DATABASE ESSENTIALS

Lecture 7

INTRODUCTION TO SQL

- SQL is the standard relational database language.
- SQL is a standard language for storing, manipulating and retrieving data in databases.
- Parts of SQL language
 - Data Definition Language (DDL)
 - Data Manipulation Language (DML)
 - Embedded SQL and Dynamic SQL

INTRODUCTION TO SQL...

Data Definition Language (DDL)

- DDL provide commands for defining the relations, deleting the relations and modifying the existing relation schemas.
- Types of DDL
 - View Definition Language (VDL)
 - The DDL that provide commands for defining and dropping the views.
 - Integrity
 - The DDL that provide commands for specifying integrity constraints that must be satisfied by the data stored in the database.
 - Authorization
 - The DDL provide commands for specifying access rights to the relations and views.

INTRODUCTION TO SQL...

Data Manipulation Language (DML)

• DML provides the ability to query information from the database and to insert tuples into, delete tuples from, and modify tuples in the database.

Embedded SQL and Dynamic SQL

- Embedded SQL defines how SQL statements can be embedded within general purpose programming languages like C, C++, Java etc.
- The language in which SQL queries are embedded is referred to as a host language.
- Dynamic SQL allows programs to construct and submit SQL queries at run time.

Some SQL data types are:-

- char(n): A fixed-length character string with user-specified length n.
- varchar(n): A variable-length character string with user-specified maximum length n.
- int: An integer.
- **smallint**: A small integer, a subset of integer type.

Some SQL data types are:-

numeric(p, d): A fixed-point number with user-specified precision.

The number consists of p digits (plus a sign), and d is the number of digits after the decimal point.

Example, **numeric(3,1)** allows 44.5 to be stored exactly. Neither 444.5 nor 0.32 can be stored exactly in a field of this type.

date: It is used to store date and time values.

Schema Definition

• An SQL database is defined by using the **create database** command.

- Command: CREATE DATABASE database;
- Example: CREATE DATABASE college;

Schema Definition

- An SQL relation is defined by using the create table command.
- Example: Create a relation department in the database.

```
CREATE TABLE department
(dept_name varchar (20),
building varchar (15),
budget numeric (12,2),
primary key (dept_name));
```

- To remove a relation from an SQL database, use the drop table command.
- Example: DROP TABLE department;

- Tuples are deleted from a relation using a delete command.
- Example:

DELETE FROM department;

This command delete all tuples from the department relation.

DATA MANIPULATION...

- Data is loaded into a relation using the insert command.
- Example:

INSERT INTO department **VALUES**('ICT', 'Block 1',20000.00);

 The values are specified in the order in which the corresponding attributes are listed in the relation schema.

BASIC STRUCTURE OF SQL QUERIES

- The basic structure of an SQL query consists of three clauses: select, from, and where.
- The select clause is used to list the attributes desired in the result of a query.
- The from clause is a list of the relations to be accessed in the evaluation of the query.
- The where clause is a predicate involving attributes of the relation in the from clause.

BASIC STRUCTURE OF SQL QUERIES...

- Example: SELECT name FROM department
- To eliminate duplicates, insert the keyword distinct after select.
- Example:
 SELECT DISTINCT first_name FROM student;

BASIC STRUCTURE OF SQL QUERIES...

- The select clause may contain arithmetic expressions involving the operators +, -, *, and / operating on attributes of tuples.
- Example
 SELECT ID, name, dept_name, salary * 1.1 FROM instructor;
- The where clause allows the selection of only those rows in the result relation that satisfy a specified predicate.
- Example:
 - "Find the names of all instructors in the ICT department who have salary greater than Tsh. 3,000,000."
 - The query will be written as:
 - **SELECT** name **FROM** instructor **WHERE** dept_name = 'ICT' **and** salary > 3000000;

BASIC STRUCTURE OF SQL QUERIES...

- Queries on multiple relations
- Example

Consider the relations below

dept_nam e	building	budget
ICT	Block A	1200000
Metrology	Met House	1000000
ВА	Block B	2000000

department

ID	name	dept_nam e	salary
10	James	ICT	12000
11	Hassan	ВА	10000
12	Neem a	ICT	20000
13	Brenda	ICT	43000
14	Salma	Metrology	50000

instructor

To select the instructor name, department name and the building, the query is as follows:-**SELECT** name, instructor.dept_name, building **FROM** instructor, department **WHERE** instructor.dept_name = department.dept_name;

"If you are working on something that you really care about, you don't have to be pushed. The vision pulls you." - Steve Jobs