Appendix A

Strong Duality and Optimality Conditions

The following strong duality theorem is taken from [29, Proposition 6.4.4].

Theorem A.1 (strong duality theorem). Consider the optimization problem

$$f_{\text{opt}} = \min \quad f(\mathbf{x})$$

$$s.t. \quad g_i(\mathbf{x}) \le 0, \quad i = 1, 2, \dots, m,$$

$$h_j(\mathbf{x}) \le 0, \quad j = 1, 2, \dots, p,$$

$$s_k(\mathbf{x}) = 0, \quad k = 1, 2, \dots, q,$$

$$\mathbf{x} \in X,$$

$$(A.1)$$

where $X = P \cap C$ with $P \subseteq \mathbb{E}$ being a convex polyhedral set and $C \subseteq \mathbb{E}$ convex. The functions $f, g_i, i = 1, 2, ..., m : \mathbb{E} \to (-\infty, \infty]$ are convex, and their domains satisfy $X \subseteq \text{dom}(f), X \subseteq \text{dom}(g_i), i = 1, 2, ..., m$. The functions $h_j, s_k, j = 1, 2, ..., p, k = 1, 2, ..., q$, are affine functions. Suppose there exist

- (i) a feasible solution $\bar{\mathbf{x}}$ satisfying $g_i(\bar{\mathbf{x}}) < 0$ for all $i = 1, 2, \dots, m$;
- (ii) a vector satisfying all the affine constraints $h_j(\mathbf{x}) \leq 0, j = 1, 2, ..., p, s_k(\mathbf{x}) = 0, k = 1, 2, ..., q$, and that is in $P \cap ri(C)$.

Then if problem (A.1) has a finite optimal value, then the optimal value of the dual problem

$$q_{\text{opt}} = \max\{q(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu}) : (\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu}) \in \text{dom}(-q)\},$$

where $q: \mathbb{R}^m_+ \times \mathbb{R}^p_+ \times \mathbb{R}^q \to \mathbb{R} \cup \{-\infty\}$ is given by

$$\begin{split} q(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu}) &= \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu}) \\ &= \min_{\mathbf{x} \in X} \left[f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \eta_j h_j(\mathbf{x}) + \sum_{k=1}^{q} \mu_k s_k(\mathbf{x}) \right], \end{split}$$

is attained, and the optimal values of the primal and dual problems are the same:

$$f_{\rm opt} = q_{\rm opt}$$
.

We also recall some well-known optimality conditions expressed in terms of the Lagrangian function in cases where strong duality holds.

Theorem A.2 (optimality conditions under strong duality). Consider the problem

(P)
$$\min f(\mathbf{x})$$

$$s.t. \quad g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m,$$

$$h_j(\mathbf{x}) = 0, j = 1, 2, \dots, p,$$

$$\mathbf{x} \in X,$$

where $f, g_1, g_2, \ldots, g_m, h_1, h_2, \ldots, h_p : \mathbb{E} \to (-\infty, \infty]$, and $X \subseteq \mathbb{E}$. Assume that $X \subseteq \text{dom}(f)$, $X \subseteq \text{dom}(g_i)$, and $X \subseteq \text{dom}(h_j)$ for all $i = 1, 2, \ldots, m, j = 1, 2, \ldots, p$. Let (D) be the following dual problem:

(D)
$$\max_{s.t.} q(\lambda, \mu)$$

 $s.t. (\lambda, \mu) \in \text{dom}(-q),$

where

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \min_{\mathbf{x} \in X} \left\{ L(\mathbf{x}; \boldsymbol{\lambda}, \boldsymbol{\mu}) \equiv f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}) \right\},$$
$$\operatorname{dom}(-q) = \{ (\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \mathbb{R}_+^m \times \mathbb{R}^p : q(\boldsymbol{\lambda}, \boldsymbol{\mu}) > -\infty \}.$$

Suppose that the optimal value of problem (P) is finite and equal to the optimal value of problem (D). Then \mathbf{x}^* , $(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ are optimal solutions of problems (P) and (D), respectively, if and only if

- (i) \mathbf{x}^* is a feasible solution of (P);
- (ii) $\lambda^* \geq 0$;
- (iii) $\lambda_i^* g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m;$
- (iv) $\mathbf{x}^* \in \operatorname{argmin}_{\mathbf{x} \in X} L(\mathbf{x}; \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*).$

Proof. Denote the optimal values of problem (P) and (D) by f_{opt} and q_{opt} , respectively. An underlying assumption of the theorem is that $f_{\text{opt}} = q_{\text{opt}}$. If \mathbf{x}^* and (λ^*, μ^*) are the optimal solutions of problems (P) and (D), then obviously (i) and

(ii) are satisfied. In addition,

$$f_{\text{opt}} = q_{\text{opt}} = q(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$\leq L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*)$$

$$\leq f(\mathbf{x}^*),$$

where the last inequality follows by the facts that $h_j(\mathbf{x}^*) = 0$, $\lambda_i^* \geq 0$, and $g_i(\mathbf{x}^*) \leq 0$. Since $f_{\text{opt}} = f(\mathbf{x}^*)$, all of the inequalities in the above chain of equalities and inequalities are actually equalities. This implies in particular that $\mathbf{x}^* \in \operatorname{argmin}_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$, meaning property (iv), and that $\sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) = 0$, which by the fact that $\lambda_i^* g_i(\mathbf{x}^*) \leq 0$ for any i, implies that $\lambda_i^* g_i(\mathbf{x}^*) = 0$ for any i, showing the validity of property (iii).

To prove the reverse direction, assume that properties (i)–(iv) are satisfied. Then

$$\begin{split} q(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) &= \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) & [\text{definition of } q] \\ &= L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) & [\text{property (iv)}] \\ &= f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*) \\ &= f(\mathbf{x}^*). & [\text{property (iii)}] \end{split}$$

By the weak duality theorem, since \mathbf{x}^* and $(\lambda^*, \boldsymbol{\mu}^*)$ are primal and dual feasible solutions with equal primal and dual objective functions, it follows that they are the optimal solutions of their corresponding problems. \square

