Supervised -mini project (classification)

```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,classification_report,confusion_matri
```

Import the modules and libraries need for the project

```
In [7]: # Load the dataset

data = datasets.load_breast_cancer()
data
```

```
Out[7]: {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
               1.189e-01],
               [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
               8.902e-02],
               [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
               8.758e-02],
               [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
               7.820e-02],
               [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
               1.240e-01],
               [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
               7.039e-02]]),
        1, 1,
              0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
              1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
              1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
              1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
              0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
              1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
              0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
              1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
              0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
              0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
              1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
              1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
              1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
              1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
              1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),
        'frame': None,
        'target_names': array(['malignant', 'benign'], dtype='<U9'),</pre>
        'DESCR': '.. _breast_cancer_dataset:\n\nBreast cancer wisconsin (diagnostic) d
       ataset\n-----\n\n**Data Set Characterist
       ics:**\n\n:Number of Instances: 569\n\n:Number of Attributes: 30 numeric, predi
       ctive attributes and the class\n\n:Attribute Information:\n - radius (mean o
       f distances from center to points on the perimeter)\n - texture (standard de
       viation of gray-scale values)\n - perimeter\n - area\n - smoothness (1
       ocal variation in radius lengths)\n - compactness (perimeter^2 / area - 1.0)
       \n - concavity (severity of concave portions of the contour)\n - concave
       points (number of concave portions of the contour)\n - symmetry\n - fract
       al dimension ("coastline approximation" - 1)\n\n The mean, standard error, a
       nd "worst" or largest (mean of the three\n worst/largest values) of these fe
       atures were computed for each image,\n resulting in 30 features. For instan
       ce, field 0 is Mean Radius, field\n 10 is Radius SE, field 20 is Worst Radiu
       s.\n\n - class:\n - WDBC-Malignant\n - WDBC-Benign\n
       Min Max\n=======\nradius (mean):
       6.981 28.11\ntexture (mean): 9.71 39.28\nperimeter (me
                             43.79 188.5\narea (mean):
       an):
                                                                            14
```

```
3.5 2501.0\nsmoothness (mean):
                                                 0.053 0.163\ncompactness (m
ean):
                       0.019 0.345\nconcavity (mean):
0.427\nconcave points (mean):
                                                  0.201\nsymmetry (mean):
                                           0.0
0.106 0.304\nfractal dimension (mean):
                                                  0.05
                                                         0.097\nradius (stand
ard error):
                        0.112 2.873\ntexture (standard error):
    4.885\nperimeter (standard error):
                                                0.757 21.98\narea (standard
error):
                      6.802 542.2\nsmoothness (standard error):
                                        0.002 0.135\nconcavity (standa
2 0.031\ncompactness (standard error):
rd error):
                    0.0
                           0.396\nconcave points (standard error):
0.053\nsymmetry (standard error):
                                           0.008 0.079\nfractal dimension (s
tandard error):
                0.001 0.03\nradius (worst):
                                                                   7.93
04\ntexture (worst):
                                        12.02 49.54\nperimeter (worst):
                                                  185.2 4254.0\nsmoothness
50.41 251.2\narea (worst):
                          0.071 0.223\ncompactness (worst):
(worst):
0.027 1.058\nconcavity (worst):
                                                  0.0
                                                         1.252\nconcave point
s (worst):
                        0.0
                              0.291\nsymmetry (worst):
156 0.664\nfractal dimension (worst):
                                                0.055 0.208\n=======
ss Distribution: 212 - Malignant, 357 - Benign\n\n:Creator: Dr. William H. Wol
berg, W. Nick Street, Olvi L. Mangasarian\n\n:Donor: Nick Street\n\n:Date: Nove
mber, 1995\n\nThis is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dat
asets.\nhttps://goo.gl/U2Uwz2\n\nFeatures are computed from a digitized image o
f a fine needle\naspirate (FNA) of a breast mass. They describe\ncharacteristi
cs of the cell nuclei present in the image.\n\nSeparating plane described above
was obtained using\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision
Tree\nConstruction Via Linear Programming." Proceedings of the 4th\nMidwest Art
ificial Intelligence and Cognitive Science Society, \npp. 97-101, 1992], a class
ification method which uses linear\nprogramming to construct a decision tree.
Relevant features\nwere selected using an exhaustive search in the space of 1-4
\nfeatures and 1-3 separating planes.\n\nThe actual linear program used to obta
in the separating plane\nin the 3-dimensional space is that described in:\n[K.
P. Bennett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of
Two Linearly Inseparable Sets",\nOptimization Methods and Software 1, 1992, 23-
34].\n\nThis database is also available through the UW CS ftp server:\n\nftp ft
p.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n|details-start|
\n**References**\n|details-split|\n\n- W.N. Street, W.H. Wolberg and O.L. Manga
sarian. Nuclear feature extraction\n for breast tumor diagnosis. IS&T/SPIE 199
3 International Symposium on\n Electronic Imaging: Science and Technology, vol
ume 1905, pages 861-870,\n San Jose, CA, 1993.\n- O.L. Mangasarian, W.N. Stree
t and W.H. Wolberg. Breast cancer diagnosis and\n prognosis via linear program
ming. Operations Research, 43(4), pages 570-577,\n July-August 1995.\n- W.H. W
olberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n to di
agnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)\n 16
3-171.\n\details-end\n'
 'feature_names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean
area',
        'mean smoothness', 'mean compactness', 'mean concavity',
        'mean concave points', 'mean symmetry', 'mean fractal dimension',
        'radius error', 'texture error', 'perimeter error', 'area error',
        'smoothness error', 'compactness error', 'concavity error',
        'concave points error', 'symmetry error',
        'fractal dimension error', 'worst radius', 'worst texture',
        'worst perimeter', 'worst area', 'worst smoothness',
        'worst compactness', 'worst concavity', 'worst concave points',
        'worst symmetry', 'worst fractal dimension'], dtype='<U23'),
 'filename': 'breast_cancer.csv',
 'data_module': 'sklearn.datasets.data'}
```

```
df = pd.DataFrame(x,columns = data.feature_names)
df['target'] = y
```

