Coordination Compounds

- A coordination compound is any compound that contains a coordination entity
- A coordination entity is an ion or neutral molecule: composed of a central metal atom to which is attached a surrounding array of other atoms or groups of atoms, each of which is called a ligand.

Coordination Compounds

- Coordination number: the number of σ -bonds between ligands and the central atom.
- Chelation: coordination of more than one non-contiguous σ -electron pair donor atom from a given ligand to the same central atom.

1.

$$H_2C - CH_2$$
 $H_2N - NH_2$
 $H_2N - NH_2$
 $H_2N - CH_2$
 H_2N

Chelating vs Bridging

 $[(H_3N)_5Co(\mu\text{-}NH_2CH_2CH_2NH_2)Co(NH_3)_5]^{6+}$

Oxidation State

	Formula	Ligands	Central atom oxidation state
1.	[Co(NH ₃) ₆] ³⁺	6 NH ₃	III
2.	$[CoCl_4]^{2-}$	4 Cl	II
3.	$[MnO_4]^-$	$4 O^{2-}$	VII
4.	[MnFO ₃]	$3 O^{2-} + 1 F^{-}$	VII
5.	[Co(CN)5H]3-	5 CN ⁻ +1 H ⁻	III
6.	$[Fe(CO)_4]^{2-}$	4 CO	-II

Name	Formula	Abbreviation	Donor atoms	Number of donors
Acetylacetonato		acac ⁻	0	2
Ammine	NH ₃		N	1
Aqua	H ₂ O		0	1
2,2-Bipyridine	$\langle N \rangle \langle N \rangle$	bpy	N	2
Bromido	Br ⁻		Br	1
Carbanato	CO ₃ ²⁻		0	1 or 2
Carbonyl	CO		С	1
Chlorido	CI-		CI	1
1,4,7,10,13,16-Hexaoxa- cyclooctadecane		18-crown-6	0	6

Name	Formula	Abbreviation	Donor atoms	Number of donors
4,7,13,16,21-Pentaoxa-1, 10-diaza-bicyclo [8.8.5]tricosane		2.2.1 crypt	N, O	2N, 50
Cyanido	CN-		С	1
Diethylenetriamine	NH(CH ₂ CH ₂ NH ₂) ₂	dien	N	3
Bis(diphenylphosphino)ethane	Ph ₂ P PPh ₂	dppe	Р	2
Bis(diphenylphosphino)methane	Ph ₂ P PPh ₂	dppm	Р	2
Cyclopentadienyl	C ₅ H ₅	Cp ⁻	С	5
Ethylenediamine (1,2-diaminoethane)	NH ₂ CH ₂ CH ₂ NH ₂	en	N	2
Ethylenediaminetetraacetato	$-O_2C$ N N $-CO_2^ -CO_2^-$	edta ⁴⁻	N, O	2N, 40

Fluorido	F ⁻		F	1
Glycinato	NH ₂ CH ₂ CO ₂	gly	N, O	1N, 10
Hydrido	H-		Н	1
Hydroxido	OH-		0	1
Iodido	1-		1	1
Nitrato	NO ₃		0	1 or 2
Nitrito – κΟ	NO ₂		0	1
Nitrito – κN	NO ₂		N	1
Oxido	O ²⁻		0	1
Oxalato	-o -o -o -	OX	0	2
Pyridine		ру	N	1
Sulfido	S ²⁻		S	1
Tetraazacyclotetradecane	N	cyclam	N	4

Thiocyanato – κN	NCS-		N	1
Thiocyanato – κS	SCN-		S	1
Thiolato	RS ⁻		S	1
Triaminotriethylamine	N(CH ₂ CH ₂ NH ₂) ₃	tren	N	4
Tricyclohexylphosphine	P(C ₆ H ₁₁) ₃	PCy ₃	P	1
Trimethylphosphine	P(CH ₃) ₃	PMe ₃	P	1
Triphenylphosphine	$P(C_6H_5)_3$	PPh ₃	P	1
Imprienyiphosphine	$P(C_6H_5)_3$	PPII ₃	٢	1

