AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

(Previously Presented) A method of interleaving speech data over a plurality 1 1. 2 frames, comprising: interleaving the speech data according to a first algorithm over plural frames 3 communicated over a wireless channel for a first set of speech data; and 4 5 interleaving the speech data according to a second algorithm over plural frames 6 communicated over the wireless channel for a second set of speech data. 2. (Cancelled) 1 1 3. (Previously Presented) The method of claim 1, wherein interleaving the speech 2 data according to the first or second algorithm comprises interleaving over frames of a 3 multiframe. 1 4. (Original) The method of claim 3, wherein interleaving over frames of the multiframe comprises interleaving over a General Packet Radio Service multiframe. 2 5. (Previously Presented) A method of interleaving data over a plurality frames, 1 2 comprising: interleaving the data according to a first algorithm over plural frames 3 4 communicated over a wireless channel for a first set of data; and 5 interleaving the data according to a second algorithm over plural frames 6 communicated over the wireless channel for a second set of data, wherein interleaving the data according to the first or second algorithm comprises 7 8 interleaving over frames of a multiframe, wherein the multiframe comprises plural blocks, each block having four frames, 9 each frame containing plural bursts, and the data is carried in data frame N starting in block B(x), 10 and wherein interleaving the data frame N according to the first and second algorithms comprises 11 interleaving the data frame N over blocks B(x + 2k) and B(x + 2k + 2), where k = INT(N/2). 12

- 6. (Original) The method of claim 5, wherein interleaving the data according to the 1 first algorithm comprises interleaving the data frame N over bursts in the last three frames in
- block B(x + 2k) and the first frame in block B(x + 2k + 2), if N is even. 3
- 7. (Original) The method of claim 6, wherein interleaving the data according to the 1 2 second algorithm comprises interleaving the data frame N over bursts in the last frame in block
- B(x + 2k) and the first three frames in block B(x + 2k + 2), if N is odd. 3
- 8. (Original) The method of claim 7, wherein interleaving the data according to the 1 2 first and second algorithms comprises interleaving speech data.
- 1 9. (Original) The method of claim 8, wherein interleaving the speech data comprises interleaving speech data of a half-rate mobile station. 2
- (Original) The method of claim 7, further comprising: 10. 1
- 2 receiving an end-of-data indicating frame to indicate that the data frame N is the
- 3 last data frame; and

2

- interleaving the end-of-data indicating frame over bursts in the last frame in block 4
- B(x + 2k) and the first two frames of block (Bx + 2k + 2), if M is even. 5
- 1 11. (Original) The method of claim 10, further comprising repeating the end-of-data
- indicating frame over bursts in the last two frames of block B(x + 2k + 2). 2
- (Original) The method of claim 10, further comprising interleaving the end-of-1 12.
- data indicating frame over bursts in the last three frames of block B(x + 2k + 2), if M is odd. 2

Appln. Serial No. 09/715,787 Amendment Dated February 25, 2005 Reply to Office Action Mailed November 30, 2004

13. (Original) The method of claim 3, wherein the multiframe comprises plural				
blocks and each block comprises plural frames, each frame containing plural bursts, the data				
being carried in data frames interleaved over bursts in the plural frames, the method further				
comprising:				
receiving an end-of-data indicating frame to indicate that a data frame is the last				
data frame; and				
interleaving the end-of-data indicating frame according to predetermined				
algorithms,				
wherein interleaving the data frames according to the first and second algorithms				
and the end-of-data indicating frame according to the predetermined algorithms enables the end				
of-data indicating frame to end within the same block carrying the last data frame.				

1	14. (Previously Presented) A method of interleaving data over a plurality frames,		
2	comprising:		
3	interleaving the data according to a first algorithm over plural frames		
4	communicated over a wireless channel for a first set of data; and		
5	interleaving the data according to a second algorithm over plural frames		
6	communicated over the wireless channel for a second set of data,		
7	wherein interleaving the data according to the first or second algorithm comprise		
8	interleaving over frames of a multiframe,		
9	wherein the multiframe comprises plural blocks and each block comprises plural		
10	frames, each frame containing plural bursts, the data being carried in data frames interleaved		
11	over bursts in the plural frames, the method further comprising:		
12	receiving an end-of-data indicating frame to indicate that a data frame is the last		
13	data frame; and		
14	interleaving the end-of-data indicating frame according to at least one		
15	predetermined algorithm,		
16	wherein interleaving the data frames according to the first and second algorithms		
17	and the end-of-data indicating frame according to the at least one predetermined algorithm		
18	enables the end-of-data indicating frame to end within the same block carrying the last data		
19	frame,		
20	wherein the last data frame is data frame M starting in block B(x), wherein, if M		
21	is odd, interleaving the data frame M comprises interleaving the data frame M over bursts in the		
22	last frame in block $B(x)$ and the first three frames of $B(x + 2)$, and wherein interleaving the end-		
23	of-data indicating frame comprises interleaving the end-of-data indicating frame over bursts in		
24	the last three frames of block $B(x + 2)$.		
1	15. (Original) The method of claim 14, wherein, if M is even, interleaving the data		
2	frame M comprises interleaving the data frame M over bursts in the last three frames in block		
3	B(x) and first frame in block $B(x + 2)$, and interleaving the end-of-data indicating frame		
4	comprises interleaving the end-of-data indicating frame over bursts in the last frame in block		
5	B(x) and first two frames in block $B(x + 2)$.		

