

- Séries

- 1. Nas alíneas 1. a 8. estamos na presença de séries geométricas e nas alíneas 9. a 12. temos séries telescópicas.
 - 1. $\sum_{n=1}^{\infty} \frac{2}{3^{n-1}} = \sum_{n=1}^{\infty} 2\left(\frac{1}{3}\right)^{n-1}$ é convergente porque $r = \frac{1}{3}$ e, portanto, |r| < 1.

 A sua soma é $s = 2 \cdot \frac{1}{1 \frac{1}{3}} = 3$.
 - 2. $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n}$ é convergente porque esta série pode escrever-se na forma

$$\sum_{n=1}^{\infty} \ \frac{2^n + 3^n}{6^n} = \sum_{n=1}^{\infty} \ \left[\left(\frac{1}{3} \right)^n + \left(\frac{1}{2} \right)^n \right] = \sum_{n=1}^{\infty} \ \left[\frac{1}{3} \left(\frac{1}{3} \right)^{n-1} + \frac{1}{2} \left(\frac{1}{2} \right)^{n-1} \right]$$

onde

$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n-1} \text{ \'e convergente (porque } r = \frac{1}{3} \text{ e, portanto, } |r| < 1) \text{ e}$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} \text{ \'e convergente (porque } r=\frac{1}{2} \text{ e, portanto, } |r|<1).$$

A sua soma é
$$s = \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} + \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{3}{2}$$
.

3. $\sum_{n=1}^{\infty} \frac{3^{n+1}}{2^{2n}} = \sum_{n=1}^{\infty} \frac{9}{4} \left(\frac{3}{4}\right)^{n-1}$ é convergente porque $r = \frac{3}{4}$ e, portanto, |r| < 1.

A sua soma é
$$s = \frac{9}{4} \cdot \frac{1}{1 - \frac{3}{4}} = 9.$$

4. $\sum_{n=0}^{\infty} \frac{2^{n+1}}{5^{n-1}}$ é convergente porque esta série pode escrever-se na forma

$$\sum_{n=0}^{\infty} \frac{2^{n+1}}{5^{n-1}} = 10 + \sum_{n=1}^{\infty} 4\left(\frac{2}{5}\right)^{n-1}$$

onde

$$\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^{n-1} \text{ \'e convergente (porque } r = \frac{2}{5} \text{ e, portanto, } |r| < 1).$$

A sua soma é
$$s = 10 + 4.\frac{1}{1 - \frac{2}{5}} = \frac{50}{3}.$$

5.
$$\sum_{n=1}^{\infty} \frac{1+2^{n+1}}{3^n}$$
 é convergente porque esta série pode escrever-se na forma

$$\sum_{n=1}^{\infty} \frac{1+2^{n+1}}{3^n} = \sum_{n=1}^{\infty} \left[\left(\frac{1}{3}\right)^n + 2\left(\frac{2}{3}\right)^n \right] = \sum_{n=1}^{\infty} \left[\frac{1}{3}\left(\frac{1}{3}\right)^{n-1} + \frac{4}{3}\left(\frac{2}{3}\right)^{n-1} \right]$$

onde

$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n-1}$$
é convergente (porque $r=\frac{1}{3}$ e, portanto, $|r|<1)$ e

$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n-1} \text{ \'e convergente (porque } r = \frac{2}{3} \text{ e, portanto, } |r| < 1).$$

A sua soma é
$$s = \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} + \frac{4}{3} \cdot \frac{1}{1 - \frac{2}{3}} = \frac{9}{2}$$
.

6.
$$\sum_{n=1}^{\infty} \frac{(-2)^n + 3^n}{6^n}$$
 é convergente porque esta série pode escrever-se na forma

$$\sum_{n=1}^{\infty} \frac{(-2)^n + 3^n}{6^n} = \sum_{n=1}^{\infty} \left[\left(\frac{-2}{6} \right)^n + \left(\frac{3}{6} \right)^n \right] = \sum_{n=1}^{\infty} \left[-\frac{1}{3} \left(-\frac{1}{3} \right)^{n-1} + \frac{1}{2} \left(\frac{1}{2} \right)^{n-1} \right]$$

onde

$$\sum_{n=1}^{\infty} \; \left(-\frac{1}{3}\right)^{n-1}$$
 é convergente (porque $r=-\frac{1}{3}$ e, portanto, $|r|<1)\;$ e

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} \text{ \'e convergente (porque } r = \frac{1}{2} \text{ e, portanto, } |r| < 1).$$

A sua soma é
$$s = -\frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{1}{3}\right)} + \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{3}{4}.$$

7.
$$\sum_{n=1}^{\infty} \frac{(-4)^{n-1}}{5^{n+1}}$$
 é convergente porque esta série pode escrever-se na forma

$$\sum_{n=1}^{\infty} \frac{(-4)^{n-1}}{5^{n+1}} = \sum_{n=1}^{\infty} \frac{1}{25} \left(\frac{-4}{5}\right)^{n-1}$$

onde

$$\sum_{n=1}^{\infty} \left(\frac{-4}{5}\right)^{n-1} \text{ \'e convergente (porque } r=-\frac{4}{5} \text{ e, portanto, } |r|<1).$$

A sua soma é
$$s = \frac{1}{25} \cdot \frac{1}{1 - \left(-\frac{4}{5}\right)} = \frac{1}{45}.$$

8.
$$\sum_{n=1}^{\infty} 3^{n+1} 4^{-(n+2)}$$
 é convergente porque esta série pode escrever-se na forma

$$\sum_{n=1}^{\infty} 3^{n+1} 4^{-(n+2)} = \sum_{n=1}^{\infty} \frac{3^2}{4^3} \left(\frac{3}{4}\right)^{n-1}$$

onde

 $\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^{n-1} \text{ \'e convergente (porque } r = \frac{3}{4} \text{ e, portanto, } |r| < 1).$

A sua soma é $s = \frac{9}{64} \cdot \frac{1}{1 - \frac{3}{4}} = \frac{9}{16}$.

