للمزيد من الإمتحانات مع التصحيح زوروا موقعنا الأن www.Taalime.ma

الصفحة 1	الامتحان الوطني الموحد للبكالوريا المسالك الدولية – خيار فرنسية			المملكة المغربية وزارة التربية الوئمنية وزارة التربية الوئمنية والتكوين الممني المناسب المسابقة المعارفين الممني والتحوين الممني والتعليم المالم والبحث الملمر والبحث الملمر		
•	الدورة العادية 2019 - الموضوع -			المركز الوطني للتقويم والامتحانات والتوجيه		

3	مدة الانجاز	يمياء	11	المادة		
7	المعامل	شعبة العلوم التجريبية: مسلك العلوم الفيزيائية - خيار فرنسية			الشعبة أو المسلك	

L'usage de la calculatrice scientifique non programmable est autorisé.

On donnera les expressions littérales avant de passer aux applications numériques.

Le sujet comporte 4 exercices

Exercice I (7 points):

- Electrolyse d'une solution aqueuse d'iodure de zinc.
- Etude conductimétrique d'une solution aqueuse d'acide benzoïque.

Exercice II (3,5 points):

- Propagation d'une onde mécanique.
- Désintégration du radon 222.

Exercice III (4,5 points):

- Charge et décharge d'un condensateur.

Exercice IV (5 points):

- Mouvement du centre d'inertie d'un système mécanique.

NS28F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيانية - خيار فرنسية

Barème

Exercice I (7 points)

Les parties 1 et 2 sont indépendantes

Partie 1 - Electrolyse d'une solution aqueuse d'iodure de zinc

On réalise l'électrolyse d'une solution aqueuse d'iodure de zinc $Zn_{(aq)}^{2+} + 2I_{(aq)}^{-}$, en utilisant deux

électrodes A et B en graphite. On observe un dégagement du gaz diiode au niveau d'une électrode et la formation d'un dépôt de zinc au niveau de l'autre électrode.

La figure ci-contre représente le schéma du dispositif expérimental utilisé pour réaliser cette électrolyse.

Données :

 $\checkmark 1F = 9.65.10^4 \text{ C.mol}^{-1}$;

✓ Les deux couples mis en jeu sont : $Zn_{(aq)}^{2+}$ / $Zn_{(s)}$ et

$$I_{2(g)}/I_{(aq)}^{-}$$
 ;

0,5

0,75

0,75

✓ La masse molaire du zinc : $M(Zn) = 65,4 \text{ g.mol}^{-1}$.

1. Parmi les deux électrodes A et B, préciser l'anode. Justifier la réponse.

3. Pendant la durée Δt de l'électrolyse, un courant électrique d'intensité constante I=0,5 A circule dans le circuit; il se forme alors un dépôt de zinc de masse m=1,6 g. Déterminer Δt en minutes.

Partie 2 - Etude conductimétrique d'une solution aqueuse d'acide benzoïque

L'acide benzoïque de formule C_6H_5COOH est connu comme conservateur alimentaire présent dans les boissons gazeuses. Il a également des propriétés antiseptiques, ce qui explique aussi son utilisation comme médicament.

Cet exercice se propose de déterminer le pK_A du couple $C_6H_5COOH_{(aq)}/C_6H_5COO^-_{(aq)}$ par une étude conductimétrique.

Données:

- les conductivités molaires ioniques à 25°C : $\lambda_1 = \lambda(H_3O^+) = 35.10^{-3} \text{S.m}^2 \text{.mol}^{-1}$ et $\lambda_2 = \lambda(C_6 H_5 \text{COO}^-) = 3,23.10^{-3} \text{S.m}^2 \text{.mol}^{-1}$;

- On rappelle l'expression de la conductivité σ d'une solution aqueuse en fonction des concentrations molaires effectives des espèces ioniques X_i présentes en solution et les conductivités molaires ioniques : $\sigma = \sum \lambda_i \left[X_i \right]$.

On prépare, à 25°C, une solution aqueuse S d'acide benzoïque de concentration $C = 10^{-3} \text{ mol.L}^{-1}$ et de volume V = 1L.

0,5 1. Ecrire l'équation de la réaction entre l'acide benzoïque et l'eau.

