IFT 615 – Intelligence artificielle

Raisonnement probabiliste

Hugo Larochelle

Département d'informatique

Université de Sherbrooke

http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

Sujets couverts

- Introduction au raisonnement probabiliste
 - Raisonnement avec incertitude
 - Théorie des probabilités: syntaxe et sémantique
 - Inférences simples
 - Indépendance entre des variables aléatoires
 - Règle de Bayes
 - Illustration avec le monde des wumpus

Incertitude

- Soit A, l'action d'aller à l'aéroport t minutes avant le départ de l'avion
- A, me permettra-t-il d'arriver à temps?
- Problèmes:
 - observabilité partielle (conditions routières, etc.)
 - senseurs bruités (annonces du trafic, etc.)
 - incertitude dans l'effet des actions (crevaisons, pannes, etc.)
 - immense complexité pour modéliser les actions et le trafic
- Un raisonnement purement logique:
 - risque de tirer des conclusions erronées
 - » « A_{25} me permettra d'arriver à temps » (impossible de faire cette garantie)
 - risque de tirer des conclusions peu exploitables du point de vue de la prise de décision
 - » « A₂₅ me permettra d'arriver à temps, s'il ne pleut pas, s'il n'y a pas d'accident, si mes pneus ne crèvent pas, etc. »
 - » « A_{1440} me permettra presque certainement d'arriver à temps, mais je devrai passer une nuit à l'aéroport. »

Méthodes pour le raisonnement avec incertitude

- Logique non-monotone (nonmonotonic/default logic)
 - supposer que ma voiture n'aura pas de crevaison
 - \diamond supposer que A_{25} suffit **à moins** d'information (*evidence*) contradictoire
 - enjeux:
 - » Quelles hypothèses sont raisonnables?
 - » Comment gérer les contradictions?
- Règles de production avec facteurs de certitude
 - $A_{25} \rightarrow 0.4 \ ArriveATemps$
 - ◆ Arroseur → 0.99 PelouseMouillée
 - ◆ PelouseMouillé → 0.7 Pluie
 - enjeux:
 - » Problèmes avec les combinaisons de règles pour faire des déduction. Par exemple: Arroseur causes Pluie !?

Méthodes pour le raisonnement avec incertitude

Probabilités

- modélise la croyance/certitude des agents
 - » les connaissances de l'agent peuvent au mieux donner un degré de croyance dans les faits
- étant donnée l'information/observation disponible jusqu'ici, A_{25} me permettra d'arriver avec une probabilité de 0.4

Probabilités

- Les assertions probabilistes facilitent la modélisation:
 - des faits et de règles complexes: comparée aux règles de production, l'approche est moins sensible à l'impossibilité d'énumérer toutes les exceptions, antécédents ou conséquences de règles
 - de l'ignorance: l'approche est moins sensible à l'omission/oubli des faits, de prémisses ou des conditions initiales à un raisonnement

Probabilités

- Perspective subjective/bayésienne des probabilités:
 - les probabilités expriment le degré de croyance d'un agent dans des propositions/faits
 - » exemple: $P(A_{25} \mid \text{aucun accident rapporté}) = 0.06$
 - les probabilités ne sont pas des assertions sur ce qui est vrai de façon absolue
 - n'expriment pas forcément des tendances/fréquences d'une situation, mais pourraient être apprises automatiquement à partir d'expériences
 - les probabilités des propositions changent avec l'acquisition de nouvelles informations
 - » exemple: $P(A_{25} \mid \text{aucun accident rapporté}, 5h du matin) = 0.15$
- À l'opposée, il y a la perspective objective/fréquentiste des probabilités
 - les probabilités expriment des faits/propriétés sur des objets
 - on peut estimer ces probabilités en observant ces objets à plusieurs reprises
 - les physiciens diront que les phénomènes quantiques sont objectivement probabilistes

Prise de décisions avec incertitude

Supposons que je crois ceci:

```
◆ P(A_{25} \text{ me permet d'arriver à temps } | ...) = 0.04

◆ P(A_{90} \text{ me permet d'arriver à temps } | ...) = 0.70
```

