Interfejsy głosowe

- 1. Projektowanie interfejsów głosowych
- 2. Analiza i synteza mowy

"Mowa jest źródłem nieporozumień"

"Mały książę" Antoine de Saint-Exupéry

Projektowanie interfejsów głosowych

Interfejs graficzny

- Opiera się na elementach wizualnych
- Pozwala wyświetlić dostępne opcje
- Pozwala pominąć akcje użytkownika niezwiązane z funkcjonalnością

Interfejs głosowy

- Brak możliwości użycia
 GUI
- Brak możliwości wizualnej prezentacji,
 - funkcjonalności, z jakiej aktualnie korzysta użytkownik
 - możliwych opcji
- Użytkownik zakłada, że będzie zrozumiany tak samo jak w komunikacji z innymi ludźmi

Wytyczne

- 1. Udostępnij użytkownikowi informację o tym co może zrobić
- 2. Informuj użytkownika z jakiej funkcjonalności korzysta i jak ją opuścić
- 3. Wyrażaj możliwe intencje użytkownika na przykładach np. pomoc głosowa, instrukcja głosowa
- 4. Ogranicz liczbę informacji zadbaj o zwartość i przejrzystość przekazu
 - Nie podawaj więcej niż 3 możliwości na raz
 - Gdy możliwości jest więcej, przedstaw tylko te najczęściej używane i informację o tym jak przejść do pozostałych
- 5. Używaj wizualnego sprzężenia zwrotnego do zasygnalizowania, że interfejs jest aktywny

Analiza i synteza mowy

Rodzaje systemów wykorzystujących mowę

- Rozpoznawanie mowy
 - Rozpoznawanie mowy ciągłej
 - Rozpoznawanie pojedynczych wyrazów/poleceń
- Identyfikacja mówcy określenie, która ze znanych systemowi osób mówi
- Weryfikacja mówcy (sprawdzenie, czy mówca jest rzeczywiście tym za kogo się podaje)
- Poprawa jakości sygnału mowy (redukcja szumów)
- Kodowanie sygnału mowy (do transmisji sygnału)
- Analiza głosu (diagnozowanie chorób układu mowy)
- Synteza mowy (mowa generowana przez komputer)

Komunikacja z użyciem mowy

Cechy systemu słuchowego

- Odgrywa istotną rolę w tworzeniu i odbiorze informacji
 - Pozwala odbierać informacje przekazywane za pomocą mowy
 - Pozwala na kontrolę jakości własnej wypowiedzi (sprzężenie zwrotne)
 - Brak sprzężenia zwrotnego u osób z wadami słuchu powoduje u nich gorszą wymowę
- Selektywność
 - osoby słyszące tylko jednym uchem nie posiadają tej cechy
- Niemożność rozróżnienia sygnałów pojawiających się w odpowiednio małych odstępach czasowych lub sygnałów o zbliżonej częstotliwości

Uproszczony model systemu akustycznego człowieka

Cechy systemu akustycznego człowieka

- Naturalne filtry akustyczne:
 - Jama gardłowa
 - Jama ustna
 - Jama nosowa
- Przeciętna długość ścieżki akustycznej:
 - U osoby dorosłej płci męskiej/żeńskiej: 17/14 cm
 - U dziecka: 10 cm
- Kształt narządów artykulacyjnych określa właściwości filtru akustycznego

Podstawy analizy akustycznej

- Charakterystykę widmową fali dźwiękowej cechuje zmienność w czasie, gdyż system fizyczny (narządy mowy) zmienia się szybko w czasie
- Stąd mowę można podzielić na segmenty o podobnych właściwościach akustycznych wyznaczonych w krótkich chwilach czasowych, typowo na:
 - samogłoski nie mają ograniczeń wynikających z przepływu powietrza w systemie akustycznym człowieka
 - spółgłoski posiadają znaczne ograniczenia, w efekcie czego ich amplituda jest niższa i mają większe zakłócenia
- Zakres fal dźwiękowych produkowanych i odbieranych przez człowieka: 7 8 kHz

Podstawy analizy akustycznej c.d.

