Vorlesung Kommunikationstechnik

Voice over IP (VoIP) und Next Generation Network (NGN)

Harald Orlamünder

Inhalt

- Einleitung
 - Grundsätzliche Unterschiede PSTN Internet
 - Der Voice-over-IP-Hype
- Sprache im PSTN und im Internet
- NGN
 - Grundlagen
 - Architekturen
 - Qualität im NGN
 - NGN-Steuerprotokolle (H.323, SIP, MEGACO)
 - Adressierung
 - Einführung
- Die Zukunft
 - Arbeitsgebiete von NGN
 - Konvergenz
 - Triple Play
- Zusammenfassung

Inhalt

- Einleitung
 - Grundsätzliche Unterschiede PSTN Internet
 - Der Voice-over-IP-Hype
- Sprache im PSTN und im Internet
- NGN
- Die Zukunft
- Zusammenfassung

Telefonnetz und Internet im Vergleich Unterschiede in formaler Darstellung

keine Anwendung

PSTN/

ISDN

IP

FR

ATM

Verbindungsorientiert

- 3-stufige Prozedur:
 - Verbindungsaufbau
 - Aktive Phase der Verbindung
 - Verbindungsabbau

Verbindungslos

- Das Paket ("Datagram") enthält die volle Adress-Information
- Das Paket wird unabhängig von anderen Paketen durchs Netz geroutet.

- "Kanal" ist reserviert
- Statistik auf Ruf-Ebene
- Dienst: ja/nein

- "Kanal" wird zwischen Nutzern geteilt
- Statistik auf Paket-Ebene
- Dienstqualität abhängig von Last

Voice over IP!? - Der Zyklus des VoIP "Hype"

Voice over IP!? – Höhepunkt des Hypes

Global Telephony, Februar 1999

NGN-Protokolle – Grundlagen – Anforderungen

Telefon-Netz

- hohe Qualität (gute Verständlichkeit, geringe Verzögerung),
- zuverlässig,
- auf die Sprachkommunikation zugeschnitten,
- einfache Endgeräte.

Daten-Netz

- Endsysteme mit Intelligenz,
- Fehlerfreie Übermittlung von Bits,
- keine Echtzeit-Unterstützung.

Ziel

- Benutzung der Technologie der Datennetze für Telefonie
- daher müssen Qualität und Echtzeit-Unterstützung eingeführt werden

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
- Die Zukunft
- Zusammenfassung

Die besondere Herausforderung: Sprache über IP

Die meisten Anwendungen können mit dem Internet, bzw. der Technik des Internet, leben.

Echtzei

- Die Herausforderung liegt in solchen Diensten, die
 - Echtzeitbezug haben (synchroner Bitstrom, Struktur) und **Echtzeit**
 - Dialogfähig sein müssen
- Das sind Audio und Sprache sowie Video.
- **Echtzeit** Bei Videotelefonie kommt noch die Lippensynchronität dazu (bei getrennter Übertragung der Video- und Audio-Komponente)
- Aufgrund der Masse der Nutzer und Verbindungen stellt die Telephonie, und damit die Sprachübertragung, die größte Herausforderung dar. "Echtzeit" hat mehrere Aspekte!

Kommunikationsmodell allgemein

VoIP & NGN & SIP — 10

Analog/Digital

D/A

Digital/Analog

A/D

Kommunikationsmodell – Paketmodus

Kommunikationsmodell im Paketmodus Qualitäts-bestimmende Elemente

Sprachcodierung versus Audiocodierung – Typen

- Audiocodierung versucht die Signalform (Wellenform) ohne hörbare Verfälschung darzustellen.
- Die Anforderungen an eine Sprachcodierung sind nicht mit denen von Audio vergleichbar:
 - nicht die naturgetreue Wiedergabe steht im Vordergrund, sondern bestmögliche (Silben-)Verständlichkeit.
- Zwei Arten der Codierung:
 - **PCM** (Pulse Code Modulation) und ihre Varianten, evtl. mit Kompression (z.B. G.711, G.726)
 - Vocoder-Prinzip (z.B. GSM-Codecs, G.723)
 Modellierung des menschlichen Sprachtrakts mittels Anregungsvektoren;
 Filter für Rachenraum und Mundraum und Verstärkungsfaktoren;
 Übertragen der Adressen von Filterkoeffizienten, Verstärkungsfaktoren und Anregungsvektoren; Sprache im Decoder synthetisch herstellen.

Bewertung von Codierungen

Verzögerungszeit (in msec)

Qualität (z.B. MOS-Wert bei Sprache)

Komplexität
(in Rechenleistung
oder auch
Stromverbrauch)

Verfügbarkeit (z.B. offene Standards)

Effizienz
(Bit/s bzw.
Bit/s pro Hz)

Robustheit (z.B. gegenüber Paketverlust)

Was ist Sprachqualität?

Parameter:

- "Störungen" des Sprachsignals
- Laufzeit
- Echo
- Silbenverständlichkeit

Bestimmung:

- Beurteilung durch Testpersonen (Mean Opinion Score, MOS)
- Berechnung mit gemessenen Einflussgrößen (E-Model)

Sprachqualität – MOS und Rating

Qualitäts-beeinflussende Parameter in Paketnetzen

Bitfehler (Bit Error) **Verlust von Information** Loss) **Fehleinfügung von Information** (Misinsertion) Wichtig bei Verzögerung (Delay) Schwankung der Verzögerung (Delay Variation) gerne als "Jitter" **Synchronisationsverlust** (Loss of Sync) bezeichnet.

