Лабораторная работа №5

Язык разметки Markdown

Солдатов Алексей

Содержание

Список литературы		21
5	Выводы	20
4	Выполнение лабораторной работы	8
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Открытие mc из терминала	8
4.2	Переход в каталог и создание там папки	8
4.3	Создание файла	9
4.4	Работа с файлом	9
4.5	Проверка	10
4.6	Создание файла	10
4.7	Скачивание	10
4.8	Перемещение	11
4.9	Копирование	11
4.10	Редактирование	12
4.11	Создание файла	12
4.12	Замена	13
4.13	Создание и проверка	13
4.14	Создание копии	14
4.15	Редактирование	15
4.16	Создание и проверка файла	17
4.17	Создание копии	17
4.18	Изменение текста программы	18
4.19	Создание и проверка файла	19

Список таблиц

3.1 Описание некоторых каталогов файловой системы GNU Linux . . . 7

1 Цель работы

Приобрести практические навыки работы в Midnight Commander. Освоить инструкции языка ассемблера mov и int.

2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла
- 4. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы. Например, в табл. 3.1 приведено краткое описание стандартных каталогов Unix.

Таблица 3.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-				
талога	Описание каталога			
/	Корневая директория, содержащая всю файловую			
/bin	Основные системные утилиты, необходимые как в			
	однопользовательском режиме, так и при обычной работе всем			
	пользователям			
/etc	Общесистемные конфигурационные файлы и файлы конфигурации			
	установленных программ			
/home	Содержит домашние директории пользователей, которые, в свою			
	очередь, содержат персональные настройки и данные пользователя			
/media	Точки монтирования для сменных носителей			
/root	Домашняя директория пользователя root			
/tmp	Временные файлы			
/usr	Вторичная иерархия для данных пользователя			

Более подробно об Unix см. в [1–6].

4 Выполнение лабораторной работы

1. Основы работы тс

Открыл Midnight Commander (рис. [fig?];001).

Рис. 4.1: Открытие тс из терминала

Пользуясь стрелочками перешел в каталог "~/work/arch-pc" и создал там папку "lab05" (рис. 4.2).

Рис. 4.2: Переход в каталог и создание там папки

Перешел в созданный каталог и пользуясь строкой ввода создал в нем файл "lab5-1.asm" (рис. 4.3).

Рис. 4.3: Создание файла

2. Структура программы на языке ассемблера NASM

С помощью клавиши F4 открыл созданный файл и ввел текст программы, сохранил и закрыл его (рис. 4.4).

```
то температоров по вызова инструкции 'int 80h' программа будет ожидать ввода (тотроки, которая будет записана в переменную 'mov eax, 4 (тотроки, итотроки и температором об дет стандартный вызов устана в пременной 'msg' в 'edx' int 80h ; вызов ядра (тотроки, которая будет записана в переменную 'msg' в 'edx' int 80h ; вызов ядра (тотроки, которая будет записана в переменную 'bufl' размером 80 байт mov eax, 3 ; Системный вызов для чтения (sys_read) mov eax, 3 ; Системный вызов для чтения (sys_read) mov eax, 3 ; Системный вызов для чтения (sys_read) mov eax, 0 ; Дескриптор файла 0 - стандартный ввод mov eax, 0 ; Дескриптор файла 0 - стандартный ввод mov eax, 1 ; Адрес буфера под вводимую строку mov edx, 80 ; Длина вводимой строки int 80h ; Вызов ядра (тотроки вызов для выхода (sys_exit) mov eax, 1 ; Системный вызов для выхода (sys_exit) mov eax, 1 ; Системный вызов для выхода (sys_exit) mov ebx, 0 ; Выход с кодом возврата 0 (без ошибок) int 80h ; Вызов ядра (без ошибок) вызов я
```

Рис. 4.4: Работа с файлом

С помощью клавиши F3 откройте файл "lab5-1.asm" для просмотра и убедился, что файл содержит текст программы (рис. 4.5).

Рис. 4.5: Проверка

Создал исполняемый файл и запустил его, ввел свои ФИО (рис. 4.6).

```
[aesoldatov@fedora lab05]$ nasm -f elf lab5-1.asm
[aesoldatov@fedora lab05]$ ld -m elf_i386 -o lab5-1 lab5-1.o
[aesoldatov@fedora lab05]$ ./lab5-1
Введите строку:
Солдатов Алексей Евгеньевич_
```

Рис. 4.6: Создание файла

3. Подключение внешнего файла

Скачал файл "in_out.asm" со страницы курса в ТУИС (рис. 4.7).

Рис. 4.7: Скачивание

Перенес скачанный файл в каталог с файлом "lab5-1" (рис. 4.8).

Рис. 4.8: Перемещение

С помощью клавиши F6 создал копию файла "lab5-1.asm" с именем "lab5-2.asm" (рис. 4.9).

Рис. 4.9: Копирование

Исправил текст программы в файле "lab5-2.asm", добавив использование под-

программ из внешнего файла "in out.asm" (рис. 4.10).

Рис. 4.10: Редактирование

Создал исполняемый файл и проверил его работу (рис. 4.11).

```
[aesoldatov@fedora lab05]$ nasm -f elf lab5-2.asm
[aesoldatov@fedora lab05]$ ld -m elf_i386 -o lab5-2 lab5-2.o
[aesoldatov@fedora lab05]$ ./lab5-2
Введите строку:
Солдатов Алексей Евгеньевич
```

Рис. 4.11: Создание файла

В файле "lab5-2.asm" замените подпрограмму "sprintLF" на "sprint" (рис. 4.12).

