Λύσεις ασκήσεων από τις Ακολουθίες του Γκατζούλη

2 Αυγούστου 2019

1 Ασχήσεις από το βιβλίο

Άσκηση 1. (σ.123/ 7.) Να εξεταστούν ως προς μονοτονία οι ακολουθίες

iv)
$$(\delta_{\nu})$$
 $\mu \epsilon \delta_1 = 5$, $\delta_{\nu+1} = \frac{2+\delta_{\nu}}{5+\delta_{\nu}}$, $\nu \in \mathbb{N}^*$.

vi)
$$(\psi_{\nu})$$
 $\mu \epsilon \ \psi_1 = \lambda \ge 0$, $\psi_{\nu+1} = \frac{4\psi_{\nu}-3}{3} \ \nu \in \mathbb{N}^*$.

iv) $\delta_1=5,\ \delta_2=\frac{7}{10}<\delta_1.$ Προφανώς $\delta_{\nu}>0\ \forall\,\nu\in\mathbb{N}^*.$

$$\delta_{\nu+1} < \delta_{\nu} \Leftrightarrow \frac{2+\delta_{\nu}}{5+\delta_{\nu}} < \delta_{\nu}$$

Εύχολα βλέπουμε ότι $\frac{2+x}{5+x} < x \ \forall \, x>0$ άρα η δ_{ν} είναι γνησίως φθίνουσα.

νί) Χρησιμοποιούμε το κριτήριο της διαφοράς.

$$\delta_{\nu} = \psi_{\nu+1} - \psi_{\nu} = \frac{4\psi_{\nu} - 3}{3} - \psi_{\nu} = \frac{\psi_{\nu} - 3}{3}, \quad \delta_{\nu+1} = \frac{\psi_{\nu+1} - 3}{3} = \frac{4(\psi_{\nu} - 3)}{9}$$
$$\therefore \delta_{\nu} \ \delta_{\nu+1} = \frac{4(\psi_{\nu} - 3)^{2}}{27} \ge 0$$

Άρα η δ_{ν} μπορεί να είναι μονότονη ή γνησίως μονότονη. Αν είναι γνησίως μονότονη

- και $\psi_2 < \psi_1$ τότε είναι γνησίως φθίνουσα. $\psi_2 < \psi_1 \Leftrightarrow \frac{4\lambda 3}{3} < \lambda \Leftrightarrow \lambda < 3.$
- και $\psi_2 > \psi_1$ τότε είναι γνησίως αύξουσα. $\psi_2 > \psi_1 \Leftrightarrow \lambda > 3$.

 Γ ια $\lambda = 3$ έχουμε ότι είναι σταθερή αφού

•
$$\psi_1 = \lambda = 3$$
, $\psi_2 = (4 \cdot 3 - 3)/3 = 3$, ..., $\psi_{\nu} = 3$.

Άσκηση 2. (σ.124/ 11.) Αν για μια ακολουθία ισχύει $\alpha_{2\nu-1} < \alpha_{2\nu} < \alpha_{2\nu+1} \ \forall \nu \in \mathbb{N}^*$ να αποδείξετε ότι η (α_{ν}) είναι γνησίως αύξουσα.

Με εφαρμογή του χριτήριου διαφοράς

$$\delta_{\nu}\delta_{\nu+1} = (\alpha_{2\nu} - \alpha_{2\nu-1})(\alpha_{2\nu+1} - \alpha_{2\nu}) > 0$$

Άρα γνησίως μονότονη και λόγω της διάταξης στην εκφώνηση γνησίως αύξουσα.

Άσκηση 3. (σ.124/13.) Να μελετήσετε ως προς μονοτονία τις ακολουθίες:

iv)
$$(\alpha_{\nu})$$
 $\mu \epsilon \alpha_{\nu} = \sqrt{\nu + 2} - \sqrt{\nu + 4}$

v)
$$(\beta_{\nu})$$
 $\mu \epsilon \beta_{\nu} = \sqrt[3]{\nu + 1} - \sqrt[3]{\nu}$

$$\alpha_{\nu} = \sqrt{\nu + 2} - \sqrt{\nu + 4}, \quad \alpha_{\nu - 1} = \sqrt{\nu + 1} - \sqrt{\nu + 3}$$

$$\therefore \alpha_{\nu} - \alpha_{\nu-1} = \sqrt{\nu+2} - \sqrt{\nu+4} + \sqrt{\nu+3} - \sqrt{\nu+1}$$

$$= \frac{\left(\sqrt{\nu+2} - \sqrt{\nu+4}\right)\left(\sqrt{\nu+2} + \sqrt{\nu+4}\right)}{\sqrt{\nu+2} + \sqrt{\nu+4}} + \frac{\left(\sqrt{\nu+3} - \sqrt{\nu+1}\right)\left(\sqrt{\nu+3} + \sqrt{\nu+1}\right)}{\sqrt{\nu+3} + \sqrt{\nu+1}}$$

$$= -\frac{2}{\sqrt{\nu+2} + \sqrt{\nu+4}} + \frac{2}{\sqrt{\nu+3} + \sqrt{\nu+1}}$$

