

《组网与运维》

线上实验报告

班级:

姓名:

学号:

日期:

VPN与NAT协议分析

一、实验目的

- 1. 理解 VPN 使用的 IP 隧道技术的工作原理。
- 2. 理解 NAT 技术的工作原理。

二、实验步骤

1. 给出实验中用到的拓扑图

2. 给出实验中使用的 IP 配置表

设备	接口	IP 地址	掩码	默认网关
PC0	Fa0	192. 168. 1. 1	255. 255. 255. 0	192. 168. 1. 254
PC1	Fa0	192. 168. 1. 2	255. 255. 255. 0	192. 168. 1. 254
PC2	Fa0	192. 168. 1. 3	255. 255. 255. 0	192. 168. 1. 254
PC3	Fa0	192. 168. 2. 2	255. 255. 255. 0	192. 168. 2. 254
PC4	Fa0	192. 168. 2. 1	255. 255. 255. 0	192. 168. 2. 254
	Fa0/0	61. 159. 62. 12	255. 0. 0. 0	
Router0	Se0/0/0	158. 22. 120. 169	255. 255. 255. 0	
Se0/0/1		158. 22. 130. 33	255. 255. 255. 0	
Router1	Fa0/0	192. 168. 1. 254	255. 255. 255. 0	
Routeri	Se0/0/0	158. 22. 130. 34	255. 255. 255. 0	
Dout on?	Se0/0/0	158. 22. 120. 168	255. 255. 255. 0	
Router2	Fa0/0	61. 159. 62. 12	255. 0. 0. 0	
Server	Fa0	61. 159. 62. 134	255. 0. 0. 0	61. 159. 62. 12

3. 任务一:观察学习 NAT 的工作原理

◆ 步骤 1: 分别在 PCO-PC2 中访问 Web 服务器。

在实时模式的逻辑空间中单击 PCO, 在 Desktop 中单击 Web Browser 按钮(网页浏览器),在 URL 地址栏中输入 http://61.159.62.134(ServerO 的 IP 地址)并按 Enter 键。此时可以看到打开的网页。按同样的方法,分别在 PC1 和 PC2 中访问 Web 服务器。

◆ 步骤 2: 观案 NAT 路由器对数据包的处理方法。

进入 Simulation (模拟)模式,设置 Event List Filters (事件列表过滤器) 只显示 HTTP 事件。在 PCO 的 Web Browser 中重新刷新网页,并逐步单击 Capture/Forward 按钮,以控制模拟进程,此时可观察到 HTTP 报文的传输往返过程。当出现 Buffer Full 窗口时,停止模拟过程。

	IPv4 IPv6	Misc	
	☐ ACL Filter	☐ CDP	□ DTP
	☐ FTP	☐ H.323	✓ HTTP
	☐ HTTPS	☐ IPSec	☐ ISAKMP
Reset Simulat	LACP	□ NETFLOW	□ NTP
	□ PAgP	☐ POP3	RADIUS
	RTP	□ SCCP	□ SMTP
Play Control	SNMP	SSH	☐ STP
Back	SYSLOG	☐ TACACS	☐ TCP
	☐ TFTP	☐ Telnet	UDP
	□ VTP		
Event List F	,		
CTTP Edit F		Edit ACL Filte	rs

Vis.	Time(sec)	Last Devic	At Device	Туре	Info
	0.309		PC0	HTTP	
	0.313		PC0	HTTP	
	0.314	PC0	Switch0	HTTP	
	0.315	Switch0	Router1	HTTP	
	0.316	Router1	Router0	HTTP	
	0.317	Router0	Server0	HTTP	
	0.318	Server0	Router0	HTTP	
	0.319	Router0	Router1	HTTP	
	0.320	Router1	Switch0	HTTP	
(2)	0.321	Switch0	PC0	HTTP	

使用检查工具(Inspect)打开 Router1 的 NAT 地址转换表(NAT Table)。

NAT Table for Router1				
Protocol	Inside Global	Inside Local	Outside Local	Outside Globa
tcp	158.22.130.34:1025	192.168.1.1:1025	61.159.62.134:80	61.159.62.134:80
tcp	158.22.130.34:1027	192.168.1.1:1026	61.159.62.134:80	61.159.62.134:80
tcp	158.22.130.34:1027	192.168.1.1:1027	61.159.62.134:80	61.159.62.134:80
tcp	158.22.130.34:1044	192.168.1.1:1044	61.159.62.134:80	61.159.62.134:80
tcp	158.22.130.34:1024	192.168.1.2:1025	61.159.62.134:80	61.159.62.134:80

