Chapter 3: Operating Systems

Chapter 3: Operating Systems

- 3.1 The History of Operating Systems
- 3.2 Operating System Architecture
- 3.3 Coordinating the Machine's Activities
- 3.4 Handling Competition Among Processes
- 3.5 Security

Functions of Operating Systems

- Oversee operation of computer
- Store and retrieve files
- Schedule programs for execution
- Coordinate the execution of programs

Evolution of Shared Computing

- Batch processing
- Interactive processing
 - Requires real-time processing
- Time-sharing/Multitasking
 - Implemented by Multiprogramming
- Multiprocessor machines

Figure 3.1 Batch processing

Figure 3.2 Interactive processing

Types of Software

- Application software
 - Performs specific tasks for users
- System software
 - Provides infrastructure for application software
 - Consists of operating system and utility software

Figure 3.3 Software classification

Operating System Components

- User Interface: Communicates with users
 - Text based (Shell)
 - Graphical user interface (GUI)
- Kernel: Performs basic required functions
 - File manager
 - Device drivers
 - Memory manager
 - Scheduler and dispatcher

Figure 3.4 The user interface act as an intermediary between users and the operating system kernel

File Manager

- Directory (or Folder): A user-created bundle of files and other directories (subdirectories)
- Directory Path: A sequence of directories within directories

Memory Manager

- Allocates space in main memory
- May create the illusion that the machine has more memory than it actually does (virtual memory) by playing a "shell game" in which blocks of data (pages) are shifted back and forth between main memory and mass storage

Getting it Started (Bootstrapping)

- Boot loader: Program in ROM (example of firmware)
 - Run by the CPU when power is turned on
 - Transfers operating system from mass storage to main memory
 - Executes jump to operating system

Figure 3.5 The booting process

Step 1: Machine starts by executing the bootstrap program already in memory. Operating system is stored in mass storage.

Step 2: Boot loader program directs transfer of the operating system into main memory and then transfers control to it.

Processes

- Process: The activity of executing a program
- Process State: Current status of the activity
 - Program counter
 - General purpose registers
 - Related portion of main memory

Process Administration

- Scheduler: Adds new processes to the process table and removes completed processes from the process table
- **Dispatcher:** Controls the allocation of time slices to the processes in the process table
 - The end of a time slice is signaled by an interrupt.

Figure 3.6 Time-sharing between process A and process B

Handling Competition for Resources

- Semaphore: A "control flag"
- Critical Region: A group of instructions that should be executed by only one process at a time
- Mutual exclusion: Requirement for proper implementation of a critical region

Deadlock

- Processes block each other from continuing
- Conditions required for deadlock
 - 1. Competition for non-sharable resources
 - 2. Resources requested on a partial basis
 - 3. An allocated resource can not be forcibly retrieved

Figure 3.7 A deadlock resulting from competition for nonshareable railroad intersections

Security

- Attacks from outside
 - Problems
 - Insecure passwords
 - Sniffing software
 - Counter measures
 - Auditing software

Security (continued)

- Attacks from within
 - Problem: Unruly processes
 - Counter measures: Control process activities via privileged modes and privileged instructions

End of Chapter

