

Learning Stage 3: Making Better Decisions

- ▶ Chapter 10 *not covered in this course
 - ▶ Project Financing and Noneconomic Attributes
- ▶ Chapter 11
 - ▶ Replacement and Retention Decisions
- ▶ Chapter 12 *not covered in this course
 - ▶ Independent Projects with Budget Limitation
- ▶ Chapter 13
 - ▶ Breakeven and Payback Analysis

۲

LEARNING OUTCOMES

- Purpose:
 - ▶ Determine the breakeven for one or two alternatives and calculate the payback period with and without a return required.
- 1. Breakeven point one parameter
- 2. Breakeven point two alternatives
- 3. Payback period analysis

•

Engineering Economics

Breakeven Point

- Value of a parameter that makes two elements equal
 - ► The parameter (variable) can be an amount of revenue, cost, supply, demand, etc. for one project or between two alternatives
- One project
 - ▶ Breakeven point is identified as Q_{BE}. Determined using linear or non-linear math relations for revenue and cost
- Between two alternatives
 - ▶ Determine one of the parameters P, A, F, i, or n with others constant
- ▶ Solution is by one of three methods:
 - Direct solution of relations
 - ▶ Trial and error
 - Spreadsheet functions or tools (Goal Seek or Solver)

Cost-Revenue Model — One Project

- Quantity, Q
 - An amount of the variable in question, e.g., units/year, hours/month
 ▶ Breakeven value is Q_{BF}
- Fixed cost, FC
 - ▶ Costs not directly dependent on the variable, e.g., buildings, fixed overhead, insurance, minimum workforce cost
- Variable cost, VC
 - ▶ Costs that change with parameters such as production level and workforce size. These are labor, material and marketing costs.
 - Variable cost per unit is *v*
- Total cost, TC, Sum of fixed and variable costs, TC = FC + VC
- Revenue, R, Amount is dependent on quantity sold
 - Revenue per unit is *r*
- Profit, P, Amount of revenue remaining after costs P = R TC = R (FC + VC)Engineering Economics

Υ A. Esfahanipour

Example: One Project Breakeven Point

- ▶ A plant produces 15,000 units/month.
 - ► Find breakeven level if FC = \$75,000 /month, revenue is \$8/unit and variable cost is \$2.50/unit.
 - ▶ Determine expected monthly profit or loss.

Solution: Find Q_{BE} and compare to 15,000; calculate Profit

$$Q_{BE} = 75,000 / (8.00 - 2.50) = 13,636 \text{ units/month}$$

Production level is above breakeven

Profit = R - (FC + VC)
=
$$rQ - (FC + vQ) = (r - v)Q - FC$$

= $(8.00 - 2.50)(15,000) - 75,000$
= \$ 7500/month

Engineering Economics

Some points

- In some circumstances,
 - breakeven analysis performed on a per unit basis is more meaningful.
 - ▶ The value of Q_{BE} is still calculated using the main Equation.
 - ▶ however, the relations for R and TC are divided by Q.
 - In the case of TC, the expression for cost per unit, also termed average cost per unit Cu, is:

$$C_u = \frac{TC}{Q} = \frac{FC + vQ}{Q} = \frac{FC}{Q} + v$$

- It may be necessary to do some dimensional analysis initially
 - ▶ to obtain the correct revenue and total cost relations in order to use the same dimension for both relations,
 - for example, \$ per unit, miles per month, or units per year.

١.

