# Lecture S Relational A

### Relational Al

- Operators are applied
   Operands
  - Operands are relations
  - Operators produce resuredrelations

## **Relational Al**

| State | Area    | Population |  |
|-------|---------|------------|--|
| AL    | 52,419  | 4,661,900  |  |
| CA    | 163,696 | 36,756,666 |  |
| GA    | 59,425  | 9,685,744  |  |
| NC    | 53,819  | 9,222,414  |  |
| TX    | 268,820 | 24,326,974 |  |

### **Relational Al**

Five basic relational alge

– Selection σ

Projection

Union

Difference

## **Selection Ope**

- σ<sub>condition</sub>(R)
  - Selects tuples from relatio specified criteria
  - A condition may include

# **Selection Ope**

citypop

| Birmingham Huntsville Atlanta Charlotte Greensboro |
|----------------------------------------------------|
| Atlanta Charlotte                                  |
| Charlotte                                          |
| 0.000                                              |
| Croonahara                                         |
| Greensboro                                         |
| Huntsville                                         |

## **Projection Op**

- $\Pi_{attribute1,...,attributek}$  (R)
  - Deletes attributes not spe
  - Must also remove dupli maintain the set propert

# **Projection Op**

citypop

| City       |  |
|------------|--|
| Birmingham |  |
| Huntsville |  |
| Atlanta    |  |
| Charlotte  |  |
| Greensboro |  |
| Huntsville |  |
|            |  |

### Rename Ope

- $\rho_A(B)$ 
  - Renames relation B to A w relation

## Rename Ope

City Stat

## **Set Operat**

- Union, Intersection, an
  - Traditional set operations for relations defined for th types

# **Set Operat**

govtemployees

| UID   | L |
|-------|---|
| 4232  |   |
| 12408 |   |
| 31023 | W |
| 007   |   |
| 8938  |   |
|       |   |

UID L

## **Union Oper**

- R(X) U S(X)
  - Results in a relation that c attributes X from either R

# **Union Oper**

#### presidents U postalworkers =

| UID   | Last Name |  |
|-------|-----------|--|
| 4232  | Roosevelt |  |
| 12408 | Franklin  |  |

## Intersection Op

- $R(X) \cap S(X)$ 
  - Results in a relation that c attributes X from relations common to both R and S.

## Intersection Op

presidents ∩ postalworkers = N

govtemployees ∩ postalworker

## **Difference Op**

- R(X) S(X)
  - Results in a relation that c attributes X that belong to also belong to relation S.

## Difference Op

govtemployees - presidents =

| UID   |  |
|-------|--|
| 12408 |  |

govtemployees - postalworker



### **Cartesian Pr**

#### • RXS

Given arity k<sub>1</sub> tuple of relation S, the Ca pairing of all possible tupl tuples of S

### **Cartesian Pr**

R

| Α | В |
|---|---|
| a | 4 |
| b | 1 |
| С | 5 |

S

| D | Е     |
|---|-------|
| 0 | false |
| 1 | true  |

### **Joins**

- Combination of a Cartes
   Selection operation
- Several variations
  - Theta Join

### Theta Jo

- R ⋈ condition S
  - Given arity k<sub>1</sub> tuple of relation S, the Ca pairing of all possible tupl
     I f S h h

### **Theta Jo**

|   | Α | В |
|---|---|---|
| D | 1 | 4 |
| R | 3 | 1 |
|   | 2 | 5 |
|   | D | Е |
|   | ъ | - |
| S | 2 | 4 |
|   |   |   |

### **Theta Jo**

$$R \bowtie_{C < D} S = \sigma_{C < D} (R X S)$$

RXS =

| Α | В | С |
|---|---|---|
| 1 | 4 | 2 |
| 1 | 4 | 2 |
| 3 | 1 | 3 |
| 3 | 1 | 3 |

## **Equi-Joi**

- $R\bowtie_{\text{equality}} S$ 
  - Given arity k₁ tuple of relation S, the Ca pairing of all possible tupl

- *R* ⋈ *S* 
  - Compute R X S
  - For each attribute A<sub>i</sub> com
     select all tuples that agree

|          | Α | В |
|----------|---|---|
| <b>D</b> | 1 | 4 |
| R        | 3 | 1 |
|          | 2 | 5 |
|          |   |   |
|          | Α | C |
| S        | 3 | 3 |
|          |   |   |

#### (Step #1) Compute R X S

| R.A | R.B | R.C | S.A |
|-----|-----|-----|-----|
| 1   | 4   | 2   | 3   |
| 1   | 4   | 2   | 5   |
| 1   | 4   | 2   | 2   |
| 1   | 4   | 2   | 1   |
| 3   | 1   | 3   | 3   |

(Step #2) Keep all tuples such th R.A = S.A AND R.C

| R.A | R.B | R.C | S.A |
|-----|-----|-----|-----|
| 1   | 4   | 2   | 1   |
| 3   | 1   | 3   | 3   |
| 2   | 5   | 6   | 2   |

### **Division**

```
    R / S "Such That"
    -R / S = { x | ∀ y ∈ S : ∃<</li>
    "For Each" "Ther
```

## **Division**

| В     |  |
|-------|--|
| pants |  |
| shirt |  |
| pants |  |
| shirt |  |
| shoes |  |
| shirt |  |
| h     |  |
|       |  |

R

### **Laws and The**

From these five basic operations one can derive the following oper

The operations  $\{X, U, \bowtie, n\}$  are associative.

### **Laws and The**

$$\sigma_{x \text{ AND } y}(R) = \sigma_{x}(\sigma_{y}(R))$$

$$\sigma_x (\sigma_y (R)) = \sigma_y (\sigma_x (R))$$

## **Tuple Relationa**

Relational algebra is a procedu

TRC is a nonprocedural query I

A query as expressed in Tuple Re