Appendix B

Tables

Support Functions

C	$\sigma_C(\mathbf{y})$	Assumptions	Reference
$\{\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_n\}$	$\max_{i=1,2,\ldots,n} \langle \mathbf{b}_i, \mathbf{y} \rangle$	$\mathbf{b}_i \in \mathbb{E}$	Example 2.25
K	$\delta_{K}\circ(\mathbf{y})$	K – cone	Example 2.26
\mathbb{R}^n_+	$\delta_{\mathbb{R}^n_{-}}\left(\mathbf{y} ight)$	$\mathbb{E} = \mathbb{R}^n$	Example 2.27
Δ_n	$\max\{y_1, y_2, \dots, y_n\}$	$\mathbb{E} = \mathbb{R}^n$	Example 2.36
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq 0\}$	$\delta_{\{\mathbf{A}^Toldsymbol{\lambda}:oldsymbol{\lambda}\in\mathbb{R}^m_+\}}(\mathbf{y})$	$\mathbb{E} = \mathbb{R}^n, \ \mathbf{A} \in \mathbb{R}^{m \times n}$	Example 2.29
$\{\mathbf{x} \in \mathbb{R}^n : \mathbf{B}\mathbf{x} = \mathbf{b}\}$	$\langle \mathbf{y}, \mathbf{x}_0 \rangle + \delta_{\mathrm{Range}(\mathbf{B}^T)}(\mathbf{y})$	$\mathbb{E} = \mathbb{R}^n, \ \mathbf{B} \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m, \ \mathbf{B} \mathbf{x}_0 = \mathbf{b}$	Example 2.30
$B_{\ \cdot\ }[0,1]$	$\ \mathbf{y}\ _*$	-	Example 2.31

Weak Subdifferential Results

Function	Weak result	Setting	Reference
-q = neg- ative dual function	$-\mathbf{g}(\mathbf{x}_0) \in \partial(-q)(\boldsymbol{\lambda}_0)$	$q(\boldsymbol{\lambda}) = \min_{\mathbf{x} \in X} f(\mathbf{x}) + \boldsymbol{\lambda}^T \mathbf{g}(\mathbf{x}), f :$ $\mathbb{E} \to \mathbb{R}, \mathbf{g} : \mathbb{E} \to \mathbb{R}^m, \mathbf{x}_0 = \mathbf{a}$ minimizer of $f(\mathbf{x}) + \boldsymbol{\lambda}_0^T \mathbf{g}(\mathbf{x})$ over X	Example 3.7
$f(\mathbf{X}) = \lambda_{\max}(\mathbf{X})$	$\mathbf{v}\mathbf{v}^T \in \partial f(\mathbf{X})$	$f: \mathbb{S}^n \to \mathbb{R}, \ \mathbf{v} = \text{normalized}$ maximum eigenvector of $X \in \mathbb{S}^n$	Example 3.8
$f(\mathbf{x}) = \ \mathbf{x}\ _1$	$sgn(\mathbf{x}) \in \partial f(\mathbf{x})$	$\mathbb{E} = \mathbb{R}^n$	Example 3.42
$f(\mathbf{x}) = \lambda_{\max}(\mathbf{A}_0 + \sum_{i=1}^{m} x_i \mathbf{A}_i)$	$(\tilde{\mathbf{y}}^T \mathbf{A}_i \tilde{\mathbf{y}})_{i=1}^m \in \partial f(\mathbf{x})$	$\tilde{\mathbf{y}} = \text{normalized maximum eigen-}$ vector of $\mathbf{A}_0 + \sum_{i=1}^m x_i \mathbf{A}_i$	Example 3.56

Strong Subdifferential Results

$f(\mathbf{x})$	Strong Subdifferential Resu $\partial f(\mathbf{x})$	Assumptions	Reference
$\ \mathbf{x}\ $	$B_{\ \cdot\ _*}[0,1]$	$\mathbf{x} = 0$	Example 3.3
$\ \mathbf{x}\ _1$	$\left\{ \sum_{i \in I_{\neq}(\mathbf{x})} \operatorname{sgn}(x_i) \mathbf{e}_i + \sum_{i \in I_0(\mathbf{x})} [-\mathbf{e}_i, \mathbf{e}_i] \right\}$	$\mathbb{E} = \mathbb{R}^{n}, \ I_{\neq}(\mathbf{x}) = \{i : x_{i} \neq 0\}, \\ I_{0}(\mathbf{x}) = \{i : x_{i} = 0\}.$	Example 3.41
$\ \mathbf{x}\ _2$	$\left\{ \begin{array}{l} \left\{\frac{\mathbf{x}}{\ \mathbf{x}\ _2}\right\}, & \mathbf{x} \neq 0, \\ B_{\ \cdot\ _2}[0, 1], & \mathbf{x} = 0. \end{array} \right.$	$\mathbb{E} = \mathbb{R}^n$	Example 3.34
$\ \mathbf{x}\ _{\infty}$	$\begin{cases} B_{\ \cdot\ _2}[0, 1], & \mathbf{x} = 0. \\ \\ \sum_{i \in I(\mathbf{x})} \lambda_i \operatorname{sgn}(x_i) \mathbf{e}_i : & \sum_{i \in I(\mathbf{x})} \lambda_i = 1 \\ \\ \lambda_i \ge 0 \end{cases}$	$\mathbb{E} = \mathbb{R}^n, \ I(\mathbf{x}) = \{i : \ \mathbf{x}\ _{\infty} = x_i \}, \ \mathbf{x} \neq 0$	Example 3.52
