Computer Vision

Dr. Syed Faisal Bukhari
Associate Professor
Department of Data Science
Faculty of Computing and Information Technology
University of the Punjab

Textbook

Multiple View Geometry in Computer Vision, Hartley, R., and Zisserman

Richard Szeliski, Computer Vision: Algorithms and Applications, 1st edition, 2010

Reference books

Readings for these lecture notes:

- Hartley, R., and Zisserman, A. Multiple View Geometry in Computer Vision, Cambridge University Press, 2004, Chapters 1-3.
- □ Forsyth, D., and Ponce, J. Computer Vision: A Modern Approach, Prentice-Hall, 2003, Chapter 2.

These notes contain material c Hartley and Zisserman (2004) and Forsyth and Ponce (2003).

References

These notes are based on

☐ Dr. Matthew N. Dailey's course: AT70.20: Machine Vision for Robotics and HCI

□ Dr. Sohaib Ahmad Khan CS436 / CS5310 Computer Vision Fundamentals at LUMS

Fig 2.1 A model of the projective plane. Points and lines of \mathbb{P}^2 are represented by rays and planes, respectively, through the origin in \mathbb{R}^3 . Lines lying in the $x_1 x_2$ -plane represent ideal points, and the $x_1 x_2$ -plane represents \vec{l}_{∞} or l_{∞} .

- OA ray has one endpoint, and it continues forever in one direction e.g.,
- OA line segment line has two endpoints and continues forever in zero directions e.g.,
- A line has zero endpoints and continue forever in two directions e.g.,
- OA plane is defined by three non collinear points.
- Three or more points are said to be collinear if they lie on a single straight line
- Coplanar points are points that all lie on the same plane.

Recall: Intersection of Parallel Lines

☐ Consider two parallel lines

$$\vec{l}_1$$
: (a, b, c)^T

$$\vec{l}_2$$
: (a, b, c')^T

Computing intersection (as before)

$$\vec{l}_1 \times \vec{l}_2 = (c' - c)(b, -a, 0)^T$$

 \circ Thus, point of intersection is $(b, -a, 0)^T$

 \circ Converting to inhomogeneous coordinates: $(b/0, -a/0)^T$

☐ Hence Parallel lines intersect at ideal points

Recall: Ideal Points lie on a line

- oRecall that all parallel lines intersect at an ideal point or point at infinity, of the form $(x, y, 0)^T$
- Consider two such ideal points

$$\mathbf{x_1} = (\mathbf{x_1}, \mathbf{y_1}, 0)^{\mathrm{T}}$$

 $\mathbf{x_2} = (\mathbf{x_2}, \mathbf{y_2}, 0)^{\mathrm{T}}$

The line joining them is given by:

Rule of Sarrus

$$\hat{i}$$
 \hat{j} \hat{k} \hat{i} \hat{j}
 x_1 y_1 0 x_1 y_1
 x_2 y_2 0 x_2 y_2

Ideal Points lie on a line

$$\hat{1} \quad \hat{j} \quad \hat{k} \quad \hat{i} \quad \hat{j}$$

$$x_1 \quad y_1 \quad 0 \quad x_1 \quad y_1$$

$$x_2 \quad y_2 \quad 0 \quad x_2 \quad y_2$$

$$= \hat{i}(y_1)(0) + \hat{j}(0)(x_2) + \hat{k}(x_1)(y_2) - \hat{k}(x_2)(y_1) - \hat{i}(y_2)(0) - \hat{j}(0)(x_1)$$

$$= x_1 y_2 \hat{k} - x_2 y_1 \hat{k}$$

$$= 0 \hat{i} + 0 \hat{j} + (x_1 y_2 - x_2 y_1) \hat{k} \quad \therefore \text{ after scaling by } 1/(x_1 y_2 - x_2 y_1)$$

$$\equiv 0 \hat{i} + 0 \hat{j} + \hat{k}$$

$$= (0, 0, 1)^T$$

Thus, all **points at infinity** lie on a single line, the **line at infinity**

$$l_{\infty} = (0, 0, 1)^{T}$$

Line at Infinity

- \square Any line $\mathbf{l} = (\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathsf{T}}$ intersects $\mathbf{l}_{\infty} = (\mathbf{0}, \mathbf{0}, \mathbf{1})^{\mathsf{T}}$ at: $(\mathbf{b}, -\mathbf{a}, \mathbf{0})^{\mathsf{T}}$
- □Any line parallel to $\mathbf{l_1} = (\mathbf{a}, \mathbf{b}, \mathbf{c})^T$, i.e. $\mathbf{l_2} = (\mathbf{a}, \mathbf{b}, \mathbf{c}')^T$ will intersects $\mathbf{l_{\infty}}$ also at: $(\mathbf{b}, -\mathbf{a}, \mathbf{0})^T$
- \square In inhomogeneous coordinates, $(\mathbf{b}, -\mathbf{a})^{\mathsf{T}}$ represents line direction
- \square Hence, as line direction varies, its intersection with l_{∞} varies.
- □Line at infinity is the set of directions for lines in a plane.

