FEE321 – E.C.T IIA – Oct 2020

Lecture 6: Complex frequency and the Laplace Transform (2 hrs)

Lecturer: Prof H A Ouma

06/11/2020

Overview

Today's class looks at complex frequency

- Euler's formula
- Exponential excitation review
- Complex numbers review
- Waveform representation
- Laplace transform an introduction

Content

• Euler's formula

Euler's formula[1]

- Swiss mathematician Leonhard Euler
- Euler's number, $e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}$
- $e \approx 2.7 1828 1828 45 90 45$
- e is the base of the natural logarithm, $\log_e x = \ln x$
- Exponential curve $y = e^x$ has attractive properties:
 - Slope is equal to curve itself; $\frac{dy}{dx} = e^x$
 - Area under curve to any value x equals curve value at x, $\int_{-\infty}^{x} e^{x'} dx' = e^{x}$
- Properties promote its use in calculus

Euler's formula[2]

- Formula relates exponential function to trigonometric functions through a complex index
- Formula $e^{j\omega t} = \cos \omega t + j \sin \omega t$
- If index is not complex then $e^{\omega t} = \cosh \omega t + \sinh \omega t$
- Magnitude: $|e^{j\omega t}| = \sqrt{\cos^2 \omega t + j \sin^2 \omega t} = 1$
- Angle: $\angle e^{j\omega t} = tan^{-1} \frac{\sin \omega t}{\cos \omega t} = \omega t$

Euler's formula[3]

- In polar form $e^{j\omega t}=1 \angle \omega t$
- On complex plane, locus of $e^{j\omega t}$ is the unit circle

Content

- Euler's formula
- Exponential excitation review

Exponential excitation

- Formula enables analysis of sinusoidal excitation through the complex exponential function
- If excitation is for example $v(t) = V \sin \omega t$,
- This is equivalent to $v(t) = \text{Im} \big[V e^{j\omega t} \big]$ since, $V e^{j\omega t} = V \cos \omega t + jV \sin \omega t$
- Analysis would then be made using complex exponential excitation, $Ve^{j\omega t}$ and for the **actual** solution the **imaginary part** of the solution is taken
- Similarly, for excitation $i(t) = I \cos \omega t = \text{Re}[Ie^{j\omega t}]$, analysis would be done, and for the **actual** solution the **real part** of the solution would be taken

Content

- Euler's formula
- Exponential excitation review
- Complex numbers review

Complex numbers[1]

- Complex numbers give a convenient way of analyzing AC circuits
- Sinusoidal voltages and currents are transformed into complex numbers called **phasors**
- Resistances, inductances, and capacitances are transformed into complex numbers called impedances
- Complex numbers may be represented in various forms
- Each form is useful under different mathematical operations
- Different forms also give different insights into the solution

Complex numbers[2]

• Rectangular form representation x = a + jb

• Magnitude:
$$|x| = \sqrt{a^2 + b^2} = A$$

• Angle: $\angle x = \tan^{-1} \frac{b}{a} = \theta$

• Angle:
$$\angle x = \tan^{-1} \frac{b}{a} = \theta$$

Phasor

Complex numbers[3]

- Exponential form $x = Ae^{j\theta} = A\cos\theta + jA\sin\theta$
- Equating to rectangular form:

$$a = A \cos \theta$$
 and $b = A \sin \theta$

Polar form (shorthand for exponential form)

$$x = A \angle \theta$$

- Conversion between the 3 forms must be mastered
- Conjugates of complex numbers differ in the sign of the angle
- If $x = Ae^{j\theta}$, then the conjugate, $x^* = Ae^{-j\theta}$

Complex numbers[4]

Algebra

- Multiplication and division
 - Use exponential form

$$(Ae^{j\theta_1}) \times (Be^{j\theta_2}) = ABe^{j(\theta_1 + \theta_2)}$$

$$(Ae^{j\theta_1}) \div (Be^{j\theta_2}) = \frac{A}{B}e^{j(\theta_1 - \theta_2)}$$

- Addition and subtraction
 - Use rectangular form

$$(a_1 + jb_1) \pm (a_2 + jb_2) = (a_1 \pm a_2) + j(b_1 \pm b_2)$$

Complex numbers[5]

Powers and Roots

Use exponential form

$$\left[Ae^{j\theta}\right]^n = A^n e^{jn\theta}$$

$$[Ae^{j\theta}]^{\frac{1}{n}} = A^{\frac{1}{n}}e^{j\left(\frac{\theta + 2k\pi}{n}\right)}$$

$$k = 0, 1, 2, ..., n - 1$$

Complex numbers[6]

Phasors

- Complex number associated with a phase shifted sinusoid
- Magnitude is the effective (rms) value of the voltage or current
- Angle is the phase angle of the phase shifted sinusoid

$$v(t) = 3\sin(\omega t + 20^{\circ}) \rightarrow \frac{3}{\sqrt{2}} \angle 20^{\circ}$$

