1. a. Considering the three base cells $(a_1, a_2, a_3, c_4, \dots, c_9, c_{10}), (b_1, b_2, b_3, c_4, \dots, c_9, c_{10})$ and $(c_1, c_2, c_3, c_4, \dots, c_9, c_{10})$, which implies that the dimension of cube is 10. And since their is only 1 level, so the number of cuboids is

$$\#\text{cuboid} = 2^{10} = 1024$$

b. For each base cell, we have corresponding number aggregate cells

$$\#aggregate_i = \sum_{j=2}^{10} {10 \choose j} = 2^{10} - 1 = 1023$$

and considering the duplicated aggregated cells

#duplicated aggregate =
$$(3-1)\sum_{j=0}^{7} {7 \choose j} = 256$$

As a result, we conclude that the total number of distinct aggregate cells is

#distinct aggregate =
$$3 \cdot 1023 - 256 = 2813$$

c.

$$\#\text{count} > 2 = \sum_{j=0}^{7} {7 \choose j} = 128$$

- d. By definition of close cube, we have the following close cubes $(a_1, a_2, a_3, c_4, \dots, c_9, c_{10})$, $(b_1, b_2, b_3, c_4, \dots, c_9, c_{10})$, $(c_1, c_2, c_3, c_4, \dots, c_9, c_{10})$ and $(*, *, *, c_4, \dots, c_9, c_{10})$, in which the only one with count = 3 is $(*, *, *, c_4, \dots, c_9, c_{10})$, and the non-star dimension is 7.
- 2. a. Since the dimension of data cube is 4, the number of cuboids is

#cuboid =
$$\prod_{i=0}^{4} L_i = 3 \cdot 2 \cdot 2 \cdot 2 = 24$$

- b. By running code in *Question2.lbai5.py* to drop duplicated cells, we get that the number of cells in cuboid (Location(City), Category, Price, Rating) is 48.
- c. Similarly, we get that the number of cells in cuboid (Location(State), Category, Price, Rating) is 34.

CS 412 HW2 Lanxiao Bai

- d. Similarly, we get that the number of cells in cuboid (*, Category, Price, Rating) is 23.
- e. Similarly, we get that the number of cells in cuboid (Location(State) = Illinois, *, Price = mode is 2.
- f. Similarly, we get that the number of cells in cuboid (Location(City) = food, Category = food, ' is 2.
- 3. a. By running code in Question 3.lbai 5.py to drop duplicated cells, we get that
 - 1. The number of frequent patterns is 30.
 - 2. The number of frequent patterns with length 3 is 8.
 - 3. The number of max patterns is 7.
 - b. Similarly, we have
 - 1. The number of frequent patterns is 55.
 - 2. The number of frequent patterns with length 3 is 20.
 - 3. The number of max patterns is 6.
 - 4. The confidence of rule $(C, E) \rightarrow A$ is 67.857%
 - 5. The confidence of rule (A, B, C) \rightarrow E is 74.194%