Session 2: Countability

Reminders

To compare the sizes of infinite sets, we use bijections, injections and surjections: two infinite sets A and B have "the same size" if there exists a bijection from A to B — or equivalently, from B to A. The set A is "greater" than B if there is a surjection and no injection from A to B — or equivalently, if there is an injection and no surjection from B to A.

A *countable* set is a set that is finite, or in bijection with \mathbb{N} . Equivalently, it is a set from which there exists an injection into \mathbb{N} ; or a set onto which there is a surjection from \mathbb{N} . More intuitively, a countable set is a set that can be enumerated.

1 Countable sets

- 1. Show that the set of odd integers $\{2n+1 \mid n \in \mathbb{N}\}$ is countable.
- 2. Show that the set \mathbb{Z} is countable.
- 3. Show that the set of finite words Σ^* over a finite alphabet Σ is countable.

2 Uncountable sets

Let Σ be a finite alphabet with at least two symbols. We write Σ^{ω} the set of infinite words $w_0w_1...$ over Σ . We want to prove that Σ^{ω} is uncountable.

- 1. Consider a mapping $f: \mathbb{N} \to \Sigma^{\omega}$, and write $w^{(n)} = w_0^{(n)} w_1^{(n)} \cdots = f(n)$ for each $n \geq 0$. Consider a word $w = w_0 w_1 \dots$ where for every k, we have $w_k \neq w_k^{(k)}$. Is there an integer n such that w = f(n)?
- 2. Conclude.
- 3. Use that result to prove that the set [0, 1] is uncountable.
- 4. Let A be an infinite countable set. Use similar techniques to prove that 2^A , the set of subsets of A, is uncountable.

3 Counting Turing machines

Let $\Sigma \subseteq \Gamma$ be two finite alphabets. In all this exercise, by *language*, we mean a language of finite words over Σ , and by *Turing machine*, we mean a Turing machine with input alphabet Σ and tape alphabet Γ .

- 1. Explain briefly why a Turing machine can be encoded as a finite word over a finite alphabet.
- 2. Which ones of these sets are countable?
 - (a) The set of Turing machines;
 - (b) the set of decidable languages (\mathbf{R}) ;
 - (c) the set of recursively enumerable languages (**RE**);
 - (d) the set of languages (2^{Σ^*}) ;

- (e) the set of undecidable languages $(2^{\Sigma^*} \setminus \mathbf{R})$;
- (f) the set of languages that are neither recursively enumerable nor co-recursively enumerable $(2^{\Sigma^*} \setminus \mathbf{RE} \setminus \mathbf{coRE})$.
- 3. Assume one finds a computation model that is strictly more expressive than Turing machines (challenging therefore the Church-Turing thesis). Is there a hope that such a computation model "decides" all the languages?