Sprachpakete in IP-Netzen – Prinzip

Sprachpakete in IP-Netzen – Verzögerung (Delay)

Von Mund zu Ohr:

- Telefonieren verträgt wenig Verzögerungen
- Der Einfluss der Verzögerung hängt von der Stärke des Echos ab.

Sprachpakete in IP-Netzen – Paketverlust und Jitter

- Da für Telefonie eine Paketwiederholung nicht in Frage kommt, muss der Paketverlust sehr gering sein.
- Erfahrungswerte erlauben 1% Paketverlust, bis 5% gelten noch als akzeptabel (aber schon deutlich hörbar).
- Ein De-Jittering ist nur in Grenzen möglich, da dieses ein Zwischenspeichern der Pakete erfordert und damit das Delay erhöht.
- Beim Jitter wird ein Wert von 25 ms angestrebt.

Weitere Qualitätsmerkmale

Neben den Qualitätsmerkmalen, die durch

- Codierung und
- Pakettransport

verursacht werden, gibt es noch eine andere Klasse, die durch die Zeichengabe verursacht ist. Wichtigster Parameter hier ist die

Verbindungsaufbauzeit.

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
 - Grundlagen
 - Architekturen
 - Qualität im NGN
 - NGN-Steuerprotokolle (H.323, SIP, MEGACO)
 - Adressierung
 - Einführung
- Die Zukunft
- Zusammenfassung

Sprache zu paketisieren reicht nicht

Die Lösung: Next Generation Networks (NGN)

Next Generation Networks – Wichtige Themen

Qualität

Das Internet war nicht für Echtzeit-Verkehr entworfen worden. Maßnahmen zur Bereitstellung von Qualität (garantierte Verzögerungszeit, garantierter Paketverlust) müssen eingeführt werden.

Zeichengabe

Die Dienste im Internet sind üblicherweise "Client-Server" basiert. Bei Telefonie rufen sich "Gleichberechtigte". Dazu sind neue Protokolle zur Steuerung der Sessions notwendig.

Netzübergänge (Gateways)

Die Mehrzahl der Telefonteilnehmer ist an das klassische Telefonnetz angeschlossen. Diese müssen aus dem IP-Netz erreichbar sein (und umgekehrt).

Next Generation Networks – Abgrenzung

Leider keine einheitliche Sprachregelung:

- VoIP (Voice over IP): die Technik, Sprache über IP-Netze zu übertragen.
- Internet Telephonie: VoIP-Variante, wobei das allgemeine Internet als IP-Netz dient.
- NGN (Next Generation Networks): VoIP als Basis, aber erweitert um die Funktionen, die daraus einen echten Telephoniedienst machen.

Warum überhaupt NGN?

Next Generation Networks – Verschiedene Sprachmärkte

Тур	Traditionelle Telefonie	Internet Telefonie	Next Generation Network (NGN)
Dienst	klar spezifiziert (Phone-to-Phone)	eingeschränkt (PC-to-PC, PC-to-Phone)	Zielt auf den traditionellen Telefoniedienst ab (mit hoher Qualität und transparent für den Nutzer), gefolgt bzw. ergänzt durch zukünftige Multimedia-Dienste
Qualität	hoch	nicht spezifiziert ("best effort")	
Technologie	Leitungsvermittelt Ende-zu-Ende	Internet (paket- vermittelt) (-> Katalysator für NGN)	basiert auf Paket- Technologie (mit geeigneten Maßnahmen zur Sicherstellung der QoS)
Markt	Massenmarkt	Nischenmarkt (aber Potential!)	Markt beginnt gerade
Regulierung	ja (Öffnung für Wettbewerb)	nein	Annahme: ja (vergleichbar der traditionellen Telefonie)

Next Generation Networks Definition nach ITU-T Rec. Y.2001

A packet-based network able to provide telecommunication services and able to make use of multiple broadband, QoS-enabled transport technologies and in which service-related functions are independent from underlying transport-related technologies.

It offers unrestricted access by users to different service providers. It supports generalized mobility which will allow consistent and ubiquitous provision of services to users.

ITU-T Empfehlung Y.2001

Next Generation Networks Definition in "verständlicher Form"

- Packet based transfer
- Separation of control functions (bearer, call/session, service)
- Decoupling of service provisioning from network, open interfaces
- Broadband capabilities, end-to-end QoS, transparency
- Interworking with legacy networks
- Generalized mobility
- Unrestricted access to different service providers
- Converged services between Fixed/Mobile
- Compliant with regulatory requirements (emergency, security,..)

ITU-T Empfehlung Y.2001

NGN Modell – Anwendung des Stratum-Konzeptes

 Eine wichtige Eigenschaft von NGNs ist die Trennung von Dienst und Transport. Das Stratum-Konzept ist ein gutes Modell dafür.

NGN Modell – Anwendung des Stratum-Konzeptes

 Eine wichtige Eigenschaft von NGNs ist die Trennung von Dienst und Transport. Das Stratum-Konzept ist ein gutes

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
 - Grundlagen
 - Architekturen
 - Qualität im NGN
 - NGN-Steuerprotokolle (H.323, SIP, MEGACO)
 - Adressierung
 - Einführung
- Die Zukunft
- Zusammenfassung

Der "klassische" Ansatz: "Integrierte" Netzknoten

"Intelligent Network" (IN) – Flexible Dienstesteuerung

Das Telekommunikations-Service-Modell

- Es erfolgt eine Steuerung der Ressourcen und für die Qualität wird eine "Garantie" abgegeben.
 - Leitungsvermittlung,
 - Verbindungsorientierter Betrieb,
 - Verkehrslenkung durch Vermittlungsstellen mit festen Routing-Tabellen.
- Adressierung mit Telefonnummern, hierarchisch, geographisch.
- Kurze Verbindungsdauer typisch 3 Minuten.
- Die Steuerung des Dienstes erfolgt durch einen "Service Provider", er handelt "im Auftrag" für den Nutzer.
- Funktionen und Leistungsmerkmale meist in spezifischen "Servern" bereitgestellt.

