$12n_{0823} \ (K12n_{0823})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 257u^{24} - 3084u^{23} + \dots + 64b + 37824, \ -77u^{24} + 410u^{23} + \dots + 128a + 14912, \\ u^{25} - 12u^{24} + \dots + 640u - 128 \rangle \\ I_2^u &= \langle -10a^5u^2 + 16a^4u^2 + \dots - 109a + 76, \\ u^6 - u^4u^2 - 2u^4u - 2u^3u^2 - 2u^4 - 3u^3u + u^2u^2 - u^3 + u^2u + 4u^2u - u^2 + 7uu - 3u^2 + 4u - 4u - 2, \\ u^3 + u^2 - 1 \rangle \\ I_3^u &= \langle 2u^{13} + 7u^{12} + u^{11} - 26u^{10} - 32u^9 + 24u^8 + 74u^7 + 23u^6 - 63u^5 - 51u^4 + 16u^3 + 26u^2 + b - 5, \\ 5u^{14} + 17u^{13} + \dots + u - 5, \\ u^{15} + 3u^{14} - u^{13} - 13u^{12} - 11u^{11} + 18u^{10} + 34u^9 - u^8 - 39u^7 - 19u^6 + 19u^5 + 17u^4 - 4u^3 - 6u^2 + 1 \rangle \\ I_4^u &= \langle -44a^7u^2 - 73a^6u^2 + \dots - 213a + 245, \ -2a^6u^2 - a^5u^2 + \dots + 7a + 13, \ u^3 + u^2 - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 82 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 257u^{24} - 3084u^{23} + \dots + 64b + 37824, \ -77u^{24} + 410u^{23} + \dots + 128a + 14912, \ u^{25} - 12u^{24} + \dots + 640u - 128 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{77}{128}u^{24} - \frac{205}{64}u^{23} + \dots + 432u - \frac{233}{2} \\ -\frac{257}{64}u^{24} + \frac{771}{16}u^{23} + \dots + \frac{4961}{2}u - 591 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{77}{128}u^{24} - \frac{205}{64}u^{23} + \dots + 432u - \frac{233}{2} \\ -\frac{853}{64}u^{24} + \frac{579}{4}u^{23} + \dots + \frac{9947}{2}u - 1105 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{77}{128}u^{24} - \frac{801}{64}u^{23} + \dots + \frac{9947}{2}u - 1105 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{77}{128}u^{24} - \frac{801}{64}u^{23} + \dots - 1547u + \frac{795}{2} \\ \frac{715}{64}u^{24} - \frac{1849}{64}u^{23} + \dots - \frac{5931}{2}u + 601 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{16}u^{24} + \frac{5}{8}u^{23} + \dots + 4u + \frac{1}{2} \\ -\frac{1}{8}u^{23} + \frac{5}{4}u^{22} + \dots - \frac{63}{2}u + 8 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{15}{16}u^{24} + \frac{167}{16}u^{23} + \dots + \frac{1391}{4}u - 71 \\ -\frac{15}{16}u^{24} + \frac{77}{16}u^{23} + \dots + 128u - 16 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{65}{8}u^{24} - \frac{1579}{16}u^{23} + \dots - 5798u + 1396 \\ \frac{333}{16}u^{24} - \frac{3509}{16}u^{23} + \dots - 5955u + 1208 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{41}{16}u^{24} + \frac{455}{16}u^{23} + \dots + \frac{3727}{4}u - 191 \\ -\frac{41}{16}u^{24} + \frac{199}{169}u^{23} + \dots - 40u + 56 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{421}{64}u^{24} + \frac{4673}{64}u^{23} + \dots + \frac{11579}{4}u - 663 \\ -\frac{423}{64}u^{24} + \frac{1921}{32}u^{23} + \dots + 110u + 70 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{553}{16}u^{24} - \frac{3059}{8}u^{23} + \cdots - 15300u + 3482$$

Crossings	u-Polynomials at each crossing
