import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

 ${\tt df=pd.read_csv("/content/1_fiat500_VehicleSelection_Dataset - 1_fiat500_VehicleSelection_Dataset (1).csv")}$

df

	ID	model	engine_power	age_in_days	km	previous_owners	
0	1.0	lounge	51.0	882.0	25000.0	1.0	4
1	2.0	рор	51.0	1186.0	32500.0	1.0	4
2	3.0	sport	74.0	4658.0	142228.0	1.0	4
3	4.0	lounge	51.0	2739.0	160000.0	1.0	4
4	5.0	pop	73.0	3074.0	106880.0	1.0	4
1544	NaN	NaN	NaN	NaN	NaN	NaN	
1545	NaN	NaN	NaN	NaN	NaN	NaN	
1546	NaN	NaN	NaN	NaN	NaN	NaN	
1547	NaN	NaN	NaN	NaN	NaN	NaN	
4							•

df1=df.drop(df.index[1537:],axis=0)
df1=df1.drop(["Unnamed: 9","Unnamed: 10","model"],axis=1)
df1

	ID	engine_power	age_in_days	km	previous_owners	1
0	1.0	51.0	882.0	25000.0	1.0	44.9072
1	2.0	51.0	1186.0	32500.0	1.0	45.6663
2	3.0	74.0	4658.0	142228.0	1.0	45.5033
3	4.0	51.0	2739.0	160000.0	1.0	40.6331
4	5.0	73.0	3074.0	106880.0	1.0	41.9032
1532	1533.0	51.0	1917.0	52008.0	1.0	45.5480
1533	1534.0	51.0	3712.0	115280.0	1.0	45.0696
1534	1535.0	74.0	3835.0	112000.0	1.0	45.8456
1535	1536.0	51.0	2223.0	60457.0	1.0	45.4815
4			^ ^			

df1.describe()

	ID	engine_power	age_in_days	km	previous_own
count	1537.000000	1537.000000	1537.000000	1537.000000	1537.0000
mean	769.000000	51.905010	1650.905660	53395.439167	1.1236
std	443.837996	3.989254	1289.938635	40059.858383	0.416
min	1.000000	51.000000	366.000000	1232.000000	1.0000
25%	385.000000	51.000000	670.000000	20000.000000	1.0000
50%	769.000000	51.000000	1035.000000	39024.000000	1.0000
75%	1153.000000	51.000000	2616.000000	79800.000000	1.0000
1					


```
<ipython-input-169-3ed1a1a51dc0>:1: FutureWarning: The default value of nu
    sns.heatmap(df1.corr())
<Axes: >
```


from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression,Ridge,Lasso

y=df1['age_in_days']
x=df1.drop(['age_in_days'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

3540.607087817586

 ${\tt coeff=pd.DataFrame(model.coef_, x.columns, columns=["Coefficient"])} \\ {\tt coeff}$

	Coefficient
ID	-0.110568
engine_power	22.853431
km	0.007339
previous_owners	15.189556
lat	12.962751
Ion	-11.709336
price	-0.447022

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

$\begin{tabular}{ll} \nwarrow & \langle matplotlib.collections.PathCollection at 0x77ff69a19090 \rangle \\ \end{tabular}$

+ Code -

+ Text

model.score(x_test,y_test)

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.8246038476674138 0.8245854230944103

daf=pd.read_csv("/content/2_2015.csv")
daf

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261
153	Rwanda	Sub- Saharan	154	3.465	0.03464	0.22208	0.77370

daf1=daf.drop(["Country","Region"],axis=1) daf1.isna().sum()

Happiness Rank Happiness Score 0 Standard Error 0 0 Economy (GDP per Capita) Family Health (Life Expectancy) 0 Freedom 0 Trust (Government Corruption) 0 Generosity
Dystopia Residual 0 0 dtype: int64

daf1.describe()

		Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Heal (Li Expectanc
(ount	158.000000	158.000000	158.000000	158.000000	158.000000	158.0000
ı	mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.6302
	std	45.754363	1.145010	0.017146	0.403121	0.272369	0.2470
	min	1.000000	2.839000	0.018480	0.000000	0.000000	0.0000
	25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.4391
	50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.6967
4	75%	118 750000	6 243750	Ი Ი523ᲘᲘ	1 158448	1 214405	∩ 811∩ ▶

sns.pairplot(daf1)

sns.heatmap(daf1.corr())


```
y=daf1['Standard Error']
x=daf1.drop(['Standard Error'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
model=LinearRegression()
model.fit(x_train,y_train)
```

model.intercept_

0.23535376084260795

 ${\tt coeff=pd.DataFrame(model.coef_, x.columns, columns=["Coefficient"])} \\ {\tt coeff}$

