

## POWER ENGINEERING

#03 THREE-PHASE AC POWER SYSTEMS (1)

Semester 1 - 2021/2022





- ☐ Benefits of three-phase power systems
- ☐ 3-phase generator: phase voltages and line voltages
- 3 Phase Transmission Lines
- ☐ Balanced STAR connected 3 phase RCL load
  - ☐ 3-phase 3-wire system
  - ☐ 3-phase 4-wire systems
- ☐ Balanced DELTA connected 3 phase RCL load
- Power Measurement
  - 3 Wattmeter Method
  - 2 Wattmeter Method
- Modern Digital Sampling Power Meters

## BENEFITS OF THREE-PHASE POWER SYSTEMS

Three-phase power systems are the de facto standard in the industry.

- The 'workhorse' of industry; the 3 phase induction motor requires a 3 phase AC power supply
- A balanced 3 phase system will lead to **constant instantaneous power demand** on the generator results in a smoother running generator
- A 3 phase generator has far better energy density compared to a single phase machine, hence it is smaller for a given output power (see next slides)
- The weight of the conductors and other components in a threephase system is much lower than in a single-phase system delivering the same amount of power.









## SINGLE PHASE AC GENERATOR



Voltage (V<sub>ph</sub>) induced in Stator Winding Coils (1+, 1-):

$$v_{ph} = \frac{N \cdot d\phi}{dt}$$

where N is the number of the stator coils turns and  $\phi$  is the rotor magnet flux.

## THREE PHASE AC GENERATOR



Now have 3 Phase windings on the Stator 120° apart

Countries use different conventions for naming the 3 PHASE voltages. We will adopt the (old!) UK convention of RED, YELLOW & BLUE PHASES

## 3-PHASE AC GENERATOR: PHASE VOLTAGES



**Phase Voltages** 

$$V_{RN} = V_{pk} \cos \theta$$

$$V_{YN} = V_{pk} \cos (\theta - 2\pi / 3)$$

$$V_{BN} = V_{pk} \cos (\theta + 2\pi / 3)$$

$$V_{RN} + V_{YN} + V_{BN} = 0$$



#### **Phasor Diagram**

Complex Form (Polar):

$$V_{RN} = V_{ph} \angle 0^o$$
 $V_{YN} = V_{ph} \angle -120^o$ 
 $V_{BN} = V_{ph} \angle 120^o$ 

Note: all 3 Phase Voltages have the same rms magnitude V<sub>ph</sub>

## 3-PHASE AC GENERATOR: LINE VOLTAGES



#### **Phase and Line Voltages**

$$V_{RY}=V_{RN}+V_{NY}=V_{RN}-V_{YN}$$

$$V_{BR} = V_{RN} + V_{NB} = V_{RN} - V_{BN}$$



$$V_{RY} = \sqrt{3} \cdot V_{ph} \angle 30^{\circ}$$
  $V_{BR} = \sqrt{3} \cdot V_{ph} \angle 150^{\circ}$   $V_{YB} = \sqrt{3} \cdot V_{ph} \angle -90^{\circ}$ 

## **3-PHASE TRANSMISSION LINES**



If you want to find out more about pylons then check out the Pylon Appreciation Society at <a href="http://www.pylons.org/">http://www.pylons.org/</a>

## **3-PHASE TRANSMISSION LINES**

## Some interesting facts!

- The 'standard' UK pylon was chosen by Sir Reginald Blomfield (a leading architect) in 1928
- The tallest pylon in the world is in China. The Yangtze River crossing pylon is 346.5m high
- The Beauly-Denny transmission line upgrade in Scotland consists of 600 towers with an average height of 53m
- The UK National Grid is made up of 440kV, 275kV,
   132kV, 110kV, 33kV and 11kV transmission lines

 AC three-phase generators can be connected in multiple configurations. The first we will discuss is the Y-Connected Generator...



Has a grounding advantage for varying loads



Delta (∆)

Advantage for dedicated loads where grounding not as important

- If the three phase terminals are connected together at N, the generator is referred to as a Y-connected three-phase generator.
- Note that the negative (-) terminals are connected together at N, which is the neutral.
- The three phase Y generator is connected to the load via the three lines labeled with a corresponding phasor current (I<sub>A</sub>, I<sub>B</sub> and I<sub>C</sub>).



