A FIRST COURSE IN

LINEAR ALGEBRA

A FIRST COURSE

IN

LINEAR ALGEBRA

MAT2040 Notebook

Prof. Tom Luo

The Chinese University of Hongkong, Shenzhen

Prof. Ruoyu Sun

University of Illinois Urbana-Champaign

Copyright ©2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

```
Survey Methodology / Robert M. Groves . . . [et al.].

p. cm.—(Wiley series in survey methodology)

"Wiley-Interscience."

Includes bibliographical references and index.

ISBN 0-471-48348-6 (pbk.)

1. Surveys—Methodology. 2. Social

sciences—Research—Statistical methods. I. Groves, Robert M. II. Series.
```

HA31.2.S873 2004

001.4′33—dc22

2004044064

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contents

Cont	ributors	v
Forev	word	vii
Prefa	ace	ix
Ackn	nowledgments	xi
Acro	nyms	xiii
1	Week1	1
1.1	Tuesday	1
1.1.1	Introduction	1
1.1.2	Gaussian Elimination	3
1.1.3	Complexity Analysis	11
1.1.4	Brief Summary	12
1.2	Thursday	14
1.2.1	Row-Echelon Form	14
1.2.2	Matrix Multiplication	16
1.2.3	Special Matrices	19
1.3	Friday	21
1.3.1	Matrix Multiplication	21
1.3.2	Elementary Matrix	22
1.3.3	Properties of Matrix	24
1.3.4	Permutation Matrix	26
1.3.5	LU decomposition	29
1.3.6	LDU decomposition	33
1.3.7	LU Decomposition with row exchanges	35
1.4	Assignment One	36

2	Week2	39
2.1	Tuesday	39
2.1.1	Review	39
2.1.2	Special matrix multiplication case	41
2.1.3	Inverse	44
2.2	Wednesday	49
2.2.1	Remarks on Gaussian Elimination	49
2.2.2	Properties of matrix	50
2.2.3	matrix transpose	53
2.3	Assignment Two	55
2.4	Friday	56
2.4.1	symmetric matrix	56
2.4.2	Interaction of inverse and transpose	57
2.4.3	Vector Space	58
2.5	Assignment Three	68
3	Week3	71
3.1	Tuesday	71
3.1.1	Introduction	71
3.1.2	Review of 2 weeks	72
3.1.3	Examples of solving equations	73
3.1.4	How to solve a general rectangular	78
3.2	Thursday	83
3.2.1	Review	83
3.2.2	Remarks on solving linear system equations	86
3.2.3	Linear dependence	88
3.2.4	Basis and dimension	90
3.3	Friday	96

3.3.2	lylore on basis and dimension	
3.3.3	What is rank?	99
3.4	Assignment Four 11	LC
4	Midterm11	13
11	Cample France	
4.1	Sample Exam 13	LJ
4.2	Midterm Exam 12	20
5	Week4 12	27
5.1	Friday 12	27
5.1.1	Linear Transformation	27
5.1.2	Example: differentiation	29
5.1.3	Basis Change	34
5.1.4	Determinant	36
5.2	Assignment Five 14	14
6	Week5	17
6.1	Tuesday 14	17
6.1.1	Formulas for Determinant	47
6.1.2	Determinant by Cofactors	52
6.1.3	Determinant Applications	53
6.1.4	Orthogonality	56
6.2	Thursday 16	5C
6.2.1	Orthogonality	60
6.2.2	Least Squares Approximations	66
6.2.3	Projections	69
6.3	Friday 17	71
6.3.1	Orthonormal basis	71
6.3.2	Gram-Schmidt Process	74

6.3.3	The Factorization $A = QR$	180
6.3.4	Function Space	183
6.3.5	Fourier Series	184
6.4	Assignment Six	186
7	Week6	187
7.1	Tuesday	187
7.1.1	Summary of last two weeks	187
7.1.2	Eigenvalues and eigenvectors	191
7.1.3	Products and Sums of Eigenvalue	196
7.1.4	Application: Page Rank and Web Search	197
7.2	Thursday	200
7.2.1	Review	200
7.2.2	Similarity and eigenvalues	200
7.2.3	Diagonalization	203
7.2.4	Powers of A	208
7.2.5	Nondiagonalizable Matrices	209
7.3	Friday	210
7.3.1	Review	210
7.3.2	Fibonacci Numbers	210
7.3.3	Imaginary Eigenvalues	212
7.3.4	Complex Numbers	214
7.3.5	Complex Vectors	214
7.3.6	Spectral Theorem	220
7.3.7	Hermitian matrix	221
7.4	Assignment Seven	223
8	Week7	227
8.1	Tuesday	227
811	Quadratic form	227

