$SC-MD_Nov-14_1$

Srijan Kundu

2022-11-14

Using the package stargazer:

```
library(stargazer)
##
## Please cite as:
   Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
    R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
beaver1
##
       day time temp activ
       346 840 36.33
## 1
## 2
       346 850 36.34
## 3
       346
           900 36.35
                          0
## 4
       346
           910 36.42
                          0
## 5
       346
           920 36.55
                          0
       346
           930 36.69
## 7
       346
           940 36.71
           950 36.75
## 8
       346
       346 1000 36.81
                          0
## 10 346 1010 36.88
## 11 346 1020 36.89
```

```
## 12 346 1030 36.91
                            0
## 13
       346 1040 36.85
                            0
## 14
       346 1050 36.89
       346 1100 36.89
## 15
                            0
## 16
       346 1110 36.67
                            0
## 17
       346 1120 36.50
                            0
## 18
       346 1130 36.74
                            0
       346 1140 36.77
## 19
                            0
## 20
       346 1150 36.76
                            0
## 21
       346 1200 36.78
                            0
## 22
       346 1210 36.82
                            0
## 23
       346 1220 36.89
                            0
       346 1230 36.99
## 24
                            0
## 25
       346 1240 36.92
                            0
## 26
       346 1250 36.99
                            0
## 27
       346 1300 36.89
                            0
## 28
       346 1310 36.94
                            0
## 29
       346 1320 36.92
                            0
## 30
       346 1330 36.97
                            0
## 31
       346 1340 36.91
                            0
## 32
       346 1350 36.79
                            0
## 33
       346 1400 36.77
                            0
## 34
       346 1410 36.69
                            0
## 35
       346 1420 36.62
                            0
## 36
       346 1430 36.54
                            0
## 37
       346 1440 36.55
                            0
## 38
       346 1450 36.67
                            0
## 39
       346 1500 36.69
                            0
## 40
       346 1510 36.62
                            0
## 41
       346 1520 36.64
                            0
## 42
       346 1530 36.59
                            0
## 43
       346 1540 36.65
                            0
## 44
       346 1550 36.75
                            0
## 45
       346 1600 36.80
                            0
## 46
       346 1610 36.81
                            0
## 47
       346 1620 36.87
                            0
## 48
       346 1630 36.87
                            0
## 49
       346 1640 36.89
                            0
## 50
       346 1650 36.94
                            0
## 51
       346 1700 36.98
                            0
## 52
       346 1710 36.95
                            0
## 53
       346 1720 37.00
                            0
## 54
       346 1730 37.07
                            1
## 55
       346 1740 37.05
                            0
## 56
       346 1750 37.00
                            0
       346 1800 36.95
## 57
                            0
## 58
       346 1810 37.00
                            0
## 59
       346 1820 36.94
                            0
## 60
       346 1830 36.88
                            0
## 61
       346 1840 36.93
                            0
## 62
       346 1850 36.98
                            0
       346 1900 36.97
## 63
                            0
## 64
       346 1910 36.85
                            0
## 65 346 1920 36.92
```

```
## 67
      346 1940 37.01
## 68
      346 1950 37.10
## 69
      346 2000 37.09
                          0
## 70
       346 2010 37.02
                          0
## 71
      346 2020 36.96
                          0
## 72 346 2030 36.84
                          0
## 73 346 2040 36.87
                          0
## 74 346 2050 36.85
                          0
## 75
      346 2100 36.85
                          0
## 76
      346 2110 36.87
                          0
      346 2120 36.89
## 77
                          0
## 78
      346 2130 36.86
                          0
## 79
      346 2140 36.91
                          0
## 80
      346 2150 37.53
                          1
## 81
       346 2200 37.23
                          0
## 82
      346 2210 37.20
                          0
## 83
      346 2230 37.25
                          1
## 84
      346 2240 37.20
                          0
      346 2250 37.21
## 85
                          0
## 86
      346 2300 37.24
                          1
## 87
      346 2310 37.10
      346 2320 37.20
## 88
                          0
## 89
       346 2330 37.18
                          0
## 90 346 2340 36.93
                          0
## 91
      346 2350 36.83
                          0
## 92
       347
             0 36.93
                          0
## 93
       347
             10 36.83
                          0
## 94
             20 36.80
       347
                          0
## 95
       347
             30 36.75
                          0
            40 36.71
## 96
       347
                          0
## 97
       347
             50 36.73
                          0
## 98
       347
           100 36.75
## 99 347
           110 36.72
                          0
## 100 347
            120 36.76
                          0
## 101 347
            130 36.70
                          0
## 102 347
            140 36.82
## 103 347
            150 36.88
                          0
## 104 347
            200 36.94
                          0
## 105 347 210 36.79
                          0
## 106 347 220 36.78
                          0
## 107 347 230 36.80
                          0
## 108 347
           240 36.82
                          0
## 109 347
           250 36.84
                          0
## 110 347
            300 36.86
                          0
## 111 347
            310 36.88
                          0
## 112 347
            320 36.93
                          0
## 113 347
            330 36.97
                          0
## 114 347 340 37.15
                          1
stargazer(beaver1, type = "text", out = "table1.txt", title = "Summary output", digits = 1, covariate.l
##
```