4 5

(Original) The method of claim 15, wherein the end-of-data indicating frame 16. 1 2 comprises a SID FIRST frame according to a General Packet Radio Service protocol. 17. (Cancelled) 1 (Currently Amended) The system of claim [[17]] 38, wherein the first and second 1 18. traffie data frames comprise respective first and second speech frames. 2 (Currently Amended) The system of claim [[17]] 38, wherein each data frame is 19. 1 2 interleaved over four bursts. (Previously Presented) A system for communicating over a wireless channel in a 1 20. 2 mobile communications network, comprising: an interface adapted to receive traffic data frames from a half-rate mobile station; 3 4 and 5 a controller adapted to process a first data frame interleaved over plural bursts 6 according to a first algorithm and to process a second data frame interleaved over plural bursts according to a second algorithm, 7 wherein the bursts are part of a multiframe, the multiframe comprising plural 8 9 blocks, each block comprising four bursts, and wherein data frames I, I = 0 to M, are received starting in block B(x), the controller adapted to interleave data frame I over blocks B(x + 2k)10 and B(x + 2k + 2), where k = INT(I/2). 11 (Original) The system of claim 20, wherein the controller is adapted to: 1 21. 2 for I being even, interleave traffic data frame I over the last three bursts in block 3 B(x + 2k) and the first burst in block B(x + 2k + 2); and for I being odd, interleave traffic data frame I over the last three bursts in block

B(x + 2k) and the first burst in block B(x + 2k + 2).

- 1 22. (Original) The system of claim 21, wherein the interface is adapted to further 2 receive an end-of-data indicating frame, the end-of-data indicating frame interleaved a first way 3 if M is even and a second way if M is odd.
- 1 23. (Original) The system of claim 22, wherein the controller is adapted to:
- for M being even, interleave the end-of-data indicating frame over the last burst in
- 3 block B(x + 2k) and the first two bursts in block B(x + 2k + 2); and
- for M being odd, interleave the end-of-data indicating frame over the last three
- 5 bursts of B(x + 2k + 2).
- 1 24. (Original) The system of claim 23, wherein the end-of-data indicating frame
- 2 comprises a SID FIRST frame according to a General Packet Radio Service protocol.
- 1 25. (Original) The system of claim 23, wherein the end-of-data indicating frame
- 2 indicates that discontinuous transmission mode is starting.
- 1 26. (Original) The system of claim 23, wherein the traffic data frames are carried in a
- 2 wireless channel portion, the interface adapted to receive traffic data frames from another mobile
- 3 station in block B(x + 2k + 4).
- 1 27. (Original) The system of claim 26, wherein the traffic data frames from the half-
- 2 rate mobile station comprises speech data.
- 1 28. (Original) The system of claim 27, wherein the traffic data frames from the other
- 2 mobile station comprises another type of data.
- 1 29. (Original) The system of claim 27, wherein the other mobile station comprises a
- 2 full-rate mobile station.
- 1 30. (Cancelled)