- Sygnał dźwiękowy może służyć do określenia periodyczności, intensywności, czasu trwania i granic między poszczególnymi dźwiękami
- Mowa nie jest ciągiem dyskretnych, łatwo rozróżnialnych dźwięków, lecz raczej serią "docelowych" dźwięków (czasami bardzo krótkich) z przejściami reprezentującymi formowanie się następnego dźwięku (jest to tzw. koartykulacja)

Rozpoznawanie mowy

Pozyskiwanie i przetwarzanie sygnału akustycznego

Próbkowanie sygnału analogowego

- Teoretycznie częstotliwość próbkowania powinna być 2-krotnie większa niż największa częstotliwość, która ma być reprezentowana w sygnale
- W praktyce stosowane są większe częstotliwości próbkowania:
 - W telefonie 8 kHz
 - W analizie i syntezie mowy za wystarczającą przyjmuje się częstotliwość 16 kHz
 - Standardy audio to 44.1 kHz (CD) i 48 kHz (cyfrowa kaseta audio)

Sygnał mowy - przykład

Sygnał dla zdania "She had your dark"

Podział na bloki (windowing)

Założenia (dla celów wykonania DFT):

Sygnał jest stacjonarny w krótkich chwilach czasowych

Możliwe rozwiązania:

- Przemnożenie sygnału przez funkcję okna posiadającą wartości 0 poza określonym przedziałem powoduje powstanie nieciągłości na brzegach przedziału
- Dlatego w analizie mowy wykorzystuje się okno Hamminga

nieciągłości wynikające z zastosowania okna kwadratowego

Przykład windowingu dla funkcji sinus

funkcja sinus w oknie

moduł widma Fouriera

okno kwadratowe

okno Hamminga

Przykład windowingu dla samogłoski

Fonetyka – fonemy i fony

- Fony to podstawowe jednostki dźwięku w języku. (syntaktyka, artykulacja)
- Fonem to grupa fonów posiadających to samo znaczenie. (semantyka, język)
- Alofony to fony występujące w fonemie.
- Istnieje nieskończona liczba fonów, ale w każdym języku można pogrupować je w 20-60 grup fonemów.
- Brzmienie fonemów jest silnie zależne od osoby je wypowiadającej.

Fonetyka - koartykulacja

- Fony nie są wypowiadane zawsze w ten sam sposób, ich brzmienie jest zależne od kontekstu.
- Fon jest celem, który chce osiągnąć, ale rzadko osiąga, mechanizm mowy.
- W większości przypadków zbliża się wystarczająco do tego, by być zrozumiałym.
- Systemy syntezy i rozpoznawania muszą uwzględniać koartykulację (dwufony, trójfony).

Fonematyka - fonemy

- Fonem podstawowa jednostka mowy mogąca zmienić znaczenie słowa.
 - W języku amerykańskim wyróżnia się 42 fonemy. Są to: samogłoski, semisamogłoski, dwugłoski i spółgłoski (nosowe, szczelinowe, zwartoszczelinowe)
- Każdy fonem można traktować jak kod złożony z unikalnego zbioru gestów artykulacyjnych (gest artykulacyjny zawiera rodzaj i położenie pobudzenia dźwiękowego oraz położenie i ruch narządów mowy)
- Około 50-ciu fonemów wystarcza do wypowiedzenia zdania w dowolnym ziemskim narzeczu

Fonematyka – przykład alofonu

- Przykład alofonu można znaleźć w słowach "pin" i "spin".
- W drugim z nich głoska /p/ bardziej przypomina w brzmieniu głoskę /b/.
- Alofony są zależne od kontekstu.
- Nie ma różnicy w znaczeniu.

Fonematyka – grupowanie fonemów

Sylaby i słowa

Intonacja i akcent

- Akcent odzwierciedla stopień nacisku z jakim wypowiadana jest sylaba lub słowo.
- We frazach i zdaniach intonacja różnicuje ważność (znaczenie) poszczególnych słów.
- Wymaga dalszych badań.

