В работе рассматривается двумерная автономная система дифференциальных уравнений:

$$\begin{cases} \dot{x} = -xy^2 + x + y, \\ \dot{y} = -x - y + x^2y. \end{cases}$$
 (1)

Для системы (1) был найден первый интеграл (см. [1], [2]), но общее решение найдено не было. Для нахождения общего решения был использован метод, который основывается на построении периодической функции, опираясь на обратную функцию к неберущемуся интегралу. Такой подход к решению систем дифференциальных уравнений представляет не только теоретический интерес, но также может иметь практическое применение в различных областях, где возникают аналогичные задачи.

Рассматриваемый пример можно использовать для решения задач, связанных с 16-ой проблемой Гильберта, а точнее, локальной проблемой Арнольда-Гильберта. Для этого правую часть системы (1) следует рассматривать как невозмущенную часть системы, зависящей от малого автономного или периодического возмущения с последующим исследованием числа сохранившихся предельных циклов в случае автономного возмущения или инвариантых торов в случае периодического.

Рассмотрим систему (1):

$$\begin{cases} \dot{x} = -xy^2 + x + y, \\ \dot{y} = -x - y + x^2y. \end{cases}$$

Составим интегрируемую комбинацию.

Реализуя общую идею убирать в правых частях какие-то слагаемые, можно избавиться от x в первом уравнении и от -y во втором. Попробовать это сделать имеет смысл, так как в левой части возникнет формула производной произведения. Имеем:

$$y\dot{x} + x\dot{y} = y^2 - xy^3 - x^2 + x^3y \iff (\dot{xy}) = (x^2 - y^2)(xy - 1).$$

Само по себе это уравнение ничего пока не дало, так как в правой части помимо произведения есть еще разность квадратов. Поэтому избавимся в правой части системы от кубических слагаемых тем более, что слева появляется производная суммы квадратов. Имеем:

$$\dot{x}^2 + \dot{y}^2 = 2(x^2 - y^2). \tag{2}$$

Подставляя отсюда x^2-y^2 в первое уравнение, получаем интегрируемую комбинацию $(xy) = (\dot{x}^2 + \dot{y}^2)(xy-1)/2$.

Следовательно, xy = 1 или $2(xy - 1)^{-1}d(xy) = d(x^2 + y^2)$.

Интегрируя, получаем $2 \ln |xy-1| - x^2 - y^2 = C$ — первый интеграл системы, который удобно записать в виде:

$$xy - 1 = Ce^{(x^2 + y^2)/2},$$
 (3)

поскольку в (3) входит решение xy = 1.

Подставляя xy=1 в первое уравнение системы (1) получаем уравнение $\dot{x}=x$, из которого находим однопараметрическое семейство решений

$$x(t) = Ce^t, \ y(t) = C^{-1}e^{-t}.$$

К сожалению, еще один первый интеграл, а с ним вместе и общее решение системы, найти при помощи создания интегрируемой комбинации не удается. Поэтому будем искать общее решение другим способом.

Решая систему $-xy^2+x+y=0$ и $-x-y+x^2y=0$, находим три особые точки системы $(1):(0,0),(\sqrt{2},\sqrt{2}),(-\sqrt{2},-\sqrt{2}).$

Чтобы найти ограничения на константу C в (3), исследуем функцию

$$C(x,y) = (xy-1)e^{-(x^2+y^2)/2},$$
(4)

причем $C(0,0) = 1, C(\sqrt{2}, \sqrt{2}) = C(-\sqrt{2}, -\sqrt{2}) = e^{-2}$.

Градиент функции (4)
$$\nabla C(x,y) = \left(\frac{\partial C}{\partial x}, \frac{\partial C}{\partial y}\right)$$
 имеет вид:
$$\nabla C(x,y) = (e^{-(x^2+y^2)/2}(-x^2y+x+y), e^{-(x^2+y^2)/2}(-y^2x+x+y)).$$

Следовательно, $\nabla C(x,y) = 0$ только в особых точках.

