Not a great week for me. Copied some problems from Albi.

Problem 6.6. Find the critical points of $f(x,y) = 3x^2y + 4xy^2 + xy$

Proof. We want f' = 0

$$\Delta f = (6xy + 4y^2 + y, 8xy + 3x^2 + x)$$

This becomes a system of linear equations

$$\begin{cases} +0 = 6xy + 4y^2 + y \\ +0 = 8xy + 3x^2 + x \end{cases}$$

Case 1: x=0

$$\implies 4y^2 + y = 0$$

$$\implies y(4y+1) = 0$$

$$\implies y = 0, \frac{-1}{4}$$

Case 2: y=0

$$\implies 3x^2 + x = 0$$

$$\implies x(3x+1) = 0$$

$$\implies x = 0, \frac{-1}{3}$$

Case 3: $y \neq 0$, $x \neq 0$

$$\begin{cases} +0 = y(6x + 4y + 1) \\ +0 = x(3x + 8y + 1) \end{cases} \implies \begin{cases} +0 = 6x + 4y + 1 \\ +0 = 3x + 8y + 1 \end{cases}$$

$$\implies -12y - 1 = 0$$

$$\implies y = \frac{-1}{12}$$

$$\implies x = \frac{-1}{9}$$

X	у	Name
0	0	A
0	-1/4	В
-1/3	0	С
-1/9	-1/12	D

Eigs of the hessian for A are mixed, so A is a saddle point. Eigs of the hessian for B are mixed, so B is a saddle point. Eigs of the hessian for C are mixed, so C is a saddle point. Eigs of the hessian for D are negative, so D is a local maximizer.

Problem 6.7. ¹

 $\sum_{i=1}^{n} a_{ji} x_i x_j = x^T A^T x.$ Therefore $x^T Q x = 2x^T A x$ and (6.17) is equivalent to

$$f(x) = x^T Q x / 2 - b^T x + c.$$

(ii)

The first order necessary conditions for a minimizer imply $Q^T x^* = b$, since $f'(x) = Q^T x - b$.

(iii)

If Q is positive definite, then f''(x) > 0 for any x. Also, Q is invertible and by (6.19) we have that $x^* = Q^{-1}b$ is such that $f'(x^*) = 0$. Then by the second order sufficient condition, x^* is the unique minimizer of f. Now assume x^* is the unique minimizer of f. Then by the second order necessary condition, Q is positive semi-definite. Also, x^* is a solution to $Q^Tx^* = b$. If Q has at least one zero eigenvalue, then x^* is not unique. Therefore Q must be positive definite.

Problem 6.11. $f(x) = ax^2 + bx + c$. Show that one iteration of newton's method will give you a unique solution.

Proof.

$$x_1 := x_0 - \frac{f'(x_0)}{f''(x_0)}$$
$$x_1 = x_0 - \frac{2ax_0 + b}{2a}$$

Problem 7.1. WTS: if $S \subset V, s \neq \emptyset$ then conv(S) is convex.

Proof. WTS:

$$\lambda x + (1 - \lambda)y \in conv(S)$$
$$\lambda a_1 x_1 + \ldots + \lambda a_k x_k + (1 - \lambda)b_1 y_1 + \ldots + (1 - \lambda)b_k y_k$$

As $0 \le \lambda \le 1$,

$$\lambda \sum a_i + (1 - \lambda) \sum b_i = \lambda + (1 - \lambda) = 1$$

¹Thank you to Jayhyung and Albi for much of these notes

Problem 7.2. (i)

Proof. Let $P = \{x \in V | \langle a, x \rangle = b\}$, a hyperplane in V. Then, pick arbitrary $x, y \in P$, satisfying $\langle a, x \rangle = b$ and $\langle a, y \rangle = b$. Then, for arbitrary scalar $\lambda \in [0, 1]$, the following is satisfied;

$$< a, \lambda x + (1 - \lambda)y > = \lambda < a, x > + (1 - \lambda) < a, y > = b$$

Thus, $\lambda x + (1 - \lambda)y \in P$. Q.E.D

 $(ii) \qquad \qquad \Box$

Proof. The argument is the same as above.

Problem 7.4. (i)

Proof.

$$||x - y||^2 = ||x - p + p - y||^2$$

$$= \langle x - p + p - y, x - p + p - y \rangle$$

$$= ||x - p||^2 + ||p - y||^2 + 2 \langle x - p, p - y \rangle$$

 \Box

Proof. By the assumption that $p \neq y$, $||p - y||^2 > 0$. If we have the assumption that $\langle x - p, p - y \rangle \geq 0$, using (i), the staement trivially holds. Q.E.D

(iii) Using (i),

$$||x - z||^2 = ||x - p||^2 + ||\lambda y - \lambda p||^2 + \langle x - p, \lambda p - \lambda y \rangle$$
$$= ||x - p||^2 + 2\lambda \langle x - p, p - y \rangle + \lambda^2 ||y - p||^2$$

(iv)

Using (7.15), and setting $\lambda = 1$, thus z = y. Then, using (7.15),

$$0 \le ||x - y||^2 - ||x - p||^2 = 2\lambda < x - p, p - y > +\lambda^2 ||y - p||^2$$

If you divide by λ , then $0 \le 2 < x-p, p-y > +\lambda \|y-p\|^2$ This holds for every $y \in C$, so $< x-p, p-y > \ge 0$

Problem 7.8.

$$g(\lambda x + (1 - \lambda)y = f(\lambda(Ax + b) + (1 - \lambda)(Ay + b))$$

$$\leq \lambda f(Ax + b) + (1 - \lambda)f(Ay + b)$$

$$= \lambda g(x) + (1 - \lambda)g(y)$$

Problem 7.12. (i)

Take $X, Y \in PD_n(\mathbb{R})$ and $\lambda \in [0, 1]$. Then for every $v \in \mathbb{R}^n$ we have that

$$v^{T}(\lambda X + (1 - \lambda)Y)v = \lambda(v^{T}Xv) + (1 - \lambda)(v^{T}Yv) > 0,$$

because X and Y are positive definite.