Schemat systemu rozpoznawania mowy

- 1. Usunięcie fragmentów sygnału nie zawierających sygnału mowy (detekcja mowy)
- 2. Wydzielenie cech
- 3. Klasyfikacja w oparciu o wyznaczone cechy i bazę wzorców

Kompensacja kanału

- Pojawia się, gdy warunki w jakich przeprowadza się testy różnią się od warunków w jakich następowało uczenie
- Dodatkowym problemem są:
 - ✓ Dźwięki nieświadomie wydawane przez człowieka (cmokanie, ciężki oddech, pstrykanie palcami)
 - ✓ Zakłócenia w systemie transmisyjnym
 - ✓ Warunki środowiskowe (praca maszyn, trzaskanie drzwiami, ruch uliczny, TV, radio, inne rozmowy w tle, nieprzyjazne środowisko-stres)
- Rozwiązaniem może być użycie cech niewrażliwych na powyższe problemy

Detekcja mowy

- Istnieje wiele technik usuwania "ciszy"
- Wyróżnia się metody:
 - Zależne od tekstu (wykorzystują statystyczne modele ciszy)
 - Niezależne od tekstu (oparte na energii sygnału)
- W ogólności detektor mowy usuwa 20-25% sygnału

Detektory mowy oparte na energii

Spektogram

Jest to wykres zależności mocy widma w różnych zakresach częstotliwości od czasu

Spektogram

Jest to wykres zależności mocy widma w różnych zakresach częstotliwości od czasu

Czas (sek.) Spektogram dla zdania *Ala ma kota*.

Porównanie spektogramów

Formanty

- Formant to maksimum lokalne obwiedni widma sygnału mowy, a częstotliwość przy której występuje to częstotliwość formantowa.
- Główna zaleta formantów polega na ich charakterystycznej konfiguracji, możliwej do określenia w charakterze wzorca dla większości głosek (w tym głównie samogłosek) niezależnie od tego, kto je wypowiada, jak szybki jest proces artykulacji, jakie towarzyszą mu emocje itp.

Cechy sygnału mowy

- Istnieje ogólna zgoda, że najlepsza reprezentacja sygnału mowy oparta jest na analizie spektrum
- Techniki analizy spektrum różnią się sposobem kwantyzacji spektrum
- Podstawowe podejścia do kwantyzacji spektrum wykorzystują:
 - Predykcję liniową (LP linear prediction)
 - Bank filtrów

Cechy sygnału mowy

- Estymaty autokorelacji
 - Autokorelacja
 - Kowariancja
 - Moc widma
 - Korelacja skrośna i kros-PDS
- Funkcja średniej różnic amplitud
- Miary wykorzystujące zerowanie się 2-giej pochodnej
- Moc i energia
- Cechy wykorzystujące analizę Fouriera

Analiza z użyciem predykcji liniowej

- Z historycznego punktu widzenia jest to jedna z najważniejszych technik analizy mowy
- Następna próbka określana jest na podstawie ważonej sumy *p* poprzednich próbek:

$$\hat{s}_n = \sum_{i=1}^p a_i s_{n-i}$$

Sprowadza się to do zamodelowania procesu mowy z użyciem następującego filtru:

następującego filtru:
$$H(z) = \frac{1}{1 - \sum_{i=1}^{p} a_i z^{-i}}$$
Wtedy
$$X(z) = G(z)H(z);$$

$$gdzie:$$

$$1 - \sum_{i=1}^{p} a_i z^{-i}$$

X – spektrum okna sygnału mowy

G – widmo pobudzenia krtaniowego

z – częstotliwość

Impulsy krtaniowe

Trakt wokalny

Sygnał mowy

FUNKCJA FILTRU

WIDMO ENERGII WYJŚCIOWEJ

Analiza z użyciem predykcji liniowej c.d.

