What is claimed is:

1	1. A method for coating an implant comprising the
2	\steps of \
3	(a) \contacting the implant with an aqueous
4	solution of magnesium, calcium, and phosphate ions;
5	(b) passing a gaseous weak acid through the
6	aqueous solution;
7	(c) degassing the aqueous solution; and
8	(d) allowing the magnesium, calcium, and
9	phosphate ions to precipitate onto the implant to form a
10	coating.
1	2. The method of claim 1 wherein the gaseous weak
2	acid is carbon dioxide
1	3. The method of claim 1 wherein the implant is
2	formed from one or more of metal, organic material, polymer
3	or ceramic.
. 1	4. The method according to claim 1 wherein the
2	calcium and phosphate ions are present in the aqueous
3	solution in a molar ratio of between about 1 to about 3.
1.	5. The method according to claim 1 wherein the
2	calcium and phosphate ions are present in the aqueous
3	solution in a molar ratio of between about 1.5 to about
4	2.5.
1	6. The method according to claim 1 wherein the
2	aqueous solution comprises about 0.5 to about 50 mgM calcium
3	ions and about 0.5 to about 20 mM phosphate ions.
4	7. The method according to claim 1 wherein the
5	aqueous solution comprises about 2.5 to about 25 mM calcium
6	ions and about 1.0 to about 10 mM phosphate ions.
	- · · · · · · · · · · · · · · · · · · ·

1 2

- 8. The method according to claim 1 wherein the aqueous solution comprises about 0.1 to about 20 mM magnesium ions.
- 9. The method according to claim 1 wherein the aqueous solution comprises about 1.5 to about 10 mM magnesium ions.
- 10. The method according to claim 1 wherein the aqueous solution comprises no carbonate ions or less than about 50 mM carbonate ions.
- 11. The method according to claim 1 wherein the aqueous solution comprises no carbonate ions or less than about 42 mM carbonate ions.
- 12. The method according to claim 1 wherein the aqueous solution comprises an ionic strength in the range of about 0.1 to about 2 M.
- 13. The method according to claim 1 wherein the aqueous solution comprises an ionic strength in the range of about 0.15 to about 1.5 M.
- 14. The method according to claim 1 wherein the gaseous weak acid is passed through the aqueous solution at a pressure of about 0.1 to about 10 bar
- 15. The method according to claim 1 wherein the gaseous weak acid is passed through the aqueous solution at a pressure of about 0.5 to about 1.5 bar.
- 16. The method according to claim 1 wherein the aqueous solution has a temperature in the range of between about 5°C to about 80°C.

- 17. The method according to claim 1 wherein the aqueous solution has a temperature in the range of between about 5°C to about 50°C.
- 18. The method according to claim 1 wherein the implant is treated by a mechanical or chemical surface treatment prior to contacting the implant with the aqueous solution.
- 19. The method of claim 18 wherein the implant is treated by sand blasting, scoring, polishing or grounding.
- 20. The method of claim 18 wherein the implant is treated by contacting with strong mineral acid or an oxidizing agent in a manner to etch the implant.
- 21. The method of claim 1 wherein the coating comprises magnesium ions, calcium ions and phosphate ions and one or more ions selected from the group consisting of hydroxide, carbonate, chloride, sodium and potassium.
- 22. The method of claim 1 wherein the coating comprises one or more of amorphous carbonate calcium phosphate, hydroxyapatite, calcium deficient and hydroxyl carbonate apatite, oroctacalcium phosphate, dicalcium phosphate dihydrate or calcium carbonate.
- 23. The method of claim 1 wherein the coating has a thickness of about 0.5 to about 100 microns.
- 24. The method of claim 1 wherein the coating has a thickness of about 0.5 to about 50 microns.

	25. The method of claim 1 further comprising the step
	of contacting a coated implant with a calcifying solution
	comprising calcium and phosphate ions, and allowing a
•	precipitate layer of calcium and phosphate ions to form on
٠	the coated implant.
	26. A device for coating an implant comprising
	(a)\ reactor\vessel;
	(b) heating element operatively connected to the
	reactor vessel;
	(c) implant support;
	(d) stirrer disposed within the reactor vessel;
	(f) inlet and outlet operatively connected to
	the reactor vessel; and
•	(g) controlled \source of carbon dioxide
	an and in later and to the linlet

