Faster Dual Lattice Attacks by Using Coding Theory

Kevin Carrier, **Yixin Shen** and Jean-Pierre Tillich

ETIS Laboratory, CY Cergy-Paris University Royal Holloway, University of London Project COSMIQ, Inria de Paris

November 21, 2022

Let n = 4, m = 6 and q = 17.

Given A and b, find s.

5

3 | 14

Let n = 4, m = 6 and q = 17.

Given A and b, find s.

→ Very easy (e.g. Gaussian elimination) and in polynomial time

Let n = 4, m = 6 and q = 17.

random				S	ecre	t ı	noise			
$A \in \mathbb{Z}_q^{m \times n}$				S	n q	$e \in \mathbb{Z}_q^n$	n I	$b \in \mathbb{Z}_q^m$		
14	12	2	5		1		-3		11	
5	3	1	7	×	2		-1	_	5	
14	7	2	5	^	1		2	_	14	
0	9	8	4		5		-3		6	
8	11	5	12				3		12	
5	1	3	14				-1		13	

Let n = 4, m = 6 and q = 17.

random				secret			noise				
$A \in \mathbb{Z}_q^{m \times n}$					$s \in \mathbb{Z}$	n ¹q	e ∈	\mathbb{Z}_q^n	b	$\in \mathbb{Z}$	m q
14	1 12	2	5							11	
5	3	1	7	×					_	5	
14	1 7	2	5						_	14	
0	9	8	4							6	
8	11	5	12							12	
5	1	3	14							13	

Given A and b, find s.

→ Suspected hard problem, even for quantum algorithms

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ightharpoonup output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ▶ output (*A*, *As* + *e*).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given $(A, b) \leftarrow \text{LWE}(n, m, q, \chi_e, \chi_s)$, recover s.

Decision LWE problem:

distinguish LWE $(n, m, q, \chi_e, \chi_s)$ from $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Let $n, m, q \in \mathbb{Z}$ and χ_e, χ_s two distributions over \mathbb{Z}_q .

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ightharpoonup output (A, As + e).

Intuition: As + e is very close to a uniform distribution.

Search LWE problem: given $(A, b) \leftarrow \text{LWE}(n, m, q, \chi_e, \chi_s)$, recover s.

Decision LWE problem:

distinguish LWE $(n, m, q, \chi_e, \chi_s)$ from $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$.

Lemma: Search LWE is easy if and only if decision LWE is easy.

LWE(n, m, q, χ_e, χ_s): probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- output (A, As + e).

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ▶ output (*A*, *As* + *e*).

Secret distributions χ_s :

- ightharpoonup originally uniform in \mathbb{Z}_q
- ▶ now some distribution of small deviation σ_s (e.g. discrete Gaussian/centered Binormial, $\{-1,0,1\}$ whp)
- Fact: small secret is as hard as uniform secret
- small secret allows more efficient schemes

LWE $(n, m, q, \chi_e, \chi_s)$: probability distribution on $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$

- ▶ sample $A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- ▶ sample $s \leftarrow \chi_s^n$
- ▶ sample $e \leftarrow \chi_e^m$
- ▶ output (*A*, *As* + *e*).

Noise distributions χ_e :

- lacktriangle usually discrete Gaussian/centered Binormial of deviation σ_e
- ▶ most schemes (Kyber/Saber/...): σ_e small (≈ 1)

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST PQC candidates rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

LWE: security and attacks

LWE is fundamental to lattice-based cryptography:

- several lattice-based NIST PQC candidates rely on LWE
- extensive literature
- all evidence points to resistance against quantum attacks

Two types of attacks:

- Primal attacks:
 - more efficient in most cases
- Dual attacks:
 - originally less efficient, now catching up

Contribution: improvement on dual attacks using ideas from codes

Very naive attack:

Very naive attack: guess secret §

Attack:

- **▶** get (*A*, *b*)
- guess §
- ightharpoonup output $b' = b A\tilde{s}$

Very naive attack: guess secret §

Attack:

- ▶ get (A, b)
- guess §
- ▶ output $b' = b A\tilde{s}$

Good guess (
$$\mathbf{s} = \tilde{\mathbf{s}}$$
):

$$b' = e$$

follows a discrete Gaussian of small deviation

Very naive attack: guess secret §

Attack:

- **▶** get (*A*, *b*)
- guess §
- ▶ output $b' = b A\tilde{s}$

Good guess (
$$s = \tilde{s}$$
):

$$b' = e$$

follows a discrete Gaussian of small deviation

Bad guess (
$$\mathbf{s} \neq \tilde{\mathbf{s}}$$
):

$$b' = e + A(s - \tilde{s})$$

follows a uniform¹ distribution (*A* uniform in $\mathbb{Z}_q^{m \times n}$)

¹Technically only true for fixed s, random A and s

Given a sampler for χ^m , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

Given a sampler for χ^m , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

The entries are independent: given a sample from χ^m we obtain m independent samples from χ .

 \rightarrow if *m* large enough, we know how to distinguish.

