High-Dimensional Covariance Decomposition into Sparse Markov and Independence Domains

Majid Janzamin and Anima Anandkumar

U.C. Irvine

High-Dimensional Covariance Estimation

- n i.i.d. samples, p variables $\mathbf{X} := [X_1, \dots, X_p]^T$.
- Covariance estimation:

$$\Sigma^* := \mathbb{E}[\mathbf{X}\mathbf{X}^T].$$

• High-dimensional regime: both $n, p \to \infty$ and $n \ll p$.

• Challenge: empirical (sample) covariance ill-posed when $n \ll p$:

$$\widehat{\Sigma}^n := \frac{1}{n} \sum_{k=1}^n \mathbf{x}(k) \mathbf{x}(k)^T.$$

Sparse Covariance

Sparse Inverse Covariance

$$\begin{bmatrix} \ \ \end{bmatrix} = \begin{bmatrix} \ \ \ \end{bmatrix}_{M}^{*-1}$$

Sparse Covariance

Relationship with Statistical Properties (Gaussian)

• Sparse Covariance (Independence Model): marginal independence

Sparse Inverse Covariance

$$\sum^* J_M^{*-1}$$

Relationship with Statistical Properties (Gaussian)

• Sparse Inverse Covariance (Markov Model): conditional independence

Local Markov Property:

$$X_i \perp X_{V \setminus \{ \text{nbd}(i) \cup i \}} \mid X_{\text{nbd}(i)}$$

For Gaussian:

$$J_{ij} = 0 \Leftrightarrow (i,j) \notin E$$

Sparse Covariance

Sparse Inverse Covariance

$$\left[\begin{array}{c} \end{array}
ight] = \left[\begin{array}{c} \end{array}
ight]^{-1}$$

Relationship with Statistical Properties (Gaussian)

- Sparse Covariance (Independence Model): marginal independence
 - Sparse Inverse Covariance (Markov Model): conditional independence

Sparse Covariance

$$\left[egin{array}{c} \sum_{k=1}^{\infty} & \sum_{k=1}^{$$

Sparse Inverse Covariance

$$\left[\begin{array}{c} \end{array}
ight] = \left[\begin{array}{c} \end{array}
ight]^{-1}$$

Relationship with Statistical Properties (Gaussian)

- Sparse Covariance (Independence Model): marginal independence
- Sparse Inverse Covariance (Markov Model): conditional independence

Guarantees under Sparsity Constraints in High Dimensions

Consistent Estimation when $n = \Omega(\log p) \Rightarrow n \ll p$.

Consistent: Sparsistent and Satisfying reasonable Norm Guarantees.

Sparse Covariance

Sparse Inverse Covariance

Relationship with Statistical Properties (Gaussian)

- Sparse Covariance (Independence Model): marginal independence
- Sparse Inverse Covariance (Markov Model): conditional independence

Guarantees under Sparsity Constraints in High Dimensions

Consistent Estimation when
$$n = \Omega(\log p) \Rightarrow n \ll p$$
.

Going beyond Sparsity in High Dimensions?

Going Beyond Sparse Models

Motivation

- Sparsity constraints restrictive to have faithful representation.
- Data not sparse in a single domain
- Solution: Sparsity in Multiple Domains.
- Challenge: Hard to impose sparsity in different domains

Going Beyond Sparse Models

Motivation

- Sparsity constraints restrictive to have faithful representation.
- Data not sparse in a single domain
- Solution: Sparsity in Multiple Domains.
- Challenge: Hard to impose sparsity in different domains

One Possibility (This Work): Proposing Sparse Markov Model by adding Sparse Residual Perturbation

$$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}$$
 $+$ $\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$ $=$ $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ J_M^{*-1}

Going Beyond Sparse Models

Motivation

- Sparsity constraints restrictive to have faithful representation.
- Data not sparse in a single domain
- Solution: Sparsity in Multiple Domains.
- Challenge: Hard to impose sparsity in different domains

One Possibility (This Work): Proposing Sparse Markov Model by adding Sparse Residual Perturbation

$$\left[\begin{array}{c} \\ \\ \Sigma^* \end{array}
ight] + \left[\begin{array}{c} \\ \Sigma_R^* \end{array}
ight] = \left[\begin{array}{c} \\ \\ J_M^{*-1} \end{array}
ight]$$

Efficient Decomposition and Estimation in High Dimensions?

Unique Decomposition? Good Sample Requirements?

Summary of Results

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Summary of Results

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Contribution 1: Novel Model for Decomposition

- Decomposition into Markov and residual domains.
- Statistically meaningful model
- Unification of Sparse Covariance and Inverse Covariance Estimation.

