اتصال دالة عددية

* *

.....

$$f(x) = \lambda$$

$$f(x) = \lambda$$

ليكن $\binom{C_f}{1}$ منحنى دالة عدية عدية الشكل التالي:

3 عند النقطة ذات الأفصول 1- ثم عند النقطة ذات الأفصول -1 ثم عند النقطة ذات 3 -1 من خلا الشكل كيف ترى المنحنى $\left(C_{f}
ight)$

و
$$\lim_{x \to 3} f(x)$$
 و $\lim_{x \to 3} f(x)$ ماذا تلاحظ -2

ب/ أحسب f و أدرس نهاية f عند f ماذا تستنتج

الجواب:

-1 من خلال شكل المنحنى $\left(C_f
ight)$ يتضح ان المنحى متقطع عند النقطة ذات الافصول $\left(C_f
ight)$ و متصل عند النقطة ذات 3

$$\lim_{x \to 3} f(x) = 2$$
 و $f(3) = 2$ لدين $f(3) = 2$ لدين أ- من خلال شكل المنحنى $\binom{C_f}{3}$

نلاحظ أن
$$\lim_{x \to 3} f(x) = f(3)$$
 لذا نقول إن الدالة $\int_{x \to 3} f(x) = f(3)$ نلاحظ

$$\lim_{x \to -1^-} f(x) = 1$$
 و $\lim_{x \to -1^+} f(x) = 3$ و $f(-1) = 3$ لدينا C_f لدينا C_f

-1 غير متصلة عند f غير متصلة عند $\lim_{x \to -1^+} f(x) \neq \lim_{x \to -1^-} f(x)$ غير متصلة عند الاحظ

-1 نقول إن الدالة f متصلة على اليمن عند النقطة ا $\lim_{x \to -1^+} f(x) = f(-1)$ -*

-1 نقول إن الدالة f غير متصلة على اليسار عند النقطة ا $\lim_{x \to -1^-} f(x) \neq f(-1)$ -*

b/ تعريف الاتصال

I لتكن f دالة عددية معرفة على مجال مفتوح I ، و x_0 عنصرا من $\lim_{x \to x_0} f(x) = f\left(x_0
ight)$ تكون f متصلة في النقطة x_0 إذا وفقط إذا كان

تعريف الاتصال على اليمين الاتصال على اليسار في نقطة

 $lpha \succ 0$ حيث $x_0 : x_0 + lpha$ حيث مجال على مجال من نوع التكن التكن التكن التمين في النقطة $x_0 : x_0 : x_0 = f(x_0)$ تكون التكن أليمين في النقطة $x_0 : x_0 : x_$

 $lpha \succ 0$ حيث $\left[x_0 - lpha; x_0\right]$ حيث مجال على مجال من نوع $\left[x_0 - lpha; x_0\right]$ حيث حيث $\left[x_0 - lpha; x_0\right]$ تكون $\left[x_0 - lpha; x_0\right]$ متصلة على اليسار في النقطة $\left[x_0 - lpha; x_0\right]$ وفقط إذا كان

خاصىة

I لتكن f دالة عددية معرفة على مجال مفتوح I ، و x_0 عنصرا من x_0 النقطة x_0 تكون f متصلة في النقطة x_0 إذا وفقط x_0 متصلة على اليمين و على اليسار في النقطة

<u>تمرين</u>

: في الحالات التالية t في الحالات التالية -1

$$x_0 = 2$$
 ; $\begin{cases} f(x) = 2x + 1 & x > 2 \\ f(x) = x^2 - 1 & x \le 2 \end{cases}$ /b

$$x_0 = 0$$
 ;
$$\begin{cases} f(x) = \frac{\sin 3x}{x} & x \neq 0 \\ f(0) = 3 \end{cases}$$
 / a

$$x_0 = 0 \quad ; \quad \begin{cases} f(x) = x \sin \frac{1}{x} & x > 0 \\ f(x) = x^2 - x & x \le 0 \end{cases}$$

$$\begin{cases} f(x) = x^3 + ax & x > -1 \\ f(x) = -x + 1 & x \le -1 \end{cases}$$

-1 حدد a لكي تكون f متصلة في -2

2- الاتصال في مجال

عريف

I لتكن f دالة عدية معرفة على المجال مفتوح f تكون f متصلة على I إذا وفقط إذا كانت متصلة في كل نقطة من f

igl[a;bigr] لتكن f دالة عدية معرفة على المجال

a تكون f متصلة على a إذا وفقط إذا كانت متصلة في كل نقطة من a ومتصلة على يمين و متصلة على يسار b

