Введение в машинное обучение

Паточенко Евгений НИУ ВШЭ

План занятия

- Немного истории
- Основные понятия
- Типы задач в машинном обучении
- Разведочный анализ данных (EDA)
- Обучение и валидация модели

Машинное обучение

Машинное обучение:

- Наука, изучающая способы извлечения закономерностей из ограниченного количества примеров (<u>E. Соколов</u>)
- Наука, изучающая алгоритмы, автоматически улучшающиеся благодаря опыту (<u>хендбук Яндекса</u>)
- Процесс, который дает возможность компьютерам обучаться выполнять что-то без явного написания кода (<u>А. Л. Самуэль</u>)

- 1947 г. Британский математик и программист Алан Тьюринг высказывается об идее создания «интеллектуальных машин», которые должны изменять свое внутреннее состояние исходя из полученного опыта. В 1950 создает *тест Тьюринга* для оценки искусственного интеллекта компьютера
- 1956 г. Дартмутская конференция. Американским информатиком Джоном Маккарти предложен термин «искусственный интеллект»
- 1960 г. Создан первый работающий пример алгоритма, моделирующий работу мозгового нейрона перцептрон Розенблатта, на основе специально созданной машины Mark-1

1966 г. Создается диалоговая система Eliza, которая моделирует разговор с психотерапевтом (обрабатывает естественный язык!)

Алгоритм подставляет значимые слова в шаблонную фразу, во многом перефразирует фразы пациента:

- Пациент: «У меня болит голова»
- Доктор: «Почему вы говорите, что у вас болит голова?»
- Пациент: «Мой отец меня ненавидит»
- Доктор: «Кто еще из семьи вас ненавидит?»

В непонятных ситуациях отвечала «Понятно».

1970-е — 1980-е гг. Появляются экспертные системы. В Стэнфорде разрабатывают систему MYCIN для помощи врачам в диагностировании и лечении серьезных бактериальных заболеваний. Происходит расцвет подходов на основе правил (rulebased).

1984 г. Разрабатывается алгоритм автоматического построения решающего дерева.

2016 г. Начинает использоваться нейросетевой машинный перевод. Глубокие нейронные сети обучаются на параллельных корпусах текстов. Качество перевода становится значительно лучше, чем у перевода на основе правил

2017 г. Выходит статья *Attention Is All You Need*, про механизм внимания, который ложится в основу SoTA-решений в ИИ, используемых по сей день

Объекты — сущности, для которых хотим сделать предсказание

Признаки — Характеристики объектов. Бывают численные, категориальные, бинарные

Обучающая выборка— набор объектов, для которых известны правильные ответы

Целевая переменная (ответ) — величина, которую хотим предсказать

Модель (алгоритм) — функция, отображающая объекты в предсказания (алгоритм, который учится находить закономерности в данных и делает предсказания)

Формальная постановка задачи

X — множество объектов

Y — множество ответов

Дано:

 $\{x_1,\dots,x_n\}\subset X$ — обучающая выборка

 $\{y_1, ..., y_n\}, y_i = y(x_i)$ — известные ответы

Найти:

 $a: X \longrightarrow Y$ — алгоритм, приближающий y на всем множестве X

Пример: задача скоринга

Задача: по характеристикам клиента (пол, возраст, средний доход, рейтинг кредитной истории, семейное положение и прочие) предсказать, вернет ли клиент кредит.

Пример: задача скоринга

Задача: по характеристикам клиента (пол, возраст, средний доход, рейтинг кредитной истории, семейное положение и прочие) предсказать, вернет ли клиент кредит.

Целевая переменная —

Признаки —

Объекты —

Пример: задача скоринга

Задача: по характеристикам клиента (пол, возраст, средний доход, рейтинг кредитной истории, семейное положение и прочие) предсказать, вернет ли клиент кредит.

Целевая переменная — число (1 — если вернет кредит и 0 — если нет)

Признаки —

Объекты —

Пример: задача скоринга

Задача: по характеристикам клиента (пол, возраст, средний доход, рейтинг кредитной истории, семейное положение и прочие) предсказать, вернет ли клиент кредит.

Целевая переменная — число (1 — если вернет кредит и 0 — если нет)

Признаки — характеристики клиента (пол, возраст и так далее)

Объекты —

Пример: задача скоринга

Задача: по характеристикам клиента (пол, возраст, средний доход, рейтинг кредитной истории, семейное положение и прочие) предсказать, вернет ли клиент кредит.

