Some Normalization Examples

Dependencies: Definitions

• Multivalued Attributes (or repeating groups): nonkey attributes or groups of non-key attributes the values of which are not uniquely identified by (directly or indirectly) (not functionally dependent on) the value of the Primary Key (or its part).

STUDENT

Stud_ID	Name	Course_ID	Units
101	Lennon	MSI 250	3.00
101	Lennon	MSI 415	3.00
125	Johnson	MSI 331	3.00

Dependencies: Definitions

 Partial Dependency – when an non-key attribute is determined by a part, but not the whole, of a COMPOSITE primary key.

Dependencies: Definitions

◆ Transitive Dependency – when a nonkey attribute determines another non-key

Normal Forms: Review

- Unnormalized There are multivalued attributes or repeating groups
- 1 NF No multivalued attributes or repeating groups.
- 2 NF 1 NF plus no partial dependencies
- 3 NF 2 NF plus no transitive dependencies

- ◆ ISBN → Title
- ◆ ISBN → Publisher
- ◆ Publisher → Address

All attributes are directly or indirectly determined by the primary key; therefore, the relation is at least in 1 NF

◆ Product_ID → Description

The relation is at least in 1NF.

There is a COMPOSITE Primary Key (PK) (Order_No, Product_ID), therefore there can be partial dependencies. Product_ID, which is a part of PK, determines Description; hence, there is a partial dependency. Therefore, the relation is not 2NF. No sense to check for transitive dependencies!

ORDER

Order_No Product_ID Description

◆ Product_ID → Description

 Option 1: Make a determinant of the repeating group (or the multivalued attribute) a part of the primary key.

◆ Option 2: Remove the entire repeating group from the relation. Create another relation which would contain all the attributes of the repeating group, plus the primary key from the first relation. In this new relation, the primary key from the original relation and the determinant of the repeating group will comprise a primary key.

	STUDENT				
•	Stud_ID	Name	Course_ID	Units	
•	101	Lennon	MSI 250	3.00	
	101	Lennon	MSI 415	3.00	
	125	Johnson	MSI 331	3.00	

STUDENT_COURSE Stud_ID Course Units 101 MSI 250 3 101 MSI 415 3 125 MSI 331 3

Goal: Remove Partial Dependencies

Remove attributes that are dependent from the part but not the whole of the primary key from the original relation. For each partial dependency, create a new relation, with the corresponding part of the primary key from the original as the primary key.

STUDENT			
Stud_ID	Name	Course ID	Units
101	Lennon	MSI 250	3.00
101	Lennon	MSI 415	3.00
125	Johnson	MSI 331	3.00

STUDENT_COURSE

Stud_ID	Course_ID
101	MSI 250
101	MSI 415
125	MSI 331

COURSE

	<u> </u>
Course_ID	Units
MSI 250	3.00
MSI 415	3.00
MSI 331	3.00

Goal: Get rid of transitive dependencies.

Remove the attributes, which are dependent on a non-key attribute, from the original relation. For each transitive dependency, create a new relation with the non-key attribute which is a determinant in the transitive dependency as a primary key, and the dependent non-key attribute as a dependent.

EMPLOYEE

DEPARTMENT

1NF

D <u>eptno</u>	Dname	Location
10	IT	Leeds, Bradford, Kent
20	Research	Hundredfold
30	Marketing	Leeds

1NF

D <u>eptno</u>	Dname	Location
10	IT	Leeds, Bradford, Kent
20	Research	Hundredfold
30	Marketing	Leeds

Deptno	Dname
10	IT
20	Research
30	Marketing

Deptno	Location
10	Leeds
10	Bradfprd
10	Kent
20	Hundredfold
30	Leeds

2NF

PNo	PName	PLoc	EmpNo	EName	Salary	Address	HoursNo

Given the following FDs:

```
PNo , EmpNo — — — > HoursNo 

PNo — — — > Dname , Loc 

EmpNo — — — > Name , Salary , Address
```

Assuming all attributes are atomic, is the above relation in the 1NF, 2NF?

Relation X1

Relation X3

PNo PName PLoc PNo EmpNo HoursNo

Relation X2

<u>EmpNo</u>	EName	Salary	Address
--------------	-------	--------	---------

Example: 1NF

Order(OrderNumber, OrderDate, {PartNumber, {Supplier}})

Example: 1NF

```
Order(OrderNumber, OrderDate, {PartNumber,
 {Supplier}})
Order(OrderNumber, OrderDate)
     Order-Part(OrderNumber, PartNumber)
Part(PartNumber, {Supplier})
```

Example: 1NF (cont.)

```
Part(PartNumber, {Supplier})
Part( PartNumber )
 Part-Supplier(PartNumber, SupplierNum)
Supplier(*SupplierNum)
```

2nd Normal Form

No partial dependencies
No attribute depends on only some of the attributes of a concatenated key.

Order-Part

[OrderNumber | PartNumber | PartDescription]

Create a new table with PartNumber key.