If λ is an eigenvalue of a linear transformation $T:V\to V$, then for $n\in\mathbb{N},$ λ^n is an eigenvalue of T^n .

Proof. Suppose λ is an eigenvalue for T. Then for some vector $v \in V$, $T(v) = \lambda v$. Therefore, and by applying the linearity of T,

$$T^{n}(v) = T^{n-1}(\lambda v) = \lambda T^{n-1}(v) = \lambda T^{n-2}(\lambda v) = \dots = \lambda^{n-1}T(v) = \lambda^{n}v.$$

This says that λ^n is an eigenvalue of T^n .