- However, the phase for  $E_{AN}$  is rarely fixed at zero. So for any  $\Theta$  relationship it can be shown that for a balanced Y-Connected Generator the magnitude of line-to-line voltage is  $1.732 (\sqrt{3})$  times the magnitude of the phase voltage.
- Line to line voltage leads the phase voltage by 30°.



$$\frac{\text{Phase Voltages}}{\vec{\mathbf{E}}_{AN} = E \angle (\theta + 0^{\circ})} \qquad \frac{\vec{\mathbf{E}}_{AB} = \sqrt{3}E \angle (30^{\circ} + \theta)}{\vec{\mathbf{E}}_{BN} = E \angle (\theta - 120^{\circ})} \qquad \frac{\vec{\mathbf{E}}_{BC} = \sqrt{3}E \angle (-90^{\circ} + \theta)}{\vec{\mathbf{E}}_{CN} = E \angle (\theta + 120^{\circ})} \qquad \frac{\vec{\mathbf{E}}_{CA} = \sqrt{3}E \angle (150^{\circ} + \theta)}{\vec{\mathbf{E}}_{CA} = \sqrt{3}E \angle (150^{\circ} + \theta)}$$

# BALANCED STAR connected load: 3-Phase 3-Wire System



- 1. 'Balanced' means that the load Impedances are equal:  $Z_{RS} = Z_{YS} = Z_{BS}$
- 2. I<sub>R</sub>, I<sub>Y</sub> and I<sub>B</sub> are termed the LINE currents, and are 120° apart and equal in magnitude.
- 3. If the load is balanced, then the load **STAR** point (**S**) is at the same voltage as the Generator Neutral (**N**):  $V_{SN} = 0$

$$I_{R} = \frac{V_{RN}}{Z_{RS}} = I_{L} \angle - \phi$$
  $I_{B} = \frac{V_{BN}}{Z_{BS}} = I_{L} \angle - \phi + 120^{\circ}$   $I_{Y} = \frac{V_{YN}}{Z_{YS}} = I_{L} \angle - \phi - 120^{\circ}$ 

## BALANCED STAR connected load: 3-Phase 4-Wire System



1. The balanced 3-Phase 4-Wire System can be decomposed into three separated Single-Phase Systems:

$$I_{R} = \frac{V_{RN}}{Z_{RS}} = I_{L} \angle -\phi$$

$$I_{B} = \frac{V_{BN}}{Z_{BS}} = I_{L} \angle -\phi + 120^{\circ}$$

$$I_{Y} = \frac{V_{YN}}{Z_{YS}} = I_{L} \angle -\phi - 120^{\circ}$$

2. I<sub>R</sub>, I<sub>Y</sub> and I<sub>B</sub> are 120° apart and equal in magnitude, and

$$I_{SN} = I_R + I_B + I_Y = 0$$

• For Y loads, line current and phase current are the same.

$$\mathbf{I}_{a} = \frac{\mathbf{V}_{an}}{\mathbf{Z}_{cm}} \qquad \mathbf{I}_{b} = I \angle (\theta - 120^{\circ}) \qquad \mathbf{I}_{c} = I \angle (\theta + 120^{\circ})$$



Line current

Phase current

## **BALANCED STAR connected load**



**Phasor Diagram** 

#### **Power calculations** for each phase :

$$\begin{split} S &= \left| V_{RN} \right| \cdot \left| I_R \right| = V_{ph} \cdot I_L \\ P &= \left| V_{RN} \right| \cdot \left| I_R \right| \cdot \cos \phi = V_{ph} \cdot I_L \cdot \cos \phi \\ Q &= \left| V_{RN} \right| \cdot \left| I_R \right| \cdot \sin \phi = V_{ph} \cdot I_L \cdot \sin \phi \end{split}$$

where  $V_{ph}$  is the rms magnitude of the phase voltage, and  $I_L$  is the rms line current and  $\phi$  is the angle between them

**Total Real Power** in 3-phase system:



$$P_T = 3.|V_{ph}|.|I_L|.\cos\Phi$$



For the balanced 3-phase 3-wire system, determine the following:

- 1. The magnitude of the line voltages
- 2. The line currents  $I_R$ ,  $I_Y$  and  $I_B$
- 3. The phasor diagram showing all line currents and phase voltages
- 4. The TOTAL real power supplied by the 3 phase supply

Solution: 1. 
$$V_L = \sqrt{3}V_{ph} = 240\sqrt{3} = 415.7V$$

2. 
$$I_R = V_{RN} / (5 + j2) = 240 \angle 0^{\circ} / 5.39 \angle 21.8^{\circ} = 44.5 \angle -21.8^{\circ}$$
  
 $I_B = 44.5 \angle 98.2^{\circ}$   
 $I_R = 44.5 \angle -141.8^{\circ}$ 



4. 
$$P_{total} = 3V_{ph}I_{ph}\cos\phi = 3I_R^2R = 3\times(44.5)^2\times5 = 29703.75W$$

For the load depicted below,  $\mathbf{E}_{AB} = 208 \angle 0^{\circ} \text{ V}$ . Find the phase voltages and line voltages and currents (remember that for a Y system, the phase and line currents are the same).



