Analysis Review Notes

D. Zack Garza

January 21, 2020

Contents

1	Inequalities and Equalities	1
2	Basics	3
3	Uniform Convergence	4
4	Measure Theory	5
5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9
6	Fourier Series and Convolution	12

1 Inequalities and Equalities

AM-GM Inequality:

$$\sqrt{ab} \le \frac{a+b}{2}.$$

Reverse Triangle Inequality

$$|||x|| - ||y||| \le ||x - y||.$$

Chebyshev's Inequality

$$\mu(\lbrace x: |f(x)| > \alpha \rbrace) \le \left(\frac{\|f\|_p}{\alpha}\right)^p.$$

Holder's Inequality:

$$\frac{1}{p} + \frac{1}{q} = 1 \implies ||fg||_1 \le ||f||_p ||g||_q.$$

Application: For finite measure spaces,

$$1 \le p < q \le \infty \implies L^q \subset L^p \pmod{\ell^p \subset \ell^q}$$

Proof: Fix
$$p, q$$
, let $r = \frac{q}{p}$ and $s = \frac{r}{r-1}$ so $r^{-1} + s^{-1} = 1$. Then let $h = |f|^p$:

$$\|f\|_p^p = \|h \cdot 1\|_1 \leq \|1\|_s \|h\|_r = \mu(X)^{\frac{1}{s}} \|f\|_q^{\frac{q}{r}} \implies \|f\|_p \leq \mu(X)^{\frac{1}{p} - \frac{1}{q}} \|f\|_q.$$

Note: doesn't work for ℓ spaces, but just note that $\sum |x_n| < \infty \implies x_n < 1$ for large enough n, and thus $p < q \implies |x_n|^q \le |x_n|^q$.

Cauchy-Schwarz:

$$|\langle f, g \rangle| = ||fg||_1 \le ||f||_2 ||g||_2,$$

with equality $\iff f = \lambda g$.

Relates inner product to norm, and only happens to relate norms in L^1 .

Minkowski's Inequality:

$$1 \le p < \infty \implies ||f + g||_p \le ||f||_p + ||g||_p$$

Note: does not handle $p = \infty$ case. Use to prove L^p is a normed space.

Young's Inequality:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1 \implies ||f * g||_r \le ||f||_p ||g||_q.$$

Useful specific cases:

$$\begin{split} & \|f*g\|_1 \leq \|f\|_1 \|g\|_1 \\ & \|f*g\|_p \leq \|f\|_1 \|g\|_p, \\ & \|f*g\|_\infty \leq \|f\|_2 \|g\|_2 \\ & \|f*g\|_\infty \leq \|f\|_p \|g\|_q. \end{split}$$

Bessel's Inequality:

For $x \in H$ a Hilbert space and $\{e_k\}$ an orthonormal sequence,

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

Note: this does not need to be a basis.

Parseval's identity:

Equality in Bessel's inequality, attained when $\{e_k\}$ is a *basis*, i.e. it is complete, i.e. the span of its closure is all of H.

2 Basics

Useful Technique: $\lim f_n = \lim \sup f_n = \lim \inf f_n$ iff the limit exists, so $\lim \sup f_n \leq g \leq \lim \inf f_n$ implies that $g = \lim f$. Similarly, a limit does not exist iff $\lim \inf f_n > \lim \sup f_n$.

Lemma: $\sum a_n < \infty \implies a_n \to 0$ and $\sum_{k=N}^{\infty} \stackrel{N \to \infty}{\to} 0$, i.e. the terms/tails of convergent sums go to zero.

Lemma (Heine-Borel): A subset of \mathbb{R}^n is compact iff it is closed and bounded.

Lemma (Geometric Series):

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \iff |x| < 1.$$

Corollary:
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1.$$

Definition: A set S is **nowhere dense** iff the closure of S has empty interior iff every interval contains a subinterval that does not intersect S.

Definition: A set is **meager** if it is a *countable* union of nowhere dense sets.

Note that a *finite* union of nowhere dense is still nowhere dense.

Lemma: The Cantor set is closed with empty interior.

Proof: Its complement is a union of open intervals, and can't contain an interval since intervals have positive measure and $m(C_n)$ tends to zero.

