Rec'd POR/PTO 2.7 SEP 2004

CRYSTAL STRUCTURE OF THE LIGAND BINDING DOMAIN OT THE RETINOIC ACID-RELATED ORPHAN RECEPTOR ALPHA (ROR-ALPHA)

FIELD OF THE INVENTION

The present invention relates ROR α in crystallized form and methods for the preparation thereof. The invention further provides a three-dimensional model of ROR α and means for the design of ROR α modulators.

BACKGROUND OF THE INVENTION

The retinoic acid-related orphan receptor α (ROR α) is an orphan member of nuclear receptor protein family to which belong receptors such as retinoic acid receptor (RAR), peroxisome proliferator-activated receptor (PPAR), estrogen receptor (ER), vitamin D receptor (VDR) and thyroid receptor (TR). Like other members of the nuclear receptor family, ROR α exhibits a modular structure composed of several domains, among them a DNA-binding domain (DBD) and a ligand-binding domain (LBD). The latter displays low degree of homology with the LBD of T3R β (25%), VDR (24%), RAR α (24%), PPAR α (24%) and RXR α (20%) from which X-ray structures have been solved. However, attempts to crystallize the LBD of ROR α have failed so far and no X-ray structure of ROR α was available. In addition, to this point, no ligand has been identified until now. Our understanding of the physiological role of the receptor would be greatly enhanced by the discovery of a natural ligand. Further, provision of the spatial organization would assist in the designing of agonists and antagonists of ROR α .

SUMMARY OF THE INVENTION

In one aspect, the present invention provides crystalline LBD of ROR α . In a related aspect the invention provides crystalline LBD of ROR α associated with a ligand.

In another aspect, the invention provides a set of co-ordinates representing the spatial organization of the LBD of ROR α . In a related aspect the invention provides a model of the LBD of ROR α comprising a set of co-ordinates embodying the structure of the LBD of ROR α . In another related aspect, this invention provides for a set of co-ordinates useful in drug design. In yet another related aspect, the invention provides for a method for identifying a substance binding to the LBD of ROR α , comprising providing a model embodying the structure of the LBD of ROR α , assessing the interaction of a candidate substance with said model, and selecting a substance which is predicted to interact with the LBD of ROR α . Substances identified by this method are also provided.

In a further aspect, the invention provides for a method for identifying a compound acting as agonist or antagonist of ROR α that binds to the LBD of ROR α comprising selecting a potential compound by performing rational drug design with one or more sets of atomic coordinates embodying the structure of the LBD of ROR α , contacting the potential compound with a LBD of ROR α and measuring the binding of the compound to the LBD of ROR α . Agonists and antagonists identified by this method are also provided.

In another aspect, the present invention provides for a method of screening for compounds interacting with ROR α comprising contacting ROR α with a candidate compound, measuring interactions between the candidate compound and ROR α in the absence of sterols, and selecting said compound if it interacts with ROR α in the absence of sterols. Preferred sterols are cholesterol or cholesterol derivatives. Compounds identified by this method are also provided.

In another aspect of the present invention, the use of ROR α for the screening of cholesterol related diseases is provided.

In yet another aspect the present invention provides a composition comprising LBD of RORα and a sterol, preferably cholesterol or a cholesterol derivative. In a preferred embodiment, said composition is crystallizable.

BRIEF DESCRIPTION OF THE TABLES AND FIGURES

- Table 1: Native crystal data and X-ray data statistics of LBD of RORα in complex with cholesterol.
- Table 2: Hg-derivative crystal data, X-ray data and heavy atom refinement statistics (for complex with cholesterol).
- Table 3: Refinement statistics (for complex with cholesterol).
- Table 4: shows effects of mutations preventing binding of cholesterol to RORa.
- Table 5: shows effects of fluvastatin on RORa transcriptional activity.
- Table 6: Effect of cholesterol and cholesterol derivative on ROR alpha transcriptional activity.
- Table 7: Native crystal data and refinement statistics of LBD of RORα in complex with cholesterol sulfate.
- Table 8: Atomic structure coordinates for a representative structure of the LBD of RORα in complex with cholesterol (numbering according to Swissprot P35398-1).
- Table 9: Atomic structure coordinates for a representative structure of the LBD of RORα in complex with cholesterol-sulfate (numbering according to Swissprot P35398-2).
- Figure 1: Sequence of human RORα (Swissprot P35398-1).

Figure 2 shows a schematic representation of the X-ray structure of the complex between RORα-LBD and cholesterol.

Figure 3 shows a zoomed in view of the complex between RORα-LBD and cholesterol (numbering according to Swissprot P35398-1).

Figure 4: Proposal of ligands in order to increase the affinity and to obtain antagonistic activity (numbering according to Swissprot P35398-1)..

Figure 5: Proposal of further derivatives of cholesterol in order to increase the affinity (numbering according to Swissprot P35398-1)..

Figure 6 shows the displacement of cholesterol by 25-OH cholesterol and cholesterol sulfate.

Figure 7 shows a zoomed view of X-ray structure of ROR(alpha)/cholesterol (numbering according to Swissprot P35398-2)..

Figure 8 Overview of interactions made by cholesterol-sulfate with LBP of ROR(alpha) (numbering according to Swissprot P35398-2)..

Figure 9 Comparison of the X-ray structures of ROR(alpha)/cholesterol-sulfate and ROR(alpha)/cholesterol (numbering according to Swissprot P35398-2).

Figure 10 Comparison of the X-ray structures of ROR(alpha)/cholesterol (left) and ROR(alpha)/cholesterol-sulfate (right) (numbering according to Swissprot P35398-2).

Figure 11 Sequence of the construct used in crystallization. The secondary structure elements are shown below the sequence. Amino acids that have a nonhydrogen atom closer than 4Å to cholesterol are highlighted in red (numbering according to Swissprot P35398-2).

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides crystals of the LBD of RORα. Moreover, the present invention provides the structural determination of such crystals by X-ray crystallography. In one embodiment, the structure of the crystal has been solved to a resolution of 1.88Å. Surprisingly, it was found that the crystal contained a ligand associated to RORα. The ligand was identified as cholest-5-en-3beta-ol (cholesterol). Thus the present invention not only provides information on the spatial organization of the LBD of RORα useful for instance for in-silico screening, docking and rational drug design, but also cholesterol as a ligand binding to the RORα which is useful for the identification of amino acids involved in the ligand binding. The information provided in accordance with the present invention can be used as basis for the design of compounds binding to the LBD of RORα, as exemplified below. The crystal LBD of RORα provided by this invention can take any crystalline form, but is preferably a single crystal. In a more preferred embodiment the crystal comprises a unit cell having the

of a=55 Å \pm 5 Å, b=50 Å \pm 5 Å, c=60 Å \pm 6 Å and β =98.5° \pm 9° and space group P2₁. Preferably, the unit cell dimensions are a=55.9 Å \pm 2 Å, b=49.9 Å \pm 2 Å, c=60.7 Å \pm 2 Å and β =98.7° \pm 5° or a=54.4ű 2 Å, b=49.9ű 2 Å, c=60.7ű 2 Å, β =97.8°± 5°. In another preferred embodiment, the crystalline LBD of RORα is of human origin. The crystalline LBD of RORα according to the present invention is preferably associated with a second chemical substance. Such a substance may be any natural or synthetic chemical molecule, preferred are small molecules, more preferred are small lipophilic molecules. Cholesterol has been identified, in accordance with the present invention, as a ligand fitting into this binding pocket. Thus, in a particularly preferred embodiment such a substance is cholesterol or a cholesterol derivative. As used herein, the term "small molecule" refers to a natural or synthetic compound, preferably an organic molecule, with a molecular weight less than 3000 Da, more preferably less than 1000 Da, most preferably less than 500 Da. The term "lipophilic", as used herein, refers to compounds that are mainly unpolar and that are not or only slightly soluble in water. Typical examples may include fatty acids, retinoic acids, melatonin, steroid hormones, vitamin D derivatives. Other examples may include lipophilic molecules like tamoxifen or raloxifen. In accordance with the present invention, a particularly preferred lipophilic ligand is cholesterol and derivatives thereof. As used herein the term "cholesterol derivative" means a molecule that possesses similarity to cholesterol, such as the same overall structure, but with different substituents or differences in the location of unsaturated bonds or sterical isomers. Examples for such cholesterol derivatives can for instance be found in http://www.steraloids.com.

Crystals of the LBD of ROR α and, optionally a second chemical species can be grown by a number of techniques including batch crystallization, vapor diffusion (either by sitting drop or hanging drop) and by microdialysis. Seeding of the crystals in some instances is required to obtain X-ray quality crystals. Standard micro and/or macro seeding of crystals may therefore be used. An initial crystal can be allowed to grow over several weeksat 4° C or at room temperature (ca. 20° C) from a hanging drop. Crystals then can be subsequently grown by macroseeding from the initial crystal. Once a crystal of the present invention is grown, X-ray diffraction data can be collected. A MAR imaging plate detector for X- ray diffraction data collection can be used for example. Crystals can be characterized by using X-rays produced in a conventional source (such as a sealed tube or a rotating anode) or using a synchrotron source.

Methods of characterization and data collection include, but are not limited to, precession photography, oscillation/rotation data collection and diffractometer data collection. As exemplified below, heavy atom derivatives can be obtained by soaking crystals in solution with 4 mM methylmercuric acetate for 1 hour. Data processing and reduction can be carried out using programs

(DENZO, and SCALEPACK) of the HKL-suite [Otwinowski and Minor, Meth. Enzymol. 276:307-326 (1997)]. Heavy atom positions can be found using programs such as SnB [Weeks, C.M. & Miller, R. (1999) J.Appl.Cryst.32, 120-124.] or programs (e.g. SHELX and RSPS) of the CCP4 program suite [Collaborative Computational Project, Number4, Acta Cryst. D53: 760-763 (1994)]. Electron density maps can be calculated using programs (e.g. MLPHARE and DM) of the CCP4 program suite [Collaborative Computational Project, Number4, Acta Cryst. D53: 760-763 (1994)] or alternatively using SHARP [La Fortelle, E. D. and Bricogne, G., Methods in Enzymology 276:472-494 1997)] and SOLOMON. Molecular models can be built into this map using O [Jones, T. a. et al., ACTA Crystallogr. A47:110-119 (1991)]. A complete molecular model for the protein can be built on the basis of the experimental electron density map. Model building interspersed with positional and simulated annealing refinement using X-PLOR, [Brunger, X-PLOR v.3.1 Manual, New Haven: Yale University, (1993)] or with CNS, using a maximum likelihood residual [Brunger, A. T. et al., Acta Cryst. D54: 905-921 (1998)] can permit an unambiguous trace and sequence assignment of the LBD of RORα.

Accordingly, the present invention provides for a model of the structure of the LBD of RORa useful for rational drug design comprising a set of co-ordinates embodying the structure of the LBD of RORa. Thus, a preferred embodiment provides for a model embodying the structure of the LBD RORa comprising one or more sets of atomic coordinates in Table 8 or 9. Other preferred embodiments provide a computer system comprising computer hardware or the model of the present invention and a computer readable medium comprising the model of the present invention. The set of co-ordinates is preferably determined by crystallographic analysis of the LBD of RORa, however any available method may be used to construct such a model using data disclosed herein or obtained from independent crystallographic analysis of the LBD of RORa. The term "structure co-ordinates" refers to Cartesian co-ordinates derived from mathematical equations related to the patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a protein or protein-ligand complex in crystal form. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are then used to establish the positions of the individual atoms of the enzyme or enzyme complex. Variations in co-ordinates may be generated because of mathematical manipulations of the structure co-ordinates. For example, the structure co-ordinates set forth in Table 8 or 9 could be manipulated by crystallographic permutations of the structure co-ordinates, fractionalization of the structure co-ordinates, integer additions or subtractions to sets of the structure co-ordinates, inversion of the structure co-ordinates or any

-6-

combination of the above. Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in structure co-ordinates. If such variations are within an acceptable standard error as compared to the original co-ordinates, the resulting threedimensional shape is considered to be the same. Various computational analyses are therefore necessary to determine whether a molecule or molecular complex or a portion thereof is sufficiently similar to all or parts of the structure of the LBD of RORa as to be considered the same. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, Calif.) version 4.1, and as described in the accompanying User's Guide. For the purpose of this invention, any molecule or molecular complex that has a root mean square deviation of conserved residue backbone atoms (N, Co., C. O) of less than 1.5 Å; when superimposed on the relevant backbone atoms described by structure co-ordinates listed in Table 8 or 9 are considered identical. More preferably, the root mean square deviation is less than 1.0 Å. The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein or protein ligand complex from the relevant portion of the backbone of the LBD of RORα as defined by the structure co-ordinates described herein.

In certain embodiments, the data set embodies a portion of the structure of the LBD of RORα, including without limitation the binding pocket of LBD of RORα. The term "binding pocket", as used herein, refers to a region of a molecule or molecular complex, that, as a result of its shape, favorably associates with another chemical entity or compound. In accordance with the present invention, a preferred binding pocket includes the amino acids shown in Figures 3, 4, 5, 7, 8, 9 or 10 one or more of the following amino acids: Cys321, Gln322, Tyr323, Leu328,Trp353, Cys356, Ala357, Lys359, Ile360, Glu362, Ala363, Val397, Phe398, Arg400, Met401, Arg403, Ala404, Val412, Tyr413, Phe414, Phe424, Leu427, Cys429, Phe432, Ile433, Val436, His517, Lys520 and Tyr540 (numbering according to SWISS-PROT P35398-1).

In one embodiment of the present invention, the model may be used to identify substances that interact with the LBD of RORa. In general, molecular similarity applications in accordance with the present invention permit comparisons between different structures, different conformations of the

-7-

same structure, and different parts of the same structure. A potential interacting substance is examined through the use of computer modeling using a docking program such as GRAM, DOCK, or AUTODOCK [Dunbrack et al., Folding & Design, 2:27-42 (1997)]. This procedure can include computer fitting of potential ligands to the LBD of RORa, for example to ascertain how well the shape and the chemical structure of the potential ligand will complement with the binding pocked provided by the present application. Computer programs can also be employed to estimate the attraction, repulsion, and steric hindrance of the ligand to the LBD of RORa. Generally the tighter the fit (e.g., the lower the steric hindrance, and/or the greater the attractive force) the more potent the potential drug will be since these properties are consistent with a tighter binding constant. Furthermore, the more specificity in the design of a potential drug the more likely that the drug will not interfere with other properties of the RORa protein or other proteins (particularly proteins present in the nucleus). This will minimize potential side-effects due to unwanted interactions with other proteins. Initially a potential interacting substance could be obtained by screening a chemical library. A ligand selected in this manner could then be systematically modified by computer modeling programs until one or more promising potential ligands are identified. Alternatively, a known ligand of RORa, such as for instance cholesterol as identified in accordance with this invention, may be used as a starting point for systematic modification. Such computer modeling allows the selection of a finite number of rational chemical modifications, as opposed to the countless number of essentially random chemical modifications that could be made, and of which any one might lead to a useful drug. Each chemical modification requires additional chemical steps, which while being reasonable for the synthesis of a finite number of compounds, quickly becomes overwhelming if all possible modifications needed to be synthesized. Thus through the use of the three-dimensional structures disclosed herein and computer modeling, a large number of these compounds can be rapidly screened on the computer monitor screen, and a few likely candidates can be determined without the laborious synthesis of untold numbers of compounds.

Accordingly, methods for identifying substances that bind to the LBD of RORα are provided. Such methods typically include the steps of providing a model embodying the structure of the LBD of RORα, assessing the interaction of a candidate substance with said model, selecting a substance which is predicted to interact with the LBD of RORα, and, optionally, contacting the selected substance with the LBD of RORα. In a preferred embodiment, such a method includes comparing the 3-D structure of candidate compounds with the 3-D molecular model shown in Table 8 or 9 or with the co-ordinates of amino acids which are part of a preferred binding pocket or directly or indirectly involved in binding of a ligand, as herein disclosed for instance in Figures 3, 4, 5, 7, 8, 9 or 10.

Preferably, said amino acids can form hydrogen bonds with hydrogen bonding functional groups (directly or via water molecules) in a candidate compound or can form favorable vdW-interactions. The interactions are preferably assessed by a computer-assisted method, such as for instance a data processing method in which the structure co-ordinate data as described above is input in a data structure such that the interatomic distances between the atoms of the LBD of $ROR\alpha$ are easily retrieved, and the distances between hydrogen-bonding functional groups of different candidate compounds and hydrogen bonding atoms of the amino acids that form the binding pocket in the 3D molecular model are compared (or the distances between groups forming vdW-interactions) thereby allowing the identification of those candidate compounds which would theoretically form the most stable complexes with the 3-D molecular model binding pocket of the LBD of RORa, based on optimal hydrogen bonding and vdW-interactions between the two structures. In a preferred embodiment the substances are designed to interact via vdW-interactions or via hydrogen bond interactions directly or indirectly (e.g. via water molecules) with atoms of one or more amino acids shown in Figures 3, 4, 5, 7, 8, 9 or 10 or selected from the group consisting of Cys321, Gln322, Tyr323, Leu328, Trp353, Cys356, Ala357, Lys359, Ile360, Glu362, Ala363, Val397, Phe398, Arg400, Met401, Arg403, Ala404, Val412, Tyr413, Phe414, Phe424, Leu427, Cys429, Phe432, Ile433, Val436, His517, Lys520 and Tyr540, Gln322, Tyr323, Arg400, Arg403. In a more preferred embodiment the substances interact via vdW-interactions or via hydrogen bond interactions directly or indirectly (e.g. via water molecules) with atoms of one or more amino acids selected from the group consisting of Gln322, Tyr323, Arg400, Arg403 or Trp353, Lys359, Ile360, Ala363, Met401, Phe414, Leu427, Phe432, Val436. Substances identified using the above methods are also provided. Preferred substances are small molecules, more preferred are small lipophilic molecules (possibly with a polar group) and particularly preferred are cholesterol or cholesterol derivatives, such as for instance cholesterol sulfate. In a further preferred embodiment, the binding constant of the substance to ROR α is at least 1 μ M, preferably at least 100nM, more preferably at least 10nM.

In addition, agonists and antagonists of ROR α are provided. In one embodiment methods for screening for agonists or antagonists of ROR α are provided. Such methods include selecting a potential agonistic or antagonistic compound by performing rational drug design with one or more sets of atomic co-ordinates embodying the structure of the LBD of ROR α , contacting the potential compound with a LBD of ROR α and measuring the biological activity of ROR α . The selection is typically made in conjunction with computer modeling. A potential compound is identified as agonist if it increases the biological activity of ROR α or as antagonist if it decreases the biological activity of

-9-

RORO. Agonists and antagonists identified by such methods are also provided. The agonist or antagonist needs not to bind to the binding pocket used by the natural ligand of RORa, but could also bind at another position and exert its effect allosterically. A preferred embodiment of an agonist according to the present invention is a compound that stabilizes helix 12 (H12) in the agonistic position, i.e. the position in which H12, together with the H3-H4 region, forms the proper interaction surface, i.e. the complete AF-2, for the coactivator (reviewed e.g. in Renaud & Moras, Cell. Mol. Life Sci., 57, 1748-1769, 2000). A preferred embodiment of an antagonist according to the present invention is a compound that destabilizes the agonistic position of H12 for instance by tilting the position of H12 (reviewed e.g. in Renaud & Moras, 2000, supra). Destabilisation of H12 may for instance be achieved by a cholesterol derivative with a bulky substituent at position 26 thus displacing Tyr540 and / or His517. In a preferred embodiment such agonists or antagonists are small molecules. Particularly preferred are lipophilic small molecules. Examples without being limiting are for instance fatty acids, retinoic acids, melatonin, steroid hormones, vitamin D derivatives, but also compounds similar to tamoxifen or raloxifen or derivatives thereof. In one embodiment, such agonists or antagonists may be cholesterol or cholesterol derivatives. In a preferred embodiment of this invention the cholesterol ligand has been modified using the structural information provided by the present invention to a cholesterol derivative binding more strongly to the ligand binding pocked (LBP) of the LBD of RORa provided by the present invention. An example for a more strongly, competitively binding cholesterol derivative that has been designed using the structural information provided by this invention is cholesterol sulfate (see below). In another preferred embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound stabilizing H12 of RORa in an agonistic position and a pharmaceutically acceptable carrier. In a related embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound destabilizing H12 of RORa in an agonistic position and a pharmaceutically acceptable carrier.

Once a potentially binding substance, such as an agonist or antagonist, is identified it can be either selected from a library of chemicals or alternatively the potential ligand may be synthesized de novo. The de novo synthesis of one or even a relatively small group of specific compounds is reasonable in the art of drug design. The prospective drug can be placed into any standard binding assay to test its effect on any particular ROR α function, for instance on the DNA binding of ROR α exemplified below. When a suitable drug is identified, a supplemental crystal can be grown which comprises a protein-ligand complex, for instance formed between the binding pocket of the LBD of ROR α and the

- 10 -

drug. Preferably the crystal effectively diffracts X-rays allowing the determination of the atomic coordinates of the protein-ligand complex to a resolution of greater than 5.0 Angstroms, more preferably greater than 3.0 Angstroms or greater than 2.0 Angstroms. The three-dimensional structure of the supplemental crystal can be determined by molecular replacement analysis. Molecular replacement involves using a known three-dimensional structure as a search model to determine the structure of a closely related molecule or protein-ligand complex in a new crystal form. The measured X-ray diffraction properties of the new crystal are compared with the search model structure to compute the position and orientation of the protein in the new crystal. Computer programs that can be used include: programs (AMORE, MOLREP) of the CCP4 program suite [Collaborative Computational Project, Number4, Acta Cryst. D53: 760-763 (1994)] or X-PLOR [Brunger, X-PLOR v.3.1 Manual, New Haven: Yale University, (1993)]. Once the position and orientation are known an electron density map can be calculated using the search model to provide X-ray phases. Thereafter, the electron density is inspected for structural differences and the search model is modified to conform to the new structure. Using this approach, it will be possible to use the claimed structure to solve the three-dimensional structures of any such LBD of RORa complex. For all of the drug screening assays described herein further refinements to the structure of the drug will generally be necessary and can be made by the successive iterations of any and/or all of the steps provided by the particular drug screening assay.

The substances identified by rational design can be further analyzed in drug screening assay. The drug screening assays of the present invention may use any of a number of assays for measuring the functionality of RORα, including for the ability of RORα following ligand binding to transcriptionally regulate a gene, by increasing phosphorylation of RORα, by allowing RORα to dimerize or to heterodimerize with another nuclear receptor, by improving its ability to interact with co-activators, by changing its conformation and by increasing its ability to bind DNA. In one binding assay, a nucleic acid containing a RORα binding site is placed on a coated or onto a solid support. A preferred binding site is a response element (RORE) composed of a 6 bp AT rich motif immediately preceding a half site AGGTCA and the possible variants of this response element that are given in Giguere et al. 1994, Genes & Development 8:538-553, Mc Broom et al. 1995 Mol.Cell. Biol. 15: 796 - 808, Moraitis & Giguere, 1999; Molecular Endocrinology. 13:431-439. Methods for placing the nucleic acid on the solid support are well known in the art and include linking biotin to the nucleic acid and linking avidin to the solid support. The RORα is allowed to equilibrate with the nucleic acid and drugs are tested to see if they disrupt or enhance the binding.

In another assay, a co-activator protein, such as for instance GRIP or DRIP 205 (Brandon-Atkins et al. 1999, Molecular Endocrinology 13: 1550-1557), or SRC1, NcoA-1, ERAP / P160, SRC2 / NcoA-2, ACTR, SRC-3, pCIP, ERAP -140, RIP 140, RIP 160 P/Caf, CBP/P), ARA70, Ada 3, Rap 46, GRIP170, TRIP 1, PGC1 and 2, SPT6, TIF0, SW1/SNUERF, TRAP 100, TRAP 220, DRIP, NSD1 (Robyr et al. 2000, Mol. Endo. 14: 329-347), are placed on a coated or onto a solid support. The RORα protein may be labeled. For example, in one embodiment radiolabeled RORα proteins are used to measure the effect of a drug on binding. In another embodiment the natural ultraviolet absorbance of the RORa protein is used. In yet another embodiment, a Biacore chip (Pharmacia) coated with the co-activator peptide is used and the change in surface conductivity can be measured. In yet another embodiment, the effect of a prospective drug (a candidate compound) on interactions between $ROR\alpha$ and their DNA binding sites are assayed in living cells that contain or can be induced to contain activated RORa proteins. Cells containing a reporter gene, such as the heterologous gene for luciferase, green fluorescent protein, chloramphenicol acetyl transferase or 3-galactosidase and the like are operably linked to a promoter containing a ROR α binding site. A prospective drug is then contacted with the cell. The amount (and/or activity) of reporter produced in the absence and presence of prospective drug is determined and compared. Prospective drugs which reduce the amount (and/or activity) of reporter produced are candidate antagonists of the RORa DNA binding, whereas prospective drugs which increase the amount (and/or activity) of reporter produced are candidate agonists of RORa DNA binding. Assays for detecting the reporter gene products are readily available in the literature. For example, luciferase assays can be performed according to the manufacturer's protocol (Promega), and beta-galactosidase assays can be performed as described by Ausubel et al., [in Current Protocols in Molecular Biology, J. Wiley & Sons, Inc. (1994)]. In one example, the transfection reaction can comprise the transfection of a cell with a plasmid modified to contain a RORα protein.

In one embodiment, the prospective drugs identified by the methods of this invention can be tested for pharmacological activity using assays known in the art. For example, the identified prospective drugs can be tested for activity as potential drugs for the prophylaxis or treatment of a disease or medical condition which involves excessive bone or cartilage loss using a method as disclosed in WO 01/26737. For instance, a reporter assay can be carried out using the bone sialoprotein (BSP) or osteocalcin (OC), which are known modulators of bone mineralization and remodelling. Suitable cells can be transfected with a reporter construct in which a BSP or an OC promoter drive a reporter gene, such as the firefly luciferase gene. A prospective drug is then contacted with the cell. The amount of

- 12 -

luciferase activity produced in the absence and presence of prospective drug is determined and compared. In another embodiment, the system for testing prospective drugs according to the present invention can be the use of classical ovariectomized rat model, the loss of ovarian function induces a drop in circulating estrogen promptly followed by decrease of bone mass (Wronski et al., Calcified Tissue International. 45(6):360, 1989). The drug will be tested on ovariectomized animal for a curative treatment of 8 weeks started twelve weeks after ovariectomy and bone mineral density will be monitored. Another type of experiment could be envisaged which is a preventive treatment of intact animals for eight weeks.

Cholesterol has been found to be a ligand of RORa. In accordance with this finding, the present invention provides novel assay methods for the identification of compounds binding to RORa, in particular for the identification of compounds modulating $ROR\alpha$ activity, wherein interactions between the candidate compounds and RORa are allowed to take place in a surrounding reduced in cholesterol, preferably free of cholesterol. Such a method typically includes the steps of (a) contacting RORα with a candidate compound, (b) measuring interactions between the candidate compound and RORa in a surrounding essentially free of cholesterol, and (c) selecting said compound if it interacts with RORa. Though not a requirement, it is preferred that all method-steps are carried out in the cholesterol-reduced, or preferably essentially cholesterol-free, surrounding. In a more preferred embodiment, such a method relates to a eukaryotic cellular system. In a yet even more preferred embodiment insect cells are used. Insect cells differ from eukaryotic cells by lacking the capacity for de novo sterol synthesis. It has been shown that these cells can be propagated under cholesterol-free conditions (Cleverley et al. 1997, Exp. Cell Res. 233: 288-296). Thus, such a cell system could for instance provide an appropriate cell background to monitor the activity of a RORa ligand using the RORα cloned in an appropriate insect cell vector and the classical reporter ROREtkluc. In another embodiment, eukaryotic cells, preferably human cells, are used. These cells can for instance be cultured in medium essentially free of cholesterol and in serum essentially free of LDL- cholesterol (the LDL - free serum preparation is described in Goldstein et al 1983, Methods in Enzymology 98:241-260). Mammalian cells are able to produce cholesterol endogenously. The meaning of essentially cholesterol-free surrounding according to the present invention does not include such endogenously produced cholesterol. In a particular embodiment, endogenously cholesterol producing mammalian cells could for instance be used in an assay to screen the ability of a compound to displace endogenous cholesterol.

Nuclear receptors are known to regulate the transcription of specific genes or sets of genes upon ligand binding, which makes them interesting targets for the screening for compounds useful as therapeutics. So far, however, deeper understanding of the molecular mechanism of RORα that could lead to development of therapeutics has been severely hampered by the lack of knowledge of a ligand that binds the LBD of RORα. The identification of cholesterol as ligand of the receptor RORα in accordance with the present invention, now provides new insights into the physiological role of RORα and provides RORα as a target for the screening for compounds useful for the treatment of cholesterol related-diseases. It has been shown that defects in cholesterol biosynthesis lead to a variety of clinical characteristics (Nwokoro et al., Mol Genet Metab 74:1-2 105-19 2001), covering brain damage, skeletal defects, with in some cases osteosclerosis, limb aplasia or vetebral hypoplasia. Thus, cholesterol related diseases may include endocrine disorders, atherosclerosis and cardiovascular diseases, metabolic diseases such as for instance obesity, inflammatory diseases, skin diseases, diseases related to the CNS, such as for instance Alzheimer disease and disorders in cell proliferation and apoptosis such as tumor related diseases.

In one embodiment, the present invention provides ROR α as target for the screening of compounds useful for the treatment of endocrine disorders, in particular disorders that are related to the synthesis of steroid hormones or the regulation of steroidogenesis. In all steroidogenic tissues, regardless of the hormones synthesized, the initial step in steroidogenic cells is the conversion of cholesterol to the first steroid, pregnenolone (Stocco, Ann Rev Physiol 63: 193-213; 2001).

In another embodiment, the present invention provides ROR α as target for the screening of compounds useful for the treatment of disorders of the cholesterol homeostasis. Breakdown of cholesterol homeostasis causes disease states, the most common being atherosclerosis. Hypercholesterolemia is a well-known risk factor. Using statins the present inventions shows a direct link between the activity of ROR α and a potent anti-atherosclerosis molecule (Table 5) demonstrating the usefulness of ROR α as molecular target for the search of compounds to fight atherosclerosis and cardiovascular diseases.