Notice the balanced load

For the load depicted below,  $\mathbf{E}_{AB} = 208 \angle 0^{\circ} \text{ V}$ . Find the phase voltages and line voltages and currents (remember that for a Y system, the phase and line currents are the same).

#### Line Voltages:

$$\overline{E}_{AB} = 208 \angle 0^{\circ} V$$

$$\overline{E}_{BC} = 208 \angle -120^{\circ} V$$

$$\overline{E}_{CA} = 208 \angle 120^{\circ} V$$

#### Phase Voltages:

$$E_{AN} = \frac{E_{AB}}{\sqrt{3} \angle 30^{\circ}} = \frac{208 \angle 0^{\circ} V}{\sqrt{3} \angle 30^{\circ}} = 120 \angle -30^{\circ} V$$

$$E_{BN} = E_{AN} \angle (\theta - 120^{\circ}) = 120 \angle (-30^{\circ} - 120^{\circ}) = 120 \angle -150^{\circ}V$$

$$E_{CN} = E_{AN} \angle (\theta + 120^{\circ}) = 120 \angle (-30^{\circ} + 120^{\circ}) = 120 \angle 90^{\circ}V$$

#### Phase/Line Currents:

$$\mathbf{I}_a = \frac{E_{an}}{\mathbf{Z}_{an}} = \frac{208 \angle 0^{\circ}}{20 - j15} = 4.8 \angle 7^{\circ} A$$

$$I_b = I_a \angle (\theta - 120^\circ) = 4.8 \angle (7^\circ - 120^\circ) = 4.8 \angle 113^\circ A$$

$$\mathbf{I}_c = I_a \angle (\theta + 120^\circ) = 4.8 \angle (7^\circ + 120^\circ) = 4.8 \angle 127^\circ A$$



Notice the balanced load

## BALANCED DELTA CONNECTED 3 PHASE LOAD



Load phase currents  $I_{RY}$ ,  $I_{YB}$ ,  $I_{BR}$  and line currents  $I_{R}$ ,  $I_{Y}$ ,  $I_{B}$ :

$$I_{RY} = \frac{V_{RY}}{Z_{RY}} = I_{ph} \angle - \phi$$

$$I_{YB} = \frac{V_{YB}}{Z_{YB}} = I_{ph} \angle (-\phi - 120^{\circ})$$

$$I_{BR} = \frac{V_{BR}}{Z_{BR}} = I_{ph} \angle (-\phi + 120^{\circ})$$

$$I_{R} = I_{RY} - I_{BR} = \sqrt{3} \cdot I_{ph} \angle -\phi - 30^{\circ}$$

$$I_{Y} = I_{YB} - I_{RY} = \sqrt{3} \cdot I_{ph} \angle -\phi - 150^{\circ}$$

$$I_{B} = I_{BR} - I_{YB} = \sqrt{3} \cdot I_{ph} \angle -\phi + 90^{\circ}$$

where all the currents are phasors

### BALANCED DELTA CONNECTED 3 PHASE LOAD



**Phasor Diagram** 

#### **Power calculations** for any phase:

$$\begin{split} S &= \left| V_{RY} \right| \cdot \left| I_{RY} \right| = V_L \cdot I_{ph} \\ P &= \left| V_{RY} \right| \cdot \left| I_{RY} \right| \cdot \cos \phi = V_L \cdot I_{ph} \cdot \cos \phi \\ Q &= \left| V_{RY} \right| \cdot \left| I_{RY} \right| \cdot \sin \phi = V_L \cdot I_{ph} \cdot \sin \phi \end{split}$$

where  $V_L$  is the rms magnitude of the line voltage, and  $I_{ph}$  is the rms load phase current and  $\phi$  is the angle between them

## BALANCED DELTA CONNECTED 3 PHASE LOAD

#### **Phasor Diagram**



#### **Notes:**

- 1. Line Voltages (eg  $V_{RY}$ ) are  $\sqrt{3}x$  Phase Voltages (eg  $V_{RN}$ ) and LEAD the phase voltages by 30°
- 2. Line Currents (eg  $I_R$ ) are  $\sqrt{3}x$  Load Phase Currents (eg  $I_{RY}$ ) and LAG the phase currents by  $30^\circ$

**Total Real Power** in 3-phase system:

$$P_T = 3.|V_L|.|I_{ph}|.cos\Phi$$

$$=3.|V_{ph}|.|I_L|.cos\Phi$$

In the balanced 3-phase system of **Fig. Q.2**, determine the RMS phase and line voltages and currents in the resistors, the average power dissipated per phase and the total average power dissipated.

$$v_a(t) = 167.9\cos(62.8t)$$
  
 $R_a = R_b = R_c = 30\Omega$  (time-domain representation)



Fig. Q.2. A simple 3-phase, 3- or 4-wire system. (Wye – Wye Circuit).