Three-coordination

Four-coordination

Five-coordination

Six-coordination

Seven-coordination

pentagonal bipyramid

octahedron, face monocapped

OCF-7

trigonal prism, square-face monocapped

TPRS-7

Nine-coordination

trigonal prism, square-face tricapped

TPRS-9

heptagonal bipyramid

HBPY-9

Coordination nomenclature: an additive nomenclature

Example:

1. Addition of ligands to a central atom:

$$Ni^{2+} + 6H_2O \longrightarrow [Ni(OH_2)_6]^{2+}$$

Addition of ligand names to a central atom name:

hexaaquanickel(II)

Bridging Ligands

- Form polynuclear species
- μ as a prefix to the ligand formula or name
 - The number of central atoms joined into a single coordination entity by bridging ligands: indicated by using the terms dinuclear, trinuclear, tetranuclear, etc

[Al₂Cl₄(μ -Cl)₂] or [Cl₂Al(μ -Cl)₂AlCl₂] di- μ -chlorido-tetrachlorido-1 κ ²Cl,2 κ ²Cl-dialuminium

Bridging Ligands

• mu (µ) convention

Metal-metal bonds

1. $[Br_4ReReBr_4]^{2+}$ bis(tetrabromidorhenium)(Re-Re)(2+)

Naming Coordination Compounds

- ligand names are listed before the name(s) of the central atom(s)
- no spaces are left between parts of the name that refer to the same coordination entity,
- ligand names are listed in alphabetical order (multiplicative prefixes indicating the number of ligands are not considered in determining that order),
- the use of abbreviations in names is discouraged.
- Names of anionic coordination entities are furthermore given the ending 'ate'.
 - 1. [CoCl(NH₃)₅]Cl₂ pentaamminechloridocobalt(2+) chloride
 - 2. [AuXe₄]²⁺ tetraxenonidogold(2+)

Number of ligands

- Two kinds of multiplicative prefix are available
 - Prefixes di, tri, etc. are generally used with the names of simple ligands. Enclosing marks are not required.
 - Prefixes bis, tris, tetrakis, etc. are used with complex ligand names and in order to avoid ambiguity. Enclosing marks must be placed around the multiplicand.
 - diammine for $(NH_3)_2$, but bis(methylamine)

Representing ligands in names

- Names of anionic ligands,, are modified to end in 'o'.
- In general, if the anion name ends in 'ide', 'ite' or 'ate', the final 'e' is replaced by 'o', giving 'ido', 'ito' and 'ato', respectively.
 - In particular, alcoholates, thiolates, phenolates, carboxylates, partially dehydronated amines, phosphanes, etc. are in this category.
- neutral and cationic ligands, including organic ligands, are used without modification
- Enclosing marks are required for
 - neutral and cationic ligand names,
 - for names of inorganic anionic ligands containing multiplicative prefixes (such as triphosphato), for compositional names (such as carbon disulfide),
 - for names of substituted organic ligands
- Ligands binding to metals through carbon atoms to be discussed in organometallic compounds

Examples

Formula	Ligand name

1. Cl chlorido

2. CN cyanido

3. H⁻ hydrido³

4. D⁻or ²H⁻ deuterido³ or [²H]hydrido³

5. PhCH₂CH₂Se⁻ 2-phenylethane-1-selenolato

6. MeCOO acetato or ethanoato

7. Me₂As⁻ dimethylarsanido

8. MeCONH₂ acetamide (*not* acetamido)

9. MeCONH⁻ acetylazanido or acetylamido (*not* acetamido)

10. MeNH₂ methanamine

Examples

11. MeNH⁻ methylazanido, or methylamido, or methanaminido

(cf. Example 3 of Section IR-6.4.6)

12. MePH₂ methylphosphane

13. MePH⁻ methylphosphanido

14. MeOS(O)OH methyl hydrogen sulfite

15. MeOS(O)O methyl sulfito, or methanolatodioxidosulfato(1–)

Charge numbers and oxidation numbers

- The oxidation number of the central atom: a Roman numeral appended in parentheses to the central atom name (including the ending 'ate', if applicable)
- Arabic zero indicates the oxidation number zero.
- Alternatively, the charge on a coordination entity may be indicated.
- The net charge is written in arabic numbers, with the number preceding the charge sign, and enclosed in parentheses.
- It follows the name of the central atom (including the ending 'ate', if applicable) without the intervention of a space.

```
K<sub>4</sub>[Fe(CN)<sub>6</sub>]

potassium hexacyanidoferrate(II), or
potassium hexacyanidoferrate(4-), or
tetrapotassium hexacyanidoferrate

[Co(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>3</sub>
hexaamminecobalt(III) chloride
```

