2025 SSAFY AI 챌린지

모델 성능 향상을 위한 분석 및 개선 과정

A123_쭈미정석

박준우(쭈누) 서미영 한정희 이주석

CONTENTS

과제 개요 파악 및 모델 선정

데이터 중심 접근

모델 최적화 및 튜닝

결과 및 향후 과제

과제 개요 파악 및 모델 선정

01 과제 개요 파악 및 모델 선정

과제의 목적을 정확히 이해하고, 그에 맞는 특성을 가진 모델 선택하기

VQA (Visual Question Answering)

VQA

이미지 속 장면을 읽고 이해하여 주어진 질문에 대해 A/B/C/D 중 하나의 정답을 도출하는 멀티모달 Visual Question Answering

Qwen3-VL 계열 모델

시각적 인식 능력과 언어적 추론 능력이 모두 뛰어난 Qwen3-VL 계열 모델

Qwen3-VL-32B-Instruct

초기 모델 비교(4B vs 32B) 결과 추론 성능이 우수한 **32B를 기반모델로 선정**

*VL (Vision-Language): 이미지와 텍스트를 함께 처리 *Instruct: '질문에 답하도록' 추가로 튜닝 (질문-답변 형태)

데이터셋확인

02 데이터셋 확인

데이터 학습에 기반한 기술인 AI

단순히 모델을 개선하는 것보다, 데이터를 얼마나 체계적이고 신뢰성 있게 관리하느냐가 더 중요

→ 모델 성능의 핵심인 **데이터 품질** 확보를 위해, **학습 전 데이터셋 분석** 선행

02-1 데이터 불균형 여부 확인 결과 "균등 분포"

데이터 불균형(오버샘플링/언더샘플링 필요) 여부를 판단하기 위해, 라벨 분포의 균형 상태 확인

Answer Distribution (Train)

Answer Proportions (Train)

02-2 이미지 해상도(가로, 세로 사이즈) 확인

동적 해상도 (Dynamic Resolution)

모델의 AutoProcessor가 스스로 이미지의 크기를 판단해 **원본 비율을 유지**한 채로 자동으로 리사이즈 ex) 600 X 800 → 384 X 512

→ 모델이 사물의 형태나 위치 관계를 더 자연스럽게 이해

초기 코드 → 원본 이미지의 비율 무시, 시각적 정보 왜곡 발생 가능 IMAGE_SIZE = 384
processor = AutoProcessor.from_pretrained (
 MODEL_ID,
 trust_remote_code = True,
)

수정 후 코드

데이터셋증강

03 데이터셋 증강

기존 이미지를 다양한 방식으로 변형해서, 모델이 더 폭넓은 상황을 학습할 수 있도록 도와주는 과정

1

VQA 과제의 특성

단순한 이미지 분류나 객체 검출과 달리, 이미지 안의 **위치 관계나 색상, 형태 단서**가 정답에 직접적으로 영향을 주는 과제 2

일반적인 증강의 위험성

VQA 특성을 고려한 설계 과도한 회전, 색상 왜곡, 심한 잘라내기는 정답의 핵심 단서를 훼손 3

우리의 전략: 정보 보존

자연스러운 변형 위주로만 증강 적용, 각 변환마다 **서로 다른 확률 부여** 후 **랜덤 조합**

적용 순서	변환 종류	핵심 파라미터	이미지 변화 (패턴)	적용 이유 (VQA 관점)
1	Random Resized Crop	size=(384,384), scale=(0.9,1.0), ratio=(0.85,1.15), p=1.0	살짝 크롭 후 384×384로 리사이즈	구도·프레이밍 변화에도 강건하도록, 핵심 객체 보존을 위해 scale을 최소 0.9로 설정
2	ColorJitter (밝기/대비만)	brightness=0.08,contrast=0.08, saturation=0.0, hue=0.0, p=0.4	밝기/대비 ±8%만 변화 (색상/채도는 고정)	조명·노출 변화에는 강하게, 색상 단서는 유지
3	CLAHE	clip_limit=2.5, tile_grid_size=(8,8), p=0.3	어두운 영역 국소 대비 향상 → 작은 글자/패턴이 또렷	텍스트·패턴 등 세부 인식력 향상, 색 왜곡 없이 디테일 보존

