

Data sampling for surrogate modeling and optimization

Tyler Chang

MCS Division, Argonne National Laboratory

ICIAM 2023 - Tokyo, Japan

Outlines

Problem Setting and Some Background

My Story with Interpolation Methods

The Geometry of Bad Data

A Proposed Solution

Problem Setting and Some Background

 $F: \mathcal{X} \to \mathcal{Y}$

Given a set of n points \mathcal{P} in \mathcal{X} , find $\hat{F} \approx F$ such that $\hat{F}(x) = F(x)$ for all $x \in \mathcal{P}$

Given a set of n points \mathcal{P} in \mathcal{X} , find $\hat{F} \approx F$ such that $\hat{F}(x) = F(x)$ for all $x \in \mathcal{P}$

Suppose $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} \subset \mathbb{R}^p$, and F is continuous

► Train a neural network to 0 training error

- ► Train a neural network to 0 training error
 - ► For example, a fully-connected ReLU net

- ► Train a neural network to 0 training error
 - ► For example, a fully-connected ReLU net
- ► Other statistics/machine learning models

- ► Train a neural network to 0 training error
 - ► For example, a fully-connected ReLU net
- ► Other statistics/machine learning models
 - Gaussian processes
 - Support vector regressor
 - Decision tree-based methods

- ► Train a neural network to 0 training error
 - ► For example, a fully-connected ReLU net
- ► Other statistics/machine learning models
 - Gaussian processes
 - Support vector regressor
 - Decision tree-based methods
- "Classical" interpolation techniques

- ► Train a neural network to 0 training error
 - For example, a fully-connected ReLU net
- ► Other statistics/machine learning models
 - Gaussian processes
 - Support vector regressor
 - Decision tree-based methods
- "Classical" interpolation techniques
 - Polynomial interpolation
 - B-spline interpolation
 - RBF interpolants
 - generalized Shepard's methods
 - ► Piecewise linear interpolation

My Story with Interpolation Methods

Piecewise Linear Interpolation

- ▶ Let $\mathcal{T}(\mathcal{P})$ be a *d*-dimensional triangulation of \mathcal{P} .
- ▶ Given an interpolation point $q \in \mathcal{CH}(\mathcal{P})$, let \mathcal{S} be a simplex in $\mathcal{T}(\mathcal{P})$ with vertices s_1, \ldots, s_{d+1} such that $q \in \mathcal{S}$.
- Then there exist unique convex weights w_1, \ldots, w_{d+1} such that $q = \sum_{i=1}^{d+1} w_i s_i$.

Piecewise Linear Interpolation

- ▶ Let $\mathcal{T}(\mathcal{P})$ be a *d*-dimensional triangulation of \mathcal{P} .
- ▶ Given an interpolation point $q \in \mathcal{CH}(\mathcal{P})$, let \mathcal{S} be a simplex in $\mathcal{T}(\mathcal{P})$ with vertices s_1, \ldots, s_{d+1} such that $q \in \mathcal{S}$.
- Then there exist unique convex weights w_1, \ldots, w_{d+1} such that $q = \sum_{i=1}^{d+1} w_i s_i$.

Define:

$$\hat{F}_{\mathcal{T}}(q) = F(s_1)w_1 + F(s_2)w_2 + \ldots + F(s_{d+1})w_{d+1}$$

Piecewise Linear Interpolation

- ▶ Let $\mathcal{T}(\mathcal{P})$ be a *d*-dimensional triangulation of \mathcal{P} .
- ▶ Given an interpolation point $q \in \mathcal{CH}(\mathcal{P})$, let \mathcal{S} be a simplex in $\mathcal{T}(\mathcal{P})$ with vertices s_1, \ldots, s_{d+1} such that $q \in \mathcal{S}$.
- Then there exist unique convex weights w_1, \ldots, w_{d+1} such that $q = \sum_{i=1}^{d+1} w_i s_i$.

Define:

$$\hat{F}_{\mathcal{T}}(q) = F(s_1)w_1 + F(s_2)w_2 + \ldots + F(s_{d+1})w_{d+1}$$

Chang et al. 2020. Algorithm 1012: DELAUNAYSPARSE. ACM TOMS 46(4), Article No. 38.

