APPENDIX D: SHORT TABLE OF INTEGRALS

Elementary forms

BASIC RULES

1. Constant rule*
$$\int 0 du = 0 + C$$

1. Constant rule*
$$\int 0 du = 0 + C$$
 2. Power rule
$$\int u^n du = \frac{u^{n+1}}{n+1}; \qquad n \neq -1$$

$$\int u^n du = \ln|u|; \qquad n = -1$$

3. Natural exponential rule
$$\int e^u du = e^u$$
 4. Logarithmic rule $\int \ln |u| \ du = u \ln |u| - u$

TRIGONOMETRIC RULES

$$5. \int \sin u \, du = -\cos u$$

7.
$$\int \tan u \, du = -\ln|\cos u| = \ln|\sec u|$$

9.
$$\int \sec u \, du = \ln|\sec u + \tan u|$$

11.
$$\int \sec^2 u \, du = \tan u$$

13.
$$\int \sec u \tan u \ du = \sec u$$

6.
$$\int \cos u \, du = \sin u$$

8.
$$\int \cot u \, du = \ln |\sin u|$$

$$10. \int \csc u \, du = -\ln|\csc u + \cot u|$$

$$12. \quad \int \csc^2 u \ du = -\cot u$$

$$14. \quad \int \csc u \cot u \, du = -\csc u$$

EXPONENTIAL RULE

15.
$$\int a^u du = \frac{a^u}{\ln a}$$
 $a > 0, a \ne 1$

HYPERBOLIC RULES

$$16. \quad \int \cosh u \, du = \sinh u$$

18.
$$\int \tanh u \, du = \ln \cosh u$$

18.
$$\int \tanh u \, du = \ln \cosh u$$
20.
$$\int \operatorname{sech} u \, du = \tan^{-1}(\sinh u) \text{ or } 2 \tan^{-1} e^{u}$$

17.
$$\int \sinh u \, du = \cosh u$$

19.
$$\int \coth u \, du = \ln |\sinh u|$$

21.
$$\int \operatorname{csch} u \, du = \ln \left| \tanh \frac{u}{2} \right|$$

22.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a}$$

24.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a}$$

26.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right|$$
 27. $\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \operatorname{sech}^{-1} \left| \frac{u}{a} \right|$

23.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \cosh^{-1} \frac{u}{a}$$

INVERSE RULES

22.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a}$$

23. $\int \frac{du}{\sqrt{u^2 - a^2}} = \cosh^{-1} \frac{u}{a}$

24. $\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a}$

25. $\int \frac{du}{a^2 - u^2} = \begin{cases} \frac{1}{a} \tanh^{-1} \frac{u}{a} & \text{if } |\frac{u}{a}| < 1 \\ \frac{1}{a} \coth^{-1} \frac{u}{a} & \text{if } |\frac{u}{a}| > 1 \end{cases}$

27.
$$\int \frac{au}{u\sqrt{a^2 - u^2}} = -\frac{1}{a}\operatorname{sech}^{-1} \left| \frac{u}{a} \right|$$
$$= -\frac{1}{a}\ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right|$$

^{*}Notice that this formula shows the addition of a constant, C. When using an integral table or technology, the constant will usually not be shown, so it is important that you remember to insert the constant of integration each time you evaluate an integral, even when getting it from a table or from technology.

28.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \ln\left(u + \sqrt{a^2 + u^2}\right)$$
 29.
$$\int \frac{du}{u\sqrt{a^2 + u^2}} = -\frac{1}{a}\ln\left|\frac{\sqrt{a^2 + u^2} + a}{u}\right|$$
$$= \sinh^{-1}\frac{u}{a}$$
$$= -\frac{1}{a}\operatorname{csch}^{-1}\left|\frac{u}{a}\right|$$

