

Inner products and Norms

Inner product or dot product of 2 vectors u and v in \mathbb{R}^n :

$$u.v = u_1v_1 + u_2v_2 + \cdots + u_nv_n$$

Calculate
$$m{u.v}$$
 when $m{u} = egin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix} \qquad m{v} = egin{bmatrix} 1 \\ 0 \\ -1 \\ 5 \end{bmatrix}$

- If u and v are vectors in \mathbb{R}^n then we can regard u and v as $n \times 1$ matrices. The transpose u^T is a $1 \times n$ matrix, and the matrix product u^Tv is a 1×1 matrix = a scalar.
- lacksquare Then note that $lacksquare u.v = v.u = u^Tv = v^Tu$

13-2

$Length \,\, of \,\, a \,\, vector \,\, in \,\, \mathbb{R}^n$

Euclidean norm of a vector u is $||u|| = \sqrt{u.u}$, i.e.,

$$\|u\|=(u.u)^{1/2}=\sqrt{u_1^2+u_2^2+\ldots+u_n^2}$$

- This is the length of vector $oldsymbol{u}$
- If we identify $oldsymbol{v}$ with a geometric point in the plane, then $||oldsymbol{v}||$ is the standard notion of the length of the line segment from 0 to \boldsymbol{v} .
- This follows from the Pythagorean Theorem applied to a triangle...
- A vector of length one is often called a unit vector
- The process of dividing a vector by its length to create a vector of unit length (a unit vector) is called normalizing

Text: 6.1-3 - LS0

Important properties

For any scalar α , the length αv is $|\alpha|$ times the length of v. That is,

$$\|lpha v\| = |lpha| \|v\|$$

The length of the sum of any two vectors does not exceed the sum of the lengths of the vectors (Triangle inequality)

$$\|u+v\|\leq \|u\|+\|v\|$$

The Cauchy-Schwartz inequality :

$$|x.y| \le ||x|| ||y||$$

13-4 Text: 6.1-3 – LS0

$Distance \,\, in \,\, \mathbb{R}^n$

Definition: The distance between $m{u}$ and $m{v}$, two vectors in \mathbb{R}^n is the length of the vector $m{u}-m{v}$

ightharpoonup Written as dist(u,v) or d(u,v)

$$d(u,v) = \|u-v\|$$

 $ilde{m \omega}$ Distance between $m u = egin{pmatrix} 1 \ 1 \end{pmatrix}$ and $m v = egin{pmatrix} 4 \ -3 \end{pmatrix}$

13-5 Text: 6.1-3 – LS0

Orthogonality

- 1. Two vectors u and v are orthogonal if (u, v) = 0.
- 2. A system of vectors $\{v_1,\ldots,v_n\}$ is orthogonal if $(v_i,v_j)=0$ for $i\neq j$; and orthonormal if $(v_i,v_j)=\delta_{ij}$

Pythagoras theorem:

$$|u\perp v| \Leftrightarrow ||u+v||^2 = ||u||^2 + ||v||^2$$

That is, two vectors $oldsymbol{u}$ and $oldsymbol{v}$ are orthogonal if and only if

$$||u+v||^2 = ||u||^2 + ||v||^2$$

$Least\mbox{-}Squares\ systems\ -\ Background$

- \blacktriangleright Recall orthogonality: $x\perp y$ if x.y=0
- lacksquare Equivalently $x\perp y$ if $y^Tx=0$ or $x^Ty=0$
- A zero vector is trivially orthogonal to any vector.
- ightharpoonup A vector x is orthogonal to a subspace S if:

$$x\perp y$$
 for all $y\in S$

lacksquare If $A=[a_1,a_2,\cdots,a_n]$ is a basis of S then

$$x \perp S \quad \leftrightarrow \quad A^T x = 0 \quad \leftrightarrow \quad x^T A = 0$$

 \blacktriangleright The space of all vectors orthogonal to S is a subspace.

