PHYS 121 — HW2 Solutions

October 31, 2025

Q1. Spider-Man Swing (Tension Strength)

Bottom of arc (radius L). Forces: tension T up along string, weight mg down. Centripetal: $T - mg = mv^2/L$. Hence

$$T = m \frac{v^2}{L} + mg.$$

Assume traffic speed $\approx 13\,\mathrm{m/s}$, so $v \approx 26\,\mathrm{m/s}$; take $m = 75\,\mathrm{kg}$, $L \approx 75\,\mathrm{m}$ (25 floors). Then

$$T \approx 75 \cdot \frac{26^2}{75} + 75 \cdot 9.8 \approx 1410 \,\text{N}.$$

Minimum silk diameter from allowable stress σ (take dragline silk $\sigma \approx 1.0 \times 10^9$ Pa): area $A = T/\sigma$, $d = 2\sqrt{A/\pi}$:

$$A \approx 1.41 \times 10^{-6} \,\mathrm{m}^2, \quad \boxed{d_{\min} \approx 1.34 \,\mathrm{mm}}$$

For equal safety, the better cord is the one with higher allowable stress (smaller required diameter). Dragline silk ($\sim 1\,\mathrm{GPa}$) outperforms typical nylon rope ($\sim 0.08\,--0.10\,\mathrm{GPa}$).

Q2. Motorboat Terminal Speed

Given $m = 190 \,\mathrm{kg}$, thrust $F_T = 40.0 \,\mathrm{N}$, linear drag $b \,v$ with $b = 2 \,\mathrm{N \, s/m}$. Newton's 2nd law gives

$$m\frac{dv}{dt} = F_T - bv.$$

1

- (i) Rearrange to isolate v and t: $\frac{dv}{dt} = \frac{F_T}{m} \frac{b}{m}v$.
- (ii) Define the terminal speed $v_{\infty} = \frac{F_T}{b}$ so that $\frac{dv}{dt} = \frac{b}{m}(v_{\infty} v)$.

(iii) Separate variables: $\frac{dv}{v_{\infty}-v} = \frac{b}{m} dt$ and integrate from 0 to t (start from rest):

$$-\ln\!\left(1 - \frac{v}{v_{\infty}}\right) = \frac{b}{m} t.$$

(iv) Solve for v(t): $v(t) = v_{\infty} \left(1 - e^{-(b/m)t}\right)$.

Numerics: $v_{\infty} = \frac{40.0}{2} = \boxed{20\,\mathrm{m/s}}$, and $\frac{b}{m} = \frac{2}{190} = \frac{1}{95}$. The time when $v = 0.63\,v_{\infty}$ is $t \approx \boxed{95\,\mathrm{s}}$ (since $e^{-1} = 0.37$). Checks: (1) As $t \to \infty$, $e^{-(b/m)t} \to 0$, so $v \to v_{\infty}$. (2) At $t \to 0$, $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{b}{m}v_{\infty} = \frac{F_T}{m}$, equal to F_{net}/m initially (drag = 0 at rest). Initial acceleration = $\boxed{0.211\,\mathrm{m/s}^2}$.

Q3. Box up an Incline (constant speed)

Incline 30°, $m = 45 \,\mathrm{kg}$, $\mu_k = 0.35$, horizontal F. Along the plane (up positive):

$$F\cos 30^{\circ} = mg\sin 30^{\circ} + \mu_k (mg\cos 30^{\circ} + F\sin 30^{\circ}).$$

Solve:
$$F = \frac{mg(\sin 30^{\circ} + \mu_k \cos 30^{\circ})}{\cos 30^{\circ} - \mu_k \sin 30^{\circ}} = 5.13 \times 10^2 \,\text{N}$$
. Distance $s = 8.0 \,\text{m}$. Work:

$$W_F = Fs \cos 30^\circ = \boxed{3.55 \times 10^3 \,\text{J}}, \quad N = mg \cos 30^\circ + F \sin 30^\circ \Rightarrow f_k = \mu_k N \approx 224 \,\text{N},$$

 $W_f = -f_k s = \boxed{-1.79 \times 10^3 \,\text{J}}, \quad W_g = -mg(s \sin 30^\circ) = \boxed{-1.76 \times 10^3 \,\text{J}}.$

Signs: $W_F > 0$ because \vec{F} has a component along the displacement up the plane; $W_f < 0$ since kinetic friction opposes motion; $W_g < 0$ since gravity's component is down the plane while displacement is up the plane; $W_N = 0$ because $\vec{N} \perp$ displacement. Check (Work-Energy): $W_{\text{net}} = \Delta K$. Constant speed $\Rightarrow \Delta K = 0 \Rightarrow W_{\text{net}} = 0$, which our totals satisfy. Thus $W_{\text{net}} \approx 0$ consistent with constant speed.

