Procedimento para calcular a metragem cúbica (volume) que obterá de um tronco após o "corte".

- 1) Estimar o ponto central (longitudinal) do tronco.
- 2) Medir a circunferência naquele ponto.

O comprimento do círculo naquele ponto.

Vamos supor uma medida m=12. Não podemos supor uma medida pois o procedimento começa *medindo* a medida de um círculo (que não pode ser desenhado pelo comprimento). Precisamos, também, medir um círculo arbitrário.

Comprimento do círculo =  $2 \pi \cdot R$ .

O comprimento medido foi m = 47.69.

3) Dividir a circunferência por quatro.

Aqui, o comprimento de um quarto do círculo.

$$m_2 = 3$$
.

In[\*]:= 47.69 / 4

Out[\*]= 11.9225

4) Elevar isto ao quadrado.

Isto é montar um quadrado com lado igual a este comprimento ("esticado"). GeoGebra.

A área do quadrado é  $m_3 = 9$ .

Como estamos estabelecendo o quadrado pela medida e não geometricamente, seria interessante comparar geometricamente este quadrado com o círculo.

5) Multiplicar isto pela altura do tronco (obtendo o "volume").

Calcularei a altura do **cone** a partir da diferença no raio entre a base e o topo do tronco e a altura do tronco.

Se a base tem raio 0.5 e o topo, 0.2, e o tronco tem 9 de altura...

A razão entre topo e raio é 
$$\frac{0.2}{0.5} = \frac{0.2}{1/2} = 0.2 \cdot 2 = 0.4$$
.

Quando o topo será 0? Em 9 m, o raio caiu de 0.5 a 0.2. Mas essa é uma relação linear, uma sub-

tração. O raio caiu 0.3 (e não uma porcentagem do raio original) em 9.

Em quanto o raio cairá mais 0.2?  $\frac{0.2}{0.3} = \frac{x}{9} \Rightarrow 0.3 \ x = 1.8 \Rightarrow x = 6$ .

Então a altura do cone é 9 + 6 = 15.

ou 
$$\frac{R_t}{R_b} = \frac{h_c - h_t}{h_t} \Rightarrow$$

$$(h_c - h_t) R_b = R_t h_t \Rightarrow$$

$$h_c - h_t = \frac{R_t h_t}{R_b} \Rightarrow$$

$$h_c = \frac{R_t h_t}{R_b} + h_t = \frac{(R_t h_t) + (h_t R_b)}{R_b} = \frac{h_t (R_t + R_b)}{R_b}.$$

Onde:

 $R_t$  = raio do tronco

 $R_b$  = raio da base

 $h_c$  = altura do cone (completo)

 $h_t$  = altura do tronco

Testando.

$$ln[@]:=$$
  $\frac{9*(0.2+0.5)}{0.5}$ 

Out[ • ]= 12.6

Obter o volume do cone desta altura com mesma base (cone completo), obter o volume do cone de base  $R_t$  e altura  $h_2 = h_c - h_t$ , e subtrair o volume do primeiro pelo do segundo.

O volume do cone (Geometria II p. 204) é  $\frac{\pi \cdot r^2 \cdot h}{3}$ , em que r é o raio e h altura.

Cone completo:

Primeiro, a altura do cone...

In[\*]:= ConeAlt[9, 0.2, 0.5]

Out[ • ]= 12.6

O volume do cone completo...

Clear[ConeVol];

ConeVol=Function 
$$\left[ \{r,h\}, \frac{\pi * r^2 * h}{3} \right]$$
;

In[\*]:= ConeVol[0.5, 12.6]

Out[-]= 3.29867

O volume do cone topo...

In[\*]:= ConeVol[0.2, 12.6 - 9]

Out[ • ]= 0.150796

Subtração dos volumes.

In[#]:= ConeVol[0.5, ConeAlt[9, 0.2, 0.5]] - ConeVol[0.2, ConeAlt[9, 0.2, 0.5] - 9]

Out[ $\circ$ ]= 3.14788

Este é o volume do "tronco do cone".

Agora, como unir isto em uma função?