$\max(\mathbf{x})$	$\left\{ \sum_{i \in I(\mathbf{x})} \lambda_i \mathbf{e}_i : \sum_{i \in I(\mathbf{x})} \lambda_i = 1, \lambda_i \ge 0 \right\}$	$\mathbb{E} = \mathbb{R}^n, I(\mathbf{x}) = \{i : \max(\mathbf{x}) = x_i\}$	Example 3.51
$\max(\mathbf{x})$	Δ_n	$\mathbb{E} = \mathbb{R}^n$, $\mathbf{x} = \alpha \mathbf{e}$ for some $\alpha \in \mathbb{R}$	Example 3.51
$\delta_S(\mathbf{x})$	$N_S(\mathbf{x})$	$\emptyset \neq S \subseteq \mathbb{E}$	Example 3.5
$\delta_{B[0,1]}(\mathbf{x})$	$\begin{cases} \{\mathbf{y} \in \mathbb{E}^* : \ \mathbf{y}\ _* \le \langle \mathbf{y}, \mathbf{x} \rangle \}, & \ \mathbf{x}\ \le 1, \\ \emptyset, & \ \mathbf{x}\ > 1. \end{cases}$		Example 3.6
$\ \mathbf{A}\mathbf{x} + \mathbf{b}\ _1$	$\sum_{i \in I_{\neq}(\mathbf{x})} \operatorname{sgn}(\mathbf{a}_{i}^{T}\mathbf{x} + b_{i})\mathbf{a}_{i} + \sum_{i \in I_{0}(\mathbf{x})} [-\mathbf{a}_{i}, \mathbf{a}_{i}]$	$\mathbb{E} = \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n},$ $\mathbf{b} \in \mathbb{R}^m, I_{\neq}(\mathbf{x}) = \{i : \mathbf{a}_i^T \mathbf{x} + b_i \neq 0\},$ $I_0(\mathbf{x}) = \{i : \mathbf{a}_i^T \mathbf{x} + b_i = 0\}$	Example 3.44
$\ \mathbf{A}\mathbf{x} + \mathbf{b}\ _2$	$\begin{cases} & \frac{\mathbf{A}^T(\mathbf{A}\mathbf{x} + \mathbf{b})}{\ \mathbf{A}\mathbf{x} + \mathbf{b}\ _2}, & \mathbf{A}\mathbf{x} + \mathbf{b} \neq 0, \\ & \mathbf{A}^T B_{\ \cdot\ _2}[0, 1], & \mathbf{A}\mathbf{x} + \mathbf{b} = 0. \end{cases}$	$\mathbb{E} = \mathbb{R}^n, \ \mathbf{A} \in \mathbb{R}^{m \times n}, $ $\mathbf{b} \in \mathbb{R}^m$	Example 3.45
$\ \mathbf{A}\mathbf{x} + \mathbf{b}\ _{\infty}$	$\begin{cases} \mathbf{A}^T B_{\ \cdot\ _2}[0, 1], & \mathbf{A}\mathbf{x} + \mathbf{b} = 0. \\ \\ \sum_{i \in I_{\mathbf{x}}} \lambda_i \operatorname{sgn}(\mathbf{a}_i^T \mathbf{x} + b_i) \mathbf{a}_i : & \sum_{i \in I_{\mathbf{x}}} \lambda_i = 1 \\ \lambda_i \ge 0 \end{cases}$	$\mathbb{E} = \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n},$ $\mathbf{b} \in \mathbb{R}^{m}, I_{\mathbf{x}} = \{i : \ \mathbf{A}\mathbf{x} + \mathbf{b}\ _{\infty} = \mathbf{a}_{i}^{T}\mathbf{x} + b_{i} \}, \mathbf{A}\mathbf{x} + \mathbf{b} \neq 0$	Example 3.54
$\ \mathbf{A}\mathbf{x} + \mathbf{b}\ _{\infty}$	$\mathbf{A}^T B_{\ \cdot\ _1}[0,1]$	same as above but with $Ax + b = 0$	Example 3.54
$\max_i\{\mathbf{a}_i^T\mathbf{x}+\mathbf{b}\}$	$\left\{ \sum_{i \in I(\mathbf{x})} \lambda_i \mathbf{a}_i : \sum_{i \in I(\mathbf{x})} \lambda_i = 1, \lambda_i \ge 0 \right\}$	$\mathbb{E} = \mathbb{R}^{n}, \mathbf{a}_{i} \in \mathbb{R}^{n}, \\ b_{i} \in \mathbb{R}, I(\mathbf{x}) = \{i : f(\mathbf{x}) = \mathbf{a}_{i}^{T}\mathbf{x} + b_{i}\}$	Example 3.53
$\frac{1}{2}d_C(\mathbf{x})^2$	$\{\mathbf{x} - P_C(\mathbf{x})\}$	C = nonempty closed and convex, $\mathbb{E} = \text{Euclidean}$	Example 3.31
$d_C(\mathbf{x})$	$ \begin{cases} \left\{ \frac{\mathbf{x} - P_C(\mathbf{x})}{d_C(\mathbf{x})} \right\}, & \mathbf{x} \notin C, \\ N_C(\mathbf{x}) \cap B[0, 1] & \mathbf{x} \in C. \end{cases} $	C = nonempty closed and convex, $\mathbb{E} = \text{Euclidean}$	Example 3.49

