Kettenregel

Mehrdimensionale Differenzierbarkeit

Für
$$z:=(z_1,\cdots,z_k)\in\mathbb{R}^k$$
 bezeichnen

$$pr_i : \mathbb{R}^k \to \mathbb{R}$$

 $pr_i(z) := \langle e_i, z \rangle_2 = z_i$

die Projektionen auf die i-te Koordinate.

Mehrdimensionale Differenzierbarkeit

Für zwei Funktionen $g: U \subset \mathbb{R}^n \to V \subset \mathbb{R}^m$ und $f: V \subset \mathbb{R}^m \to W \subset \mathbb{R}^l$ bezeichnet

$$f \circ g : U \to W$$

 $(f \circ g)(x) := f(g(x))$

die Hintereinanderausführung (Verkettung) von f und g.

Kettenregel

Mehrdimensionale Differenzierbarkeit

Eine Funktion $F:U\subset\mathbb{R}^n\to\mathbb{R}^m$ ist genau dann differenzierbar, wenn alle Koordinatenfunktionen

$$F_i: U \subset \mathbb{R}^n \to \mathbb{R}$$

 $F_i(x) := (pr_i \circ F)(x) := pr_i(F(x))$

differenzierbar sind.

Kettenregel

Beweis

Betrachte $dF = (dF_1, \dots, dF_m)$ zusammen mit dem Restglied $R(h) = (R_1(h), \dots, R_m(h))$ definiert jeweils durch die rechte oder linke Seite.

Kettenregel

Sind $g: U \subset \mathbb{R}^n \to V \subset \mathbb{R}^m$ und $f: V \subset \mathbb{R}^m \to W \subset \mathbb{R}^l$ differenzierbar, so ist $g \circ f$ differenzierbar und es gilt

$$d(f \circ g)(a) = df(b) \cdot dg(a)$$

mit b = g(a).

Nach Voraussetzung gilt

$$g(a+h) = g(a) + dg(a)h + ||h||r_1(h); \lim_{h\to 0} r_1(h) = 0$$

$$f(b+k) = f(b) + df(b)k + ||k||r_2(k); \lim_{k\to 0} r_1(k) = 0$$

Beweis Kettenregel

Einsetzten ergibt

$$(f \circ g)(a+h) = (f \circ g)(a) + (df(b) \cdot dg(a))h + R(h)$$

mit
$$R(h) := ||h||df(b)r_1(h) + ||k||r_2(k)$$
 und $k = dg(a)h + ||h||r_1(h)$.

Kettenregel

Beweis Kettenregel

Müssen nur noch zeigen, dass $\lim_{h\to 0} \frac{R(h)}{||h||} = 0$ gilt.

Beweis Kettenregel

Da dg(a) eine lineare Abbildung ist, gibt es ein $c \in \mathbb{R}$ mit

$$||k|| \leq ||h||(c + ||r_1(h)||)$$

womit die Behauptung folgt.

Vertauschen von Ableitungen

Satz von Schwarz

Wenn Für eine Funktion $f:U\to\mathbb{R}$ die Ableitungen $\frac{\partial}{\partial x_i}f(a)$, $\frac{\partial}{\partial x_j}f(a)$ und $\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j}f(a)$ existieren und letztere stetig ist, dann existiert auch $\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_i}f(a)$ und es gilt

$$\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f(a) = \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} f(a)$$

Bedeutung

Die Reihenfolge spielt beim wiederholten ableiten keine Rolle.

Höhere Ableitungen

C^k -Funktionen

Eine Funktion $f:U\to\mathbb{R}$ für die alle partiellen Ableitungen

$$\frac{\partial}{\partial x_{i_1}}\cdots\frac{\partial}{\partial x_{i_k}}f(a)$$

mit $i_1 + \cdots + i_k \le k$ existieren und stetig sind heißt C^k -Funktion oder k-mal stetig differenzierbar.

C^k -Funktionen

Eine C^1 -Funktion ist also eine differenzierbare Funktion.

Höhere Ableitungen

p-te Ableitung

Für eine Funktion $f: U \to \mathbb{R}$, $a \in U$ und Vektoren $v^1, \dots, v^p \in \mathbb{R}^n$ heißt

$$d^p f(a)(v^1, \cdots, v^p) := \partial_{v^1} \dots \partial_{v^p} f(a)$$

die p-te Richtungsableitung von f. Sie ist wegen dem Satz von Schwarz wohldefiniert.

$$d^{p}f(a)(v^{1},\cdots,v^{p})=\sum_{i_{1}=1}^{n}\cdots\sum_{i_{p}=1}^{n}\frac{\partial}{\partial x_{i_{1}}}\cdots\frac{\partial}{\partial x_{i_{p}}}f(a)\cdot v_{i_{1}}^{1}\cdots v_{i_{p}}^{p}.$$

Für einen Vektor $z \in \mathbb{R}^n$ definieren wir $d^p f(a) z^p := d^p f(a) \underbrace{(z, \cdots, z)}_{p-mal}$.

