

Communications in Algebra

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

*-Group identities on units of division rings

M. H. Bien, M. Ramezan-Nassab & D. H. Viet

To cite this article: M. H. Bien, M. Ramezan-Nassab & D. H. Viet (2021): *-Group identities on units of division rings, Communications in Algebra, DOI: <u>10.1080/00927872.2021.1887205</u>

To link to this article: https://doi.org/10.1080/00927872.2021.1887205

	Published online: 05 Mar 2021.
	Submit your article to this journal 🗗
ılıl	Article views: 19
Q Q	View related articles 🗹
CrossMark	View Crossmark data ☑

*-Group identities on units of division rings

M. H. Bien^a , M. Ramezan-Nassab^b, and D. H. Viet^a

^aFaculty of Mathematics and Computer Science, University of Science, and Vietnam National University, Ho Chi Minh City, Vietnam; ^bDepartment of Mathematics, Kharazmi University, Tehran, Iran

ABSTRACT

Let D be a division ring with infinite center F. By a well known result of Amitsur, if $\mathcal{U}(D)$ satisfies a group identity, then D is commutative. Now assume that D has an involution * of the first kind. In this paper, among other results, we show that if $\mathcal{U}(D)$ satisfies a *-group identity, then either D is commutative or $\dim_F D = 4$ and * is of the symplectic type. As a result, let N be a *-invariant normal subgroup of $\mathcal{U}(D)$ such that all symmetric elements of N are central (this is the case when, for example, each symmetric element of N is bounded Engel). Then either N is central or $dim_F D = 4$ and * is of the symplectic type.

ARTICLE HISTORY

Received 16 September 2020 Revised 25 January 2021 Communicated by Sudarshan Kumar Sehgal

KEYWORDS

Division ring; Engel group; group identity; involution

2010 MATHEMATICS SUBJECT CLASSIFICATION

16K40; 16R50; 16U60; 16W10

1. Introduction

Let G be a group with center Z(G) and $X = \{x_1, x_2, ...\}$ be a set of countably non-commuting indeterminates. The free group generated by X and the free product of $\langle X \rangle$ and G over Z(G) is denoted by $\langle X \rangle$ and $\langle X \rangle *_{Z(G)} G$, respectively. An element of $\langle X \rangle$ and of $\langle X \rangle *_{Z(G)} G$ is called a group monomial and a generalized group monomial over G, respectively. Assume that

$$w(x_1,...,x_n) = a_1 x_{i_1}^{n_1} a_2 x_{i_2}^{n_2} ... a_t x_{i_t}^{n_t} a_{t+1}$$

is a nonidentity element of $\langle X \rangle *_{Z(G)} G$. If

$$w(g_1,...,g_n)=1$$

for every $g_1, ..., g_n \in G$, then we say that w is a generalized group identity of G or G satisfies the generalized group identity w. If, particularly, $w(x_1,...,x_n)$ is a group monomial (i.e., if $a_1...=a_{t+1}=1$), then we call w a group identity of G.

Now assume that n = 2m and * is an involution of G (i.e., a map *: $G \rightarrow G, g \mapsto g^*$, such that $(gh)^* = h^*g^*$ and $(g^*)^* = g$ for every $g, h \in G$). If

$$w(g_1,...,g_m,g_1^*,...,g_m^*)=1$$

for every $g_1, ..., g_m \in G$, then w is called a *-generalized group identity of G or we say that G satisfies a *-generalized group identity w. Again, if particularly $a_1...=a_{t+1}=1$, then we call w a *-group identity of G. For convenience, we write $w(x_1, x_1^*, ..., x_m, x_m^*)$ instead of $w(x_1, ..., x_{2m})$ and naturally we call $w(x_1, x_1^*, ..., x_m, x_m^*)$ a *-(generalized) group monomial. Clearly, each (generalized) group identity is a *-(generalized) group identity (where no *'s appear). Moreover since xx* is a symmetric element, a (generalized) group identity on symmetric elements of a group G yields a *-(generalized) group identity of G.

Let F be an infinite field of characteristic different from 2 and G be a torsion group. Assume * be any involution on G, and extend it linearly to FG, the group algebra of G over F. In [20], Jespers-Ruiz Marin found the necessary and sufficient conditions for $(FG)^+$ (the symmetric elements of FG) to be commutative. Giambruno-Polcino Milies-Sehgal in [13] found the conditions under which $\mathcal{U}(FG)^+$ satisfies a group identity. The study of the notion of *-group identities has been begun in [14], where the authors showed that $\mathcal{U}(FG)$ satisfies a *-group identity if and only if $\mathcal{U}(FG)^+$ satisfies a group identity.

Let D be a division ring with center F. By a well known result of Amitsur, if F is infinite and $\mathcal{U}(D)$ satisfies a group identity, then D is commutative [1, Theorem 19]. This result has been extended in several ways (e.g., see [4, 7, 9, 15]). Now, let * be an involution of D. In this paper, we show an involution version of Amitsur's result. More precisely, we show that if $\mathcal{U}(D)$ satisfies a *-group identity, then either D is commutative or $\dim_F D = 4$ and * is of the symplectic type (Theorem 3.2). As a result, let R be a semisimple algebra over an infinite field F of characteristic $\neq 2$ with involution *. If $\mathcal{U}(R)$ satisfies a *-group identity, then each Wedderburn component of R is of dimension at most 4 over its center, and R^+ is central in R (Corollary 3.3). Also we show that is $\langle \mathcal{U}(D)^+ \rangle$ is nilpotent, then either D is commutative or $\dim_F D = 4$ and * is of the symplectic type (Theorem 3.6). Finally, let N be a *-invariant normal subgroup of $\mathcal{U}(D)$ such that $N^+ \subseteq F$ (this is the case when, for example, each element of N^+ is bounded Engel). We will see that either N is central or $\dim_F D = 4$ and * is of the symplectic type (Theorem 3.7 and Corollary 3.8).

