1 Énoncé

Tous les anneaux considérés sont commutatifs et unitaires. On notera 0 l'élément neutre pour la loi additive et 1 l'élément neutre pour la loi multiplicative d'un tel anneau.

Une partie non vide S d'un anneau A est dit multiplicative si le produit de deux éléments de S est encore dans S.

Si A est un anneau et n un entier naturel non nul, on note $\Sigma_n(A)$ l'ensemble des éléments a de A qui peuvent s'écrire $a = \sum_{k=1}^{n} a_k^2$, où les a_k pour k compris entre 1 et n sont des éléments de A.

Si \mathbb{K} est un corps commutatif, on note $\mathbb{K}[X]$ [resp. $\mathbb{K}(X)$] l'anneau [resp. le corps] des polynômes [resp. des fractions rationnelles] à coefficients dans \mathbb{K} en une indéterminée X.

Enfin $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$ désignent les ensembles de nombres habituels.

Pour tout entier naturel non nul p, on note $\mathbb{Z}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$.

-I-Exemples

- 1. Soit A un sous-anneau de \mathbb{R} . Montrer que $\Sigma_2(A)$ est multiplicatif.
- 2. Montrer que pour tout anneau A (commutatif et unitaire) $\Sigma_2(A)$ est multiplicatif.
- 3. Déterminer $\Sigma_n(\mathbb{Z}_8)$ pour n=1,2 et 3.
- 4. Montrer que $\Sigma_3(\mathbb{Z})$ n'est pas multiplicatif.
- 5. Soit (a_1, a_2, a_3, a_4) dans \mathbb{Z}^4 . Montrer que si $\sum_{k=1}^4 a_k^2$ est divisible par 8, alors tous les entiers a_k sont pairs.
- 6. Soit n un entier relatif congru à -1 modulo 8. Montrer que n n'appartient ni à $\Sigma_3(\mathbb{Z})$ ni à $\Sigma_3(\mathbb{Q})$.
- 7. L'ensemble $\Sigma_3(\mathbb{Q})$ est-il multiplicatif?
- 8. Montrer qu'un polynôme $P \in \mathbb{R}[X]$ est dans $\Sigma_2(\mathbb{R}[X])$ si, et seulement si, $P(x) \geq 0$ pour tout réel x.
- 9. Montrer que $\Sigma_n(\mathbb{R}[X]) = \Sigma_2(\mathbb{R}[X])$ pour tout entier $n \geq 3$.
- 10. A-t-on $\Sigma_n(\mathbb{R}(X)) = \Sigma_2(\mathbb{R}(X))$ pour tout entier $n \geq 3$?

- II - Produits de sommes de n carrés dans un corps

Pour cette partie K est un corps commutatif de caractéristique nulle.

Pour tout couple (i, j) d'entiers naturels, on note $\delta_{i,j}$ le symbole de Kronecker $(\delta_{ii} = 1 \text{ et } \delta_{i,j} = 0 \text{ pour } i \neq j)$.

On note $\mathcal{M}_n(\mathbb{K})$ l'anneau des matrices carrées d'ordre n à coefficients dans \mathbb{K} d'unité I_n .

Pour toute matrice M, carrée ou rectangulaire, on note tM la transposée de M et $\Delta(M)$ la somme des carrés des éléments de la première ligne de M.

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite semi-orthogonale si l'on a :

$$A \cdot {}^{t}A = {}^{t}A \cdot A = \Delta(A) I_{n}.$$

Si n est un entier naturel supérieur ou égal à 2, on désigne par \mathfrak{S}_n le groupe des permutations de l'ensemble $\{1, 2, \dots, n\}$ et par $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{K}^n .

Si $\sigma \in \mathfrak{S}_n$, on appelle matrice de permutation associée à σ , la matrice de passage P_{σ} de la base canonique de \mathbb{K}^n à la base $\mathcal{B}_{\sigma} = (e_{\sigma(1)}, \cdots, e_{\sigma(n)})$, soit :

$$P_{\sigma} = \left(\left(\delta_{i,\sigma(j)} \right) \right)_{1 \le i,j \le n}.$$

- 1. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ tels que $A \cdot {}^t A = \lambda I_n$.
 - (a) Montrer que $\lambda = \Delta(A)$.
 - (b) Montrer que si $\lambda \neq 0$, A est semi-orthogonale.
- 2. Soient A, B semi-orthogonales dans $\mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Montrer que les matrices λA , ${}^t A$ et AB sont semi-orthogonales et calculer $\Delta(\lambda A)$, $\Delta({}^t A)$ et $\Delta(AB)$.
- 3. Montrer qu'une permutation quelconque des lignes ou des colonnes n'affecte pas la semiorthogonalité d'une matrice.
- 4. Soit $L = (\ell_1, \dots, \ell_n)$ une matrice ligne à coefficients dans \mathbb{K} telle que $\Delta(L) = 0$.
 - (a) Montrer que la matrice ${}^tL \cdot L$ est semi-orthogonale et déterminer sa i-ème ligne pour $1 \le i \le n$.
 - (b) En déduire qu'on peut trouver dans $\mathcal{M}_n(\mathbb{K})$ une matrice semi-orthogonale dont L soit la première ligne.
- 5. Soient A et B semi-orthogonales dans $\mathcal{M}_n(\mathbb{K})$. On suppose que $\Delta(A) \neq 0$ et $\Delta(A) + \Delta(B) \neq 0$. On pose $C = -\frac{1}{\Delta(A)} {}^t A {}^t B A$. Démontrer que la matrice $\begin{pmatrix} A & B \\ C & {}^t A \end{pmatrix}$ est semi-orthogonale dans $\mathcal{M}_{2n}(\mathbb{K})$.
- 6. Soient x_1, \dots, x_n dans \mathbb{K} . Montrer qu'il existe dans $\mathcal{M}_n(\mathbb{K})$ une matrice semi-orthogonale dont la première ligne est (x_1, \dots, x_n) dans chacun des cas suivants :
 - (a) $\mathbb{K} = \mathbb{R}$;
 - (b) \mathbb{K} quelconque et n puissance de 2.
- 7. Montrer que, si n est une puissance de 2, un élément a de \mathbb{K} appartient à l'ensemble $\Sigma_n(\mathbb{K})$ si, et seulement si, il existe une matrice semi-orthogonale A dans $\mathcal{M}_n(\mathbb{K})$ telle que $\Delta(A) = a$.
- 8. Montrer que, si n est une puissance de 2, alors $\Sigma_n(\mathbb{K}) \setminus \{0\}$ est un groupe multiplicatif (et donc $\Sigma_n(\mathbb{K})$ est un ensemble multiplicatif).
- 9. Montrer que si le cône isotrope de la forme quadratique Q définie sur \mathbb{K}^n par $Q(x) = \sum_{k=1}^n x_k^2$ n'est pas réduit à $\{0\}$, alors $\Sigma_n(\mathbb{K}) = \mathbb{K}$ (c'est-à-dire que tout élément de \mathbb{K} est somme de n carrés).