8.1.2	Positive Definite Matrices	232
8.2	Thursday	241
8.2.1	SVD: Singular Value Decomposition	241
8.2.2	Remark on SVD decomposition	245
8.2.3	Best Low-Rank Approximation	253
8.3	Assignment Eight	255
9	Final Exam	257
9.1	Sample Exam	257
9.2	Final Exam	264
10	Solution	271
10.1	Assignment Solutions	271
10.1.1	Solution to Assignment One	271
10.1.2	Solution to Assignment Two	277
10.1.3	Solution to Assignment Three	280
10.1.4	Solution to Assignment Four	286
10.1.5	Solution to Assignment Five	297
10.1.6	Solution to Assignment Six	303
10.1.7	Solution to Assignment Seven	311
10.1.8	Solution to Assignment Eight	321
10.2	Midterm Exam Solutions	328
10.2.1	Sample Exam Solution	328
10.2.2	Midterm Exam Solution	338
10.3	Final Exam Solutions	346
10.3.1	Sample Exam Solution	346
10.3.2	Final Exam Solution	357

A	This is Appendix Title	371
A .1	This is First Level Heading	371
A.1.1	This is Second Level Heading	. 372

Contributors

ZHI-QUAN LUO, Shenzhen Research Institute of Big Data, Lecturer RUOYU SUN, Industrial and Enterprise Systems Engineering, Lecturer JIE WANG, The Chinese University of Hongkong, Shenzhen, Typer

Foreword

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Preface

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

place

date

Acknowledgments

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

I. R. S.

Acronyms

ASTA Arrivals See Time Averages

BHCA Busy Hour Call Attempts

BR Bandwidth Reservation

b.u. bandwidth unit(s)

CAC Call / Connection Admission Control

CBP Call Blocking Probability(-ies)

CCS Centum Call Seconds

CDTM Connection Dependent Threshold Model

CS Complete Sharing

DiffServ Differentiated Services

EMLM Erlang Multirate Loss Model

erl The Erlang unit of traffic-load

FIFO First in - First out

GB Global balance

GoS Grade of Service

ICT Information and Communication Technology

IntServ Integrated Services

IP Internet Protocol

ITU-T International Telecommunication Unit – Standardization sector

LB Local balance

LHS Left hand side

LIFO Last in - First out

MMPP Markov Modulated Poisson Process

MPLS Multiple Protocol Labeling Switching

MRM Multi-Retry Model

MTM Multi-Threshold Model

PASTA Poisson Arrivals See Time Averages

PDF Probability Distribution Function

pdf probability density function

PFS Product Form Solution

QoS Quality of Service

r.v. random variable(s)

RED random early detection

RHS Right hand side

RLA Reduced Load Approximation

SIRO service in random order

SRM Single-Retry Model

STM Single-Threshold Model

TCP Transport Control Protocol

TH Threshold(s)

UDP User Datagram Protocol

6.2. Thursday

6.2.1. Orthogonality

Recall that two vectors are orthogonal if their inner product is zero:

$$\boldsymbol{u} \perp \boldsymbol{v} \Longleftrightarrow \langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$$

Orthogonality among vectors has an important property:

Proposition 6.1 If **nonzero** vectors $v_1, ..., v_k$ are mutually orthogonal, i.e., $v_i \perp v_j$ for any $i \neq j$, then $\{v_1, ..., v_k\}$ must be ind.