9.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n} \right) = \sum_{n=1}^{\infty} -\left(\frac{1}{n} - \frac{1}{n+1} \right).$$

A série $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ é convergente porque é uma série telescópica associada à sucessão $a_n = \frac{1}{n}, n \in \mathbb{N}$, e $(a_n)_n$ é convergente (porque $\lim_n a_n = 0$).

A sua soma é $a_1'' - \lim_n a_n = 1 - 0 = 1$.

Então a soma da série $\sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n} \right)$ é s = -1.

10.
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n+2}} - \frac{1}{\sqrt{n}} \right) = \sum_{n=1}^{\infty} - \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+2}} \right).$$

A série $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+2}} \right)$ é convergente porque é uma série telescópica associada à sucessão $a_n = \frac{1}{\sqrt{n}}, n \in \mathbb{N}$, e $(a_n)_n$ é convergente (porque $\lim_n a_n = 0$).

A sua soma é $s = -(a_1 + a_2 - 2 \lim_n a_n) = -\frac{2 + \sqrt{2}}{2}$

- 11. A série $\sum_{n=1}^{\infty} \left(\frac{1}{n+1} \frac{1}{n+2} \right)$ é convergente porque é uma série telescópica associada à sucessão $a_n = \frac{1}{n+1}, n \in \mathbb{N}$, e $(a_n)_n$ é convergente (porque $\lim_n a_n = 0$). A sua soma é $s = a_1 \lim_n a_n = \frac{1}{2}$.
- 12. A série $\sum_{n=1}^{\infty} \left(\frac{1}{4n-2} \frac{1}{4n+2} \right)$ é convergente porque é uma série telescópica associada à sucessão $a_n = \frac{1}{4n-2}, n \in \mathbb{N}$, e $(a_n)_n$ é convergente (porque $\lim_n a_n = 0$). A sua soma é $s = a_1 \lim_n a_n = \frac{1}{2}$.
- 2. (a) Tem-se que $\lim_n a_n = \frac{1}{3} \neq 0$. Consequentemente, a série $\sum_{n \in \mathbb{N}} a_n$ é divergente (condição necessária de convergência).

A série $\sum_{n\in\mathbb{N}}b_n=\sum_{n\in\mathbb{N}}\left(\frac{1}{\pi^2}\right)^n$ é uma série geométrica de razão $r=\frac{1}{\pi^2}$, logo convergente porque |r|<1.

(b) A série $\sum_{n\in\mathbb{N}} x_n$ é divergente porque

$$\sum_{n \in \mathbb{N}} x_n = \sum_{n \in \mathbb{N}} (a_n + 3b_n),$$

onde $\sum_{n\in\mathbb{N}}a_n$ é divergente e $\sum_{n\in\mathbb{N}}b_n$ é convergente.

A sucessão $(y_n)_n$ difere da sucessão $(b_n)_n$ apenas num número finito de termos (os primeiro 10^8). Consequentemente, a série $\sum_{n\in\mathbb{N}}y_n$ é convergente porque tem a mesma

natureza da série $\sum_{n\in\mathbb{N}} b_n$.

A sucessão $(z_n)_n$ difere da sucessão $(a_n)_n$ apenas num número finito de termos (os primeiro 10^8). Consequentemente, a série $\sum_{n\in\mathbb{N}} z_n$ é divergente porque tem a mesma

natureza da série $\sum_{n\in\mathbb{N}} a_n$.

- 3. Por exemplo, considere-se $u_n = n^2 + \frac{1}{n^2}$ e $v_n = -n^2, n \in \mathbb{N}$.
- 4. 1. A série $\sum_{n\in\mathbb{N}}\cos\frac{1}{n}$ é divergente porque $\lim_{n}\cos\frac{1}{n}=1\neq0$ (condição necessária de convergência).
 - 2. A série $\sum_{n\in\mathbb{N}} \left(\frac{1}{e}\right)^n$ é convergente porque é uma série geométrica de razão $r=\frac{1}{e}$ e |r|<1.
 - **3.** Tem-se que:

$$\lim_{n} \sqrt[n]{\left(\frac{1}{e} + \frac{1}{n}\right)^{n}} = \lim_{n} \left(\frac{1}{e} + \frac{1}{n}\right) = \frac{1}{e} < 1.$$

Logo, pelo Critério de Cauchy, a série $\sum_{n\in\mathbb{N}} \left(\frac{1}{e} + \frac{1}{n}\right)^n$ é convergente.

4. A série $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{e^n} = \sum_{n\in\mathbb{N}} \left(-\frac{1}{e}\right)^n$ é convergente porque é uma série geométrica de razão $r=-\frac{1}{e}$ e |r|<1.

Como resolução alternativa, vamos mostrar que a série $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{e^n}$ é absolutamente convergente.

Considere-se a série dos módulos da série $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{e^n}$:

$$\sum_{n \in \mathbb{N}} \left| \frac{(-1)^n}{e^n} \right| = \sum_{n \in \mathbb{N}} \frac{1}{e^n} = \sum_{n \in \mathbb{N}} \left(\frac{1}{e} \right)^n.$$

A série dos módulos é convergente porque é uma série geométrica de razão $r=\frac{1}{e}$ e |r|<1.

Como a série dos módulos é convergente, a série $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{e^n}$ é absolutamente convergente.

- 5. Tem-se que:
 - $0 \le \frac{\text{sen}^2 n}{n^2 + 1} \le \frac{1}{n^2 + 1} < \frac{1}{n^2}, \ \forall n \in \mathbb{N}$
 - $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é convergente, uma vez que $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é uma série de Riemann convergente.

Então, pelo Primeiro Critério de Comparação, a série $\sum_{n\in\mathbb{N}} \frac{\sin^2 n}{n^2+1}$ é convergente.

