

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 19) 10.ABRIL.2023

Ejemplo 1: Sea (X, \mathcal{A}, μ) un espacio de medida, $\mathbf{x} \in X$, y sea $\mu = \delta_{\mathbf{x}}$, la medida de masa unitaria en \mathbf{x} . Para una función $f \in \mathcal{M}^+(\mathcal{A})$, ¿Cómo se calcula $\int f d\mu$?

Sea $f \in \mathcal{E}^+(\mathcal{A})$, con representación estándar $f = \sum_{i=1}^m c_i \, \mathbf{1}_{\mathsf{A}_i}$.

Como $X = \bigcup A_i$, entonces **x** pertenece exactamente a uno de los $A_i \in \mathcal{A}$. Digamos, $\mathbf{x} \in A_{i_0}$. Entonces

$$f(\mathbf{x}) = \sum_{i=1}^{m} c_i \, \mathbf{1}_{A_i}(\mathbf{x}) = c_{i_0} \, \mathbf{1}_{A_{i_0}} = c_{i_0}.$$

De ahí que

$$\int f d\delta_{\mathbf{x}} = I_{\delta_{\mathbf{x}}}(f) = \sum_{i=1}^{m} c_{i} \, \delta_{\mathbf{x}}(A_{i}) = c_{i_{0}} \, \delta_{\mathbf{x}}(A_{i_{0}}) = c_{i_{0}} = f(\mathbf{x}).$$

Tomemos ahora $f \in \mathcal{M}^+(\mathcal{A})$. Por el Lema del Sombrero, existe una secuencia de funciones simples no-negativas $\{f_n\}_{n\geq 1} \subseteq \mathcal{E}^+(\mathcal{A})$, tal que $f_n \nearrow f$. Del Teorema de Beppo Levi, tenemos

$$\int f \, d\delta_{\mathbf{x}} = \int (\sup_{n} f_{n}) \, d\delta_{\mathbf{x}} = \sup_{n} \int f_{n} \, d\delta_{\mathbf{x}} = \sup_{n} f_{n}(\mathbf{x})$$
$$= f(\mathbf{x}).$$

Portanto,
$$\int f \, d\delta_{\mathbf{x}} = f(\mathbf{x})$$
.

Ejemplo 2: Sea (X, A, μ) un espacio de medida, $\mathbf{x}_1, \mathbf{x}_2 \in X$, y sea $\mu = \delta_{\mathbf{x}_1} + \delta_{\mathbf{x}_2}$. Calcular $\int f d\mu$, para $f \in \mathcal{M}^+(A)$.

En el caso de una función simple $f\in\mathcal{E}^+(\mathcal{A})$, con representación estándar $f=\sum c_i\,\mathbf{1}_{\mathsf{A}_i}.$

Como $X = \bigcup A_i$, entonces \mathbf{x}_j pertenece exactamente a uno de los $A_i \in \mathcal{A}$. Digamos, $\mathbf{x}_1 \in A_{i_1}$ y $\mathbf{x}_2 \in A_{i_2}$.

Entonces

$$f(\mathbf{x}_1) = \sum_{i=1}^m c_i \, \mathbf{1}_{A_i}(\mathbf{x}_1) = c_{i_1}, \qquad \mathsf{y} \qquad f(\mathbf{x}_2) = \sum_{i=1}^m c_i \, \mathbf{1}_{A_i}(\mathbf{x}_2) = c_{i_2}.$$

De ahí que

$$\int f d\mu = I_{\mu}(f) = \sum_{i=1}^{m} c_{i} \mu(A_{i}) = \sum_{i=1}^{m} c_{i} (\delta_{\mathbf{x}_{1}} + \delta_{\mathbf{x}_{2}})(A_{i}) = c_{i_{1}} + c_{i_{2}}$$

$$= f(\mathbf{x}_{1}) + f(\mathbf{x}_{2}).$$

Tomemos ahora $f \in \mathcal{M}^+(\mathcal{A})$.

