

HCC/HCF4069UB

HEX INVERTER

- MEDIUM-SPEED OPERATION
 tphl, tplh = 30ns (typ.) AT 10V
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD N° 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4069UB** (extended temperature range) and **HCF4069UB** (intermediate temperature range) are monolithic integrated circuit, available in 14-lead dual in-line plastic or ceramic package and plastic micro package.

The HCC/HCF4069UB consists of six COS/MOS inverter circuits. This device is intended for all general-purpose inverter applications where the medium-power TTL-drive and logic-level-conversion capabilities of circuits such as HCC/HCF4049B Hex Inverter/Buffers are not required.

June 1989 1/12

SCHEMATIC DIAGRAM OF ONE OF SIX IDENTICAL INVERTERS.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types	- 0.5 to + 20	V
	HCF Types	- 0.5 to + 18	V
Vi	Input Voltage	-0.5 to $V_{DD} + 0.5$	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for Top = Full Package-temperature Range	100	mW
Top	Operating Temperature : HCC Types	– 55 to + 125	°C
	HCF Types	– 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types	- 55 to + 125	°C
	HCF Types	– 40 to + 85	°C

reliability.

* All voltage values are referred to V_{SS} pin voltage.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s				Value				
Symbol	bol Parameter		٧ı	٧o	I ₀	V _{DD}	ΤL	o w*		25°C		T _{Hi}	gh [*]	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.		Max.	
ΙL	Quiescent		0/ 5			5		0.25		0.01	0.25		7.5	
	Current	нсс	0/10			10		0.5		0.01	0.5		15	
		Types	0/15			15		1		0.01	1		30	
			0/20			20		5		0.02	5		150	μΑ
			0/ 5			5		1		0.01	1		7.5	
		HCF Types	0/10			10		2		0.01	2		15	
		.) 00	0/15			15		4		0.01	4		30	
V _{OH}	Output High	n	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	v
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	4		4			4		
	Voltage			1/9	< 1	10	8		8			8		V
				1.5/13.5	< 1	15	12.5		12.5			12.5		
V_{IL}	Input Low	1		4.5/0.5	< 1	5		1			1		1	V
	Voltage			9/1	< 1	10		2			2		2	
				13.5/1.5	< 1	15		2.5			2.5		2.5	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	нсс	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Canoni	Types	0/10	9.5		10	- 1.6		- 1.3			- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53			- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1			- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output	HCC	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Odirent		0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/ 5	0.4		5	0.52		0.44	1		0.36		
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types		0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15	,	•	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	•
Cı	Input Capa			Any In	-					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all $V_{DD} = 0.3\%/^{\circ}C$ values, all input rise and fall time = 20ns)

Symbol	Parameter	Test Conditions	55 110 30 60 25 50 100 200 50 100	Value			Unit
Syllibol	raidilletei		V_{DD} (V)	Min.	Тур.	Max.	Oilit
t _{PLH} , t _{PHL}	Propagation Delay Time		5		55	110	
			10		30	60	ns
			15		25	50	
t _{TLH} , t _{THL}	Transition Time		5		100	200	
			10		50	100	ns
			15		40	80	

Minimum and Maximum Voltage Transfer Characteristics.

Typical Current and Voltage Transfer Characteristics.

Typical Voltage Transfer Characteristics as a Function of Temperature.

Typical Output Low (sink) Current Characteristics.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance.

Typical Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance.

Typical Transition Time vs. Load Capacitance.

HCC/HCF4069UB

Typical Dynamic Power Dissipation/per Inverter vs. Frequency.

Variation of Normalized Propagation Delay Time (t_{PHL} and t_{PLH}) with Supply Voltage.

APPLICATIONS

Typical Crystal Oscillator Circuit.

Typical RC Oscillator Circuit.

High Input Impedance Amplifier.

6/12

Input Pulse Shaping Circuit (schmitt trigger).

DYNAMIC ELECTRICAL CHARACTERISTICS AND WAVEFORMS

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP14 MECHANICAL DATA

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
1			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7.0			0.276
D		3.3			0.130	
E	0.38			0.015		
e3		15.24			0.600	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	1.52		2.54	0.060		0.100
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO14 MECHANICAL DATA

DIM.		mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	8.55		8.75	0.336		0.344		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm			inch		
5	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
M		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\ensuremath{\texttt{@}}$ 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

