CS 215: Assignment02 Report

Poorna Teja and Karthikeya

October 2021

Contents

1	San	apling within a Euclidean Plane	2
	1.1	Running the code	2
	1.2	Algorithm to generate uniformly distributed random points(UDRPs)	2
		1.2.1 In an ellipse	2
		1.2.2 In a triangle	2
	1.3	Histograms of the sample points	3
		1.3.1 Ellipse	3
		1.3.2 Triangle	3
2	Mu	ltivariate Gaussian	4
	2.1	Running the code	4
3	PC.	A and Hyperplane Fitting	5
	3.1	Running the code	5
	3.2	Approximate linear relationship between X and Y	5
	3.3	Plots	5
4	Pri	ncipal Component Analysis	6
	4.1	Running the code	6
	4.2	Plot of eigen values	6
5	Principal Component Analysis (PCA) for Dimensionality Reduc-		
	tion	1	16
	5.1	Running the code	16
	5.2	Comparision of original and compressed images	16
6	Pri	ncipal Component Analysis (PCA) for Another Image Dataset	20
	6.1	Running the code	20
	6.2	Mean and eigen vectors	20
	6.3	Closest representations	20
	6.4	New fruits	21

1 Sampling within a Euclidean Plane

1.1 Running the code

1.2 Algorithm to generate uniformly distributed random points(UDRPs)

1.2.1 In an ellipse

Consider an ellipse in a polar coordinate system (r,θ) . A point (r,θ) 's occurrence in the UDRP generator has a probability density proportional to r which can be intuitively understood from the fact that the infinitesimally small area around it is $\sqrt{\frac{b}{a}}rdrd\theta$. The random point generator can be divided into two independent parts,

- The θ generator which is $U(0, 2\pi)$.
- The r generator has the range (0, a) and probability density proportional to r.

The random point is calculated from the output of the θ generator(θ_1), the r generator(r_1) as $(r_1cos(\theta_1), \frac{b}{a}r_1sin(\theta_1))$. The task is to construct the r generator. Consider two distributions R_1 and R_2 where R_1 has a range [0,1] and it's probability density is proportional to x, R_2 is U(0,1). Let y=f(x) be an unknown function from [0,1] to [0,1] such that applying the transformation of f on R_1 results in R_2 . Let's assume that f is monotonic and use the formula for transformation of RV's $R_1(x) = R_2(f(x))\frac{d}{dx}(f(x))$. $f(x) = x^2$ is a valid transformation from R1 to R2 so we can construct the

 $f(x) = x^2$ is a valid transformation from R1 to R2 so we can construct the r generator using $\mathbf{a} * \mathbf{sqrt}(\mathbf{U}(\mathbf{0}, \mathbf{1}))$.

1.2.2 In a triangle

Consider a rectangle encompassing the triangle in consideration. The idea behind generating UDRPs in a rectangle is elementary, consider the rectangle (0,0), (a,0), (0,b), (a,b) the UDRP generator is simply (U(0,a),U(0,b)). We can construct the UDRP generator of the triangle using the generator of the rectangle as

Algorithm 1: UDRP $generator_{trl}$

- 1 point $p = UDRPgenerator_{rect}()$
 - if p is outside triangle then
- $\mathbf{return} \ \mathsf{UDRP} generator_{trl}()$
- з return p

All the points have the same probability density in UDRP $generator_{rect}()$ and $\frac{A_{trl}}{A_{rect}}$ is the probability for that point to be inside the triangle, clearly the UDRP generator

constructed for the triangle has the same probability density for all the points inside the triangle proving it's correctness.

1.3 Histograms of the sample points

1.3.1 Ellipse

Figure 1: Histogram of the sample points

1.3.2 Triangle

Figure 2: Histogram of the sample points

2 Multivariate Gaussian

2.1 Running the code

3 PCA and Hyperplane Fitting

- 3.1 Running the code
- 3.2 Approximate linear relationship between X and Y

3.3 Plots

Figure 3: Set1

Figure 4: Set2

4 Principal Component Analysis

4.1 Running the code

4.2 Plot of eigen values

Figure 5: digit 0

Figure 6: digit 1

Figure 7: digit 2

Figure 8: digit 3

Figure 9: digit 4

Figure 10: digit 5

Figure 11: digit 6

Figure 12: digit 7

Figure 13: digit 8

Figure 14: digit 9

Figure 15: digit 0

Figure 16: digit 1

Figure 17: digit 2

Figure 18: digit 3

Figure 19: digit 4

Figure 20: digit 5

Figure 21: digit 6

Figure 22: digit 7

Figure 23: digit 8

Figure 24: digit 9

5 Principal Component Analysis (PCA) for Dimensionality Reduction

- 5.1 Running the code
- 5.2 Comparision of original and compressed images

Figure 25: Original

Figure 26: Compressed

Figure 27: Original

Figure 28: Compressed

Figure 29: Original

Figure 30: Compressed

Figure 31: Original

Figure 32: Compressed

Figure 33: Original

Figure 34: Compressed

Figure 35: Original

Figure 36: Compressed

Figure 37: Original

Figure 38: Compressed

Figure 39: Original

Figure 40: Compressed

Figure 41: Original

Figure 42: Compressed

Figure 43: Original

Figure 44: Compressed

6 Principal Component Analysis (PCA) for Another Image Dataset

6.1 Running the code

6.2 Mean and eigen vectors

Figure 45: Mean and eigen vectors

6.3 Closest representations

Figure 46: Image 1

Figure 47: Image 2

Figure 48: Image 3

6.4 New fruits

Figure 49: Image 4

Figure 50: Image 5

Figure 51: Image 6

Figure 52: Image 7

Figure 53: Image 8

Figure 54: Image 9

Figure 55: Image 10

Figure 56: Image 11

Figure 57: Image 12

Figure 58: Image 13

Figure 59: Image 14

Figure 60: Image 15

Figure 61: Image 16

Figure 62: NewFruit 1

Figure 63: NewFruit 2

Figure 64: NewFruit 3