Extremwertaufgabe

Gegeben ist eine Oberfläche mit den Maßen 40~cm und 25~cm. Eine nach oben offene Schachtel mit maximalem Volumen soll gefaltet werden. Das Schneiden der Oberfläche ist möglich.

Wir erkennen zunächst die Darstellung der Oberfläche:

Die Oberfläche wird entlang der roten Linie gefaltet. Die blauen Linien stellen Schnitte in der Oberfläche dar. Das graue bildet am Ende die Schachtel.

1. Hauptbedingung

Das Volumen soll maximiert werden, daher lautet unsere Hauptbedingung:

$$V(d) = d \cdot (40 - 2d) \cdot (25 - 2d), \quad d \in [0; 12, 5]$$

Da es hier eine Hauptfunktion mit einer Abhängigkeit ist, so ist diese Funktion zugleich die Zielfunktion.

$$V(d) = d \cdot (40 - 2d) \cdot (25 - 2d)$$

$$= d \cdot (1000 - 80d - 50d + 4d^{2})$$

$$= d \cdot (1000 - 130d + 4d^{2})$$

$$= 4d^{3} - 130d^{2} + 1000d$$

Extremstellen der Zielfunktion V(d)

Notwendiges Kriterium für lokale Extrema:
$$V'(d) = 0$$

$$0 = V'(d)$$

$$0 = 12d^2 - 260d + 1000$$

$$0 = d^2 - \frac{65}{3}d + \frac{250}{3}$$

$$d_{1;2} = -\frac{-\frac{65}{3}}{2} \pm \sqrt{\left(-\frac{65}{3}\right)^2 - \frac{250}{3}}$$

$$= \frac{65}{6} \pm \sqrt{\left(-\frac{65}{6}\right)^2 - \frac{250}{3}}$$

$$= \frac{65}{6} \pm \sqrt{\frac{1225}{36}}$$

$$d_{1;2} = \frac{65}{6} \pm \frac{35}{6}$$

$$d_1 = \frac{65}{6} - \frac{35}{6} = 5$$

$$d_2 = \frac{65}{6} + \frac{35}{6} = \frac{50}{3} > 12, 5$$

Da hier $d_2=rac{50}{3}$ größer als 12,5 ist, so wird diese Stelle nicht weiter untersucht. (Siehe Definitionsbereich)

Erstes hinreichendes Kriterium für lokale Extrema:
$$V''(d) \neq 0$$
 $V''(d) = 24d - 260$ $V''(5) = 24 \cdot 5 - 260$

= -140 < 0

Durch V''(5) < 0 ist $d_1 = 5$ eine Lösung. An dieser Stelle hat die Zielfunktion V(d) ein lokales Maximum mit dem Wert $V(5) = 2250\ cm^3$