PLP - 4 TOPIC 04 — THE CONDITIONAL

Demirbaş & Rechnitzer

CONDITIONAL

CONDITIONAL

Many interesting mathematical statements are conditionals

If f(x) is differentiable then f(x) is continuous

DEFINITION: CONDITIONAL.

Given P and Q, the conditional is the statement "if P then Q" and is denoted " $P \implies Q$ ".

Also called implication and the hypothesis is P, and the conclusion is Q.

Implication $P \implies Q$ is true except when (P,Q) = (T,F).

- please use correct notation " \rightarrow " is not " \Longrightarrow "
- ullet order matters " $Q \implies P$ " is **not** " $P \implies Q$ "
- ullet Read " $P \implies Q$ " as "If P then Q", "P implies Q", "Whenever P then also Q".

TRUTH TABLE OF THE CONDITIONAL

Important to *memorise* this table

Note that

- ullet When Q is true, the implication is always true
- ullet When P is false, the implication is always true

EXAMPLES

P	Q	$P \Longrightarrow$	Q
Т	Т	Т	1
Т	F	F	F
F	Т	Т	
F	F	T	T

- If 8 is even then 17 is prime true
- If 8 is even then 4 is prime false
- If 4 is prime then 8 is even true (but...)
- If 6 is prime then 19 is even true (but...)

EXPLAINING THE TABLE

it rains	roads get wet	If it rains then roads get wet
Т	Т	T
Т	F	F
F	Т	T
F	F	T

Do one by one:

- (T,T): it rained and roads got wet implication is true.
- (T,F): it rained and but roads are dry *it is false!*
- (F,T): it is sunny and roads got wet implication is not false
- (F,F): it is sunny and roads are dry implication is not false

Last two mean that implication is true unless you prove it false.

WHAT DO WE NEED TO PROVE?

When we prove an implication " $P \implies Q$ " we want to show it is always true and never false.

- ullet When P is false no work needed we know " $P \implies Q$ " is true
- When P is true work required truth of " $P \implies Q$ " depends on truth of Q In a proof we do not have to consider the case "P is false".

Structure of most proofs:

- Assume the **hypothesis** is true
- Do "stuff"
- Show that the conclusion must also be true
- So the case $T \implies F$ cannot happen

Since the implication cannot be false, it must be true!

WHAT ABOUT OPEN SENTENCES?

A note on proofs of conditionals containing open sentences:

If f(x) is continuous then f(x) is differentiable.

We still want this true no matter what, so

- we assume the hypothesis is true assume that f(x) is any continuous function
- then work our way to showing that f(x) must be differentiable

This example is false: f(x) = |x| is continuous, but it is not differentiable.

3) (a) P= {n,y∈Z:3n+7y9 Assum we introduced New cans worth 327 (b) All numbers <- what nos. in this Write In set builder Given MEZ let - 2m & g=m notation the set of prices object on be Set Then, 3K+7 = -6m +7m = M charged bo, mec C= Z (x) P= {x,y \ Z: 2n+6y3 \ Frove of like (b) gcd (3,7)= (gcd (2,6)= 2 New coins of 2 & 6