Рис. 4.12: Замена

Создал исполняемый файл и проверил его работу (рис. 4.13).

```
[aesoldatov@fedora lab05]$ nasm -f elf lab5-2.asm
[aesoldatov@fedora lab05]$ ld -m elf_i386 -o lab5-2 lab5-2.o
[aesoldatov@fedora lab05]$ ./lab5-2
Введите строку: Солдатов Алексей Евгеньевич
[aesoldatov@fedora lab05]$
```

Рис. 4.13: Создание и проверка

Подпрограмма "sprintLF" запрашивает ввод с новой строки, а "sprint" запрашивает ввод, сохраняя строку

4. Выполнение заданий для самостоятельной работы

Создал копию файла "lab5-1.asm", назвал ее "lab5-1-1.asm" (рис. 4.14).

Рис. 4.14: Создание копии

Внес изменения в программу (без использования внешнего файла in_out.asm), так чтобы она работала по алгоритму, заданному в ТУИС (рис. 4.15).

```
∄
                                                                    mc [aeso
 GNU nano 7.2
                                                          /home/aesoldato
         data ; Секция инициированных данных
        'Введите строку:',10 ; сообщение плюс
  символ перевода строки
           ) $-msg ; Длина переменной 'msg'
       .bss ; Секция не инициированных данных
         88 80 ; Буфер размером 80 байт
     ----- Текст программы ------
       .text ; Код программы
       _start ; Начало программы
      ᠄ ; Точка входа в программу
 ----- Системный вызов `write`
После вызова инструкции 'int 80h' на экран будет
; выведено сообщение из переменной 'msg' длиной 'msgLen'
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла 1 - стандартный вывод
mov ecx,msg ; Адрес строки 'msg' в <mark>'</mark>ecx'
mov edx,msgLen ; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
        ---- системный вызов `read` ----
; После вызова инструкции 'int 80h' программа будет ожида<u>ть ввода</u>
; строки, которая будет записана в переменную 'buf1' размером 80 байт
mov eax, 3 ; Системный вызов для чтения (sys_read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
;----- Системный вызов 'write'
; После вызова инструкции 'int 80h' на экран будет
; выведено сообщение из переменной 'bufl' длиной 80
mov eax,4 ; Системный вызов для записи (sys_write)
```

Рис. 4.15: Редактирование

```
GLOBAL _start ; Начало программы
start: ; Точка входа в программу
;----- Системный вызов `write`
; После вызова инструкции 'int 80h' на экран будет
; выведено сообщение из переменной 'msg' длиной 'msgLen'
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1; Описатель файла 1 - стандартный вывод
mov ecx, msg ; Адрес строки 'msg' в 'ecx'
mov edx, msqLen; Размер строки 'msq' в 'edx'
int 80h ; Вызов ядра
;----- системный вызов `read` ------
; После вызова инструкции 'int 80h' программа будет ожидать ввода
; строки, которая будет записана в переменную 'buf1' размером 80 байт
mov eax, 3; Системный вызов для чтения (sys read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
:----- Системный вызов 'write'
; После вызова инструкции 'int 80h' на экран будет
; выведено сообщение из переменной 'buf1' длиной 80
mov eax,4; Системный вызов для записи (sys write)
mov ebx,1; Описатель файла 1 - стандартный вывод
mov ecx, buf1 ; Адрес введенной строки в 'ecx'
mov edx,80 ; Длина введенной строки
int 80h ; Вызов ядра
:----- Системный вызов `exit` ------
; После вызова инструкции 'int 80h' программа завершит работу
mov eax,1; Системный вызов для выхода (sys_exit)
```

```
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок) int 80h ; Вызов ядра
```

Создал исполняемый файл и проверил его работу (рис. 4.16).

```
...
[aesoldatov@fedora lab05]$ nasm -f elf lab5-1-1.asm
[aesoldatov@fedora lab05]$ ld -m elf_i386 -o lab5-1-1 lab5-1-1.o
[aesoldatov@fedora lab05]$ ./lab5-1-1
Введите строку:
Солдатов
Солдатов
[aesoldatov@fedora lab05]$
```

Рис. 4.16: Создание и проверка файла

Создал копию файла "lab5-2.asm", назвал ее "lab5-2-1.asm" (рис. 4.17).

Рис. 4.17: Создание копии

Исправил текст программы с использованием подпрограмм из внешнего файла "in out.asm", так чтобы она работала по алгоритму, заданному в ТУИС (рис. 4.18).

Рис. 4.18: Изменение текста программы

```
call sprint ; вызов подпрограммы печати сообщения call quit ; вызов подпрограммы завершения
```

Создал исполняемый файл и проверил его работу (рис. 4.19).

```
⊞ aesoldatov@fedora:-/work/arch-pc/lab05 Q ≡ ×

[aesoldatov@fedora ~]$ mc

[aesoldatov@fedora lab05]$ nasm -f elf lab5-2-1.asm

[aesoldatov@fedora lab05]$ ld -m elf_1386 -o lab5-2-1 lab5-2-1.o

[aesoldatov@fedora lab05]$ ./lab5-2-1

Введите строку: Солдатов

Солдатов

[aesoldatov@fedora lab05]$
```

Рис. 4.19: Создание и проверка файла

5 Выводы

Приобрел практические навыки работы в Midnight Commander и освоил инструкции языка ассемблера mov и int.

Список литературы

- 1. GNU Bash Manual [Электронный ресурс]. Free Software Foundation, 2016. URL: https://www.gnu.org/software/bash/manual/.
- 2. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 5. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. 874 с.
- 6. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.