Differential Geometry

Ojas G Bhagavath

Course	MSM423 Differential Geometry
Instructor	Dr. Saikat Chatterjee
Prerequisites	MAT413 Analysis on Manifolds
Learning Outcomes	 Understanding the classical interpretation of various curvatures of a surface and their relation to geodesics. Understanding the local and global geometry of smooth manifolds and smooth vector bundles.
Syllabus	 Gauss curvature, Gauss curvature formula in terms of first and second fundamental forms. Intrinsic property of the Gauss curvature. (6) Covariant derivative of a vector field along a curve; Relation between covariant derivative and total curvature of a curve; A geodesic as a curve with vanishing covariant derivative. (6) Manifolds: Definition, examples, Tangent vector space at a point, Basis of the tangent vector space. Smooth functions on a manifold, maps between Manifolds. Differential of a map. (6) Sub-manifolds; Regular value theorem. Lie groups, examples; Submersion, Immersion and Embeddings. (6) Smooth vector bundles, smooth sections, Dual bundles, existence of local sections. (5) Tangent bundles; Smooth vector fields; Lie bracket of smooth vector fields; Co-tangent bundles; Differential 1-forms. (5) Differential p-forms. Orientation. Exterior derivative. Closed and exact forms. Integration of a p-form on a p-dim sub manifold. Stokes theorem. (6)

Definition 1 (Curves):

Let I be an open interval in \mathbb{R} . A smooth parametrized curve in \mathbb{R}^n is a smooth map $\gamma: I \to \mathbb{R}^n$.

The image $\gamma(I) \subseteq \mathbb{R}^n$ is called trace of the curve γ .

Example: $\gamma_1, \gamma_2 : \mathbb{R} \to \mathbb{R}^2$, defined as $\gamma_1(t) = (\cos(t), \sin(t))$ and $\gamma_2(t) = (\sin(3t), \cos(3t))$ have the same trace, but they are different curves.

Observe: Consider any circle in \mathbb{R}^2 , it is the set of all points in \mathbb{R}^2 satisfying a certain quadratic equation.

It can also be viewed as a trace of some curve.

Definition 2 (Level Set):

Let $U \subseteq \mathbb{R}^n$ be any open set, and $f: U \to \mathbb{R}$ be any function.

Then for a given constant $c \in \mathbb{R}$, the level set is defined as

$$L_c(f) := \{ X \in U \mid f(X) = c \} \subseteq U \subseteq \mathbb{R}^n$$

Example: Let $U = \mathbb{R}^2$, and $f(x,y) = x^2 + y^2$, then

 $L_0(f) = (0,0)$, a point,

 $L_1(f) = S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}, \text{ a circle in } \mathbb{R}^2,$

 $L_{-1}(f) = \emptyset$.

Definition 3 (Graph):

Let A and B be any sets. Let $f:A\to B$ be a function, then the graph of f is the function $G_f: A \to A \times B$, given by

$$G_f(x) = (x, f(a)) \in A \times B$$

Note: Notice that a graph is also a curve, and if f is a smooth function, then G_f is a smooth curve.

Theorem 1 (Implicit Function Theorem (2D Case)):

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function defining a curve F(x,y) = c.

Let (x_0, y_0) be a point on the curve.

- If $\frac{\partial F}{\partial x}(x_0, y_0) \neq 0$, then there exists a neighborhood around (x_0, y_0) where we can write y = f(x) for a real valued function f(x). That is, the curve F(x,y) = c behaves like the graph of y = f(x) in that neighborhood.
- If $\frac{\partial F}{\partial u}(x_0, y_0) \neq 0$, then there exists a neighborhood around (x_0, y_0) where we can write x = f(y) for a real valued function f(x). That is, the curve F(x,y) = c behaves like the graph of x = g(y) in that neighborhood.

Example: Consider $S^1 = L_1(x^2 + y^2) = \{(x, y) \mid x^2 + y^2 = 1\}$

Here, $F(x,y) = x^2 + y^2$, and $\frac{\partial F}{\partial x} = 2x \neq 0$ when $x \neq 0$. Therefore, for any point (x_0, y_0) in S^1 , where such that $x_0 \neq 0$, there exists a neighborhood in which x = g(y).

Note: It is worthwhile to notice that a graph is always a curve. Implicit function theorem gives a condition on when a curve (level set in particular) can be seen as the graph of a curve.