Рассмотрим замкнутую окрестность $\overline{V}_2(O) = \{(x,y): x^2 + y^2 \le 4\}$ начала координат O = (0,0). Поскольку все особые точки принадлежат этому компакту, для нахождения максимального и минимального значений функции (4) на $\overline{V}_2(O)$ достаточно сравнить значения функции в особых точках (4) с ее значениями на границе $\partial \overline{V}_2(O) = \{(x,y): x^2 + y^2 = 4\}$. Для этого в (4) удобно перейти к полярным координатам:

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \end{cases}$$
 (5)

получая функцию $C(r,\theta) = \left(\frac{1}{2}r^2\sin 2\theta - 1\right)e^{-r^2/2}$.

Заметим, что:

$$C_*(r) = \left(-\frac{1}{2}r^2 - 1\right)e^{-r^2/2} \le C(r,\theta) \le C^*(r) = \left(\frac{1}{2}r^2 - 1\right)e^{-r^2/2}.$$
 (6)

Пусть $r \ge 2$. Тогда $C_*(r) > 0$, $C_*(r)' > 0$ и $C_*(2) = -3e^{-2} \le C_*(r) < 0$. Аналогично, $C^*(r) > 0$, $C^*(r)' \le 0$ и $0 < C^*(r) \le C^*(2) = e^{-2}$. Отсюда следует:

$$-3e^{-2} \le C_*(r) < C(x,y) = C(r,\theta) < C^*(r) \le e^{-2}.$$

Рис. 1. Графики $C_*(r)$ и $C^*(r)$

Таким образом, для всех $(x,y) \in \overline{V}_2(O)$ верно, что $-1 \le C(x,y) \le e^{-2}$. Пусть теперь $(x,y) \in \mathbb{R}^2 \setminus \overline{V}_2(O)$. Поскольку $2 < r = \sqrt{x^2 + y^2}$, то $-1 \le -3e^{-2} < C(r,\theta) = C(x,y) \le e^{-2}$, т.е. для всех точек (x,y) верно неравенство $-1 < C(x,y) \le e^{-2}$.

В результате, $C(x,y) \in [-1,e^{-2}]$ для всех $(x,y) \in \mathbb{R}^2$.

Исследуем линии уровня первого интеграла (3):

- 1) при C = -1 имеем особую точку (0, 0);
- 2) для любого $C \in (-1,0)$ имеем цикл расположенный в области xy < 1;
- 3) при C=0 имеем гиперболу xy=1, объединяющую две траектории: $y=x^{-1}$ при x>0 и $y=x^{-1}$ при x<0;
- 4) для любого $C \in (0, e^{-2})$ имеем два симметричных цикла: первый в области xy > 1 и x < 0, второй в области xy > 1 и x > 0, охватывающие особые точки $(-\sqrt{2}, -\sqrt{2})$ и $(\sqrt{2}, \sqrt{2})$ соответственно.
- 5) при $C = e^{-2}$ имеем особые точки $(\sqrt{2}, \sqrt{2}), (-\sqrt{2}, -\sqrt{2}).$

Рис. 2. Фазовый портрет системы (1)

Первый интеграл (3) после полярной замены (5) примет вид:

$$2^{-1}r^2\sin(2\theta) - 1 = Ce^{r^2/2}$$
, или $\sin(2\theta) = 2r^{-2}(Ce^{r^2/2} + 1)$, (7)

а уравнение (10) сведётся к уравнению

$$\dot{r}^2 = 2r^2 \cos(2\theta)$$
, или $\dot{r} = r \cos(2\theta)$. (8)

Поскольку $\cos(2\theta) = \pm \sqrt{1-\sin^2(2\theta)}$, то после подстановки (7) в (8) для вяского $C \in [-1;e^{-1}]$ получаем уравнения с разделяющимися переменными:

$$\dot{r} = \pm \sqrt{r^2 - 4r^{-2}(Ce^{r^2/2} + 1)^2}. (9)$$

Найдем область определения D функции

$$f(r,C) = (r^2 - 4r^{-2}(Ce^{r^2/2} + 1)^2)^{-1/2}.$$

Из неравенств $r^2 - 4r^{-2}(Ce^{r^2/2} + 1)^2) > 0$ и r > 0 вытекает, что $r^2 > 2|Ce^{r^2/2} + 1|$.

