Power Systems Flexibility from District Heating Networks - Online Appendix

Lesia Mitridati

Center for Electric Power and Energy Technical University of Denmark Kgs. Lyngby, Denmark lemitri@elektro.dtu.dk

Josh A. Taylor Department of Electrical & Computer Engineering University of Toronto Toronto, Canada josh.taylor@utoronto.ca

	Nomenclature	$\underline{\mathit{mf}}_{pt}^R/\overline{\mathit{mf}}_{pt}^R$	Minimum/maximum mass flow rates in the return network (in Kg/s)
Sets and Indexes		$\underline{T}_{nt}^S/\overline{T}_{nt}^S$	Supply temperature bounds at node n (in
\mathcal{T} \mathcal{I}^{HS} \mathcal{I}^{HES}	Set of time periods Set of heat stations Set of heat exchanger stations	$rac{T_{nt}^R}{T_{nt}^R}/\overline{T}_{nt}^R$ $pr_{nt}^S/\overline{pr}_{nt}^S$	K)Return temperature bounds at node n (in K)Pressure bounds at node n in the supply
\mathcal{I}^{CHP}	Set of combined heat and power plants $\mathcal{I}^{CHP} \subset \mathcal{I}^{HS}$	$\frac{pr_{nt}/pr_{nt}}{pr_{nt}^R/\overline{pr}_{nt}^R}$	network (in Pa) Pressure bounds at node n in the return
$\mathcal{I}^{HP} \ \mathcal{I}^{E}$	Set of heat pumps $\mathcal{I}^{HP} \subset \mathcal{I}^{HS}$ Set of electricity generators		network (in Pa)
\mathcal{I}^N	Set of nodes in the district heating network	$\underline{pr}_{it}^{HES}$	Minimum pressure difference at heat exchanger station i (in Pa)
$\mathcal{I}^{B} \ \mathcal{I}^{P}$	Set of electricity buses Set of heat pipelines	α_j/α_i	Marginal cost parameter of heat station <i>j</i> /electricity producer <i>i</i> (in \$/MWh)
$S_n^{P+}/S_n^{P-} \ S_n^{HS} \ S_n^{HES}$	Set of pipes starting/ending at node n Set of heat stations connected to node n	$rac{ ho_j^H/ ho_j^E}{r_j^0/r_j}$	Heat/electricity fuel efficiency of CHP j Heat and electricity outputs ratio of CHP
	Set of heat exchanger stations connected to node n	\overline{F}_j	j Maximum fuel consumption of CHP j (in MWh)
S_n^E	Set of electricity generators connected to bus n	$L^E_{nt} \ L^H_{it}$	Electricity load at bus n (in MWh)
S_n^B	Set of electricity buses connected to bus n		Heat load at heat exchanger station i (in MWh)
Input Parameters		B_{nm}	Susceptance of line connecting buses n and m (in S)
•		\overline{P}_{jt}	Maximum power output of electricity generator j (in MWh)
R_p/L_p μ_p	Radius/Length of pipe p (in m) Thermal loss coefficient in pipe p (in $J.m^{-2}.s^{-2}.K^{-1}$)	\overline{f}_{nm}	Maximum flow in line connecting buses n and m (in MWh)

R_p/L_p	Radius/Length of pipe p (in m)
μ_p	Thermal loss coefficient in pipe p (in
-	$J.m^{-2}.s^{-2}.K^{-1}$)
ho	Relative density of water (in Kg.m ⁻³)
$ u_p$	Pressure loss coefficient in pipeline p
C_p	Specific heat capacity of water in pipeline
	$p \text{ (in J.Kg}^{-1}.\text{K}^{-1})$
η_i^{pump}	Efficiency of water pump in heat station
3	j
Δt	Time intervals (in s)
$mf_{it}^{HES}/\overline{mf}_{it}^{HES}$	Minimum/maximum mass flow rates at
	the heat exchanger station i (in Kg/s)
$\underline{mf}_{jt}^{HS}/\overline{mf}_{jt}^{HS}$	Minimum/maximum mass flow rates at
$-v_{jt}$	the heat station j (in Kg/s)
$\underline{\mathit{mf}}_{nt}^S/\overline{\mathit{mf}}_{pt}^S$	Minimum/maximum mass flow rates in
\underline{m}_{pt} , \underline{m}_{pt}	the supply network (in Kg/s)
	the supply network (in Kg/s)

