Introduction to LATEX

Author's Name

March 1, 2015

Abstract

The abstract text goes here.

1 Introduction

Here is the text of your introduction.

$$\alpha = \sqrt{\beta} \tag{1}$$

1.1 Subsection Heading Here

Write your subsection text here.

2 Conclusion

Write your conclusion here.

References

- [1] Federal Communications Commission Spectrum Policy Task Force, "Report of the Spectrum Efficiency Working Group," Tech. Rep., 2002, ET Docket No. 02-135.
- [2] Commission of the European Communities, "Impact assessment accompanying document to COM(2007)697, COM(2007)698, and COM(2007)699," Tech. Rep., 2007.
- [3] T. M. Valletti, "Spectrum trading," *Telecommunications Policy*, vol. 25, no. 1011, pp. 655–670, Oct. Nov. 2001.
- [4] J. W. Mayo and S. Wallsten, "Enabling efficient wireless communications: The role of secondary spectrum markets," *Information Economics and Policy*, vol. 22, no. 1, pp. 61–72, Mar. 2010, Wireless Technologies.

- [5] Electronic Communications Committee (ECC), "Description of practices relative to trading of spectrum rights of use," Tech. Rep., 2011, ECC Report 169.
- [6] J. Mitola and J. Maguire, G.Q., "Cognitive radio: making software radios more personal," *IEEE Personal Commun. Mag.*, vol. 6, no. 4, pp. 13–18, Aug. 1999.
- [7] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Computer Networks, vol. 50, no. 13, pp. 2127–2159, 2006.
- [8] Q. Zhao and B. Sadler, "A survey of dynamic spectrum access," *IEEE Signal Process. Mag.*, vol. 24, no. 3, pp. 79–89, May 2007.
- [9] R. B. Kelly and A. Lafrance, "Spectrum trading in the eu and the us-shifting ends and means," in *The International Comparative Legal Guide to: Telecommunication Laws and Regulations*. Global Legal Group, 2012.
- [10] J. Peha, "Approaches to spectrum sharing," *IEEE Commun. Mag.*, vol. 43, no. 2, pp. 10–12, Feb. 2005.
- [11] J. Silver-Greenberg and B. Protess, "Trying to be nimble, knight capital stumbles," *Dealbook, The New York Times*, Aug.
- [12] M. Bkassiny, Y. Li, and S. K. Jayaweera, "A survey on machine-learning techniques in cognitive radios," *IEEE Commun. Surveys Tuts.*, vol. 15, no. 3, pp. 1136–1159, Oct. 2013.
- [13] J. M. White, Bandit Algorithms for Website Optimization. Sebastopol, CA: OReilly, 2012.
- [14] MATLAB, Release 2014b. Natick, MA: The MathWorks Inc., 2014. [Online]. Available: http://www.mathworks.com/products/matlab/
- [15] Mathematica, Version 10.0. Champaign, IL: Wolfram Research Inc., 2014. [Online]. Available: http://www.wolfram.com/mathematica/
- [16] RStudio: Integrated development environment for R, Version 0.98.1091. Boston, MA: RStudio, 2014. [Online]. Available: http://www.wolfram.com/mathematica/
- [17] E. Jones, T. Oliphant, P. Peterson, and et al., SciPy: Open Source Scientific Tools for Python. Version 0.15.0, 2015. [Online]. Available: http://www.scipy.org
- [18] A. Varga, OMNeT++, Version 4.6, 2015. [Online]. Available: http://www.omnetpp.org

