

Last week

- OI Missing Value delete & impute
- O2 Data type change
- 03 Scaling
- **O4** Attribute research
- 05 Simple modeling

Data

- Ο▮ 재무회계표, 현금흐름표, 손익계산서로 이루어진 재무제표
 - 1. 여러 재무비율들의 항목들
 - 2. 다만 정확히 무슨 항목이 어떤 카테고리에 들어가는지는 파악할 수 없었음
 - 3. High correlated
 - 4. Selected Variables 파트에서 다시!

!! Dist'n, Multicollinearity

O| Dist'n : Skewed D RobustScaler

O2 Multicollinearity

- 1. [방법1] VIF & Corr 0.9 이상
- 2. [방법2] Item 별 Clustering 후 Corr 0.9 이상 변수 제거를 합집한 후 Corr 0.9 이상의 변수들 삭제.
- 3. Pre-processed 된 데이터에 총 42개의 변수

'Attr1', 'Attr2', 'Attr3', 'Attr4', 'Attr5', 'Attr6', 'Attr7', 'Attr8', 'Attr9', 'Attr10', 'Attr12', 'Attr13', 'Attr15', 'Attr19', 'Attr20', 'Attr21', 'Attr24', 'Attr25', 'Attr27', 'Attr28', 'Attr29', 'Attr30', 'Attr32', 'Attr33', 'Attr38', 'Attr39', 'Attr41', 'Attr42', 'Attr45', 'Attr47', 'Attr49', 'Attr51', 'Attr53', 'Attr55', 'Attr57', 'Attr58', 'Attr59', 'Attr61', 'Attr64'

!! Selected Variables

Ol Common items in Left Variables

재무상태표	손익계산서	현금흐름표
Total Assets Short-term liabilities Total Liabilities Equity Receivables Inventory Working capital Fixed Assets	Gross Profit Sales	Depriciation

Modeling plan

O| Base Model

- Full data
- With preprocessed Data

O2 grouping+PCA

이때 grouping 이란, 변수들을 특정 집단으로 묶는것

O3 grouping + PCA + consider correlation

Initial model

	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс
0	0.9626	0.8914	0.3478	0.8000	0.4848	0.4685	0.5128
1	0.9714	0.9300	0.4348	1.0000	0.6061	0.5936	0.6497
2	0.9692	0.8755	0.4348	0.9091	0.5882	0.5743	0.6168
3	0.9670	0.9270	0.5217	0.7500	0.6154	0.5987	0.6095
4	0.9736	0.9391	0.5417	0.9286	0.6842	0.6714	0.6981
5	0.9735	0.9223	0.6087	0.8235	0.7000	0.6865	0.6951
6	0.9757	0.9446	0.6087	0.8750	0.7179	0.7057	0.7184
7	0.9647	0.9088	0.3913	0.8182	0.5294	0.5134	0.5515
8	0.9713	0.9496	0.4783	0.9167	0.6286	0.6152	0.6506
9	0.9625	0.8595	0.3478	0.8000	0.4848	0.4685	0.5128
Mean	0.9691	0.9148	0.4716	0.8621	0.6040	0.5896	0.6215
SD	0.0045	0.0288	0.0921	0.0724	0.0797	0.0810	0.0714

Prediction of Unseen Data

0.5

Base model

	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс
0	0.9559	0.8717	0.3043	0.6364	0.4118	0.3918	0.4208
1	0.9714	0.9237	0.4348	1.0000	0.6061	0.5936	0.6497
2	0.9581	0.9192	0.3043	0.7000	0.4242	0.4060	0.4444
3	0.9758	0.8976	0.5217	1.0000	0.6857	0.6744	0.7133
4	0.9670	0.9140	0.4583	0.8462	0.5946	0.5790	0.6087
5	0.9735	0.9430	0.6522	0.7895	0.7143	0.7005	0.7040
6	0.9625	0.9270	0.5217	0.6667	0.5854	0.5660	0.5707
7	0.9669	0.9070	0.4348	0.8333	0.5714	0.5560	0.5880
8	0.9625	0.9182	0.3478	0.8000	0.4848	0.4685	0.5128
9	0.9558	0.8417	0.3043	0.6364	0.4118	0.3918	0.4208
Mean	0.9649	0.9063	0.4284	0.7908	0.5490	0.5328	0.5633
SD	0.0068	0.0281	0.1101	0.1280	0.1051	0.1075	0.1048

