1 Abstract Group Theory

1.1 Lagrange's Theorem

• For a subgroup $H \subset G$: $\frac{|G|}{|H|} \in \mathbb{N}^+$

1.2 Conjugate Classes

• $g \sim g'$ are conjugate elements if $\exists x \in G$ s.t.

$$xgx^{-1} = g'$$

- equivalence relation: reflexivity, transitivity, symmetry
- conjugate classes $C(g) = \{xgx^{-1} \mid x \in G\}$
- same order: $g^k = E \implies (g')^k = E$
- identity is its own class
- centraliser: $Z(g) = \{g' \in G \mid g'g = gg'\} \subset G$
 - (i) $xgx^{-1} = x'g(x')^{-1} \iff x^{-1}x' \in Z(g)$
 - (ii) $E \in Z(g)$
 - $\therefore xgx^{-1} = x'g(x')^{-1} \iff x, x' \in xZ$

1.3 Normal (Invariant) Subgroup

• A normal subgroup $N \subset G$ satisfies $\forall q \in G$,

$$gNg^{-1} = N$$

- fully contains conjugate classes: $g \in N \implies C(g) \subset N$
- $\bullet \ \mbox{left/right cosets}$ are equal: gN=Ng
- factor/quotient group: $G/N = \{gN \mid g \in G\}$
- by Lagrange's Theorem: |G/N| = |G|/|N|

1.4 Homomorphism

• for any $a,b,c\in G$, there are $\widetilde{a},\widetilde{b},\widetilde{c}\in\widetilde{G}$, s.t.

$$ab=c\iff \widetilde{a}\widetilde{b}=\widetilde{c}$$

- $\{g \in G \mid g \leftrightarrow \widetilde{E}\}$ form a normal subgroup N of G
 - (i) elements in coset gN correspond to same elt $\widetilde{g}\widetilde{E} = \widetilde{g}$
 - (i.i) distinct cosets gN correspond to distinct elements \widetilde{g}
 - (ii) each $\widetilde{g} \in \widetilde{G}$ corresponds to |gN| elements $g \in G$
 - \therefore \widetilde{G} is isomorphic to the factor group G/N

1.5 Cayley's Theorem

- Any finite group G is isomorphic to a subgroup of $S_{|G|}$
- Symmetric group S_n : permutations of n indices
 - can represent elements of S_n as $2 \times n$ matrices

$$\begin{pmatrix} 1 & 2 & \dots & n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} \in S_n$$

- Since S_n is finite, number of subgroups of S_n is finite
- ... number of distinct (non-isomorphic) groups G of order |G|=n is finite

1.6 Point Groups

- C_n axes and σ planes cross at a point to keep G finite
- reflections: σ
 - 1. σ_v containing C_n axis
 - 2. $\sigma_h \perp C_n$ axis
 - 3. σ_d diagonal (the rest)
- rotations: $C_n = \{C_n, C_n^2, \dots C_n^n = E\}$ (cyclic Abelian)

$$C_n = R(\varphi = \frac{2\pi}{n}) \tag{1}$$

• improper rotations: rotation and reflection

$$S_n = C_n \sigma_h = \sigma_h C_n \tag{2}$$

- inversion (about origin): $i = S_2$
- (i) Rotations of a point group form a subgroup
- (ii) (Im)proper rotations form conjugate classes

$$qC_nq^{-1} = C_n^{-1}$$

- ... a point group's rotational subgroup is normal
- point group hierarchy:
 - $-C_{nv}:(C_n,n\sigma_v)$
 - * non-Abelian for n > 2
 - $-C_{nh}:(C_n,\sigma_n\perp C_n)$
 - dihedral group: $D_n:(C_n,nC_2\perp C_n)$
 - $D_{nh} : (C_n, nC_2 \perp C_n, \sigma_h \perp C_n, n\sigma_v)$
 - $D_{nd} : (C_n, nC_2 \perp C_n, i = S_2, n\sigma_d)$

edges/vertices	3	4	5
3	tetrahed. T_d	cube O_h	dodecahed. I_h
4	octahed. O_h		
5	icosahed. I_h		

