

Gegenstandserkennung und kategoriebasierter Transport anhand von kameraunterstützten NXT-Robotern

Studienarbeit

für die Prüfung zum
Bachelor of Engineering

von

Sebastian Hüther & Lorenzo Toso

7. März 2015

Bearbeitungszeitraum: 2 Semester

Matrikelnummer: 8853105 & 1906813

Kurs: TINF12B3

Studienfach: Informationstechnik

Ausbildungsfirma: Karlsruher Institut für Technologie

Betreuer: Gertrud Nieder

Inhaltsverzeichnis

Εi	desst	attliche Erklärung	IV		
Αl	okürz	rungsverzeichnis	1		
1	1 Einleitung				
2	Pro	blemstellung	4		
3	3 Materialien und Methoden				
4	Hardwareumsetzung				
	4.1	Entwurf des NXT-Roboters	6		
	4.2	Steuerung des Roboters	7		
	4.3	Wahl des Kameramoduls	8		
5	Soft	twareumsetzung	9		
	5.1	Wahl der Bildverarbeitungsbibliothek	9		
	5.2	Raumerkennung	10		
	5.3	Algorithmen zur Objekterkennung	10		
	5.4	Mono-Kamerabasierte Entfernungsschätzung	11		
	5.5	Zielzonenerkennung	11		
	5.6	Hauptschleife	11		
6	Tests des Robotersystems				
	6.1	Tests im gesicherten Rahmen	12		

Inhaltsverzeichnis		
	6.2 Realtests	12
7	Zusammenfassung und Ausblick	13
Li	teraturverzeichnis	\mathbf{V}

Sebastian Hüther & Lorenzo Toso

DHBW Karlsruhe

Eidesstattliche Erklärung

	und Prüfungsordnung DHBW Technik" vom 22. Septentiet selbstständig verfasst und keine anderen als die abendet.	
Ort, Datum	Unterschrift	

Abkürzungsverzeichnis

Abbildungsverzeichnis

1 Einleitung

Im Rahmen der Studienarbeit des fünften und sechsten Semesters der Prüfung zum Bachelor of Engineering, stellt diese Arbeit eine Dokumentation zur Entwicklung eines kameragestützten Roboters dar. Ziel der Arbeit ist es mit Hilfe eines Android-Smartphones und eines LEGO Mindstorm NXT-Kits einen Roboter zu entwerfen, der Gegenstände in einem Raum erkennt, anfährt und in eine vordefinierte Zielzone transportiert. Hierfür werden diverse Methoden der Bildverarbeitung eingesetzt, welche unter der Verwendung der OpenCV-Library [1] implementiert werden.

Das nachfolgende Kapitel beschreibt die Problemstellung und erklärt eine Grundproblematik der Zusammenarbeit der beiden Hardwaremodule. Kapitel drei beinhaltet genaue Daten zu den Hardwaremodulen und deren Zusammenspiel, sowie die notwendigen Grundlagen der Bildverarbeitung, die für spätere Methoden genutzt werden. Die beiden darauf folgenden Kapitel gehen gesondert auf den genauen Aufbau des Roboters samt Konstruktionsplänen, sowie Details zur Softwareimplementierung der Objekterkennung und der Roboteransteuerung ein. Kapitel 6 beschreibt durchgeführte Tests sowohl unter speziell präparierten Bedingungen, als auch Realbedingungen. Das abschließende Kapitel ist ein letztes Fazit, welches einen Überblick über die gesamte Arbeit bildet.

2 Problemstellung

Ziel dieser Studienarbeit ist die praktische Anwendung gelernter Kenntnisse in Hard- und Software. Durch die benutzung zweier verschiedener getrennter Module sind sowohl Kenntnisse in der Programmierung, als auch Kenntnisse in Prozessautomatisierung und in der Entwicklung verteilter Systeme erforderlich.

Konkrete Aufgabenstellung ist es einen kameragestützten Roboter zu entwickeln, der autonom Gegenstände in einem Raum erkennt und in definierte Zielzonen transportiert. Der Prozess kann hierbei in drei Teilprozesse unterteilt werden.

Erstens muss der Roboter mit Hilfe von bekannten Verfahren der Bildverarbeitung Objekte auf Grund ihrer physikalischen Beschaffenheit, beispielsweise ihrer Größe, ihrer Form und ihrer Farbe, erkennen und zielgerichtet anfahren.

Zweitens soll sich der Roboter gegenüber des Gegenstands optimal positionieren und diesen mit Hilfe eines mechanischen Greifarms aufnehmen.

Zuletzt muss der Roboter den aufgenommenen Gegenstand kategorisieren, nach der entsprechenden Zielzone suchen diese Anfahren und den Gegenstand ablegen. Die Erkennung der Zielzone kann dabei durch Markierungen an Wänden und Böden des Raumen erfolgen.

