import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing

data = pd.read_csv('/content/bank.csv')
print(data.shape)
data.head()

(11162, 17)

	age	job	marital	education	default	balance	housing	loan	contact	day	mo
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	r
1	56	admin.	married	secondary	no	45	no	no	unknown	5	r
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	r
3	55	services	married	secondary	no	2476	yes	no	unknown	5	r
4	54	admin.	married	tertiary	no	184	no	no	unknown	5	r

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11162 entries, 0 to 11161
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	age	11162 non-null	int64
1	job	11162 non-null	object
2	marital	11162 non-null	object
3	education	11162 non-null	object
4	default	11162 non-null	object
5	balance	11162 non-null	int64
6	housing	11162 non-null	object
7	loan	11162 non-null	object
8	contact	11162 non-null	object
9	day	11162 non-null	int64
10	month	11162 non-null	object
11	duration	11162 non-null	int64
12	campaign	11162 non-null	int64
13	pdays	11162 non-null	int64
14	previous	11162 non-null	int64
15	poutcome	11162 non-null	object
16	deposit	11162 non-null	object

```
dtypes: int64(7), object(10)
```

data.isnull().any()

False age job False marital False False education default False balance False housing False loan False contact False day False month False duration False campaign False False pdays False previous poutcome False deposit False dtype: bool

data.describe()

	age	balance	day	duration	campaign	pdays
count	11162.000000	11162.000000	11162.000000	11162.000000	11162.000000	11162.000000
mean	41.231948	1528.538524	15.658036	371.993818	2.508421	51.330407
std	11.913369	3225.413326	8.420740	347.128386	2.722077	108.758282
min	18.000000	-6847.000000	1.000000	2.000000	1.000000	-1.000000
25%	32.000000	122.000000	8.000000	138.000000	1.000000	-1.000000
50%	39.000000	550.000000	15.000000	255.000000	2.000000	-1.000000
75%	49.000000	1708.000000	22.000000	496.000000	3.000000	20.750000
max	95.000000	81204.000000	31.000000	3881.000000	63.000000	854.000000

```
array(['married', 'single', 'divorced'], dtype=object)
data['deposit'].unique()
     array(['yes', 'no'], dtype=object)
data['education'].unique()
     array(['secondary', 'tertiary', 'primary', 'unknown'], dtype=object)
data['default'].unique()
     array(['no', 'yes'], dtype=object)
data['housing'].unique()
     array(['yes', 'no'], dtype=object)
data['loan'].unique()
     array(['no', 'yes'], dtype=object)
data['contact'].unique()
     array(['unknown', 'cellular', 'telephone'], dtype=object)
data['month'].unique()
     array(['may', 'jun', 'jul', 'aug', 'oct', 'nov', 'dec', 'jan', 'feb',
            'mar', 'apr', 'sep'], dtype=object)
data['poutcome'].unique()
     array(['unknown', 'other', 'failure', 'success'], dtype=object)
#Label Encoding for all Textual Columns
data['job'] = le.fit_transform(data['job'])
data['marital'] = le.fit transform(data['marital'])
data['education'] = le.fit_transform(data['education'])
data['default'] = le.fit transform(data['default'])
data['housing'] = le.fit_transform(data['housing'])
data['loan'] = le.fit transform(data['loan'])
data['contact'] = le.fit transform(data['contact'])
data['month'] = le.fit_transform(data['month'])
data['poutcome'] = le.fit transform(data['poutcome'])
data['deposit'] = le.fit_transform(data['deposit'])
```

data

	age	job	marital	education	default	balance	housing	loan	contact	day	mont
0	59	0	1	1	0	2343	1	0	2	5	
1	56	0	1	1	0	45	0	0	2	5	
2	41	9	1	1	0	1270	1	0	2	5	
3	55	7	1	1	0	2476	1	0	2	5	
4	54	0	1	2	0	184	0	0	2	5	
11157	33	1	2	0	0	1	1	0	0	20	
11158	39	7	1	1	0	733	0	0	2	16	
11159	32	9	2	1	0	29	0	0	0	19	
11160	43	9	1	1	0	0	0	1	0	8	
11161	34	9	1	1	0	0	0	0	0	9	

11162 rows × 17 columns

#One hot encoding for job,marital,education
from sklearn.preprocessing import OneHotEncoder

one = OneHotEncoder()

```
z= one.fit transform(x[:,1:4]).toarray()
z.shape
     /11162 101
x = np.delete(x,1,axis=1)
x = np.delete(x, 2, axis=1)
x = np.delete(x,3,axis=1)
x = np.concatenate((x,z),axis=1)
Х
     array([[59., 1., 0., ..., 1., 0., 0.],
            [56., 1., 0., ..., 1., 0., 0.],
            [41., 1., 0., ..., 1., 0., 0.],
            [32., 2., 0., ..., 1., 0., 0.],
            [43., 1., 0., ..., 1., 0., 0.],
            [34., 1., 0., ..., 1., 0., 0.]])
x[:,7]
     array([8., 8., 8., ..., 1., 8., 5.])
#One hot encoding for month
z= one.fit transform(x[:,7:8]).toarray()
x = np.delete(x,7,axis=1)
x = np.concatenate((x,z),axis=1)
x.shape
     (11162, 42)
#One hot encoding for contact
z= one.fit transform(x[:,5:6]).toarray()
x = np.delete(x,5,axis=1)
x = np.concatenate((x,z),axis=1)
x.shape
     (11162, 74)
y.shape
     (11162, 2)
#One hot encoding for poutcome
z= one.fit transform(y[:,:1]).toarray()
y = np.delete(y,0,axis=1)
y = np.concatenate((y,z),axis=1)
y.shape
     (11162, 5)
```

```
#Splitting train-test
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.2,random_state=0)
#0.2 means 20% data will be test
print(x train.shape)
print(x test.shape)
     (8929, 74)
     (2233, 74)
#Feature scaling
#Standard scaling = (x-mean)/std. dev
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x train = sc.fit transform(x train)
x test = sc.fit transform(x test)
x train
     array([[ 0.64941897, -0.30765462, -0.12621015, ..., -0.18321763,
             -0.2131383 , -0.1127064 ],
            [1.48737591, -1.90849849, -0.12621015, ..., -0.18321763,
             -0.2131383 , -0.1127064 ],
            [-0.69131213, -0.30765462, -0.12621015, ..., -0.18321763,
             -0.2131383 , -0.1127064 ],
            [-0.43992505, -0.30765462, -0.12621015, ..., -0.18321763,
             -0.2131383 , -0.1127064 ],
            [-0.85890352, -0.30765462, -0.12621015, ..., -0.18321763,
             -0.2131383 , -0.1127064 ],
            [1.57117161, -0.30765462, -0.12621015, ..., -0.18321763,
             -0.2131383 , -0.1127064 ]])
x test
     array([[-0.01351615, -0.36290363, -0.11268723, ..., -0.21424668,
             -0.20493218, -0.11268723],
            [1.25461704, -0.36290363, -0.11268723, ..., -0.21424668,
             -0.20493218, -0.11268723],
            [-0.94348049, 1.22916673, -0.11268723, ..., -0.21424668,
             -0.20493218, -0.11268723],
            [-0.52076943, -0.36290363, -0.11268723, ..., -0.21424668,
             -0.20493218, -0.11268723],
            [1.0009904, 1.22916673, -0.11268723, ..., -0.21424668,
             -0.20493218, -0.11268723],
            [-0.09805837, -0.36290363, -0.11268723, ..., -0.21424668,
             -0.20493218, -0.11268723]])
```

×