Peptide Computing - Universality and Theoretical Model

M. Sakthi Balan¹ Helmut Jürgensen^{1,2}

¹Department of Computer Science University of Western Ontario London, Ontario Canada

²Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, 14482 Potsdam, Germany

Unconventional Computation, 2006

Contents

- Introduction
- Previous Result
- Our Results
 - New Simulation
 - Theoretical Model
- 4 Conclusion

- Proposed by H. Hug et al.
- To solve some difficult combinatorial problems.
 - Satisfiability problem.
 - Hamiltonian path problem.
- Universal model.
 - Look-and-do method.
 - Unbounded numbers of peptides and antibodies.

- Proposed by H. Hug et al.
- To solve some difficult combinatorial problems.
 - Satisfiability problem.
 - Hamiltonian path problem.
- Universal model.
 - Look-and-do method.
 - Unbounded numbers of peptides and antibodies.

- Proposed by H. Hug et al.
- To solve some difficult combinatorial problems.
 - Satisfiability problem.
 - Hamiltonian path problem.
- Universal model.
 - Look-and-do method.
 - Unbounded numbers of peptides and antibodies.

- Proposed by H. Hug et al.
- To solve some difficult combinatorial problems.
 - Satisfiability problem.
 - Hamiltonian path problem.
- Universal model.
 - Look-and-do method.
 - Unbounded numbers of peptides and antibodies.

- Proposed by H. Hug et al.
- To solve some difficult combinatorial problems.
 - Satisfiability problem.
 - Hamiltonian path problem.
- Universal model.
 - Look-and-do method.
 - Unbounded numbers of peptides and antibodies.

- Proposed by H. Hug et al.
- To solve some difficult combinatorial problems.
 - Satisfiability problem.
 - Hamiltonian path problem.
- Universal model.
 - Look-and-do method.
 - Unbounded numbers of peptides and antibodies.

Our Paper...

- Encoding of transitions of Turing machine that makes the simulation nearly automatic.
- Present a formal model of peptide computing to show the converse simulation under certain conditions.

Our Paper...

- Encoding of transitions of Turing machine that makes the simulation nearly automatic.
- Present a formal model of peptide computing to show the converse simulation under certain conditions.

- Peptides sequence over 20 basic amino acids.
- Epitopes binding sites in peptides which antibodies can recognize.
- Affinity binding power of an antibody to a specific epitope.
- Affinity-based removal of antibodies
- Epitope-based removal of antibodies.

- Peptides sequence over 20 basic amino acids.
- Epitopes binding sites in peptides which antibodies can recognize.
- Affinity binding power of an antibody to a specific epitope.
- Affinity-based removal of antibodies
- Epitope-based removal of antibodies.

- Peptides sequence over 20 basic amino acids.
- Epitopes binding sites in peptides which antibodies can recognize.
- Affinity binding power of an antibody to a specific epitope.
- Affinity-based removal of antibodies
- Epitope-based removal of antibodies.

- Peptides sequence over 20 basic amino acids.
- Epitopes binding sites in peptides which antibodies can recognize.
- Affinity binding power of an antibody to a specific epitope.
- Affinity-based removal of antibodies.
- Epitope-based removal of antibodies.

Previous Simulation

Theorem

Let $\mathcal{M}=(Q,\Sigma,\delta,q_0,F,\flat)$ be a Turing machine. There is a simulation of \mathcal{M} by peptide computing with the following properties:

- There is a constant c>0, independent of \mathcal{M} , such that the number of peptide antibody interactions needed for the simulation of a computation of \mathcal{M} on input $w\in\Sigma^*$ is no greater than $c\cdot t_{\mathcal{M}}(w)$.
- 2 The length of the peptide sequence needed for the simulation of a computation of \mathcal{M} on input $w \in \Sigma^*$ is in $\Theta(s_{\mathcal{M}}(w))$; moreover the number of antibodies needed is in $\Theta((|Q| + |\Sigma|) \cdot s_{\mathcal{M}}(w))$.

Previous Simulation

Theorem

Let $\mathcal{M} = (Q, \Sigma, \delta, q_0, F, \flat)$ be a Turing machine. There is a simulation of \mathcal{M} by peptide computing with the following properties:

- There is a constant c > 0, independent of \mathcal{M} , such that the number of peptide antibody interactions needed for the simulation of a computation of \mathcal{M} on input $w \in \Sigma^*$ is no greater than $c \cdot t_{\mathcal{M}}(w)$.

