Drug discovery is a funneling process

Watch out for accidental cheating

Watch out for accidental cheating

Watch out for accidental cheating

ZINC is not commercial

		Ű	Rep. 2D 3D	React. Standa	rd → Purch. V	/ait OK ▼ pH	N/A ▼ Charge	N/A ▼	±			
					Molecular Weigh	nt (up to, Daltons	6)					
	200	250	300	325	350	375	400	425	450	500	>500	Totals, by LogP
-1	26,300	172,243	711,154	1,073,434	2,241,963	786,567	276,697	115,912	92,319	77,592	6,562	5,580,743
0	134,780	937,871	3,666,993	5,134,727	10,617,504	3,497,727	1,663,253	708,674	570,333	507,159	4,566	27,443,587
1	351,323	2,902,517	12,100,761	16,209,427	33,714,492	11,884,234	6,806,146	3,177,606	2,647,877	2,412,439	9,604	92,216,426
2	453,325	4,616,936	23,134,897	31,093,399	65,280,189	26,749,019	17,834,617	9,347,019	8,098,404	7,685,255	23,946	194,317,006
Q 2.5	162,532	2,149,870	12,978,433	18,121,142	38,881,061	18,580,472	13,808,318	8,109,308	7,196,167	6,977,921	23,568	126,988,792
(ot dn) dgo 2.5	87,379	1,576,675	11,142,304	16,424,866	35,048,529	19,935,574	16,032,502	10,337,613	9,360,681	9,117,480	36,612	129,100,215
3.5	35,211	928,591	7,972,394	12,579,243	27,533,491	18,698,321	16,480,227	11,781,710	10,772,923	10,691,752	57,927	117,531,79
4	8,431	367,063	4,338,937	6,502,388	10,552,677	13,029,439	14,324,786	11,680,442	10,889,576	11,002,113	85,151	82,781,003
4.5	851	85,223	1,811,849	3,459,895	6,377,671	8,849,795	10,316,857	9,942,766	9,484,864	9,822,932	116,323	60,269,026
5	105	12,953	534,136	1,404,570	3,167,902	4,993,841	6,469,433	7,022,949	6,975,071	7,323,761	141,869	38,046,590
>5	31	931	21,436	102,296	374,955	924,743	1,667,772	2,191,520	2,585,468	3,046,442	747,096	11,662,690
Totals, by Weight	ht 1,260,268	0,268 13,750,873	78,413,294	112,105,387	233,790,434	127,929,732	105,680,608	74,415,519	68,673,683	68,664,846	1,253,224	885,937,868 Substances
round, of morgine	1,200,200	10,700,070	70,410,204	1.12,100,007	200,100,404	121,020,102	100,000,000	74,410,010	00,070,000	00,004,040	1,200,224	1.8K Tranche

You can easily subset based on availability or other categories

(The "in stock" subset is more modest)

		Ű	Rep. 2D 3D	React. Standa	rd → Purch.	n-Stock ▼ pH	N/A ▼ Charge	N/A ▼	<u>+</u>			
Molecular Weight (up to, Daltons)												
	200	250	300	325	350	375	400	425	450	500	>500	Totals, by LogP
-1	7,564	5,665	7,578	4,018	4,146	2,848	2,091	1,547	1,199	2,125	6,313	45,094
0	28,699	20,270	35,000	21,579	22,273	14,052	8,745	4,545	3,069	3,022	4,276	165,530
1	77,543	81,302	161,967	112,333	120,921	71,383	42,380	20,170	12,238	11,221	8,510	719,968
2	105,222	181,327	399,448	318,958	389,588	230,270	149,732	76,243	50,651	42,725	19,259	1,963,42
(o) 2.5	38,264	101,944	265,621	236,384	321,651	204,539	145,627	83,368	58,497	49,925	18,830	1,524,65
LogP (up to)	21,956	82,779	247,196	239,988	359,194	251,845	195,747	121,779	90,466	84,258	30,366	1,725,57
3.5	9,431	51,618	182,319	196,565	310,312	253,674	218,734	155,053	122,800	122,489	51,041	1,674,03
4	2,887	24,661	109,239	126,391	209,523	215,034	209,288	171,762	144,621	158,241	78,804	1,450,45
4.5	592	8,939	53,627	71,560	122,687	151,306	169,498	159,349	144,746	174,790	111,949	1,169,04
5	103	2,586	20,624	33,421	62,058	89,134	110,752	118,808	122,285	170,826	139,628	870,225
>5	31	881	9,330	17,880	39,341	72,345	110,903	143,431	172,050	370,718	743,374	1,680,28
Totals, by Weight	292,292	561,972	1,491,949	1,379,077	1,961,694	1,556,430	1,363,497	1,056,055	922,622	1,190,340	1,212,350	12,988,2 Substance
												960 Trancl

There are also various predefined subsets

Let's look at in-stock lead-like samples

Molecular Weight (up to, Daltons)												
	200	250	300	325	350	375	400	425	450	500	>500	Totals, by LogP
-1			7,578	4,018	4,146	2,848						15,742
0			35,000	21,579	22,273	14,052						78,852
1			161,967	112,333	120,921	71,383						395,221
2			399,448	318,958	389,588	230,270						1,107,99
Q 2.5			265,621	236,384	321,651	204,539						823,656
Log (up to 5.5)			247,196	239,988	359,194	251,845						846,378
3.5			182,319	196,565	310,312	253,674						689,196
4												0
4.5												0
5												0
>5												0
als, by Weight	0	0	1,299,129	1,129,825	1,528,085	0	0	0	0	0	0	3,957,0 3 Substand
			,,		,,							168 Tranc

