

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu |

Gliederung

Lukas Bach, lukas.bach@student.kit.edu Organisatorisches

Signale und Nachrichten

Organisatorisches

Mengen

Signale und

Alphabete

Nachrichten

Belationer

6 Relationen und Abbildungen

Menger

Wiederholung

Alphabete

Wörter

Relationen und

Formale Sprachen

Abbildungen

Vollständige Induktion

10 Formale Sprache

Wiederholun

Übersetzung und Kodierung

Wörter

Kodierung von Zahlen

Formale

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Spracher

Termine

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen Vorlesung und Übung

- Mittwoch 9:45 11:15 Vorlesung
- Freitag 9:45 11:15 abwechselnd Vorlesung und Übung
- Tutorium
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107
- Übungsblätter
 - Alle zwei Wochen
 - Ausgabe Mittwochs, Abgabe Donnerstags bis 16:00 zwei Wochen drauf

Übungsschein

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist *keine* Voraussetzung für die Klausur, *aber* fürs Modul!
- Gemeinsames Abgeben, Abschreiben verboten
- Übungsblätter und später auch Musterlösungen im ILIAS

Tutorium

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten Alle Tutorienfolien auf:

http://gbi.lukasbach.com

Alphabete

Relationen und Abbildungen

Bei Fragen: lukas.bach@student.kit.edu

Keine Anwesenheitspflicht

Möglichkeit andere Tutorien zu besuchen

Wiederholung

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Objekt: 101
 - Eins null eins oder 101 als Zahl oder 5 in binär oder zwei merkwürdige Striche mit einem Kreis dazwischen?
 - Vom Kontext abhängig.
 - Zunächst einfach ein konkretes Objekt.

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Signal

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht: Objekt wie oben, das von Signal unabhängig ist
 - Roter Notfallalarm ist ein anderes Signal als ein blauer Notfallalarm, aber vielleicht dieselbe Nachricht.

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht
 - Information: Security soll herkommen, Techniker sollen das Werkzeug bereit halten, Besucher sollten Platz machen.

Grundbegriffe Mengen der Informatik

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Erster wirklich wichtiger Teil.

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Grundbegriffe Mengen der Informatik

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen Zeichnung

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Abbildungen

Wiederholung

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\}$ =: $A\{a, c, 4\}$ =: $B, \{10, 11\}$ =: C
 - Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$
- Reihenfolge gleich: $\{a, b\} = \{b, a\}$
- Elemente doppelt? $\{a, a, b, a\} = \{a, b\}$

vvorter

Mehr über Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

• $A := \{a, b, c\}. |A| = 3$

 $B := \{c, d\}. |B| = 2$

■ Was ist |{1,2,3,2}|? 3!

Was ist |{}|? 0

Alphabete

Leere Menge

Relationen ur Abbildungen Die Menge, die nichts enthält, nennen wir die leere Menge, und schreiben sie als $\{\}$ oder \emptyset .

Wiederholun

Was ist $|\{\{\}\}|$? 1! $\{\emptyset\}$ enthält eine leere Menge, die selbst ein Element ist.

Wörter

Formale

Grundbegriffe der Informatik Mehr über Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen Zeichnung

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Sprachen

Mehr über Mengen

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.
- Komplementärmenge: \bar{A} enthält alle Elemente des *Universums*, die nicht in A sind. Angenommen, Universum = Lateinisches Alphabet: $\bar{A} = \{d, e, f, g, \dots, y, z\}$

Potenzmenge

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Potenzmenge

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Was bedeutet das allgemein?

- M ∈ 2^M
- ∅ ∈ 2^{*M*}
- Konkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?
 - Natürlich $\emptyset \in 2^M$ und $\{0,1\} \in 2^M$.
 - $\{0\} \in 2^M \text{ und } \{1\} \in 2^M$.
 - Weitere? Nein, diese vier Mengen sind alle möglichen Teilmengen.

Potenzmenge

Lukas Bach Jukas.bach@student.kit.edu

 $M = \{0, 1\}, 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$ Was ist 2^{2^M} ?

