المندسة

مذكرة رقم 9 : ملخص لدرس: العساجم المثلثيي 1 مع تمارين وأمثلة محلولة

الأهداف والقدرات المنتظرة من الدرس

	الإهداف والعدرات المنتظرة من الدرس:		
توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج	
		الجزء الأول:	
		- الدائرة المثلثية، الأفاصيل المنحنية لنقطة،	
		الأفصول المنحني الرئيسي؛ . الزاوية الموجهة لنصفي مستقيم لهما نفس	
- تحدد نقطة من الدائرة المثلثية بأفصولها		الأصل؛	
المنحنى الرئيسي أو بإحداثيتيها بالنسبة للمعلم		. قياسات زاوية موجهة لنصفى مستقيم لهما نفس	
المتعامد الممنظم المرتبط بالدائرة المثلثية.		الأصل، القياس الرنيسي، علاقة شال؛	
		. العلاقة بين الدرجة والراديان والغراد؛	
		. الزاوية الموجهة لمتجهتين وقياسها؛	
		- النسب المثلثية لعدد حقيقي والنسب المثلثية	
		لزاوية متجهتين؛ - العلاقــــــــــــــــــــــــــــــــــ	
	- استعمال الآلـة الحاسبة العلميـة لتحديـد قيمـة		
	مقربة لز اوية محددة بأحد نسبها المثلثية و العكس.	$\frac{1}{\cos^2 x} = 1 + \tan^2 x \cdot \tan x = \frac{\sin x}{\cos x}$	
		$\frac{\pi}{3}$ ، $\frac{\pi}{4}$ ، $\frac{\pi}{6}$ ، $\frac{\pi}{6}$ ، $\frac{\pi}{6}$ ، $\frac{\pi}{6}$ ، $\frac{\pi}{6}$ ، $\frac{\pi}{6}$.	
	- التمكن من النسب المثلثية للزوايا الاعتيادية	5 <u>\pi</u> 4	
	وتطبيق مختلف العلاقات	- - العلاقات بين النسب المثلثية لزاويتين مجموع أو	
		فرق قیاسیهما یساوي: 0 ، $\frac{\pi}{2}$ ، π بتردید π 2.	

لتكن (C) دائرة من المستوى (P) مركزها O و لتكن I و M نقطتين من (C) لدينا منحنيين للوصول إلى النقطة M انطلاقا من I . أحدهما موجب و الأخر سالب.

لقد تم اختيار المنحى الموجب هو المنحى المضاد لحركة عقربي الساعة (المنحى + المشار إليه في الشكل) و يسمى المنحى المثلثي.

الدائرة المثلثية هي كل دائرة شعاعها 1 مزودة بأصل و موجهة توجيها

O دائرة مثلثية مركزها (C) دائرة مثلثية مركزها .2

الراديان هو قياس الزاوية المركزية التي تحصر على الدائرة (C)قوسا طوله 1 ونرمز له بالرمز: rad ملاحظة: قياس زاوية مستقيمة π بالدرجة 180° و الغراد 200 و بالراديان اذن وجدنا ثلاث وحدات لقياس الزوايا (الدرجة والغراد والراديان) ويمكن استعمال الطريقة الثلاثية للتحويل من وحدة الى أخرى أو استعمال النتيجة التالية : نتيجة : اذا كانت lpha و eta و γ قياسات زاوية بالدرجة و $\frac{\alpha}{180^{\circ}} = \frac{\beta}{200} = \frac{\gamma}{\pi}$: الغراد والراديان على التوالي فان

تمرين1:

1. لتكن زاوية قياسها بالدرجة °135 حدد قياسها بالراديان و حدد قياسها بالغراد

2. لتكن زاوية قياسها بالدرجة °120 حدد قياسها بالراديان و حدد قياسها بالغر اد

 $135 \times \pi = \gamma \times 180$ يعني 130 يعني 130 أيحساب القياس بالراديان: $\frac{\gamma}{\pi} = \frac{7}{180^{\circ}}$ يعني 130 أيحساب القياس بالراديان: $\frac{\gamma}{\pi} = \frac{7}{180^{\circ}}$

$$\gamma = \frac{135 \times \pi}{180} = \frac{27 \times \pi}{36} = \frac{3\pi}{4} \text{ rad }$$
يعني

 $135 \times 200 = \beta \times 180$ يعني $\frac{135}{180^{\circ}} = \frac{\beta}{200}$ ب)حساب القياس بالغراد:

 $120 \times \pi = \gamma \times 180$ ي يعني $\frac{120}{180^{\circ}} = \frac{\gamma}{\pi}$ (2) أ)حساب القياس بالراديان:

 $\gamma = \frac{120 \times \pi}{180} = \frac{12 \times \pi}{18} = \frac{2\pi}{3} \, \text{rad}$ يعني

 $120 \times 200 = \beta \times 180$ يعني $\frac{120}{180^{\circ}} = \frac{\beta}{200}$:)حساب القياس بالغراد:

 β =133,33grad يعني $\frac{120\times200}{180}$ = β

3. الأفاصيل المنحنية لنقطة والأفصول المنحني الرئيسي:

(C)لتكن (C)دائرة مثلثيه أصلها A و مركز ها O و M نقطة من

اليكن lpha طول القوس الهندسية \widetilde{M} اليكن lpha طول القوس الهندسية

العدد lpha يسمى أفصول منحنى للنقطة M الأعداد الحقيقية

ميث $k\in\mathbb{Z}$ ميث منحنية للنقطة M . يوجد أفصول lphaمنحنى وحيد للنقطة M ينتمي إلى المجال $\left[-\pi,\pi
ight]$ يسمى الأفصول المنحنى الرئيسي للنقطة M.

