configuration_analysis

August 13, 2018

Analyse the distribution of side chain dihedral angles: Intro The resultant cystine residue from the formation of the covalent disulfide bond between the thiol groups of two cysteine side chains is comprised of five dihedral angles. Based on X-ray structures we look at the distribution of these angles (X1, X2 and X3) to define their different conformations.

```
/home/david/coding/lib/python2.7/site-packages/ipykernel_launcher.py:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#
  if __name__ == '__main__':
/home/david/coding/lib/python2.7/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#
  # Remove the CWD from sys.path while we load stuff.
/home/david/coding/lib/python2.7/site-packages/ipykernel_launcher.py:11: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#
  # This is added back by InteractiveShellApp.init_path()
/home/david/coding/lib/python2.7/site-packages/ipykernel_launcher.py:12: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#
  if sys.path[0] == '':
/home/david/coding/lib/python2.7/site-packages/ipykernel_launcher.py:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#
```

del sys.path[0]

Cystine dihedral distribution: Results In agreement with previous analysis, can see that X1 adopts the 'Gauche-, Gauche+ and Trans' conformations with a very narrow distribution. Therefore defined as: Gauche+ (+60) = +30 to +90 Gauche- (-60) = -90 to -30 Trans (180) = 150 to 210

X2 also adopts these conformations, however a greater distribution is observed. Therefore the following ranges were used for classification Gauche+ (+60) = +30 to +120 Gauche- (-60) = -120 to -30 Trans (180) = 150 to 210

X3 angle distribution follows the previously identified 'Right Handed (+90)' or 'Left Handed (-90)' Right Handed (+90) = +60 to +120 Left Handed (-90) = -120 to -60

Frequency of Configurations: Intro Based on the definitions above, there is a possible 90 configurations a cystine can adopt when considering all five X angles (X1, X2, X3, X2, X1). Below calculates the frequency of those configurations If a disulfide had a dihedral angle ouf of the defined ranges above it was excluded from analysis

```
Total Number of Disulfides: 19605
Total Number of Disulfides in Defined Configurations for Structural Analysis: 15538
```

/home/david/coding/lib/python2.7/site-packages/ipykernel_launcher.py:192: SettingWithCopyWarning A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#

Generate Configuration Frequency Graphs Generate a 3D plot tha shows the frequency of population for each configuration

1 Generate configuration graphs for all cystines

Out[5]: ()

1.1 Generate configuration graphs for peptide cystines

Out[6]: ()

1.2 Generate configuration graphs for protein cystines

Out[7]: ()

1.3 For Vicinal Disulfides

Out[8]: ()

1.4 CONFIGURATION FUNCTION

- 1.4.1 The below funciton returns individual dataframes for each configuration
- 1.4.2 It will be called to generate figures that investigate structural features based on configuration
- 1.4.3 It re-writes the dataframe to ensure Cys1 Cys2 == Cys2 Cys1 based on configuration order

1.5 Function to generate Ramachandran Plots

1.6 Call each configuration and

1.6.1 Frequency of Amino Acid by Biochemical Property

1.6.2 Frequency of Amino Acid by VDW Radi

Out[14]: ()

10.94146046003315

9.673237960921325

11.707496947589744

13.951319572960529

10.43890017018778

6.524539662137568

9.405272451410811

14.020357311082645

9.729912143632106

8.447279527899408

13.290180158957144

14.546032212688422

8.957282444078768

17.22122359748012

5.687167499307144

12.91536445628846

7.642602000650002

10.409521748311489

8.379706433324529

11.819749037119658

8.473521595474157

11.888714858685315

Out[15]: ()

- 6.38426746905e-05
- 6.28439113194e-05
- 6.25292284655e-05
- 6.31073564367e-05

- 6.39166761082e-05
- 6.3941362304e-05
- 5.95712018805e-05
- 6.33189074595e-05
- 6.31439203915e-05
- 6.23323494512e-05
- 6.3363749433e-05
- 5.178978153e-05
- 5.96018810105e-05
- 6.07755587178e-05
- 6.36457561741e-05
- 6.043232711e-05
- 5.89836968941e-05
- 6.35843437867e-05
- 6.32089752941e-05
- 6.37195293393e-05
- 6.250508746e-05
- 5.96364139177e-05

1.7 Secondary Structure

/home/david/coding/lib/python2.7/site-packages/ipykernel_launcher.py:90: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#

Secondary structure

Secondary structure

- 1.8 Dihedral configuration by Secondary Structure
- 1.9 Energy analysis