In another embodiment, the present invention provides ROR α as target for the screening of compounds useful for the treatment of metabolic disorders. It is known that a cascade of events initiates adipogenesis where C/EBP and PPAR γ are important players. Furthermore, ROR α is able to strongly induce PPAR γ (Sundvold et al. Biochem. Biophys. Res. Com. 287: 383-390; 2001). SREBP

promotes the adipogenic program and SREBP activity is sensitive to the level of intracellular cholesterol (Brown et al. Cell 89: 331-340,1997). Thus, in accordance with this invention, ROR α is provided as a target for the screening of compounds useful for the treatment of disorders related to adipogenesis, development of obesity and insulin resistance, which can lead to type 2 diabetes. Furthermore, the mature adipocytes secrete factors that play a role in immunological responses, vascular disease and appetite regulation. Adipocytes derived factors include leptin, prostaglandin's and resistin. The present invention providing cholesterol as ligand of ROR α thus provide ROR α as target for screening for compounds useful for the treatment of diseases related to immune response, vascular disease and appetite regulation.

It has recently been shown that mesenchymal stem cells have the potential to differentiate into these three lineage (Pittenger et al., 1999 Science 284:143-147). Thus, an apparent reciprocal relationship is postulated to exist between the adipocyte and osteoblast phenotypes. This balance is switched toward adipocytes in osteoporotic patients. This invention provides $ROR\alpha$ (as $PPAR\gamma$ or C/EBP) as important players in the adipogenesis pathway or in the differentiation of mesenchymal stem cells into adipocytic, chondrocytic or osteoblastic lineage. Thus, the present invention links $ROR\alpha$ in this switch toward adipogenesis and therefore is a potential target for therapeutic intervention in osteoporosis.

In another embodiment, the present invention provides ROR α as target for the screening of compounds useful for the treatment of inflammatory diseases. Molecular links have been established between cholesterol and cytokines showing the involvement of inflammation and immunity in atherogenesis. In addition, ROR α is involved in inflammation (WO01/26737, Bourdji et al. J. Biol Chem.275: 12243-12250 2000, Delerive et al., EMBO reports 21: 42-48; 2001).

In another embodiment, the present invention provides $ROR\alpha$ as target for the screening of compounds useful for the treatment of skin disorders. $ROR\alpha$ is highly expressed in skin (Becker-Andre, 1993; Biochem. Biophys. Res. Commun. 194:1371-1379). In addition, clinical observation of patients with genetic disorders of cholesterol biosynthesis report photosensitivity and patchy alopecia, as well as follicular atrophoderma.

In another embodiment, the present invention provides ROR α as target for the screening of compounds useful for the treatment of Alzheimer disease. The lipoprotein allele ApoE4 is associated with an increased incidence of Alzheimer disease (Trittmatter et al. Proc. Natl. Acad. Sci.USA 90:

1977-1981; 1993); the depletion of plasma membrane cholesterol in hippocampal neurons inhibits the formation of Abeta (Simons et al. PNAS 95: 6460-6464;1998), the cleavage product of the amyloid precursor protein, that is a key factor in the pathogenesis of the disease. In addition the main characteristics of the RORα knock out mice is a severe ataxia and their cerebellum is markedly atrophied. This is implicated in rare inherited disease where people are subject to movement disorders.

EXAMPLES

called pXI338.

Cloning and expression of (His)₆RORα-LBD304-556

A DNA fragment encoding part of polyhedrin promoter up to the ATG codon is amplified by PCR from the pBAKPac8 plasmid (Clontech) by using the oligonucleotide RS365 (5'-ACCATCTCGCAAATAAATAAG-3') and MG384 (5'-ATGATGATGATGATGATGCC-TGCTGCCCATGGTGGGAACTCGAGGCCTGCAGGG-3'). MG384 has a 5'extension not present on the template DNA but which is encoding for a Kozak sequence in front of the ATG codon and part of the His tag which will be present in the final engineered vector. The second PCR reaction is run with the oligonucleotides MG383 (5'-GCCATCATCATCATCATC-ATCTGGAAGTTCTGTTCCAGGGGCCCGCAGAATTAGAACACCTTGC-3') and MG385 (5'-GTACCAGATCTTCTAGATTCGTTACCCATCAATTTGCATTG-3') on a plasmid template encoding the ligand binding domain (aa304 to aa 556; numbering according to SWISS-PROT P35398-1) of the RORa protein. As for the first PCR fragment, the oligonucleotide MG383 has a 5'extension complementing the extension present on the first PCR fragment and which is added by the extension of the fragment by MG384. By mixing both new fragments and with an PCR amplification with MG365 and RS365 a new fragment encoding the Kozak sequence, the ATG, the (His)6-tag and the cleavage site for the PreScission protease cleavage site (AmershamPharmacia) is introduced in front of the RORa ligand binding domain. This new fragment has at the both end two homology regions en common with the target plasmid pBAKPac8. The integration of the engineered gene into the cloning

The plasmid pX1338 is co-transfected with linearised BacPAK6 (AcNPV) virus DNA into Sf-21 insect cells using lipofection. The viral supernatant harvested after five days is subjected to plaque purification to obtain homogenous virus populations, which are subsequently amplified on small scale and analyzed for production by Western blotting. A band of correct size is readily detectable using an

vector is done by using the method we described earlier (Geiser et al, BioTechniques 31 88-92,2001). DNA sequence analysis of the resulting clones confirms that the clone is as intended. The plasmid is

anti-RORα antibody (Santa Cruz, Cat.No. sc-6062) in all six analyzed cell pellets. One viral isolate is chosen for further amplification; a master virus stock, followed by a working virus stock are generated by further amplification in Sf-9 cells; titers are determined by plaque assay. A kinetic experiment reveals optimal production conditions for RORα-sLBD using 1 MOI at 1.82 x 106 cells/ml (TOI) for 72 hours. Under these conditions a large fraction of the protein remained soluble in the insect cells. Two Wave Bioreactor runs are performed of approx. 10-13 liters each under the above described conditions. Cells are harvested by centrifugation for 10 minutes at 6000 g in a Heraeus Cryofuge M7000, and the pellets are stored at -80° C.

Purification and characterization of (His)₆RORα-LBD304-556

(His)₆RORα-LBD₃₀₄₋₅₅₆ is purified by Ni-NTA chromatography followed by anion-exchange and size exclusion chromatography according to standard methods. From 20-g cell paste, around 15 mg of (His)₆RORα-LBD₃₀₄₋₅₅₆ is purified. The protein runs as a monomer on the size exclusion chromatography. N-terminal sequence analysis shows that the N-terminus is blocked. Mass spectrometry analysis shows a homogeneous molecular mass of 31'515.4 corresponding to Acetyl-desMet-(His)₆RORα-LBD₃₀₄₋₅₅₆ (Acet-GSSHHHHHHHLEVLFQGPAELEH...MQIDG). Proteolytic cleavage of the N-terminal 6xHis tag by the PreScissionTM protease results in a homogeneous protein that however does not yield useful crystals. In contrast, uncleaved RORα-LBD leads to crystals suitable for X-ray diffraction analysis.

Crystallization

Recombinant human ROR α -LBD in 50 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM DTT is concentrated to 14 mg/ml. Crystallization is performed using a standard vapor diffusion hanging drop set-up, with VDX crystallization plates and siliconized microscope cover slips from Hampton Research. Crystallization droplets are made by mixing on the coverslips 2.0 μ l of the protein stock solution with 2.0 μ l of reservoir solution and equilibrated against 700 μ l of reservoir solution at 20°C. Commercially available screening kits are used to find preliminary crystallization conditions. In the refined conditions, crystals grow within 2 weeks at 20°C to a size of 0.15x 0.15 x 0.3 mm with a reservoir of 100 mM Tris-HCl pH 8.4, 19% PEG 6000, 0.2M CaCl₂. The space group of the native crystals is P21, with unit cell parameters a = 55.9 Å, b = 49.9 Å, c = 60.7 Å, $b = 98.7^{\circ}$ and space group P2₁. There is one monomer per asymmetric unit. The crystals diffract at the synchrotron (SNBL at ESRF, Grenoble) to at least 1.88 Å.

X-ray data collection

For the native data collection, a crystal grown as described above is transferred to 5µl of solution containing 20% glycerol (in addition to the reservoir composition) for about 10 seconds. The crystal is then rapidly mounted in a nylon CryoLoop (Hampton Research) and directly frozen in a cold nitrogen stream for X-ray data collection at 105K. Diffraction data are collected with the mar345 image plate system of the Swiss-Norwegian beamline of the European Synchrotron Radiation Facility $(\lambda=0.8727\text{Å})$. A total of 230 images of 1.0° rotation each are collected in time mode (15sec per frame) with a crystal-to-detector distance of 178mm (using a readout plate-diameter of 180mm). Raw diffraction data are processed and scaled with the HKL program suite version 1.96.6 (Otwinowski and Minor, 1996). Crystal data and data collection statistics for the native data are shown in Table 4. The space group of the native crystals is P2₁, with unit cell parameters a = 55.9 Å, b = 49.9 Å, c = 60.7 Å, $\beta = 98.7^{\circ}$. There is one monomer per asymmetric unit. The estimated B-factor by Wilson plot is 30 Å². For the Hg-derivative data collection, a crystal is soaked previously for 1hr in 5µl of solution containing 4mM methylmercuric acetate (in addition to the reservoir composition). Cryocooling is then done as for the native crystal. Diffraction data are collected with the mar345 image plate system of the Swiss-Norwegian beamline of the European Synchrotron Radiation Facility (λ=0.8727Å). A total of 287 images of 1.0° rotation each are collected in time mode (15sec per frame) with a crystalto-detector distance of 178mm (using a readout plate-diameter of 180mm). Raw diffraction data are processed and scaled with the HKL program suite version 1.96.6 (Otwinowski and Minor, 1996). Crystal data and data collection statistics for the Hg-derivative data are shown in Table 2. The space group of the Hg-derivative crystals is P2₁, with unit cell parameters a = 55.6 Å, b = 50.0 Å, c = 60.1Å, $\beta = 98.0^{\circ}$. There is one monomer per asymmetric unit. The estimated B-factor by Wilson plot is 29 $Å^2$.

Structure solution

Attempts to solve the structure by molecular replacement with the programs AmoRe (Navaza, 1994) or MOLREP version 6.2.5. (Vagin & Teplyakov, J.Appl.Cryst. 30, 1022-1025, 1997) by using several different models based on the coordinates of the pdb-entries 2lbd (hRARγ) or 1bsx (hTRβ) are not successful. Data from a single-wavelength experiment on the mercury-substituted crystal are thus used together with a native data set for the initial phasing by SIRAS. Anomalous as well as isomorphous difference Patterson maps reveal at least one common dominant peak. SnB version 2.1 (Weeks & Miller, J.Appl.Cryst. 32, 120-124, 1999) with DREAR normalization (Blessing & Smith, J.Appl.Cryst. 32, 664-670, 1999) using the observed anomalous differences is used to determine 4 Hg-

sites. The heavy-atom parameters are subsequently refined using MLPHARE version 4.1 (CCP4, 1994). Subsequent density modification with DM (CCP4, 1994) result in an excellent experimental SIRAS-map. Skeletonization with mapman enables chain-tracing and model building with O version 7.0 (Jones *et al.*, Acta Crystallogr. A47:110-19, 1991).

Refinement

After building the protein (residues His308-Phe544 had visible electron density) and insertion of 112 water molecules into the experimental SIRAS-map, several alternate cycles of refinement and manual rebuilding result in a model with $R_{cryst} = 28.1\%$ (8Å-1.88Å), that give excellent 2Fo-Fc and Fo-Fc maps for a ligand in the LBP. The excellent quality of the electron density allows the unambiguous identification of the ligand as being cholest-5-en-3beta-ol (cholesterol). The cholesterol ligand is then built into the electron density and X-PLOR parameter- and structure-files can be generated with the program XPLO2D (Kleywegt G., CCP4/ESF-EACBM Newsletter on Protein Crystallography 31, 45-50, 1995) that can be used to generate the X-PLOR parameter- and structure-files. Further cycles of refinement and insertion of 119 more water molecules (leading to a total of 231 water molecules) yield the final $R_{cryst} = 24.8\%$ and $R_{free} = 26.3\%$ (no sigma cutoff, 8Å-1.8Å, working set of 25592 unique reflections, test set of 1279 reflections). In general, the electron density is of excellent quality, except for the loop 493-498 which has weak density (residues 308-544 are included in model). Refinement is done with X-PLOR 3.1 (A.Bruenger, X-PLOR Version 3.1: A system for X-ray Crystallography and NMR. Yale University Press, New Haven, CT, USA, 1992) using the Engh and Huber force field for the protein (Engh & Huber, Acta Crystallogr. A47:392-400, 1991). The chain identifiers used are A for the protein (residues His308-Phe544, numbering according to SWISS-PROT P35398-1), L for the ligand (cholesterol: residue 1) and V for the water molecules (total of 231). The atom numbers used for the ligand cholesterol in the pdb-file are not the same as the atom numbers according to IUPAC-IUB.

The quality of the model is assessed with X-PLOR 3.1 (A.Bruenger, id 1992) and PROCHECK v3.3 (Laskowski *et al.*, J. Appl. Cryst. 1992; 26:283-91) (see Table 3). The final model of the complex RORa/cholesterol has good geometry (rms bond lengths = 0.013Å, rms bond angles = 1.46°) and no residues are in disallowed regions of the Ramachandran plot, as determined by PROCHECK v3.3. Molecular graphics pictures are made with O version 7.0 (Jones *et al.*, id 1991).

Table 1:

Number of crystals	1
Space group	$P2_1$
Unit cell dimensions	55.9Å, 49.9Å, 60.7Å
	β=98.7°
Number of monomers / a.u.	1
Packing coefficient	3.2ų/Da
Resolution range	15.0 – 1.88Å
Number of observations	109,306
Number of rejected observations	373 (0.34%)
Number of unique reflections	26,882
Wavelength	0.8727Å
•	
Overall	
Data redundancy	4.1
Data completeness	99.2%
< Ι/ σ (I)>	29.5
$R_{sym}(I)$	0.056
Reflections with $I \ge 3\sigma(I)$	75.1%
Highest resolution shell	
Resolution range	1.95-1.88Å
Completeness for shell	93.2%
$R_{sym}(I)$ for shell	0.437
Reflections with $I \ge 3\sigma(I)$	30.5%

Table 2:

Number of crystals	1
Space group	P2 ₁
Unit cell dimensions	55.6Å, 50.0Å, 60.1Å
	β=98.0°
Number of monomers / a.u.	1
Packing coefficient	3.2Å ³ /Da
Resolution range	10.0 - 1.88Å
Number of observations	121,716
Number of rejected observations	4140 (3.4%)
Number of unique reflections	25,136
Wavelength	0.8727Å

Overall	
Data redundancy	4.8
Data completeness	93.6%
< Ι/ σ (Ι)>	25.3
$R_{\text{sym}}(I)$	0.057
Reflections with $I \ge 3\sigma(I)$	81.8%
Highest resolution shell	•
Resolution range	1.95-1.88Å
Completeness for shell	76.2%
$R_{\text{sym}}(I)$ for shell	0.354
Reflections with $I \ge 3\sigma(I)$	44.5%
Resolution range used for phasing	10.0-1.94Å
R _{merge} (F) between native and Hg	23.8%
No. of common reflections	23,396
Phasing power for acentric data	1.16
Phasing power for centric data	0.80
Overall figure of merit	0.314
R _{cullis} on centric zone	0.80
Heavy atom site 1 (x,y,z, occ,Bfac)	-0.373, -0.546, -0.754, 0.387, 23.9
Heavy atom site 2 (x,y,z, occ,Bfac)	-0.515, -0.611, -0.927, 0.429, 35.5
Heavy atom site 3 (x,y,z, occ,Bfac)	-0.839, -0.478, -0.700, 0.265, 29.3
Heavy atom site 4 (x,y,z, occ,Bfac)	-0.360, -0.797, -0.896, 0.270, 36.3

Table 3:

Data used in refinement	
- resolution range	8.0-1.88Å
- intensity cutoff (σ(F))	0.0
- number of reflections (working set)	25,592
- number of reflections (test set)	1,279
- completeness (working +test set)	99.0%
Fit to data used in refinement	
- overall R _{cryst}	0.248
- overall R _{free}	0.263
Number of non-hydrogen atoms	
- protein atoms	1,953
- ligand atoms	28
- water molecules	231
Mean B values	
- mean B value for protein	38.3 Å ²
- mean B value for ligand	20.1 Å^2
- mean B value for water molecules	51.8 Å ²
Rms deviations from ideal values	
- bond lengths	0.013 Å

	\sim	4	
-	٦.	ł	-

- bond angles	1.46°
- dihedral angles	20.3°
- improper angles	1.3°
Residues in disallowed region of Ramachandran plot	0
PROCHECK G-factor	0.28

Overall structure of the RORα-LBD

The RORa-LBD adopts the canonical fold for the NR-LBDs (Wurtz et al., Nat Struct Biol 3, 206 1996) and in addition has the two helices H2* and H11*. RORα-LBD is in an agonist-bound state, as judged by the position of H12 (see also Figures 2 and 3). H12 in this position, together with the H3-H4 region, forms the proper interaction surface, i.e. the complete AF-2, for the coactivator (reviewed in Renaud & Moras, Cell. Mol. Life Sci., 57, 1748-1769, 2000). No coactivator peptide is added in order to obtain this crystal structure. An additional H2* helix is also found between H2 and H3 for the peroxisome proliferator-activated receptors (PPARs; Nolte et al., Nature, 395, 137-143, 1998). H11* is unique to RORα-LBD (and RORß-LBD, Stehlin et al., Embo J., 20, 5822-5832, 2001) among the known LBD structures; it roughly superposes with the middle part of loop 11-12 of RAR. The overall structure of RORα-LBD is similar to the one of RORβ-LBD (e.g. as judged by Fig.4 in Stehlin et al., id 2001), but since the coordinates of RORβ-LBD are not available, no quantitative comparison with RORG-LBD can be made. For RORG-LBD, the putative entrance site (as judged by the solvent accessible surface of the complex) for the ligand is located between H2 and H3, and not on the H12side, as hypothesized e.g. for RAR-7 (Renaud et al, Nature, 378, 681-689,1995). In the crystal, the RORα-LBD molecule of the asymmetric unit does not form a dimer with a neighbouring molecule. This is consistent with the finding, that on native gels RORα-LBD behaves as a monomer. The following Cys-residues have reacted with methylmercuric acetate (c.f. table 2 for fractional coordinates of Hg-sites): Cys321 (site 3), Cys429 (site 1), Cys505 (site 4) and Cys514 (site 2). These reactive Cys-residues are thus candidates for mutations into Ser, in order to possibly obtain soluble expression in E. Coli. The protein species present in the crystallization setups correspond to the following sequences His₆-tag and PreScissionTM cleavage site and residue 304-556 of RORα-LBD: Ac-GSSHHHHHHHLEVLFOGPAELEHLA...ELFTSEFEPAMQIDG In this crystal structure, well-defined electron density is found for the subsequence residue 308-544

(numbering according to Swissprot P35398-1).

Identification of the ligand and description of the ligand binding pocket

PCT/EP03/04433

A small-molecule X-ray structure of 26-OH-cholesterol from the CSD (entry FIZDUN) shows a perfect, unambigous fit (after removal of the 26-OH group and rotation of 120° around the C24-C25 bond) into this unbiased electron density. The excellent quality of the high-resolution map thus allows the identification of the ligand as being cholest-5-en-3beta-ol (cholesterol). A closer look on Ligand binding pocket of RORa shows that C27 of the terminal isopropyl-group of cholesterol makes vdWcontacts with the sidechain of Trp353, while C26 makes vdW-contacts with the sidechain of Ile360. Substituents on C26 have the potential to influence the position of H12 (e.g. bulky substituents on C26 could displace H12 from its agonist-position, thus leading to an antagonistic derivative of cholesterol). H12 in this crystal structure adopts the agonist position. It is stabilized in the agonist position by the hydrogen bond (distance 2.8Å) between OH-Tyr540 (on H12) and NE2-His517 (on H11). These two residues are conserved among the α -, β -, and γ - isotypes of ROR. The LBP is essentially hydrophobic on the AF-2 side (H5 N-terminus, H6, H7, H10, H12) with the exception of Tyr540 and His517 which form an intermolecular hydrogen bond (distance between OH-Tyr540 and NE2-His517 is 2.8Å). The LBP is more polar on the H3 side (loop 1-2, H3, H5 Cterminus). The main chain NHs of Gln322 and Tyr323 on loop 1-2 and the side chains of Arg400 and Arg403 on H5 contribute to the generation of a positive electrostatic potential. A negatively charged substituent (e.g. SO₄⁻) on the 3-ol group could thus yield a derivative with considerably increased affinity (Figure 4). There are 12 well-ordered water molecules in the hydrophilic part. 5 of these water molecules are amongst the 7 water molecules (of the total of 231 water molecules) which have the lowest B-factors (14 Å²-24 Å²). The 3-ol group of cholesterol makes, via a network of well-ordered water molecules, water-mediated hydrogen bonds to NE-Arg403, NH2-Arg403, CO-Arg400, NH1-Arg400, NH-Tyr323, OE1-Gln322 and NH-Gln322.

- 22 -

The average B-value for the ligand (20.1 Å²) is lower than the average B-value for the protein (38.3 Å²), consistent with the fact that excellent electron density for all non-hydrogen atoms of cholesterol is visible. Cholesterol adopts thus a well defined, single conformation in the LBP. This is in contrast with the multiple low-energy conformations described for the non-natural ligand stearic acid present in the ROR β -LBD (Stehlin et al., id 2001). The following residues have a non-hydrogen atom closer than 4Å to the ligand cholesterol: Trp353, Cys356, Lys359, Ile360, Ala363, Val397, Arg400, Met401, Val412, Tyr413, Phe414, Phe424, Leu427, Phe432, Val436 and His517.

Design of cholesterol derivative binding to LBD of RORa

Overall, there is a very good fit of the ligand cholesterol to the LBP. Nevertheless, a comparison of the vdW-surface of the ligand with the vdW-surface of the LBP shows that there are still a few

possibilities for derivatizations of cholesterol (Figure 4 and 5), which could increase the affinity. Additional hydrogen bonds could be gained with hydroxy-groups added to position 6 (hydrogen bond via water to OE1-Glu362), position 19 (hydrogen bond to CO-Tyr413) or position 26 (hydrogen bond to OH-Tyr540 and/or NE2-His517). Considerable electrostatic interaction energy could be gained with a charged group, e.g. SO₄-, added to position 3 (hydrogen bonds and electrostatic interactions via water molecules to NH1-Arg400, NH2-Arg403, NE-Arg403, NH-Gln322 and/or to NH-Tyr323). Additional vdW-interactions could be gained by additional methyl-groups added to position 12 (vdWcontacts to the sidechains of Phe398, Met401), position 18 (vdW-contacts to the sidechains of Val412, Phe398), position 27 (vdW-contacts to the sidechains of Trp353, Cys429, Phe432) or an additional ethyl-group added to position 21 (vdW-contacts to the sidechains of Phe424, Ile433, Val436, Phe437). Modifications in positions 4 and 6 could be utilized to modify, if necessary, the physicochemical or pharmacokinetic parameters, without considerably changing the affinity. Derivatives in position 26, with a bulky substituent, would have the potential to destabilize H12 in its agonist-position, thus conferring an antagonistic activity on the derivative.

Mechanism of action for cholesterol

The present X-ray structure promotes the following structural mechanism of action: Cholesterol (or possibly a cholesterol-derivative) enters the LBP from the H2,H3-side, possibly guided by the electrostatic field generated from Arg400 and Arg403. The isopropyl-end of cholesterol (or a derivative in this position) then influences the other end of the LBP, which is in contact with H12, thus regulating the binding of a coactivator to the LXXLL-binding site. A cholesterol-derivative with a bulky substituent on C26 could displace H12 from its agonist conformation, thus preventing coactivator binding, while a cholesterol derivative which further stabilizes the hydrogen bond between Tyr540 and His517 would further enforce the agonist conformation.

Selected mutations of RORα-LBD

Using the coordinates from the RORa-LBD X-ray structure a series of point mutations in the LBP are designed which should prevent binding of cholesterol and in addition a mutation is proposed which should prevent/reduce H12-stabilization via loss of the hydrogen bond between Tyr540 (on H12) and His517 (Tyr 540 -> Phe 540 mutation). The details of the mutations are included below.

clone name	mutated amino acid	Mutated nucleic acids
SDM1-1	Cys356 -> Leu356	TGT -> TTA
SDM2-3	Ala363 -> Leu363	GCT -> CTT

SDM3-4	Ala404 -> Gln404	GCC -> CAA
SDM4-1	Phe432 -> Trp432	TTT -> TGG
SDM5-8	His517 -> Trp517	CAT -> TGG
SDM6-2	Tyr540 -> Phe540	TAC -> TTC

In a transient transfection experiment, the transcriptional activity of the RORa mutants is compared to their wild type counterpart: U2OS cells are transfected with the expression vector for RORa (ROR) or its mutated form together with a luciferase reporter gene bearing a consensus response element for RORα (RORE-tk-luc). Luciferase activity is assayed in cells from 6 well plates and related to the activity in cells transfected with the wild type RORa expression plasmid. The results are normalized to the protein content. The figure shows the mean ± SD and on the left panel the results are expressed as % of induction compared to the activity of the wild type RORa. As shown in Table 4 all mutations, in the LBP (except the mutation Phe 432->Trp 432) significantly/drastically reduce the transcriptional activity of RORa leading to the conclusion that indeed RORa in its active form is bound to cholesterol. The sidechain of the mutated Trp432 has the possibility to adopt a conformation for which no steric clash with cholesterol in the LBP occurs, if the sidechains of Arg516 and Lys 520 also accordingly change their conformations. Since the latter two residues are on the surface and their sidechain conformations are not stabilized by interactions, this provides an explanation for the only slight loss of transcriptional activity for the Phe432 -> Trp432 mutation, in contrast to the other mutations in the LBP, for which there is no alternate side-chain conformation possible which would prevent a steric clash with cholesterol. The mutation Tyr 540 -> Phe 540 leads to a ca. 40% loss in transcriptional activity, showing that the hydrogen bond between Tyr 540 and His 517 contributes in a significant amount to the stabilization of H12 in the agonist position.

Table 4:

WO 03/093312

% Activity compared to WT
33.3
18.18
8.33
90.9
10
54.54

Effects of fluvastatin, an inhibitor of HMG CoA-reductase, on RORα transcriptional activity

Mammalian cells receive cholesterol by uptake from lipoproteins (LDL - cholesterol) and are able to synthesize cholesterol through the mevalonate pathway. In a situation where cells are cultured under

conditions essentially sterol free, a key transcription factor, SREBP will be proteolytically cleaved and this releases a transcription factor to the nucleus. This transcription factor is able to transcriptionally activate HMG - CoA reductase, which is a critical step in the cholesterol biosynthesis through the mevalonate pathway. Statins, which are know drugs for hypercholesterol state are specific inhibitors of the HMG - CoA reductase. When cells are cultivated in sterol free medium, their HMG - CoA reductase is strongly activated. In this experiment cells, cultivated in medium essentially sterol free, are treated with fluvastatin. A clear decrease in ROR α activity is observed, leading to the conclusion that the lowering of the intracellular cholesterol level is translated by a decrease of ROR α transcriptional activity (Table 5). U2OS cells are transfected with expression vector for ROR α (ROR) together with a luciferase reporter gene bearing a consensus response element for ROR α (RORE-tk-luc). Luciferase activity is assayed in cells from 6 well plates and related to the activity in cells transfected with or without treatment with fluvastatin. The results are normalized to the protein content.

Table 5:

Fluvastatin	Fold induction	± SEM
Control	76	14
+ 5 μM	48	7
Control	93	6
+ 10 uM	38	2

Cholesterol sulfate inhibition of RORa binding to RORE

Various cholesterol derivatives including cholesterol sulfate (cpd No. 12 in Table 6): are screened in essentially cholesterol-free medium for binding of RORα to the RORE. The RORα protein is expressed in the baculovirus system. The other compounds are: No. 2: 5α-Cholestan-3-one (Steraloids C4550), 3: 4-Cholesten-3α-ol (C6090), 4: 5-Cholesten-3β, 6-diol (C6418), 5: 5-Cholesten-3β, 7α-diol 7-benzoate (C6425), 6: 5-Cholesten-3β, 7β-diol 7-benzoate (C6438), 7: 5-Cholesten-3β, 19-diol (C6470), 8: 5-, 25R-Cholesten-3β, 26-diol (C6570), 9: 5-Cholesten-24β-ethyl-3β-ol acetate (C6681), 10: 5-Cholesten-3α-ol (C6730), 11: 5-Cholesten-3β-ol (C6760), 12: 5-Cholesten-3β-ol sulfate, sodium salt (C6905), 13: 7, (5α)-Cholesten-3β-ol (C7400), 14: 7-Dehydrocholesterol (Fluka 30800). This indicates that cholesterol sulfate, as predicted by the X-ray structure, is able to displace cholesterol.

Effect of cholesterol and cholesterol derivative on ROR alpha transcriptional activity

We next establish whether in eukaryotic cells partially depleted of cholesterol, RORa transcriptional activity can be reconstituted by addition of cholesterol. We therefore treat the cells with

hydroxypropyl-β-cyclodextrin (HPCD), a cyclodextrin derivative known to function as a cholesterol shuttle. HPCD treatment is used in experiments aiming at the partial depletion of intracellular cholesterol. In order to prevent an increase of intracellular cholesterol through the activation of the mevalonate pathway, cells are also treated with lovastatin while they are fed with a medium containing LDL-free serum. Using a combination of HPCD and lovastatin we find that transcription of the RORE reporter is stimulated in response to cholesterol, epicholesterol and cholestanol and to an even greater extent by cholesterol sulfate and 7-dehydrocholesterol. In contrast all the hydroxycholesterols tested do not display significant activity and the cholesterol derivative 5-cholesten-24β-ethyl-3β-ol-acetate does not trigger any increase in RORα transcriptional activity as compared to vehicle (Table 6). These data correlate well with docking studies on cholesterol derivatives using our X-ray structure of RORα.

