本产品 Modbus 和 485 调试协议同时兼容

Modbus 协议说明 1-4 页, 485 调试协议说明 5-8 页

Modbus 通讯说明

一: 使用说明

485 模块采用 Modbus RTU 协议,出厂默认参数:模块地址:1、循环模式:单曲停止、音量:30级;默认波特率:9600、8 位数据位、1 位停止位、无奇偶校验。模块通电正常运行后 LED 指示灯以一秒频率闪烁。

模块上电将检测RXD引脚电平,当检测为低电平,LED指示灯常亮,模块配置参数恢复至至出厂值并保存,低电平消失后模块进入正常工作状态。

模块上电将检测 TXD 引脚电平,当检测为低电平,LED 指示灯 100ms 闪烁,LED 接收错误指示开关将取反。例如当前 LED 接收错误指示为开,开机检测到 TXD 为低电平后将关闭指示。模块默认 LED 接收错误指示为开。

LED 指示灯状态说明: ①正常运行: 以 1 秒频率闪烁②接收到正确 485 数据: 以 30ms 频率快速闪烁三次③接收到错误 485 数据: 以 100ms 频率中速闪烁三次。

二: Modbus 通讯协议

Modbus RTU 指令协议: ID + 功能码 + 寄存器地址高位 + 寄存器地址低位 + 寄存器数据高位+寄存器数据低位 + CRC 低 + CRC 高。

ID 为 485 模块地址, CRC 为 ModBus RTU 数据校验值。下列指令中, XX 为输入值,由用户指定大小。

1 读保持寄存器 **03H**

读取音量(01)

指令: ID 03 00 01 00 01 CRC L CRC H

例子: 发送: 01 03 00 01 00 01 D5 CA 接收: 01 03 02 00 14 B8 4B

查询当前音量,返回当前音量:20。

读取循环模式(02)

指令: ID 03 00 02 00 01 CRC L CRC H

例子: 发送: 01 03 00 02 00 01 25 CA 接收: 01 03 02 00 01 79 84

查询循环模式,返回当前模式:单曲循环。

循环模式参数定义:

全盘循环(00): 按顺序播放全盘曲目,播放完后循环播放

单曲循环(01): 一直循环播放当前曲目

单曲停止(02):播放完当前曲目一次停止

全盘随机(03): 随机播放盘符内曲目

目录循环(04):按顺序播放当前文件夹内曲目,播放完后循环播放,目录不包含子目录。

目录随机(05): 在当前目录内随机播放,目录不包含子目录

目录顺序播放(06):按顺序播放当前文件夹内曲目,播放完后停止,目录不包含子目录

顺序播放(07): 按顺序播放全盘曲目,播放完后停止

读取播放状态(03)

指令: ID 03 00 03 00 01 CRC_L CRC_H

例子: 发送: 01 03 00 03 00 01 74 0A 接收: 01 03 02 00 00 B8 44

查询当前播放状态,返回当前播放状态:停止。

播放状态参数定义:

00(停止) 01(播放) 02(暂停)

读取当前曲目号(04)

指令: ID 03 00 04 00 01 CRC L CRC H

例子: 发送: 01 03 00 04 00 01 C5 CB 接收: 01 03 02 00 01 79 84

查询当前曲目号,返回当前曲目号:1。

2 写单个保持寄存器 06H

播放(01)

指令: ID 06 00 01 00 01 CRC L CRC H

例子: 发送: 01 06 00 01 00 01 19 CA

播放当前曲目,寄存器数据可为任意值。

暂停(02)

指令: ID 06 00 02 00 01 CRC L CRC H

例子: 发送: 01 06 00 02 00 01 E9 CA

暂停播放当前曲目,发送播放指令后在暂停出继续播放。寄存器数据可为任意值。

停止(03)

指令: ID 06 00 03 00 01 CRC_L CRC_H

例子: 发送: 01 06 00 03 00 01 B8 0A 接收: 01 06 00 03 00 01 B8 0A

停止播放当前曲目,发送播放指令后重新播放当钱曲目。寄存器数据可为任意值。

音量设置(04)