- III − −1 comme sommes de carrés dans un corps

Pour cette partie \mathbb{K} est un corps commutatif de caractéristique quelconque. Le niveau de \mathbb{K} est défini par :

- $-\nu(\mathbb{K}) = +\infty$ si -1 ne peut pas s'écrire comme somme de carrés;
- $-\nu(\mathbb{K})$ est le plus petit entier naturel non nul n tel que $-1 \in \Sigma_n(\mathbb{K})$ dans le cas contraire.
- 1. Calculer le niveau des corps \mathbb{R} et \mathbb{C} .
- 2. Quel le niveau d'un corps de caractéristique 2? d'un corps de caractéristique 5?
- 3. Soit p un nombre premier impair.
 - (a) Quel est le noyau du morphisme $x\mapsto x^2$ du groupe commutatif \mathbb{Z}_p^* dans lui même?

- (b) Quel le cardinal de l'image E de ce morphisme?
- (c) T désignant l'ensemble des éléments de \mathbb{Z}_p de la forme -1-y avec $y \in \Sigma_1(\mathbb{Z}_p) = E \cup \{0\}$, démontrer que l'intersection $T \cap \Sigma_1(\mathbb{Z}_p)$ n'est pas vide.
- (d) En déduire que $\nu(\mathbb{Z}_p) \leq 2$.
- 4. Démontrer que, si le corps \mathbb{K} (fini ou infini) est de caractéristique non nulle, alors $\nu(\mathbb{K}) \leq 2$.
- 5. On suppose, dans cette question, que le corps \mathbb{K} est de caractéristique nulle et de niveau $\nu = \nu \left(\mathbb{K} \right) \neq +\infty$. Il existe donc x_1, \dots, x_{ν} dans \mathbb{K} tels que $-1 = \sum_{k=1}^{\nu} x_k^2$. Soit n la plus grande puissance de 2 telle que $n \leq \nu$ et $x = \sum_{k=1}^{n} x_k^2$.

Montrer que $x \neq 0$, puis successivement que -x, $-x^2$ et -1 sont dans $\Sigma_n(\mathbb{K})$.

6. Montrer que le niveau d'un corps commutatif est égal à $+\infty$ ou à une puissance de 2.

- IV - Sommes de carrés dans $\mathbb{K}[X]$

Pour cette partie K est un corps de caractéristique nulle.

- 1. Montrer que $\Sigma_1(\mathbb{K}[X]) = \mathbb{K}[X] \cap \Sigma_1(\mathbb{K}(X))$.
- 2. Soient f_1, \dots, f_{n-1}, f dans $\mathbb{K}(X)$ avec $n \geq 2$. Simplifier l'expression :

$$(f+1)^2 + \sum_{k=1}^{n-1} (f_k (f-1))^2$$

lorsque
$$\sum_{k=1}^{n-1} f_k^2 = -1$$
.

- 3. En déduire que, s'il existe $n \geq 2$ tel que $-1 \in \Sigma_{n-1}(\mathbb{K})$, alors $\Sigma_n(\mathbb{K}) = \mathbb{K}$, $\Sigma_n(\mathbb{K}[X]) = \mathbb{K}[X]$ et $\Sigma_n(\mathbb{K}(X)) = \mathbb{K}(X)$.
- 4. Pour quels entiers $n \geq 1$, les ensembles $\Sigma_n(\mathbb{C}(X))$ sont-ils multiplicatifs?
- 5. Soit n un entier supérieur ou égal à 2 tel que $-1 \notin \Sigma_{n-1}(\mathbb{K})$ et soient P_1, \dots, P_n des polynômes dans $\mathbb{K}[X]$. Démontrer que si $\sum_{k=1}^n P_k^2 = aX$, avec $a \in \mathbb{K}$, alors tous les polynômes P_k sont nuls.
- 6. Soient $P, Q, P_1, \dots, P_n, Q_1, \dots, Q_n$ des polynômes dans $\mathbb{K}[X]$ avec $n \geq 2$. On pose

$$\begin{cases}
R = P - \sum_{k=1}^{n} Q_k^2, \\
S = PQ - \sum_{k=1}^{n} P_k Q_k, \\
T = 2S - QR \\
T_k = 2Q_k S - P_k R \ (1 \le k \le n)
\end{cases}$$

(a) Montrer que, si l'on a l'égalité :

$$Q^2 P = \sum_{k=1}^{n} P_k^2 \tag{1}$$

alors, on a aussi les deux égalités :

$$T^{2}P = \sum_{k=1}^{n} T_{k}^{2} \text{ et } QT = \sum_{k=1}^{n} (P_{k} - QQ_{k})^{2}.$$

(b) On suppose, outre l'égalité (1), que $-1 \notin \Sigma_{n-1}(\mathbb{K})$, que $Q \neq 0$ et que T = 0. Montrer que :

$$P = \sum_{k=1}^{n} Q_k^2$$

7. Soit $n \geq 2$ tel que $-1 \notin \Sigma_{n-1}(\mathbb{K})$ et soient P, Q, P_1, \dots, P_n dans $\mathbb{K}[X]$ vérifiant l'égalité (1) et les conditions :

$$PQ \neq 0$$
 et $\deg(Q) \geq 1$.

Montrer qu'on peut trouver U, U_1, \dots, U_n dans $\mathbb{K}[X]$ vérifiant :

$$U^2P = \sum_{k=1}^n U_k^2$$

et:

$$PU \neq 0$$
, $\deg(U) < \deg(Q)$.

- 8. Démonter que $\Sigma_n(\mathbb{K}[X]) = \mathbb{K}[X] \cap \Sigma_n(\mathbb{K}(X))$ pour tout $n \geq 1$.
- 9.
- (a) Montrer que les corps \mathbb{K} et $\mathbb{K}(X)$ ont même niveau.
- (b) Montrer que si n est une puissance de 2, alors l'ensemble $\Sigma_n(\mathbb{K}[X])$ est multiplicatif.

2 Corrigé

-I-Exemples

1. Soient $n=a^2+b^2$ et $m=c^2+d^2$ où a,b,c,d sont dans l'anneau A. En écrivant que $n=|u|^2$ et $m=|v|^2$ où, u=a+ib et v=c+id dans \mathbb{C} , on a :

$$nm = |uv|^2 = |(ac - bd) + (ad + bc) i|^2$$

= $(ac - bd)^2 + (ad + bc)^2 \in \Sigma_2(A)$.

L'ensemble $\Sigma_2(A)$ est donc bien multiplicatif.

Prenant $A = \mathbb{Z}$, ce résultat peut se traduire par :

$$\forall x = (x_1, x_2, x_3, x_4) \in \mathbb{Z}^4, \ P(x) = 0$$

où P est le polynôme de $\mathbb{R}\left[X_1,X_2X_3,X_4\right]$ défini par :

$$P(X_1, X_2X_3, X_4) = (X_1^2 + X_2^2)(X_3^2 + X_4^2) - (X_1X_3 - X_2X_4)^2 + (X_1X_4 + X_2X_3)^2$$

Comme \mathbb{Z} est un anneau intègre infini, on en déduit que P est le polynôme nul.

