Семинар 22

Общая информация:

- Стандартным скалярным произведением в \mathbb{R}^n будем называть $(x,y)=x^ty$, где $x,y\in\mathbb{R}^n$.
- Напомню, что через $\mathbb{R}[x]_{\leq n}$ обозначается множество многочленов степени не больше n.
- Квадратная матрица $C \in M_n(\mathbb{R})$ называется *ортогональной*, если $C^tC = E$ (и тогда автоматически $CC^t = E$ и $C^t = C^{-1}$). Это в точности те матрицы, у которых столбцы (и строки) образуют ортонормированный базис в \mathbb{R}^n .
- Угол между вектором $x \in V$ и подпространством $U \subseteq V$ это угол между x и его ортогональной проекцией на U.

Задачи:

1. Пусть в \mathbb{R}^4 задано стандартное скалярное произведение. Покажите, что вектора

$$v_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \\ -3 \end{pmatrix}$$
 и $v_2 = \begin{pmatrix} 2 \\ -3 \\ 2 \\ 4 \end{pmatrix}$

являются ортогональными и дополните их до ортогонального базиса в \mathbb{R}^4 .

2. Пусть в \mathbb{R}^4 задано стандартное скалярное произведение. Найти векторы, дополняющие следующую систему векторов до ортонормированного базиса

$$v_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \text{ M } v_2 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

3. Пусть в \mathbb{R}^4 задано стандартное скалярное произведение. Примените процесс ортогонализации Грамма-Шмидта для нахождения базиса пространства, натянутого на следующую систему векторов:

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ -5 \\ 3 \end{pmatrix} \text{ if } v_3 = \begin{pmatrix} 3 \\ 2 \\ 8 \\ -7 \end{pmatrix}$$

4. Пусть в \mathbb{R}^4 задано стандартное скалярное произведение. И пусть подпространства $U\subseteq\mathbb{R}^4$ задано системой

$$\begin{cases} 2x_1 + x_2 + 3x_3 - x_4 = 0\\ 3x_1 + 2x_2 - 2x_4 = 0\\ 3x_1 + x_2 + 9x_3 - x_4 = 0 \end{cases}$$

Найти систему уравнений, задающие ортогональное дополнение $U^{\perp}.$

5. Рассмотрим евклидово пространство $\mathbb{R}[x]_{\leqslant 4}$ со скалярным произведением $(f,g) = \int_{-1}^{1} f(x)g(x) \, dx$.

- (a) При помощи метода ортогонализации постройте ортогональный базис в подпространстве $(1, x, x^2, x^3)$.
- (b) Найдите расстояние от вектора x^4 до этого подпространства.
- 6. Опишите все целочисленные ортогональные матрицы.

7. Опишите все ортогональные матрицы порядка n, состоящие из неотрицательных элементов.

1

- 8. Задачник. §43, задача 43.35.
- 9. Задачник. §43, задача 43.38 (a).
- 10. Задачник. §43, задача 43.46.