Função do volume de um tronco de cone. Estas são medidas do tronco (de cone). A altura é, coincidentemente, igual à do tronco (de madeira).

$$V(r_b, r_t, h) = \text{ConeVol}\left[r_b, \frac{h \cdot (r_b + r_t)}{r_b}\right] - \text{ConeVol}\left[r_t, \frac{h \cdot (r_b + r_t)}{r_b} - h\right] =$$

$$\left(\pi \cdot r_b^2 \cdot \frac{h \cdot (r_b + r_t)}{r_b} \cdot \frac{1}{3}\right) - \left[\pi \cdot r_t^2 \cdot \left(\frac{h \cdot (r_b + r_t)}{r_b} - h\right) \cdot \frac{1}{3}\right] =$$

$$\left(\pi \cdot r_b^2 \cdot \frac{h \cdot (r_b + r_t)}{3r_b}\right) - \left[\pi \cdot r_t^2 \cdot \frac{h \cdot (r_b + r_t) - h \cdot r_b}{3r_b}\right] =$$

$$\frac{3r_b \cdot \pi \cdot 3r_b^3 \cdot h \cdot (r_b + r_t)}{3r_b} - \frac{3r_b \cdot \pi \cdot 3r_b \cdot r_t^2 \cdot h \cdot (r_b + r_t - r_b)}{3r_b} =$$

$$9r_b^4 \cdot \pi \cdot h \cdot (r_b + r_t) - 9r_b^2 \cdot \pi \cdot r_t^2 \cdot h \cdot r_t.$$

Clear[ConeTVolM]; In[ • ]:= ConeTVolM=Function[ $\{rb,rt,h\},9*rb^4*\pi*h*(rb+rt)-9*rb^2*\pi*rt^2*h*rt];$ 

In[@]:= ConeTVolM[0.5, 0.2, 9]

Out = 10.6241

ConeTVol=Function[{rb,rt,h},ConeVol[rb,ConeAlt[h,rt,rb]]-ConeVol[rt,ConeAlt[h,rt,rb]-h]];

/// /:= ConeTVol[rb, rt, h]

$$Out[-] = \frac{1}{3} h \pi rb \left(rb + rt\right) - \frac{1}{3} \pi rt^{2} \left(-h + \frac{h \left(rb + rt\right)}{rb}\right)$$

$$\ln[s] = \text{Simplify} \left[ \frac{1}{3} h \pi rb \left( rb + rt \right) - \frac{1}{3} \pi rt^2 \left( -h + \frac{h \left( rb + rt \right)}{rb} \right) \right]$$

Out[
$$\circ$$
]= 
$$\frac{h \pi \left(rb^3 + rb^2 rt - rt^3\right)}{3 rb}$$

In[\*]:= ConeTVol[0.5, 0.2, 9]

Out[ ]= 3.14788

Vamos por partes.

$$log_{e} := ConeVol[rb, \frac{h * (rb + rt)}{rb}]$$

Out[\*]= 
$$\frac{1}{3}$$
 h  $\pi$  rb  $(rb + rt)$ 

ConeVol
$$\left[r_b, \frac{h \cdot (r_b + r_t)}{r_b}\right] = \frac{1}{3} \cdot \pi \cdot r_b^2 \cdot \frac{h \cdot (r_b + r_t)}{r_b} = \frac{1}{3} \cdot \pi \cdot r_b \cdot h \cdot (r_b + r_t).$$

Entendi, tudo.

(h = altura do tronco de cone.)

$$V(r_b, r_t, h) =$$

$$\left(\pi r_{b}^{2} \cdot \frac{h(r_{b} + r_{t})}{r_{b}} \cdot \frac{1}{3}\right) - \pi r_{t}^{2} \left(\frac{h(r_{b} + r_{t})}{r_{b}} - h\right) \cdot \frac{1}{3} = \frac{1}{3} \pi r_{b} \cdot h(r_{b} + r_{t}) - \frac{1}{3} \pi r_{t}^{2} \left(\frac{h(r_{b} + r_{t}) - h r_{b}}{r_{b}}\right) = \frac{1}{3} \pi r_{b} \cdot h(r_{b} + r_{t}) - \frac{1}{3} \pi r_{t}^{2} \cdot \frac{h r_{t}}{r_{b}} = \frac{1}{3} \pi \left[r_{b} h(r_{b} + r_{t}) - r_{t}^{2} \cdot \frac{h r_{t}}{r_{b}}\right] = \frac{1}{3} \pi \left[\frac{r_{b}^{2} h(r_{b} + r_{t}) - r_{t}^{2} h r_{t}}{r_{b}}\right] = \frac{\pi h(r_{b}^{2} (r_{b} + r_{t}) - r_{t}^{3})}{3 r_{b}} = \frac{\pi h(r_{b}^{3} + r_{b}^{2} r_{t} - r_{t}^{3})}{3 r_{b}}.$$

Clear[ConeTVolM];

ConeTVolM=Function 
$$\left[ \{ rb, rt, h \}, \frac{1}{3} * \pi * \frac{h * \left( rb^3 + rb^2 * rt - rt^3 \right)}{rb} \right];$$

In[\*]:= ConeTVolM[0.5, 0.2, 9]

