following [DWZ2, definition 10.2],

Definition 8.2. A right-equivalence between two GSPDRs (A, S, X, V) and (A', S', X', V') is a triple (φ, ψ, η) such that:

- $\varphi : E\langle\langle A \rangle\rangle \rightarrow E\langle\langle A' \rangle\rangle$ is a right-equivalence from (A, S) to (A', S') (see definition 4.2);
- $\psi : X \rightarrow X'$ is a linear isomorphism such that the following diagram commutes:

$$\begin{array}{ccc} X & \xrightarrow{u_X} & X \\ \downarrow \psi & & \downarrow \psi \\ X' & \xrightarrow{\varphi(u)_{X'}} & X' \end{array}$$

for any $u \in E\langle\langle A \rangle\rangle$;

- $\eta : V \rightarrow V'$ is an isomorphism.

Using proposition 4.6, for each GSPDR (A, S, X, V) , the decorated representation (X, V) can be seen as a representation of $(A_{\text{red}}, S_{\text{red}})$. Thus, we can call $(A_{\text{red}}, S_{\text{red}}, X, V)$ the *reduced part* of (A, S, X, V) . As in [DWZ2, proposition 10.5], the right-equivalence class of the reduced part of a GSPDR is fully determined by the right-equivalence class of this GSPDR.

Now, we can define the mutation of a GSPDR (A, S, X, V) . Let $k \in I$. Our aim is to define a GSPRD $\mu_k(A, S, X, V) = (A', S', X', V')$ such that $(A', S') = \mu_k(A, S)$. Denote:

$$X_{\text{in}} = X \otimes_E AE_k \quad \text{and} \quad X_{\text{out}} = X \otimes_E A^* E_k.$$

Thus, we can define two right E_k -module morphisms. One, α , from X_{in} to $X_k = XE_k$ which is the application $(x \otimes a) \mapsto xa$ and one from X_k to X_{out} which is defined by

$$\beta(x) = \sum_{b \in \mathcal{B}} xb \otimes b^*$$

which does not depend on the basis \mathcal{B} of $E_k A$. Observe also that we have a canonical sequence of isomorphisms:

$$\begin{aligned}\mathrm{Hom}_{E_k}(X_{\text{out}}, X_{\text{in}}) &\simeq \mathrm{Hom}_E(X \otimes_E A^* E_k \otimes_{E_k} E_k A^*, X) \\ &\simeq \mathrm{Hom}_E(X \otimes_E (AE_k A)^*, X)\end{aligned}$$

It is not hard to see that $[x \otimes \xi \mapsto x(\partial_\xi S)] \in \mathrm{Hom}_E(X \otimes_E (AE_k A)^*, X)$. Let γ be the corresponding element of $\mathrm{Hom}_{E_k}(X_{\text{out}}, X_{\text{in}})$.

So we get, as in [DWZ2] a commutative diagram of right E_k -modules:

$$\begin{array}{ccc} & X_k & \\ \alpha \nearrow & & \searrow \beta \\ X_{\text{in}} & \xleftarrow{\gamma} & X_{\text{out}} \end{array}$$

with $\alpha\gamma = \gamma\beta = 0$ [DWZ2, lemma 10.6]. For $i \in I$, define:

$$X'_i = \begin{cases} X_i & \text{if } i \neq k \\ \frac{\ker \gamma}{\text{im } \beta} \oplus \text{im } \gamma \oplus \frac{\ker \alpha}{\text{im } \gamma} \oplus V_i & \text{if } i = k \end{cases}$$

and

$$V'_i = \begin{cases} V_i & \text{if } i \neq k \\ \frac{\ker \beta}{\ker \beta \cap \text{im } \alpha} & \text{if } i = k \end{cases}$$

To get the structure of an $\mathcal{P}(A', S')$ -module on X' , we must define the way \tilde{A} acts on it where $(\tilde{A}, \tilde{S}) = \tilde{\mu}_k(A, S)$ (as $\mathcal{P}(A', S') \simeq \mathcal{P}(\tilde{A}, \tilde{S})$). Recall from §5, that

$$\tilde{A} = \overline{E}_k A \overline{E}_k \oplus AE_k A \oplus (E_k A)^* \oplus (AE_k)^*.$$

First of all, $\overline{E}_k A \overline{E}_k \oplus AE_k A \subset \overline{E}_k E \langle\langle A \rangle\rangle \overline{E}_k$ and for the vertices outside k , $X'_k = X_k$. Therefore, we can take the same action for this part of \tilde{A} . For the rest, we have $\tilde{A}E_k = A^* E_k$ and $\tilde{A}^* E_k = AE_k$ and therefore, we have to define:

$$\alpha' : X'_{\text{in}} = X' \otimes_E \tilde{A}E_k = X \otimes_E A^* E_k = X_{\text{out}} \rightarrow X'_k$$

and

$$\beta' : X'_k \rightarrow X'_{\text{out}} = X' \otimes_E \tilde{A}^* E_k = X \otimes_E AE_k = X_{\text{in}}$$

As in [DWZ2], we have to choose a *splitting data*:

- let $\rho : X_{\text{out}} \twoheadrightarrow \ker \gamma$ be a splitting of $\ker \gamma \hookrightarrow X_{\text{out}}$ in the category $\mathrm{mod} E_k$ (it is possible, as the characteristic of K does not divide the cardinal of Γ_k);
- let $\sigma : \ker \alpha / \text{im } \gamma \hookrightarrow \ker \alpha$ a splitting of $\ker \alpha \twoheadrightarrow \ker \alpha / \text{im } \gamma$ in $\mathrm{mod} E_k$.

Now, using the direct sum decomposition

$$X'_k = \frac{\ker \gamma}{\text{im } \beta} \oplus \text{im } \gamma \oplus \frac{\ker \alpha}{\text{im } \gamma} \oplus V_i,$$

define

$$\alpha' = \begin{pmatrix} -\pi\rho \\ -\gamma \\ 0 \\ 0 \end{pmatrix} \quad \text{and} \quad \beta' = (0 \ \ \iota \ \ \iota\sigma \ \ 0)$$

where π designs the canonical projection and ι the canonical injections.

Again, [DWZ2, proposition 10.7] can be adapted:

Proposition 8.3. *The above definition gives rise to a decorated representation of (\tilde{A}, \tilde{S}) and, therefore, through the isomorphism $\mathcal{P}(\tilde{A}, \tilde{S}) \simeq \mathcal{P}(A', S')$, to a decorated representation of (A', S') .*

Notation 8.4. We denote

$$\tilde{\mu}_k(A, S, X, V) = (\tilde{A}, \tilde{S}, X', V') \quad \text{and} \quad \mu_k(A, S, X, V) = (A', S', X', V').$$

We can adapt [DWZ2, proposition 10.9]:

Proposition 8.5. *The isomorphism class of the GSPDR $\tilde{\mu}_k(A, S, X, V)$ does not depend on the choice of the splitting data.*

and [DWZ2, proposition 10.10 and corollary 10.12]:

Proposition 8.6. *The right-equivalence classes of the GSPDRs*

$$\tilde{\mu}_k(A, S, X, V) \quad \text{and} \quad \mu_k(A, S, X, V)$$

depend only on the right-equivalence class of (A, S, X, V) .