Let's look at in-stock lead-like samples

Let's look at samples from the "in stock" set: Fragments now

Molecular Weight (up to, Daltons)												
	200	250	300	325	350	375	400	425	450	500	>500	Totals, by LogP
-1	7,564	5,665	7,578									13,229
0	28,699	20,270	35,000									48,969
1	77,543	81,302	161,967									158,845
2	105,222	181,327	399,448									286,549
2.5	38,264	101,944	265,621									140,208
2.5 dn) d63	21,956	82,779	247,196									104,735
3.5	9,431	51,618	182,319									61,049
4	2,887	24,661	109,239									0
4.5												0
5												0
>5												0
ıls, by Weight	288,679	524,905	0	0	0	0	0	0	0	0	0	813,584 Substance
., .,								0				112 Tranche

Let's look at samples from the "in stock" set: Fragments now

Let's look at samples from the "in stock" set: Shards now

Molecular Weight (up to, Daltons)												
	200	250	300	325	350	375	400	425	450	500	>500	Totals, by LogP
-1	7,564	5,665										7,564
0	28,699	20,270										28,699
1	77,543	81,302										77,543
2	105,222	181,327										105,222
Q 2.5	38,264	101,944										38,264
Cog (nb to 2.5)	21,956	82,779										21,956
3.5	9,431	51,618										9,431
4	2,887	24,661										2,887
4.5	592	8,939										592
5	103	2,586										103
>5	31	881										31
, by Weight	292,292	0	0	0	0	0	0	0	0	0	0	292,292 Substance

Let's look at samples from the "in stock" set: Shards now

LINGO searches are extremely fast and make some chemical sense

LINGO searches are extremely fast and make some chemical sense

LINGO searches are extremely fast and make some chemical sense

LINGO searches work based on SMILES strings

CCIC(C(CC(OI)OC2CC(Cc3c2c(c4c(c3O)C(=O)c5cccc(c5C4=O)OC)O)(C(=O)CO)O)N)O

ID representations include name, SMILES strings

- "ID": Conveys identity of compound in a way that can in principle be converted to 2D structure
- Most obvious ID representation: Chemical name (i.e. IUPAC name)
- Numbering schemes
 - Chemical Abstracts Service (CAS) numbers
 - PubChem numbers
 - Like social security numbers
- Smiles strings

- "Simplified molecular-input line-entry specification"
- Simpler than reading/writing IUPAC names
- Human readable
- Element names and types (hydrogens implied)
 - C, B, N, O, P, S, F, Cl, Br, I. Other elements must be in brackets. Lowercase for aromatic
 - Hydrogens are assumed (except in brackets)
 - Charges need to be indicated
 - Bonding shown by =, # (single bonds implied)
 - Ex. CCO -- ethanol; C=CO -- vinyl alcohol (ethenol) which tautomerizes to acetaldehyde
 (CC=O)

- "Simplified molecular-input line-entry specification"
- Simpler than reading/writing IUPAC names
- Human readable
- Element names and types (hydrogens implied)
 - C, B, N, O, P, S, F, Cl, Br, I. Other elements must be in brackets. Lowercase for aromatic
 - Hydrogens are assumed (except in brackets)
 - Charges need to be indicated
 - Bonding shown by =, # (single bonds implied)
 - Ex. CC? -- thanol; C=CO -- vinyl alcohol (ethenol) which tautomerizes to acetaldehyde (CC

- "Simplified molecular-input line-entry specification"
- Simpler than reading/writing IUPAC names
- Human readable
- Element names and types (hydrogens implied)
 - C, B, N, O, P, S, F, Cl, Br, I. Other elements must be in brackets. Lowercase for aromatic
 - Hydrogens are assumed (except in brackets)
 - Charges need to be indicated
 - Bonding shown by =, # (single bonds implied)
 - Ex. CC? -- thanol; C=CO -- myl alcohol (ethenol) which tautomerizes to acetaldehyde (CC)

- "Simplified molecular-input line-entry specification"
- Simpler than reading/writing IUPAC names
- Human readable
- Element names and types (hydrogens implied)
 - C, B, N, O, P, S, F, Cl, Br, I. Other elements must be in brackets. Lowercase for aromatic
 - Hydrogens are assumed (except in brackets)
 - Charges need to be indicated
 - Bonding shown by =, # (single bonds implied)
 - Ex. CCO --- thanol; C=CO --- nyl alcohol (ethenol) which tautomerizes acetaldehyde (CC

Images from Wikipedia

- Branching is indicated using parentheses
- Loop closure by numerically labeling atoms
 - Cyclohexane CICCCCI; dioxane OICCCOCI
- Generation is done by breaking cycles and writing as branches off a main backbone
- Ex:

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Example: Ciprofloxacin, an antibiotic

Break rings and identify backbone and places to close rings:

$$\begin{array}{c} 3 \\ 3 \\ N \end{array}$$

Write SMILES string

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

Example: Ciprofloxacin, an antibiotic

Break rings and identify backbone and places to close rings:

Let's try a couple examples together

(remember: hydrogens implied)

Attrb: creative commons

Let's try a couple examples together

(remember: hydrogens implied)

Attrb: creative commons

CN1C=NC2=C1C(=O)N(C(=O)N2C)C

Let's try a couple examples together

(remember: hydrogens implied)

Attrb: creative commons

SMILES strings are modified to remove numbering and then fragmented; frequencies are compared

LINGO profile is a holographic representation of the SMILES code.

Some empirical models use LINGO to estimate properties based on functional groups

In virtual screening, LINGO searches compare reasonably favorably with shape and docking approaches

Fingerprint methods encode molecular descriptors in a fast way, often binary

What kind of information might we encode?

- Specific functional groups of interest
- Other patterns, bioisosteres
- Hydrogen bond donors, acceptors
- Aromatic rings generally
- Arrangement of functional groups
- Anything we want that can be framed in terms of a yes/no question