Proof. It suffices to show that

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = \mathbf{0} \implies \alpha_i = 0 \text{ for any } i \in \{1, 2, \dots, k\}.$$

• We do inner product to show α_1 must be zero:

$$\langle v_1, \alpha_1 v_1 + \dots + \alpha_k v_k \rangle = \langle v_1, \mathbf{0} \rangle = 0$$

$$= \alpha_1 \langle v_1, v_1 \rangle + \alpha_2 \langle v_1, v_2 \rangle + \dots + \alpha_k \langle v_1, v_k \rangle$$

$$= \alpha_1 \langle v_1, v_1 \rangle = \alpha_1 ||v_1||_2^2$$

$$= 0$$

Since $v_1 \neq \mathbf{0}$, we have $\alpha_1 = 0$.

• Similarly, we have $\alpha_i = 0$ for i = 1, ..., k.

Now we can also talk about orthogonality among spaces:

Definition 6.10 [Subspace Orthogonality] Two subspaces $oldsymbol{U}$ and $oldsymbol{V}$ of a vector space are

orthogonal if every vector \boldsymbol{u} in \boldsymbol{U} is perpendicular to every vector \boldsymbol{v} in \boldsymbol{V} :

Orthogonal subspaces $u \perp v$, $\forall u \in U, v \in V$.

■ Example 6.3 Two walls look *perpendicular* but they are not orthogonal subspaces! The meeting line is in both U and V-and this line is not perpendicular to itself. Hence, two planes (both with dimension 2 in \mathbb{R}^3) cannot be orthogonal subspaces.

Figure 6.1: Orthogonality is impossible when $\dim \mathbf{U} + \dim \mathbf{V} > \dim(\mathbf{U} \cup \mathbf{V})$

When a vector is in two orthogonal subspaces, it *must* be zero. It is **perpendicular** to itself.

The reason is clear: this vector $\mathbf{u} \in \mathbf{U}$ and $\mathbf{u} \in \mathbf{V}$, so $\langle \mathbf{u}, \mathbf{u} \rangle = 0$. It has to be zero vector.

If two subspaces are perpendicular, their basis must be ind.

Theorem 6.2 Assume $\{u_1, ..., u_k\}$ is the basis for U, $\{v_1, ..., v_l\}$ is the basis for V. If $U \perp V$ ($u_i \perp v_j$ for $\forall i, j$), then $u_1, u_2, ..., u_k, v_1, v_2, ..., v_l$ must be ind.

Proof. Suppose there exists $\{\alpha_1, ..., \alpha_k\}$ and $\{\beta_1, ..., \beta_l\}$ such that

$$\alpha_1 u_1 + \dots + \alpha_k u_k + \beta_1 v_1 + \dots + \beta_l v_l = \mathbf{0}$$

then equivalently,

$$\alpha_1 u_1 + \cdots + \alpha_k u_k = -(\beta_1 v_1 + \cdots + \beta_l v_l).$$

Then we set $\boldsymbol{w} = \alpha_1 u_1 + \cdots + \alpha_k u_k$, obviously, $\boldsymbol{w} \in \boldsymbol{U}$ and $\boldsymbol{w} \in \boldsymbol{V}$.

Hence it must be zero (This is due to remark above). Thus we have

$$\alpha_1 u_1 + \cdots + \alpha_k u_k = \mathbf{0}$$

$$\beta_1 v_1 + \cdots + \beta_l v_l = \mathbf{0}.$$

Due to the independence, we have $\alpha_i = 0$ and $\beta_j = 0$ for $\forall i, j$.

Corollary 6.1 For subspaces $oldsymbol{\mathit{U}}$ and $oldsymbol{\mathit{V}}$, we obtain

$$\dim(\mathbf{U} \cup \mathbf{V}) \leq \dim(\mathbf{U}) + \dim(\mathbf{V}).$$

For subspaces U and $V \in \mathbb{R}^n$, if $\mathbb{R}^n = U \cup V$, and moreover, $n = \dim(U) + \dim(V)$, then we say V is the **orthogonal complement** of U.

Definition 6.11 [orthogonal complement] For subspaces ${\pmb U}$ and ${\pmb V} \in \mathbb{R}^n$, if $\dim({\pmb U}) + \dim({\pmb V}) = n$ and ${\pmb U} \perp {\pmb V}$, then we say ${\pmb V}$ is the **orthogonal complement** of ${\pmb U}$. We denote ${\pmb V}$ as ${\pmb U}^\perp$.

