图论与代数结构

初识图论与道路/回路

崔 勇 清华大学计算机系 网络技术研究所

前情回顾

- A是e₁的始点,B是e₁的终点
- A是B的直接前驱,C是B的直接后继
- A, C是相邻结点,是无向边e3的端点
- e₆是自环,与D关联,没有重边
- 度数 (出度,入度) $\sum_{v \in V(G)} d(v) = 2m$

- ・简单图
 - 无重边、无自环的无向图

B)

- 空图 N_n ,完全图 K_n ,二分图, 完全二分图 $K_{m,n}$

主要内容

- 图的运算(并、交、对称差、同构)
- 图的代数表示方法
 - 各种方法的特点(优缺点)
- 道路与回路
 - 概念和定义 (带弦回路证明)
 - 判定: 三个核心算法

学好? 不是学会知识 而是学会创新

站在巨人肩膀上发明创造

集合: 子集、运算

子图

- 对图G=(V,E)与G'=(V',E'),若V'包含于V,E'包含于E,则称G'为G的一个子图(真子图)
- 特别若V=V', 则称G'为G的支撑子图或生成子图
- 若E'包含了G在结点子集V'的所有边,则称G'为G的导出子图
- G的空支撑子图与G本身称为G的平凡子图

G的支撑子图

- 图的并、交、对称差
 - 两个图G1=(V1, E1), G2=(V2, E2)

$$G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

$$G_1 \cap G_2 = (V_1 \cap V_2, E_1 \cap E_2)$$

$$G_1 \oplus G_2 = (V_1 \bigcup V_2, E_1 \oplus E_2)$$

是否可能增加其他形式的 定义 (如点交边并)?

• 图的差

- -G-H
 - 对于G的子图H, G-H表示在G中删除H中的各条边得到的图
- 补图
 - •对于简单图G,完全图Kn-G,称为G的补图。
- -G-v是G的导出子图,G-e是G支撑子图。

• 对于无向图G, 结点v的邻点集

$$\Gamma(v) = \{ u \mid (u, v) \in E \}$$

- 有向图呢?
- 设v是有向图G的一个结点,则

$$\Gamma^+(v) = \{ u \mid (v, u) \in E \}$$

$$\Gamma^{-}(v) = \{ u \mid (u, v) \in E \}$$

分别称为v的直接后继集(外邻集)与直接前趋集(内邻集)

相同的数,相同的集合,相同的图?长得一样?

- 同构
 - 两个图 G_1 =(V_1 , E_1), G_2 =(V_2 , E_2),若在 V_1 与 V_2 之间存在双射f,当且仅当(u,v)为 G_1 的边时,(f(u), f(v))为 G_2 的边。称图 G_1 与 G_2 同构。记作 $G_1 \cong G_2$

透过现象 看本质?

不同构

• 同构的性质

- 若 $G_1 \cong G_2$,则有
 - 顶点数、边数相同: n=5, m=5
 - 结点度非减序列相同: G1(2,2,2,2,2), G3(1,2,2,2,3)
 - 存在同构的导出子图: G3存在三角形导出子图

主要内容

- 图的定义、运算(续)
- 图的代数表示方法
 - 各种方法的特点(优缺点)
- 道路与回路
 - 概念和定义 (带弦回路)
 - 判定: 三个核心算法

图的代数表示

- 火眼金睛 v.s. 计算机处理
- 计算机擅长/不擅长什么?
- 图的代数表示方法
 - 邻接矩阵
 - 权矩阵
 - 关联矩阵
 - 边列表
 - 正向表
 - 邻接表

如何实现图的代数表示?

