Suppose that we have n records, a_i , i=1,...,n, and these n records are stored in the nodes in a binary search tree. We call this kind of node that data node and each node (record) is associated with an access probability p_i . If a search in the binary search tree reaches an external node between a_i and a_{i+1} , we say that the search reaches a failure node. There are n+1 failure nodes. Each failure node is associated with a probability q_i , i=0,...,n. A node (data node or failure node) contributes $\cos p \cdot h$ to the total search cost where p is the associated probability and h is the depth of the node. The binary search tree stores these n records is an optimal binary search tree if the total $\cos t \cdot \sum_i p_i h_i + \sum_j q_j h_j$) is the least.

Which two of the following statements are true.

- (a) Suppose there are 4 records with key values (10, 15, 20, 25), p_i are (3/16, 3/16, 1/16, 1/16), and q_i are (2/16, 3/16, 1/16, 1/16), the optimal binary search tree is as shown in Figure 3-2.
- (b) Suppose there are 4 records with key values (10, 15, 20, 25), p_i are (3/16, 3/16, 1/16, 1/16), and q_i are (2/16, 3/16, 1/16, 1/16), the optimal binary search tree is as shown in Figure 3-3.
- (c) The optimal binary search is constructed by using the divide and conquer technique that can be done in O(nlogn) time.
- (d) If there are n records and every node has the identical access probability, the the cost for the optimal binary is Θ(nlogn).