Examples

Image credit: https://upload.wikimedia.org/wikipedia/commons/b/b4/CTA_loop_junction.jpg

Dr. Faisal Bukhari, DDS, PU

What is a Plane in Geometry?

A **plane** in 3D space is defined by a linear equation of the form:

$$ax + by + cz + d = 0$$

Or, rearranged:

$$x_3$$
 = constant

This form defines all the points in 3D space where one coordinate is fixed and the others can vary freely.

Why is x_3 = 1 a Plane?

In the 3D Cartesian coordinate system (or \mathbb{R}^3):

 $\circ x_1, x_2, x_3$ (or XYZ) represent the three spatial axes.

The equation x_3 = 1 means:

- \circ All points where the **third coordinate** is exactly 1. So, any point of the form $(x_1, x_2, 1)$ lies **on this plane**.
- \circ Even though x_3 is fixed at 1, and x_1 , x_2 are free to vary.
- That makes it a 2D surface (a plane) embedded in 3D space

Visual Intuition of x_3 = 1 a Plane

- Olmagine a stack of paper sheets in 3D space:
- oEach sheet is a plane.
- The sheet at height $x_3 = 1$ is one such plane parallel to the x_1x_2 (or xy) plane.
- This is like saying "at height = 1, stretch out in x and y."

Why is this Plane (x_3 = 1) Useful in Computer Vision?

In projective geometry:

- •We often work in homogeneous coordinates:
 - \circ A 3D point: (x_1, x_2, x_3)
 - OA 2D point: (x, y, w), $w \neq 0$ which becomes $(\frac{x}{w}, \frac{y}{w})$ when normalized.
- \circ Setting $x_3 = 1$ makes math easier:
 - It "flattens" 3D points onto a 2D image plane.
 - It represents a reference plane where projection happens.

2D projective geometry A model for the projective plane

The inhomogeneous point (x_1, x_2) is represent by any $[x_1x_3]$

vector
$$\begin{bmatrix} x_1 x_3 \\ x_2 x_3 \\ x_3 \end{bmatrix}$$
.

 \circ Lines in \mathbb{P}^2 are planes in \mathbb{R}^3 intersecting the origin.

The line
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 or $(a, b, c)^T$ in \mathbb{R}^3 is a vector **orthogonal** to the plane formed by the point on l and the **origin**.

Recall that a plane has a equation

$$ax + by + cz + d = 0$$

When the plane passes through the origin, the constant term d = 0, so the equation simplifies to:

$$ax + by + cz = 0$$

- olt means that any point (x, y, z) that lies on the plane satisfies the equation (i.e., ax + by + cz = 0)
- •In vector notation, this condition can be written as:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

Fig 2.1 A model of the projective plane. Points and lines of \mathbb{P}^2 are represented by rays and planes, respectively, through the origin in \mathbb{R}^3 . Lines lying in the $x_1 x_2$ -plane represent ideal points, and the $x_1 x_2$ -plane represents \vec{l}_{∞} or l_{∞} .

- OA fruitful way of thinking of \mathbb{P}^2 is as a **set of rays** in \mathbb{R}^3 . The set of **all vectors** k $(x_1, x_2, x_3)^T$ as k varies forms a **ray** through the origin.
- \circ Each such ray is a single point in \mathbb{P}^2 .
- OIn this model, the lines in \mathbb{P}^2 are planes passing through the origin in \mathbb{R}^3 .
- One verifies that two non identical rays lie on exactly one plane and any two planes intersect in one ray.
- This is the analogue of two distinct points uniquely defining a line, and two lines always intersecting in a point.
- **Points** and lines may be obtained by intersecting this set of rays and planes by the plane $x_3 = 1$.

Understanding Projective Geometry: P² and R³

- OA line connecting any two distinct points in projective space (\mathbb{P}^2) corresponds to a plane through the origin in \mathbb{R}^3 .
- To get the **inhomogeneous coordinates** of a **point** or a **line**, we find where its corresponding **ray** or **plane** intersects the **plane** $x_3 = 1$.

ORemember:

- $\circ \mathbb{P}^2$ is not just a flat 2D plane.
- \circ It represents the set of all rays passing through the origin in \mathbb{R}^3 .
- OHowever, the **origin itself is excluded** from \mathbb{P}^2 , because it does not define a direction (i.e., no ray).
- One way to visualize it through Fig 2.1 in the next slide

Fig 2.1 **A model of the projective plane.** Points and lines of \mathbb{P}^2 are represented by rays and planes, respectively, through the origin in \mathbb{R}^3 . Lines lying in the $x_1 x_2$ -plane represent **ideal points**, and the $x_1 x_2$ -plane represents \vec{l}_{∞} or l_{∞} .