6. A série $\sum_{n\in\mathbb{N}} (-1)^n \cos\left(\frac{1}{n^2}\right)$ é divergente porque a sucessão geradora $u_n=(-1)^n \cos\left(\frac{1}{n^2}\right)$, $n\in\mathbb{N}$, não converge para zero (condição necessária de convergência). Com efeito, tem-se que:

$$u_n = (-1)^n \cos\left(\frac{1}{n^2}\right) = \begin{cases} \cos\left(\frac{1}{n^2}\right), & \text{se } n \text{ \'e par} \\ -\cos\left(\frac{1}{n^2}\right), & \text{se } n \text{ \'e impar} \end{cases}$$

e, portanto, $\lim_{n} u_{2n} = 1$ e $\lim_{n} u_{2n-1} = -1$. Consequentemente, $\nexists \lim_{n} u_{n}$.

- 7. Considere-se a série dos módulos da série $\sum_{n\in\mathbb{N}} \frac{n \operatorname{sen} n}{\operatorname{e}^n}$, isto é, considere-se a série $\sum_{n\in\mathbb{N}} \left|\frac{n \operatorname{sen} n}{\operatorname{e}^n}\right|.$
 - $0 < \left| \frac{n \operatorname{sen} n}{\operatorname{e}^n} \right| \le \frac{n}{e^n}, \, \forall n \in \mathbb{N}.$
 - Vamos estudar a natureza da série $\sum_{n\in\mathbb{N}} \frac{n}{\mathrm{e}^n}$, usando o Critério de d'Alembert. Tem-se que:

$$\lim_{n} \frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^{n}}} = \lim_{n} \frac{(n+1)e^{n}}{n e^{n+1}} = \lim_{n} \frac{n+1}{e n} = \frac{1}{e} < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}}~\frac{n}{\mathrm{e}^n}$ é convergente.

Consequentemente, pelo Primeiro Critério de Comparação, concluímos que a série dos módulos $\sum_{n\in\mathbb{N}} \left| \frac{n \operatorname{sen} n}{\operatorname{e}^n} \right|$ é convergente.

Como a série dos módulos é convergente, a série $\sum_{n\in\mathbb{N}} \frac{n \operatorname{sen} n}{\operatorname{e}^n}$ é absolutamente convergente.

8. $\sum_{n \in \mathbb{N}} \frac{2^n + 5^n}{3^n}$ é divergente porque esta série pode escrever-se na forma

$$\sum_{n \in \mathbb{N}} \frac{2^n + 5^n}{3^n} = \sum_{n \in \mathbb{N}} \left[\left(\frac{2}{3} \right)^n + \left(\frac{5}{3} \right)^n \right]$$

onde

 $\sum_{\substack{n\in\mathbb{N}\\ \text{e}}}\left(\frac{2}{3}\right)^n$ é uma série geométrica convergente (porque $r=\frac{2}{3}$ e, portanto, |r|<1)

 $\sum_{n\in\mathbb{N}}\ \left(\frac{5}{3}\right)^n$ é uma série geométrica divergente (porque $r=\frac{5}{3}$ e, portanto, |r|>1).

9. $\sum_{n\in\mathbb{N}} \frac{2^n+3^n}{5^n}$ é convergente porque esta série pode escrever-se na forma

$$\sum_{n \in \mathbb{N}} \frac{2^n + 3^n}{5^n} = \sum_{n \in \mathbb{N}} \left[\left(\frac{2}{5} \right)^n + \left(\frac{3}{5} \right)^n \right]$$

 $\sum_{\substack{n\in\mathbb{N}\\ e}} \left(\frac{2}{5}\right)^n$ é uma série geométrica convergente (porque $r=\frac{2}{5}$ e, portanto, |r|<1)

 $\sum_{n\in\mathbb{N}}\ \left(\frac{3}{5}\right)^n \text{ \'e uma s\'erie geom\'etrica convergente (porque }r=\tfrac{3}{5}\text{ e, portanto, }|r|<1).$

10. $\sum_{n\in\mathbb{N}} \frac{5}{3\cdot 2^n}$ é convergente porque esta série pode escrever-se na forma

$$\sum_{n \in \mathbb{N}} \frac{5}{3 \cdot 2^n} = \sum_{n=1}^{\infty} \frac{5}{3} \left(\frac{1}{2}\right)^n$$

onde

 $\sum_{n\in\mathbb{N}}\ \left(\frac{1}{2}\right)^n$ é uma série geométrica convergente (porque $r=\frac{1}{2}$ e, portanto, |r|<1).

11. Tem-se que:

$$\bullet \ 0 < \frac{n}{n^2 + 1} r^n \le r^n;$$

 \bullet a série $\sum_{n\in\mathbb{N}}\ r^n$ converge porque é uma série geométrica de razão r e |r|<1.

Consequentemente, pelo Primeiro Critério de Comparação, a série $\sum_{n\in\mathbb{N}} \frac{n}{n^2+1}r^n$, 0< r<1, é convergente.

12. Consideremos a sucessão geradora $u_n = n r^n \ (0 < r < 1), \ n \in \mathbb{N}$. Tem-se que:

6

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{(n+1)r^{n+1}}{n \, r^n} = \lim_{n} \frac{n+1}{n} r = r < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n \in \mathbb{N}} \frac{n}{n^2+1} r^n$, 0 < r < 1, é convergente.

13. Tem-se que:

$$\bullet \ 0 < \frac{n}{n+1}r^n \le r^n;$$

 \bullet a série $\sum_{n\in\mathbb{N}}\ r^n$ converge porque é uma série geométrica de razão r e |r|<1.

Consequentemente, pelo Primeiro Critério de Comparação, a série $\sum_{n\in\mathbb{N}} \ \frac{n}{n+1} r^n, \ \ 0 < r < 1,$ é convergente.

