```
Name: Om Gajanan Mane
                                         Roll no- E41039
exp 3:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity ha is
    Port ( Rst : in STD_LOGIC;
             sin: in STD_LOGIC;
             pin: in STD_LOGIC_VECTOR (3 downto 0);
             clk: in STD_LOGIC;
             mode: in STD_LOGIC_VECTOR (1 downto 0);
             so:out STD_LOGIC;
             po: out STD_LOGIC_VECTOR (3 downto 0));
end ha;
architecture Behavioral of ha is
signal temp : std_logic_vector(3 downto 0);
```

begin

```
process(clk, Rst)
begin
if(Rst ='1')then
temp <= "0000";
elsif( clk'event and clk='1') then
case mode is
when "00" => temp(3) <= sin;
temp(2 downto 0) <= temp (3 downto 1);
so <= temp(0);
when "01" => temp(3) <= sin;
temp(2 downto 0) <= temp (3 downto 1);
po <= temp;
when "10" => po<= pin;
when "11" => temp<= pin;
temp(2 downto 0) <= temp (3 downto 1);
so <= temp(0);
when others => null;
end case;
end if;
end process;
end Behavioral;
```

• RTL schematic -


```
    TestBench –

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY yhhh IS
END yhhh;
ARCHITECTURE behavior OF yhhh IS
    -- Component Declaration for the Unit Under Test (UUT)
    COMPONENT ha
    PORT(
           Rst: IN std_logic;
           sin : IN std_logic;
           pin : IN std_logic_vector(3 downto 0);
           clk: IN std_logic;
           mode : IN std_logic_vector(1 downto 0);
           so:OUT std_logic;
           po : OUT std_logic_vector(3 downto 0)
         );
    END COMPONENT;
   --Inputs
   signal Rst : std_logic := '0';
   signal sin : std_logic := '0';
   signal pin : std_logic_vector(3 downto 0) := (others => '0');
   signal clk : std_logic := '0';
   signal mode : std_logic_vector(1 downto 0) := (others => '0');
```

```
--Outputs
   signal so : std_logic;
   signal po : std_logic_vector(3 downto 0);
   -- Clock period definitions
   constant clk_period : time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
   uut: ha PORT MAP (
             Rst => Rst,
             sin => sin,
             pin => pin,
             clk => clk,
             mode => mode,
             so => so,
             po => po
          );
   -- Clock process definitions
   clk_process :process
    begin
                clk <= '0';
                wait for clk_period/2;
                clk <= '1';
                wait for clk_period/2;
   end process;
   -- Stimulus process
   stim_proc: process
    begin
```

```
Rst <= '1';
        wait for 100 ns;
        Rst <= '0';
        sin<= '1';
        pin<="1010";
        mode<= "00";
        wait for 100 ns;
        Rst <= '1';
        wait for 100 ns;
        Rst <= '0';
        sin<= '1';
        pin<="1010";
        mode<= "01";
        wait for 100 ns;
        -- hold reset state for 100 ns.
       --wait for 100 ns;
Rst <= '1';
        wait for 100 ns;
        Rst <= '0';
        sin<= '1';
        pin<="1010";
        mode<= "10";
        wait for 100 ns;
        Rst <= '1';
        wait for 100 ns;
        Rst <= '0';
```

```
sin<= '1';

pin<="1110";

mode<= "11";

wait for 100 ns;

wait for clk_period*10;

-- insert stimulus here

wait;

end process;
```

END;


```
NET "Clk" LOC = "P182";

NET "Rst" LOC = "P102";

NET "Mode(0)" LOC = "P93";
```

```
NET "Mode(1)" LOC = "P90";
NET "si" LOC = "P101";
NET "so" LOC = "p181";
NET "pin(0)" LOC = "P87";
NET "pin(1)" LOC = "P86";
NET "pin(2)" LOC = "P85";
NET "pin(3)" LOC = "P81";
NET "pin(4)" LOC = "P80";
NET "pin(5)" LOC = "P78";
NET "pin(6)" LOC = "P77";
NET "pin(7)" LOC = "P74";
NET "po(0)" LOC = "P162";
NET "po(1)" LOC = "P165";
NET "po(2)" LOC = "P166";
NET "po(3)" LOC = "P167";
NET "po(4)" LOC = "P168";
NET "po(5)" LOC = "P171";
NET "po(6)" LOC = "P172";
NET "po(7)" LOC = "P175";
Design Summary
Release 14.1 - xst P.15xf (nt64)
Copyright (c) 1995-2012 Xilinx, Inc. All rights reserved.
--> Parameter TMPDIR set to xst/projnav.tmp
Total REAL time to Xst completion: 0.00 secs
Total CPU time to Xst completion: 0.09 secs
```