 $ig[a;+\inftyig[$ و على $ig]-\infty;aig]$ و ig[a;big[و على ig]a;big] و الاتصال على المثل نعرف الاتصال على المثل المبياني لدالة متصلة على ig[a;big] هو خط متصل طرفاه النقطتين اللتين إحداثيتيهما

(b;f(b)) و (a;f(a))

3- اتصال دوال اعتيادية

خاصية

الدوال الحدودية و الدوال الجدرية و الدوال $x\mapsto \sqrt{x}$ و $x\mapsto \sin x$ و $x\mapsto \sin x$ و $x\mapsto \tan x$ متصلة على كل مجال ضمن مجموعة تعريفها

4- دالة الجزء الصحيح

 $n \le x \prec n+1$ ككل عدد حقيقي x يوجد عدد صحيح نسبي وحيد x يوجد عدد صحيح العدد x العدد الصحيح النسبي x يسمى الجزء الصحيح النسبي

تعريف

دالة الجزء الصحيح هي الدالة التي تربط كل عنصر x من $\mathbb R$ بجزئه الصحيح نرمز لصورة x بهذه الدالة بالرمز E(x) أو بالرمز x

$$E(x) = n \Leftrightarrow \exists! n \in \mathbb{Z} \qquad n \le x < n+1$$

أمثلة

$$3 \le 3,7 < 4$$
 لأن $E(3,7) = 3$

$$1 \le \sqrt{2} \prec 2$$
 لأن $E(\sqrt{2}) = 1$

التمثيل المبياني لدالة الجزء الصحيح

 $n \in \mathbb{Z}$ ليكن

$$E(x) = 0$$
 فان $x \in [0;1]$ إذا كان

$$E(x) = 1$$
 فان $x \in [1,2]$ إذا كان

 $-3 \le -2,1 < -2$ لأن E(-2,1) = -3

$$-4 \le -4 < 5$$
 لأن $E(-4) = -4$

 $\forall x \in [n; n+1]$ E(x) = n

$$E(x) = -1$$
 فان $x \in [-1;0[$ فان $E(x) = -2$ فان $x \in [-2;-1[$ فان والخاكان أيدا

نتائج

$$\forall n \in \mathbb{Z}$$
 $E(n) = n$ -*

$$\forall x \in \mathbb{R}$$
 $E(x) \le x \prec E(x) + 1$ -*

$$\forall n \in \mathbb{Z} \quad \forall x \in \mathbb{Z} \quad E(x+n) = E(x) + n \quad -*$$

 $n \in \mathbb{Z}$ ليكن

n و غير متصل على اليسار في n و ألجزء الصحيح متصلة على اليسار في n

[n; n+1] دالة الجزء الصحيح متصلة على *

n دالة الجزء الصحيح غير متصلة في *

5- قصور دالة

تعريف

I ضمن J خمن على مجال f و g دالة عددية معرفة على مجال f ضمن f خلى المجال g فاننا نقول ان الدالة g قصور الدالة f على المجال $\forall x \in J$ واننا نقول ان الدالة g

نتيجة

إذا كانت f دالة متصلة على مجال I و g قصور الدالة f على المجال J فان g متصلة على المجال J

: تمرین لتکن f دالة عددية معرفة على $[-1;+\infty[$ بما يلي

$$[-1;+\infty[$$
 بين أن الدالة f متصلة على المجال $f(x)=\sqrt{x}$ بين أن الدالة $f(x)=\frac{3x^2}{x+2}$; $-1\leq x\leq 1$

 $]1;+\infty[$ $\subset [0;+\infty[$ و $]0;+\infty[$ و متصلة على حيز تعريفها $]x+\infty[$

 $]1;+\infty[$ متصلة على f ومنه الدالة

 $]-1;1[\subset\mathbb{R}-\{-2\}]$ متصلة على كل مجال ضمن $\mathbb{R}-\{-2\}$ لأنها دالة حدودية و $x\mapsto \frac{3x^2}{x+2}$ الدالة -*

 $\left[-1;1\right[$ ومنه الدالة f متصلة على

1 في f لندرس اتصال f

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{3x^{2}}{x+2} = 1$$
 و $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \sqrt{x} = 1$ و $f(1) = 1$ لدينا $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = f(1)$

 $[-1;+\infty[$ متصلة على f متصلة

II- العمليات على الدوال المتصلة

1- خاصية(تقبل)

