§3. Гипербола и её свойства

Определение 3.1. *Гиперболой* называется кривая, определяемая в некоторой прямоугольной декартовой системе координат уравнением

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a, b > 0.$$
 (3.1)

Равенство (3.1) называется каноническим уравнением гиперболы.

Свойства гиперболы

1. Гипербола — *осесимметричная* и *центрально симметричная кривая*. Осями симметрии служат оси координат, а центром симметрии — начало координат.

Обоснование этого утверждения проводится так же, как и в случае эллипса. Оси симметрии называются *осями* гиперболы, а центр симметрии – её *центром*.

2. Точки гиперболы принадлежат множеству $G = \{x, y\}: |x| \ge a, |y| < \frac{b}{a}|x| \}.$ Гипербола – *неограниченная* кривая.

Из (3.1) следует: $x^2 = a^2 \left(1 + \frac{y^2}{b^2} \right)$ и $y^2 = b^2 (\frac{x^2}{a^2} - 1)$, отсюда получаем соотношения: $x^2 \ge a^2$, $y^2 < \frac{b^2}{a^2} x^2$, приводящие к неравенствам: $|x| \ge a$ и $|y| < \frac{b}{a} |x|$. Итак, первая часть утверждения доказана. Заметим, что в силу второго из последних неравенств гипербола не пересекает прямых $y = \pm \frac{b}{a} x$.

Для расстояния OM произвольной точки гиперболы M(x, y) до начала координат с учетом (3.1) имеем:

$$OM = \sqrt{x^2 + y^2} = \sqrt{x^2 + b^2(\frac{x^2}{a^2} - 1)} = \sqrt{\frac{a^2 + b^2}{a^2}x^2 - b^2}$$
.

Используя это соотношение, заключаем, что при неограниченном

Рис. 3.1. К расположению гиперболы на координатной плоскости

увеличении |x| ($|x| \rightarrow +\infty$) *ОМ* также неограниченно увеличивается, поэтому *ОМ* может быть сколь угодно большим. А это и означает, что гипербола — неограниченная кривая.

Гипербола имеет две бесконечные ветви, расположенные в левой и правой полуплоскостях координатной плоскости. На рис. 3.1 заштрихованы те

части плоскости Оху, в которых расположены ветви гиперболы.

Из уравнения (3.1) следует, что точки $A_1(-a,0)$, $A_2(a,0)$ принадлежат гиперболе, они называются *вершинами* гиперболы. Отрезок A_1A_2 , а также его длина 2a называется *действительной* осью гиперболы (рис. 3.3). Гипербола не пересекает ось Oy.

3. Фокусы гиперболы. Свойство фокальных радиусов точки гиперболы. Точки $F_1(-c,0)$ и $F_2(c,0)$, где $c=\sqrt{a^2+b^2}$, находящиеся на действительной оси гиперболы, называются её фокусами, а расстояния r_1 и r_2 произвольной точки M(x,y) до этих точек – фокальными радиусами точки M (рис. 3.1).

Свойство фокальных радиусов
$$|r_1 - r_2| = 2a$$
.

Обоснование этого равенства проводится так же, как в случае эллипса (см. §2). Свойство фокальных радиусов можно сформулировать следующим образом.

Модуль разности расстояний произвольной точки M гиперболы, определяемой уравнением (3.1), до двух фиксированных точек $F_{\rm I}(-c,0)$ и $F_2(c,0)$, где $c=\sqrt{a^2+b^2}$, есть величина постоянная, равная длине её действительной оси.

4. Асимптоты гиперболы. Построение гиперболы. Прямые $L_1: y = \frac{b}{a}x$ и

 $L_2: y = -\frac{b}{a}x$, между которыми, как показано выше, лежат ветви гиперболы, играют важную роль в исследовании формы и построении гиперболы.

Рассмотрим часть гиперболы, расположенную в первом квадранте, и прямую $L_1:y=\frac{b}{a}x$ (рис. 3.2). Данная часть гиперболы определяется уравнением: $y=\frac{b}{a}\sqrt{x^2-a^2}$. На гиперболе возьмём любую точку $M(x,\ y)$, а на прямой L_1 соответствующую точку $P(x,\ Y)$. Эти точки имеют одинаковые

Рис. 3.2. К понятию асимптоты гиперболы

абсциссы, а их ординаты удовлетворяют уравнениям этих линий: $y = \frac{b}{a} \sqrt{x^2 - a^2}$, $Y = \frac{b}{a} x$.

Для разности Y - y имеем:

$$Y - y = \frac{b}{a}(x - \sqrt{x^2 - a^2}) = \frac{b}{a}\frac{(x - \sqrt{x^2 - a^2})(x + \sqrt{x^2 - a^2})}{x + \sqrt{x^2 - a^2}} = \frac{b}{a}\frac{a^2}{x + \sqrt{x^2 - a^2}} = \frac{ab}{x + \sqrt{x^2 - a^2}}, \text{ r.e. } Y - y = \frac{ab}{x + \sqrt{x^2 - a^2}}.$$

Из последнего равенства следует, что разность Y - y неограниченно уменьшается с увеличением абсциссы x. Поскольку |MP| = Y - y, то приходим к выводу, что длина отрезка MP неограниченно уменьшается с увеличением

абсциссы x. Обозначим через d расстояние точки M(x,y) до прямой L_1 , d=|MN| (рис. 3.2). Из свойства наклонной и перпендикуляра, опущенных из одной точки на прямую, имеем неравенство: 0<|MN|<|MP|. Отсюда заключаем, что расстояние d произвольной точки гиперболы M(x,y) до прямой L_1 неограниченно уменьшается с увеличением её абсциссы, т. е. с удалением точки M(x,y) по гиперболе от начала координат. Другими словами, по мере удаления (с увеличением x) точки M(x,y) от начала координат по гиперболе вправо (y>0) эта точка приближается сколь угодно близко к

