Estadística. Grupo m3 Hoja 2. Reducción de datos

1. Sea (X_1, \ldots, X_n) una muestra aleatoria simple de $X \sim f_{\theta}(x)$. En los siguientes casos, encontrar un estadístico minimal suficiente y completo para θ :

(a)
$$f_{\theta}(x) = \theta x^{\theta-1}$$
, cuando $x \in (0,1)$ y $\theta > 0$

(b)
$$f_{\theta}(x) = \frac{x}{\theta^2} e^{-x^2/2\theta^2}$$
, cuando $x > 0$ y $\theta > 0$

(c)
$$f_{\theta}(x) = \theta(\frac{1}{x})^{\theta+1}$$
, cuando $x > 1$ y $\theta > 0$

(d)
$$f_{\theta}(x) = \frac{1}{6\theta^4} x^3 e^{-x/\theta}$$
, cuando $x > 0$ y $\theta > 0$

(e)
$$f_{\theta}(x) = e^{-x+\theta}$$
, cuando $\theta < x < \infty$

(f)
$$f_{\theta}(x) = \theta^{x}(1 - \theta)$$
, cuando $x \in \{0, 1, 2, ...\}$ y $0 < \theta < 1$

- 2. Encontrar un estadístico minimal suficiente y completo en cada uno de los siguientes modelos para una muestra aleatoria de tamaño n.
 - (a) $X \sim Beta(a, b)$
 - (b) $X \sim Gamma(a, p)$
 - (c) $X \sim N(\mu, \sigma^2)$
- 3. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población $N(\alpha \sigma, \sigma^2)$, donde α es un número real conocido. Probar que $T(X_1, \ldots, X_n) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ es un estadístico suficiente pero no completo para σ .
- 4. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población $U(\theta 1/2, \theta + 1/2)$ con $\theta \in \mathbb{R}$. Probar que $T(X_1, \ldots, X_n) = (X_{(1)}, X_{(n)})$ es suficiente pero no completo para θ .