The GI4 $\rm HA2$

David Konopek(349333) , Paul Walger(349968) , Lukas Klammt(332263)

10. Juni 2014

a)

b)

$$f_{inf}((x_1, y_1), (x_2, y_2)) = \begin{cases} (x_1, y_1), falls \ x_1 \le x_2 \land y_1 \le y_2 \\ (x_1, y_2), falls \ x_1 \le x_2 \land y_2 \le y_1 \\ (x_2, y_1), falls \ x_2 \le x_1 \land y_1 \le y_2 \\ (x_2, y_2), falls \ x_2 \le x_1 \land y_2 \le y_1 \end{cases}$$

$$f_{sup}((x_1, y_1), (x_2, y_2)) = \begin{cases} (x_1, y_1), falls \ x_1 \ge x_2 \land y_1 \ge y_2 \\ (x_1, y_2), falls \ x_1 \ge x_2 \land y_2 \ge y_1 \\ (x_2, y_1), falls \ x_2 \ge x_1 \land y_1 \ge y_2 \\ (x_2, y_2), falls \ x_2 \ge x_1 \land y_2 \ge y_1 \end{cases}$$

c

 $Sei\ f: 2^{\mathbb{N} \times \mathbb{N}} \to \mathbb{N} \times \mathbb{N} \ die \ Funktion, \ die \ \sqcap X \ bestimmt \ mit$

$$f(X) = \left\{ \begin{array}{l} a & , falls \ \#(X) = 1 \land a \in X \\ f((min(x_1, x_2), min(y_1, y_2)) \cup (X \setminus \{(x_1, y_1), (x_2, y_2)\})) \ , sonst \ mit \ (x_1, y_1), (x_2, y_2) \in X \end{array} \right.$$
 Sei $g: 2^{\mathbb{N} \times \mathbb{N}} \to \mathbb{N} \times \mathbb{N}$ die Funktion, die $\sqcup X$ bestimmt mit

$$g(X) = \begin{cases} a &, falls \ \#(X) = 1 \land a \in X \\ g((max(x_1, x_2), max(y_1, y_2)) \cup (X \setminus \{(x_1, y_1), (x_2, y_2)\})) &, sonst \ mit \ (x_1, y_1), (x_2, y_2) \in X \end{cases}$$

d)

$$\begin{array}{l} \bot = (1,1) \\ \top \; existiert \; nicht \end{array}$$

e)

Der Verband ist nicht vollständig, weil nicht für jedes $A\subseteq (\mathbb{N}\times\mathbb{N})$ ein Supremum existiert (insbesondere nicht für die unendliche Menge $(\mathbb{N}\times\mathbb{N})$).

f)

$$z.z. \forall d_1, d_2 \in (\mathbb{N} \times \mathbb{N}).d_1 \leq_2 d_2 \rightarrow f(d_1) \leq_2 f(d_2)$$

Weil sowohl 2y2+2y-1 als auch x! komponentenweise monoton sind, ist auch f monoton!

z.Z.: Wenn (X,R) ein Verband ist mit X endlich, dann ist (X,R) auch ein vollständiger Verband.

```
Beweis:
Sei (X, R) ein beliebiger Verband mit X endlich.
Daraus folgt dass für beliebige d_1, d_2 \in X auch \prod \{d_1, d_2\} existiert. Beweis mit-
tels vollständiger Induktion.
Sei A_i eine beliebige Menge mit A_i \subseteq X und \#(A_i) = i
Beweis der Existenz von □
Induktionsanfang: A_2 = \{d_1, d_2\}. Nach Voraussetzung existiert \prod \{d_1, d_2\}.
Inuktionsvorausetzung(IV): \prod A_i existiert.
Inuktionsschritt: \prod A_{i+1}
\prod A_{i+1} = \prod (A_i \cup \{d\}) \text{ für ein } d \in A_{i+1}
Falls \prod A_i \sqsubseteq d dann ist \prod A_{i+1} = \prod A_i (1)
Falls d \sqsubseteq \prod A_i dann ist \prod A_{i+1} = d (2)
Aus (1) und (2) und (IV) folgt dass \prod A_{i+1} existiert (3)
Beweis der Existenz von 📋
Induktionsanfang: A_2 = \{d_1, d_2\}. Nach Voraussetzung existiert \bigsqcup \{d_1, d_2\}.
Inuktionsvorausetzung(IV): \bigsqcup A_i existiert.
Inuktionsschritt: \bigsqcup A_{i+1}
\bigsqcup A_{i+1} = \bigsqcup (A_i \cup \{d\}) für ein d \in A_{i+1}
Falls \bigsqcup A_i \sqsubseteq d dann ist \bigsqcup A_{i+1} = d (4)
Falls d \sqsubseteq \bigsqcup A_i dann ist \bigsqcup A_{i+1} = \bigsqcup A_i (5)
Aus (4) und (5) udn (IV) folgt dass \coprod A_{i+1} existiert (6)
```

Aus (3) und (6) folgt dass für jede $A \subseteq X$ sowohl $\bigsqcup A$ als auch $\bigcap A$ existieren, $\bigsqcup A_1$ und $\bigcap A_1$ trivialerweiser existieren. Daraus folgt dass (X, R) nach Definition 4.3 ein vollständiger Verband ist.

a)

 $Z.z \le ist$ eine partielle Ordnung auf B.