2. Dresser le tableau d'avancement de la réaction.

3. La mesure de la conductivité de la solution S donne σ =8,6.10⁻³S.m⁻¹.

0,75

للمزيد من الإمتحانات مع التصحيح زوروا موقعنا الأن www.Taalime.ma

الصفحة 3 NS28F	الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 – الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية – خيار فرنسية	
-------------------	---	--

- 0,75 3.1. En négligeant la participation des ions hydroxyde HO⁻ à la conductivité de la solution, exprimer σ en fonction de λ_1 , λ_2 et $[H_3O^+]$ la concentration molaire effective des ions oxonium à l'équilibre.
- **3.2.** Montrer que le taux d'avancement final τ de la réaction s'écrit ainsi: $\tau = \frac{\sigma}{C(\lambda_{\cdot} + \lambda_{\circ})}$. Calculer 0,75 sa valeur.
- 4. Trouver l'expression de la constante d'équilibre K associée à la réaction entre l'acide benzoïque 0,75 et l'eau en fonction de C et τ.
- 0,25 **5.** Que représente la constante d'équilibre K associée à cette réaction chimique? **6.** En déduire la valeur du p K_A du couple $C_6H_5COOH_{(aq)}/C_6H_5COO_{(aq)}^-$.
- 0,5 7. Déterminer, parmi les deux espèces C₆H₅COOH et C₆H₅COO⁻, l'espèce chimique prédominante dans la solution S.

Exercice II (3,5 points) Les parties 1 et 2 sont indépendantes

Partie 1 - Propagation d'une onde mécanique

0,75

0,5

Pour étudier la propagation des ondes mécaniques à la surface de l'eau, on utilise une cuve à ondes. Le but de cette partie de l'exercice est de déterminer quelques grandeurs caractéristiques d'une onde mécanique.

A l'aide d'un vibreur d'une cuve à ondes, on crée en un point S de la surface libre de l'eau une onde progressive sinusoïdale de fréquence N = 20 Hz. Cette onde se propage à t=0 à partir du point S, sans amortissement et sans réflexion.

La figure ci-contre représente une coupe, dans un plan vertical, d'une partie de la surface de l'eau à l'instant de date t₁.

- 0,5 1. L'onde qui se propage à la surface de l'eau est-elle transversale ou longitudinale? Justifier.
- 0,25 **2.** Déterminer la longueur d'onde λ de l'onde étudiée.
- 3. Déduire la célérité V de l'onde à la surface de l'eau. 0,5
 - **4.** Le point M, situé à la distance d=SM du point S, est le front de l'onde à l'instant de date t₁. Exprimer le retard temporel \(\tau \) du mouvement de M par rapport au mouvement de S, en fonction de la période T de l'onde. Calculer τ.

Partie 2 - Etude de la désintégration du radon 222

Le radon de symbole Rn est un gaz rare naturellement présent dans l'atmosphère. Il est issu par décompositions successives de l'uranium présent dans les roches granitiques.

L'isotope 222 du radon est radioactif. On se propose d'étudier dans cette partie la désintégration nucléaire de cet isotope.

0,5

0,5

0,5

NS28F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 – الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيانية – خيار فرنسية

Données :

- La demi-vie du radon 222 est: $t_{1/2} = 3.8$ jours.
- Tableau des énergies de liaison par nucléon:

Noyau	Hélium	Radon	Polonium
Symbole	⁴ ₂ He	²²² ₈₆ Rn	²¹⁸ ₈₄ Po
Energie de liaison par nucléon (MeV / nucléon)	7,07	7,69	7,73

- **0,5** : 1. Parmi les deux noyaux, ${}^{222}_{86}$ Rn et ${}^{218}_{84}$ Po, lequel est le plus stable? justifier la réponse.
- **0,25** 2. Montrer que l'énergie de liaison d'un noyau d'hélium ${}_{2}^{4}$ He est : E_{ℓ} (He)=28,28 MeV.
- **3.**L'équation de désintégration du radon 222 s'écrit : ${}^{222}_{86}$ Rn $\rightarrow {}^{218}_{84}$ Po + ${}^{4}_{2}$ He Choisir la réponse juste parmi les propositions suivantes:
 - L'énergie libérée lors de la désintégration d'un noyau du radon 222 est :
 - $\blacksquare E_{lib} = 7.11 \text{ MeV}$
- $E_{lib} = 22,56 \text{ MeV}$
- \blacksquare E_{lib} =6,24 MeV
- $E_{lib} = 3420,6 \text{ MeV}$
- **4.**On considère un échantillon de noyaux du radon 222 ayant, à l'instant t = 0, une activité a_0 .

Trouver, en jours, l'instant de date t_1 à laquelle cet échantillon a une activité $a_1 = \frac{a_0}{4}$.

Exercice III (4,5 points)

Charge et décharge d'un condensateur

Les condensateurs et les bobines sont des composants essentiels de nombreux appareils électriques tels ceux utilisés pour l'émission et la réception des ondes électromagnétiques.

Cet exercice se propose d'étudier la charge d'un condensateur et sa décharge dans une bobine.

On réalise le montage électrique schématisé sur la figure 1, constitué des éléments suivants:

- un générateur idéal de tension de force électromotrice E=10V ;
- un condensateur de capacité C initialement déchargé ;
- un conducteur ohmique de résistance \boldsymbol{R} ;
- une bobine d'inductance L et de résistance négligeable ;
- un interrupteur K à double position.

