IN74LV574

Octal D-type flip-flop; positive edge-trigger (3-State)

The 74LV574 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT574.

The 74LV574 is an octal D-type flip-flop featuring separate D-type inputs for each flip-flop and non-inverting 3-state outputs for oriented applications. A clock (CP) and an output enable (OE) input are common to all flip-flops. The eight flip-flops will store the state of their individual Dinputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition. When OE is LOW, the contents of the eight flip-flops are available at the outputs. When OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops.

- Output voltage levels are compatible with input levels of CMOS, NMOS and TTL ICs
- Supply voltage range: 1.0 to 5.5 V
- Low input current: 1.0 μ A; 0.1 μ A at T = 25 °C
- High Noise Immunity Characteristic of CMOS Devices

PIN ASSIGNMENT

LOGIC DIAGRAM

PIN 20= V_{CC} PIN 10 = GND

FUNCTION TABLE

	Inputs						
Output Enable	Clock	D	Q				
L		Н	Н				
L		L	L				
L	L,H,	X	no change				
Н	X	X	Z				

H= high level

L = low level

X = don't care

Z = high impedance

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC supply voltage	-0.5 to +7.0	V
$I_{IK} *^1$	Input diode current	±20	mA
I _{OK} *2	Output diode current	±50	mA
I _O * ³	Output source or sink current	±35	mA
I_{CC}	V _{CC} current	±70	mA
I_{GND}	GND current	±70	mA
P_{D}	Power dissipation per package: Plastic DIP *4 SO *4	750 500	mW
Tstg	Storage Temperature	-65 to +150	°C
$T_{\rm L}$	Lead Temperature, 1.5 mm (Plastic DIP Package), 0.3 mm (SO Package) from Case for 4 Seconds	260	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

SO Package: : - 8 mW/°C from 70° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage		1.0	5.5	V
$V_{\rm I}$	DC Input Voltage		0	V_{CC}	V
Vo	DC Output Voltage		0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		-40	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1) $0 \text{ V} \leq \text{V}_{CC}$ $2.0 \text{ V} \leq \text{V}_{C}$ $2.7 \text{ V} \leq \text{V}_{C}$ $3.6 \text{ V} \leq \text{V}_{C}$	$c_{C} \le 2.7 \text{ V}$ $c_{C} \le 3.6 \text{ V}$	0 0 0 0	500 200 100 50	ns

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{\rm IN}$ and $V_{\rm OUT}$ should be constrained to the range GND \leq ($V_{\rm IN}$ or $V_{OUT}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

^{**} $V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}.$ ** $V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}.$ ** $V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}.$