2. Notation and preliminaries

Let R be a ring with center Z(R). An *involution* * of R is a map $*: R \to R, x \mapsto x^*$, satisfying the conditions $(x+y)^* = x^* + y^*, (xy)^* = y^*x^*$ and $(x^*)^* = x$ for every $x, y \in R$. The involution is of the *first kind* if $x^* = x$ for every $x \in Z(R)$ (otherwise, * is of the second kind). In this paper, involutions we consider are of the first kind. A subset S of R is called *-invariant if $x^* \in S$ for every $x \in S$. It is obvious that if S is *-invariant and a subring of R, then * is also an involution of S. The set of symmetric elements of S is denoted by S^+ , so, $S^+ = \{x \in S | x^* = x\}$.

Let F be a field and n a positive integer ≥ 2 . The matrix ring $M_n(F)$ of degree n over F always has an involution. For a matrix $A \in M_n(F)$, denote by A^t the transpose of A. Clearly, t is an involution of $M_n(F)$. Assume that n = 2m is even. For $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \in M_{2m}(F)$ where

 $A_{11}, A_{12}, A_{21}, A_{22} \in M_m(F)$, set $A^s = \begin{bmatrix} A_{22}^t & -A_{12}^t \\ -A_{21}^t & A_{11}^t \end{bmatrix}$. One can show that s is also an involution of $M_{2m}(F)$. We say that t is the *transpose involution* of $M_n(F)$ and s the *symplectic involution* of $M_{2m}(F)$. Moreover,

Lemma 2.1. [22, Proposition 2.1.4] Let D be a division ring of characteristic different from 2 and n a positive integer. Let * be any involution on $M_n(D)$. Then, up to an automorphism θ of $M_n(D)$ satisfying $\theta(A^*) = (\theta(A))^*$ for all $A \in M_n(D)$, one of the following conditions occurs:

- 1. there exist an involution *' of D and an invertible diagonal matrix $C = diag(c_1, c_2, ..., c_n)$ such that $c_i^{*'} = c_i$ for all i, and if $A = (a_{ij}) \in M_n(D)$, then $A^* = C^{-1}(a_{ij}^{*'})^t C$ (in this case, we say that * is of the transpose type).
- 2. D is a field, n is even, and * is the symplectic involution (we say that * is of the symplectic type).

Let D be a division ring which is finite dimensional over its center F. Assume that * is an involution of D. Let n be the degree of D over F, that is, $\dim_F D = n^2$ and let K be a field containing F. Since $D \otimes_F K \cong M_n(K)$, via the homomorphism $a \mapsto a \otimes 1$, one has that D is a subring of $M_n(K)$. It is easy to see that the map $* \otimes 1: D \otimes_F K \to D \otimes_F K$, defined by $(a \otimes k)^{* \otimes 1} = a^* \otimes k$ for every $a \otimes k \in D \otimes_F K$, is an involution of $D \otimes_F K$.

Lemma 2.2. [25, Proposition 4.1] Let D be a division ring of degree n over its center F, that is, $\dim_F D = n^2$. Denote by \bar{F} the algebraic closure of F. Assume that $\psi: D \otimes_F \bar{F} \to M_n(\bar{F})$ is an isomorphism and * is an involution of D. Then, the map

$$\bar{*} = \psi(* \otimes 1)\psi^{-1}: M_n(\bar{F}) \to M_n(\bar{F})$$

is an involution of $M_n(\bar{F})$ of the first kind. The type of $\bar{*}$ is independent of the choice of isomorphisms ψ .

We say that * is of the symplectic type (resp., the transpose type) if * is of the symplectic type (resp., the transpose type).

3. Main results

For the remainder of this paper, D will be a division ring of characteristic different from 2 with center F and involution * of the first kind. Also, $\bar{*}$ and F are as in Lemma 2.2. The group of units of a ring R is denoted by $\mathcal{U}(R)$.

Lemma 3.1. Assume dim_F $D = d^2$ and $w(x_1, x_1^*, ..., x_m, x_m^*)$ is a *-generalized group identity of $\mathcal{U}(D)$. Then, $w(x_1, x_1^{\bar{*}}, ..., x_m, x_m^{\bar{*}})$ is also a $\bar{*}$ -generalized group identity of $\mathrm{GL}_d(\bar{F})$.

Proof. This is just a corollary of [25, Theorem 6.4].

Now we are ready to state the main result of this paper.

Theorem 3.2. Suppose that F is infinite and $\mathcal{U}(D)$ satisfies a *-group identity. Then either D is commutative or $dim_F D = 4$ and * is of the symplectic type.

