Supplementary materials for paper "An ensemble classifier based on kNN with an interval threshold strategy".

U. Bentkowska, M. Mrukowicz, W. Gałka, K. Lech

1	. Figures		1
		AML ALL (Lymphoma) dataset	
		Colon	
	1.3.	DLBCL	6
	1.4.	Prostate	8
	1.5.	Ovarian	. 10
2	. Statisti	cal tests	. 11
		ethodology	

1. Figures

The results presented in Tables 2,4,6,8,10 are plotted here, respectively. The data in the figures are sorted by accuracy. Average values from folds in LOO are presented for both quality measures (accuracy and coverage) for the established hyperparameters: aggregation, k, s and t.

1.1. AML ALL (Lymphoma) dataset

1.2. Colon

1.3. DLBCL

1.4. Prostate

1.5. Ovarian

2. Statistical tests

2.1. Methodology

Based on the filtered results in Tables 3, 5, 7, 9, 11 there are obtained series of accuracy for fixed aggregation and interval-threshold but different s and t. However, only series with sufficient number of samples (above or equal to 10) and with mean accuracy comparable to the SOTA were considered.

To compare this series with SOTA models first, the Shapiro-Wilk test was performed to determine if one sample t-test is available (with additional check to not contain extreme outliers). If the series was not normally distributed, the Miao, Gel, and Gastwirth (MGG) symmetry test was performed and if the distribution was symmetric, the exact one sample Wilcoxon signed rank test was performed (due to the ties, sometimes present in data series). For some series of data neither t-test nor exact one sample Wilcoxon signed rank test was available. All tests were performed using a 0.05 significance level in R programming language.

Table 1. Shapiro-Wilk test. Bold font was used in the cases where the distribution is normal

series	W	p-value
AML ALL, A1 k=[1]	0,891843	0,024389

AML ALL, A1 k=[2]	0,862589	0,007054
AML ALL, A1 k=[1, 2]	0,739264	8,86E-05
AML ALL, A2 k=[1, 2]	0,739264	8,86E-05
AML ALL, A5 k=[1, 2]	0,854774	0,012692
AML ALL, A7 k=[1, 2]	0,744107	0,000103
AML ALL, A10 k=[1, 2]	0,905686	0,045165
COLON, A1 k=[1]	0,912078	0,125704
COLON, A1 k=[2]	0,937927	0,324388
COLON, A1 k=[1, 2]	0,968286	0,852925
COLON, A10 k=[2]	0,932202	0,294286
COLON, A10 k=[1, 2]	0,917158	0,333862
COLON, A2 k=[1, 2]	0,948711	0,540873
COLON, A5 k=[2]	0,931437	0,319595
COLON, A6 k=[2]	0,953122	0,7055
COLON, A7 k=[1, 2]	0,949114	0,547042
OVARIAN A1 k=[1]	0,775826	0,000287
OVARIAN A1 k=[2]	0,738545	8,67E-05
OVARIAN A1 k=[1, 2]	0,660697	9,26E-06
OVARIAN A2 k=[1, 2]	0,660356	9,18E-06
OVARIAN A5 k=[1]	0,794904	0,003165
OVARIAN A5 k=[2]	0,72897	8,99E-05
OVARIAN A5 k=[1, 2]	0,622027	0,000102
OVARIAN A6 k=[1]	0,820443	0,01748
OVARIAN A6 k=[2]	0,843133	0,010814
OVARIAN A6 k=[1, 2]	0,703955	0,000984
OVARIAN A7 k=[1, 2]v	0,660697	9,26E-06
OVARIAN A10 k=[1]	0,794389	0,000713
OVARIAN A10 k=[2]	0,754469	0,000143
OVARIAN A10 k=[1, 2]	0,77816	0,000415
prostate A1 k=[1, 2]	0,782761	0,001189
prostate A1 k=[1]	0,945853	0,335122
prostate A1 k=[2]	0,896272	0,029648
prostate A2 k=[1, 2]	0,804963	0,002375
prostate A5 k=[2]	0,921433	0,298003
prostate A7 k=[1, 2]	0,786981	0,001352
prostate A10 k=[2]	0,925	0,29275
DLBCL A1 k=[1, 2]	0,906593	0,120066
DLBCL A2 k=[1, 2]	0,91151	0,142824
DLBCL A7 k=[1, 2]	0,904138	0,110106

Table 2. MGG Symmetry Test. Bold font was used in the cases where the data are symmetric

series	statistic	p-value
AML ALL, A1 k=[1]	-1,23555	0,216626
AML ALL, A1 k=[2]	-2,57292	0,010084
AML ALL, A1 k=[1, 2]	-0,91373	0,360856
AML ALL, A2 k=[1, 2]	-0,91373	0,360856