Decision variables

$T_{pt}^{S,in}/T_{pt}^{S,out}$	Inlet/outlet temperatures in the supply network (in K)
$T_{pt}^{R,in}/T_{pt}^{R,out}$	Inlet/outlet temperatures in the return network (in K)
T_{nt}^S/T_{nt}^R	Supply/return temperatures at node n (in K)
$\mathit{mf}_{pt}^{S}/\mathit{mf}_{pt}^{R}$	Mass flow rate in the supply/return network (in $Kg.m^{-3}$)
mf_{jt}^{HS}	Mass flow rate at heat station j (in ${\rm Kg.m^{-3}})$

network (in Pa) $\tau_{pt}^S/\tau_{pt}^R \qquad \text{Time delay in the supply/return network} $ (in h) $Q_{jt} \qquad \text{Heat production of heat station } j \text{ (in } M\text{Wh)}$ $P_{jt} \qquad \text{Electricity production of electricity generator or CHP } j \text{ (in } M\text{Wh)}$ $L_{jt}^E \qquad \text{Electricity consumption of heat pump } j \text{ (in } M\text{Wh)}$	mf_{it}^{HES}	Mass flow rate at heat exchanger station
$\tau_{pt}^S/\tau_{pt}^R \qquad \qquad \text{network (in Pa)} \\ \tau_{pt}^S/\tau_{pt}^R \qquad \qquad \text{Time delay in the supply/return network (in h)} \\ Q_{jt} \qquad \qquad \text{Heat production of heat station } j \text{ (in MWh)} \\ P_{jt} \qquad \qquad \text{Electricity production of electricity generator or CHP } j \text{ (in MWh)} \\ L_{jt}^E \qquad \qquad \text{Electricity consumption of heat pump } j \\ \text{ (in MWh)} \\ L_{jt}^{pump} \qquad \qquad \text{Electricity consumption of water pump in heat station } j \text{ (in MWh)} \\ \end{cases}$		$i ext{ (in Kg.m}^{-3})$
$\begin{array}{ll} \tau_{pt}^S/\tau_{pt}^R & \text{Time delay in the supply/return network} \\ & \text{(in h)} \\ Q_{jt} & \text{Heat production of heat station } j \text{ (in MWh)} \\ P_{jt} & \text{Electricity production of electricity generator or CHP } j \text{ (in MWh)} \\ L_{jt}^E & \text{Electricity consumption of heat pump } j \\ & \text{(in MWh)} \\ L_{jt}^{pump} & \text{Electricity consumption of water pump in heat station } j \text{ (in MWh)} \\ \end{array}$	pr_{nt}^S/pr_{nt}^R	Pressure at node n in the supply/return
$\begin{array}{cccc} & & & & & & & & \\ Q_{jt} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$		network (in Pa)
$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	$ au_{pt}^S/ au_{pt}^R$	Time delay in the supply/return network (in h)
erator or CHP j (in MWh) $L_{jt}^{E} \qquad \qquad \text{Electricity consumption of heat pump } j$ (in MWh) $L_{jt}^{pump} \qquad \qquad \text{Electricity consumption of water pump in heat station } j \text{ (in MWh)}$	Q_{jt}	Heat production of heat station j (in MWh)
$ \begin{array}{ccc} L^E_{jt} & & \text{Electricity consumption of heat pump } j \\ & & (\text{in MWh}) \\ L^{pump}_{jt} & & \text{Electricity consumption of water pump in heat station } j \text{ (in MWh)} \\ \end{array} $	-	* *
heat station j (in MWh)	L^E_{jt}	Electricity consumption of heat pump j
· · · · · · · · · · · · · · · · · · ·	L_{jt}^{pump}	Electricity consumption of water pump in heat station j (in MWh)
	$ heta_{nt}$	

APPENDIX A: MCCORMICK RELAXATIONS

For supply and return temperature mixing equations at each node, we introduce the auxiliary variables w_{pt}^S and w_{pt}^R such that

$$w_{pt}^S = \mathit{mf}_{pt}^S \left(T_{nt}^S - T_{pt}^{S,out} \right) \quad \forall n \in \mathcal{I}^N, p \in S_n^{P-} \tag{1}$$

$$w_{pt}^R = \mathit{mf}_{pt}^R \left(T_{nt}^R - T_{pt}^{R,out} \right) \quad \forall n \in \mathcal{I}^N, p \in S_n^{P+}. \tag{2}$$