Notation: S^{\perp}

igwedge Two subspaces S_1, S_2 are orthogonal to each other when

 $x\perp y$ for all x in S_1 , for all y in S_2

13-8 Text: 6.5 – LS

Show that

$$\mathsf{Nul}(A) \perp \mathsf{Col}(A^T)$$
 and $\mathsf{Nul}(A^T) \perp \mathsf{Col}(A)$

- Indeed: Ax = 0 means $(A^T)^Tx = 0$. So if $x \in Nul(A)$, it is \bot to the columns of A^T , i.e., to the range of A^T . Second result: replace A by A^T .
- Find the subspace of all vectors that are orthogonal to $\mathrm{span}\{v_1,v_2\}$ where

$$[v_1,v_2] = egin{bmatrix} 1 & 1 \ -1 & 0 \ 1 & -1 \end{bmatrix}$$

13-9 Text: 6.5 – LS

Least-Squares systems

Problem: Given: an m imes n matrix and a right-hand side b in \mathbb{R}^m , find $x \in \mathbb{R}^n$ which minimizes:

$$\|b-Ax\|$$

Assumption: m>n and $\mathrm{rank}(A)=n$ ('A is of full rank')

Find equivalent conditions to this assumption

Theorem If A has full rank then A^TA is invertible.

Proof We need to prove: $A^TAx = 0$ implies x = 0. Assume $A^TAx = 0$. Then $x^TA^TAx = 0$ - i.e., $(Ax)^TAx = 0$ 0, or $\|Ax\|^2=0$. This means Ax=0. But since the columns of $oldsymbol{A}$ are independent $oldsymbol{x}$ must be zero. QED.

Text: 6.5 – LS 13-10

Theorem Let A be an m imes n matrix of rank n. Then x^* is the solution of the least-squares problem $\min \|b - Ax\|$

if and only if
$$b-Ax^*\perp \mathsf{Col}(A)$$

if and only if
$$egin{aligned} oldsymbol{A}^T(b-Ax^*)=0 \end{aligned}$$

if and only if
$$A^TAx^* = A^Tb$$

Proof See text.

____ Text: 6.5 – LS

Illustration of theorem: x^* is the best approximation to the vector b from the subspace $\operatorname{span}\{A\}$ if and only if $b-Ax^*$ is \bot to the whole subspace $\operatorname{span}\{A\}$. This in turn is equivalent to $A^T(b-Ax^*)=0 \blacktriangleright A^TAx=A^Tb$. Note: $\operatorname{span}\{A\}=\operatorname{Col}(A)=\operatorname{column} \operatorname{space} \operatorname{of} A$

13-12 Text: 6.5 – LS

Normal equations

The system

$$A^T A x = A^T b$$

is called the system of normal equations for the matrix $oldsymbol{A}$ and rhs $oldsymbol{b}$

- Its solution is the solution of the least-squares problem $\min \|b Ax\|$
- Find the least solution by solving the normal equations when:

$$A = egin{bmatrix} 1 & 1 & 0 \ 2 & -1 & 1 \ 1 & 1 & -2 \ 0 & 2 & 1 \end{bmatrix} \qquad b = egin{bmatrix} 2 \ 0 \ 4 \ 1 \end{bmatrix}$$

Text: 6.5 – LS

Application: Linear data fitting

- Experimental data (not accurate) provides measurements y_1, \ldots, y_m of an unknown linear function ϕ at points t_1, \ldots, t_m . Problem: find the 'best' possible approximation to ϕ .
- Must find:

$$\phi(t)=eta_0+eta_1 t$$
 s.t. $\phi(t_j)pprox y_j, j=1,\ldots,m$

- Question: Close in what sense?
- \triangleright Least-squares approximation sense: Find ϕ such that

$$|\phi(t_1)-y_1|^2+|\phi(t_2)-y_2|^2+\cdots+|\phi(t_m)-y_m|^2={\sf Min}$$

13-14 ______ Text: 6.5 – LS

We want to find best fit in least-squares sense for the equations

$$egin{array}{lll} eta_0 & +eta_1 t_1 & = y_1 \ eta_0 & +eta_1 t_2 & = y_2 \ & : & = : \ eta_0 & +eta_1 t_m & = y_m \end{array}$$

Using matrix notation this means: find 'best' approximation to vector y from linear combinations of vectors f_1, f_2 , where

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Text: 6.5 – LS

Define

$$F=[f_1,f_2],\quad x=inom{eta_0}{eta_1}$$

- ightharpoonup We want to find x such ||Fx-y|| is minimum.
- igwedge Least-squares linear system. $m{F}$ is $m{m} imes m{2}$.

The vector x_* minimizes ||y - Fx|| if and only if it is the solution of the normal equations:

$$F^TFx = F^Ty$$

13-16 Text: 6.5 – LS