Αλλά η $\gamma_{\nu} = \sqrt{\nu}$ είναι γνησίως αύξουσα άρα $\sqrt{\nu+2} > \sqrt{\nu+1}$, $\sqrt{\nu+4} > \sqrt{\nu+3}$ οπότε με πρόσθεση:

$$\sqrt{\nu+2} + \sqrt{\nu+4} > \sqrt{\nu+3} + \sqrt{\nu+1} \Rightarrow
\frac{1}{\sqrt{\nu+2} + \sqrt{\nu+4}} < \frac{1}{\sqrt{\nu+3} + \sqrt{\nu+1}} \Rightarrow
-\frac{2}{\sqrt{\nu+2} + \sqrt{\nu+4}} + \frac{2}{\sqrt{\nu+3} + \sqrt{\nu+1}} > 0$$

Που σημαίνει ότι $\alpha_{\nu}-\alpha_{\nu-1}>0$ άρα η α_{ν} είναι γνησίως αύξουσα.

Άσκηση $4.~(\sigma.132/~5.)$ Να αποδείξετε ότι οι παρακάτω ακολουθίες είναι μονότονες και φραγμένες:

i)
$$(\alpha_{\nu})$$
 $\mu \epsilon \ \alpha_{\nu} = \frac{\nu+1}{3^{\nu}+1}$

i)
$$(\alpha_{\nu})$$
 $\mu\epsilon \ \alpha_{\nu} = \frac{\nu+1}{3^{\nu}+1}$
ii) (β_{ν}) $\mu\epsilon \ \beta_{\nu} = \frac{\nu!}{1\cdot 3\cdot ...\cdot (2\nu-1)}$

i) Από την ανισότητα του Bernouli, $(1+\alpha)^{\nu} \geq 1+\alpha \nu \ \ \forall \ \alpha \geq -1$ άρα $3^{\nu} \geq (1+2)^{\nu} = 1+2\nu$ άρα

$$0 < \alpha_{\nu} = \frac{\nu+1}{3^{\nu}} \le \frac{\nu+1}{1+2\nu} < \frac{\nu+1}{1+\nu} = 1$$

Κριτήριο πηλίχου για μονοτονία:

$$\frac{\alpha_{\nu+1}}{\alpha_{\nu}} = \frac{\frac{\nu+2}{3^{\nu+1}}}{\frac{\nu+1}{3^{\nu}}} = \frac{\nu+2}{3\nu+3} < 1 \Rightarrow \alpha_{\nu+1} < \alpha_{\nu}$$

Άρα είναι κάτω φραγμένη από το 0, άνω από το 1 και γνησίως φθίνουσα.

ii) Κριτήριο πηλίχου για μονοτονία:

$$\frac{\beta_{\nu+1}}{\beta_{\nu}} = \frac{\frac{(\nu+1)!}{1 \cdot 3 \cdot \dots \cdot (2\nu+1)}}{\frac{\nu!}{1 \cdot 3 \cdot \dots \cdot (2\nu-1)}} = \frac{\nu+1}{2\nu+1} < 1$$

Επίσης (η απόδειξη έπεται με περιπτώσεις για ν άρτιο και περιττό):

$$\beta_{\nu} = \frac{\nu!}{1 \cdot 3 \cdot \ldots \cdot (2\nu - 1)} < \frac{1 \cdot 2 \cdot \ldots \cdot \nu}{1 \cdot 3 \cdot \ldots \cdot (2\nu - 1)} < 1$$