Voice over IP – der "paketisierte" Ansatz

Das Internet-Service-Modell

- Es erfolgt keine Steuerung der Ressourcen ("best effort"-Netz).
 - Paketvermittlung
 - Verbindungsloser Betrieb (auf der IP-Schicht)
 - Verkehrslenkung durch Router mit selbstlernenden Routing Protokollen
- Adressierung mit IP Adressen, nicht-hierarchisch, nicht geographisch.
- Lange "Verbindungsdauer" (Session) typisch 60 Minuten.
- Die Steuerung erfolgt "Peer to Peer".
- Der ISP leistet AAA-Funktionen und stellt die IP-Adresse bereit.
- Funktionen und Leistungsmerkmale sind meist im Endsystem realisiert.

Internet-Dienste – Szenarien für Telephonie

1. Sprachkommunikation zwischen IP-Endgeräten

2. Sprachkommunikation zwischen Netzen

3. Internet als Ersatz der Fernebene

NGN-Architekturen – Reines IP-Netz

Konkurrierende "Zeichengabe-Protokolle"

ITU-T: H.323-Suite, hier: H.225 & H.245

IETF: SIP-Suite: SIP & SDP – heute bevorzugt

Grundkonfiguration der SIP-Architektur (...Internet-Gemeinde)

NGN-Architekturen – Verbindung zum PSTN

NGN-Architekturen – zentralisierte Steuerung

Grundkonfiguration der H.323-Architektur (... Telekommunikations-Gemeinde)

NGN-Architekturen – "Gateway Decomposition"

Später wurden die Funktionen des Gateways neu geschnitten:

NGN-Architekturen – Decomposed Gateway

NGN-Architekturen – traditionelle Zugangsnetze

NGN-Architekturen – Residential Gateway

NGN-Architekturen – Neue Begriffe

NGN-Architekturen – ein Netz?

Ist diese gelbe Wolke wirklich EIN Netz?

NGN-Architekturen – ein Netz?

NGN-Architekturen – Session Border Controller (SBC)

- Verbindet zwei Netze miteinander, z.B. von zwei verschiedenen Netzbetreibern.
- Auch als "Packet-to-Packet"-Gateway bezeichnet.
- Aufgaben:
 - Firewall
 - Authentisierung
 - Adressumrechnung (NAT/NAPT)
 - Verschlüsselung
 - Transcodierung (falls notwendig)
 - Überwachung der Qualitätsparameter
 - Unterstützung von gesetzlichem Abhören (lawful interception)

NGN-Architekturen – ein Netz?

• Alle Dienste durch EIN Netz?

NGN-Architekturen – ein Netz?

Alle Dienste durch EIN Netz?

DIFFSERV, MPLS, "Jein" – Abgrenzung von Diensteklassen Verwalten der Ressourcen **IP-Netz Betreiber A** Diensteklasse I **Diensteklasse II** Bandwidth Broker Session Ressource Broker

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
 - Grundlagen
 - Architekturen
 - Qualität im NGN
 - NGN-Steuerprotokolle (H.323, SIP, MEGACO)
 - Adressierung
 - Einführung
- Die Zukunft
- Zusammenfassung

NGN-Protokolle – Grundlagen Qualität und Echtzeit im Internet (1)

- Im heutigen Internet sind keine unterschiedlichen Qualitäten möglich - jeglicher Verkehr wird nach dem "best effort"-Prinzip transportiert.
- Einige Gründe sprechen für einen neuen Ansatz:

VoIP

- Dienste-Vielfalt erfordert Echtzeit-Unterstützung
- zunehmende Verkehrsmenge erfordert eine Erweiterung des Netzes
- kritische Anwendungen benötigen garantierte Qualität
- ISPs stehen im Wettbewerb und müssen sich differenzieren (nicht nur in ihren Tarifen...)

NGN-Protokolle – Transport Qualität und Echtzeit im Internet - Lösungen

- Prinzipielle Lösungen für Qualität :
 - "genügend" Kapazität im Netz
 - Methoden der Verkehrssteuerung
 - geeignete Anpassungs-Schicht

Reservierung von Resourcen im Netz, in der Regel per Zeichengabe initiiert.

> IntServ RSVP

Zusammenfassen der Vekehre zu Prioritätsklassen. In einer Erweiterung: mit Überwachung der Verkehrsklassen am Netzrand.

DiffServ

Nutzung der Qualitäts-Eigenschaften einer Schicht 2 (z.B. ATM) durch Verknüpfung der Schicht 3 (IP) mit der 2.

MPLS

RTP und RTCP – Grundlagen

- Das Real Time Transport Protocol (RTP) ist eine Art Adaptions-Schicht für Echtzeit-Verkehr.
- Das Real Time Control Protocol (RTCP) beinhaltet die zugehörige Steuerung.

