Index

Author Index

Adleman, L., 26, 89, 334 Ajtai, M., I., 91 Bach, E., 90 Bellare, M., 321 Ben-Or, M., 321 Blum, M., 89, 169, 321, 337 Brassard, G., 321 Carter, L., 170 Chaitin, G.J., 102 Chaum, D., 321 Crépeau, C., 321 Diffie, W., 26, 89 Even, S., 187 Feige, U., 321 Feldman, P., 321 Fiat, A., 321 Fischer, M., 26 Goldreich, O., 89, 170, 320-322 Goldwasser, S., 22, 26, 169, 170, 320, 321, 337 Håstad, J., 170 Hellman, M.E., 26, 89, 90 Impagliazzo, R., 170 Kilian, J., 321 Kolmogorov, A., 102 Krawczyk, H., 170 Lapidot, D., 321 Levin, L.A., 89, 91, 170 Lipton, R., 26 Luby, M., 170 Merkle, R.C., 26, 90

Micali, S., 22, 26, 89, 169, 170, 320, 321, 337

Naor, M., 320

Odlyzko, A., 90

Pratt, V., 90 Rabin, M., 26, 89 Rackoff, C., 26, 89, 170, 320, 321 Rivest, R.L., 22, 26, 89, 334 Shamir, A., 26, 89, 90, 321, 334 Shannon, C.E., 26 Sipser, M., 170 Solomonov, R.J., 102 Turing, A., 188 Vadhan, S., 322 Virgil, 195, 207 von Kant, P., 195, 207 Wegman, M., 170 Wigderson, A., 320, 321 Wittgenstein, L., 21 Yao, A.C., 89, 169

Subject Index

Arguments. See Interactive proofs Averaging argument. See Techniques

Blum integers, 57, 60, 62, 283, 337

Chebyshev inequality, 10, 29, 70, 72, 137

Chernoff bound, 11, 28, 29, 106, 147
Chinese Remainder Theorem, 60, 335
Classic cryptography, 2, 26
Claw-free pairs. *See* One-way functions
Collision-free hashing. *See* Hashing
Commitment schemes, 223–240, 242–243, 252, 274, 276, 287, 320
based on one-way function, 226–227

based on one-way permutation, 225-226

367

canonical revealing, 225, 280, 290, 315	169, 202–204, 207, 213–216, 220–222,	
computational secrecy, 290	224, 231–239, 255, 256, 300, 302, 307,	
computationally binding, 225, 278–286	309	
computationally hiding, 225, 228, 278, 285, 289, 290	by circuits, 106–107, 111–112, 148, 173–174, 214–216, 221, 222, 228, 232–239	
non-oblivious, 269, 294-297, 352	by repeated sampling, 107-110, 152, 157	
non-uniform computational secrecy, 227,	versus statistical indistinguishability,	
229–240, 242	106–107, 113, 170	
non-uniform computational unambiguity, 283	Computational models	
perfect a posteriori secrecy, 283-284, 293	interactive machines. See Interactive	
perfect secrecy, 288, 290	machines	
perfectly binding, 225, 278, 284, 285, 289,	non-determinism. See Non-determinism.	
290, 313	non-uniform. See Non-uniform complexity.	
perfectly hiding, 225, 278–286, 289–294,	oracle machines. See Oracle machines	
300, 313	probabilistic machines. See Probabilistic	
terminology, 278	machines	
two senders, 313–317, 321	Cryptographic protocols, 6–8, 350–353	
with trapdoor, 297–298		
Complexity classes	Density-of-primes theorem, 94, 333	
AM, 250–251	DES	
\mathcal{BPP} , 15–16, 18, 29, 31, 188, 194, 195, 201,	high-level structure, 164, 166–167	
205, 209, 247–249, 253–255, 270, 277,	Discrete-logarithm problem. See DLP function	
282, 287, 306, 309, 311, 319, 330	DLP. See DLP function	
coAM, 250	DLP function, 57, 282, 289	
$co\mathcal{NP}$, 199, 250	claw-free property, 61, 282	
CZK, 205	hard-core, 65, 89, 91, 133	
\mathcal{IP} , 194, 199, 205	TW: : 50	
MA, 324	Elliptic curve, 58	
NP, 13, 26, 31, 184, 188–189, 194, 195,	Encryption schemes, 2–3, 31, 169, 338–345	
198, 199, 223, 240–243, 246, 249–251,	chosen message attack, 269	
254–261, 263, 268–269, 276, 284–288	private-key, 26	
NPC, see \mathcal{NP} -completeness 12	public-key, 3, 26, 52, 225, 269, 327	
P, 12, 31, 189	Randomized RSA, 342	
PCP. See Probabilistically checkable proofs	Expander graph, 80, 81	
PSPACE, 199	explicitly constructed, 80, 91	
PZK, 205 SZK, 205, 322	random walk on, 80, 82, 83, 91	
ZK, 205	Factoring integers, 40, 57	
Composite numbers	Factoring polynomials, 332	
Blum integers. See Blum intergers	Fermat's little theorem, 332	
some background, 334–337	Fiat-Shamir identification scheme. See	
Computational complexity	Identification schemes	
assumptions, 19–20	Function ensembles, 149–150	
average-case complexity, 20, 31, 91	constructible, 149, 158	
background, 12–20	constructible and pseudorandom, 150	
classes. See Complexity classes	pseudorandom, 149, 158, 162	
non-uniform complexity, 16–19	pseudorandom, more about. See	
Computational difficulty. See One-way	Pseudorandom functions	
functions		
Computational indistinguishability, 26, 74,	Gödel's Incompleteness Theorem, 188	
76–77, 101, 103–112, 115–118, 120–	Gilbert-Varshamov bound, 41	
123, 127–128, 132, 139, 148, 164–165,	Graph Coloring, 228	
2/0		

