Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

February 18, 2015

Today:

- Graphical models
- Bayes Nets:
 - Representing distributions
 - Conditional independencies
 - Simple inference
 - Simple learning

Readings:

Bishop chapter 8, through 8.2

Graphical Models

10-601

- Key Idea:
 - Conditional independence assumptions useful
 - but Naïve Bayes is extreme!

 Graph structure plus associated parameters define joint probability distribution over set of variables

- Two types of graphical models:
 - Directed graphs (aka Bayesian Networks)
 - Undirected graphs (aka Markov Random Fields)

(3) (3)

Graphical Models – Why Care?

- Among most important ML developments of the decade
- Graphical models allow combining:
 - Prior knowledge in form of <u>dependencies</u>/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data
- Principled and ~general methods for
 - Probabilistic inference
 - Learning
- Useful in practice
 - Diagnosis, help systems, text analysis, time series models, ...

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write
$$P(X|Y,Z) = P(X|Z)$$

$$P(x,Y|Z) = P(x|Z) P(Y|Z)$$

$$P(x|Z) = P(x|Z) P(Y|Z)$$

$$P(x|Z) = P(x|Z)$$
E.g., $P(Thunder|Rain, Lightning) = P(Thunder|Lightning)$

$$P(T,R|L) = P(T|L) P(R|L)$$

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

$$P(X, Y) = P(X) P(Y)$$

$$P(X) = \prod_{i \in I} P(X_i)$$

$$P(x|Y) P(Y) = P(x)$$

$$P(Y|X) P(x) \Rightarrow P(Y|X) = P(Y)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Represent Joint Probability Distribution over Variables

Describe network of dependencies

Eric Xing

Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters

Benefits of Bayes Nets:

- Represent the full joint distribution in fewer parameters, using prior knowledge about dependencies
- Algorithms for inference and learning

Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

BN

(DAG)

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i \mid Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1...X_n) = \prod_i P(X_i|Pa(X_i))$$

$$= P(X_i|Pa(X_i)) \cdot P(X_i|X_i) \cdot$$

Bayesian Network

WindSurf

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))

		1,
Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Thunder

The joint distribution over all variables:

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayesian Network

(StormClouds) Rain Lightning WindSurf Thunder

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

(and independ.
$$P(X,Y|Z) = P(X|Z) P(Y|Z)$$
)
$$P(X|Y,Z) = P(X|Z)$$

$$P(WT|L,R) = P(X|Z)$$

$$(P(T|L)$$

Some helpful terminology

Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children,

	(1)-Inte	5(×) '	· O /	· •		
<u>nt</u> :	Pax 5,		X	J1 0		
dr	en,					
	P(¬W\Ra)		()	; D	V l lesa	(x)
	1.0					
	1.0	i				

Bayesian Networks

CPD for each node X_i
 describes P(X_i / Pa(X_i))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

 $#ipwns = 2^{5}-1=31$

Chain rule of probability says that in general:

P(S,L,R,T,W) = P(S)P(L|S)P(R|S,L)P(T|S,L,R)P(W|S,L,R,T)

The conds independ.

But in a Bayes net:
$$P(X_1...X_n) = \prod P(X_i|Pa(X_i))$$

How Many Parameters?

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

To define joint distribution in general?

To define joint distribution for this Bayes Net?

Inference in Bayes Nets

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

$$P(S=1, L=0, R=1, T=0, W=1) = P(S=1) P(L=0|S=1)P(R=1|S=1)$$

Thunder

$$= \frac{P(W=1,S=0, L=1, R=0, 7=1)}{P(S=0, L=1, R=0, 7=1)}$$

$$P(T=0|L=0)$$
 $P[W=1|L=0, R=1)$

$$BN PIW=1 L=1, R=0) = 0$$

Consider learning when graph structure is given, and data = { <s,l,r,t,w> }

What is the MLE solution? MAP?
$$(l=1)T$$
 $(l=0)T$ $(l=0)T$

Algorithm for Constructing Bayes Network

- Choose an ordering over variables, e.g., X₁, X₂, ... X_n
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 \dots X_{i-1}$ such that

$$P(X_i|Pa(X_i)) = P(X_i|X_1,\ldots,X_{i-1})$$

Notice this choice of parents assures

$$P(X_1 ... X_n) = \prod_i P(X_i | X_1 ... X_{i-1})$$
 (by chain rule)
= $\prod_i P(X_i | Pa(X_i))$ (by construction)

Example

- Bird flu and Allegies both cause Nasal problems
- Nasal problems cause Sneezes and Headaches

What is the Bayes Network for X1,...X4 with NO assumed conditional independencies?

What is the Bayes Network for Naïve Bayes?

What do we do if variables are mix of discrete and real valued?

