Table SA1: Compound **31** relative energies (kcal mol⁻¹) and populations (percentages) obtained from theoretical calculations at the B3LYP-D3/6-311+G** level.

Conformer	ΔE	ΔH	ΔG	$^{9}P(\Delta E)$	$P(\Delta H)$	$^{9}P(\Delta G)$
31-1	0.00	0.00	1.29	21.1	16.1	2.6
31-2	0.49	0.23	0.57	9.2	10.9	8.8
31-3	0.60	0.11	0.00	7.6	13.4	22.7
31-4	0.45	0.34	0.38	9.8	9.0	12.0
31-5	0.75	0.47	0.49	5.9	7.3	10.0
31-6	1.19	0.92	0.95	2.8	3.4	4.6
31-7	0.68	0.37	0.25	6.7	8.6	14.9
31-8	1.16	1.05	1.43	3.0	2.7	2.0
31-9	2.05	2.22	2.78	0.7	0.4	0.2
31-10	1.08	1.09	1.63	3.4	2.5	1.5
31-11	0.73	0.65	1.18	6.1	5.4	3.1
31-12	1.63	1.52	2.32	1.3	1.2	0.5
31-13	1.40	1.51	2.27	2.0	1.3	0.5
31-14	1.04	0.96	1.22	3.6	3.1	2.9
31-15	1.75	1.70	2.33	1.1	0.9	0.4
31-16	2.03	2.01	2.63	0.7	0.5	0.3
31-17	2.63	2.50	1.87	0.2	0.2	1.0
31-18	3.01	3.26	4.69	0.1	0.1	0.0
31-19	1.39	1.12	1.08	2.0	2.4	3.7
31-20	1.24	1.16	1.68	2.6	2.3	1.3
31-21	1.39	1.44	2.20	2.0	1.4	0.6
31-22	1.64	1.68	2.58	1.3	0.9	0.3
31-23	1.97	2.16	2.74	0.8	0.4	0.2
31-24	1.41	1.33	1.90	2.0	1.7	0.9
31-25	1.62	1.39	1.27	1.4	1.5	2.7
31-26	2.79	2.93	4.08	0.2	0.1	0.0
31-27	2.12	2.00	1.95	0.6	0.5	0.8
31-28	1.96	1.77	1.92	0.8	0.8	0.9
31-29	2.18	2.12	2.85	0.5	0.4	0.2
31-30	2.38	2.31	2.17	0.4	0.3	0.6

Table SA2: Compound **30** relative energies (kcal mol⁻¹) and populations (percentages) obtained from theoretical calculations at the B3LYP-D3/6-311+G** level.

Conformer	ΔE	ΔH	ΔG	$^{6}P(\Delta E)$	$P(\Delta H)$	$^{9}P(\Delta G)$
30-1	2.02	2.19	2.03	0.6	0.6	0.7
30-2	1.22	1.55	1.95	2.4	1.7	0.8
30-3	0.06	0.09	0.41	17.0	20.2	11.3
30-4	2.26	2.65	2.46	0.4	0.3	0.4
30-5	0.00	0.00	0.00	18.8	23.4	22.4
30-6	0.70	1.09	1.30	5.8	3.7	2.5
30-7	1.21	1.78	2.71	2.4	1.2	0.2
30-8	2.34	2.69	2.90	0.4	0.3	0.2
30-9	0.83	0.96	0.97	4.7	4.6	4.4
30-10	1.22	1.43	1.57	2.4	2.1	1.6
30-11	0.50	0.65	0.53	8.2	7.8	9.1
30-12	1.44	1.75	2.05	1.7	1.2	0.7
30-13	1.29	1.30	1.00	2.1	2.6	4.1
30-14	0.87	1.24	1.63	4.3	2.9	1.4
30-15	0.94	0.85	0.19	3.8	5.6	16.2
30-16	1.71	2.00	2.05	1.0	0.8	0.7
30-17	0.83	0.96	0.97	4.7	4.6	4.4
30-18	1.76	1.98	1.64	1.0	0.8	1.4
30-19	0.94	1.12	1.51	3.8	3.5	1.7
30-20	0.85	1.00	0.80	4.5	4.4	5.8
30-21	1.56	1.83	1.78	1.4	1.1	1.1
30-22	2.64	2.94	2.86	0.2	0.2	0.2
30-23	1.73	1.90	1.21	1.0	0.9	2.9
30-24	1.23	1.63	2.22	2.4	1.5	0.5
30-25	2.45	2.70	2.38	0.3	0.2	0.4
30-26	1.23	1.53	1.62	2.4	1.8	1.4
30-27	1.62	1.96	1.75	1.2	0.9	1.2
30-28	2.11	2.14	1.54	0.5	0.6	1.7
30-29	2.44	2.65	2.47	0.3	0.3	0.3
30-30	2.34	2.62	2.58	0.4	0.3	0.3