- [19] J. Alcaraz, M. López-Martínez, J. Vales-Alonso, and J. Garcia-Haro, "Background detection of primary user activity in opportunistic spectrum access," in *IEEE ICC*, 2015.
- [20] —, "Bandwidth reservation as a coexistence strategy in opportunistic spectrum access environments," *IEEE J. Sel. Areas Commun.*, vol. 32, no. 3, pp. 478–488, Mar. 2014.
- [21] J. Alcaraz, M. López-Martínez, J. Vales-Alonso, J. Ayala-Romero, and J. Garcia-Haro, "Uncertainty-aware opportunistic spectrum access in coexistence-friendly systems," *IEEE Transactions on Cognitive Commu*nications and Networking, 2015.
- [22] J. Alcaraz, J. Ayala-Romero, M. López-Martínez, and J. Vales-Alonso, "Combining dual tessellation and temporal opportunities for spectrum reuse in cellular systems," in 11th International Symposium on Wireless Communications Systems (ISWCS), Aug. 2014, pp. 486–490.
- [23] —, "Response surface methodology for efficient spectrum reuse in cellular networks," in *IEEE ICC*, 2015.
- [24] M. López-Martínez, J. J. Alcaraz, J. Vales-Alonso, and J. Garcia-Haro, "Automated spectrum trading mechanisms: Understanding the big picture," Wireless Networks, vol. 21, no. 2, pp. 685–708, Jan. 2015.
- [25] J. Alcaraz, M. López-Martínez, J. Vales-Alonso, and J. Garcia-Haro, "An MDP framework for centralized dynamic spectrum auction," in 35th IEEE Sarnoff Symposium (SARNOFF), May 2012, pp. 1–5.
- [26] J. Alcaraz, J. Ayala-Romero, M. López-Martínez, and J. Vales-Alonso, "Multi-armed bandits with dependent arms for cooperative spectrum sharing," in *IEEE ICC*, 2015.
- [27] M. Lpez-Martnez, J. J. Alcaraz, B. L., and M. Zorzi, "A superprocess with upper confidence bounds for cooperative spectrum sharing," *IEEE Trans. Mobile Comput.*, 2015.
- [28] M. Csikszentmihalyi, Creativity: The Psychology of Discovery and Invention, reprint ed. New York, NY: Harper Perennial, 2013.
- [29] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte, "Consensus and collision detectors in wireless ad hoc networks," in *Proc. of the 24th Annual ACM Symposium on Principles of Distributed Computing*, 2005, pp. 197–206.
- [30] S. Stotas and A. Nallanathan, "Overcoming the sensing-throughput tradeoff in cognitive radio networks," in *IEEE ICC*, May 2010, pp. 1–5.
- [31] E. Biglieri, A. Goldsmith, L. Greenstein, N. Mandayam, and H. V. Poor, *Principles of Cognitive Radio*. Cambridge Univ. Press.

- [32] C. Zhang and K. Shin, "What should secondary users do upon incumbents' return?" *IEEE J. Sel. Areas Commun.*, vol. 31, no. 3, pp. 417–428, March 2013.
- [33] W. Gabran, C.-H. Liu, P. Pawelczak, and D. Cabric, "Primary user traffic estimation for dynamic spectrum access," *IEEE J. Sel. Areas Commun.*, vol. 31, no. 3, pp. 544–558, Mar. 2013.
- [34] X. Zhou, J. Ma, G. Li, Y. H. Kwon, and A. Soong, "Probability-based optimization of inter-sensing duration and power control in cognitive radio," *IEEE Trans. Wireless Commun.*, vol. 8, no. 10, pp. 4922–4927, Oct. 2009.
- [35] W.-Y. Lee and I. Akyildiz, "Optimal spectrum sensing framework for cognitive radio networks," *IEEE Trans. Wireless Commun.*, vol. 7, no. 10, pp. 3845–3857, Oct. 2008.
- [36] J. Zhang, L. Qi, and H. Zhu, "Optimization of MAC frame structure for opportunistic spectrum access," *IEEE Trans. Wireless Commun.*, vol. 11, no. 6, pp. 2036–2045, Jun. 2012.
- [37] E. Jung and X. Liu, "Opportunistic spectrum access in multiple-primary-user environments under the packet collision constraint," *IEEE/ACM Trans. Netw.*, vol. 20, no. 2, pp. 501–514, Apr. 2012.
- [38] S. Huang, X. Liu, and Z. Ding, "Optimal transmission strategies for dynamic spectrum access in cognitive radio networks," *IEEE Trans. Mobile Comput.*, vol. 8, no. 12, pp. 1636–1648, Dec. 2009.
- [39] —, "Opportunistic spectrum access in cognitive radio networks," in *IEEE INFOCOM*, Apr. 2008.
- [40] P. Pawelczak, S. Pollin, H.-S. So, A. Bahai, R. Venkatesha Prasad, and R. Hekmat, "Performance analysis of multichannel medium access control algorithms for opportunistic spectrum access," *IEEE Trans. Veh. Technol.*, vol. 58, no. 6, pp. 3014–3031, Jul. 2009.
- [41] A. De Domenico, E. Strinati, and M. Di Benedetto, "A survey on MAC strategies for cognitive radio networks," *IEEE Commun. Surveys Tuts.*, vol. 14, no. 1, pp. 21–44, Feb. 2012.
- [42] J. Jia, Q. Zhang, and X. Shen, "HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management," *IEEE J. Sel. Areas Commun.*, vol. 26, no. 1, pp. 106–117, Jan. 2008.
- [43] M. P. J.P. Vasseur and P. Demeester, Network recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan Kaufmann, 2004.
- [44] R. Ramjee, R. Nagarajan, and D. Towsley, "On optimal call admission control in cellular networks," in *IEEE INFOCOM*, vol. 1, Mar. 1996, pp. 43–50 vol.1.