Hessematrix

Für p = 2 und $u, v \in \mathbb{R}^n$ ist

$$d^{2}f(a)(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} f(a)v_{i}u_{i}$$

und mit

$$f''(a) := \begin{pmatrix} \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_1} f(a) & \cdots & \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_n} f(a) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_n} \frac{\partial}{\partial x_1} f(a) & \cdots & \frac{\partial}{\partial x_n} \frac{\partial}{\partial x_n} f(a) \end{pmatrix}$$

ist $d^2f(a)(u,v)=u^T\cdot f''(a)\cdot v$. Die Matrix f''(a) wird auch Hesse-Matrix genannt. Nach dem Satz von Schwarz ist sie symmetrisch.

Taylorapproximation

Sei $f:U\to\mathbb{R}$ eine \mathcal{C}^{p+1} -Funktion und $x,a\in U$, so dass die Verbindung zwischen x und a in U liegt. Dann gilt

$$f(x) = f(a) + \sum_{k=1}^{p} \frac{1}{p!} d^{k} f(a) (x - a)^{k} + R_{p+1}(x; a)$$

mit dem Restglied $R_{p+1}(x;a):=\frac{1}{(p+1)!}d^{p+1}f(\xi)(x-a)^{p+1}$ für ein $\xi\in[a,x].$

Beispiel

Wiki

Sei F(t):=f(a+th) mit $t\in[0,1]$. Wiederholte Anwendung der Kettenregel mit $\gamma(t):=a+th$ und $F(t)=f(\gamma(t))$ ergibt

$$F'(t) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} f(a+th)h_i$$

$$F''(t) = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} f(a+th)h_i h_j$$

:

$$F^p(t) = \sum_{i_1=1}^n \cdots \sum_{i_n=1}^n \frac{\partial}{\partial x_{i_1}} \cdots \frac{\partial}{\partial x_{i_p}} f(a+th) h_{i_1} \cdots h_{i_p}$$
.

Mit der Taylorapproximation für Funktionen einer Veränderlichen folgt für h := (x - a)

$$F(1) = F(0) + F'(0) + \frac{1}{2!}F''(0) + \cdots + \frac{1}{p!}F^{p}(0) + R_{p+1}$$

mit dem Restglied $R_{p+1}:=\frac{1}{(p+1)!}F^p(\tau)$ mit $\tau\in[0,1]$. Da nach Konstruktion F(0)=f(a) und F(1)=f(x) folgt insgesamt die Behauptung.

Höhere Ableitungen

Taylorapproximation

Sei $T_p(x,a) = f(a) + \sum_{k=1}^p \frac{1}{p!} d^k f(a) (x-a)^k$ die Taylorraproximation einer \mathcal{C}^p -Funktion. Dann gilt:

$$\lim_{x \to a} \frac{f(x) - T_p(x; a)}{||x - a||^p} = 0.$$

Bedeutung

Die Taylorapproximation vom Grad p konvergiert polynominell vom Grad p gegen 0.

Höhere Ableitungen

Beweis

Da die partiellen Ableitungen stetig sind, gibt es für jedes $\epsilon > 0$ ein Radius r > 0, dass für alle $y \in K_r(a)$

$$\frac{1}{p!}(d^p f(y) - d^p f(a))h^p \le \epsilon ||h||_{\infty}^p.$$

Mit der Taylorapproximation ist

$$f(x) = T_{p-1}(x, a) + \frac{1}{p!} d^p f(\xi) (x - a)^p$$

= $T_p(x, a) + \frac{1}{p!} (d^p f(\xi) - d^p f(a)) h^p (x - a)^p$

Mit obiger Abschätzung folgt die Behauptung.

Extrema

Extrema

Sei $f:X\subset\mathbb{R}^n\to\mathbb{R}$ eine relle Funktion. Ein Punkt $a\in X$ heißt lokales Maximum bzw. Minimum, falls eine Umgebung U von a existiert, so dass $f(x)\leq f(a)$ bzw. $f(x)\geq f(a)$ für alle $x\in U$ gilt. Liegt einer der beiden Fälle vor, so spricht man von einem lokalen Extremum. Gilt strikt f(x)< f(a) bzw. f(x)>f(a), so nennt man das Extremum isoliert. Ist U=X so nennt man es auch globales Maximum bzw. Minimum.

Extrema

Figure: Quelle: Wikipedia:

https://en.wikipedia.org/wiki/File:MaximumParaboloid.png

Extrema

Figure: Quelle: Wikipedia:

https://en.wikipedia.org/wiki/File: Maximum Counterexample.png

Extrema

Ist $f: U \to \mathbb{R}$ differenzierbar und hat f in $a \in U$ ein lokales Extremum, so gilt

$$\frac{\partial}{\partial x_1}f(a)=\cdots=\frac{\partial}{\partial x_n}f(a)=0.$$

Sind die partiellen Ableitungen stetig, ist dies gleichbedeutend mit df(a) = 0.