Now an important theorem whose proof is the same as the one of [DWZ2, theorem 10.13]:

Theorem 8.7. *On the right-equivalence classes of GSPDRs which are 2-acyclic at k , μ_k is an involution.*

It is easy to define the notion of a direct sum of two decorated representations of a GSP and, therefore, the notion of an indecomposable decorated representation of a GSP. Thus, as μ_k clearly commutes with this type of direct sums, μ_k acts on GSPs with indecomposable decorated representations. We call a GSPDR (A, S, X, V) positive if $V = \{0\}$ and negative if $X = \{0\}$. Moreover, it is called *simple* at $i \in I$ if $X \oplus V$ is an indecomposable E_i -module. Then we adapt [DWZ2, proposition 10.15]:

Proposition 8.8. *An indecomposable GSPDR is either positive, or negative simple. The mutation μ_k exchange a positive simple at k with the corresponding negative simple at k . Moreover, it is the only case where a mutation interchanges positive and negative indecomposable GSPDRs.*

As in [DWZ1, §6], denote, for $k \in I$ and $X, X' \in \text{mod } \mathcal{P}(A, S)$,

$$\text{Hom}_{\mathcal{P}(A, S)}^{[k]}(X, X') = \left\{ f \in \text{Hom}_{\mathcal{P}(A, S)}(X, X') \mid f|_{X\overline{E}_k} = 0 \right\}.$$

Cite now easy to adapt [DWZ1, proposition 6.1]:

Proposition 8.9. *The mutation μ_k induces an isomorphism*

$$\frac{\text{Hom}_{\mathcal{P}(A, S)}(X, X')}{\text{Hom}_{\mathcal{P}(A, S)}^{[k]}(X, X')} \simeq \frac{\text{Hom}_{\mathcal{P}(\mu_k(A, S))}(\mu_k(X), \mu_k(X'))}{\text{Hom}_{\mathcal{P}(\mu_k(A, S))}^{[k]}(\mu_k(X), \mu_k(X'))}.$$

Remark 8.10. As claimed in [DWZ1, §6], the isomorphism of proposition 8.9 can be seen as a functorial isomorphism by introducing adapted quotient categories.

9. F -POLYNOMIALS AND \mathbf{g} -VECTORS OF DECORATED REPRESENTATIONS

The aim of this section is to define the notions of the F -polynomial and the \mathbf{g} -vector of a GSPDR and to give a link with the usual notion (see [FZ2]). It is an extension of [DWZ1]. As before, $(I, (\Gamma_i))$ and therefore E are fixed. We suppose also that the characteristic of K does not divide any of the cardinals of the groups Γ_i . We suppose moreover that K is algebraically closed and that all the Γ_i are commutative (as seen in section 6, this case is sufficient to realize skew-symmetrizable exchange matrices).

Notation 9.1. For any $i \in I$, denote $\text{irr}_i = \text{irr}(\Gamma_i)$ the set of isomorphism classes of irreducible representations of Γ_i . One defines $\text{irr} = \bigcup_{i \in I} \{i\} \times \text{irr}_i$ and for $i \in I$, $C_i = K_0(\Gamma_i) \simeq \mathbb{Z}^{\text{irr}_i}$. We also denote $C = K_0(E) = \bigoplus_{i \in I} C_i \simeq \mathbb{Z}^{\text{irr}}$. If $V \in \text{mod } E$ (resp. $V \in \text{mod } E_i$), $[V]$ is its class in C (resp. in C_i). If $\mathbf{e} \in C$ (resp. $\mathbf{e} \in C_i$) and $(j, \rho) \in \text{irr}$ (resp. $\rho \in \text{irr}_i$) then $\mathbf{e}_{j, \rho}$ (resp. \mathbf{e}_ρ) is the coefficient of (j, ρ) (resp. ρ) in \mathbf{e} .

If $(Y_j)_{j \in \text{irr}}$ (resp. $(Y_j)_{j \in \text{irr}_i}$) is a family of indeterminates or of elements of a ring, and $\mathbf{e} \in C$ (resp. $\mathbf{e} \in C_i$), one denotes

$$Y^\mathbf{e} = \prod_{\substack{j \in \text{irr} \\ (\text{resp. } j \in \text{irr}_i)}} Y_j^{\mathbf{e}_j}.$$

If (A, S) is a GSP, X a representation of it, $[X]$ is its class, seen as an E -module, in C . If $\mathbf{e} \in C$ then $\text{Gr}_\mathbf{e}(X)$ is the Grassmannian of the $\mathcal{P}(A, S)$ -submodules X' of X such that $[X'] = \mathbf{e}$.

Let (A, S, X, V) be a GSPDR, we recall the diagram of section 8, by changing a little the notation:

$$\begin{array}{ccc} & X(k) & \\ \alpha_k \nearrow & & \searrow \beta_k \\ X_{\text{in}}(k) & \xleftarrow{\gamma_k} & X_{\text{out}}(k) \end{array}$$

Definition 9.2. One defines the F -polynomial F_X of X to be a polynomial in $\mathbb{Z}[[Y_i]_{i \in \text{irr}}]$ defined by:

$$F_X(Y) = \sum_{\mathbf{e} \in C} \chi(\text{Gr}_\mathbf{e}(X)) Y^\mathbf{e}$$

where χ is the Euler characteristic. One define also the \mathbf{g} -vector $\mathbf{g}_{X,V} = (g_k)_{k \in I} \in C = \bigoplus_{k \in I} C_k$ by

$$g_k = [\ker \gamma_k] - [X(k)] + [V(k)].$$

With the same indexing, define $\mathbf{h}_{X,V} = (h_k)_{k \in I}$ by

$$h_k = -[\ker \beta_k].$$

Notation 9.3. If (Y) is a family of indeterminates, we denote by $\mathbb{Q}_+(Y)$ the free commutative semifield generated by its elements. If (y) is a family of elements of a commutative semifield, we denote by $\mathbb{Q}_+(y)$ the subsemifield generated by its elements.

Then, it is easy to adapt [DWZ1, proposition 3.1], [DWZ1, proposition 3.2] and [DWZ1, proposition 3.3]:

Proposition 9.4. *The polynomial $F_X(Y)$ has constant term 1 and maximum term (for divisibility of monomials) $Y^{[X]}$.*

Proposition 9.5. *If X' is another $\mathcal{P}(A, S)$ -module then $F_{X \oplus X'} = F_X F_{X'}$.*

Proposition 9.6. *If $F_X \in \mathbb{Q}_+(Y)$, then F_X can be evaluated in the semifield $\text{Trop}(Y')$ where $(Y')_{i \in \text{irr}}$ is a family of indeterminates. Then \mathbf{h}_X and F_X are related by the following formula:*

$$Y'^{\mathbf{h}_X} = F_X|_{\text{Trop}(Y')} \left(Y'^{-1}_{i, \rho} Y'^{[\rho \otimes_{E_i} E_i A^*]} \right)_{(i, \rho) \in \text{irr}}.$$

Proof. We follow the proof of [DWZ1]. Remark that for any $\mathbf{e} \in C$,

$$(Y^\mathbf{e})|_{\text{Trop}(Y')} \left(Y'^{-1}_{i, \rho} Y'^{[\rho \otimes_{E_i} E_i A^*]} \right)_{(i, \rho) \in \text{irr}} = Y'^{-\mathbf{e} + [\mathbf{e} \otimes_E A^*]}.$$

For $i \in I$, the exponent of $Y'_i = (Y_{i, \rho})_{\rho \in \text{irr}_i}$ can be rewritten as

$$-\mathbf{e}_i + [\mathbf{e} \otimes_E A^* E_i]$$

which can be interpreted as

$$-[X'(i)] + [X'_{\text{out}}(i)]$$

for any submodule X' of X such that $[X'] = \mathbf{e}$. Thus, the end of the proof is the same as in [DWZ1]. \square

Recall the definition of a Y -seed:

