Cryptography: Homework 3 (Deadline: October 18, 2018)

- 1. (15 points) Let n be a positive integer. A Latin square of order n is an $n \times n$ matrix $L = (\ell_{i,j})_{1 \le i,j \le n}$ with entries $\ell_{i,j} \in \{1,2,\ldots,n\}$, such that each element of the set $\{1,2,\ldots,n\}$ appears exactly once in each row and each column of L. A Latin square defines a private-key encryption Π over the message space $\mathcal{M} = \{1,2,\ldots,n\}$ and the key space $\mathcal{K} = \{1,2,\ldots,n\}$: Gen simply chooses a key $k \leftarrow \mathcal{K}$ uniformly at random, and the encryption of a plaintext $m \in \mathcal{M}$ under k is defined by $c = \mathbf{Enc}(k,m) = \ell_{k,m}$. Show that the private-key encryption Π defined by a Latin square is perfectly secret.
- 2. (30 points) Let Π denote the Vigenère cipher where the message space consists of all 3-character strings (over the English alphabet), and the key is generated by first choosing the period t uniformly from $\{1, 2, 3\}$ and then letting the key be a uniform string of length t.
 - (a) Define \mathcal{A} as follows: \mathcal{A} outputs m_0 = aab and m_1 = abb. When given a ciphertext c, it outputs 0 if the first character of c is the same as the second character of c, and outputs 1 otherwise. Compute $\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1]$.
 - (b) Construct and analyze an adversary \mathcal{A}' for which $\Pr[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A}',\Pi} = 1]$ is greater than your answer from part (a).