→ 모델이 특정 구도나 조명 조건에 과적합되지 않고, **더 다양한 상황에 대응할 수 있도록** 학습 데이터의 다양성을 높임

O3 데이터셋 증강 - VQA 특성을 고려한 설계 결과

DataSet Size Before and After augmentation

프롬프트 설정

04 프롬프트 설정: 기존 프롬프트 구성

04 프롬프트 추가 설정: 모델 지시사항

SYSTEM_INSTRUCT = (

- # 1. 역할 부여 (가이드북 "역할 부여" 패턴 적용)
- # 명확한 전문가 역할 정의로 답변의 전문성과 일관성 확보
- "You are an expert visual analysis AI specialized in multiple-choice questions.\n"
- "Your capabilities include:\n"
- "1. Precise image analysis\n"
- "2. Contextual understanding\n"
- "3. Logical reasoning\n\n"
- # 2. 명확한 출력 형식 (가이드북 "원하는 출력 형식 지시" 원칙 적용)
- # 단일 문자만 출력하도록 강제하여 후처리 필요성 최소화
- "OUTPUT REQUIREMENTS:\n"
- "- Return exactly one lowercase letter (a, b, c, or d)\n"
- "- No other text, punctuation, or explanations\n"
- "- No spaces or line breaks\n\n"
- # 3. 품질 기준 (가이드북 "명확하고 구체적으로 묻기" 원칙 적용)
- # 분석 품질 기준을 명시하여 더 신중한 답변 유도
- "QUALITY STANDARDS:\n"
- "1. Examine all visual details thoroughly\n"
- "2. Consider the specific context of each question\n"
- "3. Evaluate all options systematically\n"
- "4. Choose the single most accurate answer based on visual evidence")

04 프롬프트 추가 설정: 프롬프트 템플릿

def build_mc_prompt(question, a, b, c, d): # 1. 단계적 접근 (가이드북 "단계적 접근" 패턴 적용) # - 분석 과정을 명확한 단계로 구분하여 더 체계적인 답변 유도 return ("TASK: Visual Question Analysis\n\n" # 2. 맥락 제공 (가이드북 "필요한 맥락 제공" 원칙 적용) # - 질문과 선택지를 구조화하여 제시 f"QUESTION TO ANALYZE:\n{question}\n\n" f"OPTIONS TO EVALUATE:\n" f"a) {a}\n" f"b) {b}\n" f"c) {c}\n" f"d) {d}\n\n" # 3. 분석 단계 명시 (가이드북 "Chain-of-Thought" 패턴 적용) # - 모델의 분석 과정을 단계별로 안내 "ANALYSIS STEPS:\n" "1. Examine all visual elements in the image\n" "2. Understand the specific requirements of the question\n" "3. Consider each option against the visual evidence\n" "4. Select the most accurate answer\n\n" # 4. 최종 출력 형식 재강조 # - 마지막에 한 번 더 출력 형식을 강조하여 정확한 응답 유도 "RESPONSE FORMAT:\n" "Provide exactly one lowercase letter (a, b, c, or d) representing

the most accurate answer.")

하이퍼 파라미터 튜닝

05 하이퍼 파라미터 튜닝

하이퍼 파라미터

학습 중에 모델이 스스로 바꾸는 값이 아니라, 학습 이전에 사용자가 직접 설정해주는 값

→ 하이퍼 파라미터는 머신러닝 모델의 성능에 중대한 영향을 미치며, 이를 조절하는 과정을 **하이퍼 파라미터 튜닝**이라고 합니다.