66 346 1930 36.99

Summary output

```
## ==============
                x3 activ
## Statistic x1
           x2
## -----
## N
        114
             114
                  114
                      114
## Mean
       346.2 1,312.0 36.9 0.1
## St. Dev. 0.4 701.9 0.2 0.2
## Min
        346
             0
                  36.3 0
## Max
        347
             2,350 37.5 1
```

• First argument of stargazer has to be a dataframe.

```
stargazer(beaver1, type = "html", out = "table1.html", title = "Summary output", digits = 1, covariate.
##
## <caption><strong>Summary output</strong></caption>
## tr><td style="text-align:left"
## <td style="text-align:left"
## Mean346.21,312.036.90.1
## Min346036.30
## Max3472,35037.51
## 
#default type is latex
stargazer(beaver1, out = "table1.tex", title = "Summary output", digits = 1, covariate.labels = c("x1",
##
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac
## % Date and time: Mon, Nov 14, 2022 - 15:56:05
## \begin{table}[!htbp] \centering
  \caption{Summary output}
##
  \label{}
## \begin{tabular}{@{\extracolsep{5pt}}lcccc}
## \[-1.8ex]\
## \hline \\[-1.8ex]
## Statistic & x1 & x2 & x3 & activ \\
## \hline \\[-1.8ex]
## N & 114 & 114 & 114 & 114 \\
## Mean & 346.2 & 1,312.0 & 36.9 & 0.1 \\
## St. Dev. & 0.4 & 701.9 & 0.2 & 0.2 \\
## Min & 346 & 0 & 36.3 & 0 \\
## Max & 347 & 2,350 & 37.5 & 1 \\
## \hline \\[-1.8ex]
## \end{tabular}
## \end{table}
```

Question: Prepare a table taking a subset data from beaver1 such that temperature is greater than 36.70.