Lecture 02: Curves and Surfaces

08 Jan 2024 10:30

Observe: Consider the level set of $F(x,y) = x^2 + y^2$, $L_1(f) = S^1$. As seen before, since $\frac{\partial F}{\partial x} = 2x \neq 0$ when $x \neq 0$, for any point (x_0, y_0) in S^1 , where $x_0 \neq 0$, we obtain a neighborhood in S^1 such that the curve (level set) can be written as a graph of a function y = g(x).

Let S^{1+} denote $(\mathbb{R} \times \mathbb{R}^+) \cap S^1$, the upper half of the unit circle. Now, for a point in S^{1+} , the corresponding q(x) is $\sqrt{1-x^2}$.

Now the graph of g, say G_g is a function from (-1,1) to S^{1+} , and we can easily talk about continuity, differentiablity of G_q .

However, notice that G_g is a surjection, and an inverse exists, $G_g^{-1}: S^{1+} \to (-1,1)$. To talk about continuity of G_g^{-1} we need to define a topology on S^{1+} , and the subspace topology is the most obvious choice.

This G_q^{-1} happens to be continuous when we consider the subspace topology on S^{1+} . Further, open subsets of S^{1+} homeomorphic to the open subsets of \mathbb{R} , that means that this topological space is locally homeomorphic to \mathbb{R} , but the same does not extend to the whole space, that is, there is no homeomorphism from S^{1+} to \mathbb{R} .

Note: Notice that we cannot talk about differentiablity of S^{1+} in the above immediately, as differentiability requires some sort of vector space structure.

Example: Consider $S_3^1 := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$

Doing the same analysis on this set as before using the Implicit function theorem, we obtain that that after removing the appropriate critical points, and giving a topology to whatever remains, we obtain patches obtain open sets in whatever remains that are homeomorphic to open subsets of \mathbb{R}^2 , hence the topological subspace obtained after removing the critical points is locally homeomorphic to \mathbb{R}^2 .

Definition 4 (Tangent to a smooth curve at a point):

Let I be an open interval in \mathbb{R} , and $\gamma:I\to\mathbb{R}^n$ be a smooth curve given by $\gamma(t)=$ $(x_1(t), x_2(t), \cdots, x_n(t))$, then for a point $t \in I$, the tangent of the curve at t is defined as

$$\gamma'(t) = (x_1'(t), x_2'(t), \cdots, x_n'(t))$$

Definition 5 (Regular Curve):

A smooth curve $\gamma: I \to \mathbb{R}^n$ is said to be a regular curve if $\gamma'(t) \neq 0 \ \forall t \in I$.

Definition 6 (Diffeomorphism):

Let A and B be two manifolds, and a function $f: A \to B$ is said to be a diffeomorphism if f is bijective, differentiable, and the inverse $f^{-1}: B \to A$ is differentiable as well.

Note: In this course, by smooth, we mean a C^{∞} function.

Definition 7 (Reparametrization of a Curve):

Let J, I be open intervals of \mathbb{R} , let $\gamma : I \to \mathbb{R}^n$ be a curve, and let $\phi : J \to I$ be a diffeomorphism. Then $\beta = \gamma \circ \phi : J \to \mathbb{R}^n$ is a curve on J called as reparametrization of γ .

Observe: If β is a reparametrization of γ , and the setup is as above, then $\beta(s) = \gamma \circ \phi(s)$ for each $s \in J$. Then

$$\beta'(s) = \gamma'(\phi(s)) \cdot \phi'(s)$$

Now, ϕ is a diffeomorphism and $(\phi \circ \phi^{-1})' = 1$ and by chain rule, we have $(\phi^{-1})' = \frac{1}{\phi'}$. And since $(\phi^{-1})'$ exists throughout I, ϕ' cannot be 0 on J, hence $\gamma'(s) \neq 0$.

Hence if γ is regular, then so is β , hence regularity is preserved under a diffeomorphism.

Definition 8 (Arc Length of a Curve):

Let $\gamma: I \to \mathbb{R}^n$ be a regular parametrized curve. For fixed $t_1, t_2 \in I$, the arc length between t_1 and t_2 is given by

$$L_{\gamma}(t_1, t_2) = \int_{t_1}^{t_2} ||\gamma'(t)|| dt$$
$$= \int_{t_1}^{t_2} \sqrt{(x_1'(t))^2 + (x_2'(t))^2 + \dots + (x_n'(t))^2} dt$$

Lecture 03: Reparametrizations

10 Jan 2024 10:30

Theorem 2 (Inverse Function Theorem (a particular case)):

Let $U \subseteq \mathbb{R}^n$, and $f: U \to \mathbb{R}$ be a smooth function. Let $x \in U$ be such that for the Jacobian D(f)(x) of f at x, the determinant is $\det[D(f)(x)] \neq 0$, then there exists a neighborhood W of x in U such that the restriction $f|_W: W \to f(W)$ is a diffeomorphism.