Corollary: The Cantor set is nowhere dense.

Definition: An F_{σ} set is a union of closed sets, and a G_{δ} set is an intersection of opens.

Mnemonic: "F" stands for *ferme*, which is "closed" in French, and σ corresponds to a "sum", i.e. a union.

Lemma: Singleton sets in \mathbb{R} are closed, and thus \mathbb{Q} is an F_{σ} set.

Theorem (Baire): \mathbb{R} is a Baire space, i.e. countable intersections of open, dense sets are still dense. Thus \mathbb{R} can not be written as a countable union of nowhere dense sets.

Lemma: There is a function discontinuous precisely on \mathbb{Q} .

Proof: $f(x) = \frac{1}{n}$ if $x = r_n \in \mathbb{Q}$ is an enumeration of the rationals, and zero otherwise. The limit at every point is 0.

Lemma: There do not exist functions that are discontinuous precisely on $\mathbb{R} \setminus \mathbb{Q}$.

Proof: D_f is always an F_σ set, which follows by considering the oscillation ω_f . $\omega_f(x) = 0 \iff f$ is continuous at x, and $D_f = \bigcup_n A_{\frac{1}{n}}$ where $A_\varepsilon = \{\omega_f \ge \varepsilon\}$ is closed.

Lemma: Any nonempty set which is bounded from above (resp. below) has a well-defined supremum (resp. infimum).

3

3 Uniform Convergence

Theorem (Egorov):

Let $E \subseteq \mathbb{R}^n$ be measurable with m(E) > 0 and $\{f_k : E \to \mathbb{R}\}$ be measurable functions such that $f(x) := \lim_{k \to \infty} f_k(x) < \infty$ exists almost everywhere.

Then $f_k \to f$ almost uniformly, i.e.

$$\forall \varepsilon > 0, \ \exists F \subseteq E \text{ closed such that } m(E \setminus F) < \varepsilon \text{ and } f_k \xrightarrow{u} f \text{ on } F.$$

Theorem (Important Example): The space X = C([0,1]), continuous functions $f : [0,1] \to \mathbb{R}$, equipped with the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$, is a **complete** metric space.

Proof:

Step 0: Let $\{f_k\}$ be Cauchy in X.

Step 1: Define a candidate limit using pointwise convergence:

Fix an x; since

$$|f_k(x) - f_j(x)| \le ||f_k - f_k|| \to 0,$$

the sequence $\{f_k(x)\}\$ is Cauchy in \mathbb{R} . So define $f(x) := \lim_{k \to \infty} f_k(x)$.

Step 2: Show that $||f_k - f|| \to 0$:

$$|f_k(x) - f_j(x)| < \varepsilon \ \forall x \implies \lim_{i} |f_k(x) - f_j(x)| < \varepsilon \ \forall x$$

Alternatively, $||f_k - f|| \le ||f_k - f_N|| + ||f_N - f_j||$, where N, j can be chosen large enough to bound each term by $\varepsilon/2$.

Step 3: Show that $f \in X$:

The uniform limit of continuous functions is continuous. (Note: in other cases, you may need to show the limit is bounded, or has bounded derivative, or whatever other conditions define X.)

Lemma: Metric spaces are compact iff they are sequentially compact, (i.e. every sequence has a convergent subsequence).

Corollary: The unit ball in C([0,1]) with the sup norm is not compact.

Proof: Take $f_k(x) = x^n$, which converges to a dirac delta at 1. The limit is not continuous, so no subsequence can converge.

Lemma: A uniform limit of continuous functions is continuous.

Lemma (Testing Uniform Convergence): $f_n \to f$ uniformly iff there exists an M_n such that $||f_n - f||_{\infty} \le M_n \to 0$.

Negating: find an x which depends on n for which the norm is bounded below.

Useful Technique: If f_n has a global maximum (computed using f'_n and the first derivative test) $M_n \to 0$, then $f_n \to 0$ uniformly.

Lemma (Baby Commuting Limits with Integrals): If $f_n \to f$ uniformly, then $\int f_n = \int f$.

Lemma (Uniform Convergence and Derivatives) If $f'_n \to g$ uniformly for some g and $f_n \to f$ pointwise (or at least at one point), then g = f'.

