ADITYA DEGREE COLLEGES :: ANDHRA PRADESH

MID-I Semester –IV Mathematics-Ring Theory

Time:2 hrs.		Marks: 60 M
	SECTION-A	4 x 10 = 40 M

I. Answer ALL questions:

1.(a)Prove that Every finite integral domain is a field.

(or)

- (b)Prove that the set Z [i]= $\{a+bi/a,b\in z, i^2=-1\}$ of Gaussian integers is an integral domain with respect to addition and multiplication of numbers. Is it a field?
- 2. (a)Prove that the characteristic of an integral domain is either a prime or zero.

(or

- (b) Prove that Q [$\sqrt{2}$] = {a+b $\sqrt{2}$ /a,b∈Q} is a field with respect to ordinary addition and multiplication of numbers.
- 3. (a) S is a non-empty subset of a ring R then S is a subring of R if and only if $a-b \in S$ and $ab \in S$ for all $a,b \in S$.

(or)

- (b)i) Prove that the intersection of two subrings of a ring R is a subring of R.
 - (ii)Let R be a ring and $a \in R$ be a fixed element. Then prove that $S = \{x \in R/ax = 0\}$ is a subring of R.
- 4. (a) If U_1 and U_1 are two ideals of a ring R then U_1 U U_2 is an ideal of R if and only if $U_1 \subset U_2$ or $U_2 \subset U_1$.

(or)

(b) Define an ideal of R. If U_1 , U_2 are two ideals of a ring R then $U_1+U_2=\{x+y/x\in U_1, y\in U_2\}$ is also an ideal of R.

SECTION-B 5 x 4 = 20 M

II.Answer any "FIVE" of the following:

- 5. Prove that A filed has no zero-divisors.
- 6. Prove that Every Boolean ring is abelian.
- 7.Prove that ± 1 , $\pm i$ are the only four units in the domain of Gaussian integers.
- 8. Prove that A ring R has no zero divisors if and only if the cancelation laws hold in R.
- 9. Show that the set of matrices $\begin{pmatrix} a & b \\ o & c \end{pmatrix}$ is a subring of the ring of 2x2 matrices whose elements are integers.
- 10. Prove that A field has no proper non-trivial ideals.
- 11) Prove that A commutative ring R with unity element is a field if R have no proper ideals.
- 12. Prove that the intersection of two ideals of a ring R is an ideal of R.