STAT 105 Exam I Reference Sheet

Numeric Summaries

mean
$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$
 population variance
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

population standard deviation
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

population standard deviation
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
 sample variance

sample standard deviation
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \bar{x}\right)^2}$$

Quantile Function Q(p) For a dataset consisting of n values that are ordered so that $x_1 \le x_2 \le \ldots \le x_n$ and value p where $0 \le p \le 1$, let $i = \lfloor n \cdot p + 0.5 \rfloor$. Then the quantile function at p is:

$$Q(p) = \begin{cases} x_i & [n \cdot p + 0.5] = n \cdot p + 0.5 \\ x_i + (n \cdot p - i + 0.5)(x_{i+1} - x_i) & [n \cdot p + 0.5] \neq n \cdot p + 0.5 \end{cases}$$

Linear Relationships

orm
$$y \approx \beta_0 + \beta_1 x$$

Fitted linear relationship
$$\hat{y} = b_0 + b_1 x$$

Least squares estimates
$$b_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$b_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_0 = ar{y} - \ell$$

$$b_0 = \bar{y} -$$

$$b_0 = \bar{y} - b_1$$

$$e_i = y_i - \hat{y}_i$$

Residuals

sample correlation coeffecient
$$r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (x_i - \bar{x})^2}}$$
$$r = \frac{\sum_{i=1}^n x_i y_i - n\bar{x} \bar{y}}{\sqrt{(\sum_{i=1}^n x_i^2 - n\bar{x}^2)(\sum_{i=1}^n y_i^2 - n\bar{y}^2)}}$$

 $R^2 = (r)^2$ coeffecient of determination

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Factorial Analysis (Two Factors)

Assuming

- Factor B with levels 1, 2, ..., J,
- n is the total number of observations,
- ullet n_{ij} is the total number of observations with Factor A at level i and Factor B at level j,
- n_i . is the total number of observations with Factor A at level i,
- $n_{.j}$ is the total number of observations with Factor B at level j.
- y_{ijk} is the kth observation where Factor A is at level i and Factor B is at level j.

$$y \cdot \cdot = \sum_{i=1}^I \sum_{j=1}^J \sum_{k=1}^K y_i j_k \qquad \qquad \bar{y} \cdot \cdot = \frac{1}{n} \sum_{i=1}^I \sum_{j=1}^J \sum_{k=1}^K y_i j_k$$

$$\bar{y}_{i} = \frac{1}{n_{i, j}} \sum_{j=1}^{J} \sum_{k=1}^{K} y_{ijk} \qquad \qquad \bar{y}_{\cdot j} = \frac{1}{n_{\cdot j}} \sum_{i=1}^{J} \sum_{k=1}^{K} y_{ijk}$$

Main effect of Factor A at level
$$i \quad a_i = \bar{y}_i \cdot - \bar{y}$$
.

Main effect of Factor B at level
$$j$$
 $b_j = \bar{y}_{\cdot j} - \bar{y}_{\cdot .}$

$$\hat{y}_{ij} = a_i + b_j + \bar{y}..$$

Fitted Value

Discrete Random Variables

Probability function
$$P[X = x] = f_X(x)$$

Cumulative probability function
$$P[X \le x] = F_X(x)$$

Expected Value
$$\mu = E(X) = \sum_{x} x f_X(x)$$

Variance
$$\sigma^2 = Var(X) = \sum_x (x-\mu)^2 f_X(x)$$

Standard Deviation
$$\sigma = \sqrt{Var(X)}$$

Joint Distributions and Related Distributions

Joint Probability Function
$$P[X = x, Y = y] = f(x, y)$$

Marginal Probability Function
$$P[X=x]=f_X(x)=\sum_{\rm all\ y}f(x,y)$$

$$P[Y=y]=f_Y(y)=\sum_{\rm all\ x}f(x,y)$$

Conditional Probability Function
$$P[X=x|Y=y] = \frac{f(x,y)}{f_Y(y)}$$

$$P[Y=y|X=x] = \frac{f(x,y)}{f_X(x)}$$

Geometric Random Variables

X is the trial count upon which the first successful outcome is observed performing independent trials with probability of success p.