The products in (1)-(2) can be linearized using a McCormick envelopes

$$\begin{split} w_{pt}^{S} &\geq \overline{m} f_{pt}^{S} \left(T_{nt}^{S} - T_{pt}^{S,out} \right) + m f_{pt}^{S} \left(\overline{T}_{nt}^{S} - \underline{T}_{pt}^{S,out} \right) \\ &- \overline{m} f_{pt}^{S} \left(\overline{T}_{nt}^{S} - \underline{T}_{pt}^{S,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{-}, t \in \mathcal{T} \\ w_{pt}^{S} &\geq \underline{m} f_{pt}^{S} \left(T_{nt}^{S} - T_{pt}^{S,out} \right) + m f_{pt}^{S} \left(\underline{T}_{nt}^{S} - \overline{T}_{pt}^{S,out} \right) \\ &- \underline{m} f_{pt}^{S} \left(\underline{T}_{nt}^{S} - \overline{T}_{pt}^{S,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{-}, t \in \mathcal{T} \\ w_{pt}^{S} &\leq \overline{m} f_{pt}^{S} \left(T_{nt}^{S} - T_{pt}^{S,out} \right) + m f_{pt}^{S} \left(\underline{T}_{nt}^{S} - \overline{T}_{pt}^{S,out} \right) \\ &- \overline{m} f_{pt}^{S} \left(\underline{T}_{nt}^{S} - \overline{T}_{pt}^{S,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{-}, t \in \mathcal{T} \\ w_{pt}^{S} &\leq \underline{m} f_{pt}^{S} \left(T_{nt}^{S} - T_{pt}^{S,out} \right) + m f_{pt}^{S} \left(\overline{T}_{nt}^{S} - \underline{T}_{pt}^{S,out} \right) \\ &- \underline{m} f_{pt}^{S} \left(\overline{T}_{nt}^{S} - T_{pt}^{S,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{-}, t \in \mathcal{T}, \end{split}$$

and

The temperature mixing equations at each node can be reformulated as

$$\sum_{p \in S_n^-} w_{pt}^S = 0, \quad \sum_{p \in S_n^+} w_{pt}^R = 0 \quad \forall n \in \mathcal{I}^N, t \in \mathcal{T}.$$
 (5)

APPENDIX B: CASE STUDY DATA

As shown in Fig. 1, the integrated heat and electricity system considered comprises a conventional thermal generator, a wind producer with an installed capacity of 500MW, n extraction CHP plant and a HP. The technical characteristics

Figure 1. Integrated heat and electricity system

of these units are detailed in Table I.

TABLE I GENERATION UNITS PARAMETERS

		G_1	W_1	CHP_1	HP_1
\overline{P}	MWh	180	500	-	-
\overline{Q}	MWh	-	-	250	150
\overline{mf}^{HS}	$Kg.s^{-1}$	-	-	300	300
\overline{F}	MWh	-	-	250	-
COP	-	-	-	-	2.5
r	-	-	-	0.6	-
$ ho^E$	-	-	-	2.4	-
$ ho^H$	-	-	-	0.25	-
α	MWh	11	0	12.5	-

The technical parameters of the power transmission network and DHN are presented in Tables II, III, and IV.

TABLE II ELECTRICITY TRANSMISSION NETWORK PARAMETERS

		l_{12}	l_{23}	l_{34}	l_{45}	l_{56}	l_{16}	l_{35}
\overline{f}	MWh	400	200	200	200	200	200	200
X	$10^{-1}\Omega$	1.70	0.37	2.58	1.97	0.37	1.40	0.18

