Meranie a aproximácia prevodovej charakteristiky tepelného systému

Cvičenie č. 11

Spojité procesy

Obsah

1	Zadanie	1
2	Teória 2.1 Úvod do priebehu simulácie	2
3	Lineárna aproximácia	4
4	Kvadratická aproximácia	5
5	Odmocninová aproximácia	6
6	Zhrnutie	7

1 Zadanie

Cieľom zadania je osvojiť si postup merania prevodovej charakteristiky systému a jej aproximácie regresnou funkciou.

Uvažujeme laboratórny model tepelného systému podľa obr. 1. pozostávajúci zo sklenenej rúrky, ktorá má na jednom konci pripevnený ventilátor, ktorým je do nej vháňaný vzduch a na druhom konci je otvorená. V rúrke je umiestnená výhrevná špirála a dva snímače teploty. Snímač teploty umiestnený pri výhrevnej špirále je označený T1 a snímač teploty umiestnený pri výstupe z rúrky je označený T2. Ako vstup do systému uvažujeme signál ovládajúci výkon špirály a výstupom je signál z teplotného snímača T2.

Obr. 1. Laboratómy model tepelného systému

Obr. 1: Prvá časť zadania z cvičenia č. 11 z predmetu spojité procesy

2 Teória

V tomto zadaní je našou úlohou experimentálne overiť návrh regulácie výšky hladiny na laboratórnom modeli tepelného systému a overiť navrhované riešenie. Pri tomto zadaní sme použili už preddefinovanú schému v programe Simulink (Obr. 2).

Obr. 2: Schéma modelu z cvičenia č. 11 z predmetu spojité procesy

V tomto zapojení vidíme viacero vstupných signálov, tie sú už preddefinované. **ventilator** reprezentuje na koľko percent funguje ventilátor v systéme. **ohrev** reprezentuje vstupný signál ohrevnej špirály, jeho hodnoty sú zadávané v percentách. Túto hodnotu budeme v priebehu merania prestavovať. Bude sa meniť od 0% po 100% s krokom 10%.

2.1 Úvod do priebehu simulácie

Na obrázku Obr. 3 je znázornený priebeh simulácie tepelného systému s ohrevnou špirálou. Na začiatku merania sme nastavili ohrev špirály na 10%. Postupne sme zvyšovali hodnotu ohrevu až k 100%. Keďže sme prvú hodnotu nenastavili na 0%, tak sme meranie zopakovali. Pri druhom meraní sme dostali hodnoty, ktoré boli vyššie ako hodnoty z prvého merania. Pri aproximácia budeme použivať hodnoty z druhej časti merania.

Obr. 3: Priebeh meranej teploty na snímači T2.

Merané hodnoty z druhej časti nám vyšli následovne:

ohrev [%]	T1 [°C]	T2 [°C]
0	29.3	29
10	33.5	33
20	38	37
30	42	41
40	46.5	45
50	49.5	47.5
60	52.5	50
70	54	51.3
80	54.5	51.6
90	55	52
100	55	52

3 Lineárna aproximácia

Obr. 4: Lineárna aproximácia tepelného systému.

Odhadnutý funkčný vzťah:

$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 u \tag{1}$$

Vzťah 1 môžeme prepísať do maticového tvaru:

$$\hat{y} = H_1 \hat{\theta}_1 \tag{2}$$

Kde tieto matice môžeme vyjadriť nasledovne:

$$\boldsymbol{H}_1 = \begin{pmatrix} 1 & u_1 \\ 1 & u_2 \\ \vdots & \vdots \\ 1 & u_N \end{pmatrix} \qquad \text{a} \qquad \widehat{\boldsymbol{\theta}}_1 = \begin{pmatrix} \widehat{\boldsymbol{\theta}}_0 \\ \widehat{\boldsymbol{\theta}}_1 \end{pmatrix}.$$

Lineárna aproximácia je najjednoduchšia aproximácia, ktorá sa používa pri aproximácii prevodovej charakteristiky. Na jej prevedenie sme vytvorili maticu \mathbf{H} , vypočítali θ Gaussovým vzťahom

$$\theta = (H^T H)^{-1} H^T y \tag{3}$$

a následne sme pomocou vzťahu $y_1 = H_1 \theta_1$ vyjadrili funkciu opisujúcu funkciu pre výstupné veličiny.