$E \xrightarrow{(1)} C \xrightarrow{(2)} U_{c}$ $E \xrightarrow{R} Figure 1$

I -Etude de la charge du condensateur

On met l'interrupteur K sur la position (1) à un instant choisi comme origine des dates (t = 0). Un

système d'acquisition informatisé adéquat permet de tracer la courbe d'évolution de la charge q(t) du condensateur.

La droite (T) représente la tangente à la courbe à la date t=0 (figure 2).

- **1.** Etablir l'équation différentielle vérifiée par q(t) au cours de la charge du condensateur.
- 2. Trouver, en fonction des paramètres du circuit, les expressions des constantes A et α pour que la solution de cette équation différentielle s'écrive sous la forme : $q(t) = A(1 e^{-\alpha t})$

3. Déterminer graphiquement :

NS28F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية - خيار فرنسية

- 0,25
- 3.1. la valeur de la charge Q du condensateur quand le régime permanent est établi.
- 0,25
- **3.2.** la valeur de la constante de temps τ .
- 0,25
- 4. Montrer que la capacité du condensateur est: $C = 10 \mu F$.
- 0,25
- 5. Trouver la valeur de la résistance R.

II-Etude des oscillations électriques dans le circuit LC

Une fois que le régime permanent est établi, on bascule l'interrupteur K en position (2) à un instant choisi comme nouvelle origine des dates(t=0) .On visualise, à l'aide d'un dispositif adéquat, les variations de la tension u_c aux bornes du condensateur en fonction du temps.

0,25

1. Montrer que l'équation différentielle vérifiée par la tension u_c(t) aux bornes du condensateur s'écrit :

$$\frac{d^2u_c}{dt^2} + \frac{1}{LC}u_c = 0$$

2. L'une des trois courbes (a),(b) ou (c) de la figure 3 représente, pour cette expérience, l'évolution de la tension $u_c(t)$.

- 0,5
- **2.1.** Indiquer la courbe qui représente l'évolution de la tension $u_c(t)$ lors de cette expérience. Justifier votre réponse.
- 0,25
- **2.2.** Trouver la période propre T_0 de l'oscillateur LC.
- 0,5
- **3.** Déterminer l'inductance L de la bobine.(On prend $\pi^2=10$).
- 0,5
- **4.** A l'aide de la courbe représentant l'évolution de la tension $u_c(t)$ pour cette expérience :
- 0,5
- **4.1.** Trouver l'énergie totale E_t du circuit.
- 0,5
- **4.2.** En déduire l'énergie magnétique E_{m1} emmagasinée dans la bobine à l'instant $\,t_1^{}=12\,ms\,$.

Exercice IV (5 points)

Etude du mouvement du centre d'inertie d'un système mécanique

Le saut en longueur à moto est une épreuve sportive de performance où il y a un véritable défi de sauter le plus loin à partir d'un espace défini.

Cet exercice se propose d'étudier le mouvement du centre d'inertie G d'un système (S) formé d'un motard et d'une moto se déplaçant sur une piste de compétition.

NS28F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 – الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية – خيار فرنسية

Cette piste est formée :

- d'une partie rectiligne A'B' inclinée d'un angle β par rapport à l'horizontale ;
- d'un tremplin B'C' circulaire;
- d'une zone d'atterrissage (π) plane et horizontale. (figure 1).

Dans tout l'exercice, les frottements sont négligés et l'étude du mouvement du centre d'inertie G est réalisée dans le référentiel terrestre considéré comme galiléen.

Données:

- L'angle $\beta = 10^{\circ}$;
- Intensité de la pesanteur : $g = 10 \text{ m.s}^{-2}$;
- Masse du système (S) : m = 190 kg.

I- Etude du mouvement sur la partie A'B'

A un instant choisi comme origine des dates (t = 0), le système (S) s'élance sans vitesse initiale, d'une position où le centre d'inertie G est confondu avec le point A.

Le système est soumis, au cours de son mouvement sur la partie A'B', à la réaction du plan incliné,

à son poids et à une force motrice \vec{F} constante, dont la ligne d'action est parallèle à la trajectoire de G et le sens est celui du mouvement. Pour étudier le mouvement de G au cours de cette phase, on choisit un repère d'espace (A, \vec{i}) parallèle à A'B' (figure 1) et on repère la position de G par son abscisse x.

1. En appliquant la deuxième loi de Newton, montrer que l'expression de l'accélération a_G du mouvement de G est :

$$a_G = \frac{F}{m} + g.\sin\beta$$

2. La courbe de la figure 2 représente les variations de la vitesse instantanée V_G du centre d'inertie G en fonction du temps.

En exploitant cette courbe, trouver la valeur de l'accélération a_G .