INDEX

Graph connectivity, 13–14, 28–29	Kolmogorov complexity, 102, 105, 170
Graph Isomorphism, 64, 97, 196, 207,	
270, 275	Markov inequality, 9, 28, 29, 67
	Message authentication, 5, 344, 345, 347
Hamiltonian cycle, 276, 297, 302	
Hard-core predicates. See One-way	Negligible function, 16, 32, 33, 35, 105, 106,
functions	202, 204, 266, 274
Hashing	NIZK. See Zero-knowledge
collision-free, 52, 286, 287, 349	Non-determinism, 13, 15, 19
universal. See Hashing functions	Non-interactive zero-knowledge. See
universal one-way, 349	Zero-knowledge
Hashing functions, 136–137, 177–178	Non-uniform complexity, 16–19, 41–43, 59, 88,
Hoefding inequality, 12, 28	93, 111–112, 148, 214–216, 221, 222,
Hybrid argument. See Techniques	228–240, 242, 283, 287, 294, 297, 305, 327
7	Noticeable function, 35, 266
Identification schemes, 270–274	\mathcal{NP}
Fiat-Shamir, 272, 321	as a class. See Complexity classes
Identifying friend or foe, 157	as a proof system. See Interactive proofs, 188,
Interactive machine, 191	194, 247, 299
joint computation, 191	versus P. See P-vs-NP question
the complexity of, 192	\mathcal{NP} -completeness, 13, 41, 228, 240–246
two-partner model, 311, 312	Bounded Halting, 244
Interactive proofs, 190–200, 277	G3C, 13, 240
arguments, 223, 247, 251, 277–288,	generic reduction, 241, 326
321	Karp reduction, 241, 327
Arthur-Merlin, 198, 254, 320	Levin reduction, 326
auxiliary inputs, 199–200, 213, 230, 234,	strong sense, 241, 298, 326
240–242, 255, 277	strong sense, 241, 276, 326
completeness, 193–195, 198	Oblivious transfer, 26
computationally sound, 223, 251–253,	One-way functions, 1–4, 7, 26, 27, 30–100, 252,
277–288, 321	
•	257, 272, 297, 340, 344, 347, 349 based on coding theory, 41, 89, 90
constant-round, 199 definition, 190–195, 320	based on DLP, 57, 90, 282
error reduction, 194, 195, 230	based on factoring, 40, 57, 90, 282
for Graph Non-Isomorphism, 195–199,	based on integer lattices, 91
320	based on subset sum, 41, 89, 90
for <i>PSPACE</i> , 199, 320	candidates, 40–41, 55–58, 63–64
general definition, 194	claw-free collections, 53, 60–63, 89, 282, 294
multi-prover, 223, 311–321	collection of, 53–63, 65, 249
\mathcal{NP} as a special case, 188, 194	definitions, 32–43
perfect completeness, 198, 199, 243	distributional, 96, 174
proving power of, 198–199	hard-core, 64–78, 89, 170
public-coin, 198, 199, 243, 253–254	hard-core functions, 74–78, 89, 134–135,
round-efficient, 288	138–141
simple definition, 193	length conventions, 35–40
soundness, 193–195, 198	length-preserving, 39
unidirectional, 247	length-regular, 39
zero-knowlege. See Zero-knowledge	modular squaring, 57
	motivation, 31–32
TP	non-uniform hardness, 41–43, 59, 88, 93,
as a class. See Complexity classes	148, 205, 228, 249, 259, 269, 276, 297,
the notion. See Interactive proofs	323, 327

