Die chemische Reaktion

Reaktionstypen

1. Synthese

V 0, 5 g S + 1 g Fe: Vermischt, das Gemenge wird erhitzt

B Das Gemenge glüht auf, wird schwarz. Es entstehen blaue Flammen (Schwefel verbrennt). Es entsteht ein schwarzer Feststoff.

E Schwefelpulver (S) + Eisenpulver (Fe) \rightarrow Eisensulfid (FeS) A + B \rightarrow AB

Die Bildung neuer Stoffe aus mehreren anderen nennt man Synthese Dabei entsteht eine Verbindung, also ein Reinstoff, der aus mehreren Bestandteilen aufgebaut ist.

V ca. 5 ml Wasserstoffperoxyd (H_2O_2) werden erhitzt B Es bilden sich Gasblässchen.

E Wasserstoffperoxyd → Wasserstoff + Sauerstoffgas

2. Analyse

Die Zerlegung eines Stoffes nennt man Analyse.

3. Umsetzung

Treten Zerlegung und Bildung von Stoffen gleichzeitig auf, so spricht man von einer Umsetzung:

 $AB + CD \rightarrow AC + BD$

V Salzsäure (HCl) + Eisensulfid (FeS)

Energiebeteiligung bei chemischen Reaktionen

Energie ist bei allen chemischen Reaktionen beteiligt.

V 2 Zn (Zinkpulver) + 1 S (Schwefelpulver) wird erhitzt

 $B 2 Zn + 1 S \rightarrow Zn_2S$

Es ändert sich die Farbe, ein Zischen ist zu hören, eine Flamme ist zu sehen.

E Zink + Schwefel → Zinksulfid

V Ammoniumthiocyanat + Bariumhydroxid

Orange, fest Weiß, glänzend, fest

B Das Gemenge wird flüssig, Temperatur sinkt, Gasentwicklung

E Ammoniumthiocyanat + Bariumhydroxid \rightarrow Bariumthiocyanat + Ammoniak + Wasser $CH_4N_2S+BaOH_2 \rightarrow CHSNBa+NH_3+H_2O$

Reaktionen bei denen Wärme abgegeben wird nennt man exotherme Reaktionen. Reaktionen bei denen wärme aufgenommen wird nennt man endotherme Reaktionen.

Kennzeichen chemischer Reaktionen

- Jede chemische Reaktion ist mit einer Energieumwandlung verbunden
- Jede chemische Reaktion ist mit einer Stoffumwandlung verbunden
- Es wird eine Aktivierungsenergie zum Start benötigt

Energieformen:

- Licht
- Wärme (Bewegung von Teilchen)
- Innere Energie (chemische Energie)
- Elektrische Energie
- Mechanische Energie (kinetische Energie)
- Lageenergie (Potentielle Energie)

Zersetzung von Wasser: Elektrolyse

(= Zerlegung von Stoffen mit Hilfe von elektrischer Energie)

VHoffmanscher Zersetzungsapparat

- 1: Vorratsbehälter
- 2: Hahn
- B An den Elektroden entstehen Gasblasen die aufsteigen
- E Nachweisreaktion der Produkte

Test für Sauerstoffgas: die Glimmspanprobe

Man hält den glühenden Holzstab in das zu testende Gas! Beobachtung bei Sauerstoff: der Holzstab glüht auf

kein Sauerstoff: keine Reaktion

hier: Gas der Anode: glüht auf → Sauerstoffgas

der Kathode: keine Veränderung

Identifikation von Wasserstoffgas: Die Knallgasprobe

V Man füllt das Testgas in ein Reagenzglas und hält die Öffnung in eine Flamme.

B Wasserstoff vorhanden (positiver Nachweis): Man hört ein pfeifendes oder ploppendes Geräusch

Wasserstoff nicht vorhanden (negativer Nachweis): keine Reaktion

2 H_2O (elektrische Energie) $\rightarrow 2H_2 + O_2$

Es gibt Stoffe, die mit chemischen Reaktionen (Analysen) nicht weiter in verschiedene Bestandteile zerlegt werden können. Solche Stoffe nennt man Elemente

Stoff							
Gemisch		Reinstoff					
heterogen	homogen	Elemente	Vei	bindung	gen		
- Phasen	- Phasen		Nicht- Metalle	Halb- Metalle	Metalle		

Wichtige Elemente

Name	chemisches S	ymbol Metall	/ Nichtmetall Siede _l	ounkt (in °C)
------	--------------	--------------	----------------------------------	---------------

0	Nichtmetall	-183
Fe	Metall	2750
Al	Metall	2467
Cu	Metall	2567
С	Nichtmetall	4827
Mg	Metall	1107
Cl	Nichtmetall	-35
H	Nichtmetall	-253
N	Nichtmetall	-194
S	Nichtmetall	445
	Fe Al Cu C Mg Cl H N	Fe Metall Al Metall Cu Metall C Nichtmetall Mg Metall Cl Nichtmetall H Nichtmetall N Nichtmetall

Material

- Video der chemischen Reaktionen
- Aktivierungsenergie
- Die Knallgasprobe Video
- Die chemische Reaktion