Eigenschaften

- Gesamtlösung baut auf Teillösungen eines Problems auf
- base cases
 - non-overlapping subproblems
- Teilprobleme müssen nicht voneinander unabhängig sein
 - unllike [[Divide & Conquer]] (only base cases)
- Memorization
 - Teilergebnisse werden wiederverwendet
 - use subproblem's solution if available otherwise compute recursively

Manhattan Tourist Problem

• "Schwerster" Pfad in einem Grid (Manhattan Tourist Problem)

Relate Computation

- time complexity to solve SP
- $\bullet\,$ if solutions to other SPs already known
- \bullet overall runtime = sum of relate computation of all SPs

Fibonacci subproblems: $F(0),F(1), \ldots,F(n)$

Relate computation = adding two numbers

$$F(i)=F(i-1) + F(i-2)$$

Fibonacci numbers are large, use up to O(n) bits:

Runtime:

- #subproblems = n \Rightarrow runtime $O\left(\#subproblems \cdot \frac{n}{w}\right) = O\left(\frac{n^2}{w}\right)$
 - assumption: wordsize w addition in O(1) time

Bowling

Input:

sequence of n bowling pins, numbered with integers $\in [-K, K]$

You can either hit single pins, or two adjacent pins.

Throw as many balls as you want (you don't have to hit all pins)

Goal: Maximize your points

- hit a single pin with number $x_i \rightarrow x_i$ points
- hit two adjacent pins with numbers x and $y \rightarrow x \cdot y$ points
- Subproblems: S[i]: Optimal number of points that we can get with the first i pins (prefix problem)
- Original problem: S[n]
- Base case: S[0] = 0 points (empty prefix)

Relation: if
$$i \ge 2$$
: $S[i] = \max\{S[i-1], S[i-1] + x_i, S[i-2] + x_{i-1} \cdot x_i\}$ if $i = 1$: $S[i] = \max\{S[i-1], S[i-1] + x_i\}$

• Topological order: S[0], S[1], S[2], ..., S[n]

Runtime: \sum_{S} relate computation of $S = O(n) \cdot O(1) = O(n)$ subproblem

Rucksack problem

Knapsack

Input:

n items: *i*-th item has weight w_i and value v_i

W: the weight capacity of the knapsack.

Question: What's the maximum value of items you can pack such that their weights' sum does not exceed W?

Subproblems: S[i, x], $0 \le i \le n$, $0 \le x \le W$:

best value we can get with first i items with "using" capacity x

Original problem: S[n, W] (all items, full capacity)

Base case: S[0,x] = 0 for $0 \le x \le W$; S[i,0] = 0 for $0 \le i \le n$

Relate: $S[i, x] = \text{if } w_i \le x$: $\max\{S[i-1, x], S[i-1, x-w_i] + v_i\}$ **else:** S[i-1, x]

Topological order: For i=0 to n: For x=0 to W: S[i,x]

```
For i from 0 to n:

For x from 0 to W:

    If i == 0 or x == 0: S(i,x) = 0

    else if: w_{i-1} <= x: S(i,x) = \max(v_{i-1} + S(i-1,x - w_{i-1}), S(i-1,x))

    else: S(i,x) = S(i-1,x)
```

Return S(n,W)

		0	1	2	3	4	5	6	7	8	9	10
	0	0	0	0	0	0	0	0	0	0	0	0
$w_1 = 2, v_1 = 3$	1	0	0	3	3	3	3	3	3	3	3	3
$w_2 = 3, v_2 = 4$	2	0	0	3	4	4	7	7	7	7	7	7
$w_3 = 4$, $v_3 = 5$	3	0	0	3	4	5	7	8	9	9	12	12
$w_4 = 5$, $v_4 = 6$	4	0	0	3	4	5	7	8	9	10	11	13
$w_5 = 6$, $v_4 = 7$	5	0	0	3	4	5	7	8	9	10	11	13

Runtime:

Relate computation: O(1) #subproblems: $O(n \cdot W)$

Is this polynomial time?

No. W can be exponential in the input.

Knapsack is NP-complete.