PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-077308

(43) Date of publication of application: 11.03.1992

(51)Int.Cl.

C01B 31/22 B01J 19/00 F01N 3/02 F02C 3/08 F25J 1/00

(21)Application number: 02-188290

(71)Applicant: CHUGOKU ELECTRIC POWER CO

INC:THE

(22)Date of filing:

16.07.1990

(72)Inventor: SHIMIZU MARESHIGE

SAKOTANI AKIRA MIYASAKO MASANORI KATSUBE HIROMITSU SHIMADA YUTAKA MORIYASU HIROTAKA

(54) METHOD AND DEVICE FOR RECOVERING CO2

(57)Abstract:

PURPOSE: To cool waste combustion gas approximately at ordinary pressure in this method utilizing the cold of LNG by using a gas having a lower solidifying temp. than CO2 as the low-temp. gas to be mixed into the waste gas.

CONSTITUTION: The waste combustion gas from a boiler 1 is introduced into a dehumidifier 2 and dehumidified to the humidity region where ice is not deposited on a heating surface, and the waste gas contg. remaining moisture and CO2 is introduced into a dry ice crystallizer 3 as a mixing tank. The waste gas is heat-exchanged with the cold LNG introduced through a low-temp. circulating gas pipeline 4, and the obtained low-temp. recirculating dry gas is supplied to the mixing tank 3 and directly mixed with the waste gas to form dry ice. The dry ice is introduced into a cyclone 5 and separated, and the circulating gas (consisting essentially of N2 and O2) is sent to a heat exchanger 6. Since the low-temp. circulating gas has a lower solidifying temp. than CO2, the gas is directly mixed with the waste gas.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

مدنط

箱洋帯に吸収され、残りは大気中に残存すると云	セカナいるが、近年は数税群ガスの間の地泊のた
しかしながら、確化天然ガス(LNG)をガス 海	外现件外数分割等国际。 《题《书记》 · · · · · · · · · · · · · · · · · · ·

めに循洋等の吸収では追いつかず、次等に大気中 に推躍される極向がある。 るいは海水から得る従来の方法では、LNGの保 有する冷熱が自然環境に放出され、液化エネルギ 数料として利用する際に、必要な気化熱を大気あ

年、温室効果と呼ばれる大気温度の上昇が問題氏 たこの。の回収手段が環境対策からも留ましいと そこでじひ。を燃焼餅ガスより回収する手段が 再検討された結果、前述のLNGの冷熱を利用し されている。 気配された。

従って、大気中の炭酸ガス量の増加により、近

一方、最近大気中の枝酸ガス(CO,) 重が増 加し、温雪効果と呼ばれている大気温度の上昇と の関係が間脳視されている。炭酸ガス発生量増加 の原因は、化石機料の機能により生ずるものが大

-の損失となっている。

@公開 平成4年(1992)3月11日

@公開特許公報(A) 日本国特許庁(19)

9

广内整理番号 6345-46

@Int. Cl. ۵¬z 22228

23/05/2 3/05/2 1/08/2

ОВЕТЕ

回作作出關心關 平4-77308 未請求 請求項の数 6 (全5頁)

審査欝求

筑来技術を聞くると、 塾会技術として必然を利用 (方) 法」という名称で既に2,3段載されてい したCO,の固化手段が「ドライアイスの製造

例えば時間昭54-138892に記載の発明は、 「常氏以上3重点圧力未満の圧力で炭酸ガスをし NG等の低語ガス中に吹き込んで冷却固化して分

購するドライアイスの製造方法」であり、また特

また、大気中へ放出された哎骸ガスの1/2は

開昭59~35013に記載の発明は、「枚数ガ

の市場は100万トン/年であった。一方、国内 で拣出している炭酸ガスの総費は78,000万 とんど行っておらず、そのまま大気へ放出してい トン/年であり、実質的には当路ガスの回収をは

