

Hermes Attack: Steal DNN Models In Al Privatization Deployment Scenarios

Yueqiang Cheng*, Yuankun Zhu*, Husheng Zhou*
*Baidu Security, *University of Texas at Dallas, *Vmware

People

Dr. Yueqiang ChengSystem Security and Hardware Security
https://sites.google.com/site/strongerwillcheng/

Mr. Yuankun Zhu
GPU Security
https://www.linkedin.com/in/yuankun-zhu-b87b29a1/

Dr. Husheng Zhou GPGPU, HPC https://www.linkedin.com/in/hushengzhou

Hermes is the master of thieves and the god of stealth https://en.wikipedia.org/wiki/Hermes

Motivations

Autonomous Driving

Privatization Deployments

Motivations

\$4.5/hr per TPU

≈\$400,000

DNN Model

Motivations

All existing attacks can *only* reconstruct *partial* model

Architecture

- **❖** Kernel size = (3,3)
- **♦** Pool size = (3,3)
- Strides = (1,1)

Hyper-parameters

Parameters

Hermes Attack is the *first* work that can *fully* steal DNN model with *lossless* interface accuracy

Adversarial Scenario

DNN System Stack

How GPU Works

O1: Command driven interaction working mode

O2: All data and code are passed through PCle bus

Challenges and Solutions

C1: Closed-source Code and Undocumented Data Structures

S1: Reverse Engineering

C2: Numerous Noises and Chaotic Orders in PCIe packets

S2: Sanitization and Order Correction

C3: Semantic Loss in PCIe Traffic

S3: Semantic Reconstruction

Attack Overview

PCIe Interception

- Operating System: Ubuntu 16.04
- Tested GPU platform:
 - NVIDIA Geforce GT 730
 - NVIDIA Geforce RTX 1080 Ti
 - NVIDIA Geforce RTX 2080 Ti
- GPU Programing Interface: CUDA 10.1
- GPU Driver: NVIDIA 418.43
- PCle Interceptor: PCle protocol Analysis
- DNN model: MNIST, VGG, and ResNet
- DNN platform: keras + tensorflow

Terminologies

blackhat PCIe Packet Relationship

Attack Overview

Numerous Noises

- In a Traffic sample:
 - ➤ Number of PCIe packets: 1,077,757
 - ➤ Number of useful packets: ~20,000
 - > 98.4% of the packets are noise

Focus on specific GPU Commands!

Traffic Processing

PCle Bus Snooping Device: PCle protocol Analysis

Packet	Dir	Type	Length	Address	Payload
168	R⇒	MRd64/CpID (SC)	16	00000008:1B521080	00000000 0DD06A81 00000000 0DD16A81 00000000 0DD26A81 00000000 0DD36A81
169	R→	MRd64/CpID (SC)	16	00000008:1B521040	00000000 0D5AAE82 00000000 0D5BAE82 00000000 0DD8B281 00000000 0DD9B281
170	R→	MRd64/CpID (SC)	16	00000008:1B5210C0	00000000 0D94977E 00000000 0D95977E 00000000 0D96977E 00000000 0D97977E
171	R→	MRd64/CpID (SC)	32	00000008:1B521100	00000000 0D549581 00000000 0D559581 00000000 0D569581 00000000 0D579581
172	R→	MRd64/CpID (SC)	16	00000008+18521180	00000000 0D10D082 00000000 0D11D082 00000000 0D12D082 00000000 0D13D082
173	R♦	MRd64/CpID (SC)	16	00000008:1B521200	00000000 0D1C157E 00000000 0D1D157E 00000000 0D1E157E 00000000 0D1F157E
174	R◆	MRd64/CpID (SC)	16	00000008:1B5211C0	00000000 0D908E81 00000000 0D918E81 00000000 0D928E81 00000000 0D938E81
175	R→	MRd64/CpID (SC)	16	00000008:1852124	00000000 0D507681 00000000 0D517681 00000000 0D527681 00000000 0D537681
176	R⇒	MRd64/CpID (SC)	32	00000008:1B521280	00000000 0D28D17B 00000000 0D29D17B 00000000 0D2AD17B 00000000 0D2BD17B
177	R+	MRd64/CpID (SC)	32	00000008:1B521300	00000000 0DF46B81 00000000 0DF56B81 00000000 0DF66B81 00000000 0DF76B81
178	R→	MRd64/CpID (SC)	32	00000008:1B521400	00000000 ODEC637E 00000000 ODED637E 00000000 ODEE637E 00000000 ODEF637E
179	R+	MRd64/CpID (SC)	32	00000008:1B521380	00000000 0DF8AE82 00000000 0DF9AE82 00000000 0DFAAE82 00000000 0DFBAE82
180	0-6	MPd64/CnID (SC)	32	00000008 • 18521480	00000000 00208781 00000000 00208781 00000000 00258781 00000000 00258781

Out of order!