Previous Simulation

Theorem

Let $\mathcal{M} = (Q, \Sigma, \delta, q_0, F, \flat)$ be a Turing machine. There is a simulation of \mathcal{M} by peptide computing with the following properties:

- There is a constant c>0, independent of \mathcal{M} , such that the number of peptide antibody interactions needed for the simulation of a computation of \mathcal{M} on input $w\in \Sigma^*$ is no greater than $c\cdot t_{\mathcal{M}}(w)$.
- 2 The length of the peptide sequence needed for the simulation of a computation of \mathcal{M} on input $w \in \Sigma^*$ is in $\Theta(s_{\mathcal{M}}(w))$; moreover the number of antibodies needed is in $\Theta((|Q| + |\Sigma|) \cdot s_{\mathcal{M}}(w))$.

Figure: Peptide Sequence

Suppose the transition rule is $\delta(q, a_{i_k}) = \{(q', a'_{i_k}, R)\}.$

Figure: Before applying rule

Figure: After applying rule

- For each step of M, there are two steps removal of antibodies and adding of antibodies.
- The length of the peptide needed for simulating the computation of \mathcal{M} on input w is $O(s_{\mathcal{M}}(w))$.
- The number of epitopes is $O(s_{\mathcal{M}}(w))$.
- The number of antibodies is $O((m+l) \cdot s_{\mathcal{M}}(w))$ where m = |Q| and $l = |\Sigma|$.

- For each step of M, there are two steps removal of antibodies and adding of antibodies.
- The length of the peptide needed for simulating the computation of \mathcal{M} on input w is $O(s_{\mathcal{M}}(w))$.
- The number of epitopes is $O(s_{\mathcal{M}}(w))$.
- The number of antibodies is $O((m+l) \cdot s_{\mathcal{M}}(w))$ where m = |Q| and $l = |\Sigma|$.

- For each step of M, there are two steps removal of antibodies and adding of antibodies.
- The length of the peptide needed for simulating the computation of \mathcal{M} on input w is $O(s_{\mathcal{M}}(w))$.
- The number of epitopes is $O(s_{\mathcal{M}}(w))$.
- The number of antibodies is $O((m+l) \cdot s_{\mathcal{M}}(w))$ where m = |Q| and $l = |\Sigma|$.

- For each step of M, there are two steps removal of antibodies and adding of antibodies.
- The length of the peptide needed for simulating the computation of \mathcal{M} on input w is $O(s_{\mathcal{M}}(w))$.
- The number of epitopes is $O(s_{\mathcal{M}}(w))$.
- The number of antibodies is $O((m+l) \cdot s_{\mathcal{M}}(w))$ where m = |Q| and $l = |\Sigma|$.

- For each step of M, there are two steps removal of antibodies and adding of antibodies.
- The length of the peptide needed for simulating the computation of \mathcal{M} on input w is $O(s_{\mathcal{M}}(w))$.
- The number of epitopes is $O(s_{\mathcal{M}}(w))$.
- The number of antibodies is $O((m+l) \cdot s_{\mathcal{M}}(w))$ where m = |Q| and $l = |\Sigma|$.

- Need for an extraneous computing agents for each step of the simulation.
 - Usually hidden in the definition of computational steps of any formal model.
 - How to limit the "power" of this agent.
- The size of the alphabets is unbounded.
 - Encoding of antibodies and epitopes over a finite alphabet increases resource and time requirements.
 - Theoretically possible; but, bio-chemically?

- Need for an extraneous computing agents for each step of the simulation.
 - Usually hidden in the definition of computational steps of any formal model.
 - How to limit the "power" of this agent.
- The size of the alphabets is unbounded.
 - Encoding of antibodies and epitopes over a finite alphabet increases resource and time requirements.
 - Theoretically possible; but, bio-chemically?

- Need for an extraneous computing agents for each step of the simulation.
 - Usually hidden in the definition of computational steps of any formal model.
 - How to limit the "power" of this agent.
- The size of the alphabets is unbounded.
 - Encoding of antibodies and epitopes over a finite alphabet increases resource and time requirements.
 - Theoretically possible; but, bio-chemically?

- Need for an extraneous computing agents for each step of the simulation.
 - Usually hidden in the definition of computational steps of any formal model.
 - How to limit the "power" of this agent.
- The size of the alphabets is unbounded.
 - Encoding of antibodies and epitopes over a finite alphabet increases resource and time requirements.
 - Theoretically possible; but, bio-chemically?

Nearly automated simulation

Theorem

Let $\mathcal{M} = (Q, \Sigma, \delta, q_0, F, \flat)$ be a Turing machine. There is a simulation of \mathcal{M} by peptide computing with the following properties:

- There is a constant c>0, independent of \mathcal{M} , such that the number of peptide antibody interactions needed for the simulation of a computation of \mathcal{M} on input $w\in\Sigma^*$ is no greater than $c\cdot t_{\mathcal{M}}(w)$.
- 2 The number of the peptide sequence needed for the simulation of a computation of \mathcal{M} on input $w \in \Sigma^*$ is in $\Theta(s_{\mathcal{M}}(w))$; moreover the number of antibodies needed is in $\Theta((|Q| + |\Sigma|) \cdot s_{\mathcal{M}}(w))$.

