- A Q1 : la récurrence est-elle rédigée de façon impeccable?
- B Q1 : lors du produit d'inégalités dans l'hérédité, avoir pensé à dire que les membres sont positifs.
- $\boxed{\mathbf{C}}$ Q2 : avoir écrit $x_{n+1}-x_n$ comme un produit de nombres strictement positifs.
- $\boxed{\mathrm{D}}$ Q2 : avoir écrit $y_{n+1}-y_n$ comme une somme de nombres strictement positifs.
- E Q4 : avoir écrit sur la copie
 - « (u_n) croissante »
 - « (v_n) est décroissante »
 - $\ll v_n u_n \to 0$

ainsi que « u et v sont adjacentes » avant de conclure.

Problème. Des suites de rationnels.

1. Pour $n \in \mathbb{N}^*$, posons

$$\mathcal{P}_n: \langle a_n \geq n+1 \rangle$$
.

- On a $a_1 \ge 2 = 1 + 1$ donc \mathcal{P}_1 est vraie
- Soit $n \in \mathbb{N}^*$. On suppose \mathcal{P}_n vraie.

Comme $a_n \ge n+1$, il vient $a_n-1 \ge n$.

Tous les membres de ces inégalités sont positifs donc, par produit,

$$a_n^2 - a_n = a_n(a_n - 1) \ge n(n+1) = n^2 + n$$

mais comme $n \geq 1$, on a

$$a_{n+1} \ge n^2 + n + 1 \ge 1 + n + 1 = n + 2$$

donc \mathcal{P}_{n+1} est vraie.

• Le principe de récurrence nous donne que \mathcal{P}_n est vraie pour tout n:

$$\forall n \in \mathbb{N}^* \quad a_n \ge n+1$$

2. Soit $n \in \mathbb{N}^*$. On a

$$x_{n+1} - x_n = a_{n+1}x_n - x_n = \underbrace{x_n}_{>0} \times \underbrace{(a_{n+1} - 1)}_{>0}$$

En effet, la question 1 nous donne que $a_k > 0$ pour tout $k \ge 1$, et donc

$$x_n = \underbrace{a_1}_{>0} \times \underbrace{a_2}_{>0} \times \dots \times \underbrace{a_n}_{>0} > 0.$$

De plus, $a_{n+1} \ge n+2 > 1$. On a bien prouvé que $x_{n+1} - x_n > 0$.

 (x_n) est strictement croissante.

Notons pour tout $n \in \mathbb{N}^*$ $A_n = \sum_{k=1}^n \frac{1}{a_k}$. Alors

$$y_{n+1} - y_n = x_{n+1} A_{n+1} - x_n A_n$$

$$= x_{n+1} \left(A_n + \frac{1}{a_{n+1}} \right) - x_n A_n$$

$$= x_{n+1} A_n + \frac{x_{n+1}}{a_{n+1}} - x_n A_n$$

$$= \underbrace{A_n}_{>0} \underbrace{(x_{n+1} - x_n)}_{>0} + \underbrace{\frac{x_{n+1}}{a_{n+1}}}_{>0}$$

Ceci montre que $y_{n+1} - y_n > 0$, et on a bien prouvé que

 (y_n) est strictement croissante.

3. Soit $n \in \mathbb{N}^*$. Le nombre x_n est un entier naturel comme produit des entiers naturels $a_1, ..., a_n$. De plus

$$y_n = x_n \times \sum_{k=1}^n \frac{1}{a_k} = \sum_{k=1}^n \frac{x_n}{a_k}$$

mais

$$\frac{x_n}{a_k} = \frac{\prod_{k=1}^n a_i}{a_k} = \frac{a_1 \times \dots \times a_n}{a_k} = a_1 \times \dots \times a_{k-1} \times a_{k+1} \times \dots \times a_n = \prod_{\substack{k=1 \ k \neq j}}^n a_i \in \mathbb{N}^*$$

Le nombre y_n est donc une somme d'entiers : c'est un entier.

 (x_n) et (y_n) sont des suites d'entiers naturels.

4. (a) Soit $n \in \mathbb{N}^*$.

Comme $x_{n+1} - x_n = x_n(a_{n+1} - 1)$, il vient,

$$\frac{y_{n+1} - y_n}{x_{n+1} - x_n} - \frac{y_n}{x_n} = \frac{y_{n+1} - y_n}{x_n(a_{n+1} - 1)} - \frac{y_n}{x_n}$$

$$= \frac{y_{n+1} - a_{n+1}y_n}{x_n(a_{n+1} - 1)}$$

$$= \frac{1}{a_{n+1} - 1} \times \frac{y_{n+1} - a_{n+1}y_n}{x_n}$$

$$= \frac{1}{a_{n+1} - 1} \times \left(\frac{y_{n+1}}{x_n} - \frac{a_{n+1}y_n}{x_n}\right)$$

$$= \frac{a_{n+1}}{a_{n+1} - 1} \times \left(\frac{y_{n+1}}{a_{n+1}x_n} - \frac{y_n}{x_n}\right)$$

$$= \frac{a_{n+1}}{a_{n+1} - 1} \times \left(\frac{y_{n+1}}{x_{n+1}} - \frac{y_n}{x_n}\right)$$

$$= \frac{a_{n+1}}{a_{n+1} - 1} \times \frac{1}{a_{n+1}}$$

$$= \frac{1}{a_{n+1} - 1}$$

donc

$$v_n - u_n = \frac{1}{a_{n+1} - 1}.$$

(b) Soit $n \in \mathbb{N}^*$.