[CoCl(NH₃)₅]Cl₂ pentaamminechloridocobalt(2+) chloride

Formulae of coordination compounds

- A (line) formula of a compound: provides basic information about the constitution of the compound in a concise and convenient manner
 - The central atom symbol(s) is (are) listed first
 - The ligand symbols are then listed in alphabetical order
 - Thus, CH₃CN, MeCN and NCMe would be ordered under C, M and N respectively, and CO precedes Cl because single letter symbols precede two letter symbols.

Formulae of coordination compounds

- Use of enclosing marks
 - Square brackets: formula for the entire coordination entity,
 whether charged or not
 - Parentheses: polyatomic ligands formulae and abbreviations of ligands.

```
Na[PtBrCl(NH<sub>3</sub>)(NO<sub>2</sub>)]
sodium amminebromidochloridonitrito-κN-platinate(1–)
[Fe(CNMe)<sub>6</sub>]Br<sub>2</sub>
hexakis(methyl isocyanide)iron(II) bromide
[Co(en)<sub>3</sub>]Cl<sub>3</sub>
tris(ethane-1,2-diamine)cobalt(III) trichloride
```

Ionic charges and oxidation numbers

- If the formula of a charged coordination entity is to be written without that of any counterion, the charge is indicated outside the square bracket as a right superscript, with the number before the sign.
- The oxidation number of a central atom may be represented by a Roman numeral, which should be placed as a right superscript on the element symbol.
 - 1. $[PtCl_6]^{2-}$
 - 2. $[Cr(OH_2)_6]^{3+}$
 - 3. $[Cr^{III}(NCS)_4(NH_3)_2]^{-1}$
 - 4. $[Cr^{III}Cl_3(OH_2)_3]$
 - 5. $[Fe^{-II}(CO)_4]^{2-}$

- only cases where specification of the donor atom is not required for a ligand that can bind to a central atom in more than one way
 - monodentate O-bound carboxylate groups
 - monodentate C-bound cyanide (ligand name 'cyanido')
 - monodentate C-bound carbon monoxide (ligand name 'carbonyl')
 - monodentate N-bound nitrogen monoxide (ligand name 'nitrosyl').

- The kappa convention
 - Single ligating atoms are indicated by the italicized element symbol preceded by a Greek kappa, κ
 - $-\kappa$ placed after the portion of the ligand name that represents the ring, chain or substituent group in which the ligating atom is found

[NiBr₂(Me₂PCH₂CH₂PMe₂)] dibromido[ethane-1,2-diylbis(dimethylphosphane-κ*P*)]nickel(II)

The kappa convention

- thiocyanato-κN for nitrogen-bonded NCS
- thiocyanato- κS for sulfur-bonded NCS.
- Nitrogen-bonded nitrite is named nitrito-κ*N*
- Oxygen-bonded nitrite is named nitrito- κO , as in pentaamminenitrito- κO -cobalt(III)

- The eta (η) convention: ('hapticity')
 - applied in cases where contiguous donor atoms within a given ligand are involved in bonding to a central atom

bis- η^3 -allyl nickel, or [Ni(η^3 -C₃H₅)₂]

4 electron donor and anionic

Isomerism in coordination complexes

Isomerism in coordination complexes

Structural isomerism

Ionization isomerism
Hydration isomerism
Coordination isomerism
Linkage isomerism
Polymerization isomerism

Stereoisomerism

Geometrical isomerism Optical isomerism

Structural isomerism: ionization isomers

- Ionization isomers result from the interchange of an anionic ligand within the first coordination sphere with an anion outside the coordination sphere.
 - violet $[Co(NH_3)_5Br]SO_4$ and red $[Co(NH_3)_5(SO_4)]Br$
 - The isomers are also easily distinguished by IR spectroscopy;
 - free and coordinated sulfate ions give rise to one or three IR active SO stretching vibrations respectively

Structural isomerism: hydration isomers

• Hydration isomers result from the interchange of H₂O and another ligand between the first coordination sphere and the ligands outside it.

