

**Europäisches Patentamt European Patent Office** Office européen des brevets



① Veröffentlichungsnummer: 0 537 463 A2

## **EUROPÄISCHE PATENTANMELDUNG**

(21) Anmeldenummer: 92114978.7

2 Anmeldetag: 02.09.92

(5) Int. Cl.5: **A01N** 25/00, C07D 471/04, //(C07D471/04,239:00,221:00)

Priorität: 18.09.91 DE 4131029

Veröffentlichungstag der Anmeldung: 21.04.93 Patentblatt 93/16

Benannte Vertragsstaaten: AT BE CH DE DK FR GB IT LI NL

Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

(7) Erfinder: Bratz, Matthias, Dr. Schwabsgasse 2 W-6720 Speyer(DE) Erfinder: Kober, Reiner, Dr. Im Schlittweg 20

W-6701 Fussgoenheim(DE) Erfinder: Seele, Rainer, Dr.

Sonnenbergstrasse 1 W-6701 Ellerstadt(DE)

Erfinder: Saupe, Thomas, Dr. Kressenwiesenweg 13

W-6902 Sandhausen(DE)

Erfinder: Meyer, Norbert, Dr.

Dossenheimer Weg 22 W-6802 Ladenburg(DE)

Erfinder: Walker, Nigel, Dr.

Frauenpfad 20

W-6915 Dossenheim(DE)

Erfinder: Landes, Andreas, Dr.

**Untere Hart 12** 

W-6703 Limburgerhof(DE)

Erfinder: Walter, Helmut, Dr. **Gruenstadter Strasse 82** 

W-6719 Obrigheim(DE)

Substituierte Pyrido(2,3-d)pyrimidine als Antidots.

(9) Herbizide Mittel, enthaltend mindestens ein substituiertes Pyrido[2,3-d]pyrimidin I

$$\mathbb{R}^4$$
 $\mathbb{R}^5$ 
 $\mathbb{R}^3$ 
 $\mathbb{R}^2$ 
 $\mathbb{R}^2$ 
 $\mathbb{R}^3$ 
 $\mathbb{R}^2$ 

Ι

R<sup>1</sup>, R<sup>2</sup>

Wasserstoff; ggf. subst. Alkyl; Alkoxy; Halogenalkoxy; Alkylamino; Alkenyl; Alkinyl; ggf. subst. Cycloalkyl; ggf. subst. Aryl oder Heteroaryl;

 $R^3$ 

Hydroxy; ggf. subst. Amino; Halogen; Alkylthio; Alkoxycarbonyl; oder ein Rest R1;

ein Rest R<sup>1</sup>; CN; NO<sub>2</sub>; COOH; CSOH; SO<sub>2</sub>-R<sup>6</sup>; C(=X)-R<sup>7</sup>; C(=Y)-R<sup>8</sup>, oder R<sup>7</sup>-C(YR<sup>9</sup>)-ZR<sup>10</sup>;

ein Rest R1; Hydroxy; ggf. subst. Amino; Halogen; Alkylthio; Pyrrolidin-1-yl; Piperidin-1-yl; Morpholin-1-yl; ggf. subst. Alkylcarbonyloxy; ggf. subst. Alkylsulfonyloxy;

ggf. subst. Aryloxy, Arylamino, Benzyloxy, Benzylamino, Aroyloxy oder Phenylsulfonyloxy; N(R¹²)-SO₂-NR¹³; N-(R12)-CO-R14; N(R12)-CS-R14;

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R¹ bis R⁵ eine saure oder basische Gruppe bedeutet, und mindestens einen herbiziden Wirkstoff aus

- A) der Gruppe der Cyclohexenon-Derivate II, oder
  - B) der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate III.

Die vorliegende Erfindung betrifft herbizide Mittel, enthaltend mindestens ein antagonistisch wirksames substituiertes Pyrido[2,3-d]pyrimidin der allgemeinen Formel I

I

5

$$\mathbb{R}^4$$
 $\mathbb{R}^3$ 
 $\mathbb{R}^2$ 
 $\mathbb{N}$ 
 $\mathbb{R}^3$ 
 $\mathbb{R}^2$ 
 $\mathbb{N}$ 

10

in der die Variablen folgende Bedeutung haben:

R1, R2

Wasserstoff; C<sub>1</sub>-C<sub>8</sub>-Alkyl; C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl; C<sub>1</sub>-C<sub>6</sub>-Alkoxy; C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy; C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>alkyl; C<sub>1</sub>-C<sub>8</sub>-Alkylamino; C<sub>2</sub>-C<sub>8</sub>-Alkenyl; C<sub>2</sub>-C<sub>8</sub>-Alkinyl;

C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio:

Phenyl, Naphthyl, Phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C<sub>1</sub>-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkoxycarbonyl, C1-C4-Alkylthio, C<sub>3</sub>-C<sub>6</sub>-Alkenyl und C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

35

40

45

50

Hydroxy; Amino; Halogen; C<sub>1</sub>-C<sub>6</sub>-Alkylthio; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino; C<sub>1</sub>-C<sub>8</sub>-Alkoxycarbonyl; oder eine der für R1 genannten Gruppen; 30

eine der für R1 genannten Gruppen;

CN; NO<sub>2</sub>; COOH; CSOH; Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino-C<sub>1</sub>-C<sub>4</sub>-alkyl;

 $SO_2-R^6$ ;  $C(=X)-R^7$ ;  $C(=Y)-R^8$ , oder  $R^7-C(YR^9)-ZR^{10}$ ;

eine der für R1 genannten Gruppen; Hydroxy; Amino; Di-(C1-C8-alkyl)-amino; C3-C8-

Cycloalkylamino; C1-C6-Alkylthio;

R7 Amino; Oxyamino (-NH-OH); C<sub>1</sub>-C<sub>8</sub>-Alkylamino; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalky-

lamino; C<sub>1</sub>-C<sub>8</sub>-Alkoxy; C<sub>1</sub>-C<sub>6</sub>-Alkylthio; Phenylamino;

R8 eine der für R1 genannten Gruppen;

C<sub>1</sub>-C<sub>8</sub>-Alkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl; C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>2</sub>-C<sub>6</sub>-alkyl; C<sub>2</sub>-C<sub>8</sub>-Alkenyl; oder R9.R10

R9 und R10 gemeinsam -CH2CH2-, -CH2CH2CH2- oder -CH2CH2CH2CH2-, wobei ein oder zwei

Wasserstoffatome in diesen Gruppen durch die folgenden Reste ersetzt sein können:

= O, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>6</sub>-Alkoxy;

Sauerstoff, Schwefel oder NR11, worin X

für eine der für R1 genannten Gruppen steht, oder die folgende Bedeutung hat: RII

Wasserstoff; Hydroxy; Amino; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino;

Phenoxy, Naphthyloxy, Phenylamino oder Naphthylamino, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkoxycarbonyl, C1-C4-

Alkylthio, C<sub>3</sub>-C<sub>6</sub>-Alkenyl und C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

Sauerstoff oder Schwefel; Υ

R<sup>5</sup>

eine der für R1 genannten Gruppen:

Hydroxy; Amino; Halogen; C₁-C<sub>6</sub>-Alkylthio; Di-(C₁-C<sub>8</sub>-alkyl)-amino; C₃-C<sub>8</sub>-Cycloalkylamino; Pyrrolidin-1-yl; Piperidin-1-yl; Morpholin-1-yl; C<sub>1</sub>-C<sub>8</sub>-Alkylcarbonyloxy; C<sub>1</sub>-C<sub>4</sub>-Halogenalkylcarbonyloxy; C<sub>1</sub>-C<sub>8</sub>-Alkylsulfonyloxy; C<sub>1</sub>-C<sub>8</sub>-Halogenalkylsulfonyloxy;

Phenoxy, Naphthyloxy, Phenylamino, Naphthylamino, Benzyloxy, Benzylamino, Benzoyloxy, 2-Naphthoyloxy oder Phenylsulfonyloxy, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen

können: Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl und  $C_1$ - $C_4$ -Alkoxy;  $N(R^{12})$ - $SO_2$ - $R^{13}$ ;  $N(R^{12})$ -CO- $R^{14}$ ;  $N(R^{12})$ -CS- $R^{14}$ ;

R<sup>12</sup> Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; Phenyl, welches ein bis drei der folgenden Reste tragen kann: Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und C<sub>1</sub>-C<sub>4</sub>-Alkoxy;

R<sup>13</sup> eine der für R<sup>1</sup> genannten Gruppen; Amino, Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino oder C<sub>3</sub>-C<sub>6</sub>-Cycloalkylamino;

R<sup>14</sup> eine der für R<sup>1</sup> genannten Gruppen;

Amino; Oxyamino (-NH-OH); Di-(C<sub>1</sub>-C<sub>6</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino;

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R¹ bis R⁵ eine saure oder basische Gruppe bedeutet,

und mindestens einen herbiziden Wirkstoff aus

A) der Gruppe der Cyclohexenon-Derivate der allgemeinen Formel II,

R<sup>c</sup> OR<sup>b</sup> N-O-W-R<sup>f</sup>

20

15

5

in der die Substituenten die folgende Bedeutung haben:

 $R^a$ 

C1-C6-Alkyl;

25 Rb

Wasserstoff;

das Äquivalent eines landwirtschaftlich brauchbaren Kations;

 $C_1$ - $C_8$ -Alkylcarbonyl;  $C_1$ - $C_{10}$ -Alkylsulfonyl;  $C_1$ - $C_{10}$ -Alkylphosphonyl;

Benzoyl, Benzolsulfonyl oder Benzolphosphonyl, wobei die aromatischen Ringe ein bis fünf Halogenatome tragen können;

Rc

30

40

Wasserstoff; CN; CHO;

C<sub>1</sub>-C<sub>6</sub>-Alkyl, welches einen der folgenden Reste tragen kann: C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, Phenyloxy, Phenylthio, Pyridyloxy oder Pyridylthio, wobei die aromatischen Reste ihrerseits ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>3</sub>-C<sub>6</sub>-Alkenyl, C<sub>3</sub>-C<sub>6</sub>-Alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-Alkinyl, C<sub>3</sub>-C<sub>6</sub>-Alkinyloxy oder NR<sup>9</sup>R<sup>h</sup>:

- R<sup>g</sup> Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl; C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl; Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenal-kyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;
- Rh Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl;
- R<sup>c</sup> bedeutet desweiteren:

C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl oder C<sub>5</sub>-C<sub>7</sub>-Cycloalkenyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfon

5-gliedrige gesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

6- oder 7-gliedrige gesättigte oder ein- oder zweifach ungesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder oder ein Sauerstoff- und ein Schwefelatomenthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy und C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl:

Phenyl oder Pyridyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Nitro, Formyl,

Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-Alkinyl, C<sub>3</sub>-C<sub>6</sub>-Alkinyloxy und NR<sup>k</sup>R<sup>l</sup>;

Rk Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

R<sup>I</sup> Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl; C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl; Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

 $R^d$ 

Wasserstoff; Hydroxy;

oder, sofern R<sup>c</sup> für C<sub>1</sub>-C<sub>6</sub>-Alkyl steht, ebenfalls C<sub>1</sub>-C<sub>6</sub>-Alkyl;

10 R

5

Wasserstoff; Cyano; Halogen; C1-C4-Alkoxycarbonyl;

C<sub>1</sub>-C<sub>4</sub>-Alkylketoxim;

W

 $C_1$ - $C_6$ -Alkylen,  $C_3$ - $C_6$ -Alkenylen oder Alkinylen, wobei diese Gruppen X<sup>1</sup> eine Methylengruppe (=  $CH_2$ ) und/oder ein bis drei der folgenden Reste tragen können: Halogen und  $C_1$ - $C_3$ -Alkyl;

 $C_3$ - $C_6$ -Alkylen oder  $C_3$ - $C_6$ -Alkenylen, wobei in diesen Resten jeweils eine Methylengruppe durch Sauerstoff, Schwefel, SO, SO<sub>2</sub> oder NR<sup>I</sup> ersetzt ist, und wobei in diesen Gruppen ein bis drei Wasserstoffatome durch  $C_1$ - $C_3$ -Alkylreste ersetzt sein können;

Ri Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

20 Rf

25

30

Wasserstoff; CH = CH-Z1, worin

Wasserstoff; Cyano; Carboxyl; Halogen; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl; C<sub>1</sub>-C<sub>4</sub>-Alkoxy; C<sub>1</sub>-C<sub>8</sub>-Alkoxycarbonyl; Benzyloxycarbonyl;

 $C_3$ - $C_6$ -Cycloalkyl, welches seinerseits ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl und  $C_1$ - $C_4$ -Alkoxy;

Phenyl, Halogenphenyl, Dihalogenphenyl, Thienyl oder Pyridyl, wobei dieser Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkoxy,  $C_1$ - $C_4$ -Alkylthio oder  $C_3$ - $C_6$ -Cycloalkyl, wobei der cyclische Rest seinerseits noch ein bis drei der folgenden Gruppen tragen kann: Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl und  $C_1$ - $C_4$ -Alkoxy, bedeutet;

Rf bedeutet ferner

Ethinyl, welches einen der folgenden Reste tragen kann:  $C_1$ - $C_4$ -Alkyl oder  $C_3$ - $C_6$ -Cyckloalkyl, wobei diese Gruppen desweiteren ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl und  $C_1$ - $C_4$ -Alkoxy;

Ethinyl, welches einen der folgenden Reste trägt: Phenyl, Thienyl oder Pyridyl, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

Phenyl, Halogenphenyl, Dihalogenphenyl, 5-gliedrige romatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, oder 6-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein bis vier Stickstoffatome enthalten, wobei diese aromatischen und heteroaromatischen Gruppen ein bis drei der folgenden Reste tragen können: Nitro, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, die bei Z<sup>1</sup> genannten oder

B) der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III

45

50

in der die Substituenten die folgende Bedeutung haben:

R٥

Phenyl, Pyridyl, Benzoxazolyl, Benzthiazolyl oder Benzpyrazinyl, wobei diese aromatischen und heteroaromatischen Ringsysteme ein oder zwei der folgenden Reste tragen können: Nitro, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio; RP

Wasserstoff oder Methyl;

Rq

10

15

20

35

40

Wasserstoff;  $C_1$ - $C_4$ -Alkyl;  $C_3$ - $C_4$ -Alkenyl;  $C_3$ - $C_4$ -Alkinyl;  $C_1$ - $C_4$ -Alkoxy- $C_1$ - $C_4$ -alkyl;  $C_3$ - $C_4$ -Alkylideniminooxy- $C_2$ - $C_3$ -alkyl; Tetrahydrofuranylmethyl; Isoxazolidinyl;

oder das Äquivalent eines landwirtschaftlich brauchbaren Kations.

Außerdem betrifft die Erfindung Verfahren zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs auf Anbauflächen von Kulturpflanzen mit diesen herbiziden Mitteln sowie neue Pyrido[2,3-d]pyrimidine I'.

Substituierte Pyrido[2,3-d]pyrimidine vom Typ der Verbindungen I sind sind bereits aus folgenden Druckschriften bekannt:

- W.J. Irwin et al., J. Chem. Soc. (C), 1745, (1967);
- Shinsaku Minami et al., Chem. Pharm. Bull. 19, 1483 (1971) [R3 = Hydroxyl];
- Sadao Nishigaki et al., Chem. Pharm. Bull. 18, 1385 (1970);
- Rizkalla et al., J. Org. Chem. 37, 3980 (1972) [R3 = Hydroxyl];
- Evans et al., J. Org. Chem. 40, 1438 (1975);
- Söllhuber-Kretzer et al., Arch. Pharm. 316, 346 (1983);
- Nishino et al., Bull chem. Soc. Jpn. 45, 1127 (1972);
- Bredereck et al., Chem. Ber. 96, 1868 (1963);
- Bennett et al., J. Med. Chem. 24, 382 (1981);
- EP-A 329 012;
- EP-A 18 151 [6-Aryl-7-amino-pyrido[2,3-d]pyrimidine als blutdrucksenkende Mittel];

Eine antidotische oder antagonistische Wirkung der bekannten Verbindungen in Kombination mit herbiziden Wirkstoffen ist den genannten Druckschriften jedoch nicht zu entnehmen.

Aufgabe der vorliegenden Erfindung war es, herbizide Mittel bereitzustellen, die eine gute Bekämpfung unerwünschter Pflanzen gewährleisten, ohne jedoch die Nutzpflanzen nennenswert zu schädigen oder deren Ernteertrag wesentlich herabzusetzen.

Gemäß diese Aufgabe wurden die Eingangs definierten herbiziden Mittel gefunden.

Des weiteren wurden Verfahren zur Behandlung von Pflanzenkulturen mit den antagonistisch wirksamen Verbindungen I und den Herbiziden II oder den Herbiziden III gefunden, wobei es unerheblich ist, ob die Verbindungen I und II oder I und III gemeinsam oder getrennt formuliert und ausgebracht werden und in welcher Reihenfolge die Applikation bei getrennter Ausbringung erfolgt.

Die herbiziden Mittel enthalten mindestens eine antagonistisch wirksame Verbindung I und mindestens eine Herbizid II oder ein Herbizid III.

Es können jedoch noch weitere antagonistisch oder herbizid wirksame Verbindungen in den erfindungsgemäßen herbiziden Mitteln enthalten sein.

Substituierte Pyrido[2,3-d]pyrimidine der Formel I'

 $R^4$   $R^{3'}$   $R^2$   $R^{5'}$  N N  $R^1$ 

I'

in der die Substituenten folgende Bedeutung haben, sind neu:

in der die Reste R<sup>1</sup>, R<sup>2</sup> und R<sup>4</sup> die in vorstehend gegebene Bedeutung haben und R<sup>3</sup>' und R<sup>5</sup>' wie folgt definiert sind:

R3

Halogen; C<sub>1</sub>-C<sub>6</sub>-Alkylthio; oder eine der für R<sup>1</sup> genannten Gruppen;

o R5'

eine der für R1 genannten Gruppen;

Hydroxy; Halogen;  $C_1$ - $C_6$ -Alkylthio;  $C_1$ - $C_8$ -Alkylcarbonyloxy;  $C_1$ - $C_8$ -Alkylsulfonyloxy; Phenoxy; Benzoyloxy; Phenylsulfonyloxy, wobei der aromatische Rest ein bis drei der folgenden Gruppen tragen kann: Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl und  $C_1$ - $C_4$ -Alkoxy;

mit der Maßgabe, daß R¹ und R³¹ nicht gleichzeitig Wasserstoff bedeuten, wenn R² für Wasserstoff oder Phenyl und R⁴ für Phenyl oder R⁵¹ für Phenyl, Halogenphenyl, Naphthyl oder Pyridyl steht, und mit der Maßgabe, daß die Reste R², R³¹, R⁴ und R⁵¹ nicht gleichzeitig Wasserstoff bedeuten, wenn R¹ für Wasserstoff oder Pyridyl steht,

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I', bei denen mindestens einer der Substituenten R¹, R², R³¹, R⁴ und R⁵¹ eine saure oder basische Gruppe bedeutet.

Die substituierten Pyrido[2,3-d]pyrimidine I und I' sind auf verschiedene Weise erhältlich, und zwar vorzugsweise nach einem der folgenden Verfahren:

a) Kondensation von 4-Aminopyrimidinen IV mit Methylencarbonyl-Verbindungen V

20

5

Die Umsetzung erfolgt bevorzugt in an sich bekannter Weise (vgl. Caluwe et al. J.Org. Chem. 1981, 40, 1438-1439) in einem inerten Lösungs- oder Verdünnungsmittel, beispielsweise in Wasser, in einem Alkohol wie Methanol, Ethanol, Propanol, Isopropanol und Ethoxyethanol, in flüssigem Ammoniak, in einem Ether wie Tetrahydrofuran oder Dioxan, in einem aromatischen Kohlenwasserstoff wie Benzol, Toluol, Chlorbenzol und Nitrobenzol, in einem polaren aprotischen Lösungsmittel wie Acetonitril, Dimethylformamid, Dimethylsulfoxid und N-Methylpyrrolidon oder in Gemischen der genannten Lösungsmittel.

Vorteilhaft führt man die Umsetzungen in Gegenwart einer organischen oder anorganischen Base durch, wobei z.B. die Hydroxide, Hydride, Alkoxide, Amide, Carbonate und Hydrogencarbonate der Alkali- und Erdalkalimetalle in Betracht kommen. Besonders eignen sich Alkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid und Kaliumhydroxid, Erdalkalimetallhydroxide wie Bariumhydroxid und Calciumhydroxid, Alkalimetallhydride wie Natriumhydrid und Kaliumhydrid, Erdalkalimetallhydride wie Calciumhydroxid, Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat und Kalium-tert.-butylat, Alkalimetallamide wie Natriumamid und Lithium-diisopropylamid, Alkalimetallcarbonate und -hydrogencarbonate wie Natriumbicarbonat, Natriumhydrogencarbonat, Kaliumbicarbonat und Kaliumhydrogencarbonat. Unter den organische Basen sind aliphatische Amine wie Triethylamin, Dimethylamin, Diethylamin, und Diisopropylamin, cycloaliphatische Amine wie Piperidin, Morpholin, Pyrrolidin, DBU und DABCO sowie aromatische Amine wie Pyridin, N,N-Dimethylaminopyridin und Chinolin besonders bevorzugt.

Verwendet man ein Amin als Base, so kann auch lösungsmittelfrei in einem Überschuß der Base gearbeitet werden.

Zweckmäßigerweise setzt man Edukte IV und V in etwa stöchiometrischem Verhältnis ein oder man arbeitet mit einem Überschuß an Methylenverbindung V bis ca. 100 mol-%.

Die Menge an Base ist nicht kritisch. Sie beträgt in der Regel 10-50 mol-%, kann jedoch auch im Überschuß eingesetzt werden.

Bei Verwendung einer organischen Base kann ohne Lösungsmittel in einem Überschuß an Base, bis zur etwa 10fachen molaren Menge, bezogen auf das 4-Aminopyrimidin IV, gearbeitet werden.

Im allgemeinen liegt die Reaktionstemperatur zwischen 0 und 200°C, bevorzugt zwischen 20 und 150°C, insbesondere bei etwa 20-30°C (Raumtemperatur) oder bei der Siedetemperatur des jeweiligen Lösungsmittels.

In der Regel arbeitet man unter Atmosphärendruck oder unter dem Eigendruck des Systems. Höherer oder niedrigerer Druck sind möglich, bringen im allgemeinen aber keine Vorteile.

Die verwendeten 4-Aminopyrimidine IV sind aus der Literatur bekannt oder können analog den dort beschriebenen Verfahren dargestellt werden (vgl. z.B. Benett et al., J. Med. Chem. 24, 381-389 (1981) und die dort zitierte Literatur).

55

b) Kondensation von 4-Aminopyrimidinen IV mit Acetonitrilen VI und gewünschtenfalls anschließende Derivatisierung der Aminogruppe

- Die Umsetzung erfolgt normalerweise nach an sich bekannten Methoden [vgl. z. B. Benett et al., J. Med. Chem. 24, 381-389 (1981)]. Eine nachfolgende Derivatisierung kann z.B. analog den in der EP-A 329 012 beschrieben Methoden erfolgen.
- c) Umsetzung von 4-Aminopyridinen IV mit Amiden VII [vgl. Söllhuber-Kretzer in Arch. Pharm. 316, 346-352 (1983)]



35

40

45

50

55

d) Umsetzung von 4-Aminopyrimidinen IV  $(R^3,R^{3\prime}=OC_2H_5)$  mit CH-aciden Verbindungen VIIIa oder VIIIb nach Art einer Claisen-Kondensation

5 
$$R^4$$
  $OC_2H_5$   $R^2$   $OC_2H_5$   $OC_2H_5$ 

R5 bedeutet vorzugsweise Halogen, besonders bevorzugt Chlor oder C1-C4-Alkoxy, insbesondere Ethoxy.

Die Umsetzung erfolgt nach an sich bekannten Methoden [vgl. Bredereck et al., Chem. Ber. 96, 1868-1872 (1963)] in Gegenwart von Natrium oder einem Alkalimetallalkoholat wie Natriummethanolat, Natriumethanolat und Kalium-tert.-butylat.

Bei der Reaktionsführung in Gegenwart von Natrium arbeitet man zweckmäßigerweise ohne Lösungsmittel in einem Überschuß der CH-aciden Verbindung VIIIa oder VIIIb, bis etwa zur 10fachen molaren Menge. Bei der Reaktionsführung in Gegenwart von Alkoholaten empfiehlt es sich als Lösungsmittel den entsprechenden Alkohol zu verwenden, wobei die Edukte IV und VIIIa bzw. VIIIb bevorzugt in etwa stöchiometrischen Mengen eingesetzt werden.

Eine Übersicht über weitere Herstellungsmethoden ist einem Artikel von E. Lunt und C.G. Newton in "Comprehensive Heterocyclic Chemistry" (editors: A. Katritzky und C.W.Rees) Vol. 3, S. 215ff. zu entnehmen. Ferner sei diesbezüglich auf die folgenden Druckschriften verwiesen:

- C.J. Blankley et al., J. Med. Chem. 24, 382-389 (1990),
- M. Söllhuber-Kretzer et al., Arch. d. Pharm. 316, 346-352 (1983),
- P. Caluwe et al., J. Org. Chem. 40, 1438-1439 (1975).

Im Hinblick auf die biologische Wirksamkeit der Verbindungen I als Antidots sind solche Derivate bevorzugt, in denen die Substituenten die folgende Bedeutung haben:

R¹. R²

### Wasserstoff;

30

 $C_1-C_8$ -Alkyl, besonders  $C_1-C_6$ -Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, vorzugsweise Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl und 1-Methyl-propyl;

C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, insbesondere C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

C<sub>1</sub>-C<sub>6</sub>-Alkoxy wie Methyloxy, Ethyloxy, Propyloxy, 1-Methylethyloxy, Butyloxy, 1-Methyl-propyloxy, 2-Methylpropyloxy, 1,1-Dimethylethyloxy, Pentyloxy, 1-Methylbutyloxy, 2-Methylbutyloxy, 3-Methylbutyloxy, 2,2-Di-methylpropyloxy, 1-Ethylpropyloxy, Hexyloxy, 1,1-Dimethylpropyloxy, 1,2-Dimethylpropyloxy, 1-Methylpentyloxy, 2-Methylpentyloxy, 3-Methylpentyloxy, 4-Methylpentyloxy, 1,1-Dimethylbutyloxy, 1,2-Dimethylbutyloxy, 1,3-Dimethylbutyloxy, 2,2-Dimethylbutyloxy, 2,3-Dimethylbutyloxy, 3,3-Dimethylbutyloxy, 1-Ethyl-butyloxy, 2-Ethylbutyloxy, 1,1,2-Trimethylpropyloxy, 1,2,2-Trimethylpropyloxy, 1-Ethyl-1-methylpropyloxy und 1-Ethyl-2-methylpropyloxy, insbesondere Chlormethyl, Trichlormethyl und Trifluormethyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, insbesondere C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie Chlormethyloxy, Dichlormethyloxy, Trichlormethyloxy, Fluormethyloxy, Difluormethyloxy, Trifluormethyloxy, Chlordifluormethyloxy, 1-Fluorethyloxy, 2-Fluorethyloxy, 2,2-Difluorethyloxy, 2,2-Difluorethyloxy, 2,2-Difluorethyloxy, 2,2-Difluorethyloxy, 2,2-Dichlor-2-fluorethyloxy, insbesondere Trifluormethoxy, C<sub>1</sub>-C<sub>6</sub>-Alkyl steht für durch C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt substituiertes C<sub>1</sub>-C<sub>6</sub>-Alkyl wie vorstehend genannt, insbesondere Methoxymethyl;

- C<sub>1</sub>-C<sub>8</sub>-Alkylamino, besonders C<sub>1</sub>-C<sub>6</sub>-Alkylamino wie Methylamino, Ethylamino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino, 2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino, 1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino, 1-Methylpentylamino, 2-Methylpentylamino, 3-Methylpentylamino, 4-Methylpentylamino, 1,1-Dimethylbutylamino, 1,2-Dimethylbutylamino, 1,3-Dimethylbutylamino, 2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino, 1-Ethylbutylamino, 1-Ethylpropylamino, 1,2,2-Trimethylpropylamino, 1-Ethyl-1-methylpropylamino und 1-Ethyl-2-methylpropylamino, insbesondere Methylamino und Ethylamino;
- C<sub>2</sub>-C<sub>8</sub>-Alkenyl, besonders C<sub>2</sub>-C<sub>6</sub>-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-2-butenyl, 2-Methyl-3-butenyl, 2-Methyl-3-butenyl, 2-Methyl-3-butenyl, 1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-3-pentenyl, 1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 1
- Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere Ethenyl und 2-Propenyl;

butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-

- C<sub>2</sub>-C<sub>8</sub>-Alkinyl, besonders C<sub>2</sub>-C<sub>6</sub>-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 1-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-1-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pen-
- tinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, insbesondere 2-Propinyl;
- C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, Cyclohexyl, und Cyclohexyl, insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei der folgenden Reste tragen kann: Hydroxy,
  - Halogen wie Fluor, Chlor, Brom und Jod, vorzugsweise Fluor und Chlor;

50

- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, insbesondere Methyl, Ethyl und 1-Methylethyl;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl, insbesondere Trifluormethyl;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie Methoxy, Ethoxy, Propyloxy, 1-Methylethoxy, Butyloxy, 1-Methyl-propyloxy, 2-Methylpropyloxy und 1,1-Dimethylethoxy, vorzugsweise Methoxy und Ethoxy;

- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend genannt, insbesondere Difluormethoxy;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methyl-propylthio,
   2-Methylpropylthio und 1,1-Dimethylethylthio, vorzugsweise Methylthio und Ethylthio;
- Phenyl, Naphthyl, Phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl (welches für durch Phenyl substituiertes C<sub>1</sub>-C<sub>6</sub>-Alkyl wie vorstehend genannt steht),
  - 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können:
    - Nitro, Cyano,

15

30

35

40

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C1-C4-Alkyl wie vorstehend genannt, vorzugsweise Methyl, Ethyl und 1-Methylethyl;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl und Difluormethyl;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy. Ethoxy und 1-Methylethoxy:
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend genannt, vorzugsweise Difluormethoxy und Trifluormethoxy;
  - C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methylethoxycarbonyl, Butyloxycarbonyl, 1-Methyl-propyloxycarbonyl, 2-Methyl-propyloxycarbonyl und 1,1-Dimethylethoxycarbonyl, vorzugsweise Methoxycarbonyl und Ethoxycarbonyl;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend genannt, vorzugsweise Methylthio und Ethylthio;
  - C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-butenyl, 3-Pentenyl, "4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-3-pentenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-propenyl, vorzugsweise 2-Propenyl;
  - C<sub>3</sub>-C<sub>6</sub>-Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl, 1-Ethyl-1-methyl-2-propinyl, vorzugsweise 2-Propinyl;

 $R^3$ 

Hydroxy; Amino;

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor; C<sub>1</sub>-C<sub>6</sub>-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio,1,1-Dimethylethylthio, Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio,
  - 2,2-Dimethylpropylthio, 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-2-methylpropylthio, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkylthio, insbesondere Methylthio und Ethylthio;
- Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino, besonders Di-(C<sub>1</sub>-C<sub>6</sub>-alkyl)-amino, insbesondere Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino wie N,N-Dimethylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Di-(1-methylethyl)amino, N,N-Dibutylamino, N,N-Di-(1-methylpropyl)amino, N,N-Di-(1-methylpropyl)amino, N-Ethyl-N-
- 55 N,N-Di-(1-methylpropyl)amino, N,N-Di-(2-methylpropyl)amino, N,N-Di-(1,1-dimethylethyl)amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino, N-Methyl-N-(1-methylpropyl)amino, N-(1,1-Dimethylethyl)- -N-methylamino, N-Ethyl-N-propylamino, N-Ethyl-N-(1-methyl-ethyl)amino, N-Butyl-N-ethylamino, N-Ethyl-N-(1-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-

propyl)amino, N-Ethyl-N-(2-methylpropyl)amino, N-Ethyl-N-(1,1-dimethylethyl)amino, N-(1-Methylethyl)- -N-propylamino, N-Butyl-N-propylamino, N-(1-Methylpropyl)- -N-propylamino, N-(2-Methylpropyl)-N-propylamino, N-(1,1-Dimethylethyl)-N-propylamino, N-Butyl-N-(1-methyl-methylpropyl)amino, N-(1,1-Di-methylethyl)-N-(1-methyl-methyl-N-(1-methyl-methyl-nopyl)amino, N-Butyl-N-(1-methyl-methyl-nopyl)amino, N-Butyl-N-(1-methyl-methyl-nopyl)amino, N-Butyl-N-(1-methyl-methyl-methyl-methyl-methyl-methyl-nopyl)amino, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)amino und N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;

C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino wie Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino, Cyclohexylamino und Cyclooctylamino, vorzugsweise Cyclopropylamino, Cyclopentylamino und Cyclohexylamino:

C<sub>1</sub>-C<sub>8</sub>-Alkoxycarbonyl, besonders C<sub>1</sub>-C<sub>6</sub>-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methyl-ethoxycarbonyl, Butyloxycarbonyl, 1-Methylpropyloxycarbonyl, 2-Methylpropyloxycarbonyl, 1,1-Dimethylethoxycarbonyl, Pentyloxycarbonyl, 1-Methylbutyloxycarbonyl, 2-Methylbutyloxycarbonyl, 3-Methylbutyloxycarbonyl, 1,2-Dimethylpropyloxycarbonyl, 1-Ethylpropyloxycarbonyl, 1-Methylpentyloxycarbonyl, 2-Methylpentyloxycarbonyl, 2-Methylpentyloxycarbonyl, 3-Methylpentyloxycarbonyl, 4-Methylpentyloxycarbonyl, 1,1-Dimethylbutyloxycarbonyl, 1,2-Dimethylbutyloxycarbonyl, 2,2-Dimethylbutyloxycarbonyl, 2,3-Dimethylbutyloxycarbonyl, 2,3-Dimethylbutyloxycarbonyl, 1-Ethylbutyloxycarbonyl, 1,1,2-Trimethylpropyloxycarbonyl, 1,2,2-Trimethylpropyloxycarbonyl, 1-Ethyl-1-methylpropyloxycarbonyl, und 1-Ethyl-2-methylpropyloxycarbonyl, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonyl;

oder eine der für R¹ genannten Gruppen;

R<sup>4</sup>

eine der für R1 genannten Gruppen;

CN; NO2; COOH; CSOH;

Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino-C<sub>1</sub>-C<sub>4</sub>-alkyl steht für durch Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino wie vorstehend genannt substituiertes C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend genannt;

 $SO_2-R^6$ ;  $C(=X)-R^7$ ;  $C(=Y)-R^8$ , oder  $R^7-C(YR^9)-ZR^{10}$ ;

R⁵

30

35

40

45

50

eine der für R¹ genannten Gruppen;

Hydroxy; Amino;

Di- $(C_1-C_8$ -alkyl)-amino, besonders Di- $(C_1-C_6$ -alkyl)-amino, insbesondere Di- $(C_1-C_4$ -alkyl)-amino wie vorstehend genannt,

 $C_3$ - $C_8$ -Cycloalkylamino wie vorstehend genannt, insbesondere Cyclopropylamino, Cyclopentylamino und Cyclohexylamino;

 $C_1$ - $C_6$ -Alkylthio wie vorstehend genannt, vorzugsweise  $C_1$ - $C_4$ -Alkylthio, insbesondere  $C_1$ - $C_2$ -Alkylthio;

R۶

Amino; Oxyamino (-NH-OH);

 $C_1$ - $C_8$ -Alkylamino, besonders  $C_1$ - $C_6$ -Alkylamino wie vorstehend genannt, vorzugsweise  $C_1$ - $C_4$ -Alkylamino, insbesondere  $C_1$ - $C_2$ -Alkylamino;

Di- $(C_1-C_8$ -alkyl)-amino, besonders Di- $(C_1-C_6$ -alkyl)-amino, insbesondere Di- $(C_1-C_4$ -alkyl)-amino wie vorstehend genannt;

C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino wie vorstehend genannt, vorzugsweise Cyclopropylamino, Cyclopentylamino und Cyclohexylamino;

 $C_1$ - $C_8$ -Alkoxy wie vorstehend genannt, vorzugsweise  $C_1$ - $C_4$ -Alkoxy, insbesondere  $C_1$ - $C_2$ -Alkoxy;

 $C_1$ - $C_6$ -Alkylthio wie vorstehend genannt, vorzugsweise  $C_1$ - $C_4$ -Alkylthio, insbesondere  $C_1$ - $C_2$ -Alkylthio:

Phenylamino;

R<sup>8</sup> eine der für R<sup>1</sup> genannten Gruppen;

R<sup>9</sup>,R<sup>10</sup> C<sub>1</sub>-C<sub>8</sub>-Alkyl wie vorstehend genannt;

C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl wie vorstehend genannt;

 $C_1$ - $C_4$ -Alkoxy- $C_2$ - $C_6$ -alkyl steht für durch  $C_1$ - $C_4$ -Alkoxy wie vorstehend genannt substituiertes  $C_2$ - $C_6$ -Alkyl wie vorstehend genannt, vorzugsweise durch Methoxy oder Ethoxy substituiertes Ethyl, Propyl oder 1-Methylethyl;

C2-C8-Alkenyl wie vorstehend genannt; oder

55 R9 und R10

gemeinsam -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>- oder -CH<sub>2</sub>CH<sub>2</sub>-CH<sub>2</sub>-, wobei ein oder zwei Wasserstoffatome in diesen Gruppen durch die folgenden Reste ersetzt sein können: = O (vicinale H-Atome),

- C<sub>1</sub>-C<sub>8</sub>-Alkyl wie vorstehend genannt, vorzugsweise Methyl oder Ethyl;

- C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, insbesondere C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend genannt;
- C<sub>1</sub>-C<sub>6</sub>-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy oder Ethoxy;

X R¹¹

5

10

15

20

25

Sauerstoff, Schwefel oder NR11, worin

für eine der für R¹ genannten Gruppen steht, oder die folgende Bedeutung hat: Wasserstoff: Hydroxy: Amino:

 $Di-(C_1-C_8-alkyl)$ -amino, besonders  $Di-(C_1-C_6-alkyl)$ -amino, insbesondere  $Di-(C_1-C_4-alkyl)$ -amino wie vorstehend genannt,

 $C_3$ - $C_8$ -Cycloalkylamino wie vorstehend genannt, vorzugsweise Cyclopropylamino, Cyclopentylamino und Cyclohexylamino:

Phenoxy, Naphthyloxy, Phenylamino oder Naphthylamino, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend genannt, vorzugsweise Methyl oder Ethyl;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend genannt, vorzugsweise Difluormethoxy;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonyl wie vorstehend genannt, vorzugsweise C<sub>1</sub>-C<sub>2</sub>-Alkoxycarbonyl;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend genannt, vorzugsweise insbesondere Methylthio;
- C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie vorstehend genannt, vorzugsweise 2-Propenyl;
- C<sub>3</sub>-C<sub>6</sub>-Alkinyl wie vorstehend genannt, vorzugsweise 2-Propinyl;

Sauerstoff oder Schwefel;

Y D5

eine der für R1 genannten Gruppen;

Hydroxy; Amino;

Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;

- C<sub>1</sub>-C<sub>6</sub>-Alkylthio wie vorstehend genannt, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkylthio, insbesondere C<sub>1</sub>-C<sub>2</sub>-Alkylthio; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino, besonders Di-(C<sub>1</sub>-C<sub>6</sub>-alkyl)-amino, insbesondere Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino wie vorstehend genannt, vorzugsweise Di-(C<sub>1</sub>-C<sub>2</sub>-alkyl)-amino;
  - $C_3$ - $C_8$ -Cycloalkylamino wie vorstehend genannt, insbesondere Cyclopropylamino, Cyclopentylamino und Cyclohexylamino;
- 35 Pyrrolidin-1-yl; Piperidin-1-yl; Morpholin-1-yl;
  - $C_1$ - $C_8$ -Alkylcarbonyloxy, besonders  $C_1$ - $C_6$ -Alkylcarbonyloxy wie Methylcarbonyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, 1-Methylethylcarbonyloxy, Butylcarbonyloxy, 1-Methyl-propylcarbonyloxy, 2-Methylpropylcarbonyloxy, 1,1-Dimethylethylcarbonyloxy, Pentylcarbonyloxy, 1-Methylbutylcarbonyloxy, 2-Methylbutylcarbonyloxy, 2-Dimethylpropylcarbonyloxy, 1-Ethylpropylcarbonyloxy, Hexylcarbonyloxy, 2-Methylbutylcarbonyloxy, 2-Methylpropylcarbonyloxy, 1-Ethylpropylcarbonyloxy, Hexylcarbonyloxy, 1-Methylpropylcarbonyloxy, 1-Methy
- 40 nyloxy, 1,1-Dimethylpropylcarbonyloxy, 1,2-Dimethylpropylcarbonyloxy, 1-Methylpentylcarbonyloxy, 2-Methylpentylcarbonyloxy, 3-Methylpentylcarbonyloxy, 4-Methylpentylcarbonyloxy, 1,1-Dimethylbutylcarbonyloxy, 1,2-Dimethylbutylcarbonyloxy, 1,3-Dimethylbutylcarbonyloxy, 2,2-Dimethylbutylcarbonyloxy, 2,3-Dimethylbutylcarbonyloxy, 3,3-Dimethylbutylcarbonyloxy, 1-Ethylbutylcarbonyloxy, 2-Ethylbutylcarbonyloxy, 1,1,2-Trimethylpropylcarbonyloxy, 1,2,2-Trimethylpropylcarbonyloxy, 1-Ethyl-1-methylpropylcarbonyloxy
- und 1-Ethyl-2-methylpropylcarbonyloxy, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, insbesondere C<sub>1</sub>-C<sub>2</sub>-Alkylcarbonyloxy;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkylcarbonyloxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkylcarbonyloxy wie Chlormethylcarbonyloxy, Dichlormethylcarbonyloxy, Fluormethylcarbonyloxy, Diffuormethylcarbonyloxy, Diffuormethylcarbonyloxy, Chlorfluormethylcarbonyloxy, Chlorfluormethylcarbonyloxy, Chlorfluormethylcarbonyloxy, 1-Fluorethylcarbonyloxy, 2-Fluorethylcarbonyloxy, 2,2-Diffuorethylcarbonyloxy, 2,2-Diffuorethylca
- rethylcarbonyloxy, 2-Chlor-2-fluorethylcarbonyloxy, 2-Chlor-2,2-difluorethylcarbonyloxy, 2,2-Dichlor-2-fluorethylcarbonyloxy,2,2,2-Trichlorethylcarbonyloxy und Pentafluorethylcarbonyloxy, vorzugsweise Trifluormethylcarbonyloxy;
- C<sub>1</sub>-C<sub>8</sub>-Alkylsulfonyloxy, besonders C<sub>1</sub>-C<sub>6</sub>-Alkylsulfonyloxy wie Methylsulfonyloxy, Ethylsulfonyloxy, Propylsulfonyloxy, 1-Methylethylsulfonyloxy, Butylsulfonyloxy, 1-Methyl-propylsulfonyloxy, 2-Methylpropylsulfonyloxy, 3-Methylbutylsulfonyloxy, 2,2-Dimethylpropylsulfonyloxy, 1-Ethylpropylsulfonyloxy, Hexylsulfonyloxy, 1,1-Dimethylpropylsulfonyloxy, 1,2-Dimethylpropylsulfonyloxy, 1-Methylpentylsulfonyloxy, 2-Methylpentylsulfonyloxy,

loxy, 3-Methylpentylsulfonyloxy, 4-Methylpentylsulfonyloxy, 1,1-Dimethylbutylsulfonyloxy, 1,2-Dimethylbutylsulfonyloxy, 3,3-Dimethylbutylsulfonyloxy, 2,2-Dimethylbutylsulfonyloxy, 2,3-Dimethylbutylsulfonyloxy, 3,3-Dimethylbutylsulfonyloxy, 1-Ethylbutylsulfonyloxy, 2-Ethylbutylsulfonyloxy, 1,1,2-Trimethylpropylsulfonyloxy, 1,2,2-Trimethylpropylsulfonyloxy, 1-Ethyl-1-methylpropylsulfonyloxy und 1-Ethyl-2-methylpropylsulfonyloxy, vorzugsweise  $C_1$ - $C_4$ -Alkylsulfonyloxy, insbesondere  $C_1$ - $C_2$ -Alkylsulfonyloxy;

C<sub>1</sub>-C<sub>8</sub>-Halogenalkylsulfonyloxy, besonders C<sub>1</sub>-C<sub>4</sub>-Halogenalkylsulfonyloxy, insbesondere C<sub>1</sub>-C<sub>2</sub>-Halogenalkylsulfonyloxy wie Chlormethylsulfonyloxy, Dichlormethylsulfonyloxy, Trichlormethylsulfonyloxy, Fluormethylsulfonyloxy, Difluormethylsulfonyloxy, Chlorfluormethylsulfonyloxy, Dichlorfluormethylsulfonyloxy, Chlordifluormethylsulfonyloxy, 1-Fluorethylsulfonyloxy, 2-Fluorethylsulfonyloxy, 2,2-Difluorethylsulfonyloxy, 2,2-Trifluorethylsulfonyloxy, 2-Chlor-2-fluorethylsulfonyloxy, 2-Chlor-2-fluorethylsulfonyloxy, 2-Chlor-2-fluorethylsulfonyloxy; Phenoxy, Naphthyloxy, Phenylamino, Naphthylamino, Benzyloxy, Benzylamino, Benzoyloxy, 2-Naphthoyloxy oder Phenylsulfonyloxy, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können:

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend genannt, vorzugsweise Methyl;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt, vorzugsweise Methoxy;

20 N(R<sup>12</sup>)-SO<sub>2</sub>-R<sup>13</sup>; N(R<sup>12</sup>)-CO-R<sup>14</sup>; N(R<sup>12</sup>)-CS-R<sup>14</sup>;

R<sup>12</sup> Wasserstoff;

15

25

30

40

C1-C4-Alkyl wie vorstehend genannt, vorzugsweise C1-C3-Alkyl;

Phenyl, welches ein bis drei der folgenden Reste tragen kann:

- Halogen wie vorstehend genannt, vorzugsweise Fluor und Chlor;
- C1-C4-Alkyl wie vorstehend genannt, vorzugsweise Methyl;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend genannt, vorzugsweise Trifluormethyl;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt, vorzugsweise insbesondere Methoxy;

R<sup>13</sup> eine der für R<sup>1</sup> genannten Gruppen;

Amino,

 $Di-(C_1-C_8-alkyl)$ -amino, besonders  $Di-(C_1-C_6-alkyl)$ -amino, insbesondere  $Di-(C_1-C_4-alkyl)$ -amino wie vorstehend genannt;

C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino wie vorstehend genannt, vorzugsweise Cyclopropylamino, Cyclopentylamino oder Cyclohexylamino;

35 R<sup>14</sup> eine der für R<sup>1</sup> genannten Gruppen;

Amino; Oxyamino (-NH-OH);

 $Di-(C_1-C_8-alkyl)$ -amino, besonders  $Di-(C_1-C_6-alkyl)$ -amino, insbesondere  $Di-(C_1-C_4-alkyl)$ -amino wie vorstehend genannt, vorzugsweise  $Di-(C_1-C_2-alkyl)$ -amino;

C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino wie vorstehend genannt, insbesondere Cyclopropylamino, Cyclopentylamino oder Cyclohexylamino;

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R¹ bis R⁵ eine saure oder basische Gruppe bedeutet.

Unter 5-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, sind die folgenden Gruppen zu verstehen: 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl und 1,3,4-Triazol-2-yl, vorzugsweise 2-Thienyl und 3-Thienyl, wobei an die vorstehend genannten 5-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, sofern sie für einen Rest R¹ oder R² stehen.

Unter 6-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatonen ein bis drei Stickstoffatome als Heteroatome enthalten können, sind die folgenden Gruppen zu verstehen: 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 4-Pyridinyl, 5-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, vorzugsweise 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, wobei an die vorstehend genannten 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, sofern sie für einen Rest R¹ oder R² stehen.

Derivate I und I' mit sauren Endgruppen oder mit basischen Stickstoffatomen können in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen.

Als landwirtschaftlich brauchbare Salze kommen im allgemeinen die Salze von solchen Säuren oder Basen in Betracht, welche die antagonistische Wirkung von I und I' nicht beeinträchtigen.

Als Säureadditionssalze eignen sich beispielsweise die Hydrochloride und -bromide, Sulfate, Nitrate, Phosphate, Oxalate oder die Dodecylbenzolsulfonate.

Als basische Salze eignen sich beispielsweise diejenigen der Alkalimetalle, insbesondere die Natriumund Kaliumsalze, die der Erdalkalimetalle, insbesondere Calcium-, Magnesium-, und Bariumsalze und die der Übergangsmetalle, insbesondere Mangan-, Kupfer, Zink- und Eisensalze sowie die Ammoniumsalze, die ein bis drei  $C_1$ - $C_4$ -Alkyl-, Hydroxy- $C_1$ - $C_4$ -alkylsubstituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen können, insbesondere Diisopropylammonium-, Tetramethylammonium-, Tetrabutylammonium-, Trimethylbenzylammonium-, und Trimethyl-(2-hydroxyethyl)-ammoniumsalze, die Phosphoniumsalze, die Sulfoniumsalze, insbesondere Tri- $(C_1$ - $C_4$ -)alkylsufoniumsalze und die Sulfoxoniumsalze, insbesondere Tri- $(C_1$ - $C_4$ -)alkylsulfoxoniumsalze. Besonders bevorzugte Verbindungen der Formel I sind in den folgenden Tabellen A und B zusammengestellt.

### Tabelle A

5

20  $\mathbb{R}^2$ Н R2 CH<sub>3</sub> R4  $\mathbb{R}^3$  $\mathbb{R}^3$ N 25 I.1 I.2 I.3 30 CH<sub>3</sub> R4  $\mathbb{R}^4$ 35 R<sup>5</sup> N N I.4 I.5 I.6 40 OCH<sub>3</sub> R4 45 OCH<sub>3</sub>

50

I.7

55

I.8

|    | [=3            | 1-4            | T_ e                                                                             |
|----|----------------|----------------|----------------------------------------------------------------------------------|
|    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                                                                   |
| 5  | H              | H              | C <sub>6</sub> H <sub>5</sub>                                                    |
|    | H              | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | H              | H              | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | Н              | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | Н              | Н              | 2-F-C <sub>6</sub> H <sub>4</sub>                                                |
| 10 | H              | H              | 3-F-C <sub>6</sub> H <sub>4</sub>                                                |
|    | H              | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                                                |
|    | H              | H              | 2-C1-C <sub>6</sub> H <sub>4</sub>                                               |
| 15 | H              | H              | 3-C1-C <sub>6</sub> H <sub>4</sub>                                               |
|    | H              | H              | 4-C1-C <sub>6</sub> H <sub>4</sub>                                               |
|    | H              | Н              | 2-Br-C <sub>6</sub> H <sub>4</sub>                                               |
|    | В              | H              | 3-Br-C <sub>6</sub> H <sub>4</sub>                                               |
| 20 | Н              | н              | 4-Br-C <sub>6</sub> H <sub>4</sub>                                               |
|    | H              | Н              | 2-OH-C <sub>6</sub> H <sub>4</sub>                                               |
|    | Н              | Н              | 3-OH-C <sub>6</sub> H <sub>4</sub>                                               |
|    | H              | Н              | 4-OH-C <sub>6</sub> H <sub>4</sub>                                               |
| 25 | H              | Н              | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
|    | Н              | Н              | 3-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
|    | H              | H              | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
| 30 | Н              | Н              | 4-C <sub>6</sub> H <sub>5</sub> -C <sub>6</sub> H <sub>4</sub>                   |
| 30 | H              | Н              | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>               |
|    | H              | H              | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>               |
|    | H .            | Н              | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
| 35 | H              | H              | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
| ,  | H              | H              | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | H              | H              | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | E              | H              | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
| 40 | H              | H              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | Н              | H              | 2-CN-C <sub>6</sub> H <sub>4</sub>                                               |
|    | Н              | Н,             | 3-CN-C <sub>6</sub> H <sub>4</sub>                                               |
|    | Н              | H              | 4-CN-C <sub>6</sub> H <sub>4</sub>                                               |
| 45 | Н              | H              | 2-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub> |
| ĺ  | Н              | H              | 3-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub> |
|    | Н              | H              | 4-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub> |
| 50 | Н              | Н              | 2-Carbamoyl-C <sub>6</sub> H <sub>4</sub>                                        |
|    | H              | Н              | 3-Carbamoy1-C <sub>6</sub> H <sub>4</sub>                                        |
| •  | <del></del>    |                | <del></del>                                                                      |

|    | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                                                       |
|----|----------------|----------------|----------------------------------------------------------------------|
| 5  | H              | Н              | 4-Carbamoyl-C <sub>6</sub> H <sub>4</sub>                            |
|    | Н              | Н              | 2-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
| •  | H              | Н              | 3-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
|    | Н              | Н              | 4-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
|    | Н              | H              | 4-Pyrrolidino-C <sub>6</sub> H <sub>4</sub>                          |
| 10 | Н              | H              | 2-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | H              | 3-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | H              | 4-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 15 | H              | H              | 2-Sulfo-C <sub>6</sub> H <sub>4</sub>                                |
|    | Н              | H              | 3-Sulfo-C <sub>6</sub> H <sub>4</sub>                                |
|    | H              | H              | 4-Sulfo-C <sub>6</sub> H <sub>4</sub>                                |
|    | H              | H              | 3-OC (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 20 | H              | H              | 4-OC (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|    | H              | H              | 2,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
|    | H              | Н              | 3, 4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | Н              | Н              | 2,6-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
| 25 | H              | H              | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | Н              | Н              | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | Н              | H              | 2,6-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
| 30 | Н              | Н              | 2,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|    | H              | Н              | 3,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|    | H              | H              | 2,6-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|    | H -            | Н              | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
| 35 | H              | Н              | 3,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
|    | H              | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
|    | H              | Н              | 2,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|    | H              | Н              | 3,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
| 40 | H              | Н              | 2,6-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|    | H              | Н              | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | Н              | H              | 3-NO <sub>2</sub> -4-F-C <sub>6</sub> H <sub>3</sub>                 |
| 45 | H              | H              | 3-NO <sub>2</sub> -4-C1-C <sub>6</sub> H <sub>3</sub>                |
|    | Н              | н              | 3-NO <sub>2</sub> -4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | Н              | H              | 1-Naphthyl                                                           |
|    | H              | Н              | 2-Naphthyl                                                           |
|    | Н              | Н              | Tetralin-2-yl                                                        |
|    | Н              | H              | Thien-2-yl                                                           |
|    |                |                |                                                                      |

√ 55

|    | R <sup>3</sup> | R <sup>4</sup> | R5                                                |
|----|----------------|----------------|---------------------------------------------------|
|    | н              | H              | Thien-3-yl                                        |
|    | Н              | H              | 5-CH <sub>3</sub> -thien-2-yl                     |
| 5  | H              | H              | 5-C1-thien-2-yl                                   |
|    | H              | H              | 5-Br-thien-2-yl                                   |
|    | н              | Н              |                                                   |
| 10 | н              | Н              | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thien-3-yl   |
| 10 | H              | H              | 4,5-benzothien-2-yl                               |
|    |                |                | Thiazol-2-yl                                      |
|    | H              | H              | Thiazol-4-yl                                      |
| 15 | H              | H              | Thiazol-5-yl                                      |
|    | H              | Н              | 5-CH <sub>3</sub> -thiazol-2-yl                   |
|    | H              | Н              | 5-Cl-thiazol-2-yl                                 |
|    | H              | Н              | 5-Br-thiazol-2-yl                                 |
| 20 | H              | Н              | 2,4-(CH <sub>3</sub> ) <sub>2</sub> -thiazol-5-yl |
|    | H              | H              | 4,5-benzothiazol-2-yl                             |
| ·  | Н              | H              | Furan-2-yl                                        |
|    | H              | H              | Furan-3-yl                                        |
| 25 | Н              | H              | 5-CH <sub>3</sub> -furan-2-yl                     |
|    | Н              | H              | 5-Cl-furan-2-yl                                   |
|    | Н              | H              | 5-Br-furan-2-yl                                   |
| 30 | H              | H              | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -furan-3-yl   |
| 30 | H              | H              | 4,5-benzofuran-2-yl                               |
|    | Н              | H              | Pyrrol-2-yl                                       |
|    | Н              | Н              | Pyrrol-3-yl                                       |
| 35 | Н              | Н              | 1-CH <sub>3</sub> -pyrrol-2-yl                    |
|    | H              | H              | 1-CH <sub>3</sub> -pyrrol-3-yl                    |
|    | Н              | H              | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -pyrrol-3-yl  |
|    | н              | Н              | 1,5-(CH <sub>3</sub> ) <sub>2</sub> -pyrrol-2-yl  |
| 40 | H              | Н              | 1,5-(CH <sub>3</sub> ) <sub>2</sub> -pyrrol-3-yl  |
| ,  | H              | Н              | Indol-2-yl                                        |
|    | н              | H              | Indol-3-yl                                        |
| 45 | Н              | H              | Oxazol-2-yl                                       |
| 45 | H              | Н              | Oxazol-4-yl                                       |
|    | H              | H              | 5-CH <sub>3</sub> -oxazol-2-yl                    |
|    | Н              | H              | 5-Cl-oxazol-2-yl                                  |
| 50 | H              | Н              | 5-Br-oxazol-2-yl                                  |
| j- | Н              | H              | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -oxazol-4-yl  |
| ,  |                |                |                                                   |

|      | R <sup>3</sup> . | R <sup>4</sup>  | R <sup>5</sup>                                     |
|------|------------------|-----------------|----------------------------------------------------|
|      | н                | Н               | 4,5-benzoxazol-2-yl                                |
| 5    | Н                | Н               | Imidazol-2-yl                                      |
| J    | Н                | Н               | Imidazol-4-yl                                      |
|      | Н                | Н               | Imidazol-5-yl                                      |
|      | Н                | Н               | 5-CH <sub>3</sub> -imidazol-2-yl                   |
| 10 · | Н                | Н               | 5-Cl-imidazol-2-yl                                 |
|      | H                | Н               | 5-Br-imidazol-2-yl                                 |
|      | H                | Н               | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -imidazol-4-yl |
|      | H                | Н               | 4,5-benzimidazol-2-yl                              |
| 15   | H                | Н               | Pyridin-2-yl                                       |
|      | Н                | Н               | Pyridin-3-yl                                       |
|      | Н                | Н               | Pyridin-4-yl                                       |
| 20   | H                | н               | 5-CH <sub>3</sub> -pyridin-2-yl                    |
|      | H                | H               | 5-Cl-pyridin-2-yl                                  |
|      | H                | Н               | 5-Br-pyridin-2-yl                                  |
|      | Н                | Н               | 5-CH <sub>3</sub> -pyridin-3-yl                    |
| 25   | H                | H               | 5-Cl-pyridin-3-yl                                  |
|      | Н                | H               | 5-Br-pyridin-3-yl                                  |
|      | Н                | H               | 2-CH <sub>3</sub> -pyridin-3-yl                    |
|      | Н                | H               | 2-C1-pyridin-3-yl                                  |
| 30   | Н                | H               | 2-Br-pyridin-3-yl                                  |
|      | H                | H               | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -pyridin-3-yl  |
|      | н .              | H               | 4,5-benzopyridin-2-yl                              |
| 35   | H                | H               | Pyrazin-2-yl                                       |
|      | H                | H               | 5-CH <sub>3</sub> -pyrazin-2-yl                    |
|      | H                | H               | 5-Cl-pyrazin-2-yl                                  |
|      | Н                | H               | 5-Br-pyrazin-2-yl                                  |
| 40   | Н                | H               | Pyrimidin-2-yl                                     |
|      | H                | Ħ               | Pyrimidin-4-yl                                     |
|      | Н                | H               | Pyrimidin-5-yl                                     |
| 45   | H                | H               | 4,5-benzopyrimidin-2-yl                            |
| 45   | Н                | CH <sub>3</sub> | C <sub>6</sub> H <sub>5</sub>                      |
|      | Н                | CH <sub>3</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   |
|      | H                | CH <sub>3</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                  |
| 50   | H                | CH <sub>3</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                 |
| ĺ    | H                | CH <sub>3</sub> | 4-Br-C <sub>6</sub> H <sub>4</sub>                 |

|    |                | T                                               | T-2                                                                 |
|----|----------------|-------------------------------------------------|---------------------------------------------------------------------|
|    | R <sup>3</sup> | R <sup>4</sup>                                  | R <sup>5</sup>                                                      |
|    | Н              | CH <sub>3</sub>                                 | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
| 5  | Н              | CH <sub>3</sub>                                 | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    | Н              | CH <sub>3</sub>                                 | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|    | H              | CH <sub>3</sub>                                 | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | CH <sub>3</sub>                                 | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 10 | Н              | CH <sub>3</sub>                                 | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CH <sub>3</sub>                                 | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
|    | H              | CH <sub>3</sub>                                 | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH <sub>3</sub>                                 | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
| 15 | Н              | CH <sub>3</sub>                                 | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH <sub>3</sub>                                 | 2-Naphthyl                                                          |
|    | Н              | CH <sub>3</sub>                                 | Thien-2-yl                                                          |
| 20 | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | C <sub>6</sub> H <sub>5</sub>                                       |
| 20 | B              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
|    | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
| 25 | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
|    | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
|    | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
| •  | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 30 | H              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H .            | CH <sub>2</sub> CH <sub>3</sub>                 | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
|    | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
| 35 | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH <sub>2</sub> CH <sub>3</sub>                 | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
|    | H              | CH <sub>2</sub> CH <sub>3</sub>                 | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
| 40 | Н              | CH <sub>2</sub> CH <sub>3</sub>                 | 2-Naphthyl                                                          |
| 40 | H              | CH <sub>2</sub> CH <sub>3</sub>                 | Thien-2-yl                                                          |
|    | Ħ              | CH2CH2CH3                                       | C <sub>6</sub> H <sub>5</sub>                                       |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 45 | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
|    | н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
| 50 | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    |                | · · · · · · · · · · · · · · · · · · ·           |                                                                     |

|    |                |                                                    | <b>Y</b>                                                            |
|----|----------------|----------------------------------------------------|---------------------------------------------------------------------|
|    | R <sup>3</sup> | R <sup>4</sup>                                     | R <sup>5</sup>                                                      |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 5  | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 4-CN-C6H4                                                           |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
| 10 | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
|    | н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | 2-Naphthyl                                                          |
| 15 | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>    | Thien-2-yl                                                          |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | C <sub>6</sub> H <sub>5</sub>                                       |
|    | H ,            | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 20 | Н              | СН (СН <sub>3</sub> ) <sub>2</sub>                 | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
| 20 | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
| 25 | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    | Н              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|    | Н              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 30 | Н              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
|    | н ·            | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
| 35 | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | 2-Naphthyl                                                          |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                 | Thien-2-yl                                                          |
|    | Н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | C <sub>6</sub> H <sub>5</sub>                                       |
| 40 | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
|    | н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
| 45 | Н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
|    | н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
| _  | H /            | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    | Н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 50 | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    |                |                                                    |                                                                     |

|    |                |                                                    | <del></del>                                                         |
|----|----------------|----------------------------------------------------|---------------------------------------------------------------------|
|    | R <sup>3</sup> | R <sup>4</sup>                                     | R <sup>5</sup>                                                      |
|    | Н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 5  | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
|    | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
| 10 | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | Н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | 2-Naphthyl                                                          |
|    | Н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub> | Thien-2-yl                                                          |
|    | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | C <sub>6</sub> H <sub>5</sub>                                       |
| 15 | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
|    | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
| 20 | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
|    | Н              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    | Н              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 25 | Н              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
|    | Н              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
| 30 | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | Н              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
|    | Н -            | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | Н              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | 2-Naphthyl                                                          |
| 35 | H              | (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub>    | Thien-2-yl                                                          |
|    | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | C <sub>6</sub> H <sub>5</sub>                                       |
|    | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 40 | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
| 40 | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
| 45 | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 1  | H              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | C (CH <sub>3</sub> ) <sub>3</sub>                  | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 50 | Н              | C(CH <sub>3</sub> ) <sub>3</sub>                   | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
| ,  |                |                                                    |                                                                     |

|    |                | <del></del>                       | T-2                                                                  |
|----|----------------|-----------------------------------|----------------------------------------------------------------------|
|    | R <sup>3</sup> | R <sup>4</sup>                    | R <sup>5</sup>                                                       |
|    | Н              | C (CH <sub>3</sub> ) <sub>3</sub> | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>               |
| 5  | Н              | C (CH <sub>3</sub> ) <sub>3</sub> | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | H              | C (CH <sub>3</sub> ) <sub>3</sub> | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
|    | н              | C (CH <sub>3</sub> ) <sub>3</sub> | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | Н              | C (CH <sub>3</sub> ) <sub>3</sub> | 2-Naphthyl                                                           |
| 10 | Н              | C (CH <sub>3</sub> ) <sub>3</sub> | Thien-2-yl                                                           |
|    | B              | C <sub>6</sub> H <sub>5</sub>     | CH <sub>3</sub>                                                      |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | CH <sub>2</sub> CH <sub>3</sub>                                      |
| 45 | H              | C <sub>6</sub> H <sub>5</sub>     | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                      |
| 15 | H              | C <sub>6</sub> H <sub>5</sub>     | CH (CH <sub>3</sub> ) <sub>2</sub>                                   |
|    | Н              | C <sub>6</sub> H <sub>5</sub>     | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>      |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>                   |
| 20 | H              | C <sub>6</sub> H <sub>5</sub>     | C <sub>6</sub> H <sub>5</sub>                                        |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | CO <sub>2</sub> H                                                    |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                      |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | CONH <sub>2</sub>                                                    |
| 25 | H              | C <sub>6</sub> H <sub>5</sub>     | COCH <sub>3</sub>                                                    |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | COCF <sub>3</sub>                                                    |
|    | Н              | C <sub>6</sub> H <sub>5</sub>     | COC <sub>6</sub> H <sub>5</sub>                                      |
| 30 | H              | C <sub>6</sub> H <sub>5</sub>     | CO- (4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> )              |
| 30 | H              | C <sub>6</sub> H <sub>5</sub>     | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                        |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>        |
|    | H ·            | C <sub>6</sub> H <sub>5</sub>     | F                                                                    |
| 35 | Н              | C <sub>6</sub> H <sub>5</sub>     | C1                                                                   |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | Br                                                                   |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | OCH <sub>3</sub>                                                     |
| •  | Н              | С <sub>6</sub> Н <sub>5</sub>     | CF <sub>3</sub>                                                      |
| 40 | H              | C <sub>6</sub> H <sub>5</sub>     | NO <sub>2</sub>                                                      |
|    | Н              | C <sub>6</sub> H <sub>5</sub>     | CN                                                                   |
|    | H              | C <sub>6</sub> H <sub>5</sub>     | SO <sub>2</sub> CH <sub>3</sub>                                      |
| 45 | н              | C <sub>6</sub> H <sub>5</sub>     | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                        |
| 45 | Н              | C <sub>6</sub> H <sub>5</sub>     | SO <sub>2</sub> -(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> ) |
| •  | н              | C <sub>6</sub> H <sub>5</sub>     | C <sub>6</sub> H <sub>5</sub>                                        |
|    | Н              | C <sub>6</sub> H <sub>5</sub>     | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     |
| 50 | Н              | C <sub>6</sub> H <sub>5</sub>     | 4-F-C <sub>6</sub> H <sub>4</sub>                                    |
|    | Н              | С <sub>6</sub> Н <sub>5</sub>     | 4-C1-C <sub>6</sub> H <sub>4</sub>                                   |
|    |                | <del></del>                       |                                                                      |

|    | R <sup>3</sup> | R <sup>4</sup>                                | R <sup>5</sup>                                                      |
|----|----------------|-----------------------------------------------|---------------------------------------------------------------------|
|    | н              | C <sub>6</sub> H <sub>5</sub>                 | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
| 5  | Н              | C <sub>6</sub> H <sub>5</sub>                 | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
|    | н              | C <sub>6</sub> H <sub>5</sub>                 | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    | н              | C <sub>6</sub> H <sub>5</sub>                 | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|    | H              | C <sub>6</sub> H <sub>5</sub>                 | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 10 | H              | C <sub>6</sub> H <sub>5</sub>                 | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н              | C <sub>6</sub> H <sub>5</sub>                 | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
|    | Н              | C <sub>6</sub> H <sub>5</sub>                 | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
| 16 | H              | C <sub>6</sub> H <sub>5</sub>                 | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
| 15 | н              | C <sub>6</sub> H <sub>5</sub>                 | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
|    | H              | C <sub>6</sub> H <sub>5</sub>                 | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | Н              | C <sub>6</sub> H <sub>5</sub>                 | 2-Naphthyl                                                          |
| 20 | H              | C <sub>6</sub> H <sub>5</sub>                 | Thien-2-yl                                                          |
|    | Н              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub>                                       |
|    | Н              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
| 25 | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
|    | Н              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
|    | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
| 30 | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|    | Н              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | Н -            | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 35 | Н              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
|    | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
| 40 | Н              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-Naphthyl                                                          |
|    | н              | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Thien-2-yl                                                          |
|    | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub>                                       |
| 45 | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                                   |
|    | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                                  |
|    | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 4-Br-C <sub>6</sub> H <sub>4</sub>                                  |
| 50 | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 4-CH (CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> |
|    |                |                                               |                                                                     |

|                | R <sup>3</sup> | R <sup>4</sup>                                                     | R <sup>5</sup>                                                      |
|----------------|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
|                |                |                                                                    |                                                                     |
|                | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   |
| 5              | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|                | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|                | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|                | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  |
| 10             | Н              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 4-(NHCOCH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>              |
|                | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> |
|                | Н              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
|                | Я              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
| 15             | Н              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | 2-Naphthyl                                                          |
| ,              | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                      | Thien-2-yl                                                          |
|                | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
| 20             | Н              | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
| 20             | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
|                | H              | 2-F-C <sub>6</sub> H <sub>4</sub>                                  | CH <sub>3</sub>                                                     |
|                | Н              | 3-F-C <sub>6</sub> H <sub>4</sub>                                  | CH <sub>3</sub>                                                     |
| 25             | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                                  | CH <sub>3</sub>                                                     |
|                | H              | 2-C1-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
|                | Н              | 3-C1-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
| ĺ              | Н              | 4-C1-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
| 30             | H              | 2-Br-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
|                | Н              | 3-Br-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
|                | H ·.           | 4-Br-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
|                | H              | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  | CH <sub>3</sub>                                                     |
| 35             | H              | 3-0CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  | CH <sub>3</sub>                                                     |
|                | H              | 4-OCH3-C6H4                                                        | CH <sub>3</sub>                                                     |
|                | H              | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> | CH <sub>3</sub>                                                     |
| 40             | H              | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> | CH <sub>3</sub>                                                     |
| 40 .           | H              | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
|                | H              | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
|                | Ħ              | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
| 45             | H              | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
| , <del>-</del> | н              | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
|                | Н              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   | CH <sub>3</sub>                                                     |
|                | Н              | 2-CN-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
| 50             | Н              | 3-CN-C <sub>6</sub> H <sub>4</sub>                                 | CH <sub>3</sub>                                                     |
|                |                |                                                                    |                                                                     |

|    | R <sup>3</sup> | Toa                                                                                             | T- :                              |
|----|----------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
|    |                | R <sup>4</sup>                                                                                  | R <sup>5</sup>                    |
|    | Н              | 4-CN-C <sub>6</sub> H <sub>4</sub>                                                              | CH <sub>3</sub>                   |
| 5  | H              | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                             | CH <sub>3</sub>                   |
| ,  | H              | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                              | CH <sub>3</sub>                   |
|    | Н              | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                             | CH <sub>3</sub>                   |
|    | Н              | 2-Naphthyl                                                                                      | CH <sub>3</sub>                   |
| 10 | Н              | Thien-2-yl                                                                                      | CH <sub>3</sub>                   |
|    | H              | Furan-2-yl                                                                                      | CH <sub>3</sub>                   |
|    | H              | Isoxazol-2-yl                                                                                   | CH <sub>3</sub>                   |
|    | Н              | CH <sub>3</sub>                                                                                 | CH <sub>3</sub>                   |
| 15 | H              | CH <sub>2</sub> CH <sub>3</sub>                                                                 | CH <sub>3</sub>                   |
|    | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                                                              | CH <sub>3</sub>                   |
|    | Н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>                                              | CH <sub>3</sub>                   |
| 20 | H              | C (CH <sub>3</sub> ) <sub>3</sub>                                                               | CH <sub>3</sub>                   |
|    | H              | Cyclopropyl                                                                                     | CH <sub>3</sub>                   |
|    | H              | CH <sub>2</sub> CH=CH <sub>2</sub>                                                              | CH <sub>3</sub>                   |
|    | Ħ              | CH <sub>2</sub> C*CH                                                                            | CH <sub>3</sub> *=Dreifachbindung |
| 25 | H              | CH <sub>2</sub> CH=CHCH <sub>3</sub>                                                            | CH <sub>3</sub>                   |
|    | H              | CH <sub>2</sub> C*CCH <sub>3</sub>                                                              | CH <sub>3</sub> *=Dreifachbindung |
|    | H              | CH <sub>2</sub> C1                                                                              | CH <sub>3</sub>                   |
|    | н              | CH <sub>2</sub> CH <sub>2</sub> Cl                                                              | CH <sub>3</sub>                   |
| 30 | H              | CH2CH2CH2C1                                                                                     | CH <sub>3</sub>                   |
|    | Н              | CH2CH=CHC1                                                                                      | CH <sub>3</sub>                   |
|    | H              | CH <sub>2</sub> OH                                                                              | CH <sub>3</sub>                   |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> OH                                                              | CH <sub>3</sub>                   |
| 35 | Н              | CH2CH2CH2OH                                                                                     | CH <sub>3</sub>                   |
|    | H              | CH <sub>2</sub> OCH <sub>3</sub>                                                                | CH <sub>3</sub>                   |
|    | В              | CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                                | CH <sub>3</sub>                   |
|    | H              | CH2CH2CH2OCH3                                                                                   | CH <sub>3</sub>                   |
| 40 | H              | CH2CO2CH2CH3                                                                                    | CH <sub>3</sub>                   |
|    | Н              | CH2CH2CO2CH2CH3                                                                                 | CH <sub>3</sub>                   |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>                   |
| 45 | н              | CH <sub>2</sub> NH <sub>2</sub>                                                                 | CH <sub>3</sub>                   |
| 40 | H              | CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                                 | CH <sub>3</sub>                   |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                 | CH <sub>3</sub>                   |
|    | Н              | CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>                                               | CH <sub>3</sub>                   |
| 50 | Н              |                                                                                                 | CH <sub>3</sub>                   |
| •  |                | ]                                                                                               |                                   |

|    | R <sup>3</sup> | R <sup>4</sup>                                                                    | R5                            |
|----|----------------|-----------------------------------------------------------------------------------|-------------------------------|
|    |                | <u> </u>                                                                          | <u> </u>                      |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> | CH <sub>3</sub>               |
| 5  | H              | CH <sub>2</sub> NHCOCH <sub>3</sub>                                               | CH <sub>3</sub>               |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>                               | CH <sub>3</sub>               |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>               | СН3                           |
|    | н              | COCH <sub>3</sub>                                                                 | CH <sub>3</sub>               |
| 10 | H              | COCF <sub>3</sub>                                                                 | CH <sub>3</sub>               |
|    | H              | COC <sub>6</sub> H <sub>5</sub>                                                   | CH <sub>3</sub>               |
|    | Н              | CO- (4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> )                           | CH <sub>3</sub>               |
|    | Н              | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                     | CH <sub>3</sub>               |
| 15 | H              | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                     | CH <sub>3</sub>               |
|    | R              | F                                                                                 | CH <sub>3</sub>               |
|    | H              | Cl                                                                                | CH <sub>3</sub>               |
| 20 | Н              | Br                                                                                | CH <sub>3</sub>               |
|    | H              | OCH <sub>3</sub>                                                                  | CH <sub>3</sub>               |
|    | Н              | CF <sub>3</sub>                                                                   | CH <sub>3</sub>               |
|    | H              | NO <sub>2</sub>                                                                   | CH <sub>3</sub>               |
| 25 | H              | CN                                                                                | CH <sub>3</sub>               |
|    | Н              | SO <sub>2</sub> CH <sub>3</sub>                                                   | CH <sub>3</sub>               |
|    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                     | CH <sub>3</sub>               |
|    | H              | SO <sub>2</sub> -(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> )              | CH <sub>3</sub>               |
| 30 | H              | CH2OCH2C6H5                                                                       | CH <sub>3</sub>               |
|    | н              | COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                 | CH <sub>3</sub>               |
|    | H              | CO <sub>2</sub> H                                                                 | CH <sub>3</sub>               |
|    | н              | CO <sub>2</sub> CH <sub>3</sub>                                                   | CH <sub>3</sub>               |
| 35 | H              | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                   | CH <sub>3</sub>               |
|    | H              | CONH <sub>2</sub>                                                                 | CH <sub>3</sub>               |
|    | H              | CONHCH <sub>3</sub>                                                               | CH <sub>3</sub>               |
|    | H              | CON (CH <sub>3</sub> ) <sub>2</sub>                                               | CH <sub>3</sub>               |
| 40 | н              | CONHC <sub>6</sub> H <sub>5</sub>                                                 | CH <sub>3</sub>               |
|    | Н              | 3-Pyridyl                                                                         | CH <sub>3</sub>               |
|    | н              | 2-Pyridyl                                                                         | CH₃                           |
| 45 | H              | 4-SCH3-C6H4                                                                       | CH <sub>3</sub>               |
|    | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                  | C <sub>6</sub> H <sub>5</sub> |
|    | H              | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                  | C <sub>6</sub> H <sub>5</sub> |
|    | Н              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                  | С <sub>6</sub> Н <sub>5</sub> |
| 50 | H              | 2-F-C <sub>6</sub> H <sub>4</sub>                                                 | C <sub>6</sub> H <sub>5</sub> |
| Į. |                |                                                                                   |                               |

|            | R <sup>3</sup> | R <sup>4</sup>                                                        | R <sup>5</sup>                |
|------------|----------------|-----------------------------------------------------------------------|-------------------------------|
|            | H              | 3-F-C <sub>6</sub> H <sub>4</sub>                                     | C <sub>6</sub> H <sub>5</sub> |
| _          | Н              | 4-F-C <sub>6</sub> H <sub>4</sub>                                     | C <sub>6</sub> H <sub>5</sub> |
| 5          | H              | 2-C1-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 3-C1-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 4-C1-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
| 10         | H              | 2-Br-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 3-Br-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 4-Br-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | C <sub>6</sub> H <sub>5</sub> |
| 15         | Ħ              | 3-0CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>    | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>    | C <sub>6</sub> H <sub>5</sub> |
| 20         | H              | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                      | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                      | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                      | C <sub>6</sub> H <sub>5</sub> |
| 25         | H              | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                      | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                      | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                      | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 2-CN-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
| 30         | H              | 3-CN-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | 4-CN-C <sub>6</sub> H <sub>4</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | Н .            | 3, 4- (OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    | C <sub>6</sub> H <sub>5</sub> |
| 35         | H              | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>   | C <sub>6</sub> H <sub>5</sub> |
|            | H              | 2-Naphthyl                                                            | C <sub>6</sub> H <sub>5</sub> |
|            | H              | Thien-2-yl                                                            | C <sub>6</sub> H <sub>5</sub> |
| 40         | H              | Furan-2-yl                                                            | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | Isoxazol-2-yl                                                         | C <sub>6</sub> H <sub>5</sub> |
|            | Н              | CH <sub>3</sub>                                                       | C <sub>6</sub> H <sub>5</sub> |
| <b>4</b> 5 | H              | CH <sub>2</sub> CH <sub>3</sub>                                       | C <sub>6</sub> H <sub>5</sub> |
|            | H              | CH (CH <sub>3</sub> ) <sub>2</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | H              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>                    | C <sub>6</sub> H <sub>5</sub> |
|            | H              | C (CH <sub>3</sub> ) <sub>3</sub>                                     | С <sub>6</sub> H <sub>5</sub> |
|            | Н              | Cyclopropyl                                                           | C <sub>6</sub> H <sub>5</sub> |
| 50         | H              | CH <sub>2</sub> CH=CH <sub>2</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|            | <del></del>    |                                                                       | <del> </del>                  |

|           | R <sup>3</sup> | R <sup>4</sup>                                                                    | R5                                              |
|-----------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------|
| 5         |                |                                                                                   |                                                 |
|           | Н              | CH <sub>2</sub> C*CH                                                              | C <sub>6</sub> H <sub>5</sub> *=Dreifachbindung |
|           | H              | CH <sub>2</sub> CH=CHCH <sub>3</sub>                                              | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> C*CCH <sub>3</sub>                                                | C <sub>6</sub> H <sub>5</sub> *=Dreifachbindung |
|           | н              | CH <sub>2</sub> Cl                                                                | C <sub>6</sub> H <sub>5</sub>                   |
| 10        | H              | CH2CH2C1                                                                          | C <sub>6</sub> H <sub>5</sub>                   |
| ,,        | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> C1                                | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> CH=CHCl                                                           | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> OH                                                                | C <sub>6</sub> H <sub>5</sub>                   |
| 15        | H              | CH <sub>2</sub> CH <sub>2</sub> OH                                                | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                | C <sub>6</sub> H <sub>5</sub>                   |
|           | Ħ              | CH <sub>2</sub> OCH <sub>3</sub>                                                  | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH2CH2OCH3                                                                        | C <sub>6</sub> H <sub>5</sub>                   |
| 20        | A              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                  | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                   | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH2CH2CO2CH2CH3                                                                   | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH2CH2CH2CO2CH2CH3                                                                | C <sub>6</sub> H <sub>5</sub>                   |
| 25        | H              | CH <sub>2</sub> NH <sub>2</sub>                                                   | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                   | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                   | C <sub>6</sub> H <sub>5</sub>                   |
| 30        | H              | CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>                                 | C <sub>6</sub> H <sub>5</sub>                   |
| 00        | H              | CH <sub>2</sub> CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>                 | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CH <sub>2</sub> NHCOCH <sub>3</sub>                                               | C <sub>6</sub> H <sub>5</sub>                   |
| 35        | H              | CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>                               | C <sub>6</sub> H <sub>5</sub>                   |
|           | Ħ              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>               | C <sub>6</sub> H <sub>5</sub>                   |
|           | B              | COCH <sub>3</sub>                                                                 | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | COCF <sub>3</sub>                                                                 | C <sub>6</sub> H <sub>5</sub>                   |
| 40        | H              | COC <sub>6</sub> H <sub>5</sub>                                                   | C <sub>6</sub> H <sub>5</sub>                   |
|           | Н              | CO- (4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> )                           | C <sub>6</sub> H <sub>5</sub>                   |
| <b>45</b> | Н              | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                     | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                     | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | F                                                                                 | C <sub>6</sub> H <sub>5</sub>                   |
|           | Н              | Cl                                                                                | C <sub>6</sub> H <sub>5</sub>                   |
| )         | Н              | Br                                                                                | C <sub>6</sub> H <sub>5</sub>                   |
| 50        | Ħ              | OCH <sub>3</sub>                                                                  | C <sub>6</sub> H <sub>5</sub>                   |
|           | H              | CF <sub>3</sub>                                                                   | C <sub>6</sub> H <sub>5</sub>                   |
|           |                |                                                                                   | · · · · · · · · · · · · · · · · · · ·           |

|    | R <sup>3</sup> | R <sup>4</sup>                                                       | R5                            |
|----|----------------|----------------------------------------------------------------------|-------------------------------|
|    | H              | NO <sub>2</sub>                                                      | C <sub>6</sub> H <sub>5</sub> |
|    | Н              | CN                                                                   | C <sub>6</sub> H <sub>5</sub> |
| 5  | н              | SO <sub>2</sub> CH <sub>3</sub>                                      | C <sub>6</sub> H <sub>5</sub> |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                        | C <sub>6</sub> H <sub>5</sub> |
|    | Н              | SO <sub>2</sub> -(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> ) | C <sub>6</sub> H <sub>5</sub> |
| 10 | н              | CH2OCH2C6H5                                                          | C <sub>6</sub> H <sub>5</sub> |
|    | Н              | COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                    | C <sub>6</sub> H <sub>5</sub> |
|    | н              | CO <sub>2</sub> H                                                    | C <sub>6</sub> H <sub>5</sub> |
|    | H              | CO <sub>2</sub> CH <sub>3</sub>                                      | C <sub>6</sub> H <sub>5</sub> |
| 15 | H              | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                      | C <sub>6</sub> H <sub>5</sub> |
|    | Ħ              | CONH <sub>2</sub>                                                    | C <sub>6</sub> H <sub>5</sub> |
|    | H              | CONHCH <sub>3</sub>                                                  | C <sub>6</sub> H <sub>5</sub> |
|    | H              | CON (CH <sub>3</sub> ) <sub>2</sub>                                  | C <sub>6</sub> H <sub>5</sub> |
| 20 | Н              | CONHC <sub>6</sub> H <sub>5</sub>                                    | C <sub>6</sub> H <sub>5</sub> |
|    | Н              | 3-Pyridyl                                                            | C <sub>6</sub> H <sub>5</sub> |
|    | н              | 2-Pyridyl                                                            | С <sub>6</sub> Н <sub>5</sub> |
| 25 | Н              | 4-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | C <sub>6</sub> H <sub>5</sub> |
|    | Н              | C <sub>6</sub> H <sub>5</sub>                                        | OH                            |
|    | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | ОН                            |
|    | H              | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | ОН                            |
| 30 | Ħ              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | ОН                            |
|    | Н              | 2-F-C <sub>6</sub> H <sub>4</sub>                                    | ОН                            |
|    | H              | 3-F-C <sub>6</sub> H <sub>4</sub>                                    | ОН                            |
| •  | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                                    | ОН                            |
| 35 | H              | 2-C1-C <sub>6</sub> H <sub>4</sub>                                   | ОН                            |
|    | H              | 3-C1-C <sub>6</sub> H <sub>4</sub>                                   | ОН                            |
| -  | H              | 4-C1-C <sub>6</sub> H <sub>4</sub>                                   | OH                            |
| 40 | Н              | 2-Br-C <sub>6</sub> H <sub>4</sub>                                   | ОН                            |
|    | H              | 3-Br-C <sub>6</sub> H <sub>4</sub>                                   | ОН                            |
|    | Н              | 4-Br-C <sub>6</sub> H <sub>4</sub>                                   | ОН                            |
| 45 | н              | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | ОН                            |
|    | Ħ              | 3-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | OH                            |
|    | Н              | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | ОН                            |
|    | Ħ              | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | ОН                            |
|    | H              | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | ОН                            |
| 50 | H              | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | OH                            |