$$v_{n+1} - v_n = (v_{n+1} - u_{n+1}) + (u_{n+1} - u_n) + (u_n - v_n)$$

$$= \frac{1}{a_{n+2} - 1} + \left(\frac{y_{n+1}}{x_{n+1}} - \frac{y_n}{x_n}\right) + \left(-\frac{1}{a_{n+1} - 1}\right)$$

$$= \frac{1}{a_{n+2} - 1} + \frac{1}{a_{n+1}} - \frac{1}{a_{n+1} - 1}$$

(c) Soit $n \in \mathbb{N}^*$.

$$u_{n+1} - u_n = \frac{y_{n+1}}{x_{n+1}} - \frac{y_n}{x_n} = \frac{1}{a_{n+1}} > 0$$

donc (u_n) est croissante.

De plus,

$$v_{n+1} - v_n = \frac{1}{a_{n+2} - 1} + \frac{1}{a_{n+1}} - \frac{1}{a_{n+1} - 1}$$
$$= \frac{1}{a_{n+2} - 1} - \frac{1}{a_{n+1}(a_{n+1} - 1)}$$

Comme $a_{n+1}(a_{n+1}-1)=a_{n+1}^2-a_n\leq a_{n+2}-1$ (par hypothèse de départ sur la suite (a_n)) il vient

$$\frac{1}{a_{n+1}(a_{n+1}-1)} \ge \frac{1}{a_{n+2}-1}$$

et ainsi,

$$v_{n+1} - v_n = \frac{1}{a_{n+2} - 1} - \frac{1}{a_{n+1}(a_{n+1} - 1)} \le \frac{1}{a_{n+2} - 1} - \frac{1}{a_{n+2} - 1} = 0$$

donc (v_n) est décroissante.

De plus, comme $a_n \longrightarrow +\infty$, il vient

$$v_n - u_n = \frac{1}{a_{n+1} - 1} \longrightarrow 0$$

Nous avons démontré que (u_n) et (v_n) sont adjacentes.

Par théorème,

 (u_n) et (v_n) convergent, vers une limite commune.

5. (a) Pour $n \in \mathbb{N}^*$, $px_n - qy_n$ est un entier relatif par produit et différence de deux entiers (nous savons que p, q, x_n et y_n sont des entiers naturels).

Comme (u_n) est croissante, pour tout $n \in \mathbb{N}$,

$$\frac{y_n}{x_n} \le \ell$$
 soit $\frac{y_n}{x_n} \le \frac{p}{q}$

donc $qy_n \le px_n$ donc $px_n - qy_n \in \mathbb{N}$

(b) Soit $n \in \mathbb{N}^*$.

Comme (v_n) est décroissante, pour tout $n \in \mathbb{N}$,

$$\frac{y_{n+1} - y_n}{x_{n+1} - x_n} \ge \frac{p}{q}$$

donc

$$q(y_{n+1} - y_n) \ge p(x_{n+1} - x_n)$$

donc

$$px_n - qy_n \ge px_{n+1} - qy_{n+1}$$

Ainsi, $(px_n - qy_n)$ est décroissante

(c) Soit (k_n) une suite d'entiers naturels décroissante.

Posons $E = \{k_n \mid n \in \mathbb{N}\}$ l'ensemble de ses termes. Cette partie de \mathbb{N} non vide admet un minimum : notons le m. Puisque m est un terme de la suite, il existe un rang n_0 tel que $m = k_{n_0}$. Pour tout $n \geq n_0$, on a $k_n \leq k_{n_0}$ par décroissance de la suite, c'est-à-dire $k_n \leq m$. Or, on a $k_n \geq m$ pour tout entier naturel n. Par antisymétrie,

$$\forall n \ge n_0 \quad k_n = m.$$

La suite (k_n) est bien stationnaire.

(d) La suite (v_n) est une suite décroissante d'entiers naturels d'après les questions (a) et (b). La question (c) amène que (v_n) est stationnaire. Notons n_0 un rang à partir duquel la suite $(v_{n+1} - v_n)$ est nulle : pour tout $n \ge n_0$,

$$\frac{1}{a_{n+2}-1} + \frac{1}{a_{n+1}} - \frac{1}{a_{n+1}-1} = 0$$

donc pour tout $n \geq n_0$,

$$\frac{1}{a_{n+2}-1} - \frac{1}{a_{n+1}(a_{n+1}-1)} = 0$$

donc pour tout $n \geq n_0$,

$$a_{n+2} = a_{n+1}(a_{n+1} - 1) + 1$$

6. Notons $a_n = p^{2^n}$. Alors

$$a_{n+1} - (a_n^2 - a_n + 1) = p^{2^{n+1}} - (p^{2^{n+1}} - p^{2^n} + 1) = p^{2^n} - 1 > 0$$

On a donc $n \in \mathbb{N}$,

$$a_{n+1} > a_n^2 - a_n + 1$$

D'après la question 4-(c), la suite $\left(\sum_{k=1}^n \frac{1}{a_k}\right)_{n \in \mathbb{N}^*}$ converge vers une limite ℓ (cette suite est notée u dans cette question).

Et comme pour tout $n \in \mathbb{N}$, $a_{n+1} > a_n^2 - a_n + 1$, la question 5 nous donne que la limite ℓ ne peut pas être un rationnel.

La limite de la suite
$$\left(\sum_{k=1}^{n} \frac{1}{p^{2^k}}\right)$$
 est un irrationnel.