- CrCl₃.6H₂O, actually [Cr(H₂O)₄Cl₂]Cl.2H₂O
- When this is dissolved in water, the chloride ions in the complex are slowly replaced by water to give blue-green [Cr(H₂O)₅Cl]Cl₂.H₂O and finally violet [Cr(H₂O)₆]Cl₃

Structural isomerism: coordination isomerism

• Coordination isomers are possible only for salts in which both cation and anion are complex ions; the isomers arise from interchange of ligands between the two metal centres.

Examples of coordination isomers are:

- $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$;
- $[Co(NH_3)_6][Co(NO_2)_6]$ and $[Co(NH_3)_4(NO_2)_2][Co(NH_3)_2(NO_2)_4];$
- $[Pt^{II}(NH_3)_4][Pt^{IV}Cl_6]$ and $[Pt^{IV}(NH_3)_4Cl_2][Pt^{II}Cl_4]$.

Structural isomerism: linkage isomerism

- Linkage isomers may arise when one or more of the ligands can coordinate to the metal ion in more than one way.
 - linkage isomers of $[Co(NH_3)_5(NO_2)]^{2+}$

$$[\text{Co(NH}_3)_5(\text{NO}_2\text{-}O)]\text{Cl}_2 \xrightarrow{\text{spontaneous}} [\text{Co(NH}_3)_5(\text{NO}_2\text{-}N)]\text{Cl}_2$$

$$\text{red} \qquad \qquad \text{UV} \qquad \text{yellow}$$

- distinguished by using IR spectroscopy.
 - For the O-bonded ligand, characteristic absorption bands at 1065 and 1470 cm⁻¹
 - while for the N-bonded ligand, the corresponding vibrational wavenumbers are 1310 and 1430 cm⁻¹.

Structural isomerism: polymerization isomerism

• Polymerization isomers denote complexes which have the same empirical formulae but different molecular masses.

Examples of polymerization isomers are:

- $[PtCl_2(NH_3)_2]$ and $[Pt(NH_3)_4][PtCl_4]$;
- $[Co(NH_3)_3(NO_2)_3]$ and $[Co(NH_3)_6][Co(NO_2)_6]$.

• If two species have the <u>same molecular formulae</u> and the <u>same structural framework</u>, but **differ in the spatial arrangement** of different atoms or groups about a central atom or a double bond, then the compounds are geometrical isomers.

Square planar, Octahedral and Trigonal Bipyramidal species

- Square planar species:
 - Square planar species of the general form EX₂Y₂
 or EX₂YZ may possess cis- and trans-isomers.

- Octahedral species:
 - An octahedral species containing three identical groups (e.g. of type EX_3Y_3) may possess *fac* and *mer*-isomers..

Facial arrangement

fac-isomer

Meridional arrangement

mer-isomer

- Trigonal bipyramidal species:
 - In a trigonal bipyramidal species, geometrical isomerism arises because of the presence of axial and equatorial sites.

Steric factors may dictate which isomer is preferred for a given species

e.g. static structure of PCl₃F₂.

- Optical isomerism is concerned with chirality, and some important terms relating to chiral complexes
- Enantiomers are a pair of stereoisomers that are nonsuperposable mirror images
- (+) and (-) prefixes
 - specific rotation
 - Sign of $[\alpha]_D$.
- *d* and *l* prefixes :
 - dextro- and laevo- (derived from the Latin for right and left)
 - refer to right- and left-handed rotation of the plane of polarized light respectively
- The +/- or d/l notation is not a direct descriptor of the absolute configuration of an enantiomer (the arrangement of the substituents or ligands) for which the following
- prefixes are used.

- R and S prefixes: Cahn–Ingold–Prelog notation
 - notation is used for chiral organic ligands, and also for tetrahedral complexes
 - The R- and S-labels for the enantiomers refer to a clockwise (rectus)
 and anticlockwise (sinister) sequence of the prioritized atoms, working
 from high to low.

• Δ and Λ prefixes:

- enantiomers of octahedral complexes containing three equivalent didentate ligands (tris-chelate complexes)
- octahedron is viewed down a three-fold axis, and the chelates then
 define either a right- or left-handed helix.