. 55

|                        |                | T=,                                                                 |                      |
|------------------------|----------------|---------------------------------------------------------------------|----------------------|
|                        | R <sup>3</sup> | R <sup>4</sup>                                                      | R <sup>5</sup>       |
|                        | H              | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | ОН                   |
| 5                      | H              | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | ОВ                   |
|                        | H              | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    | ОН                   |
|                        | Н              | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    | ОН                   |
|                        | Н              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                    | OH                   |
| 10                     | H              | 2-CN-C <sub>6</sub> H <sub>4</sub>                                  | ОН                   |
|                        | Н              | 3-CN-C <sub>6</sub> H <sub>4</sub>                                  | ОН                   |
|                        | H              | 4-CN-C <sub>6</sub> H <sub>4</sub>                                  | ОН                   |
|                        | Ħ              | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | OH                   |
| 15                     | Н              | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  | ОН                   |
|                        | H              | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> | ОН                   |
| ,                      | H              | 2-Naphthyl                                                          | ОН                   |
| ·                      | H              | Thien-2-yl                                                          | ОН                   |
| 20                     | Н              | Furan-2-yl                                                          | ОН                   |
|                        | Н              | Isoxazol-2-yl                                                       | ОН                   |
|                        | н              | CH <sub>3</sub>                                                     | ОН                   |
| 25                     | н              | CH <sub>2</sub> CH <sub>3</sub>                                     | ОН                   |
| 20                     | Н              | CH (CH <sub>3</sub> ) <sub>2</sub>                                  | ОН                   |
|                        | н              | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>                  | ОН                   |
|                        | Н              | C (CH <sub>3</sub> ) <sub>3</sub>                                   | ОН                   |
| 30                     | H              | Cyclopropyl                                                         | ОН                   |
|                        | Н              | CH <sub>2</sub> CH=CH <sub>2</sub>                                  | ОН                   |
|                        | н              | CH <sub>2</sub> C*CH                                                | OH *=Dreifachbindung |
|                        | н              | CH <sub>2</sub> CH=CHCH <sub>3</sub>                                | ОН                   |
| 35                     | Н              | CH <sub>2</sub> C*CCH <sub>3</sub>                                  | OH *=Dreifachbindung |
|                        | H              | CH <sub>2</sub> Cl                                                  | ОН                   |
|                        | Н              | CH2CH2C1                                                            | ОН                   |
| <b>40</b><br><b>45</b> | Н              | CH2CH2CH2CL                                                         | ОН                   |
|                        | Н              | CH <sub>2</sub> CH=CHCl                                             | OH                   |
|                        | Н              | CH <sub>2</sub> OH                                                  | ОН                   |
|                        | Н              | CH <sub>2</sub> CH <sub>2</sub> OH                                  | ОН                   |
|                        | H.             | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                  | OH                   |
|                        | н              | CH <sub>2</sub> OCH <sub>3</sub>                                    | ОН                   |
|                        | Н              | CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                    | ОН                   |
|                        | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>    | ОН                   |
| 50                     | н              | CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>     | ОН                   |
|                        |                |                                                                     |                      |

|    | T-2            |                                                                                                 |                |
|----|----------------|-------------------------------------------------------------------------------------------------|----------------|
|    | R <sup>3</sup> | R <sup>4</sup>                                                                                  | R <sup>5</sup> |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | ОН             |
| 5  | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | ОН             |
|    | H              | CH <sub>2</sub> NH <sub>2</sub>                                                                 | ОН             |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                                 | ОН             |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                 | ОН             |
| 10 | H              | CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>                                               | ОН             |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>                               | ОН             |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>               | ОН             |
| 15 | H              | CH <sub>2</sub> NHCOCH <sub>3</sub>                                                             | ОН             |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>                                             | ОН             |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>                             | ОН             |
|    | H              | COCH <sub>3</sub>                                                                               | ОН             |
| 20 | H              | COCF <sub>3</sub>                                                                               | ОН             |
|    | Н              | COC <sub>6</sub> H <sub>5</sub>                                                                 | ОН             |
|    | Н              | CO-(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> )                                          | ОН             |
|    | H              | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                                   | OH             |
| 25 | H              | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                   | OH             |
|    | H              | F                                                                                               | OH             |
|    | H              | Cl                                                                                              | Off            |
|    | H              | Br                                                                                              | он (           |
| 30 | H              | осн3                                                                                            | OH             |
|    | Н              | CF <sub>3</sub>                                                                                 | ОН             |
|    | Н              | NO <sub>2</sub>                                                                                 | ОН             |
| 35 | Н              | CN                                                                                              | ОН             |
|    | Н              | SO <sub>2</sub> CH <sub>3</sub>                                                                 | ОН             |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                                   | ОН             |
|    | H              | SO <sub>2</sub> -(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> )                            | ОН             |
| 40 | 8              | CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                  | ОН             |
|    | H              | COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                               | ОН             |
| 45 | H              | CO <sub>2</sub> H                                                                               | ОН             |
|    | H              | CO <sub>2</sub> CH <sub>3</sub>                                                                 | ОН             |
|    | H              | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                 | ОН             |
|    | Н              | CONH <sub>2</sub>                                                                               | ОН             |
|    | H              | CONHCH <sub>3</sub>                                                                             | ОН             |
|    | Н              | CON (CH <sub>3</sub> ) <sub>2</sub>                                                             | ОН             |
| 50 | Н              | ·                                                                                               | ОН             |
|    | ·              | <del></del>                                                                                     |                |

|    | R <sup>3</sup> | R <sup>4</sup>                                                       | R <sup>5</sup>  |
|----|----------------|----------------------------------------------------------------------|-----------------|
| 5  | н              | 3-Pyridyl                                                            | ОН              |
|    | Н              | 2-Pyridyl                                                            | ОН              |
|    | Н              | 4-SCH3-C6H4                                                          | ОН              |
|    | H              | C <sub>6</sub> H <sub>5</sub>                                        | NH <sub>2</sub> |
|    | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
| 10 | H              | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
|    | Ħ              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
|    | H              | 2-F-C <sub>6</sub> H <sub>4</sub>                                    | NH <sub>2</sub> |
| 15 | H              | 3-F-C <sub>6</sub> H <sub>4</sub>                                    | NH <sub>2</sub> |
| .0 | Н              | 4-F-C <sub>6</sub> H <sub>4</sub>                                    | NH <sub>2</sub> |
|    | H              | 2-C1-C6H4                                                            | NH <sub>2</sub> |
|    | H              | 3-C1-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
| 20 | Н              | 4-C1-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
|    | H              | 2-Br-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
|    | Н              | 3-Br-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
|    | H              | 4-Br-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
| 25 | Н              | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | NH <sub>2</sub> |
|    | H              | 3-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | NH <sub>2</sub> |
|    | H              | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | NH <sub>2</sub> |
| 30 | H              | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | NH <sub>2</sub> |
| 30 | H              | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> . | NH <sub>2</sub> |
|    | H              | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
|    | H              | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
| 35 | Н              | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
| •  | H              | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
|    | H              | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
|    | H              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub> |
| 40 | H              | 2-CN-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
| •  | Н              | 3-CN-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
|    | Н              | 4-CN-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub> |
| 45 | H              | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  | NH <sub>2</sub> |
|    | 8              | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   | NH <sub>2</sub> |
|    | Н              | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>  | NH <sub>2</sub> |
|    | Н              | 2-Naphthyl                                                           | NH <sub>2</sub> |
| 50 | Н              | Thien-2-yl                                                           | NH <sub>2</sub> |
|    | Н              | Furan-2-yl                                                           | NH <sub>2</sub> |

|    |                | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>                                                |                                   |
|----|----------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| 5  | R <sup>3</sup> | R <sup>4</sup>                                                                                  | R <sup>5</sup>                    |
|    | Н              | Isoxazol-2-yl                                                                                   | NH <sub>2</sub>                   |
|    | Н              | CH <sub>3</sub>                                                                                 | NH <sub>2</sub>                   |
|    | н              | CH <sub>2</sub> CH <sub>3</sub>                                                                 | NH <sub>2</sub>                   |
|    | Н              | CH (CH <sub>3</sub> ) <sub>2</sub>                                                              | NH <sub>2</sub>                   |
| 10 | H .            | CH <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>                                              | NH <sub>2</sub>                   |
| 10 | Н              | C (CH <sub>3</sub> ) <sub>3</sub>                                                               | NH <sub>2</sub>                   |
|    | Н              | Cyclopropyl                                                                                     | NH <sub>2</sub>                   |
|    | H              | CH <sub>2</sub> CH=CH <sub>2</sub>                                                              | NH <sub>2</sub>                   |
| 15 | H              | CH <sub>2</sub> C*CH                                                                            | NH <sub>2</sub> *=Dreifachbindung |
|    | H              | CH <sub>2</sub> CH=CHCH <sub>3</sub>                                                            | NH <sub>2</sub>                   |
|    | H              | CH <sub>2</sub> C*CCH <sub>3</sub>                                                              | NH <sub>2</sub> *=Dreifachbindung |
|    | H              | CH <sub>2</sub> Cl                                                                              | NH <sub>2</sub>                   |
| 20 | H              | CH <sub>2</sub> CH <sub>2</sub> C1                                                              | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Cl                                              | NH <sub>2</sub>                   |
|    | H              | CH <sub>2</sub> CH=CHCl                                                                         | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> OH                                                                              | NH <sub>2</sub>                   |
| 25 | Н              | CH <sub>2</sub> CH <sub>2</sub> OH                                                              | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                              | NH <sub>2</sub>                   |
|    | н              | CH <sub>2</sub> OCH <sub>3</sub>                                                                | NH <sub>2</sub>                   |
| 30 | Н              | CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                                | NH <sub>2</sub>                   |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                 | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | NH <sub>2</sub>                   |
| 35 | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> NH <sub>2</sub>                                                                 | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                                 | NH <sub>2</sub>                   |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sub>2</sub>                                 | NH <sub>2</sub>                   |
| 40 | H              | CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>                                               | NH <sub>2</sub>                   |
| •  | Н              | CH <sub>2</sub> CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>                               | NH <sub>2</sub>                   |
| 45 | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>               | NH <sub>2</sub>                   |
|    | H              | CH <sub>2</sub> NHCOCH <sub>3</sub>                                                             | NH <sub>2</sub>                   |
|    | H              | CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>                                             | NH <sub>2</sub>                   |
|    | Н              | CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NHCOCH <sub>3</sub>                             | NH <sub>2</sub>                   |
|    | Н              | COCH <sub>3</sub>                                                                               | NH <sub>2</sub>                   |
| 50 | H              | COCF <sub>3</sub>                                                                               | NH <sub>2</sub>                   |
|    | Н              | COC <sub>6</sub> H <sub>5</sub>                                                                 | NH <sub>2</sub>                   |
|    |                |                                                                                                 |                                   |

|    |                |                                                                      | ······                                 |
|----|----------------|----------------------------------------------------------------------|----------------------------------------|
|    | R <sup>3</sup> | R <sup>4</sup>                                                       | R <sup>5</sup>                         |
|    | H              | CO-(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> )               | NH <sub>2</sub>                        |
| 5  | H              | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                        | NH <sub>2</sub>                        |
| -  | H              | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>        | NH <sub>2</sub>                        |
|    | H              | F                                                                    | NH <sub>2</sub>                        |
|    | Н              | Cl                                                                   | NH <sub>2</sub>                        |
| 10 | H              | Br                                                                   | NH <sub>2</sub>                        |
|    | H              | OCH <sub>3</sub>                                                     | NH <sub>2</sub>                        |
|    | H              | CF <sub>3</sub>                                                      | NH <sub>2</sub>                        |
|    | H              | NO <sub>2</sub>                                                      | NH <sub>2</sub>                        |
| 15 | H              | CN                                                                   | NH <sub>2</sub>                        |
|    | H              | SO <sub>2</sub> CH <sub>3</sub>                                      | NH <sub>2</sub>                        |
| •  | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                        | NH <sub>2</sub>                        |
|    | Я              | SO <sub>2</sub> -(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> ) | NH <sub>2</sub>                        |
| 20 | H              | CH <sub>2</sub> OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>       | NH <sub>2</sub>                        |
| 20 | Н              | COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                    | NH <sub>2</sub>                        |
|    | H              | CO2H                                                                 | NH <sub>2</sub>                        |
|    | н              | CO <sub>2</sub> CH <sub>3</sub>                                      | NH <sub>2</sub>                        |
| 25 | Н              | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                      | NH <sub>2</sub>                        |
| 20 | H              | CONH <sub>2</sub>                                                    | NH <sub>2</sub>                        |
|    | H              | CONHCH <sub>3</sub>                                                  | NH <sub>2</sub>                        |
|    | Н              | CON (CH <sub>3</sub> ) <sub>2</sub>                                  | NH <sub>2</sub>                        |
| 30 | H              | CONHC <sub>6</sub> H <sub>5</sub>                                    | NH <sub>2</sub>                        |
| 30 | н .            | 3-Pyridyl                                                            | NH <sub>2</sub>                        |
|    | Н              | 2-Pyridyl                                                            | NH <sub>2</sub>                        |
|    | н              | 4-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    | NH <sub>2</sub>                        |
| 35 | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   | NH <sub>2</sub>                        |
| 35 | H              | 2,6-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                  | NH <sub>2</sub>                        |
|    | н              | 2,4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                   | NH <sub>2</sub>                        |
|    | Н              | 2-CO <sub>2</sub> CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>     | NH <sub>2</sub>                        |
| 40 | Н              | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | NH <sub>2</sub>                        |
| 40 | H              | 4-OH-C <sub>6</sub> H <sub>4</sub>                                   | NH <sub>2</sub>                        |
|    | Н              | 3-C1-4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>               | NH <sub>2</sub>                        |
|    | H              | C <sub>6</sub> H <sub>5</sub>                                        | <b>ИНСНО</b>                           |
| 45 | Н              | C <sub>6</sub> H <sub>5</sub>                                        | NHCOCH <sub>3</sub>                    |
| 45 | H              | C <sub>6</sub> H <sub>5</sub>                                        | NHCOCH <sub>2</sub> CH <sub>3</sub>    |
| •  | Н              | C <sub>6</sub> H <sub>5</sub>                                        | NHCOCH (CH <sub>3</sub> ) <sub>2</sub> |

| 5  | R <sup>3</sup> | R <sup>4</sup>                | R <sup>5</sup>                                                  |
|----|----------------|-------------------------------|-----------------------------------------------------------------|
|    | Н              | C <sub>6</sub> H <sub>5</sub> | NHCO-Cyclopropyl                                                |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCOCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>               |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCOC6H5                                                        |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCO <sub>2</sub> CH <sub>3</sub>                               |
| 10 | H              | C <sub>6</sub> H <sub>5</sub> | NHCO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>               |
| 10 | H              | C <sub>6</sub> H <sub>5</sub> | NHCO <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>            |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCO <sub>2</sub> -Cyclopropyl                                  |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> |
| 15 | H              | C <sub>6</sub> H <sub>5</sub> | NHCO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCONH <sub>2</sub>                                             |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | NHCONHCH <sub>3</sub>                                           |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | NHCON (CH <sub>3</sub> ) <sub>2</sub>                           |
| 20 | Н              | C <sub>6</sub> H <sub>5</sub> | NHCONHCH <sub>2</sub> CH <sub>3</sub>                           |
|    | Н              | С <sub>6</sub> Н <sub>5</sub> | NHCONHCH (CH <sub>3</sub> ) <sub>2</sub>                        |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCONH-Cyclopropyl                                              |
|    | H              | C <sub>6</sub> H <sub>5</sub> | NHCONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>             |
| 25 | H              | C <sub>6</sub> H <sub>5</sub> | NHCONHC <sub>6</sub> H <sub>5</sub>                             |
|    | H              | C <sub>6</sub> H <sub>5</sub> | OCOCH <sub>3</sub>                                              |
|    | H              | C <sub>6</sub> H <sub>5</sub> | OCOCH <sub>2</sub> CH <sub>3</sub>                              |
| 30 | H              | C <sub>6</sub> H <sub>5</sub> | OCOCH (CH <sub>3</sub> ) <sub>2</sub>                           |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | OCO-Cyclopropyl                                                 |
|    | H              | C <sub>6</sub> H <sub>5</sub> | OCOCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                |
|    | H              | C <sub>6</sub> H <sub>5</sub> | OCOC <sub>6</sub> H <sub>5</sub>                                |
| 35 | Н              | C <sub>6</sub> H <sub>5</sub> | OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                  |
|    | H              | C <sub>6</sub> H <sub>5</sub> | CO <sub>2</sub> CH <sub>3</sub>                                 |
|    | H              | C <sub>6</sub> H <sub>5</sub> | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 |
|    | H              | C <sub>6</sub> H <sub>5</sub> | CO <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>              |
| 40 | H              | C <sub>6</sub> H <sub>5</sub> | CO <sub>2</sub> -Cyclopropyl                                    |
|    | H              | C <sub>6</sub> H <sub>5</sub> | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   |
| 45 | H              | C <sub>6</sub> H <sub>5</sub> | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                   |
|    | H              | C <sub>6</sub> H <sub>5</sub> | SO <sub>2</sub> CH <sub>3</sub>                                 |
|    | H              | C <sub>6</sub> H <sub>5</sub> | SO <sub>2</sub> CF <sub>3</sub>                                 |
|    | H              | C <sub>6</sub> H <sub>5</sub> | SO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                   |
| 50 | H              | C <sub>6</sub> H <sub>5</sub> | NHSO <sub>2</sub> CH <sub>3</sub>                               |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | NHSO <sub>2</sub> CF <sub>3</sub>                               |
|    |                |                               |                                                                 |

|    | R <sup>3</sup> | R <sup>4</sup>                | R <sup>5</sup>                                                  |
|----|----------------|-------------------------------|-----------------------------------------------------------------|
|    | Н              | C <sub>6</sub> H <sub>5</sub> | NHSO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> |
| 5  | Н              | C <sub>6</sub> H <sub>5</sub> | NHSO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 |
|    | Н              | CN                            | NHCHO                                                           |
|    | н              | CN                            | инсосн3                                                         |
|    | H              | CN                            | NHCOCH <sub>2</sub> CH <sub>3</sub>                             |
| 10 | H              | CN                            | NHCOCH (CH <sub>3</sub> ) <sub>2</sub>                          |
|    | Н              | CN                            | NHCO-Cyclopropyl                                                |
|    | Н              | CN                            | NHCOCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>               |
| 15 | Н              | CN                            | NHCOC <sub>6</sub> H <sub>5</sub>                               |
| 15 | Н              | CN                            | NHCO <sub>2</sub> CH <sub>3</sub>                               |
|    | H              | CN                            | NHCO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>               |
|    | H              | CN                            | NHCO <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>            |
| 20 | Н              | CN                            | NHCO2-Cyclopropyl                                               |
|    | H              | CN                            | NHCO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> |
|    | Ħ              | CN                            | NHCO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 |
|    | H              | CN                            | NHCONH <sub>2</sub>                                             |
| 25 | H              | CN                            | NHCONHCH <sub>3</sub>                                           |
|    | H              | CN                            | NHCON (CH <sub>3</sub> ) <sub>2</sub>                           |
|    | Н              | CN                            | NHCONHCH <sub>2</sub> CH <sub>3</sub>                           |
|    | H              | CN                            | NHCONHCH (CH <sub>3</sub> ) <sub>2</sub>                        |
| 30 | H              | CN                            | NHCONH-Cyclopropyl                                              |
|    | H              | CN                            | NHCONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>             |
|    | H              | CN                            | NHCONHC <sub>6</sub> H <sub>5</sub>                             |
| 35 | H              | CN                            | OCOCH <sub>3</sub>                                              |
|    | Н ,            | CN                            | OCOCH <sub>2</sub> CH <sub>3</sub>                              |
|    | Н              | CN                            | OCOCH (CH <sub>3</sub> ) <sub>2</sub>                           |
|    | Н              | CN                            | OCO-Cyclopropyl                                                 |
| 40 | Н              | CN                            | OCOCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                |
|    | Н              | CN                            | OCOC <sub>6</sub> H <sub>5</sub>                                |
|    | H              | CN                            | OCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                  |
|    | H              | CN                            | CO <sub>2</sub> CH <sub>3</sub>                                 |
| 45 | H              | CN                            | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 |
|    | Ħ              | CN                            | CO <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>              |
|    | H              | CN                            | CO <sub>2</sub> -Cyclopropyl                                    |
| 50 | H              | CN                            | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   |
| 50 | Ħ              | CN                            | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                   |

|     | R <sup>3</sup> | R <sup>4</sup>                                     | R <sup>5</sup>                                                  |
|-----|----------------|----------------------------------------------------|-----------------------------------------------------------------|
|     | Н              | CN                                                 | SO <sub>2</sub> CH <sub>3</sub>                                 |
| 5   | Н              | CN                                                 | SO <sub>2</sub> CF <sub>3</sub>                                 |
| · · | Н              | CN                                                 | SO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   |
|     | Н              | CN                                                 | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                   |
|     | Н              | CN                                                 | NHSO <sub>2</sub> CH <sub>3</sub>                               |
| 10  | Н              | CN                                                 | NHSO <sub>2</sub> CF <sub>3</sub>                               |
|     | H              | CN                                                 | NHSO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> |
|     | н              | CN                                                 | NHSO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 |
|     | н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | инсно                                                           |
| 15  | н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCOCH <sub>3</sub>                                             |
|     | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCOCH <sub>2</sub> CH <sub>3</sub>                             |
|     | н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCOCH (CH <sub>3</sub> ) <sub>2</sub>                          |
|     | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCO-Cyclopropyl                                                |
| 20  | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCOCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>               |
|     | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCOC <sub>6</sub> H <sub>5</sub>                               |
|     | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCO <sub>2</sub> CH <sub>3</sub>                               |
| 25  | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>               |
|     | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCO <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>            |
| 1   | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCO <sub>2</sub> -Cyclopropyl                                  |
|     | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> |
| 30  | н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 |
|     | н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCONH <sub>2</sub>                                             |
|     | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCONHCH <sub>3</sub>                                           |
|     | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCON (CH <sub>3</sub> ) <sub>2</sub>                           |
| 35  | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCONHCH <sub>2</sub> CH <sub>3</sub>                           |
|     | H ,            | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCONHCH (CH <sub>3</sub> ) <sub>2</sub>                        |
|     | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCONH-Cyclopropyl                                              |
| 40  | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCONHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>             |
| 40  | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHCONHC <sub>6</sub> H <sub>5</sub>                             |
|     | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | OCOCH <sub>3</sub>                                              |
|     | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | OCOCH <sub>2</sub> CH <sub>3</sub>                              |
| 45  | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | OCOCH (CH <sub>3</sub> ) <sub>2</sub>                           |
|     | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | OCO-Cyclopropyl                                                 |
|     | н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | OCOCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                |
|     | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | OCOC <sub>6</sub> H <sub>5</sub>                                |
| 50  | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> CH <sub>3</sub>                                 |
|     |                |                                                    |                                                                 |

| R <sup>3</sup> | R <sup>4</sup>                                     | R <sup>5</sup>                                                  |
|----------------|----------------------------------------------------|-----------------------------------------------------------------|
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 |
| H ,            | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> CH (CH <sub>3</sub> ) <sub>2</sub>              |
| H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> -Cyclopropyl                                    |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   |
| H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                   |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | SO <sub>2</sub> CH <sub>3</sub>                                 |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | SO <sub>2</sub> CF <sub>3</sub>                                 |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | SO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                   |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHSO <sub>2</sub> CH <sub>3</sub>                               |
| н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHSO <sub>2</sub> CF <sub>3</sub>                               |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHSO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> |
| Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | NHSO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                 |

Tabelle B

5 0 I.9

$$R^{13}$$
— $S$ — $NH$ 
 $N$ 
 $N$ 
 $CH_3$ 
 $CH_3$ 

15 CH<sub>3</sub> 20 I.11

30

I.13

I.15

55

50

25

|   |      | R <sup>3</sup> | R <sup>4</sup> | R <sup>13</sup>                                                                  |
|---|------|----------------|----------------|----------------------------------------------------------------------------------|
|   |      | Н              | H              | C <sub>6</sub> H <sub>5</sub>                                                    |
|   | 5    | Н              | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   | ·    | E              | Н              | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   |      | Н              | Н              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   |      | H              | H              | 2-F-C <sub>6</sub> H <sub>4</sub>                                                |
|   | 10 . | H              | Н              | 3-F-C <sub>6</sub> H <sub>4</sub>                                                |
|   |      | H              | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                                                |
|   |      | H              | H              | 2-C1-C <sub>6</sub> H <sub>4</sub>                                               |
|   |      | H              | Н              | 3-C1-C <sub>6</sub> H <sub>4</sub>                                               |
|   | 15   | н              | H              | 4-C1-C <sub>6</sub> H <sub>4</sub>                                               |
| • |      | H              | H              | 2-Br-C <sub>6</sub> H <sub>4</sub>                                               |
|   |      | H              | Н              | 3-Br-C <sub>6</sub> H <sub>4</sub>                                               |
|   |      | H              | H              | 4-Br-C <sub>6</sub> H <sub>4</sub>                                               |
|   | 20   | н              | Н              | 2-OH-C <sub>6</sub> H <sub>4</sub>                                               |
|   |      | H              | H              | 3-OH-C <sub>6</sub> H <sub>4</sub>                                               |
|   |      | H              | H              | 4-OH-C <sub>6</sub> H <sub>4</sub>                                               |
|   | 25   | H              | Н              | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
|   | ٠,   | H              | Н              | 3-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
|   |      | Н              | Н              | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
|   |      | H              | Н              | 4-C <sub>6</sub> H <sub>5</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|   | 30   | H              | H              | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>               |
|   |      | H              | H              | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>               |
|   |      | H              | H              | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   |      | H              | H              | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   | 35   | H              | H              | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   |      | B              | Ħ              | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   |      | H              | H              | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   | 40   | H              | H              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|   |      | H              | Ħ              | 2-CN-C <sub>6</sub> H <sub>4</sub>                                               |
|   |      | H              | Ħ              | 3-CN-C <sub>6</sub> H <sub>4</sub>                                               |
|   |      | H              | H              | 4-CN-C <sub>6</sub> H <sub>4</sub>                                               |
|   | 45   | H              | H              | $2-(CO_2C_2H_5)-C_6H_4$                                                          |
|   | Ī    | Н              | H              | $3-(CO_2C_2H_5)-C_6H_4$                                                          |
|   |      | Н              | Н              | 4-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub> |
|   |      | Н              | Н              | 2-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>               |
|   | 50   | Н              | Н              | 3-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>               |
|   | `    |                |                |                                                                                  |

|   |    | R <sup>3</sup> | R <sup>4</sup> | R <sup>13</sup>                                                                     |
|---|----|----------------|----------------|-------------------------------------------------------------------------------------|
|   |    | H              | Н              | 4-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|   | 5  | Н              | Н              | 2-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                  |
|   |    | н              | н              | 3-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                  |
|   |    | Н              | H              | 4-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                  |
|   |    | н              | H              | 2-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|   | 10 | H              | H              | 3-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|   |    | Н              | Н              | 4-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|   |    | Н              | Н              | 2-SCH3-C6H4                                                                         |
|   | 15 | Н              | H              | 3-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|   |    | Н              | H              | 4-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|   |    | Н              | Н              | 2,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
|   |    | Н              | H              | 3,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                  |
| ; | 20 | Н -            | H              | 2,6-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> .                |
|   |    | Н              | Н              | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|   |    | н              | H              | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|   |    | Н              | Н              | 2,6-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|   | 25 | H              | н              | 2,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                   |
|   |    | Н              | Н              | 3,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                   |
|   |    | Н              | н              | 2,6-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                   |
|   | 30 | Н              | Н              | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                  |
| • | 30 | Н              | H              | 3,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                  |
|   |    | H              | н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                  |
|   |    | H              | H              | 2,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
| ; | 35 | H              | H              | 3,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
|   |    | H              | Ħ              | 2,6-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
|   |    | H ·            | Н              | 2-C1-6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                               |
|   |    | н              | H              | 2-CO <sub>2</sub> CH <sub>3</sub> -6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
| 4 | 40 | Н              | H              | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|   |    | Н              | н              | 3-NO <sub>2</sub> -4-F-C <sub>6</sub> H <sub>3</sub>                                |
|   |    | Н              | H              | 3-NO <sub>2</sub> -4-C1-C <sub>6</sub> H <sub>3</sub>                               |
|   |    | Н              | H              | 3-NO <sub>2</sub> -4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                |
| • | 45 | Н              | H              | 2-Naphthyl                                                                          |
|   |    | н              | H              | Thien-2-yl                                                                          |
|   |    | H              | Н              | Thien-3-yl                                                                          |
|   | 50 | Н              | H              | 5-CH <sub>3</sub> -thien-2-yl                                                       |
| • | `` | H              | H              | 5-Cl-thien-2-yl                                                                     |
|   | 1  |                |                |                                                                                     |

|    | •        | R <sup>3</sup> | R <sup>4</sup> | R <sup>13</sup>                                   |
|----|----------|----------------|----------------|---------------------------------------------------|
| 5  |          | Н              | Н              | 5-Br-thien-2-yl                                   |
|    | 5        | Н              | н              | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thien-3-yl   |
|    |          | Н              | Н              | Thiazol-2-yl                                      |
|    |          | Н              | н              | Thiazol-4-yl                                      |
|    |          | Н              | H              | 5-CH <sub>3</sub> -thiazol-2-yl                   |
| 1  | 0        | H              | H              | 5-Cl-thiazol-2-yl                                 |
|    |          | Н              | Н              | 5-Br-thiazol-2-yl                                 |
|    |          | Н              | Н              | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thiazol-4-yl |
| 1  | 5        | Н              | H              | Furan-2-yl                                        |
| •  |          | Н              | H              | Furan-3-yl .                                      |
|    | •        | н              | н              | 5-CH <sub>3</sub> -furan-2-yl                     |
|    |          | н              | н              | 5-Cl-furan-2-yl                                   |
| 2  | o        | H              | Н              | Pyrrol-2-yl                                       |
|    |          | Н              | Н              | Pyrrol-3-yl                                       |
|    |          | Н              | Н              | 5-CH <sub>3</sub> -pyrrol-2-yl                    |
|    |          | Н              | н              | 5-Br-pyrrol-2-yl                                  |
| 2  | 5        | Ħ              | H              | Oxazol-4-yl                                       |
|    |          | Н              | H              | Imidazol-2-yl                                     |
|    |          | Н              | Н              | Pyridin-2-yl                                      |
| _  |          | Н              | Н              | Pyridin-3-yl                                      |
| 3  | U        | Н              | H              | Pyridin-4-yl                                      |
|    | <i>'</i> | Н              | H              | Pyrazin-3-yl                                      |
|    |          | H ·            | H              | Pyrazin-4-yl                                      |
| 3  | 5        | H              | H              | Pyrrol-2-yl                                       |
|    | :        | Н              | H              | Pyrimidin-2-yl                                    |
|    |          | H              | H              | Pyrimidin-4-yl                                    |
|    |          | B              | H              | Pyrimidin-5-yl                                    |
| 4  | o        | H              | CN             | C <sub>6</sub> H <sub>5</sub>                     |
|    |          | H              | CN             | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|    |          | H              | CN             | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|    |          | H              | CN             | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 4  | 5        | H              | CN             | 2-F-C <sub>6</sub> H <sub>4</sub>                 |
|    |          | H              | CN             | 3-F-C <sub>6</sub> H <sub>4</sub>                 |
|    |          | H              | CN             | 4-F-C <sub>6</sub> H <sub>4</sub>                 |
| E  | ,        | H              | CN             | 2-C1-C <sub>6</sub> H <sub>4</sub>                |
| 50 | v        | H              | CN             | 3-C1-C <sub>6</sub> H <sub>4</sub>                |

|      | R <sup>3</sup> | R <sup>4</sup> | R <sup>13</sup>                                                                     |
|------|----------------|----------------|-------------------------------------------------------------------------------------|
|      | H              | CN             | 4-C1-C <sub>6</sub> H <sub>4</sub>                                                  |
| 5    | н              | CN             | 2-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
|      | н              | CN             | 3-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
|      | H              | CN             | 4-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
| 40   | Н              | CN             | 2-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
| 10 . | H              | CN             | 3-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|      | Н              | CN             | 4-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|      | H              | CN             | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
| 15   | Н              | CN             | 3-0CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|      | Н              | CN             | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|      | Н              | CN             | 4-C6H5-C6H4                                                                         |
|      | н              | CN             | 2-C1-6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                               |
| 20   | Н              | CN             | 2-CO <sub>2</sub> CH <sub>3</sub> -6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|      | Н              | CN             | 2,5-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|      | Н              | CN             | 2,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                  |
|      | H              | CN             | 2,4,5-Cl <sub>3</sub> -C <sub>6</sub> H <sub>2</sub>                                |
| 25   | H              | CN             | 2-CO <sub>2</sub> CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|      | H              | CN             | 5-C1-2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                              |
|      | Н              | CN             | 5-NO <sub>2</sub> -2-C1-C <sub>6</sub> H <sub>3</sub>                               |
| 30   | Н              | CN             | 2-Cl-6-cyclopentenyl-C <sub>6</sub> H <sub>3</sub>                                  |
| 30   | н              | CN             | 3-Cl-thien-2-yl                                                                     |
|      | H              | CN             | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
|      | H ·            | CN             | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
| 35   | н              | CN             | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|      | Н              | CN             | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|      | н              | CN             | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|      | н              | CN             | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 40   | Н              | CN             | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|      | Н              | CN             | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|      | н              | CN             | 2-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
| 45 ! | Н              | CN             | 3-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
| 45 ! | H              | CN             | 4-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|      | H              | CN             | 2-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|      | н              | CN             | 3-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
| 50   | н              | CN             | 4-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|      | н              | CN             | 2-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
|      |                |                |                                                                                     |

|    | R <sup>3</sup> | R <sup>4</sup> | R13                                                                              |
|----|----------------|----------------|----------------------------------------------------------------------------------|
|    | Н              | CN             | 3-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub> |
| 5  | H              | CN             | 4-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub> |
|    | Н              | CN             | 2-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                               |
|    | H              | CN ,           | 3-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                               |
|    | H              | CN             | 4-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                               |
| 10 | Н              | CN             | 2-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | H              | CN             | 3-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | Н              | CN             | 4-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
| 15 | Н              | CN             | 2-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
| ,  | Н .            | CN             | 3-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
|    | Н              | CN             | 4-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
|    | Н              | CN             | 2,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>               |
| 20 | н              | CN             | 3,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>               |
|    | Н              | CN             | 2,6-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>               |
|    | н              | CN             | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>              |
|    | Н              | CN             | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>              |
| 25 | н              | CN             | 2,6-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>              |
|    | н              | CN             | 2,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
|    | Н              | CN             | 3,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
| 20 | Н              | CN             | 2,6-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
| 30 | Н              | CN             | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                               |
|    | Н              | CN             | 3,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                               |
|    | Н .            | CN             | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                               |
| 35 | H              | CN             | 2,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                             |
|    | H              | CN             | 3,4-(OH)2-C6H3                                                                   |
|    | Н              | CN             | 2,6-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                             |
|    | H              | CN             | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>              |
| 40 | н              | CN             | 3-NO <sub>2</sub> -4-F-C <sub>6</sub> H <sub>3</sub>                             |
|    | Н              | CN             | 3-NO <sub>2</sub> -4-C1-C <sub>6</sub> H <sub>3</sub>                            |
|    | H              | CN ·           | 3-NO <sub>2</sub> -4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>             |
|    | H              | CN             | 2-Naphthyl                                                                       |
| 45 | Н              | CN             | Thien-2-yl                                                                       |
|    | H              | CN             | Thien-3-yl                                                                       |
|    | Н              | CN             | 5-CH <sub>3</sub> -thien-2-yl                                                    |
| 50 | Н              | CN             | 5-Cl-thien-2-yl                                                                  |
| 50 | Н              | CN             | 5-Br-thien-2-yl                                                                  |
| •  |                | ·              | · · · · · · · · · · · · · · · · · · ·                                            |

|      | R <sup>3</sup> | R <sup>4</sup>                | R13                                               |
|------|----------------|-------------------------------|---------------------------------------------------|
| •    | H              | CN                            | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thien-3-yl   |
| 5    | H              | CN                            | Thiazol-2-yl                                      |
|      | H              | CN                            | Thiazol-4-yl                                      |
|      | H              | CN                            | 5-CH <sub>3</sub> -thiazol-2-yl                   |
|      | H              | CN                            | 5-Cl-thiazol-2-yl                                 |
| 10 - | H              | CN                            | 5-Br-thiazol-2-yl                                 |
|      | H              | CN                            | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thiazol-4-yl |
|      | H              | CN                            | Furan-2-yl                                        |
| 15   | Н              | CN                            | Furan-3-yl                                        |
|      | н              | CN                            | 5-CH <sub>3</sub> -furan-2-yl                     |
|      | B              | CN                            | 5-Cl-furan-2-yl                                   |
|      | H              | CN                            | Pyrrol-2-yl                                       |
| 20   | H              | CN                            | Pyrrol-3-yl                                       |
|      | Н              | CN                            | 5-CH <sub>3</sub> -pyrrol-2-yl                    |
|      | н              | CN                            | 5-Br-pyrrol-2-yl                                  |
|      | H              | CN                            | Oxazol-4-yl                                       |
| 25   | H              | CN                            | Imidazol-2-yl                                     |
|      | Н              | CN                            | Pyridin-2-yl                                      |
|      | Н              | CN                            | Pyridin-3-yl                                      |
|      | н              | CN                            | Pyridin-4-yl                                      |
| 30   | Ħ              | CN                            | Pyrazin-3-yl                                      |
|      | Н              | CN                            | Pyrazin-4-yl                                      |
|      | H              | CN                            | Pyrrol-2-yl                                       |
| 35   | н              | CN                            | Pyrimidin-2-yl                                    |
|      | H              | CN                            | Pyrimidin-4-yl                                    |
|      | н              | CN                            | Pyrimidin-5-yl                                    |
| •    | н              | C <sub>6</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub>                     |
| 40   | H              | C <sub>6</sub> H <sub>5</sub> | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|      | H              | C <sub>6</sub> H <sub>5</sub> | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|      | H              | C <sub>6</sub> H <sub>5</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|      | H              | C <sub>6</sub> H <sub>5</sub> | 2-F-C <sub>6</sub> H <sub>4</sub>                 |
| 45   | H              | C <sub>6</sub> H <sub>5</sub> | 3-F-C <sub>6</sub> H <sub>4</sub>                 |
|      | H              | C <sub>6</sub> H <sub>5</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                 |
|      | H              | C <sub>6</sub> H <sub>5</sub> | 2-C1-C <sub>6</sub> H <sub>4</sub>                |
| 50   | н              | C <sub>6</sub> H <sub>5</sub> | 3-C1-C <sub>6</sub> H <sub>4</sub>                |
| ••   | H              | C <sub>6</sub> H <sub>5</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                |
|      |                |                               | -                                                 |

|           | R <sup>3</sup> | R <sup>4</sup>                | R13                                                                                 |
|-----------|----------------|-------------------------------|-------------------------------------------------------------------------------------|
|           |                |                               |                                                                                     |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 2-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
| 5         | H              | C <sub>6</sub> H <sub>5</sub> | 3-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 4-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 2-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|           | Н              | C <sub>6</sub> H <sub>5</sub> | 3-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
| 10        | H              | C <sub>6</sub> H <sub>5</sub> | 4-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 3-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
| 15        | H              | C <sub>6</sub> H <sub>5</sub> | 2-C1-6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                               |
|           | Н              | C <sub>6</sub> H <sub>5</sub> | 2-CO <sub>2</sub> CH <sub>3</sub> -6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|           | Н ,            | C <sub>6</sub> H <sub>5</sub> | 4-C <sub>6</sub> H <sub>5</sub> -C <sub>6</sub> H <sub>4</sub>                      |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
| 20        | Н              | C <sub>6</sub> H <sub>5</sub> | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
| •         | Н              | C <sub>6</sub> H <sub>5</sub> | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|           | Н              | C <sub>6</sub> H <sub>5</sub> | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 25        | Н              | C <sub>6</sub> H <sub>5</sub> | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| _         | Н              | C <sub>6</sub> H <sub>5</sub> | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|           | н              | C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 30        | Н              | C <sub>6</sub> H <sub>5</sub> | 2-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|           | н              | C <sub>6</sub> H <sub>5</sub> | 3-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|           | н -            | C <sub>6</sub> H <sub>5</sub> | 4-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|           | Н              | C <sub>6</sub> H <sub>5</sub> | 2,5-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
| 35        | н              | C <sub>6</sub> H <sub>5</sub> | 2,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                  |
|           | Н              | C <sub>6</sub> H <sub>5</sub> | 2,4,5-Cl <sub>3</sub> -C <sub>6</sub> H <sub>2</sub>                                |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 2-CO <sub>2</sub> CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 5-C1-2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                              |
| <b>40</b> | H              | C <sub>6</sub> H <sub>5</sub> | 5-NO <sub>2</sub> -2-C1-C <sub>6</sub> H <sub>3</sub>                               |
|           | н              | C <sub>6</sub> H <sub>5</sub> | 2-C1-6-cyclopentenyl-C6H3                                                           |
|           | н              | C <sub>6</sub> H <sub>5</sub> | 3-Cl-thien-2-yl                                                                     |
| 45        | н              | C <sub>6</sub> H <sub>5</sub> | 2-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|           | н              | C <sub>6</sub> H <sub>5</sub> | 3-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|           | н              | C <sub>6</sub> H <sub>5</sub> | 4-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|           | H              | C <sub>6</sub> H <sub>5</sub> | 2-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
| 50        | H              | C <sub>6</sub> H <sub>5</sub> | 3-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
|           |                |                               | 1                                                                                   |

|    | R <sup>3</sup> | R <sup>4</sup>                | R <sup>13</sup>                                                                  |
|----|----------------|-------------------------------|----------------------------------------------------------------------------------|
|    | н              | C <sub>6</sub> H <sub>5</sub> | 4-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub> |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | 2-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                               |
| 5  | Н              | C <sub>6</sub> H <sub>5</sub> | 3-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                               |
|    | н              | C <sub>6</sub> H <sub>5</sub> | 4-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                               |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | 2-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
| 10 | H              | C <sub>6</sub> H <sub>5</sub> | 3-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 4-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                 |
| •  | H .            | C <sub>6</sub> H <sub>5</sub> | 2-SCH3-C6H4                                                                      |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 3-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                |
| 15 | H              | C <sub>6</sub> H <sub>5</sub> | 4-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> .                              |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 2,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>               |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | 3,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>               |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 2,6-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>               |
| 20 | H              | C <sub>6</sub> H <sub>5</sub> | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>              |
|    | R              | C <sub>6</sub> H <sub>5</sub> | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>              |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | 2,6-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>              |
| 05 | Н              | C <sub>6</sub> H <sub>5</sub> | 2,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
| 25 | H              | C <sub>6</sub> H <sub>5</sub> | 3,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 2,6-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                               |
| 30 | н              | C <sub>6</sub> H <sub>5</sub> | 3,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                               |
|    | Н              | C <sub>6</sub> H <sub>5</sub> | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                               |
|    | н              | C <sub>6</sub> H <sub>5</sub> | 2,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                             |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 3,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                             |
| 35 | н              | C <sub>6</sub> H <sub>5</sub> | 2,6-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                             |
|    | н              | C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>              |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-F-C <sub>6</sub> H <sub>3</sub>                             |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-C1-C <sub>6</sub> H <sub>3</sub>                            |
| 40 | н              | C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>             |
|    | H              | C <sub>6</sub> H <sub>5</sub> | 2-Naphthyl                                                                       |
|    | H              | C <sub>6</sub> H <sub>5</sub> | Thien-2-yl                                                                       |
| 45 | Н              | C <sub>6</sub> H <sub>5</sub> | Thien-3-yl                                                                       |
|    | Н              | С <sub>6</sub> Н <sub>5</sub> | 5-CH <sub>3</sub> -thien-2-yl                                                    |
|    | Н              | С <sub>6</sub> Н <sub>5</sub> | 5-Cl-thien-2-yl                                                                  |
|    | н              | С <sub>6</sub> Н <sub>5</sub> | 5-Br-thien-2-yl                                                                  |
| 50 | Н              | С <sub>6</sub> Н <sub>5</sub> | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thien-3-yl                                  |
|    |                |                               |                                                                                  |

|           | R <sup>3</sup> | R <sup>4</sup>                  | R <sup>13</sup>                                   |
|-----------|----------------|---------------------------------|---------------------------------------------------|
|           | Н              | C <sub>6</sub> H <sub>5</sub>   | Thiazol-2-yl                                      |
| 5         | H              | C <sub>6</sub> H <sub>5</sub>   | Thiazol-4-yl                                      |
|           | H              | C <sub>6</sub> H <sub>5</sub>   | 5-CH <sub>3</sub> -thiazol-2-yl                   |
|           | н              | C <sub>6</sub> H <sub>5</sub>   | 5-Cl-thiazol-2-yl                                 |
| <b>\</b>  | H              | C <sub>6</sub> H <sub>5</sub>   | 5-Br-thiazol-2-yl                                 |
| 10        | Н              | C <sub>6</sub> H <sub>5</sub>   | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thiazol-4-yl |
|           | н              | C <sub>6</sub> H <sub>5</sub>   | Furan-2-yl                                        |
|           | н              | C <sub>6</sub> H <sub>5</sub>   | Furan-3-yl                                        |
| 15        | н              | C <sub>6</sub> H <sub>5</sub>   | 5-CH <sub>3</sub> -furan-2-yl                     |
|           | H              | C <sub>6</sub> H <sub>5</sub>   | 5-Cl-furan-2-yl                                   |
|           | Н              | C <sub>6</sub> H <sub>5</sub>   | Pyrrol-2-yl                                       |
|           | н              | C <sub>6</sub> H <sub>5</sub>   | Pyrrol-3-yl                                       |
| 20        | Н              | C <sub>6</sub> H <sub>5</sub>   | 5-CH <sub>3</sub> -pyrrol-2-yl                    |
|           | н              | C <sub>6</sub> H <sub>5</sub>   | 5-Br-pyrrol-2-yl                                  |
|           | Н              | C <sub>6</sub> H <sub>5</sub>   | Oxazol-4-yl                                       |
|           | н              | C <sub>6</sub> H <sub>5</sub>   | Imidazol-2-yl                                     |
| 25        | Н              | C <sub>6</sub> H <sub>5</sub>   | Pyridin-2-yl                                      |
|           | H              | C <sub>6</sub> H <sub>5</sub>   | Pyridin-3-yl                                      |
|           | H              | C <sub>6</sub> H <sub>5</sub>   | Pyridin-4-yl                                      |
| 30        | Н              | C <sub>6</sub> H <sub>5</sub>   | Pyrazin-3-yl                                      |
| 30        | H              | С <sub>6</sub> Н <sub>5</sub>   | Pyrazin-4-yl                                      |
|           | H              | C <sub>6</sub> H <sub>5</sub>   | Pyrrol-2-yl                                       |
|           | H              | C <sub>6</sub> H <sub>5</sub>   | Pyrimidin-2-yl                                    |
| 35        | H              | C <sub>6</sub> H <sub>5</sub>   | Pyrimidin-4-yl                                    |
|           | H              | C <sub>6</sub> H <sub>5</sub>   | Pyrimidin-5-yl                                    |
|           | H              | SO <sub>2</sub> CH <sub>3</sub> | C <sub>6</sub> H <sub>5</sub>                     |
|           | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 40        | H              | SO <sub>2</sub> CH <sub>3</sub> | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|           | H '            | SO <sub>2</sub> CH <sub>3</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|           | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-F-C <sub>6</sub> H <sub>4</sub>                 |
| _         | н              | SO <sub>2</sub> CH <sub>3</sub> | 3-F-C <sub>6</sub> H <sub>4</sub>                 |
| <b>45</b> | Н              | SO <sub>2</sub> CH <sub>3</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                 |
|           | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-C1-C <sub>6</sub> H <sub>4</sub>                |
|           | H              | SO <sub>2</sub> CH <sub>3</sub> | 3-C1-C <sub>6</sub> H <sub>4</sub>                |
| 50        | н              | SO <sub>2</sub> CH <sub>3</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                |
|           | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-Br-C <sub>6</sub> H <sub>4</sub>                |
|           |                |                                 |                                                   |

|    | R <sup>3</sup> | R <sup>4</sup>                  | R <sup>13</sup>                                                                     |
|----|----------------|---------------------------------|-------------------------------------------------------------------------------------|
|    | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
| •  | Н              | SO <sub>2</sub> CH <sub>3</sub> | 4-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
| 5  | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 3-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 4-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
| 10 | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 3-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|    | н              | SO <sub>2</sub> CH <sub>3</sub> | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
| -  | Н              | SO <sub>2</sub> CH <sub>3</sub> | 4-C <sub>6</sub> H <sub>5</sub> -C <sub>6</sub> H <sub>4</sub>                      |
| 15 | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| ,  | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 20 | H              | SO <sub>2</sub> CH <sub>3</sub> | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|    | Н              | SO <sub>2</sub> CH <sub>3</sub> | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 25 | H              | SO <sub>2</sub> CH <sub>3</sub> | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 20 | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|    | Ħ              | SO <sub>2</sub> CH <sub>3</sub> | 3-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|    | Н              | SO <sub>2</sub> CH <sub>3</sub> | 4-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
| 30 | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-C1-6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                               |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-CO <sub>2</sub> CH <sub>3</sub> -6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,5-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                  |
| 35 | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,4,5-Cl <sub>3</sub> -C <sub>6</sub> H <sub>2</sub>                                |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-CO <sub>2</sub> CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                    |
| ı  | H              | SO <sub>2</sub> CH <sub>3</sub> | 5-C1-2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                              |
| •  | Н              | SO <sub>2</sub> CH <sub>3</sub> | 5-NO <sub>2</sub> -2-C1-C <sub>6</sub> H <sub>3</sub>                               |
| 40 | н              | SO <sub>2</sub> CH <sub>3</sub> | 2-Cl-6-cyclopentenyl-C <sub>6</sub> H <sub>3</sub>                                  |
|    | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-Cl-thien-2-yl                                                                     |
|    | н              | SO <sub>2</sub> CH <sub>3</sub> | 2-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
| 45 | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|    | H              | SO <sub>2</sub> CH <sub>3</sub> | 4-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|    | Н              | SO <sub>2</sub> CH <sub>3</sub> | 2-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
|    | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
| 50 | н              | SO <sub>2</sub> CH <sub>3</sub> | 4-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
|    | <del> </del>   |                                 | <del></del>                                                                         |

|             |                | <u> </u>                        |                                                                      |
|-------------|----------------|---------------------------------|----------------------------------------------------------------------|
|             | R <sup>3</sup> | R <sup>4</sup>                  | R <sup>13</sup>                                                      |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   |
| 5           | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 4-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|             | Н              | SO <sub>2</sub> CH <sub>3</sub> | 2-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 3-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
| 10          | Н              | SO <sub>2</sub> CH <sub>3</sub> | 4-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|             | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
| 15          | н              | SO <sub>2</sub> CH <sub>3</sub> | 4-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|             | Н              | SO <sub>2</sub> CH <sub>3</sub> | 2,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
|             | н              | SO <sub>2</sub> CH <sub>3</sub> | 3,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,6-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
| 20          | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,6-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|             | н              | SO <sub>2</sub> CH <sub>3</sub> | 2,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
| <b>25</b> . | H              | SO <sub>2</sub> CH <sub>3</sub> | 3,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,6-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
| 30          | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
| 00          | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
|             | Н              | SO <sub>2</sub> CH <sub>3</sub> | 2,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 3,4-(OH)2-C <sub>6</sub> H <sub>3</sub>                              |
| 35          | Н              | SO <sub>2</sub> CH <sub>3</sub> | 2,6-(OH)2-C6H3                                                       |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>  |
|             | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-NO <sub>2</sub> -4-F-C <sub>6</sub> H <sub>3</sub>                 |
|             | B              | SO <sub>2</sub> CH <sub>3</sub> | 3-NO <sub>2</sub> -4-C1-C <sub>6</sub> H <sub>3</sub>                |
| 40          | Н              | SO <sub>2</sub> CH <sub>3</sub> | 3-NO <sub>2</sub> -4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 2-Naphthyl                                                           |
|             | H ,            | SO <sub>2</sub> CH <sub>3</sub> | Thien-2-yl                                                           |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | Thien-3-yl                                                           |
| 45          | Н              | SO <sub>2</sub> CH <sub>3</sub> | 5-CH <sub>3</sub> -thien-2-yl                                        |
|             | Н              | SO <sub>2</sub> CH <sub>3</sub> | 5-Cl-thien-2-yl                                                      |
|             | H              | SO <sub>2</sub> CH <sub>3</sub> | 5-Br-thien-2-yl                                                      |
| 50          | H              | SO <sub>2</sub> CH <sub>3</sub> | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thien-3-yl                      |
|             | Н              | SO <sub>2</sub> CH <sub>3</sub> | Thiazol-2-yl                                                         |
|             |                |                                 |                                                                      |

|     | R <sup>3</sup> | R <sup>4</sup>                                | R13                                               |
|-----|----------------|-----------------------------------------------|---------------------------------------------------|
|     | <u></u>        | <u> </u>                                      | <u> </u>                                          |
|     | H              | SO <sub>2</sub> CH <sub>3</sub>               | Thiazol-4-yl                                      |
| 5   | н              | SO <sub>2</sub> CH <sub>3</sub>               | 5-CH <sub>3</sub> -thiazol-2-yl                   |
|     | H .            | SO <sub>2</sub> CH <sub>3</sub>               | 5-Cl-thiazol-2-yl                                 |
|     | Н              | SO <sub>2</sub> CH <sub>3</sub>               | 5-Br-thiazol-2-yl                                 |
| 10  | H.             | SO <sub>2</sub> CH <sub>3</sub>               | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thiazol-4-yl |
| ,,  | H              | SO <sub>2</sub> CH <sub>3</sub>               | Furan-2-yl                                        |
|     | Н              | SO <sub>2</sub> CH <sub>3</sub>               | Furan-3-yl                                        |
|     | Н              | SO <sub>2</sub> CH <sub>3</sub>               | 5-CH <sub>3</sub> -furan-2-yl                     |
| 15  | н              | SO <sub>2</sub> CH <sub>3</sub>               | 5-Cl-furan-2-yl                                   |
| . , | H              | SO <sub>2</sub> CH <sub>3</sub>               | Pyrrol-2-yl                                       |
|     | H              | SO <sub>2</sub> CH <sub>3</sub>               | Pyrrol-3-yl                                       |
|     | Н              | SO <sub>2</sub> CH <sub>3</sub>               | 5-CH <sub>3</sub> -pyrrol-2-yl                    |
| 20  | H              | SO <sub>2</sub> CH <sub>3</sub>               | 5-Br-pyrrol-2-yl                                  |
|     | н              | SO <sub>2</sub> CH <sub>3</sub>               | Oxazol-4-yl                                       |
|     | H              | SO <sub>2</sub> CH <sub>3</sub>               | Imidazol-2-yl                                     |
|     | н              | SO <sub>2</sub> CH <sub>3</sub>               | Pyridin-2-yl                                      |
| 25  | Н              | SO <sub>2</sub> CH <sub>3</sub>               | Pyridin-3-yl                                      |
|     | H              | SO <sub>2</sub> CH <sub>3</sub>               | Pyridin-4-yl                                      |
|     | Н              | SO <sub>2</sub> CH <sub>3</sub>               | Pyrazin-3-yl                                      |
|     | H              | SO <sub>2</sub> CH <sub>3</sub>               | Pyrazin-4-yl                                      |
| 30  | Н              | SO <sub>2</sub> CH <sub>3</sub>               | Pyrrol-2-yl                                       |
|     | H              | SO <sub>2</sub> CH <sub>3</sub>               | Pyrimidin-2-yl                                    |
|     | н -            | SO <sub>2</sub> CH <sub>3</sub>               | Pyrimidin-4-yl                                    |
| 35  | H              | SO <sub>2</sub> CH <sub>3</sub>               | Pyrimidin-5-yl                                    |
|     | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>5</sub>                     |
|     | B              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|     | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
| 40  | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>  |
|     | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-F-C <sub>6</sub> H <sub>4</sub>                 |
|     | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-F-C <sub>6</sub> H <sub>4</sub>                 |
|     | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-F-C <sub>6</sub> H <sub>4</sub>                 |
| 45  | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-C1-C <sub>6</sub> H <sub>4</sub>                |
|     | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-C1-C <sub>6</sub> H <sub>4</sub>                |
| :   | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-C1-C <sub>6</sub> H <sub>4</sub>                |
|     | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-Br-C <sub>6</sub> H <sub>4</sub>                |
| 50  | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-Br-C <sub>6</sub> H <sub>4</sub>                |
|     |                | 2-03                                          |                                                   |

|   |    | R <sup>3</sup> | R <sup>4</sup>                                  | R13                                                                                 |
|---|----|----------------|-------------------------------------------------|-------------------------------------------------------------------------------------|
|   |    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-Br-C <sub>6</sub> H <sub>4</sub>                                                  |
| ; | 5  | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|   |    | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-OH-C <sub>6</sub> H <sub>4</sub>                                                  |
|   |    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
| 1 | 10 | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-0CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|   | -  | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                   |
|   |    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-C <sub>6</sub> H <sub>5</sub> -C <sub>6</sub> H <sub>4</sub>                      |
| 1 | 15 | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-C (CH <sub>3</sub> ) <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                  |
|   |    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|   |    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 2 | 20 | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|   |    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
|   | •  | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                    |
| 2 | 25 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> / | 3-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-CN-C <sub>6</sub> H <sub>4</sub>                                                  |
| , | 30 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-C1-6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                               |
| J |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-CO <sub>2</sub> CH <sub>3</sub> -6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2,5-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|   |    | H , -:         | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                                  |
| 3 | 35 | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2,4,5-Cl <sub>3</sub> -C <sub>6</sub> H <sub>2</sub>                                |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-CO <sub>2</sub> CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|   |    | В              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 5-C1-2-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>                              |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 5-NO <sub>2</sub> -2-C1-C <sub>6</sub> H <sub>3</sub>                               |
| 4 | 10 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-C1-6-cyclopentenyl-C <sub>6</sub> H <sub>3</sub>                                  |
| • |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-Cl-thien-2-yl                                                                     |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
| 4 | 15 | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-(CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> )-C <sub>6</sub> H <sub>4</sub>    |
|   |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
|   |    | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 3-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
| - |    | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 4-(CO <sub>2</sub> CH <sub>3</sub> )-C <sub>6</sub> H <sub>4</sub>                  |
| ٥ |    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>   | 2-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                                  |
|   |    |                |                                                 |                                                                                     |

|    |                | <b>_</b>                                      |                                                                      |
|----|----------------|-----------------------------------------------|----------------------------------------------------------------------|
|    | R <sup>3</sup> | R <sup>4</sup>                                | R13                                                                  |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-CONH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   |
| 5  | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-CONE <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                   |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
| ,  | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
| 10 | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-NH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     |
| 10 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-SCH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                    |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 4-SCH3-C6H4                                                          |
| 15 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3,4-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,6-(CH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>   |
|    | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
| 20 | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,6-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | Ħ              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|    | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3,4-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
| 25 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,6-F <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                    |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
|    | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
| 30 | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2, 4- (OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>               |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3,4-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,6-(OH) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                 |
| 35 | Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub>  |
|    | Ħ              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-F-C <sub>6</sub> H <sub>3</sub>                 |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-C1-C <sub>6</sub> H <sub>3</sub>                |
|    | Ħ              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 3-NO <sub>2</sub> -4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> |
| 40 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2-Naphthyl                                                           |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Thien-2-yl                                                           |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Thien-3-yl                                                           |
|    | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-CH <sub>3</sub> -thien-2-yl                                        |
| 45 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-Cl-thien-2-yl                                                      |
|    | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-Br-thien-2-yl                                                      |
|    | н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thien-3-yl                      |
| 50 | H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Thiazol-2-yl                                                         |
|    | Ħ              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Thiazol-4-yl                                                         |
|    |                |                                               |                                                                      |

| R <sup>3</sup> | R <sup>4</sup>                                | R13                                               |
|----------------|-----------------------------------------------|---------------------------------------------------|
| н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-CH <sub>3</sub> -thiazol-2-yl                   |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-Cl-thiazol-2-yl                                 |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-Br-thiazol-2-yl                                 |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thiazol-4-yl |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Furan-2-yl                                        |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Furan-3-yl                                        |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-CH <sub>3</sub> -furan-2-yl                     |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-Cl-furan-2-yl                                   |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrrol-2-yl                                       |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrrol-3-yl                                       |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-CH <sub>3</sub> -pyrrol-2-yl                    |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 5-Br-pyrrol-2-yl                                  |
| Н              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Oxazol-4-yl                                       |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Imidazol-2-yl                                     |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyridin-2-yl                                      |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyridin-3-yl                                      |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyridin-4-yl                                      |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrazin-3-yl                                      |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrazin-4-yl                                      |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrrol-2-yl                                       |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrimidin-2-yl                                    |
| H              | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrimidin-4-yl                                    |
| H ·            | SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | Pyrimidin-5-yl                                    |
|                |                                               |                                                   |

Die substituierten Pyido[2,3-d]pyrimidine I eignen sich als Antidots, um herbizide Wirkstoffe für Kulturpflanzen wie Kulturhirse, Reis, Mais, Getreidearten (Weizen, Roggen, Gerste, Hafer), Baumwolle, Zuckerrüben, Zuckerrohr und Soja verträglicher zu machen. Sie wirken antagonistisch auf Herbizide verschiedenster Stoffklassen wie Triazine, Phenylharnstoffderivate, Carbamate, Thiolcarbamate, Halogenacetanilide, Benzoesäurederivate sowie insbesondere Halogenphenoxyessigsäureester, substituierte Phenoxyphenoxypessigsäureester, Phenoxyphenoxypropionsäureester und Cyclohexenonderivate.

Herbizid wirksame Cyclohexenon-Derivate II sind beispielsweise aus EP-A 228 598, EP-A 230 235, EP-A 238 021, EP-A 368 227, US-A 4 432 786, 39 104 und DE-A 38 38 309 bekannt. Sie dienen vorwiegend zur Bekämpfung unerwünschter Gräser in dicotylen Kulturen und in Gräsern, die nicht zur Familie der Gramineen zählen. In Abhängigkeit der Substituenten und der Dosierung der Verbindungen des Typs II bei ihrer Anwendung können diese Cyclohexenone auch zur selektiven Bekämpfung von unerwünschten Gräsern in Gramineen-Kulturen wie Weizen und Reis eingesetzt werden.

Weitere Cyclohexenon-Derivate II lassen sich in an sich bekannter Weise nach literaturbekannten Syntheseverfahren (vgl. z.B. EP-A 169 521) darstellen, beispielsweise durch Umsetzung von Triketonen IX (bekannt z.B. aus EP-A 80 301, EP-A 125 094, EP-A 142 741, US-A 4 249 937, EP-A 137 174 und EP-A 177 913) mit Hydroxylaminen X (bekannt z.B. aus Houben-Weyl, Methoden der Organischen Chemie, Band 10/1, Seite 1181 ff):

Zweckmäßig führt man die Umsetzung in heterogener Phase in einem Lösungsmittel, bevorzugt in Gegenwart einer Base, durch, wobei das Hydroxylamin vorzugsweise als Ammoniumsalz eingesetzt wird.

Als Basen eigenen sich beispielsweise die Carbonate, Hydrogencarbonate, Acetate, Alkoholate und Oxide von Alkalimetallen und Erdalkalimetallen wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid und Calciumoxid, des weiteren organische Basen wie Pyridin und tertiäre Amine wie Triethylamin.

Triketon und Hydroxylamin werden vorzugsweise in etwa stöchiometrischen Mengen eingesetzt. Die Menge an Base ist nicht kritisch, beträgt normalerweise aber ca. 0,5 bis 2 mol-Äquivalent, bezogen auf die Menge an IX.

Im allgemeinen liegt die Reaktionstemperatur zwischen 0 und 80 °C.

15

45

50

Als Lösungsmittel eignen sich beispielsweise Dimethylsulfoxid, Alkohole wie Methanol, Ethanol und Isopropanol, aromatische Kohlenwasserstoffe wie Benzol und Toluol, chlorierte Kohlenwasserstoffe wie Hexan und Cyclohexan, Ester wie Essigsäureethylester und Ether wie Diethylether, Dioxan und Tetrahydrofuran. Vorzugsweise führt man die Umsetzung in Methanol mit Natriumhydrogencarbonat als Base durch.

Die Reaktion ist nach wenigen Stünden beendet. Das Produkt II kann z.B. durch Einengen der Mischung, Verteilen des Rückstandes in Methylenchlorid/Wasser und Abdestillieren des Lösungsmittels unter vermindertem Druck isoliert werden.

Man kann für diese Umsetzung aber auch unmittelbar die freie Hydroxylaminbase, z.B. in Form einer wäßrigen Lösung, verwenden; je nach verwendetem Lösungsmittel für das Hydroxylamin X erhält man ein ein- oder zweiphasiges Reaktionsgemisch.

Geeignete Lösungsmittel für diese Variante sind beispielsweise Alkohole wie Methanol, Ethanol, Isopropanol und Cyclohexanol, aliphatische und aromatische, gegebenenfalls chlorierte Kohlenwasserstoffe wie Hexan, Cyclohexan, Methylenchlorid, Toluol und Dichlorethan, Ester wie Essigsäureethylester, Nitrile wie Acetonitril und cyclische Ether wie Dioxan und Tetrahydrofuran.

Besondere Bedingungen bezüglich des Druckes sind nicht erforderlich; normalerweise nimmt man die Umsetzung daher bei Atmosphärendruck vor.

Alkalimetallsalze der Verbindungen II können durch Behandeln der 3-Hydroxyverbindungen mit Natrium- oder Kaliumhydroxid bzw. -alkoholat in wäßriger Lösung oder in einem organischen Lösungsmittel wie Methanol, Ethanol, Aceton und Toluol erhalten werden.

Andere Metallsalze wie Mangan-, Kupfer-, Zink-, Eisen-, Calcium-, Magnesium- und Bariumsalze können aus den Natriumsalzen in Üblicher Weise hergestellt werden, ebenso Ammonium- und Phosphoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sufoxoniumhydroxiden.

Die Verbindung des Typs IX können z.B. aus den entsprechenden Cyclohexan-1,3-dionen der Formel XI

nach bekannten Methoden (Tetrahedron Lett., 2491 (1975)) hergestellt werden.

