Win Predictions in Super Smash Brothers Melee

A "Slippi" classification problem

Dakota Nelson

Theo Zinos

Dan Ruppin

What is Super Smash Bros. Melee?

Super Smash Brothers Melee is a 2001 crossover fighting video game developed by HAL Laboratory and published by Nintendo for the GameCube. It is the second installment in the Super Smash Bros. series

Melee became a highly technical game over the 23 years it has been out. Peaking in tournament play in 2016 and still contains one of the largest audiences for fighting games.

Research question

Can we create a data-driven model to classify matchup outcomes of win or loss with match statistics?

- We will attempt to maximize accuracy

Purpose?

- Learn what matters to get better at the game
- Human error and reaction times.

Melee Game Rules

 Melee is a 2D game in which fighters attempt to knock the other players off the screen

Percentage increases causes the player to die easier, resets back to 0% per stock

- The game end when one players' life pool (stocks or **lives**) reaches 0.

Key Assumptions

Strong imbalance exists between characters. This is due to characters' frame data allowing certain characters to combat at much higher speeds than others.

Only 5 maps used in competitive melee. We will stick with this as the data available follows this rule.

Due to certain characters being stronger than others, there will be a much higher frequency of high tier characters than lower tier.

Items are not used in matches

Getting the data

Tournament Match Data

Casual Gamer Data

Data Structure

5	
29	
30	
154	
557	
242	
1469	
656	
1422	
236	
552	
33	
544	
207	
	29 30 154 557 242 1469 656 1422 236 552 33 544

JSON Format

- Information about the state of each player in every frame.
- General information: Date, Stage,
 End Condition, Mode
- Action States
 - How many matter?

Data Problems

Offense		
Kills	4	2
Damage Done	543.7	308.1
Opening Conversion Rate	68.4% (13 / 19)	31.3% (5 / 16)
Openings / Kill	4.8	8.0
Damage / Opening	28.6	19.3
Defense		
Actions (Roll / Air Dodge / Spot Dodge)	4/2/5	9/1/1
Neutral		
Neutral Wins	10 (83%)	2 (17%)
Counter Hits	8 (38%)	13 (62%)
Beneficial Trades	1 (100%)	0 (0%)

- Lacking key information otherwise shown directly in Slippi
- Incredibly difficult to turn into something useable
- "Illegal" games in the datasets
- Character Generalization
- Action Relation

Problem Solutions

- All characters have the same inputs,
 but the actions performed are different
- Restricting to available general data
- Removing illegal games
 - CPU, Multiplayer, Early End
- Remove direct correlation

Variables we chose manually

- Win/Loss Dependent Variable
- Character
- Stage
- Max Combo
- Mean X-Distance from center
- Most frequent platform
- L-Cancel Successes*
- L-Cancel Failures*

L-Cancel???

- Short for Land Cancelling
- Uses precise inputs to cancel the animation
- Lets skilled players play faster
- No "consequence" of failure
 - Extremely punishable

Data Visualizations (Professional)

Data Visualizations (Professional)

Data Visualizations (Casual)

Data Visualizations (Casual)

The players position

The models we used

Logit

Random Forest

Logit - Initial Data Considerations

Logit - Even VS Odd data split

Considering the data

Hypothesis| Tests with linregres

inregress
Max Combo

and Mean X Distance were significant in the casual set

L-Cancel Failures Max Combo Mean X Distance

Character_factorized

Stage factorized

Platform factorized

L-Cancel Successes

p-value

0.036851

0.327417

0.579231

0.370227

test_statistic

0.115138

0.004001

0.040703

-0.358753

0.054159

-0.030681

0.049559

True

False

statistically_significant

Tournament set

Average Accuracy: 0.6717

Casual set

Average Accuracy: 0.6819

Outcome of Logit models using greedy feature selection

Tournament Set

['constant', 'Platform', 'Character', 'Mean X Distance', 'L-Cancel Successes', 'Max Combo']. (no L-Cancel Failures)

Average Accuracy: 0.6748

Casual set

['constant', 'Platform', 'Stage', 'Character', 'Max Combo']

Average Accuracy: 0.6983

Random Forest

First we one-hot encoded the three categorical features [Character, Stage] as these were nominal data (no ordered significance)

Second we used RandomizedSearch with a 5-stratifiedKfold Hyperparameter tuning, giving the following parameters for the model:

```
RandomForestClassifier

RandomForestClassifier(criterion='entropy', max_depth=17, max_features='log2', max_leaf_nodes=47, min_samples_leaf=6, min_samples_split=20, n_estimators=30)
```

Outcome of Random Forest model

Tournament Set:

Average Accuracy: 0.6733

Casual Set:

Average Accuracy: 0.7003

Going forward

- Pulling data directly from Slippi would allow for more valuable data and features
- Slippi live feed predictions
- Use of a DNN could result in more complex relationship creation.

Biggest Takeaways

Logit model

- -Simple
- -Good accuracy
- -Greedy model performed better than the Random Forest in the tournament set

Random Forest

- -Good accuracy
- -Good insight to features
- -Room for improvement