Άσκηση $5.~(\sigma.132/~6.)~$ Να αποδείξετε ότι δεν είναι φραγμένες οι ακολουθίες

i)
$$(\alpha_{\nu}) \ \mu \epsilon \ \alpha_{\nu} = 2\nu^2 + \nu$$

ii)
$$(\beta_{\nu})$$
 $\mu\epsilon$ $\beta_{\nu} = \frac{3\nu^2 + \nu + 1}{\sqrt{\nu^2 + 2}}$
iii) (γ_{ν}) $\mu\epsilon$ $(\gamma_{\nu}) = (-2)^{\nu}$

iii)
$$(\gamma_{\nu})$$
 $\mu \varepsilon (\gamma_{\nu}) = (-2)^{\nu}$

iv)
$$(\delta_{\nu})$$
 $\mu\epsilon$ $(\delta_{\nu}) = e^{\nu^2 + \nu + 2}$

i) Για να δείξουμε ότι δεν είναι φραγμένη, αρχεί να δείξουμε ότι:

$$\nexists \theta \in \mathbb{R}: \ |\alpha_{\nu}| = \left| 2\nu^2 + \nu \right| = 2\nu^2 + \nu \le \theta \ \forall \nu > \nu_0, \ \nu, \nu_0 \in \mathbb{N}^*$$

Για $\nu_0 = [\theta], \ \nu = \nu_0 + 1 = [\theta] + 1 > \nu_0$, όπου [.] το αχέραιο μέρος, έχουμε:

$$|2\nu^2 + \nu| = 2([\theta] + 1)^2 + [\theta] + 1 > [\theta] + 1 > \theta$$

, αφού
$$[\theta] \ge \theta$$

ii) Με τον ίδιο τρόπο, αρχεί να δείξουμε ότι:

$$\nexists \theta \in \mathbb{R}: \ |\beta_{\nu}| = \left| \frac{3\nu^2 + \nu + 1}{\sqrt{\nu^2 + 2}} \right| = \frac{3\nu^2 + \nu + 1}{\sqrt{\nu^2 + 2}} \le \theta \ \forall \nu > \nu_0, \ \nu, \nu_0 \in \mathbb{N}^*$$

Πράγματι, έχουμε:

$$\frac{3\nu^2 + \nu + 1}{\sqrt{\nu^2 + 2}} > \frac{3\nu^2 + \nu}{\sqrt{\nu^2 + 2}} = \frac{\sqrt{(3\nu^2 + \nu)^2}}{\sqrt{\nu^2 + 2}} = \sqrt{\frac{9\nu^4 + 6\nu^3 + \nu^2}{\nu^2 + 2}}$$

$$> \sqrt{\frac{9\nu^4 + 6\nu^3 + \nu^2}{\nu^2}} = \sqrt{(3\nu + 1)^2} = 3\nu + 1$$

Άρα για $\nu = \left[\frac{\theta}{3}\right]$ έχουμε

$$\beta_{\nu} = \frac{3\nu^2 + \nu + 1}{\sqrt{\nu^2 + 2}} > 3\left[\frac{\theta}{3}\right] + 1 \ge 3\frac{\theta}{3} + 1 > \theta$$

, που σημαίνει ότι δεν είναι φραγμένη.

iii)

iv)

Άσκηση 6. (σ.133/ 7.) Έστω οι ακολουθίες $(\alpha_{\nu}), (\beta_{\nu})$. Αν η ακολουθία (α_{ν}) είναι φραγμένη και η ακολουθία (β_{ν}) είναι κάτω φραγμένη με κάτω φράγμα αρνητικό να αποδείξετε ότι η ακολουθία (γ_{ν}) με $\gamma_{\nu} = \frac{\alpha_1 + \alpha_2 + \ldots + \alpha_{\nu}}{\beta_1 + \beta_2 + \ldots + \beta_{\nu}}$ είναι φραγμένη.

Έχουμε $\alpha_{\nu} \leq \theta_1 \ \forall \nu \in \mathbb{N}^*$ και αν θ_2 το κάτω φράγμα της (β_{ν}) τότε $\beta_{\nu} > \theta_2 > 0 \ \forall \nu \in \mathbb{N}^*$ άρα:

$$|\gamma_{\nu}| = \frac{|\alpha_1 + \alpha_2 + \ldots + \alpha_{\nu}|}{|\beta_1 + \beta_2 + \ldots + \beta_{\nu}|} \le \frac{|\alpha_1| + |\alpha_2| + \ldots + |\alpha_{\nu}|}{|\beta_1 + \beta_2 + \ldots + \beta_{\nu}|} \le \frac{\nu \theta_1}{|\beta_1 + \beta_2 + \ldots + \beta_{\nu}|}$$

