#### Tree-like graphings of countable Borel equivalence relations

#### An exposition to

Tree-like graphings, wallings, and median graphings of equivalence relations by Ruiyuan Chen, Antoine Poulin, Ran Tao, and Anush Tserunyan

Zhaoshen Zhai

October 1, 2024



## Countable Borel equivalence relations

#### Definition

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation  $E \subseteq X^2$  such that each E-class is countable.

## Countable Borel equivalence relations

#### Definition

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation  $E \subseteq X^2$  such that each E-class is countable.

### Example

Any Borel action  $\Gamma \curvearrowright X$  of a countable (discrete) group on a standard Borel space induces its *orbit equivalence relation*  $E_{\Gamma}^{X}$ , which is a CBER.

# Countable Borel equivalence relations

#### Definition

A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation  $E \subseteq X^2$  such that each E-class is countable.

### Example

Any Borel action  $\Gamma \curvearrowright X$  of a countable (discrete) group on a standard Borel space induces its *orbit equivalence relation*  $E_{\Gamma}^{X}$ , which is a CBER.





### Example (Smooth)

• Identity relation = on a standard Borel space, say  $\mathbb{R}$  or  $2^{\mathbb{N}}$ .

### Example (Smooth)

- Identity relation = on a standard Borel space, say  $\mathbb{R}$  or  $2^{\mathbb{N}}$ .
- $\mathbb{Z}$ -coset equivalence on  $\mathbb{R}$ :  $xE_{\mathbb{Z}}^{\mathbb{R}}y$  iff  $x-y\in\mathbb{Z}$ .

#### Example (Smooth)

- Identity relation = on a standard Borel space, say  $\mathbb{R}$  or  $2^{\mathbb{N}}$ .
- $\mathbb{Z}$ -coset equivalence on  $\mathbb{R}$ :  $xE_{\mathbb{Z}}^{\mathbb{R}}y$  iff  $x-y\in\mathbb{Z}$ .

### Example (Hyperfinite)

 $E_0$  on  $2^{\mathbb{N}}$ , where  $xE_0y$  iff  $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$ .

### Example (Smooth)

- Identity relation = on a standard Borel space, say  $\mathbb{R}$  or  $2^{\mathbb{N}}$ .
- $\mathbb{Z}$ -coset equivalence on  $\mathbb{R}$ :  $xE_{\mathbb{Z}}^{\mathbb{R}}y$  iff  $x-y\in\mathbb{Z}$ .

### Example (Hyperfinite)

 $E_0$  on  $2^{\mathbb{N}}$ , where  $xE_0y$  iff  $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$ .

This CBER is hyperfinite:  $E_0 = \bigcup_n F_n$  for an increasing sequence  $F_0 \subseteq F_1 \cdots$  of finite Borel equivalence relations:

### Example (Smooth)

- Identity relation = on a standard Borel space, say  $\mathbb{R}$  or  $2^{\mathbb{N}}$ .
- $\mathbb{Z}$ -coset equivalence on  $\mathbb{R}$ :  $xE_{\mathbb{Z}}^{\mathbb{R}}y$  iff  $x-y\in\mathbb{Z}$ .

### Example (Hyperfinite)

$$E_0$$
 on  $2^{\mathbb{N}}$ , where  $xE_0y$  iff  $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$ .

This CBER is hyperfinite:  $E_0 = \bigcup_n F_n$  for an increasing sequence  $F_0 \subseteq F_1 \cdots$  of finite Borel equivalence relations:

$$xF_ny \quad \leftrightarrow \quad \forall m \ge n : x_m = y_m.$$

### Example (Smooth)

- Identity relation = on a standard Borel space, say  $\mathbb{R}$  or  $2^{\mathbb{N}}$ .
- $\mathbb{Z}$ -coset equivalence on  $\mathbb{R}$ :  $xE_{\mathbb{Z}}^{\mathbb{R}}y$  iff  $x-y\in\mathbb{Z}$ .

### Example (Hyperfinite)

$$E_0$$
 on  $2^{\mathbb{N}}$ , where  $xE_0y$  iff  $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$ .

This CBER is hyperfinite:  $E_0 = \bigcup_n F_n$  for an increasing sequence  $F_0 \subseteq F_1 \cdots$  of finite Borel equivalence relations:

$$xF_ny \quad \leftrightarrow \quad \forall m \ge n : x_m = y_m.$$

#### Theorem (Slaman-Steel, Weiss)

Let E be a CBER on a standard Borel space X. TFAE:

- 1. E is hyperfinite.  $E = \bigcup_n F_n$  where  $F_0 \subseteq F_1 \subseteq \cdots$  are FBERs.
- 2. E is induced by a Borel  $\mathbb{Z}$ -action.  $E = E_{\mathbb{Z}}^X$  for some  $\mathbb{Z} \curvearrowright X$ .



#### Example (Smooth)

- Identity relation = on a standard Borel space, say  $\mathbb{R}$  or  $2^{\mathbb{N}}$ .
- $\mathbb{Z}$ -coset equivalence on  $\mathbb{R}$ :  $xE_{\mathbb{Z}}^{\mathbb{R}}y$  iff  $x-y\in\mathbb{Z}$ .

### Example (Hyperfinite)

 $E_0$  on  $2^{\mathbb{N}}$ , where  $xE_0y$  iff  $\exists n \in \mathbb{N}, \forall m \geq n : x_m = y_m$ .





## Graphing of a CBER

#### Definition

A graphing of a CBER E on X is a Borel graph  $G \subseteq X^2$  whose connected relation is E, i.e.,  $xEy \leftrightarrow xG \cdots Gy$  for all  $x, y \in X$ .

## Graphing of a CBER

#### Definition

A graphing of a CBER E on X is a Borel graph  $G \subseteq X^2$  whose connected relation is E, i.e.,  $xEy \leftrightarrow xG \cdots Gy$  for all  $x, y \in X$ .



## Treeings and treeability

#### Definition

A treeing of a CBER E is an acyclic graphing, and a CBER E is said to be treeable if it admits a treeing.



Example (Free Actions)

Free actions of a free group  $F_r \curvearrowright X$ .



Example (Free Actions)

Free actions of a free group  $F_r \curvearrowright X$ .



### Theorem (JKL02)

 $\label{lem:free_actions} \textit{Free actions of virtually-free groups are treeable}.$ 

### Example (Free Actions)

Free actions of a free group  $F_r \curvearrowright X$ .



### Theorem (JKL02)

Free actions of virtually-free groups are treeable.

### Theorem (GdlH90)

Every finitely-generated group whose Cayley graph is a quasi-tree is virtually-free, and hence treeable.

### Example (Free Actions)

Free actions of a free group  $F_r \curvearrowright X$ .



### Theorem (JKL02)

Free actions of virtually-free groups are treeable.

### Theorem (GdlH90)

Every finitely-generated group whose Cayley graph is a quasi-tree is virtually-free, and hence treeable.

### Question (Robin Tucker-Drob; 2015)

Is the class of treeable CBERs robust under quasi-isometries?



#### Main result

Theorem (Chen, Poulin, Tao, Tserunyan; 2023+)

If a CBER E admits a locally-finite graphing such that each component is a quasi-tree, then E is treeable.

#### Main result

### Theorem (Chen, Poulin, Tao, Tserunyan; 2023+)

If a CBER E admits a locally-finite graphing such that each component is a quasi-tree, then E is treeable.

Two metric spaces X, Y are *quasi-isometric* if they are isometric up to a bounded multiplicative and additive error; X is a *quasi-tree* if it is quasi-isometric to a tree.



Quasi-treeing Treeing



























## Finitely-separating cuts

#### Definition

A *cut* in a connected locally-finite graph (X, G) is a connected co-connected subset  $H \subseteq X$  with finite boundary.



## Finitely-separating cuts

#### Definition

A *cut* in a connected locally-finite graph (X, G) is a connected co-connected subset  $H \subseteq X$  with finite boundary.



Let  $\mathcal{H}$  be a family of cuts such that if  $H \in \mathcal{H}$ , then  $\neg H \in \mathcal{H}$ .

### Finitely-separating cuts

#### Definition

A *cut* in a connected locally-finite graph (X, G) is a connected co-connected subset  $H \subseteq X$  with finite boundary.



Let  $\mathcal{H}$  be a family of cuts such that if  $H \in \mathcal{H}$ , then  $\neg H \in \mathcal{H}$ .

#### Definition

Such a family  $\mathcal{H}$  is finitely-separating if for each  $x, y \in X$ , there are finitely-many  $H \in \mathcal{H}$  with  $x \in H \not\ni y$ .

#### Orientations

#### Definition

An orientation on  $\mathcal{H}$  is an upward-closed subset  $U \subseteq \mathcal{H}$  containing exactly one of  $H, \neg H$  for every  $H \in \mathcal{H}$ .



#### Orientations

#### Definition

An orientation on  $\mathcal{H}$  is an upward-closed subset  $U \subseteq \mathcal{H}$  containing exactly one of  $H, \neg H$  for every  $H \in \mathcal{H}$ .



We'll only consider the orientations that are *based*, in the sense that each  $H \in U$  contains a minimal  $H_0 \in U$ .

# The dual median graph

#### Definition

A median graph is a connected graph (X,G) such that for each  $x,y,z\in X$ , the intersection  $[x,y]\cap [x,z]\cap [y,z]$  is a singleton, called the median of x,y,z, and is denoted by  $\langle x,y,z\rangle$ .



# The dual median graph

#### Definition

A median graph is a connected graph (X,G) such that for each  $x,y,z\in X$ , the intersection  $[x,y]\cap [x,z]\cap [y,z]$  is a singleton, called the median of x,y,z, and is denoted by  $\langle x,y,z\rangle$ .



#### Theorem (Sageev 95)

If  $\mathcal{H}$  is finitely-separating, then the graph  $\mathcal{M}(\mathcal{H})$ :

- Vertices are based orientations on  $\mathcal{H}$ ;
- Neighbors of U are  $U \triangle \{H, \neg H\}$  for each minimal  $H \in U \setminus \{\neg 0\}$ ; is a median graph.

## Ends of graphs

#### Definition

The end compactification of a connected locally-finite (X, G) is the Stone space  $\hat{X}$  of the Boolean algebra  $\mathcal{H}_{\partial < \infty}(X)$ , whose non-principal ultrafilters are the ends of (X, G).



## Ends of graphs

#### Definition

The end compactification of a connected locally-finite (X, G) is the Stone space  $\widehat{X}$  of the Boolean algebra  $\mathcal{H}_{\partial < \infty}(X)$ , whose non-principal ultrafilters are the ends of (X, G).



#### Definition

A family  $\mathcal{H}$  of cuts is *dense towards ends* of X if  $\mathcal{H}$  contains a neighborhood basis for every end in  $\widehat{X}$ .

## Density towards ends for quasi-trees

#### Lemma

The connected locally-finite graphs in which  $\mathcal{H}_{\operatorname{diam}(\partial) \leq R}$  is dense towards ends for some  $R < \infty$  is invariant under quasi-isometry.

#### Corollary

If (X,G) is a locally-finite quasi-tree, then the family

$$\mathcal{H} := \mathcal{H}_{\operatorname{diam}(\partial) \leq R}(X) \cap \mathcal{H}_{\operatorname{conn}}(X)$$

of cuts is dense towards ends for some  $R < \infty$ .



## Wrapping things up...





### The End

Thank you!