Split the data into features and target by giving them a name of x and y. x have features and y have target values

In [10]: df.head() # took the first 5 rows of the data

Out[10]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	S,
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	

5 rows × 31 columns

4

In [11]: df.info() # in info we can understand more about the data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension	569 non-null	float64
30	target	569 non-null	int32
d+vn	os: $flor+64/20$ \ in+22/1\		

dtypes: float64(30), int32(1)
memory usage: 135.7 KB

In [12]: # by using isnull function we can find out the null values from the data
df.isnull().sum() # there is no null values in the dataset

```
Out[12]: mean radius
        mean texture
        mean perimeter
                              0
                                0
        mean area
        mean smoothness
                               0
        mean compactness
        mean concavity
        mean concave points 0
        mean symmetry
        mean fractal dimension 0
        radius error
                               0
        texture error
        perimeter error
                               0
        area error
        smoothness error
                               0
        compactness error
        concavity error
        concave points error 0
        symmetry error
        fractal dimension error 0
                             0
        worst radius
        worst texture
                            0
        worst perimeter
        worst area
        worst smoothness
                               0
        worst compactness
        worst concavity
        worst concave points
                               0
        worst symmetry
        worst fractal dimension 0
        target
        dtype: int64
In [13]: # by using the function duplicated we can find out the duplicates values
        df.duplicated().sum() # from the dataset we understood that there is no duplicat
Out[13]: 0
```

In [14]: df.describe() # gives the statistics of the data

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	со
coun	t 569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569
mea	n 14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0
ste	d 3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0
mi	n 6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0
25%	6 11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0
50 %	6 13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0
75 %	6 15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0
ma	x 28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0