A(0) : A(0) أو مثال A(0) مثل على الدائرة المثلثية للنقط التالية

 $-\pi < -\frac{\pi}{2} \le \pi$: ويما أن $\frac{7\pi}{2} = \frac{8\pi - \pi}{2} = \frac{8\pi}{2} - \frac{\pi}{2} = 4\pi - \frac{\pi}{2}$ ويما أن

 M_0 فان : $rac{\pi}{2}$ هو أفصول منحنى رئيسي للنقطة

 $I\left(\frac{2007\pi}{4}\right)$ الأفصول المنحني الرئيسي للنقطة

طريقة 1: نقسم العدد 2007 على 4 فنجد 501,75

$$502$$
 وناخد اقرب عدد صحيح له اي $\frac{502}{4}$ -502π $=\frac{2007\pi}{4}$ $-\frac{2008\pi}{4}$ $=\frac{\pi}{4}$

 $\frac{2007\pi}{4} = -\frac{\pi}{4} + 502\pi = -\frac{\pi}{4} + 2 \times 251\pi$ يعني

وبما أن : $\pi \leq \frac{\pi}{4}$ فان : $\pi \leq \frac{\pi}{4}$ هو الأفصول المنحنى الرئيسي

 $-1 < \frac{2007}{4} + 2k \le 1$ يعني $k \in \mathbb{Z}$ و $-\pi < \frac{2007\pi}{4} + 2k \pi \le \pi$ $-\frac{2011}{4} < 2k \le -\frac{2003}{4}$ يعني $-1 - \frac{2007}{4} < 2k \le 1 - \frac{2007}{4}$

4. الزاوية الموجهة لنصفى مستقيم:

كل زوج (OA),(OB) من نصفي مستقيم يحدد الزاوية الموجهة المرموز $\left(\overline{OA},\overline{OB}\right)$:اليها أنظر الشكل.

ليكن lpha و eta أفصولين منحنيين للنقطتين A و B على التوالي. الأعداد $\beta - \alpha + 2k \pi$ الحقيقية

حيث $\stackrel{\circ}{K} = \stackrel{\circ}{K} =$

 $\cdot \left(\overline{\overrightarrow{OA}}, \overline{\overrightarrow{OB}}\right) \equiv \beta - \alpha [2\pi]$

للزاوية الموجهة $\left(\frac{1}{OA,OB}\right)$ قياس وحيد في المجال $\left(\frac{1}{OA,OB}\right)$ يسمى القياس

الرئيسي للزاوية. 5. النسب المثلثية لعدد حقيقي:

A لتكن (C) دائرة مثلثية أصلها

 $\stackrel{ ext{$igar P$}}{=}(C)$ و لتكن Bنقطة من O $\left(\overline{\overrightarrow{OA}}, \overline{\overrightarrow{OB}}\right) \equiv \frac{\pi}{2} [2\pi]$

هو المعلم المتعامد الممنظم ا $(0, \overrightarrow{OA}, \overrightarrow{OB})$

 $\left(\overline{\overrightarrow{OA},\overrightarrow{OM}}\right)$ المثلثية $\left(C\right)$ انكن $\left(C\right)$ ميث $M\in\left(C\right)$ انكن المثلثية

. $\cos a$ أفصول النقطة Mيسمى جيب تمام a و يكتب a

. $\sin a$ يسمى جيب a و يكتب M

. $\tan a$ و يكتب $a \neq \frac{\pi}{2} + k \pi$ أو AT . $k \in \mathbb{Z}$ حيث $a \neq \frac{\pi}{2} + k \pi$

 $-1 \le \sin x \le 1$, $-1 \le \cos x \le 1$

 \mathbb{R} من x

$$\cos(x + 2k\pi) = \cos x$$
 لكل x من x لكل $\sin(x + 2k\pi) = \sin x$ $k \in \mathbb{Z}$ لكل $\tan x = \frac{\sin x}{\cos x}$: لكل $k \in \mathbb{Z}$ لدينا $k \in \mathbb{Z}$ هن $\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$

- $\cos x \ge 0$ فان $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ فان •
- $\cos x \le 0$ فان $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$ فان •
- $\sin x \ge 0$ فان $0 \le x \le \pi$ اذا کانت
- $\sin x \le 0$ فان $\pi \le x \le 2\pi$ اذا کانت
 - 6. العلاقات بين النسب المثلثية لعدد:
- \mathbb{R} من x $\cos^2 x + \sin^2 x = 1$

$$1 + (\tan x)^{2} = 1 + \left(\frac{\sin x}{\cos x}\right)^{2} = 1 + \frac{(\sin x)^{2}}{(\cos x)^{2}} = \frac{(\cos x)^{2} + (\sin x)^{2}}{(\cos x)^{2}}$$

$$(\cos x)^{2} = 1 + (\sin x)^{2} = 1 + (\cos x)^{2} = 1$$

 $\frac{2011}{8} < k \le -\frac{2003}{8}$ يعني $-251,3 \simeq \frac{2011}{8} < k \le \frac{2008}{8} \simeq -250,3 \simeq \frac{2011}{8}$ اذن : 251 = k ومنه $\alpha = \frac{2007\pi}{4} + 2(-251)\pi = -\frac{\pi}{4}$ ومنه: $\frac{\pi}{2}$ هو الأفصول المنحنى الرئيسي للنقطة I