Επίσης $\beta_1 \geq \theta_2$, $\beta_2 \geq \theta_2$,..., $\beta_{\nu} \geq \theta_2$, $\theta_2 > 0$ άρα:

$$\frac{\nu\theta_1}{|\beta_1 + \beta_2 + \ldots + \beta_{\nu}|} = \frac{\nu\theta_1}{\beta_1 + \beta_2 + \ldots + \beta_{\nu}} \le \frac{\nu\theta_1}{\nu\theta_2} = \frac{\theta_1}{\theta_2}$$
$$\therefore \gamma_{\nu} \le \frac{\theta_1}{\theta_2}$$

Άσκηση 7. (σ.242/5.) Να μελετήσετε ως προς σύγκλιση την ακολουθία α_{ν} με $\alpha_1=\alpha,\ \alpha\in\left(0,\frac{1}{4}\right)$ και $\alpha_{\nu+1}=\alpha+\alpha_{\nu}^2,\ \nu\in\mathbb{N}^*.$

Μετά από μερικές παρατηρήσεις για $\alpha=1/8,~\alpha=1/5$ κλπ., η ακολουθία φαίνεται να είναι γν. αύξουσα και να ισχύει $\alpha_{\nu}<2\alpha\quad\forall \nu\in\mathbb{N}^*.$

Θα δείξουμε ότι $\alpha_{\nu} < 2\alpha \ \forall \nu \in \mathbb{N}^*$. Προφανώς $\alpha_1 < 2\alpha$. Έστω $\alpha_{\nu} < 2\alpha$. Τότε $\alpha_{n+1} = \alpha_{\nu}^2 + \alpha < (2\alpha)^2 + \alpha < 2\alpha$. Πράγματι, $(2\alpha)^2 + \alpha < 2\alpha \Leftrightarrow \alpha(4\alpha - 1) < 0$, που ισχύει από τα δεδομένα της άσκησης, παίρνουμε $\alpha_{n+1} < 2\alpha$. Αποδείχθηκε ότι:

$$\alpha_{\nu} < 2\alpha \quad \forall \nu \in \mathbb{N}^*$$

Άρα η αχολουθία είναι άνω φραγμένη.

Θα αποδείξουμε ότι είναι και γν. αύξουσα.

$$\alpha_{\nu+1} > \alpha_{\nu} \Leftrightarrow \\ \alpha + \alpha_{\nu}^{2} > \alpha_{\nu} \Leftrightarrow \\ \alpha_{\nu}(\alpha_{\nu} - 1) > -\alpha$$
 (*)

Αλλά

$$\alpha_{\nu}(\alpha_{\nu} - 1) > 2\alpha(2\alpha - 1) > -\alpha \Leftrightarrow$$

$$2\alpha(2\alpha - 1) > -\alpha \Leftrightarrow$$

$$4\alpha^{2} - \alpha = \alpha(4\alpha - 1) > 0$$

$$(\star \star)$$

, που ισχύει. Λόγω της (★★) ισχύει και η (★) άρα και

$$\alpha_{\nu+1} > \alpha_{\nu}$$

Τελικά η ακολουθία είναι γν. αύξουσα και άνω φραγμένη, άρα συγκλίνουσα.

Άσκηση 8. (σ.242/5.) Δίνονται οι ακολουθίες α_{ν} και $\beta_n u$ με $\alpha_1=\alpha>0,\ \beta_1=\beta>0,$ $\alpha<\beta$ και

$$\alpha_{\nu+1} = \frac{\alpha_{\nu} + \beta_{\nu}}{2}, \ \nu \in \mathbb{N}^*, \quad \beta_{\nu+1} = \sqrt{\frac{\alpha_{\nu}^2 + \beta_{\nu}^2}{2}}, \ \nu \in \mathbb{N}^*$$

Να αποδείξετε ότι:

- i) Για κάθε θετικό ακέραιο ν ισχύει $\alpha_{\nu} < \beta_{\nu}$
- ii) α_{ν} , β_{ν} συγκλίνουσες,
- iii) $\lim \alpha_{\nu} = \lim \beta_{\nu}$
- i) Ισχύει $\alpha_{\nu}=\alpha<\beta_{\nu}=\beta.$ Αν $\alpha_{\nu}<\beta_{\nu}$ για κάποιο $\nu>1$ τότε

$$\alpha_{\nu+1} < \beta_{\nu+1} \Leftarrow$$

$$\frac{\alpha_{\nu} + \beta_{\nu}}{2} < \sqrt{\frac{\alpha_{\nu}^2 + \beta_{\nu}^2}{2}} \Leftarrow$$