Proof. Assume that D is non-commutative. We must show $\dim_F D = 4$ and * is of the symplectic type. Let w be a *-group identity of $\mathcal{U}(D)$. According to [14, Lemma 1], we may assume w is of the form $w(x, x^*) = x^{n_1}(x^*)^{m_2}...x^{n_t}(x^*)^{m_t}$ where $n_1, m_t \in \{0, \pm 1\}$, and all the other exponents lie in $\{\pm 1, \pm 2\}$. We first claim that D is centrally finite. Assume that D is of infinite dimensional over F. If $w_1(x,y) = w(x,y) = x^{n_1}y^{m_2}...x^{n_t}y^{m_t}$, then, since F is infinite, D satisfies the group identity $w_1(x,y)$ by [10, Theorem, p. 191], which contradicts [1, Theorem 19]. The claim is shown, that is, D is centrally finite. Let $n^2 = \dim_F D$. According to Lemma 3.1, $GL_n(\bar{F})$ satisfies the $\bar{*}$ -group identity $w(x, x \bar{*})$. We next claim that $\bar{*}$ is of the symplectic type. Suppose that $\bar{*}$ is of the transpose type. Via the embedding $\operatorname{GL}_2(\bar{F}) \to \operatorname{GL}_n(\bar{F}), A \mapsto \begin{bmatrix} A & 0 \\ 0 & I_{n-2} \end{bmatrix}, \operatorname{GL}_2(\bar{F})$ is $\bar{*}$ -invariance.

ant, so $GL_2(\bar{F})$ also satisfies the $\bar{*}$ -group identity $w(x, x \bar{*})$. Moreover, if $A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \in GL_2(\bar{F})$,

then by Lemmas 2.1 and 2.2, $A^{\pm} = \begin{bmatrix} a & cc_1c_2^{-1} \\ bc_1^{-1}c_2 & d \end{bmatrix}$, where $c_1, c_2 \in \overline{F}$. We consider two cases:

Case 1. char(D) = 0. Let $K = \mathbb{Q}(c_1^{-1}c_2)$ be the subfield of \bar{F} generated by $c_1^{-1}c_2$ over \mathbb{Q} . We may assume that K is a subfield of the complex numbers $\mathbb C.$ Again, $\operatorname{GL}_2(\bar F)$ is $\bar *$ -invariant, so $\operatorname{GL}_2(\overline{F})$ satisfies the $\bar{*}$ -group identity $w(x, x^{\bar{*}})$. Choose $r \in \mathbb{Q}$ such that $|c_1^{-1}c_2r^2| \geq 2$, $|c_1^{-1}c_2r^2| = 2$ $|2| \ge 2$ and $|c_1^{-1}c_2r^2 + 2| \ge 2$. Now consider two matrices $A = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ rc_1^{-1}c_2 & 1 \end{bmatrix}$ in $M_n(K)$. According to [8], $\langle A, B \rangle$ is a free group. On the other hand, $A^{\bar{*}} = B$, so $w(A, B) = w(A, A^{\bar{*}}) = 1$; a contradiction.

Case 2. char(D) = p > 0. If \bar{F} is algebraic over the prime subfield P of \bar{F} , then so is F. Hence, D is also algebraic over the finite field P, which implies by Jacobson's Theorem (see [21, Theorem 13.11]) that D is commutative. Therefore, \bar{F} is not algebraic over P. Consider $L = P[c_1^{-1}c_2]$ the subring of \bar{F} generated by $c_1^{-1}c_2$ over P. If $c_1^{-1}c_2$ is not algebraic over P, then $P[c_1^{-1}c_2]$ is isomorphic to the polynomial ring P[t]. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Then, it is easy to check that $A^2 = B^2 = 0$, and $BA = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is not nilpotent. According to [11, Lemma 3.2], $\langle 1 + (c_1^{-1}c_2)A, 1 + (c_1^{-1}c_2)^2BAB\rangle$ is isomorphic to the free product

$$\langle 1 + (c_1^{-1}c_2)A \rangle * \langle 1 + (c_1^{-1}c_2)^2 BAB \rangle.$$

Observe that

$$(1+(c_1^{-1}c_2)A)^{\bar{*}} = \begin{bmatrix} 1 & c_1^{-1}c_2 \\ 0 & 1 \end{bmatrix}^{\bar{*}} = \begin{bmatrix} 1 & 0 \\ (c_1^{-1}c_2)^2 & 1 \end{bmatrix} = 1+(c_1^{-1}c_2)^2BAB.$$

So

$$w(1+(c_1^{-1}c_2)A, 1+(c_1^{-1}c_2)^2BAB)=w(1+(c_1^{-1}c_2)A, (1+(c_1^{-1}c_2)A)^{\bar{*}})=1,$$

which is a contradiction. Now if $c_1^{-1}c_2$ is algebraic over P, then $P[c_1^{-1}c_2] = P(c_1^{-1}c_2)$ is a subfield of \bar{F} . Because \bar{F} is not algebraic over P, neither is \bar{F} over $P(c_1^{-1}c_2)$. Let $t \in \bar{F}$ be transcendental over $P(c_1^{-1}c_2)$ and consider the polynomial ring $P(c_1^{-1}c_2)[t]$. In this subcase, again by [11, Lemma 3.2], $\langle 1 + tA, 1 + tc_1^{-1}c_2BAB \rangle$ is isomorphic to the free product $\langle 1 + tA \rangle * \langle 1 + tc_1^{-1}c_2BAB \rangle$. Similarly, one has $(1 + tA)^{\frac{1}{8}} = 1 + tBAB$ which is also a contradiction.

Two subcases lead us a contradiction. The claim is shown, that is, $\bar{*}$ is of the symplectic type. We finally claim that n=2. Assume that n>2. Then, $n=2\ell$ with $\ell>1$ (by Lemma 2.1). Via the embedding $\mathrm{GL}_{\ell}(\bar{F}) \to \mathrm{GL}_{2\ell}(\bar{F}), A \mapsto \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$, $\mathrm{GL}_{\ell}(\bar{F})$ is $\bar{*}$ -invariant, so $\mathrm{GL}_{\ell}(\bar{F})$ also satisfies the $\bar{*}$ -group identity $w(x,x^{\bar{*}})$. Moreover, the involution $\bar{*}$ of $\mathrm{GL}_{\ell}(\bar{F})$ is of the transpose type. Using the first path, we have a contradiction. Thus, n=2 and the proof is completed.

