Stochastic Finance (M3, 2016-17) Some Solutions for Exercise Problems

Exercise 3.1 (Brownian Bridge)

(a) This problem is based on a series representation of Brownian motion (also see p.286 of Steele),

$$B_t = tZ_0 + \sum_{k=0}^{\infty} +\sqrt{2} \sum_{k=1}^{\infty} Z_k \frac{\sin \pi kt}{\pi k}$$

for independent standard normal random variables, $\{Z_{k\geq 0}\}$. (But I think the author somehow dropped this in the current version of the textbook.) So, $\Delta_0(t) = t$ and $\lambda_0 = 1$. Because $B_1 = Z_0$ (from $\Delta_{k\geq 1}(1) = 0$), the first term can be expressed as $\lambda_0 Z_0 \Delta_0(t) = t B_1$. Therefore,

$$U_t = B_t - tB_1$$

(b)

$$Cov(U_s, U_t) = E((B_s - sB_1)(B_t - tB_1)) = E(B_sB_t - sB_1B_t - tB_sB_1 + stB_1^2)$$

= $min(s, t) - s min(1, t) - t min(s, t) + st = s(1 - t)$

(c) We need to find any set of functions, $g(\cdot)$ and $h(\cdot)$, such that

$$Cov(X_s, X_t) = g(s)g(t)\min(h(s), h(t)) = s(1-t)$$
 for $s \le t$.

If we narrow down the search by assuming $h(\cdot)$ is monotonically increasing,

$$Cov(X_s, X_t) = g(s)g(t)h(s) = s(1-t),$$

so we get

$$g(t) = 1 - t$$
, $h(s) = \frac{s}{1 - s}$,

where h(s) is indeed an increasing function. Therefore we obtained a representation of Brownian bridge,

$$X_t = (1-t)B_{\frac{t}{1-t}}$$

Since U_{1-t} is also a Brownian bridge due to the symmetry,

$$X_{1-t} = tB_{\frac{1-t}{t}}, \quad \left(g(t) = t, \ h(t) = \frac{1-t}{t}\right)$$

is also a valid solution.

(d) We use the inequality $s/(1+s) \le t/(1+t)$ if $0 \le s \le t$.

$$Cov(Y_s, Y_t) = Cov\left((1+s)U_{\frac{s}{1+s}}(1+t)U_{\frac{t}{1+t}}\right) = (1+s)(1+t)Cov(U_{\frac{s}{1+s}}, U_{\frac{t}{1+t}})$$
$$= (1+s)(1+t)\frac{s}{1+s}\left(1-\frac{t}{1+t}\right) = s = \min(s, t).$$

Exercise 3.2 (Cautionary Tale) Suppose X is a standard normal, consider an independent U such that P(U=1)=1/2=P(U=1), and set Y=UX. Then, Y is also a standard normal as X and -X are also standard normal.

In order to show X and Y are not independent, we need to show

$$\operatorname{Prob}(I_X \& J_Y) \neq \operatorname{Prob}(I_X)\operatorname{Prob}(J_Y)$$

for some event I_X and I_Y regarding X and Y respectively.

For any h > 0,

$$\text{Prob}(X > h \& Y > h) = \frac{1}{2} \text{Prob}(X > h \& X > h \mid U = 1)$$

$$+ \frac{1}{2} \text{Prob}(X > h \& -X > h \mid U = -1)$$

$$= \frac{1}{2} (1 - \Phi(h)) + 0.$$

However,

$$Prob(X > h)Prob(Y > h) = (1 - \Phi(h))(1 - \Phi(h))$$

is not same as the previous value. Therefore

Exercise 3.3 (Multivariage Gaussians)

(a) Let us work on each components of the vectors and matrices; $V = (v_i)$, $\mu = (\mu_i)$, $A = (a_{ij})$ and $\Sigma = (\sigma_{ij})$.

$$E((AV)_i) = E(\sum_j a_{ij}V_j) = \sum_j a_{ij}E(V_j) = \sum_j a_{ij}\mu_j = (A\mu)_i$$
$$E((AV)) = A\mu$$

$$\operatorname{Cov}((AV)_{i}, (AV)_{j}) = \operatorname{Cov}\left(\sum_{l} a_{il} V_{l}, \sum_{m} a_{jm} V_{m}\right) = \sum_{l,m} a_{il} \operatorname{Cov}(V_{l}, V_{m}) a_{jm}$$
$$= \sum_{l,m} a_{il} \sigma_{lm} a_{jm} = (A \Sigma A^{T})_{ij}$$

Therefore,

$$\operatorname{Cov}(AV, AV) = A\Sigma A^{T}.$$

(b)
$$E(X \pm Y) = E(X) \pm E(Y) = 0 \pm 0 = 0$$

$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2 Covar(X, Y) = 1 + 1 + 0 = 2$$

$$Cov(X + Y, X - Y) = Var(X) - Var(Y) = 1 - 1 = 0$$

(c) When Cov(X, Y) = 0, the covariance matrix Σ is given as

$$\Sigma = \begin{pmatrix} \sigma_{11} & 0 \\ 0 & \sigma_{22} \end{pmatrix}, \quad \Sigma^{-1} = \begin{pmatrix} 1/\sigma_{11} & 0 \\ 0 & 1/\sigma_{22} \end{pmatrix}, \quad \det \Sigma = \sigma_{11} \, \sigma_{22}$$