Table 1: Point Groups of the Platonic Solids

2 Representation Theory

• homomorphism from G to a set of linear operators $\hat{T}(G)$ on a vector space L.

$$g_i g_i = g_k \iff \hat{T}(g_i)\hat{T}(g_i)\vec{x} = \hat{T}(g_k)\vec{x}$$

• basis $\{\hat{e}_i\}$ of L: decompose $\vec{x} = x_i \hat{e}_i$

$$\hat{T}(g)e_i = \sum_{i=1}^{\dim(L)} D_{ji}(g)e_j$$

• matrices D(G) form a representation of G on L

$$D(g_i)D(g_j) = D(g_ig_j)$$
 (homomorphism)

- exact / faithful rep.: isomorphism $g \leftrightarrow D(g)$
- fully symmetric / trivial IRREP.: $A_1(g) = 1$
- unitary: $D^{\dagger} = D^{-1} \implies \langle D\vec{x}|D\vec{y}\rangle = \langle \vec{x}|\vec{y}\rangle$
- equivalent: $D' = MDM^{-1}$
- Can find an equivalent unitary rep. for any D(G) on \mathbb{C}^n .
- \therefore WLOG assume D is unitary

2.1 (Ir)reducible Representations

- \bullet reducible: D leave some subspace of L invariant
 - in special basis: D are block diagonal
 - * construct this basis with projection operators

$$\hat{P}_{ik}^{(j)} = \frac{\dim D}{|G|} \sum_{q} (D^{(j)})_{ik}^* \hat{T}(g)$$

- blocks are IRREPs $D = \sum_i^{\oplus} r_i D^{(i)}$
- number of inequiv. IRREPs is number of conjugate classes
- Character: $\chi^{(j)}(g) = \operatorname{Tr} D^{(j)}(g_i)$
 - equivalent IRREPs have same character
 - conjugate elements have the same character
- character of product rep. is product of characters

$$\chi(D^{(i)} \otimes D^{(j)}) = \chi^{(i)} \chi^{(j)} \tag{3}$$

- (direct) product rep. is in general reducible
- basis of product rep. is product of original bases
- character of reducible rep is sum of IRREP characters

$$\chi(D^i \oplus D^j) = \chi^{(i)} + \chi^{(j)} \tag{4}$$

2.2 Schur's Lemmas

$$D^{(i)}(G)M = MD^{(j)}(G) \implies M = \delta_{ij}\alpha I$$

2.3 Orthogonality Theorems

$$\sum_{g \in G} \left(D^{(i)}(g) \right)_{\mu\nu}^* \left(D^{(j)}(g) \right)_{\alpha\beta} = \frac{|G|}{\dim(D)} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$

Proof. Use Shur's lemmas on $M = \sum_{g} D^{(i)} X D^{(j)}$

- Number of inequivalent IRREPs is finite
- character row orthogonality (inner product)

$$(\chi^{(i)}, \chi^{(j)}) = \sum_{g} (\chi^{(i)}(g))^* \chi^{(j)}(g) = |G| \delta_{ij}$$

- can sum over conjugate classes

$$(\chi^{(i)}, \chi^{(j)}) = \sum_{C} n_C (\chi^{(i)}(C))^* \chi^{(j)}(C) = |G| \delta_{ij}$$

• column orthogonality

$$\sum_{i} n_{C}(\chi^{(i)}(C))^{*}\chi^{(i)}(C') = |G|\delta_{CC'}$$
 (5)

2.4 Reducing a Representation

- Reducible rep: $D^{(red)}(g) = \sum_{i=1}^{\oplus} I_{r_i} \otimes D^{(i)}(g)$
- Decompose character: $\chi^{(red)} = \sum_{i} r_i \chi^{(i)}$
- Orthogonality: find coefficient r_i

$$r_i = \frac{1}{|G|}(\chi^{(i)}, \chi(D))$$
 (reduction formula)

2.5 Regular Representation

• obtained from multiplication table of group

$$\begin{array}{c|cccc}
G & E & A & B \\
\hline
E & E & A & B \\
B & B & E & A \\
A & A & B & E
\end{array}
\right\} R(A) = \begin{pmatrix} 0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \end{pmatrix}$$

