Tutorial I

Problem 3:

If To The are two topology on X.

$$\begin{cases} \mathcal{T}_1 \text{ is a hase for } \mathcal{T}_2 \\ \mathcal{T}_2 \text{ is a bose for } \mathcal{T}_1 \end{cases} \Rightarrow \mathcal{T}_1 = \mathcal{T}_2$$

. d'(d so the d'halls are larger than the d-balls and the topology induced by d is abose of the one induced by d.

then the topology induced by d' is a base of the one induced by d.

Tutorial II

Publem 4:

if $A \subset A$ at A, A^{C} both infinite than $\dot{A} = \emptyset$, A = X. Indeed: OCA open => $A^{C}CO^{C}$ infinite so $O = \emptyset$ $A \subset F$ close => F infinite close => F = X.

Tutorial III

Problem 3:

K compact (=)
$$\forall (\sigma_i)_{i \in I}$$
 open, $\bigcup_{i \in I} K \Rightarrow \exists J \in I \text{ finite } \bigcup_{i \in J} \sigma_i = K$

($\Rightarrow \forall (F_i)_{i \in I} \text{ close}, \bigcap_{i \in I} F_i = \emptyset \Rightarrow \exists J \in I \text{ finite } \bigcap_{i \in J} F_i = \emptyset$

set $F_i = \sigma_i^c$

($\Rightarrow \forall (F_i)_{i \in I} \text{ close}, \forall J \in I \text{ finite}, \bigcap_{i \in J} F_i \neq \emptyset$

contraposition

Tutorial IV

5	2	han	1	
	10700		_1	

1) = Let 5 par while of (2) than I cope who of x with f(co)(v. Up to a rook $x_n \in U$ so $\int (x_n) \in \mathcal{G}$.

Controposition: obsume $\exists U$ open with of J(x) at VU open with of x, J(x) J(

3) $x \neq y = \int (x) \neq \int (y)$, $\exists U_n U_y = \int (x) \int (x) \int (y) \int (x) \int (x)$

Roslam :

1) We prove that & is proper: Kcompat => & 1 (K) compat. J-1(K) doed since & C' and K doed, and bounded otherwise F(xn), C R at Iten 1- to and J(xn) EK which contradict the boundedness of K. so f-1(K) is compact.

2) We prove that f is closed. Let & CR' dosed. Prove that R' I (t) open: Let $x \in \mathbb{R}^n | f(E)$ and σ open with of x with compact closure $E := \mathcal{E} \cap f^{-1}(\overline{\sigma}) \text{ is compact and } (f(C))$ $\operatorname{close} \quad \operatorname{compact}$ $f(E) = f(C) \cap \overline{\sigma} \text{ is also compact.} \quad \mathcal{U} := \sigma | f(E) \text{ is an open}$ $\operatorname{close} \quad \operatorname{close} \quad \operatorname{cl$

when of x since $x \in S$ and $x \notin J(E) \subset J(E)$.

Morcover UCF/J(E) = 5/J(E) CRMJ(E) so RMJ(E) is open.

3) of co, bijective, open map => g-1 co so f is a homeoma phism.

Problem 3: see next tutorial.

Tutorial V

1) K is uniformly continuous so I n: R+ or R+ st m(v)-10 and \texpz.t \in \text{[O(1)}, [K(x,y)-K(z,t)] < y (11(x,y)-(z,t) 11 pz). Let x,y & To, 17, then $|Tf(x)-Tf(y)|=\left|\int\limits_{0}^{1}\left(K\left(x,z\right)-K\left(y,z\right)\right)f(z)dz\right|\leqslant \eta\left(|x-y|\right)\int\limits_{0}^{1}|f(z)|dz\longrightarrow 0$ $|x-y|\to 0$ 2) if Ilflu & 1 (ben from 1) we have With dscoli theorem [T], JEC([0,1], IR) | IIJII a (13) is relatively compact. 3) Let K = Bu (0,1) non ampty dosed convex secloset of CB (To,1), R) (Banada) Let JEK, IIT II W & IKII II II II & I so TJEK and by Z) T(K) CK is chatively compact so by Schauder fixed point theorem, That a fixed point. Vidsam 4: (In) country in C(X,4), then $\forall x \in X$, $(P_n(x))_{n \in \mathbb{N}}$ Cauchy so

In (x) - f(x), then $||f_n(x)-f(x)|| \leq \sup_{m \geq 1} ||f_n(x)-f_m(x)|| \leq \sup_{m \geq 1} ||f_n-f_m|| \to 0$ $||f_n(x)-f(x)|| \leq \sup_{m \geq 1} ||f_n(x)-f_m(x)|| \leq \sup_{m \geq 1} ||f_n-f_m|| \to 0$ we lift - $||f_n-f_n|| \to 0$.