- ullet Assume that ${\mathcal M}$ has only a single final state.
- We use five multi-sets of peptide sequences:
 - \bigcirc T to simulate the cells of the tape of \mathcal{M} ;
 - \bigcirc P to hold the program of \mathcal{M} ;
 - S to synchronize the operation; and
 - \bigcirc I_1 and I_2 for carrying out intermediate steps

- ullet Assume that ${\mathcal M}$ has only a single final state.
- We use five multi-sets of peptide sequences:
 - \bigcirc T to simulate the cells of the tape of \mathcal{M} ;
 - \bigcirc P to hold the program of \mathcal{M} :
 - S to synchronize the operation; and
 - \bigcirc I_1 and I_2 for carrying out intermediate steps

- ullet Assume that ${\mathcal M}$ has only a single final state.
- We use five multi-sets of peptide sequences:
 - \bigcirc *T* to simulate the cells of the tape of \mathcal{M} ;
 - \bigcirc P to hold the program of \mathcal{M} ;
 - S to synchronize the operation; and
 - \bigcirc I_1 and I_2 for carrying out intermediate steps

- ullet Assume that ${\mathcal M}$ has only a single final state.
- We use five multi-sets of peptide sequences:
 - \bigcirc *T* to simulate the cells of the tape of \mathcal{M} ;
 - 2 P to hold the program of \mathcal{M} ;
 - S to synchronize the operation; and
 - \bigcirc I_1 and I_2 for carrying out intermediate steps

- ullet Assume that ${\mathcal M}$ has only a single final state.
- We use five multi-sets of peptide sequences:
 - \bigcirc T to simulate the cells of the tape of \mathcal{M} ;
 - 2 P to hold the program of \mathcal{M} ;
 - S to synchronize the operation; and
 - \bigcirc I_1 and I_2 for carrying out intermediate steps

- Assume that \mathcal{M} has only a single final state.
- We use five multi-sets of peptide sequences:
 - T to simulate the cells of the tape of \mathcal{M} ;
 - P to hold the program of M;
 - S to synchronize the operation; and
 - \bullet I_1 and I_2 for carrying out intermediate steps.

- Each sequence in *T* consists of six epitopes.
- ullet Uniquely denotes a cell on the tape of ${\mathcal M}$
- Peptide sequence is represented by $p_i^{(T)} = e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$ with $e_{i,4}^{(T)} = x_i e_{i,2}^{(T)} y_i$ for some words x_i and y_i , where the epitopes are $e_{i,1}^{(T)}, \ldots, e_{i,4}^{(T)}, e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i$ and $x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$.

$e_{i,1}^{(T)}$	x_i	$e_{i,2}^{(T)}$	y_i	$e_{i,3}^{(T)}$
*,1	22	6,2	91	2,5

Western

- Each sequence in *T* consists of six epitopes.
- Uniquely denotes a cell on the tape of \mathcal{M} .
- Peptide sequence is represented by $p_i^{(T)} = e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$ with $e_{i,4}^{(T)} = x_i e_{i,2}^{(T)} y_i$ for some words x_i and y_i , where the epitopes are $e_{i,1}^{(T)}, \ldots, e_{i,4}^{(T)}, e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i$ and $x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$.

$e_{i,1}^{(T)}$	x_i	$e_{i,2}^{(T)}$	y_i	$e_{i,3}^{(T)}$
*,1	22	6,2	91	2,5

- Each sequence in *T* consists of six epitopes.
- Uniquely denotes a cell on the tape of \mathcal{M} .
- Peptide sequence is represented by $p_i^{(T)} = e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$ with $e_{i,4}^{(T)} = x_i e_{i,2}^{(T)} y_i$ for some words x_i and y_i , where the epitopes are $e_{i,1}^{(T)}, \ldots, e_{i,4}^{(T)}, e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i$ and $x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$.

$e_{i,1}^{(T)}$	x_i	$e_{i,2}^{(T)}$	y_i	$e_{i,3}^{(T)}$
100000	10000	\$44,000,000		55555

- Each sequence in *T* consists of six epitopes.
- Uniquely denotes a cell on the tape of \mathcal{M} .
- Peptide sequence is represented by $p_i^{(T)} = e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$ with $e_{i,4}^{(T)} = x_i e_{i,2}^{(T)} y_i$ for some words x_i and y_i , where the epitopes are $e_{i,1}^{(T)}, \dots, e_{i,4}^{(T)}, e_{i,1}^{(T)} x_i e_{i,2}^{(T)} y_i$ and $x_i e_{i,2}^{(T)} y_i e_{i,3}^{(T)}$.