14. Tem-se que:

$$\lim_{n} \frac{\frac{\sqrt{n}}{n^3 + 2n}}{\frac{1}{n^5/2}} = \lim_{n} \frac{n^3}{n^3 + 2n} = \lim_{n} \frac{1}{1 + \frac{2}{n^2}} = 1 \in \mathbb{R}^+.$$

A série $\sum_{n\in\mathbb{N}} \ \frac{1}{n^{5/2}}$ é convergente porque é uma série de Riemann de expoente $\alpha=5/2>1.$

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} \ \frac{\sqrt{n}}{n^3+2n} \ \acute{\rm e} \ {\rm convergente}.$

15. Tem-se que:

$$\lim_{n} \frac{\frac{1}{n+5}}{\frac{1}{n}} = \lim_{n} \frac{n}{n+5} = 1 \in \mathbb{R}^{+}.$$

A série $\sum_{n\in\mathbb{N}} \ \frac{1}{n}$ é divergente porque é a série harmónica.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} \ \frac{1}{n+5} \ \text{\'e} \ \text{divergente}.$

16. Como $|\cos n| \le 1$, $\forall n \in \mathbb{N}$, tem-se que:

$$\left| \frac{n \cos n}{n!} \right| \le \frac{n}{n!} = \frac{1}{(n-1)!}, \ \forall n \in \mathbb{N}.$$

Provando a convergência de $\sum_{n\in\mathbb{N}}\frac{1}{(n-1)!}$, conclui-se, utilizando o Primeiro Critério de Comparação, a convergência da série dos módulos $\sum_{n\in\mathbb{N}}\left|\frac{n\cos n}{n!}\right|$ e, portanto, a convergência absoluta de $\sum_{n\in\mathbb{N}}\left|\frac{n\cos n}{n!}\right|$.

Para mostrar a convergência da série $\sum_{n\in\mathbb{N}} \frac{1}{(n-1)!}$, basta aplicar o Critério de d'Alembert. Como

$$\lim_{n} \frac{\frac{1}{n!}}{\frac{1}{(n-1)!}} = \lim_{n} \frac{1}{n} = 0 < 1.$$

7

o referido critério permite tirar a conclusão pretendida.

17. Considere-se a série dos módulos da série $\sum_{n\in\mathbb{N}} (-1)^n \frac{1}{5n^2}$:

$$\sum_{n \in \mathbb{N}} \ \left| (-1)^n \, \frac{1}{5n^2} \right| = \sum_{n \in \mathbb{N}} \ \frac{1}{5n^2}.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é convergente porque é uma série de Riemann de expoente $\alpha=2>1$.

Consequentemente, a série dos módulos $\sum_{n\in\mathbb{N}} \frac{1}{5n^2}$ é convergente.

Como a série dos módulos é convergente, a série $\sum_{n\in\mathbb{N}} (-1)^n \frac{1}{5n^2}$ é absolutamente convergente.

18. Tem-se que:

$$\lim_{n} \frac{\frac{n}{n^3+2}}{\frac{1}{n^2}} = \lim_{n} \frac{n^3}{n^3+2} = 1 \in \mathbb{R}^+.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é convergente porque é uma série de Riemann de expoente $\alpha=2>1$.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} \frac{n}{n^3+2}$ é convergente.

19. Comecemos por observar que a série $\sum_{n\in\mathbb{N}} \frac{n\cos(n\pi)}{2^n}$ pode ser escrita na forma

$$\sum_{n \in \mathbb{N}} \frac{n \cos(n\pi)}{2^n} = \sum_{n \in \mathbb{N}} \frac{n (-1)^n}{2^n}.$$

Considere-se a série dos módulos da série $\sum_{n\in\mathbb{N}} \frac{n(-1)^n}{2^n}$:

$$\sum_{n \in \mathbb{N}} \left| \frac{n (-1)^n}{2^n} \right| = \sum_{n \in \mathbb{N}} \frac{n}{2^n}.$$

Vamos estudar a natureza da série dos módulos recorrendo ao Critério de d'Alembert. Tem-se que:

$$\lim_{n} \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^{n}}} = \lim_{n} \frac{(n+1)2^{n}}{n \, 2^{n+1}} = \lim_{n} \frac{n+1}{n} \cdot \frac{1}{2} = \frac{1}{2} < 1.$$

Consequentemente, pelo Critério de d'Alembert, concluímos que a série dos módulos é convergente.

Como a série dos módulos é convergente, a série $\sum_{n\in\mathbb{N}} \frac{n\cos(n\pi)}{2^n}$ é absolutamente convergente.

20. Considere-se a série dos módulos da série $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n^2-1}$:

$$\sum_{n=2}^{\infty} \left| (-1)^n \frac{1}{n^2 - 1} \right| = \sum_{n=2}^{\infty} \frac{1}{n^2 - 1}.$$

Vamos estudar a natureza da série dos módulos recorrendo ao Segundo Critério de Comparação. Tem-se que:

$$\lim_{n} \frac{\frac{1}{n^{2}-1}}{\frac{1}{n^{2}}} = \lim_{n} \frac{n^{2}}{n^{2}-1} = 1 \in \mathbb{R}^{+}.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é convergente porque é uma série de Riemann de expoente $\alpha=2>1$.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série dos módulos é convergente.

Como a série dos módulos é convergente, a série $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n^2-1}$ é absolutamente convergente.

21. Consideremos a sucessão geradora $u_n = \frac{n!}{2^{2n}}, n \in \mathbb{N}$. Tem-se que:

$$\lim_n \frac{u_{n+1}}{u_n} = \lim_n \frac{\frac{(n+1)!}{2^{2(n+1)}}}{\frac{n!}{2^{2n}}} = \lim_n \frac{\frac{(n+1)!}{2^{2n}2^2}}{\frac{n!}{2^{2n}}} = \lim_n \frac{(n+1)n!}{2^{2n}.2^2.n!} = \lim_n \frac{n+1}{4} = +\infty.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{n!}{2^{2n}}$ é divergente.

