

Exercício nº 02 de Sala de Aula – CE323 Controle Estatístico de Qualidade

Departamento de Estatística

	·		_ 1101110.				Aggingt	turo:					
<i></i>	e:						_ ASSIIIal	ura					
20 ponto	os 1ª. Ques as probabil	stão) Cons	sidere que	indivídu	os vão faz	er um tes	te online i	no qual as	s questões	s serão ap	resentad	as sequen	cialmente
a)	um banco	de 10 qu	estões da									mais de un ou mais qu	
Dica: use	e a distribu	ição bino l	mial										
4,0													
	Idem ao i e a distribu				agora qu	e as ques	tões são ı	retiradas <u>s</u>	em repos	<u>ição</u> .			
Dica. usc	o a distribu	içao ili pe i	geomear	loa									
4,0													
c) Dica: use	Supondo no máxim e a distribu	no 2 quest	ões antes						pela prime	<u>eira vez</u> . Q	Qual a pro	babilidade	de acerta
,	no máxim	no 2 quest	ões antes						pela prime	<u>eira vez</u> . G	Qual a pro	babilidade	de acert
Dica: use	no máxim	no 2 quest ição geor erior supo	ões antes nétrica ndo que n	esponde a	(ou seja, ı	no máximo	o 3 tentati	vas)?				babilidade	de acert
Dica: use	no máxim a a distribu	no 2 quest ição geor erior supo	ões antes nétrica ndo que n	esponde a	(ou seja, ı	no máximo	o 3 tentati	vas)?				babilidade	de acert
Dica: use	no máxim a a distribu	no 2 quest ição geor erior supo	ões antes nétrica ndo que n	esponde a	(ou seja, ı	no máximo	o 3 tentati	vas)?				babilidade	de acert
Dica: use	no máxim a a distribu	no 2 quest ição geor erior supo	ões antes nétrica ndo que n	esponde a	(ou seja, ı	no máximo	o 3 tentati	vas)?				babilidade	de acert
Dica: use	no máxim a a distribu	no 2 quest ição geor erior supo	ões antes nétrica ndo que n	esponde a	(ou seja, ı	no máximo	o 3 tentati	vas)?				babilidade	de acert
Dica: use	no máxim a a distribu	no 2 quest ição geor erior supo	ões antes nétrica ndo que n	esponde a	(ou seja, ı	no máximo	o 3 tentati	vas)?				babilidade	de acert
Dica: use	no máxim a a distribu	no 2 quest ição geor erior supo	ões antes nétrica ndo que n	esponde a	(ou seja, ı	no máximo	o 3 tentati	vas)?				babilidade	de acert
Dica: use d) Dica: use	ldem ante	no 2 questição geor erior supolição bino e agora quobabilidad	ñes antes nétrica ndo que re mial nega ue o cand de de que	esponde ativa	(ou seja, r	no máximo	o 3 tentati	vas)?	máximo 5	tentativas,).	e 6 acertos	
Dica: use d) Dica: use	no máxim e a distribu Idem ante e a distribu	no 2 questição geor erior supolição bino e agora quobabilidad	ñes antes nétrica ndo que re mial nega ue o cand de de que	esponde ativa	(ou seja, i	no máximo	o 3 tentati	vas)?	máximo 5	tentativas,).		
Dica: use d) Dica: use	ldem ante	no 2 questição geor erior supolição bino e agora quobabilidad	ñes antes nétrica ndo que re mial nega ue o cand de de que	esponde ativa	(ou seja, i	no máximo	o 3 tentati	vas)?	máximo 5	tentativas,).		
Dica: use d) Dica: use	ldem ante	no 2 questição geor erior supolição bino e agora quobabilidad	ñes antes nétrica ndo que re mial nega ue o cand de de que	esponde ativa	(ou seja, i	no máximo	o 3 tentati	vas)?	máximo 5	tentativas,).		
Dica: use d) Dica: use	ldem ante	no 2 questição geor erior supolição bino e agora quobabilidad	ñes antes nétrica ndo que re mial nega ue o cand de de que	esponde ativa	(ou seja, i	no máximo	o 3 tentati	vas)?	máximo 5	tentativas,).		
Dica: use d) Dica: use	ldem ante	no 2 questição geor erior supolição bino e agora quobabilidad	ñes antes nétrica ndo que re mial nega ue o cand de de que	esponde ativa	(ou seja, i	no máximo	o 3 tentati	vas)?	máximo 5	tentativas,).		
Dica: use d) Dica: use	ldem ante	no 2 questição geor erior supolição bino e agora quobabilidad	ñes antes nétrica ndo que re mial nega ue o cand de de que	esponde ativa	(ou seja, i	no máximo	o 3 tentati	vas)?	máximo 5	tentativas,).		

