Perceptrons

Vibhav Gogate
The University of Texas at Dallas

Several Slides courtesy of Carlos Guestrin, Luke Zettlemoyer, Vincent Ng, Pedro Domingos, and Dan Weld.

Linear Classifiers

- Inputs are feature values (x_1, x_2, \dots, x_n)
- Each feature has a weight (w_1, w_2, \dots, w_n)
- Sum is the activation $\sum_{i=0}^{n} w_i x_i$

Bias w_0 , Input $X_0=1$ for all examples

- If the activation is:
 - Positive, output class =+ve
 - Negative, output class =-ve

Example: Spam

- Imagine 3 features (spam is "positive" class):
 - free (number of occurrences of "free")
 - money (occurrences of "money")
 - BIAS (intercept, always has value 1)

$$\vec{w} \cdot \vec{x}$$

$$\sum_{i=0}^{n} w_i x_i$$

 \boldsymbol{x}

free : 1 money : 1

BIAS

• •

"free money"

w

BIAS : -3 free : 4 money : 2 (1)(-3)

(1)(4) +

(1)(2) +

. . .

= 3

$$\vec{w} \cdot \vec{x} > 0 \rightarrow SPAM!!!$$

Who needs probabilities?

- Previously: model data with distributions
- Joint: P(X,Y)
 - e.g. Naïve Bayes
- Conditional: P(Y|X)
 - e.g. Logistic Regression
- But wait, why probabilities?
- Lets try to be errordriven!

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Perceptron

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Decision Surface of a Perceptron

Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

- All not linearly separable
- Therefore, we'll want networks of these...

Perceptron Training Rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- *o* is perceptron output
- η is small constant (e.g., 0.1) called *learning rate*

Perceptron Training Rule

- Converges if the data is linearly separable
 - Provided the learning rate is sufficiently small
 - Proof on the class website (a bit involved)
- Convergence is not assured if data is not linearly separable
 - In fact in many cases, it will not converge
- Can we use some other algorithm to guarantee convergence?
 - YES!! Gradient Descent
 - Gradient Descent yields a new rule for learning called the Delta rule

Gradient Descent

To understand, consider simpler linear unit, where

$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn w_i 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Note that the delta rule ($E[\vec{w}]$ given above) uses a different o_d as compared with the perceptron rule

Gradient Descent

Gradient:

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

I.e.:

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})$$

$$\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

Gradient Descent

Gradient-Descent $(training_examples, \eta)$

Initialize each w_i to some small random value

Until the termination condition is met, Do

- Initialize each Δw_i to zero.
- For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - Input instance \vec{x} to unit and compute output o
 - For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$$

• For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H

Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:

Do until convergence

- 1. Compute the gradient $\nabla E_D[\vec{w}]$
- 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

Incremental Mode Gradient Descent:

Do until convergence

For each training example d in D

- 1. Compute the gradient $\nabla E_d[\vec{w}]$
- 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$E_d[\vec{w}] \equiv \frac{1}{2}(t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Multiclass Decision Rule

- If we have more than two classes:
 - Have a weight vector for each class: w_y
 - Calculate an activation for each class

$$\operatorname{activation}_w(x,y) = w_y \cdot f(x)$$

Highest activation wins

$$y = \underset{y}{\operatorname{arg\,max}} (\operatorname{activation}_w(x, y))$$

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1+e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)$$

$$= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

But we know:

$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$

$$\frac{\partial net_d}{\partial w_i} = \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Let:
$$\delta_k = -\frac{\partial E}{\partial net_k}$$

Comparison: Linear vs Sigmoid Unit

■ Training rule for linear unit: $o = \sum_{i=0}^{n} w_i x_i$

$$W_i = W_i + \Delta W_i$$

where

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta (t - o) x_i$$

■ Training rule for Sigmoid unit $o = Sig(\sum_{i=0}^{n} w_i x_i)$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta(t - o)o(1 - o)x_i$$

- Training rule for unit of your choice!!! (e.g., tanh)
 - Same idea (set up the error function)
 - Use Gradient Descent (compute derivatives)

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / validation accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Linear Separators

Which of these linear separators is optimal?

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- SVMs find the separator with max margin

SVM

$$\min_{w} \frac{1}{2}||w||^2$$

$$\forall i, y \ w_{y^*} \cdot f(x_i) \geq w_y \cdot f(x_i) + 1$$

Three Views of Classification

Training Data

Validation Data

> Test Data

- Naïve Bayes:
 - Parameters from data statistics
 - Parameters: probabilistic interpretation
 - Training: one pass through the data
- Logistic Regression:
 - Parameters from gradient ascent
 - Parameters: linear, probabilistic model, and discriminative
 - Training: one pass through the data per gradient step; regularization essential
- The Perceptron:
 - Parameters from reactions to mistakes
 - Parameters: discriminative interpretation
 - Training: go through the data until accuracy on validation set maxes out