Lec6: Knowledge and logic reasoning 2: First-Order Logic

Outline

- What is First-Order Logic (FOL)?
 - Syntax and semantics
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL

Limitations of propositional logic

- ② Propositional logic has limited expressive power
 - -unlike natural language
 - -E.g., cannot say "pits cause breezes in adjacent squares"
 - except by writing one sentence for each square

Wumpus World and propositional logic

- Find Pits in Wumpus world
 - $B_{x,y} \Leftrightarrow (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y})$ (Breeze next to Pit) 16 rules
- Find Wumpus
 - $-S_{x,y} \Leftrightarrow (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y})$ (stench next to Wumpus) 16 rules
- At least one Wumpus in world
 - $-\ W_{1,1} \vee W_{1,2} \vee ... \vee W_{4,4}$ (at least 1 Wumpus) 1 rule
- At most one Wumpus
 - $\neg W_{1,1} \lor \neg W_{1,2 (155 \text{ RULES})}$

First-Order Logic

- Propositional logic assumes that the world contains facts.
- First-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars,
 ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...

Logics in General

Ontological Commitment:

- What exists in the world TRUTH
- PL: facts hold or do not hold.
- FOL: objects with relations between them that hold or do not hold

Epistemological Commitment:

What an agent believes about facts — BELIEF

Language	Ontological Commitment	Epistemological Commitment			
Propositional logic	facts	true/false/unknown			
First-order logic	facts, objects, relations	true/false/unknown			
Temporal logic	facts, objects, relations, times	true/false/unknown			
Probability theory	facts	degree of belief $\in [0,1]$			
Fuzzy logic	$\text{degree of truth} \in [0,1]$	known interval value			

Syntax of FOL: Basic elements

- Constant Symbols:
 - Stand for objects
 - e.g., KingJohn, 2, SA,...
- Predicate Symbols
 - Stand for relations
 - E.g., Brother(Richard, John), greater_than(3,2)...
 - Return true or false
- Function Symbols
 - Stand for functions
 - E.g., Sqrt(3), LeftLegOf(John), Father(John),...
 - Return what?

Syntax of FOL: Basic elements

- Constants KingJohn, 2, UCI,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow
- Equality =
- Quantifiers \forall , \exists

Relations

- Some relations are properties: they state some fact about a single object: Round(ball), Prime(7).
- n-ary relations state facts about two or more objects: Married(John, Mary), LargerThan(3,2).
- Some relations are functions: their value is another object: Plus(2,3), Father(Dan).

Models for FOL: Graphical Example

Tabular Representation

- A FOL model is related to relational database.
- Historically, the relational data model comes from FOL.

Student				Course				Professor					
<u>s-id</u>	Intellige	nce	Rankin	g	c-id	Rating		Diffi	iculty		p-id	Popularity	Teaching-a
Jack	3		1			INCOMP.			1		<u>p 1u</u>	Горашинсу	reacting a
Kim	2		1		101	3	rup pi	X	1		Oliver	3	1
Paul	1		2		102	2			2		Jim	2	1
Registration													
	RA							3 -id	č.id	Grade		sfaction	
	<u>s</u>	-id	p-id	Salary	Ca	pability		Jack	101	Α		1	
	Ja	ack	Oliver	High		3		Jack	102	В		2	
	К	im	Oliver	Low		1		Kim	102	A		1	
		aul	Jim	Med		2		Paul	101	В		1	

Terms

- Term = logical expression that refers to an object.
- There are 2 kinds of terms:
 - constant symbols: Table, Computer
 - function symbols: LeftLeg(Pete), Sqrt(3), Plus(2,3) etc
- Functions can be nested:
 - Pat_Grandfather(x) = father(father(x))
- Terms can contain variables.
- No variables = ground term.

Atomic Sentences

- Atomic sentences state facts using terms and predicate symbols
 - P(x,y) interpreted as "x is P of y"
- Examples:
 - LargerThan(2,3) is false.
 - Brother_of(Mary,Pete) is false.
 - Married(Father(Richard), Mother(John)) could be true or false
- Note: Functions do not state facts and form no sentence:
 - Brother(Pete) refers to John (his brother) and is neither true nor false.
- Brother_of(Pete,Brother(Pete)) is True.

Complex Sentences

• We make complex sentences with connectives (just like in propositional logic).