$$(\alpha_{\nu} + \beta_{\nu})^2 < 2(\alpha_{\nu}^2 + \beta_{\nu}^2) \Leftarrow$$

$$(\alpha_{\nu} - \beta_{\nu})^2 > 0$$

, που είναι αληθής από υπόθεση. Άρα

$$\alpha_{\nu} < \beta_{\nu} \ \forall \nu \in \mathbb{N}^* \tag{1}$$

ii) Γ ia thy α_{ν} :

$$\alpha_{\nu+1} = \frac{\alpha_{\nu} + \beta_{\nu}}{2} > \frac{\alpha_{\nu} + \alpha_{\nu}}{2} = \alpha_{\nu} \tag{2}$$

, δηλαδή γν. αύξουσα. Για τη β_{ν} από (1) λόγω της (2):

$$0 < \alpha = \alpha_1 < \ldots < \alpha_{\nu} < \beta_{\nu}$$

 Δ ηλαδή β_{ν} κάτω φραγμένη και θετική. Για την μονοτονία της:

$$\beta_{\nu+1} = \sqrt{\frac{\alpha_{\nu}^2 + \beta_{\nu}^2}{2}} < \sqrt{\frac{\beta_{\nu}^2 + \beta_{\nu}^2}{2}} = \beta_{\nu} \ \forall \nu \in \mathbb{N}^*$$

Τελικά β_{ν} συγκλίνουσα. Αρκεί να δείξουμε ότι η α_{ν} είναι και άνω φραγμένη. Ξανά από (1):

$$\alpha_{\nu+1} = \frac{\alpha_{\nu} + \beta_{\nu}}{2} < \frac{\beta_{\nu} + \beta_{\nu}}{2} = \beta_{\nu} < \beta_{\nu-1} < \dots < \beta_1 = \beta$$

Άρα και η α_{ν} συγκλίνουσα.

iii) Έστω $x := \lim \alpha_{\nu} = \lim \alpha_{\nu+1}, y := \lim \beta_{\nu} = \lim \beta_{\nu+1}$. Από την υπόθεση:

$$\alpha_{\nu+1} = \frac{\alpha_{\nu} + \beta_{\nu}}{2} \xrightarrow{\nu \to \infty}$$

$$x = \frac{x+y}{2} \Rightarrow$$

$$x = y$$

Άσκηση 9. (σ.242/12.) Να μελετηθεί ως προς σύγκλιση η ακολουθία $α_{\nu}$ με

$$\alpha_1 = 1, \quad \alpha_{\nu+1} = \sqrt[3]{\alpha_{\nu}^2 + 4}, \quad \nu \in \mathbb{N}^*$$

Υπολογίζουμε $\alpha_2 = \sqrt[3]{1^2 + 4} \approx 1.71$, $\alpha_3 = \sqrt[3]{1.71^2 + 4} \approx 1.91$, Θα δείξουμε ότι ένα άνω φράγμα είναι το 2. Ήδη ιχύει $\alpha_1 < 2$. Αν $\alpha_{\nu} < 2$ για κάποιο ν τότε

$$\alpha_{\nu+1} = \sqrt[3]{\alpha_{\nu}^2 + 4} < \sqrt[3]{2^2 + 4} = 2$$

Άρα $\alpha_{\nu} < 2 \ \forall \nu \in \mathbb{N}^*$. Απομένει να δείξουμε ότι α_{ν} γν. αύξουσα.

$$\alpha_{\nu+1} > \alpha_{\nu} \Leftarrow$$

$$\sqrt[3]{\alpha_{\nu}^2 + 4} > \alpha_{\nu} \Leftarrow$$

$$\alpha_{\nu}^2 + 4 > \alpha_{\nu}^3 \Leftarrow$$

$$\alpha_{\nu}^2 - 4 > \alpha_{\nu}^3 - 8 \Leftarrow$$

$$(\alpha_{\nu} - 2)(\alpha_{\nu} + 2) > (\alpha_{\nu} - 2)(\alpha_n^2 + 2\alpha_{\nu} + 4) \Leftarrow$$

$$(\alpha_{\nu} - 2)(\alpha_{\nu}^2 + \alpha_{\nu} + 2) < 0$$

Δείξαμε ήδη ότι $\alpha_{\nu}-2<0$ και ισχύει $\alpha_{\nu}^2+\alpha_{\nu}+2>0$ άρα πράγματι $\alpha_{\nu+1}>\alpha_{\nu}$. Τελικά α_{ν} συγκλίνουσα. Παίρνουμε όρια στην αναδρομική σχέση και αν $x:=\lim \alpha_{\nu}$ τότε:

$$x = \sqrt[3]{x^2 + 4} \Leftrightarrow x = 2$$

Άρα το 2 είναι και το όριο της.