22. Tem-se que:

$$\lim_{n} \frac{\frac{1}{n^{10}+7}}{\frac{1}{n^{10}}} = \lim_{n} \frac{n^{10}}{n^{10}+7} = 1 \in \mathbb{R}^{+}.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n^{10}}$ é convergente porque é uma série de Riemann de expoente $\alpha=10>1$.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}\ \frac{1}{n^{10}+7} \ \acute{\rm e} \ {\rm convergente}.$

23. Consideremos a sucessão geradora $u_n = \frac{n!}{n^n}$, $n \in \mathbb{N}$. Tem-se que:

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n} \frac{(n+1)! \, n^n}{(n+1)^{n+1} n!} = \lim_{n} \frac{(n+1)n! \, n^n}{(n+1)^n (n+1)n!} = \lim_{n} \left(\frac{n}{n+1}\right)^n = \lim_{n} \frac{1}{\left(\frac{n+1}{n}\right)^n} = \lim_{n} \frac{1}{\left(1+\frac{1}{n}\right)^n} = \frac{1}{e} < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{n!}{n^n}$ é convergente.

24. Tem-se que:

$$\lim_{n} \sqrt[n]{\frac{1}{\log^{n} n}} = \lim_{n} \frac{1}{\log n} = 0 < 1.$$

Logo, pelo Critério de Cauchy, a série $\sum_{n=2}^{\infty} \frac{1}{\log^n n}$ é convergente.

25. Considere-se a série dos módulos da série $\sum_{n=2}^{\infty} (-1)^n \frac{n}{1+n^3}$:

$$\sum_{n=2}^{\infty} \left| (-1)^n \frac{n}{1+n^3} \right| = \sum_{n=2}^{\infty} \frac{n}{1+n^3}.$$

Vamos estudar a natureza da série dos módulos recorrendo ao Segundo Critério de Comparação. Tem-se que:

$$\lim_{n} \frac{\frac{n}{1+n^3}}{\frac{1}{n^2}} = \lim_{n} \frac{n^3}{1+n^3} = 1 \in \mathbb{R}^+.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é convergente porque é uma série de Riemann de expoente $\alpha=2>1.$

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série dos módulos é convergente.

Como a série dos módulos é convergente, a série $\sum_{n=2}^{\infty} (-1)^n \frac{n}{1+n^3}$ é absolutamente convergente.

26. Tem-se que:

$$\lim_{n} \frac{\frac{\left(1 - \frac{1}{n}\right)^{n}}{n}}{\frac{1}{n}} = \lim_{n} \left(1 - \frac{1}{n}\right)^{n} = e^{-1} = \frac{1}{e} \in \mathbb{R}^{+}.$$

A série $\sum_{n\in\mathbb{N}} \ \frac{1}{n}$ é divergente porque é a série harmónica.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}\frac{\left(1-\frac{1}{n}\right)^n}{n}$ é divergente.

27. Tem-se que:

$$\lim_{n} \frac{\frac{1}{n+\sqrt[n]{e}}}{\frac{1}{n}} = \lim_{n} \frac{n}{n+\sqrt[n]{e}} = 1 \in \mathbb{R}^{+}.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n}$ é divergente porque é a série harmónica.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}\frac{1}{n+\sqrt[n]{e}}\text{ \'e divergente.}$

28. Consideremos a sucessão geradora $u_n = \frac{(n!)^2}{(2n)!}, n \in \mathbb{N}$. Tem-se que:

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{\frac{((n+1)!)^2}{(2(n+1))!}}{\frac{(n!)^2}{(2n)!}} = \lim_{n} \frac{(n+1)!(n+1)!(2n)!}{(2n+2)!} =$$

$$= \lim_{n} \frac{(n+1)(n+1) \, n! \, n! \, (2n)!}{(2n+2)(2n+1) \, (2n)! \, n! \, n!} = \lim_{n} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4} < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{(n\,!)^2}{(2n)\,!}$ é convergente.

29. Comecemos por observar que a série $\sum_{n\in\mathbb{N}} \frac{\cos(n\pi)}{\log^n(n\pi)}$ pode ser escrita na forma

$$\sum_{n \in \mathbb{N}} \frac{\cos(n\pi)}{\log^n(n\pi)} = \sum_{n \in \mathbb{N}} \frac{(-1)^n}{\log^n(n\pi)}.$$

Considere-se a série dos módulos da série $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{\log^n(n\pi)}$:

$$\sum_{n \in \mathbb{N}} \left| \frac{(-1)^n}{\log^n(n\pi)} \right| = \sum_{n \in \mathbb{N}} \frac{1}{\log^n(n\pi)}.$$

Vamos estudar a natureza da série dos módulos recorrendo ao Critério de Cauchy. Tem-se que:

$$\lim_n \sqrt[n]{\frac{1}{\log^n(n\pi)}} = \lim_n \frac{1}{\log(n\pi)} = 0 < 1.$$

Consequentemente, pelo Critério de Cauchy, concluímos que a série dos módulos é convergente.

Como a série dos módulos é convergente, a série $\sum_{n\in\mathbb{N}} \frac{\cos(n\pi)}{\log^n(n\pi)}$ é absolutamente convergente.

30. Tem-se que:

$$\lim_{n} \sqrt[n]{\left(1 - \frac{1}{n}\right)^{n^2}} = \lim_{n} \left(1 - \frac{1}{n}\right)^n = e^{-1} < 1.$$

Consequentemente, pelo Critério de Cauchy, a série $\sum_{n\in\mathbb{N}} \left(1-\frac{1}{n}\right)^{n^2}$ é convergente.

31. Tem-se que:

$$\lim_{n} \sqrt[n]{\left(\frac{n}{n^2+1}\right)^n} = \lim_{n} \frac{n}{n^2+1} = 0 < 1.$$

Consequentemente, pelo Critério de Cauchy, a série $\sum_{n\in\mathbb{N}} \left(\frac{n}{n^2+1}\right)^n$ é convergente.