Целевая переменная — число (1 — если вернет кредит и 0 — если нет)

Признаки — характеристики клиента (пол, возраст и так далее)

Объекты — имеющиеся в датасете клиенты, для которых есть признаковое описание

Регрессия

- Предсказание стоимости недвижимости (стоимость квартиры в Москве)
- Предсказание прибыли ресторана
- Предсказание зарплаты выпускника вуза по его оценкам

Регрессия

Базовая модель машинного обучения и статистики, используемая для оценки зависимости между одной зависимой переменной (целевой) и одной или несколькими независимыми переменными (признаками), при этом целевая переменная — непрерывная величина

Общий вид уравнения линейной регрессии

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \varepsilon$$
, где

- у зависимая (целевая) переменная
- $x_1, x_2, ... x_n$ независимые переменные (признаки)
- β_0 свободный член (intercept)
- β_1 , β_2 , ... β_n коэффициенты (веса) модели
- ε ошибка модели (ошибка прогноза)

Классификация

- Задачи медицинской диагностики (пациент здоров или болен)
- Задачи кредитного скоринга (вернет ли клиент кредит)
- Задача предсказания оттока клиентов (уйдет ли клиент в следующем месяце)
- Предсказание поведения пользователя (кликнет ли пользователь по баннеру)
- Классификация изображений (кошка/собака/мышь/енот)

Классификация

Модель машинного обучения, используемая для прогнозирования категориальной (дискретной) целевой переменной на основе одной или нескольких независимых переменных (признаков). Целевая переменная принимает конечное число классов или меток.

Может быть:

- Бинарной (классификация на два класса) $Y = \{0,1\}$
- Многоклассовой (классификация на М непересекающихся классов) $Y = \{1, ..., M\}$
- Многоклассовой (классификация на М классов, которые могут пересекаться) $Y = \{0,1\}^M$

Кластеризация

- Сегментация клиентов (например, для таргетирования рекламы)
- Группирование текстов по темам (например, новости по категориям)
- Группировка изображений (например, в фотогалереях)

Кластеризация

Метод машинного обучения без учителя, используемый для разделения объектов на группы (кластеры) таким образом, чтобы объекты внутри одного кластера были максимально похожи друг на друга, а объекты из разных кластеров — как можно более различны. При кластеризации целевая переменная отсутствует, а группы формируются на основе структуры данных.

В отличие от классификации, у нас нет обучающей выборки, а классы — не определены заранее.

Другие задачи машинного обучения:

- Ранжирование
- Рекомендации
- Снижение размерности
- Поиск аномалий
- Прогнозирование временных рядов
- Обнаружение и отслеживание объектов

• ...

Процесс машинного обучения

Этапы решения задачи машинного обучения

Получение данных Разведочный анализ данных (EDA)

Отбор признаков Выбор модели и обучение на тренировочной выборке

Оценка качества модели на тестовой выборке

Внедрение модели в production

Получение данных

Сбор данных — процесс, нацеленный на получение значимой информации с целью построения согласованного и полного датасета для конкретной цели бизнеса, например, для принятия решений, ответов на исследовательские вопросы или стратегического планирования.

- Определить, какую информацию вам нужно собирать
- Найти источники релевантных данных
- Выбрать способы и инструменты сбора данных
- Решить какой объем данных будет достаточным
- Подготовить технологию хранения данных

EDA — анализ основных свойств данных, нахождение в них общих закономерностей, распределений и аномалий.

Распределение времени на задачи у специалиста по DS

Описание датасета

Прежде всего необходимо понять как можно больше про данные, с которыми будем работать:

- Посмотреть объем и полноту
- Проверить характеристики данных
- Определить распределение
- Узнать есть ли зависимость между признаками и признаков с целевой переменной

Заполнение пропусков

- Заполнение простыми статистиками (среднее, медиана, мода)
- Заполнение специальными значениями (константа, групповая статистика)
- Заполнение с помощью машинного обучения (регрессия, KNN, Random Forest/ XGBoost)
- Удаление пропущенных значений:
 - если пропусков мало, можно удалить строки
 - если пропусков слишком много, стоит рассмотреть удаление признака

Типы признаков

• **Бинарные** — принимают одно из двух возможных значений и чаще всего выражаются комбинацией 0 и 1 или -1 и 1

Типы признаков

• **Бинарные** — принимают одно из двух возможных значений и чаще всего выражаются комбинацией 0 и 1 или -1 и 1

Примеры:

мужчина/женщина, купил/не купил, имеется что-либо / не имеется, здоров / болен и т. д.