Definition 9.7 ([DWZ1, §2]). A Y -seed is a pair (y, B) where y is a family of elements of a semifield indexed by I and B is a skew-symmetrizable matrix. For $k \in I$, we define $\mu_k(y, B) = (y', \mu_k(B))$ where, for $i \in I$,

$$y'_i = \begin{cases} y_i^{-1} & \text{if } i = k \\ y_i y_k^{\max(0, b_{ki})} (1 + y_k)^{-b_{ki}} & \text{if } i \neq k. \end{cases}$$

Now, define the notion of an extended Y -seed:

Definition 9.8. A extended Y -seed is a pair $(y, (A, S))$ where y is a family of elements of a semifield indexed by irr and (A, S) is a non-degenerate GSP. For $k \in I$, we define $\mu_k(y, (A, S)) = (y', \mu_k(A, S))$ where, for $(i, \rho) \in \text{irr}$,

$$y'_{i, \rho} = \begin{cases} y_{i, \rho}^{-1} & \text{if } i = k \\ y_{i, \rho} y_k^{[\rho \otimes_{E_i} A_{ik}]} (1 + y_k)^{[\rho \otimes_{E_i} A_{ki}^*] - [\rho \otimes_{E_i} A_{ik}]} & \text{if } i \neq k. \end{cases}$$

Remark 9.9. The mutation of extended Y -seeds is involutive.

Definition 9.10. A Y -seed or an extended Y -seed will be called *free* if its variables y are algebraically independent.

Remark 9.11. The notion of freeness for a Y -seed (or an extended Y -seed) is stable under mutations. The semifield $\mathbb{Z}_+(y)$ and the algebra $\mathbb{Z}[y]$ are also stable under mutation, as the mutation is involutive.

Definition 9.12. Let $(y, (A, S))$ be a free extended Y -seed and $(z, B(A))$ be a Y -seed (for the same A). The following morphism of algebra is called the *specialization map*:

$$\begin{aligned}\Phi_{y \rightarrow z} : \mathbb{Z}_+(y) &\rightarrow \mathbb{Z}_+(z) \\ y_{i,\rho} &\mapsto z_i.\end{aligned}$$

The analogous for $\mathbb{Z}[y]$ and $\mathbb{Z}[z]$ is also denoted by Φ .

Proposition 9.13. Let $(y, (A, S))$ be a free extended Y -seed such that (A, S) is a locally free GSP, and $(z, B(A))$ be a Y -seed. Let $k \in I$. Denote $y' = \mu_k(y)$, and $z' = \mu_k(z)$. Then, $\Phi_{y' \rightarrow z'} = \Phi_{y \rightarrow z}$.

Proof. As y' generates $\mathbb{Z}_+(y') = \mathbb{Z}_+(y)$, it is enough to look at this for the $y'_{i,\rho}$ for $(i, \rho) \in \text{irr}$. By definition,

$$\Phi_{y' \rightarrow z'}(y'_{i,\rho}) = z'_i$$

If $i = k$, then

$$\Phi_{y \rightarrow z}(y'_{i,\rho}) = \Phi_{y \rightarrow z}(y_{i,\rho}^{-1}) = z_i^{-1} = z'_i.$$

If $i \neq k$, then

$$\begin{aligned}\Phi_{y \rightarrow z}(y'_{i,\rho}) &= \Phi_{y \rightarrow z}\left(y_{i,\rho}y_k^{[\rho \otimes_{E_i} A_{ik}]}(1 + y_k)^{[\rho \otimes_{E_i} A_{ki}^*] - [\rho \otimes_{E_i} A_{ik}]}\right) \\ &= z_i \prod_{\sigma \in C_k} \left[z_k^{[\rho \otimes_{E_i} A_{ik}] \sigma} (1 + z_k)^{[\rho \otimes_{E_i} A_{ki}^*] \sigma - [\rho \otimes_{E_i} A_{ik}] \sigma} \right] \\ &= z_i \left[z_k^{\dim_K(\rho \otimes_{E_i} A_{ik})} (1 + z_k)^{\dim_K(\rho \otimes_{E_i} A_{ki}^*) - \dim_K(\rho \otimes_{E_i} A_{ik})} \right] \\ &= z_i \left[z_k^{\dim_{E_i} A_{ik}} (1 + z_k)^{\dim_{E_i} A_{ki}^* - \dim_{E_i} A_{ik}} \right] \\ &= z_i \left[z_k^{\max(0, b_{ki})} (1 + z_k)^{-b_{ki}} \right] = z'_i\end{aligned}$$

(here we use the fact that every considered irreducible representation is of dimension 1, as the considered groups are commutative and K is algebraically closed). \square

To make the relation with F -polynomials and \mathbf{g} -vectors in cluster algebras, we need the following adaptation of [DWZ1, lemma 5.2]:

Proposition 9.14. Let (A, S, X, V) be a GSPDR such that (A, S) is non-degenerate. Let $k \in I$. Denote $(A', S', X', V') = \mu_k(A, S, X, V)$. Suppose also that the extended Y -seed $(y', (A', S'))$ is obtained from $(y, (A, S))$ by the mutation at k . Denote $\mathbf{g}_{X,V} = (g_i)_{i \in I}$, $\mathbf{g}_{X',V'} = (g'_i)_{i \in I}$, $\mathbf{h}_{X,V} = (h_i)_{i \in I}$ and $\mathbf{h}_{X',V'} = (h'_i)_{i \in I}$. Then

- (i) $\mathbf{g}_{X,V} = \mathbf{h}_{X,V} - \mathbf{h}_{X',V'}$;
- (ii) one has

$$(y_k + 1)^{h_k} F_X(y) = (y'_k + 1)^{h'_k} F_{X'}(y')$$

where

$$(y_k + 1)^{h_k} = \prod_{i \in \text{irr}_k} (y_{(k,i)} + 1)^{h_{ki}};$$

(iii) for any $j \in I$,

$$g'_j = \begin{cases} -g_j & \text{if } j = k \\ g_j + [g_k \otimes_{E_k} A_{kj}] - [h_k \otimes_{E_k} A_{kj}] + [h_k \otimes_{E_k} A_{jk}^*] & \text{if } j \neq k. \end{cases}$$

Proof. (i) By definition, for $i \in I$, $g_i = [\ker \gamma_i] - [X(i)] + [V(i)]$, $h_i = -[\ker \beta_i]$ and $h'_i = -[\ker \beta'_i]$ (where β' is the analogous of β for (X', V')). So it is enough to prove that

$$[\ker \gamma_i] + [V_i] + [\ker \beta_i] = [X(i)] + [\ker \beta'_i].$$

From the definition of β'_i given in section 8, it is easy to see that $\ker \beta'_i \simeq \ker(\gamma_i)/\text{im}(\beta_i) \oplus V_i$. And, therefore, the searched equality reduces to

$$[\text{im} \beta_i] + [\ker \beta_i] = [X(i)]$$

which is obvious.

(ii) We follow the proof of [DWZ1, lemma 5.2]. Let $\mathbf{e} \in C$ and \mathbf{e}' its projection in $\bigoplus_{i \neq k} C_i$. Let $X_0 = X\overline{E}_k$ which is a $\overline{E}_k\mathcal{P}(A, S)\overline{E}_k$ -module. For any $\overline{E}_k\mathcal{P}(A, S)\overline{E}_k$ -submodule W of X_0 , one can define

$$W_{\text{in}}(k) = W \otimes_{\overline{E}_k} AE_k \subset X_{\text{in}}(k) \quad \text{and} \quad W_{\text{out}}(k) = W \otimes_{\overline{E}_k} A^* E_k \subset X_{\text{out}}(k)$$

which are well defined because (A, S) has no loop (and therefore $X_{\text{in}} = X \otimes_{\overline{E}_k} AE_k$ and $X_{\text{out}} = X \otimes_{\overline{E}_k} A^* E_k$).