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
 - Grundlagen
 - Architekturen
 - Qualität im NGN
 - NGN-Steuerprotokolle (H.323, SIP, MEGACO)
 - Adressierung
 - Einführung
- Die Zukunft
- Zusammenfassung

NGN-Steuerprotokolle – Grundlagen

- Eine nahezu unüberschaubare Vielfalt an Protokollen wurde für die Steuerung von VoIP und Multimedia über Paketnetze spezifiziert.
- Dabei stehen oft Protokolle aus der traditionellen Telekommunikations-Welt (ITU-T) und der Internet-Welt (der IETF) in Konkurrenz.
- Neben den beiden Haupt-Akteuren gibt es noch eine ganze Reihe sogenannter "Foren", die an Detailthemen oder speziellen Anwendungsbereichen (z.B. Cable-Networks) arbeiten.

Ruf- und Verbindungssteuerung:
Multimedia über Paketnetze
H.323 (mit H.225, H.245,
H.450) der ITU-T
Session Initiation Protocol
SIP (mit SDP) der IETF

Gateway-Steuerung
Media Gateway Control Protocol
H.248 der ITU-T
Media Gateway Control Protocol
MGCP und MEGACOP der IETF

NGN-Protokolle – die Protokoll-Vielfalt

NGN-Steuerprotokolle – H.323 Bereich

NGN-Steuerprotokolle – H.323 Architektur

CC Call Control
BC Bearer Control
? Anwendung noch offen___
nur Relay

BICC Bearer Independent Call Control (CC)
SCTP Simple Control Transport Protocol
MGCP Media Gateway Control Protocol
MEGACO Media Gateway Control Protocol

NGN-Steuerprotokolle – H.323-Protokolle (mit IP)

NGN-Steuerprotokolle SIP – Session Initiation Protocol - Grundlagen

- Ein "Application Layer Protocol"
 - Erzeugen/modifizieren/beenden von "Sessions" oder "Calls"
 - Unterstützung von Multimedia-Konferenzen
 - Unterstützung von Internet Telefonie
 - Unterstützung von Multimedia-Verteilung
- Ein "Lightweight Client Server Protocol"
 - SIP participants User Agent (protocol client and server)
- Teil der "IETF Multimedia Control Architecture"
 - Real Time Transport Protocol (RTP)

behandelt den Datenstrom

- Real Time Streaming Protocol (RTSP)
- Session Announcement Protocol (SAP)

Session Description Protocol (SDP)

Steuerprotokolle

RFC 3261

NGN-Steuerprotokolle – SIP Architektur

NGN-Steuerprotokolle – SIP Funktionale Elemente

SIP User Agent

stellt das Endsystem in einer SIP-Umgebung dar. Er beinhaltet einen SIP Client und einen SIP Server (User Agent Client und User Agent Server). Die Funktion richtet sich danach, wer Anrufender und wer Angerufener ist.

SIP Proxy Server

stellt eine virtuelle Vermittlungseinrichtung dar, allerdings nur für Zeichengabenachrichten, er ist am Nutzdatenaustausch nicht beteiligt. Zeichengabenachrichten werden evtl. modifiziert weiter gereicht.

SIP Redirect Server

kann Zieladressen in Zeichengabenachrichten überschreiben, wenn sich der Aufenthaltsort des Ziels geändert hat. Diese Nachrichten werden dem User Agent zurück geschickt. (Keine Weiterleitung.)

SIP Registrar

aktualisiert aufgrund von "Register"-Nachrichten ein Verzeichnis von Kommunikations-Kontaktdaten. Dieses liegt in einem Location Server.

NGN-Steuerprotokolle – SIP – Architektur (Gesamtschau)

NGN-Steuerprotokolle SIP – Protokolle (Multimedia Conference Architecture)

NGN-Steuerprotokolle – SIP Funktionen

SIP unterstützt fünf grundlegende Funktionen in einer Multimedia-Kommunikation:

User Location

den für die Kommunikation notwendigen Teilnehmer, bzw. seine Installation, ausfindig machen; Weiterleiten der Nachrichten zum Ziel;

User Capabilities

die für die Kommunikation gewünschten Medien und ihre Parameter aushandeln (IP-Adressen, Codec-Typen, ...);

User Availability

feststellen, ob der gewünschte Teilnehmer zur Kommunikation bereit ist;

Session Setup

logischer Aufbau der Session, aushandeln der notwendigen Parameter für die Session und rufen des gewünschten Teilnehmers;

Session Handling

Steuern der Session (ändern von Parametern, beenden der Session), Aufruf von weiteren Diensten.

NGN-Steuerprotokolle – SIP Nachrichten, Allgemeines

- SIP-Nachrichten lehnen sich in ihrem Format an HTTP-Nachrichten an.
- SIP-Nachrichten werden auch "methods" genannt.
- Zwei grundsätzliche Nachrichten-Typen können unterschieden werden:
 - Requests (vom UAC zum UAS)
 - Responses (vom UAS zum UAC).
- Client und Server kommunizieren durch SIP-Transactions.
- Teilnehmer werden über SIP-URIs angesprochen.

