Question	Answer		Mark
Number			
2(a)	• Uncertainty is half resolution (0.5°)	(1)	
	• Use of percentage uncertainty = (uncertainty / angle value) × 100% for either	(1)	
	angle	(1)	_
	• % uncertainty in $\theta_1 = 1.4\%$ (accept 1%) and % uncertainty in $\theta_2 = 0.8\%$	(1)	3
	If the full resolution of protractor is used (1°) – award MP2 for use of equation and MP3 for correctly values 2.9% (3%) and 1.6% (2%)		
	Example Calculation		
	% uncertainty in $\theta_1 = (0.5^{\circ} / 35^{\circ}) \times 100\% = 1.4\%$		
	% uncertainty in $\theta_2 = (0.5^{\circ} / 62^{\circ}) \times 100\% = 0.81\%$		
2(b)(i)	• See $n_1 \sin \theta_1 = n_2 \sin \theta_2$ with refractive index of air $n_2 = 1$	(1)	
	• Rearranges and compares with $y = mx (+ c)$		
	Or rearranges and compares $n_1 = \frac{\sin \theta_2}{\sin \theta_1}$ with gradient $= \frac{\Delta \sin \theta_2}{\Delta \sin \theta_1}$	(1)	
	• Identifies n_1 = gradient	(1)	3
	For MP1 accept $n \sin \theta_1 = \sin \theta_2$		
	For MP2 accept comparing $\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1}$ with gradient $= \frac{\Delta \sin \theta_2}{\Delta \sin \theta_1}$		
2(b)(ii)	Uses two points on the line to determine the gradient	(1)	
	• n_1 between 1.46 and 1.54	(1)	2
	MP2 dependent on MP1		
	MP2 allow correct use of gradient = $1/n$ from $2(b)(i)$		
	Example Calculation		
	$n_1 = (0.77 - 0.17) / (0.50 - 0.10)$		
	$n_1 = 1.5$		

Question	Answer	Mark
Number		
2(c)	• Realistic cause of a systematic error in measured data suggested (1)	
	• Suitable method to reduce effect of the cause suggested (1)	2
	MP2 dependent on MP1 Examples Normal line not correctly drawn at 90° to the flat surface Use a protractor/set square to check the normal line Zero error because protractor not aligned correctly Ensure the protractor is aligned to the normal Ray of light not directed to centre of the flat surface Or incident ray not perpendicular to curved surface Mark the position of the centre of the flat surface on paper Block moved Mark the position of the block on paper Or tape the block in position Did not repeat measurements with angles of incidence either side of the normal Repeat measurements (for angles of incidence on both sides of the normal) and calculate mean value	
	Total for question 2	10