Introduction au signal et bruit Exercices

Gabriel Dauphin

August 28, 2025

Contents

1	Relations entrées-sorties sans effet mémoire	2
2	Signaux temps continu, fonction affine par morceaux	4
3	Utilisation de la transformée de Fourier	6
4	Diracs	7
5	Transformées de Fourier, dérivation et équations différentielles	8
6	Filtres et effet mémoire	10
7	Description fréquentielle des filtres	11
8	Signaux périodiques	12
9	Filtres agissant sur des signaux périodiques	13
10	Échantillonnage	14
11	Peigne de Diracs	15
12	Modélisation stochastique du bruit	16
13	Résumé du cours 13.1 Exercices	1 7 17

Relations entrées-sorties sans effet mémoire

Exercice 1 Le graphique représente la relation entrée-sortie d'un Relu pour Rectified Linear Unit.

- 1. En utilisant la figure 1.1, combien valent les signaux en sortie lorsque respectivement, les signaux en entrées valent -3 et 3 ?
- 2. Combien valent les puissances de ces signaux?
- 3. Proposez une formule utilisant la valeur absolue, l'addition et la multiplication pour modéliser cette relation?
- 4. On considère le filtre $\mathcal{H}_1(x) = 0.5x$ et $\mathcal{H}_2(x) = |x|$, montrez comment en les associant on peut fabriquer le filtre Relu.
- 5. Écrire le pseudo-code permettant de générer la figure 1.1.

Simulation de la figure 1.1.

```
x=linspace(-4,4,1e2);
y=zeros(size(x));
y(x<=0)=0;
y(x>0)=x(x>0);
figure(1); plot(x,y); figure_jolie(1);
xlabel('x'); ylabel('y'); axis('equal');
saveas(1,'./figures/fig_exSEB6a.png');
```


Figure 1.2

Exercice 2 Les filtres \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 sont définis par

$$\mathcal{H}_1(x) = |x| \quad \mathcal{H}_2(x) = \min(1, x) \quad \mathcal{H}_3(x) = \max(0, x)$$
 (1.1)

On appelle $\mathcal H$ le filtre décrit par la figure 1.2 et associé à la relation transformant x en y.

- ${\it 1. \ Calculez \ les \ sorties \ y \ associ\'es \ aux \ valeurs \ -2, -1, 0, 1, 2 \ pour \ x.}$
- 2. Écrivez la formule modélisant \mathcal{H} ?
- 3. Dessinez la relation transformant x en y sur un graphe.

Signaux temps continu, fonction affine par morceaux

Figure 2.1: Visualisation de x(t) qui a la forme d'une maison avec son lampadaire

Exercice 3 On considère le signal x(t) décrit par la figure 2.1.

- 1. Calculez les valeurs de x(t) pour les valeurs de t-2.5, 0.5, 1, 2.5.
- 2. Écrivez une formule décrivant x(t) au moyen de différents intervalles de temps.
- 3. Utilisez quelques unes des fonctions de base présentées en cours pour définir x(t).
- 4. Utilisez le crochet d'Iverson pour décrire x(t).

Simulation de la figure 2.1

```
t=linspace(-3,3,500);
x=2*fonction_porte((t-1)/2)+fonction_T(t-1)+4*fonction_porte((t+2.5)*4);
figure(1); plot(t,x); figure_jolie(1);
xlabel('t'); ylabel('x(t)');
saveas(1,'./figures/fig_exSEB8a.png');
```

Exercice 4 On considère le signal x(t) ainsi défini

$$x(t) = (at + b) [t_1 \le t \le t_2]$$
(2.1)

1. Représentez ce signal pour a = 1, b = 0 et $t_1 = 2$, $t_2 = 3$.

- 2. Représentez ce signal pour $a=-1,\;b=1$ et $t_1=0,\;t_2=1.$
- 3. Montrez que pour a=0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) \tag{2.2}$$

4. Montrez que pour a > 0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) + \beta \mathbb{C}(\gamma t + \delta)$$
(2.3)

5. Donnez un pseudo-code permettant de visualiser de signal.

Utilisation de la transformée de Fourier

Diracs

Exercice 5 On considère le signal $x(t) = \Pi(t) = [-0.5 \le t \le 0.5](t)$.

- 1. Calculez sa dérivée $y(t)\frac{d}{dt}x(t)$.
- 2. Calculez $z(t) = \int_{-\infty}^{t} x(\tau) d\tau$.
- 3. Calculez la transformée de Fourier de y(t) notée $\widehat{Y}(f)$ et en déduire celle de x(t) notée $\widehat{X}(f)$.
- 4. Représentez les signaux x(t), y(t), z(t).

