TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

The Evidence Lower Bound (ELBO)

and Variational Auto Encoders (VAEs)

Latent Variable Assumptions

Even when $P_{\Phi}(z)$ and $P_{\Phi}(y|z)$ are samplable and computable we cannot typically compute $P_{\Phi}(y)$.

Specifically, for $P_{\Phi}(y)$ defined by a GAN generator we cannot compute $P_{\Phi}(y)$ for a test image y.

Hence it is not obvious how to optimize the fundamental equation.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} - \ln P_{\Phi}(y)$$

The Evidence Lower Bound (The ELBO)

We introduce a samplable and computable model $Q_{\Phi}(z|y)$ to approximate $P_{\Phi}(z|y)$.

$$\ln P_{\Phi}(y) = E_{z \sim Q_{\Phi}(z|y)} \ln \frac{P_{\Phi}(z) P_{\Phi}(y|z)}{P_{\Phi}(z|y)}$$

$$= E_{z \sim Q_{\Phi}(z|y)} \left(\ln \frac{P_{\Phi}(z) P_{\Phi}(y|z)}{Q_{\Phi}(z|y)} + \ln \frac{Q_{\Phi}(z|y)}{P_{\Phi}(z|y)} \right)$$

$$= \left(E_{z \sim Q_{\Phi}(z|y)} \ln \frac{P_{\Phi}(z) P_{\Phi}(y|z)}{Q_{\Phi}(z|y)} \right) + KL(Q_{\Phi}(z|y), P_{\Phi}(z|y))$$

$$\geq E_{z \sim Q_{\Phi}(z|y)} \ln \frac{P_{\Phi}(z) P_{\Phi}(y|z)}{Q_{\Phi}(z|y)} \quad \text{The ELBO}$$

The Variational Auto-Encoder (VAE)

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ E_{y \sim \operatorname{Pop}, \ z \sim Q_{\Phi}(z|y)} \ - \ln \frac{P_{\Phi}(z) P_{\Phi}(y|z)}{Q_{\Phi}(z|y)}$$

VAE generalizes EM

Expectation Maximimization (EM) applies in the (highly special) case where the exact posterior $P_{\Phi}(z|y)$ is samplable and computable. EM alternates exact optimization of Q and P.

VAE:
$$\Phi^* = \operatorname{argmin}_{\Phi} E_{y \sim \text{Train}, z \sim Q_{\Phi}(z|y)} - \ln \frac{P_{\Phi}(z,y)}{Q_{\Phi}(z|y)}$$

EM:
$$\Phi^{t+1} = \operatorname{argmin}_{\Phi} E_{y \sim \operatorname{Train}} E_{z \sim P_{\Phi^t}(z|y)} - \ln P_{\Phi}(z, y)$$

Update Inference (M Step) (E Step) Hold
$$Q$$
 fixed $Q(z|y) = P_{\Phi t}(z|y)$

The Reparameterization Trick

$$-\ln P_{\Phi}(y) \le E_{z \sim Q_{\Phi}(z|y)} - \ln \frac{P_{\Phi}(z)P_{\Phi}(y|z)}{Q_{\Phi}(z|y)}$$

$$= E_{\epsilon} - \ln \frac{P_{\Phi}(z)P_{\Phi}(y|z)}{Q_{\Phi}(z|y)} \quad z := f_{\Phi}(y,\epsilon)$$

 ϵ is parameter-independent noise.

This supports SGD:
$$\nabla_{\Phi} E_{y,\epsilon} [\ldots] = E_{y,\epsilon} \nabla_{\Phi} [\ldots]$$

Gaussian VAEs

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} - \ln \frac{p_{\Phi}(z)p_{\Phi}(y|z)}{q_{\Phi}(z|y)}$$

$$z = z_{\Phi}(y) + \sigma_{\Phi}(y) \odot \epsilon \quad \epsilon \sim \mathcal{N}(0, I)$$

$$q_{\Phi}(z[i]|y) = \mathcal{N}(z_{\Phi}(y)[i], \sigma_{\Phi}(y)[i])$$

$$p_{\Phi}(z[i]) = \mathcal{N}(\mu_p, \sigma_p[i]) \quad \text{WLOG} = \mathcal{N}(0, 1)$$

$$p_{\Phi}(y|z) = \mathcal{N}(y_{\Phi}(z), \sigma^2 I)$$

$-\ln p_{\Phi}(y|z)$ as Distortion

For
$$p_{\Phi}(y|z) \propto \exp(-||y - y_{\Phi}(z)||^2/(2\sigma^2))$$
 we get

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} - \ln \frac{p_{\Phi}(z)}{q_{\Phi}(z|y)} - \ln p_{\Phi}(y|z)$$

$$= \underset{\Phi,\sigma}{\operatorname{argmin}} E_{y,\epsilon} - \ln \frac{p_{\Phi}(z)}{q_{\Phi}(z|y)} + \left(\frac{1}{2\sigma^2}\right) ||y - y_{\Phi}(z)||^2 + d \ln \sigma$$

where

d is the dimension of y and
$$\sigma^* = \sqrt{\frac{1}{d} E_{y,\epsilon} ||y - y_{\Phi}(z)||^2}$$

Posterior Collapse

Assume Universal Expressiveness for $P_{\Phi}(y|z)$.