Organisatorisches

Nachrichten

■ Also 2^{{{},{0},{1},{0,1}}}

■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

Mengen

Alphabete

Abbildungen

 $2^{2^M} = \{$ {}, {{}}, {{0}}, {{1}}, {{0,1}}, {{}, {0}}, {{}}, {1}}, {{}}, {{0,1}}}, {{{0}}, {1}}}, {{0}, {0, 1}}, {{1}, {0, 1}}, {{}, {0}, {1}}, {{}}, {0}, {0, 1}}, {{}}, {1}, {0, 1}}, {{}, {0}, {1}, {0, 1}}

Alphabete

Lukas Bach, lukas.bach@student.kit.edu

Alphabet

Organisatorische

Ein Alphabet ist eine *endliche*, *nichtleere* Menge von Zeichen.

Signale und Nachrichten Was davon sind Alphabete? $\{d, 34, \pi, \%\}$, $\{a, b, c, \dots, y, z\}$, \emptyset , \mathbb{N} .

Menge

• $\{d, 34, \pi, \%\}$ und $\{a, b, c, \dots, y, z\}$ sind Alphabete.

Alphabete

lacksquare \emptyset ist leer und damit kein Alphabet.

Relationen un Abbildungen ■ $\mathbb{N} = \{1, 2, 3, ...\}$ enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.

Wiederholun

 $lackbox{0,1}$ ist das Alphabet, das alle Binärzahlen enthält.

Wörte

• $\{\cdot,+,-,/\}=:R$ ist ein Alphabet von Rechenzeichen. $R\cup\{0,1,\ldots,9\}$ ist ein Alphabet, das ein Taschenrechner als Eingabealphabet benutzen könnte.

Formale

Spracher

Paare und Tupel

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Paar

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Menge

Schreibweise mit runden Klammern ().

Alphabete

• Beispiel: $(a, 4) \neq (4, a)$

Relationen und Abbildungen Beispiel für eine Menge aus Tupeln: {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}

Wiederholung

Wörte

Formale

Tupel

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Nachrichten

Menger

Alphabete

Relationen und Abbildungen Tupel

Ein Tupel ist eine geordnete Menge. Konkret ist ein n-Tupel ein Tupel der Kardinalität n.

Also wie ein Paar, nur mit beliebiger Kardinalität. Ein Paar ist spezifisch ein 2-Tupel.

Beispiel: $(4tb, 512gb, 128gb, 4mb) \neq (512gb, 4mb, 4tb, 128gb)$.

Wiederholun

Wörte

Spracher

Kartesisches Produkt

Lukas Bach Jukas.bach@student.kit.edu

Signale und

Alphabete

Relationen und Abbildungen

Nachrichten

 $= A \times B$

Kreuzprodukt von zwei Mengen

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$.

Zu zwei Mengen A und B ist das Kreuzprodukt definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B.

 $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)\}$

Kreuzprodukt

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Kreuzprodukt von n Mengen

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

Mengenpotenz

 $\underbrace{A\times A\times \cdots \times A}=A^{n}.$

 $n \times ma$

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Kreuzprodukt von zwei Mengen

Menger

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Alphabete

$$A := \{a, b\}, B := \{1, 2\}. \ A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$$

Relationen und Abbildungen

Wiederholung

Wörte

Formale

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Sprachen

Kreuzprodukt von n Mengen

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

$$A := \{a, b\}, B := \{1, 2\}, C := \{\omega\}. \ A \times B \times C \\ = \{(a, 1, \omega), (a, 2, \omega), (b, 1, \omega), (b, 2, \omega)\}.$$

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Mengenpotenz

$$\underbrace{A\times A\times \cdots \times A}_{nmal}=A^{n}.$$

- $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}.$
- A beliebige Menge. A^0 ? = \emptyset
- Achtung! $2^M \neq M^2$. Potenzmengen nicht mit Mengenpotenz verwechseln!

