Matemática Discreta para Ciência da Computação

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
- 6.4 Equivalência e Partição

6 Endorrelações, Ordenação e Equivalência

- Já foi introduzido
 - endorrelações são especialmente importantes
- Estudos desenvolvidos especificamente
 - propriedades
 - fecho
 - ordem
 - equivalência

- ◆ Importantes aplicações das endorrelações de ordem
 - classificação de dados
 - semântica de sistemas concorrentes

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
- 6.4 Equivalência e Partição

6.1 Propriedades de uma Endorrelação

Reflexiva

- todo elemento está relacionado consigo mesmo
- exemplo: igualdade sobre os números reais
 - * todo número é igual a si mesmo

Simétrica

- sempre que um elemento estiver relacionado com outro
 - * vice-versa também ocorre
- exemplo: parentesco
 - * se João é parente de José (por exemplo, são irmãos),
 - * então a vice-versa também é verdadeira:

◆ Transitiva

- exemplo: menor sobre os números naturais
 - * caso um número seja menor que outro
 - * o qual, por sua vez, é menor que um terceiro
 - * então o primeiro é menor que o terceiro
- contra-exemplo: faz fronteira com nos países na América do Sul
 - * Brasil faz fronteira com a Argentina
 - * Argentina faz fronteira com o Chile
 - * entretanto, o Brasil não faz fronteira com o Chile

Relacionado com propriedades reflexiva e simétrica

- existem as propriedades irreflexiva e anti-simétrica
- possuem uma noção de dualidade
- mas não são noções complementares
- Representação via grafos ou matrizes
 - auxilia no entendimento e estudo das propriedades

Def: Relação Reflexiva, Irreflexiva

A conjunto, R endorrelação em A. Então R é:

- Relação Reflexiva
 - $* (\forall a \in A)(aRa)$
- Relação Irreflexiva ou Relação Anti-Reflexiva
 - $* (\forall a \in A)(\neg(aRa))$

◆ Reflexiva × irreflexiva

- não são noções complementares
- negação da reflexiva: (∃a∈A)(¬(aRa))
- é possível definir uma relação
 - * simultaneamente reflexiva e irreflexiva
 - * não é reflexiva nem irreflexiva

Exp: Relação Reflexiva e Irreflexiva

$$A = \{ 0, 1, 2 \}$$

- ◆ Reflexivas, mas não irreflexivas
 - ⟨N, ≤⟩
 - $\langle \mathbf{P}(A), \subseteq \rangle$
 - $A^2: A \rightarrow A$
 - (A, =)
- ◆ Irreflexivas, mas não reflexivas
 - **⟨Z**, ≠⟩
 - $\langle \mathbf{P}(A), \subset \rangle$
 - Ø: A → A
 - (A, R)

$$R = \{ \langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle \}$$

- Nem reflexiva, nem irreflexiva
 - (A, S)

$$S = \{ \langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 2 \rangle \}$$

◆ Matriz

- Reflexiva: a diagonal da matriz contém somente verdadeiro
- Irreflexiva: a diagonal da matriz contém somente falso

Grafo

- Reflexiva: qq nodo tem um arco com origem e destino nele mesmo
- Irreflexiva: qq nodo não tem um arco com origem e destino nele mesmo

Exp: Relação Reflexiva e Irreflexiva

$$A = \{ 0, 1, 2 \}$$

Reflexivas, mas não irreflexivas

*
$$A^2$$
: $A \rightarrow A$
* $\langle A, = \rangle$ = é definida por $\{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle\}$

• Irreflexivas, mas *não* reflexivas

```
* \emptyset: A \rightarrow A

* R = {\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle}
```

Não reflexiva, nem irreflexiva: como seria a matriz?

A^2	0	1	2	=	0	1	2		Ø	0	1	2	R	0	1	2
0				0	1	0	0	•	0	0	0	0		0		
1				1	0	1	0		1	0	0	0		0		
2	1	1	1	2	0	0	1		2	0	0	0	2	0	1	0

Exp: Relação Reflexiva e Irreflexiva

Reflexivas, mas não irreflexivas

*
$$A^2$$
: $A \rightarrow A$
* $\langle A, = \rangle$, = é definida por $\{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle\}$

• Irreflexivas, mas *não* reflexivas

*
$$\emptyset$$
: A \rightarrow A
* R = { $\langle 0, 1 \rangle$, $\langle 1, 2 \rangle$, $\langle 2, 1 \rangle$ }

• Não reflexiva, nem irreflexiva: como seria o grafo?

