${\bf Homework}~{\bf 10}$

Study Sections 3.8 and 3.9.

1. Give a proof in natural deduction for each formula.
$(1) \ \forall x (P(x) \to P(x))$
$(2) \ \forall x ((P(x) \land Q(x)) \to P(x))$
$(3) \ \forall x (P(x) \to Q(x)) \to (\forall x (Q(x) \to R(x)) \to \forall x (P(x) \to R(x)))$
$(4) \ \forall x (P(x) \to Q(x)) \to (\forall x (P(x) \to R(x)) \to \forall x (P(x) \to (Q(x) \land R(x))))$
$(5) \ (P(a) \vee Q(b)) \to \exists x (P(x) \vee Q(x))$
(6) $(P(a) \land Q(b)) \to (\exists x P(x) \land \exists x Q(x))$
$(7) (\forall x P(x) \land \forall x Q(x)) \to \forall x (P(x) \land Q(x))$
$(8) \ \forall x (P(x) \land Q(x)) \to (\forall x P(x) \land \forall x Q(x))$
$(9) (\forall x P(x) \lor \forall x Q(x)) \to \forall x (P(x) \lor Q(x))$
$(10) \ \forall x (P(x) \to Q(x)) \to (\forall x P(x) \to \forall x Q(x))$
$(11) \ \exists x (P(x) \land Q(x)) \to (\exists x P(x) \land \exists x Q(x))$
$(12) (\exists x P(x) \lor \exists x Q(x)) \to \exists x (P(x) \lor Q(x))$
$(13) \ \exists x (P(x) \lor Q(x)) \to (\exists x P(x) \lor \exists x Q(x))$
$(14) (\exists x P(x) \to \exists x Q(x)) \to \exists x (P(x) \to Q(x))$
$(15) \neg \forall x P(x) \to \exists x \neg P(x)$
$(16) \ \forall x \neg P(x) \to \neg \exists x P(x)$
$(17) \neg \exists x P(x) \to \forall x \neg P(x)$
$(18) \ \exists x \neg P(x) \to \neg \forall x P(x)$
$(19) \ \forall x \forall y R(x,y) \to \forall y \forall x R(x,y)$
$(20) \exists y \forall x R(x,y) \to \forall x \exists y R(x,y)$
2. Let ψ be the formula $\forall x (P(x) \to P(f(x))) \to \forall x (P(x) \to P(f(f(x))))$. Write a proof in natural deduction, and a corresponding proof in English.
3. Fill in the blank of the proof.
Claim. The formula $\forall x \exists y R(x,y) \to \exists y \forall x R(x,y)$ is not valid.
<i>Proof.</i> Let $U = \square$ and $\bar{R} = \square$, and consider the structure $\mathcal{A} = (U, \bar{R})$.
(a) Given $x \in U$ take $y = \Box$. Then $\bar{R}(x,y)$ holds. So $\mathcal{A} \models \forall x \exists y R(x,y)$.
(b) In contrast, given $y \in U$ take $x = \square$. Then $\bar{R}(x,y)$ does not hold. So $\mathcal{A} \not\models \exists y \forall x R(x,y)$.
From (a)(b) we have $\mathcal{A} \not\models \forall x \exists y R(x,y) \to \exists y \forall x R(x,y)$.