The Kalman filter components

Sensor fusion & nonlinear filtering

Lars Hammarstrand

COMPONENTS IN THE KALMAN FILTER

A few remarks:

- It holds that $p(\mathbf{y}_k|\mathbf{y}_{1:k-1}) = \mathcal{N}(\mathbf{y}_k; \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}, \mathbf{S}_k)$, which means that \mathbf{S}_k is the predicted covariance of \mathbf{y}_k .
- The innovation $\mathbf{v}_k = \mathbf{y}_k \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$ captures the new information in \mathbf{y}_k .
- In $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \mathbf{v}_k$, the Kalman gain \mathbf{K}_k determines how much we should trust the new information.

SELF ASSESSMENT

Recall that $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \mathbf{v}_k$ and $\mathbf{v}_k = \mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$.

Suppose $y_k = x_k + r_k$, such that $H_k = 1$, and $r_k \sim \mathcal{N}(0, R)$ (they are all scalar). Check all statements that apply:

- If $R = \infty$ then $K_k \approx 0$.
- If R = 0 then $K_k = \infty$.
- If R = 1 then $K_k = 0$.
- If R = 0 then $K_k = 1$.