32. Consideremos a sucessão geradora $u_n = \frac{2^n n!}{n^n}$, $n \in \mathbb{N}$. Tem-se que:

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{\frac{2^{n+1} (n+1)!}{(n+1)^{n+1}}}{\frac{2^n n!}{n^n}} = \lim_{n} \frac{2^n 2(n+1) n! n^n}{(n+1)^n (n+1) 2^n n!} =$$

$$= \lim_{n} 2 \left(\frac{n}{n+1} \right)^{n} = 2 \cdot \lim_{n} \frac{1}{\left(\frac{n+1}{n} \right)^{n}} = 2 \cdot \lim_{n} \frac{1}{\left(1 + \frac{1}{n} \right)^{n}} = \frac{2}{e} < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{2^n n!}{n^n}$ é convergente.

33. Consideremos a sucessão geradora $u_n = \frac{1}{2^n + 1}$, $n \in \mathbb{N}$. Tem-se que:

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{\frac{1}{2^{n+1}+1}}{\frac{1}{2^{n}+1}} = \lim_{n} \frac{2^n+1}{2^{n+1}+1} = \frac{1+\frac{1}{2^n}}{2+\frac{1}{2^n}} = \frac{1}{2} < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{1}{2^n+1}$ é convergente.

34. Comecemos por observar que a série $\sum_{n\in\mathbb{N}} \frac{n^2\cos(n\pi)}{1+n^3}$ pode ser escrita na forma

$$\sum_{n \in \mathbb{N}} \frac{n^2 \cos(n\pi)}{1 + n^3} = \sum_{n \in \mathbb{N}} (-1)^n \frac{n^2}{1 + n^3}.$$

Considere-se a série dos módulos da série $\sum_{n\in\mathbb{N}} (-1)^n \frac{n^2}{1+n^3}$:

$$\sum_{n \in \mathbb{N}} \left| (-1)^n \frac{n^2}{1 + n^3} \right| = \sum_{n \in \mathbb{N}} \left| \frac{n^2}{1 + n^3} \right|.$$

Vamos estudar a natureza da série dos módulos recorrendo ao Segundo Critério de Comparação. Tem-se que:

$$\lim_{n} \frac{\frac{n^2}{1+n^3}}{\frac{1}{n}} = \lim_{n} \frac{n^3}{1+n^3} = 1 \in \mathbb{R}^+.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n}$ é divergente porque é a série harmónica.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série dos módulos é divergente.

Então, como a série dos módulos é divergente NADA! podemos concluir sobre a natureza da série dada (a partir da natureza da série dos módulos).

Vamos, então, recorrer ao Critério de Leibniz. Seja $a_n = \frac{n^2}{1+n^3}$, $n \in \mathbb{N}$. Tem-se que:

- $\lim_{n} a_n = \lim_{n} \frac{n^2}{1+n^3} = 0$
- $(a_n)_n$ é uma sucessão decrescente (prove esta afirmação).

Então, pelo Critério de Leibniz, a série $\sum_{n\in\mathbb{N}}~(-1)^n\frac{n^2}{1+n^3}$ é (simplesmente) convergente.

35. Consideremos a série dos módulos da série $\sum_{n\in\mathbb{N}} (-1)^n \frac{4+\cos n}{n^3}$:

$$\sum_{n \in \mathbb{N}} \left| (-1)^n \frac{4 + \cos n}{n^3} \right| = \sum_{n \in \mathbb{N}} \frac{4 + \cos n}{n^3}.$$

Vamos estudar a natureza da série dos módulos recorrendo ao Primeiro Critério de Comparação. Tem-se que:

•
$$0 < \frac{4 + \cos n}{n^3} \le \frac{5}{n^3}, \forall n \in \mathbb{N};$$

 \bullet a série $\sum_{n\in\mathbb{N}} \ \frac{1}{n^3}$ é convergente porque é uma série de Riemann de expoente $\alpha =$

$$3 > 1$$
. Então, a série $\sum_{n \in \mathbb{N}} \frac{5}{n^3}$ é também convergente.

Consequentemente, pelo Primeiro Critério de Comparação, concluímos que a série dos módulos é convergente.

Como a série dos módulos é convergente, a série $\sum_{n\in\mathbb{N}} (-1)^n \frac{4+\cos n}{n^3}$ é absolutamente convergente.

36. Tem-se que:

$$\lim_{n} \frac{\frac{1}{1+\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n} \frac{\sqrt{n}}{1+\sqrt{n}} = 1 \in \mathbb{R}^{+}.$$

A série $\sum_{n\in\mathbb{N}}~\frac{1}{\sqrt{n}}$ é divergente porque é uma série de Riemann de expoente $\alpha=1/2\leq 1$

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} \frac{1}{1+\sqrt{n}}$ é divergente.

37.

Consideremos a sucessão geradora $u_n = \frac{1}{n!}, n \in \mathbb{N}$. Tem-se que:

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{n} \frac{n!}{(n+1)!} = \lim_{n} \frac{n!}{(n+1)n!} = \lim_{n} \frac{1}{n+1} = 0 < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{1}{n!}$ é convergente.

38. Tem-se que:

•
$$0 \le \frac{1 + (-1)^n}{n^2} \le \frac{2}{n^2}, \forall n \in \mathbb{N};$$

• a série $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é convergente porque é uma série de Riemann de expoente $\alpha =$

$$2 > 1$$
. Então, a série $\sum_{n \in \mathbb{N}} \frac{2}{n^2}$ é também convergente.

Consequentemente, pelo Primeiro Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}\,\frac{1+(-1)^n}{n^2}$ é convergente.

39. Comecemos por observar que:

$$\log n > 1$$
, $\forall n > 3$.

Tem-se então que:

•
$$0 < \frac{1}{n} \le \frac{\log n}{n}, \, \forall n \ge 3;$$

 \bullet a série $\sum_{n\in\mathbb{N}} \ \frac{1}{n}$ é divergente porque é a série harmónica.

Então, pelo Primeiro Critério de Comparação, a série $\sum_{n\in\mathbb{N}} \frac{\log n}{n}$ é divergente.

40. Tem-se que:

•
$$0 \le \frac{1 + \operatorname{sen} n}{n^2} \le \frac{2}{n^2}, \, \forall n \in \mathbb{N};$$

• a série $\sum_{n\in\mathbb{N}} \frac{1}{n^2}$ é convergente porque é uma série de Riemann de expoente $\alpha=$

$$2 > 1$$
. Então, a série $\sum_{n \in \mathbb{N}} \frac{2}{n^2}$ é também convergente.