- Bis-chelate octahedral complexes : cis- and trans-isomers
 [Co(en)₂Cl₂]⁺
- The first purely inorganic complex to be resolved into its optical isomers was

Spatial orientation of d-orbitals

consequence of this difference: the d orbitals in the presence of ligands are split into groups of different energies, the <u>type of splitting and the magnitude of the energy differences</u> depending on the arrangement and nature of the ligands.

The 'mixing' or 'blending' of atomic orbitals to accommodate the spatial requirements in a molecule is known as *hybridization*.

Hybridization occurs to minimize electron pair repulsions when atoms are brought together to form molecules.

$$2^{\text{nd}}$$
 row elements: sp sp^2 sp^3 3^{rd} row elements also have: dsp^3 d^2sp^3

Bonding arises from the overlap of orbitals.

Sigma (σ) bonds arise from the 'end-on' overlap between adjacent orbitals. This leads to a region of high electron density along the inter-nuclear axis (cylindrically symmetrical).

valence bond theory

Coordination number	Arrangement of donor atoms	Orbitals hybridized	Hybrid orbital description	Example
2	Linear	s, p_z	sp	[Ag(NH ₃) ₂] ⁺
3	Trigonal planar	s, p_x, p_y	sp^2	[HgI ₃]
4	Tetrahedral	s, p_x, p_y, p_z	sp^3	$[\mathrm{FeBr_4}]^{2-}$
4	Square planar	$s, p_x, p_y, d_{x^2-y^2}$	sp^2d	[Ni(CN) ₄] ²⁻
5	Trigonal bipyramidal	$s, p_x, p_y, p_z, d_{z^2}$	sp^3d	[CuCl ₅] ³⁻
5	Square-based pyramidal	$s, p_x, p_y, p_z, d_{x^2-y^2}$		[Ni(CN) ₅] ³⁻
6	Octahedral	$s, p_x, p_y, p_z, d_{z^2}, d_{x^2-y^2}$	sp^3d^2	$[Co(NH_3)_6]^{3+}$
6	Trigonal prismatic	$s, d_{xy}, d_{yz}, d_{xz}, d_{z^2}, d_{x^2-y^2}$ or $s, p_x, p_y, p_z, d_{xz}, d_{yz}$	sd^5 or sp^3d^2	[ZrMe ₆] ²⁻
7	Pentagonal bipyramidal	$s, p_x, p_y, p_z, d_{xz}, d_{yz}$ $s, p_x, p_y, p_z, d_{xy}, d_{x^2-y^2}, d_{z^2}$	sp^3d^3	[V(CN)7]4-
7	Monocapped trigonal prismatic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{z^2}$	sp^3d^3	[NbF ₇] ²⁻
8	Cubic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{yz}, f_{xyz}$	sp^3d^3f	$[PaF_8]^{3-}$
8	Dodecahedral	$s, p_x, p_y, p_z, d_{z^2}, d_{xy}, d_{xz}, d_{yz}$	sp3d3f sp3d4 sp3d4	[Mo(CN) ₈] ⁴⁻
8	Square antiprismatic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{yz}, d_{x^2-y^2}$	sp^3d^4	[TaF ₈] ³⁻
9	Tricapped trigonal prismatic	$s, p_x, p_y, p_z, d_{xy}, d_{xz}, d_{yz}, d_{z^2}, d_{x^2-y^2}$	sp^3d^5	$[ReH_9]^{2-}$

Chromium (III): Octahedral

Fe³⁺ ion: Octahedral

High spin, but unrealistic: paramagnetic

3d

 sp^3d^2

Ni²⁺ ion: Octahedral vs Tetrahedral

• Nickel(II) (d⁸) forms **paramagnetic** tetrahedral and octahedral complexes.

Ni²⁺ ion: Square Planar

• Nickel(II) (d⁸) forms diamagnetic square planar complexes.

Limitations

- It can say nothing about electronic spectroscopic properties.
- Chemical reactivity can't be predicted
 - kinetic inertness that is a characteristic of the low-spin d 6 configuration.
- Furthermore, the model implies a distinction between high- and low-spin complexes that is actually misleading.
- Finally, it cannot tell us why certain ligands are associated with the formation of high- (or low-)spin complexes.