Coulomb Autoencoders

Emanuele Sansone, Hafiz Tiomoko Ali, Sun Jiacheng Huawei Noah's Ark Lab (London)

Contents

- Motivation
- Background on Autoencoders
- The Problem of Local Minima
- Generalization Analysis
- Conclusions

Motivation

BigGANs [Brock et al. 2019]

Improvement of deep generative models (GANs, Flow, Autoregressive, VAEs) in recent years Lack of theoretical understanding:

- 1. Training (i.e. convergence guarantees to optimal solutions)
- 2. Generalization (i.e. quality of solutions with finite number of samples)

- Motivation
- Background on Autoencoders
- The Problem of Local Minima
- Generalization Analysis
- Conclusions

Goal

Implicitly learning the unknown density $p_X(x)$

Goal

Implicitly learning the unknown density $p_X(x)$

Problem formulation

In order to ensure that $p_X(x) = q_X(x)$, we need:

- 1. Left-invertibility $x=g_{\gamma}(f_{\theta}(x))$ on the support of $p_X(x)$
- 2. Density matching $q_Z(z;\theta) = p_Z(z)$

Goal

Implicitly learning the unknown density $p_X(x)$

Problem formulation

In order to ensure that $p_X(x) = q_X(x)$, we need:

- 1. Left-invertibility $x=g_{\gamma}(f_{\theta}(x))$ on the support of $p_X(x)$
- 2. Density matching $q_Z(z;\theta) = p_Z(z)$

Objective:
$$\mathscr{L}(\theta, \gamma) = REC(g_{\gamma} \circ f_{\theta}) + \lambda D(q_{Z}, p_{Z})$$

$$\mathcal{L}\left(\theta,\gamma\right) = REC(\mathbf{g}_{\gamma} \circ \mathbf{f}_{\theta}) + \lambda D\left(\mathbf{q}_{Z},\mathbf{p}_{Z}\right)$$

$$\mathcal{L}(\theta, \gamma) = REC(g_{\gamma} \circ f_{\theta}) + \lambda D(q_{Z}, p_{Z})$$

Properties

- 1. $REC(g_{\gamma} \circ f_{\theta})$ is typically the L2 loss, which is convex
- 2. $D(q_Z, p_Z)$ has many forms, all of them are non-convex
 - Kullback-Leibler Divergence (KL) in Variational Autoencoders
 [Kingma and Welling 2014]
 [Rezende et al. 2014]
 - Maximum-Mean Discrepancy (MMD) in Generative Moment Matching Networks
 [Li et al. 2015]

Wasserstein (WAE)

[Tolstikhin et al. 2018]

Coulomb Autoencoders (CouAEs)

Why MMD should be preferred over KL?

1. KL term is not a proper metric, while MMD is an integral probability metric

- 1. KL term is not a proper metric, while MMD is an integral probability metric
- 2. KL is not always defined (e.g. empirical distributions, namely superposition of Dirac impulses)

- 1. KL term is not a proper metric, while MMD is an integral probability metric
- 2. KL is not always defined (e.g. empirical distributions, namely superposition of Dirac impulses)
- 3. Local minima (problem of reconstruction/posterior collapse, due to stochastic encoder)

- 1. KL term is not a proper metric, while MMD is an integral probability metric
- 2. KL is not always defined (e.g. empirical distributions, namely superposition of Dirac impulses)
- 3. Local minima (problem of reconstruction/posterior collapse, due to stochastic encoder)

- 1. KL term is not a proper metric, while MMD is an integral probability metric
- 2. KL is not always defined (e.g. empirical distributions, namely superposition of Dirac impulses)
- 3. Local minima (problem of reconstruction/posterior collapse, due to stochastic encoder)

- 1. KL term is not a proper metric, while MMD is an integral probability metric
- 2. KL is not always defined (e.g. empirical distributions, namely superposition of Dirac impulses)
- 3. Local minima (problem of reconstruction/posterior collapse, due to stochastic encoder)

- Motivation
- Background on Autoencoders
- The Problem of Local Minima
- Generalization Analysis
- Conclusions

Properties of MMD

$$\left\{z_{i}\right\}_{i=1}^{N} \sim q_{Z}$$

$$\left\{z_{i'}\right\}_{i=1}^{N} \sim p_{Z}$$

$$MMD\Big(\big\{z_i\big\}_{i=1}^N, \big\{z_i'\big\}_{i=1}^N\Big) = \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j \neq i} k(z_i', z_j') + \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j \neq i} k(z_i, z_j) - \frac{2}{N^2} \sum_{i=1}^N \sum_{j=1}^N k(z_i', z_j)$$

