Seite 109 Nr. 4ac) 5a)

Bestimmen Sie alle ganzrationalen Funktionen vom Grad 3, deren Graph durch die Punkte geht.

a)

 $A(0 \mid 1)$; $B(1 \mid 0)$; $C(-1 \mid 4)$; $D(2 \mid -5)$

Die Bedingungen folgen für die Funktion $f(x)=ax^3+bx^2+cx+d$:

- f(0) = 1
- f(1) = 0
- f(-1) = 4
- f(2) = -5

Es liegen genug Bedingungen vor

I:
$$d = 1$$
II: $a+b+c+d = 0$
III: $-a+b-c+d = 4$
IV: $8a+4b+2c+d = -5$

I: d = 1

$$\begin{array}{c|cccc} \text{II:} & a+b+c & = & -1 \\ \text{III:} & 2b & = & 2 \\ \text{IV:} & 8a+4b+2c & = & -6 \end{array}$$

III:
$$2b=2$$
 \Rightarrow $b=1$

II:
$$\begin{vmatrix} a+c & = & -2 \\ \text{IV:} & 6a & = & -6 \end{vmatrix}$$

IV:
$$6a = -6 \implies a = -1$$

II:
$$a+c=-2$$
 \Rightarrow $c=-1$

Somit lautet die Lösung:

- a = -1
- b = 1• c = -1
- d = 1

Die Funktion f lautet $f(x) = -x^3 + x^2 - x + 1$

c)

 $A(1 \mid 0)$; $B(0 \mid 2)$; $C(-2 \mid 2)$

Die Bedingungen folgen für die Funktion $f(x)=ax^3+bx^2+cx+d$:

- f(1) = 0
- f(0) = 2
- f(-2) = 2

Es liegen nicht genug Bedingungen vor: Scharfunktion von f mit einem Parameter

I:
$$a \cdot 1^3 + b \cdot 1^2 + c \cdot 1 + d = 0$$
II: $a \cdot 0^3 + b \cdot 0^2 + c \cdot 0 + d = 2$
III: $a \cdot (-2)^3 + b \cdot (-2)^2 + c \cdot (-2) + d = 2$

I:
$$d=2$$

$$\begin{array}{c|cccc} \text{I:} & a+b+c & = & -2 & | & \cdot 2 \\ \text{III:} & -8a+4b-2c & = & 0 & | & | & \text{III}+\text{I} \end{array}$$

I:
$$\begin{vmatrix} a+b+c &=& -2 \\ -6a+6b &=& -4 \end{vmatrix}$$

III:
$$-6a + 6b = -4$$
 \Rightarrow $b = -\frac{2}{3} + a$

$$\text{I:} \quad a+b+c=-2 \quad \Rightarrow \quad c=-\frac{4}{3}-2a$$

```
Somit lautet die Lösung:
```

```
• a = a
```

• $b = -\frac{2}{3} + a$

•
$$c = -\frac{4}{3} - 2a$$

Die Funktion f lautet $f_a(x)=ax^3+\left(-rac{2}{3}+a
ight)x^2+\left(-rac{4}{3}-2a
ight)x+2$

Aufgabe 5

Bestimmen Sie eine ganzrationale Funktion vom Grad 3, deren Graph

a)

durch $A(2\mid 0)$, $B(-2\mid 4)$ und $A(-4\mid 8)$ geht und einen Tiefpunkt auf der y-Achse hat.

Die Bedingungen folgen für die Funktion $f(x)=ax^3+bx^2+cx+d$:

- f(2) = 0
- f(-2) = 4
- f(-4) = 8
- f'(0) = 0

Es liegen genug Bedingungen vor

$$f(x) = ax^3 + bx^2 + cx + d$$

$$f'(x) = 3ax^2 + 2bx + c$$

I:
$$\begin{vmatrix} a \cdot 2^3 + b \cdot 2^2 + c \cdot 2 + d & = & 0 \\ a \cdot (-2)^3 + b \cdot (-2)^2 + c \cdot (-2) + d & = & 4 \\ \text{III:} & a \cdot (-4)^3 + b \cdot (-4)^2 + c \cdot (-4) + d & = & 8 \\ \text{IV:} & 3a \cdot 0^2 + 2b \cdot 0 + c & = & 0 \\ \end{vmatrix}$$

I:
$$8a + 4b + 2c + d = 0$$

II: $-8a + 4b - 2c + d = 4$
III: $-64a + 16b - 4c + d = 8$
IV: $c = 0$

I:
$$c = 0$$

I:
$$\begin{vmatrix} 8a + 4b + d & = & 0 \\ III: \begin{vmatrix} 8b + 2d & = & 4 \\ 48b + 9d & = & 8 \end{vmatrix} \mid \cdot (-6)$$

III: $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$

III:
$$-3d = -16$$
 \Rightarrow $d = \frac{16}{3}$

II:
$$8b + 2d = 4$$
 \Rightarrow $b = -\frac{5}{6}$

I:
$$8a + 4b + d = 0$$
 \Rightarrow $a = -\frac{1}{4}$

Somit lautet die Lösung:

•
$$a = -\frac{1}{4}$$

•
$$b = -\frac{5}{6}$$
• $c = 0$

•
$$d = \frac{16}{3}$$

Die Funktion f lautet $f(x)=-rac{1}{4}x^3-rac{5}{6}x^2+rac{16}{3}$.

Überprüfung des Extremum bei x=0

Es muss gelten: f''(0)>0

$$f(x) = -rac{1}{4}x^3 - rac{5}{6}x^2 + rac{16}{3} \ f'(x) = -rac{3}{4}x^2 - rac{5}{3}x \ f''(x) = -rac{3}{2}x - rac{5}{3}$$

$$f'(x) = -\frac{3}{4}x^2 - \frac{3}{3}x$$

$$f''(0) = -\frac{5}{3} < 0$$

Da f''(0) die Bedingung nicht erfüllt, so stellt f nicht die gesuchte Funktion dar. Es existiert nur eine Lösung des Gleichungssystems, daher kann f nach den Bedingungen nie existieren.