MODELLI E METODI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4\}$$

$$A = \{(1,2), (1,3), (1,4), (2,4), (3,2), (3,4)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1, 2)	(1,3)	(1,4)	(2,4)	(3, 2)	(3,4)
c_{ij}	1	1	6	2	2	5
d_{ij}	2	3	10	5	3	4

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4
b_i	4	0	0	-4

Verificare che alla terna

$$B = \{(1,4), (2,4), (3,4)\}$$
 $N_0 = \{(1,2), (1,3), (3,2)\}$ $N_1 = \emptyset$.

corrisponde una soluzione di base ammissibile e partire da questa per determinare una soluzione ottima e il valore ottimo per questo problema.

ESERCIZIO 2. (9 punti) Un tecnico si occupa della manutenzione di 4 macchinari appartenenti a 4 ditte diverse. Ogni ditta deve rivolgersi al tecnico in media 5 volte al mese. Il tecnico è in grado di eseguire 15 manutenzioni al mese. In condizioni stazionarie, qual è il numero medio di macchinari in manutenzione presso il tecnico? Quanto tempo rimane in media un macchinario in manutenzione? Qualo è la distribuzione del numero di macchinari in manutenzione? Quante manutenzioni al mese dovrebbe essere in grado di fare il tecnico per restare inattivo metà del tempo? (limitarsi a impostare un'opportuna equazione la cui soluzione fornisce la risposta a quest'ultima domanda).

ESERCIZIO 3. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson per il problema di flusso massimo.

ESERCIZIO 4. (5 punti) Si illustri la prima iterazione dell'algoritmo ungherese per il problema di assegnamento, descrivendo le operazioni eseguite sulla tabella iniziale dei costi (indicata con T_0 a lezione), le operazioni sulla tabella risultante (indicata con T_2 a lezione) e il modo in cui viene (eventualmente) generata una nuova tabella T_3 .