	Coefficient
Happiness Rank	-0.000610
Happiness Score	-2.950489
Economy (GDP per Capita)	2.936649
Family	2.922085
Health (Life Expectancy)	2.895794
Freedom	2.934559
Trust (Government Corruption)	2.905042
Generosity	2.929666

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff655ad870>

 ${\tt model.score}(x_{\tt test}, y_{\tt test})$

0.08208352621456139

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.08191027311878352 -0.0030562607358459726

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170

df=df.drop(['Row Labels'],axis=1)

df["Sum of Jan"]=df["Sum of Jan"].replace("%","",regex=True).astype(float)
df["Sum of Feb"]=df["Sum of Feb"].replace("%","",regex=True).astype(float)
df["Sum of Mar"]=df["Sum of Mar"].replace("%","",regex=True).astype(float)
df

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	5.62	7.73	6.16	75
1	4.21	17.27	19.21	160
2	9.83	11.60	5.17	101
3	2.81	21.91	7.88	127
4	25.28	10.57	11.82	179
5	8.15	16.24	18.47	167
6	18.54	8.76	17.49	171
7	25.56	5.93	13.79	170

df.describe()

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
count	9.000000	9.000000	9.000000	9.000000
mean	22.22222	22.223333	22.221111	255.555556
std	30.438329	29.612265	29.640999	337.332963
min	2.810000	5.930000	5.170000	75.000000
25%	5.620000	8.760000	7.880000	127.000000
50%	9.830000	11.600000	13.790000	167.000000
75%	25.280000	17.270000	18.470000	171.000000
				== ***

sns.pairplot(df)

sns.heatmap(df.corr())


```
y=df['Sum of Feb']
x=df.drop(['Sum of Feb'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

```
coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
```

coeff

Sum of Jan -0.917752 Sum of Mar -1.046221 Sum of Total Sales 0.257736

 ${\tt prediction=model.predict(x_test)}$

plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff633d5780>

model.score(x_test,y_test)

0.9999983656425949

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.9173143100864749 0.02592453617404189

df=pd.read_csv("/content/6_Salesworkload1.csv")
df

		MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	
	0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	
	1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	
	2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	
	3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	
	4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	
	7653	06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	
4								1	•

```
Time index
                       8
8
8
8
8
8
8
8
     Country
     StoreID
     City
Dept_ID
     Dept. Name
     HoursOwn
     HoursLease
     Sales units
     Turnover
     Customer
                      7658
                       8
     Area (m2)
     Opening hours dtype: int64
                         8
df1=df.drop(["Customer","Country","Dept. Name","Opening hours","City"],axis=1)
df1=df1.dropna()
val=df["HoursOwn"]=="?"
print(df.index[val])
     Int64Index([2966, 5889], dtype='int64')
```

val=["#NV"]
df1["Area (m2)"].isin(val).sum()
df1=df1.drop([2966,5889],axis=0)

df.isna().sum()

MonthYear

df1=df1.drop(["Area (m2)"],axis=1)
df1

	MonthYear	Time index	StoreID	Dept_ID	Hours0wn	HoursLease	Sales units
0	10.2016	1.0	88253.0	1.0	3184.764	0.0	398560.0
1	10.2016	1.0	88253.0	2.0	1582.941	0.0	82725.0
2	10.2016	1.0	88253.0	3.0	47.205	0.0	438400.0
3	10.2016	1.0	88253.0	4.0	1623.852	0.0	309425.0
4	10.2016	1.0	88253.0	5.0	1759.173	0.0	165515.0
7653	06.2017	9.0	29650.0	12.0	6322.323	0.0	3886530.0
7654	06.2017	9.0	29650.0	16.0	4270.479	0.0	245.0
7655	06.2017	9.0	29650.0	11.0	0	0.0	0.0
7656	06.2017	9.0	29650.0	17.0	2224.929	0.0	245.0

df1.describe()

	Time index	StoreID	Dept_ID	HoursLease	Sales units	
count	7648.000000	7648.000000	7648.000000	7648.000000	7.648000e+03	7.
mean	4.999869	61999.574268	9.472019	22.041841	1.076492e+06	3.
std	2.582369	29923.753974	5.337296	133.316467	1.728290e+06	6.
min	1.000000	12227.000000	1.000000	0.000000	0.000000e+00	0.
25%	3.000000	29650.000000	5.000000	0.000000	5.455375e+04	2.
50%	5.000000	76852.000000	9.000000	0.000000	2.932300e+05	9.
75%	7.000000	87703.000000	14.000000	0.000000	9.164325e+05	3.
4						•

sns.pairplot(df1)

sns.heatmap(df1.corr())

<ipython-input-208-3ed1a1a51dc0>:1: FutureWarning: The default value of nu sns.heatmap(df1.corr())