Properties of MMD

$$\{z_i\}_{i=1}^N \sim q_Z \qquad \qquad \{z_i'\}_{i=1}^N \sim p_Z$$

$$MMD\Big(\big\{z_i\big\}_{i=1}^N, \big\{z_i'\big\}_{i=1}^N\Big) = \underbrace{\frac{1}{N(N-1)}\sum_{i=1}^N\sum_{j\neq i}k(z_i',z_j')}_{\text{Intra-similarity}} + \underbrace{\frac{1}{N(N-1)}\sum_{i=1}^N\sum_{j\neq i}k(z_i,z_j)}_{\text{Intra-similarity}} - \underbrace{\frac{2}{N^2}\sum_{i=1}^N\sum_{j=1}^Nk(z_i',z_j)}_{\text{Inter-similarity}}$$

Minimization of MMD wrt $\{z_i\}_{i=1}^N \approx \text{maximization of inter-similarity and minimization of intra-similarities}$ Used for density matching or two sample test [Gretton et al. 2012], recently used in autoencoders [Tolstikhin et al. 2018]

Properties of MMD

$$\{z_i\}_{i=1}^N \sim q_Z \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \{z_i\}_{i=1}^N \sim p_Z$$

$$MMD\Big(\big\{z_i\big\}_{i=1}^N, \big\{z_i'\big\}_{i=1}^N\Big) = \underbrace{\frac{1}{N(N-1)}\sum_{i=1}^N\sum_{j\neq i} k(z_i', z_j')}_{\text{Intra-similarity}} + \underbrace{\frac{1}{N(N-1)}\sum_{i=1}^N\sum_{j\neq i} k(z_i, z_j)}_{\text{Intra-similarity}} - \underbrace{\frac{2}{N^2}\sum_{i=1}^N\sum_{j=1}^N k(z_i', z_j)}_{\text{Inter-similarity}}$$

Minimization of MMD wrt $\{z_i\}_{i=1}^N \approx \text{maximization of inter-similarity and minimization of intra-similarities}$ Used for density matching or two sample test [Gretton et al. 2012], recently used in autoencoders [Tolstikhin et al. 2018]

The choice of kernel function is related with the problem of local minima

$$\{z_i\}_{i=1}^N \sim q_Z \qquad \qquad \{z_i'\}_{i=1}^N \sim p_Z$$

$$MMD\Big(\big\{z_i\big\}_{i=1}^N, \big\{z_i'\big\}_{i=1}^N\Big) = \underbrace{\frac{1}{N(N-1)}\sum_{i=1}^N\sum_{j\neq i} k(z_i',z_j')}_{\text{Intra-similarity}} + \underbrace{\frac{1}{N(N-1)}\sum_{i=1}^N\sum_{j\neq i} k(z_i,z_j)}_{\text{Intra-similarity}} - \underbrace{\frac{2}{N^2}\sum_{i=1}^N\sum_{j=1}^N k(z_i',z_j)}_{\text{Inter-similarity}}$$

$$\text{Coulomb kernel} \quad k(z,z') = \frac{1}{\left\|z-z'\right\|^{h-2}} \quad N>h>2$$

Theorem

Minimization of MMD wrt $\{z_i\}_{i=1}^N$

- 1. All local extrema are global
- 2. The set of saddle points has measure zero

$$\{z_i\}_{i=1}^N \sim q_Z \qquad \qquad \qquad \{z_i'\}_{i=1}^N \sim p_Z$$

$$\{z_i'\}_{i=1}^N \sim$$

Theorem

Minimization of MMD wrt $\{z_i\}_{i=1}^N$

- 1. All local extrema are global
- 2. The set of saddle points has measure zero

Remark:

Convergence to global minimum when optimized through local-search methods!

through local-search methods!

Eval. Metric	Data/Method	VAE	WAE	CouAE
Test Log-likel.	Grid			

Eval. Metric	Data/Method	VAE	WAE	CouAE
Test Log-likel.	Grid			

-	Eval. Metric	Data/Method	VAE	WAE	CouAE
8.5	Test Log-likel.	Grid	-4.4 ± 0.2	-6.4 ± 1.1	-4.3 ± 0.1

-	Eval. Metric	Data/Method	VAE	WAE	CouAE
	Test Log-likel.	Grid	-4.4 ± 0.2	-6.4 ± 1.1	-4.3 ± 0.1
	FID	CelebA			

Eval. Metric	Data/Method	VAE	WAE	CouAE
Test Log-likel.	Grid	-4.4 ± 0.2	-6.4 ± 1.1	-4.3 ± 0.1
FID	CelebA	63	55	47

