

Relatório - Primeiro Projeto

Felipe Andrade Garcia Tommaselli (11800910) Gianluca Capezzuto Sardinha (11876933) São Carlos, Brasil

1. Introdução

Primeiramente, é importante ressaltar a importância da análise de algoritmos, resolvendo problemas para ordenação de números. Os algoritmos de ordenação que foram examinados serviram para o desenvolvimento da identificação de diferentes estilos/métodos que podem ser implementados com um mesmo intuito, garantindo que seja tarefa do programador decidir qual é o melhor caso para o seu uso desejado. Nesse sentido, há a necessidade de uma prova tanto teórica quanto empírica, implicando na necessidade de análises assintóticas e práticas, provando a complementaridade entre elas. Portanto, bastou que fosse feita a implementação da forma mais curta e simples para a verificação dos resultados, possibilitando uma discussão sobre os resultados que foram obtidos tanto em aula quanto ao longo do trabalho.

2. <u>Implementação</u>

A divisão do código, em primeira análise, foi feita por meio de um arquivo "main.c", um "source.c" e um "header.h". O "header.h" é um arquivo TAD, no qual foram feitas as declarações e atribuições elementares ao código todo. Essa escolha é muito vantajosa quando sabemos que há valores que precisam ser trocados globalmente no código de forma constante. O arquivo "source.c", ele sim contém algoritmos e lógicas de ordenação em si. Nele, além de todos os algoritmos de ordenação, estão as funções bases de manipulação da lista principal a ser ordenada (como criação, destruição, etc.). Por fim, o arquivo "main.c" reúne toda a lógica teórica do projeto de forma prática. Nele estão implementadas todas as chamadas para as funções do "source.c" e as mensurações de tempo dos algoritmos de ordenação. Essa decisão de organização do projeto foi inspirada em arquivos trabalhados durante as aulas, de forma que facilitasse o entendimento de terceiros sobre as implementações escolhidas.

Outro aspecto da implementação é a fidelidade com o pseudocódigo nos algoritmos de ordenação. Tentou-se ao máximo manter os algoritmos implementados coerentes com o pseudocódigo fornecido, a fim de evitar erros ou divergências desnecessárias.

Além disso, outras pequenas escolhas de implementação foram feitas, a fim de melhorar a utilização do código. Dentre elas, uma estrutura condicional que garante que para pequenas entradas o vetor original e o ordenado são impressos na tela, uma vez que é possível averiguar que o algoritmo de fato está realizando a ordenação sem poluir muito a saída; ou ainda, outras estruturas de escolha que pedem ao usuário qual algoritmo para ser executado, tamanho da entrada e como a entrada estará ordenada.

Por se tratar de um projeto com uma extensão e complexidade considerável é natural que surjam diversos problemas e erros. Contudo, é também natural que algumas dificuldades se

sobressaiam, instigando a solução de problemáticas mais complexas, essas merecem maior atenção. Uma das dificuldades mais instigantes que surgiram durante o trabalho foi na análise teórica do "Bubblesort" e do "Bubblesort aprimorado". Esta dificuldade citada foi dada devido a dúvidas em relação ao sinal negativo da função quadrática que foi encontrado no decorrer da análise assintótica, porém para evitar problemas com a notação do algoritmo foi considerado o módulo da mesma.

3. Análise Teórica

Analisar e estimar a complexidade de um código antes mesmo de executá-lo é uma técnica indispensável para qualquer programador, esta análise pode prevenir erros e incertezas ao longo de um projeto. Nesse momento, será analisada a complexidade de tempo teórica dos algoritmos de ordenação implementados. Além disso, vale ressaltar que toda análise foi baseada nas análises feitas em aula e nos pseudocódigos disponibilizados.

