日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2001年 1月25日

出願番号 Application Number:

人

特願2001-017579

出 類 Applicant(s): 横浜ゴム株式会社

2001年10月26日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2001-017579

【書類名】

【整理番号】 1013110

【提出日】

平成13年 1月25日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

C08K 5/36

特許願

C08K 5/45

C08L 21/00

【発明の名称】

環状ポリスルフィド化合物の製造方法及びそれを含むゴ

ム組成物

【請求項の数】

7

【発明者】

【住所又は居所】 神奈川県平塚市追分2番1号 横浜ゴム株式会社 平塚

製造所内

【氏名】

崔 源文

【発明者】

【住所又は居所】 神奈川県平塚市追分2番1号 横浜ゴム株式会社 平塚

製造所内

【氏名】

石川 和憲

【特許出願人】

【識別番号】

000006714

【氏名又は名称】

横浜ゴム株式会社

【代理人】

【識別番号】

100077517

【弁理士】

【氏名又は名称】

石田 敬

【電話番号】

03-5470-1900

【選任した代理人】

【識別番号】

100092624

【弁理士】

【氏名又は名称】 鶴田 準一

【選任した代理人】

【識別番号】 100105706

【弁理士】

【氏名又は名称】 竹内 浩二

【選任した代理人】

【識別番号】 100082898

【弁理士】

【氏名又は名称】 西山 雅也

【選任した代理人】

【識別番号】 100081330

【弁理士】

【氏名又は名称】 樋口 外治

【先の出願に基づく優先権主張】

【出願番号】 特願2000-374924

【出願日】 平成12年12月 8日

【手数料の表示】

【予納台帳番号】 036135

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9801418

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 環状ポリスルフィド化合物の製造方法及びそれを含むゴム組成物

【特許請求の範囲】

【請求項1】 式:X-R-X(式中、Xはそれぞれ独立にハロゲン原子を表し、Rは置換又は非置換の C_2 ~ C_{18} のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)のジハロゲン化合物と、式: M_2S_x (式中、Mはアルカリ金属であり、xは2~6の整数である)のアルカリ金属の多硫化物とを、親水性及び親油性溶媒の非相溶混合溶媒中で2相系で反応させることを特徴とする式(I):

【化1】

(式中、xは $2\sim6$ の整数、nは $1\sim1$ 5の整数、Rは置換又は非置換の $C_2\sim C_{10}$ のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)で表される環状ポリスルフィドの製造方法。

【請求項2】 前記ジハロゲン化合物と前記アルカリ金属多硫化物との反応をジハロゲン化合物100重量部当り親水性及び親油性溶媒をそれぞれ10~2000重量部含む非相溶混合溶媒系で50~120℃の温度で実施する請求項1に記載の製造方法。

【請求項3】 式: M_2S_x (式中、Mはアルカリ金属であり、xは2~6の整数である)のアルカリ金属の多硫化物の溶液中に、式:X-R-X(式中、Xはそれぞれ独立にハロゲン原子を表し、Rは置換又は非置換の C_2 ~ C_{18} のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)のジハロゲン化合物を、ジハロゲン化合物がアルカリ金属の多硫化物と界面で反応を生ずるような速度で添加して反応させることを特徴とする式(I):

【化2】

(式中、xは $2\sim6$ の整数、nは $1\sim15$ の整数、Rは置換又は非置換の $C_2\sim C_{10}$ のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)で表される環状ポリスルフィドの製造方法。

【請求項4】 前記界面での反応を50~120℃の温度で実施する請求項3に記載の製造方法。

【請求項5】 請求項1~4のいずれか1項に記載の方法により製造された前記式(I)の化合物からなるゴム用加硫剤。

【請求項6】 式(II):

【化3】

で表される環状ポリスルフィド化合物からなるゴム用加硫剤。

【請求項7】 ジエン系ゴム100重量部に対して、請求項5又は6に記載のゴム用加硫剤0.5~30重量部を配合して成るゴム組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は環状ポリスルフィド化合物及びその製法並びにそれから成るゴム用加 硫剤及びそれを含むゴム組成物に関する。

[0002]

【従来の技術】

硫黄加硫による架橋ゴムはポリスルフィド結合を含むため、耐熱性と加硫もどり性が劣る。これらの耐熱性と加硫もどり性の問題を改良するため、テトラスルフィドポリマーや環状ポリスルフィドなどの加硫剤が有効であることが知られている(山崎升ら:日本ゴム協会1981年研究発表会要旨集、P. 53, 2-17及び特開平10-120788号公報)。特に環状ポリスルフィドは架橋効率の面から好まれるが、いままで報告されている環状ポリスルフィドの製造法はその長い製造工程や高い原料が用いられるなどの問題により実用性に欠けている(特開昭58-122944号公報)。

