7.9 1) Posons $f(x) = -\frac{1}{3}x^2 + 4$.

La fonction
$$f$$
 est paire :
 $f(-x) = -\frac{1}{3}(-x)^2 + 4 = -\frac{1}{3}x^2 + 4$
 $= f(x)$

C B A

Son graphe admet donc l'axe Oy comme axe de symétrie.

Posons A(x;0). Alors B(x;
$$-\frac{1}{3}x^2 + 4$$
), C($-x$; $-\frac{1}{3}x^2 + 4$) et D($-x$;0). L'aire du rectangle grisé vaut ainsi $g(x) = 2x(-\frac{1}{3}x^2 + 4) = -\frac{2}{3}x^3 + 8x$. $0 = -\frac{1}{3}x^2 + 4$ implique $x^2 = 12$, c'est-à-dire $x = \pm 2\sqrt{3}$. C'est pourquoi D_g = $[0; 2\sqrt{3}]$.

2) Recherchons le maximum de la fonction $g(x) = -\frac{2}{3}x^3 + 8x$ sur l'intervalle $D_g = [0; 2\sqrt{3}]$.

$$g'(x) = \left(-\frac{2}{3}x^3 + 8x\right)' = -2x^2 + 8 = -2(x^2 - 4) = -2(x + 2)(x - 2)$$

-2 2			
-2	_	_	_
x+2	- () +	+
x-2		- () +
g'	- () + () —
g	\searrow m	in 7 ma	ax 🗸

$$g(2) = -\frac{2}{3}2^3 + 8 \cdot 2 = \frac{32}{3}$$

$$g(0) = -\frac{2}{3}0^3 + 8 \cdot 0 = 0$$

$$g(2\sqrt{3}) = -\frac{2}{3}(2\sqrt{3})^3 + 8 \cdot 2\sqrt{3} = 0$$

3) L'aire du rectangle grisé est maximale si x = 2.

Dans ce cas, le rectangle a une longueur de 2x=4 et une largeur de $f(2)=-\frac{1}{3}2^2+4=\frac{8}{3}$. Son aire vaut $g(2)=\frac{32}{3}$.