Our next result extends [14, Lemma 5] with similar argument. We include its proof for the sake of completeness.

Corollary 3.3. Let R be a semisimple artinian algebra over an infinite field F of characteristic $\neq 2$ with involution *. If U(R) satisfies a *-group identity, then each Wedderburn component of R is of dimension at most 4 over its center, and R^+ is central in R.

Proof. Let $R = Re_1 \oplus \cdots \oplus Re_k$, where e_i 's are primitive central idempotents. For convinced, let $e = e_i$, for some $1 \le i \le k$, and assume $Re \cong M_n(D)$, where D is a division ring and n is a natural number.

First, assume that $e \in R^+$. Then Re is a *-invariant subset of R. Therefore, $GL_n(D) \subseteq \mathcal{U}(Re)$ satisfies a *-group identity. Suppose that the involution * is of transpose type. Denote the matrix with a 1 in the i, j position and every other entry 0 by E_{ij} . In this case, E_{11} is a symmetric idempotent, hence E_{11} is central by [14, Lemma 3]. Thus, n = 1, i.e., $\mathcal{U}(D)$ satisfies a *-group identity. So, by Theorem 3.2, D is commutative. Now suppose that the involution * is of the symplectic type. Then by Lemma 2.1, D is a field. Assume n > 2, and let $a = E_{1n} + E_{1n}^* = E_{1n} - E_{\frac{n}{2}(\frac{n}{2}+1)}$. Then a is symmetric and square-zero. Let $c = E_{11}$, $d = E_{nn}$. Then cd = 0, but $cad = E_{1n} \neq 0$, which

[14, Lemma 3] gives us a contradiction. If n=2, then the symmetric elements are the scalar multiples of the identity matrix, hence, central, and we are done.

Now, suppose that e is not symmetric. Then e^* is also a primitive central idempotent. Let $w(x,x^*)$ be the *-group identity on $\mathcal{U}(R)$, as [14, Lemma 1]. Assume $\alpha e, \beta e \in \mathcal{U}(Re)$. Then u= $\alpha e + \beta^* e^* + (1 - e - e^*) \in \mathcal{U}(R)$ and $u^* = \beta e + a^* e^* + (1 - e - e^*)$. Since, $w(u, u^*) = 1$, looking only at the first component, we get $w(\alpha e, \beta e) = e$. That is, $w(x_1, x_2)$ is a group identity for $\operatorname{GL}_n(D)$. Now, n=1 by [12, Corollary 3] and D is a field by [1, Theorem 19].

Lemma 3.4. Assume that F is infinite. Then, $aa^* \in F$ for every $a \in D$ if and only if either D is commutative or $\dim_F D = 4$ and * is of the symplectic type.

Proof. Assume that $aa^* \in F$ for every $a \in D$. Then, $\mathcal{U}(D)$ satisfies a *-group identity $(xx^*)(yy^*)(xx^*)^{-1}(yy^*)^{-1}$. Therefore, by Theorem 3.2, either D is commutative or dim_FD = 4 and * is of the symplectic type. Conversely, assume that $\dim_F D = 4$ and * is of the symplectic type. Then, by Lemma 2.2, D can be considered as a subring of $M_2(F)$ and the involution $\bar{*}$ of $M_2(F)$ is of the symplectic type. Thus each symmetric element is central, hence $a\bar{a} \in \bar{F}$ for every $a \in \bar{F}$ $M_2(\overline{F})$. In particular, $aa^* \in F$ for every $a \in D$.

Let D be a division ring which has not necessarily equipped with an involution. In [16], Herstein conjectured that if for every $x, y \in \mathcal{U}(D)$, there exists a positive integer n(x, y) such that $(x^{-1}y^{-1}xy)^{n(x,y)} \in F$, then D is commutative. This conjecture holds in case D is centrally finite [16, Theorem 2] or F is uncountable [17]. In general, the conjecture is still open. In our next result, we will find the involution version of [16, Theorem 2].

Let G be a group with center Z(G) and $w(x_1, x_2, ..., x_n)$ a nonidentity group monomial in $x_1, x_2, ..., x_n$. Recall that w is said to be a power central group identity if for every $g_1, g_2, ..., g_n \in G$, there exists natural number $p = p(g_1, g_2, ..., g_n)$ such that $w(g_1, g_2, ..., g_n)^p \in Z(G)$. Such identity in division rings was studied in several papers (e.g., see [23]). Similarly, we will define notion of *-power central group identity. Assume that * is an involution of G and let $w(x_1, x_1^*, ..., x_m, x_m^*)$ be a (nonidentity) *-group monomial. We say that w is a *-power central group identity if for every $g_1, g_2, ..., g_m \in G$, there exists a positive integer $p = p(g_1, g_2, ..., g_m)$ such that $w(g_1,g_1^*,...,g_m,g_m^*)^p \in Z(G)$. We say that G satisfies a *-power central group identity if there exists some *-power central group identity w of G.

Theorem 3.5. Let D be a locally finite dimensional division ring over F. If $\mathcal{U}(D)$ satisfies a *-power central group identity, then either D is commutative or $\dim_F D = 4$ and * is of the symplectic type.