Out[\*]= 3.14788

$$ln[*]:= \frac{\pi 9 \left(0.5^2 \times 0.7 - 0.2^3\right)}{3 \times 0.5}$$

Out[ • ]= 3.14788

Então, se for pela média (meio do tronco) para o cilindro, este teria raio:

$$ln[-]:= 0.2 + \frac{0.5 - 0.2}{2}$$

Out[\*]= 0.35

E volume:

$$ln[*]:= 0.35^2 * \pi * 9$$

Out[ • ]= 3.46361

In[\*]:= 3.4636059005827464 - 3.14788

Out[\*]= 0.315726

Seria esta diferença linear com o aumento das dimensões das bases e altura do tronco?

$$In[s]:= Clear[MediumVol]$$

$$MediumVol=Function[\{rb,rt,h\}, \left(\frac{rb+rt}{2}\right)^2*\pi*h];$$

Altura do tronco de 1 a 50...

```
In[@]:= Module[{rb, rt}, rb = 0.5; rt = 0.2;
       GraphicsRow[{
         Plot[{MediumVol[rb, rt, h], ConeTVolM[rb, rt, h]}, {h, 1, 50}],
         Plot[MediumVol[rb, rt, h] - ConeTVolM[rb, rt, h], {h, 1, 50}]
        }]
      ]
      20 [
      15
                                    1.0
Out[ • ]=
     10
                                    0.5
                 20
                                          10
                                               20
                                                    30
                                                         40
                                                              50
```

Raios mais diferentes?

Mesma diferença, medida deslocada?



Ou seja, não é só diferença, quanto maiores os raios (e também a diferença), maior a discrepância...

Reverificar.

Antes das derivadas...

Variando  $r_b$ .

$$\label{localization} $$ \inf_{\| \cdot \| = \| } \operatorname{Manipulate}[\operatorname{Plot}[\{\operatorname{MediumVol}[rb, rt, h], \operatorname{ConeTVolM}[rb, rt, h]\}, \{h, 0, 10\}], $$ $$ \{rb, .5\}, 0, 3, .01, \operatorname{Appearance} \rightarrow "Labeled"\}] $$$$



MediumVol: volume do cilindro tomado pelo raio na média entre o raio da base e do topo.

ConeTVolM: volume do tronco do cone com raios base e topo.

Ambos de mesma altura.

Todo:

Marcar o valor das duas funções em h = 9.

Restringir  $r_t \ge r_b$ .

Comparações manuais (GeoGebra).

A função do volume do cilindro estava errada?

O volume do cilindro (Geometria II p. 193) é  $\pi r^2 h$ , não rh.

Função diferença.

In[\*]:= ConeTVolM[rb, rt, h] - MediumVol[rb, rt, h]

$$\textit{Out[*]*} \ - \frac{1}{4} \ h \ \pi \ \left( \ rb + \ rt \right)^2 + \ \frac{h \ \pi \ \left( \ rb^3 + \ rb^2 \ rt - \ rt^3 \right)}{3 \ rb}$$

In[\*]:= Simplify[ConeTVolM[rb, rt, h] - MediumVol[rb, rt, h]]

$$\textit{Out[*]=} \quad \frac{h \, \pi \, \left( \text{rb}^3 - 2 \, \text{rb}^2 \, \text{rt} - 3 \, \text{rb} \, \text{rt}^2 - 4 \, \text{rt}^3 \right)}{\text{12 rb}}$$

## **Derivadas**

Seria legal descobrir a função discrepância e achar o máximo e mínimo.

O problema é que são três variáveis. Mas podemos achar as derivadas parciais.

Dessa forma, a função discrepância é apenas a subtração combinada das duas medidas.

In[\*]:= Simplify[MediumVol[rb, rt, h] - ConeTVolM[rb, rt, h]]

Out[\*]= 
$$\frac{h \pi \left(-rb^3 + 2 rb^2 rt + 3 rb rt^2 + 4 rt^3\right)}{12 rb}$$

Clear [Discr] In[ • ]:= Discr=MediumVol[rb,rt,h]-ConeTVolM[rb,rt,h]

Out[\*]= 
$$\frac{1}{4} h \pi \left( rb + rt \right)^2 - \frac{h \pi \left( rb^3 + rb^2 rt - rt^3 \right)}{3 rb}$$

$$\textit{Out[s]} = \frac{1}{2} \; h \; \pi \; \left( \text{rb} + \text{rt} \right) \; - \; \frac{h \; \pi \; \left( 3 \; \text{rb}^2 + 2 \; \text{rb} \; \text{rt} \right)}{3 \; \text{rb}} \; + \; \frac{h \; \pi \; \left( \text{rb}^3 + \text{rb}^2 \; \text{rt} - \text{rt}^3 \right)}{3 \; \text{rb}^2}$$

$$Out[\circ] = \frac{1}{2} h \pi \left( rb + rt \right) - \frac{h \pi \left( rb^2 - 3 rt^2 \right)}{3 rb}$$