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian) Essentially optimal distingusher: use Fourier transform

$$\mathbb{E}_{x \leftarrow \chi}[e^{2i\pi x/q}], \mathsf{Var}_{x \leftarrow \chi}[e^{2i\pi x/q}] \approx \begin{cases} 0, \mathbf{0} & \text{if } \chi = U(\mathbb{Z}_q) \\ e^{-2\left(\frac{\pi\sigma}{q}\right)^2}, e^{-8\left(\frac{\pi\sigma}{q}\right)^2} & \text{if } \chi = D_{\sigma,q} \end{cases}$$

Given a sampler for χ , decide if $\chi = U(\mathbb{Z}_q)$ or $D_{\sigma,q}$ (discrete Gaussian)

Essentially optimal distingusher: use Fourier transform

$$\mathbb{E}_{x \leftarrow \chi}[e^{2i\pi x/q}], \mathsf{Var}_{x \leftarrow \chi}[e^{2i\pi x/q}] \approx \begin{cases} 0, 0 & \text{if } \chi = U(\mathbb{Z}_q) \\ e^{-2\left(\frac{\pi\sigma}{q}\right)^2}, e^{-8\left(\frac{\pi\sigma}{q}\right)^2} & \text{if } \chi = D_{\sigma,q} \end{cases}$$

Attack:

- ▶ sample $N = \Omega(1/\varepsilon^2)$ values $x_1, ..., x_N$ from χ
- compute

$$S = \frac{1}{N} \sum_{j=1}^{N} e^{2i\pi x_j/q}$$

► Check if $S > e^{-2\left(\frac{\pi\sigma}{q}\right)^2}$

The quantity $\varepsilon = e^{-2\left(\frac{\pi\sigma}{q}\right)^2}$ is called the advantage.

Very naive attack:

- guess š: qⁿ possiblities
- compute $1/\varepsilon^2$ samples to check guess

Very naive attack:

- guess š: qⁿ possiblities
- ▶ compute $1/\varepsilon^2$ samples to check guess

Complexity estimate:

$$q^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

Very naive attack:

- guess š: qⁿ possiblities
- ▶ compute $1/\varepsilon^2$ samples to check guess

Complexity estimate:

$$q^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

Can do better by guessing s in decreasing order of probability¹:

$$G(\chi_s^n) \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} \leqslant (1.22\sqrt{2\pi}\sigma_s)^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

where σ_s deviation of s, $G(\cdot) =$ guessing complexity

¹The complexity is now the expected running time

Very naive attack:

- guess š: qⁿ possiblities
- \triangleright compute $1/\varepsilon^2$ samples to check guess

Complexity estimate:

$$q^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

Can do better by guessing s in decreasing order of probability¹:

$$G(\chi_s^n) \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} \leqslant (1.22\sqrt{2\pi}\sigma_s)^n \cdot e^{4\left(\frac{\pi\sigma_e}{q}\right)^2} = \text{too much}$$

where σ_s deviation of s, $G(\cdot) =$ guessing complexity

Dual attacks: provide an efficient way to only guess a part of the secret

¹The complexity is now the expected running time

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output $(A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}})$

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output $(A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}})$

Good guess (
$$s_{fft} = \tilde{s}_{fft}$$
):

$$b' = A_{lat} s_{lat} + e$$

so (A_{lat}, b') follows an LWE distribution

Split secret: $n = k_{\text{fft}} + k_{\text{lat}}$, guess \tilde{s}_{fft} , output $(A_{\text{lat}}, b' = b - A_{\text{fft}} \tilde{s}_{\text{fft}})$

Good guess (
$$s_{\text{fft}} = \tilde{s}_{\text{fft}}$$
):
 $b' = A_{\text{lat}} s_{\text{lat}} + e$
so (A_{lat}, b') follows an LWE distribution

Bad guess (
$$s_{\text{fft}} \neq \tilde{s}_{\text{fft}}$$
):

$$b' = A_{\text{fft}}(s_{\text{fft}} - \tilde{s}_{\text{fft}}) + \cdots$$

so (A_{lat}, b') follows a uniform distribution $(A_{fft}$ uniform)

Given a sampler for χ , decide if χ = uniform or LWE.

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A_{lat}, b') from χ
- ▶ compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{lat} = 0$
- ightharpoonup output x^Tb'

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A_{lat}, b') from χ
- ▶ compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{lat} = 0$
- ightharpoonup output x^Tb'

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A_{lat}, b') from χ
- ▶ compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{lat} = 0$
- \triangleright output x^Tb'

When
$$\chi = LWE$$
:

$$x^Tb' = x^Te$$

follows an approximate Gaussian distribution

Uniform/LWE distinguisher

Given a sampler for χ , decide if χ = uniform or LWE.

- ▶ sample (A_{lat}, b') from χ
- ▶ compute $x \in \mathbb{Z}_q^m$ such that $x^T A_{lat} = 0$
- \triangleright output x^Tb'

When
$$\chi = LWE$$
:

$$x^Tb' = x^Te$$

follows an approximate Gaussian distribution

When
$$\chi = \text{Uniform}$$
:

$$x^Tb'$$

follows a uniform distribution (b' uniform, independent from A_{lat})

Naive dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- \triangleright compute dual vectors x and dot products x^Tb
- guess š_{fft}, subtract guess
- compute $1/\varepsilon^2$ samples to check guess

Naive dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- \triangleright compute dual vectors x and dot products x^Tb
- guess š_{fft}, subtract guess
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- ▶ $x^Tb = x^Te$ approx Gaussian deviation $||x||\sigma_e$

Naive dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- \triangleright compute dual vectors x and dot products x^Tb
- guess š_{fft}, subtract guess
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $ightharpoonup x^T b = x^T e$ approx Gaussian deviation $||x|| \sigma_e$

Complexity estimate:

$$q^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi ||\mathbf{x}||\sigma_e}{q}\right)^2} + \text{(time to compute many } \mathbf{x}\text{)}$$

Naive dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- \triangleright compute dual vectors x and dot products x^Tb
- guess š_{fft}, subtract guess
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $\rightarrow x^T b = x^T e$ approx Gaussian deviation $||x|| \sigma_e$

Complexity estimate:

$$q^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi ||\mathbf{x}||\sigma_e}{q}\right)^2} + \text{(time to compute many } \mathbf{x}\text{)}$$

 \sim we want x to be short

Naive dual attack:

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- \triangleright compute dual vectors x and dot products x^Tb
- guess š_{fft}, subtract guess
- compute $1/\varepsilon^2$ samples to check guess

What is ε ?

