Attaque de Sidelnikov-Shestakov appliquée au cryptosystème de Chor-Rivest

INF 581 - Enseignement d'Approfondissement D. Augot

Sylvain Colin & Gaspard Férey

Département d'Informatique Ecole Polytechnique, France

27 Mars 2014

Cryptosystème de McEliece utilisant les codes de Reed-Solomon

Clef privée

- Une matrice $G = G(\alpha_1, \ldots, \alpha_n, z_1, \ldots z_n) = (z_i \alpha_i^j)_{i=1\ldots n, j=0\ldots k-1}$
- ullet Une matrice inversible H de taille k imes k dans $\mathbb{F}_q.$

Clef publique

- La représentation de \mathbb{F}_q .
- La matrice $M = H \cdot G$.
- L'entier $t = \lfloor \frac{n-k}{2} \rfloor$.

Messages originaux : vecteurs de $b \in \mathbb{F}_q^k$.

Message chiffré : $b \cdot M + e$ avec e de poids de Hamming inférieur à t et $b \cdot M = (z_i f_b(\alpha_i))_{1 \le i \le n} (f_b$ de degré au plus k - 1).

Déchiffrement :

- On calcule $b \cdot H$ par un algorithme de déchiffrement de code GRS.
- On calcule b par multiplication par H^{-1}

4□ > 4□ > 4 = > 4 = > = 99

Attaque de Sidelnikov et Shestakov

• Basée sur l'équivalence entre codes GRS : $\exists H', (\alpha_3', \ \dots \ \alpha_k', \alpha_{k+2}', \ \dots, \alpha_n') \text{ et } (z_1', \ \dots \ z_k', z_{k+2}', \ \dots \ z_n') \text{ tels que}$ $H \cdot G = H' \cdot G(0, 1, \alpha_3', \ \dots, \infty, \alpha_{k+2}', \ \dots, \alpha_n', z_1', \ \dots, 1, z_{k+2}', \ \dots \ z_n')$

On calcule la forme échelon de M :

$$E(M) = \left(|| I_k|| || (b_{i,j})_{1 \le i \le k, k+1 \le j \le n} \right)$$

On remarque que :

$$f_{b_i}(X) = c_{b_i} \cdot \prod_{1 \le j \le k, i \ne j} (X - \alpha_j)$$

avec $c_{b_i} = b_{i,k+1}$.

Attaque de Sidelnikov et Shestakov

Calcul des α_i :

- $\forall k + 2 \le j \le n, \alpha_j = \frac{b_{2,j} \cdot c_{b_1}}{b_{2,j} \cdot c_{b_1} b_{1,j} \cdot c_{b_2}}$
- $\forall 3 \leq i \leq k, \alpha_i = \alpha_{k+2} \frac{b_{i,k+2}}{b_{1,k+2}} \cdot \frac{c_{b_1}}{c_{b_2}} \cdot (\alpha_{k+2} 1)$
- On calcule un ensemble de α_i' équivalent et tous finis en trouvant un élément α différent de tous les α_i et en appliquant la transformation birationnelle $\phi: x \mapsto \frac{1}{x-\alpha}$

Calcul des z_i :

• On note
$$L_i(X) = \prod_{1 \leq j \leq k, i \neq j} (X - \alpha_j) = \frac{1}{c_{b_i}} \cdot f_{b_i}(X)$$

•
$$\forall 1 \leq i \leq k, z_i = \frac{L_i(\alpha_{k+1})}{b_{i,k+1} \cdot L_i(\alpha_i)}$$

•
$$\forall k + 2 \le j \le n, z_j = \frac{b_{1,j}}{b_{1,k+1}} \cdot \frac{L_1(\alpha_{k+1})}{L_1(\alpha_j)}$$

Calcul de $H: H = M_k \cdot G_k^{-1}$

Le cryptosystème de Chor-Rivest

Clef privée:

- $ullet \ t \in \mathbb{F}_q$ dont le polynôme minimal est de degré h.
- ullet g générateur \mathbb{F}_q^* .
- $0 \le d < q$.
- π permutation de $\{0,...,p-1\}$.

Clef publique:

$$c_i := d + \log_g(t + \alpha_{\pi(i)}) \mod q - 1$$

Message $m = [m_0...m_{p-1}]$ avec $\sum_i m_i = h$. Message chiffré:

$$E(M):=\sum_{i=0}^{p-1}m_ic_i\mod q-1$$

On déchiffre en calculant

$$g^{E(M)-hd} = \prod_{i} (t + \alpha_{\pi(i)})^{m_i}$$

Lien avec Reed-Solomon

Theorem

Pour $2 \le k \le p-2$, supposons qu'il existe k polynômes $(Q_i)_{1 \le i \le k}$ de $\mathbb{F}_p[X]$ de degré inférieur à k-1 linéairement indépendants. Supposons connues les évaluations de ces polynômes en les $\alpha_{\pi(j)}$, $m_{i,j} := Q_i(\alpha_{\pi(j)})$. Alors la permutation π peut être retrouvée en temps polynomial en utilisant une attaque de Sidelnikov-Shestakov sur la matrice $M = (m_{i,j})_{i,j} \in \mathcal{M}_{k,p}(\mathbb{F}_p)$.