[0003]

特開昭58-122944号公報には以下のような環状ポリスルフィド化合物の製造方法が報告されている。

[0004]

【化4】

[0005]

この製造法によれば、高い原料であるジチオールとジチオールの保護基として高いクロロトリメチルシランを 2 当量反応させなければならず、クロロトリメチルシランと S-S i M e $_3$ 基は水分により容易に加水分解されることから、その反応条件は湿気または水分を除くために、反応装置の乾燥などの処理が必要である。 さらに、 S_3 C 1_2 を別途合成しなければならず、更に収率が 70%以下であ

るため生成物の精製などの問題がある。

[0006]

【発明が解決しようとする課題】

従って、本発明の目的はジハロゲン化合物と金属の多硫化物からゴム加硫剤と して有用な環状ポリスルフィド化合物を安価で簡便に製造することにある。

[0007]

【課題を解決するための手段】

本発明に従えば、式:X-R-X(式中、Xはそれぞれ独立にハロゲン原子を表し、Rは置換又は非置換の C_2 ~ C_{18} のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)のジハロゲン化合物と、式: M_2S_x (式中、Mはアルカリ金属であり、xは2~6の整数である)のアルカリ金属の多硫化物とを、親水性及び親油性溶媒の非相溶混合溶媒中で2相系で反応させて式(I)で表される環状ポリスルフィドを製造する方法が提供される。

[0008]

【化5】

[0009]

(式中、xは $2\sim6$ の整数、nは $1\sim1$ 5の整数、Rは置換又は非置換の $C_2\sim C_{18}$ のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す。)

[0010]

本発明に従えば、また式: M_2S_x (式中、Mはアルカリ金属であり、xは $2\sim 6$ の整数である)のアルカリ金属の多硫化物の溶液中に、式:X-R-X(式中、Xはそれぞれ独立にハロゲン原子を表し、Rは置換又は非置換の $C_2\sim C_{18}$ のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)のジハロゲン化合物を、ジハロゲン化合物がアルカリ金属の多硫化物と界面で反応を生ずるよ

うな速度で添加して反応させて前記式(I)で表される環状ポリスルフィドを製造する方法が提供される。

[0011]

本発明に従えば、また、前記式(I)において、Rが

[0012]

【化6】

+c H₂→ ",

[0013]

 $-CH_2CH_2OCH_2OCH_2CH_2-$ 又は $-CH_2CH_2OCH_2CH_2-$ であり、 \times が2~6の整数であり、nが1~15の整数である環状ポリスルフィドが提供される。

[0014]

本発明に従えば、更に、前記環状ポリスルフィドからなるゴム用加硫剤が提供される。

[0015]

本発明に従えば、更に、ジエン系ゴム100重量部に対して、前記のゴム用加 硫剤0.5~30重量部、好ましくは0.5~20重量部を配合して成るゴム組 成物が提供される。

[0016]

【発明の実施の形態】

本発明に従えば、前記式(I)の環状ポリスルフィドは、前述の如く、式:X-R-X(式中、Xは、それぞれ独立に、フッ素、塩素、臭素、ヨウ素、好ましくは塩素、臭素のハロゲン原子を表し、Rは、置換又は非置換の $C_2\sim C_{18}$ のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)のジハロゲン化合物とアルカリ金属の多硫化物 M_2S_x (式中、Mはアルカリ金属、例えばナトリウム、カリウム、リチウムなどであり、xは2~6の整数である)とを、親水性及び親油性溶媒の非相溶の混合溶媒中で2相系で反応させることによってか、又

は M_2S_x の溶液(溶媒としては水及び $C_1\sim C_4$ 脂肪族アルコールを用いることができ、水の使用が最も好ましい)中にX-R-Xを M_2S_x とX-R-Xとが界面で反応するような速度で添加して反応させることによって、製造される。なお、後者の方法でX-R-Xの添加速度が速すぎると、X-R-Xの濃度が高くなり、界面以外での反応も起こり、分子間の反応が優先され鎖状になるので好ましくない。従って、 M_2S_x とX-M-Xの反応をできるだけ不均一系で界面だけで反応させることが環状ポリスルフィドを得るのに好ましい。

[0017]

