Курс - Библиотеки Python для Data Science: Numpy, Matplotlib, Scikit-learn

Урок 2. Практическое задание 1 (2)

Видеоурок. Вычисления с помощью Numpy. Работа с данными в Pandas.

Тема "Работа с данными в Pandas"

Задание 1

Импортируйте библиотеку Pandas и дайте ей псевдоним pd.

```
B [23]: import pandas as pd
```

Создайте датафрейм authors со столбцами author_id и author_name, в которых соответственно содержатся данные: [1, 2, 3] и ['Тургенев', 'Чехов', 'Островский'].

```
B [24]: # Создайте датафрейм authors со столбцами author_id u author_name
auth = {
    "author_id": [1, 2, 3],
    "author_name": ['Тургенев', 'Чехов', 'Островский']
}
authors = pd.DataFrame(auth)
authors
```

Out[24]:

author_name	author_id	
Тургенев	1	0
Чехов	2	1
Островский	3	2

Затем создайте датафрейм book со столбцами author_id, book_title и price, в которых соответственно содержатся данные:

```
[1, 1, 1, 2, 2, 3, 3],
```

['Отцы и дети', 'Рудин', 'Дворянское гнездо', 'Толстый и тонкий', 'Дама с собачкой', 'Гроза', 'Таланты и поклонники'],

[450, 300, 350, 500, 450, 370, 290].

Type *Markdown* and LaTeX: α^2

Out[25]:

author_id		book_title	price
0	1	Отцы и дети	450
1	1	Рудин	300
2	1	Дворянское гнездо	350
3	2	Толстый и тонкий	500
4	2	Дама с собачкой	450
5	3	Гроза	370
6	3	Таланты и поклонники	290

Задание 2

Получите датафрейм authors_price, соединив датафреймы authors и books по полю author_id.

```
B [26]: authors_price = pd.merge(authors, books, on='author_id', how='inner')
authors_price
```

Out[26]:

	author_id	author_name	book_title	price
0	1	Тургенев	Отцы и дети	450
1	1	Тургенев	Рудин	300
2	1	Тургенев	Дворянское гнездо	350
3	2	Чехов	Толстый и тонкий	500
4	2	Чехов	Дама с собачкой	450
5	3	Островский	Гроза	370
6	3	Островский	Таланты и поклонники	290

Задание 3

Создайте датафрейм top5, в котором содержатся строки из authors_price с пятью самыми дорогими книгами.

```
B [27]: # authors_price.sort_values(by="price", inplace=True)
# top5 = authors_price.head(5)
# top5 = authors_price.tail(5)
# top5.reset_index(drop=True, inplace=True)

# Создаём датафрейм top5, в котором содержатся строки из authors_price с пятью со top5 = authors_price.nlargest(5, "price")
top5
```

Out[27]:

	author_id	author_name	book_title	price
3	2	Чехов	Толстый и тонкий	500
0	1	Тургенев	Отцы и дети	450
4	2	Чехов	Дама с собачкой	450
5	3	Островский	Гроза	370
2	1	Тургенев	Дворянское гнездо	350

```
B [28]: type(top5)
```

Out[28]: pandas.core.frame.DataFrame

Задание 4

Создайте датафрейм authors_stat на основе информации из authors_price.

В датафрейме authors stat должны быть четыре столбца:

author name, min price, max price u mean price,

в которых должны содержаться соответственно имя автора,минимальная, максимальная и средняя цена на книги этого автора .

```
B [30]: groupby = authors_price.groupby("author_name")
groupby.agg({"price":["min", "max", "mean"]})
#groupby.agg({"price":'min', "price":'max', "price":'mean', suffixes=['min', 'max']
```

Out[30]:

price

author	name

Островский	290	370	330.000000
Тургенев	300	450	366.666667
Uovon	450	500	475 000000

Задание 5**

Создайте новый столбец в датафрейме authors_price под названием cover, в нем будут располагаться данные о том, какая обложка у данной книги - твердая или мягкая.

В этот столбец поместите данные из следующего списка:

['твердая', 'мягкая', 'мягкая', 'твердая', 'твердая', 'мягкая'].

```
B [38]: # Создаём новый столбец в датафрейме authors_price под названием cover vals = ['твердая', 'мягкая', 'мягкая', 'твердая', 'твердая', 'мягкая', 'мягкая'] authors_price['cover'] = vals authors_price
```

Out[38]:

	author_id	author_name	book_title	price	cover
0	1	Тургенев	Отцы и дети	450	твердая
1	1	Тургенев	Рудин	300	мягкая
2	1	Тургенев	Дворянское гнездо	350	мягкая
3	2	Чехов	Толстый и тонкий	500	твердая
4	2	Чехов	Дама с собачкой	450	твердая
5	3	Островский	Гроза	370	мягкая
6	3	Островский	Таланты и поклонники	290	мягкая

Просмотрите документацию по функции pd.pivot table с помощью вопросительного знака.

```
B [42]: #?pd.pivot_table
?groupby
```

Для каждого автора посчитайте суммарную стоимость книг в твердой и мягкой обложке.

Используйте для этого функцию pd.pivot table.

При этом столбцы должны называться "твердая" и "мягкая", а индексами должны быть фамилии авторов.

Пропущенные значения стоимостей заполните нулями, при необходимости загрузите библиотеку Numpy.

```
B [89]: # Для каждого автора посчитайте суммарную стоимость книг в твердой и мягкой облож
# 1 вариант с groupby
# groupby = authors_price.groupby(["author_name", "cover"])
# groupby.agg({"price":"sum"}).unstack()
groupby = authors_price.groupby(["author_name", "cover"])["price"].agg('sum').unstack()
groupby.fillna("0")

# 2 вариант с pivot_table
book_info = authors_price.pivot_table("price", index="author_name", columns="covetook_info")
```

Out[89]:

cover	мягкая	твердая
author_name		
Островский	330	0
Тургенев	325	450
Чехов	0	475

Hазовите полученный датасет book_info и сохраните его в формат pickle под названием "book info.pkl".

Затем загрузите из этого файла датафрейм и назовите его book info2.

```
B [95]: # Сохраняем book_info в формат pickle nod названием "book_info.pkl"
book_info.to_pickle("book_info.pkl")

# Загружаем датафрейм из файла "book_info.pkl" в book_info2
book_info2 = pd.read_pickle("book_info.pkl")
book_info2
```

Out[95]:

cover	мягкая	твердая
author_name		
Островский	330	0
Тургенев	325	450
Чехов	0	475

Удостоверьтесь, что датафреймы book info и book info2 идентичны.

B [94]: book_info == book_info2

Out[94]:

cover	мягкая	твердая
author_name		
Островский	True	True
Тургенев	True	True
Чехов	True	True