Error Rates for Piecewise Linear Interpolants

For an individual component function F_i :

- ▶ Let ∇F_i be λ -Lipschitz in the 2-norm
- ▶ For $S \in \mathcal{T}$ containing q,
 - \blacktriangleright let ξ be the diameter of S and
 - ightharpoonup be the condition number of \mathcal{S} 's barycentric transformation matrix

Error Rates for Piecewise Linear Interpolants

For an individual component function F_i :

- ▶ Let ∇F_i be λ -Lipschitz in the 2-norm
- ▶ For $S \in T$ containing q,
 - \blacktriangleright let ξ be the diameter of S and
 - ightharpoonup be the condition number of \mathcal{S} 's barycentric transformation matrix

Then

$$|F_i(q) - \hat{F}_{\mathcal{T}}(q)| \leq \frac{\lambda}{2} (1 + \sqrt{d}\kappa_{\mathcal{S}}) \xi^2$$

Error Rates for Piecewise Linear Interpolants

For an individual component function F_i :

- ▶ Let ∇F_i be λ -Lipschitz in the 2-norm
- ▶ For $S \in T$ containing q,
 - \blacktriangleright let ξ be the diameter of S and
 - \blacktriangleright $\kappa_{\mathcal{S}}$ be the condition number of \mathcal{S} 's barycentric transformation matrix

Then

$$|F_i(q) - \hat{F}_{\mathcal{T}}(q)| \leq \frac{\lambda}{2} (1 + \sqrt{d}\kappa_{\mathcal{S}})\xi^2$$

Lux, Watson, Chang, et al. 2021. Interpolation of sparse high-dimensional data. Numerical Algorithms 88(1), 281–313.

► Too many extrapolation points (information lost in projection)

- ► Too many extrapolation points (information lost in projection)
- "Flat" data set cannot (accurately) triangulate

- ► Too many extrapolation points (information lost in projection)
- "Flat" data set cannot (accurately) triangulate
- Several massive simplices (high error-rate, poor conditioning)

Gorban et al. 2017. Stochastic separation theorems. Neural Networks 94, 255-259.

Gorban et al. 2017. Stochastic separation theorems. Neural Networks 94, 255-259.

My take:

Let ${\mathcal P}$ be randomly sampled by a distribution μ , then

Gorban et al. 2017. Stochastic separation theorems. Neural Networks 94, 255-259.

My take:

Let ${\mathcal P}$ be randomly sampled by a distribution μ , then

 $\mathbb{E}\left[\mathsf{vol}(\mathcal{CH}(\mathcal{P}))\right] o 0$ as d increase

What does the theory say?

Gorban et al. 2017. Stochastic separation theorems. Neural Networks 94, 255-259.

My take:

Let \mathcal{P} be randomly sampled by a distribution μ , then

 $\mathbb{E}\left[\operatorname{vol}(\mathcal{CH}(\mathcal{P}))\right] o 0$ as d increase (exponentially)

But does it happen in practice?

But does it happen in practice?

Yousefzadeh 2020. Deep learning generalization and the convex hull of training sets. Deep Learning through Info. Geom. Workshop, NeurIPS.

But does it happen in practice?

Yousefzadeh 2020. Deep learning generalization and the convex hull of training sets. Deep Learning through Info. Geom. Workshop, NeurIPS.

My take:

Yes, it does... and it's bad.

The Geometry of Bad Data

Error Rates for Piecewise Linear Interpolants

For an individual component function F_i :

- ▶ Let ∇F_i be λ -Lipschitz in the 2-norm
- ▶ For $S \in T$ containing q,
 - \blacktriangleright let ξ be the diameter of S and
 - \triangleright $\kappa_{\mathcal{S}}$ be the condition number of \mathcal{S} 's barycentric transformation matrix

Then

$$|F_i(q) - \hat{F}_{\mathcal{T}}(q)| \leq \frac{\lambda}{2} (1 + \sqrt{d}\kappa_{\mathcal{S}})\xi^2$$

Lux, Watson, Chang, et al. 2021. Interpolation of sparse high-dimensional data. Numerical Algorithms 88(1), 281–313.