前記一般式X-R-X及び式(I)の基Rとしては、例えば、xチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、オクチレン、ノニレン、デシレン、1, 2-プロピレンなどの直鎖又は分岐鎖のアルキレン基があげられ、これらのアルキレン基はフェニル基、ベンジル基などの置換基で置換されていてもよい。基Rとしては更にオキシアルキレン基を含むアルキレン基、例えば基(CH_2 C H_2 O)p及び基(CH_2)q(式中、pは $1\sim5$ の整数であり、qは $0\sim2$ の整数である)が任意に結合したオキシアルキレン基を含むアルキレン基とすることができる。好ましい基Rは

[0018]

【化7】

-CH₂CH₂OCH₂CH₂-, -(CH₂CH₂O) ₂CH₂CH₂-, -(CH₂CH₂O) ₃CH-CH₂-, -(CH₂CH₂O) ₄CH₂CH₂-, -(CH₂CH₂O) ₅CH₂CH₂-, -(CH₂CH₂O) ₂CH₂-,

[0019]

 $-CH_2CH_2OCH_2OCH_2CH_2$ -であり、特にxは平均として3.0~5.0が好ましく、3.5~4.5がさらに好ましい。nは好ましくは $1\sim10$ 、より好ましくは $1\sim5$ である。

[0020]

前記ジハロゲン化合物と前記アルカリ金属多硫化物との反応は、当量反応であ

り、実用的には両化合物を $0.95:1.0\sim1.0:0.95$ (当量比)で反応させ、好ましくは $5.0\sim12.0$ ℃、更に好ましくは $7.0\sim1.00$ ℃の温度で実施する。

[0021]

本発明に用いる親水性溶媒及び親油性溶媒については特に限定はなく、実際の 反応系において非相溶で2相を形成する任意の溶媒を用いることができる。具体 的には、例えば親水性溶媒としては、水の他、メタノール、エタノール等のアル コール類をあげることができ、これらは任意の混合物として使用することもでき る。また親油性溶媒としては、トルエン、キシレン、ベンゼン等の芳香族炭化水 素類、ペンタン、ヘキサン等の脂肪族炭化水素類、ジオキサン、ジブチルエーテ ル等のエーテル類、酢酸エチル等のエステル類などをあげることができ、これら は任意の混合物として使用することもできる。

[0022]

前記ジハロゲン化合物と前記アルカリ金属の多硫化物との界面での反応は、当量反応であり、実用的には両化合物を $0.95:1\sim1:0.95$ (当量比)で反応させ、反応温度は好ましくは $50\sim120$ \mathbb{C} である。

[0023]

前記反応において触媒は必要ではないが、場合によって触媒として 4 級アンモニウム塩、ホスホニウム塩、クラウンエーテルなどを用いることができる。例えば、 (CH₃) $_4$ N⁺Cl⁻, (CH₃) $_4$ N⁺Br⁻, (C $_4$ H₉) $_4$ N⁺Cl⁻, (C $_4$ H₉) $_4$ N⁺Cl⁻, (C $_4$ H₉) $_4$ N⁺Br⁻, CH₃P⁺ (C $_6$ H₅) $_3$ I⁻, C $_{16}$ H $_{33}$ P⁺ (C $_4$ H₉) $_3$ Br⁻, 15-crown-5, 18-crown-6, Benzo-18-crown-6等が挙げられる。

[0024]

本発明に従ったゴム組成物は、ジエン系ゴム100重量部に対して、前記式(I)のゴム用加硫剤0.5~30重量部、好ましくは0.5~20重量部を配合する。本発明のゴム用加硫剤は従来の硫黄などの加硫剤と併用することができる。本発明のゴム用加硫剤の配合量が少な過ぎると十分な加硫効果が得られず加硫

ゴムの強度低下などが発生するので好ましくなく、逆に多過ぎると加硫ゴムが固 くなるので好ましくない。

[0025]

本発明においてゴム組成物に配合するジエン系ゴムとしては、例えばタイヤ用原料ゴムとして使用することができる任意のジエン系ゴムを含み、かかる代表的なジエン系ゴムとしては、天然ゴム(NR)、ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、各種スチレンーブタジエン共重合体ゴム(SBR)、エチレンープロピレンージエン三元共重合体ゴム(EPDM)などをあげることができる。これは単独又は任意のブレンドとして使用することができる。

[0026]

本発明に係るゴム組成物には、前記した必須成分に加えて、カーボンブラック、シリカなどの補強剤(フィラー)、加硫促進剤、各種オイル、老化防止剤、可塑性剤、シランカップリング剤などのタイヤ用、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる配合物は一般的な方法で混練して組成物とし、加硫するのに使用することができる。これらの添加剤の配合量も本発明の目的に反しない限り、従来の一般的な配合量とすることができる

[0027]

