Краткая теория к экзамену по высшей алгебре 19-20 июня 2015

Чудинов Никита (группа 14-4)

1 Лекция 1

Определение 1.1. *Множество с бинарной операцией* — это множество M с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Определение 1.2. Множество с бинарной операцией (M, \circ) называется *полугруппой*, если данная бинарная операция ассоциативна, то есть

$$a \circ (b \circ c) = (a \circ b) \circ c, \forall a, b, c \in M.$$

Определение 1.3. Полугруппа (S, \circ) называется *моноидом*, если в ней есть *нейтральный элемент* $e \in S$, такой, что

$$\forall a \in S: e \circ a = a \circ e = a.$$

Определение 1.4. Моноид называется *группой*, если для каждого элемента $a \in S$ найдётся *обратный* элемент a^{-1} , такой, что

$$a \circ a^{-1} = a^{-1} \circ a = e$$
.

Определение 1.5. Группа G называется *коммутативной* или *абелевой*, если групповая операция коммутативна, то есть

$$a \circ b = b \circ a, \forall a, b \in G.$$

Определение 1.6. Порядок группы G — это количество элементов в G. Группа называется конечной, если её порядок конечен, и бесконечной иначе. Обозначается |G|.

Определение 1.7. Подмножество H группы G называется nodepynnoù, если

$$|H| > 0$$
, $a \circ b^{-1} \in H, \forall a, b \in H$.

Предложение 1.1. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого $k\in\mathbb{N}$

Определение 1.8. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порождённой элементом g называется подмножество

$$\{g^n \mid n \in \mathbb{Z}\} \in G.$$

Элемент g называется *порождающим* или *образующим* для этой группы $\langle g \rangle$.

Определение 1.9. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа не существует, то говорят, что порядок g равен бесконечности. Обозначение: $\operatorname{ord}(g)$.

Предложение 1.2. Пусть G — группа и $g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Определение 1.10. Группа G называется $uu\kappa nuveckou$, если

$$\exists \; g \in G, \quad G = \langle g \rangle.$$

Определение 1.11. Пусть G — группа, $H \subseteq G$ — подгруппа и $g \in G$. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

Определение 1.12. Пусть G — группа, $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H. Обозначается [G:H].

Теорема (Лагранж). Пусть G- конечная группа $u \ H \subseteq G-$ подгруппа. Тогда

$$|G| = |H| \cdot [G : H].$$

2 Лекция 2

Определение 2.1. Подгруппа H группы G называется нормальной, если

$$gH=Hg, \forall g\in G.$$

Предложение 2.1. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- 1. Н нормальна;
- 2. $gHg^{-1} \subseteq H, \forall g \in G;$
- 3. $qHq^{-1} = H, \forall q \in G;$

Определение 2.2. Множество G/H с указанной операцией называется факторгруппой группы G по нормальной подгруппе H.

Определение 2.3. Пусть G и F — группы. Отображение $\varphi: G \to F$ называется гомоморфизмом, если

$$\varphi(ab)=\varphi(a)\varphi(b), \forall a,b\in G.$$

Определение 2.4. Гомоморфизм групп $\varphi: G \to F$ называется *изоморфизмом*, если отображение φ биективно.

Определение 2.5. Группы G и F называют *изоморфными*, если между ними есть изоморфизм. Обозначение: $G \cong F$.

Теорема. Всякая бесконечная циклическая группа G изоморфна группе $(\mathbb{Z}, +)$.

Теорема. Всякая циклическая группа порядка n изоморфна группе $(\mathbb{Z}_n, +)$.

Определение 2.6. С каждым гомоморфизмом групп $\varphi: G \to F$ связаны его ядро

$$\ker(\varphi) = \{ g \in G \mid \varphi(g) = e_F \}$$

и образ

$$\operatorname{im}(\varphi) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Предложение 2.2. Пусть $\varphi: G \to F$ — гомоморфизм групп. Тогда подгруппа $\ker(\varphi)$ нормальна в G.