Al igual que en el ejemplo anterior, por el Lema del Sombrero, existe una secuencia de funciones simples no-negativas $\{f_n\}_{n\geq 1}\subseteq \mathcal{E}^+(\mathcal{A})$, tal que $f_n\nearrow f$. Del Teorema de Beppo Levi, tenemos

$$\int f d\mu = \int (\sup_{n} f_{n}) d\mu = \sup_{n} \int f_{n} d\mu = \sup_{n} \int f_{n} (\delta_{\mathbf{x}_{1}} + \delta_{\mathbf{x}_{2}})$$

$$= \sup_{n} (f_{n}(\mathbf{x}_{1}) + f_{n}(\mathbf{x}_{2}))$$

$$= f(\mathbf{x}_{1}) + f(\mathbf{x}_{2}).$$

Portanto,
$$\int f \, d\mu = f(\mathbf{x}_{\scriptscriptstyle 1}) + f(\mathbf{x}_{\scriptscriptstyle 2})$$
, para toda $f \in \mathcal{M}^+(\mathcal{A})$. \Box

Ejemplo 3: Sea (X, \mathcal{A}, μ) un espacio de medida, $\{\mathbf{x}_n\}_{n\geq 1}\subseteq X$, y sea $\mu=\sum_{n\geq 1}\alpha_n\,\delta_{\mathbf{x}_n}$, $\alpha_n\geq 0$.

Calculamos $\int f \, d\mu$, para $f \in \mathcal{M}^+(\mathcal{A})$. En el caso de una función simple $f \in \mathcal{E}^+(\mathcal{A})$, con representación estándar $f = \sum_{m=0}^{m} c_i \, \mathbf{1}_{A_i}$.

Supongamos que $\mathbf{x}_n \in A_{i_n}$. Para cada $n \geq$ 1, tenemos $f(\mathbf{x}_n) = \sum_i c_i \, \mathbf{1}_{A_i}(\mathbf{x}_n) = c_{i_n}$. Luego,

$$\int_{X} f d\mu = I_{\mu}(f) = \sum_{i=1}^{m} c_{i} \mu(A_{i}) = \sum_{i=1}^{m} c_{i} \sum_{n\geq 1} \alpha_{n} \delta_{\mathbf{x}_{n}}(A_{i}) = \sum_{i=1}^{m} \sum_{n\geq 1} \alpha_{n} \delta_{\mathbf{x}_{n}}(A_{i})$$

$$= \sum_{n\geq 1} \alpha_{n} \sum_{i=1}^{m} c_{i} \delta_{\mathbf{x}_{n}}(A_{i}) = \sum_{n\geq 1} \alpha_{n} \sum_{i=1}^{m} c_{i} \mathbf{1}_{A_{i}}(\mathbf{x}_{n}) = \sum_{n\geq 1} \alpha_{n} f(\mathbf{x}_{n}).$$

El Lema del Sombrero, garantiza que si $f \in \mathcal{M}^+(\mathcal{A})$, existe una secuencia $\{f_k\}_{k\geq 1} \subseteq \mathcal{E}^+(\mathcal{A})$, con $f_k \nearrow f$. Del Teorema de Beppo Levi, tenemos

$$\int f d\mu = \int (\sup_{k} f_{k}) d\mu = \sup_{k} \int f_{k} d\mu = \sup_{k} \sum_{n \geq 1} \alpha_{n} f_{k}(\mathbf{x}_{n})$$
$$= \sum_{n \geq 1} \alpha_{n} \sup_{k} f_{k}(\mathbf{x}_{n}) = \sum_{n \geq 1} \alpha_{n} f(\mathbf{x}_{n}).$$

Eiemplos

Ejemplo 4: Sea $(X, \mathcal{A}, \mu) = (\Omega, \mathcal{F}, \mathbb{P})$ es un espacio de probabilidad discreta. Esto es,

$$\Omega=\{\omega_n\}_{n\geq 1}$$
, $\mathbb{P}(\omega_n)=p_n$ y $\sum_{n\geq 1}p_n=1$.

En este caso, si $g=\sum_{i=1}^m c_i\,\mathbf{1}_{A_i}\in\mathcal{E}^+(\mathcal{F})$, para cada $n\geq$ 1, tenemos

$$g(\omega_n) = \sum_{i=1}^m c_i \, \mathbf{1}_{A_i}(\omega_n) = c_{i_n}.$$
 Luego,

$$\int_{\Omega}^{l=1} g d\mathbb{P} = I_{\mathbb{P}}(g) = \sum_{i=1}^{m} c_{i} \mathbb{P}(A_{i}) = \sum_{i=1}^{m} c_{i} \sum_{n \geq 1} p_{n} \delta_{\omega_{n}}(A_{i}) = \sum_{i=1}^{m} \sum_{n \geq 1} p_{n} \delta_{\omega_{n}}(A_{i})$$

$$= \sum_{i=1}^{m} p_{n} \sum_{i=1}^{m} c_{i} \delta_{\omega_{n}}(A_{i}) = \sum_{i=1}^{m} p_{n} \sum_{i=1}^{m} c_{i} \mathbf{1}_{A_{i}}(\omega_{n}) = \sum_{i=1}^{m} p_{n} g(\omega_{n}).$$