- While it represents a sinusoid (real signal), a phasor is not a sinusoid as it is complex in nature
- Complex numbers ONLY phasors when they correspond to a sinusoid
- Some literature uses phasor magnitude as the sinusoid peak value
- Some also use the angle as being of a cosine rather than sine wave
- Principally we shall use rms value as magnitude, and sine wave as the base sinusoid

Complex numbers[7]

Phasors

- Sinusoids of same frequency can be summed using phasors
- $v(t) = 3\sin(\omega t + 20^{o}) + 4\sin(\omega t 65^{o})$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle -65^{o}$ • $v(t) = \frac{3}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{2}} \angle 20^{o} + \frac{4}{\sqrt{$
- $v(t) = 5.2049 \sin(\omega t 29.96^{\circ})$

Complex numbers[8]

Phasor diagrams

- Complex plane diagrams
- Phasors shown as arrows from the origin
- Length of arrow corresponds to magnitude of phasor
- Angle of arrow with the positive real axis correspond to the phasor angle
- Rectangular coordinate plot achieves this e.g. $2e^{j30^o} = 1.7320 + j$

 Phasor diagrams show the relative relationship between various voltages and currents of the same frequency

Complex numbers[9]

Phasor diagrams

 Phasor addition achieved by placing phasors end to end and then drawing a new phasor connecting the origin to the end of the last phasor in the chain

• e.g. $1e^{j110^o} + 2e^{j30^o} = -0.3420 + j0.9397 + 1.7320 + j$ = 1.3900 + j1.9397

 $= 2.3863 \angle 54.37^{\circ}$

 Phasor subtraction is by reversing the direction of the arrow being subtracted and then adding as before

Complex numbers[10]

Circuit Analysis using phasors

- Time domain circuit is first transformed into a phasor domain circuit
- Phasor circuit has phasor currents and voltages, and component impedance values
- Circuit analysis then proceeds as in the time domain circuits, only no calculus is involved
- Actual values of voltages and currents are finally obtained by transforming the phasors calculated into time domain voltages and currents
- Actual components and their values are obtained by transforming the impedances calculated into time domain components

Content

- Euler's formula
- Exponential excitation review
- Complex numbers review
- Waveform representation

Waveform representation[1]

- Preceding section on phasors has hinted at waveform representation
- General voltage or current waveform may be represented in phasor form as

$$X = Ae^{\sigma t}e^{j(\omega t + \varphi)}$$

This represents the real waveform

$$x(t) = \operatorname{Im}[X] = Ae^{\sigma t} \sin(\omega t + \varphi)$$

- x(t) takes different forms depending on the values of σ , ω , and to a lesser extent φ . For example
- When σ is negative the waveform decays with time
- ullet When ω is zero, the waveform does not oscillate

Waveform representation[2]

- The general phasor form may be re-written as $\mathbf{X} = Ae^{\sigma t}e^{j(\omega t + \varphi)} = Ae^{j\varphi}e^{(\sigma + j\omega)t}$
- $\sigma + j\omega = s$ is known as the complex frequency
- σ has the units of nepers/sec
- ω , as before, has the units of radians/sec
- The real waveform may thus be written as

$$x(t) = \operatorname{Im} \left[A e^{j\varphi} e^{st} \right]$$

The various waveform types can then be appreciated

Waveform representation[3]

The general phasor form

$$X = Ae^{\sigma t}e^{j(\omega t + \varphi)} = Ae^{j\varphi}e^{(\sigma + j\omega)t}$$

- Let $s = \sigma + j\omega = 0 + j0$ then
- $X = Ae^{0t}e^{j(0t+\varphi)} = Ae^{j\varphi}$
- This represents a constant (d.c.) waveform $x(t) = \text{Im}[Ae^{j\varphi}]$

Waveform representation[4]

The general phasor form

$$X = Ae^{\sigma t}e^{j(\omega t + \emptyset)} = Ae^{j\emptyset}e^{(\sigma + j\omega)t}$$

- Let $s = \sigma + j\omega = \sigma + j0$ then
- $X = Ae^{\sigma t}e^{j(0t+\varphi)} = Ae^{\sigma t}e^{j\varphi}$
- This represents an exponential waveform $x(t) = \text{Im} \left[Ae^{\sigma t}e^{j\varphi} \right]$

• e.g. $x(t) = 3e^{\pm 5t}$

Waveform representation[5]

The general phasor form

$$X = Ae^{\sigma t}e^{j(\omega t + \varphi)} = Ae^{j\varphi}e^{(\sigma + j\omega)t}$$