Als Bewertungskriterien dienen hierbei beispielsweise ob der Roboter alle Gegenstände erfolgreich erkennt, diese korrekt kategorisiert und in korrekte Zielzonen bewegt, sowie die Zeit in der dies geschieht.

3 Materialien und Methoden

NXT-Roboter

Android-Smartphone

Bluetooth-Verbindung

Some more Stuff

4 Hardwareumsetzung

4.1 Entwurf des NXT-Roboters

Die hardwareseitigen Voraussetzungen an den Roboter bestanden im Hauptsächlichen aus der freien Bewegung im Raum und dem Aufnehmen, Mitführen und Ablegen von kleinen Gegenständen in einem vordefinierten Bereich.

Nach kurzer Recherche[2] und Durchsicht von Bauanleitungen für verschiedenste Anwendungsbereiche wurde sich für den Standardaufbau aus der zum Bauset zugehörigen LEGO NXT Bauanleitung entschieden.

Sie wurde lediglich um den Schall- und den Abstandssensor erleichtert; eine Halterung für das Smartphone wurde hinzugefügt.

1.hier Bild des Roboters einfügen

4.1.1 Sensoren

Tastsensor

Der berührungsempfindliche Sensor vorne dient zum Detektieren von Gegenständen im Bereich des Greifarms, woraufhin dieser geschlossen werden kann.

Rotationssensoren

Die Rotationssensoren in den Servomotoren erlauben es dem NXT-Roboter, die Geschwindigkeit der Motoren abhängig des Widerstands (des Untergrunds) zu regulieren. So werden unter anderem präzises Abbremsen und Fehlerminimierung bei der Positionsbestimmung ermöglicht.

4.1.2 Aktoren

Antriebsmotoren

Die beiden Servomotoren links und rechts des NXT-Roboters bilden differentialen Antrieb und ermöglichen freie Fortbewegung.

Greifarmmotor

Der dritte Motor im vorderen Teil des Roboters dient zum Öffnen und Schließen des Greifarms und so zur Mitführung von Gegenständen.

4.2 Steuerung des Roboters

Bluetooth Verbindung zu Smartphone

4.3 Wahl des Kameramoduls

5 Softwareumsetzung

Mit Hilfe des in Kapitel 4.3 beschriebenen Kameramoduls müssen verschiedene Aufgaben aus dem Bereich der Bildverarbeitung bewältigt werden.

5.1 Wahl der Bildverarbeitungsbibliothek

Die Umsetzung der zu bewältigenden Aufgaben kann durch die Wahl einer geeigneten Bildverarbeitungsbibliothek deutlich vereinfacht werden. Wichtige Kriterien für die Wahl der Bibliothek sind unter anderem Funktionsumfang, Dokumentation und aktivität der Community.

5.1.1 LibCCV

LibCCV ist eine open-source Bildverarbeitungsbilbiothek, die viele bekannte Algorithmen implementiert. LibCCV steht unter einer BSD-Clause-3-Lizenz und kann somit für eine Studienarbeit problemlos unbegrenzt verwendet werden. Die Bibliothek ist größtenteils in C++ verfasst und somit potenziell auf einem Android-Smartphone verwendet werden. Die Verwendung auf dem Smartphone wird jedoch nicht offiziell unterstützt und kann potenziell weitere Schwierigkeiten mit sich bringen.

5.1.2 Imagemagick

Kleines Project, Outdated

5.1.3 OpenCV

Guter Android Port

Sehr große Library

Sehr bekannt

Gute Dokumentation

5.2 Raumerkennung

5.2.1 Kameragestützt

5.2.2 Ultraschallsensor

5.2.3 Kombination unterschiedlicher Sensordaten

5.3 Algorithmen zur Objekterkennung

5.3.1 Farbbasierte Objekterkennung

Konvertierung in HSV-Format

Filtern nach Saturation

Filtern nach Intensity

FindContoures() - von OpenCV benutzt: Suzuki, S. and Abe, K., Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985)

5.3.2 Kantenerkennung

5.3.3 Fokussierung eines Objekts

5.4 Mono-Kamerabasierte Entfernungsschätzung

5.5 Zielzonenerkennung

5.6 Hauptschleife

Arbeitszustände

- 1. Objekt suchen
- 2. Objekt ansteuern
- 3. Objekt aufnehmen
- 4. Objekt kategorisieren
- 5. Zielbereich suchen
- 6. Zielbereich ansteuern
- 7. Objekt ablegen

[INSERT ZUSTANDSÜBERGANGSDIAGRAMM]

6 Tests des Robotersystems

- 6.1 Tests im gesicherten Rahmen
- 6.2 Realtests

7 Zusammenfassung und Ausblick

Literaturverzeichnis

Literaturverzeichnis

[1] G. Bradski. Open cv. Dr. Dobb's Journal of Software Tools, 2000.

[2] Freie nxt bauanleitungen.