- Motivation
- Background on Autoencoders
- The Problem of Local Minima
- Generalization Analysis
- Conclusions

 $\hat{\mathcal{L}} = R\hat{E}C + \lambda M\hat{M}D \text{ (finite number of samples)}$ $\mathcal{L} = REC + \lambda MMD \text{ (infinite number of samples)}$

Theorem

$$0 \le k(z, z') = 1/(\|z - z'\|^{h-2} + \epsilon) \le K$$
$$0 \le REC \le \xi$$

For any s, t > 0

$$\Pr\left\{ \left| \hat{\mathcal{L}} - \mathcal{L} \right| > t + \lambda s \right\} \le 2exp\left\{ -\frac{2Nt^2}{\xi^2} \right\} + 6exp\left\{ -\frac{2\lfloor N/2 \rfloor s^2}{9K^2} \right\}$$

Theorem

$$0 \le k(z, z') = 1/(\|z - z'\|^{h-2} + \epsilon) \le K$$

$$0 \le REC \le \xi$$

For any
$$s$$
, $t > 0$
Contribution of recon. error of MMD
$$\Pr\left\{ \left| \hat{\mathcal{Z}} - \mathcal{Z} \right| > t + \lambda s \right\} \leq 2exp\left\{ -\frac{2Nt^2}{\xi^2} \right\} + 6exp\left\{ -\frac{2\lfloor N/2 \rfloor s^2}{9K^2} \right\}$$

Theorem

$$0 \le k(z, z') = 1/(\|z - z'\|^{h-2} + \epsilon) \le K$$
$$0 \le REC \le \xi$$

For any
$$s, t > 0$$
 Contribution of recon. error of MMD
$$\Pr\left\{ \left| \hat{\mathcal{Z}} - \mathcal{Z} \right| > t + \lambda s \right\} \leq 2exp\left\{ -\frac{2Nt^2}{\xi^2} \right\} + 6exp\left\{ -\frac{2\lfloor N/2 \rfloor s^2}{9K^2} \right\}$$

How can we make ξ small?

- 1. Estimation of ξ -> maximum reconstruction error on both training and validation data
- 2. Minimization of ξ -> Finding proper network architecture (e.g. layer width, networks' depth, residual connections)

Controlling ξ by changing total number of hidden neurons (capacity)

Controlling ξ by changing total number of hidden neurons (capacity)

Eval. Metric	Data/Width factor	$\times 0.25$	$\times 0.5$	$\times 1$
Test Log-likel.	Grid	-5.8 ± 0.4	-4.8 ± 0.4	-4.3 ± 0.1
FID	CelebA	53	51	47

Controlling ξ by changing total number of hidden neurons (capacity)

Eval. Metric	Data/Width factor	$\times 0.25$	$\times 0.5$	×1
Test Log-likel.	Grid	-5.8 ± 0.4	-4.8 ± 0.4	-4.3 ± 0.1
FID	CelebA	53	51	47

x0.25 x0.5 x1

Controlling ξ by changing total number of hidden neurons (capacity)

Eval. Metric	Data/Width factor	$\times 0.25$	$\times 0.5$	×1
Test Log-likel.	Grid	-5.8 ± 0.4	-4.8 ± 0.4	-4.3 ± 0.1
FID	CelebA	53	51	47

x0.25 x0.5 x1

Remarks

- 1. Network architecture is fundamental to control generalization
- 2. Increasing capacity (the number of hidden neurons) leads to better generalization (as long as ξ is decreased)
- 3. Other architectural choices (e.g. depth, residual connections) may further decrease ξ

Controlling ξ by changing total number of hidden neurons (capacity)

Eval. Metric	Data/Width factor	$\times 0.25$	$\times 0.5$	$\times 1$
Test Log-likel.	Grid	-5.8 ± 0.4	-4.8 ± 0.4	-4.3 ± 0.1
FID	CelebA	53	51	47

x0.25 x0.5 x1

Remarks

- 1. Network architecture is fundamental to control generalization
- 2. Increasing capacity (the number of hidden neurons) leads to better generalization (as long as ξ is decreased)
- 3. Other architectural choices (e.g. depth, residual connections) may further decrease ξ

Open Question

What is/are the optimal network architecture/s minimizing ξ ?

- Motivation
- Background on Autoencoders
- The Problem of Local Minima
- Generalization Analysis
- Conclusions

Conclusions

- 1. Problem of local minima, MMD + Coulomb kernel behaves similarly to a convex functional
- 2. Generalization analysis, probabilistic bound giving insights on possible directions to improve autoencoder in principled manner

Thank You