4. Ecrire l'expression numérique de l'équation horaire x= f(t) du mouvement de G.

5. Sachant que AB = 36 m, déterminer l'instant t_B de passage de G par le point B.

6. Calculer la vitesse V_B de passage de G par le point B.

0,5

0,5

0,5

0,5

0,5

NS28F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 – الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية – خيار فرنسية

II- Etude du mouvement de G lors de la phase du saut

A un instant choisi comme nouvelle origine des dates (t=0), le système (S) quitte le tremplin lors du passage de G par le point C avec une vitesse \vec{V}_C formant un angle $\alpha=18^\circ$ avec l'horizontale. (S) retombe en une position où le point G se confond avec le point G. On suppose que le système n'est soumis qu'à son poids au cours de cette phase. L'étude du mouvement est effectuée dans le repère orthonormé (C,\vec{i}_1,\vec{j}_1) indiqué sur la figure 1.

1. En appliquant la deuxième loi de Newton, montrer que les équations différentielles vérifiées par les coordonnées $x_G(t)$ et $y_G(t)$ du centre d'inertie G dans le repère $(C, \vec{i_1}, \vec{j_1})$ s'écrivent ainsi:

$$\frac{dx_G}{dt} = V_C.\cos\alpha$$
 et $\frac{dy_G}{dt} = -g.t + V_C.\sin\alpha$

2. Les expressions numériques des équations horaires $x_G(t)$ et $y_G(t)$ du mouvement de G s'écrivent ainsi : $x_G(t) = 19,02.t$ et $y_G(t) = -5.t^2 + 6,18.t$ (x_G et y_G exprimées en mètre et t en seconde). Vérifier que la vitesse de G au point C est : $V_C = 20 \, \text{m.s}^{-1}$.

- 3. On considère qu'un saut est réussi si la condition CP≥30 m est vérifiée.
- **3.1.** Montrer que le saut effectué dans ce cas n'est pas réussi.
- **0,5** | **3.2.** Déterminer la vitesse minimale V_{min} avec laquelle doit passer G par le point C pour que le saut soit réussi.

Partie 1: Electrolyse d'une solution aqueuse d'iodure de zenc

- 1. Le déplacement des électrons s'effectue du pôle négatif vers le pôle positif du générateur.
- \Rightarrow L'électrode B, reliée au pôle \oplus , cède des électrons de la solution, Il s'y produit l'oxydation, c'est l'anode.

2. Au voisinage de la cathode :

$$Zn_{(aq)}^{2+} + 2e^{-} \leftrightarrow Zn_{(s)}$$
 réduction

Electrode B

Anode

de zinc

Solution d'iodure

Au voisinage de l'anode :

$$2I_{(aq)}^{-} \leftrightarrow I_{2(g)} + 2e^{-}$$
 oxydation

L'équation bilan lors de l'électrolyse : $Zn_{(aq)}^{2+} 2I_{(aq)}^{-} \rightarrow Zn_{(s)} + I_{2(g)}$

Tableau a avancement.						
Réaction chimique	e	$Zn_{(aq)}^{2+}$	+ $2I_{(aq)}^{-}$	\rightarrow $Zn_{(s)}$ +	$I_{2(g)}$	
Etat	Avancement	Quantités de matière en (mol)				
Etat initial	0	$n_i(Zn^{2+})$	$n_i(I^-)$	0	0	
Pendant Δt	X	$n_i(I^-)-2x$	$n_i(I^-)-2x$	x	x	

D'après le tableau d'avancement, la quantité de matière de Zn formée est : $n_{formée}(Zn) = \Delta n(Zn) = x$

D'où : La masse du Zn déposé est : $\Delta m(Zn) = x.M(Zn) \implies x = \frac{m}{M(Zn)}$ (avec $\Delta m(Zn) = m = 1,6g$)

La quantité de matière d'électrons échangés : $n(e^{-}) = 2x$

Or:
$$Q = I.\Delta t = n(e^{-}).F$$
 \Rightarrow $\Delta t = \frac{2.m.F}{I.M(Zn)}$ \Rightarrow A.N: $\Delta t = \frac{2 \times 1.6 \times 9.65.10^{4}}{0.5 \times 65.4}$ \Rightarrow $\Delta t = 157.4 \text{ min}$

$$\Delta t = \frac{2.m.F}{I.M(Zn)}$$

A.N:
$$\Delta t = \frac{2 \times 1.6 \times 1}{0.5 \times 1}$$

$$\Rightarrow \Delta t = 157,4 \, \text{min}$$

Electrode A

Cathode

Partie 2: Etude conductimétrique d'une solution aqueuse d'acide benzo<u>ï</u>que

 $CH_{\xi} - CO_{2}H_{(aq)} + H_{2}O_{(\ell)} \iff CH_{\xi} - CO_{2(qq)}^{-} + H_{3}O_{(qq)}^{+}$

