MAT 1375, Classwork10, Fall2024

ID: Name:

1. The graph of $f(x) = \frac{p(x)}{q(x)}$ is displayed below, where $\deg(p(x)) = 1$ and $\deg(q(x)) = 3$.

Find the intercepts, asymptotes, and a formula for f(x).

For 2. And 3., let $f(x) = \frac{p(x)}{q(x)}$ be a rational function and $\deg(p(x)) > \deg(q(x))$.

2. Rational Function and Long Division:

If p(x) divided by q(x) can be represented with a quotient g(x) and a remainder r(x)

where deg(r(x)) = deg(q(x)), one can rewrite f(x) as

$$f(x) = \frac{p(x)}{q(x)} = \underline{\qquad} + \frac{r(x)}{q(x)}.$$

3. Asymptotic Behavior with Slant Asymptote:

Since deg(r(x)) < deg(q(x)), for large |x| (which is $x \to \pm$ _____), we have

$$\frac{r(x)}{q(x)}$$
 approaches ______ so that $f(x)$ ______ $g(x)$.

If g(x) is a linear function (which is a polynomial of degree _____), then g is called the

_____ asymptote of f.

1	Find the electron state of the rational function $f(x)$	_	$2x^3 - 13x^2 + 35x - 26$
4.	Find the slant asymptote of the rational function $f(x)$	_	${x^2-4x+6}$.

5. The Strategy for Solving Inequalities (Application of **Number Line Test**):

Step1. Replace ``>" (`` \geq ") or ``<" (`` \leq ") by ``=" and solve the equation.

Step2. Mark the solutions on the number line and check ______in each subinterval.

Step3. Check the _____ of the subintervals to see if they are included in the solution set.

6. Given $x^3 + 15x \ge 7x^2 + 9$. Solve for *x*.