AN INTRODUCTION TO ORGANIC CHEMISTRY

Empirical, molecular, structural & displayed formulae

Molecular formula
 The _____actual number ______ of atoms of each element present in the molecule eg: C₄H₁₀

 Empirical formula
 The ______simplest ratio number ______ of atoms in the molecule eg: C₂H₅

Structural formula

The minimal detail using conventional groups eg: CH₃CH₂CH₂CH₃ CH₃CH(CH₃)CH₃

Displayed formula

Skeletal formula: does not show the carbon and hydrogen only

Nomenclature

- Number of carbons eg: meth-, eth-
- Linking or bonding in the chain eg: -an-, -en-, -yn-
- Functional group
 eg: -e, -ol, -amine
- Lowest number for functional group.
- Same substituent occur more than once: di, tri, tetra
- 2 or more different substituent alphabetical order.

COMMON FUNCTIONAL GROUPS

GROUP	ENDING	GENERAL FORMU	LA EXAM	PLE	
ALKANE	- ane	RH	C_2H_6	ethane	
ALKENE	- ene		C_2H_4	ethene	
ALKYNE	- yne		C_2H_2	ethyne	
HALOALKANE	halo -	RX	C ₂ H ₅ CI	chloroethane	
ALCOHOL	- ol	ROH	C ₂ H ₅ OH	ethanol	
ALDEHYDE	-al	RCHO	CH₃CHO	ethanal	
KETONE	- one	RCOR	CH ₃ COCH ₃	propanone	
CARBOXYLIC ACID	- oic acid	RCOOH	CH₃COOH	ethanoic acid	
ACYL CHLORIDE	- oyl chloride	RCOCI	CH₃COCI	ethanoyl chloride	
AMIDE	- amide	RCONH ₂	CH ₃ CONH ₂	ethanamide	
ESTER	- yl - oate	RCOOR	CH ₃ COOCH ₃	methyl ethanoate	
NITRILE	- nitrile	RCN	CH ₃ CN	ethanenitrile	
AMINE	- amine	RNH_2	CH ₃ NH ₂	methylamine	
NITRO	nitro-	RNO_2	CH ₃ NO ₂	nitromethane	
SULPHONIC ACID	- sulphonic aci	d RSO ₃ H	$C_6H_5SO_3H$	benzene sulphonic acid	
ETHER	- oxy - ane	ROR	$C_2H_5OC_2H_5$	ethoxyethane	

COMMON FUNCTIONAL GROUPS

 $\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_3} \end{array}$

CH₃
CH₃
CH₃
CH₂
CH₃-CH-CH-CH₃

•••••••••••••

Homolytic & heterolytic

Homolytic fission: the breaking of a covalent bond in such that one electron goes to each of the atom, forming free-radicals.

Free radical is an atom or group with an unpaired efformed from the homolytic fission of a covalent bond & are very reactive

Homolytic & heterolytic

 Heterolytic fission: breaking of a covalent bond such that both the electrons go to the same atom, forming positive and negative ions.

Nucleophile & electrophile

 Nucleophile: Contains a lone pair of e⁻ & are attracted to electron deficient sites (δ+)

eg: CN⁻,Br⁻,H₂O

• Electrophile: Electron-deficient species which can accept electrons and attracted to regions of negative charge or electron rich sites (δ -) in a molecule.

eg: H+, Cl+, R+

Organic Reactions

 Addition – involves two molecules joining together to form a single new molecule. Usually involve reactions with unsaturated organic compounds.

i.e. Br₂ adds to ethene to form 1,2-dibromoethane.

Substitution – involves replacing an atom (or group of atoms)
 by another atom (or group of atoms).

i.e. The Br atom is substituted (or replaced) by the OH group.

 Elimination – involves the removal of a molecule from a large molecule.

i.e. HBr is eliminated (or removed) from bromoethane to form ethene.

 Hydrolysis – involves breaking covalent bonds by reaction with water.

e.g.
$$CH_3C$$
 CH_3C CH_3C

i.e. Ethyl ethanoate (an ester) is *hydrolysed* (or *split up by water*) to give ethanoic acid and ethanol.

$$CH_3CH_2Br(I) + H_2O(I) \rightarrow CH_3CH_2OH(aq) + HBr(aq)$$

• Free radical substitution – the mechanism consist of 3 steps : initiation, propagation and termination.

Isomerism

Chain Isomerism

- Due to different arrangements of carbon atoms in a chain.
- Chain isomers have different carbon chains, straight chain or branched chain.
- Chain isomers have different physical properties but similar chemical properties.
- Why?

e.g. isomers of
$$C_5H_{12}$$
:
$$CH_3CH_2CH_2CH_3$$

$$CH_3CH_2CH_2CH_3$$

$$CH_3CH_2CHCH_3$$

$$CH_3$$

Position Isomerism

- Due to different position of functional groups in the carbon chain.
- Position isomers have similar chemical properties (same functional group) but different physical properties.

