in which:

5

10

15

20

25

 R^2 to R^5 , R and R' are as defined in formula I above; and R^1_b " is optionally substituted C_{1-6} alkyl, optionally substituted aryl, optionally substituted aryl acyl, C_{1-6} alkyl acyl or optionally substituted heterocyclyl.

Formula VIb represents compounds in which the 8-hydroxyl group on the quinoline is blocked to form a prodrug, in particular an ester prodrug. The 8-hydroxy represents a principal site of metabolism for the compound of Formula I: conjugation with glucuronic acid or sulphate gives a hydrophilic species ready to be excreted. Such conjugates probably do not pass the blood brain barrier. The ester prodrug may protect the compound of Formula I from conjugation. Esterases integral to the blood brain barrier may then release the C8-hydroxy on passage through that barrier activating the compound for its role in the CNS.

In a particularly preferred embodiment, the compound of formula I is a compound of formula Ib or IIb in which R^4_b and R^5_b or R^4_b ' and R^5_b ' are both halo, more preferably chloro substitutents. Preferably, at least one of R^2 , R, R^3 and R' is optionally substituted alkyl, optionally substituted aryl, optionally substituted heterocyclyl, $(CH_2)_nNR^9R^{10}$ in which R^9 and R^{10} are as defined above and n is 1 to 4, COR^6 in which R^6 is NR^7R^8 , OR^7 or SR^7 in which R^7 and R^8 are as defined above or $NR^{11}R^{12}$, OR^{11} , SR^{11} in which R^{11} and R^{12} are as defined above.

While not wishing to be bound by theory, it is believed that substituents R, R³ and R' have a limited effect, electronically or sterically, in the chelating properties of the compounds of the present invention. Substitution at those positions can therefore be used to modulate other parameters such as cytotoxicity and physicochemical properties including the number of hydrogen bond donors and acceptors, lipophilicity (ClogP, ElogP and LogD), solubility and polar surface area. Modulation of these parameters contribute to the optimisation of the pharmacokinetic profile of the compounds. It is also postulated that substituent R² in addition to modulating cytotoxicity and physicochemical properties could also affect activity if the substituent provides chelating properties. Examples of particularly preferred compounds having R² substituents with chelating properties are shown below.

10

15

20

25

30

35

- (m) when R¹, R, R⁴ and R⁵ are H, R² is CO₂Me and R³ is OH, then R' is not 4-methoxyphenyl, 3-methylphenyl, pyridin-3-yl, benzyl, bromo, 4-chlorophenyl, 3,4-dichlorophenyl, 3-hydroxypropyl or 3-tert-butoxycarbonylaminopropyl;
- (n) when R¹, R, R⁴ and R' are H, R² is CO₂Me and R³ is OH, then R⁵ is not phenyl or 3-tert-butoxycarbonylaminoprop-1-yl;
- (o) when R¹, R, R⁴, R' and R⁵ are H and R² is CO₂Me, then R³ is not toluene-4-sulphonylamino, piperazin-1-yl, morpholin-1-yl, piperidin-1-yl, 4-methylpiperazin-1-yl, 3-benzoylaminoprop-1-yl, phenethyl, 3-tert-butoxycarbonylaminopropyl, 3-hydroxypropyl, amino or hex-1-yl;
 - (p) when R¹, R⁴, R' and R⁵ are H, R² is CO₂Na and R³ is OH, then R is not phenyl;
- (q) when R¹, R, R⁴, R' and R⁵ are H and R² is CO₂H, then R³ is not phenyl, 4-chlorophenyl, phenethyl, 3-hydroxypropyl, amino, morpholin-1-yl, piperidin-1-yl, 4-methylpiperazin-1-yl, toluene-4-sulphonylamino, 3-benzoylaminoprop-1-yl, aminoprop-1-ynyl, hex-1-yl, 5-hydroxypent-1-yl, piperazin-1-yl or 2-(1-piperazinyl)pyrimidinyl;
- (r) when R¹, R' and R are H, R² is CO₂Me and R³ is OH, then R⁴ and R⁵ are not chloro;
 - (s) when R¹, R⁴, R' and R⁵ are H, R² is CO₂Me and R³ is OH, then R is not bromo;
- (t) when R¹, R' and R⁴ are H, R² is CO₂Me and R³ is OH, then R and R⁵ are not bromo;
- (u) when R¹, R, R³, R' and R⁵ are H and R² is CO₂H, then R⁴ is not phenyl, 4-chlorophenyl or phenylethyl;
 - (v) when R¹, R⁵, R', R⁴, R³ and R are H, then R² is not 2H-tetrazol-1-yl;
- (w) when R^1 , R^5 , R^4 and R are H, R^2 is CO_2H and R^3 is OH, then R' is not 3,5-dichlorophenyl or 4-fluorophenyl; and
 - (x) at least one of R¹ to R⁵, R and R' is other than H;
 - (y) when R¹ to R³, R⁵, R' and R are H, then R⁴ is not chloro, NH₂ or SO₃H; and
 - (z) when R¹, R³ to R⁵, R and R' are H, then R² is not CH₃.