data = beaver1[beaver1\$temp>36.7,] data

```
##
       day time temp activ
## 7
       346 940 36.71
                            0
## 8
       346 950 36.75
## 9
       346 1000 36.81
                            0
## 10
       346 1010 36.88
                            0
## 11
       346 1020 36.89
                            0
## 12
       346 1030 36.91
                            0
## 13
       346 1040 36.85
                            0
## 14
       346 1050 36.89
                            0
## 15
       346 1100 36.89
                           0
## 18
       346 1130 36.74
                            0
## 19
       346 1140 36.77
                            0
## 20
       346 1150 36.76
                            0
## 21
       346 1200 36.78
                           0
## 22
       346 1210 36.82
                            0
## 23
       346 1220 36.89
                            0
## 24
       346 1230 36.99
                            0
## 25
      346 1240 36.92
                            0
## 26
      346 1250 36.99
                            0
## 27
       346 1300 36.89
                            0
## 28
       346 1310 36.94
                            0
## 29
       346 1320 36.92
                            0
## 30
       346 1330 36.97
                            0
## 31
       346 1340 36.91
                            0
## 32
       346 1350 36.79
                            0
## 33
       346 1400 36.77
## 44
       346 1550 36.75
                            0
## 45
       346 1600 36.80
                            0
## 46
       346 1610 36.81
                            0
## 47
       346 1620 36.87
## 48
       346 1630 36.87
                            0
## 49
       346 1640 36.89
                            0
## 50
       346 1650 36.94
                            0
## 51
       346 1700 36.98
                            0
## 52
       346 1710 36.95
                            0
## 53
       346 1720 37.00
                            0
## 54
       346 1730 37.07
                            1
## 55
       346 1740 37.05
                            0
## 56
       346 1750 37.00
                            0
## 57
       346 1800 36.95
                            0
## 58
       346 1810 37.00
                            0
## 59
       346 1820 36.94
                            0
## 60
       346 1830 36.88
                            0
## 61
       346 1840 36.93
                            0
## 62
       346 1850 36.98
                            0
## 63
       346 1900 36.97
                            0
## 64
       346 1910 36.85
                            0
## 65
       346 1920 36.92
                           0
## 66
       346 1930 36.99
## 67
      346 1940 37.01
                           0
```

```
## 68 346 1950 37.10
                           1
## 69
      346 2000 37.09
                           0
       346 2010 37.02
## 70
       346 2020 36.96
## 71
                            0
## 72
       346 2030 36.84
                            0
## 73
       346 2040 36.87
                           0
## 74
       346 2050 36.85
                           0
       346 2100 36.85
## 75
                            0
## 76
       346 2110 36.87
                            0
## 77
       346 2120 36.89
                            0
## 78
       346 2130 36.86
                            0
       346 2140 36.91
## 79
                            0
## 80
       346 2150 37.53
                           1
## 81
       346 2200 37.23
                            0
## 82
       346 2210 37.20
                            0
## 83
       346 2230 37.25
                            1
## 84
       346 2240 37.20
                            0
## 85
       346 2250 37.21
                            0
## 86
       346 2300 37.24
                           1
## 87
       346 2310 37.10
                            0
## 88
       346 2320 37.20
                           0
## 89
       346 2330 37.18
                            0
       346 2340 36.93
## 90
                           0
## 91
       346 2350 36.83
                           0
## 92
       347
               0 36.93
                           0
## 93
       347
             10 36.83
                           0
## 94
       347
             20 36.80
                            0
## 95
       347
             30 36.75
                            0
## 96
             40 36.71
       347
                            0
             50 36.73
## 97
       347
                            0
            100 36.75
## 98
       347
                            0
## 99
       347
            110 36.72
                            0
            120 36.76
## 100 347
                            0
## 102 347
            140 36.82
                            0
## 103 347
            150 36.88
                            0
## 104 347
            200 36.94
                           0
## 105 347
            210 36.79
                            0
## 106 347
            220 36.78
                            0
## 107 347
            230 36.80
                            0
            240 36.82
## 108 347
                           0
## 109 347
            250 36.84
                           0
## 110 347
            300 36.86
                            0
## 111 347
            310 36.88
                           0
## 112 347
            320 36.93
                            0
## 113 347
            330 36.97
                            0
## 114 347
            340 37.15
                            1
```