Relation

Lukas Bach. lukas.bach@student.kit.edu

Binäre Relation

Nachrichten

Alphabete

Relationen und Abbildungen

Für die Mengen

 $M_{Spiele} = \{$ "Battlefield", "AgeOfEmpires", "SeriousSam" $\}$, $M_{Genre} = \{$ "Shooter", "Strategie" $\}$ sind folgendes mögliche Relationen:

{("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "'Shooter")}

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

- {("AgeOfEmpires", "Strategie"), ("AgeOfEmpires", "Shooter")
- "Kleinergleichrelation" auf $M = \{1, 2, 3\}$: $R_{\leq} = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\} \in M \times M$

Relation

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Binäre Relation

Signale und Nachrichten Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Ternäre Relation

Menge

Eine ternäre Relation auf drei Mengen A, B und C ist eine Menge $B \subseteq A \times B \times C$.

Alphabete

n-äre Relation

Relationen und Abbildungen

Eine *n*-äre Relation auf *n* Mengen M_1 , M_2 ... M_n ist eine Menge

Wiederholun

 $R \subseteq M_1 \times M_2 \times \cdots \times M_n$.

Wörter

Formale

Linkstotalität

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Linkstotale Relation

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn für jedes $a \in A$ ein $b \in B$ existiert mit $(a, b) \in R$.

Die linke Seite der Relation ist also "total" aufgefüllt.

Rechtstotalität

Lukas Bach Jukas.bach@student.kit.edu

Organisatorisches

Nachrichten

Alphabete

Relationen und Abbildungen

Rechtstotale Relation

Eine Relation $R \subseteq A \times B$ heißt rechtstotal, wenn für jedes $b \in B$ ein $a \in A$ existiert mit $(a, b) \in R$.

Die rechte Seite der Relation ist also "total" aufgefüllt.

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann surjektiv.

Linkseindeutigkeit

Lukas Bach, lukas.bach@student.kit.edu Linkseindeutige Relation

Organisatorisches

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R, (b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann gilt auch $\alpha \neq \beta$.

Signale und Nachrichten

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Menge

Angenommen, $\mathbf{a}\neq\mathbf{b}$ und $\alpha=\beta.\Rightarrow$ offenbar nicht linkseindeutig.

Alphabete

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann injektiv.

Relationen und Abbildungen

Wiederholun

vviederrioidri

Wörte

Rechtseindeutig

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Rechtseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $\alpha \neq \beta$, dann gilt auch $a \neq b$.

Also: Keine zwei Elemente der rechten Seite der Relation haben dasselbe linke Element.

Eigenschaften von Relationen

Linkstotalität

Lukas Bach. Iukas.bach@student.kit.edu

Nachrichten

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

hat min when Partner 6" Links eindendigkeit a 9

û

Abbildung

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches Fir

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Abbildung

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

- Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig
- Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Bijektivität

Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Damit ist sie linkstotal und rechtseindeutig (weil es eine Abbildung ist) und linkseindeutig (injektiv) und rechtstotal (surjektiv).

Tolle Eigenschaft: Für jedes Element $(a, b) \in R$ der bijektiven Relation R ist jedem a genau ein b zugeordnet.

Abbildungen Schreibweise

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

Alphabete

Relationen und Abbildungen

Seien $A = B = \mathbb{R}$, $f \subseteq A \times B$. Wir suchen Relation, die für jedes $a \in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen:

 $f: A \to B, a \mapsto a^2$, also Quadratfunktion.

Ist diese Funktion injektiv oder surjektiv?

- Nicht injektiv, da z.B. f(1) = f(-1), also $(1,1) \in f$ und $(-1,1) \in f$.
- Nicht surjektiv, da z.B. −1 nie als Funktionswert angenommen wird, daher $(a, -1) \not\in f$ für beliebige $a \in A$.

Wiederholung

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

$$A:=\{a,b,c\}, B:=\{b,c,d\}, C:=\{a,d\}$$

$$A \cap B = \{b, c\}$$

$$A \cup B = \{a, b, c, d\}$$

$$A \backslash B = \{a\}$$

•
$$C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$$

$$2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$$

- Unterschied zwischen {a, b} und (a, b)?
- Definition von...
 - Alphabet?
 - Abbildung?