The compound of formula II defined above may be prepared using the processes described in detail hereinafter.

DETAILED DESCRIPTION OF THE INVENTION

For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the word "comprises" has a corresponding meaning.

The term "alkyl" used either alone or in compound words such as "optionally substituted alkyl" "haloalkyl" or "alkyl acyl" refers to straight chain, branched chain or cyclic hydrocarbon groups having from 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for the treatment, amelioration and/or prophylaxis of a neurological condition which comprises the administration of an effective amount of a compound of formula I:

$$R^4$$
 R^3
 R^5
 R^5
 R^4
 R^3
 R^2

in which

5

10

15

20

25

R¹ is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted acyl, optionally substituted aryl, optionally substituted heterocyclyl, an antioxidant or a targeting moiety;

1

R² is H; optionally substituted alkyl; optionally substituted alkenyl; optionally substituted aryl; optionally substituted heterocyclyl; optionally substituted alkoxy; an antioxidant; a targeting moiety; COR6 or CSR6 in which R6 is H, optionally substituted alkyl, optionally substituted alkenyl, hydroxy, optionally substituted aryl, optionally substituted heterocyclyl, an antioxidant, a targeting moiety, OR7, SR7 or NR7R8 in which R7 and R8 are either the same or different and selected from H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl or optionally substituted heterocyclyl; CN; (CH₂)_nNR⁹R¹⁰, HCNOR⁹ or HCNNR⁹R¹⁰ in which R⁹ and R¹⁰ are either the same or different and selected from H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl or optionally substituted heterocyclyl and n is 1 to 4; OR¹¹, SR¹¹ or NR¹¹R¹² in which R¹¹ and R¹² are either the same or different and selected from H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl or optionally substituted heterocyclyl or together form optionally substituted heterocyclyl; or SO₂NR¹³R¹⁴ in which R¹³ and R¹⁴ are either the same or different and selected from H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl or optionally substituted heterocyclyl; and

R³, R⁴, R⁵, R and R are either the same or different and selected from H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkoxy, optionally substituted acyl, hydroxy, optionally substituted amino, optionally substituted thio,

5,

20

25

30

35

optionally substituted sulphonyl, optionally substituted sulphinyl, optionally substituted sulphonylamino, halo, SO₃H, amine, CN, CF₃, optionally substituted aryl, optionally substituted heterocyclyl, an antioxidant or a targeting moiety,

salts, hydrates, solvates, derivatives, pro-drugs, tautomers and/or isomers thereof with the provisos that:

- (a) when R¹ to R³, R and R are H, then R⁴ is not Cl or I and R⁵ is not I:
- (b) when R¹ to R³, R, R' and R⁵ are H, then R⁴ is not CHO, CHOHCCl₃,

$$\begin{array}{c} \text{CH}_2\text{C} \\ \text{NO}_2 \\ \text{CH}_3 \end{array}, \text{CH}_2\text{NC}(\text{C}_2\text{H}_5)_2, \text{CH}_2\text{N} \\ \text{CH}_3 \end{array}, \text{CH}_2\text{N} \\ \text{CH}_2\text{N} \\ \text{NCH}_2\text{CH}_2\text{OH} , \text{CH}_2\text{N} \\ \text{NCO}_2\text{C}_2\text{H}_5 , \text{CH}_2\text{N} \\ \text{NCO}_2\text{C}_2\text{H}_5 , \text{CH}_2\text{N} \\ \text{N} \end{array}, \text{CH}_2\text{N} \\ \text{NBOC} , \\ \\ \text{15} \\ \end{array}$$