$e_{i,1}^{(T)}$	T_{i}	$e_{i,2}^{(T)}$	y_i	$e_{i,3}^{(T)}$
8.5		0.58550		2007

Figure: Cell i

- The set P contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will capture the transition applied when \mathcal{M} is in state q and reading the symbol a.
- Has three epitopes $e_{(q,a),1}^{(P)}$, $e_{(q,a),2}^{(P)}$ and $e_{(q,a),3}^{(P)}$.

- The set P contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will capture the transition applied when M is in state q and reading the symbol a.
- Has three epitopes $e_{(q,a),1}^{(P)}$, $e_{(q,a),2}^{(P)}$ and $e_{(q,a),3}^{(P)}$.

- The set P contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will capture the transition applied when M is in state q and reading the symbol a.
- Has three epitopes $e_{(q,a),1}^{(P)}$, $e_{(q,a),2}^{(P)}$ and $e_{(q,a),3}^{(P)}$.

- The set P contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will capture the transition applied when M is in state q and reading the symbol a.
- Has three epitopes $e_{(q,a),1}^{(P)}$, $e_{(q,a),2}^{(P)}$ and $e_{(q,a),3}^{(P)}$.

• Has the form $p_{(q,a)}^{(P)}=e_{(q,a),1}^{(P)}e_{(q,a),2}^{(P)}$ with $e_{(q,a),3}^{(P)}\in \mathrm{Inf}_+(p_{(q,a)}^{(P)})$ and which overlaps both $e_{(q,a),1}^{(P)}$ and $e_{(q,a),2}^{(P)}$.

$$e_{(q,a),1}^{(P)}$$
 $e_{(q,a),2}^{(P)}$

Figure: Peptide sequence in P

• Has the form $p_{(q,a)}^{(P)}=e_{(q,a),1}^{(P)}e_{(q,a),2}^{(P)}$ with $e_{(q,a),3}^{(P)}\in \mathrm{Inf}_+(p_{(q,a)}^{(P)})$ and which overlaps both $e_{(q,a),1}^{(P)}$ and $e_{(q,a),2}^{(P)}$.

$$e_{(q,a),1}^{(P)} = e_{(q,a),2}^{(P)}$$

Figure: Peptide sequence in P

- The set S contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will control the execution of a transition step.
- Has the form $p_{(q,a)}^{(S)} = z_{(q,a)} e_{(q,a),1}^{(S)} e_{(q,a),2}^{(S)}$. Has the three epitopes $e_{(q,a),1}^{(S)}$, $e_{(q,a),2}^{(S)}$ and the whole

- The set S contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will control the execution of a transition step.
- Has the form $p_{(q,a)}^{(S)} = z_{(q,a)} e_{(q,a),1}^{(S)} e_{(q,a),2}^{(S)}$. Has the three epitopes $e_{(q,a),1}^{(S)}$, $e_{(q,a),2}^{(S)}$ and the whole

- The set S contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will control the execution of a transition step.
- Has the form $p_{(q,a)}^{(S)} = z_{(q,a)} e_{(q,a),1}^{(S)} e_{(q,a),2}^{(S)}$. Has the three epitopes $e_{(q,a),1}^{(S)}$, $e_{(q,a),2}^{(S)}$ and the whole

$$z_{(q,a)} = e_{(q,a),1}^{(S)} = e_{(q,a),2}^{(S)}$$

- The set S contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will control the execution of a transition step.
- Has the form $p_{(q,a)}^{(S)} = z_{(q,a)} e_{(q,a),1}^{(S)} e_{(q,a),2}^{(S)}$.
- Has the three epitopes $e_{(q,a),1}^{(S)}$, $e_{(q,a),2}^{(S)}$ and the whole sequence itself is an epitope.

$$z_{(q,a)} \quad e_{(q,a),1}^{(S)} \quad e_{(q,a),2}^{(S)}$$

- The set S contains a peptide sequence for each pair $(q, a) \in Q \times \Sigma$.
- Will control the execution of a transition step.
- Has the form $p_{(q,a)}^{(S)} = z_{(q,a)} e_{(q,a),1}^{(S)} e_{(q,a),2}^{(S)}$.
- Has the three epitopes $e_{(q,a),1}^{(S)}$, $e_{(q,a),2}^{(S)}$ and the whole sequence itself is an epitope.

$$z_{(q,a)} = e_{(q,a),1}^{(S)} = e_{(q,a),2}^{(S)}$$

Figure: Peptide sequence in S

The sets I_1 and I_2 contain peptide sequence as follows:

- Each sequence in I_1 contains epitopes $e_{(q,a),1}^{(I_1)}$ and $e_{(q,a),2}^{(I_1)}$.
- It is represented by $p_{(q,a)}^{(l_1)} = e_{(q,a),1}^{(l_1)} e_{(q,a),2}^{(l_1)}$.
- All the peptide sequences in I_1 are initialized with antibodies $A_{q,a}$ which binds to the epitope $e_{(q,a),1}^{(I_1)}$.
- Each sequence in the set I_2 is represented by $p_{(q,a)}^{(I_2)} = e_{(q,a)}^{(I_2)}$.