Таким образом, D — это область заключенная между двумя кривыми, которые задаются функциями из (6): $C^*(r)$ и $C_*(r)$ (см. рис. 1).

Найдем область определения функции f(r,C) по переменной r при финсированной константе C.

Функция $C_*(r)$ строго монотонно возрастает при r > 0, поэтому существует обратная функция $(C_*)^{-1}(C)$ при $C \in (-1,0)$.

Функция $C^*(r)$ строго монотонно возрастает при $r \in (0,2)$ и строго монотонно убывает при r > 2.

Положим $C_+^*(r) = C^*(r)$ при $r \in (0,2)$ и $C_-^*(r) = C^*(r)$ при r > 0. Тогда существуют обратные функции $(C_+^*)^{-1}(C)$ при $C \in (-1,e^{-2})$ и $(C_-^*)^{-1}(C)$ при $C \in (0,e^{-2})$. Пусть:

$$r_*(C) = (C_+^*)^{-1}(C)$$
 при $C \in (-1, e^{-2}), \quad r^*(C) = \begin{bmatrix} (C_*)^{-1}(C) \text{ при } C \in (-1, 0), \\ (C_-^*)^{-1}(C) \text{ при } C \in (0, e^{-2}). \end{bmatrix}$

Таким образом, функция f(r, C) определена для любого $r \in (r_*(C), r^*(C))$.

Рис. 3. Графики $r_*(C)$ и $r^*(C)$

Случаи когда константа C равна 0, -1 или e^{-2} тривиальны и в дальнейшем рассматриваться не будут (см. рис. 2).

Для всякого $C \in (-1; e^{-1}) \setminus 0$ и $r, r_0 \in (r_*(C), r^*(C))$ положим:

$$F_{+}(r,r_{0},C) = \int_{r_{0}}^{r} f(\xi,C)d\xi, F_{-}(r,r_{0},C) = -F_{+}(r,r_{0},C).$$

Заметим, что функция $F_+(r,r_0,C)$ строго монотонно возрастает по r, так как f(r,C)>0.

Аналогично, $F_{-}(r, r_0, C)$ строго монотонно убывает по r.

Тогда для любого $C \in (-1; e^{-1}) \setminus 0$ общими решениями уравнений (9) будут функции:

$$\begin{cases}
t(r, r_0, C) = F_+(r, r_0, C) \\
t(r, r_0, C) = F_-(r, r_0, C)
\end{cases}$$

Введем обратные функции:

$$r_{+}(t,r_{0},C) = F_{+}^{-1}(t,r_{0},C), r_{-}(t,r_{0},C) = F_{-}^{-1}(t,r_{0},C).$$

Проведем анализ поведения радиус-вектора на фазовых траекториях системы (1). Рассмотрим два случая:

- 1) пусть $C \in (0, e^{-2})$. Для определенности возьмем цикл в области xy > 1 и x > 0. Тогда после замены координат в уравнении (3) на $x = y = r \cos \pi/4$ получим $r = \sqrt{2Ce^{r^2/2} + 2}$, что есть уравнение, которое задает $r_*(C)$ и $r^*(C)$, т.е. максимум и минимум радиуса решения, которое движется по заданной траектории достигаются в точках пересечения уравнения (3) и прямой y = x (см. рис. 2). Аналогично для цикла в области xy > 1 и x < 0:
- 2) при $C \in (-1,0)$ будем рассматривать две замены: $x = y = r \cos \pi/4$, и $x = r \cos 3\pi/4$, $y = -r \cos 3\pi/4$. Следовательно, минимум радиуса достигается в точках пересечения уравнения (3) и прямой y = x, а максимум в точках пересечения уравнения (3) и прямой y = -x (см. рис. 2).

