Generalizable Episodic Memory for Deep Reinforcement Learning

Hao Hu, Jianing Ye, Guangxiang Zhu, Zhizhou Ren, Chongjie Zhang

Episodic Control

Learning

$$Q^{EM}(s,a) = \begin{cases} R, & \text{if } (s,a) \notin EM, \\ \max\{R, Q^{EM}(s,a)\}, & \text{otherwise.} \end{cases}$$

Execution

$$\widehat{Q}^{EM}(s,a) = \begin{cases} \frac{1}{k} \sum_{i=1}^{k} Q(s_i,a) & \text{if } (s,a) \notin Q^{EM}, \\ Q^{EM}(s,a) & \text{otherwise,} \end{cases}$$

Flaws of vanilla episodic control

No planning

No man ever steps in the same river twice.

Heraclitus

Flaws of vanilla episodic control

No planning

No man ever steps in the same river twice.

Heraclitus

Flaws of vanilla episodic control

No planning

Not generalizable

No man ever steps in the same river twice.

Heraclitus

Learn by memorizing discrete tables

$$\mathcal{L}(Q_{\theta}) = \mathbb{E}_{(s_t, a_t, R_t) \sim \mathcal{M}} (Q_{\theta}(s_t, a_t) - R_t)^2.$$

Implicit Planning with Memory

$$R_{t} = \begin{cases} r_{t} + \gamma \max(R_{t+1}, Q_{\theta}(s_{t+1}, a_{t+1})) & \text{if } t < T, \\ r_{t} & \text{if } t = T, \end{cases}$$

Equivalently,

$$V_{t,h} = \begin{cases} r_t + \gamma V_{t+1,h-1} & \text{if } h > 0, \\ Q_{\theta}(s_t, a_t) & \text{if } h = 0, \end{cases}$$

$$R_t = V_{t,h^*}, h^* = \underset{h>0}{\operatorname{arg max}} V_{t,h},$$

Practical Issues: Overestimation

■ For a set of unbiased, independent estimators $\tilde{Q}_h = Q_h + \epsilon_h, h \in \{1, ..., H\}$,

$$\mathbb{E}\left[\max_{h} \tilde{Q}_{h}\right] \geq \max_{h} \mathbb{E}\left[\tilde{Q}_{h}\right] = \max_{h} \mathbb{E}\left[Q_{h}\right],$$

This can be derived directly from Jensen's Inequality.

Twin back-propagation process

$$h_{(2)}^* = \operatorname{argmax} V_h^{(2)} = 2$$

$$h_{(1)}^* = \operatorname{argmax} V_h^{(1)} = 1$$

$$R^{(1)} = V_{h_{(2)}^*}^{(1)} = 3.5$$

$$R^{(2)} = V_{h_{(1)}^*}^{(2)} = 3.8$$

Twin back-propagation process

$$h_{(2)}^* = \operatorname{argmax} V_h^{(2)} = 2$$

$$h_{(1)}^* = \operatorname{argmax} V_h^{(1)} = 1$$

$$R^{(1)} = V_{h_{(2)}^*}^{(1)} = 3.5$$

$$R^{(2)} = V_{h_{(1)}^*}^{(2)} = 3.8$$

Twin back-propagation process

$$h_{(2)}^* = \operatorname{argmax} V_h^{(2)} = 2$$

$$h_{(1)}^* = \operatorname{argmax} V_h^{(2)} = 1$$

$$R^{(1)} = V_{h_{(2)}^*}^{(1)} = 3.5$$

$$R^{(2)} = V_{h_{(1)}^*}^{(2)} = 3.8$$

Practical Issues: Stochastic Environments

Practical Issues: Stochastic Environments

Environment Randomness makes planning fail!

But to what extent?

Practical Issues: Stochastic Environments

Definition 4.1. We define $Q_{max}(s_0, a_0)$ as the maximum value possible to receive starting from (s_0, a_0) , i.e.,

$$Q_{max}(s_0, a_0) := \max_{\substack{(s_1, \dots, s_T), (a_1, \dots, a_T) \\ s_{i+1} \in supp(P(\cdot|s_i, a_i))}} \sum_{t=0}^T \gamma^t r(s_t, a_t)$$

An MDP is said to be nearly-deterministic with parameter μ , if $\forall s \in \mathcal{S}, a \in \mathcal{A}$,

$$Q_{max}(s,a) \le Q^*(s,a) + \mu$$

where μ is a dependency threshold to bound the stochasticity of environments.

Experiments

0.6

Time steps(1e6)

0.2

1.0

0.8

Experiments

Experiments

Reducing overestimation

Summary

Thanks!

- Check out our paper for more details
- Code available at https://github.com/MouseHu/GEM
- Happy to answer questions by email:
 - hu-h19@mails.tsinghua.edu.cn chongjie@tsinghua.edu.cn

