Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Grosse-Erdmann, Schmies, Trunk SS 2007 08.10.2007

Oktober – Klausur (Rechenteil) Analysis II für Ingenieure

Name:		Vorname:						
MatrNr.:	• • • • •	Studi	engang	:		••••		
Die Lösungen sind in Reinschr schriebene Klausuren können ni				_	ben. M	Iit Blei	stift ge-	
Dieser Teil der Klausur umfast vollständigen Rechenweg an		Rechei	naufgal	oen. G	eben S	Sie imn	ner den	
Die Bearbeitungszeit beträgt 60) Minu	ıten.						
Die Gesamtklausur ist mit 40 verbeiden Teile der Klausur mindes					·	•		
Korrektur								
	1	2	3	4	5	6	\sum	

1. Aufgabe 8 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^2y^2 + e^x - ex$.

Ermitteln Sie alle lokalen Extrema von $\,f\,$ und geben Sie auch die Art der Extrema an.

Hat f auf \mathbb{R}^2 auch globale Extrema?

2. Aufgabe 7 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit f(x,y) = 3x - 4y sowie der Bereich $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$

Begründen Sie, dass f auf D einen kleinsten und einen größten Funktionswert annimmt und ermitteln Sie diese beiden Werte.

3. Aufgabe 6 Punkte

Berechnen Sie das Integral $\iint_B (x^3 + xy^2) dxdy$

$$\text{mit } B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1, \ x \geq 0, \ y \geq 0\}.$$

Hinweis: Verwenden Sie Polarkoordinaten.

4. Aufgabe 5 Punkte

Zeigen Sie, dass das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (2xy,\,x^2+z,\,y)^T$ ein Potentialfeld ist, und ermitteln Sie eine Stammfunktion.

5. Aufgabe 7 Punkte

Berechnen Sie den Fluß des Vektorfeldes $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (-y,\,x,\,z)^T$ durch die Fläche,

die durch $\vec{x}(r,\phi)=(r\cos\phi,\ r\sin\phi,\ 1-r^2)^T,\ 0\leq\phi\leq\frac{\pi}{2},\ 0\leq r\leq1$ parametrisiert ist.

6. Aufgabe 7 Punkte

Bestimmen Sie den Flächeninhalt der Menge

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 2z^2, \ 1 \le z \le 2\}.$$