Table SA3: Compound **29** relative energies (kcal mol⁻¹) and populations (percentages) obtained from theoretical calculations at the B3LYP-D3/6-311+G** level.

Conformer	ΔΕ	ΔΗ	ΔG	% P (Δ E)	% P (Δ <i>H</i>)	$%P(\Delta G)$
29-1	0.42	1.84	1.43	5.9	1.2	1.7
29-2	0.00	0.64	0.41	12.0	9.1	9.8
29-3	0.23	1.48	1.13	8.1	2.2	2.9
29-4	0.36	0.24	0.15	6.5	18.0	15.2
29-5	0.21	0.45	0.25	8.5	12.6	12.8
29-6	0.38	1.88	1.43	6.3	1.1	1.7
29-7	0.34	1.72	1.28	6.8	1.5	2.2
29-8	0.69	1.71	1.36	3.7	1.5	2.0
29-9	0.76	0.95	0.73	3.3	5.4	5.7
29-10	1.03	2.32	1.99	2.1	0.5	0.7
29-11	0.57	1.36	1.01	4.6	2.7	3.5
29-12	2.46	4.21	3.58	0.2	0.0	0.0
29-13	0.66	0.00	0.00	4.0	26.9	19.5
29-14	0.72	1.64	1.26	3.6	1.7	2.3
29-15	0.78	1.04	0.76	3.2	4.6	5.4
63-16	0.75	2.10	1.64	3.4	0.8	1.2
29-17	1.10	2.36	2.03	1.9	0.5	0.6
29-18	1.43	2.03	1.63	1.1	0.9	1.2
29-19	0.83	1.30	1.00	3.0	3.0	3.6
29-20	0.60	1.98	1.61	4.4	1.0	1.3
29-21	1.30	2.07	1.66	1.3	0.8	1.2
29-22	1.04	3.34	2.89	2.1	0.1	0.1
29-23	1.74	3.37	2.83	0.6	0.1	0.2
29-24	1.73	3.98	3.54	0.7	0.0	0.0
29-25	2.85	2.49	1.91	0.1	0.4	0.8
29-26	1.63	1.86	1.63	0.8	1.2	1.2
29-27	1.79	4.68	4.23	0.6	0.0	0.0
29-28	3.76	2.55	2.12	0.0	0.4	0.5
29-29	1.79	2.05	1.70	0.6	0.8	1.1
29-30	1.73	1.91	1.58	0.6	1.1	1.4

Table SA4: Compound **28** relative energies (kcal mol⁻¹) and populations (percentages) obtained from theoretical calculations at the B3LYP-D3/6-311+G** level.