beaver1

```
## 1 346 840 36.33 0
## 2 346 850 36.34 0
## 3 346 900 36.35 0
## 4 346 910 36.42 0
```

```
## 5
       346 920 36.55
                            0
## 6
       346 930 36.69
                            0
       346 940 36.71
## 7
                            0
## 8
       346 950 36.75
                            0
## 9
       346 1000 36.81
                            0
## 10
       346 1010 36.88
                            0
## 11
       346 1020 36.89
                            0
       346 1030 36.91
## 12
                            0
## 13
       346 1040 36.85
                            0
## 14
       346 1050 36.89
                            0
## 15
       346 1100 36.89
                            0
## 16
       346 1110 36.67
                            0
## 17
       346 1120 36.50
                            0
## 18
       346 1130 36.74
                            0
## 19
       346 1140 36.77
                            0
## 20
       346 1150 36.76
                            0
## 21
       346 1200 36.78
                            0
## 22
       346 1210 36.82
                            0
## 23
       346 1220 36.89
                            0
## 24
       346 1230 36.99
                            0
## 25
       346 1240 36.92
                            0
## 26
       346 1250 36.99
                            0
## 27
       346 1300 36.89
                            0
## 28
       346 1310 36.94
                            0
## 29
       346 1320 36.92
                            0
## 30
       346 1330 36.97
                            0
## 31
       346 1340 36.91
                            0
## 32
       346 1350 36.79
                            0
## 33
       346 1400 36.77
                            0
       346 1410 36.69
## 34
                            0
## 35
       346 1420 36.62
                            0
## 36
       346 1430 36.54
                            0
## 37
       346 1440 36.55
                            0
## 38
       346 1450 36.67
                            0
## 39
       346 1500 36.69
                            0
## 40
       346 1510 36.62
                            0
## 41
       346 1520 36.64
                            0
## 42
       346 1530 36.59
                            0
## 43
       346 1540 36.65
                            0
## 44
       346 1550 36.75
                            0
## 45
       346 1600 36.80
                            0
## 46
       346 1610 36.81
                            0
## 47
       346 1620 36.87
                            0
## 48
       346 1630 36.87
                            0
## 49
       346 1640 36.89
                            0
       346 1650 36.94
## 50
                            0
## 51
       346 1700 36.98
                            0
## 52
       346 1710 36.95
                            0
## 53
       346 1720 37.00
                            0
## 54
       346 1730 37.07
                            1
## 55
       346 1740 37.05
                            0
       346 1750 37.00
## 56
                            0
## 57
       346 1800 36.95
                            0
## 58 346 1810 37.00
                            0
```

```
## 59
       346 1820 36.94
                            0
## 60
       346 1830 36.88
                            0
## 61
       346 1840 36.93
                            0
       346 1850 36.98
## 62
                            0
## 63
       346 1900 36.97
                            0
       346 1910 36.85
## 64
                            0
       346 1920 36.92
## 65
                            0
       346 1930 36.99
## 66
                            0
## 67
       346 1940 37.01
                            0
## 68
       346 1950 37.10
                            1
## 69
       346 2000 37.09
                            0
## 70
       346 2010 37.02
                            0
## 71
       346 2020 36.96
                            0
## 72
       346 2030 36.84
                            0
## 73
       346 2040 36.87
                            0
## 74
       346 2050 36.85
                            0
## 75
       346 2100 36.85
                            0
## 76
       346 2110 36.87
                            0
## 77
       346 2120 36.89
                            0
## 78
       346 2130 36.86
                            0
## 79
       346 2140 36.91
                            0
## 80
       346 2150 37.53
                            1
       346 2200 37.23
## 81
                            0
## 82
       346 2210 37.20
                            0
## 83
       346 2230 37.25
                            1
## 84
       346 2240 37.20
                            0
## 85
       346 2250 37.21
                            0
## 86
       346 2300 37.24
                            1
## 87
       346 2310 37.10
                            0
       346 2320 37.20
## 88
                            0
## 89
       346 2330 37.18
                            0
## 90
       346 2340 36.93
                            0
       346 2350 36.83
## 91
                            0
## 92
       347
               0 36.93
                            0
              10 36.83
## 93
       347
                            0
## 94
       347
              20 36.80
                            0
## 95
       347
              30 36.75
                            0
## 96
       347
              40 36.71
                            0
## 97
       347
              50 36.73
                            0
             100 36.75
## 98
       347
                            0
## 99
       347
            110 36.72
                            0
## 100 347
            120 36.76
                            0
## 101 347
             130 36.70
                            0
## 102 347
             140 36.82
                            0
## 103 347
             150 36.88
                            0
             200 36.94
## 104 347
                            0
## 105 347
             210 36.79
                            0
## 106 347
             220 36.78
                            0
## 107 347
             230 36.80
                            0
             240 36.82
## 108 347
                            0
## 109 347
             250 36.84
                            0
             300 36.86
## 110 347
                            0
## 111 347
            310 36.88
                            0
## 112 347
            320 36.93
                            0
```

```
## 114 347 340 37.15
stargazer(data, type = "text", out = "table2.txt", title = "Summary output", flip = TRUE, notes = "data
##
## Summary output
## ========
## Statistic
              day
                      time
                               temp activ
## N
              95
                       95
                                95
                                      95
            346.232 1,338.000 36.921 0.063
## Mean
## St. Dev.
           0.424
                     749.249 0.145 0.245
## Min
              346
                        0
                              36.710
                                      0
## Max
              347
                      2,350
                              37.530
```