c_1	$u^{25} - 3u^{24} + \dots + 2u + 1$
c_{2}, c_{5}	$u^{25} + 12u^{24} + \dots + 640u + 128$
c_3, c_4, c_8 c_{10}	$u^{25} - u^{24} + \dots + 2u - 1$
c_6, c_{11}, c_{12}	$u^{25} + 6u^{24} + \dots + 40u + 8$
c_7	$u^{25} - 6u^{24} + \dots - 56u + 464$
<i>c</i> ₉	$u^{25} + u^{24} + \dots - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{25} - 27y^{24} + \dots + 54y - 1$
c_2, c_5	$y^{25} - 12y^{24} + \dots + 114688y - 16384$
c_3, c_4, c_8 c_{10}	$y^{25} - 5y^{24} + \dots + 18y - 1$
c_6, c_{11}, c_{12}	$y^{25} + 22y^{24} + \dots + 416y - 64$
c_7	$y^{25} - 2y^{24} + \dots - 995392y - 215296$
<i>c</i> ₉	$y^{25} - 23y^{24} + \dots + 66y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.439994 + 0.950507I		
a = 0.449056 + 0.849462I	-3.00593 - 0.74051I	5.05508 + 0.18570I
b = 0.905847 + 0.107899I		
u = 0.439994 - 0.950507I		
a = 0.449056 - 0.849462I	-3.00593 + 0.74051I	5.05508 - 0.18570I
b = 0.905847 - 0.107899I		
u = 0.617552 + 0.911770I		
a = -0.520485 - 0.949952I	-9.79766 + 1.38415I	2.19427 - 0.69570I
b = -1.202860 - 0.092876I		
u = 0.617552 - 0.911770I		
a = -0.520485 + 0.949952I	-9.79766 - 1.38415I	2.19427 + 0.69570I
b = -1.202860 + 0.092876I		
u = -0.155216 + 0.814496I		
a = 0.569549 + 0.594113I	-2.49837 - 1.57308I	4.64082 + 4.61190I
b = 0.482434 + 0.018405I		
u = -0.155216 - 0.814496I		
a = 0.569549 - 0.594113I	-2.49837 + 1.57308I	4.64082 - 4.61190I
b = 0.482434 - 0.018405I		
u = 0.473172 + 1.138930I		
a = -0.327562 - 0.860505I	-1.79770 - 4.91771I	8.41927 + 6.28509I
b = -0.840347 - 0.335702I		
u = 0.473172 - 1.138930I		
a = -0.327562 + 0.860505I	-1.79770 + 4.91771I	8.41927 - 6.28509I
b = -0.840347 + 0.335702I		
u = 1.097810 + 0.681530I		
a = -0.926077 - 0.303192I	-8.25231 + 4.52896I	4.39857 - 4.77646I
b = -1.55305 + 0.96565I		
u = 1.097810 - 0.681530I		
a = -0.926077 + 0.303192I	-8.25231 - 4.52896I	4.39857 + 4.77646I
b = -1.55305 - 0.96565I		

		Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
_	u =	0.569528 + 1.179720I		
	a =	0.270690 + 0.922850I	-7.44241 - 8.72137I	5.19162 + 6.35185I
	b =	0.887146 + 0.468456I		
_	u =	0.569528 - 1.179720I		
	a =	0.270690 - 0.922850I	-7.44241 + 8.72137I	5.19162 - 6.35185I
_	b =	0.887146 - 0.468456I		
	u =	1.32152		
	a = -	-0.469575	5.64216	30.1590
_	b = -	-1.93007		
	u =	1.306160 + 0.296832I		
	a =	0.548745 + 0.102029I	1.99285 + 5.34908I	13.9471 - 13.2059I
_	b =	1.63919 - 0.62194I		
	u =	1.306160 - 0.296832I		
	a =	0.548745 - 0.102029I	1.99285 - 5.34908I	13.9471 + 13.2059I
_	b =	1.63919 + 0.62194I		
	u =	1.214200 + 0.704239I		
	a =	0.907328 + 0.113165I	-0.61951 + 6.87942I	8.00000 - 4.38169I
_	b =	1.41310 - 1.02138I		
	u =	1.214200 - 0.704239I		
	a =	0.907328 - 0.113165I	-0.61951 - 6.87942I	8.00000 + 4.38169I
_	b =	1.41310 + 1.02138I		
	u =	1.22071 + 0.77249I		
	a = -	-0.990264 - 0.040589I	0.51235 + 11.71780I	8.00000 - 8.48371I
_	b = -	-1.37746 + 1.13069I		
	u =	1.22071 - 0.77249I		
