Injection de fautes : attaques physiques, protections logicielles et mécanismes d'évaluation de la robustesse

EM injections on cryptographic implementations on SoC

Journée thématique – Mardi 29 mai 2018, Campus de Jussieu, Paris

Fabien MAJÉRIC 29.05.2018

EM injections on cryptographic implementations on SoC

- 1. Introduction
- 2. Methodology
- 3. Experimentations
- 4. Analysis

1. INTRODUCTION

- Context
- SoC characteristics

1. Introduction

- ➤ Fault injection on digital security devices is a prolific subject (2006) The Sorcerer's Apprentice Guide to Fault Attacks [H. Bar-El et al.]
 - → Focused on microcontrollers and smartcard...

- ★ Today, complex System on Chip (SoC) are implied into several security task:
 - Relative to ID of the users (credentials)
 - Relative to safety of the users (automotive)

What threats FAs represent on such devices?

1. Introduction

SoC features:

- Powerful Multicores
- Several clock trees
- Several power supplies
- A lot of peripherals
- Cryptographic accelerator
- Secure internal memories
- etc...

× Context

- SoC are soldered
- Package
- Size
- etc...

2. TARGET AND METHODOLOGY

- Which physical quantity is the most appropriated?
- DUT description
- Our methodology

2. Target and methodology

Which physical quantity is appropriate?

- To makes a Fault Attack on a process:
 - Analysis (to localize the time and the area)
 - Inject a disturbance on a suitable physical quantity
- X Several technologies to inject a fault: Glitch, Laser, EM...

 ↑

 The second content of the second con
- Electromagnetic field (EM field)
 Analysis (EM Side-channel) and Disturbance (EM Fault Injection)
 - Through the package
 - Without unsoldering componants
 - Localized disturbances

2. Target and methodology

The targeted device:

- SoC : CMOS 40nm, Cortex-A9 (1GHz), 32-bits, DDR3 memory, Cache L1 & L2...
- 2 possible cryptographic implementations: CPU and/or crypto accelerator

The test consists in studying the effect of EM injection on an AES encryption executed by the CPU and by the crypto-accelerator.

AES on CPU:

- Straightforward code without counter measures
- 2. AES on crypto accelerator:
 - Security Module: dedicated clock tree, DMA, interrupts, crypto-accelerators,....

2. Target and methodology

Principle of our methodology:

- EM side-Channel Analysis to localize in space and <u>time</u> the targeted device (module computing the AES)
 - > EM side-channel mapping of the SoC by stimulating the AES with suitable data
 - Emissions analysis
 - Timing localization for the FA
- 2. EM Injection to check if an exploitable fault is possible
 - ➤ Inject a pulse during the round 9 of the AES (DFA)
 - ➤ Injection mapping to cover the entire SoC surface
- 3. Results analysis

3. AES ON CPU: EXPERIMENTATION

- 3.1 EM side-channel analysis
- 3.2 EM fault injection
- 3.3 Analysis

★ Setup: AES computed by CPU.

AES encryption:

K = 3B E3 22 66 2F 3B E8 41 50 2E 79 41 46 05 25 49

3. AES ON CPU: EXPERIMENTATION

- 3.1 EM side-channel analysis
- 3.2 EM fault injection
- 3.3 Analysis

× DFA

→ change 1 Byte value of the « state » [ShiftRow-9] X [Mixcolumn-9]

AES encryption:

Exploitable Faults: (≈ 50 different faults requested)

	$C_{0,0}$	$C_{1,0}$	$C_{2,0}$	$C_{3,0}$	$C_{0,1}$	$C_{1,1}$	$C_{2,1}$	$C_{3,1}$	$C_{0,2}$	$C_{1,2}$	$C_{2,2}$	$C_{3,2}$	$C_{0,3}$	$C_{1,3}$	$C_{2,3}$	$C_{3,3}$
	XX															
F_2	AF	XX	93	58	XX	C5	71	93	28	2C	2F	XX	B8	AB	XX	16
	AF															
F_4	AF	E6	93	XX	DE	C5	XX	93	28	XX	2F	B6	XX	AB	62	16

X From the side-channel analysis:

- Several EM injectors with different parameters
- Size
- number of spire
- Symmetry

Experimental setup build on trial and error to:

- → Find the most suitable EM injector
- Find a place where to inject faults.
- 1. EM pulse +400V, 6ns
- 2. Localize the <mute>
- 3. Adjust the pulse

X Most significant results obtained on this point.

3. AES ON CPU: EXPERIMENTATION

- 3.1 EM side-channel analysis
- 3.2 EM fault injection
- 3.3 Analysis

10 000 tries done in 18h 1207 mutes (12%) 412 faults (4%) 45 exploitable faults

nº identifant	Valeur d	1					()	Т
	raioai c						(occurences)	Туре
(Chiffré Ref.)						6 B8 AB 62 16	,	_
0012	7	72	. В7 .	70		8B	(1 times)	F_3
0014		. 1E .	73	3	75	. A3	(1 times)	F_4
0027	CE			. 78	78 .	9E	(3 times)	F_1
0044		. F1 .	F1	۱	29	. 68	(3 times)	F_4
0067		. 14 .	D:	1	49	. A7	(2 times)	F_4
0075	02			. 88	A6 .	CO	(6 times)	F_1
0099	06			. 26	В6 .	8F	(2 times)	F_1
0161		. 1C .	DI	3	6A	. 2A	(1 times)	F_4
0163		. 13 .	3:	1	6D	. 6F	(5 times)	F_4
0171	16			. 66	EE .	CA	(1 times)	F_1
0181		. 90 .	AI	7	79	. 2B	(5 times)	F_4
0198	07 .	E	9		El	E 83	(1 times)	F_2
0208	07			. AC	AC .	21	(1 times)	F_1
0220	C3 .	A)		30	C EF	(1 times)	F_2
0223	25			. 20	6E .	1C	(1 times)	F_1
0224	1A			E4	A6 .	OD	(1 times)	F_1
0273	C3 .	E	3		70	C 99	(1 times)	F_2
0297	48			2C	2E .	C3	(2 times)	$\overline{F_1}$
0301	C3 .	E	9		30	C 40	(1 times)	F_2
0308	C6 .	E	3		41	E A3	(1 times)	F_2
0316	1			7A		C3	(5 times)	F_3
							\	0

temporal distribution

All faults

Exploitable faults

3.2. Fault injection: Conclusion

- X No difficulties to disturb the AES computed by CPU
- We obtained the faults we expected
- \times In only 10 000 pulse injections \rightarrow 45 exploitable faults
- Possible improvements : pattern matching to trig the pulse injection.

4. Analysis / Conclusion

- X The AES on CPU is "easy" to disturb.
 - Powerful CPU that emit a lot of information.
 - AES software no protected
 - Easy to localize the EM emission (capacity to set up the FA)
- X The crypto-accelerator is more difficult to disturb
 - Optimized /autonomous crypto-processor
 - X AES hardware protected
 - X Need to automatize the EM scan for side channel
 - More complex methodology to localize the EM emissions
 - Need Improvements on EM bench to automate the most as possible the injection EM parameters
- Complex systems require advanced methodology to succeed in fault injection on cryptographic implementation

