Programme : Diploma in Computer Engineering										
Course	Course Code: CO19204 Course Title: Data Structures									
Compul	Compulsory / Optional:									
Teachi	ng Sche	eme and	l Credits			Exa	mination	Scheme		
TH	PR	TU	Total	TH TS1 TS2 PR OR TW Tota					Total	
3	2		5	50	25	25	25*		25	150

Abbreviations: TH- Theory; PR-Practical; TU-Tutorial; TS1 and TS2- Term Tests; OR-Oral Exam; TW: Term Work (progressive assessment), * Indicates assessment by External Examiner else internal assessment Note: For Minimum passing marks under various heads, refer, examination rule AR26.

Rationale: The study of Data Structure is essential is essential part of Computer Science. Data structure is a logical and mathematical model for storing and organizing data in a particular way in a computer. The study of data structure helps the students in developing logic and structured programs

Course Outcomes: Student will be able to

CO1	Demonstrate different data structure.
CO2	Use Stack and recursion concept.
CO3	Implement the Queue concept.
CO4	Use Linked List ,Tree and Graph Concept
CO5	Implement different Searching and Sorting Techniques.

Course Content Details:`

Unit No	Topics / Sub-topics
	Introduction to Data Structures:
1	1.1 Need of data structures.1.2 Definition of Data structure and Abstract data type.
	1.3 Classification of Data structures: Linear, non-linear, homogeneous, non-
	homogeneous, static & dynamic.
	Course Outcome: CO1 Teaching Hours :6 hrs Marks: 10(R- 02, U-4, A-)
	Linked List
2	 2.1 Introduction and Terminologies: Node, Next Address and Pointer, Null pointer, Empty list 2.2 Types of Linked List: Single Linked List, Doubly Linked List, Circular Linked List Doubly Circular Linked List 2.3 Operations on Single Linked List: Searching, Insertion - (At Front, In between and At End), Deletion - (From Front, In between, From End)
	Course Outcome: CO4 Teaching Hours: 10 Marks: 12 (R- 02, U- 04, A- 06)

	Stacks
3	 3.1 Definition & examples of Stack, Stack as an abstract data type implementations using arrays and dynamic memory allocation 3.2 Operations on Stack PUSH POP Top Of The Stack 3.3 Overflow & Underflow of Stack 3.4 Applications of Stack 3.5 Polish Notation 3.6 Reversing a List 3.7 Recursion
	Course Outcome: CO2 Teaching Hours: 08 Marks: 06 (R- 02, U- 04, A-)
4	Queue 4.1 Definition & examples of Queue Queue as an abstract data type implementations using arrays and dynamic memory allocation 4.2 Operations on Queue 4.3 Types of Queue Priority queue Circular queue 4.4 Application Of Queue 4.5 Job Scheduling 4.6 Task Scheduling Course Outcome: CO3 Teaching Hours: 08 Marks: 06 (R- 02, U- 02, A- 02)
	Trees and Graphs
5	5.1 Introduction and Terminologies: Sub-tree, root, leaf, left, non-leaf, right, parent, child, ancestor, descendant, brother, level, depth, height. 5.2 Types of Tree General Tree Binary Tree Binary Search Tree 5.3 Representation of Tree 5.4 Operations on Trees Insertion Deletion Searching - Depth-first search and Breadth-first search 5.5 Traversing - Pre-order, In-order ,Post-order 5.6 Introduction to GRAPHS Terminologies: graph, node (Vertices), arcs (edge), directed graph, in-degree, out-degree, adjacent, successor, predecessor, relation, weight, path, length.

	Course Outcome: CO4 Teaching Hours: 10 Marks: 10 (R- 02, U- 02, A- 06)
6	Searching and Sorting 6.1 Searching Linear Search, Binary Search, Hash Search. 6.2 Sorting Bubble Sort Insertion Sort Selection Sort
	Merge Sort Quick Sort Course Outcome: CO5 Teaching Hours: 08 Marks: 10 (R- 02, U- 02, A- 06)

Suggested Specifications Table (Theory):

Unit	3 35	Teaching	Distribution of Theory Marks				
No	Topic Title	Hours	R Level	U Level	A Level	Total Marks	
1	Introduction to Data Structures	5 4 W	02	04		6	
2	Linked List	10	02	04	06	12	
3	Stack	08	02	04		06	
4	Queue	08	02	02	02	06	
5	Trees and Graphs	10	02	02	06	10	
6	Searching and Sorting	08	02	02	06	10	
	Total	48	12	18	20	50	

List of experiments:Total 10 experiments(or turns) out of 15 experiments(or turns)

Sr. No.	Unit No	COs	Title of the Experiments	Hours
1	1	CO1	Write a program for insertion and deletion of an	02
			element in an Array at given position.	

		Total		32				
15	5	CO3	Write a program to implement a)Quick sort b)Bubble sort c)Insertion d)Selection					
14	6	CO2	Write a program to implement Linear and Binary Search Techniques.					
13	5	CO1	Write a program to implement DFS and BFS.					
12	6	CO6	Write a program to implement Inorder Preorder and Post order of Tree nodes					
11	5	CO5	Write a program to insert and delete nodes in a Tree.	02				
10	4	CO4	Write a program to implement Ticket Reservation of system which is based on following priorities VIP=5,Senior =4,Handicap=3,Ladies=2,General =1					
9	3	CO3	Write a program to implement the concept of Doubly ended Queue.					
8	2	CO2	Write a program to implement different operations on Queue.					
7	1	CO1	Write a program to implement Infix Prefix and Postfix Operation					
6	6	CO6	Write a program to implement the do and undo activity using Stack	02				
5	5	CO5	Write a program to implement the PUSH and POP operation of Stack	02				
			Grand Total	_				
			Sr.no Items Rate Quantity	_				
			generate bill in following format.					
			menu driven program which will ask the customer to select the Items and quantity of the Items and will					
			unique Id, name and its rate associated with it. Write a					
			selling, the store wants to automate the billing system so that the customer gets printed bill. Each Item has					
4	4	CO4	In a "Suryan" Shopy multiple Items are available for	02				
			a)Create b)Insertion c)Deletion					
3	3	CO3	Write a program to implement following operations on Doubly Linked List	02				
			a)Create b)Insertion c)Deletion					
2	2	CO2	Write a program to implement following operations on Singly Linked List					

References/ Books:

Sr. No.	Name of Book	Author	Publisher
1	Data Structure	Schaum's Series	Tata McGraw Hill
2	An Introduction to Data Structures with applications	Tremblay and Srenson	Tata McGraw Hill
3	Data Structure through 'C'	Ajit Abyankar	Tata McGraw Hill

CO VsPO and CO Vs PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	1	2	3	3	2	3	3	2	3	3
CO2	2	2	3	3	7(1)	3	2	2	3	2
CO3	2	3	3	2	2	2	2	2	2	2
CO4	2	3	2	3	2	3	3	2	3	3
CO5	1	2	3	3	2	3	3	2	3	3

Industry Consultation Committee:

Sr. No	Name	Designation	Institute/Organisation
1	Mr. Shubham Shimpi	Analyst	Course5i
2	Mr. Vaibhav Vasani	Assistant Professor	k J. Somaiya Engg College
3	Mrs Vandana S.Lokhande	Lecturer	G P Mumbai

Coordinator, Curriculum Development, Department of Computer Engineering Head of Department Department of Computer Engineering

I/C, Curriculum Development Cell

Principal