Linear and quadratic forms

INTEGRALS INVOLVING au + b

30.
$$\int (au+b)^{n} du = \frac{(au+b)^{n+1}}{(n+1)a}$$
31.
$$\int u(au+b)^{n} du = \frac{(au+b)^{n+2}}{(n+2)a^{2}} - \frac{b(au+b)^{n+1}}{(n+1)a^{2}}$$
32.
$$\int u^{2} (au+b)^{n} du = \frac{(au+b)^{n+3}}{(n+3)a^{3}} - \frac{2b(au+b)^{n+2}}{(n+2)a^{3}} + \frac{b^{2}(au+b)^{n+1}}{(n+1)a^{3}}$$
33.
$$\int u^{m} (au+b)^{n} du = \begin{cases} \frac{u^{m+1}(au+b)^{n}}{m+n+1} + \frac{nb}{m+n+1} \int u^{m}(au+b)^{n-1} du & 0 \\ \frac{u^{m}(au+b)^{n+1}}{(m+n+1)a} - \frac{mb}{(m+n+1)a} \int u^{m-1}(au+b)^{n} du & 0 \\ \frac{-u^{m+1}(au+b)^{n+1}}{(n+1)b} + \frac{m+n+2}{(n+1)b} \int u^{m}(au+b)^{n+1} du & 0 \end{cases}$$
34.
$$\int \frac{du}{au+b} = \frac{1}{a} \ln|au+b|$$
35.
$$\int \frac{u}{au+b} = \frac{u}{a} - \frac{b}{a^{2}} \ln|au+b|$$
36.
$$\int \frac{u^{2}du}{au+b} = \frac{(au+b)^{2}}{2a^{3}} - \frac{2b(au+b)}{a^{3}} + \frac{b^{2}}{a^{3}} \ln|au+b|$$
37.
$$\int \frac{u^{3}du}{au+b} = \frac{(au+b)^{3}}{3a^{4}} - \frac{3b(au+b)^{2}}{2a^{4}} + \frac{3b^{2}(au+b)}{a^{4}} - \frac{b^{3}}{a^{4}} \ln|au+b|$$

INTEGRALS INVOLVING
$$u^2 + a^2$$

38. $\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{u}{a}$
39. $\int \frac{u \, du}{u^2 + a^2} = \frac{1}{2} \ln(u^2 + a^2)$
40. $\int \frac{u^2 \, du}{u^2 + a^2} = u - a \tan^{-1} \frac{u}{a}$
41. $\int \frac{u^3 \, du}{u^2 + a^2} = \frac{u^2}{2} - \frac{a^2}{2} \ln(u^2 + a^2)$
42. $\int \frac{du}{u(u^2 + a^2)} = \frac{1}{2a^2} \ln\left(\frac{u^2}{u^2 + a^2}\right)$
43. $\int \frac{du}{u^2(u^2 + a^2)} = -\frac{1}{a^2u} - \frac{1}{a^3} \tan^{-1} \frac{u}{a}$
44. $\int \frac{du}{u^3(u^2 + a^2)} = -\frac{1}{2a^2u^2} - \frac{1}{2a^4} \ln\left(\frac{u^2}{u^2 + a^2}\right)$

INTEGRALS INVOLVING $u^2 - a^2$, $u^2 > a^2$

45.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| \text{ or } -\frac{1}{a} \coth^{-1} \frac{u}{a}$$
46.
$$\int \frac{u \, du}{u^2 - a^2} = \frac{1}{2} \ln \left| u^2 - a^2 \right|$$

^{*}When the integral is given as another integral, then do not add the constant until the form no longer involves an integration.

47.
$$\int \frac{u^2 du}{u^2 - a^2} = u + \frac{a}{2} \ln \left| \frac{u - a}{u + a} \right|$$
48.
$$\int \frac{u^3 du}{u^2 - a^2} = \frac{u^2}{2} + \frac{a^2}{2} \ln \left| u^2 - a^2 \right|$$
49.
$$\int \frac{du}{u(u^2 - a^2)} = \frac{1}{2a^2} \ln \left| \frac{u^2 - a^2}{u^2} \right|$$
50.
$$\int \frac{du}{u^2(u^2 - a^2)} = \frac{1}{a^2u} + \frac{1}{2a^3} \ln \left| \frac{u - a}{u + a} \right|$$
51.
$$\int \frac{du}{u^3(u^2 - a^2)} = \frac{1}{2a^2u^2} - \frac{1}{2a^4} \ln \left| \frac{u^2}{u^2 - a^2} \right|$$

INTEGRALS INVOLVING
$$a^2 - u^2, u^2 < a^2$$

52.
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| \text{ or } \frac{1}{a} \tanh^{-1} \frac{u}{a}$$
53.
$$\int \frac{u \, du}{a^2 - u^2} = -\frac{1}{2} \ln \left| a^2 - u^2 \right|$$
54.
$$\int \frac{u^2 \, du}{a^2 - u^2} = -u + \frac{a}{2} \ln \left| \frac{a + u}{a - u} \right|$$
55.
$$\int \frac{u^3 \, du}{a^3 \, du} = \frac{u^2 - u^2}{a^3 + u^2} = \frac{21}{a^3 + u^2}$$

55.
$$\int \frac{u^3 du}{a^2 - u^2} = -\frac{u^2}{2} - \frac{a^2}{2} \ln |a^2 - u^2|$$

56.
$$\int \frac{du}{u(a^2 - u^2)} = \frac{1}{2a^2} \ln \left| \frac{u^2}{a^2 - u^2} \right|$$