Exercício nº 02 de Sala de Aula – CE323 Controle Estatístico de Qualidade

Departamento de Estatística

20 pontos 2ª. Questão) A trava de segurança de um aparelho industrial deve ser trocada com frequência, de modo a evitar a quebra devido ao fim de sua vida útil. Estudos anteriores admitem que essa vida útil pode ser representada por uma variável aleatória contínua, assumindo valores entre 0 e 1 ano. Apresente o resultado com no mínimo 4 casas decimais.

A função de densidade de probabilidade da vida útil (em anos) da trava é a seguinte:

$$f(x) = \frac{3}{2}(1-x^2), 0 \le x \le 1$$
, a sua função distribuição é: $F_X(x) = \left(x - \frac{1}{3}x^3\right), 0 < x < 1$.

Para cada item abaixo apresente a solução:

Exercício nº 02 de Sala de Aula - CE323 Controle Estatístico de Qualidade

Departamento de Estatística

4º. Questão) Uma psicóloga está planejando um experimento para testar a eficácia de um novo programa de treinamento para controladores de segurança de aeroportos. Para os itens abaixo, suponha que os adultos tenham escores de QI normalmente distribuídos com média $\mu=100$ e desvio padrão de $\sigma=15$ (como no teste de Wechsler). Em cada item abaixo indique a área na figura e apresente os cálculos:

a) ache a probabilidade que um adulto, selecionado aleatoriamente, tenha QI menor do que 130.

ache a probabilidade que um adulto, selecionado aleatoriamente, tenha QI maior do que 131,5 (que é a exigência para ser um membro da sociedade Mensa).

ache a probabilidade que um adulto, selecionado aleatoriamente, tenha QI entre 90 e 110. (considerado como faixa normal) c)

ache a probabilidade que um adulto, selecionado aleatoriamente, tenha QI entre 110 e 120. (considerado como faixa normal brilhante).

ache o 25º percentil (Primeiro Quartil), que é o escore de QI que separa os 25% inferiores dos 75% superiores.

f) ache o 75º percentil (Terceiro Quartil), que é o escore de QI que separa os 75% inferiores dos 25% superiores.