Теорема (о гомоморфизме). Пусть $\varphi: G \to F$ — гомоморфизм групп. Тогда группа $\operatorname{im}(\varphi)$ изоморфна факторгруппе $G/\ker(\varphi)$.

Определение 2.7. *Центр* группы G — это подмножество

$$Z(G) = \{a \in G \mid ab = ba, \forall b \in G\}.$$

Предложение 2.3. Центр Z(G) является нормальной подгруппой группы G.

Определение 2.8. Прямым произведением групп G_1, \ldots, G_m называется множество

$$G_1 \times \cdots \times G_m = \{(g_1, \dots, g_m) \mid g_1 \in G_1, \dots, g_m \in G_m\}.$$

Теорема (о факторизации и сомножителях). Пусть H_1, \ldots, H_m — нормальные подгруппы в группах G_1, \ldots, G_m соответственно. Тогда $H_1 \times \cdots \times H_m$ — нормальная подгруппа в $G_1 \times \cdots \times G_m$ и имеет место изоморфизм групп

$$(G_1 \times \cdots \times G_m)/(H_1 \times \cdots \times H_m) \cong G_1/H_1 \times \cdots \times G_m/H_m$$

Теорема. Пусть n = ml - pазложение натурального числа n на два взаимно простых множителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_l$$
.

3 Лекция 3

Определение 3.1. Абелева группа A называется конечно порождённой, если найдутся такие элементы $a_1, \ldots, a_n \in A$, что всякий элемент $a \in A$ представим в виде $a = s_1 a_1 + \cdots + s_n a_n$ для некоторых целых чисел s_1, \ldots, s_n . При этом элементы a_1, \ldots, a_n называются порождающими или образующими группы A.

Определение 3.2. Конечно порождённая абелева группа A называется csobodnoй, если в ней существует startion based based

Предложение 3.1. Любые два базиса свободной группы содержат одинаковое число элементов.

Предложение 3.2. Всякая свободная абелева группа ранга n изоморфна группе \mathbb{Z}^n .

Теорема. Всякая подгруппа N свободной абелевой группы L ранга n является свободной абелевой группой ранга $\leq n$.

Теорема (о согласованных базисах). Для всякой подгруппы N свободной абелевой группы L ранга n найдётся такой базис e_1, \ldots, e_n группы L и такие натуральные числа $u_1, \ldots, u_m, m \leq n$, что u_1e_1, \ldots, u_me_m — базис группы N и $u_i|u_{i+1}$ при $i=1,\ldots,m-1$.

Предложение 3.3. Пусть e'_1, \ldots, e'_n — некоторый набор элементов из \mathbb{Z}^n . Выразив эти элементы через стандартный базис e_1, \ldots, e_n , мы можем записать

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C,$$

где C — целочисленная квадратная матрица порядка n.

Элементы e'_1, \ldots, e'_n составляют базис группы \mathbb{Z}^n тогда и только тогда, когда $\det C = \pm 1$.

Определение 3.3. *Целочисленными элементарными преобразованиями строк* матрицы называются преобразования следующих трёх типов:

- 1. Прибавление к одной строке другой, умноженной на целое число;
- 2. Перестановка двух строк;
- 3. Умножение одной строки на -1.

Аналогично определяются целочисленные элементарные преобразования столбцов матрицы.

Предложение 3.4. Всякую прямоугольную матрицу $C = (c_{ij} \text{ размера } n \times m \text{ назовём диагональной } u$ обозначим $diag(u_1, \ldots, u_p)$, если $c_{ij} = 0$ при $i \neq j$ и $c_{ii} = u_i$ при $i = 1, \ldots, p$, где p = min(n, m).

4 Лекция 4

Определение 4.1. Конечная абелева группа называется npumapnoŭ, если её порядок равен p^k для некоторого простого числа p.

Теорема. Всякая конечно порождённая абелева группа A разлагается в прямую сумму примарных и бесконечных циклических подгрупп, то есть

$$A\cong \mathbb{Z}_{p_1^{k_1}}\oplus \cdots \oplus \mathbb{Z}\oplus \cdots \oplus \mathbb{Z},$$

где p_1, \ldots, p_s — простые числа (необязательно попарно различные), а $k_1, \ldots, k_s \in \mathbb{N}$. Кроме того, число бесконечных циклических слагаемых, а также число и порядки примарных циклических слагаемых определено однозначно.

Предложение 4.1. Всякая конечная абелева группа разлагается в прямую сумму примарных циклических подгрупп, причем число и порядки примарных циклических слагаемых определено однозначно.

Определение 4.2. Экспонентой конечной абелевой группы A называется число $\exp A$, равное наименьшему общему кратному порядков элементов из A.

Предложение 4.2. Конечная абелева группа A является циклической тогда и только тогда, когда $\exp A = |A|$.

5 Лекция 5

Определение 5.1. Действием группы G на множестве X называется отображение $G \times X \to X, (g, x) \mapsto gx,$ удовлетворяющее следующим условиям:

- 1. $ex = x, \forall x \in X \ (e$ нейтральный элемент группы G);
- 2. $g(hx) = (gh)x, \forall g, h \in G, x \in X$.

Определение 5.2. *Орбитой* точки $x \in X$ называется подмножество

$$Gx = \{x' \in X \mid x' = gx$$
 для некоторого $g \in G\} = \{gx \mid g \in G\}$

Определение 5.3. Стабилизатором (стационарной подгруппой) точки $x \in X$ называется подгруппа $\operatorname{St}(x) = \{g \in G \mid gx = x\}.$

Определение 5.4. Действие G на X называется mpaнзитивным, если для любых $x, x' \in X$ найдётся такой элемент $g \in G$, что x' = gx. Иными словами, все точки множества X образуют одну орбиту.

Определение 5.5. Действие G на X называется csobodным, если для любой точки $x \in X$ условие gx = x влечёт g = e. Иными словами, $\mathrm{St}(x) = \{e\}$ для всех $x \in X$.

Определение 5.6. Действие G на X называется эффективным, если условие gx=x для всех $x\in X$ влечёт g=e. Иными словами, $\bigcup_{x\in X}\operatorname{St}(x)=\{e\}.$

Определение 5.7. Ядром неэффективности действия группы G на множестве X называется подгруппа $K = \{g \in G \mid gx = x, \forall x \in X\}.$

Определение 5.8. Два действия группы G на множествах X и Y называются изоморфными, если существует такая биекция $\varphi: X \to Y$, что

$$\varphi(gx) = g\varphi(x), \forall g \in G, x \in X.$$

Предложение 5.1. Всякое свободное транзитивное действие группы G на множестве X изоморфно действию группы G на себе левыми сдвигами.

Предложение 5.2. Действия группы G на себе правыми и левыми сдвигами изоморфны.

Теорема (Кэли). Всякая конечная группа G порядка n изоморфна подгруппе симметрической группы S_n .

6 Лекция 6

Определение 6.1. *Кольцом* называется множество R с двумя бинарными операциями «+» (сложение) и « \times » (умножение), обладающими следующими свойствами:

- 1. (R, +) является абелевой группой (называемой аддитивной группой кольца R);
- 2. выполнены левая и правая дистрибутивности, то есть

$$a(b+c) = ab + ac$$
, $(b+c)a = ba + ca$, $\forall a, b, c \in R$;

- 3. $a(bc) = (ab)c, \forall a, b, c \in R$ (ассоциативность умножения);
- 4. $\exists 1 \in R$ (называемый единицей), что

$$a1 = 1a = a, \forall a \in R.$$

Определение 6.2. Кольцо R называется *коммутативным*, если $ab = ba, \forall a, b \in R$.

Определение 6.3. Элемент $a \in R$ называется *обратимым*, если $\exists b \in R, ab = ba = 1$.

Определение 6.4. Элемент $a \in R$ называется левым (соответственно правым) делителем нуля, если $a \neq 0$ и $\exists b \in R, b \neq 0, ab = 0$ (соответственно, ba = 0).

Определение 6.5. Элемент $a \in R$ называется *нильпотентом*, если $a \neq 0$, и $\exists m \in \mathbb{N}$, что $a^m = 0$.

Определение 6.6. Элемент $a \in R$ называется *идемпотентом*, если $a^2 = a$.

Определение 6.7. *Полем* называется коммутативное кольцо ассоциативное кольцо K с единицей, в котором всякий ненулевой элемент обратим.

Предложение 6.1. Кольцо вычетов \mathbb{Z}_n является полем тогда и только тогда, когда n-nростое число.

Определение 6.8. Алгеброй над полем K (или, кратко, K-алгеброй) называется множество A с операциями сложения, умножения и умножения на элементы поля K, обладающими следующими свойствами:

- 1. относительно сложения и умножения на элементы из K множество A есть векторное пространство;
- 2. относительно сложения и умножения A есть кольцо;
- 3. $(\lambda a)b = a(\lambda b) = \lambda(ab), \forall \lambda \in K; a, b \in A.$

 ${\it Pазмерностью}$ алгебры A называется её размерность как векторного пространства над K. Обозначение: $\dim_K A.$

Определение 6.9. Подкольцом кольца R называется всякое подмножество $R' \subset R$, замкнутое относительно операций сложения и умножения (то есть $a+b \in R', ab \in R', \forall a,b \in R'$) и являющееся кольцом относительно этих операций. Подполем называется всякое подкольцо, являющееся полем.

Определение 6.10. Подалгеброй алгебры A (над полем K) называется всякое подмножество $A' \subset A$, замкнутое относительно всех трёх имеющихся в A операций (сложения, умножения и умножения на элементы из K) и являющееся алгеброй (над K) относительно этих операций.

Определение 6.11. *Изоморфизмом* колец, алгебр называется всякий гомоморфизм, являющийся биекцией.

Определение 6.12. Подмножество I кольца R называется (двусторонним) идеалом, если оно является подгруппой по сложению и $ra \in I, ar \in I, \forall a \in I, r \in R$.

Определение 6.13. Идеал I называется *главным*, если существует такой элемент $a \in R, I = (a)$. В таком случае говорят, что I порождён элементом a.

Определение 6.14. Кольцо R/I называется факторкольцом кольца R по идеалу I.

Теорема (о гомоморфизме для колец). Пусть $\varphi: R \to R'$ — гомоморфизм колец. Тогда имеет место изоморфизм

$$R/\ker\varphi\cong\mathrm{im}\varphi$$

Определение 6.15. Кольцо R называется npocmым, если в нём нет собственных (двусторонних) идеалов.

Определение 6.16. *Центром* алгебры A над полем K называется её подмножество

$$Z(A) = \{ a \in A \mid ab = ba, \forall b \in A \}.$$

Теорема. Пусть K- поле, n- натуральное число и $A={\rm Mat}(n\times n,K)-$ алгебра квадратных матриц порядка n над полем K.

- 1. $Z(A) = \{\lambda E \mid \lambda \in K\}$, где E eдиничная матрица (в частности, Z(A) oдномерное подпространство в A);
- 2. алгебра А проста (как кольцо).

7 Лекция 7

Определение 7.1. Элемент $b \in R$ делит элемент $a \in R$, (пишут b|a), если существует элемент $c \in R$, a = bc.

Определение 7.2. Два элемента $a,b \in R$ называют accouuupoванными, если a=bc для некоторого обратимого элемента $c \in R$.