Table 6:

Compounds (10μN)	Fold induction	± SEM
Control	1	0.1
Cholesterol	3.3	0.1
Epicholesterol	2.8	0.44
Cholestanol	2.4	0.14
7-Dehydrochol	4.6	0.33
22(R)-OH-Chol	1.2	0.11
25-OH-Chol	1.6	0.06
20(S)-OH-Chol	1.2	0.11
Chol. Sulfate	5.4	0.31
27-OH-Chol	1.5	0.14
5-Cholesten-24beta	1	0.05

Ligand exchange screening by mass spectrometry

(His)₆RORα-LBD269-556 is produced in Sf9 cells and purified by Ni-NTA chromatography followed by size exclusion chromatography. The protein in Tris-HCl buffer at a concentration of 135 μM is incubated overnight at 4 °C, with a 10-fold molar excess of 25-hydroxycholesterol (5-cholesten-3beta, 25-diol) or cholesterol sulfate (5-cholesten-3beta-ol-sulfate). Prior to mass spectrometry analysis, the protein is subjected to fast buffer exchange in 50 mM ammonium acetate pH 7.0 by size exclusion chromatography using disposable Centri Spin 20 columns (Princeton Separations, Adelphia, NJ) according to manufacturer's instructions. Mass spectrometry is carried out using a Q-Tof (Micromass, Manchester, UK) quadrupole time-of-flight hybrid tandem mass spectrometer equipped with a Micromass Z-type electrospray ionization source (ESI). The acquisition mass range is typically m/z 1500-4500 in 5 seconds. The mass spectrometer is tuned in order to allow detection of multiply-

charged species of non-covalent complexes. The source block temperature and desolvation temperature are kept at 50 °C and 80 °C, respectively. Sample cone voltage (Vc) is set to 23 volts for standard measurements. In-source induced fragmentation experiments are performed by increasing Vc up to 100 volts. The protein solution is infused at a flow rate of 10µL/min. Data are recorded and processed using Masslynx software. Spectra are deconvoluted using MaxEnt analysis software (Micromass, Manchester, UK). The results show that both 25-OH cholesterol and cholesterol sulfate are able to fully displace cholesterol bound to the ROR-LBD. Moreover, the comparison at various cone-voltages (Vc) between the ligand/ROR-LBD-complex and the apo-ROR-LBD (without ligand) indicates that cholesterol and 25-OH cholesterol have a similar stability versus in-source collisions. In contrast, the cholesterol sulfate/ROR-LBD complex is more stable than cholesterol or 25-OH cholesterol complex.

Crystallization and X-ray structure of the complex ROR(alpha)/cholesterol-sulfate at 2.20Å Resolution: An example of structure based design

All amino acid residues relating to the complex ROR(alpha)/cholesterol-sulfate (e.g. the attached coordinates of the complex with cholesterol-sulfate, Table 9) are numbered according to splice variant Alpha-1 (i.e. P35398-2) of SWISS-PROT entry P35398 (corresponding to the number of a given amino acid according to SWISS-PROT P35398-1 as set out in Figure 1 minus 33). All amino acid residues relating to the complex ROR(alpha)/cholesterol (e.g. the attached coordinates of the complex with cholesterol, Table 8) are numbered according to splice variant Alpha-2 (i.e. P35398-1) of SWISS-PROT entry P35398, except for Figures 7-11, where the numbering used is according to P35398-2, and except in the following discussion of the comparison with the cholesterol-sulfate complex. All amino acid residues specified in the claims are numbered according to splice variant Alpha-2 (i.e. P35398-1) of SWISS-PROT entry P35398, as set out in Figure 1.

The proposal that cholesterol-sulfate is a ligand of ROR(alpha) is a result of structure based design, using the previously determined X-ray structure of ROR(alpha)/cholesterol at 1.63Å resolution. In particular, the latter X-ray structure reveals that in the hydrophilic part of the LBP there is space for a substituent attached to the hydroxy-group of cholesterol, if water molecules are displaced. The presence of three arginines (Arg292, Arg370 and Arg367) and of two free backbone amide nitrogens (NH-Gln289 and NH-Tyr290) strongly suggests a negatively charged substituent with at least two hydrogen-bond acceptor functionalities (e.g. a sulfate-group). Docking studies lead to the prediction that cholesterol-sulfate should have higher affinity than cholesterol. Subsequently it is shown by MS-

analysis that indeed cholesterol bound to ROR(alpha) LBD could be exchanged with cholesterol-sulfate.

The complex ROR(alpha)/cholesterol-sulfate could now be cocrystallized and the X-ray structure of the complex is solved at 2.20Å resolution with an R_{cryst} of 19.4% and R_{free} of 21.9% for data from 20Å to 2.20Å. The observed binding mode shows the following features:

- 28 -

- 1). Cholesterol-sulfate and cholesterol have similar overall modes of binding, but cholesterol-sulfate is displaced slightly (e.g. corresponding C3-atoms by 0.85Å) towards the hydrophilic, positively charged, part of the LBP. This can be explained by the optimization of electrostatic and hydrogen-bond interactions made by the sulfate-group.
- 2.) Seven well-ordered water molecules present for cholesterol in the hydrophilic part of the LBP have been displaced in the complex with cholesterol-sulfate. Only one conserved water molecule is still present which mediates interactions between the sulfate group and NH1-Arg367 and O-Ala330.
- 3.) The sulfate group makes direct hydrogen bond interactions with NH-Gln289, NH-Tyr290 and NH1-Arg370. This confirms the docking hypothesis, which led to the proposal of cholesterol-sulfate.
- 4.) The only significant changes in the protein parts of the complexes of ROR(alpha) with cholesterol and cholesterol-sulfate occur for the sidechain of Ile327 and the loop 1-2 (residues Gln289 and Tyr290).

Molecular Biology, Fermentation, Purification and MS-analysis

Generation of the construct (His)₆ROR α -LBD₂₇₀₋₅₂₃, fermentation and purification are done as described above. The exchange of cholesterol by cholesterol-sulfate is done at 37°C and confirmed by MS-analysis: Cholesterol sulfate is dissolved at 50 mM in DMSO and added at 1.0 mM final concentration to the (His)₆ROR α LBD₂₇₀₋₅₂₃ solution at 73 μ M. The resulting solution is incubated overnight at 37° C and further purified by size exclusion chromatography on a SPX75 column, before concentrating to 17.6 mg/ml for crystallization trials. MS determination of the native complex is done as described previously (Kallen *et al.*, Structure, Vol.10, 1697-1707, 2002). A control experiment is done by incubating the same amount of ROR α LBD protein with 5% DMSO under identical conditions. The protein concentration is approximately 15 μ M in 50mM AcONH₄, pH 7.0. Both spectra are recorded under identical conditions with Vc = 20 volts.

Crystallization

The protein used for crystallization is at 17.6 mg/ml, in 100mM NaCl, 50mM Tris-HCl pH7.5, 5mM DTT. An ab inito search for crystallization conditions is undertaken. Trials are performed using a

standard vapor diffusion hanging drop set-up, with VDX crystallization plates and siliconized microscope cover slips from Hampton Research. Crystallization droplets are set up at 4°C by mixing on the coverslips 1.0µl of the protein stock solution with 1.0µl of a crystallization solution.

X-ray Data collection: A single crystal of approximate dimensions 60μm x 60μm x 200μm is mounted with a nylon CryoLoop (Hampton Research) and flash-frozen in a cold nitrogen stream for X-ray data collection at 100K. Diffraction data are collected at the Swiss Light Source (operating at 300mA), beamline X06SA, using a Marresearch CCD detector and an incident monochromatic X-ray beam with 0.9200Å wavelength. In total, 226 images are collected with 1.0° rotation each, using an exposure time of 9sec per frame and a crystal-to-detector distance of 150mm. Raw diffraction data are processed and scaled with the HKL program suite version 1.96.1 (Otwinowski and Minor, 1996). The estimated B-factor by Wilson plot analysis is 32.9 Ų. Crystal data and data collection statistics are shown in Table 7:

Number of crystals	1
Space group	P2 ₁
Unit cell dimensions	a=54.4Å
	b=49.9Å
	c=60.7Å
No. of monomers / a.u.	1
Packing coefficient	3.0ų/Da
Estimated solvent content	58%
Wavelength	0.9200Å
Temperature	100K
Resolution range	20.0 - 2.2Å
No. of observations	57,993
No. of unique reflections	16,541

Overall						
Resolution range	20.0-2.2Å					
Data redundancy	3.5					
Completeness	99.7%					
< Ι/ σ (I)>	16.2					
R _{merge} on intensities	0.079					

Reflections with $I \ge 3\sigma(I)$	66.4%		
Highest res	solution shell		
Resolution range	2.28-2.20Å		
Data redundancy	2.8		
Completeness	99.4%		
< Ι/ σ (I)>	1.9		
R _{merge} on intensities	0.362		
Reflections with $I \ge 3\sigma(I)$	25.9%		

Structure determination and refinement: The structure is determined using as starting model the coordinates of the complex ROR(alpha)/cholesterol refined to 1.63Å resolution. The program REFMAC version 5.0 (CCP4, Acta Crystallogr. D50, 760-763, 1994) is used for refinement. Bulk solvent correction, an initial anisotropic B factor correction and restrained isotropic atomic B-factor refinement are applied. The refinement target is the maximum-likelihood target using amplitudes. No sigma cut-off is applied on the structure factor amplitudes. Cross-validation is used throughout refinement using a test set comprising 5.0% (829) of the unique reflections. Water molecules are identified with the program ARP/wARP and selected based on difference peak height (greater than 3.0°c) and distance criteria. Water molecules with temperature factors greater than 70Å² are rejected. The program O version 7.0 (A.Jones et al., 1991) is used for model rebuilding. The refinement statistics for the final model are shown in Table 2. The final model of the complex ROR(alpha)/cholesterol-sulfate has good geometry (rms bond lengths = 0.014Å, rms bond angles = 1.41°) and no residues are in a disallowed region of the Ramachandran plot.

Crystallization, data collection: The crystals used for data collection are obtained with a well solution composed of 0.2M MgCl₂, 16% w/v PEG4000, 0.1M Tris HCl, pH 8.5. The crystals reached maximal dimensions of up to 0.2 mm within 6 weeks. The complex of ROR α LBD with cholesterol-sulfate is thus crystallized in a crystal form with a=54.4Å, b=49.9Å, c=60.7Å, β =97.8°, P2₁ and 1 complex/asymmetric unit, which is similar to the crystal form previously obtained in the complex with cholesterol.

Conformation of cholesterol-sulfate bound to ROR(alpha) and its interactions: In general, the electron density is of excellent quality, except for amino acids 461-464 (L9-10), which has only weak density. The protein part of the refined model consists of the last two His-amino acids from the His-tag,

- 31 -

followed by the PreScissionTM-site (LEVLFQG) and by amino acids 271-511 of the RORα-LBD. The refined model also contains 256 water molecules and 1 cholesterol-sulfate molecule. The sulfate group makes direct hydrogen bond interactions with NH-Gln289 (3.0Å), NH-Tyr290 (2.9Å) and a bidentate interaction with NH1-Arg370 (3.0Å, 3.1Å). A water-mediated interaction is made with NH1-Arg367.

Comparison of the X-ray structures of cholesterol-sulfate and cholesterol bound to ROR(alpha) LBD Figure 10 shows a superposition (using Ca's of the respective LBD's) for the ROR(alpha) complexes with cholesterol and cholesterol-sulfate. The r.m.s.d for the Cα atoms of residues Pro270-Phe511 after superposition is 0.26Å. The only significant changes in the protein parts occur for the sidechain of Ile327 and the loop 1-2 (residues Gln289 and Tyr290): The backbone NH-atoms for Gln289 and Tyr290 move by ca. 0.8Å towards the sulfate-group (with a concomitant movement of the respective sidechains), in order to improve the interactions with the sulfate-group. The sidechain of Ile327 has to move slightly, in order to avoid a steric clash with the terminal isopropyl-group (Figure .9). The comparison shows that cholesterol-sulfate and cholesterol have similar overall modes of binding, but cholesterol-sulfate is displaced slightly (e.g. corresponding C3-atoms by 0.85Å and corresponding C2-atoms by 0.7Å) towards the hydrophilic, positively charged, part of the LBP (Figure 9). This can be explained by the optimization of electrostatic and hydrogen-bond interactions made by the sulfategroup. 7 well-ordered water molecules present for cholesterol in the hydrophilic part of the LBP have been displaced in the complex with cholesterol-sulfate (Figure 10). Only one conserved water molecule is still present which mediates interactions between the sulfate group and NH1-Arg367 and O-Ala330. The sulfate group makes direct hydrogen bond interactions with NH-Gln289, NH-Tyr290 and NH1-Arg370. This confirms the docking hypothesis, which led to the proposal of cholesterolsulfate.

TABLE 8

TABLE	0									
7 (T) () X		1	СВ	HIS A	308	-3.470	26.612	-1.587	1.00 57.47	7
ATOM		1 2	CG	HIS A		-4.960	26.750	-1.571	1.00 68.25	
MOTA				HIS A		-5.766	27.800	-1.862	1.00 72.02	
ATOM		3		HIS A		-5.794	25.720	-1.190	1.00 71.5	
ATOM		4				-7.049	26.131	-1.245	1.00 75.5	
MOTA		5		HIS A			27.389	-1.652	1.00 73.93	
MOTA		6		HIS A		-7.061		-0.048	1.00 46.68	
ATOM		7	C	HIS A		-1.527	26.518	1.039	1.00 46.34	
ATOM		8	0	HIS A		-1.408	25.970		1.00 46.23	
ATOM		9	N	HIS A		-2.472	28.682	-0.665	1.00 50.9	
MOTA		10	CA	HIS A		-2.791	27.256	-0.390		
ATOM		11	N	LEU A		-0.598	26.489	-0.995	1.00 43.13	
MOTA		12	CA	LEU A		0.692	25.856	-0.780	1.00 43.49	
MOTA		13	CB	LEU A		1.517	25.900	-2.069	1.00 41.0	
MOTA		14	CG	LEU A		2.967	25.402	-2.033	1.00 39.69	
ATOM		15		LEU A		2.988	23.898	-1.765	1.00 39.20	
MOTA		16	CD2	LEU A	309	3.668	25.742	-3.348	1.00 33.40	
MOTA		17	С	LEU A	309	1.397	26.673	0.307	1.00 41.2	
ATOM		18	0	LEU A		1.987	26.121	1.217	1.00 39.4	
ATOM		19	N	ALA A	310	1.371	27.994	0.158	1.00 41.6	
ATOM		20	CA	ALA A	310	1.972	28.894	1.125	1.00 43.6	
ATOM		21	CB	ALA A	310	1.772	30.334	0.692	1.00 41.2	
ATOM		22	С	ALA A	310	1.324	28.638	2.494	1.00 44.9	
ATOM		23	0	ALA A	310	2.028	28.454	3.487	1.00 42.7	
MOTA		24	N	GLN A	311	-0.011	28.589	2.531	1.00 46.2	
ATOM		25	CA	GLN A		-0.765	28.330	3.767	1.00 48.7	
ATOM		26	CB	GLN A		-2.266	28.239	3.472	1.00 55.0	1
ATOM		27	CG	GLN A		-3.081	29.513	3.686	1.00 69.3	1
ATOM		28	CD	GLN A		-4.596	29.289	3.479	1.00 78.8	
ATOM		29	OE1			-5.137	28.224	3.832	1.00 83.8	
ATOM		30	NE2			-5.275	30.278	2.876	1.00 82.0	
ATOM		31	C	GLN A		-0.339	27.015	4.413	1.00 45.7	8
ATOM		32	ŏ	GLN A		-0.043	26.949	5.599	1.00 43.4	7
ATOM		33	νi	ASN A		-0.332	25.966	3.604	1.00 43.8	Ũ
ATOM		34	CA	ASN A		0.023	24.624	4.049	1.00 43.0	6
ATOM		35	CB	ASN A		-0.236	23.632	2.918	1.00 52.5	
ATOM		36	CG	ASN A		0.867	22.607	2.776	1.00 64.4	4
ATOM		37		ASN A		0.709	21.453	3.173	1.00 73.5	1
ATOM		38	MD3	ASN A	312	1.992	23.017	2.191	1.00 70.5	0
ATOM		39	C	ASN A		1.437	24.436	4.606	1.00 40.6	
ATOM		40	ŏ	ASN A		1.635	23.638	5.518	1.00 39.2	
ATOM		41	N	ILE A		2.424	25.072	3.974	1.00 39.4	
MOTA		42	CA	ILE A		3.824	24.979	4.407	1.00 38.8	
ATOM		43	CB	ILE A		4.802	25.421	3.253	1.00 34.5	
		44	CG2			6.169	25.806	3.799	1.00 36.0	
ATOM ATOM		45	CG1			4.956	24.284	2.240	1.00 37.1	6
MOTA		46		ILE A		6.005	24.537	1.154	1.00 35.6	
		47	CDI	ILE A	313	4.030	25.798		1.00 37.2	
ATOM		48	Ö	ILE A	313	4.786	25.399	6.585	1.00 39.1	6
ATOM		49	N	SER A	314	3.298	26.906	5.823	1.00 35.3	
MOTA		50	CA	SER A	314	3.334	27.790	6.989	1.00 36.4	
MOTA				SER A	311	2.457	29.014	6.728	1.00 37.3	
MOTA		51 52	CB OG	SER A		3.059	29.848	5.759	1.00 41.2	4
ATOM				SER A		2.807	27.089	8.241	1.00 35.8	
ATOM		53 54	C	SER A		3.305	27.283	9.351	1.00 36.1	
ATOM		54	O M	LYS A	315	1.777	26.288	8.033	1.00 35.6	
ATOM		55	N	LYS A	315	1.131	25.547	9.094	1.00 36.3	
MOTA		56 57	CA			-0.183	24.969	8.564	1.00 34.9	
ATOM		57	CB	LYS A	31E	-1.051	24.316	9.597	1.00 38.8	
ATOM		58	CG	LYS A	31E	-2.470	24.232	9.084	1.00 49.7	
ATOM		59	CD	LYS A	315 315	-2.470 -3.386	23.556	10.082	1.00 56.1	4
ATOM		60	CE	LYS A	31E		22.113	10.082	1.00 55.2	
ATOM		61	NZ	LYS A		-3.021 2.056	24.438	9.571	1.00 35.2	
ATOM		62	C	LYS A		2.102	24.430	10.757	1.00 38.1	
ATOM		63	0	LYS A	. J.J	2.102	24.170		1.30 30.1	-

WO 03/093312

ATOM	64	N	SER A	316	2.771	23.835	8.624	1.00	35.23
	65	CA	SER A		3.708	22.757	8.904	1.00	31.03
ATOM			SER A		4.268	22.189	7.591		33.89
ATOM	66	CB					6.838		36.00
MOTA	67	OG	SER A	316	3.275	21.504			
MOTA	68	С	SER A		4.842	23.293	9.769		31.80
MOTA	69	0	SER A	316	5.223	22.667	10.760		30.02
ATOM	70	N	HIS A	317	5.391	24.440	9.354	1.00	29.40
ATOM	71	CA	HIS A		6.468	25.128	10.078	1.00	31.38
	72	СВ	HIS A		6.838	26.397	9.319	1.00	28.86
ATOM					7.765	27.317	10.058		30.88
ATOM	73	CG	HIS A					1.00	31.39
ATOM	74	CD2	HIS A		7.590	28.583	10.506		
ATOM	75		HIS A		9.085	27.007	10.310		31.14
ATOM	76	CE1	HIS A	317	9.686	28.042	10.866	1.00	
ATOM	77	NE2	HIS A		8.801	29.012	10.996	1.00	30.99
ATOM	78	C	HIS A		5.964	25.489	11.486	1.00	32.96
	79	ŏ	HIS A		6.647	25.271	12.491	1.00	30.21
ATOM		-	LEU A		4.766	26.066	11.519		35.80
MOTA	80	N				26.456	12.754	1.00	39.30
ATOM	81	CA	LEU A		4.099				
ATOM	82	CB	LEU A		2.651	26.888	12.454		42.10
ATOM	83	CG	LEU A	318	1.664	27.026	13.629	1.00	45.53
MOTA	84	CD1	LEU A	318	1.898	28.331	14.354	1.00	42.84
ATOM	85	CD2	LEU A	318	0.233	26.963	13.127	1.00	46.58
ATOM	86	c	LEU A		4.070	25.267	13.708	1.00	39.53
	87	ŏ	LEU A		4.581	25.337	14.829	1.00	45.11
MOTA			GLU A		3.517	24.157	13.235		34.75
ATOM	88	N				22.951	14.040		31.78
MOTA	89	CA	GLU A		3.378				
ATOM	90	CB	GLU A		2.258	22.088	13.464	1.00	
MOTA	91	CG	GLU A	319	0.966	22.887	13.304		43.85
ATOM	92	CD	GLU A	319	-0.204	22.079	12.797		48.29
ATOM	93	OE1	GLU A	319	-0.046	20.870	12.496	1.00	51.24
MOTA	94	OE2			-1.299	22.675	12.715	1.00	49.93
	95	C	GLU A		4.605	22.092	14.335	1.00	31.28
ATOM			GLU A		4.501	21.150	15.128	1.00	29.74
ATOM	96	0			5.749		13.703	1.00	29.30
ATOM	97	N	THR A			22.374			25.31
<u>A</u> TOM	98	$C\bar{y}$	THR A		6.948	21.589	13.957	1.00	
ATOM	99	CB	THR A	320	7.428	20.826	12.723	1.00	26.81
ATOM	100	OG1	THR A	320	7.760	21.760	11.697	1.00	31.74
ATOM	101	CG2	THR A	320	6.371	19.874	12.228	1.00	25.26
ATOM	102	C	THR A		8.086	22.435	14.499	1.00	27.08
ATOM	103	ŏ	THR A		9.251	22.078	14.369	1.00	28.40
			CYS A		7.754	23.591	15.058	1.00	27.84
ATOM	104	N			8.758	24.440	15.690	1.00	32.58
ATOM	105	CA	CYS A					1.00	35.52
ATOM	106	CB	CYS A		8.575	25.897	15.291		
MOTA	107	SG	CYS A		9.587	26.379	13.907	1.00	31.41
ATOM	108	C	CYS A	321	8.481	24.273	17.183	1.00	33.42
ATOM	109	0	CYS A	321	7.315	24.272	17.584	1.00	33.09
ATOM	110	N	GLN A	322	9.516	24.122	18.005		33.42
ATOM	111	CA	GLN A	322	9.280	23.945	19.435	1.00	37.77
ATOM	112	CB	GLN A		10.566	23.575	20.159	1.00	38.95
	113	CG	GLN A		10.311	23.332	21.638		41.00
ATOM			GUN A	222	11.474	22.709	22.355		43.45
ATOM	114	CD	GLN A						45.86
ATOM	115	OE1	GLN A	322	12.639	22.892	21.974		
ATOM	116	NE2			11.173	21.973	23.408		43.47
MOTA	117	С	GLN A	322	8.595	25.133	20.143		38.21
MOTA	118	0	GLN A	322	7.627	24.945	20.891		40.89
ATOM	119	N	TYR A		9.087	26.348	19.893	1.00	37.01
ATOM	120	CA	TYR A	323	8.518	27.545	20.513		39.53
			TYR A	323	9.576	28.318	21.306	1.00	37.75
ATOM	121	CB			10.245	27.509	22.370		36.25
ATOM	122	CG	TYR A				22.370		40.18
MOTA	123		TYR A		11.551	27.058			
ATOM	124		TYR A	323	12.185	26.279	23.139		43.63
MOTA	125	CD2		323	9.576	27.164	23.537		38.29
ATOM	126	CE2	TYR A	323	10.196	26.386	24.500		43.87
ATOM	127	CZ	TYR A	323	11.508	25.945	24.294	1.00	45.72
ATOM	128	OH	TYR A	323	12.165	25.182	25.236		50.91
ATOM	129	C	TYR A		7.916	28.496	19.502		41.39
VION	167	_	T T T C 17						

ATOM	130	0	TYR A	323	8.185	28.404	18.302	1.00	43.21
ATOM	131	Ŋ	LEU A		7.149	29.451	20.011	1.00	38.45
ATOM	132	CA	LEU A		6.556	30.442	19.158	1.00	36.36
	133	CB	LEU A		5.260	30.960	19.761	1.00	40.65
ATOM	134	CG	LEU A		4.135	29.917	19.804	1.00	47.37
ATOM	135				3.021	30.333	20.790		48.02
ATOM		CD1			3.569	29.698	18.390		48.49
MOTA	136	CD2					19.037		36.82
MOTA	137	С	LEU A		7.586	31.548			35.71
MOTA	138	0	LEU A	324	8.369	31.791	19.955		
MOTA	139	N	ARG A		7.604	32.185	17.876		33.86
ATOM	140	CA	ARG A		8.519	33.274	17.595		34.00
ATOM	141	CB	ARG A	325	8.132	33.913	16.252		32.60
ATOM	142	CG	ARG A	325	9.087	34.947	15.744		29.17
ATOM	143	CD	ARG A	325	10.477	34.371	15.667		30.77
ATOM	144	NE	ARG A	325	11.388	35.268	14.984		31.48
MOTA	145	CZ	ARG A		11.340	35.518	13.681	1.00	41.33
ATOM	146	NH1			10.421	34.931	12.912		39.89
ATOM	147	NH2	ARG A		12.195	36.383	13.147	1.00	42.61
ATOM	148	C	ARG A		8.462	34.328	18.711	1.00	36.35
	149	ŏ	ARG A		9.503	34.826	19.145		37.18
ATOM	150	И	GLU A		7.244	34.639	19.169	1.00	39.65
MOTA			GLU A		6.985	35.626	20.226	1.00	41.32
ATOM	151	CA	GLU A		5.487	35.784	20.459	1.00	
ATOM	152	CB			4.720	36.379	19.272		65.71
ATOM	153	CG	GLU A		4.555	35.424	18.062	1.00	72.41
ATOM	154	CD	GLU A			34.214	18.267	1.00	74.04
ATOM	155	OE1			4.261		16.901	1.00	73.55
ATOM	156	OE2			4.696	35.904	21.520	1.00	38.16
MOTA	157	С	GLU A		7.659	35.211			35.77
MOTA	158	0	GLU A		8.332	36.023	22.148		
MOTA	159	N	GLU A		7.487	33.938	21.880		35.48
ATOM	160	CA	GLU A		8.092	33.353	23.077		38.23
MOTA	161	CB	GLU A		7.911	31.833	23.082		46.45
MOTA	162	CG	GLU A		6.486	31.293	23.134		57.52
ATOM	163	$^{\rm CD}$	GLU A	327	6.452	29.752	23.125		63.49
ATOM	164	OE1	GLU A	327	7.441	29.113	23.557		68.14
ATOM	165	OE2	GLU A	327	5.445	29.172	22.667		68.00
ATOM	166	С	GLU A	327	9.599	33.615	23.140	1.00	
ATOM	167	0	GLU A	327	10.098	34.218	24.076		34.19
ATOM	168	N	LEU A	328	10.304	33.158	22.114		29.72
ATOM	169	CA	LEU A	328	11.748	33.293	22.006		29.32
ATOM	170	СВ	LEU A		12.217	32.636	20.712	1.00	
ATOM	171	ĊĠ	LEU A		12.016	31.131	20.626	1.00	30.01
ATOM	172	CD1			11.986	30.725	19.164	1.00	31.46
ATOM	173	CD2			13.119	30.432	21.367	1.00	22.42
ATOM	174	Č	LEU A		12.267	34.715	22.041	1.00	28.85
ATOM	175	ŏ	LEU A		13.366	34.954	22.518	1.00	29.43
ATOM	176	Ň	GLN A		11.486	35.654	21.520	1.00	33.80
MOTA	177	CA	GLN A		11.901	37.056	21.481	1.00	37.54
MOTA	178	CB	GLN A	329	11.093	37.808	20.439	1.00	43.64
MOTA	179	CG	GLN A	329	11.132	37.198	19.050	1.00	53.22
	180	CD	GLN A	329	10.283	37.983	18.065		59.04
ATOM	181	OE1			9.035	37.966	18.127		59.51
ATOM		NE2			10.953	38.720	17.174		59.14
ATOM	182				11.725	37.721	22.846	1.00	35.96
ATOM	183	C	GLN A		12.525	38.562	23.241		30.61
MOTA	184	0	GLN A	222	10.695	37.308	23.572		36.62
MOTA	185	N	GLN A		10.450	37.846	24.901		41.09
ATOM	186	CA	GLN A						45.78
ATOM	187	CB	GLN A		9.093	37.383	25.391		63.61
MOTA	188	CG	GLN A		7.957	37.930	24.579		74.77
MOTA	189	CD	GLN A		6.686	37.133	24.784 25.750		
MOTA	190	OE1	GLN A		6.569	36.365			79.50
MOTA	191	NE2			5.730	37.285	23.865		82.47
MOTA	192	С	GLN A		11.515	37.477	25.951		38.55
MOTA	193	0	GLN A	. 330	11.609	38.135	26.979		41.30
ATOM	194	N	ILE A		12.305	36.429	25.715		32.00
MOTA	195	CA	ILE A	. 331	13.313	36.015	26.686	1.00	23.76

