Informática Básica -

FUNDAMENTOS

Fundamentos de Equipamentos de Processamento de Informações

AULA 02

O Computador

É um equipamento eletrônico utilizado para manipular informações.

Atualmente existe uma grande quantidade de dispositivos que nos possibilitam utilizar suas funções como processadores de dados, variando de tamanho, poder de processamento, funcionalidades específicas.

Tipos de Computador

Os tipos mais comuns são:

- Mainframes (Computadores de grande porte) por exemplo os usados em:
 Bancos, grandes empresas, universidades ...
- Servidores (Servidor de Arquivos, Impressão, ...)
- Microcomputadores (PC)
- Computadores portáteis (Notebook, Netbook)
- Computadores de mão (PDAs, celulares, smartphones, Tablets)

Mainframes

Servidores

Microcomputador

Computadores Portáteis

Notebook

Netbook

Computadores de Mão

PDA

CELULAR

SMARTPHONE

TABLET

FLUXO DE DADOS NO COMPUTADOR

ARQUITETURA DE UM COMPUTADOR

A Arquitetura de Computadores é o projeto conceitual e fundamental da estrutura operacional de um sistema computacional. Ela é o estudo dos requisitos necessários para que um computador funcione e de como organizar os diversos componentes para obter melhores desempenhos.

CPU – UNIDADE CENTRAL DE PROCESSAMENTO

Ela é o centro nervoso do computador. Sem dúvida é a parte mais importante do computador.

Atualmente, as CPU's são fabricadas e comercializadas em um único componente eletrônico físico conhecido como microprocessador.

Ele é considerado o cérebro do computador.

MEMÓRIA

Memória é todo o local no seu computador onde é possível armazenar dados.

A memória de um computador se divide em dois tipos:

Memória Principal: é usada para armazenar as informações que estão sendo executadas na hora, no exato momento.

Memória Secundária: é usada para gravar as informações por tempo indeterminado.

Memória Principal

Memória Secundária

PLACA MÃE

A motherboard é uma peça do computador responsável por interligar todos os componentes constituintes do computador.

Por causa dela que os componentes podem se comunicar entre si, ou seja, ela quem gerencia os componentes do computador.

BARRAMENTO

Praticamente todos os componentes de um computador, como processadores, memórias, placas de vídeo e diversos outros, são conectados à placa-mãe a partir do que chamamos de barramento.

Sem entrar em termos técnicos, ele é o encaixe de que cada peça precisa para funcionar corretamente.

MELHOR COMPUTADOR

Computador Celeron Dual Core 2.41 GHz / 4GB / 320GB / Linux -

Por

R\$ 753,66

em 10x R\$ 75,37

MACBOOK APPLE MAC MF086LL / A 15 - 2.7 / 8GB / 1TB /

Por:

R\$ 11.224,00

em 9x R\$ 1.247,11

A LINGUAGEM BINÁRIA

De forma geral, binário é um sistema que utiliza apenas dois valores para representar suas quantias. É um sistema de base dois. Esses dois valores são o "0" e o "1".

Daí podemos concluir que para 0 temos desligado, sem sinal, e para 1 temos ligado ou com sinal.

A LINGUAGEM BINÁRIA

Não é comum usar bits para representar a capacidade de módulos de memória ou de um disco rígido: o padrão é o byte, também chamado de octeto.

O byte é formado por 8 bits, que representam um único caractere na tabela ASCII. A ASCII é uma tabela de códigos de 8 bits que representam 128 caracteres com base no alfabeto da língua inglesa.

bit

Sigla: b

É a menor unidade de armazenamento. Armazena números binários: 0 ou 1.

Byte

Sigla: B

É um conjunto de 8 bits, necessários para formar um dado. Ex.: Uma letra.

Tamanho: 6 bytes (6 bytes)

Quantos bits?

01110110 01100001 01101100 01110100 01100101 01110010

UNIDADES DE MEDIDA

UNIDADE	Abreviação		Valor	Base Binária	Quantidade de Bytes
Bit			0 ou 1		
Byte			8 bits	2 ⁰	1
Kilobyte	KByte	KB	1024 bytes	2 ¹⁰	1.024
MegaByte	MByte	MB	1024 KB	2 ²⁰	1.048.576
Gicabyte	GByte	GB	1024 MB	2 ³⁰	1.073.741.824
Terabyte	TByte	ТВ	1024 GB	2 ⁴⁰	1.099.511.627.776
Petabyte	PByte	РВ	1024 TB	2 ⁵⁰	1.125.899.906.842.620
Exabyte	EByte	EB	1024 PB	2 ⁶⁰	1.152.921.504.606.850.000
Zetabyte	ZByte	ZB	1024 EB	2 ⁷⁰	1.180.591.620.717.410.000.000
Yotabyte	YByte	YB	1024 ZB	2 ⁸⁰	1.208.925.819.614.630.000.000.000

DISPOSITIVOS DE ENTRADA

São os equipamentos que permitem a comunicação entre a CPU e o mundo exterior, ou seja o usuário.

Exemplos: teclado, mouse, scanner, microfone, câmera.

DISPOSITIVOS DE SAÍDA

São os equipamentos que permitem a saída das informações que foram processadas.

Exemplos: monitor, impressora e projetor.

DISPOSITIVOS HÍBRIDOS

São os equipamentos que permitem a entrada e saída de informações.

Exemplos: monitor touchscreen, projetores interativos, lousa interativas.