AML ALL, A5 k=[1, 2]	-1,92073	0,054766
AML ALL, A7 k=[1, 2]	-0,88522	0,376036
AML ALL, A10 k=[1, 2]	-2,69147	0,007114
OVARIAN, A1 k=[1]	-3,56724	0,000361
OVARIAN, A1 k=[2]	-3,23553	0,001214
OVARIAN, A1 k=[1, 2]	-4,8396	1,3E-06
OVARIAN, A2 k=[1, 2]	-4,8396	1,3E-06
OVARIAN, A5 k=[1]	-1,19308	0,232838
OVARIAN, A5 k=[2]	-3,51416	0,000441
OVARIAN, A5 k=[1, 2]	-0,85229	0,394055
OVARIAN, A6 k=[1]	-2,36617	0,017973
OVARIAN, A6 k=[2]	-2,39562	0,016592
OVARIAN, A6 k=[1, 2]	-2,55678	0,010565
OVARIAN, A7 k=[1, 2]v	-4,8396	1,3E-06
OVARIAN, A10 k=[1]	-1,91238	0,055827
OVARIAN, A10 k=[2]	-3,87287	0,000108
OVARIAN, A10 k=[1, 2]	-2,96867	0,002991
prostate, A1 k=[1, 2]	-2,69562	0,007026
prostate, A1 k=[2]	-2,40168	0,01632
prostate, A2 k=[1, 2]	-2,74545	0,006043
prostate, A7 k=[1, 2]	-2,87105	0,004091

Table 3 Exact Wilcoxon signed rank test. Bold font was used in the cases of significant difference

series	V	p-value
AML ALL A1 k=[1] knn k=1	204	0,001157
AML ALL A1 k=[1] knn k=2	231	9,54E-07
AML ALL A1 k=[1] knn k=3	224	1,72E-05
AML ALL A1 k=[1] knn k=5	231	9,54E-07
AML ALL A1 k=[1] random forest	50	0,021001
AML ALL A1 k=[1, 2] knn k=1	213	0,00023
AML ALL A1 k=[1, 2] knn k=2	230	1,91E-06
AML ALL A1 k=[1, 2] knn k=3	230	1,91E-06
AML ALL A1 k=[1, 2] knn k=5	230	1,91E-06
AML ALL A1 k=[1, 2] random forest	101	0,626988
AML ALL A2 k=[1, 2] knn k=1	213	0,00023
AML ALL A2 k=[1, 2] knn k=2	230	1,91E-06
AML ALL A2 k=[1, 2] knn k=3	230	1,91E-06
AML ALL A2 k=[1, 2] knn k=5	230	1,91E-06
AML ALL A2 k=[1, 2] random forest	101	0,626988
AML ALL A5 k=[1, 2] knn k=1	153	1,53E-05
AML ALL A5 k=[1, 2] knn k=2	153	1,53E-05
AML ALL A5 k=[1, 2] knn k=3	153	1,53E-05
AML ALL A5 k=[1, 2] knn k=5	153	1,53E-05
AML ALL A5 k=[1, 2] random forest	90	0,538208
AML ALL A7 k=[1, 2] knn k=1	213	0,00023
AML ALL A7 k=[1, 2] knn k=2	231	9,54E-07

AML ALL A7 k=[1, 2] knn k=3	230	1,91E-06
AML ALL A7 k=[1, 2] knn k=5	231	9,54E-07
AML ALL A7 k=[1, 2] random forest	101	0,626988
OVARIAN A5 k=[1] knn k=1	91	0,080994
OVARIAN A5 k=[1] knn k=2	91	0,080994
OVARIAN A5 k=[1] knn k=3	87	0,131592
OVARIAN A5 k=[1] knn k=5	91	0,080994
OVARIAN A5 k=[1] random forest	5	0,00061
OVARIAN A5 k=[1, 2] knn k=1	90	0,000488
OVARIAN A5 k=[1, 2] knn k=2	90	0,000488
OVARIAN A5 k=[1, 2] knn k=3	88	0,001221
OVARIAN A5 k=[1, 2] knn k=5	90	0,000488
OVARIAN A5 k=[1, 2] random forest	14	0,023682
OVARIAN A10 k=[1] knn k=1	124	0,491716
OVARIAN A10 k=[1] knn k=2	113	0,776831
OVARIAN A10 k=[1] knn k=3	100	0,862623
OVARIAN A10 k=[1] knn k=5	113	0,776831
OVARIAN A10 k=[1] random forest	8	4,39E-05

Table 4 One sample t-test. Bold font was used in the cases of significant difference