图的代数表示

发明: 邻接矩阵 (点&点)

$$A = [a_{ij}]_{n \times n} \quad a_{ij} = \begin{cases} 1 & (v_i, v_j) \in E \\ 0 & other \end{cases}$$

Γ	v_1	v_2	v_3	v_4^-
v_1	0	1	1	1
v_2	0	0	1	0
$ v_2 $	0	0	0	0
$\begin{bmatrix} v_4 \end{bmatrix}$	0	0	1	1_

- 自己的发明有什么特点?
 - 对于有向图的邻接矩阵中, vi的正度和vi的负度?
 - 第i行的1的个数表示vi的正度,第i列的1的个数表示vi的负度
 - 邻接矩阵可表示自环, 但是不能表示重边

图的代数表示(2)

- 权矩阵
 - 赋权图用权矩阵表示

表示重边? 两条带宽为3的边 两条时延为3的边

$$egin{bmatrix} v_1 & v_2 & v_3 & v_4 \ v_1 & 0 & c & b & a \ v_2 & 0 & 0 & e & 0 \ v_3 & 0 & 0 & 0 & 0 \ v_4 & 0 & 0 & d & f \end{bmatrix}$$

$$A = [a_{ij}]_{n \times n} \quad a_{ij} = \begin{cases} w_{ij} & (v_i, v_j) \in E \\ 0 & other \end{cases}$$

除了点&点外, 还有什么? 继续发明......

图的代数表示(3)

• 发明: 关联矩阵 (n点&m边)

$$B = [b_{ij}]_{n \times m} \quad b_{ij} = \begin{cases} 1 & e_j = (v_i, v_k) \in E \\ -1 & e_j = (v_k, v_i) \in E \\ 0 & 其它$$

_						_
	e_1	e_2	e_3	e_4	e_5	e_6
v_1	1	0	1	1	0	0
v_2	-1	1	0	0	0	0
v_3	0	-1	-1	0	-1	-1
$\lfloor v_4 floor$	0	0	0	-1	e_5 0 0 -1	1

图的代数表示(4)

• 关联矩阵

Γ	e_1	e_2	e_3	e_4	e_5	e_6
v_1	1	0	<i>e</i> ₃ 1	1	0	0
v_2	-1	1	0	0	0	0
v_3	0	-1	-1	0	-1	-1
			0			

- 关联图性质 (有向图)
 - 每列只有一个1和一个-1
 - 每行中1的个数为相应结点的正度, -1个数为负度
 - 能表示重边,不能表示自环

图的代数表示(5)

• 关联矩阵

-有向图

$$B = [b_{ij}]_{n \times m} \quad b_{ij} = \begin{cases} 1 & e_j = (v_i, v_k) \in E \\ -1 & e_j = (v_k, v_i) \in E \end{cases}$$

$$0 \quad \sharp \dot{\Xi}$$

-无向图

图的代数表示(6)

邻接矩阵

$$\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 1 & 1 \\ v_2 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 0 \\ v_4 & 0 & 0 & 1 & 1 \end{bmatrix}$$

关联矩阵

$$\begin{bmatrix} & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & 1 & 0 & 1 & 1 & 0 & 0 \\ v_2 & -1 & 1 & 0 & 0 & 0 & 0 \\ v_3 & 0 & -1 & -1 & 0 & -1 & -1 \\ v_4 & 0 & 0 & 0 & -1 & 1 & 1 \end{bmatrix}$$

- 基本表示的唯一性
 - 邻接矩阵与关联矩阵表示图是唯一的
- 能否有其他的表示方法?
 - 点和点 or 点和边
 - 边和边?

图的代数表示(7)

邻接矩阵

$$\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 1 & 1 \\ v_2 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 0 \\ v_4 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- 基本矩阵表示存在什么问题?
 - 不能表示重边或自环
 - 在计算机上存储邻接矩阵与关联 矩阵时,将占据较大的存储空间 并可能增加计算复杂度(稀疏矩阵)

关联矩阵

	<i>e</i> ₁ 1	e_2	e_3	e_4	e_5	e_6^{-}
v_1	1	0	1	1	0	0
v_2	-1	1	0	0	0	0
v_3	0	-1	-1	0	-1	-1
$\lfloor v_4 \rfloor$	0	0	0	-1	1	1

• 因此引入边列表、正向表、逆向表、邻接表等

图的代数表示(8)

• 边列表

- 关联矩阵: 透过现象看本质, 连问三个为什么
- 对列进行压缩?

