4주차 과제 #6

2022145079 임혜린

본 과제는 Python, VS Code를 사용하였음을 밝힙니다.

공통 조건 (Heat equations)

Source term을 포함하는 2차원 Heat equation이 다음과 같이 주어진다.

$$\frac{\partial \phi}{\partial t} = \alpha \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right) + S(x,y) \;, \qquad -1 \le x \le 1, -1 \le y \le 1.$$

균일한 초기 및 경계조건은 $\phi(x,y,0)=0, \phi(\pm 1,y,t)=0, \phi(x,\pm 1,t)=0$ 이며, 본 문제에서 열전도 율 α 는 1로 주어진다.

1. Source term, $S(x,y)=2(2-x^2-y^2)$ 일 때, ϕ 의 대한 exact solution을 구하시오.

HW#6-1 (p2) exoct solution 7861) $ \mathbb{Z} = \alpha(\cancel{S}_{+} + \cancel{S}_{+}) + S(x,y) $ $ d=1, S(x,y) = 2(2-x^{2}y^{2}) \text{ olig} $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = \alpha(\cancel{S}_{+} + \cancel{S}_{+}) + S(x,y) $ $ d=1, S(x,y) = 2(2-x^{2}y^{2}) \text{ olig} $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $ $ \mathbb{Z} = (\cancel{S}_{+} + \cancel{S}_{+}) + 2(2-x^{2}y^{2}) $	
Then, $FG = Fa_1 + Fy_1 G \Rightarrow G' = \frac{Fa_1 + Fy_2}{F}$. Assume that $-\lambda^2$. Then $G' = \lambda^2 \Rightarrow JnG = \lambda^2 + g = \lambda^2 \Rightarrow JnG = \lambda^2 \Rightarrow JnG$	
then, $FG'=[F_{3A}+F_{3Y})G \Rightarrow G'=\frac{F_{3A}+F_{3Y}}{F_{2}}$. Assume that $-\lambda^{2}$. then $G'=\lambda^{2}$ $\Rightarrow Ln G=\lambda^{2}L \Rightarrow G=O^{2}L$ $F_{3A}+F_{3Y}+\lambda^{2}F=0 \text{ Assume } F_{3A,y}=H_{3})Q_{(y)} \text{ then } H_{3A}Q_{y}+\lambda^{2}H_{3}Q=0 \Rightarrow H_{3}=-\frac{1}{4}(\lambda^{2}A+Q_{y}). \text{ Assume } H_{3A}Q_{y}+\lambda^{2}H_{3}Q=0 \Rightarrow H_{3A}=-\frac{1}{4}(\lambda^{2}A+Q_{y}). \text{ Assume } H_{3A}Q_{y}+\lambda^{2}H_{3}Q=0 \Rightarrow H_{3A}=\frac{1}{4}(\lambda^{2}A+Q_{y}). \text{ Assume } H_{$	
Fat Fig = γ^2 \Rightarrow Fat F Fig + γ^2 = 0 Assume F(α , γ) = H(α) Q(γ). Then HanQ+HQyy + γ^2 HQ = 0 \Rightarrow HM = $-\frac{1}{6}$ (γ ix + Qyy). Assume then then then then then then then the	
Fat Fig = γ^2 \Rightarrow Fat F Fig + γ^2 = 0 Assume F(α , γ) = H(α) Q(γ). Then HanQ+HQyy + γ^2 HQ = 0 \Rightarrow HM = $-\frac{1}{6}$ (γ ix + Qyy). Assume then then then then then then then the	
thun than the $0 \Rightarrow 1$ Han $0 $	that -k2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2)
By Boundary Condition, $\sqrt{N}E^{2} = \frac{11}{12} (C=0, D=1) \Rightarrow Q(y) = CN^{\frac{1}{2}}(y+1)(n=1,2)$ $\sqrt{N}E^{2} = \frac{11}{12} (K=\frac{11}{12}) + \frac{11}{12} \Rightarrow N = \frac{1}{12} (N+m^{2}) + \frac{1}{12} (N+m^{2}) = \frac{1}{12} (N+m^{2}) + \frac{1}{12} (N+m^{2}) + \frac{1}{12} (N+m^{2}) = \frac{1}{12} (N+m^{2}) + \frac{1}$	
$ \sqrt{F} \cdot \vec{k} = \frac{17}{2} \cdot (k = \frac{17}{2} \Rightarrow \lambda) = \frac{17}{2} \cdot (m + 1) \cdot k $ $ F = HQ \Rightarrow F = \frac{1}{6} \sin \frac{1}{2} (y + 1) \cdot k $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y + 1)\right) \cdot e^{-\frac{1}{4} (m + 1) \cdot k} $ $ O = FG = \left(\frac{2}{6} \sin \frac{1}{2} (y +$	
$F = HQ \Rightarrow F = $	
② $\frac{1}{2}\frac{1}{$	
By boundary Condition, assume $\mathcal{O}(3,9) = a((-3^2)(1-9^2))$ $\frac{2}{33^2} = -2a(1-9^2), \frac{2}{33^2} = -2a(1-3^2). \frac{2}{33^2} + \frac{2}{33^2} = 2a(33^2)(1-9^2)$ $\frac{2}{33^2} = -2a(1-9^2), \frac{2}{33^2} = -2a(1-3^2)(1-9^2)$	
By Boundary Condition, assume $\emptyset(x,y) = a(1-x^2)(1-y^2)$ $\frac{\partial y}{\partial x^2} = -2a(1-y^2), \frac{\partial y}{\partial y^2} = -2a(1-x^2), \frac{\partial y}{\partial y^2} = 2a(1-x^2)(1-y^2)$ $\frac{\partial y}{\partial x^2} = -2a(1-x^2), \frac{\partial y}{\partial y^2} = -2a(1-x^2), \frac{\partial y}{\partial y^2} = 2a(1-x^2)(1-y^2)$	
$\frac{\partial \vec{y}}{\partial x} = -2\alpha(1-y^2) , \frac{\partial \vec{y}}{\partial y} = -2\alpha(1-x^2) \cdot \frac{\partial \vec{y}}{\partial y} + \frac{\partial \vec{y}}{\partial y} = 2\alpha(1-x^2)(1-y^2) \alpha = 1 \phi = (1-x^2)(1-y^2)$	
TF. 4.121	
三、新型(和) N	
	SIN (JHI)
Ø= sin は (水川 sin は ym diadig	
$C = -4 \int_{-1}^{1} \int_{-1}^{1} (1-x^2)(1-y^2) \sin(tx)(1+x) \sin(ty)(1+x) dx dy$	