指令: ID 06 00 04 00 XX CRC_L CRC_H

例子: 发送: 01 06 00 04 00 0A 48 0C 接收: 01 06 00 04 00 0A 48 0C

设置音量位 10, 音量取值范围: 0-30。

音量加(05)

指令: ID 06 00 05 00 01 CRC_L CRC_H

例子: 发送: 01 06 00 05 00 01 58 0B 接收: 01 06 00 05 00 01 58 0B 模块音量增加,音量在当前基础上加一,最大值 30。寄存器 数据可为任意值。

音量减 (06)

指令: ID 06 00 06 00 01 CRC_L CRC_H

例子: 发送: 01 06 00 06 00 01 A8 0B 接收: 01 06 00 06 00 01 A8 0B 模块音量减少,音量在当前基础上减一,最小值 0。寄存器 数据可为任意值。

指定曲目播放(07)

指令: ID 06 00 07 00 XX CRC_L CRC_H

例子: 发送: 01 06 00 07 00 01 F9 CB 接收: 01 06 00 07 00 01 F9 CB 指定播放曲目 1。XX 为曲目号,曲目播放和文件名没有关联,曲目号与音频放入顺序有关, 先放入为曲目一,依次类推。

指定文件播放(08)

指令: ID 06 00 08 XX XX CRC_L CRC_H

例子: 发送: 01 06 00 08 03 E7 48 B2 接收: 01 06 00 08 03 E7 48 B2

播放音频名为 999 开头的音频。XX 为文件名,播放的音频必须以三位数字开头,例如"001开门.mp3"、"002 关门.mp3",且音频必须存放在 U 盘根目录。文件名最大数值为"999"。

指定文件播放-五个数字(OE)

指令: ID 06 00 0E XX XX CRC L CRC H

例子:发送:01 06 00 0E C3 4F F9 0D 接收:01 06 00 0E C3 4F F9 0D

播放音频名为 49999 开头的音频。XX 为文件名,播放的音频必须以五位数字开头,例如"00001 开门.mp3"、"00002 关门.mp3",且音频必须存放在 U 盘根目录。文件名最大数值为"50000"。

循环模式设定(09)

指令: ID 06 00 09 00 XX CRC_L CRC_H

例子: 发送: 01 06 00 09 00 01 98 08 接收: 01 06 00 09 00 01 98 08

设置为单曲循环模式。XX 为循环参数,参数定义:

全盘循环(00): 按顺序播放全盘曲目,播放完后循环播放

单曲循环(01): 一直循环播放当前曲目

单曲停止(02):播放完当前曲目一次停止

全盘随机(03): 随机播放盘符内曲目

目录循环(04):按顺序播放当前文件夹内曲目,播放完后循环播放,目录不包含子目录。

目录随机(05): 在当前目录内随机播放,目录不包含子目录

目录顺序播放(06): 按顺序播放当前文件夹内曲目,播放完后停 止,目录不包含子目录顺序播放(07): 按顺序播放全盘曲目,播放完后停止

波特率设置(OA)

指令: ID 06 00 0A 00 XX CRC L CRC H

例子:发送:01 06 00 0A 00 03 E9 C9 接收:01 06 00 0A 00 03 E9 C9 设置485通信波特率为9600。XX 为波特率参数,参数定义:

0:1200 1:2400 2:4800 3:9600

4:19200 5:38400 6:57600 7:115200

地址设置(OB)

指令: ID 06 00 0B 00 XX CRC_L CRC_H

例子:发送:01 06 00 0B 00 02 79 C9 接收:01 06 00 0B 00 02 79 C9 设置485模块地址为2,XX为模块地址,接收到应答命令,则模块地址设置成功。

结束组合播放(OD)

指令: ID 06 00 0D 00 01 CRC L CRC H

例子:发送:01 06 00 0D 00 01 D9 C9 接收:01 06 00 0D 00 01 D9 C9

三 写多个保持寄存器 10H

组合播放指令(01)

指令: ID 10 00 01 (寄存器数量高字节+寄存器数量低字节+字节数+00 XX ...) CRC_L CRC_H

例子:

发送: 01 10 00 01 00 03 06 00 01 00 02 00 03 6B 44

接收: 01 10 00 01 00 03 D1 C8

连续播放根目录 ZH 文件夹内的 01. MP3、02. MP3、03. MP3, XX 为需要组合播放的曲目,组合播放只能播放根目录 ZH 文件夹内音频,且音频名必须为两位数字,如 01. MP3、02. MP3、03. MP3。单次指令支持最大 21 首音频组合播放。

485 调试协议说明

一、简介

为更好满足工业环境下的语音播放需求,通过本模块,可将所有 TTL 串口通信的语音模块,接入485 总线。实现总线控制或多个语音模块同时使用的需求。

二、使用说明

模块出厂设置 485 总线波特率 9600, 默认地址为 1。通信参数均采用十六进制形式,具体参数: 8 位数据位、1 位停止位、无奇偶校验。485 总线波特率可以通过指令更改保存。模块通电正常运行后 LED 指示灯以一秒频率慢闪烁。

模块上电将检测 RXD 引脚电平,当检测为低电平,LED 指示灯常亮,模块配置参数恢复至至出厂值并保存,低电平消失后模块进入正常工作状态。

LED 指示灯状态说明: ①正常运行: 以 1 秒频率闪烁②接收到正确 485 数据: 以 100ms 频率快速闪烁三次③接收到错误 485 数据: 以 200ms 频率快速闪烁三次。

三、485协议参数设置指令。

模块默认地址是 1,可通过下面的指令设置和查询当前模块地址以及设置 485 通信的波特率。指令如下:

1、设置模块 485 通信波特率

发送: EF FF 当前模块地址 A1 XX EF 55

说明: XX 表示要设置的 485 总线通信波特率,取值范围 0-7。具体定义如下: 0:1200 1:2400 2:4800 3:9600 4:19200 5:38400 6:57600 7:115200 波特率设置成功后会返回发送的指令。波特率设置指令立即生效。

示例: 设置地址为 1 的模块 485 总线波特率为 9600, EF FF 01 A1 03 EF 55

2、设置模块地址指令

发送: EF FF 当前模块地址 A2 设置地址码 (8 位) EF 55

说明:协议支持最多 247 个模块。所以地址码最大为 247 (十六进制为 F7)。地址设置成功后会返回发送的指令。地址设置指令立即生效。

示例: 当前模块地址为 1,设置新地址为 247,发送 "EF FF 01 A2 F7 EF 55"。

3、查询模块参数

发送:

接收: A1 波特率 A2 地址码 A3 音量 A4 循环模式 A5 5A

示例: 查询模块的配置信息,发送 "EF FF FF A6 33 EF 55",接收 "A1 03 A2 01 A3 14 A4 02 A5 5A"。读取到模块配置信息为波特率为 9600, 地址为 1,音量为 20,播放模式为单曲停止。

4、恢复出厂值指令

发送: EF FF FF A7 33 EF 55 接收: EF FF FF A7 33 EF 55

说明:恢复出厂值指令设置成功后会返回发送的指令。恢复出厂值后参数:波特率 9600、模块地址 1

5、固件版本查询指令

发送: EF FF FF A8 33 EF 55

接收: A1 主版本 A2 子版本 A5 5A

示例: 查询模块的固件版本信息,发送 "EF FF FF A8 33 EF 55",接收 "A1 02 A2 01 A5 5A"。 当前模块的固件版本号为 2.1。

四、485 协议控制指令

4.1 485 总线协议

起始标志 + 本模块地址(8位) + (TTL)数据 + 结束符

起始标志: **EF AA** 地址 : **00 FF**

数据: 需要转发给语音模块的数据,最大长度 128 字节。数据格式以 JQ8900 模块为准,详情见 JQ8900

资料包中的使用说明

结束标志: EF 55

4.2 (TTL) 数据通信格式和校验码说明

起始码-指令类型-数据长度(n)-数据1-数据n-校验码(SM)

