LEAD SCORE CASE Study

Group Member Name

- 1. Vishwaani Ravula
- 2. Sheetal Dandekar
- 3. Divya Raja

AGENDA

- Problem Statement
- Business Objective
- Solution Methodology
- Data Manipulation
- > EDA
- Categorical Variable Relation
- Data Conversion
- Model Building
- > ROC Curve

Problem Statement

- X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses. To make this process more efficient, the company wishes to identify the most potential leads, also known as "Hot Leads".
- If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with potential leads rather than making calls to everyone.
- The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

Business Objective

- X Education wants to know the most promising leads.
- For that, they want to build a Model which identifies the hot leads.
- Deployment of the model for the future use. Education

Solution Methodology

Data cleaning and data manipulation

- 1. Check/handle all duplicate data.
- 2. Check/handle NA values and missing values.
- 3. Drop columns, if they contain a large amount of missing values and are not useful for the analysis.
- 4. Check and handle outliers in data.

• <u>EDA</u>

- 1. Univariate data analysis
- 2. Bivariate data analysis
- 3. Feature Scaling and dummy Variables and encoding of the data.
- 4. Classification technique: logistic regression is used for the model making and prediction.
- 5. Validation of the model.
- 6. Model presentation.
- 7. Conclusions and recommendations.

Data Manipulation

- 1. Total Number of Rows =37, Total Number of Columns =9240.
- 2. Dropping the "Prospect ID" and "Lead Number" which are not necessary for the analysis.
- 3. After checking for the value counts for some of the object type variables, we find some of the features which have no enough variance, which we have dropped, some of the features are: "Do Not Call", "Search", "Newspaper Article", "X Education Forums", "Newspaper", "Digital Advertisement" etc.
- 4. Dropping the columns having more than 30% as missing values.

VISUALISING THE CATEGORICAL VARIABLES

People who have interacted with a SMS being sent in showing an interest seems to be enrolling more in the courses They have a higher conversion ratio.

Working Professionals seem to be in the higher conversion ratio compared to the other categories of the people

People who are identified as Potential leads and followed up seems to be converting as a customer to the website

People who have been referred have a higher chance of converting into a customer

OUTLIER TREATMENT

EDA

Creating a Dummy Variables for the Categorical Variables

- * In order to make it easier for analysis, we will be converting the categorical variables into dummy variables so that it holds easy as to what sort of variable has a much better influence on the target variable
- * Converting the Leads Origin, Lead Source, Last Activity, Specialization, How did you hear about X Education, What is your current occupation and the Lead Profile categorical variables into dummy variables and then dropping these.

TEST-TRAIN SPLIT LOGISTIC REGRESSION

- Dividing the entire dataset into test and train set for logistic regression.
- We will be using the Standard Scaler to scaling the values down to comparable values for further correlation and other such values.
- The X-train size is [4404,64] and the y-train size is [4404,]

RFE METHOD

coll

Columns that have been chosen by the RFE method

Dep. Variable:

After running a few iterations and removing the feature variables which have a high p-value and the VIF values, we are down to the Model 5 where we have finalised the model on which we will be training the train and test set.

Model:	GLIVI	DI	Residual	s: 4	1392		
Model Family:	Binomial		Df Mode	el:	11		
Link Function:	Logit		Scal	e: 1.0	0000		
Method:	IRLS	Log-	Likelihoo	d: -22	41.0		
Date:	Tue, 17 Oct 2023		Deviano	e: 44	82.1		
Time:	16:34:58	Pe	arson chi	2: 4.56e	+03		
No. Iterations:	7	Pseudo R	-squ. (C	6): 0.3	3075		
Covariance Type:	nonrobust						
		coef	std err	z	P> z	[0.025	0.9751
	const	-0.8964	0.061	-14.752	0.000	-1.016	-0.777
L_Orig	jin_Lead Add Form	1.9792	0.224	8.835	0.000	1.540	2.418
L_So	urce_Direct Traffic	-0.4699	0.084	-5.580	0.000	-0.635	-0.305
L_Sour	ce_Organic Search	-0.2977	0.109	-2.721	0.007	-0.512	-0.083
L_Soi	urce_Referral Sites	-0.5208	0.366	-1.423	0.155	-1.238	0.197
L_Source	_Welingak Website	2.0517	0.762	2.693	0.007	0.558	3.545
LA	ct_Email Bounced	-2.0302	0.438	-4.632	0.000	-2.889	-1.171
	LAct_SMS Sent	1.1964	0.077	15.528	0.000	1.045	1.347
Occupation_Wo	orking Professional	2.5467	0.190	13.384	0.000	2.174	2.920
Lead Pro	file_Potential Lead	1.4602	0.091	16.027	0.000	1.282	1.639
Lead Profile_Stude	ent of SomeSchool	-2.3491	0.462	-5.081	0.000	-3.255	-1.443
N	I_Act_Unreachable	1.9964	0.811	2.462	0.014	0.407	3.586

No. Observations:

ROC Curve and the measurement of the factors

The area under the ROC curve is 0.82

The optimal cut-off value for the three graphs is 0.48

Conversion Probability

	Converted	Conversion_Prob	LeadID	final_predicted	Lead_Score
0	1	0.572459	8321	1	57
1	1	0.572459	1612	1	57
2	0	0.232154	6159	0	23
3	1	0.852536	8384	1	85
4	1	0.572459	5291	1	57

final_predicted 1 1563 0 566

The data has been converted and the lead IDs have been assigned and further after predicting the score and calculating the conversion probability, we are able to assign the Lead Score for each of the Lead IDs

Predictions on the Test Set

	Prospect ID	Converted	Conversion_Prob	Lead_Score	final_predicted
0	6187	0	0.572459	57	1
1	8295	1	0.287226	29	0
2	185	0	0.232154	23	0
3	162	0	0.202880	20	0
4	7565	1	0.746638	75	1
5	7231	1	0.287226	29	0
6	6954	0	0.202880	20	0
7	936	1	0.746638	75	1
8	4483	0	0.572459	57	1
9	6069	1	0.572459	57	1

Conversion Probability Table on the Test Set

After predicting it on the test set, we have an accuracy of 76% coupled with a precision of 76% and a recall value of 73%.

THANK YOU