2. Tableau d'avancement :

Équatio	on chimique	CH ₅ -CO ₂ H _(aq)	+ H ₂ O _(ℓ) ←	→ CH ₅ -CO	${2(aq)} + H_3O^+_{(aq)}$	
État du système	Avancement (mol)	Quantités de matière (mol)				
initial	x = 0	C.V	Excès	0	0	
Instant t	X	C.V-x	Excès	X	x	
équilibre	Xéq	C.V-x _{éq}	Excès	Xéq	Xéq	

3.1- L'expression de la conductivité est : $\sigma = \lambda_{H_3O^+} \cdot \left[H_3O^+ \right]_{\acute{e}q} + \lambda_{C_cH_cCOO^-} \cdot \left[C_6H_5COO^- \right]_{\acute{e}q}$

D'après le tableau d'avancement : $\left[H_3O^+\right]_{\acute{e}q} = \left[C_6H_5COO^-\right]_{\acute{e}q} = \frac{x_{\acute{e}q}}{V}$

D'où: $\sigma = [H_3 O^+]_{iq} \times (\lambda_{H_3 O^+} + \lambda_{C_6 H_3 COO^-})$

3-2- On a: $\tau = \frac{x_{\acute{e}q}}{x_{max}}$

• Si la réaction est totale : puisque H_2O est en excès $\Rightarrow C_6H_5 - CO_2H$ est le réactif limitant.

Donc: $C.V - x_{\text{max}} = 0 \implies x_{\text{max}} = C.V$

Www.Taalime.ma المزيد من الإمتحانات مع التصحيح زوروا موقعنا الأن D'après le résultat de la question précédente : $\sigma = [H_3O^+]_{iq} \times (\lambda_1 + \lambda_2)$

Et d'après le tableau d'avancement : $\left[H_3O^+\right]_{\dot{e}q} = \left[C_6H_5COO^-\right]_{\dot{e}q} = \frac{x_{\dot{e}q}}{V}$

D'où:
$$\sigma = \frac{x_{\acute{e}q}}{V} \times (\lambda_1 + \lambda_2)$$
 \Rightarrow $x_{\acute{e}q} = \frac{\sigma \cdot V}{\lambda_1 + \lambda_2}$

Donc:
$$\tau = \frac{\sigma . V}{\lambda_1 + \lambda_2}$$

$$\tau = \frac{\sigma}{C.(\lambda_1 + \lambda_2)}$$

$$\tau = \frac{\overline{\lambda_1 + \lambda_2}}{C.V} \qquad \Rightarrow \quad \tau = \frac{\sigma}{C.(\lambda_1 + \lambda_2)} \quad A.N: \quad \tau = \frac{8,6.10^{-3}}{10^{-3}.10^3.(35 + 3,23).10^{-3}}$$

donc:

4. On a :
$$K = \frac{\left[C_6 H_5 COO^{-}\right]_{\acute{e}q} \cdot \left[H_3 O^{+}\right]_{\acute{e}q}}{\left[C_6 H_5 COOH\right]_{\acute{e}q}}$$

Et d'après le tableau d'avancement : on a $[H_3O^+]_{kq} = [C_6H_5COO^-]_{kq} = \frac{X_{kq}}{V_0}$

et
$$[C_6H_5COOH]_{\acute{e}q} = \frac{CV - x_{\acute{e}q}}{V} = C - \frac{x_{\acute{e}q}}{V}$$

Or:
$$\tau = \frac{x_{\acute{e}q}}{x_{\max}} = \frac{x_{\acute{e}q}}{C.V} \implies x_{\acute{e}q} = \tau.C.V$$

D'où :
$$[H_3O^+]_{\dot{e}q} = [C_6H_5COO^-]_{\dot{e}q} = \frac{\tau \cdot C \cdot V}{V} = \tau \cdot C$$
 et $[C_6H_5COOH]_{\dot{e}q} = C - \frac{\tau \cdot C \cdot V}{V} = C \cdot (1-\tau)$

Donc:
$$K = \frac{\tau^2 \cdot C^2}{C \cdot (1 - \tau)}$$
 \Rightarrow $K = \frac{\tau^2 \cdot C}{1 - \tau}$

5. La constante d'équilibre, associé à la réaction de dissociation de l'acide benzoïque dans l'eau, représente la constante d'acidité K_A du couple acide – base $C_6H_5COOH/C_6H_5COO^-$.

 $pK_A = -\log K_A$ et $K_A = \frac{\tau^2 \cdot C}{1 - 2}$ donc: $pK_A = -\log(\frac{\tau^2 \cdot C}{1 - 2})$ 6. On a:

A.N:
$$pK_A = -\log(\frac{0.22^2 \times 10^{-3}}{1 - 0.22})$$
 $\Rightarrow pK_A = 4.2$

7. On a: $\tau = \frac{x_{\acute{e}q}}{r} \Rightarrow \tau = \frac{\left[H_3O^+\right]_{\acute{e}q}.V}{C.V.} \Rightarrow \left[H_3O^+\right]_{\acute{e}q} = \tau.C.V.$

Et on a : $pH = -\log|H_3O^+|$ c.à.d : $pH = -\log(\tau.CV)$ A.N : $pH = -\log(0.22 \times 10^{-3} \times 1)$ $\Rightarrow pH = 3.66$

Puisque: $pH = 3,66 < pK_A = 4,2$ donc l'espèce prédominante dans la solution S est l'acide C_6H_5COOH .