- $ightharpoonup P(A_{120} \text{ me permet d'arriver à temps } | ...) = 0.95$
- \rightarrow $P(A_{240} \text{ me permet d'arriver à temps } | ...) = 0.999$
- \rightarrow $P(A_{1440} \text{ me permet d'arriver à temps } | ...) = 0.9999$
- Quelle action devrais-je choisir?
 - cela dépend de mes préférences: manquer l'avion vs. trop d'attente
- La théorie de l'utilité est utilisée pour modéliser et inférer avec des préférences
 - une préférence exprime le degré d'utilité d'une action/situation
- Théorie de la décision = théorie des probabilités + théorie de l'utilité

Probabilités: notions de base

- Exprime le degré de croyance
- Commencer avec un ensemble Ω appelé **espace d'échantillonnage**
 - exemple: 6 possibilités si on roule un dé
 - \bullet $\omega \in \Omega$ est un **échantillon** (un **état** ou un **événement atomique**)
- Un **modèle de probabilités** est avec une distribution de probabilité $P(\omega)$ pour chaque élément $\omega \in \Omega$, telle que
 - \bullet $0 \le P(\omega) \le 1$
 - $ightharpoonup \Sigma_{\omega \in \Omega} P(\omega) = 1$
- Exemple du dé: P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6
- Un **événement** est un sous-ensemble de Ω
- Probabilité d'un événement
 - $P(A) = \sum_{\{\omega \in A\}} P(\omega)$
- Exemple du dé: $P(\text{Dé est} < 4) = P(\omega = 1 \cup \omega = 2 \cup \omega = 3) = 1/6 + 1/6 + 1/6 = 1/2$

Variable aléatoire

- Une variable aléatoire est une variable décrivant une partie des connaissances incertaines (on la note avec une première lettre majuscule)
- Chaque variable a un domaine de valeurs qu'elle peut prendre
 - on peut voir une variable comme une fonction définie sur l'espace d'échantillonnage et donnant une valeur à chaque échantillon en entrée
- Types de variables aléatoires:
 - ◆ Booléennes: le domaine est {true, false}
 - \Rightarrow exemple: Carie ∈ {true, false} (ai-je la carie?)
 - Discrètes: le domaine est énumérable
 - » Météo ∈ {soleil, pluie, nuageux, neige}
 - ◆ Continues: le domaine est continu (par exemple, l'ensemble des réels)
 - » exemple: X = 4.0, Position $X \le 10.0$, Speed ≤ 20.5
- P induit une distribution de probabilité pour chaque variable aléatoire X
 - $P(X=xi) = \sum_{\{\omega: X(\omega)=xi\}} P(\omega)$
 - exemple du dé: P(NombreImpaire = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

Propositions

- Une proposition est une assertion de ce qui est vrai, c.-à-d., une assertion sur la valeur d'une variable
 - en d'autre mots, un événement (ensemble d'échantillons ou d'événements atomiques) pour lequel la proposition est vraie
 - » exemple: Carie = true, qu'on va aussi noter carie
- Étant données deux variables booléennes A et B:
 - l'événement a est l'ensemble d'échantillons ω pour lesquels $A(\omega) = true$
 - l'événement \neg a est l'ensemble d'échantillons ω pour lesquels $A(\omega) = false$
 - l'événement $a \wedge b$ est l'ensemble des ω pour lesquels $A(\omega)$ =true et $B(\omega)$ =true
 - l'événement $a \vee b$ est l'ensemble des ω pour lesquels $A(\omega)$ =true ou $B(\omega)$ =true

Propositions

- Souvent nous aurons plusieurs variables aléatoires
 - toutes les variables aléatoires tiennent leur valeur d'un même échantillon ω
 - pour des variables distinctes, l'espace d'échantillonnage est alors le produit cartésien des domaines des variables aléatoires
- Un événement atomique est donc une spécification complète de l'état du « monde » pour lequel un agent est incertain
 - par exemple, si le « monde » de l'agent est décrit par seulement deux variables aléatoires booléennes (*Carie* et *MalDeDents*), il y a exactement quatre états / événements atomiques possibles:
 - » Carie = false ∧ MalDeDents = false
 - » Carie = false ∧ MalDeDents = true
 - » Carie = true ∧ MalDeDents = false
 - » Carie = true ∧ MalDeDents = true
 - » on a donc $\Omega = \{ \langle true, true \rangle, \langle true, false \rangle, \langle false, ture \rangle, \langle false \rangle \}$
- Les événements atomiques sont exhaustifs et mutuellement exclusifs

