線形写像と逆問題

 $m{y} = Am{x}$ という形の式は、 $m{x}$ と $m{y}$ の次元が同じならば、連立一次方程式として捉えることができた

$$egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} = egin{pmatrix} a_{11} & \cdots & a_{1n} \ dots & \ddots & dots \ a_{n1} & \cdots & a_{nn} \end{pmatrix} egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$

そして、このような形の連立方程式を解くことは、「**y** から **x** を推定する」という逆問題を解くことに相当する

一方、 $m{y} = Am{x}$ という式は、線形写像を表す式とみることもできる 一般に、線形写像 $m{y} = Am{x}$ の表現行列 A は $m \times n$ 行列であり、 $m{y}$ は m 次元ベクトル、 $m{x}$ は n 次元ベクトルである

ここでは、 \boldsymbol{x} と \boldsymbol{y} の次元が異なる場合の、「 \boldsymbol{y} から \boldsymbol{x} を推定する」という 逆問題を考えてみることにする