Conformer	ΔE	ΔH	ΔG	$^{9}P(\Delta E)$	$^{9}P(\Delta H)$	$^{9}P(\Delta G)$
28-1	0.71	0.94	1.78	5.0	0.9	3.5
28-2	0.00	0.00	0.38	16.7	9.7	17.0
28-3	1.62	1.69	0.25	1.1	1.9	1.0
28-4	1.84	1.92	2.05	0.7	0.6	0.7
28-5	1.93	2.11	2.18	0.6	0.5	0.5
28-6	2.59	2.92	3.89	0.2	0.0	0.1
28-7	1.03	1.11	1.93	2.9	0.7	2.6
28-8	1.59	1.85	2.80	1.1	0.2	0.7
28-9	0.14	0.01	0.00	13.2	18.6	16.7
2810	0.34	0.31	0.08	9.4	16.2	10.1
28-11	1.82	1.84	2.18	0.8	0.5	0.8
28-12	0.76	0.97	1.47	4.6	1.5	3.3
28-13	0.37	0.30	0.27	9.0	11.9	10.2
28-14	0.86	0.99	1.38	3.9	1.8	3.2
28-15	0.78	0.71	0.65	4.5	6.2	5.1
28-16	2.12	2.50	3.50	0.5	0.1	0.2
28-17	0.66	0.67	0.59	5.4	6.9	5.5
28-18	1.66	1.77	1.99	1.0	0.6	0.9
28-19	1.13	1.25	2.03	2.5	0.6	2.1
28-20	2.18	2.34	1.78	0.4	0.9	0.3
28-21	1.92	2.30	3.36	0.7	0.1	0.4
28-22	1.33	1.55	2.10	1.8	0.5	1.2
28-23	1.02	1.14	1.31	3.0	2.0	2.5
28-24	2.44	2.74	2.65	0.3	0.2	0.2
28-25	2.05	2.20	1.92	0.5	0.7	0.4
28-26	1.35	1.38	1.35	1.7	1.9	1.7
28-27	2.23	2.57	2.91	0.4	0.1	0.2
28-28	1.04	0.87	0.38	2.9	9.9	3.9
28-29	1.00	0.97	1.18	3.1	2.5	3.3
28-30	1.24	1.28	1.47	2.1	1.6	1.9

Table SA5: Compound (E)-34 relative energies (kcal mol⁻¹) and populations (percentages) obtained from theoretical calculations at the B3LYP-D3/6-311+G** level.

Conformer	ΔΕ	ΔH	ΔG	% P (Δ E)	% P (Δ <i>H</i>)	%P (Δ <i>G</i>)
(<i>E</i>)- 34-1	0.38	0.82	1.06	8.9	5.5	3.1
(<i>E</i>)- 34-2	0.25	0.50	0.74	11.1	9.6	5.3
(<i>E</i>)- 34-3	1.58	1.79	2.08	1.2	1.1	0.6
(<i>E</i>)- 34-4	1.17	1.47	1.87	2.4	1.8	0.8
(<i>E</i>)- 34-5	1.56	1.73	1.67	1.2	1.2	1.1
(<i>E</i>)- 34-6	0.08	0.18	0.38	14.9	16.5	9.7
(<i>E</i>)- 34-7	0.70	0.96	0.96	5.2	4.4	3.7
(<i>E</i>)- 34-8	0.00	0.00	0.00	17.0	22.2	18.5
(<i>E</i>)- 34-9	0.45	0.58	0.23	7.9	8.3	12.5
(<i>E</i>)- 34-10	1.84	2.25	2.60	0.8	0.5	0.2
(<i>E</i>)- 34-11	2.29	2.41	2.00	0.4	0.4	0.6
(E)-34-12 ^[a]	2.29	2.41	2.00			
(<i>E</i>)- 34-13	0.86	0.94	0.75	4.0	4.5	5.2
(<i>E</i>)- 34-14	2.70	3.16	3.79	0.2	0.1	0.0
(<i>E</i>)- 34-15	1.26	1.54	1.48	2.0	1.6	1.5
(<i>E</i>)- 34-16	0.69	0.62	0.15	5.3	7.7	14.3
(<i>E</i>)- 34-17	1.07	1.52	1.61	2.8	1.7	1.2
(E)-34-18 ^[a]	1.07	1.52	1.61			
(<i>E</i>)- 34-19	3.09	3.41	3.25	0.1	0.1	0.1
(<i>E</i>)- 34-20	2.67	2.88	2.50	0.2	0.2	0.3
(<i>E</i>)- 34-21	2.44	2.65	2.24	0.3	0.3	0.4
(<i>E</i>)- 34-22	0.88	1.12	0.63	3.8	3.3	6.4
(<i>E</i>)- 34-23	3.06	3.26	2.32	0.1	0.1	0.4
(<i>E</i>)- 34-24	2.31	2.59	2.78	0.3	0.3	0.2
(<i>E</i>)- 34-25	0.95	1.12	0.59	3.4	3.3	6.9
(<i>E</i>)- 34-26	1.95	2.21	2.01	0.6	0.5	0.6
(<i>E</i>)- 34-27	2.02	2.21	1.89	0.6	0.5	0.8
(<i>E</i>)- 34-28	1.23	1.55	1.30	2.1	1.6	2.1
(<i>E</i>)- 34-29	1.02	1.32	0.98	3.0	2.4	3.5
(<i>E</i>)- 34-30	2.31	2.61	2.75	0.3	0.3	0.2