COLON A7 k=[1, 2] random forest	10,64265	8,69E-08
prostate A1 k=[1] knn k=1	10,1644	6,94E-09
prostate A1 k=[1] knn k=2	10,1644	6,94E-09
prostate A1 k=[1] knn k=3	10,1644	6,94E-09
prostate A1 k=[1] knn k=5	11,89539	5,81E-10
prostate A1 k=[1] random forest	-8,13463	1,93E-07
prostate A5 k=[2] knn k=1	6,550198	4,13E-05
prostate A5 k=[2] knn k=2	6,550198	4,13E-05
prostate A5 k=[2] knn k=3	6,550198	4,13E-05
prostate A5 k=[2] knn k=5	8,024943	6,34E-06
prostate A5 k=[2] random forest	-9,03996	2,01E-06
prostate A10 k=[2] knn k=1	6,174766	4,76E-05
prostate A10 k=[2] knn k=2	6,174766	4,76E-05
prostate A10 k=[2] knn k=3	6,174766	4,76E-05
prostate A10 k=[2] knn k=5	7,667817	5,79E-06
prostate A10 k=[2] random forest	-9,60891	5,5E-07
DLBCL A1 k=[1, 2] knn k=1	6,043671	3,02E-05
DLBCL A1 k=[1, 2] knn k=2	1,495912	0,157
DLBCL A1 k=[1, 2] knn k=3	10,38471	5,84E-08
DLBCL A1 k=[1, 2] knn k=5	10,38471	5,84E-08
DLBCL A1 k=[1, 2] random forest	-7,18617	4,66E-06
DLBCL A2 k=[1, 2] knn k=1	4,04551	0,0012
DLBCL A2 k=[1, 2] knn k=2	0,507355	0,62
DLBCL A2 k=[1, 2] knn k=3	7,422839	3,24E-06
DLBCL A2 k=[1, 2] knn k=5	7,422839	3,24E-06
DLBCL A2 k=[1, 2] random forest	-6,2473	2,14E-05
DLBCL A7 k=[1, 2] knn k=1	6,358447	1,77E-05
DLBCL A7 k=[1, 2] knn k=2	1,66072	0,119
DLBCL A7 k=[1, 2] knn k=3	10,84264	3,4E-08
DLBCL A7 k=[1, 2] knn k=5	10,84264	3,4E-08
DLBCL A7 k=[1, 2] random forest	-7,30767	3,86E-06

Table 5 The summary of statistical differences. Only the series when t-test or exact one sample Wilcoxon signed rank test was available are presented.

	kNN, k=1	KNN,	kNN, k=3	kNN, k=5	Random Forest
		k=2			
AML ALL, A1, k=[1]	+	+	+	+	-
AML ALL, A1, k=[1, 2]	+	+	+	+	х
AML ALL, A2, k=[1, 2]	+	+	+	+	х
AML ALL, A5, k=[1, 2]	+	+	+	+	x
AML ALL, A7, k=[1, 2]	+	+	+	+	x
COLON, A1 k=[1]	х	х	Х	+	+
COLON, A1 k=[2]	х	Х	х	+	+
COLON, A1, k=[1, 2]	+	+	+	+	+
COLON, A2, k=[1, 2]	+	+	+	+	+
COLON, A5, k=[2]	+	+	+	+	+
COLON, A6, k=[2]	х	х	х	+	+

COLON, A7, k=[1, 2]	+	+	+	+	+
COLON, A10, k=[2]	Х	Х	х	+	+
COLON, A10, k=[1, 2]	+	+	+	+	+
OVARIAN, A5, k=[1]	х	Х	х	х	-
OVARIAN, A5, k=[1, 2]	+	+	+	+	-
OVARIAN, A10, k=[1]	Х	х	х	х	-
DLBCL, A1, k=[1, 2]	+	Х	+	+	-
DLBCL, A2, k=[1, 2]	+	х	+	+	-
DLBCL, A7, k=[1, 2]	+	х	+	+	-
PROSTATE, A1, k=[1]	+	+	+	+	-
PROSTATE, A5, k=[2]	+	+	+	+	-
PROSTATE, A10, k=[2]	+	+	+	+	-

Legend:

-: statistically significant difference in favour of SOTA model

+: statistically significant difference in favour of the proposed model

x: no statistically significant difference

Table 1. Shapiro-Wilk test. Bold font was used in the cases where the distribution is normal11
Table 2. MGG Symmetry Test. Bold font was used in the cases where the data are symmetric12
Table 3 Exact Wilcoxon signed rank test. Bold font was used in the cases of significant difference13
Table 4 One sample t-test. Bold font was used in the cases of significant difference15
Table 5 The summary of statistical difference. Only the series when t-test or exact one sample
Wilcoxon signed rank test was available is presented