Package 'r2redux'

May 25, 2022

Version 1.0.4	
Author Hong Lee, Moksedul Momin	
Maintainer Moksedul Momin < cvasu.momin@gmail.com>	
Description R2 statistic for significance test.	
License GPL (>=3)	
Encoding UTF-8	
Roxygen list(markdown = TRUE)	
RoxygenNote 7.1.2	
NeedsCompilation no	
R topics documented: cc_trf olkin_beta1_2 olkin_beta_inf r2_diff r2_enrich r2_enrich_beta r2_var	3
Index	10
cc trf cc trf function	_

Description

Title R2 Statistic

This function transforms the predictive ability (R2) and its standard error (se) between the observed scale and liability scale

Usage

```
cc_trf(R2, se, K, P)
```

2 olkin_beta1_2

Arguments

R2	R2 or Coefficient of determination on the observed or liability scale
se	Standard error of R2
K	Population prevalence
P	The ratio of cases in the study samples

References

Lee, S. H., Goddard, M. E., Wray, N. R., and Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genetic epidemiology, (2012). 36(3): p. 214-224.

Examples

```
To get the transformed R2
output=cc_trf(0.06, 0.002, 0.05, 0.05)
output$R21 (transformed R2 to the liability scale)
 0.2679337
 output$sel (transformed se to the liability scale)
 0.008931123
 output$R2O (transformed R2 to the observed scale)
 0.01343616
 output$seO (transformed se to the observed scale)
 0.000447872
```

```
olkin_beta1_2
                       olkin_beta1_2 function
```

Description

This function derives Information matrix for beta1² and beta2² where beta1 and 2 are regression coefficients from a multiple regression model, i.e. $y = x1 \cdot beta1 + x2 \cdot beta2 + e$, where y, x1 and x2 are column-standardised, (i.e. in the context of correlation coefficients, see Olkin and Finn 1995).

Usage

```
olkin_beta1_2(omat, nv)
```

Arguments

omat	3 by 3 matrix having the correlation coefficients between y, $x1$ and $x2$, i.e. omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind $(y,x1,x2)$
nv	sample size

olkin_beta_inf 3

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155. Momin, M.M., Lee, S. Wray, N. and S. Lee, S.H. The variance and covariance of the coefficients of determination for genetic profile analysis (will be subbitted soon)

Examples

```
To get information (variance-covariance) matrix of beta1^2 and beta2^2 where beta1 and 2 are regression coefficients from a multiple regression model.
```

```
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
omat=cor(dat)[1:3,1:3]
omat
1.0000000 0.1958636 0.1970060
0.1958636 1.0000000 0.9981003
0.1970060 0.9981003 1.0000000
nv=length(dat$V1)
output=olkin_beta1_2(omat,nv)
output
output$info (2x2 information (variance-covariance) matrix)
0.04146276 0.08158261
0.08158261 0.16111124
output$var1 (variance of beta1^2)
0.04146276
output$var2 (variance of beta2^2)
0.1611112
output$var1_2 (variance of difference between beta1^2 and beta2^2)
0.03940878
```

```
olkin\_beta\_inf \qquad \qquad \textit{olkin\_beta\_inf function}
```

Description

This function derives Information matrix for beta1 and beta2 where beta1 and 2 are regression coefficients from a multiple regression model, i.e. $y = x1 \cdot beta1 + x2 \cdot beta2 + e$, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995).

Usage

```
olkin_beta_inf(omat, nv)
```

4 r2_diff

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv sample size

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

Examples

```
To get information (variance-covariance) matrix of beta1^2 and beta2^2 where beta1 and 2 are regression coefficients from a multiple regression model.
```

```
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
omat=cor(dat)[1:3,1:3]
omat
1.0000000 0.1958636 0.1970060
0.1958636 1.0000000 0.9981003
0.1970060 0.9981003 1.0000000
nv=length(dat$V1)
output=olkin_beta_inf(omat,nv)
output
output$info (2x2 information (variance-covariance) matrix)
0.2531406 -0.2526212
-0.2526212 0.2530269
output$var1 (variance of beta1^2)
0.2531406
output$var2 (variance of beta2^2)
0.2530269
output$var1_2 (variance of difference between beta1^2 and beta2^2)
1.01141
```

r2 diff

r2_diff function

Description

This function estimates $var(R2(y\sim x[,v1]) - R2(y\sim x[,v2]))$ where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_diff(dat, v1, v2, nv)
```

r2_diff 5

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	sample size

Examples

