Example 11

In $\triangle ABC, CD$ is altitude and CM is the median. What is the measure of $\angle C$ if CD and CM trisect $\angle C$?

Solution: 90° .

Draw the perpendicular line MK and $MK \perp BC$ at K.

Since $\angle ACD = \angle DCM = \angle MCB$, $\triangle ACD \cong \triangle DCM \cong \triangle KCM$. Thus AD = DM = KM. Since CM is the median, MB = MA = 2DM = 2KM. We then know that in right triangle BKM, $\angle B = 30^{\circ}$.

So in right triangle BCD, $\angle BCD=60^\circ$. Then $\angle ACD=\angle DCM=\angle MCB=30^\circ$ and $\angle ACB=3\times30^\circ=90^\circ$.