Zad 2

Niech $cond(A):=\|A\|_p\|A^{-1}\|_p$, gdzie $p\in\{1,2,\infty\}$ oznacza p-ty wskaźnik uwarunkowania macierzy $A\in\mathbb{R}^{n\times n}$.

• Wykazać, że $cond(A)\geqslant 1$.

- Wykazać, że $cond(AB) \leq cond(A) \cdot cond(B)$.

Dowód. Z poprzedniej listy zadań wiemy, że dla podanych norm zachodzi nierówność $||AB||_p \leqslant ||A||_p ||B||_p$. Zatem

$$cond(A) := ||A||_p ||A^{-1}||_p \ge ||AA^{-1}||_p = ||I||_p = 1$$
(1)

Zachodzi również:

$$cond(AB) = \|AB\|_p \|(AB)^{-1}\|_p = \|AB\|_p \|B^{-1}A^{-1}\|_p \leqslant \|A\|_p \|B\|_p \|A^{-1}\|_p \|B^{-1}\|_p = \|AB\|_p \|A$$

$$||A||_p ||A^{-1}||_p ||B||_p ||B^{-1}||_p = cond(A)cond(B)$$

Zadanie 3

Niech $B \in \mathbb{R}^{n \times n}$ będzie macierzą o elementach

• $b_{ii} = 1$ $(i = 1, 2, \dots n)$, • $b_{ij} = -1$ (i < j), • $b_{ij} = 0 (i > j$ Sprawdzić, że $detB << cond_{\infty}(B)$. Jaki stąd wniosek?

Dowód. Wyznacznik macierzy jest 1, gdyż jest górno-trójkatna (wtedy jest to iloczyn elementów na przekatnej). Na przykładach sprawdzamy, że $\|B\|_{\infty}=n$, a $\|B^{-1}\|=2^{n-1}$. Wtedy $cond(B)=n2^{n-1}$. Wniosek jest z tego taki, że macierz B jest bardzo źle uwarunkowana i wyznacznik nie ma na to zupełnie wpływu.

Zad 4

Jak oceniamy uwarunkowanie układu Ax = b, o macierzy:

$$A = \begin{bmatrix} 1 & 1 + \epsilon \\ 1 - \epsilon & 1 \end{bmatrix},$$

dla $0 < \epsilon \le 0.01$?

Rozwiązanie: Trzeba policzyć po prostu cond(A) dla konkretnej normy. Ja zrobię to dla normy nieskończoność, 1 oraz 2. Policzmy najpierw macierz odwrotną do A.

$$A^{-1} = \begin{bmatrix} \frac{1}{\epsilon^2} & \frac{-\epsilon - 1}{\epsilon^2} \\ \frac{\epsilon - 1}{\epsilon^2} & \frac{1}{\epsilon^2} \end{bmatrix}$$

- Liczymy $cond_1(A)$: Dla przypomnienia $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$. Zatem $||A||_1 = 2 + \epsilon$, a $||A^{-1}||_1 = \frac{2+\epsilon}{\epsilon^2}$. Stąd $cond(A) = \left(\frac{2+\epsilon}{\epsilon}\right)^2$, co można oszacować jako $cond(A) \geqslant \left(\frac{2+0}{\frac{1}{100}}\right)^2 = 40000$.
- Liczymy $cond_{\infty}(A)$:
 Dla przypomnienia $||A||_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$. Analogicznie jak wyżej liczymy $||A||_{\infty} = 2 + \epsilon$, $||A^{-1}||_{\infty} = \frac{2+\epsilon}{\epsilon^2}$. Dostajemy szacowanie i wskaźnik dokładnie taki sam jak u góry.
- Liczymy $cond_2(A)$: Dla przypomnienia $||A||_2 = \sqrt{\rho(A^TA)}$, gdzie ρ to największa wartość własna macierzy. Liczymy A^TA oraz $(A^{-1})^TA^{-1}$ i dostajemy:

$$A^{T}A = \begin{bmatrix} (1-\epsilon)^{2} + 1 & 2\\ 2 & (\epsilon+1)^{2} + 1 \end{bmatrix}$$

$$(A^{-1})^TA^{-1} = \frac{1}{\epsilon^4} \begin{bmatrix} \epsilon^2 - 2\epsilon + 2 & -2 \\ -2 & \epsilon^2 + 2\epsilon + 2 \end{bmatrix}$$

Liczymy wartości własne tych macierzy (to pierwiastki $\det(A-\lambda I)$) ręcznie lub wolframem. Dla pierwszej macierzy dostajemy $\lambda_1=\epsilon^2-2\sqrt{\epsilon^2+1}+2, \lambda_2=\epsilon^2+2\sqrt{\epsilon^2+1}+2$. Dla drugiej macierzy dostajemy $\lambda_1'=\frac{\epsilon^2-2\sqrt{\epsilon^2+1}+2}{\epsilon^4}, \lambda_2'=\frac{\epsilon^2+2\sqrt{\epsilon^2+1}+2}{\epsilon^4}$. Chcemy wybrać te większe, więc oczywiście wybieramy wersję z plusem.