إذا كانتا f و g دالتين متصلتين على مجال I و lpha عددا حقيقيا فان:

I و lpha f و lpha f و lpha f متصلة على f+g -*

I و إذا كانت $rac{f}{g}$ لا تنعدم على المجال I فان الدالتين $rac{1}{g}$ و إذا كانت g

تمرين

حدد مجموعة تعريف الدالة f و أدرس اتصالها على D_f في الحالات التالية

$$f(x) = \frac{3x+1}{\sqrt{x}} - \epsilon \qquad f(x) = \sqrt{x} + \frac{x}{x+1} - \epsilon \qquad f(x) = x^2 + \sin(x) - \epsilon$$

2- اتصال مركب دالتين

<u>خاصىة</u>

 $f\left(I\right)\subset J$ حيث J دالة معرفة على مجال J و g دالة معرفة على مجال f دالة معرفة على $g\circ f$ دالة متصلة على $g\circ f$ متصلة على $g\circ f$ دالة متصلة على $g\circ f$ دالة متصلة على المتصلة على

تمرین

$$f(x) = \cos(3x^2 - 2x)$$
 : نعتبر الدالة العددية f المعرفة ب

- $.D_f$ حدد (1
- . D_f على شكل مركب دالتين. ثم أدرس اتصال الدالة f على (2

I نتیجه: f موجبهٔ ومتصلهٔ علی مجال

$$[0;+\infty[$$
 و $x\mapsto \sqrt{x}$ متصلة على $f(I)\subset [0;+\infty[$

$$\sqrt{f} = \sqrt{} \circ f$$
 لان I متصلة على مجال الان

I اذا کانت f موجبة ومتصلة على مجال I فان دالة موجبة ومتصلة على مجال

III- صورة مجال بدالة متصلة

1- صورة قطعة – صورة مجال

$$f(x) = x^2$$
 :نشاط نعتبر الدالة العددية f المعرفة ب

.
$$\left(o, \vec{i}, \vec{j}\right)$$
 منحناها في معلم متعامد و ممنظم $\left(C_f\right)$ و

$$.ig(C_fig)$$
 انشئ -1

$$]-\infty;0[$$
 و $]0;+\infty[$; $]-1;0[$; $]-1;2[$; $[-1;2]$; $[0;2]$: $[0;+\infty[$ و $]0;+\infty[$ على المجالات $]0;+\infty[$

خاصية

- *- صورة قطعة بدالة متصلة هي قطعة.
- *- صورة مجال بدالة متصلة هي مجال

ملاحظة

$$egin{aligned} [a,b] & a \end{aligned}$$
 و eta من b من a و b من b اذا كانت a من a

(القيمة الدنيا)
$$m = f(\beta) = \inf(f(x))$$
 حيث $x \in [a;b]$

پان I مجالا من \mathbb{R} و f(I) لیس مجالا *

$$f\left(\left[a;b\right]\right)=\left[m;M\right]$$
 (القيمة القصوى) $M=f\left(lpha
ight)=\sup_{x\in\left[a:b
ight]}\left(f\left(x
ight)
ight)$ و

 (C_f)

I من \mathbb{R} فان f غير متصلة على I * في الخاصية الشرط f متصلة شرط كاف و لكن غير لازما أي يمكن أن تكون صورة مجال بدالة غير متصلة هي مجال مثال نعتبر f الدالة العددية المعرفة على I

$$\begin{cases} f(x) = x + 2 & x \in [-2;0[\\ f(x) = x - 1 & x \in [0;3] \end{cases}$$

$$[-2;3]$$
 مع ذلك f غير متصلة على $f([-2;3]) = [-1;2]$ لأنها غير متصلة في 0

2- مبرهنة القيم الوسيطية

$$a;b$$
 متصلة على f متصلة f محصور بين $f(a)$ و $f(a)$ محصور بين $k \in f([a;b])$ ومنه a يوجد على الأقل عدد a محصور بين a و a حيث a . $f(c) = k$

مبرهنة القيم الوسيطية

وجد على f(b) و f(a) و متصلة على f(a) و في f(a) و أيوجد على f(a) و أيوجد على f(a) و أيوجد على أيام و أيام و

نتيجة

إذا كانت f متصلة على الأقل حلا a;b وكان $f(a)\cdot f(b)\prec 0$ فان المعادلة $f(a)\cdot f(a)$ تقبل على الأقل حلا في a;b .]a;b

