Tecnológico Nacional de México Instituto tecnológico de Tepic

Integrantes:

Partida Michel Jesus Alberto - 19400645

Guzman Álvarez Sergio Alejandro - 18401126

Profesor: Guerrero Medina Manuel

Tepic, Nayarit, 22 de mayo del 2024.

Índice

Contenido

Información	2
1. Definición del Sistema	2
2. Objetivos de análisis	2
3. Metodología de investigación	2
4. Obtención de la Información	2
5. Creación y validación del Modelo	2
6. Interpretación de Resultados del modelo	2
7. Recomendaciones y sugerencias del modelo	2
Conclusiones	2
Fuentes	2

Información

1. Definición del Sistema

Antecedentes.

La empresa "Luz y sonido Xaviers" ofrece sus servicios de luz y sonido en el municipio de Bahía de Banderas, en la localidad de Lo de Marcos. El jefe de la empresa busca encontrar el número exacto de trabajadores para poder armar el equipo de luz y sonido en el menor tiempo posible con la mayor ganancia. Se sabe que mientras menos trabajadores haya en el equipo, el proceso de armar todo, puede llevar algunas horas, es decir, si el número de trabajadores es de 2 personas. También se sabe que él tenía al menos 4 trabajadores dependiendo de la habilidad y agilidad de los trabajadores, el tiempo disminuye y por lo tanto el trabajo tiene una duración menor. Debido a estas dos cuestiones, el dueño tomó la decisión de contactar a un ingeniero en sistemas computacionales.

Definición: Crear un modelo de simulación para obtener la mayor ganancia y el menor tiempo posible de armado de un equipo de luz y sonido.

2. Objetivos de análisis

Objetivo general:

 Mejorar la eficiencia del equipo de trabajo para aumentar su productividad.

Objetivos específicos:

- Construir un modelo matemático para identificar el número exacto de trabajadores
- Identificar las mayores ganancias posibles

3. Metodología de investigación

Será cuantitativo el proyecto de simulación ya que estamos hablando de obtener el menor tiempo posible para armar un equipo, es decir, estamos hablando de la destreza y agilidad de las personas para tener en poco tiempo un sonido, considerando en ingresar más de 4 trabajadores para armar el sonido y las ganancias totales que se pueden generar.

4. Obtención de la Información

1.- Tabla de costos por evento.

	Sonido	Colgado	Iluminación	Escenario
Evento	\$6500	\$1000	\$500	\$2000

2.- Gastos por comida y baño:

Gasto de comida X trabajador	\$100
Gasto de baño X trabajador	\$20
Probabilidad	100%

3.- Gastos por cena y desayuno

Gasto de cena X trabajador	\$140
Gasto de desayuno X trabajador	\$120
Probabilidad	100%

4.- Probabilidades de horas extras

Costo de Hora extra	\$1500.00
Máximo de Horas extras	4
Probabilidad de hora extra	60%

5.- Sueldo de los trabajadores

Sueldo X trabajador	\$750.00
---------------------	----------

6.- Armado del escenario

Para armar el sonido en el lugar adecuado se hace 5 horas antes del evento a iniciar. El proceso consiste cuando un trabajador se sube al camión de carga y va pasando el material con los siguientes intervalos:

Material	Intervalo de tiempo X pieza	Cantidad total de material
Cubeta de piezas de ensamblaje	10 seg 15 seg.	2
Escalera	20 seg 25 seg.	1
Tubos de base	30 seg 35 seg.	8
Tablas	15 seg 25 seg.	21

Para los demás trabajadores arman después de bajar todo el material que les están pasando, con los siguientes intervalos de tiempo:

Actividad	Intervalo de tiempo X pieza	Cantidad total de material
Cubeta cerca del escenario	15 seg 20 seg.	2
Posicionar los tubos	20 seg 25 seg.	8
Colocar pieza de ensamblaje en los tubos	10 seg.	32
Colocar tablas en los tubos	25 seg 50 seg.	21
Colocar la escalera en el escenario	10 seg 20 seg.	1

8.- Armado del sonido

Como en el proceso de armar el escenario se baja primero las cosas y son llevadas al lugar donde se armara el sonido, por ende los tiempos son los siguientes:

Material	Intervalo de tiempo X pieza	Cantidad total de material
Cajas para sonido e iluminacion	35 seg 40 seg.	8
Aplificadores	45 seg 55 seg.	2
Estructuras	45 seg 60 seg.	11
Base para estructuras	40 seg 45 seg.	2
Cubeta de tornillos	25 seg 30 seg.	2
Bocinas bajos	45 seg 55 seg.	4
Bocinas voces	45 seg 55 seg.	8

Después de bajar todo, los trabajadores arman el sonido con los siguientes intervalos de tiempo:

Actividad	Intervalo de tiempo X actividad	Cantidad total o	de
Unir dos estructuras	120 seg 240 seg.	4	
Levantar torres	120 seg 240 seg.	2	
Unir torres	180 seg 300 seg.	1	
Armar bocinas voces	300 seg 600 seg.	2	

