Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

#### SUPPORT VECTOR MACHINE

Mainly based on

https://nlp.stanford.edu/IR-book/pdf/15svm.pdf

#### Overview

- SVM is a huge topic
  - Integration of MMDS, IIR, and Andrew Moore's slides here
- Our foci: Assignment Project Exam Help
  - Geometric inhttps://eduassistpro.github.io/
    - Alternative interpretation fro k Minimization point of view. Add WeChat edu\_assist\_pro
  - Understand the final solution (in the dual form)
    - Generalizes well to Kernel functions
  - SVM + Kernels

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + \mathsf{b} = 0$$

#### Linear classifiers: Which Hyperplane?



- Lots of possible solutions for a, b, c.
- Some methods find a separating hyperplane, but so ight appropriate  $\frac{1}{2}$  Exam  $\frac{1}{2}$  Help  $\frac{1}{2}$   $\frac{1}{2}$ [according to some crite goodness]

https://eduassistpro.github.io/

- E.g., perceptron
- Support Vector Machine SWA Ghat edu\_assist\_p optimal\* solution.
  - Maximizes the distance between the hyperplane and the "difficult points" close to decision boundary
  - One intuition: if there are no points near the decision surface, then there are no very uncertain classification decisions

This line represents the decision boundary:

#### Another intuition

If you have to place a fat separator between classes, you have less choices, and so the capacity of the model has beign dented seject Exam Help



# Support Vector Machine (SVM)

 SVMs maximize the margin around the separating hyperplane.

A.k.a. Argeirgarmirents Prierject Exam

The decision fun specified by a suhttps://eduassistpro.githup samples, the support vectors
 Add WeChat edu\_assist\_p

Solving SVMs is a quadratic programming problem

 Seen by many as the most successful current text classification method\*



Support vectors

#### Maximum Margin: Formalization

- w: decision hyperplane normal vector
- x<sub>i</sub>: data point i Assignment Project Exam Help

NB: Not 1/0

- $\mathbf{y}_i$ : class of d
- Classifier is: https://eduassistpro.github.io/

NB: a common

- Functional maraidofWieChat edu\_assist\_pro trick
  - But note that we can increase this margin simply by scaling w, b....
- Functional margin of dataset is twice the minimum functional margin for any point
  - The factor of 2 comes from measuring the whole width of the margin

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + \mathsf{b} = 7.4$$
  $\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + \mathsf{b} = 3.7$  Largest Margin



 $\mathbf{w}'\mathbf{x} + b$ 

#### **Geometric Margin**

- Distance from example to the separator is
- Examples closest to the hyperplane are support vectors.
   Assignment Project Exam Help
- Margin  $\rho$  of the sep n between support vectors



# Help from Inner Product

Remember: Dot product / inner product

$$\langle A,B \rangle = \|A\| \|B\| \cos \theta$$
 Assignment Project Exam Help

$$\begin{array}{l} \text{https://eduassistpro.githuh.iq} \\ |A||\cos\theta = |A||\cdot \frac{|A||\cos\theta}{|A||\cos\theta} = \frac{\langle A,B\rangle}{|B||} \\ \text{Add WeChat edu\_assist} \\ |A||\cos\theta = |A||\cdot \frac{|A||\cos\theta}{|A||\cos\theta} = \frac{\langle A,B\rangle}{|B||} \end{array}$$

 $||A||\cos\theta$ 

$$(\|A\|\cos\theta)\,\frac{B}{\|B\|} = \frac{\langle A,B\rangle}{\|B\|^2}B$$
 vector

A's projection onto B = (<A, B> / <B, B>) \* B

# Derivation of the Geometric Margin



### Linear SVM Mathematically

#### The linearly separable case

Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set  $\{(\mathbf{x}_i, y_i)\}$ 

https://eduassistpro.github.io/

- For support vectors, Ahe in weith edu\_assistivpro plane is
- Then, since each example's distance f

The margin is:

$$r = \frac{2}{\|\mathbf{w}\|}$$

#### Derivation of p



# Solving the Optimization Problem

Find w and b such that  $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$  is minimized; and for all  $\mathbf{w}$  is  $\mathbf{w}$  is  $\mathbf{w}$  is  $\mathbf{w}$  is  $\mathbf{w}$ .