Moreover,
$$oldsymbol{V} = oldsymbol{U}^\perp$$
 iff $oldsymbol{V}^\perp = oldsymbol{U}$.

■ Example 6.4 Suppose $U \cup V = \mathbb{R}^3$, $U = \text{span}\{e_1, e_2\}$. If V is the orthogonal complement of U, then $V = \text{span}\{e_3\}$.

Next we study the relationship between the null space and the row space in \mathbb{R}^n .

Theorem 6.3 — Fundamental theorem for linear alegbra, part 2. Given $A \in \mathbb{R}^{m \times n}$, N(A) is the orthogonal complement of the row space of A, $C(A^T)$ (in \mathbb{R}^n). $N(A^T)$ is the orthogonal complement of the column space C(A) (in \mathbb{R}^m).

Proof. • Firstly, we show $\dim(N(\boldsymbol{A})) + \dim(\mathcal{C}(\boldsymbol{A}^T)) = n$:

We know that $\dim(N(\boldsymbol{A})) = n - r$ and $\dim(\mathcal{C}(\boldsymbol{A}^T)) = r$, where $r = \operatorname{rank}(\boldsymbol{A})$.

Hence $\dim(N(\boldsymbol{A})) + \dim(\mathcal{C}(\boldsymbol{A}^T)) = n$.

• Then we show $N(\mathbf{A}) \perp \mathcal{C}(\mathbf{A}^{\mathrm{T}})$:

For any $x \in N(\mathbf{A})$, if we set $\mathbf{A} = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix}$, then we obtain:

$$m{A}m{x} = egin{bmatrix} a_1^{\mathrm{T}} \ a_2^{\mathrm{T}} \ \vdots \ a_m^{\mathrm{T}} \end{bmatrix} m{x} = egin{bmatrix} 0 \ 0 \ \vdots \ 0 \end{bmatrix}$$

Hence *every row has a zero product with* \mathbf{x} , i.e., $\langle a_i, \mathbf{x} \rangle = 0$ for $\forall i \in \{1, 2, ..., m\}$. For any $y = \sum_{i=1}^m \alpha_i a_i \in \mathcal{C}(\mathbf{A}^T)$, we obtain:

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle = \langle \sum_{i=1}^{m} \alpha_i a_i, \boldsymbol{x} \rangle$$

= $\sum_{i=1}^{m} \alpha_i \langle a_i, \boldsymbol{x} \rangle = 0.$

Hence $\mathbf{x} \perp y$ for $\forall \mathbf{x} \in N(\mathbf{A})$ and $y \in C(\mathbf{A}^{\mathrm{T}})$.

Hence $N(\mathbf{A})^{\perp} = \mathcal{C}(\mathbf{A}^{\mathrm{T}})$. Similarly, we have $N(\mathbf{A}^{\mathrm{T}})^{\perp} = \mathcal{C}(\mathbf{A})$.

Corollary 6.2 Ax = b is solvable if and only if $y^TA = 0$ implies $y^Tb = 0$.

Proof. The following statements are equivalent:

- Ax = b is solvable.
- $b \in C(A)$.
- $\boldsymbol{b} \in N(\boldsymbol{A}^{\mathrm{T}})^{\perp}$
- $\mathbf{y}^{\mathrm{T}}\mathbf{b} = 0$ for $\forall y \in N(\mathbf{A}^{\mathrm{T}})$
- Given $\mathbf{y}^{\mathrm{T}}\mathbf{A} = \mathbf{0}$, i.e., $y \in N(\mathbf{A}^{\mathrm{T}})$, it implies $\mathbf{y}^{\mathrm{T}}\mathbf{b} = 0$.

The **Inverse Negative Proposition** is more commonly useful:

Corollary 6.3 Ax = b has no solution if and only if $\exists y \text{ s.t. } y^TA = 0$ and $y^Tb \neq 0$.

We could extend this corollary into general case:

R

Theorem 6.4 $Ax \ge b$ has no solution if and only if $\exists y \ge 0$ such that $y^TA = 0$ and $y^Tb \ge 0$.

 $\mathbf{y}^{\mathrm{T}}\mathbf{A}=0$ requires that there exists one linear combination of the row space to be zero.