Lemma (Uniform Convergence of Series): If $f_n(x) \leq M_n$ for a fixed x where $\sum M_n < \infty$, then the series $f(x) = \sum f_n(x)$ converges pointwise.

Lemma: If $\sum f_n$ converges then $f_n \to 0$ uniformly.

Useful Technique: For a fixed x, if $f = \sum_{n} f_n$ converges uniformly on some $B_r(x)$ and each f_n is continuous at x, then f is also continuous at x.

Lemma (M-test for Series): If $|f_n(x)| \leq M_n$ which does not depend on x, then $\sum f_n$ converges uniformly.

Lemma (p-tests): Let n be a fixed dimension and set $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$.

$$\sum \frac{1}{n^p} < \infty \iff p > 1$$

$$\int_{\varepsilon}^{\infty} \frac{1}{x^p} < \infty \iff p > 1$$

$$\int_{0}^{1} \frac{1}{x^p} < \infty \iff p < 1$$

$$\int_{B} \frac{1}{|x|^p} < \infty \iff p < n$$

$$\int_{B^c} \frac{1}{|x|^p} < \infty \iff p > n$$

4 Measure Theory

Useful Technique: $s = \inf \{x \in X\} \implies \text{for every } \varepsilon \text{ there is an } x \in X \text{ such that } x \leq s + \varepsilon.$

Useful Techniques: Always consider bounded sets, and if E is unbounded write $E = \bigcup_n B_n(0) \cap E$ and use countable subadditivity or continuity of measure.

Lemma: Every open subset of \mathbb{R} (resp \mathbb{R}^n) can be written as a unique countable union of disjoint (resp. almost disjoint) intervals (resp. cubes).

Definition: The outer measure of a set is given by

$$m_*(E) = \inf_{\substack{\{Q_i\} \rightrightarrows E \ \text{closed cubes}}} \sum |Q_i|.$$

Lemma (Properties of [Outer] Measure):

- Montonicity: $E \subseteq F \implies m_*(E) \le m_*(F)$.
- Countable Subadditivity: $m_*(\bigcup E_i) \leq \sum m_*(E_i)$.
- Approximation: For all E there exists a $G \supseteq E$ such that $m_*(G) \le m_*(E) + \varepsilon$.
- Disjoint* Additivity: $m_*(A \coprod B) = m_*(A) + m_*(B)$.

Note: this holds for outer measure **iff** dist(A, B) > 0.

Lemma (Subtraction of Measure): m(A) = m(B) + m(C) and $m(C) < \infty$ implies that m(A) - m(C) = m(B).

Lemma (Continuity of Measure):

$$E_i \nearrow E \implies m(E_i) \to m(E)$$

 $m(E_1) < \infty \text{ and } E_i \searrow E \implies m(E_i) \to m(E).$

Proof: 1. Break into disjoint annuli $A_2 = E_2 \setminus E_1$, etc then apply countable disjoint additivity to $E = \prod A_i$.

2. Use $E_1 = (\coprod E_j \setminus E_{j+1}) \coprod (\bigcap E_j)$, taking measures yields a telescoping sum, and use countable disjoint additivity.

Lemma: Lebesgue measure is translation and dilation invariant.

Proof: Obvious for cubes; if $Q_i \rightrightarrows E$ then $Q_i + k \rightrightarrows E + k$, etc.

Theorem (Non-Measurable Sets): There is a non-measurable set.

Proof:

- Use AOC to choose one representative from every coset of \mathbb{R}/\mathbb{Q} on [0,1), which is countable, and assemble them into a set N
- Enumerate the rationals in [0,1] as q_j , and define $N_j = N + q_j$. These intersect trivially.
- Define $M := \coprod N_j$, then $[0,1) \subseteq M \subseteq [-1,2)$, so the measure must be between 1 and 3. By translation invariance, $m(N_j) = m(N)$, and disjoint additivity forces m(M) = 0, a contradiction.

Lemma (Borel Characterization of Measurable Sets)

If E is Lebesgue measurable, then $E = H \coprod N$ where $H \in F_{\sigma}$ and N is null.

Useful technique: F_{σ} sets are Borel, so establish something for Borel sets and use this to extend it to Lebesgue.