- e approx Gaussian deviation σ_e
- $\rightarrow x^T b = x^T e$ approx Gaussian deviation $||x|| \sigma_e$

Complexity estimate:

$$q^{k_{\text{fit}}} \cdot e^{4\left(\frac{\pi ||\mathbf{x}||\sigma_e}{q}\right)^2} + \text{(time to compute many } \mathbf{x}\text{)}$$

 \rightarrow we want x to be short \rightarrow lattice reduction

What is a (Euclidean) lattice?

Definition

$$\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$$
 where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

An important optimization

- $b' = b A_{\text{fit}} \tilde{s}_{\text{fit}}$ comes from search to distinguish reduction
- \triangleright x_1, \dots, x_N is a list of dual vectors
- $\sim \alpha_i = x_i^T b'$ comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute

$$F(\tilde{\mathbf{S}}_{\mathrm{fft}}) = \sum_{j=1}^{N} e^{\frac{2i\pi}{q} \frac{\alpha_j}{q}}$$

An important optimization

- $b' = b A_{\text{fit}} \tilde{s}_{\text{fit}}$ comes from search to distinguish reduction
- $\triangleright x_1, \dots, x_N$ is a list of dual vectors
- $\sim \alpha_i = x_i^T b'$ comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute

$$F(\tilde{\mathbf{S}}_{\mathrm{fft}}) = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}\alpha_{j}} = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}x_{j}^{T}(b-A_{\mathrm{ff}}\tilde{\mathbf{S}}_{\mathrm{fft}})} = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}x_{j}^{T}b} \cdot e^{-\frac{2i\pi}{q}x_{j}^{T}A_{\mathrm{ff}}\tilde{\mathbf{S}}_{\mathrm{fft}}}$$

Observation:
$$F(\tilde{s}_{fft}) = \hat{T}(\tilde{s}_{fft})$$
 Fourier transform of $T(x_j^T A_{fft}) = e^{\frac{2i\pi}{q}x_j^T b}$

An important optimization

- $b' = b A_{ff} \tilde{s}_{ff}$ comes from search to distinguish reduction
- \triangleright x_1, \dots, x_N is a list of dual vectors
- $\sim \alpha_i = x_i^T b'$ comes from uniform/LWE to uniform/Gaussian red.

To distinguish between unidimensional uniform/Gaussian, we compute

$$F(\tilde{\mathbf{S}}_{\mathrm{fit}}) = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}\alpha_{j}} = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}x_{j}^{T}(b-A_{\mathrm{fit}}\tilde{\mathbf{S}}_{\mathrm{fit}})} = \sum_{j=1}^{N} e^{\frac{2i\pi}{q}x_{j}^{T}b} \cdot e^{-\frac{2i\pi}{q}x_{j}^{T}A_{\mathrm{fit}}\tilde{\mathbf{S}}_{\mathrm{fit}}}$$

Observation:
$$F(\tilde{s}_{fft}) = \hat{T}(\tilde{s}_{fft})$$
 Fourier transform of $T(x_j^T A_{fft}) = e^{\frac{2i\pi}{q}x_j^T b}$

Algorithm:

- T ← k-dimensional array set to zero
- ► $T[x_j^T A_{\text{fft}}] \leftarrow e^{2i\pi x_j^T b/q}$ for all j
- ightharpoonup compute FFT \widehat{T} of T
- ightharpoonup check all $\widehat{T}[\tilde{s}_{\mathrm{fff}}]$ against threshold

Complexity: array filling time + FFT time + search time =
$$O(N + q^{k_{\rm fit}})$$

Dual attack: summary

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- compute many dual vectors x
- ▶ find š_{fft} using FFT

Dual attack: summary

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- compute many dual vectors x
- find s_{fft} using FFT

Pick x short in lattice L using BKZ:

$$L = \left\{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T A_{\mathrm{lat}} = 0 \bmod q \right\}$$

Complexity estimate:

$$q^{k_{ ext{fit}}} + e^{4\left(rac{\pi \|\mathbf{x}\|\sigma_{e}}{q}
ight)^{2}} + T_{ ext{BKZ}}$$

Dual attack: summary

- ▶ split secret $n = k_{\text{fft}} + k_{\text{lat}}$
- compute many dual vectors x
- find s_{fft} using FFT

Pick x short in lattice L using BKZ:

$$L = \left\{ \mathbf{x} \in \mathbb{Z}^m : \mathbf{x}^T A_{\mathrm{lat}} = 0 \bmod q \right\}$$

Complexity estimate:

$$q^{k_{\mathrm{fit}}} + e^{4\left(rac{\pi \|\mathbf{x}\|\sigma_{e}}{q}
ight)^{2}} + T_{\mathrm{BKZ}}$$

- ▶ BKZ trade-off: short x ~> more expensive algorithm
- **best dual attack parameters** ($k_{\text{fit}},...$) found by optimization

Advanced dual attacks

Modulo switching: only guess part of secret modulo p ($p \ll q$)

- reduce guessing complexity
- increase distinguishing cost due to modulo remainders
- makes reduced secret dense

Advanced dual attacks

Modulo switching: only guess part of secret modulo p ($p \ll q$)