2. Le morphisme d'anneaux $\varphi : \mathbb{Z} \to A$ défini par $\varphi(k) = k \cdot 1$ pour tout $k \in \mathbb{Z}$, se prolonge en un morphisme d'anneaux $\psi : \mathbb{Z}[X] \to A[X]$ en posant, pour tout polynôme $Q = \sum_{k=0}^{n} a_k X^k$ dans $\mathbb{Z}[X], \psi(Q) = \sum_{k=0}^{n} \varphi(a_k) X^k$. Par ce morphisme on a $\psi(P) = 0$ où P est le polynôme défini à la question précédente et en conséquence $\psi(P)(x)$ pour tout $x \in A^4$, ce qui signifie que pour tout $x = (x_1, x_2, x_3, x_4)$ dans A^4 , on a :

$$(x_1^2 + x_2^2)(x_3^2 + x_4^2) = (x_1x_3 - x_2x_4)^2 + (x_1x_4 + x_2x_3)^2$$

et $\Sigma_2(A)$ est multiplicatif.

3. On a $\mathbb{Z}_8 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ et :

$$\Sigma_{1}\left(\mathbb{Z}_{8}\right)=\mathbb{Z}_{8}^{2}=\left\{\overline{0},\overline{1},\overline{4}\right\}$$

$$\Sigma_{2}\left(\mathbb{Z}_{8}\right)=\mathbb{Z}_{8}^{2}+\mathbb{Z}_{8}^{2}=\left\{\overline{0},\overline{1},\overline{2},\overline{4},\overline{5}\right\}$$

$$\Sigma_{3}\left(\mathbb{Z}_{8}\right)=\mathbb{Z}_{8}^{2}+\mathbb{Z}_{8}^{2}+\mathbb{Z}_{8}^{2}=\Sigma_{2}\left(\mathbb{Z}_{8}\right)+\Sigma_{1}\left(\mathbb{Z}_{8}\right)=\left\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6}\right\}$$

- 4. Les entiers $3 = 1^2 + 1^2 + 1^2$ et $5 = 0^2 + 1^2 + 2^2$ sont dans $\Sigma_3(\mathbb{Z})$ mais pas leur produit 15. En effet si $n \in \Sigma_3(\mathbb{Z})$, alors $\overline{n} \in \Sigma_3(\mathbb{Z}_8)$ et $\overline{15} = \overline{7} \notin \Sigma_3(\mathbb{Z}_8)$.
- 5. Si $\sum_{k=1}^{4} a_k^2$ est divisible par 8, alors $\sum_{k=1}^{4} \overline{a_k}^2 = \overline{0}$ dans \mathbb{Z}_8 et $-\overline{a_4}^2 = \sum_{k=1}^{3} \overline{a_k}^2$ est dans l'intersection de $-\Sigma_1(\mathbb{Z}_8) = \{-\overline{0}, -\overline{1}, -\overline{4}\} = \{\overline{0}, \overline{7}, \overline{4}\}$ et $\Sigma_3(\mathbb{Z}_8)$, donc $-\overline{a_4}^2$ vaut $\overline{0}$ ou $\overline{4}$, ce qui équivaut à dire que $\overline{a_4}^2$ vaut $\overline{0}$ ou $\overline{4}$ et dans les deux cas a_4 est pair.

Comme les entiers a_k , pour k compris entre 1 et 4 jouent des rôles symétriques, on montre ainsi que tous ces entiers sont pairs (et même multiples de 4).

6. Si $n \in \Sigma_3(\mathbb{Z})$, alors $\overline{n} \in \Sigma_3(\mathbb{Z}_8)$ et $\overline{n} \neq \overline{7} = -\overline{1}$. Donc un entier congru à -1 modulo 8 n'est pas somme de 3 carrés d'entiers.

Un entier non nul n dans $\Sigma_3(\mathbb{Q})$ s'écrit $n = \frac{a^2 + b^2 + c^2}{d^2}$ où les entiers a, b, c, d sont premiers entre eux dans leur ensemble. Si n est congru à -1 modulo 8, on a alors:

$$-\overline{d^2} = \overline{nd^2} = \overline{a^2 + b^2 + c^2}$$

dans \mathbb{Z}_8 , ou encore $\overline{a^2 + b^2 + c^2 + d^2} = \overline{0}$ et $a^2 + b^2 + c^2 + d^2$ est divisible par 8, ce qui impose que tous les entiers a, b, c, d sont pairs, en contradiction avec le fait qu'ils sont premiers entre eux dans leur ensemble. Donc $n \notin \Sigma_3(\mathbb{Q})$, c'est-à-dire un entier congru à -1 modulo 8 n'est pas somme de 3 carrés de nombres rationnels.

- 7. Les entiers 3 et 5 sont dans $\Sigma_3(\mathbb{Z}) \subset \Sigma_3(\mathbb{Q})$ et leur produit 15 qui est congru à -1 modulo 8 n'est pas dans $\Sigma_3(\mathbb{Q})$. Donc $\Sigma_3(\mathbb{Q})$ n'est pas multiplicatif.
- 8. Si $P = U^2 + V^2$ dans $\mathbb{R}[X]$, on a alors $P(x) = U^2(x) + V^2(x) \ge 0$ pour tout réel x. Réciproquement soit $P \in \mathbb{R}[X]$ tel que $P(x) \ge 0$ pour tout réel x. Si P est le polynôme constant ágal à λ on a nécessairement $\lambda \in \mathbb{R}^+$ et $P = U^2 + V^2$ où

Si P est le polynôme constant égal à λ , on a nécessairement $\lambda \in \mathbb{R}^+$ et $P = U^2 + V^2$, où U est le polynôme constant égal à $\sqrt{\lambda}$ et V le polynôme nul.

Si P est non constant de degré $n \ge 1$, il s'écrit $P = \sum_{k=0}^{n} a_k X^k$ avec $a_n \ne 0$. Comme P(x) est équivalent à $a_n x^n$ en $+\infty$, on a nécessairement $a_n > 0$.

Si x_0 est une racine réelle de P de multiplicité m, on a $P(x) = (x - x_0)^m Q(x)$ avec $Q(x_0) \neq 0$ et P(x) est équivalent à $(x - x_0)^m Q(x_0)$ dans un voisinage ouvert de x_0 , ce qui impose m pair (et $Q(x_0) > 0$). Les racines réelles de P sont donc toutes de multiplicité paire.

La décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$ est donc de la forme :

$$P = a_n \prod_{k=1}^{r} (x - x_k)^{2p_k} \prod_{k=1}^{s} (x^2 + b_k x + c_k)^{q_k}$$

avec $r \geq 0$, $s \geq 0$ (dans le cas où r ou s est nul, le produit correspondant vaut 1) et $b_k^2 - 4c_k < 0$ pour tout k compris entre 1 et s (si $s \geq 1$). Chaque terme de ces produit étant dans $\Sigma_2(\mathbb{R}[X])$ (c'est évident pour les $((x - x_k)^{p_k})^2$ et :

$$x^{2} + b_{k}x + c_{k} = \left(x + \frac{b_{k}}{2}\right)^{2} + \left(\frac{\sqrt{4c_{k} - b_{k}^{2}}}{2}\right)^{2}$$

pour k compris entre 1 et s) avec $\Sigma_2(\mathbb{R}[X])$ qui est multiplicatif (question **I.2.**), on en déduit que P est dans $\Sigma_2(\mathbb{R}[X])$.

