1. Introduction

Goal:

To build interpretable and operationally actionable machine learning models that predict flight delays, focusing on **controllable causes** such as airline inefficiencies or scheduling failures. This enables airlines to proactively mitigate delay causes that are **within their control**, reducing downstream delays, penalties, and passenger dissatisfaction.

Key Sub-Goals:

- Identify whether delays will occur for a route/month (classification)
- Quantify expected delay in minutes per flight (regression)
- Predict a custom OAI score to reflect internal inefficiency level
- Interpret top features using SHAP for transparent decisions

2. Methodology & Pipeline

Data Source & Structure:

- 2015–2023 U.S. DOT monthly airline performance dataset
- ~180,000 rows aggregated to (year, month, carrier, airport)
- Target variables derived from:
 - arr_delay (total delay in minutes)
 - arr_del15 (number of delayed flights)
 - OAI (custom weighted controllable delay score)

Key Steps:

1. Data Cleaning

- o Removed rows with null values in delay-related columns
- o Encoded categorical variables (carrier, airport)

2. Aggregation & Time-Aware Processing

- Created a monthly_df by grouping (year, month, carrier, airport)
- o Added lag features using .shift(1)
- Used .rolling(3) for smoothed 3-month averages

3. Feature Engineering

- Lagged features (previous month delay, counts)
- Rolling means (trend stability)
- Domain-derived ratios:

- Delay per flight
- Cancellation rate
- Custom target : OAI

4. Modeling

- o **Classification**: XGBoostClassifier with scale_pos_weight for imbalance
- Regression: XGBoostRegressor on arr_delay and OAI
- Used log loss transform where necessary

5. Interpretability

- o Used SHAP to rank features by importance
- o Identified and selected top-K most impactful features

3. Key Findings from EDA

Delay Trends

- Delay rates increase during summer months (June–August) and end-of-year travel (Nov–Dec)
- Flights in March/April tend to show higher reliability

Airport & Carrier Insights

- ATL, ORD, DFW are high-volume airports with variable performance
- Carriers like AA, DL, UA have the most total delay minutes due to volume, but not always the worst delay rate

Delay Distribution

- arr_delay shows a long tail, with a small number of months causing massive delays
- arr_del15 / arr_flights is a better normalized signal for classification

Correlation Findings

- Strong correlation between carrier_ct, carrier_delay and future delays
- NAS and weather-related delays are unpredictable, weakly correlated with future delays

4. Model Performance

Classification

- Target: 1 if arr_del15 / arr_flights ≥ 0.2
- Model: XGBoostClassifier with SHAP-based feature pruning
- Metrics:

o **F1 Score**: 0.71

o **Precision**: 0.65

o **Recall**: 0.77

SHAP reveals prev_carrier_delay, prev_arr_del15, and rolling_OAI as top predictors

Delay Regression

• Target: arr_delay / arr_flights

Metrics:

o MAE: 5.4 minutes

o **RMSE**: 110.1 minutes

o R²: 0.17

OAI Regression

• Custom target focusing on controllable delay types

Metrics:

o MAE: 4.1

o **RMSE**: 73.5

o R²: 0.16

• More stable than raw delay regression

5. SHAP Interpretability

Top features (based on mean absolute SHAP values):

- prev_carrier_delay
- rolling_3mo_delay
- carrier_ct
- late_aircraft_ct
- prev_month_flights
- rolling_OAI
- cancellation_rate

Insights:

- Carrier-driven delays dominate importance
- Weather & NAS delays have near-zero SHAP values → not useful for predictions
- SHAP plots help trace each prediction back to its feature contributions

7. Why XGBoost?

XGBoost (Extreme Gradient Boosting) was selected because it strikes the best balance between performance, interpretability, and flexibility — especially for tabular structured data like this airline dataset.

Key Advantages of XGBoost:

Reason	Justification
Handles imbalanced classes	Used scale_pos_weight to address class imbalance in classification (95% non-delayed).
Naturally handles missing values	Useful in large aviation datasets where cancellations/diversions may introduce nulls.
High accuracy on tabular data	Regularized boosting helps avoid overfitting.
Compatible with SHAP	Makes model transparent and explainable \rightarrow vital for operational decision-making.
Efficient & scalable	Trained quickly on 100k+ monthly records.
Tree-based → no need for scaling	Input features like delays, counts used as-is.

Alternatives Considered (but not chosen):

- Logistic Regression: Simple but underfit; can't capture non-linear time/delay trends.
- Random Forest: Comparable performance but slower and harder to interpret with SHAP.
- Neural Networks: Overkill; less interpretable, and less effective on structured tabular data.

8. Why These Targets?

Classification Target

- Target: arr_del15 / arr_flights \geq 0.2 \rightarrow Binary: 1 if \geq 20% of flights delayed, else 0
- Why this was chosen:

Reason	Explanation
Normalized Delay Signal	Raw delay counts (arr_del15) vary with traffic volume. Normalizing by arr_flights gives a fair indicator of delay severity across airports and carriers.
Meaningful Threshold (20%)	A 20% threshold defines "high delay" months — enough to be operationally concerning but not overly rare.
Operational Relevance	Helps identify months/routes that require intervention for planning and scheduling.
Simplified Binary Target	Allows for efficient classification modeling and delay-risk flagging.
Compatible with Lag Features	Works well with time-aware inputs like previous month's delay rate.

Regression Target 1

• Target: arr delay / arr flights → Delay in minutes per flight

• Why this was chosen:

Reason	Explanation
Operational Usefulness	Airlines benefit from knowing how late the average flight is, not just how many are delayed.
Volume Normalization	Prevents airports with high traffic from appearing more delayed due to flight count alone.
Continuous Value for Modeling	Enables regression modeling and fine-grained predictions.
Smoothed Target	Dividing by arr_flights reduces variance and stabilizes predictions.
Planning and Efficiency	Helps measure delay intensity — useful for performance benchmarking.

Regression Target 2

• Target: OAI_per_flight — a custom metric focusing on controllable delays

• Why this was chosen:

Reason	Explanation		
Aligned with Business Goal	Focuses on delays that airlines can control		

Weighted Delay Incorporates both magnitude (carrier_delay) and frequency

Components (carrier_ct).

Forecastable and Actionable Helps anticipate operational inefficiencies in advance.

Excludes Uncontrollable

Factors

Avoids overemphasis on weather or airspace system delays.

(carrier-related).

Clear Strategic Use Supports prioritization in resource planning and delay mitigation.

• Summary Table

Target	Type	Purpose
<pre>arr_del15 / arr_flights > 0.2</pre>	Classification	Predict high-delay months (risk flag)
arr_delay / arr_flights	Regression	Estimate average delay per flight
OAI_per_flight	Custom Regression	Predict operationally controllable delay level

6. Recommendations

- Deploy delay-alert models: Predict high-risk months for each airport/carrier
- Resource allocation: Flag routes with rising OAI for crew, aircraft buffer planning
- **Feature monitoring**: Watch SHAP impact of carrier_ct, late_aircraft_ct to identify internal inefficiencies
- Model extension:

- o Add weather forecast API data
- Add holiday + airport event calendar
- o Use external data to predict "uncontrollable" components separately
- Two-Stage Strategy:
- 1. Classification to predict delay-risk months
- 2. Regression to estimate severity (OAI, delay mins)

Thank You