Incline-aligned view is better for writing component equations; world-axes view is good for visualization.

Q4. Vertical Spring Gun

 $k = 14 \,\mathrm{N/cm} = 1400 \,\mathrm{N/m}, \ m = 15 \,\mathrm{g}, \ \mathrm{top} \ \mathrm{is} \ 5.0 \,\mathrm{m}$ above the uncompressed end. Energy from compressed to top (include rise by x while leaving):

$$\frac{1}{2}kx^2 = mg(5.0 + x).$$

Quadratic $700x^2 - 0.147x - 0.735 = 0$ gives physical root $x \approx 3.25$ cm

Q5. Kinetic Energy of a Massive Spring

Rod model: Consider a rod of length L and total mass M. At position x (measured from one end, $0 \le x \le L$), take a slice of length dx. The mass of this slice is dm = (M/L)dx, where M/L is the linear mass density. If the rod has a linear speed profile v(x) = (x/L)v (where v is the speed at the far end x = L), then each slice moves with speed v(x).

$$dm = \frac{M}{L}dx$$
Rod, mass M , length L

$$x = 0$$

$$dx$$

$$v(x) x = L$$

Kinetic energy element: The kinetic energy of the slice at position x is

$$dK = \frac{1}{2}dm v(x)^{2} = \frac{1}{2}\frac{M}{L} \left(\frac{x}{L}v\right)^{2} dx = \frac{1}{2}\frac{Mv^{2}}{L^{3}}x^{2} dx.$$

Integration: The total kinetic energy is obtained by integrating dK from x=0 to x=L:

$$K = \int_0^L dK = \frac{Mv^2}{2L^3} \int_0^L x^2 dx = \frac{Mv^2}{2L^3} \cdot \frac{L^3}{3} = \left[\frac{1}{6} Mv^2 \right].$$

Comparison with point-mass result: For a point mass of mass M moving at speed v, the kinetic energy would be $K_{\text{point}} = \frac{1}{2}Mv^2$. Our result is $\frac{1}{6}Mv^2$, which is exactly *one-third* of the point-mass result.

Explanation: The difference arises because the rod has a distribution of speeds. In our model, only the far end (x = L) moves at speed v; parts closer to x = 0 move slower (e.g., the center at x = L/2 moves at v/2). Since kinetic energy depends on v^2 , the slower-moving parts contribute less energy than if the entire mass were moving at speed v. The factor of 1/3 reflects the quadratic averaging over the linear speed profile: $\langle v^2 \rangle = \frac{1}{L} \int_0^L \left(\frac{x}{L}v\right)^2 dx = \frac{v^2}{3}$.

Q6. Power, Drag, and Fuel

At $v = 15 \,\mathrm{m/s}$, power to wheels $P_{15} = 20 \,\mathrm{hp} = 1.492 \times 10^4 \,\mathrm{W}$. (i) Constant drag F_d :

$$F_d = \frac{P_{15}}{v} = \boxed{9.95 \times 10^2 \,\text{N}}, \quad P_{30} = F_d \,(30 \,\text{m/s}) = \boxed{2.98 \times 10^4 \,\text{W}} \,(\approx 40 \,\text{hp}).$$

Energy for 10 km: $W = F_d d = 9.95 \times 10^6 \,\text{J}$ to wheels; fuel energy (25% efficiency): $3.98 \times 10^7 \,\text{J}$ at either speed.

(ii) Linear drag $F_d = kv$ matched at 15 m/s: $k = F_d/v = 66.3 \,\mathrm{N\,s/m}$. Then

$$P(v) = kv^2$$
, $P_{30} = k(30)^2 = 5.97 \times 10^4 \,\mathrm{W} \approx 80 \,\mathrm{hp}$.