and f continuous since $||f_n(x)-f_n(y)|| \leq ||f_n(x)-f_n(y)|| + 2||f_n-f_n||$ uniform in $x \to y$

Tutorial VI

Problem 1: Let T, u & L (X, y), n, y & X. 11Tx - Uyny (11T6x-y)114+ 11t-v)y114

$$\int_{\Lambda} (x) = \min(nx, \sqrt{x}), hx(\sqrt{x} =) x(\frac{1}{m} =) \sqrt{x-nx} \sqrt{\frac{1}{n}}$$

$$\int_{\Lambda} -\frac{1}{n} \sqrt{x}$$

2)
$$(f_n)$$
 comby, f appoints, $f_n = f_n = f_$

$$|f(x) - f_n(x) - (f(y) - f_n(y))| \le \text{resp} |f_m(x) - f_n(x) - (f(y) - f_n(y))|$$
 $|f(x) - f_n(x)| = (f(y) - f_n(y))|$

so
$$Lip(J-J_n) \leqslant \sup_{n \geq 1} Lip(J_m-J_n) \rightarrow 0$$

$$\begin{aligned} |f(x) - \tilde{g}(y)dy - f(0)| &\leq ||f - f_n||_{\sigma}^{\sigma} |f_n(x) - \tilde{g}(y)dy - f(0)| \\ &= ||f - f_n||_{\sigma}^{\sigma} + |\tilde{f}(f_n' - g)| + |f_n(0)| - |f(0)| + ||f(0)||_{\sigma}^{\sigma} +$$

3). take a sequence in
$$\mathbb{R}^{(1N)}$$
 that onverges eniformly to $(\frac{1}{n+1})$ $n \in \mathbb{N}$.

Tutorial VII

||2||7 Say
$$9(x)$$
, si $x=0$ (f=0 convient ising | $96F'$ | 94164

Jelineaire continue done partialm Banach, g ce polonge sur fon
$$\hat{J}_{z}$$
 F-) R to $\|\hat{J}\|_{L^{2}} = 1$ de plus $\hat{J}_{z}z = \hat{J}_{z}z = 121$ danc $\|z\| \leqslant \sup_{y \in Y_{z}} 4x$

2)
$$\exists y \in x^{**} \text{ st} \quad |y(q)| = ||q||, \quad n := e^{-4}(y) \in x$$

$$i: x \rightarrow x^{**} \quad \text{then} \quad y(q) = y(x).$$

$$2 \mapsto x \mapsto x \mapsto x \mapsto x$$

Problem 2: Y: {convergent-sequences COOR) - IR extended on COOR) by H.B.

If
$$9: l^{\infty}(R) \rightarrow R$$

If $9: l^{\infty}(\mathbb{R}) \to \mathbb{R}$ with $(u_n)_n \in e^{1}(i_n)$. then $9(e_n) = 0 = u_n \forall n \in \mathbb{N}$ $e_i = (0, ..., 0, 1, 0, ...)$

so 9=0 absurd.

Violan 3: 1) La JEC (TO,1), R),
$$J = (J - J(0)) + J(0)$$
 and $C \cap X = J \circ J$.
2) F: $C(T_0, I)$, R) $\rightarrow \mathbb{R}$

Production 4: Y: X* Injedie, merjedie by Hahn-Banada

Tutorial VIII-IX

FREE, 11Trly = sup (9(Tr) (+0) 146 F* 1991461 Problam 1:

SPOT, 46F+111411 (13 CE*, by the uniform boundedness:

Yohlm 2:

.
$$(C) = (C) + (C$$

Two Idam 3:

1) linearity of the limit

2)
$$\forall n \in \mathbb{E}$$
 sap $||T_n x||_{\mathbb{E}} < +\infty$ by $||S_n x||_{\mathbb{E}} < +\infty$
 $||S_n x||_{\mathbb{E}} < +\infty$
 $||S_n x||_{\mathbb{E}} < +\infty$

41
$$T_{V}((b_{n})_{n}) = \sum_{n=0}^{N} a_{n}b_{n}$$
 (continuous as map on $\mathbb{R}^{N+1} \rightarrow \mathbb{R}$)