Summary of Results

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Contribution 1: Novel Model for Decomposition

- Decomposition into Markov and residual domains.
- Statistically meaningful model
- Unification of Sparse Covariance and Inverse Covariance Estimation.

Contribution 2: Methods and Guarantees

- Conditions for unique decomposition (exact statistics).
- Sparsistency and norm guarantees in both Markov and independence domains (sample analysis)
- Sample requirement: no. of samples $n = \Omega(\log p)$ for p variables. Efficient Method for Covariance Decomposition and Estimation in High-Dimension

Related Works

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)
- Sparse Inverse Covariance Estimation:
 - ▶ ℓ_1 Penalization (Meinshausen and Bühlmann) (Ravikumar et. al)
 - Non-Convex Methods (Anandkumar et. al) (Zhang)

Related Works

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)
- Sparse Inverse Covariance Estimation:
 - ▶ ℓ_1 Penalization (Meinshausen and Bühlmann) (Ravikumar et. al)
 - ▶ Non-Convex Methods (Anandkumar et. al) (Zhang)

Beyond Sparse Models: Decomposition Issues

- Sparse + Low Rank (Chandrasekaran et. al) (Candes et. al)
- Decomposable Regularizers (Negahban et. al)

Related Works

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)
- Sparse Inverse Covariance Estimation:
 - $ightharpoonup \ell_1$ Penalization (Meinshausen and Bühlmann) (Ravikumar et. al)
 - ▶ Non-Convex Methods (Anandkumar et. al) (Zhang)

Beyond Sparse Models: Decomposition Issues

- ullet Sparse + Low Rank (Chandrasekaran et. al) (Candes et. al)
- Decomposable Regularizers (Negahban et. al)

Multi-Resolution Markov+Independence Models (Choi et. al)

- Decomposition in inverse covariance domain
- Lack theoretical guarantees
 - Our contribution: Guaranteed Decomposition and Estimation

Outline

- Introduction
- 2 Algorithm
- Guarantees
- 4 Experiments
- Proof Techniques
- 6 Conclusion

Some Intuitions and Ideas

Review Ideas for Special Cases: Sparse Covariance/Inverse Covariance

Some Intuitions and Ideas

Review Ideas for Special Cases: Sparse Covariance/Inverse Covariance

Sparse Covariance Estimation (Independence Model)

- $\bullet \ \Sigma^* = \Sigma_I^*.$
- ullet $\widehat{\Sigma}^n$: sample covariance using n samples
- p variables: $p \gg n$.

Some Intuitions and Ideas

Review Ideas for Special Cases: Sparse Covariance/Inverse Covariance

Sparse Covariance Estimation (Independence Model)

- $\bullet \ \Sigma^* = \Sigma_I^*.$
- $\bullet \ \widehat{\Sigma}^n \hbox{: sample covariance using n samples }$
- p variables: $p \gg n$.

- Hard-thresholding the off-diagonal entries of $\widehat{\Sigma}^n$ (Bickel & Levina): threshold chosen as $\sqrt{\frac{\log p}{n}}$
- Sparsistency (support recovery) and Norm Guarantees when $n = \Omega(\log p) \Rightarrow n \ll p$.

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

 ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al. '08)

$$\widehat{J}_M := \operatorname{argmin}\langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1,\text{off}}$$

where

$$||J_M||_{1,\text{off}} := \sum_{i \neq j} |(J_M)_{ij}|.$$

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

 ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al. '08)

$$\widehat{J}_M := \operatorname{argmin}\langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1,\text{off}}$$

where

$$||J_M||_{1,\text{off}} := \sum_{i \neq j} |(J_M)_{ij}|.$$

Max-entropy Formulation (Lagrangian Dual)

$$\widehat{\Sigma}_M := \operatorname*{argmax}_{\Sigma_M \succ 0} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty, \text{off}} \leq \frac{\gamma}{\gamma}, (\Sigma_M)_d = (\widehat{\Sigma}^n)_d$$

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

 ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al. '08)

$$\widehat{J}_M := \operatorname{argmin}\langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1,\text{off}}$$

where

$$||J_M||_{1,\text{off}} := \sum_{i \neq j} |(J_M)_{ij}|.$$

Max-entropy Formulation (Lagrangian Dual)

$$\widehat{\Sigma}_M := \operatorname*{argmax}_{\Sigma_M \succ 0} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty, \text{off}} \leq \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

Consistent Estimation Under Certain Conditions, $|n| = \Omega(\log p)$

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Sparse Covariance Estimation

Hard-thresholding the off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Sparse Covariance Estimation

Hard-thresholding the off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

Is it possible to unify above methods and guarantees?