- reduce guessing complexity
- increase distinguishing cost due to modulo remainders
- makes reduced secret dense

Hybrid attack: split secret into three parts

- \triangleright s_{enum} : brute force enumeration by decreasing probability
- s_{fft}: guess by FFT
- s_{lat}: removed by dual attack

Advanced dual attacks

Modulo switching: only guess part of secret modulo p ($p \ll q$)

- reduce guessing complexity
- increase distinguishing cost due to modulo remainders
- makes reduced secret dense

Hybrid attack: split secret into three parts

- \triangleright s_{enum} : brute force enumeration by decreasing probability
- s_{fft}: guess by FFT
- s_{lat}: removed by dual attack

BKZ with sieving

- obtain many dual vectors at once
- reducing the number of BKZ reductions

Hybrid dual attack

Combine enumeration with dual attack:

- lacktriangle enumerate $s_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$
 - ightharpoonup enumerate all $s_{ ext{fft}} \in \mathbb{Z}_q^{k_{ ext{fft}}}$
 - compute a DFT-like sum
 - check if it is above the threshold

sampled from $\chi_{\mathcal{S}}^{k_{\mathrm{enum}}}$ uniform in $\mathbb{Z}_q^{k_{\mathrm{fit}}}$

Hybrid dual attack

Combine enumeration with dual attack:

- lacktriangle enumerate $s_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$
 - lacktriangle enumerate all $oldsymbol{s}_{ ext{fft}} \in \mathbb{Z}_q^{k_{ ext{fft}}}$
 - compute a DFT-like sum
 - check if it is above the threshold

sampled from $\chi_s^{k_{\rm enum}}$ uniform in $\mathbb{Z}_a^{k_{\rm fit}}$

- ightharpoonup guessing complexity: try s_{enum} in decreasing order of probability
- FFT: compute all DFT-sums in one go with a FFT
- dual vectors: compute them once, reuse for all senum

$$G(\chi_s^{k_{ ext{enum}}}) \cdot \left(q^{k_{ ext{fit}}} + e^{4\left(rac{\pi \|x\|\sigma_e}{q}
ight)^2}
ight) + T_{ ext{BKZ}}$$

Hybrid dual attack

Combine enumeration with dual attack:

- lacktriangle enumerate $s_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$
 - lacktriangle enumerate all $s_{ ext{fft}} \in \mathbb{Z}_q^{k_{ ext{fft}}}$
 - compute a DFT-like sum
 - check if it is above the threshold

sampled from $\chi_s^{k_{\rm enum}}$ uniform in $\mathbb{Z}_a^{k_{\rm fit}}$

- ightharpoonup guessing complexity: try s_{enum} in decreasing order of probability
- FFT: compute all DFT-sums in one go with a FFT
- dual vectors: compute them once, reuse for all senum

$$G(\chi_s^{k_{\text{enum}}}) \cdot \left(q^{k_{\text{fift}}} + e^{4\left(\frac{\pi \|x\|\sigma_e}{q}\right)^2}\right) + T_{\text{BKZ}}$$

Gain: reduce $k_{lat} \sim$ decrease BKZ cost

Recall: split secret + dual vector

Combine: split secret

Recall: split secret + dual vector

Combine: split secret

With: dual vector x such that $x^T A_{lat} = 0$

▶ split secret, find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$

- ▶ split secret, find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$
- guess secret s and subtract

$$\boxed{ \mathbf{x}^T \times \mathbf{b} - \boxed{\mathbf{y}^T \times \mathbf{\tilde{s}_{fit}}} = \boxed{\mathbf{y}^T \times \left(\boxed{\mathbf{s}_{fit}} - \boxed{\mathbf{\tilde{s}}_{fit}} \right) + \boxed{\mathbf{x}^T \times \mathbf{e}} }$$

- ▶ split secret, find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$
- guess secret s and subtract

Good guess (
$$s_{fft} = \tilde{s_{fft}}$$
):

follows a discrete Gaussian of small deviation (depends on ||x||)

- ▶ split secret, find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$
- ▶ guess secret § and subtract

Good guess (
$$\frac{s_{fft}}{s_{fft}} = \frac{\tilde{s_{fft}}}{s_{fft}}$$
):

follows a discrete Gaussian of small deviation (depends on ||x||)

Bad guess
$$(s_{\text{fft}} \neq \tilde{s_{\text{fft}}})$$
:
 $y^T(s_{\text{fft}} - \tilde{s_{\text{fft}}}) + x^T e$

follows a uniform distribution $(y \approx \text{uniform in } \mathbb{Z}_{q}^{k_{\text{fift}}})$

- ▶ split secret, find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$
- guess secret s and subtract

Good guess (
$$s_{\text{fft}} = \tilde{s_{\text{fft}}}$$
):

follows a discrete Gaussian of small deviation (depends on ||x||)

Bad guess
$$(s_{\text{fft}} \neq \tilde{s_{\text{fft}}})$$
:
 $y^T(s_{\text{fft}} - \tilde{s_{\text{fft}}}) + x^T e$

follows a uniform distribution (${\it y} pprox {\it uniform in } \mathbb{Z}_q^{\it k_{\rm fit}}$)

Problem: cost of distinguishing grows as $q^{k_{\rm fit}}$ \sim can we change to a modulo $p \ll q$ to reduce the cost?

