Sistemas Distribuídos — Principais Características

Sistemas Distribuídos: Características

- Comunicação por Trocas de Mensagens:
 - Utilização de meios de comunicação introduz características diferentes no modelo de comunicação;
 - A comunicação fica sujeita a um conjunto de fatores que podem afetar sua confiabilidade □ perdas/interferências;
 - Protocolos
 - Garantir confiabilidade e ordem das mensagens ?
 - Não confundir confiabilidade com segurança
 - Interligação de várias redes
 - Atraso
 - Falha na Transmissão
 - Tempo máximo de espera por uma mensagem

Prof. Emerson Paduan: emerson@paduan.pro.b

- Modelo de Falhas:
 - Maior probabilidade de falhas □ maior quantidade de equipamentos
 - Falhas individuais não podem afetar o sistema como um todo
 - Algoritmos de detecção e recuperação de falhas
 - Replicações, Redundâncias
 - Fatores que levam a falhas
 - Elementos de interligação
 - Interferências, cabeamento mal estruturado, intempéries naturais
 - Falta de alimentação elétrica nos equipamentos
 - Nodos (Nós) do sistema
 - Falhas de software (erro de programação)
 - Falhas físicas (*crash* em equipamento)

Prof. Emerson Paduan: emerson@paduan.pro.br

Sistemas Distribuídos: Características

- Sincronismo:
 - Sistema centralizado
 - Sistema de sincronismo concentrado em um único núcleo com regras
 - Sistema Distribuído
 - Informação está necessariamente dividida por diversas máquinas e discos;
 - o Problemas com cada Nó do sistema
 - Não compartilham relógio global □ não possuem mesmos "horários"
 - Disputa por recursos

 algoritmos mais complexos e que podem ser afetados pela comunicação entre os processadores

of. Emerson Paduan: emerson@paduan.pro.br

- Segurança:
 - Vulnerabilidade de Redes
 - Observação das Mensagens 🗆 sniffing
 - Ataques □ DoS, DDoS, Buffer Overflow
 - Validação da identidade dos usuários
 - Usuário válido
 - Credenciais para utilizar recursos
 - o Interligação de serviços públicos e privados
 - Internet
 - Políticas de segurança diversas (níveis de acesso)
 - Sistemas Heterogêneos

Prof. Emerson Paduan: emerson@paduan.pro.br

Sistemas Distribuídos: Características

- Heterogeneidade:
 - Sistema amplo
 - Variedade de Arquiteturas
 - CISC, RISC, Vetoriais
 - **32, 64 bits**
 - Intel, Mac, Sparc, Mainframes, etc
 - Variedade de Sistemas Operacionais
 - Linux, Windows, MacOS, Solaris, AIX, HP-UX, BSD

Prof. Emerson Paduan: emerson@paduan.pro.bi

• Desempenho:

- Desempenho de um SD deve ser melhor do que em um Sistema Centralizado
- o Divisão do processamento entre os diversos nós
- Custo da comunicação
- Com SD é possível atingir desempenhos jamais imagináveis com Sistemas Centralizados

Prof. Emerson Paduan: emerson@paduan.pro.br

Sistemas Distribuídos: Características

Custo:

- Pode-se obter um SD com a mesma quantidade de processadores de um SC com um custo muito menor
- Utilização de múltiplos processadores de baixo custo interligados em rede
- Capacidade de se obter um desempenho muito maior com o mesmo investimento do que em um Sistema Centralizado

Prof. Emerson Paduan: emerson@paduan.pro.br

- Distribuição Geográfica:
 - Componentes fisicamente distantes uns dos outros
 - Aplicações Inerentemente Distribuídas
 - Venda de passagens aéreas
 - Sistema integrado de gestão empresarial
 - Internet...

Prof. Emerson Paduan: emerson@paduan.pro.bi

Sistemas Distribuídos: Características

- Compartilhamento de Recursos:
 - Periféricos de alto custo
 - Impressoras laser coloridas, discos RAID com interface SCSI
 - Dados em um ambiente centralizado
 - Bases de dados de transações financeiras
 - Problema
 - Controle de acesso e concorrência
 - Mecanismos mais complexos

Prof. Emerson Paduan: emerson@paduan.pro.b

- Capacidade de Expansão (Scalability):
 - Sistema Centralizado
 - Limite físico para o número máximo de processadores
 - Limite para discos, memória
 - Sistema Distribuído
 - Necessidade de mais desempenho

 acoplar mais máquinas
 - Em função da demanda, aumenta-se o número de nós do sistema
 - Problema □ interligação □ congestionamento

Prof. Emerson Paduan: emerson@paduan.pro.bi

Aspectos de Projeto

- Escalabilidade
 - Com 10 processadores
 - Sistema OK
 - Desempenho proporcional à quantidade de máquinas
 - Com 50 processadores
 - Sistema OK
 - Desempenho começa a ficar comprometido
 - Com 100 processadores
 - Sistema falha
 - o Desafio: Conciliar desempenho com escalabilidade

Prof. Emerson Paduan: emerson@paduan.pro.b

- Disponibilidade:
 - Tempo em que o sistema é "utilizável"
 - Desejável = 100%
 - Máquinas independentes podem continuar mantendo o sistema em operação no caso de falhas em outras máquinas
 - Sistema deve ser projetado para tal
 - Exemplos
 - Sistema bancário
 - Web Servers
 - Garantia de Disponibilidade
 - Redundância (software, hardware)
 - Algoritmos de recuperação

Sistemas Distribuídos: Características

- Concorrência:
 - Mais complexo do que em um Sistema Centralizado
 - Mecanismos de controle de concorrência devem ser revistos (semáforos, mutexes)
 - o Maior número de máquinas □ maior concorrência
 - Rede influencia o acesso aos recursos

- Transparência
 - Localização: o usuário não precisa saber onde estão os recursos
 - Replicação: não é necessário saber quantas cópias do recurso existem
 - Migração: recursos podem mudar de lugar sem a alteração de nomes
 - Concorrência: recursos podem ser disputados sem conhecimento do usuário
 - Paralelismo: várias atividades podem ocorrer simultaneamente sem o conhecimento dos usuário

Prof. Emerson Paduan: emerson@paduan.pro.bi

Protocolos: Desafios

- Roteamento:
 - Prover o caminho mais eficiente para um pacote, através da aplicação de algoritmos de roteamento
- Controle de Congestionamento:
 - Evitar a degradação na vazão da rede através de atrasos no envio de pacotes;
 - Informar aos participantes da rota do pacote sobre o congestionamento.
- Internetworking:
 - Integrar diversos tipos de redes, endereçamento, protocolos, componentes de ligação (roteadores, bridges, hubs, switches).

Comunicação Interprocessos: Camadas de Serviços

Applications, services

Middleware

Operating system

Computer and network hardware

Prof. Emerson Paduan: emerson@paduan.pro.br

Prof. Emerson Paduan: emerson@paduan.pro.br

