

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA - II: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e G. Industrial)

Regente: Luís Consolo Chea

Assistentes: Marcelino Macome; Bartolomeu Ubisse; Belarmino Matsinhe; Graça Massimbe &

Valdemiro Sultane

1. Duas cargas positivas e iguais a \mathbf{Q} , estão separadas por uma distância d=2a. Uma carga de prova puntiforme, \mathbf{q} , é colocada num plano equidistante das duas primeiras, perpendiculamente ao segmento de recta que as une, conforme a fig.1. Calcule a distância \mathbf{R} entre \mathbf{q} e o ponto médio que separa as cargas \mathbf{Q} , de modo que a força no ponto resultante seja máxima.

Figura 1:

- 2. Três cargas iguais e de valor **Q** cada, encontram-se nos vértices de um triângulo equilâtero. Que carga **q**(sinal e valor) deverá ser colocada no centro do triângulo de modo a equilibrar as forças de repulsão mútuas?
- 3. Duas cargas q₁ e q₂ encontram-se sobre o eixo dos x, nas coordenadas x = -a e x = +a, respectivamente. (a) Qual deverá ser a razão entre q₁ e q₂ para que a força resultante sobre a carga +Q situada em + ^a/₂ seja nula? (b) Qual será a razão entre q₁ e q₂ para que força resultante sobre a carga +Q seja nula, se a carga +Q estiver situada em x = + ^{3a}/₂?

- 4. Uma certa carga Q deve ser dividida em duas: q e (Q-q). Qual deve ser a relação entre Q e q para que a força Coloumbiana de repulsão entre as duas partes seja máxima.
- 5. Uma carga *Q* é fixada em cada um dos dois cantos diagonalmente opostos de um quadrado de lado a. Uma carga q é colocada em cada um dos outros dois cantos. Se a resultante das forças eléctricas que actuam sobre *Q* for nula, qual a relação entre as cargas *Q* e *q*?
- 6. Duas pequenas esferas condutoras de mesma massa m e mesma carga q estão penduradas em fios não condutores de comprimento L (fig.2). Suponha que o ângulo θ é muito pequeno, tal que $tg\theta \approx sin\theta$. Mostre que a distância de equilíbrio entre as esferas é $x = \sqrt[3]{\frac{q^2L}{2\pi\epsilon_0 mg}}$

Figura 2:

- 7. Cargas puntiformes $q_1 = +6 \mu \text{C}$ e $q_2 = -4 \mu \text{C}$ são mantidas fixas sobre o eixo x, nos pontos x = 8m e x = 16m, respectivamente. Que carga deve ser colocada no ponto x = 24m para que a força electrostática total sobre uma carga colocada na origem seja nula?
- 8. Na fig.3, a partícula 1 de carga +4e, está uma distância $d_1 = 2,00mm$ do solo, e a partícula 2, de carga +6e está sobre o solo a uma distância horizontal $d_2 = 6,00mm$ da partícula 1. Qual é a componente x da força electrostática exercida pela partícula 1 sobre a partícula 2?

Figura 3:

9. Uma barra não condutora carregada, com comprimento de 2,0 m e uma secção de $400,00cm^2$, está sobre o semi-eixo x positivo com uma das extremidades na origem. Determine quantos electrões excessivos existem na barra se (a) a densidade volumétrica de carga ρ é uniforme e o seu valor é $-4,00\mu C/m^3$; (b) o valor de ρ é dado pela equação $\rho = bx^2$, onde $b = -2.00\mu C/m^5$.

- 10. Uma barra fina, de 12cm de comprimento, é carregada uniformemente com $\lambda = 10^{-7} C/m$. Em um ponto a 10cm de uma das extremidades da barra, está situada uma carga pontual de $0,01\mu C$. Calcule a força electrostática entre a barra e a carga.
- 11. Duas cargas pontuais ($q_1 = q_2$) estão separadas por uma distância 2l. Determine, no eixo de simetria, pontos para os quais o campo eléctrico é máximo.
- 12. Duas cargas pontuais $Q_1 = +2q$ e $Q_2 = -5q$, estão separadas por uma distância a = 1m. Determine a distância finita entre Q_1 e o ponto para o qual o campo eléctrico é zero.
- 13. Duas partículas carregadas estão separadas por uma distância d, conforme indica a fig.4. Determine o ponto ou pontos no eixo x, para os quais o campo eléctrico é máximo.

Figura 4:

- 14. Determine a distribuição do campo eléctrico originado por um disco plano de raio R, carregado uniformenente com densidade superficial de carga σ , ao longo do eixo que atravessa perpendicularmente o centro do disco.
- 15. Uma semi-esfera está carregada uniformemente com densidade σ . Determine o campo eléctrico no centro da semi-esfera.