Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана)

Факультет "Фундаментальные науки" Кафедра "Высшая математика"

ОТЧЁТ по учебной практике за 1 семестр 2021—2022 гг.

Руководитель практики,		Кравченко О.В.
ст. преп. кафедры ФН1	(nodnucb)	правченко О.Б.
студент группы ФН1–11		Калмыков Е.А.
	$(no\partial nuc b)$	

Содержание

1	Цели и задачи практики	3				
	1.1 Цели	3				
	1.2 Задачи	3				
	1.3 Индивидуальное задание	3				
2	2 Отчёт					
3	Индивидуальное задание 3.1 Пределы и непрерывность	5				
\mathbf{C}_1	писок литературы	8				

1 Цели и задачи практики

1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

1.2 Задачи

- 1. Знакомство с программными средствами, необходимыми в будущей профессиональной деятельности.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски L^AT_FX.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе IATEX типовые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.

2 Отчёт

Актуальность темы продиктована необходимостью владеть системой вёрстки I^AT_EXи средой вёрстки TeXStudio для отображения текста, формул и графиков. Полученные в ходе практики навыки могут быть применены при написании курсовых проектов и дипломной работы, а также в дальнейшей профессиональной деятельности.

Ситема вёрстки IATEX содержит большое количество инструментов (пакетов), упрощающих отображение информации в различных сферах инженерной и научной деятельности.

3 Индивидуальное задание

3.1 Пределы и непрерывность.

Задача № 1.

Условие. Дана последовательность
$$a_n = \frac{2n+1}{3n-5}$$
 и число $c = \frac{2}{3}$. Доказать, что
$$\lim_{n \to \infty} a_n = c,$$

а именно, для каждого $\varepsilon>0$ найти наименьшее натуральное число $N{=}N(\varepsilon)$ такое, что $|a_n-c|<\varepsilon$ для всех $n>N(\varepsilon)$. Заполнить таблицу:

ε	0,1	0,01	0,001
$N(\varepsilon)$			

Решение. Рассмотрим неравенство $a_n-c<\varepsilon,\,\forall \varepsilon>0,\,$ учитывая выражение для a_n и значение c из условия варианта, получим:

$$\left|\frac{2n+1}{3n-5} - \frac{2}{3}\right| < \varepsilon;$$

$$\left|\frac{6n+3-6n+10}{9n-15}\right| < \varepsilon;$$

$$\left|\frac{13}{9n-15}\right| < \varepsilon.$$

$$\frac{13}{9n-15} < \varepsilon;$$

$$n > \frac{13}{9\varepsilon} + \frac{15}{9}.$$

Заполним таблицу:

ε	0,1	0,01	0,001
$N(\varepsilon)$	16	146	1446

Задача № 2.

Условие. Вычислить пределы функций

(a):
$$\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2};$$

(6):
$$\lim_{x \to +\infty} \frac{2x^2 \sqrt{1 + 9x^4}}{(\sqrt{x} + 1)^2 (\sqrt[3]{x} - 2)^3};$$
(B):
$$\lim_{x \to 8} \frac{x - 8}{\sqrt[3]{x} - 2};$$

(B):
$$\lim_{x\to 8} \frac{x-8}{\sqrt[3]{x}-2}$$
:

(r):
$$\lim_{x \to +0} \left(2 - 5^{\arcsin x^2}\right)^{\frac{1}{\sin x \cdot x}};$$

(д):
$$\lim_{x \to +0} \left(\frac{\sin 3x}{\sin 2x} \right)^{(\cos x)^2};$$

(e):
$$\lim_{x \to 1} \frac{\ln(3-2x)}{\arctan(3x-3)}$$
.

$$\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2} = \lim_{x \to -1} \frac{(x+1)(x^2 + 4x + 3)}{(x+1)(x^2 + 3x + 2)} = \lim_{x \to -1} \frac{(x+1)(x+3)}{(x+1)(x+2)} = 2.$$

(б):

$$\lim_{x\to +\infty} \frac{2x^2\sqrt{1+9x^4}}{(\sqrt{x}+1)^2(\sqrt[3]{x}-2)^3} = \lim_{x\to +\infty} \frac{(2x^2\sqrt{1+9x^4})(2x^2\sqrt{1+9x^4})}{(\sqrt{x}+1)^2(\sqrt[3]{x}-2)^3(2x^2\sqrt{1+9x^4})} =$$

$$= \lim_{x \to +\infty} \frac{-x^4(5 + \frac{1}{x^4})}{x(1 + \frac{1}{\sqrt{x}})^2 \cdot x(1 - \frac{2}{\sqrt[3]{x}})^3 \cdot x^2(2 - \sqrt{\frac{1}{x^4} + 9})} = 5.$$

