5 Fixed Points and Perturbation

Problems Related to Fundamental Definitions

- 11/10: **1.** Are the following real functions Lipschitz continuous near 0? If yes, find a Lipschitz constant for some interval containing 0.
 - $(1) 1/(1-x^2).$

Proof. Yes. Consider the interval [-0.5, 0.5]. Then we may take

$$L = \frac{16}{9}$$

(2) $x \log |x|$.

Proof. No.

(3) $x^2 \sin(1/x)$.

Proof. If we take the piecewise function consisting of the above expression on $\mathbb{R} \setminus \{0\}$ and 0 at 0, then yes. Consider the interval [-1,1]. Then we may take

L=2

2. Find the first two elements $y_1(t), y_2(t)$ for the Picard iteration sequence of the following initial value problems, and estimate the error between $y_2(t)$ and the actual solution. Since they are all of separable form, the actual solutions can be explicitly found.

(1)
$$y' = 1 + y^2$$
, $y(0) = 0$.

Proof. We take $y_0(t) = 0$. Then

$$y_1(t) = y_0(0) + \int_0^t [1 + y_0(t)^2] dt$$
$$= \int_0^t [1 + 0] dt$$
$$y_1(t) = t$$

and

$$y_2(t) = y_0(0) + \int_0^t [1 + y_1(t)^2] dt$$
$$= \int_0^t [1 + t^2] dt$$
$$y_2(t) = t + \frac{t^3}{3}$$

The error is between y_2 and the actual solution $y(t) = \tan(t)$ is given by

$$\varepsilon = \tan(t) - t - \frac{t^3}{3}$$

(2)
$$y' = 2ty$$
, $y(0) = 1$.

Proof. We take $y_0(t) = 1$. Then

$$y_1(t) = y_0(0) + \int_0^t 2t y_0(t) dt$$
$$= 1 + \int_0^t 2t dt$$
$$y_1(t) = 1 + t^2$$

and

$$y_2(t) = y_0(0) + \int_0^t 2ty_1(t) dt$$
$$= 1 + \int_0^t [2t + 2t^3] dt$$
$$y_2(t) = 1 + t^2 + \frac{t^4}{2}$$

The error is between y_2 and the actual solution $y(t) = e^{t^2}$ is given by

$$\varepsilon = e^{t^2} - 1 - t^2 - \frac{t^4}{2}$$

(3) y' = y/(1-t), y(0) = 1.

Proof. We take $y_0(t) = 1$. Then

$$y_1(t) = y_0(0) + \int_0^t \frac{y_0(t)}{1 - t} dt$$
$$= 1 + \int_0^t \frac{1}{1 - t} dt$$
$$y_1(t) = 1 - \ln|1 - t|$$

and

$$y_2(t) = y_0(0) + \int_0^t \frac{y_1(t)}{1 - t} dt$$

$$= 1 + \int_0^t \frac{1 - \ln|1 - t|}{1 - t} dt$$

$$y_2(t) = 1 - \ln|1 - t| + \frac{1}{2}(\ln|1 - t|)^2$$

The error between y_2 and the actual solution $y(t) = e^{-\ln|1-t|}$ is given by

$$\varepsilon = e^{-\ln|1-t|} - 1 + \ln|1-t| - \frac{1}{2}(\ln|1-t|)^2$$

3. Check whether the implicit equation F(x,y) = 0 uniquely determines an explicit function y = f(x) around the given point (x_0, y_0) . If it does, compute $f'(x_0)$.

(1) For
$$(x,y) \in \mathbb{R}^2$$
, $F(x,y) = x^2 + y^2 - 1$, $(x_0, y_0) = (\sqrt{2}/2, -\sqrt{2}/2)$.

