Do not write in the boxes immediately below.

problem	1	2	3	4	5	6	7	8	9	10	11	12	total
points													
out of	10	8	8	8	8	8	8	8	8	8	8	10	100

Math 2321 Final Exam

December 13, 2016

Instructor's name	Your name
mstructor's name	Tour manic

Please check that you have 10 different pages.

Answers from your calculator, without supporting work, are worth zero points.

- 1) Consider the function $f(x, y, z) = x^4 + y^4 4x^2y^2e^z$.
- a) (3 points) Find the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ of the function f at the point (1,1,0).

b) (5 points) Find the linearization L(x, y, z) of f(x, y, z) at (1, 1, 0).

c) (2 points) Use the linearization of f at (1,1,0) to estimate the value of f at (0.9,1.1,0.1). (The "exact" value of f(0.9,1.1,0.1) from your calculator is worth zero points.)

- 3) Consider the surface M in \mathbb{R}^3 where $3x^2-y^2+z^2=3$.
- a) (5 points) Find an equation for the tangent plane to the surface at the point (0,1,2).

b) (3 points) Give a vector equation for the line which passes through the point (0,1,2) and is normal to the surface M at (0,1,2).

4) (8 points) Find the critical points of $f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy$ and determine what type of critical point each of them is, i.e., classify each one as a point where f has a local maximum value, a local minimum value, or a saddle point.

5) You are designing a web site for calculating the surface area of domes (arched roofs) for buildings. You decide to model a parabolic dome using the equation $z = h - b(x^2 + y^2)$ for the dome with base in the xy -plane; here, h and b are positive constants.
a) (2 points) Give a parameterization of the dome, being careful to say what the domain of the parameterization is.
b) (6 points) Find a formula for the surface area of the dome in terms of b and h .

6) (8 points) Use Lagrange multipliers to find the maximum and minimum values of the function f(x, y, z) = 2x + 6y + 10z subject to the constraint $x^2 + y^2 + z^2 = 35$, and also give the points at which the maximum and minimum values occur.

- 7) Consider the iterated integral $\int_0^1 \int_x^1 e^{x/y} dy dx$.
- a) (3 points) Sketch the region of integration.

b) (5 points) Evaluate the integral by reversing the order of integration.

8) (8 points) A region R in \mathbb{R}^2 is given by $1 \le x^2 + y^2 \le 4$. Sketch R and evaluate the double integral $\int \int_R e^{x^2 + y^2} dA$.

9) (8 points) Determine the mass of the solid region that lies above the xy-plane, below the half-cone where $z=2\sqrt{x^2+y^2}$, outside of the sphere of radius 1 and inside the sphere of radius 2, both centered at the origin, if the density is given by $\delta(x,y,z)=\frac{1}{x^2+y^2+z^2}$ kg/m³. All lengths are measured in meters.

10) (8 points) Find the work done by the force field $\mathbf{F} = \left(\ln y, x\left(y+\frac{1}{y}\right)\right)$ Newtons, where x and y are in meters, on a particle that moves from (1,1) along a horizontal line to (4,1), then from (4,1) to (4,2) along a vertical line, and finally moves from (4,2) back to (1,1) along the curve $x=y^2$.

11) (8 points) Evaluate the flux integral $\int \int_S \mathbf{F} \cdot \mathbf{n} \ dS$, where $\mathbf{F} = (xy^2 - 1, x^2y, 2z)$ and S is the part of the surface given by $z = x^2 + y^2$ that is above the disk of radius 2, centered at the origin, in the xy-plane. The surface is oriented upward (i.e., oriented by the upward normal).

- 12) Let $\mathbf{F}(x, y, z) = (x^2 \sin z, -x + z^3, e^{xy})$ be a vector field.
- a) (4 points) Compute the curl, $\vec{\nabla} \times \mathbf{F}$, of \mathbf{F} .

b) (6 points) Let M be the portion of the paraboloid $z = 6 - x^2 - y^2$ which sits above the plane z = 2, oriented upward. Compute the flux of the curl of ${\bf F}$ through M.