 $\left[\frac{\pi}{2};\pi\right]$ تقبل حلا في $2\sin x=x$ تقبل حلا في

3- حالة دالة متصلة و رتيبة قطعا

الدالة f متصلة و تناقصية قطعا	
f(I) المجال	I المجال
[f(b);f(a)]	[a;b]
$\left[\lim_{x\to b^{-}}f(x);f(a)\right]$	[a;b[
$\left[f(b); \lim_{x \to a^+} f(x) \right]$]a;b]
$\lim_{x \to b^{-}} f(x); \lim_{x \to a^{+}} f(x) $]a;b[
$\lim_{x \to +\infty} f(x); f(a)$	[<i>a</i> ;+∞[
$\left[\lim_{x \to +\infty} f(x); \lim_{x \to a^{+}} f(x) \right]$] <i>a</i> ;+∞[
$\left[f(a); \lim_{x \to -\infty} f(x) \right]$	$]-\infty;a]$
$\left[\lim_{x \to a^{-}} f(x); \lim_{x \to -\infty} f(x) \right]$]-∞; <i>a</i> [

الدالة f متصلة و تزايدية قطعا	
f(I) المجال	المجال I
[f(a);f(b)]	[a;b]
$\left[f(a); \lim_{x \to b^{-}} f(x) \right]$	[a;b[
$\left[\lim_{x\to a^+} f(x); f(b)\right]$]a;b]
$\lim_{x \to a^+} f(x); \lim_{x \to b^-} f(x) $]a;b[
$\left[f(a); \lim_{x \to +\infty} f(x) \right]$	[<i>a</i> ;+∞[
$\lim_{x \to a^{+}} f(x); \lim_{x \to +\infty} f(x) $] <i>a</i> ;+∞[
$\lim_{x \to -\infty} f(x); f(a)$	$]-\infty;a]$
$\lim_{x \to -\infty} f(x); \lim_{x \to a^{-}} f(x) $]-∞; <i>a</i> [

تمرين

دالة عددية متصلة على $-\infty$;5 جدول تغيراتها كما يلي \hat{f}

$$f(]-\infty;0]$$
 و $f([-2;1])$ و $f([0;5])$ و $f([1;5])$ حدد

 $f\left(\left]-\infty;5
ight]$ حدد القيمة القصوى ثم القيمة الدنيا لدالة f على المجال $\left[-\infty;5
ight]$ ثم استنتج (2

تمرين

$$f(x) = \frac{2x+1}{4x-1}$$
 لتكن f دالة عددية معرفة ب

$$f$$
 بالدالة $-\infty; \frac{1}{4}$ بالدالة $-\infty$

$$D_f$$
 حدد /1

نتبحة

إذا كانت f متصلة ورتيبة قطعا على a;b فان لكل a محصور بين b و a يوجد على عدد وحيد a محصور بين a و a حيث a حيث a محصور بين a

نتبحة

إذا كانت f متصلة ورتيبة قطعا على [a;b] وكان $f(a) \cdot f(b) \prec 0$ فان المعادلة f(a) = 0 تقبل حلا وحيدا a;b في a;b

$$-1; -\frac{1}{2}$$
 قي α اتقبل حلا وحيدا α في $x^3+1=-x$

(طريقة التفرع الثنائي) حدد تأطيرا للعدد lpha سعته $rac{1}{8}$

IV- الدالة العكسية لدالة متصلة ورتيبة قطعا على مجال

1- خاصية

وإذا كانت دالة f متصلة ورتيبة قطعا على مجال I فان لكل y من f(I) المعادلة f(x)=y تقبل حلا و حيدا في f(x)=y تقبل من f(x)=y تقبل من f(x)=y تقبل عن هذا بقولنا f(x)=y تقابل من f(x)=y تقبل عن هذا بقولنا f(x)=y تقبل من f(x)=y تقبل عن f(x)=y

تعريف

. $f\left(I\right)$ = J دالة متصلة ورتيبة قطعا على مجال I و I مجال حيث

الدالة التي تربط كل عنصر y من J بالعنصر الوحيد x من J بحيث f(x)=y تسمى الدالة العكسية للدالة f نرمز لها بالرمز f^{-1}

نتائج

لتكن $f^{\scriptscriptstyle -1}$ دالتها العكسية ورتيبة قطعا على مجال $f^{\scriptscriptstyle -1}$

$$\forall x \in f(I) \quad \forall x \in I \quad f^{-1}(x) = y \Leftrightarrow x = f(y)$$

$$\forall x \in f(I) \quad f \circ f^{-1}(x) = x \quad ; \quad \forall x \in I \quad f^{-1} \circ f(x) = x$$

2- خاصيات الدالة العكسية

خاصية

إذا كانت دالة f متصلة ورتيبة قطعا على مجال I و f^{-1} دالتها العكسية فان:

- f(I) ن متصلة على $f^{ ext{--}1}$ -*
- I و لها نفس رتابة f على مجال f(I) على مجال f^{-1}
- في y=x منحنى الدالة f^{-1} هو مماثل المنحنى C_f بالنسبة المستقيم الذي معادلته y=x معامر متعامد و ممنظم.

