Chapter 07 - ISIS

ISIS is yet another routing protocol.

Interior and Exterior Gateway Protocols						
Interior Gateway Protocols interior 40				Exterior Gateway Protocols		
	Distance Vector Lin			Link State Routing Protocols		
Classful	RIPv1 (1982/1988)	(1985)			EGP (1982)	
Classless	RIPv2 (1994)	EIGRP (1992)	OSPFv2 (1991)	(1990)	BGPv4 (1995)	
IPv6	RIPng (1997)	EIGRP for IPv6 (not yet released)	OSPFv3 (1999)	IS-IS for IPv6 (2000)	BGPv4 for IPv6 (1999)	S) (S) (Q)

Similarities to OSPF

- · Link State Routing, using Dijkstra-based SPF algorithm
- Hellos to maintain adjacencies
- Hierarchical
- address summarization
- classless
- elect and use DR for broadcast
- · authentication capabilities

Differences

- IS-IS does not have the concept of backbone area 0.
- IS-IS does not use IP, it uses OSI network layer addressing (on top of MAC address): 8–20 bytes

IS-IS versus OSPF

Terminology

IS-IS	OSPF	Comments
ES (End System)	Host sond leceuse but not	
IS (Intermediate System)	Router	
Circuit	Link	
SNPA (Subnetwork Point of Attachment)	Datalink Address	MAC address
PDU (Protocol Data Unit)	Packet	
DIS (Designated Intermediate System)	DR (Designated Router)	
N/A < no book up rower	BDR	Backup designatediate
IIH (IS-to-IS Hello Packet)	Hello packet	

IS-IS	OSPF	Comments
LSP (Link-State Packet)	LSA (Link -State Advertisement)	LSAs are actually comparable to TLVs used in LSPs.
CSNP (Complete Sequence Number PDU or Packet)	DBD (Data Base Description Packet)	the sum mary (titt/ID) of the data.
PSNP (Partial Sequence Number PDU or Packet)	LSAck or LSR (Link State Request)	
Routing Domain	AS	The term routing domain is also used with OSPF.
Level 1 Area - within your	Area (non- backbone)	
Level 2 Area - talk 10 ppl outside us area	Backbone area (Area 0)	IS-IS uses a backbone path connected by contiguous L2 routers. There is no backbone area in IS-IS

Routers

IS-IS	OSPF	Comments
Level 1 IS (router)	Internal Non- backbone Router	Internal, non-backbone router in a Totally Stubby Area
Level 2 IS (router)	Internal Backbone Router or ASBR	Any Level 2 router can distribute externals into the domain. No special name. (Cisco IOS allows Level 1 routers to distribute externals.)
Level 1-2 IS (router)	ABR	
System ID	Router ID	The System ID is the key for SPF calculations. Sometimes the NET address is thought of as the Router ID.
AFI = 49	RFC 1918	AFI is part of the NSAP.
	Addresses	

Timers

Interface	IS-IS	OSPF
Point-to-Point	Hello – 10 sec	Hello – 10 sec
	Holdtime – 30 sec	Dead – 40 sec
Broadcast	Hello – 10 sec	Hello – 10 sec
	Holdtime – 30 sec	Dead – 40 sec
NBMA	N/A	Hello – 30 sec
		Dead – 120 sec

Other	IS-IS	OSPF	
LS Aging	1,200 sec or 20 min	3,600 sec or 60 min	
	(counts down)	(counts up)	
LS Refresh	Every 15 min	Every 30 min	
NBMA	N/A	Hello – 30 sec	
		Dead – 120 sec	
SPF Delay/Holdtime	5.5 sec / 10 sec	5 sec / 10 sec	

Routers

- **L1 Router**: analogous to **OSPF Internal non-backbone router** (Totally Stubby). Only for routing <u>inside an area</u>.
- L2 Router: analogous to OSPF Internal Backbone router, for interconnecting L1 areas.
- L1-L2 Router: analogous to OSPF ABR router, participate in both L1 intra-area routing and L2-inter-area routing.

OSI Address

IS-IS uses OSI network layer addressing: 8 to 20 bytes.

For reference:

Area - System ID - NSEL (always 00 on ISs)
49.0001.2222.2222.00

Area System & Grant wally MAC. addr

NSAP (NETs)

Area – System ID – NSEL 49.0001.2222.2222.00

Other Examples

Example 1: NSAP 47.0001.aaaa.bbbb.cccc.00

- · Area ID is:
 - 47.0001
- System ID is:
 - · aaaa.bbbb.cccc
- NSAP selector byte is:
 - 00

Example 2: NSAP 39.0f01.0002.0000.0c00.1111.00

- · Area ID is:
 - · 39.0f01.0002
- · System ID is:
 - · 0000.0c00.1111
- · NSAP selector byte is:
 - 00

9 0004 9999.9999.9999.00

ame area

Lab 7.7.1 Configuring Basic Integrated IS-IS

39 0002 4444 4444 4444 00

.1111.1111.1111.00

39 0002 3333 333

Configuring IS-IS (so far)

SanJose1

interface FastEthernet0/0
ip address 172.16.0.1 255.255.255.0
ip router isis
isis priority 100
router isis
net 49.0001.1111.1111.1111.00

SanJose2

interface FastEthernet0/0
ip address 172.16.0.2 255.255.255.0
ip router isis

router isis

net 49.0001.2222.2222.200

Area . System ID . NSEL

Fa0/1 or Lo0 192.168.10.1/24 Area 49.0001 Fa0/0 172.16.0.1/24 Fa0/0 172.16.0.3.24 SanJose2 Fa0/1 192 168.20.1/24 Fa0/1 or Lo0 192.168.30.1/24

<u>SanJose3</u>

interface FastEthernet0/0

ip address 172.16.0.3 255.255.255.0

ip router isis

net 49.0001.3333.3333.3333.00

- ip router isis: IS-IS must be enabled on the interface
- Note: IS-IS routing cannot be enabled on an interface until an IP address has been configured on the interface.
- IOS: Cisco IOS 12.2(12) with Enterprise Plus (16 MB Flash/48 MB RAM) or Enter Plus IPSec56 (16 MB Flash/64 MB RAM)

Adjacencies

LAN Adjacencies

Adjacencies are established based on the area address announced in the incoming IIHs and the type of the router.

- L1 routers form L1 adjacencies with L1 and L1-L2 routers in their area.
- L2 routers form L2 adjacencies with L2 and L1-L2 routers in their area or another area.
- L1 router does not form an adjacency with an L2 router

Neighbors and Adjacencies

- IS-IS discover neighbors and forms adjacencies using IS-IS Hello PDUs.
 - Transmitted every 10 seconds
- Hold time defaults to 3 times the Hello time (30 seconds), before declaring a
 - **Hold time** defaults to **3 times** the Hello time (**30 seconds**), before declaring a neighbor dead.
 - Changed using the interface command is hello-multiplier
 - · Default is 3

IS-IS Routing Process: Update

IS-IS Routing Process

- Update
- Decision
- Forwarding
- Receive

The Update Process

- Routers can only forward data packets if they have an understanding of the network topology.
- LSPs are generated and flooded throughout the network whenever:
 - An adjacency comes up or down (example: a new router comes online).
 - An interface on a router changes state or is assigned a new metric.

• An IP route changes (example: because of redistribution)

not finish yet...