Теория категорий Копределы

Валерий Исаев

10 февраля 2020 г.

План лекции

Копределы

Булевские объекты

Дуальная категория

Пусть C — произвольная категория, тогда *дуальная* ей категория C^{op} — это категория, определяемая следующим образом:

- ightharpoonup Объекты $m {f C}^{op}$ совпадают с объектами $m {f C}$.
- ightharpoonup Если X, Y объекты \mathbf{C}^{op} , то $Hom_{\mathbf{C}^{op}}(X,Y)$ определяется как $Hom_{\mathbf{C}}(Y,X)$.
- ► Композиция и тождественные морфизмы определяются так же, как в **C**.

Дуальность

- В теории категорий зачастую определения и утверждения можно дуализировать, применив их в дуальной категории.
- Например, понятие эпиморфизма является дуальным к понятию мономорфизма.

$$f$$
 - MOHO: $Z \xrightarrow{g} X \xrightarrow{f} Y \implies g = h$

$$f$$
 - $\exists nu: Z \stackrel{g}{\underset{h}{\rightleftharpoons}} X \stackrel{f}{\longleftrightarrow} Y \implies g = h$

 Часто к дуальным понятиям прибавляют приставку ко.
 Например, эпиморфизмы можно называть комономорфизмами (или мономорфизмы можно называть коэпиморфизмами).

Копределы

- Копределы это дуальное понятие к понятию пределов.
- Коконус диаграммы D это объект A вместе с коллекцией морфизмов $a_v:D(v)\to A$ для каждой $v\in V$, удовлетворяющие условию, что для любого $e\in E$ следующая диаграмма коммутирует

Определение копределов

• Копредел диграммы D — это такой коконус A, что для любого коконуса B существует уникальный морфизм $f:A \to B$, такой что для любой $v \in V$ следующая диаграмма коммутирует

- ightharpoonup Копредел D обозначается colim D.
- ► Категория называется *кополной* (*конечно кополной*), если в ней существуют все малые (конечные) копределы.

Уникальность копределов

Дуализировать можно не только определения, но и утверждения.

Proposition

Если A и B – копределы диаграммы D, то существует изоморфизм $f:A\simeq B$, такой что $f\circ a_v=b_v$ для любой $v\in V$.

Доказательство.

Так как копредел в \mathbf{C} – это предел в \mathbf{C}^{op} , то это утверждение эквивалентно аналогичному утверждению для пределов.

Начальный объект

- Объект называется начальным, если он является копределом пустой диаграммы.
- B Set существует единственный начальный объект пустое множество.
- ▶ В **Hask** начальный объект пустой тип.
- В Grp начальный объект тривиальная группа.

Копроизведения объектов

- ightharpoonup Копроизведение (сумма) объектов A_1 и A_2 это копредел диаграммы A_1 A_2 . Копроизведение обозначается $A_1 \coprod A_2$ либо $A_1 + A_2$.
- ▶ В Set копроизведение это размеченное объединение множеств.
- ▶ В **Hask** копроизведение это *Either*.
- ▶ В Grp копроизведение свободное произведение.

Фактор-множества

- ightharpoonup Пусть \sim отношение эквивалентности на множестве B.
- ightharpoonup Тогда можно определить множество B/\sim классов эквивалентности элементов B по этому отношению.
- lacktriangle Существует каноническая функция $c:B o B/\sim$, отправляющая каждый $b\in B$ в его класс эквивалентности.
- **В** Если рассматривать отношение \sim как подмножество $B \times B$, то существуют проекции $f,g:\sim \to B$.
- ightharpoonup Стрелка c уравнивает f и g и является универсальной с таким свойством.
- ightharpoons Другими словами, c является коуравнителем f и g.

Коуравнители

- В произвольной категории коуравнители можно рассматривать как обобщение этой конструкции.
- ▶ Пусть B абелева группа, A подгруппа B, $f:A\hookrightarrow B$ вложенние A в B. Тогда коядро B/A это коуравнитель стрелок $f,0:A\to B$.
- lacktriangle И наоборот, коуравнитель стрелок f,g:A o B это коядро $B/\mathrm{Im}(f-g).$
- ► Пушауты дуальное понятие к понятию пулбэков.

План лекции

Копределы

Булевские объекты

Копроизведение $1 \coprod 1$

- ▶ В **Set** множество Bool можно определить как копроизведение множеств {true} и {false}, каждое из которых является терминальным.
- lacktriangle Копроизведение 1 malg 1 обычно обозначается как 2.
- ▶ Можно было бы в произвольной категории определить объект Bool как копроизведение 1 II 1.
- ▶ Но это недостаточно сильное определение. Мы не сможем никаких функций над ним определить.

Булевский объект

- Пусть в C существуют все конечные произведения.
- ▶ Тогда *булевский объект* в **С** это объект Bool вместе с парой морфизмов ${
 m true, false}: 1 \to {
 m Bool},$ удовлетворяющий следующему условию.
- ightharpoonup Для любых f,g:A o B существует уникальная стрелка $h:\operatorname{Bool} imes A o B$, такая что

Булевский объект и 2

- ▶ Любой булевский объект является 2.
- Раборительно, если в определении булевского объекта в качестве A взять 1, то мы получим в точности универсальное свойство $1 \amalg 1$.
- Следовательно булевский объект уникален с точностью до изоморфизма.
- Но не любой объект, являющийся 2, является булевским.
- Действительно, в категории групп 2 изоморфен 1.
- Но булевский объект изоморфен 1 только в категориях предпорядка.

▶ Мы можем сконструировать морфизм $if: \operatorname{Bool} \times (C \times C) \to C$, удовлетворяющий

- ▶ Действительно, в определении Bool возьмем $A = C \times C$, B = C, $f = \pi_1$ и $g = \pi_2$.
- ▶ Тогда существует уникальная стрелка $\operatorname{Bool} \times (C \times C) \to C$, удовлетворяющая условиям выше.