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ: $a \cdot b \neq b \cdot a$
- Aber assoziativ: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kurzschreibweise: Ohne Punkte, also $a \cdot b = ab$

Wörter

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter: Intuitivere Definition

Ein Wort w entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

Sei $A := \{a, b, c\}$.

- Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$, $w_3 = a \cdot c \cdot c \cdot b \cdot a$.
 - Keine möglichen Worte: d.
- Konkatenation nicht kommutativ: Wort abc ist ungleich dem Wort bca.

Wörter

Sprachen

Wörter

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

Alphabete

Abbildungen

Wörter

Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt *n* die Länge |w| des Wortes.

- $\mathbb{Z}_n = \{i \in \mathbb{N} : 0 \le i < n\}$ $\mathbb{Z}_3 = \{0, 1, 2\}, \mathbb{Z}_2 = \{0, 1\}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben: $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}.$ Also w(0) = a, w(1) = b, w(2) = d, ...Damit sieht man auch:

$$|w| = |\{(0, a), (1, b), (2, d), (3, e), (4, c)\}| = 5.$$

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Wort der Kardinalität 0?

Signale und Nachrichten

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0, also mit 0 Zeichen.

Menger

Alphabete

Relationen und Abbildungen

Wiederholun

■ Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.

• $|\{\varepsilon\}| = 1$, die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)

 $|\varepsilon|=0.$

Wörter

Sprachen

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen un Abbildungen

Wiederholung

 A^n

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$ $A^1 = A, A^0 = \{\varepsilon\}.$

Die Menge aller Wörter beliebiger Länge:

- lacksquare $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}$. $aa \in A^*$, $abcabcabc \in A^*$, $aaaa \in A^*$, $\varepsilon \in A^*$.

Wörter

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Konkatenation von Wörtern:

- lager · regal = lagerregal
- lag · erregal = lagerregal

Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

■ Warum \mathbb{Z}_{m+n} ? Wörter w_1 und w_2 mit $|w_1| = m$ und $|w_2| = n$ werden konkateniert, also neues Wort hat Länge m + n.

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Sprachen

Mehr über Wörter

Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$
 $i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$

$$|\lambda_{1}| = 5 := m$$

$$|\lambda_{2}| = 8 := n$$

$$|\lambda_{3}| = 5 := m$$

$$|\lambda_{2}| = 8 := n$$

$$|\lambda_{2}| = 8 := n$$

$$|\lambda_{3}| = 0 := n$$

$$|\lambda_{4}| = 0 := n$$

$$|\lambda_{2}| = 8 := n$$

$$|\lambda_{2}| = 8 := n$$

$$|\lambda_{3}| = 0 := n$$

$$|\lambda_{4}| = 0 := n$$

$$|\lambda_{5}| = 0$$

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Immernoch: Reihenfolge ist wichtig!
 OTT · O = OTTO ≠ OOTT = O · OTT
- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.
- Wortkonkatenation mit dem leeren Wort: $w \cdot \varepsilon = w = \varepsilon \cdot w$.

Mehr über Wörter

dd.

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Wort Potenzen

Sich direkt wiederholende Teilworte kann man als Wortpotenz darstellen, daher $w_i^n = w_i \cdot w_i \cdot \cdots w_i$ (n × mal).

Menge

Relationen und Abbildungen

Wiederholun

•
$$a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$$

$$a^3c^2b^6 = aaaccbbbbbbb.$$

•
$$b \cdot a \cdot (n \cdot a)^2 = banana$$
.

$$(a^3b^2)^2c(a^2bcb^3)^3dd = (aaabb)^2c(aabcbbb)^3dd$$

$$= aaabb \cdot aaabb \cdot c \cdot aabcbbb \cdot aabcbbb \cdot aabcbbb \cdot$$

Wörter

Übung zu Wörter

Lukas Bach Jukas.bach@student.kit.edu Sei A ein Alphabet.