[a]Conformers (*E*)-34-12 and (*E*)-34-18 interconvert to the most stable conformer geometries ((*E*)-34-11 and (*E*)-34-17, respectively, and are not taken into account for conformer population values.

Table SA6: Compound (Z)-34 relative energies (kcal mol⁻¹) and populations (percentages) obtained from theoretical calculations at the B3LYP-D3/6-311+G** level.

Conformer	ΔΕ	ΔH	ΔG	% P (Δ E)	%P(Δ <i>H</i>)	%P (Δ <i>G</i>)
(Z)-34-1	0.00	0.00	0.00	15.7	21.0	51.8
(Z)-34-2	0.97	1.25	2.51	3.0	2.6	0.7
(Z)-34-3	1.05	1.37	2.52	2.6	2.1	0.7
(Z)-34-4	0.74	0.92	2.34	4.5	4.4	1.0
(Z)-34-5	1.37	1.58	2.49	1.6	1.5	0.8
(Z)-34-6	0.62	0.92	2.14	5.5	4.4	1.4
(Z)-34-7	0.27	0.23	0.87	9.9	14.2	11.9
(Z)-34-8	1.59	1.82	2.71	1.1	1.0	0.5
(Z)-34-9	0.43	0.65	1.34	7.5	7.0	5.4
(Z)-34-10 ^[a]	0.43	0.65	1.34			
(Z)-34-11	1.45	1.59	2.60	1.3	1.4	0.6
(Z)-34-12	1.26	1.55	2.76	1.9	1.5	0.5
(Z)-34-13	0.49	0.69	1.62	6.8	6.5	3.4
(Z)-34-14	0.31	0.64	1.91	9.3	7.1	2.1
(Z)-34-15	0.68	0.81	1.32	4.9	5.4	5.6
(Z)-34-16	2.39	2.75	3.97	0.3	0.2	0.1
(Z)-34-17	1.12	1.54	2.61	2.4	1.5	0.6
(Z)-34-18	0.63	0.85	1.45	5.4	5.0	4.4
(Z)-34-19	0.97	1.19	2.12	3.0	2.8	1.4
(Z)-34-20	1.68	1.93	2.63	0.9	0.8	0.6
(Z)-34-21	1.00	1.31	2.30	2.9	2.3	1.1
(Z)-34-22	1.37	1.87	2.58	1.5	0.9	0.7
(Z)-34-23	0.85	1.17	2.05	3.7	2.9	1.6
(Z)-34-24	3.43	3.79	4.83	0.0	0.0	0.0
(Z)-34-25	2.27	2.50	3.46	0.3	0.3	0.2
(Z)-34-26	1.60	1.69	1.88	1.0	1.2	2.1
(Z)-34-27	3.17	3.50	4.57	0.1	0.1	0.0
(Z)-34-28	1.69	2.02	3.33	0.9	0.7	0.2
(Z)-34-29	1.69	2.04	3.03	0.9	0.7	0.3
(Z)-34-30	1.75	2.13	3.37	0.8	0.6	0.2

