1

ECE 634/CSE 646 InT: Practice Problems 3

Instructor: Manuj Mukherjee

- 1) Show that for any discrete $X, Y, Z, H(X|Z) \le H(X|Y) + H(Y|Z)$.
- 2) Let $K \in \mathbb{R}^{n \times n}$ be a positive semidefinite matrix. Show that $|\det(K)| \leq \prod_{i=1}^n K_{i,i}$. [Of course you can show this using linear algebra. The goal here is to use information theory for its proof. Hint, you will need to use the subadditivity of differential entropy.]
- 3) [A tweaked Fano's inequality:] Let X be a discrete random variable taking values in \mathcal{X} , and let $x^* = \operatorname{argmax}_{x \in \mathcal{X}} P_X(x)$, and $p_{\max} = P_X(x^*)$. Show that $H(X) \leq \log |\mathcal{X}| (1 p_{\max}) + h(p_{\max})$.
- 4) Let T = (V, E) be a tree (i.e., a connected graph with no cycles). Associate with each edge $e \in E$ i.i.d Be(1/2) random variables Y_e , and define $X_v = (Y_e : v \in e)$.
 - a) Show that $H(X_1, X_2, ..., X_V) = |V| 1$.
 - b) Now, let us order the set V by identifying it as $V = \{1, 2, ..., |V|\}$. Let $v \in V$ has degree k > 1, and let $v_1 < v_2 < ..., v < k$ be its neighbours. Define $Z_v = (Y_{\{v,v_1\}} \oplus Y_{\{v,v_2\}}, Y_{\{v,v_2\}} \oplus Y_{\{v,v_3\}}, ..., Y_{\{v,v_{k-1}\}} \oplus Y_{\{v,v_k\}})$. If v has degree 1, then define Z_v to be a constant. One can show that since T is a tree, the constituent sums in $Z_v, v \in V$ are i.i.d. Use this fact to show that $H(Z^V) = |V| 2$, where $Z^V \triangleq (Z_v : v \in V)$.
 - c) Show that any of the neighbours v_l of v can recover X_v given (X_{v_l}, Z_v) . Hence, argue that (X_1, \dots, X_V) can be recovered given any X_i and Z^V .
- 5) Consider the DMC whose input and output alphabets are given by $\mathbb{Z}_N = \{0, 1, ..., N-1\}$, and the inputs and outputs are related as $Y_i = X_i + Z_i \mod N$, such that Z_i s are i.i.d. random variables independent of the X_i s, whose distribution is given as,

$$\mathbf{P}_{Z}(i) = \begin{cases} (1-p)p^{i}, & 0 \le i \le N-2\\ p^{N-1}, & i = N-1. \end{cases}$$

Show that the capacity of this channel is given by $\log N - \frac{(1-p^{N-1})}{(1-p)}h(p)$.

¹Note that we can view edges as two subsets of V.