What Could Go Wrong: Poor data conditioning

What Could Go Wrong: Poor data conditioning

- Simplices are long and narrow
- ightharpoonup $\kappa_{\mathcal{S}}$ term blows up
- $ightharpoonup \hat{F}_{\mathcal{T}}$ is hard to compute and low accuracy
- Ex: data lies close to a lower-dimensional manifold

What Could Go Wrong: Data imbalance

What Could Go Wrong: Data imbalance

- ightharpoonup Data accumulates in subregions of \mathcal{X}
- \blacktriangleright ξ stays large in less-dense regions of ${\mathcal X}$
- ► Can also result in poor conditioning, but they are not the same
- Called high discepancy

What Could Go Wrong: Extrapolation

What Could Go Wrong: Extrapolation

- $ightharpoonup \hat{F}_{\mathcal{T}}$ is only defined in the $\mathcal{CH}(\mathcal{P})$
- ▶ Will have to project q into $\mathcal{CH}(\mathcal{P})$ and interpolate projection
- Low accuracy when residual is large
- ▶ When $\mathcal{CH}(\mathcal{P})$ is a small subset of \mathcal{X} , overall accuracy can be poor

Same Issues for RBFs/GPs

$$\hat{F}_{RBF} = \omega^{ op} \left[egin{array}{c} e^{-\|x_1 - x\|^2/\sigma} \ e^{-\|x_2 - x\|^2/\sigma} \ dots \ e^{-\|x_n - x\|^2/\sigma} \end{array}
ight]$$

Same Issues for RBFs/GPs

$$\hat{F}_{RBF} = \omega^{ op} \left[egin{array}{c} e^{-\|x_1 - x\|^2/\sigma} \ e^{-\|x_2 - x\|^2/\sigma} \ dots \ e^{-\|x_n - x\|^2/\sigma} \end{array}
ight]$$

where $A\omega = y$ and

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix} \qquad y = \begin{bmatrix} F(x_1) \\ F(x_2) \\ \vdots \\ F(x_n) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix}$$

As we seek higher accuracy, data points get closer together

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix}$$

- As we seek higher accuracy, data points get closer together
- As $||x_i x_j|| \to 0$, $A \to \text{singularity}$

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix}$$

- As we seek higher accuracy, data points get closer together
- As $||x_i x_j|| \to 0$, $A \to \text{singularity}$
- lacktriangle Decrease the shape parameter σ to keep A nonsingular

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix}$$

- As we seek higher accuracy, data points get closer together
- As $||x_i x_j|| \to 0$, $A \to \text{singularity}$
- lacktriangle Decrease the shape parameter σ to keep A nonsingular
- lacktriangle Descreasing σ restricts the support of \hat{F}_{RBF}

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix}$$

- As we seek higher accuracy, data points get closer together
- As $||x_i x_j|| \to 0$, $A \to \text{singularity}$
- lacktriangle Decrease the shape parameter σ to keep A nonsingular
- ▶ Descreasing σ restricts the support of \hat{F}_{RBF}
 - ▶ Inability to extrapolate outside $\mathcal{CH}(\mathcal{P})$
 - ▶ When data is imabalanced, accuracy will *decrease* in low density regions

$$A = \begin{bmatrix} 1 & e^{-\|x_1 - x_2\|^2/\sigma} & \dots & e^{-\|x_1 - x_n\|^2/\sigma} \\ e^{-\|x_2 - x_1\|^2/\sigma} & 1 & \dots & e^{-\|x_2 - x_n\|^2/\sigma} \\ \vdots & \vdots & & \vdots \\ e^{-\|x_n - x_1\|^2/\sigma} & e^{-\|x_n - x_2\|^2/\sigma} & \dots & 1 \end{bmatrix}$$

- As we seek higher accuracy, data points get closer together
- As $||x_i x_j|| \to 0$, $A \to \text{singularity}$
- lacktriangle Decrease the shape parameter σ to keep A nonsingular
- Descreasing σ restricts the support of \hat{F}_{RBF}
 - ▶ Inability to extrapolate outside CH(P)
 - ▶ When data is imabalanced, accuracy will *decrease* in low density regions
- "Uncertainty principle" for real-world datasets, cannot have accuracy and solvability

A fully linear model is "accurate enough" to use as a gradient oracle in a δ -ball around x_0

A fully linear model is "accurate enough" to use as a gradient oracle in a δ -ball around x_0

$$|\hat{F}(x) - F(x)| \le C_1 \delta^2$$

 $\|\nabla \hat{F}(x) - \nabla F(x)\| \le C_2 \delta$

for all $||x - x_0|| < \delta$.

