Лекции № 17-18

Операторные уравнения второго рода. Нормально разрешимые операторы. Теория Фредгольма (Рисса-Фишера): три теоремы Фредгольма. Уравнения первого рода. Регуляризация

После изучения свойств пространств и операторов мы переходим к завершающему разделу курса ΦA — к операторным уравнениям первого и второго рода.

Общее определение операторных уравнений второго рода — это уравнения вида (I-A)x=y в банаховом пространстве X, первого — уравнения вида Ax=y в паре банаховых пространств X,Y, где A — вполне непрерывный оператор.

Начнем с операторных уравнений второго рода. Покажем, что при достаточно общих условиях они порождают корректные задачи. Теория корректности уравнений второго рода носит название теории Фредгольма — основателя теории для интегральных уравнений второго рода, или Рисса—Фишера — тех, кто развивал теорию для операторных уравнений.

С методами решения интегральных уравнений Фредгольма и Вольтерра второго рода, мы знакомились на протяжении всего курса: метод сжимающих отображений, метод разложения в ряды Фурье, решение уравнений с вырожденными ядрами, методы, основанные на построении обратных операторов. Теперь докажем корректность этих задач как частного случая операторных уравнений второго рода.

Затем коротко рассмотрим уравнения первого рода, приводящие к некорректным задачам, и простейшие методы регуляризации. Почему уравнения первого рода порождают некорректные задачи, вы уже знаете: оператор, обратный к вполне непрерывному (в бесконечно-мерном пространстве) не может быть ограниченным.

• Операторные уравнения второго рода

Изучение операторных уравнений второго рода начнем с важных предварительных результатов об операторах второго рода I-A, на основе которых доказываются знаменитые теоремы Фредгольма. Покажем, что

операторы второго рода являются нормально разрешимыми.

Определение 1. Оператор B называется *нормально разрешимым*, если

$$R(B) = \overline{R(B)}.$$

Для нормально разрешимых операторов уравнение Bx = y разрешимо для y из замкнутого множества $R(B) = \overline{R(B)}$ (являющегося подпространством для линейного оператора B).

Почему замкнутость области значений чрезвычайно важна? На этот вопрос отвечает одна из базовых теорем линейного ΦA — теорема Банаха об обратном операторе. Напомним ее.

Теорема Банаха об обратном операторе. Пусть X, Y - банаховы пространства $u \ B : X \to Y -$ линейный ограниченный оператор, отображающий взаимно-однозначно X на все пространство Y. Тогда обратный оператор ограничен.

Таким образом, если R(B) — область значений взаимно-однозначного оператора $B \in L(X,Y)$ замкнута, то подпространство $R(B) = \overline{R(B)}$ можно считать пространством Y. Тогда обратный оператор ограничен.

Оказывается, что операторы второго рода B=I-A, где $A\in\sigma(X)$, в отличие от операторов первого рода B=A, являются нормально разрешимыми.

Предложение 1. Пусть X — банахово пространство и $A: X \to X$ — вполне непрерывный оператор. Тогда области значений операторов I-A и $I-A^*$ являются подпространствами в X и X^* , соответственно.

Без доказательства.

Доказательство. Пусть $y_n \in R(I-A)$, тогда найдутся $x_n \in X$:

$$(I - A)x_n = y_n.$$

Пусть $y_n \to y_0$. Покажем, что предельная точка $y_0 \in R(I-A)$. Рассмотрим несколько возможностей для x_n .

1). Последовательность x_n ограничена, тогда последовательность Ax_n компактна. Отсюда следует, что $x_n = y_n + Ax_n$ тоже компактна. Значит,

можно выделить подпоследовательность x_{n_k} , сходящуюся в банаховом пространстве: $x_{n_k} \to x_0$, для которой имеем $x_{n_k} = y_{n_k} + Ax_{n_k}$. Переходя к пределу, получаем $x_0 = y_0 + Ax_0$. Следовательно, $y_0 = x_0 - Ax_0$, т.е. $y_0 \in R(I-A)$.

2). Пусть последовательность x_n не ограничена и N — ядро оператора I-A. Введем расстояние ρ_n от x_n до N. Согласно определению ρ_n как нижней грани расстояний, найдутся $z_n \in N_n$, такие что

$$\rho_n \le ||x_n - z_n|| \le \left(1 + \frac{1}{n}\right) \rho_n, \quad (I - A)(x_n - z_n) = y_n.$$

Если последовательность ρ_n ограничена, то как в первом случае, заменяя x_n на $x_n - z_n$, получаем $y_0 \in R(I - A)$.