- (c) when R^1 , R^5 , R' and R are H, R^2 is CO_2H and R^3 is OH, then R^4 is not bromo, methyl, phenyl, hydroxymethyl or trifluoromethyl;
- (d) when R¹, R⁴, R⁵ and R are H, R² is CO₂H and R³ is OH, then R' is not bromo, iodo, methyl, phenyl, propyl, phenethyl, heptyl, benzylaminomethyl, 3-aminopropyl, 3-hydroxypropyl, 4-methoxyphenyl, 3-methylphenyl, 4-chlorophenyl, 3,4-dichlorophenyl, pyridin-3-yl, furo-2-yl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-chlorophenyl, 3-chlorophenyl, 2-chlorophenyl, 3-chlorophenyl, 2-methoxyphenyl or piperidin-2-yl;
- (e) when R¹, R⁴, R and R' are H, R² is CO₂H and R³ is OH, then R⁵ is not phenyl, 3-hydroxypropyl, phenethyl, 3-aminoprop-1-yl or hex-1-yl;
 - (f) when R¹, R⁴, R' and R⁵ are H, R² is CO₂H and R³ is OH, then R is not N-

SUBSTITUTE SHEET (RULE 26)

10

15

25

35

morpholinomethyl, bromo or phenyl;

- (g) when R¹, R and R' are H, R² is CO₂H and R³ is OH, then R⁴ and R⁵ are not chloro;
- (h) when R^1 , R^4 and R' are H, R^2 is CO_2H and R^3 is OH, then R and R^5 are not bromo;
- (i) when R¹, R, R' and R⁵ are H, R² is CO₂Me and R³ is OH, then R⁴ is not hydroxymethyl, phenyl or bromo;
- (j) when R¹, R, R⁴ and R⁵ are H, R² is CO₂Me and R³ is OH, then R' is not 4-methoxyphenyl, 3-methylphenyl, pyridin-3-yl, benzyl, bromo, 4-chlorophenyl, 3,4-dichlorophenyl, 3-hydroxypropyl or 3-tert-butoxycarbonylaminopropyl;
- (k) when R¹, R, R⁴ and R' are H, R² is CO₂Me and R³ is OH, then R⁵ is not phenyl or 3-tert-butoxycarbonylaminoprop-1-yl;
- (l) when R¹, R, R⁴, R' and R⁵ are H and R² is CO₂Me, then R³ is not toluene-4-sulphonylamino, piperazin-1-yl, morpholin-1-yl, piperidin-1-yl, 4-methylpiperazin-1-yl, 3-benzoylaminoprop-1-yl, phenethyl, 3-tert-butoxycarbonylaminopropyl, 3-hydroxypropyl, amino or hex-1-yl;
- (m) when R¹, R⁴, R' and R⁵ are H, R² is CO₂Na and R³ is OH, then R is not phenyl;
- (n) when R¹, R, R⁴, R' and R⁵ are H and R² is CO₂H, then R³ is not phenyl, 4-chlorophenyl, phenethyl, 3-hydroxypropyl, amino, morpholin-1-yl, piperidin-1-yl, 4-methylpiperazin-1-yl, toluene-4-sulphonylamino, 3-benzoylaminoprop-1-yl, aminoprop-1-ynyl, hex-1-yl, 5-hydroxypent-1-yl, piperazin-1-yl or 2-(1-piperazinyl)pyrimidinyl;
 - (o) when R¹, R' and R are H, R² is CO₂Me and R³ is OH, then R⁴ and R⁵ are not chloro;
 - (p) when R^1 , R^4 , R^1 and R^5 are H, R^2 is CO_2Me and R^3 is OH, then R is not bromo;
 - (q) when R^1 , R' and R^4 are H, R^2 is CO_2Me and R^3 is OH, then R and R^5 are not bromo;
- (r) when R¹, R, R³, R' and R⁵ are H and R² is CO₂H, then R⁴ is not phenyl, 4-30 chlorophenyl or phenylethyl;
 - (s) when R^1 , R^5 , R', R^4 , R^3 and R are H, then R^2 is not 2H-tetrazol-1-yl;
 - (t) when R^1 , R^5 , R^4 and R are H, R^2 is CO_2H and R^3 is OH, then R' is not 3,5-dichlorophenyl or 4-fluorophenyl; and
 - (u) at least one of R¹ to R⁵, R and R' is other than H, to a subject in need thereof.