For $\mathbf{r}, \mathbf{s} \in C_k$, define $Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)$ to be the subvariety of $\text{Gr}_{\mathbf{e}'}(X_0)$ consisting of the W satisfying

- $[\alpha_k(W_{\text{in}}(k))] = \mathbf{r}$;
- $[\beta_k^{-1}(W_{\text{out}}(k))] = \mathbf{s}$;
- $\alpha_k(W_{\text{in}}(k)) \subset \beta_k^{-1}(W_{\text{out}}(k))$.

Define also the variety

$$\tilde{Z}_{\mathbf{e}, \mathbf{r}, \mathbf{s}}(X) = \{W \in \text{Gr}_{\mathbf{e}}(X) \mid W\overline{E}_k \in Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)\}$$

so that, by an easy computation, $\tilde{Z}_{\mathbf{e}, \mathbf{r}, \mathbf{s}}(X)$ is a fiber bundle over $Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)$ with fiber $\text{Gr}_{e_k - \mathbf{r}}(\mathbf{s} - \mathbf{r})$ (where, by abuse of notation, we identify $\mathbf{s} - \mathbf{r} \geq 0$ with any of its representatives in $\text{mod } E_k$, and $\text{Gr}_{e_k - \mathbf{r}}(\mathbf{s} - \mathbf{r}) = \emptyset$ if $e_k - \mathbf{r}$ or $\mathbf{s} - \mathbf{r}$ are not nonnegative). Hence, using the easy fact that $\text{Gr}_{\mathbf{e}}(X)$ is the disjoint union of the $\tilde{Z}_{\mathbf{e}, \mathbf{r}, \mathbf{s}}(X)$, we obtain, as every considered irreducible representation is of dimension 1,

$$\chi(\text{Gr}_{\mathbf{e}}(X)) = \sum_{\mathbf{r}, \mathbf{s} \in C_k} \binom{\mathbf{s} - \mathbf{r}}{e_k - \mathbf{r}} \chi(Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)).$$

where, for any $\mathbf{r}_1, \mathbf{r}_2 \in C_k$,

$$\binom{\mathbf{r}_1}{\mathbf{r}_2} = \prod_{\rho \in \text{ind}_k} \binom{\mathbf{r}_{1,\rho}}{\mathbf{r}_{2,\rho}}$$

Then, substituting this expression in the definition of F_X , we obtain:

$$\begin{aligned} F_X(y) &= \sum_{\mathbf{e} \in C} \left[\sum_{\mathbf{r}, \mathbf{s} \in C_k} \binom{\mathbf{s} - \mathbf{r}}{e_k - \mathbf{r}} \chi(Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)) \right] y^{\mathbf{e}} \\ &= \sum_{\substack{\mathbf{e}' \in \bigoplus_{i \neq k} C_i \\ \mathbf{r}, \mathbf{s} \in C_k}} \chi(Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)) y^{\mathbf{e}'} \sum_{e_k \in C_k} \binom{\mathbf{s} - \mathbf{r}}{e_k - \mathbf{r}} y_k^{e_k} \\ &= \sum_{\substack{\mathbf{e}' \in \bigoplus_{i \neq k} C_i \\ \mathbf{r}, \mathbf{s} \in C_k}} \chi(Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)) y^{\mathbf{e}' + \mathbf{r}} (1 + y_k)^{\mathbf{s} - \mathbf{r}}. \end{aligned}$$

Now, as in [DWZ1], we have easily that

$$Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X) = Z_{\mathbf{e}', \bar{\mathbf{r}}, \bar{\mathbf{s}}}(X')$$

where

$$\bar{\mathbf{r}} = \left[\mathbf{e}' \otimes_{\overline{E}_k} A^* E_k \right] - h_k - \mathbf{s} \quad \text{and} \quad \bar{\mathbf{s}} = \left[\mathbf{e}' \otimes_{\overline{E}_k} A E_k \right] - h'_k - \mathbf{r}.$$

Using this, one gets

$$\begin{aligned} (1 + y'_k)^{h'_k} F_{X'}(y') &= \sum_{\substack{\mathbf{e}' \in \bigoplus_{i \neq k} C_i \\ \bar{\mathbf{r}}, \bar{\mathbf{s}} \in C_k}} \chi(Z_{\mathbf{e}', \bar{\mathbf{r}}, \bar{\mathbf{s}}}(X')) y'^{\mathbf{e}' + \bar{\mathbf{r}}} (1 + y'_k)^{h'_k + \bar{\mathbf{s}} - \bar{\mathbf{r}}} \\ &= \sum_{\substack{\mathbf{e}' \in \bigoplus_{i \neq k} C_i \\ \mathbf{r}, \mathbf{s} \in C_k}} \chi(Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)) y'^{\mathbf{e}'} y_k^{-\bar{\mathbf{s}} - h'_k} (1 + y_k)^{h'_k + \bar{\mathbf{s}} - \bar{\mathbf{r}}} \\ &= \sum_{\substack{\mathbf{e}' \in \bigoplus_{i \neq k} C_i \\ \mathbf{r}, \mathbf{s} \in C_k}} \chi(Z_{\mathbf{e}', \mathbf{r}, \mathbf{s}}(X)) y^{\mathbf{e}' + \mathbf{r}} (1 + y_k)^{h_k + \mathbf{s} - \mathbf{r}} \\ &= (1 + y_k)^{h_k} F_X(y) \end{aligned}$$

- (iii) As $g_k = h_k - h'_k$, $g'_k = -g_k$. If $j \neq k$, the equality we want to prove becomes, using again $g_k = h_k - h'_k$,

$$[\ker \gamma'_j] - [\ker \beta'_k \otimes_{E_k} A_{kj}] = [\ker \gamma_j] - [\ker \beta_k \otimes_{E_k} A_{jk}^*]$$

and, up to a possible exchange of (A, S, X, V) and (A', S', X', V') , we can suppose that $A_{kj} = 0$ (because A is 2-acyclic) and therefore, we have to prove that

$$[\ker \gamma'_j] = [\ker \gamma_j] - [\ker \beta_k \otimes_{E_k} A_{jk}^*].$$

Let

$$(\tilde{A}, \tilde{S}, \tilde{X}, \tilde{V}) = \tilde{\mu}_k(A, S, X, V)$$

in such a way that (A', S') is right-equivalent to $(\tilde{A}, \tilde{S})_{\text{red}}$. In this setting, one will prove that

$$[\ker \tilde{\gamma}_j] = [\ker \gamma_j] - [\ker \beta_k \otimes_{E_k} A_{jk}^*].$$

We can decompose

$$X_{\text{out}}(j) = X \otimes_E A^* E_j = X(k) \otimes_{E_k} A_{jk}^* \oplus X \overline{E}_k \otimes_{\overline{E}_k} \overline{E}_k A^* E_j$$

and we get

$$\tilde{X}_{\text{out}}(j) = X_{\text{out}}(k) \otimes_{E_k} A_{jk}^* \oplus X\overline{E}_k \otimes_{\overline{E}_k} \overline{E}_k A^* E_j$$

and

$$\tilde{X}_{\text{in}}(j) = \tilde{X}(k) \otimes_{E_k} \tilde{A}_{kj} \oplus X_{\text{in}}(j) = X'(k) \otimes_{E_k} A_{jk}^* \oplus X_{\text{in}}(j).$$

