Machine Learning and Data Mining

L02: Data Processing Part 1

Lecturer: Mark Cieliebak

Lecture Plan

- 1. Introduction
- 2. Data Processing
- 3. Evaluation
- 4. Recommender Systems
- 5. Association Rules
- 6. Linear/Logistic Regression
- 7. Support Vector Machines
- 8. Decision Trees + Naive Bayes
- 9. Clustering
- 10. Deep Learning
- 11. Guest Lectures
- 12. Exam Preparation / Lecture Wrapup

Repetition

Previous Lecture

- Current rise of AI is based on Data,
 Computation Power, Expertise and
 Algorithms
- Data Mining discovers patterns in large amounts of data
- Machine Learning uses patterns in data to perform a specific task
- Machine Learning Types:
 - Unsupervised
 - Supervised
 - Reinforcement Learning

Reinforcement Learning Model

- At each step t the agent:
 - \blacksquare Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

Examples of Reinforcement Learning

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play Atari games better than humans
- Autonomous cars

Sample World: Mice and Cheese

https://medium.com/@julsimon/talk-an-introduction-to-reinforcement-learning-e26177338787

Agent is the mouse

Actions: go up, down, left, right

Reward:

- zero reward for blank cell
- positive for finding cheese
- negative for electric shock
- very negative for meeting cat

Episode: until mouse dies or max 50 steps

Learning Objectives

- Understand the process of "Knowledge Discovery in Databases" (KDD)
- Distinguish between different data types and data classes
- Understand data preprocessing, cleaning, and exploration

Knowledge Discovery in Databases

- KDD is the process of (semi-) automatic extraction of knowledge from databases which is
 - valid
 - previously unknown
 - and potentially useful
- Interdisciplinary field
 - Scalability for large databases
 - Integration from different sources
 - Novel data types (e.g., text)

- Different paradigms of learning
- Hypothesis spaces
- Search strategies

- Probabilistic knowledge
- Model-based inferences
- Evaluation of knowledge

Database Systems Machine Learning

Statistics

Knowledge Discovery in Databases

- Interactive and iterative process
- Continuous optimization of the different tasks

Data

- Has many sources, e.g.
 - sensor data
 - survey data
 - simulation data
 - social media data
 - textual data
 - financial data
 - multimedia data
 - ERP systems data
- Independent of the data
 source, each data point has
 a data type

Data Types

Nominal Data

- Nominal scales are used for labeling variables, without any quantitative value
- No numerical significance
- Nominal data has no order.
- Scales could simply be called "labels"

- gender
- hair color
- race
- marital status

Data Types

Ordinal Data

- Represent discrete and ordered units
- Nearly the same as nominal data, except that it's ordering matters
- No distance between the different categories

- military rank
- movie rating by number of stars
- educational background
- difficulty of cooking recipe

Numeric Data Types

Discrete Numeric Data

- Represent items that can be counted
- Values may go from 0, 1, 2, on to infinity (making it countably infinite)

- Number of persons in a room
- Number of "heads" in 100 coin flips

Numeric Data Types

Continuous Numeric Data

- Also known as "Interval Data"
- Often measurements
- Possible values cannot be counted and can only be described using intervals on the real number line.

- Exact amount of gas purchased at the pump for cars with 20gallon (represented by [0, 20]
- time e lapsed in a 100m run
- lifetime of a battery (0 hours to an infinite number of hours)

Typical Data Classes

- One-dimensional data
- Multi-dimensional data
- Network data
- Hierarchical data
- Time-series
- Geographic data

Question

Give examples for data types / classes that you could use to describe the movement of a flock of lions.

- Nominal?
- Ordinal?
- Numeric?
- Network Data?
- Hierarchical?
- Time-Series?
- Geographic?