Proof: For every
$$\frac{1}{n}$$
 there exists a closed set $K_n \subset E$ such that $m(E \setminus K_n) \leq \frac{1}{n}$. Take $K = \bigcup K_n$, wlog $K_n \nearrow K$ so $m(K) = \lim m(K_n) = m(E)$. Take $N := E \setminus K$, then $m(N) = 0$.

Lemma:

$$\limsup_{n} A_{n} = \bigcap_{n} \bigcup_{j \geq n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for inf. many } n \right\}$$
$$\liminf_{n} A_{n} = \bigcup_{n} \bigcap_{j \geq n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for all except fin. many } n \right\}$$

Lemma: If A_n are all measurable, $\limsup A_n$ and $\liminf A_n$ are measurable.

Proof: Measurable sets form a sigma algebra, and these are expressed as countable unions/intersections of measurable sets.

Lemma (Borel-Cantelli):

Let $\{E_k\}$ be a countable collection of measurable sets. Then

$$\sum_{k} m(E_k) < \infty \implies \text{ almost every } x \in \mathbb{R} \text{ is in at most finitely many } E_k.$$

Application:

$$m\left(\left\{x \text{ such that } \exists \text{ inf. many } \frac{p}{q} \text{ with } \left|x-\frac{p}{q}\right| \leq \frac{1}{q^3}\right\}\right) = 0.$$

Proof: Write E_j to be the above set with p,q replaced by p_j,q_j where $r_j=\frac{p_j}{q_j}$ is an enumeration of \mathbb{Q} , then $m(E_j)\leq \frac{2}{a^3}$ and $\sum \frac{1}{a^3}<\infty$.

Lemma:

- Characteristic functions are measurable
- If f_n are measurable, so are $|f_n|$, $\limsup f_n$, $\liminf f_n$, $\lim f_n$,
- Sums and differences of measurable functions are measurable,
- Cones F(x,y) = f(x) are measurable,
- Compositions $f \circ T$ for T a linear transformation are measurable,
- "Convolution-ish" transformations $(x,y) \mapsto f(x-y)$ are measurable

Proof (Convolution): Take the cone on f to get F(x,y) = f(x), then compose F with the linear transformation T = [1, -1; 1, 0].

5 Integration

Definition: $f \in L^+$ iff f is measurable and non-negative.

Useful techniques:

- Break integration domain up into disjoint annuli.
- Break real integrals up into x < 1 and x > 1.

Definition: A measurable function is integrable iff $||f||_1 < \infty$.

Useful facts about C_c functions:

- Bounded almost everywhere
- Uniformly continuous

5.1 Convergence Theorems

Monotone Convergence Theorem (MCT):

If $f_n \in L^+$ and $f_n \nearrow f$ a.e., then

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e. $\int f_n \to \int f$.

Needs to be positive and increasing.

Dominated Convergence Theorem (DCT):

If $f_n \in L^1$ and $f_n \to f$ a.e. with $|f_n| \leq g$ for some $g \in L^1$, then

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e. $\int f_n \to \int f$,

and more generally,

$$\int |f_n - f| \to 0.$$

Positivity not needed.

Generalized DCT: can relax $|f_n| < g$ to $|f_n| < g_n \to g \in L^1$.

Lemma: If $f \in L^1$, then

$$\int |f_n - f| \to 0 \iff \int |f_n| \to |f|.$$

Proof: Let $g_n = |f_n| - |f_n - f|$, then $g_n \to |f|$ and

$$|g_n| = ||f_n| - |f_n - f|| \le |f_n - (f_n - f)| = |f| \in L^1,$$

so the DCT applies to g_n and

$$||f_n - f||_1 = \int |f_n - f| + |f_n| - |f_n| = \int |f_n| - g_n$$

 $\to_{DCT} \lim \int |f_n| - \int |f|.$

Fatou's Lemma:

If $f_n \in L^+$, then

$$\int \liminf_{n} f_n \le \liminf_{n} \int f_n$$
$$\lim \sup_{n} \int f_n \le \int \limsup_{n} f_n.$$

Only need positivity.

