Formal Definition of Normal Paths

by Sven Nilsen, 2020

In this paper I give the formal definition of normal paths in path semantics.

A homotopy path^[1] `H` is a map between two continuous functions `f` and `g` such that:

$$\forall x \{ H(x, 0) = f(x) \}$$
 $\wedge \forall x \{ H(x, 1) = g(x) \}$

 $H: X \times [0, 1] \to Y$

 $f: X \rightarrow Y$

 $g: X \rightarrow Y$

It follows from this definition that there can be paths between paths, e.g. $X \le [0, 1]$.

When only the end points are considered, one can use a `B` (boolean) instead of `[0, 1]`:

(H false)
$$\ll$$
 f \wedge (H true) \ll g

 $H: X \times \mathbb{B} \to Y$

This means that a homotopy path represents a binary relation^[2] of an ordered pair:

(f, g)

Where the truth values of of these binary relations defines the space of all paths. When the relation is `true`, there exists a path, but when the relation is `false`, there exists no path. In constructive mathematics^[3] one can not prove that the relation is `true` from `¬false` and vice versa. This means that there exists some construction that represents the path: The proof of the path.

In Homotopy Theory^[4], the proof of the path is constructed by the homotopy path `H`. However, this is looking at the path from the outside. From within the path, there is only `X \rightarrow Y`, which can be proved as following.

By using function currying^[5], one can transform this type into:

$$H: X \to (\mathbb{B} \to Y)$$
 the choice of some function $X \to \mathbb{B}$ determines $X \to Y$

The type $X \to \mathbb{B}$ is a set over X. The complexity in number of bits of this set is $\log_2(|X|) + 1$. From within the path, there is only X, which has type X and maps into some value of Y. Therefore, from within the path, there is only $X \to Y$, which is an ordinary function type.

The change in linear input complexity from inside to outside is $2^{\log 2(|X|)+1} - 2^{\log 2(|X|)} = |X|$. From using this, one can derive that the change in linear output complexity is $|Y|^{|X|} = |X| \to |Y|$.

Therefore, there should exist a space similar to "computation" that relates functions to each other.

Where is this space?

The insight of Homotopy Type Theory^[7] is: Dependent types^[8] can model proofs of Homotopy Theory.

This means that the direction of this space, seen from inside these paths, is analogous to dependent types. However, dependent types only describe a single step of "computation" in this direction.

What is beyond dependent types?

Using the analogy of complex numbers^[9]:

the base of normal computationthe base of path-space computation

For all complex numbers in base `e`, the following property holds:

$$Ae + Be = (A + B)e$$

The analogy law for functions in base `e` is the following:

$$fe \cdot ge = (f \cdot g)e$$

Once the base of path-space computation is found, one can use normal function composition rules in the new dimension.

Now, if one looks at commutative diagrams^[10]:

For every point, or value, they behave as normal computation, which satisfies $\mathbf{\hat{f}e} \cdot \mathbf{ge} = (\mathbf{f} \cdot \mathbf{g})\mathbf{e}$. Yet, the point-wise computation is not the space one is looking for, since this is covered by $\mathbf{\hat{X}} \rightarrow \mathbf{\hat{Y}}$.

From within the paths, the total complexity can be thought of as a product:

$$|X \, \star \, \mathbb{B} \, \rightarrow \, Y| = |Y|^{|X \, \star \, \mathbb{B}|} = |Y|^{2|X|} = |Y|^{|X|} \cdot \, |Y|^{|X|} = |X \, \rightarrow \, Y|^2$$

This means that the "missing parameter" one is looking for is the "function surface" $g_0 \rightarrow g_1$:

$$H := f[g_0 \rightarrow g_1]$$

The constructive proof is `h` to represent `H` from within homotopy paths (called "normal paths"):

$$f[g_0 \rightarrow g_1] \stackrel{\textstyle <=>}{h} Q.E.D.$$

References:

[1]	"Homotopy" Wikipedia https://en.wikipedia.org/wiki/Homotopy
[2]	"Binary relation" Wikipedia https://en.wikipedia.org/wiki/Binary_relation
[3]	"Constructive Mathematics" Stanford Encyclopedia of Philosophy https://plato.stanford.edu/entries/mathematics-constructive/
[4]	"Homotopy Theory" Wikipedia https://en.wikipedia.org/wiki/Homotopy_theory
[5]	"Currying" Wikipedia https://en.wikipedia.org/wiki/Currying
[6]	"Computational complexity theory" Wikipedia https://en.wikipedia.org/wiki/Computational complexity theory
[7]	"Homotopy Type Theory" https://homotopytypetheory.org/
[8]	"Dependent type" Wikipedia https://en.wikipedia.org/wiki/Dependent_type

"Complex number" Wikipedia

Wikipedia

"Commutative diagram"

https://en.wikipedia.org/wiki/Complex_number

https://en.wikipedia.org/wiki/Commutative_diagram

[9]

[10]