Data Cleaning

- Process of improving the data quality
- Low-quality data will lead to low-quality mining results
- Removing or modifying incorrect or improperly formatted data

Example dataset "Breaking Bad":

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset	25.10.2011	9.3	6	3	47
grilled	20.12.2009	9.3	2	2	46

Which data issues can you find in this data?

id	title	date	rating	episode	season	length
1	live free or die	01.11.2012	9.3	1	5	43
2	madrigal	06.12.2013	89	2	5	48
3	sunset	25.10.2011	9.3	6	3	47
4	grilled	20.12.2009	9.3	2	2	46
5	down	42.12.2009	8.3	4	2	333
6	cancer man	19.10.2008	8.3	4	1	48
7	live fre or die	01.11.2012	9.3	1	5	43

firstname	lastname	bdate	age	gender	phone
bryan	cranston	03-07-1956	65	1	999-9999
aaron	paul	27-08-1979	44	m	777-53474
anna, gunn	gunn	08-11-1968	52	0	040-15627

Example dataset "Breaking Bad":

id	title	date	rating	episode	season	length
1	live free or die	01.11.2012	9.3	1	5	43
2	madrigal	06.12.2013	89	2	5	48
3	sunset	25.10.2011	9.3	6	3	47
4	grilled	20.12.2009	9.3	2	2	46
5	down	42.12.2009	8.3	4	2	333
6	cancer man	19.10.2008	8.3	4	1	48
7	live fre or die	01.11.2012	9.3	1	5	43

Data Cleaning: (Near) Duplicates

- Compare the content of the attributes
 - For numeric values: cosine similarity of feature vectors
 - For text: pairwise Levensthein distance between the texts

	1	2	3	4	5	6	7
live free or die	0	15	15	14	15	13	1
madrigal	15	0	8	7	7	7	14
sunset	15	8	0	6	6	8	14
grilled	14	7	6	0	7	10	13
down	15	7	6	7	0	9	14
cancer man	13	7	8	10	9	0	12
live fre or die	1	14	14	13	14	12	0

QUESTION: Missing Values

How could you deal with missing values?

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset	25.10.2011		6	3	47
grilled	20.12.2009	9.3	2	2	46
down	22.12.2009	8.3	4	2	
cancer man	19.10.2008	8.3	4	1	48
shotgun	09.11.2012	8.7	5	4	47

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset -	25. 10 .20 11		— — —	3— — —	47 -
grilled	20.12.2009	9.3	2	2	46
do wn —	22. 42 .20 00		4 — —	2 – –	
cancer man	19.10.2008	8.3	4	1	48
shotgun	09.11.2012	8.7	5	4	47

ignore the tuples

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset	25.10.2011	9.3	6	3	47
grilled	20.12.2009	9.3	2	2	46
down	22.12.2009	8.3	4	2	47
cancer man	19.10.2008	8.3	4	1	48
shotgun	09.11.2012	8.7	5	4	47

fill in the missing value manually

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset	25.10.2011	-1	6	3	47
grilled	20.12.2009	9.3	2	2	46
down	22.12.2009	8.3	4	2	-1
cancer man	19.10.2008	8.3	4	1	48
shotgun	09.11.2012	8.7	5	4	47

use a global constant

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset	25.10.2011	8.8	6	3	47
grilled	20.12.2009	9.3	2	2	46
down	22.12.2009	8.3	4	2	46.5
cancer man	19.10.2008	8.3	4	1	48
shotgun	09.11.2012	8.7	5	4	47

use the attribute mean

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset	25.10.2011	9.3	6	3	47
grilled	20.12.2009	9.3	2	2	46
down	22.12.2009	8.3	4	2	47
cancer man	19.10.2008	8.3	4	1	48
shotgun	09.11.2012	8.7	5	4	47

use the most probable value

- + can be easily done
- + no computational effort
- loss of information
- unnecessary if the attribute is not needed

ignore the tuple

- + for small datasets effective
- + "real" value
- not feasible for large datasets
- time consuming
- error-prone

enter value manually

- + simple to implement
- not the most accurate approximation of the value

use attribute mean

- + can be easily done
- + missing values are marked
- values can not be used in algorithms

use a global constant

- + most accurate approximation of the value
- most computational effort

use most probable value

Data Cleaning: Noisy Data

title	date	rating	episode	season	length
live free or die	01.11.2012	9.3	1	5	43
madrigal	06.12.2013	8.9	2	5	48
sunset	25.10.2011	9.3	6	3	47
grilled	20.12.2009	9.3	2	2	46
down	22.12.2009	8.3	4	2	91
cancer man	19.10.2008	8.3	4	1	48
shotgun	09.11.2012	8.7	5	4	47

Data Cleaning: Noisy Data

Example dataset "Breaking Bad":

Binning

 Sort data and partition into (equi-depth) bins and then smooth by bin means, bin median, bin boundaries, etc.

