# Confounding Variables and Endogeneity

POLS 602

## Endogeneity

### Endogeneity

When explanatory variables are correlated with the error term

#### Endogeneity

- Means "determined within the model"
- Often associated with a feedback loop between X and Y
- · Can be caused by other issues such as omitted variables and measurement error
- When endogeneity is present, your coefficient estimates are biased and inconsistent
- Exogeneity means something is determined outside of the model

#### Endogeneity is everywhere in observational data





Private School ——— Test Scores





- 1. Suppose the true model is:  $y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \epsilon_i$  where  $y_i$  is a student's test score,  $x_i$  is private school, and  $z_i$  is wealth.
- 2. Suppose  $z_i$  is omitted from the model:  $y_i = \beta_0 + \beta_1 x_i + u_i$
- 3. Thus:  $u_i = \beta_1 z_i + \epsilon_i$
- 4. If  $COR(X, Z) \neq 0$ , then  $COR(X, u) \neq 0$
- 5.  $\hat{\beta}_1$  is a biased estimate of  $\beta_1$

- Note: Endogeneity is correlation with the *true* error term ( $\epsilon$ ), not the estimated error term, or residuals ( $\hat{\epsilon}$ ).
- When using OLS,  $COR(X, \hat{\epsilon}) \neq 0$  by definition

Regression Errors: dashed lines show residuals (y - ŷ)



Regression Errors: dashed lines show residuals (y - ŷ)



#### Endogeneity is why statistics is hard

- There are no fool-proof statistical tests for endogeneity
- Endogeneity is primarily a question of your theoretical assumptions, and identification strategy



#### Solution: Multiple Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

#### Solution: Multiple Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \epsilon_i$$