Curso de Sistemas Financieros y Contables.

Clase 6

Francisco Gatica N.

fgatica@ubiobio.cl

LA TASA INTERNA DE RETORNO

Es la tasa de descuento con la que el valor actual neto (VAN) es igual a cero.

$$VAN = \sum_{t=1}^{n} \frac{F_t}{(1 + TIR)^t} - I = 0$$

Tasa Interna de Retorno (TIR)

$$VAN = -I_0 + \sum_{t=1}^{n} \frac{F_t}{(1+TIR)^t} = -I_0 + \frac{F_1}{(1+TIR)} + \frac{F_2}{(1+TIR)^2} + \dots + \frac{F_n}{(1+TIR)^n} = 0$$

Ft son los flujos de dinero en cada periodo t

 I_0 es la inversión realiza en el momento inicial (t = 0)

TIR > i% (rentabilidad alternativa) = Proyecto es rentable.

TIR < i% (rentabilidad alternativa) = Proyecto no es viable.

TIR = i% (rentabilidad alternativa) = Indiferencia.

Ejemplo

$$Van = -2.000 + 707 + 468 + 276 + 549$$

Datos			
i	10%		
n	4		
Inversion	2.000		

Ejercicio·1¶

 $Una \cdot Empresa \cdot ha \cdot desarrollado \cdot un \cdot nuevo \cdot producto \cdot para \cdot el \cdot cual \cdot anticipa \cdot una \cdot demanda \cdot creciente \cdot \cdot La \cdot compañía \cdot debe \cdot elegir \cdot una \cdot entre \cdot las \cdot siguientes \cdot alternativas \cdot de \cdot inversión \cdot (Netas):$

 \P

Item	Alternativa A	Alternativa B
Inversion	40.000.000	30.000.000
Flujo año 2016	35.693.750	29.373.437
Flujo año 2017	37.943.750	31.060.937
Flujo año 2018	40.193.750	32.748.437
Flujo año 2019	42.443.750	34.435.937
Flujo año 2020	44.693.750	36.123.437
Costo del Capital	9%	6%

Determine·la·mejor·alternativa·de·acuerdo·con·el·método·del·VAN.¶

SOLUCION¶

VAN A =
$$-40.000.000 + \frac{35.693.750}{(1+0.09)^{1}} + \frac{37.943.750}{(1+0.09)^{2}} + \frac{40.193.750}{(1+0.09)^{3}} + \frac{42.443.750}{(1+0.09)^{4}} + \frac{44.693.750}{(1+0.09)^{5}}$$

VAN A = $-40.000.000 + \frac{32.746.560}{32.746.560} = \frac{31.936.495}{31.036.950} = \frac{31.036.950}{30.068.223} = \frac{29.047.871}{29.047.871}$

VAN B = $-30.000.000 + \frac{29.373.437}{(1+0.06)^{5}} + \frac{31.060.937}{(1+0.06)^{5}} + \frac{32.748.437}{(1+0.06)^{5}} + \frac{34.435.937}{(1+0.06)^{5}} + \frac{36.123.437}{(1+0.06)^{5}}$

VAN B = $-30.000.000 + \frac{27.710.790}{27.644.123} = \frac{27.496.219}{27.276.487} = \frac{27.276.487}{26.993.534}$

Ejemplo de flujo de caja (Fuente N. Sapag. Pag 350)

Estructura del flujo de caja

+	Ingresos afectos a impuestos
_	Egresos afectos a impuestos
-	Gastos no desembolsables
=	Utilidad antes de impuesto
_	Impuesto
=	Utilidad después de impuesto
+	Ajustes por gastos no desembolsables
_	Egresos no afectos a impuestos
+	Beneficios no afectos a impuestos
=	Flujo de caja

TASA DE INTERES CONTINUO

La capitalización continua es la operación que persigue proyectar un capital inicial a un período posterior donde los intereses se van generando infinitas veces al año.

Ejemplo

Si se depositan \$ 100, al año la suma habrá aumentado en \$ 100:

$$100 \cdot (1 + 1,0) = 100 \cdot 2$$

Ahora, si la capitalización se realiza semestralmente, al año el capital será de:

$$100 \cdot (1 + 1,0/2)^2 = 100 \cdot 2,25$$

Y si se hace cada cuatro meses, dos meses o mensualmente, el monto al año será, respectivamente:

$$100 \cdot (1 + 1,0/3)^3 = 100 \cdot 2,3704$$

$$100 \cdot (1 + 1,0/6)^6 = 100 \cdot 2,5216$$

$$100 \cdot (1 + 1,0/12) \ 1^2 = 100 \cdot 2,6130$$

Aumenta pero tiene un limite.....

Converge a 2,71182818

Formula

• Una tasa de interés continuo i%, se define como aquella cuyo período de capitalización es lo más pequeño posible, es decir, se aplica en intervalos de tiempo infinitesimales.

 Un capital C sometido a una tasa de interés i% con capitalización continua crece exponencialmente en el tiempo de acuerdo a la fórmula

$$VF(n) = VP * e^{i*n}$$

Inicial

Ejemplos

• Se invierte 20 millones a 4 años a una tasa continua de 15%. ¿Cuánto será el valor futuro?.

VF (n) = VP * e
$i*n$

VF = 20.000.000*2, 718 0,15*4
VF = \$36.441.718

Interés continuos ganados \$16.441.718.

• Si la tasa baja a 5%

VF (n) = VP * e
$i*n$

VF= 20.000.000*2, 718 0,05*4
VF = \$24.427.908

Interés continuos ganados \$4.427.908.

Como vamos?

III. RESULTADOS DE APRENDIZAJE

Resultados de Aprendizaje	Metodología	Criterios de Evaluación	Contenidos conceptuales, procedimentales y actitudinales.	Tiempo estimado
Aplica herramientas matemáticas financieras para la comprensión del razonamiento financiero de una empresa.	 Clases expositiva con Iluvia de ideas y discusión socializada Trabajo colaborativo para la resolución de problemas de matemáticas 	 Diferencia entre interés simple, interés compuesto e interés continuo en los mercados financieros Aplica técnicas matemáticas para resolver problemas de interés simple. 	 Conceptuales Valor del dinero en el tiempo Interés simple Interés compuesto Interés continuo Valoración de inversiones Procedimentales	Horas presenciales 24 HT: 8 HP: 8 HL: 8 Horas de trabajo autónomo:32 HT: 8 HP: 16 HL: 8

Cierre de la primera unidad

Primera prueba será el 10 de noviembre.