3.1. Bubblesort

Pela análise da Figura 1 é possível estimar a complexidade do algoritmo de ordenação Bubblesort. A figura detalha passo a passo a análise da complexidade em unidades de tempo, para cada operação e processo realizado pelo pseudocódigo. Vale enfatizar que essa análise também é congruente com o algoritmo implementado, uma vez que eles devem apenas diferir por constantes (atribuições e pequenos processos), ou seja, o Big-O do pseudocódigo disponibilizado é o mesmo do código implementado.

Figura 1- Análise de complexidade do Bubblesort

```
## Bubble Sort
1: procedimento Main; por fim, tem-se que -10n^2-14n+2 unidades de tempo rege esse algoritmo
       n ← quantidade de inteiros a serem ordenados; 1 unidade para inicialização de n
       Inicializar A[n] . Array de inteiros de comprimento n; 1 unidade para inicialização do vetor
       Bubble_Sort(A, n) . Chamada do algoritmo de ordenação
5: fim procedimento
1: procedimento Bubble_Sort(A, n); Custo total: somando tudo, tem-se -10n^2-14n <u>unidades de tempo, ou seja,</u>
                                  a função tem Big-O O(n^2)
       para i ← 0 até n-1 faça; 1 unidade para inicialização de i, n unidades para testar se i < n-1 e n-1
                                 e n-i-2 unidades para incrementar, ou seja, j = -2n-2
                se A[j] > A[j + 1] então; caso A[j] seja maior que a[j+1] há um tempo de execução constante
                                         igual a 1, que é a comparação entre os valores
                    troque(A[j], A[j+1]); 3 unidades vindas das atribuições feitas para a troca de variáveis,
                                           sendo executada n-i-2 vezes (pelo comando "para"), ou seja, -3n-6
               fim se
            fim para
   fim procedimento
```

Como observado na imagem, o resultado estimado foi "unidades de tempo", ou seja, desconsiderando os procedimentos pouco custosos, chega que o Big-O do Bubblesort com base no pseudocódigos é $O(n^2)$; ou seja, ele é um algoritmo de custo quadrático para melhor, pior e médio caso. Resultado esse já esperado, uma vez que é necessário duas estruturas de repetição aninhadas percorrendo todo o vetor independente do caso a caso.

3.2. <u>Bubblesort aprimorado</u>

Seguindo a mesma análise do caso anterior, visto que o "Bubblesort aprimorado" é apenas uma melhoria de melhor caso do "Bubblesort", é possível analisar passo a passo o custo em unidades de tempo pela Figura 2.

Figura 2- Análise de complexidade do Bubblesort aprimorado

```
## Bubble Sort Aprimorado
1: procedimento Main; por fim, tem-se que -10n^2-17n-2 unidades de tempo rege esse algoritmo
        n ← quantidade de inteiros a serem ordenados; 1 unidade para inicialização de n
        Inicializar A[n] . Array de inteiros de comprimento n; 1 unidade para inicialização do vetor
       Optimized_Bubble_Sort(A, n) . Chamada do algoritmo de ordenação;
1: procedimento Bubble_Sort(A, n); Custo total: somando tudo, tem-se -10n^2-17n-4 unidades de tempo, ou
                                   seja, a função tem Big-O O(n^2)
        ordenado ← true; 2 unidades, uma para inicialização de ordenado e outra pela atribuição de true
        para i ← 0 até n-1 faça; 1 unidade para inicialização de i, n unidades para testar se i < n-1 e n-1
                                 unidades para incrementar, ou seja, i = 2n
                                 e n-i-2 unidades para incrementar, ou seja, j = -2n-2
                se A[j] > A[j + 1] então; caso A[j] seja maior que a[j+1] há um tempo de execução constante
                                         igual a 1, que é a comparação entre os valores
                    ordenado ← false; 1 unidade pela atribuição de false
                    troque(A[j], A[j + 1]); 3 unidades vindas das atribuições feitas para a troca de variáveis,
                                            sendo executada n-i-2 vezes (pelo comando "para"), ou seja, -3n-6
               fim se
            fim para
            se ordenado = true então; 1 unidade para comparar se ordenado é igual a true
            fim se
16: fim procedimento
```

