Engenharia de Software

Natália Schots

Agenda

- Introdução à Engenharia de Software
 - Elementos básicos
 - Histórico
 - Mitos da Engenharia de Software

O que é Engenharia de Software?

- "O estabelecimento e uso de um conjunto de princípios de engenharia com o objetivo de se construir software confiável, eficiente e viável economicamente em máquinas reais" (F. L. Bauer, 1969)
- "Aplicação de uma abordagem sistemática, disciplinada e quantificativa para o desenvolvimento, operação e manutenção de software, isto é, a aplicação da engenharia ao software" (IEEE, 1993)

Engenharia no geral (1/2)

- Busca a resolução de problemas práticos por meio de soluções que sejam economicamente viáveis
 - Motivada pela limitação de recursos, tais como: tempo, dinheiro e pessoal capacitado
- A estratégia da engenharia é aplicar conhecimento científico sobre um determinado domínio tecnológico
- A engenharia se especializa em diversos ramos de conhecimento: elétrica, civil, software...

Engenharia no geral (2/2)

Etapas na Engenharia:

Análise

 O problema deve ser dividido em partes menores e mais simples até que estas partes possam ser resolvidas

Síntese

 Unir as soluções de cada parte em uma estrutura maior que atenda todo o problema

Correções

 Resolução de problemas decorrentes da tradução durante a síntese (verificação) ou de elicitação durante a análise (validação)

Elementos básicos

O que compõe a ES?

Engenharia de Software

Processos

 Definem os passos gerais para o desenvolvimento e manutenção do software

 Servem como uma estrutura de encadeamento de métodos e ferramentas

Métodos

Descrevem como fazer um passo específico do processo

- Representação do software durante seu desenvolvimento
 - Notação e linguagens

Ferramentas

- Automatizam o processo e os métodos
 - Ferramentas CASE (Computer Aided Software Engineering)
 - Ambientes de desenvolvimento de software IDEs
 - ...
- Cuidado com o "desenvolvimento guiado por ferramentas"
 - É importante usar a ferramenta certa para o problema
 - O problema n\u00e3o deve ser adaptado para a ferramenta dispon\u00edvel

Processos, métodos ou ferramentas?

- Coloque em uma panela funda o leite condensado, a margarina e o chocolate em pó.
- Cozinhe [no fogão] em fogo médio e mexa sem parar com uma colher de pau.
- Cozinhe até que o brigadeiro comece a desgrudar da panela.
- Deixe esfriar bem, então unte as mãos com margarina, faça as bolinhas e envolva-as em chocolate granulado.

Processos, métodos ou ferramentas?

- Coloque em uma panela funda o leite condensado, a margarina e o chocolate em pó.
- Cozinhe [no fogão] em fogo médio e mexa sem parar com uma colher de pau.
- Cozinhe até que o brigadeiro comece a desgrudar da panela.
- Deixe esfriar bem, então unte as mãos com margarina, faça as bolinhas e envolva-as em chocolate granulado.

Qual a exigência de cada elemento?

Depende do contexto da organização

- Pensar nos elementos como "pernas" de um banco
 - O tamanho de cada "perna" dependerá do solo da organização

"Não existe bala de prata!"

- Em função do problema, são escolhidos o processo, os métodos e as ferramentas
- Cuidado!
 - Exigir menos do que o necessário pode levar a desordem
 - Exigir mais do que o necessário pode emperrar o projeto
- Processos devem ser adaptados para o contexto real de uso
 - Características do projeto
 - Características da equipe
 - Características do cliente

Histórico

Antes da Engenharia de Software...

- 1940s
 - Primeiro computador eletrônico de uso geral
 - ENIAC
 - Custo estimado de US\$ 500.000,00
 - Início da programação de computadores
- 1950s
 - Primeiros compiladores e interpretadores

- 1960s
 - Primeiro grande software relatado na literatura – OS/360
 - Mais de 1000 desenvolvedores
 - Custo estimado de US\$ 50.000.000,00 por ano
- 1968
 - Crise do software –
 nasce a Engenharia de Software

Antes da Engenharia de Software...