- (ii)
- (a) Take $t_1, t_2 \in \mathbb{R}$ and $\lambda \in [0, 1]$. On the one hand,

$$\lambda q(t_1) + (1 - \lambda)q(t_2) = \lambda f(t_1 A + (1 - t_1)B) + (1 - \lambda)f(t_2 A + (1 - t_2)B).$$

On the other.

$$g(\lambda t_1 + (1 - \lambda)t_2) = f((\lambda t_1 + (1 - \lambda)t_2)A + (1 - \lambda t_1 + (1 - \lambda)t_2)B)$$

= $f(\lambda(t_1A + (1 - t_1)B) + (1 - \lambda)(t_2A + (1 - t_2)B)).$

Since q is convex we get

$$f(\lambda X + (1 - \lambda)Y) \le \lambda f(X) + (1 - \lambda)f(Y),$$

with $X = t_1A + (1 - t_1)B$ and $Y = t_2A + (1 - t_2)B$. Since the choice of t was arbitrary and this holds for any $A, B \in PD_n(\mathbb{R})$, we conclude that f is convex.

(b) By Proposition (4.5.7), we know that if A is positive definite, then there exits a non-singular matrix S such that $A = S^H S$. Then, $tA + (1-t)B = S^H (tI + (1-t)(S^H)^{-1}BS^{-1})S$, and so

$$g(t) = -\log(\det(tA + (1-t)B)) = -\log(\det(S^H(tI + (1-t)(S^H)^{-1}BS^{-1})S)).$$

By the fact that det(AB) = det(A)det(B) and the properties of logarithms, we obtain

$$\begin{split} -\log(\det(S^H(tI+(1-t)(S^H)^{-1}BS^{-1})S)) &= -\log(\det(S^H)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})) - \log(\det(S^H)\det(S)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})) \\ &= -\log(\det(S^H)\det(S)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})) \\ &= -\log(\det(A)) - \log(\det(tI+(1-t)(S^H)^{-1}BS^{-1})). \end{split}$$

(c)

Since $A, B \in PD_n(\mathbb{R})$, then $B^{-1} \in PD_n(\mathbb{R})$ and $((S^H)^{-1}BS^{-1})^{-1} = SB^{-1}S^H$ is positive definite since

$$x^{H}SB^{-1}S^{H}x = (S^{H}x)^{H}B^{-1}(xS) > 0.$$

Therefore $(S^H)^{-1}BS^{-1}$ is positive definite. Now let $\{\lambda_i\}_i$ be the collection of eigenvalues of $((S^H)^{-1}BS^{-1})$ and $\{x_i\}_i$ the corresponding collection of eigenvectors. Then for every i:

$$(tI + (1-t)(S^H)^{-1}BS^{-1})x_i = tx_i + (1-t)\lambda_i x_i = (t+(1-t)\lambda_i)x_i.$$

Thus, $\{t + (1-t)\lambda_i\}_i$ are the eigenvalues of $(tI + (1-t)(S^H)^{-1}BS^{-1})$ corresponding to the $\{x_i\}_i$, and we can conclude that

$$-\log(\det(A)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})) = -\log(\det(A)) - \log(\prod_{i=1}^n (t + (1-t)\lambda_i))$$
$$= -\log(\det(A)) - \sum_{i=1}^n \log((t + (1-t)\lambda_i)).$$

(d)

By using the expression of g(t) in part (c) we can see that $g'(t) \sum_{i=1}^{n} (1 - \lambda_i)/(t + (1 - t)\lambda_i)$

and $g''(t) = \sum_{i=1}^{n} (1 - \lambda_i)^2 / (t + (1 - t)\lambda_i)^2$, which is clearly nonnegative for all $t \in [0, 1]$.

Problem 7.13. Suppose f(x) < M for all x for some real M and f is convex and not constant. Then, there exist $x, y \in \mathbb{R}^n$ such that $f(x) \neq f(y)$. But then the line between (x, f(x)) and (y, f(y)) intersects $f(\cdot) = M$. Since f must lie on or above this line, at some point it must cross $f(\cdot) = M$ as well, which is a contraddiction.

Problem 7.20. Take $x, y \in \mathbb{R}^n$, with $x \neq y$, and $\lambda \in [0, 1]$. Since f is convex we have $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$. Since -f is convex, the opposite hold. Therefore we must have $f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$. Therefore f is affine.

Problem 7.21. Let $x^* \in \mathbb{R}^n$ be a local minimizer of f. Then $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}_r(x^*)$, where $\mathcal{N}_r(x^*)$ is an open ball around x^* of radius r > 0. Since ϕ is monothonically increasing, $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in \mathcal{N}_r(x^*)$. Thus, x^* is a local minimizer of $\phi \circ f$. Now let x^* be a local minimizer of $\phi \circ f$. Then $\phi(f(x^*)) \leq \phi(f(x))$ for all $x \in \mathcal{N}_r(x^*)$, and since ϕ is monothonically increasing, this implies that $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}_r(x^*)$. Thus, x^* is a local minimizer of f.