Es genügt zu zeigen dass \leq reflexiv, antisymetrisch und transitiv ist.

Reflexiv

Sei $f \in B$ beliebig. Dann gilt $f \leq f$ da $f^{-1}(\{1\}) \subseteq f^{-1}(\{1\})$ (1)

Antisymetrisch

Es muss gelten $\forall f, g \in B : f \leq g \land g \leq f \rightarrow f = g$.

Sei $f, g \in B$ beliebig. Annahme: $f \leq g \land g \leq f$

Z.z f = g

Aus der Annamhe folgt $f^{-1}(\{1\}) \subseteq g^{-1}(\{1\}) \wedge g^{-1}(\{1\}) \subseteq f^{-1}(\{1\})$

 $\Rightarrow f^{-1}(\{1\}) = g^{-1}(\{1\})$

Dies impliziert aber auch $f^{-1}(\{0\}) = g^{-1}(\{0\})$ da es sich um eine boolsche Funktion handelt.

Daraus folgt dass f = g(2)

Transitiv

Es muss gelten $\forall f, g, h \in B : f \leq g \land g \leq h \rightarrow f \leq h$.

Sei $f, g, h \in B$ beliebig. Annahme: $f \leq g \land g \leq h$

 $z.Z.: f \leq h$

Aus der Annahme folgt, dass $f^{-1}(\{1\}) \subseteq g^{-1}(\{1\}) \wedge g^{-1}(\{1\}) \subseteq h^{-1}(\{1\})$

 $\Rightarrow f^{-1}(\{1\}) \subseteq h^{-1}(\{1\})$ \Rightarrow f \le g (3)

Mit (1) und (2) und (3) folgt, dass \leq eine partielle Ordung auf B ist.

b)

Da wir auch TheGI3 wissen dass die Menge der boolschen Funktionen über n variablen die Mächtigkeit 2^n hat ist B endlich. Mit Aufgabe 2 müssen wir ledlich zeigen dass $|\{f,g\}|$ für $f,g \in B$ existiert.

Sei $f,g \in B$ beliebig mit $f \neq g$. Dann existieren sowohl $f^{-1}(\{1\})$ als auch $g^{-1}(\{1\})$. Auch \subseteq ist für diese beiden definiert, darauf folgt dass $f \leq g$ definiert ist

Nun gilt: $\bigsqcup\{f,g\} = f$ falls $f \leq g$ sonst $\bigsqcup\{f,g\} = g$.

a)

- 1. z_{min} ist ein Fixpunkt von f.
- 2. z_{min} ist der kleinste Fixpunkt.

Wiederspruchsbeweis.

Sei z_{min2} ein Fixpunkt mit $z_{min2} \sqsubseteq z_{min}$ (1).

Es gilt $z_{min} = \prod \{x \in D | f(x) \sqsubseteq x\}$

Nun ist aber $z_{min2} \in \{x \in D | f(x) \sqsubseteq x\}$ da es ein Fixpunkt ist.

Das aber steht im Wiederspruch zu (1), wenn z_{min} das Infimum ist, kann z_{min2} nicht Element der Prä-Fixpunkte sein.

(b)

z.Z Aus (D, \sqsubseteq) ein endlicher vollstänger Verband und f monoton folgt dass, $z_{max} = f^M(\top)$ ein $M \in \mathbb{N}$ der größte Fixpunkt von f ist. Sei (D, \sqsubseteq) ein endlicher vollstänger Verband und f monoton. z.Z $z_{max} = f^M(\top)$ ein $M \in \mathbb{N}$ der größte Fixpunkt von f.

Wir brauchen zu zeigen, dass

1. z_{max} ist ein Fixpunkt von f.

 $z_{max} = f^M(\top) = f^{M+1}(\top)$ da \top das maximale Element ist und f monton ist.

2. z_{max} ist der größte Fixpunkt.

Sei z ein Fixpunkt.

Nun gilt $z \sqsubseteq \top$. Da f monoton ist $f(z) = z \sqsubseteq f(\top)$. Wir wenden f M - 1 mal an, und wir bekommen $z \sqsubseteq f^M(\top) = z_{max}$

Daraus folgt dass z_{max} der größte Fixpunkt ist.

Mit 1. und 2. folgt dass z_{max} der größte Fixpunkt ist.