(B):

$$\lim_{x \to 8} \frac{x-8}{\sqrt[3]{x}-2} = \lim_{x \to 8} \frac{\sqrt[3]{x^3}-2^3}{\sqrt[3]{x}-2} = \lim_{x \to 8} \left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right) = 12.$$

 (Γ) :

$$\lim_{x \to +0} \left(2 - 5^{\arcsin x^2}\right)^{\frac{1}{\sin x \cdot x}} = \lim_{x \to +0} \left(2 - 5^{x^2}\right)^{\frac{1}{x^2}} = \lim_{x \to +0} \left(1 + (1 - 5^{x^2})\right)^{\frac{1 - 5^{x^2}}{x^2(1 - 5^{x^2})}} = \lim_{x \to +0} \left(2 - 5^{x^2}\right)^{\frac{1}{x^2}} = \lim_{x \to +\infty} \left(2 - 5^{x^2}\right)^{\frac{1}{x^2}} =$$

$$= e^{\left(\lim_{x \to +0} \frac{1-5x^2}{x^2}\right)} = e^{\ln 5} = \frac{1}{5}.$$

(д):

$$\lim_{x \to +0} \left(\frac{\sin 3x}{\sin 2x} \right)^{(\cos x)^2} = \lim_{x \to +0} \left(\frac{3x}{2x} \right) = \frac{3}{2}.$$

(e):

$$\lim_{x \to 1} \frac{\ln(3 - 2x)}{\arctan(3x - 3)} = \begin{vmatrix} t = x - 1 \\ t \to 0 \end{vmatrix} = \lim_{t \to 0} \frac{\ln(1 - 2t)}{\arctan(3t)} = \lim_{t \to 0} \frac{-2t}{3t} = -\frac{2}{3}.$$

Задача № 3.

Условие.

- (a): Показать, что данные функции f(x) и g(x) являются бесконечно малыми или бесконечно большими при указанном стремлении аргумента.
- (б): Для каждой функции f(x) и g(x) записать главную часть (эквивалентную ей функцию) вида $C(x-x_0)^{\alpha}$ при $x \to x_0$ или Cx^{α} при $x \to \infty$, указать их порядки малости (роста).
 - **(в):** Сравнить функции f(x) и g(x) при указанном стремлении.

Ме варианта функции
$$f(x)$$
 и $g(x)$ стремление $f(x) = \sqrt{x + \frac{1}{x}} - \sqrt{x}, \ g(x) = \frac{\arctan(1-x)\sin\frac{1}{x}}{x}$ $x \to +\infty$

Решение.

Выделим главные части функций f(x) и g(x):

$$f(x) = \sqrt{x + \frac{1}{x}} - \sqrt{x} = \sqrt{x}(\sqrt{1 + \frac{1}{x^2}} - 1) \sim \sqrt{x} \cdot \frac{1}{2x^2} \sim \frac{1}{2} \cdot x^{-\frac{3}{2}}.$$
 Тогда при $x \to +\infty$: $c = \frac{1}{2}$; $\alpha = -\frac{3}{2}$.
$$g(x) = \frac{\arctan(1 - x)\sin\frac{1}{x}}{x} \sim -\frac{\pi}{2} \cdot x^{-2}.$$
 Тогда при $x \to +\infty$: $c = -\frac{\pi}{2}$; $\alpha = -2$.

Покажем, что f(x) и g(x) бесконечно малые функции:

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{1}{2} \cdot x^{\frac{3}{2}} = \frac{1}{2} \lim_{x\to +\infty} x^{-\frac{3}{2}} = 0.$$

$$\lim_{x\to +\infty} g(x) = -\lim_{x\to +\infty} \frac{\pi}{2} \cdot x^{-2} = -\frac{\pi}{2} \cdot \lim_{x\to +\infty} x^{-2} = 0.$$

$$k_f = -\frac{3}{2} \text{- порядок малости БМФ } f(x) \text{ относительно } x\to +\infty \ .$$

$$k_g = -2 \text{- порядок малости БМФ } g(x) \text{ относительно } x\to +\infty \ .$$

Для сравнения функций f(x) и g(x) рассмотрим предел их отношения:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}.$$

Применим эквивалентности, получим:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{\sqrt{x}}{-\pi} = -\infty.$$

Отсюда следует, что f(x) = o(g(x)).

Список литературы

- [1] Львовский С.М. Набор и вёрстка в системе І^дТ_ЕX, 2003 с.
- [2] Котельников И.А., Чеботаев П.З. І-ТЕХ по-русски.
- [3] Чебарыков М.С Основы работы в системе \LaTeX .