WO 03/093312

ATOM	196	СВ	ILE A	331	13.078	34.596	27.169	1.00	22.66
ATOM	197	CG2	ILE A	331	11.656	34.435	27.630	1.00	21.34
	198	CG1	ILE A	331	13.355	33.619	26.053	1.00	24.33
MOTA	199	CD1	ILE A		13.364	32.235	26.555	1.00	23.84
ATOM			ILE A		14.738	36.183	26.205		23.46
ATOM	200	C	ILE A		15.657	35.455	26.592		27.34
ATOM	201	0	TLE A	337	14.918	37.180	25.354		23.06
MOTA	202	N	THR A			37.521	24.799		23.34
ATOM	203	CA	THR A		16.204		23.680		31.64
ATOM	204	CB	THR A		15.962	38.552	22.404		35.81
ATOM	205	OG1			16.261	37.954			37.99
MOTA	206	CG2	THR A		16.735	39.863	23.912		
ATOM	207	С	THR A		17.180	38.051	25.857		20.21
MOTA	208	0	THR A	332	18.401	37.887	25.749		21.02
MOTA	209	N	TRP A		16.628	38.683	26.886		25.18
ATOM	210	CA	TRP A	333	17.437	39.226	27.988		23.07
ATOM	211	CB	TRP A	333	16.582	40.108	28.879		19.83
MOTA	212	CG	TRP A	333	15.407	39.426	29.504	_	17.19
MOTA	213	CD2	TRP A		15.344	38.851	30.820		22.36
ATOM	214	CE2	TRP A		14.030	38.392	31.008		26.11
ATOM	215	CE3	TRP A		16.274	38.693	31.865		22.59
ATOM	216	CD1	TRP A		14.172	39.294	28.974		14.35
ATOM	217	NE1	TRP A		13.336	38.671	29.858		19.63
ATOM	218	CZ2	TRP A		13.607	37.778	32.213	1.00	25.43
ATOM	219	CZ3	TRP A		15.852	38.082	33.056	1.00	21.23
ATOM	220	CH2	TRP A		14.538	37.636	33.216	1.00	20.18
	221	C	TRP A		18.028	38.116	28.826	1.00	23.38
ATOM	222	Ö	TRP A		19.030	38.314	29.500	1.00	27.96
ATOM	223	N	GLN A		17.436	36.925	28.730	1.00	24.06
ATOM			GLN A		17.893	35.767	29.492	1.00	22.85
MOTA	224	CA CB	GLN A		16.804	34.712	29.586		22.07
MOTA	225		GLN A		15.575	35.251	30.240		25.58
MOTA	226	CG			14.492	34.228	30.427		29.55
MOTA	227	CD	GLN A		14.621	33.066	30.029		32.54
MOTA	228	OE1			13.388	34.664	31.006		31.52
ATOM	229	NE2				35.145	29.016	1.00	
ATOM	230	C	GLN A		19.169 19.180	34.020	28.519		27.49
ATOM	231	0	GLN A		20.257	35.878	29.179	1.00	
MOTA	232	N	THR A		21.566	35.403	28.804	1.00	
MOTA	233	CA	THR A	333	22.436	36.595	28.396	1.00	
ATOM	234	CB	THR A			37.528	29.487	1.00	
ATOM	235	OG1			22.471	37.286	27.109		18.02
ATOM	236	CG2			21.881	34.647	29.978	1.00	
ATOM	237	C	THR A		22.237	34.762	31.133		25.14
ATOM	238	0	THR A		21.794	33.902	29.682	1.00	
ATOM	239	N	PHE A		23.306	33.302	30.693		27.78
MOTA	240	CA	PHE A		24.048		30.051		23.18
MOTA	241	СВ	PHE A	336	25.036	32.126 30.861	29.569		24.30
MOTA	242	CG	PHE A	336	24.385				24.39
MOTA	243		PHE A	336	24.236	30.615 29.952	28.193 30.477		18.74
MOTA	244	CD2			23.855				19.18
\mathbf{ATOM}	245		PHE A	336	23.558	29.484	27.734		20.30
ATOM	246	CE2	PHE A	336	23.174	28.824	30.043		
ATOM	247	CZ	PHE A	336	23.018	28.582	28.667		24.72 30.11
MOTA	248	С	PHE A		24.835	34.058	31.632	1.00	27.94
MOTA	249	0	PHE A	336	25.560	34.953	31.182		
ATOM	250	N	LEU A	337	24.682	33.840	32.934		29.31
ATOM	251	CA	LEU A		25.413	34.631	33.921		30.51
ATOM	252	CB	LEU A		24.920	34.293	35.339		30.83
MOTA	253	CG	LEU A		23.426	34.451	35.652		27.00
ATOM	254		LEU A		23.096	33.895	37.023		28.96
MOTA	255	CD2	LEU A	337	23.047	35.915	35.568		29.51
MOTA	256	С	LEU A		26.902	34.311	33.755		30.04
ATOM	257	0	LEU A		27.247	33.289	33.180		31.12
ATOM	258	N	GLN A	338	27.779	35.200	34.226		32.35
ATOM	259	CA	GLN A	338	29.231	35.036	34.098		32.95
MOTA	260	CB	GLN A	338	29.954	36.189	34.782		36.81
MOTA	261	CG	GLN A	338	31.330	36.423	34.214	T.00	45.74

ATOM	262	CD GLN	A 338	31.292	36.625	32.691	1.00 60	.39
ATOM	263	OE1 GLN	A 338	30.414	37.330	32.158	1.00 62	
	264		A 338	32.237	35.995	31.985	1.00 63	.44
ATOM			A 338	29.810	33.731	34.616	1.00 32	.21
ATOM	265	- : : : : : : : : : : : : : : : : : : :		30.818	33.230	34.122	1.00 31	.25
MOTA	266		A 338	29.212	33.234	35.681	1.00 33	
MOTA	267		A 339		31.989	36.297	1.00 35	
ATOM	268	CA GLU	A 339	29.655		37.611	1.00 42	
ATOM	269		A 339	28.889	31.747		1.00 55	
ATOM	270		A 339	28.630	33.037	38.449		
ATOM	271		A 339	27.288	33.741	38.127	1.00 58	
ATOM	272	OE1 GLU	A 339	27.183	34.992	38.255	1.00 47	
ATOM	273	OE2 GLU	A 339	26.325	33.023	37.771	1.00 67	
ATOM	274		A 339	29.340	30.878	35.319	1.00 27	
ATOM	275	O GLU	A 339	30.156	30.016	35.062		.00
ATOM	276	N GLU	A 340	28.125	30.906	34.795	1.00 26	
ATOM	277		A 340	27.678	29.911	33.831		.10
ATOM	278		A 340	26.223	30.163	33.457	1.00 29	.51
	279		A 340	25.282	30.053	34.636	1.00 26	.99
MOTA			A 340	23.849	30.355	34.284	1.00 30	.46
ATOM	280		A 340	22.970	29.488	34.510	1.00 34	.56
ATOM	281		A 340	23.580	31.471	33.802	1.00 31	.24
MOTA	282			28.573	29.875	32.592	1.00 25	
ATOM	283		A 340	28.910	28.798	32.096	1.00 24	
ATOM	284		A 340		31.039	32.126	1.00 23	
MOTA	285		A 341	29.008	31.070	30.953	1.00 28	
MOTA	286		A 341	29.878		30.333		.91
ATOM	287		A 341	30.087	32.544			.19
MOTA	288		A 341	31.242	32.598	29.382		.01
ATOM	289		A 341	28.799	33.040	29.718		
MOTA	290	CD1 ILE	A 341	28.772	34.533	29.426		.73
ATOM	291		A 341	31.210	30.382	31.208		.36
ATOM	292	O ILE	A 341	31.682	29.598	30.388		.02
ATOM	293	N GLU	A 342	31.800	30.642	32.372		.68
ATOM	294		A 342	33.101	30.052	32.700		.76
ATOM	295		A 342	33.692	30.615	34.011	1.00 50	
ATOM	296		A 342	32.840	30.441	35.298		.37
ATOM	297		A 342	32.978	29.073	36.006	1.00 77	.44
ATOM	298		A 342	34.115	28.691	36.384	1.00 81	
ATOM	299		A 342	31.938	28.398	36.218		.74
	300		A 342	32.969	28.567	32.793	1.00 29	.07
ATOM	301		A 342	33.873	27.835	32.421	1.00 25	.34
MOTA	302		A 343	31.832	28.138	33.316	1.00 28	.65
ATOM	303	CA ASN	A 343	31.581	26.729	33.459	1.00 31	.12
MOTA			A 343	30.239	26.495	34.113	1.00 31	.12
ATOM	304		A 343	29.952	25.051	34.268	1.00 44	.07
ATOM	305		A 343	30.740	24.315	34.857		.87
ATOM	306	OD1 ASN ND2 ASN		28.870	24.593	33.658	1.00 49	.75
MOTA	307		A 343	31.693	26.050	32.091	1.00 31	
MOTA	308	C ASN	7 242	32.474	25.106	31.939	1.00 32	.73
MOTA	309	O ASN	A 343	30.980	26.578	31.089	1.00 31	
MOTA	310	N TYR	A 344	31.056	26.028	29.720	1.00 27	
MOTA	311	CA TYR	A 344	30.133	26.778	28.747	1.00 19	
ATOM	312	CB TYR	A 344		26.486	28.906	1.00 15	
MOTA	313		A 344	28.678		29.313	1.00 12	
MOTA	314	CD1 TYR	A 344	27.802	27.473	29.464	1.00 15	
MOTA	315	CE1 TYR	A 344	26.453	27.216		1.00 16	
ATOM	316		A 344	28.169	25.217	28.649	1.00 17	
MOTA	317	CE2 TYR	A 344	26.805	24.939	28.802		
MOTA	318		A 344	25.953	25.946	29.210	1.00 14	
ATOM	319	OH TYR	A 344	24.612	25.705	29.377		5.05
MOTA	320		A 344	32.467	26.132	29.189	1.00 27	
ATOM	321	O TYR	. A 344	32.966	25.216	28.542	1.00 30	
ATOM	322	N GLN	A 345	33.125	27.253	29.451	1.00 28	
ATOM	323	CA GLN	A 345	34.474	27.392	28.940	1.00 31	
ATOM	324	CB GLN	A 345	34.982	28.819	29.063	1.00 29	
ATOM	325	CG GLN	A 345	34.201	29.825	28.254	1.00 35	
MOTA	326	CD GLN	r A 345	34.801	31.209	28.343	1.00 40	
MOTA	327	OE1 GLN	A 345	35.654	31.469	29.187	1.00 43	5.48
	'							

ATOM	328	NE2	GLN A	345	34.375	32.101	27.469	1.00 40.57
			GLN A		35.397	26.446	29.668	1.00 36.16
MOTA	329	C					29.179	1.00 36.49
MOTA	330	0	GLN A		36.485	26.128		
ATOM	331	N	ASN A		34.972	26.004	30.853	1.00 42.02
MOTA	332	CA	ASN A	346	35.780	25.077	31.630	1.00 42.72
ATOM	333	CB	ASN A		35.532	25.237	33.135	1.00 48.26
ATOM	334	CG	ASN A		36.336	26.398	33.743	1.00 52.40
			ASN A		37.433	26.728	33.282	1.00 53.04
ATOM	335					26.995	34.799	1.00 53.36
MOTA	336		ASN A		35.802		31.189	1.00 40.45
MOTA	337	С	ASN A		35.633	23.619		
MOTA	338	0	ASN A		36.533	22.810	31.475	1.00 38.19
ATOM	339	N	LYS A	347	34.559	23.293	30.449	1.00 32.64
ATOM	340	CA	LYS A	347	34.351	21.912	29.980	1.00 26.11
MOTA	341	CB	LYS A		32.985	21.742	29.338	1.00 22.43
ATOM	342	CG	LYS A		31.860	22.141	30.218	1.00 21.17
	343	CD	LYS A		30.533	21.903	29.569	1.00 25.53
ATOM			LYS A		29.436	22.235	30.550	1.00 31.64
MOTA	344	CE			28.105	21.911	30.002	1.00 42.98
ATOM	345	NZ	LYS A					1.00 25.51
MOTA	346	С	LYS A		35.417	21.514	28.979	1.00 25.51
ATOM	347	0	LYS A		35.862	22.338	28.186	1.00 30.14
ATOM	348	N	GLN A	348	35.873	20.269	29.058	1.00 23.11
MOTA	349	CA	GLN A	348	36.891	19.771	28.128	1.00 29.12
ATOM	350	CB	GLN A	348	37.252	18.338	28.502	1.00 37.39
MOTA	351	CG	GLN A		37.330	18.100	30.007	1.00 50.83
	352	CD	GLN A		38.742	17.956	30.494	1.00 55.85
ATOM					39.428	17.011	30.122	1.00 61.65
ATOM	353	OE1					31.342	1.00 65.17
MOTA	354	NE2			39.190	18.883		
ATOM	355	C	GLN A		36.292	19.803	26.704	1.00 25.62
ATOM	356	0	GLN A		35.067	19.729	26.570	1.00 25.40
ATOM	357	N	ARG A	349	37.137	19.854	25.668	1.00 28.86
ATOM	358	CA	ARG A	349	36.671	19.928	24.271	1.00 30.13
MOTA	359	CB	ARG A		37.831	19.768	23.276	1.00 38.59
ATOM	360	CG	ARG A		37.408	20.068	21.821	1.00 51.14
	361	CD	ARG A		38.539	19.932	20.772	1.00 60.22
ATOM			ARG A		38.121	20.510	19.481	1.00 71.23
ATOM	362	NE			38.525	20.126	18.263	1.00 72.91
MOTA	363	CZ	ARG A		39.392	19.130	18.090	1.00 72.73
ATOM	364	NH1						1.00 72.73
MOTA	365	NH2			38.041	20.753	17.198	
MOTA	366	С	ARG A		35.578	18.940	23.908	1.00 28.40
MOTA	367	0	ARG A		34.527	19.322	23.387	1.00 26.63
MOTA	368	N	GLU A	350	35.857	17.662	24.165	1.00 29.38
ATOM	369	CA	GLU A	350	34.932	16.565	23.877	1.00 27.83
ATOM	370	CB	GLU A	350	35.586	15.215	24.184	1.00 33.12
ATOM	371	CG	GLU A		35.794	14.956	25.684	1.00 35.99
ATOM	372	CD	GLU A		37.212	15.247	26.148	1.00 38.01
ATOM	373	OE1			37.736	14.408	26.913	1.00 43.71
					37.809	16.283	25.756	1.00 32.70
MOTA	374		GLU A GLU A		33.640	16.687	24.654	1.00 24.52
MOTA	375	C				16.237	24.195	1.00 25.09
MOTA	376	0	GLU A		32.596	17.268	25.847	1.00 23.03
ATOM	377	N	VAL A		33.709			
ATOM	378	CA	VAL A		32.513	17.457	26.645	
MOTA	379	CB	VAL A		32.854	17.885	28.107	1.00 20.75
ATOM	380	CG1	VAL A	351	31.583	18.062	28.911	1.00 19.11
ATOM	381	CG2	VAL A	351	33.778	16.851	28.759	1.00 24.36
ATOM	382	Č	VAL A		31.625	18.521	25.990	1.00 20.47
ATOM	383	ŏ	VAL A		30.405	18.343	25.878	1.00 21.64
ATOM	384	N	MET A		32.211	19.646	25.592	1.00 23.84
	385	CA	MET A	352	31.414	20.705	24.952	1.00 23.93
ATOM			MET A		32.235	22.008	24.824	1.00 28.98
ATOM	386	CB					24.552	1.00 26.03
ATOM	387	CG	MET A		31.437	23.318		1.00 26.03
ATOM	388	SD	MET A		30.054	23.586	25.661	
MOTA	389	CE	MET A		29.087	24.826	24.802	1.00 28.37
ATOM	390	C	MET A	352	30.897	20.191	23.580	1.00 21.58
ATOM	391	0	MET A		29.743	20.392	23.241	1.00 23.25
ATOM	392	N	TRP A	353	31.714	19.450	22.847	1.00 20.93
ATOM	393	CA	TRP A		31.249	18.904	21.567	1.00 22.11
	-							

MOTA	394	CB TRP A	353	32.375	18.137	20.884	1.00	23.30
	395	CG TRP A		33.205	18.935	19.922	1.00	29.85
MOTA				33.052	18.969	18.489	1.00	29.97
MOTA	396			34.093	19.776	17.974		30.39
MOTA	397	CE2 TRP A				17.592		30.52
MOTA	398	CE3 TRP A		32.135	18.385			30.84
MOTA	399	CD1 TRP A		34.298	19.711	20.209		
MOTA	400	NE1 TRP A	353	34.838	20.216	19.038		32.97
ATOM	401	CZ2 TRP A	353	34.248	20.015	16.599		32.23
ATOM	402	CZ3 TRP A		32.291	18.623	16.228	1.00	29.92
	403	CH2 TRP A		33.344	19.432	15.748	1.00	30.15
ATOM		C TRP A		30.022	17.992	21.733		19.54
MOTA	404	=		29.027	18.132	21.014		21.17
MOTA	405				17.088	22.714		20.89
ATOM	406	N GLN A		30.059		22.939		19.30
ATOM	407	CA GLN A		28.938	16.158			23.50
MOTA	408	CB GLN A		29.263	15.167	24.077		
ATOM	409	CG GLN A	354	28.393	13.888	24.093		24.75
ATOM	410	CD GLN A	354	27.436	13.788	25.282		23.74
ATOM	411	OE1 GLN A	354	27.297	14.737	26.049		29.52
ATOM	412	NE2 GLN A		26.767	12.629	25.427		20.53
ATOM	413	C GLN A		27.647	16.875	23.248	1.00	16.93
ATOM	414	O GLN A		26.566	16.516	22.759	1.00	16.41
	415	N LEU A		27.747	17.885	24.098	1.00	19.29
ATOM				26.574	18.645	24.468	1.00	15.90
ATOM	416			26.913	19.657	25.579	1.00	15.22
MOTA	417			25.802	20.622	25.993		17.93
ATOM	418	CG LEU A			19.962	26.610		14.68
MOTA	419	CD1 LEU A		24.582		26.918		21.31
MOTA	420	CD2 LEU A		26.418	21.667		1.00	
ATOM	421	C LEU A		25.993	19.357	23.240		
MOTA	422	O LEU A		24.790	19.348	23.054	1.00	14.23
ATOM	423	N CYS A	356	26.827	20.005	22.441		16.77
ATOM	424	CA CYS A	356	26.307	20.691	21.244		22.19
ATOM	425	CB CYS A	356	27.436	21.450	20.561	1.00	21.05
ATOM	426	SG CYS A		28.067	22.797	21.523	1.00	23.18
ATOM	427	C CYS A		25.640	19.676	20.263	1.00	
ATOM	428	O CYS A		24.584	19.943	19.679	1.00	22.09
ATOM	429	N ALA A		26.228	18.483	20.160	1.00	22.51
	430	CA ALA A	357	25.678	17.449	19.304	1.00	19.05
MOTA	431	CB ALA A		26.606	16.267	19.264	1.00	25.06
MOTA				24.296	17.048	19.778	1.00	20.99
ATOM	432			23.387	16.919	18.975	1.00	
ATOM	433			24.104	16.887	21.092	1.00	
MOTA	434			22.782	16.522	21.627	1.00	19.00
ATOM	435	CA ILE A			16.382	23.202	1.00	19.36
MOTA	436	CB ILE A		22.812		23.779	1.00	15.59
ATOM	437	CG2 ILE A		21.374	16.383		1.00	
MOTA	438	CG1 ILE F		23.623	15.153	23.614		
ATOM	439	CD1 ILE A		24.073	15.174	25.079	1.00	
ATOM	440	C ILE A		21.747	17.597	21.291		18.17
ATOM	441	O ILE A	358	20.590	17.322	20.947	1.00	17.46
ATOM	442	N LYS A	359	22.171	18.843	21.443	1.00	22.77
MOTA	443	CA LYS A	359	21.291	19.983	21.206	1.00	21.40
ATOM	444	CB LYS A		21.931	21.234	21.809		23.15
ATOM	445	CG LYS A	359	22.175	21.133	23.334		24.28
ATOM	446	CD LYS A	359	20.879	20.855	24.063	1.00	24.08
ATOM	447	CE LYS A		21.061	20.872	25.562	1.00	31.76
		NZ LYS		19.730	20.695	26.175		29.13
MOTA	448			20.925	20.166	19.721	1.00	16.10
MOTA	449	C LYS A	7 222	19.764	20.377	19.403	1.00	
ATOM	450	O LYS	3 333 3 360	21.914	20.377	18.841	1.00	
ATOM	451	N ILE A	7 200	21.914	20.094	17.402		18.38
ATOM	452	CA ILE				16.595		24.95
ATOM	453	CB ILE A		22.959	19.988			28.87
MOTA	454	CG2 ILE A		22.659	19.672	15.136		
ATOM	455	CG1 ILE A		23.846	21.221	16.659		25.71
MOTA	456	CD1 ILE A		25.260	20.940	16.214		28.76
ATOM	457		A 360	20.707	19.085	17.026	1.00	
ATOM	458	O ILE	A 360	19.678	19.341	16.433		23.45
ATOM	459	N THR	A 361	20.986	17.861	17.467	1.00	17.32

3 COM	460	CA	THR A	361	20.131	16.724	17.118	1.00	17.15
ATOM			THR A		20.647	15.411	17.703		21.09
ATOM	461				22.030	15.263	17.385		21.21
ATOM	462		THR A			14.207	17.146		23.13
ATOM	463		THR A		19.842		17.140		22.12
ATOM	464		THR A		18.687	16.887	17.514		
ATOM	465	0	THR A	361	17.786	16.414	16.813		22.98
ATOM	466		GLU A	362	18.455	17.530	18.660		22.63
	467		GLU A		17.092	17.761	19.121	1.00	21.83
ATOM			GLU A		17.076	18.335	20.541		25.44
MOTA	468	CB	GLU A	302	15.729	18.156	21.228		45.77
MOTA	469	CG	GLU A	302			22.253		61.04
ATOM	470		GLU A		15.382	19.260		-	67.71
ATOM	471	OE1	GLU A	362	16.281	19.648	23.059		
MOTA	472	OE2	GLU A	362	14.199	19.723	22.249		58.48
ATOM	473	С	GLU A	362	16.407	18.717	18.137		17.52
ATOM	474	ŏ	GLU A	362	15.226	18.567	17.836	1.00	18.31
	475	Ŋ	ALA A		17.148	19.711	17.656	1.00	17.89
MOTA			ALA A	363	16.613	20.652	16.656		22.83
ATOM	476	CA	ALA A	303		21.753	16.358		21.95
ATOM	477	CB	ALA A		17.624				21.89
ATOM	478	С	ALA A		16.304	19.896	15.348		
ATOM	479	0	ALA A	363	15.286	20.140	14.706		24.25
ATOM	480	N	ILE A	364	17.196	18.994	14.952		23.12
ATOM	481	CA	ILE A	364	16.995	18.214	13.715	1.00	23.74
ATOM	482	CB	ILE A		18.255	17.379	13.357	1.00	20.60
		CG2	ILE A		17.943	16.320	12.288	1.00	20.36
ATOM	483		ILE A		19.349	18.329	12.855	1.00	16.57
MOTA	484	CG1				17.766	12.820		17.77
ATOM	485	CD1	ILE A		20.748			1.00	28.19
ATOM	486	С	ILE A		15.709	17.382	13.705		
MOTA	487	0		364	14.969	17.380	12.715	1.00	
ATOM	488	N	GLN A	365	15.370	16.784	14.842	1.00	
ATOM	489	CA	GLN A	365	14.159	15.976	14.937	1.00	
ATOM	490	CB	GLN A		14.049	15.352	16.309	1.00	34.56
	491	CG	GLN A		15.324	14.645	16.719	1.00	46.55
ATOM			GLN A		15.071	13.640	17.800	1.00	53.78
ATOM	492	CD			13.968	13.106	17.901		64.74
ATOM	493	OE1	GLN A			13.366	18.617		55.00
ATOM	494	NE2	GLN A		16.077			1.00	
ATOM	495	С	GLN A		12.893	16.737	14.620		
MOTA	496	0	GLN A	365	11.919	16.145	14.172	1.00	
MOTA	497	N	TYR A	366	12.884	18.036	14.903	1.00	
ATOM	498	CA	TYR A	366	11.733	18.889	14.598	1.00	23.20
ATOM	499	CB	TYR A		11.822	20.212	15.376	1.00	25.77
	500	CG	TYR A		11.345	20.112	16.816	1.00	27.13
ATOM			TYR A		12.246	20.050	17.880	1.00	27.24
MOTA	501	CD1			11.787	19.956	19.198	1.00	32.73
ATOM	502	CE1	TYR A		9.984	20.075	17.103	1.00	29.26
MOTA	503	CD2	TYR A					1.00	33.96
ATOM	504	CE2	TYR A		9.521	19.976	18.402		
MOTA	505	CZ	TYR A	366	10.420	19.917	19.445	1.00	36.94
ATOM	506	OH	TYR A	366	9.925	19.808	20.729	1.00	45.77
MOTA	507	С	TYR A	366	11.743	19.165	13.084	1.00	22.71
MOTA	508	Ō	TYR A	366	10.688	19.258	12.450		21.29
ATOM	509	Ŋ	VAL A	367	12.948	19.314	12.527	1.00	23.15
			VAL A		13.130	19.536	11.085	1.00	25.23
MOTA	510	CA			14.586	19.907	10.742		22.53
MOTA	511	CB	VAL A			19.914	9.224		20.69
MOTA	512	CG1	VAL A	367	14.798			1.00	17.32
MOTA	513	CG2	VAL A	367	14.878	21.280	11.292		
ATOM	514	С	VAL A		12.650	18.303	10.281	1.00	
MOTA	515	0	VAL A	367	12.027	18.449	9.236		28.63
MOTA	516	Ŋ	VAL A		12.929	17.098	10.771		27.16
ATOM	517	CA	VAL A		12.450	15.890	10.116	1.00	27.59
		CB	VAL A	368	13.048	14.606	10.759		23.81
MOTA	518	CD CC1	VAL A	368	12.340	13.380	10.226		29.32
ATOM	519		VAL A	260		14.505	10.469		18.99
MOTA	520	CG2		300	14.550		10.409		32.37
MOTA	521	С	VAL A	368	10.894	15.861			
MOTA	522	0	VAL A	368	10.268	15.429	9.159		33.74
MOTA	523	N	GLU A	369	10.268	16.324	11.242		26.37
ATOM	524	CA	GLU A	369	8.801	16.364	11.318		26.23
MOTA	525	СВ	GLU A	369	8.281	16.756	12.712	1.00	29.58
022									

ATOM	526	CG	GLU A	369	8.304	15.647	13.763	1 00	33.78
			GLU A		7.736	14.303	13.284		34.63
ATOM	527	CD							
ATOM	528	OE1	_		6.610	14.253	12.741		36.64
MOTA	529	OE2	GLU A	369	8.430	13.280	13.476		40.81
ATOM	530	С	GLU A	369	8.269	17.358	10.291	1.00	26.20
ATOM	531	Ō	GLU A		7.213	17.143	9.713	1.00	29.54
ATOM	532	й	PHE A		8.970	18.476	10.118		24.75
		-			8.607	19.475	9.114		24.70
ATOM	533	CA	PHE A						
ATOM	534	CB	PHE A		9.615	20.615	9.162		23.84
MOTA	535	CG	PHE A		9.415	21.663	8.093	1.00	
MOTA	536	CD1	PHE A	370	8.265	22.444	8.071	1.00	
ATOM	537	CD2	PHE A	370	10.415	21.918	7.161	1.00	24.12
ATOM	538	CE1	PHE A		8.120	23.468	7.150	1.00	27.38
ATOM	539	CE2	PHE A		10.276	22.943	6.234		26.73
	540	CZ	PHE A		9.125	23.722	6.231		24.57
ATOM					8.648	18.805	7.712		26.16
ATOM	541	C	PHE A						
ATOM	542	0	PHE A		7.666	18.841	6.966		24.95
ATOM	543	N	ALA A		9.780	18.172	7.395	1.00	25.24
ATOM	544	CA	ALA A	371	9.988	17.459	6.130		31.38
ATOM	545	CB	ALA A	371	11.281	16.681	6.171	1.00	27.13
ATOM	546	С	ALA A	371	8.829	16.525	5.794	1.00	33.49
ATOM	547	ō	ALA A		8.328	16.550	4.674	1.00	35.75
ATOM	548	N	LYS A		8.380	15.730	6.766		32.11
			LYS A		7.260	14.817	6.547		32.07
ATOM	549	CA					7.780		31.18
ATOM	550	CB	LYS A		7.025	13.969			
MOTA	551	CG	LYS A		8.142	13.030	8.132		34.27
MOTA	552	$^{\rm CD}$	LYS A		7.714	12.198	9.322		41.43
MOTA	553	CE	LYS A	372	8.898	11.535	9.996		47.18
ATOM	554	NZ	LYS A	372	8.490	10.731	11.203	1.00	52.21
ATOM	555	С	LYS A	372	5.920	15.464	6.175	1.00	36.43
ATOM	556	ŏ	LYS A		5.047	14.804	5.612	1.00	39.27
ATOM	557	Ŋ	ARG A		5.742	16.735	6.511		38.37
			ARG A		4.484	17.435	6.242		40.66
ATOM	558	CA							
MOTA	559	CB	ARG A		4.201	18.447	7.355		45.55
ATOM	560	CG	ARG A		4.681	18.002	8.714		54.93
MOTA	561	CD	ARG A		3.682	17.131	9.441		59.22
MOTA	562	NE	ARG A	373	2.817	17.960	10.278		65.72
MOTA	563	CZ	ARG A	373	2.860	17.988	11.607	1.00	63.53
ATOM	564	NH1	ARG A	373	3.723	17.222	12.261	1.00	61.86
ATOM	565	NH2			2.057	18.802	12.281	1.00	66.65
ATOM	566	C	ARG A		4.503	18.179	4.916		41.35
ATOM	567	ŏ	ARG A		3.496	18.773	4.516		40.31
	568		ILE A		5.669	18.203	4.271	1.00	
ATOM		N							40.72
ATOM	569	CA	ILE A		5.806	18.883	2.996		
MOTA	570	CB	ILE A		7.237	19.329	2.697		36.14
ATOM	571	CG2	ILE A		7.298	19.939	1.299		32.36
MOTA	572	CG1	ILE A		7.675	20.387	3.702		34.12
ATOM	573	CD1			9.159	20.603	3.712		36.75
ATOM	574	С	ILE A	374	5.302	18.054	1.831	1.00	45.90
MOTA	575	0	ILE A	374	5.733	16.929	1.583	1.00	42.19
ATOM	576	N	ASP A		4.301	18.625	1.183	1.00	50.81
ATOM	577	CA	ASP A		3.654	18.084	-0.002		52.36
ATOM	578	CB	ASP A	375	2.859	19.229	-0.649		60.93
						20.613	-0.449		68.87
MOTA	579	CG	ASP A		3.543				
ATOM	580		ASP A		4.421	20.987	-1.277		67.94
MOTA	581		ASP A		3.225	21.301	0.561		63.03
MOTA	582	С	ASP A		4.690	17.547	-0.998		48.88
ATOM	583	0	ASP A		5.454	18.309	-1.595		48.00
MOTA	584	N	GLY A		4.743	16.234	-1.152	1.00	45.67
ATOM	585	CA	GLY A		5.683	15.669	-2.103	1.00	43.48
MOTA	586	C	GLY A		6.816	14.872	-1.514		40.36
ATOM	587	ŏ	GLY A		7.200	13.837	-2.052		38.28
ATOM	588	N	PHE A		7.339	15.346	-0.394	_	37.97
ATOM	589	CA	PHE A		8.448	14.677	0.270		34.67
	590	CB	PHE A	377	8.826	15.430	1.567		34.08
MOTA							2.245		29.16
MOTA	591	CG	PHE A	311	10.054	14.887	4.245	T.00	27.10