Определение 7.3. Кольцо R без делителей нуля, не являющееся полем, называют esknudosum, если существует функция

$$N: R \setminus \{0\} \to \mathbb{Z}_{\geq 0},$$

называемая нормой, удовлетворяющая следующим условиям:

1. $N(ab) \geqslant N(A), \forall a, b \in R \setminus \{0\};$

2. $\forall a, b \in R, b \neq 0, \exists q, r \in R : a = qb + r,$ и либо r = 0, либо N(r) < N(b).

Определение 7.4. *Наибольшим общим делителем* элементов a и b кольца R называется их общий делитель, который делится на любой другой их общий делитель. Обозначение: (a,b).

Теорема. Пусть R — евклидово кольцо и a, b — произвольные элементы. Тогда:

- 1. существует наибольший общий делитель (a, b);
- 2. существуют такие элементы $u, v \in R$, что (a, b) = ua + vb.

Определение 7.5. Кольцо R называется *кольцом главных идеалов*, если всякий идеал в R является главным.

Теорема. Всякое евклидово кольцо является кольцом главных идеалов.

Определение 7.6. Ненулевой необратимый элемент p кольца R называется npocmым, если он не может быть представлен в виде p=ab, где $a,b\in R$ — необратимые элементы.

Определение 7.7. Кольцо R называется факториальным, если всякий его ненулевой необратимый элемент «разложим на простые множители», то есть представим в виде произведения (конечного числа) простых элементов, причём это представление единственно с точностью до перестановки множителей и ассоциированности.

Теорема. Всякое евклидово кольцо является факториальным.

Определение 7.8. Многочлен $f(x) \in R[x]$ называется *примитивным*, если в R нет необратимого элемента, который делит все коэффициенты многочлена f(x).

Теорема. Если R — факториальное кольцо c полем отношений K и многочлен $f(x) \in R[x]$ разлагается e произведение двух многочленов e кольце e0, то он разлагается e0 произведение двух пропорциональных им многочленов e0 кольце e1.

Предложение 7.1. Если многчлен $f(x) \in R[x]$ может быть разложен в произведение двух многочленов меньшей степени в кольце K[x], то он может быть разложен и в произведение двух многочленов меньшей степени в кольце R[x].

Теорема. Если кольцо R факториально, то кольцо многочленов R[x] тоже факториально.

Теорема. Пусть K — произвольное поле. Тогда кольцо многочленов $K[x_1, \dots, x_n]$ факториально.

8 Лекция 8

Определение 8.1. Многочлен $f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$, где K — произвольное поле, называется симметрическим, если $f(x_{\tau(1)}, \ldots, x_{\tau(n)}) = f(x_1, \ldots, x_n)$ для всякой перестановки $\tau \in S_n$.

Определение 8.2. Элементарными симметрическими многочленами называются такие многочлены:

$$\sigma_1(x_1, \dots, x_n) = x_1 + x_2 + \dots + x_n;$$

$$\sigma_2(x_1, \dots, x_n) = \sum_{1 \le i < j \le n} x_i x_j;$$

$$\dots = \dots$$

$$\sigma_k(x_1, \dots, x_n) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \dots x_{i_k};$$

$$\dots = \dots$$

$$\sigma_n(x_1, \dots, x_n) = x_1 x_2 \dots x_n;$$

Теорема (Основная теорема о симметрических многочленах). Для всякого симметрического многочлена $f(x_1, ..., x_n)$ существует и единственен такой многочлен $F(y_1, ..., y_n)$, что

$$f(x_1,\ldots,x_n)=F(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)).$$

Определение 8.3. Старшим членом ненулевого многочлена $f(x_1, ..., x_n)$ называется наибольший в лексикографическом порядке встречающийся в нём одночлен. Обозначение: L(f).

Теорема (о старшем члене). Пусть $f(x_1, ..., x_n), g(x_1, ..., x_n) \in K[x_1, ..., x_n]$ — произвольные ненулевые многочлены. Тогда L(fg) = L(f)L(g).