Prediction of Unseen Data

0.4375

O| Grouping

Group1 : short term liabilities 관련 변수들

Group2: long term liabilities 관련 변수들

Group3: others

O2 PCA

각 Group 에서 3,1,3개의 PC 추출

Table 3: Ratios in Model#2

03 Mess!

Ratios	
book value of equity / total liabilities	
equity / total assets	Table 2: Ratios in Model#1
gross profit / short-term liabilities	Table 2. Teatios in Model#1
(inventory * 365) / sales	Ratios
operating expenses / short-term liabilities	
(current assets - inventory - receivables) / short-term	[(cash + short-term securities + receivables - short-term]
profit on operating activities / sales	liabilities) / (operating expenses - depreciation)] * 365
(current assets - inventory) / short-term liabilit	gross profit (in 3 years) / total assets
EBITDA (profit on operating activities - depreciation	(equity - share capital) / total assets
long-term liabilities / equity	(net profit + depreciation) / total liabilities
sales / short-term liabilities	operating expenses / total liabilities
sales / fixed assets	

O| Grouping

특정 재무비율군의 의미만 맞으면 해당 카테고리로 분류 가능하여 조사해서 분류

O| Grouping

Liquidity	Turnover Ratio	Operating profitability	Business Risk	Financial Risk	Stability
12,32,33,4 ,40,5,51	1,15,20,43 ,47,57,61, 64,9	18,21,24, 27,3,41,42 ,45,49,53, 7	13,39,19	10,2,25,30 ,58,59,6,8	28,29,38, 55

O₂ PCA

- 1. 각 군집 별로 Standard Scaler 이용하여 분산 크기 조정
- 2. 군집 내에서 선형성을 만족하는 변수들을 추려 (corr over 0.5) 해당 변수들에 대해서만 PCA
- 3. 해당 변수들에 PCA 적용 후 분산의 설명력이 0.7 이상일 경우 cut,5개 변수 제거

O3 Modeling

Ве	fore Tuning	Model	Accuracy	AUC	Recall	Prec.	F1
catboost	CatBoo	st Classifier	0.9679	0.9348	0.3916	0.9212	0.5451
xgboost	Extreme Gradier	nt Boosting	0.9669	0.9247	0.3846	0.8945	0.5346
lightgbm	Light Gradient Boostir	ng Machine	0.9669	0.9211	0.3777	0.8997	0.5295

$Tuning {}\cdots catboost$

Mean	0.9693	0.9244	0.4256	0.9182	0.5754	0.5620	0.6098
SD	0.0035	0.0251	0.0841	0.0515	0.0762	0.0765	0.0588

03 Modeling

Before Tur	ning Model	Accuracy	AUC	Recall	Prec.	F1
catboost	CatBoost Classifier	0.9679	0.9348	0.3916	0.9212	0.5451
xgboost	Extreme Gradient Boosting	0.9669	0.9247	0.3846	0.8945	0.5346
lightgbm	Light Gradient Boosting Machine	0.9669	0.9211	0.3777	0.8997	0.5295

A C.	- .	
Affer	Tuning	1
/ \ \ \ CC	1 41 111 19	7

Mean	0.9693	0.9244	0.4256	0.9182	0.5754	0.5620	0.6098
SD	0.0035	0.0251	0.0841	0.0515	0.0762	0.0765	0.0588

	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
0	0.9743	0.9167	0.5667	0.8947	0.6939	0.6812	0.7006
1	0.9657	0.8895	0.3103	1.0000	0.4737	0.4610	0.5473
2	0.9691	0.9089	0.4483	0.8667	0.5909	0.5765	0.6106
3	0.9743	0.9209	0.5172	0.9375	0.6667	0.6544	0.6859
4	0.9691	0.9795	0.4828	0.8235	0.6087	0.5938	0.6168

04 Prediction of Unseen data

Light GBM	Catboost
0.63xx	0.6957

Why?

- 1. Tree 를 분할하는 방법이 다른 두 모델
- 2. Catboost 는 하이퍼 파라미터 튜닝에 예민한 모델

Feature importance of base model catboost

34가 빠지고 9,48,38 등장!

So, is it predictable?

- 1. 가능이야 하겠지만…
- 2. Imbalance 된 데이터로 인해 변수를 줄이면서 최대한의 예측력을 갖추기 쉽지 않음.
- 3. 또한, 같은 이유로 f1 score 가 적절한 metric인지도 의문스러움.
 - ROC curve
 - ➡ 파산할 기업을 현행유지라고 잘못 판단하는 것이 더 치명적…!

-The END-