A Contribution to Rating and Recommendation Systems: Concepts, Development and Evaluation

Oliver Diestel

June 10, 2013

The Problem

The problem: Recommending user generated content.

User generated Content

Challenges

Verweildauer des Managements

Gibt es wissenschaftliche Studien (oder vergleichbares) zu der Verweildauer des Managements in einem Unternehmen? Oder anderesherum: gibt es Studien über den sog. management turnover (Fluktuation), also wie häufig das Management ausgewechselt wird?

post a comment

1 Answer

Sort by » oldest newest most voted

Änderungen im Vorstand (bei AGs) oder der Geschäftsführung (bei GmbHs) müssen dem zuständigen Handelsregister beim Amtsgericht gemeldet werden. Inwieweit solche Meldungen statistisch erfasst werden, müssten Sie beim Statistischen Bundesamt

updated 1 mins ago

http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Navigation/InfoService.ps oder beim Registerportal des Bundes https://www.handelsregister.de/rp_web/contact.do erfragen. Auf den Webseiten der Institutionen finden sich keine Hinweise darauf.

Studien zum Thema finden Sie z.B. in unserer Online-Datenbank ECONIS, wenn Sie mit dem Titelstichwort ""management turnover" (in Anführungszeichen gesetzt wird die komplette Phrase gesucht) suchen oder aber mit den sachlichen Schlagworten Fluktuation UND Deutschland und dann weiter mit dem Titelstichwort Management eingrenzen. Die Literaturverzeichnisse der gefundenen Werke geben evtl. weitere Hinweise auf Studien.

Based on the work of Claypool et al 2001

- ▶ The time a user spends on a website
- ▶ The time the cursor is in motion
- The number of mouse clicks
- ► The time a user scrolls

Claypool et al 2001

Rating

Y-max: 20,000 msec, *: outliner

Claypool et al 2001

The time spent on a page vs. The explicit rating

$$p = \frac{\textit{TimeSpend}}{\textit{TruncatedMeanOfTimeSpend}}$$

Rating for Time a user spends						
1	2	3	4	5		
$0\% \le p < 76\%$	$76\% \le p < 95\%$	$95\% \le p < 110\%$	$110\% \le p < 125\%$	-		

$$p = \frac{\textit{TimeScrolled}}{\textit{TruncatedMeanOfTimeScrolled}}$$

Rating for Time a user scrolls							
1	1 2 3 4 5						
$0\% \le p < 69\%$ $69\% \le p < 86\%$ $86\% \le p < 108\%$ $108\% \le p < 129\%$ $129\% \le p$							

Tagging

Find the keywords that describe the question.

Tagging

Find the keywords that describe the question.

STW Thesaurus for Economics

Tagging

Find the keywords that describe the question.

STW Thesaurus for Economics

 Computing Levenshtein distance: Calculate the distance between two words.

Example:

Libraries, Library

Distance: 3

Levenshtein Automata

Levenshtein Automata

Maximum Distance for Words

Length	≤ 3	≤ 5	6 ≤
Distance	0	1	3

Maximum Distance for Words

Length	≤ 3	≤ 5	6 ≤
Distance	0	1	3

Problem Feminina with e-plural: Hand Hände

Maximum Distance for Words

Length	≤ 3	≤ 5	6 ≤
Distance	0	1	3

Problem Feminina with e-plural: Hand Hände

Maskulina und Neutra mit er-Plural 3 änderungen Wurm Würmer

Substantive mit er plural Fass Fässer

Based on *Die Pluralbildung im Deutschen: Eine Untersuchung an* Hand der Optimalitätstheorie: "German Noun Plural reconsidered" von Dieter Wunderlich

Tagging Evaluation

	Tagging Algorithm Evaluation					
Words	STW	Non Matching	Matched Words	Levenshtein Time	Total Time	
1	1	0	2	0.099	14.481	
10	3	7	3	0.2843	20.348	
100	30	70	54	0.4751	79.9616	
1000	300	700	470	2.5606	777.4643	

