Face Mask Detection

Group Members:-

Dhrumil Buch

Sharad Parmar

Jani Miya Shaik

Dipsy

Aditya Desale

The Problem

- During the COVID-19 pandemic, noncompliance with mask mandates in public spaces posed significant health risks.
- Manual monitoring proved to be error-prone and inefficient.
- This created a demand for automated and scalable solutions to improve compliance and reduce transmission.

The Vision

- Develop a deep learning-based realtime mask detection system using advanced models.
- Ensure accurate classification of individuals into "with_mask" or "without_mask" categories.
- Support efforts to reduce viral transmission and enhance public health monitoring.

About the Dataset

Dataset Source:

The dataset consists of 7553 images collected from two sources:

1776 images from Prajna Bhandary's GitHub repository. 5777 images from Google search engine results.

Dataset Structure:

3725 images of faces with masks. 3828 images of faces without masks.

Image Details: The images are in RGB format with three color channels.

Dataset Size: The total dataset size is 171 MB, divided into two labeled folders (with_mask and without_mask).

Dataset Link:

https://www.kaggle.com/datasets/omkargurav/face-mask-dataset

Methodology

Step 1: Data Acquisition & Preprocessing

- Normalization and resizing (224x224 pixels).
- Data augmentation to improve generalization (rotation, scaling, flipping).

Step 2: Model Development & Training

Models Used:

Baseline CNN: Custom Convolutional Neural Network.

Pre-trained Models:

- ResNet152V2: Deep residual network for feature extraction.
- InceptionV3: Optimized for computational efficiency and accuracy.
- MobileNetV2: Lightweight architecture suitable for edge and mobile applications.

Custom Classification Layer

- Added dense layers with activation functions tailored for binary classification (with_mask vs without_mask).
- Applied Global Average Pooling to reduce spatial dimensions.
- Included Dropout Regularization (0.3) to prevent overfitting.

Training Details

- Optimizer: Adam with learning rate 0.001.
- Loss Function: Sparse Categorical Cross entropy.
- Metrics: Accuracy.
- Early Stopping: Monitored validation loss with a patience of 2 epochs.

Step 3: Model Evaluation & Comparison

Evaluation Metrics:

Test Accuracy: Measure of how well the model generalizes on unseen data.

Confusion Matrix: Shows performance across categories (true positives, false positives, etc.)

Model Performance:

Best Model: ResNet152V2with the highest test accuracy of 99%.

Model Comparison:

Model	Test Accuracy	Confusion Matrix
Baseline CNN	93%	Confusion Matrix for Baseline CNN -600 -600 -500 -500 -400 -300 -300 -100 Without Mask Predicted With Mask
ResNet152V2	99%	Confusion Matrix for ResNet152V2 -700 -600 -600 -500 -400 -300 -300 -100 Without Mask Predicted With Mask
InceptionV3	98%	Confusion Matrix for InceptionV3 - 300 - 600 - 600 - 600 - 300 - 400 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300
MobileNetV2	98%	Confusion Matrix for MobileNetV2 -700 -600 -600 -500 -400 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300

Baseline CNN:

• Test Accuracy: 93%

• Final Epoch Accuracy: 98.32%

• Test Loss: 0.1941

ResNet152V2:

• Test Accuracy: 99%

• Final Epoch Accuracy: 99.70%

• Test Loss: 0.0558

InceptionV3:

• Test Accuracy: 98%

• Final Epoch Accuracy: 99.17%

• Test Loss: 0.0671

MobileNetV2:

• Test Accuracy: 98%

• Final Epoch Accuracy: 99.58%

• Test Loss: 0.0649

Validation Accuracy Comparison

Best Model: ResNet152V2 with Accuracy: 0.99

Key Findings & Future Work

Results:

 ResNet152V2 is the most accurate model for mask detection, outperforming other models.

Next Steps:

- Deploy the model for real-time mask detection in video feeds.
- Explore further improvements with finetuning and additional data augmentation techniques.
- Integrate the model into an app or website for public use.

Thanks!

Do you have any questions?