#### **AUTOMATIC CONTROL**

Computer Engineering, Electronic and Communications Engineering

# Laboratory practice n. 1

Objectives: computation of the time response of LTI dynamical systems through the solution of the system state equations (in Laplace domain), state space and transfer function representation of electric circuits.

## Problem 1

Consider the following LTI system

$$\dot{x}(t) = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} x(t) + \begin{bmatrix} 5 \\ 8 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} -1 & 3 \end{bmatrix} x(t) + 8u(t)$$

Compute the state x(t) and the output y(t) responses when  $x(0)=[2,2]^T$  and the input u(t) is a step signal with amplitude 2.

(Result: 
$$x(t) = \begin{bmatrix} 3.0\overline{6}e^{5t} - 0.\overline{6}e^{-t} - 0.4\\ 6.1\overline{3}e^{5t} + 0.\overline{6}e^{-t} - 4.8 \end{bmatrix} \varepsilon(t) \quad y(t) = (15.\overline{3}e^{5t} + 2.\overline{6}e^{-t} + 2)\varepsilon(t)$$

### **Problem 2**

Given the LTI system

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 10 & 1 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Compute the output y(t) response when  $x(0)=[0,0]^T$ , and  $u_1(t)=0$ ,  $u_2(t)=2 \delta(t)$ .

(Result:  $y(t) = (2.3094e^{-0.5t}\cos(0.866t - 1.5708))\varepsilon(t)$ )

### **Problem 3**

Given the LTI system

$$\dot{x}(t) = \begin{bmatrix} 0 & 6 \\ -1 & -5 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

compute the exponential matrix  $e^{At}$  of the system; (hint: recall that  $e^{At} = \mathcal{L}^{-1}\{(sI-A)^{-1}\}$ ). (Result:  $e^{At} = \begin{bmatrix} 3e^{-2t} - 2e^{-3t} & 6e^{-2t} - 6e^{-3t} \\ -e^{-2t} + e^{-3t} & -2e^{-2t} + 3e^{-3t} \end{bmatrix}$ )

(Result: 
$$e^{At} = \begin{bmatrix} 3e^{-2t} - 2e^{-3t} & 6e^{-2t} - 6e^{-3t} \\ -e^{-2t} + e^{-3t} & -2e^{-2t} + 3e^{-3t} \end{bmatrix}$$

#### **Problem 4**

In the electric dynamical system below, generator voltages  $v_1(t)$  e  $v_2(t)$  are the inputs while the voltage  $v_R(t)$  is the output:



Using basic circuit equations derive matrices A, B, C and D of the state space representation. (Hint. Use  $i_L(t)$  e  $v_C(t)$  as state variables)

(Answer:

$$u(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} \quad x(t) = \begin{bmatrix} i_L(t) \\ v_C(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \quad y(t) = v_R(t) = x_2(t) + u_2(t)$$

$$A = \begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{RC} \end{bmatrix} \quad B = \begin{bmatrix} \frac{1}{L} & -\frac{1}{L} \\ 0 & -\frac{1}{RC} \end{bmatrix} \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

## **Problem 5**

Show that the transfer function  $H(s) = V_0(s)/V_a(s)$  of the circuit below is not proper.



(Answer:

$$H(s) = -\frac{(1 + R_f C_f s)(1 + R_a C_a s)}{R_a C_f s}$$