Data Analytics

Yong Zheng

Illinois Institute of Technology Chicago, IL, 60616, USA

Schedule

- Classification
- Classification by KNN
- Data Preprocessing

Schedule

- Classification
- Classification by KNN
- Data Preprocessing

Predictive Models We learnt

- Multiple Linear Prediction
 - One dependent variable, y → Numerical variable
 - Multiple independent variables, x → No limitations
- Linear Time-Series Model
 - One dependent variable, y → Numerical variable
 - Data with timestamp
 - AR, MA, ARMA, ARIMA
- Classification Model
 - One dependent variable, y → Nominal variable
 - Multiple independent variables, x → No limitations

Supervised v.s. Unsupervised Learning

Machine Learning Algorithms (sample)

Continuous

Unsupervised

- Clustering & Dimensionality Reduction
 - SVD
 - PCA
 - K-means

Categorica

- Association Analysis
 - Apriori
 - FP-Growth
- Hidden Markov Model

<u>Supervised</u>

- Regression
 - Linear
 - Polynomial
- Decision Trees
- Random Forests
- Classification
 - KNN
 - Trees
 - Logistic Regression
 - Naive-Bayes
 - SVM

Supervised Learning: Classification

- Classification: a supervised way to group objects
 - We must have predefined labels
 - We must have knowledge: we know some instances are labeled by predefined classes/labels/categories
- For a Purpose of Prediction
 - To forecast or deduce the label/class based on values of features
 - Let the machines/computers think as humans
- There are many real-world applications
 - Financial Decision Making, e.g., credit card application
 - Image Processing, e.g., face recognition in cameras
 - Computer/Network Security, e.g., virus or attack detection
 - Information Retrieval, e.g., relevance of a document to a query
 - Recommender Systems, e.g., rating prediction for Amazon

Classification App: Credit Card Application

Classification App: Credit Card Application

Date Received	Card	Status of Application
05/21/15	THE AMERICAN EXPRESS BUSINESS PLATINUM CARD	Approved
07/22/15	THE GOLD DELTA SKYMILES BUSINESS CREDIT CARD	Rejected
08/19/15	PREMIER REWARDS GOLD CARD FROM AMERICAN EXPRESS	Under Review

Classification App: Credit Card Application

Terminologies in Classification

Each row with features values is named as example or instance

Classification

Learn from the knowledge (examples with unknown labels) build predictive models to predict the unknown examples

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- Algorithms: How to perform classification tasks

Classification

- Classification Tasks
- Standard Classification Process
- Evaluation: How could we know it is good or bad
- Algorithms: How to perform classification tasks

Classification Task

There are usually three types of classification:

1). Binary Classification

Question: Is this an apple? Yes or No.

2). Multi-class Classification

Question: Is this an apple, banana or orange?

3). Multi-label Classification

Use appropriate words to describe it:

Red, Apple, Fruit, Tech, Mac, iPhone

Standard Process In Supervised Learning

- Train: Learn a model using the training data
- Validation/Test: Test using test data to assess accuracy
- Application: Apply the selected model to unseen data

Step 3: Application/Predictions

Data

Classification Algorithms

- Classification algorithm is the key component in the process
- They are able to learn from training and build models

There are many (supervised) classification algorithms:

- K-nearest neighbor classifier
- Naïve Bayes classifier
- Decision tress
- Logistic regression
- Support Vector Machines
- Ensemble classifiers (e.g., random forest)
- •

Schedule

- Classification
- Classification by KNN
- Data Preprocessing

K-Nearest Neighbor (KNN) Classifier

- Problem: Identify which animal the given object it is
- Features: weights, age, gender, stripes, size, etc

Unseen Data

K-Nearest Neighbor (KNN) Classifier

- KNN classifier is a simple classification algorithm
- The idea behind is to classify new examples based on their similarity to or distance from examples we have seen before (in training set).

Build a KNN Classifier

- 1. Calculate distances between target and instances in train set
- 2. Identify the top-K nearest neighbor (choose an odd number for K!)
- 3. Predict labels and validate with truth
 - How to predict? The predicted class = the majority class label in those neighbors

For example, among top 3 picks (K = 3), 2/3 are tigers!!

