

Unit-5

——Multi-Level Gate Circuits NAND and NOR Gates 张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

5.5 几种典型的组合逻辑部件_加法器

- ■半加器
 - ■全加器

半加器(Half adder)

功能:对两个1位二进制数执行相加运算

$$\begin{array}{ccc} a_i & \longrightarrow & S_i \\ b_i & \longrightarrow & C_i \end{array}$$

真值表

a _i	b _i	Si	C,
		•	
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\begin{cases} S_i = a_i \oplus b_i \\ C_i = a_i b_i \end{cases}$$

半加器(Half adder)

利用单一逻辑门与非门实现半加器

$$\begin{cases} S_i = \overline{a}_i b_i + a_i \overline{b}_i = \overline{a}_i b_i + a_i \overline{b}_i + \overline{a}_i a_i + \overline{b}_i b_i \\ = a_i \ (\overline{a}_i + \overline{b}_i) + b_i \ (\overline{a}_i + \overline{b}_i) = a_i \ \overline{a_i b_i} + b_i \ \overline{a_i b_i} \\ = \overline{a_i} \ \overline{a_i \overline{b}_i} \ \overline{b_i} \ \overline{a_i \overline{b}_i} \end{cases}$$

$$C_i = \overline{a_i \overline{b}_i}$$

A=
$$a_3 a_2 a_1 a_0 = 1011$$

B = $b_3 b_2 b_1 b_0 = 1110$

真值表

a _i	b _i	C _{i-1}	Si	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

真值表

a _i	b _i	C _{i-1}	Si	C _i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\begin{split} S_{i} &= \overline{a_{i}} \overline{b_{i}} c_{i-1} + \overline{a_{i}} b_{i} \overline{c_{i-1}} + a_{i} \overline{b_{i}} \overline{c_{i-1}} + a_{i} b_{i} c_{i-1} \\ &= & (\overline{a_{i}} \overline{b_{i}} + a_{i} b_{i}) c_{i-1} + (\overline{a_{i}} b_{i} + a_{i} \overline{b_{i}}) \overline{c_{i-1}} \\ &= & (\overline{a_{i}} \oplus \overline{b_{i}}) c_{i-1} + (a_{i} \oplus \overline{b_{i}}) \overline{c_{i-1}} \\ &= a_{i} \oplus b_{i} \oplus C_{i-1} \end{split}$$

$$C_i = (a_i \oplus b_i) C_{i-1} + a_i b_i$$

方案 1:
$$\begin{cases} S_i = a_i \oplus b_i \oplus C_{i-1} \\ C_i = (a_i \oplus b_i) C_{i-1} + a_i b_i \end{cases}$$

典型芯片

74LS82: 2-bit adder

74LS283: 4-bit adder

二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀	二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀
0 0 0 0	0 0 1 1	1000	1011
0 0 0 1	0 1 0 0	1001	1 1 0 0
0 0 1 0	0 1 0 1	1010	×
0 0 1 1	0110	1011	×
0 1 0 0	0111	1 1 0 0	×
0 1 0 1	1000	1 1 0 1	×
0 1 1 0	1001	1110	×
0 1 1 1	1 0 1 0	1111	×

应用——余3码产生器

A₃A₂A₁A₀: 输入 8421 BCD码

S₃S₂S₁S₀: 输出余3码

S = A + 0011

5.5 几种典型的组合逻辑部件_加法器

- ■半加器
- ■全加器