Zatem nasze
$$cond(A) = \sqrt{\lambda_1 \cdot \lambda_2'} = \sqrt{\frac{\left(\epsilon^2 + 2\sqrt{\epsilon^2 + 1} + 2\right)^2}{\epsilon^4}} = \frac{\epsilon^2 + 2\sqrt{\epsilon^2 + 1} + 2}{\epsilon^2} \geqslant \frac{0^2 + 2\sqrt{0^2 + 1} + 2}{\frac{1}{100}^2} = 40000$$

Zad 5

Niech \widetilde{x} będzie przybliżonym rozwiązaniem układy Ax=b, gdzie $det A\neq 0, b\neq 0$. Niech $r:=b-A\widetilde{x}$ oznacza resztę. Wykazać, że wówczas zachodzą nierówności

- $||x \widetilde{x}|| \le cond(A) \cdot \frac{||r||}{||A||}$ $\frac{||x \widetilde{x}||}{||x||} \le cond(A) \cdot \frac{||r||}{||b||}$,

gdzie $x := A^{-1}b$ jest dokładnym rozwiązaniem.

Rozwiązanie: Zacznijmy od pierwszej nierówności, czyli $||x - \tilde{x}|| \le cond(A) \cdot \frac{||r||}{||A||}$. Podstawiając cond(A) = cond(A) $||A|||A^{-1}||$ do nierówności i skracając otrzymujemy równoważną postać:

$$||A^{-1}|| ||r|| \ge ||x - \widetilde{x}||$$

Stosując nierówność $||A|| ||v|| \ge ||Av||$ dostajemy:

$$\|A^{-1}\|\|r\|\geqslant \|A^{-1}r\|=\|A^{-1}\left(b-A\widetilde{x}\right)\|=\|A^{-1}b-A^{-1}A\widetilde{x}\|=\|x-\widetilde{x}\|$$

Druga nierówność do pokazania to $\frac{\|x-\widetilde{x}\|}{\|x\|}\leqslant cond(A)\cdot\frac{\|r\|}{\|b\|}.$ Przekształcamy to do postaci:

$$||x - \widetilde{x}|| \ ||b|| \le ||A|| \ ||x|| \ ||A^{-1}|| \ ||r||$$

Korzystając znowu z nierówności $||A^{-1}|| ||r|| \ge ||x - \widetilde{x}||$ otrzymujemy:

$$||A|| ||x|| ||A^{-1}|| ||r|| \ge ||Ax|| ||A^{-1}r|| = ||b|| ||A^{-1}(b - A\widetilde{x})|| = ||b|| ||x - \widetilde{x}||$$

Zad 6

Wykazać, że jeśli dowolna norma macierzy B jest mniejsza od 1, to ciąg $\{x^{(k)}\}_{k=0}^{\infty}$ określony wzorem $x^{(k+1)} = Bx^{(k)} + c$ jest zbieżny dla pewnego wektora x^* , niezależnie od wyboru $x^{(0)}$, przy czym - przy naturalnym założeniu (jakim?) - zachodzi nierówność $\|x^* - x^{(k)}\| \le \|B\|^k \|x^* - x^{(0)}\|$.

 $Dow \acute{o}d.$

Lemat 1. Istnieje taki x^* , $\dot{z}e \ x^* = Bx^* + c$.

Dowód. Na wykładzie podany był fakt, że jeżeli ||B|| < 1, to macierz I - B jest nieosobliwa. Wtedy równanie $x^* (I - B) = c$ ma rozwiązanie.

Weźmy ten x^* , o którym mowa wyżej. Pokażmy, że $||x^{(k+1)} - x^*|| = e_{k+1} \longrightarrow 0$.

$$e_{k+1} = \|x^{(k+1)} - x^*\| = \|Bx^{(k)} + c - x^*\| = \|Bx^{(k)} + c - Bx^* + c\| = \|B\left(x^{(k-1)} - x^*\right)\| = \dots = \|B^k\left(x^{(0)} - x^*\right)\|$$

Z poniższego lematu dostajemy, że całość dąży do 0.

Lemat 2. $||A|| < 1 \Longrightarrow \lim_{k \to \infty} A^k = 0$

Dowód. Z submultiplikatywności (chyba to tak się nazywa) normy mamy, że $0 \le \|A^k\| = \|A \cdot A \cdot \dots \cdot A\| \le \|A\|^k \to 0$. Z twierdzenia o trzech ciągach dostajemy, że norma $\|A^k\|$ dąży do 0. Ponieważ jest to norma, to jest zerem tylko dla macierzy zerowej.

Gdybyśmy dodali warunek, że normy są zgodne, to otrzymalibyśmy

$$||x^{(k)} - x^*|| \le ||B||^k ||x^* - x^0||$$

Zadanie 7

Zad 7

Wykazać, że dla dowolnej macierzy $A \in \mathbb{R}^{n \times n}$ oraz dowolnej normy macierzowej $\|\cdot\|$ indukowanej przez pewną normę wektorową, zachodzi nierówność $\rho(A) \leq \|A\|$.

Dowód. Niech λ_{max} będzie największą wartością własną, a v odpowiadającym jej wektorem własnym. Wtedy

$$|\lambda_{max}| ||v|| = ||\lambda_{max}v|| = ||Av|| \le ||A|| ||v||$$

Dzieląc obustronnie przez ||v|| dostajemy tezę.