

File-System

Directories in Linux

Stefano Quer - Pietro Laface
Dipartimento di Automatica e Informatica
Politecnico di Torino

Directories

- Modern file systems are structured by means of special files: the directories
 - A directory is the node of a tree, or the vertex of a graph that includes some information about the (regular) files that it contains.
 - Directories and files are stored in the mass memory
- Operations that can be performed on directories are similar to the ones applied to files
 - Creation, deletion, listing, rename, visit, search, etc.

Structure

- Structuring a file systems by means of directories has several advantages:
 - Efficiency
 - Searching a file
 - Naming
 - Simplicity for a user to identify his files
 - The same name can be assigned to different files
 - Grouping (organization)
 - Grouping to the programs and data according to their characteristics
 - Editors, compilers, documents, etc.

Directory tree

- Directories and files are organized as a tree
 - Every node/vertex of the tree can include other nodes/vertex of the tree

Tree directories

- Tree directories imply:
 - Current work directory, change of directory, absolute and relative path name, etc.
- Performance
 - Efficiency
 - Efficient search
 - Naming
 - With absolute path or relative to the current working directory
 - Grouping
 - Flexible

- A tree file system does not allow sharing
- It is often useful to refer to the same object in the file system with different filenames
 - Same user refers to an object with different pathnames
 - > Different users want to share objects
 - ➤ It is worth noting that duplication of the object is not a solution because of
 - Increase of file system occupation
 - Possible information incoherence in one or more copies

Tree file systems can be generalized organizing them as acyclic graphs.

Operating Systems

Acyclic graph directories

Performance

Similar to tree directories, but with possibility of sharing

Method

- ➤ A directory entry can be share by means of the creation of la **link**
 - A link is a reference (pointer) to another pre-existing entry

- More complex filesystem management due to links
 - > File system visit
 - If the entry is a link, follow the indirect link to reach the pointed-to entry
 - Many absolute paths, and different filenames may correspond to the same entry
 - File system analysis (statistics, e.g., how many files with extension ".c" exist?) are more complex

Removing an entry)

- Immediate deletion of the data
 - Some dangling links may remain
 - Attempt accessing data through a link could return a missing file error
- Remove the data when the last link is removed
 - Avoids dangling links
 - Need to manage multiple links
 - Keeping the list of all link is expensive (variable length list)
 - o Removing all links is expensive (need to search)
 - Search is more expensive
 - It is more effective to store a link counter associated to the data (for the hard links in UNIX the counter is stored in a field of the inode)

- Creating a new link to a directory could cause the generation of a cycle in the file system
 - ➤ Managing a cyclic graph is more complex
 - Search and visit has to avoid infinite recursion.
 - > The simplest strategy avoid visiting the links
 - Cycles can be avoided if the creation of a link to a directory is forbidden