The sets l_1 and l_2 contain peptide sequence as follows:

- Each sequence in I_1 contains epitopes $e_{(q,a),1}^{(I_1)}$ and $e_{(q,a),2}^{(I_1)}$.
- It is represented by $p_{(q,a)}^{(l_1)} = e_{(q,a),1}^{(l_1)} e_{(q,a),2}^{(l_1)}$.
- All the peptide sequences in I_1 are initialized with antibodies $A_{q,a}$ which binds to the epitope $e_{(q,a),1}^{(I_1)}$.
- Each sequence in the set I_2 is represented by $p_{(q,a)}^{(I_2)} = e_{(q,a)}^{(I_2)}$.

The sets l_1 and l_2 contain peptide sequence as follows:

- Each sequence in I_1 contains epitopes $e_{(q,a),1}^{(I_1)}$ and $e_{(q,a),2}^{(I_1)}$.
- It is represented by $p_{(q,a)}^{(l_1)} = e_{(q,a),1}^{(l_1)} e_{(q,a),2}^{(l_1)}$.
- All the peptide sequences in I_1 are initialized with antibodies $A_{q,a}$ which binds to the epitope $e_{(q,a),1}^{(I_1)}$.
- Each sequence in the set I_2 is represented by $p_{(q,a)}^{(I_2)} = e_{(q,a)}^{(I_2)}$.

The sets I_1 and I_2 contain peptide sequence as follows:

- Each sequence in I_1 contains epitopes $e_{(q,a),1}^{(I_1)}$ and $e_{(q,a),2}^{(I_1)}$.
- It is represented by $p_{(q,a)}^{(l_1)} = e_{(q,a),1}^{(l_1)} e_{(q,a),2}^{(l_1)}$.
- All the peptide sequences in I_1 are initialized with antibodies $A_{q,a}$ which binds to the epitope $e_{(q,a),1}^{(l_1)}$.
- Each sequence in the set I_2 is represented by $p_{(q,a)}^{(I_2)} = e_{(q,a)}^{(I_2)}$.

The sets l_1 and l_2 contain peptide sequence as follows:

- Each sequence in I_1 contains epitopes $e_{(q,a),1}^{(I_1)}$ and $e_{(q,a),2}^{(I_1)}$.
- It is represented by $p_{(q,a)}^{(l_1)} = e_{(q,a),1}^{(l_1)} e_{(q,a),2}^{(l_1)}$.
- All the peptide sequences in I_1 are initialized with antibodies $A_{q,a}$ which binds to the epitope $e_{(q,a),1}^{(l_1)}$.
- Each sequence in the set I_2 is represented by $p_{(q,a)}^{(l_2)} = e_{(q,a)}^{(l_2)}$.

- We have a peptide sequence $p_{(q,a)}^{(P)}$ in P with antibodies $A_{q'}$ and $A_{a',D}$ attached to it at epitopes $e_{(q,a),1}^{(P)}$ and $e_{(q,a),2}^{(P)}$, respectively.
- Each sequence in P encodes the transition for state q and symbol a.
- The antibodies $A_{q'}$ and $A_{a',D}$ need to be 'read,' that is, removed, to execute the transition.
- If $q' \in F$ then the antibody $A_{q'}$ will be a labelled one.

- We have a peptide sequence $p_{(q,a)}^{(P)}$ in P with antibodies $A_{q'}$ and $A_{a',D}$ attached to it at epitopes $e_{(q,a),1}^{(P)}$ and $e_{(q,a),2}^{(P)}$, respectively.
- Each sequence in P encodes the transition for state q and symbol a.
- The antibodies $A_{q'}$ and $A_{a',D}$ need to be 'read,' that is, removed, to execute the transition.
- If $q' \in F$ then the antibody $A_{q'}$ will be a labelled one.

- We have a peptide sequence $p_{(q,a)}^{(P)}$ in P with antibodies $A_{q'}$ and $A_{a',D}$ attached to it at epitopes $e_{(q,a),1}^{(P)}$ and $e_{(q,a),2}^{(P)}$, respectively.
- Each sequence in P encodes the transition for state q and symbol a.
- The antibodies $A_{q'}$ and $A_{a',D}$ need to be 'read,' that is, removed, to execute the transition.
- If $q' \in F$ then the antibody $A_{q'}$ will be a labelled one.