En particular
$$\int_{\Omega} g d\mathbb{P} = \sum_{n\geq 1} p_n g(\omega_n) = \mathbb{E}(g).$$

El mismo argumento usado en los ejemplos anteriores (Lema del Sombrero + Beppo Levi), garantiza que para funciones mesurables no-negativas $g \in \mathcal{M}^+(\mathcal{F})$, vale

$$\int_{\Omega} g d\mathbb{P} = \sum_{n\geq 1} p_n g(\omega_n) = \mathbb{E}(g).$$

¿Qué ocurre en el caso de distribuciones continuas? Si $X:\Omega\to\mathbb{R}$ es una v.a. continua, con distribución $F(t)=\mathbb{P}(X\leq t)=\mathbb{P}(-\infty,t)$, y si f_X es la función de densidad, entonces recordemos que $F=\mu=X_*\mathbb{P}$ es el pushforward de \mathbb{P} bajo X.

Para $g:\mathbb{R}
ightarrow \mathbb{R}$ una función simple no-negativa, con representación estándar

$$g=\sum_{i=1}^m c_i\,\mathbf{1}_{B_i}$$
, donde los $B_i\in\mathcal{B}(\mathbb{R})$. Como $A_i=X^{-1}(B_i)\in\mathcal{F}$ (pues X es v.a.), entonces

$$\int_{\mathbb{R}} g d\mu = I_{\mu}(g) = \sum_{i=1}^m c_i \mu(B_i) = \sum_{i=1}^m c_i \mathbb{P}(X^{-1}(B_i)) = \sum_{i=1}^m c_i \mathbb{P}(A_i) = I_{\mathbb{P}}(g) = \int_{\Omega} g d\mathbb{P}.$$

Observe además que

$$\mathbb{E}_{X}(g) = \int_{\mathbb{R}} g(t) f_{X}(t) dt = \int_{\mathbb{R}} g(t) dF(t) = \int_{\mathbb{R}} g(t) d\mu(t) = \int_{\mathbb{R}} g d\mu = \sum_{i=1}^{m} c_{i} \mu(B_{i})$$

$$= \int_{\Omega} g d\mathbb{P}.$$

El mismo argumento usado en los ejemplos anteriores (Lema del Sombrero + Beppo Levi), garantiza que para funciones mesurables no-negativas $g \in \mathcal{M}^+(\mathcal{F})$, vale

$$oxed{\int_\Omega g\, d\mathbb{P} = \int_\mathbb{R} g(t)\, d extstyle S_X(t) = \mathbb{E}(g).}$$

Sea (X, A, μ) un espacio de medida. Extendemos la integral de Lebesgue $\int d\mu$ de $\mathcal{M}(A)$ a todo $\mathcal{M}(A)$.

Si $f \in \mathcal{M}(A)$, recordemos que f admite siempre una descomposición en la forma

$$f = f^+ - f^-, \qquad \operatorname{con} f^+, f^- \in \mathcal{M}^+(\mathcal{A}).$$

Definición

Diremos que la función $f: X \to \overline{\mathbb{R}}$ es μ -integrable si $f \in \mathcal{M}(A)$ y las siguientes integrales son finitas:

 $\int f^+ \, \mathrm{d} \mu < +\infty \qquad \mathrm{y} \qquad \int f^- \, \mathrm{d} \mu < +\infty.$

En este caso, definimos la **integral de Lebesgue** de f **con respecto de** μ como

$$\int f \, \mathsf{d} \mu = \int f^+ \, \mathsf{d} \mu - \int f^- \, \mathsf{d} \mu \in \mathbb{R}.$$

Obs! Algunos autores (Schilling, por ejemplo) definen f μ -integrable si $f \in \mathcal{M}(\mathcal{A})$ y la diferencia $\int f^+ d\mu - \int f^- d\mu$ hace sentido. Esto es, no es $+\infty - \infty$.

