Metody numeryczne Sprawozdanie z ćwiczeń laboratoryjnych nr 6

Poszukiwanie zer wielomianów metodą iterowanego dzielenia (metoda Newtona)

Jan Zajda Informatyka Stosowana WFiIS Akademia Górniczo-Hutnicza w Krakowie 18 kwietnia 2020

1. Wstęp teoretyczny

Jedną z metod poszukiwania pierwiastków wielomianu jest metoda Newtona, inaczej nazywana metodą Newtona-Raphsona lub metodą stycznych. Dany mamy wielomian:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

a do rozwiązania mamy równanie f(x) = 0. Jeżeli funkcja spełnia założenia:

- jest określona i ciągła w pewnym przedziale $\langle a, b \rangle$,
- przyjmuje różne znaki na krańcach przedziału $\langle a, b \rangle$,
- pierwsza pochodna $f'(x) \neq 0$, w całym przedziale $\langle a, b \rangle$,

to w tym przedziale znajduje się poszukiwany pierwiastek i możemy go znaleźć korzystając z metody Newtona. Metoda polega na iteracyjnym wyszukiwaniu pierwiastka korzystając ze wzoru:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})},$$

przy czym wartość początkowa $x_0 \in < a,b>$ musi być przez nas wybrana. Do uzyskania wartości funkcji i jej pochodnej w punkcie x_{i-1} możemy wykorzystać dwukrotne dzielenie f(x) przez dwumian $(x-x_{i-1})$. Po wykonaniu dzielenia uzyskujemy:

$$f(x) = (x - x_{i-1})^2 (c_{n-2}x^{n-2} + c_{n-3}x^{n-3} + \dots + c_1x + c_0) + R'(x - x_{i-1}) + R$$

gdzie wartości R',R odpowiadają $f'(x_{i-1})=R',f(x_{i-1})=R$. Takie dzielenie jest o tyle wygodne, że pozwala nam znajdować zredukowaną postać wielomianu f(x), co jest pomocne przy szukaniu kolejnych pierwiastków. Obliczanie przybliżenia kontynujemy, aż do uzyskania zbieżności. W tym celu sprawdzamy czy różnica jest mniejsza niż podana z góry wartość ε :

$$|x_i - x_{i-1}| < \varepsilon$$
.

Jeżeli nie uda się uzyskać zbieżności przez założoną liczbę iteracji to uznajemy, że metoda nie pozwoliła nam znaleźć pierwiastka. Może być to spowodowane np. złym wyborem punktu początkowego x_0 . Po znalezieniu pierwiastka x_i wykorzystujemy nowy wielomian f(x), zredukowany o jeden stopień dzięki podzieleniu przez $(x-x_i)$ i ponownie korzystamy z powyższej metody do znalezienia następnych pierwiastków.

2. Zadanie do wykonania

2.1. Opis problemu

Mamy dany następujący wielomian:

$$f(x) = x^5 + 14x^4 + 33x^3 - 92x^2 - 196x + 240.$$

Naszym zadaniem jest znalezienie wszystkich pierwiastków wielomianu f(x), za pomocą metody Newtona. Wykorzystujemy w całości własnoręcznie napisany kod, w którym kluczową rolę odgrywa funkcja $licz_{-}r(a,b,n,x_{i-1})$, przyjmująca jako argumenty wektory a,b oraz stopień wielomianu n i liczbę x_{i-1} . Funkcja ta pozwala znaleźć wartości R',R oraz współczynniki nowego wielomianu, uzyskanego z podzielenia f(x) przez dwumian $(x-x_{i-1})$.

Przyjmujemy następujące dane:

 $x_0 = 0$ - wartość początkowa,

ITmax = 30 - maksymalna liczba iteracji,

 $\varepsilon=10^{-7}$ - dokładność wyznaczania pierwiastka.

2.2. Wyniki

Jako wynik wypisujemy wartości obliczanych zmiennych we wszystkich iteracjach.

Lp - numer pierwiastka,

it - numer iteracji,

 x_{it} - wartość przybliżenia miejsca zerowgo w danej iteracji,

 R_{it} - reszta z dzielenia wielomianu f(x) w danej iteracji,

 R'_{it} - reszta z powtórnego podzielenia f(x) w danej iteracji.

Lp	it	x_{it}	R_{it}	R_{it}^{\prime}
1	1	1.22449	240	-196
1	2	0.952919	-43.1289	-158.813
1	3	0.999111	10.5714	-228.86
1	4	1	0.195695	-220.179
1	5	1	7.96468e-05	-220
1	6	1	1.32729e-11	-220

Lp	it	x_{it}	R_{it}	R'_{it}
2	1	-5.45455	-240	-44
2	2	-4.46352	-120.975	122.071
2	3	-4.10825	-24.2755	68.3304
2	4	-4.00957	-4.31754	43.7539
2	5	-4.00009	-0.347977	36.6891
2	6	-4	-0.00323665	36.0065
2	7	-4	-2.90891e-07	36

Lp	it	x_{it}	R_{it}	R'_{it}
3	1	15	-60	4
3	2	9.20218	5850	1009
3	3	5.53752	1687.53	460.488
3	4	3.38316	469.259	217.818
3	5	2.33534	118.159	112.767
3	6	2.0277	22.07	71.739
3	7	2.00021	1.67505	60.9441
3	8	2	0.0128842	60.0073
3	9	2	7.83733e-07	60

Lp	it	x_{it}	R_{it}	R'_{it}
4	1	-2.30769	30	13
4	2	-2.94284	5.32544	8.38462
4	3	-2.99954	0.403409	7.11433
4	4	-3	0.00321531	7.00092
4	5	-3	2.10929e-07	7

Lp	it	x_{it}	R_{it}	R'_{it}
5	1	-10	10	1
5	2	-10	0	1

Znalezione pierwiastki: 1, -4, 2, -3, -10.

3. Wnioski

Jak widać po uzyskanych wynikach, metoda Newtona pozwala nam w krótkim czasie, przy niewielkiej liczbie iteracji znajdować kolejne przybliżenia miejsc zerowych z bardzo dużą dokładnością. Za wadę tej metody można uznać kłopotliwe założenia, które mogą nie zostać spełnione przy wyborze nieodpowiedniego punktu początkowego x_0 . Może to skutkować nieznalezieniem szukanego pierwiastka, albo nawet dzieleniem przez 0, jeśli f'(x)=0. Dodatkowo, kłopotliwe jest samo szukanie pochodnej funkcji w punkcie podczas każdej iteracji.