- Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization
- a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

MCS 572 Lecture 19 Introduction to Supercomputing Jan Verschelde, 5 October 2016

- Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization
- a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

a fixed point formula

We want to solve $A\mathbf{x} = \mathbf{b}$ for $A \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$, for *very large* n.

Consider A = L + D + U, where

- $L = [\ell_{i,j}], \ell_{i,j} = a_{i,j}, i > j, \ell_{i,j} = 0, i \leq j$. L is lower triangular.
- $D = [d_{i,j}], d_{i,i} = a_{i,i} \neq 0, d_{i,j} = 0, i \neq j$. D is diagonal.
- $U = [u_{i,j}], u_{i,j} = a_{i,j}, i < j, u_{i,j} = 0, i \ge j$. *U* is upper triangular.

Then we rewrite $A\mathbf{x} = \mathbf{b}$ as

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow (L + D + U)\mathbf{x} = \mathbf{b}$$

 $\Leftrightarrow D\mathbf{x} = \mathbf{b} - L\mathbf{x} - U\mathbf{x}$
 $\Leftrightarrow D\mathbf{x} = D\mathbf{x} + \mathbf{b} - L\mathbf{x} - U\mathbf{x} - D\mathbf{x}$
 $\Leftrightarrow D\mathbf{x} = D\mathbf{x} + \mathbf{b} - A\mathbf{x}$
 $\Leftrightarrow \mathbf{x} = \mathbf{x} + D^{-1}(\mathbf{b} - A\mathbf{x}).$

The fixed point formula $\mathbf{x} = \mathbf{x} + D^{-1}(\mathbf{b} - A\mathbf{x})$ is well defined if $a_{i,i} \neq 0$.

the Jacobi iterative method

The fixed point formula $\mathbf{x} = \mathbf{x} + D^{-1}(\mathbf{b} - A\mathbf{x})$ leads to

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \underbrace{D^{-1} \left(\mathbf{b} - A \mathbf{x}^{(k)} \right)}_{\Delta \mathbf{x}}, \quad k = 0, 1, \dots$$

Writing the formula as an algorithm:

Input: A, \mathbf{b} , $\mathbf{x}^{(0)}$, ϵ , N.

Output: $\mathbf{x}^{(k)}$, k is the number of iterations done.

for k from 1 to N do $\Delta x := D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)});$ $\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \Delta \mathbf{x};$ exit when $(||\Delta \mathbf{x}|| \le \epsilon);$ end for.

cost and convergence

Counting the number of operations in

```
for k from 1 to N do \Delta x := D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)}); \mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \Delta \mathbf{x}; exit when (||\Delta \mathbf{x}|| \le \epsilon); end for.
```

we have a cost of $O(Nn^2)$, $O(n^2)$ for $A\mathbf{x}^{(k)}$, if A is dense.

Theorem

The Jacobi method converges for strictly row-wise or column-wise diagonally dominant matrices, i.e.: if

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}| \quad \text{or} \quad |a_{i,i}| > \sum_{j \neq i} |a_{j,i}|, \quad i = 1,2,\ldots,n.$$

- Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization
- a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

parallel version of Jacobi iterations

for
$$k$$
 from 1 to N do
$$\Delta x := D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)});$$

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + \Delta \mathbf{x};$$
exit when $(||\Delta \mathbf{x}|| \le \epsilon);$
end for.

To run the code above with p processors:

• The *n* rows of *A* are distributed evenly (e.g.: p = 4):

$$D \star \begin{bmatrix} \Delta \mathbf{x}^{[0]} \\ \Delta \mathbf{x}^{[1]} \\ \Delta \mathbf{x}^{[2]} \\ \Delta \mathbf{x}^{[3]} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{[0]} \\ \mathbf{b}^{[1]} \\ \mathbf{b}^{[2]} \\ \mathbf{b}^{[3]} \end{bmatrix} - \begin{bmatrix} A^{[0,0]} & A^{[0,1]} & A^{[0,2]} & A^{[0,3]} \\ A^{[1,0]} & A^{[1,1]} & A^{[1,2]} & A^{[1,3]} \\ A^{[2,0]} & A^{[2,1]} & A^{[2,2]} & A^{[2,3]} \\ A^{[3,0]} & A^{[3,1]} & A^{[3,2]} & A^{[3,3]} \end{bmatrix} \star \begin{bmatrix} \mathbf{x}^{[0],(k)} \\ \mathbf{x}^{[1],(k)} \\ \mathbf{x}^{[2],(k)} \\ \mathbf{x}^{[3],(k)} \end{bmatrix}$$

