Übungsblatt 8 Ana

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Skalarfeld, Vektorfeld, Kurve, eindimensionale Schnittkurve, Höhenlinie, Niveaufläche, Niveaumenge und deren wichtigste Eigenschaften.
- Sie können die natürliche Definitionsmenge und Wertemenge einer Funktion mehrerer Variabler bestimmen.
- Sie können Höhenlinien und Niveauflächen von Funktionen von zwei bzw. drei Variablen bestimmen und skizzieren.

1. Aussagen über Funktionen mehrerer reeller Variabler

Welche der folgenden Aussagen sind wahr und welche falsch?

<u> </u>		
	wahr	falsch
a) Für $n > 1$ ist eine Funktion des Typs $f: \mathbb{R}^n \to \mathbb{R}$ niemals injektiv.		
b) Für $n > 1$ ist eine Funktion des Typs $f: \mathbb{R}^n \to \mathbb{R}$ niemals surjektiv.		
c) Jede Ebene in 3D ist der Graph einer Funktion in zwei reellen		
Variablen.		
d) Jede Sphäre in 3D ist der Graph einer Funktion in zwei reellen		
Variablen.		

2. Definitionsmengen von Funktionen von zwei Variablen

Bestimmen und skizzieren Sie für die nachfolgenden Funktionen $f: \mathbb{R}^n \to \mathbb{R}$ jeweils die maximale Definitionsmenge.

a)
$$f(x,y) = \sqrt{y-2x}$$

b)
$$f(x,y) = \sqrt{x^2 + y^2 - 1}$$
 c) $f(x,y) = \frac{\sqrt{x+y}}{x-y}$

c)
$$f(x,y) = \frac{\sqrt{x+y}}{x-y}$$

3. Definitions- und Wertemengen von Funktionen von zwei Variablen

Bestimmen Sie für die nachfolgenden Funktionen $f: \mathbb{R}^2 \to \mathbb{R}$ jeweils die maximale Definitonsmenge und die Wertemenge.

$$a) f(x,y) = \sin(xy)$$

$$b) f(x,y) = x + y + \cos(xy)$$

c)
$$f(x, y) = \sqrt{1 - y} + e^{-x^2}$$

d)
$$f(x,y) = \sqrt{x^2 - y} + \sqrt{y - x^2}$$

4. Höhenlinien

Berechnen und skizzieren Sie für die gegebene Funktion jeweils die Höhenlinien.

$$a) f(x,y) = 3x + 6y$$

b)
$$f(x, y) = \sqrt{y - x^2}$$

c)
$$f(x, y) = x^2 + y^2 - 2y$$

b)
$$f(x, y) = \sqrt{y - x^2}$$

d) $f(x, y) = \frac{x^2 + y^2}{2y}$

5. Niveauflächen

Berechnen und beschreiben Sie für die gegebene Funktion jeweils die Niveauflächen.

a)
$$f(x, y, z) = x + 2y + 3z$$

a)
$$f(x, y, z) = x + 2y + 3z$$
 b) $f(x, y, z) = x^2 + y^2 + z^2$ c) $f(x, y, z) = x^2 + y^2$

c)
$$f(x, y, z) = x^2 + y^2$$

6. Funktionsgraphen und Höhenlinien mit Python/Numpy

Plotten Sie sowohl die Funktion als auch die Höhenlinien der angegebenen Funktionen mit Python/Numpy.

$$a) f(x,y) = \frac{x}{2}$$

$$b) f(x,y) = \frac{y}{2}$$

c)
$$f(x,y) = \frac{x+y}{2}$$

d)
$$f(x,y) = \frac{x \cdot y}{4}$$

e)
$$f(x,y) = \frac{x^2 + y^2}{2}$$

b)
$$f(x,y) = \frac{y}{2}$$
 c) $f(x,y) = \frac{x+y}{2}$
e) $f(x,y) = \frac{x^2+y^2}{2}$ f) $f(x,y) = \frac{6 \cdot \sin(xy)}{1+x^2+y^2}$

7. Aussagen über eine Funktion

Gegeben sei die Funktion

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $f(3; 0; 4) = 5$.		
b) <i>f</i> ist eine Funktion in 3 Variablen.		
c) Die x-Achse ist eine Höhenlinie von <i>f</i> .		
d) Die Einheitssphäre in 3D ist der Graph von f .		
e) Die Einheitssphäre in 3D ist eine Niveaufläche von f.		
f) Die Sphäre um den Ursprung mit Radius 7 ist eine Niveaufläche		
$\operatorname{von} f$.		