電子制御工学実験報告書

実験題目 : 電気抵抗の測定と接続

報告者 : 1年39番 鷲尾 優作

提出日 : 令和2年2月28日

実験日 : 令和2年2月25日

実験班 :

共同実験者 : -番 - --番 - --番 - -

※指導教員記入欄

評価項目	配点	一次チェック・・・・	二次チェック・・・・
記載量	20		
図・表・グラフ	20		
見出し、ページ番号、その他体裁	10		
その他の減点	_		
合計	50		

コメント:

1 本実験の目的

• 未知抵抗の測定を通して、ホイートストンブリッジの原理と使用方法を学ぶ

2 理論

図 1 の回路において, 抵抗値 A,B,R を調整し 検流計 G の電流をゼロにするとブリッジが平衡状態となり式 (1) が成立する. また変形し式 (2) が成り立つ。

図 1: ホイートストンブリッジ原理図

$$A \times R = B \times R_x \tag{1}$$

$$R_x = A/B \times R \tag{2}$$

式 (2) より A,B,R が決まると R_x の値が求まる.A/B を倍率 (比例辺),R を測定辺 (加減辺) という. 今回使用するホイートストンブリッジは, 倍率ダイヤル, 測定辺ダイヤル, 検流計スイッチ, 測定用電源, 測定用端子が

ひとつの箱におさめられている.

3 実験内容

ホイートストンブリッジを使用し、3 つの未知抵抗器 R1,R2,R3 の直列、並列、並直列 それぞれの接続パターンの合成抵抗値を測定、誤差率の計算を行いまとめる。 倍率ダイヤルの設定値は表 1 の理論値を参考に選択する.

4 使用器具

- ホイートストンブリッジ 用途 抵抗値測定のため 商品名 YOKOGAWA Type 2755
- 2. RLC ボックス 用途 実験用未知抵抗 商品名不明
- 接続コード
 用途 ホイートストンブリッジと RLC ボックスの接続のため 商品名不明

5 実験結果

番号	接続方法	実測値		TH A / 古 [〇]		
		測定辺	倍率	抵抗値 [Ω]	理論値 [Ω]	誤差率 [%]
1	R1	0.1	0998	99.8	100.0	0.2
2	R2	0.1	1994	199.4	200.0	0.3
3	R3	0.1	2998	299.8	300.00	0.1
4	R1 + R2	0.1	2992	299.2	300.00	0.3
5	R1 + R3	0.1	3996	399.6	400.00	0.1
6	R2 + R3	0.1	4996	499.6	500.00	0.1
7	R1 + R2 + R3	0.1	5996	599.6	600.00	0.1
8	R1//R2	0.1	0665	66.5	66.67	0.3
9	R1//R3	0.1	0749	74.9	75.00	0.1
10	R2//R3	0.1	1198	119.8	120.00	0.2
11	R1//R2//R3	0.1	0545	54.5	54.58	0.1
12	R1 + R2//R3	0.1	2193	219.3	220.00	0.3
13	R2 + R1//R3	0.1	2743	274.3	275.00	0.3
14	R3 + R1//R2	0.1	3659	365.9	366.67	0.2
15	R1 + R2)//R3	0.1	1497	149.7	150.00	0.2
16	R1 + R3)//R2	0.1	1330	133.0	133.33	0.2
_17	(R2+R3)//R1	0.1	0831	83.1	83.33	0.3

6 課題

6.1 (1)

図1の回路図から式(1)を導出せよ

検流計 G のなので G のある配線は無視できる よって A と R_x の直列, B と R の直列同士の並列回路とみなせるので $A \times R = B \times R_x$

6.2(2)

ホイートストンブリッジのように、検流計などによって電流がゼロになることを利用し、 物理量を測定する方法を「零位法」.電圧計、電流計などのように、針の触れ角度 (偏位) によって 物理量を測定する方法を「偏位法」という.「零位法」が「偏位法」に比べて、原理的に測定誤差が 少ない理由を調査・考察して述べよ.

- 1) 測定量の結果として計測する「偏位法」と比較して「零位法」は平衡の検知で計測するので、測定の基準の精度と同じ精度で測定できる.
- 2) 測定対象のエネルギーを奪って使い計測結果を表示する「偏位法」に対して 「零位法」は測定時対象は平衡しているのでほぼエネルギーを奪うことがないため 対象に影響を与えず高精度で測定ができる