

Methods 2 - 7

Chris Mathys

BSc Programme in Cognitive Science
Spring 2023

Linear Algebra: Vectors and Matrices - Gill, chapter 4

- Matrices
 - Eigen-analysis

Elementary scalar calculus - Gill, chapter 5

- Derivatives
 - Definition
 - Notation
 - Rules

Eigenvalues and eigenvectors

A useful and theoretically important feature of a given square matrix is the set of **eigenvalues** associated with this matrix. Every $p \times p$ matrix \mathbf{X} has p scalar values, λ_i , $i = 1, \ldots, p$, such that

$$\mathbf{X}\mathbf{h}_i = \lambda_i \mathbf{h}_i$$

for some corresponding vector \mathbf{h}_i . In this decomposition, λ_i is called an eigenvalue of \mathbf{X} and h_i is called an eigenvector of \mathbf{X} . These eigenvalues show important structural features of the matrix. Confusingly, these are also called the **characteristic roots** and **characteristic vectors** of \mathbf{X} , and the process is also called **spectral decomposition**.

Properties of Eigenvalues for a Nonsingular $(n \times n)$ **Matrix**

 \rightarrow Inverse Property If λ_i is an eigenvalue of X, then

 $\frac{1}{\lambda_i}$ is an eigenvalue of \mathbf{X}^{-1}

 \rightarrow Transpose Property X and X' have the same eigenvalues

 \rightarrow Identity Matrix For I, $\sum \lambda_i = n$

 \mapsto Exponentiation If λ_i is an eigenvalue of \mathbf{X} , then λ_i^k is an eigenvalue of \mathbf{X}^k and k a positive integer

Properties of the Quadratic, y Non-Null

Non-Negative Definite:

 \rightarrow positive definite $\mathbf{y}'\mathbf{X}\mathbf{y} > 0$

 \rightarrow positive semidefinite $\mathbf{y}'\mathbf{X}\mathbf{y} \geq 0$

Non-Positive Definite:

 \rightarrow negative definite $\mathbf{y}'\mathbf{X}\mathbf{y} < 0$

 \rightarrow negative semidefinite $\mathbf{y}'\mathbf{X}\mathbf{y} \leq 0$

We can also say that X is **indefinite** if it is neither nonnegative definite nor nonpositive definite. The big result is worth stating with emphasis:

A positive definite matrix is always nonsingular.

Properties of Limits, $\exists \lim_{x \to X} f(x), \lim_{x \to X} g(x)$, Constant k

Addition and Subtraction

$$\lim_{x \to X} \left[f(x) + g(x) \right] = \lim_{x \to X} f(x) + \lim_{x \to X} g(x)$$

$$\lim_{x \to X} \left[f(x) - g(x) \right] = \lim_{x \to X} f(x) - \lim_{x \to X} g(x)$$

$$\rightarrow$$
 Multiplication

$$\lim_{x \to X} [f(x)g(x)]$$

$$= \lim_{x \to X} f(x) \lim_{x \to X} g(x)$$

$$\lim_{x \to X} [kg(x)] = k \lim_{x \to X} g(x)$$

$$\rightarrow$$
 Division $\left(\lim_{x \to X} g(x) \neq 0\right)$

$$\lim_{x \to X} k = k$$

$$\lim_{x \to \infty} \left[1 + \frac{k}{x} \right]^x = e^k$$

Summary of Derivative Theory

 \rightarrow Existence f'(x) at x exists iff f(x) is continuous at x, and

there is no point where the right-hand derivative

and the left-hand derivative are different

$$\rightarrowtail$$
 Definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

 \rightarrow Tangent Line f'(x) is the slope of the line tangent to f()

at x; this is the limit of the enclosed secant lines

Derivative rules

Constant Rule: $\frac{d}{dx}(c) = 0$, where c is a constant

Power Rule:
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Product Rule: (fg)' = f'g + fg'

Quotient Rule:
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Chain Rule: (f(g(x))' = f'(g(x))g'(x)

$$\frac{d}{dx}(a^x) = a^x \ln(a) \qquad \frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln(a)} \quad \frac{d}{dx}(\ln(x)) = \frac{1}{x}$$

Where I messed up

• Video 4a, 7:00

Square 2-by-2 matrix should read:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

(I reversed the indices of the off-diagonal elements.)

Video 5c, 1:35

Factor rule is (kf(x))' = kf'(x). k does **not** multiply x, it multiples f.