

Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame de Setembro

4 de Setembro de 2007 Duração: 2 h 30 min

Nome:	
Nº mecanográfico:	Curso:
Caso pretenda desistir assine a seguinte dec	claração.

Questão	1a	1b	1c	2	3a	3b	4a	4b	4c	total
Cotação	10	15	10	10	10	10	10	10	15	100
Classificação										
Questão	5a	5b	5c	6a	6b	7a	7b	8a	8b	total
Questão Cotação	5a 10	5b 10	5c 10	6a 10	6b 15	7a 10	7b 15	8a 10	8b 10	total 100

IMPORTANTE: Justifique resumidamente todas as suas afirmações e indique os cálculos que efectuou.

1. Considere a matriz
$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & 1 & 3 & 1 \\ 4 & -7 & 3 & 5 \end{bmatrix}$$
.

(a) Sendo $B = \begin{bmatrix} 1 \\ 0 \\ \theta \end{bmatrix}$, com $\theta \in \mathbb{R}$, discuta para que valores de θ o sistema AX = B é possível e determinado, possível e indeterminado, impossível.

(b) Considere o vector $B = \begin{bmatrix} 0 & 3 & -3 \end{bmatrix}^T$. Justifique que o vector B pertence ao espaço das colunas de A, C(A).

(c) Determine o espaço nulo de $A, \mathcal{N}(A).$

2. Seja $C=\begin{bmatrix}a&0&a\\a&-1&1\\0&1&-a\end{bmatrix}$, com $a\in\mathbb{R}.$ Determine os valores de a para os quais o sistema CX=

 $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ é de Cramer e, para os valores obtidos, calcule a segunda componente de X, utilizando a regra de Cramer.

- 3. Considere os vectores X = (1,0,1) e Y = (0,1,2) de \mathbb{R}^3 .
 - (a) Determine um vector Z de \mathbb{R}^3 , não nulo, que seja ortogonal a X e a Y.

(b) Calcule a área do paralelogramo com arestas correspondentes a X e a Y.

- 4. Considere em \mathbb{R}^2 o subconjunto $S = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}.$
 - (a) Prove que S é um subespaço de \mathbb{R}^2 .

(b) Indique uma base e a dimensão de S.

(c) Considere em \mathbb{R}^2 a base $B = \{(0,2),(1,1)\}$ e seja $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ a tranformação linear que verifica L(0,2) = (0,-2) e L(1,1) = (1,-1). Indique L(S).

5. Considere a aplicação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por $T(x_1, x_2, x_3) = (x_2, 4x_3 + x_1)$.
(a) Escreva a matriz de T em relação à base canónica de \mathbb{R}^3 e à base canónica de \mathbb{R}^2 .
(b) Determine o núcleo de T , indique uma sua base e a sua dimensão. Diga justificando se a aplicação T é injectiva ?
(c) A aplicação T é sobrejectiva ? Justifique.

	[1	-1	0	
6. Considere a matriz $R =$	1	0	3	. Os valores próprios desta matriz são $\lambda_1=0$ e $\lambda_2=-1$
	0	-1	-3	

(a) Determine o conjunto dos vectores próprios associados ao valor próprio $\lambda_2=-1.$

(b) Diga, justificando, se é possível encontrar uma matriz $S \neq R$ que seja semelhante à matriz R.

7.	(a)	Diga, justificando, se a seguinte afirmação é verdadeira ou falsa: "Em \mathbb{R}^3 , $x=0$ é uma equação
		de uma recta."

(b) Verifique que, em \mathbb{R}^3 , o lugar geométrico de equação $4x^2+2xy+z^2+4y^2=1$ é um elipsóide.

$$\pi: x + y + z = 0.$$

(a) Determine uma equação vectorial da recta que passa pelo ponto P e que é ortogonal ao plano $\pi.$

(b) Calcule a distância do ponto Pao plano $\pi.$