Def: Relação Simétrica, Anti-Simétrica

A conjunto e R endorrelação em A. Então R é

Relação Simétrica

$$(\forall a \in A)(\forall b \in A)(aRb \rightarrow bRa)$$

Relação Anti-Simétrica

$$(\forall a \in A)(\forall b \in A)(aRb \land bRa \rightarrow a = b)$$

- ◆ Simetria × Anti-Simetria
 - não são noções complementares

Exp: Relação Simétrica, Anti-Simétrica

X conjunto qualquer

Simétricas

*
$$X^2: X \rightarrow X$$
, $\varnothing: X \rightarrow X$
* $\langle X, = \rangle$, $\langle X, \neq \rangle$
* $\langle \mathbf{P}(X), = \rangle$

Anti-simétricas

```
* \langle X, = \rangle

* \langle \mathbf{P}(X), = \rangle

* \emptyset : X \to X

* \langle \mathbf{N}, R \rangle, supondo R = \{ \langle x, y \rangle \in \mathbb{N}^2 \mid y = x^2 \}
```

Nem simétrica, nem anti-simétrica

$$* S = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 2 \rangle\}$$

◆ Matriz

- Simétrica
 - * metade acima da diagonal: imagem espelhada abaixo
- Anti-simétrica
 - * célula verdadeira em uma das metades (diagonal)
 - * correspondente na outra metade é falsa

Grafo

- Simétrica: entre dois nodos
 - * ou não existe seta
 - * ou existem duas setas, uma em cada sentido
- Anti-simétrica
 - no máximo uma seta entre dois nodos qq

Exp: Relação Simétrica (S), Anti-Simétrica (AS)

$$A = \{ 0, 1, 2 \}$$

- A²
- (A, =)
- R: A \rightarrow A tal que R = { $\langle 0, 0 \rangle$, $\langle 1, 1 \rangle$, $\langle 1, 2 \rangle$ }
- S: A \rightarrow A tal que S = { $\langle 0, 1 \rangle$, $\langle 1, 0 \rangle$, $\langle 1, 2 \rangle$ }

S

S, AS

AS

nenhuma

Exp: Relação Simétrica, Anti-Simétrica

$$A = \{ 0, 1, 2 \}$$

- A²
- (A, =)
- R: A \rightarrow A tal que R = { $\langle 0, 0 \rangle$, $\langle 1, 1 \rangle$, $\langle 1, 2 \rangle$ }
- S: A \rightarrow A tal que S = { $\langle 0, 1 \rangle$, $\langle 1, 0 \rangle$, $\langle 1, 2 \rangle$ }

S S, AS AS nenhuma

Def: Relação Transitiva

A conjunto e R endorrelação em A. R é uma Relação Transitiva

$$(\forall a \in A)(\forall b \in A)(\forall c \in A)(aRb \land bRc \rightarrow aRc)$$

Exp: Relação Transitiva

 $A = \{0, 1, 2\}$ e X conjunto qq

- $X^2: X \rightarrow X$, $\emptyset: X \rightarrow X$
- (X, =)
- $\langle N, \leq \rangle$, $\langle Z, < \rangle$
- $\langle \mathbf{P}(\mathsf{X}), \subseteq \rangle$, $\langle \mathbf{P}(\mathsf{X}), \subset \rangle$

Exp: Relação Não-Transitiva

 $A = \{0, 1, 2\}$ e X conjunto qq

```
• \langle \mathbf{Z}, \neq \rangle (por quê?)
• \langle A, R \rangle R = \{ \langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle \}
• \langle A, S \rangle S = \{ \langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 2 \rangle \}
```

- ◆ Representação como matriz: transitividade
 - Não é especialmente vantajosa
- ◆ Representação como grafo: transitividade
 - interpretação: o grafo explicita todos os caminhos possíveis entre dois nodos
 - caminho???