Proof. From the implicit equation, we have that

$$0 = x^2 + y^2 - 1$$
$$y = \pm \sqrt{1 - x^2}$$

Since

$$-\frac{\sqrt{2}}{2} = -\sqrt{1 - \left(\frac{\sqrt{2}}{2}\right)^2}$$
$$y_0 = -\sqrt{1 - x_0^2}$$

our explicit function is uniquely determined around (x_0, y_0) .

Moreover, we can compute that

$$f'(x_0) = \frac{2x_0}{2\sqrt{1 - x_0^2}}$$
$$f'(x_0) = 1$$

(2) For $(x,y) \in \mathbb{R}^2$, $F(x,y) = x^2 - y^2 - 1$, $(x_0, y_0) = (1,0)$.

Proof. From the implicit equation, we have that

$$0 = x^2 - y^2 - 1$$
$$y = \pm \sqrt{x^2 - 1}$$

Since

$$y_0 = \sqrt{x_0^2 - 1} \qquad \qquad y_0 = -\sqrt{x_0^2 - 1}$$

our explicit function is not uniquely determined around (x_0, y_0) .

(3) For $(x,y) \in \mathbb{R}^2$, $F(x,y) = xe^y + y$, $(x_0, y_0) = (0,0)$.

Proof. We apply the implicit function theorem.

F is defined on a subset of \mathbb{R}^2 , as desired.

We have that

$$\frac{\partial F}{\partial x} = e^y \qquad \qquad \frac{\partial F}{\partial y} = xe^y + 1$$

Since both of the above partial derivatives are continuous, F is continuously differentiable on its domain, as desired.

 $(x_0, y_0) = (0, 0) \in \mathbb{R}^2$, which is the domain of F, as desired.

 $F(x_0, y_0) = 0e^0 + 0 = 0$, as desired.

The truncated Jacobian matrix is 1×1 and contains a nonzero element at (x_0, y_0) — in particular, it contains $\partial F/\partial x$ — as desired.

Therefore, our explicit function is uniquely determined around (x_0, y_0) .

Moreover, we can compute that

$$f'(x_0) = -\left(\frac{\partial F}{\partial y}\right)^{-1} \cdot \frac{\partial F}{\partial x}$$
$$= -\left(0e^0 + 1\right)^{-1} \cdot e^0$$
$$\boxed{f'(x_0) = -1}$$

Problems Involving the Banach Fixed Point Theorem

1. (1) Show that the condition "constant q < 1" in the statement of the Banach fixed point theorem is not redundant. You may give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which satisfies the strict inequality |f(x) - f(y)| < |x - y| but does not have a fixed point.

Proof. Choose

$$f(x) = \begin{cases} 1 & x \le 0 \\ x + e^{-x} & x > 0 \end{cases}$$

The fact that

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \begin{cases} 0 & x \le 0\\ 1 - \mathrm{e}^{-x} & x > 0 \end{cases}$$

implies that |df/dx| < 1 for all x. Hence, f satisfies the desired strict inequality. Additionally, since the graph of f(x) > x for all x (as can be readily verified from its definition), it has no fixed point, as desired.

(2) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a Lipschitz mapping with uniform Lipschitz constant q < 1, that is,

$$|f(x) - f(y)| < q|x - y|$$

for all $x, y \in \mathbb{R}^n$. Prove that the mapping $x \mapsto x + f(x)$ is invertible with Lipschitz continuous inverse.

Proof. Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be defined by g(x) = x + f(x). To prove that g is invertible, it will suffice to show that g is one-to-one, that is, for every $b \in \mathbb{R}^n$, there exists a unique $a \in \mathbb{R}^n$ such that g(a) = b. Let $b \in \mathbb{R}^n$ be arbitrary. Define $h: \mathbb{R}^n \to \mathbb{R}^n$ by h(x) = b - f(x). Then since

$$|h(x) - h(y)| = |[b - f(x)] - [b - f(y)]|$$

= $|f(y) - f(x)|$
= $|f(x) - f(y)|$
 $\le q|x - y|$

we have by the Banach fixed point theorem that there exists a unique $a \in \mathbb{R}^n$ such that a = h(a). It follows that

$$a = b - f(a)$$

$$a + f(a) = b$$

$$g(a) = b$$

as desired.

