Interview Questions: Reductions

THET VIEW QUESTIONS. REductions					
3/3 points earned (100%)					
Excellent!					
Retake Course Home					
1/1 points					
1. Longest path and longest cycle. Consider the following two problems					
• LongestPath: Given an undirected graph G and two distinct vertices s and t , find a simple path (no repeated vertices) between s and t with the most edges.					
ullet LongestCycle: Given an undirected graph G' , find a simple cycle (no repeated vertices or edges except the first and last vertex) with the most edges.					
Show that <i>LongestPath</i> linear-time reduces to <i>LongestCycle</i> .					
A					
Thank you for your response. Hint: add a new path (with new vertices) between s and t .					

2

3Sum and 4Sum. Consider the following two problems:

- *3Sum*: Given an integer array a, are there three distinct indices i, j, and k such that $a_i + a_j + a_k = 0$?
- *4Sum*: Given an integer array b, are there four distinct integers i, j, k, and ℓ such that $b_i + b_j + b_k + b_\ell = 0$?

Show that 3Sum linear-time reduces to 4Sum.

Thank you for your response.

Hint: define $M=1+\max_i |a_i|$. To solve an instance of *3Sum* with N integers, form an instance of *4Sum* with N+1 integers containing only one negative value (-3M).

1/1 points

3.

3Sum and 3Linear. Consider the following two problems:

- 3Linear: Given an integer array a, are there three indices (not necessarily distinct)
- i, j, and k such that $a_i + a_i = 8 a_k$?
- *3Sum*: Given an integer array b, are there three indices (not necessarily distinct) i, j, and k such that $b_i + b_j + b_k = 0$?

Show that 3Linear linear-time reduces to 3Sum.

Α		
		,

Thank you for your response.

Hint: define $M=1+\max_i |a_i|$. To solve an instance of *3Linear* with n integers, form an instance of *3Sum* with 2n integers.