	a = -	-0.990264 + 0.040589I	0.51235 - 11.71780I	8.00000 + 8.48371I
-		-1.37746 - 1.13069I		
	u =	1.20009 + 0.80742I		
	a =	1.066910 + 0.022071I	-5.4265 + 15.7509I	8.00000 - 8.57855I
-	b =	1.40118 - 1.21648I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.20009 - 0.80742I		
a = 1.066910 - 0.022071I	-5.4265 - 15.7509I	8.00000 + 8.57855I
b = 1.40118 + 1.21648I		
u = -0.338292		
a = -1.19055	0.647725	15.2540
b = -0.300946		
u = -1.66374		
a = 0.444714	6.10335	20.9380
b = 0.277763		
u = -1.64375 + 0.30866I		
a = -0.440186 - 0.060519I	2.17466 - 4.23595I	0
b = -0.278561 - 0.018758I		
u = -1.64375 - 0.30866I		
a = -0.440186 + 0.060519I	2.17466 + 4.23595I	0
b = -0.278561 + 0.018758I		

$$\text{II. } I_2^u = \\ \langle -10a^5u^2 + 16a^4u^2 + \dots - 109a + 76, \ -a^4u^2 - 2a^3u^2 + \dots + 4a - 2, \ u^3 + u^2 - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.169492a^{5}u^{2} - 0.271186a^{4}u^{2} + \dots + 1.84746a - 1.28814 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.169492a^{5}u^{2} - 0.271186a^{4}u^{2} + \dots + 1.84746a - 1.28814 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.135593a^{5}u^{2} + 0.0169492a^{4}u^{2} + \dots + 0.6677966a + 0.830508 \\ -0.457627a^{5}u^{2} - 0.0677966a^{4}u^{2} + \dots + 0.711864a - 1.32203 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0677966a^{5}u^{2} + 0.491525a^{4}u^{2} + \dots + 0.661017a + 1.08475 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.203390a^{5}u^{2} - 0.525424a^{4}u^{2} + \dots + 1.01695a + 1.25424 \\ 0.610169a^{5}u^{2} + 0.423729a^{4}u^{2} + \dots + 1.05085a + 0.762712 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.271186a^{5}u^{2} + 1.03390a^{4}u^{2} + \dots + 1.35593a + 0.661017 \\ -a^{5}u^{2} - a^{3}u^{2} + \dots - a^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0677966a^{5}u^{2} - 0.508475a^{4}u^{2} + \dots + 0.338983a + 2.08475 \\ -0.0169492a^{5}u^{2} + 0.627119a^{4}u^{2} + \dots + 0.915254a + 0.728814 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.237288a^{5}u^{2} + 0.220339a^{4}u^{2} + \dots + 1.18644a - 1.20339 \\ 1.67797a^{5}u^{2} - 0.0847458a^{4}u^{2} + \dots + 1.389831a + 0.847458 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{152}{59}a^5u^2 + \frac{40}{59}a^4u^2 + \dots \frac{184}{59}a + \frac{1134}{59}$

Crossings	u-Polynomials at each crossing
c_1	$u^{18} - 2u^{17} + \dots - 252u - 27$
c_{2}, c_{5}	$(u^3 - u^2 + 1)^6$
c_3, c_4, c_8 c_{10}	$u^{18} - 3u^{16} + \dots + 6u - 11$
c_6, c_{11}, c_{12}	$(u^3 + 2u + 1)^6$
c_7	$(u^3 + 3u^2 + 5u + 2)^6$
<i>c</i> ₉	$u^{18} + u^{16} + \dots - 52u - 43$

Crossings	Riley Polynomials at each crossing
c_1	$y^{18} - 6y^{17} + \dots - 81000y + 729$
c_{2}, c_{5}	$(y^3 - y^2 + 2y - 1)^6$
c_3, c_4, c_8 c_{10}	$y^{18} - 6y^{17} + \dots - 1136y + 121$
c_6, c_{11}, c_{12}	$(y^3 + 4y^2 + 4y - 1)^6$
c_7	$(y^3 + y^2 + 13y - 4)^6$
<i>c</i> ₉	$y^{18} + 2y^{17} + \dots - 17840y + 1849$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = -0.927224 - 0.015489I	2.69787 - 2.82812I	17.1261 + 2.9794I
