Scilab Textbook Companion for Optical Fiber Communications - Principles And Practice by J. M. Senior¹

Created by
Mohammad Faisal Siddiqi
B.TECH (ELECTRONICS & COMMUNICATION)
Electronics Engineering
JAMIA MILLIA ISLAMIA, NEW DELHI
College Teacher
Not Decided
Cross-Checked by

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Optical Fiber Communications - Principles And Practice

Author: J. M. Senior

Publisher: Pearson Education, New Delhi

Edition: 2

Year: 2007

ISBN: 81-317-0309-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4	
2	OPTICAL FIBER WAVEGUIDES	6	
3	TRANSMISSION CHARACTERISTICS OF OPTICAL FIE	BERS	18
4	OPTICAL FIBERS AND CABLES	34	
5	OPTICAL FIBER CONNECTIONS JOINTS COUPLERS AND ISOLATORS	36	
6	OPTICAL SOURCES 1 THE LASER	47	
7	OPTICAL SOURCES 2 THE LIGHT EMITTING DIODE	55	
8	OPTICAL DETECTORS	63	
9	DIRECT DETECTION RECEIVER PERFORMANCE CONSIDERATIONS	N- 72	
10	OPTICAL AMPLIFICATION WAVELENGTH CONVERSION AND REGENERATION	83	
11	INTEGRATED OPTICS AND PHOTONICS	89	
12	OPTICAL FIBER SYSTEMS 1 INTENSITY MODULATION AND DIRECT DETECTION	94	
13	OPTICAL FIBER SYSTEMS 2 COHERENT AND PHASE MODULATED	123	

List of Scilab Codes

Exa 2.1	Determination of Critical Angle NA and Acceptance	
	Angle	6
Exa 2.2	Determination of NA Solid Acceptance Angle and the	
	Critical Angle	7
Exa 2.3	Comparision of Acceptance Angle for Meridional Rays	
	and Skew Rays	8
Exa 2.4	Estimation of Normalized Frequency and Number of	
	Guided Modes	9
Exa 2.5	Estimation of total number of Guided Modes propagat-	
	ing in the fiber	10
Exa 2.6	Estimation of maximum and new core diameter for given	
	relative refractive index differences	11
Exa 2.7	Estimation of maximum core diameter of an optical fiber	
	which allows single mode operation	12
Exa 2.8	Estimation of cutoff wavelength for a step index fiber to	
	exhibit single mode operation	13
Exa 2.9	Deduction of an approximation for the normalized prop-	
	agation constant	14
Exa 2.10	Estimation of fiber core diameter for a single mode step	
2.10	index fiber	14
Exa 2.11	Determination of spot size at the operating wavelength	
2.11	using ESI technique	15
Exa 2.12	Determination of relative refractive index difference us-	10
LAG 2.12	ing ESI technique	16
Exa 3.1	Determination of signal attenuation under different cases	10
LAW 0.1	and numerical input by output power ratio	18
Exa 3.2	Determination of theoretical attenuation per kilometer	10
LAG 0.4	due to fundamental Rayleigh scattering	19
	due to fundamental frayieign scattering	19

Exa 3.3	Comparision of threshold optical powers for SBS and	
D 2 (SRS	21
Exa 3.4	Estimation of critical radius of curvature	22
Exa 3.5	Estimation of Maximum Bandwidth Pulse dispersion	
	per unit length and BW Length product	23
Exa 3.6	Determination of Material Dispersion Parameter and	
	RMS Pulse Broadening	24
Exa 3.7	Estimation of RMS Pulse Broadening per kilometer for	
	the fiber	25
Exa 3.8	Estimation of Delay Difference RMS Pulse Broadening	
	Maximum Bit Rate and BW Length product	26
Exa 3.9	Comparision of RMS Pulse Broadening per Kilometer	
	for two cases	27
Exa 3.10	Estimation of total RMS pulse broadening and BW Length	
	product	28
Exa 3.11	Comparision of total first order dispersion for the fiber	30
Exa 3.12	Determination of Modal birefringence coherence length	
	and difference between propagation constants	31
Exa 3.13	Determination of fiber birefringence for two given cases	32
Exa 3.14	Determination of mode coupling parameter for the fiber	33
Exa 4.1	Estimation of fracture stress for the fiber and percentage	
	strain at the break	34
Exa 5.1	Calculation of the optical loss in decibels at the joint .	36
Exa 5.2	Estimation of the insertion loss in two given cases	37
Exa 5.3	Estimation of the insertion loss in two given cases	38
Exa 5.4	Estimation of the insertion loss in two given cases	39
Exa 5.5	Estimation of the total insertion loss of the fiber joint	
	with a lateral and angular misalignment	40
Exa 5.6	Calculation of the loss at the connection due to mode	
	field diameter mismatch	41
Exa 5.7	Determination of excess loss insertion losses crosstalk	
	and split ratio	42
Exa 5.8	Determination of excess loss insertion losses crosstalk	
	and split ratio	43
Exa 5.9	Determination of the insertion loss associated with one	
	typical path	44
Exa 5.10	Calculation of the grating period for reflection	45

Exa 6.1	Calculation of the ratio of stimulated emission rate to
	the spontaneous emission rate
Exa 6.2	Determination of the number of longitudinal modes and
	their frequency separation in a ruby laser
Exa 6.3	Calculation of laser gain coefficient for the cavity
Exa 6.4	Comparision of the approximate radiative minority car-
	rier lifetimes in GaAs and Si
Exa 6.5	Determination of the threshold current density and the
	threshold current for the device
Exa 6.6	Calculation of external power efficiency of the device .
Exa 6.7	Comparision of the ratio of threshold current densities
	at 20 C and 80 C for AlGaAs and InGaAsP
Exa 6.8	Determination of RMS value of the power fluctuation
	and RMS noise current at the output of the detector .
Exa 7.1	Determination of total carrier recombination lifetime
	and the power internally generated within the device.
Exa 7.2	Calculation of optical power emitted into air as a per-
	centage of internal optical power and the external power
	efficiency
Exa 7.3	Calculation of Coupling Efficieny and Optical loss in
	decibels relative to Pe and Pint
Exa 7.4	Estimation of the optical power coupled into the fiber
Exa 7.5	Determination of the overall power conversion efficiency
Exa 7.6	Comparision of electrical and optical bandwidth for an
	optical fiber communication system
Exa 7.7	Determination of optical output power modulated at
	frequencies of 20 MHz and 100 MHz
Exa 7.8	Estimation of the CW operating lifetime for the given
	LED
Exa 8.1	Determination of the quantum efficiency and responsiv-
	ity of the photodiode
Exa 8.2	Determination of operating wavelength and incident op-
	tical power
Exa 8.3	Determination of wavelength above which an intrinsic
	photodetector will cease to operate
Exa 8.4	Determination of drift time of the carriers and junction
	capacitance of the photodiode
Exa 8.5	Determination of maximum response time for the device

Exa 8.6	Calculation of noise equivalent power and specific detectivity for the device
Exa 8.7	Determination of the multiplication factor of the photo-
.	diode
Exa 8.8	Determination of optical gain of the device and common
T	emitter current gain
Exa 8.9	Determination of the maximum 3 dB bandwidth per-
D 0.1	mitted by the device
Exa 9.1	Determination of the theoretical quantum limit at the
T . 0.0	receiver and the minimum incident optical power
Exa 9.2	Calculation of incident optical power to achieve given SNR
Exa 9.3	Comparision of the shot noise generated in the photode-
	tector with the thermal noise in the load resistor
Exa 9.4	Determination of SNR at the output of the receiver
Exa 9.5	Calculation of maximum load resistance and bandwidth
	penalty considering amplifier capacitance
Exa 9.6	Determination of the maximum SNR improvement
Exa 9.7	Determination of the optimum avalanche multiplication
T . 0.0	factor
Exa 9.8	Determination of Maximum bandwidth Mean square thermal noise current for high input impedance and
D 404	transimpedance amplifier
Exa 10.1	Determination of Refractive Index of active medium and
T 10.0	3dB Spectral Bandwidth
Exa 10.2	Derivation of an approximate equation for the cavity
T 10.0	gain of an SOA
Exa 10.3	Determination of the length of the device and the ASE
D 10.4	noise signal power at the output of the amplifier
Exa 10.4	Determination of the fiber non linear coefficient and the
	parametric gain in dB when it is reduced to quadratic
D 10 F	
Exa 10.5	Calculation of the frequency chirp variation at the out-
D 44.4	put signal and the differential gain required
Exa 11.1	Determination of Voltage required to provide pi radians
D 110	phase change
Exa 11.2	Determination of Corrugation Period and Filter 3dB
	Bandwidth

Exa 11.3	Design of a wavelength channel plan for a dense WDM	
	Interleaver Waveband Filter	91
Exa 12.1	Determination of bit rate and duration of a Time slot	
	Frame and Multiframe	94
Exa 12.2	Determination of required electrical and optical SNR .	95
Exa 12.3	Estimation of the average number of photons which must	
	be incident on the APD to register a binary one	96
Exa 12.4	Estimation of incident optical power to register binary	
	1 at bit rates of 10 Mbps and 140 Mbps	97
Exa 12.5	Determination of the total channel loss ignoring disper-	
	sion	98
Exa 12.6	Estimation of the dispersion equalization penalty for bit	
	given rates	99
Exa 12.7	Estimation of the maximum bit rate that may be achieved	
	on the link when using NRZ format	100
Exa 12.8	Estimation of maximum possible link length without re-	
	peaters when operating at 35 Mbps and 400 Mbps	101
Exa 12.9	Determination of the viability of optical power budget	103
Exa 12.10	Estimation of ratio of SNR of the coaxial system to the	
	SNR of the fiber system	104
Exa 12.11	Determination of the average incident optical power re-	
	quired at the receiver	105
Exa 12.12	Determination of the average incident optical power re-	
	quired to maintain given SNR	106
Exa 12.13	Determination of the viability of optical power budget	
	and estimation of any possible increase in link length .	108
Exa 12.14	Determination of whether the combination of compo-	
	nents gives an adequate temporal response	109
Exa 12.15	Derivation of an expression for the improvement in post	
	detection SNR and determination of the improvement	
	in post detection SNR and Bandwidth	111
Exa 12.16	Program to determine the ratio of SNRs of FM IM and	
	PM IM systems	112
Exa 12.17	Calculation of the optimium receiver bandwidth and the	
	peak to peak signal power to rms noise ratio	113
Exa 12.18	Formation of comparision showing total channel loss	
	against number of nodes for Bus and Star Distribution	
	Systems	114

Exa 12.19	Estimation of the maximum system length for satisfac-	
	tory performance	117
Exa 12.20	Obtain an expression for the total noise figure for the	
	system	118
Exa 12.21	Calculation of second order dispersion coefficient for L1	
	and dispersion slope for L2	119
Exa 12.22	Determination of the separation for the soliton pulses	
	to avoid interaction and the transmission bit rate	120
Exa 12.23	Determination of the maximum transmission bit rate for	
	the system	121
Exa 13.1	Estimation of the maximum temperature change that	
	could be allowed for the local oscillator laser	123
Exa 13.2	Determination of the operating bandwidth of the receiver	124
Exa 13.3	Calculation of the number of received photons per bit	
	for different detection schemes	125
Exa 13.4	Calculation of the minimum incoming power level	126
Exa 13.5	Calculation of the absolute maximum repeater spacing	
	for different ideal receiver types	127
Exa 13.6	Estimation of the minimum transmitter power require-	
	ment for an optical coherent WDM	129
Exa 14.1	Determination of the attenuation for the fiber and esti-	
	mation of accuracy of the result	131
Exa 14.2	Determination of the absorption loss for the fiber under	
	test	132
Exa 14.3	Determination of the loss due to scattering for the fiber	133
Exa 14.4	Calculation of 3 dB Pulse Broadening and Fiber Band-	
	width Length product	134
Exa 14.5	Calculation of the Numerical Aperture of the fiber	134
Exa 14.6	Determination of the outer diameter of the optical fiber	
	in micrometer	135
Exa 14.7	Conversion of optical signal powers to dBm and dBu .	136
Exa 14.8	Calculation of the ratio of back scattered optical power	
	to the forward optical power	137

List of Figures

12.1 Formation of comparision showing total channel loss against number of nodes for Bus and Star Distribution Systems . . . 115

Chapter 2

OPTICAL FIBER WAVEGUIDES

Scilab code Exa 2.1 Determination of Critical Angle NA and Acceptance Angle

```
1 //Example 2.1
2 //Program to determine the following:
3 //(a) Critical angle at the core-cladding interface
4 //(b) NA for the fiber
5 //(c) Acceptance angle in air for the fiber
7 clear;
8 clc;
9 close;
10
11 //Given data
             //CORE REFRACTIVE INDEX
12 n1=1.50;
           //CLADDING REFRACTIVE INDEX
13 \quad n2=1.47;
14
15 //(a) Critical angle at the core-cladding interface
     in degrees
16 PHIc=asin(n2/n1)*180/%pi;
17
```

```
18 //(b) NA for the fiber
19 NA=sqrt(n1*n1-n2*n2);
20
21 //(c) Acceptance angle in air for the fiber in degrees
22 THEETAa=asin(NA)*180/%pi;
23
24 //Displaying The Results in Command Window
25 printf("\n\n\t Critical angle at the core-cladding interface is %0.1f degrees.",PHIc);
26 printf("\n\n\t NA for the fiber is %0.2f.",NA);
27 printf("\n\n\t Acceptance angle in air for the fiber is %0.1f degrees.",THEETAa);
```

Scilab code Exa 2.2 Determination of NA Solid Acceptance Angle and the Critical Angle

```
1 / Example 2.2
2 //Program to calculate
3 //(a) NA
4 //(b) Solid Acceptance Angle
5 //(c) Critical Angle at the core-cladding interface
7 clear;
8 clc;
9 close;
10
11 //Given data
12 n1=1.46;
                            //CORE REFRACTIVE INDEX
13 delta=0.01;
                            //RELATIVE REFRACTIVE INDEX
     DIFFERENCE
14
15 // Numerical Aperture
16 NA=n1*sqrt(2*delta);
17
```

```
18 //Solid Acceptance Angle in radians
19 zeta=%pi*(NA)^2;
20
21 // Critical Angle at the core-cladding interface in
      degrees
22 n2=n1*(1-delta);
23 PHI_c=asin(n2/n1)*180/%pi;
24
25 // Displaying the Results in Command Window
26 printf("\n\ The Numerical Aperture for the fiber
      is \%0.2 \, \text{f.}", NA);
27 printf("\n\n\t The Solid Acceptance Angle for the
      fiber is %0.2f radians.", zeta);
28 printf("\n\t The Critical Angle at the core-
      cladding interface for the fiber is %0.1f degrees
      .",PHI_c);
```

Scilab code Exa 2.3 Comparision of Acceptance Angle for Meridional Rays and Skew Rays

```
1 / \text{Example } 2.3
2 //Program to Compare the acceptance angle for
      meridional rays and
3 //skew rays which change direction by 100 degrees at
       each reflection
4
5 clear;
6 clc;
7 close;
9 //Given data
                           //NUMERICAL APERTURE
10 NA=0.4;
11 GAMMA = 100/2;
                           //degrees - SKEW RAYS CHANGE
     DIRECTION BY 100 degrees
12
```

```
//Acceptance angle for Meridional rays in degrees
THEETA_a=asin(NA)*180/%pi;

//Acceptance angle for Skew rays in degrees
THEETA_as=asin(NA/cos(GAMMA*%pi/180))*180/%pi;

//Displaying the Results in Command Window
printf("\n\n\t Acceptance angle for Meridional rays is %0.1f degrees.", THEETA_a);
printf("\n\n\t Acceptance angle for Skew rays is %0 .1f degrees.", THEETA_as);
printf("\n\n\t Acceptance angle for Skew rays is %0 .1f degrees.", THEETA_as);
printf("\n\n\t Acceptance angle for Skew rays is about %1.0f degrees greater than Meridional rays.", THEETA_as-THEETA_a);
```

Scilab code Exa 2.4 Estimation of Normalized Frequency and Number of Guided Modes

```
1 //Example 2.4
2 //Program to estimate
3 //(a) Normalized frequency for the fiber
4 //(b) The Number of guided modes
5
6 clear;
7 clc;
8 close;
10 //Given data
11 n1=1.48;
                            //CORE REFRACTIVE INDEX
12 delta=0.015
                            //RELATIVE REFRACTIVE INDEX
     DIFFERENCE
13 d=80*10^{(-6)};
                           //metre - CORE DIAMETER
14 lambda=0.85*10^(-6);
                            //metre - OPERATING
     WAVELENGTH
15 \ a=d/2;
                            //CORE RADIUS
```

```
16
17 //(a) Normalized frequency for the fiber
18 V=2*%pi/lambda*a*n1*sqrt(2*delta);
19
20 //(b) The Number of guided modes
21 Ms=(V^2)/2;
22
23 //Displaying the Results in Command Window
24 printf("\n\n\t The Normalized frequency for the fiber is %0.1 f.",V);
25 printf("\n\n\t The Number of guided modes of the fiber is %d.",ceil(Ms));
```

Scilab code Exa 2.5 Estimation of total number of Guided Modes propagating in the fiber

```
1 / \text{Example } 2.5
2 //Program to estimate total number of guided modes
      propagating in the fiber
3
4 clear;
5 clc;
6 close;
8 //Given data
9 \text{ NA} = 0.2;
                             //NUMERICAL APERTURE
10 d=50*10^{(-6)};
                             //metre - CORE DIAMETER
                             //metre - OPERATING
11 lambda=1*10^(-6);
     WAVELENGTH
12 \ a=d/2;
                             //CORE RADIUS
13
14 //Normalized Frequency for the fiber
15 V=2*\%pi/lambda*a*NA;
16
17 //Mode Volume for parabolic profile
```

```
18 M=(V^2)/4;
19
20 //Displaying the Results in Command Window
21 printf("\n\n\t The number of modes supported by fiber is %1.0 f.", M);
```

Scilab code Exa 2.6 Estimation of maximum and new core diameter for given relative refractive index differences

```
1 / Example 2.6
2 //Program to estimate
3 //(a) The maximum core diameter of an optical fiber
     for Example 2.4
4 //(b) The new core diameter for single mode
      operation when the
  //relative refractive index difference is reduced by
      a factor of 10
7 clear;
8 clc;
9 close;
10
11 //Given data
12 \quad V = 2.4;
                            //Normalized Frequency
13 lambda=0.85*10^(-6);
                           //metre - OPERATING
     WAVELENGTH
14 n1=1.48;
                            //CORE REFRACTIVE INDEX
15 delta=0.015;
                            //RELATIVE REFRACTIVE INDEX
     DIFFERENCE
16
17 //(a) The maximum core radius of the optical fiber
     with delta = 1.5\%
18 a1=V*lambda/(2*%pi*n1*sqrt(2*delta));
19
20 //(b) The new core radius for single mode operation
```

Scilab code Exa 2.7 Estimation of maximum core diameter of an optical fiber which allows single mode operation

```
1 / Example 2.7
2 //Program to estimate the maximum core diameter of
     an optical fiber
3 //which allows single mode operation
4
5 clear;
6 clc;
7 close;
9 //Given data
10 alpha=2;
                           //Parabolic Profile
11 lambda=1.3*10^(-6);
                           //metre - OPERATING
     WAVELENGTH
12 n1=1.5;
                           //CORE REFRACTIVE INDEX
13 delta=0.01;
                           //RELATIVE REFRACTIVE INDEX
     DIFFERENCE
14
```

```
// Normalized Frequency for single mode operation
V=2.4*sqrt(1+2/alpha);

// The maximum core radius for single mode operation
a=V*lambda/(2*%pi*n1*sqrt(2*delta));

// Displaying the Results in Command Window
printf("\n\n\t The maximum core diameter of the optical fiber which allows single mode operation is %0.1f micrometre.",2*a*10^6);
```