5)
$$b_n := |a_n|^{q-1} \Delta(a_n) \mathcal{A}_n(N)$$
 ($\Delta(a_n) a_n = |a_n|$), $(b_n)_{n \in N} \in \mathcal{C}(N)$
 $\Delta(a_n) \mathcal{A}_n = |a_n|$), $(b_n)_{n \in N} \in \mathcal{C}(N)$
 $\Delta(a_n) \mathcal{A}_n = |a_n|$) $\Delta(a_n) \mathcal{A}_n = |a_n|$)

$$\int_{N=0}^{N} |a_{n}|^{q} \int_{N=0}^{\sqrt{q}} \left(||T|| \right) take N-1 + 0.$$

Tutorial X

$$||u - c|| = ||u - c||^2 + ||c - c||^2 + 2||c - c||^2 + 2||c - c||^2 + ||c - c||^2 +$$

Russen 2:

Sit
$$x_n := \sum_{k=1}^{n} \frac{e_k}{k^2} \in E$$
, $(x_n)_{n \in \mathbb{N}}$ is landy:

$$||x_{n+p}-x_n||=\left\|\sum_{k=n+1}^{n+p}\frac{e_k}{b^2}\right\| \leqslant \sum_{k=n+1}^{n+p}\frac{1}{k^2}\leqslant \sum_{k\geq n}\frac{1}{b^2} \Rightarrow 0 \text{ since } \sum_{k\in\mathbb{N}^+}\frac{1}{k^2}\leqslant +\infty$$

Using the algebraic banis $(e_n)_{n \in \mathbb{N}^*}$, $\exists k_1,...,k_r \in \mathbb{N}$, $\exists \lambda_1,...,\lambda_r \in \mathbb{K}$ (=Ro. C) s.t. $x = \sum_{i=1}^r \lambda_i e_k$

this means: . Yx EE 7! (xx1x6) E Fx6 such that x=xx+x6 . F 16 = { o E} Then the projections IT: FOG>F, ITG: FOG>6 are continuous. proof: F, G are Banach spaces with the induced norm. Fx 6 also with 11 (n,y) 11 Fx 6 := 11x11 + 11y11 for (n,y) & Fx 6. Consider P: 6 x K - 7 6 0 K linear and bijedire. and onlines: || 4(x,y)|| = || x+y|| = (|| x|| + || y|| = || (x+y)|| + x6 By the open mapping theorem 9-1 is ontinuous. PF: $F_{x}b \rightarrow F$ is continuous: $\|P_{F}(x,y)\|_{E} = \|x\|_{E} \le \|x\|_{E} \|y\|_{E} = \|(x,y)\|_{E}$ $(x,y) \mapsto x$ so The = Pro 9-1 is continuous by composition. Let k > max (k1,...,kr) consider IT k the projection on span (ek). dosed be come finite dimensional

then The (xn-x) = The xn - The x = le kn to this contradicts coof The.

Lemma: let E be a Banach space and F, 6 dozed subvedor susspaces

such that E=FOG.

Tutorial XI

Problem 1:

1) let
$$u \in e^{4}$$
, $||Su||_{e^{2}} = ||u||_{e^{2}} (|u||_{e^{4}})$

a $||S|| (1 \sin u) ||Seo||_{e^{4}} = 1 = ||e||_{e^{4}} (|u||_{e^{4}})$

2) $S^{+}: (e^{2})^{+} \rightarrow (e^{4})^{+}$
 $S^{+}u) = 1$
 $S^{+}u) =$

Problem 2:

In fact, let $f \in L^p$ and let γ be a fixed positive constant. Set

$$f_1(x) = \begin{cases} f(x), & |f(x)| > \gamma, \\ 0, & |f(x)| \leq \gamma, \end{cases}$$

and $f_2(x) = f(x) - f_1(x)$. Then

$$\int |f_1(x)|^{p_1} d\mu(x) = \int |f_1(x)|^p |f_1(x)|^{p_1-p} d\mu(x) \leqslant \gamma^{p_1-p} \int |f(x)|^p d\mu(x),$$

since $p_1 - p \le 0$. Similarly, due to $p_2 \ge p$,

$$\int |f_2(x)|^{p_2} d\mu(x) = \int |f_2(x)|^p |f_2(x)|^{p_2-p} d\mu(x) \leqslant \gamma^{p_2-p} \int |f(x)|^p d\mu(x),$$

so $f_1 \in L^{p_1}$ and $f_2 \in L^{p_2}$, with $f = f_1 + f_2$.