Possible Values
$$x = 1, 2, 3, \dots$$

Probability function
$$P[X = x] = f_X(x) = p(1-p)^{x-1}$$

Expected Value
$$\mu = E(X) = \frac{1}{p}$$

Variance
$$\sigma^2 = Var(X) = \frac{1-p}{p^2}$$

Binomial Random Variables

X is the number of successful outcomes observed in n independent trials with probability of success p.

Possible Values
$$x = 0, 1, 2, \dots, n$$

Probability function
$$P[X=x]=f_X(x)=\frac{n!}{(n-x)!x!}p^x(1-p)^{n-x}$$

Expected Value
$$\mu = E(X) = np$$

$$\sigma^2 = Var(X) = np(1-p)$$

Variance

Continuous Random Variables

Probability density function
$$P[a < X <$$

Probability density function
$$P[a \le X \le b] = \int_a^b f_X(x) dx$$

Cumulative probability function
$$P[X \le x] = F_X(x) = \int_{-\infty}^x f_X(t) dt$$

intractive probability function
$$r\left[\Lambda \geq x\right] = rX(x) = \int_{-c}^{c}$$

Expected Value
$$\mu = E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

Variance

Standard Deviation
$$\sigma = \sqrt{Var(X)}$$

Let X be a normal random variable with mean μ and variance σ^2 .

Normal Random Variables

Probability density function
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Expected Value
$$E(X) = \mu$$

Variance
$$Var(X) = \sigma^2$$

Standard Normal Random Variables (Z)

A normal random variable with mean 0 and variance σ^2 . If X is normal (μ, σ^2) then $P[a \le X \le b] = P\left[\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right]$

Probability density function $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$

Functions of random variables

For X_1,X_2,\ldots,X_n independent random variables and a_0,a_1,a_2,\ldots,a_n constants if $W=a_0+a_1X_1+\ldots+a_nX_n$:

•
$$E(W) = a_0 + a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$

•
$$Var(W) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + \dots + a_n^2 Var(X_n)$$

Confidence Intervals and Hypothesis Tests

Confidence Intervals $n \ge 25$

$$(1-\alpha)\cdot 100\%$$
 Confidence interval for population mean $~\bar{x}\pm z_{1-\alpha/2}\sqrt{\frac{\sigma^2}{n}}$

$$(1-\alpha)\cdot 100\%$$
 Confidence lower bound

$$(1-\alpha)\cdot 100\%$$
 Confidence upper bound

$$\bar{x} - z_{1-\alpha} \sqrt{\frac{\sigma^2}{n}}$$
$$\bar{x} + z_{1-\alpha} \sqrt{\frac{\sigma^2}{n}}$$

Confidence Intervals n < 25

$$(1-\alpha)\cdot 100\%$$
 Confidence interval for population mean $~~\bar{x}\pm t_{1-\alpha/2,n-1}\sqrt{\frac{\sigma^2}{n}}$

$$(1-\alpha)\cdot 100\%$$
 Confidence lower bound

$$\bar{x} + t_{1-\alpha,n-1} \sqrt{\frac{\sigma^2}{n}}$$

 $\bar{x} - t_{1-\alpha, n-1} \sqrt{\frac{\sigma^2}{n}}$

$$(1-\alpha)\cdot 100\%$$
 Confidence upper bound

$$\bar{x} + t_{1-\alpha, n-1} \sqrt{\frac{\sigma^2}{n}}$$

Test statistics in hypothesis tests for population mean

$$n \ge 25 \qquad \frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}} \ N(0, 1)$$

$$n<25~~\frac{\bar{x}-\mu}{\sqrt{\sigma^2/n}}~t$$
 with $\nu=n-1$ degrees of freedom

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

_ z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Table B.4 *t* Distribution Quantiles

ν	Q(.9)	Q(.95)	Q(.975)	Q(.99)	Q(.995)	Q(.999)	Q(.9995)
1	3.078	6.314	12.706	31.821	63.657	318.317	636.607
2	1.886	2.920	4.303	6.965	9.925	22.327	31.598
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
				•			
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.849
20	1.520	117.20					
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
						0.405	2.707
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	1	2.0.0	2., 20				

This table was generated using MINITAB.