• rearrangement \implies 0 along diagonal for $R(g \neq E)$

$$\chi^{(R)} = (|G|, 0, \dots)$$

• Since $r_i = n_j$, decomposing R into IRREPs shows

$$|G| = \sum_{i} n_j^2$$

2.6 Character Table Completion

- 1. # IRREPs = # Conjugate Classes
- 2. Trivial IRREP
- 3. First column $\chi(E)$ using $\sum_{j} n_{j}^{2} = |G| = \sum_{C} n_{C}$
- 4. homomorphism: $g^n = E \iff D(g)^n = I$
 - Abelian \implies 1D IRREP $\implies \chi(g) = \exp(i\frac{2\pi}{n}k)$
 - g, g^{-1} in same class $\implies \chi(g) = \chi(g)^*$ is real
 - then, if n odd (e.g. C_5) then it is +1
- 5. Row and column orthogonality

3 Applications to QM

3.1 Unitary Reps in QM

1. Have N degenerate wavefunctions $\{\psi_i\}$ which solve

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right] \psi_i(\vec{r}) = E \psi_i(\vec{r})$$

- 2. $V(\vec{r})$ is invariant under orthogonal $\vec{r} \to U\vec{r}$
- Then $\psi_i(U^{-1}\vec{r}) = \hat{T}(U)\psi_i(\vec{r})$ also solves TISE
- \rightarrow Has to be superposition of degenerate eigenfunctions:

$$\hat{T}(U)\psi_i(\vec{r}) = \sum_{j=1}^N D_{ji}(U)\psi_j(\vec{r})$$

- N-degenerate eigenfns $\{\psi_i\}$ form basis for a unitary IR-REP D(G) of the symmetry group G of the Hamiltonian
- \bullet scalar product of basis functions of different IRREPs is zero

3.2 Wigner's Theorem

• $[\hat{T}(G), \hat{H}] = 0 \implies HD = DH$

$$D^{(i)}(g)H_{ij} = H_{ij}D^{(j)}(g) \implies H_{ij} = \delta_{ij}\lambda_{ij}I_{n_i}$$

- degeneracy n_i for each $n_i \times n_i$ IRREP $D^{(i)}$
- additional accidental degeneracy (e.g. if $H_{11} = H_{22}$)

3.3 Perturbations and Degeneracy Lifting

A $n \times n$ IRREP has n degenerate eigenfunctions ψ as a basis.

- Perturbation can only decrease symmetry $G' \subset G$
- new rep: select from D(G) the matrices $D(g' \in G')$
 - If new rep. is reducible: lift degeneracy; split level
 - guess or use character orthogonality to decompose

trick: In questions about lifting degeneracy, use only rotational subgroup SO(3). For selection rules, use full O(3).

pitfall: Example $\Gamma^2 = A_1 \oplus 2E$, then the 2 E have different energies in general (each with 2-fold degeneracy).

3.4 Selection Rules

Let $\{\psi_i\}$ be a basis for IRREP $D^{(i)}$ and let the operator \hat{O} transform as $\hat{T}_q \hat{O}_{\alpha} \hat{T}_q^{-1} = \sum_{\beta} D'_{\beta\alpha} \hat{O}_{\beta}$

- $\langle \psi_i | \hat{O}_{\alpha} | \psi_j \rangle \neq 0$ only if $D^{(i)} \otimes D' \otimes D^{(j)}$ contains A_{1g}
 - Calculate $\chi^{(D^{(i)}\otimes D'\otimes D^{(j)})}(g)=\chi^{(i)}(g)\chi'(g)\chi^{(j)}(g)$
 - Scalar product with $\chi^{(A_1)}$ is $0 \implies$ forbidden

trick (PS10) direct product of same parity IRREPs is even, i.e. a direct sum of only even IRREPs; direct product of different parity is odd, i.e. a direct sum of odd IRREPs only

$$\chi_g \otimes \chi_g = \chi_u \otimes \chi_u = \bigoplus \chi_g$$
$$\chi_g \otimes \chi_u = \bigoplus \chi_u$$

• fundamental transition $|0\rangle \rightarrow |1\rangle$: ground state transforms as totally symmetric IRREP A_{1g}