Along these decompositions, one has:

$$\gamma_j = (\psi \circ (\beta_k \otimes_{E_k} A_{jk}^*) \quad \eta) \quad \text{and} \quad \tilde{\gamma}_j = \begin{pmatrix} \alpha'_k \otimes_{E_k} A_{jk}^* & 0 \\ \psi & \eta \end{pmatrix}$$

where $\psi : X_{\text{out}}(k) \otimes_{E_k} A_{jk}^* \rightarrow X_{\text{in}}(j)$ and $\eta : X\overline{E}_k \otimes_{\overline{E}_k} \overline{E}_k A^* E_j \rightarrow X_{\text{in}}(j)$ are two E_j -modules morphisms (basically speaking, these two morphisms encode the part of γ_j which is not modified by the mutation at k). Using definitions of section 8, we get easily that $\ker \alpha'_k = \text{im } \beta_k$ and we get an exact sequence of E_j -modules:

$$0 \rightarrow \ker \beta_k \otimes_{E_k} A_{jk}^* \oplus \{0\} \rightarrow \ker \gamma_i \xrightarrow{f} \ker \tilde{\gamma}_i \rightarrow 0$$

where, along the previous decompositions

$$f(u, v) = ((\beta_k \otimes_{E_k} A_{jk}^*)u, v).$$

This short exact sequence implies that

$$[\ker \tilde{\gamma}_j] = [\ker \gamma_j] - [\ker \beta_k \otimes_{E_k} A_{jk}^*].$$

To finish, it remains to prove that $[\ker \tilde{\gamma}_j] = [\ker \gamma'_j]$. The proof is the same than in [DWZ1]. \square

Definition 9.15. For any GSPDR (A, S, X, V) , we define in the following way the reduced \mathbf{g} -vectors, \mathbf{h} -vectors and F -polynomials:

- for $i \in I$, let $\check{\mathbf{g}}_{X,V} = (\check{g}_i)_{i \in I}$ defined by $\check{g}_i = \dim_K g_i$ where $(g_i)_{i \in I} = \mathbf{g}_{X,V}$;
- for $i \in I$, let $\check{\mathbf{h}}_{X,V} = (\check{h}_i)_{i \in I}$ defined by $\check{h}_i = \dim_K h_i$ where $(h_i)_{i \in I} = \mathbf{h}_{X,V}$;
- $\check{F}_X = \Phi_{Y \rightarrow Z}(F_X)$ where $(Y_i)_{i \in \text{irr}}$ and $(Z_i)_{i \in I}$ are families of indeterminates.

Corollary 9.16. Let (A, S, X, V) be a GSPDR such that (A, S) is non-degenerate and locally free. Let $k \in I$. Denote

$$(A', S', X', V') = \mu_k(A, S, X, V).$$

Suppose also that the Y -seed $(z', B(A'))$ is obtained from $(z, B(A))$ by the mutation at k . Denote $\check{\mathbf{g}}_{X,V} = (\check{g}_i)_{i \in I}$, $\check{\mathbf{g}}_{X',V'} = (\check{g}'_i)_{i \in I}$, $\check{\mathbf{h}}_{X,V} = (\check{h}_i)_{i \in I}$ and $\check{\mathbf{h}}_{X',V'} = (\check{h}'_i)_{i \in I}$. We also denote by $(b_{ij})_{i,j \in I}$ the coefficients of $B(A)$. Then

- (i) $\forall i \in I, \check{g}_i = \check{h}_i - \check{h}'_i$;
- (ii) one has

$$(z_k + 1)^{\check{h}_k} \check{F}_X(z) = (z'_k + 1)^{\check{h}'_k} \check{F}_{X'}(z');$$

- (iii) for any $j \in I$,

$$\check{g}'_j = \begin{cases} -\check{g}_j & \text{if } j = k \\ \check{g}_j + \max(0, b_{jk})\check{g}_k - b_{jk}\check{h}_k & \text{if } j \neq k; \end{cases}$$

(iv) if $F_X \in \mathbb{Q}_+(Y)$, then $\check{F}_X \in \mathbb{Q}_+(Z)$. Then $\check{\mathbf{h}}_X$ and \check{F}_X are related by the following formula:

$$Z_0^{\check{\mathbf{h}}_X} = \check{F}_X|_{\text{Trop}(Z_0)} \left(Z_{0,i}^{-1} \prod_{j \neq i} Z_{0,j}^{\max(0, -b_{ji})} \right)_{i \in I}.$$

Proof. The points (i) and (iii) are immediate consequences of proposition 9.14. To prove (ii), it is enough to apply $\Phi_{y \rightarrow z}$ to the analogous identity in proposition 9.14 (for any extended free Y -seed $(y, (A, S))$) and then apply proposition 9.13. For (iv), remark that for any $(i, \rho) \in \text{irr}$,

$$\Phi_{Y_0 \rightarrow Z_0} \left(Y_{0,i,\rho}^{-1} Y_0^{[\rho \otimes_{E_i} E_i A^*]} \right) = Z_{0,i}^{-1} \prod_{j \neq i} Z_{0,j}^{\max(0, -b_{ji})}$$

is independent of ρ and therefore, it is easy to see that

$$\begin{aligned} & \check{F}_X|_{\text{Trop}(Z_0)} \left(Z_{0,i}^{-1} \prod_{j \neq i} Z_{0,j}^{\max(0, -b_{ji})} \right)_{i \in I} \\ &= \Phi_{Y_0 \rightarrow Z_0} \left(F_X|_{\text{Trop}(Y_0)} \left(Y_{0,i,\rho}^{-1} Y_0^{[\rho \otimes_{E_i} E_i A^*]} \right)_{(i,\rho) \in I} \right) \\ &= \Phi_{Y_0 \rightarrow Z_0} \left(Y_0^{\check{\mathbf{h}}_X} \right) = Z_0^{\check{\mathbf{h}}_X} \end{aligned}$$

using proposition 9.6. \square

In [FZ2], (see also [DWZ1, §2]), Fomin and Zelevinsky defined the notions of the F -polynomials and the \mathbf{g} -vectors associated to a sequence of mutation. More precisely, for a skew-symmetrizable matrix B (which will play the role of an initial seed), a sequence of indices $\mathbf{i} = (i_1, i_2, \dots, i_n) \in I^n$ and $k \in I$, they define a polynomial $F_{k;\mathbf{i}}^B \in \mathbb{Z}[Z_i]_{i \in I}$ and a vector $\mathbf{g}_{k;\mathbf{i}}^B \in \mathbb{Z}^I$.

Definition 9.17. Let (A, S) be a non-degenerate GSP and $\mathbf{i} = (i_1, \dots, i_n)$ be in I^n and V an E -module. We denote

$$(A_{V;\mathbf{i}}^{A,S}, S_{V;\mathbf{i}}^{A,S}, X_{V;\mathbf{i}}^{A,S}, V_{V;\mathbf{i}}^{A,S}) = \mu_{i_1} \mu_{i_2} \dots \mu_{i_n} (\mu_{i_n} \dots \mu_{i_2} \mu_{i_1} (A, S), 0, V).$$

Remark that $(A_{V;\mathbf{i}}^{A,S}, S_{V;\mathbf{i}}^{A,S})$ is right-equivalent to (A, S) .