Exercício nº 02 de Sala de Aula – CE323 Controle Estatístico de Qualidade

TABE	LA III Di	stribuição	Cumulati	va Norma	l Padrão					
z	-0,09	-0,08	-0,07	-0,06	-0,05	-0,04	-0,03	-0,02	-0,01	-0,00
-3,9	0,000033	0,000034	0,000036	0,000037	0,000039	0,000041	0,000042	0,000044	0,000046	0,000048
-3,8	0,000050	0,000052	0,000054	0,000057	0,000059	0,000062	0,000064	0,000067	0,000069	0,000072
-3,7	0,000075	0,000078	0,000082	0,000085	0,000088	0,000092	0,000096	0,000100	0,000104	0,000108
-3,6	0,000112	0,000117	0,000121	0,000126	0,000131	0,000136	0,000142	0,000147	0,000153	0,000159
-3,5	0,000165	0,000172	0,000179	0,000185	0,000193	0,000200	0,000208	0,000216	0,000224	0,000233
-3,4	0,000242	0,000251	0,000260	0,000270	0,000280	0,000291	0,000302	0,000313	0,000325	0,000337
-3,3	0,000350	0,000362	0,000376	0,000390	0,000404	0,000419	0,000434	0,000450	0,000467	0,000483
-3,2	0,000501	0,000519	0,000538	0,000557	0,000577	0,000598	0,000619	0,000641	0,000664	0,000687
-3,1	0,000711	0,000736	0,000762	0,000789	0,000816	0,000845	0,000874	0,000904	0,000935	0,000968
-3,0	0,001001	0,001035	0,001070	0,001107	0,001144	0,001183	0,001223	0,001264	0,001306	0,001350
-2,9	0,001395	0,001441	0,001489	0,001538	0,001589	0,001641	0,001695	0,001750	0,001807	0,001866
-2,8	0,001926	0,001988	0,002052	0,002118	0,002186	0,002256	0,002327	0,002401	0,002477	0,002555
-2,7	0,002635	0,002718	0,002803	0,002890	0,002980	0,003072	0,003167	0,003264	0,003364	0,003467
-2,6	0,003573	0,003681	0,003793	0,003907	0,004025	0,004145	0,004269	0,004396	0,004527	0,004661
-2,5	0,004799	0,004940	0,005085	0,005234	0,005386	0,005543	0,005703	0,005868	0,006037	0,006210
-2,4	0,006387	0,006569	0,006756	0,006947	0,007143	0,007344	0,007549	0,007760	0,007976	0,008198
-2,3	0,008424	0,008656	0,008894	0,009137	0,009387	0,009642	0,009903	0,010170	0,010444	0,010724
-2,2	0,011011	0,011304	0,011604	0,011911	0,012224	0,012545	0,012874	0,013209	0,013553	0,013903
-2,1	0,014262	0,014629	0,015003	0,015386	0,015778	0,016177	0,016586	0,017003	0,017429	0,017864
-2,0	0,018309	0,018763	0,019226	0,019699	0,020182	0,020675	0,021178	0,021692	0,022216	0,022750
-1,9	0,023295	0,023852	0,024419	0,024998	0,025588	0,026190	0,026803	0,027429	0,028067	0,028717
-1,8	0,029379	0,030054	0,030742	0,031443	0,032157	0,032884	0,033625	0,034379	0,035148	0,035930
-1,7	0,036727	0,037538	0,038364	0,039204	0,040059	0,040929	0,041815	0,042716	0,043633	0,044565
-1,6	0,045514	0,046479	0,047460	0,048457	0,049471	0,050503	0,051551	0,052616	0,053699	0,054799
-1,5	0,055917	0,057053	0,058208	0,059380	0,060571	0,061780	0,063008	0,064256	0,065522	0,066807
-1,4	0,068112	0,069437	0,070781	0,072145	0,073529	0,074934	0,076359	0,077804	0,079270	0,080757
-1,3	0,082264	0,083793	0,085343	0,086915	0,088508	0,090123	0,091759	0,093418	0,095098	0,096801
-1,2	0,098525	0,100273	0,102042	0,103835	0,105650	0,107488	0,109349	0,111233	0,113140	0,115070
-1,1	0,117023	0,119000	0,121001	0,123024	0,125072	0,127143	0,129238	0,131357	0,133500	0,135666
-1,0	0,137857	0,140071	0,142310	0,144572	0,146859	0,149170	0,151505	0,153864	0,156248	0,158655
-0,9 -0,8	0,161087	0,163543	0,166023	0,168528	0,171056	0,173609	0,176185	0,178786	0,181411	0,184060
-0,8	0,186733	0,189430	0,192150 0,220650	0,194894 0,223627	0,197662	0,200454	0,203269	0,206108	0,208970	0,211855
-0,7	0,214764 0,245097	0,248252	0,220650	0,223627	0,226627	0,229650	0,252695	0,267629	0,238852	0,241964
-0,6	0,243097	0,248232	0,231429	0,234627	0,237846	0,201086	0,298056	0,301532	0,305026	0,308538
-0,5	0,277393	0,280937	0,284339	0,322758	0,326355	0,329969	0,333598	0,337243	0,340903	0,308538
-0,4	0,312067	0,313614	0,355691	0,359424	0,363169	0,366928	0,333398	0,374484	0,340903	0,344378
-0,3	0,346268	0,331973	0,333580	0,397432	0,363169	0,405165	0,370700	0,412936	0,378281	0,382089
					0,401294					
-0,1 0,0	0,424655 0,464144	0,428576 0,468119	0,432505 0,472097	0,436441 0,476078	0,440382	0,444330 0,484047	0,448283 0,488033	0,452242 0,492022	0,456205 0,496011	0,460172 0,500000

