

Principles and Applications of Abstract Interpretation

Abstract Domains

Buffer overflow Division by zero Integer overflow Alias analysis Floating-point errors

Buffer overflow Division by zero Integer overflow Alias analysis Floating-point errors

Almost all domains are for trace properties ... almost all

Buffer overflow
Division by zero
Integer overflow
Alias analysis
Floating-point errors
Information flows
Data races

Numerical Abstractions

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

■ Find an invariant for all values of all variables in $X \in \wp(\mathbb{M})$

e.g., $\mathbb{V} = \mathbb{Z}$

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

 \blacksquare Find an invariant for all values of all variables in $X \in \wp(\mathbb{M})$

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

 \blacksquare Find an invariant for all values of all variables in $X \in \wp(\mathbb{M})$

intervals

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

 \blacksquare Find an invariant for all values of all variables in $X \in \wp(\mathbb{M})$

intervals

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

■ Find an invariant for all values of all variables in $X \in \wp(M)$

intervals

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

■ Find an invariant for all values of all variables in $X \in \wp(M)$

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

■ Find an invariant for all values of all variables in $X \in \wp(M)$

linear inequalities

We aim to abstract elements in $\wp(\mathbb{M}) = \wp(\mathbb{L} \to \mathbb{V})$

■ Find an invariant for all values of all variables in $X \in \wp(M)$

e.g., $\mathbb{V} = \mathbb{Z}$

relational

For instance, with $X = \{ m \in M \mid m(x), m(y) \in [0, 2] \land x + y \le 2 \}$

non-relational intervals

linear inequalities

Upper closure operator on $\wp(\mathbb{M})$:

$$\eta_{nr} \triangleq \gamma_{nr} \circ \alpha_{nr} = \frac{\lambda}{X}. \; \{ \mathbb{m} \in \mathbb{M} \; | \; \forall \mathsf{x} \in \mathbb{X} \; \exists \mathbb{m}' \in X. \; \mathbb{m}(\mathsf{x}) = \mathbb{m}'(\mathsf{x}) \}$$

Upper closure operator on $\wp(\mathbb{M})$:

$$\eta_{nr} \triangleq \gamma_{nr} \circ \alpha_{nr} = \frac{\lambda}{X}$$
. $\{ m \in \mathbb{M} \mid \forall x \in \mathbb{X} \exists m' \in X . m(x) = m'(x) \}$

A domain is non-relational if $\eta_{nr} \circ \gamma = \gamma$

■ The domain cannot distinguish between X and X' when $\eta_{nr}(X) = \eta_{nr}(X')$

Upper closure operator on $\wp(\mathbb{M})$:

$$\eta_{nr} \triangleq \gamma_{nr} \circ \alpha_{nr} = \frac{\lambda}{X}. \; \{ \mathbb{m} \in \mathbb{M} \; | \; \forall \mathsf{x} \in \mathbb{X} \; \exists \mathbb{m'} \in X. \; \mathbb{m}(\mathsf{x}) = \mathbb{m'}(\mathsf{x}) \}$$

A domain is non-relational if $\eta_{nr} \circ \gamma = \gamma$

■ The domain cannot distinguish between X and X' when $\eta_{nr}(X) = \eta_{nr}(X')$

All domains seen so far (sign, intervals, constants) are non-relational

A Miné

Prove some complex non-relational invariants with relational loop invariants

Prove some complex non-relational invariants with relational loop invariants

Prove some complex non-relational invariants with relational loop invariants

A non-relational analysis at 8 finds: $i = 5000 \land x \in \mathbb{Z}$

Prove some complex non-relational invariants with relational loop invariants

```
1 x = 0;
2 i = 1;
3 while (i < 5000) {
    'if (rand(0,1) == 1)
        {5 x = x + 1 }
        {6 x = x - 1 };
    7 i = i + 1
8}</pre>
```

A non-relational analysis at 8 finds: $i = 5000 \land x \in \mathbb{Z}$

The best invariant at 8 is: $i = 5000 \land x \in [-4999, 4999] \land x \equiv_2 1$

Prove some complex non-relational invariants with relational loop invariants

- Find the relational loop invariant $-i < x < i \land x + i \equiv_2 1$ at 4
- Filter out by applying the negation of the guard at ³

Relational Numerical Abstractions

We look for invariants of the form:

$$\bigwedge_{j} \left(\sum_{i=1}^{n} c_{ij} \cdot \mathsf{x}_{i} \geq d_{j} \right) \qquad c,d \in \mathbb{V}$$

$$\bigwedge_{j} \left(\sum_{i=1}^{n} c_{ij} \cdot \mathsf{x}_{i} \ge d_{j} \right) \qquad c, d \in \mathbb{V}$$

Polyhedra domain $\mathbb{M}^{\sharp} \triangleq \{ closed convex polyhedra of \mathbb{X} \rightarrow \mathbb{V} \}$

