Die Speichereinteilung im Real Mode

Möchte man im Real Mode eine Speicherverwaltung realisieren, muss man wissen, wie der nutzbare Speicher aufgeteilt ist.

Lange Rede, kurzer Sinn, hier die Tabelle:

Block	Adresse	Inhalt
15	F000:0000 - F000:FFFF	BIOS - ROM
14	E000:0000 - E000:FFFF	Reserviert (?)
13	D000:0000 - D000:FFFF	Reserviert (?)
12	C000:0000 - C000:FFFF	BIOS - ROM
11	B000:0000 - B000:FFFF	Video - RAM
10	A000:0000 - A000:FFFF	Video - RAM (EGA/VGA)
9	9000:0000 - 9000:FFFF	RAM von 576 KB - 640 KB
8	8000:0000 - 8000:FFFF	RAM von 512 KB - 576 KB
7	7000:0000 - 7000:FFFF	RAM von 448 KB - 512 KB
6	6000:0000 - 6000:FFFF	RAM von 384 KB - 448 KB
5	5000:0000 - 5000:FFFF	RAM von 320 KB - 384 KB
4	4000:0000 - 4000:FFFF	RAM von 256 KB - 320 KB
3	3000:0000 - 3000:FFFF	RAM von 192 KB - 256 KB
2	2000:0000 - 2000:FFFF	RAM von 128 KB - 192 KB
1	1000:0000 - 1000:FFFF	RAM von 64 KB - 128 KB
0	0000:0000 - 0000:FFFF	(*) RAM von 0 KB - 64 KB

Es können also nur die ersten knapp 650 KB Speicher genutzt werden.

(*) Zusätzlich ist der Block 0 auch nicht ganz frei zur Verfügung.

Da hier das BIOS noch die IVT etc. Speichert.

So bleibt im Block 0 wohl an freiem Speicher lediglich <u>07C0:0000 – 0000:FFFF</u> übrig. Dadurch gehen dann knapp 2000 Bytes verloren.