2. uniform 격자계에서 시간에 대하여 Crank-Nicolson method를, 공간에 대하여 2차 central difference scheme을 사용하여 정상상태 (steady state)에 도달하도록 방정식을 푸시오. Exact solution과 수치해석한 정상상태의 solution을 시간간격 Δt 와 x,y 방향 격자수 (각각 N,M)에 변화를 주어 plot하시오.

Crank-Nicolson scheme은 시간 미분을 전 시간 단계와 다음 시간 단계의 중앙 평균으로 근사한다. Heat equation의 지배방정식에 이를 적용하면 아래와 같다.

$$rac{\phi_{i,j}^{n+1}-\phi_{i,j}^n}{\Delta t} = rac{lpha}{2} \left[
abla^2 \phi_{i,j}^{n+1} +
abla^2 \phi_{i,j}^n
ight] + rac{1}{2} \left[S_{i,j}^{n+1} + S_{i,j}^n
ight]$$

n은 time step, i,j는 spatial index이며 이때

$$\left.
abla^2 \phi
ight|_{i,j} pprox rac{\phi^n_{i+1,j} - 2\phi^n_{i,j} + \phi^n_{i-1,j}}{\Delta x^2} + rac{\phi^n_{i,j+1} - 2\phi^n_{i,j} + \phi^n_{i,j-1}}{\Delta y^2}
ight.$$

이다. $\Delta x = \Delta y$ 이므로 $\Delta x = \Delta y = h$ 로, $\beta = \alpha \Delta t/2h^2$ 으로 놓고 좌변을 unknown, 우변을 known으로 정리하면 아래와 같다.

