

Facultad de Ciencias

Universidad Autónoma de México Física Estadística Tarea 2 – 4.5

Profesores:

Dr. Ricardo Atahualpa Solórzano Kraemer

Alumno: Sebastián González Juárez

sebastian_gonzalezj@ciencias.unam.mx

4.5 (Más adelante veremos este modelo a detalle) Modelo de Ising unidimensional:

El modelo consiste en una lattice unidimensional donde hay N +1 espines de 1/2 igualmente espaciados, acoplados con sus dos vecinos más cercanos, con los que tiene interacciones.

El Hamiltoniano del sistema es

$$H = -J \sum_{j=1}^{N} \sigma_j \sigma_{j+1}$$

donde J es una constante positiva, $\sigma_i = \pm 1$ y se usan condiciones periódicas a la frontera.

- a) Dibuja 3 cadenas de espines, la primera con todos los espines apuntando hacia arriba. La segunda con dos subcadenas, de las cuales la primera parte apunte hacia arriba y la segunda hacia abajo y finalmente, 3 subcadenas, la primera hacia arriba, la segunda hacia abajo y la tercera hacia arriba.
- b) El proceso de arriba se puede continuar, cada subcadena nueva implicará un "doblez" de arriba hacia abajo o de abajo hacia arriba (como en el modelo del hule). Escribe la energía del sistema como función del número de dobleces.
- c) Representa esquemáticamente las cadenas con energía máxima y con energía mínima. Para un número fijo de dobleces n, calcula el número de posibles configuraciones Ω n y con ello calcula S. Asume N, n \gg 1.
- d) Obtén la temperatura de equilibrio como función de N y n ¿A qué configuración corresponden $T \rightarrow 0$ y $T \rightarrow \infty$ ¿Corresponde con lo que esperarías? Si no ¿por qué

a)

Primera cadena: Todos los espines apuntando hacia arriba ($\sigma_i = +1$ para todo j).

$$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\dots\uparrow$$

Segunda cadena: Dos subcadenas, la primera con espines hacia arriba y la segunda hacia abajo. Supongamos que los primeros k espines son \uparrow y los restantes N+1 - k son \downarrow .

$$\uparrow\uparrow....\uparrow\downarrow\downarrow...\downarrow$$

Hay un solo "doblez" (transición de ↑ a ↓) en la posición k.

Tercera cadena: Tres subcadenas, alternando \uparrow , \downarrow , \uparrow . Por ejemplo, primeros k1 espines \uparrow , siguientes k2 espines \downarrow , y el resto \uparrow .

$$\uparrow\uparrow...\uparrow\downarrow\downarrow...\downarrow\uparrow\uparrow...\uparrow$$

Hay dos "doblez" ($\uparrow a \downarrow y \downarrow a \uparrow$).

b)

El Hamiltoniano es: $H = -J \sum_{j=1}^{N} \sigma_j \sigma_{j+1}$ con condiciones periódicas $\sigma_{N+1} = \sigma_1$.

Cada par de espines adyacentes contribuye:

- Si $\sigma_i = \sigma_{i+1}$ (no hay doblez): contribución -J.
- Si $\sigma_i \neq \sigma_{j+1}$ (hay doblez): contribución +J.

Si hay n dobleces, entonces hay N- n pares alineados y n pares no alineados. Por lo tanto:

$$E = -J(N-n) + Jn = -JN + 2Jn$$

c)

Energía mínima: Mínimo de E ocurre cuando n = 0 (todos los espines alineados).

$$E_{\min} = -JN$$

Configuración: $\uparrow \uparrow \uparrow ... \uparrow o \downarrow \downarrow \downarrow ... \downarrow$

Energía máxima: Máximo de E ocurre cuando n =N (máximo número de dobleces, alternando \uparrow y \downarrow).

Si N es par, esto es posible con una configuración perfectamente anti ferromagnética:

$$\uparrow\downarrow\uparrow\downarrow\dots\uparrow\downarrow$$

$$E_{\text{max}} = -JN + 2JN = JN$$

Si N es impar, no se puede tener exactamente n = N, pero el máximo sería n=N-1:

$$E_{\text{max}} = -JN + 2J(N-1) = JN - 2J$$

d)

Para un número fijo de dobleces n, las configuraciones corresponden a colocar n dobleces en N posibles posiciones. Sin embargo, debido a las condiciones periódicas, el problema es más complejo, pero para $N,n\gg 1$, podemos aproximar:

$$\Omega_n \approx \binom{N}{n}$$

Usando la aproximación de Stirling: $\ln \Omega_n \approx N \ln N - n \ln n - (N-n) \ln (N-n)$

La entropía es: $S = k_B \ln \Omega_n \approx k_B [N \ln N - n \ln n - (N - n) \ln (N - n)]$

La temperatura se obtiene de: $\frac{1}{T} = \frac{\partial S}{\partial E}$

Sabemos que E = -JN + 2Jn, entonces dE = 2Jdn, y: $\frac{\partial S}{\partial E} = \frac{\partial S}{\partial n}\frac{dn}{dE} = \frac{\partial S}{\partial n}\frac{1}{2J}$

$$\frac{\partial S}{\partial n} \approx k_B [-\ln n - 1 + \ln(N - n) + 1] = k_B \ln\left(\frac{N - n}{n}\right)$$

Por lo tanto: $\frac{1}{T} = \frac{k_B}{2J} \ln \left(\frac{N-n}{n} \right)$

Despejando n: $\ln\left(\frac{N-n}{n}\right) = \frac{2J}{k_BT}$

$$n = \frac{N}{1 + e^{2J/k_B T}}$$

Configuraciones para $T \rightarrow 0 T \rightarrow \infty y$

$$T \to 0$$
: $e^{2J/k_BT} \to \infty \Rightarrow n \to 0$

Esto corresponde a todos los espines alineados ($\uparrow\uparrow...\uparrow$ o $\downarrow\downarrow...\downarrow$), que es el estado de energía mínima, como esperado.

Lo cual, si cumple con lo esperado, el sistema se ordena en el estado de mínima energía

$$T \to \infty$$
: $e^{2J/k_BT} \to 1 \Rightarrow n \to \frac{N}{2}$

Esto corresponde a una configuración con aproximadamente la mitad de los pares desalineados (máxima aleatoriedad, entropía máxima).

Lo cual, si cumple con lo esperado, el sistema tiende a maximizar la entropía, con una distribución aleatoria de espines (número de dobleces cercano a $\frac{N}{2}$.