Template 6: Course Learning Syllabus

Course Learning Syllabus (//includes Learning Outcomes & Learning Plan & Assessment Plan)

Course	18	MAB10	Cours	-						ourse	В	BS Ba		asic Sciences						P	С									
Code	de 2T Name ANALY.		NALYS	15	Ca						tegory			3 1 0				0	4											
requis	Pre- Co- requisite 18MAB101T requisite N// Courses					NII								_	ress urse	1	Vil													
	Course Offering Mathematics						Data Codes			rds			n	il																
Course Ration		•	The	, ,	e of lea	arning this	course is	L	-eari	ning				F	Prog	ram	Le	arnin	ng C	Outc	ome	:s (PLC	ソ						
CLR-1	triple	ain knowle le Integral neerina: In	and ap	pply then				1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15				
CLR-2	Engineering Industries To gain knowledge in evaluation of Surface and Volume Integral are Application of Gauss theorem, Stokes and Green's theorem all Engineering fields																													
CLR-3	7-3 To know the techniques of Laplace Transforms and inverse transform and apply them in the problems of Science and Engineering 7-4 To know the properties of Complex functions and apply them in the all Engineering fields				inverse transform and apply them in the problems					pply them in the problems												ý								
CLR-4 :					ns and	(Bloom)	, %			ā		nt	search			Sustainability		Work		псе										
CLR-5	integ	ain knowi arals involv rem and a	ing co	mplex fu	ınction	ns using	Residue	Thinkina	Proficiet			Engineering Knowledge	Analysis	Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	જ		& Team	ication	Mgt. & Finance	g Learning							
Course Outcon		•		the end able to:	of this	is course, le	earners wil	Jevel of		Expected		Engineeri	Problem Analysis	Design &	Analysis,	Modern	Society o	Environment	Ethics	Individual	Communication	Project 1	Life Long	P50 - 1	PSO - 2	P50 - 3				
CLO-1 :		familiarity change of			n of n	multiple in	ntegrals	2	85	80		L		M						M			Н							
CLO-2 :	calcu	knowledge lus in prob plving ODE	blems ,					2	85	80		L			M	M														
сьо-з :	Many Engineering problems can be transformed in t CLO-3 problems involving ODE, PDE and integrals. Laplace transform method and complex analytic methods ca be used for solving them			Laplace	2	85	80			M							М			Н										
CLO- 4:	Gain	knowledge tions and	in Fu	ındament		f complex	analytic	2	85	80		L	M		L					М			Н							
CLO-5	Gain	knowledge	in ev	aluating	impro	per integ	rals using	2	85	80			М	M						M			Н							

:	Residue theorem involving problems in Science and							
	Engineering							

		Learning Unit / Module 1	Learning Unit / Module 2	Learning Unit / Module 3	Learning Unit / Module 4	Learning Unit / Module 5	
	ation our)	12	12	12	12	12	
<i>5-1</i>	Evaluation of dou SLO- integration Cartesian and plan polar coordinates		Review of vectors in 2,3 dimensions,	Laplace Transforms of standard functions	Definition of Analytic Function - Cauchy Riemann equations	Cauchy's integral formulae - Problems	
<i>3</i> -1	<i>SLO-</i>	Evaluation of double o- integration of plane polar coordinates		Transforms properties	Cauchy Riemann equations	Cauchy's integral formulae- Problems	
	Evaluation of double		curl - Solenoidal	Transforms of Derivatives and Integrals	Properties of analytic function functions	Cauchy's integral formulae- Problems	
<i>5-2</i>	<i>SLO-</i>	Evaluation of double integration of plane polar coordinates	Irrotational fields	Transform of derivatives and integrals	Determination of analytic function using – Milne- Thomson's method	Taylor's expansions with simple problems	
	SLO-	Evaluation of double Vector identities SLO- integral by changing (without proof) - of order of Directional integration derivatives		Initial value theorems (without proof) and verification for some problems	Determination of analytic function using - Milne- Thomson's method	Taylor's expansions with simple problems	
5-3	<i>SLO-</i>	Evaluation of double integral by changing of order of integration	Line integrals	Final value theorems (without proof) and verification for some problems	Determination of analytic function using - Milne- Thomson's method	Laurent's expansions with simple problems	
<i>5-4</i>	SL0-	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet	
<i>J</i> =4	SL0- 2	Problem solving using tutorial sheet using tutorial sheet 4		Problem solving using tutorial sheet	Problem solving using tutorial sheet	Problem solving using tutorial sheet 13	
<i>5-5</i>	SLO-	Evaluation of double integral by changing of order of integration	Line integrals	Inverse Laplace transforms using partial fractions	Conformal mappings: magnification	Laurent's expansions with simple problems	