いたが、1987年における茨酸ガスの上配用途

ガス状・液状化またはドライアイス化したり、苺 ガスを出発原料として尿素・安息香酸を製造して

> 中国電力株式会社内 中国電力株式会社内 中国電力株式会社内 中国電力株式会社内 中国電力株式会社内 中国電力株式会社内

広島県広島市中区小町 4番33号 広島県広島市中区小町 4番33号

茂章

平2(1990)7月16日

₩2-188290

靈

400年出

CO,の回収方法及びその装置

9発明の名称

広島県広島市中区小町 4番33号 広島県広島市中区小町 4 番33号 広島県広島市中区小町 4番33号

広島県広島市中区小町 4 番33号

中国電力株式会社 弁理士 迎田 昌夫

Ħ

B

69 69

広島県広島市中区小町 4番33号

범

(C) (B)

従来は、銌ガス中の一部の炭酸ガスを劃縮し、

半さある。

(5) 燃焼餅ガスと低温高頭ガスとを混合する混 中華と国党が集団とLNCの冷断に配扱かえやが 印する熱交換器とをガス循環系に備えて成る事を (6) 混合物がドライアイスクリスタライザであ る特件課次の範囲第5項に記載のこ0。の回収装

(1) 燃焼棒ガスに低弱ガスを混合する事により 数焼蒜ガス中のCO,を冷却固化して分離するC

COgの回収方法及びその簽員

1. 発明の名称

5. 物学部状の復田

な後とするこの。の回収始間。

本発明の他の目的は限られた冷熱エネルギーを ドライアイスとして固化分離するこの。の回収方 法及びその強調を損供するにある。 ス等の圧力を3重点圧力未備の圧力に加圧し、低

有効利用する事の可能な徴焼酵ガスからのCOst 回収方法及びその装置を損供するにある。 従って、これらはいずれも予め収離ガス等を加 温液化ガスと直接接触させ、炭酸ガスを固化(分 圧する事が要件となり、一般の燃焼餅ガスの処理 篇)するドライアイスの製造法」である。

燃焼排ガスに低湿ガスを混合する事により燃焼 **リガス中のこの。を冷却固化して分離するこの。** 本発明により、 [発明の構成] また炊酸ガスを含む酢ガスにLNGを直接混合 して冷却するという手段は、その希釈されたLN には避しないものである。

の回収方法において、低温ガスがCO。よりも凝 箱温度の低いガスである事を特徴とするCO₂の 回収方法、 Gを燃料ガスとして再使用しようとすると低かロ リーとなって経済性が悪くなり、契用性を欠くと いう問題点があった。

本発明はCO』の回収方法及びその簽屋に関し、

3. 発明の詳細な説明

b凝縮温度の低いガスである事を特徴とするCO

の回収方法。

0,の回収方法において、低温ガスがC0,より

(2) 燃焼餅ガスに混合する低温ガスが循環再使 用される低温ガスである特許請求の範囲第1項に

より詳しくはLNGの冷無を利用した徴免却ガス

からのCO,回収方法及びその装置に関する。

[従来技術と課題]

(3) 施取角使用される低温ガスが燃焼炉ガスよ りこの。を分離した残りガスである格許課女の配 田第1項乃至第2項の内いずれか1項に記載のC

記載のCO'の回収方法。

近年、化石銀料の大半を循れからの輸入に扱う ざるを得ないわが国においては、発起所の発生配 力の安定のために、燃料の多様化と各発電方式の 併用が微討されている。この一環として、天然ガ スを液化して輸送・貯蔵し、これを燃料として用 いた高効率ガスターピン協合発亀による発亀所の