Organisatorisches

Nachrichten

Alphabete

Abbildungen

Wiederholung

Wörter

Ubung zu Wörter

- 1. Finde Abbildung $f: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: $2 \cdot |w| = |f(w)|$.
- 2. Finde Abbildung $g: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: |w| + 1 = |g(w)|.
- 3. Finde Abbildung $h: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: $|\frac{|w|}{2}| = |h(w)|$. (Zusatz)
- 4. Sind f, g, h injektiv und/oder surjektiv?
- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.
- 2. $g: A^* \to A^*, w \mapsto w \cdot x, x \in A$.
- 3. $h: A^* \to A^*, w \mapsto \hat{w} \text{ mit } \hat{w}_i = \left\{ egin{array}{cc} w_i & \text{wenn } i \leq \lfloor rac{|w|}{2} \rfloor \\ arepsilon & \text{sonst} \end{array}
 ight.
 ight.$ and $i \in \mathbb{Z}_{|w|}$.

Übung zu Wörter

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.

- *f* ist injektiv, denn jedes *w* aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.
 - g ist injektiv.
 - g ist nicht surjektiv, denn z.B. bildet nichts auf ε ab.

3.
$$h: A^* \to A^*, w \mapsto \hat{w} \text{ mit } \hat{w}_i = \left\{ egin{array}{cc} w_i & \text{wenn } i \leq \lfloor rac{|w|}{2} \rfloor \\ \varepsilon & \text{sonst} \end{array}
ight\} \text{ und } i \in \mathbb{Z}_{|w|}.$$

- *h* ist nicht injektiv, denn z.B. x = h(xy) = h(xz) mit $x, y, z \in A$.
- h ist surjektiv, denn für jedes $w \in A^*$ existiert ein $\hat{w} \in A^*$ mit $\hat{w} = w \cdot w$ sodass $h(\hat{w}) = w$.

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

Formale Sprache

Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: $A := \{w : w \text{ ist ein ASCII Symbol }\}.$
 - $L_4 := \{ class, if, else, while, for, ... \}$ ist eine formale Sprache über A.
 - L₅ := {w : w = a ⋅ b mit a als Großbuchstabe und b als Groß- oder Kleinbuchstabe }\L₄ ist eine formale Sprache von korrekten Klassennamen in Java.

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörte

Formale Sprachen $A := \{a, b\}$

- Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?
 - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
 - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
 - Andere Möglichkeit: Suche Wörter mit *ab* und nehme diese Weg.
 - $L = \{a, b\}^* \setminus \{w_1 \cdot ab \cdot w_2 : w_1, w_2 \in \{a, b\}^*\}$

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen Sei $A := \{a, b\}, B := \{0, 1\}.$

Aufgabe zu formalen Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
 - 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
 - 1. $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
 - 2. $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$ (Ist da ε drin?)
 - 3. $L_3 = \{ w = w \cdot 0 : w \in B^* \}$

Quiz

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Was macht die Funktion val_l?
- Was bedeutet Äquivalenz?
- Was bedeutet Tautologie und Erfüllbarkeit?
- Welche dieser Aussagen sind Tautologien, welche sind erfüllbar?

$$\neg (P \land Q) = \neg P \lor \neg Q$$

$$P \land P = P \lor P$$

Wahrheitsgehalt von unendlich Aussagen

Lukas Bach, lukas.bach@student.kit.edu

haa

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter

Formale Sprachen Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
 - Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable n dar:
 - A(n) := "n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Wir haben immernoch unendlich viele Aussagen...

- Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.
- Also: Der erste Stein fällt, sowie: falls der i-te Stein fällt, so fällt auch der i + 1-te Stein.
- Nach dem Prinzip der vollständigen Induktion fallen dann alle Steine um.

Vollständige Induktion

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt "induktiv" von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Struktur des Beweises

Lukas Bach Jukas.bach@student.kit.edu Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

Induktionsanfang: (kurz IA:)

- \blacksquare Zeigen, dass Behauptung für Anfangswert gilt (oft n = 1)
- Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen1
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Nachrichten

Alphabete

Abbildungen

Vorhin:

A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges i $\in \mathbb{N}$ IA

Übung zu Vollständiger Induktion

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches Aufgabe

Nachrichten

 $x_0 := 0$

Für alle $n \in \mathbb{N}_0$: $x_{n+1} := x_n + 2n + 1$

Alphabete

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

Abbildungen

 $x_n = n^2$

Wiederholung

gilt.

Übung zu vollständiger Induktion

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Ubungsaufgaber

Zeige die Wahrheit folgender Aussagen mit vollständiger Induktion:

Menge

Alphabete

Relationen un Abbildungen

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \ \forall n \in \mathbb{N}.$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \ \forall n \in \mathbb{N}$$

Wiederholung

Wörte

Formale Sprache

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A$.

Alphabete

 $A := \{b, n, a\}.$

Abbildungen

• $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

• $L_2 := \{banana, bananana, banananana, ...\}$ $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.

• $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise?

Als Beispiel von vorigen Folien:

 $L_3 = \{ w : w = ba^k n, k \in \mathbb{N} \}$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1 , L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? $L_1 = \{aaa\} \cdot \{bb, aaaa\}$.
- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}$.
- Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:
 - Zwei beliebigen Zweichen aus B.
 - Dann einem C oder zwei D's.
 - Dann vier Zeichen aus A.
- $L_3 = B \cdot B \cdot \{C, DD\} \cdot A \cdot A \cdot A \cdot A.$

Produkt von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt: $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

Wörter

Produkt von Sprachen

Lukas Bach Jukas.bach@student.kit.edu

Seien $L_1, L_2, L_3 \in M$.

Die Verknüpfung · ist assoziativ:

Nachrichten

 $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_2\}$ $L_1, w_2 \in L_2, w_3 \in L_3$ = $L_1 \cdot (\{w_2w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3)$.

■ Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt:

 $x \cdot e = e \cdot x = x$. (neutrales Element)

Alphabete

 $e := \{\varepsilon\}.$ $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$

Abbildungen

■ Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

 $x \cdot o = o = o \cdot x$. (Absorbierendes Element)

 $\mathbf{o} := \emptyset$

 $L_1 \cdot \emptyset = \emptyset = \emptyset \cdot L_1$

 (M, \cdot) ist damit trotzdem keine Gruppe, denn es existieren keine Invers-Element.

Potenz von Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Nachrichter

Menge

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter

Formale

Spracher

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L$ für $i \in \mathbb{N}_+$.

•
$$L_1 := \{a\}.$$

•
$$L_1^0 = \{\varepsilon\}$$
. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.

•
$$L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$$

•
$$L_2 := \{ab\}^3 \{c\}^4$$

•
$$L_2^0 = \{ \varepsilon \}, L_2^1 = \dots$$

•
$$L_2^{\frac{5}{2}} = (\{ab\}^{\frac{5}{3}}\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}.$$

•
$$L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$$

Konkatenationsabschluss bei formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menaei

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^* := \bigcup_{i \in \mathbb{N}_0} L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

- Warum gilt $\varepsilon \notin L^+$ von beliebiger formeller Sprache L?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, \dots, b, ba, bb, \dots\}$
- $L := \{aa, bc\}.L^* = \{\varepsilon, aa, bc, aa \cdot aa, aa \cdot bc, bc \cdot aa, bc \cdot bc, aa \cdot aa \cdot aa, \dots\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Sei
$$A := \{a, b\}, B := \{A, B, C, D, E, F\}.$$

- Sprache $L_1 \subseteq A^*$, die das Teilwort *ab* nicht enthält? $L_1 = \{b\}^* \{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.

$$B := \{_, a, b, ..., z, A, B, ..., Z\}$$

- $C := B \cup \mathbb{Z}_9$
- $L_2 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Übung zu Konkatenationsabschluss

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Sei $L := \{a\}^* \{b\}^*$.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abbaaabba? Ja, nein.
 - aaabb, abb, aaabba? Ja, ja, nein.
 - aaabb, abb, aaabb, a? Alles drin.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - aaabb, abb, aaabba? Ja.
 - aaabb, abb, aaabb, a? Ja.
 - Alle Wörter aus $\{a,b\}^*! \rightarrow L^* = \{a,b\}^*$.