$\begin{array}{c|c} e_4 \\ \hline e_1 \\ \hline e_2 \\ \end{array}$

信息量的核心是非零元的位置

	e_1	e_2	e_3	e_4	e_5	e_6^-
	1					
v_2	-1	1	0	0	0	0
v_3	0	-1	-1	0	-1	-1
	0					

A: (1 2 1 1 4 4)

B: (2 3 3 4 3 3)

图的代数表示(9)

• 边列表

- 对关联矩阵的列进行压缩
- 边列表由两个m维向量A和B组成
- 当对G的结点与边进行编号后
- 对第k条边e $_k$ =(v_i , v_j),则A(k)=i,B(k)=j,即A(k)存放第k条边始点的编号,B(k)存放其终点标号

-对赋权图怎么办?

用m维向量Z存放权, $Z(k)=w_k$ 。

A: (1 2 3 4 5)

B: (2 3 4 5 1)

图的代数表示(10)

- 正向表
 - 如何优化邻接矩阵?
 - 对行进行压缩?
 - 本质: 后继从哪开始?

直接后继节点? 排列一起?

2 3	4	3	3	4
-----	---	---	---	---

	v_1	v_2	v_3	v_4
v_1	0	1	1	1
v_2	0	0	1	0
v_3	0	0	0	0
$\lfloor v_4 \rfloor$	0	0	1	1

图的代数表示(11)

• 正向表

- 对邻接矩阵的行压缩
- 正向表将每个节点的直接后继集中在一起存放,有向图的正向表由一个(n+1)维向量A,一个m维向量B组成
- 当对G的结点与边进行编号后,A(i)表示结点v_i的第一个后继在B中的地址,B中存放这些后继结点的编号,A(n+1)=m+1

图的代数表示(12)

$$\begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 1 & 1 \\ v_2 & 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 0 \\ v_4 & 0 & 0 & 1 & 1 \end{bmatrix}$$

正向表, 存在如下关系:

$$d^+(v_i) = A(i+1) - A(i)$$

$$A(i) = \sum_{j=1}^{l-1} d^+(v_j) + 1$$

从B(A(i))到B(A(i+1)-1)的任一个 值,都是v_i的直接后继。

对赋权图:

用m维向量Z存放权Z(k)=wk

图的代数表示(13)

- 无向图的正向表
 - 对于无向图,由于边没有方向性,所以B中存放的是相应 邻结点的编号,因此B与Z都要扩充为2m维的向量。

有了正向表(出度/后继),还应该有.....

图的代数表示(14)

- 逆向表
 - 将每个结点的直接前趋集中在一起存放。

优缺点?对于图的动态变化缺少灵活性:去掉e₄?如何提高灵活性以适应图的动态变化?加减边?

图的代数表示(15)

- 邻接表
 - 采用单链表结构表示一个图
 - -对每个结点v_i用一个表结点表示
 - 表结点由三个域a、b、c组成
 - 邻结点域a中存放邻结点的编号
 - 数据域b中存放相应边的数值(权)
 - 链域c存放下一个表结点的地址指针

图的代数表示(16)

• 邻接表举例

- a
- 邻结点域a中存放邻结点的编号
- b
- 数据域b中存放相应边的数值(权)
- 链域c存放下一个表结点的地址指针

如何进一步提高灵活性?

图的代数表示(17)

• 图的代数表示方法

- 思考
 - 各自特点: 重边、自环、空间、处理方法、相互转换
- 小试牛刀:干掉第一个实验

图论与代数结构

道路与回路基础

崔 勇 清华大学计算机系 网络技术研究所

第二章道路与回路

- 道路与回路的定义
- 道路与回路的判定
- 欧拉道路与回路
- 哈密顿道路与回路
- 旅行商问题与分支定界法
- 最短路径
- 关键路径
- 中国邮路

- 道路与回路的定义
- 割点、割边和块
- 顶点与边的连通度

道路与回路的定义

• 有向道路的定义

发明一下?