Thus, we can adapt theorem [DWZ1, theorem 5.1]:

Theorem 9.18. Let (A, S) be a non-degenerate locally free GSP. Let $\mathbf{i} = (i_1, i_2, \dots, i_n) \in I^n$, $k \in I$ and $\rho \in \text{irr}_k$. Then

$$\mathbf{g}_{k;\mathbf{i}}^{B(A)} = \check{\mathbf{g}}_{X_{\rho;\mathbf{i}}^{A,S}, V_{\rho;\mathbf{i}}^{A,S}} \quad \text{and} \quad F_{k;\mathbf{i}}^{B(A)} = \check{F}_{X_{\rho;\mathbf{i}}^{A,S}}.$$

Proof. With corollary 9.16, it is the same proof as in [DWZ1]. \square

We get also this following, analogous to [DWZ1, corollary 5.3]:

Corollary 9.19. In the situation of theorem 9.18, suppose that $F_{k;\mathbf{i}}^{B(A)} \neq 1$, hence $X_{\rho;\mathbf{i}}^{A,S} \neq \{0\}$ and $V_{\rho;\mathbf{i}}^{A,S} = \{0\}$ (see proposition 8.8). Let $x_{k;\mathbf{i}}^{B(A)}$ be the corresponding cluster variable in the coefficient-free cluster algebra. In other terms

$$\left(\left(x_{i;\mathbf{i}}^{B(A)} \right)_{i \in I}, B' \right) = \mu_{i_n} \dots \mu_{i_2} \mu_{i_1} ((x_i)_{i \in I}, B(A)).$$

Then we have the following cluster character formula:

$$x_{k;\mathbf{i}}^{B(A)} = \prod_{i \in I} x_i^{-d_i} \sum_{\mathbf{e} \in C} \chi(\text{Gr}_{\mathbf{e}}(X)) \prod_{i \in I} x_i^{-\text{rk } \gamma_i + \sum_{j \in I} (\max(0, b_{ij}) e_j + \max(0, -b_{ij})(d_j - e_j))}$$

where $X = X_{\rho;\mathbf{i}}^{A,S}$, $d_i = \dim_K X(i)$ and $e_i = \dim_K \mathbf{e}_i$.

10. \mathcal{E} -INVARIANT

The aim of this part is analogous to [DWZ1, §7, §8]. Let (A, S, X, V) and (A, S, X', V') be two GSPDRs with the same non-degenerate GSP. We denote:

$$\langle X, X' \rangle = \dim_K \text{Hom}_{\mathcal{P}(A,S)}(X, X').$$

Define the three following integer functions:

$$\mathcal{E}^{\text{inj}}(X, V; X', V') = \langle X, X' \rangle + ([X]|\mathbf{g}_{X', V'})$$

$$\mathcal{E}^{\text{sym}}(X, V; X', V') = \mathcal{E}^{\text{inj}}(X, V; X', V') + \mathcal{E}^{\text{inj}}(X', V'; X, V)$$

$$\mathcal{E}(X, V) = \mathcal{E}^{\text{inj}}(X, V; X, V) = \frac{\mathcal{E}^{\text{sym}}(X, V; X, V)}{2}$$

where $[X] \in C$ is the class of X seen as an E -module, and, for $\mathbf{e}, \mathbf{e}' \in C$ (resp. $\mathbf{e}, \mathbf{e}' \in C_k$ for $k \in I$),

$$(\mathbf{e}|\mathbf{e}') = \sum_{\substack{i \in \text{irr} \\ (\text{resp. } i \in \text{irr}_k)}} \mathbf{e}_i \mathbf{e}'_i.$$

Then, we get, with the same proof as [DWZ1, theorem 7.1]:

Theorem 10.1. *We have, for any $k \in I$,*

$$\begin{aligned} & \mathcal{E}^{\text{inj}}(\mu_k(X, V); \mu_k(X', V')) - \mathcal{E}^{\text{inj}}(X, V; X', V') \\ &= (\mathbf{h}_{\mu_k(X, V), k}|\mathbf{h}_{X', V', k}) - (\mathbf{h}_{X, V, k}|\mathbf{h}_{\mu_k(X', V'), k}). \end{aligned}$$

In particular, \mathcal{E}^{sym} and \mathcal{E} are stable under mutations.

Proof. The only difference with [DWZ1] is that computations have to be done in the Grothendieck groups. Moreover, we have to worry about the skew-symmetrizability: with our convention, informally speaking, all b_{ik} should be replaced by $-b_{ki}$ in the proof of [DWZ1]). For example,

$$\sum_{i \in I} \max(0, b_{ik}) \dim_K X(i)$$

in [DWZ1] will be replaced here by $[X \otimes_E A^* E_k]$ whose dimension is

$$\sum_{i \in I} \max(0, -b_{ki}) \dim_K X(i)$$

if the GSP is locally free and $B = B(A)$. □

We get also the following analogous of [DWZ1, corollary 7.2]:

Corollary 10.2. *If (X, V) is obtained by a sequence of mutations from a negative decorated representation $(\{0\}, V)$ then $\mathcal{E}(X, V) = 0$.*

We denote by A^{op} the (E, E) -bimodule whose underlying vector space is A and whose bimodule structure is given by $g \cdot a^{\text{op}} \cdot h = (h^{-1} \cdot a \cdot g^{-1})^{\text{op}}$ if $g \in \Gamma_i$ and $h \in \Gamma_j$ for some $i, j \in I$ and $\text{op} : A \rightarrow A^{\text{op}}$ comes from the identity of A . It is then easy to extend op to an anti-isomorphism of algebras $E\langle\langle A \rangle\rangle \rightarrow E\langle\langle A^{\text{op}} \rangle\rangle$. Thus, (X^*, V^*) is a decorated representation of the GSP $(A^{\text{op}}, S^{\text{op}})$ on the ring E , where for each $i \in I$, X_i^* is contragredient to X_i , V_i^* is contragredient to V_i and a^{op} acts on X^* as the transpose of a for every $a \in A$. Thus, one gets the analogous of [DWZ1, proposition 7.3]:

Proposition 10.3. *We have $\mathcal{E}(X^*, V^*) = \mathcal{E}(X, V)$.*

Proof. As for any $i \in I$, the characteristic of K does not divide $\#\Gamma_i$, we have an isomorphism of right E -modules

$$\begin{aligned} (X \otimes_E A)^* &\rightarrow X^* \otimes_E A^{*\text{op}} \simeq X^* \otimes_E A^{\text{op}*} \\ f &\mapsto \sum_{\substack{x \in \mathcal{B}_X \\ a \in \mathcal{B}_A}} f(x \otimes a) x^* \otimes a^{*\text{op}} \\ \left(x \otimes a \mapsto \sum_{i \in I} \sum_{g \in \Gamma_i} \frac{\varphi(xg)\psi(g^{-1}a)}{\#\Gamma_i} \right) &\hookleftarrow \varphi \otimes \psi^{\text{op}} \end{aligned}$$

which does not depend of the bases \mathcal{B}_X and \mathcal{B}_A of X and A . Thus, we have, as in [DWZ1],

$$\begin{aligned} \mathcal{E}(X, V) &= \langle X, X \rangle + ([X][X \otimes_E A^*]) + \left([X] \left| [V] - [X] - \left[\bigoplus_{i \in I} \text{im } \gamma_i \right] \right. \right) \\ &= \langle X, X \rangle + ([X \otimes_E A][X]) + \left([X] \left| [V] - [X] - \left[\bigoplus_{i \in I} \text{im } \gamma_i \right] \right. \right) \\ &= \langle X^*, X^* \rangle + ((X \otimes_E A)^*)[[X^*]] \\ &\quad + \left([X^*] \left| [V^*] - [X^*] - \left[\bigoplus_{i \in I} \text{im } \gamma_i^* \right] \right. \right) \\ &= \langle X^*, X^* \rangle + ([X^* \otimes_E A^{\text{op}*}])[[X^*]] \\ &\quad + \left([X^*] \left| [V^*] - [X^*] - \left[\bigoplus_{i \in I} \text{im } \gamma_i^* \right] \right. \right) \\ &= \mathcal{E}(X^*, V^*) \end{aligned}$$

where we used that

$$\begin{aligned} ([X][X \otimes_E A^*]) &= \dim_K \text{Hom}_E(X, X \otimes_E A^*) \\ &= \dim_K \text{Hom}_E(X \otimes_E A, X) = ([X \otimes_E A][X]). \quad \square \end{aligned}$$