Conjugate Calculus Rules

$g(\mathbf{x})$	$g^*(\mathbf{y})$	Reference
$\sum_{i=1}^{m} f_i(\mathbf{x}_i)$	$\sum_{i=1}^{m} f_i^*(\mathbf{y}_i)$	Theorem 4.12
$\alpha f(\mathbf{x}) \ (\alpha > 0)$	$\alpha f^*(\mathbf{y}/\alpha)$	Theorem 4.14
$\alpha f(\mathbf{x}/\alpha) \ (\alpha > 0)$	$lpha f^*(\mathbf{y})$	Theorem 4.14
$f(\mathcal{A}(\mathbf{x} - \mathbf{a})) + \langle \mathbf{b}, \mathbf{x} \rangle + c$	$f^* \left((\mathcal{A}^T)^{-1} (\mathbf{y} - \mathbf{b}) \right) + \langle \mathbf{a}, \mathbf{y} \rangle - c - \langle \mathbf{a}, \mathbf{b} \rangle$	Theorem 4.13

Conjugate Functions

Conjugate Functions						
f	dom(f)	f^*	Assumptions	Reference		
e^x	\mathbb{R}	$y \log y - y \left(\operatorname{dom}(f^*) \right) = \mathbb{R}_+$	-	Section 4.4.1		
$-\log x$	\mathbb{R}_{++}	$-1 - \log(-y) (\operatorname{dom}(f^*) = \mathbb{R}_{})$	-	Section 4.4.2		
$\max\{1-x,0\}$	\mathbb{R}	$y+\delta_{[-1,0]}(y)$	_	Section 4.4.3		
$\frac{1}{p} x ^p$	\mathbb{R}	$\frac{1}{q} y ^q$	$p > 1, \frac{1}{p} + \frac{1}{q} = 1$	Section 4.4.4		
$-\frac{x^p}{p}$	\mathbb{R}_{+}	$\frac{\frac{1}{q} y ^q}{-\frac{(-y)^q}{q}} (\text{dom}(f^*) = \mathbb{R}_{})$	0	Section 4.4.5		
$\frac{\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c}{\mathbf{b}^T\mathbf{x} + c}$	\mathbb{R}^n	$\frac{1}{2}(\mathbf{y} - \mathbf{b})^T \mathbf{A}^{-1}(\mathbf{y} - \mathbf{b}) - c$	$\mathbf{A} \in \mathbb{S}_{++}^n, \ \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R}$	Section 4.4.6		
$\frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$	\mathbb{R}^n	$\frac{1}{2}(\mathbf{y} - \mathbf{b})^T \mathbf{A}^{\dagger}(\mathbf{y} - \mathbf{b}) - c$ $(\operatorname{dom}(f^*) = \mathbf{b} + \operatorname{Range}(\mathbf{A}))$	$\mathbf{A} \in \mathbb{S}^n_+, \ \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R}$	Section 4.4.7		
$\sum_{i=1}^{n} x_i \log x_i$	\mathbb{R}^n_+	$\sum_{i=1}^{n} e^{y_i - 1}$	_	Section 4.4.8		
$\sum_{i=1}^{n} x_i \log x_i$	Δ_n	$\log\left(\sum_{i=1}^n e^{y_i}\right)$	_	Section 4.4.10		
$-\sum_{i=1}^{n} \log x_i$	\mathbb{R}^n_{++}	$-n - \sum_{i=1}^{n} \log(-y_i)$ $(\operatorname{dom}(f^*) = \mathbb{R}_{}^n)$	_	Section 4.4.9		
$\log\left(\sum_{i=1}^n e^{x_i}\right)$	\mathbb{R}^n	$\sum_{i=1}^{n} y_i \log y_i (\operatorname{dom}(f^*) = \Delta_n)$	_	Section 4.4.11		
$\max_{i} \{x_i\}$	\mathbb{R}^n	$\delta_{\Delta_n}(\mathbf{y})$	_	Example 4.10		
$\delta_C(\mathbf{x})$	C	$\sigma_C(\mathbf{y})$	$\emptyset \neq C \subseteq \mathbb{E}$	Example 4.2		
$\sigma_C(\mathbf{x})$	$\operatorname{dom}(\sigma_C)$	$\delta_{\operatorname{cl}(\operatorname{conv}(C))}(\mathbf{y})$	$\emptyset \neq C \subseteq \mathbb{E}$	Example 4.9		
$\ \mathbf{x}\ $	\mathbb{E}	$\delta_{B_{\parallel\cdot\parallel_*}[0,1]}(\mathbf{y})$	_	Section 4.4.12		
$-\sqrt{\alpha^2 - \ \mathbf{x}\ ^2}$	$B[0, \alpha]$	$\alpha\sqrt{\ \mathbf{y}\ _*^2+1}$	$\alpha > 0$	Section 4.4.13		
$\sqrt{\alpha^2 + \ \mathbf{x}\ ^2}$	\mathbb{E}	$-\alpha \sqrt{1 - \ \mathbf{y}\ _{*}^{2}} $ $(\operatorname{dom} f^{*} = B_{\ \cdot\ _{*}}[0, 1])$	$\alpha > 0$	Section 4.4.14		
$\frac{1}{2}\ \mathbf{x}\ ^2$	E	$\frac{1}{2}\ \mathbf{y}\ _*^2$	_	Section 4.4.15		
$\frac{1}{2}\ \mathbf{x}\ ^2 + \delta_C(\mathbf{x})$	C	$\frac{1}{2}\ \mathbf{y}\ ^2 - \frac{1}{2}d_C^2(\mathbf{y})$	$\emptyset \neq C \subseteq \mathbb{E}, \mathbb{E}$ Euclidean	Example 4.4		
$\frac{1}{2}\ \mathbf{x}\ ^2 - \frac{1}{2}d_C^2(\mathbf{x})$	\mathbb{E}	$\frac{1}{2}\ \mathbf{y}\ ^2 + \delta_C(\mathbf{y})$	$\emptyset \neq C \subseteq \mathbb{E}$ closed convex. \mathbb{E} Euclidean	Example 4.11		

Conjugates of Symmetric Spectral Functions over \mathbb{S}^n (from Example 7.16)

$g(\mathbf{X})$	dom(g)	$g^*(\mathbf{Y})$	$dom(g^*)$
$\lambda_{\max}(\mathbf{X})$	\mathbb{S}^n	$\delta_{\Upsilon_n}(\mathbf{Y})$	Υ_n
$\alpha \ \mathbf{X}\ _F \ (\alpha > 0)$	\mathbb{S}^n	$\delta_{B_{\ \cdot\ _F}[0,\alpha]}(\mathbf{Y})$	$B_{\ \cdot\ _F}[0,\alpha]$
$\alpha \ \mathbf{X}\ _F^2 \ (\alpha > 0)$	\mathbb{S}^n	$\frac{1}{4\alpha}\ \mathbf{Y}\ _F^2$	\mathbb{S}^n
$\alpha \ \mathbf{X}\ _{2,2} \ (\alpha > 0)$	\mathbb{S}^n	$\delta_{B_{\ \cdot\ _{S_1}}[0,\alpha]}(\mathbf{Y})$	$B_{\ \cdot\ _{S_1}}[0,\alpha]$
$\alpha \ \mathbf{X}\ _{S_1} \ (\alpha > 0)$	\mathbb{S}^n	$\delta_{B_{\ \cdot\ _{2,2}}[0,lpha]}(\mathbf{Y})$	$B_{\ \cdot\ _{2,2}}[0,\alpha]$
$-\log\det(\mathbf{X})$	\mathbb{S}^n_{++}	$-n - \log \det(-\mathbf{Y})$	\mathbb{S}^n
$\sum_{i=1}^{n} \lambda_i(\mathbf{X}) \log(\lambda_i(\mathbf{X}))$	\mathbb{S}^n_+	$\sum_{i=1}^{n} e^{\lambda_i(\mathbf{Y}) - 1}$	\mathbb{S}^n
$\sum_{i=1}^{n} \lambda_i(\mathbf{X}) \log(\lambda_i(\mathbf{X}))$	Υ_n	$\log\left(\sum_{i=1}^n e^{\lambda_i(\mathbf{Y})}\right)$	\mathbb{S}^n

Conjugates of Symmetric Spectral Functions over $\mathbb{R}^{m \times n}$ (from Example 7.27)

$g(\mathbf{X})$	dom(g)	$g^*(\mathbf{Y})$	$dom(g^*)$
$\alpha \sigma_1(\mathbf{X}) \ (\alpha > 0)$	$\mathbb{R}^{m \times n}$	$\delta_{B_{\ \cdot\ _{S_1}}[0,lpha]}(\mathbf{Y})$	$B_{\ \cdot\ _{S_1}}[0,\alpha]$
$\alpha \ \mathbf{X}\ _F \ (\alpha > 0)$	$\mathbb{R}^{m\times n}$	$\delta_{B_{\ \cdot\ _F}[0,lpha]}(\mathbf{Y})$	$B_{\ \cdot\ _F}[0, \alpha]$
$\alpha \ \mathbf{X}\ _F^2 \ (\alpha > 0)$	$\mathbb{R}^{m \times n}$	$rac{1}{4lpha}\ \mathbf{Y}\ _F^2$	$\mathbb{R}^{m \times n}$
$\alpha \ \mathbf{X}\ _{S_1} \ (\alpha > 0)$	$\mathbb{R}^{m \times n}$	$\delta_{B_{\ \cdot\ _{S_{\infty}}}[0,lpha]}(\mathbf{Y})$	$B_{\ \cdot\ _{S_{\infty}}}[0, \alpha]$

Smooth Functions

Smooth Functions						
$f(\mathbf{x})$	dom(f)	Parameter	Norm	Reference		
$\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + c$	\mathbb{R}^n	$\ \mathbf{A}\ _{p,q}$	l_p	Example 5.2		
$(\mathbf{A} \in \mathbb{S}^n, \mathbf{b} \in \mathbb{R}^n, c \in \mathbb{R})$						
$\langle \mathbf{b}, \mathbf{x} \rangle + c$	E	0	any norm	Example 5.3		
$(\mathbf{b} \in \mathbb{E}^*, c \in \mathbb{R})$						
$\frac{1}{2}\ \mathbf{x}\ _p^2, \ p \in [2, \infty)$	\mathbb{R}^n	p-1	l_p	Example 5.11		
$\sqrt{1+\ \mathbf{x}\ _2^2}$	\mathbb{R}^n	1	l_2	Example 5.14		
$\log(\sum_{i=1}^{n} e^{x_i})$	\mathbb{R}^n	1	l_2, l_{∞}	Example 5.15		
$\frac{1}{2}d_C^2(\mathbf{x})$	E	1	Euclidean	Example 5.5		
$(\emptyset \neq C \subseteq \mathbb{E} \text{ closed convex})$						
$\frac{1}{2} \ \mathbf{x}\ ^2 - \frac{1}{2} d_C^2(\mathbf{x})$	E	1	Euclidean	Example 5.6		
$(\emptyset \neq C \subseteq \mathbb{E} \text{ closed convex})$						
$H_{\mu}(\mathbf{x}) \ (\mu > 0)$	E	$\frac{1}{\mu}$	Euclidean	Example 6.62		

Strongly Convex Functions

$f(\mathbf{x})$	dom(f)	Strongly convex parameter	Norm	Reference
$\frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + 2\mathbf{b}^{T}\mathbf{x} + c$ $(\mathbf{A} \in \mathbb{S}_{++}^{n}, \mathbf{b} \in \mathbb{R}^{n}, c \in \mathbb{R})$	\mathbb{R}^n	$\lambda_{\min}(\mathbf{A})$	l_2	Example 5.19
$\frac{1}{2} \ \mathbf{x}\ ^2 + \delta_C(\mathbf{x})$ $(\emptyset \neq C \subseteq \mathbb{E} \text{ convex})$	C	1	Euclidean	Example 5.21
$-\sqrt{1-\ \mathbf{x}\ _{2}^{2}}$	$B_{\ \cdot\ _2}[0,1]$	1	l_2	Example 5.29
$\frac{1}{2} \ \mathbf{x}\ _p^2 \ (p \in (1, 2])$	\mathbb{R}^n	p-1	l_p	Example 5.28
$\sum_{i=1}^{n} x_i \log x_i$	Δ_n	1	l_2 or l_1	Example 5.27

Orthogonal Projections

Orthogonal Projections				
Set (C)	$P_C(\mathbf{x})$	Assumptions	Reference	
\mathbb{R}^n_+	$[\mathbf{x}]_+$	_	Lemma 6.26	
$\mathrm{Box}[oldsymbol{\ell},\mathbf{u}]$	$P_C(\mathbf{x})_i = \min\{\max\{x_i, \ell_i\}, u_i\}$	$\ell_i \le u_i$	Lemma 6.26	
$B_{\ \cdot\ _2}[\mathbf{c},r]$	$\mathbf{c} + \frac{r}{\max\{\ \mathbf{x} - \mathbf{c}\ _2, r\}}(\mathbf{x} - \mathbf{c})$	$\mathbf{c} \in \mathbb{R}^n, r > 0$	Lemma 6.26	
$\{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\}$	$\mathbf{x} - \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{A} \mathbf{x} - \mathbf{b})$	$\mathbf{A} \in \mathbb{R}^{m \times n},$ $\mathbf{b} \in \mathbb{R}^m,$ $\mathbf{A} \text{ full row rank}$	Lemma 6.26	
$\{\mathbf{x}: \mathbf{a}^T \mathbf{x} \le b\}$	$\mathbf{x} - \frac{[\mathbf{a}^T \mathbf{x} - b]_+}{\ \mathbf{a}\ ^2} \mathbf{a}$	$0 eq \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R}^n$	Lemma 6.26	
Δ_n	$[\mathbf{x} - \mu^* \mathbf{e}]_+$ where $\mu^* \in \mathbb{R}$ satisfies $\mathbf{e}^T [\mathbf{x} - \mu^* \mathbf{e}]_+ = 1$		Corollary 6.29	
$H_{\mathbf{a},b}\cap \mathrm{Box}[\boldsymbol{\ell},\mathbf{u}]$	$P_{\text{Box}[\ell,\mathbf{u}]}(\mathbf{x} - \mu^* \mathbf{a}) \text{ where } \mu^* \in \mathbb{R} \text{ satisfies } \mathbf{a}^T P_{\text{Box}[\ell,\mathbf{u}]}(\mathbf{x} - \mu^* \mathbf{a}) = b$	$\mathbf{a} \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$	Theorem 6.27	
$H_{\mathbf{a},b}^- \cap \mathrm{Box}[\boldsymbol{\ell},\mathbf{u}]$	$\begin{cases} P_{\text{Box}[\boldsymbol{\ell}, \mathbf{u}]}(\mathbf{x}), & \mathbf{a}^T \mathbf{v}_{\mathbf{x}} \leq b, \\ P_{\text{Box}[\boldsymbol{\ell}, \mathbf{u}]}(\mathbf{x} - \lambda^* \mathbf{a}), & \mathbf{a}^T \mathbf{v}_{\mathbf{x}} > b, \\ \mathbf{v}_{\mathbf{x}} = P_{\text{Box}[\boldsymbol{\ell}, \mathbf{u}]}(\mathbf{x}), & \mathbf{a}^T P_{\text{Box}[\boldsymbol{\ell}, \mathbf{u}]}(\mathbf{x} - \lambda^* \mathbf{a}) = b, \lambda^* > 0 \end{cases}$	$\mathbf{a} \in \mathbb{R}^n \setminus \{0\}, b \in \mathbb{R}$	Example 6.32	
$B_{\ \cdot\ _1}[0,lpha]$	$\begin{cases} \mathbf{x}, & \ \mathbf{x}\ _{1} \leq \alpha, \\ \mathcal{T}_{\lambda^{*}}(\mathbf{x}), & \ \mathbf{x}\ _{1} > \alpha, \\ \ \mathcal{T}_{\lambda^{*}}(\mathbf{x})\ _{1} = \alpha, \lambda^{*} > 0 \end{cases}$	$\alpha > 0$	Example 6.33	
$\{\mathbf{x} : \boldsymbol{\omega}^T \mathbf{x} \le \beta,$ $-\boldsymbol{\alpha} \le \mathbf{x} \le \boldsymbol{\alpha}\}$	$\begin{cases} \mathbf{v}_{\mathbf{x}}, & \boldsymbol{\omega}^{T} \mathbf{v}_{\mathbf{x}} \leq \beta, \\ S_{\lambda^{*} \boldsymbol{\omega}, \boldsymbol{\alpha}}(\mathbf{x}), & \boldsymbol{\omega}^{T} \mathbf{v}_{\mathbf{x}} > \beta, \end{cases}$ $\mathbf{v}_{\mathbf{x}} = P_{\text{Box}[-\boldsymbol{\alpha}, \boldsymbol{\alpha}]}(\mathbf{x}),$ $\boldsymbol{\omega}^{T} S_{\lambda^{*} \boldsymbol{\omega}, \boldsymbol{\alpha}}(\mathbf{x}) = \beta, \lambda^{*} > 0$	$oldsymbol{\omega} \in \mathbb{R}^n_+, \ oldsymbol{\alpha} \in [0,\infty]^n, \ eta \in \mathbb{R}_{++}$	Example 6.34	
$\{\mathbf{x} > 0 : \Pi x_i \ge \alpha\}$	$\begin{cases} \mathbf{x}, & \mathbf{x} \in C, \\ \left(\frac{x_j + \sqrt{x_j^2 + 4\lambda^*}}{2}\right)^n, & \mathbf{x} \notin C, \\ \Pi_{j=1}^n \left((x_j + \sqrt{x_j^2 + 4\lambda^*})/2\right) & = \\ \alpha, \lambda^* > 0 \end{cases}$	$\alpha > 0$	Example 6.35	
$\{(\mathbf{x},s): \ \mathbf{x}\ _2 \le s\}$		-	Example 6.37	
$\{(\mathbf{x},s): \ \mathbf{x}\ _1 \le s\}$	$\begin{cases} (\mathbf{x}, s), & \ \mathbf{x}\ _{1} \leq s, \\ (\mathcal{T}_{\lambda^{*}}(\mathbf{x}), s + \lambda^{*}), & \ \mathbf{x}\ _{1} > s, \\ \ \mathcal{T}_{\lambda^{*}}(\mathbf{x})\ _{1} - \lambda^{*} - s = 0, \lambda^{*} > 0 \end{cases}$	-	Example 6.38	

Orthogonal Projections onto Symmetric Spectral Sets in \mathbb{S}^n

set(T)	$P_T(\mathbf{X})$	Assumptions
\mathbb{S}^n_+	$\mathbf{U}\mathrm{diag}([oldsymbol{\lambda}(\mathbf{X})]_+)\mathbf{U}^T$	_
$\{\mathbf{X}: \ell\mathbf{I} \leq \mathbf{X} \leq u\mathbf{I}\}$	$\mathbf{U}\mathrm{diag}(\mathbf{v})\mathbf{U}^T,$	$\ell \leq u$
	$v_i = \min\{\max\{\lambda_i(\mathbf{X}), \ell\}, u\}$	
$B_{\ \cdot\ _F}[0,r]$	$rac{r}{\max\{\ \mathbf{X}\ _F,r\}}\mathbf{X}$	r > 0
$\{\mathbf{X}: \mathrm{Tr}(\mathbf{X}) \leq b\}$	$\mathbf{U} \mathrm{diag}(\mathbf{v}) \mathbf{U}^T, \mathbf{v} = \boldsymbol{\lambda}(\mathbf{X}) - \frac{[\mathbf{e}^T \boldsymbol{\lambda}(\mathbf{X}) - b]_+}{n} \mathbf{e}$	$b\in\mathbb{R}$
Υ_n	Udiag(v)U ^T , v = $[\lambda(\mathbf{X}) - \mu^* \mathbf{e}]_+$ where $\mu^* \in \mathbb{R}$ satisfies $\mathbf{e}^T [\lambda(\mathbf{X}) - \mu^* \mathbf{e}]_+ = 1$	_
$B_{\ \cdot\ _{S_1}}[0,\alpha]$	$\begin{cases} \mathbf{X}, & \ \mathbf{X}\ _{S_1} \le \alpha, \\ \mathbf{U}\operatorname{diag}(\mathcal{T}_{\beta^*}(\boldsymbol{\lambda}(\mathbf{X})))\mathbf{U}^T, & \ \mathbf{X}\ _{S_1} > \alpha, \\ \ \mathcal{T}_{\beta^*}(\boldsymbol{\lambda}(\mathbf{X}))\ _1 = \alpha, \ \beta^* > 0 \end{cases}$	$\alpha > 0$

Orthogonal Projections onto Symmetric Spectral Sets in $\mathbb{R}^{m \times n}$ (from Example 7.31)

set(T)	$P_T(\mathbf{X})$	Assumptions
$B_{\ \cdot\ _{S_{\infty}}}[0,\alpha]$	$\mathbf{U}\mathrm{diag}(\mathbf{v})\mathbf{V}^T,v_i=\min\{\sigma_i(\mathbf{X}),\alpha\}$	$\alpha > 0$
$B_{\ \cdot\ _F}[0,r]$	$rac{r}{\max\{\ \mathbf{X}\ _F,r\}}\mathbf{X}$	r > 0
$B_{\ \cdot\ _{S_1}}[0,\alpha]$	$\begin{cases} \mathbf{X}, & \ \mathbf{X}\ _{S_1} \leq \alpha, \\ \mathbf{U}\operatorname{diag}(\mathcal{T}_{\beta^*}(\sigma(\mathbf{X})))\mathbf{V}^T, & \ \mathbf{X}\ _{S_1} > \alpha, \\ \ \mathcal{T}_{\beta^*}(\sigma(\mathbf{X}))\ _1 = \alpha, \ \beta^* > 0 \end{cases}$	$\alpha > 0$