- 9. On a de manière évidente $\Sigma_2(\mathbb{R}[X]) \subset \Sigma_n(\mathbb{R}[X])$. Réciproquement un polynôme P dans $\Sigma_n(\mathbb{R}[X])$ étant à valeurs positives est dans $\Sigma_2(\mathbb{R}[X])$ d'après la question précédente.
- 10. Là encore $\Sigma_2(\mathbb{R}(X)) \subset \Sigma_n(\mathbb{R}(X))$ est évident.2 Réciproquement, toute fonction rationnelle f non nulle (le cas de f=0 est évident) dans $\Sigma_n\left(\mathbb{R}\left(X\right)\right)$ s'écrit $f=\sum_{k=0}^n\frac{P_k^2}{Q_k^2}$ où les P_k et Q_k sont des polynômes et en réduisant au même dénominateur, on a $f = \frac{1}{D^2} \sum_{k=0}^n U_k^2$ où D et les U_k sont des polynômes. Le polynôme $\sum_{k=0}^n U_k^2$ étant à valeurs positives est dans $\Sigma_2(\mathbb{R}[X])$ et en conséquence s'écrit $A^2 + B^2$, où A, B sont de polynômes, ce qui donne $f = \left(\frac{A}{D}\right)^2 + \left(\frac{B}{D}\right)^2 \in \Sigma_2(\mathbb{R}(X))$.

On a donc $\Sigma_{n}\left(\mathbb{R}\left(X\right)\right)=\Sigma_{2}\left(\mathbb{R}\left(X\right)\right)$ pour tout entier $n\geq3$.

- II - Produits de sommes de n carrés dans un corps

1.

(a) Si $A \cdot {}^{t}A = \lambda I_n$, on a en particulier :

$$\lambda = (A \cdot {}^{t}A)_{11} = \sum_{k=1}^{n} a_{1k}a_{1k} = \sum_{k=1}^{n} a_{1k}^{2} = \Delta(A).$$

(b) Il s'agit de montrer que A et tA commutent si $\lambda \neq 0$. L'égalité $A \cdot {}^tA = \lambda I_n$ peut aussi s'écrire, pour $\lambda \neq 0$:

$$A \cdot \left(\frac{1}{\lambda} \, {}^{t}A\right) = I_n$$

encore équivalent à dire que la matrice A est inversible d'inverse $\frac{1}{\lambda}$ tA. Comme A commute à son inverse, elle commute aussi à ${}^tA = \lambda A^{-1}$.

2. Si $A \cdot {}^{t}A = {}^{t}A \cdot A = \Delta(A) I_n$, on a alors pour tout $\lambda \in \mathbb{K}$:

$$(\lambda A)^{t} (\lambda A) = \lambda^{2} (A \cdot {}^{t}A) = \lambda^{2} ({}^{t}A \cdot A)$$
$$= {}^{t} (\lambda A) (\lambda A) = \lambda^{2} \Delta (A) I_{n}$$

ce qui prouvent que λA est semi-orthogonale avec $\Delta(\lambda A) = \lambda^2 \Delta(A)$. De même, on a:

$$\begin{pmatrix} {}^{t}A \end{pmatrix} {}^{t} \begin{pmatrix} {}^{t}A \end{pmatrix} = {}^{t}A \cdot A = A \cdot {}^{t}A$$
$$= {}^{t} \begin{pmatrix} {}^{t}A \end{pmatrix} \begin{pmatrix} {}^{t}A \end{pmatrix} = \Delta (A) I_{n}$$

ce qui prouvent que ${}^{t}A$ est semi-orthogonale avec $\Delta ({}^{t}A) = \Delta (A)$. Pour B semi-orthogonale, on a:

$$(AB)^{t}(AB) = A(B^{t}B)^{t}A = A(\Delta(B)I_{n})^{t}A$$
$$= \Delta(B)A \cdot {}^{t}A = \Delta(A)\Delta(B)I_{n}$$

donc $\Delta(AB) = \Delta(A)\Delta(B)$ et avec

$${}^{t}(AB)(AB) = {}^{t}B({}^{t}AA)B = \Delta(A) {}^{t}BB$$
$$= \Delta(A)\Delta(B)I_{n} = (AB) {}^{t}(AB)$$

on déduit que AB est semi-orthogonale.

3. Effectuer une permutation des lignes sur une matrice A revient à multiplier à gauche la matrice A par une matrice de permutation et une permutation des colonnes revient à multiplier à droite la matrice A par une matrice de permutation. Il nous suffit donc de montrer qu'une matrice de permutation est semi-orthogonale, ce qui se déduit du fait qu'une matrice de permutation est orthogonale et une matrice orthogonale est en particulier semi-orthogonale. En effet une matrice orthogonale vérifiant $A \cdot {}^t A = I_n$ est semi-orthogonale (question II.2. avec $\lambda = 1$). Et pour toute matrice de permutation $P_{\sigma} = \left(\left(\delta_{i,\sigma(j)}\right)\right)_{1 \leq i,j \leq n}$, on a :

$$P_{\sigma} \cdot {}^{t}P_{\sigma} = ((a_{ij}))_{1 \le i, j \le n}$$

avec:

$$a_{ij} = \sum_{k=1}^{n} \delta_{i,\sigma(k)} \delta_{j,\sigma(k)} = \delta_{j,\sigma(\sigma^{-1}(i))} = \delta_{j,i}$$

ce qui signifie que $P_{\sigma} \cdot {}^{t}P_{\sigma} = I_{n}$ et P_{σ} est orthogonale.

4.

(a) On a:

$$A = {}^{t}L \cdot L = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_n \end{pmatrix} (\ell_1, \cdots, \ell_n) = ((\ell_i \ell_j))_{1 \le i, j \le n}$$

et la *i*-ème ligne de A est $\ell_i L$.

Cette matrice est symétrique et :

$$A \cdot {}^{t}A = {}^{t}A \cdot A = A^{2} = ((b_{ij}))_{1 \le i, j \le n}$$

avec:

$$b_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj} = \ell_i \ell_j \sum_{k=1}^{n} \ell_k^2 = \ell_i \ell_j \Delta(L) = 0.$$

La matrice A est donc semi-orthogonale avec $\Delta(A) = 0$.

- (b) Si L=0, la matrice A=0 est semi-orthogonale de première ligne L. Si $L\neq 0$, il existe un indice i tel que $\ell_i\neq 0$ et en notant $\theta_{1,i}$ la transposition (1,i) si $i\neq 1$ ou l'identité si i=1, la matrice $P_{\theta_{1,i}}A$ déduite de la matrice semi-orthogonale $A={}^tL\cdot L$ en permutant les lignes 1 et i est aussi semi orthogonale de première ligne ℓ_iL . La matrice $\frac{1}{\ell_i}P_{\theta_{1,i}}A$ est alors semi orthogonale de première ligne L.
- 5. Soit $M = \begin{pmatrix} A & B \\ C & {}^{t}A \end{pmatrix}$ dans $\mathcal{M}_{2n}(\mathbb{K})$. On a:

$$M \cdot {}^{t}M = \begin{pmatrix} A & B \\ C & {}^{t}A \end{pmatrix} \begin{pmatrix} {}^{t}A & {}^{t}C \\ {}^{t}B & A \end{pmatrix}$$
$$= \begin{pmatrix} A \cdot {}^{t}A + B \cdot {}^{t}B & A \cdot {}^{t}C + BA \\ C \cdot {}^{t}A + {}^{t}A \cdot {}^{t}B & C \cdot {}^{t}C + {}^{t}A \cdot A \end{pmatrix}$$
$$= \begin{pmatrix} (\Delta(A) + \Delta(B)) I_{n} & A \cdot {}^{t}C + BA \\ C \cdot {}^{t}A + {}^{t}A \cdot {}^{t}B & C \cdot {}^{t}C + \Delta(A) I_{n} \end{pmatrix}$$

et tenant compte de $C = -\frac{1}{\Delta(A)} {}^t A {}^t B A$, on a :

$$\begin{cases} A \cdot {}^{t}C + BA = -\frac{1}{\Delta(A)} (A {}^{t}A) BA + BA = 0 \\ C \cdot {}^{t}A + {}^{t}A \cdot {}^{t}B = -\frac{1}{\Delta(A)} {}^{t}A {}^{t}B (A {}^{t}A) + {}^{t}A \cdot {}^{t}B = 0 \\ C \cdot {}^{t}C + \Delta(A) I_{n} = \frac{1}{\Delta(A)^{2}} {}^{t}A {}^{t}B (A {}^{t}A) BA + \Delta(A) I_{n} = (\Delta(B) + \Delta(A)) I_{n} \end{cases}$$

et:

$$M \cdot {}^{t}M = (\Delta (A) + \Delta (B)) I_{2n}$$

avec $\Delta(A) + \Delta(B) \neq 0$, ce qui signifie que est semi-orthogonale dans $\mathcal{M}_{2n}(\mathbb{K})$ avec $\Delta(M) = \Delta(A) + \Delta(B)$.

- 6. Si $\Delta(L) = 0$, la question **II.4.** nous dit qu'il existe une matrice A semi-orthogonale dans $\mathcal{M}_n(\mathbb{K})$ de première ligne $L = {}^t x = (x_1, \cdots, x_n)$ que n soit une puissance de 2 ou pas, le corps \mathbb{K} étant quelconque (commutatif et de caractéristique nulle). On suppose donc que $\Delta(L) \neq 0$.
 - (a) Si $\mathbb{K} = \mathbb{R}$, on munit alors l'espace vectoriel \mathbb{R}^n de sa structure euclidienne usuelle. À partir du vecteur $\varepsilon_1 = \frac{1}{\|x\|} x \ (\|x\| = \sqrt{\Delta(L)} \neq 0)$ on construit une base orthonormée $\mathcal{B}' = (\varepsilon_1, \dots, \varepsilon_n)$ de \mathbb{R}^n et la matrice de passage P de la base canonique de \mathbb{R}^n à \mathcal{B}' est orthogonale, donc semi-orthogonale. La matrice $A = \|x\|^{-t} P$ est alors semi-orthogonale de première ligne t.
 - (b) Ici $n = 2^p$ avec $p \ge 1$.

On raisonne par récurrence sur $p \ge 1$.

Pour p = 1, la matrice $A = \begin{pmatrix} x_1 & x_2 \\ -x_2 & x_1 \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{K})$ est telle que :

$$A \cdot {}^t A = {}^t A \cdot A = \left(x_1^2 + x_2^2\right) I_2$$

donc semi-orthogonale et sa première ligne est (x_1, x_2) . Supposons le résultat acquis pour $p \ge 1$ et soit :

$$L = (x_1, \cdots, x_n, x_{n+1}, \cdots, x_{2n})$$

avec $n=2^p$. L'hypothèse de récurrence nous dit qu'il existe deux matrices semi-orthogonales A, B dans \mathcal{M}_n (\mathbb{K}) telles $L_1=(x_1,\cdots,x_n)$ soit la première ligne de A et $L_2=(x_{n+1},\cdots,x_{2n})$ la première ligne de B. On a alors $\Delta(A)=\Delta(L_1)$, $\Delta(B)=\Delta(L_2)$ et $\Delta(A)+\Delta(B)=\Delta(L_1)+\Delta(L_2)=\Delta(L)\neq 0$.

Si $\Delta(A) \neq 0$, la matrice $M = \begin{pmatrix} A & B \\ C & {}^tA \end{pmatrix}$ construite en **II.5.** convient.

Si $\Delta(A) = 0$, on a alors $\Delta(B) = \Delta(L) \neq 0$ et la question **II.5.** nous dit que la matrice $M = \begin{pmatrix} B & A \\ D & {}^tB \end{pmatrix}$ où $D = -\frac{1}{\Delta(B)} {}^tB$ est semi-orthogonale dans $\mathcal{M}_{2n}(\mathbb{K})$ de première ligne (L_2, L_1) . En désignant par σ la permutation :

$$\left(\begin{array}{ccccc} 1 & 2 & \cdots & n & n+1 & \cdots & 2n \\ n+1 & n+2 & & 2n & 1 & \cdots & n \end{array}\right)$$

la matrice MP_{σ} déduite de M en faisant agir σ sur ses colonnes est semi-orthogonale dans $\mathcal{M}_{2n}(\mathbb{K})$ de première ligne $(L_1, L_2) = L$.

7. Si $\Delta(A) = a$, alors a est dans $\Sigma_n(\mathbb{K})$ que A soit semi-orthogonale ou pas et que n soit une puissance de 2 ou pas.

Réciproquement soit $a = \sum_{k=1}^{n} a_k^2 \in \Sigma_n(\mathbb{K})$ avec $n = 2^p$. On sait qu'il existe une matrice semiorthogonale A dans $\mathcal{M}_n(\mathbb{K})$ de première ligne $L = (a_1, \dots, a_n)$ et on a $\Delta(A) = \Delta(L) = a$.

8. Ici $n = 2^p$ avec $p \ge 1$.

L'ensemble $\Sigma_n(\mathbb{K}) \setminus \{0\}$ est non vide puisqu'il contient 1.

Comme n est une puissance de 2, pour a, b dans $\Sigma_n(\mathbb{K}) \setminus \{0\}$, on peut trouver deux matrices

semi-orthogonales A et B dans $\mathcal{M}_n(\mathbb{K})$ telles que $a = \Delta(A)$ et $b = \Delta(B)$. La matrice AB est aussi semi-orthogonale avec $\Delta(AB) = \Delta(A)\Delta(B) = ab$, ce qui implique que ab est aussi dans $\Sigma_n(\mathbb{K}) \setminus \{0\}$.

En écrivant que $\frac{a}{b} = \frac{ab}{b^2}$ avec ab et $\frac{1}{b^2} = \left(\frac{1}{b}\right)^2$ dans $\Sigma_n(\mathbb{K}) \setminus \{0\}$, on déduit que $\frac{a}{b}$ est aussi dans $\Sigma_n(\mathbb{K}) \setminus \{0\}$.

En définitive $\Sigma_n(\mathbb{K}) \setminus \{0\}$ est un sous-groupe de \mathbb{K}^* .