En ese caso $\int f \, d\mu \in \overline{\mathbb{R}}$ y

$$\int f \, d\mu = \begin{cases} \underbrace{\int f^+ \, d\mu}_{\in \mathbb{R}} - \underbrace{\int f^- \, d\mu}_{\in \mathbb{R}} = \in \mathbb{R} \\ \underbrace{\int f^+ \, d\mu}_{+\infty} - \underbrace{\int f^- \, d\mu}_{\in \mathbb{R}} = +\infty \\ \underbrace{\int f^+ \, d\mu}_{-\infty} - \underbrace{\int f^- \, d\mu}_{-\infty} = -\infty \end{cases}$$

Definición

El espacio de funciones $f: X \to \mathbb{R}$ que son μ -integrables se denota por $L_1(\mu)$ o $L^1_{\mathbb{R}}(\mu)$.

Proposición

Sea (X, \mathcal{A}, μ) espacio de medida y sea $f \in \mathcal{M}(\mathcal{A})$ función mesurable. La integral de Lebesgue de f está bien definida. Esto es, si $f = g_1 - h_1$ y $f = g_2 - h_2$, con $g_1, g_2, h_1, h_2 \in \mathcal{M}^+(\mathcal{A})$, entonces

$$\int g_1 \, \mathrm{d}\mu - \int h_1 \, \mathrm{d}\mu = \int g_2 \, \mathrm{d}\mu - \int h_2 \, \mathrm{d}\mu.$$

Prueba: Si $f = g_1 - h_1 = g_2 - h_2$, entonces $g_1 + h_2 = g_2 + h_1$, y $g_1 + h_2$, $g_2 + h_1 \in \mathcal{M}^+(\mathcal{A})$. Usando las propiedades de aditividad de la integral de Lebesgue en $\mathcal{M}^+(\mathcal{A})$, tenemos

$$\int g_1 \, \mathrm{d} \mu + \int h_2 \, \mathrm{d} \mu = \int \left(g_1 + h_2
ight) \, \mathrm{d} \mu = \int \left(g_2 + h_1
ight) \, \mathrm{d} \mu = \int g_2 \, \mathrm{d} \mu + \int h_1 \, \mathrm{d} \mu.$$

Luego,
$$\int g_1 \, d\mu - \int h_1 \, d\mu = \int g_2 \, d\mu - \int h_2 \, d\mu$$
. \Box

Proposición

Sea (X, A, μ) espacio de medida y sea $f \in \mathcal{M}(A)$ función mesurable. Las siguientes son equivalentes:

i)
$$f \in L^1_{\overline{\mathbb{R}}}(\mu)$$
,

ii)
$$f^+, f^- \in L^1_{\overline{w}}(\mu)$$
, (exceptuando el caso $+\infty - \infty$),

iii)
$$|f| \in L^1_{\overline{\mathbb{R}}}(\mu)$$
,

iv) existe
$$w \in L^{\frac{1}{10}}(\mu)$$
, con $w \ge 0$, tal que $|f| \le w$.

Prueba: $[(i) \Leftrightarrow (ii)]$ Es la definición de f ser función μ -integrable.

$$[(ii) \Rightarrow (iii)] \ \mathsf{Como} \ |f| = f^+ + f^- \text{, entonces por linealidad} \\ \int f \ d\mu = \int \left(f^+ + f^- \right) d\mu = \int f^+ \ d\mu + \int f^- \ d\mu \leq \infty.$$

Esto muestra que $|f| \in L^{1}_{\overline{\mathbb{R}}}(\mu)$.

$$[(iii)\Rightarrow (iv)]$$
 Basta tomar $w=|f|\in L^1_{\overline{\mathbb{R}}}(\mu).$

$$[(iv)\Rightarrow (ii)]$$
 Como $f^+,f^-\leq |f|\leq w$, y $w\in L^1_{\overline{\mathbb{D}}}(\mu)$. Por monotonicidad tenemos

$$\int \! f^+ \, \mathrm{d} \mu, \ \int \! f^- \, \mathrm{d} \mu \leq \int \mathrm{w} \, \mathrm{d} \mu \leq \infty,$$

lo que muestra que $f^+,f^-\in L^1_{\overline{\mathbb{R}}}(\mu)$. \Box

Teorema (Propiedades de la integral de Lebesgue)