Exp: Relação Transitiva

$$A = \{ 0, 1, 2 \}$$

- $A^2: A \rightarrow A$
- (A, =)
- ⟨A, ≤⟩
- (A, <)

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
- 6.4 Equivalência e Partição

6.2 Fecho de uma Endorrelação

- ◆ Freqüentemente é desejável estender uma relação
 - garantir que satisfaz determinado conjunto de propriedades
 - exemplo: garantir que uma relação R é reflexiva
 - * se R não é reflexiva,
 - então introduz os pares (e somente estes) que garantem a reflexão

Def: Fecho de uma Relação

R: A → A endorrelação, P conjunto de propriedades

FECHO-P(R)

Fecho de R em Relação ao P

- menor endorrelação em A que contém R
- e que satisfaz às propriedades de P

Portanto, para qq conjunto de propriedades P

$$R \subseteq FECHO-P(R)$$

quando R = FECHO-P(R) ?

◆ Fecho Reflexivo de R: A → A

FECHO-{ reflexiva }(R) = R
$$\cup$$
 { $\langle a, a \rangle \mid a \in A$ }

◆ Fecho Simétrico de R: A → A

FECHO-{ simétrica }(R) =
$$R \cup \{ \langle b, a \rangle \mid \langle a, b \rangle \in R \}$$

- ◆ Fecho Transitivo de R: A → A (definição indutiva!!)
 - se ⟨a, b⟩∈R
 * então ⟨a, b⟩∈FECHO-{ transitiva }(R)
 - se ⟨a, b⟩, ⟨b, c⟩∈FECHO-{ transitiva }(R)
 * então ⟨a, c⟩∈FECHO-{ transitiva }(R)
 - os únicos elementos do fecho transitivo são os construídos acima

Dois fechos são especialmente importantes para Computação e Informática

Fecho Transitivo de R

$$R^+ = FECHO - \{ transitiva \}(R)$$

Fecho Reflexivo e Transitivo de R

R* = FECHO-{ reflexiva, transitiva }(R)

Exp: Fecho de uma Relação

A = { 1, 2, 3, 4, 5 } e R: A → A uma endorrelação

$$R = \{ \langle 1, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle \}$$

Fecho Reflexivo

???

Fecho Simétrico

???

Fecho Transitivo

???

Fecho Reflexivo e Transitivo

???

Exp: Fecho de uma Relação

 $A = \{1, 2, 3, 4, 5\}$ e R: $A \rightarrow A$ uma endorrelação

$$R = \{\langle 1, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle\}$$

Fecho Reflexivo

$$\{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle \}$$

Fecho Simétrico

$$\{\langle 1, 2 \rangle, \langle 1, 5 \rangle, (2, 1), \langle 2, 3 \rangle, (3, 2), \langle 3, 4 \rangle, (4, 3), (5, 1) \}$$

Fecho Transitivo

$$R^{+} = \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 1, 5 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 4 \rangle \}$$

Fecho Reflexivo e Transitivo

$$R^* = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 1, 5 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle \}$$

Exp: Fecho de uma Relação

A = { 1, 2, 3, 4, 5 } e R: A → A uma endorrelação

$$R = \{\langle 1, 2 \rangle, \langle 1, 5 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle\}$$

Fechos ilustrados?

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
- 6.4 Equivalência e Partição

6.3 Ordenação

- ◆ Relação de ordem
 - tipo especial e importante de relação
 - reflete a noção intuitiva de ordem
 - exemplos de relações de ordem já estudadas
 - * continência em conjuntos
 - * implicação em proposições
 - * menor ou igual (ou simplesmente menor)
- Propriedades fundamentais de uma ordem?
- Outras Propriedades de uma ordem?

◆ Necessário introduzir a seguinte terminologia

Def: Relação Conexa

R: A → A uma endorrelação. Então R é uma Relação Conexa se

$$(\forall a \in A)(\forall b \in A)(aRbvbRava = b)$$

Exp: Relação Conexa

$$A = \{a\}, B = \{a, b\} e C = \{0, 1, 2\}$$

$$\bullet =: A \rightarrow A$$

Exp: Filas de caixas de um banco

(motivacional)

Propriedades fundamentais

Transitiva

uma noção intuitiva da ordem

- se João antecede José, e José antecede de Maria,
 - então João antecede Maria

Anti-simétrica

princípio que melhor caracteriza a ordem

- a ordenado em relação à b e vice-versa
 - * só faz sentido se a for igual a b
 - * no exemplo, se for o mesmo cliente