المستقيم الذي معادلته y = x يسمى المنصف الاول للمعلم

 $\left|-\infty;\frac{1}{2}\right|$ لتكن f الدالة المعرفة على

$$f(x) = \sqrt{1 - 2x} - 1$$

 $f\left(x\right) = \frac{x}{x^2 + 1} = \frac{x}{x^2 + 1}$ بين أن القصور g للدالة f على [-1;1] تقبل دالة عكسية $\,g^{-1}\,$ على مجال $\,J\,$ يجيب تحديده g^{-1} מת حدد

 \mathbb{R} لتكن f الدالة المعرفة على

يين أن f تقبل دالة عكسية f^{-1} على /1 مجال J يجيب تحديده f^{-1} حدد /2

مر متعامد ممنظم أنشى $C_{f^{-1}}$ ثم $^{-1}$ انشى C_f في نفس المعلم

3- دالة الجدر من الرتبة n

 $n \in \mathbb{N}^*$ لیکن

 \mathbb{R}^+ بين أن الدالة $x o x^n$ تقبل دالة عكسية من بين

أ- تعريف

 $n \in \mathbb{N}^*$ لیکن

n الدالة العكسية للدالة المعرفة على $[0;+\infty[$ بما يلي $x \to x^n$ تسمى دالة الجدر من الرتبة

یرمز له بـ 🎤 . نرمز

x نرمز لصورة العدد x بالرمز $\sqrt[n]{x}$ و يقرأ الجدر من الرتبة

 $\forall (x, y) \in \mathbb{R}^{+2} \quad \sqrt[n]{x} = y \Leftrightarrow x = y^n$

 $x \in \mathbb{R}^+$ ملاحظة و اصطلاح

 $\sqrt[2]{x} = \sqrt{x} \quad ; \quad \sqrt[1]{x} = x$ x يسمى الجدر المكعب للعدد $\sqrt[3]{x}$

 $n \in \mathbb{N}^*$ لیکن

 $\lim_{x \to +\infty} \sqrt[\eta]{x} = +\infty$ و $[0; +\infty[$ متصلة على $[0; +\infty[$ متصلة على $x \to \sqrt[\eta]{x}$

في معلم متعامد ممنظم منحني الدالة $x \to \sqrt[n]{x}$ مماثل لمنحني الدالة $x \to x^n$ بالنسبة للمنصف*

حالة: n = 4

 $n \in \mathbb{N}^*$ لىكن

$$\forall (x; y) \in \mathbb{R}^{+2} \qquad (\sqrt[n]{x})^n = x$$

$$\forall (x; y) \in \mathbb{R}^{+2}$$
 $\sqrt[n]{x} = \sqrt[n]{y} \iff x = y$

$$\forall \big(x;y\big) \in \mathbb{R}^{+2} \qquad \sqrt[n]{x} \prec \sqrt[n]{y} \Longleftrightarrow x \prec y$$

 $x \in \mathbb{R}$ $x^n = a$ حل المعادلة

 $x^4=5$; $x^7=-8$; $x^5=243$ تمرین حل في $\mathbb R$ المعادلات

 $x^n=a$ حل وناقش في $\mathbb R$ المعادلة $a\in\mathbb R$ و $n\in\mathbb N^*$

ا و معلیات علی الجذور
$$n\in\mathbb{R}^+$$
 العملیات علی الجذور $(a;b)\in\mathbb{R}^{+2}$; $(n;p)\in\mathbb{N}^{*2}$

$$\left(\sqrt[n]{a}\right)^p = \sqrt[n]{a^p} \quad ; \quad \sqrt[n]{a} = \sqrt[np]{a^p} \quad ; \quad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \quad \left(b \neq 0\right)$$

