Probabilités - Chapitre 1

Abdallah K

3 Espaces probabilisés et probabilités

Expérience aléatoire

On appelle expérience aléatoire toute expérience dont on connaît parfaitement les conditions mais dont on ne peut pas prévoir l'issue. Elle est notée \mathcal{E} .

Univers

On appelle univers d'une expérience aléatoire $\mathcal E$ l'ensemble des issues possibles. Un univers est noté Ω .

Événement

On appelle événement toute partie de l'univers Ω . Les événements sont notés par des lettres majuscules : $A,B,C\dots$

On dit qu'un événement A se réalise (ou est réalisé) lors d'une expérience aléatoire si et seulement si l'issue de cette expérience aléatoire appartient à A.

Vocabulaire des événements

Notation	Lecture	Vocabulaire
Ø	-	événement impossible
Ω	grand omega	univers (ou événement certain)
ω	omega	issue
$\{\omega\}$	singleton omega	événement élémentaire
A	-	événement
$\omega \in A$	omega dans A	ω est une réalisation possible de
		A
\overline{A}	A barre	événement contraire de A
$A \cup B$	A union B	réalisation de A , ou B , ou les
		deux
$A \cap B$	A inter B	réalisation de A et B
A-B	A privé de B	réalisation de A et \overline{B}
$A \cap B = \emptyset$	-	A et B sont incompatibles
$A \subset B$	A inclus dans B	A implique B

Toutes les opérations vues sur les ensembles sont aussi valables pour les événements. En particulier, $\overline{A \cup B} = \overline{A} \cap \overline{B} =$ "ni A, ni B se réalise" et $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Système complet d'événements

 $(A_k)_{k\in\{1,\ldots,n\}}$ forme un système complet d'événements \Leftrightarrow

$$(A_k)_{k\in\{1,\ldots,n\}}$$
 sont incompatibles deux à deux et $\bigcup_{k=1}^n A_k = \Omega$.

Tribu

On dit que A est une tribu de l'univers Ω si, et seulement si,

- $\Omega \in \mathcal{A}$,
- pour tout $A \in \mathcal{A}, \overline{A} \in \mathcal{A},$
- pour toute famille d'événements $(A_k)_{k\in\mathbb{N}^*}$ tels que, pour tout $k\in\mathbb{N}^*$, $A_k\in\mathcal{A}$, on a $\bigcup_{k=1}^{\infty}A_k\in\mathcal{A}$.

Si Ω est fini ou infini dénombrable, on prend $\mathcal{A} = \mathcal{P}(\Omega)$ (l'ensemble des parties de Ω).

Probabilité \mathbb{P}

On appelle probabilité définie sur (Ω, \mathcal{A}) toute application $\mathbb{P} : \mathcal{A} \to \mathbb{R}$ telle que :

- pour tout $A \in \mathcal{A}$, $\mathbb{P}(A) \in [0,1]$,
- $\mathbb{P}(\Omega) = 1$,
- pour toute suite d'événements $(A_k)_{k\in\mathbb{N}^*}$ incompatibles deux à deux,

$$\mathbb{P}\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mathbb{P}(A_k).$$

Si Ω est fini, on peut remplacer le dernier point par : $A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$. Le réel $\mathbb{P}(A)$, prononcer "P de A", est la probabilité que l'événement A se réalise.

Probabilité sur un univers dénombrable

Soient Ω un univers fini ou infini dénombrable (comme, par exemple, $\Omega = \mathbb{N}$), et $\mathcal{A} = \mathcal{P}(\Omega)$ l'ensemble des parties de Ω . Si l'application $\mathbb{Q} : \mathcal{A} \to \mathbb{R}$ vérifie :

- pour tout $\omega \in \Omega$, $\mathbb{Q}(\{\omega\}) \geq 0$,
- $\sum_{\omega \in \Omega} \mathbb{Q}(\{\omega\}) = 1$,
- pour tout $A \in \mathcal{A}$, $\mathbb{Q}(A) = \sum_{\omega \in A} \mathbb{Q}(\{\omega\})$,

alors \mathbb{Q} est une probabilité définie sur (Ω, \mathcal{A}) .

Espace probabilisé

Le triplet $(\Omega, \mathcal{A}, \mathbb{P})$ est appelé espace probabilisé.

Propriétés des probabilités

$$\begin{split} \mathbb{P}(\emptyset) &= 0, \\ A \cap B &= \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B), \\ \mathbb{P}(\overline{A}) &= 1 - \mathbb{P}(A), \\ \mathbb{P}(A) &= \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \overline{B}), \\ A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B). \end{split}$$

Formule d'inclusion-exclusion (2 termes)

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Formule d'inclusion-exclusion (3 termes)

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C).$$

Formule d'inclusion-exclusion (n termes)

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{(i_1, \dots, i_k) \in U_k} \mathbb{P}\left(\bigcap_{j=1}^{k} A_{i_j}\right),$$

où
$$U_k = \{(i_1, \dots, i_k) \in \{1, \dots, n\}^k; i_1 < \dots < i_k\}.$$

Cas particuliers et inégalités

• $(A_k)_{k \in \{1,...,n\}}$ incompatibles deux à deux \Rightarrow

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} \mathbb{P}(A_k).$$

• On a toujours

$$\mathbb{P}\left(\bigcup_{k=1}^{n} A_k\right) \le \sum_{k=1}^{n} \mathbb{P}(A_k).$$

• Propriétés de limite monotone :

$$A_{n+1} \subset A_n \Rightarrow \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{k=1}^{\infty} A_k\right),$$

$$A_n \subset A_{n+1} \Rightarrow \lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{k=1}^{\infty} A_k\right).$$

Équiprobabilité

Si aucun événement élémentaire n'a plus de chance de se réaliser que les autres, on dit qu'il y a équiprobabilité.