Proof. Assume D is non-commutative. We must show that $\dim_F D = 4$ and * is of the symplectic type. By Jacobson's Theorem [21, Theorem 13.11], F is infinite. Let $a \in D$ be any element. By Lemma 3.4, it suffices to show $aa^* \in F$. To do it, by contrary, assume $aa^* \notin F$ and choose $b \in D$ such that $(aa^*)b \neq b(aa^*)$. Let Δ be the subdivision ring of D generated by $S = \{a, a^*, b, b^*\}$ over F. Then $\dim_F \Delta < \infty$. Let D_1 be the subdivision ring of Δ generated by S over the prime subfield P. Then, D_1 is *-invariant whose center F_1 is finitely generated over P [5, Lemma 2.6]. Now let $w(x_1, x_1^*, ..., x_m, x_m^*)$ be a *-power central group identity of $\mathcal{U}(D)$, that is, for every $g_1, g_2, ..., g_m \in$ $\mathcal{U}(D)$, there exists a positive integer $p = p(g_1, g_2, ..., g_m)$ such that $w(g_1, g_1^*, ..., g_m, g_m^*)^p \in F$. Then, $w(x_1, x_1^*, ..., x_m, x_m^*)$ is also a *-power central group identity of $\mathcal{U}(D_1)$. As [2, Lemma 2.2], there exists an integer $\ell \geq 1$ such that $w(g_1, g_1^*, ..., g_m, g_m^*)^\ell \in F_1$. It implies that

$$w(x_1, x_1^*, ..., x_m, x_m^*)^{-\ell} y^{-1} w(x_1, x_1^*, ..., x_m, x_m^*)^{\ell} y = 1$$

is a *-group identity of $\mathcal{U}(D_1)$. Since $\dim_{F_1}D_1<\infty$, we may assume F_1 is infinite. Hence, by Theorem 3.2, $\dim_{F_1} D_1 = 4$ and * (as an involution on D_1) is of the symplectic type. Now,

Lemma 3.4 implies that $aa^* \in F_1$; consequently, $(aa^*)b = b(aa^*)$. This contradiction completes the proof.

It is known that if D is a division ring such that $\mathcal{U}(D)$ is a nilpotent group, then D is commutative. In the following result, we instead assume that the set of symmetric elements of $\mathcal{U}(D)$, denoted by $\mathcal{U}(D)^+$, is nilpotent (see [22, Lemma 4.1.2]).

Theorem 3.6. Let n be a positive integer such that $[s_1, s_2, ..., s_n] = 1$ for every $s_1, s_2, ..., s_n \in \mathcal{U}(D)^+$. Then either D is commutative or $\dim_F D = 4$ and * is of the symplectic type.

Proof. Assume that D is non-commutative. We must show that $\dim_F D = 4$ and * is of the symplectic type. Let $w(x_1, x_2, ..., x_n) = [x_1, x_2, ..., x_n]$. Then, $\mathcal{U}(D)^+$ satisfies the group identity w. Hence, if we let

$$w_1(x_1,...,x_n,x_1^*,...,x_n^*)=w(x_1x_1^*,...,x_nx_n^*),$$

then $\mathcal{U}(D)$ satisfies the *-group identity w_1 . Let F be the center of D. By Theorem 3.2, it suffices to show that F is infinite. Assume that F is finite. We seek a contradiction. As D is non-commutative and F is finite, $\dim_F D = \infty$. Now, by [18, Theorem 2.1.6], $D = F(D^+)$.

Without loss of generality, we assume that n is the smallest integer such that $[s_1,...,s_n]=1$ for every $s_1,...,s_n\in\mathcal{U}(D)^+$. If n=2, then $\mathcal{U}(D)^+$ is commutative, so is $D=F(D^+)$, which is a contradiction. Hence, we assume that $n\geq 3$. Then, for every $s\in\mathcal{U}(D)^+$, one has $[[s_1,...,s_{n-1}],s]=1$ for every $s_1,...,s_{n-1}\in\mathcal{U}(D)^+$. As a result, $[s_1,...,s_{n-1}]\in F$ for every $s_1,...,s_{n-1}\in\mathcal{U}(D)^+$. By the minimality of n, there exist $s_1,...,s_{n-1}\in\mathcal{U}(D)^+$ such that $[s_1,...,s_{n-1}]=\alpha\in F\setminus\{1\}$. For convenience, put $a=[s_1,...,s_{n-2}]$ and $b=s_{n-1}$. Then $ab\neq ba$ and $a^{-1}b^{-1}ab=\alpha$.

Let q = |F|. Since $b = \alpha a^{-1}ba$, one has

$$b^{q-1} = (\alpha a^{-1}ba)^{q-1} = (\alpha)^{q-1}(a^{-1}ba)^{q-1} = a^{-1}b^{q-1}a,$$

which implies that $b^{q-1}a=ab^{q-1}$. Repeat arguments above, one has $ba^{q-1}=a^{q-1}b$ and $b(a^*)^{q-1}=(a^*)^{q-1}b$. Because $[a,s]\in F$ for every $s\in \mathcal{U}(D)^+, [a,aa^*]=\beta\in F$, equivalently, $a(aa^*a^{-1}(a^*)^{-1})a^{-1}=\beta$, which implies that $aa^*a^{-1}(a^*)^{-1}=\beta$. Similarly, $a^{q-1}a^*=a^*a^{q-1}$ and $a(a^*)^{q-1}=(a^*)^{q-1}a$. Let $D_1=F(a,a^*,b)$, the division subring of D generated by a,a^*,b over F. Then D_1 is *-invariant and non-commutative, because $ab\neq ba$. In conclusion, if F_1 is the center of D_1 , then we have relations of a,a^*,b as follows:

- 1. $ab = \alpha ba$;
- 2. $ba^* = \alpha a^* b$;
- 3. $aa^* = \beta a^*a$;
- 4. a^{q-1} , $(a^*)^{q-1}$ and b^{q-1} belong to F_1 ,

where $\alpha, \beta \in F \subseteq F_1$. It implies that D_1 is finite dimensional over F_1 . Therefore, F_1 is infinite. According to Theorem 3.2, $\dim_{F_1} D_1 = 4$ and * is of the symplectic type of D_1 . Now, by [27, Proposition 2.1], $D_1^+ = F_1$. In particular, $b \in F_1$. As a corollary, ab = ba which contradicts the way we choose a and b. The proof is complete.