Es ist auch möglich, die Verbindungen der Formel IX über die Zwischenstufe der Enolester herzustellen, die bei der Umsetzung von Verbindungen der Formel XI mit Säurechloriden in Gegenwart von Basen anfallen und anschließend mit bestimmten Imidazol- oder Pyridinderivaten umgelager werden (JP-OS

79/063 052).

15

30

5
$$R^{c}$$
 $R^{d}$ 
 $R^{d}$ 
 $R^{e}$ 
 $R^{d}$ 
 $R^{e}$ 
 $R^{e}$ 

Zu den Hydroxylaminen der Formel X gelangt man in der Regel über eine Reihe bekannter Verfahrensschritte ausgehend von bekannten Vorprodukten:

$$L-W-R^{f} + D \longrightarrow N-OH \longrightarrow D \longrightarrow N-O-W-R^{f} \xrightarrow{H_{2}N-CH_{2}CH_{2}-OH} X$$
25
XII XIII XIV

L = die Hydroxylgruppe oder eine Abgangsgruppe, z.B. Halogen wie Chlor, Brom und Jod oder CH₃SO₂-O-.

Die zur Synthese der Hydroxylamine X benötigten Alkylierungsmittel sind literaturbekannt oder lassen sich nach bekannten Methoden darstellen.

Synthesen von Derivaten in denen W eine aliphatische oder olefinische Kette bedeutet, die gegebenenfalls durch Heteroatome unterbrochen sein kann, sind den folgenden Druckschriften zu entnehmen:

DE-A 3 437 919; Tetrahetron Lett. 28, 2639 (1979); Org. Synth. Coll. Vol. 1, 436 (1944); DB-A 2 654 646; DE-A 2 714 561; J. Org. Chem. 52, 3587 (1987); DE-A 948 871; DE-A 948 872; J. Med. Chem. 26, 1570 (1983); Synthesis 675 (1983); J. Org. Chem. 48, 4970 (1983); Org. Synth. Coll. Vol. V, 249; EP 48 911; EP 143 952; US 4 686 735.

Zur Herstellung von Verbindungen II, in denen W eine aliphatische oder olefinische Kette und R<sup>f</sup> einen Heterocyclus bedeutet, sei auf folgende Literatur verwiesen:

J. Heterocycl. Chem. 14, 525 (1976); JP 55 051 004; JP 55 047 601; Houben Weyl: Methoden der organischen Chemie Band 4/3, S. 424 ff; DE-A-2 821 409; Chem. Ber. 114, 3667, 3674 (1981).

Herstellungsmethoden, die von geeigneten Carbinolen XII (L = OH) ausgehen, sind beispielsweise bekannt aus:

Tetrahedron 35, 329 (1979); Chem. Lett. 423, (1977); Houben/Weyl: Methoden der organischen Chemie, Band 13/9B, S. 964 ff; dto. Band 5/3, S. 862 und 899 ff; dto. Band 5/4, S. 361 ff.

Die Darstellung von Alkylierungsmitteln in denen W eine substituierte oder unsubstituierte  $C_3$ - $C_6$ -Alkinylgruppe bedeutet, kann nach klassischen Methoden [vgl. J. Med Chem. 29, 1389 (1986); dto. 24, 678 (1981); EP-A 131 302; J. Chem. Ecol. 10, 1201 (1982)] oder durch Kupplung von 1-Alkinylderivaten mit Aryloder Hetarylhalogeniden in Gegenwart von Palladiumkatalysatoren [vgl. z.B. Tetrahedron Sett. 50, 4467 (1975)] erfolgen.

XII wird mit einem cyclischen Hydroxylimid XIII gekoppelt und das erhaltene geschützte Hydroxylaminderivat XIV zum freien Hydroxylamln X gespalten, bevorzugt mit 2-Aminoethanol.

Bei der Verwendung von HO-W-R<sup>1</sup> empfiehlt sich das Arbeiten nach der Mitsunobu-Variante [vgl. Synthesis, 1 (1981) und J. Med. Chem. 33, 187 (1990)].

In den cyclischen Hydroxyimiden X steht D z.B. für C<sub>2</sub>-C<sub>3</sub>-Alkylen, C<sub>2</sub>-Alkenylen oder einen mit bis zu drei Doppelbindungen und gegebenenfalls ein Stickstoffatom enthaltenden 5- oder 6-Ring, z.B. für Phenylen, Pyridinylen, Cyclopentylen, Cyclohexylen oder Cyclohexenylen. Beispielsweise kommen folgende

#### Substanzen in Betracht:

Die Umsetzung der Verbindungen IX mit den Hydroxyimiden XIII wird zweckmäßigerweise in Gegenwart einer Base ausgeführt. Geeignet sind prinzipiell alle Basen, die in der Lage sind, die Hydroxyimide XIII zu deprotonieren ohne das Imidsystem anzugreifen. Dies sind insbesondere die sogenannten nicht nucleophilen Basen. Beispielsweise genannt seien Mineralbase wie Alkalimetall- und Erdalkalimetallcarbonate, Alkalimetall- und Erdalkalimetallhydrogencarbonate, organische Basen wie aliphatische, cycloaliphatische und aromatische tertiäre Amine. Es können auch Gemische dieser Basen verwendet werden.

Als Einzelverbindungen seien folgende Basen beispielhaft aufgeführt: Natriumcarbonat, Kaliumcarbonat, Magnesiumcarbonat, Calciumcarbonat, Bariumcarbonat, die Hydrogencarbonate dieser Metalle, Trimethylamin, Triethylamin, Tributylamin, Ethyldiisopropylamin, N,N-Dimethylanilin, 4-N,N-Dimethylaminopyridin, Diazabicyclooctan, Diazabicycloundecan, N-Methyl-piperidin, 1,4-Dimethylpiperazin, Pyridin, Chinolin, Bipyridin, Phenanthrolin. Bevorzugt sind die preiswerten Basen Natrium- und Kaliumcarbonat.

Die Base wird im allgemeinen in äquivalenten Mengen bis zu einem Überschuß von 5 Äquivalenten, bezogen auf das Hydroxyimid, zugegeben. Ein höherer Überschuß ist möglich, entbehrt aber zusätzliche Vorteile. Die Verwendung einer geringen Basenmenge ist ebenfalls möglich. Bevorzugt wird jedoch eine Basenmenge von 1 bis 3, insbesondere von 1 bis 2 Äquivalenten, bezogen auf das Hydroxyimid XIII eingesetzt.

Die Verwendung von nucleophilen Basen, z.B. Alkalimetall- und Erdalkalimetallhydroxiden, insbesondere Natrium- und Kaliumhydroxid, ist ebenfalls möglich. In diesem Falle ist es vorteilhaft, die Base in äquivalenten Mengen bezüglich des Hydroxyimids XIII einzusetzen, um einem nucleophile Angriff der Hydroxylionen auf die Carbonylfunktion der Imdigruppierung vorzugbeugen.

Zweckmäßigerweise setzt man die Ausgangsverbindungen XII mit den Hydroxyimiden XIII in einem Lösungsmittel um, das sich unter den Reaktionsbedingungen inert verhält. Vorteilhafte Lösungsmittel sind z.B. polare, aprotische Lösungsmittel wie Dimethylformamid, N-Methylpyrrolidon, Dimethylsulfoxid, Sulfolan und cyclische harstoffe. Die Lösungsmittelmenge ist im allgemeinen nicht kritisch.

Die Umsetzung der Ausgangsverbindungen XII mit den Hydroxyimiden XIII kann auch unter Anwendung der Phasentransfer-Katalyse ausgeführt werden. In diesem Falle werden mit Wasser zwei Phase bildende Lösungsmittel, bevorzugt Chlorkohlenwasserstoffe, eingesetzt. Als Phasentransferkatalysatoren eignen sich die üblicherweise zu solchen Zwecken vezwendeten quartären Ammonium- und Phosphoniumsalze, Polyethylenglykole, Polyethylenglykolether und Kronenether, wie sie z.B. in Dehmlow et al.; Phase Transfer

Catalysis, S. 37-45 und S. 86-93, Verlag Chemie, Weinheim 1980, beschrieben sind. Die Phasentransferkatalystoren werden zweckmäßigerweise in Mengen von 1 bis 10 Vol%, bevorzugt in Mengen von 3 bis 5 Vol%, bezogen auf das Volumen der Reaktionsmischung, eingesetzt.

Die Umsetzung der Ausgangsverbindungen XII mit den Hydroxyimiden XIII wird im allgemeinen im Temperaturbereich zwischen 0 und 140°C, bevorzugt zwischen 20 und 100°C, insbesondere zwischen 40 und 80°C, durchgeführt. Zweckmäßigerweise wird dabei so vorgegangen, daß man das Hydroxyimid XIII zusammen mit der Base im Lösungsmittel vorlegt und das Ausgangsmaterial XII zu dieser Lösung dosiert. Dabei kann es sich als günstig erweisen, wenn das Hydroxyimid bei einer tieferen Temperatur, beispielsweise bei 0 bis 50°C, zugegeben und die Reaktionsmischung erst nach dieser Zugabe auf die eigentliche Reaktionstemperatur erhitzt wird.

In der Regel arbeitet man bei Normaldruck oder unter dem Eigendruck des Lösungsmittels.

Nach beendeter Reaktion wird die abgekühlte Reaktionsmischung zwecmäßigerweise mit Wasser versetzt, wobei sich die gebildeten Hydroxylaminderivate XIV als kristalline Festkörper oder als Öle abscheiden. Die auf diese Weise erhaltenen Hydroxylaminderivate können, falls gewünscht, durch Umkristallisation oder durch Extraktion weiter gereinigt werden.

Die Hydroxylaminderivate XIV können zwischengelagert werden oder sogleich in die Hydroxylaminderivate X mit freier Aminogruppe umgewandelt werden. Diese Umwandlung kann nach an sich bekannten Verfahren durchgeführt werden, wie sie beispielsweise in DE-A 36 15 973 und den darin zitierten Schriften beschrieben sind. Bevorzugt wird das Verfahren gemäß DE-A 36 15 973 angewandt, nach dem die Hydroxylaminderivate X mittel Etanolamin freigesetzt werden. Die Feisetzung der Hydroxylaminderivate X mit Hilfe anderer Basen wie wäßrigen Mineralbasen, mit Aminen, Hydrazinen, Hydroxylaminen oder mittels wäßriger Säuren ist ebenfalls möglich.

Auf den nach diesen Verfahren erhaltenen Reaktionsgemischen können die Hydroxylaminderivate X mittels üblicher Aufarbeitungsmethoden isoliert werden, beispielsweise durch Extration oder durch Kristallisation. Zur Erhöhung der Kristallisationstendenz dieser Hydroxylaminderivate kann es oftmals förderlich sein, diese in ihre Salze mit Mineralsäuren oder organischen Säuren überzuführen. Dazu werden im allgemeinen verdünnte Lösungen dieser Säuren mit den Hydroxylaminderivaten umgesetzt, und zwar zweckmäβigerweise in äquivalenten Mengen. Die erhaltenen Hydroxylammoniumsalze könne wie die Hydroxylaminderivate mit freier Aminogruppe direkt zu den Herbiziden der Formel II weiterverarbeitet werden oder auch, falls gewünscht, gelagert werden.

Die Cyclohexenon-Derivate II können bei der Herstellung als Isomerengemische anfallen, wobei sowohl E-/Z-Isomerengemische als auch Enantiomeren- oder Diastereoisomerengemische möglich sind. Die Isomerengemische können gewünschtenfalls nach den hierfür üblichen Methoden, z.B. durch Chromatographie oder durch Kristallisation, getrennt werden.

Als herbizide Wirkstoffe (A) kommen sowohl die reinen Enantiomeren II als auch Racemate oder Diastereoisomerengemische von Cyclohexanon-Derivaten II in Betracht.

Die Cyclohexenon-Derivate II können in mehreren tautomeren Formen geschrieben werden, die alle von der Erfindung umfaßt werden.

Herstellungsbeispiele (Cyclohexenon-Derivate)

Beispiel 1

35

45

55

2[1-(3-(4-Bromphenyl)-prop-2-enyloximino)-propyl]-3-hydroxy-5-(3-tetrahydrothiopyranyl)-cyclohex-2-en-1-on

3,0 g (0,011 mol) 2-Propionyl-5-(3-tetrahydrothiopyranyl)-cyclohexan-1,3-dion und 3,0 g (0,013 mol) 3-(4-Bromphenyl)-prop-2-enyloxiamin wurden in 100 ml Methanol bei 20°C 16 Stunden gerührt. Das dabei

ausgefallene Reaktionsprodukt wurde bei 0°C abgetrennt und mit eiskaltem Methanol und Petrolether nachgewaschen und getrocknet. Ausbeute: 68,4 %; Fp.: 97-99°C.

#### Vorstufe 1.1

N-[3-(4-Bromphenyl)-prop-2-enyloxy]-phthalimid

In 350 ml trockenes N-Methylpyrrolidon gab man nacheinander 18,5 g (0,11 mol) N-Hydroxyphthalimid und 31,4 g (0,11 mol) 1-Brom-\$3-(4-Bromphenyl)%-prop-2-en und tropfte anschließend bei Raumtemperatur 12,1 g (0,12 mol) Triethylamin zu. Nach viertägigem Rühren bei 20°C wurde die Reaktionsmischung auf 1,5 l Einswasser gegossen, abfiltriert und mit Wasser und Isopropanol nachgewaschen. Ausbeute: 86,8 %; Fp.: 161-162°C

#### Vorstufe 1.2

15

25

30

35

3-(4-Bromphenyl)-prop-2-enyloxyamin

33,4 g (0,093 mol) N-[3-(4-Bromphenyl)-prop-2-enyloxy]-phthalimid wurden portionsweise in 50 ml Ethanolamin eingetragen; die Temperatur stieg dabei bis auf 30 °C an. Nach zweistündigem Rühren bei 60 °C ließ man abkühlen und versetzte die Mischung mit 200 ml Dichlormethan. Es wurde mit Eiswaser ausgeschüttelt. Die organische Phase getrocknet und eingeengt und aus Petrolether kristallisiert. Ausbeute: 95,3 %; Fp.: 35-38 °C.

#### Beispiel 2

2-[1-(4-(4-Fluorphenyl)-but-3-inyloximino)-butyl]-3-hydroxy-5-tetrahydropyran-4-yl-cyclohex-2-enon

$$O \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow F$$

$$CH_2-C_2H_5$$

Zu einer Lösung von 4 g (15 mMol) 2-butyryl-3-hydroxy-5-tetrahydropyran-4-yl-cyclohex-2-enon in 60 ml trockenem Methanol wurden 2,7 g (15 mMol) 4-(4-Fluorphenyl)-but-3-inoxymin gegeben. Nach 16 h Rühren bei Raumtemperatur wurde das Methanol im Wasserstrahlvakuum entfernt. Das Rohprodukt reinigte man mittels Chromatographie an Kieselgel (Laufmittel: Methylenchlorid). Ausbeute: 81,2 %.

#### Vorstufe 2.1

4-(4-Fluorphenyl)-3-butinol

Eine Lösung von 100 g 4-Bromfluorbenzol in 350 ml Triethylamin wurde nacheinander mit 1 g Bis(triphenylphosphin)-palladium-(II)-chlorid, 3,8 g Kupfer-(I)-jodid und 8,7 g Triphenylphosphin versetzt. Diese
Mischung wurde auf Rückflußtemperatur erwärmt, wonach man bei dieser Temperatur (ca. 100 °C) 43,4 g 3Butinol innerhalb 20 min zutropfte. Es wurde noch 5 h bei dieser Temperatur gerührt. Nach dem Abkühlen
wurde das Triethylamin abdestilliert. Der Rückstand wurde in Methyl-tert.-butylether und Wasser aufgenommen. Die wäßrige Phase wurde noch zweimal mit Methyl-tert.-butylether extrahiert, die vereinigten organischen Extrakte wurden nacheinander mit 1 N Salzsäure und mit 10 %iger Natriumbicarbonatlösung
gewaschen und über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels wurde das Rohprodukt
im Hochvakuum destilliert. Ausbeute: 86 %.

#### Vorstufe 2.2

5

15

25

### N-(5-(4-Fluorphenyl)-4-pentinyloxy)phthalimid

Zu einer Lösung von 33,1 g (0,186 mol) 5-Hydroxy-1-(4-fluorphenyl)-1-pentin in 430 ml trockenem Tetrahydrofuran wurden 33,4 g (0,205 mol) N-Hydroxyphthalimid und 53,8 g (0,205 mol) Triphenylphosphin gegeben. Innerhalb von 2,5 h tropfte man dann unter Temperaturkontrolle (max. 40 °C) 35,7 g (0,205 mol) Diethylazodicarboxylat zu. Man rührte über Nacht bei Raumtemperatur, engte die Mischung im Vakuum ein und nahm mit 300 ml Dichlormethan auf. Es wurde zweimal mit Natriumcarbonatlösung und einmal mit gesättigter Kochsalzlösung gewaschen. Nach Trocknen und Einengen wurde das Rohprodukt an Kieselgel chromatographisch gereinigt. Als Eluens wurde zunächst Dichlormethan/n-Hexan benutzt, später dann reines Dichlormethan. Ausbeute: 82 %; Fp.: 85-88 °C.

250-MHz-1H-NMR (in DMSO-d<sub>6</sub>):

δ [ppm] = 1,9 - 2,1 (m, 2H); 2,68 (t, 2H); 4,342 (t, 2H); 7,18 (t, 2H); 7,4 - 76 (m, 2H); 7,85 (s, 4H).

Vorstufe 2.3

#### 5-Aminooxy-1-(4-Fluorphenyl)-1-pentin

Zu einer Mischung aus 68 ml Ethanolamin und 40 ml Dichlormethan wurden portionsweise 47,7 g (0,148 mol) des oben dargestellten Phthalimidethers gegeben. Nach 2 h Rühren bei Raumtemperatur war eine klare Lösung entstanden. Diese wurde in 300 ml eiskalte, gesättigte Kochsalzlösung gegeben. Man extrahierte die Mischung dreimal mit 100 ml Dichlormethan, wusch die vereinigten organischen Phasen einmal mit Kochsalzlösung gegen, trocknete und engte ein. Ausbeute: 95 % (Öl).

250-MHz-1H-NMR (in CDCl<sub>3</sub>):

 $\delta$  [ppm] = 1,8-2,0 (m, 2H); 2,47 (6, 2H); 3,8 (t, 2H); 5,4 (breites s, 2H); 6,9-7,1 (m, 2H); 7,3-7,45 (m, 2H).

Beispiel 3

2-[1-[[(E)-4-(2-Thienyl)-3-butenyloxy]imino]-butyl]-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-cyclohex-2-en-1-on

40

35

Eine Mischung aus 35 g (0,13 mol) 2-Butyryl-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on und 24 g (0,14 mol) O-[(E)-4-(2-Thienyl)-3-butenyl]hydroxylamin in 300 ml Methanol wurde 16 h gerührt. Man engte im Vakuum ein und nahm in 1000 ml 10 %iger Natronlauge auf. Man extrahierte dreimal mit je 200 ml Methylenchlorid und stellte die wäßrige Phase unter Eiskühlung mit konz. Salzsäure auf pH 1 ein. Die wäßrige Phase wurde anschließend dreimal mit je 200 ml Ether extrahiet, über Magensiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wurde chromatographisch an 100 g Kieselgel/Säule 30 x 15 cm, (Laufmittel: Essigester) gereinigt. Ausbeute: 85 %.

200 MHz-<sup>1</sup>H-NMR (in CDCl<sub>3</sub>): δ [ppm] = 0,95 (t, 3H), 1,17-1,96 (m, 9H), 2,13 (m, 1H), 2,36 (m, 1H), 0.2,43-2,70 (m, 3H), 2,88 (m, 2H), 3,36 (t, 2H), 4,02 (d, 2H), 4,15 (t, 2H), 6,00 (dt, 1H), 6,60 (d, 1H), 6,80-7,20 (m, 3H) 14,75 (s, 1H).

Vorstufe 3.1

### (E)-4-Brom-1-(2-thienyl)-1-buten

Bei 5 bis 10 °C tropfte man innerhalb 1 h 225 g (1,46 mol) Cyclopropyl-2-thienylcarbinol zu 972 ml 48 %iger Bromwasserstoffsäure. Nach 2 h bei Raumtemperatur wurde die organische Phase abgetrennt und

die wäßrige Lösung dreimal mit je 300 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit verd. Natronlauge und Wasser neutral gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. 322 g (94 % korrigert) rohes Bromid (GC: 92 %).

250 MHz-1H-NMR (in CDCl<sub>3</sub>):  $\delta$  [ppm] = 2,65-2,80 (m, 2h), 3,46 (t, 2H), 5,90-6,10 (m, 1H), 6,61 (d, 1H), 6,80-7,00 (m, 2H), 7,14 (d, 1H).

Vorstufe 3.2

10

25

**35**、

N-[(E)-4-(2-Thienyl)-3-butenyloxy]phthalimid

Bei 20 bis 25 °C tropfte man innerhalb 2,5 h 190 ml (1,37 mol) Triethylamin zu einer Mischung aus 283 g, (1,30 mol) des oben hergestellten Bromids, 1300 ml N-Methyl-2-pyrrolidinon, 10 g Kaliumiodid und 212 g (1,30 mol) N-Hydroxyphthalimid. Nach 4 h bei 20 bis 25 °C goß man in 4000 ml Eiswasser und ergänzte portionsweise 5000 ml 10 %ige Natronlauge. Man extrahierte darauf viermal mit je 500 ml Essigester. Die vereinigten Essigester-Phasen wurden mit verd. Natronlauge und Waser neutral gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wurde chromatographisch an 1000 g Kieselgel/Säule 30 x 15 cm, (Laufmittel: n-Hexan/Dichlormethan 7:3) gereinigt. Ausbeute: 29 %; Fp.: 69-71 °C (Isopropanol).

250 MHz-1H-NMR (in d<sub>6</sub>-DMSO):  $\delta$  [ppm] = 2,55-2,70 (m, 2H), 4,28 (t, 2H), 6,00-6,20 (m, 1H), 6,77 (d, 1H), 7,00 (m, 2H), 7,35 (m, 1H), 7,87 (s, 4H).

Vorstufe 3.3

O-[(E)-4-(2-Thienyl)-3-butenyl]hydroxylamin

Eine Mischung aus 90,2 g (0,30 mol) des oben hergestellten Phthalimidethers und 136 ml Ethanolamin wurden 3 h bei 60°C gerührt. Die kalte Reaktionsmischung goß man in 200 ml Eiswasser. Man ergänzte 200 ml ges. Kochsalz-Lösung und extrahierte das Hydrolysat dreimal mit je 300 ml Dichlormethan. Die vereinigten organischen Phasen wurden darauf dreimal mit je 100 ml ges. Kochsalz-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Ausbeute: 89 %.

250 MHz-1H-NMR (in CDCl<sub>3</sub>):  $\delta$  [ppm] = 2,40-2,55 (m, 2H), 3,78 (t, 2H), 5,40 (bs, 2H), 5,95-6,20 8m, 1H), 6,57 (d, 1H), 6,80-7,15 (m, 3H).

Beispiel 4

2-[1-[[2-(2-fluorbenzyloxy)ethoxy]imino]butyl]-2-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on

Eine Mischung aus 4,0 g (10 mmol) 2-Butyryl-3-hydroxy-5-(2H-tetrahydropyran-4-yl)-2-cyclohexen-1-on und 2,6 g (14 mmol) O-[2-(2-Fluorbenzyloxy)-ethyl]hydroxylamin in 100 ml Methanol wurde 24 h gerührt. Man engte das Reaktionsgemisch unter reduziertem Druck ein und chromtographierte das Rohprodukt an 100 g Kieselgel (Säule 30 x 4 cm; Laufmittel: Ether).

Ausbeute: 54 %

300 MHz- $^{1}$ H-NMR (in CDCl<sub>3</sub>):  $\delta$  [ppm] = 0,93 (t, 3H), 1,20-1,77 (m, 7H), 1,90 (m, 1H), 2,23 (m, 2H), 2,58 (m, 2H), 2,92 (m, 2H), 3,38 (t, 2H), 3,80 (m, 2H), 4,03 (m, 2H), 4,25 (m, 2H), 4,68 8s, 2h), 6,93-7,50 (m, 4H, 14,30 (s, 1H).

#### Vorstufe 4.1

#### N-[2-(2-Fluorbenzyloxy)ethoxy]phthalimid

Zu einer Mischung aus 165 g (0,71 mol9 1-Brom-2-(2-fluorbenzyloxy)ethan, 116 g (0,7 mol) N-Hydroxyphthalimid und 710 ml\_n-Methyl-2-pyrrolidinon tropfte man bei 20 bis 25 °C innerhalb 1 h 108 ml Triethylamin. Nach 5 g bei 60 °C goß man die kalte Reaktionsmischung in 200 ml Eiswasser, saugte den Niederschlag ab, wusch mit Wasser und lopropanol und trocknete i.V. über Phosphorpentoxid. Ausbeute: 82 %.

10 Fp.: 62-64 °C.

250 MHz-1H-NMR (in  $d_6$ -DMS):  $\delta$  [ppm] = 3,85 (m, 2H), 4,35 (m, 1H), 4,54 (s 2H), 7,10-7,40 (m, 4H), 7,88 (s, 4H).

#### Vorstufe 4.2

15

5

### O-[2-(2-Fluorbenzyloxy)ethyl]hydroxylamin

184 g (0,58 mol) des oben hergestellten Phtalimidethers wurden portionsweise in 270 ml Ethanolamin eingetragen. Nach 3 h bei 60°C goß man die kalte Reaktionsmischung in 1000 ml Eiswasser. Das Hydrolysat wurde dreimal mit je 800 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit 200 ml ges. Kochsalz-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vak. eingeengt. Ausbeute: 91 %.

<sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  [ppm] = 3,70 (dd, 2H9, 3,85 (dd, 2H), 4,54 ( 2H), 5,50 (bs, 2H), 7,00-7,50 (m, 4H).

Die gewünschte antidotisierende Wirkung der Verbindungen I tritt insbesondere bei der Anwendung mit Herbiziden aus der Gruppe der Cyclohexenon-Derivate der allgemeinen Formel II auf, wenn deren Substituenten die folgende Bedeutung haben:

30

35

25

Ra

C<sub>1</sub>-C<sub>6</sub>-Alkyl wie vorstehend genannt, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkyl, insbesondere C<sub>1</sub>-C<sub>2</sub>-Alkyl;

40 Rb

#### Wasserstoff;

das Äquivalent eines landwirtschaftlich brauchbaren Kations;

C<sub>1</sub>-C<sub>8</sub>-Alkylcarbonyl, besonders C<sub>1</sub>-C<sub>5</sub>-Alkylcarbonyl wie Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethyl-carbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl, 1,1-Dimethylethylcarbonyl, Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, Hexylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl, 3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl, 1,1,2-Trimethylpropylcarbonyl, 1,2,2-Trimethylpropylcarbonyl, 1-Ethyl-1-methylpropylcarbonyl und 1-Ethyl-2-methylpropylcarbonyl, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, insbesondere C<sub>1</sub>-C<sub>2</sub>-Alkylcarbonyl; C<sub>1</sub>-C<sub>10</sub>-Alkylsulfonyl, besonders C<sub>1</sub>-C<sub>6</sub>-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, 1-Methyl-propylsulfonyl, 2-Methylpropylsulfonyl, 1,1-Dimethylethylsulfonyl, Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 2,2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, Hexylsulfonyl, 1,1-Dimethylpropylsulfonyl, 1,2-Dimethylpropylsulfonyl, 1-Methylpentylsulfonyl, 2-Methylpentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1,3-Dimethylbutylsulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutylsulfonyl, 3,3-Dimethylbutylsulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl,

1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl und 1-Ethyl-2-methylpropylsulfonyl, vorzugsweise  $C_1$ - $C_4$ -Alkylsulfonyl, insbesondere  $C_1$ - $C_2$ -Alkylsulfonyl;

C<sub>1</sub>-C<sub>10</sub>-Alkylphosphonyl, besonders C<sub>1</sub>-C<sub>6</sub>-Alkylphosphonyl wie Methylphosphonyl, Ethylphosphonyl, Propylphosphonyl, 1-Methylethylphosphonyl, Butylphosphonyl, 1-Methylpropylphosphonyl, 2-Methylpropylphosphonyl, 1,1-Dimethylethylphosphonyl, Pentylphosphonyl, 1-Methylbutylphosphonyl, 2-Methylbutylphosphonyl, 3-Methylbutylphosphonyl, 2,2-Dimethylpropylphosphonyl, 1-Ethylpropylphosphonyl, Hexylphosphonyl, 1,1-Dimethylpropylphosphonyl, 1,2-Dimethylpropylphosphonyl, 1-Methylpentylphosphonyl, 2-Methylpentylphosphonyl, 3-Methylpentylphosphonyl, 4-Methylpentylphosphonyl, 1,1-Dimethylbutylphosphonyl, 1,2-Dimethylbutylphosphonyl, 2,3-Dimethylbutylphosphonyl, 2,3-Dimethylbutylphosphonyl, 3,3-Dimethylbutylphosphonyl, 1-Ethylbutylphosphonyl, 2-Ethylbutylphosphonyl, 1,1,2-Trimethylpropylphosphonyl, 1,2,2-Trimethylpropylphosphonyl, 1-Ethyl-1-methylpropylphosphonyl, und 1-Ethyl-2-methylpropyl-phosphonyl, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkylphosphonyl, insbesondere C<sub>1</sub>-C<sub>2</sub>-Alkylphosphonyl; Benzolyl, Benzolsulfonyl oder Benzolphosphonyl, wobei die aromatischen Ringe ein bis fünf Halogenatome wie vorstehend genannt, vorzugsweise Fluor und Chlor, tragen können;

15 R<sup>c</sup>

20

Wasserstoff; CN; CHO;

 $C_1$ - $C_6$ -Alkyl wie vorstehend genannt, vorzugsweise  $C_1$ - $C_4$ -Alkyl, insbesondere  $C_1$ - $C_2$ -Alkyl, welches einen der folgenden Reste tragen kann:

- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C1-C4-Alkylthio wievorstehend im allgemeinen und im besonderen genannt;
  - Phenyloxy, Phenylthio, Pyridyloxy oder Pyridylthio, wobei die aromatischen Reste ihrerseits ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,
  - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im aligemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- 30 C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>3</sub>-C<sub>6</sub>-Alkenyloxy wie 2-Propenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2-propenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-2-butenyloxy, 3-Methyl-2-butenyloxy, 1-Methyl-3-butenyloxy, 3-Methyl-3-butenyloxy, 3-Methyl-2-propenyloxy, 1,2-Dimethyl-2-propenyloxy, 1-Ethyl-2-propenyloxy, 2-Hexenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-3-pentenyloxy, 4-Methyl-3-pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4-pentenyloxy, 1,1-Dimethyl-2-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 3,3-Dimethyl-2-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-2-butenyloxy, 2-Ethyl-3-butenyloxy, 1,1,2-Trimethyl-2-propenyloxy, 1-Ethyl-1-methyl-2-propenyloxy und 1-Ethyl-2-methyl-2-propenyloxy, vorzugsweise 2-Propenyloxy;
- C<sub>3</sub>-C<sub>6</sub>-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>3</sub>-C<sub>6</sub>-Alkinyloxy wie 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2-propinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-2-butinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 1,1-Dimethyl-2-propinyloxy, 1-Ethyl-2-propinyloxy, 2-Hexinyloxy, 3-Hexinyloxy, 4-Hexinyloxy, 5-Hexinyloxy, 1-Methyl-2-pentinyloxy, 2-Methyl-3-pentinyloxy, 2-Methyl-3-pentinyloxy, 2-Methyl-2-pentinyloxy, 1,1-Dimethyl-2-butinyloxy, 1,1-Dimethyl-3-butinyloxy, 1,2-Dimethyl-3-butinyloxy, 2,2-Dimethyl-3-butinyloxy, 1-Ethyl-2-butinyloxy, 1-Ethyl-3-butinyloxy, 2-Ethyl-3-butinyloxy und 1-Ethyl-1-methyl-2-propinyloxy, vorzugsweise 2-Propinyloxy;
  - oder NR<sup>g</sup>R<sup>h</sup>;
- 55 Rg Wasserstoff;

- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
- C3-C6-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl wie vorstehend genannt;

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

Rh Wasserstoff:

5

10

20

25

C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;

R<sup>c</sup> bedeutet desweiteren:

C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl wie vorstehend genannt oder C<sub>5</sub>-C<sub>7</sub>-Cycloalkenyl wie Cyclopent-1-enyl, Cyclopent-2-enyl, Cyclopent-3-enyl, Cyclohex-1-enyl, Cyclohex-2-enyl, Cyclohex-3-enyl, Cyclohept-1-enyl, Cyclohept-2-enyl, Cyclohept-3-enyl und Cyclohept-4-enyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

- Hydroxy,
- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
- Benzylthio,
- C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methyl-propylsulfonyl, 2-Methylpropylsulfonyl und 1,1-Dimethylethylsulfonyl, vorzugsweise C<sub>1</sub>-C<sub>2</sub>-Alkylsulfonyl:
- C<sub>1</sub>-C<sub>4</sub>-Alkylsulfenyl wie Methylsulfenyl, Ethylsulfenyl, Propylsulfenyl, 1-Methylethylsulfenyl, Butylsulfenyl, 1-Methyl-propylsulfenyl, 2-Methylpropylsulfenyl und 1,1-Dimethylethylsulfenyl, vorzugsweise C<sub>1</sub>-C<sub>2</sub>-Alkylsulfenyl;
- und C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl, Butylsulfinyl, 1-Methyl-propylsulfinyl, 2-Methylpropylsulfinyl und 1,1-Dimethylethylsulfinyl, vorzugsweise C<sub>1</sub>-C<sub>2</sub>-Alkylsulfinyl;

5-gliedrige gesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

6- oder 7-gliedrige gesättigte oder ein- oder zweifach ungesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein bis drei Stickstoffatome oder ein oder zwei Sauerstoff- oder Schwefelatome enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

45 - Hydroxy,

50

55

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder zwei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können:

- Cvano.
  - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C1-C4-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
- C2-C6-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy wie Ethenyloxy, 1-Propenyloxy, 2-Propenyloxy, 1-Methylethenyloxy, 1-Butenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-1-propenyloxy, 2-Methyl-1-propenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2-propenyloxy, 1-Pentenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-1- butenyloxy, 2-Methyl-1-butenyloxy, 3-Methyl-1-butenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-2-butenyloxy, 3-Methyl-2-butenyloxy, 1-Methyl-3-butenyloxy, 2-Methyl-3-butenyloxy, 3-Methyl-3-butenyloxy, yloxy, 1,1-Dimethyl-2-propenyloxy, 1,2-Dimethyl-1-propenyloxy, 1,2-Dimethyl-2-propenyloxy, 1-Ethyl-1-propenyloxy, 1-Ethyl-2-propenyloxy, 1-Hexenyloxy, 2-Hexenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-1-pentenyloxy, 2-Methyl-1-pentenyloxy, 3-Methyl-1-pentenyloxy, 4-Methyl-1pentenyloxy, 1-Methyl-2-pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-2-pentenyloxy, 4-Methyl-2pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3-pentenyloxy, 3-Methyl-3-pentenyloxy, 4-Methyl-3pentenyloxy, 1-Methyl-4-pentenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4pentenyloxy, 1,1-Dimethyl-2-butenyloxy, 1,1-Dimethyl-3-butenyloxy, 1,2-Dimethyl-1-butenyloxy, 1,2-Dimethyl-2-butenyloxy, 1,2-Dimethyl-3-butenyloxy, 1,3-Dimethyl-1- butenyloxy, 1,3-Dimethyl-2-butenyloxy, 1,3-Dimethyl-2-butenyloxy, 1,3-Dimethyl-2-butenyloxy, 1,3-Dimethyl-3-butenyloxy, 1,3-Dimethyl-3-butenylox yloxy, 1,3-Dimethyl-3-butenyloxy, 2,2-Dimethyl-3-butenyloxy, 2,3-Dimethyl-1-butenyloxy, 2,3-Dimethyl-2-butenyloxy, 2,3-Dimethyl-3-butenyloxy, 3,3-Dimethyl-1-butenyloxy, 3,3-Dimethyl-2-butenyloxy, 1-Ethyl-1-butenyloxy, 1-Ethyl-2-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-2-butenyloxy, 2-Ethyl-2-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-2-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-1-butenyloxy, 2-Ethyl-2-butenyloxy, 2-Ethyl-1-butenyloxy, 2yloxy, 2-Ethyl-3-butenyloxy, 1,1,2-Trimethyl-2-propenyloxy, 1-Ethyl-1-methyl-2-propenyloxy, 1-Ethyl-2methyl-1-propenyloxy und 1-Ethyl-2-methyl-2-propenyloxy, vorzugsweise C2-C4-Alkenyloxy;
- C<sub>2</sub>-C<sub>6</sub>-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>2</sub>-C<sub>6</sub>-Alkinyloxy wie Ethinyloxy, 1-Propinyloxy, 2-Propinyloxy, 1-Butinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2-propinyloxy, 1-Pentinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-2-butinyloxy, 1-Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 3-Methyl-1-butinyloxy, 1,1-Dimethyl-2-propinyloxy, 1-Ethyl-2-pentinyloxy, 1-Methyl-3-pentinyloxy, 1-Methyl-4-pentinyloxy, 2-Methyl-3-pentinyloxy, 2-Methyl-4-pentinyloxy, 3-Methyl-1-pentinyloxy, 3-Methyl-4-pentinyloxy, 4-Methyl-1-pentinyloxy, 4-Methyl-2-pentinyloxy, 1,1-Dimethyl-2-butinyloxy, 1,1-Dimethyl-3-butinyloxy, 1,2-Dimethyl-3-butinyloxy, 2,2-Dimethyl-3-butinyloxy, 3,3-Dimethyl-1-butinyloxy, 1-Ethyl-2-butinyloxy, 1-Ethyl-3-butinyloxy, 2-Ethyl-3-butinyloxy und 1-Ethyl-1-methyl-2-propinyloxy, vorzugsweise C<sub>2</sub>-C<sub>4</sub>-Alkinyloxy;
- und C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl steht für durch C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend genannt substituiertes C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend genannt;

Phenyl oder Pyridyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Nitro, Formyl, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt:
  - C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
  - C2-C6-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>3</sub>-C<sub>6</sub>-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>3</sub>-C<sub>6</sub>-Alkinyloxy wie vorstehend im allgemeinen und im besonderen genannt;
  - und NRkRI;

5

10

15

20

25

30

35

40

- Rk Wasserstoff;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>3</sub>-C<sub>6</sub>-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;
- RI Wasserstoff;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>3</sub>-C<sub>6</sub>-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl wie vorstehend genannt, vorzugsweise C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, insbesondere C<sub>1</sub>-C<sub>2</sub>-Alkylcarbonyl;

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

R

Wasserstoff; Hydroxy;

oder, sofern R<sup>c</sup> für C<sub>1</sub>-C<sub>6</sub>-Alkyl wie vorstehend genannt steht, ebenfalls C<sub>1</sub>-C<sub>6</sub>-Alkyl;

15 Re

5

10

Wasserstoff; Cyano;

Halogen wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>1</sub>-C<sub>4</sub>-Alkylketoxim wie Methylketoxim, Ethylketoxim, Propylketoxim, 1-Methylethylketoxim, Butylketoxim, 1-Methylpropylketoxim, 2-Methylpropylketoxim und 1,1-Dimethylethylketoxim;

W

 $C_1$ - $C_6$ -Alkylen [-( $CH_2$ )a-; a=1, 2, 3, 4, 5 oder 6],  $C_3$ - $C_6$ -Alkenylen [-( $CH_2$ )<sub>b</sub>-CH=CH-(CH)<sub>c</sub>-; b=1, 2 oder 3, c=0, 1, 2 oder 3, wobei die Summe von b+c=1, 2, 3 oder 4 ist], oder  $C_3$ - $C_6$ -Alkinylen [- $CH_2$ )<sub>b</sub>- $C^*C$ -(CH)<sub>c</sub>-, wobei b und c die vorstehend gegebene Bedeutung haben und \* für eine Dreifachbindung steht], wobei diese Gruppen  $X^1$  eine Methylengruppe (=  $CH_2$ ) und/oder ein bis drei der folgenden Reste tragen können:

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- und C<sub>1</sub>-C<sub>3</sub>-Alkyl wie Methyl, Ethyl, Propyl und 1-Methylethyl, vorzugsweise Methyl;

 $C_3$ - $C_6$ -Alkylen oder  $C_3$ - $C_6$ -Alkenylen, wie vorstehend genannt, wobei in diesen Resten jeweils eine Methylengruppe durch Sauerstoff, Schwefel, SO, SO<sub>2</sub> oder NR<sup>I</sup> ersetzt ist [-(CH<sub>2</sub>)<sub>f</sub>-W'-(CH<sub>2</sub>)<sub>g</sub>-; f = 1, 2, 3, 4 oder 5; g = 0, 1, 2, 3 oder 4, wobei die Summe von f + g = 2, 3, 4 oder 5 ist;

W' = O, S, SO, SO<sub>2</sub> oder NR<sup>i</sup>, oder

 $-(CH_2)_h - (CH = CH)_i - (CH_2)_k - W' - (CH_2)_i - (CH = CH)_m - (CH_2)_n - mit i,$ 

m = 0 oder 1, wobei die Summe von i + m = 1 ist; h = 0, 1, 2 oder 3, wobei die Summe von h, i und k 1, 2, 3, 4 und 5 betragen kann; k, l, n = 0, 1, 2 oder 3, wobei die Summe von h, k, l, n = 1, 2 oder 3 ist] und wobei diese Gruppen anstelle von Wasserstoffatomen ein bis drei C<sub>1</sub>-C<sub>3</sub>-Alkyleste wie vorstehend genannt tragen können;

Ri Wasserstoff;

C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>3</sub>-C<sub>6</sub>-Alkenyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>3</sub>-C<sub>6</sub>-Alkinyl wie vorstehend im allgemeinen und im besonderen genannt;

Rf

40

45

55

Wasserstoff; CH = CH-Z1, worin

- Z¹ Wasserstoff; Cyano; Carboxyl; Halogen wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
  - $C_1$ - $C_8$ -Alkoxycarbonyl wie vorstehend genannt, vorzugsweise  $C_1$ - $C_4$ -Alkoxycarbonyl, insbesondere  $C_1$ - $C_2$ -Alkoxycarbonyl;

50 Benzyloxycarbonyl;

Phenyl, Thienyl oder Pyridyl, wobei dieser Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;

- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
- oder C<sub>3</sub>-C<sub>6</sub>-Cyckloalkyl, wie vorstehend genannt, wobei der cyclische Rest seinerseits noch ein bis drei der folgenden Gruppen tragen kann:
  - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
  - C1-C4-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;

#### bedeutet;

Rf bedeutet ferner

5

10

20

25

30

40

45

Ethinyl, welches einen der folgenden Reste tragen kann:

- C1-C4-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- oder C<sub>3</sub>-C<sub>6</sub>-Cyckloalkyl wie vorstehend genannt, wobei diese Gruppen desweiteren ein bis drei der folgenden Reste tragen können: Hydroxy,
  - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C1-C4-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;

Ethinyl, welches einen der folgenden Reste trägt: Phenyl, Thienyl oder Pyridyl, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano,

- Halogen wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
- C1-C4-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

Phenyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder zwei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, oder 6-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein bis vier Stickstoffatome enthalten, wobei diese aromatischen und heteroaromatischen Gruppen partiell oder vollständig halogeniert sein können und außerdem ein bis drei der folgenden Reste tragen können:

- Nitro.
- C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
- C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkylthio, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkylthio wie Chlormethylthio, Dichlormethylthio, Trichlormethylthio, Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlorfluormethylthio, Dichlorfluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, 2,2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2, 2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio, 2,2,2-Trichlorethylthio und Pentafluorethylthio, vorzugsweise Trichlormethylthio;
  - die bei Z¹ genannten Reste
  - und NRkR, wobei Rk und Rl die vorstehend gegebene Bedeutung haben.

In der Bedeutung R<sup>c</sup> sind unter 5-gliedrigen gesättigten Ringen, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, die folgenden Gruppen zu verstehen: 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-3-yl.

In der Bedeutung R<sup>c</sup> sind unter 6- oder 7-gliedrigen gesättigten oder ein- oder zweifach ungesättigten Ringen, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefel- atome oder ein Sauerstoff- und ein Schwefelatom enthalten, die folgenden Gruppen zu verstehen: Oxan-2-yl, Oxan-3-yl, Oxan-4-yl, Oxepan-2-yl, Thioxan-3-yl, Thioxan-3-yl, Thioxan-3-yl, Thioxan-3-yl, Thioxepan-2-yl, Thioxepan-3-yl, Thioxepan-3-yl, Thioxepan-5-yl, 1,3-Dioxan-2-yl, 1,3-Dioxan-4-yl, 1,3-Dioxepan-4-yl, 1,3-Thioxan-2-yl, 1,3-Thioxan-4-yl, 1,3-Thioxan-5-yl,

1,3-Thioxepan-2-yl, 1,3-Thioxepan-6-yl, 1,3-Thioxepan-6-yl, 1,3-Thioxepan-6-yl, 1,3-Dithioxan-2-yl, 1,3-Dithioxan-2-yl, 1,3-Dithioxan-2-yl, 1,4-Dioxepan-2-yl, 1,4-Dioxepan-2-yl, 1,4-Dioxepan-2-yl, 1,4-Dithioxepan-2-yl, 1,4-Dithioxepan-2-yl, 1,4-Dithioxepan-2-yl, 1,4-Dithioxepan-2-yl, 1,4-Dithioxepan-2-yl, 1,4-Thioxan-3-yl, 1,4-Thioxan-3-yl, 1,4-Thioxan-5-yl, 1,4-Thioxan-5-yl, 1,4-Thioxepan-6-yl, 1,4-Thioxepan-6-yl, 1,4-Thioxepan-6-yl, 1,4-Thioxepan-6-yl, 1,4-Thioxepan-7-yl, Oxin-2-yl, Oxin-3-yl, Oxin-4-yl, Oxepin-3-yl, Oxepin-3-yl, Oxepin-3-yl, Thioxepin-2-yl, 1,3-Dioxin-2-yl, 1,3-Dioxin-2-yl, 1,3-Dioxepin-2-yl, 1,3-Dioxepin-4-yl, 1,3-Thioxin-2-yl, 1,3-Thioxin-4-yl, 1,3-Thioxepin-2-yl, 1,3-Thioxepin-4-yl, 1,3-Thioxepin-5-yl, 1,3-Thioxepin-5-yl, 1,3-Dithioxepin-5-yl, 1,3-Dithioxepin-5-yl, 1,4-Dioxepin-5-yl, 1,4-Dioxepin-2-yl, 1,4-Dioxepin-2-yl, 1,4-Dioxepin-2-yl, 1,4-Dioxepin-2-yl, 1,4-Thioxin-6-yl, 1,4-Thioxin-6-yl, 1,4-Thioxin-6-yl, 1,4-Thioxepin-7-yl, 1,4-Thioxepin-7-yl

In der Bedeutung R<sup>c</sup> und R<sup>f</sup> sind unter 5-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, sind die folgenden Gruppenzu verstehen: 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxaiolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,2,4-Triazol-2-yl, 1,3,4-Triadiazol-2-yl, 1,3,

In der Bedeutung Rf sind unter 6-gliedrigen aromatischen Ringen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome als Heteroatome enthalten können, sind vorzugsweise die folgenden Gruppen zu verstehen: 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 4-Pyridinyl, 4-Pyridinyl, 4-Pyrimidinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, insbesondere 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl.

Ganz besonders bevorzugte Cyclohexenon-Derivate der Formel II, deren Kulturpflanzenverträglichkeit durch substituierte Pyrido[2,3-d]pyrimidine I und I' verbessert werden kann, sind den folgenden Tabellen II.1 bis II.8 zu entnehmen:

30

35

40

45

50

| 50           | 45                              | 40                            | 35                                              | 30         | 25                  | 20                                                     | 15       | 10       | 5              |
|--------------|---------------------------------|-------------------------------|-------------------------------------------------|------------|---------------------|--------------------------------------------------------|----------|----------|----------------|
|              |                                 |                               |                                                 |            |                     |                                                        |          |          |                |
| Tabelle II.l | 11.11                           |                               |                                                 |            |                     |                                                        |          |          |                |
|              |                                 |                               | ₹<br>¥<br>¥                                     | OH NO-4-Rf | ä                   | (R <sup>b</sup> , R <sup>d</sup> , R <sup>e</sup> = H) | <b>T</b> |          |                |
| , r          | e<br>B                          | w <sub>C</sub>                |                                                 |            | 3                   |                                                        | R<br>f   | _        | Literatur      |
| A.001        | n-C <sub>3</sub> H <sub>7</sub> | 2-(Ethylth                    | 2-(Ethylthio)propyl                             |            | -CH2CH2-            | H2-                                                    | I        | ]        | DE-A 2 822 304 |
| A.002        | C 2H5                           | 2-(Ethy)t                     | 2-(Ethylthio)propyl                             |            | -CH <sub>2</sub> Cl | CH2CH=CC1-                                             | I        | _        | US-A 4 440 566 |
| A.003        | n-C <sub>3</sub> H <sub>7</sub> | 2-(Ethylt                     | hio)propyl                                      |            | -CH <sub>2</sub> CI | H=CC1-                                                 | I        | -        | 18-A 4 440 566 |
| A.004        | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydro                    | Tetrahydrothiopyran-3-y`                        | -y1        | -CH <sub>2</sub> CI | -CH2CH2-                                               | r        | w.       | EP-A 71 707    |
| A.005        | C 2HS                           | Tetrahydro                    | Tetrahydrothiopyran-3-yl                        | -y l       | -CH 2CI             | H2-                                                    | I        | <b>.</b> | EP-A 71 707    |
| A.006        | CH3                             | Tetrahydro                    | Tetrahydrothiopyran-3-yl                        | -y 1       | -CH <sub>2</sub> Cl | -CH <sub>2</sub> CH=ССН <sub>3</sub> -                 | r        | `        | IP-A 71 707    |
| A.007        | n-C3H7                          | Tetrahydro                    | Tetrahydropyran-3-yl                            |            | -CH2CH2-            | H2-                                                    | r        |          | IP-A 71 707    |
| A.008        | C <sub>2</sub> H <sub>5</sub>   | Tetrahydro                    | Tetrahydropyran-4-yl                            |            | -CH <sub>2</sub> Ci | -сн2сн=сс1-                                            | I        | -        | EP-A 142 741   |
| A.009        | n-C3H7                          | Pyridin-3-yl                  | -y1                                             |            | -CH2CH2-            | H2-                                                    | I        | <b></b>  | EP-A 66 195    |
| A.010        | C <sub>2</sub> H <sub>5</sub>   | 4-CH <sub>3</sub> -phenyl     | nyl                                             |            | -CH2CH2-            | H2-                                                    | I        | J        | DE-A 24 39 104 |
| A.011        | C <sub>2</sub> H <sub>5</sub>   | 4-C2H5-phenyl                 | enyl                                            |            | -CH <sub>2</sub> Ci | н=ссн3-                                                | I        | J        | DE-A 38 08 072 |
| A.012        | C <sub>2</sub> H <sub>5</sub>   | 2, 4, 6-(CH                   | 2, 4, 6-(CH <sub>3</sub> ) <sub>3</sub> -phenyl |            | -CH <sub>2</sub> Ci | -CH <sub>2</sub> CH <sub>2</sub> -                     | I        | <b></b>  | EP-A 88 301    |
| A.013        | n-C <sub>3</sub> H <sub>7</sub> | 4-CH3-cyclohexyl              | lohexyl                                         |            | -CH <sub>2</sub> Ci | -сн <sub>2</sub> сн=сс1-                               | I        | <b></b>  | EP-A 88 299    |
| A.014        | n-C <sub>3</sub> H <sub>7</sub> | 4-CH <sub>3</sub> -cyclohexyl | lohexyl                                         |            | -CH <sub>2</sub> Ci | -сн 2сн=ссн 3-                                         | I        | w        | EP-A 88 299    |
| A.015        | C <sub>2</sub> H <sub>5</sub>   | 3-Isoprop                     | 3-Isopropyl-isoxazol-5-yl                       | 5-y1       | -CH <sub>2</sub> Cl | -сн₂сн=ссн₃-                                           | I        | u        | EP-A 238 021   |
| A.016        | n-C <sub>3</sub> H <sub>7</sub> | 3-Isoprop                     | 3-Isopropyl-isoxazol-5-yl                       | 5-y1       | -CH <sub>2</sub> Ci | -сн³сн>ссн³-                                           | I        | J        | EP-A 238 021   |
| A.017        | C <sub>2</sub> H <sub>5</sub>   | Ю-Э≡ЭН) -7                    | 4-(HC≡C-CH <sub>2</sub> O)-phenyl               |            | -CH <sub>2</sub> Cl | -сн <sub>2</sub> сн=сс1-                               | <b>=</b> | ų.       | EP-A 137 174   |

| 50      | 45                              | 40                                                       | 35                                                       | 30        | 25                                 | 20                                     | 15       | 10 | 5                |
|---------|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------|------------------------------------|----------------------------------------|----------|----|------------------|
|         |                                 |                                                          |                                                          |           |                                    |                                        |          |    |                  |
| Tabelle | II.1 (Fortset                   | :setzung)                                                |                                                          |           |                                    |                                        |          |    |                  |
| ŗ.      | Ra                              | <b>.</b>                                                 |                                                          | v.        | 3                                  | `                                      | Rf       |    | Literatur        |
| A.018   | n-C <sub>3</sub> H <sub>7</sub> | 4-C <sub>2</sub> H <sub>5</sub> OCH <sub>2</sub> -phenyl | 2-phenyl                                                 |           | -CH <sub>2</sub> CH <sub>2</sub> - | H2-                                    | <b>I</b> | 1  | EP-A 2 137 200   |
| A.019   | n-C3H7                          | 3, 4-Br <sub>2</sub> -t                                  | 3,4-Br <sub>2</sub> -tetrahydropyran-3-yl                | an-3-y l  | -CH2CH2-                           | H2-                                    | I        |    | EP-A 230 235     |
| A.020   | n-C3H7                          | 3, 4-Br <sub>2</sub> -t                                  | 3,4-Br <sub>2</sub> -tetrahydropyran-3-yl                | an-3-yl   | -CH <sub>2</sub> C                 | -CH2CH=CC1-                            | I        |    | EP-A 230 235     |
| A.021   | n-C <sub>3</sub> H <sub>7</sub> | 2, 6, 6- (CH                                             | 2, 6, 6-(CH <sub>3</sub> ) <sub>3</sub> -cyclohex-1-enyl | -1-enyl   | -CH 2C                             | -CH2CH=CC1-                            | I        |    | EP-A 46 860      |
| A.022   | n-C3H7                          | Cyclohexy                                                |                                                          |           | -CH2CH2-                           | H2-                                    | I        |    | JP-A 540 191 945 |
| A.023   | n-C3H7                          | Cyclohex-1-enyl                                          | 1-enyl                                                   |           | -CH <sub>2</sub> CH <sub>2</sub> - | H2-                                    | I        |    | EP-A 46 860      |
| A.024   | CH3                             | 4-CH <sub>3</sub> -cyclohexyl                            | lohexyl                                                  |           | -CH 2C                             | -СН 2СН=СС1-                           | r        |    | EP-A 88 299      |
| A.025   | n-C3H7                          | 4-CF3-phenyl                                             | nyl                                                      |           | -CH2CH2-                           | H2-                                    | r        |    | EP-A 137 174     |
| A.026   | C 2H5                           | 2, 6, 6-(CH                                              | 2, 6, 6-(CH <sub>3</sub> ) <sub>3</sub> -cyclohex-l-enyl | -1-enyl   | -ĊH2C                              | -ĊH2CH=CC1-                            | I        |    | EP-A 46 860      |
| A.027   | n-C <sub>3</sub> H <sub>2</sub> | 2-CH3-thiazol-4-y1                                       | azol-4-yl                                                |           | -CH <sub>2</sub> C                 | -CH <sub>2</sub> CH=CCH <sub>3</sub> - | I        |    | EP-A 125 094     |
| A.028   | n-C <sub>3</sub> H <sub>7</sub> | 2-CH3-thi                                                | 2-CH <sub>3</sub> -thiazol-4-yl                          |           | -CH 2C                             | -СН2СН=СС]-                            | I        |    | EP-A 125 094     |
| A.029   | n-C3H7                          | 2, 4, 6-(CH                                              | 2, 4, 6-(CH <sub>3</sub> ) <sub>3</sub> -cyclohexyl      | ۲,        | -CH2CH2-                           | H2-                                    | I        |    | EP-A 88 299      |
| A.030   | n-C3H7                          | 3-C2H5S-4                                                | -OH-4-CH3-cy                                             | clohexyl  | -CH 2C                             | H=CH-                                  | I        | 1  | EP-A 228 598     |
| A.031   | C 2HS                           | 3, 4- (OH) 2                                             | 3, 4-(OH) <sub>2</sub> -cyclohexyl                       |           | -CH <sub>2</sub> C                 | -CH2CH2-                               | I        |    | EP-A 228 598     |
| A.032   | n-C <sub>3</sub> H <sub>7</sub> | 1-CH <sub>3</sub> -pyrazol-3-yl                          | azol-3-yl                                                |           | -CH2CH2-                           | H2-                                    | I        |    | EP-A 66 195      |
| A.033   | n-C3H7                          | 1-CH <sub>3</sub> -pyrrol-3-yl                           | rol-3-yl                                                 |           | -CH2C                              | -СН2СН=СС1-                            | I        |    | EP-A 66 195      |
| A.034   | n-C3H7                          | 2-CH <sub>3</sub> -thiazol-4-yl                          | azol-4-yl                                                |           | -CH 2C                             | -сн₂сн=сн-                             | I        |    | EP-A 125 094     |
| A.035   | n-C3H7                          | (CH <sub>3</sub> CH <sub>2</sub> S) <sub>2</sub> -methyl | 2-methyl                                                 |           | −сн₂с                              | -сн2сн2сн2-                            | I        |    | EP-A 230 260     |
| A.036   | n-C3H7                          | 1-0xo-tet                                                | 1-0xo-tetrahydrothiopyran-3-y                            | yran-3-yl | -CH2CH2-                           | . H2-                                  | I        |    | EP-A 115 808     |

| ibelle | Tabelle II.l (Fortsetzu         | setzung)                         |                                  | ·           |                                       |                                       |    |                                                                                     |
|--------|---------------------------------|----------------------------------|----------------------------------|-------------|---------------------------------------|---------------------------------------|----|-------------------------------------------------------------------------------------|
|        | æ                               | P.C                              |                                  |             | 3                                     |                                       | Rf | <br>Literatur                                                                       |
| A.037  | n-C <sub>3</sub> H <sub>7</sub> | 1, 1-Dioxo-t                     | l-Dioxo-tetrahydrothiopyran-3-yl | opyran-3-yl | CH <sub>2</sub> CH <sub>2</sub> -     | Z                                     | I  | EP-A 115 808                                                                        |
| A.038  | n-C3H7                          | 1, 1-Dioxo-t                     | ]-Dioxo-tetrahydrothiopyran-3-yl | opyran-3-yl | -сн2сн=сн-                            | -CH-                                  | I  | Proceedings Brit.<br>Crop-Protection<br>Conference<br>-weeds 1985 Vol.1<br>S. 93-98 |
| A.039  | CH3                             | 4-F-phenyl-thioethyl             | thioethyl                        |             | -CH2CH2-                              | -2                                    | I  | EP 254 514                                                                          |
| A.040  | C <sub>2</sub> H <sub>5</sub>   | 4-F-phenyl-thioethyl             | thioethyl                        |             | -CH2CH2-                              | 2-                                    | I  | EP 254 514                                                                          |
| A.041  | C 2H5                           | 4-F-phenyl-thioethyl             | thioethyl                        |             | -СН <sub>2</sub> СН=СН-               | -CH-                                  | r  | EP 254 514                                                                          |
| A.042  | C <sub>2</sub> H <sub>5</sub>   | 4-F-phenyl-thioethyl             | thioethyl                        |             | -CH2CH=CHCH2-                         | -CHCH <sub>2</sub> -                  | x  | EP 254 514                                                                          |
| A.043  | n-C <sub>3</sub> H <sub>7</sub> | 4-F-phenyl-thioethyl             | thioethyl                        |             | -сн 2сн=сн-                           | -CH-                                  | I  | EP 254 514                                                                          |
| A.044  | n-C3H7                          | Formyl                           |                                  |             | -CH <sub>2</sub> CH <sub>2</sub> -    | -2                                    | Ŧ  | EP 319 835                                                                          |
| A.045  | n-C <sub>3</sub> H <sub>7</sub> | 1-CH <sub>3</sub> S-cyclopropyl  | opropyl                          |             | -CH2CH2-                              | -2                                    | I  | EP 243 313                                                                          |
| A.046  | n-C <sub>3</sub> H <sub>7</sub> | 1-CH <sub>3</sub> S-cyclopropyl  | opropyl                          |             | H C1<br>-CH2C=C-                      | 5-4                                   | I  | EP 243 313                                                                          |
| A.047  | C <sub>2</sub> H <sub>5</sub>   | 1-CH <sub>3</sub> S-cyclopropyl  | opropy l                         |             | H C1<br>-CH2C=C-                      | 5-5                                   | I  | EP 243 313                                                                          |
| A.048  | C <sub>2</sub> H <sub>5</sub>   | 1-CH <sub>3</sub> S-cyclopropyl  | opropyl                          |             | -CH <sub>2</sub> C=C-                 | ئــــــــــــــــــــــــــــــــــــ | I  | EP 243 313                                                                          |
| A.049  | C <sub>2</sub> H <sub>5</sub>   | 1-C <sub>2</sub> H5S-cyclopropy] | lopropyl                         |             | H C1<br>H C1<br>-CH <sub>2</sub> C=C- | : 5 <u>-</u> 7                        | I  | EP 243 313                                                                          |

|       | 5                               | 0        | 95                                | 30   | 25 | 20                                      | 10              | 5               |
|-------|---------------------------------|----------|-----------------------------------|------|----|-----------------------------------------|-----------------|-----------------|
| Je    | Tabelle II.l (Fortsetzung)      | setzung) |                                   |      |    |                                         | •               |                 |
|       | Ra<br>Sa                        | RC       |                                   |      | \$ | 3                                       | R<br>f          | Literatur       |
| 050   | H. C.                           | 7-1      | -C .Hc S-ruc Jonson               |      |    | 1 - C.                                  | 1               | E1E E7C 03      |
| A.051 | C 2H5                           | Tetrahyd | [etrahydrothiopyran-3-y]          | 3-y1 | '  | -CH <sub>2</sub> CH=CHCH <sub>2</sub> - | <br>4-Cl-phenyl | EP-A 89 120 558 |
| A.052 | . C <sub>2</sub> H <sub>5</sub> | Tetrahyd | Fetrahydrothiopyran-3-yl          | 3-y1 | •  | -CH2CH2CH-                              | 4-Cl-phenyl     | EP-A 89 120 558 |
| A.053 | C <sub>2</sub> H <sub>5</sub>   | Tetrahyd | Tetrahydrothiopyran-3-yl          | 3-y1 | •  | -CH <sub>2</sub> CH <sub>2</sub> CH=CH- | 4-F-phenyl      | EP-A 89 120 558 |
| A.054 | n-C <sub>3</sub> H <sub>2</sub> | Tetrahyd | Tetrahydrothiopyran-3 <u>-</u> yl | 3–y1 | •  | -си 2си 2си=си-                         | 4-F-phenyl      | EP-A 89 120 558 |
| A.055 | C <sub>2</sub> H <sub>5</sub>   | Tetrahyd | Tetrahydrothiopyran-3-y           | 3-y1 | •  | -CH2CHCH2-                              | Pheny l         | EP-A 89 120 558 |
| A.056 | n-C3H7                          | Tetrahyd | retrahydrothiopyran-3-y           | 3-y1 | •  | -CH <sub>2</sub> -                      | 5-cl-thien-2-yl | 1 EP-A 177 913  |
| A.057 | C <sub>2</sub> H <sub>5</sub>   | Tetrahyd | retrahydrothiopyran-3-y           | 3-y1 | •  | -CH <sub>2</sub> -                      | 5-Cl-thien-2-yl | 1 EP-A 177 913  |
| A.058 | C <sub>2</sub> H <sub>5</sub>   | Tetrahyd | Tetrahydropyran−3-yl              |      | •  | -СН 2-                                  | 5-cl-thien-2-yl |                 |
| A.059 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahyd | Tetrahydropyran−4-yl              |      | •  | -CH <sub>2</sub> -                      | 5-cl-thien-2-y  | 1 EP-A 177 913  |
| A.060 | n-C3H7                          | Tetrahyd | Tetrahydrothiopyran-3-y           | 3-y1 | ľ  | -CH <sub>2</sub> -                      | Thien-2-yl      | EP-A 177 913    |
| A.061 | GH.3                            | Tetrahyd | Tetrahydropyran-3-yl              |      | •  | -CH2-                                   | Thien-2-yl      | EP-A 177 913    |
| 7.062 | C <sub>2</sub> H <sub>5</sub>   | Tetrahyd | Tetrahydropyran-4-yl              |      | •  | -CH <sub>2</sub> -                      | Thien-2-yl      | EP-A 177 913    |
| A.063 | C <sub>2</sub> H <sub>5</sub>   | Tetrahyd | Tetrahydropyran-3-yl              |      | •  | -(CH <sub>2</sub> ) <sub>4</sub> -      | 4-F-phenyl      | DE-A 38 38 309  |
| A.064 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahyd | Tetrahydropyran-3-yl              |      | •  | -(CH <sub>2</sub> ) <sub>4</sub> -      | 4-F-phenyl      | DE-A 38 38 309  |
| A.065 | C2H5                            | Tetrahyd | retrahydrothiopyran-3-yl          | 3-y1 | •  | -(CH <sub>2</sub> )4-                   | 4-F-phenyl      | DE-A 38 38 309  |
| A.066 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahyo | letrahydrothiopyran−3-yl          | 3-y1 | •  | -(CH <sub>2</sub> )4-                   | 4-F-phenyl      | DE-A 38 38 309  |
| A.067 | C 2H5                           | Tetrahyd | Tetrahydropyran-3-yl              |      | •  | -(CH <sub>2</sub> )4-                   | 4-F-phenyl      | DE-A 38 38 309  |

| Tabelle II.1 (Fortse | tzung)                   | ,                                  |             |                |
|----------------------|--------------------------|------------------------------------|-------------|----------------|
|                      |                          | 3                                  | Rf          | Literatur      |
| _                    | Tetrahydropyran-3-yl     | -(CH <sub>2</sub> )4-              | 4-F-phenyl  | DE-A 38 38 309 |
| _                    | Tetrahydropyran-3-yl     | -(CH <sub>2</sub> )4-              | 4-Cl-phenyl | DE-A 38 38 309 |
| _                    | Tetrahydropyran-3-yl     | -(CH <sub>2</sub> )4-              | 4-Cl-phenyl | DE-A 38 38 309 |
| -                    | Tetrahydropyran-4-yl     | -(CH <sub>2</sub> ) <sub>4</sub> - | 4-Cl-phenyl | DE-A 38 38 309 |
| F                    | Tetrahydropyran-4-yl     | -(CH <sub>2</sub> )4-              | 4-Cl-phenyl | DE-A 38 38 309 |
| Ę                    | Tetrahydrothiopyran-3-yl | -(CH <sub>2</sub> )4-              | 4-Cl-phenyl | DE-A 38 38 309 |
| Tet                  | Tetrahydrothiopyran-3-yl | -(CH <sub>2</sub> )4-              | 4-Cl-phenyl | DE-A 38 38 309 |

| 50    |                                   | 40<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                           | 25                         | 20                                                                                 | 15                                        | 10              | 5       |       |
|-------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|------------------------------------------------------------------------------------|-------------------------------------------|-----------------|---------|-------|
| Tabel | Tabelle II.2                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                            |                                                                                    |                                           |                 |         |       |
|       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RC OH NOWRE                  |                            | (R <sup>b</sup> ,R <sup>d</sup> ,R <sup>e</sup> = H)<br>(R <sup>c</sup> = Tetrahyd | Rd,Re = H)<br>= Tetrahydrothiopyran-3-yl) | an-3-y          |         |       |
| Bsp.  | Ra                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rf                           | phys. Daten<br>(Fp. in °C) | (NMR-Daten in ppm)                                                                 | (md                                       |                 |         |       |
| A.075 | C <sub>2</sub> H <sub>5</sub>     | -CH <sub>2</sub> CH=CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pheny l                      | 103-104                    |                                                                                    |                                           | ,               |         |       |
| A.076 | n-C <sub>3</sub> H <sub>7</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenyl                       | 4,7 (d,2H), 6              | 4,7 (d,2H), 6,3 (dt,1H), 6,7 (d,1H), 7,2-7,5 (2m,5H)                               | 7 (d, 1H), 7                              | 7,2-7,5 (2m,5   | Œ       |       |
| A.077 | C 2H5                             | -СН2-СН=СН-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-Cl-phenyl                  | 106-107                    |                                                                                    |                                           |                 |         |       |
| A.078 | n-C <sub>3</sub> H <sub>2</sub>   | -сн 2−сн=сн-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Cl-phenyl                  | 4,7 (d,2H), 6              | 4,7 (d,2H), 6,3 (dt,1H), 6,65 (d,1H), 7,2-7,5 (m,4H)                               | 65 (d, 1н),                               | 7,2-7,5 (m,4    | Ŧ       |       |
| A.079 | C <sub>2</sub> H <sub>5</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-F-pheny1                   | 90- 91                     |                                                                                    |                                           |                 |         |       |
| A.080 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-F-pheny l                  | 4,6 (d,2H), 6              | 4,6 (d,2H), 6,2 (dt,1H), 6,6 (d,1H), 7,0 (m,2H), 7,4 (m,2H)                        | 6 (а, 1н), 7                              | ,0 (m,2H), 7    | , 4 (m, | 2H)   |
| A.081 | C 2HS                             | -сн <sub>2</sub> сн=сн-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2, 4-Cl <sub>2</sub> -phenyl | 123-124                    |                                                                                    |                                           |                 |         |       |
| A.082 |                                   | -сн 2-сн=сн-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2, 4-Cl <sub>2</sub> -phenyl | 80- 82                     |                                                                                    |                                           |                 |         |       |
| A.083 | 3 C <sub>2</sub> H <sub>5</sub>   | - (сн 2) зсн=сн-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phenyl                       | 80- 82                     |                                                                                    |                                           |                 |         |       |
| A.084 |                                   | -(сн <sub>2</sub> ) <sub>3</sub> сн=сн-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phenyl                       | 4,1 (t,2H), 6              | 4,1 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,2-7,4 (m,5H)                                | 4 (d, 1H), 7                              | , 2-7, 4 (m, 5H | _       |       |
| A.085 |                                   | -(сн <sub>2</sub> ) <sub>3</sub> сн=сн-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-Cl-phenyl                  | 108-110                    |                                                                                    |                                           |                 |         |       |
| A.086 |                                   | -(сн₂) зсн=сн-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Cl-phenyl                  | 4,1 (t,2H), 6              | 6,2 (dt,1H), 6,4 (d,1H), 7,3 (s,4H)                                                | 4 (d, 1H), 7                              | ,3 (s,4H)       |         |       |
| A.087 | C2H5                              | -(CH <sub>2</sub> ) <sub>3</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phenyl                       | 4,0 (t,2H), 7              | 4,0 (t,2H), 7,0-7,4 (m,5H)                                                         |                                           |                 |         |       |
| A.088 | 3 n-C3H7                          | -(CH <sub>2</sub> ) <sub>3</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Pheny l                    | 4,0 (t,2H), 7              | 7,0-7,4 (m,5H)                                                                     |                                           |                 |         |       |
| A.089 | C2H5                              | -CH <sub>2</sub> C-CH <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pheny l                      | 3,3 (s,2н), 4              | 4,4 (s,2H), 5,1 und 5,2 (2s,2H), 7,1-7,4 (m,5H)                                    | und 5,2 (2                                | s, 2H), 7, 1-7, | , t (m, | 5н)   |
| A.090 | ) n-C <sub>3</sub> H <sub>7</sub> | A.090 n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> C-CH <sub>2</sub> -CH <sub>2</sub> | Pheny l                      | 3, 35 (s, 2н),             | 3,35 (s,2H), 4,4 (s,2H), 5,0 und 5,1 (2s,2H), 7,0-7,4 (m,5H)                       | 0 und 5,1 (                               | 2s, 2н), 7,0-   | 7,4 (m  | , 5н) |
|       |                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                            |                                                                                    |                                           |                 |         |       |

|           |   |                       |                                |             |             |              |                         |                               | _                                                      | ÷                                                  | (HE                                         |                                          |                                                       |                               |                                 |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
|-----------|---|-----------------------|--------------------------------|-------------|-------------|--------------|-------------------------|-------------------------------|--------------------------------------------------------|----------------------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------------------|-------------------------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 5         |   |                       |                                |             |             |              |                         |                               | 8 (m, 4H)                                              | 6 (3m, 9t                                          | 5 (3m, 9                                    |                                          | (m, 5H)                                               |                               |                                 |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
| 10        |   |                       |                                |             |             |              |                         |                               | H), 7,4-7,                                             | (d,2H), 6,25 (dt,1H), 6,65 (d,1H), 6,9-7,6 (3m,9H) | 6,25 (dt,1H), 6,65 (d,1H), 6,9-7,5 (3m, 9H) |                                          | ), 7,2-7,6                                            |                               |                                 |                                    |                                    |                                    |                                    |                                    |                                    |                                    |                                    |
|           |   |                       | ( w                            |             |             |              |                         |                               | i, 75 (d, 1)                                           | , 65 (d, 11                                        | i, 65 (d, 10                                |                                          | 95 (t, 1н                                             |                               |                                 |                                    |                                    |                                    | =                                  | (2m, 4H)                           | (2m, 4H)                           |                                    |                                    |
| <b>15</b> |   |                       | iten in pp                     |             |             |              |                         |                               | (dt, 1H), 6                                            | (dt, 1H), 6                                        | (dt, 1H), 6                                 | •                                        | (d, 2H), 5,                                           |                               |                                 | (t, 2H), 6, 9-7, 2 (2m, 4H)        | 2 (2m, 4H)                         |                                    | 7, 4 (2m, 3t                       | ind 7,45 (                         | ind 7,45 (                         | 4 (m, 4H)                          | 4 (m, 4H)                          |
| 20        |   |                       | n (NMR-Da                      |             |             |              |                         |                               | ), 6,45 (                                              | ), 6,25 (                                          | ), 6,25 (                                   |                                          | ), 4,75 (                                             |                               |                                 | ), 6,9-7,                          | ), 6,9-7,                          |                                    | 7,05-7                             | ), 7,05 u                          | ), 7,05 u                          | , 7,05-7,                          | , 7,05-7,                          |
| 25        |   |                       | phys. Daten (NMR-Daten in ppm) | 89- 91      | 66 - 26     | 103-105      | 88- 90                  | 96 - 26                       | 4,75 (d,2H), 6,45 (dt,1H), 6,75 (d,1H), 7,4-7,8 (m,4H) | 4,65 (d,2H                                         | 4,65 (d,2H),                                | 17- 78                                   | 2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H) | 97- 98                        | 87-89                           | 4,05 (t,2H                         | 4,05 (t,2H), 6,9-7,2 (2m,4H)       | 63- 65                             | 4,05 (t,2H), 7,05-7,4 (2m,3H)      | 4,05 (t,2H), 7,05 und 7,45 (2m,4H) | 4,05 (t,2H), 7,05 und 7,45 (2m,4H) | 4,1 (t,2H), 7,05-7,4 (m,4H)        | 4,1 (t,2H), 7,05-7,4 (m,4H)        |
| 30        |   |                       |                                | 4-Br-phenyl | 4-Br-phenyl | 4-CH3-phenyl | 4-CH3-phenyl            | 4-CF <sub>3</sub> -phenyl     | 4-CF <sub>3</sub> -phenyl                              | 4-C <sub>6</sub> H <sub>5</sub> O-phenyl           | 4-C <sub>6</sub> H <sub>5</sub> O-phenyl    | Phenyl                                   | Pheny 1                                               | 2-c1-phenyl                   | 2-C1-phenyl                     | 4-F-phenyl                         | 4-F-phenyl                         | 2, 4-Cl <sub>2</sub> -phenyl       | 2, 4-Cl <sub>2</sub> -phenyl       | 4-Br-phenyl                        | 4-Br-phenyl                        | 2-cl-phenyl                        | 2-c1-phenyl                        |
| 35        | • |                       | R                              | 8-4         | 4-B         | 7-4          | 7-4                     | 0-7                           | <b>3-</b> 7                                            | 7-7                                                | 7-7                                         | Phe                                      | Phe                                                   | 2-C                           | 2-C                             | 4-4                                | 4-4                                | 2,4                                | 2,4                                | 8-7                                | 8-4                                | 2-0                                | 2-c                                |
| 40        |   | ortsetzung)           | 3                              | -CH2CH=CH-  | -CH 2CH=CH- | -сн 2сн=сн-  | -cн <sub>2</sub> сн=сн- | -сн 2сн=сн-                   | -сн2сн=сн-                                             | -сн2сн=сн-                                         | -CH2CH=CH-                                  | -CH <sub>2</sub> CH=C(CH <sub>3</sub> )- | -CH <sub>2</sub> CH=С (СН <sub>3</sub> )-             | -сн2сн=сн-                    | -сн 2сн=сн-                     | -(CH <sub>2</sub> ) <sub>3</sub> - |
| 45        |   | Tabelle II.2 (Fortset | Ra                             | C 2H5       | n-C3H7      | C 2H5        |                         | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H7                                    | C <sub>2</sub> H <sub>5</sub>                      |                                             |                                          |                                                       | C <sub>2</sub> H <sub>S</sub> | n-C <sub>3</sub> H <sub>7</sub> | C 2HS                              | n-C 3H7                            | C <sub>2</sub> H <sub>5</sub>      | n-C3H7                             | C 2H5                              | n-C <sub>3</sub> H <sub>7</sub>    | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H <sub>7</sub>    |
| 50        |   | Tabelle               | Bsp.                           | A.091       | A.092       | A.093        | A.094                   | A.095                         | A.096                                                  | A.097                                              | A.098                                       | A.099                                    | A.100                                                 | A.101                         | A.102                           | A.103                              | A.104                              | A.105                              | A.106                              | A.107                              | A.108                              | A.109                              | A.110                              |

| 50 |        | 45                            | 35                                                     | 30                           | 20<br>25                   | 15                                            | . ·<br>. ·<br>10                                      |
|----|--------|-------------------------------|--------------------------------------------------------|------------------------------|----------------------------|-----------------------------------------------|-------------------------------------------------------|
|    | Tabell | Tabelle II.2 (Fo              | (Fortsetzung)                                          |                              |                            |                                               |                                                       |
|    | Bsp.   | Ra                            | 3                                                      | موا<br>کلا                   | phys. Daten<br>(Fp. in °C) | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C) |                                                       |
|    | A.111  | C <sub>2</sub> H <sub>5</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -                     | 4-Cl-phenyl                  | 4,05 (t,2H)                | 4,05 (t,2H), 7,0-7,4 (m,4H)                   |                                                       |
|    | A.112  |                               | -(CH <sub>2</sub> ) <sub>3</sub> -                     | 4-Cl-phenyl                  | 4,05 (t,2H)                | 4,05 (t,2H), 7,0-7,4 (m,4H)                   |                                                       |
|    | A.113  | C <sub>2</sub> H <sub>5</sub> | -сн 2сн=сн-                                            | 3, 5-Cl <sub>2</sub> -phenyl | 75- 77                     |                                               |                                                       |
|    | A.114  |                               | -сн 2сн=сн-                                            | 3, 5-Cl <sub>2</sub> -phenyl | 70- 73                     |                                               |                                                       |
|    | A.115  |                               | -CH2CH2CH(CH3)-                                        | Pheny 1                      | 1,25 (d,3H)                | 1,25 (d,3H), 3,95 (m,2H), 7,05-7,4 (m,5H)     | -7,4 (m,5H)                                           |
|    | A.116  |                               | -CH2CH2CH(CH3)-                                        | Pheny 1                      | 1,25 (d,3H)                | 1,25 (d,3H), 3,95 (m,2H), 7,05-7,4 (m,5H)     | -7,4 (m,5H)                                           |
|    | A.117  |                               | -(CH <sub>2</sub> ) <sub>3</sub> -                     | 3, 5-Cl <sub>2</sub> -phenyl | 82- 84                     |                                               |                                                       |
|    | A.118  |                               | -(CH <sub>2</sub> ) <sub>3</sub> -                     | 3, 5-Cl <sub>2</sub> -phenyl | 4,05 (t,2H)                | 4,05 (t,2H), 7,0-7,25 (m,3H)                  |                                                       |
|    | A.119  |                               | -CH2CH2C(=CH2)-                                        | Phenyl                       | 4,15 (t,2H)                | , 5,15 (s,1H), 5,25                           | 4,15 (t,2H), 5,15 (s,1H), 5,25 (s,1H), 7,2-7,6 (m,5H) |
|    | A.120  |                               | -CH2CH2C (=CH2)-                                       | Phenyl                       | 4,15 (t,2H)                | , 5,15 (s,1H), 5,25                           | 4,15 (t,2H), 5,15 (s,1H), 5,25 (s,1H), 7,2-7,6 (m,5H) |
|    | A.121  |                               | -CH 2CH=CH-                                            | 2, 4-Cl <sub>2</sub> -phenyl | 107-108                    |                                               |                                                       |
|    | A.122  |                               | -CH2CH=CH-                                             | 4-Cl-phenyl                  | 104-106                    |                                               |                                                       |
|    | A.123  |                               | -(CH <sub>2</sub> ) <sub>5</sub> -                     | 4-Cl-phenyl                  | 4,05 (t,2H)                | 4,05 (t,2H), 7,0-7,4 (2m,4H)                  |                                                       |
|    | A.124  |                               | -(CH <sub>2</sub> ) <sub>5</sub> -                     | 4-Cl-phenyl                  | 99 - 49                    |                                               |                                                       |
|    | A.125  | C <sub>2</sub> H <sub>5</sub> | -CH2CH=CH-                                             | 3, 4-Cl <sub>2</sub> -phenyl | 4,7 (d,2H),                | 6,3 (dt,1H), 6,55                             | 4,7 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H)  |
|    | A.126  |                               | -CH <sub>2</sub> CH=CH-                                | 3, 4-Cl <sub>2</sub> -phenyl | 4,7 (d,2H),                | 6,3 (dt,1H), 6,55                             | 4,7 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H)  |
|    | A.127  |                               | -CH <sub>2</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> - | Phenyl                       | 0, 95 (ф, 3н)              | 0,95 (d,3H), 3,9 (m,2H), 7,0-7,5 (m,5H)       | , 5 (m, 5H)                                           |
|    | A.128  |                               | -CH <sub>2</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> - | Pheny l                      | 0,95 (d,3H)                | 0,95 (d,3H), 3,9 (m,2H), 7,0-7,5 (m,5H)       | , 5 (m, 5H)                                           |
|    | A.129  | C <sub>2</sub> H <sub>5</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -                     | 3, 4-Cl <sub>2</sub> -phenyl | 4,05 (t,2H)                | 4,05 (t,2H), 7,0-7,1 und 7,2-7,4 (2m,3H)      | , 4 (2m, 3H)                                          |
|    | A.130  |                               | -(CH <sub>2</sub> ) <sub>3</sub> -                     | 3, 4-Cl <sub>2</sub> -phenyl | 4,05 (t,2H)                | 4,05 (t,2H), 6,95-7,1 und 7,2-7,45 (2m,3H)    | 7,45 (2m,3H)                                          |

