		ampere	coulomb	current	kelvin	newton	[1]					
(b)		y car moves in a ation	ı horizontal straiç	ght line. The disp	placement s of	the car is given	by the					
				$s = \frac{v^2}{2a}$								
	where a is the acceleration of the car and v is its final velocity.											
	State two conditions that apply to the motion of the car in order for the above equation to be valid.											
	1											
	2											
							[2]					
(c)	An experiment is performed to determine the acceleration of the car in (b) . The following measurements are obtained:											
		$s = 3.89 \mathrm{m} \pm 0.59$ $v = 2.75 \mathrm{m} \mathrm{s}^{-1} \pm 0$										
	(i)	Calculate the ac	celeration a of the	e car.								
	(ii)	Determine the po	ercentage uncert			ms in <i>a</i> .	s ^{–2} [1]					
					3							
			percentage	e uncertainty =			.% [2]					

(a) Underline all the SI base units in the following list.

(iii)	Use your calculated		(c)(i)	and	(c)(ii)	to	deterr	mine	the	absolut	e unc	ertaint	y in	the
			abs	olute	uncert	aint	ty =					1	ms ⁻²	² [1]
													[Tota	al: 7]