IPESUP 2023/2024

Colle 14 MPSI/MP2I Jeudi 01 février 2024

Planche 1

- 1. Stabilité des matrices diagonales, des matrices triangulaires supérieures par produit.
- 2. On note

$$\mathcal{A} = \left\{ \begin{pmatrix} 1-t & -t & 0\\ -t & 1-t & 0\\ -t & t & 1-2t \end{pmatrix} \middle| t \in \mathbb{R} \right\}$$

Montrer que $\mathcal A$ est stable par produit matriciel. Est-ce un sous-anneau de $\mathcal M_3(\mathbb R)$? Déterminer les matrices de $\mathcal A$ inversibles, dont l'inverse est dans $\mathcal A$.

3. Soit $(A, B) \in (\mathcal{M}_2(\mathbb{R}))^2$. Montrer que $(AB - BA)^2$ est une matrice scalaire.

Planche 2

- 1. Inversibilité des matrices de permutation. Expression de l'inverse.
- 2. Soit $\theta \in \mathbb{R}$. Calculer toutes les puissances de la matrice $A = \begin{pmatrix} 1 + \sin(\theta) & \cos(\theta) \\ \cos(\theta) & 1 \sin(\theta) \end{pmatrix}$.
- 3. Soit $\lambda \in \mathbb{R}$. Etudier en fonction de λ l'inversibilité de $A = \begin{pmatrix} \lambda 3 & 1 & 1 \\ 1 & \lambda 3 & 0 \\ 1 & 0 & \lambda + 1 \end{pmatrix}$.

Planche 3

- 1. Produit de matrices élémentaires.
- 2. Etudier l'inversibilité et l'inverse le cas échéant de $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
- 3. Dans $\mathcal{M}_2(\mathbb{C})$, on note $\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{I} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\mathbf{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $\mathbf{K} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$. Que dire de l'ensemble $\left\{ a\mathbf{1} + b\mathbf{I} + c\mathbf{J} + d\mathbf{K} | (a,b,c,d) \in \mathbb{R}^4 \right\}$?

Bonus

Soit $M \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'on dispose de $(A,B) \in \mathcal{M}_n(\mathbb{C})^2$, $(\alpha,\beta) \in \mathbb{C}^2$ tel que

$$\forall k \in [[1,3]], M^k = \alpha^k A + \beta^k B$$

Montrer que $\forall k \in \mathbb{N}^*$, $M^k = \alpha^k A + \beta^k B$.