▶ split secret, find (x, y) s.t. $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$, guess \tilde{s}

$$\boxed{x^T \cdot b} - \boxed{y^T \cdot \tilde{s}_{fft}} = \boxed{y^T \cdot \left(\boxed{s_{fft}} - \tilde{s}_{fft} \right)} + \boxed{x^T \cdot e} \mod q$$

- ▶ split secret, find (x, y) s.t. $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$, guess \tilde{s}
- ► change modulo to p

$$\frac{p}{q} \underbrace{x^T} \cdot b - \frac{p}{q} \underbrace{y^T} \cdot \underbrace{\tilde{\mathbf{s}}_{\text{fit}}} = \frac{p}{q} \underbrace{y^T} \cdot \left(\underbrace{\mathbf{s}_{\text{fit}}} - \underbrace{\tilde{\mathbf{s}}_{\text{fit}}} \right) + \frac{p}{q} \underbrace{x^T} \cdot e \mod p$$

- ▶ split secret, find (x, y) s.t. $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$, guess \tilde{s}
- ► change modulo to p

$$\frac{p}{q} \underbrace{x^T} \cdot \underbrace{b} - \frac{p}{q} \underbrace{y^T} \cdot \underbrace{\tilde{s}_{fft}} = \frac{p}{q} \underbrace{y^T} \cdot \left(\underbrace{s_{fit}} - \underbrace{\tilde{s}_{fit}} \right) + \frac{p}{q} \underbrace{x^T} \cdot \underbrace{e} \mod p$$

Good guess (
$$s_{\text{fft}} = \tilde{s_{\text{fft}}}$$
): $\frac{p}{g} x^T e$

follows a discrete Gaussian of small deviation (depends on ||x||)

Bad guess (
$$s_{\text{fft}} \neq \tilde{s_{\text{fft}}}$$
):
$$\frac{p}{q} y^T (s_{\text{fft}} - \tilde{s_{\text{fft}}}) + \frac{p}{q} x^T e$$

follows a uniform distribution $(y \approx \text{uniform in } \mathbb{Z}_q^{k_{\text{fit}}})$

- ▶ split secret, find (x, y) s.t. $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$, guess \tilde{s}
- ► change modulo to p

$$\frac{p}{q} \underbrace{x^T} \cdot \underbrace{b} - \frac{p}{q} \underbrace{y^T} \cdot \underbrace{\tilde{\mathbf{s}}_{\mathrm{fft}}} = \frac{p}{q} \underbrace{y^T} \cdot \left(\underbrace{\mathbf{s}_{\mathrm{fft}}} - \underbrace{\tilde{\mathbf{s}}_{\mathrm{fft}}} \right) + \frac{p}{q} \underbrace{x^T} \cdot \underbrace{e} \bmod p$$

Good guess (
$$\frac{s_{fft}}{e} = \frac{\tilde{s_{fft}}}{\tilde{s_{fft}}}$$
):

follows a discrete Gaussian of small deviation (depends on ||x||)

Bad guess (
$$s_{\text{fft}} \neq \tilde{s}_{\text{fft}}$$
):
$$\frac{p}{q} y^{T} (s_{\text{fft}} - \tilde{s}_{\text{fft}}) + \frac{p}{q} x^{T} e$$
follows a uniform distribution

 $(y \approx \text{uniform in } \mathbb{Z}_q^{k_{\text{fit}}})$

Problem: $\frac{\rho}{q}y^T$ is not integral \sim FFT distinguisher not applicable

Notation:
$$[x] = \text{integer part}, \{x\} = \text{fractional part}, x = [x] + \{x\}$$

$$\frac{p}{q} X^{T} \cdot b - \frac{p}{q} Y^{T} \cdot \tilde{\mathbf{s}}_{fff} = \frac{p}{q} Y^{T} \cdot \left(\mathbf{s}_{fff} - \tilde{\mathbf{s}}_{fff} \right) + \varepsilon \mod p$$

where
$$\varepsilon = \frac{p}{q} X^T \cdot e$$

Notation:
$$[x]$$
 = integer part, $\{x\}$ = fractional part, $x = [x] + \{x\}$

$$\frac{p}{q} \mathbf{x}^{T} \cdot \mathbf{b} - \left[\frac{p}{q} \mathbf{y}^{T}\right] \cdot \tilde{\mathbf{s}}_{\text{fit}} = \left[\frac{p}{q} \mathbf{y}^{T}\right] \cdot \left(\mathbf{s}_{\text{fit}} - \tilde{\mathbf{s}}_{\text{fit}}\right) + \mathbf{\varepsilon} \mod p$$

where
$$\varepsilon = \left\{\frac{\rho}{q} \mid y^T\right\} \cdot s_{\text{fit}} + \frac{\rho}{q} \mid x^T \cdot e$$

Notation:
$$[x]$$
 = integer part, $\{x\}$ = fractional part, $x = [x] + \{x\}$

$$\frac{p}{q} \mathbf{x}^{T} \cdot \mathbf{b} - \left[\frac{p}{q} \mathbf{y}^{T}\right] \cdot \tilde{\mathbf{s}}_{\mathsf{m}} = \left[\frac{p}{q} \mathbf{y}^{T}\right] \cdot \left(\mathbf{s}_{\mathsf{m}} - \tilde{\mathbf{s}}_{\mathsf{m}}\right) + \mathbf{\varepsilon} \mod p$$

where
$$\varepsilon = \left\{\frac{p}{q} \ y^T\right\} \cdot s_{\text{fit}} + \frac{p}{q} \ x^T \cdot e$$

Good guess (
$$\mathbf{s}_{\text{fft}} = \tilde{\mathbf{s}}_{\text{fft}}$$
):

$$\varepsilon = \{\frac{p}{q}\mathbf{x}^T\}\mathbf{s}_{\text{fft}} + \frac{p}{q}\mathbf{x}^T\mathbf{e}$$

follows an almost discrete Gaussian of small deviation (now depends on $\|\mathbf{x}\|$ and $\|\mathbf{s}_{\text{fit}}\|$)