在 Event List 窗口中找到 At Device 为 Router1 的事件,单击 其彩色正方形。分别选择 Inbound PDU Details 和 Outbound PDU Details 选项卡,以查看和对比 PDU 内容的区别。可以发现在 Inbound PDU 中,该 PDU 的源目 IP 地址分别为 192.168.1.1 和 61.159.62.134。而在 Outbound PDU 中,PDU 的源目 IP 地址已经更 改为 158.22.130.34 和 61.159.62.134。同时对照 NAT 地址转换表,观察源和目的端口的转换规律。

- 4. 任务二:观察学习 VPN 工作原理
 - ◆ 步骤 1: 初始化模拟。

进入实时模式。单击 Add Simple PDU(添加简单 PDU)按钮,然后分别单击 PCO(源站点)和 PC3(目的站点),则 PCO 将快速向 PC3 发送一个包含 ICMP 报文的 IP 数据报。该过程的主要目的是初始化 VPN连接。

◆ 步骤 2: 观察 VPN 的隧道技术。

切换到模拟模式,并设置 Event List Filters (事件列表过滤器) 只显示 ICMP 事件。

单击 Auto Capture/Play (自动捕获/播放)或者 Capture/Forward 按钮,以运行模拟,并捕获事件和数据包。此时,可观察到 ICMP 数据报的转发过程。

Event	List				
Vis.	Time(sec)	Last Devic	At Device	Type	Info
	0.000		PC0	ICMP	
	0.001	PC0	Switch0	ICMP	
	0.002	Switch0	Router1	ICMP	
	0.003	Router1	Router0	ICMP	
	0.004	Router0	Router2	ICMP	
	0.005	Router2	Switch1	ICMP	
	0.006	Switch1	PC3	ICMP	
	0.006	Switch1	PCA	ICMP	

Simul	ation Panel				
Event	List	IVI.			
Vis.	Time(sec)	Last Devic	At Device	Type	Info
	0.006	Switch1	PC3	ICMP	
	0.006	Switch1	PC4	ICMP	4
	0.007	PC3	Switch1	ICMP	
	0.008	Switch1	Router2	ICMP	
	0.009	Router2	Router0	ICMP	
	0.010	Router0	Router1	ICMP	
	0.011	Router1	Switch0	ICMP	
(9)	0.012	Switch0	PC0	ICMP	

在 Event List 窗口中找到 At Device 为 Router1 的事件,单击 其彩色正方形。分别选择 Inbound PDU Details 和 Outbound PDU Details 选项卡,查看和对比 PDU 内容的区别。可以发现在 Inbound PDU 中,该 PDU 的源目 IP 地址分别为 192. 168. 1. 1 (PCO 的 IP 地址) 和 192. 168. 2. 2 (PC3 的 IP 地址)。而在 Outbound PDU 中,PDU 的源目 IP 地址已经更改为 158. 22. 130. 34 (Router1 的 SeO/O/O 的 IP 地址) 和 158. 22. 120. 168 (Router2 的 SeO/O/O 的 IP 地址),并且原 IP 包已经被重新封装在新的 IP 包中,这就是隧道技术的工作原理。

在 Event List 窗口中找到 At Device 为 Router2 的事件,单击 其彩色正方形。分别选择 Inbound PDU Details 和 Outbound PDU Details 选项卡,以查看和对比 PDU 内容的区别。可以发现在 Inbound PDU 中,该 PDU 的源目 IP 地址分别为 158. 22. 130. 34 (Router1 的 SeO/O/O 的 IP 地址)和 158. 22. 120. 168 (Router2 的 SeO/O/O 的 IP 地址)。而在 Outbound PDU 中,PDU 的源目 IP 地址已经更改为 192. 168. 1. 1 (PCO 的 IP 地址)和 192. 168. 2. 2 (PC3 的 IP 地址),这说明 PCO 发送的 IP 包被 Router2 重新解封出来。

三、思考与总结

- 1. 在任务一中, Router1 如何区分 Server0 返回给不同主机的 HTTP 报文? 答: NAT 服务器(Router1)通过不同的端口号来识别不同的主机的报文。
- 2. 在任务二中,VPN 中采用隧道技术的原因是什么?。 答:由于 Net1 和 Net2 都是使用私有地址,因此无法直接通过 Internet 进行通信:采用隧道技术可以方便地将源目地址转换为全局地址,而且 到达目标路由器后,也很容易获得真正目标主机的 IP 地址。
- 3. Net1 网络和 Net2 网络的 IP 地址能否编在同一段? 答: 不行,这样容易造成两个网段间主机的 IP 地址发生冲突。
- 4. 实验过程中还遇到什么问题,如何解决的?通过该实验有何收获? 本次实验学习了 VPN 和 NAT 协议分析有关知识,了解了一些原理。