PRÁCTICA 3 grupo J1B

Bloques jerárquicos y modulaciones lineales en GNURADIO

Autores	Omar Alfonso Galvis Camarón	
	Nicolas Lenis Sánchez	
Grupo de laboratorio:	<u>I1B</u>	
Subgrupo de clase	04	

INFORME DE RESULTADOS

DESARROLLO DEL OBJETIVO 1. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 1.

siguiendo los pasos en la parte 1, pudimos diseñar el contenido del bloque para poder calcular las potencias lineales y logarítmicas de las señales a analizar

El desarrollo de un modulo nos permite tener de cierta forma un diagrama mas reducido pero igualmente operativo a que si no se estuviese, 9

DESARROLLO DEL OBJETIVO 2. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 2.

a. realizamos los análisis teóricos y prácticos, y los comparamos, para cuando variamos la amplitud de la señal:

$$Plineal [W] = \frac{Ac^2}{2}$$

$$Plog [dBw] = 10log (\frac{Ac^2}{2})$$

$$Plog [dBm] = 10 \log \left(\frac{Ac^2}{2}\right) + 30$$

Amplitud	Potencia Lineal [W]	Potencia Logarítmica [dBw]	Potencia Logarítmica [dBm]	Potencia Lineal (analítica)	Potencia Logarítmica (analítica) [dBw]	Potencia Logarítmica (analítica) [dBm]
1	0.5	-3,010299	26,989698	0,5	-3,010299	26,989701
50	1250	30,969099	60,969097	1250	30,9691	60,9691
25	312,5	24,9485	54,948498	312,5	24,9485	54,9485
10	50,000011	16,9897	46,9897	50	16,9897	46,9897
5	12,500003	10,969101	40,969101	12,5	10,9691001	40,9691001

como podemos observar en la mayoría de las amplitudes, la comparación de la practica con la teoría, es muy similar dando márgenes de error casi nulos o muy pequeños.

b. calculamos los valores de potencia para distintas para distintos tipos de señales y tres distintas amplitudes para cada señal. La potencia la calculamos teórica y prácticamente, comparando los valores obtenidos en ambas situaciones.

Señal coseno:

$$Plineal [W] = \frac{Ac^2}{2}$$

$$Plog [dBw] = 10\log\left(\frac{Ac^2}{2}\right)$$

$$Plog [dBm] = 10 \log \left(\frac{Ac^2}{2}\right) + 30$$

Amplitud	Potencia Lineal [W]	Potencia Logarítmica [dBw]	Potencia Logarítmica [dBm]	Potencia Lineal (analítica)	Potencia Logarítmica (analítica) [dBw]	Potencia Logarítmica (analítica) [dBm]
25	312,5	24,9485	54,948498	312,5	24,9485	54,9485
5	12,500003	10,969101	40,969101	12,5	10,9691001	40,9691001

10	50,000011	16,9897	46,9897	50	16,9897	46,9897
----	-----------	---------	---------	----	---------	---------

Señal cuadrada:

$$Plineal [W] = \frac{Ac^2}{2}$$

$$Plog [dBw] = 10\log(\frac{Ac^2}{2})$$

$$Plog [dBm] = 10\log(\frac{Ac^2}{2}) + 30$$

Amplitud	Potencia Lineal [W]	Potencia Logarítmica [dBw]	Potencia Logarítmica [dBm]	Potencia Lineal (analítica)	Potencia Logarítmica (analítica) [dBw]	Potencia Logarítmica (analítica) [dBm]
25	312,5	24,9485	54,948498	312,5	24,9485	54,9485
5	12,500003	10,969101	40,969101	12,5	10,9691001	40,9691001
10	50,000011	16,9897	46,9897	50	16,9897	46,9897

Señal triangular:

$$Plineal [W] = \frac{Ac^2}{3}$$

$$Plog [dBw] = 10\log(\frac{Ac^2}{3})$$

$$Plog [dBm] = 10\log(\frac{Ac^2}{3}) + 30$$

Amplitud	Potencia Lineal [W]	Potencia Logarítmica [dBw]	Potencia Logarítmica [dBm]	Potencia Lineal (analítica)	Potencia Logarítmica (analítica) [dBw]	Potencia Logarítmica (analítica) [dBm]
25	208,739273	23,196041	53,196041	208,34	23,1877266	53,1877266
5	8,349572	9,216642	39,216644	8,34	9,2116605	39,2116605
10	33,398289	15,237242	45,237244	33,34	15,2296559	45,2296559

c. para poder hallar la potencia total del producto requerido, se multiplican ambas potencias. Para Ac=10:

PlinealT [W] =
$$\frac{Ac^2}{3} * \frac{Ac^2}{2} = 1666,67$$

$$Plog[dBw] = 10\log\left(\frac{Ac^2}{3} * \frac{Ac^2}{2}\right) = 32,2184$$

$$Plog[dBm] = 10 \log \left(\frac{Ac^2}{3} * \frac{Ac^2}{2} \right) + 30 = 62,2184$$

Amplitud	Potencia Lineal [W]	Potencia Logarítmica [dBw]	Potencia Logarítmica [dBm]	Potencia Lineal (analítica)	Potencia Logarítmica (analítica) [dBw]	Potencia Logarítmica (analítica) [dBm]
10	1669,96057	29,557226	59,557226	1666,67	32,2184	62,2184

DESARROLLO DEL OBJETIVO 3. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 3.

A continuación, veremos las evidencias tomadas durante el desarrollo de la practica que corresponden al análisis de la señal modulada a una envolvente compleja, para tres casos de la constante KaAm:

También ver mas detalladamente el calculo de la frecuencia, se realizó un análisis usando el espectrómetro

Para KaAm=1

Ancho de banda [KHz]

Ac[1+KaAm] [dB]

Ac[1-KaAm] [dB]

Análisis en frecuencia

Para KaAm<1

Ancho de banda [KHz]

Ac[1+KaAm] [dB]

Ac[1-KaAm] [dB]

Análisis en frecuencia

Para KaAm>1

Ancho de banda [KHz]

Ac[1+KaAm] [dB]

Ac[1-KaAm] [dB]

Análisis en frecuencia

KaAm FM ancho de banda		Ac[1+KaAm][W]	Ac[1-KaAm]
KaAm>1 1,220	1KHz	-28.10 dB	-47.25 dB
KaAm<1 0,8	1KHz	-30.49 dB	-44.39 dB
KaAm=1	1KHz	-28.77 dB	-54.89 dB

Tabla, potencia de la señal medida calculada en decibeles (dB)