(Pharmaceutical Drugs Dataset)

IMAGE CLASSIFICATION WITH CNNs

DORUK DURAK FOUAD AKRAB GAGAN GANESH TUSHAR GADA

- PROJECT INTRODUCTION
- DATASET OVERVIEW
- METHODOLOGY & IMPLEMENTATION
- RESULTS & DISCUSSION
- CONCLUSION & FUTURE IMPROVEMENTS
- GUI DEMO
- Q&A

PROJECT INTRODUCTION

Problem Definition

Image classification of Pharmaceutical drugs and vitamins

Objective

- Develop a multi-class image classifier
- Recognize 10 different drug/vitamin products from images with high accuracy

Approach Overview

- CNN to learn visual features of medicine packaging
- Comparison of custom CNN, ResNet50 & EfficientNet-B0

DATASET OVERVIEW

Data Source

- Kaggle "Drugs and Vitamins" image dataset
- 10 classes, each corresponding to a specific brand/product

Dataset size

- Contains ~10K images(~1K per class on average)
- · Colored photographs of product packages or pills

Class Distribution

- Fairly balanced a bar chart of images per class
- No severe class imbalance

DATASET OVERVIEW

- Dataset Preprocessing
 - Images resized to 224x224 pixels for consistency
 - Distinct packaging and labels for each class
 - Computation with mean and standard deviation for normalization
 - Mean ~ [0.596, 0.551, 0.508] & std ~ [0.125, 0.123, 0.130]

METHODOLOGY & IMPLEMENTATION

- Tools and frameworks
 - Implementation using Pytorch and TorchVision
 - Building and training CNN model
 - Training acceleration with GPU support
- Train/Val data Split
 - Training~85% and Validation~15%
 - Validation set simulates unseen data
- Training procedure
 - Using an Adam optimizer and cross-entropy loss
 - Training up to 8 Epochs with early stopping

METHODOLOGY & IMPLEMENTATION

Models developed

- A bespoke convolutional network(Custom CNN) with 4 convolutional layers
- ReLU, batch norm, pooling and final fully-connected layer
- Includes dropout for regularization
- Fine-tuned two pre-trained models(Transfer learning) ResNet50 and EfficientNet-B0
- Replaced their final layer to output 10 classes, leverage learned features from large-scale data

RESULTS & DISCUSSION

Performance metrics

- High accuracy on validation set for all models
- ResNet50 ~98% validation accuracy with F1~98%
- EfficientNet-B0 ~99.5% validation accuracy with F1 ~0.995
- Custom CNN ~90% validation accuracy with F1~0.90

Comparison

- Pre-trained models converged faster and more accurate
- EfficietNet-B0 slightly edged out ResNet50, due to its modern architecture and efficiency
- Transfer learning provided a huge boost to the system

RESULTS & DISCUSSION

Confusion Matrix

- Negligible misclassification
- Distinguishes the 10 drug types with nearly perfect reliability

Discussion

- Features learned from large datasets transfer well
- Dataset images are clear and the classes are visually distinctive
- Would be important to test on truly novel images to ensure the robustness

- Broader Testing: Introduce a separate test set of new images for cross validation
 - Data Augmentation: Include more classes and use additional data augmentation techniques (rotation, light adjustments)
- Hyperparameter Tuning: Experiment with training parameters or fine-tuning more layers of pre-trained models to see improved performance or reduced training
- Deployment: Using a mobile application or a GUI for the further deployment

CONCLUSION

- Successfully built an image classification system for pharmaceutical products with best model as EfficientNet-B0 which achieved ~99% accuracy
- Highly reliable for distinguishing among 10 drug/vitamin categories
- Transfer learning proved crucial leveraging pre-trained
 CNNs superior performance with minimal training time
- Deep learning accurately identify medicines from images which streamlines pharmacy inventory checks or pill identification

Q&A Danke Schön!

