

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP2 - 1° semestre de 2017.

Nome -

Assinatura -

Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
- ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- iii) Você pode usar lápis para responder as questões.
- iv) Ao final da prova devolva as folhas de questões e as de respostas.
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

- 1) Está errado afirmar sobre o ZBuffer
 - A Tem a mesma resolução do Frame Buffer
 - B é necessário uma área de ZBuffer por polígono
 - C Pode ser inicializado com infinito em cada elemento
 - D Está dentro do estágio de rasterização
 - E Responsável por determinar se um pixel está encoberto por outro
- 2) Sobre o CUDA, NÃO podemos afirmar
 - A função que é executada na GPU chama-se kernel
 - B é uma biblioteca gráfica do OpenGL
 - C cada kernel é instanciado em centenas ou até milhares de threads
 - D permite desenvolver algoritmos altamente paralelos
 - E requer que os dados da GPU sejam copiados a partir da memória da CPU
- 3) O culling de polígono consiste em:
 - A projetar o polígono
 - B rasterizar o interior do polígono
 - C recortar parte do polígono que ficou fora da área de projeção
 - <u>D</u> eliminar polígonos desnecessários
 - E Transformar as coordenadas do polígono

- 4) Podemos dizer que um pixel shader:
 - A Interfere na rasterização de um polígono
 - B interfere na rasterização de um vértice
 - C Calcula a iluminação por vértice
 - D Determina a distância do vértice até a camera
 - E realiza o estágio de projeção, dentre outras coisas
- 5) O Ray-tracing termina em algum momento porque :
 - A cada recursão tem um peso menor de contribuição da cor final
 - B todos os raios, em algum momento, saem por completo da cena
 - C O algoritmo de culling retira raios desnecessários
 - D Devido ao Clipping
 - E Devido a Octree
- 6) As matrizes afins de transformação permitem:
 - A calcular o culling de polígonos
 - B resolver problemas de profundidade, na etapa de projeção
 - C acelerar o processo de iluminação
 - D pré-computar a iluminação global
 - E ser agrupadas em uma única matriz, através da multiplicação entre elas
- 7) Um triangle Strip é:

Não necessariamente nesta ordem. Os vértices devem sempre girar no sentido horário,

- A Uma maneira de ordenar os vértices de uma malha, de forma que cada triângulo possa ser descrito pelos vértices Vi, Vi+1, Vi+2
- B Uma maneira de ordenar os vértices de uma malha, de forma que cada triângulo possa ser descrito pelos vértices V1, Vi, Vi+1
- C Uma maneira de ordenar os vértices de uma malha, de forma que cada triângulo possa ser descrito pelos vértices V1, Vi, Vn (n é o último polígono da malha)
- D Uma maneira de ordenar os vértices de uma malha, de forma que cada triângulo possa ser descrito pelos vértices V1, V2, Vi
- E Uma maneira de ordenar os vértices de uma malha, de forma que cada triângulo possa ser descrito pelos vértices Vi, Vn-1, Vn
- 8) Malhas de terrenos podem ser bastante extensas e consumir bastante tempo de rendering. Para otimizá-los, podemos
 - A Usar pixel shaders
 - B Iluminar apenas alguns de seus vértices
 - C Criar uma amostragem estatística
 - D Usar Level Of Details
 - E Usar Portais
- 9) Se um artista lhe disser que o jogo está com um gargalo na rasterização, uma das soluções de otimização seria:
 - A alterar o modelo de iluminação aplicado aos vértices vértices
 - B Diminuir o número de transformações geométricas
 - C Diminuir a resolução da janela

- D Retirar todas as operações de quaternions
- E Melhorar as estratégias de culling

10) Não é uma estrutura de dados para geometria

- A Quadtree
- B Octree
- C BPS
- D Triangle Fans
- E Cohen-Sutherland

11) Não podemos dizer que as texturas procedurais:

- A Possuem resoluções arbitrárias
- B Muitas vezes não requerem uma etapa de mapeamento de textura
- C Podem ser usadas para aplicar rugosidade nas superficies
- D Há muitas que usam funções fractais
- E São métodos de anti-aliasing para imagens

12) Não podemos dizer que o bump-mapping:

- A cria deformações aparentes na superfície
- B não deforma a malha
- C Precisa de um mapeamento de textura
- D Podem ser usadas em tempo real
- E Não permite o uso do componente especular

Tabela de respostas. Preencha sem rasuras apenas uma resposta:

Questão	1	2	3	4	5	6	7	8	9	10	11	12
Resposta	В	В	D	A	A	Е	A	D	C	E	E	Е