b = -0.407238 - 0.969235I		
u = -0.877439 + 0.744862I		
a = 1.104550 - 0.072177I	-7.53006 + 2.30982I	5.17231 - 0.22957I
b = 1.63644 + 0.28753I		
u = -0.877439 + 0.744862I		
a = 0.187603 + 1.191150I	-7.53006 + 2.30982I	5.17231 - 0.22957I
b = -0.734633 + 0.080557I		
u = -0.877439 + 0.744862I		
a = -1.241110 - 0.215785I	-7.53006 - 7.96606I	5.17231 + 6.18847I
b = -1.66753 - 0.94699I		
u = -0.877439 + 0.744862I		
a = 0.346778 - 1.240900I	-7.53006 - 7.96606I	5.17231 + 6.18847I
b = 0.918807 + 0.323963I		
u = -0.877439 + 0.744862I		
a = 0.529395 + 0.353208I	2.69787 - 2.82812I	17.1261 + 2.9794I
b = 0.254152 + 1.224170I		
u = -0.877439 - 0.744862I		
a = -0.927224 + 0.015489I	2.69787 + 2.82812I	17.1261 - 2.9794I
b = -0.407238 + 0.969235I		
u = -0.877439 - 0.744862I		
a = 1.104550 + 0.072177I	-7.53006 - 2.30982I	5.17231 + 0.22957I
b = 1.63644 - 0.28753I		
u = -0.877439 - 0.744862I		
a = 0.187603 - 1.191150I	-7.53006 - 2.30982I	5.17231 + 0.22957I
b = -0.734633 - 0.080557I		
u = -0.877439 - 0.744862I		
a = -1.241110 + 0.215785I	-7.53006 + 7.96606I	5.17231 - 6.18847I
b = -1.66753 + 0.94699I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 - 0.744862I		
a = 0.346778 + 1.240900I	-7.53006 + 7.96606I	5.17231 - 6.18847I
b = 0.918807 - 0.323963I		
u = -0.877439 - 0.744862I		
a = 0.529395 - 0.353208I	2.69787 + 2.82812I	17.1261 - 2.9794I
b = 0.254152 - 1.224170I		
u = 0.754878		
a = 0.737750 + 0.212805I	-3.39248 + 5.13794I	11.70158 - 3.20902I
b = 0.61766 + 2.03584I		
u = 0.754878		
a = 0.737750 - 0.212805I	-3.39248 - 5.13794I	11.70158 + 3.20902I
b = 0.61766 - 2.03584I		
u = 0.754878		
a = -0.90888 + 1.32075I	-3.39248 - 5.13794I	11.70158 + 3.20902I
b = -0.090652 - 1.376170I		
u = 0.754878		
a = -0.90888 - 1.32075I	-3.39248 + 5.13794I	11.70158 - 3.20902I
b = -0.090652 + 1.376170I		
u = 0.754878		
a = -1.94302	6.83546	23.6550
b = -1.43643		
u = 0.754878		
a = 2.28528	6.83546	23.6550
b = 0.382411		

$$I_3^u = \langle 2u^{13} + 7u^{12} + \dots + b - 5, \ 5u^{14} + 17u^{13} + \dots + a - 5, \ u^{15} + 3u^{14} + \dots - 6u^2 + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -5u^{14} - 17u^{13} + \dots + 4u + 5 \\ -2u^{13} - 7u^{12} + \dots - 26u^{2} + 5 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -5u^{14} - 17u^{13} + \dots + 4u + 5 \\ 3u^{14} + 8u^{13} + \dots + 5u + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -7u^{14} - 24u^{13} + \dots + 9u + 5 \\ u^{14} + 2u^{13} + \dots - 2u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{14} + 4u^{13} + \dots - 10u - 6 \\ u^{14} + 3u^{13} + \dots - 4u^{2} - 5u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 5u^{14} + 16u^{13} + \dots - 17u - 8 \\ u^{13} + 3u^{12} + \dots - 4u - 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -9u^{14} - 32u^{13} + \dots + 15u + 15 \\ -4u^{14} - 14u^{13} + \dots + 10u + 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 6u^{14} + 19u^{13} + \dots - 21u - 8 \\ u^{14} + 4u^{13} + \dots - 7u - 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3u^{14} + 13u^{13} + \dots - 3u - 4 \\ 3u^{14} + 9u^{13} + \dots - u - 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$8u^{14} + 21u^{13} - 11u^{12} - 84u^{11} - 54u^{10} + 113u^9 + 166u^8 - 35u^7 - 173u^6 - 38u^5 + 82u^4 + 34u^3 - 32u^2 - 6u + 9$$