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Sparse Covariance Estimation

Hard-thresholding the off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

Is it possible to unify above methods and guarantees?

Challenges and Insights

Penalties in above methods are in different domains

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Sparse Covariance Estimation

Hard-thresholding the off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

Is it possible to unify above methods and guarantees?

Challenges and Insights

- Penalties in above methods are in different domains
- Insight: Consider dual program of MLE
 Dual program is in covariance domain for Markov model.

•
$$\Sigma^* + \Sigma_R^* = J_M^{*-1}$$
.

ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation

• Lagrangian dual of ℓ_1 -penalized MLE

$$\widehat{\Sigma}_M \qquad := \underset{\Sigma_M \succ 0}{\operatorname{argmax}} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty,\text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

- $\Sigma^* + \Sigma_R^* = J_M^{*-1}$.
- ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$\widehat{\Sigma}_{M} := \underset{\Sigma_{M} \succ 0}{\operatorname{argmax}} \log \det \Sigma_{M} - \lambda ||\Sigma_{R}||_{1, \text{off}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

- $\Sigma^* + \Sigma_R^* = J_M^{*-1}$.
- ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \mathop{\mathrm{argmax}}_{\Sigma_M \succ 0, \Sigma_R} \log \det \Sigma_M - \lambda \|\Sigma_R\|_{1, \text{off}}$$

s. t.
$$\|\widehat{\Sigma}^n - \Sigma_M + \frac{\Sigma_R}{\Sigma_R}\|_{\infty, \text{off}} \leq \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\frac{\Sigma_R}{\delta})_d = 0$.

ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

- $\Sigma^* + \Sigma_R^* = J_M^{*-1}$.
- ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$(\widehat{\Sigma}_{M}, \widehat{\Sigma}_{R}) := \underset{\Sigma_{M} \succ 0, \Sigma_{R}}{\operatorname{argmax}} \log \det \Sigma_{M} - \lambda ||\Sigma_{R}||_{1, \text{off}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M + \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

$\ell_1 - \ell_\infty$ -penalized MLE (This work)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

Observations regarding the Proposed Method

 $\ell_1 - \ell_\infty$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

 ${\sf Max\text{-}entropy\ Markov} + \ell_1\text{-}{\sf penalized\ Residuals\ (Dual)}$

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \operatorname*{argmax}_{\Sigma_M \succ 0, \Sigma_R} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{\|\Sigma_R\|_{1, \text{off}}}$$

s. t.
$$\|\widehat{\Sigma}^n - \Sigma_M + \Sigma_R\|_{\infty, \text{off}} \leq \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Observations regarding the Proposed Method

 $\ell_1 - \ell_\infty$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

 ${\sf Max\text{-}entropy\ Markov} + \ell_1\text{-}penalized\ Residuals\ (Dual)}$

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \operatorname*{argmax}_{\Sigma_M \succ 0, \Sigma_R} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{\|\Sigma_R\|_{1, \text{off}}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M + \Sigma_R\|_{\infty, \text{off}} \leq \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Case: $\lambda \to 0$ (Sparse Covariance Estimation)

• $\lambda = \sqrt{\log p/n}$ reduces to approximate shrinkage estimator.

Observations regarding the Proposed Method

 $\ell_1 - \ell_\infty$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

 ${\sf Max\text{-}entropy\ Markov} + \ell_1\text{-}penalized\ Residuals\ (Dual)}$

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M + \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Case: $\lambda \to 0$ (Sparse Covariance Estimation)

• $\lambda = \sqrt{\log p/n}$ reduces to approximate shrinkage estimator.

Case: $\lambda \to \infty$ (Sparse Inverse Covariance Estimator)

• Residual matrix $\widehat{\Sigma}_R = 0$: ℓ_1 -penalized MLE of Ravikumar et. al

Observations regarding the Proposed Method

 $\ell_1 - \ell_\infty$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

 ${\sf Max\text{-}entropy\ Markov} + \ell_1\text{-}{\sf penalized\ Residuals\ (Dual)}$

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M + \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Case: $\lambda \to 0$ (Sparse Covariance Estimation)

• $\lambda = \sqrt{\log p/n}$ reduces to approximate shrinkage estimator.

Case: $\lambda \to \infty$ (Sparse Inverse Covariance Estimator)

• Residual matrix $\widehat{\Sigma}_R = 0$: ℓ_1 -penalized MLE of Ravikumar et. al

Unification of Sparse Covariance & Inverse Covariance models.