تمرين ت: حدد الأفصول المنحني الرئيسي للنقط التالية ومثلهم على $M_3 \left(\frac{19\pi}{3}\right)$ و $M_2 \left(\frac{67\pi}{4}\right)$ و $M_1 \left(\frac{11\pi}{3}\right)$ و $M_0 \left(\frac{9\pi}{2}\right)$: الْدَائِرَةُ الْمِثْلَثِيةُ

أجوبة: 1) الأفصول المنحني الرئيسي للنقطة $_{0}M_{0}^{\pm}$

 $-\pi < \frac{\pi}{2} \le \pi$: ويما أن $\frac{9\pi}{2} = \frac{8\pi + \pi}{2} = \frac{8\pi}{2} + \frac{\pi}{2} = 4\pi + \frac{\pi}{2} = 2 \times 2\pi + \frac{\pi}{2}$ ويما أن

 M_{0} فان : $\frac{\pi}{2}$ هو الأفصول المنحنى الرئيسي للنقطة

 $-1 < \frac{9}{2} + 2k \le 1$ يعني $k \in \mathbb{Z}$ و $-\pi < \frac{9\pi}{2} + 2k \pi \le \pi$ $-\frac{11}{2} < 2k \le -\frac{7}{2}$ يعني $-1 - \frac{9}{2} < -\frac{9}{2} + \frac{9}{2} + 2k \le 1 - \frac{9}{2}$

> $-\frac{11}{4} < k \le -\frac{7}{4}$ $= \frac{11}{2} \times \frac{1}{2} < 2k \times \frac{1}{2} \le -\frac{7}{2} \times \frac{1}{2}$ $-2.7 = \frac{-11}{4} < k \le \frac{-7}{4} = -1.7$ يعني

 $\alpha = \frac{9\pi}{2} + 2(-2)\pi = \frac{9\pi}{2} - 4\pi = \frac{9\pi - 8\pi}{2} = \frac{\pi}{2}$ اذن : k = -2

 M_0 ومنه : $\frac{\pi}{2}$ هو الأفصول المنحنى الرئيسي للنقطة

 $M_{\scriptscriptstyle 1}$ الأفصول المنحني الرئيسي للنقطة (2

: فيما أن $\frac{67\pi}{4} = \frac{64\pi + 3\pi}{4} = \frac{64\pi}{4} + \frac{3\pi}{4} = 16\pi + \frac{3\pi}{4} = 2 \times 8\pi + \frac{3\pi}{4}$ وبما أن

 M_1 هو الأفصول المنحنى الرئيسي للنقطة $-\pi<-\frac{\pi}{2}\leq\pi$

 $-1 < \frac{11}{3} + 2k \le 1$ يعني $k \in \mathbb{Z}$ و $-\pi < \frac{11\pi}{3} + 2k \pi \le \pi$

 $-\frac{14}{3} < 2k \le -\frac{8}{3}$ $2k \le -\frac{8}{3}$ $2k \le -\frac{11}{3} < -\frac{11}{3} < \frac{11}{3} + 2k \le 1 - \frac{11}{3}$

 $-2.3 = \frac{7}{3} < k \le \frac{4}{3} = -1.3$ $= \frac{13}{3} < k \le -\frac{4}{3}$ $= \frac{14}{3} \times \frac{1}{2} < 2k \times \frac{1}{2} \le -\frac{8}{3} \times \frac{1}{2}$ $\alpha = \frac{11\pi}{3} + 2(-2)\pi = \frac{11\pi}{3} - 4\pi = \frac{11\pi - 12\pi}{3} = -\frac{\pi}{3}$ اذن : k = -2

Mومنه: $\frac{\pi}{2}$ هو الأفصول المنحنى الرئيسي للنقطة

 M_2 الأفصول المنحني الرئيسي للنقطة (3

 $-\pi < \frac{3\pi}{4} \le \pi$: ويما أن $\frac{67\pi}{3} = \frac{64\pi + 3\pi}{4} = \frac{64\pi}{4} + \frac{3\pi}{4} = 16\pi + \frac{3\pi}{4} = 2 \times 8\pi + \frac{3\pi}{4}$ M_{2} هو الأفصول المنحنى الرئيسي للنقطة

 $-1 < \frac{67}{4} + 2k \le 1$ يعني $k \in \mathbb{Z}$ و $-\pi < \frac{67\pi}{4} + 2k \pi \le \pi$

 $-\frac{71}{4} < 2k \le -\frac{63}{4}$ يعني $-1 - \frac{67}{4} < -\frac{67}{4} + \frac{67}{4} + 2k \le 1 - \frac{67}{4}$

 $-\frac{71}{8} < k \le -\frac{63}{8}$ $= -\frac{71}{4} \times \frac{1}{2} < 2k \times \frac{1}{2} \le -\frac{63}{4} \times \frac{1}{2}$ $-8.8 = \frac{-71}{8} < k \le \frac{-63}{8} = -7.8$