Crossings	u-Polynomials at each crossing
c_1	$u^{15} + 3u^{14} + \dots + 4u^2 - 1$
c_2	$u^{15} + 3u^{14} + \dots - 6u^2 + 1$
c_{3}, c_{8}	$u^{15} + u^{14} + \dots + 6u^2 - 1$
c_4, c_{10}	$u^{15} - u^{14} + \dots - 6u^2 + 1$
<i>C</i> ₅	$u^{15} - 3u^{14} + \dots + 6u^2 - 1$
<i>c</i> ₆	$u^{15} + u^{14} + \dots - 3u^2 + 1$
	$u^{15} - u^{14} + \dots - 2u + 1$
<i>c</i> ₉	$u^{15} + u^{14} + \dots - 4u^2 + 1$
c_{11}, c_{12}	$u^{15} - u^{14} + \dots + 3u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} + 7y^{14} + \dots + 8y - 1$
c_{2}, c_{5}	$y^{15} - 11y^{14} + \dots + 12y - 1$
c_3, c_4, c_8 c_{10}	$y^{15} - 15y^{14} + \dots + 12y - 1$
c_6, c_{11}, c_{12}	$y^{15} + 15y^{14} + \dots + 6y - 1$
c_7	$y^{15} - 5y^{14} + \dots + 2y - 1$
<i>C</i> 9	$y^{15} + 3y^{14} + \dots + 8y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.772963 + 0.597189I		
a = -0.827811 - 0.016279I	1.77519 - 3.34740I	8.50075 + 8.05329I
b = -0.343553 - 1.218360I		
u = -0.772963 - 0.597189I		
a = -0.827811 + 0.016279I	1.77519 + 3.34740I	8.50075 - 8.05329I
b = -0.343553 + 1.218360I		
u = 1.21630		
a = -1.10982	8.60341	19.2250
b = -0.609066		
u = 1.216020 + 0.268411I		
a = 1.037430 - 0.282211I	4.59696 + 3.78442I	13.45506 - 3.52568I
b = 0.591253 - 0.100818I		
u = 1.216020 - 0.268411I		
a = 1.037430 + 0.282211I	4.59696 - 3.78442I	13.45506 + 3.52568I
b = 0.591253 + 0.100818I		
u = -0.741693 + 1.001970I		
a = 0.645240 + 0.343179I	-1.02527 - 2.06106I	10.76904 + 5.89866I
b = 0.168411 + 0.864224I		
u = -0.741693 - 1.001970I		
a = 0.645240 - 0.343179I	-1.02527 + 2.06106I	10.76904 - 5.89866I
b = 0.168411 - 0.864224I		
u = -0.581097 + 0.353670I		
a = 1.215450 - 0.514042I	-4.31889 - 5.65349I	3.28441 + 7.61935I
b = 0.12631 + 1.63261I		
u = -0.581097 - 0.353670I	4 04 000 - 5 050 / 5	0.00444 = 010000
a = 1.215450 + 0.514042I	-4.31889 + 5.65349I	3.28441 - 7.61935I
b = 0.12631 - 1.63261I		
u = 0.661672		
a = 2.39502	6.37007	2.43460
b = 0.953687		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.577868 + 0.178736I		
a = -2.47388 + 1.02720I	1.98344 - 1.67719I	4.13214 - 1.25424I
b = -0.998690 + 0.209089I		
u = 0.577868 - 0.178736I		
a = -2.47388 - 1.02720I	1.98344 + 1.67719I	4.13214 + 1.25424I
b = -0.998690 - 0.209089I		
u = -1.41521		
a = 0.382739	5.30168	4.34420
b = 1.30454		
u = -1.42952 + 0.46018I		
a = -0.430407 - 0.024659I	1.65539 - 4.71343I	7.35653 + 5.31534I
b = -0.868313 - 0.551235I		
u = -1.42952 - 0.46018I		
a = -0.430407 + 0.024659I	1.65539 + 4.71343I	7.35653 - 5.31534I
b = -0.868313 + 0.551235I		

IV.