Question: For each destination, calculate average arrival delay and average distance and present it in a table. Remove Honolulu airport, and retain those destinations for which number of flights arriving is greater than 20.

```
library(nycflights13)
```

Warning: package 'nycflights13' was built under R version 4.2.2

flights

113 347 330 36.97

data taken from R

1

```
## # A tibble: 336,776 x 19
##
      year month
                    day dep_time sched_de~1 dep_d~2 arr_t~3 sched~4 arr_d~5 carrier
      <int> <int> <int>
                           <int>
                                      <int>
                                              <dbl>
                                                      <int>
                                                              <int>
                                                                      <dbl> <chr>
   1 2013
                                                                         11 UA
##
                             517
                                        515
                                                  2
                                                        830
                                                                819
                1
                      1
   2 2013
                                        529
##
               1
                      1
                             533
                                                  4
                                                        850
                                                                830
                                                                         20 UA
                                                  2
##
  3 2013
                                        540
                                                        923
                                                                850
               1
                     1
                             542
                                                                         33 AA
##
  4 2013
               1
                      1
                             544
                                        545
                                                 -1
                                                       1004
                                                               1022
                                                                        -18 B6
## 5 2013
                1
                      1
                             554
                                        600
                                                 -6
                                                        812
                                                                837
                                                                        -25 DL
##
   6 2013
                      1
                             554
                                        558
                                                 -4
                                                        740
                                                                728
                                                                         12 UA
               1
##
   7 2013
                                                 -5
                1
                      1
                             555
                                        600
                                                        913
                                                                854
                                                                         19 B6
##
   8 2013
                             557
                                        600
                                                 -3
                                                        709
                                                                723
                                                                        -14 EV
                      1
                1
## 9 2013
                1
                      1
                             557
                                        600
                                                 -3
                                                        838
                                                                846
                                                                         -8 B6
## 10 2013
                1
                      1
                             558
                                        600
                                                 -2
                                                        753
                                                                745
                                                                          8 AA
## # ... with 336,766 more rows, 9 more variables: flight <int>, tailnum <chr>,
      origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
      minute <dbl>, time_hour <dttm>, and abbreviated variable names
## #
## #
       1: sched_dep_time, 2: dep_delay, 3: arr_time, 4: sched_arr_time,
## #
      5: arr_delay
```

```
data = flights %>%
  group by(dest) %>%
 select(dest, arr_delay, distance) %>%
```

```
summarise(count = n(), avg_arr_delay = mean(arr_delay, na.rm = TRUE), avg_distance = mean(distance, n
filter(dest != 'HNL' & count> 20) %>%
select(dest, avg_arr_delay, avg_distance) %>%
format.data.frame(digits = 3)
data
```