To prove that g^{-1} is Lipschitz continuous, it will suffice to show that

$$|g^{-1}(x) - g^{-1}(y)| \le \frac{1}{1-q}|x-y|$$

for all $x, y \in \mathbb{R}^n$. Let $x, y \in \mathbb{R}^n$ be arbitrary. Define $a = g^{-1}(x)$ and $b = g^{-1}(y)$. Then since the first term below is nonnegative (as the product of two nonnegative numbers), we have that

$$(1-q)|a-b| = |a-b| - q|a-b|$$

$$\leq |a-b| - |f(a) - f(b)|$$

$$= |a-b| - |f(b) - f(a)|$$

$$= ||a-b| - |f(b) - f(a)||$$

$$\leq |[a-b] - [f(b) - f(a)]|$$

$$= |[a+f(a)] - [b+f(b)]|$$

$$= |g(a) - g(b)|$$

It follows by returning the substitution that

$$|(1-q)|g^{-1}(x) - g^{-1}(y)| \le |x-y|$$
$$|g^{-1}(x) - g^{-1}(y)| \le \frac{1}{1-q}|x-y|$$

as desired. \Box

2. Consider the following iterative algorithm to compute the square root of a given a > 1.

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

(1) Show that the function

$$F(x) = \frac{1}{2} \left(x + \frac{a}{x} \right)$$

meets the requirements of the contraction mapping principle on the closed interval $[\sqrt{a/2}, a]$. Prove that $x_n \to \sqrt{a}$.

Proof. We want to show that

$$|F(x) - F(y)| < q|x - y|$$

for some $q \in (0,1)$ and all $x, y \in [\sqrt{a/2}, a]$.

We have that

$$|F(x) - F(y)| = \left| \frac{1}{2} \left(x + \frac{a}{x} \right) - \frac{1}{2} \left(y + \frac{a}{y} \right) \right|$$

$$= \frac{1}{2} \left| (x - y) + \left(\frac{a}{x} - \frac{a}{y} \right) \right|$$

$$= \frac{1}{2} \left| (x - y) + a \cdot \frac{y - x}{xy} \right|$$

$$= \frac{1}{2} \left| \left(1 - \frac{a}{xy} \right) (x - y) \right|$$

$$= \frac{1}{2} \left| 1 - \frac{a}{xy} \right| |x - y|$$

(2) For a = 2, start the iteration $x_{n+1} = F(x_n)$ with $x_0 = 1$. Use a calculator to compute the first 10 values of this iteration, up to 11 digits after the decimal point. Compare it with the exponentially converging sequence 1.4, 1.41, 1.414, 1.4142, Which of the two algorithms is better?

Proof. We have that

 $x_0 = 1$ $x_1 = 1.5$ $x_2 = 1.41666666667$ $x_3 = 1.41421568627$ $x_4 = 1.41421356237$ $x_5 = 1.41421356237$ $x_6 = 1.41421356237$ $x_7 = 1.41421356237$ $x_8 = 1.41421356237$ $x_9 = 1.41421356237$ $x_{10} = 1.41421356237$

The algorithm from part (1) is better.

(3) Try to estimate the error $|x_n - \sqrt{a}|$ as well as possible. *Hint*. There should be something related to an iterative sequence $\{b_n\}$ satisfying

$$b_{n+1} \le Mb_n^2$$

You should prove that the sequence converges to zero faster than any geometric progression. Context: This algorithm is referred to as **Newton's method**. It is a rapidly converging algorithm to find zeros/fixed points of functions, capable of giving very precise approximations within very few steps. A variation of it, called the **Nash-Moser technique**, is a very powerful tool for proving the existence of solutions to nonlinear differential equations.