Problems for 24/7

1. Show that the series

$$2\sin\frac{1}{3x} + 4\sin\frac{1}{9x} + \dots + 2^n\sin\frac{1}{3^nx} + \dots$$

converges absolutely for $x \neq 0$ but does not converge uniformly on any interval $(0, \epsilon)$ with $\epsilon > 0$.

2. Suppose that $f(t) \in C^{(n)}[0,1]$. If

$$\int_0^1 f(t)t^j dt = 0, \quad j = 1, 2, \dots, n,$$

prove that $\exists \xi \in (0,1)$ such that $f^{(n)}(\xi) = 0$.

- 3. (a) Suppose that $\Delta = \{z \in \mathbf{C} : |z| < 1\}$. Suppose $f : \Delta \to \Delta$ is an analytic function and can be extended continuously to an arc $I \subset \partial \Delta$. Prove that if $f|_I$ is constant, then f is constant on Δ .
 - (b) Can you prove a similar result if D is a Jordan domain?
 - 4. Let \mathcal{L}^* denote Lebesgue outer measure. What are the (not necessarily measurable) sets E such that $\mathcal{L}^*(E \cap [a,b]) \leq (b-a)/2$ for all intervals [a,b]?