Theorem 3.7. Suppose that F is infinite and N is a *-invariant normal subgroup of U(D). If $N^+ \subseteq F$, then either N is central or $\dim_F D = 4$ and * is of the symplectic type.

Proof. Assume that N is non-central. We will show that $\dim_F D = 4$ and * is of the symplectic type. For every $a \in N$, by the fact that N is *-invariant, $aa^* \in N^+ \subseteq F$. Since N is normal in D^* , for every $a \in N$ and $b, c \in \mathcal{U}(D)$ we have

$$1 = ((bab^{-1})(bab^{-1})^*)^{-1}c^{-1}(bab^{-1})(bab^{-1})^*c$$

= $(b^{-1})^*(a^{-1})^*b^*ba^{-1}b^{-1}c^{-1}bab^{-1}(b^{-1})^*a^*b^*c$.

Let $a \in N \setminus F$, so D satisfies a *-generalized group identity

$$w(x, x^*, y, y^*) = (x^{-1})^* (a^{-1})^* x^* x a^{-1} x^{-1} y^{-1} x a x^{-1} (x^{-1})^* a^* x^* y.$$

Assume that $\dim_F D = \infty$. Then, since F is infinite, we can apply [10, Theorem, p. 191] to deduce that D satisfies the generalized group identity

$$w(x_1, x_2, y_1, y_2) = x_2^{-1} (a^{-1})^* x_2 x_1 a^{-1} x_1^{-1} y^{-1} x_1 a x_1^{-1} x_2^{-1} a^* x_2 y,$$

which contradicts [15, Theorem 2]. Hence, D is centrally finite. Let $\dim_F D = d^2$. Then, $w(x, x^{\bar{*}}, y, y^{\bar{*}})$ is also a $\bar{*}$ -generalized group identity of $GL_d(\bar{F})$ by Lemma 3.1 (here, of course, a denotes under inclusion $D \hookrightarrow M_d(\bar{F})$). Observe that, this identity can write as

$$w(x, x^{\overline{*}}, y, y^{\overline{*}}) = ((xax^{-1})(xax^{-1})^{\overline{*}})^{-1}y^{-1}(xax^{-1})(xax^{-1})^{\overline{*}}y.$$

As a result, $(PaP^{-1})(PaP^{-1})^{\bar{*}} \in \bar{F}$ for every $P \in GL_d(\bar{F})$.

We claim that * is of the symplectic type. Deny the claim and assume $\bar{*}$ is of the transpose type, that is, there exists $C = diag(c_1, c_2, ..., c_d) \in GL_d(\bar{F})$ such that $A^{\bar{*}} = CA^tC^{-1}$ for every $A \in CA^tC^{-1}$ $\mathrm{GL}_d(\bar{F})$. Since \bar{F} is algebraically closed, by according to the Jordan normal form, there exists $P \in$ $GL_d(\overline{F})$ such that

$$PaP^{-1} = egin{bmatrix} \lambda_1 & \lambda_{12} & & & & & \\ & \lambda_2 & \lambda_{23} & & & & \\ & & \lambda_3 & \ddots & & \\ & & & \ddots & \lambda_{(d-1)d} \\ & & & \lambda_d \end{bmatrix}$$

where $\lambda_i \in \overline{F}$ and $\lambda_{i(i+1)} \in \{0,1\}$. Computing

$$\begin{bmatrix} c_1 & & & & \\ & c_2 & & & \\ & & & \ddots & \\ & & & & c_d \end{bmatrix} \begin{bmatrix} \lambda_1 & & & & & \\ \lambda_{12} & \lambda_2 & & & & \\ & \lambda_{23} & \lambda_3 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda_{(d-1)d} & \lambda_d \end{bmatrix} \begin{bmatrix} c_1^{-1} & & & & \\ & c_2^{-1} & & & \\ & & & \ddots & \\ & & & & c_d^{-1} \end{bmatrix},$$

we have

$$(PaP^{-1})^{\bar{*}} = \begin{bmatrix} \lambda_1 & & & & \\ c_2c_1^{-1}\lambda_{12} & \lambda_2 & & & \\ & c_3c_2^{-1}\lambda_{23} & \lambda_3 & & & \\ & & \ddots & \ddots & \\ & & & c_dc_{d-1}^{-1}\lambda_{(d-1)d} & \lambda_d \end{bmatrix}.$$

Now it is clear that the (i,i+1)-entry of the matrix $(PaP^{-1})(PaP^{-1})^{\frac{-}{8}}$ is $\lambda_{i(i+1)}\lambda_{i+1}$ and (i,i)entry is λ_i^2 for every i. As $(PaP^{-1})(PaP^{-1})^{\frac{1}{*}} \in \overline{F}$ and $\lambda_i \neq 0$ (since a is invertible), one has $\lambda_{i(i+1)} = 0$ for every i and $\lambda_1^2 = \lambda_2^2 = \cdots = \lambda_d^2$. Consequently, $(PaP^{-1})^2 \in \overline{F}$, which implies that $a^2 \in \overline{F}$. Thus $a^2 \in F$ since $a \in D$. We observe that a ranges over $N \setminus F$, so every element of N is radical over F. By [6, Lemma 2.4], N is central, a contradiction. Hence, the claim is shown. that is, * is of the symplectic type. Thus, $d = 2\ell$ and if $A \in M_{2\ell}(\bar{F})$ with $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \in M_{2\ell}(\bar{F})$, where $A_{11}, A_{12}, A_{21}, A_{22} \in M_{\ell}(\bar{F})$, one has $A^{\bar{*}} = \begin{bmatrix} A_{22}^t & -A_{12}^t \\ -A_{21}^t & A_{11}^t \end{bmatrix}$.