- 有向图G的一条有向道路P是一个边序列 $(e_{i_1}, e_{i_2}, \dots, e_{i_q})$ 满足 $e_{i_k} = (v_{i_{k-1}}, v_{i_k}), k = 1, 2, \dots, q$

利用已有定义定义要严格

- 有向回路
 - 若在图G的道路P中, $v_{i_0} = v_{i_d}$
 - 则称P是G的一条有向回路。

不断细致如何细分?

寻找 特殊情况

道路与回路的定义(2)

- 简单有向道路和回路
 - P中的边没有重复出现,则称P为简单有向道路或回路

点可否重复?

- 初级有向道路和回路
 - P中的边和结点均不重复出现,则称P为初级有向道路或回路, 简称为路或回路。

道路与回路的定义(3)

• 有向道路与回路

$$(e_4, e_3, e_4, e_6, e_5, e_3, e_1)$$
有向道路

$$(e_4, e_3, e_4, e_6, e_5, e_3)$$
 有向回路

$$(e_4, e_6, e_5, e_3, e_1)$$
 简单道路

$$(e_4, e_6, e_5, e_3)$$
 简单回路

$$(e_4, e_6, e_2)$$
 初级道路

$$(e_4, e_6, e_2, e_7)$$
 初级回路

道路与回路的定义(4)

- 无向图的道路与回路
 - 道路(链)与回路(圈)
 - 简单道路与回路(边不重复)
 - 初级道路与回路(顶点不重复)
- 与有向图的道路、回路定义类似,其区别只是 无向图中的边没有方向。

道路与回路的定义(5)

- 弦
 - 设C为简单图G中含结点数大于3的一个初级回路,若结点v_i和v_i在C中不相邻,则称(v_i,v_i)是C的一条弦。

$$C = (e_1, e_2, e_3, e_4)$$

 e_5 是C的一条弦

给出牛定义后呢?

存在性:三人行必有吾师!

例

- 若G中每一点的度大于等于3,则G中必含带弦的回路。
- 证明 (构造法):
 - 假设G中的一条极长的初级道路P为 $P = (e_1, e_2, \dots, e_k)$ $e_i = (v_{i-1}, v_i)$
 - 由于P是极长道路, v₀的所有邻结点均在此道路上
 - v_0 的度不小于3,所以除了 v_1 以外, v_0 至少与P上的另外两个结点相连
 - 设其为 v_m , v_n , n>m, 则 $(e_1, e_2, \dots, e_n) + (v_n, v_0)$ 是一个初级回路,边 (v_0, v_m) 是其一条弦。
- P50.4简单图G中有n ≥ 4且m ≥ 2n 3,则G含带弦回路
- 数学归纳法(假设)+构造
- n+1与n关系(存在d<=2?)

道路与回路的定义(7)

- 例: 二分图
 - 设G=(V,E)是无向图,如果V(G)可以划分为子集X和Y,使得对所有的e=(u,v),u和v分属于X或Y,则称G为二分图。
 - 如果二分图中有回路, 回路边数有什么特点?
 - 答案: 二分图回路的边数为偶数
 - 证明:
 - 设C是二分图G的回路
 - 假设C的起点是 $v_0 \in X$,根据二分图的性质,回路从 v_0 出发后,经过奇数条边到达Y,经过偶数条边到达X,因此需要偶数条边才能回到 v_0 。

道路与回路的定义(8)

- 连通图、非连通图
 - 无向图G的任意两个结点之间都存在道路,就称G为连通图, 否则称G为非连通图
 - 对于有向图,若不考虑其边的方向,即视之为无向图,若 它是连通的,则称G是连通图。

牛定义后? 存在性?

什么图必连通?