Утверждение. Несобственный интеграл $F_+(r^*(C), r_0, C)$ сходится. Доказательство. От противного. Предположим, что $F_+(r^*(C), r_0, C)$ расходится, т.е. точка максимума не достигается за конечное время. Следовательно, не существует периодического решения. С другой стороны, поскольку решение определено на всей оси времени(см. [1]) и находится на замкнутой кривой, то имеем периодическое решение. Противоречие. Аналогично для $F_-(r_*(C), r_0, C)$.

Таким образом, функции $F_{\pm}(r, r_0, C)$ существуют и конечны для $r \in [r_*(C), r^*(C)], r_0 \in [r_*(C), r^*(C)].$

Пусть $\omega(C) = F_+(r^*(C), r_*(C), C)$. Тогда при C < 0 период решения $\Omega(C) = 2F_+(r^*(C), r_*(C), C) + 2F_-(r_*(C), r^*(C), C) = 4\omega(C)$, если C > 0, то $\Omega(C) = F_+(r^*(C), r_*(C), C) + F_-(r_*(C), r^*(C), C) = 2\omega(C)$.

Рис. 4. Графики $F_{+}(r, r_{*}(C), C)$

Построим периодическое решение $R(t,r_0,C)$ из функций $r_+(t,r_0,C)$ и $r_-(t,r_0,C)$ на всем промежутке времени. Известно, что $r_+(t,r_0,C)$ монотонно возрастает в зависимости от t, а $r_-(t,r_0,C)$ монотонно убывает. Рассмотрим два случая:

1) пусть \dot{r} < 0, т.е. радиус убывает. Тогда время за которое точка дойдёт до минимума радиуса $\tau^-(r_0,C) = F_-(r_*(C),r_0,C)$. Имеем:

$$R_{-}(t,t_{0},r_{0},C) =$$

$$\begin{bmatrix} r_{+}(t-2\tau^{-}(r_{0},C)-2k\omega(C)-t_{0},r_{*}(C),C), \\ t \in (2k\omega(C)+\tau^{-}(r_{0},C)+t_{0};(2k+1)\omega(C)+\tau^{-}(r_{0},C)+t_{0}], \\ r_{-}(t-2k\omega(C)-t_{0},r^{*}(C),C), \\ t \in ((2k-1)\omega(C)+\tau^{-}(r_{0},C)+t_{0};2k\omega(C)+\tau^{-}(r_{0},C)+t_{0}], \\ \forall k \in \mathbb{Z}: \end{bmatrix}$$

2) при $\dot{r} > 0$ радиус будет возрастать. Пусть время за которое точка дой-

Рис. 5. График $\Omega(C)$

дёт до максимума радиуса $\tau^+(r_0,C) = F_+(r^*(C),r_0,C)$. Тогда:

$$R_{+}(t, t_{0}, r_{0}, C) =$$

$$\begin{bmatrix} r_{+}(t - 2k\omega(C) - t_{0}, r_{*}(C), C), \\ t \in ((2k - 1)\omega(C) + \tau^{+}(r_{0}, C) + t_{0}; 2k\omega(C) + \tau^{+}(r_{0}, C) + t_{0}], \\ r_{-}(t - 2\tau^{+}(r_{0}, C) - 2k\omega(C) - \omega(C) - t_{0}, r^{*}(C), C), \\ t \in (2k\omega(C) + \tau^{+}(r_{0}, C) + t_{0}; (2k + 1)\omega(C) + \tau^{+}(r_{0}, C) + t_{0}], \\ \forall k \in \mathbb{Z}. \end{bmatrix}$$

