

Виды колебаний		
свободные	вынужденные	автоколебання
Колебания, происходящие под воздействием только одной возвращающей силы (первоначально сообщённой энергии).	Колебания, происходящие под воздействием внешней периодически изменяющейся силы (вынуждающей силы).	Колебания, происходящие при периодическом поступлении энергии от источника внутри колебательной системы.

- Свободные колебаниявозникающие под действием внутренних сил, после выведения системы из положения равновесия.
 - Rakeporters

Вынужденные колебаниясовершающиеся под действием внешних периодически изменяющихся сил.

A-aumnutze

Задача № 1. Шарик на нити совершил 60 колебаний за 2 мин. Определите период и частоту колебаний шарика.

$$T = \frac{1}{N} = \frac{120}{60} = 10$$

$$V = \frac{1}{7} = \frac{1}{20} = 0,50$$

Задача № 2. На рисунке изображен график зависимости координаты от времени колеблющегося тела.

По графику определите: 1) амплитуду колебаний; 2) период колебаний; 3) частоту колебаний; 4) запишите

Задача № 5. Какова длина математического маятника, совершающего гармонические колебания с частотой 0,5 Гц на поверхности Луны? Ускорение свободного падения на поверхности Луны 1,6 м/с².

$$T = 2n\sqrt{\frac{1}{9}}$$

$$L = \frac{1}{4n^2} = \frac{1.16}{4.986} = 1.01$$

$$2 = 2 \Pi \sqrt{\frac{2}{9}}$$

$$\int \frac{2}{9} = \frac{2}{2 \Pi} / \int \frac{1}{9} = \frac{1}{11} / 12$$

$$\frac{1}{9} = \frac{1}{12}$$
 $\frac{1}{9} = \frac{1}{16}$

2 Дан ромб, сумма противоположных углов которого равна 234 градуса. Найдите величину меньшего из углов ромба. Ответ запишите в градусах.

Дан параллелограмм МРКР. Диагональ РР образует с его сторонами углы: 35 и 68 градусов. Чему равен меньший угол параллелограмма?

4 Чему равен меньший из углов, образованный диагональю прямоугольника с его стороной, если острый угол между его диагоналями равен 54 градуса?

Дана равнобедренная трапеция, один из углов которой равен 137 градусов. Чему равен меньший из углов трапеции? Ответ запишите в градусах.

Дана равнобедренная трапеция, сумма углов при основании которой равна 112 градусов. Чему равен больший из углов трапеции? Ответ запишите в градусах.

(360-712):2 -0 = 124

В равнобедренной трапеции MPKR проведена диагональ MK. Эта диагональ образует с основанием MR угол, равный 74°, а с боковой стороной PM — угол, равный 7°. Чему равен больший из углов трапеции? Ответ запишите в градусах.

M

Дан ромб MPKR. Угол РКМ равен 46°. Найдите величину угла MRK (в градусах).

Дан ромб MPKR. Угол MRK равен 122°. Найдите величину угла PKM (в градусах).