8 rows × 31 columns

100

In [16]: df.skew() # there is positive skewness in the data

```
      mean radius
      0.942380

      mean texture
      0.650450

      mean perimeter
      0.990650

      mean area
      1.645732

      mean smoothness
      0.456324

      mean compactness
      1.190123

      mean concavity
      1.401180

      mean concave points
      1.171180

      mean symmetry
      0.725609

      mean fractal dimension
      1.304489

      radius error
      3.088612

      texture error
      1.646444

      perimeter error
      3.443615

      area error
      5.447186

      smoothness error
      2.314450

      compactness error
      1.902221

      concavity error
      5.110463

      concave points error
      1.444678

      symmetry error
      2.195133

      fractal dimension error
      3.923969

Out[16]: mean radius
                                               symmetry error 2.195133
fractal dimension error 3.923969
worst radius 1.103115
worst texture 0.498321
worst perimeter 1.128164
worst area 1.859373
worst smoothness 0.415426
worst compactness 1.473555
worst concavity 1.150237
worst concave points 0.492616
worst symmetry 1.433928
worst fractal dimension 1.662579
                                                  worst fractal dimension 1.662579
                                                                                                                                                                            -0.528461
                                                  target
                                                  dtype: float64
In [17]: # Standard scaling
                                                from sklearn.preprocessing import StandardScaler
                                                x = df.drop('target',axis = 1)
                                                y = df['target']
                                                Х
```

Out[17]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430
•••	•••	•••		•••				
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000

569 rows × 30 columns

```
In [18]: scaler = StandardScaler()
                                     x_scaled = scaler.fit_transform(x)
In [19]: x_train,x_test,y_train,y_test = train_test_split(x_scaled,y)
In [20]: x_train
\texttt{Out[20]:} \ \ \mathsf{array([[\ 1.22771051,\ 0.60977338,\ 1.16283917,\ \ldots,\ 0.35468496,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338,\ 0.60977338
                                                                        0.33689357, -0.43478238],
                                                                 [ 1.43788102, -0.77948569, 1.41409939, ..., 0.96070354, ]
                                                                     -0.74054832, -1.18788333],
                                                                 [-0.87683468, -0.57237672, -0.8670139, ..., -0.61357437,
                                                                        0.15731992, -0.28460551],
                                                                 ...,
                                                                 [-0.13271749, -0.03715128, -0.10334759, ..., 0.39731943,
                                                                    -0.25359635, 0.24627802],
                                                                 [\ 0.23366083,\ -0.1209257\ ,\ 0.24182629,\ \ldots,\ -0.46526731,
                                                                     -0.07887605, 0.45630397],
                                                                 [ 3.97128765, -0.19073771, 3.97612984, ..., 0.68357946,
                                                                     -2.0266839 , -1.59020217]])
In [21]: y_train
```

```
Out[21]: 134
         161
                0
         411
                1
         291
                1
         55
         117
         331
                1
         423
                1
         147
                1
         212
         Name: target, Length: 426, dtype: int32
In [22]: column = df.select_dtypes(include = 'number')
         column
Out[22]:
```

:		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430
	•••	•••	•••		•••				
	564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890
	565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791
	566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302
	567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200
	568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000

569 rows × 31 columns

```
In [23]: # removing outliers by using IQR method

def remove_outliers(df):
    df_filtered = df.copy()
    for col in df.columns:
        # Calculate Q1, Q3 and IQR
        q1 = df_filtered[col].quantile(0.25)
        q3 = df_filtered[col].quantile(0.75)
        IQR = q3 - q1

        # Calculate the lower and upper bounds for outliers
        lower_whisker = q1 - 1.5 * IQR
        upper_whisker = q3 + 1.5 * IQR

# Filter the rows where the values are within the bounds
        df_filtered = df_filtered[(df_filtered[col] >= lower_whisker) & (df_filtered[col] >= lower_whisker) & (df_filtered[
```