UAC = User Agent Client UAS = User Agent Server

Aufbau einer SIP-Nachricht – Prinzip

Format:

Element enthält:

Nachrichtentyp (bzw. "Methode")

Header Fields und dazu gehörende Parameter entsprechend RFC 3261

Leerzeile

Zusätzliche Beschreibung z.B. gemäß dem "Session Description Protocol" (SDP)

NGN-Steuerprotokolle - SIP Nachrichten (Requests - 1)

Erster Satz Nachrichtentypen

Тур	Beschreibung		
INVITE	Aufbau einer SIP-Session, Modifizierung einer bestehenden Session, Angabe der Verbindungsparameter (z.B. Codec). (Der Sender der Nachricht ist nicht notwendigerweise Teilnehmer der Sitzung)		
ACK	Bestätigung des Empfangs einer finalen Statusinformation, die ihrerseits eine INVITE Nachricht beantwortet. ACK Nachricht wird nicht quittiert.		
OPTIONS	Abfrage von Eigenschaften eines Endsystems, ohne Sessionaufbau.		
REGISTER	Registrierung eines SIP UA bei einem SIP Registrar Server, Angabe der temporären und der stationären SIP-URI.		
CANCEL	Abbruch einer SIP-Transaktion (z.B. eines Sessionaufbaus).		
BYE	Beendet die Sitzung		

NGN-Steuerprotokolle - SIP Nachrichten (Requests - 2)

Weiter Nachrichtentypen

Тур	Beschreibung	
UPDATE	Veränderung bestimmter, die Session betreffender (QoS-)Parameter (RFC 3311)	
REFER	Ein weiterer UA ist zu kontaktieren, Übergabe einer SIP-Session (RFC 3515)	
MESSAGE	Instant-Messaging Nachrichten (RFC 3428)	
SUBSCRIBE	Bereitschaft für Notify-Nachrichten und Event-Nachrichten mitteilen (RFC 3680, 3840)	
NOTIFY	Notify-Nachrichten und Event-Nachrichten (RFC 3680, 3840)	
PUBLISH	Bekanntmachung von Status-Information an Interessierte Einheiten (RFC 3903)	

NGN-Steuerprotokolle – SIP Nachrichten (Responses)

1xx	informational	Normaler Prozess, Aktion wird fortgesetzt	100 Trying
			180 Ringing
			181 Call is beeing forwarded
2xx	success	Aktion war erfolgreich	200 OK
			202 Accepted
3xx	redirection	Weitere Aktionen sind notwendig	300 Multiple choices
			301 Moved permanently
			302 Moved temorarily
4xx	client error	Der Server hat den Client nicht verstanden	400 Bad request
			405 Method not allowed
			486 Busy here
5xx	server error	Der Server kann den Client nicht bedienen	500 Server internal error
			501 Not implemented
			503 Service unavailable
6xx	global failure	Fataler Fehler, keine Lokalisierung möglich	600 Busy everywhere
			603 Decline

NGN-Steuerprotokolle - SIP-URI

- SIP URI: Kontaktadresse eines SIP Endsystems
 - Darstellung analog zu Email-Adresse mit vorangestellter Protokollbezeichnung: sip:user@host
- Vom Prinzip Abhängigkeit vom Ort bzw. IP-Adresse des Endsystems
 - SIP UA generiert umgebungsabhängige, temporäre SIP URI: Beispiel: sip:mueller@174.126.17.8
 - Problem: "man muss IP-Adresse des Peers/Hosts kennen, um anzurufen"
 - Peer to Peer Ansatz
- Ziel: ständige SIP URI, unter der ein Teilnehmer immer erreichbar ist, sobald er sich von einem beliebigen Ort bzw. aus einem beliebigen Netz bei seinem SIP Anbieter anmeldet (Mobilitätsunterstützung)
 - in der Regel Nutzung Domain Name Service (DNS) für **stationäre SIP URI** Beispiele: **sip:peter@mueller.de** oder **sip:peter_mueller@sipanbieter.de**
- Ziel wird erreicht durch den Einsatz von SIP Servern (Registrar Server, Location Server, Proxy Server, Redirect Server) zur Verknüpfung (Binding) einer temporären SIP URI mit der stationären SIP URI

NGN-Steuerprotokolle – SIP-Session (einfach, Peer-to-Peer)

NGN-Steuerprotokolle – SIP-Registrierung

- Stellt den Zusammenhang zwischen temporärer SIP URI und ständiger SIP URI her (Binding).
- Voraussetzung für Mobilitätsunterstützung.
- Registrierung durch die SIP-Nachricht "REGISTER"
 - Adresse Registrar Server sip:Domain (Konfiguration im Endgerät/UA erforderlich)
 - Angabe ständige SIP URI
 - Angabe temporäre SIP URI (derzeitige Ort)
 - Angabe "Expire" Wert (in Sekunden) Befristung der Gültigkeit des Bindings
- Übergabe Binding an Location Server (Datenbank)

NGN-Steuerprotokolle - SIP-Lokalisierung

NGN-Steuerprotokolle – SIP-Session mit Proxy (1)

- Routing: sorgt dafür, dass an eine permanente URI gerichtete Nachricht an die temporäre URI weitergeleitet wird.
- Unterscheidung zwischen zwei Typen
 - "Stateless Proxy"
 - einfaches Durchgangselement
 - erzeugt keine SIP Nachrichten sondern leitet empfangene Nachrichten weiter
 - "Stateful Proxy"
 - agiert als aktives SIP Element
 - kann als UAC oder UAS agieren
- An einem SIP Session Aufbau können prinzipiell auch mehrere Proxy Server beteiligt sein, z.B. dann, wenn die SIP User Agents in Domains unterschiedlicher SIP-Dienstanbieter registriert sind.