ATOM	592	CD1	PHE A	377	11.305	15.422	1.962	1.00 27.28
	593	CD2	PHE A	377	9.964	13.778	3.096	1.00 30.07
ATOM			PHE A		12.453	14.859	2.496	1.00 28.02
ATOM	594				11.095	13.205	3.637	1.00 29.05
ATOM	595	CE2	PHE A		11.053	13.746	3.333	1.00 28.74
ATOM	596	CZ	PHE A		12.353			1.00 34.90
ATOM	597	С	PHE A	377	8.203	13.197	0.572	
ATOM	598	0	PHE A	377	9.076	12.361	0.305	1.00 35.66
ATOM	599	N	MET A		7.060	12.871	1.169	1.00 34.38
	600	CA	MET A	378	6.766	11.491	1.512	1.00 38.67
ATOM			MET A		5.565	11.393	2.457	1.00 41.83
MOTA	601	CB	MEI A	370 270	5.882	11.754	3.909	1.00 48.90
MOTA	602	CG	MET A			10.982	4.496	1.00 56.77
ATOM	603	SD	MET A		7.422			1.00 57.67
ATOM	604	CE	MET A	378	6.884	9.291		1.00 37.07
ATOM	605	С	MET A	378	6.574	10.586	0.301	
ATOM	606	0	MET A	378	6.564	9.363	0.428	1.00 43.36
ATOM	607	N	GLU A	379	6.427	11.184	-0.877	1.00 44.95
	608	CA	GLU A	379	6.248	10.399	-2.086	1.00 45.80
ATOM		CB	GLU A	379	5.359	11.144	-3.071	1.00 52.39
ATOM	609		GLU A		3.943	11.354	-2.587	1.00 61.32
MOTA	610	CG			3.127	12.219	-3.537	1.00 71.44
ATOM	611	$^{\rm CD}$	GLU A	3/9		13.182	-4.126	1.00 73.32
ATOM	612	OE1	GLU A	379	3.681			1.00 77.96
MOTA	613	OE2	GLU A	379	1.920	11.933	-3.693	
ATOM	614	С	GLU A	379	7.581	10.057	-2.741	1.00 43.64
ATOM	615	Ō	GLU A		7.655	9.144	-3.553	1.00 43.83
ATOM	616	Ň	LEU A		8.633	10.794	-2.409	1.00 40.33
		CA	LEU A	380	9.939	10.521	-2.986	1.00 40.49
ATOM	617		LEU A		10.949	11.562	-2.536	1.00 39.57
MOTA	618	CB			10.996	12.909	-3.242	1.00 43.35
MOTA	619	CG	LEU A		9.660	13.313	-3.786	1.00 48.51
ATOM	620	CD1	LEU A		-		-2.266	1.00 43.53
MOTA	621	CD2			11.496	13.947		1.00 43.17
ATOM	622	С	LEU A	380	10.374	9.151	-2.509	1.00 43.17
ATOM	623	0	LEU A	380	9.702	8.546	-1.675	1.00 41.79
MOTA	624	N	CYS A		11.480	8.650	-3.053	1.00 46.89
	625	ĈA	CYS A		11.988	7.339	-2.651	1.00 51.11
MOTA	626	СB	CYS A		12.676	6.632	-3.838	1.00 48.63
ATOM			CYS A		14.146	7.457	-4.487	1.00 48.71
ATOM	627	SG			12.938	7.479	-1.437	1.00 53.70
MOTA	628	C	CYS A			8.427	-1.357	1.00 54.89
MOTA	629	0	CYS A		13.731		-0.478	1.00 56.40
MOTA	630	N	GLN A		12.813	6.559		1.00 57.37
MOTA	631	CA	GLN A	382	13.625	6.552	0.747	1.00 66.42
MOTA	632	CB	GLN A	382	13.717	5.125	1.299	
ATOM	633	CG	GLN A	382	14.527	4.981	2.596	1.00 80.23
ATOM	634	CD	GLN A	382	14.924	3.529	2.908	1.00 87.56
	635	OE1			14.364	2.579	2.351	1.00 93.99
MOTA	636	NE2			15.916	3.361	3.781	1.00 90.30
MOTA			GLN A		15.030	7.108	0.529	1.00 52.28
MOTA	637	C	GLM A	202	15.534	7.891	1.315	1.00 52.44
ATOM	638	0	GLN A	202	15.644	6.716	-0.571	1.00 48.24
MOTA	639	N	ASN A	303		7.166	-0.891	1.00 46.79
MOTA	640	CA	ASN A	383	16.975		-2.241	1.00 55.14
ATOM	641	CB	ASN A	383	17.393	6.604		1.00 63.92
ATOM	642	CG	ASN A	383	17.496	5.100	-2.232	
ATOM	643	OD1	L ASN A	383	18.603	4.559	-2.272	1.00 68.19
ATOM	644		ASN A		16.350	4.405	-2.198	1.00 65.25
ATOM	645	C	ASN A	383	17.000	8.669	-0.986	1.00 42.13
	646	ŏ	ASN A	383	17.853	9.331	-0.408	1.00 38.96
ATOM			ASN A	384	16.064		-1.749	1.00 35.42
ATOM	647	N	ASP A	201	16.015		-1.945	1.00 35.36
MOTA	648	CA	ASP A	. 304			-3.146	1.00 35.18
MOTA	649	CB	ASP A		15.137			1.00 36.49
MOTA	650	CG	ASP A	. 384	15.790		-4.491	
ATOM	651	OD:	l ASP A	384	16.835		-4.525	1.00 35.12
ATOM	652	OD2		384	15.245	11.049	-5.519	1.00 34.59
ATOM	653	C	ASP A		15.578	11.376	-0.701	1.00 30.33
ATOM	654	ŏ	ASP A		15.999		-0.484	1.00 27.59
	655	И	GLN A	385	14.713		0.098	1.00 31.50
MOTA					14.280		1.348	1.00 33.11
ATOM	656			385	13.215		2.033	1.00 28.85
MOTA	657	СВ	GLIN A	. 505		20.5.		_

ъ шОМ	658	CG	GLN A	385	11.932	10.516	1.281	1.00 29.25
ATOM	659	CD	GLN A		10.981	9.578	1.942	1.00 35.13
MOTA MOTA	660	OE1	GLN A		11.392	8.704	2.711	1.00 39.80
ATOM	661	NE2	GLN A		9.703	9.737	1.663	1.00 34.78
ATOM	662	C	GLN A		15.488	11.552	2.277	1.00 31.53
ATOM	663	ŏ	GLN A		15.751	12.632	2.816	1.00 29.68
ATOM	664	Ň	ILE A	386	16.251	10.466	2.394	1.00 29.20
ATOM	665	CA	ILE A		17.452	10.430	3.208	1.00 31.16
ATOM	666	CB	ILE A		17.992	8.987	3.310	1.00 30.97
ATOM	667	CG2	ILE A	386	19.411	8.959	3.925	1.00 29.51
ATOM	668	CG1			16.982	8.148	4.103	1.00 31.82
ATOM	669	CD1	ILE A		17.452	6.761	4.458	1.00 39.13
ATOM	670	С	ILE A		18.518	11.411	2.696	1.00 30.95 1.00 31.12
MOTA	671	О	ILE A	386	19.068	12.189	3.473 1.392	1.00 31.12
MOTA	672	N	VAL A		18.788	11.400	0.800	1.00 30.32
MOTA	673	CA	VAL A		19.771	12.314 12.122	-0.763	1.00 25.37
MOTA	674	CB	VAL A		19.877 20.555	13.328	-1.412	1.00 20.02
MOTA	675	CGT	VAL A	30/ 207	20.658	10.864	-1.088	1.00 22.89
ATOM	676		VAL A VAL A		19.394	13.786	1.104	1.00 28.03
MOTA	677	C O	VAL A		20.265	14.602	1.446	1.00 27.40
MOTA	678 679	И	LEU A		18.099	14.114	0.975	1.00 27.01
ATOM ATOM	680	CA	LEU A		17.606	15.482	1.212	1.00 25.83
ATOM	681	CB	LEU A		16.149	15.631	0.776	1.00 25.27
ATOM	682	CG	LEU A		15.822	15.597	-0.723	1.00 23.66
ATOM	683		LEU A	388	14.344	15.786	-0.898	1.00 24.29
ATOM	684	CD2	LEU A	388	16.587	16.686	-1.461	1.00 27.16
ATOM	685	С	LEU A	388	17.738	15.871	2.683	1.00 26.40
ATOM	686	0	LEU A		18.094	16.998	2.998	1.00 25.91
MOTA	687	N	LEU A		17.461	14.928	3.572	1.00 25.45
ATOM	688	CA	LEU A		17.578	15.192	4.994 5.803	1.00 23.81 1.00 23.38
MOTA	689	CB	LEU A		16.915	14.096 14.206	5.789	1.00 23.30
MOTA	690	CG	LEU A		15.402 14.785	13.003	6.476	1.00 25.13
ATOM	691	CDI	LEU A	389	14.783	15.501	6.427	1.00 19.09
MOTA	692		LEU A	360	19.020	15.299	5.376	1.00 21.15
MOTA	693 694	c o	LEU A		19.410	16.257	6.028	1.00 26.81
ATOM ATOM	695	N	LYS A		19.849	14.373	4.916	1.00 18.69
ATOM	696	CA	LYS A	390	21.250	14.429	5.273	1.00 21.34
ATOM	697	CB	LYS A		22.050	13.326	4.592	1.00 24.41
ATOM	698	CG	LYS A	390	21.938	11.960	5.200	1.00 29.06
ATOM	699	CD	LYS A		23.067	11.081	4.673	1.00 31.45
MOTA	700	CE	LYS A	390	23.062	9.718	5.342	1.00 40.63 1.00 46.61
MOTA	701	NZ	LYS A		24.240	8.890	4.933 4.907	1.00 45.61
MOTA	702	C	LYS A	390	21.884 22.706	15.751 16.287	5.644	1.00 25.73
MOTA	703	0	LYS A		21.478	16.295	3.770	1.00 25.48
ATOM	704	N	ALA A ALA A		22.065	17.527	3.281	1.00 23.46
MOTA	705 706	CA CB	ALA A	391	22.076	17.505	1.766	1.00 26.48
ATOM	707	С	ALA A	391	21.401	18.795	3.750	1.00 20.95
ATOM ATOM	708	Ö	ALA A	391	22.074	19.789	4.005	1.00 27.25
ATOM	709	Ŋ	GLY A		20.082	18.773	3.838	1.00 21.07
ATOM	710	CA	GLY A		19.349	19.965	4.202	1.00 22.76
ATOM	711	C	GLY A		18.923	20.133	5.638	1.00 23.17
ATOM	712	ō	GLY A		18.420	21.184	5.972	1.00 20.90
MOTA	713	N	SER A		19.087	19.105	6.471	1.00 23.99
ATOM	714		SER A	393	18.706	19.178	7.889	1.00 23.62
MOTA	715	CB	SER A		19.056	17.874	8.593	1.00 20.71 1.00 31.96
ATOM	716		SER A		17.926	17.045	8.510 8.656	1.00 31.96
MOTA	717	C	SER A		19.343	20.322	9.223	1.00 17.30
ATOM	718	O	SER A	393 304	18.645 20.670	21.149 20.332	8.677	1.00 20.09
ATOM	719	N	LEU A LEU A	374 391	21.442	21.348	9.365	1.00 21.08
ATOM	720 721		LEU A	394	22.940	21.032	9.274	1.00 19.93
ATOM ATOM	721		LEU A		23.831	20.918	10.516	1.00 26.08
ATOM	723	CD:	1 LEU A		25.207	21.380	10.158	1.00 21.54