최적의 파라미터 조합 확인하기

구분	하이퍼 파라미터	역할 / 의미		
	r	LoRA에서 사용하는 저차원 행렬의 랭크(rank). 작을수록 가벼워지고, 클수록 표현력↑		
LoRA 관련 하이퍼 파라미터	lora_alpha	LoRA의 스케일링 계수(α) — 저차원 업데이트의 세기를 조절		
	lora_dropout	lora_dropout LoRA 모듈 내부에만 적용되는 드롭아웃 비율		
	GRAD_ACCUM	Gradient Accumulation 스텝 수. 여러 미니배치의 기울기를 누적 후 한 번에 업데이트		
학습 관련 하이퍼 파라미터	LR (learning rate)	파라미터 업데이트 속도를 결정하는 학습률		
	Warm-up step	학습 초반 일정 step 동안 LR을 0→최대값까지 선형 증가		

05 하이퍼 파라미터 튜닝

최적의 파라미터 조합 확인하기

파라미터	조합 1	조합 2	조합 3
r	8	12	16
lora_alpha	16	24	32
lora_dropout	0.05	0.07	0.1
GRAD_ACCUM	4	6	8
LR (learning rate)	5e-5	6e-5	8e-5
Warm-up step	0.03	0.05	0.1
제출 결과	0.95781	0.95987	0.95524

미세한 차이지만 가장 높은 성능을 보인 파라미터 <mark>조합</mark> 2로 결정

05 하이퍼 파라미터 튜닝: 에폭(Epoch) 설정

에폭(Epoch)이란? 모델이 전체 데이터를 몇 번 반복 학습할지 사람이 직접 지정하는 값

일반화 성능 유지를 위해 Epoch 1로 설정

Epoch 1

안정적인 학습 (두 Loss가 비슷하게 유지)

Epoch 2

Train Loss ▼ Validation Loss ▲ 즉, 모델이 학습 데이터에 과도하게 맞춰짐

Epoch 3

Validation Loss ▲ 일반화 성능 저하, 과적합 발생

향후과제및결과

06-1 추후 시도해보고 싶은 부분

검증 데이터셋에 대한 모델의 예측 분포를 나타내는 **혼동행렬**

06-2 추후 시도해보고 싶은 부분

분류 보고서(Classification Report)

Classification Report:

	precision	recall	f1-score	support
a b c d	0.89 0.96 0.96 0.98	0.95 0.96 0.95 0.93	0.92 0.96 0.95 0.95	93 102 95 99
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	389 389 389

항목	관찰	해석
Accuracy = 0.95	95% 정확히 분류	전반적 성능 우수
Precision/Recall/F1 ≈ 0.95	균일한 성능	편향 없이 안정적 학습
Class a♀ Precision = 0.89	일부 오분류 발생	시각적 유사·데이터 부족 가능
Macro ≈ Weighted avg	분포 균등	데이터 불균형 문제 없음

=== Error Pattern Analysis ===

Q: 이 한식 세트 메뉴에 포함되지 않은 음식은 무엇인가요? True: c, Predicted: a

Q: 이 음식 세트에 포함되지 않은 것은 무엇인가요?

True: c, Predicted: a

0: 이 골목길에서 볼 수 없는 것은 무엇인가요?

True: a, Predicted: c

0: 이 한식 상차림에서 보이는 주된 반찬은 무엇인가요?

True: d, Predicted: b

0: 이 이미지는 어디에서 촬영된 것일 가능성이 가장 높을까요?

True: a, Predicted: d

▶ 잘못 예측한 질문과 응답에 대한 출력 샘플

전반적으로 높은 성능을 보였으나, 라벨 a에서 약간의 오분류 발생

06-3 2025 SSAFY 14기 AI 챌린지 [A123_쭈미정석] 팀 결과

4	A171_4202122		0.96965	45	12m
5	A175_ACT		0.96862	24	2h
6	A172_할래말래	(5) (5) (5)	0.96759	11	14m
7	A205_지원이도집갈래	9999	0.96759	32	1h
8	A176_미어캣트리오		0.96656	25	7m
9	A102_WeAreThere	9999	0.96450	3	3d
10	A162_서현수대뇌피질연구소	9999	0.96347	18	3m
11	C026_OBYG	9999	0.96296	25	1h
12	A091_서울9반드림팀	9999	0.96296	23	2h
13	A123_쭈미정석	9999	0.96244	14	14h
	Your Best Entry! Your most recent submission scored 0.96244, which is an improvement over your previous score of 0.95987. Great job!				et this

마감 시간 기준 243팀 중 13위 달성

A123_쭈미정석

박준우(<mark>쭈</mark>누) 서<mark>미</mark>영 한<mark>정</mark>희 이주<mark>석</mark>