Wörter

Formale

Übung zu Konkatenationsabschluss

Lukas Bach Jukas.bach@student.kit.edu

Organisatorisches

Erinnerung

$$L^* := \bigcup_{i \in \mathbb{N}_0} L^i \qquad L^+ := \bigcup_{i \in \mathbb{N}_+} L^i$$

Nachrichten

 \subset :

Alphabete

 $w'' \in L$

Abbildungen Dann existiert ein $i \in \mathbb{N}_0$ mit Wiederholung $w' \in L^i$, also

Formale

Beweise: $L^* \cdot L = L^+$.

Vorraussetzung: $w \in L^* \cdot L$ mit $w = w'w'', w' \in L^*$ und

 $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Weil $i + 1 \in \mathbb{N}_+$, gilt: $L^{i+1} \subset L^+$, also $w \in L^+$. \supset :

Vorraussetzung: $w \in L^* \cdot L$.

Dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da

für ein solches $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$. Also w = w'w'' mit $w' \in L^j$ und $w'' \in L$.

 $i \in \mathbb{N}_+$, existiert ein $j \in \mathbb{N}_0$ mit i = j + 1, also

Wegen $L^j \subseteq L^*$ ist $w = w'w'' \in L^* \cdot L$.

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen L_1, L_2 seien formale Sprachen.

- Wie sieht $L_1 \cdot L_2$ aus?
- Wie sieht L_1^3 aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?
- Wie sieht $(L_1^*)^0 \cdot L_2^+$ aus?

Herführung zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen un Abbildungen Wir betrachten die Alphabete $A_{\textit{dez}} := \mathbb{Z}_{10}, A_{\textit{bin}} := \{0,1\}, A_{\textit{oct}} := \mathbb{Z}_8.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.
- Aber irgendwie so, dass $42_{\in A_{dez}} \stackrel{Deutung}{=} 101010_{\in A_{bin}} \stackrel{Deutung}{=} 52_{\in A_{oct}}$

Wiederholung

Wörter

Definition von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

 Num_k

Organisatorisches

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Signale und Nachrichten

 $Num_k(\varepsilon)=0$

Menge

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Alphabete

 num_k

Relationen un Abbildungen Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

Wiederholun

• Wichtig: $Num_k(w) \neq num_k(w)$!

Wörte

• Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.

Formale

■ Für Zahlen $\geq k$: Benutze Num_k !

Beispiel zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Organisatorische

Was ist $Num_{10}(123)$?

Nachrichten

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$

 $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Alphabete

Yay?

Mac

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

Relationen un Abbildungen

• $Num_2(1010) = 2 \cdot Num_2(101) + num_2(0) =$

 $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$

 $2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Formale Yay!

Spracher

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

$$Num_k(\varepsilon)=0.$$

Organisatorisches

Übungen zu Zahlendarstellungen

Nachrichten

Berechne den numerischen Wert der folgenden Zahlen anderer Zahlensysteme nach dem vorgestellten Schema:

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Menge

■ *Num*₈(345).

Alphabete

■ *Num*₂(11001).

Relationen und Abbildungen • *Num*₂(1000).

Wiederholun

■ *Num*₄(123).

• $Num_{16}(4DF)$. (Zusatz)

Wörter

Anmerkung: Hexadezimalzahlen sind zur Basis 16 und verwenden als Ziffern (in aufsteigender Reihenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*.

Formale

Spracher

Aufgaben zu Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen un Abbildungen

Lösungen:

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.
- $Num_{16}(4DF) = 1247$.

Wiederholung

Wörte

Formale

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen un Abbildungen

Wiederholung

Wörter

Sprachen

Es gilt:

$$2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^4\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- $Num_2(1111111111) = 1023.$

Einfachere Umrechnung von Zahlendarstellungen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

•
$$Num_{16}(A1) = 161.$$

•
$$Num_{16}(BC) = 188.$$

•
$$Num_{16}(14) = 20.$$

Rechnen mit div und mod

Lukas Bach, lukas.bach@student.kit.edu

div Funktion

Organisatorisches

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Signale und Nachrichten

mod Funktion

Menger

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

Alphabete

22 div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.