 $\alpha = \frac{67\pi}{4} + 2(-8)\pi = \frac{67\pi}{4} - 16\pi = \frac{67\pi - 64\pi}{4} = \frac{3\pi}{4}$ اذن : k = -8

 $M_{_2}$ هو الأفصول المنحنى الرئيسي للنقطة ومنه : $\frac{3\pi}{2}$

 M_3 الأفصول المنحني الرئيسي للنقطة

 $\frac{19\pi}{3} = \frac{18\pi + \pi}{3} = \frac{18\pi}{3} + \frac{\pi}{3} = 6\pi + \frac{\pi}{3} = 2 \times 3\pi + \frac{\pi}{3}$ $-\pi < \frac{\pi}{3} \le \pi$: ويما أن

 $(\cos x)^2 = \frac{9}{25} \frac{\sin x}{\cos x} (\cos x)^2 = 1 - \frac{16}{25} \frac{\sin x}{\cos x} (\cos x)^2 + \frac{16}{25} = 1$ $\cos x = -\frac{3}{5} \cos x = \frac{3}{5} \cos x = \frac{3}{5} \cos x = -\sqrt{\frac{9}{25}} \cos x = \sqrt{\frac{9}{25}} \cos x = \sqrt{\frac{9}{25}}$ $\cos x = \frac{3}{5}$ ونعلم أن: $\frac{\pi}{2} < x < \frac{\pi}{2}$ يعني $\cos x \ge 0$ يعني $\cos x (1 + \tan x) = \frac{1}{3} \cdot \frac{\pi}{2} < x < \pi$ أن : تمرين6: علما أن .2 .3 .4 .5 .6 $\cos x = -\sqrt{\frac{9}{10}} = -\frac{3\sqrt{10}}{10}$ ونعلم أن: $\frac{\pi}{2} < x < \pi$ یعني $\cos x \le 0$ یعني ونعلم .8

$\sin x = -\frac{1}{3} \times \frac{3\sqrt{10}}{10} = -\frac{\sqrt{10}}{10}$ ملخص للعلاقات بين النسب المثلثية

:يعني $\sin x = \tan x \times \cos x$ يعني $\tan x = \frac{\sin x}{\cos x}$

 $1 + \left(\tan x\right)^2 = \frac{1}{\left(\cos x\right)^2}$

وتكتب على شكل مبر هنة

tan x = cos x

 $\cos x$ الجواب:1)حساب

 $\sin x = -\frac{4}{5}$ 9 $-\frac{\pi}{2} < x < \frac{\pi}{2}$ i dal discrete

 $\tan x = \frac{\sin x}{\cos x}$ $\tan x$ $\tan x$ (1)

 $\tan x = \frac{\sin x}{\cos x} = \frac{-\frac{4}{5}}{\frac{3}{2}} = -\frac{4}{5} \times \frac{5}{3} = -\frac{4}{3}$

 $1+(\tan x)^2 = \frac{1}{(\cos x)^2}$ الجواب: 1) نعلم أن:

 $1 + \frac{1}{9} = \frac{1}{\cos^2 x}$ يعني أن : $1 + \left(\frac{1}{3}\right)^2 = \frac{1}{\cos^2 x}$

 $\cos x = -\sqrt{\frac{9}{10}}$ وأو $\cos x = \sqrt{\frac{9}{10}}$

 $\cos^2 x = \frac{9}{10}$ يعني $\cos^2 x = 9$ يعني $\frac{10}{9} = \frac{1}{\cos^2 x}$

 $(\cos x)^2 + (\sin x)^2 = 1$ يعني $\cos^2 x + \sin^2 x = 1$

	-x	$\pi - x$	π+x	$\frac{\pi}{2}-x$	$\frac{\pi}{2} + x$
$\cos x$	$\cos x$	$-\cos x$	$-\cos x$	sinx	$-\sin x$
sin x	$-\sin x$	$\sin x$	-sinx	cosx	$\cos x$
tanx	-tanx	-tanx	tanx	_1_	1_
				tanx	tan x

 النسب المثلثية للقيم الاعتيادية: تمرين7: بسط و أحسب التعابير التالية: $\cos\frac{10\pi}{3}$ $\sin\frac{7\pi}{6}$ $\cos\frac{7\pi}{6}$ $\sin\frac{3\pi}{4}$ $\cos\frac{3\pi}{4}$ $\tan \frac{37\pi}{4}$ $\sin \frac{3\pi}{4}$ $\cos \frac{3\pi}{4}$ $\cos \frac{34\pi}{4}$ $\cos \frac{53\pi}{6}$ $\cos \frac{13\pi}{6}$ $\cos \frac{3\pi}{4} = \cos \left(\frac{4\pi - \pi}{4} \right) = \cos \left(\frac{4\pi}{4} - \frac{\pi}{4} \right) = \cos \left(\pi - \frac{\pi}{4} \right) = -\cos \left(\frac{\pi}{4} \right) = -\frac{\sqrt{2}}{2}$ $\sin\frac{3\pi}{4} = \sin\left(\frac{4\pi - \pi}{4}\right) = \sin\left(\frac{4\pi}{4} - \frac{\pi}{4}\right) = \sin\left(\pi - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$ $\cos\frac{7\pi}{6} = \cos\left(\frac{6\pi + \pi}{6}\right) = \cos\left(\frac{6\pi}{6} + \frac{\pi}{6}\right) = \cos\left(\pi + \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ $\sin \frac{7\pi}{6} = \sin \left(\frac{6\pi + \pi}{6}\right) = \sin \left(\frac{6\pi}{6} + \frac{\pi}{6}\right) = \sin \left(\pi + \frac{\pi}{6}\right) = -\sin \left(\frac{\pi}{6}\right) = -\frac{1}{2}$ $\cos \frac{10\pi}{3} = \cos \left(\frac{9\pi + \pi}{3}\right) = \cos \left(\frac{9\pi}{3} + \frac{\pi}{3}\right) = \cos \left(3\pi + \frac{\pi}{3}\right) = \cos \left(2\pi + \pi + \frac{\pi}{3}\right)$

