F-test (Variance Ratio test)

* The following date is about the no of bulbs foroduced daily by two workers A and B.

A	B
40	39
30	38
38	
41	41
38	33
35	32
	39
	40 34

(an we consider based on the date worker B is more Stable and effecient?

* Why not mean here can be used to test? —> Mean is same for

both the samples

So we will compare Vaniances

 $S_{\nu}^{2} = \frac{84}{5} = \frac{84}{7} = 12$

① H_0 : $S_1^2 = S_2^2$, $H_A = S_1^2 \neq S_2^2$

2 Ftest, one tail test, 0 = 0.05.

(3) Establishy =
$$\frac{S_1^2}{S_2^2}$$

worker*

 $\frac{X_1}{X_1} \frac{X_1}{(X_1 - X_1)^2}$
 $\frac{X_1}{X_1} \frac{X_1 - X_1}{(X_1 - X_1)^2}$
 $\frac{37}{37} \frac{9}{37} \frac{37}{16}$
 $\frac{38}{37} \frac{37}{16} \frac{1}{35}$
 $\frac{38}{37} \frac{37}{16} \frac{1}{35}$
 $\frac{37}{X_1 - 37} \frac{1}{237} = 80$

 $S_1^2 = \frac{80}{71} = \frac{80}{6-1} = \frac{80}{5} = \frac{16}{16}$

worker B
$$\frac{1}{x_2}$$
 $\frac{(x_2 - \overline{x})^2}{39}$ $\frac{37}{38}$ $\frac{37}{37}$ $\frac{4}{41}$ $\frac{37}{37}$ $\frac{16}{33}$ $\frac{37}{37}$ $\frac{37}{4.0}$ $\frac{37}{x_2 - 37}$ $\frac{37}{x_2 - 37}$ $\frac{37}{x_2 - 37}$ $\frac{27}{x_2 - 37}$

