A Brief Intro to the Human Genome and FASTA

Aaron Quinlan
Departments of Human Genetics and Biomedical Informatics
USTAR Center for Genetic Discovery
University of Utah
quinlanlab.org

Humans are diploid.

Our genome is comprised of a paternal and a maternal "haplotype". Together, they form our "genotype"

The human genome from a macro to micro scale

Our genome: mini quiz

How many *distinct* chromosomes in the nuclear human genome?

24: the autosomes (chromosome 1-22), sex chromosomes (X, Y)

How many chromosomes exist in a (typical) <u>haploid</u> human genome?

23: the autosomes (chromosome 1-22) and one sex chromosomes (X or Y)

How many chromosomes exist in a (typical) <u>diploid</u> human genome?

46: two haploid genomes - one from mother and one from father

The human genome - basic stats

- 3.096 billion base pairs (haploid)
- 20,441 protein coding genes
- 198,002 coding transcripts
 (isoforms of a gene that each encode a distinct protein product)

Assembly GRCh38.p7 (Genome Reference Consortium Human Build 38), INSDC Assembly GCA 000001405.22 &, Dec 2013 Database version 87.38 3.547,762,741 **Base Pairs** Golden Path Length 3.096.649.726 Ensembl Genebuild by Genebuild method Full genebuild Genebuild started Jan 2014 Genebuild released Jul 2014 Genebuild last updated/patched Jun 2016 Gencode version GENCODE 25

Gene counts (Primary assembly)

 Coding genes
 20,441 (incl 526 readthrough)

 Non coding genes
 22,219

 Small non coding genes
 5,052

 Long non coding genes
 14,727 (incl 214 readthrough)

 Misc non coding genes
 2,222

 Pseudogenes
 14,606 (incl 5 readthrough)

 Gene transcripts
 198,002

Chromosome Giemsa banding (G-banding)

- Heterochromatic regions, which tend to be rich with adenine and thymine (AT-rich) DNA and relatively gene-poor, stain more darkly with Giemsa and result in G-banding
- Less condensed ("open") chromatin, which tends to be (GC-rich) and more transcriptionally active, incorporates less Giemsa stain, resulting in light bands in G-banding.
- Cytogenetic bands are labeled p1, p2, p3, q1, q2, q3, etc.,
 counting from the centromere out toward the telomeres. At higher resolutions, sub-bands can be seen within the bands.
- For example, the locus for the CFTR (cystic fibrosis) gene is 7q31.2, which indicates it is on chromosome 7, q arm, region 3, band 1, and sub-band 2. (Say 7,q,3,1 dot 2)

A first map of the human genome

articles

Initial sequencing and analysis of the human genome

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

A first map of the human genome ("build 1")

Table 8 Chro	mosome size	estimat	es						tat	ole 8 1 of 4
Chromosome*	Sequenced bases† (Mb)	FCC gaps‡		SCC gapsll		Sequence gaps#		Heterochromatin and short arm adjustments**(Mb)	Total estimated chromosome size (including artefactual duplication in dra genome sequence)†† (Mb	chromosome size‡‡ (Mb) ft
		Number	Total bases in gaps§ (Mb)	Number	Total bases in gaps¶ (Mb)	Number	Total bases in gaps [☆] (Mb)			·/
All	2,692.9	897	152.0	4,076	142.7	145,514	80.6	212	3,289	3,286
1	212.2	104	17.7	347	12.1	11,803	6.5	30	279	263
2	221.6	50	8.5	296	10.4	12,880	7.1	3	251	255
3	186.2	71	12.1	336	11.8	14,689	8.1	3	221	214
4	168.1	39	6.6	343	12.0	12,768	7.1	3	197	203
5	169.7	46	7.8	337	11.8	10,304	5.7	3	198	194
6	158.1	15	2.6	275	9.6	5,225	2.9	3	176	183
7	146.2	27	4.6	195	6.8	4,338	2.4	3	163	171
8	124.3	41	7.0	249	8.7	8,692	4.8	3	148	155
9	106.9	19	3.2	122	4.3	6,083	3.4	22	140	145
10	127.1	14	2.4	163	5.7	8,947	5.0	3	143	144
11	128.6	29	4.9	193	6.8	8,279	4.6	3	148	144
12	124.5	26	4.4	168	5.9	8,226	4.6	3	142	143
13	92.9	12	2.0	115	4.0	5,065	2.8	16	118	114
14	86.9	13	2.2	40	1.4	775	0.4	16	107	109
15	73.4	18	3.1	104	3.6	5,717	3.2	17	100	106
16	73.1	55	9.4	102	3.6	4,757	2.6	15	104	98
17	72.8	41	7.0	95	3.3	4,261	2.4	3	88	92
18	72.9	22	3.7	113	4.0	4,324	2.4	3	86	85
19	55.4	49	8.3	108	3.8	2,344	1.3	3	72	67
20	60.5	7	1.2	33	1.2	469	0.3	3	66	72
21	33.8	4	0.1	0	0.0	0	0.0	11	45	50
22	33.8	10	1.0	0	0.0	0	0.0	13	48	56
X	127.7	141	24.0	182	6.4	4,282	2.4	3	163	164
Υ	21.8	6	1.0	19	0.7	113	0.1	27	51	59
NA	5.1	0	0	134	0.0	577	0.3	0	0	0
UL	9.3	38	0	7	0.0	566	0.3	0	0	0

ATCTCCTTGGCTGTGATACGTGGCCGGCCCTCGCTCCAGCAGCTGGACCCCTACCTGCCGTCTGCC<mark>AT</mark>CGGAGCCCAAAGCCGGGCTGT ${f ACAGAACCCAGTGGATTGGCCTAGGTGGGATCTCTGAGCTCAACAAGCCCTCTCTGGGTGGTAGGTGCAGAGACGGGAGGGGGCAGAGCCGCA$ GCACAGCCAAGAGGGCTGAAGAAATGGTAGAACGGAGCAGCTGGTGATGTGTGGGCCCACCGGCCCCAGGCTCCTGTCTCCCCCCAGGTGTG GGTGATGCCAGGCATGCCCTTCCCCAGCATCAGGTCTCCAGAGCTGCAGAAGACGACGGCCGACTTGGATCACACTCTTGT<mark>C</mark>AGTGTCCCCA ${ t TTCGATGCCCCTCCACACCCTCTTGATCTTCCCTGTGATGTCATCTGGAGCCCTGCTGCTTGCGGTGGCCTATAAAGCCTCCTAGTCTGGCT$ ${ t CAAGGCCTGGCAGAGTCTTTCCCAGGGAAAGCTACAAGCAGCAAACAGTCTGCATGGGTCATCCCCTTCACTCCCAGCTCAGAGCCCAGGCC$ GGGGCCCCCAAGAAAGGCTCTGGTGGAGAACCTGTGCATGAAGGCTGTCAACCAGTCCATAGGCAAGCCTGGCTGCCTCCAGCTGGGTCGAC ${\tt CCAGTGATACACCCGGCACCCTGTCCTGGACACGCTGTTGGCCTGGATCTGAGCCCTTGGTGGAGGTCAAAGCCACCTTTGGTTCTGCCATTG$ TGCTGTGTGGAAGTTCACTCCTGCCTTTTCCTTTCCCTAGAGCCTCCACCCCCGAGATCACATTTCTCACTGCCTTTTGTCTGCCCAGTT ${\tt CACCAGAAGTAGGCCTCTTCCTGACAGGCAGCTGCACCACTGCCTGGCGCTGTGCCCTTTCCTTTGCTCTGCCCGCTGGAGACGGTGTTTGTC}$ TGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAGTCCAGAGTGTTGCCAGGACCCAGGCACAGGCATTAGT ${\tt CCCGTTGGAGAAACAGGGGGAATCCCGAAGAAATGGTGGGTCCTGGCCATCCGTGAGATCTTCCCAGGTGTGCCGTTTTCTCTGGAAGCCTC$ TAAGAACACAGTGGCGCAGGCTGGGTGGAGCCGTCCCCCCATGGAGCACAGGCAGAAGTCCCCGCCCCAGCTGTGTGGCCTCAAGCCA ${\tt CCTTCCGCTCCTTGAAGCTGGTCTCCACACAGTGCTGGTTCCGTCACCCCCTCCCAAGGAAGTAGGTCTGAGCAGCTTGTCCTGGCTGTGTC$ ATGTCAGAGCAACGGCCCAAGTCTGGGTCTGGGGGGGAAGGTGTCATGGAGCCCCCTACGATTCCCAGTCGTCCTCGTCCTCCTCTGCCTGT GCTGCTGCGGTGGCGGCAGAGGGGGTGGAGTCTGACACGCGGGCAAAGGCTCCTCCGGGCCCCTCACCAGCCCCAGGTCCTTTCCCAGAG TGCCTGGAGGGAAAAGGCTGAGTGAGGGTGGTTGGTGGGAAACCCTGGTTCCCCCAGCCCCCGGAGACTTAAATACAGGAAGAAAAAGGCAG GAGGACCTCTGGTGGCGGCCCAGGGCTTCCAGCATGTGCCCTAGGGGAAGCAGGGGCCAGCTGGCAAGAGCAGGGGGTGGGCAGAAAGCACC GGTGGACTCAGGGCTGGAGGGGGGGGGGGGGTCTTGCCCAAGGCCCTCCGACTGCAAGCTCCAGGGCCCGCTCACCTTGCTCCTGCTCCTTC

Gene content

"There appear to be about 30,000-40,000 protein-coding genes in the human genome -- only about twice as many as in worm or fly. However, the genes are more complex, with more alternative splicing generating a larger number of protein products." (Over time this has evolved to an estimate of approximately 20,000 protein coding genes, which

reflects roughly the number of genes in fly and worm)

Table 21 Characteristics of human genes					
	Median	Mean			
Internal exon	122 bp	145 bp			
Exon number	7	8.8			
Introns	1,023 bp	3,365 bp			
3' UTR	400 bp	770 bp			
5' UTR	240 bp	300 bp			
Coding sequence	1,100 bp	1,340 bp			
(CDS)	367 aa	447 aa			
Genomic extent	14 kb	27 kb			

Intron length

Solely 2% of the human genome encodes proteins.

Half of the human genome is comprised of repeats

McClintock's "jumping genes" in maize

Retrotransposons use a "copy/paste" mechanism DNA transposons use a "cut/paste" mechanism

Half of the human genome is comprised of repeats

The human reference genome continues to change.

- Ongoing efforts to fill "gaps" and properly/thoroughly represent complex structures and loci in the genome (e.g., Major Histocompatibility Complex)
- Each improvement leads to a new genome "build". Currently on build 38.
- Experimental and computational methods provide new genome annotations
 - New gene models, transcription factor binding sites, and loci where human individuals differ (i.e., polymorphisms)
- Therefore, the human reference genome is by no means "complete"!
- How does the same genome yield such phenotypic diversity across tissue types?
- How does the genome evolve within an individual (tissues) and among a population?

Searching for and counting patterns in genomes with grep

~/workspace/dnaseq/references/all_sequences.fa

What will this command do?

grep ">" ~/workspace/dnaseq/references/all_sequences.fa

How many adenosines are there?

```
grep -v ">"
~/workspace/dnaseq/references/all_sequences.fa | grep
-c "Δ"
```