3.5 Normal Modes

• if potential energy $V = \frac{1}{2}y_i\Omega_{ij}y_j$ has symmetry G

$$D^{(3N)}\Omega = \Omega D^{(3N)}$$

- 1. normal modes transform as (form basis of) IRREPs of the symmetry group of the potential
- 2. degeneracy of energy = degeneracy of frequency
- basis: 3N-component N-atom displacement vectors
- representation matrices $D^{(3N)} = R \otimes A$

- R exchanges equilibrium positions of N atoms $R_{ij}(g) = \delta_{jk}$, where g interchanges $i \leftrightarrow k$

$$R(C_3) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{for} \quad \begin{array}{c} 1 \to 3 \\ 2 \to 1 \\ 3 \to 2 \\ 4 \to 4 \end{array}$$

- -A(g) is action on each atom (e.g. rotation)
- decompose $D^{(3N)} = D^{(\text{vib})} \oplus D^{(\text{rot})} \oplus D^{(\text{trn})}$ using
- character $\chi(D^{(3N)}) = \chi(R)\chi(A) = n_a\chi(A)$
 - $-n_g$: number of atoms that stay in place after g

$$\chi^{(3N)}(g) = \begin{cases} n_g(2\cos\varphi + 1), & \text{proper} \\ n_g(2\cos\varphi - 1), & \text{improper} \end{cases}$$

- * trn: polar, just like A
- * rot: axial, times (-1) for improper rotations
- $\bullet \ \chi^{(vib)} = \chi^{(3N)} \chi^{(trn)} \chi^{(rot)}$

$$\chi^{(\text{vib})}(g) = \begin{cases} (n_g - 2)(2\cos\varphi + 1), & \text{proper} \\ n_g(2\cos\varphi - 1), & \text{improper} \end{cases}$$

In practice, find normal modes IRREPs as follows:

- 1. identify symmetry G of system
- 2. for each $g \in G$, identify n_g atoms staying in place
- 3. Calculate $\chi^{(vib)}(g)$ (or $\chi^{(trn)}$, $\chi^{(rot)}$ or total $\chi^{(3N)}$)
 - identity $E = \text{proper rot with } \varphi = 0$
 - reflections $\sigma = \text{improper rot with } \varphi = 0$
 - improper rot $S_n = \sigma C_n$ with $\varphi = 2\pi/n$
 - C_n proper rot with $\varphi = 2\pi/n$
- 4. decompose / reduce into IRREPs

3.6 Spherical Harmonics

For $Y_{l,m}$, have 2l+1 orthogonal functions, so representation are $2l+1\times 2l+1$ matrices. These are in general reducible, e.g. for C_{5v} , $Y_{1,0}$ is basis for 1×1 IRREP and $Y_{1,\pm 1}$ for 2×2 .

Rotation axis is z (for θ, φ convention), then to see how group operations transform the spherical harmonics into each other, use

- θ invariant under C_n or σ_v
- $C_n: (\varphi \to \varphi + \frac{2\pi}{n})$
- $\sigma_v: (\varphi \to -\varphi)$

4 Lie Groups

• continuous group: parameters $\vec{a} = (a_1, \dots, a_r)$ s.t.

$$\vec{a} \rightarrow \vec{a} + \delta \vec{a} \implies q(\vec{a}) \rightarrow q(\vec{a}) + \delta q$$

- $g(\vec{c}) = g(\vec{a})g(\vec{b})$ with continuous function $\vec{f}(\vec{a}, \vec{b}) = \vec{c}$
- Lie Group: $f(\vec{a})$ analytic

4.1 Classification

- GL(2,R): 2x2 matrices with det $A \neq 0$, 4 parameters
- SL(2,R): det A=1, 3 parameters
- O(2): $A^T = A^{-1} \implies \det A = \pm 1, 1$ parameter
- SO(2): det A=1, one parameter (angle of rotation)