Рассмотрим зависимость производной радиуса от угла в равенстве (8). Тогда $\dot{r} < 0 \Leftrightarrow \cos 2\theta < 0$ и $\dot{r} > 0 \Leftrightarrow \cos 2\theta > 0$. Имеем:

$$\begin{split} \dot{r} < 0 &\Leftrightarrow -\frac{\pi}{4} + \pi n < \theta < \frac{\pi}{4} + \pi n, n \in \mathbb{Z} \text{ и} \\ \dot{r} > 0 &\Leftrightarrow \frac{\pi}{4} + \pi m < \theta < \frac{3\pi}{4} + \pi m, m \in \mathbb{Z}. \end{split}$$

Вернемся к уравнению (7). Пусть $h(r,C) = 2r^{-2}(Ce^{r^2/2} + 1)$. Рассмотрим два случая:

Рис. 6. Графики $R_{+}(t,0,r_{*}(C),C)$

Рис. 7. Направление движения на кривых

1) при C > 0 возьмём для определённости цикл в области xy > 1 и

x>0. Из уравнения (7) имеем: $\theta(r,C)=\frac{(-1)^k}{2}$ $\arcsin h(r,C)+\frac{\pi}{2}k$. Более того, в данной области угол $\theta\in(0,\pi/2)$. Следовательно, $\theta_+(r,C)=\frac{1}{2}\arcsin h(r,C)$, или $\theta_-(r,C)=-\frac{1}{2}\arcsin h(r,C)+\frac{\pi}{2}$. Заметим, что $\theta_-(r,C)$ показывает изменение угла для верхней половины траектории, где $\dot{r}>0$, а $\theta_+(r,C)$ - для нижней, где $\dot{r}<0$. Для случая, когда радиус начальной точки убывает имеем:

$$\Theta_{-}^{\tau}(t, t_{0}, r_{0}, C) =$$

$$\begin{bmatrix} \theta_{+}(R_{-}(t, t_{0}, r_{0}, C), C), & \\ t \in (2k\omega(C) + \tau^{-}(r_{0}, C) + t_{0}; (2k+1)\omega(C) + \tau^{-}(r_{0}, C) + t_{0}], \\ \theta_{-}(R_{-}(t, t_{0}, r_{0}, C), C), & \\ t \in ((2k-1)\omega(C) + \tau^{-}(r_{0}, C) + t_{0}; 2k\omega(C) + \tau^{-}(r_{0}, C) + t_{0}], \\ \forall k \in \mathbb{Z}, & \end{cases}$$

если радиус возрастает имеем:

$$\Theta_{+}^{+}(t, t_{0}, r_{0}, C) =$$

$$\begin{cases}
\theta_{+}(R_{+}(t, t_{0}, r_{0}, C), C), & t \in ((2k-1)\omega(C) + \tau^{+}(r_{0}, C) + t_{0}; 2k\omega(C) + \tau^{+}(r_{0}, C) + t_{0}], \\
\theta_{-}(R_{+}(t, t_{0}, r_{0}, C), C), & t \in (2k\omega(C) + \tau^{+}(r_{0}, C) + t_{0}; (2k+1)\omega(C) + \tau^{+}(r_{0}, C) + t_{0}], \\
\forall k \in \mathbb{Z};
\end{cases}$$