return df_filtered

In [24]: dff= remove_outliers(df)
dff

Out[24]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
19	13.540	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.047810
20	13.080	15.71	85.63	520.0	0.10750	0.12700	0.04568	0.031100
21	9.504	12.44	60.34	273.9	0.10240	0.06492	0.02956	0.020760
37	13.030	18.42	82.61	523.8	0.08983	0.03766	0.02562	0.029230
46	8.196	16.84	51.71	201.9	0.08600	0.05943	0.01588	0.005917
••		•••						
551	11.130	22.44	71.49	378.4	0.09566	0.08194	0.04824	0.022570
552	12.770	29.43	81.35	507.9	0.08276	0.04234	0.01997	0.014990
554	12.880	28.92	82.50	514.3	0.08123	0.05824	0.06195	0.023430
555	10.290	27.61	65.67	321.4	0.09030	0.07658	0.05999	0.027380
560	14.050	27.15	91.38	600.4	0.09929	0.11260	0.04462	0.043040

255 rows × 31 columns

In [25]: print("orginal dataframe shape:",df.shape)
print("filtered datafram:",dff.shape)

orginal dataframe shape: (569, 31) filtered datafram: (255, 31)

In [26]: sns.boxplot(data=dff["area error"])
 plt.show()

In [27]: # after removing the outliers there is change in skewness
dff.skew()

Out[27]:	mean radius	-0.111407
	mean texture	0.887321
	mean perimeter	-0.089486
	mean area	0.235998
	mean smoothness	0.206140
	mean compactness	0.619329
	mean concavity	0.771774
	mean concave points	0.783523
	mean symmetry	0.176187
	mean fractal dimension	0.492844
	radius error	0.963516
	texture error	0.692455
	perimeter error	1.086510
	area error	0.942534
	smoothness error	0.648031
	compactness error	0.933022
	concavity error	0.816751
	concave points error	0.377017
	symmetry error	0.531354
	fractal dimension error	0.811067
	worst radius	-0.120318
	worst texture	0.586718
	worst perimeter	-0.053960
	worst area	0.221604
	worst smoothness	0.172241
	worst compactness	0.435714
	worst concavity	0.602731
	worst concave points	0.107525
	worst symmetry	0.241687
	worst fractal dimension	0.284154
	target	0.000000
	dtype: float64	

```
In [28]: # LOGISTICS REGRESSION
         log_reg = LogisticRegression()
         log_reg.fit(x_train,y_train)
Out[28]:
          LogisticRegression
         LogisticRegression()
In [29]: y_pred = log_reg.predict(x_test)
         y_pred
Out[29]: array([1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,
                1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
                1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
                0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0,
                1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0,
                0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1])
In [30]: log_accuracy = accuracy_score(y_test,y_pred)
         log_accuracy
Out[30]: 0.972027972027972
In [31]: log_cr = classification_report(y_test,y_pred)
         print(log_cr)
                      precision recall f1-score support
                   0
                         0.96 0.96 0.96
                                                          50
                          0.98
                                   0.98
                                              0.98
                   1
                                                          93
                                              0.97
                                                         143
            accuracy
           macro avg
                          0.97 0.97
                                              0.97
                                                         143
                         0.97
                                   0.97
                                              0.97
        weighted avg
                                                         143
In [32]: log_cm = confusion_matrix(y_test,y_pred)
         print(log_cm)
        [[48 2]
         [ 2 91]]
         logistic regression is mainly used to classify data into two categories. our data is a binary
         classification so logistic regression is suitable for this. Here we spilt the data in two and
         trained and after predict them.
In [34]: # Decision tree classifier
```

from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()

dt.fit(x_train,y_train)

```
Out[34]:
             DecisionTreeClassifier •
         DecisionTreeClassifier()
In [35]: dt_y_pred = dt.predict(x_test)
         dt_y_pred
Out[35]: array([1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,
                 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
                 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,
                 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
                 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0,
                 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0,
                 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1])
In [36]: dt_accuracy_score = accuracy_score(y_test,dt_y_pred)
         dt_accuracy_score
Out[36]: 0.9090909090909091
         Decision tree is used for both classification and regression tasks. It split the data into
         subset and make predictions
In [38]: # Random forest
         from sklearn.ensemble import RandomForestClassifier
         random_fc = RandomForestClassifier()
         random_fc.fit(x_train,y_train)
Out[38]:
             RandomForestClassifier
         RandomForestClassifier()
In [39]: rfc_y_pred = random_fc.predict(x_test)
         rfc_y_pred
Out[39]: array([1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,
                 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0,
                 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,
                 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
                 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0,
                 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0,
                 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1])
In [40]: rfc_accuracy = accuracy_score(y_test,rfc_y_pred)
         rfc_accuracy
```

