Chapter 15 Suites récurrentes

Exercice 1 (15.0)

Étudier la suite (x_n) définie par récurrence par : $\begin{cases} x_0 = 1/2 \\ x_{n+1} = \frac{3}{16} + x_n^2 \end{cases}.$

- 1. Étudier la fonction définie par $f(x) = \frac{3}{16} + x^2$.
- **2.** Quelle limite finie est possible pour (x_n) ?
- **3.** La suite (x_n) est-elle minorée ? Majorée ? Monotone ?
- **4.** Discuter de la convergence de (x_n) .

Problème 2 (15.0)

On considère les suites (u_n) et (v_n) définies par

$$u_0 = v_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{3 - v_n}$ et $v_{n+1} = \sqrt{3 + u_n}$.

- **1.** Justifier que (u_n) et (v_n) sont bien définies.
- 2. Montrer

$$\forall n \in \mathbb{N}, |u_{n+1} - 1| \le |v_n - 2| \text{ et } |v_{n+1} - 2| \le \frac{1}{2}|u_n - 1|.$$

3. Déduire

$$\forall n \in \mathbb{N}, |u_{n+2} - 1| \le \frac{1}{2} |u_n - 1|.$$

- **4.** Montrer que (u_n) est convergente.
- **5.** Montrer que (v_n) est convergente.

Exercice 3 (15.0)

Soit (u_n) définie par $u_0 = 0$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{12 - u_n}.$$

- **1.** La suite (u_n) est-elle monotone?
- **2.** Prouver que les suites (u_{2n}) et (u_{2n+1}) sont monotones.
- 3. Prouver

$$\forall n \in \mathbb{N}, u_{2n} \le u_{2n+1} \le u_1 \le 4.$$

4. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\left|u_{2n+1} - u_{2n}\right| \le \frac{1}{4\sqrt{2}} \left|u_{2n} - u_{2n-1}\right| \text{ et } \left|u_{2n+1} - u_{2n}\right| \le \left(\frac{1}{4\sqrt{2}}\right)^{2n} \times 4.$$

5. Que dire des suites (u_{2n}) et (u_{2n+1}) ? Conclure que (u_n) est convergente.

Exercice 4 (15.0)

Soit $a \in \mathbb{R}$. On considère la suite (u_n) définie par

$$u_0 = a$$

$$\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2.$$

- **1.** Étudier rapidement la fonction $f: \mathbb{R} \to \mathbb{R}$. $x \mapsto x x^2$
- **2.** Étudier la suite (u_n) dans les cas suivants : a = 0 et a = 1.
- **3.** Étudier le sens de variation de la suite (u_n) .
- **4.** Étudier la convergence de (u_n) dans chacun des cas : a < 0, a > 1, $a \in]0, 1[$. Dans chacun des cas, si (u_n) admet une limite, on la précisera.

Exercice 5 (15.0)

On considère la suite (u_n) définie par

$$u_0 \in \left[0, \frac{4}{3}\right] \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{3}(4 - u_n^2).$$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $u_n \in \left[0, \frac{4}{3}\right]$.
- **2.** Si (u_n) était convergente, quelle serait sa limite ℓ ?
- **3.** Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} \ell| \le \frac{7}{9} |u_n \ell|$.
- 4. Conclure.

Problème 6 (15.0)

On considère une suite réelle (p_n) satisfaisant à la relation de récurrence

$$p_{n+4} = \frac{1}{4} \left(p_{n+3} + p_{n+2} + p_{n+1} + p_n \right). \tag{1}$$

On lui associe les deux suites (m_n) et (M_n) définies par :

$$m_n = \min(p_n, p_{n+1}, p_{n+2}, p_{n+3});$$
 $M_n = \max(p_n, p_{n+1}, p_{n+2}, p_{n+3}).$

 $(m_n$ et M_n sont donc le plus petit et le plus grand des nombres réels $p_n, p_{n+1}, p_{n+2}, p_{n+3}$.)

- 1. Dans cette question, on établit la convergence des suites (m_n) et (M_n) .
 - (a) Montrer que m_n est inférieur ou égal aux nombres $p_{n+1}, p_{n+2}, p_{n+3}, p_{n+4}$. En déduire que la suite (m_n) est croissante. Établir de même que la suite (M_n) est décroissante.
 - (b) Prouver que, pour tout nombre entier naturel n:

$$m_0 \leqslant m_n \leqslant p_n \leqslant M_n \leqslant M_0$$
.

(c) Prouver que les suites (m_n) et (M_n) sont convergentes et que leurs limites respectives, notées m et M, vérifient :

$$m \leq M$$
.

- **2.** Dans cette question, on établit la convergence de la suite (p_n) .
 - (a) Montrer que, pour tout nombre entier naturel n:

$$p_{n+4} \leqslant \frac{3}{4}M_n + \frac{1}{4}m_n.$$

$$p_{n+4} \leq \frac{3}{4}M_n + \frac{1}{4}m.$$

En appliquant la dernière inégalité à p_{n+5} , p_{n+6} , p_{n+7} , montrer que :

$$M_{n+4} \leqslant \frac{3}{4}M_n + \frac{1}{4}m.$$

- (b) En déduire que $M \le m$, puis que M = m.
- (c) Établir la convergence de la suite (p_n) .

Exercice 7 (15.0)

On considère la suite u définie par $\begin{cases} u_0 = 10 \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n} \end{cases}$

- **1.** Étudier les variations de la fonction f définie par $f(x) = \frac{x}{2} + \frac{1}{x}$.
- **2.** Déterminer un intervalle I stable par f (c'est-à-dire tel que $f(I) \subset I$) et contenant u_0 . En déduire que la suite u est bien définie et que : $\forall n \in \mathbb{N}, u_n \in I$.
- **3.** Étudier la monotonie de *u*.
- **4.** Montrer que *u* converge et donner sa limite.

Exercice 8 (15.0)

On considère la fonction f définie par

$$\forall x \in \mathbb{R}, f(x) = \cos(x).$$

Soit $u = (u_n)$ la suite réelle donnée par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- **1.** Montrer que f admet un unique point fixe α et que $\alpha \in [0, 1]$.
- 2. Représenter graphiquement les premiers termes de la suite u.
- **3.** Montrer: $\forall n \in \mathbb{N}, u_n \in [0, 1]$.
- **4.** Première méthode. Pour tout $n \in \mathbb{N}$, on note $x_n = u_{2n}$ et $y_n = u_{2n+1}$. On pose également $g = f \circ f$.
 - (a) Vérifier que α est l'unique point fixe de g et donner le sens de variation de g sur [0,1].
 - (b) Montrer que les suites (x_n) et (y_n) sont monotones, de monotonies opposées et qu'elles convergent vers α .
 - (c) Conclure sur la convergence de la suite u.
 - (d) Écrire une suite d'instructions qui permette de calculer une valeur approchée de α à 10^{-5} près.

5. Seconde méthode.

(a) Montrer

$$\forall n \in \mathbb{N}, |u_n - \alpha| \le (\sin 1)^n.$$

Retrouver ainsi le fait que la suite u converge vers α .

(b) En déduire une suite d'instructions qui permette de calculer une valeur approchée de α à 10^{-5} près.