The complete proof for this theorem is not required in this course. We only show the necessity case.

Necessity case. Suppose $\exists y \geq 0$ such that $y^T A = 0$ and $y^T b \geq 0$. Assume there exists x^* such that $Ax^* \geq b$. By postmultiplying y^T we have

$$\mathbf{y}^{\mathrm{T}}\mathbf{A}\mathbf{x}^{*} \geq \mathbf{y}^{\mathrm{T}}\mathbf{b} > \mathbf{0} \implies \mathbf{0} > \mathbf{0}.$$

which is a contradiction!

■ Example 6.5 Given the system

$$x_1 + x_2 \ge 1 \tag{6.3}$$

$$-x_1 \ge -1 \tag{6.4}$$

$$-x_2 \ge 2 \tag{6.5}$$

Eq.(6.3) \times 1+Eq(6.4) \times 1+Eq.(6.5) \times 1 gives

 $0 \ge 2$

which is a contradiction!

So the key idea of theorem (6.4) is to construct a linear combination of row space to let it become zero. If the right hand is larger than zero, then this system has no solution.

Corollary 6.4 If $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$, then $N(\mathbf{A}^{\mathrm{T}})^{\perp} = \mathcal{C}(A) = \mathcal{C}(\mathbf{A}^{\mathrm{T}}) = N(\mathbf{A})$.

Corollary 6.5 The system Ax = b may not have a solution, but $A^{T}Ax = A^{T}b$ always have at least one solution for $\forall b$.

Proof. Since $\mathbf{A}^T \mathbf{A}$ is symmetric, we have $\mathcal{C}(\mathbf{A}^T \mathbf{A}) = \mathcal{C}(\mathbf{A} \mathbf{A}^T)$. Show by yourself that $\mathcal{C}(\mathbf{A} \mathbf{A}^T) = \mathcal{C}(\mathbf{A}^T)$, hence $\mathcal{C}(\mathbf{A}^T \mathbf{A}) = \mathcal{C}(\mathbf{A}^T)$.

For any vector \mathbf{b} , we have $\mathbf{A}^{\mathrm{T}}\mathbf{b} \in \mathcal{C}(\mathbf{A}^{\mathrm{T}}) \implies \mathbf{A}^{\mathrm{T}}\mathbf{b} \in \mathcal{C}(\mathbf{A}^{\mathrm{T}}\mathbf{A})$, which means there exists a linear combination of the columns of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ that equals to \mathbf{b} .

Or equivalently, there exists a solution to $\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathrm{T}} \mathbf{b}$.

Corollary 6.6 $A^{T}A$ is invertible if and only if A is full column rank, i.e., columns of A are ind.

Proof. We have shown that $C(\mathbf{A}^{T}\mathbf{A}) = C(\mathbf{A}^{T})$.

Hence
$$C(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{\perp} = C(\mathbf{A}^{\mathrm{T}})^{\perp} \implies N(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = N(\mathbf{A}).$$

Thus, the following statements are equivalent:

- A has ind. columns
- $N(A) = \{0\}$
- $N(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = \{\boldsymbol{0}\}$
- $A^{T}A$ is invertible.

6.2.2. Least Squares Approximations

The linear system Ax = b often has no solution, if so, what should we do?

We cannot always get the error e = b - Ax down to zero, so we want to use *least* square method to minimize the error. In other words, our goal is to

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \boldsymbol{e}^2 := \min_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|^2 = \sum_{i=1}^m (a_i^{\mathrm{T}}\boldsymbol{x} - b_i)^2$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The minimizer x is called the **linear least squares** solution.