More Examples

- Brother(Richard, John) \(\Lambda \) Brother(John, Richard)
- King(Richard) v King(John)
- King(John) => ¬ King(Richard)
- LessThan(Plus(1,2),4) \(\text{GreaterThan(1,2)} \)

(Semantics are the same as in propositional logic)

Variables

 Person(John) is true or false because we give it a single argument 'John'

- We can be much more flexible if we allow variables which can take on values in a domain. e.g., all persons x, all integers i, etc.
 - E.g., can state rules like Person(x) => HasHead(x) or Integer(i) => Integer(plus(i,1))

Universal Quantification ∀

- ∀ means "for all"
- Allows us to make statements about all objects that have certain properties
- Can now state general rules:

 $\forall x \text{ King}(x) => \text{Person}(x)$

```
    ∀ x Person(x) => HasHead(x)
    ∀ i Integer(i) => Integer(plus(i,1))
    Note that
    ∀ x King(x) ∧ Person(x) is not correct!
    This would imply that all objects x are Kings and are People
    ∀ x King(x) => Person(x) is the correct way to say
```

Existential Quantification =

- \exists x means "there exists an x such that...." (at least one object x)
- Allows us to make statements about some object without naming it
- Examples:

```
∃x King(x)
∃x Lives_in(John, Castle(x))
```

 \exists i Integer(i) \land GreaterThan(i,o)

Note that \wedge is the natural connective to use with \exists

(And => is the natural connective to use with \forall)

More examples

For all real x, x>2 implies x>3.

$$\forall x[(x>2) \Rightarrow (x>3)] x \in R (false)$$

$$\exists x[(x^2 = -1)] \quad x \in R \ (false)$$

There exists some real x whose square is minus 1.

Brothers are siblings

Chapter 7 17

Brothers are siblings

 $\forall \, x,y \;\; Brother(x,y) \; \Rightarrow \; Sibling(x,y).$

"Sibling" is symmetric

Chapter 7 18

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

Chapter 7 1

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

23

Brothers are siblings

 $\forall \, x,y \;\; Brother(x,y) \; \Rightarrow \; Sibling(x,y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall \, x,y \;\; FirstCousin(x,y) \;\; \Leftrightarrow \;\; \exists \, p,ps \;\; Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y)$

Chapter 7 21

Combining Quantifiers

$$\forall x \exists y \text{ Loves}(x,y)$$

- For everyone ("all x") there is someone ("y") that they love.

$\exists y \forall x \text{ Loves}(x,y)$

- there is someone ("y") who is loved by everyone

Clearer with parentheses:
$$\exists y (\forall x Loves(x,y))$$

Duality: Connections between Quantifiers

 Asserting that all x have property P is the same as asserting that there does not exist any x that does't have the property P

 $\forall x \text{ Likes}(x, 271 \text{ class}) \Leftrightarrow \neg \exists x \neg \text{ Likes}(x, 271 \text{ class})$

In effect:

- ∀ is a conjunction over the universe of objects
- ∃ is a disjunction over the universe of objects Thus, DeMorgan's rules can be applied

De Morgan's Law for Quantifiers

De Morgan's Rule
$$P \wedge Q \equiv \neg(\neg P \vee \neg Q)$$

$$P \vee Q \equiv \neg(\neg P \wedge \neg Q)$$

$$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$$

 $\neg(P \lor Q) \equiv \neg P \land \neg Q$

Generalized De Morgan's Rule

$$\forall x P \equiv \neg \exists x (\neg P)$$

$$\exists x P \equiv \neg \forall x (\neg P)$$

$$\neg \forall x P \equiv \exists x (\neg P)$$

$$\neg \exists x P \equiv \forall x (\neg P)$$

Rule is simple: if you bring a negation inside a disjunction or a conjunction, always switch between them (or \rightarrow and, and \rightarrow or).

Exercise

- Formalize the sentence
 "Jack has reserved all red boats."
- Apply De Morgan's duality laws to this sentence.

Using FOL

• We want to TELL things to the KB, e.g. $TELL(KB, \forall x, King(x) \Rightarrow Person(x))$ TELL(KB, King(John))

These sentences are assertions

• We also want to ASK things to the KB, $ASK(KB, \exists x, Person(x))$

these are queries or goals

The KB should output x where Person(x) is true: {x/John,x/Richard,...}

Deducing hidden properties

Environment definition:

```
\forall x,y,a,b \ Adjacent([x,y],[a,b]) \Leftrightarrow [a,b] \in \{[x+1,y], [x-,y],[x,y+1],[x,y-1]\}
```

Properties of locations:

```
\foralls,t At(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s)
Location s and time t
```

Squares are breezy near a pit:

- Diagnostic rule---infer cause from effect
 ∀s Breezy(s) ⇔ ∃ r Adjacent(r,s) ∧ Pit(r)
- Causal rule---infer effect from cause. $\forall r \ Pit(r) \Rightarrow [\forall s \ Adjacent(r,s) \Rightarrow Breezy(s)]$

Knowledge engineering in FOL

- 1. Identify the task
- 2. Assemble the relevant knowledge
- 3. Decide on a vocabulary of predicates, functions, and constants
- 4. Encode general knowledge about the domain
- 5. Encode a description of the specific problem instance
- 6. Pose queries to the inference procedure and get answers
- 7. Debug the knowledge base.
- 8. See text for full example: electric circuit knowledge base.

Summary

- First-order logic:
 - Much more expressive than propositional logic
 - Allows objects and relations as semantic primitives
 - Universal and existential quantifiers
 - syntax: constants, functions, predicates, equality, quantifiers
- Knowledge engineering using FOL
 - Capturing domain knowledge in logical form
- Inference and reasoning in FOL
 - Next lecture.
- FOL is more expressive.