Solution

1.
$$y(t) = \delta(t + 0.5) - \delta(t - 0.5)$$

2.
$$z(t) = (t + 0.5)[-0.5 \le t < 0.5](t) + [0.5 \le t](t) = \mathbb{C}(t) + \mathbb{H}(t - 0.5)$$

3.

$$\widehat{Y}(f) = \text{TF} \left[\delta(t+0.5) \right](f) - \text{TF} \left[\delta(t-0.5) \right](f) = e^{j\pi f} - e^{-j\pi f} = 2j\sin(\pi f)$$
(4.1)

Par conséquent,

$$\widehat{X}(f) = \frac{1}{j2\pi f}\widehat{Y}(f) = \frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(f)$$
(4.2)

Transformées de Fourier, dérivation et équations différentielles

Figure 5.1: Visualisation de l'entrée x(t) et de la sortie y(t) illustrant l'exercice 6.

Exercice 6 On considère un filtre défini par l'équation différentielle

$$LC\frac{d^2}{dt^2}y(t) + RC\frac{d}{dt}y(t) + y(t) = RC\frac{d}{dt}x(t)$$
(5.1)

avec R = 3, C = 0.5, L = 1. On considère un signal en entrée défini par $x(t) = \mathbb{T}(t)$ et on cherche à simuler le signal de sortie y(t) associé à ce filtre décrit par l'équation (5.1).

1. Montrez que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{5.2}$$

2. On appelle $\tilde{y}(t)$ la solution de cette deuxième équation différentielle

$$LC\frac{d^2}{dt^2}\tilde{y}(t) + RC\frac{d}{dt}\tilde{y}(t) + \tilde{y}(t) = \delta(t)$$
(5.3)

Exprimez y(t) en fonction de $\tilde{y}(t)$.

3. En utilisant les fonctions sol_eq_diff, deriver, integrer et retarder de seb, donnez un pseudo-programme permettant de simuler y(t).

Solution:

1. On remarque que la fonction triangle dérivée une fois est une fonction porte avancée et une fonction porte retardée, (la porte étant définie $\Pi(t) = [\![t]\!] \le 0.5]\!]$).

$$\frac{d}{dt}\mathbb{T}(t) = \Pi(t+0.5) - \Pi(t-0.5) \tag{5.4}$$

Dérivée deux fois, ce sont trois, l'un avancé, le deuxième au milieu et un retardé.

$$\frac{d^2}{dt^2}\mathbb{T}(t) = \delta(t-1) - 2\delta(t) + \delta(t+1) \tag{5.5}$$

En intégrant cette expression, on trouve alors que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{5.6}$$

2.

$$y(t) = RC \int_{-\infty}^{t} \left[\tilde{y}(\tau - 1) - 2\tilde{y}(\tau) + \tilde{y}(\tau + 1) \right] d\tau$$

$$(5.7)$$

3. Le pseudo-code est donne par

Algorithm 1 générant la figure 5.1.

Rentrer les valeurs de R,L,C

Créer une échelle de temps t entre -2 et 4 avec 1000 points

Calculer $\tilde{y}(t)$ en utilisant sol eq diff avec les coefficients LC,RC et 1 et l'échelle de temps t.

Utiliser retarder pour calculer $\tilde{y}_2(t) = \tilde{y}(t+1) - 2\tilde{y}(t) + \tilde{y}(t-1)$

Utiliser integrer pour calculer $y(t) = RC \int_{-\infty}^t \tilde{y}_2(\tau) \, d\tau$

```
def y(R,L,C,t):
  """réponse à une fonction triangle utilisant une equation différentielle"""
  import seb
  y_tilde=seb.sol_eq_diff((L*C,R*C,1),t)
  assert all(y_tilde[t<0]==0)
  y_tilde2=R*C*(seb.retarder(t,y_tilde,-1)-2*y_tilde+seb.retarder(t,y_tilde,1))
  y=seb.integrer(t,y_tilde2)
  return y
R,C,L = 3,0.5,1
t=np.linspace(-2,4,10**3)
fig,ax = plt.subplots()
ax.plot(t,seb.fonction_T(t),label='x(t)')
ax.plot(t,y(R,L,C,t),label='y')
ax.set_xlabel('t')
ax.legend()
plt.tight layout()
fig.savefig('./figures/fig_exSeb11_fig1.png')
fig.show()
```

Filtres et effet mémoire

Description fréquentielle des filtres

Signaux périodiques

Filtres agissant sur des signaux périodiques

Échantillonnage

Peigne de Diracs

Modélisation stochastique du bruit

Résumé du cours

13.1 Exercices

Exercice 7 Le signal montré sur la figure 13.1 est noté x(t). Sa transformée de Fourier est notée \hat{X} .

