基礎的な識別 (2章)

識別

- ・識別とは
 - ・教師あり学習問題
 - •特徴から**クラス**を予測する(できれば確率も得たい)

- •2クラス分類でのロジスティック識別の考え方
 - 入力された特徴が正例である確率を得たい
 - ・確率=0.5の点の集合を識別面と考える

・識別面の式

$$\hat{g}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_d x_d + w_0 = \mathbf{w}^T \mathbf{x} = 0$$

- 正例の \boldsymbol{x} に対しては $\hat{g}(\boldsymbol{x}) > 0$
- 負例の \boldsymbol{x} に対しては $\hat{g}(\boldsymbol{x}) < 0$
- これを確率と対応付けたい ⇒ シグモイド関数

$$P(\mathbb{E}|\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{w}^T\boldsymbol{x})}$$

$$0.5$$

シグモイド関数

係数 w の求め方

ロジスティック識別器

• 尤度(モデルのもっともらしさ)の定義

$$P(D|\mathbf{w}) = \prod_{\mathbf{x}_i \in D} o_i^{y_i} (1 - o_i)^{(1 - y_i)}$$

$$D: \hat{\mathbf{z}} = \mathbf{z}$$

- 尤度の最大化
 - \Rightarrow 対数尤度の最小化に読み替え $E(\boldsymbol{w}) = -\log P(D|\boldsymbol{w})$
 - \Rightarrow 最急勾配法による最適化 $m{w} \leftarrow m{w} \eta \frac{\partial E(m{w})}{\partial m{w}}$

ロジスティック識別の具体例

- Diabetesデータ
 - •年齢・血圧・BMIなどから糖尿病検査結果を予測

		_									
No.	1: preg	2: plas	3: pres	4: skin	5: insu	6: mass	7: pedi	8: age	9: class	予測式	
	Numeric	Nominal	小州工								
1	6.0	148.0	72.0	35.0	0.0	33.6	0.627	50.0	tested_positive	4.18 +	
2	1.0	85.0	66.0	29.0	0.0	26.6	0.351	31.0	tested_negative		
3	8.0	183.0	64.0	0.0	0.0	23.3	0.672	32.0	tested_positive	[preg]	*
4	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21.0	tested_negative	[plas]	*
5	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33.0	tested_positive	[pres]	*
6	5.0	116.0	74.0	0.0	0.0	25.6	0.201	30.0	tested_negative		
7	3.0	78.0	50.0	32.0	88.0	31.0	0.248	26.0	tested positive	[insu]	*
1 -										[mass]	*
										[pedi]	*
										[age] [,]	7

- ・決定木とは
 - 事例を分類する質問を繰り返す

学習データの例 (カテゴリ特徴)

	天候	気温	湿度	風	play
1	晴	高	高	なし	no
2	晴	高	高	あり	no
3	曇	高	高	なし	yes
4	雨	中	高	なし	yes
5	雨	低	標準	なし	yes
6	雨	低	標準	あり	no
7	曇	低	標準	あり	yes
8	晴	中	高	なし	no
9	晴	低	標準	なし	yes
10	雨	中	標準	なし	yes
11	晴	中	標準	あり	yes
12	曇	中	高	あり	yes
13	曇	高	標準	なし	yes
14	雨	中	高	あり	no

- ・決定木の作り方
 - ・大きな木を作れば(原理的には)データを100%正 しく識別できる
 - 小さな木で多くのデータが正しく識別できれば、その木は未知のデータに対しても正しい識別を行う可能性が高い

- ・小さな木の作り方
 - •分類能力の高い質問を、木の根に近いところに配置 する

・分類能力の低い質問

・分類能力の高い質問

•得られた決定木

•数値特徴に対する決定木

 $x_2 < \theta_1$

学習結果の評価 (3章)

p.80 7コマ目

分割学習法

- ・全データを学習用と評価用に分ける
 - データが多くあるときに有効

分割学習法

- •パラメータチューニングを行うときは3分割
 - 検証用データでパラメータの良さを評価
 - 最終的な性能は評価用データで推測

交差確認法

- ・データをm分割して、m回の評価の平均をとる
 - •学習データが少ない場合に有効

評価指標

・混同行列から算出

識別器の出力

	予測+	予測一
正解+	true positive (TP)	false negative (FN)
正解一	false positive (FP)	true negative (TN)
データに付いた		

•正解率

正解

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

評価指標

•目的に応じて適切な評価指標を選ぶ

	予測+	予測一
正解+	TP	FN
正解一	FP	TN

• 正解率
$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

• 精度
$$Precision = \frac{TP}{TP + FP}$$

• 再現率
$$Recall = \frac{TP}{TP + FN}$$

• **F値**
$$F$$
-measure = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

正解の割合 クラスの出現率に 偏りがある場合は不適

正例の判定が 正しい割合

正しく判定された 正例の割合

> 精度と再現率の 調和平均

識別の実用化事例

- •オートマギ、NTTドコモ
 - •居眠り運転検知

https://www.nikkei.com/article/DGXMZO38577940V01C18A2XY0000/

- ・国立国際医療研究センター
 - 糖尿病の発症リスク予測

http://www.ncgm.go.jp/riskscore/