Kritischer Punkt

Ein Punkt a mit df(a) = 0 wird kritischer Punkt genannt.

Setze $F_k(t):=f(a+te_k)$. Da f ein Extremum in a hat, hat F_k in einer hinreichend kleinen Umgebung um 0 ein Extremum. Da F_k eine Funktion einer Veränderlichen ist, gilt F'(0)=0. Da $\frac{\partial}{\partial x_k}f(a)=F'_k(0)$ folgt die Behauptung.

Extrema

Ist $f: U \to \mathbb{R}$ eine \mathcal{C}^2 -Funktion und ist f'(a) = 0 für ein $a \in U$. Dann gilt:

- $f''(a) > 0 \Rightarrow f$ hat in a ein isoliertes lokales Minimum.
- $f''(a) < 0 \Rightarrow f$ hat in a ein isoliertes lokales Maximum.
- $f''(a) \ge 0 \Rightarrow f$ hat in a einen Sattelpunkt.

Extrema

 $f''(a) > 0 \Leftrightarrow x^t f''(a) x > 0 \ \forall x \in \mathbb{R}^n \Leftrightarrow \ \text{alle Eigenwerte sind}$ positiv \Leftrightarrow Alle Hauptminoren sind positiv .

Extrema

 $f''(a) < 0 \Leftrightarrow x^t f''(a) x < 0 \ \forall x \in \mathbb{R}^n \Leftrightarrow \ \text{alle Eigenwerte sind}$ negativ \Leftrightarrow Alle Hauptminoren sind alternierend.

Sei f'(a) = 0 und f''(a) > 0. Mit der Taylorformel gilt für hinreichend kurze Vektoren $h \in \mathbb{R}^n$

$$f(a+h) = f(a) + \frac{1}{2}h^{T}f''(a)h + R(h)$$

mit $\lim_{h\to 0} \frac{R(h)}{||h||} = 0$. Für $||h|| \le 1$ hat $h^T f''(a)h$ sein Maximum m auf dem Einheitskreis $\{h \in \mathbb{R}^n \mid ||h|| = 1\}$ da f''(a) > 0.

$$h^T f''(a)h = ||h|| \frac{1}{||h||} h^t f''(a)||h|| \frac{1}{||h||} h \ge m||h||^2$$
.

Wir wählen ϵ so klein, dass $R(h) \leq \frac{m}{2} ||h||^2$ gilt für $||h|| < \epsilon$ (was geht wegen Taylorformel). Damit erhalten wir

$$f(a+h) \ge f(a) + m||h||^2$$
.

und damit hat f ein lokales Minimum in a.

Der Fall f''(a) < 0 wird mit Betrachtung von -f durch den vorigen Fall bewiesen.

Es sei nun $f''(a) \ge 0$ und v mit $v^T f''(a) v > 0$ und w mit $w^T f''(a) w > 0$. Betrachten wir die Funktionen

$$F_{\nu}(t) := f(a + t\nu)$$
$$F_{\nu}(t) := f(a + t\nu)$$

 $r_{w}(t) := r(a + tw$

dann ist

$$F'_{v}(t) = 0; \ F''_{v}(0) = v^{T}f''(a)v > 0$$

 $F'_{w}(t) = 0; \ F''_{w}(0) = w^{T}f''(a)w < 0$

und somit hat F_v ein isoliertes lokales Maximum und F_w ein isoliertes lokales Minimum und damit f kein lokales Extremum in a.

Mittelwertsatz

Ist $f:U\to\mathbb{R}$ eine differenziertere Funktion und $a,b\in U$ Punkte, deren Verbindungsstrecke in U verläuft. Dann gibt gibt es einen Punkt ξ auf dieser Verbindungsstrecke mit

$$f(b) - f(a) = df(\xi)(b - a) = f'(\xi)(b - a)$$

Mittelwertsatz

Beweis Mittelwertsatz

Die Verbindungsstrecke ist gegeben durch $\gamma(t):=a+t(b-a)$ mit $t\in[0,1]$. Für $F:=f\circ\gamma:[0,1]\to\mathbb{R}$ gilt f(b)-f(a)=F(1)-F(0). Nach der Kettenregel ist F differenzierbar. Mit dem eindimensionalen Mittelwertsatz gibt es also ein $\tau\in(0,1)$ mit $F(1)-F(0)=F'(\tau)$. Mit der Kettenregel folgt $F'(\tau)=df(\gamma(\tau))(b-a)$ und somit folgt mit $\xi=\gamma(\tau)$ die Behauptung.