```
y=df1['Sales units']
x=df1.drop(['Sales units'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

model=LinearRegression()

model.fit(x_train,y_train)

model.intercept_

82599.27591178799

coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])

coeff

	Coefficient
MonthYear	5317.605518
Time index	-3298.987826
StoreID	0.128203
Dept_ID	-9522.316339
HoursOwn	17.086125
HoursLease	472.492932
Turnovor	0.046670

prediction=model.predict(x_test)

plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff62171bd0>

model.score(x_test,y_test)

0.9052719859905412

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.9052719888316975 0.9052719872820221

	Unnamed:	key	fare_amount	pickup_datetime	pickup_
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	
199995	42598914	2012-10-28	3.0	2012-10-28	>

df1=df.drop(["Unnamed: 0","key","pickup_datetime"],axis=1) df1

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude
0	7.5	-73.999817	40.738354	-73.999512
1	7.7	-73.994355	40.728225	-73.994710
2	12.9	-74.005043	40.740770	-73.962565
3	5.3	-73.976124	40.790844	-73.965316
4	16.0	-73.925023	40.744085	-73.973082
199995	3.0	-73.987042	40.739367	-73.986525
199996	7.5	-73.984722	40.736837	-74.006672
199997	30.9	-73.986017	40.756487	-73.858957
199998	14.5	-73.997124	40.725452	-73.983215
4				

df1=df1.dropna()
df1.isna().sum()

fare_amount 0
pickup_longitude 0
pickup_latitude 0
dropoff_longitude 0
dropoff_latitude 0
passenger_count 0
dtype: int64

df1.describe()

	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude
count	199999.000000	199999.000000	199999.000000	199999.000000
mean	11.359892	-72.527631	39.935881	-72.525292
std	9.901760	11.437815	7.720558	13.117408
min	-52.000000	-1340.648410	-74.015515	-3356.666300
25%	6.000000	-73.992065	40.734796	-73.991407
50%	8.500000	-73.981823	40.752592	-73.980093
75%	12.500000	-73.967154	40.767158	-73.963658

sns.heatmap(df1.iloc[0:300,:].corr())


```
y=df1['passenger_count']
x=df1.drop(['passenger_count'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
model=LinearRegression()
model.fit(x_train,y_train)
```

1.6616864300378735

model.intercept_

 ${\tt coeff=pd.DataFrame(model.coef_, x.columns, columns=["Coefficient"])} \\ {\tt coeff}$

fare_amount 0.001586 pickup_longitude -0.000802 pickup_latitude -0.001208 dropoff_longitude -0.000543 dropoff latitude -0.001153

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff506cbe20>


```
print(model.score(x_test,y_test))
print(model.score(x_train,y_train))
```

6.113243523797607e-05 0.0001366165686994547

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

6.113223065817852e-05 -1.613536212707878e-05

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_
0	842302	М	17.99	10.38	122.80	1
1	842517	М	20.57	17.77	132.90	1:
2	84300903	М	19.69	21.25	130.00	1:
3	84348301	M	11.42	20.38	77.58	;
4	84358402	M	20.29	14.34	135.10	1:
			•••			
564	926424	M	21.56	22.39	142.00	1.

df.isna().sum()

id 0 diagnosis radius_mean 0 texture_mean perimeter_mean area mean smoothness mean 0 compactness mean concavity_mean 0 0 concave points_mean symmetry_mean
fractal_dimension_mean 0 0 radius_se texture_se perimeter_se area_se smoothness_se compactness_se concavity_se 0 0 0 0 concave points_se symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst smoothness_worst compactness_worst 0 0 concavity_worst 0 concave points_worst symmetry_worst 0 fractal_dimension_worst 0 569 Unnamed: 32 dtype: int64

df1=df.drop(["Unnamed: 32"],axis=1)
df1["diagnosis"]= df1["diagnosis"].replace("M",1,regex=True)
df1["diagnosis"]= df1["diagnosis"].replace("B",0,regex=True)
df1

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_
0	842302	1	17.99	10.38	122.80	10
1	842517	1	20.57	17.77	132.90	1;
2	84300903	1	19.69	21.25	130.00	1:
3	84348301	1	11.42	20.38	77.58	;
4	84358402	1	20.29	14.34	135.10	1:
564	926424	1	21.56	22.39	142.00	1,
565	926682	1	20.13	28.25	131.20	1;
566	926954	1	16.60	28.08	108.30	+
567	927241	1	20.60	29.33	140.10	1:
568	92751	0	7.76	24.54	47.92	
4						•