9. On a toujours $\Sigma_n(\mathbb{K}) \subset \mathbb{K}$ et $0 \in \Sigma_n(\mathbb{K})$.

Si le cône isotrope de la forme quadratique $Q(x) = \sum_{k=1}^{n} x_k^2$ n'est pas réduit à $\{0\}$, on peut trouver un vecteur x dans \mathbb{K}^n tel que Q(x) = 0. Soit i un indice compris entre 1 et n te que $x_i \neq 0$. Pour $\lambda \in \mathbb{K}^*$, on note $\mu = \frac{\lambda}{4x_i^2}$ et y est le vecteur de \mathbb{K}^n défini par :

$$x_k = \begin{cases} (1+\mu) x_i \text{ si } k = i\\ (1-\mu) x_k \text{ si } k \neq i \end{cases}$$

On a alors:

$$Q(y) = (1 + \mu)^2 x_i^2 + (1 - \mu)^2 \sum_{\substack{k=1\\k\neq i}}^n x_k^2$$
$$= (1 + \mu)^2 x_i^2 + (1 - \mu)^2 (Q(x) - x_i^2)$$
$$= (1 + \mu)^2 x_i^2 - (1 - \mu)^2 x_i^2 = 4\mu x_i^2 = \lambda$$

c'est-à-dire que $\lambda=Q\left(y\right)\in\Sigma_{n}\left(\mathbb{K}\right)$. On a donc bien $\Sigma_{n}\left(\mathbb{K}\right)=\mathbb{K}$.

- III − −1 comme sommes de carrés dans un corps

- 1. Comme $-1 \in \mathbb{R}^{-,*}$ et pour tout entier $n \geq 1$, on a $\Sigma_n(\mathbb{R}) \subset \mathbb{R}^+$, on déduit que $\nu(\mathbb{R}) = +\infty$. Comme $-1 = i^2 \in \Sigma_1(\mathbb{C})$, on a $\nu(\mathbb{C}) = 1$.
- 2. Si \mathbb{K} est de caractéristique 2, on a alors $2 \cdot 1 = 0$ dans \mathbb{K} et $-1 = 1^2 \in \Sigma_1(\mathbb{K})$, donc $\nu(\mathbb{K}) = 1$. Si \mathbb{K} est de caractéristique 5, on a alors $5 \cdot 1 = 1 + 2^2 = 0$ dans \mathbb{K} et $-1 = 2^2 \in \Sigma_1(\mathbb{K})$, donc $\nu(\mathbb{K}) = 1$.

3.

- (a) Dans \mathbb{Z}_p^* , l'égalité $x^2 = 1$ équivaut à (x-1)(x+1) = 0 encore équivalent à x = 1 ou x = -1. Le noyau du morphisme $\varphi : x \mapsto x^2$ est donc $\ker(\varphi) = \{-1, 1\}$ et ce noyau a deux éléments puisque $-1 \neq 1$ dans \mathbb{Z}_p^* pour p premier impair.
- (b) Le morphisme φ qui est surjectif de \mathbb{Z}_p^* sur $E = \operatorname{Im}(\varphi)$ réalise un isomorphisme du groupe quotient $\frac{\mathbb{Z}_p^*}{\ker(\varphi)}$ sur E. On a donc :

$$\operatorname{card}\left(E\right) = \operatorname{card}\left(\frac{\mathbb{Z}_p^*}{\operatorname{ker}\left(\varphi\right)}\right) = \frac{\operatorname{card}\left(\mathbb{Z}_p^*\right)}{\operatorname{card}\left(\operatorname{ker}\left(\varphi\right)\right)} = \frac{p-1}{2}.$$

(c) L'ensemble T étant en bijection avec $\Sigma_1(\mathbb{Z}_p)$, on a :

$$\operatorname{card}\left(T\right) = \operatorname{card}\left(\Sigma_{1}\left(\mathbb{Z}_{p}\right)\right) = \operatorname{card}\left(E\right) + 1 = \frac{p+1}{2}$$

et nécessairement $T \cap \Sigma_1(\mathbb{Z}_p) \neq \emptyset$ (sinon card $(T \cup \Sigma_1(\mathbb{Z}_p)) = p + 1 > p$, ce qui est incompatible avec $T \cup \Sigma_1(\mathbb{Z}_p)$ contenu dans \mathbb{Z}_p de cardinal p).

(d) Il existe donc x dans $T \cap \Sigma_1(\mathbb{Z}_p)$ et un tel x s'écrit $x = a^2 = -1 - b^2$ avec a, b dans \mathbb{Z}_p , ce qui donne $-1 = a^2 + b^2 \in \Sigma_2(\mathbb{Z}_p)$ et $\nu(\mathbb{Z}_p) \leq 2$.

En fait, on sait que, pour p premier impair, -1 est un carré dans \mathbb{Z}_p si, et seulement si, p est congru à 1 modulo 4. On a donc :

$$\nu\left(\mathbb{Z}_p\right) = \begin{cases} 1 \text{ si } p = 2 \text{ ou } p \equiv 1 \ (4) \\ 2 \text{ si } p \equiv 3 \ (4) \end{cases}$$

4. On rappelle que la caractéristique de \mathbb{K} est l'entier naturel p qui vérifie $\ker(\varphi) = p\mathbb{Z}$, où φ est le morphisme d'anneaux de \mathbb{Z} dans \mathbb{K} défini par $\varphi(k) = k \cdot 1$ pour tout $k \in \mathbb{Z}$. Le morphisme φ induit alors par passage au quotient un morphisme du corps \mathbb{Z}_p dans \mathbb{K} et $\varphi(\mathbb{Z}_p)$ est un sous corps de \mathbb{K} . On a donc :

$$1 \le \nu\left(\mathbb{K}\right) \le \nu\left(\mathbb{Z}_p\right) \le 2.$$

Pour p congru à 1 modulo 4, on a $\nu(\mathbb{K}) = 1$.

5. De $-1 = \sum_{k=1}^{\nu} x_k^2$ avec $\nu = \nu(\mathbb{K})$, on déduit que tous les x_k , pour k compris entre 1 et ν , sont non nuls (caractère minimal de ν).

Si x = 0, on a alors $-x_n^2 = \sum_{k=1}^{n-1} x_k^2$ et :

$$-1 = \sum_{k=1}^{n-1} \left(\frac{x_k}{x_n}\right)^2 = \sum_{k=1}^{n-1} y_k^2 \in \Sigma_{n-1} \left(\mathbb{K}\right)$$

avec $n-1 \le \nu-1 < \nu$, en contradiction avec le caractère minimal de ν . On a donc $x \ne 0$. En écrivant que :

$$-1 = \sum_{k=1}^{\nu} x_k^2 = \sum_{k=1}^{n} x_k^2 + \sum_{k=n+1}^{\nu} x_k^2 = x + \sum_{k=n+1}^{\nu} x_k^2$$

et:

$$-x = 1^2 + \sum_{k=n+1}^{\nu} x_k^2 \in \Sigma_{\nu-n+1} (\mathbb{K})$$

avec $n = 2^p \le \nu < 2^{p+1} = 2n$, soit $0 \le \nu - n < n$ et $\nu - n + 1 \le n$. Donc $-x \in \Sigma_n(\mathbb{K})$. Comme n est une puissance de 2, $\Sigma_n(\mathbb{K})$ est multiplicatif (question II.8.) et $-x^2 = x(-x) \in \Sigma_n(\mathbb{K})$.

