

August 9th 2011, OSG Site Admin Workshop Jason Zurawski – Internet2 Research Liaison

Welcome & Performance Primer

Who are we, Who are you?

Agenda

- Welcome and Thanks
 - http://www.internet2.edu/workshops/npw/roster/neren.cfm
- Tutorial Agenda:
 - Network Performance Primer Why Should We Care? (30 Mins)
 - Introduction to Measurement Tools (20 Mins)
 - Use of NTP for network measurements (15 Mins)
 - Use of the BWCTL Server and Client (25 Mins)
 - Use of the OWAMP Server and Client (25 Mins)
 - Use of the NDT Server and Client (25 Mins)
 - perfSONAR Topics (30 Mins)
 - Diagnostics vs Regular Monitoring (20 Mins)
 - Use Cases (30 Mins)
 - Exercises

Your Goals?

- What are your goals for this workshop?
 - Experiencing performance problems?
 - Responsible for the campus/lab network?
 - Learning about state of the art, e.g. 'What is perfSONAR'?
 - Developing or researching performance tools?
- Is there a Magic Bullet?
 - No, but we can give you access to strategies and tools that will help
 - Patience and diligence will get you to most goals
- This workshop is as much a learning experience for me as it is for you
 - What problem/problems need to be solved
 - What will make networking a less painful experience
 - How can we improve our goods/services

Problem: "The Network Is Broken"

- How can your users effectively report problems?
 - And how can you learn to take them seriously...
- How can users and the local administrators effectively solve multi-domain problems?
 - Eliminate the 'who you know' network to finding resources
 - Automate things when applicable
- Components:
 - Tools to use
 - Questions to ask
 - Methodology to follow
 - How to ask for (and receive) help

Motivation

- Proactive vs Reactive Positions
 - Do you want to find problems before the users do?
 - Can monitoring tools help in other aspects of operations?
 - Capacity Planning
 - Scheduling Maintenance
 - Traffic Engineering
- Automatic user response: "The Network is broken"
 - Is this justified behavior?
 - In actuality, there is a lot of "network" between the applications
 - What about those applications?
 - What about the host itself?
- Lets try to put this into an example ...

- User and resource are geographically separated
 - Common case: Remote instrument + distributed users
- Both have access to high speed communication network
 - LAN infrastructure 1Gbps Ethernet

- User wants to access a file at the resource (e.g. ~600MB)
- Plans to use COTS tools (e.g. "scp", but could easily be something scientific like "GridFTP" or simple like a web browser)
- What are the expectations?
 - 1Gbps network (e.g. bottleneck speed on the LAN)
 - 600MB * 8 = 4,800 Mb file
 - User expects line rate, e.g. 4,800 Mb / 1000 Mbps = 4.8 Seconds
 - Audience Poll: Is this expectation too high?
- What are the realities?
 - Congestion and other network performance factors
 - Host performance
 - Protocol Performance
 - Application performance

Real Example (New York USA to Los Angeles USA):

```
[zurawski@nms-rthr2 ~]$ scp zurawski@bwctl.losa.net.internet2.edu:pS-Performance
_Toolkit-3.1.1.iso .
pS-Performance_Toolkit-3.1.1.iso 2% 17MB 1.0MB/s 10:05 ETA_
Example:
```

- 1MB/s (8Mb/s) ??? 10 Minutes to transfer???
- Seems unreasonable given the investment in technology
 - Backbone network
 - High speed LAN
 - Capable hosts
- Performance realities as network speed decreases:
 - 100 Mbps Speed 48 Seconds
 - 10 Mbps Speed 8 Minutes
 - 1 Mbps Speed 80 Minutes
- How could this happen? More importantly, why are there not more complaints?
- Audience Poll: Would you complain? If so, to whom?
- Brainstorming the above where should we look to fix this?

- Expectation does not even come close to experience, time to debug.Where to start though?
 - Application
 - Have other users reported problems? Is this the most up to date version?
 - Protocol
 - Protocols typically can be tuned on an individual basis, consult your operating system.
 - Host
 - Are the hardware components (network card, system internals) and software (drivers, operating system) functioning as they should be?
 - LAN Networks
 - Consult with the local administrators on status and potential choke points
 - Backbone Network
 - Consult the administrators at remote locations on status and potential choke points (Caveat – do you [should you] know who they are?)

- Following through on the previous, what normally happens ...
 - Application
 - This step is normally skipped, the application designer will blame the network
 - Protocol
 - These settings may not be explored. Shouldn't this be automatic (e.g. autotuning)?
 - Host
 - Checking and diagnostic steps normally stop after establishing connectivity. E.g. "can I ping the other side"
 - LAN Networks
 - Will assure "internal" performance, but LAN administrators will ignore most user complaints and shift blame to upstream sources. E.g. "our network is fine, there are no complaints"
 - Backbone Network
 - Will assure "internal" performance, but Backbone responsibilities normally stop at the demarcation point, blame is shifted to other networks up and down stream
- * Denotes Problem Areas from Example

Why Worry About Network Performance?