				$\cos \frac{10\pi}{3} = 0$	$\cos\left(\pi + \frac{\pi}{3}\right) = -6$	$\cos\left(\frac{\pi}{3}\right) = -$	$\frac{1}{2}$
			- /	()	$\cos\left(2\pi + \frac{\pi}{6}\right) = 0$	(-)	
$\sin\frac{53\pi}{6} = \sin\left(\frac{54\pi - \pi}{6}\right) = \sin\left(\frac{54\pi}{6} - \frac{\pi}{6}\right) = \sin\left(9\pi - \frac{\pi}{6}\right) = \sin\left(8\pi + \pi - \frac{\pi}{6}\right)$							
				$\sin \frac{53\pi}{6}$	$\frac{\pi}{\sin\left(\pi-\frac{\pi}{6}\right)}$	$=\sin\left(\frac{\pi}{6}\right)$	$=\frac{1}{2}$
$\cos \frac{3}{2}$	$\frac{4\pi}{3} = \cos\left(\frac{3\pi}{3}\right)$	$\left(\frac{3\pi+\pi}{3}\right)=$	$\cos\left(\frac{33\pi}{3} + \frac{33\pi}{3}\right)$	$\left(\frac{\pi}{3}\right) = \cos\left(11\pi + \frac{\pi}{3}\right)$	$\left(\frac{\pi}{3}\right) = \cos\left(10\pi\right)$	$+\pi + \frac{\pi}{3} = \frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
		- ,		,	$\cos\left(\pi + \frac{\pi}{3}\right) = -$		
				3π sin	$n\left(\frac{3\pi}{4}\right)$	$\frac{\sqrt{2}}{2}$	
			t	$an \frac{4}{4} = \frac{1}{co}$	$\frac{a\left(\frac{3\pi}{4}\right)}{s\left(\frac{3\pi}{4}\right)} = \frac{a}{-\frac{3\pi}{4}}$	$\frac{2}{\sqrt{2}} = -$	-1
	tan-	$\frac{87\pi}{4}$ = tan	$\left(\frac{36\pi+\pi}{4}\right)$	$=\tan\left(\frac{36\pi}{4} + \frac{\pi}{4}\right)$	$=\tan\left(9\pi+\frac{\pi}{4}\right)$	$=\tan\left(\frac{\pi}{4}\right)$	=1
			(سط التعابير ا		تم
	A = si	$n(\pi-x)$	$\times \cos\left(\frac{\pi}{2}\right)$	$\left(\frac{x}{2}-x\right)-\sin\left(\frac{x}{2}\right)$	$\left(\frac{\pi}{2} - x\right) \times \cos(x)$	$(\pi-x)$.1
				E	$B = \frac{\sin x + \sin x}{\cos(\pi + \sin x)}$	$\frac{(\pi-x)}{(-x)}$.2
		<i>C</i> =	$=\cos\left(\frac{5}{2}\right)$	$\left(\frac{6\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right)$	$\left(\frac{5\pi}{6}\right)$ - tan	$\left(\frac{5\pi}{6}\right)$.3
	D = s	sin (11 <i>1</i>	$(\tau - x) +$	$\cos(5\pi + x)$	$+\cos(14$	$(\pi - x)$.4
			i	$E = \tan(\pi - \pi)$	-x) + tan (x	$(\pi + x)$.5
				$F = \cos \theta$	$s^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{\pi}{5}\right)$	$2\left(\frac{3\pi}{10}\right)$.6
$G = \infty$	$\cos\left(\frac{\pi}{7}\right) + c$	$\cos\left(\frac{2\pi}{7}\right)$	$+\cos\left(\frac{3\pi}{7}\right)$		$-\cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right)$	(/	.7
	H = si	$ \ln^2\left(\frac{\pi}{8}\right) $	+ sin ² ($\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right)$	$\left(\frac{5\pi}{8}\right) + \sin^2\theta$	$\left(\frac{7\pi}{8}\right)$.8
A = s	$\sin(\pi-x)$	$(x) \times \cos(x)$	$\left(\frac{\pi}{2}-x\right)$	$-\sin\left(\frac{\pi}{2}-x\right)$	$\times \cos(\pi - x)$	بة:1) (؛	أجو
			,	` /	$(x) = \sin^2 x +$		
B =	$\frac{\sin x + \sin x}{\cos x}$	$\frac{\ln(\pi-x)}{\pi-x}$	$\frac{x}{x} = \frac{\sin x}{x}$	$\frac{x + \sin x}{-\cos x} =$	$-\frac{2\sin x}{\cos x} = -\frac{1}{\cos x}$	-2 tan <i>x</i>	(2
	`	,			$\left(\frac{6\pi-\pi}{6}\right)$ - tan		
`	- /	. /	· · /	, ,	$-\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right)$,	
	`	·	` /	` /	. ,	` / `	. /
<i>C</i> :	$=-\frac{\sqrt{3}}{2}+\frac{1}{2}$	$+\frac{6}{\cos\left(\frac{\pi}{6}\right)}$	$\left(\frac{7}{2}\right) = -\frac{\sqrt{3}}{2} +$	$\frac{1}{2} + \frac{2}{\sqrt{3}} = -\frac{\sqrt{3}}{2}$	$+\frac{1}{2} + \frac{\sqrt{3}}{3} = -\frac{3}{3}$	$\frac{\sqrt{3}}{6} + \frac{3}{6} + \frac{2}{6}$	6
		0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
S	sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	
($\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
<u> </u>				I	<u></u>	$C = \frac{3-}{4}$	$\sqrt{3}$
		D = s	in(11π–	$(x) + \cos(5\pi$	$(+x)+\cos(1$,)
	D	. (10	\	(4) /	···)	\