- We have a peptide sequence $p_{(q,a)}^{(P)}$ in P with antibodies $A_{q'}$ and $A_{a',D}$ attached to it at epitopes $e_{(q,a),1}^{(P)}$ and $e_{(q,a),2}^{(P)}$, respectively.
- Each sequence in P encodes the transition for state q and symbol a.
- The antibodies $A_{q'}$ and $A_{a',D}$ need to be 'read,' that is, removed, to execute the transition.
- If $q' \in F$ then the antibody $A_{q'}$ will be a labelled one.

- $p_i^{(T)}$ has A_{i-1} , A_a (or $A_{a,D}$) and A_{i+1} attached to its epitopes $e_{i,1}^{(T)}$, $e_{i,4}^{(T)}$ and $e_{i,2}^{(T)}$, respectively.
- A_a or $A_{a,D}$ denotes the content of the cell i.
- A_{i+1} and A_{i-1} are for initiating the right and left movement of \mathcal{M} .

- $p_i^{(T)}$ has A_{i-1} , A_a (or $A_{a,D}$) and A_{i+1} attached to its epitopes $e_{i,1}^{(T)}$, $e_{i,4}^{(T)}$ and $e_{i,2}^{(T)}$, respectively.
- A_a or $A_{a,D}$ denotes the content of the cell i.
- A_{i+1} and A_{i-1} are for initiating the right and left movement of \mathcal{M} .

- $p_i^{(T)}$ has A_{i-1} , A_a (or $A_{a,D}$) and A_{i+1} attached to its epitopes $e_{i,1}^{(T)}$, $e_{i,4}^{(T)}$ and $e_{i,2}^{(T)}$, respectively.
- A_a or $A_{a,D}$ denotes the content of the cell i.
- A_{i+1} and A_{i-1} are for initiating the right and left movement of \mathcal{M} .

- $p_i^{(T)}$ has A_{i-1} , A_a (or $A_{a,D}$) and A_{i+1} attached to its epitopes $e_{i,1}^{(T)}$, $e_{i,4}^{(T)}$ and $e_{i,2}^{(T)}$, respectively.
- A_a or $A_{a,D}$ denotes the content of the cell i.
- A_{i+1} and A_{i-1} are for initiating the right and left movement of \mathcal{M} .

- We assume that peptide sequences for enough cells are available to conduct the computation.
- The cells not occupied by input symbols are initialized to A_b.

Figure: Cell i with Antibodies

- We assume that peptide sequences for enough cells are available to conduct the computation.
- The cells not occupied by input symbols are initialized to A_b.

Figure: Cell i with Antibodies

- Each such step consists of a cycle of reactions.
- Initiated by antibodies A_q , denoting the current state, and antibodies A_i denoting the position of the head.
- The computation is started by adding antibodies A_{q_0} and A_1 corresponding to the initial state q_0 and the first cell respectively.

- Each such step consists of a cycle of reactions.
- Initiated by antibodies A_q , denoting the current state, and antibodies A_i denoting the position of the head.
- The computation is started by adding antibodies A_{q_0} and A_1 corresponding to the initial state q_0 and the first cell respectively.

- Each such step consists of a cycle of reactions.
- Initiated by antibodies A_q , denoting the current state, and antibodies A_i denoting the position of the head.
- The computation is started by adding antibodies A_{q_0} and A_1 corresponding to the initial state q_0 and the first cell respectively.

- Each such step consists of a cycle of reactions.
- Initiated by antibodies A_q , denoting the current state, and antibodies A_i denoting the position of the head.
- The computation is started by adding antibodies A_{q_0} and A_1 corresponding to the initial state q_0 and the first cell respectively.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $p_i^{(T)}$.

Let the transition is $\delta(q, a) = \{(\bar{q}, \bar{a}, \bar{D})\}$

- A_i attaches to T and removes A_a.
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or $A_{b,D'}$ representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $p_i^{(T)}$.

Let the transition is $\delta(q, a) = \{(\bar{q}, \bar{a}, \bar{D})\}$

- A_i attaches to T and removes A_a .
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or $A_{b,D'}$ representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $p_i^{(T)}$.

Let the transition is $\delta(q, a) = \{(\bar{q}, \bar{a}, \bar{D})\}\$

- A_i attaches to T and removes A_a .
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or A_{b,D'} representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $p_i^{(T)}$.

- A_i attaches to T and removes A_a .
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or $A_{b,D'}$ representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $\rho_i^{(T)}$.

- A_i attaches to T and removes A_a .
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or $A_{b,D'}$ representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $\rho_i^{(T)}$.

- A_i attaches to T and removes A_a .
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or $A_{b,D'}$ representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $p_i^{(T)}$.

- A_i attaches to T and removes A_a.
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or $A_{b,D'}$ representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

Suppose the floating antibodies are A_q and A_i and antibody A_a is attached to $p_i^{(T)}$.

