EECE5644 Fall 2020 – Take Home Exam 1

Submit: Monday, 2020-October-12 before 10:00am ET

Please submit your solutions on Canvas in a single PDF file that includes all math, numerical and visual results, and code (as appendix or as a link to an online code repository). Only the contents of this PDF will be graded. Do not link from the pdf to external documents online where results may be presented, as all contents outside the PDF will be ignored for grading purposes.

This is a graded assignment and the entirety of your submission must contain only your own work. You may benefit from publicly available literature including software (not from classmates), as long as these sources are properly acknowledged in your submission.

Copying math or code from each other are not allowed and will be considered as academic dishonesty, and will be treated. There cannot be any written material exchange between classmates, but verbal discussions are acceptable. Discussing with the instructor, the teaching assistant, and classmates at open office periods to get clarification or to eliminate doubts are acceptable.

By submitting a PDF file in response to this take home assignment you are declaring that the contents of your submission, and the associated code is your own work, except as noted in your citations to resources.

Question 1 (60%)

The probability density function (pdf) for a 4-dimensional real-valued random vector \mathbf{X} is as follows: $p(\mathbf{x}) = p(\mathbf{x}|L=0)P(L=0) + p(\mathbf{x}|L=1)P(L=1)$. Here L is the true class label that indicates which class-label-conditioned pdf generates the data.

The class priors are P(L=0)=0.7 and P(L=1)=0.3. The class class-conditional pdfs are $p(\mathbf{x}|L=0)=g(\mathbf{x}|\mathbf{m}_0,\mathbf{C}_0)$ and $p(\mathbf{x}|L=1)=g(\mathbf{x}|\mathbf{m}_1,\mathbf{C}_1)$, where $g(\mathbf{x}|\mathbf{m},\mathbf{C})$ is a multivariate Gaussian probability density function with mean vector \mathbf{m} and covariance matrix \mathbf{C} . The parameters of the class-conditional Gaussian pdfs are:

$$\mathbf{m}_0 = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \quad \mathbf{C}_0 = \begin{bmatrix} 2 & -0.5 & 0.3 & 0 \\ -0.5 & 1 & -0.5 & 0 \\ 0.3 & -0.5 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \quad \mathbf{m}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{C}_1 = \begin{bmatrix} 1 & 0.3 & -0.2 & 0 \\ 0.3 & 2 & 0.3 & 0 \\ -0.2 & 0.3 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

For numerical results requested below, generate 10000 samples according to this data distribution, keep track of the true class labels for each sample. Save the data and use the same data set in all cases.

Part A: ERM classification using the knowledge of true data pdf:

- 1. Specify the minimum expected risk classification rule in the form of a likelihood-ratio test: $\frac{p(\mathbf{x}|L=1)}{p(\mathbf{x}|L=0)} \stackrel{?}{>} \gamma$, where the threshold γ is a function of class priors and fixed (nonnegative) loss values for each of the four cases D=i|L=j where D is the decision label that is either 0 or 1, like L.
- 2. Implement this classifier and apply it on the 10K samples you generated. Vary the threshold γ gradually from 0 to ∞ , and for each value of the threshold compute the true positive (detection) probability $P(D=1|L=1;\gamma)$ and the false positive (false alarm) probability $P(D=1|L=0;\gamma)$. Using these paired values, trace/plot an approximation of the ROC curve of the minimum expected risk classifier. Note that at $\gamma=0$ The ROC curve should be at $\binom{1}{1}$, and as gamma increases it should traverse towards $\binom{0}{0}$. Due to the finite number of samples used to estimate probabilities, your ROC curve approximation should reach this destination value for a finite threshold value. Keep track of $(D=0|L=1;\gamma)$ and $P(D=1|L=0;\gamma)$ values for each gamma value for use in the next section.
- 3. Determine the threshold value that achieves minimum probability of error, and on the ROC curce, superimpose clearly (using a different color/shape marker) the true positive and false positive values attained by this minimum-P(error) classifier. Calculate and report an estimate of the minimum probability of error that is achievable for this data distribution. Note that $P(error; \gamma) = P(D=1|L=0; \gamma)P(L=0) + P(D=0|L=1; \gamma)P(L=1)$. How does your empirically selected γ value that minimizes P(error) compare with the theoretically optimal threshold you compute from priors and loss values?