NGN-Steuerprotokolle – SIP-Session mit Proxy (2)

Proxy Server: Server und Client zur Vermittlung von Sessions

Verwaltet Zustände (states) oder wird zustandslos betrieben Kann Authentisierung und Authorisierungfunktionen enthalten

NGN-Steuerprotokolle – SIP-Session mit Proxy (2)

Proxy Server: Server und Client zur Vermittlung von Sessions

Verwaltet Zustände (states) oder wird zustandslos betrieben Kann Authentisierung und Authorisierungfunktionen enthalten

NGN-Steuerprotokolle – Redirect

- Weitergabe von Kontaktinformationen an einen User Agent
- Beantwortung von Nachrichten mit Statusinformation des Grundtyps 3xx "Redirection"
 - 300 Multiple Choices
 - 302 Moved temporarily
 - 301 Moved permanently
- Unterschiedliche Anwendungsfälle möglich, z.B. Realisierung des Dienstmerkmals Rufumeitung.

NGN-Steuerprotokolle – SIP-Session mit Redirect

NGN-Steuerprotokolle – SIP-Server

Registrar Server:

Anmeldung und Herstellung des Zusammenhangs zwischen permanenter SIP URI und temporärer SIP URI

Location Server:

Speicherung des Zusammenhangs zwischen permanenter SIP URI und temporärer SIP URI

Redirect Server:

Weitergabe von Kontaktinformation an den User Agent

Proxy Server:

Routing von SIP-Nachrichten (stateful oder stateless)

 Logisch getrennte SIP Netzelemente wie z.B. Registrar und Location Server werden in der Praxis oft in einer Hardware realisiert, z.B. kombinierter SIP Proxy/Registrar Server

NGN-Steuerprotokolle – SIP Nachricht – Beispiel (1)

INVITE sip: Barak.O@WhiteHouse.gov SIP/2.0

Methode mit Adresse

Via: SIP/2.0/TCP server01.abc.de

Protokoll und Server

To: Barak <sip:president@whitehouse.gov>

Gerufener

From: Harald <sip:orla@test.de>

Rufender

(Originator des Requests)

Call-ID: d1he53kisg4092@abc.de

Identifier für die Session

CSeq: 6310 INVITE

Folgenummer

(Command Sequence)

Max-Forwards: 52

Anzahl Hops

(vergleichbar zu TTL)

Content-Type: application/SDP

Typ der folgenden

Beschreibung, hier:

Session Description Protocol

Länge der folgenden

Beschreibung (in Byte)

Content-Length: 173

Länge

Hier endet der Nachrichtenkopf und es folgt die Beschreibung der Session, die "Session Description".

Start Line

Msg.Header

Message

Body

NGN-Steuerprotokolle SDP - Session Description Protocol - Grundlagen

- Kein Protokoll im klassischen Sinne, sondern eine Text-basierte Beschreibung einer Multimedia-Session.
- Wird verwendet um die Medienformate zu spezifizieren (Audio, Video, Codecs etc)
- Wird in anderen Protokollen verwendet.
- Weitere Aktionen werden anderen Protokollen überlassen. Das können z.B. Protokolle zur
 - Einleitung einer Session (z.B. SIP),
 - Ankündigung einer Session (z.B. SAP oder auch ganz einfach per E-mail);
 - Änderung von Parametern,

oder andere sein.

RFC 2327

NGN-Steuerprotokolle – SDP Protokoll-Elemente

Notwendige Elemente			
V	version	Version des Protokolls	
0	owner	Besitzer der Sitzung	
S	session	Name der Sitzung	
t	time	Dauer der Sitzung, eine <i>Time Description</i> folgt	
m	media	Name/Adresse des Media-Stromes, <i>Media Description</i> folgt	
Optionale Elemente			
i	information	session information	
u	URI	identifier of the session description	
е	e-mail	e-mail address of the session owner	
р	phone	phone number of the session owner	
Z	zone	time zone adjustment	
Optionale Elemente für eine Media Description			
•••			
Optionale Elemente für eine Time Description			

NGN-Steuerprotokolle - SIP-Nachricht - Beispiel (2)

Nach dem Nachrichtenkopf folgt die Beschreibung der Session, die "Session Description".

v=0	Version des benutzen SDP-Protokolls
o=orla 12345 789 IN IP4 174.204.2.25	Owner, "Besitzer" der Session, (Benutzername, Session-ID, Version, Netztyp, Adresse,)
s=This is a SDP-Test.	Subject
e=orla@mail.de Start Line Msg.Header	Adresse, unter der der Kommunikationspartner erreicht werden kann (e-mail)
c=IN IP4 224.2.1.1/32	Called IP-Adresse der Session und "time to live"
b=CT:64 Message	Bandbreite, z.B. "Conference Total", 64 kbit/s
t=3122064000 0	Time für Start und Stop gemäß Network Time Protocol (NTP). Hier: kein Ende spezifiziert
m=audio 3456 RTP/AVP 0	Media-Stream (Typ, Portnummer, Transport- Protokoll, Profil Format z.B. Codierung)
a=rtpmap:0 PCMU/8000	Attribut: Angaben zur Codierung
m=application 32416 udp wb	ein zweiter Media Stream
a=orient:portrait	Attribut: Option zur Darstellung

NGN-Steuerprotokolle MEGACO - Media Gateway Control Protocol - Architektur

Decomposed Gateway

Das gesamte Gateway besteht aus drei Komponenten:

Signalling Gateway

konvertiert nur die Transportprotokolle der Signalisierungsinformation, z.B. bei #7-Zeichengabe die Message Transfer Parts (MTP) 1 bis 3; der ISUP wird transparent zum MGC geleitet, z.B. mit SCTP über IP.