Оказывается случай неограниченности ρ_n невозможен. (Доказательство можно посмотреть в [1].) \square

Теперь рассмотрим связь между поведением области значения произвольного линейного оператора $B: X \to Y$, для которого существует сопряженный оператор B^* , и ортогональным дополнением к $N(B^*) = \{y \in Y^* : B^*y = 0\}$, ядру оператора B^* .

Введем два типа ортогональных дополнений M^{\perp} — для линейного многообразия $M \in X$ и $^{\perp}N$ — для линейного многообразия $N \in X^*$:

$$M^{\perp} := \{ f \in X^* : \forall x \in X, \langle x, f \rangle = 0 \},$$

$$^{\perp}N := \{x \in X : \forall f \in X^*, \langle x, f \rangle = 0\}.$$

У25. Проверьте, что оба ортогональных дополнения являются подпространствами в своих пространствах.

Предложение 2. Пусть $\overline{D(B)} = X$. Тогда

$$N(B^*) = R(B)^{\perp}, \quad \overline{R(B)} = {}^{\perp}N(B^*).$$
 (1)

Отметим, что условие $\overline{D(B)} = X$ обеспечивает существование сопряженного к B оператора.

Без доказательства.

Доказательство первого из соотношений получается очень легко: оно следует из определения сопряженного оператора.

Пусть $f \in N(B^*)$, тогда по определению сопряженного к B оператора

$$\langle Bx, f \rangle = \langle x, B^*f \rangle = 0.$$

Это означает, что $f \in R(B)^{\perp}$, т.е. доказано включение $N(B^*) \subset R(B)^{\perp}$. Чтобы доказать обратное включение $R(B)^{\perp} \subset N(B^*)$, возьмем $f \in R(B)^{\perp}$, т.е. такое, что $\langle Bx, f \rangle = \langle x, B^*f \rangle = 0$ для $x \in D(B)$. Тогда из условия $\overline{D(B)} = X$ получаем $\langle x, B^*f \rangle = 0$ для всех $x \in X$. Таким образом, доказано обратное включение и, следовательно, равенство $N(B^*) = R(B)^{\perp}$.

Доказательство второго равенства. $\overline{R(B)} = ^{\perp} N(B^*)$. Применим ортогональное дополнение к равенству $N(B^*) = R(B)^{\perp}$, получим:

$$^{\perp}N(B^*) = ^{\perp}R(B)^{\perp} \supset R(B).$$

Поскольку, как мы отмечали, любое ортогональное дополнение — это замкнутое множество, отсюда следует, что и замыкание R(B) принадлежит $^{\perp}N(B^*)$: $\overline{R(B)} \subset ^{\perp}N(B^*)$.

Если докажем обратное к этому включению, эквивалентное следующему включению для дополнений:

$$X/\overline{R(B)} \subset X/^{\perp}N(B^*),$$

то будет доказано второе из соотношений (1).

Пусть $y_0 \in X/\overline{R(B)}$. Покажем, что тогда $y_0 \in X/^{\perp}N(B^*)$. По второму следствию из теоремы Хана-Банаха существует f_0 :

$$f_0(\overline{R(B)}) = 0 \& f_0(y_0) = 1 \implies f_0 \in N(B^*) \& f_0(y_0) \neq 0 \implies y_0 \in X/^{\perp}N(B^*).\square$$

Следствие. В гильбертовом пространстве имеет место равенство

$$H = N(B^*) \oplus \overline{R(B)}.$$

Для нормально разрешимого:

$$H = N(B^*) \oplus R(B)$$
.

Для самосопряженного:

$$H = N(B) \oplus \overline{R(B)}$$
.

• Теория Фредгольма (Рисса-Фишера)

Рассмотрим уравнения, лежащие в основе теории Фредгольма:

$$(F1) (I - A)x = y,$$

$$(F2) \quad (I - A)x = 0,$$

$$(F3) (I - A^*)u = v,$$

$$(F4) (I - A^*)u = 0$$

и сформулируем три теоремы, составляющие теорию.

Теорема 1 (**Первая теорема Фредгольма**). Пусть X — банахово рефлексивное пространство и $A: X \to X$ — вполне непрерывный оператор. Тогда следующие утверждения эквивалентны:

- 1) уравнение (F1) имеет решение для любого $y \in X$;
- 2) уравнение (F2) имеет единственное нулевое решение;
- 3) уравнение (F3) имеет решение для любого $v \in X^*$;
- 4) уравнение (F4) имеет единственное нулевое решение.

