Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Information Technology

Continuous Assessment Test – II

Question Paper

Degree & Branch	B.Tech. Information Technology	Semester	IV
Subject Code & Name	UIT1403 – Microprocessors and Microcontrollers		
Time: 90 Minutes Date: 10.05.2022	Answer All Questions	Maximum: 50 Marks	

(K1 – Remembering, K2- Understanding, K3- Applying, K4- Analyzing, K5- Evaluating, K6 – Creating)

CO1	Write programs to run on 8086 microprocessor based systems.
	Design the system using memory chips and peripheral chips for microprocessor and
CO2	Microcontroller.
CO3	Analyse, Specify. Design, write and test assembly language programs.

$Part - A (6 \times 2 = 12 Marks)$

Q. No.	Questions	KL	СО	PI
1	What is the assembler directive statement that used to reserve an array of 100 words in memory but leave the 100 words uninitialized and give it a name TEMP?	K2	CO1	2.1.3
2	Let us consider an assembly statement as INT 10H. What will be the starting and ending addresses for the respective interrupt service routine stored in the interrupt vector table?	K2	CO3	2.1.3
3	What will be the contents of A_0 , A_1 , and \overline{CS} signals when the output (write) operation is done on Port A (i.e. data bus to Port A) of 8255 PPI.	K2	CO3	2.1.3
4	Determine the mode of operation and the selected counter based on the control word format of $8253/8254$ programmable interval timer. D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ 1 0 0 0 X 1 1 1	K2	CO2	2.1.3
5	How many number of vectored priority interrupts are handled by the Intel 8259A Programmable Interrupt Controller when it is connected to the 8086 microprocessor in cascade configuration?		CO2	2.1.3
6	If 8251 USART is programmed in asynchronous mode, how many stop bits the receiver requires?	K2	CO2	2.1.3

$Part - B (3 \times 6 = 18 Marks)$

7	Explain the following assembler directives with an example. a) ASSUME b) SEGMENT c) EQU	K2	CO2	1.3.1, 1.4.1
8	Briefly describe the conditions which cause the 8086 microprocessor to perform each of the following types of interrupts: Type 0, Type 1, Type 2, Type 3 and Type 4.	K2	CO2	1.3.1, 1.4.1

9	Compare I/O mapped and memory mapped I/O Techniques.	K2	CO2	1.3.1, 1.4.1
	$Part - C (2 \times 10 = 20 Marks)$			_
	a) Write a program to initialize 8255 in the configuration given below.	K3	CO3	1.3.1, 1.4.1, 2.1.3
	Port A: Output with handshake			
	Port B: Input with handshake			
	Port C _L : Output			
10	• Port C _U : Input			
10	Assume address of the control word register of 8255 as 83H.			
	Also find the control word for the register arrangement of the ports of Intel 8255. (5 Marks)			
	b) Write a program to blink Port C bit 0 (i.e., D ₀) of the 8255. Assume address of the control word register of 8255 is 23H. Use Bit Set/Reset mode. (5 Marks)			
	OR		T	
11	a) Assume that GATE1 = 1 and CLK1 = 1 MHz and the clock count N= 5000. Show the output if 8253/8254 PIT is programmed in mode 0 and mode 2. (5 Marks)		CO3	1.3.1, 1.4.1, 2.1.3
	b) Write an ALP to generate a delay of 100 msec using an 8086 system that runs on 10 MHz frequency (Hint: Use procedure in ALP to write a delay routine). (5 Marks)	K3		
			ı T	
12	Design and explain a peripheral device which handles multiple interrupt requests from external devices.	К3	CO2	3.1.1, 4.1.3, 5.1.1
OR				
13	Design and explain a peripheral device which translates serial to parallel and parallel to serial data for synchronous mode of data transmission.	К3	CO2	3.1.1, 4.1.3, 5.1.1