- oIn \mathbb{R}^3 , lines through the origin that lie in the x_1x_2 plane represent ideal points in \mathbb{P}^2 .
- \circ All other lines through the origin represent points in \mathbb{P}^2 .
- \circ Planes through the origin in \mathbb{R}^3 represent lines in \mathbb{P}^2 .
- The vector $(a, b, c)^T$ representing a line in the Euclidean plane (\mathbb{R}^3) , when interpreted as a vector in \mathbb{R}^3 , is orthogonal to the \mathbb{R}^3 plane representing the line in \mathbb{P}^2 .
- •We will prove it coming lecture.

A model for the projective plane

 \circ We consider a coordinate system with axes x_1, x_2, x_3 (often called x,y,z). The direction along the x_3 (or z-axis) is particularly important for our discussion.

Note: 2D points are the points in the plane $x_3 = 1$.

- olt means if any homogenous vector that does not have its 3rd component equal to zero then we can divide it by the third component.
- olf we look it as a 3D point, then it is actually a point in the plane (π) (see Fig 2.1).

Note: If we normalize a homogeneous representation of a point, then we will get a point in the Euclidean plane (π) .

Special Case in Projective Geometry: When the Third Component is Zero

- olf the third component of the vector $(c' c)(b, -a, 0)^T = (b, -a, 0)^T$ is zero, what does that imply? olt means $x_3 = 0$.
 - OWe still have a valid vector, because the first two components x_1 and x_2 may be non-zero.

OWhat This Means Geometrically:

- The vector still passes through the origin, but it lies entirely within the plane $x_3 = 0$, this is the $x_1 x_2$ plane.
- ONo matter how we scale this vector, it always remains in the $x_3 = 0$ plane, it never intersects the standard inhomogeneous plane $x_3 = 1$.

Special Case in Projective Geometry: When the Third Component is Zero

OWhy These Rays Are Special:

 \circ Vectors (or rays) with $x_3 = 0$ are **not normalizable** to the standard plane $x_3 = 1$.

oThat means:

- They do not correspond to any finite inhomogeneous point in \mathbb{R}^3 . These points cannot be normalized to obtain a corresponding point on the plane (π) .
- These represent points at infinity in projective geometry (\mathbb{P}^2) .

- Significance in a camera model:
 - oIn the pinhole camera model, the interpretation shown in Fig 2.1 is essential because the plane π represents the image sensor of the camera.
 - Origin (i.e., O) of Fig 2.1 is the center of the camera (or optical center). The point where all projection rays originate.
 - $\circ \mathbb{R}^3$ going to be the **3D** space where the camera is embedded.
 - OUsing Fig 2.1, we aim to understand the structure and behavior of the camera coordinate system how it captures the 3D world and projects it onto the image plane

2D projective geometry A model for the projective plane What is a line in the plane? (Euclidean)

- Consider any line lying in the plane π (as shown in Fig 2.1). Now, take any two points on that line, and consider the span of those points starting from the origin.
- O What you get is a plane in \mathbb{R}^3 passing through both the origin and the line on π.
- o Key Insight:
- Any line in the plane $x_3 = 1$ corresponds to a plane through the origin in \mathbb{R}^3 .
- This links lines in image space to planes in the 3D world, a core idea in projective geometry and camera modeling.

A model for the projective plane Line in the plane? (Euclidean)

- OHow we represent a plane in three-space? It is similar as we represent a line in 2-space
- The general equation of the plane is

$$ax + by + cz + d = 0$$

OBut in our case, the distance from the origin is always equal to zero i.e., ax + by + cz = 0 for any plane through the origin, so that three vectors $(a, b, c)^T$ that represents the plane is normal to the plane.

The line at infinity \vec{l}_{∞} = $(0, 0, 1)^{T}$

"Any plane through the origin in the three-space is represented geometrically by the normal vector to the plane."

- O How can we interpret the equation of a line giving us the vector which is orthogonal to the plane?
- •The line at infinity can be represented by the vector that is normal to the line at infinity. The vector that is normal to the line at infinity is

$$\vec{l}_{\infty} = (0, 0, 1)^{\mathrm{T}}$$

The line at infinity $\vec{l}_{\infty} = (\mathbf{0}, \mathbf{0}, \mathbf{1})^{\mathrm{T}}$

$$\vec{l}_{\infty} = (0, 0, 1)^{\mathrm{T}}$$

- OSo, the vector that is **normal** to the **line at infinity** which is in three-space is **orthogonal to the plane** representing the **line** at infinity is exactly the vector x_3 i.e., $(0, 0, 1)^T$.
- olt is a vector in the direction of x_3 . So the plane that is representing line at infinity is just $x_1 x_2$ -plane and the vector orthogonal to that plane is $(0, 0, 1)^T$
- The line at infinity is kind of a special line. The vector that described it is **orthogonal** to the **viewing plane** (π) or the plane we are projecting to.