

the will now construct a more general, more "liveare Highera"-like expression for \$\frac{1}{p}\$ and \$\frac{1}{q}\$. The key is to consider the error vector $\vec{e} = \vec{b} - \vec{p}$.

a presented by the dashed line in the figure. We have $\vec{a} \cdot \vec{e} = 0 - \vec{a} \cdot (\vec{l} - \vec{p}) - \vec{a} \cdot (\vec{b} - \hat{x}\vec{a})$ = $\vec{a} \cdot \vec{b} - \hat{x}\vec{a} \cdot \vec{a}$ (=> x - a.b Or using more general relation: i= att Conclusion: The projection of B anto the line with direction vector a is the vector $\vec{p} = \hat{x} \vec{a} - \vec{a}^T \vec{i}$ Note 1: If $\vec{b} = \vec{a}$, $\vec{\lambda} = 1$, $\vec{p} = \vec{a}$ The projection of \vec{a} onto \vec{a} is \vec{a} itself. Note 2: If b and a are orthogonal, p=0 Example: What is the projection of of b= 2 anto 2 1 = 7; 2 2 = 14 =>

