CS5841/EE5841 Machine Learning

Lecture 8: MLOps and friends

Evan Lucas

Overview

- Course updates
- MLOps
 - Intro to concepts
- Practical
 - Source control
 - Sci-kit Learn
 - Experiment tracking
 - Building ML demos

Class updates

- Exam Friday!!
- Happy Valentine's Day

Happy Valentine's Day

state of the art for candy heart message generation in 2018 (GPT-2) [2]

state of the art for candy heart message generation in 2021 (GPT-3 DaVinci) [1]

^{[1] &}lt;a href="https://janellecshane.substack.com/p/okay-gpt-3-candy-hearts">https://janellecshane.substack.com/p/okay-gpt-3-candy-hearts

^[2] https://www.aiweirdness.com/candy-heart-messages-written-by-a-18-02-09/

ML in production

- ML is a tiny part of the complete system
- ML isn't always the answer
 - DL isn't always the answer

What takes the most time/money in real ML applications?

Data!!!

Amount of lost sleep over...

Typical MLOps Workflow*

- 1. Pick a metric
- Collect data + labels
- 3. Engineer features
- 4. Train models
- 5. Realize labels are bad, go get new labels
- Train model
- 7. Model performs poorly on one class -> collect more data for that class
- 8. Train model
- Collect new data, realize model performs poorly due to data drift
- 10. Collect more recent data and labels
- 11. Train model
- 12. Deploy model
- 13. Realize that you picked the wrong metric
- 14. Pick a new metric
- 15 Collect data + labels

*crying, praying, and daydreaming about \$\$\$ not included

Source control

- git
 - Probably most popular modern source control management tool
- Github is a great resource
 - Learn to use the CLI more powerful, faster
 - Website has almost everything the desktop app has
 - Integrates with VS Code
 - Students get freebies free private repos, Copilot, etc.

git

- Came out of Linux dev community to do version control on Linux kernel
 - Created by Linus Torvalds
- Intended for distributed development

Basic git workflow

File Status Lifecycle

Getting started with git

- Add SSH keys to your git profile
 - Check connection with \$ssh -T git@github.com
- Install git (typically already installed for Linux/Mac)
- Configure git
 - \$git config --global user.name NAME
 - \$git config --global user.email EMAIL
 - without these, your commits won't be signed

Using git

Common commands:

- init start a project
- add add a file to the tracked files
- commit commit a saved state of the tracked files
- push send your commits to the central repository
- pull get the commits last saved to the central repository
- checkout BRANCH tell git which branch to modify
- merge combine branches
- clone copy a repository
- help COMMAND get help for a command
- reset unstages a file

Scikit-Learn

- Package of classic machine learning algorithms
- Not always the most efficient implementations...
- https://scikit-learn.org/stable/index.html
- Demo!

Experiment tracking

- ML requires iterative experimentation
- Tracking changes in parameters/data/etc. is critical
- One suggested tool (free for small teams and students) is Weights & Biases (https://wandb.ai)

Simple model demos

- For sharing simple demos of a model
 - Gradio https://www.gradio.app/
 - Demo

Actual ML model integration

- Model inference on small inputs
 - Usually build an API for your model
 - FastAPI is common for Python projects
 - Full webpage with integrated model
 - Flask is a common option
- Model training or inference on large inputs
 - Containerize your model
 - Typically with Docker
 - Manage your containers with Kubernetes

Questions + Comments?

Slide sources and further reading

https://stanford-cs329s.github.io/syllabus.html

https://huyenchip.com/machine-learning-systems-desi qn/toc.html

https://fullstackdeeplearning.com/course/2022/