Hodnoty účelovej funkcie sme si vypočítali zo vzťahu

$$Q1 = \frac{1}{2}e^T e \tag{4}$$

Obr. 4 ukazuje priebeh lineárnej aproximácie tepelného systému a Obr. 7 zobrazuje porovnanie prevodových funkcii a ich aproximácii.

4 Kvadratická aproximácia

Obr. 5: Kvadratická aproximácia tepelného systému.

Odhadnutý funkčný vzťah:

$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 u + \hat{\theta}_1 u^2 \tag{5}$$

Vzťah 5 môžeme prepísať do maticového tvaru:

$$\hat{y} = H_2 \hat{\theta}_2 \tag{6}$$

Kde tieto matice môžeme vyjadriť nasledovne:

$$\boldsymbol{H}_2 = \begin{pmatrix} 1 & u_1 & u_1^2 \\ 1 & u_2 & u_2^2 \\ \vdots & \vdots & \vdots \\ 1 & u_N & u_N^2 \end{pmatrix} \qquad \qquad \boldsymbol{\hat{\theta}}_2 = \begin{pmatrix} \hat{\theta}_0 \\ \hat{\theta}_1 \\ \hat{\theta}_2 \end{pmatrix}.$$

Kvadratická aproximácia je druha aproximácia, ktorú sme použili. Na jej prevedenie sme vytvorili maticu \mathbf{H} , vypočítali θ Gaussovým vzťahom a následne sme pomocou vzťahu 6 vyjadrili vzťah opisujúci funkciu pre výstupné veličiny. Opis kvadratickej regresie vidíme na obrázku Obr. 5.

Hodnoty účelovej funkcie počítame rovnakým spôsobom ako vo vzťahu 4. Obr. 5 ukazuje priebeh kvadratickej aproximácie tepelného systému a Obr. 7 zobrazuje porovnanie prevodových funkcii a ich aproximácii.

5 Odmocninová aproximácia

Obr. 6: Odmocninová aproximácia tepelného systému.

Odhadnutý funkčný vzťah:

$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 \sqrt{u} \tag{7}$$

Vzťah 7 môžeme prepísať do maticového tvaru:

$$\hat{y} = H_3 \hat{\theta}_3 \tag{8}$$

Kde tieto matice môžeme vyjadriť nasledovne:

$$\boldsymbol{H}_3 = \begin{pmatrix} 1 & \sqrt{u_1} \\ 1 & \sqrt{u_2} \\ \vdots & \vdots \\ 1 & \sqrt{u_N} \end{pmatrix} \qquad \text{a} \qquad \widehat{\boldsymbol{\theta}}_3 = \begin{pmatrix} \widehat{\boldsymbol{\theta}}_0 \\ \widehat{\boldsymbol{\theta}}_1 \end{pmatrix}.$$

Odmocninová aproximácia je tretia aproximácia, ktorú sme použili. Na jej prevedenie sme vytvorili maticu \mathbf{H} , vypočítali θ Gaussovým vzťahom a následne sme pomocou vzťahu 8 vyjadrili vzťah opisujúci funkciu pre výstupné veličiny. Opis odmocninovej regresie vidíme na obrázku Obr. 5.

Hodnoty účelovej funkcie počítame rovnakým spôsobom ako vo vzťahu 4. Obr. 6 ukazuje priebeh odmocninovej aproximácie tepelného systému a Obr. 7 zobrazuje porovnanie prevodových funkcii a ich aproximácii.

6 Zhrnutie

V tejto úlohe sme aproximovali namerané hodnoty teploty T2 pomocou troch rôznych spôsobov $line\'{a}rna$ 3, $kvadratick\'{a}$ 4 a $odmocninov\'{a}$ 5. Ako môžeme vidieť na Obr. 7 Kvadratick\'{a} aproximácia nám najpresnejšie opisuje namerané hodnoty.

Obr. 7: Priebeh prevodových funkcii