Enfin de $-x^2 = \sum_{k=1}^n z_k^2$ avec $x \neq 0$, on déduit que $-1 = \sum_{k=1}^n \left(\frac{z_k}{x}\right)^2 = \sum_{k=1}^n t_k^2 \in \Sigma_n(\mathbb{K})$ avec $n \leq \nu$, ce qui impose $n = \nu$ et ν est une puissance de 2.

6. On a vu que si \mathbb{K} est de caractéristique non nulle, alors $\nu(\mathbb{K}) = 1 = 2^0$ ou $\nu(\mathbb{K}) = 2 = 2^1$ (question **III.4.**) et si \mathbb{K} est de caractéristique nulle, alors son niveau est $+\infty$ ou une puissance de 2 (question **III.5.**).

- IV - Sommes de carrés dans $\mathbb{K}[X]$

1. Pour $n \geq 1$, on a toujours l'inclusion $\Sigma_n (\mathbb{K}[X]) \subset \mathbb{K}[X] \cap \Sigma_n (\mathbb{K}(X))$. Si $P \in \mathbb{K}[X] \cap \Sigma_1 (\mathbb{K}(X))$, on a alors $P = \frac{A^2}{B^2}$ avec A, B dans $\mathbb{K}[X]$ premiers entre eux et de $A^2 = PB^2$, on déduit que B divise A^2 , donc A (théorème de Gauss) et B est nécessairement constant non nul. On a alors $P = \left(\frac{A}{B}\right)^2 = (B^{-1}A)^2 \in \Sigma_1 (\mathbb{K}[X])$. On a donc bien $\Sigma_1 (\mathbb{K}[X]) = \mathbb{K}[X] \cap \Sigma_1 (\mathbb{K}(X))$. 2. Si $\sum_{k=1}^{n-1} f_k^2 = -1$, on a alors :

$$(f+1)^{2} + \sum_{k=1}^{n-1} (f_{k} (f-1))^{2} = (f+1)^{2} + (f-1)^{2} \sum_{k=1}^{n-1} f_{k}^{2}$$
$$= (f+1)^{2} - (f-1)^{2} = 4f.$$

3. Si $-1 \in \Sigma_{n-1}(\mathbb{K})$, il existe alors f_1, \dots, f_{n-1} dans \mathbb{K} tels que $-1 = \sum_{k=1}^{n-1} f_k^2$. Pour tout $\lambda \in \mathbb{K}$, en prenant $f = \frac{\lambda}{4}$ dans l'identité obtenue à la question précédente, on a :

$$\lambda = 4f = (f+1)^2 + \sum_{k=1}^{n-1} (f_k (f-1))^2 \in \Sigma_n (\mathbb{K}).$$

On a donc $\mathbb{K} = \Sigma_n(\mathbb{K})$.

Dire que $-1 \in \Sigma_{n-1}(\mathbb{K})$ entraı̂ne que -1 est dans $\Sigma_n(\mathbb{K}[X])$ et dans $\Sigma_n(\mathbb{K}(X))$ et le raisonnement précédent nous montre que $\Sigma_n(\mathbb{K}[X]) = \mathbb{K}[X]$ et $\Sigma_n(\mathbb{K}(X)) = \mathbb{K}(X)$.

- 4. De $-1 = i^2 \in \Sigma_1(\mathbb{C}) \subset \Sigma_{n-1}(\mathbb{C})$ pour tout $n \geq 2$, on déduit de la question précédente que $\Sigma_n(\mathbb{C}(X)) = \mathbb{C}(X)$ est multiplicatif. Pour n = 1, $\Sigma_1(\mathbb{C}(X))$ est de manière évidente multiplicatif (mais $\Sigma_1(\mathbb{C}(X)) \subsetneq \mathbb{C}(X)$ par exemple $\frac{1}{X} \notin \Sigma_1(\mathbb{C}(X))$, puisque $\frac{1}{X} = \frac{A^2}{B^2}$ donne $A^2 = XB^2$ de degré pair et impair, ce qui est impossible –).
- 5. Si $P = \sum_{k=1}^n P_k^2 = aX$, on a alors $P(0) = \sum_{k=1}^n P_k^2(0) = 0$. Si l'un des $P_k(0)$ est non nul, on a $-P_k^2(0) = \sum_{j=1}^n P_j^2(0)$ et $-1 = \sum_{j=1}^n a_j^2$ où on a noté $a_j = \frac{P_j(0)}{P_k(0)}$ dans \mathbb{K} , mais alors $-1 \in \Sigma_{n-1}(\mathbb{K})$, ce qui contredit l'hypothèse de départ. On a donc $P_k(0)$ pour tout k compris entre 1 et n, ce qui revient à dire que $P_k = XQ_k$ et $P = X^2 \sum_{k=1}^n Q_k^2 = aX$, soit $a = X \sum_{k=1}^n Q_k^2$ et l'évaluation en 0 donne a = 0. On a donc $P = \sum_{k=1}^n P_k^2 = 0$. Si les P_k ne sont pas tous nuls, en désignant par $m \ge 1$ la valuation minimale des P_k non nuls, on a $P_k = X^m R_k$ dans $\mathbb{K}[X]$ pour tout k compris entre 1 et m ($R_k = 0$ si $P_k = 0$ et $R_k(0) \ne 0$ pour certains indices k) et $X^{2m} \sum_{k=1}^n R_k^2 = 0$, donc $\sum_{k=1}^n R_k^2 = 0$ et $\sum_{k=1}^n R_k^2(0) = 0$ dans \mathbb{K} , certains des $R_k^2(0)$ étant non nuls (par définition de m), ce qui contredit $-1 \notin \Sigma_{n-1}(\mathbb{K})$. Les P_k sont donc tous nuls.

6.

(a) On a:

$$T^{2}P = (2S - QR)^{2} P = (4S^{2} - 4SQR + Q^{2}R^{2}) P$$
$$= (4S^{2} - 4SQR) P + R^{2} \sum_{k=1}^{n} P_{k}^{2}$$

et:

$$\sum_{k=1}^{n} T_k^2 = \sum_{k=1}^{n} (2Q_k S - P_k R)^2$$

$$= 4S^2 \sum_{k=1}^{n} Q_k^2 - 4SR \sum_{k=1}^{n} P_k Q_k + R^2 \sum_{k=1}^{n} P_k^2$$

$$= 4S^2 (P - R) - 4SR (PQ - S) + R^2 \sum_{k=1}^{n} P_k^2$$

$$= (4S^2 - 4SQR) P + R^2 \sum_{k=1}^{n} P_k^2 = T^2 P.$$

On a aussi:

$$QT = Q(2S - QR) = Q\left(2S - Q\left(P - \sum_{k=1}^{n} Q_k^2\right)\right)$$

$$= 2QS - PQ^2 + \sum_{k=1}^{n} (QQ_k)^2$$

$$= 2Q\left(PQ - \sum_{k=1}^{n} P_k Q_k\right) - PQ^2 + \sum_{k=1}^{n} (QQ_k)^2$$

$$= PQ^2 - 2Q\sum_{k=1}^{n} P_k Q_k + \sum_{k=1}^{n} (QQ_k)^2$$

et tenant compte de $Q^2P = \sum_{k=1}^n P_k^2$, on obtient :

$$QT = \sum_{k=1}^{n} P_k^2 - 2Q \sum_{k=1}^{n} P_k Q_k + \sum_{k=1}^{n} (QQ_k)^2$$
$$= \sum_{k=1}^{n} (P_k^2 - 2QP_k Q_k + (QQ_k)^2) = \sum_{k=1}^{n} (P_k - QQ_k)^2.$$