- [46] G. Wu, P. Ren, and Q. Du, "Recall-based dynamic spectrum auction with the protection of primary users," *IEEE J. Sel. Areas Commun.*, vol. 30, no. 10, pp. 2070–2081, Nov. 2012.
- [47] P. K. Tang, Y. H. Chew, L. C. Ong, and M. Haldar, "Performance of secondary radios in spectrum sharing with prioritized primary access," in *IEEE MILCOM*, Oct. 2006, pp. 1–7.
- [48] J. Lai, R. P. Liu, E. Dutkiewicz, and R. Vesilo, "Optimal channel reservation in cooperative cognitive radio networks," in *IEEE VTC*, May 2011, pp. 1–6.
- [49] W. Ahmed, J. Gao, H. Suraweera, and M. Faulkner, "Comments on "analysis of cognitive radio spectrum access with optimal channel reservation"," IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4488–4491, 2009.
- [50] J. Martinez-Bauset, V. Pla, and D. Pacheco-Paramo, "Comments on "analysis of cognitive radio spectrum access with optimal channel reservation"," IEEE Commun. Lett., vol. 13, no. 10, pp. 739–739, Oct. 2009.
- [51] X. Zhu, L. Shen, and T.-S. Yum, "Analysis of cognitive radio spectrum access with optimal channel reservation," *IEEE Commun. Lett.*, vol. 11, no. 4, pp. 304–306, Apr. 2007.
- [52] C. Sun, G. Villardi, Z. Lan, Y. Alemseged, H. Tran, and H. Harada, "Optimizing the coexistence performance of secondary-user networks under primary-user constraints for dynamic spectrum access," *IEEE Trans. Veh. Technol.*, vol. 61, no. 8, pp. 3665–3676, Oct. 2012.
- [53] H. Kim and K. Shin, "Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks," *IEEE Trans. Mobile Com*put., vol. 7, no. 5, pp. 533–545, May 2008.
- [54] Q. Zhao, L. Tong, A. Swami, and Y. Chen, "Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework," *IEEE J. Sel. Areas Commun.*, vol. 25, no. 3, pp. 589–600, Apr. 2007.
- [55] Y. Li, S. Jayaweera, M. Bkassiny, and K. Avery, "Optimal myopic sensing and dynamic spectrum access in cognitive radio networks with low-complexity implementations," *IEEE Trans. Wireless Commun.*, vol. 11, no. 7, pp. 2412–2423, Jul. 2012.
- [56] W. S. Jeon, J. A. Han, and D. G. Jeong, "A novel MAC scheme for multichannel cognitive radio ad hoc networks," *IEEE Trans. Mobile Comput.*, vol. 11, no. 6, pp. 922–934, Jun. 2012.

- [57] W. Rhee and J. Cioffi, "Increase in capacity of multiuser OFDM system using dynamic subchannel allocation," in *IEEE VTC*, vol. 2, May 2000, pp. 1085–1089.
- [58] S. Sadr, A. Anpalagan, and K. Raahemifar, "Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems," *IEEE Commun. Surveys Tuts.*, vol. 11, no. 3, pp. 92–106, Aug. 2009.
- [59] X. Gelabert, O. Sallent, J. Perez-Romero, and R. Agusti, IEEE Trans. Commun.
- [60] L. Jiao, F. Li, and V. Pla, "Modeling and performance analysis of channel assembling in multichannel cognitive radio networks with spectrum adaptation," *IEEE Trans. Veh. Technol.*, vol. 61, no. 6, pp. 2686–2697, Jul. 2012.
- [61] S. Tang and B. Mark, "Modeling and analysis of opportunistic spectrum sharing with unreliable spectrum sensing," *IEEE Trans. Wireless Commun.*, vol. 8, no. 4, pp. 1934–1943, Apr. 2009.
- [62] D. Bertsekas and J. Tsitsiklis, Introduction to Probability, 2nd ed. Athena Scientific, 2008.
- [63] H. Solomon, Geometric Probability, 2nd ed. SIAM, 2008.
- [64] P. Pawelczak, S. Pollin, H.-S. So, A. Bahai, R. Prasad, and R. Hekmat, "Quality of service assessment of opportunistic spectrum access: a medium access control approach," *IEEE Wireless Commun. Mag.*, vol. 15, no. 5, pp. 20–29, October 2008.
- [65] J. Jia, Q. Zhang, and X. Shen, "HC-MAC: A hardware-constrained cognitive mac for efficient spectrum management," *IEEE J. Sel. Areas Commun.*, vol. 26, no. 1, pp. 106–117, Jan 2008.
- [66] W. Gabran, P. Pawelczak, and D. Cabric, "Throughput and collision analysis of multichannel multistage spectrum sensing algorithms," *IEEE Trans. Veh. Technol.*, vol. 60, no. 7, pp. 3309–3323, Sept 2011.
- [67] H. T. Cheng, H. Shan, and W. Zhuang, "Stopping rule-driven channel access in multi-channel cognitive radio networks," in *IEEE ICC*, June 2011, pp. 1–6.
- [68] D. Bertsekas, Dynamic Programming and Optimal Control, 4th ed. Athena Scientific, 2012, vol. I.
- [69] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-Interscience, 2005.
- [70] D. Bolch, Queueing Networks and Markov Chains: Modeling and Performance Evaluation With Computer Science Applications, 2nd ed. Wiley-Interscience, 2006.