Distance Measures

Assume there are *n* features, and two examples: *X* and *Y*.

- Consider two vectors
 - Rows in the data matrix

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

- Common Distance Measures:
 - Manhattan distance: (aggregation of two right-angle legs)

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Euclidean distance: (length of hypotenuse)

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Example: Distance Measures

Data Matrix

point	feature1	feature	class
		2	
p1	1	2	Υ
<i>p</i> 2	3	5	Ν
p3	2	0	Υ
<i>p4</i>	4	5	Ν
<i>p</i> 5	3	3	?

Distance Matrix (Euclidean)

	<i>p1</i>	<i>p</i> 2	р3	<i>p4</i>	<i>p</i> 5
<i>p1</i>	0				
<i>p</i> 2	3.61	0			
р3	2.24	5.1	0		
<i>p4</i>	4.24	1	5.39	0	
<i>p</i> 5	2.24	2	3.16	2.24	0

Set K = 3

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Predict label for p5

Time for Practice!

Data Matrix

point	feature1	feature	class
		2	
p1	1	2	Υ
<i>p</i> 2	3	5	Ν
р3	2	0	Υ
<i>p4</i>	4	5	Ν
<i>p5</i>	3	3	?

Distance Matrix (Manhattan)

	<i>p1</i>	<i>p</i> 2	р3	<i>p4</i>	<i>p</i> 5
<i>p1</i>	0				
<i>p</i> 2		0			
р3			0		
p3 p4 p5				0	
<i>p</i> 5					0

Set K = 3

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Predict label for p5

Classification Algorithm: K-Nearest Neighbor Classifier

More Questions

Q1: How about categorical features?

point	feature1	feature2	class
x1	1	2	Υ
<i>x</i> 2	3	5	Ν
<i>x</i> 3	2	0	Υ
<i>x4</i>	4	5	Ν
<i>x</i> 5	3	3	N

Color	Weight (lbs)	Stripes	Tiger?
Orange	300	no	no
White	50	yes	no
Green	490	yes	yes
White	510	yes	yes
Orange	490	\ no	no

Answer: Convert a categorical feature to binary features

Color	Weight (lbs)	Stripes
Orange	300	no
White	50	yes
Green	490	yes
White	510	yes
Orange	490	no

Orange	White	Green	Weight (lbs)	Stripes
1	0	0	300	0
0	1	0	50	1
0	0	1	490	1
0	1	0	510	1
1	0	0	490	0

Q2: Is feature normalization required?

Feature normalization is used to convert values in a feature to the same or similar scales with values in other features.

Answer: Yes, normalization is required, otherwise, the distance calculation will be influenced by the larger features!!!!

Orange	White	Green	Weight (lbs) Stripe	S
1	0	0	300 0	
0	1	0	50 1	
0	0	1	490 1	
0	1	0	510 1	
1	0	0	490 0	

Min-max normalization: transformation from OldValue to NewValue

$$NewValue = NewMin + \frac{OldValue - OldMin}{OldMax - OldMin} \times (NewMax - NewMin)$$

Summary

- ☐ K-Nearest Neighbor (KNN) Classifier
- A simple classifier, a lazy learner
- 1). Choose an odd number for K
- 2). Calculate distances between target and instances in training set
- 3). Pick the top KNN and assign the majority label as prediction
- Extended Problems in Classification Algorithms
- Q1. Is it able to take categorical features? If Yes, how to treat them
- Q2. Is normalization required?
- Q3. How to alleviate overfitting problem?

Note: they are general concerns in classification, not only KNN.

German Credit Data

Download if from UCI ML Repository

http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

Features and label

You need to read the page to understand the features and labels Label = 1 (Good) or 2 (Bad) Credit

Features:

Existing checking account, credit history, purpose, credit amount, etc You need to figure out feature types one by one