Theorem (Tonelli): For f(x,y) non-negative and measurable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is a **measurable** function
- $F(x) = \int f(x,y) dy$ is a **measurable** function,
- For E measurable, the slices $E_x := \{y \mid (x,y) \in E\}$ are measurable.
- $\int f = \int \int F$, i.e. any iterated integral is equal to the original.

Theorem (Fubini): For f(x,y) integrable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is an **integrable** function
- $F(x) = \int f(x,y) dy$ is an **integrable** function,
- For E measurable, the slices $E_x := \{y \mid (x,y) \in E\}$ are measurable.
- $\int f = \int \int f(x,y)$, i.e. any iterated integral is equal to the original

Theorem (Fubini/Tonelli): If any iterated integral is absolutely integrable, i.e. $\int \int |f(x,y)| < \infty$, then f is integrable and $\int f$ equals any iterated integral.

Differentiating under the integral:

If
$$\left| \frac{\partial}{\partial t} f(x,t) \right| \leq g(x) \in L^1$$
, then letting $F(t) = \int f(x,t) \ dt$,

$$\frac{\partial}{\partial t} F(t) := \lim_{h \to 0} \int \frac{f(x, t+h) - f(x, t)}{h} dx$$

$$\stackrel{\text{DCT}}{=} \int \frac{\partial}{\partial t} f(x, t) \ dx.$$

To justify passing the limit, let $h_k \to 0$ be any sequence and define

$$f_k(x,t) = \frac{f(x,t+h_k) - f(x,t)}{h_k},$$

so
$$f_k \stackrel{\text{pointwise}}{\to} \frac{\partial}{\partial t} f$$
.

Apply the MVT to f_k to get $f_k(x,t) = f_k(\xi,t)$ for some $\xi \in [0,h_k]$, and show that $f_k(\xi,t) \in L_1$.

Lemma (Swapping Sum and Integral) If f_n are non-negative and $\sum \int |f|_n < \infty$, then $\sum \int f_n = \int \sum f_n$.

Proof: MCT. Let $F_N = \sum_{n=1}^{N} f_n$ be a finite partial sum; then there are simple functions $\phi_n \nearrow f_n$ and so $\sum_{n=1}^{N} \phi_n \nearrow F_N$, so apply MCT.

Lemma: If $f_k \in L^1$ and $\sum ||f_k||_1 < \infty$ then $\sum f_k$ converges almost everywhere and in L^1 .

Proof: Define
$$F_N = \sum_{k=1}^{N} f_k$$
 and $F = \lim_{k \to \infty} F_k$, then $||F_N||_1 \le \sum_{k=1}^{N} ||f_k|| < \infty$ so $F \in L^1$ and $||F_N - F||_1 \to 0$ so the sum converges in L^1 . Almost everywhere convergence: ?

5.2 L^1 Facts

Lemma (Translation Invariance): The Lebesgue integral is translation invariant, i.e. $\int f(x) dx = \int f(x+h) dx$ for any h.

Proof:

- For characteristic functions, $\int_E f(x+h) = \int_{E+h} f(x) = m(E+h) = m(E) = \int_E f$ by translation invariance of measure.
- So this also holds for simple functions by linearity
- For $f \in L^+$, choose $\phi_n \nearrow f$ so $\int \phi_n \to \int f$.
- Similarly, $\tau_h \phi_n \nearrow \tau_h f$ so $\int \tau_h f \to \int f$
- Finally $\left\{ \int \tau_h \phi \right\} = \left\{ \int \phi \right\}$ by step 1, and the suprema are equal by uniqueness of limits.

Lemma (Integrals Distribute Over Disjoint Sets):

If
$$X \subseteq A \bigcup B$$
, then $\int_X f \leq \int_A f + \int_{A^c} f$ with equality iff $X = A \coprod B$.

Lemma (L^1 functions may Decay Rapidly):

If $f \in L^1$ and f is uniformly continuous, then $f(x) \stackrel{|x| \to \infty}{\to} 0$.

Doesn't hold for general L^1 functions, take any train of triangles with height 1 and summable areas.

Lemma (L^1 functions have Small Tails):

If $f \in L^1$, then for every ε there exists a radius R such that if $A = B_R(0)^c$, then $\int_A |f| < \varepsilon$.