Out[
$$\circ$$
]=  $\frac{1}{4} \pi \left( \text{rb} + \text{rt} \right)^2 - \frac{\pi \left( \text{rb}^3 + \text{rb}^2 \text{ rt} - \text{rt}^3 \right)}{3 \text{ rb}}$ 

```
In[@]:= {
      Plot[{DiscrRb[rb, 0.1, 4.5]}, {rb, -1, 1}, ImageSize → Small],
      Plot[{DiscrRb[rb, 0.2, 0.9]}, {rb, -2, 2}, ImageSize \rightarrow Small],
      Plot[{DiscrRb[rb, 0.4, 1.8]}, {rb, -4, 4}, ImageSize \rightarrow Small]
     }
                                                    1.0
                     2
                                                    0.5
                                                    -0.5
                                                   -1.0
                                                   -2.0
```

```
Info := N[Solve[DiscrRb[rb, 0.1, 4.5] == 0]]
    N[Solve[DiscrRb[rb, 0.2, 0.9] == 0]]
    N[Solve[DiscrRb[rb, 0.4, 1.8] == 0]]
```

.... Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

$$\textit{Out[\@oldsymbol{o}]$= $ \{ \{ rb \rightarrow -0.1 \}, \{ rb \rightarrow 0.1 - 0.1 \ensuremath{\dot{\mathbb{1}}} \}, \{ rb \rightarrow 0.1 + 0.1 \ensuremath{\dot{\mathbb{1}}} \} \} $}$$

.... Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

```
Out[\circ]= { {rb \rightarrow -0.2}, {rb \rightarrow 0.2 - 0.2 \dot{\mathbb{1}}}, {rb \rightarrow 0.2 + 0.2 \dot{\mathbb{1}}}}
```

.... Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

```
Out[\sigma]= { { rb \rightarrow -0.4}, {rb \rightarrow 0.4 - 0.4 \dot{\mathbb{1}} }, {rb \rightarrow 0.4 + 0.4 \dot{\mathbb{1}} }}
```

Só tem solução negativa. O que isso quer dizer?

```
In[ • ]:= {
      Plot[{DiscrRt[0.25, rt, 4.5]}, {rt, -0.5, 0.5}, ImageSize \rightarrow Small],
      Plot[\{DiscrRt[0.5, rt, 9]\}, \{rt, -1, 1\}, ImageSize \rightarrow Small],
      Plot[{DiscrRt[1, rt, 18]}, {rt, -2, 2}, ImageSize \rightarrow Small]
     }
```



```
In[@]:= N[Solve[DiscrRt[0.25, rt, 4.5] == 0]]
         N[Solve[DiscrRt[0.5, rt, 9] == 0]]
         N[Solve[DiscrRt[1, rt, 18] == 0]]
Out[\circ] = \{ \{ \text{rt} \rightarrow -0.0625 - 0.0806872 i \} \}, \{ \text{rt} \rightarrow -0.0625 + 0.0806872 i \} \}
Out[\circ]= { \{ rt \rightarrow -0.125 - 0.161374 i \}, \{ rt \rightarrow -0.125 + 0.161374 i \} \}
\textit{Out[*]=}~\left\{\,\left\{\,rt\,\rightarrow\,-\,0.25\,-\,0.322749~\dot{\mathbb{1}}\,\right\}\,,~\left\{\,rt\,\rightarrow\,-\,0.25\,+\,0.322749~\dot{\mathbb{1}}\,\right\}\,\right\}
```

Só tem solução complexa.

## Plotar a antiderivada. (?)



Essa ausência de soluções indica que as variáveis não têm mínimos.

As três parciais (cada uma em uma variável) foram um sistema de três equações em três variáveis para resolver?

## GeoGebra

A circunscrição do hexágono no círculo foi feita da seguinte forma (Cubagem3.ggb):

- Foi definido o ponto central do círculo;
- Foi medido o raio de um ponto no círculo ao ponto central e traçado um segundo círculo do ponto no círculo passando pelo ponto central, cruzando o primeiro círculo (compasso)
- No ponto de cruzamento, foi traçado outro círculo com o mesmo raio e cruzando o primeiro círculo novamente
- E assim sucessivamente até seccionar o círculo em seis arcos.
- Foi traçado o hexágono unindo os seis pontos.

## Fontes:

Geometria I e II - Disciplina na modalidade a distância - Unisul Virtual, 2011 Kelen Regina Salles Silva e Christian Wagner.

Circunscrição do hexágono no círculo: Geometria I págs. 48 e 61 Área do hexágono regular: Geometria I pág. 168

Área do círculo: Geometria I pág. 183 Volume do cone: Geometria II pág. 204