Item-Based Algorithm

	ltem1	Item2	Item3	Item4	ltem5
User1	5	3	4	4	?
User2	?	1	?	3	3
User3	4	?	4	3	5
User4	3	3	?	5	4
User5	1	5	5	2	1

Item-Based Algorithm

	ltem1	Item2	Item3	Item4	ltem5
User1	5	3	4	4	?
User2	?	1	?	3	3
User3	4	?	4	3	5
User4	3	3	?	5	4
User5	1	5	5	2	1

Cosinus Similarity

$$a = [a_1, a_2, \dots, a_n], b = [b_1, b_2, \dots, b_n]$$

$$\operatorname{sim}(\overrightarrow{a}, \overrightarrow{b}) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{||\overrightarrow{a}|| \cdot ||\overrightarrow{b}||} = \frac{\sum_{i=1}^{n} \overrightarrow{a_i} \overrightarrow{b_i}}{\sqrt{\sum_{i=1}^{n} \overrightarrow{a_i}^2} 2\sqrt{\sum_{i=1}^{n} \overrightarrow{b_i}^2}}$$

Take the differences of the average rating behaviour of the user into account.

Adjusted Cosinus Similarity

$$sim(a,b) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Predictions

Prediction

User u, Item p, Rating
$$r_{u,p}$$

$$pred(u,p) = \frac{\sum_{i \in ratedItems(u)} sim(i,p) \cdot r_{u,i}}{\sum_{i \in ratedItems(u)} sim(i,p)}$$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Create a SVD with the matrix $M = U \cdot \Sigma \cdot V^t$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Create a SVD with the matrix $M = U \cdot \Sigma \cdot V^t$

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix}$$

corresponds to the column vectors of matrix m

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Create a SVD with the matrix $M = U \cdot \Sigma \cdot V^t$

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \qquad \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{pmatrix}$$

corresponds to the diagonal matrix column vectors of matrix with $\sigma_{ii} > 0$ and m $\sigma_{ii} \geq \sigma_{i+1i+1}$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

Create a SVD with the matrix $M = U \cdot \Sigma \cdot V^t$

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \qquad \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{pmatrix} \qquad \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{pmatrix}$$

corresponds to the

m

$$\begin{pmatrix}
\sigma_{11} & 0 & 0 \\
0 & \sigma_{22} & 0 \\
0 & 0 & \sigma_{33}
\end{pmatrix}$$

corresponds to the diagonal matrix column vectors of matrix with
$$\sigma_{ii} > 0$$
 and m $\sigma_{ii} \geq \sigma_{i+1,i+1}$

$$\begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{pmatrix}$$

corresponds to the row vectors of matrix m

Low Rank Approximation of M

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \cdot \quad \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{pmatrix} \cdot \quad \begin{pmatrix} v_{11} & v_{21} & v_{31} \\ v_{12} & v_{22} & v_{32} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}$$

- ▶ Derive from Σ the matrix Σ_k (with k new rank of M) formed by replacing σ_{ii} with i > k by zeros.
- ► Compute and output $M_k = U \cdot \Sigma_k \cdot V^T$ as the rank-k approximation to M.

Recommendation Thesis

	ltem1	Item2	Item3	Item4	Item5
User1	5	3	4	4	?
User2	?	1	?	3	3
User3	4	?	4	3	5
User4	3	3	?	5	4
User5	1	5	5	2	1

Recommendation Evaluation

Recommendation Comparison 80.000 ratings 20.000 predictions						
Technology	MAE	Offline Computation Time	Prediction Time			
Item Based	0.83187	3187.69	4208.49			
SVD Concept	0.77937	32471.93	4315.31			
SVD Three	0.79545	469.82	4395.75			
SVD Average	0.78622	507.90	4226.31			
Three	1.03333	0.00	0.49			
Average	0.82714	112.13	249.18			

Service Oriented Architecture

- RecommendationService
- ItemBasedService
- SVDBasedService
- TaggerService
- QuerySTWService
- RatingService
- WebService