It suffices to show $\ell=1$. Suppose that $\ell>1$. We claim that a (as an element of $\mathrm{GL}_d(\bar{F})$) is a diagonalizable matrix. Since \bar{F} is algebraically closed, there exists $P\in\mathrm{GL}_{2\ell}(\bar{F})$ such that

$$PaP^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix},$$

where

and

$$A_{22} = egin{bmatrix} \lambda_{\ell+1} & \lambda_{(\ell+1)(\ell+2)} & & & & & \\ & \lambda_{\ell+2} & \lambda_{(\ell+2)(\ell+3)} & & & & & \\ & & \lambda_{\ell+3} & \ddots & & & & \\ & & & \ddots & \lambda_{(2\ell-1)2\ell} \\ & & & \lambda_{2\ell} \end{bmatrix}$$

If a is not diagonalizable, then we can choose P such that $\lambda_{\ell(\ell+1)} \neq 0$. Hence, $(PaP^{-1})^{\bar{*}} = \begin{bmatrix} A_{22}^t & -A_{12}^t \\ 0 & A_{11}^t \end{bmatrix}$. As $(PaP^{-1})(PaP^{-1})^{\bar{*}} \in \bar{F}$, the entry at $(1,2\ell)$ is 0, which implies that $\lambda_1\lambda_{\ell(\ell+1)} = 0$. Moreover, $\lambda_{\ell(\ell+1)} \neq 0$, so $\lambda_1 = 0$. This contradicts the fact that a is invertible. Thus, the claim is shown, that is, a is diagonalizable. Therefore, $PaP^{-1} = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$ where

$$A_{11}=\left[egin{array}{cccc} \lambda_1 & & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_\ell \end{array}
ight]$$
 , $A_{22}=\left[egin{array}{cccc} \lambda_{\ell+1} & & & & \ & \lambda_{\ell+2} & & & \ & & \ddots & & \ & & & \lambda_{2\ell} \end{array}
ight].$

Now we claim that $\lambda_1^2=\lambda_2^2=\cdots=\lambda_{2\ell}^2$. One has $(PaP^{-1})^{\frac{-}{8}}=\begin{bmatrix}A_{22}&0\\0&A_{11}\end{bmatrix}$. By changing two suitable rows of P, without loss of generality, it suffices to show that $\lambda_1^2=\lambda_{2\ell}^2$. Since $(PaP^{-1})(PaP^{-1})^{\frac{-}{8}}\in \bar{F}, \lambda_1\lambda_{\ell+1}=\lambda_{2\ell}\lambda_{\ell}$. Again, by changing the ℓ -th and $(\ell+1)$ -th rows of P, one has $\lambda_1\lambda_\ell=\lambda_{2\ell}\lambda_{\ell+1}$. It implies that

$$\lambda_1^2 \lambda_\ell \lambda_{\ell+1} = \lambda_{2\ell}^2 \lambda_\ell \lambda_{\ell+1}$$

Observe that a is invertible, so each $\lambda_i \neq 0$ which implies that $\lambda_1^2 = \lambda_{2\ell}^2$. The claim is shown. Therefore, $a^2 = Pa^2P^{-1} = (PaP^{-1})^2 = \lambda_1^2I_{2\ell} \in \bar{F}$. Since $a \in D$, $a^2 \in F$. As a ranges over $N \setminus F$, N is radical over F, which implies that N is central [6, Lemma 2.4]. A contradiction to the hypothesis. Thus, $\ell = 1$, that is, d = 2. The proof is complete.

Let G be a group. For x, y in G, define $[x, y] = [x, y] = x^{-1}y^{-1}xy$, and inductively, $[x, k+1y] = x^{-1}y^{-1}xy$ [[x, y], y] for each natural number k. An element $a \in G$ is called *left Engel* if for each $g \in G$, there exists a natural number n = n(g), depending on g, such that [g, n] = 1. If $n \in \mathbb{N}$ is such that the relation [g, na] = 1 holds for each $g \in G$, then a is said to be *left n-Engel*. Denote the set of all the left Engel and the left n-Engel elements of G by L(G) and $L_n(G)$, respectively. The group G is called Engel if G = L(G), and called bounded Engel if $G = L_n(G)$ for some $n \in \mathbb{N}$.

Let N be a normal subgroup of $\mathcal{U}(D)$. It is known that if N is a locally nilpotent group, then N is central [19]. Also, if N is a bounded Engel group or if F is uncountable and N is an Engel group, then N is central (see [24, Theorem 1.1] and [3, Corollary 1.2]). We close this paper by a result which provides an involution version of these results.

Corollary 3.8. Let N be a *-invariant normal subgroup of U(D). Assume one of the following cases occurs:

- 1. *D* is of locally finite dimensional over *F* and $N^+ \subseteq L(N)$;
- *F* is uncountable and $N^+ \subseteq L(N)$;
- 3. *F* is infinite and $N^+ \subseteq L_m(N)$ for some natural number m.

Then either N is central or $\dim_F D = 4$ and * is of the symplectic type.

