Лабораторная работа 2.2.5 Определение вязкости жидкости по скорости истечения из капилляра

Калинин Даниил, Б01-110 13 марта 2022 г.

Цель работы:

1. определенить вязкость воды по измерению объёма жидкости, протёкшей через капилляр.

В работе используются:

- сосуд Мариотта
- капиллярная трубка
- мензурка
- секундомер
- микроскоп на стойке

Теоритическая справка:

Используя формулу Пуазейля:

$$Q = \pi \frac{P_1 - P_2}{8\eta l} R^4 \tag{1}$$

Мы можем расчитать вязкость жидкости, зная расход жидкости Q, радиус трубки токи R, длину трубки l и перепад давлений P_1-P_2 на концах трубки тока.

Для нас важно, чтобы поток жидкости внутри капилляра был ламинарным, а разность давлений постоянной.

Характер течения газа или жидкости зависит от соотношения между кинетической зпергией движущейся среды и работой сил вязкости. Если первая величина мала по сравнению со второй, то турбулентные пульсации пе развиваются, их подавляет вязкость и течение остается ламиарным. Отношение кинетической энергии некоторого объема таза или жидкости $\rho v^2 L$ к работе вязких сил на характерной длине $\eta(\frac{v}{L})L^2$ определяет безразмерное число Рейнольдса:

$$Re = \frac{vR\rho}{\eta} = \frac{2\frac{\rho v^2}{2}}{\eta \frac{v}{R}} = \frac{QR\rho}{S\eta} = \frac{V\rho}{\pi R\eta t}$$
 (2)

В гладких трубах круглого сечения переход от ламинарного движения к турбулентному происходит при $Re \approx 1000$.

Прежде чем применять формулу Пуазейля к конкретным расчетам, всегда следует убедиться в том, что течение жидкости является ламинарным. Ламинарное движение жидкости при переходе ее из широкого сосуда в капилляр устанавливается не сразу, а после того, как она пройдет расстояние a:

$$a = 0.2R - Re \tag{3}$$

Формула 1 дает надежные результаты лишь в том случае, вели длина капилляра во много раз больше a.

Экспериментальная установка:

Установка для измерения вязкости воды изображена на рис. 1.

Рис. 1. Схема установки для определения вязкости воды

Вода заполняет сосуд Мариотта и вытекает через калиброванную капиллярную трубку, укрепленную в нижней части его боковой стенки. Сосуд Мариотта позволяет поддерживать постоянным перепад давления P_1-P_2 на концах капилляра, несмотря на то, что уровень жидкости при ее вытекании понижается. Это достигается с помощью трубки B, открытой в атмосферу и проходящей через пробку, герметично закрывающую сосуд.

Величина перепада давления P_1-P_2 определяется высотой столба воды h между осью капиллярной трубки A и нижним концом вертикальной трубки B. Высота столба измеряется с помощью микроскопа M, укрепленного на вертикально перемещающемся плунжере. Смещение плунжера определяется по миллиметровой шкале, снабженной нониусом. Объем вытекшей жидкости измеряется мензуркой Π . Время истечения определяется по секундомеру. Длина капиллярной трубки измеряется миллиметровой линейкой, диаметр — микроскопом МИР.

Ход работы:

- 1. С помощь микроскопа определим радиус трубки: $R = 0.4 \pm 0.05$ мм.
- 2. С помощью миллиметровой линейки определим длину капилляра: $l=137\pm0.5$ мм.
- 3. Убедимся, что расход воды при одинаковой величине h не зависит от уровня жид-кости. При h=30.7 мм. объём $20~{\rm cm}^3$ вытек из сосуда сначала за $709~{\rm c}$, затем за $701~{\rm c}$. Таким образом, условие выполняется.
- 4. Перепад давлений $\Delta P = P_1 P_2$ на концах капилляра, выраженный в миллиметрах водяного столба, не равен h, а содержит поправку Δh , обусловленную силами поверхностного натяжения. Чтобы её определить, будем опускть трубку B до тех пор, пока вода

не перестанет вытекать из капилляра. Наступление этого момента значит, что давление столба воды Δh между осью капилляра и нижним торцом трубки B уравновесилось силами поверхностного натяжения пузырька воздуха, возникшего на конце трубки B, и капли жидкости на конце капилляра.

Таким образом, получим:

$$\Delta h = 1.17 \ cM.$$

Тогда разность давлений $P_1 - P_2$, можно расчитать так:

$$\Delta P = P_1 - P_2 = (h - \Delta h)\rho g \tag{4}$$

5. Измерим расход воды при нескольких значениях h. По формуле 2 для числа Рейнольдса удостоверимся, что в каждом из опытов в капилляре устанавливается ламинарное течение. По формуле 3 оценим длину участка капилляра, по прохождении которого устанавливается ламинарное течение. Результаты занесём в таблицу 1.

h, cm.	t, c.	V, cm ³ .	Q, cm ³ /c.	Re	a, cm.
3.07	709	20	0.0282	22.448	0.180
3.41	434	20	0.0461	36.672	0.293
4.0	315	20	0.0635	50.525	0.404
4.73	275	20	0.0727	57.875	0.463
5.12	222	20	0.0901	71.691	0.574
7.05	164	20	0.1220	97.046	0.7 76

Таблица 1. Результаты экспериментов

- 6. Полученную зависимость Q(h) изобразим на графике (рис. 2).
- 7. Из графика можно определить расчитанное ранее расстояние Δh . Оно будет равно пересечению нашей прямой и прямой Q=0. Зная параметры прямой, получаем:

$$\Delta h_{\Re cnepu_{Mehma_{A}}} = 1.44 \ c_{M}.$$

Как видно, полученное значение хорошо согласуется с расчитанным.

8. Воспользовавшись формулой Пуазейля (1) и формулой для разности давлений (4), выведем формулу для расчета η (5).

$$\eta = \frac{\pi R^4 \rho g}{8lQ'(h)} \tag{5}$$

Подставив в формулу 5 коэффициент наклона прямой на графике, получим:

$$\eta = 0.00779 \ \Pi$$

Оценим погрешность определения вязкости по формуле

$$\sigma \eta = \eta \sqrt{(\frac{\sigma h}{h})^2 + 4^2 (\frac{\sigma R}{R})^2 + (\frac{\sigma l}{l})^2} = 0.000328 \ \Pi$$

Для воды температуры 25° С значение вязкости $\eta = 0.00891~\Pi$.

С учётом погрешности, определенная нами вязкость сходится с табличным значением. Таким образом:

$$\eta_{water} = 0.00778 \pm 0.000328$$

Заключение:

В ходе работы была определена вязкость воды по измерению объёма жидкости, прошедшей через капилляр. Значение вязкости воды, полученное экспериментальным способом, совпадает с табличным практически полностью.

Рис. 2. Зависимость расхода Q от расстояния между осью капилляра и трубкой h.