Теорема (Виет). Пусть $\alpha_1, \ldots, \alpha_n$ — корни многочлена $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$. Тогда

$$\sigma_k(\alpha_1,\ldots,\alpha_n)=(-1)^k a_{n-k}, \quad k=1,\ldots,n.$$

Определение 8.4. Дискриминантом многочлена $h(x) = a_n x^n + \dots + a_1 x + a_0$ с корнями $\alpha_1, \dots, \alpha_n$ называется выражение

$$D(h) = a_n^{2n-2} \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2$$

9 Лекция 9

Определение 9.1. Пусть K — произвольное поле. X арактеристикой поля K называется такое наименьшее натуральное число p, что $\underbrace{1+\dots+1}_p=0$. Если такого числа не существует, то говорят, что характеристика поля равна нулю. Обозначение: char K.

Предложение 9.1. *Характеристика произвольного поля* K либо равна нулю, либо является простым числом.

Определение 9.2. Пересечение любого семейства подполей фиксированного поля K является подполем в K. В частности, для всякого подмножества $S \subseteq K$ существует наименьшее по включению подполе в K, содержащее S. Это подполе совпадает с пересечением всех подполей в K, содержащих S. Из этого следует, что в каждом поле существует наименьшее по включению подполе, оно называется *простым подполем*.

Предложение 9.2. Пусть K- поле и K_0- его простое подполе. Тогда:

- 1. $ecnu \operatorname{char} K = p > 0$, $mo K_0 \cong \mathbb{Z}_p$;
- 2. если $\operatorname{char} K = 0$, то $K_0 \cong \mathbb{Q}$.

Определение 9.3. Если K — подполе F, то говорят, что F — расширение поля K.

Определение 9.4. *Степенью* расширения полей $K \subseteq F$ называется размерность поля F как векторного пространства над полем K. Обозначение: [F:K].

Определение 9.5. Расширение полей называется *конечным*, если $[F:K]<\infty$.

Предложение 9.3. Пусть $K \subseteq F$ и $F \subseteq L$ — конечные расширения полей. Тогда расширение $F \subseteq L$ тоже конечно и [L:K] = [L:F][F:K].

Определение 9.6. Элемент $\alpha \in F$ называется алгебраическим над подполем K, если существует ненулевой многочлен $f(x) \in K[x]$, для которого $f(\alpha) = 0$. В противном случае α называется трансцедентным элементом над K.

Определение 9.7. Минимальным многочленом алгебраического элемента $\alpha \in F$ над подполем K называется ненулевой многочлен $h_{\alpha}(x)$ наименьшей степени, для которого $h_{\alpha}(\alpha) = 0$.

Предложение 9.4. Пусть $\alpha \in F$ — алгебраический элемент над K и n — степень его минимального многочлена над K. Тогда

$$K(\alpha) = \{\beta_0 + \beta_1 \alpha + \dots + \beta_{n-1} \alpha^{n-1} \mid \beta_0, \dots, \beta_{n-1} \in K\}.$$

Кроме того, элементы $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ линейно независимы над K. В частности, $[K(\alpha):K]=n$.

Теорема. Пусть K — произвольное поле u $f(x) \in K[x]$ — многочлен положительной степени. Тогда существует конечное расширение $K \subseteq F$, в котором многочлен f(x) имеет корень.

Определение 9.8. Пусть K — некоторое поле и $f(x) \in K[x]$ — многочлен положительной степени. Полем разложения многочлена f(x) называется такое расширение F поля K, что:

- 1. многочлен f(x) разлагается на линейные множители;
- 2. корни многочлена f(x) не лежат ни в каком собственном подполе поля F, содержащем K.

Теорема. Поле разложения любого многочлена $f(x) \in K[x]$ существует и единственно с точностью до изоморфизма, тождественного на K.