	t0 (tau)	0.00E+00
	tf (tau)	9.00E-01
1	[npropyl]well_1=>OH+prod_1>[prod_1]	7.48E-01
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
2	>[frag_1]	7.48E-01
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
3	>[CO]	7.48E-01
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH >[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH	
20	>[CH ₃ O]	4.42E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂	
8	>[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	4.40E-02
10	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH >[CH ₂ O]CH ₃ OO+CH ₂ O=>CH ₃ OOH+HCO	
19	>[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	4.21E-02
C	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₃ OO+CH ₂ O=>CH ₃ OOH+HCO	4.245.00
6	>[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	4.21E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH >[CH ₂ O]CH ₃ CH ₂ OO+CH ₂ O=>CH ₃ CH ₂ OOH+HCO	
22	>[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]	4.19E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O	
11	>[CH ₂ O]CH ₃ CH ₂ OO+CH ₂ O=>CH ₃ CH ₂ OOH+HCO	/ 17F 02
тт	>[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]	4.17E-02

16	$eq:continuous_continuous$	2.68E-02
14		2.69E-02
15		2.69E-02
23	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH>[CH ₂ O]ipropyloo+CH ₂ O=>ipropylooh+HCO>[ipropylooh]ipropylooh=>ipropyloxy+OH>[ipropyloxy]	3.13E-02
12	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O >[CH ₂ O]ipropyloo+CH ₂ O=>ipropylooh+HCO >[ipropylooh]ipropylooh=>ipropyloxy+OH>[ipropyloxy]	3.15E-02
10	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+ipropyl>[npropylooh]npropylooh=>npropyloxy+OH>[npropyloxy]	3.56E-02
13	[npropyloon]npropyloon=>npropyloxy+OH*>[npropyloxy] [npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O >[CH ₂ O]npropyloo+CH ₂ O=>npropylooh+HCO >[npropylooh]npropylooh=>npropyloxy+OH>[npropyloxy]	3.71E-02 3.71E-02
24	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH>[CH ₂ O]npropyloo+CH ₂ O=>npropylooh+HCO>[npropylooh]npropylooh=>npropyloxy+OH>[npropyloxy]	3.71E-02

[ppropyllyroll 1->Olliprod 1 > [prod 1] prod 1 > froz 1 + Oll	
	2 405 02
	2.49E-02
_	
	2.48E-02
	2.08E-02
>[CH ₃]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH	
>[CH ₃ O]	1.90E-02
former allowell 1 x Ollymored 1 x formed 11 years 1 x Ollymored 1	
, 2 , 13 , 2 2	
_	
	1 005 00
	1.90E-02
>[allyloxy]	1.86E-02
[npropyl]npropyloo=> $HO_2+C_3H_6>[HO_2]C_3H_8+HO_2=>ipropyl+H_2O_2$	
>[npropyl]well_1=>OH+prod_1>[prod_1]	1.56E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH >[CH ₂ O]ipropyloo+CH ₂ O=>ipropylooh+HCO >[ipropylooh]ipropylooh=>ipropyloxy+OH >[ipropyloxy]ipropyloxy=>CH ₃ +acetaldehyde >[CH ₃]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH >[CH ₃ O] [npropyl]well_1=>HO ₂ +prod_2>[prod_2]prod_2=>allyloxy+OH >[allyloxy] [npropyl]npropyloo=>HO ₂ +C ₃ H ₆ >[HO ₂]C ₃ H ₈ +HO ₂ =>ipropyl+H ₂ O ₂ >[ipropyl]ipropyloo=>HO ₂ +C ₃ H ₆ >[HO ₂]C ₃ H ₈ +HO ₂ =>npropyl+H ₂ O ₂