Exp: ...Filas de caixas de um banco

Outras Propriedades

Parcial/Conexa. As duas são válidas

- no exemplo, nem todos os clientes estão relacionados entre si
 - * caixa para idosos, grávidas e outros (fila separada)

Reflexiva/Irreflexiva. As duas são válidas

Reflexiva

$$*\langle N, \leq \rangle$$

Irreflexiva

$$*\langle \mathbf{Z}, \langle \rangle)$$

- no exemplo motivacional: natural considerar irreflexiva
 - reflexiva (todo cliente antecede a si próprio) faz sentido

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
 - 6.3.1 Relação de Ordem
 - 6.3.2 Classificação de Dados
 - 6.3.3 Diagrama de Hasse
 - 6.3.4 Conjuntos Ordenados e Semântica de Sistemas Concorrentes
- 6.4 Equivalência e Partição

6.3.1 Relação de Ordem

Def: Relação de Ordem Parcial/Conexa Ampla/Estrita

R: A → A uma endorrelação

Relação de Ordem Parcial (Ampla)

Reflexiva, anti-simétrica e transitiva

Relação de Ordem Parcial Estrita

Irreflexiva, anti-simétrica e transitiva

Relação de Ordem Conexa (Ampla) ou Cadeia de ordem parcial ampla e conexa

Relação de Ordem Conexa Estrita ou Cadeia Estrita de ordem parcial estrita e conexa

	Ordem Parcial	Ordem Parcial	Cadeia	Cadeia		
		Estrita				
Reflexiva	✓		✓			
Irreflexiva		✓		✓		
Anti-simétrica	✓	✓	✓	✓		
Transitiva	✓	✓	✓	✓		
Conexa			✓	✓		

◆ Anti-simetria e transifividade

• propriedades de qualquer tipo de relação de ordem

- ◆ Toda relação de ordem conexa (ampla ou estrita)
 - é uma relação de ordem parcial (ampla ou estrita)
 - vice-versa nem sempre é verdadeira (por quê?)

- ◆ Para ⟨A, R⟩, o conjunto A é dito
 - Conjunto (parcialmente/conexamente, amplamente/estritamente)
 ordenado
- Poset (A, R)
 - do inglês, partial ordered set
 - (A, R), relação de ordem parcial

Exp: Relação de Ordem Parcial/Conexa, Ampla/Estrita

Ordem parcial (ampla)

- ⟨N, ≤⟩
- $\langle \mathbf{P}(A), \subseteq \rangle$
- $\langle \mathbf{Q}, = \rangle$
- implicação em proposições lógicas
- $\{\langle x, y \rangle \in \mathbb{N}^2 \mid x \text{ divide } y \text{ (resto zero)} \}$

Ordem parcial estrita

- (N, <)
- $\langle \mathbf{P}(\mathsf{A}), \subset \rangle$

Ordem conexa (cadeia)

• ⟨N, ≤⟩

Ordem conexa estrita (cadeia estrita)

• (N, <)

Exp: Ordem Lexicográfica

Ordem lexicográfica

- importante exemplo de relação de ordem conexa para CC
- para um dado alfabeto ∑ = { a, b }

```
\Sigma^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa,... \}
```

As palavras em∑* são listadas em ordem lexicográfica

- por tamanho de palavra (número de símbolos)
- para palavras do mesmo tamanho, por ordem "alfabética"
 * supondo a < b

QQ alfabeto ordenado \sum , induz o conjunto ordenado \sum^*

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
 - 6.3.1 Relação de Ordem
 - 6.3.2 Classificação de Dados
 - 6.3.3 Diagrama de Hasse
 - 6.3.4 Conjuntos Ordenados e Semântica de Sistemas Concorrentes
- 6.4 Equivalência e Partição

6.3.2 Classificação de Dados

Ordenação de um conjunto de dados

- importante área de pesquisa
 - denominada de classificação de dados
 - * sort, em inglês
- é fácil construir um algoritmos de classificação
 - * entretanto, c/ aumento do número de dados
 - * tempo (processamento) e espaço (memória) se tornam críticos
- complexidade de algoritmos
 - * estudo do tempo/espaço consumidos por um algoritmos
 - * também, importante área de pesquisa