6.2.2.1. Least Squares by Convex Optimization

Firstly, you should know some basic calculus knowledge for matrix:

The Chian Rule. Given two vectors f(x), g(x) of appropriate size,

$$\frac{\partial (f^{\mathrm{T}}g)}{\partial x} = \frac{\partial f(x)}{\partial x}g(x) + \frac{\partial g(x)}{\partial x}f(x)$$

Examples of Matrix Derivative.

$$\frac{\partial (a^{\mathrm{T}} \mathbf{x})}{\partial \mathbf{x}} = a \tag{6.6}$$

$$\frac{\partial (a^{\mathrm{T}} A \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial ((\mathbf{A}^{\mathrm{T}} a)^{\mathrm{T}} \mathbf{x})}{\partial \mathbf{x}} = \mathbf{A}^{\mathrm{T}} a$$

$$\frac{\partial (\mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \mathbf{A}^{\mathrm{T}}$$
(6.7)

$$\frac{\partial (\boldsymbol{A}\boldsymbol{x})}{\partial \boldsymbol{x}} = \boldsymbol{A}^{\mathrm{T}} \tag{6.8}$$

$$\frac{\partial(\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x})}{\partial\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{A}^{\mathrm{T}}\mathbf{x} \tag{6.9}$$

Thus, in order to minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathrm{T}}(\mathbf{A}\mathbf{x} - \mathbf{b})$, it suffices to let its **derivative** with respect to x to be **zero.** (Since $||Ax - b||^2$ is convex, which will be discussed in detail in other courses.) Hence we have:

$$\frac{\partial (\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathrm{T}} (\mathbf{A}\mathbf{x} - \mathbf{b})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{A}\mathbf{x} - \mathbf{b})}{\partial \mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \frac{\partial (\mathbf{A}\mathbf{x} - \mathbf{b})}{\partial \mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= 2 \frac{\partial (\mathbf{A}\mathbf{x} - \mathbf{b})}{\partial \mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= 2 (\frac{\partial (\mathbf{A}\mathbf{x})}{\partial \mathbf{x}} - \frac{\partial (\mathbf{b})}{\partial \mathbf{x}}) (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= 2 \mathbf{A}^{\mathrm{T}} (\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{0}.$$

Or equivalently,

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x}=\mathbf{A}^{\mathrm{T}}\mathbf{b}.$$

According to corollary (6.5), this equation always exists a solution. This equation is called the normal equation.

A vector \mathbf{x}_{LS} is an optimal solution to the least squares problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2^2 \tag{6.10a}$$

if and only if it satisfies

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x}_{\mathrm{LS}} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{b}.\tag{6.10b}$$

6.2.2.2. Fit a stright line

Given a collection of data (\mathbf{x}_i, y_i) for i = 1, ..., m, we can use a stright line to fit these points:

$$\begin{cases} y_1 = a_0 + a_1 x_{1,1} + a_2 x_{1,2} + \dots + a_n x_{1,n} + \varepsilon_1 \\ y_2 = a_0 + a_1 x_{2,1} + a_2 x_{2,2} + \dots + a_n x_{2,n} + \varepsilon_2 \\ \vdots \\ y_m = a_0 + a_1 x_{m,1} + a_2 x_{m,2} + \dots + a_n x_{m,n} + \varepsilon_m \end{cases}$$

Our fit line is

$$\hat{y} = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

In compact matrix form, we have

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & & & & \\ 1 & x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_m \end{bmatrix}$$

Or equivalently, we have

$$y = Ax + \varepsilon$$

where
$$\mathbf{A} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & & & & \\ 1 & x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}_{m \times (n+1)}$$
, $\mathbf{x} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$, $\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_m \end{bmatrix}_{m \times 1}$

Our goal is to minimize $\|\hat{y} - y\|^2 = \|Ax - y\|^2$. Then by theorem (6.5), it suffices to sovle $A^T A x = A^T y$.

Figure 6.2: The projection of **b** onto a subspace S := C(A).

6.2.3. Projections

In corollary (6.6), we know that if A has ind. columns, then A^TA is invertible. On this condition, the normal equation $A^TAx = A^Tb$ has the unique solution $x^* = (A^TA)^{-1}A^Tb$, which follows that the error $b - Ax^*$ is minimized. Note that $Ax^* = A(A^TA)^{-1}A^Tb$ is approximately equal to b.

- If b and Ax^* are exactly in the same space, i.e., $b \in C(A)$, then $Ax^* = b$. The error is equal to zero.
- Otherwise, just as the Figure (6.2) shown, Ax^* is the projection of b to subspace C(A).

