

#### **B.TECH SECOND YEAR**

ACADEMIC YEAR: 2020-2021



#### **COURSE NAME: ENGINEERING MATHEMATICS-III**

COURSE CODE : MA 2101

LECTURE SERIES NO: 36 (THIRTY SIX)

CREDITS : 3

MODE OF DELIVERY: ONLINE (POWER POINT PRESENTATION)

FACULTY: DR. VIVEK SINGH

EMAIL-ID : vivek.singh@laipur.manipal.edu

PROPOSED DATE OF DELIVERY: 19 OCTOBER 2020



#### VISION

Global Leadership in Higher Education and Human Development

#### MISSION

- Be the most preferred University for innovative and interdisciplinary learning
- · Foster academic, research and professional excellence in all domains
- Transform young minds into competent professionals with good human values

#### VATTIES

Integrity, Transparency, Quality,
Team Work, Execution with Passion, Humane Touch



## SESSION OUTCOME

"TO UNDERSTAND THE CONCEPT OF ODE AND THEIR APPLICATIONS AND SOLVE THE PROBLEM"

DR. VIVEK SINGH 14-Aug-20 2



**ASSIGNMENT** 

QUIZ

MID TERM EXAMINATION -I & II END TERM EXAMINATION

#### **ASSESSMENT CRITERIA'S**

DR. VIVEK SINGH 14-Aug-20 3



#### Cosets

- If H is a subgroup of (G, \*) and  $a \in G$  then the set  $Ha = \{h * a \mid h \in H\}$  is called a **right coset** of H in G. Similarly  $aH = \{a * h \mid h \in H\}$  is called a **left coset** of H is G.
- Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint.
- 2) Let H be a subgroup of G. Then the right cosets of H form a partition of G. i.e., the union of all right cosets of a subgroup H is equal to G.
  - 3) Lagrange's theorem: The order of each subgroup of a finite group is a divisor of the order of the group.
- 4) The order of every element of a finite group is a divisor of the order of the group.
- 5) The converse of the lagrange's theorem need not be true.

DR. VIVEK SINGH

#### Example

- **Ex.** If G is a group of order p, where p is a prime number. Then the number of subgroups of G is
- $\bullet$  a) 1 b) 2 c) p 1 d) p
- Ans. b
- Ex. Prove that every subgroup of an abelian group is abelian.
- Solution: Let (G, \*) be a group and H is a subgroup of G.
- Let  $a, b \in H$
- $\Rightarrow$  a, b  $\in$  G (Since H is a subgroup of G)
- $\Rightarrow$  a \* b = b \* a (Since G is an abelian group)
- Hence, H is also abelian.

#### State and prove Lagrange's Theorem

Lagrange's theorem: The order of each subgroup H of a finite group G is a divisor of the order of the group.

**Proof**: Since G is finite group, H is finite.

- Therefore, the number of cosets of H in G is finite.
- Let Ha<sub>1</sub>,Ha<sub>2</sub>, ...,Ha<sub>r</sub> be the distinct right cosets of H in G.
- Then,  $G = Ha_1 \cup Ha_2 \cup ..., \cup Ha_r$
- So that  $O(G) = O(Ha_1) + O(Ha_2) ... + O(Ha_r)$ .
- But,  $O(Ha_1) = O(Ha_2) = ..... = O(Ha_r) = O(H)$
- :. O(G) = O(H) + O(H) ... + O(H). (r terms)
- = r . O(H)
- This shows that O(H) divides O(G). DR. VIVEK SINGH

#### Lagrange's Theorem

**Statement:** The order of each subgroup of a finite group is a divisor of the order of the group.

i.e., Let H be a subgroup of a finite group G and let

$$o(G) = n$$
 and  $o(H) = m$ , then

$$m \mid n$$
 (m divides n)

Since,  $f: H \to aH$  and  $f: H \to Ha$  is one-one and onto.

