МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

Институт интеллектуальных кибернетических систем Кафедра Кибернетики

Лабораторная работа №2 «Оценивание параметров линейного стационарного объекта методом наименьших квадратов – рекуррентная форма»

Выполнил студент группы Б15-501: Огнянович Павел

Проверила: Воробьева Д.В.

Цель работы

Исследование свойств рекуррентной формы метода наименьших квадратов применительно к оценкам параметров линейного регрессионного объекта, исследование точности и скорости сходимости оценок к истинным значениям параметров в зависимости от задания начального приближения ковариационной матрицы ошибки и оценки начального приближения оценок параметров объекта.

Задание

В данной работе моделируется объект: $y=3.5-0.3u_1+6u_3-2.2u_4+\eta$

Описание метода

Регрессионный объект и соответствующая ему модель имеют вид:

$$\bar{y} = U \, \bar{b} + \bar{\eta}$$

$$\tilde{v} = U \tilde{b}$$

Рекуррентный алгоритм имеет следующий вид:

$$\bar{\hat{c}}(i+1) = \bar{\hat{c}}(i) + K(i+1)\left(\bar{y}'(i+1) - U'(i+1)\bar{\hat{c}}(i)\right)$$

Учитывая, что в лабораторной работе проводится идентификация параметров линейного регрессионного объекта, то рекуррентные соотношения принимают следующий вид:

$$\begin{split} \hat{b}_{LS}(i+1) &= \hat{b}_{LS}(i) + K(i+1) \left(y(i) - \overline{u}^T \hat{b}_{LS}(i) \right) \\ K(i+1) &= P(i) \overline{u}(i) \frac{1}{\left(\frac{1}{r(i)} + \overline{u}^T(i) P(i) \overline{u}(i) \right)} \\ P(i+1) &= P(i) - \frac{1}{\left(\frac{1}{r(i)} + \overline{u}^T(i) P(i) \overline{u}(i) \right)} P(i) \overline{u}(i) \overline{u}^T(i) P(i) \end{split}$$

Для инициализации рекуррентного процесса требуется задать начальные приближения $\hat{b}_{LS}(0)$ и P(0). Можно задать начальные приближения без предварительных оценок, но тогда нужно следовать правилу: чем хуже приближения, тем больше должна быть матрица P(0).

Результаты работы

Эксп	Исходные данные		Ошибки оценки параметров при $t=t_{ m KOH}$					
Nº	для тестового		$ \hat{b}_0 - b_0 $	$ \hat{b}_1 - b_1 $	$ \hat{b}_2 - b_2 $	$ \hat{b}_3 - b_3 $	$\left \hat{b}_4 - b_4\right $	$\frac{1}{5}\sum_{j}(\widehat{b_{j}}-b_{j})^{2}$
	моделирования						,	$5\Delta^{(8)}$
1.1	$\hat{b}_0(0) = 2.5$	λ=0.1	0,146	0	0,002	0,001	0,001	0,004264
1.2	$\hat{b}_1(0) = -1$	λ=1	0,066	0,001	0,001	0,001	0,001	0,000872
1.3	$\hat{b}_2(0) = 1$	λ=10	0,06	0	0,001	0	0,001	0,00072
1.4	$\hat{b}_3(0) = 5$	λ=100						
	$\hat{b}_4(0) = -1$		0,249	0,004	0,002	0,009	0,002	0,012421
2.1	$\hat{b}_0(0) = 1$	λ=0.1	0,29	0	0,002	0,001	0	0,016821
2.2	$\hat{b}_1(0) = 1$	λ=1	0,08	0,001	0,001	0,001	0,001	0,001281
2.3	$\hat{b}_2(0) = 1$	λ=10	0,194	0,005	0,001	0,003	0	0,007534
2.4	$\hat{b}_3(0) = 1$	λ=100						
	$\hat{b}_4(0) = 1$		1,405	0,017	0,007	0,041	0,01	0,395229
3.1	$\hat{b}_0(0) = 10$	λ=0.1	0,564	0,002	0	0	0,002	0,063621
3.2	$\hat{b}_1(0) = 10$	λ=1	0,297	0	0,001	0	0,001	0,0169
3.3	$\hat{b}_2(0) = 10$	λ=10	0,261	0,002	0	0,007	0,001	0,013635
3.4	$\hat{b}_3(0) = 10$	λ=100						
	$\hat{b}_4(0) = 10$		0,013	0,091	0,03	0,039	0,019	0,002246

Таблица 1: "Результаты работы"

График 1: "начальные приближения 1"

График 2: "начальные приближения 2"

График 3: "начальные приближения 3"

Заключение

В данной работе была изучена рекуррентная форма метода наименьших квадратов применительно к оценкам параметров линейного регрессионного объекта, исследованы точность и скорости сходимости оценок к истинным значениям параметров в зависимости от начальных приближений ковариационной матрицы ошибки оценки и начального приближения оценок параметров объекта.

На основе моделирования и расчетов были сделаны следующие выводы:

- 1. При плохих относительно хороших начальных приближениях и больших значениях P(0) скорость сходимости плохая.
- 2. При хороших начальных приближениях скорость сходимости лучше при меньших значениях P(0).
- 3. При одинаковых значениях P(0), скорость сходимости лучше с более точными начальными приближениями.