Notation:
$$[x]$$
 = integer part, $\{x\}$ = fractional part, $x = [x] + \{x\}$

$$\frac{p}{q} \mathbf{x}^{\mathsf{T}} \cdot \mathbf{b} - \begin{bmatrix} \frac{p}{q} \mathbf{y}^{\mathsf{T}} \end{bmatrix} \cdot \mathbf{\tilde{s}}_{\mathsf{fff}} = \begin{bmatrix} \frac{p}{q} \mathbf{y}^{\mathsf{T}} \end{bmatrix} \cdot \left(\mathbf{s}_{\mathsf{fff}} - \mathbf{\tilde{s}}_{\mathsf{fff}} \right) + \mathbf{\varepsilon} \mod p$$

where
$$\varepsilon = \left\{\frac{p}{q} \ y^T\right\} \cdot s_{\text{fit}} + \frac{p}{q} \ x^T$$
 \cdot

Good guess (
$$\mathbf{s}_{\text{fft}} = \tilde{\mathbf{s}}_{\text{fft}}$$
):

$$\varepsilon = \{\frac{p}{q}\mathbf{x}^T\}\mathbf{s}_{\text{fft}} + \frac{p}{q}\mathbf{x}^T\mathbf{e}$$

follows an almost discrete Gaussian of small deviation (now depends on $\|x\|$ and $\|s_{fif}\|$)

Bad guess
$$(s_{\text{fft}} \neq \tilde{s_{\text{fft}}})$$
:
$$[\frac{p}{q}y^{T}](s_{\text{fft}} - \tilde{s}_{\text{fft}})$$

not obviously uniform, but saved by the hybrid search hinted at in this presentation

Modulo switching (cont)

Notation: [x] = integer part, $\{x\}$ = fractional part, $x = [x] + \{x\}$

$$\frac{p}{q} \underbrace{x^T} \cdot \underbrace{b} - \left[\frac{p}{q} \underbrace{y^T}\right] \cdot \underbrace{\tilde{s}_{\text{fit}}} = \left[\frac{p}{q} \underbrace{y^T}\right] \cdot \left(\underbrace{s_{\text{fit}}} - \underbrace{\tilde{s}_{\text{fit}}}\right) + \underbrace{\varepsilon} \mod p$$

$$\text{where } \underbrace{\varepsilon} = \left\{\frac{p}{q} \underbrace{y^T}\right\} \cdot \underbrace{s_{\text{fit}}} + \frac{p}{q} \underbrace{x^T} \cdot e$$

Good guess (
$$\underline{s}_{\text{fft}} = \underline{s}_{\text{fft}}^{\circ}$$
):

$$\varepsilon = \{\frac{p}{q}x^{\mathsf{T}}\}\underline{s}_{\text{fft}} + \frac{p}{q}x^{\mathsf{T}}e$$

follows an almost discrete Gaussian of small deviation (now depends on $\|x\|$ and $\|s_{fit}\|$)

Bad guess
$$(s_{\text{fft}} \neq \tilde{s_{\text{fft}}})$$
: $[\frac{p}{q}y^T](s_{\text{fft}} - \tilde{s}_{\text{fft}})$

not obviously uniform, but saved by the hybrid search hinted at in this presentation

Conclusion: it works but increases the number of samples:

from
$$4\left(\frac{\pi \|\mathbf{x}\|\sigma_e}{q}\right)^2$$
 to $4\left(\frac{\pi \|\mathbf{x}\|\sigma_e}{q}\right)^2 + \frac{1}{3}\left(\frac{\pi \|\mathbf{s}_{\mathrm{fit}}\|q}{p}\right)^2$

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Modulo switching: approximate a vector $x \in \mathbb{Z}_q^n$ by

$$X = \frac{q}{p} \cdot \left[\frac{p}{q}X\right] + \frac{q}{p}\left\{\frac{p}{q}X\right\} = \frac{q}{p} \cdot u + e$$

- $u \in \mathbb{Z}_p^n$: smaller domain (field is smaller)
- ▶ $||e|| \leq \frac{q}{p}$: "small error"

Going further: using ideas from coding theory

Everyting until this point is in the LWE report by the MATZOV group.

Modulo switching: approximate a vector $x \in \mathbb{Z}_q^n$ by

$$X = \frac{q}{p} \cdot \left[\frac{p}{q}X\right] + \frac{q}{p}\left\{\frac{p}{q}X\right\} = \frac{q}{p} \cdot u + e$$

- $u \in \mathbb{Z}_p^n$: smaller domain (field is smaller)
- ▶ $||e|| \leq \frac{q}{p}$: "small error"

Our observation: this looks like a special case of lattice codes

$$x = Gu + t$$

- ► $G \in \mathbb{Z}_q^{n \times m}$: defines a code
- ▶ $u \in \mathbb{Z}_q^m$: smaller domain (dimension is smaller)
- ightharpoonup ||t|| is small (depends on G)