2. A method according to claim 1, in which the compound of the formula I is either:

(i) Formula Ia

$$\mathbb{R}^3$$
 \mathbb{R}
 \mathbb{R}^2

Ia

5 in which:

10

15

20

R, R¹ and R³ are as defined in claim 1; and

 R^2_a is H; optionally substituted $C_{1\text{-}6}$ alkyl; optionally substituted $C_{1\text{-}6}$ alkenyl; optionally substituted aryl; optionally substituted heterocyclyl; an antioxidant; a targeting moiety; COR^6_a or CSR^6_a in which R^6_a is H, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted $C_{2\text{-}6}$ alkenyl, hydroxy, optionally substituted aryl, optionally substituted heterocyclyl or OR^7_a , SR^7_a or $NR^7_aR^8_a$ in which R^7_a and R^8_a are either the same or different and selected from H, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted aryl or optionally substituted heterocyclyl; CN; $CH_2NR^9_aR^{10}_a$, $HCNOR^9_a$ or $HCNNR^9_aR^{10}$ in which R^9_a and R^{10}_a are either the same or different and selected from H, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted $C_{2\text{-}6}$ alkenyl, optionally substituted aryl or optionally substituted heterocyclyl; CR^{11}_a , CR^{11}_a or CR^{11}_a in which CR^{11}_a and CR^{12}_a are either the same or different and selected from H, optionally substituted $C_{1\text{-}6}$ alkyl, optionally substituted $C_{2\text{-}6}$ alkenyl, optionally substituted aryl or optionally substituted heterocyclyl or together form optionally substituted heterocyclyl; or CR^{11}_a in which CR^{11}_a in which CR^{11}_a are either the same or different and selected from H or optionally substituted CR^{11}_a and CR^{12}_a are either the same or different and selected from H or optionally substituted CR^{11}_a in which CR^{11}_a and CR^{12}_a are either the same or different and selected from H or optionally substituted CR^{11}_a in which CR^{11}_a and CR^{11}_a are either the same or different and selected from H or optionally substituted CR^{11}_a in which CR^{11}_a are either the same or different and selected from H or optionally substituted CR^{11}_a and CR^{11}_a are either the same or different and selected from H or optionally substituted CR^{11}_a in which CR^{11}_a and C

(ii) Formula Ib

$$R^4_b$$
 R^3 R
 R^5_b R^2

Tb

in which:

5

10

R¹, R', R, R² and R³ are as defined in claim 1;

R⁴_b and R⁵_b are either the same or different and selected from H; optionally substituted C₁₋₆ alkyl; optionally substituted C₂₋₆ alkenyl; halo; CN; CF₃; optionally substituted aryl; optionally substituted heterocyclyl; an antioxidant; a targeting moiety; SO₃H; SO₂NR¹³_aR¹⁴_a in which R¹³_a and R¹⁴_a are as defined in formula Ia above; or OR¹⁵_b, SR¹⁵_b, SO₂R¹⁵_b, CONR¹⁵_bR¹⁶_b or NR¹⁵_bR¹⁶_b in which R¹⁵_b and R¹⁶_b are either the same or different and selected from H, optionally substituted C₁₋₆ alkyl, optionally substituted C₂₋₆ alkenyl, optionally substituted C₁₋₆ acyl, optionally substituted aryl or optionally substituted heterocyclyl, including provisos (a) to (c), (e), (g), (h), (I), (k), (o), (q), (r), and (u) as defined in claim 1.