PCT/EP03/04433 WO 03/093312

- 43 -

ATOM 725 C LEU A 394 21.161 22.713 8.753 1.00 23. ATOM 726 O LEU A 394 21.161 22.713 8.753 1.00 23. ATOM 726 O LEU A 395 20.942 22.759 7.436 1.00 22. ATOM 728 CA GLU A 395 20.942 22.759 7.436 1.00 22. ATOM 728 CA GLU A 395 20.942 22.759 7.436 1.00 22. ATOM 730 CG GLU A 395 20.574 23.890 5.260 1.00 22. ATOM 731 CD GLU A 395 21.881 23.459 4.611 1.00 26. ATOM 731 CD GLU A 395 21.881 23.459 4.611 1.00 26. ATOM 732 OEI GLU A 395 21.881 23.459 4.611 1.00 26. ATOM 732 OEI GLU A 395 22.852 23.442 2.434 1.00 26. ATOM 733 OEE GLU A 395 20.709 23.428 2.526 1.00 22. ATOM 733 OEE GLU A 395 19.342 24.622 7.318 1.00 24. ATOM 734 C GLU A 395 19.342 24.622 7.318 1.00 24. ATOM 735 O GLU A 395 19.270 25.832 7.574 1.00 20. ATOM 736 N VAL A 396 17.043 24.311 22.810 7.498 1.00 24. ATOM 737 CA VAL A 396 17.043 24.311 23.342 7.818 1.00 24. ATOM 738 CB VAL A 396 17.043 24.311 23.342 7.818 1.00 24. ATOM 730 CGI VAL A 396 15.691 23.3854 8.517 1.00 18. ATOM 740 CG2 VAL A 396 15.693 23.177 6.288 1.00 23. ATOM 740 CG2 VAL A 396 15.693 23.177 6.288 1.00 25. ATOM 741 C VAL A 396 17.42 24.073 10.00 23. ATOM 742 O VAL A 396 16.476 25.639 10.00 10.00 1.00 25. ATOM 746 CG VAL A 397 18.358 24.401 11.617 1.00 18. ATOM 747 CG2 VAL A 397 18.358 24.401 11.617 1.00 18. ATOM 746 CG VAL A 397 18.358 24.401 11.617 1.00 18. ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 23. ATOM 746 CG UAL A 397 19.915 23.829 13.534 1.00 23. ATOM 746 CG UAL A 397 18.358 24.401 11.617 1.00 18. ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 23. ATOM 746 CG UAL A 397 18.358 24.401 11.617 1.00 18. ATOM 746 CG UAL A 397 19.915 23.829 13.534 1.00 23. ATOM 750 CG UAL A 397 18.556 29.169 29.555 1.00 25. ATOM 750 CG UAL A 397 18.556 29.169 29.555 1.00 25. ATOM 750 CG UAL A 397 18.556 29.169 29.555 1.00 25. ATOM 750 CG UAL A 397 19.915 23.829 13.534 1.00 23. ATOM 750 CG UAL A 397 18.556 29.169 29.255 1.00 23. ATOM 750 CG UAL A 399 19.915 23.829 13.534 1.00 23. ATOM 750 CG UAL A 399 19.915 23.829 13.534 1.00 23. ATOM 750 CG UAL A 399 19.915 23.829 13.534 1.00 23. ATOM 750 CG UAL									
ATOM 726 O LEU A 394 21.161 22.317 9.462 1.00 21. ATOM 726 O LEU A 394 21.132 23.717 9.462 1.00 21. ATOM 727 N GLU A 395 20.942 22.759 7.436 1.00 22. ATOM 728 CA GLU A 395 20.642 24.037 6.787 1.00 20. ATOM 729 CB GLU A 395 20.642 24.037 6.787 1.00 20. ATOM 730 CG GLU A 395 21.881 23.459 4.611 1.00 23. ATOM 731 CD GLU A 395 21.881 23.459 4.611 1.00 23. ATOM 732 OEI GLU A 395 21.809 23.461 3.084 1.00 26. ATOM 733 OEZ GLU A 395 22.852 23.482 2.526 1.00 22. ATOM 733 OEZ GLU A 395 19.342 24.632 7.318 1.00 18. ATOM 734 C GLU A 395 19.270 25.832 7.574 1.00 20. ATOM 736 N VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 737 CA VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 14.587 23.884 8.517 1.00 18. ATOM 739 CGI VAL A 396 14.587 23.884 8.517 1.00 18. ATOM 740 CGZ VAL A 396 17.174 24.784 9.525 1.00 23. ATOM 740 CGZ VAL A 396 17.174 24.784 9.525 1.00 23. ATOM 741 C VAL A 396 17.174 24.784 9.525 1.00 23. ATOM 742 O VAL A 396 17.174 24.784 9.525 1.00 23. ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 746 CGI VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 747 CGZ VAL A 397 18.977 24.073 10.232 1.00 23. ATOM 747 CGZ VAL A 397 18.578 24.401 11.617 1.00 18. ATOM 748 C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 740 CGZ VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 740 CGZ VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 740 CGZ VAL A 397 19.296 23.338 12.232 1.00 23. ATOM 741 C C VAL A 397 19.296 23.338 12.232 1.00 23. ATOM 742 C VAL A 397 19.296 23.338 12.232 1.00 23. ATOM 745 CB VAL A 397 19.296 23.338 12.232 1.00 23. ATOM 746 CGI VAL A 397 19.296 23.338 12.232 1.00 23. ATOM 747 CGZ VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 750 N PHE A 398 19.81 24.859 25.021 10.552 1.00 23. ATOM 750 N PHE A 398 19.81 24.859 25.021 10.553 1.00 16. ATOM 750 C C PHE A 398 20.652 27.355 10.735 10.00 24. ATOM 750 C C PHE A 398 22.552 27.355 10.735 10.00 24. ATOM 750 C C ARG	MOTA	724	CD2	LEU A	394				1.00 22.96
ATOM 726 O LEU A 395 20.142 22.759 7.436 1.00 22. ATOM 728 CA GLU A 395 20.642 24.037 6.787 1.00 22. ATOM 728 CA GLU A 395 20.642 24.037 6.787 1.00 22. ATOM 730 CG GLU A 395 21.881 23.459 4.611 1.00 26. ATOM 731 CD GLU A 395 21.881 23.459 4.611 1.00 26. ATOM 731 CD GLU A 395 21.889 23.461 3.084 1.00 26. ATOM 732 OEI GLU A 395 22.852 23.482 2.434 1.00 26. ATOM 733 OEZ GLU A 395 19.342 24.632 7.318 1.00 18. ATOM 734 C GLU A 395 19.342 24.632 7.318 1.00 18. ATOM 735 O GLU A 395 19.342 24.632 7.318 1.00 18. ATOM 736 N VAL A 396 18.311 23.810 7.498 1.00 18. ATOM 737 CA VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 15.891 23.342 7.818 1.00 20. ATOM 739 CGI VAL A 396 15.891 23.342 7.818 1.00 20. ATOM 740 CGZ VAL A 396 15.663 23.177 6.288 1.00 22. ATOM 741 C VAL A 396 15.663 23.177 6.288 1.00 22. ATOM 742 O VAL A 396 17.14 24.744 9.525 1.00 23. ATOM 743 N VAL A 397 18.358 24.401 11.617 1.00 18. ATOM 745 CB VAL A 397 18.358 24.401 11.617 1.00 18. ATOM 746 CC VAL A 397 19.915 23.829 13.534 1.00 26. ATOM 747 CGZ VAL A 397 19.915 23.829 13.534 1.00 26. ATOM 747 CGZ VAL A 397 19.915 23.829 13.534 1.00 26. ATOM 748 C VAL A 397 19.915 23.829 13.534 1.00 26. ATOM 747 CGZ VAL A 397 19.915 23.829 13.534 1.00 26. ATOM 747 CGZ VAL A 397 19.915 23.829 13.534 1.00 26. ATOM 750 N PHE A 398 21.910 27.288 9.955 1.00 16. ATOM 751 CB PHE A 398 21.910 27.288 9.955 1.00 16. ATOM 752 CB PHE A 398 23.017 26.588 10.011 1.00 18. ATOM 756 CBI PHE A 398 23.017 26.588 10.011 1.00 21. ATOM 757 CCZ PHE A 398 23.017 26.588 10.011 1.00 21. ATOM 758 C PHE A 398 23.017 26.588 10.011 1.00 21. ATOM 758 C PHE A 398 23.017 26.588 10.011 1.00 21. ATOM 760 O PHE A 398 19.911 26.058 10.011 1.00 26. ATOM 760 O PHE A 398 23.017 26.588 10.011 1.00 21. ATOM 760 C PHE A 398 23.017 26.588 10.011 1.00 21. ATOM 760 C PHE A 398 23.017 26.588 10.011 1.00 21. ATOM 761 C LLE A 399 16.670 27.289 12.553 1.00 27. ATOM 762 C A RG A 400 15.402 27.745 5.397 1.00 1.00 26. ATOM 768 C ARG A 400 15.402 29.140 13.283 1.00 26. ATOM 768 C MET A 401 19.740 29.612 14.026		725	С	LEU A	394				
ATOM 728 CA GLU A 395 20.574 23.890 5.260 1.00 20. ATOM 729 CB GLU A 395 20.574 23.890 5.260 1.00 20. ATOM 730 CG GLU A 395 20.574 23.890 5.260 1.00 23. ATOM 731 CD GLU A 395 21.899 23.461 3.00 21. ATOM 732 OEI GLU A 395 21.899 23.461 3.00 27. ATOM 733 OEZ GLU A 395 22.852 23.482 2.434 1.00 27. ATOM 733 OEZ GLU A 395 20.709 23.428 2.526 1.00 27. ATOM 734 C GLU A 395 19.270 25.832 7.574 1.00 18. ATOM 736 N VAL A 396 18.311 23.810 7.498 1.00 18. ATOM 737 CA VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 739 CGI VAL A 396 14.587 23.854 8.517 1.00 18. ATOM 739 CGI VAL A 396 14.587 23.854 8.517 1.00 18. ATOM 740 CGZ VAL A 396 17.174 24.734 9.525 1.00 25. ATOM 741 C VAL A 396 17.174 24.734 9.525 1.00 25. ATOM 742 O VAL A 396 17.174 24.734 9.525 1.00 25. ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 745 CB VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 746 CGI VAL A 397 18.588 24.401 1.1617 1.00 18. ATOM 747 CGZ VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 C VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 750 N PHE A 398 19.981 26.676 12.359 1.00 21. ATOM 751 CB PHE A 398 20.625 27.355 10.735 10.00 23. ATOM 752 CB PHE A 398 20.625 27.355 10.735 1.00 17. ATOM 753 CB PHE A 398 20.625 27.355 10.735 1.00 17. ATOM 756 CEI PHE A 398 23.176 26.899 11.986 1.00 21. ATOM 757 CCB PHE A 398 23.176 26.899 11.986 1.00 21. ATOM 756 CB PHE A 398 23.017 26.588 10.669 1.00 22. ATOM 757 CB PHE A 398 23.077 26.589 10.00 21. ATOM 758 CB PHE A 398 23.077 26.580 10.155 1.00 17. ATOM 758 CB PHE A 398 23.077 26.589 10.00 21. ATOM 757 CB PHE A 398 23.077 26.589 10.00 21. ATOM 758 CB PHE A 398 23.077 26.589 10.00 21. ATOM 758 CB PHE A 398 23.077 26.589 10.00 21. ATOM 758 CB PHE A 399 16.671 29.382 10.296 1.00 24. ATOM 768 C ARG A 400 11.631 29.177 13.255 1.00 17. ATOM 768 C ARG A 400 11.6	MOTA						23.717		
ATOM 728 CA GJU A 395 20.574 23.890 5.260 1.00 22. ATOM 730 CG GJU A 395 21.881 23.459 4.611 1.00 26. ATOM 731 CD GJU A 395 21.881 23.459 4.611 1.00 26. ATOM 732 OEI GJU A 395 22.852 23.482 2.434 1.00 26. ATOM 733 OEZ GJU A 395 22.852 23.482 2.434 1.00 26. ATOM 734 CD GJU A 395 19.342 24.632 7.318 1.00 22. ATOM 735 O GJU A 395 19.342 24.632 7.318 1.00 20. ATOM 735 O GJU A 395 19.342 24.632 7.318 1.00 20. ATOM 736 N VAL A 396 18.311 23.810 7.498 1.00 18. ATOM 737 CA VAL A 396 18.311 23.810 7.498 1.00 18. ATOM 738 CB VAL A 396 15.891 23.342 7.818 1.00 24. ATOM 739 CGI VAL A 396 15.891 23.342 7.818 1.00 24. ATOM 740 CG2 VAL A 396 15.663 23.177 6.288 1.00 22. ATOM 741 C VAL A 396 17.474 27.44 9.525 1.00 25. ATOM 742 O VAL A 396 16.476 25.639 10.006 1.00 26. ATOM 743 N VAL A 397 18.072 24.073 10.232 1.00 26. ATOM 744 CA VAL A 397 18.958 24.401 11.617 1.00 18. ATOM 745 CB VAL A 397 19.915 23.829 13.534 1.00 26. ATOM 746 CGI VAL A 397 19.926 23.338 12.232 1.00 18. ATOM 747 CG2 VAL A 397 19.926 23.338 12.232 1.00 18. ATOM 748 C VAL A 397 19.926 23.338 12.232 1.00 18. ATOM 748 C VAL A 397 19.926 23.338 12.232 1.00 18. ATOM 748 C VAL A 397 19.926 23.338 12.232 1.00 18. ATOM 747 CG2 VAL A 397 19.926 23.338 12.232 1.00 18. ATOM 748 C VAL A 397 19.926 23.338 12.232 1.00 18. ATOM 750 N PHE A 398 20.625 27.355 10.0735 1.00 17. ATOM 751 CB PHE A 398 23.016 26.788 10.691 1.00 26. ATOM 752 CB PHE A 398 23.016 26.788 10.691 1.00 26. ATOM 755 CD PHE A 398 23.016 26.788 10.691 1.00 21. ATOM 756 CD1 PHE A 398 23.016 25.682 11.6635 1.00 17. ATOM 757 CC2 PHE A 398 23.016 25.682 10.011 1.00 18. ATOM 758 C PHE A 398 23.016 25.685 10.011 1.00 18. ATOM 758 C PHE A 398 23.016 25.685 10.011 1.00 18. ATOM 758 C PHE A 398 23.016 25.685 10.011 1.00 18. ATOM 760 O PHE A 398 19.911 28.486 10.249 1.00 19. ATOM 760 O PHE A 398 19.718 28.486 10.249 1.00 29. ATOM 761 N ILE A 399 16.692 27.745 5.397 1.00 16. ATOM 762 CB PHE A 398 19.718 28.486 10.291 1.00 16. ATOM 763 CB ILE A 399 16.670 29.813 11.00 20. ATOM 768 O N ARG A 400 15.402 29.140 13.283 1.	MOTA								
ATOM 729 CB GLU A 395 21.881 23.459 4.611 1.00 23. ATOM 731 CD GLU A 395 21.880 23.461 3.084 1.00 27. ATOM 732 OE1 GLU A 395 22.852 23.482 2.434 1.00 27. ATOM 733 OE2 GLU A 395 20.709 23.428 2.526 1.00 27. ATOM 734 C GLU A 395 19.270 25.832 7.574 1.00 20. ATOM 735 O GLU A 395 19.270 25.832 7.574 1.00 20. ATOM 736 N VAL A 396 18.311 23.810 7.498 1.00 18. ATOM 737 CA VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 7.7498 1.00 18. ATOM 739 CG1 VAL A 396 17.043 24.331 7.76 288 1.00 24. ATOM 739 CG1 VAL A 396 14.587 23.884 8.517 1.00 18. ATOM 740 CG2 VAL A 396 14.587 23.884 8.517 1.00 18. ATOM 741 C VAL A 396 17.174 24.744 9.525 1.00 25. ATOM 742 O VAL A 396 17.174 24.744 9.525 1.00 25. ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 746 CB VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 746 CB VAL A 397 19.296 23.338 12.232 1.00 18. ATOM 747 CG2 VAL A 397 19.296 23.338 12.232 1.00 18. ATOM 748 CB VAL A 397 19.296 23.338 12.232 1.00 18. ATOM 748 CB VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 748 CB VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 749 O VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 750 N PHE A 398 19.981 26.058 10.760 1.00 26. ATOM 751 CA PHE A 398 19.981 26.058 10.760 1.00 21. ATOM 752 CB PHE A 398 20.625 27.355 10.735 1.00 12. ATOM 753 CP PHE A 398 23.316 26.899 11.986 10.760 1.00 22. ATOM 755 CD2 PHE A 398 23.316 26.899 11.986 10.760 1.00 12. ATOM 756 CB PHE A 398 23.316 26.899 11.986 10.00 22. ATOM 757 CE2 PHE A 398 24.375 26.279 12.623 1.00 19. ATOM 760 O PHE A 398 19.981 26.058 10.760 1.00 12. ATOM 760 O PHE A 398 19.981 26.058 10.760 1.00 12. ATOM 760 C PHE A 398 23.316 26.899 11.986 10.00 22. ATOM 757 CE2 PHE A 398 23.316 26.899 11.986 10.00 22. ATOM 758 CB PHE A 398 24.375 26.279 12.623 1.00 22. ATOM 758 CB PHE A 398 24.375 26.279 12.623 1.00 22. ATOM 760 O PHE A 398 19.944 29.669 10.570 1.00 12. ATOM 761 N ILEA 399 16.692 27.745 5.397 11.00 17. ATOM 768 C BARG A 400 11.371 29.382 10.296 1.00 1.00 1.00 1.00 1.00 1	ATOM								1.00 22.76
ATOM 731 CD GLU A 395	MOTA								1.00 23.62
ATOM 732 OE1 GLU A 395 22.3 482 2.434 1.00 27. ATOM 733 OE2 GLU A 395 20.709 23.428 2.526 1.00 22. ATOM 734 C GLU A 395 19.342 24.632 7.318 1.00 12. ATOM 736 N VAL A 396 18.311 23.810 7.498 1.00 12. ATOM 737 CA VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 15.683 23.177 6.288 1.00 22. ATOM 740 CG2 VAL A 396 15.663 23.177 6.288 1.00 22. ATOM 740 CG2 VAL A 396 17.174 24.744 9.525 1.00 25. ATOM 742 O VAL A 396 17.174 24.744 9.525 1.00 25. ATOM 742 O VAL A 396 17.174 24.744 9.525 1.00 25. ATOM 744 CA VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 745 CB VAL A 397 18.577 24.073 10.232 1.00 23. ATOM 745 CB VAL A 397 18.277 24.073 10.232 1.00 23. ATOM 746 CG2 VAL A 397 18.517 22.069 12.472 1.00 16. ATOM 747 CG2 VAL A 397 18.517 22.069 12.472 1.00 16. ATOM 748 C VAL A 397 19.915 23.829 13.534 1.00 20. ATOM 749 O VAL A 397 18.517 22.069 12.472 1.00 16. ATOM 749 O VAL A 397 18.547 26.676 12.359 1.00 12. ATOM 749 O VAL A 397 18.547 26.676 12.359 1.00 12. ATOM 750 N PHE A 398 19.981 26.058 10.760 1.00 12. ATOM 751 CA PHE A 398 19.981 26.058 10.760 1.00 12. ATOM 752 CB PHE A 398 21.910 27.288 9.155 1.00 12. ATOM 753 CG PHE A 398 21.910 27.288 9.155 1.00 12. ATOM 756 CEI PHE A 398 23.316 26.899 11.986 1.00 22. ATOM 757 CC PHE A 398 24.375 26.279 12.623 1.00 23. ATOM 756 CEI PHE A 398 24.375 26.279 12.623 1.00 29. ATOM 757 CC PHE A 398 24.375 26.279 12.623 1.00 29. ATOM 760 O PHE A 398 39. 19.944 29.669 10.570 1.00 12. ATOM 760 C PHE A 398 39. 19.944 29.669 10.570 1.00 12. ATOM 761 N ILE A 399 16.770 29.352 10.035 1.00 12. ATOM 762 CA HE A 399 17.685 29.145 9.077 1.00 21. ATOM 763 CB ILE A 399 17.685 29.145 9.077 1.00 21. ATOM 764 CG2 ILE A 399 16.770 29.382 10.264 10.00 24. ATOM 765 CG1 ILE A 399 16.770 29.382 10.296 11.00 12. ATOM 760 O PHE A 398 29.16 770 29.382 10.00 29. ATOM 761 C ILE A 399 16.770 29.382 10.00 21.00 22. ATOM 762 CB ARG A 400 15.461 29.844 11.00 29. ATOM 764 CG2 ILE A 399 16.770 29.382 10.00	MOTA			GLU A	395				1.00 26.69
ATOM 733 OE2 GLU A 395 19.342 24.632 7.374 1.00 18. ATOM 734 C GLU A 395 19.342 24.632 7.574 1.00 18. ATOM 735 O GLU A 395 19.270 25.832 7.574 1.00 18. ATOM 736 N VAL A 396 18.311 23.810 7.498 1.00 18. ATOM 737 CA VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 15.891 23.342 7.818 1.00 24. ATOM 739 CG1 VAL A 396 15.891 23.342 7.818 1.00 24. ATOM 739 CG1 VAL A 396 15.663 23.177 6.288 1.00 22. ATOM 740 CG2 VAL A 396 15.663 23.177 6.288 1.00 22. ATOM 741 C VAL A 396 16.476 25.639 10.006 1.00 26. ATOM 742 C VAL A 397 18.077 24.073 10.232 1.00 25. ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 745 CB VAL A 397 19.915 23.382 13.534 1.00 20. ATOM 746 CG1 VAL A 397 19.915 23.829 13.534 1.00 20. ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 20. ATOM 748 C VAL A 397 19.915 23.829 13.534 1.00 20. ATOM 748 C VAL A 397 18.517 22.069 12.472 1.00 19. ATOM 749 O VAL A 397 18.517 22.069 12.472 1.00 19. ATOM 750 N PHE A 398 19.981 26.658 10.760 1.00 16. ATOM 751 CA PHE A 398 20.625 27.355 10.735 1.00 17. ATOM 752 CB PHE A 398 20.625 27.355 10.735 1.00 17. ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 24. ATOM 756 CD2 PHE A 398 23.017 26.588 10.669 1.00 24. ATOM 757 CC2 PHE A 398 23.316 26.699 10.570 1.00 16. ATOM 760 O PHE A 398 398 24.859 25.021 10.652 1.00 23. ATOM 750 N PHE A 398 398 24.859 25.021 10.652 1.00 23. ATOM 756 CD2 PHE A 398 24.859 25.021 10.652 1.00 23. ATOM 760 O PHE A 398 399 17.685 29.145 9.977 1.00 16. ATOM 760 O PHE A 399 17.685 29.145 9.077 1.00 21. ATOM 760 CB PHE A 398 19.944 29.669 10.570 1.00 19. ATOM 760 CB PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 O PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 O PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 CB PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 CB PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 CB PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 CB PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 CB PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 CB PHE A 399 11.695 29.145 9.077 1.00 21. ATOM 760 CB PHE A 399 11.695 29.			CD	GLU A	393				1.00 27.60
ATOM 734 C GLU A 395 19.342 24.632 7.318 1.00 18. ATOM 736 N VAL A 396 18.311 23.810 7.498 1.00 18. ATOM 737 CA VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 738 CB VAL A 396 17.043 24.331 8.031 1.00 24. ATOM 739 CG1 VAL A 396 14.587 23.854 8.517 1.00 18. ATOM 740 CG2 VAL A 396 17.174 24.744 9.525 1.00 25. ATOM 741 C VAL A 396 17.174 24.744 9.525 1.00 25. ATOM 742 O VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23. ATOM 745 CB VAL A 397 18.358 24.401 11.617 1.00 18. ATOM 746 CG1 VAL A 397 19.296 23.338 12.232 1.00 19. ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 20. ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 19. ATOM 748 C VAL A 397 19.006 25.802 11.635 1.00 16. ATOM 749 O VAL A 397 19.006 25.802 11.635 1.00 16. ATOM 750 N PHE A 398 19.981 26.058 10.760 1.00 16. ATOM 751 CA PHE A 398 19.981 26.058 10.760 1.00 16. ATOM 752 CB PHE A 398 23.316 26.899 11.986 1.00 21. ATOM 754 CDI PHE A 398 23.316 26.899 11.986 1.00 21. ATOM 755 CD PHE A 398 23.316 26.899 11.986 1.00 22. ATOM 756 CDI PHE A 398 23.316 26.899 11.986 1.00 22. ATOM 757 CE2 PHE A 398 23.316 26.899 11.986 1.00 23. ATOM 758 CC PHE A 398 23.316 26.899 11.986 1.00 23. ATOM 760 O PHE A 398 23.316 26.899 10.065 1.00 12. ATOM 761 N ILE A 399 17.685 29.145 9.077 1.00 19. ATOM 762 CB ILE A 399 17.685 29.145 9.077 1.00 19. ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 23. ATOM 760 C PHE A 398 23.316 26.279 12.623 1.00 23. ATOM 761 N ILE A 399 17.685 29.145 9.077 1.00 12. ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 27. ATOM 766 CDI ILE A 399 16.790 28.652 7.848 1.00 27. ATOM 767 CG ILE A 399 16.790 28.652 7.848 1.00 27. ATOM 768 C BHE A 398 24.859 25.021 10.652 1.00 23. ATOM 760 C A ARG A 400 15.451 28.415 12.087 1.00 14. ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 14. ATOM 771 CB ARG A 400 15.452 29.834 14.016 1.00 27. ATOM 778 C ARG A 400 11.371 23.775 11.			OET	GLU A	393				1.00 22.32
ATOM 736				CLII A	395				
ATOM 736 N VAL A 396								7.574	
ATOM 737 CA VAL A 396 ATOM 738 CB VAL A 396 ATOM 739 CG1 VAL A 396 ATOM 730 CG2 VAL A 396 ATOM 740 CG2 VAL A 396 ATOM 741 C VAL A 396 ATOM 741 C VAL A 396 ATOM 742 O VAL A 396 ATOM 742 O VAL A 396 ATOM 743 N VAL A 397 ATOM 744 CA VAL A 397 ATOM 745 CB VAL A 397 ATOM 746 CG1 VAL A 397 ATOM 746 CG1 VAL A 397 ATOM 747 ATOM 747 ATOM 748 C VAL A 397 ATOM 750 N PHE A 398 ATOM 751 CA PHE A 398 ATOM 752 CB PHE A 398 ATOM 753 CG PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 756 CE1 PHE A 398 ATOM 757 ATOM 757 ATOM 757 ATOM 757 CA PHE A 398 ATOM 758 C PHE A 398 ATOM 759 C PHE A 398 ATOM 760 C PHE A 398 ATOM 760 C PHE A 398 ATOM 761 N ILE A 399 ATOM 762 CA ILE A 399 ATOM 763 CB ILE A 399 ATOM 764 CD1 ILE A 399 ATOM 765 CG1 ILE A 399 ATOM 766 CD1 ILE A 399 ATOM 767 C C ILE A 399 ATOM 767 C C ILE A 399 ATOM 768 C A A A A A A A A A A A A A A A A A A				TAT. A	396			7.498	
ATOM 738 CB VAL A 396				VAT. A	396		24.331	8.031	
ATOM 739 CG1 VAL A 396				VAL A	396				
ATOM 740 CG2 VAL A 396				VAL A	396				
ATOM 741 C VAL A 396 17.174 24.744 10.025 1.00 25 ATOM 742 0 VAL A 397 18.077 24.073 10.232 1.00 23 ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23 ATOM 745 CB VAL A 397 18.358 24.401 11.617 1.00 18 ATOM 745 CB VAL A 397 19.296 23.338 12.232 1.00 19 ATOM 746 CG1 VAL A 397 19.296 23.338 12.232 1.00 19 ATOM 746 CG1 VAL A 397 19.296 23.338 12.232 1.00 19 ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 20 ATOM 749 0 VAL A 397 19.015 23.829 13.534 1.00 20 ATOM 749 0 VAL A 397 19.016 25.802 11.635 1.00 17 ATOM 750 N PHE A 398 19.981 26.058 10.760 1.00 16 ATOM 751 CA PHE A 398 20.625 27.355 10.735 1.00 12 ATOM 752 CB PHE A 398 21.910 27.288 9.955 1.00 12 ATOM 753 CG PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 23.796 25.645 10.014 1.00 21 ATOM 757 CE2 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 758 CZ PHE A 398 24.859 25.021 10.552 1.00 23 ATOM 758 CZ PHE A 398 24.859 25.021 10.552 1.00 23 ATOM 756 CE1 PHE A 398 19.718 28.486 10.29 10.00 24 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 764 CG2 ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 763 CB ILE A 399 18.663 29.145 9.077 1.00 20 ATOM 766 CG1 ILE A 399 16.790 28.652 7.888 1.00 24 ATOM 766 CG1 ILE A 399 16.790 28.652 7.888 1.00 24 ATOM 767 CG ILE A 399 16.790 28.652 7.888 1.00 24 ATOM 768 O ILE A 399 16.791 29.382 10.296 1.00 17 ATOM 768 O ILE A 399 16.791 29.382 10.296 1.00 17 ATOM 768 O ILE A 399 16.791 29.382 10.296 1.00 17 ATOM 767 NH ARG A 400 15.451 28.415 12.2976 1.00 17 ATOM 768 O ILE A 399 16.6771 29.382 10.296 1.00 17 ATOM 767 NH ARG A 400 15.451 28.415 12.2976 1.00 17 ATOM 778 C ARG A 400 15.456 29.140 13.283 1.00 27 ATOM 778 C ARG A 400 15.456 29.140 13.283 1.00 27 ATOM 778 C ARG A 400 15.456 29.340 11.00 12.0			CG2	VAL A	396				1.00 22.83
ATOM 742 O VAL A 396 16.476 25.639 10.006 1.00 23 ATOM 743 N VAL A 397 18.077 24.073 10.232 1.00 23 ATOM 744 CA VAL A 397 18.358 24.401 11.617 1.00 18 ATOM 745 CB VAL A 397 19.296 23.338 12.232 1.00 19 ATOM 746 CG1 VAL A 397 19.915 23.829 13.534 1.00 20 ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 19 ATOM 747 CG2 VAL A 397 18.517 22.069 12.472 1.00 16 ATOM 749 O VAL A 397 18.517 22.069 12.472 1.00 16 ATOM 749 O VAL A 397 18.517 22.069 12.472 1.00 16 ATOM 750 N PHE A 398 20.625 27.355 10.0 17 ATOM 750 N PHE A 398 20.625 27.355 10.735 1.00 17 ATOM 751 CA PHE A 398 20.625 27.355 10.735 1.00 12 ATOM 752 CB PHE A 398 21.910 27.288 9.955 10.0 16 ATOM 753 CG PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 24 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 21 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 21 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 21 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 21 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CEI PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CEI PHE A 398 24.859 25.021 10.652 1.00 23 ATOM 758 CZ PHE A 398 19.944 29.669 10.570 10.0 19 ATOM 760 N PHE A 398 19.944 29.669 10.570 1.00 19 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 26 ATOM 762 CA ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 766 CD ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 766 CD ILE A 399 16.790 28.652 7.656 1.00 17 ATOM 767 C ILE A 399 16.790 28.652 7.656 1.00 17 ATOM 767 C A ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 767 C A ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 767 NH2 ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 777 CB ARG A 400 15.451 28.415 12.087 1.00 27 ATOM 778 C ARG A 400 15.452 29.177 13.235 1.00 27 ATOM 778 C ARG A 400 15.452 29.177 13.235 1.00 27 ATOM 778 C ARG A 400 15.452 29.177 10.662 1.00 17 ATOM 778 C ARG A 400 15.452 29.177 10.662 1.00 17 ATOM 779 NH2 ARG A 400 15.455 29.833 14.320 1.00 27 ATOM 779 NH2 ARG A 400 15.455 29.833 14.320 1.00 27 ATOM 779 O ARG				VAL A	396				
ATOM 744 CA VAL A 397 18.077 24.071 10.232 1.00 18 ATOM 745 CB VAL A 397 19.296 23.338 12.232 1.00 19 ATOM 745 CG2 VAL A 397 19.296 23.338 12.232 1.00 19 ATOM 746 CG1 VAL A 397 19.915 23.829 13.534 1.00 20 ATOM 747 CG2 VAL A 397 19.006 25.802 11.635 1.00 16 ATOM 748 C VAL A 397 19.006 25.802 11.635 1.00 16 ATOM 749 O VAL A 397 18.547 26.676 12.359 1.00 21 ATOM 750 N PHE A 398 19.981 26.058 10.760 1.00 16 ATOM 751 CA PHE A 398 20.625 27.355 10.735 1.00 12 ATOM 752 CB PHE A 398 23.017 26.588 10.669 1.00 26 ATOM 753 CG PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 21 ATOM 755 CD2 PHE A 398 23.796 25.645 10.014 1.00 21 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 758 CZ PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 759 C PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 750 N PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CG1 PLE A 399 17.685 29.145 9.077 1.00 19 ATOM 760 N PLE A 398 19.718 28.486 10.249 1.00 19 ATOM 761 N LLE A 399 17.685 29.145 9.077 1.00 21 ATOM 765 CG1 ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 766 CG1 ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 766 CG1 ILE A 399 16.770 28.652 7.848 1.00 23 ATOM 767 C ILE A 399 16.770 28.652 7.656 1.00 17 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.484 30.507 10.662 1.00 26 ATOM 777 CA ARG A 400 15.451 28.415 12.087 11.00 12 ATOM 778 C ARG A 400 15.451 28.415 12.087 11.852 1.00 17 ATOM 778 C ARG A 400 15.452 29.145 12.246 1.00 17 ATOM 778 C ARG A 400 15.452 29.145 12.966 1.00 17 ATOM 778 C ARG A 400 15.452 29.145 12.246 1.00 17 ATOM 778 C ARG A 400 15.456 29.140 13.223 1.00 22 ATOM 778 C ARG A 400 15.456 29.140 13.223 1.00 22 ATOM 778 C ARG A 400 15.456 29.140 13.223 1.00 22 ATOM 778 C ARG A 400 15.456 29.140 13.223 1.00 22 ATOM 778 C ARG A 400 15.456 29.140 13.223 1.00 22 ATOM 778				VAL A	396				
ATOM 745 CB VAL A 397 19.296 23.338 12.232 1.00 19 ATOM 746 CGI VAL A 397 19.915 23.829 13.534 1.00 10 ATOM 747 CG2 VAL A 397 19.915 23.829 13.534 1.00 10 ATOM 748 C VAL A 397 19.915 23.829 13.534 1.00 16 ATOM 749 O VAL A 397 19.006 25.802 11.635 1.00 17 ATOM 749 O VAL A 397 18.547 26.676 12.359 1.00 17 ATOM 750 N PHE A 398 19.981 26.058 10.760 1.00 16 ATOM 751 CA PHE A 398 20.625 27.355 10.735 1.00 12 ATOM 752 CB PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 23.017 26.588 10.669 1.00 21 ATOM 755 CD2 PHE A 398 23.796 25.645 10.014 1.00 21 ATOM 756 CEI PHE A 398 24.859 25.021 10.652 1.00 23 ATOM 757 CE2 PHE A 398 24.859 25.021 10.652 1.00 23 ATOM 758 CZ PHE A 398 25.515 25.334 11.953 1.00 22 ATOM 759 C PHE A 398 19.914 29.669 10.570 1.00 19 ATOM 760 O PHE A 398 19.914 29.669 10.570 1.00 19 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 763 CB ILE A 399 16.690 28.583 6.538 1.00 24 ATOM 764 CG2 ILE A 399 16.690 28.583 6.538 1.00 24 ATOM 765 CG1 ILE A 399 16.902 29.7745 5.397 1.00 21 ATOM 766 CDI ILE A 399 16.902 29.7745 5.397 1.00 21 ATOM 767 CC ARG A 400 15.002 7.7945 5.397 1.00 17 ATOM 777 CRA ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 778 C ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 779 CA ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 779 CA ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 779 CA ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 779 CA ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 779 CA ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 779 CA ARG A 400 15.451 28.415 12.087 1.00 22 ATOM 779 CA ARG A 400 15.456 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.462 29.834 14.016 1.00 24 ATOM 778 C ARG A 400 15.462 29.834 14.016 1.00 24 ATOM 778 C MET		743	N	VAL A	397				
ATOM 746 CG1 VAL A 397 ATOM 747 CG2 VAL A 397 ATOM 747 CG2 VAL A 397 ATOM 748 C VAL A 397 ATOM 749 O VAL A 397 ATOM 749 O VAL A 397 ATOM 750 N PHE A 398 ATOM 751 CA PHE A 398 ATOM 752 CB PHE A 398 ATOM 753 CG PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 756 CE1 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 758 CZ PHE A 398 ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 750 C PHE A 398 ATOM 756 CD2 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 758 CZ PHE A 398 ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 750 C PHE A 399 ATOM 761 N ILE A 399 ATOM 762 CA ILE A 399 ATOM 763 CB ILE A 399 ATOM 764 CG2 ILE A 399 ATOM 765 CG1 ILE A 399 ATOM 766 CD1 ILE A 399 ATOM 767 C ILE A 399 ATOM 767 C ILE A 399 ATOM 767 C ILE A 399 ATOM 768 C ILE A 399 ATOM 769 N ARG A 400 ATOM 771 CB ARG A 400 ATOM 773 CD ARG A 400 ATOM 774 NH2 ARG A 400 ATOM 775 CZ ARG A 400 ATOM 776 NH1 ARG A 400 ATOM 777 NH2 ARG A 400 ATOM 778 C ARG A 400 ATOM 77	,	744	CA						
ATOM 746 CG1 VAL A 397 ATOM 747 CG2 VAL A 397 ATOM 748 C VAL A 397 ATOM 748 C VAL A 397 ATOM 749 O VAL A 397 ATOM 749 O VAL A 397 ATOM 750 N PHE A 398 ATOM 751 CA PHE A 398 ATOM 752 CB PHE A 398 ATOM 752 CB PHE A 398 ATOM 753 CG PHE A 398 ATOM 754 CD1 PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 756 CE1 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 758 CZ PHE A 398 ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 750 C PHE A 398 ATOM 751 C CA ILE A 399 ATOM 751 C CA ILE A 399 ATOM 752 CB ILE A 399 ATOM 753 CB ILE A 399 ATOM 754 CB ILE A 399 ATOM 755 CB ILE A 399 ATOM 765 CB ILE A 399 ATOM 766 CD ILE A 399 ATOM 767 C ILE A 399 ATOM 767 C ILE A 399 ATOM 768 CD ILE A 399 ATOM 769 N ARG A 400 ATOM 760 N ARG A 400 ATOM 770 CA ARG A 400 ATOM 771 CB ARG A 400 ATOM 773 CC ARG A 400 ATOM 775 CC ARG A 400 ATOM 776 C ARG A 400 ATOM 777 NN2 ARG A 400 ATOM 778 C ARG A 400 ATOM 780 N MET A 401 ATOM 781 C ARG A 400 ATOM 782 C BRET A 401 ATOM 785 C MET A 401 ATOM 785 C MET A 401 ATOM 785 C MET A 401 ATOM 786 C	ATOM	745	CB	VAL A	397	19.296			
ATOM 748 C VAL A 397 ATOM 749 O VAL A 397 ATOM 749 O VAL A 397 ATOM 749 O VAL A 397 ATOM 750 N PHE A 398 ATOM 751 CA PHE A 398 ATOM 751 CA PHE A 398 ATOM 752 CB PHE A 398 ATOM 753 CG PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 756 CE1 PHE A 398 ATOM 757 ATOM 757 ATOM 757 ATOM 758 CZ PHE A 398 ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 750 CE2 PHE A 398 ATOM 750 CE3 PHE A 399 ATOM 750 CE3 P	MOTA		CG1	VAL A	397				
ATOM 748 C VAL A 397 ATOM 749 O VAL A 397 ATOM 750 N PHE A 398 ATOM 751 CA PHE A 398 ATOM 751 CA PHE A 398 ATOM 752 CB PHE A 398 ATOM 753 CG PHE A 398 ATOM 753 CG PHE A 398 ATOM 754 CD1 PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 755 CD2 PHE A 398 ATOM 756 CE1 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 758 CZ ATOM 758 CZ ATOM 759 C PHE A 398 ATOM 759 C PHE A 398 ATOM 750 C PHE A 398 ATOM 750 C PHE A 398 ATOM 757 CE2 PHE A 398 ATOM 758 CZ ATOM 759 C PHE A 398 ATOM 750 C PHE A 398 ATOM 751 N ILE A 399 ATOM 752 CA ILE A 399 ATOM 753 CG ILE A 399 ATOM 756 CG1 ILE A 399 ATOM 756 CG1 ILE A 399 ATOM 757 CC ILE A 399 ATOM 757 CC ILE A 399 ATOM 758 CG ILE A 399 ATOM 766 CD1 ILE A 399 ATOM 767 C ILE A 399 ATOM 767 C ILE A 399 ATOM 767 C ILE A 399 ATOM 768 CD1 ILE A 399 ATOM 769 N ARG A 400 ATOM 760 N ARG A 400 ATOM 761 N ARG A 400 ATOM 762 CA ARG A 400 ATOM 763 CA ARG A 400 ATOM 765 CB ARG A 400 ATOM 766 CD1 ILE A 399 ATOM 767 CA ARG A 400 ATOM 768 C BET A 401 ATOM 768 C BET	MOTA			VAL A	397				
ATOM 750 N PHE A 398 19.981 26.058 10.760 1.00 16 ATOM 751 CA PHE A 398 20.625 27.355 10.735 1.00 12 ATOM 752 CB PHE A 398 21.610 27.288 9.955 1.00 16 ATOM 753 CG PHE A 398 23.316 26.588 10.669 1.00 22 ATOM 754 CD1 PHE A 398 23.316 26.589 11.986 1.00 21 ATOM 755 CD2 PHE A 398 23.316 26.6899 11.986 1.00 21 ATOM 755 CD2 PHE A 398 24.375 26.279 12.623 1.00 22 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 757 CE2 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 757 CE2 PHE A 398 24.859 25.021 10.652 1.00 23 ATOM 759 C PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 760 O PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 762 CA ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 27 ATOM 765 CG1 ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 766 CD1 ILE A 399 16.790 28.652 7.856 1.00 17 ATOM 766 CD1 ILE A 399 16.791 29.382 10.296 1.00 17 ATOM 766 CD1 ILE A 399 16.484 30.507 10.662 1.00 26 ATOM 767 CA ARG A 400 16.317 29.382 10.296 1.00 18 ATOM 769 N ARG A 400 16.317 28.307 10.921 1.00 19 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 775 CZ ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 775 CZ ARG A 400 13.783 26.537 11.852 1.00 17 ATOM 776 NH1 ARG A 400 11.371 23.3775 11.909 1.00 27 ATOM 775 CZ ARG A 400 13.783 26.537 11.852 1.00 17 ATOM 776 NH1 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 15.456 29.844 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.844 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.844 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.844 14.016 1.00 24 ATOM 778 C ARG A 400 15.456 29.844 14.016 1.00 24 ATOM 778 C ARG A 400 17.462 29.140 13.283 1.00 24 ATOM 778 C ARG A 400 17.462 29.140 13.283 1.00 24 ATOM 778 C ARG A 400 17.462 29.140 13.283 1.00 24 ATOM 778 C ARG A 400 17.462 29.140 13.283 1.00 24 ATOM 788 C	MOTA			VAL A	397				
ATOM 750 N PARE A 398 20.625 27.355 10.735 1.00 12 ATOM 751 CA PHE A 398 21.910 27.288 9.955 1.00 16 ATOM 753 CG PHE A 398 23.017 26.588 9.955 1.00 16 ATOM 753 CG PHE A 398 23.017 26.588 9.955 1.00 16 ATOM 754 CD1 PHE A 398 23.017 26.588 9.11.986 1.00 21 ATOM 755 CD2 PHE A 398 23.796 25.645 10.014 1.00 21 ATOM 755 CD2 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 757 CE2 PHE A 398 24.859 25.021 10.652 1.00 23 ATOM 759 C PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 760 O PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 761 N ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 762 CA ILE A 399 17.685 29.145 9.077 1.00 27 ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 764 CG2 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 765 CG1 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 766 CD1 ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 766 CD1 ILE A 399 16.790 28.652 7.848 1.00 27 ATOM 766 OILE A 399 16.790 28.652 7.848 1.00 27 ATOM 766 OILE A 399 16.790 28.652 7.848 1.00 27 ATOM 766 OILE A 399 16.790 28.553 1.00 17 ATOM 767 C ILE A 399 16.790 28.553 10.00 17 ATOM 767 C ILE A 399 16.791 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.791 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.791 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.791 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.791 29.382 10.226 1.00 18 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 15 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 15 ATOM 773 CD ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.610 11.261 1.00 18 ATOM 778 C ARG A 400 11.371 23.610 11.261 1.00 18 ATOM 778 C ARG A 400 11.371 23.610 11.261 1.00 18 ATOM 778 C ARG A 400 11.371 23.610 11.261 1.00 18 ATOM 788 C MET A 401 18.251 29.813 14.320									
ATOM 751 CB PHE A 398 21.910 27.288 9.955 1.00 16 ATOM 752 CB PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 754 CD1 PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 755 CD2 PHE A 398 23.316 26.899 11.986 1.00 21 ATOM 755 CD2 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 23 ATOM 757 CE2 PHE A 398 24.375 26.279 12.652 1.00 23 ATOM 758 CZ PHE A 398 24.375 25.021 10.652 1.00 23 ATOM 759 C PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 760 O PHE A 398 19.718 28.486 10.254 1.00 19 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 762 CA ILE A 399 17.685 29.145 9.077 1.00 19 ATOM 763 CB ILE A 399 16.790 28.552 7.848 1.00 23 ATOM 765 CG1 ILE A 399 17.685 29.145 9.077 1.00 27 ATOM 766 CD1 ILE A 399 17.608 28.553 6.538 1.00 26 ATOM 766 CD1 ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 766 CD1 ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 767 C ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 768 O ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 768 O ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 768 O ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 767 C ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 768 O ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.712 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.712 29.382 10.296 1.00 18 ATOM 767 C A ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 18 ATOM 773 CD ARG A 400 13.783 26.537 11.852 1.00 18 ATOM 774 NE ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 CD ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 NH2 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 CD ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 CD ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 CD ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 CD ARG A 400 17.462 29.140 13.283 1.00 27 ATOM 778 CD ARG A 400 17.462 29.140 13.283 1.00 27 ATOM 778 CD ARG A 400 17.462 29.140 13.283 1.00 27 ATOM 778 CD ARG A 400 17.462 29.140 13.283 1.00 27 ATOM 788 CD MET A 4									1.00 12.50
ATOM 753 CG PHE A 398 23.017 26.588 10.669 1.00 22 ATOM 754 CD1 PHE A 398 23.316 26.899 11.986 1.00 21 ATOM 755 CD2 PHE A 398 23.796 25.645 10.014 1.00 21 ATOM 756 CE1 PHE A 398 24.375 26.279 12.623 1.00 22 ATOM 757 CE2 PHE A 398 24.375 26.279 12.623 1.00 22 ATOM 758 CZ PHE A 398 25.151 25.334 11.953 1.00 22 ATOM 759 C PHE A 398 25.151 25.334 11.953 1.00 22 ATOM 760 O PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 762 CA ILE A 399 17.685 29.145 9.077 1.00 19 ATOM 763 CB ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 763 CB ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 765 CG1 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 766 CD1 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 766 CD1 ILE A 399 16.771 29.382 10.296 1.00 17 ATOM 766 CD1 ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 769 N ARG A 400 16.317 28.307 10.921 1.00 18 ATOM 770 CA ARG A 400 15.401 2.00 27.029 12.553 1.00 17 ATOM 771 CB ARG A 400 15.401 27.029 12.553 1.00 17 ATOM 773 CD ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 774 NE ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 775 CZ ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 774 NE ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 777 NH2 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 777 NH2 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.221 23.610 11.2276 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 11.4401 11.00 11.4401 11.00 11.4401 11.00 11.4401 11.00 11.4401 11.00 11.4401 11.00 11.4401				PHE 7	1 398 1 398				
ATOM 754 CD1 PHE A 398								10.669	1.00 22.50
ATOM 756 CD2 PHE A 398 23.796 25.645 10.014 1.00 21 ATOM 756 CE1 PHE A 398 24.859 25.021 10.652 1.00 23 ATOM 757 CE2 PHE A 398 24.859 25.021 10.652 1.00 23 ATOM 758 CZ PHE A 398 25.151 25.334 11.953 1.00 22 ATOM 759 C PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 760 O PHE A 398 19.718 28.486 10.249 10.570 1.00 19 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 762 CA ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 764 CG2 ILE A 399 16.790 28.652 7.656 1.00 17 ATOM 766 CG1 ILE A 399 17.608 28.583 6.538 1.00 24 ATOM 766 CG1 ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.781 28.307 10.921 1.00 18 ATOM 770 CA ARG A 400 16.317 28.307 10.921 1.00 18 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 773 CD ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 775 CZ ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 775 CZ ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 775 NH2 ARG A 400 11.643 23.021 12.976 1.00 26 ATOM 775 NH2 ARG A 400 11.643 23.021 12.976 1.00 26 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 26 ATOM 777 NH2 ARG A 400 11.643 23.021 12.976 1.00 26 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 26 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 780 N MET A 401 18.251 29.813 14.320 1.00 27 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 27 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 783 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 785 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 785 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 785 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 785 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 785 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 785 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 785 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 7							26.899		1.00 21.63
ATOM 756 CE1 PHE A 398			_				25.645		1.00 21.83
ATOM 758 CZ PHE A 398				PHE A	A 398	24.375			1.00 22.54
ATOM 758 CZ PHE A 398				PHE A	A 398				1.00 23.29
ATOM 769 C PHE A 398 19.718 28.486 10.249 1.00 19 ATOM 760 O PHE A 398 19.944 29.669 10.570 1.00 19 ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 ATOM 762 CA ILE A 399 17.685 29.145 9.077 1.00 21 ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 764 CG2 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 765 CG1 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 766 CD1 ILE A 399 16.741 29.382 10.296 1.00 17 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 19 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 15 ATOM 772 CG ARG A 400 15.000 27.029 12.553 1.00 15 ATOM 773 CD ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 774 NE ARG A 400 13.420 25.143 12.246 1.00 17 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 22 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 22 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 22 ATOM 778 C ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 780 N MET A 401 18.251 29.813 14.320 1.00 23 ATOM 781 CA MET A 401 19.740 29.612 14.026 1.00 23 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 23 ATOM 783 CG MET A 401 22.356 30.190 14.524 1.00 24 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 24 ATOM 785 CC MET A 401 22.858 28.674 14.579 1.00 30 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2			CZ	PHE A	A 398				1.00 22.30
ATOM 761 N ILE A 399 18.663 28.138 9.513 1.00 20 21 20 20 21 2.553 1.00 17 20 21 20 21 23.610 11.254 1.00 12 21 23.705 78 C ARG A 400 12.189 24.760 11.254 1.00 12 21 23.705 79 0 ARG A 400 15.451 23.775 11.909 1.00 27 24 27 27 28 27 28 27 28 28 29 27 28 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		759	С						1.00 19.24
ATOM 762 CA ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 764 CG2 ILE A 399 15.574 29.562 7.656 1.00 17 ATOM 765 CG1 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 766 CD1 ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 769 N ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 17 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 773 CD ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 774 NE ARG A 400 13.420 25.143 12.246 1.00 15 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.775 11.909 1.00 27 ATOM 776 NH2 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 777 NH2 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 780 N MET A 401 18.251 29.813 14.320 1.00 28 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 28 ATOM 782 CB MET A 401 18.251 29.813 14.320 1.00 28 ATOM 783 CG MET A 401 18.251 29.813 14.320 1.00 28 ATOM 784 SD MET A 401 22.858 28.674 14.579 1.00 38 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 38 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 28 ATOM 785 CE MET A 401 18.177 31.913 15.495 1.00 28 ATOM 785 CE MET A 401 18.177 31.913 15.495 1.00 28 ATOM 785 CE MET A 401 18.177 31.913 15.495 1.00 28 ATOM 785 CE M		760	О			19.944			1 00 20 43
ATOM 763 CB ILE A 399 16.790 28.652 7.848 1.00 23 ATOM 764 CG2 ILE A 399 15.574 29.562 7.656 1.00 17 ATOM 765 CG1 ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 766 CD1 ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 768 0 ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 769 N ARG A 400 16.317 28.307 10.921 1.00 19 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 19 ATOM 771 CB ARG A 400 15.000 27.029 12.553 1.00 17 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 773 CD ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 774 NE ARG A 400 13.420 25.143 12.246 1.00 17 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 775 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 778 C ARG A 400 16.132 29.177 13.235 1.00 27 ATOM 778 C ARG A 401 18.251 29.813 14.320 1.00 27 ATOM 780 N MET A 401 18.251 29.813 14.320 1.00 27 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 27 ATOM 784 SD MET A 401 19.740 29.612 14.026 1.00 27 ATOM 784 SD MET A 401 19.740 29.612 14.026 1.00 27 ATOM 784 SD MET A 401 19.740 29.612 14.026 1.00 27 ATOM 784 SD MET A 401 19.740 29.612 14.026 1.00 27 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2	MOTA			ILE A	A 399				1.00 21.75
ATOM 764 CG2 ILE A 399 15.574 29.562 7.656 1.00 17 ATOM 765 CG1 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 766 CD1 ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 769 N ARG A 400 16.317 28.307 10.921 1.00 19 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 771 CB ARG A 400 13.783 26.537 11.852 1.00 17 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 17 ATOM 773 CD ARG A 400 13.420 25.143 12.246 1.00 17 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 778 C ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 780 N MET A 401 18.251 29.813 14.320 1.00 28 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 28 ATOM 782 CB MET A 401 18.251 29.813 14.320 1.00 28 ATOM 783 CG MET A 401 19.740 29.612 14.026 1.00 28 ATOM 784 SD MET A 401 19.740 29.612 14.026 1.00 28 ATOM 785 CE MET A 401 22.356 30.190 14.524 1.00 28 ATOM 785 CE MET A 401 22.356 30.190 14.524 1.00 28 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.17	ATOM			ILE	A 399				1.00 23.69
ATOM 765 CG1 ILE A 399 17.608 28.583 6.538 1.00 26 ATOM 766 CD1 ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 769 N ARG A 400 15.451 28.415 12.087 1.00 19 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 19 ATOM 771 CB ARG A 400 15.451 28.415 12.087 1.00 15 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 773 CD ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 774 NE ARG A 400 13.420 25.143 12.246 1.00 17 ATOM 775 CZ ARG A 400 12.189 24.760 11.553 1.00 27 ATOM 776 NH1 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 28 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 28 ATOM 780 N MET A 401 18.251 29.813 14.320 1.00 28 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 28 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 18 ATOM 784 SD MET A 401 20.681 30.082 15.096 1.00 18 ATOM 785 CE MET A 401 22.356 30.190 14.524 1.00 28 ATOM 786 C MET A 401 22.356 30.190 14.524 1.00 28 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31			-				29 562		1.00 17.51
ATOM 766 CD1 ILE A 399 16.942 27.745 5.397 1.00 17 ATOM 767 C ILE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 O ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 769 N ARG A 400 16.317 28.307 10.921 1.00 19 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 771 CB ARG A 400 15.000 27.029 12.553 1.00 17 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 773 CD ARG A 400 13.420 25.143 12.246 1.00 17 ATOM 774 NE ARG A 400 12.189 24.760 11.553 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.371 23.775 11.909 1.00 23 ATOM 777 NH2 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 779 O ARG A 400 16.132 29.177 13.235 1.00 23 ATOM 780 N MET A 401 15.456 29.834 14.016 1.00 23 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 25 ATOM 782 CB MET A 401 18.251 29.813 14.320 1.00 25 ATOM 783 CG MET A 401 19.740 29.612 14.026 1.00 25 ATOM 784 SD MET A 401 20.681 30.082 15.096 1.00 18 ATOM 785 CE MET A 401 22.356 30.190 14.524 1.00 26 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 24 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 24 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 24 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 24 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 24 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 17.942 31.308 14.448 1.00 24 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 25 ATOM 787 O MET A 401 18.177 31			_	TIPE	A. 333 7. 200				1.00 26.64
ATOM 766 CDI IDE A 399 16.771 29.382 10.296 1.00 18 ATOM 768 0 ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 769 N ARG A 400 16.317 28.307 10.921 1.00 19 ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 771 CB ARG A 400 15.000 27.029 12.553 1.00 17 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 773 CD ARG A 400 13.420 25.143 12.246 1.00 15 ATOM 774 NE ARG A 400 12.189 24.760 11.553 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 777 NH2 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 778 C ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 779 O ARG A 400 16.132 29.177 13.235 1.00 27 ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 27 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 27 ATOM 782 CB MET A 401 18.251 29.813 14.320 1.00 27 ATOM 783 CG MET A 401 19.740 29.612 14.026 1.00 27 ATOM 784 SD MET A 401 22.858 28.674 14.579 1.00 37 ATOM 785 CE MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2				TIE '	A 333			5.397	1.00 17.97
ATOM 768 O ILE A 399 16.484 30.507 10.662 1.00 20 ATOM 769 N ARG A 400 15.451 28.415 12.087 1.00 20 ATOM 771 CB ARG A 400 15.000 27.029 12.553 1.00 17 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 773 CD ARG A 400 13.420 25.143 12.246 1.00 15 ATOM 774 NE ARG A 400 12.189 24.760 11.553 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 777 NH2 ARG A 400 10.221 23.610 11.261 1.00 12 ATOM 778 C ARG A 400 10.221 23.610 11.261 1.00 12 ATOM 778 C ARG A 400 16.132 29.177 13.235 1.00 23 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 24 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 24 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 25 ATOM 784 SD MET A 401 19.740 29.612 14.026 1.00 25 ATOM 784 SD MET A 401 20.681 30.082 15.096 1.00 14 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 3 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2 ATO				TT.D	A 399				1.00 18.17
ATOM 769 N ARG A 400 15.451 28.415 12.087 1.00 15.451 28.415 12.087 1.00 20.4553 1.00 17.45545 1.00 15.451 28.415 12.087 1.00 20.4555 1.00 17.4555 1				TLE	A 399			10.662	1.00 20.59
ATOM 770 CA ARG A 400 15.451 28.415 12.087 1.00 27 ATOM 771 CB ARG A 400 15.000 27.029 12.553 1.00 15 ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 15 ATOM 773 CD ARG A 400 13.420 25.143 12.246 1.00 17 ATOM 774 NE ARG A 400 12.189 24.760 11.553 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 777 NH2 ARG A 400 10.221 23.610 11.261 1.00 13 ATOM 778 C ARG A 400 16.132 29.177 13.235 1.00 27 ATOM 779 O ARG A 400 16.132 29.177 13.235 1.00 27 ATOM 780 N MET A 401 15.456 29.834 14.016 1.00 27 ATOM 781 CA MET A 401 17.462 29.140 13.283 1.00 20 ATOM 782 CB MET A 401 18.251 29.813 14.320 1.00 27 ATOM 783 CG MET A 401 19.740 29.612 14.026 1.00 27 ATOM 784 SD MET A 401 20.681 30.082 15.096 1.00 17 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 3 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2				ARG	A 400		28.307		
ATOM 771 CB ARG A 400 15.000 27.029 12.553 1.00 12.400 17.000 17.									1.00 20.62
ATOM 772 CG ARG A 400 13.783 26.537 11.852 1.00 13.470M 773 CD ARG A 400 13.420 25.143 12.246 1.00 13.470M 774 NE ARG A 400 12.189 24.760 11.553 1.00 23.470M 775 CZ ARG A 400 11.371 23.775 11.909 1.00 23.470M 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 23.470M 777 NH2 ARG A 400 10.221 23.610 11.261 1.00 13.470M 778 C ARG A 400 16.132 29.177 13.235 1.00 23.470M 779 O ARG A 400 15.456 29.834 14.016 1.00 23.470M 780 N MET A 401 17.462 29.140 13.283 1.00 23.470M 781 CA MET A 401 18.251 29.813 14.320 1.00 23.470M 782 CB MET A 401 18.251 29.813 14.320 1.00 23.470M 783 CG MET A 401 20.681 30.082 15.096 1.00 13.470M 784 SD MET A 401 20.681 30.082 15.096 1.00 14.470M 785 CE MET A 401 22.858 28.674 14.579 1.00 34.470M 785 CE MET A 401 17.942 31.308 14.448 1.00 24.470M 786 C MET A 401 17.942 31.308 14.448 1.00 24.470M 786 C MET A 401 18.177 31.913 15.495 1.00 24.470M 787 O MET A 401 18.177 31.9				ARG	A 400				1.00 17.24
ATOM 773 CD ARG A 400 13.420 25.143 12.246 1.00 27 ATOM 774 NE ARG A 400 12.189 24.760 11.553 1.00 27 ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 777 NH2 ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 778 C ARG A 400 16.132 29.177 13.235 1.00 23 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 20 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 23 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 23 ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 14 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 24 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 34 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 24 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 24 ATOM 786 C MET A 401 18.177 31.913 15.495 1.00 2				ARG	A 400				1.00 13.74
ATOM 774 NE ARG A 400 12.189 24.760 11.333 1.00 2. ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 2. ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 2. ATOM 777 NH2 ARG A 400 10.221 23.610 11.261 1.00 19. ATOM 778 C ARG A 400 16.132 29.177 13.235 1.00 2. ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 2. ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 2. ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 2. ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 2. ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 1. ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 2. ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 3. ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2. ATOM 786 C MET A 401 18.177 31.913 15.495 1.00 2. ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2.			CD	ARG	A 400				1.00 17.01
ATOM 775 CZ ARG A 400 11.371 23.775 11.909 1.00 27 ATOM 776 NH1 ARG A 400 11.643 23.021 12.976 1.00 27 ATOM 777 NH2 ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 778 C ARG A 400 16.132 29.177 13.235 1.00 27 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 20 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 23 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 23 ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 13 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 23 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 3 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2		774	NE	ARG	A 400				1 00 21.04
ATOM 776 NH1 ARG A 400 10.221 23.610 11.261 1.00 19 ATOM 777 NH2 ARG A 400 16.132 29.177 13.235 1.00 23 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 23 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 23 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 23 ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 13 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 23 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 33 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2		775	CZ	ARG	A 400				1.00 27.51
ATOM 777 NH2 ARG A 400 16.132 29.177 13.235 1.00 27 ATOM 779 O ARG A 400 15.456 29.834 14.016 1.00 27 ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 27 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 27 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 27 ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 17 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 27 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 37 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 27 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2	MOTA		NH.	1 ARG	A 400				1.00 19.58
ATOM 778 C ARG A 400 15.456 29.834 14.016 1.00 23 ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 26 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 26 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 16 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 26 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 36 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 26 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2	MOTA			2 ARG	A 400				1.00 22.12
ATOM 780 N MET A 401 17.462 29.140 13.283 1.00 26 ATOM 781 CA MET A 401 18.251 29.813 14.320 1.00 26 ATOM 782 CB MET A 401 19.740 29.612 14.026 1.00 26 ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 16 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 26 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 36 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 26 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2				ARG	A 400				1.00 22.87
ATOM 780 N MET A 401 18.251 29.813 14.320 1.00 28 ATOM 781 CA MET A 401 19.740 29.612 14.026 1.00 28 ATOM 783 CG MET A 401 20.681 30.082 15.096 1.00 18 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 28 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 38 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 28				ARG	A 400				1.00 20.39
ATOM 781 CA MET A 401 19.740 29.612 14.026 1.00 2: ATOM 782 CB MET A 401 20.681 30.082 15.096 1.00 1: ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 2: ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 3: ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 788 CE MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2: ATOM 788 O MET A 401 18.177 31.913 15.495				MIDIN MET.	A 401				1.00 22.78
ATOM 782 CB MET A 401 20.681 30.082 15.096 1.00 1 ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 2 ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 3 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2					A 401				1.00 21.38
ATOM 784 SD MET A 401 22.356 30.190 14.524 1.00 26 1.0				MET	A 401	20.681			1.00 17.22
ATOM 785 CE MET A 401 22.858 28.674 14.579 1.00 3 ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2				MET	A 401		30.190		
ATOM 786 C MET A 401 17.942 31.308 14.448 1.00 2 ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2				MET	A 401		28.674		
ATOM 787 O MET A 401 18.177 31.913 15.495 1.00 2				MET	A 401		31.308		4 00 04 54
				MET	A 401				
ATOM 788 N CYS A 402 17.451 31.901 13.362 1.00 2				CYS	A 402	17.451		13.362	
ATOM 789 CA CYS A 402 17.102 33.327 13.340 1.00 3				CYS	A 402	17.102	33.327	13.340	1.00 33.34