Probabilité uniforme

Si Ω est fini et qu'il y a équiprobabilité, alors on peut considérer l'espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, où \mathbb{P} désigne la probabilité uniforme définie par

$$\mathbb{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)}, \quad A \in \mathcal{A}.$$

Autrement écrit, on a $\mathbb{P}(A) = \frac{\text{Nombre d'événements élémentaires formant } A}{\text{Nombre d'événements élémentaires formant } \Omega}$

4 Probabilités conditionnelles et indépendance

Probabilité conditionnelle

L'application $\mathbb{P}_B: A \to [0,1]$ définie par

$$\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad A \in \mathcal{A},$$

est une probabilité.

Le réel $\mathbb{P}_B(A)$, prononcer "P de A sachant B", est la probabilité que l'événement A se réalise sachant que l'événement B est réalisé (avec $\mathbb{P}(B) \neq 0$).

Retournement du conditionnement

$$\mathbb{P}_B(A) = \frac{\mathbb{P}_A(B)\mathbb{P}(A)}{\mathbb{P}(B)} = c\mathbb{P}_A(B), \text{ avec } c = \frac{\mathbb{P}(A)}{\mathbb{P}(B)}.$$

Formule des probabilités composées (ordre 3)

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}_A(B)\mathbb{P}_{A \cap B}(C).$$

Formule des probabilités totales (2 termes)

$$\mathbb{P}(A) = \mathbb{P}_B(A)\mathbb{P}(B) + \mathbb{P}_{\overline{B}}(A)\mathbb{P}(\overline{B}).$$

Formule de Bayes (2 termes)

$$\mathbb{P}_B(A) = \frac{\mathbb{P}_A(B)\mathbb{P}(A)}{\mathbb{P}_A(B)\mathbb{P}(A) + \mathbb{P}_{\overline{A}}(B)\mathbb{P}(\overline{A})}.$$

Arbre de probabilité

Un arbre de probabilité est un schéma permettant de résumer une expérience aléatoire. Il sert à calculer des probabilités.

$$\mathbb{P}(A) \xrightarrow{A} A \xrightarrow{\mathbb{P}_A(B)} B$$

$$\mathbb{P}(\overline{A}) \xrightarrow{A} \overline{A} \xrightarrow{\mathbb{P}_{\overline{A}}(B)} B$$

$$\mathbb{P}_{\overline{A}}(\overline{B}) \xrightarrow{\overline{B}} \overline{B}$$

Le vocabulaire associé est assez intuitif (branche, nœud, chemin...).

Ainsi, la pondération de la branche allant du nœud A vers le nœud B est la probabilité que B se réalise sachant que A est réalisé : $\mathbb{P}_A(B)$. Cet arbre possède les particularités suivantes :

• La somme des probabilités sur les branches d'un même nœud vaut 1. Par exemple :

$$\mathbb{P}(\overline{A}) + \mathbb{P}(A) = 1.$$

• La "probabilité d'un chemin" $(\mathbb{P}(A \cap B), \mathbb{P}(A \cap \overline{B}), ...)$ est le produit des probabilités de ses branches. Par exemple :

$$\mathbb{P}(A \cap B) = \mathbb{P}_A(B)\mathbb{P}(A).$$

• Conséquence de la formule des probabilités totales : La probabilité qu'un évènement se réalise est la somme des probabilités des chemins qui y amènent. Par exemple :

$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \overline{B}).$$

Formule des probabilités composées (ordre n)

$$\mathbb{P}\left(\bigcap_{k=1}^{n} A_{k}\right) = \mathbb{P}(A_{1}) \prod_{i=2}^{n} \mathbb{P}_{\bigcap_{k=1}^{i-1} A_{k}}(A_{i}).$$

Formule des probabilités totales (ordre n)

 $(A_k)_{k\in\{1,\ldots,n\}}$ système complet d'événements \Rightarrow

$$\mathbb{P}(B) = \sum_{k=1}^{n} \mathbb{P}_{A_k}(B) \mathbb{P}(A_k).$$

6

Formule de Bayes (ordre n)

 $(A_k)_{k\in\{1,\ldots,n\}}$ système complet d'événements \Rightarrow

$$\mathbb{P}_B(A_i) = \frac{\mathbb{P}_{A_i}(B)\mathbb{P}(A_i)}{\sum_{k=1}^n \mathbb{P}_{A_k}(B)\mathbb{P}(A_k)}.$$

Indépendance

• A et B indépendants \Leftrightarrow

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \Leftrightarrow \mathbb{P}_B(A) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}_A(B) = \mathbb{P}(B).$$

- A et B indépendants $\Leftrightarrow \overline{A}$ et B indépendants $\Leftrightarrow A$ et \overline{B} indépendants.
- $(A_k)_{k \in \{1,...,n\}}$ indépendants deux à deux \Leftrightarrow pour tout $(k,l) \in \{1,\ldots,n\}^2$ avec $k \neq l$,

$$\mathbb{P}(A_k \cap A_l) = \mathbb{P}(A_k)\mathbb{P}(A_l).$$

• $(A_k)_{k \in \{1,...,n\}}$ indépendants \Leftrightarrow pour tout $I \subseteq \{1,...,n\}$,

$$\mathbb{P}\left(\bigcap_{k\in I}A_k\right)=\prod_{k\in I}\mathbb{P}(A_k).$$