Άσκηση 10. (σ.243/ 13.) Δ ίνεται η ακολουθία $lpha_
u$ με $lpha_
u = \ln\left(rac{
u^2 + 2
u + 1}{

u^2 + 2
u}
ight)$ και η ακολουθία $\overline{eta_{
u}}$ με $\overline{eta_{
u}}=\alpha_1+\alpha_2+\ldots+\alpha_{
u}$. Να αποδείξετε ότι η ακολουθία $\overline{eta_{
u}}$ είναι μονότονη και φραγμένη και έπειτα να βρείτε το όριο της.

$$\alpha_{\nu} = \ln\left(1 + \frac{1}{\nu^2 + 2\nu}\right)$$

Θα αποδείζουμε ότι α_{ν} γν. φθίνουσα (\(\frac{1}{2}\)). Θεωρούμε τις ακολουθίες $\alpha_{1\nu} = \ln \nu$, $\alpha_{2\nu} = \frac{1}{\nu^2 + 2\nu}$. $\alpha_{2\nu}$ \(\frac{1}{2}\) και $\alpha_{1\nu}$ \(\frac{1}{2}\) άρα α_{ν}). Το κάτω φράγμα της α_{ν} είναι 0:

$$\nu^2 + 2\nu + 1 > \nu^2 + 2\nu \Rightarrow \frac{\nu^2 + 2\nu + 1}{\nu^2 + 2\nu} > 1 \Rightarrow \alpha_{\nu} > 0$$

To ίδιο και το όριο της $\lim \alpha_{\nu} = \lim \ln \left(\frac{\nu^2 + 2\nu + 1}{\nu^2 + 2\nu} \right) = 0.$

Η β_{ν} είναι γν. φθίνουσα (χ) ως άθροισμα γν. φθίνουσων, προφανώς κάτω φραγμένη από το 0 και έχει όριο

$$\lim \beta_{\nu} = \lim \alpha_1 + \lim \alpha_2 + \ldots + \lim \alpha_{\nu} = 0$$

Άσκηση 11. (σ.257/ 5.) Να βρεθούν τα όρια των ακολουθιών

i)
$$\alpha_{\nu} = \left(1 - \frac{2}{\nu^2}\right)^{3\nu}$$

ii)
$$\beta_{\nu} = \left(1 + \frac{2}{\nu}^2\right)^{\nu -}$$

iii)
$$\gamma_{\nu} = \left(\frac{2\nu^2 + 1}{2\nu^2 + 3}\right)^{\nu + 1}$$

i)
$$\alpha_{\nu} = \left(1 - \frac{2}{\nu^2}\right)^{3\nu}$$

ii) $\beta_{\nu} = \left(1 + \frac{2}{\nu^2}\right)^{\nu-1}$
iii) $\gamma_{\nu} = \left(\frac{2\nu^2 + 1}{2\nu^2 + 3}\right)^{\nu+2}$
iv) $\delta_{\nu} = \left(\frac{\nu+1}{\nu+\sqrt{2}}\right)^{\nu+1} \cdot \left(\frac{2\nu+\sqrt{3}}{2\nu+6}\right)^{2\nu-1}$

Χρησιμοιούμε ότι

$$e = \lim \left(1 + \frac{1}{n}\right)^n \tag{1}$$

$$\lim \left(1 + \frac{\alpha}{\nu}\right)^{\nu} = \lim \left(1 + \frac{1}{\frac{\nu}{\alpha}}\right)^{\nu} \stackrel{\stackrel{\nu}{\alpha} = \mu}{\underset{\substack{\nu \to \infty \\ \nu \to \infty}}{=}} \lim \left(1 + \frac{1}{\mu}\right)^{\mu\alpha} = \left[\lim \left(1 + \frac{1}{\mu}\right)^{\mu}\right]^{\alpha} = e^{\alpha} \tag{2}$$

$$\lim \left(1 - \frac{2}{\nu^2}\right)^{\nu} = \lim \left(1 - \frac{\sqrt{2}}{\nu}\right)^{\nu} \left(1 + \frac{\sqrt{2}}{\nu}\right)^{\nu} \stackrel{(2)}{=} e^{-\sqrt{2}} e^{\sqrt{2}} = 1$$

$$\therefore \lim \left(\alpha_{\nu}\right) = \lim \left(1 - \frac{2}{\nu^2}\right)^{3\nu} = 1$$

ii)

$$\lim (\beta_{\nu}) = \lim \left(1 + \frac{2}{\nu^2}\right)^{\nu - 1} = \lim \left(1 + \frac{2}{\nu^2}\right)^{\nu} / \lim \left(1 + \frac{2}{\nu^2}\right)$$