57.
$$\int \frac{du}{u^2(a^2 - u^2)} = -\frac{1}{a^2 u} + \frac{1}{2a^3} \ln \left| \frac{a + u}{a - u} \right|$$
58.
$$\int \frac{du}{u^3(a^2 - u^2)} = -\frac{1}{2a^2 u^2} + \frac{1}{2a^4} \ln \left| \frac{u^2}{a^2 - u^2} \right|$$

59.
$$\int \frac{du}{(a^2 - u^2)^2} = \frac{u}{2a^2(a^2 - u^2)} + \frac{1}{4a^3} \ln \left| \frac{a + u}{a - u} \right|$$

60.
$$\int \frac{u \, du}{(a^2 - u^2)^2} = \frac{1}{2(a^2 - u^2)}$$

61.
$$\int \frac{u^2 du}{(a^2 - u^2)^2} = \frac{u}{2(a^2 - u^2)} - \frac{1}{4a} \ln \left| \frac{a + u}{a - u} \right|$$

62.
$$\int \frac{u^3 du}{(a^2 - u^2)^2} = \frac{a^2}{2(a^2 - u^2)} + \frac{1}{2} \ln |a^2 - u^2|$$

63.
$$\int \frac{du}{u(a^2 - u^2)^2} = \frac{1}{2a^2(a^2 - u^2)} + \frac{1}{2a^4} \ln \left| \frac{u^2}{a^2 - u^2} \right|$$

64.
$$\int \frac{du}{u^2(a^2 - u^2)^2} = -\frac{1}{a^4 u} + \frac{u}{2a^4(a^2 - u^2)} + \frac{3}{4a^5} \ln \left| \frac{a + u}{a - u} \right|$$

65.
$$\int \frac{du}{u^3(a^2 - u^2)^2} = -\frac{1}{2a^4u^2} + \frac{1}{2a^4(a^2 - u^2)} + \frac{1}{a^6} \ln \left| \frac{u^2}{a^2 - u^2} \right|$$

INTEGRALS INVOLVING $au^2 + bu + c$

$$66. \int \frac{du}{au^2 + bu + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2au + b}{\sqrt{4ac - b^2}} \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2au + b - \sqrt{b^2 - 4ac}}{2au + b + \sqrt{b^2 - 4ac}} \right| \end{cases}$$

$$67. \int \frac{u \, du}{au^2 + bu + c} = \frac{1}{2a} \ln |au^2 + bu + c| - \frac{b}{2a} \int \frac{du}{au^2 + bu + c}$$

$$68. \int \frac{u^2 \, du}{au^2 + bu + c} = \frac{u}{a} - \frac{b}{2a^2} \ln |au^2 + bu + c| + \frac{b^2 - 2ac}{2a^2} \int \frac{du}{au^2 + bu + c}$$

$$69. \int \frac{u^m \, du}{au^2 + bu + c} = \frac{u^{m-1}}{(m-1)a} - \frac{c}{a} \int \frac{u^{m-2} \, du}{au^2 + bu + c} - \frac{b}{a} \int \frac{u^{m-1} \, du}{au^2 + bu + c}$$

70.
$$\int \frac{du}{u(au^{2} + bu + c)} = \frac{1}{2c} \ln \left| \frac{u^{2}}{au^{2} + bu + c} \right| - \frac{b}{2c} \int \frac{du}{au^{2} + bu + c}$$
71.
$$\int \frac{du}{u^{2}(au^{2} + bu + c)} = \frac{b}{2c^{2}} \ln \left| \frac{au^{2} + bu + c}{u^{2}} \right| - \frac{1}{cu} + \frac{b^{2} - 2ac}{2c^{2}} \int \frac{du}{au^{2} + bu + c}$$
72.
$$\int \frac{du}{u^{n}(au^{2} + bu + c)} = -\frac{1}{(n - 1)cu^{n - 1}} - \frac{b}{c} \int \frac{du}{u^{n - 1}(au^{2} + bu + c)} - \frac{a}{c} \int \frac{du}{u^{n - 2}(au^{2} + bu + c)}$$
73.
$$\int \frac{du}{(au^{2} + bu + c)^{2}} = \frac{2au + b}{(4ac - b^{2})(au^{2} + bu + c)} + \frac{2a}{4ac - b^{2}} \int \frac{du}{au^{2} + bu + c}$$
74.
$$\int \frac{u du}{(au^{2} + bu + c)^{2}} = -\frac{bu + 2c}{(4ac - b^{2})(au^{2} + bu + c)} - \frac{b}{4ac - b^{2}} \int \frac{du}{au^{2} + bu + c}$$
75.
$$\int \frac{u^{2} du}{(au^{2} + bu + c)^{2}} = \frac{(b^{2} - 2ac)u + bc}{a(4ac - b^{2})(au^{2} + bu + c)} + \frac{2c}{4ac - b^{2}} \int \frac{du}{au^{2} + bu + c}$$
76.
$$\int \frac{u^{m} du}{(au^{2} + bu + c)^{n}} = \frac{-u^{m - 1}}{(2n - m - 1)a(au^{2} + bu + c)^{n - 1}} - \frac{(n - m)b}{(2n - m - 1)a} \int \frac{u^{m - 1} du}{(au^{2} + bu + c)^{n}} + \frac{(m - 1)c}{(2n - m - 1)a} \int \frac{u^{m - 2} du}{(au^{2} + bu + c)^{n}}$$

Radical forms

INTEGRALS INVOLVING $\sqrt{au+b}$

77.
$$\int \frac{du}{\sqrt{au+b}} = \frac{2\sqrt{au+b}}{a}$$
78.
$$\int \frac{u \, du}{\sqrt{au+b}} = \frac{2(au-2b)}{3a^2} \sqrt{au+b}$$
79.
$$\int \frac{u^2 \, du}{\sqrt{au+b}} = \frac{2(3a^2u^2 - 4abu + 8b^2)}{15a^3} \sqrt{au+b}$$
80.
$$\int \frac{du}{u\sqrt{au+b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{au+b} - \sqrt{b}}{\sqrt{au+b} + \sqrt{b}} \right| \\ \frac{2}{\sqrt{-b}} \tan^{-1} \sqrt{\frac{au+b}{-b}} \end{cases}$$
81.
$$\int \frac{du}{u^2 \sqrt{au+b}} = -\frac{\sqrt{au+b}}{bu} - \frac{a}{2b} \int \frac{du}{u\sqrt{au+b}}$$
82.
$$\int \sqrt{au+b} \, du = \frac{2\sqrt{(au+b)^3}}{3a}$$
83.
$$\int u\sqrt{au+b} \, du = \frac{2(3au-2b)}{15a^2} \sqrt{(au+b)^3}$$
84.
$$\int u^2 \sqrt{au+b} \, du = \frac{2(15a^2u^2 - 12abu + 8b^2)}{105a^3} \sqrt{(au+b)^3}$$

INTEGRALS INVOLVING $\sqrt{u^2 + a^2}$

85.
$$\int \sqrt{u^2 + a^2} \, du = \frac{u\sqrt{u^2 + a^2}}{2} + \frac{a^2}{2} \ln\left(u + \sqrt{u^2 + a^2}\right)$$
86.
$$\int u\sqrt{u^2 + a^2} \, du = \frac{(u^2 + a^2)^{3/2}}{3}$$
87.
$$\int u^2 \sqrt{u^2 + a^2} \, du = \frac{u(u^2 + a^2)^{3/2}}{4} - \frac{a^2 u\sqrt{u^2 + a^2}}{8} - \frac{a^4}{8} \ln\left(u + \sqrt{u^2 + a^2}\right)$$

88.
$$\int u^3 \sqrt{u^2 + a^2} \, du = \frac{(u^2 + a^2)^{5/2}}{5} - \frac{a^2 (u^2 + a^2)^{3/2}}{3}$$

89.
$$\int \frac{du}{\sqrt{u^2 + a^2}} = \ln\left(u + \sqrt{u^2 + a^2}\right)$$
 or $\sinh^{-1}\frac{u}{a}$

90.
$$\int \frac{u \, du}{\sqrt{u^2 + a^2}} = \sqrt{u^2 + a^2}$$

91.
$$\int \frac{u^2 du}{\sqrt{u^2 + a^2}} = \frac{u\sqrt{u^2 + a^2}}{2} - \frac{a^2}{2} \ln(u + \sqrt{u^2 + a^2})$$

92.
$$\int \frac{u^3 du}{\sqrt{u^2 + a^2}} = \frac{(u^2 + a^2)^{3/2}}{3} - a^2 \sqrt{u^2 + a^2}$$

93.
$$\int \frac{du}{u\sqrt{u^2 + a^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{u^2 + a^2}}{u} \right|$$

94.
$$\int \frac{du}{u^2 \sqrt{u^2 + a^2}} = -\frac{\sqrt{u^2 + a^2}}{a^2 u}$$

95.
$$\int \frac{du}{u^3 \sqrt{u^2 + a^2}} = -\frac{\sqrt{u^2 + a^2}}{2a^2 u^2} + \frac{1}{2a^3} \ln \left| \frac{a + \sqrt{u^2 + a^2}}{u} \right|$$

96.
$$\int \frac{\sqrt{u^2 + a^2}}{u} du = \sqrt{u^2 + a^2} - a \ln \left| \frac{a + \sqrt{u^2 + a^2}}{u} \right|$$

97.
$$\int \frac{\sqrt{u^2 + a^2}}{u^2} du = -\frac{\sqrt{u^2 + a^2}}{u} + \ln\left(u + \sqrt{u^2 + a^2}\right)$$

INTEGRALS INVOLVING $\sqrt{u^2-a^2}$, a > 0

98.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left| u + \sqrt{u^2 - a^2} \right|$$

99.
$$\int \frac{u \, du}{\sqrt{u^2 - a^2}} = \sqrt{u^2 - a^2}$$

100.
$$\int \frac{u^2 du}{\sqrt{u^2 - a^2}} = \frac{u\sqrt{u^2 - a^2}}{2} + \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right|$$

101.
$$\int \frac{u^3 du}{\sqrt{u^2 - a^2}} = \frac{(u^2 - a^2)^{3/2}}{3} + a^2 \sqrt{u^2 - a^2}$$

102.
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right|$$

103.
$$\int \frac{du}{u^2 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{a^2 u}$$

104.
$$\int \frac{du}{u^3 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{2a^2 u^2} + \frac{1}{2a^3} \sec^{-1} \left| \frac{u}{a} \right|$$

105.
$$\int \sqrt{u^2 - a^2} \, du = \frac{u\sqrt{u^2 + a^2}}{2} - \frac{a^2}{2} \ln \left| u + \sqrt{u^2 - a^2} \right|$$

106.
$$\int u\sqrt{u^2-a^2}\,du=\frac{(u^2-a^2)^{3/2}}{3}$$

107.
$$\int u^2 \sqrt{u^2 - a^2} \, du = \frac{u(u^2 - a^2)^{3/2}}{4} + \frac{a^2 u \sqrt{u^2 - a^2}}{8} - \frac{a^4}{8} \ln \left| u + \sqrt{u^2 - a^2} \right|$$

108.
$$\int u^3 \sqrt{u^2 - a^2} \, du = \frac{(u^2 - a^2)^{5/2}}{5} + \frac{a^2 (u^2 - a^2)^{3/2}}{3}$$

109.
$$\int \frac{\sqrt{u^2 - a^2}}{u} du = \sqrt{u^2 - a^2} - a \sec^{-1} \left| \frac{u}{a} \right|$$

INTEGRALS INVOLVING $\sqrt{a^2-u^2}$, a>0

110.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a}$$

111.
$$\int \frac{u \, du}{\sqrt{a^2 - u^2}} = -\sqrt{a^2 - u^2}$$

112.
$$\int \frac{u^2 du}{\sqrt{a^2 - u^2}} = -\frac{u\sqrt{a^2 - u^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a}$$

113.
$$\int \frac{u^3 du}{\sqrt{a^2 - u^2}} = \frac{(a^2 - u^2)^{3/2}}{3} - a^2 \sqrt{a^2 - u^2}$$

114.
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| \text{ or } -\frac{1}{a} \operatorname{sech}^{-1} \left| \frac{u}{a} \right|$$

115.
$$\int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2 - u^2}}{a^2 u}$$

116.
$$\int \frac{du}{u^3 \sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2 - u^2}}{2a^2 u^2} - \frac{1}{2a^3} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right|$$

117.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u\sqrt{a^2 - u^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a}$$

118.
$$\int u\sqrt{a^2 - u^2} \, du = -\frac{(a^2 - u^2)^{3/2}}{3}$$

119.
$$\int u^2 \sqrt{a^2 - u^2} \, du = -\frac{u(a^2 - u^2)^{3/2}}{4} + \frac{a^2 u \sqrt{a^2 - u^2}}{8} + \frac{a^4}{8} \sin^{-1} \frac{u}{a}$$

120.
$$\int u^3 \sqrt{a^2 - u^2} \, du = \frac{(a^2 - u^2)^{5/2}}{5} - \frac{a^2 (a^2 - u^2)^{3/2}}{3}$$

121.
$$\int \frac{\sqrt{a^2 - u^2}}{u} du = \sqrt{a^2 - u^2} - a \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right|$$

Trigonometric forms

INTEGRALS INVOLVING cos au

122.
$$\int \cos au \, du = \frac{\sin au}{u}$$

123.
$$\int u \cos au \, du = \frac{a \cos au}{a^2} + \frac{u \sin au}{a}$$

124.
$$\int u^2 \cos au \, du = \frac{2u}{a^2} \cos au + \left(\frac{u^2}{a} - \frac{2}{a^3}\right) \sin au$$

125.
$$\int u^3 \cos au \ du = \left(\frac{3u^2}{a^2} - \frac{6}{a^4}\right) \cos au + \left(\frac{u^3}{a} - \frac{6u}{a^3}\right) \sin au$$

126.
$$\int u^n \cos au \, du = \frac{u^n \sin au}{a} - \frac{n}{a} \int u^{n-1} \sin au \, du$$

127.
$$\int \cos^2 au \, du = \frac{u}{2} + \frac{\sin 2au}{4a}$$

128.
$$\int u \cos^2 au \, du = \frac{u^2}{4} + \frac{u \sin 2au}{4a} + \frac{\cos 2au}{8a^2}$$

129.
$$\int \cos^3 au \, du = \frac{\sin au}{a} - \frac{\sin^3 au}{3a}$$

INTEGRALS INVOLVING sin au

131.
$$\int \sin au \, du = -\frac{\cos au}{a}$$
132.
$$\int u \sin au \, du = \frac{\sin au}{a^2} - \frac{u \cos au}{a}$$
133.
$$\int u^2 \sin au \, du = \frac{2u}{a^2} \sin au + \left(\frac{2}{a^3} - \frac{u^2}{a}\right) \cos au$$
134.
$$\int u^3 \sin au \, du = \left(\frac{3u^2}{a^2} - \frac{6}{a^4}\right) \sin au + \left(\frac{6u}{a^3} - \frac{u^3}{a}\right) \cos au$$
135.
$$\int u^n \sin au \, du = -\frac{u^n \cos au}{a} + \frac{n}{a} \int u^{n-1} \cos au \, du$$
136.
$$\int \sin^2 au \, du = \frac{u}{2} - \frac{\sin 2au}{4a}$$
137.
$$\int u \sin^2 au \, du = \frac{u^2}{4} - \frac{u \sin 2au}{4a} - \frac{\cos 2au}{8a^2}$$
138.
$$\int \sin^3 au \, du = -\frac{\cos au}{a} + \frac{\cos^3 au}{3a}$$
139.
$$\int \sin^4 au \, du = \frac{3u}{8} - \frac{\sin 2au}{4a} + \frac{\sin 4au}{32a}$$

INTEGRALS INVOLVING sin au and cos au

140.
$$\int \sin au \cos au \, du = \frac{\sin^2 au}{2a}$$
141.
$$\int \sin au \cos bu \, du = -\frac{\cos(a-b)u}{2(a-b)} - \frac{\cos(a+b)u}{2(a+b)}$$
142.
$$\int \sin^n au \cos au \, du = \frac{\sin^{n+1} au}{(n+1)a}$$
143.
$$\int \cos^n au \sin au \, du = -\frac{\cos^{n+1} au}{(n+1)a}$$
144.
$$\int \sin^2 au \cos^2 au \, du = \frac{u}{8} - \frac{\sin 4au}{32a}$$
145.
$$\int \frac{du}{\sin au \cos au} = \frac{1}{a} \ln |\tan au|$$
146.
$$\int \frac{du}{\sin^2 au \cos au} = \frac{1}{a} \ln \left|\tan \left(\frac{\pi}{4} + \frac{au}{2}\right)\right| - \frac{1}{a \sin au}$$
147.
$$\int \frac{du}{\sin au \cos^2 au} = \frac{1}{a} \ln \left|\tan \frac{au}{2}\right| + \frac{1}{a \cos au}$$

INTEGRALS INVOLVING tan au

148.
$$\int \tan au \, du = -\frac{1}{a} \ln |\cos au| \text{ or } \frac{1}{a} \ln |\sec au|$$
149.
$$\int \tan^2 au \, du = \frac{\tan au}{a} - u$$
150.
$$\int \tan^3 au \, du = \frac{\tan^2 au}{2a} + \frac{1}{a} \ln |\cos au|$$
151.
$$\int \tan^n au \, du = \frac{\tan^{n-1} au}{(n-1)a} - \int \tan^{n-2} au \, du$$
152.
$$\int \tan^n au \sec^2 au \, du = \frac{\tan^{n+1} au}{(n+1)a}$$