0,を回収する手段としてそのまま採用する事は 従っていこれらの損害技術は燃焼群ガスからこ 田米なかった。

そこで本発明省等は燃焼辞ガスを常圧付近で冷 田処理してCO1を固化分離する手段につき税金 研究の結果本発明に到達した。

路取再使用される低温ガスが燃焼砕ガスよりに

前記CO,の回収方法であって、 れる低温ガスであるもの、

機械餅ガスに混合する低温ガスが新取再使用さ

前記 CO3の回収方法であって、

本教明の目的はLNGの冷熱を利用して特圧付

近で燃焼癖ガスを冷却処理する事によりCO。を

0。を分離した残りガスであるもの、 前記CO」の回収方法であって、

低温ガスが、LNGの気化熱を利用して冷却さ

高股が推進されている。

か1項に記載のこの,の回収方法。

回答)の気化熱を利用して冷却された頃盛ガスで ある特幹額次の範囲第1項乃至第3項の内いずれ

(4) 低温ガスが、LNG(液化天然ガス、以下

[発明の効果]	
() () () () () () () () () ()	

特間平4-77308 (4)

CO。鎌度は、LNG数ポイラの部ガスの一

般的な組成を容考にした。 冷却分又量:6 N m 1 / h **各四ガスとして、液化酸素を凝密させて溶た** 低級N, ガス (-140~-160℃) を使用し

本発明を実施する事により前記目的のすべてが違

生成したドライアイスは、循環ガスに同伴され て固気分集権であるサイクロン5に導かれ、ガス

軸によりドライアイスを生成する。

请尉平4-77308 (3)

すなわち、LNG冷熱を用いて芽ガス中の狡骸 ガスを効率良く固化分離することが出来る。 **まって本発明は工業上極めて有益である。**

本発明を以下の実施例により更に詳細に説明す

雇された後の大半の循環がス(N,、 O,が主体)

混合糖がドライアイスクリスタライザであるも

前記CO。の回収方法であって、

とするこの』の回収装置、

ここで、ことの後年と記録部及扱いたて配配

は熱交後器6に罪かれる。

一方、故轍ガスをドライアイスとして固化・分

8から茶外へ抜き出される。

分離されたドライアイスは、サイクロン5の下

1因化したドライアイスが分離される。

数焼餅ガスと低温循環ガスとを混合する混合物 FI回気分離権とLNGの冷熱で循環がスを冷却す る熱交換器とをガス循環系に備えて収る事を特徴

れた低型がスであるもの、

小型装置を使用して排ガス中の投離ガスの固化 [東路別]

値ガスとを直接混合することにより、 COっをド

上記仕様の小型装置を製作し、模擬辞ガスと低

(3) 風転方法

ドライアイスクリスタライザキ:僅100×6 ・回収を行った。 (1) 按個化學

女酸ガスを含む排ガスと直接降触し、炭酸ガスを

第1図において、ポイラ1の燃焼群ガス中には 水分が含まれているので、糠琲ガスを除塩装置2 を用いて伝熱面に水が磐陽しない湿度循端まで除 **起した後、残存する水分と炭酸ガスを含む鉢ガス** を配置2Bを経て進台権であるドライアイスクリ スタライザ3に導き、低温循環ガス配管 4(及び同 供給ノズル4A)を経て導入される、LNG冷無と 鳥交換された低過の再循環乾きガス≒との直接限

以下に本発明を詳細に説明する。 第1図は本発明の発検図である。

が国供される。

ドライアイスクリスタライザ3に循環供給され、 (約-150~-165℃) の乾きガスとなり、

着選ガスの経路は第1図上A→B→C→D→Eで

ドライアイスとして固化する。

衛母ガスの一郎は、配首7を経て煙突10を通

て味外に辞出される。

[作用]

純炭酸ガスの固化により生成するドライアイス

果、糖糖餅ガス中の皮酸ガスの約90vol%以 上をドライアイスとして固化・回収する事が出来

第1投に運転条件及び運転結果を示す。この結

ライアイスとして固化・回収した。

サイクロン: 6830×140 H (2) 通信条件 0 9

第2図は実験室規模のドライアイスクリスタラ

* ドライアイスクリスタライザ

内島のドライアイス形成状態を包葬し思い様に

ムかの発因因わめる。

排ガスとして、N,、CO,、H,Oの混合 ###×■:0.48~0.72Nm³/h CO2 盤底: 3. 5~10vol. % 慎擬ガスを使用した。

タライザの周囲は断熱材で覆うか、ドライアイス

第 一 被

RUN NO.