Sort Payload

Attack Overview

GPU Command

Header Extraction

- GPU is controlled by CPU using commands. Command types includes:
 - > GPU Initialization Command
 - Synchronization Command
 - Data Movement Command
 - Kernel Launch Command
- We only need Data Movement Commands, noted as D commands, and Kernel Launch Commands, noted as K commands.
- Identify headers of D cmds and K cmds through offline training.

Extract Header From PCIe Packet

Example of a GPU command header

Command Extraction

How to handle noise?

We can extract commands through identified command headers.

Command Extraction

Command Header Noise: when a command header has been split into two packets, the noise may appear between these two packets.

Command Data Noise: noise packet appeared among command data packets.

Check address consistency!

However, only check address consistency is not enough...

Command Extraction (cont.)

Introduce MAX_SCAN_DISTANCE

Attack Overview

Semantic Reconstruction Challenges

- Layer type information is lost in PCIe traffic
- Every layer is completed through several kernels.
- Every Kernel is launched through a K command.
- Every K Command include an address pointed to its kernel binaries.

Every *K* Command include an address pointed to its kernel binaries.

62200220 0E000000 405ECF01 60200220 00010000 01000000 6C200120 41000000 6D204060 ...

62200220 0B000000 00004300 60200220 20010000 01000000 6C200120 41000000 6D204860 ... 0B000000 405ECF01

Offline Database Generation

❖ Determine kernel types of kernel binaries

- ➤ Extract corresponding kernel binaries
- from PCIe traffic.
- ➤ Obtain kernel trace of each layer.

❖Determine kernels of layers

- > Repeat inference procedure on different
- models.
- ➤ Obtain kernel trace of each layer.
- ❖Put <kernel binaries, layer types> pairs into database.

Model Reconstruction

Extract Architecture

- Build Data Flow Graph
 - Treat kernel as vertice
 - Treat Input address and output address as flow-from and flow-to
- Substitute kernel vertice as DNN layers

Model Reconstruction

Extract Hyper-Parameters

Directly obtained from PCIe

- ➤ Fetch from command data, use identified offset.
- ➤ eg. Kernel size, Strides, Filters, etc.

Address	Payloads			
00000008:C6ED0800	62200220 0B000000 00512D01 6C200120 41000000 6D202061			
00000008:C6ED0880	XXXXXXXX XXXXXXXX 03000000 03000000 KXXXXXXX			
	kernel size			

Infer

- > Check if related kernel exist
- ➤ eg. Activation function, Use_bias

Model Reconstruction

Extract Parameters

- Parameter includes weights and bias.
- Intuitively, parameters are easier to obtain since all parameters must be transmitted through PCIe.
- However, the data movement commands are not used only for transfer parameters. How to distinguish weights from all data movement commands?

Naïve Idea:

Assume all parameters are in range(-1,1), if all data of a command meet this criteria, we can regard this command as a parameter transfer command

Extract Parameters

Q: If we can find kernel binaries address as an parameter, why can't we get the weights address as well?

A: There is no direct connection between kernel launch command and weights address.

Extract Parameters

Observation:

 Weights and bias are not called by kernels directly, they are first called by

CudaMemcpyDeviceToDevice()

 This API is also use kernel launch command to complete. 62200220 0B000000 00512D01 60200220 80040000 01000000 6C200120 41000000 6D202061 4348C53C ...

62200220 0B000000 40014200 60200220 18000000 01000000 6C200120 41000000 6D200660 00130C01 0B0000000 00512D01 0B000000 ...