For the balanced 3 phase Delta connected load determine the following:

- 1. The magnitude of the line voltages
- 2. The line currents  $I_R$ ,  $I_Y$  and  $I_B$
- 3. The phasor diagram showing all currents and voltages
- 4. The TOTAL real power supplied by the 3 phase supply

Solution: 1. 
$$V_L = \sqrt{3}V_{ph} = 240\sqrt{3} = 415.7V$$

2. 
$$V_{RY} = \sqrt{3}V_{RN} \angle 30^{\circ}$$
,  $I_{RY} = V_{RY} / Z_{RY} = 77.2 \angle 8.2^{\circ}$ ,  $I_{R} = \sqrt{3}I_{RY} \angle -30^{\circ} = 133.7 \angle -21.8^{\circ}$   $I_{B} = 133.7 \angle 98.2^{\circ}$ ,  $I_{Y} = 133.7 \angle -141.8^{\circ}$ 



4. 
$$P_{total} = 3V_{ph}I_{ph}\cos\phi = 3I_{RY}^2R = 3\times(77.2)^2\times 5 = 89398W$$

## Power Measurements in 3 Phase Systems







## POWER MEASUREMENT: 3 WATTMETER METHOD



Wattmeter 1:  $V_{W1}$ ,  $A_{W1}$ , &  $\Phi_{W1}$ 

Wattmeter 2:  $V_{W2}$ ,  $A_{W2}$ , &  $\Phi_{W2}$ 

Wattmeter 3:  $V_{W3}$ ,  $A_{W3}$  &  $\Phi_{W3}$ 

$$P_{W1} = V_{RN}I_R \cos \Phi_1$$

$$P_{W2} = V_{YN}I_Y \cos \Phi_2$$

$$P_{W2} = V_{BN}I_B \cos \Phi_3$$

$$P_{Total} = P_{W1} + P_{W2} + P_{W3}$$

## Power Measurement: 2 Wattmeter Method



 $P_{W1} = |V_{RB}|.|I_R|.\cos\Phi_{W1}$ 

 $P_{W2} = |V_{YB}|.|I_{Y}|.\cos\Phi_{W2}$ 

Where  $\Phi_{W1}$  = angle between  $V_{RB}$  and  $I_{R}$ 

Where  $\Phi_{W2}$  = angle between  $V_{YB}$  and  $I_{Y}$ 



$$P_{Total} = P_{W1} + P_{W2} = |V_{RB}| \cdot |I_R| \cdot \cos \phi_{W1} + |V_{YB}| \cdot |I_Y| \cdot \cos \phi_{W2}$$

## AN EXAMPLE OF 2 WATTMETER METHOD

# For a balanced DELTA connected load, from Phasor Diagram,

$$\Phi + 30^{\circ} + \Phi_{W1} = 60^{\circ}$$

$$\Phi_{W2} = 30^{\circ} + \Phi$$

$$\begin{aligned} P_{Total} &= P_{W1} + P_{W2} \\ &= \left| V_{RB} \right| \cdot \left| I_R \right| \cdot \cos \phi_{W1} + \left| V_{YB} \right| \cdot \left| I_Y \right| \cdot \cos \phi_{W2} \\ &= V_L I_L \cos \left( 30^\circ - \phi \right) + V_L I_L \cos \left( 30^\circ - \phi \right) \end{aligned}$$



$$\begin{split} P_{Total} &= V_L I_L \left( \frac{\sqrt{3}}{2} \cos \phi + \frac{1}{2} \sin \phi \right) + V_L I_L \left( \frac{\sqrt{3}}{2} \cos \phi - \frac{1}{2} \sin \phi \right) \\ &= \sqrt{3} V_L I_L \cos \phi = 3 V_{ph} I_L \cos \phi = 3 V_L I_{ph} \cos \phi \end{split}$$

## **Modern Digital Sampling Power Meters/Analysers**



#### **Manufacturers:**

Voltech

Fluke

Yokagawa



$$Power(W) = \frac{1}{N} \sum_{i=0}^{N} v.i$$

where N is the number of samples in a period





#03 Three-Phase AC Power Systems (1)