# Chapter 1

# Groups and Rings

Lectured by Someone Typed by Yu Coughlin Autumn 2024

### Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

# Contents

| 1 | $\mathbf{Gro}$ | ups an  |                              | 1 |
|---|----------------|---------|------------------------------|---|
|   | 1              | Quotie  | 0 1                          | 3 |
|   |                | 1.1     | ± ±                          | 3 |
|   |                | 1.2     | 0 1                          | 3 |
|   |                | 1.3     | • 0 1                        | 3 |
|   |                | 1.4     | Isomorphism theorems         | 3 |
|   |                | 1.5     | Centres                      | 4 |
|   |                | 1.6     | Commutators                  | 5 |
|   |                | 1.7     | <i>p</i> -primary subgroups  | 5 |
|   |                | 1.8     | Generators                   | 5 |
|   | 2              | Group   | actions                      | 5 |
|   |                | 2.1     | Actions                      | 5 |
|   |                | 2.2     | Orbit-stabiliser theorem     | 5 |
|   |                | 2.3     | <i>p</i> -groups             | 5 |
|   |                | 2.4     | Jordan's theorem             | 5 |
|   | 3              | Finitel | <i>y</i> 0                   | 5 |
|   |                | 3.1     |                              | 5 |
|   |                | 3.2     | V 0 1                        | 5 |
|   | 4              | Rings   |                              | 5 |
|   |                | 4.1     |                              | 5 |
|   |                | 4.2     |                              | 5 |
|   |                | 4.3     | Ideals                       | 5 |
|   | 5              | Integra |                              | 5 |
|   |                | 5.1     | 8                            | 5 |
|   |                | 5.2     | Charateristic                | 5 |
|   |                | 5.3     | 1                            | 5 |
|   | 6              | PIDs a  |                              | 5 |
|   |                | 6.1     | <b>₽</b> 0                   | 5 |
|   |                | 6.2     |                              | 5 |
|   |                | 6.3     |                              | 5 |
|   |                | 6.4     | Unique factorisation domains | 5 |
|   | 7              | Fields  |                              | 5 |
|   |                | 7.1     |                              | 5 |
|   |                | 7.2     |                              | 5 |
|   |                | 7.3     | Existence of finite fields   | 5 |

### 1 Quotient groups

#### 1.1 Group homomorphisms

**Definition 1.1.1** (Group isomorphism). Given groups G, H, a function  $f: G \to H$  is a **group isomorphism** if it is a bijective group homomorphism. If there exists an isomorphism between groups, G is **isomorphic** to H written  $G \cong H$ .

**Definition 1.1.2** (Group automorphism). Given G a group, an isomorphism  $f: G \xrightarrow{\sim} G$  is a **group automorphism**.

**Theorem 1.1.3.** Aut G (the set of automorphisms of a group G) is a group under function composition.

Proof.

**Theorem 1.1.4.** Given groups G, H, if  $f: G \xrightarrow{\sim} H$  then  $f^{-1}: H \xrightarrow{\sim} G$ .

Proof.

#### 1.2 Normal subgroups

**Definition 1.2.1** (Normal subgroup). A sugroup N of G is **normal**, written  $N \leq G$ , if it satisfies any of these equal properties:

- (N1) N is the kernel of some homomorphism,
- (N2) N is stable under conjugations  $(\forall n \in N \text{ and } g \in G, gng^{-1} \in N)$ ,
- (N3) for all  $g \in G$  gN = Ng.

Proof of equivalence.  $\Box$ 

#### 1.3 Quotient groups

**Definition 1.3.1** (Quotient groups). Let  $N \subseteq G$ , the quotient group of G modulo N, written G/N, is the group with elements as left cosets of N in G with  $(g_1N) \cdot (g_2N) = (g_1g_2N)$ .

*Proof.* One can easily check this satisfies all of the group axioms.

**Remark 1.3.2.** By Lagrange's theorem |G/N| = |G|/|N|.

**Definition 1.3.3** (Simple group). A group G is **simple** if it has no normal subgroups except  $\{e_G\}$  and G.

#### 1.4 Isomorphism theorems

**Theorem 1.4.1** (First isomorphism theorem). If  $f: G \to H$  is a group homomorphism,  $G/\ker f \cong \operatorname{im} f$ .

*Proof.* Have  $\phi: G/\ker f \to \operatorname{im} f$  with  $\phi: g \ker f \mapsto f(g)$ .

**Theorem 1.4.2** (Universal property of quotients). Let  $N \subseteq G$  and  $f: G \to H$  be a group homomorphism such that  $N \subseteq \ker f$ . There exists a *unique* homomorphism  $\tilde{f}: G/N \to H$  such that the diagram



commutes, (here  $\pi: G \to G/N$  is the projection map with  $\pi: g \to gN$ )

*Proof.* The proof follows Theorem 1.4.1 with  $H = \operatorname{im} f$ .

## 1.5 Centres

| <b>Definition 1.5.1</b> (Inner automorphisms). Given the group $G$ the conjugations by elements of $G$ group $Inn G \subseteq Aut G$ .                             | form the  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Proof.                                                                                                                                                             |           |
| <b>Definition 1.5.2</b> (Centre of group). Given the group $G$ the elements of $G$ that commute with elements form the <b>centre</b> of $G$ , $Z(G) \subseteq G$ . | all other |
| <i>Proof.</i> Have $\phi: G \to \operatorname{Aut} G$ with $\phi: g \mapsto$ conjugation by $g$ , $\ker \phi = Z(G)$ .                                             |           |
| <b>Theorem 1.5.3.</b> If $G/Z(G)$ is cyclic, $G$ is Abelian.                                                                                                       |           |
| Proof.                                                                                                                                                             |           |

- 1.6 Commutators
- 1.7 *p*-primary subgroups
- 1.8 Generators
- 2 Group actions
- 2.1 Actions
- 2.2 Orbit-stabiliser theorem
- 2.3 p-groups
- 2.4 Jordan's theorem
- 3 Finitely generated Abelian groups
- 3.1 Smith normal form
- 3.2 Classification of finitely generated Abelian groups
- 4 Rings
- 4.1 Rings
- 4.2 Ring homomorphisms
- 4.3 Ideals
- 5 Integral domains
- 5.1 Integral domains
- 5.2 Charateristic
- 5.3 Vector spaces
- 6 PIDs and UFDs
- 6.1 Polynomial rings
- 6.2 Euclidian domains
- 6.3 Principal ideal domains
- 6.4 Unique factorisation domains
- 7 Fields
- 7.1 Field extensions
- 7.2 Constructing fields
- 7.3 Existence of finite fields