При любом из этих условий операторы $(I-A)^{-1}$, $(I-A^*)^{-1}$ существуют и ограничены.

Доказательство первой теоремы Фредгольма для случая гильбертова пространства H, проведенное по круговой схеме:

$$1) \Rightarrow 2), \quad 2) \Rightarrow 3), \quad 3) \Rightarrow 4), \quad 4) \Rightarrow 1),$$

следует из доказанного равенства

$$H = N(B^*) \oplus \overline{R(B)}$$

при B = I - A:

$$H = N((I - A)^*) \oplus \overline{R(I - A)}$$

5

и теоремы Банаха об обратном операторе.

Теорема 2 (Вторая теорема Фредгольма). Пусть X — банахово пространство и $A: X \to X$ — вполне непрерывный оператор. Тогда размерности ядер операторов I - A и $I - A^*$ конечны и совпадают.

Без доказательства.

Теорема 3 (**Третья теорема Фредгольма**). Пусть X — банахово пространство и $A: X \to X$ — вполне непрерывный оператор. Тогда для того, чтобы уравнение (F1) имело хотя бы одно решение, необходимо и достаточно, чтобы любое решение уравнения (F4) было ортогонально решению уравнения (F1):

$$(I - A)x = y \Leftrightarrow \forall u : (I - A^*)u = 0, \langle x, u \rangle = 0.$$

Доказательство третьей теоремы Фредгольма сразу следует из соотношения $R(I-A) =^{\perp} N((I-A)^*)$, полученного нами в предложении 1 для случая нормально разрешимого оператора B = I - A.

У26. Запишите интегральное уравнение Фредгольма второго рода с самосопряженным оператором и решите его, используя теорию Фредгольма и теорему Гильберта-Шмидта (раскладывая правую часть и неизвестное в ряд Фурье по собственным функциям).

• Операторные уравнения первого рода. Регуляризация некорректных задач

Пусть $X,Y-\Pi \Pi \Pi$. Рассмотрим операторное уравнение первого рода

$$Ax = y \tag{2}$$

с вполне непрерывным оператором $A: X \to Y$. Если у оператора $A: X \to Y$ не существует обратного, то задача (2) является некорректной. Если обратный оператор $A^{-1}: Y \to X$ существует, то он является неограниченным, т.к. единичный оператор $I_X = A^{-1}A$, $I_Y = AA^{-1}$ не является вполне непрерывным в бесконечномерном пространстве, т.е. и в этом случае задача (2) является некорректной.

Для такой задачи, если при некоторой правой части y_0 существует решение x_0 , но задана правая часть с погрешностью: $||y_0 - y_\delta|| \le \delta$, то x_δ — решение уравнения $Ax_\delta = y_\delta$, при $\delta \to 0$ в общем случае не стремится к x_0 .

Вместо оператора $A^{-1}: Y \to X$ здесь вводится семейство ограниченных операторов $R_{\alpha}: Y \to X$, зависящих от параметра и регуляризующих задачу.

Определение. Пусть $A:X\to Y$ — компактный, в частности вполне непрерывный оператор, и параметр $\alpha>0$. Семейство зависящих от параметра α операторов $\{R_\alpha:Y\to X\}$ называется регуляризующим семейством, если

- 1) $R_{\alpha} \in L(Y,X), \quad \alpha > 0;$
- 2) существует такая зависимость $\alpha=\alpha(\delta):\alpha(\delta)\to_{\delta\to 0}0,$ что $R_{\alpha(\delta)}y_\delta\to x_0$ при $\delta\to 0.$

Каждый оператор семейства (при конкретном значении параметра) называется *регуляризующим оператором*.

Смысл регуляризующего оператора $R_{\alpha}, \alpha > 0$, понятен: он на значениях y_{δ} стремится к оператору A^{-1} , но не при любом $\alpha \to 0$, а только при определенном согласовании параметра регуляризации α с параметром погрешности δ .

Основоположниками теории и методов решения некорректных задач в 60—70-е годы прошлого века были российские математики А.Н Тихонов, В.К. Иванов и М.М. Лаврентьев. Один из них — чл.корр АН СССР В.К. Иванов, внесший важный вклад в развитие разных областей математики, долгое время работал в нашем университете и заведовал кафедрой математического анализ.

Методы регуляризации некорректных задач позволили решить многие практически важные задачи, для которых не было устойчивых методов решения. Среди наиболее известных методов — метод регуляризации Тихонова, метод квазирешений Иванова и метод Лаврентьева — сведения уравнений второго рода к уравнениям первого рода.

