一、填空题 (每空 2 分,共 20 分)

1、设 $z_1 = \frac{(1+2i)(3-4i)}{1-2i}$,则 $|z_1| = ______;$ 若 $\arg z_2 = \frac{\pi}{4}$,则

$$\arg\left(z_{2}\cdot e^{\frac{\pi}{3}}\right) = \underline{\qquad}$$

2、设 $f(z) = \frac{e^z}{\sin z}$,则f(z)的奇点为______,它们是____级极点,在解

析处 f'(z) = _____

 $3 \cdot \int_{|z|=2}^{i} ze^{z} dz = \underline{\qquad}; \quad \int_{0}^{i} ze^{z} dz = \underline{\qquad};$

$$\int_{|z|=2}^{\infty} \frac{ze^z}{(z-1)^{10}} dz = \underline{\hspace{1cm}}$$

4、幂级数 $\sum_{i=1}^{\infty} \frac{i^n}{2^n} z^n$ 的收敛半径为_____。

$$5, \int_{-\infty}^{\infty} \delta(t)dt = \underline{\hspace{1cm}}.$$

1、计算 i^i 与 $\sin i$ 的值;

2、函数 $f(z) = x^2 + iy$ (其中 z = x + iy) 在何处可导、何处解析? **在可导时求** 导数;

计算 $I = \int_{L}^{z} dz$ 其中L为|z|=1上沿逆时针自 1 到i 的圆弧段;

、利用留数计算积分 $I = \int_{|z-3i|=4}^{\infty} \frac{\sin z}{e^z - 1} dz$;

5、利用留数计算积分
$$I = \int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$$
 。

6、利用留数计算积分
$$I = \int_0^{2\pi} \frac{1}{5 + \sin x} dx$$
 。

7、计算
$$f(t) = \begin{cases} 1 & 0 < t < 1 \\ -1 & -1 < t < 0 \end{cases}$$
 的 Fourier 变换。
0 其它

8、计算 $f(t) = \sin t \cos t$ 的 Fourier 变换。

得 分

三、求已知函数的展开式。(共 15 分)

1、设函数 $f(z) = \cos^3 z$, 将 f(z) 在 $z_0 = 0$ 处展开成泰勒级数

2、设 $f(z) = \frac{1}{z(z-i)^2}$,将f(z)在环域|z| > 1内展开成洛朗级数

得 分

四、证明: (5分)

设函数 f(z) = u(x,y) + iv(x,y) (z = x + iy) 是解析函数,证明:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$