Linux Kernel Programmierung

graphic design is my passion.

Warum?

Themenfelder Kernelentwicklung

- Prozesse
 - Scheduling, Preemption, Schlafen
 - Syscalls
- VFS, Dateisysteme und Block IO
- Memory Managment
- Network
- Interrupts, Treiber, etc.
- Locking

Überblick (Was)

- 1) Was macht der Kernel überhaupt?
- 2) System Calls und Scheduling
- 3) Interrupts
- 4) Memory?

Gute Quellen

Linux Kernel Development von Robert Love

 Unreliable Guide To Hacking The Linux Kernel (einfach googlen, ist im linux kernel source repodabei)

Linux Architecture

Und wie ist das bei mehreren CPU-Cores?

User Mode vs. Kernel Mode

Code in User Mode:

Darf nichts

Code in Kernel Mode:

Darf alles

Mode Transitions

Sind billig

- User Mode → Kernel Mode
 - (Syscall)
- Kernel Mode → User Mode
 - Return von syscall
 - Prozess der vom scheduler unterbrochen wurde wrd wieder gescheduled

Process Context vs. Interrupt Context

Code im Interrupt Kontext

Darf nicht schlafen

Man will da nur kurz sein

Eigener Stack

Unabhängig von einem Prozess

Prozess Kontext

Man kann und darf schlafen

Relatiert zu einem Prozess

Man muss nicht bresieren

Wie hängt das zusammen?

	User Mode	Kernel Mode
Process Kontext	Normaler Prozess	Syscalls, Kernel Threads, großteil der "Kernel Arbeit"
Interrupt Kontext	Gibts net	Interrupt Handler

Syscalls

User mode

Context Switch (Process Switch)

Enthält:

- 2 Mode Transitions
- Register und Prozess State Saven
- Memory Mapping Switch
- Also:
- Cashes kühlen ab
- TLB (Translation Lookaside Buffer) kühlt ab

Thread Switch

System Timer (fires)

Tick

250 Hz

Interrupts (IRQs)

Dinge die Interrupts senden:

- Maus
- Tastatur
- Netzwerkkarte
- HDD?
- USB
- Hardware halt

Interrupt Handler (ISRs)

Top Half vs. Bottom Half

Soft IRQ Kontext
Interrupts auf aktueller line nicht disabled

Interrupt Kontext

Interrupts auf aktueller Line disabled

Bottom Halves

- Soft IRQs
- Tasklets

Work Queues

Linux Memory Managment

Locking

Sleeping Locks Mutex, Semaphore

"Awake Locks" Spinlocks

Trace-cmd und kernelshark Beispiel

drivers/char/rtc.c