Numerical Methods for the Solution of Differential Equations (AM 213B) Homework 2 - Grading rubric

Question 1 (30 points):

- (a) (10 points) for determining the correct value of Δt^*
- (b) (10 points) for plotting the correct region of absolute stability of AB3
- (c) (10 points)
 - 5 points for implementing AM3 correctly
 - 5 points for the plots of the numerical solution for the various values of Δt (3 different figures total: for $\Delta t = 10^{-4}$, $\Delta t = \Delta t^* + 0.0001$, and $\Delta t = \Delta t^* 0.0001$).

Question 2 (20 points):

- (a) (10 points)
 - 5 points for showing consistency with order 3
 - 5 points for showing zero stability and stating the convergence theorem (consistency + zero stability \Rightarrow convergence)
- (b) (10 points)
 - 5 points for plotting the absolute stability region
 - 5 points for showing that BDF3 is not A-stable.

Question 3 (30 points):

- (a) (10 points)
 - 5 points for showing that the scheme is consistent
 - 5 points for the correct order of consistency.
- (b) (10 points) for showing that the scheme is not zero-stable. Thus, its is not convergent due to the convergence theorem (consistency + zero stability ⇒ convergence)
- (c) (10 points) for showing that the scheme is unconditionally absolutely stable via theoretical, numerical, or combined theoretical/numerical arguments.

Question 4 (20 points):

- (a) (10 points)
 - 3 points for writing down the RK scheme
 - 3 points for showing consistency
 - 4 points for showing zero-stability and convergence.
- (b) (10 points) for plotting the region of absolute stability and stating that the given RK3 method is conditionally absolutely stable, i.e., not A-stable.