Note: Notice that this theorem gives a local property. That is, with the given hypothesis, we can only really claim that there exists a neighborhood upon which the restriction is a diffeomorphism. However, if the Jacobian of f has non-zero determinant at each x in U, then we cannot claim that f is a diffeomorphism.

Example: $U = \mathbb{R} \setminus \{0\}$ and $f: U \to \mathbb{R}$ given by $f(x) = x^2$ satisfies the hypothesis, yet is not a diffeomorphism from U to f(U), it is not even injective.

Observe: However, if U happens to be a connected, and f is smooth, then the above hypothesis is sufficient to claim that f is a diffeomorphism from U to f(U).

Definition 9 (Unit Speed Reparametrization):

For the intervals I, J, let $\gamma: I \to \mathbb{R}^n$ be a curve, let $\phi: J \to I$ be a diffeomorphism such that the reparametrization $\beta = \gamma \circ \phi: J \to \mathbb{R}^n$ has the property that $|\beta'(s)| = 1$ for each $s \in J$. Then the reparametrization β is said to be unit speed reparametrization.

Note: Notice that when a curve is reparametrized, the trace/image of the curve remains the same.

Note (Condition for a reparametrization to be unit speed): If $\beta = \gamma \circ \phi$ is a reparametrization of the curve γ with the diffeomorphism ϕ as in the above setting, then

$$|\beta'(s)| = 1 \implies |\gamma'(\phi(s))| |\phi'(s)| = 1$$

$$\implies |\phi'(s)| = \frac{1}{|\gamma'(\phi(s))|}$$

Definition 10 (Arc Length Function):

Let I be an interval, and $t_0 \in I$ be a fixed element. Let γ be a regular curve defined on I. Then the Arc Length function $L_{\gamma}: I \to \mathbb{R}$ is defined as

$$L_{\gamma}(t) = \int_{t_0}^{t} |\gamma'(t)| dt$$

Property (Properties of L_{γ}):

- 1. $L'_{\gamma}(t) = |\gamma'(t)|$ (It is differentiable).
- 2. Since $\gamma(t)$ is regular, $\gamma'(t)$ is nowhere 0, and hence $|\gamma'(t)|$ is continuous, hence $L'_{\gamma}(t)$ is continuous and consequently, smooth.
- 3. $L'_{\gamma}(t) > 0$ on the interval I, that implies that L_{γ} is diffeomorphism from I to $L_{\gamma}(I) := J$.
- 4. Let $S_{\gamma} = L_{\gamma}^{-1}: J \to I$ be the inverse of L_{γ} (exists because γ is a diffeomorphism, also note that S_{γ} is a diffeomorphism).

Consider the reparametrization $\beta = \gamma \circ S_{\gamma}$, it follows that

$$|\beta'(s)| = |\gamma'(S_{\gamma}(s))||S'_{\gamma}(s)| \tag{*}$$

From the chain rule, we have

$$S'_{\gamma}(s) = \frac{1}{L'_{\gamma}(S'_{\gamma}(s))} = \frac{1}{\gamma'(S_{\gamma}(s))}$$
 (**)

(*) and (**) imply that $|\beta'(s)| = 1$ for all $s \in J$, hence β is a unit speed reparametrization.

Theorem 3:

Given an interval I, and any regular curve $\gamma:I\to\mathbb{R}^n$, there exists an interval J and a diffeomorphism $\phi:J\to I$ such that the reparametrization $\beta=\gamma\circ\phi$ is a unit speed parametrization.

Proof. The proof follows from 4. in the above properties of L_{γ} , where $J=L_{\gamma}(I)$, and $\phi=L_{\gamma}^{-1}=S_{\gamma}$

References

- [1] M. P. Do Carmo. Differential Geometry of Curves and Surfaces. 2nd ed. Dover Publications, 2016.
- [2] J. M. Lee. Introduction to Smooth Manifolds. 2nd ed. Springer, 2013.
- [3] L. W. Tu. An Introduction to Manifolds. 2nd ed. Springer, 2011.