A Simple Recommender System for Pseudo Neighborhoods

Kevin Rayco May 18, 2020

Introduction

- Moving to a new place can sometimes be difficult.
- Let's assume that one way to ease the moving process is to make sure that the new place is similar in terms of the neighborhood.
- This project is a simple recommendation system that gives a ranking of pseudo neighborhoods within a target location based on the similarity of venues in the neighborhood with an origin location.

Data

- Data needed:
 - o coordinates of origin location and target location
 - o venue information: venue ID, name, coordinates, category name, category ID
- Data sources:
 - GeoPy for the coordinates
 - Foursquare API for the venue information

Data

Sample Data:

- Origin Location: Brooklyn, New York
 - Total Venues: 15 closest venues
- Target Location: Toronto, Canada
 - Total Venues: 222 venues
 - Venues of Interest: 98 Venues

Data: Brooklyn, New York

Data: Toronto, Canada

Methodology

- Neighborhood Definition:
 - Define neighborhoods by venues near each other
 - Use k-means clustering to define neighborhoods
 - Set number of clusters to 42 (ratio of coordinates of standard deviations)
 - Features are latitude and longitude
- Neighborhood Profiling:
 - Define factors influencing similarity
 - Use presence of venues of interest, regardless of frequency
- Neighborhood Ranking:
 - Recommend neighborhood by probability
 - Use Gaussian Naive Bayes for multiclass probabilistic classification

Methodology

28

Number of clusters: 42

220

Neighborhood Definition:

	Neighborhood ID	index	Venue ID	Name	Latitude	Longitude	Category ID	Category
216	5	227	4bd444f5462cb71393ebdf07	Francesca Bakery	43.787716	-79.256852	4bf58dd8d48988d16a941735	Bakery
217	11	228	5675fb22498e98ce8baff885	Crown Pizza	43.824307	-79.247393	4bf58dd8d48988d1ca941735	Pizza Place
218	11	229	4aef94c7f964a52060d921e3	Walmart	43.833671	-79.256036	4bf58dd8d48988d10f951735	Pharmacy
219	8	230	4e0b137722713e13018e7117	Tim Hortons / Esso	43.801863	-79.199296	4bf58dd8d48988d148941735	Donut Shop

53669066498eb02e34d50dcd Yoga Grove - Small Classes. Big Difference. 43.649227 -79.506812 4bf58dd8d48988d102941735

Methodology

Neighborhood Profiling:

Target Neighborhood Profiles:

	Neighborhood ID	Playground	Gym / Fitness Center		Yoga Studio	Furniture / Home Store	Donut Shop	Juice Bar	Caribbean Restaurant	Pharmacy	Bakery	Pizza Place
0	0	0	1	0	1	0	0	0	1	1	1	0
1	1	0	0	0	1	0	0	1	0	0	1	1
2	2	0	0	1	1	0	0	0	0	1	1	0
3	3	0	0	1	0	0	0	0	0	1	1	1
4	4	0	0	0	0	1	0	0	0	1	1	1

Analysis

- Neighborhood profile similarities are calculated by presence of venues of interest
- Used Gaussian Naive Bayes, which is used for multiclass probabilistic classification
- Predicted probability tends to result in extreme values of one and zeros
- Used log-probability to rank neighborhood profile
- Output Range:
 - Negative infinity (zero probability)
 - Up to 0 (equivalent to 100% probability).

Analysis

Log-probability and Mean Coordinates of Top Neighborhoods

	Log Probability	Neighborhood ID	Mean Latitude	Mean Longitude
0	0.000000e+00	0	43.669676	-79.388641
1	-2.075294e+09	1	43.645195	-79.418322
2	-2.075294e+09	2	43.648460	-79.399714
3	-2.075294e+09	3	43.776172	-79.256715
4	-4.150588e+09	4	43.658614	-79.408111

Analysis

Target Neighborhood Profiles sorted by Rank

	Neighborhood ID	Playground	Gym / Fitness Center	Dank	Yoga Studio	Furniture / Home Store	Shop	Juice Bar	Restaurant	Pharmacy	Bakery	Pizza Place
0	0	0	1	1	1	0	0	0	1	1	1	0
1	1	1	0	0	1	0	0	0	0	1	1	1
2	2	0	0	0	1	0	0	1	0	0	1	1
3	3	1	0	0	1	1	0	0	0	0	1	0
4	4	0	0	0	0	1	0	0	0	1	1	1

Results & Discussion

- Let's view the map to see the neighborhood ranking
- Colored by rank of log probability
- We use viridis colormap to color each neighborhood.
 - Higher ranking neighborhoods tend to be more yellow
 - Lower ranking neighborhoods tend to be more blue
 - Venues that are not of interest are still shown but in lower opacity.

Results & Discussion 375 378 379 379 We can observe the high ranking neighborhoods from this as desired. Billy Bishop Toronto City Airport

Conclusion and Recommendations

- Interested users and stakeholders can already utilize this system as is and gain desirable recommendations.
- Improvements:
 - Neighborhood clustering by finding global maximum or consistent clustering
 - Visualizing neighborhood boundaries
 - Redefinition of a neighborhood profile
 - Adding more features aside from venues