【実施例】

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施 例に限定するものでないことは言うまでもない。

[0028]

実施例1

1, 2-ビス(2-クロロエトキシ) エタン28. 1g(0.15mol)と30%多硫化ソーダ(Na_2S_4) 水溶液89. 76g(0.155mol)を水150g 及びトルエン100gの非相溶系混合溶媒中にC90Cで5時間反応させた。反応終了後、有機相を分離し、減圧下に90Cで濃縮して、式(I)において、 $R=(CH_2)_2O(CH_2)_2O(CH_2)_2$ 、x(平均)=4及び $n=1\sim5$ の環状ポリスルフィド(加硫剤1)34.3g(収率94%)を得た。得られた環状ポ

リスルフィドの数平均分子量は500であり、そのNMRのデータは以下の通りであった。

[0029]

 1 H-NMR (重クロロホルム) δ:2.9~3.2 (4H, CH $_{2}$ S $_{x}$),3.7~4.0 (8H, CH $_{2}$ O)。

[0030]

実施例2

30%多硫化ソーダ(Na_2S_4)水溶液 89.76g(0.155mol)、エタノール150g及びトルエン100gの混合液中に、1,2ービス(2-クロロエトキシ)エタン28.1g(0.15mol)をトルエン30gに溶解した溶液を90℃で 2時間滴下し、さらに 3時間反応させた。反応終了後、有機相を分離し、減圧下90℃にて濃縮して、式(I)において、 $R=(CH_2)_2O(CH_2)_2$ O(CH_2) $_2$ 、 $_2$ × (平均) $_2$ + 4 及び $_3$ $_3$ = $_3$ + $_4$ での $_3$ であり、その $_3$ を得た。得られた環状ポリスルフィドの数平均分子量は $_3$ のであり、その $_3$ をの $_3$ であり、その $_4$ をの $_5$ に $_5$ に $_5$ を $_5$ に $_5$ に $_5$ に $_5$ に $_5$ の $_5$ に $_5$ に

[0031]

 1 H-NMR (重クロロホルム) δ:2.9~3.2 (4 H, CH $_{2}$ S $_{x}$),3.7~4.0 (8 H, CH $_{2}$ O).

[0032]

実施例3

1, 6-ジクロロヘキサン23. 3g (0. 15 mol)と30%多硫化ソーダ(Na_2S_4)水溶液89. 76g (0. 155 mol)をエタノール120g 及びトルエン100g の混合溶媒中にて、90 $\mathbb C$ で5 時間反応させた。反応終了後、有機相を分離し、減圧下90 $\mathbb C$ で濃縮して、式(I)において、 $R=(CH_2)_6$ 、× (平均) =4 及びn=1 ~ 5 の環状ポリスルフィド(加硫剤 2) 31. 2g (収率 98 %)を得た。得られた環状ポリスルフィドの数平均分子量は500 であり、そのNMRのデータは以下の通りであった。

[0033]

 1 H-NMR (重クロロホルム) δ:1.4~1.9 (4 H, CH₂S_x), 3

. $7 \sim 4$. 0 (8 H, CH₂).

[0034]

実施例4

30重量%四硫化ソーダ水溶液 89.8g(0.15モル)に水100gを加え希釈した後、これに1,2ービス(2-クロロエトキシ)メタン25.9g(0.15モル)を90℃で 2 時間かけて滴下し、同温度で更に3 時間反応させた。反応終了後、水不溶部を水洗後、減圧下、100℃で 2 時間乾燥させ、式(I)において、 $R=-CH_2$ CH_2 OCH_2 OCH_2 CH_2 -、x (平均) =4 および n=1 ~ 5 の環状ポリスルフィド(加硫剤 3) 33.2g (収率96%)を得た。得られた環状ポリスルフィドの数平均分子量は600であり、そのNMR データは以下の通りであった。

 1 H-NMR (重クロロホルム) δ:2.9~3.3 (4 H, CH $_{2}$ S),3.7~4.0 (4 H, CH $_{2}$ O)、4.8 (2 H, OCH $_{2}$ O)。

実施例5~8及び比較例1

本発明のゴム加硫剤の配合物性を評価するため以下の試験を行なった。 ゴムへの配合処方(重量部)は表Iに示す通りである。

表I

	比較例1	実施例 5	実施例 6	実施例7	実施例8
ポリイソプレンゴム ^{*1}	100	100	100	100	100
カーボンブラック *2	50	50	50	50	50
酸化亜鉛	. 3	3	3	3	3
ステアリン酸	1	1	1	1	1
老化防止剤*3	1	1	1	1	1
N S *4	0.8	0.8	0.8	0.8	0.8
硫黄 ^{*5}	1.5	0	0.75	0	0
加硫剤 1 *6		3	1.5		_
加硫剤 2 *7	_	_	_	3	
加硫剤 3 *8		_	_		3