Exp: Algoritmo de Classificação

Já foi comentado

- grande maioria das LP
- não possuem boas facilidades para manipular conjuntos

Ordenação de um conjunto de dados

- realizada usando variáveis do tipo arranjo
- sequência com número fixo de componentes, todos do mesmo tipo

Exp: Algoritmo de Classificação

Por exemplo, trechos de programa em Pascal

```
vetor = array[1..30] of integer
dados = array[1..10] of char
```

Cada componente pode ser diretamente acessado

nome da variável arranjo seguido do índice entre colchetes

```
vetor[10] := 33
if dados[i] = 'a' then ...
```

Exp: Algoritmo de Classificação - bubblesort

Ordenação (menor ou igual) de 10 caracteres em um arranjo dados

```
dados[1] \le dados[2] \le dados[3] \le ... \le dados[10]
```

Bubble (borbulha)

dados mais "leves" sobem

Uma solução (trecho de programa Pascal). Suponha que

- trocou é variável do tipo boolean
- aux é variável do tipo char

Exp: Algoritmo de Classificação

```
trocou := true;
whiletrocou
do begin
  trocou := false;
  for i := 1 to 9
  do if dados[i] > dados[i+1]
        then begin
             aux := dados[i];
             dados[i] := dados[i+1];
             dados[i+1] := aux;
             trocou := true
             end
  end
```

Exp: Algoritmo de Classificação

Possível execução do algoritmo

Inicial	С	a	d	b	a	b	d	f	е	f
Interação 1	a	С	b	a	b	d	d	е	f	f
Interação 2	a	b	а	b	С	d	d	е	f	f
Interação 3	a	a	b	b	С	d	d	е	f	f
Interação 4	a	a	b	b	С	d	d	е	f	f

O algoritmo proposto

- eficiente em termos de espaço (por quê?)
- não é eficiente em termos do tempo, para grandes volumes

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
 - 6.3.1 Relação de Ordem
 - 6.3.2 Classificação de Dados
 - 6.3.3 Diagrama de Hasse
 - 6.3.4 Conjuntos Ordenados e Semântica de Sistemas Concorrentes
- 6.4 Equivalência e Partição

6.3.3 Diagrama de Hasse

- ◆ Relação de ordem pode ser representada como grafo
 - como qualquer outra relação

- (quais relações são de ordem? Qual o tipo?)
- jamais ocorrerá um ciclo (por quê?)
 - * excetuando-se endo-arcos ou endo-arestas
 - * arcos com origem e destino em um mesmo nodo

◆ Entretanto, p/ relação de ordem

- "poluição visual" ocasionada transitividade e reflexividade
- usual omitir as arestas que podem ser deduzidas

◆ Esse tipo de representação: Diagrama de Hasse

• nodos: pontos (ou pequenos círculos) ou elemento do conjunto

Exp: Relação como Grafo × Diagrama de Hasse

Conjunto parcialmente ordenado ⟨{1, 2, 3}, ≤⟩

$$\leq$$
 = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) }

Grafo x Diagrama de Hasse

Obs: Representações Alternativas - Diagrama de Hasse

Arestas *não*-orientadas

• elementos do menor para o maior, de baixo para cima

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
 - 6.3.1 Relação de Ordem
 - 6.3.2 Classificação de Dados
 - 6.3.3 Diagrama de Hasse
 - 6.3.4 Conjuntos Ordenados e Semântica de Sistemas Concorrentes
- 6.4 Equivalência e Partição

6.3.4 Conjuntos Ordenados e Semântica de Sistemas Concorrentes

- ◆ Conj. ordenados são usados com freqüência em CC
- ◆ Semântica para sistemas concorrentes
 - importante exemplo
 - clara e simples visão de concorrência
 - concorrência verdadeira
- ◆ É importante distinguir sintaxe de semântica
 - Sintaxe trata das propriedades livres de uma linguagem
 - * exemplo: verificação gramatical de programas
 - Semântica objetiva dar interpretação
 - * exemplo: significado ou valor a um programa

Sintaxe preocupa-se com a forma

manipula símbolos

Semântica preocupa-se em dar um significado

- aos símbolos sintaticamente válidos
- exemplo: "estes símbolos representam os valores inteiros"