Για το δεύτερο

$$\lim\left(1+\frac{2}{\nu^2}\right) = 1\tag{3}$$

Για το πρώτο

$$\lim \left[\left(1 + \frac{2}{\nu^2} \right)^{\nu^2} \right]^{\frac{1}{\nu}} = \lim \sqrt[\nu]{\left(1 + \frac{2}{\nu^2} \right)^{\nu^2}} = \lim \sqrt[\nu]{e^2}$$

$$\therefore \lim \left[\left(1 + \frac{2}{\nu^2} \right)^{\nu^2} \right]^{\frac{1}{\nu}} = 1$$

$$\lim \sqrt[\nu]{e^2} \xrightarrow{\sigma = 170} 1$$

$$(4)$$

(3), (4) $\Rightarrow \lim \beta_{\nu} = 1$.

iii)

$$\left(\frac{2\nu^2 + 1}{2\nu^2 + 3}\right)^{\nu+1} = \frac{\left(1 + \frac{1}{2\nu^2}\right)^{\nu}}{\left(1 + \frac{3}{\nu^2}\right)^{\nu}} \frac{1 + \frac{1}{2\nu^2}}{1 + \frac{3}{\nu^2}}$$

$$\lim \left(1 + \frac{1}{2\nu^2}\right) = \lim \left(1 + \frac{3}{\nu^2}\right) = 1$$
(5)

$$\lim \left(1 + \frac{1}{2\nu^2}\right)^{\nu} = 1, \quad \lim \left[\left(1 + \frac{\frac{1}{2}}{\nu^2}\right)^{\nu^2}\right]^{\frac{1}{\nu}} = \lim \sqrt[n]{e^{\frac{1}{2}}} = 1 \tag{6}$$

$$\lim \left(1 + \frac{3}{\nu^2}\right)^{\nu} = \dots = \lim \sqrt[\nu]{e^3} = 1 \tag{7}$$

$$(5), (6), (7) \Rightarrow \lim (\gamma_{\nu}) = \lim \left(\frac{2\nu^2 + 1}{2\nu^2 + 3}\right)^{\nu+1} = 1$$

Άσκηση 12. (σ.257/ 6.) Να βρεθούν τα όρια των ακολουθιών

i)
$$\alpha_{\nu} = \left(\frac{1}{2} + \frac{1}{\nu}\right)^{3\nu}$$

ii)
$$\alpha_{\nu} = \left(2 - \frac{\nu}{\nu + 1}\right)^{\nu}$$

iii)
$$\alpha_{\nu} = \left(1 + \frac{2\nu - 1}{2\nu + 3}\right)^{2\nu}$$

iv)
$$\alpha_{\nu} = \left(\frac{\nu+1}{\nu+\sqrt{2}}\right)^{\nu+1} \left(\frac{2\nu+\sqrt{3}}{2\nu+6}\right)^{2\nu-1}$$

i١

ii) Θέτουμε $\nu+1=\mu$ \therefore $\lim_{\nu\to\infty}\mu=\infty,$ τότε η α_{ν} ξαναγράφεται

$$\alpha_{\nu} = \left(2 - \frac{\mu - 1}{\mu}\right)^{\mu - 1} = \left(1 + \frac{1}{\mu}\right)^{\mu - 1}$$
$$\therefore \lim \left(\alpha_{\nu}\right) = \lim \left[\left(1 + \frac{1}{\mu}\right)^{\mu} / \left(1 + \frac{1}{\mu}\right)\right] = e/1 = e$$

iii) Χρησιμοποιούμε την ανισότητα Βερνουλι

$$\alpha_{\nu} = \left(1 + \frac{2\nu - 1}{2\nu + 3}\right)^{2\nu - 1} > 1 + \frac{(2\nu - 1)^2}{2\nu + 3} \Rightarrow$$

$$\lim \alpha_{\nu} > \lim \left(1 + \frac{(2\nu - 1)^2}{2\nu + 3}\right) = \infty$$

