Fourier Integral	Fourier Transform	Inverse Fourier Transform
Complex form of Fourier Integral $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \cdot e^{iu(t-x)} dt \ du$	$F[f(u)] = \int_{-\infty}^{\infty} f(t) e^{iut} dt$	$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F[f(u)]e^{-iux}du$
Fourier Integral $f(x) = \frac{1}{\pi} \int_0^{\infty} \int_{-\infty}^{\infty} f(t) \cos u(t-x) dt \ du$	$\int_{-\infty}^{\infty} f(t) dt$	$f(x) = 2\pi \int_{-\infty}^{\pi} f(u) du$
Fourier Sine Integral $f(x) = \frac{2}{\pi} \int_{u=0}^{\infty} \sin ux \int_{t=0}^{\infty} f(t) \sin ut dt du$	$F_S[f(u)] = \int_{t=0}^{\infty} f(t) \cdot \sin ut \ dt$	$f(x) = \frac{2}{\pi} \int_{u=0}^{\infty} F_s[f(u)] \sin ux du$
Fourier Cosine Integral $f(x) = \frac{2}{\pi} \int_{u=0}^{\infty} \cos ux \int_{t=0}^{\infty} f(t) \cos ut dt du$	$F_c[f(u)] = \int_{t=0}^{\infty} f(t) \cdot \cos ut \ dt$	$f(x) = \frac{2}{\pi} \int_{u=0}^{\infty} F_c[f(u)] \cos ux du$

Note: There is no uniformity in the notations of Fourier integrals and Fourier transforms. Sometimes λ or ω are used in place of u **and** s in place of t