Questões sintáticas

disciplinas como Linguagens Formais

Questões semânticas

• disciplinas como Semântica Formal

Compiladores

integra ambas as questões

◆ Historicamente, problema sintático

- reconhecido antes do semântico
- primeiro a receber tratamento adequado
- são mais simples que os semânticos
- ◆ Consequência, ênfase à sintaxe levou à idéia de que
 - questões das linguagens de programação
 - resumiam-se às questões da sintaxe

Atualmente, Teoria da Sintaxe

- construções matemáticas bem definidas
- universalmente reconhecidas
- Gramáticas de Chomsky

◆ Formalização de uma questão semântica

- freqüentemente, tratamento matemático complexo
- dificulta entendimento e aplicação

◆ Assim, construções matemáticas

- capaz de dar semântica de forma simples e expressiva
- extremanente importante para a CC
- exemplo
 - * relações de ordem como semântica de sistemas concorrentes

Programa sequencial, em linguagens tipo Pascal

o símbolo ; representa dependência causal

Uma semântica

$$\langle \{c1, c2, c3\}, \leq_C \rangle$$

• onde c1 $\leq_{\mathbb{C}}$ c2, c2 $\leq_{\mathbb{C}}$ c3 e portanto, c1 $\leq_{\mathbb{C}}$ c3

Mais precisamente

$$\leq_{c} = \{ (c1, c2), (c2, c3), (c1, c3) \}$$

De forma análoga, considere

```
p1; p2
q1; q2; q3
```

Semânticas

$$\langle \{p1, p2\}, \leq_p \rangle$$
 onde $p1 \leq_p p2$
 $\langle \{q1, q2, q3\}, \leq_q \rangle$ onde $q1 \leq_q q2$ e $q2 \leq_q q3$

Suponha os 3 programas concorrentes sem qualquer sincronização

independentes

Semântica induzida pela união disjunta de conjuntos

$$\langle \{c1, c2, c3\} + \{p1, p2\} + \{q1, q2, q3\}, \leq_c + \leq_p + \leq_q \rangle$$

Todas as componentes são independentes (concorrentes)

- excetuando-se quando especificado o contrário
- quando definido um par da relação de ordem
- determinando uma restrição de seqüencialidade

Suponha que

- ocorrência de p2 depende de c2
- ocorrência de c3 depende de q3

Sincronização: suficiente incluir os pares $c2 \le p2$ e $q3 \le c3$ $(\{c1\ c2,c3\}+\{p1,p2\}+\{q1,q2,q3\}, \le_c+\le_p+\le_q+\{(c2,p2,), (q3,c3)\})$

Observe que

- união disjunta = composição paralela de sistemas
- inclusão de pares = sincronizações
- operações simples e de fácil entendimento
 - * operadores poderosos
 - * para especificar sistemas concorrentes e comunicantes

Observação: Estrutura de Eventos

Um dos modelos para concorrência mais conhecidos

baseado em conjuntos ordenados

Conjunto ordenado

seqüencialidade e concorrência

Juntamente com uma relação de conflito

- não-determinismo ou escolha
- conceito introduzido ao longo da disciplina

◆ Exercício: Conj. Parcialmente Ordenados x Linguagem de Programação

Para verificar a expressividade dos conjuntos parcialmente ordenados

Para alguma linguagem de programação concorrente

- faça um esboço de um programa concorrente
- similar ao caso exemplificado
- compare as especificações
- qual o mais simples?

Comparativamente com muitas das linguagens usualmente adotadas

- conjuntos parcialmente ordenados
- fornecem soluções mais simples e claras

6 – Endorrelações, Ordenação e Equivalência

- 6.1 Propriedades de uma Endorrelação
- 6.2 Fecho de uma Endorrelação
- 6.3 Ordenação
- 6.4 Equivalência e Partição

6.4 Equivalência e Partição

- ◆ Relação de equivalência é importante para CC
 - reflete uma noção de igualdade semântica
 - entidades com formas diferentes (sintaticamente diferentes)
 - podem ser equivalentes ("igualadas")
 - exemplo: ⇔
 - exemplos no quotidiano (suponha um conjunto de pessoas)
 - * mesma idade
 - * mesma altura
 - * mesmo sexo
- ◆ Propriedades que caracterizam equivalência?

