

Lógica Digital

Prof. Edson Pedro Ferlin

Lógica Digital

Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

- Objetivos
 - Estudar os circuitos digitais presentes nos computadores

Lógica Digital

- Conteúdos
 - Funções Lógicas
 - Portas Lógicas
 - Circuitos Integrados
 - Álgebra de Boole (Booleana)
 - Circuitos Digitais
 - Circuitos Básicos

Prof. Edson Pedro Ferlin

Sistema Digital

É uma combinação de dispositivos projetados para manipular informação lógica ou quantidades físicas que são representadas no formato digital, ou seja, as quantidades podem assumir apenas valores discretos.

Tocci & Widmer Sistemas Digitais

3 Lógica Digital

Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

Portas Lógicas

Assista o vídeo sobre Portas Lógicas (link: https://youtu.be/ckOBTc1XJik).

Prof. Edson Pedro Ferlin

Lógica Digital

15

Circuitos Integrados

Assista o vídeo sobre Circuitos Integrados

(link: https://youtu.be/ti9VVBHIjWU).

17 Lógica Digital Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

	20.200.000	T	SN54S86			SN74586			UNIT
PARAMETER		TEST CONDITIONS!	MIN	TYPI	MAX	MIN T	TYPE	MAX	7000
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	v
Visc	Input clamp voltage	VCC - MIN, I ₁ = -18 mA			-1.2			-1.2	V
VOH	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		v
VOL	Law-level output voltage	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0.8 V, I _{OL} = 20 mA			0.5	1		0.5	v
I.	Input current at maximum input voltage	VCC - MAX, V1 - 5.5 V			1			1	mA
line.	High-level input current	VCC - MAX, V1 - 2.7 V		7 7 7 7	50			50	μA
fit.	Law-level input current	VOC - MAX, VI - 0.5 V			-2			-2	mA
Tos	Short-discuit output current®	Voc = MAX	-40		-100	-40		-100	mA
1CC	Supply current	V _{CC} = MAX, See Note 2		50	75		50	75	mA

Authorists where are at Yeg = 5 V, Tg = 75°C.
This more than one output should be shorted at a time, and division of the short-circuit should not exceed one second,

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER1	(INPUT)	TEST COM	MIN TY		UNIT	
TPLH		Other input low	0 - 15 - 5	7	7 10.5	
TPHIL	A 61 6	Other Input row	R _L = 280 Ω.	6.	5 10	
tpt.H	A or B	Other input high			7 10.5	
TPHL	TPHI.	Other input high		6.	5 10	7

1sp_{LH} = propagation delay time, low-to-high-level output spat, = propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

Lógica Digital

Prof. Edson Pedro Ferlin

18

Circuitos Integrados (CI)

• SSI (Small Scale Integration): até 10 portas

• MSI (Medium Scale Integration): 10 a 100 portas

• LSI (Large Scale Integration): 100 a 100.000 portas

• VLSI (Very Large Scale Integration): > 100.000 portas

Funções Lógicas

Sistema de alarme de cinto de segurança:

- •Sensores para gerar entradas (sensor=1) se estiver ativado.
- •Existe um sensor que indica se a marcha (M) está engatada
- •É posicionado um sensor sob cada banco frontal (D e E)que será ativado quando alguém ocupa este banco
- •Outro tipo de sensor é instalado em cada banco para determinar se o cinto (Cd e Ce) está fechado
- •Deve-se acionar a buzina quando a ignição (I) é ligada e a marcha está engatada e contanto que qualquer banco frontal esteja ocupado e o cinto correspondente não esteja fechado.

$$A = I.M.((D.\overline{Cd}) + (E.\overline{Ce}))$$

Álgebra Booleana

Assista o vídeo sobre Álgebra Booleana (link: https://youtu.be/gLMgEG1VuvU).

33 Lógica Digital Prof. Edson Pedro Ferlin

Professor Edson Pedro FERLIN

professorferlin.blogspot.com

Propriedade	Equação			
Idempotência ou Equipotência	$ \begin{array}{c} x + x = x \\ x \cdot x = x \end{array} $	(1) (1)		
I denti dade	x + 1 = 1 $x \cdot 0 = 0$ x + 0 = x $x \cdot 1 = x$	(2) (2°) (3) (3°)		
Comutatividade	x + y = y + x $x.y = y.x$	(4) (4)		
Associatividade	(x + y) + z = x + (y + z) (x,y).z = x.(y.z)	(5) (5 [°])		
Complementação	$x + \overline{x} = 1$ $x \cdot \overline{x} = 0$	(6) (6)		
Distributividade	x.(y + z) = (x.y) + (x.z) x + (y.z) = (x + y).(x + z)	(7) (7)		
Teoremas de De Morgan	$\frac{\overline{(x+y)} = \overline{x}.\overline{y}}{(x.y) = \overline{x} + \overline{y}}$	(8,)		

Álgebra Booleana

Prof. Edson Pedro Ferlin

Lógica Digital

35

Mapa de Karnaugh

Assista o vídeo sobre Mapa de Karnaugh (link: https://youtu.be/y9QrmQ6aWW4).

37 Lógica Digital Prof. Edson Pedro Ferlin

professorferlin.blogspot.com

Método Quine-McCluskey

O Algoritmo de Quine-McCluskey (ou método dos implicantes primos) é um método utilizado para minimização de funções booleanas desenvolvido por W.V. Quine e Edward J. McCluskey em 1956.

38

Lógica Digital

Prof. Edson Pedro Ferlin


```
VHDL — VHSIC Hardware Description Language

| The composition of the c
```