15 3. A method according to claim 2, in which the compound of formula Ia is as follows:

Formula IIa

$$R^{2'}$$

Пa

in which:

20

 R^1 is as defined in claim 1 or claim 2; and R^2 is optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl,

optionally substituted aryl or optionally substituted heterocyclyl;

o Formula IIIa

$$R^3$$
 $C(O,S)R^{6'}$

Ша

5 in which:

 R^1 and R^3 are as defined in claim 1 or claim 2; and $R^{6'}_a$ is optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, hydroxy, OR^{7}_a , SR^{7}_a , $N_2R^{7'}_aR^{8'}_a$, or $NR^{7'}_aR^{8'}_a$ in which $R^{7'}_a$ and $R^{8'}_a$ are either the same or different and selected from H, optionally substituted C_{1-6} alkyl, optionally substituted aryl or

optionally substituted heterocyclyl;

o Formula IVa

IVa

in which:

15

R¹ is as defined in claim 1 or claim 2; and

 $R^{2"}_{a}$ is CN; $CH_2NR^{9'}_{a}R^{10'}_{a}$, $HCNOR^{9'}_{a}$ or $HCNNR^{9'}_{a}R^{10'}_{a}$ in which $R^{9'}_{a}$ and $R^{10'}_{a}$ are either the same or different and selected from H, optionally substituted C_{1-6} alkyl, optionally substituted alkenyl, optionally substituted heterocyclyl;

Formula Va

in which:

5

10

R¹ is as defined in claim 1 or claim 2; and

 R^{11}_{a} and R^{12}_{a} are either the same or different and selected from H, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted aryl and optionally substituted heterocyclyl or together form optionally substituted heterocyclyl; or

Va

o Formula VIa

VIa

in which:

R¹ is as defined in claim 1 or claim 2; and

 R_{a}^{13} and R_{a}^{14} are either the same or different and selected from H, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted aryl or optionally substituted heterocyclyl.

- 123 -

4. A method according to claim 2, in which the compound of the formula Ib is as follows:

• Formula IIb

$$R^{1}$$
 $R^{5'}$
 $R^{5'}$
 $R^{5'}$
 R^{2}

ΙΙb

5

in which:

R¹, R', R, R² and R³ are as defined in claim 1 or claim 2; and R⁴_b and R⁵_a are as defined in formula Ib above provided that at least one is halo, including provisos (a), (c), (g), (h), (i), (o), (q) and (u) defined in claim 1;

10

15

• Formula IIIb

IIIb

in which:

R¹ is as defined in claim 1 or claim 2;

R⁴_b" is H or halo; and

R⁵_b" is optionally substituted aryl or optionally substituted heterocyclyl;

Formula IVb

IVb

in which:

5

 R^1 is as defined in claim 1 or claim 2; $R^{"}$ is C_{1-6} alkoxy, halo, C_{1-6} alkyl, C_{2-6} alkenyl or C_{1-6} haloalkyl; and R^5_b is H or halo;

Formula Vb

$$R^{\frac{\eta}{\|}}$$
 $R^{\frac{\eta}{\|}}$
 OR^1

Vb

in which

R¹ is as defined in claim 1 or claim 2; and R" is as defined in formula IVb above; or

Formula VIb

$$R^{5}$$
 R^{4}
 R^{3}
 R
 R^{2}
 R^{5}

VIb

in which:

5

R² to R⁵, R and R' are as defined in claim 1 or claim 2; and

 R_b^{1} is optionally substituted C_{1-6} alkyl, optionally substituted aryl, optionally substituted aryl acyl, C_{1-6} alkyl acyl or optionally substituted heterocyclyl.

- 5. A method according to any one of claims 1, 2 or 4, in which the compound of formula I is a compound of formula Ib or IIb in which R^4_b and R^5_b or R^4_b ' and R^5_b ' are both halo.
- 6. A method according to claim 5, in which the halo is chloro.
- A method according to any one of claims 1, 2 or 4 to 6, in which at least one of R², R, R³ and R' is optionally substituted alkyl, optionally substituted aryl, optionally substituted heterocyclyl, CH₂NR⁹R¹⁰ in which R⁹ and R¹⁰ are as defined in claim 1, COR⁶ in which R⁶ is NR⁷R⁸ in which R⁷ and R⁸ are as defined in claim 1 or NR¹¹R¹² in which R¹¹ and R¹² are as defined in claim 1.
- 8. A method according to any one of claims 1, 2 or 4 to 7, in which the compound of formula I is as follows:

- 126 -

PBT 1038

PBT 1050

PBT 1052

PBT 1033

PBT 1056

- 9. A method according to any one of claims 1 to 8, in which the neurological condition is a neurodegenerative disorder.
- 10. A method according to claim 9, in which the neurodegenerative disorder is neurodegenerative amyloidosis.