[[]a] Conformer (Z)-34-10 interconverts to the most stable conformer geometry (Z)-34-9 and is not taken into account for conformer population value

 $\label{eq:compounds} Table \, S1. \, (A) \, Macrocyclic, (B) \, nitro, \, and \, (C) \, polycyclic \, musk-smelling \, and \, analog \, compounds \, used.$

A

Ring	IUPAC name (common name)	Code	Structure	Source
	3-Methylcyclopentadecan-1-one (Racemic muscone)	1		Santa Cruz
15	(R)-3-Methylcyclopentadecan-1-one (R)-Muscone)	(<i>R</i>)-1		In-house synthesis
	Cyclopentadecanone (Exaltone)	2		Sigma-Aldrich
	Cyclopentadecanol	3	OH	Sigma-Aldrich
	Cyclopentadecane	4		In-house synthesis
	Thiacyclopentadecane 1-oxide	5		In-house synthesis

	1-Oxacycloheptadec-7-en-2-one (Ambrettolide)	13		Sigma-Aldrich
	1,4-Dioxacycloheptadecane-5,17-dione (Ethylene brassylate) (Astrotome)	14		Sigma-Aldrich
12	Cyclododecanone	15		Sigma-Aldrich
	Oxacyclotridecan-2-one	16		Sigma-Aldrich
13	Thiacyclotridecane-1-oxide	17	s'/	In-house synthesis
	Azacyclotridecan-2-one	18	HN	Sigma-Aldrich

IUPAC name (common name)	Code	Structure	Source
1-(4- <i>tert</i> -Butyl-2,6-dimethyl-3,5-dinitrophenyl)ethanone (Musk ketone)	19	NO_2 NO_2	Sigma-Aldrich
1- <i>tert</i> -Butyl-3,5-dimethyl-2,4,6- trinitrobenzene (Musk xylene)	20	O_2N NO_2 NO_2	Chemsky
1- <i>tert</i> -Butyl-3,4,5-trimethyl-2,6-dinitrobenzene (Musk tibetene)	21	NO ₂	Sigma-Aldrich
1-tert-Butyl-2-methoxy-4-methyl-3,5- dinitrobenzene (Musk ambrette)	22	O_2N O_2N O_2N O_2N	Sigma-Aldrich
2-Methyl-1,3,5-trinitrobenzene (Trinitrotoluene) (TNT)	23	O_2N O_2 O_2	J&K
1-Methyl-2,4-dinitrobenzene (2,4-Dinitrotoluene) (DNT)	24	O_2N NO_2	Sigma-Aldrich

IUPAC name (common name)	Code	Structure	Source
1-(1,1,2,6-Tetramethyl-3-propan-2-yl-2,3-dihydroinden-5-yl)ethanone (Traseolide)	25		TRC
4,6,6,7,8,8-Hexamethyl-1,3,4,7-tetrahydrocyclopenta[g]isochromene (Galaxolide)	26		Sigma-Aldrich
1-(3,5,5,6,8,8-Hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone (Tonalide)	27		Sigma-Aldrich

Table S2. EC₅₀ and top values of the dosage-response curves in Figures 2 and S1. EC₅₀ values are given in μ M. The number after "/" indicates previously published data from Sato-Akuhara *et al.* The responses of OR5AN1 are normalized to the highest value of racemic muscone, and the responses of OR1A1 to musk ambrette. Grey boxes indicate little or no response where no meaningful EC₅₀ or top values can be obtained.