Hence, the following theorem has the same proof as [DWZ1, theorem 8.1] (note that all [DWZ1, §10] can be easily adapted in this case):

Theorem 10.4. *The \mathcal{E} -invariant satisfies*

$$\mathcal{E}(X, V) \geq \left(\left[\bigoplus_{i \in I} \ker \beta_i \right] \middle| \left[\bigoplus_{i \in I} \frac{\ker \gamma_i}{\text{im } \beta_i} \right] \right) + ([X][V]).$$

Then, we obtain the analogous of [DWZ1, corollary 8.3]:

Corollary 10.5. *If $\mathcal{E}(X, V) = 0$ then for each $(k, \rho) \in \text{irr}$,*

- (i) either $[M_k]_\rho = 0$ or $[V_k]_\rho = 0$;
- (ii) either $[\ker \gamma_k]_\rho = 0$ or $[\ker \gamma_k]_\rho = [\text{im } \beta_k]_\rho$.

11. APPLICATIONS TO CLUSTER ALGEBRAS

We conclude here that the following conjectures of [FZ2] are true for skew-symmetrizable integer matrix which can be obtained from a non-degenerate GSP with abelian groups. In particular, every matrix of the form DS where D is diagonal with integer coefficients and S is skew-symmetric with integer coefficients can be obtained in view of section 7. Every exchange matrix corresponding to the situation described in [Dem] (in particular every acyclic ones) can also be raised. Let B be such a skew-symmetrizable integer matrix. We suppose moreover that some (A, S) is fixed satisfying the hypothesis of section 9 such that $B(A) = B$.

Proposition 11.1 ([FZ2, conjecture 5.4]). *For any $\mathbf{i} \in I^n$ and $k \in I$, $F_{k;\mathbf{i}}^B$ has constant term 1.*

Proposition 11.2 ([FZ2, conjecture 5.5]). *For any $\mathbf{i} \in I^n$ and $k \in I$, $F_{k;\mathbf{i}}^B$ has a maximum monomial for divisibility order with coefficient 1.*

These first two are immediate, as in [DWZ1, §9].

Proposition 11.3 ([FZ2, conjecture 7.12]). *For any $\mathbf{i} \in I^n$, $k \in I$, we denote by $k\mathbf{i}$ the concatenation of (k) and \mathbf{i} . Let $j \in I$ and $(g_i)_{i \in I} = \mathbf{g}_{j;\mathbf{i}}^B$ and $(g'_i)_{i \in I} = \mathbf{g}_{j;k\mathbf{i}}^{\mu_k(B)}$. Then we have, for any $i \in I$,*

$$g'_i = \begin{cases} -g_i & \text{if } i = k; \\ g_i + \max(0, b_{ik})g_k - b_{jk} \min(g_k, 0) & \text{if } i \neq k. \end{cases}$$

Proof. We need here to add some trick to the proof of [DWZ1, §9]. Indeed, we need to prove, as in [DWZ1], that

$$\min(0, g_k) = h_k.$$

But what we obtain by using corollary 10.5 is

$$\min(0, g_{k,\rho}) = h_{k,\rho}$$

for any $\rho \in \text{irr}_k$. Moreover, we have, as seen before,

$$g_k = \sum_{\rho \in \text{irr}_k} g_{k,\rho} \quad \text{and} \quad h_k = \sum_{\rho \in \text{irr}_k} h_{k,\rho}$$

and therefore, what we need is equivalent to the fact that the $g_{k,\rho}$ are of the same sign. We will prove this with an indirect method. Retaining the notation of definition 9.17, we get

$$X_{E_j;\mathbf{i}}^{A,S} = \sum_{\rho \in \text{irr}_j} X_{\rho;\mathbf{i}}^{A,S}$$

and therefore, by linearity of \mathbf{g} ,

$$\mathbf{g}_{X_{E_j;\mathbf{i}}^{A,S}} = \sum_{\rho \in \text{irr}_j} \mathbf{g}_{X_{\rho;\mathbf{i}}^{A,S}}.$$

Hence, we get:

$$(\#\Gamma_j)g_k = \dim_K \left[\mathbf{g}_{X_{E_j; \mathbf{i}}^{A,S}} \right]_k.$$

In the same way,

$$(\#\Gamma_j)h_k = \dim_K \left[\mathbf{h}_{X_{E_j; \mathbf{i}}^{A,S}} \right]_k.$$

Moreover, by an immediate induction using proposition 9.14, as $[E_j]$ is the class of a free E_j -module, $\left[\mathbf{g}_{X_{E_j; \mathbf{i}}^{A,S}} \right]_k$ and $\left[\mathbf{h}_{X_{E_j; \mathbf{i}}^{A,S}} \right]_k$ are also free and therefore, their coefficients in term of the irreducible representations of E_k are of the same sign. Hence, we obtain, by adding these components

$$\min(0, (\#\Gamma_j)g_k) = (\#\Gamma_j)h_k$$

and the rest follows as in [DWZ1]. Note that it implies also that the $g_{k,\rho}$ are of the same sign. \square

The three following propositions have the same proof than in [DWZ1, §9]:

Proposition 11.4 ([FZ2, conjecture 6.13]). *For any $\mathbf{i} \in I^n$, the vectors $\mathbf{g}_{i;\mathbf{i}}^B$ for $i \in I$ are sign-coherent. In other terms, for $i, i', j \in I$, the j -th components of $\mathbf{g}_{i;\mathbf{i}}^B$ and $\mathbf{g}_{i';\mathbf{i}}^B$ have the same sign.*

Proposition 11.5 ([FZ2, conjecture 7.10(2)]). *For any $\mathbf{i} \in I^n$, the vectors $\mathbf{g}_{i;\mathbf{i}}^B$ for $i \in I$ form a \mathbb{Z} -basis of \mathbb{Z}^I .*

Proposition 11.6 ([FZ2, conjecture 7.10(1)]). *For any $\mathbf{i}, \mathbf{i}' \in I^n$, if we have*

$$\sum_{i \in I} a_i \mathbf{g}_{i;\mathbf{i}}^B = \sum_{i \in I} a'_i \mathbf{g}_{i;\mathbf{i}'}^B$$

for some nonnegative integers $(a_i)_{i \in I}$ and $(a'_i)_{i \in I}$, then there is a permutation $\sigma \in \mathfrak{S}_I$ such that for every $i \in I$,

$$a_i = a'_{\sigma(i)} \quad \text{and} \quad a_i \neq 0 \Rightarrow \mathbf{g}_{i;\mathbf{i}}^B = \mathbf{g}_{\sigma(i);\mathbf{i}'}^B \quad \text{and} \quad a_i \neq 0 \Rightarrow F_{i;\mathbf{i}}^B = F_{\sigma(i);\mathbf{i}'}^B.$$

In particular, $F_{i;\mathbf{i}}^B$ is determined by $\mathbf{g}_{i;\mathbf{i}}^B$.

12. AN EXAMPLE AND A COUNTEREXAMPLE

The aim of this part is to show an example where the technique shown in the previous sections works and a counterexample where there is no non-degenerate potential.