Out[40]: 0.9440559440559441

Random forest is a collection of decision tree. it combines multiple models to create a stronger model.

```
In [42]: # Support machine vector

from sklearn.svm import SVC

SVM_classifier = SVC()

SVM_classifier.fit(x_train,y_train)

SVM_y_pred = SVM_classifier.predict(x_test)

SVM_y_pred

SVM_accuracy = accuracy_score(y_test,SVM_y_pred)

SVM_accuracy
```

Out[42]: 0.958041958041958

SVC is commonly used in medical diagnosis, text classification and image recogniation. It works like seprate the data into 2 classes having a boundary

```
In [45]: knn_y_pred = knn.predict(x_test)
knn_y_pred

knn_accuracy = accuracy_score(y_test,knn_y_pred)
knn_accuracy
```

Out[45]: 0.951048951048951

KNN is to predict the label or values of a data point based on the labels or values of its knearest neighbors in the feature space.

```
In [47]:
    predictions = {
        "log_reg" : y_pred,
        "Decision Tree" : dt_y_pred,
        "Random Forest" : rfc_y_pred,
        "Support vector machine" : SVM_y_pred,
        "KNN" : knn_y_pred
}

results = {
        "Model" : [],
        "Accuracy" : [],
        "precision" : [],
        "Recall" : [],
        "F1-score" : []
}
```

```
for model_name,y_pred in predictions.items():
             results["Model"].append(model_name)
             results["Accuracy"].append(accuracy_score(y_test,y_pred))
             results["precision"].append(precision_score(y_test,y_pred))
             results["Recall"].append(recall_score(y_test,y_pred))
             results["F1-score"].append(f1_score(y_test,y_pred))
         results
Out[47]: {'Model': ['log_reg',
           'Decision Tree',
           'Random Forest',
           'Support vector machine',
           'KNN'],
          'Accuracy': [0.972027972027972,
           0.9090909090909091,
           0.9440559440559441,
           0.958041958041958,
           0.951048951048951],
          'precision': [0.978494623655914,
           0.9347826086956522,
           0.9473684210526315,
           0.967741935483871,
           0.9479166666666666],
          'Recall': [0.978494623655914,
           0.9247311827956989,
           0.967741935483871,
           0.967741935483871,
           0.978494623655914],
          'F1-score': [0.978494623655914,
           0.9297297297297298,
           0.9574468085106383,
           0.967741935483871,
           0.96296296296291}
In [48]: # converting the model into a DataFrame
         results_df = pd.DataFrame(results)
         print(results_df)
                           Model Accuracy precision Recall F1-score
        0
                         log reg 0.972028 0.978495 0.978495 0.978495
       1
                   Decision Tree 0.909091 0.934783 0.924731 0.929730
                   Random Forest 0.944056 0.947368 0.967742 0.957447
        3 Support vector machine 0.958042 0.967742 0.967742 0.967742
                             KNN 0.951049 0.947917 0.978495 0.962963
In [49]: # sorting by F1-SCORE to identify the best model and worst model
         results df = results df.sort values(by="F1-score",ascending = False)
         print(results_df)
                           Model Accuracy precision Recall F1-score
                         log_reg 0.972028 0.978495 0.978495 0.978495
       3 Support vector machine 0.958042 0.967742 0.967742 0.967742
       4
                             KNN 0.951049 0.947917 0.978495 0.962963
       2
                   Random Forest 0.944056 0.947368 0.967742 0.957447
                   Decision Tree 0.909091 0.934783 0.924731 0.929730
       1
```

From the above we can conclude that the best model is Support vector machine and the worst one is Decision tree

In []: