Deep Learning im

ray Photoelectron

\dvisor: Heung-Sik. Kim

tory: Seong-Heum. Park

Ab-initio Electr

contents

1 Introduce of xps, deep learning

02 process of fitting program

03. result of fitting program

04 Conclusion

1-1.Introduction of xps

x-ray Photoelectron Spectroscopy(XPS)

$$E_K = hv - E_R - \phi$$

 $E_{\kappa} = Kinetic Energy$ in x = x - ray Energy

 $E_B = Binding Energy$ $\emptyset = work function$

이전 선행연구 특징

- *각 피크의 면접값(Area)
- *피크의 개수,
- *문턱값(Threshol)
- *다음 피크선정의 최소높 이값(prominencs)등

다양한 parameter를 필요

인공신경망을 통한 연구특징

*기본적인 peak의amplitude, width,center,등의 간단한 parameter만 학습에 필요

*학습후에는 parameter의 존 재없이 data만으로 fitting 가 능

ACTIVATION FUCTION

$$\begin{bmatrix}
5 & 7 & 9 & 4 & 5 \\
1 & 6 & 5 & 4 & 8 \\
9 & 7 & 5 & 1 & 6 \\
5 & 4 & 8 & 9 & 5
\end{bmatrix} = (a,b,c,d,e)$$

KEYWORD

1.WEIGHT

2.ACTIVATION FUNCTION

3.BACKPROPAGATION

(1)
$$E_{o1} = \frac{1}{2} (target_{o1} - out_{o1})^2$$

(2)
$$W_5(t+1) = W_5(t) - \frac{\partial E_{total}}{\partial W_5}$$

$$(3) \frac{\partial E_{total}}{\partial W_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial W_5}$$

$$(1) (2) (3)$$

KEYWORD

1.WEIGHT

2.ACTIVATION FUNCTION

3.BACKPROPAGATION

contents

1 Introduce of xps, deep learning

process of fitting program

03 result of fitting program

O4 Conclusion

voigt function:
$$f(w; w_0, I_0, w) = 0.7e^{-\frac{w_G^2(w - w_0)^2}{w^2}} + 0.3 \frac{1}{1 + \frac{w_L^2(w - w_0)^2}{2}}$$

200만개의 data

contents

1 Introduce of xps, deep learning

02 process of fitting program

03 result of fitting program

04. result of fitting program

3-1. result of fitting program

ITO 0 1S

P3HT S 2P

3-2. result of fitting program

3-2. result of fitting program

contents

1 Introduce of xps, deep learning

02. process of fitting program

03 result of fitting program

04. result of fitting program

4. conclusion

4. conclusion

앞으로의 방향과 개선점

- *데이터의 품질 개선
- *적절한 model을 design
- *Hyper parameter 설정

을 통해 더 높은 정확성을 올릴수 있도록 한다.

Q&A

Any Questions?