 $E = \tan(\pi - x) + \tan(\pi + x) = -\tan(x) + \tan(x) = 0$ (5) $F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{3\pi}{10}\right)$ (6)

 $D = \sin(\pi - x) + \cos(\pi + x) + \cos(-x)$

 $D = \sin(x) - \cos(x) + \cos(x) = \sin(x)$

 $D = \sin(10\pi + \pi - x) + \cos(4\pi + \pi + x) + \cos(2 \times 7\pi - x)$

 $B = 2\left(\cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8}\right)$ $\frac{3\pi}{8} = \frac{\pi}{2} - \frac{\pi}{8}$ يعني: $\frac{\pi}{8} + \frac{3\pi}{8} = \frac{\pi}{2}$ ونلاحظ أيضا أن: $B = 2\left(\cos^2\frac{\pi}{8} + \cos^2\left(\frac{\pi}{2} - \frac{\pi}{8}\right)\right) = 2\left(\cos^2\frac{\pi}{8} + \sin^2\left(\frac{\pi}{8}\right)\right) = 2 \times 1 = 2$ $C = \sin^2 \frac{\pi}{12} + \sin^2 \frac{3\pi}{12} + \sin^2 \frac{5\pi}{12} + \sin^2 \frac{7\pi}{12} + \sin^2 \frac{9\pi}{12} + \sin^2 \frac{11\pi}{12} (3\pi)$ $\frac{11\pi}{12} = \pi - \frac{\pi}{12}$ نلاحظ أنُ: $\frac{\pi}{12} + \frac{11\pi}{12} = \pi$ يعني: $\frac{9\pi}{12} = \pi - \frac{3\pi}{12}$: يعني $\frac{3\pi}{12} + \frac{9\pi}{12} = \pi$ $\frac{7\pi}{12} = \pi - \frac{5\pi}{12}$: يعني $\frac{5\pi}{12} + \frac{7\pi}{12} = \pi$ $C = \sin^2 \frac{\pi}{12} + \sin^2 \frac{3\pi}{12} + \sin^2 \frac{5\pi}{12} + \sin^2 \left(\pi - \frac{5\pi}{12}\right) + \sin^2 \left(\pi - \frac{3\pi}{12}\right) + \sin^2 \left(\pi - \frac{\pi}{12}\right)$ $C = \sin^2 \frac{\pi}{12} + \sin^2 \frac{3\pi}{12} + \sin^2 \frac{5\pi}{12} + \sin^2 \left(\frac{5\pi}{12}\right) + \sin^2 \left(\frac{3\pi}{12}\right) + \sin^2 \left(\frac{\pi}{12}\right)$ $C = 2\sin^2\frac{\pi}{12} + 2\sin^2\frac{3\pi}{12} + 2\sin^2\frac{5\pi}{12} = 2\sin^2\frac{\pi}{12} + 2\sin^2\frac{5\pi}{12} + 2\sin^2\frac{\pi}{4}$ $C = 2\sin^2\frac{\pi}{12} + 2\sin^2\frac{3\pi}{12} + 2\sin^2\frac{5\pi}{12} = 2\left(\sin^2\frac{\pi}{12} + \sin^2\frac{5\pi}{12}\right) + 2\left(\frac{\sqrt{2}}{2}\right)^2$ $\frac{5\pi}{12} = \frac{\pi}{2} - \frac{\pi}{12}$ يعني: $\frac{\pi}{12} + \frac{5\pi}{12} = \frac{\pi}{2}$ ونلاحظ أيضا أن: $C=2\left(\sin^2\frac{\pi}{12}+\sin^2\left(\frac{\pi}{2}-\frac{\pi}{12}\right)\right)+1=2\left(\sin^2\frac{\pi}{12}+\cos^2\left(\frac{\pi}{12}\right)\right)+1=2\times 1+1=3$ ومنه: تمرين10: أحسب وبسط $A = \sin(\pi + x) - \cos(\pi - x) - \sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} + x\right)$ $B = \sin(6\pi + x) - \cos(3\pi - x) + \sin\left(-\frac{\pi}{2} - x\right) - \cos\left(\frac{3\pi}{2} + x\right)$ $C = \sin(x - 7\pi) - \cos\left(\frac{5\pi}{2} + x\right) + \sin(x + 11\pi) + \cos\left(\frac{-3\pi}{2} - x\right)$ $A=\sin(\pi+x)-\cos(\pi-x)-\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}+x\right)=-\sin x+\cos x-\cos x+\sin x=0$ $B = \sin(6\pi + x) - \cos(3\pi - x) + \sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{3\pi}{2} + x\right)$ $B = \sin(2\times3\pi + x) - \cos(2\pi + \pi - x) + \sin\left(-\left(\frac{\pi}{2} + x\right)\right) - \cos\left(\frac{4\pi - \pi}{2} + x\right)$ $B = \sin(x) + \cos(x) - \cos(x) - \cos\left(2\pi - \frac{\pi}{2} + x\right) = \sin(x) - \cos\left(-\left(\frac{\pi}{2} - x\right)\right)$ $B = \sin(x) - \cos\left(\frac{\pi}{2} - x\right) = \sin(x) - \sin(x) = 0$ $C = \sin(x - 7\pi) - \cos\left(\frac{5\pi}{2} + x\right) + \sin(x + 11\pi) + \cos\left(\frac{-3\pi}{2} - x\right)$ $C = \sin\left(x - \pi - 6\pi\right) - \cos\left(\frac{4\pi + \pi}{2} + x\right) + \sin\left(x + 1\pi + 10\pi\right) + \cos\left(\frac{-4\pi + \pi}{2} - x\right)$ $C = \sin(x - \pi) - \cos\left(\frac{\pi}{2} + x\right) + \sin(x + \pi) + \cos\left(\frac{\pi}{2} - x\right)$ $C = \sin(-(\pi - x)) - \cos(\frac{\pi}{2} + x) + \sin(x + \pi) + \sin x$ $C = -\sin(\pi - x) - \cos\left(\frac{\pi}{2} + x\right) + \sin(x + \pi) + \sin x$ $C = -\sin(x) + \sin(x) - \sin(x) + \sin(x) = 0$ تمرين 11: بين أن : $(\cos x + \sin x)^2 + (\cos x - \sin x)^2 = 2.1$ $\cos^4 x - \cos^2 x + \sin^2 x - \sin^4 x = 0$.2 $\cos^4 x + \sin^4 x = 1 - 2\cos^2 x \times \sin^2 x$.3 $\cos^4 x - \sin^4 x + 2 \times \sin^2 x = 1$.4 $\cos^{6} x + \sin^{6} x + 3\cos^{2} x \times \sin^{2} x = 1$.5

