MATH 1600 Linear Algebra — Winter 2020

Tutorial 3 - Wednesday

Lines and planes in \mathbb{R}^3
1. For the given plane \mathcal{P} and line \mathcal{L} in \mathbb{R}^{3} , calculate the intersection of \mathcal{P} and \mathcal{L} . (a) \mathcal{P} has the general form $x + 12y + z = 3$; $\begin{cases} x = -8 + t = -8 - \frac{62}{19} \\ \text{\mathcal{L} has the vector form $\langle -8, 5, 13 \rangle + t \langle 1, 2, 6 \rangle = 3 + 6 t = 2 - \frac{62}{19} \times 6 } \end{cases}$ (b) \mathcal{P} has the vector form $\langle 1, 4, 2 \rangle + s \langle 3, 0, -6 \rangle + t \langle 4, -1, 3 \rangle$; $\langle 1, 2, 2 \rangle = 1 + 2 \rangle = 1 + 3 \rangle = 1 + 3$
(a) Find a vector form of the line through A and B. $A = (1,1,1)$. $(1,3,0) + t(1,1,1)$. $Y = 6 y = Y \xi = -1$?
(b) Find a vector form of the line through A and C . $\stackrel{\sim}{\text{Ac}} = (\neg 1, 0, 5) \cup (1, 0, 0) + 5 \cup (1, 0, 5)$.
(c) Find a normal form of the (unique) plane that passes trough the points A, B and C .
Hyperplanes in \mathbb{R}^4
3. Let \mathcal{H} be the hyperplane with general form $2x_1 + 15x_2 + 11x_3 + 13x_4 = 19$. Find a normal form of \mathcal{H} .
4. Let \mathcal{H} be the hyperplane with general form $2x_1 + 15x_2 - x_3 + 13x_4 = 19$ and \mathcal{L} be the line through the points $A = (3, 0, 0, 1)$ and $B = (3, 1, 15, 1)$. Show \mathcal{L} is contained in \mathcal{H} (i.e., every point on \mathcal{L} is on \mathcal{H}).
2×3+13×1=19 A 25 on the plane /23=(3,0,0,1) ttl0,1,15,
$2\times3+13\times1=19 \text{ A is on the plane}$ $2\times3+13\times1=19 \text{ A is on the plane}$ $2\times3+13\times1+15\times(-1)+13=19 \text{ Parallelism}$ $13:5 \text{ on the plane}$
5. For the following pairs of vectors, determine whether they are parallel.
(a) $\langle 1, 2 \rangle$, $\langle 4, 5 \rangle$ in \mathbb{R}^2 \times (b) $\langle 1, 4 \rangle$, $\langle -4, -16 \rangle$ in \mathbb{R}^2
(c) $\langle 3,7,1\rangle$, $\langle 1,2,3\rangle$ in \mathbb{R}^3
6. Which of the following statements are true? (no proof required: a drawing is enough)
(a) Let \mathcal{P} be a plane in \mathbb{R}^3 with a normal vector \mathbf{n} . Let \mathcal{L} be a line parallel to \mathbf{n} . Does \mathcal{L} intersect \mathcal{P} ?

- (b) Two lines in \mathbb{R}^2 that do not intersect are parallel. \checkmark
- (c) Two lines in \mathbb{R}^3 that do not intersect are parallel. \times
- (d) Two planes in \mathbb{R}^3 that do not intersect are parallel. \checkmark
- (e) For two distinct parallel lines in \mathbb{R}^3 , there is a unique plane containing both of them.

Vector Product

- 7. Calculate the vector product of the following two vectors
 - (a) (0,0,0) and (1,1,1): (det[0], -det[0], det[0], det[0]

 - (b) $\langle 1,2,3\rangle$ and $\langle 3,4,5\rangle$ = $\langle de7[\frac{2}{3},\frac{4}{5}], -de7[\frac{1}{3},\frac{3}{5}], de7[\frac{1}{2},\frac{3}{4}] \rangle = (-2, 4, -2).$ (c) $\langle 1,0,2\rangle$ and $\langle -3,0,-6\rangle$ = $\langle 0,0,-6\rangle$ = $\langle 0,0,0,0\rangle$ = $\langle 0,0,0,0\rangle$.
- 8. Let \mathbf{u} and \mathbf{v} be arbitrary vectors in \mathbb{R}^3 , and show that $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \times \mathbf{v}$ are orthogonal.

Let \mathbf{u} and \mathbf{v} be arbitrary vectors in \mathbb{R}^n , and show that $\mathbf{u} + \mathbf{v}$ and $\mathbf{v} + \mathbf{v}$ and $\mathbf{v} + \mathbf{v}$ and $\mathbf{v} + \mathbf{v} + \mathbf{$

- 9. Find the digit d in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 6\}$ for which the ISBN-10 code 103457119d is valid.
- 10. Which of the following UPC codes are valid?
 - (a) 725272730706
 - (b) 321830130981
 - (c) 012345678912

(1,0,5,4,5,7,1,1,5,d),

code: abcdefghijk.
oatibizetsdt uetsft6ft7htfit9jtiok=0'