2) при C < 0 функция h(r,C) монотонно убывает и неограничена. Следовательно, угол $\theta \in [-\pi/4, 7\pi/4)$. Рассмотрим случай при угле начальной точки $\theta_0 \in [-\pi/4; 3\pi/4]$. Поскольку имеем периодическое решение с периодом 4ω , то, если радиус начальной точки убывает, получаем:

$$\Theta_{-}^{-}(t,t_{0},r_{0},C) =$$

$$\begin{cases}
\theta_{+}(R_{-}(t,t_{0},r_{0},C),C), & t \in (4k\omega(C) + \tau^{-}(r_{0},C) + t_{0}; (4k+1)\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\
\theta_{-}(R_{-}(t,t_{0},r_{0},C),C) + \pi, & t \in ((4k-1)\omega(C) + \tau^{-}(r_{0},C) + t_{0}; 4k\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\
\theta_{+}(R_{-}(t,t_{0},r_{0},C),C) + \pi, & t \in ((4k-2)\omega(C) + \tau^{-}(r_{0},C) + t_{0}; (4k-1)\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\
\theta_{-}(R_{-}(t,t_{0},r_{0},C),C), & t \in ((4k-3)\omega(C) + \tau^{-}(r_{0},C) + t_{0}; (4k-2)\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\
\forall k \in \mathbb{Z},
\end{cases}$$

если начальный радиус возрастает получаем:

$$\Theta_{+}^{-}(t,t_{0},r_{0},C) =$$

$$\begin{bmatrix} \theta_{+}(R_{+}(t,t_{0},r_{0},C),C), & & & \\ t \in (4k\omega(C) + \tau^{-}(r_{0},C) + t_{0}; (4k+1)\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\ \theta_{-}(R_{+}(t,t_{0},r_{0},C),C) + \pi, & & & \\ t \in ((4k-1)\omega(C) + \tau^{-}(r_{0},C) + t_{0}; 4k\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\ \theta_{+}(R_{+}(t,t_{0},r_{0},C),C) + \pi, & & & \\ t \in ((4k-2)\omega(C) + \tau^{-}(r_{0},C) + t_{0}; (4k-1)\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\ \theta_{-}(R_{+}(t,t_{0},r_{0},c),C), & & \\ t \in ((4k-3)\omega(C) + \tau^{-}(r_{0},C) + t_{0}; (4k-2)\omega(C) + \tau^{-}(r_{0},C) + t_{0}], \\ \forall k \in \mathbb{Z}. & & & \\ \forall k \in \mathbb{Z}. & & & \\ \end{bmatrix}$$

Рис. 8. Графики $\Theta_{-}^{\pm}(t,0,r_{*}(C),C)$

Запишем решение задачи Коши для любых начальных данных (x_0, y_0, t_{init}) . Тогда $r_{init} = \sqrt{x_0^2 + y_0^2}$, $\theta_0 = \arctan 2(y_0, x_0)$ (известная функция), $C_0 = (x_0 y_0 - 1)e^{(x_0^2 + y_0^2)/2}$. Рассмотрим все случаи:

1) при $C_0 = 0$ имеем решение $(x(t), y(t)) = (x_0 e^{t-t_{init}}, x_0^{-1} e^{-t+t_{init}}), t \in \mathbb{R};$

- 2) при $C_0 = -1$ $(x(t), y(t)) = (0, 0), t \in \mathbb{R}$;
- 4) при $C_0=e^{-2}$ имеем два случая. Если $x_0>0$, то $(x(t),y(t))=(\sqrt{2},\sqrt{2}),$ $t\in\mathbb{R}.$ Если $x_0<0$, то $(x(t),y(t))=(-\sqrt{2},-\sqrt{2}),$ $t\in\mathbb{R};$