Breakeven Between Two Alternatives

- To determine value of common variable between 2 alternatives, do the following:
 - 1. Define the common variable
 - 2. Develop equivalence PW, AW or FW relations as function of common variable for each alternative
 - 3. Equate the relations; solve for variable. This is breakeven value

11

Engineering Economics

Example: Two Alternative Breakeven Analysis

Perform a make/buy analysis where the common variable is X, the number of units produced each year. AW relations are:

A. Esfahanipour

Payback Period Analysis

- ▶ Payback period:
 - Estimated amount of time (n_p) for cash inflows to recover an initial investment (P) plus a stated return of return (i%)
- ▶ Types of payback analysis: No-return and discounted payback
 - No-return payback means rate of return is ZERO (i = 0%)
 - ▶ Discounted payback considers time value of money (i > 0%)
- Caution:
 - ▶ Payback period analysis is a good initial screening tool,
 - rather than the primary method to justify a project or select an alternative (Discussed later)

١٦

Payback Period Computation

- Formula to determine payback period (n_p) varies with type of analysis.
 - ▶ NCF_t: Net Cash Flow per period t
 - n_p: payback period P: ini

P: initial investment

No return, i = 0%; NCF_t varies annually: $0 = -P + \sum_{t=1}^{t=n_p} \text{NCF}_t$ **Eqn. 1**

No return, i = 0%; annual uniform NCF: $n_p = \frac{P}{\text{NCF}}$

Discounted, i > 0%; NCF_t varies annually: $0 = -P + \sum_{t=1}^{t=n_p} \text{NCF}_t(P/F, i, t)$ **Eqn. 3**

Discounted, i > 0%; annual uniform NCF: $0 = -P + NCF(P/A, i, n_p)$ **Eqn. 4**

11

Engineering Economics

Points to Remember About Payback Analysis

- No-return payback neglects time value of money,
 - > so no return is expected for the investment made
- No cash flows after the payback period are considered in the analysis.
 - Return may be higher if these cash flows are expected to be positive.
- ▶ Approach of payback analysis is different from PW, AW, ROR and B/C analysis.
 - A different alternative may be selected using payback.
- Rely on payback as a supplemental tool;
 - use PW or AW at the MARR for a reliable decision
- Discounted payback (i > 0%) gives a good sense of the risk involved.

1.4

Example: Payback Analysis (1)

Problem: Use (a) no-return payback, (b) discounted payback at 15%, and (c) PW analysis at 15% to select a system. Comment on the results.

	System 1	System 2
First cost, \$	12,000	8,000
NCF, \$ per year	3,000	1,000 (year 1-5) 3,000 (year 6-14)
Maximum life, years	7	14

▶ Solution: (a) Use Eqns. 1 and 2

 $n_{p1} = 12,000/3,000 = 4 years$

 $n_{p2} = -8,000 + 5(1,000) + 1(3,000) = 6 \text{ years}$

So Select system 1

19

Engineering Economics

Example: Payback Analysis (2)

	System 1	System 2
First cost, \$	12,000	8,000
NCF, \$ per year	3,000	1,000 (year 1-5) 3,000 (year 6-14)
Maximum life, years	7	14

▶ Solution: (b) Use Eqns. 3 and 4

System 1: $0 = -12,000 + 3,000(P/A, 15\%, np_1) \rightarrow n_{p1} = 6.6 \text{ years}$

System 2: 0 = -8,000 + 1,000(P/A, 15%, 5) + 3,000(P/A, 15%, np₂ - 5)(P/F, 15%, 5)

 $n_{p1} = 9.5 \text{ years}$

Select system 1

(c) Find PW over LCM of 14 years; $PW_1 = 663 ; $PW_2 = 2470 Select system 2

Comment: PW method considers cash flows after payback period.
Therefore, selection changes from system 1 to 2

Y. Engineering Economics

A. Esfahanipour

Summary of Important Points

- Breakeven amount is a point of indifference to accept or reject a project
- ▶ One project breakeven: accept if quantity is > Q_{BE}
- Two alternative breakeven: if level > breakeven,
 - select lower variable cost alternative (smaller slope)
- ▶ Payback estimates time to recover investment.
 - Return can be i = 0% or i > 0%
- Use payback as supplemental to PW or other analyses,
 - because n_p neglects cash flows after payback, and if i = 0%, it neglects time value of money
- Payback is useful to sense the economic risk in a project