Tutorial/Worksheet on "M0a. Probability Background"

CS5691 PRML Jul-Nov 2025

August 9, 2025

- 1. [Probability Basics] Do all the tutorial/exercise problems in the slides on "M0a. Probability Background". The specific slides in this slide deck include:
 - (a) Slides 10-11 on conditional probability and Bayes' theorem examples.
 - (b) Slide 19 on conditional distribution and conditional expectation questions.
 - (c) Slides 32 and 35 on questions related to pmf (probability mass function) and pdf (probability density function) respectively.
 - (d) Slide 43 on covariance between two rvs (random variables) X, Y whose joint distribution is given.
- 2. [Deriving Posteriors]
 - (a) Consider a continuous random variable X and a discrete random variable Y. Let
 - $P_Y(Y=1) = 0.5$ and $P_Y(Y=-1) = 0.5$, and
 - $(X|Y=1) \sim \text{Unif}(1,2)$ and $(X|Y=-1) \sim \text{Unif}(-2,-1)$.

Draw the plots for P(Y = 1|X = x) and P(Y = -1|X = x) given the above assumptions.

- (b) Consider the following setting:
 - $P_Y(Y=1) = 0.7$ and $P_Y(Y=-1) = 0.3$
 - $(X|Y=1) \sim Unif(-1,3)$ and $(X|Y=-1) \sim Unif(-2,0)$
 - 1. Derive P(Y = 1|X = x) for different possible values of x.
 - 2. Plot the derived P(Y = 1|X = x).
- 3. [BAYES' THEOREM ON EVENTS] It is estimated that 50% of emails are spam emails. Some software has been applied to filter these spam emails before they reach your inbox. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a non-spam email?
- 4. [RANDOM VARIABLE BASICS] A discrete random variable X is said to follow/have a Poisson distribution with parameter $\lambda > 0$ over the support $S = \{0, 1, 2, ...\}$ if it has the following pmf:

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{r!}$$

In this question, you are required to verify if the above pmf of X is indeed a valid pmf by verifying the following properties:

- 1. $P(X = x) \ge 0 \ \forall x \in S$, and
- 2. $\sum_{x \in S} P(X = x) = 1$.

In addition, derive $\mathbb{E}(X)$ and Var(X).

[Hint: Use the Maclaurin's series of exponential function: $e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$]

5. [RV BASICS CONTD.] A fair coin is tossed twice, and **X** is defined as the number of heads that are observed. Find the range of **X** (R_X) and the probability mass function (P_X) .

1

- 6. [CHANGE OF VARIABLES VS. THE LAW OF THE UNCONSCIOUS STATISTICAN] Consider a continuous random variable X and a discrete random variable Y. Let
 - $P_Y(Y=1) = 0.5$ and $P_Y(Y=-1) = 0.5$, and
 - $(X|Y=1) \sim \text{Unif}(1,2)$ and $(X|Y=-1) \sim \text{Unif}(-2,-1)$.
 - a. What is the marginal distribution of X? Specifically, plot the pdf of X denoted $f_X(x)$.
 - b. Write down the pdf $f_X(x)$ of X.
 - c. Let $Z = X^2$. What is the pdf of Z? Use it to compute E[Z]. (Hint: To obtain pdf of Z, you could simply derive the cdf of Z and differentiate it (or you could also use the change-of-variables formula).)
 - d. Now, use the pdf of X directly to compute $E[X^2]$ (using the law of the unconscious statistician). Does this give the same answer as the previous question? Which of these two methods do you prefer to compute the expectation of a function of a rv?