◆ Considerando a noção semântica de igualdade

- Reflexiva. Qq elemento é sempre "igual" a si mesmo
- Transitiva. Intuitiva em qualquer noção de "igualdade"
- Simétrica. Mais caracteriza a "igualdade" (e diferencia da ordem)

Importante resultado de uma relelação de equivalência

- R: A → A induz uma partição do conjunto A
 - * em subconjuntos disjuntos e não-vazios
 - * classes de equivalência
- exemplo: relação "mesmo sexo"
 - * classe de equivalência das pessoas do sexo feminino
 - * classe de equivalência das pessoas do sexo masculino

Def: Relação de Equivalência

R: A → A é uma Relação de Equivalência se for

- Reflexiva
- Simétrica
- Transitiva

Def: Partição de um Conjunto

Partição do conjunto A é um conjunto de

- subconjuntos não-vazios e mutuamente disjuntos de A
 - * blocos da partição ou classes de equivalência
- união de todos os blocos resulta em A

Quais são os blocos da partição do vazio?

◆ Notação para classe de equivalência

- {A₁, A₂,..., A_n} é partição de A
- é usual denotar por um elemento representativo da classe

* para
$$a_1 \in A_1,..., a_n \in A_n$$

$$[a_1] = A_1,..., [a_n] = A_n$$

◆ Aplicação da notação: Código Nacional de Trânsito

vaca: representa genericamente a classe animais

alce: representa genericamente a classe animais selvagens

◆ Aplicação da notação: Claudiomiro

Queria agradecer a Antarctica pelas Brahma que enviou lá para casa

Importante resultado (adiante)

- cada relação de equivalência R: A → A
- induz uma única particão do conjunto A

Exp: Relação de Equivalência

- (A, =)
- $\langle \mathbf{P}(A), = \rangle$
- \emptyset : $\emptyset \rightarrow \emptyset$
- $A^2: A \rightarrow A$

Qual seria a correspondente partição em cada caso?

Exp: Relação de Equivalência e Partição

$$R = \{ (a, b) \in \mathbb{N}^2 \mid a MOD 2 = b MOD 2 \}$$

MOD: resto da divisão inteira

R é uma relação de equivalência?

Intuitivamente, R induz uma partição de N

- [0], a classe de equivalência dos número pares (resto zero)
- [1], a classe de equivalência dos número ímpares (resto um)

◆ Teorema mostra como construir uma partição

- a partir de uma relação de equivalência
- prova é especialmente interessante
 - * simples
 - * 3 técnicas de demonstração: direta, contraposição e absurdo

Teorema: Relação de Equivalência ⇒ Partição

R: A → A uma relação de equivalência

Então, R induz uma partição do conjunto A

Prova:

Suponha R: A → A uma relação de equivalência. Para qq a ∈ A, seja

$$[a]_R = \{b \in A \mid aRb\}$$

Então, é uma partição de A

$$\{[a]_R \mid a \in A\}$$

(agrupa elementos relacionados entre si como classe de equivalência)

Para provar que é uma partição de A

- cada classe de equivalência é não-vazia
- qq duas classes de equivalência distintas são disjuntas
- união de todas as classes de equivaliencia resulta em A

Prova: Cada classe é não-vazia

(direta)

Suponha a∈A. Então

• a∈A ⇒

reflexividade de R

• a R a ⇒

definição de [a]_R

• a∈[a]_R

Logo, cada classe de equivalência é não-vazia

Prova: Qq duas classes distintas são disjuntas

Inicialmente, é provado o seguinte resultado sobre classes distintas

Se [a]_R
$$\neq$$
 [b]_R, então ¬(aRb) (contraposição)

- suponha que a R b
- a prova de [a]_R = [b]_R é dividida em dois casos

Caso 1. [b]_R \subseteq [a]_R. Suponha c \in [b]_R

- $c \in [b]_R \Rightarrow$
- $bRc \Rightarrow$
- $aRc \Rightarrow$
- $c \in [a]_R \Rightarrow$
- [b]_R⊆[a]_R

- definição de [b]_R
- transitividade de R suposto que a R b
 - definição de [a]_R
 - definição de subconjunto