道路与回路的定义(9)

- 极大连通子图
 - 若连通子图H不是G的任何连通子图的真子图,称H是G的极大连通子图,或连通支

有几个连通支?

有两个连通支,结点集分别是 {A, B, C}, {D}

存在性: 什么样的图必联通?

道路与回路的定义(10)

例

- -若G是简单图,当 $m > \frac{(n-1)(n-2)}{2}$ 时,G是连通图。
- -证(反证法):
- 假定G非连通,则至少存在2个连通支, 不妨设不相连子图 G_1 = (V_1 , E_1), G_2 = (V_2 , E_2).
- 其中 |V₁| =n₁, |V₂| =n₂, |E₁| =m₁, |E₂|=m₂
 故有 n₁+n₂=n, m₁+m₂=m.
 因为G是简单图,所以G₁, G₂也都是简单图

道路与回路的定义(11)

- 证(续):
 - 反证法,假定G非连通, G_1 、 G_2 都是简单图
 - 一有 $m_1 \le \frac{n_1(n_1 1)}{2}$ $m_2 \le \frac{n_2(n_2 1)}{2}$

$$\therefore m \le \frac{n_1(n_1 - 1)}{2} + \frac{n_2(n_2 - 1)}{2}$$

$$n_1, n_2 \leq n-1$$

$$\therefore m \le \frac{(n-1)(n_1-1+n_2-1)}{2} = \frac{(n-1)(n-2)}{2}$$

-与已知条件 $m > \frac{(n-1)(n-2)}{2}$ 矛盾,因此G连通

能发明出来吗?

割点、割边和块

- 割点
 - 设v是G的一个顶点,如果G-v的连通分支数比G多,称v是G的一个割点
- 割边
 - 设e 是G 的一条边,若G' = G e 比G 的连通支数 增加,则称e 是G 的一条割边
- 块
 - 图G没有割点的极大连通子图称为块

割点,割边和块

- 例
 - 图(a)中v是割点,它有三个子块
 - U是不是割点?

有割边必然有割点?

第二章道路与回路

- 道路与回路的定义
- 道路与回路的判定
- 欧拉道路与回路
- 哈密顿道路与回路
- 旅行商问题与分支定界法
- 最短路径
- 关键路径
- 中国邮路

连通图的牛定义后

性质?存在性?连通图的判定?

- 邻接矩阵法判定
- 广探法BFS
- 深探法DFS

道路与回路的判定

• 用邻接矩阵或搜索法判定两结点间是否存在通路

三步能到吗?

 V_1 -> V_4 的可达性

V₁-V₄, 两步能到吗?

	0	1	1	0	0
	0	•	1	1	0
P =	0	0	0	0	1
	0	0	0	0	1 0 0
	1	0	0	1	$\begin{bmatrix} 0 \end{bmatrix}$

道路与回路的判定

• 邻接矩阵判定法:

- 设图G的邻接矩阵A =(a_{ii})
- 若a_{ij} = 1

- 表示 (v_i,v_i) 为G的一条 边,则v_i,v_i间有道路
- $-A^2=(a_{ij}^{(2)})$ $a_{ij}^{(2)}=a_{ik}.a_{kj}$ 之和(k=1...n)
- 若a_{ij}⁽²⁾ 不为零
 - 当且仅当存在k,使得a_{ik}=a_{kj}=1
 - (v_i,v_k)和(v_k,v_i)为G的边
 - v_i,v_j间有长度为2的道路

• 邻接矩阵判定法(续):

- 若A^l=(a_{ij}^(l))(l<=n)当中 a_{ij}^(l) 不为零,表示存在 v_i,v_j间有长为l的道路。
- n步判断可达性的表示方法?
- $-P=(p_{ij})=A+A^2+A^3+A^4+...+A^n$
- P的含义: 一般若 p_{ij} =t 从 v_i 有t条道路到达 v_j , p_{ij} =0, n步内从 v_i 不能到达 v_j ,则在G中不存在 从 v_i 到达 v_i 的路。

• 邻接矩阵判定法(续):

$$-P=(p_{ij})=A+A^2+A^3+A^4+...+A^n$$

- n步是否足够?

