

AMENDMENTS TO THE CLAIMS

1-44. (Cancelled)

45. (Currently Amended) An EL sheet comprising:

a counter electrode layer;

a dielectric layer;

a light-emitting layer;

a transparent electrode layer made of an electroconductive polymer; and

a sheet base member,

wherein a light-transmitting adhesive layer ~~excellent in adhesiveness to the electroconductive polymer~~ is disposed between the transparent electrode layer made of the electroconductive polymer and the light-emitting layer, the light-transmitting adhesive layer having adhesiveness with respect to the electroconductive polymer.

46. (Currently Amended) An EL sheet according to Claim 45, wherein the light-transmitting adhesive layer comprises a first light-transmitting adhesive layer, the EL sheet further comprising:

a ~~second~~ light-transmitting adhesive layer ~~excellent in adhesiveness to the electroconductive polymer~~ is further disposed between the transparent electrode layer made of the electroconductive polymer and the sheet base member, the second light-transmitting adhesive layer having adhesiveness with respect to the electroconductive polymer.

47. (Previously Presented) An EL sheet comprising:

a counter electrode layer;

a dielectric layer;

a light-emitting layer;

a transparent electrode layer made of an electroconductive polymer; and

a sheet base member,

wherein at least one resin-base binder selected from a group consisting of a polyester-base

binder, an acrylic binder, a cyanoacrylate-base binder and an ethylene-vinyl acetate-base binder or a synthetic rubber-base binder represented by urethane is disposed between the transparent electrode layer made of electroconductive polymer and the light-emitting layer.

48. (Currently Amended) An EL sheet according to Claim 47, wherein further comprising:

at least one resin-base binder selected from a group consisting of a polyester-base binder, an acrylic binder, a cyanoacrylate-base binder and an ethylene-vinyl acetate-base binder or a synthetic rubber-base binder represented by urethane is ~~further~~ disposed between the transparent electrode layer made of electroconductive polymer and the sheet base member.

49. (Previously Presented) An EL sheet according to Claim 45, wherein fluororesin is used as a binder for at least one of the dielectric layer and the light-emitting layer.

50. (Previously Presented) An EL sheet according to Claim 45, wherein a polyester-base resin or an acrylic resin is used as a binder for the light-emitting layer, and fluororesin is used as a binder for the dielectric layer.

51. (Currently Amended) An EL sheet according to Claim 45, wherein an ion-exchange material is dispersed in at least one of the counter electrode layer, the dielectric layer, the light-emitting layer, the transparent electrode layer made of electroconductive polymer and the light-transmitting adhesive layer, wherein the ion-exchange material is a cationic or an amphoteric material, and wherein the ion-exchange material is a zirconium type, antimony type or bismuth type material.

52. (Currently Amended) An EL sheet according to Claim 48, wherein a polyester-base resin or an acrylic resin is used as a binder for the light-emitting layer, and a fluororesin is used as a binder for the dielectric layer, and an ion-exchange material is dispersed in at least one of the counter electrode layer, the dielectric layer, the light-emitting layer, the transparent electrode

layer made of electroconductive polymer and the light-transmitting adhesive layer, wherein the ion-exchange material is a cationic or an amphoteric material, and wherein the ion-exchange material is a zirconium type, antimony type or bismuth type material.

53. (Previously Presented) A member for lighting a push-button switch comprising:
an EL sheet according to Claim 45, a portion of the EL sheet being formed into a convex shape projecting from a rear side near the counter electrode layer to a top side near the transparent electrode layer; and
a core material having a key top shape being filled into a concave portion of the rear side of the convex shape.

54. (Withdrawn – Currently Amended) An EL sheet according to Claim 45, wherein the counter electrode layer comprises a first counter electrode layer, the EL sheet further comprising:
at least one second counter electrode layer disposed between the transparent electrode layer and the first counter electrode layer, the second counter electrode layer comprising a synthetic resin and a conductive filler which comprises nickel or carbon as a main conductive ingredient and is dispersed in the synthetic resin, the second counter electrode layer being disposed in contact with the first counter electrode layer.

55. (Withdrawn – Currently Amended) An EL sheet according to Claim 45, wherein the dielectric layer comprises a first dielectric layer, the EL sheet further comprising:
at least one second dielectric layer disposed between the transparent electrode layer and the counter electrode layer, the second dielectric layer comprising a synthetic resin and a dielectric substance having a dielectric constant lower than that of a dielectric substance used in the first dielectric layer, the second dielectric layer being disposed in contact with the first dielectric layer.