É possível estimar pela imagem que a complexidade de tempo é algo em torno de "() unidades de tempo". Apenas há variações de resultados comparado com o "Bubblesort" no melhor caso, nessa situação o algoritmo aprimorado acaba possuindo um custo em unidades de tempo menor, porém apenas diferendo em constantes, uma vez que a complexidade ainda é $O(n^2)$ para todos os casos. Mais uma vez é possível comprovar que esse resultado é coerente, visto que novamente há duas estruturas de repetição aninhadas, o que garante a complexidade quadrática ao algoritmo.

3.3. Quicksort

Para o estudo feito em relação ao Quicksort é possível observar pela Figura 3 a complexidade presente neste algoritmo, detalhando passo a passo o que foi apresentado no pseudocódigo é possível verificar qual o custo de cada função. Dessa forma, será possível comparar com os resultados obtidos pela análise empírica, vide seção 4.3.

Figura 3 - Análise de complexidade do Quicksort

```
## Quicksort
1: procedimento Main; Custo total: somando tudo, tem-se 16nlog(n)+38log(n)+3 unidades de tempo, ou
                                  seja, a função tem Big-O O(nlog(n))
       n ← quantidade de inteiros a serem ordenados; 1 unidade para inicialização de n
       Inicializar A[n] . Array de inteiros de comprimento n; 1 unidade para inicialização do vetor
       Quicksort(A, 0, n - 1) . Chamada do algoritmo de ordenação;
5: fim procedimento
1: procedimento Quicksort(A, inicio, fim)
       se inicio < fim então; 1 unidade para comparação
           pivo ← Random_Partition(A, inicio, fim); 1 unidade para atribuição e outra por chamar a função de
                                                    complexidade (n)
           Quicksort(A, inicio, pivo - 1); chamando recursivamente a própria função, ou seja, complexidade
                                            de log(n), porém é passado como um dos parâmetros da função o
                                            pivo que atribui uma função de complexidade n; por fim, tem-se
                                           que a complexidade fica de nlog(n)
           Quicksort(A, pivo + 1, fim); o mesmo serve para ordenar a outra parte
       fim se
7: fim procedimento
1: procedimento Random_Partition(A, inicio, fim)
       k ← número inteiro aleatório entre inicio e fim; 5 unidades, sendo 1 da atribuição e as outras das
                                                         operações matemáticas
       troque(A[k], A[fim]); 3 unidades vindas das atribuições feitas para a troca de variáveis
       devolve Partition(A, inicio, fim); chamanda a função de complexidade (n)
5: fim procedimento
1: função Partition(A, inicio, fim)
       para j ← inicio até fim-1 faça; 1 unidade para inicialização de j, n unidades para testar se i < n-1 e
                                       n-1 unidades para incrementar, ou seja, j = 2n
            se A[j] < pivo então; 1 unidade para comparação
               troque(A[i], A[j]); 3 unidades vindas das atribuições feitas para a troca de variáveis
       fim para
        troque(A[i + 1], A[fim]); 3 unidades vindas das atribuições feitas para a troca de variáveis
        devolve (i + 1); 2 unidades, sendo 1 da soma e outra pelo fato de devolver um valor
```

Portanto, a partir do observado na figura concluiu-se que o Big-O do Quicksort com base no pseudocódigo apresentado é O(nlog(n)). Dessa forma, ele é um algoritmo que possui um custo razoável para maioria dos casos, exceto para o pior. Pois, como visto anteriormente nas aulas foi apresentado que para casos em que é necessário o algoritmo executar todos os seus procedimentos o custo é excedido, chegando ao caso de $O(n^2)$, mas continua sendo uma ótima opção para uso prático em casos mais genéricos como o apresentado no pseudocódigo.