- Most network design lends itself to the introduction of flaws:
 - Heterogeneous equipment
 - Cost factors heavily into design e.g. Get what you pay for
 - Design heavily favors protection and availability over performance
- Communication protocols are not advancing as fast as networks
 - TCP/IP is the king of the protocol stack
 - Guarantees reliable transfers
 - Adjusts to failures in the network
 - Adjusts speed to be fair for all
- User Expectations
 - <u>Big Science</u> is prevalent globally
 - "The Network is Slow/Broken" is this the response to almost any problem? Hardware? Software?
 - Empower users to be more informed/more helpful

"Big" Science

- A Few words on the LHC
 - 17 Mile Circumference "ring" in Switzerland/France
 - Collide opposing beams of particles (3.5 TeV each 7TeV collision)
 - "Detectors" are present to gather data on the collision (ALICE, ATLAS, CMS, LHCb)
 - Data is stored at CERN (Tier0), and distributed world wide to other Tiers (1, 2, 3) for processing and analysis
 - Different types of data, Raw + several kinds of processed data to find areas of interest.
 - N.B. even the raw data doesn't capture anything the machine would produce <u>1PB</u> (!) of data, <u>per second</u> (!!), if it was unfiltered
 - Typical processed data set (2011) = <u>10 100 TB</u>.
 - Tier1s receive and distribute data to Tier2s, Tier2s do the same for Tier3s
 - Each Tier contains storage and processing software/hardware.
 - Goal is to get the data to the lowest tier <u>within 4 hours</u> (!)

"Big" Science – ATLAS Detector

Why is Science Data Movement Different?

Different Requirements

- Campus network is not designed for large flows
 - **Enterprise** requirements
 - 100s of Mbits is common, any more is rare (or viewed as strange)
 - Firewalls
 - Network is designed to mitigate the risks since the common hardware (e.g. Desktops and Laptops) are un-trusted
- Science is different
 - Network needs to be robust and stable (e.g. predictable performance)
 - 10s of Gbits of traffic (N.B. that its probably not sustained but could be)
 - Sensitive to enterprise protections (e.g. firewalls, LAN design)
- Fixing is not easy
 - Design the base network for science, attach the enterprise on the side (expensive, time consuming, and good luck convincing your campus this is necessary...)
 - Mitigate the problems by moving your science equipment to the edge
 - Try to bypass that firewall at all costs
 - Get as close to the WAN connection as you can

Identifying Common Network Problems

- The above examples paint a broad picture: there is a problem, somewhere, that needs to be fixed
- What could be out there?
 - Architecture
 - Common Problems, e.g. "Soft Failures"
- Myths and Pitfalls
 - Getting trapped is easy
 - Following a bad lead is easy too

Identifying Common Network Problems

 Audience Question: Would you complain if you knew what you were getting was not correct?

 N.B. Actual performance between Vanderbilt University and TACC – Should be about 1Gbps in both directions.

Identifying Common Network Problems

- Internet2/ESnet engineers will help members and customers debug problems if they are escalated to us
 - Goal is to solve the entire problem end to end
 - Involves many parties (typical: End users as well as Campus, Regional, Backbone staff)
 - Slow process of locating and testing each segment in the path
 - Have tools to make our job easier (more on this later)
- Common themes and patterns for almost every debugging exercise emerge
 - Architecture (e.g. LAN design, Equipment Choice, Firewalls)
 - Configuration
 - "Soft Failures", e.g. something that doesn't severe connectivity,
 but makes the experience unpleasant

Architectural Considerations

- LAN vs WAN Design
 - Multiple Gbit flows [to the outside] should be close to the WAN connection
 - Eliminate the number of hops/devices/physical wires that may slow you down
 - Great performance on the LAN != Great performance on the WAN
- You Get What you Pay For
 - Cheap equipment will let you down
 - Network
 - Small Buffers, questionable performance (e.g. internal switching fabric can't keep up w/ LAN demand let alone WAN)
 - Lack of diagnostic tools (SNMP, etc.)
 - Storage
 - Disk throughput needs to be high enough to get everything on to the network
 - Plunking a load of disk into an incapable server is not great either
 - Bus performance
 - Network Card(s)

Architectural Considerations - cont.

Firewalls

- Designed to stop traffic
 - read this slowly a couple of times...
- Small buffers
 - Concerned with protecting the network, not impacting your performance
- Will be a lot slower than the original wire speed
- A "10G Firewall" may handle 1 flow close to 10G, doubtful that it can handle a couple.
- If firewall-like functionality is a must consider using router filters instead

Configuration

- Host Configuration
 - Tune your hosts (especially compute/storage!)
 - Changes to several parameters can yield 4 10X improvement
 - Takes minutes to implement/test
 - Instructions: http://fasterdata.es.net/tuning.html
- Network Switch/Router Configuration
 - Out of the box configuration may include small buffers
 - Competing Goals: Video/Audio etc. needs small buffers to remain responsive. Science flows need large buffers to push more data into the network.
 - Read your manuals and test LAN host to a WAN host to verify (not LAN to LAN).

Host Configuration

Configuration – cont.

