

Lecture 4 Air Quality:

Measurement Methods, Effect of Meteorology on Pollutants Dispersion

Harish C. Phuleria CESE, IIT Bombay

Email: phuleria@iitb.ac.in

Recap 1

$PM_{2.5}$ / PM_{10} : Mass concentration of all particles having aerodynamic diameter ≤ 2.5 / $10\mu m$

Recap 2

Complex **Mixture**

- Bulk composition: EC, OC, Nitrate, Sulfate, Ammonium, dust
- Trace constituents: Heavy metals, PAHs, ... 3

Today's Learning Objectives!

 To learn about monitoring methods and thus able to quantify pollutants' concentrations

 To explain effects of meteorology and the physics of dispersion of pollutants in the atmosphere

Quantifying pollutants: Particle mass concentration

 $(PM_{10}/PM_{2.5})$

How do you measure the mass concentration of PM?

Quantifying pollutants: Particle mass concentration

- Measure <u>mass of clean filter</u>
- Measure <u>mass of filter after exposure</u>
- Measure <u>flow rate</u> and <u>exposure time</u>
- Calculate <u>concentration</u>
- Corrections for blank filter
- Corrections for temperature/ humidity

Particle mass measurements

Inertial Collection. (a) Impactor, (b) Cyclone.

- Filter substrates are collected using impactors/cyclones (for desired size) and designed flow rate (with a suction pump)
- Collected filters are conditioned in laboratory & weighed with precision microbalance

Sizing of Particles

- Inertial Impactors
 - Mass based (> 56 nm)
- Optical Particle Counters
 - Number based (> 400 nm)
- Electrical Mobility
 - Sizing (> 6 nm)
 - Counting (Condensation Particle Counters or Electron microscopy)

Particle sizing: MOUDI

(Micro-Orifice Uniform Deposit Impactor)

Successively nozzle diameter and stopping distance are decreasing to collect smaller particle size ranges !!!

Particle (biological) sizing:

Anderson impactor

Anderson six-stage viable impactor

www.thermoscientific.com

ES 200/ 2.Nov.2017

OPC (Optical Particle counters)

- Linear dependence of light scattering on particle mass concentration
- Extinction also depends on light absorbing nature of aerosols
- Single Particle /Cloud of Particles

ES 200/ 2.Nov.2017 <u>www.tsi.com</u>

Ultrafine/Nanoparticle Particle Counting:

CPC (Condensation particle counter)

Ultrafine/Nanoparticle Particle sizing:

SMPS (Scanning mobility particle sizer)

Willeke & Baron, 1999; www.tsi.com

Ultrafine/Nanoparticle Particle sizing:

Electron microscopy

TEM images are formed using transmitted electrons (instead of the visible light) which can produce magnification details up to 1,000,000x with resolution better than 10 $\rm A_{\rm o}$

Other PM (& gas) Instruments

High Volume (Hi-Vol) Samplers (1.2 Lakhs)

Gravimetric (Q =1 m³/min; weight =60 ka)

 \circ Regulatory (PM₁₀ or PM_{2.5}, SO₂, NO₂)

Impinger (NO₂, SO₂)

Other PM Instruments

- Mini Volume (Mini-Vol) Samplers (2 Lakhs)
 - Gravimetric (Q=5 L/min)
 - Regulatory (PM_{10} , $PM_{2.5}$)

www.airmetrics.com

- DustTrak (4 Lakhs)
 - Real time (1 minute resolution; Q=3 L/min)
 - o $PM_x (x = 1, 2.5, 4, 10)$

Choice of instruments is a function of its cost, intended analysis, time resolution, portability, ease of use

www.tsi.com

Time-integrated (passive) methods - Gases

 $\bigcirc \longrightarrow \overline{}$

- Gases are collected in tubes/badges by diffusion
- Absorption substrate inside are coated with chemicals (e.g triethanolamine for NO₂)
- Post-collection analysed in wet-labs using colorometry

Ogawa NO_x

Passam NO₂/O₃

Ogawa deployed in field

Measurement methods - Gases

Passive samplers with electrochemical sensors; usually CO, CO₂,NO_x, O₃, HCHO, NH₃ etc. can be measured

Stacked reference gas monitors at AQM station; all gases are actively sampled and anlysed in real-time

Personal/Indoor Monitoring Methods

For personal and/or indoor monitoring, important criteria are:

- portability (instrument size),
- battery run-time, and
- noise it makes while running

Learning Objective 2!

 To learn about monitoring methods and thus able to quantify pollutants' concentrations

 To explain effects of meteorology and the physics of dispersion of pollutants in the atmosphere

Mixing/Dispersion

Meteorology

- Vertical
 - Temperature
 - Lapse Rate
- Horizontal
 - Wind
 - Speed
 - Direction

Other met. parameters

- Sunlight
- Precipitation
- Humidity

A number of following slides have been taken/adapted from Prof. Sethi's ES200 lectures from last years!

Types of Sources

- Point
- Line
- Area

Please note!

Quiz on:

Mon, 6.Nov

Syllabus:

All what is covered so far!

ES 200/ 2.Nov.2017