CET 141: Day 3

Dr. Noori KIM

The Operational Amplifier

Dr. Noori Kim

An amplifier?

- An ideal amplifier: a two-port circuit that
 - takes an input signal
 - and reproduces it exactly at its output,
 - only with a larger magnitude!
- A: open-circuit voltage gain of the ideal amplifier

Why amplify?

- For signal amplification
 - A key to both analog and digital processing
 - to tolerate noise during communication

Why amplify? Analog

Input Communication Output Channel

www.

Why amplify? Digital

Minimum amplification is needed:

- In the digital domain, amplification is fundamental to obtaining thresholds for the static discipline
- In the analog domain, amplification gets noise immunity during communication

Recap: Transistors

Two basic transistor disciplines

- Transistor as a switch
- Transistor as an amplifier

The metal—oxide—semiconductor field-effect transistor (MOSFET, MOS-FET, or MOSFET): a type of transistor used for amplifying or switching electronic signals.

Abstracting this out into some kind of building blocks

The Amplifier Abstraction

Progressively more abstracting representation of an amplifier

Ex) Internal circuitry of 741-type op-amp

- The most classical, standard structure consisting of three gain stages
- Designed in 1968 by David Fullagar at Fairchild Semiconductor (https://en.wikipedia.org/wiki/Operational_amplifier)

A component-level diagram of the common 741 op-amp. Dotted lines outline: current mirrors (red); differential amplifier (blue); class A gain stage (magenta); voltage level shifter (green); output stage (cyan).

Abstraction?!?!

- What are inside VI ?
- A workhorse and a building block in the analog industry
 - It's like 'printf' in the analog world
- The concept of Abstraction is very important in ECE
- A very powerful mechanism to deal with complexity

Kinds of amplifiers

(https://en.wikipedia.org/wiki/Amplifier#Operational_amplifiers_.28op-amps.29)

Recall,

Contents [hide]

- 1 Figures of merit
- 2 Amplifier types
 - 2.1 Power amplifier
 - 2.1.1 Power amplifiers by application
 - 2.1.2 Power amplifier circuits
 - 2.2 Vacuum-tube (valve) amplifiers
 - 2.3 Transistor amplifiers
 - 2.4 Magnetic amplifiers
 - 2.5 Operational amplifiers (op-amps)
 - 2.6 Fully differential amplifiers
 - 2.7 Video amplifiers
 - 2.8 Oscilloscope vertical amplifiers
 - 2.9 Distributed amplifiers
 - 2.10 Switched mode amplifiers
 - 2.11 Negative resistance devices
 - 2.12 Microwave amplifiers
 - 2.12.1 Travelling wave tube amplifiers
 - 2.12.2 Klystrons
 - 2.13 Musical instrument amplifiers
- 3 Classification of amplifier stages and systems
 - 3.1 Input and output variables
 - 3.2 Common terminal
 - 3.3 Unilateral or bilateral
 - 3.4 Inverting or non-inverting
 - 3.5 Function
 - 3.6 Interstage coupling method
 - 3.7 Frequency range
- 4 Power amplifier classes
 - 4.1 Conduction angle classes
 - 4.2 Class A
 - 4.2.1 Advantages of class-A amplifiers
 - 4.2.2 Disadvantage of class-A amplifiers
 - 4.2.3 Single-ended and triode class-A amplifiers
 - 4.3 Class B

Operational amplifier (Op-amp) Abstraction

Abstraction of the op-amp

- Recall that, an ideal amplifier
 - takes an input signal
 - and reproduces it exactly at its output,
 - only with a larger magnitude!
- A: open-circuit voltage gain of the ideal amplifier

Key properties

• To use this building block A

 A circuit model of the ideal op-amp: to analyze how does this behave

- 1. A is huge, $A \rightarrow \infty$, 10^5
 - Big=A*Small
- The input resistance ∞
 - Looking in -> OC
- The output resistance 0
 - Regardless of loads at the output, it keeps holding the voltage consistent

The Behavior

Measure and Plot (output and input)

Remember, A is huge, 10^5 , the slope Small change in v_i will massively change in v_o

But what we are missing here is V_s

- Assuming ideal case $(V_o=0,V_i=0)$
 - Active region
 - Saturation: hit the rail!

- A, the gain, the slope: very sensitive, unstable:
 - Temperature, time of a day, mood-swing...
 - It is still big, but we can't rely on it.
- If I heat the op-amp, the active line will fluctuate, will be everywhere

How can we resolve this problem??? Later... but to make long story short, we can use "feedback"

Building a circuit

(Our "Hello World" program using an op-amp)

A non-inverting amplifier


```
/* Hello World program */
#include<stdio.h>
main()
{
printf("Hello World");
}
```

Analyzing the circuit

Applying the node method

Checking unknowns: v (voltage between v and two resistors) and voltage between v and two resistors)

$$v_o = A(v^+ - v^-)$$

$$= A(v_I - \frac{v_o R_2}{R_1 + R_2})$$

$$v_o \left(1 + \frac{AR_2}{R_1 + R_2}\right) = Av_I$$

$$v_o = Av_I / \left(1 + \frac{AR_2}{R_1 + R_2}\right)$$

A is huge, therefore

$$v_o = \frac{Av_I}{\left(1 + \frac{AR_2}{R_1 + R_2}\right)} \approx \frac{Av_I}{\frac{AR_2}{R_1 + R_2}}$$

$$v_o \approx \frac{v_I (R_1 + R_2)}{R_2}$$
 No A is in here!!!

Suppose,

A=10⁶ R₁=9R, R₂=R

$$v_o = \frac{Av_I}{\left(1 + \frac{AR_2}{R_1 + R_2}\right)} = \frac{10^6 v_I}{\left(1 + \frac{10^6 R}{9R + R}\right)} = 10v_I$$

- I have a nice amplifier whose output is simply 10 times of the input.
- The gain is determined solely by some resistor values

If A does not matter in this case, if I heat the amp again. But why?

Given, v_i =5V and R1=R2=R

- 2. Then v⁻ becomes 6V
- 3. Now the input voltage becomes NEGATIVE
 - v⁺=5V and v⁻=6V
 - Therefore the output should go DOWN!! Pull it down! Think $v_0 = A(v^+-v^-)$
- 4. Let's assume that now the v_0 becomes 9V
- 5. In the same manner, v becomes 4.5V which will make v goes back up!!

A big battle is going on in the op-amp!!

feed back, push back, a portion of the output to the negative input

Negative "feedback": a big word!!!

Ideal Op-Amp Analysis

Two ideal Op-Amp Properties:

- (1) Input impedance = ∞ : The current into both V^+ and V^- terminals are zero
- (2) Therefore $V^+ = V^-$

For ideal Op-Amp circuit:

- (1) Write the Kirchhoff's node equation at the noninverting terminal V⁺
- (2) Write the Kirchhoff's node equation at the inverting terminal V
- (3) Set $V^+ = V^-$ and solve for the desired closed-loop gain

What about positive feedback?

A simple comparator: one threshold

Positive feedback

What will happen? Remember "A" is still alive

- 1. $(V^+-V^-)A=Vout$
- 2. Vout feedbacks to V⁺
 - Resulting in full positive output saturation If (V⁺-V⁻) >0
 - Resulting in full negative output saturation if (V⁺-V⁻)<0

Adding a positive feedback

A positive feedback to the comparator circuit
introducing hysteresis

 The output to remain in its current state unless the AC input voltage undergoes a major change in magnitude.

This is a Schmitt Inverter