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
| 35 |  |
| 40 |  |
|    |  |

| (vun  |  |
|-------|--|
| 5017  |  |
| (Fort |  |
| 11.2  |  |
| 1 9 1 |  |
|       |  |

| Bsp.  | Ra                              | 3                                                                       | Rf ·                      | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C)     |
|-------|---------------------------------|-------------------------------------------------------------------------|---------------------------|---------------------------------------------------|
| A.131 | C2H5                            | -CH2CH(CH3)CH2-                                                         | 4-F-pheny l               | 0,95 (d,3H), 3,9 (dd,2H), 6,8-7,2 (m,4H)          |
| A.132 |                                 | CH <sub>2</sub> CH(CH <sub>3</sub> )CH <sub>2</sub>                     | 4-F-pheny l               | 0,95 (d,3H), 3,9 (dd,2H), 6,8-7,2 (m,4H)          |
| A.133 |                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> -                  | 4-Cl-phenyl               | 0,9 (d,3H), 3,9 (m,2H), 7,0-7,4 (2m,4H)           |
| A.134 | n-C <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> -                  | 4-Cl-phenyl               | 0,9 (d,3H), 3,9 (m,2H), 7,0-7,4 (2m,4H)           |
| A.135 |                                 | -CH <sub>2</sub> CH <sub>2</sub> C (CH <sub>3</sub> ) <sub>2</sub> -    | 4-F-phenyl                | 1,35 (s,6H), 3,85 (t,2H), 7,0 und 7,3 (2m,4H)     |
| A.136 |                                 | -CH2CH2C (CH3) 2-                                                       | 4-F-pheny l               | 1,35 (s,6H), 3,85 (t,2H), 7,0 und 7,3 (2m,4H)     |
| A.137 | C 2H5                           | -CH <sub>2</sub> CH <sub>2</sub> C (CH <sub>3</sub> ) <sub>2</sub> -    | 4-Cl-phenyl               | 1,35 (s,6H), 3,85 (t,2H), 7,25 (s,4H)             |
| A.138 |                                 | -CH <sub>2</sub> CH <sub>2</sub> C (CH <sub>3</sub> ) <sub>2</sub> -    | 4-Cl-phenyl               | 1,35 (s,6H), 3,85 (t,2H), 7,25 (s,4H)             |
| A.139 | C 2H5                           | -(CH <sub>2</sub> ) <sub>6</sub> -                                      | 4-Cl-phenyl               | 1,15 (t,3H), 4,05 (t,2H), 7,1 (d,2H), 7,25 (d,2H) |
| A.140 |                                 | -(CH <sub>2</sub> ) <sub>6</sub> -                                      | 4-Cl-phenyl               | 0,95 (t,3H), 4,05 (t,2H), 7,1 (d,2H), 7,25 (d,2H) |
| A.141 |                                 | -(CH <sub>2</sub> ) <sub>6</sub> -                                      | 4-F-phenyl                | 1,1 (t,3H), 4,0 (t,2H)                            |
| A.142 | n-C <sub>3</sub> H <sub>7</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                      | 4-F-pheny1                | 0,95 (t,3H), 4,0 (t,2H)                           |
| A.143 |                                 | -(CH <sub>2</sub> ) <sub>5</sub> -                                      | 4-F-phenyl                | 1,1 (t,3H), 4,05 (t,2H), 6,95 und 7,1 (2m,4H)     |
| A.144 |                                 | -(CH <sub>2</sub> ) <sub>5</sub> -                                      | 4-F-pheny l               | 0,9 (t,3H), 4,05 (t,2H), 6,95 und 7,1 (2m,4H)     |
| A.145 | C <sub>2</sub> H <sub>5</sub>   | -CH <sub>2</sub> CH(CH <sub>3</sub> )-(CH <sub>2</sub> ) <sub>3</sub> - | 2-CH <sub>3</sub> -phenyl | 2,3 (s,3H), 3,95 (t,1H), 7,1 (m,4H)               |
| A.146 | n-C <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> )-(CH <sub>2</sub> ) <sub>3</sub> - | 2-CH <sub>3</sub> -phenyl | 2,3 (s,3H), 3,9 (t,1H), 7,05 (m,4H)               |
| A.147 |                                 | -CH <sub>2</sub> CH=CH-                                                 | 3-Br-phenyl               | 86 - 96                                           |

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |
| 35 |  |
| 40 |  |
| 45 |  |

|                                               | 1H), 6,6(d,1H), 7,1-7,6(m,4H)                                 |                               | H), 6,65(d,1H), 7,2-7,5(m,4H)                                |                               | 1H), 6,6(d,1H), 6,9-7,3(m,4H)                                |
|-----------------------------------------------|---------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|
| phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C) | 0,95(t,3H), 4,65(d,2H), 6,3(dt,1H), 6,6(d,1H), 7,1-7,6(m,4H)  | 98-100                        | 1,0(t,3H), 4,7(d,2H), 6,35(dt,1H), 6,65(d,1H), 7,2-7,5(m,4H) | 77 - 78                       | 0,95(t,3H), 4,65(d,2H), 6,3(dt,1H), 6,6(d,1H), 6,9-7,3(m,4H) |
| Rf.                                           | 3-Br-phenyl                                                   | 3-Cl-phenyl                   | 3-Cl-phenyl                                                  | 3-F-phenyl                    | 3-F-phenyl                                                   |
| 3                                             | A.148 n-C <sub>3</sub> H <sub>2</sub> -CH <sub>2</sub> CH=CH- | -сн2сн=сн-                    | -СH <sub>2</sub> CH=СН-                                      | -сн2сн=сн-                    | -CH2CH=CH-                                                   |
| e ex                                          | n-C <sub>3</sub> H <sub>7</sub>                               | C <sub>2</sub> H <sub>5</sub> | n-C 3H7                                                      | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub>                              |
| Bsp.                                          | A.148                                                         | A.149 C2H5                    | A.150                                                        | A.151 C2H5                    | A.152 n-C3H7                                                 |

| 50    |                                 | 40                                                                                | 30<br>35                     | 25                                                           | 20                                                                                   | 15                                                             | 10                  | 5        |                   |
|-------|---------------------------------|-----------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|----------|-------------------|
|       |                                 |                                                                                   |                              |                                                              |                                                                                      |                                                                |                     |          |                   |
| Tabel | Tabelle II.3                    |                                                                                   |                              |                                                              |                                                                                      |                                                                |                     |          |                   |
|       |                                 |                                                                                   | RC CHART                     |                                                              | (R <sup>b</sup> , R <sup>d</sup> , R <sup>e</sup> = H)<br>(R <sup>c</sup> = Tetrahyd | R <sup>d</sup> ,R <sup>e</sup> = H)<br>= Tetrahydropyran-3-yl) | -3-y1)              |          |                   |
| Bsp.  | Ra                              | 3                                                                                 | Ref                          | phys. Daten (<br>(Fp. in °C)                                 | (NMR-Daten in ppm)                                                                   | (mdd                                                           |                     | •        |                   |
| A.153 | C 2H5                           | -CH 2-CH=CH-                                                                      | Phenyl                       |                                                              |                                                                                      |                                                                |                     |          |                   |
| A.154 | n-C 3H7                         | -си 2-си=си-                                                                      | Phenyl                       | 4,7 (d,2H), 6                                                | 4,7 (d,2H), 6,3 (dt,1H), 6,7 (d,1H), 7,2-7,5 (2m,5H)                                 | ,7 (ф,1н),                                                     | 7,2-7,5 (           | 2т, 5н)  |                   |
| A.155 | C 2HS                           | -CH <sub>2</sub> -CH=CH-                                                          | 4-Cl-phenyl                  | 106-108                                                      |                                                                                      |                                                                | •                   |          |                   |
| A.156 |                                 |                                                                                   | 4-Cl-phenyl                  | 4,7 (d,2H), 6                                                | 4,7 (d,2H), 6,3 (dt,1H), 6,65 (d,1H), 7,2-7,5 (m,4H)                                 | , 65 (а, 1н),                                                  | 7,2-7,5             | (m, 4H)  |                   |
| A.157 | C <sub>2</sub> H <sub>5</sub>   | -сн 2-сн=сн-                                                                      | 4-F-phenyl                   |                                                              |                                                                                      |                                                                |                     | •        |                   |
| A.158 |                                 | •                                                                                 | 4-F-phenyl                   | 4,65 (d,2H),                                                 | 4,65 (d,2H), 6,2 (dt,1H), 6,7 (d,1H), 7,0 (m,2H), 7,4 (m,2H)                         | 6,7 (а,1н),                                                    | 7,0 (m,2            | н), 7,4  | (m, 2H)           |
| A.159 | C 2HS                           |                                                                                   | 2,4-Cl <sub>2</sub> -phenyl  | 135-137                                                      |                                                                                      |                                                                |                     |          |                   |
| A.160 | n-C3H7                          |                                                                                   | 2, 4-Cl <sub>2</sub> -phenyl | 4,75 (d,2H),                                                 | 4,75 (d,2H), 6,3 (dt,1H), 7,0 (d,1H), 7,05-7,5 (2m,3H)                               | 7,0 (d,1H),                                                    | 7,05-7,5            | (2m, 3H) |                   |
| A.161 | C 2HS                           | -(CH <sub>2</sub> ) 3CH=CH-                                                       | Phenyl                       | 4,1 (t,2H), 6                                                | 4,1 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,2-7,4 (m,5H)                                  | , 4 (d, 1H),                                                   | 7, 2-7, 4 (         | п, 5н)   |                   |
| A.162 |                                 |                                                                                   | Phenyl                       | 4,1 (t,2H), 6                                                | 6,2 (dt,1H), 6,4 (d,1H), 7,1-7,4 (m,5H)                                              | , 4 (d, 1H),                                                   | 7, 1-7, 4 (         | п, 5н)   |                   |
| A.163 |                                 |                                                                                   | 4-Cl-phenyl                  | 92- 95                                                       |                                                                                      |                                                                |                     |          |                   |
| A.164 | n-C <sub>3</sub> H <sub>7</sub> | -(CH <sub>2</sub> ) <sub>3</sub> CH=CH-                                           | 4-Cl-phenyl                  | 4,1 (t,2H), 6                                                | 4,1 (t,2H), 6,2 (dt,1H), 6,35 (d,1H), 7,3 (s,4H)                                     | , 35 (d, 1н),                                                  | 7,3 (s,4            | Î        |                   |
| A.165 | C 2H5                           | -(CH <sub>2</sub> ) <sub>3</sub> -                                                | Pheny l                      | 4,05 (t,2H),                                                 | 4,05 (t,2H), 7,1-7,4 (m,5H)                                                          | _                                                              |                     |          |                   |
| A.166 | n-C3H7                          | -(CH <sub>2</sub> ) <sub>3</sub> -                                                | Pheny 1                      | 4,05 (t,2H),                                                 | 4,05 (t,2H), 7,1-7,4 (m,5H)                                                          | _                                                              |                     |          |                   |
| A.167 | CoHe                            | CH 2                                                                              | 9                            | 3 35 (6 24)                                                  | 7 (nC 3) 1 1                                                                         | ,                                                              | ,                   | ,        | 100               |
| A.168 | n-C <sub>3</sub> H <sub>7</sub> | CH2<br>CH2<br>H<br>A.168 n-C <sub>3</sub> H7 -CH <sub>2</sub> C-CH <sub>2</sub> - | Phenyl                       | 3,35 (5,2H), 4,4 (8,2H), 5,0 und 5,2 (25,2H), 7,1-7,4 (m,5H) | 3,35 (S.2H), 4,4 (S.2H), 5,0 und 5,2 (25,2H), 7,1-7,4 (m,5H)                         | 2,2 min 9,2                                                    | (42,24),<br>(2<,24) | 7 1-7 4  | (m, 2H)           |
|       |                                 |                                                                                   | •                            |                                                              |                                                                                      | 111 1111                                                       | 11, ()              |          | ` · · · · · · · · |

| 11.                             | 3 (F | tsetzung)                             | 30<br>                                    | phys. Daten (Fp. in oc) | phys. Daten (NMR-Daten in ppm)                         | 10          | 5                                                       |
|---------------------------------|------|---------------------------------------|-------------------------------------------|-------------------------|--------------------------------------------------------|-------------|---------------------------------------------------------|
| ÷                               |      | -CH2CH=CH-                            | 4-Br-phenyl                               | 114-116°C<br>99-100°C   |                                                        |             |                                                         |
|                                 | ·    | -сн₂сн=сн-                            | 4-CH <sub>3</sub> -phenyl                 | 123-125                 |                                                        |             |                                                         |
| 7                               | Ÿ    | -CH2CH=CH-                            | 4-CH3-phenyl                              | 70- 72                  |                                                        |             |                                                         |
| C 2H5 -                         | Y    | −сн2сн=сн-                            | 4-CF3-phenyl                              | 104-106                 |                                                        |             |                                                         |
| _                               | Υ    | -сн 2сн=сн-                           | 4-CF <sub>3</sub> -phenyl                 | 4,75 (d,2H),            | 4,75 (d,2H), 6,4 (dt,1H), 6,75 (d,1H), 7,4-7,8 (m,4H)  | 75 (ф, 1н), | 7,4-7,8 (m,4H)                                          |
| C <sub>2</sub> H <sub>5</sub> . | Υ    | СН 2СН=-СН-                           | 4-C <sub>6</sub> H <sub>5</sub> O-pheny l | 89- 91                  |                                                        |             |                                                         |
| _                               | Υ    | −CH2CH=CH−                            | 4-C <sub>6</sub> H <sub>5</sub> O-pheny l | 4,65 (d,2H),            | 6,25 (dt,1H), 6,                                       | 65 (d, 1H)  | 4,65 (d,2H), 6,25 (dt,1H), 6,65 (d,1H), 6,9-7,5 (3m,9H) |
| C2H5                            | Υ    | −сн2сн=с(сн3)−                        | Pheny 1                                   | 2,15 (s,3н),            | 2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H)  | 5 (t, 1н),  | 7, 2-7, 6 (m, 5н)                                       |
|                                 | Υ    | CH <sub>2</sub> CHC(СН <sub>3</sub> ) | Pheny 1                                   | 2,15 (s, 3н),           | 2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H)  | 5 (t, 1н),  | 7,2-7,6 (m,5H)                                          |
| C <sub>2</sub> H <sub>5</sub>   | T    | -CH2CH=CH-                            | 2-C1-phenyl                               | 113-118                 | (                                                      |             |                                                         |
| n-C <sub>3</sub> H <sub>2</sub> | ĭ    | -CH2CH=CH-                            | 2-Cl-phenyl                               | 4,75 (d,2H),            | 4,75 (d,2H), 6,3 (dt,1H), 7,05 (d,1H), 7,05-7,6 (m,4H) | 5 (ф, 1н),  | 7,05-7,6 (m,4H)                                         |
| C2H5                            | ī    | (CH <sub>2</sub> ) <sub>3</sub> -     | 4-F-phenyl                                | 4,1 (t,2H),             | 4,1 (t,2H), 6,9-7,2 (2m,4H)                            |             |                                                         |
| H7                              | ī    | (CH <sub>2</sub> ) <sub>3</sub> -     | 4-F-phenyl                                | 4,1 (t,2H), (           | 4,1 (t,2H), 6,8-7,15 (2m,4H)                           |             |                                                         |
| C <sub>2</sub> H <sub>S</sub>   | T    | (CH <sub>2</sub> ) <sub>3</sub> -     | 2, 4-Cl <sub>2</sub> -phenyl              | 75- 77                  |                                                        |             |                                                         |
| n-C <sub>3</sub> H <sub>2</sub> | T    | (CH <sub>2</sub> ) <sub>3</sub> -     | 2, 4-Cl <sub>2</sub> -phenyl              | 4,05 (t,2H),            | 4,05 (t,2H), 7,05-7,5 (2m,3H)                          |             |                                                         |
| C 2HS                           | ī    | (CH <sub>2</sub> ) 3-                 | 2-C1-phenyl                               | 4,1 (t,2H),             | 4,1 (t,2H), 7,0-7,4 (m,4H)                             |             |                                                         |
| n-C <sub>3</sub> H <sub>7</sub> | 1    | (CH <sub>2</sub> ) <sub>3</sub> -     | 2-Cl-phenyl                               | 4,1 (t,2H),             | 4,1 (t,2H), 7,0-7,4 (m,4H)                             |             |                                                         |
| C 2H5                           | ī    | (CH <sub>2</sub> ) <sub>3</sub> -     | 4-Cl-phenyl                               | 62- 64                  |                                                        |             |                                                         |
| _                               | Ť    | (CH <sub>2</sub> ) <sub>3</sub> -     | 4-Cl-phenyl                               | 4,05 (t,2H),            | 4,05 (t,2H), 7,05-7,3 (2m,4H)                          |             |                                                         |
|                                 |      |                                       |                                           |                         |                                                        |             |                                                         |

| _     | Tabelle II.3 (                  | (Fortsetzung)                                                        |                              |                     |                                                       |                             |               |              |
|-------|---------------------------------|----------------------------------------------------------------------|------------------------------|---------------------|-------------------------------------------------------|-----------------------------|---------------|--------------|
| İ     | Ra                              | 3                                                                    | Rf                           | phys. Da<br>(Fp. in | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C)         | en in ppm)                  |               |              |
| A.189 | C 2H5                           | -CH2CH=CH2-                                                          | 3, 5-Cl <sub>2</sub> -phenyl | 126-127             |                                                       |                             |               |              |
| .190  | n-C <sub>3</sub> H <sub>2</sub> | -CH2CH=CH2-                                                          | 3, 5-Cl <sub>2</sub> -phenyl | 4,7 (d,2            | 4,7 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,1 (m,3H)      | 1H), 6,55 (c                | I, 1H), 7,1   | (m, 3H)      |
| A.191 | C 2H5                           | -(CH <sub>2</sub> ) <sub>3</sub> -                                   | 3, 5-Cl <sub>2</sub> -phenyl | 79-80               |                                                       |                             |               |              |
| A.192 | n-C <sub>3</sub> H <sub>7</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -                                   | 3, 5-Cl <sub>2</sub> -phenyl | 4,05 (t,            | 4,05 (t,2H), 7,0-7,25 (m,3H)                          | 5 (т, 3н)                   |               |              |
| A.193 | C <sub>2</sub> H <sub>5</sub>   | -CH2CH2C (=CH2)-                                                     | Phenyl                       | 4, 15 (t,           | 4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,5 (m,5H)  | , 1н), 5,3 (я               | , 1H), 7,2-   | 7,5 (m,5H)   |
| A.194 | n-C <sub>3</sub> H <sub>7</sub> | -CH2CH2C(=CH2)-                                                      | Phenyl                       | 4, 15 (t,           | 4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,5 (m,5H)  | , 1н), 5,3 (я               | 1, 1H), 7,2-  | 7,5 (m,5H)   |
| A.195 | CH3                             | -CH2CH=CH2-                                                          | 4-Br-phenyl                  | 135-137             |                                                       |                             |               |              |
| A.196 | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>5</sub> -                                   | 4-Cl-phenyl                  | <b>29 -99</b>       |                                                       |                             |               |              |
| A.197 | n-C 3H7                         | -(CH <sub>2</sub> ) <sub>5</sub> -                                   | 4-Cl-phenyl                  | 60- 62              |                                                       |                             |               |              |
| A.198 | C <sub>2</sub> H <sub>5</sub>   | -CH <sub>2</sub> C(CH <sub>3</sub> )-CH <sub>2</sub> -               | Phenyl                       | 0,95 (d,            | 0,95 (d,3H), 3,9 (m,2H), 7,0-7,4 (m,5H)               | 2н), 7,0-7,4                | (m, 5H)       |              |
| A.199 | n-C 3H7                         | -CH <sub>2</sub> C(CH <sub>3</sub> )-CH <sub>2</sub> -               | Pheny 1                      | 0,95 (d,3H),        | 3Н), 3,9 (ш,                                          | 3,9 (m, 2H), 7,0-7,4 (m,5H) | (m, 5H)       |              |
| A.200 | C2H5                            | -CH2CH=CH2-                                                          | 3, 4-Cl <sub>2</sub> -phenyl | 4,65 (d,            | 2H), 6,3 (dt                                          | , 1н), 6,55                 | (d, 1H), 7, 2 | -7,6 (m,3H)  |
| A.201 | n-C <sub>3</sub> H <sub>2</sub> | −CH2CH=CH2−                                                          | 3, 4-Cl <sub>2</sub> -phenyl | 4,65 (d,            | 4,65 (4,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H) | , 1н), 6,55                 | (d, 1H), 7, 2 | -7,6 (ш, ЗН) |
| A.202 | C <sub>2</sub> H <sub>5</sub>   | -CH <sub>2</sub> C(CH <sub>3</sub> )-CH <sub>2</sub> -               | 4-F-phenyl                   | 0,95 (d,            | 0,95 (d,3H), 3,9 (dd,2H), 6,8-7,2 (m,4H)              | , 2H), 6,8-7,               | 2 (m, 4H)     |              |
| A.203 | n-C3H7                          | -CH <sub>2</sub> C (CH <sub>3</sub> )-CH <sub>2</sub> -              | 4-F-phenyl                   | 0,95 (d,            | 0,95 (d,3H); 3,9 (dd,2H), 6,8-7,2 (m,4H)              | , 2н), 6,8-7,               | 2 (m, 4H)     |              |
| A.204 | C <sub>2</sub> H <sub>5</sub>   | -CH <sub>2</sub> C (CH <sub>3</sub> )-CH <sub>2</sub> -              | 4-Cl-phenyl                  | 0,95 (d,            | 0,95 (d,3H), 3,9 (m mit dd, 4H), 7,0-7,4 (2m,4H)      | mit dd, 4H),                | 7, 0-7, 4     | 2m, 4H)      |
| A.205 | . n-C3H7                        | -CH <sub>2</sub> C(CH <sub>3</sub> )-CH <sub>2</sub> -               | 4-Cl-phenyl                  | 0,95 (d,            | 0,95 (d,3H), 3,9 (m mit dd, 4H), 7,0-7,4 (2m,4H)      | mit dd, 4H),                | 7,0-7,4 (     | 2m, 4H)      |
| A.206 | C <sub>2</sub> H <sub>5</sub>   | -CH <sub>2</sub> CH <sub>2</sub> C (CH <sub>3</sub> ) <sub>2</sub> - | 4-F-phenyl                   | 1,3 (s,6            | 1,3 (s,6H), 3,85 (m mit t, 4H), 6,9 und 7,3 (2m,4H)   | mit t, 4H),                 | 6,9 und 7,    | 3 (2m, 4H)   |
| A.207 | n-C3H7                          | -CH <sub>2</sub> CH <sub>2</sub> C (CH <sub>3</sub> ) <sub>2</sub> - | 4-F-phenyl                   | 1,3 (s,6            | 1,3 (s,6H), 3,85 (m mit t, 4H), 6,9 und 7,3 (2m,4H)   | mit t, 4H),                 | 6,9 und 7,    | 3 (2m, 4H)   |
| A.208 | C <sub>2</sub> H <sub>5</sub>   | -CH 2CH 2C (CH 3) 2-                                                 | 4-Cl-phenyl                  | 1,35 (s,            | 1,35 (s,6H), 3,9 (m mit t, 4H), 7,25 (s,4H)           | mit t, 4H),                 | 7, 25 (s, 4H) |              |

| 5  |   |   |                            |                                               |                                          |                                            |                                             | 1,1(t,3H), 4,65(d,2H), 6,35(dt,1H), 6,6(d,1H), 7,2-7,6(m,4H) | 1,0(t,3H), 4,65(d,2H), 6,35(dt,1H), 6,6(d,1H), 7,1-7,5(m,4H) | 7, 2-7, 5(m, 4H)                                            | , 2-7, 5(m, 4H)                                            |            | , 8-7, 4 (m, 4H)                                           |
|----|---|---|----------------------------|-----------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------|------------------------------------------------------------|
| 10 | · | · |                            |                                               | 5(s, 4H)                                 | ,1(2m,4H)                                  | 7,1(2m,4H)                                  | ), 6,6(ф,1н),                                                | ), 6,6(d,1H),                                                | 1,1(t,3H), 4,7(d,2H), 6,35(dt,1H), 6,6(d,1H), 7,2-7,5(m,4H) | 1,0(t,3H), 4,7(d,2H), 6,3(dt,1H), 6,6(d,1H), 7,2-7,5(m,4H) |            | 1,0(t,3H), 4,7(d,2H), 6,3(dt,1H), 6,6(d,1H), 6,8-7,4(m,4H) |
| 15 |   |   |                            | en in ppm)                                    | 1,35(s,6H), 3,9(m mit t, 4H), 7,25(s,4H) | 1,1(t,3H), 4,05(t,2H), 6,95 und 7,1(2m,4H) | 0,95(t,3H), 4,05(t,2H), 6,95 und 7,1(2m,4H) | 1, 6,35(dt,1H                                                | 1, 6,35(dt,1H                                                | 6,35(dt,1H)                                                 | 6,3(dt,1H),                                                |            | 6,3(dt,1н),                                                |
| 20 |   |   |                            | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C) | ), 3,9(m mit                             | , 4,05(t,2H)                               | ), 4,05(t,2H                                | , 4,65(d,2H)                                                 | , 4,65(d,2н)                                                 | , 4,7(d,2н),                                                | , 4;7(d,2H),                                               |            | , 4,7(d,2H),                                               |
| 25 |   |   | -                          | phys. Dat<br>(Fp. in                          | 1, 35(s, 6н                              | 1,1(t,3H)                                  | 0,95(t,3H                                   | 1, 1(t, 3H)                                                  | 1,0(t,3H)                                                    | 1,1(t,3H)                                                   | 1,0(t,3H)                                                  | 89 -99     | 1,0(t,3H)                                                  |
| 30 |   |   |                            |                                               | 4-Cl-phenyl                              | 4-F-phenyl                                 | 4-F-phenyl                                  | 3-Br-phenyl                                                  | 3-Br-phenyl                                                  | 3-c1-phenyl                                                 | 3-C1-phenyl                                                | 3-F-phenyl | 3-F-phenyl                                                 |
| 35 |   |   |                            | R.                                            |                                          | J-77                                       | J-77                                        | 3-6                                                          | 3-6                                                          | 3-(                                                         | 3-6                                                        | 3-6        | 3-6                                                        |
| 40 |   | , | Tabelle II.3 (Fortsetzung) | 3                                             | n-C3H7 -CH2CH2C(CH3)2-                   | −(CH <sub>2</sub> )5−                      | -(CH <sub>2</sub> ) <sub>5</sub> -          | -CH2CH=CH-                                                   | •                                                            | -CH2CH=CH-                                                  | -сн 2сн=сн-                                                | -CH2CH=CH- | n-С <sub>3</sub> H <sub>2</sub> —СH <sub>2</sub> CH=CH-    |
|    |   |   | e 11.3 (                   | Ra                                            | n-C <sub>3</sub> H <sub>2</sub>          | C <sub>2</sub> H <sub>5</sub>              | n-C <sub>3</sub> H <sub>7</sub>             | C <sub>2</sub> H <sub>5</sub>                                | n-C <sub>3</sub> H <sub>7</sub>                              | C 2HS                                                       | n-C3H7                                                     | C 2HS      | n-C3H7                                                     |
| 50 | • |   | Tabell                     | Bsp.                                          | A.209                                    | A.210                                      | A.211                                       | A.212                                                        | A.213                                                        | A.214                                                       | A.215                                                      | A.216      | A.217                                                      |

| 5<br>10 |              | (R <sup>b</sup> , R <sup>d</sup> , R <sup>e</sup> = H)<br>(R <sup>c</sup> = Tetrahydropyran-4-yl) | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C) | 30                       | 87          |                   | 10          | . 20        |             | 76                              |                              | 78                         | 89                                      | 00                         | 4,05 (t,2H), 6,2 (dt,1H), 6,4 (d,1H), 7,3 (s,4H) | 4,1 (t,2H), 7,0-7,4 (m,5H) | 4,1 (t,2H), 7,0-7,4 (m,5H)         |     | 3,4 (s,2H), 4,4 (s,2H), 5,0 und 5,2 (2s,2H), 7,1-7,4 (m,5H) | 3,35 (s,2H), 4,4 (s,2H), 5,0 und 5 1 (2s 2H) 7 1-7 4 (m.5H) |
|---------|--------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|-------------|-------------------|-------------|-------------|-------------|---------------------------------|------------------------------|----------------------------|-----------------------------------------|----------------------------|--------------------------------------------------|----------------------------|------------------------------------|-----|-------------------------------------------------------------|-------------------------------------------------------------|
| 30      |              | - H                                                                                               | phys.<br>(Fp.                                 | 129-130                  | 85- 87      | 1 130-131         | 1 108-110   | 118-120     | 87- 89      | enyl 95-97                      | enyl 93-95                   | 77- 78                     | 67- 68                                  | 1 99-100                   |                                                  | 4,1 (                      | 4,1                                |     | 3,4 (                                                       | 3, 35                                                       |
| 35      |              | RC OH MOWRIT                                                                                      | RÉ                                            | Phenyl                   | Pheny 1     | 4-Cl-phenyl       | 4-Cl-phenyl | 4-F-phenyl  | 4-F-phenyl  | 2, 4-Cl <sub>2</sub> -phenyl    | 2, 4-Cl <sub>2</sub> -phenyl | Pheny 1                    | Pheny 1                                 | 4-C1-phenyl                | 4-C1-phenyl                                      | Phenyl                     | Pheny 1                            |     | Pheny l                                                     | Pheny 1                                                     |
| 40      |              |                                                                                                   |                                               | -CH <sub>2</sub> -CH=CH- | CH 2-CH=CH- | C 2H5 -CH2-CH=CH- | CH 2-CH=CH- | CH 2-CH=CH- | CH 2—CH=CH- | СН 2—СН=СН−                     | CH 2—CH=CH-                  | (CH <sub>2</sub> ) 3CH=CH− | —(сн <sub>2</sub> ) <sub>3</sub> сн=сн- | (CH <sub>2</sub> ) 3CH=CH- | (CH <sub>2</sub> ) 3CH=CH-                       | (CH <sub>2</sub> ) 3-      | -(CH <sub>2</sub> ) <sub>3</sub> - | CH2 | CH 2 C - CH 2 -                                             | CH2<br>  <br> -CH2C-CH2-                                    |
| 45      | 7.1          |                                                                                                   | 3                                             | C 2H5 -                  | C3H7 -      | H5 -              | C3H7 -      | HS J        | C3H7 -      | C <sub>2</sub> H <sub>5</sub> — |                              |                            |                                         |                            |                                                  | C2H5 -                     |                                    |     | C 2H5                                                       | C 3H7 _                                                     |
| 50      | Tabelle II.4 |                                                                                                   | o. Ra                                         | A.218 C2                 | A.219 n-    | A.220 C2          | A.221 n-    | 222 C2      | A.223 n-    |                                 | 225 n-                       | A.226 C2                   |                                         |                            |                                                  | A.230 C2                   | A.231 n-                           |     | A.232 C2                                                    | A.233 n-C <sub>3</sub> H <sub>7</sub>                       |
|         | Tat          |                                                                                                   | Bsp.                                          | A                        | A           | A                 | A           | A           | A           | A                               | ¥                            | ¥                          | ¥                                       | ⋖                          | ×.                                               | A                          | ď                                  |     | ⋖                                                           | ¥.                                                          |

| 50     | 45                              | 40                                 | 35 | 30 <sup>i</sup>                          | 25                         | 20                                                     | 15      | 10       | 5       |          |
|--------|---------------------------------|------------------------------------|----|------------------------------------------|----------------------------|--------------------------------------------------------|---------|----------|---------|----------|
| Tabell | Tabelle II.4 (Fortse            | Fortsetzung)                       |    |                                          |                            |                                                        |         |          |         |          |
| Bsp.   | Ra                              | *                                  |    | Rf                                       | phys. Daten<br>(Fp. in °C) | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C)          | in ppm) | :        | ļ       |          |
| A.234  | C 2H5                           | -CH 2CH=CH                         |    | 4-Br-phenyl                              | 140-142                    |                                                        |         |          |         |          |
| A.235  | n-C3H7                          | −CH <sub>2</sub> CH=CH             |    | 4-Br-phenyl                              | 117-119                    |                                                        |         |          |         |          |
| A.236  | C <sub>2</sub> H <sub>5</sub>   | −CH <sub>2</sub> CH=CH             |    | 4-CH <sub>3</sub> -phenyl                | 135-137                    |                                                        |         |          |         |          |
| A.237  | n-C3H7                          | -сн 2сн=сн                         |    | 4-CH3-phenyl                             | 96 -76                     |                                                        |         |          |         |          |
| A.238  | C <sub>2</sub> H <sub>5</sub>   | -сн₂сн=сн                          |    | 4-CF <sub>3</sub> -phenyl                | 103-104                    |                                                        |         |          |         |          |
| A.239  | n-C <sub>3</sub> H <sub>7</sub> | −сн2сн=сн                          |    | 4-CF <sub>3</sub> -phenyl                | 114-116                    |                                                        |         |          |         |          |
| A.240  | C <sub>2</sub> H <sub>5</sub>   | −CH <sub>2</sub> CH=CH             |    | 4-C <sub>6</sub> H <sub>5</sub> O-phenyl | 99 - 79                    |                                                        |         |          |         |          |
| A.241  | n-C <sub>3</sub> H <sub>7</sub> | −CH <sub>2</sub> CH=CH             |    | 4-C <sub>6</sub> H <sub>5</sub> O-phenyl | 4,65 (d,2H),               | 4,65 (d,2H), 6,2 (dt,1H), 6,65 (d,1H), 6,9-7,5 (3m,9H) | ), 6,65 | (d, 1H), | 6,9-7,5 | (3m, 9H) |
| A. 242 | C <sub>2</sub> H <sub>5</sub>   | -CH2CH=C(CH3)-                     |    | Pheny l                                  | 70- 72                     |                                                        |         |          |         |          |
| A.243  | n-C3H7                          | -CH2CH=C(CH3)-                     |    | Pheny l                                  | 2,15 (s,3H),               | 2,15 (s,3H), 4,75 (d,2H), 5,95 (t,1H), 7,2-7,6 (m,5H)  | ), 5,95 | (t, 1H), | 7,2-7,6 | (m, 5H)  |
| A.244  | C <sub>2</sub> H <sub>5</sub>   | -сн <sub>2</sub> сн=сн-            |    | 2-Cl-phenyl                              | 85- 87                     |                                                        |         |          |         |          |
| A.245  | n-C3H7                          | -CH 2CH=CH-                        |    | 2-cl-phenyl                              | 90- 92                     |                                                        |         |          |         |          |
| A.246  | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> - |    | 4-F-phenyl                               | 65- 67                     |                                                        |         |          |         |          |
| A.247  | n-C3H7                          | -(CH <sub>2</sub> ) <sub>3</sub> - |    | 4-F-phenyl                               | 99 - 49                    | -                                                      |         |          |         |          |
| A.248  | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> - |    | 2, 4-Cl <sub>2</sub> -phenyl             | 4,05 (t,2H),               | 4,05 (t,2H), 7,05-7,4 (2m,3H)                          | 2m, 3H) |          |         |          |
| A.249  | n-C <sub>3</sub> H <sub>7</sub> | $-(CH_2)_{3}$                      |    | 2, 4-Cl <sub>2</sub> -phenyl             | 65- 67                     |                                                        |         |          |         |          |
| A.250  | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> - |    | 4-Br-phenyl                              | 111-112                    |                                                        |         |          |         |          |
| A.251  | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> - |    | 2-Cl-phenyl                              | 4,1 (t,2H),                | 4,1 (t,2H), 7,0-7,4 (m,4H)                             | (H)     |          |         |          |
| A.252  | n-C <sub>3</sub> H <sub>7</sub> | -(CH <sub>2</sub> ) <sub>3</sub> - |    | 2-Cl-phenyl                              | 4,1 (t,2H),                | 4,1 (t,2H), 7,05-7,45 (m,4H)                           | п, 4н)  |          |         |          |
| A.253  | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> - |    | 4-Cl-phenyl                              | 66 - 26                    |                                                        |         |          |         |          |
| A.254  | n-C <sub>3</sub> H <sub>2</sub> | _(CH <sub>2</sub> ) <sub>3</sub> _ |    | 4-cl-phenyl                              | 98 - 48                    |                                                        |         |          |         |          |

|      |                            |                                                           |                              |                                 |                                          |                                         |                                    |                                    | 5H)                                                  | 5н)                                                  |                               |                                 |                                        |                                                        |                              | ı, 3H)                                                |                                               |                                                         |                                                         |                                            |                                                         |
|------|----------------------------|-----------------------------------------------------------|------------------------------|---------------------------------|------------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------|--------------------------------------------------------|------------------------------|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|
| 5    |                            |                                                           |                              |                                 | _                                        |                                         |                                    |                                    | . 2-7,6 (m,                                          | , 2-7, 6 (m,                                         |                               |                                 |                                        |                                                        |                              | 7,2-7,6 (m                                            | 2m, 3H)                                       | <del>~</del>                                            | ÷                                                       | (H;                                        | (н,                                                     |
| 10   |                            | (mdd                                                      |                              |                                 | 1,25 (d,3H), 4,0 (m,2H), 7,05-7,4 (m,5H) | 1,25 (d,3H), 4,0 (m,2H), 7,0-7,4 (m,5H) |                                    |                                    | 4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,6 (m,5H) | 4,15 (t,2H), 5,15 (s,1H), 5,3 (s,1H), 7,2-7,6 (m,5H) |                               |                                 | 0,9 (d,3H), 3,9 (m,2H), 7,0-7,4 (m,5H) | 0,9 (d,3H), 3,9 (m,2H), 7,0-7,4 (m,5H)                 |                              | 4,65 (d,2H), 6,3 (dt,1H), 6,55 (d,1H), 7,2-7,6 (m,3H) | 3,95-4,1 (m,4H), 7,0-7,1 und 7,2-7,45 (2m,3H) | 0,90 (d,3H), 3,85 (dd,2H), 6,8-7,2 (m,4H)               | 0,90 (d,3H), 3,85 (dd,2H), 6,8-7,2 (m,4H)               | 0,90 (d,3H), 3,85 (dd,2H), 7,0-7,4 (2m,4H) | 0,90 (d,3H), 3,85 (dd,2H), 7,0-7,4 (2m,4H)              |
| 15   |                            | phys. Daten (NMR-Daten in ppm)<br>(Fp. in <sup>o</sup> C) |                              |                                 | 4,0 (m,2H),                              | 4,0 (m,2H),                             |                                    |                                    | 5,15 (s,1H),                                         | 5,15 (s,1H),                                         |                               |                                 | 3,9 (m,2H), 7                          | 3,9 (m,2H), 7                                          |                              | 6,3 (dt,1H),                                          | н), 7,0-7,1                                   | 3,85 (dd,2H)                                            | 3,85 (dd,2H)                                            | 3,85 (dd,2H)                               | 3,85 (dd, 2н)                                           |
| 20   |                            | ys. Daten (Pp. in oc)                                     | 127-128                      | 80- 81                          | 25 (d, 3H),                              | .25 (d, 3H),                            | 105-107                            | 73- 75                             | 15 (t, 2H),                                          | 15 (t, 2H),                                          | <b>29 -99</b>                 | 61- 63                          | 9 (d, 3H), 3                           | 9 (d, 3H), 3                                           | 103-105                      | .65 (d, 2H),                                          | 95-4,1 (m,4                                   | 90 (d, 3H),                                             | 90 (d, 3H),                                             | 90 (d, 3H),                                | 90 (d, 3H),                                             |
| 25   |                            | ā.=                                                       |                              |                                 | <b>~</b> `                               | `                                       |                                    |                                    | 4                                                    | 4                                                    | •                             |                                 | o`                                     | o`                                                     |                              |                                                       |                                               | o`                                                      | o`                                                      | o`                                         | o`                                                      |
| 30   |                            |                                                           | 3, 5-Cl <sub>2</sub> -phenyl | 3, 5-Cl <sub>2</sub> -phenyl    | Pheny l                                  | Pheny l                                 | 3, 5-Cl <sub>2</sub> -phenyl       | 3, 5-Cl <sub>2</sub> -phenyl       | Phenyl                                               | Phenyl                                               | 4-Cl-phenyl                   | 4-Cl-phenyl                     | Phenyl                                 | Pheny 1                                                | 3, 4-Cl <sub>2</sub> -phenyl | 3, 4-Cl <sub>2</sub> -phenyl                          | 3,4-Cl <sub>2</sub> -phenyl                   | 4-F-phenyl                                              | 4-F-phenyl                                              | 4-Cl-phenyl                                | 4-Cl-phenyl                                             |
| 35 _ |                            |                                                           |                              |                                 |                                          |                                         |                                    |                                    |                                                      |                                                      |                               |                                 |                                        |                                                        |                              |                                                       |                                               |                                                         |                                                         |                                            |                                                         |
| 40   | Tabelle II.4 (Fortsetzung) | 3                                                         | -CH2CH=CH-                   | -CH2CH=CH-                      | -СН2СН2СН(СН3)-                          | -сн2сн2сн(сн3)-                         | -(CH <sub>2</sub> ) <sub>3</sub> - | -(CH <sub>2</sub> ) <sub>3</sub> - |                                                      |                                                      |                               | (CH <sub>2</sub> ) <sub>5</sub> | -сн2с(сн3)-сн2-                        | -CH <sub>2</sub> C(CH <sub>3</sub> )-CH <sub>2</sub> - | -CH2CH=CH-                   | -CH2CH=CH-                                            | (CH <sub>2</sub> ) <sub>3</sub>               | -CH <sub>2</sub> C (CH <sub>3</sub> )-CH <sub>2</sub> - | -сн <sub>2</sub> с (сн <sub>3</sub> )-сн <sub>2</sub> - | -сн2с (сн3)-сн2-                           | -CH <sub>2</sub> C (CH <sub>3</sub> )-CH <sub>2</sub> - |
| 45   | e 11.4 (                   | Ra                                                        | C 2 H 5                      | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                                    | n-C <sub>3</sub> H <sub>7</sub>         | C 2 H 5                            | n-C <sub>3</sub> H <sub>7</sub>    | C 2HS                                                | n-C <sub>3</sub> H <sub>2</sub>                      | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub> |                                        |                                                        |                              |                                                       |                                               |                                                         |                                                         |                                            |                                                         |
| 50   | Tabell                     | Bsp.                                                      | A.255                        | A.256                           | A.257                                    | A.258                                   | A.259                              | A.260                              | A.261                                                | A.262                                                | A.263                         | A.264                           | A.265                                  | A.266                                                  | A.267                        | A.268                                                 | A.269                                         | A.270                                                   | A.271                                                   | A.272                                      | A.273                                                   |

| <b>4</b> 5 |                                 | 35<br>40                                                             | 25                        | 20                         | 15                                                | 10            | 5             |
|------------|---------------------------------|----------------------------------------------------------------------|---------------------------|----------------------------|---------------------------------------------------|---------------|---------------|
|            |                                 | ,                                                                    |                           |                            |                                                   |               |               |
| Tabell     | Tabelle II.4 (                  | (Fortsetzung)                                                        |                           |                            |                                                   |               |               |
| Bsp.       | Ra                              | 3                                                                    | Rf                        | phys. Daten<br>(Fp. in °C) | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C)     | (mdd          |               |
| A.274      | C <sub>2</sub> H <sub>5</sub>   | -CH2CH2C(CH3)2-                                                      | 4-F-phenyl                | 1,35 (s,6H),               | ,35 (s,6H), 3,85 (t,2H), 7,0 und 7,3 (2m,4H)      | 7,0 und 7,3   | (2m, 4H)      |
| A.275      | n-C <sub>3</sub> H <sub>7</sub> | -CH <sub>2</sub> CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> -  | 4-F-phenyl                | 1,35 (s,6н),               | ,35 (s,6H), 3,85 (t,2H), 7,0 und 7,3 (2m,4H)      | 7,0 und 7,3   | (2m,4H)       |
| A.276      | C <sub>2</sub> H <sub>5</sub>   | -CH2CH2C(CH3)2-                                                      | 4-Cl-phenyl               | 1,35 (s,6н),               | ,35 (s,6H), 3,85 (t,2H), 7,25 (s,4H)              | 7, 25 (s, 4H) |               |
| A.277      | n-C <sub>3</sub> H <sub>7</sub> | -сн <sub>2</sub> сн <sub>2</sub> с (сн <sub>3</sub> ) <sub>2</sub> - | 4-Cl-phenyl               | 1,35 (s,6н),               | ,35 (s,6H), 3,85 (t,2H), 7                        | 7,25 (s,4н)   |               |
| A.278      | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>6</sub> -                                   | 4-Cl-phenyl               | 1,15 (t,3H),               | 1,15 (t,3H), 3,35 (t,2H), 7,1 (d,2H), 7,25 (d,2H) | 7,1 (d,2H),   | 7, 25 (d, 2H) |
| A.279      |                                 | -(CH <sub>2</sub> ) <sub>6</sub> -                                   | 4-Cl-phenyl               | 0,95 (t,3H),               | 3,35 (t,2H),                                      | 7,1 (d,2H),   | 7, 25 (d, 2H) |
| A.280      | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>6</sub> -                                   | 4-F-phenyl                | 1,1 (t,3H); 3,35 (t,2H)    | 3,35 (t,2H)                                       |               |               |
| A.281      | n-C <sub>3</sub> H <sub>2</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                   | 4-F-phenyl                | 0,95 (t,3H),               | 0,95 (t,3H), 3,35 (t,2H)                          |               |               |
| A.282      | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>5</sub> -                                   | 4-F-phenyl                | 1,15 (t,3H),               | 1,15 (t,3H), 3,35 (t,2H), 6,95 und 7,1 (2m,4H)    | 6,95 und 7,1  | (2m, 4H)      |
| A.283      | n-C3H7                          | -(CH <sub>2</sub> ) <sub>5</sub> -                                   | 4-F-phenyl                | 0,95 (t,3H),               | 0,95 (t,3H), 3,35 (t,2H), 6,95 und 7,1 (2m,4H)    | 6,95 und 7,1  | (2m, 4H)      |
| A.284      |                                 | -сн2сн(сн3)-сн2сн2сн2-                                               | 2-CH <sub>3</sub> -phenyl | 2,3 (s,3H), 7,05 (m,4H)    | 7,05 (m,4H)                                       |               |               |
| A.285      | n-C <sub>3</sub> H <sub>7</sub> | -сн2сн(сн3)-сн2сн2сн2-                                               | 2-CH <sub>3</sub> -phenyl | 2,3 (s,3H), 7,1 (m,4H)     | 7, 1 (m, 4H)                                      |               |               |
| A. 286     | n-C <sub>3</sub> H <sub>2</sub> | -CH 2CH=CH-                                                          | 3-F-phenyl                | 61- 62                     |                                                   |               |               |
| A.287      | C <sub>2</sub> H <sub>5</sub>   | -CH2CH=CH-                                                           | 3-Br-phenyl               | 103-105                    |                                                   |               |               |
| A.288      | n-C <sub>3</sub> H <sub>2</sub> | -CH 2CH=CH-                                                          | 3-Br-phenyl               | 80- 82                     |                                                   |               |               |
| A.289      | C <sub>2</sub> H <sub>5</sub>   | -CH2CH=CH-                                                           | 3-C1-phenyl               | 109-111                    |                                                   |               |               |
| A.290      | n-C <sub>3</sub> H <sub>7</sub> | -CH2CH=CH-                                                           | 3-Cl-phenyl               | 89- 91                     |                                                   |               |               |
| A.291      | C 2 H 5                         | CH <sub>2</sub> CH=-CH-                                              | 3-F-phenyl                | 122-123                    |                                                   |               |               |

| 5        |              |                     |                                                           |                                    |                               | 2,2 (s,3H), 2,35 (s,6H), 4,7 (d,2H), 6,3 (dt,1H), 6,65 (d,1H), 7,0 (m,2H), 7,4 (m,2H), |                                 |                                 |                                |                                 |                               |                                |                                 |                                 |                                 |
|----------|--------------|---------------------|-----------------------------------------------------------|------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 10       |              |                     | ten in ppm)                                               | ,4 (m,5H)                          |                               | , 5H}; 4,7 (d,                                                                         |                                 |                                 |                                |                                 |                               |                                |                                 |                                 |                                 |
| 15       |              | (Rb, Rd, Re = H)    | phys. Daten (NMR-Daten in ppm)<br>(Fp. in <sup>o</sup> C) | 4,05 (t,2H), 7,15-7,4 (m,5H)       |                               | 3H), 2,35 (s                                                                           |                                 | <b>~</b> !                      |                                | •                               | •                             |                                | _`                              | .0                              | _                               |
| 20       |              | (R <sup>D</sup> , R | phys. C                                                   | 4,05 (1                            | 106-107                       | 2, 2 (s,<br>6, 65 (d                                                                   | 55- 57                          | 80- 82                          | 96 - 76                        | 69 - 29                         | 103-104                       | 1 88- 89                       | 175-77                          | 113-115                         | 1 82-83                         |
| 25       |              | <b>-</b>            | 75 t                                                      | Phenyl                             | 2, 4-Cl <sub>2</sub> -phenyl  | 4-F-phenyl                                                                             | 4-F-phenyl                      | 4-F-phenyl                      | 4-F-phenyl                     | 4-F-phenyl                      | 4-F-phenyl                    | 2, 4-Cl <u>2</u> -pheny l      | 2, 4-Cl <sub>2</sub> -phenyl    | 2, 4-Cl <sub>2</sub> -phenyl    | 2, 4-Cl <sub>2</sub> -phenyl    |
| 30<br>35 |              | OH NO-W-R           | 3                                                         | -(CH <sub>2</sub> ) <sub>3</sub> - | −CH2CH=CH−                    | сн 2сн=сн-                                                                             | -сн 2сн=сн-                     | −сн2сн=сн−                      | −сн 2сн=сн−                    | -сн 2сн=сн-                     | −сн 2сн=сн−                   | -CH 2CH=CH-                    | -сн2сн=сн-                      | −сн 2сн=сн−                     | −сн2сн=сн−                      |
| 40       |              | ο <u>ν</u> Ξ        | æ                                                         | n-C <sub>3</sub> H <sub>7</sub>    | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub>                                                          | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub>  | n-C <sub>3</sub> H <sub>7</sub> | n-C3H7                        | C <sub>2</sub> H <sub>5</sub>  | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub>   |
| 45       | 9 11.5       |                     | RC                                                        | 2-Ethylthiopropyl                  | 2,4,6-Trimethyl-<br>phenyl    | 2,4,6-Trimethyl-<br>phenyl                                                             | Phenyl                          | 4-(Benzoylamino)-<br>phenyl     | 5,6-Dihydrothio-<br>pyran-3-yl | Cyclohexyl                      | 3-Isopropyl-<br>isoxazol-5-yl | 5,6-Dihydrothio-<br>pyran-3-yl | Cyclohex-3-enyl                 | 3-Isopropyl-<br>isoxazol-5-yl   | 3-Isopropyl-<br>isothiazol-5-yl |
| 50       | Tabelle II.5 |                     | Bsp.                                                      | A.292                              | A.293                         | A.294                                                                                  | A.295                           | A.296                           | A.297                          | A.298                           | A.299                         | A.300                          | A.301                           | A.302                           | A.303                           |

|          |                            |                                               |                              |                                 |                             |                                 |                                 |              |                             | 1, 3H)                                          |                               |                                 |                               |                            |                 |                                 |
|----------|----------------------------|-----------------------------------------------|------------------------------|---------------------------------|-----------------------------|---------------------------------|---------------------------------|--------------|-----------------------------|-------------------------------------------------|-------------------------------|---------------------------------|-------------------------------|----------------------------|-----------------|---------------------------------|
| 5        |                            |                                               |                              |                                 |                             |                                 |                                 |              |                             | 7, 2-7, 6(II                                    |                               |                                 |                               |                            |                 |                                 |
| 10       |                            | in ppm)                                       |                              |                                 |                             | ,                               |                                 |              |                             | 4,7(d,2H), 6,3(dt,1H), 7,0(d,1H), 7,2-7,6(m,3H) |                               |                                 |                               |                            |                 |                                 |
| 15       |                            | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C) |                              |                                 |                             |                                 |                                 |              |                             | 6,3(dt,1H),                                     |                               |                                 |                               |                            |                 |                                 |
| 20       |                            | phys. Daten<br>(Fp. in °C)                    | 81- 82                       | 98-101                          | 54- 56                      | 124-126                         | 68- 71                          | 85- 87       | 126-129                     | 4, 7(d, 2H),                                    | 113-115                       | 44- 45                          | 104-106                       | 68- 70                     | 63- 64          | 132-134                         |
| 25       |                            | ٦٠ سو                                         | 2, 4-Cl <sub>2</sub> -phenyl | 4-F-phenyl                      | 4-F-phenyl                  | 4-8r-phenyl                     | 4-Br-pheny l                    | 4-Br-phenyl  | 4-Br-phenyl                 | 2, 4-Cl <sub>2</sub> -phenyl                    | 4-Cl-phenyl                   | 4-c1-pheny1                     | 4-Cl-phenyl                   | 4-Cl-phenyl                | 4-Cl-phenyl     | 4-Cl-phenyl                     |
| 30<br>35 |                            | 3                                             | -CH <sub>2</sub> CH=CH- 2    | + —сн <sub>2</sub> сн=сн− 4     | -CH2CH=CH- 4                | -CH2CH=CH- 4                    | -сн3сн=сн- ф                    | -CH2CH=CH- 4 | -CH2CH=CH- 4                | -CH2CH=CH- 2                                    | -CH2CH=CH- 4·                 | -CH2CH=CH- 4                    | -CH2CH=CH- 4                  | -CH <sub>2</sub> CH=CH- 4· | -сн2сн=сн- 4.   | -сн2сн=сн- 4.                   |
|          |                            | Ra                                            | C 2 H S                      | C <sub>2</sub> H <sub>5</sub>   | n-C3H7                      | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>7</sub> | n-C3H7       | C 2H5                       | C 2H5                                           | CH <sub>3</sub>               | n-C <sub>3</sub> H <sub>2</sub> | C <sub>2</sub> H <sub>5</sub> | C2H5                       | n-C3H7          | n-C <sub>3</sub> H <sub>7</sub> |
| 45       | Tabelle II.5 (Fortsetzung) | Rc                                            | 4-Ethylphenyl                | 3-Isopropyl-<br>isothiazol-5-yl | N-Isopropyl-<br>pyrrol-3-yl | 3-Nitro-4-fluor-<br>phenyl      | Cyclohex-3-enyl                 | Thien-3-yl   | 4-(Prop-2-inoxy)-<br>phenyl | 2-Ethylthiopropyl                               | 3-Isopropyl-<br>isoxazol-5-yl | Ethoxycarbonyl                  | 4-Ethylphenyl                 | ţ                          | Cyclohex-1-enyl | 4-(Benzoylamino)-<br>phenyl     |
| 50       | Tabell                     | Bsp.                                          | A.304                        | A.305                           | A.306                       | A.307                           | A.308                           | A.309        | A.310                       | A.311                                           | A.312                         | A.313                           | A.314                         | A.315                      | A.316           | A.317                           |

| 5  |  |
|----|--|
| 10 |  |
| 15 |  |
| 20 |  |
| 25 |  |
| 30 |  |

| (Fortsetzung) |
|---------------|
| Tabelle II.5  |

| Bsp. R <sup>C</sup> | ). R <sup>C</sup>                 | Rª                              | 3                                                                  | Ref                    | phys. Daten (NMR-Daten in ppm)<br>(Fp. in °C)    |
|---------------------|-----------------------------------|---------------------------------|--------------------------------------------------------------------|------------------------|--------------------------------------------------|
| A.318               | A.318 4-(Prop-2-inoxy)-<br>phenyl | C <sub>2</sub> H <sub>5</sub>   | -сн 2сн=сн-                                                        | -CH2CH=CH- 4-Cl-phenyl | 122-124                                          |
| A.319               | A.319 2-Ethylthiophenyl           | n-C <sub>3</sub> H <sub>7</sub> | -(CH <sub>2</sub> ) <sub>6</sub> -                                 | 4-Cl-phenyl            | 0,95 (t,3H), 4,0 (t,2H), 7,1 (d,2H), 7,25 (d,2H) |
| A.320               | A.320 2,4,6-Trimethyl-phenyl      | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>6</sub> -                                 | 4-Cl-phenyl            | 1,15 (t,3н), 2,25 (s,3н), 6,85 (s,2н)            |
| A.321               | A.321 2,4,6-Trimethyl-<br>phenyl  | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>6</sub> -                                 | 4-F-phenyl             | 1,2 (t,3H), 2,25 (s,3H), 4,05 (t,2H)             |
| A.322               | A.322 2-Ethylthiopropyl           | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>7</sub> -(CH <sub>2</sub> ) <sub>6</sub> - | 4-F-phenyl             | 0,95 (t,3H), 4,0 (t, 2H)                         |

| 5           |              |                                  | Fp. [°C]         |                                 |                                                |                                      |                                      |                                 |                                      |                                         |                                      |                                 |
|-------------|--------------|----------------------------------|------------------|---------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------|
| 10          |              | (Rb, Rd, Re = H)                 |                  | 4,9(s,2H); 7,2-7,6(2m,5H)       | 3,6(s,2H); 4,7(s,2H), 7,2-7,5(m,5H)            | 3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H) | 3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H) | 4,9(s,2H); 7,3-7,6(m,5H)        | 3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H) | 3,65(s,2H); 4,7(s,2H); 7,2-7,5(m,5H)    | 3,6(s,2H); 4,65(s,2H); 7,1-7,6(m,5H) | 4,25(t,2H); 6,8-7,5(2m,4H)      |
| 20          |              | (R <sup>b</sup> , r              | 1H-NMR*)         | 4,9(s,                          | 3,6(s,                                         | 3, 65(s                              | 3, 65(s                              | 4,9(s,                          | 3, 65 (s                             | 3, 65(s                                 | 3,6(s,                               |                                 |
| 25          |              |                                  | Rf               | Pheny 1                         | Phenyl                                         | Phenyl                               | Pheny 1                              | Pheny1                          | Phenyl                               | Phenyl                                  | Pheny 1                              | 4-F-phenyl                      |
| 30          |              | H<br>CNO¥-R <sup>f</sup><br>C'A³ | 3                | -CH <sub>2</sub> -C≡C-          | -CH <sub>2</sub> -C≡C-CH <sub>2</sub> - Phenyl | -сн2-с≡с-сн2-                        | -CH2-C≡C-CH2-                        | -CH <sub>2</sub> -C≡C-          | -CH2-C≡C-CH2-                        | -CH <sub>2</sub> -C≡C-CH <sub>2</sub> - | -CH2-C≡C-CH2-                        | -(CH <sub>2</sub> )3-C≡C-       |
| 35          |              |                                  | R a              | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>7</sub>                | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | n-C <sub>3</sub> H <sub>2</sub> | n-C <sub>3</sub> H <sub>7</sub>      | C <sub>2</sub> H <sub>5</sub>           | n-C <sub>3</sub> H <sub>2</sub>      | n-C <sub>3</sub> H <sub>2</sub> |
| 40          |              |                                  |                  | Tetrahydrothiopyran-3-yl        | iopyran-3-yl                                   | iopyran-3-yl                         | ran-3-yl                             | ropyl                           | ropyl                                | ran-4-yl                                | ran-4-y1                             | ran-4-y1                        |
| <b>45</b>   | 11.6         |                                  | R <sup>c</sup> . | Tetrahydroth                    | Tetrahydrothiopyr                              | Tetrahydrothiopyr                    | Tetrahydropyran-3-yl                 | 2-Ethylthiopropyl               | 2-Ethylthiopropyl                    | Tetrahydropyran-4                       | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl            |
| <b>50</b> . | Tabelle 11.6 |                                  | Verb.            | A.323                           | A.324                                          | A.325                                | A.326                                | A.327                           | A.328                                | A.329                                   | A.330                                | A.331                           |

\*) ausgewählte Signale

| 50           | 40                        | 35                              | 30                                     | 20         | 15               | 10                          | 5        |
|--------------|---------------------------|---------------------------------|----------------------------------------|------------|------------------|-----------------------------|----------|
|              |                           |                                 |                                        |            |                  |                             |          |
| allagp       | abelle II.o (Fortsetzung) |                                 |                                        |            |                  |                             |          |
| verb.<br>Nr. | ВC                        | Ra                              | *                                      | Rf         | 1H-NMR*) [8 ppm] |                             | ر<br>آون |
| A.332        | Tetrahydropyran-4-yl      | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> -C≅C- | 4-F-phenyl | 4, 25(t, 2H)     | 4,25(t,2H); 6,8-7,5(2m,4H)  |          |
| A.333        | Tetrahydrothiopyran-3-yl  | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> -C≡C- | 4-f-phenyl | 4, 25(t, 2H)     | 4,25(t,2H); 6,8-7,5(2m,4H)  |          |
| A.334        | Tetrahydrothiopyran-3-yl  | n-C <sub>3</sub> H <sub>7</sub> | -(CH <sub>2</sub> ) <sub>3</sub> -C≡C- | 4-F-phenyl | 4, 25(t, 2H)     | 4,25(t,2H); 6,8-7,5(2m,4H)  |          |
| A.335        | Tetrahydropyran-3-yl      | C <sub>2</sub> H <sub>5</sub>   | -(CH <sub>2</sub> ) <sub>3</sub> -C≡C- | 4-F-phenyl | 4,25(t,2H);      | 4,25(t,2H); 6,8-7,5(2m,4H)  |          |
| A.336        | Tetrahydropyran-3-yl      | n-C3H7                          | -(CH <sub>2</sub> ) <sub>3</sub> -C≡C- | 4-f-phenyl | 4,25(t,2H);      | 4,25(t,2H); 6,8-7,5(2m,4H)  |          |
| A.337        | Tetrahydrothiopyran-3-yl  | C2H5                            | -CH2CH2-C≅C-                           | 4-F-phenyl | 4.25(t); 6.      | 4.25(t); 6.98(dd); 7.35(dd) | 74- 90   |
| A.338        | Tetrahydrothiopyran-3-yl  | n-C <sub>3</sub> H <sub>7</sub> | -CH2CH2-C≅C-                           | 4-F-phenyl | 4.25(t); 6.      | 4.25(t); 6.98(dd); 7.35(dd) | 1        |
| A.339        | Tetrahydropyran-3-yl      | C <sub>2</sub> H <sub>5</sub>   | -CH2CH2-C≡C-                           | 4-F-pheny1 | 4.25(t); 6.      | 4.25(t); 6.98(dd); 7.35(dd) | 55- 61   |
| A.340        | Tetrahydropyran-3-yl      | n-C <sub>3</sub> H <sub>7</sub> | -CH2CH2-C≡C-                           | 4-F-phenyl | 4.25(t); 6.      | 4.25(t); 6.98(dd); 7.35(dd) | ı        |
| A.341        | Tetrahydropyran-4-yl      | C <sub>2</sub> H <sub>5</sub>   | -CH2CH2-C≡C-                           | 4-F-phenyl | 4.25(t); 6.      | 4.25(t); 6.98(dd); 7.35(dd) | 83- 87   |
| A.342        | Tetrahydropyran-4-yl      | n-C <sub>3</sub> H <sub>7</sub> | -CH2CH2-C≡C-                           | 4-F-phenyl | 4.25(t); 6.      | 4.25(t); 6.98(dd); 7.35(dd) | 98-102   |
| *) aus       | ausqewählte Signale       |                                 |                                        |            |                  |                             |          |

| 50         | 40<br>45                            | 35                                | 30           | 25          | 20                   | 15                                      | 10       | 5           |
|------------|-------------------------------------|-----------------------------------|--------------|-------------|----------------------|-----------------------------------------|----------|-------------|
|            |                                     |                                   |              |             |                      |                                         |          |             |
| 1 abe 1 16 | delle II.6 (Fortsetzung)            | •                                 |              |             |                      |                                         |          |             |
| verb.      | R¢                                  | Rå                                | 3            | Rf          | 1H-NMR*) [6 ppm]     |                                         |          | Fр.<br>[°C] |
| A.343      | 3-Isopropylisoxazol-5-yl            | 1 n-C <sub>3</sub> H7             | -CH2CH2-C≡C- | 4-F-phenyl  | 4.25(t);<br>7.37(dd) | 4.25(t); 5.94(s); 7.0(dd);<br>7.37(dd)  | .0(dd);  | ı           |
| A.344      | 4-Methylphenyl                      | n-C <sub>3</sub> H <sub>7</sub>   | -CH2CH2-C≡C- | 4-F-phenyl  | 4.25(t); (7.35(dd)   | 4.25(t); 6.98(dd); 7.15(m);<br>7.35(dd) | 7.15(m); | 69-69       |
| A.345      | 3,4-Dibromtetrahydro-<br>pyran-3-yl | n-C <sub>3</sub> H <sub>7</sub>   | -CH2CH2-C≡C- | 4-F-phenyl  | 4.25(t); (           | 4.25(t); 6.98(dd); 7.35(dd)             | 7.35(dd) |             |
| A.346      | Tetrahydrothiopyran-3-yl            | 1 n-C <sub>3</sub> H <sub>7</sub> | -CH2CH2-C≡C- | 4-C1-phenyl | 4.25(t);             | 4.25(t); 7.25(d); 7.35(d)               | .35(d)   | ,           |
| A.347      | Tetrahydrothiopyran-3-yl            | 1 C2H5                            | -CH2CH2-C≡C- | 4-Cl-phenyl | 4.25(t);             | 4.25(t); 7.25(d); 7.35(d)               | .35(d)   | 82- 86      |
| A.348      | Tetrahydropyran-3-yl                | C <sub>2</sub> H <sub>5</sub>     | -CH2CH2-C≡C- | 4-Cl-phenyl | 4.25(t);             | 4.25(t); 7.25(d); 7.35(d)               | .35(4)   | 99-101      |
| A.349      | Tetrahydropyran-3-yl                | n-C <sub>3</sub> H <sub>7</sub>   | -CH2CH2-C≡C- | 4-Cl-phenyl | 4.25(t);             | 4.25(t); 7.25(d); 7.35(d)               | .35(d)   |             |
| A.350      | Tetrahydropyran-4-yl                | C <sub>2</sub> H <sub>5</sub>     | -CH2CH2-C≡C- | 4-Cl-phenyl | 4.25(t);             | 4.25(t); 7.25(d); 7.35(d)               | .35(d)   | 98-101      |
| A.351      | Tetrahydropyran∽4-yl                | n-C <sub>3</sub> H <sub>7</sub>   | -CH2CH2-C≅C- | 4-Cl-phenyl | 4.25(t);             | 4.25(t); 7.25(d); 7.35(d)               | .35(4)   | 115-118     |
| *) aus     | *) ausgewählte Signale              |                                   |              |             |                      |                                         |          |             |

|           |                            | Fp. [°C]            | 71- 74                               | 93- 6                           | •                                    |                                      |                                        |                                      |                                      |
|-----------|----------------------------|---------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| 5         |                            |                     |                                      |                                 |                                      |                                      |                                        |                                      |                                      |
| 10        |                            |                     | 4.25(t); 5.9(s); 7.25(d);<br>7.35(d) | 4.25(t); 7.45(m); 7.28(M)       | 4.25(t); 7.25(d); 7.25(d)            | 1.15(t); 4.2(t); 7.25(d);<br>7.35(d) | 0.98(t); 4.2(t); 7.25(d);<br>7.35(d)   | 1.15(t); 4.2(t); 7.25(d);<br>7.35(d) | 0.95(t); 4.2(t); 7.25(d);<br>7.35(d) |
| 20        |                            | Rf 1H-NMR*) [0 ppm] | 4-C1-phenyl 4.                       | 4-Cl-phenyl 4.                  | 4-Cl-phenyl 4.                       | 4-Cl-phenyl 1.                       | 4-Cl-phenyl 0.                         | 4-Cl-phenyl 1.                       | 4-Cl-phenyl 0.                       |
| 30        |                            | 3                   | -CH2CH2-C≡C-<br>`                    | -CH2CH2-C≡C-                    | -CH2CH2-C≅C-                         | -{CH₂}₃-C≡C-                         | -(CH <sub>2</sub> ) <sub>3</sub> -C≡C- | -(CH <sub>2</sub> ) 3-C≡C-           | -(CH <sub>2</sub> )3-C≡C-            |
| 35        |                            | Ra                  | n-C <sub>3</sub> H <sub>7</sub>      | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>2</sub>      | C <sub>2</sub> H <sub>5</sub>        | n-C <sub>3</sub> H <sub>7</sub>        | C <sub>2</sub> H <sub>5</sub>        | n-C <sub>3</sub> H <sub>7</sub>      |
| <b>40</b> | Tabelle II.6 (Fortsetzung) | B,C                 | 3-Isopropylisoxazol-5-yl             | 4-Methylphenyl                  | 3,4-Dibromitetrahydro-<br>pyran-3-yl | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl               | Tetrahydropyran-3-yl                 | Tetrahydropyran-3-yl                 |
| 50        | Tabelle                    | verb.               | A.352                                | A.353                           | A.354                                | A.355                                | A.356                                  | A.357                                | A.358                                |