EXERCICE III:

Partie 1: Propagation d'une onde mécanique

- 1. L'onde qui se propage à la surface de l'eau est transversale, car la direction de perturbation est perpendiculaire à celui de propagation.
- 2. D'après la figure : $\lambda = 1.5cm$

3. On a:
$$v = \lambda.N$$
 $\Rightarrow v = 1.5.10^{-2} \times 20 \Rightarrow v = 0.3 \text{m.s}^{-1}$

4. On a:
$$\tau = \frac{SM}{v} \implies \tau = \frac{SM}{\frac{\lambda}{T}} \implies \tau = \frac{SM}{\lambda}.T$$

$$\Rightarrow_{\tau} = \frac{2.\lambda}{\lambda}.T \Rightarrow_{\tau} = 2.T$$

A.N:
$$\tau = \frac{2}{N} = \frac{2}{20} \implies \tau = 0.1s$$

للمزيد من الإمتحانات مع التصحيح زوروا موقعنا الأن www.Taalime.ma

Partie2 : Etude de la désintégration du radon 222

- Puisque : $\xi\binom{222}{86}Rn = 7,69 \text{MeV} / \text{nucl\'eon} \prec \xi\binom{218}{84}Po = 7,73 \text{MeV} / \text{nucl\'eon}$
 - Donc : le noyau $^{218}_{84}Po$ est plus stable que le noyau $^{222}_{86}Rn$

2. On a: $\xi(_2^4He) = \frac{E_l(_2^4He)}{4}$ \Rightarrow $E_l(_2^4He) = A\xi(_2^4He)$ \Rightarrow $E_l(_2^4He) = 4 \times 7,07$ \Rightarrow $E_l(_2^4He) = 28,28 MeV$

3. On a:
$$E_{lib\acute{e}r\acute{e}e} = \left| E_l \binom{222}{86} Rn \right| - \left[E_l \binom{218}{84} Po \right] - E_l \binom{4}{2} He$$
 $\Rightarrow E_{lib\acute{e}r\acute{e}e} = \left| 222 \xi \binom{222}{86} Rn \right| - \left[88 \xi \binom{218}{84} Po \right] - E_l \binom{4}{2} He$ $\Rightarrow E_{lib\acute{e}r\acute{e}e} = \left| 222 \times 7,69 - \left[88 \times 7,73 - 28,28 \right] \right| \Rightarrow E_{lib\acute{e}r\acute{e}e} = 6,24 MeV$

- 4. On a: $a(t) = a_0 e^{-\lambda . t}$ à l'instant t_1 : $a(t_1) = a_0 e^{-\lambda . t_1}$ c.à.d: $\frac{a_0}{A} = a_0 e^{-\lambda . t_1}$
 - c.à.d: $e^{-\lambda t_1} = \frac{1}{4}$ \Rightarrow $-\lambda t_1 = \ln(\frac{1}{4})$ \Rightarrow $t_1 = \frac{2\ln(2)}{2}$ \Rightarrow $t_1 = 2.t_{1/2}$
 - A.N: $t_1 = 2 \times 3.8$ \Rightarrow $t_1 = 7.6 jours$

EXERCICE IV:

I- Etude de la charge du condensateur :

1. D'après la loi d'additivité des tensions : $u_R + u_C = E$ on a d'après la loi d'ohm : $u_R = Ri$

et:
$$q = Cu_C$$
 \Rightarrow $u_C = \frac{q}{C}$

- donc: $R.i + \frac{q}{C} = E$ et on a: $i = \frac{dq}{dt}$
- D'où: $R.\frac{dq}{dt} + \frac{q}{C} = E$ alors: $RC.\frac{dq}{dt} + q = C.E$

- 2. On a: $q = A.(1 e^{-\alpha t})$ et $\frac{dq}{dt} = \frac{d[A.(1 e^{-\alpha t})]}{dt} = A.\frac{d[A e^{-\alpha t}]}{dt} = A.\alpha.e^{-\alpha t}$
- On remplace dans l'équation différentielle : $RC.\frac{dq}{dt} + q = C.E \implies RC.A.q.e^{-\alpha t} + A.(1 e^{-\alpha t}) = C.E$
- $\Rightarrow RC.A_{\mathcal{Q}}.e^{-\alpha t} + A. A.e^{-\alpha t} = C.E \qquad \Rightarrow \qquad RC.A_{\mathcal{Q}}.e^{-\alpha t}(RC_{\mathcal{Q}}-1) = C.E A$
- Cette équation est vrai quel que soit t si et seulement si : RC_{Q} -1 = 0 et C.E A = 0
- Donc: $\alpha = \frac{1}{RC}$ et A = CE

