第六章 序数*

6.1 若不要求 $\langle A, \prec_A \rangle$, $\langle B, \prec_B \rangle$ 为拟线序,则第 (1)、(2) 小题的答案都是否定的。举反例如下: 令 $A = \{1, 2, 3, 4, 12\}$, \prec_A 为整除关系, $B = \{1, 2, 3, 4\}$, \prec_B 为小于关系。令 f(1) = 1, f(2) = f(3) = 2, f(4) = 3, f(12) = 4。

易于验证, $\langle A, \prec_A \rangle$, $\langle B, \prec_B \rangle$ 和 f 满足题目中的要求。但 f(2) = f(3),故 f 不是单射。同时, $f(3) \prec_B f(4)$,但 $3 \not\prec_A 4$,因此 $f(x) \prec_B f(y) \not\Rightarrow x \prec_A y$ 。

若要求 $\langle A, \prec_A \rangle$, $\langle B, \prec_B \rangle$ 为拟线序,则 (1)、(2) 的答案都是肯定的。证明如下: 证明: (1) 反设 f 不是单射。则存在 $x,y \in A$,满足 $x \neq y \land f(x) = f(y)$ 。由于 $\langle A, \prec_A \rangle$ 是拟线序,故必有 $x \prec_A y$ 或 $y \prec_A x$ 。由题设,就有 $f(x) \prec_B f(y)$ 或 $f(y) \prec_B f(x)$ 。这与假设 f(x) = f(y) 矛盾。故, f 必是单射。

- (2) 反设存在 $x,y \in A$,使 $f(x) \prec_B f(y)$,但 $x \not\prec_A y$ 。由于 $\langle A, \prec_A \rangle$ 是拟线序,所以有 x = y 或 $y \prec_A x$ 。若 x = y,则由 f 是函数可知, f(x) = f(y),这与 $f(x) \prec_B f(y)$ 矛盾。若 $y \prec_A x$,则由题设知, $f(y) \prec_B f(x)$,这同样与前提 $f(x) \prec_B f(y)$ 矛盾。这就证明了 $\forall x,y \in A, x \prec_A y \Leftrightarrow f(x) \prec_B f(y)$ 。
- **6.2** 由拟序关系定义和教材定理 2.15(2)、(5) 立即得证。

6.3

(1)

证明: 由全序定义知, 对所有 $x,y \in A$, 若 $x \neq y$, 则 $\langle x,y \rangle$ 与 $\langle y,x \rangle$ 有且仅有一个属于 R。由于 $x \neq y$,故若 $\langle x,y \rangle$ 或 $\langle y,x \rangle$ 属于 R,则它们也属于 $R-I_A$ 。由组合数学结论知,这样的 x,y 有 $C_n^2 = n(n-1)/2$ 组。同时,由 $R-I_A$ 的定义知, $R-I_A$ 只有这 n(n-1)/2 个元素。又因为 R 是全序,所以 $I_A \subseteq R$ 。从而由容斥原理有: $|R| = |I_A| + |R-I_A| - |I_A \cap (R-I_A)| = n+n(n-1)/2 = n(n+1)/2$ 。

- (2) 由拟线序定义知,对所有 $x,y \in A$, 若 $x \neq y$,则 $\langle x,y \rangle$ 与 $\langle y,x \rangle$ 有且仅有一个属于 R,又由于 $\forall x \in A, \langle x,x \rangle \notin R$,所以: $|R| = C_n^2 = n(n-1)/2$ 。
- **6.4** 首先证明,良序集定义中的" $\langle A, \prec \rangle$ 为拟全序集"的条件可以弱化为" $\langle A, \prec \rangle$ 为拟序集"。引理 **6.1** 设 $\langle A, \prec \rangle$ 为一个拟序集,若对于 A 的任何非空子集 B 均有最小元,则 $\langle A, \prec \rangle$ 是拟全序集,从而是良序集。

证明: 反设 $\langle A, \prec \rangle$ 不是拟全序,则存在 $x,y \in A$,使得 $x \neq y \land x \not\prec y \land y \not\prec x$ 。这时,取 $B = \{x,y\} \subseteq A$,B 为非空的。但由于 $x \not\prec y \land x \neq y$,所以 x 不是的最小元。同理,y 也不是最小元。从而 B 中无最小元,与题设矛盾。

因此 $\langle A, \prec \rangle$ 必是拟全序集。从而由良序定义知, $\langle A, \prec \rangle$ 是良序集。