Dina	Odorant	Code	OR5A	N1	OR1A1	
Ring	Odorant	Code	EC_{50}	top	EC_{50}	top
	Racemic muscone	1	14.21/12.5	1.22		
	Cyclopentadecanone	2	7.32	1.20		
	Cyclopentadecanol	3	9.05	0.32		
15	Cyclopentadecane	4				
	Thiacyclopentadecane 1-oxide	5	10.58	0.41		
	Thiacyclopentadecane	6				
	Cyclopentadecanethiol	7				
	Isomuscone	8	19.00	1.11		
16	ω-Pentadecalactone	9	4.78	0.32		
	Ambretone	10	9.15	1.21		
	Dihydrocivetone	11	5.23	0.50		
17	Civetone	12	3.43	0.41		
1 /	Ambrettolide	13				
	Ethylene brassylate	14				
12	Cyclododecanone	15				
	Oxacyclotridecan-2-one	16				
13	Thiacyclotridecane 1-oxide	17				
	Azacyclotridecan-2-one	18				
	Musk ketone	19	0.02/0.8	1.34		
	Musk xylene	20	1.28/16.7	1.04	15.71	0.35
mitmo	Musk tibetene	21	1.74	1.27	16.67	0.26
nitro	Musk ambrette	22			7.69	1.21
	Trinitrotoluene	23				
	2,4-Dinitrotoluene	24				
	Traseolide	25				
poly	Galaxolide	26				
	Tonalide	27				

Table S3. Fluorinated muscone-related analogues used.

IUPAC name			
(common name)	Code	Structure	Source
(<i>R</i>)-6,6-Difluoro-3-methylcyclopentadecan- 1-one ((<i>R</i>)-6,6-Difluoromuscone)	28	O F F	In-house synthesis
(<i>R</i>)-7,7-Difluoro-3-methylcyclopentadecan- 1-one ((<i>R</i>)-7,7-Difluoromuscone)	29	F	In-house synthesis
(<i>R</i>)-8,8-Difluoro-3-methylcyclopentadecan- 1-one ((<i>R</i>)-8,8-Difluoromuscone)	30	F	In-house synthesis
(<i>R</i>)-10,10-Difluoro-3-methylcyclopentadecan-1-one ((<i>R</i>)-10,10-Difluoromuscone)	31	F	In-house synthesis
(R)-3-Methylcyclopentadec-6-en-1-one E: $Z = 10:1$ ((R)-6,7-Dehydromuscone (E: $Z = 10:1$))	32		In-house synthesis
(R,Z)-3-Methylcyclopentadec-6- en-1-one ((R,Z)-6,7-Dehydromuscone)	(Z)- 32		In-house synthesis
(R)-6,6-Difluoro-3- methylcyclopentadec-8-en-1-one E:Z=3:2 (R)-9,10-Dehydro-6,6-difluoromuscone ($E:Z$ 3:2)	33	O F F	In-house synthesis

(<i>R</i> , <i>E</i>)-7,7-Difluoro-3-methylcyclopentadec-10-en-1-one ((<i>R</i> , <i>E</i>)-10,11-Dehydro-7,7-dilfuoromuscone)	(E)- 34	O F F	In-house synthesis
(<i>R</i> , <i>Z</i>)-7,7-Difluoro-3-methylcyclopentadec-10-en-1-one ((<i>R</i> , <i>Z</i>)-10,11-Dehydro-7,7-difluoromuscone)	(Z)- 34	F F	In-house synthesis
(R)-8,8-Difluoro-3- methylcyclopentadec-5-en-1-one E:Z=10:1 ((R)-5,6-Dehydro-8,8-difluoromuscone) ($E:Z=10:1$)	35	F	In-house synthesis
(R,E)-9,9-Difluoro-3- methylcyclopentadec-6-en-1-one ((R,E)-6,7-Dehydro-9,9-difluoromuscone)	(E)- 36	FF	In-house synthesis
(<i>R</i> , <i>E</i>)-10,10-Difluoro-3- methylcyclopentadec-6-en-1-one ((<i>R</i> , <i>E</i>)-6,7-Dehydro-10,10- difluoromuscone)	(E)- 37	FF	In-house synthesis
(R,Z)-10,10-Difluoro-3- methylcyclopentadec-6-en-1-one $((R,Z)$ -6,7-Dehydro-10,10-difluoromuscone)	(Z)- 37	F F	In-house synthesis

Table S4. EC₅₀ and top values of the dosage-response curves in Figure 4. EC₅₀ values are given in μ M. The responses of OR5AN1 are normalized to the highest value of (R)-muscone.