A fully linear model is "accurate enough" to use as a gradient oracle in a δ -ball around x_0

$$|\hat{F}(x) - F(x)| \le C_1 \delta^2$$

 $\|\nabla \hat{F}(x) - \nabla F(x)\| \le C_2 \delta$

for all $||x - x_0|| < \delta$.

- ightharpoonup When \hat{F} interpolates, conditions for fully linearity reduce to geometric conditions
 - ightharpoonup d+1 model points in ball are affinely independent
- Only accurate within ball
 - no guarantees during extrapolation
 - no convergence in low-density regions

Summary of Bad Data

- ► Small convex hull
- Imbalanced
- ► Poorly conditioned

Summary of Bad Data

- Small convex hull
- Imbalanced
- ► Poorly conditioned

Real-world datasets have zero-volume in high-dimensions, which leads to all of the properties

A Proposed Solution

- ► Classical deterministic designs full-factorial, central composite, box-behnkin
 - ► Typically don't scale well to many dimensions

- ► Classical deterministic designs full-factorial, central composite, box-behnkin
 - Typically don't scale well to many dimensions
- ▶ Optimal design of experiments A-optimal, E-optimal, D-optimal designs
 - Maximize info gain, which is roughly equivalent to max. model conditioning
 - Expensive to calculate
 - Typically require a model a priori

- ► Classical deterministic designs full-factorial, central composite, box-behnkin
 - Typically don't scale well to many dimensions
- Optimal design of experiments A-optimal, E-optimal, D-optimal designs
 - Maximize info gain, which is roughly equivalent to max. model conditioning
 - Expensive to calculate
 - Typically require a model a priori
- ► Geometric criteria maximin and minimax
 - ► Heuristically good for maximizing convex hulls
 - Expensive to calculate in high dimensions

- ► Classical deterministic designs full-factorial, central composite, box-behnkin
 - Typically don't scale well to many dimensions
- ▶ Optimal design of experiments A-optimal, E-optimal, D-optimal designs
 - Maximize info gain, which is roughly equivalent to max. model conditioning
 - Expensive to calculate
 - Typically require a model a priori
- Geometric criteria maximin and minimax
 - ► Heuristically good for maximizing convex hulls
 - Expensive to calculate in high dimensions
- ► Low discrepancy sequences Sobol, Halton, etc.
 - Produce balanced datasets
 - Performance falls off when sample size is not chosen carefully

- ► Classical deterministic designs full-factorial, central composite, box-behnkin
 - Typically don't scale well to many dimensions
- ▶ Optimal design of experiments A-optimal, E-optimal, D-optimal designs
 - Maximize info gain, which is roughly equivalent to max. model conditioning
 - Expensive to calculate
 - Typically require a model a priori
- ► Geometric criteria maximin and minimax
 - ► Heuristically good for maximizing convex hulls
 - Expensive to calculate in high dimensions
- ► Low discrepancy sequences Sobol, Halton, etc.
 - Produce balanced datasets.
 - Performance falls off when sample size is not chosen carefully
- Latin hypercubes
 - ► Stratifies sample good for linear models
 - No theory for nonlinear models
 - Heuristically good in practice and cheap to calculate

Stochastic Fourier SFD

- Desired sample size
- Performance criertia

COBYLA

$$\alpha_1 e^{2\pi i x} + \alpha_2 e^{2\pi i (2x)} + \dots$$

Preliminary Results

Resources

E-mail: tchang@anl.gov

Code: github.com/thchang/sf-sfd

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, SciDAC program under contract number DE-AC02-06CH11357.