Module 7 Lab: Reduction Answers

Sajina Pathak

Question 1

How many times does a single thread block synchronize to reduce its portion of the array to a single value?

A single thread block synchronizes $\log_2(\text{BLOCK_SIZE})$ times. For example, if BLOCK_SIZE = 512, then:

$$\log_2(512) = 9$$

So, it will synchronize 9 times.

Working Example

Suppose:

$$BLOCK_SIZE = 8$$

Input array:

$$[A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7]$$

Each thread handles two elements:

- Thread 0 handles \rightarrow [in[0], in[4]] \rightarrow sum = 1 + 5 = 6
- Thread 1 handles \rightarrow [in[1], in[5]] \rightarrow sum = 2 + 6 = 8
- Thread 2 handles \rightarrow [in[2], in[6]] \rightarrow sum = 3+7=10
- Thread 3 handles \rightarrow [in[3], in[7]] \rightarrow sum = 4+8=12

Question 2

What is the minimum, maximum, and average number of "real" operations that a thread will perform?

Figure 1: A Parallel sum of Reduction Tree

• Minimum: 0 real operations (some threads do not participate in any reductions).

 \bullet Maximum: $\log_2(\text{BLOCK_SIZE})$ real operations.

• Average: Roughly half of $\log_2(\text{BLOCK_SIZE})$ real operations.

For BLOCK_SIZE = 512:

$$\log_2(512) = 9$$

• Minimum: 0 operations.

• Maximum: 9 operations.

• Average: ≈ 4 to 5 operations.