One-way functions (cont.)	Probability theory
on some lengths, 36	conventions, 8–9
one-to-one, 40, 98, 135, 138, 141, 225,	inequalities, 9–12
226	Proofs of ability, 270, 273–274
quantitative hardness, 48, 79	Proofs of identity. See Identification schemes
Rabin function, 57, 89, 90	Proofs of knowledge, 223, 252, 262–277,
regular, 79, 142, 146	294–296, 298, 321, 352
RSA, 56, 89, 90	ability. See Proofs of ability
strong, 32, 66	applications, 269–274
strong vs weak, 43–51, 78–89	definition, 262–266
the inner-product hard-core, 65–76	error reduction, 266–268, 328
universal, 52–53, 89	for Hamiltonian cycle, 276, 329
weak, 35, 89, 96	for \mathcal{NP} in zero-knowledge, 269, 277
One-way permutations, 79, 225, 256, 281, 305,	in zero-knowledge, 268–269, 275–277
310, 328, 349	strong, 274–277, 329
based on DLP, 57, 133	Protocols. See Cryptographic protocols
based on factoring, 57, 134	Pseudorandom Ensembles, 112
claw-free collections, 61–63, 89, 349	unpredictability of, 119–123, 176
	Pseudorandom functions, 101, 148–163, 170,
collection of, 53, 56–61, 66, 88	
hard-core, 66, 131, 225, 250, 301–302, 328,	171, 274, 341, 347, 348
341	applications, 157–158, 170, 171
modular squaring, 57	based on pseudorandom generators, 150–157
non-uniform hardness, 286	
RSA, 56, 133	generalized notion, 158–163
with trapdoor, 53, 58–60, 66, 88, 302, 305,	methodology, 157–158
311, 340–344, 352	Pseudorandom generators, 3–4, 101, 226–227
Oracle machines, 20, 148–169, 262–277	307–309, 340
D ND (: 12.20.22.21.02	applications, 119, 171, 226
P-vs-NP question, 13, 20, 22, 31, 93	based on 1-1 one-way functions, 135–141
Parallel composition	based on DLP, 133, 170
in computationally sound proofs, 223, 278,	based on factoring, 134, 170
323	based on one-way functions, 135–148, 170,
in interactive proofs, 209	171
in multi-prover proofs, 223, 313, 317, 318,	based on one-way permutations, 124–135,
322, 323	169
in proofs of knowledge, 223, 268, 328	based on regular one-way functions,
in witness-indistinguishable proofs, 258–259	141–147
in zero-knowledge protocols, 222–223, 240,	based on RSA, 133
246, 251–254, 321	computational indistinguishability. See
PCP. See Probabilistically checkable proofs	Computational indistinguishability
Permutation ensembles, 164	construction of, 124–148
invertible, 165	definitions, 112–124, 169
pseudorandom, 164	direct access, 179
strongly pseudorandom, 165	increasing the expansion, 114–118
Primality testing, 332–333	motivation, 102–103
Prime numbers	necessary condition, 123–124
generation of, 134, 333	non-uniform hardness, 148
some background, 331–334	on-line, 176–177, 179
Probabilistic machines, 14–16	standard definition, 113
Probabilistically checkable proofs, 254, 286,	unpredictability of, 119-123, 169
287, 319, 322	variable-output, 114, 118-119
Probability ensembles, 104	Pseudorandom permutations, 164–171
efficiently constructible, 108	based on pseudorandom functions, 166-169