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	conc points_m
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000
mean	3.037183e+07	0.372583	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048
std	1.250206e+08	0.483918	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038
min	8.670000e+03	0.000000	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000
25%	8.692180e+05	0.000000	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020
50%	9.060240e+05	0.000000	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033
75%	8.813129e+06	1.000000	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074
max	9.113205e+08	1.000000	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201
8 rows ×	32 columns									

sns.pairplot(df1.iloc[:20,:6])

id 1.534436e-08
diagnosis 5.474975e+00

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff4e608eb0>

concave points se -2.821298e+03

print(model.score(x_train,y_train))

0.9973315510664574

model.score(x_test,y_test)

0.9955370544009499

area werer

area_worst 4.9703∠8e-01

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10)
la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

0.9927343626688578

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_ridge.py:216: LinAlgWarning: Ill-conditioned matrix (rcond=1.65851e-18): result may return linalg.solve(A, Xy, assume_a="pos", overwrite_a=True).T

0.9899364925652687

df=pd.read_csv("/content/11_winequality-red.csv")
df

fixed volatile citric residual free sulfur total sulfur chlorides density pH sulphates alcohol quality acidity acidity acid dioxide dioxide sugar 0 7.4 0.700 0.00 1.9 0.076 11.0 0.99780 3.51 0.56 9.4 5 1 7.8 0.880 0.00 2.6 0.098 25.0 67.0 0.99680 3.20 0.68 9.8 5 2 7.8 0.760 0.04 2.3 0.092 15.0 54.0 0.99700 3.26 0.65 9.8 5 6 3 11.2 0.280 0.56 1.9 0.075 17.0 60.0 0.99800 3.16 0.58 9.8 7.4 0.700 0.00 1.9 0.076 0.99780 3.51 0.56 9.4 5 11.0 34.0 6.2 0.600 0.08 2.0 0.090 32.0 44.0 0.99490 3.45 0.58 10.5 5 1594 1595 5.9 0.550 0.10 2.2 0.062 39.0 51.0 0.99512 3.52 0.76 11.2 6 1596 6.3 0.510 0.13 2.3 0.076 29.0 40.0 0.99574 3.42 0.75 11.0 6 5 1597 5.9 0.645 0.12 2.0 0.075 32.0 44.0 0.99547 3.57 0.71 10.2 1598 6.0 0.310 0.47 3.6 0.067 18.0 42.0 0.99549 3.39 0.66 11.0 6

1599 rows × 12 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype		
0	fixed acidity	1599 non-null	float64		
1	volatile acidity	1599 non-null	float64		
2	citric acid	1599 non-null	float64		
3	residual sugar	1599 non-null	float64		
4	chlorides	1599 non-null	float64		
5	free sulfur dioxide	1599 non-null	float64		
6	total sulfur dioxide	1599 non-null	float64		
7	density	1599 non-null	float64		
8	pH	1599 non-null	float64		
9	sulphates	1599 non-null	float64		
10	alcohol	1599 non-null	float64		
11	quality	1599 non-null	int64		
diameter (7) - 1 (4/44)					

dtypes: float64(11), int64(1) memory usage: 150.0 KB

sns.pairplot(df.iloc[:200,:])

model=LinearRegression()

model.fit(x_train,y_train)

model.intercept_

0.9787608689936755

12 : 12... 1 #352 12 1 1 - 1/905, 1 - 200, 189 14.5

 $coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])$

at

O

coeff

Coefficient

fixed acidity	0.000929
volatile acidity	0.000881
citric acid	0.000249
residual sugar	0.000417
chlorides	0.001950
free sulfur dioxide	-0.000007
total sulfur dioxide	0.000002
рН	0.005167
sulphates	0.001353
alcohol	-0.000908
quality	-0.000001
₩ 5.5 -	1

prediction=model.predict(x_test) plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff46275540>

0.8669526751569081

df=pd.read_csv("/content/13_placement.csv")

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1

df.isna().sum()

cgpa placement_exam_marks placed dtype: int64 0

1000 rows × 3 columns

sns.pairplot(df)


```
- 0.6
- 0.6
- 0.6
- 0.2
- 0.0
- 0.0
```

y=df['cgpa']
x=df.drop(['cgpa'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_

6.992731140418286

 ${\tt coeff=pd.DataFrame(model.coef_, x.columns, columns=["Coefficient"])} \\ {\tt coeff}$

prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

<matplotlib.collections.PathCollection at 0x77ff45c99de0>

print(model.score(x_test,y_test))
print(model.score(x_train,y_train))

-0.005696268814112004 0.002959362405151489

rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
la=Lasso(alpha=10) la.fit(x_train,y_train)
print(rr.score(x_test,y_test))
la.score(x_test,y_test)

- -0.005568922940949239 -0.0018765133764020447

• ×