		OR5AN1	
Odorant	Code	EC_{50}	Тор
(R)-Muscone	(R)- 1	19.94	1.09
(R)-6,6-Difluoromuscone	28	4.63	0.60
(R)-7,7-Difluoromuscone	29	12.56	0.73
(R)-8,8-Difluoromuscone	30	3.23	1.00
(R)-10,10-Difluoromuscone	31	11.20	0.28
(R)-6,7-Dehydromuscone $(E:Z=10:1)$	32	15.47	0.84
((R,Z)-6,7-Dehydromuscone	(Z)-32	17.25	0.76
(R)-9,10-Dehydro-6,6-difluoromuscone $(E:Z=3:2)$	33	10.75	0.46
(R,E)-10,11-Dehydro-7,7-dilfuoromuscone	(E) -34	0.03	1.26
(R,Z)-10,11-Dehydro-7,7-dilfuoromuscone	(Z)-34	3.77	1.40
(R)-5,6-Dehydro-8,8-difluoromuscone $(E:Z=10:1)$	35	0.27	0.84
(R, E)-6,7-Dehydro-9,9-difluoromuscone	(E) -36	14.07	0.87
(R, E)-6,7-Dehydro-10,10-difluoromuscone	(E)-37	7.22	0.37
(R, Z)-6,7-Dehydro-10,10-difluoromuscone	(Z)-37	23.33	0.39

Table S5. Docking results for OR5AN1.

OR5AN1	Odorants	Code	Glide docking score	EC50 μΜ
	Musk ketone	19	-5.50	0.02
	Musk xylene	20	-5.75	1.28
	Musk tibetene	21	-5.89	1.74
	Civetone	12	-6.51	3.43
	ω-Pentadecalactone	9	-6.55	4.78
	Dihydrocivetone	11	-6.74	5.23
	Cyclopentadecanone	2	-6.37	7.32
	Cyclopentadecanol	3	-6.85	9.05
	Ambretone	10	-7.28	9.15
	Thiacyclopentadecane 1-oxide	5	-5.62	10.58
	(R)-Muscone	(R)- 1	-6.80	19.94
	(S)-Muscone	(S)- 1	-6.85	-
	Isomuscone	8	-6.24	19.0
	(R)-6,6-Difluoromuscone	28	-7.24	4.63
	(R, E)-9,10-Dehydro-6,6-difluoromuscone	(E)- 33		10.75
	(R)-7,7-Difluoromuscone	29	-7.08	12.56
	(R, Z)-10,11-Dehydro-7,7-difluoromuscone	(Z)- 34	-6.72	3.77
	(R, E)-10,11-Dehydro-7,7-difluoromuscone	(E)- 34	-7.06	0.03
	(S, E)-10,11-Dehydro-7,7-difluoromuscone	-	-7.20	-
	(R)-8,8-Difluoromuscone	30	-7.42	3.23
	(S)-8,8-Difluoromuscone	-	-7.30	-
	(R, Z)-5,6-Dehydro-8,8-difluoromuscone	(Z)-35	-6.77	0.27
	(R,E)-6,7-Dehydro-9,9-difluoromuscone	(E)- 36	-7.37	14.07
	(R)-10,10-Difluoromuscone	31	-7.09	11.20
	(R, E)-6,7-Dehydro-10,10-difluoromuscone	(E)- 37	-7.41	7.22
	(R, Z)-6,7-Dehydro-10,10-difluoromuscone	(Z)- 37	-6.89	23.33
	(R, E)-6,7-Dehydromuscone	(E)- 32	-7.07	15.47
	(R,Z)-6,7-Dehydromuscone	(Z)-32	-7.02	17.25

Table S6. Predicted activities of the training and test set molecules.

