Search Engines

Information Retrieval in Practice

Indexes

- Indexes are data structures designed to make search faster
- Text search has unique requirements, which leads to unique data structures
- Most common data structure is inverted index
 - general name for a class of structures
 - "inverted" because documents are associated with words, rather than words with documents
 - similar to a concordance

Indexes and Ranking

- Indexes are designed to support search
 - faster response time, supports updates
- Text search engines use a particular form of search: ranking
 - documents are retrieved in sorted order according to a score computing using the document representation, the query, and a ranking algorithm
- What is a reasonable abstract model for ranking?
 - enables discussion of indexes without details of retrieval model

Abstract Model of Ranking

More Concrete Model

$$R(Q, D) = \sum_{i} g_i(Q) f_i(D)$$

 f_i is a document feature function g_i is a query feature function

f: 9.7 fish fish 5.2
4.2 tropical 3.4 g: Fred's Tropical Fish Shop is 22.1 tropical fish ______ tropical fish 9.9 the best place to find tropical fish at low, low 8.2 seaweed chichlids 1.2 Whether you're prices. 4.2 surfboards barbs 0.7 looking for a little fish or a big fish, we've got what you tropical fish need. We even have fake Topical Features Topical Features Query seaweed for your fishtank (and little surfboards too). 14 incoming links _____ incoming links 1.2 3 update count update count 0.9 Quality Features Quality Features Document **Document Score**

Inverted Index

- Each index term is associated with an inverted list
 - Contains lists of documents, or lists of word occurrences in documents, and other information
 - Each entry is called a posting
 - The part of the posting that refers to a specific document or location is called a *pointer*
 - Each document in the collection is given a unique number
 - Lists are usually document-ordered (sorted by document number)

Example "Collection"

- S_1 Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.
- S_2 Fishkeepers often use the term tropical fish to refer only those requiring fresh water, with saltwater tropical fish referred to as marine fish.
- S_3 Tropical fish are popular aquarium fish, due to their often bright coloration.
- S_4 In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.

Four sentences from the Wikipedia entry for tropical fish

Simple Inverted Index

and	$\boxed{1}$	only	2
aquarium	3	pigmented	$\overline{4}$
are	3	4 popular	3
around	$\boxed{1}$	refer	2
as	$\boxed{2}$	referred	2
$\qquad \qquad \text{both} \qquad \qquad$	1	requiring	2
bright	3	salt	$\boxed{1} \boxed{4}$
coloration	3	4 saltwater	2
derives	$\boxed{4}$	species	1
due	3	term	2
environments	1	the	$\boxed{1}\boxed{2}$
fish	1	2 3 4 their	3
${\it fishkeepers}$	2	this	$\boxed{4}$
found	1	those	2
fresh	2	to	$\boxed{2}$ $\boxed{3}$
freshwater	$\overline{1}$	4 tropical	$\boxed{1}$ $\boxed{2}$ $\boxed{3}$
$_{ m from}$	$\boxed{4}$	typically	$\boxed{4}$
generally	$\boxed{4}$	use	2
in	1	4 water	$\boxed{1} \boxed{2} \boxed{4}$
include	1	while	$\boxed{4}$
including	1	with	2
iridescence	$\overline{4}$	world	1
marine	$\overline{2}$		
often	$\overline{2}$	3	

Inverted Index with counts

• supports better ranking algorithms

and	1:1	only	2:1
aquarium	3:1	pigmented	4:1
are	3:1 4:1	popular	3:1
around	1:1	refer	2:1
as	2:1	referred	2:1
both	1:1	requiring	2:1
bright	3:1	salt	$\fbox{1:1} \ \fbox{4:1}$
coloration	$\boxed{3:1} \boxed{4:1}$	$_{ m saltwater}$	2:1
derives	4:1	species	1:1
due	3:1	term	2:1
environments	1:1	$_{ m the}$	1:1 2:1
fish	$\boxed{1:2} \boxed{2:3} \boxed{3:2} \boxed{4:2}$	$_{ m their}$	3:1
${\it fishkeepers}$	2:1	$_{ m this}$	4:1
found	1:1	those	2:1
fresh	2:1	to	$2:2 \boxed{3:1}$
freshwater	$\boxed{1:1} \boxed{4:1}$	$\operatorname{tropical}$	1:2 $2:2$ $3:1$
$_{ m from}$	4:1	typically	4:1
generally	4:1	use	2:1
in	$\boxed{1:1} \boxed{4:1}$	water	1:1 $2:1$ $4:1$
include	1:1	while	4:1
including	1:1	with	2:1
iridescence	4:1	world	1:1
marine	2:1		

often

					<u> </u>	7
	and	1,15		marin		
	aquarium	3,5		ofte		3,10
	are	3,3	[4,14]	onl	7 2,10	
	around	1,9		pigmente	4,16	
Inverted Index	as	[2,21]		popula	$r \boxed{3,4}$	
mvertea maex	both	1,13		refe	r 2,9	
with positions	bright	3,11		referre	$\frac{1}{2,19}$	
With positions	coloration	3,12	4,5	requiring	$\overline{2,12}$	
	derives	4,7		sal	4 4 0	4,11
	due	3,7		saltwate	${2,16}$	
• supports en	nvironments	1,8		specie		
proximity matches	fish	1,2	1,4	[2,7] [2,18] [2,23] term		
proximity matches	ı			$\boxed{3,2} \boxed{3,6} \boxed{4,3}$ th		2,4
				4,13 thei	r 3,9	
	fishkeepers	2,1		thi	$\overline{4,4}$	
	found	1,5		thos	e 2,11	
	fresh	2,13		t		2,20 3,8
	freshwater	1,14	4,2	tropica		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$_{ m from}$	4,8		typically		
	generally	4,15		us		
	in	1,6	$\boxed{4,1}$	wate		2.14 4.12
	include	1,3	<u> </u>	whil		
	including	1,12		wit		
	iridescence	4,9		world		
				W 921		J