- This is now optimizi
  t to linear constraints
- Quadratic optimiza https://eduassistpro.github.joinathematical programming problem, and many (int with many special ones bulk for short edu\_assist\_pro
- The solution involves constructing a *dual problem* where a *Lagrange* multiplier  $\alpha_i$  is associated with every constraint in the primary problem:

Find  $\alpha_1 \dots \alpha_N$  such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$  is maximized and

- $(1) \quad \Sigma \alpha_i y_i = 0$
- (2)  $\alpha_i \ge 0$  for all  $\alpha_i$

#### Geometric Interpretation

Find w and b such that  $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$  is minimized; and for all  $\mathbf{x}$  is  $\mathbf{y}$  in  $\mathbf{w}$   $\mathbf{y}$   $\mathbf{y}$ 

- What are fixe
- Linear constr https://eduassistpro.gi្ងង្គម្រ.io/

• Quadratic objective function: Add WeChat edu\_assist\_pro

# The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
  $b = y_k - \mathbf{w^T} \mathbf{x_k}$  for any  $\mathbf{x_k}$  such that  $\alpha_k \neq 0$ 

- Assignment Project Exam Help

  Each non-zero α, indicates that corresponding x, is a support vector.
- Then the scoring function https://eduassistpre-github.io/ $f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^T \mathbf{x} + b$  Add WeChat edu-assistpre-github.io/Add WeChat edu-assistpre-github.io/ $y_{sv} \cdot \alpha_{sv} \cdot \langle \mathbf{x}_{sv}, \mathbf{x} \rangle + b$

Q: What are the model parameters? What does f(x) mean intuitively?

- Classification is based on the sign of f(x)
- Notice that it relies on an inner product between the test point x and the support vectors x<sub>i</sub>
  - We will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products  $\langle x_i, x_i \rangle$  between all pairs of training points.

# Soft Margin Classification

If the training data is not linearly separable, slack variables Assignment Project Exam Help allow misclass difficult or noi https://eduassistpro.github.ig

Allow some errors

Let some points be moved edu\_assisted to where they belong, at a cost

 Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

# Soft Margin Classification Mathematically

[Optional]

The old formulation:

```
Find w and b such that \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} is minimized and for all \{(\mathbf{x_i}, y_i)\} https://eduassistpro.github.io/
```

The new formulation incorporating sla

Add WeChat edu\_assist\_pro

Find w and b such that

$$\Phi$$
 (w) =\frac{1}{2} \mathbf{w}^T \mathbf{w} + C\Sigma \xi\_i \text{ is minimized and for all } \{ (\mathbf{x}\_i, y\_i) \} y\_i (\mathbf{w}^T \mathbf{x}\_i + b) \geq 1 - \xi\_i \text{ and } \xi\_i \geq 0 \text{ for all } i

- Parameter C can be viewed as a way to control overfitting
  - A regularization term

#### Alternative View

SVM in the "natural" form

arg min 
$$\frac{1}{2} w \cdot w + C \cdot \sum_{\substack{n \text{Margin}}}^{n} \max\{0, 1 - y_i(w \cdot x_i + b)\}$$
L (how well we fit training data)

https://eduassistpro.github.io/

Hyper-para

SVM uses "Hinge Loss": Add WeChat edu\_assist\_pro

 $\min_{w,b} \ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$   $s.t. \forall i, y_i \cdot (w \cdot x_i + b) \ge 1 - \xi_i$ Hinge loss: max{0, 1-z}  $z = y_i \cdot (x_i \cdot w + b)$ 

[Optional]

# Soft Margin Classification – Solution

The dual problem for soft margin classification:

Find  $\alpha_{l}...\alpha_{N}$  such that  $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_{i} \mathbf{A} \mathbf{Sign}_{i} \mathbf{y}_{i} \mathbf{y}_{j} \mathbf{x}_{i}^{T} \mathbf{P}_{i} \mathbf{p}_{i} \mathbf{e}_{A} \mathbf{x}_{A} \mathbf{y}_{A} \mathbf{y}_{A}$ 

- Neither slack variables ξ nor their Lagrang ear in the dual problem! Add WeChat edu\_assist\_pro
- Again,  $\mathbf{x}_i$  with non-zero  $\alpha_i$  will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

$$b = y_k (1 - \xi_k) - \mathbf{w^T} \mathbf{x}_k \text{ where } k = \underset{k'}{\operatorname{argmax}} \alpha_{k'}$$

w is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathbf{T}} \mathbf{x} + b$$

#### Classification with SVMs

- Given a new point x, we can score its projection onto the hyperplane normal:
  - I.e., compute score:  $\mathbf{w} \times \mathbf{x} + b = \sum \alpha y_i \mathbf{x}_i \times \mathbf{x} + b$ 
    - Decide clas https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro
 Can set confidence thres

Score > t: yes

Else: don't know



# Linear SVMs: Summary

- The classifier is a separating hyperplane.
- The most "important" training points are the support vectors; they define the hyperplan Assignment Project Exam Help
- Quadratic optimiza support vectors wit https://eduassistpro.github.io/ support vectors wit
- Both in the dual formulation of the pt edu\_assist\_proints appear only inside inner products:

```
Find \alpha_l ... \alpha_N such that \mathbf{Q}(\mathbf{\alpha}) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} is maximized and (1) \Sigma \alpha_i y_i = 0
```

(2)  $0 \le \alpha \le C$  for all  $\alpha$ 

$$f(\mathbf{x}) = \sum_{sv \in SV} y_{sv} \cdot \alpha_{sv} \cdot \langle \mathbf{x}_{sv}, \mathbf{x} \rangle + b$$

### Support Vector Regression

- Find a function f(x) with at most  $\varepsilon$ -deviation frm the target y  $y_i (w^Tx_i + b) >= -\varepsilon$
- The optimization problem ext Exam Help

https://eduassistorgegithub.io/

Find w and b such that

Φ (w) =1/2 wTw is minimized and wealth at iedu\_assist pro

$$y_i - (\mathbf{w}^{\mathsf{T}} \mathbf{x_i} + \mathbf{b}) \ge \mathbf{\epsilon}$$
$$y_i - (\mathbf{w}^{\mathsf{T}} \mathbf{x_i} + \mathbf{b}) \le \varepsilon$$

- We can introduce slack variables
  - Similar to soft margin loss function

#### Non-linear SVMs

Datasets that are linearly separable (with some noise) work out great:



https://eduassistpro.github.io/ But what are we go





c.f., polynomial regression

# Non-linear SVMs: Feature spaces

General idea: the original feature space can always be mapped to some higher-dimensional feature space wherestigumenti Residenti Esepartici;



#### The "Kernel Trick"

- The linear classifier relies on an inner product between vectors  $K(\mathbf{x_i}, \mathbf{x_j}) = \mathbf{x_i}^T \mathbf{x_j}$
- If every datapoint is impropred in the dimetric point is interested in the composition of the composition
- A kernel function is spine fortiff edu\_assispopes to an inner product in some expanded featu
  - Usually, no need to construct the feature space explicitly.

What about  $K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^{\top} \mathbf{v})^3$  ?