\*) ausgewählte Signale

|           |                            | Fp. [°C]         |                                      |                                      |                                               |                                               |                                               |                                               |                                               |                                               |  |
|-----------|----------------------------|------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|
| 5         |                            |                  |                                      |                                      |                                               |                                               |                                               |                                               |                                               |                                               |  |
| 10        |                            |                  | 1.15(t); 4.2(t); 7.25(d);<br>7.35(d) | 0.98(t); 4.2(t); 7.25(d);<br>7.35(d) | 1.15(t); 2.75(t); 4.25(t);<br>7.05(m); 7.2(m) | 0.95(t); 2.75(t); 4.25(t);<br>7.05(m); 7.2(m) | 1.15(t); 2.75(t); 4.25(t);<br>7.05(m); 7.2(m) | 0.95(t); 2.75(t); 4.25(t);<br>7.05(m); 7.2(m) | 1.15(t); 2.75(t); 4.25(t);<br>7.05(m); 7.2(m) | 0.95(t); 2.75(t); 4.25(t);<br>7.05(m); 7.2(m) |  |
| 15        |                            | 1H-NMR*) [& PPm] | 1.15(t);<br>7.35(d)                  | 0.98(t);<br>7.35(d)                  | 1.15(t);<br>7.05(m);                          | 0.95(t); 2.75(t<br>7.05(m); 7.2(m)            | 1.15(t); 2.75(t<br>7.05(m); 7.2(m)            | 0.95(t); 2.75(t<br>7.05(m); 7.2(m)            | 1.15(t); 2.75(t<br>7.05(m); 7.2(m)            | 0.95(t); 2.75(t<br>7.05(m); 7.2(m)            |  |
| 20        |                            | Rf               | 4-Cl-phenyl                          | 4-Cl-phenyl                          | 2-Thienyl                                     | 2-Thienyl                                     | 2-Thienyl                                     | 2-Thienyl                                     | 2-Thienyl                                     | 2-Thienyl                                     |  |
| 25        | •                          | _                |                                      |                                      |                                               |                                               |                                               |                                               |                                               |                                               |  |
| 30        |                            | 3                | -(CH <sub>2</sub> )3-C≡C-            | -(CH <sub>2</sub> )3-C≡C-            | -CH2-CH2-C≡C-                                 | -CH 2-CH 2-C≡C-                               | -CH 2-CH 2-C≡C-                               | -CH 2-CH 2-C≡C-                               | CH2-CH2-C≡C-                                  | -CH 2-CH 2-C≡C-                               |  |
| 35        |                            | Rå               | C <sub>2</sub> H <sub>5</sub>        | n-C <sub>3</sub> H <sub>7</sub>      | · C2H5                                        | n-C <sub>3</sub> H <sub>2</sub>               | C <sub>2</sub> H <sub>5</sub>                 | n-C <sub>3</sub> H <sub>2</sub>               | C <sub>2</sub> H <sub>5</sub>                 | n-C <sub>3</sub> H <sub>7</sub>               |  |
| 40        | Tabelle II.6 (Fortsetzung) |                  | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl                      | Tetrahydrothiopyran-3-yl                      | Tetrahydropyran-3-yl                          | Tetrahydropyran-3-yl                          | Tetrahydropyran-4-yl                          | Tetrahydropyran-4-yl                          |  |
| <b>45</b> | 11.6 (F                    | RC               | Tetrah                               | Tetrah                               | Tetrah                                        | Tetrah                                        | Tetrah                                        | Tetrah                                        |                                               |                                               |  |
| 50        | Tabelle                    | Verb.            | A.359                                | A.360                                | A.361                                         | A.362                                         | A.363                                         | A.364                                         | A.365                                         | A.366                                         |  |

55

\*) ausgewählte Signale

| n-3-y1   C2H5   -CH2CH=C(CH3)-C=C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R <sup>a</sup> 3-y1 C <sub>2</sub> H <sub>5</sub> 3-y1 n-C <sub>3</sub> H <sub>7</sub> n-C <sub>3</sub> H <sub>7</sub>                | Rf<br>4-C1-phenyl | ***                                     |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|----------|
| Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-y1 C2H5 3-y1 n-C3H7 n-C3H7                                                                                                          | Rf<br>4-C1-phenyl | *************************************** |          |
| 3-y1  C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C-  4-C1-pheny1  1  **)  5  3-y1  n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C-  4-C1-pheny1  **)  C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C-  4-C1-pheny1  **)  n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C-  4-C1-pheny1  **)  1  C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C-  4-C1-pheny1  **)  -3-y1  C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C-  4-F-pheny1  **)  -3-y1  C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C-  4-F-pheny1  **) | 3-y1 C <sub>2</sub> H <sub>5</sub> 3-y1 n-C <sub>3</sub> H <sub>7</sub> C <sub>2</sub> H <sub>5</sub> n-C <sub>3</sub> H <sub>7</sub> | 4-Cl-phenyl       | [a ppm]                                 | Fp. [°C] |
| 3-yl n-C3H7 -CH2CH=C(CH3)-C=C- 4-Cl-phenyl **)  C2H5 -CH2CH=C(CH3)-C=C- 4-Cl-phenyl **)  n-C3H7 -CH2CH=C(CH3)-C=C- 4-Cl-phenyl **)  1 C2H5 -CH2CH=C(CH3)-C=C- 4-Cl-phenyl **)  -3-yl C2H5 -CH2CH=C(CH3)-C=C- 4-Cl-phenyl **)  -3-yl C2H5 -CH2CH=C(CH3)-C=C- 4-F-phenyl **)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-y1 n-C <sub>3</sub> H <sub>7</sub> C <sub>2</sub> H <sub>5</sub> n-C <sub>3</sub> H <sub>7</sub>                                    |                   | 1.15(t); 2.0(s); 4.8(d);<br>5.9(t)      |          |
| C2H5 -CH2CH=C(CH3)-C=C- 4-C1-phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C2H5<br>n-C3H7<br>n-C3H7                                                                                                              | 4-Cl-phenyl       | 0.95(t); 2.0(s); 4.8(d);<br>5.9(t)      |          |
| n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-Cl-phenyl<br>**)  n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-Cl-phenyl<br>**)  -3-yl C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-Cl-phenyl<br>**)  -3-yl C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-F-phenyl  **)                                                                                                                                                                                                                                                                                                               | n-C3H7<br>n-C3H7                                                                                                                      | 4-Cl-phenyl       | 1.15(t); 2.0(s); 4.8(d);<br>5.9(t)      |          |
| 1 n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-Cl-phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 n-C <sub>3</sub> H <sub>2</sub>                                                                                                     |                   | 0.95(t); 2.0(s); 4.8(d);<br>5.9(t)      |          |
| C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-Cl-phenyl<br>**)<br>C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-F-phenyl<br>**)<br>n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-F-phenyl<br>**)                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       | 4-Cl-phenyl       | 0.95(t); 2.0(s); 4.8(d);<br>5.9(t)      |          |
| C <sub>2</sub> H <sub>5</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-F-phenyl<br>**)<br>n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C=C- 4-F-phenyl<br>**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>2</sub> H <sub>5</sub>                                                                                                         | 4-Cl-phenyl       | 1.2(t); 2.0(s); 4.8(d);<br>5.95(t)      |          |
| n-C <sub>3</sub> H <sub>7</sub> -CH <sub>2</sub> CH=C(CH <sub>3</sub> )-C≡C- 4-F-phenyl<br>**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>2</sub> H <sub>5</sub>                                                                                                         | 4-F-phenyl        | 1.1(t); 2.0(s); 4.8(d);<br>5.9(t)       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n-C <sub>3</sub> H <sub>7</sub>                                                                                                       |                   | 0.95(t); 2.0(s); 4.8(d);<br>5.9(t)      |          |

| 5  |                            | 1H-NMR*)<br>[0 ppm]         | 0.95(t); 2.0(s); 4.8(d);<br>5.9(t)                                 | 1.15(t); 2.0(s); 4.8(d);<br>5.9(t)                              | 0.95(t); 2.0(s); 4.8(d); 5.9(t)                                 |                                                                                           |
|----|----------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 15 |                            | يو)                         | 4-F-phenyl                                                         | 4-F-phenyl                                                      | 4-F-phenyl                                                      |                                                                                           |
| 20 |                            |                             | -CH <sub>2</sub> -CH=C (CH <sub>3</sub> ) -C=C- 4-F-pheny l<br>**) | -CH <sub>2</sub> -CH=C(CH <sub>3</sub> )-C≡C- 4-F-phenyl<br>**) | -CH <sub>2</sub> -CH=C(CH <sub>3</sub> )-C≡C- 4-F-phenyl<br>**) |                                                                                           |
|    |                            | 3                           |                                                                    | -CH <sub>2</sub> -(                                             |                                                                 | би                                                                                        |
| 30 |                            | . Ra                        | l n-C <sub>3</sub> H <sub>7</sub>                                  | 1 C <sub>2</sub> H <sub>5</sub>                                 | n-C <sub>3</sub> H <sub>7</sub>                                 | Doppelbindu                                                                               |
| 35 | Tabelle II.6 (Fortsetzung) |                             | Tetrahydropyran−4-yl                                               | Tetrahydropyran-4-yl                                            | 2-Ethylthiopropyl                                               | <ul><li>*) ausgewählte Signale</li><li>**) Z-Konfiguration an der Doppelbindung</li></ul> |
| 40 | le II.6                    | Verb. R <sup>C</sup><br>Nr. |                                                                    |                                                                 |                                                                 | ausgewäh<br>Z-Konfigi                                                                     |
| 45 | Tabel                      | verb.                       | A.375                                                              | A.376                                                           | A.377                                                           | (**                                                                                       |

|    |            |                            |                                  |                                     |                                     |                                    |                                    |                                    |                                    | .82<br>m, 1H)                                       | 2H 6.82 7.15 (m, 1H)               | 6.82<br>(m, 1H)                    | 6.82<br>(m, 1H)                    |                                    |                                    | .20<br>m, 1H)                      |
|----|------------|----------------------------|----------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 5  |            |                            |                                  |                                     |                                     |                                    |                                    |                                    |                                    | 2H) 6                                               | 2H) 6                              | 2H} 6                              | 2H} 6                              | Ě                                  | Ě                                  | 2H) 7.20<br>8.56 (m, 1H)           |
|    |            |                            | -                                |                                     |                                     |                                    |                                    |                                    |                                    | 2H) 4.33 (t, 2H) 6.82<br>6.93 (m, 1H), 7.13 (m, 1H) | 4.33 (t, m, 1H),                   | 4.33 (t, (m, 1H);                  | 4.33 (t, (m, 1H),                  | 6.82 (m, 7.13 (m,                  | 6.82 (m, 7.13 (m,                  |                                    |
| 10 |            |                            | mdd r                            |                                     |                                     |                                    |                                    |                                    |                                    | } 4.3                                               | 2H) 4.3<br>6.93 (m,                | 2H) 4.3<br>6.93 (m,                | 2H) 4.3<br>6.93 (m,                | 2H}; 6.8                           | 2H}, 6.8<br>1H}, 7.1               | 2H) 4.46 (t, 7.65 (m, 1H);         |
|    |            |                            | ys. Daten<br>R-Daten in<br>in °C |                                     |                                     |                                    |                                    |                                    |                                    | m, 2H                                               | m, 2H                              | m, 2H €.(                          |                                    |                                    |                                    | m, 2H                              |
| 15 |            | Î :                        | Dhys.<br>NMR-Da<br>Fpin          |                                     |                                     |                                    |                                    |                                    |                                    | 3.92 (m, 1H),                                       | 3.92 (m,<br>(m, 1H),               | 4.00 (m,<br>(m, 1H),               | 4.00 (m, (m,                       | 4.30 (t, 6.93 (m,                  | 4.30 (t, 6.93 (m,                  | 3.90 (m,<br>(m, 2H),               |
|    |            | (Rb, Rd, Re = H)           |                                  |                                     |                                     |                                    |                                    |                                    |                                    |                                                     |                                    |                                    |                                    |                                    |                                    |                                    |
| 20 |            | (R <sup>b</sup> ,          | į                                | yl                                  | ۲                                   | yl                                 | yl                                 | الا                                | yl                                 | r,                                                  | yı                                 | r,                                 | y j                                | yl                                 | ýı                                 | y l                                |
|    |            |                            | .                                | ruran-2-yl                          | Furan-2-yl                          | Furan-2-yl                         | Furan-2-yl                         | Furan-2-yl                         | Furan-2-yl                         | Thien-2-yl                                          | Thien-2-yl                         | Thien-2-yl                         | Thien-2-yl                         | Thien-2-yl                         | Thien-2-yl                         | Pyrid-2-yl                         |
| 25 |            |                            | æ                                | Ī                                   | Fu                                  | Fu                                 | Fu                                 | F                                  | F                                  | F                                                   | 두                                  | 두                                  | £                                  | Ę                                  | Ļ                                  | Py                                 |
|    |            | <b>4</b> -                 |                                  | · (CH <sub>2</sub> ) <sub>2</sub> - | - (CH <sub>2</sub> ) <sub>2</sub> - | -(CH <sub>2</sub> ) <sub>2</sub> -                  | -(CH <sub>2</sub> ) <sub>2</sub> - | -(CH <sub>2</sub> ) <sub>2</sub> - | -(CH <sub>2</sub> ) <sub>2</sub> - | -(CH <sub>2</sub> ) <sub>2</sub> - | -(CH <sub>2</sub> ) <sub>2</sub> - | -(CH <sub>2</sub> ) <sub>2</sub> - |
| 30 |            | OH<br>CNO-W-R <sup>f</sup> | 3                                | <u>5</u> )-                         | <u>5</u> )-                         | <u>5</u> )-                        | 5)-                                | <u>5</u>                           | <u>-</u>                           | <u>5</u> ) -                                        | )-                                 | - (د                               | o) -                               | 0)-                                | o) -                               | o) -                               |
|    |            | <b>₹</b>                   |                                  | τ.                                  | 7                                   | 7                                  | ~                                  | 1-3-y1                             | 1-3-y1                             | =                                                   | ٦                                  | τ.                                 | τ.                                 | 1-3-y1                             | 1-3-y1                             | ٦,                                 |
| 35 |            | <sub>v</sub> ×∓±           |                                  | Tetrahydropyran-3-y                 | Tetrahydropyran-3-yl                | Tetrahydropyran-4-yl               | Tetrahydropyran−4-yl               | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl           | Tetrahydropyran-3-yl                                | Tetrahydropyran-3-yl               | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl               | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl           | Tetrahydropyran-3-yl               |
|    |            |                            |                                  | dropy                               | dropyr                              | dropy                              | dropyi                             | droth                              | droth                              | dropy                                               | dropy                              | dropy                              | dropy                              | droth                              | droth                              | dropy                              |
| 40 |            |                            | R <sup>C</sup>                   | etrahy                              | etrahy                              | etrahy                             | etrahy                             | etrahy                             | etrahy                             | etrahy                                              | etrahy                             | etrahy                             | etrahy                             | etrahy                             | etrahy                             | etrahy                             |
|    |            |                            | œ                                | -                                   |                                     | •                                  | •                                  | •                                  |                                    |                                                     |                                    | -                                  |                                    | -                                  |                                    | -                                  |
| 45 | 11.7       |                            | Ва                               | C 2H5                               | n-C <sub>3</sub> H <sub>7</sub>     | C 2H5                              | n-C <sub>3</sub> H <sub>7</sub>    | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H <sub>7</sub>    | C <sub>2</sub> H <sub>5</sub>                       | n-C3H7                             | C <sub>2</sub> H <sub>5</sub>      | n-C3H7                             | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H7                | C 2H5                              |
|    | rabelle II |                            |                                  | .378                                | .379                                |                                    |                                    | A.382                              |                                    | A.384                                               |                                    | A.386                              | A:387                              | A.388                              | A.389                              | A.390                              |
| 50 | Tal        |                            | Ž                                | Α.                                  | A                                   | A.                                 | Ą                                  | A                                  | A                                  | ⋖                                                   | ₹                                  | ¥.                                 | ¥.                                 | Ą.                                 | Ą.                                 | Ä.                                 |

| 10<br>15<br>20<br>25<br>30 |                            | W Rf phys. Daten<br>NMR-Daten in ppm<br>Fp in °C | -(CH <sub>2</sub> ) <sub>2</sub> - Pyrid-2-yl | -(CH <sub>2</sub> ) <sub>2</sub> - | -(CH <sub>2</sub> ) <sub>2</sub> - Pyrid-2-y1 | opyran-3-yl -(CH <sub>2</sub> ) <sub>2</sub> - Pyrid-2-yl 4.46 (t, 2H) 7.20 (m, 2H), 7.67 (m, 1H), 8.50 (m, 1H) | -(CH <sub>2</sub> ) <sub>2</sub> - Pyrid-2-yl | an-3-yl -(CH <sub>2</sub> ) <sub>3</sub> - Furan-2-yl 3.93 (m, 2H), 4.10 (t, 2H), 6.00 (m, 1H), 7.33 (m, 1H) | -(CH <sub>2</sub> ) <sub>3</sub> - Furan-2-yl | an-4-yl -(CH <sub>2</sub> ) <sub>3</sub> - Furan-2-yl 78 - 82 | an-4-y1 $-(CH_2)_3$ Furan-2-y1 $48-52$ | opyran-3-yl -(CH <sub>2</sub> ) <sub>3</sub> - Furan-2-yl 54 - 58 | opyran-3-yl -(CH <sub>2</sub> ) <sub>3</sub> - Furan-2-yl 4.10 (t, 2H), 6.00 (m, 1H), 6.26 (m, 1H), 6.26 | -(CH <sub>2</sub> ) <sub>3</sub> - Thien-2-yl | an-3-yl -(CH <sub>2</sub> ) <sub>3</sub> - Thien-2-yl 3.93 (m, 2H), 4.10 (t, 2H), 6.82 (m, 1H), 7.35 (m, 1H) | -(CH <sub>2</sub> ) <sub>3</sub> - Thien-2-y1 | an-4-y1 - (CH <sub>2</sub> ) <sub>3</sub> - Thien-2-y1 55 - 58 |
|----------------------------|----------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| 40                         | tsetzung)                  | RC                                               | Tetrahydropyran-3-yl                          | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl                          | Tetrahydrothiopyran-3-yl                                                                                        | Tetrahydrothiopyran-3-yl                      | Tetrahydropyran-3-yl                                                                                         | Tetrahydropyran-3-yl                          | Tetrahydropyran-4-yl                                          | Tetrahydropyran-4-yl                   | Tetrahydrothiopyran-3-yl                                          | Tetrahydrothiopyran-3-yl                                                                                 | Tetrahydropyran-3-yl                          | Tetrahydropyran-3-yl                                                                                         | Tetrahydropyran-4-yl                          | Tetrahydropyran-4-yl                                           |
| 45                         | Tabelle II.7 (Fortsetzung) | es<br>W                                          | n-C <sub>3</sub> H <sub>7</sub>               | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H <sub>7</sub>               | C 2HS                                                                                                           | n-C <sub>3</sub> H <sub>7</sub>               | C 2H5                                                                                                        | n-C <sub>3</sub> H <sub>7</sub>               | C <sub>2</sub> H <sub>5</sub>                                 | n-C <sub>3</sub> H <sub>7</sub>        | C <sub>2</sub> H <sub>5</sub>                                     | n-C <sub>3</sub> H <sub>7</sub>                                                                          | C 2H5                                         | n-C <sub>3</sub> H <sub>7</sub>                                                                              | C 2H5                                         | n-C <sub>3</sub> H <sub>7</sub>                                |
| 50                         | Tabelle                    | Nr.                                              | A.391                                         | A.392                              | A.393                                         | A.394                                                                                                           | A.395                                         | A.396                                                                                                        | A.397                                         | A.398                                                         | A.399                                  | A.400                                                             | A.401                                                                                                    | A.402                                         | A.403                                                                                                        | A.404                                         | A.405                                                          |

|           |                       |                                             | 5.93                                      |                                    | 7.25                                     |                                    |                                    |                                    | 7.25                                     | 5.90<br>m, 1H)                                      | 2H) 5.90<br>6,53 (m, 1H)           | 5.90<br>(m, 1H)                    | 3.90<br>m, 1H)                                      | 90.9                                                   | 90.9                                 |
|-----------|-----------------------|---------------------------------------------|-------------------------------------------|------------------------------------|------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------------|-----------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------|
| 5         |                       |                                             | 1н), е                                    |                                    | 2н), 7                                   |                                    |                                    |                                    | 2н), 7                                   | 2H) 5<br>6,53 (                                     | 2H) 5<br>6,53 (                    | 2H) 5<br>6,53 (                    | 2H) 5<br>6,53 (                                     | 1H),                                                   | 1H),                                 |
| 10        |                       | E d                                         | (m, 1H), 7.13 (m, 1H), 6.93 (m, 1H), 6.93 |                                    | 4.05 (t, 2H), 6.95 (m, 2H), 7.25 (m, 1H) |                                    |                                    |                                    | 4.05 (t, 2H), 6.95 (m, 2H), 7.25 (m, 1H) | 2H) 4.12 (t, 2H) 5.90<br>6.06 (m, 1H), 6,53 (m, 1H) | 2H) 4.12 (t, 6.06 (m, 1H);         | 2H) 4.12 (t, 6.06 (m, 1H);         | 2H) 4.12 (t, 2H) 5.90<br>6.06 (m, 1H); 6,53 (m, 1H) | 4.12 (t, 2H), 5.90 (m, 1H), 6.06 (m, 1H), 6.06 (m, 1H) | 2H), 5.90 (m, 1H), 6.06 6,53 (m, 1H) |
|           |                       | ten<br>n in p                               | 2H}                                       |                                    | 2H),                                     | 7                                  |                                    |                                    | 2H),                                     | 2H)<br>6.06                                         |                                    |                                    | 2H)<br>6.06                                         | 2H)<br>6,53                                            | 2H)<br>6,53                          |
| 15        |                       | phys. Daten<br>NMR-Daten in ppm<br>Fp in oc | 4.12 (t, (m, 1H);                         | 73 - 74                            | 4.05 (t, (m, 1H)                         | 105 - 107                          | 68 - 70                            | 57 - 59                            | 4.05 (t,<br>(m, 1H)                      | 3.90 (m,<br>(m, 1H),                                | 3.90 (m,<br>(m, 1H),               | 4.00 (m,<br>(m, 1H),               | 4.00 (m,<br>(m, 1H),                                | 4.12 (t,<br>(m, 1H),                                   | 4.12 (t, 2<br>(m, 1H), 6             |
| 20        |                       |                                             | Thien-2-yl                                | Thien-3-yl                         | Thien-3-yl                               | Thien-3-yl                         | Thien-3-yl                         | Thien-3-yl                         | Thien-3-yl                               | 1-CH <sub>3</sub> -pyrrol-2-yl                      | 1-CH <sub>3</sub> -pyrrol-2-yl     | 1-CH <sub>3</sub> -pyrrol-2-yl     | 1-CH <sub>3</sub> -pyrrol-2-yl                      | 1-CH <sub>3</sub> -pyrrol-2-yl                         | 1-CH <sub>3</sub> -pyrrol-2-yl       |
| 25        |                       | Rf                                          | Thi                                       | Ţ                                  | Thi                                      | Thi                                | Ţ                                  | Ţħ                                 | Thi                                      | 1-0                                                 | 1 <u>-</u> C                       | 1-0                                | <u>-</u>                                            | 1-c                                                    | <u>1</u> -0                          |
| 30        |                       | 3                                           | -(CH <sub>2</sub> ) <sub>3</sub> -        | -(CH <sub>2</sub> ) <sub>3</sub> - | -(CH <sub>2</sub> ) <sub>3</sub> -       | -(CH <sub>2</sub> ) <sub>3</sub> - | -(CH <sub>2</sub> ) <sub>3</sub> - | -(CH <sub>2</sub> ) <sub>3</sub> - | -(CH <sub>2</sub> ) <sub>3</sub> -       | -(CH <sub>2</sub> ) <sub>3</sub> -                  | -(CH <sub>2</sub> ) <sub>3</sub> - | -(CH <sub>2</sub> ) <sub>3</sub> - | -(CH <sub>2</sub> ) <sub>3</sub> -                  | -(CH <sub>2</sub> ) <sub>3</sub> -                     | -(CH <sub>2</sub> ) <sub>3</sub> -   |
| 35        |                       |                                             | Tetrahydróthiopyran-3-yl                  | Tetrahydropyran-3-yl               | Tetrahydropyran-3-yl                     | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl               | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl                 | Tetrahydropyran-3-yl                                | Tetrahydropyran-3-yl               | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl                                | Tetrahydropyran-3-yl                                   | Tetrahydropyran-3-yl                 |
| 40        | tsetzung)             | RC                                          | Tetrahydr                                 | Tetrahydr                          | Tetrahydr                                | Tetrahydr                          | Tetrahydr                          | Tetrahydr                          | Tetrahydr                                | Tetrahydr                                           | Tetrahydr                          | Tetrahydr                          | Tetrahydr                                           | Tetrahydr                                              | Tetrahydr                            |
| <b>45</b> | Tabelle II.7 (Fortset | Ra                                          | n-C <sub>3</sub> H <sub>7</sub>           | C 2H5                              | n-C3H7                                   | C 2H5                              | n-C <sub>3</sub> H <sub>7</sub>    | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H <sub>7</sub>          | C <sub>2</sub> H <sub>5</sub>                       | n-C <sub>3</sub> H <sub>2</sub>    | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H <sub>7</sub>                     | C2H5                                                   | n-C <sub>3</sub> H <sub>7</sub>      |
| 50        | Tabelle               | N.                                          | A.407                                     | A.408                              | 4.409                                    | A.410                              | A.411                              | A.412                              | A.413                                    | A.414                                               | A.415                              | A.416                              | A.417                                               | A.418                                                  | A.419                                |

|    |                    |                                                         |                      |                      |                                                         |                                 |                          |                                 |                       |                                                         |                       |                                                         | 1H)                        | 1H)                                                     |                                                         | 2H)                           | 2н)                                                     | 2н)                                                     | 2H)                                                     |                               |
|----|--------------------|---------------------------------------------------------|----------------------|----------------------|---------------------------------------------------------|---------------------------------|--------------------------|---------------------------------|-----------------------|---------------------------------------------------------|-----------------------|---------------------------------------------------------|----------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------|
| 5  |                    |                                                         |                      | _                    |                                                         |                                 | _                        |                                 |                       | _                                                       |                       |                                                         | 6.90 (m, 2H), 7.25 (m, 1H) | 7.30 (m,                                                |                                                         | 3н), 6.55 (s,                 | 3н), 6.55 (s,                                           | 3н), 6.55 (s,                                           | 3н), 6.75 (s,                                           |                               |
|    |                    | mdd                                                     |                      | , Зн)                |                                                         | , 3H)                           | , 3H)                    | , 3H)                           |                       | , 3H)                                                   |                       | , Эн)                                                   | , 7.2                      | , 7.3                                                   |                                                         | , 6.5                         | , 6.5                                                   | , 6.5                                                   | 6.7                                                     |                               |
|    |                    | ten<br>n in                                             |                      | E) 0                 |                                                         | E) 0                            | E) 0                     | E) 0                            |                       | E) 0                                                    |                       | E) 0                                                    | 2H)                        | 2H)                                                     |                                                         |                               |                                                         |                                                         |                                                         |                               |
| 10 |                    | phys. Daten<br>NMR-Daten in ppm<br>Fp in <sup>o</sup> C |                      | 6.85-7.20 (m, 3H)    | 61                                                      | 6.70-7.20 (m,                   | 6.70-7.20 (m,            | 6.70-7,20 (m,                   | 38- 40                | 6.80-7.30 (m,                                           | 58 - 60               | 6.80-7.40 (m, 3H)                                       | E)                         | 6.90 (m, 2н),                                           | 48 - 50                                                 | 2.40 (s,                      | 2.40 (s,                                                | 2.40 (s,                                                | 2.45 (s,                                                | 56 - 58                       |
|    |                    | AN<br>AN<br>O                                           | 35                   | 6.8                  | 59- 61                                                  | 6.7                             | 6.7                      | 6.7                             | 38-                   | 6.8                                                     | 28                    | 6.8                                                     | 6.9                        | 6.9                                                     | 48                                                      | 2.4                           | 2.4(                                                    | 2.4                                                     | 2.4                                                     | 26                            |
| 15 |                    |                                                         |                      |                      |                                                         |                                 |                          |                                 |                       |                                                         |                       |                                                         |                            |                                                         | y l                                                     | .y 1                          | .y l                                                    | .y.                                                     | y.                                                      | .y.l                          |
|    |                    |                                                         | 1                    | سم                   | _                                                       | _                               | _                        | _                               | <u>-</u>              | _                                                       | _                     | _                                                       |                            | _                                                       | 5-CH <sub>3</sub> -thien-2-yl                           | 5-CH <sub>3</sub> -thien-2-yl | 5-CH <sub>3</sub> -thien-2-yl                           | 5-CH <sub>3</sub> -thien-2-yl                           | 5-CH <sub>3</sub> -thien-2-yl                           | 5-CH <sub>3</sub> -thien-2-yl |
| 20 |                    |                                                         | Thien-2-y            | Thien-2-yl           | Thien-2-yl                                              | Thien-2-y                       | Thien-2-yl               | rhien-2-y∣                      | Thien-3-yl            | Thien-3-yl                                              | Thien-3-yl            | Thien-3-yl                                              | Thien-3-yl                 | Thien-3-yl                                              | 3-thi                                                   | 3-thi                         | 3-thi                                                   | 3-thi                                                   | 3-thi                                                   | 3-thi                         |
|    |                    | R.                                                      | Thie                 | Thie                 | Thie                                                    | Thie                            | Thie                     | Thie                            | Thie                  | Thie                                                    | Thie                  | Thie                                                    | Thie                       | Thie                                                    | 5-сн                                                    | 5-CH                          | 5-сн                                                    | 5-сн                                                    | 5-сн                                                    | 5-CH                          |
|    |                    |                                                         | 12-                  | 12-                  | 12-                                                     | 12-                             | 12-                      | -2-                             | 12-                   | 12-                                                     | 12-                   | -21                                                     | 12-                        | 12-                                                     | -21                                                     | 12-                           | 12-                                                     | -21                                                     | 12-                                                     | 12-                           |
| 25 |                    |                                                         | 3)(                  | 3)-CF                | 3)-CF                                                   | 3)CF                            | 3)-CF                    | 3)-CF                           | 3)-CF                 | 3)-CF                                                   | 3)-CH                 | 3)-CH                                                   | 3)-CF                      | 3)-CF                                                   | 3)-CH                                                   | 3)-CH                         | 3)-CF                                                   | 3)-CH                                                   | 3)-CF                                                   | 3)-CF                         |
|    |                    |                                                         | -сн2сн(сн3)-сн2-     | -сн2сн(сн3)-сн2-     | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн2сн(сн3)-сн2-                | -сн 2сн (сн 3) -сн 2-    | -сн 2сн (сн 3) -сн 2-           | -сн 2сн (сн 3) -сн 2- | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн 2сн (сн 3) -сн 2- | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн2сн(сн3)-сн2-           | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн2сн(сн3)-сн2-              | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн <sub>2</sub> сн(сн <sub>3</sub> )-сн <sub>2</sub> - | -сн2сн(сн3)-сн2-              |
| 30 |                    | 3                                                       | -CH 20               | -CH <sub>2</sub> (   | -CH <sub>2</sub> (                                      | -CH 20                          | -CH <sub>2</sub> C       | -CH <sub>2</sub> C              | -СH <sub>2</sub> С    | -CH <sub>2</sub> C                                      | -CH 20                | -CH 20                                                  | -CH <sub>2</sub> (         | -CH <sub>2</sub> C                                      | -CH <sub>2</sub> (                                      | -CH <sub>2</sub> (            | -CH <sub>2</sub> (                                      | -CH <sub>2</sub> (                                      | -CH <sub>2</sub> C                                      | -CH <sub>2</sub> C            |
|    |                    |                                                         |                      |                      |                                                         |                                 | ر<br>د                   | ۲                               |                       |                                                         |                       |                                                         | ۲.                         | <u>ر</u><br>م                                           |                                                         |                               |                                                         |                                                         | y.                                                      | ر<br>م                        |
|    |                    |                                                         | ٠٠                   | -y1                  | -ب                                                      | -y1                             | Tetrahydrothiopyran-3-yl | Tetrahydrothiopyran-3-yl        | -y l                  | -yا                                                     | -yl                   | -۲                                                      | Tetrahydrothiopyran-3-yl   | Tetrahydrothiopyran-3-yl                                | -y ا                                                    | -y 1                          | -y1                                                     | -yl                                                     | Tetrahydrothiopyran-3-yl                                | Tetrahydrothiopyran-3-yl      |
| 35 |                    |                                                         | Tetrahydropyran-3-yl | Tetrahydropyran-3-yl | Tetrahydropyran-4-yl                                    | Tetrahydropyran-4-yl            | opyra                    | opyra                           | Tetrahydropyran-3-yl  | Tetrahydropyran-3-yl                                    | Tetrahydropyran-4-yl  | Tetrahydropyran-4-yl                                    | opyra                      | opyra                                                   | Tetrahydropyran-3-yl                                    | Tetrahydropyran-3-yl          | Tetrahydropyran-4-yl                                    | Tetrahydropyran-4-yl                                    | opyra                                                   | opyra                         |
|    |                    |                                                         | opyr                 | -opyr                | opyr                                                    | opyr                            | othi                     | oth!                            | opyr                  | opyr                                                    | opyr                  | opyr                                                    | othi                       | othi                                                    | opyr                                                    | opyr-                         | opyr                                                    | ropyr                                                   | rothi                                                   | rothi                         |
| 40 | ung)               |                                                         | ahydı                | ahydı                | ahydı                                                   | ahydı                           | ahydı                    | ahydı                           | ahydı                 | ahydı                                                   | ahydı                 | ahydı                                                   | ahydı                      | ahydı                                                   | ahydı                                                   | ahydı                         | ahydı                                                   | ahydı                                                   | ahydı                                                   | ahydı                         |
|    | tsetzung           | RC                                                      | Tetr                 | Tetr                 | Tetr                                                    | Tetr                            | Tetr                     | Tetr                            | Tetr                  | Tetr                                                    | Tetr                  | Tetr                                                    | Tetr                       | Tetr                                                    | Tetr                                                    | Tetr                          | Tetr                                                    | Tetr                                                    | Tetr                                                    | Tetr                          |
|    | (For               |                                                         |                      | 7                    |                                                         | 7                               |                          | 7                               |                       | 7                                                       |                       | 7                                                       |                            | 7                                                       |                                                         | 7                             |                                                         | 4                                                       |                                                         | 7                             |
| 45 | 11.7               | Ra                                                      | C 2H5                | n-C 3H7              | C 2H5                                                   | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                    | n-C <sub>3</sub> H <sub>7</sub> | C2H5                  | n-C3H7                                                  | C 2HS                 | n-C3H7                                                  | C 2HS                      | n-C3H7                                                  | C 2H5                                                   | n-C3H7                        | C <sub>2</sub> H <sub>5</sub>                           | n-C <sub>3</sub> H <sub>7</sub>                         | C 2H5                                                   | п-С 3Н7                       |
|    | Tabelle II.7 (Fort |                                                         | 0 <u>7</u>           | 21                   |                                                         |                                 |                          |                                 |                       |                                                         |                       |                                                         |                            |                                                         |                                                         |                               |                                                         |                                                         |                                                         |                               |
| 50 | Tabe               | ř.                                                      | A.420                | A.421                | A.422                                                   | A.423                           | A.424                    | A.425                           | A.426                 | A.427                                                   | A.428                 | A.429                                                   | A.4                        | A.431                                                   | A.432                                                   | A.433                         | A.434                                                   | A.435                                                   | A.436                                                   | A.437                         |
| 50 |                    |                                                         |                      |                      |                                                         |                                 |                          |                                 |                       |                                                         |                       |                                                         |                            |                                                         |                                                         |                               |                                                         |                                                         |                                                         |                               |

|      |                        |                                          | ( <del>+</del> +                                 | ήH)                              |                               | (H)                             | (H,                           | 4H)                             |                                |                                 |                         |                      |                      |                                 |                               |                                 | Œ,                                                    |
|------|------------------------|------------------------------------------|--------------------------------------------------|----------------------------------|-------------------------------|---------------------------------|-------------------------------|---------------------------------|--------------------------------|---------------------------------|-------------------------|----------------------|----------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------------------------------|
| 5    |                        |                                          | 2H}, 6.10-6.60 (m, 4H),                          | 2H}, 6.00-6.60 (m, 4H), IH       |                               | 2H}, 6.10-6.60 (m, 4H), 1H}     | 6.10-6.60 (m, 4H),            | 6.10-6.60 (m, 4H),              | 6.00 (dt, 1H),<br>6.80 (m, 2H) | 6.80 (dt, 1H),<br>6.80 (m, 2H)  |                         |                      |                      |                                 |                               |                                 | 10-6.30 (m,                                           |
| 10   |                        | phys. Daten<br>NMR-Daten in ppm          | Fp in °C<br>4.70 (d, 2H), 6.<br>7.40 (s, 1H), 6. | 4.70 (d, 2H), 6.<br>7.40 (s, 1H) |                               | 7:40 (d, 2H), 6.                | (d, 2H),<br>(s, 1H),          | (d, 2H),                        | (d, 2H);                       | {d, 2H};                        | 112-114                 | 89                   | 123-125              | 72                              | 104-106                       | 38                              | 4.65 (d, 2H), 6.10-6.30 (m, 1H),<br>6.70-7.20 (m, 6H) |
| 15   |                        | P. P | FP 4.70                                          | 4.70                             | 99-100                        | 7.70                            | 4.65                          | 4.70                            | 4.60                           | 4.60                            | 112-                    | 67-68                | 123-                 | 70-72                           | 104-                          | 85-88                           | 6.7                                                   |
| 20   |                        | Rf                                       | Furan-2-yl                                       | Furan-2-yl                       | Furan-2-yl                    | Furan-2-yl                      | Furan-2-yl                    | Furan-2-yl                      | 5-c1-thien-2-yl                | 5-c1-thien-2-yl                 | Thien-2-yl              | Thien-2-yl           | Thien-2-yl           | Thien-2-yl                      | Thien-2-yl                    | Thien-2-yl                      | Thien-2-yl                                            |
| 25   |                        | _                                        |                                                  | _                                | _                             | _                               | -                             | _                               |                                |                                 | ·                       | •                    | •                    |                                 | •                             | ·                               | •                                                     |
| 30   |                        | 3                                        | -сн2сн-                                          | -CH <sub>2</sub> CH=CH-          | -CH2CH=CH-                    | -сн <sub>2</sub> сн=сн-         | -сн₂сн=сн-                    | -сн₂сн=сн-                      | -сн₂сн=сн-                     | -сн <sub>2</sub> сн=сн-         | -CH <sub>2</sub> CH=CH- | -сн2сн-              | -сн2сн-              | -CH <sub>2</sub> CH=СН-         | -CH <sub>2</sub> CH=CH-       | -CH <sub>2</sub> CH=CH-         | -CH <sub>2</sub> CH=CH-                               |
| 35   |                        |                                          | an-3-y1                                          | an-3-yl                          | an-4-yl                       | an-4-y1                         | iopyran-3-yl                  | iopyran-3-yl                    | iopyran-3-yl                   | iopyran-3-yl                    | -an-3-y1                | -an-3-y l            | -an-4-yl             | -an-4-yl                        | iopyran-3-yl                  | iopyran-3-yl                    | ly lpheny l                                           |
| 40 : | tsetzung)              | J                                        | Tetrahydropyran-3-yl                             | Tetrahydropyran-3-yl             | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl            | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl        | Tetrahydrothiopyran-3-yl       | Tetrahydrothiopyran-3-yl        | Tetrahydropyran-3-yl    | Tetrahydropyran-3-yl | Tetrahydropyran-4-yl | Tetrahydropyran-4-yl            | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl        | 2,4,6-Trimethylphenyl                                 |
| 45   | Tabelle II.7 (Fortsetz | æ                                        | C <sub>2</sub> H <sub>5</sub>                    | n-C <sub>3</sub> H7              | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub>  | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                   | n-C3H7               | C 2H5                | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub>                         |
| 50   | Tabelle                | ŗ.                                       | A.438                                            | A.439                            | A.440                         | A.441                           | A.442                         | A.443                           | 4.444                          | A.445                           | A.446                   | A.447                | A.448                | 8.449                           | A.450                         | A.451                           | A.452                                                 |

|    |                         |                                             |                         | , 3H)                                                        |                      |                      |                          |                                 |                               |                                 |                               |                               |                               |                               |                               | ر<br>د                                 |                      |                 |                     | ς.                                  |
|----|-------------------------|---------------------------------------------|-------------------------|--------------------------------------------------------------|----------------------|----------------------|--------------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------------|----------------------|-----------------|---------------------|-------------------------------------|
| 5  |                         |                                             |                         | 4), 20 (m,                                                   |                      |                      |                          |                                 |                               |                                 |                               |                               |                               |                               |                               | 4), 7.0                                |                      |                 |                     | 1), 7.0!                            |
|    |                         | шd                                          |                         | 67 {4}, ?                                                    |                      |                      |                          |                                 |                               |                                 |                               |                               |                               |                               |                               | 95(s,¹1                                |                      |                 |                     | 90 (s, 1H                           |
| 10 |                         | phys. Daten<br>NMR-Daten in ppm<br>Fp in °C |                         | 3.90{m,2H}, 4.67{d,2H}, 6.12 (dt,1H), 6.63(d,1H), 7.20(m,3H) |                      |                      |                          |                                 |                               |                                 |                               |                               |                               |                               |                               | 6.70(d,1H), 6.95(s,1H), 7.05<br>(s,1H) |                      |                 |                     | 6.70(d,1H), 6.90(s,1H), 7.05 (s,1H) |
|    |                         | phys. C<br>NMR-Dat<br>Fp in                 | 87-90                   | 3.90 (m) (dt, 1H)                                            | 128-135              | 92-95                | 79-81                    | 86-92                           | 88-89                         | 70-71                           | 108-110                       | 104-105                       | 111-112                       | 75-77                         | 78-80                         | 6.70(d, (s, 1H)                        | 122-124              | 88-90           | 72-74               | 6.70(d, (s, 1H)                     |
| 15 |                         |                                             |                         |                                                              |                      |                      |                          |                                 | -y J                          | -y ]                            | -y 1                          | -y 1                          | - <u>y</u> 1                  | -y ]                          | ٦,                            | =                                      | 7                    | ٦,              | ۱,                  | τ.                                  |
| 20 |                         |                                             | y 1                     | 1-y 1                                                        | -y1                  | -y 1                 | ا-y ا                    | ا-y ا                           | hien-2                        | hien-2                          | hien-2                        | hien-2                        | hien-2-                       | hien-2-                       | ien-2-j                       | ien-2-,                                | i en-2-y             | ien-2-y         | ien-2-,             | ien-2-j                             |
| 20 |                         | R f                                         | Thien-3-yl              | Thien-3-yl                                                   | Thien-3-yl           | Thien-3-yl           | Thien-3-yl               | Thien-3-yl                      | 5-CH <sub>3</sub> -thien-2-yl | 5-CH <sub>3</sub> -thien-2-yl   | 5-CH <sub>3</sub> -thien-2-yl | 5-CH <sub>3</sub> -thien-2-yl | 5-CH <sub>3</sub> -thien-2-yl | 5-CH <sub>3</sub> -thien-2-yl | 4-Br-thien-2-yl               | 4-Br-thien-2-yl                        | 4-Br-thien-2-yl      | 4-Br-thien-2-yl | 4-Br-thien-2-yl     | 4-Br-thien-2-yl                     |
| 25 |                         | ;<br>;                                      |                         |                                                              |                      |                      |                          |                                 |                               |                                 |                               |                               |                               |                               |                               |                                        | •                    |                 |                     |                                     |
|    |                         |                                             | H=CH-                   | H=CH~                                                        | H=CH-                | -сн2сн-сн-           | H=CH-                    | H=CH-                           | H=CH-                         | H=CH-                           | H=CH-                         | H=CH-                         | H=CH-                         | H=CH-                         | H=CH-                         | H=CH-                                  | H=CH-                | H=CH-           | H=CH-               | H=CH-                               |
| 30 |                         | 3                                           | -CH <sub>2</sub> CH=CH- | -сн₂сн≑сн~                                                   | -сн 2сн=сн-          | -CH <sub>2</sub> C   | -сн <sub>2</sub> сн=сн-  | -сн ₂сн≃сн-                     | -сн 2сн=сн-                   | -сн 2сн=сн-                     | -сн 2сн=сн-                   | -сн 2сн=сн-                   | -сн2сн≃сн-                    | -сн 2сн=сн-                   | -сн 2сн=сн-                   | -сн <sub>2</sub> сн=сн-                | -сн 2сн=сн-          | -CH2CH=CH-      | -сн 2сн=сн-         | -сн2сн=сн-                          |
|    |                         |                                             | 7                       | τ.                                                           | ۲,                   | Ξ.                   | 1-3-y1                   | 1-3-y1                          | 7                             |                                 | 7                             | 7                             | 1-3-y1                        | 1-3-y1                        | ٦,                            | ς.                                     | 7                    | 7               | 1-3-y1              | 1-3-y1                              |
| 35 |                         |                                             | Tetrahydropyran-3-y     | Tetrahydropyran-3-yl                                         | Tetrahydropyran-4-yl | Tetrahydropyran-4-yl | Tetrahydrothiopyran-3-yl | Tetrahydrothiopyran-3-yl        | Tetrahydropyran-3-yl          | Tetrahydropyran-3-yl            | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl          | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl      | letrahydropyran-3-yl          | Tetrahydropyran-3-yl                   | Tetrahydropyran-4-yl | hydropyran-4-yl | hydrothiopyran-3-yl | hydrothiopyran-3-yl                 |
| 40 | (Bu                     |                                             | hydrop                  | hydrop                                                       | hydrop               | hydrop               | hydroth                  | hydrot                          | hydrop                        | hydrop                          | hydrop                        | hydrop                        | hydroti                       | hydroth                       | hydropy                       | hydropy                                | hydrop               | hydropy         | hydroti             | hydrot                              |
|    | rtsetzu                 | »c                                          | Tetra                   | Tetra                                                        | Tetra                | Tetra                | Tetra                    | Tetra                           | Tetra                         | Tetra                           | Tetra                         | Tetra                         | Tetra                         | Tetra                         | Tetra                         | Tetra                                  | Tetra                | Tetra           | Tetra               | Tetra                               |
| 45 | Tabelle II.7 (Fortsetzu | y a                                         | C 2H5                   | n-C <sub>3</sub> H <sub>7</sub>                              | C 2H5                | n-C <sub>3</sub> H7  | C 2 H 5                  | n-C <sub>3</sub> H <sub>2</sub> | C 2H5                         | n-C <sub>3</sub> H <sub>7</sub> | C 2HS                         | n-C3H7                        | C 2H5                         | n-C3H7                        | C <sub>2</sub> H <sub>5</sub> | n-C 3H7                                | C 2H5                | n-C 3H7         | C 2H5               | n-C <sub>3</sub> H <sub>7</sub>     |
|    | elle I                  | œ                                           |                         |                                                              |                      | _                    |                          | . –                             |                               |                                 |                               |                               |                               |                               |                               | _                                      |                      | _               |                     |                                     |
| 50 | Tab                     | r<br>F                                      | A.453                   | A.454                                                        | A.455                | A.456                | A.457                    | A.458                           | A.459                         | A.460                           | A.461                         | A.462                         | A.463                         | A.464                         | A.465                         | A.466                                  | A.467                | A.468           | A.469               | A.470                               |

| 50      | 45                              | 35                       | 25<br>30                                  | 20         | 15                       | 5                                           |        |
|---------|---------------------------------|--------------------------|-------------------------------------------|------------|--------------------------|---------------------------------------------|--------|
|         |                                 |                          |                                           |            |                          |                                             |        |
| Tabelle | Tabelle II.7 (Fortsetzung)      | rtsetzung)               |                                           |            |                          |                                             |        |
| Nr.     | Ra                              | RC                       | X                                         | R f        | phys.<br>NMK-Da<br>Fp in | phys. Daten<br>NMR-Daten in ppm<br>Fp in oc |        |
| A.471   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl     | -CH2CH=CH-                                | Pyrid-3-yl | 146-148                  | m                                           |        |
| A.472   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl     | -сн 2сн=сн-                               | Pyrid-3-yl | 6.40 (d<br>8.70 (3       | 6.40(dt,1H) 7.30, 7.75, 8.40-8.70(3m, 4H)   | -04.   |
| A.473   | C 2H5                           | Tetrahydropyran-4-yl     | -CH2CH=CH-                                | Pyrid-3-yl | 164-165                  | S                                           |        |
| A.474   | n-C3H7                          | Tetrahydropyran-4-yl     | -CH2CH=CH-                                | Pyrid-3-yl | 73-78                    |                                             |        |
| A.475   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl | -сн2сн=сн-                                | Pyrid-3-yl | 6.40(d<br>8.70(3         | 6.40(dt,1H), 7.30, 7.75, 8.40-8.70(3m,4H)   | -07.   |
| A.476   | n-C3H7                          | Tetrahydrothiopyran-3-yl | -сн <sub>2</sub> сн=сн-                   | Pyrid-3-yl | 6.40 (d<br>8.70 (3       | 6.40(dt,1H), 7.30, 7.75, 8.40-8.70(3m,4H)   | -04.   |
| A.477   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl     | -CH2C(CH3)=CH-                            | Thien-2-yl |                          |                                             |        |
| A.478   | n-C <sub>3</sub> H7             | Tetrahydropyran-3-yl     | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | Thien-2-yl |                          |                                             |        |
| A.479   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl     | -CH2C (CH3)=CH-                           | Thien-2-yl | 97-98                    |                                             |        |
| A.480   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl     | -CH2C (CH3)=CH-                           | Thien-2-yl | 6.65 (                   | 6.65 (s,1H), 6.90-7.30 (2m,3H),             | , Эн), |
| A.481   | C 2H5                           | Tetrahydrothiopyran-3-yl | -CH2C (CH3)=CH-                           | Thien-2-yl | 88-90                    |                                             |        |
| A.482   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl | -сн <sub>2</sub> с (сн <sub>3</sub> )=сн- | Thien-2-yl | 6.65 (                   | 6.65 (s,1H), 6.90-7.80 (2m,3H),             | , 3н), |
| A.483   | C 2H5                           | Tetrahydropyran-3-yl     | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | Thien-3-yl | 6.50 (                   | 6.50 (s,1H), 7.00-7.40 (m,3H)               | 3н)    |
| A.484   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl     | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | Thien-3-yl | 6.50 (                   | 6.50 (s,1H), 7.00-7.40 (m,3H)               | 3н)    |
| A.485   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl     | -CH <sub>2</sub> C(CH <sub>3</sub> )=CH-  | Thien-3-yl | 88-90                    |                                             |        |
| A.486   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl     | -сн <sub>2</sub> с (сн <sub>3</sub> )=сн- | Thien-3-yl | 6.55 (                   | 6.55 (s,1H), 7.00-7.40 (m,3H),              | 3н),   |
| A.487   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl | -сн 2с (сн 3) =сн-                        | Thien-3-yl | 6.55 (                   | 6.55 (s,1H), 7.00-7.40 (m,3H)               | 3н)    |
| A.488   | n-C3H7                          | Tetrahydrothiopyran-3-yl | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | Thien-3-yl | 6.50 (                   | 6.50 (s,1H), 7.00-7.40 (m,3H),              | ЗН),   |

| 50      | <b>4</b> 5                      | <b>40</b>                  | 30                                        | 20                            | 10                                          | 5                                                           |
|---------|---------------------------------|----------------------------|-------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------------------------------------|
|         |                                 |                            |                                           |                               |                                             |                                                             |
| Tabelle | e 11.7 (Fo                      | Tabelle II.7 (Fortsetzung) |                                           |                               |                                             |                                                             |
| N.      | es cx                           | RC                         | 3                                         | Rf                            | phys. Daten<br>NMR-Daten in ppm<br>Fp in oc | ш                                                           |
| A.489   | C 2HS                           | Tetrahydropyran-3-yl       | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-CH <sub>3</sub> -thien-2-yl | 108-110                                     |                                                             |
| A.490   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl       | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-CH <sub>3</sub> -thien-2-yl | 6.60 (s,1H), 6.65-7.00 (m,2H)               | .65-7.00 (m, 2H)                                            |
| A.491   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl       | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-CH <sub>3</sub> -thien-2-yl | 111-112                                     |                                                             |
| A.492   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl       | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-CH <sub>3</sub> -thien-2-yl | 6.60 (s,1H), 6.                             | 6.60 (s,1H), 6.65-7.00 (m,2H),                              |
| A.493   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl   | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-CH <sub>3</sub> -thien-2-yl | 119-120                                     |                                                             |
| A.494   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl   | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-CH <sub>3</sub> -thien-2-yl | 6.55 (s,1H), 6.                             | 6.55 (s,1H), 6.60-7.00 (m,2H),                              |
| A.495   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl       | -CH <sub>2</sub> C(CH <sub>3</sub> )=CH-  | 5-Cl-thien-2-yl               | 82-85                                       |                                                             |
| 964.4   | n-C3H7                          | Tetrahydropyran-3-yl       | -CH <sub>2</sub> C(CH <sub>3</sub> )=CH-  | 5-cl-thien-2-yl               | 6.70 (s,1H), 6.90 (m,2H)                    | .90 (ш, 2н)                                                 |
| A.497   | C 2H5                           | Tetrahydropyran-4-yl       | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-cl-thien-2-yl               | 124-126                                     |                                                             |
| A.498   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl       | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-cl-thien-2-yl               | 97-98                                       |                                                             |
| A.499   | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl   | -CH <sub>2</sub> C (CH <sub>3</sub> )=CH- | 5-cl-thien-2-yl               | 103-105                                     |                                                             |
| A.500   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl   | -сн <sub>2</sub> с (сн <sub>3</sub> )=сн- | 5-cl-thien-2-yl               | 6.65 (s,1H), 6.90 (m,2H),                   | .90 (m, 2H),                                                |
| A.501   | C 2 H 5                         | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>4</sub> -        | Furan-2-yl                    | 3.93 (m, 2H) 4.<br>(m, 1H), 6.26 (m         | 3.93 (m, 2H) 4.07 (m, 2H) 6.00 (m, 1H), 7.36 (m, 1H)        |
| A.502   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>4</sub> -        | Furan-2-yl                    | 3.93 (m, 2H) 4.<br>(m, 1H), 6.26 (m         | 3.93 (m, 2H) 4.07 (m, 2H) 6.00 (m, 1H), 7.36 (m, 1H)        |
| A.503   | C 2 H 5                         | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>4</sub> -        | Furan-2-yl                    | 3.90-4.13 (m, 4H<br>6.26 (m, 1H), 7.        | 3.90-4.13 (m, 4H), 6.00 (m, 1H), 6.26 (m, 1H), 7.36 (m, 1H) |
| A.504   | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>4</sub> -        | Furan-2-yl                    | 3.90-4.13 (m, 4H<br>6.26 (m, 1H), 7.        | 3.90-4.13 (m, 4H), 6.00 (m, 1H), 6.26 (m, 1H), 7.30 (m, 1H) |
| A.505   | C 2H5                           | Tetrahydrothiopyran-3-yl   | -(CH <sub>2</sub> )4-                     | Furan-2-yl                    | 6.26 (m, 2H), 6.00 (m, 1H) 6.26 (m, 1H)     | 30 (m, 1H)<br>30 (m, 1H)                                    |

|       | •                               |                            |                                    |                               |                                                                |
|-------|---------------------------------|----------------------------|------------------------------------|-------------------------------|----------------------------------------------------------------|
| ][    | 11.7 (Fo                        | Tabelle II.7 (Fortsetzung) |                                    |                               |                                                                |
| ļ     | Ra                              | R <sup>C</sup>             | 3                                  | Rf                            | phys. Daten<br>NMR-Daten in ppm<br>Fp in °C                    |
| A.506 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl   | -(CH <sub>2</sub> ) <sub>4</sub> - | Furan-2-yl                    | 4.05 (m, 2H), 6.00 (m, 1H), 6.26 (m, 1H),                      |
| A.507 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> )4-              | 5-CH <sub>3</sub> -furan-2-yl | 62-64                                                          |
| A.508 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | 5-CH <sub>3</sub> -furan-2-yl | 3.93 (m, 2H), 4.07 (m, 2H), 5.87 (m, 2H)                       |
| A.509 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> )4-              | 5-CH <sub>3</sub> -furan-2-yl | 76-78                                                          |
| A.510 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | 5-CH <sub>3</sub> -furan-2-yl | 3.90-4.15 (m, 4H), 5.87 (m, 2H)                                |
| A.511 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl   | -(CH <sub>2</sub> ) <sub>4</sub> - | 5-CH <sub>3</sub> -furan-2-yl | 4.07 (m, 2H), 5.87 (m, 2H)                                     |
| A.512 | n-C <sub>3</sub> H <sub>2</sub> | Tetrahydrothiopyran-3-yl   | -(CH <sub>2</sub> )4-              | 5-CH <sub>3</sub> -furan-2-yl | 4.07 (m, 2H), 5.87 (m, 2H)                                     |
| A.513 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | Thien-2-yl                    | 3.80-4.15 (m, 4H), 6.80 (dd, 1H), 6.93 (dd, 1H), 7.13 (dd, 1H) |
| A.514 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> )4-              | Thien-2-yl                    | 3.80-4.15 (m, 4H), 6.80 (dd, 1H), 6.93 (dd, 1H), 7.13 (dd, 1H) |
| A.515 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | Thien-2-y1                    | 3.90-4.23 (m, 4H), 6.80 (dd, 1H), 6.93 (dd, 1H), 7.13 (dd, [H) |
| A.516 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | Thien-2-y1                    | 3.90-4.23 (m, 4H), 6.80 (dd, 1H), 6.93 (dd, 1H), 7.13 (dd, 1H) |
| A.517 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl   | -(CH <sub>2</sub> ) <sub>4</sub> - | Thien-2-yl                    | 4.06 (m, 2H), 6.80 (dd, 1H)<br>6.93 (dd, 1H), 7.13 (dd, 1H)    |
| A.518 | n-C3H7                          | Tetrahydrothiopyran-3-yl   | -(CH <sub>2</sub> )4-              | Thien-2-y1                    | 4.06 (m,2H), 6.80 (dd,1H), 6.93 (dd,1H)                        |
| A.519 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | 5-CH <sub>3</sub> -thien-2-yl | 3.85-4.13 (m,4H), 6.53 (s,2H)                                  |
| A.520 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | 5-CH <sub>3</sub> -thien-2-yl | 3.80-4.13 (m,4H), 6.53 (s,2H)                                  |
| A.521 | C 2HS                           | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>4</sub> - | 5-CH <sub>3</sub> -thien-2-yl | 3.90-4.15 (m,4H), 6.50 (s,2H)                                  |

|    |   |                            |                                             | Œ                                  |                               |                                    | 5.53                                           | 5.53                                                   | Ê                                         | (H                                           |                                           |                                           | Œ.                                          | Œ                                           | (H)                                         | (H)                                         |                                             |                                             |                                |
|----|---|----------------------------|---------------------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------|
| 5  | ٠ |                            | E                                           | 1), 6.53 (s, 2                     | 55 (s, 2H)                    | 56 (s, 2н)                         | 10 (m, 2H), 6<br>1, 1H                         | 10 (m,2H), 6<br>I,1H                                   | 1), 6.53 (d, 1                            | 1), 6.53 (d, 1                               | 53 (d, 1H),                               | 53 (d, 1H),                               | ı), 6.60 (s, 2                              | I), 6.60 (s, 2                              | I), 6.60 (s, 2                              | ı), 6.60 (s,2                               | 60 (s, 2H)                                  | 60 (s, 2H)                                  |                                |
| 10 |   |                            | phys. Daten<br>NMR-Daten in ppm<br>Fp in °C | 3.94-4.15 (m,4H), 6.53 (s,2H)      | 4.08 (m, 2H), 6.55 (s, 2H)    | 4.08 (m, 2H), 6.56 (s, 2H)         | 3.93 {m, 2H}, 4.10 {m, 2H}, 6.53 (d, 1H), 6.53 | 3.93 (m, 2H), 4.10 (m, 2H), 6.53 (d, 1H), 6.76 (d, 1H) | 3.90-4.10 (m,4H), 6.53 (d,1H) 6.70 (d,1H) | 3.90-4.10 (m, 4H), 6.53 (d, 1H) 6.70 (d, 1H) | 4.10 {m, 2H}, 6.53 (d, 1H), 6.70 {d, 1H), | 4.10 (m, 2H), 6.53 (d, 1H), 6.70 (d, 1H), | 3.80-4.09 (m,4H), 6.60 (s,2H)               | 3.80-4.09 (m,4H), 6.60 (s,2H)               | 3.93-4.09 (m,4H), 6.60 (s,2H)               | 3.93-4.09 (m,4H), 6.60 (s,2H)               | 4.03 (m, 2H), 6.60 (s, 2H)                  | 4.03 (m, 2H), 6.60 (s, 2H)                  | 99-79                          |
| 15 |   |                            |                                             |                                    |                               |                                    |                                                |                                                        |                                           |                                              |                                           |                                           | _                                           | -                                           | _                                           | _                                           | _                                           | _                                           |                                |
| 20 |   |                            | Y                                           | 5-CH <sub>3</sub> -thien-2-yl      | 5-CH <sub>3</sub> -thien-2-yl | 5-CH <sub>3</sub> -thien-2-yl      | 5-Cl-thien-2-yl                                | 5-c1-thien-2-yl                                        | 5-cl-thien-2-yl                           | 5-cl-thien-2-yl                              | 5-cl-thien-2-yl                           | 5-cl-thien-2-yl                           | 5-C <sub>2</sub> H <sub>5</sub> -thien-2-yl | 1-CH <sub>3</sub> -pyrrol-2-yl |
| 25 |   |                            |                                             |                                    |                               |                                    |                                                |                                                        |                                           |                                              |                                           |                                           |                                             |                                             |                                             |                                             |                                             |                                             |                                |
| 30 |   |                            | 3                                           | -(CH <sub>2</sub> ) <sub>4</sub> - | -(CH <sub>2</sub> )4-         | -(CH <sub>2</sub> ) <sub>4</sub> - | -(CH <sub>2</sub> ) <sub>4</sub> -             | -(CH <sub>2</sub> ) <sub>4</sub> -                     | -(CH <sub>2</sub> ) <sub>4</sub> -        | -(CH <sub>2</sub> ) 4-                       | -(CH <sub>2</sub> ) <sub>4</sub> -        | -(CH <sub>2</sub> ) <sub>4</sub> -        | -(CH <sub>2</sub> )4-                       | -(CH <sub>2</sub> )4-                       | -(CH <sub>2</sub> )4-                       | -(CH <sub>2</sub> )4-                       | -(CH <sub>2</sub> ) <sub>4</sub> -          | -(CH <sub>2</sub> )4-                       | -(CH <sub>2</sub> )4-          |
| 35 |   |                            |                                             | /ran-4-y1                          | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl           | /ran-3-y1                                      | /ran-3-yl                                              | /ran-4-yl                                 | /ran-4-yl                                    | Tetrahydrothiopyran-3-yl                  | Tetrahydrothiopyran-3-yl                  | /ran-3-y1                                   | /ran-3-yl                                   | /ran-4-yl                                   | /ran-4-yl                                   | Tetrahydrothiopyran-3-yl                    | Tetrahydrothiopyran-3-yl                    | yran-3-yl                      |
| 40 |   | tsetzung)                  | RC                                          | Tetrahydropyran-4-yl               | Tetrahydroth                  | Tetrahydroth                       | Tetrahydropyran-3-yl                           | Tetrahydropyran-3-yl                                   | Tetrahydropyran-4-yl                      | Tetrahydropyran-4-yl                         | Tetrahydrot                               | Tetrahydroth                              | Tetrahydropyran-3-yl                        | Tetrahydropyran-3-yl                        | Tetrahydropyran-4-yl                        | Tetrahydropyran-4-yl                        | Tetrahydrot                                 | Tetrahydrot                                 | Tetrahydropyran-3-yl           |
| 45 |   | Tabelle II.7 (Fortsetzung) | Rà                                          | n-C <sub>3</sub> H <sub>7</sub>    | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub>    | C 2HS                                          | n-C <sub>3</sub> H <sub>7</sub>                        | C 2 H 5                                   | n-C <sub>3</sub> H <sub>7</sub>              | C <sub>2</sub> H <sub>S</sub>             | n-C <sub>3</sub> H <sub>7</sub>           | C <sub>2</sub> H <sub>5</sub>               | n-C 3H7                                     | C <sub>2</sub> H <sub>5</sub>               | n-C <sub>3</sub> H <sub>7</sub>             | C <sub>2</sub> H <sub>5</sub>               | n-C <sub>3</sub> H <sub>7</sub>             | C 2H5                          |
| 50 | 7 | Tabelle                    | . n                                         | A.522                              | A.523                         | A.524                              | A.525                                          | A. 526                                                 | A.527                                     | A.528                                        | A.529                                     | A.530                                     | A.531                                       | A.532                                       | A.533                                       | A.534                                       | A.535                                       | A.536                                       | A.537                          |

| 5<br>10 |                            | phys. Daten<br>NMR-Daten in ppm<br>Fp in °C | 3.90 (m, 2H) 4.09 (t, 2H) 5.87 (m, 1H), 6.53 (m, 1H) | 82-84                                  | 4.00 (m, 22), 4.09 (t, 2H), 5.87 (m, 1H), 6.03 (m, 1H), 6.53 (m, 1H) | 4.09 (t, 2H), 5.87 (m, 1H), 6.03 (m, 1H) | 4.09 (t,2H), 5.87 (m,1H), 6.03 (m,1H), 6.03 | 4.13 (t,2H) 6.00-6.42 (m,4H),<br>7.33 (bs,1H) | 4.13 (t, 2H), 5.92 (m, 1H),<br>6.33 (d, 1H), 6.55 (bs, 1H),<br>7.40 (d, 2H) | 4.13 (m, 2H), 5.92 (m, 1H), 7.40 (d, 2H), | 4.13 (t, 2H), 5.92 (m, 1H),<br>6.33 (d, 1H), 6.55 (bs, 1H),<br>7.40 (d, 2H) | 4.15 {t, 2H}, 6.90 {dt, 1H), 7.10 {d, 1H}, 6.90 {m, 2H), | 6.60 {d, 1H}, 6.80-7.20 (m, 3H)          |
|---------|----------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|
| 20      |                            | کی <del>آ</del> ٹ                           | 1-CH <sub>3</sub> -pyrrol-2-yl                       | 1-CH <sub>3</sub> -pyrrol-2-yl         | 1-CH <sub>3</sub> -pyrrol-2-yl                                       | 1-CH <sub>3</sub> -pyrrol-2-yl           | 1-CH <sub>3</sub> -pyrrol-2-yl              | Furan-2-yl                                    | Furan-3-yl                                                                  | Furan-3-yl                                | Furan-3-yl                                                                  | Thien-2-yl                                               | Thien-2-yl                               |
| 30      |                            | 3                                           | -(CH <sub>2</sub> ) <sub>4</sub> -                   | -(CH <sub>2</sub> )4-                  | -(CH <sub>2</sub> )4-                                                | -(CH <sub>2</sub> ) <sub>4</sub> -       | -(CH <sub>2</sub> ) <sub>4</sub> -          | -сн 2сн 2сн=сн-                               | -CH2CH2CH-                                                                  | -сн <sub>2</sub> сн <sub>2</sub> сн=сн-   | -CH2CH2CH-                                                                  | -сн2сн2сн-                                               | -сн <sub>2</sub> сн <sub>2</sub> сн=сн-  |
| 35      |                            |                                             | Tetrahydropyran-3-yl                                 | Tetrahydropyran-4-yl                   | Tetrahydropyran-4-yl                                                 | Tetrahydrothiopyran-3-yl                 | Tetrahydrothiopyran-3-yl                    | Tetrahydropyran-4-yl                          | Tetrahydropyran-3-yl                                                        | ahydropyran-4-yl                          | ahydrothiopyran-3-yl                                                        | Tetrahydropyran-3-yl                                     | Tetrahydropyran−3~yl                     |
| 45      | Tabelle II.7 (Fortsetzung) | Ra RC                                       | n-C <sub>3</sub> H <sub>7</sub> Tetrahyd             | C <sub>2</sub> H <sub>5</sub> Tetrahyd | n-C <sub>3</sub> H <sub>7</sub> Tetrahyd                             | C <sub>2</sub> H <sub>5</sub> Tetrahyd   | n-C <sub>3</sub> H <sub>7</sub> Tetrahyd    | C <sub>2</sub> H <sub>5</sub> Tetrahyd        | C <sub>2</sub> H <sub>5</sub> Tetrahyd                                      | C <sub>2</sub> H <sub>5</sub> Tetrahyd    | C <sub>2</sub> H <sub>5</sub> Tetrahyo                                      | C <sub>2</sub> H <sub>5</sub> Tetrahyo                   | n-C <sub>3</sub> H <sub>7</sub> Tetrahyo |
| 50      | Tabelle                    |                                             | A.538                                                | A.539                                  | A.540                                                                | A.541                                    | A.542                                       | A.543                                         | A.544                                                                       | A.545                                     | A.546                                                                       | A.547                                                    | A.548                                    |

|    |                         |                                             | H), 3H),                                 | 1), 3H),                            | 1), 3H),                            | 1), 3H)                                  | н),<br>п, 5н)                      | <del>?</del>                   | Ŧ                                        | Ŷ                              | Ŧ                               | Ŧ                              | Ŧ                                        | ÷,                                          |
|----|-------------------------|---------------------------------------------|------------------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|------------------------------------|--------------------------------|------------------------------------------|--------------------------------|---------------------------------|--------------------------------|------------------------------------------|---------------------------------------------|
| 5  |                         |                                             | 6.00 (dt 1H),<br>6.80-7.20 (m, 3H),      | 6.00 (dt 1H),<br>6.80-7.20 (m, 3H), | 6.00 (dt 1H),<br>6.80-7.20 (m, 3H), | 6.00 (dt, 1H),<br>6.80-7.30 (m, 3H)      | 6.10 (dt 1H),<br>6.80-7.26 (m, 5H) | 5.87 (dt, 1H)<br>3H)           | 5.87 (dt, 1H)<br>3H)                     | 5.87 (dt, 1H)<br>3H)           | 5.87 (dt, 1H)<br>3H)            | 5.88 (dt, 1H)<br>3H)           | 5.88 (dt, 1H)<br>3H)                     | 3 (dt, 1)                                   |
| 10 |                         | phys. Daten<br>NMR-Daten in ppm<br>Fp in °C | 2H), 6:8                                 | 33,                                 | 2<br>표<br>()                        | 2 :                                      | 2H), 6.1                           | 2H), 5.8                       | 73 (m, 3H)                               | 2H), 5.8                       |                                 |                                |                                          | 6.46 {d, 1H}, 6.63 {dt, 1H}, 6.75 {dt, 1H}, |
| 15 |                         | phys. D.<br>NMR-Dat<br>Fp in 9              | 4:15 (t, 2H);<br>6:60 (d, 1H);           | 4.15 (t,<br>6.60 (d,                | 4.15 (t,<br>6.60 (d,                | 4.15 (t, 6.60 (d)                        | 4.20 (t, 2H);<br>6.60 (d, 1H);     | 4.13 (t, 2H),<br>6.37-6.73 (m, | 4.13 (t, 2H),<br>6.37-6.73 (m,           | 4.13 (t, 2H),<br>6.37-6.73 (m, | 4.13 (t, 2H),<br>6.37-6.73 (m,  | 4.13 (t, 2H),<br>6.37-6.73 (m, | 4.13 (t, 2H), 6.37-6.53 (m,              | 6.46<br>6.75<br>6.75<br>6.75                |
| 20 |                         |                                             | y1                                       | ۲۸                                  | ۲۸                                  | y1                                       | y]                                 | ien-2-yl                       | ien-2-y l                                | ien-2-yl                       | ien-2-y 1                       | ien-2-yl                       | ien-2-yl                                 | en-2-y1                                     |
|    |                         | R                                           | Thien-2-yl                               | Thien-2-yl                          | Thien-2-yl                          | Thien-2-yl                               | Thien-2-yl                         | 5-CH <sub>3</sub> -thien-2-yl  | 5-CH <sub>3</sub> -thien-2-yl            | 5-CH <sub>3</sub> -thien-2-yl  | 5-CH <sub>3</sub> -thien-2-yl   | 5-CH <sub>3</sub> -thien-2-yl  | 5-CH <sub>3</sub> -thien-2-yl            | 5-Cl-thien-2-yl                             |
| 25 |                         |                                             | <u>1</u>                                 | 1                                   | <u>1</u>                            | 1                                        | <u>.</u>                           | 1                              | 1                                        | 1                              | 1                               | 1                              | J.                                       | ı,                                          |
| 30 |                         | 3                                           | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- | -сн 2сн 2-сн=сн-                    | -СН2СН2-СН=СН-                      | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- | -сн₂сн₂-сн=сн-                     | -сн 2сн 2-сн=сн-               | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- | -СИ2СИ2-СН=СИ-                 | -сн2сн2-сн=сн-                  | -сн₂сн₂-сн≈сн-                 | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- | -сн 2сн 2-сн=сн-                            |
| 35 |                         |                                             |                                          |                                     |                                     |                                          |                                    |                                |                                          |                                |                                 |                                |                                          |                                             |
| 40 | :setzung)               | RC                                          | Tetrahydropyran-4-yl                     | Tetrahydropyran-4-yl                | Tetrahydrothiopyran-3-yl            | Tetrahydrothiopyran-3-yl                 | 2,4,6-Trimethylphenyl              | Tetrahydropyran-3-yl           | Tetrahydropyran-3-yl                     | Tetrahydropyran-4-yl           | Tetrahydropyran-4-yl            | Tetrahydrothiopyran-3-yl       | Tetrahydrothiopyran-3-yl                 | Tetrahydropyran-3-yl                        |
| 45 | Tabelle II.7 (Fortsetzu | Ra                                          | C 2HS                                    | n-C <sub>3</sub> H <sub>7</sub>     | C <sub>2</sub> H <sub>5</sub>       | n-C <sub>3</sub> H <sub>7</sub>          | C 2H5                              | C 2H5                          | n-C <sub>3</sub> H <sub>7</sub>          | C <sub>2</sub> H <sub>5</sub>  | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                          | n-C <sub>3</sub> H <sub>7</sub>          | C 2H5                                       |
| 50 | Tabelle                 | . LA                                        | A.549                                    | A.550                               | A.551                               | A.552                                    | A.553                              | A.554                          | A.555                                    | A.556                          | A.557                           | A.558                          | A.559                                    | A.560                                       |