- [71] C. de Lima, M. Bennis, and M. Latva-aho, "Coordination mechanisms for self-organizing femtocells in two-tier coexistence scenarios," *IEEE Trans. Wireless Commun.*, vol. 11, no. 6, pp. 2212–2223, June 2012.
- [72] H. ElSawy and E. Hossain, "Channel assignment and opportunistic spectrum access in two-tier cellular networks with cognitive small cells," in *IEEE Global Communications Conference (GLOBECOM)*, Dec 2013, pp. 4477–4482.
- [73] P. Maille and B. Tuffin, "Price war with partial spectrum sharing for competitive wireless service providers," in *IEEE Global Telecommunications Conference*, *GLOBECOM*, Nov 2009, pp. 1–6.
- [74] J. Mitola, "Cognitive radio: An integrated agent architecture for software defined radio," Ph.D. dissertation, Royal Institute of Technology (KTH), Kista, Sweden, 2000.
- [75] X. Mao, H. Ji, V. Leung, and M. Li, "Performance enhancement for unlicensed users in coordinated cognitive radio networks via channel reservation," in *IEEE Global Telecommunications Conference GLOBECOM*, Dec 2010, pp. 1–5.
- [76] P. K. Tang, Y. H. Chew, W.-L. Yeow, and L. C. Ong, "Performance comparison of three spectrum admission control policies in coordinated dynamic spectrum sharing systems," *IEEE Trans. Veh. Technol.*, vol. 58, no. 7, pp. 3674–3683, Sept 2009.
- [77] L. Gavrilovska, D. Denkovski, V. Rakovic, and M. Angjelicinoski, "Medium access control protocols in cognitive radio networks," in *Cognitive Ra*dio and Networking for Heterogeneous Wireless Networks, ser. Signals and Communication Technology. Springer International Publishing, 2015, pp. 109–149.
- [78] J. J. Alcaraz, M. López-Martínez, J. Vales-Alonso, and J. Garcia-Haro, "Bandwidth reservation as a coexistence strategy in opportunistic spectrum access environments," *IEEE J. Sel. Areas Commun.*, vol. 32, no. 3, pp. 478–488, March 2014.
- [79] Q. Zhao, B. Krishnamachari, and K. Liu, "On myopic sensing for multichannel opportunistic access: structure, optimality, and performance," *IEEE Trans. Wireless Commun.*, vol. 7, no. 12, pp. 5431–5440, December 2008.
- [80] U. Berthold, F. Fu, M. van der Schaar, and F. Jondral, "Detection of spectral resources in cognitive radios using reinforcement learning," in IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DyS-PAN), Oct 2008, pp. 1–5.

- [81] S. Filippi, O. Cappe, and A. Garivier, "Optimally sensing a single channel without prior information: The tiling algorithm and regret bounds," *IEEE Trans. Signal Process.*, vol. 5, no. 1, pp. 68–76, Feb 2011.
- [82] J. Lundén, V. Koivunen, S. Kulkarni, and H. Poor, "Reinforcement learning based distributed multiagent sensing policy for cognitive radio networks," in *IEEE Symposium on New Frontiers in Dynamic Spectrum Access Net*works (DySPAN), May 2011, pp. 642–646.
- [83] M. Masonta, M. Mzyece, and N. Ntlatlapa, "Spectrum decision in cognitive radio networks: A survey," *IEEE Commun. Surveys Tuts.*, vol. 15, no. 3, pp. 1088–1107, Jul. 2013.
- [84] Y.-C. Liang, K.-C. Chen, G. Li, and P. Mahonen, "Cognitive radio networking and communications: an overview," *IEEE Trans. Veh. Technol.*, vol. 60, no. 7, pp. 3386–3407, 2011.
- [85] B. Wang and K. Liu, "Advances in cognitive radio networks: A survey," *IEEE Sel. Topics Signal Process.*, vol. 5, no. 1, pp. 5–23, Feb. 2011.
- [86] J. Park, P. Paweczak, and D. Cabric, "Performance of joint spectrum sensing and MAC algorithms for multichannel opportunistic spectrum access ad hoc networks," *IEEE Trans. Mobile Comput.*, vol. 10, no. 7, pp. 1011–1027, July 2011.