ГЕОМЕТРИЯ В КОМПЬЮТЕРНЫХ ПРИЛОЖЕНИЯХ

Лекция 1: Введение и геометрия кривых и поверхностей

Богачев Николай Владимирович

05 сентября 2018

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

Введение

О чем вообще идёт речь?

Геометрия повсюду!

О чем вообще идёт речь?

Как можно думать о геометрических формах и объектах:

- математически
 (дифференциальная геометрия)
- как о дискретных структурах и сетках (дискретная дифференциальная геометрия)

Основные цели курса:

- Помогаем компьютерам!
- Центральная идея: Гладкое VS. Дискретное

Рис. 1: Поверхность Боя, Обервольфах, Германия и бутылка Клейна

Приложения: Geometry Mesh Processing

Приложения: Мультимедиа

Приложения: анализ форм и изображений

Приложения: симуляции

Приложения: архитектура и дезайн

Организация курса

- Страница курса: https://nvbogachev.netlify.com/teaching/gcs18f
- · Связь: по почте nvbogach@mail.ru
- Лекции: слайды и, возможно, конспекты!
- Семинары: листочки с задачами и домашки (=S)
- · Лабораторные работы: CoCalc ... (=L)
- \cdot Контрольная работа: MidTerm (= M)
- Итоговая формула оценки за зачет:

$$Ex = \lambda_S \cdot S + \lambda_L \cdot L + \lambda_M \cdot M.$$

Лабораторные

- Гладкие кривые и поверхности
- Дискретные кривые и поверхности
- Внешние формы
- Дискретные внешние формы
- Лапласиан!
- Сглаживание и деформация

Развитие геометрии

Дифференциальная геометрия – вплоть до 20 века

- Локальные свойства формы
 - Скорость движения вдоль кривой
 - Локальное поведение поверхности и т.д.
- Связь локальных свойств с глобальными
- Всевозможные соотношения и развитие дифференциальной геометрии многообразий

Дискретная дифференциальная геометрия – 21 век

- Никаких больше бесконечностей и производных!
- Все выражается в терминах углов, длин, объемов и т.д.
- Но соблюдение многих «гладких» принципов!
- · Развитие Computer Science в 21 веке.

Геометрия плоских кривых

Плоские кривые

- Гладкая кривая на \mathbb{R}^2 гладкое отображение $\gamma \colon [0,L] \to \mathbb{R}^2$
- Вектор **скорости** $-\gamma'(t) = (x'(t), y'(t)).$

Дискретные кривые

- · Дискретная кривая на \mathbb{R}^2 кусочно-линейная функция
- Вектор **скорости** а вот что это?

Касательный вектор

- Касательная к кривой γ в точке t_0 предельное положение секущей через точки t_0 и $t_0+\Delta$ при $\Delta\to 0$.
- Это и есть вектор скорости? (Да, и обычно нормируют.)

Определение

Две гладкие регулярные кривые касаются в точке P, если они обе проходят через эту точку и имеют в ней общую касательную.

Определение

Гладкие регулярные кривые $r_1(s)$ и $r_2(s)$ имеют в точке 0 касание порядка k, если

$$r_1(0) = r_2(0), \quad \dot{r}_1(0) = \dot{r}_2(0), \quad \dots, \qquad r_1^{(k)}(0) = r_2^{(k)}(0).$$

Лемма о перпендикулярности

Пусть $a\colon t\mapsto a(t)\in\mathbb{R}^n$ — гладкая вектор-функция, причем $|a(t)|\equiv const.$ Тогда $a'(t)\perp a(t).$

Доказательство.

Продифференцируем $(a(t),a(t))=const^2$ и получаем 2(a(t),a'(t))=0.

Теорема (о соприкасающейся окружности)

Пусть $\gamma(s)$ – рег. кривая и $\ddot{\gamma}(s_0) \neq 0$. Тогда $\exists !$ окружность, имеющая в точке s_0 касание второго порядка с γ , причем (1) ее центр лежит на нормали к кривой в направлении $\ddot{\gamma}(s_0)$,

(2) ее радиус равен $|\ddot{\gamma}(s_0)|^{-1}$.

Кривизна – вторая производная!

Дискретизация

Что такое хорошая дискретизация?

- Удовлетворяет известным гладким соотношениям
- Сходимость при приближении дискретного к гладкому
- Легко вычисляется!

Список литературы:

- [1] Keenan Crane Discrete Differential Geometry: An Applied Introduction, 2018.
- [2] А.О. Иванов, А.А. Тужилин Лекции по классической дифференциальной геометрии, 2009, Москва, Логос.

Лекция 1, cmp. 5 – 14

[3] А.И. Шафаревич — Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. *Лекция 1, стр. 3 – 10*