```
To get the test statistics for the difference between R2(y\sim x[,v1]) and
R2(y \sim x[,v2]). (here we define R2_1=R2(y \sim x[,v1])) and R2_2=R2(y \sim x[,v2])))
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
nv=length(dat$V1)
v1=c(1)
v2=c(2)
output=r2_diff(dat,v1,v2,nv)
output
r2redux output
output$var1 (variance of R2_1)
0.0001437583
output$var2 (variance of R2_2)
0.0001452828
output$var_diff (variance of difference between R2_1 and R2_2)
5.678517e-07
outputr2_based_p (p-value for significant difference between R2_1 and R2_2)
0.5514562
output$mean_diff (differences between R2_1 and R2_2)
-0.0004488044
output$upper_diff (upper limit of 95% CI for the difference)
0.001028172
output$lower_diff (lower limit of 95% CI for the difference)
-0.001925781
To get the test statistics for the difference between R2(y \sim x[,v1]+x[,v2]) and
R2(y\sim x[,v2]). (here R2_1=R2(y\sim x[,v1]+x[,v2]) and R2_2=R2(y\sim x[,v1]))
dat=read.table("test_ukbb_thresholds_scaled") (see example files)
nv=length(dat$V1)
v1=c(1,2)
v2=c(1)
output=r2_diff(dat,v1,v2,nv)
output
r2redux output
```

6 r2_enrich

```
output$var1 (variance of R2_1)
0.0001475195

output$var2 (variance of R2_2)
0.0001437583

output$var_diff (variance of difference between R2_1 and R2_2)
2.321425e-06

output$r2_based_p (p-value for significant difference between R2_1 and R2_2)
0.4369177

output$mean_diff (differences between R2_1 and R2_2)
0.0006042383

output$upper_diff (upper limit of 95% CI for the difference)
0.004887989

output$lower_diff (lower limit of 95% CI for the difference)
-0.0005574975
```

r2_enrich

r2_enrich

Description

This function estimates var(t1/(t1+t2)) where $t1 = R2(y\sim x[,v1]+x[,v2]) - R2(y\sim x[,v1])$ and $t2 = R2(y\sim x[,v1]+x[,v2]) - R2(y\sim x[,v2])$ where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 should be a single interger between 1 - M, see Arguments below)

Usage

```
r2_enrich(dat, v1, v2, nv, exp1)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
nv	sample size
exp1	The expectation of the ratio (e.g. # SNPs for the genomic region of interest / total # SNPs in genomic partitioning)
v1/v2	These can be set as v1=1 and v2=2, v1=2 and v2=1, v1=3 and v2=2, or any combination as long as the value is between 1 - M

r2_enrich_beta 7

Description

This function estimates var(t1/(t1+t2)) where $t1 = beta1^2$ and $t2 = beta2^2$, and beta1 and 2 are regression coefficients from a multiple regression model, i.e. $y = x1a \in \phi beta1 + x2a \in \phi beta2 + e$, where y, x1 and x2 are column-standardised (see Olkin and Finn 1995). y is N by 1 matrix having the dependent variable, and x1 is N by 1 matrix having the ith explanatory variables. x2 is N by 1 matrix having the jth explanatory variables. v1 and v2 indicates the ith and jth column in the data (v1 or v2 should be a single interger between 1 - M, see Arguments below). Note that r2_enrich (above) and r2_enrich_beta is equivalent (identical p-value derived).

Usage

```
r2_enrich_beta(dat, v1, v2, nv, exp1)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
nv	sample size
exp1	The expectation of the ratio (e.g. ratio of # SNPs in genomic partitioning)
v1/v2	These can be set as $v1=1$ and $v2=2$, $v1=2$ and $v2=1$, $v1=3$ and $v2=2$, or any combination as long as the value is between 1 - M

References

Olkin, I. and J.D. Finn, Correlations redux. Psychological Bulletin, 1995. 118(1): p. 155.

Examples