Relationen und Abbildungen

22 mod 8 = 6.

Wiederholung

Fülle die Tabelle aus:

Wörter

 x
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 x div 4
 0
 0
 0
 0
 1
 1
 1
 1
 2
 2
 2
 2
 2
 3

 x mod 4
 0
 1
 2
 3
 0
 1
 2
 3
 0
 1
 2
 3
 0

Von Zeichen zu Zahlen zurück zu Zahlen

Lukas Bach Jukas.bach@student.kit.edu

Organisatorisches

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Nachrichten

k-äre Darstellung

Alphabete

Abbildungen

Die Repräsentation einer Zahl n zur Basis k lässt sich wie folgt ermitteln:

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Achtung! Das · Symbol steht für Konkatenation, nicht für Multiplikation!

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Signale und Nachrichten

Zum Beispiel:

radifficite

Mengen

 $\mathsf{Repr}_2(29) = \mathsf{Repr}_2(29 \ \mathsf{div} \ 2) \cdot \mathsf{repr}_2(29 \ \mathsf{mod} \ 2)$

 $= \mathbf{Repr}_2(14) \cdot \mathbf{repr}_2(1)$

 $= \mathbf{Repr}_2(14 \ \mathbf{div} \ 2) \cdot \mathbf{repr}_2(14 \ \mathbf{mod} \ 2) \cdot 1$

 $= \mathbf{Repr}_2(7) \cdot \mathbf{repr}_2(0) \cdot 1$

 $= \mathbf{Repr}_2(7 \ \mathbf{div} \ 2) \cdot \mathbf{repr}_2(7 \ \mathbf{mod} \ 2) \cdot 01$

 $= \mathbf{Repr}_2(3) \cdot \mathbf{repr}(1) \cdot 01$

= $Repr_2(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$

 $= \mathbf{Repr}_2(1) \cdot \mathbf{repr}(1) \cdot 101$

= 11101

Alphabete

Relationen und

Abbildungen

Wiederholung

Wört

Formale

Sprachen

Beispiel zu Reprk

Lukas Bach, lukas.bach@student.kit.edu

Nachrichten

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Beispiel mit Hexadezimalzahlen:

Alphabete

Abbildungen

 $Repr_{16}(29) = Repr_{16}(29 \text{ div } 16) \cdot repr_{16}(29 \text{ mod } 16)$ $= Repr_{16}(1) \cdot repr_{16}(13)$ $= 1 \cdot D = 1D$

Übung zu Reprk

Lukas Bach Jukas.bach@student.kit.edu

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Nachrichten

Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

Alphabete

■ **Repr**₂(13).

Abbildungen

Repr₄ (15).

Repr₁₆(268).

Lösungen: **Repr**₂(13) = 1101.

■ **Repr**₄(15) = 33.

Repr₁₆(268) = 10C.

Feste Länge von Binärzahlen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Formale Sprachen

bin_ℓ

Die Funktion $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

Beispiel:

- **bin**₈(3) = $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$.
- **bin**₁₆(3) = 000000000000011.

Zweierkomplement

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: $5 = 0101_{zkpl}$, $-5 = 1101_{zkpl}$.

Menge

Alphabete

Relationen und Abbildungen

Wiederholung

Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x mit der Länge ℓ ist wie folgt definiert:

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

Wörter

■ Wieso \(\ell - 1? \)

Aufgaben zu **Zweierkomplement-Darstellung**

Lukas Bach Jukas.bach@student.kit.edu

Nachrichten

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

Was sind folgende Zahlen in Zweierkomplement-Darstellung?

Alphabete

Zkpl₄(3) = 0011.

Abbildungen

Zkpl₄(7) = 0111.

Zkpl₄(-5) = 1101.

Zkpl₈(13) = 00001101.

Zkpl₈(-34) = 10100010.

Zkpl₈(-9) = 10001001.

Informationen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Wiederholung

Wörter

Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden
 Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul

Spracher