

Figura 7.3.6 Descripci ón paramétrica de un plano.

Vectores tangentes a superficies parametrizadas

Supongamos que Φ es una superficie parametrizada que es diferenciable en $(u_0, v_0) \in \mathbb{R}^2$. Fijando u en u_0 , obtenemos una aplicación $\mathbb{R} \to \mathbb{R}^3$ dada por $t \mapsto \Phi(u_0, t)$, cuya imagen es una curva sobre la superficie (Figura 7.3.7). De los Capítulos 2 y 4 sabemos que el vector tangente a esta curva en el punto $\Phi(u_0, v_0)$, que denotamos mediante \mathbf{T}_v , está dado por

$$\mathbf{T}_v = \frac{\partial \mathbf{\Phi}}{\partial v} = \frac{\partial x}{\partial v}(u_0, v_0)\mathbf{i} + \frac{\partial y}{\partial v}(u_0, v_0)\mathbf{j} + \frac{\partial z}{\partial v}(u_0, v_0)\mathbf{k}.$$

De forma similar, si fijamos v y consideramos la curvas $t \mapsto \Phi(t, v_0)$, obtenemos el vector tangente a esta curva en $\Phi(u_0, v_0)$, dado por

$$\mathbf{T}_{u} = \frac{\partial \mathbf{\Phi}}{\partial u} = \frac{\partial x}{\partial u}(u_{0}, v_{0})\mathbf{i} + \frac{\partial y}{\partial u}(u_{0}, v_{0})\mathbf{j} + \frac{\partial z}{\partial u}(u_{0}, v_{0})\mathbf{k}.$$

Figura 7.3.7 Los vectores tangentes \mathbf{T}_u y \mathbf{T}_v son tangentes a una curva sobre la superficie S, y por tanto son tangentes a S.