Applying lattice codes

Recall: find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fit}$

Applying lattice codes

Recall: find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$

Choose a code $G \in \mathbb{Z}_q^{k_{\mathrm{fift}} \times k_{\mathrm{cod}}}$, decode y as

$$y = G \times u + t$$

Applying lattice codes

Recall: find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$

Choose a code $G \in \mathbb{Z}_q^{k_{\mathrm{fit}} \times k_{\mathrm{cod}}}$, decode y as

$$y = G \times u + t$$

New fundamental equation:

$$\begin{array}{c|c}
 & X^T \\
\hline
 & b
\end{array} =
\begin{array}{c|c}
 & u^T \\
\hline
 & G^T
\end{array} \cdot
\begin{array}{c|c}
 & s_{\text{fit}} \\
\hline
 & t^T
\end{array} \cdot
\begin{array}{c|c}
 & s_{\text{fit}} \\
\hline
 & t^T
\end{array} \cdot
\begin{array}{c|c}
 & e
\end{array}$$

- ▶ find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$ ▶ choose a code $G \in \mathbb{Z}_q^{k_{fft} \times k_{cod}}$, decode y = Gu + t

- ▶ find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$ ▶ choose a code $G \in \mathbb{Z}_q^{k_{\text{fft}} \times k_{\text{cod}}}$, decode y = Gu + t

where

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

- ▶ find (x, y) such that $x^T A_{\text{lat}} = 0$ and $y^T = x^T A_{\text{fft}}$ ▶ choose a code $G \in \mathbb{Z}_q^{k_{\text{fft}} \times k_{\text{cod}}}$, decode y = Gu + t

where

$$s_{
m cod} = G^T \cdot s_{
m fit}$$
 $\varepsilon' = t^T \cdot s_{
m fit} + x^T \cdot e$

Observations:

- we directly guess s_{cod} instead of s_{fff}
- $ightharpoonup S_{\text{cod}} = G^{T} S_{\text{fit}} \in \mathbb{Z}_{q}^{k_{\text{cod}}}$ has smaller dimension $k_{\text{cod}} \ll k_{\text{fft}}$

- ▶ find (x, y) such that $x^T A_{lat} = 0$ and $y^T = x^T A_{fft}$ ▶ choose a code $G \in \mathbb{Z}_q^{k_{fft} \times k_{cod}}$, decode y = Gu + t

where

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Observations:

- we directly guess s_{cod} instead of s_{fff}
- $ightharpoonup s_{cod} = G^T s_{fff} \in \mathbb{Z}_q^{k_{cod}}$ has smaller dimension $k_{cod} \ll k_{fff}$
- $\epsilon = t^T s_m + x^T e$ follows a discrete Gaussian whose **deviation** depends on ||x||, $||s_{fft}||$ and ||t||
- ightharpoonup ||t|| is **small** for a good code G

Lattice codes vs modulo switching

Lattice codes

Modulo switching

Lattice codes vs modulo switching

Lattice codes

$$b = u^T \cdot s_{cod} + \varepsilon'$$

- ightharpoonup FFT cost: $q^{k_{\rm cod}}$
- error ε' : Gaussian of stddev

$$au_{ ext{MS}}^2 = \|\mathbf{x}\|^2 \cdot \sigma_{ ext{e}}^2 + \|\mathbf{s}_{ ext{fit}}\|^2 \cdot \frac{q^{2-2} \frac{K_{ ext{cod}}}{K_{ ext{fit}}}}{2\pi e}$$

for an asymptotically optimal code

Modulo switching

- ► FFT cost: p^kfft
- error ε : Gaussian of stddev

$$\tau_{\mathrm{LC}}^2 = \|\mathbf{x}\|^2 \cdot \sigma_{\mathrm{e}}^2 + \|\mathbf{s}_{\mathrm{fit}}\|^2 \cdot \frac{q^2}{12\rho^2}$$

Lattice codes vs modulo switching

Lattice codes

$$\begin{array}{c|c}
x^T \\
\hline
b
\end{array} =
\begin{array}{c|c}
u^T \\
\hline
s_{cod}
\end{array} +
\begin{array}{c|c}
\varepsilon'
\end{array} \qquad
\begin{array}{c|c}
x^T \\
\hline
b
\end{array} =
\begin{array}{c|c}
\frac{p}{q} \quad y^T
\end{array} \cdot
\begin{array}{c|c}
s_{fit}
\end{array} +
\begin{array}{c|c}
\varepsilon$$

- ightharpoonup FFT cost: $q^{k_{\rm cod}}$
- error ε' : Gaussian of stddev $au_{ ext{MS}}^2 = \|\mathbf{x}\|^2 \cdot \sigma_{ ext{e}}^2 + \|\mathbf{s}_{ ext{fit}}\|^2 \cdot rac{q^{2-2rac{\mathbf{K}_{ ext{cod}}}{\mathbf{k}_{ ext{fit}}}}}{2\pi e}$

for an asymptotically optimal code

Modulo switching

$$X^T$$
 $b = \begin{bmatrix} \frac{p}{q} & y^T \end{bmatrix}$

- ► FFT cost: p^kfft
- error ε: Gaussian of stddev

$$\tau_{\mathrm{LC}}^2 = \|\mathbf{x}\|^2 \cdot \sigma_{\mathrm{e}}^2 + \|\mathbf{s}_{\mathrm{fft}}\|^2 \cdot \frac{q^2}{12p^2}$$

Comparison for same FFT cost: $q^{k_{\text{cod}}} = p^{k_{\text{fft}}}$

$$\frac{q^{2-2}\frac{k_{\rm cod}}{k_{\rm fit}}}{2\pi e} = \frac{q}{2\pi e p} \approx \frac{q}{17p} \ll \frac{q}{12p}$$

→ lattice codes are always better than modulo switching!