Proof: Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$ with $g \in C_c$, then choose N large enough so that g = 0 on $E := B_N(0)^c$, then $\int_E |f| \le \int_E |f - g| + \int_E |g|$.

Lemma (L^1 functions have absolutely continuity):

$$m(E) \to 0 \implies \int_E f \to 0.$$

Proof: Approximate with compactly supported functions. Take $g \stackrel{L_1}{\to} f$, then $g \leq M$ so $\int_E f \leq \int_E f - g + \int_E g \to 0 + M \cdot m(E) \to 0$.

Lemma (L^1 functions are finite almost everywhere):

If
$$f \in L^1$$
, then $m(\{f(x) = \infty\}) = 0$.

Proof (Split up domain2): Let
$$A = \{f(x) = \infty\}$$
, then $\infty > \int f = \int_A f + \int_{A^c} f = \infty \cdot m(A) + \int_{A^c} f \implies m(X) = 0.$

10

Lemma (Continuity in L^1): $\|\tau_h f - f\|_1 \to 0$ as $h \to 0$.

Proof: Approximate with compactly supported functions. Take $g \stackrel{L_1}{\to} f$ with $g \in C_c$.

$$\int f(x+h) - f(x) \le$$

$$\int f(x+h) - g(x+h) + \int g(x+h) - g(x) + \int g(x) - f(x)$$

$$\rightarrow 2\varepsilon + \int g(x+h) - g(x)$$

$$= \int_K g(x+h) - g(x) + \int_{K^c} g(x+h) - g(x) \to 0,$$

which follows because we can enlarge the support of g to K where the integrand is zero on K^c , then apply uniform continuity on K.

Theorem (Integration by Parts, Special Case):

$$F(x) := \int_0^x f(y)dy \quad \text{and} \quad G(x) := \int_0^x g(y)dy$$

$$\implies \int_0^1 F(x)g(x)dx = F(1)G(1) - \int_0^1 f(x)G(x)dx.$$

Proof: Fubini-Tonelli, and sketch region to change integration bounds.

Theorem (Lebesgue Density):

$$A_h(f)(x) := \frac{1}{2h} \int_{x-h}^{x+h} f(y) dy \implies ||A_h(f) - f|| \stackrel{h \to 0}{\to} 0.$$

Proof: Fubini-Tonelli, and sketch region to change integration bounds, and continuity in L^1 .

5.3 L^p Spaces

Lemma: The following are dense subspaces of $L^2([0,1])$:

- Simple functions
- Step functions
- $C_0([0,1])$
- Smoothly differentiable functions $C_0^{\infty}([0,1])$ Smooth compactly supported functions C_c^{∞}

Dual Spaces: In general, $(L^p)^{\vee} \cong L^q$

- For qual, supposed to know the p=1 case, i.e. $(L^1)^\vee \cong L^\infty$ For the analogous $p=\infty$ case: $L^1 \subset (L^\infty)^\vee$, since the isometric mapping is always injective, but never surjective. So this containment is always proper (requires Hahn-Banach Theorem).
- The p=2 case: Easy by the Riesz Representation for Hilbert spaces.

6 Fourier Series and Convolution

Definition (Convolution)

$$f * g(x) = \int f(x - y)g(y)dy.$$

Definition (Dilation)

$$\phi_t(x) = t^{-n}\phi\left(t^{-1}x\right).$$

Definition (The Fourier Transform):

$$\hat{f}(\xi) = \int f(x) \ e^{2\pi i x \cdot \xi} \ dx.$$

Lemma: $\hat{f} = \hat{g} \implies f = g$ almost everywhere.

Lemma (Riemann-Lebesgue)

$$f \in L^1 \implies \hat{f}(\xi) \to 0 \text{ as } |\xi| \to \infty.$$

Motto: Fourier transforms decay.

Lemma: If $f \in L^1$, then \hat{f} is continuous and bounded.

$$\textit{Proof: } \left| \hat{f} \right| \leq \int |f| \cdot |e^{\cdots}| \leq \|f\|_1, \text{ and the DCT shows that } \left| \hat{f}(\xi_n) - \hat{f}(\xi) \right| \to 0.$$

Todo: search qual alerts.