|     |                        | :                                         |                                                                                 |                                                                                 |                                          |                                 |                                 | 3н)                                      | 3H)                             | 3H)                    | 3н)                             | 3н)                                      | 3H)                                      |
|-----|------------------------|-------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|---------------------------------|---------------------------------|------------------------------------------|---------------------------------|------------------------|---------------------------------|------------------------------------------|------------------------------------------|
|     |                        |                                           | H.(.)                                                                           | (dt, 1H),<br>(d, 1H),                                                           | (dt, 1H),<br>(d, 1H),                    | EE.                             | EE,                             | Ĭ,                                       | Ĭ,                              | 1H)<br>(m, '3H)        | 1H)<br>(m, 3H)                  | Ĭ,                                       | ΞŒ,                                      |
| 5   |                        |                                           | , eg                                                                            | 6.9                                                                             | 44,<br>,                                 | ##<br>-                         | 4.                              | dt<br>.32                                | dt,                             | dt<br>.32              | dt,                             | dt<br>.36                                | at,<br>36                                |
|     |                        | mdd                                       | 5.93 (dt, 1H),<br>6.63 (d, 1H),                                                 | 5.93<br>6.63                                                                    | 5.93<br>6.63                             | 5.93 (dt, 1H),<br>6.63 (d, 1H), | 5.93 (dt, 1H),<br>6.63 (d, 1H), | 6.07 (dt 1H), 3H)                        | 6.07 (dt, 1H), 3H)              | 6.07 fat 7.03-1.32     | 6.07 fdt                        | 6.07 (dt 1H), 3H)                        | 6.07 (dt 1H), 3H)                        |
| 10  |                        | phys. Daten<br>NMR-Daten in F<br>Fp in oc | 1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1H<br>1 | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>1 | ;;<br>;;;                                | 2H<br>1H},                      | 1H ;;                           | 2H);                                     | 2H<br>IH};                      | 2H);                   | 2H};                            | 2H};                                     | 2H),                                     |
|     |                        | Date                                      | +,0,0,                                                                          | + <u>, 0, 0,</u>                                                                | +,0,0,                                   | + <u>,</u> ,                    | + <u>, 0, 0,</u>                | ∓, <u>\$</u>                             | ₩,                              | <del>ب</del> ري<br>بري | ÷,ĕ,                            | ÷,ĕ,                                     | +, <u>a</u> ,                            |
|     |                        | S. in                                     | 4.15<br>6.46<br>6.75                                                            | 4.15<br>6.46<br>6.75                                                            | 4.15<br>6.46<br>6.75                     | 4.15<br>6.46<br>6.75            | 4.15<br>6.46<br>6.75            | 6.50                                     | 6.50                            | 6.50                   | 6.50                            | 6.50                                     | 4.17 (t,<br>6.50 (d,                     |
| 15  |                        | מַצֿע                                     | 400                                                                             | 400                                                                             | 400                                      | 400                             | 400                             | 40                                       | 40                              | 40                     | 40                              | 40                                       | 40                                       |
|     |                        |                                           | <del>_</del>                                                                    | _                                                                               | _                                        | -                               |                                 |                                          |                                 |                        |                                 |                                          |                                          |
|     |                        |                                           | 5-C1-thien-2-y.l                                                                | 5-Cl-thien-2-yl                                                                 | 5-Cl-thien-2-yl                          | 5-cl-thien-2-yl                 | 5-cl-thien-2-yl                 |                                          |                                 |                        |                                 |                                          |                                          |
| 20  |                        |                                           | :hier                                                                           | thier                                                                           | :hier                                    | hier                            | hier                            | -3-y1                                    | Thien-3-yl                      | Thien-3-yl             | Thien-3-yl                      | Thien-3-yl                               | Thien-3-yl                               |
|     |                        |                                           | -<br>-<br>-                                                                     | -C1                                                                             | -C1-4                                    | <del>ا</del> ا                  | -1-1-                           | Thien-3-y                                | ien-                            | ien-                   | ien.                            | ien-                                     | ien-                                     |
|     |                        | Rf                                        | Ϋ́                                                                              | က်                                                                              | က်                                       | က်                              | က်                              | F                                        | =                               | =                      | =                               | F                                        | =                                        |
| 25  |                        |                                           | <u>1</u>                                                                        | 1                                                                               | 1                                        | <u>ı</u>                        |                                 | <u>.</u>                                 | <u>1</u>                        | _                      | 1                               | <u>1</u>                                 | T                                        |
|     |                        |                                           | H=C+                                                                            | 5<br>#                                                                          | #<br>E                                   | <u>ا</u><br>ت                   | <b>်</b>                        | H=C                                      | H=C                             | :¥=C                   | H=C                             | H=C                                      | H=C                                      |
| . • |                        |                                           | H2-C                                                                            | H2-C                                                                            | H2-C                                     | H2-C                            | H2-C                            | H2-C                                     | H2-C                            | H2-C                   | H2-C                            | H2-C                                     | H2-C                                     |
| 30  |                        | ļ                                         | -сн2сн2-сн=сн-                                                                  | −СН 2СН 2−СН=СН−                                                                | -СН <sub>2</sub> СН <sub>2</sub> -СН=СН- | -сн2сн2-сн=сн-                  | -сн₂сн₂-сн=сн-                  | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- | -сн 2сн 2-сн=сн-                | -сн 2сн 2-сн=сн-       | -сн 2сн 2-сн=сн-                | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- |
|     |                        | 3                                         | 1 '                                                                             | ı                                                                               | 1                                        |                                 |                                 | 1                                        | 1                               | •                      | ı                               | ı                                        |                                          |
|     |                        |                                           |                                                                                 |                                                                                 |                                          | Tetrahydrothiopyran-3-yl        | Tetrahydrothiopyran-3-yl        |                                          |                                 |                        |                                 | Tetrahydrothiopyran-3-yl                 | Tetrahydrothiopyran-3-yl                 |
| 35  |                        | Ì                                         | 3-y1                                                                            | 4-y l                                                                           | 4-y1                                     | ran-                            | ran-                            | 3-y1                                     | 3-y1                            | 4-y l                  | 4-y l                           | ran-                                     | ran-                                     |
|     |                        |                                           | Tetrahydropyran-3-y]                                                            | ahydropyran-4-y                                                                 | Tetrahydropyran-4-yl                     | iopy                            | iopy                            | ahydropyran-3-yl                         | Tetrahydropyran-3-yl            | Tetrahydropyran-4-yl   | Tetrahydropyran-4-yl            | iopy                                     | iopy                                     |
|     |                        |                                           | opyı                                                                            | opyı                                                                            | oby.                                     | oth                             | othi                            | opyı                                     | ·opy                            | ·opy                   | .oby                            | oth                                      | oth                                      |
| 40  | (bun;                  |                                           | hydr                                                                            | hydr                                                                            | hydr                                     | hydr                            | hydr                            | hydr                                     | hydr                            | hydr                   | hydr                            | ıhydı                                    | ıhydr                                    |
|     | etzu                   | y <sub>C</sub>                            | etra                                                                            | Tetra                                                                           | etra                                     | etra                            | etra                            | Tetra                                    | etra                            | etra                   | etra                            | etra                                     | etra                                     |
|     | orts                   | ~                                         | <del>-</del>                                                                    | -                                                                               | -                                        | -                               | <del>-</del>                    | <b>⊢</b> -                               | <b> </b>                        | -                      | -                               | _                                        | <b>-</b>                                 |
| 45  | 7 (F.                  |                                           | 3H7                                                                             | ю                                                                               | 3H7                                      | ın                              | 3H,                             | LO.                                      | 3H7                             | ر<br>د                 | 3H7                             | ιn.                                      | 3H7                                      |
|     | 11.                    | ۳a                                        | n-C3H7                                                                          | C <sub>2</sub> H <sub>5</sub>                                                   | n-C <sub>3</sub> H <sub>7</sub>          | C <sub>2</sub> H <sub>5</sub>   | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                                    | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                  | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                                    | n-C <sub>3</sub> H <sub>2</sub>          |
|     | Tabelle II.7 (Fortsetz |                                           | 91                                                                              | 62                                                                              | 63                                       | <b>†</b>                        | 65                              | 99                                       | 29                              | 89                     | 69                              | 92                                       | 11                                       |
| 50  | Tab                    | Ž.                                        | A.561                                                                           | A.562                                                                           | A.563                                    | A.564                           | A.565                           | A.566                                    | A.567                           | A.568                  | A.569                           | A.570                                    | A.571                                    |
|     |                        |                                           |                                                                                 |                                                                                 |                                          |                                 |                                 |                                          |                                 |                        |                                 |                                          |                                          |

| 5  |                            | phys. Daten<br>NMR-Daten in ppm<br>Fp in °C | 6:52 (4, 2H), 6:10 (4t, 1H), 6:52 (4, 2H), | 6.52 (d, 1H), 6.10 (dt, 1H), 6.52 (s, 2H), | 6.52 (d, 2H), 6.13 (dt, '1H), 6.52 (d, 2H), | 6.52 (t, 2H), 6.13 (dt, 1H), 6.52 (d, 1H), | 6.53 (t, 2H); 9.12 (dt, 1H); 6.53 (dt, 2H); | 6.53 (t, 2H); 6.12 (dt, 1H); 6.53 (d, 2H); | 4.17 {t, 2H}, 6.00 {dt, 1H), 7.03 {s, 1H}, 1H}, | 4.17 {t, 2H}, 6.00 {dt, 1H}, 7.03 {s, 1H}, | 6.33 {t, 2H}, 6.83 {st, 1H), 7.03 {s, 1H), | 4.17 {t, 2H}, 6.00 (dt, 1H), 7.03 (s, 1H), | 4.20 (t, 2H), 6.00 (dt, 1H), 6.33 (s, 1H), 7.03 (s, 1H), |
|----|----------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------|
| 20 |                            | Rf                                          | 2-Cl-thien-3-yl                            | 2-Cl-thien-3-yl                            | 2-Cl-thien-3-yl                             | 2-Cl-thien-3-yl                            | 2-c1-thien-3-yl                             | 2-cl-thien-3-yl                            | 5-Cl-thien-3-yl                                 | 5-Cl-thien-3-yl                            | 5-Cl-thien-3-yl                            | 5-cl-thien-3-yl                            | 5-Cl-thien-3-yl                                          |
| 25 |                            | 3                                           | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн-   | -сн₂сн₂-сн≖сн-                             | -CH2CH2-CH=CH-                              | -CH2CH2CH=CH-                              | -CH2CH2-CH=CH-                              | -СН <sub>2</sub> СН <sub>2</sub> -СН=СН-   | -CH2CH2-CH=CH-                                  | -сн2сн2-сн=сн-                             | -CH <sub>2</sub> CH <sub>2</sub> -CH=CH-   | -CH2CH2-CH≈CH-                             | -СН2СН2-СН=СН-                                           |
| 35 | (Gun                       |                                             | etrahydropyran-3-yl                        | etrahydropyran-3-yl                        | etrahydropyran-4-yl                         | etrahydropyran-4-yl                        | etrahydrothiopyran-3-yl                     | etrahydrothiopyran-3-yl                    | etrahydropyran-3-yl                             | etrahydropyran-3-yl                        | Tetrahydropyran-4-yl                       | Tetrahydropyran-4-yl                       | etrahydrothiopyran-3-yl                                  |
| 45 | Tabelle II.7 (Fortsetzung) | Ra RC                                       | C <sub>2</sub> H <sub>5</sub> Tetra        | n-C <sub>3</sub> H <sub>7</sub> Tetra      | C <sub>2</sub> H <sub>5</sub> Tetra         | n-C <sub>3</sub> H <sub>7</sub> Tetra      | C <sub>2</sub> H <sub>5</sub> Tetra         | n-C <sub>3</sub> H <sub>7</sub> Tetra      | C <sub>2</sub> H <sub>5</sub> Tetra             | n-C <sub>3</sub> H <sub>7</sub> Tetra      | C <sub>2</sub> H <sub>5</sub> Tetra        | n-C₃H7 Tetra                               | C <sub>2</sub> H <sub>5</sub> ∴ Tetra                    |
| 50 | Tabelle                    | Nr.                                         | A.572                                      | A.573                                      | A.574                                       | A.575                                      | A.576                                       | A.577                                      | A.578                                           | A.579                                      | A.580                                      | A.581                                      | A.582                                                    |

|            |                            |                                             | 6.00 (dt, 1H),<br>6.83 (s, 1H),          | 2н),                 | 2н),                            |                      |                      | 1H)                      | 1H)                             | 1H),                               | 1H),                            | 1H),                               |                                    | 1H),                               | 1H),                               |                                    |                                    |
|------------|----------------------------|---------------------------------------------|------------------------------------------|----------------------|---------------------------------|----------------------|----------------------|--------------------------|---------------------------------|------------------------------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 5          |                            |                                             | (dt,<br>(s,                              | Ĕ)                   | Ē,                              |                      |                      | (q′                      | (d,                             | Ĕ,                                 | Ē,                              | Ē,                                 |                                    | E)                                 | Ę)                                 |                                    |                                    |
| 3          |                            | E da                                        |                                          | 6.90 (m, 2H),        | 6.90 (m, 2H),                   |                      |                      | 7.10 (d, 1H)             | 7.10 (d,                        | 6.27 (m,                           | 6.27 (m, 1H),                   | 6.24 (m, 1H),                      |                                    | 6.27 (m, 1H),                      | 6.27 (m, 1H),                      |                                    |                                    |
|            |                            | phys. Daten<br>NMR-Daten in ppm<br>Fp in oc | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1     | 2H<br>1H ),          | 2H<br>1H),                      |                      |                      | 6.90 (m, 2H),            | 2H),                            | ÉÉ                                 | ),<br>H                         | È                                  |                                    | È                                  | È                                  |                                    |                                    |
| 10         |                            | Dater<br>oc                                 | <u>ښې</u> ږ                              | ĔĎ,                  | Ę,Ā,                            |                      |                      | Ĕ,                       | Ĕ,                              | ĒÈ                                 | <u>E</u> E                      | <u>E</u> E                         | <b>~</b>                           | ĔĔ                                 | ĔÈ                                 |                                    |                                    |
|            |                            | Phys.<br>NMR-C                              | 4.20<br>6.33<br>7.03                     | 3.90                 | 3.90                            |                      |                      | 6.90                     | 6.90                            | 5.93                               | 5.93                            | 5.90 (m,<br>7.24 (m,               | 50-53                              | 5.93                               | 5.93                               | 43-45                              | 73-75                              |
| 15         |                            |                                             | -3-y1                                    |                      |                                 |                      |                      |                          |                                 |                                    |                                 |                                    |                                    |                                    |                                    |                                    |                                    |
| 20         |                            | Re                                          | 5-c1-thien-3-y1                          | Thien-2-yl           | Thien-2-yl                      | Thien-2-yl           | Thien-2-yl           | Thien-3-yl               | Thien-3-yl                      | Furan-2-yl                         | Furan-2-yl                      | Furan-2-yl                         | Furan-2-yl                         | Furan-2-yl                         | Furan-2-yl                         | Thien-2-yl                         | Thien-2-yl                         |
| 25         |                            |                                             | -сн <sub>2</sub> сн <sub>2</sub> -сн=сн- | -сн2сн2сн=снсн3-     | -сн2сн2снсн3-                   | -СН 2CH 2CH=CHCH 3-  | -CH2CH2CH=CHCH3-     | -CH2CH2CHCH3-            | -CH2CH2CHCH3-                   | -(CH <sub>2</sub> ) <sub>5</sub> - | -(сн <sub>2</sub> )5-           | -(CH <sub>2</sub> ) <sub>5</sub> - |
| 30         |                            | 3                                           |                                          | Ÿ                    | Ÿ                               | Ÿ                    | Ÿ                    |                          |                                 | Ť                                  | ī                               | Ť                                  | Ť                                  |                                    |                                    | Ť                                  | Ĩ                                  |
| 35         | •                          |                                             | Tetrahydrothiopyran-3-yl                 | Tetrahydropyran-3-yl | Tetrahydropyran-3-yl            | Tetrahydropyran-4-yl | Tetrahydropyran-4-yl | Tetrahydrothiopyran-3-yl | Tetrahydrothiopyran-3-yl        | Tetrahydropyran-3-yl               | Tetrahydropyran-3-yl            | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl               | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl           | Tetrahydropyran-3-yl               | Tetrahydropyran-3-yl               |
| 40         | tsetzung                   | Rc                                          | Tetrahy                                  | Tetrahy              | Tetrahy                         | Tetrahy              | Tetrahy              | Tetrahy                  | Tetrahy                         | Tetrahy                            | Tetrahy                         | Tetrahy                            | Tetrahy                            | Tetrahy                            | Tetrahy                            | Tetrahy                            | Tetrahy                            |
| <b>4</b> 5 | Tabelle II.7 (Fortsetzung) | e a                                         | n-C3H7                                   | C 2 H 5              | n-C <sub>3</sub> H <sub>7</sub> | C 2HS                | n-C3H7               | C 2H5                    | n-C <sub>3</sub> H <sub>2</sub> | C 2H5                              | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                              | n-C <sub>3</sub> H <sub>7</sub>    | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H <sub>7</sub>    | C 2HS                              | n-C <sub>3</sub> H <sub>7</sub>    |
|            | Tabelle                    | ÄŢ.                                         | A.583                                    | A.584                | A.585                           | A.586                | A.587                | A.588                    | A.589                           | A.590                              | A.591                           | A.592                              | A.593                              | A.594                              | A.595                              | A.596                              | A.597                              |
| 50         |                            |                                             |                                          |                      |                                 |                      |                      |                          |                                 |                                    |                                 |                                    |                                    |                                    |                                    |                                    |                                    |

|                                 |                                            |                               |                                 | 06                                    | 06                                               | 90<br>, 1H)                                          | 90<br>, 1H)                                            | 5.90<br>(m, 1H)                                        | 5.90<br>(m, 1H)                                         |                                    |                                    |                                    |                                    |                                    |                                    |
|---------------------------------|--------------------------------------------|-------------------------------|---------------------------------|---------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 5                               | шdd                                        |                               |                                 | .80 (m,1H), 6.<br>n,1H                | .80 (m,1H), 6.90<br>n,1H                         | .12 (t, 2H) 5.<br>n, 1H), 6.53 (m                    | .12 (t, 2H), 5.<br>n, 1H), 6.53 (m                     | .12 (t, 2H), 5.<br>n, 1H), 6.53 (m                     | .12 (t, 2H), 5.<br>n, 1H), 6.53 (m                      | 5.90 (m, 1H),<br>6.53 (m, 1H),     | 5.90 (m, 1H),<br>6.53 (m, 1H)      | 6.27 (m,1H),                       | 6.27 (m,1H),                       | (m, 1H), 6.27 (m, 1H),             | {m, 1H}, 6.27 (m, 1H), m, 1H),     |
| 10                              | phys. Daten<br>NMR-Daten in pp<br>Fp in oc | 91-93                         | 74-75                           | 4.07 {t,2H} 6.80 {m,1H}, 6.90 (m,1H), | 4.07 (t, 2H) 6.80 (m, 1H), (m, 1H), 7.16 (m, 1H) | 3.90 (m, 2H) 4.12 (t, 2H) 5.90 (m, 1H), 6.53 (m, 1H) | 3.90 (m, 2H), 4.12 (t, 2H), 5.90 (m, 1H), 6.53 (m, 1H) | 4.00 (m, 2H), 4.12 (t, 2H) (m, 1H), 6.06 (m, 1H), 6.53 | 4.00 {m, 2H}, 4.12 {t, 2H}, (m, 1H), 6.06 (m, 1H), 6.53 | 4.12 (t, 2H), 5.6.06 (m, 1H), 6.   | 4.12 (t, 2H); 5.6.06 (m, 1H); 6.   | 5.90 (m, 1H), 6.                   | 5.90 (m, 1H), 6.                   | 5.93 (m, 1H), 6.                   | 5.93 (m, 1H), 6.                   |
|                                 |                                            |                               |                                 |                                       |                                                  |                                                      |                                                        |                                                        |                                                         |                                    |                                    |                                    |                                    |                                    |                                    |
| 20                              | Rf                                         | Thien-2-yl                    | Thien-2-yl                      | Thien-2-yl                            | Thien-2-yl                                       | 1-CH <sub>3</sub> -pyrrol-2-yl                       | 1-CH <sub>3</sub> -pyrrol-2-yl                         | 1-CH <sub>3</sub> -pyrrol-2-yl                         | 1-CH <sub>3</sub> -pyrrol-2-yl                          | 1-CH <sub>3</sub> -pyrrol-2-yl     | 1-CH <sub>3</sub> -pyrrol-2-yl     | Furan-2-yl                         | Furan-2-yl                         | Furan-2-yl                         | Furan-2-yl                         |
| 25                              |                                            |                               |                                 |                                       |                                                  |                                                      |                                                        | ,                                                      |                                                         |                                    |                                    |                                    |                                    |                                    |                                    |
| 30                              | 3                                          | -(CH <sub>2</sub> )5-         | -{CH <sub>2</sub> )5-           | -(CH <sub>2</sub> ) <sub>5</sub> -    | -(CH <sub>2</sub> )5-                            | -(CH <sub>2</sub> ) <sub>5</sub> -                   | -(CH <sub>2</sub> ) <sub>5</sub> -                     | -(CH <sub>2</sub> ) <sub>5</sub> -                     | -(CH <sub>2</sub> )5-                                   | -(CH <sub>2</sub> ) <sub>5</sub> - | -(CH <sub>2</sub> ) <sub>5</sub> - | -(CH <sub>2</sub> ) <sub>6</sub> - |
| 35                              |                                            | ran-4-yl                      | ran-4-yl                        | iopyran-3-yl                          | iopyran-3-yl                                     | ran-3-yl                                             | ran-3-yl                                               | ran-4-yl                                               | ran-4-yl                                                | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl           | ran-3-yl                           | ran-3-yl                           | ran-4-yl                           | ran-4-yl                           |
| &<br>tsetzung)                  | RС                                         | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl            | Tetrahydrothiopyran-3-yl              | Tetrahydrothiopyran-3-yl                         | Tetrahydropyran-3-yl                                 | Tetrahydropyran-3-yl                                   | Tetrahydropyran-4-yl                                   | Tetrahydropyran-4-yl                                    | Tetrahydroth                       | Tetrahydroth                       | Tetrahydropyran-3-yl               | Tetrahydropyran-3-yl               | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl               |
| 5 \$ A Tabelle II.7 (Fortsetzun | Ra                                         | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>2</sub> | C <sub>2</sub> H <sub>5</sub>         | n-C <sub>3</sub> H <sub>2</sub>                  | C2H5                                                 | n-C <sub>3</sub> H <sub>7</sub>                        | C 2 H 5                                                | n-C <sub>3</sub> H <sub>7</sub>                         | C 2 H 5                            | n-C3H7                             | C 2H5                              | n-C <sub>3</sub> H <sub>2</sub>    | C 2H5                              | n-C <sub>3</sub> H <sub>7</sub>    |
| oo<br>Tabelle                   | ,                                          | A.598                         | A.599                           | A.600                                 | A.601                                            | A.602                                                | A.603                                                  | A.604                                                  | A.605                                                   | A.606                              | A.607                              | A.608                              | A.609                              | A.610                              | A.611                              |

| 5  |                            | mdd                                     | 6.27 (m, 1H),                 | 6.27 (м,1н),                       | 6.90 (m, 1н),                      | 6.90 (m, 1н),              |                                    | 1H}, 6.90 (m, 1H),             | 6.90 (m, 1H),                      | 6.90 (m, 1H),                      | 6.06 (m, 1H),                      | 6.06 (m, 1H),                   | 6.06 (m, 1н),                      | 6.06 (m, 1н),                      | 6.06 (m, 1н),                      | 6.06 (m, 1H),                      |
|----|----------------------------|-----------------------------------------|-------------------------------|------------------------------------|------------------------------------|----------------------------|------------------------------------|--------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 10 |                            | phys. Daten<br>NMR-Daten in<br>Fp in oc | 5.93 (m, 1H), 7.27 (m, 1H),   | 5.93 (m, 1H), 7.27 (m, 1H)         | 6.77 {m, 1H}, 7.10 {m, 1H}         | 6.77 {m, 1H}, 7.10 {m, 1H} | 50-52                              | 6.80 (m, 1H),<br>7.10 (m, 1H), | 6.80 (m, 1H), 7.10 (m, 1H)         | 6.80 (m, 1H), 7.10 (m, 1H)         | 5.90 (m, 1H),<br>6.53 (m, 1H),     | 5.90 (m, 1H),<br>6.53 (m, 1H),  | 5.87 (m, 1H),<br>6.53 (m, 1H)      | 5.87 (m, 1H),<br>6.53 (m, 1H),     | 5.90 (m, 1H),<br>6.50 (m, 1H)      | 5.90 (m, 1H),<br>6.50 (m, 1H),     |
| 15 |                            | -                                       | 2-y l                         | 2-y1                               | 2-y l                              | 2-y l                      | .2-y1                              | .2-y1                          | 2-y1                               | .2-y1                              | 1-CH <sub>3</sub> -pyrrol-2-yl     | 1-CH <sub>3</sub> -pyrrol-2-yl  | 1-CH <sub>3</sub> -pyrrol-2-yl     | 1-CH <sub>3</sub> -pyrrol-2-yl     | 1-CH <sub>3</sub> -pyrrol-2-yl     | 1-CH <sub>3</sub> -pyrrol-2-yl     |
| 25 |                            | R                                       | Furan-2-y                     | Furan-2-yl                         | Thien-2-yl                         | Thien-2-yl                 | Thien-2-yl                         | Thien-2-yl                     | Thien-2-yl                         | Thien-2-yl                         | 1-CH <sub>3</sub> -                | 1-CH3-                          | 1-CH3-                             | , 1-CH <sub>3</sub> -              | 1-CH <sub>3</sub> -                | 1-сн3-                             |
| 30 |                            | 3                                       | -(CH <sub>2</sub> )6-         | -(CH <sub>2</sub> ) <sub>6</sub> - | -(CH <sub>2</sub> ) <sub>6</sub> - | -(CH <sub>2</sub> )6-      | -(CH <sub>2</sub> ) <sub>6</sub> - | -(CH <sub>2</sub> )6-          | -(CH <sub>2</sub> ) <sub>6</sub> - | -(CH <sub>2</sub> ) <sub>6</sub> - | -(CH <sub>2</sub> ) <sub>6</sub> - | -(CH <sub>2</sub> )6-           | -(CH <sub>2</sub> ) <sub>6</sub> - |
| 35 | . (                        |                                         | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl           | Tetrahydropyran-3-yl               | Tetrahydropyran-3-yl       | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl           | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl           | Tetrahydropyran-3-yl               | Tetrahydropyran-3-yl            | Tetrahydropyran-4-yl               | Tetrahydropyran-4-yl               | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl           |
| 40 | Tabelle II.7 (Fortsetzung) | A <sup>C</sup>                          | Tetrahy                       | Tetrahy                            | Tetrahy                            | Tetrahy                    | Tetrahy                            | Tetrahy                        | Tetrahy                            | Tetrahy                            | Tetrahy                            | Tetrahy                         | Tetrahy                            | Tetrahy                            | Tetrahy                            | Tetrahy                            |
| 45 | e 11.7 (F                  | R da                                    | C <sub>2</sub> H <sub>5</sub> | n-C3H7                             | C 2H5                              | n-C3H7                     | C 2H5                              | n-C3H7                         | C 2H5                              | n-C3H7                             | C <sub>2</sub> H <sub>5</sub>      | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub>      | n-C3H7                             | C <sub>2</sub> H <sub>5</sub>      | n-C3H7                             |
| 50 | Tabell                     | r z                                     | A.612                         | A.613                              | A.614                              | A.615                      | A.616                              | A.617                          | A.618                              | A.619                              | A.620                              | A.621                           | A.622                              | A.623                              | A.624                              | A.625                              |

| 5                                         | phys. Daten / lH-NMR [ð in ppm], Fp. [°C] |                                      | 3,90 (m,2H), 4,20 (t,2H), 4,40 (m,2H),<br>6,80-7,60 (m,3H), 7,13-7,37 (m,2H) |                                      |                                   |                                 |                                   |                                 | ,                                    |                                 |                                      |                                 |                          |                                 | 3,90 (m,2H), 4,20 (t,2H), 4,40 (m,2H)<br>6,70 (m,3H), 7,25 (m,1H), |                                      |                                      |
|-------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 10                                        | / 1H-NMR [8                               | 42- 45                               | , 34, 20 {t, 2H}, 3+),                                                       | 106-107                              | 72- 73                            | 52- 55                          | 92                                | 76- 78                          | 77 -21                               | 121-125                         | 103-107                              | 82- 86                          | 81-85                    | 62- 68                          | 4, 20 (t, 2H)                                                      | 103-109                              | 73- 79                               |
| 15                                        | ohys. Daten ,                             |                                      | 3, 90 {m, 2H), 5, 80-7, 60 (m,                                               |                                      |                                   |                                 |                                   |                                 |                                      |                                 |                                      |                                 |                          |                                 | 3, 90 (m, 2H);                                                     |                                      |                                      |
| 20                                        |                                           |                                      |                                                                              |                                      |                                   |                                 |                                   |                                 |                                      |                                 |                                      |                                 |                          |                                 | .,.                                                                |                                      |                                      |
| 25                                        | ጸተ                                        | Phenyl                               | Pheny l                                                                      | Pheny l                              | Pheny l                           | Pheny l                         | Phenyl                            | 2-F-phenyl                      | 2-F-phenyl                           | 2-F-phenyl                      | 2-F-phenyl                           | 2-F-phenyl                      | 2-F-phenyl               | 3-F-phenyl                      | 3-F-phenyl                                                         | 3-F-phenyl                           | 3-F-phenyl                           |
| 30                                        | 3                                         | -CH <sub>2</sub> CH <sub>2</sub> -0- | -СН2СН2-0-                                                                   | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-                        | -CH2CH2-0-                      | -CH2CH2-0-                        | -CH2CH2-0-                      | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-                      | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-                      | -CH2CH2-0-               | -CH2CH2-0-                      | -CH <sub>2</sub> CH <sub>2</sub> -0-                               | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH <sub>2</sub> CH <sub>2</sub> -0- |
| 35                                        |                                           | 3-y1                                 | 3-y l                                                                        | 1 f-7                                | 4-y1                              | ran-3-yl                        | ran-3-yl                          | 3-y1                            | 3-y1                                 | 4-y1                            | 4-y1                                 | ran-3-yl                        | ran-3-yl                 | 3-y1                            | 3-y1                                                               | 4-y1                                 | 4-y1                                 |
| Og Gp | . S                                       | Tetrahydropyran-3-yl                 | Tetrahydropyran-3-yl                                                         | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl              | Tetrahydrothiopyran-3-yl        | Tetrahydrothiopyran-3-yl          | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl            | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl        | Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl                                               | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 |
| 11.7 (Fo                                  | e<br>e                                    | C <sub>2</sub> H <sub>5</sub> T      | n-C <sub>3</sub> H <sub>7</sub> T                                            | C <sub>2</sub> H <sub>5</sub> T      | n-C <sub>3</sub> H <sub>7</sub> T | C <sub>2</sub> H <sub>5</sub> T | n-C <sub>3</sub> H <sub>7</sub> T | C <sub>2</sub> H <sub>5</sub> T | n-C <sub>3</sub> H <sub>7</sub> T    | C <sub>2</sub> H <sub>5</sub> 1 | n-C <sub>3</sub> H <sub>7</sub> T    | C <sub>2</sub> H <sub>5</sub> T | n-C3H7 1                 | C <sub>2</sub> H <sub>5</sub> 1 | n-C <sub>3</sub> H7 1                                              | C <sub>2</sub> H <sub>5</sub> 1      | n-C <sub>3</sub> H <sub>7</sub> 1    |
| Tabe 11e                                  | ٦.                                        | A.626                                | A.627                                                                        | A.628                                | A.629                             | A.630                           | A.631                             | A.632                           | A.633                                | A.634                           | A.635                                | A.636                           | A.637                    | A.638                           | A.639                                                              | A.640                                | A.641                                |

|      |                            | [00]                                                  | ,                                                  |                                 |                                      |                      |                      |                                 |                 |                                      |                      |                                      |                               |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
|------|----------------------------|-------------------------------------------------------|----------------------------------------------------|---------------------------------|--------------------------------------|----------------------|----------------------|---------------------------------|-----------------|--------------------------------------|----------------------|--------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 5    |                            | ρρm], Fp.                                             | 6, 70 (m, 3H)                                      |                                 |                                      |                      |                      |                                 |                 |                                      |                      |                                      | , 47 (m, 2H),                 |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| 10   |                            | phys. Daten / <sup>1</sup> H-NMR [ð in ppm], Fp. [°C] | 4,20 {t,2H}, 4,40 (m,2H), 6,70 (m,3H), 7,25 (m,1H) | ·                               | 64- 67                               | 70- 72               | 101-103              | 107-109                         | 105-108         | 82- 84                               | 74- 80               | 67- 71                               | 1, 27 (t, 2H), 4              | /,20 (t,1H), /,3/ [d,1H)<br>68- 72   | 74- 78                               | 72-78                                | •                                    |                                      |                                      |                                      |                                      |                                      |
| 15   |                            | phys. Daten /                                         | 4,20 (t,2H),                                       |                                 |                                      |                      |                      |                                 |                 |                                      |                      |                                      | 1, 00 (m, 2H), 4              | ', 20 (t, 1H), '                     |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| 20   |                            |                                                       |                                                    |                                 |                                      |                      |                      |                                 |                 |                                      |                      |                                      | 7                             | •                                    |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| 25   |                            | R                                                     | 3-F-pheny1                                         | 3-F-phenyl                      | 4-f-phenyl                           | 4-F-phenyl           | 4-F-phenyl           | 4-F-phenyl                      | 4-F-phenyl      | 4-F-phenyl                           | 2-Cl-phenyl          | 2-C1-phenyl                          | 2-Cl-phenyl                   | 2-C1-phenyl                          | 2-Cl-phenyl                          | 2-C1-phenyl                          | 3-C1-phenyl                          | 3-Cl-phenyl                          | 3-c1-phenyl                          | 3-Cl-phenyl                          | 3-cl-phenyl                          | 3-cl-phenyl                          |
| 30   |                            | 3                                                     | -CH <sub>2</sub> CH <sub>2</sub> -0-               | -CH2CH2-0-                      | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-           | -CH2CH2-0-           | -CH2CH2-0-                      | -CH2CH2-0-      | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-           | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-                    | -CH <sub>2</sub> CH <sub>2</sub> -0- |
| 35   |                            |                                                       | yran-3-yl                                          | yran-3-yl                       | -3-y1                                | -3-y1                | -4-y]                | -4-yl                           | thiopyran-3-yl  | yran-3-yl                            | -3-yl                | -3-y1                                | -4-y1                         | -4-y1                                | yran-3-yl                            | yran-3-yl                            | -3-y1                                | -3-y1                                | -4-yl                                | -4-yl                                | yran-3-yl                            | yran-3-yl                            |
| 40   | Tabelle II.7 (Fortsetzung) | RC                                                    | Tetrahydrothiopyran-3-yl                           | Tetrahydrothiopyran-3-yl        | Tetrahydropyran-3-yl                 | Tetrahydropyran-3-yl | Tetrahydropyran-4-yl | Tetrahydropyran-4-yl            | Tetrahydrothiop | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl                 | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             |
| · 10 | 11.7 (F                    | R a                                                   | C 2H5                                              | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                                | n-C3H7               | C 2H5                | n-C <sub>3</sub> H <sub>7</sub> | C 2H5           | n-C3H7                               | C 2H5                | n-C3H7                               | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub>      | C2H5                                 | п-С <sub>3</sub> Н7                  | C 2H5                                | n-C3H7                               | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      |
| 50   | Tabelle                    | Nr.                                                   | A.642                                              | A.643                           | A.644                                | A.645                | A.646                | A.647                           | A.648           | A.649                                | A.650                | A.651                                | A.652                         | A.653                                | A.654                                | A.655                                | A.656                                | A.657                                | A.658                                | A.659                                | A.660                                | A.661                                |

|    |                            | [ွ.]                                                  |                                                                       |                                                                   |                      |                                                        |                               | •                                    |                                      |                                          |                               |                           |                                      |                           |                               |                           |                               |                           |                           |                                      |                           |
|----|----------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|----------------------|--------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|-------------------------------|---------------------------|--------------------------------------|---------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------|---------------------------|--------------------------------------|---------------------------|
| 5  |                            | phys. Daten / <sup>1</sup> H-NMR [ð in ppm], Fp. [°C] | 3, 93 (m, 2H), 4,20 (t, 2H), 4,43 (m, 2H), 6,90 (m, 2H), 7,25 (m, 2H) | 3,93 (m, 2H), 4,20 (t,2H), 4,43 (m,2H), 6,90 (m, 2H), 7,25 (m,2H) |                      |                                                        |                               |                                      |                                      |                                          |                               |                           |                                      |                           |                               |                           |                               |                           |                           |                                      |                           |
| 10 |                            | 1H-NMR [6                                             | 7,25 (m,2H)                                                           | 7,25 (t,2H)                                                       | 116-118              | 104-106                                                | 74- 77                        | 86-88                                |                                      |                                          |                               |                           |                                      |                           |                               |                           |                               |                           |                           |                                      | 72- 77                    |
| 15 |                            | lys. Daten /                                          | 33 (m, 2H), 4                                                         | 33 (m, 2H), 4                                                     |                      |                                                        |                               |                                      |                                      |                                          |                               |                           |                                      |                           |                               |                           |                               |                           |                           |                                      |                           |
| 20 |                            | ā                                                     | 6,9                                                                   | 6,0°                                                              |                      |                                                        |                               |                                      |                                      |                                          |                               |                           |                                      |                           |                               |                           |                               |                           |                           |                                      |                           |
| 25 |                            | R                                                     | 4-Cl-phenyl                                                           | 4-Cl-phenyl                                                       | 4-Cl-phenyl          | 4-Cl-phenyl                                            | 4-C1-pheny1                   | 4-Cl-phenyl                          | 2-CF <sub>3</sub> -phenyl            | 2-CF <sub>3</sub> -phenyl                | 2-CF <sub>3</sub> -phenyl     | 2-CF <sub>3</sub> -phenyl | 2-CF <sub>3</sub> -phenyl            | 2-CF <sub>3</sub> -phenyl | 3-CF <sub>3</sub> -phenyl     | 3-CF <sub>3</sub> -pheny1 | 3-CF <sub>3</sub> -phenyl     | 3-CF <sub>3</sub> -phenyl | 3-CF <sub>3</sub> -phenyl | 3-CF <sub>3</sub> -phenyl            | 4-CF <sub>3</sub> -phenyl |
| 30 |                            | 3                                                     | -CH2CH2-0-                                                            | -СН2СН2-0-                                                        | -CH2CH2-0-           | -CH2CH2-0-                                             | -CH2CH2-0-                    | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH <sub>2</sub> CH <sub>2</sub> -0-     | -CH2CH2-0-                    | -CH2CH2-0-                | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-                | -CH2CH2-0-                    | -CH2CH2-0-                | -CH2CH2-0-                    | -CH2CH2-0-                | -CH2CH2-0-                | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH2CH2-0-                |
| 35 |                            |                                                       | -y1                                                                   | -y 1                                                              | -yl                  | -y1                                                    | an-3-y1                       | an-3-y1                              | -y 1                                 | -y l                                     | -y l                          | -y1                       | an-3-y1                              | an-3-yl                   | -y1                           | -y l                      | -y1                           | -y }                      | an-3-yl                   | an-3-y1                              | -y1                       |
| 40 | Tabelle II.7 (Fortsetzung) | æ.                                                    | Tetrahydropyran-3-yl                                                  | n-C <sub>3</sub> H <sub>7</sub> Tetrahydropyran-3-yl              | Tetrahydropyran-4-yl | n-C <sub>3</sub> H <sub>7</sub> · Tetrahydropyran-4-yl | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl                 | Tetrahydropyran-3-yl                     | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl      | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl  | Tetrahydropyran-3-yl          | Tetrahydropyran-3-yl      | Tetrahydropyran-4-yl          | Tetrahydrópyran-4-yl      | Tetrahydrothiopyran-3-yl  | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl      |
| .• | 11.7 (F                    | Ra                                                    | C 2H5                                                                 | n-C <sub>3</sub> H <sub>7</sub>                                   | C 2H5                | n-C3H7                                                 | C <sub>2</sub> H <sub>5</sub> | n-C3H7                               | C <sub>2</sub> H <sub>5</sub>        | A.669 'n-C <sub>3</sub> H <sub>7</sub> ' | C <sub>2</sub> H <sub>5</sub> | n-C3H7                    | C <sub>2</sub> H <sub>5</sub>        | n-C3H7                    | C <sub>2</sub> H <sub>5</sub> | n-C3H7                    | C <sub>2</sub> H <sub>5</sub> | n-C3H7                    | C 2H5                     | n-C3H7                               | C 2H5                     |
| 50 | Tabelle                    | Nr.                                                   | A.662                                                                 | A.663                                                             | A.664                | A.665                                                  | A.666                         | A.667                                | A.668                                | A.669                                    | A.670                         | A.671                     | A.672                                | A.673                     | A.674                         | A.675                     | A.676                         | A.677                     | A.678                     | A.679                                | A.680                     |

|          |                            | [၁ <sub>၀</sub> ]                    | <u> </u>                              |                                 |                                   |                           |                                                         |                                 |                                   |                                      |                                          |                                 |                                                          |                                 |                                      |                                      |                                                    |                                 |                                       |
|----------|----------------------------|--------------------------------------|---------------------------------------|---------------------------------|-----------------------------------|---------------------------|---------------------------------------------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------------------------|---------------------------------|----------------------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------------|
| 5        |                            | տ], Fp.                              | 7 (m, 2H)                             |                                 |                                   |                           | ( ф, 2н)                                                |                                 |                                   | 7,37 (t,2H)                          | 4,45 (t,2H)                              | 6,87 (d,1н)                     | (t, 2H), 6,87 (d,1H)                                     |                                 |                                      |                                      | i (m, 2H),                                         |                                 | (s, 2H)                               |
| -        |                            | in pp                                | 4,4                                   |                                 |                                   |                           | 7,00                                                    |                                 |                                   | 7,37                                 |                                          |                                 | 6,87                                                     |                                 |                                      |                                      | 4,45                                               |                                 | 7,82                                  |
| 10       |                            | phys. Daten / 1H-NMR [ð in ppm], Fp. | 3,90 (m,2H), 4,27 (t,2H), 4,47 (m,2H) |                                 | <del>76 -06</del>                 | 73- 79                    | 4, 27 {t, 2H}, 4, 47 (m, 2H), 7,00 (d, 2H) 7,55 {d, 2H} | 73- 75                          | 69- 73                            | {a, 2H}; 4, 25 {t, 2H};              | 4,25 (4,2);                              | 4,45 (t,2H)'                    | 7, 37                                                    | 90- 93                          | 83- 87                               | 79- 82                               | 4,00 (m,2H), 4,27 (t,2H), 4,45 (m,2H), 7,32 (s,2H) | 105-108                         | 4,27 (t,2H), 4,45 (m,2H), 7,82 (s,2H) |
| 15       |                            | phys. Daten                          | 3, 90 (m, 2H);                        |                                 |                                   | ,                         | 4, 27 (t, 2H)'                                          |                                 |                                   | 4, 90 (m, 2H);<br>6, 87 (d, 1H);     | 4,00 (m,2H);<br>6,87 (d,1H);             | 4,25 (t,2H);                    | 4,25 (4,24);                                             |                                 |                                      |                                      | 4, 00 (m, 2H), 7, 32 (s, 2H)                       |                                 | 4,27 (t,2H),                          |
| 20       |                            |                                      |                                       |                                 |                                   |                           |                                                         | ly 1                            | ıy 1                              | ly l                                 | ışı                                      | l fi                            | l y l                                                    | enyl                            | eny1                                 | eny1                                 | enyl                                               | enyl                            | enyl                                  |
| 25       |                            | Rf                                   | 4-CF 3-pheny l                        | 4-CF <sub>3</sub> -phenyl       | 4-CF3-phenyl                      | 4-CF <sub>3</sub> -phenyl | 4-CF3-phenyl                                            | 2, 4-Cl <sub>2</sub> -phenyl    | 2, 4-Cl <sub>2</sub> -phenyl      | 2, 4-Cl <sub>2</sub> -phenyl         | 2, 4-Cl <sub>2</sub> -phenyl             | 2, 4-Cl <sub>2</sub> -phenyl    | 2, 4-Cl <sub>2</sub> -phenyl                             | 2, 4, 6-Cl <sub>3</sub> -phenyl | 2, 4, 6-Cl <sub>3</sub> -phenyl      | 2, 4, 6-Cl <sub>3</sub> -phenyl      | 2, 4, 6-cl <sub>3</sub> -phenyl                    | 2, 4, 6-Cl <sub>3</sub> -phenyl | 2, 4, 6-cl <sub>3</sub> -phenyl       |
| (        |                            |                                      |                                       |                                 |                                   |                           |                                                         |                                 |                                   |                                      |                                          |                                 |                                                          |                                 |                                      |                                      |                                                    |                                 |                                       |
| 30       |                            | Z                                    | -CH2CH2-0-                            | -CH2CH2-0-                      | -CH2CH2-0-                        | -СН2СН2-0-                | -CH2CH2-0-                                              | -CH2CH2-0-                      | -CH2CH2-0-                        | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH <sub>2</sub> CH <sub>2</sub> -0-     | -CH2CH2-0-                      | -CH2CH2-0-                                               | -CH2CH2-0-                      | -CH <sub>2</sub> CH <sub>2</sub> -0- | -CH <sub>2</sub> CH <sub>2</sub> -0- | -сн2сн2-о-                                         | -CH2CH2-0-                      | -CH2CH2-0-                            |
| 35       |                            |                                      | ın-3-y l                              | In-4-y1                         | ın-4-ÿ1                           | pyran-3-yl                | pyran-3-yl                                              | ın-3-y1                         | ın-3-y l                          | ın-4-y l                             | In-4-y1                                  | pyran-3-yl                      | pyran-3-yl                                               | ın-3-y l                        | ın-3-y l                             | In-4-n1                              | ın-4-y 1                                           | hiopyran-3-yl                   | pyran-3-yl                            |
| 40<br>45 | Tabelle II.7 (Fortsetzung) | RC                                   | Tetrahydropyran-3-yl                  | Tetrahydropyran-4-yl            | Tetrahydropyran-4-ÿl              | Tetrahydrothiopyran-3-yl  | Tetrahydrothiopyran-3-yl                                | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl              | Tetrahydropyran-4-yl                 | n-C <sub>3</sub> H7 Tetrahydropyran-4-yl | Tetrahydrothiopyran-3-yl        | n-C <sub>3</sub> H <sub>7</sub> Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                               | Tetrahydrothio                  | Tetrahydrothiopyran-3-yl              |
|          | 11.7 (FC                   | Ra                                   | n-C3H7 1                              | C <sub>2</sub> H <sub>5</sub> 1 | n-C <sub>3</sub> H <sub>7</sub> 1 | C2H5 1                    | n-C <sub>3</sub> H <sub>7</sub> ]                       | C <sub>2</sub> H <sub>5</sub> 1 | n-C <sub>3</sub> H <sub>7</sub> 1 | C <sub>2</sub> H <sub>5</sub> 1      | n-C <sub>3</sub> H <sub>7</sub>          | C <sub>2</sub> H <sub>5</sub> 1 | n-C <sub>3</sub> H <sub>7</sub>                          | C 2H5 1                         | n-C <sub>3</sub> H <sub>7</sub> 1    | C <sub>2</sub> H <sub>5</sub> 1      | n-C <sub>3</sub> H7 1                              | C <sub>2</sub> H <sub>5</sub> 1 | n-C <sub>3</sub> H <sub>2</sub>       |
| 50       | Tabelle                    | Nr.                                  | A.681                                 | A.682                           | A.683                             | A.684                     | A.685                                                   | A.686                           | A.687                             | A.688                                | A.689                                    | A.690                           | A.691                                                    | A.692                           | A:693                                | 4.694                                | A.695                                              | A.696                           | A.697                                 |

|                        |                            | (ွင္)                                                 |                                     |                                       |                               |                           |                                  |                                                            |                               |                                          |                                          |                                          |                               |                          |                                          |                                          |                      |                                          |                                          |                                          |
|------------------------|----------------------------|-------------------------------------------------------|-------------------------------------|---------------------------------------|-------------------------------|---------------------------|----------------------------------|------------------------------------------------------------|-------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------|--------------------------|------------------------------------------|------------------------------------------|----------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| 5                      |                            | ı ppm], Fp.                                           | , 50 (m, 2H)                        | , 50 (m, 2н)                          |                               |                           | ',00 (d,2H)                      | ',00 (d,2H)                                                |                               |                                          |                                          |                                          |                               |                          |                                          |                                          |                      |                                          |                                          |                                          |
| 10                     |                            | phys. Daten / <sup>1</sup> H-NMR [ð in ppm], Fp. (°C] | 4, 32 {m, 2H}, 4, 50 (m, 2H), 8, 20 | {m, 2H}, 4, 32 {m, 2H}, 4, 50 (m, 2H) | 126-129                       | 138-141                   | 4,50 (m,2H), 7,00 (d,2H),        | {m, 2H}, 4,50 (m,2H), 7,00 (d,2H)                          |                               |                                          |                                          |                                          |                               |                          |                                          |                                          |                      |                                          |                                          |                                          |
| <b>15</b>              |                            | hys. Daten /                                          | 3, 90 (m, 2H); 6                    | 3,90 (m,2H); 4                        |                               | _                         | 8, 32 (m, 2H), 48, 20 (d, 2H), 4 | 8, 20 (d, 2H), 4                                           |                               |                                          |                                          |                                          |                               |                          |                                          |                                          |                      |                                          |                                          |                                          |
| 20                     |                            | ۵                                                     | 4,7                                 | wr,                                   |                               |                           | 4,00                             | 4,00                                                       |                               |                                          |                                          |                                          |                               |                          |                                          |                                          |                      |                                          |                                          |                                          |
| 25                     |                            | Rf                                                    | 4-NO <sub>2</sub> -phenyl           | 4-NO <sub>2</sub> -phenyl             | 4-NO <sub>2</sub> -phenyl     | 4-NO <sub>2</sub> -phenyl | 4-NO <sub>2</sub> -phenyl        | 4-NO <sub>2</sub> -phenyl                                  | Pheny l                       | Pheny l                                  | Phenyl                                   | Pheny 1                                  | Phenyl                        | Phenyl                   | 4-F-phenyl                               | 4-F-phenyl                               | 4-F-phenyl           | 4-F-phenyl                               | 4-F-phenyl                               | 4-F-phenyl                               |
| 30                     |                            | x                                                     | -CH2CH2-0-                          | -CH2CH2-0-                            | -CH2CH2-0-                    | -CH2CH2-0-                | -СН2СН2-0-                       | -СН2СН2-0-                                                 | -сн 2сн (сн 3) -о-            | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о- | -CH <sub>2</sub> CH(CH <sub>3</sub> )-0- | -CH <sub>2</sub> CH(CH <sub>3</sub> )-O- | -сн2сн(сн3)-о-                | -сн2сн(сн3)-о-           | -CH <sub>2</sub> CH(CH <sub>3</sub> )-O- | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о- | -сн2сн(сн3)-о-       | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о- | -CH <sub>2</sub> CH(CH <sub>3</sub> )-0- | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о- |
| 35                     | ·                          |                                                       | -y1                                 | .y1                                   | ıy.                           | ıyı                       | ın-3-yl                          | ın-3-y}                                                    | -y l                          | .y.                                      | .y1                                      | .y1                                      | ın-3-y l                      | ın-3-y1                  | ly.                                      | ı,                                       | .y.l                 | .y.l                                     | in-3-y1                                  | ın-3-y1                                  |
| <b>40</b><br><b>45</b> | Tabelle II.7 (Fortsetzung) | RC                                                    | Tetrahydropyran-3-yl                | Tetrahydropyran-3-yl                  | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl      | Tetrahydrothiopyran-3-yl         | n-C <sub>3</sub> H <sub>7</sub> . Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl          | Tetrahydropyran-3-yl                     | Tetrahydropyran-4-yl                     | Tetrahydropyran-4-yl                     | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl                     | Tetrahydropyran-3-yl                     | Tetrahydropyran-4-yl | Tetrahydropyran-4-yl                     | Tetrahydrothiopyran-3-yl                 | Tetrahydrothiopyran-3-yl                 |
| .•                     | 11.7 (F                    | Ra                                                    | C2H5                                | n-C3H7                                | C <sub>2</sub> H <sub>5</sub> | n-C3H7                    | C <sub>2</sub> H <sub>5</sub>    | n-C3H7                                                     | C <sub>2</sub> H <sub>5</sub> | n-C3H7                                   | C <sub>2</sub> H <sub>5</sub>            | n-C3H7                                   | C <sub>2</sub> H <sub>5</sub> | n-C3H7                   | C <sub>2</sub> H <sub>5</sub>            | n-C3H7                                   | C 2 H 5              | n-C3H7                                   | C <sub>2</sub> H <sub>5</sub>            | n-C <sub>3</sub> H7                      |
| 50                     | Tabelle                    | ŗ.                                                    | A.698                               | A.699                                 | A.700                         | A.701                     | A.702                            | A.703                                                      | A.704                         | A.705                                    | A.706                                    | A.707                                    | A.708                         | A.709                    | A.710                                    | A.711                                    | A.712                | A.713                                    | A.714                                    | A.715                                    |
|                        |                            |                                                       |                                     |                                       |                               |                           |                                  |                                                            |                               |                                          |                                          |                                          |                               |                          |                                          |                                          |                      |                                          |                                          |                                          |

| 5  |                           | phys. Daten / lH-NMR [ð in ppm], Fp. [°C] |                                          |                                          | 6,80-7,40 (m,2H),                        | 6,80-7,40 (m,2H),                        | 4,05-4,25 (m,2H),<br>6,80-7,40 (m,4H)        | 6,80-7,40 (m,2H),                        | 4,23 (t,2H), 7,17-7,43 (m,5H)   | 65                   | 3,97 (m,2H), 4,23 (t,2H), 7,17-7,43 (m,5H) | 4,23 (t,2H), 7,17-7,43 (m,5H)     | -7,43 (m,5н)                  | 7,17-7,43 (m,5H)                                         | 4,17 (t,2H), 7,00 (m,2H),       | 4,17 (t,2H), 7,00 (m,2H),            | 4,17 (t,2H), 7,00 (m,2H),       | (m,2H), 4,17 (t,2H), 7,00 (m,2H),                          |
|----|---------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------|----------------------|--------------------------------------------|-----------------------------------|-------------------------------|----------------------------------------------------------|---------------------------------|--------------------------------------|---------------------------------|------------------------------------------------------------|
| 15 |                           | phys. Daten / 1H                          |                                          |                                          | 1,35 (m,3H), 4,05<br>4,60 (m,1H), 6,80   | 1,35 {m,3H}, 4,05<br>4,60 {m,1H}, 6,80   | 1,35 {m,3H}, 4,05<br>4,60 {m,1H}, 6,80       | 1,35 (m, 3H), 4,05<br>4,60 (m,1H), 6,80  | 3,90 (m,2H), 4,23               |                      | 3,97 (m,2H), 4,23                          | 3,97 (m,2H), 4,23                 | 4,23 (t,2H), 7,17-7,43 (m,5H) | 4,23 (t,2H), 7,17                                        | 3, 90 {m, 2H}, 4, 17            | 3, 90 {m, 2H}, 4, 17                 | 7, 40 {m, 2H}, 4, 17            | 4,00 (m,2H), 4,17                                          |
| 25 |                           | R                                         | 4-Cl-phenyl                              | 4-Cl-phenyl                              | 4-Cl-phenyl                              | 4-Cl-phenyl                              | 4-cl-phenyl                                  | 4-Cl-phenyl                              | Pheny 1                         | Phenyl               | Phenyl                                     | Pheny 1                           | Pheny1                        | Pheny1                                                   | 4-F-phenyl                      | 4-F-phenyl                           | 4-F-phenyl                      | 4-F-phenyl                                                 |
| 30 |                           | 3                                         | -CH <sub>2</sub> CH(CH <sub>3</sub> )-0- | -CH <sub>2</sub> CH(CH <sub>3</sub> )-0- | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о- | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о- | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о-     | -сн <sub>2</sub> сн(сн <sub>3</sub> )-о- | -CH2CH2-S-                      | -CH2CH2-S-           | -CH2CH2-S-                                 | -CH2CH2-S-                        | -CH2CH2-S-                    | -CH2CH2-S-                                               | -CH2CH2-S-                      | -CH <sub>2</sub> CH <sub>2</sub> -S- | -CH2CH2-S-                      | -CH <sub>2</sub> CH <sub>2</sub> -S-                       |
| 40 | rtsetzung)                | RC                                        | Tetrahydropyran-3-yl                     | Tetrahydropyran-3-yl                     | Tetrahydropyran-4-yl                     | Tetrahydropyran-4-yl                     | Tetrahydrothiopyran-3-yl                     | Tetrahydrothiopyran-3-yl                 | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl | Tetrahydropyran-4-yl                       | Tetrahydropyran-4-yl              | Tetrahydrothiopyran-3-yl      | n-C <sub>3</sub> H <sub>2</sub> Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl            | A.731 n-C <sub>3</sub> H <sub>7</sub> Tetrahydropyran-4-yl |
| 45 | Tabelle II.7 (Fortsetzung | ور<br>دو                                  | C2H5 Te                                  | n-C3H7 Te                                | C <sub>2</sub> H <sub>5</sub> Ti         | n-C3H7                                   | C <sub>2</sub> H <sub>5</sub> T <sub>6</sub> | n-C <sub>3</sub> H <sub>7</sub> Te       | C <sub>2</sub> H <sub>5</sub> T | n-C3H7 T             | C <sub>2</sub> H <sub>5</sub> T            | n-C <sub>3</sub> H <sub>7</sub> T | C2H5 T                        | n-C3H7 T                                                 | C <sub>2</sub> H <sub>5</sub> T | n-C <sub>3</sub> H <sub>7</sub> T    | C <sub>2</sub> H <sub>5</sub> T | n-C <sub>3</sub> H <sub>7</sub> T                          |
| 50 | Tabelle                   | r.                                        | A.716                                    | A.717                                    | A.718                                    | A.719                                    | A.720                                        | A.721                                    | A.722                           | A.723                | A.724                                      | A.725                             | A.726                         | A.727                                                    | A.728                           | A.729                                | A.730                           | A.731                                                      |

|      |                            | [°c] .q                                               | H),                                    | Ĕ,                                     |                                 |                      | (F                                    | Ĥ                                     |                          |                          | (m, 4H)                         | (m, 4H)                                     | (m, 4H)                                     | (m, 4H)                                     |                               |                             | =                              | =                                    |                               | =                                                |
|------|----------------------------|-------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------|---------------------------------------|---------------------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------|-----------------------------|--------------------------------|--------------------------------------|-------------------------------|--------------------------------------------------|
| 5    |                            | in ppm], F                                            | 7,40 (m,2                              | 7,40 (m,2                              |                                 | 10                   | 7,30 (m,4                             | 7,30 (m,4                             |                          |                          | 7, 10-7, 50                     | 7, 10-7, 50                                 | 7, 10-7, 50                                 | 7, 10-7, 50                                 | (н)                           | (H)                         | 7,20 (t,1H                     | 7,20 (t,1н                           | _                             | 7, 20 (t, 1н                                     |
| 10   |                            | 1H-NMR [6                                             | , 00 (m, 2H),                          | ,00 (m,2H),                            | 71- 75                          | 63- 65               | , 20 (t, 2н),                         | , 20 (t, 2H),                         | , 30 (m, 4H)             | 7, 30 (п, 4н)            | , 25 (t, 2H),                   | (m, 2H), 4, 25 (t, 2H), 7, 10-7, 50 (m, 4H) | (m, 2H), 4, 25 (t, 2H), 7, 10-7, 50 (m, 4H) | (m, 2H), 4, 25 (t, 2H), 7, 10-7, 50 (m, 4H) | 10-7, 50 (m,                  | (t, 2H) 7, 10-7, 50 (m, 4H) | 4,20 (t,2H), 7,20 (t,1H)       | {m, 2H} 4, 20 (t, 2H), 7, 20 (t, 1H) | 61- 64                        | 20 (t,2H),                                       |
| 15   |                            | phys. Daten / <sup>1</sup> H-NMR [ð in ppm], Fp. [ºC] | 4,17 (t,2H), 7,00 (m,2H), 7,40 (m,2H), | 4,17 (t,2H), 7,00 (m,2H), 7,40 (m,2H), |                                 |                      | 4,00 (m,2H), 4,20 (t,2H), 7,30 (m,4H) | 4,00 (m,2H), 4,20 (t,2H), 7,30 (m,4H) | 4,20 (t,2H), 7,30 (m,4H) | 4,20 (t,2H), 7           | 3,90 (m,2н), 4                  | 3,90 (m,2H), 4                              | 4,00 (m,2H), 4                              | 4,00 (m,2H), 4                              | 4,25 (t,2H) 7,10-7,50 (m,4H)  | 4,25 (t,2H) 7,              | 3, 90 (m, 2H) 4, 7, 40 (d, 2H) | 3, 90 (m, 2H) 4,                     |                               | 4,00 (m,2H) 4,20 (t,2H), 7,20 (t,1H) 7,40 (d,2H) |
| 20   |                            |                                                       |                                        |                                        |                                 |                      |                                       |                                       |                          |                          |                                 |                                             |                                             |                                             |                               |                             | lyl                            | ny l                                 | ny l                          | ny 1                                             |
| 25 . |                            | ርረ<br>ት                                               | 4-F-phenyl                             | 4-F-phenyl                             | 4-C1-phenyl                     | 4-Cl-phenyl          | 4-Cl-phenyl                           | 4-Cl-phenyl                           | 4-Cl-phenyl              | 4-Cl-phenyl              | 2-Cl-phenyl                     | 2-Cl-phenyl                                 | 2-Cl-phenyl                                 | 2-Cl-phenyl                                 | 2-C1-phenyl                   | 2-C1-phenyl                 | 2, 6-cl <sub>2</sub> -phenyl   | 2, 6-c1 <sub>2</sub> -pheny l        | 2, 6-Cl <sub>2</sub> -phenyl  | 2, 6-Cl <sub>2</sub> -phenyl                     |
| 30,  |                            | 3                                                     | -CH2CH2-S-                             | -CH2CH2-S-                             | -CH2CH2-S-                      | -CH2CH2-S-           | -CH2CH2-S-                            | -CH2CH2-S-                            | -CH2CH2-S-               | -CH2CH2-S-               | -CH2CH2-S-                      | -CH2CH2-S-                                  | -CH2CH2-S-                                  | -CH2CH2-S-                                  | -CH2CH2-S-                    | -CH2CH2-S-                  | -CH2CH2-S-                     | -сн <sub>2</sub> сн <sub>2</sub> -s- | -CH2CH2-S-                    | -сн <sub>2</sub> сн <sub>2</sub> -s-             |
| 35   |                            |                                                       | pyran-3-yl                             | pyran-3-yl                             | n-3-y1 .                        | n-3-y l              | n-4-y1                                | n-4-y l                               | pyran-3-yl               | pyran-3-yl               | n-3-y1                          | n-3-y1                                      | n-4-y1                                      | n-4-y l                                     | pyran-3-yl                    | pyran-3-yl                  | n-3-y1                         | n-3-y1                               | n-4-y1                        | n-4-y1                                           |
| 40   | Tabelle II.7 (Fortsetzung) | RC                                                    | Tetrahydrothiopyran-3-yl               | Tetrahydrothiopyran-3-yl               | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl | Tetrahydropyran-4-yl                  | Tetrahydropyran-4-yl                  | Tetrahydrothiopyran-3-yl | Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl            | Tetrahydropyran-3-yl                        | Tetrahydropyran-4-yl                        | Tetrahydropyran-4-yl                        | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl    | Tetrahydropyran-3-yl           | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl                             |
| 45   | 11.7 (FG                   | R.a                                                   | C <sub>2</sub> H <sub>5</sub>          | n-C <sub>3</sub> H7                    | C <sub>2</sub> H <sub>5</sub> 1 | n-C3H7 1             | C <sub>2</sub> H <sub>5</sub> 1       | n-C <sub>3</sub> H7                   | C 2H5 1                  | n-C3H7                   | C <sub>2</sub> H <sub>5</sub> 1 | n-C <sub>3</sub> H <sub>7</sub> 1           | C <sub>2</sub> H <sub>5</sub> 1             | n-C <sub>3</sub> H7                         | C <sub>2</sub> H <sub>5</sub> | n-C3H7                      | C <sub>2</sub> H <sub>5</sub>  | n-C <sub>3</sub> H <sub>7</sub>      | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub>                  |
| 50   | Tabelle                    | Nr.                                                   | A. 732                                 | A.733                                  | A.734                           | A.735                | A.736                                 | A.737                                 | A.738                    | A.739                    | A.740                           | A.741                                       | A.742                                       | A.743                                       | A.744                         | A.745                       | A.746                          | A.747                                | A.748                         | A.749                                            |

| 5<br>10                                  | phys. Daten / 1H-NMR [6 in ppm], Fp. [ $^{\circ}$ C] | 4,20 (t,2H) 7,20 (t,2H), 7,40 (d,2H) | 4,20 (t,2H) 7,20 (t,2H), 7,40 (d,2H) | 3,90 (m,2H), 4,03 (t,2H), 4,23 (t,2H),<br>6,90 (m,3H), 7,27 (m,2H) | 3,90 {m,2H}; 4,03 {t,2H}, 4,23 (t,2H),<br>6,90 {m,3H}; 7,27 {m,2H} | 3,97 (m,2H), 4,03 (t,2H), 4,23 (t,2H),<br>6,90 (m,3H), 7,27 (m,2H) | 3,97 (m,2H); 4,03 (t,2H), 4,23 (t,2H),<br>6,90 (m,3H); 7,27 (m,2H) | 4,03 (t,2H), 4,23 (t,2H), 6,90 (m,3H),<br>7,27 (m,2H) | 4,03 (t,2H), 4,23 (t,2H), 6,90 (m,3H),<br>7,27 (m,2H) | 3,90 (m,2H), 4,10 (t,2H), 4,27 (t,2H),<br>6,80-7,15 (m,4H) | 3,90 (m,2H), 4,10 (t,2H), 4,27 (t,2H),<br>6,80-7,15 (m,4H) | 6,80-7,15 (m,4H) (t,2H), 4,27 (t,2H), | 76-80                                | 4,10 (t,2H), 4,27 (t,2H), 6,80-7,15(m,4H), | 4,10 (t,2H), 4,27 (t,2H), 6,80-7,15(m,4H), | 3, 90 (m, 2H); 4, 05 (t, 2H), 4, 27 (t, 2H), 6, 67 (m, 3H); |
|------------------------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------------------------|
| 20                                       |                                                      | -                                    | •                                    |                                                                    | · · •                                                              |                                                                    |                                                                    |                                                       |                                                       |                                                            |                                                            |                                       |                                      | -                                          | -                                          |                                                             |
| 25                                       | Rf                                                   | 2, 6-Cl <sub>2</sub> -phenyl         | 2, 6-Cl <sub>2</sub> -phenyl         | Phenyl                                                             | Phenyl                                                             | Phenyl                                                             | Phenyl                                                             | Phenyl                                                | Phenyl                                                | 2-F-phenyl                                                 | 2-F-phenyl                                                 | 2-F-phenyl                            | 2-F-phenyl                           | 2-F-phenyl                                 | 2-F-phenyl                                 | 3-F-phenyl                                                  |
| 30                                       | 3                                                    | -CH2CH2-S-                           | -CH2CH2-S-                           | -(CH <sub>2</sub> ) <sub>3</sub> -0-                               | -(CH <sub>2</sub> ) <sub>3</sub> -0-                  | -(CH <sub>2</sub> ) <sub>3</sub> -0-                  | -(CH <sub>2</sub> ) <sub>3</sub> -0-                       | -(CH <sub>2</sub> ) <sub>3</sub> -0-                       | -(CH <sub>2</sub> ) <sub>3</sub> -0-  | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0-       | -(CH <sub>2</sub> ) <sub>3</sub> -0-       | -(CH <sub>2</sub> ) <sub>3</sub> -0-                        |
| 35                                       |                                                      | pyran-3-yl                           | pyran-3-yl                           | n-3-y l                                                            | n-3-y 1                                                            | n-4-y l                                                            | n-4-y l                                                            | pyran-3-yl                                            | pyran-3-yl                                            | n-3-y1                                                     | n-3-y1                                                     | n-4-y1                                | n-4-y1                               | pyran-3-yl                                 | pyran-3-yl                                 | ın-3-y1                                                     |
| 5 cf | Ye                                                   | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             | .Tetrahydropyran-3-yl                                              | Tetrahydropyran-3-yl                                               | Tetrahydropyran-4-yl                                               | Tetrahydropyran-4-yl                                               | Tetrahydrothiopyran-3-yl                              | Tetrahydrothiopyran-3-yl                              | Tetrahydropyran-3-yl                                       | Tetrahydropyran-3-yl                                       | Tetrahydropyran-4-yl                  | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl                   | Tetrahydrothiopyran-3-yl                   | Tetrahydropyran-3-yl                                        |
| . 11.7 (F                                | R da                                                 | C <sub>2</sub> H <sub>5</sub>        | n-C3H7                               | C <sub>2</sub> H <sub>5</sub>                                      | n-C3H7                                                             | C2H5                                                               | n-C <sub>3</sub> H <sub>7</sub>                                    | C2H5                                                  | n-C <sub>3</sub> H <sub>7</sub>                       | C <sub>2</sub> H <sub>5</sub>                              | n-C <sub>3</sub> H <sub>7</sub>                            | C 2H5                                 | n-C3H7                               | C2HS                                       | n-C <sub>3</sub> H <sub>7</sub>            | C 2H5                                                       |
| S Tabelle                                | Ä.                                                   | A.750                                | A.751                                | A.752                                                              | A.753                                                              | A.754                                                              | A.755                                                              | A.756                                                 | A.757                                                 | A.758                                                      | A.759                                                      | A.760                                 | A.761                                | A.762                                      | A.763                                      | A.764                                                       |

|    |                           | phys. Daten / 1H-NMR [ø in ppm], Fp. [°C] | H),                                                             |                                                         |                                                         | Î                                    | Î                                    | Ť,                                   | É,                                   |                                      |                                                         | Ť,                                   | Ť,                                   |                                      |                                      |                                      |
|----|---------------------------|-------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 5  |                           | pm], Fi                                   | 3,90 (m,2H), 4,05 (t,2H), 4,27 (t,2H), 6,67 (m,3H), 7,23 (m,1H) |                                                         |                                                         | 4,27 (t,2H), 6,67 (m,3H)             | 4,27 (t,2H), 6,67 (m,3H)             | 4,03 (t,2H), 4,27 (t,2H),            | (t, 2H), 4, 27 (t, 2H),<br>(m, 2H)   |                                      |                                                         | 4,27 (t,2H), 6,90 (m,2H),            | 4,27 (t,2H), 6,90 (m,2H),            |                                      | -                                    |                                      |
| ·  |                           | in p                                      | , 4,2                                                           | (t, 2H)                                                 | (t, 2H)                                                 | 9'9'                                 | 9'9'                                 | , 4,2                                | , 4,2                                | (t, 2H)                              | (t, 2H)                                                 | 6′9′                                 | 6 '9' '(                             |                                      |                                      |                                      |
| 10 |                           | NMR [                                     | (t, 2H                                                          | 4, 27<br>(m, 1H)                                        | 4, 27<br>(m, 1H)                                        | (t, 2H)                              | (t, 2H)                              | (t, 2H)                              | (t, 2H)                              | 4, 23 (t, 2H),<br>(m, 2H)            | 4, 28<br>(m, 2H)                                        | (t, 2H)                              | (t, 2H)                              | j                                    |                                      |                                      |
|    | ,                         | -H-                                       | 4,05                                                            | , 4H)<br>7,23                                           | , 4H)<br>7,23                                           |                                      | 4, 27                                | 4, 03<br>7, 00                       | 4,03                                 | 1, 44,                               | 1,44,                                                   |                                      | 4,27                                 |                                      |                                      |                                      |
| 15 |                           | Daten                                     | n, 2H<br>3∰,′,                                                  | ", 10 (m                                                | , 10 (m<br>, 3H),                                       | t, 2H),                              | t, 2H),                              | n, 2H);                              | a, 2H);                              | n, 2H),                              | ,06 (m                                                  | t, 2H},                              | (t, 2H),<br>(m, 2H),                 |                                      |                                      |                                      |
|    |                           | phys.                                     | 2, 90                                                           | 3,90-4,10 (m,4H), 4,27 (t,2H), 6,67 (m,3H), 7,23 (m,1H) | 3,90-4,10 (m,4H), 4,27 (t,2H), 6,67 (m,3H), 7,23 (m,1H) | 7, 23 (t, 2H),                       | 4,05 (t,2H),<br>7,23 (m,1H)          | 3, 90 (m, 2H);<br>6, 90 (m, 2H);     | 3, 90 (m, 2H);<br>6, 90 (m, 2H);     | 3,90-4,06 (m,4H)<br>6,90 (m,2H),7,06 | 3,90-4,06 (m,4H), 4,28 (t,2H), 6,90 (m,2H), 7,06 (m,2H) | 7,03 (t,2H),                         | 7,003                                |                                      |                                      |                                      |
| 20 |                           |                                           |                                                                 | .,0                                                     | W.                                                      | 711                                  | 711                                  | (10)                                 | ****                                 | *10                                  |                                                         | 717                                  | 711                                  |                                      |                                      |                                      |
|    |                           |                                           | nyı                                                             | ny 1                                                    | ny 1                                                    | ny 1                                 | ny 1                                 | ny l                                 | nyl                                  | l fu                                 | nyl                                                     | nyl                                  | ny J                                 | enyl                                 | enyl                                 | eny l                                |
| 25 |                           |                                           | 3-F-phenyl                                                      | 3-F-phenyl                                              | 3-F-phenyl                                              | 3-F-phenyl                           | 3-F-phenyl                           | 4–F–phenyl                           | 4-F-phenyl                           | 4-F-phenyl                           | 4-F-phenyl                                              | 4-F-phenyl                           | 4-F-phenyl                           | 2-Cl-phenyl                          | 2-C1-pheny                           | 2-cl-phenyl                          |
|    |                           |                                           | e e                                                             | m                                                       | m                                                       | m                                    | m                                    | 4                                    | 4                                    | 4                                    | 4                                                       | 4                                    | 4                                    | 7                                    | 7                                    | 7                                    |
| 30 |                           | 3                                         | (CH <sub>2</sub> ) <sub>3</sub> -0-                             | 3-0-                                                    | 3-0-                                                    | 3-0-                                 | 3-0-                                 | 3-0-                                 | 3-0-                                 | 3-0-                                 | 3-0-                                                    | 3-0-                                 | 3-0-                                 | 3-0-                                 | 3-0-                                 | 3-0-                                 |
|    |                           | _                                         | -(CH <sub>2</sub>                                               | -(CH <sub>2</sub> ) <sub>3</sub> -0-                    | -(CH <sub>2</sub> ) <sub>3</sub> -0-                    | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0-                    | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0- |
| 35 |                           |                                           | <br> <br> -<br> -                                               |                                                         |                                                         | -3-y1                                | -3-y1                                | _                                    | _                                    |                                      |                                                         | -3-y1                                | -3-y l                               |                                      |                                      | _                                    |
|    |                           |                                           | n-3-y1                                                          | n-4-y l                                                 | n-4-y]                                                  | pyran-                               | pyran-                               | n-3-y                                | ın-3-y l                             | in-4-y]                              | In-4-y]                                                 | othiopyran-3-yl                      | othiopyran-3-yl                      | ın-3-y                               | opyran-3-yl                          | opyran-4-yl                          |
| 40 | ng)                       | R <sub>C</sub>                            | Tetrahydropyran-3-yl                                            | Tetrahydropyran-4-yl                                    | Tetrahydropyran-4-yl                                    | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl                 | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                                    | rothic                               | rothic                               | Tetrahydropyran-3-yl                 | ropyra                               | ropyra                               |
|    | tsetzu                    | œ                                         | trahyd                                                          | trahyd                                                  | trahyd                                                  | trahyd                               | trahyd                               | trahyd                               | trahyd                               | trahyd                               | trahyd                                                  | Tetrahydr                            | Tetrahydr                            | trahyd                               | Tetrahydr                            | Tetrahydr                            |
| 45 | (For                      |                                           | •                                                               | <u>a</u>                                                |                                                         | Te                                   |                                      | Ţe                                   |                                      |                                      |                                                         | Te                                   |                                      |                                      |                                      | <del>T</del>                         |
|    | e 11.7                    | Ra                                        | n-C3H7                                                          | C 2H5                                                   | n-C <sub>3</sub> H <sub>2</sub>                         | C <sub>2</sub> H <sub>5</sub>        | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                | n-C3H7                               | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>                         | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | C2H5                                 | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                |
| 50 | Tabelle II.7 (Fortsetzung | ŗ.                                        | A.765                                                           | A.766                                                   | A.767                                                   | A.768                                | A.769                                | A.770                                | A.771                                | A.772                                | A.773                                                   | A.774                                | A.775                                | A.776                                | A.777                                | A.778                                |
|    | -                         |                                           |                                                                 |                                                         |                                                         |                                      |                                      |                                      |                                      |                                      |                                                         |                                      |                                      |                                      |                                      |                                      |