$$\begin{split} &\phi_{i,j}^{n+1} - \beta \left[\ \phi_{i+1,j}^{n+1} + \phi_{i-1,j}^{n+1} + \phi_{i,j+1}^{n+1} + \phi_{i,j-1}^{n+1} - 4\phi_{i,j}^{n+1} \ \right] \\ &= \ \phi_{i,j}^{n} + \beta \left[\ \phi_{i+1,j}^{n} + \phi_{i-1,j}^{n} + \phi_{i,j+1}^{n} + \phi_{i,j-1}^{n} - 4\phi_{i,j}^{n} \ \right] + \frac{\Delta t}{2} (S_{i,j}^{n} + S_{i,j}^{n+1}) \end{split}$$

이때 operator Lx, Ly를 적용하면, 식을 아래와 같이 변형할 수 있다.

$$L_{x}(\Phi_{ij}) = \Phi_{i+1,j} - 2\Phi_{i,j} + \Phi_{i-1,j}$$

$$L_{y}(\Phi_{ij}) = \Phi_{i,j+1} - 2\Phi_{i,j} + \Phi_{i,j-1}$$

$$(I - \beta L_{x} - \beta L_{y}) \Phi_{i,j}^{n+1} = (I - \beta L_{x} - \beta L_{y}) \Phi_{i,j}^{n} + \frac{\Delta t}{2} \left(S_{i,j}^{n+1} + S_{i,j}^{n}\right)$$

$$(I - \beta L_{x}) (I - \beta L_{y}) \Phi_{i,j}^{n+1} - \beta^{2} L_{x} L_{y} \Phi_{i,j}^{n+1}$$

$$= (I + \beta L_{x}) (I + \beta L_{y}) \Phi_{i,j}^{n} - \beta^{2} L_{x} L_{y} \Phi_{i,j}^{n} + \frac{\Delta t}{2} \left(S_{i,j}^{n+1} + S_{i,j}^{n}\right)$$

 β^2 항은 n에 따라 크게 변화하지 않으므로 양 변의 β^2 항이 상쇄 가능하다 가정하면 결과적으로 아래와 같은 식을 얻을 수 있다.

$$(I-eta L_x)(I-eta L_y)\Phi_{ij}^{n+1} = (I+eta L_x)(I+eta L_y)\Phi_{ij}^n + rac{\Delta t}{2}(S_{ij}^n + S_{ij}^{n+1})$$

또한 상쇄한 β^2 항이 Δt^2 에 비례하므로 dt에 대한 L2norm error가 2차로 나올 것을 예상할 수 있다.

마지막으로 얻었던 식의 좌변의 $I-\beta L_2$ 를 제외한 부분을 ψ , 우변을 R이라고 하면 식은 $(I-\beta L_x)\psi=R$ 이 된다. 이 형태에서 한 번 풀어서 ψ 를 알아낸 후, $(I-\beta L_y)\varphi=\psi$ 를 이용하여 φ 를 알아내는 방식으로 코드를 작성하였다. 즉,

$$(I - \beta L_x) \psi = R$$

이와 같이 변형할 수 있으므로 이것을 np.linalg.solve로 한 번 푼 후, 이렇게 찾은 ψ 를 이용하여

$$\Phi_{i,j}^{n+1} = \psi \left[(I - \beta L_y)^T \right]^{-1}$$

이를 진행하여 Φ를 구한 후, 이를 이용하여 다시 다음 t에서의 Φ를 구해 나가는 방식이다.

```
alpha=1
n=41
def S(x, y):
    return 2*(2-x**2-y**2)
def exact_pi(x, y):
    return (1-x**2)*(1-y**2)
x_hani=np.linspace(-1, 1, n)
x_list=x_hani[1:-1]
y_hani=np.linspace(-1, 1, n)
y list=y hani[1:-1]
X,Y=np.meshgrid(x_hani, y_hani)
h=x hani[1]-x hani[0]
dt=0.1
t=0
beta=alpha*dt/(2*h**2)
phi_exact = exact_pi(X, Y)
pi=np.zeros((n, n))
pi_list=[pi,]
I_bLx_main = (1-2*beta)*np.eye(n-2)
I_bLx_upper = (beta)*np.eye(n-2, k=1)
I_bLx_lower = (beta)*np.eye(n-2, k=-1)
I bLx = I bLx lower + I bLx main + I bLx upper
I_bLx_main = (1+2*beta)*np.eye(n-2)
I_bLx_upper = (-1*beta)*np.eye(n-2, k=1)
I blx lower = (-1*beta)*np.eye(n-2, k=-1)
I_bLx = I_bLx_lower + I_bLx_main + I_bLx_upper
error list=[]
```

```
for j in range(100):
    t+=dt
    R=I_bLx @ (I_bLx @ pi_list[j][1:-1, 1:-1].T).T +S(X[1:-1,1:-1], Y[1:-1,1:-1])*dt
    psi=np.linalg.solve(I_bLx, R)
    pi_new = psi @ np.linalg.inv(I_bLx.T)
    pi_all=np.zeros((n,n))
    pi_all[1:-1, 1:-1]=pi_new
    pi_list.append(pi_all.copy())
```