Типы признаков

- Бинарные принимают одно из двух возможных значений и чаще всего выражаются комбинацией 0 и 1 или -1 и 1 Примеры: мужчина/женщина, купил/не купил, имеется что-либо / не имеется, здоров / болен и т. д.
- **Категориальные** принимают одно из некоторого конечного множества значений. Для дальнейшего использования в модели должны быть переведены в числовой формат (закодированы). Могут быть номинальными (категории не сравнимы: например цветовая палитра) или ранговыми (в категориях подразумевается порядок: например, воинские звания)

Типы признаков

• Бинарные — принимают одно из двух возможных значений и чаще всего выражаются комбинацией 0 и 1 или -1 и 1

Примеры:

мужчина/женщина, купил/не купил, имеется что-либо / не имеется, здоров / болен и т. д.

• Категориальные — принимают одно из некоторого конечного множества значений. Для дальнейшего использования в модели должны быть переведены в числовой формат (закодированы). Могут быть номинальными (категории не сравнимы: например цветовая палитра) или ранговыми (в категориях подразумевается порядок: например, воинские звания)

Примеры:

оценки на экзамене, палитра цветов, город рождения, класс объекта недвижимости и т. д.

Типы признаков

• **Непрерывные** — принимают одно из непрерывного подмножества множества действительных чисел. Могут быть целочисленными (тип int) или вещественными (float)

Типы признаков

• **Непрерывные** — принимают одно из непрерывного подмножества множества действительных чисел. Могут быть целочисленными (тип int) или вещественными (float) *Примеры:*

цена, вес, рост, температура, длина, высота, влажность, угол наклона, доход и т. д.

Типы признаков

- **Непрерывные** принимают одно из непрерывного подмножества множества действительных чисел. Могут быть целочисленными (тип int) или вещественными (float) Примеры: цена, вес, рост, температура, длина, высота, влажность, угол наклона, доход и т. д.
- Географические данные данные формата широта-долгота на поверхности Земли

Типы признаков

- **Непрерывные** принимают одно из непрерывного подмножества множества действительных чисел. Могут быть целочисленными (тип int) или вещественными (float) *Примеры:* цена, вес, рост, температура, длина, высота, влажность, угол наклона, доход и т. д.
- Географические данные данные формата широта-долгота на поверхности Земли
- **Данные о дате и времени** специальный формат для описания времени наступления некоторого события или его длительности (datetime в pandas)

Типы признаков

Пример датасета с информацией о пассажирах «Титаника». Какие типы признаков здесь присутствуют?

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Обработка выбросов

• Статистика

• Z-оценка: если значение лежит дальше, чем ±3 стандартных отклонения от среднего, это выброс

Обработка выбросов

• Статистика

• Межквартильный размах (IQR)

Обработка выбросов

• Статистика

Критерий	Z-score	IQR				
Основан на	Среднем и стандартном отклонении	Квартили (медиана, Q1, Q3)				
Подходит для	Нормально распределенных данных	Ненормальных / скошенных распределений				
Простота реализации	Прост в реализации	Прост в реализации				
Надежность	Может дать сбои при наличии сильных выбросов	Надежнее для «реальных» грязных данных				

Обработка выбросов

- Машинное обучение
 - Isolation Forest Специальный алгоритм для обнаружения выбросов
 - One-Class SVM Лучше подходит для высокоразмерных данных
 - Local Outlier Factor (LOF)
 Находит аномалии на основе плотности соседей

Обработка выбросов

- Визуализация
 - Boxplot Простая и наглядная визуализация межквартильного размаха
 - Scatter plot / Pairplot
 Помогает увидеть выбросы в мультипризнаковом пространстве
 - Time series plot Для временных рядов

Обработка выбросов

• Оставить как есть!

Иногда выбросы — это не ошибки в данных, а реальные значения, представляющие важность для работы алгоритма, и их важно сохранить (например, при анализе технических сбоев или выявлении мошенничества)

Feature Engineering

• Извлечение признаков (Feature Extraction) — конструирование новых признаков из исходных данных

Feature Engineering

- Извлечение признаков (Feature Extraction) конструирование новых признаков из исходных данных
- Трансформация признаков (Feature Transformation) изменение существующих признаков для повышения степени их пригодности для моделирования (нормализация, стандартизация, кодирование, логарифмирование и т. д.)

Feature Engineering

- **Извлечение признаков (Feature Extraction)** конструирование новых признаков из исходных данных
- Трансформация признаков (Feature Transformation) изменение существующих признаков для повышения степени их пригодности для моделирования (нормализация, стандартизация, кодирование, логарифмирование и т. д.)
- Отбор признаков (Feature Selection) выделение наиболее значимых и релевантных признаков из данных для снижения размерности датасета и повышения эффективности последующего построения модели

Процесс

- 1. Выбор модели (линейные модели, деревья, бустинги, нейронные сети)
- 2. Обучение модели
- 3. Валидация модели (оценка качества модели на тестовых данных)
- 4. Подбор гиперпараметров модели
- 5. Выбор наилучшей модели

Разбиение данных на обучающую и тестовую выборку

Параметры и гиперпараметры

Гиперпараметры настраиваются и фиксируются до этапа настройки параметров на обучающей выборке

Примеры: learning rate для градиентного спуска, значение силы регуляризации в линейной модели, глубина решающего дерева и т. д.