Odorants	Code	QSAR Set
(R)-9,10-Dehydro-6,6-difluoromuscone	(E)- 33	training
(R)-7,7-Difluoromuscone	29	training
(R,Z)-10,11-Dehydro-7,7-difluoromuscone	(Z)-34	training
Cyclopentadecanone	2	test
Thiacyclopentadecane 1-oxide	5	test
Civetone	12	test
Musk ketone	19	training
Musk xylene	20	training
Dihydrocivetone	11	training
ω-Pentadecalactone	9	training
Ambretone	10	training
(R)-8,8-Difluoromuscone	30	training
(R)-5,6-Dehydro-8,8-difluoromuscone	(Z)-35	training
(R)-6,7-Dehydro-9,9-difluoromuscone	36	training
(R,E)-10,11-Dehydro-7,7-difluoromuscone	(<i>E</i>) -34	training
(R)-10,10-Difluoromuscone	31	training
(R,E)-6,7-Dehydro-10,10-difluoromuscone	(E) -37	training
(R,Z)-6,7-Dehydro-10,10-difluoromuscone	(Z) -37	training
(R)-6,7-Dehydromuscone	(E)-32	test
(R,Z)-6,7-Dehydromuscone	(Z)-32	training
(R)-6,6-Difluoromuscone	28	training
Musk tibetene	21	test
Isomuscone	8	training
Cyclopentadecanol	3	training
(R)-Muscone	(<i>R</i>)-1	test

 $\label{thm:complex} \textbf{Table S7. ONIOM extrapolated energies for the optimized OR5AN1 model in complex with musk odorants.}$

OR5AN1	Odorants	Code	ONIOM Extrapolated energy (a.u.)
	Musk ketone	19	-1584.93977773
	Musk xylene	20	-1636.7829038
	Musk tibetene	21	-1471.60850711
	Civetone	12	-1296.27446906
	ω-Pentadecalactone	9	-1294.10033567
	Dihydrocivetone	11	-1297.50679115
	Cyclopentadecanone	2	-1218.79721278
	Cyclopentadecanol	3	-1220.03172238
	Ambretone	10	-1256.95243294
	Thiacyclopentadecane 1-oxide	5	-1578.91272652
	(R)-Muscone	(R)- 1	-1258.16192466
	Isomuscone	8	-1258.16333633
	(R)-6,6-Difluoromuscone	28	-1456.65485542
	(R)-9,10-Dehydro-6,6-difluoromuscone	(E)- 33	-1455.4266909
	(R)-7,7-Difluoromuscone	29	-1456.64419226
	(R, Z)-10,11-Dehydro-7,7-difluoromuscone	(Z)-34	-1455.44207584
	(R, E)-10,11-Dehydro-7,7-difluoromuscone	(E)-34	-1455.43586371
	(R)-8,8-Difluoromuscone	30	-1456.6500194
	(R)-5,6-Dehydro-8,8-difluoromuscone	(Z)-35	-1455.42865372
	(R)-6,7-Dehydro-9,9-difluoromuscone	(E)- 36	-1455.41311478
	(R)-10,10-Difluoromuscone	31	-1456.65265928
	(R, E)-6,7-Dehydro-10,10-difluoromuscone	(E)- 37	-1455.41329544

	(R, Z)-6,7-Dehydro-10,10-difluoromuscone	(Z)- 37	-1455.41903509
	(R)-6,7-Dehydromuscone	(E)- 32	-1256.96734884
	(R,Z)-6,7-Dehydromuscone	(Z)-32	-1256.94202006
OR1A1	Musk tibetene	21	-2026.14185747
	Musk xylene	20	-2191.28727834
	Musk ambrette	22	-2062.07382608