指令码 : 固定为 AA

指令类型 : 用来区分指令类型

数据长度 : 指令中的数据的字节数

数据 : 指令中的相关数据, 当数据长度为1时,表示只有 CMD, 没有数据位

校验码 : 为(TTL)数据之前字节之和的低 8 位,即起始码到数据相加后取低 8 位

数据格式 : 发送的数据或命令,高8位数据在前,低8位在后

例如: EF AA 01 AA 07 02 00 08 BB EF 55

其中 BB 为校验和, 其是 AA+07+02+00+08 和的低 8 位。

4.3 通信机制

- 1、我方做为从机处理,上电默认等待状态,所有播放操作全由主机控制。
- 2、从机不会主动发起通信,所有通信都是由主机发起
- 4、如未特别说明,协议中所有数据都是表示十六进制数据

5.3 协议约定

以下是本芯片返回和能识别的数据定义

播放状态定义: 系统上电处于停止状态

00(停止) 01(播放) 02(暂停)

盘符定义: 切换盘符后处于停止状态

USB:00 SD:01 FLASH:02 NO DEVICE: FF

音量: 音量总共为 31 级, 0-30 级, 上电默认为 30 级

5.4 通信指令

查询播放状态(01)

指令:EF AA 当前模块地址 AA01 00 AB EF 55

返回:EF AA 当前模块地址 AAO1 O1 播放状态 SM EF 55

说明: 在任何时候都可以查询当前的播放状态

播放(02)

指令:EF AA 当前模块地址 AA02 00 AC EF 55

返回:无

说明: 在任何时候发此命令都会从头开始播放当前曲目

暂停(03)

指令:EF AA 当前模块地址 AAO3 OO AD EF 55

返回:无 停止(04)

指令:EF AA 当前模块地址 AA04 00 AE EF 55

返回:无 上一曲(05)

指令: EF AA 当前模块地址 AAO5 OO AF EF 55

返回: 无 下一曲(06)

指令:EF AA 当前模块地址 AA06 00 B0 EF 55

返回:无 指定曲目(07)

指令: EF AA 当前模块地址 AAO7 02 曲目高 曲目低 SM EF 55

返回: 无

例如: EF AA 01 AA 07 02 00 08 BB EF 55 指定播放地址 1 的当前盘符第 8 首,曲目数从 1-65535 **切换到指定盘符(0B)**

指令:EF AA 当前模块地址 AAOB O1 盘符 SM EF 55

返回:无

说明:盘符切换指令,如果当前盘符在线,可以切换到相对应的盘符等待播放,切换后曲目为第 1 首,建议切换前先查询一下盘符是否在线。

例如:

EF AA 01 AA 0B 01 00 B6 EF 55 地址 1 切换到 U 盘, 切换后处于停止状态

EF AA 01 AA 0B 01 01 B7 EF 55 地址 1 切换到 TF 卡, 切换后处于停止状态

EF AA 01 AA 0B 01 02 B8 EF 55 地址 1 切换到 FLASH 卡, 切换后处于停止状态

结束播放(10)

指令:EF AA 当前模块地址 AA10 00 BA EF 55

说明:此指令可以提前结束当前操作,会结束当前播放,如果是在插播等则会提前结束插播返回原来 状态

音量设置(13)

指令:EF AA 当前模块地址 AA13 01 VOL SM EF 55

返回:无

例如:EF AA 当前模块地址 AA13 01 14 D2 EF 55 设置音量为 20 级

音量加(14):

指令:EF AA 当前模块地址 AA14 00 BE EF 55

返回:无 音量减(15):

指令:EF AA 当前模块地址 AA15 00 BF EF 55

返回:无

循环模式设定(18)

指令: EF AA 当前模块地址 AA18 01 LOOPMODE C6 EF 55

返回:无

说明: EF AA 01 AA18 01 03 C6 EF 55 设置地址 1 的模块设置为全盘随机(03)。

LOOPMODE 为循环参数,参数定义:

全盘循环(00): 按顺序播放全盘曲目,播放完后循环播放

单曲循环(01): 一直循环播放当前曲目

单曲停止(02):播放完当前曲目一次停止

全盘随机(03): 随机播放盘符内曲目

目录循环(04):按顺序播放当前文件夹内曲目,播放完后循环播放,目录不包含子目录。

目录随机(05): 在当前目录内随机播放,目录不包含子目录

目录顺序播放(06):按顺序播放当前文件夹内曲目,播放完后停止,目录不包含子目录

顺序播放(07): 按顺序播放全盘曲目,播放完后停止