3.4. Radixsort

Apesar do seu funcionamento alternativo baseando-se na sequência de algarismos dos números inteiros, o Radixsort é um ótimo algoritmo para a utilização em casos que seja necessário entradas muito grandes. Nesse sentido, é importante ressaltar que ordenando cada algarismo por iteração feita ao fim de todas as iterações a lista dos elementos estará ordenada, o que é possível ser observado na Figura 4, garantindo a complexidade linear do algoritmo.

Figura 4 - Análise de complexidade do Radixsort

```
## Radix Sort
1: procedimento Main; por fim, tem-se que 22n+29 unidades de tempo rege esse algoritmo
        n ← quantidade de inteiros a serem ordenados; 2 unidades, sendo 1 para inicialização de n e outra para
                                                      atribuição do tamanho a n
        Inicializar A[n]; 1 unidade para inicialização de vetor
        Radix Sort(A, n); 1 Unidade para chamar a função
5: fim procedimento
1: procedimento Radix_Sort(A, n); Custo total: somanto tudo, tem-se 22n+27 unidades de tempo, ou seja, a função
                                  tem Big-O O(n)
        maior ← maior inteiro armazenado em A; 1 unidade para inicialização de maior, n unidades para testar
                                              se maior < n-1 e n-1 unidades para incrementar, ou seja, maior
       posicao ← 1; 2 unidades, sendo 1 para inicialização e outra para atribuição
       enquanto (maior/posicao) > 0 faça; 1 unidade de tempo pela comparação
           Counting_Sort(A, n, posicao);
           posicao ← posicao ∗ 10; 2 unidades, sendo uma da multiplicação e outra da atribuição
        fim enquanto
8: fim procedimento

    procedimento Counting_Sort(A, n, posicao)

        Inicializar B[10] com zeros; 1 unidade pela inicialização do vetor
        para i ← 0 até n-1 faça; 1 unidade para inicialização de i, n unidades para testar se i < n-1 e n-1
            chave ← A[i]/posicao, 2 unidades, sendo 1 para atribuição e outra para a divisão
            chave ← chave mod 10; 2 unidades, sendo 1 para atribuição e outra para o resto da divisão por 10
            B[chave] ← B[chave] + 1; 2 unidades, sendo 1 para atribuição e outra para a soma
        para i ← 1 até 9 faça; 1 unidade para inicialização de i, 9 unidades para testar se i < 9 e 8 unidades
                               para incrementar, ou seja, i = 18
            B[i] ← B[i] + B[i - 1]; 2 unidades, sendo 1 para atribuição e outra para soma
        fim para
        Inicializar C[n]; 1 unidade pela incialização do vetor
        para i ← n-1 até 0 faça; 1 unidade para inicialização de 1, n unidades para testar se n-1 < i e n-1
                                 unidades para decrementar, ou seja, i = 2n
            chave ← A[i]/posicao; 2 unidades, sendo 1 para a atribuição e outra para a divisão
            B[chave] ← B[chave] - 1; 2 unidades, sendo 1 para atribuição e outra para a subtração
            C[B[chave]] ← A[i]; 1 unidade para atribuição
        para i ← 0 até n-1 faça; 1 unidade para inicialização de i, n unidades para testar se n-1 < i e n-1
                                 unidades para incrementar, ou seja, i = 2n
            A[i] ← C[i]; 1 unidades para atribuição
            i ← i + 1;
        fim para
25: fim procedimento
```

Por conseguinte, pode concluir-se a partir da imagem que o Big-O do pseudocódigo acima apresentado é de O(n), fato esse que garante a utilização dele para diversos casos nos quais as constantes que multiplicam o valor de nnão sejam grandes o suficientes para ter uma influência pejorativa na majoração do tempo.

