Problem 1. Consider the function $f: [0, 2\pi] \to [-1, 1]$ given by $f(x) = \cos x$. Determine each of the following sets.

- (i) $f([0,\pi])$
- (ii) $f(\lbrace \pi \rbrace)$

- (ii) $f(\{n\})$ (iii) $f((0, \frac{\pi}{2}))$ (iv) $f((0, \pi))$ (v) $f^{-1}(\{-1, 1\}) = \{0, \pi, 2\pi\}$ (vi) $f^{-1}(\{0, 1\})$ (vii) $f^{-1}(\{-1, 0\})$ (viii) $f^{-1}(\{0\})$

Solution.

- (i) [-1, 1]
- (ii) -1
- (iii) (0,1)
- (iv) (-1,1)
- (v) $\{0, \pi, 2\pi\}$
- (vi) $\{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$
- (vii) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$
- (viii) $\{\frac{\pi}{2}, \frac{3\pi}{2}\}$

Problem 2. Consider $f: A \to B$.

- (i) Prove f is injective if and only if $X = f^{-1}(f(X))$ for all $X \subseteq A$.
- (ii) Prove f is surjective if and only if $Y = f(f^{-1}(Y))$ for all $Y \subseteq B$.

Solution.

(i)

Suppose the function f is injective with a range of B'.

Then, for all $n, m \in A$ where $n \neq m$, $f(n) \neq f(m)$ and $f(n), f(m) \in B'$.

Observe that the inverse relation f' may not be a function because B' is not always B. However, if we restrict it's domain to B' so that $f'_{res}: B' \to A$, then it is both a function and bijective.

Similarly, if we go back and restrict f's codomain such that $f_{res}:A\to B'$ then it is also bijective.

Thus, $f_{\text{res}}^{-1}(f_{\text{res}}(x)) = i_A$.

This ensures that for every $x \in X$, $x = f^{-1}(f(x))$.

So,
$$X = f^{-1}(f(X))$$