The joint density function can be factored to the product of the single variable density function,

$$f(x,y) = \frac{1}{2\pi\sqrt{\sigma_{11}\sigma_{22}}} \exp\left(-\frac{(x-\mu_X)^2}{2\sigma_{11}} - \frac{(y-\mu_Y)^2}{2\sigma_{22}}\right)$$
$$= \frac{1}{2\pi\sqrt{\sigma_{11}}} \exp\left(-\frac{(x-\mu_X)^2}{2\sigma_{11}}\right) \frac{1}{2\pi\sqrt{\sigma_{22}}} \exp\left(-\frac{(y-\mu_Y)^2}{2\sigma_{22}}\right) = f(x)f(y).$$

Therefore X and Y are independent.

(d) We first find the matrix A such that, for the independent standard normal variables W and Z,

$$\begin{pmatrix} X - \mu_X \\ Y - \mu_Y \end{pmatrix} = A \begin{pmatrix} W \\ Z \end{pmatrix}$$

has the given covariance matrix

$$\begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{XY} & \sigma_{YY} \end{pmatrix} = A I A^T = A A^T.$$

One of the solution from Cholesky decomposition is

$$A = \begin{pmatrix} \sqrt{\sigma_{XX}} & 0\\ \sigma_{XY}/\sqrt{\sigma_{XX}} & \sqrt{\sigma_{YY} - \sigma_{XY}^2/\sigma_{XX}} \end{pmatrix}.$$

Conditional on that X = x,

$$Y = \mu_Y + \frac{\sigma_{XY}}{\sqrt{\sigma_{XX}}} \frac{x - \mu_X}{\sqrt{\sigma_{XX}}} + Z\sqrt{\sigma_{YY} - \sigma_{XY}^2/\sigma_{XX}}.$$

Therefore

$$E(Y|X=x) = \frac{\sigma_{XY}}{\sigma_{XX}}(x - \mu_X) = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}(x - \mu_X)$$
$$\text{Var}(Y|X=x) = \sigma_{YY} - \frac{\sigma_{XY}^2}{\sigma_{XY}} = \text{Var}(Y) - \frac{\text{Cov}^2(X,Y)}{\text{Var}(X)}$$

Exercise 3.4 (Auxiliary Functions and Moments)

$$E(e^{tz}) = \int_{-\infty}^{\infty} e^{tz} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \int_{-\infty}^{\infty} e^{t^2/2} \frac{1}{\sqrt{2\pi}} e^{-(z-t)^2/2} dz = e^{t^2/2}$$

If M_n is the n-th moment,

$$E(e^{tz}) = \sum_{k=0}^{\infty} M_k \frac{t^k}{k!} = 1 + \frac{t^2}{2} + \frac{1}{2!} \left(\frac{t^2}{2}\right)^2 + \frac{1}{3!} \left(\frac{t^2}{2}\right)^3 + \cdots$$

By matching the coefficients, we get

$$M_0 = 1$$

 $M_1 = M_3 \ (= M_{2k-1}) = 0$
 $M_2 = 1$
 $M_4 = 4!/(2! \ 2^2) = 3$
 $M_6 = 6!/(3! \ 2^3) = 15$.

For t > 0,

$$E(e^{tz^4}) = \int_{-\infty}^{\infty} e^{tz^4} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \to \infty,$$

so the MGF of Z^4 does not exist.

Exercise 4.6 The stopped process is a martingale. By the symmetry, $P(B_{\tau} = A) = P(B_{\tau} = -A) = 0.5$.

$$1 = E(X_{\tau}) = \frac{1}{2}e^{\alpha A}E(e^{-\alpha^{2}\tau/2}) + \frac{1}{2}e^{-\alpha A}E(e^{-\alpha^{2}\tau/2}).$$

Therefore, we have

$$E\left(e^{-\alpha^2\tau/2}\right) = \frac{1}{\cosh(\alpha A)}$$

or

$$\phi(\lambda) = E(e^{-\lambda \tau}) = \frac{1}{\cosh(A\sqrt{2\lambda})}.$$

In order to calculate $E(\tau^2)$, we need to obtain the x^4 term in the expansion of $1/\cosh(x)$ given that $\sqrt{\lambda}$ appears in the expression. From the expansion, $\cosh x \sim 1 + x^2/2! + x^4/4! + \cdots$,

$$\frac{1}{\cosh x} \sim \frac{1}{1 + (x^2/2! + x^4/4! + \cdots)} = 1 - \left(\frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\right) + \left(\frac{x^2}{2!} + \cdots\right)^2 = 1 - \frac{x^2}{2} + \frac{5}{24}x^4 + \cdots$$

Finally we get

$$E(\tau^2) = 2\frac{5}{24}(A\sqrt{2\lambda})^4|_{\lambda=1} = \frac{5}{3}A^4$$

For the non-symmetric case $(A \neq B)$, we can not use $P(B_{\tau} = A) = P(B_{\tau} = -B) = 0.5$ anymore.