Definition 6.12 [Projection] Let $S \in \mathbb{R}^m$ be a non-empty closed set and $b \in \mathbb{R}^m$ be given. Then the projection of b onto the set S is the solution to

$$\min_{\boldsymbol{z}\in\boldsymbol{S}}\|\boldsymbol{z}-\boldsymbol{b}\|_2^2,$$

where we use notation $\operatorname{Proj}_{\boldsymbol{S}}(\boldsymbol{b})$ to denote the projection of \boldsymbol{b} onto \boldsymbol{S} .

By definition, the projection of \boldsymbol{b} onto the subspace $\mathcal{C}(\boldsymbol{A})$ is given by

$$\operatorname{Proj}_{\mathcal{C}(\boldsymbol{A})}(\boldsymbol{b}) := \boldsymbol{A}\boldsymbol{x}^*, \quad \text{where } \boldsymbol{x}^* = \arg\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|.$$

Definition 6.13 [Projection matrix] Given the projection

$$\operatorname{Proj}_{C(\boldsymbol{A})}(\boldsymbol{b}) := \boldsymbol{A}\boldsymbol{x}^* = \boldsymbol{A}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b},$$

since $[A(A^TA)^{-1}A^T]b$, we call the projection operator $P := A(A^TA)^{-1}A^T$ as the projection matrix of A.

Definition 6.14 [Idempotent] Let A be a square matrix that satisfies A = AA, then A is called an **idempotent** matrix.

Let's show that the projection matrix is *idempotent*:

$$P^{2} = A(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}A^{T} = P.$$

6.2.3.1. Observations

• Suppose $b \in C(A)$, i.e., $\exists x$ s.t. Ax = b. Then the projection of b is exactly b:

$$Pb = A(A^{T}A)^{-1}A^{T}(b)$$

$$= A(A^{T}A)^{-1}A^{T}(Ax)$$

$$= A(A^{T}A)^{-1}(A^{T}A)x$$

$$= Ax = b.$$

• Assume **A** has only one column, say, **a**. Then we have

$$egin{aligned} m{x}^* &= (m{A}^{\mathrm{T}}m{A})^{-1}m{A}^{\mathrm{T}}m{b} = rac{m{a}^{\mathrm{T}}m{b}}{m{a}^{\mathrm{T}}m{a}} \ m{A}m{x}^* &= m{P}m{b} = m{A}(m{A}^{\mathrm{T}}m{A})^{-1}m{A}^{\mathrm{T}}(m{b}) = rac{m{a}^{\mathrm{T}}m{b}}{m{a}^{\mathrm{T}}m{a}} imes m{a} = rac{m{a}^{\mathrm{T}}m{b}}{\|m{a}\|^2} imes m{a} \end{aligned}$$

More interestingly,

$$\frac{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{b}}{\|\boldsymbol{a}\|^{2}} \times \boldsymbol{a} = \frac{\|\boldsymbol{a}\|\|\boldsymbol{b}\|\cos\theta}{\|\boldsymbol{a}\|^{2}} \times \boldsymbol{a} = \|\boldsymbol{b}\|\cos\theta \times \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|}$$

which is the projection of \boldsymbol{b} onto a line span{ \boldsymbol{a} }. (Shown in figure (6.3).)

Figure 6.3: The projection of b onto a line a.

More generally, we can write the projection of \boldsymbol{b} onto the line span $\{\boldsymbol{a}\}$ as:

$$\operatorname{Proj}_{\operatorname{span}\{a\}}(b) = \frac{\langle a, b \rangle}{\langle a, a \rangle} a$$

Changing an Orthogonal Basis. Note that the error $b - \operatorname{Proj}_{\operatorname{span}\{a\}}(b)$ is perpendicular to a, and $b - \operatorname{Proj}_{\operatorname{span}\{a\}}(b) \in \operatorname{span}\{a,b\}$.

If we define $b' = b - \text{Proj}_{\text{span}\{a\}}(b)$, then it's easy to check that $\text{span}\{a,b'\} = \text{span}\{a,b\}$ and $a \perp b'$.

Hence, we convert the basis $\{a,b'\}$ into another basis $\{a,b'\}$ such that the elements are orthogonal to each other. For general subspace we could also use this approach to obtain an orthogonal basis, which will be discussed in next lecture.