| Family Name |
|-------------|
| Given Name  |
| Student No. |
| Signature   |

E 11 3.7

#### THE UNIVERSITY OF NEW SOUTH WALES

## **School of Electrical Engineering & Telecommunications**

#### FINAL EXAMINATION

#### **Session 2, 2015**

# **ELEC1111 Electrical and Telecommunications Engineering**

TIME ALLOWED: 3 hours
TOTAL MARKS: 100
TOTAL NUMBER OF QUESTIONS: 5

## THIS EXAM CONTRIBUTES 60% TO THE TOTAL COURSE ASSESSMENT

Reading Time: 10 minutes.

This paper contains 7 pages.

Candidates must **ATTEMPT ALL** questions.

Answer each question in a separate answer book.

Marks for each question are indicated beside the question.

This paper **MAY NOT** be retained by the candidate.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may** only be used for drawing, sketching or graphical work.

#### QUESTION 1 [20 marks]

(i) [6 marks] Find the equivalent capacitance at terminals a-b of the circuit in Figure 1. All capacitances are in  $\mu$ F.



Figure 1

- (ii) [7 marks] For the circuit shown in Figure 2:
  - a. Find the indicated currents  $I_1$ ,  $I_2$  and  $I_3$ .
  - b. Find the voltage  $V_{ab}$ .
  - c. Find the total power dissipated by the resistors.



Figure 2

(iii) [7 marks] For the circuit shown in Figure 3, use nodal analysis to find the nodal voltages  $V_a$  and  $V_b$ .



Figure 3

## QUESTION 2 [20 marks]

(i) [6 marks] For the circuit shown in Figure 4, use mesh analysis to calculate the current  $I_I$ .



(ii) [8 marks] For the circuit shown in Figure 5 use the principle of superposition to find the voltage  $v_x$ .



(iii) [6 marks] Find and draw the Thevenin equivalent circuit with respect to the terminals A-B for the circuit in Figure 6.



#### QUESTION 3 [20 marks]

- (i) [4 marks] For the circuit shown in Figure 7:
  - a. Determine the current  $I_C$  after the circuit has reached steady state.
  - b. Determine the capacitor voltages  $V_{CI}$ ,  $V_{C2}$  and  $V_{C3}$  after the circuit has reached steady state.



(ii) **[6 marks]** Refer to the circuit shown in Figure 8. The switch has been closed for a long time before opening at time t=0. Calculate the values  $i_R(0^+)$ ,  $i_L(0^+)$  and  $i_C(0^+)$ , immediately after the switch opens. Calculate the values  $i_R(\infty)$ ,  $i_L(\infty)$  and  $i_C(\infty)$ , after the switch has been open for a long time.



Figure 8

QUESTION 3 CONTINUES ON NEXT PAGE

(iii) [10 marks] In the circuit shown in Figure 9, switch  $S_1$  is closed at t=0 and switch  $S_2$  is closed at t=4. Find the current i(t) for t>0.



Figure 9

# QUESTION 4 [20 marks]

(i) [10 marks] Determine  $v_0$  in the circuit shown in Figure 10:



Figure 10

(ii) [5 marks] Find the input admittance,  $Y_{in}$ , of the circuit shown in Figure 11 at  $\omega = 100 \text{ rad/s}$ . Express answer in polar form.



Figure 11

(iii) [5 marks] For Figure 12,  $i_1 = 100\sin(50t + 100^\circ)$  A and  $i_T = 50\sin(50t - 40^\circ)$  A. Determine phasors  $I_1$ ,  $I_2$  and  $I_T$  and draw the phasor diagram showing  $I_1$ ,  $I_2$  and  $I_T$ .



Figure 12

# **QUESTION 5 [20 marks]**

(i) [8 marks] Calculate the voltage  $v_0$  after the op amp circuit of Figure 13 has reached steady state.



Figure 13

(ii) [6 marks] Draw the logic diagram which represents the function of this logic equation:

$$Output = \overline{A}.B.D + B.\overline{C} + \overline{D}$$

(iii) **[6 marks]** For the logic circuit shown in Figure 14, draw up a truth table that describes the operation of this circuit.



Figure 14

#### **END OF PAPER**