Prox Calculus Rules

Prox Calculus rules					
$f(\mathbf{x})$	$\operatorname{prox}_f(\mathbf{x})$	Assumptions	Reference		
$\sum_{i=1}^{m} f_i(\mathbf{x}_i)$	$\operatorname{prox}_{f_1}(\mathbf{x}_1) \times \cdots \times \operatorname{prox}_{f_m}(\mathbf{x}_m)$	_	Theorem 6.6		
$g(\lambda \mathbf{x} + \mathbf{a})$	$\frac{1}{\lambda} \left[\operatorname{prox}_{\lambda^2 g} (\lambda \mathbf{x} + \mathbf{a}) - \mathbf{a} \right]$	$\lambda \neq 0, \mathbf{a} \in \mathbb{E}, g$ proper	Theorem 6.11		
$\lambda g(\mathbf{x}/\lambda)$	$\lambda \operatorname{prox}_{g/\lambda}(\mathbf{x}/\lambda)$	$\lambda \neq 0, g$ proper	Theorem 6.12		
$g(\mathbf{x}) + \frac{c}{2} \mathbf{x} ^2 + \langle \mathbf{a}, \mathbf{x} \rangle + \gamma$	$\operatorname{prox}_{\frac{1}{c+1}g}\left(\frac{\mathbf{x}-\mathbf{a}}{c+1}\right)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Theorem 6.13		
$g(\mathcal{A}(\mathbf{x}) + \mathbf{b})$	$\mathbf{x} + \frac{1}{\alpha} \mathcal{A}^T (\operatorname{prox}_{\alpha g} (\mathcal{A}(\mathbf{x}) + \mathbf{b}) - \mathcal{A}(\mathbf{x}) - \mathbf{b})$	$\begin{array}{cccc} \mathbf{b} & \in & \mathbb{R}^m, \\ \mathcal{A} & : \mathbb{V} & \to \mathbb{R}^m, \\ g & & \text{proper closed convex,} \\ \mathcal{A} & \circ & \mathcal{A}^T & = & \alpha I, \\ \alpha & > & 0 & \end{array}$	Theorem 6.15		
$g(\ \mathbf{x}\)$	$\begin{aligned} & \operatorname{prox}_g(\ \mathbf{x}\) \frac{\mathbf{x}}{\ \mathbf{x}\ }, & \mathbf{x} \neq 0 \\ & \{\mathbf{u} : \ \mathbf{u}\ = \operatorname{prox}_g(0)\}, & \mathbf{x} = 0 \end{aligned}$	$\begin{array}{ccc} g & \text{proper} \\ \text{closed} & \text{con-} \\ \text{vex, } \text{dom}(g) & \subseteq \\ [0, \infty) \end{array}$	Theorem 6.18		

Prox Computations

$f(\mathbf{x})$	dom(f)	$\operatorname{prox}_f(\mathbf{x})$	Assumptions	Reference
$\frac{\frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \\ \mathbf{b}^T\mathbf{x} + c$	\mathbb{R}^n	$(\mathbf{A} + \mathbf{I})^{-1}(\mathbf{x} - \mathbf{b})$	$\mathbf{A} \in \mathbb{S}^n_+, \ \mathbf{b} \in \mathbb{R}^n, \ c \in \mathbb{R}$	Section 6.2.3
λx^3	\mathbb{R}_{+}	$\frac{-1+\sqrt{1+12\lambda[x]_+}}{6\lambda}$	$\lambda > 0$	Lemma 6.5
μx	$[0,\alpha]\cap\mathbb{R}$	$\min\{\max\{x-\mu,0\},\alpha\}$	$\mu \in \mathbb{R}, \ \alpha \in [0,\infty]$	Example 6.14
$\lambda \ \mathbf{x}\ $	\mathbb{E}	$\left(1 - \frac{\lambda}{\max\{\ \mathbf{x}\ , \lambda\}}\right) \mathbf{x}$	$\ \cdot\ $ —Euclidean norm, $\lambda > 0$	Example 6.19
$-\lambda \ \mathbf{x}\ $	\mathbb{E}	$\left(1 + \frac{\lambda}{\ \mathbf{x}\ }\right)\mathbf{x}, \mathbf{x} \neq 0,$ $\{\mathbf{u} : \ \mathbf{u}\ = \lambda\}, \mathbf{x} = 0.$	$\ \cdot\ $ —Euclidean norm, $\lambda > 0$	Example 6.21
$\lambda \ \mathbf{x}\ _1$	\mathbb{R}^n	$\mathcal{T}_{\lambda}(\mathbf{x}) = [\mathbf{x} - \lambda \mathbf{e}]_{+} \odot \mathrm{sgn}(\mathbf{x})$	$\lambda > 0$	Example 6.8
$\ \boldsymbol{\omega}\odot\mathbf{x}\ _1$	$\mathrm{Box}[-oldsymbol{lpha},oldsymbol{lpha}]$	$\mathcal{S}_{oldsymbol{\omega},oldsymbol{lpha}}(\mathbf{x})$	$\boldsymbol{\alpha} \in [0, \infty]^n, \boldsymbol{\omega} \in \mathbb{R}^n_+$	Example 6.23
$\lambda \ \mathbf{x}\ _{\infty}$	\mathbb{R}^n	$\mathbf{x} - \lambda P_{B_{\ \cdot\ _1}[0,1]}(\mathbf{x}/\lambda)$	$\lambda > 0$	Example 6.48
$\lambda \ \mathbf{x}\ _a$	\mathbb{E}	$\mathbf{x} - \lambda P_{B_{\parallel \cdot \parallel_{a,*}}[0,1]}(\mathbf{x}/\lambda)$	$\ \mathbf{x}\ _a$ —norm, $\lambda > 0$	Example 6.47
$\lambda \ \mathbf{x}\ _0$	\mathbb{R}^n	$\mathcal{H}_{\sqrt{2\lambda}}(x_1) \times \cdots \times \mathcal{H}_{\sqrt{2\lambda}}(x_n)$	$\lambda > 0$	Example 6.10
$\lambda \ \mathbf{x}\ ^3$	\mathbb{E}	$\frac{2}{1+\sqrt{1+12\lambda\ \mathbf{x}\ }}\mathbf{x}$	$\ \cdot\ $ —Euclidean norm, $\lambda > 0$,	Example 6.20
$-\lambda \sum_{j=1}^{n} \log x_j$	\mathbb{R}^n_{++}	$\left(\frac{x_j + \sqrt{x_j^2 + 4\lambda}}{2}\right)_{j=1}^n$	$\lambda > 0$	Example 6.9
$\delta_C(\mathbf{x})$	\mathbb{E}	$P_C(\mathbf{x})$	$\emptyset \neq C \subseteq \mathbb{E}$	Theorem 6.24
$\lambda \sigma_C(\mathbf{x})$	\mathbb{E}	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda)$	$\lambda > 0, C \neq \emptyset$ closed convex	Theorem 6.46
$\lambda \max\{x_i\}$	\mathbb{R}^n	$\mathbf{x} - P_{\Delta_n}(\mathbf{x}/\lambda)$	$\lambda > 0$	Example 6.49
$\lambda \sum_{i=1}^k x_{[i]}$	\mathbb{R}^n	$\mathbf{x} - \lambda P_C(\mathbf{x}/\lambda),$ $C = H_{\mathbf{e},k} \cap \text{Box}[0, \mathbf{e}]$	$\lambda > 0$	Example 6.50
$\lambda \sum_{i=1}^{k} x_{\langle i \rangle} $	\mathbb{R}^n	$C = B_{\ \cdot\ _1}[0, k] \cap \text{Box}[-\mathbf{e}, \mathbf{e}]$	$\lambda > 0$	Example 6.51
$\lambda M_f^{\mu}(\mathbf{x})$	\mathbb{E}	$\frac{\mathbf{x} + \frac{\lambda}{\mu + \lambda} \left(\operatorname{prox}_{(\mu + \lambda)f}(\mathbf{x}) - \mathbf{x} \right)}{\left(\operatorname{prox}_{(\mu + \lambda)f}(\mathbf{x}) - \mathbf{x} \right)}$	$\lambda, \mu > 0, f$ proper closed convex	Corollary 6.64
$\lambda d_C(\mathbf{x})$	\mathbb{E}	$\min \left\{ \frac{\mathbf{x} + \min\left\{\frac{\lambda}{d_C(\mathbf{x})}, 1\right\} (P_C(\mathbf{x}) - \mathbf{x}) \right\}$	$\emptyset \neq C \text{ closed }$ $\text{convex}, \lambda > 0$	Lemma 6.43
$rac{\lambda}{2}d_C^2(\mathbf{x})$	\mathbb{E}	$\frac{\lambda}{\lambda+1}P_C(\mathbf{x}) + \frac{1}{\lambda+1}\mathbf{x}$	$\emptyset \neq C \text{ closed }$ convex, $\lambda > 0$	Example 6.65
$\lambda H_{\mu}(\mathbf{x})$	\mathbb{E}	$\left(1 - \frac{\lambda}{\max\{\ \mathbf{x}\ , \mu + \lambda\}}\right)\mathbf{x}$	$\lambda, \mu > 0$	Example 6.66
$\rho \ \mathbf{x}\ _1^2$	\mathbb{R}^n	$ \begin{pmatrix} \frac{v_i x_i}{v_i + 2\rho} \end{pmatrix}_{i=1}^n, \mathbf{v} = \\ \left[\sqrt{\frac{2}{\mu}} \mathbf{x} - 2\rho \right]_+, \mathbf{e}^T \mathbf{v} = 1 \ (0 \\ \text{when } \mathbf{x} = 0) $	$\rho > 0$	Lemma 6.70
$\lambda \ \mathbf{A}\mathbf{x}\ _2$	\mathbb{R}^n	$\mathbf{x} - \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T} + \alpha^{*} \mathbf{I})^{-1} \mathbf{A} \mathbf{x},$ $\alpha^{*} = 0 \text{ if } \ \mathbf{v}_{0}\ _{2} \leq \lambda; \text{ otherwise, } \ \mathbf{v}_{\alpha^{*}}\ _{2} = \lambda; \mathbf{v}_{\alpha} \equiv$ $(\mathbf{A} \mathbf{A}^{T} + \alpha \mathbf{I})^{-1} \mathbf{A} \mathbf{x}$	$\mathbf{A} \in \mathbb{R}^{m \times n}$ with full row rank, $\lambda > 0$	Lemma 6.68