$$\Rightarrow o(H) = o(H) = m$$

Now,  $G = H \cup Ha \cup Hb \cup Hc \cup ...$ , where a,b,c,...  $\in G$ 

$$\Rightarrow$$
  $o(G) = o(H) + o(Ha) + o(Hb) + ...$ 

$$\Rightarrow$$
  $n = m + m + m + m + \dots + \text{ upto } p \text{ terms}$  (say)

$$\Rightarrow$$
  $n = mp$ 

⇒ Order of the subgroup of a finite group is a divisor of the order of the group.

$$\div$$
  $\div$ 

\*The converse of Lagrange's theorem is not true.

e.g.,

Consider the symmetric group  $P_4$  of permutation of degree 4. Then  $o(P_4) = 4! = 24$  Let  $A_4$  be the alternative group of even permutation of degree 4. Then,  $o(A_4) = 24/2 = 12$ . There exist no subgroup H of  $A_4$ , such that o(H) = 6, though 6 is the divisor of 12.







The notion of a "group," viewed only 30 years ago as the epitome of sophistication, is today one of the mathematical concepts most widely used in physics, chemistry, biochemistry, and mathematics itself.

ALEXEY SOSINSKY, 1991

A *Cyclic Group* is a group which can be generated by one of its elements.

That is, for some a in G,  $G=\{a^n \mid \mathbf{n} \text{ is an element of } \mathbf{Z}\}$ Or, in addition notation,  $G=\{na \mid n \text{ is an element of } \mathbf{Z}\}$ 

This element a (which need not be unique) is called a *generator* of G. Alternatively, we may write  $G = \langle a \rangle$ .

#### **EXAMPLES**

• The set of integers Z under ordinary addition is cyclic. Both 1 and –1 are generators. (Recall that, when the operation is addition, 1<sup>n</sup> is interpreted as

$$\frac{1+1+\cdots+1}{\text{n terms}}$$

when n is positive and as

$$(-1) + (-1) + \cdots + (-1)$$

$$|n| \text{ terms}$$

when n is negative.)

- The set Z<sub>n</sub> = {0, 1, . . . , n-1} for n ≥ 1 is a cyclic group under addition modulo n. Again, 1 and -1 = n-1 aregenerators.
   Unlike Z, which has only two generators, Z<sub>n</sub> may have many generators (depending on which n we are given).
- $Z_8 = <1> = <3> = <5> = <7>$ .

To verify, for instance, that  $Z_8 = \langle 3 \rangle$ , we note that  $\langle 3 \rangle = \{3, 3 + 3, 3 + 3 + 3, \ldots \}$  is the set  $\{3, 6, 1, 4, 7, 2, 5, 0\} = Z_8$ . Thus, 3 is a generator of  $Z_8$ . On the other hand, 2 is not a generator, since  $\langle 2 \rangle = \{0, 2, 4, 6\} \neq Z_8$ .

16

- $U(10) = \{1, 3, 7, 9\} = \{3^{\circ}, 3^{1}, 3^{3}, 3^{2}\} = <3>$ . Also,  $\{1, 3, 7, 9\} = \{7^{\circ}, 7^{3}, 7^{1}, 7^{2}\}$  = <7>. So both 3 and 7 are generators for U(10).
- Quite often in mathematics, a "nonexample" is as helpful in understanding a concept as an example. With regard to cyclic groups, U(8) serves this purpose; that is, U(8) is not a cyclic group. Note that  $U(8) = \{1, 3, 5, 7\}$ . But

$$<1> = {1}$$
 $<3> = {3, 1}$ 
 $<5> = {5, 1}$ 
 $<7> = {7, 1}$ 

so  $U(8) \neq \langle a \rangle$  for any a in U(8).

With these examples under our belts, we are now ready to tackle cyclic groups in an abstract way and state their key properties.

Properties of Cyclic Groups

▶Theorem4.1 Criterion for a = a Let G be a group, and let a belong to G. If a has infinite order, then aia if and only if i=i. If a has finite order, say, n, then  $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$ and aia if and only if n divides i – j.