- A_i attaches to T and removes A_a .
- A_q and A_a are ready to choose the next transition.
- A_q and A_a through I_1 and I_2 chooses the antibody $A_{q,a}$. (important to discard any circular arguments)
- $A_{q,a}$ chooses the antibodies $A_{\bar{q}}$ and $A_{\bar{a},\bar{D}}$ from P.
- $A_{\bar{a},\bar{D}}$ attaches to T and removes A_{i+1} or A_{i-1} .
- A_{i+1} or A_{i-1} removes the next antibody A_b or $A_{b,D'}$ representing the next symbol b.
- $A_{\bar{q}}$ and A_b or $A_{b,D'}$ attaches to S.
- System ready for next transition.

About the Proof

- Requires an infinite number of antibodies which, however is recursively enumerable.
- We can consider antibodies as being encoded over a finite alphabet.
- To encode n symbols by a solid code the maximal code word length is in ⊖(log n).

Corollary

Let $\mathcal{M}=(Q,\Sigma,\delta,q_0,F,\flat)$ be a Turing machine. There is a simulation of \mathcal{M} by peptide computing with the following properties:

- Only a finite alphabet is required,
- **2** A step is simulated in $\Theta(\log s_{\mathcal{M}})$ steps.

- Rigorous notion of a computation step.
- Capabilities and limitations of this computing paradigm.
- Computability implies peptide computability. Converse?
- If converse true, under what conditions?

- Rigorous notion of a computation step.
- Capabilities and limitations of this computing paradigm.
- Computability implies peptide computability. Converse?
- If converse true, under what conditions?

- Rigorous notion of a computation step.
- Capabilities and limitations of this computing paradigm.
- Computability implies peptide computability. Converse?
- If converse true, under what conditions?

- Rigorous notion of a computation step.
- Capabilities and limitations of this computing paradigm.
- Computability implies peptide computability. Converse?
- If converse true, under what conditions?

- X is a finite alphabet;
- $E \subseteq X^+$ is a language;
- A is a countable alphabet with $A \cap X^* = \emptyset$ (to represent antibodies);
- $\alpha \subseteq E \times A$ is a relation;
- $\beta: E \times A \to \mathbb{R}_+$ is a mapping such that $\beta(e, a) > 0$ if and only if $(e, a) \in \alpha$.

- X is a finite alphabet;
- $E \subseteq X^+$ is a language;
- A is a countable alphabet with A ∩ X* = ∅ (to represent antibodies);
- $\alpha \subseteq E \times A$ is a relation;
- $\beta: E \times A \to \mathbb{R}_+$ is a mapping such that $\beta(e, a) > 0$ if and only if $(e, a) \in \alpha$.

- X is a finite alphabet;
- $E \subseteq X^+$ is a language;
- A is a countable alphabet with $A \cap X^* = \emptyset$ (to represent antibodies);
- $\alpha \subseteq E \times A$ is a relation;
- $\beta: E \times A \to \mathbb{R}_+$ is a mapping such that $\beta(e, a) > 0$ if and only if $(e, a) \in \alpha$.

- X is a finite alphabet;
- $E \subseteq X^+$ is a language;
- A is a countable alphabet with A ∩ X* = ∅ (to represent antibodies);
- $\alpha \subseteq E \times A$ is a relation;
- $\beta: E \times A \to \mathbb{R}_+$ is a mapping such that $\beta(e, a) > 0$ if and only if $(e, a) \in \alpha$.

- X is a finite alphabet;
- $E \subseteq X^+$ is a language;
- A is a countable alphabet with A ∩ X* = ∅ (to represent antibodies);
- $\alpha \subseteq E \times A$ is a relation;
- $\beta: E \times A \to \mathbb{R}_+$ is a mapping such that $\beta(e, a) > 0$ if and only if $(e, a) \in \alpha$.

What else do we need...

- A-attachment: partial mapping τ from decomposition of w ∈ X* with respect to E to A. z = w_τ.
- If affinity of a is more in z we say it dominates.
- Reaction between words and symbols if a dominates (i,j) in z then multiset R(z,a) is formed and $\tau \to \tau'$.
- Reaction between words if a in z' dominates some position in z.

- Reactions occur when instability occurs:
 - a dominates (i, j) in z.
 - a in z' dominates (i, j) in z.
- One basic reaction can trigger a sequence of reactions.

- Reactions occur when instability occurs:
 - a dominates (i,j) in z.
 - a in z' dominates (i, j) in z.
- One basic reaction can trigger a sequence of reactions.

- Reactions occur when instability occurs:
 - a dominates (i,j) in z.
 - a in z' dominates (i, j) in z.
- One basic reaction can trigger a sequence of reactions.