INTEGRALS INVOLVING cotau

153.
$$\int \cot au \, du = \frac{1}{a} \ln |\sin au|$$
154.
$$\int \cot^2 au \, du = -\frac{\cot au}{a} - u$$
155.
$$\int \cot^3 au \, du = -\frac{\cot^2 au}{2a} - \frac{1}{a} \ln |\sin au|$$
156.
$$\int \cot^n au \, du = -\frac{\cot^{n-1} au}{(n-1)a} - \int \cot^{n-2} au \, du$$
157.
$$\int \cot^n au \csc^2 au \, du = -\frac{\cot^{n+1} au}{(n+1)a}$$

INTEGRALS INVOLVING secau

158.
$$\int \sec au \, du = \frac{1}{a} \ln |\sec au + \tan au| = \frac{1}{a} \ln |\tan \left(\frac{au}{2} + \frac{\pi}{4}\right)|$$
159. $\int \sec^2 au \, du = \frac{\tan au}{a}$
160. $\int \sec^3 au \, du = \frac{\sec au \tan au}{2a} + \frac{1}{2a} \ln |\sec au + \tan au|$
161. $\int \sec^n au \, du = \frac{\sec^{n-2} au \tan au}{a(n-1)} + \frac{n-2}{n-1} \int \sec^{n-2} au \, du$
162. $\int \sec^n au \tan au \, du = \frac{\sec^n au}{na}$

INTEGRALS INVOLVING esc au

163.
$$\int \csc au \, du = \frac{1}{a} \ln|\csc au - \cot au| = \frac{1}{a} \ln|\tan \frac{au}{2}|$$
164.
$$\int \csc^2 au \, du = -\frac{\cot au}{a}$$
165.
$$\int \csc^3 au \, du = -\frac{\csc au \cot au}{2a} + \frac{1}{2a} \ln|\tan \frac{au}{2}|$$
166.
$$\int \csc^n au \, du = -\frac{\csc^{n-2} au \cot au}{a(n-1)} + \frac{n-2}{n-1} \int \csc^{n-2} au \, du$$
167.
$$\int \csc^n au \cot au \, du = -\frac{\csc^n au}{na}$$

Inverse trigonometric forms

INTEGRALS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS, a > 0

168.
$$\int \cos^{-1} \frac{u}{a} du = u \cos^{-1} \frac{u}{a} - \sqrt{a^2 - u^2}$$
169.
$$\int u \cos^{-1} \frac{u}{a} du = \left(\frac{u^2}{2} - \frac{a^2}{4}\right) \cos^{-1} \frac{u}{a} - \frac{u\sqrt{a^2 - u^2}}{4}$$
170.
$$\int u^2 \cos^{-1} \frac{u}{a} du = \frac{u^3}{3} \cos^{-1} \frac{u}{a} - \frac{(u^2 + 2a^2)\sqrt{a^2 - u^2}}{9}$$
171.
$$\int \frac{\cos^{-1} \frac{u}{a}}{u} du = \frac{\pi}{2} \ln|u| - \int \frac{\sin^{-1} \frac{u}{a}}{u} du$$
172.
$$\int \frac{\cos^{-1} \frac{u}{a}}{u^2} du = -\frac{\cos^{-1} \frac{u}{a}}{u} + \frac{1}{a} \ln\left|\frac{a + \sqrt{a^2 - u^2}}{u}\right|$$

173.
$$\int \left(\cos^{-1}\frac{u}{a}\right)^2 du = u \left(\cos^{-1}\frac{u}{a}\right)^2 - 2u - 2\sqrt{a^2 - u^2} \cos^{-1}\frac{u}{a}$$
174.
$$\int \sin^{-1}\frac{u}{a} du = u \sin^{-1}\frac{u}{a} + \sqrt{a^2 - u^2}$$

175.
$$\int u \sin^{-1} \frac{u}{a} du = \left(\frac{u^2}{2} - \frac{a^2}{4}\right) \sin^{-1} \frac{u}{a} + \frac{u\sqrt{a^2 - u^2}}{4}$$

176.
$$\int u^2 \sin^{-1} \frac{u}{a} du = \frac{u^3}{3} \sin^{-1} \frac{u}{a} + \frac{(u^2 + 2a^2)\sqrt{a^2 - u^2}}{9}$$

177.
$$\int \frac{\sin^{-1}\frac{u}{a}}{u} du = \frac{u}{a} + \frac{\left(\frac{u}{a}\right)^3}{2 \cdot 3 \cdot 3} + \frac{1 \cdot 3 \left(\frac{u}{a}\right)^5}{2 \cdot 4 \cdot 5 \cdot 5} + \frac{1 \cdot 3 \cdot 5 \left(\frac{u}{a}\right)^7}{2 \cdot 4 \cdot 6 \cdot 7 \cdot 7} + \cdots$$

178.
$$\int \frac{\sin^{-1} \frac{u}{a}}{u^2} du = -\frac{\sin^{-1} \frac{u}{a}}{u} - \frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right|$$