Similar algorithm as sample statistics, only $\gamma=0$ (no penalization):

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \Sigma^*, J_M \rangle - \log \det J_M$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

Similar algorithm as sample statistics, only $\gamma=0$ (no penalization):

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \Sigma^*, J_M \rangle - \log \det J_M$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

KKT conditions results identifiability conditions.

Similar algorithm as sample statistics, only $\gamma=0$ (no penalization):

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \Sigma^*, J_M \rangle - \log \det J_M$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

KKT conditions results identifiability conditions.

• The main identifiability condition: $\operatorname{Supp}(\Sigma_R^*) \subseteq \operatorname{Supp}(J_M^*)$.

Node pairs are partitioned as follows:

$$S_M := \operatorname{Supp}(J_M^*)$$

$$S_R := \operatorname{Supp}(\Sigma_R^*)$$

$$S := S_M \setminus S_R$$

Outline

- Introduction
- Algorithm
- Guarantees
- 4 Experiments
- Proof Techniques
- 6 Conclusion

Guarantees for High-Dimensional Estimation

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Conditions for Recovery

- Maximum degree Δ in the Markov graph (corresponding to J_M^*).
- Number of samples n, number of nodes p satisfy $n = \Omega(\Delta^2 \log p)$.
- Mutual-Incoherence type conditions.

Guarantees for High-Dimensional Estimation

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}.$$

Conditions for Recovery

- Maximum degree Δ in the Markov graph (corresponding to J_M^*).
- Number of samples n, number of nodes p satisfy $n = \Omega(\Delta^2 \log p)$.
- Mutual-Incoherence type conditions.

Theorem

The proposed method outputs estimates $(\widehat{J}_M,\widehat{\Sigma}_R)$ such that (w.h.p.)

- $(\widehat{J}_M, \widehat{\Sigma}_R)$ are sparsistent and sign consistent.
- satisfy norm guarantees.

$$\|\widehat{J}_M - J_M^*\|_{\infty}, \|\widehat{\Sigma}_R - \Sigma_R^*\|_{\infty} = O\left(\sqrt{\log p/n}\right).$$

Guarantee Sparsistency and Efficient Estimation in Both Domains

Observations

Corollary 1 (Sparse Covariance Estimation)

With $\lambda = \Theta(\sqrt{\log p/n})$, our method reduces to shrinkage estimator (comparable to Bickel & Levina which is hard-threshold estimator) and is sparsistent for covariance estimation.

Corollary 2 (Sparse Inverse Covariance Estimation)

With $\lambda \to \infty$, our method reduces to ℓ_1 -penalized MLE (Ravikumar et. al) and is sparsistent for inverse covariance estimation.

Conditions for Recovery

- Mutual incoherence-type conditions
- Sample complexity $n = \Omega(\Delta^2 \log p)$.
- Comparable to inverse covariance estimation (Ravikumar et. al).

Outline

- Introduction
- 2 Algorithm
- Guarantees
- 4 Experiments
- Proof Techniques
- 6 Conclusion

Synthetic Data

$$\Sigma^* + \Sigma_R^* = J_M^{*-1}, \quad J^* = (\Sigma^*)^{-1}.$$

Setup

- \bullet 8 × 8 2-d grid for Markov model.
- Mixed Markov model (both positive and negative correlations).

estimation

$\ell_1 + \ell_{\infty}$ method 0.8 1000 2000 3000 4000 5000 6000 n

Performance under LBP

Learned model is amenable for efficient Inference. Advantage over existing techniques.

Experiments on Foreign Exchange Rate Data

Setup

- Monthly Foreign Exchange Rates to US Dollar.
- Apply the proposed method.

• Solid line: Markov graph. Dotted line: Independence graph.

Experiments on Stock Market Data

Setup

- Monthly stock returns of companies on S&P index.
- Companies in divisions E.Trans, Comm, Elec&Gas and G.Retail Trade.
- Apply the proposed method.

• Solid line: Markov graph. Dotted line: Independence graph.

Outline

- Introduction
- Algorithm
- Guarantees
- 4 Experiments
- Proof Techniques
- 6 Conclusion

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

Challenges

1) Sparsistency guarantee: hard to show $\operatorname{Supp}(\widehat{J}_M) \subseteq \operatorname{Supp}(J_M^*)$.

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

Challenges

- 1) Sparsistency guarantee: hard to show $\operatorname{Supp}(\widehat{J}_M) \subseteq \operatorname{Supp}(J_M^*)$.
- 2) Decoupling the errors: $\Sigma^* + \Sigma_R^* = J_M^{*-1}$.