☐ Load the data and take a look at it

```
setwd("C:/Users/cool/Desktop")
gc <- read.csv("germancredit.csv")
head (gc)</pre>
```

```
Default checkingstatus1 duration history purpose amount savings employ
           0
## 1
                          A11
                                      6
                                            A34
                                                    A43
                                                           1169
                                                                    A65
                                                                            A75
## 2
           1
                          A12
                                     48
                                            A32
                                                    A43
                                                           5951
                                                                    A61
                                                                            A73
## 3
                          A14
                                    12
                                            A34
                                                    A46
                                                           2096
                                                                    A61
                                                                           A74
                          A11
                                            A32
                                                           7882
                                    42
                                                    A42
                                                                    A61
                                                                           A74
                          A11
                                            A33
                                                           4870
## 5
           1
                                    24
                                                    A40
                                                                    A61
                                                                           A73
                                            A32
## 6
                          A14
                                    36
                                                    A46
                                                           9055
                                                                    A65
                                                                           A73
     installment status others residence property age otherplans housing
## 1
                    A93
                           A101
                                               A121 67
                                                               A143
                                                                       A152
                    A92
                           A101
                                               A121 22
                                                               A143
                                                                       A152
## 2
                    A93
                           A101
                                               A121 49
                                                                       A152
## 3
                                                               A143
## 4
               2
                    A93
                           A103
                                               A122 45
                                                               A143
                                                                       A153
               3
## 5
                    A93
                           A101
                                               A124
                                                     53
                                                               A143
                                                                       A153
## 6
               2
                     A93
                           A101
                                               A124
                                                     35
                                                               A143
                                                                       A153
            job liable tele foreign
## 1
         2 A173
                      1 A192
                                A201
## 2
         1 A173
                     1 A191
                                A201
## 3
         1 A172
                      2 A191
                                A201
         1 A173
                      2 A191
                                A201
## 4
## 5
         2 A173
                      2 A191
                                A201
## 6
         1 A172
                      2 A192
                                A201
```

Data Preprocessing if necessary

Convert the dependent var to factor. Normalize the numeric variables

gc\$Default <- factor(gc\$Default) → convert label to nominal data num.vars <- sapply(gc, is.numeric) → extract numerical variables gc[num.vars] <- lapply(gc[num.vars], scale) → normalize selected data, the function could be normalize or scale

Selecting only 3 numeric variables for this demostration, just to keep things simple

```
myvars <- c("Duration", "Amount", "Instalment")
gc.subset <- gc[myvars]
```

■ Evaluate model by hold-out evaluations

predict on a test set of 100 observations. Rest to be used as train set.

```
set.seed(123)
test <- 1:100
train.gc <- gc.subset[-test,]
test.gc <- gc.subset[test,]

train.def <- gc$Default[-test]
test.def <- gc$Default[test]</pre>
```

☐ User KNN to build the models and make predictions library(class)

```
knn.1 <- knn(train.gc, test.gc, train.def, k=1)
knn.5 <- knn(train.gc, test.gc, train.def, k=5)
knn.15 <- knn(train.gc, test.gc, train.def, k=15)
```

■ Evaluation Based on the Accuracy

```
install.packages('Metrics', dependencies = TRUE)
library(Metrics)
accuracy(actual data, predictions)
```

accuracy(test.def, knn.1) accuracy(test.def, knn.5) accuracy(test.def, knn.15)

```
> accuracy(test.def, knn.15)
[1] 0.9
> accuracy(test.def, knn.1)
[1] 0.72
> accuracy(test.def, knn.5)
[1] 0.78
> accuracy(test.def, knn.15)
[1] 0.9
```

```
How about N-fold cross-validation?

install.packages('caret', dependencies = TRUE)

library(caret)

x=gc.subset

y=gc$Default

10-folds cross validation

model =

train(x,y,'knn',trControl=trainControl(method='cv',number=10),tuneGrid
= expand.grid(k = 1:10))

Use K = 1, 2, 3, ..., 10
```

The train function is very powerful. You can use several classification methods and evaluation methods. For more details https://machinelearningmastery.com/how-to-estimate-model-accuracy-in-r-using-the-caret-package/

■ How about N-fold cross-validation?

```
> model = train(x,y,'knn',trControl=trainControl(method='cv',number=10),tuneGrid = expand.grid(k = 1:10)
> print(model)
k-Nearest Neighbors
1000 samples
  3 predictor
  2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...
Resampling results across tuning parameters:
    Accuracy Kappa
   1 0.594
               0.04452968
   2 0.596
            0.04595073
            0.07445211
   3 0.638
   4 0.634
              0.05021883
            0.04412389
   5 0.648
   6 0.659
            0.08326373
            0.04442904
   7 0.659
   8 0.672
              0.06202044
           0.06849165
   9 0.681
  10 0.671
               0.04058772
```