• Synchronization is needed for $(||\Delta \mathbf{x}|| \le \epsilon)$.

butterfly synchronization

For $||\cdot||$, use $||\Delta \mathbf{x}||_1 = |\Delta x_1| + |\Delta x_2| + \cdots + |\Delta x_n|$.

communication and computation stages

The communication stages:

- At the start, every node must have $\mathbf{x}^{(0)}$, ϵ , N,
 - a number of rows of the matrix A; and
 - the corresponding part of the right hand side vector b.
- After each update n/p elements of $\mathbf{x}^{(k+1)}$ must be scattered.
- The butterfly synchronization takes log₂(p) steps.

The scattering of $\mathbf{x}^{(k+1)}$ can coincide with the butterfly synchronization.

The computation effort: $O(n^2/p)$ in each stage.

- Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization
- a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

the test system

For the dimension n, we consider the diagonally dominant system:

$$\begin{bmatrix} n+1 & 1 & \cdots & 1 \\ 1 & n+1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & n+1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 2n \\ 2n \\ \vdots \\ 2n \end{bmatrix}.$$

The exact solution is **x**: for i = 1, 2, ..., n, $x_i = 1$.

We start the Jacobi iteration method at $\mathbf{x}^{(0)} = \mathbf{0}$.

Parameters: $\epsilon = 10^{-4}$ and $N = 2n^2$.

running the program

```
$ time /tmp/jacobi 1000
   0 : 1.998e + 03
   1:1.994e+03
8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error: 4.986e-05
    0m42.411s
real
       0m42.377s
user
       0m0.028s
SYS
```

C code to run Jacobi iterations

```
void run_jacobi_method
 (int n, double **A, double *b,
  double epsilon, int maxit,
  int *numit, double *x );
  Runs the Jacobi method for A*x = b.
 *
  ON ENTRY:
            the dimension of the system;
    n
             an n-by-n matrix A[i][i] /= 0;
    A
    h
        an n-dimensional vector;
  epsilon accuracy requirement;
    maxit maximal number of iterations;
      start vector for the iteration.
    X
  ON RETURN:
    numit number of iterations used;
             approximate solution to A*x = b. */
    X
```

local variables

```
void run jacobi method
 (int n, double **A, double *b,
   double epsilon, int maxit,
   int *numit, double *x )
   double *dx, *v;
   dx = (double*) calloc(n, sizeof(double));
   y = (double*) calloc(n, sizeof(double));
   int i, j, k;
   for (k=0; k < maxit; k++) \{ ... \} /* main loop */
   *numit = k+1;
   free (dx); free (v);
```

the main loop in C

```
for (k=0; k < maxit; k++)
   double sum = 0.0;
   for (i=0; i < n; i++)
      dx[i] = b[i];
      for (i=0; i< n; i++)
         dx[i] -= A[i][i] *x[i];
      dx[i] /= A[i][i];
      y[i] += dx[i];
      sum += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);
   for (i=0; i< n; i++) x[i] = y[i];
   printf("%3d: %.3e\n",k,sum);
   if(sum <= epsilon) break;
```

- Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization
- a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

gather-to-all

Gathering the four elements of a vector to four processors:

the MPI_Allgather

The syntax of the gather-to-all command is

where the parameters are

sendbuf	starting address of send buffer
sendcount	number of elements in send buffer
sendtype	data type of send buffer elements
recvbuf	address of receive buffer
recvcount	number of elements received from any process
recvtype	data type of receive buffer elements
comm	communicator

running use_allgather

```
$ mpirun -np 4 /tmp/use_allgather
data at node 0 : 1 0 0 0
data at node 1 : 0 2 0 0
data at node 2 : 0 0 3 0
data at node 3 : 0 0 0 4
data at node 3 : 1 2 3 4
data at node 0 : 1 2 3 4
data at node 1 : 1 2 3 4
data at node 2 : 1 2 3 4
```

the code use_allgather.c

```
int i, j, p;
MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, &i);
MPI Comm size (MPI COMM WORLD, &p);
   int data[p];
   for (j=0; j < p; j++) data[j] = 0;
   data[i] = i + 1;
   printf("data at node %d :",i);
   for(j=0; j<p; j++) printf(" %d",data[j]);</pre>
   printf("\n");
   MPI Allgather (&data[i], 1, MPI INT,
                  data, 1, MPI INT, MPI COMM WORLD);
   printf("data at node %d :",i);
   for(j=0; j<p; j++) printf(" %d", data[j]);</pre>
   printf("\n");
```

- Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization
- a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

running jacobi_mpi

```
$ time mpirun -np 10 /tmp/jacobi_mpi 1000
...
8405 : 1.000e-04
8406 : 9.982e-05
computed 8407 iterations
error : 4.986e-05

real     0m5.617s
user     0m45.711s
sys     0m0.883s
```

Recall the run with the sequential program:

```
real 0m42.411s
user 0m42.377s
sys 0m0.028s
```

Speedup: 42.411/5.617 = 7.550.

the parallel run_jacobi_method

```
void run jacobi method
 ( int id, int p,
   int n, double **A, double *b,
   double epsilon, int maxit,
   int *numit, double *x )
   double *dx, *v;
   dx = (double*) calloc(n, size of (double));
   y = (double*) calloc(n, sizeof(double));
   int i, j, k;
   double sum[p];
   double total;
   int dnp = n/p;
   int istart = id*dnp;
   int istop = istart + dnp;
```

the main loop in jacobi_mpi.c

```
for (k=0; k < maxit; k++)
   sum[id] = 0.0;
   for(i=istart; i<istop; i++)</pre>
      dx[i] = b[i];
      for (j=0; j< n; j++)
         dx[i] -= A[i][j] *x[j];
      dx[i] /= A[i][i];
      y[i] += dx[i];
      sum[id] += ((dx[i] >= 0.0) ? dx[i] : -dx[i]);
   for (i=istart; i<istop; i++) x[i] = y[i];
```

the all-to-all communication

```
MPI Allgather (&x[istart], dnp, MPI DOUBLE, x, dnp,
                  MPI DOUBLE, MPI COMM WORLD);
   MPI Allgather (&sum[id], 1, MPI DOUBLE, sum, 1,
                  MPI DOUBLE, MPI COMM WORLD);
   total = 0.0;
   for(i=0; i<p; i++) total += sum[i];
   if(id == 0) printf("%3d : %.3e\n",k,total);
   if(total <= epsilon) break;
*numit = k+1;
free (dx);
```

- Jacobi iterations
 - derivation of the formulas
 - parallel version with butterfly synchronization
- a Parallel Implementation with MPI
 - the sequential program
 - gather-to-all with MPI_Allgather
 - the parallel program
 - analysis of the computation and communication cost

analysis

Computing $\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$ with p processors costs

$$t_{\rm comp}=\frac{n(2n+3)}{p}.$$

We count 2n + 3 operations because of

- one and one ⋆ when running over the columns of A; and
- ullet one /, one + for the update and one + for the $||\cdot||_1$.

The communication cost is

$$t_{\text{comm}} = \rho \left(t_{\text{startup}} + \frac{n}{\rho} t_{\text{data}} \right).$$

In the examples, the time unit is the cost of one arithmetical operation. Then the costs $t_{\rm startup}$ and $t_{\rm data}$ are multiples of this unit.

finding the p with the minimum total cost

The computation, communication, and total cost for p from 2 to 32, for 1 iteration, n = 1,000, $t_{\text{startup}} = 10,000$, and $t_{\text{data}} = 50$.

investigating the scalability

The computation, communication, and total cost for p from 16 to 256, for 1 iteration, n = 10,000, $t_{\text{startup}} = 10,000$, and $t_{\text{data}} = 50$.

Summary + Exercises

We covered §6.3.1 in the book of Wilkinson and Allen. Because of its slow convergence, the Jacobi method is seldomly used.

Exercises:

- Use OpenMP to write a parallel version of the Jacobi method. Do you observe a better speedup than with MPI?
- ② The power method to compute the largest eigenvalue of a matrix A uses the formulas $\mathbf{y} := A\mathbf{x}^{(k)}$; $\mathbf{x}^{(k+1)} := \mathbf{y}/||\mathbf{y}||$. Describe a parallel implementation of the power method.
- Onsider the formula for the total cost of the Jacobi method for an n-dimensional linear system with p processors. Derive an analytic expression for the optimal value of p. What does this expression tell about the scalability?