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma ||J_M||_{1, \text{off}}$$

s. t. $||J_M||_{\infty, \text{off}} \le \lambda$.

- Challenges
 - 1) Sparsistency guarantee: hard to show $\operatorname{Supp}(\widehat{J}_M) \subseteq \operatorname{Supp}(J_M^*)$.
 - 2) Decoupling the errors: $\Sigma^* + \Sigma_R^* = J_M^{*-1}$.
- Proposing a modified version which is easier to analyze.

Modified Program (Restricted and Relaxed)

$$\widetilde{J}_{M} := \underset{J_{M} \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^{n}, J_{M} \rangle - \log \det J_{M} + \gamma \|J_{M}\|_{1, \text{off}}$$

s. t. $(J_{M})_{S_{M}^{c}} = 0, \ (J_{M})_{S_{R}} = \lambda \operatorname{sign} \left((J_{M}^{*})_{S_{R}} \right).$

$$\begin{split} \widetilde{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \ \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}} \\ \text{s. t. } (J_M)_{S_M^c} = 0, \ (J_M)_{S_R} = \lambda \operatorname{sign} \Big((J_M^*)_{S_R} \Big). \end{split}$$

$$\widetilde{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$
s. t. $(J_M)_{S_M^c} = 0$, $(J_M)_{S_R} = \lambda \operatorname{sign}((J_M^*)_{S_R})$.

Sparsistency Guarantee

$$\operatorname{Supp}(\widetilde{J}_M) \subseteq \operatorname{Supp}(J_M^*)$$

$$\operatorname{Supp}(\widetilde{\Sigma}_R) \subseteq \operatorname{Supp}(\Sigma_R^*)$$

$$\begin{split} \widetilde{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \ \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}} \\ \text{s. t. } (J_M)_{S_M^c} &= 0, \ (J_M)_{S_R} = \lambda \operatorname{sign} \Big(\big(J_M^*\big)_{S_R} \Big). \end{split}$$

Sparsistency Guarantee

 $\operatorname{Supp}(\Sigma_R) \subseteq \operatorname{Supp}(\Sigma_P^*)$

Error Decoupling

$$\operatorname{Supp}(\widetilde{J}_M) \subseteq \operatorname{Supp}(J_M^*) \qquad \widetilde{\Delta}_J := \widetilde{J}_M - J_M^*, \quad \widetilde{\Delta}_R := \widetilde{\Sigma}_R - \Sigma_R^*$$

$$\operatorname{Supp}(\widetilde{\Sigma}_R) \subseteq \operatorname{Supp}(\Sigma_R^*) \qquad S_M$$

$$S_M$$
 $(\widetilde{\Delta}_J) = 0$
 $(\widetilde{\Delta}_R) = 0$
 $(\widetilde{\Delta}_J) = \lambda_\delta$
 S_R
 S_R

$$\begin{split} \widetilde{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \ \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}} \\ \text{s. t. } (J_M)_{S_M^c} &= 0, \ (J_M)_{S_R} = \lambda \operatorname{sign} \Big(\big(J_M^*\big)_{S_R} \Big). \end{split}$$

Sparsistency Guarantee

 $\begin{aligned} \operatorname{Supp}(\widetilde{J}_M) &\subseteq \operatorname{Supp}(J_M^*) \\ \operatorname{Supp}(\widetilde{\Sigma}_R) &\subseteq \operatorname{Supp}(\Sigma_R^*) \end{aligned}$

Error Decoupling

$$\widetilde{\Delta}_J := \widetilde{J}_M - J_M^*, \quad \widetilde{\Delta}_R := \widetilde{\Sigma}_R - \Sigma_R^*$$

$$S_M$$

• Sufficient Conditions for equivalence between the modified and original programs (Mutual Incoeherence): $(\widetilde{J}_M, \widetilde{\Sigma}_R) = (\widehat{J}_M, \widehat{\Sigma}_R)$.

Outline

- Introduction
- 2 Algorithm
- Guarantees
- 4 Experiments
- Proof Techniques
- 6 Conclusion

Conclusion

Summary

- Combination of Markov and independence models
- Unifying sparse covariance/inverse covariance estimation methods
- Efficient method and guarantees for estimation in both domains

Conclusion

Summary

- Combination of Markov and independence models
- Unifying sparse covariance/inverse covariance estimation methods
- Efficient method and guarantees for estimation in both domains

Outlook

- Other forms of residuals (e.g. low rank)
- Discrete Model (via pseudo-likelihood)

http://arxiv.org/abs/1211.0919