								•
2 mOM	790	СВ	CYS A 4	02	16.827	33.801	11.911	1.00 34.97
ATOM	791		CYS A 4		18.382	33.864	11.142	1.00 54.57
ATOM	-		CYS A 4		15.947	33.699	14.236	1.00 33.06
ATOM	792		CYS A 4		15.871	34.838	14.722	1.00 36.03
ATOM	793		ARG A 4		15.033	32.759	14.438	1.00 30.48
MOTA	794				13.903	33.013	15.316	1.00 30.17
ATOM	795		ARG A 4			31.936	15.165	1.00 27.27
MOTA	796		ARG A 4		12.846		13.760	1.00 32.18
MOTA	797	CG	ARG A 4		12.529	31.529		1.00 32.00
MOTA	798	CD	ARG A 4		11.217	30.784	13.777	1.00 32.00
ATOM	799	NE	ARG A 4		11.202	29.740	14.794	
ATOM	800	CZ	ARG A 4		10.188	29.482	15.616	
ATOM	801	NH1	ARG A 4	.03	9.078	30.195	15.575	1.00 34.55
ATOM	802	NH2	ARG A 4	.03	10.257	28.436	16.428	1.00 42.16
ATOM	803	С	ARG A 4	.03	14.368	32.993	16.780	1.00 29.68
ATOM	804	0	ARG A 4	03	13.653	33.472	17.649	1.00 30.31
ATOM	805	N	ALA A 4	04	15.556	32.431	17.016	1.00 26.70
ATOM	806	CA	ALA A 4		16.145	32.267	18.336	1.00 21.83
ATOM	807	СВ	ALA A 4		16.328	30.768	18.612	1.00 17.43
ATOM	808	c	ALA A 4		17.490	32.962	18.394	1.00 23.99
ATOM	809	ŏ	ALA A 4		18.371	32.543	19.134	1.00 26.66
	810	Ŋ	PHE A 4		17.694	33.990	17.573	1.00 26.59
MOTA	811	CA	PHE A 4		18.977	34.705	17.557	1.00 24.98
MOTA	812	CB	PHE A 4		19.713	34.470	16.227	1.00 18.47
MOTA			PHE A 4		21.110	35.018	16.187	1.00 17.64
ATOM	813	CG	PHE A 4		22.202	34.177	16.313	1.00 16.69
ATOM	814	CD1			21.345	36.370	15.956	1.00 19.09
ATOM	815	CD2	PHE A 4		23.514	34.669	16.199	1.00 21.32
MOTA	816	CE1	PHE A 4		22.651	36.871	15.841	1.00 17.33
MOTA	817	CE2	PHE A		23.734	36.032	15.957	1.00 19.99
MOTA	818	CZ	PHE A		18.765	36.197	17.805	1.00 28.98
MOTA	819	C	PHE A			36.789	17.256	1.00 31.78
MOTA	820	0	PHE A 4		17.845		18.703	1.00 31.70
ATOM	821	N	ASP A		19.581	36.763	19.084	1.00 30.27
MOTA	822	CA	ASP A		19.556	38.180	20.598	1.00 30.55
MOTA	823	CB	ASP A		19.786	38.339		1.00 34.22
MOTA	824	ĊĞ	ĀŠPĀ 4		19.689	39.798	21.061	1.00 34.22
MOTA	825	OD1			19.722	40.747	20.278	1.00 31.70
MOTA	826	OD2			19.575	40.004	22.299	1.00 33.44
MOTA	827	C	ASP A		20.671	38.897	18.330	1.00 29.82
MOTA	828	0	ASP A		21.821	38.953	18.804	1.00 29.82
MOTA	829	N	SER A		20.302	39.510	17.203	1.00 28.41
ATOM	830	CA	SER A		21.263	40.224	16.374	1.00 34.05
ATOM	831	CB	SER A		20.597	40.719	15.093	1.00 37.05
MOTA	832	OG	SER A	407	21.531	40.766	14.018	1.00 51.86
ATOM	833	С	SER A	407	21.922	41.381	17.115	1.00 34.14
ATOM	834	0	SER A		23.147	41.501	17.139	1.00 35.01
ATOM	835	N	GLN A	408	21.113	42.206	17.764	1.00 38.76
ATOM	836	CA	GLN A	408	21.632	43.345	18.519	1.00 40.20
ATOM	837	CB	GLN A	408	20.516	43.981	19.353	1.00 48.77
ATOM	838	CG	GLN A	408	19.250	44.338	18.577	1.00 63.31
ATOM	839	CD	GLN A	408	18.001	44.400	19.467	1.00 70.33
ATOM	840		GLN A	408	17.761	45.387	20.175	1.00 73.70
ATOM	841	NE2			17.185	43.347	19.405	1.00 72.43
ATOM	842	C	GLN A		22.744	42.908	19.463	1.00 36.52
ATOM	843	ŏ	GLN A	408	23.827	43.493	19.484	1.00 36.77
	844	Ň	ASN A	409	22.514	41.803	20.156	1.00 32.86
MOTA MOTA	845	CA	ASN A		23.466	41.338	21.132	1.00 31.16
	846	CB	ASN A		22.722	41.083	22.438	1.00 34.90
ATOM	847	CG	ASN A		22.115	42.371	23.024	1.00 35.74
MOTA			ASN A		22.850	43.282	23.401	1.00 38.31
MOTA	848 849	לענ <i>ו</i> דרר	ASN A	409	20.784	42.457	23.076	1.00 31.20
MOTA		C	ASN A	409	24.369	40.175	20.752	1.00 32.11
ATOM	850 951	_	ASN A	409	25.179	39.729	21.574	1.00 34.18
MOTA	851	O	ASN A	410	24.291	39.743	19.494	1.00 29.63
MOTA	852 853	N CA	ASN A	410	25.128	38.646	18.979	1.00 27.78
MOTA	854		ASN A	410	26.597	39.063	18.877	1.00 24.50
MOTA	855 855		ASN A	410	27.360	38.235	17.866	1.00 25.12
ATOM	022	CG	TOTA T		2			

								4 00 00 04
MOTA	856	OD1	ASN A 410		26.851	37.955	16.780	1.00 29.04 1.00 27.47
ATOM	857	ND2	ASN A 410		28.568	37.813	18.224	1.00 27.47
ATOM	858		ASN A 410		25.016	37.476	19.928	
ATOM	859		ASN A 410		26.016	36.970	20.457	1.00 27.57 1.00 27.68
ATOM	860		THR A 411		23.813	36.948	20.020	1.00 27.00
ATOM	861		THR A 411		23.602	35.905	20.977	1.00 20.24
ATOM	862	CB	THR A 411		23.208	36.681	22.253	
ATOM	863	OG1	THR A 411		24.162	36.446	23.305	1.00 31.38
ATOM	864	CG2	THR A 411		21.784	36.514	22.604	1.00 16.40
ATOM	865		THR A 411		22.577	34.896	20.464	1.00 22.40
ATOM	866	0	THR A 411		21.649	35.282	19.779	1.00 24.61
MOTA	867	N	VAL A 412		22.768	33.612	20.771	1.00 20.76
MOTA	868	CA	VAL A 412		21.857	32.528	20.343	1.00 19.57
ATOM	869	CB	VAL A 412		22.607	31.487	19.475	1.00 19.83
ATOM	870		VAL A 412		21.655	30.780	18.524	1.00 18.01
ATOM	871	CG2	VAL A 412	:	23.691	32.130	18.740	1.00 33.67
ATOM	872	C	VAL A 412	}	21.278	31.708	21.508	1.00 18.12
ATOM	873	0	VAL A 412	:	22.009	31.325	22.411	1.00 23.18
ATOM	874	N	TYR A 413	,	19.990	31.386	21.453	1.00 16.25
ATOM	875	CA	TYR A 413	}	19.320	30.575	22.465	1.00 17.45
ATOM	876	CB	TYR A 413	}	17.855	30.512	22.122	1.00 17.78
MOTA	877	CG	TYR A 413		16.935	29.951	23.181	1.00 25.60
ATOM	878	CD1	TYR A 413	}	17.039	30.319	24.529	1.00 24.61
ATOM	879	CE1	TYR A 413	3	16.122	29.840	25.472	1.00 21.19
ATOM	880	CD2	TYR A 413	3	15.906	29.103	22.819	1.00 24.64
ATOM	881	CE2	TYR A 413	3	14.991	28.629	23.739	1.00 26.94
ATOM	882	CZ	TYR A 413	3	15.097	28.993	25.065	1.00 28.21
ATOM	883	OH	TYR A 413	3	14.145	28.487	25.945	1.00 27.94
ATOM	884	C	TYR A 413	3	19.906	29.164	22.453	1.00 23.48
ATOM	885	0	TYR A 41:	3	19.656	28.401	21.518	1.00 24.97
ATOM	886	N	PHE A 41		20.684	28.828	23.488	1.00 22.58
ATOM	887	CA	PHE A 41	1	21.360	27.534	23.625	1.00 21.94
ATOM	888	CB	PHE A 41	1	22.835	27.685	23.195	1.00 18.84
ATOM	889	CG	PHE A 41		23.734	26.507	23.555	1.00 23.28
ATOM	890	CD1	PHE A 41		23.637	25.263	22.071	1.00 23.77
ATOM	891	CD2	PHE A 41	4	24.718	26.634	24.556	1.00 20.51 1.00 25.81
ATOM	892	CE1	PHE A 41	4	24.510	24.201	23.178	
ATOM	893	CE2	PHE A 41		25.586	25.569	24.865	1.00 17.09 1.00 23.54
MOTA	894	CZ	PHE A 41		25.483	24.350	24.178	1.00 25.66
ATOM	895	С	PHE A 41		21.303	26.977	25.057 26.024	1.00 23.00
ATOM	896	0	PHE A 41		21.612	27.677	25.196	1.00 25.08
MOTA	897	N	ASP A 41		20.866	25.731	26.513	1.00 23.00
MOTA	898	$^{\rm CA}$	ASP A 41	5	20.849	25.114	26.921	1.00 22.21
ATOM	899	CB	ASP A 41	5	22.303	24.853 23.735	27.894	1.00 17.07
MOTA	900	CG	ASP A 41	5	22.441	23.735	28.110	1.00 18.33
MOTA	901	OD1	ASP A 41	5	21.457	23.579	28.420	1.00 20.42
MOTA	902		ASP A 41	ັ	23.551	25.970	27.579	1.00 25.14
MOTA	903	C	ASP A 41	5	20.130	26.259	28.633	1.00 29.15
MOTA	904	0	ASP A 41	5	20.700	26.408	27.269	1.00 20.65
MOTA	905	N	GLY A 41	6	18.912 18.118	27.176	28.201	1.00 18.89
ATOM	906	CA	GLY A 41	6	18.258	28.682	28.257	1.00 13.58
MOTA	907	C	GLY A 41	6	17.349	29.327	28.744	1.00 19.33
ATOM	908	0	GLY A 41	7	19.364	29.254	27.817	1.00 14.55
MOTA	909	N	LYS A 41	/	19.364	30.716	27.861	1.00 18.31
MOTA	910	CA	LYS A 41	7	20.345	31.134	29.074	1.00 20.71
ATOM	911	CB	LYS A 41	7	19.682	30.877	30.428	1.00 22.06
ATOM	912	CG	LYS A 41	7	20.679	31.167	31.538	1.00 23.89
ATOM	913	CD	LYS A 41		19.970	31.232	32.891	1.00 26.28
ATOM	914		LYS A 41		20.937	31.696	33.916	1.00 27.48
ATOM	915		LYS A 41		20.337	31.202	26.592	1.00 23.82
ATOM	916	C	LYS A 41	7	20.163	30.382	25.781	1.00 21.77
ATOM	917		LYS A 41		20.833	32.526	26.443	1.00 21.57
ATOM	918		TYR A 41 TYR A 41	.0 g	20.313	33.115	25.270	1.00 19.31
MOTA	919		TYR A 41		20.369	34.492	24.921	1.00 18.21
ATOM	920		TYR A 41		19.066	34.407	24.142	1.00 21.12
ATOM	921	CG	11V W 41	. •	25.000	21.10,		

ATOM	922	CD1	TYR A	418	17.856	34.087	24.777	1.00	18.03
MOTA	923	CE1	TYR A		16.682	33.930	24.048	1.00	22.16
	924	CD2	TYR A		19.060	34.576	22.743	1.00	19.41
MOTA						34.419	22.007		16.83
ATOM	925	CE2	TYR A		17.903				
MOTA	926	CZ	TYR A		16.728	34.099	22.648		24.12
MOTA	927	OH	TYR A	418	15.601	33.944	21.890	1.00	22.47
MOTA	928	С	TYR A	418	22.471	33.183	25.451	1.00	19.85
ATOM	929	Ō	TYR A		22.974	33.820	26.385	1.00	25.51
ATOM	930	Ŋ	ALA A		23.180	32.482	24.570	1.00	16.24
			ALA A		24.630	32.365	24.577		15.65
ATOM	931	CA				30.903	24.326		17.04
ATOM	932	СВ	ALA A		24.986				25.93
MOTA	933	С	ALA A		25.463	33.245	23.629	1.00	
ATOM	934	0	ALA A		25.168	33.359	22.432	1.00	27.89
ATOM	935	N	SER A	420	26.540	33.817	24.157	1.00	23.17
ATOM	936	CA	SER A	420	27.455	34.619	23.360	1.00	24.99
ATOM	937	CB	SER A	420	28.202	35.577	24.280	1.00	27.55
MOTA	938	OG	SER A		29.050	34.861	25.170	1.00	31.44
ATOM	939	Č	SER A		28.442	33.622	22.735	1.00	25.61
			SER A		28.462	32.461	23.132	1.00	26.24
MOTA	940	0				34.040	21.748	1.00	27.91
MOTA	941	N	PRO A		29.267			1.00	28.16
MOTA	942	CD	PRO A		29.281	35.313	20.998		
MOTA	943	CA	PRO A	421	30.209	33.071	21.160	1.00	27.21
MOTA	944	CB	PRO A	421	31.014	33.928	20.178		25.80
MOTA	945	CG	PRO A	421	30.031	34.959	19.743		24.69
ATOM	946	С	PRO A	421	31.158	32.380	22.163	1.00	34.03
MOTA	947	Ō	PRO A		31.509	31.199	21.988	1.00	31.00
ATOM	948	Ň	ASP A		31.627	33.142	23.158	1.00	33.32
	949	CA	ASP A		32.570	32.623	24.154		35.81
ATOM			ASP A		33.136	33.742	25.030		44.04
MOTA	950	CB			32.246	34.946	25.069		54.68
MOTA	951	CG	ASP A						
ATOM	952	OD1	ASP A		32.454	35.892	24.251		54.42
ATOM	953	OD2	ASP A		31.327	34.920	25.913		58.40
ATOM	954	С	ASP A	422	32.104	31.415	24.972	1.00	29.08
ATOM	955	0	ASP A	422	32.923	30.698	25.550		29.48
ATOM	956	N	VAL A	423	30.796	31.180	24.968	1.00	24.96
ATOM	957	CA	VAL A		30.197	30.031	25.620	1.00	22.62
ATOM	958	CB	VAL A		28.671	30.120	25.495	1.00	19.09
MOTA	959	CG1	VAL A		28.025	28.771	25.617	1.00	20.56
	960	CG2	VAL A		28.115	31.068	26.536	1.00	21.12
ATOM			VAL A		30.724	28.783	24.894	1.00	26.71
ATOM	961	C			30.724	27.746	25.499	1.00	24.85
ATOM	962	0	VAL A				23.499	1.00	26.18
MOTA	963	N	PHE A		31.040	28.951			
ATOM	964	CA	PHE A		31.507	27.854	22.774	1.00	22.48
ATOM	965	$^{\mathtt{CB}}$	PHE A		30.860	27.963	21.371		23.86
MOTA	966	CG	PHE A		29.341	28.011	21.394	1.00	20.24
MOTA	967	CD1	PHE A	424	28.668	29.227	21.384	1.00	15.91
MOTA	968	CD2	PHE A	424	28.598	26.843	21.509		15.76
ATOM	969				27.290	29.270	21.500	1.00	16.18
ATOM	970	CE2	PHE A	424	27.238	26.880	21.623		13.58
MOTA	971	CZ	PHE A	424	26.573	28.099	21.624	1.00	16.90
	972	C	PHE A		33.014	27.757	22.663		23.66
ATOM			PHE A		33.539	26.929	21.911		24.93
ATOM	973	0							26.33
MOTA	974	N	LYS A	425	33.727	28.552	23.451	1.00	20.33
MOTA	975	CA	LYS A		35.186	28.527	23.392		29.12
MOTA	976	CB	LYS A		35.776	29.467	24.452		32.35
MOTA	977	CG	LYS A	425	37.306	29.529	24.457		31.98
MOTA	978	CD	LYS A	425	37.762	30.593	25.418	1.00	39.70
ATOM	979	CE	LYS A	425	39.265	30.718	25.450		48.00
ATOM	980	NZ	LYS A		39.725	31.844	26.336	1.00	53.67
MOTA	981	C	LYS A		35.889	27.157	23.476	1.00	31.57
ATOM	982	ŏ	LYS A	425	36.792	26.863	22.673		27.27
ATOM	983	N	SER A		35.521	26.339	24.465		30.78
			SER A		36.182	25.050	24.607		33.82
ATOM	984	CA	SER A		35.862	24.390	25.959		30.28
ATOM	985	CB			34.486	24.390	26.133		37.92
MOTA	986	og	SER A	420					35.48
MOTA	987	С	SER A	420	35.992	24.104	23.417	1.00	33.40