Syntaxe des propositions

- Élément de base: variable aléatoire
- Similaire à la logique propositionnelle
- Variables aléatoires booléenne
 - exemple: DentCariée = true
- Variables aléatoires discrètes (domaines finis or infinis)
 - \diamond exemple: Météo = v, avec $v \in \{ soleil, pluie, nuageux, neige \}$
- Variables aléatoires continues (bornées ou non bornées)
 - exemple: Temp=21.6 (la variable Temp a exactement la valeur 21.6)
 - exemple: Temp < 22.0 (la variable Temp a une valeur inférieure à 22)</p>

Syntaxe des propositions

- En général, les propositions élémentaires sont définies en assignant une valeur ou un intervalle de valeurs aux variables
 - \diamond exemple: *Météo* = *soleil*, *Carie* = *false* (noté \neg *carie*)
- Les propositions complexes sont définies par des combinaisons booléennes
 - exemple: (Météo = soleil) v (Carie = false)

Axiomes de la théorie des probabilités: Axiomes de Kolmogorov

- Pour toute propositions A, B
 - \bullet 0 \leq $P(A) <math>\leq$ 1
 - ightharpoonup P(true) = 1 et P(false) = 0
 - $ightharpoonup P(A \lor B) = P(A) + P(B) P(A \land B)$

True

Probabilité a priori/inconditionnelle

- La probabilité a priori ou inconditionnelle de propositions exprime le degré de croyance dans ces propositions avant l'acquisition de toute (nouvelle) information / observation
 - exemple: P(Carie = true) = 0.1 et P(Météo = soleil) = 0.72
- La distribution des probabilités donne les valeurs de probabilités pour toutes les assignations possibles de valeurs aux variables:
 - exemple: P(Météo) = <0.72, 0.1, 0.08, 0.1>
 - fonction de densité de probabilité: fonction déterminant la probabilité de propositions d'une variable continue
 - » avec la fonction de densité, on peut exprimer la probabilité d'intervalles de valeurs $P(X < xi) = \int_{x < xi} p(X = x) dx$
 - » dans le cas continu, on a toujours que P(X=xi) = 0

Probabilité a priori/inconditionnelle

- La distribution conjointe de probabilités pour un ensemble de variables donne la probabilité pour chaque événement atomique décrit par ces variables
 - \diamond exemple: la distribution conjointe $P(M\acute{e}t\acute{e}o, Carie)$ est une matrice 4×2 :

Météo =	soleil	pluie	nuageux	neige
Carie = true	0.144	0.02	0.016	0.02
Carie = false	0.576	0.08	0.064	0.08

Probabilité a posteriori/conditionnelle

- La probabilité conditionnelle ou a posteriori tient compte des nouvelles informations/observations disponibles
 - exemple: P(carie | malDeDents) = 0.8
 - » C.-à-d., étant donné que la seule chose que je sais est *MalDeDents* = *true*
 - si on constate qu'un patient a mal aux dents et aucune autre information n'est encore disponible, la probabilité qu'il ait une carie est de 0.8
- Si on en apprend plus, (par exemple, on découvre une carie), on a:
 - ◆ P(carie | malDeDents, carie) = 1
- Toutes les nouvelles informations ne sont pas pertinentes, donc on peut simplifier:
 - exemple: P(carie | malDeDents, CanadiensOntGagné = true) = P(carie | malDeDents) = 0.8

Probabilité a posteriori/conditionnelle

- Définition de la probabilité conditionnelle:
 - $ightharpoonup P(a \mid b) = P(a \land b) / P(b)$ si $P(b) \neq 0$
 - ◆ la probabilité de a, étant donné (que tout ce qu'on sait est) b
- Formulation équivalente (règle du produit):
 - $ightharpoonup P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$
- Il existe une version plus générale pour les distributions de probabilité
 - exemple: P(Météo, Carie) = P(Météo | Carie) P(Carie)
- La **règle de chaînage** (*chain rule*) est obtenue par une application successive de la règle du produit:

Commencer avec la distribution conjointe des probabilités:

	malDeDents		¬ malDeDents	
	croche	¬croche	croche	¬croche
carie	0.108	0.012	0.072	0.008
¬ carie	0.016	0.064	0.144	0.576

• Pour chaque proposition ϕ , faire une somme sur les événements atomiques pour lesquels elle est vraie: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$

Commencer avec la distribution conjointe des probabilités:

	malDeDents		¬ malDeDents	
	croche	¬croche	croche	¬croche
carie	0.108	0.012	0.072	0.008
¬ carie	0.016	0.064	0.144	0.576

- Pour chaque proposition ϕ , faire une somme sur les événements atomiques pour lesquels elle est vraie: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$
- P(malDeDents) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Commencer avec la distribution conjointe des probabilités:

	malDeDents		¬ malDeDents	
	croche	¬croche	croche	¬croche
carie	0.108	0.012	0.072	0.008
¬ carie	0.016	0.064	0.144	0.576

- Pour chaque proposition ϕ , faire une somme sur les événements atomiques pour lesquels elle est vraie: $P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$
- $P(carie \lor malDeDents) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

Commencer avec la distribution conjointe des probabilités:

	malDeDents		¬ malDeDents	
	croche	¬croche	croche	¬croche
carie	0.108	0.012	0.072	0.008
¬ carie	0.016	0.064	0.144	0.576

On peut aussi calculer les probabilités conditionnelles:

$$P(\neg carie \mid malDeDents) = P(\neg carie \land malDeDents) P(malDeDents) = (0.016+0.064) / (0.108 + 0.012 + 0.016 + 0.064) = 0.4$$

Normalisation

	malDeDents		¬ malDeDents	
	croche	¬croche	croche	¬croche
carie	0.108	0.012	0.072	0.008
¬ carie	0.016	0.064	0.144	0.576

Le dénominateur peut être vu comme une constante de normalisation α

```
• P(Carie | malDeDents) = \alpha P (Carie, malDeDents) 
= \alpha [ P (Carie, malDeDents, croche) + P (Carie, malDeDents, \neg croche) ] 
= \alpha [<0.108, 0.016> + <0.012, 0.064>] 
= \alpha <0.12, 0.08> = <0.6, 0.4> 
avec \alpha = 1 / P(malDeDents) = 1/(.108 + .012 + .016 + .064) = 1/0.2 = 5.
```

 Idée générale: calculer la contribution de la variable de requête en fixant les variables d'observation et en faisant la somme sur les variables cachées

- En général on veut calculer la probabilité conjointe a posteriori sur un ensemble de variables de requête X étant donné les valeurs e pour les variables d'observation E
- Soit Y l'ensemble des variables cachées (non encore observées), X la valeur recherchée, et E l'ensemble des variables d'observation
- On obtient la probabilité pour la requête P(X | E = e) en faisant une sommation sur les variables cachées:
 - $P(X \mid E = e) = \alpha P(X, E = e) = \alpha \Sigma_y P(X, e, y)$
- Les termes dans la somme sont des probabilités conjointes étant donné que X, E et Y pris ensembles couvrent toutes les variables aléatoires
 - complexité en temps: O(dn), avec d la taille du plus grand domaine des variables et n le nombre de variables de requête et cachées
 - complexité en espace: O(dn), pour stocker la distribution

Indépendance

- Les variables A et B sont indépendantes si et seulement si
 - ightharpoonup **P**(A | B) = P(A) ou
 - ightharpoonup **P**(B|A) = P(B) ou
 - ightharpoonup P(A, B) = P(A) P(B)
- Exemple: P(MalDeDents, Croche, Carie, Météo)= P(MalDeDents, Croche, Carie) P(Météo)

32(=2³*4) entrées réduites à 12;
 pour n variables indépendantes, O(2ⁿ) →O(n)

Indépendance

- L'indépendance totale est puissante mais rare
 - l'indépendance entre les variables permet de réduire la taille de la distribution des probabilités et rendre les inférences plus efficaces
 - mais il est rare d'être dans une situation où toutes les variables sont réellement indépendantes
- La dentisterie est un domaine avec un grand nombre de variables, mais très peu d'entre elles sont indépendantes. Que faire?