--> Parameter xsthdpdir set to xst

Total REAL time to Xst completion: 0.00 secs			
Total CPU time to Xst completion: 0.09 secs			
> Reading design: ha.prj			
TABLE OF CONTENTS			
1) Synthesis Options Summary			
2) HDL Compilation			
3) Design Hierarchy Analysis			
4) HDL Analysis			
5) HDL Synthesis			
5.1) HDL Synthesis Report	5.1) HDL Synthesis Report		
6) Advanced HDL Synthesis			
6.1) Advanced HDL Synthesis Report			
7) Low Level Synthesis			
8) Partition Report			
9) Final Report			
9.1) Device utilization summary			
9.2) Partition Resource Summary	9.2) Partition Resource Summary		
9.3) TIMING REPORT			
=======================================			
* Synthesis O	ptions Summary *		
Source Parameters			
Input File Name	: "ha.prj"		
Input Format	: mixed		
Ignore Synthesis Constraint File : NO			
Target Parameters			
Output File Name	: "ha"		

Output Format : NGC

Target Device : xc3s400-5-pq208

---- Source Options

Top Module Name : ha

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

FSM Style : LUT

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : Yes

Shift Register Extraction : YES

Logical Shifter Extraction : YES

XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : Yes

Resource Sharing : YES

Asynchronous To Synchronous : NO

Multiplier Style : Auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 8

Register Duplication : YES

Slice Packing : YES

Use Clock Enable Use Synchronous Set	: Yes : Yes	
Use Synchronous Reset	: Yes	
Pack IO Registers into IOBs	: Auto	
Equivalent register Removal	: YES	
General Options		
Optimization Goal	: Speed	
Optimization Effort	:1	
Keep Hierarchy	: No	
Netlist Hierarchy	: As_Optimized	
RTL Output	: Yes	
Global Optimization	: AllClockNets	
Read Cores	: YES	
Write Timing Constraints	: NO	
Cross Clock Analysis	: NO	
Hierarchy Separator	:/	
Bus Delimiter	:<>	
Case Specifier	: Maintain	
Slice Utilization Ratio	: 100	
BRAM Utilization Ratio	: 100	
Verilog 2001	: YES	
Auto BRAM Packing	: NO	
Slice Utilization Ratio Delta	: 5	
=======================================	=======================================	=======
*	LIDI Compilation	*
	HDL Compilation	

Optimize Instantiated Primitives : NO

______ Design Hierarchy Analysis Analyzing hierarchy for entity <ha> in library <work> (architecture <behavioral>). _____ **HDL** Analysis ______ Analyzing Entity <ha> in library <work> (Architecture <behavioral>). Entity <ha> analyzed. Unit <ha> generated. **HDL Synthesis** ______ Performing bidirectional port resolution... Synthesizing Unit <ha>. Related source file is "D:/Softwares/B9/USR/ha.vhd". Found 1-bit register for signal <so>. Found 4-bit register for signal <po>. Found 4-bit 4-to-1 multiplexer for signal <po\$mux0000> created at line 53. Found 1-bit 4-to-1 multiplexer for signal <so\$mux0000> created at line 53. Found 4-bit register for signal <temp>. Found 1-bit 4-to-1 multiplexer for signal <temp_0\$mux0000> created at line 53. Found 1-bit 4-to-1 multiplexer for signal <temp_1\$mux0000> created at line 53. Found 1-bit 4-to-1 multiplexer for signal <temp_2\$mux0000> created at line 53. Found 1-bit 4-to-1 multiplexer for signal <temp 3\$mux0000> created at line 53. Summary: inferred 9 D-type flip-flop(s). inferred 9 Multiplexer(s). Unit <ha>> synthesized.

Architecture behavioral of Entity ha is up to date.

=======================================		=======	========
HDL Synthesis Report			
Macro Statistics			
		: 6	
# Registers			
1-bit register		: 5	
4-bit register		:1	
# Multiplexers		: 6	
1-bit 4-to-1 multiplexer		: 5	
4-bit 4-to-1 multiplexer		: 1	
=======================================		=======	========
=======================================		=======	========
*	Advanced HDL Synthesis		*
=======================================		=======	========
		=======	========
Advanced HDL Synthesis Rep	ort		
Macro Statistics			
# Registers		: 9	
Flip-Flops		: 9	
# Multiplexers		: 6	
1-bit 4-to-1 multiplexer		: 5	
4-bit 4-to-1 multiplexer		: 1	
=======================================		=======	========
=======================================		=======	=========
*	Low Level Synthesis		*
=======================================	·	=======	========
Optimizing unit <ha></ha>			
Mapping all equations			