# Example

$$K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^{\top} \mathbf{v})^{2}$$

$$= 1 + 2\mathbf{u}^{\top} \mathbf{v} + (\mathbf{u}^{\top} \mathbf{v})^{2}$$

$$= 1 + 2\mathbf{u}^{\top} \mathbf{v} + (\mathbf{v}^{\top} \mathbf{v})^{2}$$

$$= 1 + 2\mathbf{u}^{\top} \mathbf{v} + (\mathbf{v}^{\top} \mathbf{v})^{2}$$
Project Exam Help
$$\sum_{i} \mathbf{u}_{i}^{2} \mathbf{v}_{i}^{2} + \sum_{i} \mathbf{u}_{i} \mathbf{u}_{j} \mathbf{v}_{i} \mathbf{v}_{j}$$

$$= 1 + 2\mathbf{u}^{\top} \mathbf{v} + (\mathbf{v}^{\top} \mathbf{v})^{2}$$

$$= \mathbf{u}^{\top} \mathbf{v} + (\mathbf{v}^{\top} \mathbf{v})^{2}$$

$$= \mathbf{u}$$

O(d²) new cross-term features

$$\phi(\mathbf{u}) = \begin{bmatrix} 1 & \sqrt{2}\mathbf{u}_1 & \dots & \sqrt{2}\mathbf{u}_d & \mathbf{u}_1^2 & \dots & \mathbf{u}_d^2 & \mathbf{u}_1\mathbf{u}_2 & \dots & \mathbf{u}_{d-1}\mathbf{u}_d \end{bmatrix}^\top$$

$$\phi(\mathbf{v}) = \begin{bmatrix} 1 & \sqrt{2}\mathbf{v}_1 & \dots & \sqrt{2}\mathbf{v}_d & \mathbf{v}_1^2 & \dots & \mathbf{v}_d^2 & \mathbf{v}_1\mathbf{v}_2 & \dots & \mathbf{v}_{d-1}\mathbf{u}_d \end{bmatrix}^\top$$
Linear Non-linear Non-linear + feature

Non-linear + feature combination

# Why feature combinations?

#### Examples:

- Two categorical features (age & married) encoded as one-hot encoding a combination = conjunction rules e.g., 1[age in [30, 40) AND married = TRUE]
- [..., eagerness-f much to spend
   https://eduassistpro.github.io/
  - e.g., "travel rarely"  $All^D$  wighting edu\_assist properties NLP, feature vector =  $1[w \in x] \rightarrow c$  dicates to
- NLP, feature vector = 1[w ∈ x] → c dicates two word co-occurrence (where phrase/multi-word expression (MWE) is just a special case)
- $\mathbf{x} \rightarrow \phi(\mathbf{x})$ , then a linear model in the new feature space is just  $\mathbf{w}^{\mathbf{T}}\phi(\mathbf{x}) + b$ 
  - each feature combination will be assigned a weight w<sub>i</sub>
  - irrelevant features combinations will get 0 weight

# Why feature combinations? /2

- Also helpful for linear models
  - Linear regression assumes no interaction between Assignment Project Exam Help x<sub>i</sub> and x<sub>j</sub>
  - One can adhttps://eduassistpro.gtthubsjct/ypically x<sub>i</sub>
     \* x<sub>j</sub>, to still use linear regedu\_assist\_pro linear model! )

# Inner product in an infinite dimensional space! [Optional]

#### RBF kernel:

$$\begin{split} &e^{-\gamma \|x_i - x_j\|^2} = e^{-\gamma (x_i - x_j)^2} = e^{-\gamma x_i^2 + 2\gamma x_i x_j - \gamma x_j^2} \\ &= e^{-\gamma x_i^2 - \gamma x_j^2} \begin{pmatrix} \mathbf{Assignment Project Exam Help} \\ 1 + \frac{2\gamma x_i x_j}{\mathbf{https://eduassistpro.github.io/}} + \frac{(2\gamma x_i x_j)^2}{\mathbf{https://eduassistpro.github.io/}} \\ &= e^{-\gamma x_i^2 - \gamma x_j^2} \begin{pmatrix} 1 \cdot 1 + \mathbf{A} \sqrt{\frac{2\gamma}{1!}} \mathbf{We} \sqrt{\frac{2\gamma}{1!}} \mathbf{x}_j \mathbf{edu} \sqrt{\frac{(2\gamma)^2}{3!}} \mathbf{x}_j^2 + \mathbf{vol} \end{pmatrix} \\ &= \phi \left( x_i \right)^T \phi \left( x_j \right) \qquad \text{, where} \\ &\phi(x) = e^{-\gamma x^2} \left[ 1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^2}{2!}} x^2, \sqrt{\frac{(2\gamma)^3}{3!}} x^3, \cdots \right]^T \end{split}$$

