











# Sensores Resistivos















#### Resistance

$$E = \frac{V}{l}$$

$$i = \frac{\mathrm{d}q}{\mathrm{d}t}$$

| 1 milliampere (mA) | $10^{-3}  \text{A}$   |
|--------------------|-----------------------|
| 1 microampere (μA) | $10^{-6} \mathrm{A}$  |
| 1 nanoampere (nA)  | $10^{-9} \mathrm{A}$  |
| 1 picoampere (pA)  | $10^{-12} \mathrm{A}$ |
| 1 femtoampere (fA) | $10^{-15} \mathrm{A}$ |



















#### The resistive potentiometer

























































#### **Resistive Displacement Sensors**









#### Potentiometer accelerometer































































#### Magnetoresistive Sensors











#### **Magnetoresistive Sensors**











































#### Velostat



































Fig. 14.11 Structure of a photoresistor (a) and a plastic-coated photoresistor having a serpentine shape (b)









Sensor de temperatura RTD (Resistor Temperature detector) PT100



$$R = R_0 (1 + \alpha_1 T + \alpha_2 T^2 + ... + \alpha_n T^n)$$

$$R = R_0 \left( 1 + \alpha T \right)$$



















#### **RTD**

Coeficiente de disipación térmica σ (W/K)

$$DT = dT = Pd / \sigma = I*I*R / \sigma$$









#### Microbolometers













#### Microbolometers







b









#### Ceramic Thermistors NTC, PTC.



$$R_T = R_0 \exp \left[ B \left( 1/T - 1/T_0 \right) \right]$$

donde  $R_0$  es la resistencia a 25°C u otra temperatura de referencia, y  $T_0$  es dicha temperatura expresada en kelvins. En el caso anterior,  $T_0 = 273 + 25 = 298$  K. La figura muestra la dependencia real entre  $R_T$  y T para algunos modelos.

El parámetro B (o  $\beta$ ) es la denominada temperatura característica del material, y tiene valores de 2000 K a 5000 K,



















#### Resistive Humidity Sensors





















#### Resistive Sensors





Fig. 13.8 Measurement of soil electrical conductivity with two-electrode (a) and four-electrode (b) systems







#### Resistive Sensors













# Resistive sensors conditioning







# Resistive Sensors



































Demonstrate mathematically by means of differential calculus, analysis of inflection points, maximums and minimums,

What is the value of the resistance R that offers Maximum voltage variation in the voltage divider, with a resistive sensor in a range of operation from Rmin to Rmax?







Un sensor RTD, tiene una Ro=150 $\Omega$ , un  $\alpha$ =0,0052/K, y un coeficiente de disipación térmica de 6m W/K. Adecue el sensor de forma tal, que se pueda tener un error por auto calentamiento no superior a 0,3 $^{\circ}$  C.

El sensor trabajara en un rango de

(20 a 200)° C. Los cambios de temperatura serán digitalizados por un ADC con referencia de (0 a 5)V.

Diseñe un circuito que permita su adecuación.









#### NTC

Linealizar usando un resistencia en paralelo con el termistor.

Entonces puede estudiarse  $R_T \mid\mid R = R_p$  como elemento independiente. El resultado es

$$R_p = \frac{R R_T}{R_T + R}$$



















$$T_{1} - T_{2} = T_{2} - T_{3}$$

$$R_{p1} - R_{p2} = R_{p2} - R_{p3}$$

$$\frac{R R_{T1}}{R + R_{T1}} - \frac{R R_{T2}}{R + R_{T2}} = \frac{R R_{T2}}{R + R_{T2}} - \frac{R R_{T3}}{R + R_{T3}}$$

$$R = \frac{R_{T2} (R_{T1} + R_{T3}) - 2R_{T1} R_{T3}}{R_{T1} + R_{T3} - 2R_{T2}}$$



















$$R = R_{T_c} \frac{B - 2T_c}{B + 2T_c}$$





























#### Linealización por mínimos cuadrados

$$B = Ax$$

$$A^{+}B = x$$

$$A^{+} = (A^{T}A)^{-1}A^{T}$$









| °C | Rt   |
|----|------|
| 10 | 160  |
| 20 | 290  |
| 30 | 560  |
| 40 | 730  |
| 50 | 1005 |
| 60 | 1050 |
| 70 | 1402 |
| 80 | 1510 |



















#### Puente de Wheatstone































































AD620A MONOLITHIC INSTRUMENTATION AMPLIFIER, G = 100

$$R_G = \frac{49.4 k\Omega}{G - 1}$$









Un termistor tiene una Ro=22KΩ a 25° C, y un β=4600K, el sensor trabajara en el rango de (50 a 150)° C, determine una R en paralelo para linealizar el sensor. Si el coeficiente de disipación termica es de  $\delta$ =9mW/K, determine el error causado por el auto calentamiento del termistor. Diseñe un circuito de adecuación para digitalizar la temperatura en un ADC con referencias de (0 a 3.3) V.









Un NTC tiene una Ro=1,6K $\Omega$  a 25° C, y un  $\beta$ =3400K, el sensor trabajara en el rango de (0 a 80)° C. Linealice el sensor, y adecue la señal por medio de un puente de Wheatstone. La temperatura será digitalizada con un ADC con referencias de (0 a 3.3) V.