h=x, y 방향 격자수, h= Δ x= Δ y=2/n, l_bx=2차원 넘파이 배열로 나타낸 l- β L_x, l_bx=2차원 넘파이 배열로 나타낸 l+ β L_x, pi_list=각 t에 대한 φ를 담은 2차원 넘파이 배열을 담은 리스트이다.

n=41, t=0.1로 설정하였다.

이중 초기 t에 대한 등고선을 그려보았다.

내부 온도가 진동하고 이 진동이 시간이 지날수록 느려진다는 것을 확인하였다. 다음으로 t=10.0 일 때의 등고선과 exact solution의 등고선을 비교함으로써 두 등고선이 거의 일치함을 확인하였 다.

다음으로 Δt 와 h를 바꾸어가며 등고선을 비교하였다. Δt =0.1, 0.01, h=0.2, 0.1, 0.05이며 t가 0.5일 때와 10.0일 때, 총 12개의 등고선을 비교하였다.

그 결과 h가 감소, 즉 n이 증가할수록 등고선이 더욱 스무스하게 그려짐을 확인하였으며, Δ t에 대해서는 육안으로 뚜렷한 차이를 찾지 못하였으나 Δ t가 작을수록 작은 t에 대해 더 스무스한 결과를 얻게 되는 것으로 예상된다.

- 3. 수치해석 결과의 order of accuracy를 시간과 공간에 대하여 분석하시오.
 - h의 변화

 Δt =0.1, t=10.0(steady state)를 고정해 놓은 뒤, ϕ 와 (range(99)한 후 pi_list[-1]) steady state에서의 exact solution (1-x²)(1-y²)의 L2norm을 구하여 error을 구하였다. n=4, 6, 8, 10으로 격자 수의 변화를 주며 error을 구하며 구한 각 격자 수에서의 error을 error_list에 담아 error_list를 완성하였다.

log10(h)와 log10(error_list)의 그래프를 그려 그래프의 order of accuracy를 구하였다. 또한 기울기가 2인 점선 그래프를 그려 한 눈에 비교할 수 있도록 하였다.

```
error list=[]
h_list=[]
def exact_pi(x, y):
    return (1-x**2)*(1-y**2)
for n in [4, 6, 8, 10]:
    x_hani=np.linspace(-1, 1, n)
    x_list=x_hani[1:-1]
    y_hani=np.linspace(-1, 1, n)
    y_list=y_hani[1:-1]
    X,Y=np.meshgrid(x_hani, y_hani)
    h=x_hani[1]-x_hani[0]
    dt=0.1
    t=0
    beta=alpha*dt/(2*h**2)
    phi_exact = exact_pi(X, Y)
    pi=np.zeros((n, n))
    pi_list=[pi,]
    I_bLx_main = (1-2*beta)*np.eye(n-2)
    I_bLx_upper = (beta)*np.eye(n-2, k=1)
    I_bLx_lower = (beta)*np.eye(n-2, k=-1)
    I_bLx = I_bLx_lower + I_bLx_main + I_bLx_upper
    I_bLx_main = (1+2*beta)*np.eye(n-2)
    I_bLx_upper = (-1*beta)*np.eye(n-2, k=1)
    I_bLx_lower = (-1*beta)*np.eye(n-2, k=-1)
    I__bLx = I__bLx_lower + I__bLx_main + I__bLx_upper
    h list.append(h)
    for j in range(99):
        t+=dt
         R=I\_bLx \ @ \ (I\_bLx \ @ \ pi\_list[j][1:-1,\ 1:-1].T).T \ +S(X[1:-1,1:-1],\ Y[1:-1,1:-1])*dt 
        psi=np.linalg.solve(I_bLx, R)
        pi_new = psi @ np.linalg.inv(I__bLx.T)
        pi_all=np.zeros((n,n))
        pi_all[1:-1, 1:-1]=pi_new
        pi list.append(pi all.copy())
```

```
error=np.linalg.norm(exact_pi(X, Y)-pi_list[-1], 2)*h
error_list.append(error.copy())

plt.plot(np.log10(h_list), np.log10(error_list), marker='o', color='m', label='error')
plt.plot(np.log10(h_list), 2*(np.log10(h_list)-np.log10(h_list[1]))+np.log10(error_list[1])
plt.xlabel('log10(h)')
plt.ylabel('log10(L2norm error)')
plt.title('L2norm error by changing h')
plt.grid()
plt.legend()
plt.legend()
plt.show()
print(f'order of accuracy: {linregress(np.log10(h_list), np.log10(error_list)).slope}')
```