$$I_4^u = \langle -44a^7u^2 - 73a^6u^2 + \dots - 213a + 245, -2a^6u^2 - a^5u^2 + \dots + 7a + 13, u^3 + u^2 - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.273292a^{7}u^{2} + 0.453416a^{6}u^{2} + \dots + 1.32298a - 1.52174 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.273292a^{7}u^{2} + 0.453416a^{6}u^{2} + \dots + 1.32298a - 1.52174 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.677019a^{7}u^{2} - 0.645963a^{6}u^{2} + \dots + 0.745342a + 1.56522 \\ -0.658385a^{7}u^{2} - 0.683230a^{6}u^{2} + \dots + 1.40373a - 0.652174 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.36025a^{7}u^{2} + 0.279503a^{6}u^{2} + \dots + 0.0621118a - 0.869565 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.02484a^{7}u^{2} - 1.95031a^{6}u^{2} + \dots + 2.78882a + 0.956522 \\ -1.16149a^{7}u^{2} - 0.677019a^{6}u^{2} + \dots + 0.372671a + 1.21739 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.72671a^{7}u^{2} - 2.54658a^{6}u^{2} + \dots + 5.32298a + 2.47826 \\ 0.00621118a^{7}u^{2} - 2.01242a^{6}u^{2} + \dots + 2.55280a - 1.73913 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.608696a^{7}u^{2} - 2.21739a^{6}u^{2} + \dots + 3.17391a - 0.434783 \\ -\frac{15}{7}a^{7}u^{2} - \frac{5}{7}a^{6}u^{2} + \dots + \frac{9}{7}a + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.950311a^{7}u^{2} + 1.90062a^{6}u^{2} + \dots - 2.57764a - 2.91304 \\ 0.124224a^{7}u^{2} + 3.75155a^{6}u^{2} + \dots - 4.94410a - 0.782609 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes $= -\frac{52}{23}a^7u^2 \frac{80}{23}a^6u^2 + \cdots + \frac{248}{23}a + \frac{254}{23}a^6u^2 + \cdots$

Crossings	u-Polynomials at each crossing
c_1	$u^{24} - 5u^{23} + \dots - 20u + 109$
c_{2}, c_{5}	$(u^3 - u^2 + 1)^8$
c_3, c_4, c_8 c_{10}	$u^{24} + u^{23} + \dots - 24u + 7$
c_6, c_{11}, c_{12}	$(u^4 - u^3 + 2u^2 - 2u + 1)^6$
c_7	$(u^2 - u + 1)^{12}$
<i>c</i> ₉	$u^{24} + 3u^{23} + \dots + 20u + 19$

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} + 9y^{23} + \dots + 27504y + 11881$
c_{2}, c_{5}	$(y^3 - y^2 + 2y - 1)^8$
c_3, c_4, c_8 c_{10}	$y^{24} - 15y^{23} + \dots - 716y + 49$
c_6, c_{11}, c_{12}	$(y^4 + 3y^3 + 2y^2 + 1)^6$
c_7	$(y^2 + y + 1)^{12}$
<i>c</i> ₉	$y^{24} + 5y^{23} + \dots + 1424y + 361$

Solutions to I_4^u	$ \sqrt{-1}(\text{vol} + \sqrt{-1}CS) $	Cusp shape
u = -0.877439 + 0.744862I		
a = -0.040773 - 0.997477I	-1.37919 - 0.79824I	8.49024 - 0.48465I
b = 0.617792 + 0.097671I		
u = -0.877439 + 0.744862I		
a = 0.964624 - 0.327636I	-1.37919 - 4.85801I	8.49024 + 6.44355I
b = 0.525863 + 0.945972I		
u = -0.877439 + 0.744862I		
a = -1.039300 - 0.058321I	-1.37919 - 0.79824I	8.49024 - 0.48465I
