

Wintersemester 2023/24 Prof. Dr. Stephan Elsenhans 30.10.2023 Benedikt Wolf

Lineare Algebra: Aufgabenblatt 03

3.1 Beispiele von Strukturen

/30 Punkte

Entscheiden Sie zu jedem der folgenden Objekte, welche der Bezeichnungen aus Definition 2.3.3 darauf zutreffen.

- (a) $(\mathbb{R}, \star, -2)$, wobei $\star : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ durch $a \star b := a + b + 2$ definiert ist.
- (b) $(\mathbb{R},\cdot,1)$
- (c) $(\mathbb{Z}/7\mathbb{Z}, -, 0)$, wobei $\bar{a} \bar{b} := \bar{a} + (-\bar{b})$.
- (d) $(\mathbb{Z} \setminus \{0\}, *, 4)$ mit $*: \mathbb{Z} \setminus \{0\} \times \mathbb{Z} \setminus \{0\} \to \mathbb{Q}$, $(a, b) \mapsto ab^{-1}$

3.2 Magma, Halbgruppe, Monoid, Gruppe

/20 Punkte

Es sei (M,\cdot) ein Magma, (H,\odot) eine Halbgruppe und $\alpha:H\to M$ eine surjektive Abbildung, die die Bedingung $\alpha(a\odot b)=\alpha(a)\cdot\alpha(b)$ für alle $a,b\in H$ erfüllt. Zeigen Sie:

- (a) Dann ist auch M eine Halbgruppe.
- (b) Ist H ein Monoid mit neutralem Element e, dann ist M ein Monoid mit neutralem Element $\alpha(e)$.
- (c) Ist (H, \odot, e) sogar eine Gruppe, dann ist $(M, \cdot, \alpha(e))$ eine Gruppe.

3.3 Gruppe mit drei Elementen

/20 Punkte

Wir wollen die folgende Verknüpfungstabelle so vervollständigen, dass $(\{\partial, \eta, L\}, \odot, \eta)$ zu einer Gruppe wird.

\odot	$\mid \partial \mid$	η	L
∂			
η			
L			

- (a) Begründen Sie, dass es nur höchstens eine solche Verknüpfungstafel geben kann.
- (b) Füllen Sie die Tafel so, dass eine Gruppe entsteht und begründen Sie, dass Sie die Verknüpfungstafel einer Gruppe gefunden haben.

3.4 Gruppe mit vier Elementen

/10 Punkte

Wir definieren die drei Abbildungen $c_1, c_2, c_3 : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ durch die Abbildungsvorschriften

$$c_1(1) = 2, c_1(2) = 1, c_1(3) = 4, c_1(4) = 3$$

$$c_2(1) = 3, c_2(2) = 4, c_2(3) = 1, c_2(4) = 2$$

und

$$c_3(1) = 4, c_3(2) = 3, c_3(3) = 2, c_3(4) = 1.$$

Zeigen Sie: $U := \{ id, c_1, c_2, c_3 \}$ ist eine Untergruppe von $S(\{1, 2, 3, 4\})$.

Es sei

$$\mathcal{L} := \{ f : \mathbb{R} \to \mathbb{R} | \text{ es existieren } a, b \in \mathbb{R}, a \neq 0, \text{ sodass für alle } x \in \mathbb{R} f(x) = ax + b \}$$

- (a) Zeigen Sie: (\mathcal{L}, \circ, id) ist eine Gruppe, aber nicht abelsch.
- (b) Wir definieren die Relation $\sim \subseteq \mathcal{L} \times \mathcal{L}$ durch die Festlegung $f \sim g$ genau dann, wenn f(x) f(0) = g(x) g(0) für alle $x \in \mathbb{R}$ gilt.

Zeigen Sie, dass dies eine Äquivalenzrelation ist und bestimmen Sie die Menge aller Äquivalenzklassen von \sim .

Lösungshinweise

Aufgabe 1:

Wir treffen für diese und kommende Aufgaben die Übereinkunft, dass die allgemeinen Rechenregeln in \mathbb{R} (aber nicht in \mathbb{R}^n) bekannt sind. Der axiomatische Aufbau der reellen Zahlen gehört in die Analysis.

- (a) ...
- (b) ...
- (c) ...
- (d) ...

Aufgabe 2:

. . .

Aufgabe 3:

Denken Sie daran, Ihre Behauptungen zu begründen.

Aufgabe 4:

Denken Sie daran, Ihre Behauptungen zu begründen.

Aufgabe 5:

- (a) ...
- (b) ...