Рис. 3.3. Построение гиперболы, прямые L_1 и L_2 — асимптоты гиперболы

прямой $L_{\scriptscriptstyle 1}$ (HO никогда пересекает ее - см. рис. 3.2 и свойство 2). Прямая L_1 называется асимптотой для ветви гиперболы, расположенной первом квадранте. свойства В силу симметрии гиперболы прямая L_1 является асимптотой и для ветви гиперболы, расположенной третьем квадранте, а прямая L_2 – еë асимптотой ветвей, ДЛЯ расположенных во втором четвёртом квадрантах. Асимптоты

гиперболы проходят через противолежащие вершины прямоугольника, ограниченного прямыми $x = \pm a$, $y = \pm b$, который называется *основным прямоугольником* гиперболы (рис. 3.3).

5. Эксцентриситет гиперболы.

Определение 3.2. Отношение расстояния между фокусами гиперболы к длине её действительной оси называется эксцентриситетом гиперболы и обозначается e.

По определению $e = \frac{2c}{2a} = \frac{c}{a}$, откуда следует, что e > 1, поскольку гиперболы c > a. При фиксированной действительной полуоси увеличением эксцентриситета увеличивается, поэтому увеличивается ($b = \sqrt{c^2 - a^2}$). При этом увеличивается угол наклона асимптоты $y = \frac{b}{a}x$ гиперболы оси И, гиперболы следовательно, ветви раскрываются (рис. 3.4).

6. *Каноническая* система координат. *Каноническое* уравнение гиперболы.

Рис. 3.4. Влияние эксцентриситета на форму гиперболы

Гипербола определяется уравнением (3.1), если система координат выбрана следующим образом: ось *Ох* проходит через фокусы гиперболы, а ось *Оу* — через её центр симметрии. Такая система координат называется *канонической* по отношению к данной гиперболе, а уравнение (3.1) называется *каноническим* уравнением гиперболы. В другой прямоугольной системе координат уравнение данной гиперболы не будет каноническим и может содержать члены с первыми степенями координат и их произведением.

Пример 3.1. Гипербола задана уравнением $9x^2 - 16y^2 = 144$. Найти её полуоси, координаты фокусов, эксцентриситет, уравнения асимптот. Изобразить гиперболу на чертеже.

Разделив обе части данного уравнения на 144, имеем равенство $\frac{x^2}{16} - \frac{y^2}{9} = 1$, сравнив которое с (3.1), заключаем, что $a^2 = 16$, $b^2 = 9$, откуда a = 4, b = 3, $c = \sqrt{a^2 + b^2} = 5$. Точки $F_1(-5,0)$, $F_2(5,0)$ фокусы гиперболы, а её эксцентриситет $e = \frac{c}{a} = \frac{5}{4}$. Асимптоты гиперболы L_1 и L_2 имеют уравнения $y = \pm \frac{3}{4}x$. Основной прямоугольник

Рис. 3.5. К примеру 3.1

гиперболы образован прямыми $x=\pm 4$, $y=\pm 3$, асимптоты L_1 и L_2 проходят через его вершины (рис. 3.5). На этом рисунке изображена данная гипербола, её действительная ось A_1A_2 , $A_1(-5,0)$, $A_2(5,0)$, отрезок B_1B_2 , называемый мнимой осью, $B_1(0,-4)$, $B_2(0,4)$, точки F_1 , F_2 — фокусы гиперболы. \blacktriangleleft

Уравнение (3.1) при
$$a=b$$
 принимает вид $\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$ или $x^2 - y^2 = a^2$ (3.2)

и определяет так называемую *равнобочную* гиперболу. Её асимптоты имеют уравнения $y=\pm x$ и являются биссектрисами координатных углов, а основной прямоугольник — квадратом. С равнобочной гиперболой читатель уже встречался в курсе элементарной математики, а именно, при изучении обратно пропорциональной зависимости. График этой функции является равнобочной гиперболой. Действительно, рассмотрим функцию $y=\frac{k}{x}$ в предположении k>0, и преобразуем последнее равенство к виду:

$$xy = k. (3.3)$$

Рассмотрим новую прямоугольную декартову систему координат Ox'y', которая получается из системы Oxy поворотом на угол $\frac{\pi}{4}$ вокруг

начала координат (рис. 3.6). Используя формулы (6.4) из главы 2 раздела 2, напишем формулы преобразования координат:

Рис. 3.6. Равнобочная гипербола как график обратно пропорциональной зависимости

$$y = \frac{k}{x}$$
$$x'^2 - y'^2 = a^2.$$

$$\begin{cases} x = x' \cos \frac{\pi}{4} - y' \sin \frac{\pi}{4}, \\ y = x' \sin \frac{\pi}{4} + y' \cos \frac{\pi}{4}, \end{cases}$$
 или
$$x = \frac{1}{\sqrt{2}}x' - \frac{1}{\sqrt{2}}y',$$
$$y = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'.$$

Подставим последние равенства в (3.3):

$$\left(\frac{1}{\sqrt{2}}x' - \frac{1}{\sqrt{2}}y'\right)\left(\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'\right) = k \quad \text{или}$$
$$x'^2 - y'^2 = 2k.$$

Положив в последнем уравнении $2k = a^2$, приходим к уравнению (3.4)

Сравнив это равенство с уравнением (3.2), заключаем, что уравнение (3.4) определяет равнобочную гиперболу. Она изображена на рис. 3.6,