Armar iluminacion	600 seg 1200 seg.	1
Hacer el cableado de bocinas a los amplificadores	60 seg 180 seg.	2
Levantar sonido	120 seg 180 seg.	1
Colocar bocinas bajos	60 seg 120 seg.	1

9.- Armado de la cabina

Como en los anteriores procesos, sigue la misma lógica y primero se bajan las cosas, teniendo los siguientes intervalos de tiempo:

Material	Intervalo de tiempo X pieza	Cantidad material	total	de
Cajas periferia	50 seg 55 seg.	3		
Tubos de cabina	50 seg 60 seg.	3		
Tabla para cabina	45 seg 55 seg.	1		
Mixer	55 seg 60 seg.	1		
Computadora	45 seg 50 seg.	2		
Toldo	60 seg 70 seg.	1		

Después de bajar todo los trabajadores arman la cabina con los siguientes intervalos de tiempo:

Actividad	Intervalo de tiempo X actividad	Cantidad total de actividad
Armar toldo	180 seg 300 seg.	1
Armar los tubos de la cabina	120 seg 240 seg.	1
Colocar tabla de la cabina	60 seg 120 seg.	1
Colocar mixer en la cabina	30 seg 120 seg.	1
Hacer el cableado a la mixer	180 seg 360 seg.	1
Colocar computadora	30 seg 120 seg.	2
Hacer el cableado de la computadora	120 seg 240 seg.	2
Colocar manta a la cabina	60 seg 180 seg.	1

5. Creación y validación del Modelo

6. Interpretación de Resultados del modelo

7. Recomendaciones y sugerencias del modelo

Recomendaciones y Sugerencias para el Proyecto de Simulación

1. Desglose Detallado de Actividades:

Realizar un análisis exhaustivo de todas las actividades involucradas en el proceso de armado del equipo de luz y sonido, incluyendo posibles interrupciones o demoras inesperadas.

2. Evaluación de la Experiencia del Trabajador:

Asignar métricas de eficiencia a cada trabajador basado en su experiencia y habilidades. Considerar la posibilidad de formar equipos con habilidades complementarias para mejorar la eficiencia.

3. Optimización del Número de Trabajadores:

Simular diferentes configuraciones con más de 4 trabajadores para identificar la combinación óptima que balancee costo y tiempo de armado. Evaluar la eficiencia de equipos más grandes en comparación con equipos más pequeños.

4. Incorporación de Factores Externos:

Incluir variables como el clima, condiciones del lugar del evento y posibles retrasos en la entrega de materiales. Considerar tiempos de transporte y montaje en diferentes ubicaciones.

5. Análisis de Sensibilidad:

Realizar un análisis de sensibilidad para comprender cómo los cambios en una variable específica (como el número de trabajadores o su habilidad) afectan el tiempo de armado y los costos totales.

6. Simulación de Escenarios Realistas:

Crear y probar múltiples escenarios basados en eventos pasados y potenciales situaciones problemáticas. Esto ayudará a validar la robustez del modelo y a prepararse para diversas circunstancias.

7. Monitoreo y Actualización Constante:

Actualizar el modelo regularmente con datos nuevos para mantener su precisión. Implementar un sistema de retroalimentación que permita ajustar los parámetros del modelo basados en los resultados reales de eventos recientes.

8. Modelado de Costos Adicionales y Horas Extras:

Incluir de manera precisa los costos adicionales de comida, baño, cena y desayuno, así como las probabilidades y costos de horas extras. Evaluar si es más económico contratar más trabajadores para evitar horas extras.

9. Desarrollo de una Interfaz de Usuario Intuitiva:

Diseñar una interfaz fácil de usar para que los administradores puedan ajustar las variables del modelo y ver los resultados de las simulaciones de manera intuitiva y eficiente.

10. Capacitación Continua del Personal:

Proporcionar capacitación regular a los trabajadores para mejorar sus habilidades y eficiencia, lo que puede reducir el tiempo de armado y los costos a largo plazo.

11. Establecimiento de Protocolos Estandarizados:

Desarrollar y seguir protocolos estandarizados para el armado del equipo, asegurando consistencia y minimizando errores durante el proceso.

12. Implementación de Mejores Prácticas en Logística:

Optimizar la logística de transporte y manejo de materiales para asegurar que todo el equipo llegue a tiempo y en las mejores condiciones posibles.

Conclusiones

El proyecto de simulación para la empresa "Luz y sonido Xaviers" tiene como objetivo principal mejorar la productividad del equipo de trabajo, optimizando tanto el tiempo de armado del equipo de luz y sonido como los costos asociados. Mediante el desarrollo de un modelo matemático y la realización de simulaciones detalladas, se pueden identificar áreas clave para la mejora y estrategias efectivas para maximizar las ganancias.

La metodología cuantitativa aplicada en este proyecto permitirá obtener resultados precisos y prácticos, ayudando a la empresa a tomar decisiones informadas sobre la configuración óptima de su equipo de trabajo. Con una implementación adecuada y un monitoreo continuo, "Luz y sonido Xaviers" puede mejorar significativamente su eficiencia operativa, reducir costos y ofrecer un servicio más competitivo y de mayor calidad a sus clientes.