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500000	0,503989	0,507978	0,511967	0,515953	0,519939	0,532922	0,527903	0,531881	0,535856
0,1	0,539828	0,543795	0,547758	0,551717	0,555760	0,559618	0,563559	0,567495	0,571424	0,575345
0,2	0,579260	0,583166	0,587064	0,590954	0,594835	0,598706	0,602568	0,606420	0,610261	0,614092
0,3	0,617911	0,621719	0,625516	0,629300	0,633072	0,636831	0,640576	0,644309	0,648027	0,651732
0,4	0,655422	0,659097	0,662757	0,666402	0,670031	0,673645	0,677242	0,680822	0,684386	0,687933
0,5	0,691462	0,694974	0,698468	0,701944	0,705401	0,708840	0,712260	0,715661	0,719043	0,722405
0,6	0,725747	0,729069	0,732371	0,735653	0,738914	0,742154	0,745373	0,748571	0,751748	0,754903
0,7	0,758036	0,761148	0,764238	0,767305	0,770350	0,773373	0,776373	0,779350	0,782305	0,785236
0,8	0,788145	0,791030	0,793892	0,796731	0,799546	0,802338	0,805106	0,807850	0,810570	0,813267
0,9	0,815940	0,818589	0,821214	0,823815	0,826391	0,828944	0,831472	0,833977	0,836457	0,838913
1,0	0,841345	0,843752	0,846136	0,848495	0,850830	0,853141	0,855428	0,857690	0,859929	0,862143
1,1	0,864334	0,866500	0,868643	0,870762	0,872857	0,874928	0,876976	0,878999	0,881000	0,882977
1,2	0,884930	0,886860	0,888767	0,890651	0,892512	0,894350	0,896165	0,897958	0,899727	0,901475
1,3	0,903199	0,904902	0,906582	0,908241	0,909877	0,911492	0,913085	0,914657	0,916207	0,917736
1,4	0,919243	0,920730	0,922196	0,923641	0,925066	0,926471	0,927855	0,929219	0,930563	0,931888
1,5	0,933193	0,934478	0,935744	0,936992	0,938220	0,939429	0,940620	0,941792	0,942947	0,944083
1,6	0,945201	0,946301	0,947384	0,948449	0,949497	0,950529	0,951543	0,952540	0,953521	0.954486
1,7	0,955435	0,956367	0,957284	0,958185	0,959071	0,959941	0,960796	0,961636	0,962462	0,963273
1,8	0,964070	0,964852	0,965621	0,966375	0.967116	0,967843	0,968557	0,969258	0,969946	0.970621
1,9	0,971283	0,971933	0,972571	0,973197	0,973810	0,974412	0,975002	0,975581	0,976148	0,976705
2,0	0,977250	0,977784	0,978308	0,978822	0,979325	0,979818	0,980301	0,980774	0,981237	0,981691
2,1	0.982136	0.982571	0,982997	0,983414	0,983823	0,984222	0,984614	0,984997	0.985371	0.985738
2,2	0,986097	0,986447	0,986791	0,987126	0,987455	0,987776	0,988089	0,988396	0,988696	0,988989
2,3	0.989276	0,989556	0,989830	0,990097	0,990358	0,990613	0,990863	0,991106	0.991344	0.991576
2,4	0,991802	0,992024	0,992240	0,992451	0,992656	0,992857	0,993053	0,993244	0,993431	0,993613
2.5	0,993790	0,993963	0,994132	0,994297	0,994457	0,994614	0,994766	0,994915	0,995060	0,995201
2,6	0,995339	0,995473	0,995604	0,995731	0,995855	0,995975	0,996093	0,996207	0,996319	0,996427
2,7	0,996533	0,996636	0,996736	0,996833	0,996928	0,997020	0,997110	0,997197	0,997282	0.997365
2,8	0,997445	0,997523	0,997599	0,997673	0.997744	0,997814	0,997882	0,997948	0,998012	0,998074
2,9	0,998134	0,998193	0,998250	0,998305	0,998359	0,998411	0,998462	0,998511	0,998559	0,998605
3.0	0.998650	0,998694	0,998736	0,998777	0.998817	0,998856	0,998893	0,998930	0,998965	0.998999
3,1	0,999032	0,999065	0,999096	0,999126	0,999155	0,999184	0,999211	0,999238	0,999264	0,999289
3.2	0.999313	0,999336	0,999359	0,999381	0,999402	0,999423	0,999443	0,999462	0,999481	0.999499
3.3	0.999517	0.999533	0.999550	0,999566	0.999581	0,999596	0,999610	0,999624	0,999638	0.999650
3.4	0,999663	0,999675	0,999687	0,999698	0.999709	0,999720	0,999730	0,999740	0,999749	0,999758
3.5	0,999767	0,999776	0.999784	0,999792	0,999800	0,999807	0,999815	0,999821	0,999828	0,999835
3,6	0,999841	0,999847	0,999853	0,999858	0,999864	0,999869	0,999874	0,999879	0,999883	0,999888
3,7	0,999892	0,999896	0,999900	0,999904	0,999908	0,999912	0,999915	0,999918	0,999922	0.999925
3.8	0.999928	0.999931	0,999933	0,999936	0,999938	0,999941	0.999943	0,999946	0.999948	0.999950
3.9	0.999952	0.999954	0,999956	0.999958	0.999959	0,999961	0,999963	0,999964	0,999966	0.999967