62200220 0B000000 00004200 60200220 20010000 01000000 6C200120

00130C01 0B000000

41000000 6D204860 00000000 01000000

Extract Parameters

- While extracting command, only check unread packets, after extracted a packet, mark this packet as readed.
- Use the amount of parameters as a junction between weights and layers.
 The total number of weights of convolution layer could be calculated as:

$$\#weights=k_w*k_h*c_{in}*c_{out}$$
 $\#bias=c_cout$

For dense layer, it could be calculated as:

$$\#weights = c_{out} * c_{in}$$
 $\#bias = c_cout$

Model Reconstruction ✓

Multiple Platforms

Different header type

Differences

Command Header

Kernel Binary

Different assembly

Special Cases

Part of binary code is dynamic

Dynamic Kernel Binar, (1080 Only)

Primary Kernel Conflict (2080 Only)

Kernel is not enough

MNIST Architecture Comparison

VGG Architecture Comparison

ResNet Architecture Comparison

Victim Models

	MNIST	VGG16	ResNet-20	
Number of Layers	8	60	72	
Number of Parameters	544,522	15,001,418	274,442	
Datasets	mnist	cifar10	cifar10	
Input Shape	(28,28,1)	(32,32,3)	(32,32,3)	

Identity Evaluation

Metrics	Model	Original	Reconstructed			
N/A	N/A	N/A	GT 730	1080 Ti	2080 Ti	
Accuracy	MNIST	98.2	ma Agair	5%	98.25%	
	VGG	93.59	me Accura	9%	93.59%	
	ResNet	91.45%	91.45%	91.45%	91.45%	
Inference Times(s)	MNIST	2.24	2.39	2.52	2.38	
Times(s)	VGG	Same Efficiency			61	
	ResNet	20		b	21	

Performance Evaluation

	MNIST			VGG		ResNet			
Platform	GT 730	1080 Ti	2080 Ti	GT 730	1080 Ti	2080 Ti	GT 730	1080 Ti	2080 Ti
# of D Commands	25,680	28,590	24,342	27,287	27,677	24,931	28,433	28,518	25,577
# of K Commands	216	139	181	903	628	793	1011	886	988
# of Completion Packets	1,077,75 6	2,244,11 5	2,959,61 3	4,284,94 6	2,615,89 5	3,354,41 1	975,257	2,052,6 57	2,717,45 1
Generation Time (min)	5	8	11	17	11	12	6	9	10

Demo

Countermeasure Discussions

Hardware:

- GPU encryption
- PCle encryption

Software:

- command/data level obfuscation
- Offload partial task onto CPU
- privacy preserving machine learning

Take Away

The first successful attack could fully steal DNN models.

Support multi-platforms.

Very hard to defense.

All GPUs are not safe under this attack.

References

- [1] Hu, Xing, et al. "Neural Network Model Extraction Attacks in Edge Devices by Hearing Architectural Hints." arXiv preprint arXiv:1903.03916 (2019).
- [2] Yan, Mengjia, Christopher Fletcher, and Josep Torrellas. "Cache telepathy: Leveraging shared resource attacks to learn DNN architectures." *arXiv preprint arXiv:1808.04761* (2018).
- [3] Hua, Weizhe, Zhiru Zhang, and G. Edward Suh. "Reverse engineering convolutional neural networks through side-channel information leaks." 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.
- [4] Yun Xiang and Zhuangzhi Chen and Zuohui Chen and Zebin Fang and Haiyang Hao and Jinyin Chen and Yi Liu and Zhefu Wu and Qi Xuan and Xiaoniu Yang."Open DNN Box by Power Side-Channel Attack." *arXiv preprint* arXiv:1907.10406 (2019)
- [5] Duddu, Vasisht, et al. "Stealing Neural Networks via Timing Side Channels." arXiv preprint arXiv:1812.11720 (2018).
- [6] Wei, Lingxiao, et al. "I know what you see: Power side-channel attack on convolutional neural network accelerators." *Proceedings of the 34th Annual Computer Security Applications Conference*. ACM, 2018.
- [7] Wang, Binghui, and Neil Zhenqiang Gong. "Stealing hyperparameters in machine learning." 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018.
- [8] Oh, Seong Joon, Bernt Schiele, and Mario Fritz. "Towards reverse-engineering black-box neural networks." *Explainable Al: Interpreting, Explaining and Visualizing Deep Learning*. Springer, Cham, 2019. 121-144.

Hermes Attack: Steal DNN Models In Al Privatization Deployment Scenarios

Yueqiang Cheng*, Yuankun Zhu#, Husheng Zhou\$
*Baidu Security, #University of Texas at Dallas, \$Vmware