Continuous Random Variables

[Ross S5.1]

We saw random variables where the set of possible outcomes was discrete. In some cases, a random variable can take a continuum of values:

X = time at which a train arrivesY = voltage across a resistor

Z = rainfall measured in mm

negative function $f_X(x)$ such that $P[X \in B] = \int_{B} f_{X}(x) dx = \int_{B} f_{X}(u) du$

Definition 15.1: We say X is a continuous random variable if there is a non-

$$f_X(x)$$
 is called **probability density function** (pdf).

[Textbook omits subscript X on $f_X(x)$...]

at every point $x \in \mathbb{R}^3$, then the mass inside any volume V is:

This is similar to mass density: if I know $\rho(x)$, the **density of mass** in kg/m³

3D volume $V \subset \mathbb{R}^3$ density $\rho(\underline{x})$ at $\underline{x} \in \mathbb{R}^3$

$$P[X \in B] = \int_B f_X(x) \ dx$$

shaded area = $P[X \in B]$

Since
$$X$$
 must take some value:
$$1 = P[X \in (-\infty, \infty)] = \int_{-\infty}^{\infty} f_X(x) \ dx.$$

Note: Say X has units of kg. Since dx has units of kg, $f_X(x)$ has units

of kg^{-1} .

Once we know
$$f_X(x)$$
, all probability statements about X can be answered:

(15.1)

1) $P[X \in [a, b]] = \int_a^b f_X(x) dx$ fx(x)

2)
$$P[X = a] = P[X \in [a, a]] = \int_a^a f_X(x) dx$$

4) $f_X(a) = \frac{d}{da} F_X(a)$

a) between 50 and 150 months?

 $\lambda = 1/100$

So,

b)

Solution:

 $=F_X\left(\frac{a}{2}\right)$

pdf

b) fewer than 100 months? Solution: a) The pdf of X must integrate to 1:

Example 15.1: The lifetime of a motor in months is a random variable with

 $f_X(x) = \begin{cases} \lambda e^{-x/100} & x \ge 0\\ 0 & x < 0 \end{cases}$

for some constant λ . What is the probability that it functions for

 $=\lambda \int_0^\infty e^{-x/100} dx$ $= \lambda \left[-100e^{-x/100} \right]_0^{\infty}$

 $1 = \int_{-\infty}^{\infty} f_X(x) dx$

 $P[50 < X < 150] = \int_{50}^{150} f_X(x) dx$ $= \int_{50}^{150} \frac{1}{100} e^{-x/100} dx$ ≈ 0.383 $P[X < 100] = \int_{-\infty}^{100} f_X(x) dx$ $= \int_{0}^{100} \frac{1}{100} e^{-x/100} dx$

 ≈ 0.632

 $\int_{-\infty}^{\infty} f_Y(u) \ du = \int_{-\infty}^{\infty} \frac{1}{2} f_X\left(\frac{u}{2}\right) \ du \quad \text{let } v = u/2 \to dv = du/2$

 $= \int_{-\infty}^{\infty} f_X(v) \ dv$

 $F_Y(a) = P[Y \le a]$ $= P[X \le \frac{a}{2}]$

 $f_Y(a) = \frac{d}{da} F_X\left(\frac{a}{2}\right) = f_X\left(\frac{a}{2}\right) \times \frac{1}{2}$

Example 15.2: Let X have pdf $f_X(x)$, and Y = 2X. Find $f_Y(y)$.