3.5. Heapsort

Por último há o Heapsort, que apesar do mesmo nome não tem o mesmo intuito da memória heap, sendo formado por uma árvore no qual seu funcionamento consiste na análise das subárvores

criadas a partir da criação do nó raiz. Nesse sentido, é possível observar na Figura 5 que há essa diferenciação pelos elementos da direita e da esquerda, garantindo a formação de uma árvore.

Figura 5 - Análise de complexidade do Heapsort

```
## Heapsort
1: procedimento Main
       n ← quantidade de inteiros a serem ordenados; 1 unidade para inicialização de n
       Inicializar A[n]; 1 unidade para inicialização do vetor
       Heapsort(A, n); 1 unidade para chamar a função
5: fim procedimento
1: procedimento Heapsort(A, n) Custo total: somando tudo, tem-se (3nlog(n)+57n-2log(n)-30)/2 unidades de tempo,
                                            ou seja, a função tem Big-O (nlog(n))
       para i ← (n/2)-1 até 0 faça; 1 unidade para inicialização de i, n/2 unidades para testar se (n/2)-1 < i
                                    e (n/2)-1 unidades para decrementar, ou seja, i = n
           Heapify(A, n, i); chamando a função que possui log(n) de complexidade
           i \leftarrow i - 1
       para i ← n-1 até 1 faça; n-1 unidades para testar se n-1 < i e n-1 unidades para decrementar, ou seja,
            troque(A[0], A[i]); 3 unidades vindas das atribuições feitas para a troca de variáveis
           Heapify(A, i, 0) chamando a função que possui log(n) de complexidade
       fim para
11: fim procedimento
1: procedimento Heapify(A, n, i)
       maior ← i; 1 unidade para atribuição
       esquerda ← (2 * i) + 1; 3 unidades, sendo uma para atribuição, uma para multiplicação e outra para soma
       direita ← (2 * i) + 2; 3 unidades, sendo uma para atribuição, uma para multiplicação e outra para soma
       se esquerda < n & A[esquerda] > A[maior] então; 2 unidades pelas comparações feitas
           maior ← esquerda; 1 unidades para atribuição
       fim se
       se direita < n & A[direita] > A[maior] então; 2 unidades pelas comparações feitas
           maior ← direita; 1 unidades para atribuição
       se maior <> i então; 2 unidades pelas comparações feitas
           troque(A[i], A[maior]); 3 unidades vindas das atribuições feitas para a troca de variáveis
           Heapify(A, n, maior); Caso a comparação feita seja verdadeira, há a chamada recursiva da função
                                 é possível concluir que T(n)=log(n)
       fim se
15: fim procedimento
```

Por fim, é possível observar a partir do visto na figura que o resultado para esse caso é o mesmo encontrado no Quicksort, ou seja com complexidade de ordem O(nlog(n)) para todos os casos. Ademais, mesmo tendo ordem de complexidade igual ao do Quicksort é importante ressaltar que para casos de entradas de ordem 10^n com n > 6 é possível encontrar uma pequena diferença no algoritmo do Heapsort.

4. Resultados e Discussão

Nesse momento serão brevemente discutidos alguns dos resultados obtidos, principalmente a análise de complexidade empírica dos algoritmos de ordenação, a qual é coerente com a análise teórica já feita. Em todos os casos, foi feita uma implementação do algoritmo para diferentes entradas e foi analisado o tempo de execução e o desvio padrão obtido. A partir dos resultados de tempos foram plotados gráficos Log-Log, para analisar os coeficientes de inclinação de reta gerados, facilitando a análise de complexidade.

Além disso, os desvios padrões foram coletados e analisados, (conforme implementado no código), porém como pelo gráfico já é possível ter uma análise visual da dispersão dos resultados, preferiu-se não explicitar esses dados a fim de manter a simplicidade e clareza do relatório.