掛ガス

本体を強化ガラスで作った。ドライアイスクリス

低温循環ガス供給ノズル4Aが接続してあり、評 0~45℃)と低道循環ガス供給ノズル2日日か クリスタライザ人口に燃焼搾ガス供給ノズルと ガス供給ノズル2BBから吹込まれる群ガス(1 ら吹込まれる低道循環ガス(本実験ではN。使用 - 150~-160C) とがクリスタライが内邸 で最合され、ドライアイスが生成するようになっ

ケリスタライザ目体を恒温機に入れ温度が上がら ないようにする。

69 (

1. 72

Ξ

X = (Ka 1 /1)

ガス組成 (10110)

Z Z ~:

= = ~

. 0 90.0 =

co, ż

-145.4

-145.8 =

--145.0 Ξ

1111111 人口

(C) X(E)

Ξ

Ξ.

CO, 四代華(1110

低温循型ガス

. P.

3

3 2

= Ξ

ガス番(パ/ト)

CO. 島度(**110)

_

_

3

ガス量(Na' /b) クタスタライヤ 出口ガス

低益格職ガス

Н, О

-38-

化は生じない。

いるので収載ガスの分圧は低い。従って、-78.

5℃以下に冷却しないと排ガス中の牧職ガスの固

そこで俳ガスと陸遣ガスを直接混合して配合ガス の過度を昇華温度以下に保持することにより炭酸 ガスを固化できる。しかしながら、非ガス中には 校費ガス以外のN1、01、H1の等が合まれて

の昇素温度は-78.5℃(191m)である。

本発明においては低温ガスがCO。よりも凝略

温度の低いガスでなければならないが、その理由 すなわち、低道(循環)ガスが若しCO;より は次の通りである。

も凝縮温度の高いガス成分(例えば水蒸気)を含 5.場合、そのガス成分が先に凝略し、凝結し終わ る迄は全体のガス温度が下がらない事になるから

しかも谷熊ドネルギーもその間段費されるのか LNGは-150~-165℃の低温状態にあ 各種製に殴りがあるときには不具合である。

することにより、奴隷ガスを固化器度以下に冷却 できる。誰ガスとしNGの気化ガスを直接及合す る場合には、LNGのガス組成が変化して低発熱 そこで、本発明では、俳ガス中の炭酸ガスを固 量ガスになるため、LNGと冷却用低益ガスは、 能交後部を使用して関係能交換する。

留ガスを冷却用ガスとして循環使用する事にした。 化・分離した後のN,及びO,を主成分とする线 校職ガスを含む燃焼砕ガスは、LNGと熱交換

されて低過になった原冷却用低温器限ガスとドラ イアイスクリスタライザ内で直接配合されて攻撃 ガスの固化温度以下になり、ドライアイスを生成 する。生成したドライアイスの固体粒子は、サイ クロンでガス中から分離・築士される。 ドライアイスを分離した後のガスは、前記LN 一方、循環ガスは徐々に蓄積されるので一部を 鉢ガスとして系外に抜き出す。この鉢ガス中の炭 G無交債器に導かれて低盛に冷却された後、再度 ドライアイスクリスタライザに循環使用する。

製ガス糖度は非常に低い。

り、これを気化する時に発生する機能を有効利用

第1図および第2図は夫々本発明系統図および

4. 図面の配単な説明

ドライアイスクリスタライザの断面図である。 1 ポイラ、2 韓國装置、 3 - …・ 超合権(ドライアイスクリスタライザ)

2 B --- 戴敬群ガス用配替、

4 ··· 低溢格域ガス用配管、

5 ---- 固気分離槽、6 ---- 熱交機器、

7 ----- 奇森群ガス用配管。