Indépendance conditionnelle

- Si j'ai une carie, la probabilité que la sonde accroche dans la dent ne dépend pas du fait que j'aie mal à la dent ou non:
 - ◆ P(Croche | MalDeDents, carie) = P(Croche | carie)
- Même chose si je n'ai pas la carie:
 - ♦ $P(Croche \mid MalDeDents, \neg carie) = P(Croche \mid \neg carie)$
- Croche est conditionnellement indépendante de MalDeDents étant donné Carie:
 - ◆ P(Croche | MalDeDents, Carie) = P(Croche | Carie)
- Formulations équivalentes:
 - ◆ P(MalDeDents | Croche , Carie) = P(MalDeDents | Carie)
 - ◆ P(MalDeDents, Croche | Carie) = P(MalDeDents | Carie) P(Croche | Carie)

Indépendance conditionnelle

Réécrivons la distribution conjointe en utilisant la règle de chaînage (chain rule):

```
P(MalDeDents, Croche, Carie)
```

- = P(MalDeDents | Croche, Carie) P(Croche, Carie)
- = P(MalDeDents | Croche, Carie) P(Croche | Carie) P(Carie)
- = P(MalDeDents | Carie) P(Croche | Carie) P(Carie)
- C-à-d., 2 + 2 + 1 = 5 paramètres individuels/distincts
- Dans des cas idéals, l'exploitation de l'indépendance conditionnelle réduit la complexité de représentation de la distribution conjointe de exponentielle (O(2ⁿ)) en linéaire (O(n))
- En raisonnement probabiliste, l'indépendance conditionnelle est le concept de représentation des connaissances le plus basique et utile

Règle de Bayes

- Règle du produit: $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$
 - ♦ Règle de Bayes: $P(a \mid b) = P(b \mid a) P(a) / P(b)$
 - ♦ P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y) [pour les distributions]
- Utile pour calculer/interroger une probabilité diagnostique à partir d'une probabilité causale:
 - ◆ P(Cause | Effect) = P(Effect | Cause) P(Cause) / P(Effect)
- Exemple: soit *m* (méningite), *s* (*stiff neck* / nuque raide)
 - P(s|m)=0.5, P(m)=1/50000 et P(s)=1/20.
 - $P(m|s) = P(s|m) P(m) / P(s) = 0.5 \times 0.00002 / 0.05 = 0.0002$
- Règle diagnostique: effets observés ⇒ causes cachées
- Règle causale: causes cachées ⇒ effets observées

Règle de Bayes et indépendance conditionnelle

- P(Carie | MalDeDents ∧ Croche)
 - = α **P**(MalDeDents \wedge Croche | Carie) **P**(Carie)
 - $= \alpha P(MalDeDents \mid Carie) P(Croche \mid Carie) P(Carie)$
- Exemple d'un modèle de Bayes simple (naive Bayes classifier):
 - ♦ $P(Cause, Effect_1, ..., Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$

Le monde des Wumpus

Problème: calculer la probabilité que [1,3] contiennent une fosse?

1. Identifier l'ensemble de variables aléatoires nécessaires:

- → P_{i,i}=true ssi il y a une fosse dans [i,j]
- \bullet $B_{i,i}$ =true ssi il y a une brise dans [i,j]

Inclure seulement les variables observées $B_{1,1}$, $B_{1,2}$, $B_{2,1}$ dans la distribution des probabilités (modèle)

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1
OK	OK		

Spécifier la distribution des probabilités

2. Spécifier la distribution conjointe ($P(P_{1,1}, ..., P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$)

- ♦ appliquer la règle du produit: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4})$ $P(P_{1,1}, ..., P_{4,4})$ (on spécifie une forme P(Effect | Cause))
- premier terme: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4})$
 - » probabilité conditionnelle d'une configuration/état de brises, étant donnée une configuration de fosses
 - » 1 si les fosses sont adjacentes aux brises, 0 sinon
- \diamond second terme: $\mathbf{P}(P_{1,1},...,P_{4,4})$
 - » probabilité a priori des configurations des fosses
 - » les fosses sont placées aléatoirement, avec une probabilité de 0.2 par chambre
 - » si $P_{1,1}$,..., $P_{4,4}$ sont telles qu'il y a exactement n fausses, on aura $\mathbf{P}(P_{1,1},...,P_{4,4}) = \Pi_{(i,j)=(1,1)...(4,4)} \mathbf{P}(P_{i,j}) = 0.2^n *0.8^{16-n}$

Observations et requête

3. Identifier les observations

on sait ce qui suit:

$$b = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$$

»
$$known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$$

4. Identifier les variables de requête

- y a-t-il une fosse à la position 1,3?
- \bullet **P**($P_{1,3} \mid known, b$)?

