Codificación Huffman

Estructuras de Datos Septiembre 2016

Calcular la frecuencia de aparición

 Para el mensaje "abracadabra" tenemos las siguientes frecuencias o pesos

Carácter	Frecuencia (Peso)
а	5
b	2
С	1
d	1
r	2

Árboles de Huffman

- Un árbol de Huffman es un árbol binario:
 - Los nodos internos contienen pesos
 - Los nodos hoja contienen un carácter y su peso

Construcción de árboles de Huffman

- Los árboles de Huffman se construyen de abajo a arriba, desde las hojas hasta la raíz
- Se parte de una colección de n árboles hoja
- Se extraen los 2 árboles de menor peso
- Se inserta la mezcla (suma de pesos) de ambos árboles, obteniendo una colección de n-1 árboles
- El proceso continúa hasta obtener una colección con un solo árbol de Huffman

Colección inicial de árboles hoja

 Para "abracadabra" tenemos 5 árboles hoja, uno por cada carácter del mensaje

Reducción por mezcla (I)

- Se extraen los 2 árboles de menor peso y se inserta su mezcla (se suman los pesos)
- Esta colección contiene 4 árboles

Reducción por mezcla (II)

- Se extraen los 2 árboles de menor peso y se inserta su mezcla (se suman los pesos)
- Esta colección tiene 3 árboles

Reducción por mezcla (III)

Repetimos el proceso...

Reducción por mezcla (y IV)

Hasta obtener un único árbol de Huffman

El código de Huffman no es único

Depende de:

- la política de inserción y eliminación de la colección, que rompe empates entre árboles del mismo peso
- la mezcla de árboles, que decide qué árbol queda a izquierda/derecha

La rotación de un árbol de Huffman también es un árbol de Huffman

Otro árbol para "abracadabra"

Código de Huffman (I)

- El código de un carácter x se obtiene recorriendo la rama que va desde la raíz hasta la hoja que contiene a x
- Al descender por la izquierda se añade un *0* al código, al descender por la derecha un *1*
- El número de bits del código de x es igual a la profundidad a la que se encuentra x

Código de Huffman (y II)

Otro código para "abracadabra"

Codificación Huffman

- "abracadabra" en ASCII de 8 bits ocupa
 11 caracteres * 8 bits = 88 bits

Reemplazar cada carácter por su código

Carácter	Código
а	[0]
b	[1,1,1]
С	[1,1,0,0]
d	[1,1,0,1]
r	[1,0]

Decodificación Huffman

- Se puede usar un diccionario inverso; pero es más simple y eficiente utilizar el árbol de Huffman
- Para decodificar un carácter se recorre el mensaje codificado bit a bit, descendiendo desde la raíz del árbol por izquierda o derecha
- Al llegar a una hoja se ha decodificado el carácter; se repite el proceso para el resto del mensaje

Decodificación (I)

[0,1,1,1,1,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,1,0,0]

Decodificación (II)

[0,1,1,1,1,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,1,0,0]
a

Decodificación (III)

Decodificación (IV)

Decodificación (V)

Decodificación (VI)

Decodificación (VII)

[1,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,1,0,0]

Decodificación (VIII)

[1,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,1,0,0]

Decodificación (y IX)

[1,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,1,0,0]
r