Мы рассмотрим метод Лаврентьева в его простейшем варианте. Пусть A — самосопряженный, вполне непрерывный, положительный оператор в гильбертовом пространстве H, имеющий обратный. Пусть известно, что уравнение (2) имеет решение x при правой части y, но задана правая часть

с погрешностью: $\|y-y_{\delta}\| \leq \delta$. Регуляризующий оператор будем строить как решение уравнения

$$(\alpha I + A)x_{\alpha,\delta} = y_{\delta}.$$

В силу наложенных на оператор A условий, в H существует ортонормированный базис $\{e_k\}$, состоящий из собственных векторов оператора A, отвечающих собственным значениям λ_k : $\lambda_k \to 0$ при $k \to \infty$.

Таким образом, имеем следующие ряды Фурье и равенства для них:

$$y = \sum_{k=1}^{\infty} y_k e_k, \quad x = \sum_{k=1}^{\infty} x_k e_k, \quad y_{\delta} = \sum_{k=1}^{\infty} y_{\delta k} e_k,$$

$$\sum_{k=1}^{\infty} (\alpha + \lambda_k)(x_{\alpha\delta})_k e_k = \sum_{k=1}^{\infty} y_{\delta k} e_k, \quad x_{\alpha} := x_{\alpha 0} \quad x_{\alpha} = \sum_{k=1}^{\infty} x_{\alpha k} e_k.$$

Чтобы получить оценку для нормы $||x - x_{\alpha\delta}||$, ее традиционно разбивают на две:

$$||x - x_{\alpha\delta}|| \le ||x - x_{\alpha}|| + ||x_{\alpha} - x_{\alpha\delta}||.$$

Кроме того, как обычно в гильбертовом пространстве, удобнее получать оценки для квадратов норм. Имеем

$$||x_{\alpha} - x_{\alpha\delta}||^2 = \sum_{k=1}^{\infty} [x_{\alpha k} - (x_{\alpha\delta})_k]^2 = \sum_{k=1}^{\infty} \frac{1}{(\alpha + \lambda_k)^2} (y_k - y_{\delta k})^2 \le \frac{1}{\alpha^2} \delta^2.$$

Отсюда сразу видно как надо согласовать параметры α и δ , чтобы норма разности $\|x_{\alpha}-x_{\alpha\delta}\|^2$ стремилась к нулю при $\delta\to 0$: надо, чтобы $\frac{\delta}{\alpha}\to 0$.

С оценкой второй нормы разности $||x-x_{\alpha}||^2 = \sum_{k=1}^{\infty} (x_k-x_{\alpha k})^2$ сложнее: чтобы показать, что она стремится к нулю, ее саму придется разбить на две суммы:

$$\sum_{k=1}^{\infty} [x_k - x_{\alpha k}]^2 = \sum_{k=1}^{\infty} \left[\frac{1}{\lambda_k} - \frac{1}{\alpha + \lambda_k} \right] y_k^2 \le \sum_{k=1}^{N} \frac{\alpha}{\alpha + \lambda_N} y_k^2 + \sum_{k=N+1}^{\infty} y_k^2.$$

Сначала выбирается номер N, так, чтобы вторая сумма, равная остатку сходящегося ряда $\sum_{k=1}^{\infty}y_k^2=\|y\|^2$ была меньше заданного $\varepsilon/2$, затем при выбранном N параметр α выбирается настолько малым, чтобы первая сумма была меньше $\varepsilon/2$.

В итоге мы показали, что норма разности $\|x-x_{\alpha}\|$ может быть сделана как угодно малой за счет выбора малого параметра α , а норма разности $\|x_{\alpha}-x_{\alpha\delta}\|$ — за счет согласования параметра α с параметром δ таким образом, чтобы дробь $\frac{\delta}{\alpha}$ стремилась к нулю при $\delta \to 0$. Следовательно, при выбранном согласовании параметров α и δ имеем $\|x-x_{\alpha\delta}\| \to 0$ при $\delta \to 0$.

Итак, показано, что операторы R_{α} , определяемые для любого $y_{\delta} \in H$ следующим образом

$$R_{\alpha}y_{\delta} = (\alpha + A)^{-1}y_{\delta} =: x_{\alpha\delta},$$

являются регуляризующими для задачи (2).

References

- [1] Треногин С.В. Функциональный анализ М.: Наука, 1983, 384 с.
- [2] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: ФИЗМАТЛИТ, 2012. 572 с.
- [3] *Люстерник Л.А., Соболев В.И.* Краткий курс функционального анализа. Изд. Лань. 2009. 271 с.