Rank Correlation

The correlation coefficient is a measure of relationship between the variables X and Y. There is another measure that also gives a measure of relationship using the position or 'ranks' of the items in the X and Y series. In Rank correlation, we find how the ranks in each series is correlated.

One advantage of finding the rank correlation we can avoid cumbersome calculation involving x_i , y_i and need to deal only with numbers 1,2, ..., n.

The Spearman's rank correlation coefficient is given by

1.
$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$
 ...(*) if there are no repeating ranks

2.
$$\rho = 1 - \frac{6\left[\sum d_i^2 + \frac{1}{12}\left[m_i(m_i^2 - 1) + m_k(m_k^2 - 1) + ...\right]\right]}{n(n^2 - 1)}$$
 ...(**)

if the ranks repeat, where

 m_{i} is the number of times rank i repeats, m_{k} is the number of times rank k repeats etc...

 Calculate the Spearman's rank correlation coefficient for the following data of marks in two subjects Maths and Physics:

Maths	80	75	78	93	98	100
Physics	45	65	68	72	71	69

Maths	Physics	Rank	Rank	d_i	d_i^2
(x)	(y)	х	У		
80	45	4	6	-2	4
75	65	6	5	1	1
78	68	5	4	1	1
93	72	3	1	2	4
98	71	2	2	0	0

100	69	1	3	-2	4	
$\sum d_i^2 = 14$, n=6						

By Spearman's rank correlation,

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$
$$= 1 - \frac{6\times 14}{6(6^2 - 1)} = 0.6$$

2. Obtain the rank correlation coefficient for the following data:

Marks in X	10	12	18	18	15	40
Marks in Y	12	18	25	25	50	25

Note: Some of the students in the above data have the same marks. How do you decide their ranks? For the marks in X, 2 students have 18 marks. You can see that they both should have the second rank. So considering they will together occupy the 2^{nd} and 3^{rd} place, their ranks will be the average of the places, i.e. (2+3)/2=2.5. So, both the students who got 18 marks will have the rank 2.5. Similarly, for the marks in Y, 3 students have 25 marks. They are in the 2^{nd} place. But collectively, they will occupy places 2,3,4. Hence, their rank is (2+3+4)/3=3.

Marks in X	Marks in Y	Rank for X	Rank for Y	d_i	d_i^2
10	12	6	6	0	0
12	18	5	5	0	0
18	25	2.5	3	-0.5	0.25
18	25	2.5	3	-0.5	0.25
15	50	4	1	3	9
40	25	1	3	-2	4

$$\sum d_i^2 = 13.5$$
 , n=6

By Spearman's rank correlation,

$$\rho = 1 - \frac{6\left\{\sum d_i^2 + \frac{1}{12}\left[m_i(m_i^2 - 1) + m_k(m_k^2 - 1) + \cdots\right]\right\}}{n(n^2 - 1)}$$

$$= 1 - \frac{6\left\{13.5 + \frac{1}{12}\left[2(2^2 - 1) + 3(3^2 - 1) + \cdots\right]\right\}}{6(6^2 - 1)}$$

$$=1-\frac{6\times16}{6(6^2-1)}=0.5428$$

Prof. Nancy Sinollin