Schedule

- Classification
- Classification by KNN
- Data Preprocessing

- Replace missing values by R
- Normalization by R
- Transformation: Numerical to Categorical
- Transformation: Categorical to Numerical

- Replace missing values by R
- Normalization by R
- Transformation: Numerical to Categorical
- Transformation: Categorical to Numerical

Replace missing values by R

ave

Group Averages Over Level Combinations Of Factors

Subsets of x[] are averaged, where each subset consist of those observations with the same factor levels.

Keywords univar

Usage

```
ave(x, ..., FUN = mean)
```

Arguments

x A numeric.

Grouping variables, typically factors, all of the same | length | as | x | .

FUN Function to apply for each factor level combination.

https://www.rdocumentation.org/packages/stats/versions/3.5.2/topics/ave

Replace missing values by R

ifelse

```
Conditional Element Selection
```

```
ifelse returns a value with the same shape as test which is filled with elements selected from either yes or no TRUE or FALSE .
```

Keywords programming, logic

Usage

```
ifelse(test, yes, no)
```

Arguments

test an object which can be coerced to logical mode.

yes return values for true elements of test.

no return values for false elements of test.

https://www.rdocumentation.org/packages/base/versions/3.5.2/topics/ifelse

Replace missing values by R

```
Country Age Salary Purchased
##
## 1
       France 44
                   72000
                                 No
        Spain 27
## 2
                   48000
                                Yes
      Germany
                   54000
                                 No
        Spain
               38
                   61000
                                 No
      Germany 40
                                Yes
                      NΑ
## 6
       France
                   58000
                                Yes
        Spain
                   52000
                                 No
       France 48
                   79000
                                Yes
      Germany
                   83000
                                 No
      France 37
                   67000
                                Yes
```

- Replace missing values by R
- Normalization by R
- Transformation: Numerical to Categorical
- Transformation: Categorical to Numerical

Normalization by Using R

```
#extract numerical variables
num.vars<-sapply(data, is.numeric)
#normalize selected data using function scale
data[num.vars] <-lapply(data[num.vars], scale)</pre>
```

```
#min-max normalization to scale [0, 1] data[num.vars] <-apply(data[num.vars], 2, FUN = function(x) (x - min(x))/(max(x)-min(x)))
```

Index for rows or columns

2 = apply function based on columns

1 = apply function based on rows

difference among apply(), lapply(), sapply(), tapply()?

https://www.guru99.com/r-apply-sapply-tapply.html

- Replace missing values by R
- Normalization by R
- Transformation: Numerical to Categorical
- Transformation: Categorical to Numerical

Data PreProcessing

☐ Convert Numerical variable to Nominal variable in R

F1	F2	F3	F4	Class
C3	0	0	2	
C2	1	0	5	+
C1	0	1	8	
C2	1	1	16	
C1	1	0	23	+
C3	0	1	11	+

Usually we use the cut function to create N groups

Data = cut(dataColumn, N)

- Replace missing values by R
- Normalization by R
- Transformation: Numerical to Categorical
- Transformation: Categorical to Numerical

Data PreProcessing

☐ Convert Nominal Variable to Dummy variables in R

F1	F2	F3	F4	Class
C3	0	0	2	
C2	1	0	5	+
C1	0	1	8	
C2	1	1	16	
C1	1	0	23	+
C3	0	1	11	+

```
install.packages("dummies")
library(dummies)
data=read.table("book1.csv", head=T, sep=',')
df=dummy.data.frame(data,names=c("F1"))
```

Note that it will create N dummy variables if there are N values in the nominal variable

Midterm Exam

- Time: Mar 26, 08:30 AM 09:50 AM
- Location: SB 111
- Closed Note, Closed Book, Closed Devices
- You can bring a calculator. You can NOT share calculator with others.
- The questions in the exam will be the similar ones in your assignments; but you do not need to produce the R outputs, the outputs will be given in the exam papers.