order of accuracy: 1.8737030036840558

그 결과 order of accuracy가 2에 가깝게 나오는 것을 확인하였다.

- ∆t의 변화

비슷한 방법으로 Δt 를 변화시키며 진행하였다. 사용된 Δt 는 1/20, 1/80, 1/140, 1/200이다.

```
error_list=[]
dt_list=[]
n=101
x hani=np.linspace(-1, 1, n)
x_list=x_hani[1:-1]
y hani=np.linspace(-1, 1, n)
y_list=y_hani[1:-1]
X,Y=np.meshgrid(x_hani, y_hani)
h=x_hani[1]-x_hani[0]
pi=np.zeros((n, n))
for k in [20, 80, 140, 200]:
    dt=1/k
    t=0
    dt list.append(dt)
    pi list=[pi,]
    beta=alpha*dt/(2*h**2)
    phi exact = exact pi(X, Y)
    I bLx main = (1-2*beta)*np.eye(n-2)
    I bLx upper = (beta)*np.eye(n-2, k=1)
    I_bLx_lower = (beta)*np.eye(n-2, k=-1)
    I bLx = I_bLx_lower + I_bLx_main + I_bLx_upper
    I bLx main = (1+2*beta)*np.eye(n-2)
    I blx upper = (-1*beta)*np.eye(n-2, k=1)
    I_bLx_lower = (-1*beta)*np.eye(n-2, k=-1)
    I_bLx = I_bLx_lower + I_bLx_main + I_bLx_upper
```

```
for j in range(10*k):
        t+=dt
        R=I_blx @ (I_blx @ pi_list[j][1:-1, 1:-1].T).T +S(X[1:-1,1:-1], Y[1:-1,1:-1])*dt
        psi=np.linalg.solve(I bLx, R)
        pi_new = psi @ np.linalg.inv(I__bLx.T)
        pi all=np.zeros((n,n))
        pi_all[1:-1, 1:-1]=pi_new
        pi list.append(pi all.copy())
    error=np.linalg.norm(exact_pi(X, Y)-pi_list[-1], 2)*h
    error list.append(error.copy())
plt.plot(np.log10(dt_list), np.log10(error_list), marker='o', color='m', label='CN error
plt.plot(np.log10(dt list), 2*(np.log10(dt list)-np.log10(dt list[0]))+np.log10(error list
plt.xlabel('log10(dt)')
plt.ylabel('log10(L2norm error)')
plt.title('L2norm error by changing dt')
plt.grid()
plt.legend()
plt.show()
print(f'order of accuracy: {linregress(np.log10(dt_list), np.log10(error_list)).slope}')
```


order of accuracy: 1.939069822610387

이 또한 기울기가 2에 가깝게 나오는 것을 확인할 수 있었다.

다만, 이 선형성은 다양한 dt와 h에 대해서 항상 성립한다고 보기 어렵다. error 값이 균일하게 나오지 못하는 것에는 초기 t부터 exact solution을 steady state로 잡은 것이 작용했을 것으로 보인다. 따라서 문제 1에서의 답을 exact solution으로 적용한다면 더욱 정확한 error 그래프를 얻을수 있을 것으로 보인다.