CSE 015: Discrete Mathematics Fall 2020 Homework #7 Solution

Christian Duan Lab CSE-015-10L

November 30, 2020

1. Asymptotic Notation:

- (a) $f(n) = 178n + 45 \rightarrow n$ Since $f(n) = 178n + 45 \rightarrow n$, and n grows slower than n^2 . \therefore Yes, since f(n) is $O(n^2)$.
- (b) $f(n) = n\log n + 12 \to n\log n$ Since $f(n) = n\log n + 12 \to n\log n$, and $n\log n$ grows slower than n^2 . \therefore Yes, since f(n) is $O(n^2)$.
- (c) $f(n) = 34n^2 + 34n + 34 \rightarrow n^2$ Since $f(n) = 34n^2 + 34n + 34 \rightarrow n^2$, and n^2 is equal to n^2 . \therefore **Yes**, since f(n) is $O(n^2)$ and $O(n^2)$ is O(f(n)).
- (d) $f(n) = \sqrt{n} + 2 \to \sqrt{n}$ Since $f(n) = \sqrt{n} + 2 \to \sqrt{n}$, and \sqrt{n} grows slower than n^2 . \therefore Yes, since f(n) is $O(n^2)$.
- (e) $f(n) = 0.0001n^3 + 72n \to n^3$ Since $f(n) = 0.0001n^3 + 72n \to n^3$, and n^3 grows faster than n^2 , \therefore **No**, since (n^2) is O(f(n)).

2. Asymptotic Notation:

- $\bullet \log n$
- $n \log n$
- $n^2 \log n$
- \sqrt{n}
- n²
- \bullet 2^n
- 3ⁿ

3. Asymptotic Growth:

• Computer A: 10⁶ operations/sec Computer B: 10⁸ operations/sec

Time Complexities:
$$f_1(n) = 5n^2 + 34n + 12$$

$$f_2(n) = 10n + 4$$

$$f_3(n) = 2^n$$

Computer A

$$\frac{10^6 operations}{sec}*\frac{60 sec}{min}*\frac{60 min}{hr}=3.6\times 10^9$$
 operations/hr

$$f_1: 5n^2 + 34n + 12 \le 3.6 \times 10^9$$

$$n = 26829.42$$

Computer A can solve an instance of a f_1 as large as 26,829 in an hour.

$$f_2: 10n + 4n \le 3.6 \times 10^9$$

$$n=3.6\times 10^8$$

Computer A can solve an instance of a f_2 as large as 3.6×10^8 in an hour.

$$f_3: 2^n \le 3.6 \times 10^9$$

$$n = 31.745349$$

Computer A can solve an instance of a f_3 as large as 32 in an hour.

Computer B

$$\frac{10^8 operations}{sec}*\frac{60 sec}{min}*\frac{60 min}{hr}=3.6\times 10^{11}$$
 operations/hr

$$f_1: 5n^2 + 34n + 12 \le 3.6 \times 10^{11}$$

n = 268324.75732

Computer B can solve an instance of a f_1 as large as 268324 in an hour.

$$f_2: 10n + 4n \le 3.6 \times 10^{11}$$

$$n = 3.6 \times 10^{10}$$

$$n = 3.6 \times 10^{10}$$

Computer B can solve an instance of a f_2 as large as 3.6×10^{10} in an hour.

$$f_3: 2^n \le 3.6 \times 10^{11}$$

$$n = 38.38921$$

Computer B can solve an instance of a f_3 as large as 38 in an hour.