Prox of Symmetric Spectral Functions over \mathbb{S}^n (from Example 7.19)

$F(\mathbf{X})$	dom(F)	$\mathrm{prox}_F(\mathbf{X})$	Reference
$\alpha \ \mathbf{X}\ _F^2$	\mathbb{S}^n	$\frac{1}{1+2lpha}\mathbf{X}$	Section 6.2.3
$\alpha \ \mathbf{X}\ _F$	\mathbb{S}^n	$\left(1 - rac{lpha}{\max\{\ \mathbf{X}\ _F, lpha\}} ight)\mathbf{X}$	Example 6.19
$\alpha \ \mathbf{X}\ _{S_1}$	\mathbb{S}^n	$\mathbf{U}\mathrm{diag}(\mathcal{T}_{lpha}(oldsymbol{\lambda}(\mathbf{X})))\mathbf{U}^T$	Example 6.8
$\alpha \ \mathbf{X}\ _{2,2}$	\mathbb{S}^n	$\mathbf{U} \mathrm{diag}(\boldsymbol{\lambda}(\mathbf{X}) - \alpha P_{B_{\ \cdot\ _1}[0,1]}(\boldsymbol{\lambda}(\mathbf{X})/lpha))\mathbf{U}^T$	Example 6.48
$-\alpha \log \det(\mathbf{X})$	\mathbb{S}^n_{++}	$\operatorname{Udiag}\left(\frac{\lambda_j(\mathbf{X}) + \sqrt{\lambda_j(\mathbf{X})^2 + 4\alpha}}{2}\right)\mathbf{U}^T$	Example 6.9
$\alpha \lambda_1(\mathbf{X})$	\mathbb{S}^n	$\mathbf{U}\mathrm{diag}(\boldsymbol{\lambda}(\mathbf{X}) - \alpha P_{\Delta_n}(\boldsymbol{\lambda}(\mathbf{X})/\alpha))\mathbf{U}^T$	Example 6.49
$\alpha \sum_{i=1}^k \lambda_i(\mathbf{X})$	\mathbb{S}^n	$\mathbf{X} - \alpha \mathbf{U} \operatorname{diag}(P_C(\boldsymbol{\lambda}(\mathbf{X})/\alpha)) \mathbf{U}^T,$ $C = H_{\mathbf{e},k} \cap \operatorname{Box}[0, \mathbf{e}]$	Example 6.50

Prox of Symmetric Spectral Functions over $\mathbb{R}^{m \times n}$ (from Example 7.30)

$F(\mathbf{X})$	$\mathrm{prox}_F(\mathbf{X})$	
$\alpha \ \mathbf{X}\ _F^2$	$rac{1}{1+2lpha}\mathbf{X}$	
$\alpha \ \mathbf{X}\ _F$	$\left(1 - \frac{\alpha}{\max\{\ \mathbf{X}\ _F, \alpha\}}\right) \mathbf{X}$	
$\alpha \ \mathbf{X}\ _{S_1}$	$\mathbf{U}\mathrm{dg}(\mathcal{T}_{lpha}(oldsymbol{\sigma}(\mathbf{X})))\mathbf{V}^{T}$	
$\alpha \ \mathbf{X}\ _{S_{\infty}}$	$\mathbf{X} - \alpha \mathbf{U} \mathrm{dg}(P_{B_{\ \cdot\ _1}[0,1]}(\boldsymbol{\sigma}(\mathbf{X})/\alpha))\mathbf{V}^T$	
$\alpha \ \mathbf{X}\ _{\langle k \rangle}$	$\mathbf{X} - \alpha \mathbf{U} \mathrm{dg}(P_C(\boldsymbol{\sigma}(\mathbf{X})/\alpha)) \mathbf{V}^T,$	
	$C = B_{\ \cdot\ _1}[0,k] \cap B_{\ \cdot\ _{\infty}}[0,1]$	