 $t \in \mathbb{R}$

6) аналогично, для $C_0 \in (-1,0)$ имеем четыре случая: $ecли \theta_0 \in (-\pi/4,\pi/4]: \begin{cases} x(t) = R_+(t,t_{init},r_{init},C_0)\cos(\Theta_+^-(t,t_{init},r_{init},C_0)), \\ y(t) = R_+(t,t_{init},r_{init},C_0)\sin(\Theta_+^-(t,t_{init},r_{init},C_0)); \end{cases}$ $ecли \theta_0 \in (\pi/4,3\pi/4]: \begin{cases} x(t) = R_-(t,t_{init},r_{init},C_0)\cos(\Theta_-^-(t,t_{init},r_{init},C_0)), \\ y(t) = R_-(t,t_{init},r_{init},C_0)\sin(\Theta_-^-(t,t_{init},r_{init},C_0)); \end{cases}$ $ecли \theta_0 \in (3\pi/4,\pi] \cup (-\pi,-3\pi/4]:$ $\begin{cases} x(t) = -R_+(t,t_{init},r_{init},C_0)\cos(\Theta_+^-(t,t_{init},r_{init},C_0)), \\ y(t) = -R_+(t,t_{init},r_{init},C_0)\sin(\Theta_+^-(t,t_{init},r_{init},C_0)); \end{cases}$ $ecли \theta_0 \in (-3\pi/4,-\pi/4]:$ $\begin{cases} x(t) = -R_-(t,t_{init},r_{init},C_0)\cos(\Theta_-^-(t,t_{init},r_{init},C_0)), \\ y(t) = -R_-(t,t_{init},r_{init},C_0)\sin(\Theta_-^-(t,t_{init},r_{init},C_0)), \end{cases}$ $\begin{cases} y(t) = -R_-(t,t_{init},r_{init},C_0)\sin(\Theta_-^-(t,t_{init},r_{init},C_0)), \\ y(t) = -R_-(t,t_{init},r_{init},C_0)\sin(\Theta_-^-(t,t_{init},r_{init},C_0)); \end{cases}$

 $t \in \mathbb{R}$

Таким образом, мы получили решение задачи Коши для произвольных начальных данных (x_0, y_0, t_{init}) .

После добавления определенного малого возмущения 3-его порядка изначальная система (1) примет вид:

$$\begin{cases} \dot{x} = -xy^2 + x + y - \epsilon x^3, \\ \dot{y} = -x - y + x^2 y + \epsilon y^3. \end{cases}$$
 (10)

Для начала составим интегрируемую комбинацию. Используя те же соображения, что и в работе [1], получаем два соотношения:

$$\dot{x}\dot{y} = (x^2 - y^2)(xy(1 - \epsilon) - 1), \quad \dot{x}^2 + \dot{y}^2 = 2(x^2 - y^2)(1 - \epsilon(x^2 + y^2)).$$

Подставляя отсюда x^2-y^2 из второго уравнения в первое получаем интегрируемую комбинацию $d(x^2+y^2)2^{-1}(1-\epsilon(x^2+y^2))^{-1}=d(xy)(xy(1-\epsilon)-1)^{-1}$, или $xy(1-\epsilon)=1$, или $\epsilon(x^2+y^2)=1$.

Интегрируя, получаем первый интеграл системы (10)

$$(1 - \epsilon)^{-1} \ln |(1 - \epsilon)xy - 1| + 2^{-1} \epsilon^{-1} \ln |\epsilon(x^2 + y^2) - 1| = C$$
 (11)

Минуя все вычисления, имеем семь особых точек системы (10) при $\epsilon > 0$: $(0,0), (u-v,u+v), (v-u,-u-v), (u+v,u-v), (-u-v,v-u), (\sqrt{2}(1+\epsilon)^{-1/2},\sqrt{2}(1+\epsilon)^{-1/2}), (-\sqrt{2}(1+\epsilon)^{-1/2},-\sqrt{2}(1+\epsilon)^{-1/2}),$ где $u=\frac{1}{2}(\epsilon^{-1}+2(1-\epsilon)^{-1})^{1/2},\ v=\frac{1}{2}(\epsilon^{-1}-2(1-\epsilon)^{-1})^{1/2}.$

Список литературы

- [1] Басов В.В. «Обыкновенные дифференциальные уравнения. Лекции и практические занятия». 2023, pp. 1223-1235.
- [2] Басов В.В. «Обыкновенные дифференциальные уравнения. Лекции и практические занятия». 2023, pp. 1223-1235.