|    |                            | [°c]                                      |                                      |                                      |                                      | <u></u>                                             | <u>ئ</u> ي                                                  | =                                                                                       | =                                            | <u>``</u>                                                        | <u>,</u>                             | ÷                                         | ÷                                                                  |                                                         |                                                         | ;<br>;                                                |
|----|----------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| 5  |                            | a], Fp                                    |                                      |                                      |                                      | (t, 2H                                              | (t, 2H                                                      | (m, 1H                                                                                  | (m, 1H                                       | (m, 1H                                                           | (m, 1H                               | (t, 2H                                    | (t, 2H                                                             |                                                         |                                                         | (т, 2н                                                |
|    |                            | in pp                                     | ļ<br>!                               |                                      |                                      | 4, 27                                               | 4, 27                                                       | , 2H} 5                                                                                 | , 2H},                                       | 6,77                                                             | 6,77                                 | 4,23                                      | 4,23                                                               | , 2н),                                                  | , 2н),                                                  | 6,80                                                  |
| 10 |                            | -NMR [d                                   |                                      |                                      |                                      | (t, 2H);                                            | (t, 2社);                                                    | 4, 27 (t<br>(m, 2H),                                                                    | 4, 27 (t (m, 2H),                            | (t, 2H),                                                         | 4,27 (t,2H), 6,77 (m,1H),            | 4,03 (t,2H), 4,23 (t,2H),<br>7,20 (m,2H), | (t, 2H),                                                           | 4, 23 (t<br>(m, 2H)                                     | $\{4, \frac{23}{(m, 2H)}\}^{t}$                         | (t, 2H),                                              |
| 15 |                            | phys. Daten / 1H-NMR [đ in ppm], Fp. [°C] |                                      |                                      |                                      | 3,90 (m,2H), 4,06 (t,2H), 4,27 (t,2H), 6,77 (m,1H). | 3, 90 {m, 2H}; 4, 96 {t, 2H}; 4, 27 {t, 2H}, 6, 77 {m, 1H}; | 3, 90-4, 10 (m, 4H) 4, 27 (t, 2H) 7 (m, 1H) 6, 77 (m, 1H), 6, 96 (m, 2H), 7, 17 (m, 1H) | 3, 90-4, 10 {m, 4H} 4, 27 {t, 2H} 7, (m, 1H) | 6,96 (t,2H), 4,27 (t,2H), 6,77 (m,1H), 6,90 (m,2H), 7,17 (m,1H), | (t, 2H);                             | (m, 2H);                                  | 3,90 (m,2H); 4,03 (t,2H), 4,23 (t,2H),<br>6,80 (m,2H); 7,20 (m,2H) | 3,90-4,09 (m,4H), 4,23 (t,2H), 6,80 (m,2H), 7,26 (m,2H) | 3,90-4,09 (m,4H), 4,23 (t,2H), 6,80 (m,2H), 7,20 (m,2H) | 4,03 (t,2H), 4,23 (t,2H), 6,80 (m,2H),<br>7,20 (m,2H) |
| 20 |                            | phy                                       |                                      |                                      |                                      | 9, 9,                                               | 3,90                                                        | 3,90                                                                                    | 3,90                                         | 4,9                                                              | 4, 06<br>6, 90                       | 3, 90<br>6, 80                            | 68<br>60                                                           | ა,ტ<br><u>გ</u> ფ                                       | ω, <b>φ</b> ,                                           | 7, 5                                                  |
| 25 |                            | R                                         | 2-c1-phenyl                          | 2-C1-phenyl                          | 2-Cl-phenyl                          | 3-cl-phenyl                                         | 3-c1-phenyl                                                 | 3-cl-phenyl                                                                             | 3-cl-phenyl                                  | 3-cl-phenyl                                                      | 3-cl-phenyl                          | 4-Cl-phenyl                               | 4-Cl-phenyl                                                        | 4-Cl-phenyl                                             | 4-Cl-phenyl                                             | 4-Cl-phenyl                                           |
| 30 |                            | 3                                         | -(CH <sub>2</sub> ) <sub>3</sub> -0-                | -(CH <sub>2</sub> ) <sub>3</sub> -0-                        | -(CH <sub>2</sub> ) <sub>3</sub> -0-                                                    | -(CH <sub>2</sub> ) <sub>3</sub> -0-         | -(CH <sub>2</sub> ) <sub>3</sub> -0-                             | -(CH <sub>2</sub> ) <sub>3</sub> -0- | -(CH <sub>2</sub> ) <sub>3</sub> -0-      | -(CH <sub>2</sub> ) <sub>3</sub> -0-                               | -(CH <sub>2</sub> ) <sub>3</sub> -0-                    | -(CH <sub>2</sub> ) <sub>3</sub> -0-                    | -(CH <sub>2</sub> ) <sub>3</sub> -0-                  |
| 35 |                            |                                           | l k                                  | n-3-y 1                              |                                      | y 1                                                 | yl                                                          | yl                                                                                      |                                              |                                                                  |                                      | l ý.                                      | yl                                                                 | l ý.                                                    | lķ                                                      |                                                       |
| 40 | Tabelle II.7 (Fortsetzung) | S C                                       | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl                                | Tetrahydropyran-3-yl                                        | Tetrahydropyran-4-yl                                                                    | Tetrahydropyran-4-yl                         | Tetrahydrothiopyran-3-yl                                         | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl                      | n-C <sub>3</sub> H <sub>2</sub> Tetrahydropyran-3-yl               | Tetrahydropyran-4-yl                                    | n-C <sub>3</sub> H7 Tetrahydropyran-4-yl                | Tetrahydrothiopyran-3-yl                              |
|    | 11.7 (F                    | e<br>S                                    | n-C3H7                               | C <sub>2</sub> H <sub>5</sub>        | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                               | n-C <sub>3</sub> H <sub>2</sub>                             | C 2H5                                                                                   | n-C <sub>3</sub> H <sub>7</sub>              | C 2H5                                                            | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                     |                                                                    | C 2 M 5                                                 | n-C <sub>3</sub> H <sub>7</sub>                         | C <sub>2</sub> H <sub>5</sub>                         |
| 50 | Tabelle                    | 'n.                                       | A.779                                | A.780                                | A.781                                | A.782                                               | A.783                                                       | A.784                                                                                   | A.785                                        | A.786                                                            | A.787                                | A.788                                     | A.789                                                              | A.790 C2H5                                              | A.791                                                   | A.792 C2H5                                            |

| <b>45</b><br><b>50</b> | , | labelle II./ (Fortsetzung)<br>Nr. R <sup>a</sup> | A.793 n-C <sub>3</sub> H <sub>7</sub> Tetral | A.794 C <sub>2</sub> H <sub>5</sub> Tetral          | A.795 n-C <sub>3</sub> H <sub>7</sub> Tetral | A.796 C <sub>2</sub> H <sub>5</sub> Tetral | A.797 n-C <sub>3</sub> H <sub>7</sub> Tetral | A.798 C <sub>2</sub> H <sub>5</sub> Tetral | A.799 n-C <sub>3</sub> H <sub>2</sub> Tetral             | A.800 C <sub>2</sub> H <sub>5</sub> Tetral     | A.801 n-C <sub>3</sub> H <sub>7</sub> Tetral                       | A.802 C <sub>2</sub> H <sub>5</sub> Tetral  | A.803 n-C <sub>3</sub> H <sub>7</sub> Tetral               | A.804 C <sub>2</sub> H <sub>5</sub> Tetral            | 5 n-C <sub>3</sub> H <sub>7</sub> Tetra               |
|------------------------|---|--------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 35<br>40               |   | czung <i>)</i><br>R <sup>C</sup>                 | Tetrahydrothiopyran-3-yl                     | Tetrahydropyran∼3-yl                                | Tetrahydropyran-3-yl                         | Tetrahydropyran-4-yl                       | n-C <sub>3</sub> H7 Tetrahydropyran-4-yl     | Tetrahydrothiopyran-3-yl                   | n-C <sub>3</sub> H <sub>7</sub> Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl                           | n-C <sub>3</sub> H <sub>7</sub> Tetrahydropyran-3-yl               | Tetrahydropyran∽4-yl                        | n-C <sub>3</sub> H <sub>7</sub> Tetrahydropyran-4-yl       | Tetrahydrothiopyran-4-yl                              | A.805 n-C <sub>3</sub> H7 Tetrahydrothiopyran-4-yl    |
| 30                     |   | 3                                                | -(CH <sub>2</sub> ) <sub>3</sub> -0-         | -(CH <sub>2</sub> ) <sub>3</sub> -0-                | -(CH <sub>2</sub> ) <sub>3</sub> -0-         | -(CH <sub>2</sub> ) <sub>3</sub> -0-       | -(CH <sub>2</sub> ) <sub>3</sub> -0-         | -(CH <sub>2</sub> ) <sub>3</sub> -0-       | -(CH <sub>2</sub> ) <sub>3</sub> -0-                     | -(CH <sub>2</sub> ) <sub>3</sub> -0-           | -(CH <sub>2</sub> ) <sub>3</sub> -0-                               | -(CH <sub>2</sub> ) <sub>3</sub> -0-        | -(CH <sub>2</sub> ) <sub>3</sub> -0-                       | -(CH <sub>2</sub> ) <sub>3</sub> -0-                  | -(CH <sub>2</sub> ) <sub>3</sub> -0-                  |
| 25                     |   | يو<br>عن                                         | 4-Cl-phenyl                                  | 4-NO <sub>2</sub> -phenyl                           | 4-NO <sub>2</sub> -pheny l                   | 4-NO <sub>2</sub> -phenyl                  | 4-NO <sub>2</sub> -pheny1                    | 4-NO <sub>2</sub> -phenyl                  | 4-NO <sub>2</sub> -phenyl                                | 4-Br-phenyl                                    | 4-Br-phenyl                                                        | 4-Br-phenyl                                 | 4-Br-phenyl                                                | 4-Br-phenyl                                           | 4-Br-phenyl                                           |
| 20                     | , | phys.                                            | 4, 93 {                                      | 3, 90 (6, 93                                        | 3, 90 (6, 93                                 | 6, 93                                      | 4, 00<br>6, 93<br>6                          | 4, 20<br>8, 20 {                           | 4, 20<br>8, 20 {                                         | 3, 90<br>6, 80<br>80, 90                       | 3, 90                                                              | 3, 90-4<br>6, 80 (                          | 3, 90-4<br>6, 80 (                                         | 4,00                                                  | 4,00                                                  |
| 15                     |   | Daten / 1H-                                      | t, 2H}, 4, 23<br>m, 2H}                      | m, 2H); 4, 20<br>d, 2H); 8, 20                      | (m, 2H); 4, 20<br>(d, 2H); 8, 20             | (m, 2H); 4, 20<br>(d, 2H); 8, 20           | (m, 2H); 4, 20<br>(d, 2H); 8, 20             | t, 2H}, 4, 28                              | t, 2H}, 4, 28<br>d, 2H}                                  | a, 2H}; 4, 00                                  | d, 2H); 4, 90                                                      | d, 2H), (m, 4H),                            | d, 2H), (m, 4H),                                           | (t,2H), 4,27                                          | (t,2H), 4,27                                          |
| 10                     |   | phys. Daten / lH-NMR [đ in ppm], Fp.             | (t,2H), 4,23 (t,2H), 6,80 (m,2H)             | (m, 2H), 4, 20 (t, 2H), 4, 28 (t, 2H), 8, 20 (d, H) | {t, 2H}, 4, 28 (t, 2H), {d, 2H},             | {t, 2H}, 4, 28 (t, 2H),                    | 8,20 {t,2H}, 4,28 (t,2H),                    | {t, 2H}, 4, 28 (t, 2H), 6, 93 (d, 2H),     | {t,2H}, 4,28 (t,2H), 6,93 (d,2H),                        | $\{a, 2H\}, f, 90 \{t, 2H\}, 4, 27 \{t, 2H\},$ | 3,90 (m,2H), 4,00 (t,2H), 4,27 (t,2H),<br>6,80 (d,2H), 7,37 (d,2H) | 3,90-4,10 (m,4H), 4,27 (t,2H), 6,80 (d,2H), | 3,90-4,10 (m,4H), 4,27 (t,2H),<br>6,80 (d,2H), 7,37 (d,2H) | 4,00 (t,2H), 4,27 (t,2H), 6,80 (d,2H),<br>7,37 (d,2H) | 4,00 (t,2H), 4,27 (t,2H), 6,80 (d,2H),<br>7,37 (d,2H) |
| 5                      |   | ı], Fp. [°C]                                     | (m, 2H),                                     | (t, 2H),                                            | (t, 2H),                                     | (t,2H),                                    | (t, 2H),                                     | (ф, 2н),                                   | (d, 2H),                                                 | (t, 2H),                                       | (t, 2H),                                                           |                                             |                                                            | (ф, 2н),                                              | (d, 2H),                                              |

| 5  |                            | phys. Daten / <sup>1</sup> H-NMR {ð in ppm], Fp. [°C] | 4,17 (t,2H), 7,10-7,40 (m,5H)        | , 5H)                                | , 5H)                                | 4,17 (t,2H), 7,00 (t,2H),            | 7, 33 (m, 2H)                        | 7, 33 (m, 2н)                        | 7,27 (s,4H)                          |                                      | 7,27 (s,4H)                          | 7,27 (s,4H)                          |                                      |                                      |
|----|----------------------------|-------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 10 |                            | / 1H-NMR [8                                           | 4,17 (t,2H),                         | 4,17 (t,2H),                         | 4,17 (t,2H),                         | 4,17 (t,2H),                         | 7,10-7,40 (m,5H)                     | 7,10-7,40 (m,5H)                     | 4,17 (t,2H),                         |                                      | 4,17 (t,2H),                         | 4,17 (t,2H),                         | 7,00 (t,2H), 7,33                    | 7,00 (t,2H),                         | 4,17 (t,2H),                         | 4, 17 (t, 2H),                       | 4, 17 (t, 2H),                       | 4,17 (t,2H),                         | 7, 27 (s, 4H)                        | 7,27 (s,4н)                          |
| 15 |                            | phys. Daten                                           | 3, 90 (m, 2н),                       | 3,90 (m,2H),                         | 4,00 (m,2H),                         | 4,00 (m,2H),                         | 4,17 (t,2H),                         | 4,17 (t,2H),                         | 3, 90 (m, 2H), 7, 33 (m, 2H)         | 3, 90 (m, 2H), 7, 33 (m, 2H)         | 4, 00 (m, 2H),<br>7, 33 (m, 2H)      | 7, 33 (m, 2H)                        | 4,17 (t,2H),                         | 4,17 (t,2H),                         | 3,90 (m,2H),                         | 3,90 (m,2H),                         | 4,00 (m,2H),                         | 4,00 (m,2H),                         |                                      | 4,17 (t,2H),                         |
| 20 |                            |                                                       | "                                    | •••                                  | 7                                    | 7                                    | 7                                    | 7                                    | _                                    |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| 25 |                            | RF                                                    | Phenyl                               | Phenyl                               | Phenyl                               | Phenyl                               | Phenyl                               | Phenyl                               | 4-F-phenyl                           | 4-F-phenyl                           | 4-F-phenyl                           | 4-F-phenyl                           | 4-F-phenyl                           | 4-F-phenyl                           | 4-C1-pheny                           | 4-Cl-phenyl                          | 4-C1-phenyl                          | 4-Cl-phenyl                          | 4-Cl-phenyl                          | 4-Cl-phenyl                          |
| 30 |                            | • 3                                                   | -(CH <sub>2</sub> ) <sub>3</sub> -S- |
| 35 |                            |                                                       | ly-                                  | -y 1                                 | -y ]                                 | -y 1                                 | an-3-yl                              | an-3-y 1                             | -y l                                 | -y l                                 | -y¹l                                 | -y 1                                 | ın-3-yı                              | an-3-y1                              | -y1                                  | -y1                                  | -y1                                  | -y 1                                 | nn-3-y1                              | ın-3-y1                              |
| 40 | Tabelle II.7 (Fortsetzung) | RC                                                    | Tetrahydropyran-3-y                  | Tetrahydropyran-3-y                  | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl                 | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-y]                 | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             |
| ·  | e 11.7 (                   | Ra                                                    | C <sub>2</sub> H <sub>5</sub>        | n-C3H7                               | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | C 2HS                                | n-C <sub>3</sub> H <sub>7</sub>      | C <sub>2</sub> H <sub>5</sub>        | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                | n-C <sub>3</sub> H <sub>2</sub>      | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      |
| 50 | Tabell                     | Nr.                                                   | A.806                                | A.807                                | A.808                                | A.809                                | A.810                                | A.811                                | A.812                                | A.813                                | A.814                                | A.815                                | A.816                                | A.817                                | A.818                                | A.819                                | A.820                                | A.821                                | A.822                                | A.823                                |

| 50     | <b>4</b> 5                      | 40                         | 30                                     | 25                           | 15                                     | 10                                           | 5                                                |
|--------|---------------------------------|----------------------------|----------------------------------------|------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------------|
| Tabell | e 11.7 (                        | Tabelle II.7 (Fortsetzung) |                                        |                              |                                        |                                              |                                                  |
| r      | es<br>es                        | . D.                       | 3                                      | R                            | phys. Daten /                          | 1H-NMR [& i                                  | phys. Daten / 1H-NMR [å in ppm], Fp. [°C         |
| A.824  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2-Cl-phenyl                  | 3,90 (m,2H), 4                         | , 20 (t, 2H),                                | 3,90 (m,2H), 4,20 (t,2H), 7,07-7,40 (m,4H        |
| A.825  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyrañ-3-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2-C1-phenyl                  | 3,90 (m,2H), 4                         | , 20 (t, 2H),                                | 3,90 (m,2H), 4,20 (t,2H), 7,07-7,40 (m,4H)       |
| A.826  | C 2H5                           | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2-Cl-phenyl                  | 4,00 (m,2H), 4                         | , 20 (t, 2H),                                | 4,00 (m,2H), 4,20 (t,2H), 7,07-7,40 (m,4H)       |
| A.827  | n-C 3H7                         | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2-Cl-phenyl                  | 4,00 (m,2H), 4                         | , 20 (t, 2H),                                | 4,00 (m,2H), 4,20 (t,2H), 7,07-7,40 (m,4H)       |
| A.828  | C2H5                            | Tetrahydrothiopyran-3-yl   | 1 -(CH <sub>2</sub> ) <sub>3</sub> -S- | 2-Cl-phenyl                  | 4, 20 (t, 2H), 7,07-7,40 (m,4H)        | ,07-7,40 (m,                                 | (н)                                              |
| A.829  | n-C3H7                          | Tetrahydrothiopyran-3-yl   | 1 -(CH <sub>2</sub> ) <sub>3</sub> -S- | 2-Cl-phenyl                  | 4,20 (t,2H), 7                         | (t, 2H), 7,07-7,40 (m,4H)                    | (н)                                              |
| A.830  | C 2 H 5                         | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 3-Cl-phenyl                  | 3, 90 (m, 2H), 4<br>7, 30 (m, 1H), 4   | (m, 2H), 4, 20 (t, 2H), 7,17 (m, 3H) (m, 1H) | 7,17 (m,3н)                                      |
| A.831  | n-C 3H7                         | Tetrahydropyran-3-yl       | -{CH <sub>2</sub> } <sub>3</sub> -S-   | 3-Cl-phenyl                  | 3, 90 (m, 2H), 4<br>7, 30 (m, 1H)      | {m, 2H}, 4, 20 (t, 2H), 7,17 (m,3H) {m,1H}   | 7, 17 (m, 3н)                                    |
| A.832  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 3-c1-phenyl                  | 4, 00 (m, 2H), 4<br>7, 30 (m, 1H), 4   | {m, 2H}, 4, 20 (t, 2H), 7,17 (m, 3H)         | 7,17 (m,3н)                                      |
| A.833  | n-C 3H7                         | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 3-Cl-phenyl                  | 4, 90 (m, 2H), 4                       | {m, 2H}, 4, 20 (t, 2H), 7,17 (m,3H)          | 7,17 (m,3H)                                      |
| A.834  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl   | 1 -(CH <sub>2</sub> ) <sub>3</sub> -S- | 3-Cl-phenyl                  | 4,20 (t,2H), 7                         | (t,2H), 7,17 (m,3H), 7,30 (m,1H)             | 7, 30 (m, 1н)                                    |
| A.835  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl   | 1 -(CH <sub>2</sub> ) <sub>3</sub> -S- | 3-C1-phenyl                  | 4,20 (t,2H), 7                         | (t, 2H), 7,17 (m,3H), 7,30 (m,1H)            | 7, 30 (m, 1н)                                    |
| A.836  | C 2H5                           | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2, 5-C1 <sub>2</sub> -phenyl | 3, 90 (m, 2H), 7,                      | 30 (t,1H),                                   | (m, 2H), 7, 50 (t, 2H), 7, 07 (dd, 1H), (d, 1H), |
| A.837  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2, 5-Cl <sub>2</sub> -phenyl | 3, 90 (B, 2H)' 7,                      | 30 (t,1H),                                   | (m, 2H), 7, 50 (t, 2H), 7, 07 (dd, 1H),          |
| A.838  | C2H5                            | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2, 5-C1 <sub>2</sub> -phenyl | 4, 00 (m, 2H), 7, 7,                   | 30 (t, 2H),                                  | (m, 2H), 7, 50 (t, 2H), 7, 07 (dd, 1H), (d, 1H), |
| A.839  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl       | -(CH <sub>2</sub> ) <sub>3</sub> -S-   | 2, 5-Cl <sub>2</sub> -phenyl | 4,00 {m,2H},7,30 (t,2H), 7,07 (dd,1H), | 30 (t 2H),                                   | 7,07 (dd,1H),                                    |

|            |                            | [ွ.]                                 |                                      |                                                          |                                     |                                      |                                      |                                      |                                      |                                      |                                                   |                                                     |                                                     |                                                     |                          |                                 |                                                     |
|------------|----------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------|---------------------------------|-----------------------------------------------------|
| 5          |                            |                                      | (d, 1H)                              | (d, 1H)                                                  | (t, 1H)                             | (t, 1H)                              | (t, 1H)                              | (t, 1Ĥ)                              | (d, 2H)                              | (d, 2H)                              | (s, 2н),                                          | (s, 2н),                                            | 4,60 (s,2H),                                        | 4,60 (s,2H),                                        | (s, 5H)                  | 7,35 (s,5H)                     | 4,67 (s,2H),                                        |
| ·          |                            | mdd u                                | 7, 20                                | 7, 20                                                    | 7, 20                               | 7, 20                                | 7, 20                                | 7, 20                                | 7,40                                 | 7,40                                 | 4, 58                                             | 4,58                                                | 4,60                                                | 4, 60                                               | 7, 35                    | 7, 35                           | 4,67                                                |
| 10         |                            | IMR [6                               | 7,07 (dd,1H), 7,20 (d,1H)            | 7,07 (dd,1H); 7,20 (d,1H)                                | 4,20 (t,2H), 7,20 (t,1H)            | 4,20 (t,2H), 7,20 (t,1H)             | 4,20 (t,2H), 7,20 (t,1H)             | 4,20 (t,2H), 7,20 (t,1H)             | 7,20 (t,1H), 7,40 (d,2H)             | 7,20 (t,1H), 7,40 (d,2H)             | (t,2H),                                           | 4,25 (t,2H), 4,58 (s,2H),                           | 4,33 (m,2H),                                        | 4,33 (m,2H),                                        | 4,57 (s,2H), 7,35 (s,5H) | (s, 2H),                        | m, 2H),                                             |
|            |                            | / 1H-N                               | 7,07                                 | 7,07                                                     |                                     |                                      |                                      |                                      | 7, 20 (                              | 7, 20 (                              | 4, 25                                             | 4, 25 (                                             |                                                     | 4, 33 (                                             | 4,57 (                   | 4,57 (                          | 4,27 (4H)                                           |
| 15         |                            | phys. Daten / 1H-NMR [ð in ppm], Fp. | 0 (t, 2H).                           | 0 (t, 2H),                                               | 0 (m, 2H),                          | 0 (m, 2H),                           | 0 {a, 2H},                           | 8 (a, 2H),                           | 0 (t,2H),                            | O (t,2H),                            | (m, 2H)<br>(s, 5H)                                | 8 (m, 2H),<br>8 (s, 5H),                            | 3 (m, 2H),<br>(s, 5H),                              | 3 (m, 2H),<br>5 (s, 5H),                            | 7 (т, 2н),               | (ш, 2н),                        | 3,93 (m,2H), 4,27 (m,2H), 6,93-7,50 (m,4H)          |
|            |                            | ď.                                   | 4, 20<br>7, 30                       | 4, 20                                                    | 3,90                                | 3,90                                 | 4,00                                 | 7, 60                                | 4, 20                                | 4, 20                                | 3, 90<br>7, 38                                    | 3,90                                                | 4, 03<br>7, 40                                      | 7,40                                                | 4,27                     | 4,27                            | 6,0,                                                |
| 20         |                            |                                      | -pheny1                              | -pheny1                                                  | -phenyl                             | pheny l                              | -phenyl                              | pheny l                              | pheny l                              | pheny l                              |                                                   |                                                     |                                                     |                                                     |                          |                                 | ıy l                                                |
| 25         |                            | Α<br>T                               | 2,5-Cl <sub>2</sub> -phenyl          | 2, 5-Cl <sub>2</sub> -pheny l                            | 2, 6-Cl <sub>2</sub> -pheny l       | 2, 6-Cl <sub>2</sub> -phenyl         | 2, 6-Cl <sub>2</sub> -pheny l        | 2, 6-Cl <sub>2</sub> -phenyl         | 2, 6-Cl <sub>2</sub> -phenyl         | 2,6-Cl <sub>2</sub> -phenyl          | Pheny 1                                           | Pheny 1                                             | Phenyl                                              | Phenyl                                              | Pheny 1                  | Phenyl                          | 2-F-phenyl                                          |
| 30         |                            | 3                                    | -(CH <sub>2</sub> ) <sub>3</sub> -S- | -(CH <sub>2</sub> ) <sub>3</sub> -S-                     | (CH <sub>2</sub> ) <sub>3</sub> -S- | -(CH <sub>2</sub> ) <sub>3</sub> -S- | -(сн <sub>2</sub> ) <sub>3</sub> -S- | -(CH <sub>2</sub> ) <sub>3</sub> -S- | -(CH <sub>2</sub> ) <sub>3</sub> -S- | -(CH <sub>2</sub> ) <sub>3</sub> -S- | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | -CH2CH20CH2-             | -CH2CH20CH2-                    | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - |
| 35         | ,                          | ,                                    | 1-3-y1                               | 1-3-y l                                                  | <b>-</b>                            | -                                    | ~                                    | -                                    |                                      | ın-3-y 1                             | .y.l                                              | ۱۷ٔ                                                 | lų.                                                 | l y.                                                |                          | ın-3-y1                         | ١٧٠                                                 |
| 40         | Tabelle II.7 (Fortsetzung) | SC.                                  | Tetrahydrothiopyran-3-yl             | n-C <sub>3</sub> H <sub>2</sub> Tetrahydrothiopyran-3-yl | Tetrahydropyran-3-yl                | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl             | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl                              | Tetrahydropyran-3-yl                                | Tetrahydropyran-4-yl                                | Tetrahydropyran-4-yl                                | Tetrahydrothiopyran-3-yl | Tetrahydrothiopyran-3-yl        | Tetrahydropyran-3-yl                                |
| 45         | / (For                     |                                      |                                      | 4) Te                                                    |                                     | 1, Te                                |                                      |                                      |                                      |                                      |                                                   |                                                     |                                                     |                                                     |                          |                                 |                                                     |
| · <u>.</u> | e 11.                      | æ                                    | C 2HS                                |                                                          | C 2H5                               | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                                | n-C <sub>3</sub> H <sub>7</sub>      | C 2HS                                | n-C3H7                               | C 2H5                                             | n-C3                                                | C 2H5                                               | n-C3H7                                              | C 2H5                    | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                                               |
| 50         | Tabell                     | Ν.                                   | A.840                                | A.841                                                    | A.842                               | A.843                                | A.844                                | A.845                                | A.846                                | A.847                                | A.848 C2H5                                        | A.849 n-C <sub>3</sub> H <sub>7</sub>               | A.850                                               | A.851                                               | A.852                    | A.853                           | A.854                                               |

| 50    | ,                               | <b>40</b>                                                                    | 30                                                  | 25         | 20                                           | .15                                   | 5                                                                            |
|-------|---------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|------------|----------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|
|       |                                 |                                                                              |                                                     |            |                                              |                                       |                                                                              |
| Tabel | le 11.7 (F                      | Tabelle II.7 (Fortsetzung)                                                   |                                                     |            | •                                            |                                       |                                                                              |
| N.    | Ra                              | ٠<br>۲                                                                       | 3                                                   | Rf         | phys. Date                                   | en / 1H-NMR                           | phys. Daten / ¹H-NMR [ð in ppm], Fp. [°C]                                    |
| A.855 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl                                                         | -сн 2сн 20сн 2-                                     | 2-F-phenyl | 3, 93 (m, 21<br>6, 93-1, 50                  | 1), 4,27 (m, (m, 4H)                  | 3,93 (m,2H), 4,27 (m,2H), 4,67 (s,2H),<br>6,93-7,50 (m,4H)                   |
| A.856 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl                                                         | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 2-F-phenyl | 4,03 {m,21<br>6,97-7,50                      | 1, 4,27 (m,                           | 6,97-7,50 (m,4H) (m,2H), 4,63 (s,2H),                                        |
| A.857 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl                                                         | -СН 2СН 2ОСН 2-                                     | 2-F-phenyl | 4,03 (m,21<br>6,97-7,50                      | 1), 4,27 (m, (m, 4H)                  | 4,03 (m,2H), 4,27 (m,2H), 4,63 (s,2H),<br>6,97-7,50 (m,4H)                   |
| A.858 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl                                                     | -CH 2CH 20CH 2-                                     | 2-F-phenyl | 4, 27 (m, 21                                 | 1), 4,67 (s,                          | 4,27 (m,2H), 4,67 (s,2H), 6,97-7,50 (m,4H)                                   |
| A.859 | n-C <sub>3</sub> H <sub>2</sub> | Tetrahydrothiopyran-3-yl                                                     | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 2-F-phenyl | 4, 27 (m, 21                                 | 1), 4,67 (s,                          | 4,27 (m,2H), 4,67 (s,2H), 6,97-7,50 (m,4H)                                   |
| A.860 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl                                                         | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 3-F-phenyl | 3, 93 (m, 21<br>6, 90-7, 15                  | 1\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 3,93-7,15 (m,34), 7,23-7,40 (m,1H)                                           |
| A.861 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl                                                         | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 3-F-phenyl | 3, 93 (m, 21<br>6, 90-7, 15                  | 1, 4, 27 fm2                          | 3,93 (m,2H), 4,27 (m,2H), 4,57 (s,2H),<br>6,90-7,15 (m,3H), 7,23-7,40 (m,1H) |
| A.862 | C2H5                            | Tetrahydropyran-4-yl                                                         | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 3-F-phenyl | 4,03 fm 21<br>6,90-7,18                      | 1, 4,25 fm2                           | 6,90-7,18 (m,34), 7,26-7,40 (m, H)                                           |
| A.863 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl                                                         | -СН2СН2ОСН2-                                        | 3-F-phenyl | 4,03 fm 21<br>6,90-7,18                      | 1, 4,25 fm2 fm2 1,25                  | 6,90-7,18 (m,34), 7,26-7,40 (m,1H)                                           |
| A.864 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl                                                     | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 3-F-phenyl | 4, 27 {m, 21<br>6, 90-7, 15                  | 1, 4,60 fs                            | 6,90-7,15 (m,2H), 4,60 (s,2H),40 (m,1H)                                      |
| A.865 | n-C3H7                          | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 3-F-phenyl | 4, 27 {m, 21<br>6, 90-7, 15                  | 1, 4,60 fs                            | 6,90-7,15 (m,3H), 4,60 (s,2H),40 (m,1H)                                      |
| A.866 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl                                                         | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 4-F-phenyl | 3, 93 (m, 2H); 4, 23<br>7, 00 (m, 2H); 7, 30 | 1}; 4; 23 (m;                         | (m, 2H), 4,53 (s,2H),                                                        |
| A.867 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl                                                         | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 4-F-phenyl | 3, 93 (m, 2H), 4, 23<br>7, 00 (m, 2H), 7, 30 | 1}; 4; 23 (m;                         | (m, 2H), 4, 53 (s, 2H),                                                      |
| A.868 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl                                                         | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 4-F-phenyl |                                              | 92                                    |                                                                              |

| 10             | phys. Daten / ¹H-NMR [ð in ppm], Fp. [°C] | 4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H),<br>7,03 (m,2H), 7,30 (m,2H) | 4,27 (m,2H), 4,53 (s,2H), 7,03 (m,2H), 7,30 (m,2H),                          | 4,27 (m,2H), 4,53 (s,2H), 7,03 (m,2H),<br>7,30 (m,2H)                        |                                                     |                                 |                      |                                                     |                               |                          |                               |                                 |                      |                                                     |                          |                                                                              | 3, 93 (m, 2H), 4, 27 (m, 2H), 4, 53 (s, 2H), 7, 28 (m, 4H) | 3, 93 (m, 2H), 4, 27 (m, 2H), 4, 53 (s, 2H), 7, 28 (m, 4H) | 67- 72                        |
|----------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|----------------------|-----------------------------------------------------|-------------------------------|--------------------------|-------------------------------|---------------------------------|----------------------|-----------------------------------------------------|--------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------|
| 25             | Α.<br>                                    | 4-F-phenyl                                                         | 4-F-phenyl                                                                   | 4-F-phenyl                                                                   | 2-Cl-phenyl                                         | 2-c1-phenyl                     | 2-cl-phenyl          | 2-C1-phenyl                                         | 2-C1-phenyl                   | 2-Cl-phenyl              | 3-Cl-phenyl                   | 3-C1-phenyl                     | 3-c1-phenyl          | 3-C1-phenyl                                         | 3-cl-phenyl              | 3-Cl-phenyl                                                                  | 4-Cl-phenyl                                                | 4-Cl-phenyl                                                | 4-Cl-phenyl                   |
| 30             | 3                                         | -сн2сн2осн2-                                                       | -сн 2сн 20сн 2-                                                              | -сн 2сн 20сн 2-                                                              | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | -CH2CH20CH2-                    | -CH2CH20CH2-         | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | -CH2CH2OCH2-                  | -CH2CH2CH2-              | -CH2CH2OCH2-                  | -CH2CH2OCH2-                    | -CH2CH20CH2-         | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | -CH2CH20CH2-             | -CH2CH20CH2-                                                                 | -CH2CH2CH2-                                                | -CH2CH2CH2-                                                | -сн2сн2осн2-                  |
| <b>35</b>      |                                           | ran-4-yl                                                           | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | ran-3-yl                                            | /ran-3-yl                       | ran-4-yl             | ran-4-yl                                            | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl | yran-3-yl                     | yran-3-yl                       | yran-4-yl            | yran-4-yl                                           | Tetrahydrothiopyran-3-yl | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | yran-3-yl                                                  | yran-3-yl                                                  | yran-4-yl                     |
| 5              | RC                                        | Tetrahydropyran-4-yl                                               | Tetrahydrot?                                                                 | Tetrahydroth                                                                 | Tetrahydropyran-3-yl                                | Tetrahydropyran-3-yl            | Tetrahydropyran-4-yl | Tetrahydropyran-4-yl                                | Tetrahydrot                   | Tetrahydrotl             | Tetrahydropyran-3-yl          | Tetrahydropyran-3-yl            | Tetrahydropyran-4-yl | Tetrahydropyran-4-yl                                | Tetrahydroti             | Tetrahydrotl                                                                 | Tetrahydropyran-3-yl                                       | Tetrahydropyran-3-yl                                       | Tetrahydropyran-4-yl          |
| 45 45 4. II. 7 | Ra                                        | n-C3H7                                                             | C <sub>2</sub> H <sub>5</sub>                                                | n-C <sub>3</sub> H <sub>7</sub>                                              | C 2H5                                               | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                | n-C <sub>3</sub> H <sub>7</sub>                     | C <sub>2</sub> H <sub>5</sub> | n-C3H7                   | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub> | C2H5                 | n-C <sub>3</sub> H <sub>7</sub>                     | C 2H5                    | n-C <sub>3</sub> H <sub>7</sub>                                              | C <sub>2</sub> H <sub>5</sub>                              | n-C <sub>3</sub> H <sub>7</sub>                            | C <sub>2</sub> H <sub>5</sub> |
| Tabe 1         | Nr.                                       | A.869                                                              | A.870                                                                        | A.871                                                                        | A.872                                               | A.873                           | A.874                | A.875                                               | A.876                         | A.877                    | A.878                         | A.879                           | A.880                | A.881                                               | A.882                    | A.883                                                                        | A.884                                                      | A.885                                                      | A.886                         |

| 50    | 45                              | 40                                                                           | 30                                                  | 25                         | 20              | 15                                    | 10         | 5 <i>.</i>                                                 |
|-------|---------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|-----------------|---------------------------------------|------------|------------------------------------------------------------|
| Tabel | Tabelle II.7 (Fortsetz          | Fortsetzung)                                                                 |                                                     |                            |                 |                                       |            |                                                            |
| Nr.   | æ                               | R.C                                                                          | 3                                                   | 75                         | phys.           | Daten / 1H-                           | -NMR (đir  | phys. Daten / ¹H-NMR [ð in ppm], Fp. [ºC]                  |
| A.887 | n-C <sub>3</sub> H <sub>2</sub> | Tetrahydropyran-4-yl .                                                       | -СН2СН2ОСН2-                                        | 4-Cl-phenyl                | 4,00            | (m, 2H), 4, 2:                        | 3 (m, 2H), | 4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H),<br>7,28 (m,4H)      |
| A.888 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl                                                     | -CH2CH20CH2-                                        | 4-C1-phenyl                | 4,27            | 4,27 (m,2H), 4,53 (s,2H), 7,28 (m,4H) | 3 (s, 2н), | 7, 28 (m, 4н)                                              |
| A.889 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl                                                     | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 4-Cl-phenyl                | 4,27            | 4,27 (m,2H), 4,53 (s,2H), 7,28 (m,4H) | 3 (s, 2н), | 7, 28 (m, 4н)                                              |
| A.890 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl                                                         | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 2-CH <sub>3</sub> -phenyl  | 3, 93           | 1,33 (m, 4,2)                         | 3 (m, 2н), | 3,93 (m,2H), 4,23 (m,2H), 4,57 (s,2H),<br>7,09-7,33 (m,4H) |
| A.891 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl                                                         | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 2-CH <sub>3</sub> -phenyl  | 3, 93<br>7, 09- | , 33 (m, 4, 2)                        | 3 (т, 2н), | 3,93 (m,2H), 4,23 (m,2H), 4,57 (s,2H),<br>7,09-7,33 (m,4H) |
| A.892 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl                                                         | -CH <sub>2</sub> CH <sub>2</sub> 0CH <sub>2</sub> - | 2-CH <sub>3</sub> -phenyl  | 7,00            | J,33 (m, 44)                          | 3 (т, 2н), | 4,00 [m,2H], 4,23 (m,2H), 4,57 (s,2H),<br>7,09-7,33 [m,4H] |
| A.893 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl                                                         | -сн2сн2осн2-                                        | 2-CH <sub>3</sub> -phenyl  | 7,00            | , 33 (m, 4, 2)                        | 3 (м, 2н), | 4,00 {m,2H}, 4,23 (m,2H), 4,57 (s,2H),<br>7,09-7,33 (m,4H) |
| A.894 | C 2H5                           | Tetrahydrothiopyran-3-yl                                                     | -CH2CH20CH2-                                        | 2-CH3-phenyl               | 4,23            | (m, 2H), 4,5                          | 7 (s, 2н), | 4,23 (m,2H), 4,57 (s,2H), 7,09-7,33 (m,4H)                 |
| A.895 | n-C3H7                          | Tetrahydrothiopyran-3-yl                                                     | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 2-CH <sub>3</sub> -phenyl  | 4,23            | (m, 2H), 4,5                          | 7 (s, 2H), | 4,23 (m,2H), 4,57 (s,2H), 7,09-7,33 (m,4H)                 |
| A.896 | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl                                                         | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | 3-CH <sub>3</sub> -pheny l | 3,93            | , 32 (m, 4H)                          | 5 (m, 2H), | 3,93 {m,24}, 4,25 (m,24), 4,57 (s,24),<br>7,00-7,32 {m,44} |
| A.897 | n-C3H7                          | Tetrahydropyran-3-yl                                                         | -CH 2CH 20CH 2-                                     | 3-CH <sub>3</sub> -phenyl  | 3,93            | , 32 (m, 4, 2)                        | 5 (м, 2н), | 3,93 (m,2H), 4,25 (m,2H), 4,57 (s,2H),<br>7,00-7,32 (m,4H) |
| A.898 | C 2H5                           | Tetrahydropyran-4-yl                                                         | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 3-CH <sub>3</sub> -phenyl  | 7,00            | , 1,32 (m, 4H)                        | 7 (т, 2н), | 4,00 (m,2H), 4,27 (m,2H), 4,57 (s,2H),<br>7,00-7,32 (m,4H) |
| A.899 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl                                                         | -сн2сн2осн2-                                        | 3-CH <sub>3</sub> -phenyl  | 7,00            | , 32 (m, 4, 2)                        | 7 (т, 2н), | 4,00 (m,2H), 4,27 (m,2H), 4,57 (s,2H),<br>7,00-7,32 (m,4H) |
| A.900 | C 2H5                           | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | 3-CH <sub>3</sub> -phenyl  | 4,27            | (т, 2н), 4,6                          | 0 (s,2н),  | 4,27 (m,2H), 4,60 (s,2H), 7,00-7,32 (m,4H)                 |
| A.901 | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | -CH 2CH 20CH 2-                                     | 3-CH <sub>3</sub> -phenyl  | 4,27            | (m, 2H), 4,6(                         | 0 (s, 2н), | 4,27 (m,2H), 4,60 (s,2H), 7,00-7,32 (m,4H)                 |

|           |                            | [°c]                                                     | H),                                                     | E                                                       | H),                                                     | Ŧ,                                                      | (m, 4H)                                                                      | (m, 4H)                                                                      | H),                                                     | H),                                                     | Ŧ,                                                      | H),                                                 | (m, 4H)                                                                      | (m, 4H)                                    | £),                                                 | H),                                    |
|-----------|----------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|----------------------------------------|
| 5         |                            | n ppm], Fp                                               | 4, 53 (s, 2                                             | 4, 53 (s, 2                                             | 4,57 (s,2                                               | 4,57 (s,2                                               | 7,07-7,30                                                                    | 7,07-7,30                                                                    | 4,53 (s,2                                               | 4,53 (s,2                                               | 4,53 (s,2                                               | 4,53 (s,2                                           | 7, 20-7, 40                                                                  | 7, 20-7, 40                                | 4,17 (t,2                                           | 4,17 (t,2                              |
| 10        |                            | -NMR [6 in                                               | 0 (m, 2H),                                              | 0 (m, 2H),                                              | 3 (m, 2н),                                              | 3 (m, 2H),                                              | 7 (s, 2H),                                                                   | 7 (s, 2H),                                                                   | 3 (т, 2н),                                              | 3 (m, 2H),                                              | 3 (m, 2H),                                              | 3 (m, 2H),                                          | 3 (s, 2н),                                                                   | 3 (s, 2н),                                 | О (m, 2H),                                          | 0 (m, 2H),                             |
| 15        |                            | phys. Daten / lH-NMR [ $\delta$ in ppm], Fp. [ $^{0}$ C] | 3,93 (m,2H), 4,20 (m,2H), 4,53 (s,2H), 7,07-7,30 (m,4H) | 3,93 (m,2H), 4,20 (m,2H), 4,53 (s,2H), 7,07-7,30 (m,4H) | 7,00 (m,2H), 4,23 (m,2H), 4,57 (s,2H), 7,03-7,27 (m,4H) | 4,00 (m,2H), 4,23 (m,2H), 4,57 (s,2H), 7,03-7,27 (m,4H) | 4,23 (m,2H), 4,57 (s,2H), 7,07-7,30 (m,4H)                                   | 4,28 (m,2H), 4,57 (s,2H), 7,07-7,30 (m,4H)                                   | 3,93 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H) | 3,93 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,46 (m,4H) | 4,00 (m,2H), 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H) | 7,20-7,40 (m,2H), 4,23 (m,2H), 4,53 (s,2H),         | 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H)                                   | 4,23 (m,2H), 4,53 (s,2H), 7,20-7,40 (m,4H) | 3,73 {s,2H}, 3,90 (m,2H), 4,17 (t,2H), 7,28 {s,5H}  | 3,73 (s,2H), 3,90 (m,2H), 4,17 (t,2H), |
| 20        |                            | α.                                                       | 611                                                     | 011                                                     | 31                                                      | 41                                                      | 7                                                                            | 4                                                                            | 611-                                                    | 616                                                     | 31-                                                     | 417                                                 | 7                                                                            | 7                                          | 011-                                                | .,,-                                   |
| 25        |                            | яf                                                       | 4-CH <sub>3</sub> -phenyl                               | 4-CH <sub>3</sub> -phenyl                               | 4-CH3-phenyl                                            | 4-CH <sub>3</sub> -phenyl                               | 4-CH3-phenyl                                                                 | 4-CH3-phenyl                                                                 | 4-tertC4Hg                                              | 4-tertC <sub>4</sub> Hg                                 | 4-tertC <sub>4</sub> Hg                                 | 4-tertC4H9                                          | 4-tertC4Hg                                                                   | 4-tertC4Hg                                 | Phenyl                                              | Phenyl                                 |
| 30        |                            | 3                                                        | -сн2сн2осн2-                                            | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> -     | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> -     | -СН2СН2ОСН2-                                            | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> -                          | -CH2CH2OCH2-                                                                 | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> -     | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> -     | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> -     | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> - | -CH2CH2CH2-                                                                  | -CH2CH2OCH2-                               | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>2</sub> - | -ch2ch2sch2-                           |
| 35        |                            | •                                                        | ς.                                                      | ۲,                                                      | 7.                                                      | ۱۷                                                      | n-3-y 1                                                                      | n-3-y1                                                                       | ,<br>L                                                  | ۸.                                                      | الإ                                                     | , l                                                 | n-3-y l                                                                      | n-3-y 1                                    | ۱۷                                                  | ۲,                                     |
| <b>40</b> | Tabelle II.7 (Fortsetzung) | S<br>S                                                   | Tetrahydropyran-3-yl                                    | Tetrahydropyran-3-yl                                    | Tetrahydropyran-4-yl                                    | Tetrahydropyran-4-yl                                    | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | Tetrahydropyran-3-yl                                    | Tetrahydropyran-3-yl                                    | Tetrahydropyran-4-yl                                    | Tetrahydropyran-4-yl                                | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> - | Tetrahydrothiopyran-3-yl                   | Tetrahydropyran-3-yl                                | Tetrahydropyran-3-yl                   |
| 45        | 11.7 (F                    | e5                                                       | C <sub>2</sub> H <sub>5</sub>                           | n-C <sub>3</sub> H <sub>7</sub>                         | C 2H5                                                   | n-C <sub>3</sub> H <sub>7</sub>                         | C <sub>2</sub> H <sub>5</sub>                                                | n-C <sub>3</sub> H <sub>7</sub>                                              | C 2H5                                                   | n-C3H7                                                  | C <sub>2</sub> H <sub>5</sub>                           | n-C <sub>3</sub> H <sub>7</sub>                     | C <sub>2</sub> H <sub>5</sub>                                                | n-C3H7                                     | C 2H5                                               | n-C <sub>3</sub> H <sub>7</sub>        |
| 50        | Tabell(                    | Nr.                                                      | A.902                                                   | A.903                                                   | A.904                                                   | A.905                                                   | A.906                                                                        | A.907                                                                        | A.908                                                   | A.909                                                   | A.910                                                   | A.911                                               | A.912                                                                        | A.913                                      | A.914                                               | A.915                                  |

|            |                            | <del></del>                          | i                             |                                                       |                               |                                 |                                                     |                                                     |                               |                                                     |                                                                              |                                                                              |                                                     |                                                     |                                             |                                                     |
|------------|----------------------------|--------------------------------------|-------------------------------|-------------------------------------------------------|-------------------------------|---------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------------------------|
| <b>5</b> , |                            | J, Fp. [°C]                          | 4,13 (t,2H),                  | i (t, 2H),                                            | 7,28 (s,5н)                   | 7, 28 (s, 5H)                   | 4,13 (t,2H),                                        | i (t, 2H),                                          |                               | I (t, 2H),                                          | (m, 2H),                                                                     | (щ, 2Н),                                                                     | I (t, 2H),                                          | I (t, 2H),                                          | (t,2H),                                     | (t,2H),                                             |
|            | •                          | mdd ι                                | 4, 13                         | 4, 13                                                 | 7, 28                         | 7, 28                           |                                                     | 4, 13                                               |                               | 4, 13                                               | 7, 00                                                                        | 7,00                                                                         | 4, 13                                               | 4, 13                                               | 4,17                                        | 4,17                                                |
| 10         |                            | H-NMR [8 ir                          | 4,00 (m,2H),                  | 00 (т, 2н),                                           | 13 (t, 2H),                   | 4,13 (t,2H),                    | 3, 90 (m, 2H),<br>7, 30 (m, 2H)                     | 3,90 (m,2H), 4,13 (t,2H), 7,30 (m,2H).              | 63- 65                        | 4,00 (m,2H), 4,13 (t,2H),<br>7,30 (m,2H)            | 4,13 (t,2H), 7,00 (m,2H),                                                    | {s,2H}, 4,13 (t,2H), 7,00 (m,2H),<br>{m,2H}                                  | 3,93 (m,2H), 4,13 (t,2H),                           | 3,93 (m,2H), 4,13 (t,2H),                           | [s,2H], 4,00 (m,2H), 4,17 (t,2H),<br>[s,4H] | {s,2H}, 4,00 (m,2H), 4,17 (t,2H),<br>{s,4H}         |
| 15         |                            | phys. Daten / 1H-NMR [ð in ppm], Fp. | 3,77 (s,2H), 4,               | 3,77 {s,2H}, 4,00 (m,2H), 4,13 (t,2H),<br>7,28 {s,5H} | 3,80 (s,2H), 4,13 (t,2H),     | 3,80 (s,2н), 4,                 | 3,72 (s,2H); 3,                                     | 3,72 (s,2H); 3,                                     |                               | 3, 73 {s, 2H}, 4, 7, 00 {m, 2H}, 7,                 | 3,75 (s,2H), 4,                                                              | 3,75 (s, 2H), 4,                                                             | 3,77 (s,2H), 3,                                     | 3,77 (s,2H), 3,                                     | 3,73 (s,2H), 4,                             | 3,73 {s,2H}, 4,                                     |
| 20         |                            | ď                                    | 3,                            | 4,7                                                   | , E                           | 3,                              | 2,0                                                 | wr                                                  |                               | 6,7                                                 | , '                                                                          | 4,7                                                                          | wr.                                                 | w,,                                                 | ٦,٣                                         | W, ,                                                |
| 25         | 1                          | R                                    | Pheny 1                       | Pheny l                                               | Pheny l                       | Phenyl                          | 4-F-phenyl                                          | 4-F-phenyl                                          | 4-F-phenyl                    | 4-F-phenyl                                          | 4-F-phenyl                                                                   | 4-F-phenyl                                                                   | 4-Cl-phenyl                                         | 4-Cl-phenyl                                         | 4-Cl-phenyl                                 | 4-Cl-phenyl                                         |
| 30         |                            | 3                                    | -CH 2CH 2SCH 2-               | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>2</sub> -   | -CH2CH2SCH2-                  | -CH2CH2SCH2-                    | -сн <sub>2</sub> сн <sub>2</sub> scн <sub>2</sub> - | -сн <sub>2</sub> сн <sub>2</sub> scн <sub>2</sub> - | -CH2CH2SCH2-                  | -сн <sub>2</sub> сн <sub>2</sub> scн <sub>2</sub> - | -сн <sub>2</sub> сн <sub>2</sub> scн <sub>2</sub> -                          | -сн <sub>2</sub> сн <sub>2</sub> scн <sub>2</sub> -                          | -сн <sub>2</sub> сн <sub>2</sub> scн <sub>2</sub> - | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>2</sub> - | −сн₂сн₂сн₂−                                 | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>2</sub> - |
| 35         |                            |                                      | -                             |                                                       |                               |                                 | -3-y1                                               |                                                     | -4-y1                         | -4-y1                                               | ran-3-yl                                                                     | ran-3-yl                                                                     | -3-y1                                               | -3-y1                                               | -4-y1                                       |                                                     |
| 40         | Tabelle II.7 (Fortsetzung) | RC                                   | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl                                  | Tetrahydrothiopyran-3-yl      | Tetrahydrothiopyran-3-yl        | Tetrahydropyran-3-yl                                | Tetrahydropyran-3-yl                                | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl                                | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>2</sub> - | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>2</sub> - | Tetrahydropyran-3-yl                                | Tetrahydropyran-3-yl                                | Tetrahydropyran-4-yl                        | Tetrahydropyran-4-yl                                |
| 45         | : 11.7 (F                  | S.                                   | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub>                       | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub>                       | n-C <sub>3</sub> H <sub>7</sub>                     | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub>                     | C <sub>2</sub> H <sub>5</sub>                                                | n-C <sub>3</sub> H <sub>7</sub>                                              | C <sub>2</sub> H <sub>5</sub>                       | n-C3H7                                              | C 2HS                                       | n-C3H7                                              |
| 50         | Tabelle                    | ŗ.                                   | A.916                         | A.917                                                 | A.918                         | A.919                           | A.920                                               | A.921                                               | A.922                         | A.923                                               | A.924                                                                        | A.925                                                                        | A.926                                               | A.927                                               | A.928                                       | A.929                                               |

|           |                            | [06]                                                  |                                       | _                                                                            | (m, 2H)                                    | (m, 2H)                                    | (m, 2H)                                    | (m, 2H)                                    | 3н)                                                 | 3н)                                                           |                                                  |                                                  |                                      |                                      |                                    |                                      |                          |                                      |                               |                                      |
|-----------|----------------------------|-------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------|--------------------------------------|-------------------------------|--------------------------------------|
| 5         |                            | in ppm], Fp.                                          | 7,30 (s,4н                            | , 7,30 (s,4н                                                                 | п, 3Н), 7,30                               | п, 3Н), 7, 30                              | п, 3н), 7, 30                              | п, ЗН), 7, 30                              | н), 6,90 (m,                                        | H), 6,90 (m,                                                  | n, 4H),                                          | n, 4H),                                          |                                      | , 15 (m, 4н)                         | ,15 (m,4H)                         | ,15 (m,4H)                           |                          |                                      |                               |                                      |
| 10        | 1                          | 1H-NMR [6                                             | 4,13 (m,2H)                           | 4,13 (m,2H)                                                                  | 6н), 6,90 (1                               | 6н), 6,90 (п                               | 6н), 6,90 (1                               | 6н), 6,90 (і                               | 4,13 (bs,2                                          | 4, 13 (bs, 21                                                 | 4,00-4,20 (1<br>4H)                              | 4,00-4,20 (i                                     | 68- 72                               | 6н), 6,80-7,                         | 4н), 6,80-7,                       | 4H), 6,80-7,                         |                          |                                      |                               |                                      |
| 15        |                            | phys. Daten / <sup>1</sup> H-NMR [ð in ppm], Fp. [ºC] | 3,73 (s,2H), 4,13 (m,2H), 7,30 (s,4H) | 3,73 (s,2H), 4,13 (m,2H), 7,30 (s,4H)                                        | 3,70-4,20 (m,6H), 6,90 (m,3H), 7,30 (m,2H) | 3,70-4,20 (m,6H), 6,90 (m,3H), 7,30 (m,2H) | 3,83-4,23 (m,6H), 6,90 (m,3H), 7,30 (m,2H) | 3,83-4,23 (m,6H), 6,90 (m,3H), 7,30 (m,2H) | 4,00 {bs,2H), 4,13 (bs,2H), 6,90 (m,3H) 7,30 (m,2H) | 4,00 {bs,2H}, 4,13 (bs,2H), 6,90 (m,3H) 7,30 {m,2H}           | 3,93 (m,2H), 4,00-4,20 (m,4H), 6,80-7,15 (m,4H), | 3,93 (m,2H), 4,00-4,20 (m,4H), 6,80-7,15 (m,4H), |                                      | 3,90-4,20 (m,6H), 6,80-7,15 (m,4H)   | 4,00-4,20 (m,4H), 6,80-7,15 (m,4H) | 4,00-4,20 (m,4H), 6,80-7,15 (m,4H)   |                          |                                      |                               |                                      |
| 20        | i.                         |                                                       | <br> <br>                             |                                                                              |                                            |                                            |                                            |                                            |                                                     |                                                               |                                                  |                                                  |                                      |                                      |                                    |                                      |                          |                                      |                               |                                      |
| 25        |                            | . عي                                                  | 4-Cl-phenyl                           | 4-Cl-phenyl                                                                  | Phenyl                                     | Pheny l                                    | Phenyl                                     | Phenyl                                     | Pheny 1                                             | Pheny l                                                       | 2-F-pheny1                                       | 2-F-phenyl                                       | 2-F-pheny1                           | 2-F-phenyl                           | 2-F-phenyl                         | 2-F-phenyl                           | 3-F-phenyl               | 3-F-phenyl                           | 3-F-phenyl                    | 3-F-phenyl                           |
| 30        |                            | 3                                                     | -CH 2CH 2SCH 2-                       | -CH2CH2SCH2-                                                                 | -(CH <sub>2</sub> ) <sub>4</sub> -0-                | -(CH <sub>2</sub> ) <sub>4</sub> -0-                          | -(CH <sub>2</sub> ) <sub>4</sub> -0-             | -(CH <sub>2</sub> ) <sub>4</sub> -0-             | -(CH <sub>2</sub> ) <sub>4</sub> -0- | -(CH <sub>2</sub> ) <sub>4</sub> -0- | -(CH <sub>2</sub> ) 4-0-           | -(CH <sub>2</sub> ) <sub>4</sub> -0- | -(CH <sub>2</sub> ) 4-0- | -(CH <sub>2</sub> ) <sub>4</sub> -0- | -(CH <sub>2</sub> ) 4-0-      | -(CH <sub>2</sub> ) <sub>4</sub> -0- |
| 35        |                            |                                                       | ran-3-y1                              | ran-3-yl                                                                     | 3-y1                                       | 3-y1                                       | 4-y1                                       | 4-y1                                       | an-3-yl                                             | -an-3-y1                                                      | 3-y1                                             | 3-y1                                             | 1-y1                                 | 1-y 1                                | ran-3-yl                           | ran-3-yl                             | 3-y1                     | 3-y1                                 | 1-y1                          | l 4-4                                |
| <b>40</b> | Tabelle II.7 (Fortsetzung) | RC                                                    | Tetrahydrothiopyran-3-yl -CH2CH2SCH2- | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>2</sub> - | Tetrahydropyran-3-yl                       | Tetrahydropyran-3-yl                       | Tetrahydropyran-4-yl                       | Tetrahydropyran-4-yl                       | Tetrahydrothiopyran-3-yl                            | Tetrahydrothiopyran-3-yl -(CH <sub>2</sub> ) <sub>4</sub> -0- | Tetrahydropyran-3-yl                             | Tetrahydropyran-3-yl                             | Tetrahydropyran-4-yl                 | Tetrahydropyran-4-yl                 | Tetrahydrothiopyran-3-yl           | Tetrahydrothiopyran-3-yl             | Tetrahydropyran-3-yl     | Tetrahydropyran-3-yl                 | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl                 |
| 45        | 3 11.7 (F                  | Ra                                                    | C <sub>2</sub> H <sub>5</sub>         | n-C3H7                                                                       | C <sub>2</sub> H <sub>5</sub>              | n-C <sub>3</sub> H <sub>7</sub>            | C 2HS                                      | n-C3H7                                     | C 2H5                                               | n-C <sub>3</sub> H <sub>7</sub>                               | C 2H5                                            | n-C <sub>3</sub> H <sub>7</sub>                  | C <sub>2</sub> H <sub>5</sub>        | n-C <sub>3</sub> H <sub>7</sub>      | C 2H5                              | n-C 3H7                              | C 2H5                    | n-C <sub>3</sub> H <sub>7</sub>      | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub>      |
| 50        | Tabelle                    | N.                                                    | A.930                                 | A.931                                                                        | A.932                                      | A.933                                      | A.934                                      | A.935                                      | A.936                                               | A.937                                                         | A.938                                            | A.939                                            | A.940                                | A.941                                | A.942                              | A.943                                | A.944                    | A.945                                | A.946                         | A.947                                |

| 50     | 45                              | 35<br>40                                         | 30                                   | 25                           | 15                                           | 10                         | 5                        |
|--------|---------------------------------|--------------------------------------------------|--------------------------------------|------------------------------|----------------------------------------------|----------------------------|--------------------------|
|        |                                 |                                                  |                                      |                              |                                              |                            |                          |
| Tabell | le 11.7 (F                      | Tabelle II.7 (Fortsetzung)                       |                                      |                              |                                              |                            |                          |
| N.     | κ<br>δ                          | R <sup>C</sup>                                   | 3                                    | α<br>-                       | phys. Daten / 1H-NMR [ø in ppm], Fp.         | H-NMR (6 in ppr            | n], Fp. [°C]             |
| A.948  | C <sub>2</sub> H <sub>S</sub>   | Tetrahydrothiopyran-3-yl                         | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 3-F-pheny1                   |                                              |                            |                          |
| A.949  | n-C3H7                          | Tetrahydrothiopyran- $3-yl - (CH_2)_4-0-$        | -(CH <sub>2</sub> )4-0-              | 3-F-phenyl                   |                                              |                            |                          |
| A.950  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl                             | -(CH <sub>2</sub> )4-0-              | 4-F-phenyl                   | 3,80-4,20 (m,6H), 6,75-7,05 (m,4H)           | ), 6,75-7,05 (1            | n, 4H)                   |
| A.951  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl                             | -(CH <sub>2</sub> )4-0-              | 4-F-phenyl                   | 3,80-4,20 (m,6H),                            | ), 6,75-7,05 (m,4H)        | п, 4н)                   |
| A.952  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl                             | -(CH <sub>2</sub> )4-0-              | 4-F-phenyl                   | 3,90-4,20 (m,6H),                            | ), 6,75-7,05 (m,4H)        | n, 4H)                   |
| A.953  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl                             | -(CH <sub>2</sub> )4-0-              | 4-F-phenyl                   | 3,90-4,20 (m,6H),                            | ), 6,75-7,05 (m,4H)        | n, 4H)                   |
| A.954  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl                         | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 4-F-phenyl                   | 3, 90-4, 20 (m, 4H),                         | ), 6,75-7,05 (m,4H)        | и, 4Н)                   |
| A.955  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl -(CH <sub>2</sub> )4-0- | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 4-F-phenyl                   | 3,90-4,20 (m,4H),                            | ), 6,75-7,05 (m,4H)        | n, 4H)                   |
| A.956  | C 2H5                           | Tetrahydropyran-3-yl                             | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 4-Cl-phenyl                  | 3,80-4,20 (m,6H),                            |                            | 6,80 (m,2H), 7,20 (m,2H) |
| A.957  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl                             | (CH <sub>2</sub> ) <sub>4</sub> -0-  | 4-C1-phenyl                  | 3,80-4,20 (m,6н),                            | ), 6,80 (m,2H),            | 7, 20 (m, 2H)            |
| A.958  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl                             | -(CH <sub>2</sub> )4-0-              | 4-c1-phenyl                  | 3,90-4,20 (m,6H),                            | ), 6,80 (m,2H),            | 7, 20 (m, 2H)            |
| A.959  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-4-yl                             | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 4-Cl-phenyl                  | 3,90-4,20 (m,6H),                            | ), 6,80 (m,2H),            | 7, 20 (m, 2H)            |
| A.960  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydrothiopyran-3-yl                         | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 4-Cl-phenyl                  | 3,90-4,20 (m,4H),                            | ), 6,80 (m,2H),            | 7, 20 (m, 2H)            |
| A.961  | n-C3H7                          | Tetrahydrothiopyran-3-yl                         | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 4-C1-phenyl                  | 3,90-4,20 (m,4H), 6,80 (m,2H),               | ), 6,80 (m,2H),            | 7, 20 (m, 2H)            |
| A.962  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-3-yl                             | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 2,6-Cl <sub>2</sub> -phenyl  | 3, 93 {m, 2H}, 4, 0                          | (m, 2H), 4,00-4,25 (m,4H), | 7,00 (t,1H)              |
| A.963  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydropyran-3-yl                             | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 2, 6-Cl <sub>2</sub> -phenyl | 3, 93 (m, 2H), 4,00-4,25 (m,4H), 7,00 (t,1H) | 30-4,25 (m,4H),            | 7,00 (t,1H               |
| A.964  | C <sub>2</sub> H <sub>5</sub>   | Tetrahydropyran-4-yl                             | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 2, 6-cl <sub>2</sub> -phenyl | 3,90-4,25 (m,6H), 7,00 (t,1H), 7,30 (d,2H)   | ), 7,00 (t,1H),            | 7,30 (d,2H               |
| A.965  | n-C3H7                          | Tetrahydropyran-4-yl                             | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 2, 6-Cl <sub>2</sub> -phenyl | 3,90-4,25 (m,6H), 7,00 (t,1H), 7,30 (d,2H)   | ), 7,00 (t,1H),            | 7,30 (d,2н               |
| A.966  | C 2H5                           | Tetrahydrothiopyran-3-yl                         | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 2, 6-Cl <sub>2</sub> -phenyl | 4,00-4,20 (m,4H), 7,00 (t,1H), 7,30 (d,2H)   | ), 7,00 (t,1H),            | 7,30 (d,2H               |
| A.967  | n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl -(CH <sub>2</sub> )4-0- | -(CH <sub>2</sub> ) <sub>4</sub> -0- | 2, 6-C1 <sub>2</sub> -pheny1 | 4,00-4,20 (m,4H), 7,00 (t,1H), 7,30 (d,2H)   | ), 7,00 (t,1H),            | 7,30 (d,2H               |

|    |                            | [00]                                    | <b>i</b>                              |                                                   |                               |                                 |                                                                                                     |                                                                                                     |                                                                                |                                                                                |                               |                            |                                       |                                 |                                       |                             |                             |                                 |                             |                                                                                                          |
|----|----------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------------------|---------------------------------|---------------------------------------|-----------------------------|-----------------------------|---------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|
| 5  |                            | phys. Daten / 1H-NMR [ð in ppm], Fp. [º | 5 (т, 5н)                             | 5 (m, 5H)                                         |                               |                                 |                                                                                                     |                                                                                                     | 3,90 (m,2H), 4,17 (m,2H), 6,93 (m,2H), 7,13 (m,2H),                            | 3,90 (m,2H), 4,17 (m,2H), 6,93 (m,2H),<br>7,13 (m,2H)                          |                               |                            | 4,17 (m,2H), 6,93 (m,2H), 7,13 (m,2H) | 7,13 (m,2H)                     | 3,90 (m,2H), 4,17 (m,2H), 7,13 (m,4H) | 7,13 (m,4H)                 |                             |                                 | ٠                           |                                                                                                          |
|    |                            | in ppr                                  | , 7,2                                 | , 7,2                                             |                               |                                 |                                                                                                     |                                                                                                     | 6,9                                                                            | 6,9                                                                            |                               |                            | , 7,1                                 | , 7,1                           | , 7,1                                 | , 7,1                       |                             |                                 |                             |                                                                                                          |
| 10 |                            | MR [6                                   | (m, 2H)                               | (m, 2H)                                           |                               |                                 | (m, 5H)                                                                                             | (m, 5H)                                                                                             | (m, 2H)                                                                        | (m, 2H)                                                                        |                               |                            | (m, 2H)                               | (m, 2H)                         | (m, 2H)                               | (m, 2H)                     |                             |                                 | (m, 4H)                     | (m, 4H)                                                                                                  |
|    |                            | / 1H-N                                  | 4, 20                                 | 4,20                                              |                               |                                 | 7,25                                                                                                | 7,25                                                                                                | 4,17                                                                           | 4,17                                                                           |                               |                            | 6,93                                  | 6,93                            | 4,17                                  | 4,17                        |                             |                                 | 7,13                        | 7,13                                                                                                     |
| 15 |                            | Daten /                                 | 3,90 (m,2H), 4,20 (m,2H), 7,25 (m,5H) | 3,90 (m,2H), 4,20 (m,2H), 7,25 (m,5H)             |                               |                                 | 4,20 (m,2H), 7,25 (m,5H)                                                                            | 4,20 (m,2H), 7,25 (m,5H)                                                                            | (m, 2H),                                                                       | (m, 2H),                                                                       |                               |                            | (т, 2н),                              | 4,17 (m,2H), 6,93 (m,2H),       | (т, 2н),                              | 3,90 (m,2H), 4,17 (m,2H),   |                             |                                 | 4,17 (m,2H), 7,13 (m,4H)    | 4,17 (m,2H), 7,13 (m,4H)                                                                                 |
|    |                            | phys.                                   | 3, 90                                 | 3, 90                                             |                               |                                 | 4, 20                                                                                               | 4, 20                                                                                               | 3, 90<br>7, 13                                                                 | 3, 90<br>7, 13                                                                 |                               |                            | 4,17                                  | 4,17                            | 3, 90                                 | 3, 90                       |                             |                                 | 4,17                        | 4,17                                                                                                     |
| 20 |                            |                                         |                                       |                                                   |                               |                                 |                                                                                                     |                                                                                                     |                                                                                |                                                                                |                               |                            |                                       |                                 |                                       |                             |                             |                                 |                             |                                                                                                          |
| 25 |                            | R<br>f                                  | Phenyl                                | Phenyl                                            | Pheny 1                       | henyl                           | henyl                                                                                               | henyl                                                                                               | F-phenyl                                                                       | F-phenyl                                                                       | F-phenyl                      | -F-phenyl                  | F-phenyl                              | F-phenyl                        |                                       |                             |                             | +-C1-pheny1                     |                             |                                                                                                          |
|    |                            |                                         | H2- P                                 |                                                   | H2- P                         | H2- P                           | H2- P                                                                                               | `H2− P                                                                                              | 3H2- 4                                                                         | .H2− 4                                                                         | 3H2- 4                        | 3H2- 4                     | 3H2- 4                                | 3H2- 4                          | 2H2- 4                                | 3H2- 4                      | 3H2- 4                      | 3H2- 4                          | 3H2- 4                      | 2H2- 4                                                                                                   |
| 30 |                            | 3                                       | -CH2CH20CH2CH2-                       | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> | -CH2CH20CH2CH2-               | -CH2CH2OCH2CH2- Phenyl          | -сн 2сн 20сн 2                                                                                      | -сн 2сн 20сн 2(                                                                                     | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> - 4-F-phenyl | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> - 4-F-phenyl | -CH2CH2OCH2CH2- 4-F-phenyl    | -CH2CH2OCH2CH2- 4-F-phenyl | -CH2CH2OCH2CH2- 4-F-phenyl            | -CH2CH2OCH2CH2- 4-F-phenyl      | -CH2CH2OCH2CH2- 4-Cl-phenyl           | -CH2CH2OCH2CH2- 4-C1-phenyl | -CH2CH2OCH2CH2- 4-C1-phenyl | -CH2CH2OCH2CH2- 4-C1-phenyl     | -CH2CH2OCH2CH2- 4-C1-phenyl | -сн 2сн 20сн 2                                                                                           |
| 35 |                            |                                         |                                       |                                                   |                               |                                 | an-3-yl -                                                                                           | an-3-yl -                                                                                           |                                                                                |                                                                                |                               |                            |                                       |                                 |                                       |                             |                             |                                 | an-3-yl .                   | an-3-yl -                                                                                                |
| 40 | Tabelle II.7 (Fortsetzung) | A.C.                                    | Tetrahydropyran-3-y                   | Tetrahydropyran-3-yl                              | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl            | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> - Phenyl | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> - Phenyl | Tetrahydropyran-3-yl                                                           | Tetrahydropyran-3-yl                                                           | Tetrahydropyran-4-yl          | Tetrahydropyran-4-yl       | Tetrahydrothiopyran-3-yl              | Tetrahydrothiopyran-3-yl        | Tetrahydropyran-3-yl                  | Tetrahydropyran-3-yl        | Tetrahydropyran-4-yl        | Tetrahydropyran-4-yl            | Tetrahydrothiopyran-3-yl    | Tetrahydrothiopyran-3-yl -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> - 4-Cl-phenyl |
| 45 | 11.7 (F                    | Ra                                      | C 2H5                                 | n-C <sub>3</sub> H <sub>7</sub>                   | C <sub>2</sub> H <sub>5</sub> | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>5</sub>                                                                       | n-C3H7                                                                                              | C <sub>2</sub> H <sub>5</sub>                                                  | n-C <sub>3</sub> H <sub>7</sub>                                                | C <sub>2</sub> H <sub>S</sub> | n-C3H7                     | C 2H5                                 | n-C <sub>3</sub> H <sub>7</sub> | C <sub>2</sub> H <sub>S</sub>         | n-C3H7                      | C 2H5                       | n-C <sub>3</sub> H <sub>7</sub> | C 2H5                       | n-C3H7                                                                                                   |
| 50 | Tabelle                    | L                                       | A.968 (                               | A.969                                             | A.970                         | A.971                           | A.972 (                                                                                             | A.973                                                                                               | A.974                                                                          | A.975                                                                          | A.976                         | A.977                      | A.978                                 | A.979                           | A.980                                 | A.981                       | A.982                       | A.983                           | A.984                       | A.985                                                                                                    |

| 50          | 45                                     | 40                                                            | 30                                   | 25          | 15                            | 5                                                     |
|-------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------|-------------|-------------------------------|-------------------------------------------------------|
|             |                                        |                                                               |                                      |             | 1                             |                                                       |
| Tabell      | e. 11.7 (I                             | Tabelle II.7 (Fortsetzung)                                    |                                      |             |                               |                                                       |
| Ä.          | R<br>B                                 | ъс                                                            | 3                                    | R           | phys. Daten ,                 | phys. Daten / ˈlH-NMR [ø in ppm], Fp. [°C]            |
| A. 986      | C <sub>2</sub> H <sub>5</sub>          | Tetrahydropyran-3-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | Pheny 1     | 3,80-4,17 (m                  | 3,80-4,17 (m,6H), 6,90 (m,3H), 7,27 (m,2H)            |
| A.987       | n-C <sub>3</sub> H <sub>7</sub>        | Tetrahydropyran-3-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | Phenyl      | 3,80-4,17 (m                  | 3,80-4,17 (m,6H), 6,90 (m,3H), 7,27 (m,2H)            |
| A.988       | C <sub>2</sub> H <sub>5</sub>          | Tetrahydropyran-4-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | Phenyl      | 3,90-4,17 (m                  | 3,90-4,17 (m,6H), 6,90 (m,3H), 7,27 (m,2H)            |
| A.989       | n-C <sub>3</sub> H <sub>7</sub>        | Tetrahydropyran-4-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | Pheny 1     | 3,90-4,17 (m                  | 3,90-4,17 (m,6H), 6,90 (m,3H), 7,27 (m,2H)            |
| A.990       | C <sub>2</sub> H <sub>5</sub>          | Tetrahydrothiopyran-3-yl                                      | -(CH <sub>2</sub> ) <sub>5</sub> -0- | Pheny 1     | 3, 97 (t, 2H), 7, 27 (m, 2H)  | 3,97 {t,2H}, 4,07 (t,2H), 6,90 (m,3H),<br>7,27 {m,2H} |
| A.991       | n-C3H7                                 | Tetrahydrothiopyran-3-yl                                      | -(CH <sub>2</sub> ) <sub>5</sub> -0- | Pheny 1     | 3, 97 (t, 2H), 7, 27 (m, 2H). | 3,97 (t,2H), 4,07 (t,2H), 6,90 (m,3H),<br>7,27 (m,2H) |
| A.992       | C2H5                                   | Tetrahydropyran-3-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-F-phenyl  | 3,90 (m,4H),                  | 3,90 (m,4H), 4,03 (t,2H), 6,70-7,03 (m,4H)            |
| A.993       | n-C <sub>3</sub> H <sub>7</sub>        | Tetrahydropyran-3-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-F-phenyl  | 3,90 (m,4H),                  | 3,90 (m,4H), 4,03 (t,2H), 6,70-7,03 (m,4H)            |
| A.994       | C <sub>2</sub> H <sub>5</sub>          | Tetrahydropyran-4-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-F-phenyl  | 3,83-4,13 (m                  | 3,83-4,13 (m,6H), 6,70-7,03 (m,4H)                    |
| A.995       | n-C <sub>3</sub> H <sub>7</sub>        | Tetrahydropyran-4-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-F-phenyl  | 3,83-4,13 (m                  | 3,83-4,13 (m,6H), 6,70-7,03 (m,4H)                    |
| A.996       | C2H5                                   | Tetrahydrothiopyran-3-yl                                      | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-F-phenyl  | 3,90 (t,2H),                  | 3,90 (t,2H), 4,03 (t,2H) 6,70-7,03 (m,4H)             |
| A.997       | n-C <sub>3</sub> H <sub>7</sub>        | Tetrahydrothiopyran-3-yl                                      | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-F-phenyl  | 3,90 (t,2H),                  | 3,90 (t,2H), 4,03 (t,2H) 6,70-7,03 (m,4H)             |
| A.998       | C <sub>2</sub> H <sub>5</sub>          | Tetrahydropyran-3-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-C1-phenyl | 3,80-4,10 (m                  | 3,80-4,10 (m,6H), 6,80 (d,2H), 7,20 (d,2H)            |
| A.999       | n-C <sub>3</sub> H <sub>7</sub>        | Tetrahydropyran-3-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-Cl-phenyl | 3,80-4,10 (m                  | 3,80-4,10 (m,6H), 6,80 (d,2H), 7,20 (d,2H)            |
| A.1000 C2H5 | C2H5                                   | Tetrahydropyran-4-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-Cl-phenyl | 3,87-4,10 (m                  | 3,87-4,10 (m,6H), 6,80 (d,2H), 7,20 (d,2H)            |
| A.1001      | A.1001 n-C3H7                          | Tetrahydropyran-4-yl                                          | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-C1-phenyl | 3,87-4,10 (m                  | 3,87-4,10 (m,6H), 6,80 (d,2H), 7,20 (d,2H)            |
| A.1002 C2H5 | C2H5                                   | Tetrahydrothiopyran-3-yl -(CH <sub>2</sub> ) <sub>5</sub> -0- | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-Cl-phenyl |                               | 54- 61                                                |
| A.1003      | A.1003 n-C <sub>3</sub> H <sub>7</sub> | Tetrahydrothiopyran-3-yl -(CH <sub>2</sub> ) <sub>5</sub> -0- | -(CH <sub>2</sub> ) <sub>5</sub> -0- | 4-Cl-phenyl | 3, 90 {t, 2H}, 7, 20 {d, 2H}, | 3,90 (t,2H), 4,07 (t,2H), 6,80 (d,2H)<br>7,20 (d,2H)  |

| 5    |              |                 | Lit./1H-NMR-Daten [ppm] | DE-A 2 439 104                  | EP-A 172 551                    | 0,8(t,3H), 4,5(d,2H),<br>6,35(dt,1H),6,6(d,1H),<br>7,0-7,6(2m,4H) | 0,8(t,3H), 4,5(d,2H),<br>6,35(dt,1H),6,6(d,1H),<br>7,0-7,6(2m,4H) | 0,9(t,3H), 4,75(d,2H),<br>6,1(dt,1H), 6,4(d,1H),<br>6,9-8,0(5m,9H) | 0,95(t,3H), 4,75(d,2H),<br>6,1(dt,1H), 6,4(d,1H),<br>6,9-8,0(5m,9H) |
|------|--------------|-----------------|-------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| 15   |              |                 | Rf                      | <b>=</b>                        | I                               | 4-F-phenyl                                                        | 4-F-phenyl                                                        | 4-F-phenyl                                                         | 4-F-phenyl                                                          |
| 20   |              |                 | X                       | -сн 2сн=сн-                     | -CH2CH2-                        | -сн₂сн=сн-                                                        | -СН2СН=СН-                                                        | -сн <sub>2</sub> сн=сн-                                            | -сн <sub>2</sub> сн=сн-                                             |
| 25   |              |                 | Re                      | соосн3                          | C(CH3)=NOCH3                    | r                                                                 | ·                                                                 | I                                                                  | I                                                                   |
| 30 . |              | ¥<br>           | ₽ <b>Q</b>              | CH3                             | CH3                             | I                                                                 | I                                                                 | r                                                                  | I                                                                   |
| 35   |              | RC ORP NO-W-R F | RC                      | Methyl                          | Methyl                          | Tetrahydro-<br>thiopyran-3-yl                                     | Tetrahydro-<br>thiopyran-3-yl                                     | Tetrahydro-<br>thiopyran-3-yl                                      | Tetrahydro-<br>thiopyran-3-yl                                       |
| 40   |              | ·               |                         | ٠                               |                                 |                                                                   |                                                                   |                                                                    | 00-0                                                                |
| 45   |              |                 | Q.                      | S.                              | I                               | Z<br>E                                                            | e<br>Z                                                            | 00-0                                                               | 0                                                                   |
|      | 11.8         | ,               | Ra                      | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>7</sub> | n-C <sub>3</sub> H <sub>7</sub>                                   | C <sub>2</sub> H <sub>5</sub>                                     | n-C3H7                                                             | C <sub>2</sub> H <sub>5</sub>                                       |
| 50   | Tabelle II.8 |                 | Nr.                     | A.1004 n-C3H7                   | A.1005                          | A.1006 n-C <sub>3</sub> H <sub>7</sub>                            | A.1007 C2H5                                                       | A.1008 n-C <sub>3</sub> H <sub>7</sub>                             | A.1009 C2H5                                                         |

Außerdem tritt die gewünschte antidotisierende Wirkung der Verbindungen I insbesondere bei der Anwendung mit Herbiziden aus der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III auf, wenn deren Substituenten die folgende Bedeutung haben:

R

5

Phenyl, Pyridyl, Benzoxazolyl, Benzthiazolyl oder Benzpyrazinyl, wobei diese aromatischen und heteroaromatischen Ringsysteme ein oder zwei der folgenden Reste tragen können:

- 10 Nitro
  - Halogen wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkyl wie vorstehend im allgemeinen und im besonderen genannt;
  - C1-C4-Alkoxy wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, besonders C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy wie vorstehend im allgemeinen und im besonderen genannt;
  - C<sub>1</sub>-C<sub>4</sub>-Alkylthio wie vorstehend im allgemeinen und im besonderen genannt;

Wasserstoff oder Methyl;

20 Rq

15

Wasserstoff;

C<sub>1</sub>-C<sub>4</sub>-Alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>3</sub>-C<sub>4</sub>-Alkenyl wie Allyl, 2-Butenyl und 3-Butenyl;

C<sub>3</sub>-C<sub>4</sub>-Alkinyl wie Propargyl, 2-Butinyl und 3-Butinyl;

25 C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl wie vorstehend im allgemeinen und im besonderen genannt;

C<sub>3</sub>-C<sub>4</sub>-Alkylideniminooxy-C<sub>2</sub>-C<sub>3</sub>-alkyl steht für durch Propylideniminooxy oder Butylideniminooxy substituiertes C<sub>2</sub>-C<sub>3</sub>-Alkyl wie Ethyl, Propyl und 1-Methylethyl; Tetrahydrofuranylmethyl; Isoxazolidinyl; oder das Äquivalent eines landwirtschaftlich brauchbaren Kations.