(b) Si T=0, on a alors $\sum_{k=1}^{n} T_k^2 = T^2 P = 0$ et tous les $T_k = 2Q_k S - P_k R$ sont nuls si $-1 \notin \Sigma_{n-1}(\mathbb{K})$ (question **IV.5.**). On a alors $P_k T_k = 2P_k Q_k S - P_k^2 R = 0$ pour tout k compris entre 1 et n et :

$$2S\sum_{k=1}^{n} P_k Q_k - R\sum_{k=1}^{n} P_k^2 = 0$$
 (2)

avec $\sum_{k=1}^{n} P_k Q_k = PQ - S$, $\sum_{k=1}^{n} P_k^2 = Q^2 P$ et T = 2S - QR = 0, ce qui donne :

$$0 = 2S(PQ - S) - RQ^{2}P = PQ(2S - QR) - 2S^{2} = -2S^{2}$$

et S=0. De plus T=2S-QR=0 et S=0 donnent QR=0 avec $Q\neq 0$, donc R=0 et $P=\sum_{k=1}^n Q_k^2$ par définition de R.

7. En effectuant, pour k compris entre 1 et n, la division euclidienne de P_k par Q (on a deg Q) \geq 1), on définit deux polynômes Q_k et R_k tels que :

$$P_k = QQ_k + R_k$$

avec R_k nul ou de degré strictement inférieur à celui de Q. En associant aux polynômes P, P_k , Q et Q_k les polynômes R, S, T et T_k de la question **IV.6.** et tenant compte de l'égalité $Q^2P = \sum_{k=1}^n P_k^2$, on a les égalités :

$$T^{2}P = \sum_{k=1}^{n} T_{k}^{2} \text{ et } QT = \sum_{k=1}^{n} (P_{k} - QQ_{k})^{2} = \sum_{k=1}^{n} R_{k}^{2}.$$

Si $T \neq 0$, on pose U = T, $U_k = T_k$ pour k compris entre 1 et n et on a $PU \neq 0$ ($PQ \neq 0$) et :

$$\deg(Q) + \deg(U) = \deg(QU) = \deg(QT)$$

$$= \operatorname{deg}\left(\sum_{k=1}^{n} R_{k}^{2}\right) \leq \max_{1 \leq k \leq n} \operatorname{deg}\left(R_{k}^{2}\right) < \operatorname{deg}\left(Q^{2}\right) = 2\operatorname{deg}\left(Q\right)$$

(les R_k ne sont pas tous nuls puisque $QT \neq 0$), donc deg (U) < deg(Q).

Si T = 0, comme $Q \neq 0$ et $-1 \notin \Sigma_{n-1}(\mathbb{K})$, on a $P = \sum_{k=1}^{n} Q_k^2$ (question **IV.6.b.**). On pose alors U = 1 et $U_k = Q_k$ pour k comprise ntre 1 et n. On a bien $PU = P \neq 0$ et deg $(U) = 0 < \deg(Q)$.

8. Pour n = 1, on a déjà montré en **IV.1.** que $\Sigma_1 (\mathbb{K}[X]) = \mathbb{K}[X] \cap \Sigma_1 (\mathbb{K}(X))$. On suppose donc que $n \geq 2$. L'inclusion $\Sigma_n (\mathbb{K}[X]) \subset \mathbb{K}[X] \cap \Sigma_n (\mathbb{K}(X))$ est évidente. Si $-1 \in \Sigma_{n-1} (\mathbb{K})$, en **IV.3.** que $\Sigma_n (\mathbb{K}[X]) = \mathbb{K}[X]$ et $\Sigma_n (\mathbb{K}(X)) = \mathbb{K}(X)$, donc:

$$\Sigma_{n}\left(\mathbb{K}\left[X\right]\right) = \mathbb{K}\left[X\right] \cap \mathbb{K}\left(X\right) = \mathbb{K}\left[X\right] \cap \Sigma_{n}\left(\mathbb{K}\left(X\right)\right).$$

Supposons que $-1 \notin \Sigma_{n-1}(\mathbb{K})$ et soit $P \in \mathbb{K}[X] \cap \Sigma_n(\mathbb{K}(X))$. Si P = 0, il est bien dans $\Sigma_n(\mathbb{K}[X])$. On suppose donc que P est non nul. Comme il est dans $\Sigma_n(\mathbb{K}(X))$, il existe des polynômes A_k et B_k tels que $P = \sum_{k=1}^n \frac{A_k^2}{B_k^2}$ et en réduisant au même dénominateur, on dispose de polynômes P_k et Q tels que $Q^2P = \sum_{k=1}^n P_k^2$ avec $Q \neq 0$. Si le polynôme Q est constant, il est alors dans \mathbb{K}^* et P est dans $\Sigma_n(\mathbb{K}[X])$. Sinon, $\deg(Q) \geq 1$ et la question précédente nous dit que qu'on dispose de polynômes U, U_1, \cdots, U_n tels que $U^2P = \sum_{k=1}^n U_k^2$ avec $PU \neq 0$ et $\deg(U) < \deg(Q)$. En réitérant ce raisonnement, on aboutit au bout d'un nombre fini d'étapes à un polynôme constant non nul U et des polynômes U_k tel que $U^2P = \sum_{k=1}^n U_k^2$, ce qui implique que $P \in \Sigma_n(\mathbb{K}[X])$. On a donc l'inclusion $\mathbb{K}[X] \cap \Sigma_n(\mathbb{K}(X)) \subset \Sigma_n(\mathbb{K}[X])$ et l'égalité pour tout $n \geq 1$.

9.

- (a) De $\mathbb{K} \subset \mathbb{K}(X)$, on déduit que $\nu(\mathbb{K}(X)) \leq \nu(\mathbb{K})$. Si $\nu(\mathbb{K}(X)) = +\infty$, on a aussi $\nu(\mathbb{K}) = +\infty$ et $\nu(\mathbb{K}(X)) = \nu(\mathbb{K})$. Si $\nu(\mathbb{K}(X)) = \nu < +\infty$, on dispose de fonctions rationnelles f_k telles que $-1 = \sum_{k=1}^{\nu} f_k^2$ dans $\mathbb{K}(X)$ et l'évaluation en 0 donne $-1 = \sum_{k=1}^{\nu} f_k^2(0)$ dans \mathbb{K} , ce qui entraı̂ne $\nu(\mathbb{K}) \leq \nu = \nu(\mathbb{K}(X))$ et $\nu(\mathbb{K}(X)) = \nu(\mathbb{K})$.
- (b) Si n est une puissance de 2, le résultat de la question **II.8.** appliqué au corps $\mathbb{K}(X)$ nous dit que $\Sigma_n(\mathbb{K}[X])$ est multiplicatif. Il en résulte que $\Sigma_n(\mathbb{K}[X]) = \mathbb{K}[X] \cap \Sigma_n(\mathbb{K}(X))$ est multiplicatif comme produit de deux ensembles multiplicatifs.