- 基于抽屉原理的构造?
- 若从 v_i 经过I步 (I>=n)能到达 v_j ,根据抽屉原理,必在该路中有相同的 v_k ,即存在回路,删掉这段回路,仍存在从 v_i 到达 v_i 的路。
- 因此有v_i, v_i间有道路,当且仅当p_{ii}不为0

- 若只关心v_i与v_i之间有无道路可用逻辑运算法
 - $-a_{ij}^{(l)}=V_{(k=1,n)}(a_{ik}^{(l-1)}\wedge a_{kj})$
 - 图G的道路矩阵:

$$P=A V A^2 V A^3 V A^4 V ... A^n$$

- 更 "简单" 的算法
 - 计算道路矩阵 Warshall算法

• Warshall算法

```
begin i = 1 \text{ to n} j=1 \text{ to n} k=1 \text{ to n} p_{jk}=p_{jk}V(p_{ji} \land p_{ik}) end
```

- 对内部循环变量j,k,逐一更新 p_{jk} ,即 (v_j,v_k) 的可达性(是否能找到经过 v_i 的路径)
- 遍历所有的v_i ,不断更新P矩阵

例

- 使用Warshall算法计算下图的道路矩阵
- 依次循环i,j,k计算: p_{jk}=p_{jk}V(p_{ji} /\ p_{ik})

人工执行算法 (结合图)

$$P = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

• 例

- 使用Warshall算法计算下图的道路矩阵
- 依次循环i,j,k计算: p_{jk}=p_{jk}V(p_{ji} ∧ p_{ik})


```
i = 1
           k = 2,3
```

• 例

- 使用Warshall算法计算下图的道路矩阵
- 依次循环i,j,k计算: p_{jk}=p_{jk}V(p_{ji} ∧ p_{ik})

人工执行算法 (结合图)

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$i = 2 \qquad j = 1,5$$
$$k = 3,4$$

例

- 使用Warshall算法计算下图的道路矩阵
- 依次循环i,j,k计算: p_{jk}=p_{jk}V(p_{ji} /\ p_{ik})


```
j=1,2,5
i = 3
         k=5
```

• 例

- 使用Warshall算法计算下图的道路矩阵
- 依次循环i,j,k计算: p_{jk}=p_{jk}V(p_{ji} /\ p_{ik})

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$i = 4 \qquad j = 1, 2, 5$$

$$k = /$$

- 例
 - 使用Warshall算法计算下图的道路矩阵
 - 依次循环i,j,k计算: p_{jk}=p_{jk}V(p_{ji} /\ p_{ik})

人工执行算法 (结合图)

```
j=1,2,3,5
i = 5
         k=1,2,3,4,5
```

• 时间复杂度

- 一般是指问题随规模的增长算法所需消耗的运算时间的增长趋势。
- 问题规模即要处理的数据增长时,基本操作要重复执行的次数必定也会增长。
- 我们关心这个执行次数以什么样的数量级增长
- 基本操作的执行次数是问题规模n的一个函数T(n)

可惜我们很难得到T(n) ②, 怎么办呢?

- 时间复杂度
 - 同数量级函数
 - 考虑辅助函数f(n)
 - 使得当n趋近于无穷大时, T(n)/f(n)的极限值为不等于零的常数, 则称f(n)是T(n)的同数量级函数
 - 时间复杂度
 - 若存在辅助函数f(n),与T(n)是同数量级函数,记作T(n)=O(f(n)),
 称O(f(n))为算法的渐进时间复杂度,简称时间复杂度
 - 如f(n)= C 或 log n 或n 或 n^k 或kⁿ (k > 1)

• 不同复杂度的比较

举例说明算法复 杂度的概念

10000, N+500 10N, N^2, N^3 N!, N^N N^a, b^N,

某问题复杂度为N! 当N=100时,用世界上最快的超级计算机

"神威·太湖之光",需要1s完成计算。 当问题规模增长10%,计算用时多少?