Sea (X, A, μ) espacio de medida y sean $f, g \in L^1_{\overline{\mathbb{R}}}(\mu)$ funciones μ -integrables, $\alpha \in \mathbb{R}$. Entonces

- i) (homogeneidad) $\alpha f \in L^1_{\overline{\mathbb{D}}}(\mu)$ y $\int \alpha f \, d\mu = \alpha \int f \, d\mu$.
- ii) (linealidad) $f+g\in L^1_{\overline{\mathbb{R}}}(\mu)$ y $\int (f+g)\,d\mu=\int f\,d\mu+\int g\,d\mu.$
- iv) (monotonicidad) $f \leq g \Rightarrow \int f \, \mathrm{d}\mu \leq \int g \, \mathrm{d}\mu.$
- v) (Cauchy-Schwarz) Si $|f| \in L^1_{\overline{\mathbb{R}}}(\mu)$, entonces $|\int f \, d\mu| \leq \int |f| \, d\mu$.

Prueba: Ejercicio!

Observaciones: Sea (X, A, μ) espacio de medida.

• Excluyendo el caso $+\infty-\infty$, la integral de Lebesgue es lineal en $\mathcal{M}(\mathcal{A})$:

$$\int (\alpha f + \beta g) d\mu = \alpha \in f d\mu + \beta \int g d\mu.$$

• De (i) y (ii), $L^1(\mu)$ y $L^1_{\overline{\mathbb{R}}}(\mu)$ son \mathbb{R} -espacios vectoriales. Además, el mapa de integración $\int \cdot d\mu : L^1_{\overline{\mathbb{D}}}(\mu) \longrightarrow \overline{\mathbb{R}}$ dado por

$$f \longmapsto \int f \, d\mu$$

es un funcinal lineal sobre $L^{\frac{1}{10}}(\mu)$.

• El espacio $L^1(\mu)$ es el primero de una familia de espacios más generales, llamados los espacios L^p , $p=1,2,3,\ldots$ (espacio de funciones p-integrables)

$$\mathsf{L}^p(\mu) = \Big\{ f: \mathsf{X} o \mathbb{R}, \ f \in \mathcal{M}(\mathcal{A}) \ \ \mathsf{y} \quad \int |f|^p \ \mathsf{d}\mu < \infty \Big\}.$$

Ejemplo 1: Sea (X, \mathcal{A}, μ) un espacio de medida, $\mathbf{x} \in X$, y sea $\mu = \delta_{\mathbf{x}}$, la medida de masa unitaria en \mathbf{x} . Recordemos que para una función $f \in \mathcal{M}(\mathcal{A})$, vale

$$\int f d\mu = \int f d\delta_{\mathbf{x}} = f(\mathbf{x}).$$

¿Cuáles son las funciones $f \in L^1_{\overline{\mathbb{R}}}(\mu)$?

¿Cuáles son las funciones $f \in L^1(\mu)$?

Observe que

$$f \in L^{1}(\mu) \iff f \in \mathcal{M}(\mathcal{A}) \text{ y } \int f < \infty$$

 $\iff f \in \mathcal{M}(\mathcal{A}) \text{ y } f(\mathbf{x}) < \infty.$

Ejemplo 2: Sea $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ un espacio de medida, donde $\mu = \sum_{n \geq 1} \alpha_n \delta_n$, una medida "discreta". Recordemos que para una función $f \in \mathcal{M}(\mathcal{A})$, vale

$$\int f \, \mathrm{d}\mu = \sum_{n \geq 1} \alpha_n f(n).$$

¿Cuáles son las funciones $f \in L^1(\mu)$? Observe que

$$f \in L^{1}(\mu) \iff f \in \mathcal{M}(\mathcal{A}) \text{ y } \int f < \infty$$
 $\iff f \in \mathcal{M}(\mathcal{A}) \text{ y } \sum_{n \geq 1} \alpha_{n} f(n) < \infty.$

Cuando $\alpha_n=1$, $\forall n$, tenemos $f\in L^1(\mu)\iff |f|\in L^1(\mu)\iff \sum_n|f(n)|<\infty$. Definimos

$$\ell^p(\mu) = \left\{ f: \mathbb{N} \to \mathbb{R}, \ \int |f|^p \, d\mu = \sum_{n \geq 1} |f(n)|^p < \infty \right\}.$$

y se llama el **espacio de secuencias** *p***-sumables**.