4.1. <u>Bubblesort</u>

Como já descrito anteriormente o "Bubblesort" possui complexidade (n^2) , ou seja, complexidade quadrática. Por isso, é esperado que ao plotar o gráfico com seus valores de tempo para diferentes entradas em uma planilha virtual utilizando um modelo log-log, seja obtida uma reta de coeficiente de inclinação perto de 2.

Conjunto tabelas e gráficos 1 - Análise empírica do Bubblesort

	BUBBLESORT	
Lista aleatória	Entradas	Тетро
	1000	0,0033812
	10000	0,2276885
	100000	27,2834197
	-	-
	-	-

		-
	BUBBI	LESORT
	Entradas	Tempo
Lista crescente	1000	0,0027616
	10000	0,1047713
	100000	10,1650830
	-	-
	-	-

	BUBBLESORT	
	Entradas	Tempo
Lista	1000	0,0043575
decres- cente	10000	0,2104078
	100000	21,0474406
	-	-
	-	-

Lista aleatória - Bubble Sort

Lista crescente - Bubblesort

Lista decrescente - Bubblesort

Pela análise dos gráficos obtidos, fica evidente que o comportamento assintótico do "Bubblesort" se aproxima muito do quadrático, dentro de uma estimativa de erro aceitável, resultado esse extremamente coerente com a análise teórica.

4.2. <u>Bubblesort aprimorado</u>

Seguindo a mesma linha de pensamento do algoritmo passado, o Bubblesort aprimorado deve apresentar o mesmo comportamento quadrático para todos os três casos, apenas com melhoras significativas para o melhor caso.

Conjunto tabelas e gráficos 2 - Análise empírica do Bubblesort aprimorado

	BUBBLESORT APRIMORADO	
.	Entradas	Tempo
Lista aleato-	1000	0,004338
ria	10000	0,1289112
	100000	27,1343096
	-	-
	-	-

	BUBBLESORT APRIMORADO	
	Entradas	Tempo
Lista	-	-
crescente	-	-
	100000	0,0003367
	1000000	0,0020637
	10000000	0,0218387

	BUBBLESORT	APRIMORADO
	Entradas	Tempo
Lista	1000	0,005383
decres- cente	10000	0,2078799
	100000	21,0948254
	-	-
	-	-

Lista aleatória - Bubblesort

Lista crescente - Bubblesort

Lista decrescente -

4.3. Quicksort

O "Quicksort" por sua vez, possui $O(n \log n)$ para melhor caso e caso médio, comportamento esse que em um gráfico log-log, resulta em uma reta com coeficiente de inclinação perto de 1, porém maior. Vale ressaltar que por diferenças externas ao rodar o código os coeficientes ficaram menores que 1, porém bastante coerente comparando com a ordem de grandeza da incerteza. Para o pior caso é esperado que o algoritmo apresente comportamento quadrático, $O(n^2)$, implicando em um custo computacional muito alto.

Conjunto tabelas e gráficos 3 - Análise empírica do Quicksort

	QUICKSORT	
	Entradas	Tempo
Lista aleató- ria	1000	0,000424
	10000	0,0033077
	100000	0,0282420
	1000000	0,3549124
	10000000	2,1815803

	QUICKSORT	
Lista crescente	Entradas	Tempo
	1000	0,0002536
	10000	0,0021565
	100000	0,0099183
	1000000	0,1073732
	10000000	1,3096975

	QUIC	KSORT
	Entradas	Tempo
Lista	1000	0,0002799
decres- cente	10000	0,0020034
	100000	0,0098978
	1000000	0,1013513
	10000000	1,2498290

Lista aleatória - Quicksort

Lista crescente - Quicksort

Lista decrescente - Quicksort

É de extrema importância ressaltar que o pior caso do quicksort não é o caso da lista decrescente, uma vez que ele não ordena o vetor de acordo com elementos "ao lado". Por isso, o comportamento do algoritmo na lista decrescente não foi quadrático.