约10010s=1012年

道路矩阵: P=A V A² V A³ V A⁴ V ... Aⁿ

• 计算道路矩阵 – Warshall算法

```
begin
i=1 \text{ to } n
j=1 \text{ to } n
k=1 \text{ to } n
p_{jk}=p_{jk}V(p_{ji} \land p_{ik})
End
```

算法复杂度 O(n³)

- 判断两个结点间有无道路的方法
 - 基于邻接矩阵的Warshall算法
 - 广探法(Breadth First Search)
 - 深探法(Depth First Search)

- 广探法(BFS)
 - BFS(Breadth First Search),是从G的任一结点v₁开始, 找它的直接后继集Γ⁺(v₁),记为A₁
 - 对A₁中的每一个结点分别找 它们的直接后继集,这些 第二批后继集的并记为A₂
 - 依此类推, 直至达到目的结点。
 - 可能存在的问题?
 - 回路避免

- 广探法 (BFS)
 - 为避免结点的重复搜索可对结点进行标记
 - 开始时所有结点标记为0
 - 搜索时若新搜到的结点标记为0,则加入后继集,同时将其标记改为1
 - 搜索时若新搜到的结点标记为1,则忽略该点

道路与回路的判定(10)

例

-用BFS找下图中v₁到v₄的一条道路。

访问节点

$$\Gamma^+(v_1) = \{v_2, v_6\}$$

$$A_1 = \{v_2, v_6\}$$

$$\Gamma^+(v_2) = \{v_3, v_6\}$$

$$\Gamma^+(v_6) = \{v_3, v_5\}$$

$$A_2 = \{v_3, v_5\}$$

$$\Gamma^+(v_3) = \{v_1\}$$

$$\Gamma^+(v_5) = \{v_3, v_4\}$$

$$A_3 = \{v_4\}$$

路径信息?

struct (flag, hop, prior) v[n]

道路与回路的判定(11)

• 深探法(DFS)

- DFS (Depth First Search)从结点v₀开始,只查找v₀的某一直接后继v₁
- 记下v₁的前趋v₀ , 然后再找v₁的某个未搜索过的后继v₂
- 依此类推

回头时要能回得去!

- 当从某个结点v_j无法再向下搜索时, 退回到它的父亲v_{j-1}, 然后再找v_{j-1}的 另一个未查过的直接后继
- DFS的特点是尽量向下搜索,只有碰壁才回头

道路与回路的判定(12)

• 例:使用DFS找出下图中v₁到v₄的道路

DFS和BFS的优缺点? BFS保证最短路径

总结(道路和回路)

- 从一般性定义到特殊
 - 首尾相接: 严格而巧妙的形式化定义
 - 简单道路、初级道路(边/点是否重复)
 - 带弦回路(极长初级道路)
 - 特殊: 极大连通子图, 边足够多必连通
 - 邻接矩阵判定道路: Warshall算法
 - 算法复杂度: 100, 10N, N^2, N^3, N!
 - 判定/寻找道路: 广探法、深探法

下一讲提要

- 欧拉道路与回路
- 哈密顿道路与回路
- 旅行商问题与分支定界法

欧拉

建模、算法、证明、发明

第二周作业

• 课程作业

- 习题一/P14 (图的运算): 16题
- 习题二/P50 (道路/回路) : 3, 4, 5题
- 补充题: 采用传统矩阵乘法, 道路矩阵P的计算复杂度是多少?
- P50.5: 设G是不存在三角形的简单图,

解析题干:不存在三角形,任2点度数和 $\leq n$

第二周作业

- 引导实验
 - 不计入成绩,但推荐同学参考、尝试
- 第一次编程实验
 - 最短路和欧拉回路二选一
 - DDL: 第六周周日 23:59:59 前