Derartige Verbindungen sind aus der Literatur bekannt (vgl. z.B. DE-A 22 23 894, DE-A 24 33 067, DE-A 25 76 251, DE-A 30 04 770, DE-A 32 46 847, BE-A 868 875, BE-A 858 618, EP-A 054 715, EP-A 248 968, EP-A 323 127 und US 4,753,673).

Die 2-(4-Heteroaryloxy)- und 2-(4-Aryloxy-phenoxycarbonsäurederivate III können ein oder mehrere Asymmetriezentren enthalten. Sie wirken als Racemate, wie sie bei den meisten Herstellungsverfahren anfallen, können gewünschtenfalls aber auch nach den hierfür üblichen Methoden, als reine Isomere dargestellt oder aufgetrennt werden.

Sowohl die Racemate als auch die reinen Isomeren dienen zur Bekämpfung von unerwünschten Pflanzen aus der Familie der Gramineen. Die Verträglichkeit dieser Substanzen für Kulturpflanzen variiert jedoch zwischen kommerziell akzeptabel und unverträglich, je nach Substituenten und Aufwandmenge.

Spezielle Beispiele für herbizide 2-(4-Heteroaryloxy)- und 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III, deren Kulturpflanzenverträglichkeit durch substituierte 3-Pyrido[2,3-d]pyrimidine I verbessert werden kann, sind in der folgenden Tabelle III.1 aufgeführt:

45

50

Tabelle III.1

|      | R <sup>o</sup> -C                          |                 | RP O<br>    <br>CH-C-O-R9                                             | 111            |
|------|--------------------------------------------|-----------------|-----------------------------------------------------------------------|----------------|
| Nr.  | Ro                                         | RP              | Rq                                                                    | Literatur      |
| в.01 | -C1                                        | СН3             | -сн <sub>3</sub>                                                      | DE-A 22 23 894 |
| в.02 | {                                          | CH <sub>3</sub> | -n-C <sub>4</sub> H <sub>9</sub>                                      | BE-A 868 875   |
| в.03 | CF 3                                       | CH <sub>3</sub> | -CH <sub>2</sub> CH <sub>2</sub> OCH <sub>2</sub> H <sub>5</sub>      | US-A 4 753 673 |
| в.04 | No.C1                                      | CH <sub>3</sub> | -C <sub>2</sub> H <sub>5</sub>                                        | BE-A 858 618   |
| 8.05 | C1<br>———————————————————————————————————— | сн <sub>3</sub> | -СН3                                                                  | BE-A 868 875   |
| в.06 | F<br>C1                                    | CH <sub>3</sub> | -CH <sub>2</sub> -C≡CH                                                | EP-A 248 968   |
| в.07 | -√N= C1                                    | CH <sub>3</sub> | ***************************************                               | DE-A 32 46 847 |
| в.08 | TNT C1                                     | СНЗ             | -C <sub>2</sub> H <sub>5</sub>                                        | DE-A 30 04 770 |
| 8.09 | TNI CI                                     | CH <sub>3</sub> | -CH <sub>2</sub> CH <sub>2</sub> -ON=C(CH <sub>3</sub> ) <sub>2</sub> | EP 54 715      |
| B.10 | That co                                    | CH <sub>3</sub> | -CH <sub>2</sub> 0                                                    | EP-A 323 727   |

Die herbiziden Wirkstoffe und die antidotisch wirkenden Verbindungen können gemeinsam oder getrennt nach dem Auflaufen auf die Blätter und Sprossen der Kulturpflanzen und unerwünschten Gräser ausgebracht werden. Bevorzugt bringt man jedoch die herbiziden und antidotischen Wirkstoffe gleichzeitig auf das Feld. Bei getrennter Ausbringung von Antidot und herbizidem Wirkstoff wird vorzugsweise das Antidot zuerst ausgebracht.

Der antidotische und der herbizide Wirkstoff können gemeinsam oder getrennt formuliert werden und dann in suspendierbarer, emulgierbarer oder löslicher Form zur Bereitung von Spritzmitteln vorliegen.

Antidotische Effekte werden auch durch Bahandlung der Kulturpflanzensamen oder der Stecklinge mit dem Antidot vor der Aussaat bzw. vor dem Auspflanzen erzielt. Der herbizide Wirkstoff wird dann allein in der üblichen Weise appliziert.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,1 bis 10 g, vorzugsweise 1 bis 2 g, je Kilogramm Saatgut benötigt.

Bei der Applikation des Antidots durch Samenquellung oder bei der Stecklingsbehandlung werden bevorzugt Lösungen eingesetzt, die den antagonistischen Wirkstoff in einer Konzentration von 1 bis 10.000 ppm, insbesondere von 100 bis 10.000 ppm, enthalten.

In den verschiedenen Pflanzenkulturen benötigt man üblicherweise unterschiedliche Mengen an antidotisch wirksamer Verbindung I und herbizider Verbindung II oder III, wobei die Mengenverhältnisse in breiten Bereichen variabel sind. Sie sind abhängig von der Struktur der Cyclohexenon-Derivate II bzw. der Heteroaryloxy- und Aryloxyphenoxyessigsäurederivate III, der substituierten Pyrido[2,3-d]pyrimidine I und der jeweiligen Pflanzenkultur, auf die die Verbindungen ausgebracht werden. Geeignete Anteilsverhältnisse von herbizidem Wirkstoff zu antidotisch wirksamen substituierten Pyrido[2,3-d]pyrimidine I liegen zwischen 1:10 und 1:0,01, vorzugsweise zwischen 1:4 und 1:0,1.

Die erfindungsgemäßen Mittel bzw. bei getrennter Ausbringung die herbiziden Wirkstoffe oder das Antidot werden beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen, Dispersionen, Emulsionen, öldisperesionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet. Die Anwendungsform richtet sich hierbei ganz nach dem jeweiligen Verwendungszweck.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten und Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin und Dieselöl, ferner Kohlenteeröle, sowie Öle und Fette pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische oder aromatische Kohlenwasserstoffe, beispielsweise Methanol, Ethanol, Isopropanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenol, Toluol, Xylole, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate oder Isophoron, sowie stark polare Lösungsmittel wie Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon und vorzugsweise Wasser, in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten, netzbaren Pulvern (Spritzpulvern) oder Öldispersionen durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können herbizider Wirkstoff und/oder Antidot als solche oder in einem Öl oder Lösungsmittel gelöst, mitteles Netz-, Haft-, Dispergier oder Emulgiermittel mit Wasser homogenisiert werden. Es können aber auch aus herbizidem Wirkstoff und/oder Antidot Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus herbizidem Wirkstoff und/oder Antidot Netz-, Haft-, Dispergier- oder Emulgiermittel und gewünschtenfalls Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Salze kommen Alkalimetall-, Erdalkalimetall-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Alkalimetall- und Erdalkalimetallsalze der Dibutylnaphthalinsulfonsäure, Laurylethersulfat, Fettalkoholsulfate, fettsaure Alkalimetall- und Erdalkalimetallsalze, Salze sulfatierter Hexadecanole, Heptadecanole, Octadecanole, Salze von sulfatierten Fettalkoholglykolethern, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctyl-phenolether, ethoxylierte Isooctylphenol, Octylphenol oder Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Lignin-Sulfitablaugen und Methylcellulose in Betracht.

Pulver, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen von herbizidem Wirkstoff und/oder Antidot mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogenisierungsgranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kreide, Talkum, Bolus, Lös, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe, und pflanzliche Produkte wie Getriedemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten 0,02 bis 95 Gew.%, vorzugsweise 0,5 bis 90 Gew.% an herbizidem Wirkstoff und Antidot. Die Aufwandmengen an herbizidem Wirkstoff betragen 0,05 bis 5 kg/ha.

Die herbiziden Mittel können neben den antagonistisch wirksamen substituierten Pyrido[2,3-d]pyrimidine I und dem Herbizid aus der Gruppe der Cyclohexenone II oder der (Heteroaryloxy)- bzw. Aryloxyphenoxycarbonsäuren III weitere herbizide oder wachstumsregulierende Wirkstoffe anderer chemi-

scher Sturktur enthalten, wobei der antagonistische Effekt der substituierten Pyrido[2,3-d]pyrimidine I erhalten bleibt.

Herstellungsbeispiele (erfindungsgemaße substituierte Pyrido[2,3-d]pyrimidine I):

#### 5 Beispiel 1

10

15

20

25

30

7-(4-Fluorphenyl)-2-methyl-pyrido[2,3-d]pyrimidin

Eine Suspension von 30,1 g (0,22 mol) 4-Amino-5-formyl-2-methylpyrimidin und 31,7 g (0,23 mol) 4-Fluoracetophenon in 395 ml Methanol wurde bei 20-25°C langsam mit 15 ml 40 gew.-%iger wässriger Kaliumhydroxidlösung versetzt, wobei eine homogene Lösung entstand. Nach 20 Std. rühren bei ca. 20°C wurde der gebildete Feststoff abgetrennt und aus Ethanol umkristallisiert. Ausbeute: 50 %; Smp. > 200°C.

#### Beispiel 2

2-Methyl-7-(2-thienyl)-pyrido[2,3-d]pyrimidin

Eine Suspension von 2,0 g (14,6 mmol) 4-Amino-5-formyl-2-methylpyrimidin und 1,93 g (15,3 mmol) 2-Acetylthiophen in 25 ml Methanol wurde mit 1 ml 40 gew.-%iger wässriger Kaliumhydroxidlösung versetzt. Die Reaktionsmischung wurde anschließend 20 Std. bei 20-25 °C gerührt, wonach man das Lösungsmittel entfernte. Nach Aufnehmen des Rückstandes in Dichlormethan wurde die organische Phase mit Wasser gewaschen, getrocknet und eingeengt. Ausbeute: 17 %; Smp.: 175-180 °C.

#### Beispiel 3

40 7-Amino-6-(4-fluorphenyl)-2-methyl-pyrido[2,3-d]pyrimidin

Zu einer Suspension von 90 g (0,66 mol) 4-Amino-5-formyl-2-methylpyrimidin und 88,7 g (0,66 mol) p-Fluorphenylacetonitril in 900 ml Methanol wurden bei 40 °C 60 ml 40 gew.-%ige wässrige Kaliumhydroxidlösung gegeben, wobei eine homogene Lösung entstand. Nach Abkühlen auf ca. 20 °C trennt man den gebildeten Niederschlag ab. Die alkoholische Phase wurde mit 1 l Wasser versetzt, wodurch weiteres Produkt auskristallisierte. Ausbeute: 78 %; Smp.: 252-254 °C.

55

#### Beispiel 4

7-Amino-6-(3-methylphenyl)-2-methyl-pyrido[2,3-d]pyrimidin

5

$$H_3C$$
 $H_2N$ 
 $N$ 
 $N$ 
 $CH_3$ 

10

Eine Mischung von 1,52 g (11,6 mmol) m-Methylphenylacetonitril und 1,59 g (11,6 mmol) 4-Amino-5-formyl-2-methylpyridin in 15 ml Methanol wurde bei 42°C mit 1 ml 40 gew.-%iger wässriger Kaliumhydroxidlösung versetzt. Nach Abkühlen auf ca. 20°C wurde der gebildete Feststoff abgetrennt und mit Diethylether nachgewaschen. Ausbeute: 60 %; Smp.: 177-180°C.

#### Beispiel 5

6-Cyano-7-hydroxy-2-methyl-pyrido[2,3-d]pyrimidin

HO N N CH

25

Eine Suspension aus 3 g (22 mmol) 4-Amino-5-formyl-3-methylpyrimin, 5 g (44 mmol) Ethylcyanoacetat und 850 mg (100 mmol) Piperidin in 20 ml Ethanol wurde 20 Std. bei 20-25 °C gerührt. Der gebildete feinkörnige Feststoff wurde abgetrennt, unter reduziertem Druck von Lösungsmittelresten befreit und zweimal mit je 20 ml Methanol aufgeschlämmt. Das Rohprodukt wurde schließlich mit Diethylether gewaschen.

Ausbeute: 50 % (feines Pulver); Smp.: > 200 ° C.

Beispiel 6

7-Hydroxy-6-(4-methylphenylsulfonyl)-2-methyl-pyrido[2,3-d]-pyrimidin

40

35

45

Eine Suspension von 3 g (22 mmol) 4-Amino-5-formyl-3-methylpyrimidin,10,6 g (44 mmol) Ethyl-p-tolylsulphonyl-acetat und 1,5 g (176 mmol) Piperidin in 30 ml Ethanol wurde 1 Std. bei Rückflußtemperatur gerührt. Anschließend goß man das Reaktionsgemisch in Diethylether, wonach der entstandene Feststoff abgetrennt und mit Diethylether gewaschen wurde.

Ausbeute: 45 %; Smp.: > 200 °C.

In den folgenden Tabellen 1 bis 5 sind noch weitere Verbindungen aufgeführt, die auf die gleichen Weisen hergestellt wurden oder herstellbar sind.

Tabelle 1

 $R^{4} \longrightarrow R^{3} \qquad R^{2}$   $R^{4} = H$   $R^{5} \longrightarrow N \qquad N$ 

| Beispiel-<br>Nr. | R <sup>1</sup>  | R <sup>2</sup> | R <sup>3</sup> | R <sup>5</sup>                                                       | Fp. [°C] | Lit.                                  |
|------------------|-----------------|----------------|----------------|----------------------------------------------------------------------|----------|---------------------------------------|
| 1.001            | H               | H              | H              | C <sub>6</sub> H <sub>5</sub>                                        | 188      | a)                                    |
| 1.002            | Н               | H              | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | 230      |                                       |
| 1.003            | Н               | Н              | H              | 1-Naphthyl                                                           | 272      | a)                                    |
| 1.004            | Н               | Н              | H              | Thien-2-yl                                                           | 194-195  |                                       |
| 1.005            | н               | H              | H              | Pyridin-2-yl                                                         | 200      | a)                                    |
| 1.006            | H               | Н              | ОН             | C <sub>6</sub> H <sub>5</sub>                                        | 294      | d)                                    |
| 1.007            | CH <sub>3</sub> | H              | H              | C <sub>6</sub> H <sub>5</sub>                                        | > 200    |                                       |
| 1.008            | CH <sub>3</sub> | H              | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | 184      |                                       |
| 1.009            | CH <sub>3</sub> | H              | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                     | > 200    |                                       |
| 1.010            | CH <sub>3</sub> | Н              | H              | 2-F-C <sub>6</sub> H <sub>4</sub>                                    | 200-201  |                                       |
| 1.011            | CH <sub>3</sub> | Н              | Н              | 3-F-C <sub>6</sub> H <sub>4</sub>                                    | 198-200  |                                       |
| 1.012            | CH <sub>3</sub> | H              | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                                    | > 200    |                                       |
| 1.013            | CH <sub>3</sub> | H              | H              | 2-C1-C <sub>6</sub> H <sub>4</sub>                                   | 174-178  |                                       |
| 1.014            | CH <sub>3</sub> | H              | H              | 3-C1-C <sub>6</sub> H <sub>4</sub>                                   | 156-160  |                                       |
| 1.015            | CH <sub>3</sub> | Н              | Н              | 4-C1-C <sub>6</sub> H <sub>4</sub>                                   | > 200    |                                       |
| 1.016            | CH <sub>3</sub> | Ħ              | н              | 3-Br-C <sub>6</sub> H <sub>4</sub>                                   | 178-181  |                                       |
| 1.017            | CH <sub>3</sub> | H              | Н              | 3-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>                    | 150-155  |                                       |
| 1.018            | CH <sub>3</sub> | H              | Н              | 4-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>                    | > 200    |                                       |
| 1.019            | CH <sub>3</sub> | Н              | Н              | 4-Biphenyl                                                           | > 200    |                                       |
| 1.020            | CH <sub>3</sub> | H              | H              | 4-tButyl-C <sub>6</sub> H <sub>4</sub>                               | > 200    |                                       |
| 1.021            | CH <sub>3</sub> | H              | H              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>                     | > 200    |                                       |
| 1.022            | CH <sub>3</sub> | H              | H              | 4-CN-C <sub>6</sub> H <sub>4</sub>                                   | > 200    |                                       |
| 1.023            | CH <sub>3</sub> | H              | Н              | 3,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                   | > 200    |                                       |
| 1.024            | CH <sub>3</sub> | Н              | H              | 2,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  | 165-167  |                                       |
| 1.025            | CH <sub>3</sub> | H              | H              | 3,4-(OCH <sub>3</sub> ) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>  | 188-192  |                                       |
| 1.026            | CH <sub>3</sub> | H              | H              | 3,4-Methylendioxy-C <sub>6</sub> H <sub>3</sub>                      |          |                                       |
| 1.027            | CH <sub>3</sub> | H              | H              | 3-NO <sub>2</sub> -4-C1-C <sub>6</sub> H <sub>3</sub>                | > 200    |                                       |
| 1.028            | CH <sub>3</sub> | H              | H              | 3-NO <sub>2</sub> -4-OCH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> | > 200    | · · · · · · · · · · · · · · · · · · · |

|      | Beispiel- | R <sup>1</sup>                                | R <sup>2</sup>                | R <sup>3</sup> | R5                                                    | Fp. [°C] | Lit. |
|------|-----------|-----------------------------------------------|-------------------------------|----------------|-------------------------------------------------------|----------|------|
|      | Nr.       |                                               |                               | ı``            |                                                       | 10. (0)  | 1    |
| 5    | 1.029     | CH <sub>3</sub>                               | H                             | Ħ              | 2-Naphthyl                                            | > 200    |      |
| •    | 1.030     | CH <sub>3</sub>                               | Н                             | H              | Thien-2-yl                                            | 175-180  |      |
|      | 1.031     | CH <sub>3</sub>                               | Н                             | H              | Thien-3-yl                                            | 191-193  |      |
|      | 1.032     | CH <sub>3</sub>                               | H                             | H              | 5-Cl-thien-2-yl                                       | > 200    |      |
| 10   | 1.033     | CH <sub>3</sub>                               | Ħ                             | H              | 5-CH <sub>3</sub> -isoxazol-3-yl                      | > 200    |      |
|      | 1.034     | CH <sub>3</sub>                               | CH <sub>3</sub>               | Н              | Pyridin-2-yl                                          | 184      |      |
|      | 1.035     | CH <sub>3</sub>                               | CH <sub>3</sub>               | Н              | Pyridin-3-yl                                          | 191-197  |      |
|      | 1.036     | CH <sub>3</sub>                               | CH <sub>3</sub>               | H              | Pyridin-4-yl                                          | 190-191  |      |
| 15   | 1.037     | CH <sub>3</sub>                               | CH <sub>3</sub>               | H              | C <sub>6</sub> H <sub>5</sub>                         | 135-136  |      |
|      | 1.038     | СН3                                           | CH <sub>3</sub>               | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>      | 131      |      |
|      | 1.039     | CH <sub>3</sub>                               | CH <sub>3</sub>               | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>      | 162-165  |      |
|      | 1.040     | CH <sub>3</sub>                               | CH <sub>3</sub>               | H              | Thien-2-yl                                            | 167-168  |      |
| 20   | 1.041     | CH <sub>3</sub>                               | CH <sub>3</sub>               | Ħ              | Furan-2-yl                                            | 157-160  |      |
|      | 1.042     | C <sub>6</sub> H <sub>5</sub>                 | H                             | H              | C <sub>6</sub> H <sub>5</sub>                         | 190      |      |
|      | 1.043     | C <sub>6</sub> H <sub>5</sub>                 | H                             | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>      | 226      |      |
|      | 1.044     | C <sub>6</sub> H <sub>5</sub>                 | H                             | H              | Thien-2-yl                                            | 172-176  |      |
| 25   | 1.045     | C <sub>6</sub> H <sub>5</sub>                 | H                             | H              | Pyridin-2-yl                                          | 200      |      |
|      | 1.046     | H                                             | C <sub>6</sub> H <sub>5</sub> | H              | C <sub>6</sub> H <sub>5</sub>                         | 128-130  | b)   |
|      | 1.047     | H                                             | C <sub>6</sub> H <sub>5</sub> | H              | 4-C1-C <sub>6</sub> H <sub>4</sub>                    | 202-204  | p)   |
| 30   | 1.048     | H                                             | C <sub>6</sub> H <sub>5</sub> | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                     | 153-155  | b)   |
|      | 1.049     | C <sub>6</sub> H <sub>5</sub>                 | CH <sub>3</sub>               | H              | C <sub>6</sub> H <sub>5</sub>                         | 210-213  |      |
|      | 1.050     | C <sub>6</sub> H <sub>5</sub>                 | CH <sub>3</sub>               | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>      | 194-197  |      |
|      | 1.051     | C <sub>6</sub> H <sub>5</sub>                 | ÇH₃                           | H              | Thien-2-yl                                            | 188-191  |      |
| 35   | 1.052     | OCH <sub>3</sub>                              | осн3                          | H              | C <sub>6</sub> H <sub>5</sub>                         | > 250    |      |
|      | 1.053     | OCH3                                          | осн3                          | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>      | > 250    |      |
|      | 1.054     | OCH <sub>3</sub>                              | OCH <sub>3</sub>              | H              | Thien-2-yl                                            | 201-204  |      |
|      | 1.055     | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | H                             | H              | C <sub>6</sub> H <sub>5</sub>                         | 135-137  |      |
| 40   | 1.056     | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | H                             | H              | 4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>      | 181-182  |      |
|      | 1.057     | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | H                             | H              | Thienyl                                               | 190-191  |      |
|      | 1.058     | CH <sub>3</sub>                               | H                             | H              | Tetralin-2-yl                                         | 223-226  |      |
|      | 1.059     | CH <sub>3</sub>                               | H                             | H              | 2-C1-5-NO <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | 209-211  |      |
| 45 · | 1.060     | CH <sub>3</sub>                               | H                             | H              | 2,5-(CH <sub>3</sub> ) <sub>2</sub> -thien-3-yl       | 170      |      |
|      | 1.061     | CH <sub>3</sub>                               | H                             | H              | 3-CH <sub>3</sub> -thien-2-yl                         | 120      |      |
|      | 1.062     | CH <sub>3</sub>                               | H                             | Ħ              | 5-CH <sub>3</sub> -thien-2-yl                         | Ö1       |      |
|      | 1.063     | CH <sub>3</sub>                               | H                             | H              | 2,5-Cl <sub>2</sub> -thien-3-yl                       | 211-212  |      |
| 50   |           |                                               |                               |                |                                                       |          |      |

| Beispiel- | R <sup>1</sup>  | R <sup>2</sup> | R <sup>3</sup> | R <sup>5</sup>                                                         | Fp. [°C] | Lit. |
|-----------|-----------------|----------------|----------------|------------------------------------------------------------------------|----------|------|
| Nr.       | L               |                |                |                                                                        |          |      |
| 1.064     | CH <sub>3</sub> | Н              | H              | Benzthien-2-yl                                                         | 176-178  |      |
| 1.065     | CH <sub>3</sub> | H              | H              | 2,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                     | 152-156  |      |
| 1.066     | CH <sub>3</sub> | H              | H              | 3,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub>                     | 166      |      |
| 1.067     | CH <sub>3</sub> | H              | H              | 2,3,4-Cl <sub>3</sub> -C <sub>6</sub> H <sub>2</sub>                   | > 200    |      |
| 1.068     | CH <sub>3</sub> | H              | H              | 2-CH <sub>3</sub> O-3,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>2</sub> | 196-197  |      |
| 1.069     | CH <sub>3</sub> | н              | H              | 2-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>                      | 160-165  |      |
| 1.070     | CH <sub>3</sub> | H              | H              | 4-CF <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>                       | 182      |      |
| 1.071     | CH <sub>3</sub> | H              | H              | 4-N (CH <sub>2</sub> ) <sub>5</sub> -C <sub>6</sub> H <sub>4</sub>     | > 200    |      |

. 55

Tabelle 2

Bsp.Nr. R4

H

CH<sub>3</sub>

C<sub>6</sub>H<sub>5</sub>

2.001

2.002

2.003

5

NHSO2-C6H5

C<sub>6</sub>H<sub>5</sub>

CH<sub>3</sub>

Fp. [°C] Lit.

a)

a)

a)

f)

f)

f)

f)

f)

e)

e)

e)

e)

e)

e)

188

169

203

157

215-217

175-178

92- 94

77- 81

257-259

202-203

192-193

136-139

171-173

> 215

>230

> 215

193-194

231-232

172-173

120-123

120-123

107-109

220-222

>230

>230

10

15

20

25

30

35

40

2.022

2.023

2.024

2.025

SO<sub>2</sub>CH<sub>3</sub>

SO<sub>2</sub>CH<sub>3</sub>

SO<sub>2</sub>CH<sub>3</sub>

SO<sub>2</sub>CH<sub>3</sub>

45

2.004 C<sub>6</sub>H<sub>5</sub> H H  $C_6H_5$ 2.005 2,6-Cl<sub>2</sub>-C<sub>6</sub>H<sub>3</sub> H NHCOCH<sub>3</sub> H CH<sub>3</sub> CH<sub>3</sub> 2.006 Н C<sub>6</sub>H<sub>5</sub> 2,007 C<sub>2</sub>H<sub>5</sub> CH<sub>3</sub> H C<sub>6</sub>H<sub>5</sub> 2.008 CH<sub>3</sub> n-C<sub>3</sub>H<sub>7</sub> H C<sub>6</sub>H<sub>5</sub> 2.009 2,6-Cl2-C6H3 CH<sub>3</sub> H NHCOH 2.010 2,6-Cl<sub>2</sub>-C<sub>6</sub>H<sub>3</sub> NHCOCH<sub>3</sub> CH<sub>3</sub> н 2.011 2,6-Cl<sub>2</sub>-C<sub>6</sub>H<sub>3</sub> H CH<sub>3</sub> NHCOC2H5 2.012 Н 2,6-Cl<sub>2</sub>-C<sub>6</sub>H<sub>3</sub> CH<sub>3</sub> NHCO2CH3 2.013 CH<sub>3</sub> CH<sub>3</sub> NHSO2- (2-C1-6-CH3-C<sub>6</sub>H<sub>3</sub>) 2.014 H CH<sub>3</sub> CH<sub>3</sub> NHSO<sub>2</sub>-(2-Carbomethoxy-6-CH<sub>3</sub>-C<sub>6</sub>H<sub>3</sub>) 2.015 Н CH<sub>3</sub> CH<sub>3</sub>  $NHSO_2 - (2, 6-Cl_2-C_6H_3)$ 2.016 H CH<sub>3</sub>  $CH_3$ NHSO2- (2-C1-6-CH3- $C_6H_3$ ) 2.017 CH<sub>3</sub> H CH<sub>3</sub> NHSO2- (3-OCH3-C6H4) 2.018 H CH<sub>3</sub> CH<sub>3</sub> NHSO2- (2-C1-C6H4) 2.019 H CH<sub>3</sub> CH<sub>3</sub>  $NHSO_2 - (2-F-C_6H_4)$ 2.020 CH<sub>3</sub> CH3 CH<sub>3</sub> C<sub>6</sub>H<sub>5</sub> 2.021 CH<sub>3</sub> C<sub>6</sub>H<sub>5</sub> CH<sub>3</sub> CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>3</sub>

CH3

CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>3</sub>

 $NHSO_2 - (2-C1-C_6H_4)$ 

 $NHSO_2 - (2-F-C_6H_4)$ 

NHSO2-(2-Carbo-

methoxyphenyl)

 $NHSO_2 - (2, 5-Cl_2-C_6H_3)$ 

 $\mathbb{R}^1$ 

H

H

Н

R2

H

H

Н

50

|    | Bsp.Nr. | R <sup>4</sup>                  | R <sup>1</sup>                 | R <sup>2</sup>                 | R <sup>5</sup>                                                                  | Fp.[°C] | Lit. |
|----|---------|---------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------|---------|------|
|    | 2.026   | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>                | CH <sub>3</sub>                | NHSO <sub>2</sub> -(2-C1-6-                                                     | > 215   | e)   |
| 5  |         |                                 |                                |                                | cyclopentyl-C <sub>6</sub> H <sub>3</sub> )                                     |         |      |
| -  | 2.027   | SO <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub>                | CH <sub>3</sub>                | NHSO <sub>2</sub> - $(2, 6-Cl_2-C_6H_3)$                                        | > 230   | e)   |
|    | 2.028   | C <sub>6</sub> H <sub>5</sub>   | OCH <sub>3</sub>               | OCH <sub>3</sub>               | NHSO <sub>2</sub> -(2-Cl <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> )          | 226-228 | e)   |
|    | 2.029   | C <sub>6</sub> H <sub>5</sub>   | OCH <sub>3</sub>               | OCH <sub>3</sub>               | NHSO <sub>2</sub> - (2-F-C <sub>6</sub> H <sub>4</sub> )                        | 198-199 | e)   |
| 10 | 2.030   | C <sub>6</sub> H <sub>5</sub>   | OCH <sub>3</sub>               | OCH <sub>3</sub>               | $NHSO_2-(2,6-Cl_2-C_6H_3)$                                                      | > 230   | e)   |
|    | 2.031   | C <sub>6</sub> H <sub>5</sub>   | OCH <sub>3</sub>               | OCH <sub>3</sub>               | NHSO <sub>2</sub> -(2-Carbo-<br>methoxyphenyl)                                  | 108-111 | e)   |
|    | 2.032   | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub>               | OCH <sub>3</sub>               | NHSO <sub>2</sub> - (2-C1-C <sub>6</sub> H <sub>4</sub> )                       | > 215   | e)   |
| 15 | 2.033   | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub>               | OCH <sub>3</sub>               | $NHSO_2 - (2-F-C_6H_4)$                                                         | 155-157 | e)   |
|    | 2.034   | SO₂CH₃                          | OCH <sub>3</sub>               | OCH <sub>3</sub>               | $NHSO_2-(2,6-Cl_2-C_6H_3)$                                                      | 213-214 | e)   |
|    | 2.035   | SO <sub>2</sub> CH <sub>3</sub> | OCH <sub>3</sub>               | OCH <sub>3</sub>               | $NHSO_2 - (2, 5-Cl_2-C_6H_3)$                                                   | 172-175 | e)   |
| 20 | 2.036   | SO <sub>2</sub> CH <sub>3</sub> | осн <sub>3</sub>               | ОСН3                           | NHSO <sub>2</sub> -(2-C1-6-CH <sub>3</sub> -<br>C <sub>6</sub> H <sub>3</sub> ) | 226-227 | e)   |
|    | 2.037   | SO₂CH <sub>3</sub>              | OCH <sub>3</sub>               | OCH <sub>3</sub>               | NHSO <sub>2</sub> -(2,5-(OCH <sub>3</sub> ) <sub>2</sub> - $C_6H_3$ )           | 128     | e)   |
|    | 2.038   | C <sub>6</sub> H <sub>5</sub>   | OC <sub>2</sub> H <sub>5</sub> | OC <sub>2</sub> H <sub>5</sub> | $NHSO_2 - (2-F-C_6H_4)$                                                         | 198     | e)   |
| 25 | 2.039   | C <sub>6</sub> H <sub>5</sub>   | OC <sub>2</sub> H <sub>5</sub> | OC <sub>2</sub> H <sub>5</sub> | NHSO <sub>2</sub> -(2-C1-C <sub>6</sub> H <sub>4</sub> )                        | 169-173 | e)   |
|    | 2.040   | CH <sub>3</sub>                 | CH <sub>3</sub>                | Ħ                              | 3-Thienyl                                                                       | 172-175 |      |
|    | 2.041   | CH <sub>3</sub>                 | CH <sub>3</sub>                | H                              | 2-Thienyl                                                                       | 152-154 |      |

 $R^5 = OH$ 

Tabelle 3

 $R^3$   $R^2$  N

| Bsp.Nr. | R <sup>1</sup>                                | R <sup>2</sup>   | R <sup>3</sup> | R <sup>4</sup>                                                       | Fp. [°C] | Lit. |
|---------|-----------------------------------------------|------------------|----------------|----------------------------------------------------------------------|----------|------|
| 3.001   | H                                             | Н                | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | 196-199  |      |
| 3.002   | H                                             | H                | H              | CN                                                                   | > 250    |      |
| 3.003   | H                                             | H                | OH             | Н                                                                    | > 340    | d)   |
| 3.004   | H                                             | H                | ОН             | CH <sub>3</sub>                                                      | > 360    | d)   |
| 3.005   | H                                             | H                | ОН             | C <sub>2</sub> H <sub>5</sub>                                        | 317      | d)   |
| 3.006   | H                                             | H                | ОН             | C <sub>6</sub> H <sub>5</sub>                                        | > 360    | d)   |
| 3.007   | H                                             | H                | OH             | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | 246-248  | d)   |
| 3.008   | CH <sub>3</sub>                               | H                | H .            | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | > 200    | c)   |
| 3.009   | CH <sub>3</sub>                               | H                | H              | CN                                                                   | > 200    |      |
| 3.010   | СН3                                           | H                | H              | SO <sub>2</sub> CH <sub>3</sub>                                      | > 250    |      |
| 3.011   | CH <sub>3</sub>                               | H                | H              | SO <sub>2</sub> -(4-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub> ) | > 200    |      |
| 3.012   | CH <sub>3</sub>                               | H                | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                                    | > 260    |      |
| 3.013   | CH <sub>3</sub>                               | CH <sub>3</sub>  | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | 176-177  |      |
| 3.014   | CH <sub>3</sub>                               | CH <sub>3</sub>  | H              | CN                                                                   | > 250    |      |
| 3.015   | C <sub>6</sub> H <sub>5</sub>                 | H                | н              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | > 250    |      |
| 3.016   | C <sub>6</sub> H <sub>5</sub>                 | H                | H              | CN                                                                   | > 250    |      |
| 3.017   | C <sub>6</sub> H <sub>5</sub>                 | CH <sub>3</sub>  | н              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | > 230    |      |
| 3.018   | C <sub>6</sub> H <sub>5</sub>                 | CH <sub>3</sub>  | H              | CN                                                                   | > 250    |      |
| 3.019   | OCH <sub>3</sub>                              | OCH <sub>3</sub> | H              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | 240-243  |      |
| 3.020   | OCH <sub>3</sub>                              | OCH <sub>3</sub> | H              | CN                                                                   | > 250    |      |
| 3.021   | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | H                | Н              | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                        | 193      |      |
| 3.022   | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | H                | H              | CN                                                                   | 180-185  |      |
| 3.023   | CH <sub>3</sub>                               | H                | H              | 2-Pyridyl                                                            | > 220    |      |

Tabelle 4

 $R^4 \longrightarrow R^3 \qquad R^2$   $N \longrightarrow N \qquad \qquad R^5 = NH_2$ 

| Bsp.Nr. | R <sup>1</sup>  | R <sup>2</sup>  | R <sup>3</sup> | R <sup>4</sup>                                     | Fp. [°C] | Lit. |
|---------|-----------------|-----------------|----------------|----------------------------------------------------|----------|------|
| 4.001   | H               | H               | ОН             | H                                                  | > 340    | d)   |
| 4.002   | H               | H               | ОН             | C <sub>6</sub> H <sub>5</sub>                      | > 340    | d)   |
| 4.003   | Н               | Н               | н              | C <sub>6</sub> H <sub>5</sub>                      | 289-290  | g)   |
| 4.004   | H               | H               | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | 253-255  | f)   |
| 4.005   | H               | H               | Н              | 2-C1-C <sub>6</sub> H <sub>4</sub>                 | 269-270  | g)   |
| 4.006   | H               | H               | Н              | 2-Br-C <sub>6</sub> H <sub>4</sub>                 | 265-267  | g)   |
| 4.007   | Н               | H ,             | H              | 4-Br-C <sub>6</sub> H <sub>4</sub>                 | 265-267  | f)   |
| 4.008   | Н               | H               | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | 328-330  | f)   |
| 4.009   | H               | H               | Н              | Pyridin-3-yl                                       | 295-297  | g)   |
| 4.010   | CH <sub>3</sub> | н               | H              | C <sub>6</sub> H <sub>5</sub>                      | 229-230  | g)   |
| 4.011   | CH <sub>3</sub> | Н               | H              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | 234-235  | f)   |
| 4.012   | CH <sub>3</sub> | H               | H              | 3-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | 180-188  |      |
| 4.013   | CH <sub>3</sub> | H               | H              | 2-C1-C6H4                                          | 256-260  | f)   |
| 4.014   | CH <sub>3</sub> | H               | н              | 3-C1-C <sub>6</sub> H <sub>4</sub>                 | 208-209  |      |
| 4.015   | CH <sub>3</sub> | Н               | н              | 4-C1-C6H4                                          | 262-264  | g)   |
| 4.016   | CH3             | H               | H              | 2-F-C <sub>6</sub> H <sub>4</sub>                  | 278-279  | g)   |
| 4.017   | CH <sub>3</sub> | H               | H              | 4-F-C <sub>6</sub> H <sub>4</sub>                  | 252-254  |      |
| 4.018   | CH <sub>3</sub> | H               | H              | 2-Br-C <sub>6</sub> H <sub>4</sub>                 | 228-230  | f)   |
| 4.019   | CH <sub>3</sub> | B               | H              | 3-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>  | 175-180  |      |
| 4.020   | CH <sub>3</sub> | Ħ               | H              | 4-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>  | > 200    |      |
| 4.021   | CH <sub>3</sub> | H               | H              | 4-NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub>   | 299-301  | g)   |
| 4.022   | CH <sub>3</sub> | Ħ               | H              | 2,4-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | 259-261  | f)   |
| 4.023   | CH <sub>3</sub> | H               | H              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | 288-290  | g)   |
| 4.024   | CH <sub>3</sub> | H               | H              | Carbamoyl                                          | 232-233  | g)   |
| 4.025   | CH <sub>3</sub> | H               | H              | Pyridin-3-yl                                       | 296-298  | g)   |
| 4.026   | CH <sub>3</sub> | CH <sub>3</sub> | н              | 2-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | 234-235  | g)   |
| 4.027   | CH <sub>3</sub> | CH <sub>3</sub> | H              | 2-F-C <sub>6</sub> H <sub>4</sub>                  | 222-223  |      |
| 4.028   | CH <sub>3</sub> | CH <sub>3</sub> | Н              | 3-F-C <sub>6</sub> H <sub>4</sub>                  | > 230    |      |
| 4.029   | CH <sub>3</sub> | CH <sub>3</sub> | H              | 2-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>  | 210-212  |      |

| Bsp.Nr. | R <sup>1</sup>  | R <sup>2</sup>  | R <sup>3</sup> | R <sup>4</sup>                                     | Fp. [°C] | Lit. |
|---------|-----------------|-----------------|----------------|----------------------------------------------------|----------|------|
| 4.030   | CH <sub>3</sub> | CH <sub>3</sub> | Н              | 3-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>  | 211-214  |      |
| 4.031   | CH <sub>3</sub> | CH <sub>3</sub> | н              | 4-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub>  | > 250    |      |
| 4.032   | CH <sub>3</sub> | CH <sub>3</sub> | Н              | 2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> | 239-240  | f)   |
| 4.033   | CH <sub>3</sub> | CH <sub>3</sub> | H              | CN                                                 | > 210    |      |

Tabelle 5

R<sup>4</sup> N

 $R^4 = CN$ 

20

10

15

25

30

35

40

45

50

| Bsp.Nr. | R <sup>3</sup> | R <sup>1</sup>   | R <sup>2</sup>   | R <sup>5</sup>                                                                            | Fp.[°C] | Lit. |
|---------|----------------|------------------|------------------|-------------------------------------------------------------------------------------------|---------|------|
| 5.001   | H              | CH <sub>3</sub>  | CH <sub>3</sub>  | NHSO <sub>2</sub> -(2-C1-C <sub>6</sub> H <sub>4</sub> )                                  | > 230   | e)   |
| 5.002   | H              | CH <sub>3</sub>  | CH <sub>3</sub>  | NHSO <sub>2</sub> -(2-F-C <sub>6</sub> H <sub>4</sub> )                                   | 210-212 | e)   |
| 5.003   | H              | CH <sub>3</sub>  | CH <sub>3</sub>  | NHSO <sub>2</sub> -(2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> )                  | > 230   | e)   |
| 5.004   | H              | CH <sub>3</sub>  | CH <sub>3</sub>  | NHSO <sub>2</sub> -(2,5-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> )                  | > 230   | e)   |
| 5.005   | H              | CH <sub>3</sub>  | CH <sub>3</sub>  | NHSO <sub>2</sub> -(2,5-(CH <sub>3</sub> O) <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> ) | 137     | e)   |
| 5.006   | Ħ              | CH <sub>3</sub>  | CH <sub>3</sub>  | NHSO <sub>2</sub> -(2-C1-6-CH <sub>3</sub> -C <sub>6</sub> H <sub>3</sub> )               | 233-235 | e)   |
| 5.007   | Ħ              | CH <sub>3</sub>  | CH <sub>3</sub>  | NHSO <sub>2</sub> -(2-carbomethoxy-C <sub>6</sub> H <sub>4</sub> )                        | 220-225 | e)   |
| 5.008   | H              | OCH <sub>3</sub> | OCH <sub>3</sub> | NHSO <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>                                          | 199-201 | e)   |
| 5.009   | H              | OCH <sub>3</sub> | OCH <sub>3</sub> | NHSO <sub>2</sub> -(2-F-C <sub>6</sub> H <sub>4</sub> )                                   | 153-156 | e)   |
| 5.010   | H              | OCH <sub>3</sub> | OCH <sub>3</sub> | NHSO <sub>2</sub> -(2,6-Cl <sub>2</sub> -C <sub>6</sub> H <sub>3</sub> )                  | 218-220 | e)   |
| 5.011   | H              | OCH <sub>3</sub> | OCH <sub>3</sub> | NHSO <sub>2</sub> -(2-carbomethoxy-C <sub>6</sub> H <sub>4</sub> )                        | 211-215 | e)   |

Literatur:

- a) Evans et al., J. Org. Chem. 40, 1438 (1975)
- b) Söllhuber-Kretzer et al., Arch. Pharm. 316, 346 (1983)
- c) Nishino et al., Bull Chem. Soc. Jpn. 45, 1127 (1972)
- d) Bredereck et al., Chem. Ber. 96, 1868 (1963)
- e) EP-A 329 012 (BASF)
- f) EP-A 18 151 (Warner-Lambert)
- g) Bennett et al., J. Med. Chem. 24, 382 (1981)

Beispiele zur biologischen Wirkung

Der Einfluß verschiedener Vertreter der erfindungsgemäßen herbiziden Mittel bzw. Mittelkombinationen, bestehend aus Herbizid und antidotisch wirkender Verbindung, auf das Wachstum von erwünschten und unerwünschten Pflanzen im Vergleich zum herbiziden Wirkstoff allein wird durch die folgenden biologischen Beispiele aus Gewächshausversuchen belegt:

Bei Gewächshausversuchen dienten als Kulturpflanzen Plastikblumentöpfe mit rund 300 cm3 Inhalt und

lehmigem Sand mit etwa 3,0 Gew.-% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt, flach eingesät und befeuchtet. Danach wurden die Gefäße mit durchsichtigen Plastikhauben abgedeckt, bis die Samen gleichmäßig gekeimt und die Pflanzen angewachsen waren.

#### 5 Liste der Testpflanzen

10

15

25

30

| Lateinischer Name | Deutscher Name     | Englischer Name |
|-------------------|--------------------|-----------------|
| Setaria viridis   | Grüne Borstenhirse | green foxtail   |
| Triticum aestivum | Sommerweizen       | spring wheat    |
| Zea mays          | Mais               | corn            |

Für die Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 20 cm gezüchtet und dann behandelt. Die herbiziden Mittel wurden hierbei in Wasser als Verteilungsmittel suspendiert oder emulgiert und mittels fein verteilender Düsen gespritzt.

### Als Beispielherbizide der Cyclohexenon-Derivate II dienten

OH N-O-CH<sub>2</sub>-CH<sub>2</sub>-CH=CH 
$$\sim$$
 Nr. A.053

 $C_2H_5-CH-CH_2$   $CH_3$   $CH_2-C_2H_5$   $CH_2-C_2H_5$ 

(Handelsname: Sethoxydim)

Sämtliche antidotisch wirkenden Verbindungen wurden für die Nachauflaufbehandlung in einem Gemisch, bestehend aus 80 Gew.-% Cyclohexanon als Verdünnungsmittel und 20 Gew.-% Tensid (Emulphor EL\*)) mit 10 Gew.-% Wirkstoff aufbereitet.

Zum Vergleich wurde der herbizide Wirkstoff als 10 bis 20 gew.-%iger Emulsionskonzentrat formuliert und jeweils unter Zugabe von derjenigen Menge an Lösungsmittelsystem in die Spritzbrühe eingesetzt, mit welcher die antidotisch wirkende Verbindung in den Tabellen angegebenen Aufwandmengen ausgebracht wurden. Die Herstellung der Lösung erfolgte durch einmischen des Wirkstoffs in eine Lösung aus 93 Gew.-% Xylol und Gew.-% Lutensoll AP-8 \*\*).

Nach Applikation der jeweiligen Wirkstoffmischung wurden die Testpflanzen im Gewächshaus kultiviert, und zwar wärmeliebende Arten bei etwa 18 bis 30°C, solche gemäßigterer Klimate bei ca. 10 bis 25°C.

Die Versuchsperiode erstreckte sich über 3 bis 5 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, wobei ihre Reaktionen auf die Wirkstoff-Behandlungen erfaßt wurden.

<sup>5</sup> \*) ethoxyliertes Rizinusöl (caster oil)

\*\*) nichtionisches oberflächenaktives Mittel auf Bagis von Alkylphenolpolyethylenglykolether

Bewertet wurde die Schädigung durch die chemischen Mittel anhand einer Skala von 0 bis 100 % im Vergleich zu den unbehandelten Kontrollpflanzen. Dabei bedeutet 0 keine Schädigung und 100 eine völlige Zerstörung der Pflanzen.

Die Verbesserung der Verträglichkeit von herbiziden Cyclohexenon-Derivaten II für Kulturpflanzen aus der Familie der Gramineen (Gräser) wie Weizen und Mais durch die Pyrido[2,3-d]pyrimidine I ist den folgenden Tabellen X.1 bis X.5 zu entnehmen:

## Tabelle X.1

Verbesserung der Verträglichkeit des Herbizids Nr. A.001 für Mais durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

| 20 |  |
|----|--|
|    |  |

|         | Aufwar  | ndmenge  | Testpflanzen un      | d Schädigung [%]     |
|---------|---------|----------|----------------------|----------------------|
| Antidot | [kg/ha  | a a.S.]  | Kulturpfanze         | unerwünschte Pflanze |
| Nr.     | Antidot | Herbizid | Mais (Sorte "Lixis") | Setaria viridis      |
|         |         | 0,015    | 90                   | 85                   |
| 2.039   | 0,015   | 0,015    | 15                   | 75                   |
| 4.026   | 0,015   | 0,015    | 55                   | 85                   |
| 4.013   | 0,015   | 0,015    | 55                   | 80                   |
| 4.010   | 0,015   | 0,015    | 40                   | 80                   |
| 4.015   | 0,015   | 0,015    | 50                   | 85                   |
| 4.019   | 0,015   | 0,015    | 25                   | 85                   |
| 1.007   | 0,015   | 0,015    | 15                   | 70                   |
| 1.009   | 0,015   | 0,015    | 40                   | 75                   |
| 1.030   | 0,015   | 0,015    | 25                   | 75                   |
| 1.012   | 0,015   | 0,015    | 55                   | 75                   |

## Tabelle X.2

, 20

Verbesserung der Verträglichkeit des Herbizids Nr. A.001 für Mais und Weizen durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

|         | Aufwai  | ndmenge  | Testpflanzen und Schädigung [%] |           |                      |  |  |  |
|---------|---------|----------|---------------------------------|-----------|----------------------|--|--|--|
| Antidot | [kg/ha  | a a.S.]  | Kult                            | ırpfanzen | unerwünschte Pflanze |  |  |  |
| Nr.     | Antidot | Herbizid | Mais*)                          | Weizen**) | Setaria viridis      |  |  |  |
|         |         | 0,06     | 95                              | 75        | 95                   |  |  |  |
| 2.039   | 0,06    | 0,06     | 65                              | 40        | 95                   |  |  |  |
| 4.033   | 0,06    | 0,06     | 75                              | 40        | 95                   |  |  |  |
| 4.019   | 0,06    | 0,06     |                                 | 45        | 98                   |  |  |  |
| 1.007   | 0,06    | 0,06     |                                 | 0         | 95                   |  |  |  |
| 1.009   | 0,06    | 0,06     |                                 | 20        | 95                   |  |  |  |
| 1.030   | 0,06    | 0,06     | 60                              | 15        | 90                   |  |  |  |

<sup>\*)</sup> Sorte "Lixis" \*\*) Sommerweizen, Sorte "Star" Tabelle 7

Tabelle X.3

Verbesserung der Verträglichkeit des Herbizids Nr. A.053 für Mais und Weizen durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

| 10 |         | Aufwai  | ndmenge  | Te     | stpflanzen und | Schädigung [%]       |
|----|---------|---------|----------|--------|----------------|----------------------|
|    | Antidot | [kg/ha  | a a.S.]  | Kult   | urpfanzen      | unerwünschte Pflanze |
|    | Nr.     | Antidot | Herbizid | Mais*) | Weizen**)      | Setaria viridis      |
|    |         |         | 0,03     | 90     | 70             | 98                   |
| 15 | 1.015   | 0,03    | 0,03     | 50     | 30             | 98                   |
|    | 1.009   | 0,03    | 0,03     | 20     | 20             | 90                   |
|    | 1.030   | 0,03    | 0,03     | 10     | 20             | 70                   |
| 20 | 1.021   | 0,03    | 0,03     |        | 20             | 90                   |
|    | 1.020   | 0,03    | 0,03     |        | 35             | 95                   |
|    | 1.008   | 0,03    | 0,03     |        | 30             | 95                   |
|    | 1.031   | 0,03    | 0,03     |        | 10             | 85                   |
| 25 | 1.019   | 0,03    | 0,03     |        | 30             | 90                   |
|    | 1.023   | 0,03    | 0,03     |        | 10             | 85                   |
|    | 1.024   | 0,03    | 0,03     |        | 0              | 80                   |
| 30 | 1.013   | 0,03    | 0,03     |        | 20             | 75                   |
|    | 1.032   | 0,03    | 0,03     |        | 20             | 80                   |
|    | 1.022   | 0,03    | 0,03     |        | 40             | 98                   |

<sup>\*)</sup> Sorte "Lixis" \*\*) Sommerweizen, Sorte "Star"

55

Tabelle X.4

Verbesserung der Verträglichkeit des Herbizids Nr. A.721 für Mais und Weizen durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

| Antidot<br>Nr. | Aufwandmenge<br>[kg/ha a.S.] | nge<br>S.] | Te             | stpflanzen | Testpflanzen und Schädigung |
|----------------|------------------------------|------------|----------------|------------|-----------------------------|
|                | Antidot                      | Herbizid   | Kulturpflanzen | anzen      | unerwünschte Pflanzee       |
|                |                              |            | Mais*          | Weizen**   | Setaria viridis             |
|                |                              | 0,125      | 35             | 06         | 100                         |
| 1.001          | 0,125                        | 0,125      | ı              | 20         | 100                         |
| 1.004          | 0,125                        | 0,125      | 1              | 25         | 86                          |
| 1.044          | 0,125                        | 0,125      | 0              | 45         | 100                         |
| 1.052          | 0,125                        | 0,125      | 0              | 1          | 100                         |
| 1.062          | 0,125                        | 0,125      | 0              | 1          | 100                         |
| 3.002          | 0,125                        | 0,125      | 0              | 10         | 86                          |
| 3.013          | 0,125                        | 0,125      | 0              | 45         | 100                         |
| 3.014          | 0,125                        | 0,125      | 0              | 65         | 100                         |
| 3.018          | 0,125                        | 0,125      | 0              | 45         | 100                         |

\* Sorte "Merlin" \*\* Sommerweizen, Sorte "Star"

5

10

15

20

25

30

35

40

45

50

Verbesserung der Verträglichkeit des Herbizids Nr. A.721 für Mais durch Zumischen einer antidotischen Beispielverbindung bei Nachauflaufanwendung; Gewächshausversuch

| Antidot | Aufwandmenge |          | Testpflanzen und Schädigung | igung                                   |
|---------|--------------|----------|-----------------------------|-----------------------------------------|
| Nr.     | [kg/ha a.S.  |          |                             |                                         |
|         | Antidot      | Herbizid | Kulturpflanze<br>Mais*      | unerwünschte Pflanze<br>Setaria viridis |
|         |              | 0,125    | 40                          | 100                                     |
| 2.014   | 0,125        | 0,125    | 0                           | 85                                      |
| 2.023   | 0,125        | 0,125    | 20                          | 95                                      |
| 2.024   | 0,125        | 0,125    | 0                           | 100                                     |
| 2.025   | 0,125        | 0,125    | 0                           | 85                                      |
| 2.027   | 0,125        | 0,125    | 15                          | 95                                      |
| 2.028   | 0,125        | 0,125    | 10                          | 100                                     |
| 2.029   | 0,125        | 0,125    | 0                           | 85                                      |
| 2.033   | 0,125        | 0,125    | 0                           | 95                                      |
| 2.036   | 0,125        | 0,125    | 0                           | 06                                      |
| 2.037   | 0,125        | 0,125    | 25                          | 95                                      |
| 5.005   | 0,125        | 0,125    | 10                          | 95                                      |

\* Sorte "Merlin"

# 55 Patentansprüche

Tabelle X.5

 Herbizide Mittel, enthaltend mindestens ein substituiertes Pyrido[2,3-d]pyrimidin der allgemeinen Formel I

in der die Variablen folgende Bedeutung haben:

R1, R2

5

10

20

25

30

45

Wasserstoff; C<sub>1</sub>-C<sub>8</sub>-Alkyl; C<sub>1</sub>-C<sub>8</sub>-Halogenalkyl; C<sub>1</sub>-C<sub>6</sub>-Alkoxy; C<sub>1</sub>-C<sub>6</sub>-Halogenalkoxy; C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl; C<sub>1</sub>-C<sub>8</sub>-Alkylamino; C<sub>2</sub>-C<sub>8</sub>-Alkenyl; C<sub>2</sub>-C<sub>8</sub>-Alkinyl;

C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei 15 der folgenden Reste tragen kann: Hydroxy, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

Phenyl, Naphthyl, Phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>3</sub>-C<sub>6</sub>-Alkenyl und C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

 $\mathbb{R}^3$ 

Hydroxy; Amino; Halogen; C<sub>1</sub>-C<sub>5</sub>-Alkylthio; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino; C<sub>1</sub>-C<sub>8</sub>-Alkoxycarbonyl;

oder eine der für R1 genannten Gruppen;

35

eine der für R1 genannten Gruppen;

CN; NO<sub>2</sub>; COOH; CSOH; Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino-C<sub>1</sub>-C<sub>4</sub>-alkyl;

 $SO_2-R^6$ ;  $C(=X)-R^7$ ;  $C(=Y)-R^8$ , oder  $R^7-C(YR^9)-ZR^{10}$ ; 40

> eine der für R1 genannten Gruppen; R6

Hydroxy; Amino; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino; C<sub>1</sub>-C<sub>6</sub>-Alkylthio;

R7 Amino; Oxyamino (-NH-OH); C1-C8-Alkylamino;

Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino; C<sub>1</sub>-C<sub>8</sub>-Alkoxy; C<sub>1</sub>-C<sub>6</sub>-Alkylthio; Phe-

nylamino;

eine der für R1 genannten Gruppen;

R9,R10 C<sub>1</sub>-C<sub>8</sub>-Alkyl; C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl;

50 C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>2</sub>-C<sub>6</sub>-alkyl; C<sub>2</sub>-C<sub>8</sub>-Alkenyl; oder

> R9 und R10 gemeinsam -CH2CH2-, -CH2CH2CH2- oder -CH2CH2CH2-, wobei ein oder zwei

> > Wasserstoffatome in diesen Gruppen durch die folgenden Reste ersetzt sein können:

= O, C<sub>1</sub>-C<sub>8</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Halogenalkyl oder C<sub>1</sub>-C<sub>6</sub>-Alkoxy;

Х Sauerstoff, Schwefel oder NR11, worin 55

R11 für eine der für R1 genannten Gruppen steht, oder die folgende Bedeutung hat:

Wasserstoff; Hydroxy; Amino; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino;

Phenoxy, Naphthyloxy, Phenylamino oder Naphthylamino, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>3</sub>-C<sub>6</sub>-Alkenyl und C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

Y Sauerstoff oder Schwefel;

R

eine der für R1 genannten Gruppen;

Hydroxy; Amino; Halogen; C<sub>1</sub>-C<sub>6</sub>-Alkylthio; Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino; C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino; Pyrrolidin-1-yl; Piperidin-1-yl; C<sub>1</sub>-C<sub>8</sub>-Alkylcarbonyloxy; C<sub>1</sub>-C<sub>4</sub>-Halogenalkylcarbonyloxy; C<sub>1</sub>-C<sub>8</sub>-Alkylsulfonyloxy; C<sub>1</sub>-C<sub>8</sub>-Halogenalkylsulfonyloxy;

Phenoxy, Naphthyloxy, Phenylamino, Naphthylamino, Benzyloxy, Benzylamino, Benzoyloxy, 2-Naphthoyloxy oder Phenylsulfonyloxy, wobei die aromatischen Reste ein bis drei der folgenden Gruppentragen können: Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und C<sub>1</sub>-C<sub>4</sub>-Alkoxy;

N(R12)-SO2-R13; N(R12)-CO-R14; N(R12)-CS-R14;

R<sup>12</sup> Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl;

20

25

15

5

Phenyl, welches ein bis drei der folgenden Reste tragen kann: Halogen,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Halogenalkyl und  $C_1$ - $C_4$ -Alkoxy;

R<sup>13</sup> eine der für R<sup>1</sup> genannten Gruppen;

Amino, Di-(C<sub>1</sub>-C<sub>8</sub>-alkyl)-amino oder C<sub>3</sub>-C<sub>8</sub>-Cycloalkylamino;

R<sup>14</sup> eine der für R<sup>1</sup> genannten Gruppen;

Amino; Oxyamino (-NH-OH); Di-( $C_1$ - $C_6$ -alkyl)-amino;  $C_3$ - $C_8$ -Cycloalkylamino; sowie die pflanzenverträglichen Salze derjenigen Verbindungen I, bei denen mindestens einer der Substituenten R¹ bis R⁵ eine saure oder basische Gruppe bedeutet,

und mindestens einen herbiziden Wirkstoff aus

A) der Gruppe der Cyclohexenon-Derivate der allgemeinen Formel II,

35

40

50

55

30

$$\begin{array}{c|c}
R^c & OR^b & N-O-W-R^f \\
R^d & C & R^a
\end{array}$$

in der die Substituenten die folgende Bedeutung haben:

Rª

C1-C6-Alkyl;

R

Wasserstoff;

das Äquivalent eines landwirtschaftlich brauchbaren Kations;

C<sub>1</sub>-C<sub>8</sub>-Alkylcarbonyl; C<sub>1</sub>-C<sub>10</sub>-Alkylsulfonyl; C<sub>1</sub>-C<sub>10</sub>-Alkylphosphonyl;

Benzoyl, Benzolsulfonyl oder Benzolphosphonyl, wobei die aromatischen Ringe ein bis fünf Halogenatome tragen können;

5

10

15

20

25

30

35

45

50

55

Wasserstoff; CN; CHO;

C1-C6-Alkyl, welches einen der folgenden Reste tragen kann: C1-C4-Alkoxy, C1-C4-Alkylthio, Phenyloxy, Phenylthio, Pyridyloxy oder Pyridylthio, wobei die aromatischen Reste ihrerseits ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalk- oxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, C<sub>3</sub>-C<sub>6</sub>-Alkenyl, C<sub>3</sub>-C<sub>6</sub>-Alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-Alkinyl, C<sub>3</sub>-C<sub>6</sub>-Alkinyloxy oder NR<sup>9</sup>R<sup>h</sup>:

Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl; C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl;

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C1-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

- Вh Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl;
- Rc bedeutet desweiteren:

C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl oder C<sub>5</sub>-C<sub>7</sub>-Cycloalkenyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio, Benzylthio, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylsulfenyl und C<sub>1</sub>-C<sub>4</sub>-Alkylsulfinyl;

5-gliedrige gesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstôff- oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

6- oder 7-gliedrige gesättigte oder ein- oder zweifach ungesättigte Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Sauerstoff- oder Schwefelatome oder oder ein Sauerstoff- und ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom enthalten, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Cyano, Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₂-C₅-Alkenyl,  $C_2-C_6$ -Alkenyloxy,  $C_2-C_6$ -Alkinyl,  $C_2-C_6$ -Alkinyloxy und  $C_1-C_4$ -Alkoxy- $C_1-C_4$ -alkyl;

Phenyl oder Pyridyl, wobei diese Ringe ein bis drei der folgenden Reste tragen können: Nitro, Formyl, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>- Alkylthio, C<sub>2</sub>-C<sub>6</sub>-Alkenyl, C<sub>2</sub>-C<sub>6</sub>-Alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-Alkinyl, C<sub>3</sub>-C<sub>6</sub>-Alkinyloxy und NR<sup>k</sup>R<sup>l</sup>;

 $R^k$ Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

R Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl; C<sub>1</sub>-C<sub>6</sub>-Alkylcarbonyl;

Benzoyl, welches ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, Halogen, C1-C4-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

Wasserstoff; Hydroxy;

oder, sofern Rc für C1-C6-Alkyl steht, ebenfalls C1-C6-Alkyl;

Wasserstoff; Cyano; Halogen; C<sub>1</sub>-C<sub>4</sub>-Alkoxycarbonyl; C<sub>1</sub>-C<sub>4</sub>-Alkylketoxim;

C<sub>1</sub>-C<sub>6</sub>-Alkylen C<sub>2</sub>-C<sub>6</sub>-Alkenylen oder C<sub>2</sub>-C<sub>6</sub>-Alkinylen, wobei diese Gruppen eine Methylengruppe (= CH₂) und/oder ein bis drei der folgenden Reste tragen können: Halogen und C₁-C₃-Alkyl;

C<sub>3</sub>-C<sub>6</sub>-Alkylen oder C<sub>3</sub>-C<sub>6</sub>-Alkenylen, wobei in diesen Resten jeweils eine Methylengruppe durch Sauerstoff, Schwefel, SO, SO2 oder NRi ersetzt ist, und wobei in diesen Gruppen ein bis drei Wasserstoffatome durch C<sub>1</sub>-C<sub>3</sub>-Alkylreste ersetzt sein können;

Ri Wasserstoff; C<sub>1</sub>-C<sub>4</sub>-Alkyl; C<sub>3</sub>-C<sub>6</sub>-Alkenyl; C<sub>3</sub>-C<sub>6</sub>-Alkinyl;

Rf

Wasserstoff; CH = CH-Z1, worin

Wasserstoff; Cyano; Carboxyl; Halogen; C1-C4-Alkyl; C1-C4-Halogenalkyl; C1-C4-Alkoxy; C1-Z١ C<sub>8</sub>-Alkoxycarbonyl; Benzyloxycarbonyl;

C<sub>3</sub>-C<sub>5</sub>-Cycloalkyl, welches seinerseits ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und C<sub>1</sub>-C<sub>4</sub>-Alkoxy;

Phenyl, Halogenphenyl, Dihalogenphenyl, Thienyl oder Pyridyl, wobei dieser Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkylthio oder C<sub>3</sub>-C<sub>6</sub>-Cyckloalkyl, wobei der cyclische Rest seinerseits noch ein bis drei der folgenden Gruppen tragen kann: Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und C<sub>1</sub>-C<sub>4</sub>-Alkoxy, bedeutet;

Rf bedeutet ferner

15

20

25

30

10

5

Ethinyl, welches einen der folgenden Reste tragen kann: C1-C4-Alkyl oder C3-C6-Cyckloalkyl, wobei diese Gruppen desweiteren ein bis drei der folgenden Reste tragen können: Hydroxy, Halogen, C1-C4-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und C<sub>1</sub>-C<sub>4</sub>-Alkoxy;

Ethinyl, welches einen der folgenden Reste trägt: Phenyl, Thienyl oder Pyridyl, wobei die aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C1-C4-Alkyl, C1-C4-Halpgenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

Phenyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein oder zwei Stickstoffatome und ein Sauerstoff- oder Schwefelatom oder ein bis drei Stickstoffatome oder ein Sauerstoffoder ein Schwefelatom enthalten, oder 6-gliedrige aromatische Ringe, welche neben Kohlenstoffringgliedern ein bis vier Stickstoffatome enthalten, wobei diese aromatischen und heteroaromatischen Gruppen ein bis drei der folgenden Reste tragen können: Nitro, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, die bei ZI genannten Reste und NRkRI, wobei Rk und RI die vorstehend gegebene Bedeutung haben;

oder

B) der Gruppe der 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivate der Formel III

35

40

45

50

in der die Substituenten die folgende Bedeutung haben:

Phenyl, Pyridyl, Benzoxazolyl, Benzthiazolyl oder Benzpyrazinyl, wobei diese aromatischen und heteroaromatischen Ringsysteme ein oder zwei der folgenden Reste tragen können: Nitro, Halogen, C1-C4-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Halogenalkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

RP

Wasserstoff oder Methyl;

C<sub>3</sub>-C<sub>4</sub>-Alkenyl;  $C_3$ - $C_4$ -Alkinyl;  $C_1$ - $C_4$ -Alkoxy- $C_1$ - $C_4$ -alkyl; C<sub>1</sub>-C<sub>4</sub>-Alkyl; Alkylideniminooxy-C<sub>2</sub>-C<sub>3</sub>-alkyl; Tetrahydrofuranylmethyl; Isoxazolidinyl;

55

oder das Äquivalent eines landwirtschaftlich brauchbaren Kations.

- Herbizide Mittel nach Anspruch 1, wobei R<sup>5</sup> einen der für R¹ genannten Reste, Hydroxyl, -N(R¹²)-SO₂-R¹³ oder eine Gruppe -N(R¹²)-C(X)R¹⁴ bedeutet.
- 3. Herbizide Mittel nach Anspruch 1, wobei R¹ und R² die folgende Bedeutung haben:

Wasserstoff; C<sub>1</sub>-C<sub>6</sub>-Alkyl; C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl; C<sub>1</sub>-C<sub>4</sub>-Alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl; C<sub>2</sub>-C<sub>8</sub>-Alkenyl; C<sub>2</sub>-C<sub>8</sub>-Alkinyl;

C<sub>3</sub>-C<sub>8</sub>-Cycloalkyl, an welches ein Benzolrest anneliert sein kann, wobei diese Gruppe noch ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy und C<sub>1</sub>-C<sub>4</sub>-Alkylthio;

Phenyl, Naphthyl, Phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl, 5-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome und ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, oder welche neben Kohlenstoffatomen ein bis drei Stickstoffatome oder ein Sauerstoff- oder ein Schwefelatom als Heteroatome enthalten können, 6-gliedrige aromatische Ringe, welche neben Kohlenstoffatomen ein bis drei Stickstoffatome als Heteroatome enthalten können, wobei an die vorstehend genannten 5- und 6-gliedrigen Heteroaromaten ein Benzolring anneliert sein kann, und wobei die aromatischen und heteroaromatischen Reste zusätzlich ein bis drei der folgenden Gruppen tragen können: Nitro, Cyano, Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Alkoxyl, C<sub>1</sub>-C<sub>4</sub>-Alk

- 4. Herbizide Mittel nach den Ansprüchen 1 bis 3, enthaltend mindestens ein substituiertes Pyrido[2,3-d]-pyrimidin I und mindestens ein Herbizid II oder ein Herbizid III im Gewichtsverhältnis 0,01:1 bis 10:1.
- 25 5. Substituierte Pyrido[2,3-d]pyrimidine der allgemeinen Formel I'

in der die Reste R<sup>1</sup>, R<sup>2</sup> und R<sup>4</sup> die in Anspruch 1 gegebene Bedeutung haben und R<sup>3</sup> und R<sup>5</sup> wie folgt definiert sind:

R3'

5

10

15

20

30

40

45

50

Halogen; C<sub>1</sub>-C<sub>6</sub>-Alkylthio; oder eine der für R<sup>1</sup> genannten Gruppen;

**R**5 •

eine der für R1 genannten Gruppen;

Hydroxy; Halogen; C₁-C<sub>6</sub>-Alkylthio; C₁-C<sub>8</sub>-Alkylcarbonyloxy; C₁-C<sub>8</sub>-Alkylsulfonyloxy; Phenoxy; Benzoyloxy;

Phenylsulfonyloxy, wobei der aromatische Rest ein bis drei der folgenden Gruppen tragen kann: Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Halogenalkyl und C<sub>1</sub>-C<sub>4</sub>-Alkoxy;

mit der Maßgabe, daß R¹ und R³¹ nicht gleichzeitig Wasserstoff bedeuten, wenn R² für Wasserstoff oder Phenyl und R⁴ für Phenyl oder R⁵¹ für Phenyl, Halogenphenyl, Naphthyl oder Pyridyl steht, und mit der Maßgabe, daß die Reste R², R³¹, R⁴ und R⁵¹ nicht gleichzeitig Wasserstoff bedeuten, wenn R¹ für Wasserstoff oder Pyridyl steht,

sowie die pflanzenverträglichen Salze derjenigen Verbindungen I', bei denen mindestens einer der Substituenten R¹, R², R³′, R⁴ und R⁵¹ eine saure oder basische Gruppe bedeutet.

 Verfahren zur Herstellung der substituierten Pyrido[2,3-d]pyrimidine I' gemäß Anspruch 5, dadurch gekennzeichnet, daß man ein 4-Aminopyrimidin der Formel IV

mit einer Methylencarbonylverbindung der Formel V

5

10

15

20

40

45

50

oder mit einem Acetonitril der Formel VI

umsetzt und das Verfahrensprodukt gewünschtenfalls in ein anderes Derivat I überführt.

- 7. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man mindestens stens ein substituiertes Pyrido[2,3-d]pyrimidin I und mindestens
  - A) ein Cyclohexenon-Derivat der Formel II oder
  - B) ein 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivat der Formel III gemäß Anspruch 1 vor, bei oder nach der Aussaat der Kulturpflanzen, vor oder während des Auflaufens der Kulturpflanzen gleichzeitig oder nacheinander ausbringt.
  - 8. Verfahren zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man die Blätter der Kulturpflanzen und der unerwünschten Pflanzen im Nachauflaufverfahren mit mindestens einem substituierten Pyrido[2,3-d]pyrimidin I und mindestens
    - A) einem Cyclohexenon-Derivat der Formel II oder
    - B) einem 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivatder Formel III gemäß Anspruch 1 gleichzeitig oder nacheinander behandelt.
  - 9. Verfahren zur Verhinderung der Schädigung von Kulturpflanzen durch
    - A) herbizide Cyclohexenon-Derivate der Formel II oder
    - B) herbizide 2-(4-Heteroaryloxy)- oder 2-(4-Aryloxy)-phenoxycarbonsäurederivat der Formel III gemäß Anspruch 1, dadurch gekennzeichnet, daß man das Saatgut der Kulturpflanzen mit einer antagonistisch wirksamen Menge eines substituierten Pyrido[2,3-d]pyrimidins der Formel I behandelt.
- 10. Verfahren gemäß den Ansprüchen 7 bis 9, dadurch gekennzeichnet, daß die Kulturpflanzen Gerste,Weizen, Mais, Kultursorghum und Reis sind.