☐ Three-dimensional coordinate system

- ✓ Rectangular coordinate systems
- ✓ Cylindrical surfaces
- ✓ Cylindrical coordinate systems
- ✓ Spherical coordinate systems

RECTANGULAR COORDINATE SYSTEMS

REGION	DESCRIPTION		
xy-plane	Consists of all points of the form $(x, y, 0)$		
xz-plane	Consists of all points of the form $(x, 0, z)$		
yz-plane	Consists of all points of the form $(0, y, z)$		
x-axis	Consists of all points of the form $(x, 0, 0)$		
y-axis	Consists of all points of the form $(0, y, 0)$		
z-axis	Consists of all points of the form $(0, y, 0)$		

CYLINDRICAL SURFACES

The process of generating a surface by translating a plane curve parallel to some line is called *extrusion*, and surfaces that are generated by extrusion are called *cylindrical surfaces*.

11.1.2 THEOREM An equation that contains only two of the variables x, y, and z represents a cylindrical surface in an xyz-coordinate system. The surface can be obtained by graphing the equation in the coordinate plane of the two variables that appear in the equation and then translating that graph parallel to the axis of the missing variable.

CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

CONSTANT SURFACES

In rectangular coordinates the surfaces represented by equations of the form

$$x = x_0$$
, $y = y_0$, and $z = z_0$

where x_0 , y_0 , and z_0 are constants, are planes parallel to the yz-plane, xz-plane, and xy-plane, respectively (Figure 11.8.2).

In cylindrical coordinates the surfaces represented by equations of the form

$$r = r_0$$
, $\theta = \theta_0$, and $z = z_0$

where r_0 , θ_0 , and z_0 are constants, are shown in Figure 11.8.3:

• The surface $r = r_0$ is a right circular cylinder of radius r_0 centered on the z-axis.

• The surface $\theta = \theta_0$ is a half-plane attached along the z-axis and making an angle

 θ_0 with the positive x-axis.

• The surface $z = z_0$ is a horizontal plane.

In spherical coordinates the surfaces represented by equations of the form

$$\rho = \rho_0$$
, $\theta = \theta_0$, and $\phi = \phi_0$

where ρ_0 , θ_0 , and ϕ_0 are constants, are shown in Figure 11.8.4:

- The surface ρ
 Assuming ρ₀
- As in cylindric z-axis, making
- The surface φ makes an ang nappe of a co cone opening xy-plane.)

om the origin is ρ_0 . ntered at the origin. e attached along the

gment to the origin 1/2, this will be the Il be the nappe of a If the surface is the

▲ Figure 11.8.4

Table 11.8.1
CONVERSION FORMULAS FOR COORDINATE SYSTEMS

CONVERSION		FORMULAS	RESTRICTIONS
Cylindrical to rectangular	$(r, \theta, z) \rightarrow (x, y, z)$	$x = r \cos \theta$, $y = r \sin \theta$, $z = z$	
Rectangular to cylindrical	$(x, y, z) \rightarrow (r, \theta, z)$	$r = \sqrt{x^2 + y^2}$, $\tan \theta = y/x$, $z = z$	
Spherical to cylindrical Cylindrical to spherical		$r = \rho \sin \phi$, $\theta = \theta$, $z = \rho \cos \phi$ $\rho = \sqrt{r^2 + z^2}$, $\theta = \theta$, $\tan \phi = r/z$	$r \ge 0, \rho \ge 0$ $0 \le \theta < 2\pi$ $0 \le \phi \le \pi$
Spherical to rectangular	$(\rho, \theta, \phi) \rightarrow (x, y, z)$	$x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$	
Rectangular to spherical	$(x, y, z) \rightarrow (\rho, \theta, \phi)$	$\rho = \sqrt{x^2 + y^2 + z^2}$, $\tan \theta = y/x$, $\cos \phi = z/\sqrt{x^2 + y^2 + z^2}$	

Comparison of coordinate systems

(b) Find the rectangular coordinates of the point with spherical coordinates

$$(\rho, \theta, \phi) = (4, \pi/3, \pi/4)$$

Find the spherical coordinates of the point that has rectangular coordinates

$$(x, y, z) = (4, -4, 4\sqrt{6})$$

$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{16 + 16 + 96} = \sqrt{128} = 8\sqrt{2}$$

$$\tan \theta = \frac{y}{x} = -1$$

$$\cos \phi = \frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{4\sqrt{6}}{8\sqrt{2}} = \frac{\sqrt{3}}{2}$$

rectangular: $(4, -4, 4\sqrt{6})$ spherical: $(8\sqrt{2}, 7\pi/4, \pi/6)$ STATE OF STREET

1-2 Convert from rectangular to cylindrical coordinates.

1. (a)
$$(4\sqrt{3}, 4, -4)$$
 (b) $(-5, 5, 6)$ (c) $(0, 2, 0)$ (d) $(4, -4\sqrt{3}, 6)$

(c)
$$(0, 2, 0)$$

2. (a)
$$(\sqrt{2}, -\sqrt{2}, 1)$$

(b) (0, 1, 1)

(c)
$$(-4, 4, -7)$$

(d) (2, -2, -2)

3-4 Convert from cylindrical to rectangular coordinates.

3. (a)
$$(4, \pi/6, 3)$$

(b) $(8, 3\pi/4, -2)$

(c)
$$(5,0,4)$$

(d) $(7, \pi, -9)$

4. (a)
$$(6, 5\pi/3, 7)$$
 (b) $(1, \pi/2, 0)$

(c)
$$(3, \pi/2, 5)$$

(d) $(4, \pi/2, -1)$

5–6 Convert from rectangular to spherical coordinates.

5. (a)
$$(1, \sqrt{3}, -2)$$

(c)
$$(0, 3\sqrt{3}, 3)$$

(b) $(1, -1, \sqrt{2})$ (d) $(-5\sqrt{3}, 5, 0)$

6. (a)
$$(4, 4, 4\sqrt{6})$$

(b) $(1, -\sqrt{3}, -2)$

(c)
$$(2,0,0)$$

(d) $(\sqrt{3}, 1, 2\sqrt{3})$

7–8 Convert from spherical to rectangular coordinates.

7. (a)
$$(5, \pi/6, \pi/4)$$

(b) $(7, 0, \pi/2)$

(c)
$$(1, \pi, 0)$$

(d) $(2, 3\pi/2, \pi/2)$

8. (a)
$$(1, 2\pi/3, 3\pi/4)$$
 (b) $(3, 7\pi/4, 5\pi/6)$

(b)
$$(3, 7\pi/4, 5\pi/6)$$

(c)
$$(8, \pi/6, \pi/4)$$

(d)
$$(4, \pi/2, \pi/3)$$