56. (Withdrawn – Currently Amended) An EL sheet according to Claim 45, wherein the counter electrode layer comprises a first counter electrode layer and the dielectric layer comprises a first dielectric layer, the EL sheet further comprising:

at least one second counter electrode layer disposed between the transparent electrode layer and the first counter electrode layer, the second counter electrode layer comprising a synthetic resin and a conductive filler which comprises nickel or carbon as a main conductive ingredient and is dispersed in the synthetic resin, the second counter electrode layer being disposed in contact with the first counter electrode layer, layer; and

at least one second dielectric layer disposed between the transparent electrode layer and the second counter electrode layer, the second dielectric layer comprising a synthetic resin and a dielectric substance having a dielectric constant lower than that of a dielectric substance used in the first dielectric layer, the second dielectric layer being disposed in contact with the first dielectric layer.

57. (Currently Amended) An EL sheet comprising: according to claim 45,

~~a counter electrode layer;~~

~~a dielectric layer;~~

~~a light-emitting layer;~~

~~a transparent electrode layer made of an electroconductive layer; and~~

~~a sheet base member;~~

wherein a binder for the light-emitting layer is different from that of the dielectric layer and excellent in adhesiveness to the electroconductive polymer, the binder for the light-emitting layer having adhesiveness with respect to the electroconductive polymer.

58. (Currently Amended) An EL sheet according to Claim 57, further comprising:

wherein a light-transmitting adhesive layer excellent in adhesiveness to the electroconductive polymer is disposed between the transparent electrode layer made of the electroconductive polymer and the sheet base member, the light-transmitting adhesive layer having adhesiveness with respect to the electroconductive polymer.

59. (Previously Presented) An EL sheet according to Claim 57, wherein the binder for the light-emitting layer is at least one resin-base binder selected from a group consisting of a

polyester-base binder, an acrylic binder, a cyanoacrylate-base binder and an ethylene-vinyl acetate-base binder, or a synthetic rubber-base binder represented by urethane.

60. (Previously Presented) An EL sheet according to Claim 57, wherein a fluororesin is used as a binder for the dielectric layer.

61. (Currently Amended) An EL sheet according to Claim 57, wherein an ion-exchange material is dispersed in at least one of the counter electrode layer, the dielectric layer, the light-emitting layer and the transparent electrode layer made of electroconductive polymer, wherein the ion-exchange material is a cationic or an amphoteric material, and wherein the ion-exchange material is a zirconium type, antimony type or bismuth type material.

62. (Withdrawn – Currently Amended) An EL sheet according to Claim 57, wherein the counter electrode layer comprises a first counter electrode layer, the EL sheet further comprising:
at least one second counter electrode layer disposed between the transparent electrode layer and the first counter electrode layer, the second counter electrode layer comprising a synthetic resin and a conductive filler which comprises nickel or carbon as a main conductive ingredient and is dispersed in the synthetic resin, the second counter electrode layer being disposed in contact with the first counter electrode layer.

63. (Withdrawn – Currently Amended) An EL sheet according to Claim 57, wherein the counter electrode layer comprises a first counter electrode layer and the dielectric layer comprises a first dielectric layer, the EL sheet further comprises: comprising:

at least one second counter electrode layer disposed between the transparent electrode layer and the first counter electrode layer, the second counter electrode layer comprising a synthetic resin and a conductive filler which comprises nickel or carbon as a main conductive ingredient and is dispersed in the synthetic resin, the second counter electrode layer being disposed in contact with the first counter electrode layer, layer; and

at least one second dielectric layer disposed between the transparent electrode layer and the

second counter electrode layer, the second dielectric layer comprising a synthetic resin and a dielectric substance having a dielectric constant lower than that of a dielectric substance used in the first dielectric layer, the second dielectric layer being disposed in contact with the first dielectric layer.

64. (New) An EL sheet according to Claim 51, wherein, for each layer in which the ion-exchange material is dispersed, an amount of the ion-exchange material is within a range of 0.1 to 15% by mass.

65. (New) An EL sheet according to Claim 64, wherein, for each layer in which the ion-exchange material is dispersed, the amount of the ion-exchange material is within a range of 0.1 to 10% by mass based on an amount which includes the ion-exchange material and a binder of the layer.

66. (New) An EL sheet according to Claim 52, wherein, for each layer in which the ion-exchange material is dispersed, an amount of the ion-exchange material is within a range of 0.1 to 15% by mass.

67. (New) An EL sheet according to Claim 66, wherein, for each layer in which the ion-exchange material is dispersed, the amount of the ion-exchange material is within a range of 0.1 to 10% by mass based on an amount which includes the ion-exchange material and a binder of the layer.

68. (New) An EL sheet according to Claim 61, wherein, for each layer in which the ion-exchange material is dispersed, an amount of the ion-exchange material is within a range of 0.1 to 15% by mass.

69. (New) An EL sheet according to Claim 68, wherein, for each layer in which the ion-exchange material is dispersed, the amount of the ion-exchange material is within a range of 0.1

to 10% by mass based on an amount which includes the ion-exchange material and a binder of the layer.

70. (New) An EL sheet according to claim 47, wherein a binder for the light-emitting layer is different from that of the dielectric layer and the electroconductive polymer, the binder for the light-emitting layer having adhesiveness with respect to the electroconductive polymer.