Параметры настраиваются в процессе обучения модели на данных

Примеры: веса в линейной регрессии, нейросетях, структура решающего дерева

Функции потерь и метрики качества

Функция потерь — функция, измеряющая качество работы алгоритма (ошибку предсказания модели) на объектах обучающей выборки

Пример: MSE (среднеквадратичная ошибка): разница между предсказанным значением и истинным, возведенная в квадрат

Метрика качества — функция, измеряющая качество работы алгоритма (ошибку предсказания модели) на данных, которые модель еще не видела, и использующаяся для сравнения моделей

Примеры: MAE (абсолютная ошибка): модуль разницы между предсказанным значением и истинным, RMSE (корень из MSE)

Обучение — это по сути процесс подбора весов или параметров модели так, чтобы оптимизировать (в большинстве случаев — минимизировать) функцию потерь

Валидация — этап оценки модели после обучения: вычисляются метрики качества, подбираются гиперпараметры и выбирается наилучшая модель

Что после обучения?

Что после обучения?

Пошаговая сборка пайплайна ML-проекта

1. Jupyter Notebook и csv-файл

Обучение модели, верхушка айсберга

Что после обучения?

Пошаговая сборка пайплайна ML-проекта

- 1. Jupyter Notebook и csv-файл
- 2. Git, DVC
- 3. Airflow и DAG
- 4. Логирование метрик и параметров. MLFlow
- 5. Model Registry
- 6. Внедрение мониторинга с алертами
- 7. Feature Store
- 8. Переобучение модели

Обучение модели, верхушка айсберга

Айсберг:)

Компоненты

Инструментарий

- Система контроля версий
 - Git, GitHub, GitLab, DVC
- CI/CD
 - GitLab CI, Jenkins
- Логирование
 - MLflow
 - Weights & Biases, Neptune
- Оркестрация
 - Airflow, Kubernetes, KubeFlow, Argo
 Workflows

- Реестр моделей
 - MLflow, DVC
- Деплой
 - Docker, Kubernetes
 - Amazon SageMaker, Azure ML
- Мониторинг
 - Grafana, Prometheus
 - Evidently, Great Expectations
- Feature store
 - Feast, Tecton
 - Amazon SageMaker Feature Store

Мы решаем задачу определения вида животного по фотографии. Что является целевой переменной?

- а) Одна фотография
- b) Вид животного (кошка, собака, енот...)
- с) Наличие ушей на фотографии, количество лап, цвет шерсти
- d) Невозможно определить

Что является целевой переменной в задаче регрессии?

- а) Класс (например, кошка или собака)
- b) Числовая непрерывная величина
- с) Группа объектов (кластер)
- d) Нет верного ответа

К какому типу относится задача определения тональности отзыва на фильм (положительный или отрицательный)?

- а) Классификация
- b) Регрессия
- с) Кластеризация
- d) Невозможно определить

Какой пример относится к обучению с учителем (supervised learning)?

- а) Прогноз цены квартиры
- b) Поиск аномалий
- с) Кластеризация изображений
- d) Нет верного ответа

Что из перечисленного является гиперпараметром модели?

- а) Веса в линейной регрессии
- b) Свободный член (intercept)
- с) Ошибка прогноза
- d) Сила регуляризации в линейной регрессии

Что делает функция потерь?

- а) Помогает сократить количество признаков
- b) Считает ошибку предсказания модели на этапе обучения
- с) Считает ошибку предсказания на этапе оценки качества модели
- d) Нет верного ответа

Вы вычислили некоторую метрику и получили результат 250 ${\rm Kr}^2$. Какая это могла быть метрика?

- a) MSE
- b) RMSE
- c) MAE
- d) Нет верного ответа

Вы решаете задачу при помощи линейной регрессии, и формула для предсказания ответа имеет вид:

$$a(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

Сколько весов в данной модели?

- а) Три
- b) Четыре
- с) Семь
- d) Мало данных

Рекомендуемая литература

- <u>Хендбук по машинному обучению от Яндекс Образования</u> [medium]
- <u>Сергей Николенко Машинное обучение: основы</u> [hard]
- Владимир Савельев Статистика и котики [easy]
- Михаил Лагутин Наглядная математическая статистика [medium+]
- Джеймс Г. и др. Введение в статистическое обучение с примерами на Python [hard]

^{*}Ссылки активны