[Optional]

# String Kernel

- K(s1, s2) should evaluate the similarity between the two strings
  - Without this sing "after" t "Pricese" t=Exam Help
- Intuition:
  - consider all subhttps://eduassistpro.github.io/
  - inner product in that "enhanced" means the number of common substrings the two share edu\_assist\_pro
- Variants:
  - (more complex): consider subsequences (with possibly gap penalty)
  - (simpler): consider all k-grams, and use Jaccard
    - bigrams(actor) = {ac, ct, to, or}
    - bigrams(actress) = {ac, ct, tr, re, es, ss}
    - Jaccard(actor, actress) = 2/8

#### Kernels

- Why use kernels?
  - Make non-separable problem separable.
  - Map data into better representational space
  - Can be leastiguagente Project i Exami Halpy"
- Common kern

https://eduassistpro.github.io/

- Linear
- Polynomial K(xx)dtd1WveChat edu\_assist\_pro
  - Gives feature combinations
- Radial basis function (infinite dimensional space)

$$K(\mathbf{x}_i, \mathbf{x}_j; \sigma) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

- Text classification:
  - Usually use linear or polynomial kernels

#### Classification with SVMs with Kernels

Given a new point x, we can compute its score

i.e., 
$$\sum_{\mathbf{Assignment\ Project\ Exam\ Help}} y_{sv}\alpha_{sv}K(\mathbf{x}_{sv},\mathbf{x}) + b$$

- Decide cl https://eduassistpro.github\_io/
- E.g., in scikit-learn WeChat edu\_assist\_pro
- linear:  $\langle x, x' \rangle$ .
- polynomial:  $(\gamma\langle x,x'\rangle+r)^d$ . d is specified by keyword <code>degree</code> , r by <code>coef0</code> .
- rbf:  $\exp(-\gamma||x-x'||^2)$ .  $\gamma$  is specified by keyword gamma, must be greater than 0.
- sigmoid  $(\tanh(\gamma\langle x,x'\rangle+r))$ , where r is specified by <code>coef0</code> .

#### Pros and Cons of the SVM Classifier

#### Pros

- High accuracy
- Fast classification Fast
- Works with c https://eduassistpro.github.io/
- Can adapt to different objec rnel)
  - Any K(u, v) cande use fight edu\_assistupind positive semi-definite.
  - Or explicit engineer the feature space.

#### Cons

- Training does not scale well with number of training samples (O(d\*n²) or O(d\*n³))
- Hyper-parameters needs tuning

# Resources for today's lecture

- Christopher J. C. Burges. 1998. A Tutorial on Support Vector Machines for Pattern Recognition
- S. T. Dumais. 1998. Using SVMs for text categorization, IEEE Intelligent Systems, 13(4)
- S. T. Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive learning algorithms and representations for text-categorization. FIXM: '98, pp. 148-155. Help
- Yiming Yang, Xin Liu. 1999. A re-examination of text categorization methods. 22nd Annual International SIGIR
- Tong Zhang, Frank J. Ole https://eduassistpro.gatellelion/ear Classification Methods. Information Retrieval 4(
- Trevor Hastie, Robert Tibs Air Part edu\_assist Statistical Learning: Data Mining, Inference and Prediction. Springer-Verla
- T. Joachims, Learning to Classify Text using Support Vector Machines. Kluwer, 2002.
- Fan Li, Yiming Yang. 2003. A Loss Function Analysis for Classification Methods in Text Categorization. ICML 2003: 472-479.
- Tie-Yan Liu, Yiming Yang, Hao Wan, et al. 2005. Support Vector Machines Classification with Very Large Scale Taxonomy, SIGKDD Explorations, 7(1): 36-43.
- 'Classic' Reuters-21578 data set: http://www.daviddlewis.com/resources/testcollections/reuters21578/