Proof. If D is commutative, there is nothing to do. Assume D is non-commutative, so in either cases F is infinite.

If D is a locally finite dimensional division algebra, then by [26, Corollary 3.5.7], L(N) coincides with the Hirsch-Plotkin radical of N, which is a normal locally nilpotent subgroup of N. This implies that $L(N) \subseteq F$ by [19], thus $N^+ \subseteq F$. If either (2) or (3) occurs, then by [3, Theorem 1.1] and [3, Proposition 1.3], we again deduce that $N^+ \subseteq F$. Now, the result follows from Theorem 3.7.

Funding

The first author is funded by Vietnam National University HoChiMinh City (VNUHCM) under grant number B2020-18-02.

ORCID

M. H. Bien http://orcid.org/0000-0003-4377-3786

References

- Amitsur, S. A. (1966). Rational identities and applications to algebra and geometry. J. Algebra 3(3):304–359. DOI: 10.1016/0021-8693(66)90004-4.
- Bien, M. H. (2019). A note on local commutators in division rings with involution. Bull. Korean Math. Soc. 56:659-666.
- Bien, M. H., Ramezan-Nassab, M. (2018). Engel subnormal subgroups of skew linear groups. Linear Algebra Appl. 558:74-78. DOI: 10.1016/j.laa.2018.08.020.
- Bien, M. H. (2015). On some subgroups of D^* which satisfy a generalized group identity. Bull. Korean Math. Soc. 52:1353-1363.
- [5] Bien, M. H. (2016). Subnormal subgroups in division rings with generalized power central group identities. Arch. Math. 106(4):315-321. DOI: 10.1007/s00013-016-0886-2.

- Bien, M. H., Ramezan-Nassab, M. (2021). Some algebraic algebras with Engel unit groups. J Algebra Appl. DOI: 10.1142/S0219498821500109.
- [7] Bien, M. H., Kiani, D., Ramezan-Nassab, M. (2016). Some skew linear groups satisfying generalized group identities. *Commun. Algebra* 44(6):2362–2367. DOI: 10.1080/00927872.2015.1044109.
- [8] Chang, B., Jennings, S. A., Ree, R. (1958). On certain pairs of matrices which generate free groups. Can. J. Math. 10:279–284. DOI: 10.4153/CJM-1958-029-2.
- [9] Chebotar, M. A., Lee, P.-H. (2004). A note on group identities in division rings. *Proc. Edinb. Math. Soc.* 47(3):557–560. DOI: 10.1017/S0013091503000804.
- [10] Desmarais, P. C., Martindale, W. S. III (1980). Generalized rational identities and rings with involution. Israel J. Math. 36(2):187–192. DOI: 10.1007/BF02937355.
- [11] Ferreira, V. O., Goncalves, J. Z., Mandel, A. (2005). Free symmetric and unitary pairs in division rings with involution. *Int. J. Algebra Comput.* 15(01):15–36. DOI: 10.1142/S0218196705002177.
- [12] Giambruno, A., Jespers, E., Valenti, A. (1994). Group identities on units of rings. *Arch. Math.* 63(4): 291–296. DOI: 10.1007/BF01189563.
- [13] Giambruno, A., Polcino Milies, C., Sehgal, S. K. (2009). Group identities on symmetric units. *J. Algebra* 322(8):2801–2815. DOI: 10.1016/j.jalgebra.2009.06.025.
- [14] Giambruno, A., Polcino Milies, C., Sehgal, S. K. (2010). Star-group identities and groups of units. *Arch. Math.* 95(6):501–508. DOI: 10.1007/s00013-010-0195-0.
- [15] Golubchik, I. Z., Mikhalev, A. V. (1982). Generalized group identities in the classical groups. Zap. Nauch. Semin. LOMI SSSR. 114:96–119.
- [16] Herstein, I. N. (1978). Multiplicative commutators in division rings. Israel J. Math. 31(2):180–188. DOI: 10. 1007/BF02760549.
- [17] Herstein, I. N. (1980). Multiplicative commutators in division rings. II. Rend. Circ. Mat. Palermo. 29(3): 485–489. DOI: 10.1007/BF02849763.
- [18] Herstein, I. N. (1976). Rings with Involution. Chicago: University Chicago Press.
- [19] Huzurbazar, M. S. (1960). The multiplicative group of a division ring. Soviet Math. Dokl. 1:433-435.
- [20] Jespers, E., Ruiz Marin, M. (2006). On symmetric elements and symmetric units in group rings. Commun. Algebra 34(2):727-736. DOI: 10.1080/00927870500388018.
- [21] Lam, T. Y. (2001). A First Course in Noncommutative Rings, 2nd ed. New York: Springer-Verlag.
- [22] Lee, G. T. (2010). Group Identities on Units and Symmetric Units of Group Rings. London: Springer.
- [23] Makar-Limanov, L., Malcolmson, P. (1985). Words periodic over the center of a division ring. Proc. Am. Math. Soc. 93(4):590–1992. DOI: 10.1090/S0002-9939-1985-0776184-4.
- [24] Ramezan-Nassab, M., Kiani, D. (2012). Some skew linear groups with Engel's condition. *J. Group Theory* 15:529–541.
- [25] Rosen, J. D. (1984). Generalized rational identities and rings with involution. J. Algebra 89(2):416–436. DOI: 10.1016/0021-8693(84)90227-8.
- [26] Shirvani, M., Wehrfritz, B. A. F. (1986). Skew Linear Groups. Cambridge: Cambridge University Press.
- [27] Tignol, J.-P. (1993). Central Simple Algebras, Involutions and Quadratic Forms, Lecture notes, National Taiwan University, Taiwan.