2. Linee di livello

Sia z = f(x; y) una funzione definita nel rettangolo R del piano xy.

Scelta una quota h si dice **linea di livello** corrispondente il sottoinsieme di R:

$$L = \{(x; y) \in R / f(x; y) = h\}$$

Le linee di livello sono le proiezioni ortogonali sul piano xy delle curve intersezione della superficie z = f(x; y) con i piani

$$z = h$$

paralleli al piano xy.

Esercizi

Determinare le linee di livello delle seguenti funzioni :

1.
$$z = x - y + 1$$

3.
$$z = x^2 + y^2$$

5.
$$z = y^2 - 4x^2$$

7.
$$z = y - x^3 + 3x^2$$

9.
$$z = e^{-y/x}$$

11.
$$z = \sqrt{2 - x^2 - y^2}$$

2.
$$z = 2x + y$$

4.
$$z = xy$$

6.
$$z = x - \sqrt{y-1}$$

8.
$$z = xy - 3y + x$$

10.
$$z = e^{x^2 - y}$$

12.
$$z = \log(x + y)$$

Soluzioni

- **1. S.** (x y + 1 = h, rette); **2. S** . 2x + y = k rette;
- **3. S.** $x^2 + y^2 = k$ $\forall k > 0$ *circonferenze*; se k = 0 il punto (0;0), vedi fig. 1

Fig. 1

4. S.
$$\begin{cases} xy = h, & iperboli \ se \ h \neq 0; \\ se \ h = 0 \ gli \ assi \ x = 0 \ e \ y = 0 \end{cases}$$
;

5. S.
$$y^2 - 4x^2 = k$$
 $\forall k \neq 0$ *iperboli*; se $k = 0$ coppia di rette $y = \pm 2x$;

6. S.
$$(x - \sqrt{y - 1} = h, semiparabole);$$
 7. S. $y - x^3 + 3x^2 = k$ cubiche;

8. S.
$$\left(\begin{array}{c} se\ h \neq 3\ , y = \frac{h-x}{x-3},\ iperboli;\\ se\ h = 3\ , le\ rette\ x = 3\ e\ y = 1 \end{array}\right);$$
9. S. $\left(\begin{array}{c} e^{-\frac{y}{x}} = h,\ h > 0 \Rightarrow -\frac{y}{x} = logh\ \Rightarrow\\ y = -xlogh,\ rette \end{array}\right);$

10. S.
$$e^{x^2-y}=k$$
, $\forall k>0 \Longrightarrow x^2-y=logk$ parabole, vedi fig. 2

Fig.2

11. S.
$$x^2 + y^2 = 2 - k$$
, $\forall k < 2$ *circonferenze*; se $k = 2$ il punto (0;0);

12. S.
$$x + y = e^k$$
 rette;