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1
OK	OK		

5. Identifier les variables cachées

 $lack on définit Unknown comme étant l'ensemble des variables <math>P_{i,j}$ autres que celles qui sont connues (known) et la variable de requête $P_{1,3}$

Observations et requête

6. Faire l'inférence

• avec l'inférence par énumération, on obtient: $P(P_{1,3} | known, b) =$

$$\alpha \Sigma_{unknown} \mathbf{P}(P_{1,3}, unknown, known, b)$$

- croît exponentiellement avec le nombre de chambres!
 - » avec 12 chambres unknown: 2¹²=4096 termes

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2
1,1	2,1 B	3,1	4,1
ок	ок		

Utiliser l'indépendance conditionnelle

- Idée de base: les observations sont conditionnellement indépendantes des chambres cachées étant données les chambres adjacentes
 - C.-à-d., les autres chambres ne sont pas pertinentes

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 B OK	2,2	3,2	4,2
1,1 OK	2,1 B OK	3,1	4,1

- Définir Unknown = Frontier ∪ Other
- $P(b|P_{1,3}, known, Unknown) = P(b|P_{1,3}, known, Frontier, Other)$
- Réécrire la probabilité $P(P_{1,3} | known, b)$ pour exploiter cette indépendance

Utiliser l'indépendance conditionnelle

```
\begin{split} \mathbf{P}(P_{1,3} | \ known, b) &= \alpha \ \Sigma_{unknown} \ \mathbf{P}(P_{1,3}, \ unknown, known, b) \\ &= \alpha \ \Sigma_{unknown} \ \mathbf{P}(b | P_{1,3}, known, unknown) \ \mathbf{P}(P_{1,3}, known, unknown) \\ &= \alpha \ \Sigma_{frontier} \ \Sigma_{other} \ \mathbf{P}(b | \ known, P_{1,3}, frontier, other) \ \mathbf{P}(P_{1,3}, known, frontier, other) \\ &= \alpha \ \Sigma_{frontier} \ \Sigma_{other} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ \mathbf{P}(P_{1,3}, known, frontier, other) \\ &= \alpha \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ \Sigma_{other} \ \mathbf{P}(P_{1,3}, known, frontier, other) \\ &= \alpha \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ \Sigma_{other} \ \mathbf{P}(P_{1,3}) \ P(known) \ P(frontier) \ P(other) \\ &= \alpha \ P(known) \ \mathbf{P}(P_{1,3}) \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ P(frontier) \ \Sigma_{other} \ P(other) \\ &= \alpha' \ \mathbf{P}(P_{1,3}) \ \Sigma_{frontier} \ \mathbf{P}(b | \ known, P_{1,3}, frontier) \ P(frontier) \end{split}
```

Utiliser l'indépendance conditionnelle

- Événements cohérents pour les variables $P_{2,2}$ et $P_{3,1}$, montrant **P**(*frontier*)
- Pour chaque événement:
 - a) 3 événements avec $P_{1,3}$ = true, montrant 2 ou 3 fosses.
 - b) 2 événements avec $P_{1,3}$ = false, montrant 1 ou 2 fosses. $P(P_{1,3} | known, b) = \alpha' < 0.2(0.04+0.16+0.16), 0.8(0.04+0.16) >$

Résumé

- La théorie des probabilités est un formalisme cohérent pour raisonner avec l'incertitude
- Une distribution conjointe spécifie la probabilité pour toutes les variables aléatoires
- On peut répondre à des requêtes en faisant une somme sur les événements atomiques
- Pour les domaines d'application réalistes, on doit trouver une façon de réduire la taille de la distribution conjointe
- L'indépendance et l'indépendance conditionnelles nous fournissent les outils de base pour simplifier les distributions conjointes