TABLE III DHN PARAMETERS

		p_{12}	p_{23}
R	m	0.80	0.80
L	m	500	500
C	$Wh.Kg^{-1}.K^{-1}$	1.17	1.17
μ	$W.m^{-2}.K^{-1}$	20	20
ν	(10^{-3})	1.93	1.93
η	-	0.9	0.9
$\overline{\mathit{mf}}^S/\overline{\mathit{mf}}^R$	$Kg.s^{-1}$	50	50
${\it mf}^S/{\it mf}^R$	$Kg.s^{-1}$	300	300
$\overline{\underline{T}}^{S,in}$	C	60	60
$\overline{T}^{S,in}$	C	30	30
$\underline{T}^{R,in}$	C	90	90
$\overline{T}^{R,in}$	C	120	120

TABLE IV DHN NODAL PARAMETERS

		n_1	n_2	n_3 (HES_1)
\overline{mf}^{HES}	$Kg.s^{-1}$	-	-	50
$\underline{\mathit{mf}}^{HES}$	$Kg.s^{-1}$	-	-	300
\underline{T}^S	C	30	30	30
\overline{T}^S	C	60	60	60
\underline{T}^R	C	90	90	90
\overline{T}^R	C	120	120	120
$\underline{pr}^S/\underline{pr}^R$	Pa	0	0	0
$\overline{pr}^S/\overline{pr}^S$	Pa	1000	1000	1000

Heat and electricity loads and available wind production are represented in Fig. 2. table ?? shows the repartition of the

Figure 2. Case study setup: (a) Electricity load and available wind power and (b) Heat load

electric loads at each bus

TABLE V ELECTRIC LOADS AT EACH BUS

	b_1	b_2	b_3	b_4	b_5	b_6
% of load	0	0	20	40	40	0

APPENDIX C: CONVENTIONAL ECONOMIC DISPATCH

The Conventional Economic Dispatch (CED) is formulated as follows

$$\min_{\bar{\Omega}} \sum_{j \in \mathcal{I}^H, t \in \mathcal{T}} \alpha_j Q_{jt} + \sum_{j \in \mathcal{I}^E, t \in \mathcal{T}} \alpha_j P_{jt}$$
 (6a)

$$+\sum_{j\in\mathcal{I}^{CHP},t\in\mathcal{T}}\alpha_{j}\left(\rho_{j}^{E}P_{jt}+\rho_{j}^{H}Q_{jt}\right) \tag{6b}$$

s.t.
$$\sum_{i \in \mathcal{I}^{HES}} L_{it}^{H} = \sum_{j \in \mathcal{I}^{HS}} Q_{jt} \quad \forall t \in \mathcal{T}$$
 (6c)

$$L_{nt}^{E} = \sum_{j \in S_{n}^{E}} P_{jt} + \sum_{m \in S_{n}^{B}} B_{nm} \left(\theta_{mt} - \theta_{nt}\right)$$
$$\forall n \in \mathcal{I}^{B}, t \in \mathcal{T}$$

$$\forall n \in \mathcal{I}^B, t \in \mathcal{T} \tag{6d}$$

$$-\overline{f}_{nm} \le B_{nm} \left(\theta_{mt} - \theta_{nt}\right) \le \overline{f}_{nm}$$

$$\forall n \in \mathcal{I}^B, m \in S_n^B, t \in \mathcal{T}$$
 (6e)

$$0 \le P_j \le \overline{P}_{jt} \quad \forall i \in \mathcal{I}^E, t \in \mathcal{T}$$
 (6f)

$$\underline{Q}_{jt} \le Q_{jt} \le \overline{Q}_{jt} \quad \forall j \in \mathcal{I}^{HS}, t \in \mathcal{T}$$
 (6g)

$$P_{jt} \ge r_j^0 + r_c Q_{jt} \quad \forall j \in \mathcal{I}^{CHP}, t \in \mathcal{T}$$
 (6h)

$$0 < \rho_a^E P_{it} + \rho_a^H Q_{it} < \overline{F}_i \quad \forall i \in \mathcal{I}^{CHP}, t \in \mathcal{T}$$
 (6i)

$$0 \leq \rho_c^E P_{jt} + \rho_c^H Q_{jt} \leq \overline{F}_j \quad \forall j \in \mathcal{I}^{CHP}, t \in \mathcal{T}$$
 (6i)

$$Q_{jt} = COP_{jt} L_{jt}^{HS} \quad \forall j \in \mathcal{I}^{HP}, t \in \mathcal{T},$$
 (6j)

where the set of optimization variables $\{P, Q, L^{HS}, B, \theta\}.$