b = -1.39358 - 0.47039I		
u = -0.877439 + 0.744862I		
a = 1.033460 + 0.263154I	-1.37919 - 0.79824I	8.49024 - 0.48465I
b = 0.303126 + 0.916009I		
u = -0.877439 + 0.744862I		
a = -0.254667 + 1.040960I	-1.37919 - 4.85801I	8.49024 + 6.44355I
b = -0.745244 - 0.312818I		
u = -0.877439 + 0.744862I	1 05010 4 050017	0.40004 . 0.44055
a = -0.747266 - 0.522075I	-1.37919 - 4.85801I	8.49024 + 6.44355I
b = -0.56367 - 1.44433I $u = -0.877439 + 0.744862I$		
	1 27010 4 050017	0.40004 + 0.442551
a = 1.121100 + 0.196208I	$\begin{bmatrix} -1.37919 - 4.85801I \end{bmatrix}$	8.49024 + 6.44355I
b = 1.43883 + 0.82244I $u = -0.877439 + 0.744862I$		
a = -0.159736 - 0.339671I	$\begin{bmatrix} -1.37919 - 0.79824I \end{bmatrix}$	8.49024 - 0.48465I
b = 0.154539 - 1.116840I	-1.37313 - 0.730241	0.43024 - 0.404001
$\frac{v = 0.134339 - 1.110840I}{u = -0.877439 - 0.744862I}$		
a = -0.040773 + 0.997477I	$\begin{bmatrix} -1.37919 + 0.79824I \end{bmatrix}$	8.49024 + 0.48465I
b = 0.617792 - 0.097671I	1.57010 5.700211	0.10021 0.101001
$\frac{v = 0.877439 - 0.744862I}{u = -0.877439 - 0.744862I}$		
a = 0.964624 + 0.327636I	$\begin{bmatrix} -1.37919 + 4.85801I \end{bmatrix}$	8.49024 - 6.44355I
b = 0.525863 - 0.945972I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 - 0.744862I		
a = -1.039300 + 0.058321I	-1.37919 + 0.79824I	8.49024 + 0.48465I
b = -1.39358 + 0.47039I		
u = -0.877439 - 0.744862I		
a = 1.033460 - 0.263154I	-1.37919 + 0.79824I	8.49024 + 0.48465I
b = 0.303126 - 0.916009I		
u = -0.877439 - 0.744862I		
a = -0.254667 - 1.040960I	-1.37919 + 4.85801I	8.49024 - 6.44355I
b = -0.745244 + 0.312818I		
u = -0.877439 - 0.744862I		
a = -0.747266 + 0.522075I	-1.37919 + 4.85801I	8.49024 - 6.44355I
b = -0.56367 + 1.44433I		
u = -0.877439 - 0.744862I		
a = 1.121100 - 0.196208I	-1.37919 + 4.85801I	8.49024 - 6.44355I
b = 1.43883 - 0.82244I		
u = -0.877439 - 0.744862I		
a = -0.159736 + 0.339671I	-1.37919 + 0.79824I	8.49024 + 0.48465I
b = 0.154539 + 1.116840I		
u = 0.754878		
a = -0.935402 + 0.185618I	2.75839 + 2.02988I	15.0195 - 3.4641I
b = -0.56365 - 1.65106I		
u = 0.754878		
a = -0.935402 - 0.185618I	2.75839 - 2.02988I	15.0195 + 3.4641I
b = -0.56365 + 1.65106I		
u = 0.754878		
a = 1.027300 + 0.800722I	2.75839 + 2.02988I	15.0195 - 3.4641I
b = 0.28063 - 1.38647I		
u = 0.754878		
a = 1.027300 - 0.800722I	2.75839 - 2.02988I	15.0195 + 3.4641I
b = 0.28063 + 1.38647I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.754878		
a = 1.88775 + 0.07859I	2.75839 + 2.02988I	15.0195 - 3.4641I
b = 1.63567 + 0.61747I		
u = 0.754878		
a = 1.88775 - 0.07859I	2.75839 - 2.02988I	15.0195 + 3.4641I