Rabin function, 57, 60 Undecidability Halting Problem, 188 claw-free property, 62, 283 hard-core, 65, 89, 91, 134 Witness hiding, 257–261, 273, 298, 321 Random linear codes, 41 Random Oracle Methodology, 171–172 Witness indistinguishability, 254–261, 309, Random Oracle Model, See Random Oracle 321, 328 concurrent composition, 259 Methodology Random variables parallel composition, 258–259 strong, 256-257, 328 conventions, 8-9 pairwise independent, 10-11, 68, 69 Yao's XOR Lemma, 89, 91 totally independent, 11-12, 106 Reducibility argument. See Techniques Zero-knowledge, 7-8, 26, 184-330, 352 Rigorous treatment almost perfect, 204-205, 250-252, 280, 322 asymptotic analysis, 23 alternative formulation, 203, 255 motivation, 21-25 applications, 242-243, 320 RSA function, 56, 60 auxiliary inputs, 213-222, 230, 231, hard-core, 65, 91, 133 241-242, 248, 255 hard-core function, 74, 342 black box, 214, 245, 251-254, 289 class of languages, 205 Secret sharing schemes, 352 composition of, 216-223 Sequential composition computational, 202, 204, 206, 213, 214, 221 in computationally sound proofs, 278 concurrent, 259, 323 in multi-prover proofs, 312 constant-round, 253-254, 288-298, 300, 321 in proofs of knowledge, 267-268, definitions, 200–207, 213–216, 320 275 - 277deterministic prover, 248 in zero-knowledge protocols, 216-222 deterministic verifier, 247-248 Signature schemes, 4-6, 26, 274, 298, 327, efficiency considerations, 243-245 345-350 expected polynomial time, 205-206, 245, Signatures. See Signature schemes 289-298 Signatures paradigm. See Techniques for Graph Coloring, 228-240 Sources of imperfect randomness, 171 for Graph Isomorphism, 207-213, 273, 275, Statistical difference, 106, 113, 202, 204, 320 234, 280 for Graph Non-Isomorphism, 270 Statistical indistinguishability, 106, 204 for Hamiltonian cycle, 244, 276, 303, 327, Subset sum, 41 for hard languages, 249-250 Techniques for IP, 243, 320 for \mathcal{NP} , 223–246, 320 averaging argument, 18, 42, 67, 71, 220, 239, 315 for Quadratic Non-Residuosity, 320 hybrid argument, 101, 102, 108-111, for Quadratic Residuosity, 321 115–118, 121–123, 138, 141, 152–157, honest verifier, 206-207, 299 159, 163, 170, 182, 220-222, 233, 239, knowledge tightness, 244-246, 327 258-259, 309 liberal formulation, 205 leftover hash lemma, 136 motivation, 185-190 probabilistic argument, 106-107 multi-prover, 311-321 reducibility argument, 30, 37-39, 43-52, 66, negative results, 246–254, 320 81, 82, 85–88, 108, 110, 124, 125, 133, non-interactive, 298-311, 321 139, 140, 142-144, 285 outside \mathcal{BPP} , 249 the simulation paradigm, 189, 201, 266, parallel composition, 222-223, 240, 246, 251-254, 258 perfect, 201, 204, 205, 214, 221, 250, Trapdoor permutation. See One-way

311-322

permutations

INDEX

Zero-knowledge (*cont.*)
proofs of knowledge. *See* Proofs of
knowledge
public coin, 253–254
resettable, 323
round-complexity, 244
round-efficient, 254, 288–298, 300, 321
sequential composition, 216–222, 230
statistical, 204–205, 250–251, 280, 322

unidirectional, 247–248 uniform treatment, 215, 322 witness hiding. *See* Witness hiding witness indistinguishability. *See* Witness indistinguishability

ZK

as a class. *See* Complexity classes the notion. *See* Zero-knowledge ZKIP. *See* Zero-knowledge