4.4. Radixsort

Para o "Radixsort" a análise de complexidade aponta para um O(n), ou seja um comportamento linear, nesse caso as constantes que multiplicam o termo linear podem influenciar significamente o custo do código para entradas suficientemente grandes. Novamente, tem-se um coeficiente de inclinação da reta perto de 1, dentro de uma margem de erros coerente.

Conjunto tabelas e gráficos 4 - Análise empírica do Radixsort

	RADIXSORT	
•	Entradas	Tempo
Lista	1000	0,0004704
aleatória	10000	0,0020101
	100000	0,0197909
	1000000	0,1973914
	10000000	2,0289726

Lista crescente	RADIXSORT	
	Entradas	Tempo
	1000	0,0001775
	10000	0,0022643
	100000	0,0150114
	1000000	0,1775214
	10000000	2,0344768

Lista decres- cente	RADIXSORT	
	Entradas	Tempo
	1000	0,0007044
	10000	0,0053170
	100000	0,0328924
	1000000	0,4353556
	-	-

Lista aleatória - Radix Sort

Lista crescente - Radix Sort

Lista decrescente - Radix

4.5. Heapsort

Por fim, a análise de complexidade do "Heapsort" se aproxima significativamente do "Quicksort", em ambos os algoritmos tem-se $O(n \log n)$. Contudo, o "Heapsort" não possui diferença para o pior caso, ao contrário do "Quicksort" que passa a ser quadrático. Além disso, outra diferença é que devido às constantes no termos de complexidade, o "Heapsort" é ligeiramente mais custoso que o "Quicksort".

Conjunto tabelas e gráficos 5 - Análise empírica do Heapsort

Lista aleatória	HEAPSORT	
	Entradas	Tempo
	1000	0,0006439
	10000	0,0041637
	100000	0,0222387
	1000000	0,2883054
	10000000	4,2829713

Lista crescente	HEAPSORT	
	Entradas	Tempo
	1000	0,0003462
	10000	0,0014501
	100000	0,0170607
	1000000	0,2066045
	10000000	2,3314329

	HEAPSORT	
	Entradas	Tempo
Lista	1000	0,0003263
decrescente	10000	0,0013985
	100000	0,0166951
	1000000	0,1994075
	10000000	2,3627542

Lista aleatória - Heapsort

Lista crescente - Heapsort

Lista decrescente - HeapSort

5. Conclusão

A execução dos diferentes tipos de algoritmos sugeridos possibilitou construir conhecimentos práticos, em demasia nos de ordenação; tratando-se da arte de ordenar esses algarismos com diversas formas diferentes garante a existência da ciência da computação, uma vez que possibilitou a aplicação ampla desses conceitos, sob diversos pontos de vista e sob a influência de diferentes casos de ordenação.

Então, é justamente diante dessa perspectiva que se conclui acerca da importância da potencialidade do estudo de algoritmos. Por mais diversos que tenham se mostrado as análises tanto empíricas quanto teóricas, a diferença entre os estilos de ordenação sempre apresentou influência direta da ordem da notação de Big-O final.

Com isso, perante as incontáveis aplicações na vida cotidiana, a utilização de diversos algoritmos visando sempre a viabilidade para o melhor caso necessário é de extrema importância. Acerca destes princípios tais como a implementação dos códigos, a análise teórica e empírica dos mesmos, velocidade de processamento, tem sua importância fundamentada em quesitos que vão muito além do anseio de intelectualizar-se, estando intimamente ligados ao entendimento de inúmeros casos corriqueiros não só no âmbito da individualidade humana, mas também em relação ao escopo computacional.

Referências Bibliográficas

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, MIT Press, 2009. Disponível em:

https://mitpress.mit.edu/books/introduction-algorithms-third-edition>. Acesso: 06/06/2021

[2] BAASE, Sara (1988). Computer Algorithms. Introduction to Design and Analysis (em inglês) 2^a ed. Reading, Massachusetts: Addison-Wesley. Acesso em: 06/06/2021