A Book of Abstract Algebra (2nd Edition)

	Chapter 27, Problem 5EJ	Bookmark	Show all steps: ON	K
	Pro	oblem		
	Suppose $a(x) \cong F[x]$, and K is an extension of F . An element $c \in K$ is called a multiple root of $a(x)$ if $(x-c)^m a(x)$ for some $m>1$. It is often important to know if all the roots of a polynomial are different, or not. We now consider a method for determining whether an arbitrary polynomial $a(x) \cong F[x]$ has multiple roots in any extension of F .			>
	Let K be any field containing all the roots of $a(x)$). Suppose <i>a</i> (<i>x</i>) has a i	multiple root <i>c</i> .	
	Using part 4, explain why none of the roots c_1 ,	, c_n of $a(x)$ are roots	of <i>a</i> ′(<i>x</i>).	
	Step-by-s	tep solution		
	Step	1 of 3 ^		
	Consider that K is any field that contains all the roots of polynomial $a(x) = a_0 + a_1x + \cdots + a_nx^n$. Assume that $a(x)$ has no multiple roots. Then polynomial $a(x)$ can be factored as			
	$a(x) = (x - c_1) \cdots (x - c_n)$			
	where $c_1,,c_n$ are all distinct.			
	Objective is to prove that the roots $c_1,,c_n$ of $a(x)$ will not be the roots of $a'(x)$.			
	Comment			
	Step 2 of 3			
	The derivative of polynomial $a(x)$ will be the sum of terms of the following form:			
	$(x-c_1)\cdots(x-c_{i-1})(x-c_{i+1})\cdots(x-c_n)$			
	Here, each time, differentiation of one term take	es place.		
	Observe that, in $a'(x)$, the factor $(x-c_i)$ is not c_i in $a'(x)$, the derivative will not get vanish. T			
	Comment			
	Step	3 of 3 ^		
	Hence, none of the roots $c_1,,c_n$ of $a(x)$ are the roots of $a'(x)$.			
	Comment			

2 4 B