Building and optimizing final netlist			
Found area constraint ratio of 100 (+ 5) on block ha, actual ratio is 0.			
Final Macro Processing			
			==
Final Register Report			
Macro Statistics			
# Registers		: 9	
Flip-Flops		: 9	
		=======================================	==
		=======================================	==
*	Partition Report		*
			==
Partition Implementation Status			
No Partitions were found in this	s design.		
			==
*	Final Report		*
		=======================================	==
Final Results			
RTL Top Level Output File Name	: ha.ngr		
Top Level Output File Name	: ha		
Output Format	: NGC		
Optimization Goal	: Speed		
Keep Hierarchy	: No		

Design	Statistics			
# IOs		: 14		
Cell Us	age :			
# BELS		: 20		
#	INV	:1		
#	LUT4	: 14		
#	MUXF5	: 5		
# FlipFl	lops/Latches	: 9		
#	FDC	: 4		
#	FDE	: 5		
# Clock	Buffers	:1		
#	BUFGP	:1		
# IO Bu	ıffers	: 13		
#	IBUF	: 8		
#	OBUF	:5		
	utilization summary:ed Device : 3s400pq208-5			
Numb	per of Slices:	7 out of 3584 0%		
Numb	per of Slice Flip Flops:	9 out of 7168 0%		
Numb	Number of 4 input LUTs: 15 out of 7168 0%			
Numb	per of IOs:	14		
Numb	per of bonded IOBs:	14 out of 141 9%		
Numb	per of GCLKs:	1 out of 8 12%		

Partition Resource Summary:

No Partitions were found in	n this design.	
TIMING REPORT		==========
	MBERS ARE ONLY A SYNTHESIS ESTIMAT	
	MING INFORMATION PLEASE REFER TO	THE TRACE REPORT
Clock Information:		
Clock Signal	++ Clock buffer(FF name)	Load
clk	++ BUFGP ++	9
Asynchronous Control Sign	nals Information:	
Control Signal	++ Buffer(FF name)	Load
Rst	IBUF	4
Timing Summary:		
Speed Grade: -5		

Minimum period: 2.661ns (Maximum Frequency: 375.806MHz)

Minimum input arrival time before clock: 3.284ns

Maximum output required time after clock: 6.306ns

Maximum combinational path delay: No path found

Timing Detail:
----All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'clk'

Clock period: 2.661ns (frequency: 375.806MHz)

Total number of paths / destination ports: 21 / 9

Delay: 2.661ns (Levels of Logic = 2)

Source: po_0 (FF)

Destination: po_0 (FF)

Source Clock: clk rising

Destination Clock: clk rising

Data Path: po_0 to po_0

		Gat	te Net
Cell:in->out	fanout	Delay	Delay Logical Name (Net Name)
FDE:C->Q		3 0.626	5 1.066 po_0 (po_0)
LUT4:10->0		1 0.479	0.000 Mmux_po_mux00003_G (N25)
MUXF5:I1->0		1 0.314	0.000 Mmux_po_mux00003 (po_mux0000<0>)
FDE:D		0.176	6 po_0
Total		2.661	ns (1.595ns logic, 1.066ns route)
	(59.9% logic, 40.1% route)		

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'

Total number of paths / destination ports: 45 / 14 Offset: 3.284ns (Levels of Logic = 2) Source: Rst (PAD) Destination: po_0 (FF) Destination Clock: clk rising Data Path: Rst to po_0 Gate Net Cell:in->out Fanout Delay Delay Logical Name (Net Name) 5 0.715 0.783 Rst_IBUF (Rst_IBUF) IBUF:I->O INV:I->O 5 0.479 0.783 Rst_inv1_INV_0 (Rst_inv) FDE:CE 0.524 po 0 3.284ns (1.718ns logic, 1.566ns route) Total (52.3% logic, 47.7% route) ______ Timing constraint: Default OFFSET OUT AFTER for Clock 'clk' Total number of paths / destination ports: 5 / 5 Offset: 6.306ns (Levels of Logic = 1) Source: po_3 (FF) Destination: po<3> (PAD) Source Clock: clk rising Data Path: po_3 to po<3> Gate Net Cell:in->out fanout Delay Delay Logical Name (Net Name)

FDE:C->Q 3 0.626 0.771 po_3 (po_3)

OBUF:I->O 4.909 po_3_OBUF (po<3>)

Total 6.306ns (5.535ns logic, 0.771ns route)

(87.8% logic, 12.2% route)

Total REAL time to Xst completion: 4.00 secs

Total CPU time to Xst completion: 3.91 secs

-->

Total memory usage is 4493184 kilobytes

Number of errors : 0 (0 filtered)

Number of warnings: 0 (0 filtered)

Number of infos : 0 (0 filtered)