- 3. $Q = q_{\text{max}} = 10 \mu C$
 - $3-2- \tau = 1ms$

4. Lorsque le régime permanent est établi on a : q = Q = cte

c.à.d :
$$\frac{dq}{dt} = 0$$

D'après l'équation différentielle on trouve : Q = C.E $\Rightarrow C = \frac{Q}{r}$

5. On a: $\tau = R.C$ \Rightarrow $R = \frac{\tau}{C}$ A.N: $R = \frac{1.10^{-3}}{10^{-5}}$ \Rightarrow $R = 100\Omega$

للمزيد من الإمتحانات مع التصحيح زوروا موقعنا الآن www.Taalime.ma

II- Etude des oscillations électriques dans le circuit LC :

1. D'après la loi d'additivité des tensions : $u_L + u_C = 0$

Et: $u_L = L \cdot \frac{di}{dt}$ (bobine de résistance négligeable) \Rightarrow

$$L.\frac{di}{dt} + u_C = 0$$

Et on a : $i = \frac{dq}{dt} = \frac{dCu_C}{dt} = C.\frac{du_C}{dt}$

$$\Rightarrow LC.\frac{d^2u_C}{dt^2} + u_C = 0 \qquad \Rightarrow \qquad \frac{d^2u_C}{dt^2} + \frac{1}{LC}u_C = 0$$

2. 2-1- C'est la courbe (b).

- <u>+ Pour la courbe (a) :</u> non , car le régime doit être périodique puisque la résistance totale du circuit est nulle (il s'agit d'un circuit LC idéal)
- <u>+ Pour la courbe (b)</u>: oui, car le régime est périodique puisqu'il s'agit d'un circuit LC idéal et $u_c(0) = E = 10V$
- + Pour la courbe (b): non, car $u_C(0) = E = 10V \neq 0$
- 2-2- D'après le graphe : $T_0 = 20ms$

3. On a:
$$T_0 = 2\pi . \sqrt{LC}$$
 \Rightarrow $T_0^2 = 4\pi^2 . L.C$ \Rightarrow $L = \frac{T_0^2}{4\pi^2 . C}$ \Rightarrow $L = \frac{(20.10^{-3})^2}{4 \times 10 \times 10.10^{-6}}$ \Rightarrow $L = 1H$

- 4. 4-1- L'énergie totale du circuit est $E_T = E_e + E_m$ qui reste constant au cours du temps
- 5. (circuit LC ideal). C.à.d que: $E_T = E_T(0) = E_e(0) + E_m(0)$

Or
$$E_e(0) = \frac{1}{2}CE^2$$
 et $E_m(0) = 0$ \Rightarrow $E_T = \frac{1}{2}CE^2$
 $\Rightarrow E_T = \frac{1}{2} \times 10^{-5} \times 10^2 \Rightarrow E_T = 5.10^{-4}J$

4-2- On a:
$$E_T = E_e + E_m \implies E_m = E_T - E_e \implies E_m = E_T - \frac{1}{2}.C.u_C^2$$

À l'instant t_1 : $E_m = 5.10^{-4} - \frac{1}{2} \times 10^{-5} \times (-8)^2$ \Rightarrow $E_m = 1,8.10^{-4} J$

EXERCICE V:

I- Etude du mouvement sur la partie A'B':

- 1. Le système (S) est soumis au forces suivantes :
 - Le poids \vec{P}
 - La réaction du plan incliné \vec{R}
 - La force motrice \vec{F}

D'après la deuxième loi de Newton

$$\vec{P} + \vec{R} + \vec{F} = m.\vec{a_G}$$

2. La courbe $V_G = f(t)$ est une fonction linéaire $\Rightarrow V_G = kt$

Avec:
$$k = \frac{\Delta V_G}{\Delta t} = \frac{9 - 0}{2 - 0} = 4.5 \text{ m.s}^{-2}$$
 $\Rightarrow V_G = 4.5.t$

www.Taalime.ma المزيد من الإمتحانات مع التصحيح زوروا موقعنا الآن Et d'autre part on a : $a_G = \frac{dV_G}{dt} = \frac{d(4,5.t)}{dt}$ \Rightarrow $a_G = 4.5 m.s^{-2}$

3. D'après le résultat de la question 1 : $m.g.\sin \beta + F = m.a_G$ $\Rightarrow F = m[a_G - g \sin \beta] \Rightarrow F = 190.[4,5 - 10 \times \sin 10] \Rightarrow F = 525,07N$