```
To get the test statistic for the ratio which is significantly
different from the expectation.
var(t1/(t1+t2)), where t1 = beta1^2 and t2 = beta2^2.
betal and beta2 are regression coefficients from a multiple regression model,
i.e. y = x1a \in \text{$\Diamond$}
dat=read.table("test_ukbb_enrichment_choles") (see example file)
nv=length(dat$V1)
v1=c(1)
v2=c(2)
expected_ratio=0.04
output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)
output
r2redux output
output$var1 (variance of t1)
7.072931e-05
output$var2 (variance of t2)
```

8 r2_var

```
3.161929e-05
output$var1_2 (difference between t1 and t2)
0.000162113
output$beta1_sq (t1)
0.01118301
output$beta2_sq (t2)
0.004980285
output$cov (covariance between t1 and t2)
-2.988221e-05
output\$enrich_p2 (p-value for testing the difference between t1/exp and t2/(1-exp))
0.1997805
output$mean_diff (difference between t1/exp and t2/(1-exp))
0.2743874
output$var_diff (variance of difference, t1/exp - t2/(1-exp))
0.04579649
output$upper_diff (upper limit of 95% CI for the mean difference)
0.6938296
output$lower_diff (lower limit of 95% CI for the mean difference)
-0.1450549
```

r2_var

r2_var function

Description

This function estimates $var(R2(y\sim x[,v1]))$ where R2 is the R squared value of the model, where R2 is the R squared value of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
r2_var(dat, v1, nv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of $cbind(y,x)$
v1	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
nv	sample size

r2_var 9

Examples

```
To get the test statistics for R2(y\sim x[,v1])
dat=read.table("test_ukbb_thresholds_scaled") (see example file)
nv=length(dat$V1)
v1=c(1)
output=r2_var(dat,v1,nv)
r2redux output
output$var (variance of R2)
0.0001437583
output$r2_based_p (P-value under the null hypothesis, i.e. R2=0)
1.213645e-10
output$mean_r2 (R2)
0.03836254
output$upper_r2 (upper limit of 95% CI for R2)
0.06435214
output$lower_r2 (lower limit of 95% CI for R2)
0.01763347
To get the test statistic for R2(y \sim x[,v1]+x[,v2]+x[,v3])
dat=read.table("test_ukbb_thresholds_scaled") (see example file)
nv=length(dat$V1)
v1=c(1,2,3)
outout=r2_var(dat,v1,nv)
output
r2redux output
output$var (variance of R2)
0.0001499374
output$r2_based_p (R2 based P-value)
7.461267e-11
output$mean_r2 (R2)
0.03917668
output$upper_r2 (upper limit of 95% CI for R2)
0.06538839
output$lower_r2 (lower limit of 95% CI for R2)
0.01821657
```

Index

*Topic R2	cc_trf,1
cc_trf,1	*Topic of
r2_diff,4	cc_trf,1
r2_enrich,6	olkin_beta1_2,2
r2_var,8	olkin_beta_inf,3
*Topic Transformation	$r2_enrich, 6$
cc_trf,1	r2_enrich_beta,7
*Topic and	*Topic ratio
cc_trf,1	r2_enrich, 6
*Topic a	r2_enrich_beta,7
r2_enrich_beta,7	*Topic regression
*Topic beta^2	r2_enrich_beta,7
r2_enrich_beta,7	*Topic scale
*Topic between	cc_trf,1
cc_trf,1	*Topic the
r2_enrich,6	olkin_beta1_2,2
r2_enrich_beta,7	olkin_beta_inf,3
*Topic context	*Topic variance
olkin_beta1_2,2	r2_diff, 4
olkin_beta_inf,3	r2_enrich,6 r2_enrich_beta,7
*Topic correlation	r2_var, 8
olkin_beta1_2,2	12_var, 0
olkin_beta_inf,3	cc_trf,1
*Topic from	- ,
r2_enrich_beta,7	olkin_beta1_2,2
*Topic information	olkin_beta_inf,3
olkin_beta1_2,2	0.11.55.4
olkin_beta_inf,3	r2_diff,4
r2_diff,4	r2_enrich,6
r2_var,8	r2_enrich_beta,7 r2_var,8
*Topic in	12_va1,8
olkin_beta1_2,2	
olkin_beta_inf,3	
*Topic liability	
cc_trf, 1	
*Topic matrix	
<pre>olkin_beta1_2,2 olkin_beta_inf,3</pre>	
r2_diff,4	
r2_var, 8	
*Topic multiple	
r2_enrich_beta,7	
*Topic observed	