Part B: ERM classification attempt using incorrect knowledge of data distribution (Naive Bayesian Classifier, which assumes features are independent given each class label)... For this

part, assume that you know the true class prior probabilities, but for some reason you think that the class conditional pdfs are both Gaussian with the true means, but (incorrectly) with covariance matrices that are diagonal (with diagonal entries equal to true variances, off-diagonal entries equal to zeros, consistent with the independent feature assumption of Naive Bayes). Analyze the impact of this model mismatch in this Naive Bayesian (NB) approach to classifier design by repeating the same steps in Part A on the same 10K sample data set you generated earlier. Report the same results, answer the same questions. Did this model mismatch negatively impact your ROC curve and minimum achievable probability of error?

Part C: In the third part of this exercise, repeat the same steps as in the previous two cases, but this time using a Fisher Linear Discriminant Analysis (LDA) based classifier. Using the 10K available samples, estimate the class conditional pdf mean and covariance matrices using sample average estimators for mean and covariance. From these estimated mean vectors and covariance matrices, determine the Fisher LDA projection weight vector (via the generalized eigendecomposition of within and between class scatter matrices): \mathbf{w}_{LDA} . For the classification rule $\mathbf{w}_{LDA}^T\mathbf{x}$ compared to a threshold τ , which takes values from $-\infty$ to ∞ , trace the ROC curve. Identify the threshold at which the probability of error (based on sample count estimates) is minimized, and clearly mark that operating point on the ROC curve estimate. Discuss how this LDA classifier performs relative to the previous two classifiers.

Note: When finding the Fisher LDA projection matrix, do not be concerned about the difference in the class priors. When determining the between-class and within-class scatter matrices, use equal weights for the class means and covariances, like we did in class.

Question 2 (40%)

A 3-dimensional random vector \mathbf{X} takes values from a mixture of four Gaussians. Each Gaussian pdf is the class-conditional pdf for one of four class labels $L \in \{1,2,3,4\}$. For this problem, pick your own 4 distinct Gaussian class conditional pdfs $p(\mathbf{x}|L=j)$, $j \in \{1,2,3,4\}$. Set class priors to 0.2,0.25,0.25,0.3. Select your Gaussian class conditional pdfs to have mean vectors located at the corners of a square. Choose covariance matrices such that each Gaussian class conditional pdf is spherically symmetric. Adjust the eigenvalues of the covariance matrices such that they are comparable to approximately 10-20% of the separation between the mean vectors for two classes (in order to have some significant level of overlap between class distributions to make the numerical and visual analyses more instructive).

Part A: Minimum probability of error classification (0-1 loss, MAP classification rule).

- 1. Generate 10000 samples from this data distribution and keep track of the true labels of each sample.
- 2. Specify the decision rule that achieves minimum probability of error (i.e., use 0-1 loss), implement this classifier with the true data distribution knowledge, classify the 10K samples and count the samples corresponding to each decision-label pair to empirically estimate the confusion matrix whose entries are P(D = i | L = j) for $i, j \in \{1, 2, 3, 4\}$.
- 3. Provide a visualization of the data (scatter-plot in 2-dimensional space), and for each sample indicate the true class label with a different marker shape (dot, circle, triangle, square) and whether it was correctly (green) or incorrectly (red) classifier with a different marker color as indicated in parantheses.

Part B: Repeat the exercise for the ERM classification rule with the following loss values (errors between Gaussian pairs that have higher separation in their means will be penalized more):

$$\Lambda = \begin{bmatrix}
0 & 1 & 2 & 3 \\
10 & 0 & 5 & 10 \\
20 & 10 & 0 & 1 \\
30 & 20 & 1 & 0
\end{bmatrix}
\tag{1}$$

For this part, using the 10K samples, estimate the minimum expected risk that this optimal ERM classification rule will achieve. Present your results with visual and numerical reprentations. Briefly discuss interesting insights, if any.

Hint: For each sample, determine the loss matrix entry corresponding to the decision-label pair that this sample falls into, and add this loss to an estimate of cumulative loss. Divide cumulative loss by the number of samples to get average loss as an estimate for expected loss.