4.2 Generators

- finite groups: generate C_{3v} from products of C_3 and σ_v
- SO(2):

$$A(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

• Taylor expand:

$$A(\varphi) = I_2 + X\varphi + \dots = e^{\varphi X} = I\cos\varphi + X\sin\varphi$$

with generator

$$X = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- SO(3): 9-6 = 3 free parameters (Euler Angles)
 - 6 constraints from $A^T A = I_3$
- generators of x, y, z rotations satisfy

$$[X_i, X_j] = \varepsilon_{ijk} X_k$$

4.3 Angular Momentum

• SO(2) infinitesimal angle $\delta \varphi$ on F(x,y):

$$F(x',y) \approx F(x,y) + \frac{i}{\hbar} \hat{L}_z F \delta \varphi$$

with $\hat{L}_z = -i\hbar(x\partial_y - y\partial_x)$

• SO(3): all components of \hat{L} with

$$[\hat{L}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} \hat{L}_k$$

- in general $[\hat{x}_i, \hat{x}_j] = \sum_k c_{ij}^{(k)} \hat{x}_k$
 - structure constants $c^{(k)}$
 - 1. AS of commutator: $c^{(k)} = -c^{(k)}$
 - 2. Jacobi identity

$$[A, [B, C]] + (cyclic) = 0$$

4.4 Representations of SO(2)

• integration over group:

$$\int f(R)dR = \int f(R)\frac{\mathrm{d}R}{\mathrm{d}a}da = \int f(R)g(R)da$$

- density: g(R)

- Rearrangement: If g(R)da = g(R'R)da, then

$$\int f(R)dR = \int f(R'R)dR$$

- SO(2): $g(\varphi) = 1$, Abelian \implies 1D: only need characters
 - 1. $\chi(\varphi)\chi(\varphi') = \chi(\varphi + \varphi')$
 - 2. $\chi(0) = 1$
 - 3. $\chi(\varphi) = \chi(\varphi + 2\pi)$
 - $\implies \chi^{(m)}(\varphi) = e^{im\varphi}$

$$\begin{array}{c|c|c} SO(2) & E & R(\varphi) & \text{basis} \\ \hline \chi^{(\pm m)} & 1 & e^{\pm i m \varphi} & (x+iy)^m \end{array}$$

• orthogonality: $(2\pi = \text{"volume" of SO(2)})$

$$\int_0^{2\pi} (\chi^{(m)})^* \chi^{(n)} \,\mathrm{d}\varphi = 2\pi \delta_{mn}$$

4.5 SO(3) IRREPs

$$A\vec{x} = \lambda \vec{x} \implies \lambda = 1, e^{\pm i\varphi}$$

- $\lambda = 1$: axis of rotation $A\vec{n} = \vec{n}$
 - Use $A^T \vec{n} = A^T A \vec{n} = \vec{n} \implies (A A^T) \vec{n} = 0$ and $|\vec{n}|^2 = 1$ to find rot. axis \vec{n}
- φ angle of rotation around \vec{n}
 - use $\operatorname{Tr} A = \operatorname{Tr} \Lambda$ to find φ
 - sphere of rad. φ = representation of rotations of φ around possible \vec{n}
- parametrisation $(n_1\varphi, n_2\varphi, n_2\varphi)$ $n_1^2 + n_2^2 + n_3^2 = 1$ $(\varphi\cos\phi\sin\theta, \varphi\sin\phi\sin\theta, \varphi\cos\theta)$
- rotations about different axes:

$$R(\vec{n}, \varphi) = U^{-1}(\vec{n}, \vec{n}')R(\vec{n}', \varphi)U(\vec{n}, \vec{n}')$$

• rearrangement theorem

$$2\int (1-\cos\varphi)F(\varphi,\theta,\phi)\sin\theta\,\mathrm{d}\varphi\,\mathrm{d}\theta\,\mathrm{d}\phi$$

• For characters:

$$\int_0^{\pi} (1 - \cos \varphi) (\chi^{(\mu)}(\varphi))^* \chi^{(\nu)}(\varphi) \, d\varphi = \pi \delta_{\mu\nu}$$

• To find characters: Use \hat{H} with SO(3) symmetry. Then $\{\psi_{lm} = Y_{lm}\}$ form basis of IRREP

$$RY_{lm} = \sum_{m'=-l}^{+l} \Gamma_{m,m'}^{(l)} Y_{lm'}$$

• choosing e.g. z-axis: $R_z(\varphi)Y_{lm} = e^{-im\varphi}Y_{lm}$

$$\Gamma^{(l)}(R_z(\varphi)) = \begin{pmatrix} e^{-il\varphi} & & \\ & \ddots & \\ & & e^{+il\varphi} \end{pmatrix}$$