##		dest	avg_arr_delay	ava distance
##	1	ABQ	4.382	1826.0
##	2	ACK	4.852	199.0
##	3	ALB	14.397	143.0
##	4	ATL	11.300	757.1
##	5	AUS	6.020	1514.3
##	6	AVL	8.004	583.6
##	7	BDL	7.049	116.0
##	8	BGR	8.028	378.0
##	9	BHM	16.877	866.0
##	10	BNA	11.812	758.2
##	11	BOS	2.914	190.6
##	12	BQN	8.245	1579.0
##	13	BTV	8.951	265.1
##	14	BUF	8.946	296.8
##	15	BUR	8.176	2465.0
##	16	BWI	10.727	179.4
##	17	BZN	7.600	1882.0
##	18	CAE	41.764	603.6
##	19	CAK	19.698	397.0
##	20	CHO	9.500	305.0
##	21	CHS	10.593	632.9
##	22	CLE	9.182	414.2
##	23	CLT	7.360	538.0
##	24	CMH	10.601	476.6
##	25	CRW	14.672	444.0
##	26	CVG	15.365	575.2
##	27	DAY	12.680	537.1
##	28	DCA	9.067	211.0
##	29	DEN	8.607	1614.7
##	30	DFW	0.322	1383.0
##	31	DSM	19.006	1020.9
##	32	DTW	5.430	498.1
##	33	EGE	6.304	1735.7
##	34	FLL	8.082	1070.1
##	35	GRR	18.190	605.8
##	36	GSO	14.113	449.8
##	37	GSP	15.935	596.0
##	38	HOU	7.176	1420.2
##	39	IAD	13.864	224.8
##	40	IAH	4.241	1407.2
##	41	ILM	4.636	500.0
##	42	IND	9.940	652.3
##	43	JAC	28.095	1875.6
##	44	JAX	11.845	824.7
##	45	LAS	0.258	2241.0
##	46	LAX	0.547	2468.6

```
## 47
       LGB
                    -0.062
                                   2465.0
## 48
       MCI
                    14.514
                                   1097.7
## 49
       MCO
                     5.455
                                   943.1
## 50
       MDW
                    12.364
                                   718.0
## 51
       MEM
                    10.645
                                    954.2
## 52
       MHT
                    14.788
                                    207.0
## 53
       MIA
                     0.299
                                   1091.6
## 54
       MKE
                                   733.4
                    14.167
## 55
       MSN
                    20.196
                                   804.0
## 56
       MSP
                     7.270
                                   1017.4
## 57
       MSY
                     6.490
                                   1177.7
       MVY
                    -0.286
## 58
                                   173.0
   59
                     4.603
                                   550.7
##
       MYR
##
   60
                     3.078
                                   2576.0
       OAK
## 61
       OKC
                    30.619
                                   1325.0
## 62
       AMO
                    14.699
                                   1135.6
##
  63
       ORD
                     5.877
                                   729.0
       ORF
##
   64
                    10.949
                                   288.5
##
  65
       PBI
                     8.563
                                   1028.8
   66
##
       PDX
                     5.142
                                   2445.6
##
   67
       PHL
                    10.127
                                    94.3
##
  68
       PHX
                     2.097
                                   2141.3
                                   334.1
## 69
       PIT
                     7.681
##
  70
       PSE
                     7.872
                                   1617.0
## 71
       PVD
                    16.235
                                   160.0
##
  72
       PWM
                    11.660
                                    276.1
##
  73
       RDU
                    10.052
                                    426.8
##
   74
       RIC
                    20.111
                                    281.4
## 75
       ROC
                    11.561
                                   259.3
## 76
       RSW
                     3.238
                                   1072.9
## 77
       SAN
                     3.139
                                   2437.3
##
  78
       SAT
                     6.945
                                   1578.3
##
  79
       SAV
                    15.130
                                   709.2
## 80
       SDF
                    12.669
                                   646.0
  81
##
       SEA
                    -1.099
                                   2412.7
##
  82
       SFO
                     2.673
                                   2577.9
## 83
       SJC
                     3.448
                                   2569.0
## 84
       SJU
                     2.521
                                   1599.8
## 85
       SLC
                     0.176
                                   1987.0
## 86
       SMF
                    12.110
                                   2521.0
##
  87
       SNA
                    -7.868
                                   2434.0
## 88
       SRQ
                     3.082
                                   1044.7
##
   89
       STL
                    11.078
                                   878.7
##
  90
                                   1627.0
       STT
                    -3.836
## 91
       SYR
                     8.904
                                    205.9
## 92
       \mathtt{TPA}
                     7.409
                                   1003.9
## 93
       TUL
                    33.660
                                   1215.0
## 94
       TVC
                    12.968
                                   652.4
## 95
       TYS
                    24.069
                                   638.8
## 96
       XNA
                     7.466
                                   1142.5
```

```
out = "table3.txt",
  covariate.labels = c("", "Destination", "Average-arrival-delay", "Average-distance"),
  digits = 3,
  title = "Average arrival delay and average distance and present it in a table, removed Honolu
  notes = "(data taken from nycflights13 package)")
```