Attaque de Vaudenay

Theorem

Quelque soit r divisant h, il existe un générateur g_{p^r} du groupe multiplicatif $\mathbb{F}_{p^r}^*$ (où F_{p^r} sous-corps de \mathbb{F}_q) et $Q \in \mathbb{F}_{p^r}[X]$ de degré h/r admettant -t pour racine et tel que pour tout j, $Q(\alpha_{\pi(j)}) = g_{p^r}^{c_j}$.

Proof.

On a
$$g_{p^r}=g^{\frac{q-1}{p^r-1}}$$
 et

$$Q(X) = g_{p^r}^d \prod_{i=0}^{h/r-1} \left(X + t^{p^{ri}}\right)$$

Attaque de Vaudenay

Theorem

Si $r>\sqrt{h}$, et g_{p^r} connu, il existe une attaque du cryptosystème de Chor-Rivest en temps polynomial.

Proof.

Les r coordonnées de $g_{p^r}^{c_j}$ sont des polynômes de degré h/r > r en les $\alpha_{\pi(j)}$. On utilise une attaque de Sidelnikov-Shestakov sur la matrice de ces coordonnées.

Utilisation des puissances de g_{p^r}

Soit r diviseur de h et $(e_i)_{1 \le i \le r}$ une base de \mathbb{F}_{p^r} . On note

- $U_w := \{u \in [0, p^r 1] | w_p(u) \le w\}$
- h[i] la *i*ème coordonnée de $h \in \mathbb{F}_{p^r}$ dans la base (e_i) .
- On définit $M^{(w)} \in \mathcal{M}_{r \cdot |U_w|,p}$

$$M^{(w)} := \left(g_{p^r}^{uc_j}[i]\right)_{(i,u)\in[1,r]\times U_w,1\leq j\leq p}$$

• $u_w := \operatorname{rank}\left(M^{(w)}\right)$

On a

$$u_w \le r \cdot |U_w| = O\left(\frac{w^{r+1}}{r!}\right)$$

Theorem

Si $u_w = wh/r + 1 \le p - 2$, Sidelnikov Shestakov fournit une attaque en temps polynomial.

Postulat

Postulate

Pour tout r > 2,

$$u_w = \min\left(\binom{w+r}{r}, w\frac{h}{r} + 1, \rho\right).$$

Vérifié sur

r	W	h/r
2	[1,17]	{1,2}
3	[1,17]	[1,30]
4	[1,17]	[1,30]
5	[1,17]	[1,30]

Condition sur r

On suppose

- $u_w = \min\left(\binom{w+r}{r}, w\frac{h}{r} + 1, p\right)$ (pour tout w)
- $h \sim p/\log p$
- h a de petits diviseurs
- Il existe w tel que

$$\frac{wh/r+1}{wh/r+1} \leq p-2$$

$$\frac{vh/r+1}{vh/r+1} \leq u_w$$

On obtient

$$r \sim \frac{\log p}{\log\log p}$$

Algorithme

Input: Description de \mathbb{F}_{p^h} et la clef publique: $(c_j)_{1 \leq j \leq p}$

- Calculer le plus petit diviseur r de h qui permette une attaque.
- Calculer le plus grand w possible et l'ensemble U_w .
- Choisir une base $(e_i)_{1 \le i \le r}$ de \mathbb{F}_{p^r} et générer la matrice projetant les éléments de \mathbb{F}_q dans cette base.
- Pour tout générateur g_{p^r} possible de \mathbb{F}_{p^r} faire
 - ▶ Générer M à partir de wh/r+1 lignes indépendantes à partir des lignes de $M^{(w)}$
 - Si on peut trouver une ligne de M^(w) indépendantes de celles de M
 Alors Passer au générateur suivant.
 Sinon Sortir de la boucle, retenir M et g_{pr}.
- Effectuer une attaque de Sidelnikov Shestakov attack sur M pour générer toute les permutations possibles (π_i) .
- Pour chaque permutation π faire
 - Déchiffrer en utilisant une attaque connaissant g_{p^r} et π .

Complexité en temps

- Calculs préparatoires: $O(p^3)$
- Boucle principale:

(Recherche exhaustive)
$$imes$$
 ("Early abort") $= O\left(p^{\frac{\log p}{\log\log p} + C}\right)$

- Sidelnikov-Shestakov: $O\left(p^3(\log p)^{O(1)}\right)$
- Fin de l'attaque: $O\left(p^{O(1)}\right)$

Conclusion

Notre algorithme

- a une bien meilleure complexité que celle de Vaudenay
- marche dès que $\Omega(p)$ coefficients $\alpha_{\pi(i)}$ sont connus
 - ightharpoonup mais O(p) permutations possibles générées

Questions?

