Tutorial 2

Notation: Let $\Sigma = \{a, b\}$. For $w \in \Sigma^*$ let |w| denote the length of w. Let $\#_a(w)$ denote the number of as in w and let $\#_b(w)$ denote the number of bs in w. Let w^R be the reverse of the string w.

- 1. Let L_1, L_2 be two regular languages. Show that $L_1 L_2 = \{w \mid w \in L_1 \text{ and } w \notin L_2\}$ is also regular.
- 2. Let $\Sigma = \{a_1, a_2, \dots, a_k\}$. Draw an NFA with k+1 states for the following language:

$$L := \{ w \mid \exists i \text{ s. t. } 1 \leq i \leq k \text{ and } a_i \text{ does not appear in } w \}.$$

Can there be an NFA for this with only k states?

3. A homomorphism on a set Σ is a map from Σ to another set Σ'^* such that each letter in Σ is mapped to a string over Σ' . For example, say $\Sigma = \{0,1\}$ and a function h is defined as follows h(0) := aaab and h(1) := aba then h is a homomorphism on $\{0,1\}$. Let L be a regular language. Show that the following language is also regular

$$h(L) := \{h(w) \mid w \in L\}.$$

- 4. Recall the definition of $\hat{\delta}$ (Lecture 3, slide 3). Prove property (P_3) about $\hat{\delta}$ (Lecture 3, Slide 6.)
- 5. Recall the construction we used to convert an NFA with ε moves to an equivalent NFA without ε moves. (Lecture 5, Slide 12.) Prove the correctness of this construction.
- 6. Let L, L' be two regular languages. Let us define L||L'| as follows:

$$L||L'| := \{x_1y_1x_2y_2\dots x_ny_n \mid x_1x_2\dots x_n, y_1y_2\dots y_n \in \Sigma^*, x_1x_2\dots x_n \in L \text{ and } y_1y_2\dots y_n \in L_2\}$$

Prove that L||L'| is regular by explicitly constructing an NFA/DFA for the language.

7. Let L be a regular language. Show that the following language is also regular.

$$\frac{L}{2} = \{ w \mid \exists w' \text{ s.t.} |w| = |w'| \text{ and } w \cdot w' \in L \}.$$