Отчет по лабораторной работе №6

Дисциплина: Имитационное моделирование

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	16
Сп	Список литературы	

Список иллюстраций

2.1	Значения коэффициентов а, b, c, d	6
2.2	Модель «хищник-жертва» в хсоз	7
2.3	Начальные значения в блоках интегрирования	7
2.4	Начальные значения в блоках интегрирования	8
2.5	Конечное время интегрирования	8
2.6	Параметры блока регулирующего устройства CSCOPE	9
2.7	Параметры блока регулирующего устройства CSCOPXY	10
2.8	Динамика изменения численности хищников и жертв	10
2.9	Фазовый портрет модели	11
2.10	Значения коэффициентов a, b, c, d	11
2.11	Модель «хищник–жертва» в xcos с применением блока Modelica	12
		12
2.13	Параметры блока Modelica	13
	, ,	13
2.15	Фазовый портрет модели	14
2.16	Код для реализации модели	14
2.17	Конечное время интегрирования	15
2.18	Динамика изменения численности хищников и жертв	15
2.19	Фазовый портрет модели	15

Список таблиц

1 Цель работы

Реализовать модель «хищник–жертва» в xcos, с помощью блока Modelica в xcos и в OpenModelica.

2 Выполнение лабораторной работы

1. Зафиксировала начальные данные: a = 2, b = 1, c = 0, 3, d = 1.

Рис. 2.1: Значения коэффициентов a, b, c, d

2. Используя блоки CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f и CSCOPXY, создала модель «хищник–жертва» в хсоs.

Рис. 2.2: Модель «хищник-жертва» в хсоѕ

3. В параметрах блоков интегрирования задала начальные значения x(0) = 2, y(0) = 1.

Рис. 2.3: Начальные значения в блоках интегрирования

Рис. 2.4: Начальные значения в блоках интегрирования

4. Задала конечное время интегрирования, равным времени моделирования: 30. А также параметры блоков регулирующих устройств.

Рис. 2.5: Конечное время интегрирования

Рис. 2.6: Параметры блока регулирующего устройства CSCOPE

-	Ввод значений	+ x
	Set Scope parameters	
	Number of Curves	1
	color (>0) or mark (<0)	4
	line or mark size	1
	Output window number (-1 for automatic)	-1
	Output window position	
	Output window sizes	[600;400]
	Xmin	0
	Xmax	10
	Ymin	0
	Ymax	10
	Buffer size	2
		ОК Отменить

Рис. 2.7: Параметры блока регулирующего устройства CSCOPXY

Рис. 2.8: Динамика изменения численности хищников и жертв

Рис. 2.9: Фазовый портрет модели

5. Как и ранее, задала значения коэффициентов a, b, c, d.

Рис. 2.10: Значения коэффициентов а, b, c, d

6. Для реализации модели с помощью языка Modelica использовала следующие блоки xcos: CLOCK_c, CSCOPE, CSCOPXY, TEXT_f, MUX, CONST_m и MBLOCK.

Рис. 2.11: Модель «хищник-жертва» в хсоз с применением блока Modelica

7. Задала параметры блока Modelica.

Рис. 2.12: Параметры блока Modelica

```
+ ×
           Ввод значения
Function definition in Modelica
Here is a skeleton of the functions which you should edit
class generic
////automatically generated ////
   //input variables
   Real a,b,c,d;
   //output variables
   // Real x,y;
///do not modif above this line ////
   Real x(start=2), y(start=1);
equation
   // exemple
   der(x)=a*x-b*x*y;
   der(y)=c*x*y - d*y;
end generic;
                                      OK
                                            Отменить
```

Рис. 2.13: Параметры блока Modelica

Рис. 2.14: Динамика изменения численности хищников и жертв

Рис. 2.15: Фазовый портрет модели

8. Для реализации модели «хищник – жертва» в OpenModelica написала код.

```
1
    model lab6
 2
      parameter Real x 0=2;
 3
      parameter Real y_0=1;
 4
 5
      parameter Real a=2;
 6
      parameter Real b=1;
 7
      parameter Real c=0.3;
 8
      parameter Real d=1;
 9
      Real x(start=x 0);
10
      Real y(start=y 0);
11
12
13
    equation
14
15
      der(x) = a*x - b*x*y;
16
      der(y) = c*x*y - d*y;
17
18
    end lab6;
```

Рис. 2.16: Код для реализации модели

9. Задала конечное время.

Рис. 2.17: Конечное время интегрирования

Рис. 2.18: Динамика изменения численности хищников и жертв

Рис. 2.19: Фазовый портрет модели

3 Выводы

Я реализовала модель «хищник–жертва» в xcos, с помощью блока Modelica в xcos и в OpenModelica.

Список литературы