Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 899521, v.1

Punti: / 30	Tempo:
1 (3 pt)	

Dato il seguente testo:

- 1. Esplicitare l'argomento, se esiste.
- 2. Formalizzare l'argomento, se formalizzabile secondo il linguaggio della logica enunciativa
- 3. Dimostrare perché l'argomento è valido secondo il linguaggio della logica enunciativa classica, se lo è.
- 4. Determinare se l'argomento è fondato.

Un argomento che ha un operatore logico è traducibile nella logica enunciativa, se l'operatore è funzione di verità dei suoi costituenti. L'argomento 'se mangio, allora vivo, quindi vivo' richiede una premessa implicita ma è traducibile nella logica enunciativa, ergo ha un operatore logico come funzione di verità.

2 (3 pt)

Per ogni coppia ordinata (x_n, x_{n+1}) : 1. formalizzare ogni enunciato 2. determinare se (x_n, x_{n+1}) siano contraddittori 3. determinare se formino un insieme coerente 4. determinare se il secondo enunciato sia conseguenza logica del primo tramite « $x_n \models x_{n+1}$ » oppure « $x_n \not\models x_{n+1}$ ».

 a_1 . Se mi disturbi, allora esci.

 a_2 . O esci, oppure non mi disturbi.

 b_1 . Giovanni va a scalare.

 $\boldsymbol{b_2}$. Federica si allena a meno che Giovanni non vada a scalare.

 c_1 . Le scrivo e mi risponde.

 c_2 . Le scrivo solo se non mi risponde.

3 (9 pt)

a.
$$(p \land q) \supset r \vdash p \supset (q \supset r)$$

b.
$$p \wedge q \vdash p \supset q$$

c.
$$\sim p \supset \sim q \vdash (\sim p \supset q) \supset p$$

4 (15 pt)

Teoria (1). Fornire esempi di: (a) funzione iniettiva non suriettiva; (b) funzione suriettiva non iniettiva, (c) funzione né iniettiva né suriettiva.

Teoria (2). È vero che « $\alpha, \beta \in \Gamma$ se e solo se $\Gamma \models \alpha \land \beta$ »? Si spieghi perché oppure si mostri un controesempio.

Teoria (3). L'insieme delle formule valide del linguaggio della logica enunciativa è decidibile? Motivare la propria risposta.

Teoria (4). Dimostrare che se $\Gamma \cup \{\alpha\} \vdash \beta$ e $\Gamma \cup \{\alpha\} \vdash \sim \beta$, allora $\Gamma \vdash \sim \alpha$.

Teoria (5). Spiegare perché vale quanto seguente: se $\alpha \in \Gamma$, allora $\Gamma \models \alpha$.