- A programação era considerada uma espécie de arte
- Os altos custos de hardware escondiam os custos de software
- Os sistemas eram simples e construídos por pequenas equipes
- Os sistemas eram construídos para resolver problemas específicos

Crise do Software

- Teve início em meados da década de 1960
- Os custos de hardware começaram a se reduzir
- Os computadores se tornaram cada vez mais velozes
- A capacidade de armazenamento aumentou
- A demanda por software cresceu
- As equipes de desenvolvimento não acompanharam a demanda por produção

Origens da ES

- A Engenharia de Software surgiu com o intuito de:
 - Identificar e analisar as causas dos problemas envolvidos com o desenvolvimento de software
 - Propor soluções economicamente viáveis para a resolução destes problemas
 - Organizar o conhecimento sobre técnicas disponíveis para o desenvolvimento de software

Depois da Engenharia de Software...

• 1970s:

- Lower-CASE tools

 (programação, depuração, colaboração)
- Ciclo de vida cascata
- Desenvolvimento estruturado

• 1980s:

- Ciclo de vida espiral
- Desenvolvimento orientado a objetos

• 1990s:

- Upper-CASE tools
- Processos
- Modelagem
- Atualmente:
 - Métodos ágeis
 - Desenvolvimento dirigido por modelos
 - Linhas de produto
 - Experimentação
 - Desenvolvimento distribuído

Mitos da Engenharia de Software

O que são?

- É comum a criação e disseminação de certos mitos em Engenharia de Software (ES)
 - Muitos deles possuem aspecto intuitivo, baseados em fatos razoáveis, o que facilita sua disseminação
- A fonte destes mitos é normalmente devido a:
 - Más experiências
 - Desconhecimento da teoria da disciplina de ES aplicada na prática

Mitos gerenciais

- "Basta um bom livro de ES para fazer bom software"
 - Um bom livro certamente ajuda, mas ele precisa refletir as técnicas mais modernas de ES (e ser lido)
- "Se estivermos com o cronograma atrasado, basta adicionar mais gente ao projeto"
 - Adicionar gente a um projeto atrasado normalmente faz o projeto atrasar mais!
- "Se o projeto for terceirizado, todos os meus problemas estão resolvidos"
 - É mais difícil gerenciar projetos terceirizados do que projetos internos

Mitos do cliente

- "Basta dar uma ideia geral do que é necessário no início"
 - Requisitos ambíguos normalmente são uma receita para um desastre
 - Comunicação contínua com o cliente é fundamental
- "Modificações podem ser facilmente acomodadas, porque software é flexível"
 - O impacto de modificações no software varia em função da modificação e do momento em que ela é requisitada

Mitos do desenvolvedor (1/2)

- "Assim que o código for escrito, o trabalho termina"
 - 60% a 80% do esforço será gasto depois que o código foi escrito
 - Vale a pena se esforçar para chegar a um bom código (boa documentação, bom projeto etc.)
- "Só é possível verificar a qualidade de um software quando o executável existir"
 - Revisões usualmente são mais eficazes que testes, e podem ser utilizadas antes do software estar executável

Mitos do desenvolvedor (2/2)

- "O único produto a ser entregue em um projeto é o código"
 - Além do código, documentações tanto para a manutenção quanto para o uso são fundamentais
- "Engenharia de software gera documentação desnecessária"
 - Engenharia de software foca em criar qualidade, e não criar documentos
 - Algum grau de documentação é necessário para evitar retrabalho
 - Questione sempre que encontrar um documento desnecessário para o projeto

Referências

- Slides Engenharia de Software Professor Leonardo Murta
- Slides Engenharia de Software Professor Marcelo Schots
- Pressman, R.S.; "Engenharia de Software"; 6^a edição, Ed. McGraw-Hill, 2006
- Slides Introdução à Engenharia de Softaware,
 Professor Márcio Barros

Obrigada!