1	31.	(Currently Amended) The article of claim [[30]] 39, wherein the instructions			
2	when executed cause the system to:				
3		receive speech traffic from the first mobile station over the wireless channel			
4	portion.				
1	32.	(Original) The article of claim 31, wherein the instructions when executed cause			
1		receive another type of traffic from the second mobile station.			
2	the system to	receive another type of traffic from the second moone station.			
1	33.	(Currently Amended) The article of claim [[30]] 39, wherein the instructions			
2	when executed cause the system to interleave a first traffic frame from the first mobile station				
3	over plural bursts according to a first algorithm and to interleave a second traffic frame from the				
4	first mobile s	tation over plural bursts according to a second algorithm.			
1	34.	(Original) A data signal embodied in a carrier wave and containing instructions			
2	that when executed cause a system to:				
3		interleave a first speech traffic frame from a mobile station over plural bursts			
4	according to	a first algorithm; and			
5		interleave a second speech traffic frame from the mobile station over plural bursts			
6	according to	a second algorithm.			
1	35.	(Cancelled)			
1	36.	(Previously Presented) The method of claim 1, wherein interleaving the speech			
2	data accordin	g to the first algorithm over plural frames for the first set of speech data comprises			
3	interleaving the first set of speech data from a half-rate mobile station according to the first				
4	algorithm over plural frames, and				
5		wherein interleaving the speech data according to the second algorithm over			
6	plural frames	plural frames for the second set of speech data comprises interleaving the second set of speech			
7	data from a h	alf-rate mobile station according to the second algorithm over plural frames			

1	37. (Currently Amended) The system of claim [[17]] 38, wherein the bursts are part	
2	of a multiframe, the multiframe having plural blocks,	
3	wherein the first data frame n is interleaved according to the first algorithm by	
4	interleaving the first data frame n in bursts of two different blocks, the two different blocks	
5	selected based on n being an even number, and	
6	wherein the second data frame n + 1 is interleaved according to the second	
7	algorithm by interleaving the second data frame n + 1 in bursts of two different blocks, the two	
8	different blocks selected based on $n + 1$ being an odd number.	
1	38. (Currently Amended) The system of claim 17, A system for communicating over	
2	a wireless channel in a mobile communications network, comprising:	
3	an interface adapted to receive traffic data frames from a half-rate mobile station	
4	<u>and</u>	
5	a controller adapted to process a first data frame n, n being an even number, from	
6	the half-rate mobile station interleaved over plural bursts according to a first algorithm and to	
7	process a second data frame $n + 1$, $n + 1$ being an odd number, from the half-rate mobile station	
8	interleaved over plural bursts according to a second algorithm,	
9	wherein the first data frame n is interleaved according to the first algorithm in	
10	response to n being an even number, and the second data frame is interleaved according to the	
11	second algorithm in response to $n + 1$ being an odd number.	

1	39. (Currently Amended) The article of claim 30, wherein the instructions when
2	executed cause the system to further: An article comprising at least one storage medium
3	containing instructions that when executed cause a system to:
4	receive traffic over a wireless channel portion from a first mobile station involved
5	in half-rate communication;
6	detect that the first mobile station has entered discontinuous transmission mode;
7	in response to detecting that the first mobile station has entered discontinuous
8	transmission mode, re-assign the wireless channel portion to a second mobile station to enable
9	multiplexing of traffic from the second mobile station onto the wireless channel portion while the
10	first mobile station is in discontinuous transmission mode;
11	receive a request from the first mobile station to re-acquire the wireless channel
12	portion, the request transmitted by the first mobile station in response to the first mobile station
13	exiting discontinuous transmission mode; and
14	sending an assignment message to the first mobile station to assign the wireless
15	channel portion in response to the request.
1	40. (Previously Presented) The data signal of claim 34, wherein interleaving the first
2	speech traffic frame according to the first algorithm over plural bursts comprises interleaving the
3	first speech traffic frame from a half-rate mobile station according to the first algorithm over
4	plural bursts, and
5	wherein interleaving the second speech traffic frame according to the second
6	algorithm over plural bursts comprises interleaving the second speech traffic frame from a half-
7	rate mobile station according to the second algorithm over plural bursts.

Appln. Serial No. 09/715,787 Amendment Dated February 25, 2005 Reply to Office Action Mailed November 30, 2004

1	41. (Currently Amended) The system of claim 35, A system for use in a mobile
2	communications network, comprising:
3	a wireless interface adapted to receive traffic over a wireless channel portion from
4	a first mobile station involved in half-rate communications; and
5	a controller adapted to receive an indication that the first mobile station has
6	entered discontinuous transmission mode and, in response to receiving the indication that the
7	first mobile station has entered discontinuous transmission mode, to multiplex traffic from a
8	second mobile station onto the wireless channel portion while the first mobile station is in
9	discontinuous transmission mode,
10	wherein the controller is adapted to further:
11	receive a request from the first mobile station to re-acquire the wireless channel
12	portion, the request transmitted by the first mobile station in response to the first mobile station
13	exiting discontinuous transmission mode; and
14	sending send an assignment message to the first mobile station to assign the
15	wireless channel portion in response to the request.