 $\frac{\pi}{5} + \frac{3\pi}{10} = \frac{2\pi}{10} + \frac{3\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}$ $\frac{3\pi}{10} = \frac{\pi}{2} - \frac{\pi}{5}$ يعني $\frac{\pi}{5} + \frac{3\pi}{10} = \frac{\pi}{2}$ $F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{\pi}{2} - \frac{\pi}{5}\right) = \cos^2\left(\frac{\pi}{5}\right) + \cos^2\left(\frac{\pi}{5}\right) = 1$ $G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$ (7) $\frac{\pi}{7} = \pi - \frac{6\pi}{7}$ يعني: $\frac{\pi}{7} + \frac{6\pi}{7} = \pi$ نلاحظ أنُ: $\frac{5\pi}{7} = \pi - \frac{2\pi}{7}$ يعني: $\frac{2\pi}{7} + \frac{5\pi}{7} = \pi$ $\frac{4\pi}{7} = \pi - \frac{3\pi}{7}$ يعني: $\frac{3\pi}{7} + \frac{4\pi}{7} = \pi$ $G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\pi - \frac{3\pi}{7}\right) + \cos\left(\pi - \frac{2\pi}{7}\right) + \cos\left(\pi - \frac{\pi}{7}\right)$ $G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) - \cos\left(\frac{2\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right) = 0$ $H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{5\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right)$ (8) $\frac{7\pi}{8} = \pi - \frac{\pi}{8}$ نلاحظ أنُ: $\frac{\pi}{8} + \frac{7\pi}{9} = \pi$ يعني: $\frac{5\pi}{8} = \pi - \frac{3\pi}{8}$ يعني: $\frac{3\pi}{8} + \frac{5\pi}{8} = \pi$ $H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\pi - \frac{3\pi}{8}\right) + \sin^2\left(\pi - \frac{\pi}{8}\right)$ $H = +\sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{\pi}{8}\right) = 2\sin^2\left(\frac{\pi}{8}\right) + 2\sin^2\left(\frac{3\pi}{8}\right)$ $\frac{3\pi}{8} = \pi - \frac{\pi}{8}$ يعني: $\frac{\pi}{8} + \frac{3\pi}{8} = \frac{\pi}{2}$ ينلاحظ أيضا أن: $H = 2\sin^2\left(\frac{\pi}{8}\right) + 2\sin^2\left(\frac{\pi}{2} - \frac{\pi}{8}\right)$ ومنه: $H = 2\sin^2\left(\frac{\pi}{8}\right) + 2\cos^2\left(\frac{\pi}{8}\right) = 2\left(\sin^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{\pi}{8}\right)\right) = 2 \times 1 = 2$ تمرين9: بسط التعابير التالية : $\frac{\pi}{5} + \sin \frac{\pi}{5} + \cos \frac{4\pi}{5} - 2\sin \frac{4\pi}{5} + \cos \frac{3\pi}{10}$ (1) $B = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{7\pi}{8} + \cos^2 \frac{5\pi}{8}$ (2) $C = \sin^2 \frac{\pi}{12} + \sin^2 \frac{3\pi}{12} + \sin^2 \frac{5\pi}{12} + \sin^2 \frac{7\pi}{12} + \sin^2 \frac{9\pi}{12} + \sin^2 \frac{11\pi}{12}$ (3) $A = \cos\frac{\pi}{5} + \sin\frac{\pi}{5} + \cos\frac{4\pi}{5} - 2\sin\frac{4\pi}{5} + \cos\frac{3\pi}{10}$ (1) $\frac{3\pi}{10} = \frac{\pi}{2} - \frac{\pi}{5}$ يعني: $\frac{\pi}{5} + \frac{3\pi}{10} = \frac{\pi}{2}$ نلاحظ أن: أن: $\frac{4\pi}{5} = \pi - \frac{\pi}{5}$ يعني: $\frac{\pi}{5} + \frac{4\pi}{5} = \pi$ $A = \cos\frac{\pi}{5} + \sin\frac{\pi}{5} + \cos\left(\pi - \frac{\pi}{5}\right) - 2\sin\left(\pi - \frac{\pi}{5}\right) + \cos\left(\frac{\pi}{2} - \frac{\pi}{5}\right)$ $A = \cos\frac{\pi}{5} + \sin\frac{\pi}{5} - \cos\left(\frac{\pi}{5}\right) - 2\sin\left(\frac{\pi}{5}\right) + \sin\left(\frac{\pi}{5}\right) = 0$ $B = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$ (2) $\frac{7\pi}{8} = \pi - \frac{\pi}{8}$ يعني: $\frac{\pi}{8} + \frac{7\pi}{8} = \pi$ نلاحظ أن: $\frac{5\pi}{8} = \pi - \frac{3\pi}{8}$ يعني: $\frac{3\pi}{8} + \frac{5\pi}{8} = \pi$ $B = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \left(\pi - \frac{3\pi}{8}\right) + \cos^2 \left(\pi - \frac{\pi}{8}\right)$ $B = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \left(-\cos \frac{3\pi}{8}\right)^2 + \left(-\cos \frac{\pi}{8}\right)^2 : 2\pi = 1$ $B = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{\pi}{8} = 2\cos^2 \frac{\pi}{8} + 2\cos^2 \frac{3\pi}{8}$

