$Corrig\tilde{A}(C)$ exercice 1:

1. On obtient la figure ci-dessous.

Pour placer les réels -x, $\pi-x$ et $\pi+x$ sur le cercle trigonométrique on utilise la règle non graduée et des symétries axiales par rapport à l'axe des abscisses ou des ordonnées. Pour placer les réels $\frac{\pi}{2}+x$ et $\frac{\pi}{2}-x$ on utilise le compas pour reporter la distance entre le point correspondant au réel 0 et le point correspondant au réel x, en posant la pointe du compas au niveau du réel correspondant au réel $\frac{\pi}{2}$.

2. On utilise le cercle trigonom \tilde{A} ©trique pr \tilde{A} ©c \tilde{A} ©dent pour compl \tilde{A} ©ter le tableau.

$\cos(-x) = \cos(x)$	$\cos(\pi + x) = -\cos(x)$	$\cos(\pi - x) = -\cos(x)$
$\sin(-x) = -\sin(x)$	$\sin(\pi + x) = -\sin(x)$	$\sin(\pi - x) = \sin(x)$
$\cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$	$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$	$\cos(2\pi + x) = \cos(x)$
$\sin\left(\frac{\pi}{2} + x\right) = \cos(x)$	$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$	$\sin(2\pi + x) = \sin(x)$

$Corrig\tilde{A}$ \bigcirc exercice 2:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	$\begin{vmatrix} 1 \end{vmatrix}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

□image50.png

Corrigé exercice 3:

1. On obtient:

$$\mathcal{S} = \left\{ \frac{3\pi}{4}; -\frac{3\pi}{4} \right\}.$$

2. On obtient:

$$\mathcal{S} = \left\{ -\frac{\pi}{2} \right\}$$

3. On obtient:

$$\mathcal{S} = \left\{ -\frac{2\pi}{3}; -\frac{\pi}{3} \right\}$$

4. On obtient :

$$S = \left[-\frac{5\pi}{6}; \frac{5\pi}{6} \right].$$

5. On obtient :

$$\mathcal{S} = \left[-\pi; -\frac{5\pi}{6} \right[\cup \left] -\frac{\pi}{6}; \pi \right]$$

6. On obtient:

$$\mathcal{S} = \left[-\pi; \frac{\pi}{6} \right[\cup \left] \frac{5\pi}{6}; \pi \right]$$

CorrigÃ \bigcirc exercice 4 :

1.
$$x = -\frac{29\pi}{4} = \frac{3\pi}{4} - 4 \times 2\pi$$
.

2.
$$x = \frac{47\pi}{3} = -\frac{\pi}{3} + 8 \times 2\pi$$
.

3.
$$x = \frac{35\pi}{2} = -\frac{\pi}{2} + 9 \times 2\pi$$
.

2.
$$x = \frac{47\pi}{3} = -\frac{\pi}{3} + 8 \times 2\pi$$
.
3. $x = \frac{35\pi}{2} = -\frac{\pi}{2} + 9 \times 2\pi$.
4. $x = -\frac{55\pi}{6} = \frac{5\pi}{6} - 5 \times 2\pi$.