

STD30NF06L

N-CHANNEL 60V - 0.022Ω - 35A DPAK/IPAK STripFET™ POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STD30NF06L	60 V	<0.028Ω	35 A

- TYPICAL $R_{DS}(on) = 0.022\Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- LOGIC LEVEL GATE DRIVE
- ADD SUFFIX "T4" FOR ORDERING IN TAPE & REEL
- ADD SUFFIX "-1" FOR ORDERING IN IPAK
- CHARACTERIZATION ORIENTED FOR AUTOMOTIVE APPLICATIONS

This Power Mosfet is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

- HIGH-EFFICIENCY DC-DC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- DC-DC & DC-AC CONVERTERS
- AUTOMOTIVE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 k Ω)	60	V
V _{GS}	Gate- source Voltage	± 20	V
I _D	Drain Current (continuous) at T _C = 25°C	35	А
I _D	Drain Current (continuous) at T _C = 100°C	25	А
I _{DM} (●)	Drain Current (pulsed)	140	А
P _{TOT}	Total Dissipation at T _C = 25°C	70	W
	Derating Factor	0.46	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	25	V/ns
T _{stg}	Storage Temperature	– 55 to 175	°C
Tj	Operating Junction Temperature	- 33 10 17 3	

(Pulse width limited by safe operating area

(1) I_{SD} \leq 38A, di/dt \leq 400A/ μ s, V_{DD} \leq V(BR)DSS, T $_{j}$ \leq T_{JMAX}.

July 2002 1/10

STD30NF06L

THERMAL DATA

Ī	Rthj-case Thermal Resistance Junction-case Max		2.14	°C/W
Ī	Rthj-amb	Thermal Resistance Junction-ambient Max	100	°C/W
	T_I	Maximum Lead Temperature For Soldering Purpose	275	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	35	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	150	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125 °C			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.7	2.5	V
R _{DS(on)}	Static Drain-source On	V _{GS} = 5 V, I _D = 18 A		0.025	0.03	Ω
	Resistance	$V_{GS} = 10 \text{ V}, I_D = 18 \text{ A}$		0.022	0.028	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > =15 \text{ V}, I_{D} =15 \text{ A}$		25		S
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz, V}_{GS} = 0$		1600		pF
Coss	Output Capacitance			215		pF
C _{rss}	Reverse Transfer Capacitance			60		pF

2/10

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 30 V, I _D = 18 A		30		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 4.5 V$ (see test circuit, Figure 3)		105		ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 48 V, I _D = 38 A, V _{GS} = 5 V		23 7 10	31	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off-Delay Time Fall Time	$V_{DD} = 30 \text{ V}, I_{D} = 18 \text{ A},$ $R_{G} = 4.7\Omega, V_{GS} = 4.5 \text{ V}$		65 25		ns ns
		(see test circuit, Figure 3)		-		

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				35	Α
I _{SDM} (2)	Source-drain Current (pulsed)				140	Α
V _{SD} (1)	Forward On Voltage	$I_{SD} = 35 \text{ A}, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 38 A, di/dt = 100 A/ μ s, V_{DD} = 15 V, T_j = 150°C (see test circuit, Figure 5)		70 140 4		ns nC A

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

Pulse width limited by safe operating area.

Safe Operating Area

Normalized Thermal Impedence

Output Characteristics

Transfer Characteristics

Transconductance

Static Drain-source On Resistance

Capacitance Variations

47/₀ 4/10

Normalized Gate Threshold Voltage vs Temperature

Normalized On Resistance vs Temperature

Normalized Drain-Source Breakdown vs Temperature

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

6/10

DIM.		mm	inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
В3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
Е	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

8/10

DPAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

REEL MECHANICAL DATA

DIM.	m	m	inch	
Dilvi.	MIN.	MAX.	MIN.	MAX.
Α		330		12.992
В	1.5		0.059	
С	12.8	13.2	0.504	0.520
D	20.2		0.795	
G	16.4	18.4	0.645	0.724
N	50		1.968	
Т		22.4		0.881

TAPE MECHANICAL DATA

	m	m	inch		
DIM.	MIN.	MAX.	MIN.	MAX.	
A0	6.8	7	0.267	0.275	
В0	10.4	10.6	0.409	0.417	
B1		12.1		0.476	
D	1.5	1.6	0.059	0.063	
D1	1.5		0.059		
Е	1.65	1.85	0.065	0.073	
F	7.4	7.6	0.291	0.299	
K0	2.55	2.75	0.100	0.108	
P0	3.9	4.1	0.153	0.161	
P1	7.9	8.1	0.311	0.319	
P2	1.9	2.1	0.075	0.082	
R	40		1.574		
W	15.7	16.3	0.618	0.641	

A7/.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

477.