		ı
52	$ [npropyl] npropyloo => HO_2 + C_3H_6> [HO_2]C_3H_8 + HO_2 => ipropyl + H_2O_2> [ipropyl] ipropyloo => HO_2 + C_3H_6> [HO_2]C_3H_8 + HO_2 => npropyl + H_2O_2> [npropyl] well_1 => OH+prod_1> [prod_1] prod_1 => frag_1 + OH> [frag_1] frag_1 => vinoxy + CH_2O> [vinoxy] vinoxy + O_2 => CH_2O + CO + OH> [CO] $	1.56E-02
51	[npropyl]npropyloo=> $HO_2+C_3H_6>[HO_2]C_3H_8+HO_2=>ipropyl+H_2O_2>[ipropyl]ipropyloo=>HO_2+C_3H_6>[HO_2]C_3H_8+HO_2=>npropyl+H_2O_2>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]$	1.565.03
21	\[\[\langle \text{II.qg} \]	1.56E-02
30	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]npropyloo+HO ₂ =>npropylooh+O ₂ >[npropylooh]npropylooh=>npropyloxy+OH>[npropyloxy]	1.44E-02
37	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]npropyloo+HO ₂ =>npropylooh+O ₂ >[npropylooh]npropylooh=>npropyloxy+OH>[npropyloxy]	1 445 02
57	>[iibi obalogii]iibi obalogii = >iibi obaloxa + OH>[iibi obaloxa]	1.44E-02
	$\label{eq:continuous_prop_loss} $$ [npropyl] well_1=>OH+prod_1>[prod_1] prod_1=>frag_1+OH>[frag_1] frag_1=>vinoxy+CH_2O>[vinoxy] vinoxy+O_2=>CH_2O+CO+OH>[CH_2O]CH_2O+OH=>HCO+H_2O>[HCO]HCO+O_2=>CO+HO_2>[HO_2]ipropyloo+HO_2=>ipropylooh+O_2$	
33	>[ipropylooh]ipropylooh=>ipropyloxy+OH>[ipropyloxy]	1.31E-02
26	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]ipropyloo+HO ₂ =>ipropylooh+O ₂ >[ipropylooh->ipropyloo	1 245 02
26	>[ipropylooh]ipropylooh=>ipropyloxy+OH>[ipropyloxy]	1.31E-02

31	$\label{eq:control_loss} $$ [npropyl] well_1=>OH+prod_1>[prod_1] prod_1=>frag_1+OH>[frag_1] frag_1=>vinoxy+CH_2O>[CH_2O]CH_2O+OH=>HCO+H_2O>[HCO]HCO+O_2=>CO+HO_2>[HO_2]CH_3CH_2OO+HO_2=>CH_3CH_2OOH+O_2>[CH_3CH_2OOH]CH_3CH_2OOH=>ethoxy+OH>[ethoxy]$	1.22E-02
	<pre>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH</pre>	
	$>[frag_1]frag_1=>vinoxy+CH_2O>[vinoxy]vinoxy+O_2=>CH_2O+CO+OH$	
	>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O>[HCO]HCO+O ₂ =>CO+HO ₂	
	>[HO ₂]CH ₃ CH ₂ OO+HO ₂ =>CH ₃ CH ₂ OOH+O ₂	
39	>[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]	1.22E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
	$>[CH_2O]CH_2O+HO_2=>HCO+H_2O_2>[HCO]HCO+O_2=>CO+HO_2$	
	>[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH	
63	>[CH ₃ O]	1.18E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	$>[frag_1]frag_1 = vinoxy + CH_2O>[CH_2O]CH_2O + HO_2 = > HCO + H_2O_2$	
	>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂	
36	>[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	1.18E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
40	$>[HCO]HCO+O_2=>CO+HO_2>[HO_2]HO_2+HO_2=>H_2O_2+O_2$ $>[H_2O_2]H_2O_2(+M)=>OH+OH(+M)>[OH]$	1 025 02
70		1.02E-02
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
	>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O>[HCO]HCO+O ₂ =>CO+HO ₂	
81	>[HO ₂]HO ₂ +HO ₂ =>H ₂ O ₂ +O ₂ >[H ₂ O ₂]H ₂ O ₂ (+M)=>OH+OH(+M)>[OH]	1.01E-02
	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+ipropyl	
	>[npropylooh]npropylooh=>npropyloxy+OH	
	>[npropyloxy]npropyloxy=>C ₂ H ₅ +CH ₂ O	
71	>[C ₂ H ₅]CH ₃ CH ₂ OO+C ₃ H ₈ =>CH ₃ CH ₂ OOH+ipropyl >[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]	9.54E-03
4	[npropyl]npropyloo=>OH+propoxide>[propoxide]	8.97E-03
-	Let 1 Manufaction of the phonone	0.576 03

