MA 214: Introduction to numerical analysis (2021–2022)

Tutorial 4

(February 09, 2022)

(1) Let $f:[0,1]\to\mathbb{R}$ be continuously differentiable and define

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

Prove that $\lim_{n\to\infty} B_n(x) = f(x)$ for each $x \in [0,1]$.

- (2) If $f(x) = x^2$ then show that $B_n(x) = \left(\frac{n-1}{n}\right)x^2 + \frac{1}{n}x$.
- (3) Use the above $B_n(x)$ to determine n such that $|B_n(x) x^2| < 10^{-2}$ for all $x \in [0,1]$.
- (4) Use Neville's method to approximate $\sqrt{3}$ with $f(x)=3^x$ and $x_0=-2$, $x_1=-1$, $x_2=0$, $x_3=1$ and $x_4=2$. Find the absolute and relative errors.
- (5) Use Neville's method to approximate $\sqrt{3}$ with $f(x)=\sqrt{x}$ and $x_0=0$, $x_1=1$, $x_2=2$, $x_3=4$ and $x_4=5$. Find the absolute and relative errors.
- (6) If $P_3(x)$ is the interpolating polynomial for the following data then use Neville's method to find y if $P_3(1.5) = 0$.

(7) Use the forward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data and approximate $f(-\frac{1}{3})$.

(8) Use the backward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data and approximate f(0.25).

(9) A fourth-degree polynomial P(x) satisfies $\Delta^4 P(0) = 24, \Delta^3 P(0) = 6$, and $\Delta^2 P(0) = 0$, where $\Delta P(x) = P(x+1) - P(x)$. Compute $\Delta^2 P(10)$.