Invariants are systems of affine inequalities, that can be expressed in matrix form $\langle \mathbf{M}, \vec{C} \rangle$

$$\gamma(\langle \mathbf{M}, \vec{C} \rangle) = \{ \vec{X} \in \mathbb{V}^n \mid \mathbf{M} \times \vec{X} \geq \vec{C} \} \simeq \left\{ \sum_{i=1}^n c_{ij} \cdot \mathsf{x}_i \geq d_j \right\}$$

given $\mathbf{M} \in \mathbb{V}^{m \times n}$ and $\vec{C} \in \mathbb{V}^m$

we assume $\mathbb{V} \in {\mathbb{Q}, \mathbb{R}}$

Invariants are systems of affine inequalities, that can be expressed in matrix form $\langle \mathbf{M}, \vec{C} \rangle$

$$\gamma(\langle \mathbf{M}, \vec{C} \rangle) = \{ \vec{X} \in \mathbb{V}^n \mid \mathbf{M} \times \vec{X} \geq \vec{C} \} \simeq \left\{ \sum_{i=1}^n c_{ij} \cdot \mathsf{x}_i \geq d_j \right\}$$

given $\mathbf{M} \in \mathbb{V}^{m \times n}$ and $\vec{C} \in \mathbb{V}^m$

we assume $\mathbb{V} \in {\mathbb{Q}, \mathbb{R}}$

Invariants are systems of affine inequalities, that can be expressed in matrix form $\langle \mathbf{M}, \vec{C} \rangle$

$$\gamma(\langle \mathbf{M}, \vec{C} \rangle) = \{ \vec{X} \in \mathbb{V}^n \mid \mathbf{M} \times \vec{X} \geq \vec{C} \} \simeq \left\{ \sum_{i=1}^n c_{ij} \cdot \mathsf{x}_i \geq d_j \right\}$$

given $\mathbf{M} \in \mathbb{V}^{m \times n}$ and $\vec{C} \in \mathbb{V}^m$

- No best abstraction α (a disc has infinite approximations)
- No bound on the representation (exponential in practice)

Topological closure of the convex hull of $\gamma(\mathbb{m}_1^\sharp) \cup \gamma(\mathbb{m}_2^\sharp)$

A convex polyhedron containing the polyhedra to join

We look for invariants of the form:

$$\bigwedge \left(\pm \mathsf{x}_i \pm \mathsf{x}_j \le c_k \right)$$

We look for invariants of the form:

$$\bigwedge \left(\pm \mathsf{x}_i \pm \mathsf{x}_j \le c_k \right)$$

Octagons domain: special case of polyhedra domain (symmetric and bounded)

Simpler matrix representation M

$$\gamma(\mathbf{M}) = \left\{ \vec{X} \in \mathbb{V}^n \mid \forall i, j \in [1, n] . \vec{X}_j - \vec{X}_i \leq \mathbf{M}_{i, j} \right\} \simeq \left\{ \pm \mathbf{x}_i \pm \mathbf{x}_j \leq c_k \right\}$$

given $\mathbf{M} \in (\mathbb{V} \cup \{\infty\})^{2n \times 2n}$ difference bound matrix

we assume $\mathbb{V} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$

Simpler matrix representation M

$$\gamma(\mathbf{M}) = \left\{ \vec{X} \in \mathbb{V}^n \mid \forall i, j \in [1, n] \, . \, \vec{X}_j - \vec{X}_i \leq \mathbf{M}_{i, j} \right\} \simeq \left\{ \pm \mathsf{x}_i \pm \mathsf{x}_j \leq c_k \right\}$$

given $\mathbf{M} \in (\mathbb{V} \cup \{\infty\})^{2n \times 2n}$ difference bound matrix

we assume $\mathbb{V} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$

Simpler matrix representation M

$$\gamma(\mathbf{M}) = \left\{ \vec{X} \in \mathbb{V}^n \mid \forall i, j \in [1, n] \: . \: \vec{X}_j - \vec{X}_i \leq \mathbf{M}_{i, j} \right\} \simeq \left\{ \pm \mathsf{x}_i \pm \mathsf{x}_j \leq c_k \right\}$$

given $\mathbf{M} \in (\mathbb{V} \cup \{\infty\})^{2n \times 2n}$

difference bound matrix

- **B**est abstraction α does exist
- Quadratic memory cost / Cubic time cost

Element-wise maximum

No better approximation than intervals

A. Min

Better approximation than intervals

Intervals: non-relational Complexity: linear

Intervals: non-relational Complexity: linear

Octagons: weakly relational
Complexity: quadratic/cubic

⊚ A. Min

Intervals: non-relational Complexity: linear

Polyhedra: relational Complexity: exponential

Octagons: weakly relational

Complexity: quadratic/cubic

Thanks for the attention!