Consequentemente, pelo Primeiro Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}\,\frac{1+\sin n}{n^2} \text{ \'e convergente.}$

41. Tem-se que:

$$\lim_{n} \frac{\frac{n^2}{n^5 + n^2 + 1}}{\frac{1}{n^3}} = \lim_{n} \frac{n^5}{n^5 + n^2 + 1} = 1 \in \mathbb{R}^+.$$

A série $\sum_{n\in\mathbb{N}} \frac{1}{n^3}$ é convergente porque é uma série de Riemann de expoente $\alpha=3>1$.

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}\,\frac{n^2}{n^5+n^2+1}$ é convergente.

42. Tem-se que:

$$\lim_{n} \frac{\frac{1}{\sqrt[3]{n^2+1}}}{\frac{1}{\sqrt[3]{n^2}}} = \lim_{n} \sqrt[3]{\frac{n^2}{n^2+1}} = 1 \in \mathbb{R}^+.$$

A série $\sum_{n\in\mathbb{N}}~\frac{1}{\sqrt[3]{n^2}}$ é divergente porque é uma série de Riemann de expoente $\alpha=2/3\leq 1.$

Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} \ \frac{1}{\sqrt[3]{n^2+1}} \ \acute{\rm e} \ {\rm divergente}.$

43. Considere-se a série dos módulos da série $\sum_{n\in\mathbb{N}} (-1)^n \frac{1}{\sqrt{n}}$:

$$\sum_{n \in \mathbb{N}} \left| (-1)^n \frac{1}{\sqrt{n}} \right| = \sum_{n \in \mathbb{N}} \frac{1}{\sqrt{n}}.$$

A série $\sum_{n\in\mathbb{N}} \ \frac{1}{\sqrt{n}}$ é divergente porque é uma série de Riemann de expoente $\alpha=1/2\leq 1.$

Então, como a série dos módulos é divergente NADA! podemos concluir sobre a natureza da série dada (a partir da natureza da série dos módulos).

Vamos, então, recorrer ao Critério de Leibniz. Seja $a_n = \frac{1}{\sqrt{n}}, n \in \mathbb{N}$. Tem-se que:

$$\bullet \lim_{n} a_n = \lim_{n} \frac{1}{\sqrt{n}} = 0$$

• $(a_n)_n$ é uma sucessão decrescente (prove esta afirmação).

Então, pelo Critério de Leibniz, a série $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{\sqrt{n}}$ é (simplesmente) convergente.

44.

Consideremos a sucessão geradora $u_n = \frac{n^5}{2^n}, n \in \mathbb{N}$. Tem-se que:

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{\frac{(n+1)^5}{2^{n+1}}}{\frac{n^5}{2^n}} = \lim_{n} \frac{2^n (n+1)^5}{2^{n+1} n^5} = \lim_{n} \frac{1}{2} \left(\frac{n+1}{n}\right)^5 = \frac{1}{2} < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{n^5}{2^n}$ é convergente.

45.

Consideremos a sucessão geradora $u_n = \frac{n}{(n+2)!}$, $n \in \mathbb{N}$. Tem-se que:

$$\lim_{n} \frac{u_{n+1}}{u_n} = \lim_{n} \frac{\frac{n+1}{(n+3)!}}{\frac{n}{(n+2)!}} = \lim_{n} \frac{(n+1)(n+2)!}{(n+3)! \, n} = \lim_{n} \frac{(n+1)(n+2)!}{(n+3)(n+2)! \, n} = \lim_{n} \frac{n+1}{n^2 + 3n} = 0 < 1.$$

Pelo Critério de d'Alembert concluímos que a série $\sum_{n\in\mathbb{N}} \frac{n}{(n+2)!}$ é convergente.

46. Tem-se que:

•
$$0 < \frac{e^{-n}}{\sqrt{n+1}} \le \left(\frac{1}{e}\right)^n, \forall n \in \mathbb{N};$$

• a série
$$\sum_{n\in\mathbb{N}} \left(\frac{1}{e}\right)^n$$
 é convergente porque é uma série geométrica de razão $r=\frac{1}{e}$ e $|r|<1$.

Consequentemente, pelo Primeiro Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}\ \frac{e^{-n}}{\sqrt{n+1}}$ é convergente.

5. (a) $u_n = 1 \text{ e } v_n = -1, n \in \mathbb{N}$

As séries $\sum_{n\in\mathbb{N}}1$ e $\sum_{n\in\mathbb{N}}-1$ são divergentes (porque os limites das sucessões geradoras são diferentes de zero) e a série $\sum_{n\in\mathbb{N}}(u_n+v_n)=\sum_{n\in\mathbb{N}}0$ é convergente.

(b) não existe (ver aula)

(c)
$$u_n = \frac{1}{n}, \quad n \in \mathbb{N}.$$

A série $\sum_{n\in\mathbb{N}}u_n=\sum_{n\in\mathbb{N}}\frac{1}{n}$ é divergente (porque é a série harmónica) e a série $\sum_{n\in\mathbb{N}}u_n^2=\sum_{n\in\mathbb{N}}\frac{1}{n^2}$ é convergente (porque é uma série de Riemann de expoente $\alpha=2>1$).

(d)
$$u_n = \frac{(-1)^n}{\sqrt{n}}$$
, $n \in \mathbb{N}$.
A série $\sum_{n \in \mathbb{N}} u_n = \sum_{n \in \mathbb{N}} \frac{(-1)^n}{\sqrt{n}}$ é convergente (ver exercício 4.(43)) e a série $\sum_{n \in \mathbb{N}} u_n^2 = \sum_{n \in \mathbb{N}} \frac{1}{n}$ é divergente (porque é a série harmónica).

