13-14-2 高数期中试卷答案

一. 填空题

1. 0,1,第一类 (跳跃),第二类 (无穷); **2.** e^6 ; **3.** $\frac{\sqrt{2}}{2}$;

4. $\frac{2e^{2x}}{\sqrt{1-e^{4x}}}dx$; **5.** 3, $\frac{1}{6}$ **6.** 40; **7.** e-4

二. 计算下列各题

1. $y' = \frac{2(^2 - x + 1)}{\sqrt{x^2 + 2(x + 1)^3}};$ 2. 4; 3. $\frac{3}{2}$ (用夹逼定理)

4. $\lim_{x\to 0} f(x) = \frac{1}{2} = f(0)$, $\text{th} f(x) \neq x = 0$ $\text{th} f(x) \neq x = 0$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{1}{x} - \frac{1}{e^x - 1} - \frac{1}{2}}{x} = -\frac{1}{12},$$

故 f(x) 在 x = 0 处可导,且 $f'(0) = -\frac{1}{12}$ 。

三. (1). 参数方程为 $y = \frac{\sqrt{2}}{2}(1+\frac{\pi}{4})+(\frac{\pi}{4}-2)(x-\frac{\sqrt{2}}{2})$

(2).
$$\frac{d^2y}{dx^2} = -\frac{1 + 2\csc^2t}{\sin t} = -\frac{\sin^2t}{\sin^3t}$$

四. $f(x) = x^2 - \frac{1}{6}x^4 + \frac{5\sin\theta x + \theta x\cos\theta x}{5!}$ $(0 < \theta < 1)$.

五.略

六. 提示:利用单调有界原理来证明,单调递增显然的;关键求上界。为了得到上界,可以考虑把每项的分子加1再减1,就可以得到上界1。

七. 提示: 法一: 因为f(a)f(b)<0,根据连续函数的零点存在定理可以得到一个零点

 x_0 。在点c的一阶带拉格朗日余项的泰勒公式,代入 x_0 点就可以得证。

法二: 在区间[a,c]上用拉格朗日中值定理,得到(a,c)内的一点 ξ_1 ,有 $f'(\xi_1) < 0$;再在 $[\xi_1,c]$ 上对f'(x)用拉格朗日中值定理,即可得证。