This allows $P_{\Phi}(y|z) = \text{Pop}(y)$ independent of z.

We then get a completely optimized model with z taking a single (meaningless) determined value.

$$Q_{\Phi}(z|y) = P_{\Phi}(z|y) = 1$$

Colorization with Latent Segmentation

Can colorization be used to learn latent segmentation?

We introduce a latent segmentation into the model.

In practice the latent segmentation is likely to "collapse" because the colorization can be done just as well without it.

Independent Universality

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}, z \sim Q_{\Phi}(z|y)} - \ln \frac{P_{\Phi}(z, y)}{Q_{\Phi}(z|y)}$$

It is natural to assume that Φ has independent parameters for each distribution. In practice parameters are often shared.

Since Φ can independently parameterize each distribution, we will often use an independent universality assumption that Φ can represent any triple of distributions Q(z|y), P(z) and P(y|z).

Independent Universality

More formally, we will often assume that for any triple of distributions Q(z|y), P(z) and P(y|z) there exists a Φ that simultaneously satisfies

$$Q_{\Phi}(z|y) = Q(z|y)$$

$$P_{\Phi}(z) = P(z)$$

$$P_{\Phi}(y|z) = P(y|z)$$

This assumption allows each distribution to be independently optimized while holding the others fixed.

The β -VAE

 β -VAE: Learning Basic Visual Concepts With A Constrained Variational Framework, Higgins et al., ICLR 2017.

The β -VAE introduces a parameter β allow control of the rate-distortion trade off.

Indeterminacy of the VAE

VAE:
$$\Phi^* = \operatorname{argmin}_{\Phi} E_{y,\epsilon} - \ln \frac{P_{\Phi}(z)}{Q_{\Phi}(z|y)} - \ln P_{\Phi}(y|z)$$

Assuming independent universality we can optimize $P_{\Phi}(z)$ and $P_{\Phi}(y|z)$ while holding $Q_{\Phi}(z|y)$ fixed. This gives

$$P^*(z) = P_{\text{pop}}(z) = E_y Q_{\Phi}(z|y)$$

$$P^*(y|z) = P^*_{\text{pop}}(y|z) \propto P(y,z) = \text{Pop}(y)Q_{\Phi}(z|y)$$

Indeterminacy of the VAE

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} - \ln \frac{P_{\text{pop}}(z)}{Q_{\Phi}(z|y)} - \ln P_{\text{pop}}(y|z)$$

$$= \underset{\Phi}{\operatorname{argmin}} I_{\Phi}(y,z) + H_{\Phi}(y|z)$$

$$= \underset{\Phi}{\operatorname{argmin}} H_{\text{pop}}(y)$$

But $H_{\text{pop}}(y)$ is independent of Φ .

Any choice of $Q_{\Phi}(z|y)$ gives optimal modeling of y.

Indeterminacy of the VAE

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} I_{\Phi}(y, z) + H_{\Phi}(y|z)$$

The choice of $Q_{\Phi}(z|y)$ does not influence the value of the objective function but controls I(y,z).

We have $0 \le I(y, z) \le H(y)$ with the full range possible.

The β -VAE

To control I(y,z) we introduce a weighting β

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \beta I_{\Phi}(y, z) + H_{\Phi}(y|z)$$

$$\beta\text{-VAE } \Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} - \beta \ln \frac{P_{\Phi}(z)}{Q_{\Phi}(z|y)} - \ln P_{\Phi}(y|z)$$

For $\beta < 1$ we no longer have an upper bound on $H_{\text{pop}}(y)$ but we can force the use of z (avoid posterior collapse).

For $\beta > 1$ the bound on $H_{\text{Pop}}(y)$ becomes weaker and the latent variables carry less information.

RDAs vs. β -VAEs

RDAs and β -VAEs are essentially the same.

$$RDA: \Phi^* = \operatorname{argmin}_{\Phi} E_{y,z \sim Q_{\Phi}(z|y)} - \ln \frac{P_{\Phi}(z)}{Q_{\Phi}(z|y)} + \lambda \operatorname{Dist}(y, y_{\Phi}(z))$$

$$\beta$$
-VAE: $\Phi^* = \operatorname{argmin}_{\Phi} E_{y,z \sim Q_{\Phi}(z|y)} - \beta \ln \frac{P_{\Phi}(z)}{Q_{\Phi}(z|y)} - \ln P_{\Phi}(y|z)$

VAEs 2013

Sample $z \sim \mathcal{N}(0, I)$ and compute $y_{\Phi}(z)$

[Alec Radford]

VAEs 2019

VQ-VAE-2, Razavi et al. June, 2019

VAEs 2019

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.

VQ-VAE-2, Razavi et al. June, 2019

\mathbf{END}