Other important details

- FFT is more efficient for powers of two
- $ightharpoonup q^{k_{\text{cod}}}$ has coarse granularity for big q

 \rightarrow use modulo switching to change q to $p = 2^m$ then use lattice codes: best of both, allow more "continuous" parameter choice

Other important details

- FFT is more efficient for powers of two
- $ightharpoonup q^{k_{\text{cod}}}$ has coarse granularity for big q

 \rightarrow use modulo switching to change q to $p = 2^m$ then use lattice codes: best of both, allow more "continuous" parameter choice

- optimal codes are expensive but we need a fast decoder
- we only need to decode to a close codeword, not the closest
- → we suggest to use polar codes which are asymptotically optimal

Other important details

- FFT is more efficient for powers of two
- $ightharpoonup q^{k_{\text{cod}}}$ has coarse granularity for big q
- \sim use modulo switching to change q to $p = 2^m$ then use lattice codes: best of both, allow more "continuous" parameter choice
 - optimal codes are expensive but we need a fast decoder
 - we only need to decode to a close codeword, not the closest
- → we suggest to use polar codes which are asymptotically optimal
 - \blacktriangleright many parameters to choose (p, $k_{\rm fft}$, $k_{\rm cod}$, BKZ block size, ...)
 - no obvious way to choose them
- → search for optimal parameters with an optimisation program

Overall attack so far:

- lacktriangleright enumerate $m{s}_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$ sampled from $\chi_s^{k_{ ext{enum}}}$
 - perform dual attack with codes and modulo switching and check if s_{enum} was correct

Overall attack so far:

- lacktriangleright enumerate $m{s}_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$ sampled from $\chi_s^{k_{ ext{enum}}}$
 - perform dual attack with codes and modulo switching and check if s_{enum} was correct

Expected complexity: $G \cdot T$

- ▶ G = expected number of guesses to find s_{enum}
- ➤ T = complexity of attack

Overall attack so far:

- lacktriangleright enumerate $m{s}_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$ sampled from $\chi_{m{s}}^{k_{ ext{enum}}}$
 - perform dual attack with codes and modulo switching and check if s_{enum} was correct

Expected complexity: G · T

- ▶ G = expected number of guesses to find s_{enum}
- ▶ T = complexity of attack

Prange bet:

- ightharpoonup some values of s_{enum} are much more likely than others (e.g. 0)
- only enumerate a few most likely values
- ▶ if it fails, retry with a permutation of the secret

Overall attack so far:

- lacktriangleright enumerate $m{s}_{ ext{enum}} \in \mathbb{Z}_q^{k_{ ext{enum}}}$ sampled from $\chi_{m{s}}^{k_{ ext{enum}}}$
 - perform dual attack with codes and modulo switching and check if s_{enum} was correct

Expected complexity: $G \cdot T$

- ▶ G = expected number of guesses to find s_{enum}
- ➤ T = complexity of attack

Prange bet:

- ightharpoonup some values of $s_{\rm enum}$ are much more likely than others (e.g. 0)
- only enumerate a few most likely values
- if it fails, retry with a permutation of the secret
- ▶ if we do not permute the lattice part (s_{lat}) , we can even reuse the BKZ computation just like in the "normal attack"

Prange bet: implementation

New attack: fix betting set Bet

- for each permutation τ that leaves the "lat part" fixed
 - ▶ enumerate $s_{\text{enum}} \in \text{Bet}$
 - perform¹ dual attack on τ -permuted instance with codes and modulo switching and check if $s_{\rm enum}$ was correct

¹Not shown here: dual vectors reused accross iterations since lat part untouched

Prange bet: implementation

New attack: fix betting set Bet

- for each permutation τ that leaves the "lat part" fixed
 - ightharpoonup enumerate $s_{\text{enum}} \in \text{Bet}$
 - \blacktriangleright perform¹ dual attack on $\tau\text{-permuted}$ instance with codes and modulo switching and check if s_{enum} was correct

Expected complexity: $P \cdot | \text{Bet} | \cdot T$

- ▶ P = expected number of permutations needed
- ➤ T = complexity of attack

¹Not shown here: dual vectors reused accross iterations since lat part untouched

Prange bet: implementation

New attack: fix betting set Bet

- \blacktriangleright for each permutation τ that leaves the "lat part" fixed
 - ► enumerate $s_{\text{enum}} \in \text{Bet}$
 - ▶ perform¹ dual attack on τ -permuted instance with codes and modulo switching and check if $s_{\rm enum}$ was correct

Expected complexity: $P \cdot | \text{Bet} | \cdot T$

- ▶ P = expected number of permutations needed
- ➤ T = complexity of attack

Which bet? Bet = $\{0\}$ optimal in our case

¹Not shown here: dual vectors reused accross iterations since lat part untouched

Results

- CC: classical circuit model (most detailed cost)
- CN: intermediate model
- ▶ C0: "Core-SVP" cost model

	MATZOV			Codes w/o Prange			Codes w/ Prange		
Scheme	CC	CN	C0	CC	CN	C0	CC	CN	C0
Kyber 512	138.5	133.7	114.8	137.8	133.0	114.0	137.5	132.6	113.9
Kyber 768	195.7	190.4	173.1	192.5	187.2	170.2	191.9	186.7	169.8
Kyber 1024	261.4	255.4	240.7	256.2	250.5	235.7	255.5	249.5	235.5
LightSaber	137.1	132.3	113.1	136.8	131.5	112.3	136.7	131.8	112.2
Saber	201.1	195.1	178.3	199.7	194.9	177.0	199.0	193.8	176.9
FireSaber	263.6	257.7	242.8	259.9	254.4	239.4	259.3	253.9	239.0

- 1 to 5 bit gain without Prange over MATZOV
- further 1 bit gain with Prange bet