15

20

25

- 11. A method according to claim 9 or claim 10, in which the neurodegenerative disorder is sporadic or familial Alzheimer's disease, amyotrophic lateral sclerosis, cataract, Parkinson's disease, Creutzfeldt-Jacob disease and its new variant associated with "mad cow" disease, Huntington's disease, dementia with Lewy body formation, multiple system atrophy,
- Hallerboden-Spatz disease, diffuse Lewy body disease, fatal familial insomnia, Gertsmann Straussler Sheinker disease or hereditary cerebral haemorrhage with amyloidosis-Dutch type.
 - 12. A method according to claim 11, in which the neurodgenerative disorder is Parkinson's disease.
 - 13. A method according to any one of claims 9 to 11, in which the neurodegenerative disorder is an Aβ-related condition.
 - 14. A method according to claim 13, in which the Aβ-related condition is Alzheimer's disease or dementia associated with Down syndrome or one of several forms of autosomal dominant forms of familial Alzheimer's disease.
 - 15. A method according to any one of the preceding claims which slows, reduces or arrests the cognitive decline of the subject.
 - 16. A method according to any one of the preceding claims, which further comprises separate, sequential or simultaneous administration of another medicament.
 - 17. A method according to claim 16, in which the other medicament is an inhibitor of the acetylcholinesterase active site, an antioxidant, an anti-inflammatory agent or an oestrogenic agent.
 - 18. A method according to any one of the preceding claims, in which the compound of formula I is administered orally, topically or parenterally.
 - 19. Use of the compound of formula I as defined in any one of claims 1 to 8, in the manufacture of a medicament for the treatment, amelioration and/or prophylaxis of a neurological condition.
 - 20. Use of a compound of formula I as defined in any one of claims 1 to 8 for the treatment, amelioration and/or prophylaxis of a neurological condition.
 - 21. A compound of formula I as defined in claims 1 to 8 for use in the treatment, amelioration and/or prophylaxis of a neurological condition.
- 30 22. Use of the compound of formula I as defined in any one of claims 1 to 8, as a pharmaceutical.
 - 23. Use according to 22, in which the pharmaceutical is a neurotherapeutic or neuroprotective agent.
 - 24. Use according to claim 22 or claim 23, in which the pharmaceutical is an antiamyloidogenic agent.
 - 25. A pharmaceutical or veterinary composition comprising the compound of formula I as defined above in any one of claims 1 to 8 and a pharmaceutically or veterinarily

acceptable carrier.

5

10

15

20

25

30

- 26. A composition according to claim 25 which further comprises another medicament.
- 27. A composition according to claim 26, in which the other medicament is an inhibitor of the acetylcholinesterase active site, an antioxidant, an anti-inflammatory agent or an oestrogenic agent.
 - 28. A compound of formula II which is a compound of formula I as defined in any one of claims 1 to 8, with the provisos that:
 - (a) when R¹ and R³ to R⁵, R and R' are H, then R² is not H, methyl,

CO₂H, CN, CONCH₂CO₂H, COCH₃, CH₂NH₂, CNOH, (pyrid-2-yl), 2-hydroxyphenyl, CHNNH₂, NH-(pyrid-2-yl),

$$\bigcap_{C_4H_{10}}^{OH} \bigcap_{C_4H_{30}}^{OH} \bigcap_{C_4H_{30$$

- (b) when R¹ and R⁴ to R⁷ are H, then R³ is not OH and R² is not CO₂H;
- (c) when R¹ to R³, R⁶ and R⁷ are H, then (i) when R⁵ is I, R⁴ is not Cl, SO₃H or I; (ii) when R⁵ is H, R⁴ is not SO₃H, NH₂ or Cl; (iii) R⁴ and R⁵ are both not Cl, Br or CH₃; and (iv) when R² to R⁷ are H, then R¹ is not

- (d) when R1 to R³, R and R' are H, then R⁴ is not Cl or I and R⁵ is not I;
- (e) when R1 to R³, R, R' and R⁵ are H, then R⁴ is not CHO, CHOHCCl₃,

