درس یادگیری ماشین

Neural Networks گزارش تکلیف

استاد درس: دکتر افتخاری

نگارش: امیرحسین ابوالحسنی شماره دانشجویی: ۴۰۰۴۰۵۰۰۳

فهرست مطالب

١	قدمه	٢
۲	عماری شبکه	۲
٣	هینهساز و تابع هزینه	۲
۴	موزش مدل	٣
۵	زیابی مدل	٣
ç	lia zav	¥

۱ مقدمه

یکی از بهترین کتابخانهها برای پیادهسازی شبکههای عصبی، کتابخانه Pytorch میباشد. در این تکلیف به پیادهسازی شبکه عصبی ساده برای تسک طبقه بندی روی دیتاست MNIST پرداخته میشود.

۲ معماری شبکه

برای معماری شبکه عصبی استفاده شده، از دو لایه Perceptron به همراه تابع فعال ساز ReLU استفاده شده است.

شکل ۱: معماری شبکه عصبی

۳ بهینهساز و تابع هزینه

برای آموزش مدل از بهینهساز Adam استفاده شده است.

$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$$

$$v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$$

$$\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_t = \theta_{t-1} - \frac{\alpha \cdot \hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$$

Where:

- m_t : First moment estimate (mean of gradients)
- v_t : Second moment estimate (uncentered variance of gradients)
- g_t : Gradient at time step t
- β_1, β_2 : Exponential decay rates

- α : Learning rate
- ϵ : Small constant to prevent division by zero
- θ_t : Updated parameter

تابع هزینهای که برای این مدل در نظر گرفته شده، به علت نوع تسک که طبقه بندی است، Cross Entropy میباشد.

۴ آموزش مدل

مدل با پارامترهای جدول ۱ آموزش دیده است.

مقدار	نام هایپر پارامتر
۵	Epochs
٠.٠٠١	Learning Rate
۱۲۸	Batch Size

جدول ۱: مقادیر هایپر پارامترهای مدل

۵ ارزیابی مدل

پس از آموزش مدل نوبت به ارزیابی آن می رسد. دو متریک دقت و F1 Score برای ارزیابی عملکرد مدل استفاده شده است.

مقدار	معيار
٠.۶٩	دقت
۰.۶۹۸	F1 Score

جدول ۲: نمرات ارزیابی مدل ارائه شده

همچنین در شکل ۲ ، ماتریس سردرگمی نشان داده شده است.

شکل ۲: ماتریس سردرگمی

۶ خروجی مدل

نمونه ای از خروجی مدل در شکل ۳ قابل مشاهده است.

شکل ۳: خروجی مدل برای یک دسته از داده تست