Diskrete Strukturen (WS 2023-24) - Halbserie 0

Bitte nur Probleme 0.1, 0.2 und 0.3 einreichen. Halbserie 0 wird nicht benotet, die Einreichung dient nur dazu, sich mit der Moodle-Oberfläche vertraut zu machen.

(bitte direkt auf moodle als Quiz-Frage antworten.)

$$0.2 ag{3}$$

Gegeben sei folgende aussagenlogische Formel F:

$$(A \leftrightarrow B) \land (\neg(C \to A))$$

- 1. Erstellen Sie für F eine Wahrheitswertetabelle.
- 2. Ist F erfüllbar? Beweisen Sie Ihre Antwort.

Solution.

1. Wahrheitswertetabelle:

A	B	C	$(A \leftrightarrow B)$	\wedge	$(\neg$	$(C \to A))$
1	1	1	1	0	0	1
1	1	0	1	0	0	1
1	0	1	0	0	0	1
1	0	0	0	0	0	1
0	1	1	0	0	1	0
0	1	0	0	0	0	1
0	0	1	1	1	1	0
0	0	0	1	0	0	1

- •₁ •₁ für korrekt ausgefüllte Tabelle, Punkt Abzug bei Fehler
- 2. Jadie Formel ist erfüllbar, da wir folgende erfüllende Belegung angeben können: $A=0,\,B=0,\,C=1$.

$$0.3$$
 [3]

Beweisen Sie mit Hilfe einer Äquivalenzkette, dass

$$(A \vee \neg B) \to B$$
 äquivalent zu B .

Geben Sie für jeden Schritt an, welche Umformungsregel angewendet wurde.

Solution.

$$(A \vee \neg B) \to B$$

$$\iff \neg (A \vee \neg B) \vee B \qquad \qquad \text{(Reformulierung } \to)$$

$$\iff (\neg A \wedge \neg \neg B) \vee B \qquad \qquad \text{(DeMorgan)}$$

$$\iff B \qquad \qquad \text{(Absorption)}$$

- •₁ •₁ für korrekte, nachvollziehbare Umformungen, •₁ für Angabe Umformungsschritte
- **0.4** Ist die folgende aussagenlogische Formel eine **Tautologie** oder eine **Kontradiktion**? Beweisen Sie Ihre Antwort.

$$\neg(A \to B) \lor (B \lor \neg A)$$

Solution. Es handelt sich um eine Tautologie, d.h., fuer alle Belegungen der aussagenlogischen Variablen A und B ist die Formel wahr. Dies kann man beispielsweise mit Wahrheitswertetabelle nachweisen (alle Zeilen 1).

			$(A \to B)$	\vee	$(B \vee \neg A)$
1	1	0	1	1	1
1	0	1	0	1	0
0	1 0 1 0	0	1	1	1
0	0	0	1	1	1

Oder man formt mittels "Elimination von \rightarrow " um, und bekommt man die äquivalente Formel

$$\neg (A \to B) \lor (A \to B).$$

Wir erkennen, dass diese Formel tautologisch ist (Klassische Tautologie "Ausgeschlossenes Drittes", $F \vee \neg F$, wobei $F = A \rightarrow B$).

- **0.5** Es seien die folgenden 'Prädikate gegeben:
 - M(x) drückt aus, dass x ein Mond ist.
 - K(x) drückt aus, dass x Käse ist.
 - T(x,y) drückt aus, dass x durch y teilbar ist.
 - 1. Formalisieren Sie die folgenden Aussagen in Prädikatenlogik:

- (a) Alle Monde sind Käse.
- (b) Es gibt keinen Mond, der Käse ist.
- (c) Es gibt zwei Monde, die durch denselben Käse teilbar sind.
- 2. Formulieren Sie die folgenden Aussagen in natürlicher Sprache:
 - (iv) $\forall z (K(z) \lor \neg K(z))$
 - (v) $\exists x \forall y (K(x) \land (M(y) \rightarrow T(x,y)))$

Solution.

- 1. (a) $\forall x (M(x) \to K(x))$
 - (b) $\neg \exists x (M(x) \land K(x))$
 - (c) $\exists x \, \exists y \, \exists z (M(x) \land M(y) \land K(z) \land T(x,z) \land T(y,z))$. Sind explizit zwei verschiedene Monde gemeint, muss man noch $x \neq y$ hinzufügen, denn anderenfalls kann man x und y durchaus mit demselben Mond belegen.
 - (d) Alle Dinge sind Käse oder sind nicht Käse.
 - (e) Es gibt einen Käse, der durch alle Monde teilbar ist.
- 0.6 Formulieren Sie für jede der folgenden Aussagen die jeweilige Kontraposition.
 - 1. Ist eine natürliche Zahl durch 6 teilbar, so ist sie auch durch 2 und durch 3 teilbar.
 - 2. Wenn n gerade ist, dann ist $n^2 + 2n 4$ gerade.

Solution.

- 1. Wenn eine natürliche Zahl nicht durch 2 oder nicht durch 3 teilbar ist, so ist sie auch nicht durch 6 teilbar.
- 2. Wenn $n^2 + 2n 4$ ungerade ist, so ist n ungerade.