4. Puisque la trajectoire est rectiligne et $a_G = Cte \neq 0$

Donc : le mouvement est rectiligne uniformément varié (uniformément accéléré) . D'où l'expression de l'équation horaire s'écrit sous la forme :

$$x(t) = \frac{1}{2} \cdot a \cdot t^2 + v_0 \cdot t + x_0 \quad \text{avec} : \quad a_G = 4.5 m \cdot s^{-2} \quad , \quad v_0 = 0 \quad \text{et} \quad x_0 = 0$$

$$\Rightarrow \qquad x(t) = \frac{1}{2} \times 4.5 \cdot t^2 + 0 \times t + 0 \quad \Rightarrow \qquad x(t) = 2.25 \cdot t^2$$

5. On a: $x(t) = 2.25.t^2$ à l'instant t_B : $x(t_B) = 2.25.t^2_B$ avec $x(t_B) = x_B = AB$ $\Rightarrow t_B = \sqrt{\frac{AB}{2.25}} \quad \Rightarrow \quad t_B = \sqrt{\frac{36}{2.25}} \quad \Rightarrow \quad t_B = 4s$

6. On a:
$$V_G = 4.5.t$$
 à l'instant t_B : $V_B = 4.5.t_B$

$$\Rightarrow V_B = 4.5 \times 4 \quad \Rightarrow \quad V_B = 18 \text{m.s}^{-1}$$

Etude du mouvement de G lors de la phase du saut:

1. Le système (S) est soumis à son poids \vec{P} D'après la deuxième loi de Newton : $\vec{P} = m.\vec{a}_G$

La projection sur l'axe Ox: $P_x = m.a_x \implies 0 = m.a_x \implies a_x = 0$

$$\Rightarrow \frac{dv_x}{dt} = 0 \Rightarrow v_x = c_1$$

À l'instant t=0: $v_{x0} = c_1 = v_C .\cos \alpha$ $d'où: v_x = v_C.\cos\alpha$

Alors: $\frac{dx}{dt} = v_C \cdot \cos \alpha$

La projection sur l'axe Ox: $P_v = m.a_v \Rightarrow -mg = m.a_v \Rightarrow a_x = -g$

$$\Rightarrow \frac{dv_y}{dt} = -g \quad \Rightarrow \quad v_y = -gt + c_3$$

 $d'où: v_y = -g.t + v_C.\sin\alpha$ À l'instant t=0: $v_{y0} = c_2 = v_C . \sin \alpha$

Alors:
$$\frac{dy}{dt} = -g.t + v_C.\sin\alpha$$

2. On a: $\frac{dx_G}{dt} = v_C \cdot \cos \alpha$ \Rightarrow $x_G(t) = (v_C \cdot \cos \alpha) \cdot t + c_3$

À l'instant t=0: $x_G(0) = c_3 + 0$ d'où : $x_G(t) = (v_C \cdot \cos \alpha) t$

Et d'après la donnée : $x_G(t) = 19,02.t$ on déduit : $v_C.\cos\alpha = 19,02$

$$\Rightarrow v_C = \frac{19,02}{\cos \alpha} \Rightarrow v_C = \frac{19,02}{\cos 18} \Rightarrow v_C = 20 \text{m.s}^{-1}$$

3. 3-1- Au point P: $y_p = 5t_p^2 + 6.18t_p$ et $y_p = 0$ $5t_p^2 + 6.18t_p = 0$ \Rightarrow $5t_p + 6.18 = 0$ \Rightarrow $t_p = 1.236s$

Et d'autre part : $x_p = 19,02.t_p$ \Rightarrow $x_p = 19,02 \times 1,236$ \Rightarrow $x_p = 23,51m$

Or: $x_p = 23.51m < 30m$ \Rightarrow la saut effectué n'est pas réussi.

www.Taalime.maالإمتحانات مع التصحيح زوروا موقعنا الآن3-2- On a :
$$x_G(t) = (v_C.\cos\alpha).t$$
 et $y(t) = \frac{-1}{2}.gt^2 + (V_C.\sin\alpha).t$

$$\Rightarrow t = \frac{x}{V_C \cdot \cos \alpha} \qquad \Rightarrow \qquad y = \frac{-g}{2 \cdot V_C^2 \cdot \cos^2 \alpha} x^2 + x \cdot \tan \alpha$$

À la position P : on a
$$x_P = CP = 30m$$
 et $y_P = 0$

$$\Rightarrow \frac{-g}{2.V_{\min}^2 \cdot \cos^2 \alpha} x_p^2 + x_p \cdot \tan \alpha = 0 \qquad \Rightarrow V_{\min} = \sqrt{\frac{g \cdot x_p}{\sin(2\alpha)}}$$

A.N:
$$V_{\min} = \sqrt{\frac{10 \times 30}{\sin(2 \times 18)}}$$
 \Rightarrow $V_{\min} = 22,59 \text{m.s}^{-1}$