- Media Gateway
 konvertiert die Nutzinformation
- Media Gateway Controller (MGC) steuert das ganze Gateway, versteht SIP und z.B. #7-Zeichengabe (ISUP), stellt die Parameter für das Media Gateway ein.

Zwischen Media Gateway und Media Gateway Controller wird ein Protokoll benötigt.

ISUP = ISDN User Part SCTP = Stream Control Transmission Protocol

NGN-Steuerprotokolle – MEGACO Architektur (1)

Einfacher Context

NGN-Steuerprotokolle – MEGACO Architektur (2)

Beispiel für einen Befehl:

<u>ADD</u> - fügt eine Termination einem Context hinzu; falls der Context noch nicht existiert, wird er erzeugt.

NGN-Steuerprotokolle MEGACOP - Beispiel eines Message-Flows

NGN-Steuerprotokolle – Softswitch / Call Server

- Bei einem "Softswitch" oder "Call Server" handelt es sich um die Kombination der Funktionen:
 - SIP-Proxy (Stateful)
 - Registrar Server
 - Media Gateway Controller
- Er ist das Kernelement der Telefonie im NGN mit den Aufgaben:
 - Steuerung der Nutzverbindung
 - Steuerung des Media Gateways
 - Registrierung
 - Authentisierung, Authorisierung
 - Gebührenerfassung
 - Verwaltung von Teilnehmern
 - Netzmanagement
 - Zugriff auf weitere Server

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
 - Grundlagen
 - Architekturen
 - Qualität im NGN
 - NGN-Steuerprotokolle (H.323, SIP, MEGACO)
 - Adressierung
 - Einführung
- Die Zukunft
- Zusammenfassung

Nummerierung im Telefonnetz

- Telefonnummern nach ITU-T Empfehlung E.164:
 - geografische Nummern
 - Nummern f
 ür Netze
 - Nummern f
 ür Dienste
 - weitere in der Diskussion (z.B. f
 ür Regionen)
- Aber: das ist heute nicht mehr die einzige Kontaktmöglichkeit:
 - Mobiltelefon
 - FAX
 - E-mail
 - IP-Telefonie
 - Unified Messaging

Nummerierung bei der IP-Telefonie – Aufgabe

- Technisch wird für das Routing eine IP-Adresse benötigt, der Teilnehmer wird aber über eine benutzerfreundlichere URL bzw. URI angesprochen (SIP-URI)
- Aber:
 - Der Kunde hat nach wie vor andere Kontaktmöglichkeiten.
 - Wie findet man Dienste im Internet, wenn nur die Telefonnummer bekannt ist?
 - Wie geht das Netz mit den verschiedenen Nummern und Adressen um?

Nummerierung bei der IP-Telefonie – Die Lösung: ENUM

- Die IETF hat unter dem Namen ENUM ein "Telephone Number Mapping" spezifiziert:
 - basierend auf dem Domain Name System (DNS) unter der Top-Level Domain .arpa (Address and Routing Parameter Area)
 - benutzt die Telefonnummer als Basis
 - liefert alle Kontaktdaten in Form von NAPTR-Records umgekehrte Reihen-(Naming Authority Pointer) durch Punkte getrennt folge der Ziffern,
- Beispiel:

+49 711 1234 Telefonnummer:

4.3.2.1.1.1.7.9.4.e164.arpa DNS Anfrage:

DNS liefert: sip:orla@xynet.de

mailto:orla@xynet.de

Nummerierung bei der IP-Telefonie – ENUM Ablauf

Nummerierung bei der IP-Telefonie – ".tel"-Domain

- Normale DNS-Abfragen liefern zu einem Domain-Name eine IP-Adresse.
- Die .e164.arpa-Domain liefert keine IP-Adresse, sondern einen NAPTR-Record, wobei der Eingabeparameter die Telefonnummer ist.
- Jetzt kam der Wunsch auf, den NAPTR-Record auch unter einer "klassichen" Domain-Angabe abrufen zu können.
- Dazu wurde die .tel-Domain geschaffen:

abc.xynet.tel

 Seit Dezember 2008 können .tel-Domains bei Telnic registriert werden.

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
 - Grundlagen
 - Architekturen
 - Qualität im NGN
 - NGN-Steuerprotokolle (H.323, SIP, MEGACO)
 - Adressierung
 - Einführung
- Die Zukunft
- Zusammenfassung

NGN-Einführung

Vier Szenarien lassen sich unterscheiden - die jeweiligen Randbedingungen bestimmen, welches Szenario zum Einsatz kommt.

- Greenfield Szenario wo noch keine Telefonie-Infrastruktur vorhanden ist, z.B. in HFC-Netzen.
- Growth Szenario in PSTN-Wachstumsmärkten Beispiel: China
- Overlay Szenario in saturierten PSTN-Märkten Beispiel: fast alle "Incumbants"
- Replacement Szenario als PSTN-Substitution
 Beispiele: Osteuropa (von Analogtechnik direkt nach NGN),
 England (Austausch veralteter Technik bei BT),
 USA (Austausch der Digitaltechnik bei Verizon)

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
- Die Zukunft
 - Arbeitsgebiete von NGN
 - Konvergenz
 - Triple Play
- Zusammenfassung

NGN – Was bleibt noch zu tun?