		Area as a double integral (Cartesian)	Surface integrals	Inverse Laplace transforms sing Partial fractions	Conformal mappings:	Singularities	
		Area as a double integral (Cartesian)	Surface integrals	Inverse Laplace transforms section shifting theorem	Conformal mappings: inversion	Types of Poles and Residues	
5-6	<i>SLO-</i> 2	Area as a double integral (polar)	Volume Integrals	LT using Convolution theorem -problems only	Conformal mappings: inversion	Types of Poles and Residues	
	SLO- 1	Area as a double integral (polar)	ea as a double Gegral (polar) Green's theorem		Conformal mappings: reflection	Cauchy's residue theorem (without proof)-	
<i>5</i> -7	<i>SLO-</i>	Triple integration in Cartesian coordinates	Green's theorem (without proof),	ILT using Convolution theorem -problems only	Conformal mappings: reflection	Contour integration: Unit circle·	
	SLO- 1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14	
5-8	5L0- 2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14	
	SLO- 1	Conversion from Cartesian to polar in double integrals	Gauss divergence theorem (without proof), verification	LT of periodic functions -problems only	bilinear transformation	Contour integration: Unit circle·	
5-9	<i>SLO-</i>	Conversion from Cartesian to polar in double integrals	Gauss divergence theorem (without proof) applications to cubes.	LT of periodic functions -problems only	bilinear transformation	Contour integration: Unit circle	
5-10	5LO- 1	Triple integration in Cartesian coordinates	Gauss divergence theorem (without proof applications to parallelepiped.	Applications of Laplace transforms for solving linear ordinary differential equations up to second order with constant coefficient only	bilinear transformation	Contour integration: semicircular contour·	
	<i>SLO-</i> 2	Triple integration in Cartesian coordinates		Applications of Laplace transforms for solving linear ordinary differential equations up to	bilinear transformation	Contour integration: semicircular contour	

C-11	SLO- 1	Triple integration in Cartesian coordinates	, ,	second order with constant coefficient only Solution of Integral equation and integral equation involving convolution type	Cauchy's integral theorem (without proof)	Contour integration: semicircular contour·
5-11	_	Area of triple Integral	' '	Solution of Integral equation and integral equation involving convolution type	Cauchy's integral theorem applications	Contour integration: semicircular contour·
	SLO- 1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
5-12	<i>SLO-</i> 2	Application of Multiple integral in engineering	Application of Line and Volume Integrals in engineering	Application of Laplace Transform in engineering	Application of Bilinear Transformation and Cauchy Integral in engineering	Application Contour integration in engineering

Learning Resources

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010
- 5. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

	Level of		Final Evamination (110%)		
	Thinking	CA - 1 (20%)	CA - 2 (20%)	CA - 3 (20%) #	Final Examination (40%)
Level	Remember	40.04	20.00	20.00	20.00
1	Understand	40 %	30 %	30 %	30 %
Level	Apply	40.04	40.04	40.04	40.04
2	Analyze	40 %	40 %	40 %	40 %
Level	Evaluate	00.04	20.44	00.04	20.00
3	Create	20 %	30 %	30 %	30 %

[#] CA - 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf· Paper etc·,

SLO - Session Learning Outcome

Co	Course Designers										
(a	(a) Experts from Industry										
7	Mr·V·Maheswaran	CTS, Chennai	maheswaran@yah	2							
′	//ir-v-maneswaran	C13, Chellilai	oo·com	_							
(Ł	(b) Experts from Higher Technical Institutions										
3	Du W. C. Cha-Warman	UT Clamai	kcskumar@iitm·a	4	Do nonton don	Panadana Universita					
3	Dr·K·C·SivaKumar	IIT, Chennai	c·in	4	Dr·nanjundan	Bangalore University	nanzandan@gmail·com				
(Ł	(b) Internal Experts										
_	Du A Carrie Invita	SRMIST	givindarajan·a@kt		Dr·sundarammal	SRMIST	Sundarammal·k@srmu				
5	Dr·A·Govindarajan	JKINIJ I	r·srmuniv·ac·in	О	kesavan	JKIIIJ I	niv·ac·in				

To emerge as a World - Class University in creating and disseminating knowledge, and providing students a unique learning experience in Science, Technology, Medicine, Management and other areas of scholarship that will best serve the world and betterment of mankind.

MOVE UP through international alliances and collaborative initiatives to achieve global excellence ACCOMPLISH A PROCESS to advance knowledge in a rigorous academic and research environment.

ATTRACT AND BUILD PEOPLE in a rewarding and inspiring environment by fostering freedom, empowerment, creativity and innovation \cdot