	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O	
	>[CH ₂ O]npropyloo+CH ₂ O=>npropylooh+HCO	
	>[npropylooh]npropylooh=>npropyloxy+OH	
	>[npropyloxy]npropyloxy=>C ₂ H ₅ +CH ₂ O	
ГЭ	>[C ₂ H ₅]CH ₃ CH ₂ OO+HO ₂ =>CH ₃ CH ₂ OOH+O ₂	
53	>[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]	8.56E-03
	<pre>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH</pre>	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
	>[CH ₂ O]npropyloo+CH ₂ O=>npropylooh+HCO	
	>[npropylooh]npropylooh=>npropyloxy+OH	
	>[npropyloxy]npropyloxy=>C ₂ H ₅ +CH ₂ O	
	>[C ₂ H ₅]CH ₃ CH ₂ OO+HO ₂ =>CH ₃ CH ₂ OOH+O ₂	
92	>[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]	8.54E-03
	[npropyl]npropyloo=> $HO_2+C_3H_6>[HO_2]C_3H_8+HO_2=>ipropyl+H_2O_2$	
54	>[H ₂ O ₂]H ₂ O ₂ (+M)=>OH+OH(+M)>[OH]	8.25E-03
	<pre>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH</pre>	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
	>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O>[HCO]HCO+O ₂ =>CO+HO ₂	
	>[HO ₂]ipropyloo+HO ₂ =>ipropylooh+O ₂	
	>[ipropylooh]ipropylooh=>ipropyloxy+OH	
	>[ipropyloxy]ipropyloxy=>CH ₃ +acetaldehyde	
	>[CH ₃]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH	
96	>[CH ₃ O]	7.99E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O	
	>[CH ₂ O]CH ₃ CH ₂ OO+CH ₂ O=>CH ₃ CH ₂ OOH+HCO	
	>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂	
60	>[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	7.96E-03

		1
56	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]ipropyloo+HO ₂ =>ipropylooh+O ₂ >[ipropylooh]ipropylooh=>ipropyloxy+OH >[ipropyloxy]ipropyloxy=>CH ₃ +acetaldehyde >[CH ₃]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH >[CH ₃ O]	7.96E-03
98	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH >[CH ₂ O]CH ₃ CH ₂ OO+CH ₂ O=>CH ₃ CH ₂ OOH+HCO >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	7.90E-03
89	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH >[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ CH ₂ OO+HO ₂ =>CH ₃ CH ₂ OOH+O ₂ >[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]ethoxy=>CH ₃ +CH ₂ O>[CH ₃]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	7.32E-03
49	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ CH ₂ OO+HO ₂ =>CH ₃ CH ₂ OOH+O ₂ >[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]ethoxy=>CH ₃ +CH ₂ O>[CH ₃]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	7.29E-03
61	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₃ OO+CH ₂ O=>CH ₃ OOH+HCO >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	7.02E-03
65	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+HO ₂ =>HCO+H ₂ O ₂ >[H ₂ O ₂]H ₂ O ₂ (+M)=>OH+OH(+M)>[OH]	6.71E-03