(1.1)

iv)

$$\alpha_n = \left(\frac{\nu+1}{\nu+\sqrt{2}}\right)^{\nu+1} \left(\frac{2\nu+\sqrt{3}}{2\nu+6}\right)^{2\nu-1}$$

 $(1+x)^{\nu} = 1 + \nu x \quad \forall \nu \in \mathbb{N}, \ x > -1$

Θεωρούμε

$$\alpha_{1n} = \left(\frac{\nu+1}{\nu+\sqrt{2}}\right)^{\nu+1}, \quad \alpha_{2\nu} = \left(\frac{2\nu+\sqrt{3}}{2\nu+6}\right)^{2\nu-1}$$

 Γ ια την $\alpha_{1\nu}$

$$\mu := \nu + \sqrt{2}, \quad \lim (\mu) = \infty$$

$$\therefore \left(\frac{\mu - \sqrt{2} + 1}{\mu}\right)^{\mu - \sqrt{2} + 1} = \left(1 + \frac{1 - \sqrt{2}}{\mu}\right)^{\mu - \sqrt{2} + 1}$$

$$\lim_{n \to \infty} (\alpha_{1_{\nu}}) = \lim_{n \to \infty} \left(1 + \frac{1 - \sqrt{2}}{\mu} \right)^{\mu} \left(1 + \frac{1 - \sqrt{2}}{\mu} \right)^{-\sqrt{2} + 1} = \lim_{n \to \infty} \left(1 + \frac{1 - \sqrt{2}}{\mu} \right)^{\mu} = e^{1 - \sqrt{2}} \cong 0.661$$

Για την $\alpha_{2\nu}$

$$\mu := 2\nu + 6$$
, $\lim (\mu) = \infty$

$$\therefore \left(\frac{2\nu + \sqrt{3}}{2\nu + 6}\right)^{2\nu - 1} = \left(\frac{\mu + \sqrt{3} - 6}{\mu}\right)^{\mu - 7} = \frac{\left(1 + \frac{\sqrt{3} - 6}{\mu}\right)^{\mu}}{\left(1 + \frac{\sqrt{3} - 6}{\mu}\right)^{7}}$$

$$\therefore \lim (\alpha_{2\nu}) = e^{\sqrt{3}-6} \cdot 1 \cong 0.014$$

Τελικά

$$\lim (\alpha_{\nu}) = \lim (\alpha_{1\nu}) \lim (\alpha_{2\nu}) \cong 0.093$$

2 Άλλες ασκήσεις

Άσκηση 13. (πηγή) Δ ίνεται η ακολουθία α_{ν} με $\alpha_1=\sqrt{6}$ για $\nu\geq 1$ και $\alpha_{\nu+1}=\sqrt{6+\alpha_{\nu}}$. Δ είξτε ότι συγκλίνει και ότι βρείτε το όριο της.

Με επαγωγή για μονοτονία. Ισχύει $\alpha_2 \ge \alpha_1$. Υποθέτουμε ότι $\alpha_n \ge \alpha_{n-1}$. Τότε

$$\alpha_{n+2} = \sqrt{6 + \alpha_{n+1}} \ge \sqrt{6 + \alpha_n} = \alpha_{n+1}$$

Άρα αύξουσα. Με επαγωγή για άνω φράγμα το 3. Ισχύει $\alpha_1 \leq 3$. Αν $\alpha_{\nu} \leq 3$ τότε

$$\alpha_{\nu+1} = \sqrt{6 + \alpha_{\nu}} < \sqrt{6 + 3} = 3$$

Άρα συγχλίνουσα, συνεπώς έχει ένα όριο L. Για να βρεθεί, παίρνουμε όρια στην αναδρομιχή της υπόθεσης.

$$L = \sqrt{6 + L} \Rightarrow L = 3$$

Άσκηση 14. (πηγή) Η ακολουθία x_{ν} με $x_{\nu}=\frac{\lfloor x\nu\rfloor}{\nu}$ συνγκλίνει Αν ναι, ως προς ποιον αριθμό $\lfloor . \rfloor$ δηλώνει το ακέραιο μέρος.

Από τον ορισμό του ακέραιου μέρους, όπου $\{.\}$ το δεκαδικό:

$$x_{\nu} = \frac{x\nu - \{x\nu\}}{\nu} = x - \frac{\{xn\}}{n}$$
$$\therefore \lim x_{\nu} = x$$

, αφού $0 \le \{x\nu\} < 1$.