Scilab code Exa 2.8 Estimation of cutoff wavelength for a step index fiber to exhibit single mode operation

```
1 / Example 2.8
2 //Program to estimate cutoff wavelength for a step
     index fiber to
  //exhibit single mode operation
5 clear;
6 clc;
7 close;
8
9 //Given data
10 a=4.5*10^{(-6)};
                           //metre - CORE RADIUS
                           //CORE REFRACTIVE INDEX
11 n1=1.46;
12 delta=0.0025;
                           //RELATIVE REFRACTIVE INDEX
     DIFFERENCE
13
14 // The cutoff wavelength for a step index fiber
15 lambda_c=2*%pi*a*n1*sqrt(2*delta)/2.405;
16
17 // Displaying The Results in Command Window
18 printf("\n\ The cutoff wavelength for a step
     index fiber to exhibit single mode operation is
```

Scilab code Exa 2.9 Deduction of an approximation for the normalized propagation constant

```
1 / \text{Example } 2.9
2 // Note: MAXIMA SCILAB TOOLBOX REQUIRED FOR THIS
     PROGRAM
3 //Program to deduce an approximation for the
      normalized propagation
4 //constant
6 clear;
7 clc;
8 close;
10 \text{ syms W b V};
11
12 //Given data
13 //Eigen Value of the single mode step index fiber
      cladding
14 \quad W = 1.1428 * V - 0.9960;
15
16 // Normalized propagation constant b(V)
17 b= W^2/V^2;
18
19 //Display the result in command window
20 disp (b, "The normalized propagation constant <math>b(V) is
       given by");
```

Scilab code Exa 2.10 Estimation of fiber core diameter for a single mode step index fiber

```
1 //Example 2.10
2 //Program to estimate the fiber core diameter for a
      single mode
3 //step index fiber
4
5 clear;
6 clc;
7 close;
9 //Given data
10 V = 2.2;
                            //NORMALIZED FREQUENCY
11 MFD=11.6*10^{(-6)};
                            //metre - MODE FIELD
     DIAMETER
12 W0=5.8*10^{(-6)};
13
14 // The fiber core radius
15 a=W0/(0.65+1.619*V^{(-1.5)}+2.879*V^{(-6)});
16
17 // Displaying the Result in Command Window
18 printf("\n\ The fiber core diameter for a single
     mode step index fiber is \%0.1 \, \text{f um.}", 2*a*10^6);
```

Scilab code Exa 2.11 Determination of spot size at the operating wavelength using ESI technique

```
//metre - OPERATING
10 lambda=1.30*10^{(-6)};
     WAVELENGTH
                                   //metre - CUTOFF
11 lambda_c=1.08*10^(-6);
     WAVELENGTH
12 THEETA_min=12;
                                   //degree
13
14 // The effective core radius
15 a_eff=3.832*lambda/(2*%pi*sin(THEETA_min*%pi/180));
16
17 // The effective normalized frequency
18 V_{eff}=2.405*lambda_c/lambda;
19
20 // The spot size
21 \text{ w0} = 3.81*10^{(-6)}*(0.6043+1.755*V_eff^{(-1.5)}+2.78*
      V_eff^(-6));
22
23 // Displaying the Results in Command Window
24 printf("\n\t The effective core radius is \%0.2f um
      .",a_eff*10^6);
25 printf("\n\t The effective normalized frequency is
       \%0.2 \text{ f.}", V_{\text{eff}});
26 printf("\n\t The spot size at the operating
      wavelength is \%0.2 \, \text{f um.}", \text{w0*10^6});
```

Scilab code Exa 2.12 Determination of relative refractive index difference using ESI technique

```
1 //Example 2.12
2 //Program to determine relative refractive index
          difference using ESI
3 //technique
4
5 clear;
6 clc;
7 close;
```

```
9 //Given data
                          //metre - CUTOFF
10 lambda_c=1.19*10^(-6);
     WAVELENGTH
11 w0=5.2*10^{(-6)};
                                //metre - SPOT SIZE
12 n1=1.485;
                                //MAXIMUM REFRACTIVE
     INDEX OF THE CORE
13
14 // The ESI core diameter
15 d_ESI=1.820*w0;
16
17 // The ESI relative index difference
18 delta_ESI=(0.293/n1^2)*(lambda_c/d_ESI)^2;
19
20 // Displaying the Result in Command Window
21 printf("\n\t The relative refractive index
     difference using ESI technique is %0.2f percent."
     ,delta_ESI*10^2);
```

Chapter 3

TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS

Scilab code Exa 3.1 Determination of signal attenuation under different cases and numerical input by output power ratio

```
1 // Example 3.1
2 //Program to Determine
3 //(a) Overall signal attenuation
4 //(b) Signal attenuation per kilometer
5 //(c) Overall signal attenuation for 10 km optical
     link with splices
  //(d) Numerical Input/Output power ratio
8 clear;
9 clc;
10 close;
11
12 //Given data
13 Pi=120;
                    //uW - INPUT OPTICAL POWER
                   //uW - OUTPUT OPTICAL POWER
14 Po = 3;
                    //km - FIBER LENGTH
15 L=8;
```

```
16
  //(a) Overall signal attenuation
17
18 Alpha_dB_L=10*log10(Pi/Po);
19
20 //(b) Signal attenuation per kilometer
21 Alpha_dB=Alpha_dB_L/L;
22
  //(c) Overall signal attenuation for 10 km optical
23
      link with splices
24 \quad A = Alpha_dB * 10 + 9;
25
26 //(d) Numerical Input/Output power ratio
27 Pi_by_Po=10^(round(A)/10);
28
29 // Displaying the Results in Command Window
30 printf("\n\t (a) Overall signal attenuation is \%1.0
      f dB.", Alpha_dB_L);
31 printf("\n\t (b) Signal attenuation per kilometer
      is \%1.0 \, \mathrm{f} \, \mathrm{dB/km}.", Alpha_dB);
32 printf("\n\t (c) Overall signal attenuation for 10
      km optical link with splices is %1.0 f dB.", A);
33 printf("\n\t (d) Numerical Input/Output power ratio
       is \%0.1 \, \text{f.} ", Pi_by_Po);
```

Scilab code Exa 3.2 Determination of theoretical attenuation per kilometer due to fundamental Rayleigh scattering

```
1 //Example 3.2
2 //Program to Determine Theoretical attenuation in dB
    /km due to fundamental rayleigh scattering at
    optical wavelengths:
3 //(a) 0.63 um
4 //(b) 1.00 um
5 //(c) 1.30 um
```

```
7 clear;
8 clc;
9 close;
10
11 //Given data
12 n=1.46;
                         //REFRACTIVE INDEX
                         //PHOTOELASTIC COEFFICIENT
13 p=0.286;
14 Bc=7*10^(-11);
                         //\text{m}^2/\text{N} - \text{ISOTHERMAL}
      COMPRESSIBILITY
15 K=1.381*10^{-23};
                         //J/K - BOLTZMANN' s CONSTANT
                         //Kelvin - FICTIVE TEMPERATURE
16 Tf = 1400;
                         //metre - FIBER LENGTH
17 \quad 1 = 1000;
18
  //(a) Attenuation in dB/km due to fundamental
      rayleigh scattering at 0.63um
                                       //metre -
  lambda = 0.63 * 10^{(-6)};
     WAVELENGTH
21 Gamma_R=8*(\%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4);
22 L_km1 = exp(-Gamma_R*1)
23 A1=10*log10(1/L_km1);
24
25
  //(b) Attenuation in dB/km due to fundamental
      rayleigh scattering at 1.00um
                                       //metre -
  lambda=1.00*10^{(-6)};
     WAVELENGTH
27 Gamma_R=8*(\%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4);
28 L_km2 = exp(-Gamma_R*1)
29 A2=10*log10(1/L_km2);
30
  //(c) Attenuation in dB/km due to fundamental
      rayleigh scattering at 1.30um
  lambda=1.30*10^{(-6)};
                                       //metre -
     WAVELENGTH
33 Gamma_R=8*(\%pi)^3*n^8*p^2*Bc*K*Tf/(3*lambda^4);
34 L_km3 = exp(-Gamma_R*1)
35 A3=10*log10(1/L_km3);
36
37 // Displaying the Results in Command Window
```

```
38 printf("\n\n\t (a) Attenuation in dB/km due to
      fundamental rayleigh scattering at 0.63um = %0.1f
      dB/km.",A1);
39 printf("\n\n\t (b) Attenuation in dB/km due to
      fundamental rayleigh scattering at 1.00um = %0.1f
      dB/km.",A2);
40 printf("\n\n\t (c) Attenuation in dB/km due to
      fundamental rayleigh scattering at 1.30um = %0.1f
      dB/km.",A3);
```

Scilab code Exa 3.3 Comparision of threshold optical powers for SBS and SRS

```
1 //Example 3.3
2 //Program to compare the threshold optical powers
      for stimulated
3 // Brillouin and Raman Scattering
5 clear;
6 \text{ clc};
7 close;
9 //Given data
10 alpha_dB=0.5;
                        //dB/km - ATTENUATION
11 lambda=1.3;
                        //micrometre - OPERATING
     WAVELENGTH
12 d=6;
                        //micrometre - FIBER CORE
     DIAMETER.
13 nu=0.6;
                        //GHz
                                 - LASER SOURCE
     BANDWIDTH
14
15 //Threshold optical power for SBS
16 Pb=4.4*10^{(-3)}*(d^2)*(lambda^2)*alpha_dB*nu;
17
18 //Threshold optical power for SRS
```

```
19 Pr=5.9*10^(-2)*d^2*lambda*alpha_dB;
20
21 // Displaying the Results in Command Window
22 printf("\n\n\t The threshold optical power for SBS
        is %0.1 f mW.", Pb*10^3);
23 printf("\n\n\t The threshold optical power for SRS
        is %0.2 f W.", Pr);
```

Scilab code Exa 3.4 Estimation of critical radius of curvature

```
1 / Example 3.4
2 //Program to estimate critical radius of curvature
     at which large
3 //bending loss occur
5 clear;
6 clc;
7 close;
9 //Given data for part (a)
              //metre - LENGTH
10 n1=1.500;
11 delta=0.03; //*100 percent - RELATIVE
     REFRACTIVE INDEX DIFFERENCE
12 lambda=0.82*10^(-6); //metre - OPERATING WAVELENGTH
13
14 // Calculation of the radius of curvature of Multi
     Mode fiber
15 n2=sqrt(n1^2-2*delta*n1^2);
16 Rc=3*n1^2*lambda/(4*\%pi*(n1^2-n2^2)^(3/2));
17
18 //Given data for part (b)
                   //metre - LENGTH
19 n1=1.500;
                   //*100 percent - RELATIVE
20 delta=0.003;
     REFRACTIVE INDEX DIFFERENCE
21 lambda=1.55*10^(-6); //metre - OPERATING WAVELENGTH
```

```
22 d=8*10^{(-6)};
                        //metre - CORE DIAMETER
23
24 // Calculation of the radius of curvature of Single
      Mode fiber
25 n2=sqrt(n1^2-2*delta*n1^2);
26 \text{ a=d/2};
27 \quad lambda_c = 2*\%pi*a*n1*sqrt(2*delta)/2.405;
28 \text{ Rcs} = 20 \cdot 1 \text{ ambda} \cdot (2.748 - 0.996 \cdot 1 \text{ ambda} / 1 \text{ ambda} \cdot (-3) / (n1)
      -n2)^(3/2);
29
30 // Displaying the Results in Command Window
31 printf("\n\n\t (a)The radius of curvature of Multi
      Mode fiber is \%1.0 \, \text{f um.}, Rc/10^(-6));
32 printf("\n\t (b)The radius of curvature of Single
      Mode fiber is \%1.0 \text{ f mm.}", Rcs/10^(-3));
```

Scilab code Exa 3.5 Estimation of Maximum Bandwidth Pulse dispersion per unit length and BW Length product

```
1 / Example 3.5
2 //Program to estimate
3 //(a) The maximum possible bandwidth on the link
      assuming no ISI
4 //(b) The pulse dispersion per unit length
5 //(c) The bandwidth-length product for the fiber
7 clear;
8 clc;
9 close;
10
11 //Given data
12 tau=0.1*10^(-6); //second - TOTAL PULSE BROADENING
                    //km - DISTANCE
13 L=15;
14
15 //(a) The maximum possible bandwidth on the link
```

```
assuming no ISI
16 B_{\text{opt}}=1/(2*tau);
17
18 //(b) The pulse dispersion per unit length
19 Dispersion=tau/L;
20
21 //(c)The bandwidth-length product for the fiber
22 B_optXL=B_opt*L;
23
24 // Displaying the Results in Command Window
25 printf("\n\t (a)The maximum possible bandwidth on
      the link assuming no ISI is %1.0 f MHz.", B_opt
      /10^6);
26 printf("\n\t (b)The pulse dispersion per unit
      length is \%0.2 \, \text{f ns/km.}", Dispersion/10^(-9));
27 printf("\n\t (c)The bandwidth-length product for
      the fiber is \%1.0 \, \text{f MHz km.}", B_optXL/10^6);
```

Scilab code Exa 3.6 Determination of Material Dispersion Parameter and RMS Pulse Broadening

```
1 //Example 3.6
2 //Program to estimate Material dispersion parameter
     and rms pulse
3 //broadening per kilometer
4 clear;
5 clc;
6 close;
8 //Given data
9 lambda=0.85*10^{(-6)};
                           //metre - WAVELENGTH
                           //km - DISTANCE
10 L=1;
11 MD=0.025; //MATERIAL DISPERSION = mod(lamda^2*[del^2(
     n1)/del(lamda)^2)
12 c=2.998*10^8;
                            //m/s - VELOCITY OF LIGHT IN
```

VACCUM sigma_lambda=20*10^(-9); //metre - RMS SPECTRAL WIDTH //Material Dispersion Parameter M=MD/(lambda*c); //R.M.S. pulse broadening per kilometer sigma_m=sigma_lambda*L*M; //Displaying the Results in Command Window printf("\n\n\t Material Dispersion Parameter is %0.1 f ps/nm/km.", M*10^6); printf("\n\n\t R.M.S. pulse broadening per kilometer is %0.2 f ns/km.", sigma_m/10^(-12));

Scilab code Exa 3.7 Estimation of RMS Pulse Broadening per kilometer for the fiber

```
1 / Example 3.7
2 //Program to estimate rms pulse broadening per
     kilometer for the fiber
3
4 clear;
5 clc;
6 close;
8 //Given data
9 lambda=0.85*10^{(-6)};
                           //metre - WAVELENGTH
10 L=1;
                            //km - DISTANCE
11 MD=0.025; //MATERIAL DISPERSION = mod(lamda^2*[del^2(
     n1)/del(lamda)^2)
12 c=2.998*10^8;
                            //m/s - VELOCITY OF LIGHT IN
      VACCUM
13 sigma_lambda_by_lambda=0.0012; // sigma_lambda/lambda
14
```

```
// Material Dispersion Parameter
M=MD/(lambda*c);

//R.M.S. Spectral Width
sigma_lambda=sigma_lambda_by_lambda*lambda;

//R.M.S. pulse broadening per kilometer
sigma_m=sigma_lambda*L*M;

// Displaying the Result in Command Window
printf("\n\n\t R.M.S. pulse broadening per kilometer
is %0.2 f ns/km.", sigma_m/10^(-12));
```

Scilab code Exa 3.8 Estimation of Delay Difference RMS Pulse Broadening Maximum Bit Rate and BW Length product

```
1 / \text{Example } 3.8
2 //Program to estimate
3 //(a) The delay difference between the slowest and
     fastest modes at the fiber output
  //(b) The rms pulse broadening due to intermodal
     dispersion on the link
  //(c) The maximum bit rate
  //(d)Bandwidth-length product corresponding to (c)
8 clear;
9 clc;
10 close;
11
12 //Given data
13 delta=0.01;
                    //*100 percent - RELATIVE
     REFRACTIVE INDEX DIFFERENCE
                    //km - LENGTH OF OPTICAL LINK
14 L=6;
15 n1=1.5;
                    //CORE REFRACTIVE INDEX
16 c=2.998*10^8;
                    //m/s - VELOCITY OF LIGHT IN VACCUM
```

```
17
18 //(a) The delay difference between the slowest and
      fastest modes at the fiber output
19 del_Ts=L*n1*delta/c;
20
21
  //(b) The rms pulse broadening due to intermodal
      dispersion on the link
22
  sigma_s=L*n1*delta/(2*sqrt(3)*c);
23
\frac{24}{\sqrt{(c)}} The maximum bit rate
25 \text{ Bt} = 1/(2*\text{del}_Ts);
26 //Improved maximum bit rate
27 Bti=0.2/sigma_s;
28
29 //(d)Bandwidth-length product corresponding to (c)
30 BoptXL=Bti*L;
31
32 // Displaying the Results in Command Window
33 printf("\n\t (a)The delay difference between the
      slowest and fastest modes at the fiber output is
      \%1.0 \text{ f ns.}", del_Ts/10^(-12));
34 printf("\n\t (b)The rms pulse broadening due to
      intermodal dispersion on the link is %0.1f ns.",
      sigma_s/10^(-12));
35 printf("\n\t (c) The maximum bit rate is %0.1 f Mbit
      /s and improved bit rate is %0.1f Mbit/s.",Bt
      /10<sup>(9)</sup>,Bti/10<sup>(9)</sup>;
36 printf("\n\t (d)Bandwidth-length product is \%0.1 f
      \mathrm{MHz}\ \mathrm{km}.", \mathrm{BoptXL/10}^{\circ}(9));
```

Scilab code Exa 3.9 Comparision of RMS Pulse Broadening per Kilometer for two cases

```
1 //Example 3.92 //Program to compare rms pulse broadening per
```

```
kilometer due to
3 //intermodal dispersion for multimode step index
     fiber with that of
  //near parabolic graded index fiber
5
6 clear;
7 clc;
8 close;
10 //Given data
11 delta=0.01;
                    //*100 percent - RELATIVE
     REFRACTIVE INDEX DIFFERENCE
                    //km - LENGTH OF OPTICAL LINK
12 L=1;
                    //CORE REFRACTIVE INDEX
13 n1=1.5;
                    //m/s - VELOCITY OF LIGHT IN VACCUM
14 c=2.998*10^8;
15
16 //RMS pulse broadening /km due to intermodal
     dispersion for MMSI Fiber
17 sigma_s=L*n1*delta/(2*sqrt(3)*c);
18
19 //RMS pulse broadening /km for near parabolic graded
      index fiber
20 sigma_g=L*n1*delta^2/(20*sqrt(3)*c);
21
22 // Displaying the Results in Command Window
23 printf("\n\n\t RMS pulse broadening per kilometer
     due to intermodal dispersion for MMSI Fiber is %0
     .1 f ns/km.", sigma_s/10^(-12));
24 printf("\n\n\t RMS pulse broadening per kilometer
     for near parabolic graded index fiber is %0.1f ps
     / \text{km.} ", sigma_g/10^(-15));
```

Scilab code Exa 3.10 Estimation of total RMS pulse broadening and BW Length product

```
1 //Example 3.10
2 //Program to estimate
3 //(a)RMS pulse broadening per kilometer
4 //(b)Bandwidth-Length product for the fiber
5
6 clear;
7 clc;
8 close;
9
10 //Given data
11 \text{ NA=0.3};
                     //NUMERICAL APERTURE
12 n1=1.45;
                     //CORE REFRACTIVE INDEX
13 M = 250 * 10^{(-6)};
                     //s/km^2 - MATERIAL DISPERSION
     PARAMETER
14 sigma_lambda=50*10^(-9); //metre - RMS SPECTRAL
     WIDTH
                     //km - LENGTH OF OPTICAL LINK
15 L=1;
16 c=2.998*10^8;
                     //m/s - VELOCITY OF LIGHT IN VACCUM
17
18 //RMS pulse broadening /km due to material
      dispersion
19 sigma_m=sigma_lambda*L*M;
20
  //RMS pulse broadening /km due to intermodal
21
      dispersion
22 sigma_s=L*NA^2/(4*sqrt(3)*n1*c);
23
24 //(a) Total RMS pulse broadening /km
25 sigma_t=sqrt(sigma_m^2+sigma_s^2);
26
27 //(b)Bandwidth-Length product
28 BoptXL=0.2/sigma_t;
29
30 // Displaying the Results in Command Window
31 printf("\n\n\ Total\ RMS\ pulse\ broadening\ per
      kilometer is \%0.1 \, \text{f ns/km.}", sigma_t/10^(-12));
32 printf("\n\t Bandwidth-Length product is \%0.1f MHz
      km.", BoptXL/10^(9));
```

Scilab code Exa 3.11 Comparision of total first order dispersion for the fiber

```
1 //Example 3.11
2 //Program to compare the total first order
      dispersion and determine
3 //waveguide dispersion
5 clear;
6 clc;
7 close;
9 // Given data
10 lambda0=1310;
                            //nm - ZERO DISPERSION
     WAVELENGTH
11 So=0.09*10^(-12);
                            //s/nm^2/km - DISPERSION
     SLOPE
12
13 //Dt at 1280nm
14 lambda1=1280;
                            //nm - OPERATING WAVELENGTH
15 Dt1=lambda1*So/4*(1-(lambda0/lambda1)^4);
16
17 //Dt at 1550nm
18 lambda2=1550;
                            //nm - OPERATING WAVELENGTH
19 Dt2=lambda2*So/4*(1-(lambda0/lambda2)^4);
20
21 //Waveguide Dispersion at 1550nm
22 \quad Dm = 13.5 * 10^{(-12)};
                           //s/nm/km - MATERIAL
     DISPERSION
23 Dp=0.4*10^(-12); //s/nm/km - PROFILE
     DISPERSION
24 \quad Dw = Dt2 - (Dm + Dp);
25
26 // Displaying the Results in Command Window
```

Scilab code Exa 3.12 Determination of Modal birefringence coherence length and difference between propagation constants

```
1 //Example 3.12
2 //Program to determine modal birefringence,
     coherence length and difference between
     propagation constants for the two orthogonal
     modes
4 clear;
5 clc;
6 close;
8 //Given data
9 lambda=0.9*10^(-6); //metre - PEAK WAVELENGTH
                        //metre - BEAT LENGTH
10 Lb = 9 * 10^{(-2)};
11 del_lambda=1*10^(-9); //metre - SPECTRAL LINE WIDTH
12
13 //Modal Birefringence
14 Bf=lambda/Lb;
15
16 //Coherence Length
17 Lbc=lambda^2/(Bf*del_lambda);
18
19 // Difference between propagation constants for the
     two orthogonal
20 //modes
21 Bx_minus_By=2*%pi/Lb;
22
```

Scilab code Exa 3.13 Determination of fiber birefringence for two given cases

```
1 //Example 3.13
2 //Program to determine fiber birefringence for given
       beat lengths
3 / (1) Lb = 0.7 mm
4 //(2) Lb = 80 m
6 clear;
7 clc;
8 close;
10 //Given data
11 lambda=1.3*10^(-6); //metre - OPERATING WAVELENGTH
12
13 // Part (1)
14 Lb1=0.7*10^(-3);
                       //metre - BEAT LENGTH
15 Bf1=lambda/Lb1;
16
17 / Part (2)
18 Lb2=80;
                        //metre - BEAT LENGTH
19 Bf2=lambda/Lb2;
20
21 // Displaying the Results in Command Window
22 printf("\n\t The fiber birefringence for Lb = 0.7
```

```
mm is \%0.2 \, \mathrm{f} \ \mathrm{X} \ 10^{\circ}(-3) which is high.",Bf1/10^(-3));
23 printf("\n\n\t The fiber birefringence for Lb = 80 m is \%0.2 \, \mathrm{f} \ \mathrm{X} \ 10^{\circ}(-8) which is low.",Bf2/10^(-8));
```

Scilab code Exa 3.14 Determination of mode coupling parameter for the fiber

```
1 //Example 3.14
2 //Program to determine the mode coupling parameter
      for the fiber
3
4 clear;
5 clc;
6 close;
7
8 //Given data
9 L=3.5*10^3;
                        //metre - LENGTH
                        //dB - POLARIZATION CROSSTALK
10 CT = -27;
11
12 //Mode coupling parameter for the fiber
13 h=(10^{(CT/10)})/L; //as tan(h*L)=h*L for small values
14
15 // Displaying the Result in Command Window
16 printf("\n\ The mode coupling parameter for the
      fiber is \%0.1 \, \text{f X } 10^{-}(-7) \, \text{/m.}", h/10^(-7));
```

Chapter 4

OPTICAL FIBERS AND CABLES

Scilab code Exa 4.1 Estimation of fracture stress for the fiber and percentage strain at the break

```
1 / \text{Example } 4.1
2 //Program to determine the following:
3 //(a) Fracture Stress in psi for the fiber
4 //(b) Percentage Strain at the break
6 clear;
7 clc;
8 close;
9
10 //Given data
                         //psi - THEORETICAL
11 St=2.6*10^6;
     COHESIVE STRENGTH
12 la=0.16*10^-9;
12 C=10*10^-9:
                         //metres - BOND DISTANCE
                        //metres - DEPTH OF CRACK
13 C=10*10^-9;
                         //N/m^2 – YOUNG'S MODULUS OF
14 E = 9*10^10 ;
     SILICA
15
16 Gamma_p=(4*la*St^2)/E;
```

```
17
18 //Fracture Stress for an Elliptical Crack
19 Sf_psi=sqrt((2*E*Gamma_p)/(%pi*C));
20
21 // Fracture Stress in psi units
22 Sf=Sf_psi*6894.76;
23
24 //Strain Calculation
25 strain=Sf/E;
26
27 // Displaying the Results in Command Window
28 printf("\n\t Fracture Stress for the fiber is \%0.2
      f X 10^9 N/m or \%0.2 f X 10^5 psi.", Sf/10^9, Sf_psi
     /10^5);
29 printf("\n\t Percentage Strain at the break is %d
     percent.", strain *100);
```

Chapter 5

OPTICAL FIBER CONNECTIONS JOINTS COUPLERS AND ISOLATORS

Scilab code Exa 5.1 Calculation of the optical loss in decibels at the joint

```
1 //Example 5.1
2 //Program to calculate the optical loss in decibels
    at the joint
3
4 clear;
5 clc;
6 close;
7
8 //Given data
9 n1=1.5; //CORE REFRACTIVE INDEX
10 n=1.0;
11
12 //Magnitude of Frensel reflection at the fiber-air
    interface
13 r=((n1-n)/(n1+n))^2;
```

```
14
15  // Optical Loss
16  Loss_fres=-10*log10(1-r);
17
18  // Displaying the Results in Command Window
19  printf("\n\n\t Optical Loss is %0.2 f dB .", Loss_fres );
20  printf("\n\n\t Total loss due to Frensel Reflection at the fiber joint is %0.2 f dB .", Loss_fres*2);
```

Scilab code Exa 5.2 Estimation of the insertion loss in two given cases

```
1 / \text{Example } 5.2
2 //Program to estimate the insertion loss when:
3 //(a) there is a small air gap at the joint
4 //(b) the joint is considered index matched
5
6 clear;
7 clc;
8 close;
9
10 //Given data
11 n1=1.5;
                   //CORE REFRACTIVE INDEX
12 n=1.0;
15
16 //(a) Coupling efficiency
17 eeta_lat1=16*(n1/n)^2/(1+(n1/n))^4*1/%pi*(2*acos(y))
     /(2*a))-(y/a)*sqrt(1-(y/(2*a))^2);
18 //Insertion Loss
19 Loss_lat1=-10*log10(eeta_lat1);
20
21 //(b) Coupling efficiency
22 eeta_lat2=1/\%pi*(2*acos(y/(2*a))-(y/a)*sqrt(1-(y/(2*a)))
```

```
a))^2));
23 //Insertion Loss
24 Loss_lat2=-10*log10(eeta_lat2);
25
26 //Displaying the Results in Command Window
27 printf("\n\n\t (a)Insertion Loss (there is a small air gap at the joint) is %0.2 f dB .",Loss_lat1);
28 printf("\n\n\t (b)Insertion Loss (the joint is considered index matched) is %0.2 f dB .",
Loss_lat2);
```

Scilab code Exa 5.3 Estimation of the insertion loss in two given cases

```
1 //Example 5.3
2 //Program to estimate the insertion loss when:
3 //(a) there is uniform illumination of all guided
     modes only
4 //(b) there is uniform illumination of all guided and
      leaky modes
5
6 clear;
7 clc;
8 close;
10 //Given data
11 y=3*10^{(-6)}; //metre - LATERAL MISALIGNMENT
12 a=25*10^(-6); //metre - CORE RADIUS
13
14 //(a) Misalignment Loss
15 Lt1=0.85*(y/a);
16 // Coupling efficiency
17 eeta_lat1=1-Lt1;
18 //Insertion Loss
19 Loss_lat1=-10*log10(eeta_lat1);
20
```

```
21 //(b) Misalignment Loss
22 Lt2=0.75*(y/a);
23 //Coupling efficiency
24 eeta_lat2=1-Lt2;
25 //Insertion Loss
26 Loss_lat2=-10*log10(eeta_lat2);
27
28 //Displaying the Results in Command Window
29 printf("\n\n\t (a) Insertion Loss (there is uniform illumination of all guided modes only) is %0.2 f dB .",Loss_lat1);
30 printf("\n\n\t (b) Insertion Loss (there is uniform illumination of all guided and leaky modes) is %0 .2 f dB .",Loss_lat2);
```

Scilab code Exa 5.4 Estimation of the insertion loss in two given cases

```
1 / Example 5.4
2 //Program to estimate the insertion loss for
3 / NA = 0.2
4 / NA = 0.4
5
6 clear;
7 clc;
8 close;
10 //Given data
11 n1=1.48;
                      //CORE REFRACTIVE INDEX
12 n=1.0;
                      //degree - ANGULAR MISALIGNMENT
13 theeta=5;
14
15 // Calculation for NA = 0.2
16 \, \text{NA} = 0.2
17 eeta_ang1=16*(n1/n)^2/(1+n1/n)^4*(1-n*theeta*%pi
      /180/(%pi*NA));
```

Scilab code Exa 5.5 Estimation of the total insertion loss of the fiber joint with a lateral and angular misalignment

```
1 / \text{Example } 5.5
2 //Program to estimate the total insertion loss of
      the fiber joint
3 // with a lateral misalignment and angular
      misalignment
4
5 clear;
6 clc;
7 close;
8
9 //Given data
10 V = 2.40;
                   //NORMALIZED FREQUENCY
                   //CORE REFRACTIVE INDEX
11 n1=1.46;
                   //metre - CORE DIAMETER
12 d=8*10^{(-6)};
13 NA=0.1;
                   //NUMERICAL APERTURE
14 y = 1 * 10^{(-6)};
                   //metre - LATERAL MISALIGNMENT
```

```
//degree - ANGULAR MISALIGNMENT
15 theeta=1;
16
17 // Normalized Spot Size
18 a=d/2;
19 omega=a*(0.65+1.62*V^(-3/2)+2.88*V^(-6))/sqrt(2);
20
21 //Loss due to lateral offset
22 T1=2.17*(y/omega)^2;
23
24 //Loss due to angular misalignment
25 Ta=2.17*((theeta*\%pi/180)*omega*n1*V/(a*NA))^2;
26
27 //Total insertion loss
28 Tt=T1+Ta;
29
30 // Displaying the Result in Command Window
31 printf("\n\t Total Insertion Loss is \%0.2 \, f \, dB.",
     Tt);
```

Scilab code Exa 5.6 Calculation of the loss at the connection due to mode field diameter mismatch

```
//Example 5.6
//Program to calculate the loss at the connection
due to mode field
//diameter mismatch

clear;
close;
//Given data
//um - MODE FIELD DIAMETER
```

```
// Calculation of Intrinsic Loss
omega_01=MFD01/2;
omega_02=MFD02/2;
Loss_int=-10*log10(4*(omega_02/omega_01+omega_01/omega_02)^(-2))
// Displaying the Result in Command Window
printf("\n\n\t Intrinsic Loss is %0.2 f dB .",
Loss_int);
```

Scilab code Exa 5.7 Determination of excess loss insertion losses crosstalk and split ratio

```
1 / \text{Example } 5.7
2 //Program to determine the excess loss, insertion
     losses, crosstalk
3 //and split ratio
5 clear;
6 clc;
7 close;
9 //Given data
12 P3=26*10^(-6); //Watts - OUTPUT POWER AT PORT 3
13 P4=27.5*10^{(-6)};
                    //Watts - OUTPUT POWER AT PORT 4
14
15 // Calculation of Excess Loss
16 Excess_loss=10*log10(P1/(P3+P4));
17
18 // Calculation of Insertion Loss (ports 1 to 3)
19 Insertion_loss3=10*log10(P1/P3);
20
21 // Calculation of Insertion Loss (ports 1 to 4)
```

```
22 Insertion_loss4=10*log10(P1/P4);
23
24 // Calculation of Crosstalk
25 Crosstalk=10*log10(P2/P1);
26
27 // Calculation of Split Ratio
28 Split_ratio=P3/(P3+P4)*100;
29
30 // Displaying the Results in Command Window
31 printf("\n\t Excess Loss is \%0.2 \, f \, dB .",
     Excess_loss);
32 printf("\n\t Intrinsic Loss (ports 1 to 3) is \%0.2
      f dB .", Insertion_loss3);
33 printf("\n\t Intrinsic Loss (ports 1 to 4) is \%0.2
     f dB .", Insertion_loss4);
34 printf("\n\t Crosstalk is %0.1f dB .", Crosstalk);
35 printf("\n\t Split Ratio is \%0.1f percent .",
     Split_ratio);
```

Scilab code Exa 5.8 Determination of excess loss insertion losses crosstalk and split ratio

```
//Example 5.8
//Program to determine the total loss incurred by
the star coupler
//and average insertion loss

clear;
close;

//Given data
Pi=1*10^(-3);
//Watts - INPUT POWER AT PORT 1
Po=14*10^(-6);
//Watts - OUTPUT POWER AT OTHER
PORTS
```

```
//Ports
12 N = 32;
13
  //Calculation of Splitting Loss
14
15 Splitting_loss=10*log10(N);
16
17 // Calculation of Excess Loss
18 Excess_loss=10*log10(Pi/(Po*N));
19
20 // Calculation of Total loss
21 Total_loss=Splitting_loss+Excess_loss;
22
23 // Calculation of Average Insertion Loss
24 Insertion_loss=10*log10(Pi/Po);
25
26 // Displaying the Results in Command Window
27 printf("\n\t Total loss is \%0.2 \,\mathrm{f}\ \mathrm{dB} .", Total_loss)
28 printf("\n\ Average Insertion Loss is \%0.2 \,\mathrm{f}\ \mathrm{dB}."
      , Insertion_loss);
```

Scilab code Exa 5.9 Determination of the insertion loss associated with one typical path

```
//Example 5.9
//Program to determine the insertion loss associated
with one typical
//path
clear;
close;
//Given data
//Given data
Excess_loss=0.2; //dB - EXCESS LOSS OF EACH PORT
Split_ratio=0.5; //*100 percent - SPLIT RATIO
```

```
//PORTS
12 N = 16;
13 M=4;
                       //For N=16 ports
14 Splice_loss=0.1; //dB - SPLICE LOSS
15
16 // Calculation of Total Excess Loss
17 Total_Excess_loss=M*Excess_loss+3*Splice_loss;
18
19 // Calculation of Splitting Loss
20 Splitting_loss=10*log10(N);
21
22 // Calculation of Insertion Loss
23 Insertion_loss=Splitting_loss+Total_Excess_loss;
24
25 // Displaying the Result in Command Window
26 printf("\n\t Insertion Loss is \%0.2 \,\mathrm{f}\ \mathrm{dB}.",
      Insertion_loss);
```

Scilab code Exa 5.10 Calculation of the grating period for reflection

```
1 //Example 5.10
2 //Program to find the grating period for reflection
3
4 clear;
5 clc;
6 close;
8 //Given data
9 n=1.46;
                   //CORE REFRACTIVE INDEX
10 lambda_b=1.55; /\text{um} - \text{WAVELENGTH}
11
12 // Grating Period
13 lambda=lambda_b/(2*n);
14
15 // Displaying the Result in Command Window
16 printf("\n\t Grating Period is \%0.2f um .",lambda)
```

;

Chapter 6

OPTICAL SOURCES 1 THE LASER

Scilab code Exa 6.1 Calculation of the ratio of stimulated emission rate to the spontaneous emission rate

```
1 / Example 6.1
2 //Program to calculate the ratio of stimulated
     emission rate to the
3 //spontaneous emission rate
5 clear;
6 clc;
7 close;
9 //Given data
10 Lambda=0.5*10^-6; // metres - OPERATING
    WAVELENGTH
11 k=1.381*10^(-23); //m^2 kg/s - BOLTZMANN's
    CONSTANT
//Kelvin - TEMPERATURE
14 T = 1000;
15
```

```
// Average operating frequency
f=c/Lambda;

// Stimulated Emission Rate/Spontaneous Emission Rate
Ratio=1/(exp(h*f/(k*T))-1);

// Displaying the Result in Command Window
printf("\n\n\t Stimulated Emission Rate/Spontaneous
Emission Rate = %0.1 f X 10^(-13).", Ratio
/10^(-13));
```

Scilab code Exa 6.2 Determination of the number of longitudinal modes and their frequency separation in a ruby laser

```
1 //Example 6.2
2 //Program to determine the number of longitudinal
     modes and their
3 //frequency separation in a ruby laser
5 clear;
6 clc;
7 close;
8
9 //Given data
10 Lambda=0.55*10^-6; //metres - PEAK EMISSION
     WAVELENGTH
11 n=1.78;
                         //REFRACTIVE INDEX
12 c = 2.998*10^8;
                         //m/s - SPEED OF LIGHT
13 L=4*10^{(-2)};
                         //metres - CRYSTAL LENGTH
14
15 // Number of Longitudinal modes
16 q=2*n*L/Lambda;
17
18 //Frequency separation of the modes
19 del_f=c/(2*n*L);
```

Scilab code Exa 6.3 Calculation of laser gain coefficient for the cavity

```
1 / \text{Example } 6.3
2 //Program to calculate laser gain coefficient for
     the cavity
4 clear;
5 clc;
6 close;
8 //Given data
                          //cm - CAVITY LENGTH
9 L=600*10^-4;
10 r = 0.3;
                          //*100 percent - REFLECTIVITY
                          //per cm - LOSSES
11 alpha_bar= 30;
12
13 //Laser Gain Coefficient
14 gth_bar=alpha_bar+1/L*log(1/r);
15
16 // Displaying the Result in Command Window
17 printf("\n\n\t Laser Gain Coefficient is %1.0 f per
     cm.", gth_bar);
```

Scilab code Exa 6.4 Comparision of the approximate radiative minority carrier lifetimes in GaAs and Si

```
1 / Example 6.4
```

```
2 //Program to compare the approximate radiative
      minority carrier
3 //lifetimes in gallium arsenide and silicon
5 clear;
6 clc;
7 close;
  //Given data
                           //per cm^3 - HOLE
10 N = 10^18;
     CONCENTRATION
11 Br1=7.21*10^(-10);
                           //cm<sup>3</sup> / s - RECOMBINATION
      COEFFICIENT FOR GaAs
12 Br2=1.79*10^(-15);
                           //cm<sup>3</sup> / s - RECOMBINATION
      COEFFICIENT FOR Si
13
14 // Radiative minority carrier lifetime for GaAs
15 tau_r1=1/(Br1*N);
16
17 //Radiative minority carrier lifetime for Si
18 tau_r2=1/(Br2*N);
19
20 // Displaying the Results in Command Window
21 printf("\n\n\t Radiative minority carrier lifetime
      for GaAs is \%0.2 \, f ns.", tau_r1/10^(-9));
22 printf("\n\n\t Radiative minority carrier lifetime
      for Si is \%0.2 \, \text{f ms.}", tau_r2/10^(-3));
```

Scilab code Exa 6.5 Determination of the threshold current density and the threshold current for the device

```
1 //Example 6.5
2 //Program to determine the threshold current density
          and the
3 //threshold current for the device
```

```
4
5 clear;
6 clc;
7 close;
9 //Given data
10 n=3.6;
                                //REFRACTIVE INDEX OF GaAs
11 beeta_bar = 21 * 10^(-3);
                                //A/cm^3 – GAIN FACTOR
12 alpha_bar=10;
                                //per cm - LOSS
      COEFFICIENT
13 L=250*10^{(-4)};
                                //cm - LENGTH OF OPTICAL
     CAVITY
14 W = 100 * 10^{(-4)};
                                //cm - WIDTH OF OPTICAL
      CAVITY
15
16 // Reflectivity for normal incidence
17 r=((n-1)/(n+1))^2;
18
19 //Threshold current density
20 Jth=1/beeta_bar*(alpha_bar+1/L*log(1/r));
21
22 //Threshold current
23 Ith=Jth*W*L;
24
25 // Displaying the Results in Command Window
26 printf("\n\t Threshold current density is \%0.2 \, f \, X
      10\,\hat{\ }3\ \mathrm{A/cm}\,\hat{\ }2.\text{",Jth/10^3)};
27 printf("\n\t Threshold current is %0.1 f mA.", Ith
      /10^(-3));
```

Scilab code Exa 6.6 Calculation of external power efficiency of the device

```
3
4 clear;
5 clc;
6 close;
8 //Given data
9 eeta_t=0.18;
                          //*100 percent - TOTAL
     EFFICIENCY
                          //eV - ENERGY BAND GAP OF GaAs
10 \text{ Eg=1.43};
                          //Volts - APPLIED VOLTAGE
11 V = 2.5;
12
13 //External power efficiency of the device
14 eeta_ep=eeta_t*Eg/V;
15
16 // Displaying the Result in Command Window
17 printf("\n\n\t External power efficiency of GaAs
      device is %1.0 f percent.", eeta_ep*100);
```

Scilab code Exa 6.7 Comparision of the ratio of threshold current densities at 20 C and 80 C for AlGaAs and InGaAsP

```
//Example 6.7
//Program to compare the ratio of threshold current
densities at 20 C
//and 80 C for AlGaAs and InGaAsP

clear;
close;
//Given data
//degree C
//degree C
//degree C
//for AlGaAs
```

```
//degree C
14 \quad T0 = 170;
15 Jth_20=exp(T1/T0);
16 Jth_80=\exp(T2/T0);
17 Ratio=Jth_80/Jth_20;
18
19 // Displaying the Result in Command Window
20 printf("\n\n\t Ratio of current densities for AlGaAs
       is \%0.2 f .", Ratio);
21
22 //For InGaAsP
                           //degree C
23 \quad T0 = 55;
24 \text{ Jth}_20 = \exp(T1/T0);
25 \text{ Jth}_80 = \exp(T2/T0);
26 Ratio=Jth_80/Jth_20;
27
28 // Displaying the Result in Command Window
29 printf("\n\t Ratio of current densities for
      InGaAsP is %0.2 f .", Ratio);
```

Scilab code Exa 6.8 Determination of RMS value of the power fluctuation and RMS noise current at the output of the detector

```
//Example 6.8
//Determine the
//(a)The RMS value of the power fluctuation
//(b)The RMS noise current at the output of the detector

clear;
clc;
close;
//Given data
B=100*10^6;
//Hz - BANDWIDTH
// S_rinf_by_Pebarsquare=10^(-15); //per Hz - RIN
```

```
VALUE
13 e=1.602*10^{(-19)};
                                          //Coulumbs - CHARGE
       OF AN ELECTRON
14 eeta=0.6;
                                          //*100 percent -
      QUANTUM EFFICIENCY
15 lambda=1.55*10^(-6);
                                          //metre -
      WAVELENGTH
16 h = 6.626*10^{(-34)};
                                          //J/K - PLANK's
      CONSTANT
17 c=2.998*10^8;
                                          //m/s - VELOCITY OF
       LIGHT IN VACCUM
18 Pe_bar = 2*10^(-3);
                                          //Watt - INCIDENT
      POWER
19
20 //(a) The RMS value of the power fluctuation
21 RMS_value=sqrt(S_rinf_by_Pebarsquare*B);
22
23 //(b) The RMS noise current at the output of the
      detector
24 RMS_noise_current=e*eeta*lambda/(h*c)*RMS_value*
      Pe_bar;
25
26 // Displaying the Results in Command Window
27 printf("\n\t (a)The RMS value of the power
      fluctuation is \%0.2 \, \mathrm{f} \, \mathrm{X} \, 10^{\circ} (-4) \, \mathrm{W.}", RMS_value
      /10^(-4));
28 printf("\n\t (b)The RMS noise current at the
      output of the detector is \%0.2 \, \mathrm{f} \, \mathrm{X} \, 10^{\hat{}} (-7) \, \mathrm{A."},
      RMS_noise_current/10^(-7));
```

Chapter 7

OPTICAL SOURCES 2 THE LIGHT EMITTING DIODE

Scilab code Exa 7.1 Determination of total carrier recombination lifetime and the power internally generated within the device

```
1 // Example 7.1
2 //Program to determine the total carrier
     recombination lifetime and
3 //the power internally generated within the device
5 clear;
6 clc;
7 close;
9 //Given data
                   //ns - RADIATIVE RECOMBINATION
10 Tau_r=60;
     LIFETIME
11 Tau_nr=100;
                     //ns - NON RADIATIVE
     RECOMBINATION LIFETIME
12 Lambda=0.87*10^-6; //metres - PEAK EMISSION
     WAVELENGTH
                 //m/s – SPEED OF LIGHT
13 c = 2.998*10^8;
14 h= 6.626*10^{(-34)}; //J/K - PLANK's CONSTANT
```

```
15 e=1.602*10^{(-19)}; //Coulumbs - CHARGE OF AN
     ELECTRON
                  //A - DRIVE CURRENT
16 i = 40 * 10^{(-3)};
17
18 //Total carrier recombination lifetime
19 Tau=Tau_r*Tau_nr/(Tau_r+Tau_nr);
20
21 //Internal quantum efficiency
22 eeta_int=Tau/Tau_r;
23
24 //Power internally generated within the device
25 P_int=eeta_int*h*c*i/(Lambda*e);
26
27 // Displaying the Results in Command Window
28 printf("\n\n\t Total carrier recombination lifetime
      is \%0.1 \, \mathrm{f} \, \mathrm{ns.}", Tau);
29 printf("\n\ Power internally generated within the
       device is \%0.1 \text{ f mW} .", P_{int}/10^{(-3)};
```

Scilab code Exa 7.2 Calculation of optical power emitted into air as a percentage of internal optical power and the external power efficiency

```
13 n=1;
14 \text{ nx} = 3.6;
                             //REFRACTIVE INDEX OF GaAs
15 Pint_by_P=0.5;
                               //*100 percent - Pe/P
16
17 // Percentage optical power emitted
18 Pe_by_Pint=F*n^2/(4*nx^2);
19
20 //External power efficiency
21 eeta_ep=Pe_by_Pint*Pint_by_P;
22
23 // Displaying the Results in Command Window
24 printf("\n\t (a) Percentage optical power emitted
      is %0.1f percent of generated optical power.",
     Pe_by_Pint*100);
25 printf("\n\t (b) External power efficiency is \%0.2 f
      percent.", eeta_ep*100);
```

Scilab code Exa 7.3 Calculation of Coupling Efficieny and Optical loss in decibels relative to Pe and Pint

```
1 / \text{Example } 7.3
2 //Program to calculate the:
3 //(a) Coupling Efficieny
4 //(b) Optical loss in decibels relative to Pe
5 //(c) Optical loss in decibels relative to Pint
7 clear;
8 clc;
9 close;
10
11 //Given data
12 NA=0.2;
                              //NUMERICAL APERTURE
13 F=0.68;
                               //TRANSMISSION FACTOR
14 n=1;
15 \text{ nx} = 3.6;
                              //REFRACTIVE INDEX OF GaAs
```

```
16
17 //(a) Coupling Efficieny
18 eeta_c=(NA)^2;
19
20 //(b)Optical loss in decibels relative to Pe
21 Loss1=-10*log10(eeta_c);
22
23 // Percentage optical power emitted
24 Pint_by_P=F*n^2/(4*nx^2);
25
\frac{26}{\sqrt{(c)}} Optical loss in decibels relative to Pint
27 Loss2=-10*log10(eeta_c*Pint_by_P);
28
29 // Displaying the Results in Command Window
30 printf("\n\t (a) Coupling Efficieny is %1.0 f
      percent.", eeta_c*100);
31 printf("\n\t (b) Optical loss in decibels relative
      to Pe is \%0.1 f dB.", Loss1);
32 printf("\n\n\t (c)Optical loss in decibels relative
      to Pint is %0.1 f dB.", Loss2);
```

Scilab code Exa 7.4 Estimation of the optical power coupled into the fiber

```
//Example 7.4
//Program to estimate the optical power coupled into
the fiber

clear;
clc;
close;
//Given data
d=50*10^(-4);
DIAMETER
//W/sr/cm^2
```

Scilab code Exa 7.5 Determination of the overall power conversion efficiency

```
1 / \text{Example } 7.5
2 //Program to determine the overall power conversion
      efficiency
3
4 clear;
5 clc;
6 close;
8 //Given data
9 Pc=190*10^(-6);
10 I=25*10^(-3);
                          //Watts - INPUT OPTICAL POWER
                           //A - FORWARD CURRENT
                           //V - FORWARD VOLTAGE
11 V=1.5;
12
13 // Overall power conversion efficiency
14 P = I * V;
15 eeta_pc=Pc/P;
16
17 // Displaying the Result in Command Window
18 printf("\n\n\t Overall power conversion efficiency
      is \%0.1 f percent.", eeta_pc*100);
```

Scilab code Exa 7.6 Comparision of electrical and optical bandwidth for an optical fiber communication system

```
1 //Example 7.6
2 //Compare the electrical and optical bandwidth for
     an optical fiber
3 //communication system and develop a relationship
     between the two
4
5 clear;
6 clc;
7 close;
  //Given data
 Re_dB=3;
                           //dB - ELECTRICAL 3 dB
     POINTS
                           //dB - OPTICAL 3 dB
11 Ro_dB=3;
     POINTS
12
13 // Electrical Bandwidth
15 printf("\n\ For Electrical Bandwidth, Iout/Iin =
     \%0.3 f .", Iout_by_Iin);
16
17 // Optical Bandwidth
19 printf ("\n \ For Optical Bandwidth, Iout / Iin = \%0
     .1 f .", Iout_by_Iin);
```

Scilab code Exa 7.7 Determination of optical output power modulated at frequencies of 20 MHz and 100 MHz

```
1 / \text{Example } 7.7
2 //Determine the optical output power modulated at
      frequencies
3 //(a)20 \text{ MHz}
4 //(b)100 MHz
5 // Also determine electrical and optical bandwidths
7 clear;
8 clc ;
9 close;
10
11 //Given data
12 P_dc = 300*10^(-6); //Watt - OPTICAL OUTPUT
     POWER.
13 tau_i=5*10^(-9);
                                 //s - CARRIER
     RECOMBINATION LIFETIME
14
15 //(a) Optical output power at 20 MHz
16 f = 20 * 10^6;
                            //Hz - OPERATING FREQUENCY
17 Pe=P_dc/sqrt(1+(2*%pi*f*tau_i)^2);
18 printf("\n\t (a) Optical output power at %1.0 f MHz,
       Pe(\%1.0 \text{ f MHz}) = \%0.2 \text{ f uW.}", f/10^6, f/10^6, Pe
      /10^(-6));
19
20 //(b) Optical output power at 100 MHz
21 f=100*10^6;
                            //Hz - OPERATING FREQUENCY
22 Pe=P_dc/sqrt(1+(2*%pi*f*tau_i)^2);
23 printf("\n\t (b) Optical output power at %1.0 f MHz,
       Pe(\%1.0 \text{ f MHz}) = \%0.2 \text{ f uW.}",f/10^6,f/10^6,Pe
      /10^(-6));
24
25 // Optical Bandwidth
26 Bopt=sqrt(3)/(2*%pi*tau_i);
27 printf("\n\t Optical Bandwidth, Bopt = \%0.1 f MHz."
      ,Bopt/10<sup>6</sup>);
28
29 // Electrical Bandwidth
30 B=Bopt/sqrt(2);
```

```
31 printf("\n\n\t Electrical Bandwidth, B = \%0.1\,\mathrm{f} MHz.", B/10^6);
```

Scilab code Exa 7.8 Estimation of the CW operating lifetime for the given LED

```
1 / \text{Example } 7.8
2 //Program to estimate the CW operating lifetime for
      the given LED
3
4 clear;
5 clc;
6 close;
7
8 //Given data
9 Ea=1*1.602*10^(-19); //Joules - ACTIVATION ENERGY
10 k=1.38*10^{(-23)}; //m^2 kg/s - BOLTZMANN's
     CONSTANT
11 T = 290;
                           //Kelvin - JUNCTION
     TEMPERATURE
12 Pe_by_Pout = 0.67;
                           //Pe/Pout RATIO
13 Beeta_o=1.84*10^7;
                           //per h - CONSTANT OF
     PROPORTIONALITY
14
15 // Degradation Rate
16 Beeta_r=Beeta_o*exp(-Ea/(k*T));
17
18 //CW operating lifetime for the given LED
19 t=log(Pe_by_Pout)/-Beeta_r;
20
21 // Displaying the Result in Command Window
22 printf("\n\t CW operating lifetime for the given
     LED is \%0.1 \, \text{f} \, \text{X} \, 10^9 \, \text{h.}, t/10^9;
```

Chapter 8

OPTICAL DETECTORS

Scilab code Exa 8.1 Determination of the quantum efficiency and responsivity of the photodiode

```
1 / \text{Example } 8.1
2 //Program to determine the Quantum efficiency and
      Responsivity of
3 //the photodiode
4
5 clear;
6 clc;
7 close;
9 //Given data
                                       //metres -
10 Lambda=0.85*10^-6;
     WAVELENGTH
11 e=1.602*10^{(-19)};
                                       //Coulumbs - CHARGE
      OF AN ELECTRON
12 h = 6.626*10^{(-34)};
                                       //J/K - PLANK's
     CONSTANT
                                       //m/s - VELOCITY OF
13 c=2.998*10^8;
      LIGHT IN VACCUM
14 \text{ Ne=1.2*10^11};
                                       //NUMBER OF
     ELECTRONS COLLECTED
```

Scilab code Exa 8.2 Determination of operating wavelength and incident optical power

```
1 / \text{Example } 8.2
2 //Program to determine:
3 //(a) Operating Wavelength
4 //(b) Incident Optical Power
5
6 clear;
7 clc;
8 close;
9
10 //Given data
11 eeta=0.65;
                                      //*100 percent -
     QUANTUM EFFICIENCY
                                      //Coulumbs - CHARGE
12 e=1.602*10^{(-19)};
      OF AN ELECTRON
13 h=6.626*10^{(-34)};
                                      //J/K - PLANK's
     CONSTANT
14 c=2.998*10^8;
                                      //m/s - VELOCITY OF
      LIGHT IN VACCUM
                                      //A - PHOTOCURRENT
15 Ip=2.5*10^{(-6)};
```

```
16 E=1.5*10^{(-19)};
                                        //J - ENERGY OF
      PHOTONS
17
18 //(a) Operating Wavelength
19 Lambda=h*c/E;
20
21 // Responsivity
22 R=eeta*e*Lambda/(h*c);
23
24 //(b) Incident Optical Power
25 Po=Ip/R;
26
27 // Displaying the Results in Command Window
28 printf("\n\t (a) Operating Wavelength = \%0.2 \, f um.",
      Lambda/10<sup>(-6)</sup>;
  printf("\n\t (b) Incident Optical Power = \%0.2 \,\text{f uW}.
29
      ", Po/10^(-6));
```

Scilab code Exa 8.3 Determination of wavelength above which an intrinsic photodetector will cease to operate

```
//Example 8.3
//Program to determine the wavelength above which an intrinsic
//photodetector will cease to operate

clear;
close;

//Given data
//Given data
e=1.602*10^(-19);
OF AN ELECTRON

h=6.626*10^(-34);
//J/K - PLANK's
```

Scilab code Exa 8.4 Determination of drift time of the carriers and junction capacitance of the photodiode

```
1 // Example 8.4
2 //Program to determine:
3 //(a) Drift time of the carriers
4 //(b) Junction capacitance of the photodiode
5
6 clear;
7 clc;
8 close;
9
10 //Given data
11 w = 20 * 10^{(-6)};
                            //metre - WIDTH OF INTRINSIC
      REGION
12 r=500*10^{(-6)};
                            //metre - RADIUS
13 epsilon_s=10.5*10^(-11); //F/m - PERMITTIVITY
14 vd=10<sup>5</sup>;
                            //m/s - DRIFT VELOCITY OF
     ELECTRONS
15
16 //(a) Drift time of the carriers
17 t_drift=w/vd;
```

Scilab code Exa 8.5 Determination of maximum response time for the device

```
1 / Example 8.5
2 //Program to determine maximum response time for the
       device
4 clear;
5 clc;
6 close;
8 //Given data
9 \quad w = 25 * 10^{(-6)};
                             //metre - WIDTH OF DEPLETION
      REGION
                             //m/s - DRIFT VELOCITY OF
10 vd = 3 * 10^4;
     CARRIER
11
12 //Maximum 3 dB Bandwidth
13 Bw=vd/(2*\%pi*w);
14
15 //Maximum response time
16 t=1/Bw;
17
18 // Displaying the Result in Command Window
```

```
19 printf("\n\t Maximum response time for the device is \%0.1 \, \text{f} ns.",t/10^(-9));
```

Scilab code Exa 8.6 Calculation of noise equivalent power and specific detectivity for the device

```
1 / Example 8.6
2 //Program to calculate the noise equivalent power
     and specific
3 //detectivity for the device
4
5 clear;
6 clc;
7 close;
9 //Given data
10 Id=8*10^{(-9)};
                           //A - DARK CURRENT
                            //*100 - QUANTUM EFFICIENCY
11 eeta=0.55;
12 Lambda=1.3*10^(-6);
                            //metre - OPERATING
     WAVELENGTH
13 A=100*50*(10^{(-6)})^2; //m<sup>2</sup> - AREA
14 e=1.602*10^{(-19)};
                            //Coulumbs - CHARGE OF AN
     ELECTRON
15 h= 6.626*10^{(-34)}; //J/K - PLANK's CONSTANT
                            //m/s - VELOCITY OF LIGHT IN
16 c=2.998*10^8;
      VACCUM
17
18 // Noise equivalent power
19 NEP=h*c*sqrt(2*e*Id)/(eeta*e*Lambda);
20
21 // Specific detectivity
22 D = sqrt(A)/NEP;
23
24 // Displaying the Results in Command Window
25 printf("\n\t Noise equivalent power = \%0.2 \,\mathrm{f} \,\mathrm{X}
```

```
10^{(-14)} W.", NEP/10^(-14));
26 printf("\n\n\t Specific detectivity = %0.1 f X 10^8 m H^(1/2)/W.", D/10^(8));
```

Scilab code Exa 8.7 Determination of the multiplication factor of the photodiode

```
1 / \text{Example } 8.7
2 //Program to determine the multiplication factor of
      the photodiode
4 clear;
5 clc;
6 close;
8 //Given data
9 eeta=0.80;
                                       //*100 percent -
     QUANTUM EFFICIENCY
10 e=1.602*10^{(-19)};
                                       //Coulumbs - CHARGE
      OF AN ELECTRON
11 h=6.626*10^{(-34)};
                                       //J/K - PLANK's
     CONSTANT
                                       //m/s - VELOCITY OF
12 c=2.998*10^8;
      LIGHT IN VACCUM
13 Lambda=0.9*10^{(-6)};
                                       //metre - OPERATING
      WAVELENGTH
14 I = 11 * 10^{(-6)};
                                       //A - OUTPUT
     CURRENT
15 Po=0.5*10^{(-6)};
                                       //Watt - INCIDENT
     OPTICAL POWER
16
17 // Responsivity
18 R=eeta*e*Lambda/(h*c);
19 // Photocurrent
20 Ip=Po*R;
```

```
// Multiplication Factor
M=I/Ip;
// Displaying the Result in Command Window
frintf("\n\n\t The multiplication factor of the photodiode is approximately %1.0 f.", M);
```

Scilab code Exa 8.8 Determination of optical gain of the device and common emitter current gain

```
1 //Example 8.8
2 //Program to determine:
3 //(a) Optical gain of the device
4 //(b)Common emitter current gain
6 clear;
7 clc;
8 close;
10 //Given data
11 eeta=0.40;
                                       //*100 percent -
     QUANTUM EFFICIENCY
12 e=1.602*10^{(-19)};
                                       //Coulumbs - CHARGE
      OF AN ELECTRON
                                       //J/K - PLANK's
13 h=6.626*10^{(-34)};
     CONSTANT
14 c=2.998*10^8;
                                       //m/s - VELOCITY OF
      LIGHT IN VACCUM
15 Lambda=1.26*10^{(-6)};
                                       //metre - OPERATING
      WAVELENGTH
16 \text{ Ic} = 15 * 10^{(-3)};
                                       //A - COLLECTOR
     CURRENT
17 Po=125*10^{-6};
                                       //Watt - INCIDENT
     OPTICAL POWER
18
```

```
19 //(a) Optical Gain
20 Go=h*c*Ic/(Lambda*e*Po);
21
22 //(b)Common emitter current gain
23 h_FE=Go/eeta;
24
25 // Displaying the Results in Command Window
26 printf("\n\n\t (a) Optical Gain, Go = %0.1 f.",Go);
27 printf("\n\n\t (b)Common emitter current Gain, h_FE
= %0.1 f.",h_FE);
```

Scilab code Exa 8.9 Determination of the maximum 3 dB bandwidth permitted by the device

```
1 / Example 8.9
2 //Program to determine the maximum 3 dB bandwidth
      permitted by the
  //device
5 clear;
6 clc;
7 close;
  //Given data
                             //second - ELECTRON TRANSIT
10 tf = 5*10^{(-12)};
      TIME
                             //PHOTOCONDUCTIVE GAIN
11 G = 70;
12
  //Maximum 3 dB bandwidth permitted by the MSM
14 Bm=1/(2*\%pi*tf*G);
15
16 // Displaying the Result in Command Window
17 printf("\n\n\t Maximum 3 dB bandwidth permitted by
      the device is \%0.1 \, \text{f MHz.}", Bm/10<sup>6</sup>);
```

Chapter 9

DIRECT DETECTION RECEIVER PERFORMANCE CONSIDERATIONS

Scilab code Exa 9.1 Determination of the theoretical quantum limit at the receiver and the minimum incident optical power

```
//Example 9.1
//Note: MAXIMA SCILAB TOOLBOX REQUIRED FOR THIS
PROGRAM
//Program to determine:
//(a)The theoretical quantum limit at the receiver
in terms of quantum
//efficiency and energy of incident photon
//(b)The minimum incident optical power

clear;
clc;
close;
syms h f eeta;
//(a)The theoretical quantum limit at the receiver
```

```
in terms of quantum
15 // efficiency and energy og incident photon
16 BER=10^{(-9)};
                                 //BIT ERROR RATE
17 z_{min} = -\log(BER)
18 E_min=z_min*h*f/eeta;
19 disp(E_min,"(a) The theoretical quantum limit at the
      receiver in terms of quantum efficiency and
      energy of incident photon is =");
20 printf(" which is equivalent to %0.1f h*f/eeta.",
      z_min);
21
22 //(b) The minimum incident optical power
23 h1 = 6.626*10^{(-34)};
                                         //J/K - PLANK's
      CONSTANT
24 f1=2.998*10<sup>14</sup>;
                                         //Hz - FREQUENCY
                                         // bit/s -
25 \text{ Bt} = 10 * 10^6;
      SIGNALING RATE
26 eeta1=1;
                                         //*100 percent -
     QUANTUM EFFICIENCY
27 Po_binary=z_min*h1*f1*Bt/(2*eeta1);
28 Po=10*log10(Po_binary/10^(-3));
29 printf("\n\n (b)The minimum incident optical power
      is \%0.1 \, \text{f pW} or \%0.1 \, \text{f dBm.}", Po_binary/10^(-12), Po)
      ;
```

Scilab code Exa 9.2 Calculation of incident optical power to achieve given ${\rm SNR}$

```
1 //Example 9.2
2 //Program to calculate incident optical power to
        achieve given SNR
3
4 clear;
5 clc;
6 close;
```

```
7
8 //Given data
9 SNR=50;
                                       //dB - SIGNAL TO
      NOISE RATIO GIVEN
10 h= 6.626*10^{(-34)};
                                       //J/K - PLANK's
      CONSTANT
11 Lambda=1*10^(-6);
                                       //metre - OPERATING
      WAVELENGTH
                                       //m/s – VELOCITY OF
12 c=2.998*10^8;
       LIGHT IN VACCUM
                                       //MHz - POST
13 B=5*10^6;
     DETECTION BANDWIDTH
14 eeta=1;
                                       //*100 percent -
     QUANTUM EFFICIENCY
15
16 //Incident optical power to achieve given SNR
17 Po=2*h*c*B*10^(SNR/10)/(eeta*Lambda);
18
19 // Displaying the Result in Command Window
20 printf("\n The incident optical power is \%0.1 \,\mathrm{f} nW
      or \%0.1 \text{ f dBm.}", Po/10^(-9), 10*\log 10 (Po/10^(-3)));
```

Scilab code Exa 9.3 Comparision of the shot noise generated in the photodetector with the thermal noise in the load resistor

```
1 //Example 9.3
2 //Program to compare the shot noise generated in the photodetector
3 //with the thermal noise in the load resistor
4 
5 clear;
6 clc;
7 close;
8 
9 //Given data
```

```
10 Id=3*10^{(-9)};
                                       //A - DARK CURRENT
11 e=1.602*10^{(-19)};
                                       //Coulumbs - CHARGE
      OF AN ELECTRON
12 h = 6.626*10^{(-34)};
                                       //J/K - PLANK's
     CONSTANT
13 Lambda=0.9*10^{(-6)};
                                       //metre - OPERATING
      WAVELENGTH
                                       //m/s - VELOCITY OF
14 c=2.998*10^8;
       LIGHT IN VACCUM
15
                                       //*100 percent -
  eeta=0.6;
     QUANTUM EFFICIENCY
16 Po = 200 * 10^{(-9)};
                                       //Watt- INCIDENT
      OPTICAL POWER
                                       //\text{m}^2 \text{ kg/s} -
17 k=1.381*10^{(-23)};
     BOLTZMANN' s CONSTANT
                                       //Kelvin -
18 T = 293;
     TEMPERATURE
                                       //Hz - BANDWIDTH OF
19 B=5*10^6;
      RECEIVER
                                       //Ohms - LOAD
20 R1 = 4 * 10^3;
      RESISTANCE
21
22 //RMS shot noise current
23 Ip=eeta*Po*e*Lambda/(h*c);
24 Shot_noise_current=sqrt(2*e*B*(Id+Ip));
25
26 //RMS thermal noise current
27 Thermal_noise_current=sqrt(4*k*T*B/R1);
28
29 // Displaying the Results in Command Window
30 printf("\n RMS shot noise current = \%0.3 \, f \, X
      10^{(-10)} A.", Shot_noise_current/10^(-10));
31 printf("\n RMS thermal noise current = \%0.3 f X
      10^{(-9)} A.", Thermal_noise_current/10^(-9));
```

Scilab code Exa 9.4 Determination of SNR at the output of the receiver

```
1 / Example 9.4
2 //Program to determine SNR at the output of the
      receiver
4 clear;
5 clc;
6 close;
8 //Given data
9 Id=3*10^{(-9)};
                                       //A - DARK CURRENT
10 e=1.602*10^{(-19)};
                                       //Coulumbs - CHARGE
      OF AN ELECTRON
                                       //J/K - PLANK's
11 h = 6.626*10^{(-34)};
     CONSTANT
12 Lambda=0.9*10^(-6);
                                       //metre - OPERATING
      WAVELENGTH
                                       //m/s - VELOCITY OF
13 c=2.998*10^8;
      LIGHT IN VACCUM
14 eeta=0.6;
                                       //*100 percent -
     QUANTUM EFFICIENCY
15 Po = 200 * 10^{(-9)};
                                       //Watt- INCIDENT
      OPTICAL POWER
16 k=1.381*10^{(-23)};
                                       //\text{m}^2 \text{ kg/s} -
     BOLTZMANN' s CONSTANT
17 T = 293;
                                       //Kelvin -
     TEMPERATURE
                                       //Hz - BANDWIDTH OF
18 B=5*10^6;
      RECEIVER
                                       //Ohms - LOAD
19 R1=4*10^3;
      RESISTANCE
                                       //dB - AMPLIFIER
20 \text{ Fn} = 3;
      NOISE FIGURE
21
22 //RMS shot noise current
23 Ip=eeta*Po*e*Lambda/(h*c);
24 Shot_noise_current=sqrt(2*e*B*(Id+Ip));
```

```
//RMS thermal noise current
Thermal_noise_current=sqrt(4*k*T*B/R1);

//SNR Calculation
SNR=Ip^2/(Shot_noise_current^2+Thermal_noise_current ^2*10^(Fn/10));

//Displaying the Result in Command Window
printf("\n\n SNR = %0.2 f dB.",10*log10(SNR));
```

Scilab code Exa 9.5 Calculation of maximum load resistance and bandwidth penalty considering amplifier capacitance

```
1 / Example 9.5
2 //Program to:
3 //(i) Calculate Maximum Load Resistance
4 //(ii)Determine Bandwidth Penalty considering
      amplifier capacitance
5
6 clear;
7 clc;
8 close;
9
10 //Given data
11 Cd=6*10^{(-12)};
                             //Farad - PHOTODIODE
     CAPACITANCE
12 Ca=6*10^{(-12)};
                             //Farad - AMPLIFIER INPUT
     CAPACITANCE
13 B=8*10^6;
                             //Hz - POST DETECTION
     BANDWIDTH
14
15 //(i) Maximum Load Resistance
16 Rl=1/(2*\%pi*Cd*B);
17
18 //(ii) Maximum Bandwidth considering amplifier
```

Scilab code Exa 9.6 Determination of the maximum SNR improvement

```
1 / Example 9.6
2 //Program to determine the maximum SNR improvement
      between
3 / M=1 and M=Mop
5 clear;
6 clc;
7 close;
8
  //Given data
                                       //Farad - APD
10 Cd=5*10^{(-12)};
     CAPACITANCE
11 B=50*10^6;
                                       //Hz - POST
     DETECTION BANDWIDTH
12 T = 291;
                                       //Kelvin -
     TEMPERATURE
13 k=1.381*10^{(-23)};
                                       //\text{m}^2 \text{ kg/s} -
     BOLTZMANN' s CONSTANT
                                       //A - DARK CURRENT
14 Id=0;
15 x = 0.3;
16 Fn=1;
                                       //dB - AMPLIFIER
      NOISE FIGURE
                                       //Coulumbs - CHARGE
17 e=1.602*10^{-19};
      OF AN ELECTRON
```

```
//A - PHOTOCURRENT
18 Ip=10^{(-7)};
19
20 //Maximum Load Resistance
21 Rl = 1/(2*\%pi*Cd*B);
22
23 / \text{For M=1}
24 \quad M=1
25 SNR1=Ip^2*M^2/(2*e*B*(Ip+Id)*M^(2+x)+4*k*T*B*Fn/R1);
26 // Displaying the Result in Command Window
27 printf("\n For M = 1, SNR = \%0.2 \,\text{f} dB.", 10*\log 10 (
      SNR1));
28
29 //For M⊨Mop
30 Mop=(4*k*T/(x*e*Rl*Ip))^(1/(2+x));
31 \text{ M=Mop};
32 SNR2=Ip^2*M^2/(2*e*B*(Ip+Id)*M^(2+x)+4*k*T*B*Fn/R1);
33 // Displaying the Result in Command Window
34 printf("\n\n For M = Mopt, SNR = \%0.2 \text{ f dB.}", 10*log10
      (SNR2));
35 printf("\n\ SNR Improvement = \%0.2 \, f \, dB.", 10*log10(
      SNR2) -10*log10(SNR1));
```

Scilab code Exa 9.7 Determination of the optimum avalanche multiplication factor

```
1 //Example 9.7
2 //Program to determine the optimum avalanche
        multiplication factor
3
4 clear;
5 clc;
6 close;
7
8 //Given data
9 Rl=10*10^3; //Ohms - LOAD
```

```
RESISTANCE
10 T = 120;
                                                                                                                                                          //Kelvin -
                      TEMPERATURE
                                                                                                                                                          //dB - SIGNAL TO
11 SNR=35;
                       NOISE RATIO
12 Fn = 1;
                                                                                                                                                          //dB - AMPLIFIER
                       NOISE FIGURE
                                                                                                                                                          //Hz - POST
13 B=10*10^6;
                      DETECTION BANDWIDTH
14 x = 1;
                                                                                                                                                          //\text{m}^2 \text{ kg/s} -
15 k=1.381*10^{(-23)};
                      BOLTZMANN' s CONSTANT
16 e=1.602*10^{(-19)};
                                                                                                                                                           //Coulumbs - CHARGE
                           OF AN ELECTRON
17
18 //As Ip=10*Id, Minimum Photo Current
19 Ip = (10^{(SNR/10)} * (12*k*T*B*10^{(Fn/10)} / R1) / (4*k*T*10^{(En/10)} / R1) / 
                        Fn/10)/(1.1*e*R1))^(2/(2+x)))^(3/4);
20
21
          //Optimum avalanche multiplication factor
22 Mop=(4*k*T*10^(Fn/10)/(e*R1/10*1.1*Ip))^(1/(2+x));
23
24 // Displaying the Result in Command Window
25 printf("\n\n Optimum avalanche multiplication factor
                        , \text{ Mop} = \%0.2 \text{ f.}, \text{ Mop};
```

Scilab code Exa 9.8 Determination of Maximum bandwidth Mean square thermal noise current for high input impedance and transimpedance amplifier

```
1 //Example 9.8
2 //Program to determine:
3 //(a)Maximum bandwidth without equilization
4 //(b)Mean square thermal noise current per unit bandwidth
5 //(c)(Compare (a) and (b) for transimpedance
```

```
amplifier
6
7 clear;
8 clc;
9 close;
10
11 //Given data
12 Ra=4*10^6;
                                     //Ohms - INPUT
      RESISTANCE
                                     //Ohms - DETECTOR
13 Rb = 4 * 10^6;
      BIAS RESISTANCE
14 Ct = 6*10^{(-12)};
                                     //Farad - TOTAL
     CAPACITANCE
                                     //\text{m}^2 \text{ kg/s} -
15 k=1.381*10^{(-23)};
     BOLTZMANN' s CONSTANT
                                     //Kelvin -
16 T = 300;
     TEMPERATURE
17 Rf=100*10^3;
                                     //Ohms - LOAD
      RESISTANCE
                                     //OPEN LOOP GAIN OF
18 G = 400;
     TRANSIMPEDANCE AMP.
19
20 //Total effective load resistance
21 Rtl=Rb*Ra/(Rb+Ra);
22
23 //(a) Maximum bandwidth without equilization
24 B=1/(2*\%pi*Rtl*Ct)
25
  //(b) Mean square thermal noise current per unit
26
      bandwidth
27 it_sq_bar=4*k*T/Rt1;
28
  //(c)(Compare (a) and (b) for transimpedance
      amplifier
30 B1=G/(2*\%pi*Rf*Ct)
31 it_sq_bar1=4*k*T/Rf;
32
33 // Displaying the Results in Command Window
```

```
34 printf("For High Gain Transimpedance Amplifier:")
35 printf("\n\n (a) Maximum bandwidth without
      equilization, B = \%0.2 f \times 10^4 Hz., B/10<sup>4</sup>);
36 printf("\n\n (b) Mean square thermal noise current
      per unit bandwidth, it_sq_bar = \%0.2 \,\mathrm{f} \,\mathrm{X} \,10^{\circ}(-27)
      A^2/Hz.", it_sq_bar/10^(-27));
37 printf("\n (c) For High Gain Transimpedance
      Amplifier:")
38 printf("\nn
                     Maximum bandwidth without
      equilization, B = \%0.2 f \times 10^8 Hz., B1/10<sup>8</sup>);
39 printf("\n
                     Mean square thermal noise current
      per unit bandwidth, it_sq_bar = \%0.2 \,\mathrm{f} \,\mathrm{X} \,10^{\hat{}}(-25)
      A^2/Hz.", it_sq_bar1/10^(-25));
40 printf("\n\n Mean square thermal noise current for
      transimpedance amplifier is %1.0f times or %1.0f
      dB greater.",it_sq_bar1/it_sq_bar,10*log10(
      it_sq_bar1/it_sq_bar));
```

Chapter 10

OPTICAL AMPLIFICATION WAVELENGTH CONVERSION AND REGENERATION

Scilab code Exa 10.1 Determination of Refractive Index of active medium and 3dB Spectral Bandwidth

```
//Example 10.1
//Program to determine the Refractive Index of the
    Active Medium and
//the 3dB spectral bandwidth of the device

clear;
close;
close;

//Given data
L=300*10^-6; //metres - ACTIVE REGION
    LENGTH
Lambda=1.5*10^-6; //metres - PEAK GAIN
    WAVELENGTH
```

```
12 Delta_Lambda=1*10^-9; //metres - MODE SPACING
                                                                                                //m/s - SPEED OF LIGHT
13 c = 2.998*10^8;
                                                                                                //dB
14 \text{ Gs}_dB = 4.8;

    SINGLE PASS GAIN

15 R1 = 0.3;
                                                                                                //INPUT FACET REFRACTIVITY
16 R2=0.3;
                                                                                                //OUTPUT FACET REFRACTIVITY
17
18 //Refractive Index of the active medium at the peak
                      gain wavelength
19 n=(Lambda^2)/(2*Delta_Lambda*L);
20
21 //Gain Gs from Gs_dB by taking antilog with base 10
22 \text{ Gs} = 10^{((1/10)*Gs_dB)};
23
24 //3dB spectral Bandwidth
25 B_{fpa}=(c/(%pi*n*L))*asin((1-sqrt(R1*R2)*Gs)/(2*sqrt(R))*asin((1-sqrt(R1*R2)*Gs)/(2*sqrt(R))*asin((1-sqrt(R1*R2)*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*Gs)/(2*sqrt(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin((1-sqrt(R))*asin(R))*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*asin(R)*as
                      sqrt(R1*R2)*Gs)));
26
27 // Displaying the Results in Command Window
28 printf("\n\ Refractive Index of the active medium
                          at the peak gain wavelength is \%0.2 f .",n);
29 printf("\n\t 3dB spectral Bandwidth is %0.1f GHz.
                     ",B_fpa/10^9);
```

Scilab code Exa 10.2 Derivation of an approximate equation for the cavity gain of an SOA

```
1 //Example 10.2
2 //Note: MAXIMA SCILAB TOOLBOX REQUIRED FOR THIS
        PROGRAM
3 //Program to derive an approximate equation for the
        cavity gain
4 //of an SOA
5
6 clear;
7 clc ;
```

Scilab code Exa 10.3 Determination of the length of the device and the ASE noise signal power at the output of the amplifier

```
1 //Example 10.3
2 //Program to determine:
3 //(a) The length of the device
4 //(b) The ASE noise signal power at the output of the
       amplifier
5
6 clear;
7 clc;
8 close;
10 //Given data
                         //dB - SINGLE PASS GAIN
11 Gs_dB=30;
                         //NET GAIN COEFFICIENT
12 g_bar=200;
13 m = 2.2;
                         //MODE FACTOR
                         //SPONTANEOUS EMISSION FACTOR
14 \, \text{n_sp=4};
                         //J/K - PLANK's CONSTANT
15 h= 6.626*10^{(-34)};
16 c=2.998*10^8;
                         //m/s - VELOCITY OF LIGHT IN
```

```
VACCUM
                          //Hz - OPTICAL BANDWIDTH
17 B=1*10^(12);
18 Lambda=1.55*10^(-6); //metre - OPERATING WAVELENGTH
19
20 //(a) The length of the device
21 L=Gs_dB/(10*g_bar*log10(%e));
22
23 //(b) The ASE noise signal power at the output of the
       amplifier
24 \text{ Gs}=10^{(Gs_dB/10)};
25 f = c/Lambda;
26 P_ASE = m*n_sp*(Gs-1)*h*f*B;
27
28 // Displaying the Results in Command Window
29 printf("\n\t (a)The length of the SOA is \%0.2 \,\mathrm{f} X
      10^{(-3)} m.",L/10<sup>(-3)</sup>;
30 printf("\n\t (b)The ASE noise signal power at the
      output of the amplifier, P_ASE = \%0.2 \text{ f mW.}", P_ASE
      /10^(-3));
```

Scilab code Exa 10.4 Determination of the fiber non linear coefficient and the parametric gain in dB when it is reduced to quadratic gain

```
//Example 10.4
//Program to determine:
//(a) The fiber non-linear coefficient
//(b) The parametric gain in dB when it is reduced to quadratic gain

clear;
clc;
close;
//Given data
L=500; //metre - LENGTH
```

```
12 Lambda=1.55*10^(-6); //metre - OPERATING WAVELENGTH
13 Pp= 1.4;
                          //W - SIGNAL POWER
                          //dB - PEAK GAIN
14 Gp_dB = 62.2;
15
16 //(a) The fiber non-linear coefficient
17 gaamma = (Gp_dB - 10 * log10 (1/4)) / (Pp*L) * 1/(10 * log10 ((%e))
      ^2));
18
  //(b) The parametric gain in dB when it is reduced to
       quadratic gain
20 Gp_dB1=10*log10((gaamma*Pp*L)^2);
21
22 // Displaying the Results in Command Window
23 printf("\n\n\t (a) The fiber non-linear coefficient
      is \%0.2 \, \text{f X } 10^{-}(-3) \, \text{per W per km.}, gaamma/10^(-3))
24 printf("\n\t (b)The parametric gain in dB when it
      is reduced to quadratic gain is %0.1 f dB.", Gp_dB1
      );
```

Scilab code Exa 10.5 Calculation of the frequency chirp variation at the output signal and the differential gain required

```
//Example 10.5
//Program to calculate:
//(a)The frequency chirp variation at the output signal
//(b)The differential gain required

clear;
clc;
clc;
close;
//Given data
Lambda=1.55*10^(-6); //metre - OPERATING
```

WAVELENGTH

```
12 \text{ alpha=-1};
                                //ENHANCEMENT FACTOR
13 Pin=0.5*10^(-3);
                                //Watt - INPUT SIGNAL POWER
14 dPin_by_dt = 0.01*10^(-6); //metre - INPUT SIGNAL
      POWER VARIATION
15 dnr_by_dn = -1.2*10^(-26); //m^3 - DIFFERENTIAL
      REFRATIVE INDEX
16
  //(a)The frequency chirp variation at the output
17
      signal
18 del_f = -alpha/(4*%pi)*1/Pin*dPin_by_dt;
19
20 //(b) The differential gain required
21 dg_by_dn=4*%pi/Lambda*dnr_by_dn/alpha;
22
23 // Displaying the Results in Command Window
24 printf("\n\t (a)The frequency chirp variation at
      the output signal is \%0.2 \, \mathrm{f} \, \mathrm{X} \, 10^{\circ} (-6) \, \mathrm{Hz}.", del_f
      /10^(-6));
25 printf("\n\t (b)The differential gain required is
      \%0.3 \text{ f X } 10^{(-20)} \text{ m}^2.", dg_by_dn/10^(-20));
```

Chapter 11

INTEGRATED OPTICS AND PHOTONICS

Scilab code Exa 11.1 Determination of Voltage required to provide pi radians phase change

```
1 //Example 11.1
2 //Program to determine the Voltage required for a
     phase change of
3 //pi radians
5 clear;
6 clc;
7 close;
9 //Given data
10 L=2*10^-2;
                         //metres - LENGTH OF THE
     WAVEGUIDE
11 Lambda=1.3*10^-6;
                          //metres - WAVELENGTH
                          //metres - DISTANCE BETWEEN
12 d=25*10^-6;
     THE ELECTRODES
                          //m/V
13 r=30.8*10^-12;

    ELECTRO-OPTIC

     COEFFICIENT
                          //REFRACTIVE INDEX AT 1.3um
14 n1=2.1;
```

WAVELENGTH

Scilab code Exa 11.2 Determination of Corrugation Period and Filter 3dB Bandwidth

```
1 //Example 11.2
2 //Program to determine Corrugation Period and Filter
     's 3dB Bandwidth
3
4 clear;
5 clc;
6 close;
  //Given data
9 L=1*10^-2;
                         //metres - LENGTH OF THE
     DEVICE
10 Lambda_B=1.52*10^-6; //metres - CENTRE WAVELENGTH
                         //Degree - INCIDENT ANGLE
11 Theeta=1;
12 n1=3.1;
                         //REFRACTIVE INDEX of InGaAsP
13
14 // Calculation of Effective Refractive Index of the
     Waveguide
15 ne=n1*sin(2*Theeta*%pi/180);
16
17 // Calculation of the Corrugation Period
18 D=(Lambda_B)/(2*ne);
19
```

Scilab code Exa 11.3 Design of a wavelength channel plan for a dense WDM Interleaver Waveband Filter

```
1 //Example 11.3
2 //Program to design a wavelength channel plan for an
      8 band, 32
3 //channel dense WDM Interleaver Waveband Filter.
      Also to determine:
4 //(a) Total No. of channel required for each
      interleaver band filter
5 //(b) The overall bandwidth of the filter in each
      case
6
7 clear;
8 clc;
9 close;
10
11 //Given data
12 number_of_bands=8;
13 M = 4;
                       //TOTAL NUMBER OF CHANNELS IN
     EACH BAND
14
15 //(a) Total No. of channel required for each
      interleaver band filter
16 //(i)N=0
17 N = 0;
```

```
18 Cskip0=(number_of_bands-1)*N;
19 Ctotal0=number_of_bands*M+Cskip0;
20 // Displaying the Result in Command Window
21 printf("\n\n\t (a)(i) For 4-\text{skip}-0, Ctotal = \%d.",
      Ctotal0);
22
23 //(ii)N=1
24 N = 1;
25 Cskip1=(number_of_bands-1)*N;
26 Ctotal1=number_of_bands*M+Cskip1;
27 // Displaying the Result in Command Window
28 printf("\n\n\t (ii) For 4-\text{skip}-1, Ctotal = \%d.",
      Ctotal1);
29
30 //(iii)N=2
31 N = 2;
32 Cskip2=(number_of_bands-1)*N;
33 Ctotal2=number_of_bands*M+Cskip2;
34 // Displaying the Result in Command Window
35 printf("\n\n\t (iii) For 4-\text{skip}-2, Ctotal = \%d.",
      Ctotal2);
36
37 //Generation of Table 11.1
38 printf("\n\t\t TABLE 11.1:WAVELENFTH CHANNEL PLAN"
      );
39 \quad W1 = 1552.52;
                        //nm - WAVELENGTH FOR 1 CHANNEL
40 printf("\n\t\t\t (i)4-skip-0");
41 for i = 0:Ctotal0-1
42 printf("\nt Number of Channels = %d, Wavelength =
      \%0.2 \, \text{f} \, \text{nm}.",i+1,W1+0.8*i);
43 end
44 printf("\n\t\t\t (ii)4-skip-1");
45 for i = 0:Ctotal1-1
46 printf("\n\t Number of Channels = %d, Wavelength =
     \%0.2 \text{ f } \text{ nm.}", i+1, W1+0.8*i);
47 end
49 for i = 0:Ctotal2-1
```

```
50 printf("\n\t Number of Channels = \%d, Wavelength =
      \%0.2 \text{ f nm.}", i+1, W1+0.8*i);
51 end
52
  //(b) The overall bandwidth of the filter in each
53
      case taking values
54 //from Table 11.1
55 //(i)N=0
56 W2 = 1577.32;
                          //nm - WAVELENGTH FOR 32
      CHANNELS
57 BW = W2 - W1;
58 // Displaying the Result in Command Window
59 printf("\n\n\t (b)(i)For 4-skip-0, Filter
      Bandwidth = \%0.1 \, \text{f} \, \text{nm}.", BW);
60
   //(ii)N=1
61
                          //nm - WAVELENGTH FOR 39
62 \quad W2 = 1582.92;
      CHANNELS
63 BW = W2 - W1;
64 // Displaying the Result in Command Window
65 printf("\n\
                      (ii) For 4-\text{skip}-1, Filter Bandwidth
      = \%0.1 \text{ f nm.}", BW);
66
67 / (iii) N=2
                          //nm - WAVELENGTH FOR 46
68 \quad W2 = 1588.52;
      CHANNELS
69 BW = W2 - W1;
70 // Displaying the Result in Command Window
71 printf("\n\t (iii) For 4-skip-2, Filter Bandwidth
      = \%0.1 \, \text{f nm.}", BW);
```

Chapter 12

OPTICAL FIBER SYSTEMS 1 INTENSITY MODULATION AND DIRECT DETECTION

Scilab code Exa 12.1 Determination of bit rate and duration of a Time slot Frame and Multiframe

```
1 //Example 12.1
2 //Program to determine:
3 //(a) Bit rate for the system
4 //(b) The duration of a time slot
5 //(c)The duration of a frame and multiframe
7 clear;
8 clc;
9 close;
10
11 //Given data
12 f=8*10^3;
                         //Hz - SAMPLING RATE
                         //bits - SAMPLE SIZE
13 b=8;
14 T = 32;
                         //NUMBER OF TIME SLOTS
15
16 //(a) Bit rate for the system
```

```
17 Number_of_bits=T*b;
18 Bit_rate=f*Number_of_bits
19 / (b) The duration of a time slot
20 Bit_duration=1/Bit_rate;
21 Slot_duration=b*Bit_duration;
22 //(c) The duration of a frame and multiframe
23 Duration_of_frame=T*Slot_duration;
24 Duration_of_multiframe=T/2*Duration_of_frame;
25
26 // Displaying The Results in Command Window
27 printf("\n\t (a) Bit rate for the system is \%0.3 f
     Mbit/s.", Bit_rate/10^6);
28 printf("\n\t (b)The duration of a time slot is \%0
      .1 f us., Slot_duration/10^(-6));
29 printf("\n\t (c)The duration of a frame is \%1.0 f
      us and multiframe is \%1.0\,\mathrm{f} ms.", Duration_of_frame
     /10^{(-6)}, Duration_of_multiframe/10^{(-3)});
```

Scilab code Exa 12.2 Determination of required electrical and optical SNR

```
1 //Example 12.2
2 //Program to determine the required electrical and optical SNR
3
4 clear;
5 clc;
6 close;
7
8 //Given data
9 BER=10^(-9); //BIT ERROR RATE
10
11 //Optical SNR
12 SNR_op=(erfinv(1-2*BER))*2*sqrt(2); //erfc(x)=1-erf(x)
```

```
14  // Electrical SNR
15  SNR_el=((erfinv(1-2*BER))*2*sqrt(2))^2;  //erfc(x)=1-
        erf(x)
16
17  // Displaying the Results in Command Window
18  printf("\n\n\t Optical SNR is %1.0 f or %0.1 f dB.",
        SNR_op,10*log10(SNR_op));
19  printf("\n\n\t Electrical SNR is %1.0 f or %0.1 f dB.
        ",SNR_el,10*log10(SNR_el));
```

Scilab code Exa 12.3 Estimation of the average number of photons which must be incident on the APD to register a binary one

```
1 //Example 12.3
2 //Program to estimate the average number of photons
      which must be
3 //incident on the APD to register a binary one with
     a BER of 10^{(-9)}
4
5 clear;
6 clc;
7 close;
8
9 //Given data
10 k=0.02;
                           //CARRIER IONIZATION RATE
                           //MULTIPLICATION FACTOR
11 M = 100;
                           //SIGNAL TO NOISE RATIO
12 SNR=144;
13 Bt = 0.6;
                           //FOR RAISED COSINE PULSE
     SPECTRUM
                           //(*100) percent - QUANTUM
14 n = 0.8;
     EFFICIENCY
15
16 //Excess avalanche noise factor F(M)
17 F=k*M+(2-1/M)*(1-k);
18
```

```
19 //Average number of photons
20 z=2*Bt*ceil(F)/n*SNR;
21
22 //Displaying the Result in Command Window
23 printf("\n\n\t The average number of photons which
    must be incident on the APD is %1.0 f photons.",z)
    ;
```

Scilab code Exa 12.4 Estimation of incident optical power to register binary 1 at bit rates of 10 Mbps and 140 Mbps

```
1 //Example 12.4
2 //Program to estimate incident optical power to
      register binary 1
3 //at bit rates of 10 Mbit/s and 140 Mbit/s
5 clear;
6 clc;
7 close;
8
9 //Given data
10 BER=10^{(-9)};
                                      //BIT ERROR RATE
11 e=1.602*10^{(-19)};
                                      //Coulumbs - CHARGE
      OF AN ELECTRON
12 Lambda=1*10^(-6);
                                      //metre -
     WAVELENGTH
13 h= 6.626*10^{(-34)};
                                      //J/K - PLANK's
     CONSTANT
                                      //m/s - VELOCITY OF
14 c=2.998*10^8;
      LIGHT IN VACCUM
                                      //photons - FROM
15 \text{ zm} = 864;
     EXAMPLE 12.3
16
17 //For 10 Mbit/s
18 Bt=10*10^6;
                                      //bps - BIT RATES
```

Scilab code Exa 12.5 Determination of the total channel loss ignoring dispersion

```
1 //Example 12.5
2 //Program to determine the total channel loss
     ignoring dispersion
3
4 clear;
5 clc;
6 close;
8 //Given data
  alpha_fc=5;
                               //dB/km - FIBER CABLE
     ATTENUATION
                               //dB/km - SPLICE LOSS
10 alpha_j=2;
11 alpha_s=3.5;
                               //dB - SOURCE CONNECTOR
     LOSS
12 alpha_d=2.5;
                               //dB - DETECTOR CONNECTOR
      LOSS
13 L=4;
                               //km - LENGTH OF OPTICAL
     FIBER LINK
```

```
14
15  //Total channel loss
16  alpha_cr=alpha_s+alpha_d
17  C_L=(alpha_fc+alpha_j)*L+alpha_cr;
18
19  //Displaying The Result in Command Window
20  printf("\n\n\tTotal channel loss, C_L = %1.0 f dB", C_L)
```

Scilab code Exa 12.6 Estimation of the dispersion equalization penalty for bit given rates

```
1 //Example 12.6
2 //Program to estimate the dispersion-equalization
      penalty for bit
3 // rates:
4 //(a)25 Mbit/s
5 //(b)150 Mbit/s
6
7 clear;
8 clc;
9 close;
10
11 //Given data
                             //km - LENGTH OF FIBER LINK
12 L=8;
13 sigma=0.6*10^{(-9)};
                             //s/km - RMS PULSE
     BROADENING
14
15
16 //(a) For 25 Mbit/s
17 Bt = 25 * 10^6;
                              //bit/sec - BIT RATE
18 //Without mode coupling
19 sigma_T=sigma*L;
20 D_L=2*(2*sigma_T*Bt*sqrt(2))^4;
21 printf("\n\t (a) For Bt = \%1.0 f Mbit/s, Without
```

```
mode coupling, D_L = \%0.2 \, \text{f dB}", Bt/10^6, D_L);
22 //With mode coupling
23 sigma_T=sigma*sqrt(L);
24 D_L=2*(2*sigma_T*Bt*sqrt(2))^4;
25 printf("\n\t For Bt = %1.0 f Mbit/s, With mode
      coupling, D_L = \%0.2 \, f \, X \, 10^{-}(-4) \, dB", Bt/10^6, D_L
      /10^{(-4)};
26
27 //(b) 150 Mbit/s
                                //bit/sec - BIT RATE
28 \text{ Bt} = 150 * 10^6;
29 // Without mode coupling
30 sigma_T=sigma*L;
31 D_L=2*(2*sigma_T*Bt*sqrt(2))^4;
32 printf("\n\t (b)For Bt = \%1.0f Mbit/s, Without
      mode coupling, D_L = \%0.2 f dB", Bt/10^6, D_L);
33 //With mode coupling
34 sigma_T=sigma*sqrt(L);
35 D_L=2*(2*sigma_T*Bt*sqrt(2))^4;
36 printf("\n\t For Bt = \%1.0 f Mbit/s, With
      coupling, D_L = \%0.2 \, f \, dB", Bt/10^6, D_L);
```

Scilab code Exa 12.7 Estimation of the maximum bit rate that may be achieved on the link when using NRZ format

```
FIBER LINK
11 Ts = 8 * 10^{(-9)};
                                       //s - SOURCE RISE
      TIME
                                       //s/km - INTERMODAL
12 Dn = 5 * 10^{(-9)};
       RISE TIME
13 Dc=1*10^{(-9)};
                                       //s/km - INTRAMODAL
       RISE TIME
                                       //s – DETECTOR RISE
  Td=6*10^{(-9)};
       TIME
15 Tn = Dn * L;
16 Tc=Dc*L;
17
18 //Total Rise Time
19  Tsyst=1.1*sqrt(Ts^2+Tn^2+Tc^2+Td^2);
20
21 //Maximum bit rate
22 Bt= 0.7/Tsyst;
23
24 // Displaying the Result in Command Window
25 printf("\n\t Maximum bit rate, Bt(max) is \%0.1 f
      Mbit/s which for NRZ is equivalent to a 3 dB
      optical bandwidth of %0.1 f Mbit/s.", Bt/10^6, Bt
      /10^6/2);
```

Scilab code Exa 12.8 Estimation of maximum possible link length without repeaters when operating at 35 Mbps and 400 Mbps

```
1 //Example 12.8
2 //Program to estimate:
3 //(a)Maximum possible link length without repeaters
    when operating at 35 Mbit/s
4 //(b)Maximum possible link length without repeaters
    when operating at 400 Mbit/s
5 //(c)Reduction in maximum possible link length
    considering dispersion-equalization penalty
```

```
6
7 clear;
8 clc;
9 close;
10
11 //Given data
12 Pi = -3;
                               //dBm - POWER LAUNCHED
                               //dB/km - CABLE FIBER LOSS
13 \quad alpha_fc=0.4;
14 alpha_j = 0.1;
                               //dB/km - SPLICE LOSS
15 alpha_cr=2;
                               //dB - TOTAL CONNECTOR
      LOSS
                               //dB - REQUIRED SAFETY
16 Ma=7;
     MARGIN
  D1 = 1.5;
17
                               //dB - DISPERSION-
      EQUALIZATION PENALTY
18
  //(a) Maximum possible link length without repeaters
      when operating at 35 Mbit/s
20 \text{ Po} = -55;
                               //dBm - REQUIRED POWER BY
      APD
  //Optical budget: Pi-Po=(alpha_fc+alpha_j)L+alpha_cr
22 L1=(Pi-Po-alpha_cr-Ma)/(alpha_fc+alpha_j);
23 printf("\n\n\t (a)Maximum possible link length
      without repeaters when operating at 35 Mbit/s is
      \%1.0 \text{ f km.}",L1);
24
   //(b) Maximum possible link length without repeaters
      when operating at 400 Mbit/s
26 \text{ Po} = -44;
                               //dBm - REQUIRED POWER BY
      APD
27
  //Optical budget: Pi-Po=(alpha_fc+alpha_j)L+alpha_cr
      +Ma
28 L2=(Pi-Po-alpha_cr-Ma)/(alpha_fc+alpha_j);
29 printf("\n\t (b)Maximum possible link length
      without repeaters when operating at 400 Mbit/s is
      %1.0 \text{ f km.}", L2);
30
```

Scilab code Exa 12.9 Determination of the viability of optical power budget

```
1 //Example 12.9
2 //Program to determine the viability of optical
     power budget
3
4 clear;
5 clc;
6 close;
8 //Given data
9 L=7;
                              //km - OPTICAL FIBER LINK
     LENGTH
10 alpha_fc=2.6;
                              //dB/km - CABLE FIBER LOSS
                              //dB/km - SPLICE LOSS
11 alpha_j = 0.5;
12 alpha_cr=1.5;
                              //dB - TOTAL CONNECTOR
     LOSS
13 Ma=6;
                              //dB - REQUIRED SAFETY
     MARGIN
14 Pr_dBm = -41;
                              //dBm - RECEIVER
     SENSITIVITY
15 Pi=100*10^{(-6)};
                              //Watt - POWER LAUNCHED
16 Pi_dBm=10*log10(Pi/10^(-3));
17
```

```
18 //Total System Margin
19 Total_system_margin=Pi_dBm-Pr_dBm;
20 printf("\n\t Total System Margin is \%0.1 \, f \, dB.",
     Total_system_margin);
21
22 //Total System Loss
23 Total_system_loss=L*alpha_fc+(L-1)*alpha_j+alpha_cr+
     Ma;
24 printf("\n\n\t Total System Loss is %0.1 f dB.",
     Total_system_loss);
25
26 //Excess Power margin
27 Excess_power_margin=Total_system_margin-
     Total_system_loss;
  printf("\n\n\t Excess Power margin is %0.1 f dB.",
     Excess_power_margin);
29
30 // Testing Viability
31 if Excess_power_margin >=0 then
32 printf("\n\t The system is viable.");
33 else
34 printf("\n\t The system is not viable.");
35 end
```

Scilab code Exa 12.10 Estimation of ratio of SNR of the coaxial system to the SNR of the fiber system

```
8
9 //Given data
10 V = 5;
                           //volts - TRANSMITTER PEAK
     OUTPUT VOLTAGE
11 Zo = 100;
                           //ohms - CABLE IMPEDANCE
12 T = 290;
                           //Kelvin - OPERATING
     TEMPERATURE
13 lambda=0.85*10^{(-6)};
                           //metre - WAVELENGTH
                           //J/K - BOLTZMANN's CONSTANT
14 K=1.38*10^{-23};
15 \quad n = 0.7;
                           //(*100) percent - QUANTUM
      EFFICIENCY
16 Pi=1*10^{(-3)};
                           //Watts - OPTICAL POWER
                           //(m^2) \text{Kg/s} - \text{PLANK's CONSTANT}
17 h=6.626*10^{(-34)};
                           //m/s - SPEED OF LIGHT
18 c=2.998*10^8;
19
20 //Ratio SNR(coax)/SNR(fiber)
21 Ratio=V^2*h*c/(2*K*T*Zo*n*Pi*lambda);
22
23 // Displaying the Result in Command Window
24 printf("\n\t SNR(coax)/SNR(fiber) = %d dB.",10*
      log10(Ratio));
```

Scilab code Exa 12.11 Determination of the average incident optical power required at the receiver

```
1 //Example 12.11
2 //Program to determine the average incident optical
    power required at
3 //the receiver
4 
5 clear;
6 clc;
7 close;
8 
9 //Given data
```

```
//J/K - BOLTZMANN's
10 k=1.38*10^{(-23)};
     CONSTANT
11 e=1.602*10^{-19};
                              //Coulumbs - CHARGE OF AN
     ELECTRON
12 SNR_dB=55;
                              //dB - SIGNAL POWER TO RMS
     NOISE RATIO
                              //MODULATION INDEX
13 \text{ ma} = 0.8;
                              //A - DARK CURRENT
14 Id=0;
                              //K - OPERATING TEMPERATURE
15 T=293;
16 B=5*10^6;
                              //Hz - BANDWIDTH
                              //dB - NOISE FIGURE
17 Fn_dB=1.5;
18 Rl=1*10^6;
                              //Ohms - EFFECTIVE INPUT
     IMPEDANCE
19 R = 0.5;
                              //A/W - RESPONSIVITIY
                              //RATIO OF LUMINANCE TO
20 b = 0.7;
     COMPOSITE VIDEO
21 SNR = 10^{(SNR_dB/10)};
22 Fn=10^(Fn_dB/10);
23
24 //Photo-current, Ip=R*Po Ip=Po*R;
25 //(SNR)p-p=(2*ma*Ip*b)^2/(2*e*B*(Ip+Id)+(4*k*T*B*Fn/
      R1));
  //Rearranging and solving the quadratic equation,
      Incident Power
27 Po = ((SNR*2*e*B*R) + sqrt((SNR*2*e*B*R)^2 - 4*(2*ma*R*b))
      ^2*(SNR*(-4*k*T*B*Fn/R1))))/(2*(2*ma*R*b)^2);
28
29 // Displaying the Result in Command Window
30 printf("\n\t The average incident optical power
      required at the receiver is %0.2 f uW or %0.1 f dBm
      .", Po/10^{(-6)}, 10*log10(Po/10^{(-3)});
```

Scilab code Exa 12.12 Determination of the average incident optical power required to maintain given SNR

```
1 //Example 12.12
2 //Program to determine the average incident optical
      power required to
3 //maintain given SNR
5 clear;
6 clc;
7 close;
9 //Given data
10 Lambda=1*10^(-6);
                                      //metre -
     WAVELENGTH
11 h = 6.626*10^{(-34)};
                                      //J/K - PLANK's
     CONSTANT
                                      //m/s - VELOCITY OF
12 c=2.998*10^8;
      LIGHT IN VACCUM
13 k=1.38*10^{(-23)};
                                      //J/K - BOLTZMANN's
      CONSTANT
14 e=1.602*10^{(-19)};
                                      //Coulumbs - CHARGE
      OF AN ELECTRON
15 eeta=0.6;
                                      //*100 percent -
     QUANTUM EFFICIENCY
16 SNR_dB=45;
                                      //dB - CURRENT SNR
17 R1=50*10^3;
                                      //Ohms - EFFECTIVE
     LOAD IMPEDANCE
18 T = 300;
                                      //K - OPERATING
     TEMPERATURE
19 \text{ ma} = 0.5;
                                      //MODULATION INDEX
                                      //dB - NOISE FIGURE
20 Fn_dB=6;
                                      //Hz - POST
21 B=10*10^6;
     DETECTION BANDWIDTH
22
23 SNR = 10^{(SNR_dB/10)};
24 Fn=10^(Fn_dB/10);
25
26 //Average incident optical power required to
      maintain given SNR
27 Po=h*c/(e*eeta*ma^2*Lambda)*sqrt(8*k*T*Fn/Rl)*sqrt(
```

```
SNR*B);
28
29 // Displaying the Result in Command Window
30 printf("\n\n\t The average incident optical power
    required at the receiver is %0.2 f uW or %0.1 f dBm
    .",Po/10^(-6),10*log10(Po/10^(-3)));
```

Scilab code Exa 12.13 Determination of the viability of optical power budget and estimation of any possible increase in link length

```
1 //Example 12.13
2 //Program to:
3 //(a) Determine the viability of optical power budget
4 //(b) Estimate any possible increase in link length
6 clear;
7 clc;
8 close;
10 //Given data
11 L=2;
                              //km - OPTICAL FIBER LINK
     LENGTH
                              //dB/km - CABLE FIBER LOSS
12 alpha_fc=3.5;
                              //dB/km - SPLICE LOSS
13 alpha_j = 0.7;
                              //dB – CONNECTOR LOSS AT
14 alpha_cr=1.6;
     RECEIVER
15 Ma=4;
                              //dB - REQUIRED SAFETY
     MARGIN
16 Pr_dBm = -25;
                              //dBm - RECEIVER
     SENSITIVITY
                              //dBm - POWER LAUNCHED
17 Pi_dBm = -10;
18
19 //Total System Margin
20 Total_system_margin=Pi_dBm-Pr_dBm;
21 printf("\n\t (a) Total System Margin is %0.1 f dB.",
```

```
Total_system_margin);
22
23 // Total System Loss
24 Total_system_loss=L*alpha_fc+L*alpha_j+alpha_cr+Ma;
25 printf("\n\
                      Total System Loss is %0.1 f dB.",
      Total_system_loss);
26
27 //Excess Power margin
28 Excess_power_margin=Total_system_margin-
      Total_system_loss;
29 printf("\n\t
                      Excess Power margin is %0.1 f dB.",
      Excess_power_margin);
30
31 //(a) Testing Viability
32 if Excess_power_margin >=0 then
33 printf("\n\t
                      The system is viable.");
34 else
35 printf("\n\t
                      The system is not viable.");
36 \, \text{end}
37
38 //(b) Maximum possible link length
39 Pi = 0;
                               //dBm - LAUNCHED POWER
                               //dBm - REQUIRED POWER BY
40 \text{ Po} = -25;
     APD
                               //dB - SAFETY MARGIN
41 \text{ Ma} = 7:
42 // Optical budget: Pi-Po=(alpha_fc+alpha_j)L+alpha_cr
     +Ma
43 L1=(Pi-Po-alpha_cr-Ma)/(alpha_fc+alpha_j);
44 printf("\n\n\t (b)Maximum possible increase in link
      length is \%0.1 \, \text{f km.}", L1-L);
```

Scilab code Exa 12.14 Determination of whether the combination of components gives an adequate temporal response

```
1 //Example 12.14
```

```
2 //Program to determine whether the combination of
      components gives
3 //an adequate temporal response
5 clear;
6 clc;
7 close;
9 //Given data
                                       //km - LENGTH OF
10 L=5;
      FIBER LINK
11 Ts=10*10^{(-9)};
                                       //s - SOURCE RISE
     TIME
12 Dn = 9 * 10^{(-9)};
                                       //s/km - INTERMODAL
       RISE TIME
13 Dc = 2*10^{(-9)};
                                       // s / km - CHROMATIC
      RISE TIME
                                       //s - DETECTOR RISE
14 \text{ Td} = 3*10^{(-9)};
      TIME
                                       //Hz - REQUIRED
15 Bopt = 6 * 10 ^ 6;
      OPTICAL BANDWIDTH
16
17 Tn = Dn * L;
18 Tc=Dc*L;
19
20 //Maximum permitted rise time
21 Tsyst_max=0.35/Bopt;
22
23 //Total system rise time
24 Tsyst=1.1*sqrt(Ts^2+Tn^2+Tc^2+Td^2);
25
26 // Displaying the Results in Command Window
27 printf("\n\n\t Maximum permitted rise time, Tsyst(
      \max) = \%0.1 \, \text{f ns.}", Tsyst_max/10^(-9));
28 printf("\n\t Total system rise time, Tsyst = \%0.1f
       ns.", Tsyst/10^(-9));
29 printf("\n\t Hence system gives adequate temporal
      response.");
```

Scilab code Exa 12.15 Derivation of an expression for the improvement in post detection SNR and determination of the improvement in post detection SNR and Bandwidth

```
1 //Example 12.15
2 // Note: MAXIMA SCILAB TOOLBOX REQUIRED FOR THIS
     PROGRAM
3 //Program to:
4 //(a) Derive an expression for the improvement in
      post detection SNR
  //(b) Determine the improvement in post detection SNR
      and Bandwidth
6
7 clear;
8 clc;
9 close;
10
11 //(a) Derive an expression for the improvement in
      post detection SNR
12 //Symbolic Representation
13 syms Pa R Po Ba No Df
14 //D—IM OUTPUT SNR
15 SNR_DIM = (R*Po)^2*Pa/(2*Ba*No);
16 //FM OUTPUT SNR
17 SNR_FM=3*Df^2*(R*Po)^2*Pa/(4*Ba*No);
18 //SNR IMPROVEMENT
19 SNR_imp=SNR_FM/SNR_DIM;
20 //SNR IMPROVEMENT IN dB
21 SNR_{imp_dB} = 10 * log 10 (SNR_{imp});
22 disp(SNR_imp, "SNR IMPROVEMENT = ");
23 disp(SNR_imp_dB, "SNR IMPROVEMENT IN dB = ");
24 printf("\n\t The above expression is equivalent to
       1.76 + 20 * \log 10 (Df)");
25
```

```
26 //(b) Determine the improvement in post detection SNR
       and Bandwidth
27 // Given data
28 \text{ fd1} = 400 * 10^3;
                                   //Hz - PEAK FREQUENCY
      DEVIATION
29 Ba1=4*10^3;
                                   //Hz- BANDWIDTH
30 //Frequency Deviation Ratio
31 Df1=fd1/Ba1;
32 //SNR Improvement expression from part(a)
33 SNR_{imp_dB1=1.76+20*log10(Df1);
34 //Bandwidth
35 \text{ Bm} = 2*(Df1+1)*Ba1;
36 printf("\n\t The SNR Improvement = \%0.2 \, f \, dB.",
      SNR_imp_dB1);
37 printf("\n\t The Bandwidth of FM-IM, Bm = \%1.0 f
      kHz.",Bm/10^3);
```

Scilab code Exa 12.16 Program to determine the ratio of SNRs of FM IM and PM IM systems

```
//Example 12.16
//Note: MAXIMA SCILAB TOOLBOX REQUIRED FOR THIS
PROGRAM
//Program to determine the ratio of SNRs of FM-IM
and PM-IM systems

clear;
close;
//Symbolic representation
syms fd Pa R Po Ac Ba No

//FOR FM-IM
Df=fd/Ba; //Frequency Deviation
```

```
SNR_FM=3*Df^2*Pa*(R*Po)^2*Ac^2/2/(2*Ba*No);

//FOR PM-IM
Dp=fd/Ba; //Frequency Deviation
SNR_PM=Df^2*Pa*(R*Po)^2*Ac^2/2/(2*Ba*No);

// Determining Ratio
Ratio=SNR_FM/SNR_PM;

// Displaying the Result in Command Window
disp(Ratio," SNR_FM/SNR_PM = ");
```

Scilab code Exa 12.17 Calculation of the optimium receiver bandwidth and the peak to peak signal power to rms noise ratio

```
1 //Example 12.17
2 //Program to calculate:
3 //(a) The optimium receiver bandwidth
4 //(b) The peak to peak signal power to rms noise
      ratio
5
6 clear;
7 clc;
8 close;
9
10 //Given data
11 Tr=12*10^{(-9)};
                                 //s - SYSTEM RISE TIME
12 fo=20*10^6;
                                 //Hz - NOMINAL PULSE
     RATE
13 fd=5*10<sup>6</sup>;
                                 //Hz - PEAK TO PEAK
     FREQUECY DEVIATION
14 M = 60;
                                 //APD MULTIPLICATION
     FACTOR
15 R = 0.7;
                                 //APD RESPONSIVITY
16 B=6*10^6;
                                 //Hz - BASEBAND NOISE
```

```
BANDWIDTH
17 Ppo=10^{(-7)};
                                 //Watt - PEAK OPTICAL
     POWER
  in_sq_bar=10^(-17);
                                 //A^2 - RECEIVER MEAN
18
     SQUARE NOISE CURRENT
19
20 //(a) The optimium receiver bandwidth
21 Bopt=1/Tr;
22 \text{ To=1/fo};
23
24 //(b) The peak to peak signal power to rms noise
25
  SNR = 3*(To*fd*M*R*Ppo)^2/((2*\%pi*Tr*B)^2*in_sq_bar);
26
27 // Displaying the Results in Command Window
28 printf("\n\t (a)The optimium receiver bandwidth is
       \%0.1 \text{ f MHz.}", Bopt/10^6);
29 printf("\n\t (b)The peak to peak signal power to
      rms noise ratio is %0.1 f dB.",10*log10(SNR));
```

Scilab code Exa 12.18 Formation of comparision showing total channel loss against number of nodes for Bus and Star Distribution Systems

```
1 //Example 12.18
2 //Program to form comparision showing total channel
    loss against
3 //number of nodes for:
4 //(i)Bus Distribution System
5 //(ii)Star Distribution System
6
7 clear;
8 clc;
9 close;
```


Figure 12.1: Formation of comparision showing total channel loss against number of nodes for Bus and Star Distribution Systems

```
10
11 //Given data
12 alpha_cr=1;
                                     //dB - CONNECTOR
     LOSS
13 alpha_fc=5;
                                     //dB/km - FIBER
     CABLE LOSS
14 L_bu=0.1
                                     //m - FIBER LENGTH
15 L_tr=10;
                                     //dB - ACCESS
     COUPLER TAP RATIO
16 L_sp=3;
                                     //dB - SPLITTER LOSS
                                     //dB - ACCESS
17 L_ac=1;
     COUPLER INSERTION LOSS
18 L_st=0.1;
                                     //m - TOTAL FIBER
     LENGTH IN STAR ARMS
19 L_ex=0;
                                     //dB - STAR COUPLER
     EXCESS LOSS
20
21 //Bus Distribution System
22 N = 0:0.01:11;
23 Cl_bus=2*alpha_cr+(N-1)*alpha_fc*L_bu+(2*alpha_cr+
      L_ac)*(N-3)+(2*alpha_cr+L_tr)+L_sp+alpha_cr;
24 Hm=abs(Cl_bus);
25 figure;
26 plot2d(N, Hm, 2);
27
28 //Star Distribution System
29 N = 1:0.01:30;
30 \text{ Cl\_star}=4*alpha\_cr+alpha\_fc*L\_st+10*log10(N)+L\_ex;
31 Hm=abs(Cl_star);
32 plot2d(N, Hm, 5);
33 xlabel('Number of Nodes N');
34 ylabel('Total Channel Loss Cl(dB)');
35 title('CHARACTERISTICS FOR TWO DISTRIBUTION SYSTEMS
      (BUS AND STAR);
36 xgrid (1);
37 h=legend(['LINEAR BUS'; 'STAR']);
```

Scilab code Exa 12.19 Estimation of the maximum system length for satisfactory performance

```
1 //Example 12.19
2 //Program to estimate the maximum system length for
      satisfactory
  //performance
4
5 clear;
6 clc;
7 close;
8
9 // Given data
10 SNR_dB=17;
                           //dB - REQUIRED SNR
11 L=100*10^3;
                           //metre - INTERVAL SPACING
                           //FOR AMPLIFIER
12 K = 4;
                           //J/K - PLANK's CONSTANT
13 h= 6.626*10^{(-34)};
                           //m/s - VELOCITY OF LIGHT IN
14 c=2.998*10^8;
      VACCUM
15 B=1.2*10^(9);
                           //bit/s - TRANSMISSION RATE
                           //dBm - INPUT POWER
16 Pi_dBm=0;
17 Lambda=1.55*10^(-6);
                           //metre - OPERATING
     WAVELENGTH
18 alpha_fc=0.22;
                           //dB/km - FIBER CABLE
     ATTENUATION
19 alpha_j=0.03;
                            //dB/km - SPLICE LOSS
20
21 // Calculation of SNR and Pi
22 SNR=10^(SNR_dB/10);
23 Pi=10^(Pi_dBm/10)*10^(-3);
24
25 //Maximum system length
26 Lto=(Pi*Lambda*10^(-(alpha_fc+alpha_j)*L/10/10^3)/(K
     *h*c*B))/SNR*L;
```

Scilab code Exa 12.20 Obtain an expression for the total noise figure for the system

```
1 //Example 12.20
2 // Note: MAXIMA SCILAB TOOLBOX REQUIRED FOR THIS
     PROGRAM
3 //Program to obtain an expression for the total
     noise figure for the
4 //system
5
6 clear;
7 clc;
8 close;
9
10 //Symbolic representation
11 syms F G k M;
12
13 //Given data
14 / F_to = F1*G1 + F2*G2 + F3*G3 + \dots + FM*GM
15 //For Identical Repeaters :
16 / F1*G1 = F2*G2 = F3*G3 = \dots = FM*GM = F*G(say)
17 x = F * G;
18 F_{to} = symsum(x,k,1,M);
19
20 // Displaying The Results in Command Window
21 disp (F_to, "TOTAL NOISE FIGURE: F_to = ");
22 disp ("At the output from the first amplifier
     repeater, a degradation in SNR of F*G occurs
     followed by a decrease of 1/M");
```

Scilab code Exa 12.21 Calculation of second order dispersion coefficient for L1 and dispersion slope for L2

```
1 //Example 12.21
2 //Program to :
3 //(a) Calculate second order dispersion coefficient
      for L1
4 //(b) Determine the dispersion slope for L2
  //(c) Verify that periodic dispersion management map
      will provide
  //sufficient coincidence to facilitate reliable DWDM
       transmission
8 clear;
9 clc;
10 close;
11
12 //Given data
13 L1=160;
                         //km - PATH LENGTH
14 L2=20;
                         //km - PATH LENGTH
15
  //(a)To calculate second order dispersion
      coefficient for L1
17 Beeta22=17;
                         //ps/nm/km - 2nd ORDER
     DISPERSION COEFF. FOR L2
18 Beeta21=-Beeta22*L2/L1;
19 printf("\n\t (a) The second order dispersion
      coefficient for L1 is \%0.3 \,\mathrm{f} ps/nm/km", Beeta21);
20
  //(b)To determine the dispersion slope for L2
                         //ps/nm<sup>2</sup>/km - DISPERSION SLOPE
22 S1 = 0.075;
      FOR L1
23 S2 = -S1 * L1/L2;
24 printf("\n\t(b)The dispersion slope for L2 is \%0.1
```

```
f ps/nm^2/km, S2);
25
  //(c)To verify that periodic dispersion management
26
     map will provide
  //sufficient coincidence to facilitate reliable DWDM
       transmission
OP = S1 * (L1/L2) + S1 * (Beeta22/Beeta21);
29 if OP==0 then
30 printf("\n\t(c) Periodic dispersion management map
      will provide sufficient coincidence to facilitate
       reliable DWDM transmission as S1(L1/L2)+S1(
     Beeta22/Beeta21)=0");
31 else
32 printf("\n\t(c) Periodic dispersion management map
      will not provide sufficient coincidence to
      facilitate reliable DWDM transmission as S1(L1/L2
     +S1 (Beeta 22 / Beeta 21)!=0");
33 end
```

Scilab code Exa 12.22 Determination of the separation for the soliton pulses to avoid interaction and the transmission bit rate

```
1 //Example 12.22
2 //Program to determine
3 //(a)The separation for the soliton pulses to avoid interaction
4 //(b)The transmission bit rate of the optical soliton communication
5 //system
6
7 clear;
8 clc;
9 close;
10
11 //Given data
```

```
//s - BIT
12 To = 70 * 10^{(-12)};
     PERIOD
                                            //s - PULSE
13 tau=6*10^(-12);
     WIDTH
14 Beeta2=-0.5*10^(-12)*10^(-12)*10^(-3); // s^2/km - 2nd
      ORDER DISPERSION
15
                                               COEFFICIENT
16 La=50*10<sup>3</sup>;
                                            //AMPLIFIER
     SPACING
17
18 //(a) The separation for the soliton pulses to avoid
      interaction
19 qo=1/2*(To/tau);
20 //(b)The transmission bit rate of the optical
      soliton comm. system
21 Bt=1/(2*qo)*1/sqrt(abs(Beeta2)*La);
22
23 // Displaying the Results in Command Window
24 printf("\n\t(a)The separation for the soliton
      pulses to avoid interaction is %0.1f.",qo);
25 printf("\n\t) The maximum bit rate of the optical
       soliton communication system is much less than
     \%0.2 \, f \, Gbit/s \, ..., Bt/10^9);
```

Scilab code Exa 12.23 Determination of the maximum transmission bit rate for the system

```
1 //Example 12.23
2 //Program to determine the maximum transmission bit
    rate for the
3 //system
4
5 clear;
6 clc;
```

```
7 close;
9 // Given data
                                              //s - BIT
10 To=40*10^{(-12)};
     PERIOD
                                              //s - PULSE
11 tau=4*10^(-12);
     WIDTH
12 Beeta2=-1.25*10^(-12)*10^(-12)*10^(-3); \frac{\sqrt{s^2/km}-2}{km}
      nd ORDER
13
                                              //DISPERSION
                                                 COEFFICIENT
14 \text{ alpha=0.2*10^(-3)};
                                              //dB/m -
     ATTENUATION CONSTANT
15
16 //The separation for the soliton pulses to avoid
      interaction
17 qo=1/2*(To/tau);
18
19 //Maximum transmission bit rate for the system
20 Bt=1/(2*qo)*sqrt(alpha/abs(Beeta2));
21
22 // Displaying the Result in Command Window
23 printf("\n\t The maximum bit rate of the
      ultrashort pulse optical soliton system is
      significantly greater than %1.0 f Gbit/s .",Bt
      /10^9);
```

Chapter 13

OPTICAL FIBER SYSTEMS 2 COHERENT AND PHASE MODULATED

Scilab code Exa 13.1 Estimation of the maximum temperature change that could be allowed for the local oscillator laser

```
15 Max_temp_change=f/del_f;
16
17 //Displaying the Result in Command Window
18 printf("\n\n\t Maximum temperature change that could be allowed for the local oscillator laser is %0 .3 f C .", Max_temp_change);
```

Scilab code Exa 13.2 Determination of the operating bandwidth of the receiver

```
1 //Example 13.2
2 //Program to determine the operating bandwidth of
     the receiver
3
4 clear;
5 clc;
6 close;
8 //Given data
9 SNL = -85.45;
                         //dBm - SHOT NOISE LIMIT
10 eeta=0.86;
                         //*100 percent – EFFICIENCY FOR
      IDEAL RECEIVER
11 Lambda=1.54*10^(-6);
                         //metre - OPERATING WAVELENGTH
12 SNR=12;
                         //dB - SIGNAL TO NOISE RATIO
                         //J/K - PLANK's CONSTANT
13 h= 6.626*10^{(-34)};
                         //m/s - VELOCITY OF LIGHT IN
14 c=2.998*10^8;
     VACCUM
15
16 //Incoming Signal Power
17 Ps=10^(SNL/10);
18
19 //Operating bandwidth of the receiver
20 B=eeta*Ps*Lambda/(h*c*10^(SNR/10));
21
22 // Displaying the Result in Command Window
```

```
23 printf("\n\ Operating bandwidth of the receiver, B = \%0.1 \, f \, GHz.", B/10^9);
```

Scilab code Exa 13.3 Calculation of the number of received photons per bit for different detection schemes

```
1 //Example 13.3
2 //Program to calculate the number of received
      photons per bit for:
3 //(a)ASK heterodyne synchronous detection
4 //(b)ASK heterodyne asynchronous detection
  //(c)PSK homodyne detection
7 clear;
8 clc;
9 close;
10
11 //Given data
12 eeta=1;
                         //*100 percent - EFFICIENCY FOR
      IDEAL RECEIVER
13 BER=10^(-9);
                         //BIT ERROR RATE
14
15 //Number of received photons per bit for:
16 printf("\n\n\t Number of received photons per bit
      for:");
17 //(a)ASK heterodyne synchronous detection
18 Np=(erfinv(1-2*BER))^2*4/eeta; // erfc(x) = 1 - erf(x)
19
20 // Displaying the Result in Command Window
21 printf("\n\t (a)ASK heterodyne synchronous
      detection = \%1.0 \, \text{f.}", Np/2);
22
23 //(b)ASK heterodyne asynchronous detection
24 Np = -\log(2*BER)*4/eeta;
25
```

```
// Displaying the Result in Command Window
printf("\n\n\t (b)ASK heterodyne asynchronous
         detection = %1.0 f.", Np/2);

//(c)PSK homodyne detection
Np=(erfinv(1-2*BER))^2/2; //erfc(x)=1-erf(x)

// Displaying the Result in Command Window
printf("\n\n\t (c)PSK homodyne detection = %1.0 f.",
Np);
```

Scilab code Exa 13.4 Calculation of the minimum incoming power level

```
1 //Example 13.4
2 //Program to calculate the minimum incoming power
3
4 clear;
5 clc;
6 close;
8
  //Given data
                         //CONSTANT FOR HETERODYNE
9 K = 1;
     DETECTION
                         //CONSTANT FOR FSK MODULAION
10 Z=1;
     SCHEME
                         //*100 percent - QUANTUM
11 eeta=1;
     EFFICIENCY
12 Bt=400*10^6;
                         //bps - TRANSMISSION RATE
13 BER=10^(-9);
                         //BIT ERROR RATE
                        //J/K - PLANK's CONSTANT
14 h = 6.626*10^{(-34)};
15 c=2.998*10^8;
                         //m/s - VELOCITY OF LIGHT IN
     VACCUM
16 Lambda=1.55*10^(-6); //metre - OPERATING WAVELENGTH
17
```

```
//Minimum incoming peak power level
Ps=(erfinv(1-2*BER))^2*2*h*c*Bt/Lambda; //erfc(x)=1-
erf(x)

//Displaying the Result in Command Window
printf("\n\n\t Minimum incoming peak power level is
%0.1 f nW or %0.1 f dBm.",Ps/10^(-9),10*log10(Ps
/(1*10^(-3))));
```

Scilab code Exa 13.5 Calculation of the absolute maximum repeater spacing for different ideal receiver types

```
1 //Example 13.5
2 //Program to calculate the absolute maximum repeater
      spacing for the
3 //following ideal receiver types:
4 //(a)ASK heterodyne synchronous detection
5 //(b)PSK homodyne detection
6
7 clear;
8 clc;
9 close;
10
11 //Given data
                        //Average photons per bit -
12 Np=36;
     FROM EXAMPLE 13.3
13 h= 6.626*10^{(-34)};
                        //J/K - PLANK's CONSTANT
14 c=2.998*10^8;
                        //m/s - VELOCITY OF LIGHT IN
     VACCUM
15 Lambda=1.55*10^(-6); //metre - OPERATING WAVELENGTH
16
17 //(a)ASK heterodyne synchronous detection
                        //Average photons per bit -
18 Np=36;
     FROM EXAMPLE 13.3
19 //For 50 Mbit/s Transmission Rate
```

```
//bit/sec - GIVEN TRANSMISSION
20 \text{ Bt} = 50 * 10^6;
     RATE
21 Ps=Np*h*c*Bt/Lambda;
22 Max_system_margin = 4 - 10 * log 10 (Ps/(1*10^(-3)));
23 Max_repeater_spacing=Max_system_margin/0.2;
24 // Displaying the Result in Command Window
25 printf("\n\t (a)ASK : Maximum repeater spacing for
      %1.0 f Mbit/s transmission rate is %1.0 f km.", Bt
     /10^6, Max_repeater_spacing);
26
27 //For 1 Gbit/s Transmission Rate
28 Bt=1*10^9;
                        //bit/sec - GIVEN TRANSMISSION
     RATE
29 Ps=Np*h*c*Bt/Lambda;
30 Max_system_margin = 4 - 10 * log 10 (Ps/(1*10^(-3)));
31 Max_repeater_spacing=Max_system_margin/0.2;
32 // Displaying the Result in Command Window
33 printf("\n\t
                            Maximum repeater spacing for
      %1.0f Gbit/s transmission rate is %1.0f km.", Bt
     /10^9, Max_repeater_spacing);
34
35 //(b)PSK homodyne detection
36 \text{ Np} = 9;
                        //Average photons per bit - FROM
      EXAMPLE 13.3
37 //For 50 Mbit/s Transmission Rate
38 Bt=50*10^6;
                        //bit/sec - GIVEN TRANSMISSION
     RATE
39 Ps=Np*h*c*Bt/Lambda;
40 Max_system_margin=4-10*log10(Ps/(1*10^(-3)));
41 Max_repeater_spacing=Max_system_margin/0.2;
42 // Displaying the Result in Command Window
43 printf("\n\t (b)PSK : Maximum repeater spacing for
      %1.0 f Mbit/s transmission rate is %1.0 f km.", Bt
     /10^6, Max_repeater_spacing);
44
45 //For 1 Gbit/s Transmission Rate
46 Bt=1*10^9;
                        //bit/sec - GIVEN TRANSMISSION
     RATE
```

```
47 Ps=Np*h*c*Bt/Lambda;
48 Max_system_margin=4-10*log10(Ps/(1*10^(-3)));
49 Max_repeater_spacing=Max_system_margin/0.2;
50 //Displaying the Result in Command Window
51 printf("\n\n\t Maximum repeater spacing for %1.0 f Gbit/s transmission rate is %1.0 f km.",Bt /10^9,Max_repeater_spacing);
```

Scilab code Exa 13.6 Estimation of the minimum transmitter power requirement for an optical coherent WDM

```
1 //Example 13.6
2 //Program to estimate the minimum transmitter power
     requirement for
3 //an optical coherent WDM
5 clear;
6 clc;
7 close;
8
9 //Given data
10 Np=150;
                       //photons per bit - RECEPTION
11 h= 6.626*10^{(-34)}; //J/K - PLANK's CONSTANT
12 c=2.998*10^8;
                        //m/s - VELOCITY OF LIGHT IN
     VACCUM
13 B_fib=20*10^12; //Hz - OPTICAL BANDWIDTH
14 Lambda=1.3*10^(-6); //metre - SHORTEST WAVELENGTH
15
16 //Minimum transmitter power requirement for an
      optical coherent WDM
17 Ptx=Np*h*c*B_fib/Lambda;
18
19 // Displaying the Result in Command Window
20 printf("\n\n\t Minimum transmitter power requirement
      for an optical coherent WDM is %0.1 f mW or %1.0 f
```

dBm .", $Ptx/10^{(-3)}$, $10*log10(Ptx/(1*10^{(-3)}))$;

Chapter 14

OPTICAL FIBER MEASUREMENTS

Scilab code Exa 14.1 Determination of the attenuation for the fiber and estimation of accuracy of the result

```
1 //Example 14.1
2 //Program to determine the attenuation per kilometer
       for the fiber
3 //and estimate the accuracy of the result
5 clear;
6 clc;
7 close;
9 //Given data
                        //metres - INITIAL LENGTH
10 L1=2*10^3;
                        //metres - FINAL LENGTH
11 L2=2;
                        //volts - INITIAL OUTPUT VOLTAGE
12 V1 = 2.1;
                        //volts - FINAL OUTPUT VOLTAGE
13 \quad V2 = 10.7;
14
15 // Attenuation per Kilometer
16 alpha_dB=10/(L1-L2)*log10(V2/V1);
17
```

```
// Uncertainity in measured attenuation
Uncertainity=0.2/(L1-L2);

// Displaying the Results in Command Window
printf("\n\n\t Attenuation is %0.1 f dB/km.",alpha_dB
     *10^3);
printf("\n\n\t Uncertainity in measured attenuation
     is +-%0.1 f dB.",Uncertainity*10^3);
```

Scilab code Exa 14.2 Determination of the absorption loss for the fiber under test

```
1 //Example 14.2
2 //Program to determine the absorption loss for the
      fiber under test
3
4 clear;
5 clc;
6 close;
7
8 //Given data
9 t1=10;
                         //s - INITIAL TIME
                         //s - FINAL TIME
10 t2=100;
11 Tinf_minus_Tt1=0.525; //From Figure 14.6
12 Tinf_minus_Tt2=0.021; //From Figure 14.6
13 C=1.64*10^4;
                         //J/degree C - THERMAL CAPACITY
      PER KILOMETER
14 Tinf=4.3*10^{(-4)};
                         //degree C - MAXIMUM THERMAL
     TEMPERATURE RISE
15 Popt = 98*10^{(-3)};
                        //Watt - OPTICAL POWER
16
17 //Time constant for the calorimeter
18 tc=(t2-t1)/(log(Tinf_minus_Tt1)-log(Tinf_minus_Tt2))
19
```

```
// Absorption loss of the test fiber
alpha_abs=C*Tinf/(Popt*tc);

// Displaying the Results in Command Window
printf("\n\n\t Time constant for the calorimeter is %0.1 f s.",tc);
printf("\n\n\t Absorption loss of the test fiber is %0.1 f dB/km.",alpha_abs);
```

Scilab code Exa 14.3 Determination of the loss due to scattering for the fiber

```
1 //Example 14.3
2 //Program to determine the loss due to scattering
      for the fiber
3
4 clear;
5 clc;
6 close;
  //Given data
9 Vsc=6.14*10^{(-9)};
                                   //V - OPTICAL OUTPUT
     POWER
10 Vopt=153.38*10^{-6};
                                    //V - OPTICAL POWER
     WITHOUT SCATTERING
11 1=2.92;
                                    //cm - LENGTH OF THE
     FIBER
12
13 //Loss due to scattering for the fiber
14 alpha_sc=4.343*10^5/1*Vsc/Vopt;
15
16 // Displaying the Result in Command Window
17 printf("\n\n\t Loss due to scattering for the fiber
      is \%0.1 \, f \, dB/km., alpha_sc);
```

Scilab code Exa 14.4 Calculation of 3 dB Pulse Broadening and Fiber Bandwidth Length product

```
1 //Example 14.4
2 //Program to calculate:
3 //(a)3 dB Pulse Broadening in ns/km
4 //(b) Fiber Bandwidth-Length product
5
6 clear;
7 clc;
8 close;
9
  //Given data
                         //ns - 3 dB width of Output
11 tau_o=12.6;
      Pulse
                         //ns - 3 dB width of Input
12 tau_i=0.3;
      Pulse
13 L=1.2;
                         //km - LENGTH
14
15 //(a)3 dB Pulse Broadening in ns/km
16 tau=sqrt(tau_o^2-tau_i^2)/L;
17
18 //(b) Fiber Bandwidth-Length product
19 Bopt=0.44/tau;
20
21
  //Displaying the Results in Command Window
22 printf("\n\t (a)3 dB Pulse Broadening is \%0.1f ns/
     km.", tau);
23 printf("\n\t (b) Fiber Bandwidth-Length product is
     \%0.1 \text{ f } \text{MHz km.}", Bopt*10^3);
```

Scilab code Exa 14.5 Calculation of the Numerical Aperture of the fiber

```
1 //Example 14.5
2 //Program to calculate the Numerical Aperture (NA) of
       the fiber
3
4 clear;
5 clc;
6 close;
7
8 //Given data
                          //cm - SCREEN POSITION
9 D = 10;
                          //cm - OUTPUT PATTERN SIZE
10 A = 6.2;
11
12 // Numerical Aperture (NA) of the fiber
13 NA=A/sqrt(A^2+4*D^2);
14
15 // Displaying The Results in Command Window
16 printf("\n\ The Numerical Aperture(NA) of the
      fiber is \%0.2 f .", NA);
```

Scilab code Exa 14.6 Determination of the outer diameter of the optical fiber in micrometer

```
// Outer diameter of the optical fiber
d0=We*l*d_PHI_by_dt;

// Displaying the Result in Command Window
printf("\n\n\t The Outer diameter of the optical fiber is %1.0 f um.",d0*10^6);
```

Scilab code Exa 14.7 Conversion of optical signal powers to dBm and dBu

```
1 //Example 14.7
2 //Program to:
3 //(a) Convert optical signal powers to dBm
4 //(b) Convert optical signal powers to dBu
5
6 clear;
7 clc;
8 close;
10 //(a) Convert optical signal powers to dBm
11 Po=5*10^{(-3)};
                        //Watt - GIVEN OPTICAL POWER
12 dBm = 10 * log 10 (Po / 1 * 10^3);
13 printf("\n\t (a)The %1.0 f mW of optical power is
      equivalent to \%0.2 \, \text{f dBm.}", Po/10^(-3), dBm);
14
15 Po=20*10^{-6};
                        //Watt - GIVEN OPTICAL POWER
16 dBm=10*log10(Po/1*10^3);
17 printf("\n\
                       The %1.0 f uW of optical power is
      equivalent to \%0.2 \, \text{f dBm.}", Po/10^(-6), dBm);
18
19 //(b) Convert optical signal powers to dBu
20 Po=0.03*10^{(-3)};
                       //Watt - GIVEN OPTICAL POWER
21 dBm = 10 * log 10 (Po / 1 * 10^6);
22 printf("\n\t (b)The %0.2 f mW of optical power is
      equivalent to \%0.2 \, \text{f dBu.}", Po/10^{(-3)}, dBm);
23
```

Scilab code Exa 14.8 Calculation of the ratio of back scattered optical power to the forward optical power

```
1 //Example 14.8
2 //Program to calculate the ratio in dB of back
     scattered optical
3 //power to the forward optical power at the fiber
     input
4
5 clear;
6 clc;
7 close;
9 //Given data
10 NA=0.2;
                      //NUMERICAL APERTURE
11 gamma_r=0.7*10^-3; //per m - RAYLEIGH SCATTERING
     COEFFICIENT
12 Wo=50*10^(-9); //s - PULSE DURATION
13 c=2.998*10^8;
                     //m/s - VELOCITY OF LIGHT IN
     VACCUM
14 n1=1.5;
                      //CORE REFRACTIVE INDEX
15
16 // Calculated Ratio Pra(0)/Pi
17 Pra0_by_Pi=0.5*NA^2*gamma_r*Wo*c/(4*n1^3);
18
19 // Displaying the Result in command window
20 printf("\n\t Pra(0)/Pi = \%0.1 f dB.",10*log10(
     Pra0_by_Pi));
```