

# Introdução à Lógica de Programação Prof. Lucas Amparo Barbosa Semestre letivo 2020.2



## O que veremos hoje?

📔 Histórico da Álgebra Booleana

Operadores

Postulados e Teoremas

Simplificações

Exemplos Práticos



# **Um breve Histórico**



- 👍 Lógica Formal, derivada da Filosofia
- Boole simplificou as frases utilizando operadores matemáticos
- Shannon demonstrou que poderiam ser utilizados em comutação telefônica.

# O\_que é Algebra de Boole!

Sistema matemático composto por operadores, regras, postulados e teoremas

- Nois valores: 0 ou 1
- Nuas operações: E e OU
- · Negação: Inverte o estado da variável

## **OPERADORES BÁSICOS (FUNDAMENTAIS)**



## OPERADORES DERIVADOS (SECUNDÁRIOS)



# **Operadores Fundamentais**





Resulta em 1 se todas as variáveis forem 1.







| TABELA VERDADE - AND |   |     |  |  |
|----------------------|---|-----|--|--|
| Α                    | В | A.B |  |  |
| 0                    | 0 | 0   |  |  |
| 0                    | 1 | 0   |  |  |
| 1                    | 0 | 0   |  |  |
| 1                    | 1 | 1   |  |  |

# **Operadores Fundamentais**





Resulta em 1 se ao menos uma variável for 1.







| TABELA VERDADE - OR |   |     |  |
|---------------------|---|-----|--|
| Α                   | В | A+B |  |
| 0                   | 0 | 0   |  |
| 0                   | 1 | 1   |  |
| 1                   | 0 | 1   |  |
| 1                   | 1 | 1   |  |

# **Operadores Fundamentais**





Inverte o estado da variável







| TABELA VERDADE - NOT |    |  |
|----------------------|----|--|
| Α                    | ~A |  |
| 0                    | 1  |  |
| 1                    | 0  |  |

## **Operadores Secundários - XOR**



Resulta em 1 se as variáveis fossem diferentes







| Α | В | S |  |
|---|---|---|--|
| 0 | 0 | 0 |  |
| 0 | 1 | 1 |  |
| 1 | 0 | 1 |  |
| 1 | 1 | 0 |  |

# **Operadores Secundários**



|   | Resumo Tabela Verdade |     |      |    |     |     |      |
|---|-----------------------|-----|------|----|-----|-----|------|
| Α | В                     | AND | NAND | OR | NOR | XOR | NXOR |
| 0 | 0                     | 0   | 1    | 0  | 1   | 0   | 1    |
| 0 | 1                     | 0   | 1    | 1  | 0   | 1   | 0    |
| 1 | 0                     | 0   | 1    | 1  | 0   | 1   | 0    |
| 1 | 1                     | 1   | 0    | 1  | 0   | 0   | 1    |

#### POSTULADOS, TEOREMAS E PROPRIEDADES

- Complemento
  - Se A = 0, então A' = 1
- Adição
  - Outro nome para OU
- Multiplicação
  - Outro nome para E
- Identidade
  - $\circ$  A + 0 = A
  - O A \* 1 = A
- Comutativa
  - $\circ$  A + B = B + A
  - $\circ$  A \* B = B \* A

#### POSTULADOS, TEOREMAS E PROPRIEDADES

#### Associativa

$$\circ$$
 A + (B + C) = (A + B) + C = A + B + C

$$\circ$$
 A \* (B \* C) = (A \* B) \* C = A \* B \* C

#### Distributiva

$$\circ$$
 A + (B \* C) = (A + B) \* (A + C)

$$\circ$$
 A \* (B + C) = (A \* B) + (A \* C)

#### Absorção

$$\circ$$
 A + (A \* B) = A

$$\circ$$
 A \* (A + B) = A

#### De Morgan

$$\circ$$
 (A \* B)' = A' + B'

$$\circ$$
 (A + B)' = A' \* B'

#### Prove que

$$A + (A * B) = A$$
  
e  
 $A * (A + B) = A$ 



#### **RESOLVA!!!!**

Ε

$$S = (A + B + C) * (A' + B' + C)$$







Tudo no computador é transformado em binário!!!

Mas porque? Qual a vantagem?







#### DECIMAL PARA BINÁRIO





#### BINÁRIO PARA DECIMAL



+0\*8+1\*4+0\*2+1\*1 = 181

#### **CONVERTA:**

150 para binário225 para binário

11011010 para decimal 10001011 para decimal





# Acredite se quiser...



Computadores executam diversas operações matemáticas...
Só que eles só sabem
"SOMAR"





### COMO O COMPUTADOR FAZ ADIÇÃO?

$$50_{10} = 110010_{2}$$
  
 $25_{10} = 11001_{2}$ 

$$\begin{array}{r} 110010 \\ + 011001 \\ \hline 1001011 \end{array}$$

$$1001011_2 = 75_{10}$$

#### COMO O COMPUTADOR FAZ SUBTRAÇÃO?

E se eu passar essa operação aqui? 50 - 25 = ???

Como resolver????

#### COMO O COMPUTADOR FAZ SUBTRAÇÃO?

E se eu passar essa operação aqui?

Como resolver????

#### **COMPLEMENTO DE 2!!!!**

Primeiro, devemos executar o complemento de 2 no 25 e somá-lo ao 50

$$011001$$
 $\rightarrow 100110$ 
 $+ 1$ 
 $100111$ 

#### COMO O COMPUTADOR FAZ SUBTRAÇÃO?

E se eu passar essa operação aqui?

Como resolver????

#### **COMPLEMENTO DE 2!!!!**

Primeiro, devemos executar o complemento de 2 no 25 e somá-lo ao 50

$$011001$$
 $011001$ 
 $+ 1$ 
 $100111$ 



#### **RESOLVA**

$$120 + 81$$

$$36 + 91$$

150 - 24

79 - 3







## Para saber mais...

- Álgebra Booleana (Vídeo)
- Circuitos Lógicos (Apostila)
- Algumas Aplicações Cotidianas (Artigo)
- M Introdução a Computação (Slide)
- **Somplemento de 2 (Artigo)**