Aufgabe 6

Es sei E die Menge aller (geeignet codierten) Turingmaschinen M mit folgender Eigenschaft: Es gibt eine Eingabe w, so dass M gestartet auf w mindestens 1000 Schritte rechnet und dann irgendwann hält.

Das Halteproblem auf leerer Eingabe H_0 ist definiert als die Menge aller Turingmaschinen, die auf leerer Eingabe gestartet, irgendwann halten.

(a) Zeigen Sie, dass E unentscheidbar ist (etwa durch Reduktion vom Halteproblem H_0).

zu zeigen: $L_H \leq L \rightarrow L$ ist genauso unentscheidbar wie L_H

Eingabeinstanzen von $L_H(TM(M), u)$ durch Funktion umbauen in Eingabeinstanzen von L(TM(M')).

Idee: Turingmaschine so modifizieren, dass sie zunächst 1000 Schritte macht und dann M auf u startet.

Dazu definieren wir die Funktion $f: \Sigma^* \to \Sigma^*$ wie folgt:

$$f(u) = \begin{cases} c(M') & \text{falls } u = c(M')w \text{ ist für eine Turingmaschine } M \text{ und} \\ 0 & \text{sonst} \end{cases}$$
 Eingabe w

Dabei sei M' eine Turingmaschine, die sich wie folgt verhält:

- (i) Geht 1000 Schritte nach rechts
- (ii) Schreibt festes Wort w (für M' ist w demnach fest!)
- (iii) Startet M

total: ja

berechenbar: Syntaxcheck, 1000 Schritte über 1000 weitere Zustände realisierbar

Korrektheit: $u \in L_{halt} \Leftrightarrow u = c(M)w$ für TM M, die auf w hält $\Leftrightarrow f(u) = c(M')$, wobei M' 1000 Schritte macht und dann hält $\Leftrightarrow f(u) \in L$

- (b) Begründen Sie, dass E partiell entscheidbar ist.
- (c) Geben Sie ein Problem an, welches nicht einmal partiell entscheidbar ist.