• $\chi^{(l)}(R) = \operatorname{Tr} \Gamma^{(l)}(R) = \frac{\sin[(l+1/2)\varphi]}{\sin(\varphi/2)}$ (geometric series)

SO(3)	E = R(0)	$R(\varphi)$	basis
$\chi^{(l)}$	2l+1	$\frac{\sin[(2l+1)\varphi/2]}{\sin(\varphi/2)}$	Y_{lm}

4.6 Perturbation of spherically symmetric \hat{H}

- O(3): SO(3) & improper rotations
 - Since $iC_2=S_2C_2=\sigma_hC_2^2=\sigma_h$, can build improper rotations with i as $S_n=\sigma_hC_n=iC_2C_n$
- Since $\hat{i}Y_{lm} = (-1)^l Y_{lm}$, have extra factor $(-1)^l$

$$\chi^{(l)}(i \otimes R(\varphi)) = (-1)^l \chi^{(l)}(R(\varphi))$$

- Can then calculate characters, e.g.:
 - $-\chi(\sigma_h) = \chi(i \otimes C_2) = \chi(i \otimes R(\pi))$
 - $-\chi(S_4) = \chi(i \otimes C_4^{-1}) = \chi(i \otimes R(\frac{\pi}{2}))$
 - $-\chi(S_n) = \chi(i \otimes C_2 \otimes C_n) = \chi(i \otimes R(\pi + \frac{2\pi}{n}))$

•
$$(2\omega + 1)$$
-dimensional tensor vector operator $\hat{T}_{\mu}^{(\omega)}$ transforms under the $D^{(l=\omega)}$ IRREP of SO(3):

$$R\hat{T}_{\mu}^{(\omega)}R^{-1} = \sum_{\mu'} \hat{T}_{\mu'}^{(\omega)} D_{\mu\mu'}^{(\omega)}(R)$$
 (9)

• Wigner-Eckert theorem:

$$\langle N'j'm'|\,\hat{T}_{\mu}^{(\omega)}\,|Njm\rangle = C_{m\mu m'}^{j\omega j'}\underbrace{\langle N'j'|\,\hat{T}^{(\omega)}\,|Nj\rangle}_{\text{reduced matrix element}}$$

- - perturbation example: Octahedral arrangement
 - new \hat{H} has symmetry of rotational subgroup of O_h
 - calculate characters $\chi^{(l)}(O_h)$ via table
 - decompose into IRREPs of O_h
 - * l=2 level is split into $\chi^{(2)}=E\oplus T_2$
 - selection rules between split states
 - * use symmetry (g / u) arguments

4.7 Wigner-Eckart Theorem

- decompose product representation $D^{(j_1)} \otimes D^{(j_2)} = \sum_{J}^{\oplus}$
- Clebsch-Gordan Series for SO(3):

$$\chi^{(j_1 \otimes j_2)} = \frac{\sin[(j_1 + 1/2)\varphi] \sin[(j_2 + 1/2)\varphi]}{\sin^2(\varphi/2)}$$
 (6)

$$= \sum_{J=|j_1-j_2|}^{j_1+j_2} \frac{\sin[(J+1/2)\varphi]}{\sin(\varphi/2)}$$
 (7)

$$= \sum_{J=|j_1-j_2|}^{j_1+j_2} \chi^{(J)} \quad \text{simply reducible} \qquad (8)$$

- direct product basis $Y_{m_1}^{j_1} \otimes Y_{m_2}^{j_2}$
- basis in which $D^{(j_1)} \otimes D^{(j_2)}$ is block diagonal is linear combination

$$\omega_{M}^{Jj_{1}j_{2}}=\sum_{m_{1}m_{2}}C_{m_{1}m_{2}M}^{Jj_{1}j_{2}}Y_{m_{1}}^{j_{1}}Y_{m_{2}}^{j_{2}}$$

where C are (tabulated) Clebsch-Gordan coefficients