XX Летняя Физическая Школа. 10 класс.

Первая неделя, 18.07 – 24.07.

1	Лабораторная плитка, сопротивление которой $R=20~{\rm OM}$, включена в сеть последовательно с сопротивлением $R_0=10~{\rm OM}$. При длительной работе она нагрелась от комнатной температуры $t_0=20^{\circ}{\rm C}$ до $t_1=52^{\circ}{\rm C}$. До какой температуры нагреется плитка, если ей включить параллельно еще одну такую же плитку?
2	Жонглер держит за концы невесомую, нерастяжимую нить, на которую нанизаны два шарика массой m каждый, могущие без трения скользить по ней. Крайние участки нити всегда составляют угол α с вертикалью, а сила натяжения нити постоянна и равна T . За какое время шарики столкнутся, если в начальный момент они неподвижны и находятся на одной высоте на расстоянии L друг от друга?
3	Мальчик раскручивает веревку длиной L с привязанным к ее концу камнем. В момент, когда траектория камня представляет собой окружность в горизонтальной плоскости на высоте h от земли, а угловая скорость вращения равна ω , камень отрывается от веревки. Найти расстояние от точки на земле, где стоит мальчик, до точки падения камня. Сопротивлением воздуха пренебречь.
4	Тонкостенная непроводящая сфера радиуса 0.1 м заряжена равномерно по поверхности, полный её заряд составляет 10 мкКл. Из неё вырезали и убрали маленький кусочек площади 0.1 см ² . Найти напряжённость поля в центре сферы и в центре дырки.
5	Велосипедист ускоряется так, что $av = C$, где v — скорость велосипедиста, a — ускорение, а C — некоторая постоянная величина. Найдите время, за которое его скорость увеличится от v_1 до v_2 .
6	Четыре положительных заряда q,Q,q,Q связаны пятью нитями так, как показано на рисунке. Длина каждой нити равна l . Определите силу натяжения нити, связывающей заряды $Q>q$.

(продолжение на обороте)

7	Тело находится на абсолютно гладкой наклонной плоскости с углом α у основания. С помощью невесомых нерастяжимых нитей, перекинутых через блоки, находящиеся в основании и вершине наклонной плоскости, к телу привязан груз, имеющий массу M . Нити, подходящие к грузу, составляют с вертикалью и горизонталью углы β . Вся система находится в состоянии покоя. Определите силы натяжения нитей и массу тела, трением в блоках пренебречь. Проанализируйте, как изменятся ответы, если принять, что между телом и наклонной плоскостью существует трение (коэффициент трения μ).	
8	На закате человек, стоящий у озера, видит в абсолютно спокойной воде отражение солнца. С какой скоростью движется это отражение, если в начальный момент человек видит его под углом α к горизонтали? Считать, что глаза человека находятся на высоте h над поверхностью, а солнце садится перпендикулярно к линии горизонта.	
9	На гладком горизонтальном столе покоится шар массой m . С ним упруго сталкивается клин массой $M=m/2$, движущийся углом вперед со скоростью $v=5$ м/с. Определить, через какое время шар опять столкнется с клином. Угол клина $\alpha=30^\circ$. Клин не подпрыгивает. Считать, что потери энергии на тепло нет.	
10	Металлическое кольцо разорвалось кулоновскими силами, когда заряд кольца был равен Q . Сделали точно такое же новое кольцо, но из материала, прочность которого в 10 раз больше. Какой заряд разорвёт новое кольцо?	

XX Летняя Физическая Школа. 10 класс.

Вторая неделя, 25.07 – 31.07.

1	Массивная бусинка нанизана на невесомую нерастяжимую нить длиной <i>L</i> , по которой может скользить без трения. Концы нити прикреплены к невесомым кольцам, которые могут свободно скользить по горизонтальному и вертикальному стержням. В начальный момент бусинку удерживают в таком положении, чтобы нить и стержни составляли квадрат. Бусинку отпускают. Найдите ее ускорение сразу после этого и время, за которое она достигнет вертикального стержня.
2	Вдоль прямой расположены точечные заряды Q,Q и q . Расстояние между соседними зарядами составляет L . Какую минимальную работу нужно совершить, чтобы поменять местами заряды Q и q ?
3	Самолет летит по прямой в горизонтальном направлении со скоростью $v=720~{\rm кm/ч}$. Определите, на какую величину надо изменить скорость самолета, чтобы он смог описать в горизонтальной плоскости окружность радиуса $R=8~{\rm km}$. Каков при этом угол наклона самолета? Подъемная сила направлена перпендикулярно плоскости крыльев и пропорциональна квадрату скорости самолета (коэффициент пропорциональности в обоих случаях считать одинаковым). Ускорение свободного падения положить равным $10~{\rm m/c^2}$.
4	Две стороны правильного треугольника образованы одинаковыми равномерными заряженными палочками. При этом в центре O треугольника потенциал равен φ_0 , а напряжённость электрического поля равна E_0 . Найти потенциал φ , а также модуль и направление вектора напряжённости E , которые будут в точке O , если убрать одну из палочек.
5	На плоскости, образующей угол α с горизонтом, лежит шайба массы m . Какую минимальную силу нужно приложить к шайбе в горизонтальном направлении вдоль плоскости, чтобы она сдвинулась? Коэффициент трения равен k .

(продолжение на обороте)

6	Однородный проводящий контакт изогнут в виде дуги угла $2\pi - \alpha$. Вокруг центра дуги вращается с очень большой скоростью проводящий отрезок сопротивления R , так что контакт между отрезком и дугой идеальный. Сопротивление дуги равно сопротивлению отрезка. Устройство подключено к батарейке с постоянным напряжением U . Определить заряд, протекший по цепи за время t , и выделившееся тепло за это время. Сопротивлением подводящих проводов пренебречь.
7	Мальчик сидит на расстоянии R от центра диска, равномерно раскручивающегося из состояния покоя до угловой скорости ω за время T . Какое число оборотов сделает мальчик, прежде, чем он начнет скользить относительно диска, если коэффициент трения мальчика о его поверхность равен μ ?
8	Два одинаковых маленьких шарика массы M каждый имеют одинаковые заряды Q и расположены на расстоянии L друг от друга. Ещё один маленький шарик $0.5M$ с зарядом $4Q$ находится на расстоянии $2L$ от первого из них и $3L$ от второго. Вначале шарики удерживают, затем — одновременно отпускают. Где будет лёгкий шарик в тот момент, когда расстояние между первыми и вторым станет в три раза больше начального? Какие скорости будут у шариков в этот момент?
9	Пуля массы m , летевшая с начальной скоростью v , пробивает один подвешенный груз массы m и застревает во втором подвешенном грузе той же массы. Пренебрегая временем взаимодействия пули с грузом, найти количество теплоты Q_1 , выделившееся в первом грузе, если во втором выделилось количество теплоты Q_2 .
10	В теплоизолированной колбе находилось вода при 0°С. Выкачивая из колбы воздух, добились того, что в ней остался только лёд. Какая часть воды при этом испарилась? Удельная теплота парообразования воды L при 0°С равна 2,50 МДж/кг.