Prova: Qq duas classes distintas são disjuntas

Caso 2. [a]_R \subseteq [b]_R. Suponha c \in [a]_R

- $c \in [a]_R \Rightarrow$
- $aRc \Rightarrow$
- cRa ⇒
- $cRb \Rightarrow$
- $bRc \Rightarrow$
- $c \in [b]_R \Rightarrow$
- $[a]_R \subseteq [b]_R$

definição de [a]_R

simetria de R

transitividade de R suposto que a R b

simetria de R

definição de [b]_R

definição de subconjunto

Logo, se [a]_R \neq [b]_R, então ¬(aRb)

Prova: Qq duas classes distintas são disjuntas

Se [a]_R
$$\neq$$
 [b]_R, então [a]_R \cap [b]_R = \varnothing (absurdo)

Suponha que [a]_R \neq [b]_R e [a]_R \cap [b]_R \neq \emptyset . Então:

- $[a]_R \neq [b]_R \land [a]_R \cap [b]_R \neq \emptyset \Rightarrow$ prova anterior • $\neg (aRb) \land [a]_R \cap [b]_R \neq \emptyset \Rightarrow$ definição de intersecção • $\neg (aRb) \land (\exists c \in A)(c \in [a]_R \land c \in [b]_R) \Rightarrow$ def. de $[a]_R, [b]_R$ • $\neg (aRb) \land aRc \land bRc \Rightarrow$ simetria de R• $\neg (aRb) \land aRc \land cRb \Rightarrow$ transitividade de R
- ¬(a R b) ∧ a R b, o que é um absurdo!

Logo, quaisquer duas classes de equivalência distintas são disjuntas

Prova: União das classes resulta em A

(direta)

A prova é dividida em dois casos (duas continências)

Caso 1. A está contido na união

• a∈A ⇒

classe de equivalência é não-vazia

• $a \in [a]_R \Rightarrow$

definição de união

a pertence à união de todas as classes de equivalência

Caso 1. União está contida em A

a pertence à união de todas as classes ⇒

definição de união

• $(\exists b \in A)(a \in [b]_R) \Rightarrow$

definição de classe

• b R a ⇒

suposto que R: A → A

• a∈A

Logo, a união de todas as classes de equivalência resulta em A

Prova:

Como $\{[a]_R \mid a \in A\}$ é tal que

- cada classe de equivalência é não-vazia
- qq duas classes de equivalência distintas são disjuntas
- união de todas as classes de equivaliencia resulta em A

tem-se que R induz uma partição do conjunto A

Portanto

- para construir a partição induzida pela relação
- basta agrupar os elementos que estão relacionados entre si
- como uma classe de equivalência

Exp: Relação de Equivalência ⇒ Partição

$$R = \{ (a, b) \in \mathbb{N}^2 \mid a MOD 2 = b MOD 2 \}$$

Claramente, a R b sse

- a e b, quando dividido por 2
- ou tem ambos resto zero ou ambos resto um
- ou seja, são ambos pares ou ambos ímpares

Portanto, R induz uma partição de N

- [0], a classe de equivalência dos número pares (resto zero)
- [1], a classe de equivalência dos número ímpares (resto um)

Os seguintes teoremas não serão provados

Teorema: Partição Induzida por uma Relação de Equivalência é Única

Seja R: A → A relação de equivalência. Então, a partição de A induzida por R é *única*

Teorema: Partição ⇒ Relação de Equivalência

Seja A conjunto. Então, qq partição de A induz uma relação de equivalência R: A → A

Def: Conjunto Quociente

A conjunto, R: A → A endorrelação de equivalência Conjunto Quociente

A/R

é a partição de A induzida pela relação de equivalência R

$$A/R = \{[a]_R \mid a \in A\}$$

Exp: Conjunto Quociente: Q

$$\mathbf{N}_{+} = \mathbf{N} - \{0\}$$

naturais positivos

$$\mathbf{F} = \mathbf{Z} \times \mathbf{N}_{+}$$

frações

Relação de equivalência

$$R = \{ \langle \langle a, b \rangle, \langle c, d \rangle \rangle \in \mathbb{F}^2 \mid a/b = c/d \}$$

Portanto, Q é o conjunto quociente F/R

$$\mathbf{Q} = \mathbf{F} / \mathbf{R}$$

Cada número racional é uma classes de equivalência de frações

- $[0]_R = \{0/1, 0/2, 0/3,...\}$
- $[1/2]_R = \{1/2, 2/4, 3/6,...\}$
- $[5/4]_R = \{5/4, 10/8, 15/12,...\}$

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

