LESSON 3 INTRO TO PATH-DEPENDENT OPTIONS

Derivative Pricing - Module 2

Outline

- ► Intro to Path-dependent options.
- ▶ Problems in Binomial model for path-dependent options.
- ▶ Potential solutions & computational costs' trade-off.

Path-dependent options

So far, we have used the binomial tree to price options with conventional payoffs:

$$\Rightarrow$$
 $(S_t - K)^+$ for call options and $(K - S_t)^+$ for put options.

However, one of the main advantages of derivative instruments is they're highly customizable for ad hoc needs:

⇒ Most clients will demand OTC instruments with non-conventional payoffs!

One example of such payoff is the Asian option:

- ▶ Payoff of Asian options is dependent on the arithmetic average of stock price:
 - $\to (S_{Avg.} K)^+$ for Asian Call, $(K S_{Avg.})^+$ for Asian Put.
- ightharpoonup This implies that we need to compute the average price, $S_{Avg.}$, for ALL paths
- While simple for the 'toy examples' that we have been using to illustrate concepts, there are a bunch of computational problems related to it
- We will use the Asian option to illustrate these, but note that problems can be extrapolated to any context with path-dependent options

Asian option on Binomial Model

Picture an Asian Call option under a binomial model with the following data:

$$S_0 = 100$$
, $K = 90$, $T = 1$, $r = 0\%$, $u = 1.2$, $d = 0.8$, $N = 2 \rightarrow p = 0.5$

Values for the Asian Call option at step 1 in the tree will be:

$$C_1^u = 0.5 \times 31.33 + (1 - 0.5) \times 15.33 = $23.33$$

 $C_1^d = 0.5 \times 2 + (1 - 0.5) \times 0 = 1

So, value of the Asian option today will be:

$$C_0 = 0.5 \times 23.33 + (1 - 0.5) \times 1 = $12.165$$

Asian option main takeaways

Takeaways from last example on Asian option:

- lacktriangle Note that here number of terminal prices eq number of option payoffs ightarrow Path matters
- ▶ To get option payoff we have to compute all paths $\rightarrow #Paths = 2^N$
- Ideally, the more paths we compute the merrier
 - ► Improve accuracy?
 - ► Computational cost?
 - \Rightarrow If you haven't yet, try running one of the previous codes for large N!
 - \Rightarrow Picture you want N=100 steps. That means 1.27×10^{30} paths!
- While conceptually it is easy to price Asian options using the binomial tree, implementing it in practice is way more difficult
- ► These problems are common to all types of path-dependent options/derivatives:
 - Barrier options; Lookback options; Binary options; ...

Summary of Lesson 3

In Lesson 3 we have seen some important concepts:

- ► Path-dependent options and unconventional payoffs
- Use of the binomial model to price options with path-dependent payoff
- Computational problems arising from using binomial model with path-dependent derivatives
- ⇒ TO-DO NEXT: This Lesson does not have an associated Jupyter Notebook. Move to Lesson 4, and its corresponding Notebook!
- \Rightarrow In the next lesson we introduce an alternative methodology to alleviate the computational problems embedded here: Monte-Carlo methods.