20

25

- (f) when R¹, R⁵, R' and R are H, R² is CO₂H and R³ is OH, then R⁴ is not bromo, methyl, phenyl, hydroxymethyl or trifluoromethyl;
 - (g) when R¹, R⁴, R⁵ and R are H, R² is CO₂H and R³ is OH, then R' is not bromo, iodo, methyl, phenyl, propyl, phenethyl, heptyl, benzylaminomethyl, 3-aminopropyl, 3-hydroxypropyl, 4-methoxyphenyl, 3-methylphenyl, 4-chlorophenyl, 3,4-dichlorophenyl, pyridin-3-yl, furo-2-yl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-chlorophenyl, 3-chlorophenyl, 2-methoxyphenyl or piperidin-2-yl;
 - (h) when R¹, R⁴, R and R' are H, R² is CO₂H and R³ is OH, then R⁵ is not phenyl, 3-hydroxypropyl, phenethyl, 3-aminoprop-1-yl or hex-1-yl;
 - (i) when R¹, R⁴, R' and R⁵ are H, R² is CO₂H and R³ is OH, then R is not N-morpholinomethyl, bromo or phenyl;
 - (j) when R¹, R and R' are H, R² is CO₂H and R³ is OH, then R⁴ and R⁵ are not chloro;
 - (k) when R¹, R⁴ and R' are H, R² is CO₂H and R³ is OH, then R and R⁵ are not bromo;
- (1) when R¹, R, R' and R⁵ are H, R² is CO₂Me and R³ is OH, then R⁴ is not hydroxymethyl, phenyl or bromo;
 - (m) when R¹, R, R⁴ and R⁵ are H, R² is CO₂Me and R³ is OH, then R' is not 4-methoxyphenyl, 3-methylphenyl, pyridin-3-yl, benzyl, bromo, 4-chlorophenyl, 3,4-dichlorophenyl, 3-hydroxypropyl or 3-tert-butoxycarbonylaminopropyl;
 - (n) when R¹, R, R⁴ and R' are H, R² is CO₂Me and R³ is OH, then R⁵ is not phenyl or 3-tert-butoxycarbonylaminoprop-1-yl;
 - (o) when R¹, R, R⁴, R' and R⁵ are H and R² is CO₂Me, then R³ is not toluene-4-sulphonylamino, piperazin-1-yl, morpholin-1-yl, piperidin-1-yl, 4-methylpiperazin-1-yl, 3-

10

15

20

benzoylaminoprop-1-yl, phenethyl, 3-tert-butoxycarbonylaminopropyl, 3-hydroxypropyl, amino or hex-1-yl;

- (p) when R¹, R⁴, R' and R⁵ are H, R² is CO₂Na and R³ is OH, then R is not phenyl;
- (q) when R¹, R, R⁴, R' and R⁵ are H and R² is CO₂H, then R³ is not phenyl, 4-chlorophenyl, phenethyl, 3-hydroxypropyl, amino, morpholin-1-yl, piperidin-1-yl, 4-methylpiperazin-1-yl, toluene-4-sulphonylamino, 3-benzoylaminoprop-1-yl, aminoprop-1-ynyl, hex-1-yl, 5-hydroxypent-1-yl, piperazin-1-yl or 2-(1-piperazinyl)pyrimidinyl;
- (r) when R¹, R' and R are H, R² is CO₂Me and R³ is OH, then R⁴ and R⁵ are not chloro;
 - (s) when R¹, R⁴, R' and R⁵ are H, R² is CO₂Me and R³ is OH, then R is not bromo;
- (t) when R¹, R' and R⁴ are H, R² is CO₂Me and R³ is OH, then R and R⁵ are not bromo;
- (u) when R^1 , R, R^3 , R^1 and R^5 are H and R^2 is CO_2H , then R^4 is not phenyl, 4-chlorophenyl or phenylethyl;
 - (v) when R¹, R⁵, R', R⁴, R³ and R are H, then R² is not 2H-tetrazol-1-yl;
- (w) when R^1 , R^5 , R^4 and R are H, R^2 is CO_2H and R^3 is OH, then R' is not 3,5-dichlorophenyl or 4-fluorophenyl; and
 - (x) at least one of R^1 to R^5 , R and R' is other than H;
 - (y) when R¹ to R³, R⁵, R' and R are H, then R⁴ is not chloro, NH₂ or SO₃H; and
 - (z) when R¹, R³ to R⁵, R and R' are H, then R² is not CH₃.
- 29. A process for the preparation of the compound of formula II defined in claim 28 as described herein.