АиСД | ДЗ-4 | 2

TODO:

1. Исследовать свойства дерева рекурсии (высоту, общее количество задач) и обосновать асимптотическую верхнюю границу временной сложности

$$T(n) = \begin{cases} 2 \cdot T(n/2) + n & n \mid 2 \\ 2 \cdot T(n-1) + n & n \mid 2 \\ 1 & n = 1 \end{cases}$$

Task 1: (Исследование свойств дерева рекурсии)

Свойства:

- 1. Высота
 - Для четных \mathbf{n} : значение \mathbf{n} уменьшается вдвое, т.е. высота дерева в этом случае $\log_2 n$, т.е. $O(\log n)$
 - Для нечетных \mathbf{n} : значение \mathbf{n} уменьшается на 1, а значит высота дерева пропорциональна \mathbf{n} , т.е. O(n)
- 2. Количество задач (узлов дерева)
 - Для четных \mathbf{n} : Каждый узел порождает два новых узла, но количество задач растет как O(n), потому что высота дерева логарифмическая
 - Для нечетных \mathbf{n} : Каждый узел порождает два новых узла, но количество задач растет экспоненциально (как 2^n)

Верхняя граница:

Так как нечетная форма n порождает больше операций, возьмем ее за основу для нахождения верхней границы. Возьмем $n=2^m-1$ как начальное число по той причине, что при подстановке в функцию будет чередоваться четная и нечетная форма n, что порождает наибольшее число операций.

Заметим, что несмотря на экспоненциальную сложность функции для нечетных n, на самом деле это значение недостижимо, так как в худшем случае число будет нечетным лишь в половине случаев, а это означает, что доминирующим остается порядок, связанный с четным n.

Воспользуемся мастер-теоремой и найдем верхнюю границу для четных n. Так как a=2,b=2,k=1,f(n)=1, то формула имеет вид $T(n)=a\cdot T(\frac{n}{b})+O(n^k\cdot f(n)\cdot \log n)\Longrightarrow O(n\log n)$