CH₃CH₂CH₂CH₂OH butan-1-ol CH₃CH₂CHCH₃ | OH butan-2-ol

Functional Group Isomerism

- Due to different functional group.
- Functional group isomers have same molecular formula but different functional groups.
- The isomers have different homologous series.
- The isomers have different chemical and physical properties.

	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH₃CHCH₂CH₃	CH₃
Partial Pi	butan-1-ol	ÓН	CH ₃ -C-CH ₃
	СН₃СНСН₂ОН	butan-2-ol	ÓН
C ₄ H ₁₀ O	I CH₃	CH ₃ CH ₂ -O-CH ₂ CH ₃	2-methylpropan-2-ol
\$15 st.	2-methylpropan-1-ol	ethoxyethane	СН₃–О–СНСН₃
	1	CH ₃ -O-CH ₂ CH ₂ CH ₃	ĊH₃
Age 1		1-methoxypropane	2-methoxypropane

Exercise

• Write the structural formula of isomers of $C_3H_6O_2$ to illustrate functional group isomerism.

Geometrical isomerisation in alkenes

- Arises when rotation about a bond is restricted
- Cis-isomer: 2 groups on the same side of the double bond.
- Trans-isomer: 2 groups on the opposite side of the double bond.
- eg: BrCH=CHBr & CH₃CH=CClBr

GEOMETRICAL ISOMERISM IN ALKENES

CIS-TRANS

Should only be used when there are two H's and two non-hydrogen groups attached to each carbon.

cis non-hydrogen groups / atoms on the

SAME side of C=C bond

trans non-hydrogen groups / atoms on

OPPOSITE sides of C=C bond

Geometrical isomerisation

Compound	Geometrical (cis-trans) isomers	Remarks
BrCH=CHBr	$\begin{array}{c c} H & H & H \\ \hline Br & C = C \\ \hline Br & Br \\ \hline C = C \\ H \\ Cis-isomer \\ trans-isomer \end{array}$	
CH₃CH=CC <i>l</i> Br	$\begin{array}{c c} CH_{3} & C=C \\ H & C=C \\ \hline Cl & H \\ \hline cis-isomer & trans-isomer \\ \end{array}$	In the <i>cis</i> -isomer, the group of <i>higher priority</i> (higher M_r) on each C are on the same side of C=C bond.
CHCl CH ₂ —CHCl 1,2-dichloro cyclopropane	H H Cl H H H H Cl H trans-isomer	Toste - a men.

Cis-trans isomerism cannot exist if either carbon carries 2 identical groups.

Cis-tra do not exhibit cis-trans isomerism **perties** (same functional group) — they react with the same reagents but at different rates.

- Cis-trans isomers have different physical properties due to different spatial arrangements of groups.
- Cis-isomers usually has lower melting point structure of cisisomer is less symmetrical
- hence cannot be closely packed in the crystal lattice.
- →less contact between neighbouring molecules.
- → Strength of intermolecular forces reduced.
- But cis-isomers generally have higher boiling point have higher polarity.

$$CH_3$$
 $C = C$ H

cis- isomer: bond moments do **not** cancel out; molecule has a net dipole moment and so, is polar.

$$CH_3$$
 $C = C$ CH_3

bond moments cancel each other; molecule has no net dipole moment and so, is non-polar.

Exercise

 Which of the organic compounds shown below exhibit geometric (cis-trans) isomerism?

(c)
$$CH_2 = C(CH_3)_2$$

Optical Isomerism

- An organic molecule can only exhibit optical isomerism if it contains one chiral carbon atom, shown as C* (a carbon atom attached to 4 different atoms or group).
- Optical isomers are optically active, where it is able to rotate the plane of plane-polarised light.
- They posses same structural formula but differ in effect on plane-polarised light.
- Optical isomers (enantiomers) are:
 - (a) mirror image of each other
 - (b) and cannot be superimposed on each other no matter how the molecule is rotated.
- http://www.youtube.com/watch?v=3WZZXPOsPNI&feature=related
- http://www.youtube.com/watch?v=uD9j3nbaHsE

Identify chiral carbons(if any)

- pentan-3-ol
- 3-chlorobutan-2-ol
- 3-chlorobut-1-ene
- 1,3-dimethylbenzene

19 The diagram shows the structure of vitamin C.

How many chiral centres are there in one molecule?

A 1

B 2

C 3

D 4

Optical Isomerism

- Enantiomers have same:
 - a) **chemical** properties except towards optically active reagents.
 - b) **physical** properties except for the **direction** of **rotation** of the plane of polarised light rotate the plane of polarised light in different directions.
- Racemic mixture mixture containing equal quantities of each isomer and is optically inactive