**PROOF** Let G be a cyclic group generated by g. Let a, b be elements of G. We want to show that ab = ba. Now,  $a = g^m$  and  $b = g^n$  for some integers a and b. So,  $ab = g^m g^n = g^{m+n}$  and  $ba = g^n g^m = g^{n+m}$ . But m+n = n+m (addition of integers is commutative). So ab = ba.

#### **EXAMPLES**

- (i) (Z, +) is a cyclic group because Z = <i>.
- (ii) ( $\{na \mid n \in Z\}$ , +) is a cyclic group, where a is any fixed element of Z.
- (iii)  $(Z_n,+n)$  is a cyclic group because  $Z_n=<[1]>$ .

- Corollary 1  $|a| = |\langle a \rangle|$ For any group element a,  $|a| = |\langle a \rangle|$ .
- Corollary 2  $a^k = e$  Implies That |a| Divides kLet G be a group and let a be an element of order n in G. If  $a^k = e$ , then n divides k.

# Theorem 4.1 and its corollaries for the case |a| = 6 are illustrated in Figure 4.1.



#### Theorem 4.2 $< a^k > = < a^{\gcd(n,k)} >$

Let a be an element of order n in a group and let k be a positive integer. Then  $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$  and  $|a^k| = n/\gcd(n,k)$ .

- **Corollary 1** Orders of Elements in Finite Cyclic Groups In a finite cyclic group, the order of an element divides the order of the group.
- **Corollary 2** Criterion for  $\langle a^i \rangle = \langle a^j \rangle$  and  $|a^i| = |a^j|$ Let |a| = n. Then  $\langle a^i \rangle = \langle a^j \rangle$  if and only if  $\gcd(n, i) = \gcd(n, j)$  and  $|a^i| = |a^j|$  if and only if  $\gcd(n, i)$  5  $\gcd(n, j)$ .

#### • Corollary 3 Generators of Finite Cyclic Groups

Let |a| = n. Then  $\langle a \rangle = \langle a^j \rangle$  if and only if gcd(n, j) = 1 and  $|a| = |\langle a^j \rangle|$  if and only if gcd(n, j) = 1.

• Corollary 4 Generators of  $Z_n$ 

An integer k in  $Z_n$  is a generator of  $Z_n$  if and only if gcd(n, k) = 1.

# Classification of Subgroups of Cyclic Groups

#### Theorem 4.3

# Fundamental Theorem of Cyclic Groups

- Every subgroup of a cyclic group is cyclic. Moreover, if | <a>| = n, then the order of any subgroup of <a> is a divisor of n; and, for each positive divisor k of n, the group <a> has exactly one subgroup of order k</a>
- —namely,  $<a^{n/k}>$ .

### Corollary Subgroups of $Z_n$

For each positive divisor k of n, the set < n/k > is the unique subgroup of  $Z_n$  of order k; moreover, these are the only subgroups of  $Z_n$ .

**EXAMPLE** The list of subgroups of Z30 is

28

| <ul><li>&lt;1&gt;= {0, 1, 2,, 29}</li></ul> | order 30, |
|---------------------------------------------|-----------|
| <ul><li>&lt;2&gt;= {0, 2, 4,, 28}</li></ul> | order 15, |
| <ul><li>&lt;3&gt;= {0, 3, 6,, 27}</li></ul> | order 10, |
| • <5>= {0, 5, 10, 15, 20, 25}               | order 6,  |
| <6>= {0, 6, 12, 18, 24}                     | order 5,  |
| <ul><li>&lt;10&gt;= {0, 10, 20}</li></ul>   | order 3,  |
| <ul><li>&lt;15&gt;= {0, 15}</li></ul>       | order 2,  |
| • <30>= {0}                                 | order 1.  |

#### Theorem 4.4

Number of Elements of Each Order in a Cyclic Group If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is  $\varphi(d)$ .



#### **Corollary: Number of** Elements of Order d in a Finite Group

■In a finite group, the number of elements of order d is divisible by  $\varphi$  (d).

31

The lattice diagram for  $Z_{30}$  is shown in Figure 4.2. Notice that <10> is a subgroup of both <2> and <5>, but <6> is not a subgroup of <10>.



## THANK YOU

18



18