Implementation of the below circuit using assembly

GUNA VARDHAN

$gunavardhan.nagamalla@gmail.com\\ FWC22123$

IIT Hyderabad-Future Wireless Communication Assignment

March 2023

Contents

1	Problem	2
2	Introduction	2
3	Components	3
4	Hardware	3
5	Software	4

1 Problem

GATE EC-2019

Q.25. In the circuit shown,the clock frequency, i.e.,the frequency of the clock signal ,is 12 KHz. The frequency of the signal at Q2 is KHz.

2 Introduction

The aim is to implement the above sequential circuit using D flip-flops (IC 7474) and to find out the frequency of the signal at Q2(it is given that the frequency of the clock signal is 12KHz).IC 7474 is a dual positive edge triggered D type flip flop, which means it has two separate flip-flop that are triggered by the rising edge of a clock signal.

In the above circuit Q_1,Q_2 are inputs and D_1,D_2 are outputs. So, from the circuit the expressions of D_1 and D_2 are:

$$D_1 = Q_1' Q_2'.$$

 $D_2 = Q_1.$

Below is the transition table of the above circuit which is as follows:

INF	TU	OUTPUT			
Q_1	Q_2	D_1	D_2		
0	0	1	0		
1	0	0	1		
0	1	0	0		

Table 1: Transition table

3 Components

COMPONENTS								
Component	Value	Quantity						
Resistor	=220 Ohm	1						
Arduino	UNO	1						
Seven Segent Display	Common Anode	1						
Decoder	7447	1						
Flip Flop	7474	1						
Jumper Wires		20						
Breadboard		1						

Table 2: Components

4 Hardware

IC 7474 is a D flip-flop integrated circuit that is commonly used in digital electronics applications. It is a dual positive edge-triggered by the rising edge of a clock signal. Below is the pin diagram of IC 7474:

Figure 1: 7474

The connections between the arduino and IC 7474 is as follows:

	INPUT		OUTPUT		CLOCK		VCC			
ARDUINO	D2	D3	D5	D6	D13		5V			
7474	5	9	2	12	3	11	1	4	10	13
7447			1	7				16		

Table 3: connections

5 Software

The code to implement the above circuit is :

.include "/sdcard/Download/FWC/assembly//m328Pdef.inc"; Initialize registers LDI R16, 0x00; Load 00 into R16 LDI R17, 0x00; Load 00 into R17 LDI R18, 0x03; Load 3 into R18 for comparison later LDI R19, 0x01; Load 1 into R19 for toggling

LOOP: ; Wait for falling edge on clock SBIC PIND, 0 ; Skip next instruction if PD0 is low RJMP LOOP ; Jump back to LOOP if clock is high

; Update D1 and D2 flip-flops AND R24, R17 ; (!Q1)*(!Q2) = Q1 Q2 LSL R24 ; Shift left one bit to prepare for D1 OR R24, R16 ; Combine with current state for D1 MOV R16, R17 ; Update D1 $_Q$ – 1MOV R17, R24; Update D1 $_Q$

 $\label{eq:mov_R24} \begin{aligned} &\text{MOV R24, R16} \; ; \; \text{Copy D1}_Q to R24 for use in updating D2}_Q ANDIR24, 0x01; \; Q1 = \\ &D1_Q 0x01LSLR24; \; Shift left one bit to prepare for D2ORR24, R16; \; Combine with current state for D2MOVR16, \\ &1MOVR17, R24; \; Update D2_Q \end{aligned}$

- ; Output D2 state OUT PORTB, R17 ; Output $\mathrm{D2}_O$
- ; Check for initial state of 00 and stop the loop CP R16, R18 ; Compare R16 (D1 $_Q-1$)with0x03BREQEND $_LOOP$; BranchtoEND $_LOOP$ ifequal
- ; Wait for rising edge on clock SBIS PIND, 0; Skip next instruction if PD0 is high RJMP LOOP; Jump back to LOOP if clock is low
 - ; Toggle the LED on PORTC EOR R20, R19 ; Toggle R20 (PORTC)
 - ; Jump back to LOOP RJMP LOOP
 - $END_LOOP :: StoptheloopNOP$