	[npropyl]npropyloo=>QOOH_2>[QOOH_2]QOOH_2=>OH+propoxide	
5	>[propoxide]	6.29E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O	
	>[CH ₂ O]npropyloo+CH ₂ O=>npropylooh+HCO	
	>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂	
66	>[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	6.16E-03
	[npropyl]O ₂ +QOOH_1=>OH+OH+frag_1	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
18	>[CO]	5.79E-03
17	[npropyl]O ₂ +QOOH_1=>OH+OH+frag_1>[frag_1]	5.79E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O	
	>[CH ₂ O]ipropyloo+CH ₂ O=>ipropylooh+HCO>[HCO]HCO+O ₂ =>CO+HO ₂	
	>[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH	
77	>[CH ₃ O]	5.72E-03
	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+npropyl	
	>[npropylooh]npropylooh=>npropyloxy+OH	
	>[npropyloxy]npropyloxy=>C ₂ H ₅ +CH ₂ O	
	>[C ₂ H ₅]CH ₃ CH ₂ OO+C ₃ H ₈ =>CH ₃ CH ₂ OOH+ipropyl	
64	>[CH ₃ CH ₂ OOH]CH ₃ CH ₂ OOH=>ethoxy+OH>[ethoxy]	5.58E-03
	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+ipropyl	
	>[ipropyl]ipropyloo=>HO ₂ +C ₃ H ₆ >[HO ₂]C ₃ H ₈ +HO ₂ =>npropyl+H ₂ O ₂	
72	>[npropyl]well_1=>OH+prod_1>[prod_1]	5.27E-03
	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+ipropyl	
	>[ipropyl]ipropyloo=>HO ₂ +C ₃ H ₆ >[HO ₂]C ₃ H ₈ +HO ₂ =>npropyl+H ₂ O ₂	
	>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
73	>[frag_1]	5.27E-03
	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+ipropyl	
	>[ipropyl]ipropyloo=>HO2+C3H6>[HO2]C3H8+HO2=>npropyl+H2O2	
	>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
74	>[CO]	5.27E-03

21	>[propen1ol]	2.99E-03
	[npropyl]npropyloo=>HO ₂ +C ₃ H ₆ >[C ₃ H ₆]C ₃ H ₆ +HO ₂ =>propen1ol+OH	
100	>[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]CH ₃ O+O ₂ =>CH ₂ O+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]	3.23E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₃ OO+CH ₂ O=>CH ₃ OOH+HCO	
97	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+HO ₂ =>HCO+H ₂ O ₂ >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]ipropyloo+HO ₂ =>ipropylooh+O ₂ >[ipropylooh]ipropylooh=>ipropyloxy+OH>[ipropyloxy]	3.23E-03
29		3.44E-03
57	>[npropyl]well_1=>OH+prod_1>[prod_1]	3.56E-03
30	$[npropyl]well_1=>HO_2+prod_2>[HO_2]C_3H_8+HO_2=>npropyl+H_2O_2$	3.30E-03
58	[npropyl]well_1=>HO ₂ +prod_2>[HO ₂]C ₃ H ₈ +HO ₂ =>npropyl+H ₂ O ₂ >[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]	3.56E-03
59	[npropyl]well_1=>HO ₂ +prod_2>[HO ₂]C ₃ H ₈ +HO ₂ =>npropyl+H ₂ O ₂ >[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH>[CO]	3.56E-03
93	>[ipropyl]ipropyloo+C ₃ H ₈ =>ipropylooh+ipropyl >[ipropylooh]ipropylooh=>ipropyloxy+OH>[ipropyloxy] [npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH >[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O >[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH>[CH ₃ O]CH ₃ O+O ₂ =>CH ₂ O+HO ₂ >[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH >[CH ₃ O]	4.45E-03 3.65E-03