b = 1.63567 - 0.61747I		
u = 0.754878		
a = -2.35710 + 0.41119I	2.75839 - 2.02988I	15.0195 + 3.4641I
b = -0.190292 - 0.406791I		
u = 0.754878		
a = -2.35710 - 0.41119I	2.75839 + 2.02988I	15.0195 - 3.4641I
b = -0.190292 + 0.406791I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{15} + 3u^{14} + \dots + 4u^2 - 1)(u^{18} - 2u^{17} + \dots - 252u - 27)$ $\cdot (u^{24} - 5u^{23} + \dots - 20u + 109)(u^{25} - 3u^{24} + \dots + 2u + 1)$
c_2	$((u^3 - u^2 + 1)^{14})(u^{15} + 3u^{14} + \dots - 6u^2 + 1)$ $\cdot (u^{25} + 12u^{24} + \dots + 640u + 128)$
c_3, c_8	$(u^{15} + u^{14} + \dots + 6u^2 - 1)(u^{18} - 3u^{16} + \dots + 6u - 11)$ $\cdot (u^{24} + u^{23} + \dots - 24u + 7)(u^{25} - u^{24} + \dots + 2u - 1)$
c_4, c_{10}	$(u^{15} - u^{14} + \dots - 6u^2 + 1)(u^{18} - 3u^{16} + \dots + 6u - 11)$ $\cdot (u^{24} + u^{23} + \dots - 24u + 7)(u^{25} - u^{24} + \dots + 2u - 1)$
c_5	$((u^3 - u^2 + 1)^{14})(u^{15} - 3u^{14} + \dots + 6u^2 - 1)$ $\cdot (u^{25} + 12u^{24} + \dots + 640u + 128)$
c_6	$((u^{3} + 2u + 1)^{6})(u^{4} - u^{3} + 2u^{2} - 2u + 1)^{6}(u^{15} + u^{14} + \dots - 3u^{2} + 1)$ $\cdot (u^{25} + 6u^{24} + \dots + 40u + 8)$
c ₇	$((u^{2} - u + 1)^{12})(u^{3} + 3u^{2} + 5u + 2)^{6}(u^{15} - u^{14} + \dots - 2u + 1)$ $\cdot (u^{25} - 6u^{24} + \dots - 56u + 464)$
<i>c</i> ₉	$(u^{15} + u^{14} + \dots - 4u^2 + 1)(u^{18} + u^{16} + \dots - 52u - 43)$ $\cdot (u^{24} + 3u^{23} + \dots + 20u + 19)(u^{25} + u^{24} + \dots - 2u + 1)$
c_{11}, c_{12}	$((u^{3} + 2u + 1)^{6})(u^{4} - u^{3} + 2u^{2} - 2u + 1)^{6}(u^{15} - u^{14} + \dots + 3u^{2} - 1)$ $\cdot (u^{25} + 6u^{24} + \dots + 40u + 8)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{15} + 7y^{14} + \dots + 8y - 1)(y^{18} - 6y^{17} + \dots - 81000y + 729)$ $\cdot (y^{24} + 9y^{23} + \dots + 27504y + 11881)(y^{25} - 27y^{24} + \dots + 54y - 1)$
c_2,c_5	$((y^3 - y^2 + 2y - 1)^{14})(y^{15} - 11y^{14} + \dots + 12y - 1)$ $\cdot (y^{25} - 12y^{24} + \dots + 114688y - 16384)$
c_3, c_4, c_8 c_{10}	$(y^{15} - 15y^{14} + \dots + 12y - 1)(y^{18} - 6y^{17} + \dots - 1136y + 121)$ $\cdot (y^{24} - 15y^{23} + \dots - 716y + 49)(y^{25} - 5y^{24} + \dots + 18y - 1)$
c_6, c_{11}, c_{12}	$((y^3 + 4y^2 + 4y - 1)^6)(y^4 + 3y^3 + 2y^2 + 1)^6(y^{15} + 15y^{14} + \dots + 6y - 1)$ $\cdot (y^{25} + 22y^{24} + \dots + 416y - 64)$
c_7	$((y^{2} + y + 1)^{12})(y^{3} + y^{2} + 13y - 4)^{6}(y^{15} - 5y^{14} + \dots + 2y - 1)$ $\cdot (y^{25} - 2y^{24} + \dots - 995392y - 215296)$
c_9	$(y^{15} + 3y^{14} + \dots + 8y - 1)(y^{18} + 2y^{17} + \dots - 17840y + 1849)$ $\cdot (y^{24} + 5y^{23} + \dots + 1424y + 361)(y^{25} - 23y^{24} + \dots + 66y - 1)$