Proximity Matches

- Matching phrases or words within a window
 - e.g., "tropical fish", or "find tropical within 5 words of fish"
- Word positions in inverted lists make these types of query features efficient
 - e.g.,

Fields and Extents

- Document structure is useful in search
 - field restrictions
 - e.g., date, from:, etc.
 - some fields more important
 - e.g., title
- Options:
 - separate inverted lists for each field type
 - add information about fields to postings
 - use extent lists

Extent Lists

- An extent is a contiguous region of a document
 - represent extents using word positions
 - inverted list records all extents for a given field type
 - e.g.,

extent list

Other Issues

- Precomputed scores in inverted list
 - e.g., list for "fish" [(1:3.6), (3:2.2)], where 3.6 is total feature value for document 1
 - improves speed but reduces flexibility
- Score-ordered lists
 - query processing engine can focus only on the top part of each inverted list, where the highestscoring documents are recorded
 - very efficient for single-word queries

Compression

- Inverted lists are very large
 - e.g., 25-50% of collection for TREC collections using Indri search engine
 - Much higher if n-grams are indexed
- Compression of indexes saves disk and/or memory space
 - Typically have to decompress lists to use them
 - Best compression techniques have good compression ratios and are easy to decompress
- Lossless compression no information lost

Compression

- Basic idea: Common data elements use short codes while uncommon data elements use longer codes
 - Example: coding numbers
 - number sequence:

• possible encoding:

• encode 0 using a single 0:

only 10 bits, but...

Compression Example

- Ambiguous encoding not clear how to decode
 - another decoding:

which represents:

• use unambiguous code:

Number	Code
0	0
1	101
2	110
3	111

• which gives:

0 101 0 111 0 110 0

Delta Encoding

- Word count data is good candidate for compression
 - many small numbers and few larger numbers
 - encode small numbers with small codes
- Document numbers are less predictable
 - but differences between numbers in an ordered list are smaller and more predictable
- Delta encoding:
 - encoding differences between document numbers (*d-gaps*)

Delta Encoding

Inverted list (without counts)

Differences between adjacent numbers

 Differences for a high-frequency word are easier to compress, e.g.,

$$1, 1, 2, 1, 5, 1, 4, 1, 1, 3, \dots$$

Differences for a low-frequency word are large, e.g.,

$$109, 3766, 453, 1867, 992, \dots$$

Bit-Aligned Codes

- Breaks between encoded numbers can occur after any bit position
- Unary code
 - Encode k by k 1s followed by 0
 - 0 at end makes code unambiguous

Number	Code
0	0
1	10
2	110
3	1110
4	11110
5	111110

Unary and Binary Codes

- Unary is very efficient for small numbers such as 0 and 1, but quickly becomes very expensive
 - 1023 can be represented in 10 binary bits, but requires 1024 bits in unary
- Binary is more efficient for large numbers, but it may be ambiguous

Byte-Aligned Codes

- Variable-length bit encodings can be a problem on processors that process bytes
- v-byte is a popular byte-aligned code
 - Similar to Unicode UTF-8
- Shortest v-byte code is 1 byte
- Numbers are 1 to 4 bytes, with high bit 1 in the last byte, 0 otherwise

V-Byte Encoding

k	Number of bytes
$-k < 2^7$	1
$2^7 \le k < 2^{14}$	2
$2^{14} \le k < 2^{21}$	3
$2^{21} \le k < 2^{28}$	4

k	Binary Code	Hexadecimal
1	1 0000001	81
6	1 0000110	86
127	1 1111111	FF
128	0 0000001 1 0000000	01 80
130	0 0000001 1 0000010	$01 \ 82$
20000	0 0000001 0 0011100 1 0100000	$01 \ 1C \ A0$

V-Byte Encoder

```
public void encode( int[] input, ByteBuffer output ) {
    for( int i : input ) {
        while( i >= 128 ) {
          output.put( i & 0x7F );
          i >>>= 7;
        }
        output.put( i | 0x80 );
    }
}
```

V-Byte Decoder

```
public void decode( byte[] input, IntBuffer output ) {
    for( int i=0; i < input.length; i++ ) {</pre>
        int position = 0;
        int result = ((int)input[i] & 0x7F);
        while( (input[i] & 0x80) == 0 ) {
            i += 1;
            position += 1;
            int unsignedByte = ((int)input[i] & 0x7F);
            result |= (unsignedByte << (7*position));
        output.put(result);
```

Compression Example

Consider invert list with positions:

$$(1, 2, [1, 7])(2, 3, [6, 17, 197])(3, 1, [1])$$

Delta encode document numbers and positions:

$$(1, 2, [1, 6])(1, 3, [6, 11, 180])(1, 1, [1])$$

Compress using v-byte:

81 82 81 86 81 82 86 8B 01 B4 81 81 81