Regression

Smooth by fitting a regression function

Clustering

- Cluster data and remove outliers
- Fully automatic or via manual exploration

Equal-width Binning

- divides the range into N intervals of equal size
- width of intervals: width = (max min) / N
- simple method
- outliers may dominate result

Equal-depth Binning

- divides the range into N intervals
- each interval contains approximately the same number of records
- skewed data is also handled well

Equal-width Binning

- Sorted price values: 24, 28, 29, 35, 41, 41, 44, 45, 46, 48, 49, 54
- \blacksquare N = 3 (user-defined)
- Width = 54 24 / 3 = 10

Equal-width Binning

- sorted price values: 24, 28, 29, 35, 41, 41, 44, 45, 46, 48, 49, 54
- \blacksquare N = 3 (user-defined)
- width = 54 24 / 3 = 10

Equal-depth Binning

- Sorted price values: 24, 28, 29, 35, 41, 41, 44, 45, 46, 48, 49, 54
- N = 3

Equal-depth Binning

- Sorted price values: 24, 28, 29, 35, 41, 41, 44, 45, 46, 48, 49, 54
- N = 3

Equal-depth Binning

- Sorted price values: 24, 28, 29, 35, 41, 41, 44, 45, 46, 48, 49, 54
- N = 3
- Partition into 3 equal-depth bins:
 - **24**, 28, 29, 35], [41, 41, 44, 45], [46, 48, 49, 54]

Smoothing by bin means:

- replace each value by the mean value of the bin)
- **1** [29, 29, 29, 29], [43, 43, 43, 43], [49, 49, 49, 49]

Smoothing by bin boundaries:

- replace each value by closest boundary value
- **1** [24, 24, 24, 35], [41, 41, 45, 45], [46, 46, 46, 54]

Questions and Answers

Data Normalization

Goal: Change the values of numeric columns to a common scale, without distorting differences in the ranges of values

Canton	Population	Canton	Beer Consumption
Zürich	1539275	Zürich	12021124
Bern	1039474	Bern	7232844
Waadt	805098	Waadt	5195496
Aargau	685845	Aargau	4342480
St. Gallen	510734	St. Gallen	3195642
Genf	504128	Genf	3031348
Luzern	413120	Luzern	2212584
Tessin	351491	Tessin	1855445
Wallis	345525	Wallis	1522087
Freiburg	321783	Freiburg	1440590
Basel-Landschaft	289468	Basel-Landschaft	807930
Thurgau	279547	Thurgau	3936703
Solothurn	275247	Solothurn	716128

Goal: change the values of numeric columns to a common scale, without distorting differences in the ranges of values

Linear normalization

$$f_{lin}(v) = \frac{v - min}{\max - min}$$

Square root normalization

$$f_{sq}(v) = \frac{\sqrt{v} - \sqrt{min}}{\sqrt{max} - \sqrt{min}}$$

Logarithmic normalization

$$f_{ln}(v) = \frac{\ln(v) - \ln(\min)}{\ln(\max) - \ln(\min)}$$

TASK (2 min): The 3 unlabeled maps correspond to linear, square and logarithmic normalization. Which is which?

Lessons Learned

- KDD is the process of (semi-) automatic extraction of knowledge from databases
- KDD handles categorical and numerical data
- Data needs to be cleaned before analysis
- Data cleaning includes filling missing values, handling noisy data and normalization

Questions and Answers

SOLUTION: Data Issues

Which data issues can you find in this data?

id	title	date	rating	episode	season	length
1	live free or die	01.11.2012	9.3	1	5	43
2	madrigal	06.12.2013	89	2	5	48
3	sunset	25.10.2011	9.3	6	3	47
4	grilled	20.12.2009	9.3	2	2	46
5	down	42.12.2009	8.3	4	2	333
6	cancer man	19.10.2008	8.3	4	1	48
7	live fre or die	01.11.2012	9.3	1	5	43

firstname	lastname	bdate	age	gender	phone
bryan	cranston	03-07-1956	65	male	999-99999
aaron	paul	27-08-1979	24	0	777-53474
anna, gunn	gunn	08-11-1968	52	female	040-15627
betsy	brandt	03-14-1973	47	femalle	333-49858

Zürcher Hochschule für Angewandte Wissenschaften

SOLUTION: The 3 unlabeled maps correspond to linear, square and logarithmic normalization. Which is which?