Host Configuration – spot when the settings were tweaked...

 N.B. Example Taken from REDDnet (UMich to TACC), using BWCTL measurement)

Soft Failures

- Soft Failures are any network problem that does not result in a loss of connectivity
 - Slows down a connection
 - Hard to diagnose and find
 - May go unnoticed by LAN users in some cases, but remote users may be the ones complaining
 - Caveat How much time/energy do you put into listing to complaints of remote users?
- Common:
 - Dirty or Crimped Cables
 - Failing Optics/Interfaces
 - [Router] Process Switching, aka "Punting"
 - Router Configuration (Buffers/Queues)

Soft Failures – cont.

- Dirty or Crimped Cables and Failing Optics/Interfaces
 - Throw off very low levels of loss may not notice on a LAN, will notice on the WAN
 - Will be detected with passive tools (e.g. SNMP monitoring)
 - Question: Would you fix it if you knew it was broken?
- [Router] Process Switching
 - "Punt" traffic to a slow path
 - Duplicate traffic onto multiple paths
- Router Configuration (Buffers/Queues)
 - Need to be large enough to handle science flows
 - Routing table overflow (e.g. system crawls to a halt when memory is exhausted)

Myths and Pitfalls

- "My LAN performance is great, WAN is probably the same"
 - TCP recovers from loss/congestion quickly on the LAN (low RTT)
 - TCP will cut speed in half for every loss/discard on the WAN will take a long time to recover for a large RTT/
 - Small levels of loss on the LAN (ex. 1/1000 packets) will go unnoticed,
 will be very noticeable on the WAN.
- "Ping is not showing loss/latency differences"
 - ICMP May be blocked/ignored by some sites
 - Routers process ICMP differently than other packets (e.g. may show phantom delay)
 - ICMP may hide some (not all) loss.
 - Will not show asymmetric routing delays (e.g. taking a different path on send vs receive)
- Our goal is to dispel these and others by educating the proper way to verify a network – we have lots of tools at our disposal but using these in the appropriate order is necessary too

Topics of Discussion in this Workshop

- Diagnosis Methodology
- Partial Path Decomposition
- Systematic Troubleshooting
- On Demand vs Regular Testing

Topics of Discussion

- Diagnosis Methodology
 - Find a measurement server "near me"
 - Why is this important?
 - How hard is this to do?
 - Encourage user to participate in diagnosis procedures
 - Detect and report common faults in a manner that can be shared with admins/NOC
 - 'Proof' goes a long way
 - Provide a mechanism for admins to review test results
 - Provide feedback to user to ensure problems are resolved

Topics of Discussion – cont.

- Partial Path Decomposition
 - Networking is increasingly:
 - Cross domain
 - Large scale
 - Data intensive
 - Identification of the end-to-end path is key (must solve the problem end to end...)
 - Discover measurement nodes that are "near" this path
 - Provide proper authentication or receive limited authority to run tests
 - No more conference calls between 5 networks, in the middle of the night
 - Initiate tests between various nodes
 - Retrieve and store test data for further analysis

Topics of Discussion – cont.

Systematic Troubleshooting

- Having tools deployed (along the entire path) to enable adequate troubleshooting
- Getting end-users involved in the testing
- Combining output from multiple tools to understand problem.
 - Correlating diverse data sets only way to understand complex problems.
- Ensuring that results are adequately documented for later review
- On Demand vs Regular Testing
 - On-Demand testing can help solve existing problems once they occur
 - Regular performance monitoring can quickly identify and locate problems before users complain
 - Alarms
 - Anomaly detection
 - Testing and measuring performance increases the value of the network to all participants

Our Goals

- To spread the word that today's networks really can, do, and will support demanding applications
 - Science
 - Physics
 - LHC, LIGO
 - Astronomy
 - LSST, SDSS, eVLBI
 - Biology and Climate
 - Genome Sequencing, Weather simulations, remote senors
 - Arts and Humanities
 - Distance learning, synchronized performance
 - Computational and Network Research
 - DYNES, GENI, MeasurementLab, etc.
- To increase the number of test points
 - Instrumenting the end to end path is key
 - Spread the knowledge and encourage adoption

Final Thoughts

- See a talk from the recent Joint Techs Conference:
 - http://www.internet2.edu/presentations/jt2010july/20100714-metzger-whatnext.pdf
- Take home points:
 - Close to \$1 Billion USD spent on networking at all levels (Campus, Regional, Backbone) in the next 2 years due to ARRA Funding
 - Unprecedented access and capacity for many people
 - Ideal View:
 - Changes will be seamless
 - Completed on time
 - Bandwidth will solve all performance problems
 - Realistic View:
 - Network 'breaks' when it is touched (e.g. new equipment, configs)
 - Optimization will not be done in a global fashion (e.g. backbone fixes performance, but what about regional and campus?)
 - Bandwidth means nothing when you have a serious performance problem

Welcome & Performance Primer

August 9th 2011, OSG Site Admin Workshop Jason Zurawski – Internet2 Research Liaison

For more information, visit http://www.internet2.edu/workshops/npw

