Summary of Introduction to Evolutionary Biology

v0.1

Gleb Ebert

September 25, 2017

Preface

This document aims to summarize the lecture Introduction to Evolutionary Biology as it was taught in the autumn semester of 2017. Unfortunately I can't guarantee that it is complete and free of errors. You can contact me under **glebert@student.ethz.ch** if you have any suggestions for improvement. The newest version of this summary can always be found here: https://n.ethz.ch/~glebert/

1 Introduction

Definition: Evolution means biological change over time **Technical basis**: Phenotypes of individuals that are encoded by heritable genotypes vary in a population and their frequencies change

1.1 History

Aristotle: Ladder of nature / perfection

Carl von Linné: Systematic classification of life

James Hutton & Charles Lyell: Gradual long-term

processes shaped earth (Uniformitarianism)

Jean-Baptiste de Lamarck: Inheritance of acquired

characteristics (Lamarckian evolution)

Charles Darwin: Evolution is descent with modifica-

tion and results in survival of the fittest

1.2 Microevolution

direct observation: small time-scales \rightarrow short-term changes

Evidence of Microevolution

- 1) Observation from natural populations
 - Bacterial adaptation to antibiotic stress
 - Soapberry bug adaptation to fruit
- 2) Observation from living anatomy Vestigal and rudimentary traits
 - Kiwi wings
 - Human coccyx (Steissbein)
 - Human arrector pili muscle (Haaraufrichter-Muskel)
 - (Appendix might be safe house for good gut bacteria)

1.3 Speciation

Ring species are one species splitting into two. They provide evidence of speciation.

1.4 Macroevolution

indirect observation: long time-scales \rightarrow long-term changes

Evidence of Macroevolution

1) Successions & Extinctions

Law of succession: pattern of correspondence between fossile and recent forms from the same locale Comparative anatomy: Georges Cuvier argued that certain species are extinct. Recent macrofauna is only a fraction of all that ever existed

2) Transitional forms

Darwinian evolution predicts intermediate forms between a species and its ancestor (e.g. *Microraptor gui* and *Archaeopteryx* between dinosaurs and modern birds

3) Homologies (Owen: "the same organ in different animals under every variety of form and function) can be found through comparative anatomy and comparative embryology. The similarity is due to inheritance from a common ancestor. They are phenotypically and genetically defined and enable the use of model organisms.

Some molecular homologies are

- the universal genetic code: bases and codons
- the small-subunit (SSU) ribisomal RNA genes