	[npropyl]O2+npropyl=>HO2+C3H6>[HO2]C3H8+HO2=>npropyl+H2O2	
	>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
86	>[CO]	2.09E-03
	[npropyl]O2+npropyl=>HO2+C3H6>[HO2]C3H8+HO2=>npropyl+H2O2	
84	>[npropyl]well_1=>OH+prod_1>[prod_1]	2.09E-03
	[[[p. 6 p. y. j. v. 6 v. v. p. 6 d]	2.032 03
	[npropyl]O2+npropyl=>HO2+C3H6>[HO2]C3H8+HO2=>npropyl+H2O2	
	>[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
85	>[frag_1]	2.08E-03
	[npropyl]well_1=>HO ₂ +prod_2>[prod_2]prod_2=>allyloxy+OH	
	>[allyloxy]allyloxy=>acrolein+H	
	>[acrolein]acrolein+HO ₂ =>CH ₂ CHCO+H ₂ O ₂ >[CH ₂ CHCO]CH ₂ CHCO+O ₂ =>vinoxy+CO ₂	
83	>[vinoxy]vinoxy+O2=>CH2O+CO+OH>[CO]	2.06E-03
		2.00L-03
	[npropyl]npropyloo=>HO2+C3H6>[C3H6]C3H6+HO2=>allyl+H2O2	
55	>[allyl]allyl+HO ₂ =>prod_2>[prod_2]prod_2=>allyloxy+OH>[allyloxy]	1.92E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
	>[HCO]HCO+O ₂ =>formylperoxy	
	>[formylperoxy]formylperoxy=>HCO+O ₂ >[HCO]HCO+O ₂ =>CO+HO ₂	
99	>[HO ₂]CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂ >[CH ₃ OOH]CH ₃ OOH=>CH ₃ O+OH	4 005 00
33	>[CH ₃ O]	1.80E-03
	[npropyl]npropyloo=> $HO_2+C_3H_6>[HO_2]C_3H_8+HO_2=>ipropyl+H_2O_2$	
69	>[propen1ol]	1.75E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
34	>[CO]CO+HO ₂ =>CO ₂ +OH>[CO ₂]	1.73E-03
20	[npropyl]npropyloo=> $HO_2+C_3H_6>[C_3H_6]HO_2+C_3H_6=>OH+propoxide$	
28	>[propoxide]	1.57E-03

	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+ipropyl	
	>[ipropyl]ipropyloo+C ₃ H ₈ =>ipropylooh+ipropyl	
67	>[ipropylooh]ipropylooh=>ipropyloxy+OH>[ipropyloxy]	1.50E-03
	[npropyl]O ₂ +QOOH_1=>HO ₂ +prod_2>[prod_2]prod_2=>allyloxy+OH	
62	>[allyloxy]	1.44E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
	>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]allyl+HO ₂ =>prod_2	
76	>[prod_2]prod_2=>allyloxy+OH>[allyloxy]	1.43E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O	
	>[CH ₂ O]CH ₂ O+acetylperoxy=>HCO+CH ₃ CO ₃ H	
70	>[CH ₃ CO ₃ H]CH ₃ CO ₃ H=>acetyloxy+OH>[acetyloxy]	1.35E-03
	[npropyl]npropyloo=>HO2+C3H6>[C3H6]C3H6+OH=>allyl+H2O	
46	>[allyl]allyl+HO ₂ =>allyloxy+OH>[allyloxy]	1.23E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[vinoxy]vinoxy+O ₂ =>CH ₂ O+CO+OH	
	>[CH ₂ O]CH ₂ O+formylperoxy=>HCO+formylooh	
80	>[formylooh]formylooh=>formyloxy+OH>[formyloxy]	1.20E-03
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O	
	>[CH ₂ O]CH ₂ O+formylperoxy=>HCO+formylooh	
41	>[formylooh]formylooh=>formyloxy+OH>[formyloxy]	1.20E-03
25	[npropyl]O ₂ +npropyl=>OH+propoxide>[propoxide]	1.01E-03
	[npropyl]npropyloo=> $HO_2+C_3H_6>[HO_2]C_3H_8+HO_2=>ipropyl+H_2O_2$	
88	>[H ₂ O ₂]H ₂ O ₂ +H=>H ₂ O+OH>[H ₂ O]	9.98E-04
	[npropyl]well_1=>OH+prod_3>[prod_3]prod_3=>frag_3+OH	
43	>[frag_3]	9.71E-04
42	[npropyl]well_1=>OH+prod_3>[prod_3]	9.70E-04
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
	>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]HO ₂ +HO ₂ =>H ₂ O ₂ +O ₂	
94	>[H ₂ O ₂]H ₂ O ₂ +H=>H ₂ O+OH>[H ₂ O]	9.30E-04

