[320] Parallelism

Department of Computer Sciences University of Wisconsin-Madison

Parallelism: doing multiple things at once

Other Terms Today: process, thread, instruction pointer,

state (running, ready, blocked), CPU, GPU, core

Outline:

- Mental Model
- Two problems
- Parallelism: Thread, Process, GPU

Mental Model: Tasks and Cores

One Python Program Running

instruction pointer belongs to a *thread* within the process

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Wasted Compute Resources: Two Problems

Problem 1: not enough distinct tasks to utilize all cores

Multi-Core Processor (CPU)

Running: 1

Ready:

Problem 2: some operations requires waiting (task is "blocked")

Solution: Parallelism

1 thread-level parallelism

very complicated, not covered in detail

process-level parallelism

GPU parallelism

covered in CS 320

Threads give us multiple instruction pointers in a process, allowing us to execute multiple parts of the code, at the same time!

Multi-Core Processor (CPU)

In general, threads help:

- use multiple cores
- · do useful work when threads are blocking

Core (CPU) (CPU)

Multi-Core Processor (CPU)

Running: 1, 2

Ready: 3, 4

Blocked:

In general, threads help:

- use multiple cores
- do useful work when threads are blocking

Core (CPU) (CPU)

Multi-Core Processor (CPU)

Running: 1, 3

Ready: 4

Blocked: 2

recommendation: don't use threads unless you learn a LOT more about multi-threading than covered in CS 320

Multi-Core Processor (CPU)

Example: two countdown threads

```
import time
from threading import Thread
def f(name, n):
    for i in range(n):
        print(name, n-i)
        time.sleep(1)
# f("A", 3)
# f("B", 5)
t1 = Thread(target=f, args=("A", 3))
t2 = Thread(target=f, args=("B", 5))
t1.start()
t2.start()
t1.join()
t2.join()
```

Running: 1
Ready: 3, 4
Blocked: 2

Solution: Parallelism

thread-level parallelism

very complicated, not covered in detail

2 process-level parallelism

covered in CS 320

GPU parallelism

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Multi-Core Processor (CPU)

Solution: Parallelism

thread-level parallelism

very complicated, not covered in detail

process-level parallelism

3 GPU parallelism

covered in CS 320

(3) GPU Parallelism

few cores that are fast, flexible, independent

https://en.wikipedia.org/wiki/Nvidia_Tesla

many cores that are slow, float-optimized, coordinated

GPU Limitations

limitation 1: need to move data back and forth to GPU

GPU Limitations

limitation 1: need to move data back and forth to GPU

GPU Limitations

limitation 1: need to move data back and forth to GPU

great use case: matrix multiplication

$$\begin{bmatrix} row1 \\ row2 \\ \dots \\ rowN \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} output1 \\ output2 \\ \dots \\ outputN \end{bmatrix}$$

multiply row 1 of matrix by vector, multiply row 2 of matrix by vector, multiply row 3 of matrix by vector,

• • •

GPU vs. CPU: Cost Comparison

Specifications	Intel® Core™ i7-6900K Processor Extreme Ed.	
Base Clock Frequency	3.2 GHz	< 1.5 GHz
Cores	8	3584
Memory Bandwidth	64 GB/s	484 GB/s
Floating-Point Calculations	409 GFLOPS	11300 GFLOPS
Cost	~ \$1000.00	~ \$700.00

https://sebastianraschka.com/books.html

The GPU is 30% cheaper but 28x faster at floating-point operations!

PyTorch

```
import numpy as np
import torch
A = np.random.normal(size=(1000,20))
x = np.random.normal(size=(20,1))
A = torch.from_numpy(A).to("cuda") # GPU
x = torch.from_numpy(x).to("cuda") # GPU
b = A @ x
b = b.to("cpu")
b
```

- CUDA: Compute Unified Device Architecture
- pytorch tensor is like numpy array
- .to("cuda") moves data to GPU
- .to("cpu") moves output back to CPU

Parallelism

1 thread-level parallelism

process-level parallelism

3 GPU parallelism