 $(\cos x + \sin x)^2 + (\cos x - \sin x)^2 = (1 \frac{1}{2}$ $=\cos^2 x + 2\cos x \times \sin x + \sin^2 x + \cos^2 x - 2\cos x \times \sin x + \sin^2 x$ $=2\cos^2 x + 2\sin^2 x = 2(\cos^2 x + \sin^2 x) = 2 \times 1 = 2$ $\cos^4 x - \cos^2 x + \sin^2 x - \sin^4 x = \left(\cos^2 x\right)^2 - \left(\sin^2 x\right)^2 - \cos^2 x + \sin^2 x \quad (2$ $=(\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) - \cos^2 x + \sin^2 x$ $=(\cos^2 x - \sin^2 x) \times 1 - \cos^2 x + \sin^2 x = \cos^2 x - \sin^2 x - \cos^2 x + \sin^2 x = 0$ $\cos^4 x + \sin^4 x = 1 - 2\cos^2 x \times \sin^2 x$ (3) $(\cos^2 x + \sin^2 x)^2 = (\cos^2 x)^2 + 2\cos^2 x \times \sin^2 x + (\sin^2 x)^2$: نعلم أن $(\cos^2 x + \sin^2 x)^2 = \cos^4 x + \sin^4 x + 2\cos^2 x \times \sin^2 x$ $(1)^2 = \cos^4 x + \sin^4 x + 2\cos^2 x \times \sin^2 x$: $1-2\cos^2 x \times \sin^2 x = \cos^4 x + \sin^4 x$: يعنى $????\cos^4 x - \sin^4 x + 2 \times \sin^2 x = 1$ (4) $\cos^4 x - \sin^4 x + 2 \times \sin^2 x = (\cos^2 x)^2 - (\sin^2 x)^2 + 2 \times \sin^2 x$ $=(\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) + 2 \times \sin^2 x$ $=\cos^2 x - \sin^2 x + 2 \times \sin^2 x = \cos^2 x + \sin^2 x = 1$ $(\cos^2 x + \sin^2 x)^3 = \cos^6 x + 3\cos^4 x + 3\cos^2 x \times \sin^4 x + \sin^6 x$ نعلم أن: (5 $1 = \cos^6 x + \sin^6 x + 3\sin^2 x \cos^4 x + 3\cos^2 x \times \sin^4 x$: يعني $1 = \cos^6 x + \sin^6 x + 3\sin^2 x \cos^2 x \left(\sin^2 x + \cos^2 x\right)$ يعني: $\cos^6 x + \sin^6 x + 3\sin^2 x \cos^2 x = 1$:

 « c'est en forgeant que l'on devient forgeron » dit un proverbe.
 c'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien