- 1. Show that Hermitian operators guarantee real eigenvalues and orthogonal eigenfunctions. Worry only about the non-degenerate case.
- 2. The possible values obtained from a measurement of a discrete variable, x, are 1, 2, 3,
 - (a) If the respective probabilities are 1/4, 1/4, 1/4, and 1/4, calculate the expectation values of x and x^2 . (b) If the respective probabilities are 1/12, 5/12, 5/12, and 1/12, calculate the expectation values of x and x^2 .
- 3. If $[\hat{A}, \hat{B}] = 0$ and $[\hat{A}, \hat{C}] = 0$, then which of the following necessarily holds
- a) $[\widehat{B}, \widehat{C}] = 0$ b) $[\widehat{A}, \widehat{BC}] = 0$ c) $[\widehat{B}, \widehat{AC}] = 0$ d) $[\widehat{C}, \widehat{AB}] = 0$
- 4. For a Hermitian operator \hat{A} , which does not commute with the Hamiltonian \hat{H} , let ψ_1 be an eigenfunction of \hat{A} and ψ_2 be an eigenfunction of \hat{H} . The correct statement is
 - (a) both $\langle \psi_1 | [A, H] | \psi_1 \rangle$ and $\langle \psi_2 | [A, H] | \psi_2 \rangle$ are non-zero
 - (b) only $\langle \psi_1 | [A, H] | \psi_1 \rangle$ is zero, but $\langle \psi_2 | [A, H] | \psi_2 \rangle$ is non-zero
 - (c) only $\langle \psi_2 | [A, H] | \psi_2 \rangle$ is zero, but $\langle \psi_1 | [A, H] | \psi_1 \rangle$ is non-zero
 - (d) both $\langle \psi_1 | [A, H] | \psi_1 \rangle$ and $\langle \psi_2 | [A, H] | \psi_2 \rangle$ are zero
- 5. Determine $\psi^*\psi$ for the following wave functions: (a) $\cos\theta + i\sin\theta$ and (b) $\exp -x^2$.
- 6. Consider a particle of mass m confined in a 3D (cubic box) of length d. (i) What values of n_x , n_y and n_z correspond to the **zero point energy**? (ii) Write down the expression for the zero-point energy of the system.
- 7. As a variant on the free-electron model applied to benzene, assume that the six π electrons are delocalized within a square plate of side 'a'. Calculate the value of 'a' that would account for the 268 nm ultraviolet absorption in benzene.
- 8. The function $\psi(x) = Ax[1 \frac{x}{a}]$ is an acceptable wavefunction for the particle in the one dimensional infinite depth box of length a. Calculate the normalization constant A and the expectation values $\langle x \rangle$ and $\langle x^2 \rangle$.