Cos'è la blockchain?

È un elenco collegato unidirezionale (Singly linked list). dove ogni blocco si riferisce al blocco precedente. Per questo, ogni nuovo blocco calcola l'hash(SHA256) del blocco precedente e lo inserisce nella sua intestazione. In questo modo ci assicuriamo che le informazioni all'interno di ciascun blocco non siano cambiate.

Perché la blockchain è importante?

In effetti, la blockchain in sé non è molto importante! Importante è piuttosto l'algoritmo che decide chi ha il diritto di aggiungere un nuovo blocco alla lista.

Prima dell'algoritmo **PoW**, che spiegherò un po' più avanti, l'unico modo per ottenere consenso, accordo e prendere decisioni era votare. Cioè, il gruppo a cui è stato permesso di votare per qualsiasi motivo si è consultato e ha raggiunto la decisione finale votando.

Naturalmente, a volte solo una persona poteva prendere decisioni, cosa che oggi chiamiamo dittatura.

Ma cos'è il PoW?

Per spiegare questo algoritmo, dobbiamo conoscere un po' la crittografia. In questo momento spiegherò la funzione hash e successivamente parlerò della crittografia asimmetrica.

256 bits = 32 bytes

2cf24dba5fb0a30e11c6f83451d25e1f1752e4 b7e0443e2725515d0d3e21c0010

f7fe06b7a102f19a73b6446a1d29c535887ad7 0d5d49800803a60e5508b9c26f

000ad70d5d49800803a60e5508b9c26ff7fe06 b7a102f19a73b6446a1d29c535

Un algoritmo hash è una funzione matematica che accetta un input di qualsiasi dimensione, ad esempio una stringa di testo, un'immagine o un file, e produce un output di dimensione fissa chiamato valore hash. Il valore hash è come un'impronta digitale dei dati di input.

Tenete presente che questo algoritmo è unidirezionale ed è impossibile sapere cosa viene sottoposto a hash conoscendo il valore hash. E non è possibile prevedere l'output modificando il input.

Pertanto, l'unico modo per produrre un output specifico è modificare l'input, eseguire l'hashing e calcolare l'output finché non viene prodotto quell'output specifico.

Significa milioni (e anche miliardi di miliardi) di volte di tentativi ed errori! Proof of Working

Difficulty auto adjustment

Quale era il genio di **Satoshi Nakamoto** (Inventore del Bitcoin)? Regolazione automatica della cifre di difficoltà! Il valore di difficoltà (o il numero di zeri) è sempre impostato in modo che siano necessari circa dieci minuti per trovare un hash adatto.

E come vengono prese le decisioni adesso?

Una persona prende una decisione e gli altri ne controllano la correttezza. E quella persona è stata trovata casualmente (PoW).

Bitcoin motto:

Do not trust! Verify!

Ma cosa si controlla?

Ogni macchina (nodo), prima di tutto, controlla il hash della blocco se l'hash stesso è corretto e se ha soddisfatto il valore di difficoltà.

Successivamente, controlla il contenuto del blocco.

• Quali sono il contenuto del blocco?

- header (link to previous block)
- - timestamp (block creation date and time)
- - nonce (a random number which is used to change the block hash)
- - transactions
- - transactions **Merkle** root hash

• - ...

block hash (hash of entire block). This hash will be used in next block as reference to its prevous block.

Facciamo una pausa dalla blockchain e vediamo cosa è «Merkle Tree»!

Trasferimento dati sul Internet

Ci sono 2 problematiche!

Merkle Tree protocollo viene utilizzato per trasferire qualsiasi cosa su Internet.

Merkle Tree Root Hash e Merkle proof sono necessari

Data chunk number 3 + The proof

Ma cosa è Bitcoin?

Bitcoin è un sistema per implementare la scarsità digitale.

Distributed Ledger Technology **DLT**

Asymmetricencryption

Come fa Bob a dimostrare di possedere le monete, e come fa a impedire che i suoi soldi vengano rubati?

Tutti sanno la chiave pubblico di Bob. Ma come fanno a saperlo? Dalla transazione in cui ha ottenuto 50 monete!

Transaction explanation

Block 2

Bob guadagna 50 monete.

=>

Il chiave pubblico «pub1» ha 50 moneti in possesso.

Block 3

Bob da 10 monete ad Alice (pub2 di Alice) Bob = 40

Alice = 10

Bob si riferisce alla transazione nel secondo blocco.

E dice di vedere che io ho la chiave privata corrispondente all'indirizzo pub1.

E ora dico che trasferisci dieci monete dalla mia proprietà all'indirizzo pub2 (che in realtà è controllato da Alice).

Ma prima di tutto, come Bob ha guadagnato queste 50 monete? Era regalo di vincitore! Chi che ha trovato il nonce giusto e creato il block nuovo.

Double-spend attack

Solution Double-spend attack

Proof of Stake

Proof of Stake

(PoS)

Distributed Ledger Technology **DLT**

Tutti sanno tutto
Tutti controllano tutto
Tutti confermano tutto

Perche? Perche,

Protocol is everything!

Distributed Ledger Technology **DLT**

Bob guadagna 50 monete.

Bob = 50

Bob pagerà 10 monete ad Alice, solo se Già passato almeno 10 gironi da capodanno e Alice ha pulito casa di Marco e Toppo Gigio è d'accordo e firmato questo transazione e, ... delle condizioni diversi (Turing complete machine)

Bob = 40

Alice = 10 Tutti sanno tutto

Tutti controllano tutto

Tutti eseguano tutti contratti (condizioni)

Tutti confermano tutto

Oracle (oracolo)

un servizio che fornisce dati al mondo reale a una blockchain

Alice ha pulito la casa di Marco? Quanto è il tasso di cambio tra il Dollaro e l'Euro? Quanto vale oggi l'azione di Apple? Quale squadra ha vinto la partita tra Juventus e l'Inter?

Quanto arriverà il prezzo del petrolio?
Tesla aprirà una fabbrica a Berlino?
Chi sarà prossima presidente di stati uniti?

Utilizzi più comuni di Blockchain

- **Finanza**: La blockchain può essere utilizzata per creare sistemi di pagamento decentralizzati, come Bitcoin e Ethereum. Questi sistemi possono ridurre i costi e aumentare l'efficienza dei pagamenti internazionali.
- Logistica: La blockchain può essere utilizzata per tracciare i prodotti e le merci da un capo all'altro della catena di approvvigionamento. Ciò può migliorare l'efficienza e la trasparenza della catena di approvvigionamento.
- **Governo**: La blockchain può essere utilizzata per creare sistemi di voto elettronico e di registrazione dei voti. Ciò può aumentare la trasparenza e l'integrità delle elezioni.
- **Sanità**: La blockchain può essere utilizzata per creare registri sanitari decentralizzati. Ciò può migliorare la sicurezza e l'accesso ai dati sanitari.
- **Arte**: La blockchain può essere utilizzata per creare certificati di autenticità digitali per opere d'arte. Ciò può aiutare a prevenire la contraffazione.
- **Gestione della proprietà**: La blockchain può essere utilizzata per registrare la proprietà di beni, come immobili o opere d'arte. Ciò può rendere le transazioni immobiliari più efficienti e trasparenti.
- **Sicurezza**: La blockchain può essere utilizzata per creare sistemi di sicurezza decentralizzati. Ciò può migliorare la sicurezza delle reti e dei sistemi informatici.
- <u>Trasporto</u>: La blockchain può essere utilizzata per tracciare i veicoli e i loro carichi. Ciò può migliorare l'efficienza e la sicurezza del trasporto.