

Московский государственный университет имени М.В.Ломоносова Биологический факультет Кафедра биоинженерии Группа интегративной биологии

Выпускная квалификационная работа бакалавра

Использование синтетических генетических сетей для изучения эволюционного потенциала транскрипционных факторов

Грешнова Александра Андреевна студентка группы 426 Научный руководитель: д.ф.-м.н. Шайтан Алексей Константинович

Москва 2021

Генетические регуляторные сети определяют паттерны экспрессии генов

Ф. Жакоб и Ж. Мано в 1961 году описали регуляцию экспрессии генов метаболизма лактозы у кишечной палочки за что в 1965 году совместно с А. Львовым получили Нобелевскую премию.

Оператор

Ген регулятора и сопряженный оператор

Ген регулятора и не сопряженный оператор

Регуляторные связи между компонентами сети определяют режим функционирование сети

<u>Цель</u>: изучение и сравнение эволюционных свойств генных регуляторных сетей на основе транскрипционных факторов λ CI и VT2 CI фагов λ и VT2 с использованием методов синтетической биологии

Для достижения цели были поставлены следующие задачи:

- Спроектировать синтетическую генную регуляторную сеть (ГРС) для оценки эволюционных свойств регуляторных взаимодействий транскрипционных факторов на основе измерения уровней экспрессии репортерных генов.
- II. Создать библиотеку мутантных операторов OR1 транскрипционных факторов λ CI и VT2 CI для оценки степени взаимодействия ТФ- оператор в разработанной ГРС.
- III. Измерить влияние внесенных мутаций на уровень экспрессии репортерного гена
- IV. Оценить уровень репрессии для каждого варианта библиотеки мутантных операторов
 - V. Вычислить эволюционные характеристики транскрипционных факторов: устойчивость, эволюционируемость, настраиваемость.
- VI. Сравнить эволюционные свойства двух транскрипционных факторов.

Для количественного измерения эволюционных свойств транскрипционных факторов мы создали новую

синтетическую ГРН YFP cl λP_R λ cl VT2P_R VT2 cl

Для количественного измерения эволюционных свойств транскрипционных факторов мы создали новую

Для количественного измерения эволюционных свойств транскрипционных факторов мы создали новую

Вычисление **уровня репрессии** для каждого оператора из библиотеки

Вычисление **уровня репрессии** для каждого оператора из библиотеки

Вычисление **уровня репрессии** для каждого оператора из библиотеки

Уровень репрессии =
$$(1 - \frac{\Phi_{\text{луоресценция}_{\text{без репрессора}}}{\Phi_{\text{луоресценция}_{\text{репрессор}}}) \cdot 100$$

Для сравнения эволюционных свойств транскрипционных факторов мы ввели понятие эволюционный потенциал ТФ к изменению структуры ГРС

робастность (robustness): способность игнорировать мутации, вносимые в оператор настраиваемость (tunability): способность регулировать силы связывания сопряженного оператора эволюционируемость (evolvability): способность формировать новые связи с несопряженными операторами

эволюционный потенциал ТФ к изменению структуры ГРС

Из измерений флуоресценции мы оценили эволюционные свойства ТФ: робастность

Робастность =
$$\frac{N \text{ мутантов с ур реп ≥ 90%}}{N \text{ всех мутантов}}$$
 · 100%

Робастность была оценена как процент мутантов, которые сохранили хотя бы 90% репрессии по сравнению с оператором дикого типа

Из измерений флуоресценции мы оценили эволюционные свойства ТФ: настраиваемость

Hастраиваемость = sd(X),

 $где \ X$ - значения уровней репрессии мутантов <90% и больше 10%

Настраиваемость была оценена как стандартное отклонение уровней репрессии мутантов, которые сохранили хотя бы 10% репрессии, но не больше 90% по сравнению с оператором дикого типа

Из измерений флуоресценции мы оценили эволюционные свойства ТФ: эволюционируемость

Эволюционируемость =
$$\frac{N \text{ мутантов с ур реп} \ge (wt + 10\%)}{N \text{ всех мутантов}} \cdot 100\%$$

Эволционируемость была оценена как процент мутантов с уровнем репрессии превышающим уровень репрессии дикого типа хотя бы на 10%

Робастность и эволюционируемость связаны положительной корреляцией, настраиваемость связана отрицательной корреляцией с этими свойствами

Робастность и эволюционируемость связаны положительной корреляцией, настраиваемость связана отрицательной корреляцией с этими свойствами

Связь эволюционных свойств с молекулярными особенностями ТФ:

- в связывании λ CI большую роль играет кооперативность: нарушение связывания с один оператором ведет к снижению аффинности ТФ к другому оператору и общему падению уровню репрессии. Для VT2 CI эффект кооперативности не играет большой роли, каждый ТФ связывается с операторов независимо.

Выводы:

- I. Спроектирована синтетическую генную регуляторную сеть (ГРС) для оценки эволюционных свойств регуляторных взаимодействий транскрипционных факторов на основе измерения уровней экспрессии репортерных генов.
- II. Создана библиотеку мутантных операторов OR1 транскрипционных факторов λ CI и VT2 CI для оценки степени взаимодействия ТФ- оператор в разработанной ГРС.
- III. Измерено влияние внесенных мутаций на уровень экспрессии репортерного гена
- IV. Оценены уровень репрессии для каждого варианта библиотеки мутантных операторов
- V. Вычислены эволюционные характеристики транскрипционных факторов: устойчивость, эволюционируемость, настраиваемость.
- VI. Сравнены эволюционные свойства двух транскрипционных факторов.

Благодарности:

Prof. Calin Guet

Dr. Claudia Igler

Prof. Mato Lagator

Dr. Anna Staaron

Systems and Synthetic Biology of Genetic Networks

The Institute of Science and Technology Austria

д.ф.-м.н. Шайтан А.К.

Integrative Biology Group

МГУ им. Ломоносова