Einige Eigenschaften eines normalen Telefonnetzes (PSTN) sind nach wie vor in Diskussion:

Und die Frage nach der **Qualität** (End-to-End QoS) bleibt ein Dauerbrenner ... (MOS-Wert, E-Model)

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
- Die Zukunft
 - Arbeitsgebiete von NGN
 - Konvergenz
 - Triple Play
- Zusammenfassung

Die Telekommunikation im Umbruch

- Oben wurde schon mehrfach die zunehmende Verwischung von Grenzen zwischen den einzelnen Bereichen angesprochen.
- Systematisch werden solche Effekte studiert, seit mit dem Beginn des 21. Jahrhunderts der Datenverkehr (meist aus Internet-Nutzungen resultierend) den Sprachverkehr (Telefonie) in den Kommunikationsnetzen überholt hat.
- Eines der wichtigsten Schlagworte ist derzeit "Konvergenz".

Was heißt nun "Konvergenz"?

Was heißt "Konvergenz"?

Konvergenz (zu spätlateinisch *convergere*, sich hinneigen) bedeutet allgemein Annäherung (auch: das Zusammenstreben, das Aufeinanderzugehen, Ggs. Divergenz) oder Übereinstimmung (von Meinungen, Zielen, etc.).

In vielen Fachgebieten haben sich spezielle Bedeutungen entwickelt.

de.wikipedia.org

In der **Mathematik** (Analysis): eine Kurve nähert sich einem Grenzwert oder einer anderen Kurve.

 In der Mathematik (Analysis): eine Kurve nähert sich einem Grenzwert oder einer anderen Kurve.

In der **Biologie**: die unabhängige, aber ähnliche Evolution von Körpermerkmalen bei verschiedenen Arten aufgrund ähnlicher Bedingungen.

In der Mathematik (Analysis): eine Kurve nähert sich einem Grenzwert oder einer anderen Kurve.

 In der Biologie: Verschiedene Evolutionspfade gehen in die gleiche Richtung

In der Fernsehtechnik: Die Farbstrahlen der Bildröhre treffen sich in einem Punkt.

- In der Mathematik (Analysis): eine Kurve nähert sich einem Grenzwert oder einer anderen Kurve.
- In der Biologie: Verschiedene Evolutionspfade gehen in die gleiche Richtung

Im Bereich von Information und Kommunikation: einheitliche Netze, durchgängige Dienste usw.

Warum beschäftigen wir uns mit Konvergenz?

Anforderungen des Kunden:

- Sprachkommunikation in gewohnter Qualität
- Breitbandige IP-Kommunikation
- Unterstützung kritischer Datendienste im Geschäftsbereich
- Dienste-Angebot unabhängig vom Netz
- Dienstangebot unabhängig vom Endgerät (soweit möglich)

Anforderungen des Netzbetreibers:

- Reduktion der Betriebskosten
- Angebot neuer, netzübergreifender Dienste in hoher bzw. abgestufter Qualität (= mehr Umsatz mit den Kunden)
- Evolutionärer Ansatz das schließt "Interworking" ein

Konvergenz aus Sicht des Nutzers 1

"Konvergenz ist, wenn ich mit dem Handy fern sehe und das Garagentor öffne"

- Eigentlich handelt es sich hier nur um ein "multifunktionales" Endgerät.
- Ist das Konvergenz? ... allenfalls im Endgerät ...

Konvergenz aus Sicht des Nutzers 2

"Konvergenz ist, wenn der PC den Fernseher aus dem Wohnzimmer verdrängt."

- > Ist das Konvergenz?
 - ... hier hat man die Rechnung ohne den Nutzer gemacht ...

Konvergenz aus Sicht des Nutzers 3

Welche Typen von "Konvergenz" betrachten wir?

Für unsere Betrachtungen unterscheiden wir verschiedene Typen von Konvergenz:

- Sprach-Daten-Konvergenz
- Fixed-Mobile-Konvergenz

 Konvergenz der Telekommunikation und der Medien

Allgemein lässt sich die Konvergenz visualisieren:

Konvergenz visualisiert 1

Konvergenz visualisiert 2

Konvergenz - Ausflug in die Telematik 1

Konvergenz - Ausflug in die Telematik 2

Konvergenz - Ausflug in die Telematik 3

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
- Die Zukunft
 - Arbeitsgebiete von NGN
 - Konvergenz
 - Triple Play
- Zusammenfassung

IPTV & Triple Play

Auch das Zugangsnetz muss berücksichtiget werden:

IPTV & Triple Play – Chancen

Aber Triple Play ist mehr als nur Sprache, Internet und Fernsehen:

Inhalt

- Einleitung
- Sprache im PSTN und im Internet
- NGN
- Die Zukunft
- Zusammenfassung

Zusammenfassung

- Ein Netz, das viele Funktionen und Medien in einer homogenen Welt bereitstellt, erlaubt die Entwicklung neuer Dienste.
- Das NGN ist die Lösung für das konvergente Netze ein Netz für alle Dienste.
- Die Sprachkommunikation ist auch in der neuen Kommunikationswelt einer der Grundpfeiler.
- In der neuen Kommunikationswelt bedeutet Sprachkommunikation: "VoIP".
- Um Telefon-Verkehr über IP-basierte Netze zu transportieren sind geeignete Mechanismen zur Bereitstellung der erforderlichen Qualität notwendig.
- Von den zwei konkurrierenden Protokoll-Vorschlägen für die Ruf- und Verbindungssteuerung (H.323 und SIP) setzt sich SIP immer mehr durch.
- Für die Steuerung der Gateways ist H.248/MEGACO unumstritten.

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Harald Orlamünder harald.orlamuender@t-online.de