- Polega na doborze takich współczynników predykcji liniowej (LPC Linear Prediction Coefficients), by błąd średniokwadratowy w danym fragmencie sygnału mowy (oknie) był minimalny
- Moduł odpowiedzi filtru reprezentuje spektralną obwiednię okna sygnału mowy
- Uwzględnienie odpowiednio dużej liczby współczynników wystarcza na aproksymację obwiedni widma dla dowolnego dźwięku mowy

Wyznaczanie LPC

Błąd dla próbki
$$n$$
: $e_n = s_n - \hat{s}_n = s_n - \sum_{i=1}^{p} a_i s_{n-i}$

SSE w oknie o długości N: $E = \sum_{n=0}^{N-1} e_n^2 = \sum_{n=0}^{N-1} \left(s_n - \sum_{k=1}^{p} a_k s_{n-k} \right)^2$

E osiąga minimum, gdy $\delta E/\delta a_i = 0$:

$$\frac{\partial E}{\partial a_{j}} = -\sum_{n=0}^{N-1} \left(2 \left(s_{n} - \sum_{k=1}^{p} a_{k} \, s_{n-k} \right) s_{n-j} \right) = -2 \sum_{n=0}^{N-1} s_{n} \, s_{n-j} + 2 \sum_{n=0}^{N-1} \sum_{k=1}^{p} a_{k} \, s_{n-k} \, s_{n-j} = 0$$

$$\sum_{n=0}^{N-1} s_n \, s_{n-j} = \sum_{n=0}^{N-1} \sum_{k=1}^{p} a_k \, s_{n-k} \, s_{n-j} = \sum_{k=1}^{p} \sum_{n=0}^{N-1} s_{n-k} \, s_{n-j}$$

Utwórzmy macierz kowariancji Φ o elementach $\varphi_{i,k}$: $\varphi_{i,k} = \sum_{k=1}^{N-1} s_{n-k}$ Można pokazać, że: $\varphi_{i,0} = \sum_{k=1}^{p} \varphi_{i,k} \, a_k$ $q_{i,k} = \sum_{n=0}^{N-1} s_{n-k}$

W postaci macierzowej:
$$\Phi_0 = \Phi \cdot a \implies a = \Phi^{-1} \cdot \Phi_0$$

Cechy analizy z użyciem predykcji liniowej

- LPC są wrażliwe na zakłócenia wynikające z różnych warunków uczenia i testowania lepiej jest oprzeć się na reprezentacji cepstralnej
- Współczynniki cepstralne liniowej predykcji (LPCCs Linear Predictive Cepstral Coefficients) można wyznaczyć na podstawie współczynników LPC wykorzystując następującą regułę iteracyjną:

$$c_n = a_n + \frac{1}{n} \sum_{i=1}^{n-1} i c_i a_{n-i}$$

Cepstrum

■ Cepstrum to odwrotna transformacja Fouriera (lub podobna) logarytmu mocy widma sygnału

Definicja $C(q) = 2T\{\ln|G(f)| + \ln|H(f)|\}$ gdzie: C(q) - cepstrum $T\{\} - \text{transformacja (zazwyczaj DCT)}$ q - quefrency

Cepstrum - przykład

2500

Segment samogłoski dla okna Hamminga (a) i odpowiadające mu:

- (b) moduł widma
- (c) moc widma (w dB)
- (d) część rzeczywista cepstrum

Cechy cepstrum

- Większość szczegółów pojawia się na początku i w wierzchołkach cepstrum ⇒ pierwsze współczynniki zawierają informację o obwiedni mocy widma, a szczegóły dotyczące pobudzenia krtaniowego reprezentowane są w większości przez pojawiające się okresowo wierzchołki
- Cechy są nieskorelowane, ze względu na transformację $T\{\}$ (zazwyczaj DCT)
- Wygodne i efektywne w obecności zakłóceń
- Ze względu na te cechy prawie zawsze stosowana jest reprezentacja cepstralna

Cechy oparte na analizie z użyciem banku filtrów

- Stosowane banki filtrów odzwierciedlają nieliniową wrażliwość ucha ludzkiego
- Operują bezpośrednio na widmie
- Uwzględniają amplitudy m_i wyznaczone dla każdego zakresu nieliniowo rozmieszczonych filtrów
- Inżynierowie wykorzystują bank trójkątnych filtrów w skali Mela

Skala Mela

■ Definicja skali Mela:

$$Mel(f) = 2595 \log_{10}(1 + f/700)$$

Cechy MFCCs

Oparte na reprezentacji cepstralnej:

$$c_{mel}(n) = \sqrt{\frac{2}{N}} \sum_{i=1}^{N} m_i \cos\left(\frac{\pi n}{N}(i - 0.5)\right)$$

gdzie:

