Problem 1. Differentiate the given functions.

- 1. $y = \cos^2 3x$.
- 2. $r = \sin(\theta + 1)$.
- 3. $z = \frac{\sin 5w}{w^3}$.
- $4. \ y = \sqrt[4]{\sec 3\theta} \ .$
- 5. $x = \tan \sqrt{t}$.

Problem 2. Find the slope of tangent line to the curve $y = x \sin 2x$ at $x = \pi/4$.

Problem 3. The displacement s of a point on a certain vibrating string is

$$s(t) = \frac{1}{8}\sin(20\pi t)$$

where s is measured in centimeters and t is in seconds. Find the velocity of the point at t = 0.1 s.

Problem 4. Find slope of the line normal to the curve $y = 2 \cot 2x$ at $x = \pi/8$.

Problem 5. Find the second derivative of $y = x \cot x$.

Answers to problem 1.

- $1. \ dy/dx = -6\sin 3x \cos 3x.$
- 2. $dr/d\theta = \cos(\theta + 1)$.
- 3. $dz/dw = \frac{5w^3\cos 5w 3w^2\sin 5w}{w^6}$.
- 4. $dy/d\theta = \frac{3 \sec 3\theta \tan 3\theta}{4(\sec 3\theta)^{3/4}}.$
- $5. \ dx/dt = \frac{\sec^2 \sqrt{t}}{2\sqrt{t}}.$

Answer to Problem 2. 1.

Answer to Problem 3. $5\pi/2$.

Answer to Problem 4. 1/8.

Answer to Problem 5. $d^2y/dx^2 = 2(\csc^2 x)(x \cot x - 1)$.