Average arrival delay and average distance and present it in a table, removed Honolulu airport, and Destination Average-arrival-delay Average-distance ## -----## 1 4.382 ABQ1826.0 4.852 ## 2 ACK 199.0 ## 3 14.397 143.0 ALB ## 4 ATL 11.300 757.1 ## 5 AUS 6.020 1514.3 ## 6 AVL 8.004 583.6 ## 7 BDL7.049 116.0 ## 8 BGR 8.028 378.0 ## 9 BHM16.877 866.0 ## 10 BNA 11.812 758.2 ## 11 BOS 2.914 190.6 ## 12 BON 8.245 1579.0 ## 13 BTV8.951 265.1 ## 14 BUF 8.946 296.8 ## 15 BUR 8.176 2465.0 ## 16 BWI 10.727 179.4 ## 17 BZN7.600 1882.0 ## 18 603.6 CAE 41.764 ## 19 CAK 19.698 397.0 ## 20 CHO 9.500 305.0 ## 21 CHS 10.593 632.9 ## 22 CLE9.182 414.2 ## 23 CLT 7.360 538.0 ## 24 CMH 10.601 476.6 ## 25 CRW 14.672 444.0 ## 26 CVG 15.365 575.2 ## 27 DAY 12.680 537.1 ## 28 DCA 9.067 211.0 ## 29 DEN 8.607 1614.7 ## 30 DFW 0.322 1383.0 ## 31 DSM 19.006 1020.9 ## 32 DTW 498.1 5.430 ## 33 EGE 6.304 1735.7 ## 34 FLL8.082 1070.1 ## 35 GRR 18.190 605.8 ## 36 GSO 14.113 449.8 ## 37 GSP 15.935 596.0 ## 38 HOU 7.176 1420.2 ## 39 IAD 13.864 224.8 ## 40 IAH 4.241 1407.2 ## 41 ILM 4.636 500.0 ## 42 IND 9.940 652.3