Suppose here that $K = \mathbb{C}$. We fix $\Gamma_1 = \Gamma_2$ to be the trivial group and $\Gamma_3 = \mathbb{Z}/2\mathbb{Z}$. We take $A_{12} = \mathbb{C}$ and $A_{23} = \mathbb{C}[\mathbb{Z}/2\mathbb{Z}]$, the other A_{ij} vanishing. Then A is acyclic and therefore $S = 0$ is a non-degenerate potential, in view of section 7. Moreover,

$$B(A) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix}$$

which is of type C_3 . Its exchange graph is given on figure 1 where the small dots (\cdot) symbolize vertices with trivial group and big dots (\bullet) symbolize

FIGURE 1. Exchange graph of type B_3

vertices with group $\mathbb{Z}/2\mathbb{Z}$. Simple arrows symbolize \mathbb{C} and double arrows symbolize $\mathbb{C}[\mathbb{Z}/2\mathbb{Z}]$. Thus, (A, S) will be symbolized by

Finally, wave lines (\sim) symbolize mutations composed with the exchange of vertices 1 and 2.

Now, we will compute explicitly $F_{3;213}^B$ and $\mathbf{g}_{3;213}^B$. We will follow the construction of section 9. According to the exchange graph,

$$\mu_3 \mu_1 \mu_2 (A, 0) = \left(\begin{smallmatrix} & \\ & \end{smallmatrix} , 0 \right) = (A', S').$$

Let ρ be one the two irreducible modules over $\mathbb{Z}/2\mathbb{Z}$. Then

$$\begin{aligned}\mu_3(A', S', 0, \rho) &= \begin{pmatrix} \cdot & 0 \\ \nearrow \nwarrow \bullet, 0, & 0 \\ 0 & \rho, 0 \end{pmatrix} \\ \mu_1\mu_3(A', S', 0, \rho) &= \begin{pmatrix} \cdot & \mathbb{C} \\ \nearrow \nwarrow \bullet, \dots, & 0 \\ 0 & \rho, 0 \end{pmatrix} \\ \mu_2\mu_1\mu_3(A', S', 0, \rho) &= \begin{pmatrix} \cdot & \mathbb{C} \\ \nearrow \nwarrow \bullet, \dots, & \mathbb{C} \nearrow \rho, 0 \\ \mathbb{C} \rightarrowtail \rho & 0 \end{pmatrix}\end{aligned}$$

(the arrows are obvious) and therefore,

$$X_{\rho;213}^B = \begin{array}{c} \mathbb{C} \\ \swarrow \\ \mathbb{C} \rightarrowtail \rho \end{array}$$

which induces that:

$$F_{X_{\rho;213}^B} = 1 + Y_\rho + Y_2 Y_\rho + Y_1 Y_2 Y_\rho$$

and therefore

$$\check{F}_{X_{\rho;213}^B} = 1 + Y_3 + Y_2 Y_3 + Y_1 Y_2 Y_3.$$

Moreover,

$$\mathbf{g}_{X_{\rho;213}^B} = \begin{pmatrix} 0 \\ 0 \\ -\rho \end{pmatrix}$$

and therefore

$$\check{\mathbf{g}}_{X_{\rho;213}^B} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.$$

It is easy to check by hand that these coincide with $F_{3;213}^B$ and $\mathbf{g}_{3;213}^B$ obtained for example by formulas of [DWZ1, §2].

Let now B be the matrix defined by

$$B = \begin{pmatrix} 0 & 0 & 1 & 1 & -1 & -2 \\ 0 & 0 & -1 & -1 & 1 & 2 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

We will show that there is no non-degenerate locally free GSP with mutation matrix B . Suppose that $(I, (\Gamma_i), A, S)$ is a non-degenerate GSP with mutation matrix B . Then, $\Gamma_1, \dots, \Gamma_5$ have the same cardinal which is two times the one of Γ_6 . Applying μ_3 followed by μ_5 create 2-cycles and implies, in view of proposition 4.10, that

$$A_{23} \otimes_{E_3} A_{31} \simeq (A_{15} \otimes_{E_5} A_{52})^*.$$

In the same way, applying μ_4 followed by μ_5 implies that

$$A_{24} \otimes_{E_4} A_{41} \simeq (A_{15} \otimes_{E_5} A_{52})^*.$$

With the same type of argument, applying μ_3 , μ_4 and μ_6 implies that

$$(A_{23} \otimes_{E_3} A_{31})^{\oplus 2} \simeq A_{24} \otimes_{E_4} A_{41} \oplus A_{23} \otimes_{E_3} A_{31} \simeq (A_{16} \otimes_{E_6} A_{62})^*.$$

As all considered groups are semisimple, it is easy to see that the (E_1, E_6) -bimodule A_{16} can be decomposed as a direct sum of the form

$$A_{16} = \bigoplus_{i=1}^m r_i \otimes_K s_i$$

where the r_i are irreducible left E_1 -modules and the s_i are irreducible right E_6 -modules. Moreover, the $r_i \otimes_K s_i$ are irreducible bimodule and satisfy, because of B ,

$$\forall r \in \text{irr}_1, \sum_{i \mid r_i \simeq r} \dim_K s_i = \dim_K r \text{ and } \forall s \in \text{irr}_6, \sum_{i \mid s_i \simeq s} \dim_K r_i = 2 \dim_K s.$$

Thus, there are exactly two indices which can be supposed to be 1 and 2 such that s_1, s_2 are trivial and r_1 and r_2 are of dimension 1 and appear only one time in the sequence (r_i) . In the same way,

$$A_{62} = \bigoplus_{i=1}^n t_i \otimes_K u_i$$

with

$$\forall t \in \text{irr}_6, \sum_{i \mid t_i \simeq t} \dim_K u_i = 2 \dim_K t \text{ and } \forall u \in \text{irr}_2, \sum_{i \mid u_i \simeq u} \dim_K t_i = \dim_K u.$$

Thus, there are exactly two indices which can be supposed to be 1 and 2 such that t_1, t_2 are trivial and the u_1 and u_2 are of dimension 1 and appear only one time in the sequence (u_j) . Hence,

$$(A_{16} \otimes A_{62})^* = \bigoplus_{i=1}^m \bigoplus_{\substack{j=1 \\ s_i \simeq t_j^*}}^n (u_j^* \otimes_K r_i^*)^{\dim_K s_i}$$

contains $u_1^* \otimes r_1^* \oplus u_1^* \otimes r_2^* \oplus u_2^* \otimes r_1^* \oplus u_2^* \otimes r_2^*$ as the only summands containing u_1^*, u_2^*, r_1^* and r_2^* . Finally, $(A_{16} \otimes A_{62})^*$ can not be decomposed as a direct sum of two times the same bimodule, which is a contradiction.

ACKNOWLEDGMENTS

The author would like to thank Bernhard Keller, Sefi Ladkani, Bernard Leclerc and Dong Yang for discussions in relation to this subject.

REFERENCES

- [Dem] Laurent Demonet. Categorification of skew-symmetrizable cluster algebras. arXiv: 0909.1633.
- [DR] Vlastimil Dlab and Claus Michael Ringel. Indecomposable representations of graphs and algebras. *Mem. Amer. Math. Soc.*, 6(173):v+57, 1976.
- [DWZ1] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky. Quivers with potentials and their representations II: Applications to cluster algebras. arXiv: 0904.0676.
- [DWZ2] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky. Quivers with potentials and their representations. I. Mutations. *Selecta Math. (N.S.)*, 14(1):59–119, 2008.

- [FZ1] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. *J. Amer. Math. Soc.*, 15(2):497–529 (electronic), 2002.
- [FZ2] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. *Compos. Math.*, 143(1):112–164, 2007.

MAX PLANCK INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, D-53111 BONN
E-mail address: Laurent.Demonet@normalesup.org