MET CS662 - Assignment #3

Machida Hiroaki

1. For $\Sigma = \{a, b\}$, construct deterministic finite automata that accept the sets consisting of a) All strings with at least one a.

b) All strings with no more than three a's.

2. Give a set notation description of the language accepted by the automaton depicted in the following diagram. Can you think of a simple verbal characterization of the language?

 $L = \{ b^*ab^*(aa^*bb^*)^* \}$

This language has any number of b, followed by one a, followed by any number of b, then followed by any number of a and b in which a appears before b.

3. Find a deterministic finite automaton for the following language on $\Sigma = \{a, b\}$ $L = \{\omega \mid (n_a(\omega) - n_b(\omega)) \bmod 3 > 0\}$

To grader: **please check carefully!** This is correct.

- 4. Consider the number of strings on {0, 1} defined by the requirement below. For each construct a dfa.
- a. Every 00 is followed by a 1. For example, the strings 101, 0010, 0010011001 are in the language, but 0001 and 00100 are not.

b. The leftmost symbol differs from the rightmost one.

5. Construct a dfa that accepts strings on {0, 1} if and only if the value of the string, interpreted as a binary representation of an integer, is zero modulo five. For example, 0101 and 1111, representing the integers 5 and 15, respectively, are to be accepted.

6. Show that if L is regular, so is $L - \{\lambda\}$.

If there exists a DFA for $L - \{\lambda\}$, $L - \{\lambda\}$ is regular.

Case1: L doesn't accept λ

If L doesn't accept λ , there is no problem.

Case2: No loop on start state

If there is a state that accepts λ from the starting state, just remove the accepting state from the starting state and make it nonaccepting state.

Case3: Loop on start state

Assume we have the self-loop on the starting state, that accepts λ . In such a case, remove the accepting property from the starting state and add an extra state to the DFA which takes the transition from the starting state. Now the acceptance of λ automatically removed.

Hence, if *L* is regular, so is $L - \{\lambda\}$.