^{*4} Derating - Plastic DIP: - 12 mW/°C from 70° to 125°C

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

		Test	$\mathbf{V}_{\mathbf{CC}}$			G	uaran	teed Lim	it			
Symbol	Paramete r	conditions	V	25°	PC	-4(0°C	85	°C	125	5°C	Unit
				min	max	min	max	min	max	min	max	
$ m V_{IH}$	HIGH level input voltage		1.2 2.0 2.7 3.0 3.6 4.5 5.5	0.9 1.4 2.0 2.0 2.0 3.15 3.85	- - - -	0.9 1.4 2.0 2.0 2.0 3.15 3.85	- - - - -	0.9 1.4 2.0 2.0 2.0 3.15 3.85	- - - - -	0.9 1.4 2.0 2.0 2.0 3.15 3.85	- - - - -	V
$ m V_{IL}$	LOW level output voltage		1.2 2.0 2.7 3.0 3.6 4.5 5.5	- - - - -	0.3 0.6 0.8 0.8 0.8 1.35 1.65	- - - - -	0.3 0.6 0.8 0.8 0.8 1.35 1.65	- - - - -	0.3 0.6 0.8 0.8 0.8 1.35 1.65	- - - - -	0.3 0.6 0.8 0.8 0.8 1.35 1.65	V
$ m V_{OH}$	HIGH level output voltage	$V_I = V_{IH}$ or V_{IL} $I_O = -100 \mu A$	1.2 2.0 2.7 3.0 3.6 4.5 5.5	1.05 1.85 2.55 2.85 3.45 4.35 5.35	- - - - -	1.05 1.85 2.55 2.85 3.45 4.35 5.35	- - - - -	1.0 1.8 2.5 2.8 3.4 4.3 5.3	- - - - -	1.0 1.8 2.5 2.8 3.4 4.3 5.3	- - - - -	V
		$V_I = V_{IH}$ or V_{IL} $I_O = -8 \text{ mA}$	3.0	2.48	-	2.48	-	2.40	-	2.20	-	V
		$V_I = V_{IH}$ or V_{IL} $I_O = -16$ mA	4.5	3.70	-	3.70	-	3.60	-	3.50	-	V
$ m V_{OL}$	LOW level output voltage	$V_{I} = V_{IH}$ or V_{IL} $I_{O} = 100 \mu A$	1.2 2.0 2.7 3.0 3.6 4.5 5.5	- - - - -	0.15 0.15 0.15 0.15 0.15 0.15 0.15	- - - - -	0.15 0.15 0.15 0.15 0.15 0.15 0.15	- - - - -	0.2 0.2 0.2 0.2 0.2 0.2 0.2	- - - - -	0.2 0.2 0.2 0.2 0.2 0.2 0.2	V
		$V_I = V_{IH}$ or V_{IL} $I_O = 8 \text{ mA}$	3.0	-	0.33	-	0.33	-	0.40	-	0.50	V
		$V_{I} = V_{IH}$ or V_{IL} $I_{O} = 16 \text{ mA}$	4.5	-	0.40	-	0.40	-	0.55	-	0.65	V
I_{I}	Input current	$V_I = V_{CC}$ or $0 V$	5.5	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μА
I_{CC}	Supply current	$V_I = V_{CC}$ or $0 V$ $I_O = 0 \mu A$	5.5	-	8.0	-	8.0	-	20	-	160	μА

I _{CC1}		$V_{I} = V_{CC} - 0.6V$	2.7 3.6	-	0.2	-	0.2	-	0.5		0.85	mA
I _{OZ}	Three state leakage current	3-state output $V_{I}(11) = V_{IH}$ $V_{O} = V_{CC}$ or 0 V	5.5	-	±0.5	-	±0.5	-	±5	-	±10	μА

AC ELECTRICAL CHARACTERISTICS (C_L =50 pF, t_r = t_r =2.5 ns)

		Test	$\mathbf{V}_{\mathbf{CC}}$		G	uaran	teed Lin	nit		
Symbol	Parameter	conditions	V	-40°C	to 25°C	85	5°C	12	25°C	Unit
				min	max	min	max	min	max	
t _{PHL} , t _{PLH}	Propagation delay, Clock	$V_I = 0 \text{ V or } V_1$	1.2	-	160	-	170	-	200	ns
	to Q	Figures 1,3	2.0	-	26	_	34	-	43	
			2.7	-	20	-	25	-	31	
			3.0	-	16	-	20	-	25	
			4.5	-	14	-	17	-	21	
t _{PHZ} , t _{PLZ}	Propagation delay, OE to	$V_I = 0 \text{ V or } V_1$	1.2	-	160	-	170	-	200	ns
	Q	Figures 2,4	2.0	-	31	_	39	-	48	
			2.7	-	23	_	29	-	36	
			3.0	-	20	_	24	-	29	
			4.5	-	17	-	20	-	24	
t _{PZH} , t _{PZL}	Propagation delay, OE to	$V_I = 0 \text{ V or } V_1$	1.2	-	140	-	160	-	180	ns
	Q	Figures 2,4	2.0	-	26	-	34	-	43	
			2.7	-	20	-	25	-	31	
			3.0	-	16	-	20	-	25	
			4.5	-	14	-	17	-	21	
C _I	Input capacitance		5.5	-	7.0*	-	-	-	-	pF
C_{PD}	Power dissipation capacitance (per flip-flop)	$V_I = 0 \text{ V or } V_{CC}$	5.5	-	50*	-	-	-	-	pF

^{*} T = 25° C

^{*} Includes all probe and jig capacitance

Figure 1. Test Circuit

* Includes all probe and jig capacitance

Figure 2. Test Circuit

TIMING REQUIREMENTS C_L =50 pF, t_r = t_f =2.5 ns)