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Donnez une expression de x(t) sous la forme de sa description sur plusieurs intervalles.
- 3. Donnez une expression de x(t) en fonction de 1().
- 4. Calculez x(0), x(1), E_x .
- 5. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 6. Construire $y_1(t) = x(\frac{t}{2})$
- 7. Construire $y_1(t) = x(t-1)$
- 8. Construire $y_1(t) = \frac{1}{2}x(t)$
- 9. Construire $y_1(t) = x(t) x(t-2)$

Simulation générant la figure 13.1 de l'exercice 7

```
t=linspace(-1,5,1e3);
x=3/2*t.*(t>=0).*(t<=2)+(4-t)*3/2.*(t>2).*(t<=4);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB1_fig1.png');
Solutions</pre>
```

1.

Exercice 8 Le signal montré sur la figure 13.2 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = ae^{-bt}\mathbf{1}(t \ge 0)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Justifiez la valeur de a avec la courbe exponentielle sur la figure 13.2.
- 3. Justifiez la valeur de b avec la lique tangente à la courbe exponentielle sur la figure 13.2.
- 4. Donnez une expression de x(t) en fonction de 1().
- 5. Calculez $x(0), x(1), E_x$.

Figure 13.1: Graphe de x(t) relatif à l'exercice 7.

Figure 13.2: Graphe de x(t) et de sa tangente pour l'exercice 8.

```
6. Calculez \widehat{X}(0) et \widehat{X}(1).
```

- 7. Construire $y_1(t) = x(\frac{t}{2})$
- 8. Construire $y_1(t) = x(t-1)$
- 9. Construire $y_1(t) = \frac{1}{2}x(t)$
- 10. Construire $y_1(t) = x(t) x(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*exp(-t).*(t>=0);
t_tg=t((t>=0)&(t<=1));
x_tg=2-2*t_tg;
figure(1);
plot(t,x,'b-','linewidth',2,t_tg,x_tg,'r:','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB2_fig1.png');</pre>
```

Solutions

1.

Exercice 9 Le signal étudié ici est $x(t) = t\mathbf{1}(t \in [0,1[) + (2-t)\mathbf{1}(t \in [1,2[)$ On considère y(t) obtenu en périodisant le signal x(t) pour $t \in [0,3]$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. y(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 3. Dessiner x(t) pour $t \in [-1, 5]$ sur un graphe.
- 4. Dessiner y(t) pour $t \in [-1, 5]$ sur le même graphe.
- 5. Calculez x(0), x(-2), E_x et P_x .
- 6. Calculez y(0), y(-2), E_y et P_y .
- 7. Calculez \hat{X}_0 et \hat{Y}_0 .
- 8. Calculez \widehat{X}_0 et \widehat{Y}_0 .
- 9. Dessiner sur le graphe $y_1(t) = y(\frac{t}{2})$
- 10. Dessiner sur le graphe $y_2(t) = y(t-1)$
- 11. Dessiner sur le graphe $y_3(t) = \frac{1}{2}y(t)$
- 12. Dessiner sur le graphe $y_4(t) = y(t) y(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*cos(pi*t+0.5*pi);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB3_fig1.png');
```

Solutions

Figure 13.3: Graphe de x(t) relatif à l'exercice 10.

1.

Exercice 10 Le signal montré sur la figure 13.3 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = a\cos(bt + c)$.

- $1. \ x(t) \ est$ -il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Justifiez la valeur de a en observant la valeur maximale et minimale sur la figure 13.3.
- 3. Justifiez la valeur de b en mesurant la période sur la figure 13.3.
- 4. Justifiez la valeur de c en interprétant cette courbe comme en retard (ou en avance) par rapport à $a\cos(bt)$ sur la figure 13.2.
- 5. Calculez x(0), x(1), P_x .
- 6. Calculez \hat{X}_0 et \hat{X}_1 .
- 7. Dessiner sur le graphe $y_1(t) = x(\frac{t}{2})$
- 8. Dessiner sur le graphe $y_1(t) = x(t-1)$
- 9. Dessiner sur le graphe $y_1(t) = \frac{1}{2}x(t)$
- 10. Dessiner sur le graphe $y_1(t) = x(t) x(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*cos(pi*t+pi/2);
figure(1);
plot(t,x,'b-','linewidth',2);
grid;
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB4_fig1.png');
```

Solutions

1.

- 2. a = 2
- 3. $b = \pi$
- 4. $c = \frac{\pi}{2}$.