- Reactions occur when instability occurs:
 - a dominates (i,j) in z.
 - a in z' dominates (i, j) in z.
- One basic reaction can trigger a sequence of reactions.

- Peptide configuration is a finite multiset of words in $(X \cup \alpha)^+ \cup A$.
- Peptide configuration P is said to be *stable* if $R(P) = \{P\}$.
- Peptide instruction has the form +P or -P where P is a peptide configuration.
- Peptide program is the one which controls the instruction set and the halting function.
- Peptide computation is a sequence of transition of stable configurations from $c_0, c_1 \cdots c_i$ (with respect to the peptide program) where $\chi(c_i) = 1$ for the first time.
- A function f is peptide computable if we proper encoding and decoding together with a peptide program to carry out the computation.

- Peptide configuration is a finite multiset of words in $(X \cup \alpha)^+ \cup A$.
- Peptide configuration P is said to be *stable* if $R(P) = \{P\}$.
- Peptide instruction has the form +P or −P where P is a peptide configuration.
- *Peptide program* is the one which controls the instruction set and the halting function.
- Peptide computation is a sequence of transition of stable configurations from $c_0, c_1 \cdots c_i$ (with respect to the peptide program) where $\chi(c_i) = 1$ for the first time.
- A function f is peptide computable if we proper encoding and decoding together with a peptide program to carry out the computation.

- Peptide configuration is a finite multiset of words in $(X \cup \alpha)^+ \cup A$.
- Peptide configuration P is said to be *stable* if $R(P) = \{P\}$.
- Peptide instruction has the form +P or -P where P is a peptide configuration.
- *Peptide program* is the one which controls the instruction set and the halting function.
- Peptide computation is a sequence of transition of stable configurations from $c_0, c_1 \cdots c_i$ (with respect to the peptide program) where $\chi(c_i) = 1$ for the first time.
- A function f is peptide computable if we proper encoding and decoding together with a peptide program to carry out the computation.

- Peptide configuration is a finite multiset of words in $(X \cup \alpha)^+ \cup A$.
- Peptide configuration P is said to be *stable* if $R(P) = \{P\}$.
- Peptide instruction has the form +P or -P where P is a peptide configuration.
- Peptide program is the one which controls the instruction set and the halting function.
- Peptide computation is a sequence of transition of stable configurations from $c_0, c_1 \cdots c_i$ (with respect to the peptide program) where $\chi(c_i) = 1$ for the first time.
- A function f is peptide computable if we proper encoding and decoding together with a peptide program to carry out the computation.

- Peptide configuration is a finite multiset of words in $(X \cup \alpha)^+ \cup A$.
- Peptide configuration P is said to be *stable* if $R(P) = \{P\}$.
- Peptide instruction has the form +P or −P where P is a peptide configuration.
- Peptide program is the one which controls the instruction set and the halting function.
- Peptide computation is a sequence of transition of stable configurations from $c_0, c_1 \cdots c_i$ (with respect to the peptide program) where $\chi(c_i) = 1$ for the first time.
- A function f is peptide computable if we proper encoding and decoding together with a peptide program to carry ou the computation.

- Peptide configuration is a finite multiset of words in $(X \cup \alpha)^+ \cup A$.
- Peptide configuration P is said to be *stable* if $R(P) = \{P\}$.
- Peptide instruction has the form +P or -P where P is a peptide configuration.
- Peptide program is the one which controls the instruction set and the halting function.
- Peptide computation is a sequence of transition of stable configurations from $c_0, c_1 \cdots c_i$ (with respect to the peptide program) where $\chi(c_i) = 1$ for the first time.
- A function f is peptide computable if we proper encoding and decoding together with a peptide program to carry out the computation.

Converse of the simulation

Theorem

For every peptide computer $\mathcal{P} = (X, E, A, \alpha, \beta)$ with the following conditions:

- E and A are (at least) computably enumerable;
- **3** β and χ are computable;

and for every computably enumerable peptide program \mathfrak{P} for \mathcal{P} , there is a Turing machine simulating the peptide computations of \mathcal{P} according to \mathfrak{P} .

On our Results

- Ideal Assumptions:
 - 3 − D structure of peptides not considered.
 - There is no cross-reactions.
- Biochemical feasibility?

On our Results

- Ideal Assumptions:
 - 3 − D structure of peptides not considered.
 - There is no cross-reactions.
- Biochemical feasibility?

On our Results

- Ideal Assumptions:
 - 3 − D structure of peptides not considered.
 - There is no cross-reactions.
- Biochemical feasibility?

Future work

- Fault-tolerance to address cross-reaction.
- To study various kinds of non-determinism existing in the binding of symbols to words.

Future work

- Fault-tolerance to address cross-reaction.
- To study various kinds of non-determinism existing in the binding of symbols to words.