TABELAI Sumário	das Distribuições Comuns de Probal	rilidade

TABELAI	Sumário das Distribuições Comuns de	e Probabilidade		
Nome	Distribuição de Probabilidade	Média	Variância	Seção no Livro
Discreta				
Uniforme	$\frac{1}{n}, a \leq b$	$\frac{(b+a)}{2}$	$\frac{(b-a+1)^2-1}{12}$	3-5
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	3-6
	$x = 0, 1, \dots, n, 0 \le p \le 1$			
Geométrica	$(1-p)^{x-1}p$ $x = 1, 2, \dots, 0 \le p \le 1$	1/p	$(1-p)/p^2$	3-7
Binomial nega	ativa	r/p	$r(1-p)/p^2$	3-7
Hipergeométr	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{x}}$		$np(1-p)\left(\frac{N-n}{N-1}\right)$	3-8
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}$, $x = 0, 1, 2,, 0 < \lambda$	λ	λ	3-9
Contínua				
Uniforme	$\frac{1}{b-a}, a \le x \le b$	$\frac{(b+a)}{2}$	$\frac{(b-a)^2}{12}$	4-5
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-1/2\left(\frac{x-\mu}{\sigma}\right)^2}$ $-\infty < x < \infty, -\infty < \mu < \infty, 0 < \sigma$	μ	σ^2	4-6
Exponencial	$-\infty < x < \infty, -\infty < \mu < \infty, 0 < \sigma$ $\lambda e^{-\lambda x}, 0 \le x, 0 < \lambda$	1/λ	$1/\lambda^2$	4-8
Erlang	$\frac{\lambda^r x^{r-1} e^{-\lambda x}}{(r-1)!}$, $0 < x, r = 1, 2,$	r/λ	r/λ^2	4-9.1
Gama	$\frac{\lambda x^{r-1}e^{-\lambda x}}{\Gamma(r)}, 0 < x, 0 < r, 0 < \lambda$	r/λ	r/λ^2	4-9.2
Weibull	$\frac{\beta}{\delta} \left(\frac{x}{\delta}\right)^{\beta-1} e^{-(x/\delta)^{\beta}}$ $0 < x, 0 < \beta, 0 < \delta$	$\delta\Gamma\left(1+\frac{1}{\beta}\right)$	$\delta^2 \Gamma \left(1 + \frac{2}{\beta}\right) \! - \! \delta^2 \left[\Gamma \left(1 + \frac{1}{\beta}\right)\right]^2$	4-10
Lognormal	$\frac{1}{x\omega\sqrt{2\pi}}\exp\left(\frac{-[\ln(x)-\theta]^2}{2\omega^2}\right)$	$e^{\theta+\omega^2/2}$	$e^{2\theta+\omega^2}(e^{\omega^2}-1)$	4-11
Beta	$\begin{split} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \\ 0 \leq x \leq 1, 0 < \alpha, 0 < \beta \end{split}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	4-12