- Let $s = \sigma + j\omega = 0 + j\omega$ then
- $X = Ae^{0t}e^{j(\omega t + \varphi)} = Ae^{j\omega t}e^{j\varphi}$
- This represents a sinusoidal waveform $x(t) = \text{Im}[Ae^{j\omega t}e^{j\varphi}]$
- e.g. $x(t) = 2\sin(10t + 20^{\circ})$

Waveform representation[6]

The general phasor form

$$X = Ae^{\sigma t}e^{j(\omega t + \varphi)} = Ae^{j\varphi}e^{(\sigma + j\omega)t}$$

- Let $s = \sigma + j\omega$ then
- $X = Ae^{\sigma t}e^{j(\omega t + \varphi)}$
- This represents an exponentially varying sinusoidal waveform $x(t) = \text{Im} \left[A e^{\sigma t} e^{j(\omega t + \varphi)} \right]$

• e.g. $x(t) = 5e^{-3t} \sin(10t + 40^{\circ})$

Waveform representation[6]

The general phasor form

$$X = Ae^{\sigma t}e^{j(\omega t + \varphi)} = Ae^{j\varphi}e^{(\sigma + j\omega)t}$$

• Let $s = \sigma + j\omega$ then

$$X = Ae^{\sigma t}e^{j(\omega t + \varphi)}$$

• This represents an exponentially varying sinusoidal waveform

 $x(t) = \operatorname{Im} \left[A e^{\sigma t} e^{j(\omega t + \varphi)} \right]$

• e.g. $x(t) = \frac{1}{2}e^{3t}\sin(10t + 80^{\circ})$

06/11/2020

Waveform representation[7]

- The complex frequency may be plotted on the s-plane
- The s-plane is very similar to the complex number plane
- Values of the complex frequency are plotted the same way complex numbers are plotted on the complex plane

• e.g. s=3+j2 is plotted thus $j\omega>0$ $\omega>0$ ω

 $\sigma < 0$

• Note $\sigma \le 0$ region for practical systems

 $\sigma > 0$

Content

- Euler's formula
- Exponential excitation review
- Complex numbers review
- Waveform representation
- Laplace transform an introduction

Laplace transform[1]

- Solutions using the complex exponential method provide steady state solutions for circuits
- Transient solutions may be obtained by using the Laplace transform
- Laplace transform (LT) moves analysis from the time domain to the s-domain
- In so doing, calculus operations are traded for arithmetic operations
- Analysis in the s-domain also offers insight into the circuit characteristics
- Continuous time physical systems are usually modelled with linear differential equations (LDEs), with constant coefficients
- Laplace transform of the LDEs gives a good description of the characteristics of the LDEs, and thus the physical system

Laplace transform[2]

- Transformed LDEs are algebraic and thus simpler to manipulate and solve
- Solution is in terms of the transform variable s, and thus the inverse LT is needed to convert the solution to a function of time
- Laplace transform, F(s) of a function of time, f(t) is given by

$$\mathcal{L}_{b}[f(t)] = F_{b}(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$

- This is the **bilateral** or **two sided Laplace transform**, taking analysis into the s-domain
- The inverse LT is given by the complex inversion integral

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+j\infty} F(s)e^{st}ds$$

- Minimum value of c for a given transform is called termed the abscissa of absolute convergence
- The two equations form the bilateral LT pair
- Shorthand designation of the bilateral LT pair, $f(t) \rightleftharpoons F_h(s)$
- Sometimes indicated as $f(t) \stackrel{\mathcal{L}_b}{\rightleftharpoons} F_b(s)$

Laplace transform[3]

• In many applications f(t)=0 for t<0, and a more useful **unilateral LT** is defined

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt$$

The inverse LT integral remains the same

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+j\infty} F(s)e^{st}ds$$

- The two equations form the (unilateral) LT pair
- The unilateral LT is the form that will be used in our ECT studies
- Shorthand designation of the LT pair, $f(t) \rightleftharpoons F(s)$
- Sometimes $f(t) \stackrel{\mathcal{L}}{\rightleftharpoons} F(s)$
- The complex inversion integral is hardly ever used due to the difficulty in evaluating it
- Use of tables of transform pairs is the norm

Laplace transform[4]

- Conditions for the existence of the unilateral LT
- A given function f(t), must be an **exponential order function**, for it to have an unilateral LT

i.e. real constants M and α exist such that $|f(t)| < Me^{\alpha t}$ for all $t > t_o$,

- Some common properties of the LT are considered next
- It is important to be able to prove these properties
- With repeated use some of these properties may become obvious
- List of properties given is not necessarily exhaustive and student should read further and obtain their library of properties to use as required for s-domain analysis

Summary

Today's class looked at complex frequency

- Euler's formula
- Exponential excitation review
- Complex numbers review
- Waveform representation
- Laplace transform -introduction

QUESTIONS?