CS 225 Spring 2019 :: TA Lecture Notes 4/26 Floyd-Warshall's Algorithm

By Wenjie

Floyd-Warshall's Algorithm solves the problem Dijkstra's algorithm has with negative edges (not negative cycles, because those are mathematically undefined).

- Algorithm setup:
 - Maintain a table (matrix) that has the shortest known paths between vertices.
 - o Initialize the table with three possible values:
 - self edges to 0
 - edges by edge weights
 - unknown paths to infinity

	Α	В	С	D
Α	0	-1	8	8
В	8	0	4	3
С	8	8	0	-2
D	2	8	8	0

- Algorithm logic:
 - Consider adding every vertex to optimize the existing path:

$$\blacksquare \quad A \to B \quad -1 \qquad \text{vs.} \qquad A \to C \to B \quad \infty$$

$$A \to C \to B \quad \infty$$
$$A \to D \to B \quad \infty$$

$$A \to C \infty$$

■
$$A \to C \infty$$
 vs. $A \to B \to C$ $-1+3=2 \Rightarrow UPDATE$

$$A \to D \to C \quad \infty$$

$$A \to D \infty$$
 vs.

$$A \rightarrow B \rightarrow D$$
 $-1+3=2 \Rightarrow UPDATE$

$$A \rightarrow C \rightarrow D$$
 $3 + (-2) = 1 \Rightarrow UPDATE$

CS 225 Spring 2019 :: TA Lecture Notes 4/26 Floyd-Warshall's Algorithm

By Wenjie

	Α	В	С	D
Α	0	-1	2	1
В	∞	0	4	3
С	∞	∞	0	-2
D	2	∞	8	0

• Now, do the same with the rest of the vertices (B, C, and D). At the end of the algorithm, we will have shortest paths for all pairs.

• Running time:

- \circ $O(n^3)$
- With Dijkstra's algorithm we assumed optimality → once we find a path from A to B we do not try to find another path from A to B with shorter distance.
- On the other hand Floyd-Warshall's algorithm explores all possible paths to determine the shortest path. If we explored all possible paths with Dijkstra's algorithm, the running time would have been much worse than n^3 .