[0035]

- *1:ニポールIR2200 (日本ゼオン製)
- *2:シーストKH (東海カーボン製)
- *3:SANTOFLEX 6PPD (フレキシス製)
- *4: (N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド)
- *5:不溶性硫黄(アクゾ・カシマ製)
- *6:実施例1で製造した加硫剤
- *7:実施例3で製造した加硫剤
- *8:実施例4で製造した加硫剤

[0036]

上記表 I に示す配合(重量部)のゴム組成物を8インチのオープンロールで混合した後、160 C 及び20 分の加硫条件でゴムを加硫した。その結果を表 II に示す。表 II の結果から明らかなように、比較例 1 のゴム組成物に比べ、本発明の実施例 $4\sim6$ のゴム組成物は、100 C \times 3 日間の促進熱老化後も破断強度(TB)および破断伸び(EB)について良好な保持率を示し、熱安定性に優れていることが確認された。

[0037]

表Ⅱ

	比較例1	実施例5	実施例6	実施例7	実施例 8
熱老化前					
100%モジュラス(MPa)	2.76	3.0	3.42	3.13	3.09
3 0 0 %モジュラス (MPa)	12.72	13.68	14.85	13.69	13.65
ТВ	30.17	33.43	32.66	32.24	33.21
EB (%)	556.2	566.8	545.5	556.2	565.3
熱老化後					
100%モジュラス(MPa)	4.15	4.36	_	_	4.07
300%モジュラス(MPa)	17.2	17.49	-	_	16.86
ΤB	20.0	24.27	_	_	25.82

EB (%)

332.1 395.1

_

407.5

[0038]

実施例9:実施例5及び7のレオメータ(1<u>60℃、</u>60分)

試験方法

100%及び300%モジュラス: JIS K6251 (ダンベル状3号形) に準拠して測定した。

破断強度(TB)及び破断伸び(EB): JIS K6251 (ダンベル状3号形)に準拠して測定した。

[0039]

上で得られた比較例1 (硫黄加硫)、実施例5 (加硫剤1加硫)及び実施例7 (加硫剤2加硫)のゴム組成物についてレオメータ (加硫試験機)を用いて16 0℃で60分間試験した。結果をトルクの時間変化曲線として図1に示した。図1の結果から本発明に係るゴム加硫剤を用いた実施例5及び7ではリバージョン (加硫戻り)が認められず、既存な加硫状態を示した。

[0040]

【発明の効果】

本発明に従えば、以上説明した通り、ジハロゲン化合物とアルカリ金属多硫化物との反応を親水性及び親油性溶媒の非相溶系混合溶媒中で2相系で反応させることにより、環状ポリスルフィドを安価で簡便に製造することができる。また、本発明の環状ポリスルフィドはゴム用加硫剤として用いた場合に、通常の硫黄加硫系に比べ、リバージョンを起すことなく最適加硫状態を与え、また加硫ゴムの熱安定性を向上させることもできる。

【図面の簡単な説明】

【図1】

比較例1並びに実施例5及び7のレオメータ(160℃×60分)の試験結果 を示すグラフ図である。 【書類名】

図面

【図1】

図1

【書類名】 要約書

【要約】

【課題】 ゴム加硫剤として有用な環状ポリスルフィド化合物の製造。

【解決手段】 式:X-R-X(式中、X: ハロゲン原子、R: 置換又は非置換の C_2 ~ C_{18} のアルキレン又はオキシアルキレンを含むアルキレン)のジハロゲン化合物と、式: M_2S_x (式中、M: アルカリ金属、x: 2~6の整数)のアルカリ金属の多硫化物とを、親水性及び親油性溶媒の非相溶混合溶媒中で2相系で反応させるか、 M_2S_x の溶液中にX-R-Xを両者が界面で反応するような速度で添加して反応させて式(I):

【化1】

(式中、xは2~6の整数、nは1~15の整数、Rは置換又は非置換の C_2 ~ C_{10} のアルキレン基又はオキシアルキレン基を含むアルキレン基を示す)で表される環状ポリスルフィドを製造する。

【選択図】 図1

出願人履歴情報

識別番号

[000006714]

1. 変更年月日 1990年 8月 7日

[変更理由] 新規登録

住 所 東京都港区新橋5丁目36番11号

氏 名 横浜ゴム株式会社