		Test	$\mathbf{V}_{\mathbf{CC}}$		G	uaran	teed Lin	nit		
Symbol	Parameter	conditions	V	-40°C	to 25°C	85	5°C	12	5°C	Unit
				min	max	min	max	min	max	
t_{w}	Pulse Width, Clock (high)	$V_I = 0 \text{ V or } V_1$	1.2	120	-					ns
		Figures 1,3	2.0	29	-	34	-	41	-	
			2.7	21	-	25	-	30	-	
			3.0	17	-	20	-	24	-	
			4.5	15	-					
$t_{\rm su}$	Setup Time, Data to Clock	$V_I = 0 \text{ V or } V_1$	1.2	40	-					ns
54		Figures 1,5	2.0	19	-	22	-	26	-	
			2.7	14	-	16	-	19	-	
			3.0	11	-	13	-	15	-	
			4.5	9	-					
$t_{\rm h}$	Hold Time, Clock to Data	$V_I = 0 \text{ V or } V_1$	1.2	5	-	5	-	5	-	ns
		Figures 1,5	2.0	5	-	5	-	5	-	
			2.7	5	-	5	-	5	-	
			3.0	5	-	5	-	5	-	
f_{c}	Clock Frequency	$V_I = 0 \text{ V or } V_1$	1.2	-	2					MHz
		Figures 1,3	2.0	-	17	-	15	_	12	
			2.7	-	21	-	19	-	16	
			3.0	-	27	-	24	-	20	
			4.5	-	31					

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Figure 3. Switching Waveforms

Figure 4. Switching Waveforms

Figure 5. Switching Waveforms

				Tempera	ature, °C		
Symbol	$\mathbf{v}_{\mathrm{cc}},\mathbf{v}$	-40°C	C to 25	8	35	12	25
				Level of	`a signal	1	
		V	%	V	%	V	%
V_1	1.2	1.2	-	1.2	-	1.2	-
	2.0	2.0	-	2.0	-	2.0	-
	2.7	2.7	-	2.7	-	2.7	-
	3.0	3.0	-	3.0	-	3.0	-
	4.5	4.5	-	4.5	-	4.5	-
V_{M}	1.2	0.6	50	0.6	50	0.6	50
	2.0	1.0	50	1.0	50	1.0	50
INPUTS	2.7	1.5	56	1.5	56	1.5	56
	3.0	1.5	56	1.5	56	1.5	56
	4.5	2.25	50	2.25	50	2.25	50
V_{M}	1.2	0.6	50	0.6	50	0.6	50
OUTPUTS	2.0	1.0	50	1.0	50	1.0	50
OUTPUTS	2.7	1.5	58	1.5	60	1.5	62
	3.0	1.5	52	1.5	53	1.5	55
	4.5	2.25	50	2.25	50	2.25	50
$V_{\rm X}$	1.2	0.32	12	0.37	12.5	0.37	12.5
14	2.0	0.4	11	0.45	11	0.45	11
	2.7	0.55	12	0.6	12.5	0.65	12.7
	3.0	0.6	11	0.65	11	0.7	11.5
	4.5	0.85	12	0.90	12	1.0	11
V_{Y}	1.2	0.88	88	0.78	86.5	0.68	85
	2.0	1.5	88	1.4	87.5	1.3	86.5
	2.7	2.1	87.5	2.0	87	1.9	86
	3.0	2.3	88	2.2	88	2.1	87.5
	4.5	3.45	88	3.35	88	3.25	88

EXPANDED LOGIC DIAGRAM

N SUFFIX PLASTIC DIP (MS - 001AD)

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions 0.25 mm (0.010) per side.

	1								
	Dimension, mm								
Symbol	MIN	MAX							
A	24.89	26.92							
В	6.1	7.11							
С		5.33							
D	0.36	0.56							
F	1.14	1.78							
G	2.	54							
Н	7.	62							
J	0°	10°							
K	2.92	3.81							
L	7.62	8.26							
M	0.2	0.36							
N	0.38								

D SUFFIX SOIC (MS - 013AC)

NOTES:

- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

	Dimension, mm					
Symbol	MIN	MAX				
A	12.6	13				
В	7.4	7.6				
С	2.35	2.65				
D	0.33	0.51				
F	0.4	1.27				
G	1.	27				
Н	9.	53				
J	0°	8°				
K	0.1	0.3				
M	0.23	0.32				
P	10	10.65				
R	0.25	0.75				
-						