Tutorial XII

Voldan 1:

E
$$\rightarrow R$$

Let $a \in E'$
 $a \mapsto a(nn) = a(nn) \rightarrow a(nn) \in R$

so sup $i(nn) = a(nn) \rightarrow a(nn) \in R$

$$y\left(\frac{1}{n}\sum_{k=1}^{n}xk-n\right)=\frac{1}{n}\sum_{k=1}^{m}\left(\frac{y_{1}xk-n}{k-n}+\frac{1}{n}\sum_{k=m+1}^{m}\left(\frac{y_{1}xk-n}{k-n}\right)\right)$$

として の

Problem 2:

$$1_{(n,n+1)} \rightarrow \int (bandel in L^2), \quad \forall 4 \in C_2(R) \langle 4, | \rangle = 0$$

$$2 = \int 0$$

a) Let
$$J \in L^2$$
, $J = L(eh, l) ek$ $|p||^2 = L(eh, l)|^2$

so $(e_{\pm k}) = 0$ =) or $(2\pi hn) = 0$

Tutorial XIII

4)
$$E(e)$$
 lette - $|V||_2$ lette - $||W||_2$ lette $||E||_2$

The $||E||^2$ $\left(1 - \frac{\varepsilon}{2} - ||W||_2\right) - \frac{||W||_2^2}{2\varepsilon} = ||e||^2 \frac{\varepsilon}{2} - \frac{||V||_2^2}{2\varepsilon}$

ab $\left(\frac{a^2 + \varepsilon b^2}{2\varepsilon}\right)$ dure $\varepsilon = 1 - ||w||_1$

=)
$$\|e\|_{2}^{2} \leq \frac{2}{\epsilon} \left(E(e) + \frac{\|v\|_{2}^{2}}{2\epsilon} \right) = \frac{1}{1 - \|w\|_{2}} \left(2E(e) + \frac{\|v\|_{2}^{2}}{1 - \|w\|_{2}} \right)$$

$$\int (\mu - e_{n}) + w \left(\mu - e_{n} \right) = \int (\mu - e_{n}) + w \mu + \int e_{n} + w e_{n} - \int \mu + w e_{n} = \int e_{n} +$$

Let
$$r \geq 0$$
, inf $V(n)$ $\int A_{|n| \geq r} e(n) dn + \int A_{|n| \leq r} V(n) e(n) dn$ ($\in l_1$)

 $\Rightarrow \int A_{|n| \geq r} e(n) dn \in \frac{2 \in l_2}{\inf V(n)}$

Problem 5:

Homework

2) Define
$$\forall x, y \in H$$
,

 $\langle x, y \rangle := \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 - \lambda \|x + iy\|^2 + i\|x - iy\|^2 \right)$

Let $x, y \in H$, $\langle y, x \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 - \lambda \|y + ix\|^2 + \lambda \|y - ix\|^2 \right)$
 $= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 - \lambda \|y + ix\|^2 + \lambda \|y - ix\|^2 \right)$
 $= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 - \lambda \|y - ix\|^2 + \lambda \|y - x\|^2 \right)$
 $= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 - \lambda \|y - x\|^2 + \lambda \|y - x\|^2 \right)$

Let $x \in H$, $\langle x, x \rangle = \frac{1}{4} \left(\|2x\|^2 - \lambda \|x - y\|^2 + \lambda \|x - y\|^2 \right)$
 $= \frac{1}{4} \left(\|x \|^2 - \lambda \|x\|^2 + \|x - y\|^2 + \|x - y\|^2 \right)$

Let $x \in H$, $\langle x, x \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$

Be (.) is shown approximative objective definite.

Phine, $\forall x, y \in H$, $\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$.

Let $x, y, z \in H$
 $\langle x, z \in H$
 $\langle x,$

Then, we notice that $(x, y) = (x, y)_R + i(x, -iy)_R$ thus (.) is Relinear in its 2nd variable. We extend to & linearity noticing that 4(x, iy) = 11x + iy 112_ 11x - iy 112 - i 11x - y 112 + i 11x + y 112 = i(x, y).

Visilem 6:

- 1) The Jamily (1 [a,x]) n ([ab)
- 2) $|\phi(n)g| = |\sum_{n \in \mathbb{N}} \varkappa_n y_n| \leq ||n||_{\ell^{\infty}} ||y||_{\ell^{1}} \leq ||x||_{\ell^{\infty}} \leq |x|^{1} (|R|)^{*}$ and

3) $\forall n \in \mathbb{N}$, $|\phi(x) e_n| = |x_n| = |x_n|$. $||e_n||_{e^2(\mathbb{R})}$ so $||\phi(x)|| \geq |x_n|$.

Thus $||\phi(x)||_{e^2(\mathbb{R})}$

thus 11 d(x) 11 ex(R) * sup |xn| = 11x11 and 11 b(x) 11 = 11x11 ex(R).