Analysis Chapter 2 Test by Tarang Srivastava

- 1. State the definition for convergence of a sequence
- **2.** Consider the sequence (a_n) , where $a_n = 1/\sqrt{n}$. Show that the limit of the sequence is

$$\lim \left(\frac{1}{\sqrt{n}}\right) = 0$$

3. Show

$$\lim \left(\frac{n+1}{n}\right) = 1$$

- **4.** Prove the Algebraic Limit Theorem. Let $\lim a_n = a$, and $\lim b_n = b$. Then,
 - (i) $\lim (ca_n) = ca$, for all $c \in \mathbf{R}$
 - (ii) $\lim (a_n + b_n) = a + b$
 - (iii) $\lim (a_n b_n) = ab$
 - (iv) $\lim (a_n/b_n) = a/b$, provided $b \neq 0$
- **5.** (Cesaro Means) Show that if (x_n) is a convergent sequence, then the sequence given by the averages

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

also converges to the same limit.

Give an example to show that it is possible for the sequence (y_n) of averages to converge even if (x_n) does not.

- **6.** Prove the Monotone Convergence Theorem. If a sequence if monotone and bounded, then it converges.
- 7. Prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converges

8. Prove the Harmonic Series does not converge

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

9. For the sequence

$$(a_n) = \left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \cdots\right)$$

state two subsequences, and two non-obvious examples of invalid subsequences.

10. Prove

Subsequences of a convergent sequence converge to the same limit as the original sequence.

11. Prove the Bolzano-Weierstrass Theorem. Every bounded sequence contains a convergent subsequence.