$$\sqrt[n]{\sqrt[p]{a}} = \sqrt[np]{a} \quad ; \quad \sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = \sqrt[np]{a}^p \Leftrightarrow (\sqrt[n]{a})^{pn} = (\sqrt[np]{a}^p)^{pn} \Leftrightarrow \left(\left(\sqrt[n]{a}\right)^n\right)^p = a^p \Leftrightarrow a^p = a^p$$
 البرهان

$$orall a \in \mathbb{R}^+$$
 $orall (n;m) \in \mathbb{N}^{*2}$ $\sqrt[n]{a} \sqrt[m]{a} = \sqrt[nm]{a^{n+m}}$ برهن أن -1

$$\sqrt[5]{2}$$
 ; $\sqrt[7]{3}$ قارن 3 $\frac{\sqrt[3]{1024}\sqrt[5]{32}}{\sqrt[4]{64}\sqrt[3]{\sqrt{256}}\sqrt{18}}$ -2

د- اتصال ونهاية مركبة دالة و دالة الجدر النوني

Iخاصیات f دالة موجبة على مجال I و x_0 عنصرا من f

- I متصلة على المتصلة على المتصلة على $rac{\eta}{f}$ متصلة على \star
 - $\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{l}$ فان $\lim_{x \to x_0} f(x) = l$ إذا كانت \star
- $\lim_{x \to x_0} \sqrt[n]{f(x)} = +\infty$ فان $\lim_{x \to x_0} f(x) = +\infty$ إذا كانت \star

 $-\infty$ الخاصيتان تظلان صالحتين عندما يؤول xالىx على اليمين أو الىx على اليسار أو الى خا

 $x \in \mathbb{R}$ $\sqrt[3]{2x-1} = \sqrt{x}$ المعادلة -1

(E) أ/ تأكد أن 1 حل للمعادلة (E)

. بين أن الدالة $x o \sqrt[5]{x^2 - 2x - 3}$ متصلة في كل نقطة من حيز تعريفها -2

$$\lim_{x \to +\infty} \frac{\sqrt[6]{x^3 + x + 1}}{\sqrt{x + 1}} \quad ; \quad \lim_{x \to 0} \frac{\sqrt[3]{x + 1} - 1}{x}, \quad \lim_{x \to 2} \sqrt[5]{x^3 + 8} \quad ; \quad \lim_{x \to +\infty} \sqrt[8]{x^3 - x + 3} \quad \Rightarrow 3$$

4- القوة الجدرية لعدد حقيقي موجب (امتداد للقوة الصحيحة النسبية)

 $r \in \mathbb{O}^*$: $a \in \mathbb{R}^+$ ليكن

العدد a عيث a عيث a عيث $r=rac{p}{a}$ حيث a عيث a عيث a العدد a العدد a العدد a العدد a عيث a

 $\sqrt[q]{a^p}=a^{rac{p}{q}}$. r الأس $a\in\mathbb{R}^{+^*}$. $a^0=1$

 $[0;+\infty[$ کی x کی $\sqrt[n]{x}=x^{\frac{1}{n}}$

$$(a;b) \in \mathbb{R}^{*2}_{+}$$
 ; $(r;r') \in \mathbb{Q}^{2}$ ليكن $a^{r}a^{r'} = a^{r+r'}$; $a^{r}b^{r} = (ab)^{r}$; $(a^{r})^{r'} = a^{rr'}$ $\frac{1}{a^{r}} = a^{-r}$; $\frac{a^{r}}{b^{r}} = \left(\frac{a}{b}\right)^{r}$; $\frac{a^{r}}{a^{r'}} = a^{r-r'}$

 $a^ra^{r'}=\sqrt[q]{a^p}\sqrt[m]{a^n}=\sqrt[qm]{a^{pm}}\sqrt[mq]{a^{nq}}=\sqrt[qm]{a^{pm+nq}}=a^{pm+nq}=a^{r+r'}$ ومنه $r=rac{p}{a}$ ومنه $r=rac{p}{a}$; $r'=rac{n}{m}$

$$A = \frac{2^{\frac{5}{3}} 3^{\frac{5}{2}} \left(\sqrt[4]{\frac{1}{2^2}} \right)^3}{\left(2^{\frac{2}{3}} \right)^{\frac{5}{2}} \left(\sqrt[5]{3^{-3}} \right)^4} : \text{ } : \text{ }$$

طريقة التفرع النهائي DICHOTOMIE

نتيجة لمبرهنة القيم الوسيطية

إذا كانت f متصلة ورتيبة قطعا على [a;b] وكانa;b وكانa;b فان المعادلة a;b تقبل حلا وحيدا a;b

l تحديد تاطيرا للعدد α سعته

