Novo Espaço – Matemática A, 12.º ano

Apoio à avaliação [novembro - 2023]

Data: ___ - ___ - ___

Nome:

Ano / Turma: _____ N.º: ____

1. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$).

Sabe-se que:

- $\bullet \quad P(\overline{A}) = 0,7$
- $\bullet \quad P(A \cup B) = 0.9$
- $A \cap B = \emptyset$

Qual é o valor de $P(\overline{B})$?

- **(A)** 0,6
- **(B)** 0,4
- (C) 0,2
- **(D)** 0,1
- 2. Uma caixa A contém cinco bolas numeradas de 1 a 5 e uma caixa B contém quatro bolas numeradas de 6 a 9, todas indistinguíveis ao tato. Retira-se, ao acaso, uma bola de cada uma das caixas.

Sejam C e D os acontecimentos:

- C: "O produto dos números inscritos nas bolas é ímpar."
- D: "A soma dos números inscritos nas bolas retiradas é igual a 10."

Qual é o valor de $P(D \mid C)$?

- (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$
- **(D)** $\frac{2}{3}$
- 3. Com os dez algarismos de 0 a 9 são gerados códigos de segurança formados por sequências de seis dígitos, tendo no máximo, cada sequência, dois dígitos iguais e os restantes diferentes.

A expressão seguinte permite determinar, nestas condições, quantos códigos diferentes é possível gerar.

$$^{10}A_6 + {}^6C_2 \times 10 \times {}^9A_4$$

Explica, no contexto descrito, cada parcela desta expressão.

4. De uma turma do 12.º ano do ensino articulado de Música, apenas alguns alunos vão participar no concerto de Natal.

Relativamente a essa turma, sabe-se que:

- O número de rapazes é um terço do número de raparigas.
- Um terço das raparigas não vão participar no concerto.
- 75% dos alunos que vão participar no concerto são raparigas.

Escolhe-se, ao acaso, um aluno dessa turma.

Determina a probabilidade de esse aluno participar no concerto de Natal.

Apresenta o resultado na forma de fração irredutível.

5. Seja f a função, de domínio $]-\infty$, 8[, definida por:

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 5} - 3}{x - 2} & \text{se } x < 2\\ \frac{2 - 3x}{x - 8} & \text{se } 2 \le x < 8 \end{cases}$$

- **5.1.** Mostra que a função f é contínua em x = 2.
- **5.2.** Mostra, recorrendo ao Teorema de Bolzano-Cauchy, que a equação $f(x) = \frac{1}{2}$ tem pelo menos uma solução no intervalo]-1,1[.
- **6.** Considera, para um certo número real k , a função f , contínua em $\mathbb R$, definida por:

$$f(x) = \begin{cases} k - \frac{2}{3} & \text{se } x = 1\\ \frac{x^2 + 2x - 3}{4 - 4x} & \text{se } x \neq 1 \end{cases}$$

6.1. Qual é o valor do parâmetro k?

(A)
$$-\frac{1}{3}$$
 (B) -1 (C) 1 (D) $\frac{5}{3}$

6.2. Seja g a função, de domínio $]1,+\infty[$, definida por $g(x) = -\frac{1}{\sqrt{x-1}}$.

Sabe-se que os gráficos de f e de g se intersetam num ponto. Determina, recorrendo às capacidades gráficas da calculadora, a abcissa desse ponto, arredondada às centésimas.

Na tua resposta:

- Traduz por uma equação a situação apresentada.
- Representa, num referencial, o(s) gráfico(s) visualizado(s) na calculadora e assinala o ponto que te permite dar resposta à questão.
- 7. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos $(A \subset \Omega \in B \subset \Omega)$ onde $P(A) \neq 0$.

Prova que:

$$\frac{P(\overline{A} \cup B) - P(A)}{P(A)} - P(B \mid A) + 1 = \frac{P(\overline{A})}{P(A)}$$

8. Seja f uma função contínua em \mathbb{R} .

Sabe-se que:

- $a \in b$ são números reais tais que, 0 < a < b < 1.
- $\bullet \quad f(0) = \frac{1}{a}$
- f(1) = b

Mostra que a equação f(x)=1 é possível em [0,1].

FIM Cotações

Questões	1.	2.	3.	4.	5.1	5.2	6.1	6.2	7.	8.	Total
Cotação	20	20	20	20	20	20	20	20	20	20	200
(pontos)	20	20	20	20	20	20	20	20	20	20	200