(e) não existe. Como $(n^2u_n)_n$ converge para zero temos que

$$\forall \epsilon > 0 \ \exists p \in \mathbb{N} : \ n \ge p \ \Rightarrow \ |n^2 u_n| < \epsilon.$$

Em particular, para $\epsilon=1$ existe uma ordem p tal que

$$n \ge p \implies |u_n| < \frac{1}{n^2}.$$

Como a série $\sum_{n\in\mathbb{N}}\frac{1}{n^2}$ é convergente concluímos, pelo Primeiro Critério de Comparação, que a série $\sum_{n\in\mathbb{N}}|u_n|$ é convergente. Consequentemente, a série $\sum_{n\in\mathbb{N}}u_n$ é convergente.

(f) não existe. Tem-se que:

$$\lim_{n} \frac{u_n^2}{u_n} = \lim_{n} u_n = 0,$$

porque a série $\sum_{n\in\mathbb{N}}u_n$ é convergente. Consequentemente, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}}u_n^2$ é convergente.

(g) $u_n = \frac{1}{\sqrt[3]{n}}, \quad n \in \mathbb{N}.$

A série $\sum_{n\in\mathbb{N}}u_n^3=\sum_{n\in\mathbb{N}}\frac{1}{n}$ é divergente (porque é a série harmónica).

(h) $u_n = -\frac{1}{\sqrt{n}}, \quad n \in \mathbb{N}.$

A série $\sum_{n\in\mathbb{N}}u_n^2=\sum_{n\in\mathbb{N}}\frac{1}{n}$ é divergente (porque é a série harmónica).

(i)
$$\sum_{n \in \mathbb{N}} -n$$

$$(j) \quad \sum_{n \in \mathbb{N}} (-1)^n$$

$$\text{(k)} \quad \sum_{n \in \mathbb{N}} \frac{(-1)^n}{n^2}$$

6. (a) Afirmação falsa. Por exemplo, tomando $u_n = -n$ e $v_n = \frac{1}{n^2}$, $n \in \mathbb{N}$, tem-se que:

•
$$-n \le \frac{1}{n^2}, \forall n \in \mathbb{N}$$

•
$$\sum_{n \in \mathbb{N}} \frac{1}{n^2}$$
 é convergente

mas, no entanto, $\sum_{n\in\mathbb{N}} -n$ é divergente.

(b) Afirmação verdadeira. Tem-se que:

•
$$0 < -v_n \le -u_n, \forall n \in \mathbb{N} \pmod{u_n} \le v_n < 0, \forall n \in \mathbb{N}$$

•
$$\sum_{n\in\mathbb{N}} -u_n$$
 é convergente (porque $\sum_{n\in\mathbb{N}} u_n$ é convergente).

Então, pelo Primeiro Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} -v_n$ é convergente. Consequentemente, a série $\sum_{n\in\mathbb{N}} v_n$ é convergente.

- (c) Afirmação verdadeira. Como $(u_n)_n$ é uma sucessão de termos positivos, o limite da sucessão geradora $(1+u_n)_n$, se existir, é diferente de zero. Consequentemente, a série $\sum_{n\in\mathbb{N}}(1+u_n)$ é divergente (condição necessária de convergência).
- (d) Afirmação verdadeira. Tem-se que:

•
$$0 < \frac{1}{n^2 + u_n} \le \frac{1}{n^2}$$
, $\forall n \in \mathbb{N}$ (porque $(u_n)_n$ é uma sucessão de termos positivos)

• a série
$$\sum_{n\in\mathbb{N}} \frac{1}{n^2}$$
 é convergente porque é uma série de Riemann de expoente $\alpha=2>1.$

Então, pelo Primeiro Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} \frac{1}{n^2+u_n}$ é convergente.

(e) Afirmação verdadeira. Comecemos por observar que porque a série $\sum_{n\in\mathbb{N}}u_n$ é convergente, então $\lim_n u_n=0$ (condição necessária de convergência). Tem-se que:

$$\lim_{n} \frac{\frac{u_{n}}{1+u_{n}}}{u_{n}} = \lim_{n} \frac{1}{1+u_{n}} = 1 \in \mathbb{R}^{+}.$$

Então, pelo Segundo Critério de Comparação, concluímos que a série $\sum_{n\in\mathbb{N}} \frac{u_n}{1+u_n}$ é convergente.

(f) Afirmação falsa. A série $\sum_{n\geq 1} v_n$ é convergente, pois sendo

$$\sum_{n\geq 1} v_n = \sum_{n=1}^{100} u_n + \sum_{n>100} \frac{1}{n^3},$$

tem a mesma natureza da série $\sum_{n\geq 1}\frac{1}{n^3}$ que é uma série de Riemann de expoente $\alpha=3>1.$

(g) Afirmação verdadeira. Como

$$\frac{(-1)^n + 2}{\sqrt{n}} = \begin{cases} \frac{3}{\sqrt{n}}, & \text{se } n \text{ par} \\ \frac{1}{\sqrt{n}}, & \text{se } n \text{ impar}, \end{cases}$$

temos que

$$0 < \frac{1}{\sqrt{n}} \le \frac{(-1)^n + 2}{\sqrt{n}}, \quad \forall n \in \mathbb{N},$$

e a série $\sum_{n\geq 1}\frac{1}{\sqrt{n}}=\sum_{n\geq 1}\frac{1}{n^{1/2}}$ é divergente (série de Riemann de expoente $\alpha=\frac{1}{2}\leq 1$).

Então, pelo Primeiro Critério de Comparação, também a série $\sum_{n\geq 1} \frac{(-1)^n+2}{\sqrt{n}}$ é divergente.

(h) Afirmação falsa. A série $\sum_{n\geq 1} (-1)^n \frac{1}{3^n}$ não só é convergente como é também absolutamente convergente. De facto,

$$\sum_{n\geq 1} \left| (-1)^n \frac{1}{3^n} \right| = \sum_{n\geq 1} \frac{1}{3^n}$$

é uma série geométrica de razão $r=\frac{1}{3}\left(|r|<1\right),$ logo convergente.