179.
$$\int \left(\sin^{-1}\frac{u}{a}\right)^2 du = u \left(\sin^{-1}\frac{u}{a}\right)^2 - 2u + 2\sqrt{a^2 - u^2}\sin^{-1}\frac{u}{a}$$

180.
$$\int \tan^{-1} \frac{u}{a} du = u \tan^{-1} \frac{u}{a} + \frac{a}{2} \ln(u^2 + a^2)$$

181.
$$\int u \tan^{-1} \frac{u}{a} du = \frac{1}{2} \left(u^2 + a^2 \right) \tan^{-1} \frac{u}{a} - \frac{au}{2}$$

182.
$$\int u^2 \tan^{-1} \frac{u}{a} du = \frac{u^3}{3} \tan^{-1} \frac{u}{a} - \frac{au^2}{6} + \frac{a^3}{6} \ln(u^2 + a^2)$$

Exponential and logarithmic forms

INTEGRALS INVOLVING earl

$$183. \quad \int e^{au} du = \frac{e^{au}}{a}$$

184.
$$\int ue^{au} du = \frac{e^{au}}{a} \left(u - \frac{1}{a} \right)$$

185.
$$\int u^2 e^{au} du = \frac{e^{au}}{a} \left(u^2 - \frac{2u}{a} + \frac{2}{a^2} \right)$$

$$186. \quad \int u^n e^{au} du = \frac{u^n e^{au}}{a} - \frac{n}{a} \int u^{n-1} e^{au} du$$

187.
$$\int \frac{e^{au}}{u} du = \ln|u| + \frac{au}{1 \cdot 1!} + \frac{(au)^2}{2 \cdot 2!} + \frac{(au)^3}{3 \cdot 3!} + \cdots$$

188.
$$\int \frac{e^{au}}{u^n} du = \frac{-e^{au}}{(n-1)u^{n-1}} + \frac{a}{n-1} \int \frac{e^{au}}{u^{n-1}} du$$

189.
$$\int \frac{du}{p + qe^{au}} = \frac{u}{p} - \frac{1}{ap} \ln |p + qe^{au}|$$

190.
$$\int \frac{du}{(p+qe^{au})^2} = \frac{u}{p^2} + \frac{1}{ap(p+qe^{au})} - \frac{1}{ap^2} \ln |p+qe^{au}|$$

191.
$$\int \frac{du}{pe^{au} + qe^{-au}} = \begin{cases} \frac{1}{a\sqrt{pq}} \tan^{-1}\left(\sqrt{\frac{p}{q}}e^{au}\right), p > 0, q > 0\\ \frac{1}{2a\sqrt{-pq}} \ln \left| \frac{e^{au} - \sqrt{-\frac{q}{p}}}{e^{au} + \sqrt{-\frac{q}{p}}}, p > 0, q < 0 \right| \end{cases}$$

192.
$$\int e^{au} \sin bu \, du = \frac{e^{au} (a \sin bu - b \cos bu)}{a^2 + b^2}$$
193.
$$\int e^{au} \cos bu \, du = \frac{e^{au} (a \cos bu + b \sin bu)}{a^2 + b^2}$$

193.
$$\int e^{au} \cos bu \, du = \frac{e^{au} (a \cos bu + b \sin bu)}{a^2 + b^2}$$

194.
$$\int ue^{au} \sin bu \, du = \frac{ue^{au} (a \sin bu - b \cos bu)}{a^2 + b^2} - \frac{e^{au} \left[(a^2 - b^2) \sin bu - 2ab \cos bu \right]}{(a^2 + b^2)^2}$$
195.
$$\int ue^{au} \cos bu \, du = \frac{ue^{au} (a \cos bu + b \sin bu)}{a^2 + b^2} - \frac{e^{au} \left[(a^2 - b^2) \cos bu + 2ab \sin bu \right]}{(a^2 + b^2)^2}$$

INTEGRALS INVOLVING In |u|

196.
$$\int \ln|u| \ du = u \ln|u| - u$$
197.
$$\int (\ln|u|)^2 \ du = u (\ln|u|)^2 - 2u \ln|u| + 2u$$
198.
$$\int (\ln|u|)^n \ du = u (\ln|u|)^n - n \int (\ln|u|)^{n-1} \ du$$
199.
$$\int u \ln|u| \ du = \frac{u^2}{2} \left(\ln|u| - \frac{1}{2} \right)$$
200.
$$\int u^m \ln|u| \ du = \frac{u^{m+1}}{m+1} \left(\ln|u| - \frac{1}{m+1} \right)$$