N – liczba filtrów w banku m_i – wartość energii dla i-tego filtru

Znane jako współczynniki cepstralne dla częstotliwości
 Mela (MFCCs – Mel-Frequency Cepstral Coefficients)

Metody klasyfikacji cech

- DTW **D**ynamic **T**ime **W**arping
 - Pozwala obliczyć podobieństwo dwóch sekwencji (np. czasowych) o różnej długości,
 - Metoda niewrażliwa na nieliniowe transformacje wzdłuż osi czasu
- Ukryte modele Markova (HMM Hidden Markov Models)
 - Są to modele statystyczne, w których zakłada się, że modelowany system jest procesem Markova, którego stan da się zaobserwować
 - Każde słowo/fonem posiada oddzielny model, którego parametry określa się na drodze uczenia
 - Model, dla którego prawdopodobieństwo na wyjściu jest największe określa klasę

Ewolucja systemów rozpoznawania mowy

Narzędzia do rozpoznawania mowy dla programistów

- API do silnika rozpoznawania mowy firmy Google (Google Cloud Speech API)
 - Rozpoznaje ponad 80 języków
 - Umożliwia rozpoznawanie mowy niezależnie od platformy
- Open source speech decoder *Julius*:
 - Daje możliwość rozpoznawanie dużego słownika wyrazów mowy ciągłej
 - W oparciu o to narzędzie powstał system Skrybot (skrybot.pl) rozpoznawania mowy polskiej
- Java Speech API:
 - Złożone z 3 pakietów:
 - javax.speech,
 - avax.speech.synthesis,
 - java.speech.recognition

Narzędzia do rozpoznawania mowy dla programistów c. d.

■ HTK

- ◆ Zbiór modułów bibliotecznych i programów narzędziowych wspierających rejestrowanie i przetwarzanie sygnału mowy, konstruowanie złożonych układów HMM, uczenie, testowanie i analizę rezultatów
- Opracowane w zespole Speech, Vision and Robotics na Uniwersytecie Cambridge
- Pierwotnie przeznaczone do rozpoznawania mowy, jednak ukryte modele Markova budowane z użyciem jądra HTK mogą być stosowane do modelowania dowolnych przebiegów czasowych (synteza mowy, rozpoznawanie sekwencji DNA, pisma, gestów)

Microsoft Speech Recognition API:

Przestrzeń nazw Windows.Media.SpeechRecognition

Narzędzia do rozpoznawania mowy dla programistów c. d.

■ HTK

- ◆ Zbiór modułów bibliotecznych i programów narzędziowych wspierających rejestrowanie i przetwarzanie sygnału mowy, konstruowanie złożonych układów HMM, uczenie, testowanie i analizę rezultatów
- Opracowane w zespole Speech, Vision and Robotics na Uniwersytecie Cambridge
- Pierwotnie przeznaczone do rozpoznawania mowy, jednak ukryte modele Markova budowane z użyciem jądra HTK mogą być stosowane do modelowania dowolnych przebiegów czasowych (synteza mowy, rozpoznawanie sekwencji DNA, pisma, gestów)

Microsoft Speech Recognition API:

Przestrzeń nazw Windows.Media.SpeechRecognition

Systemy komercyjne

- System rozpoznawania mowy polskiej i syntezator
 Primespeech (http://www.primespeech.pl) stosowany
 przez
 - Giełdę Papierów Wartościowych (telefoniczne informowanie o aktualnych notowaniach spółek giełdowych (**),
 - Korporację taksówkową (zamawianie taxi),
 - infolinię Zarządu Transportu Miejskiego w W-wie,
 - Polsko-Japońską Wyższą Szkołę Technik Komputerowych (przełączanie głosowe telefonu, telefoniczny serwis informacyjny dla studentów, aktualności

Synteza mowy

Syntezator mowy Krzysztofa Szklannego - prezentacja

Systemy komercyjne

- Syntezator mowy polskiej IVOVA (http://www.ivona.com/film IVONA w TVN), cena od 184 zł (IVONA Reader z 2 głosami)
- Syntezator i system rozpoznawania mowy Primespeech (http://www.primespeech.pl)

System rozpoznawania mowy wspomagany informacją wizyjną