##	43	JAC	28.095	1875.6
##	44	JAX	11.845	824.7
##	45	LAS	0.258	2241.0
##	46	LAX	0.547	2468.6
##	47	LGB	-0.062	2465.0
##	48	MCI	14.514	1097.7
##	49	MCO	5.455	943.1
##	50	MDW	12.364	718.0
##	51	MEM	10.645	954.2
##	52	MHT	14.788	207.0
##	53	MIA	0.299	1091.6
##	54	MKE	14.167	733.4
##	55	MSN	20.196	804.0
##	56	MSP	7.270	1017.4
##	57	MSY	6.490	1177.7
##	58	MVY	-0.286	173.0
##	59	MYR	4.603	550.7
##	60	OAK	3.078	2576.0
##	61	OKC	30.619	1325.0
##	62	OMA	14.699	1135.6
##	63	ORD	5.877	729.0
##	64	ORF	10.949	288.5
##	65	PBI	8.563	1028.8
##	66	PDX	5.142	2445.6
##	67	PHL	10.127	94.3
##	68	PHX	2.097	2141.3
##		PIT	7.681	334.1
	70	PSE	7.872	1617.0
	71	PVD	16.235	160.0
	72	PWM	11.660	276.1
	73	RDU	10.052	426.8
	74	RIC	20.111	281.4
	75	ROC	11.561	259.3
	76	RSW	3.238	1072.9
	77	SAN	3.139	2437.3
	78	SAT	6.945	1578.3
	79	SAV	15.130	709.2
##		SDF	12.669	646.0
##	81	SEA	-1.099	2412.7
##	82	SFO	2.673	2577.9
##	83	SJC	3.448	2569.0
##	84	SJU	2.521	1599.8
## ##	85 86	SLC	0.176 12.110	1987.0
##	86	SMF		2521.0 2434.0
##	87	SNA	-7.868 3.083	
##	88	SRQ	3.082	1044.7
##	89 90	STL STT	11.078 -3.836	878.7 1627.0
##	91	SYR	8.904	205.9
##	92	TPA	7.409	1003.9
##	93	TUL	33.660	1215.0
##	93	TVC	12.968	652.4
##	9 4 95	TYS	24.069	638.8
##	96	XNA	7.466	1142.5
	-		. • 100	12.0

```
## -----
## (data taken from nycflights13 package)
```

y = as.numeric(data\$avg_arr_delay)

Question: Fit a linear regression on average arrival delay on average distance. Also fit a second degree regression on average arrival delay on distance. Present the output in a tabular form.

```
x = as.numeric(data$avg_distance)
linmod1 = lm(y~x)
linmod2 = lm(y~x+I(x^2))
linmod1
##
## Call:
## lm(formula = y \sim x)
## Coefficients:
## (Intercept)
  13.536849 -0.003781
linmod2
##
## Call:
## lm(formula = y \sim x + I(x^2))
## Coefficients:
## (Intercept)
              X
                   I(x^2)
  1.053e+01 3.473e-03 -2.778e-06
stargazer(linmod1, linmod2,
     type = "html",
     out = "table4.html",
     dep.var.labels = "Arrival delay",
     covariate.labels = c("distance", "distance**2", "constant-term"),
     title = "Regression on average delay in arrival vs average distance",
     notes = "(data taken from nycfights pakage)")
##
## <caption><strong>Regression on average delay in arrival vs average
## <td style="text-align:left"
## 
\label{lem:left} $$\#   Arrival delay      $$\#     Arrival delay  
## (1)(2)
## <td style="text-align:left"
## (0.001)(0.004)
## 
## distance**2-0.00000<sup>*</sup>
## <(0.00000)</td>
## 
## constant-term13.537<sup>***</sup>10.531<sup>***</s
```

```
## (1.238)(1.967)
## 
## 
## R<sup>2</sup>
## Adjusted R<sup>2</sup>
## Residual Std. Error
## Residual Std. Error
## F Statistic
## F Statistic
## F Statistic
## F Statistic
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## <t
```

- dpois(x, lambda) gives P[X = x].
- ppois(x, lambda) gives $P[X \le x]$, where $X \sim P(\lambda)$.
- qpois(x, lambda) gives such a value of x for which $P[X \le x]$ is at least p.
- In case we want to find P[X > 2], we can do ppois(2, 2, lowwer.tail = FALSE)
- rpois(n, lambda) is to get n random values from the $P(\lambda)$ distribution.

		Distribution		Random	
Distribution name	Density function	function	Quantile function	generation	