	[npropyl]npropyloo=> $HO_2+C_3H_6>[HO_2]C_3H_8+HO_2=>ipropyl+H_2O_2$	
	>[ipropyl]ipropyloo=>HO2+C3H6>[C3H6]HO2+C3H6=>OH+propoxide	
95	>[propoxide]	9.15E-04
	[npropyl]well_1=>OH+prod_3>[prod_3]prod_3=>frag_3+OH	
	>[frag_3]frag_3+OH=>prod_3>[prod_3]prod_3=>frag_3+OH	
44	>[frag_3]	8.21E-04
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
	>[HCO]HCO+O ₂ =>CO+HO ₂ >[HO ₂]C ₃ H ₆ +HO ₂ =>propen1ol+OH	
78	>[propen1ol]	7.43E-04
	[npropyl]npropyloo=> $HO_2+C_3H_6>[C_3H_6]HO_2+C_3H_6=>QOOH_2$	
38	>[QOOH_2]QOOH_2=>OH+propoxide>[propoxide]	7.06E-04
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
	>[HCO]HCO+O ₂ =>formylperoxy	
	>[formylperoxy]CH ₂ O+formylperoxy=>HCO+formylooh	
79	>[formylooh]formylooh=>formyloxy+OH>[formyloxy]	5.90E-04
	[npropyl]npropyloo+C ₃ H ₈ =>npropylooh+ipropyl	
	>[ipropyl]ipropyloo= $>$ HO ₂ +C ₃ H ₆ >[C ₃ H ₆]C ₃ H ₆ +HO ₂ = $>$ propen1ol+OH	
91	>[propen1ol]	5.86E-04
	[npropyl]well_1=>OH+prod_3>[prod_3]prod_3=>frag_3+OH	
	>[frag_3]frag_3+OH=>prod_3>[prod_3]prod_3=>frag_3+OH	
	>[frag_3]frag_3+OH=>prod_3>[prod_3]prod_3=>frag_3+OH	
48	>[frag_3]	5.34E-04
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
87	>[HCO]HCO+O ₂ =>CO+HO ₂ >[CO]CO+HO ₂ =>CO ₂ +OH>[CO ₂]	5.03E-04
	[npropyl]well_1=>OH+prod_1>[prod_1]prod_1=>frag_1+OH	
	>[frag_1]frag_1=>vinoxy+CH ₂ O>[CH ₂ O]CH ₂ O+OH=>HCO+H ₂ O	
	>[HCO]HCO+O ₂ =>formylperoxy	
	>[formylperoxy]C ₃ H ₈ +formylperoxy=>ipropyl+formylooh	
90	>[formylooh]formylooh=>formyloxy+OH>[formyloxy]	4.84E-04
	[npropyl]well_1=>OH+prod_3>[prod_3]prod_3=>frag_3+OH	
	>[frag_3]frag_3+OH=>prod_3>[prod_3]prod_3=>frag_3+OH	
	>[frag_3]frag_3+OH=>prod_3>[prod_3]prod_3=>frag_3+OH	
75	>[frag_3]frag_3+OH=>prod_3>[prod_3]prod_3=>frag_3+OH	
75	>[frag_3]	2.64E-04

	[npropyl]npropyloo=>QOOH_2>[QOOH_2]well_2=>well_3	
68	>[well_3]QOOH_3=>OH+propoxide>[propoxide]	1.83E-04
	[npropyl]O ₂ +npropyl=>QOOH_2>[QOOH_2]QOOH_2=>OH+propoxide	
82	>[propoxide]	1.45E-04