Energy for 10 km: W = kvd gives $W_{15} = 9.95 \times 10^6 \,\mathrm{J}$, $W_{30} = 1.99 \times 10^7 \,\mathrm{J}$; fuel energies are $4 \times 10^6 \,\mathrm{J}$

Reflection: In (i) doubling speed doubles power and leaves energy per distance unchanged; in (ii) doubling speed quadruples power and doubles energy per distance. Real driving matches the trend that higher speed needs much more power and fuel per mile. Aerodynamic drag is approximately quadratic, $F \propto v^2$, so realistically $P \propto v^3$ and energy per distance $\propto v^2$, which increases even faster with speed than our linear-drag model predicts.

Q7. Peg and Complete Loop

Release from horizontal, length a. After catching the peg, the small-circle radius is a - h.

• Energy (release \rightarrow bottom of big circle, drop a):

$$mg \, a = \frac{1}{2} m v_b^2 \quad \Rightarrow \quad v_b^2 = 2ga, \quad v_b = \sqrt{2ga}.$$

• Energy (bottom \rightarrow top of small circle, rise 2(a-h)):

$$\frac{1}{2} m v_b^2 = \frac{1}{2} m v_t^2 + mg \, 2(a-h) \quad \Rightarrow \quad v_t^2 = v_b^2 - 4g(a-h) = 2ga - 4g(a-h), \quad v_t = \sqrt{2ga - 4g(a-h)}.$$

Non-slack at the top requires a strictly positive tension. At the top, taking inward as positive, the radial balance is

$$T + mg = m \frac{v_t^2}{a - h} \quad \Rightarrow \quad T = m \frac{v_t^2}{a - h} - mg.$$

Requiring T > 0 gives

$$v_t^2 > g\left(a - h\right).$$

Using $v_t^2 = 2ga - 4g(a - h)$ gives 2a - 4(a - h) > (a - h), i.e., -2a + 4h > a - h. Hence 5h > 3a, so $h > \frac{3}{5}a$.

Q8. Bungee Jump Estimate

Mass 72 kg, free fall 15 m before stretch; spring $k = 50 \,\mathrm{N/m}$. Energy from platform to lowest point:

$$mg(15+x) = \frac{1}{2}kx^2.$$

Solve $25x^2 - 705.6x - 10584 = 0$ for x > 0: $x \approx 39.1$ m. Total drop $15 + x \approx 54.1$ m.

Q9. Bullet + Block (inelastic)

 $m_b=0.220\,\mathrm{kg}$ at $v_i=400\,\mathrm{m/s}$ embeds into $M=1.30\,\mathrm{kg}$ on a frictionless table. Momentum conservation:

$$v_f = \frac{m_b v_i}{m_b + M} = \boxed{57.9 \,\text{m/s}} \text{ (east)}.$$

Impulses: $J_b = m_b(v_f - v_i) = \boxed{-75.3\,\mathrm{N\,s}}$ (on bullet, west), $J_M = Mv_f = \boxed{75.3\,\mathrm{N\,s}}$ (on block, east). Over $3\,\mathrm{ms}$: $\boxed{\overline{F} \approx 2.51 \times 10^4\,\mathrm{N}}$.

After (perfectly inelastic)

Vectors drawn to scale: $p_b=p_f=88\,\mathrm{N\,s}$ east. With $m_b=0.220\,\mathrm{kg},\,v_i=400\,\mathrm{m/s},$ $(m_b+M)v_f=88\,\mathrm{N\,s} \Rightarrow v_f=57.9\,\mathrm{m/s}.$

Note: Q10 omitted per course announcement.

Bonus. Terminal-speed experiment (0-2 pts)

- **Setup**: Indoors, drop a coffee filter beside a vertical meter stick; phone on tripod ≥240 fps, optical axis perpendicular, use a clear bin as a draft shield and a colored ROI dot on the filter
- Data: Track y(t) of the ROI every 2–4 frames across 3–5 drops; repeat with 1–4 stacked filters to vary mass and confirm v_t scaling.

- Model/fit: Quadratic drag gives $v(t) = v_t \tanh(gt/v_t)$ and the position model $y(t) = y_0 + \frac{v_t^2}{g} \ln\cosh(gt/v_t)$; fit y(t) directly (less noisy) to extract v_t . Linear-drag cross-check: $v(t) = v_t(1 e^{-t/\tau})$.
- Uncertainty: Systematic (parallax, scale skew, timing) and random (drafts, tilt). Mitigate via long camera distance, careful alignment, averaging trials, and verifying that late-time v(t) plateaus.

Assitance notes:

LLMs were used as translators and concept explainers. No direct solutions were provided.