» «IOM	988	O SER A 426	36.713	23.122	23.286	1.00 37.65
MOTA MOTA	989	N LEU A 427		24.463	22.488	1.00 35.14
	990	CA LEU A 42	34.879	23.644	21.300	1.00 33.29
ATOM ATOM	991	CB LEU A 42		24.270	20.461	1.00 30.08
	992	CG LEU A 42		23.462	19.781	1.00 28.00
MOTA		CD1 LEU A 42		22.380	20.671	1.00 25.88
MOTA	993	CD2 LEU A 42		24.418	19.397	1.00 25.10
MOTA	994	C LEU A 42		23.655	20.494	1.00 33.91
MOTA	995			22.656	19.901	1.00 36.72
MOTA	996			24.790	20.503	1.00 39.65
ATOM	997	N GLY A 428		24.932	19.750	1.00 40.93
ATOM	998			25.241	18.269	1.00 43.39
MOTA	999		_	25.108	17.455	1.00 42.81
ATOM	1000			25.685	17.927	1.00 43.35
ATOM	1001			25.995	16.544	1.00 43.84
MOTA	1002			25.224	16.176	1.00 43.95
ATOM	1003			23.452	16.181	1.00 50.28
MOTA	1004			27.475	16.409	1.00 42.57
ATOM	1005			27.873	15.838	1.00 39.45
MOTA	1006			28.292	16.901	1.00 43.43
MOTA	1007			29.740	16.874	1.00 45.32
MOTA	1008			30.447	17.301	1.00 53.81
MOTA	1009			29.738	18.439	1.00 70.87
ATOM	1010			29.456	19.737	1.00 77.73
ATOM	1011			30.245	20.098	1.00 80.51
MOTA	1012	OE1 GLU A 43 OE2 GLU A 43		28.437	20.408	1.00 78.46
MOTA	1013			30.320	15.552	1.00 40.15
MOTA	1014			31.127	15.563	1.00 35.32
MOTA	1015	O GLUA 43 N ASPA 43		29.870	14.420	1.00 36.97
MOTA	1016 1017	CA ASP A 43		30.383	13.101	1.00 37.50
MOTA	1017	CB ASP A 43		30.007	12.009	1.00 45.12
ATOM	1019	CG ASP A 43		30.507	12.303	1.00 50.38
MOTA	1019	OD1 ASP A 43		31.715	12.088	1.00 52.92
ATOM	1020	OD1 ASP A 43		29.686	12.767	1.00 58.71
MOTA	1021	C ASP A 43		29.983	12.668	1.00 31.17
MOTA MOTA	1023	O ASP A 43		30.832	12.249	1.00 29.39
ATOM	1023	N PHE A 43		28.697	12.805	1.00 25.82
ATOM	1025	CA PHE A 43		28.162	12.467	1.00 24.06
ATOM	1026	CB PHE A 43		26.640	12.666	1.00 23.24
ATOM	1027	CG PHE A 43		26.008	12.634	1.00 26.00
ATOM	1028	CD1 PHE A 43		25.728	11.428	1.00 24.09
ATOM	1029	CD2 PHE A 43		25.727	13.826	1.00 24.00
ATOM	1030	CE1 PHE A 43		25.182	11.407	1.00 25.60
MOTA	1031	CE2 PHE A 43		25.182	13.819	1.00 23.27
MOTA	1032	CZ PHE A 43		24.907	12.608	1.00 27.15
ATOM	1033	C PHE A 43		28.823	13.368	1.00 24.49
MOTA	1034	O PHE A 43	2 31.166	29.081	12.939	1.00 23.40
ATOM	1035	N ILE A 43	3 32.667	29.123	14.614	1.00 23.33
ATOM	1036	CA ILE A 43	3 31.729	29.746	15.545	1.00 21.41
ATOM	1037	CB ILE A 43	3 32.226	29.697	17.038	1.00 24.82
ATOM	1038	CG2 ILE A 43		30.551	17.946	1.00 24.79
ATOM	1039	CG1 ILE A 43		28.244	17.554	1.00 22.78
ATOM	1040	CD1 ILE A 43	3 30.846	27.630	17.696	1.00 21.04
ATOM	1041	C ILE A 43	3 31.453	31.179	15.113	1.00 17.19
ATOM	1042	O ILE A 43		31.589	15.046	1.00 21.19
ATOM	1043	N SER A 43		31.937	14.770	1.00 23.08
ATOM	1044	CA SER A 43		33.319	14.327	1.00 25.60
ATOM	1045	CB SER A 43	4 33.561	34.097	14.162	1.00 28.06
ATOM	1046	OG SER A 43		33.294	13.558	1.00 37.81
ATOM	1047	C SER A 43		33.276	13.028	1.00 23.82
MOTA	1048	O SER A 43		34.072	12.821	1.00 23.76
MOTA	1049	N PHE A 43	5 31.752	32.279	12.199	1.00 24.82
MOTA	1050	CA PHE A 43		32.096	10.947	1.00 24.08
MOTA	1051	CB PHE A 43		30.923	10.161	1.00 26.80
MOTA	1052	CG PHE A 43		30.767	8.748	1.00 30.19
MOTA	1053	CD1 PHE A 43	5 30.205	31.686	8.209	1.00 35.50

MOTA	1054	CD2	PHE A 4	135	31.487	29.678	7.961	1.00 33.97
ATOM	1055	CE1	PHE A 4	l 35	29.684	31.523	6.906	1.00 34.39
ATOM	1056	CE2	PHE A 4	135	30.977	29.505	6.657	1.00 34.83
ATOM	1057	CZ	PHE A 4		30.074	30.430	6.136	1.00 31.71
	1058	C	PHE A 4		29.548	31.844	11.264	1.00 26.45
MOTA			PHE A 4		28.665	32.480	10.688	1.00 28.86
MOTA	1059	0			29.255	30.967	12.223	1.00 22.48
ATOM	1060	N	VAL A 4	130	27.865	30.691	12.559	1.00 17.41
ATOM	1061	CA	VAL A	136		29.624	13.695	1.00 17.64
MOTA	1062	CB	VAL A	136	27.757		14.228	1.00 22.49
MOTA	1063	CG1		136	26.377	29.570		1.00 22.49
ATOM	1064	CG2			28.122	28.278	13.195	
MOTA	1065	C	VAL A		27.164	31.978	12.991	1.00 17.44
MOTA	1066	0	VAL A	436	26.053	32.278	12.534	1.00 18.61
ATOM	1067	N	PHE A	137	27.803	32.741	13.874	1.00 19.96
ATOM	1068	CA	PHE A 4	1 37	27.184	33.971	14.362	1.00 22.62
ATOM	1069	CB	PHE A	437	27.946	34.539	15.573	1.00 24.58
ATOM	1070	CG	PHE A	437	27.559	33.905	16.891	1.00 23.31
ATOM	1071	CD1			27.912	32.593	17.180	1.00 24.58
ATOM	1072	CD2	PHE A		26.855	34.627	17.841	1.00 23.23
	1072	CE1	PHE A		27.572	32.012	18.402	1.00 22.25
ATOM	1074	CE2	PHE A		26.514	34.055	19.059	1.00 23.56
MOTA			PHE A		26.874	32.746	19.334	1.00 18.83
ATOM	1075	CZ	PHE A		27.010	35.034	13.274	1.00 22.54
ATOM	1076	C			25.985	35.716	13.232	1.00 27.26
ATOM	1077	0	PHE A		28.001	35.176	12.400	1.00 26.36
MOTA	1078	N	GLU A	430 430	27.898	36.157	11.302	1.00 27.43
MOTA	1079	CA	GLU A			36.179	10.440	1.00 30.05
MOTA	1080	CB	GLU A		29.164		9.227	1.00 31.17
ATOM	1081	CG	GLU A		29.073	37.131	8.605	1.00 31.35
ATOM	1082	CD	GLU A		30.417	37.447		1.00 31.33
ATOM	1083	OE1			31.384	36.685	8.801	1.00 27.02
MOTA	1084	OE2			30.509	38.491	7.932	1.00 40.19
MOTA	1085	С	GLU A	438	26.674	35.839	10.450	
ATOM	1086	0	GLU A		25.918	36.730	10.093	1.00 28.14
MOTA	1087	N	PHE A	439	26.449	34.555	10.188	1.00 26.08
ATOM	1088	CA	PHE A	439	25.292	34.118	9.433	1.00 24.60
ATOM	1089	СВ	PHE A	439	25.398	32.619	9.135	1.00 26.02
ATOM	1090	CG	PHE A	439	24.280	32.098	8.283	1.00 27.70
ATOM	1091	CD1			24.304	32.270	6.904	1.00 29.06
ATOM	1092	CD2		439	23.177	31.483	8.855	1.00 31.10
ATOM	1093	CE1		439	23.251	31.842	6.123	1.00 24.89
ATOM	1094	CE2			22.111	31.050	8.069	1.00 31.13
ATOM	1095	CZ	PHE A		22.153	31.234	6.701	1.00 28.01
ATOM	1096	Č	PHE A		23.964	34.426	10.162	1.00 28.45
ATOM	1097	ŏ	PHE A		22.958	34.770	9.518	1.00 28.20
ATOM	1098	N	GLY A		23.926	34.257	11.491	1.00 26.29
ATOM	1099	CA	GLY A		22.699	34.550	12.217	1.00 20.95
	1100	C	GLY A		22.380	36.035	12.079	1.00 24.76
MOTA	1101	Ö	GLY A		21.247	36.459	11.831	1.00 24.56
MOTA	1101		LYS A	111	23.409	36.842	12.249	1.00 25.11
ATOM		N	LYS A	441	23.283	38.290	12.135	1.00 31.81
ATOM	1103	CA	LYS A	441	24.674	38.871	12.293	1.00 34.53
ATOM	1104	CB	LYS A		24.720	40.343	12.482	1.00 48.07
MOTA	1105	CG			25.618	40.643	13.668	1.00 58.50
ATOM	1106	CD	LYS A		25.088	39.955	14.934	1.00 61.35
MOTA	1107	CE	LYS A				16.152	1.00 67.81
ATOM	1108	NZ	LYS A		25.698	40.550 38.659	10.132	1.00 34.70
MOTA	1109	C	LYS A	441	22.741			1.00 34.70
ATOM	1110	0	LYS A		21.767	39.411	10.579	1.00 32.65
MOTA	1111	N	SER A	442	23.408	38.091	9.729	1.00 33.09
ATOM	1112	CA	SER A	442	23.113	38.278	8.312	1.00 32.10
ATOM	1113	CB	SER A		24.060	37.413	7.493	1.00 34.00
ATOM	1114	OG	SER A		23.706	37.415	6.142	
ATOM	1115	С	SER A		21.699	37.939	7.953	1.00 29.45
ATOM	1116	0	SER A	442	21.022	38.710	7.283	1.00 28.07
MOTA	1117	N	LEU A	443	21.252	36.769	8.383	1.00 30.75
ATOM	1118	CA	LEU A	443	19.903	36.341	8.091	1.00 28.97
ATOM	1119	CB	LEU A	443	19.754	34.844	8.362	1.00 32.66

								4 00 04 60
ATOM	1120	CG	LEU A 443		19.232	33.966	7.225	1.00 34.63
ATOM	1121		LEU A 443		19.001	32.579	7.758	1.00 34.61
ATOM	1122	CD2	LEU A 443		17.933	34.502	6.669	1.00 35.80
	1123	C	LEU A 443		18.900	37.163	8.897	1.00 33.40
MOTA			LEU A 443		17.761	37.366	8.461	1.00 31.79
ATOM	1124	-	CYS A 444		19.330	37.656	10.063	1.00 39.70
ATOM	1125				18.474	38.478	10.937	1.00 44.50
MOTA	1126		CYS A 444			38.687	12.312	1.00 50.28
MOTA	1127		CYS A 444		19.117		13.539	1.00 54.66
MOTA	1128	SG	CYS A 444	:	18.752	37.411		1.00 44.03
MOTA	1129	С	CYS A 444	:	18.177	39.845	10.346	1.00 42.14
ATOM	1130	0	CYS A 444		17.053	40.343	10.468	1.00 42.14
MOTA	1131	N	SER A 445	;	19.190	40.456	9.733	1.00 43.30
ATOM	1132	CA	SER A 445	,	19.020	41.765	9.118	1.00 47.44
ATOM	1133	СВ	SER A 445		20.343	42.266	8.518	1.00 48.13
MOTA	1134	ŌĠ	SER A 445		20.752	41.518	7.383	1.00 50.15
ATOM	1135	Ċ	SER A 445	;	17.885	41.815	8.071	1.00 48.45
	1136	ŏ	SER A 445	•	17.459	42.901	7.663	1.00 53.44
MOTA	1137	N	MET A 446	.	17.393	40.656	7.636	1.00 44.69
ATOM			MET A 446	<u> </u>	16.306	40.631	6.665	1.00 43.05
ATOM	1138	CA	MET A 446		16.389	39.386	5.789	1.00 40.50
MOTA	1139	CB			17.577	39.419	4.842	1.00 41.60
MOTA	1140	CG	MET A 446		17.833	37.906	3.917	1.00 47.28
MOTA	1141	SD	MET A 446			37.667	4.191	1.00 42.50
ATOM	1142	CE	MET A 446		19.506		7.355	1.00 46.65
MOTA	1143	С	MET A 440		14.953	40.725	6.746	1.00 50.18
MOTA	1144	0	MET A 440	5	13.971	41.150		
ATOM	1145	N	HIS A 44'		14.921	40.382	8.643	1.00 46.34
ATOM	1146	$^{\rm CA}$	HIS A 44'	7	13.702	40.426	9.420	1.00 48.76
ATOM	1147	CB	HIS A 44'	7	13.259	41.882	9.589	1.00 60.69
ATOM	1148	CG	HIS A 44	7	12.149	42.066	10.578	1.00 78.35
ATOM	1149		HIS A 44		11.722	41.273	11.592	1.00 83.48
MOTA	1150		HIS A 44		11.308	43.163	10.569	1.00 85.45
	1151	CE1	HIS A 44	7	10.405	43.032	11.529	1.00 86.49
ATOM		NE2			10.633	41.893	12.161	1.00 87.93
ATOM	1152		HIS A 44		12.618	39.583	8.729	1.00 47.17
ATOM	1153	Ğ	HIS A 44	7	11.618	40.114	8.233	1.00 48.76
ATŌM	1154	Ō	HTO W 44	,	12.853	38.272	8.654	1.00 43.85
MOTA	1155	N	LEU A 44		11.922	37.320	8.021	1.00 37.21
MOTA	1156	CA	LEU A 44		12.667	36.021	7.633	1.00 36.92
ATOM	1157	CB	LEU A 44		14.004	36.045	6.867	1.00 36.45
MOTA	1158	CG	LEU A 44			34.629	6.601	1.00 35.34
MOTA	1159	CD1			14.486	36.798	5.553	1.00 41.17
MOTA	1160	CD2			13.867	36.750	8.887	1.00 34.64
MOTA	1161	С	LEU A 44		10.703		10.083	1.00 35.66
ATOM	1162	0	LEU A 44		10.847	36.731	8.288	1.00 33.00
ATOM	1163	И	THR A 44		9.512	36.911		1.00 31.11
ATOM	1164	CA	THR A 44	9	8.305	36.549	9.033	
MOTA	1165	CB	THR A 44		7.006	36.973	8.313	1.00 30.22
MOTA	1166	OG1	THR A 44	9	6.777	36.098	7.201	1.00 29.38
ATOM	1167	CG2	THR A 44	9	7.081	38.431	7.839	1.00 25.55
ATOM	1168	С	THR A 44	9	8.271	35.030	9.134	1.00 29.64
MOTA	1169	Ō	THR A 44	9	8.953	34.351	8.371	1.00 31.91
MOTA	1170	N	GLU A 45	0	7.479	34.491	10.051	1.00 26.47
ATOM	1171	CA	GLU A 45	0	7.392	33.047	10.182	1.00 27.53
ATOM	1172	СВ	GLU A 45	0	6.328	32.679	11.204	1.00 25.91
	1173	CG	GLU A 45	0	6.730	33.026	12.617	1.00 27.73
MOTA		CD	GLU A 45	in	7.853	32.146	13.117	1.00 24.37
ATOM	1174				7.554	31.004	13.513	1.00 29.52
MOTA	1175	OE1			9.021	32.586	13.108	1.00 28.01
MOTA	1176	OE2	GLU A 45		7.104	32.350	8.844	1.00 29.72
MOTA	1177	C	GLU A 45	. O	7.748	31.372	8.492	1.00 29.06
MOTA	1178	0	GLU A 45) U			8.070	1.00 32.63
MOTA	1179	N	ASP A 45) <u>T</u>	6.181	32.899	6.780	1.00 30.31
MOTA	1180	CA	ASP A 45	Τ.	5.830	32.306	6.182	1.00 30.31
ATOM	1181	CB	ASP A 45		4.615	33.023		1.00 34.34
ATOM	1182	CG	ASP A 45	1	3.314	32.660	6.891	1.00 39.42
MOTA	1183	OD1	LASPA 45	1	3.330	31.766	7.755	
ATOM	1184	OD2	2 ASP A 45	51	2.261		6.573	1.00 46.92
MOTA	1185	С	ASP A 45	51	7.005	32.321	5.813	1.00 27.29

MOTA	1186	0	ASP A	451	7.238	31.364	5.090	1.00 27.40
MOTA	1187	N	GLU A		7.765	33.404	5.821	1.00 29.17
	1188	CA	GLU A		8.928	33.510	4.946	1.00 33.64
ATOM			GLU A		9.521	34.927	5.022	1.00 34.38
ATOM	1189	CB			8.592	35.990	4.410	1.00 38.12
MOTA	1190	CG	GLU A		9.061	37.426	4.609	1.00 40.47
MOTA	1191	CD	GLU A					1.00 42.73
MOTA	1192	OE1			10.047	37.667	5.330	
ATOM	1193	OE2	GLU A		8.424	38.339	4.047	1.00 45.30
ATOM	1194	С	GLU A	452	9.976	32.432	5.286	1.00 35.02
ATOM	1195	0	GLU A		10.558	31.814	4.378	1.00 32.26
ATOM	1196	N	ILE A	453	10.200	32.209	6.589	1.00 31.95
ATOM	1197	CA	ILE A		11.159	31.194	7.061	1.00 28.64
	1198	CB	ILE A		11.397	31.290	8.615	1.00 31.75
MOTA	1199	CG2	ILE A		12.135	30.045	9.139	1.00 28.09
MOTA			ILE A		12.218	32.538	8.952	1.00 29.57
ATOM	1200	CG1			12.224	32.863	10.422	1.00 27.64
ATOM	1201	CD1	ILE A			29.793	6.707	1.00 25.34
MOTA	1202	C	ILE A		10.640		6.331	1.00 27.62
ATOM	1203	0	ILE A		11.408	28.904		1.00 27.02
ATOM	1204	N	ALA A		9.331	29.604	6.834	
MOTA	1205	CA	ALA A		8.698	28.317	6.524	1.00 28.05
MOTA	1206	CB	ALA A	454	7.194	28.381	6.798	1.00 23.33
MOTA	1207	С	ALA A	454	8.941	27.940	5.064	1.00 30.98
ATOM	1208	0	ALA A	454	9.408	26.839	4.763	1.00 27.28
ATOM	1209	N	LEU A		8.696	28.899	4.173	1.00 34.22
ATOM	1210	CA	LEU A		8.850	28.677	2.744	1.00 33.15
ATOM	1211	CB	LEU A		8.023	29.706	1.945	1.00 35.88
ATOM	1212	CG	LEU A		6.504	29.399	1.973	1.00 35.93
	1213	CD1			5.706	30.626	1.672	1.00 39.84
MOTA	1214	CD2	LEU A		6.159	28.277	0.989	1.00 32.00
ATOM			LEU A		10.307	28.601	2.328	1.00 30.16
ATOM	1215	C			10.676	27.724	1.540	1.00 32.09
ATOM	1216	0	LEU A		11.150	29.460	2.894	1.00 26.03
MOTA	1217	N	PHE A		12.564	29.400	2.561	1.00 25.28
MOTA	1218	CA	PHE A				3.142	1.00 27.10
MOTA	1219	СВ	PHE A		13.313	30.595		
MOTA	1220	CG	PHE A		14.766	30.654	2.734	1.00 32.50 1.00 31.72
MOTA	1221	CD1	PHE A		15.151	30.366	1.421	
MOTA	1222	CD2	PHE A		15.754	30.994	3.660	1.00 32.12
MOTA	1223	CE1	PHE A		16.484	30.414	1.040	1.00 31.33
MOTA	1224	CE2	PHE A	456	17.097	31.046	3.285	1.00 34.09
ATOM	1225	CZ	PHE A		17.465	30.755	1.971	1.00 33.73
ATOM	1226	С	PHE A	456	13.165	28.073	3.061	1.00 27.08
ATOM	1227	0	PHE A	456	14.077	27.522	2.452	1.00 24.18
MOTA	1228	N	SER A	457	12.626	27.547	4.162	1.00 26.66
ATOM	1229	CA	SER A	457	13.084	26.278	4.719	1.00 24.70
MOTA	1230	CB	SER A		12.366	25.986	6.034	1.00 22.68
MOTA	1231	ŌĠ	SER A		12.761	26.899	7.025	1.00 28.15
ATOM	1232	Č	SER A		12.734	25.169	3.748	1.00 23.81
ATOM	1233	ŏ	SER A		13.561	24.315	3.425	1.00 21.55
ATOM	1234	N	ALA A		11.470	25.154	3.337	1.00 24.49
ATOM	1235	CA	ALA A		10.992	24.142	2.397	1.00 27.62
	1236	CB	ALA A		9.526	24.345	2.126	1.00 26.08
MOTA			ALA A		11.811	24.190	1.095	1.00 25.57
MOTA	1237	C	ALA A		12.205	23.161	0.571	1.00 28.96
MOTA	1238	0			12.153	25.399	0.660	1.00 27.37
ATOM	1239	N	PHE A	453 453	12.945	25.642	-0.553	1.00 28.58
MOTA	1240	CA	PHE A	407	12.945	27.162	-0.353	1.00 28.53
MOTA	1241	СВ	PHE A	459				1.00 28.33
MOTA	1242	CG	PHE A		13.907	27.558	-1.956	1.00 33.04
MOTA	1243		PHE A		13.402	27.404	-3.255	
ATOM	1244	CD2			15.168	28.122	-1.789	1.00 32.57
ATOM	1245		PHE A	459	14.142	27.809	-4.360	1.00 33.63
MOTA	1246	CE2			15.920	28.533	-2.886	1.00 36.16
MOTA	1247	CZ	PHE A		15.407	28.378	-4.175	1.00 37.49
MOTA	1248	С	PHE A	459	14.331	25.008	-0.495	1.00 28.01
MOTA	1249	0	PHE A		14.743	24.252	-1.372	1.00 29.21
MOTA	1250	N	VAL A		15.067	25.334	0.553	1.00 29.05
ATOM	1251	CA	VAL A	460	16.407	24.798	0.701	1.00 26.40

WO 03/093312 PCT/EP03/04433

					17 112	25.531	1.839	1.00 28.85
MOTA	1252	СВ	VAL A		17.143			
MOTA	1253	CG1	VAL A	460	18.470	24.967	2.044	1.00 34.54
MOTA	1254	CG2	VAL A	460	17.319	26.974	1.484	1.00 30.19
	1255	C	VAL A		16.385	23.268	0.889	1.00 24.40
ATOM			VAL A		17.295	22.563	0.447	1.00 25.65
MOTA	1256	0					1.469	1.00 24.80
ATOM	1257	N	LEU A		15.307	22.743		
MOTA	1258	CA	LEU A	461	15.194	21.297	1.700	1.00 26.95
ATOM	1259	CB	LEU A		14.034	21.015	2.653	1.00 28.61
			LEU A		14.024	19.600	3.228	1.00 30.23
MOTA	1260	CG					4.335	1.00 30.35
MOTA	1261	CD1	LEU A	461	15.049	19.523		1.00 30.33
MOTA	1262	CD2	LEU A	461	12.637	19.257	3.751	1.00 37.76
ATOM	1263	С	LEU A	461	14.966	20.496	0.416	1.00 27.27
	1264	ŏ	LEU A		15.566	19.430	0.198	1.00 26.82
ATOM					14.023	20.991	-0.380	1.00 27.27
ATOM	1265	N	MET A					1.00 30.35
MOTA	1266	CA	MET A		13.650	20.378	-1.640	
MOTA	1267	CB	MET A	462	12.196	20.707	-1.964	1.00 30.76
ATOM	1268	CG	MET A	462	11.213	20.255	-0.874	1.00 41.65
			MET A		11.153	18.462	-0.489	1.00 43.91
MOTA	1269	SD				17.928	-1.767	1.00 47.33
MOTA	1270	CE	MET A		10.018			
ATOM	1271	С	MET A	462	14.574	20.870	-2.730	1.00 29.93
MOTA	1272	0	MET A	462	14.135	21.418	-3.729	1.00 33.71
	1273	N	SER A		15.864	20.657	-2.524	1.00 30.81
ATOM			SER A		16.881	21.064	-3.470	1.00 35.27
MOTA	1274	CA					-2.730	1.00 36.89
MOTA	1275	$^{\mathtt{CB}}$	SER A		18.143	21.489	-2.730	
MOTA	1276	OG	SER A	463	18.963	22.273	-3.578	1.00 50.70
ATOM	1277	С	SER A	463	17.174	19.889	-4.411	1.00 36.64
	1278	ŏ	SER A		17.599	18.819	-3.976	1.00 32.89
MOTA					16.925	20.096	-5.702	1.00 39.89
MOTA	1279	N	ALA A					1.00 40.73
MOTA	1280	ca	ALA A		17.127	19.053	-6.698	
MOTA	1281	CB	ALA A	464	16.425	19.425	-7.980	1.00 39.42
ATOM	1282	Ċ	ALA A		18.585	18.728	-6.969	1.00 42.63
			ALA A		18.897	17.616	-7.401	1.00 48.91
MOTA	1283	0				19.663	-6.656	1.00 43.62
ATOM	1284	N	ASP A		19.481			
MOTA	1285	CA	ASP A	465	20.905	19.461	-6.908	1.00 43.08
ATOM	1286	СB	ASP A	465	21.546	20.754	-7.398	1.00 49.21
	1287	CG	ASP A		21.620	21.805	-6.324	1.00 54.48
MOTA			ASP A		22.753	22.243	-6.029	1.00 56.04
MOTA	1288	ODI	ASP A	400		22.184	-5.783	1.00 57.56
MOTA	1289	OD2	ASP A		20.555			
ATOM	1290	С	ASP A	465	21.766	18.855	-5.803	1.00 41.94
ATOM	1291	0	ASP A	465	22.946	19.191	-5.677	1.00 46.76
MOTA	1292	Ŋ	ARG A		21.190	17.995	-4.976	1.00 37.97
			ARG A		21.987	17.342	-3.953	1.00 34.33
ATOM	1293	CA			21.112	16.818	-2.804	1.00 31.22
MOTA	1294	CB	ARG A					
ATOM	1295	CG	ARG A	466	20.380	17.869	-2.006	1.00 27.68
ATOM	1296	CD	ARG A	466	21.340	18.803	-1.302	1.00 27.64
MOTA	1297	NE	ARG A		20.588	19.665	-0.400	1.00 26.47
		CZ	ARG A	166	21.076	20.728	0.234	1.00 24.01
ATOM	1298		A DAA	400		21.082		1.00 20.35
MOTA	1299	NHI	ARG A	466	22.341	21.002		1.00 25.10
MOTA	1300	NH2	ARG A	466	20.266	21.477	0.969	1.00 25.10
MOTA	1301	С	ARG A	466	22.613	16.155	-4.681	1.00 32.20
ATOM	1302	Ō	ARG A		21.981	15.542	-5.543	1.00 34.80
			SER A		23.852	15.835	-4.343	1.00 31.72
MOTA	1303	N				14.700	-4.961	1.00 29.23
MOTA	1304	CA	SER A		24.512			
ATOM	1305	CB	SER A	467	25.915	14.497	-4.373	1.00 30.36
ATOM	1306	OG	SER A	467	26.750	15.613	-4.579	1.00 34.62
MOTA	1307	C	SER A		23.705	13.442	-4.680	1.00 29.79
					23.050	13.327	-3.653	1.00 27.96
MOTA	1308	0	SER A				-5.610	1.00 27.51
MOTA	1309	N	TRP A		23.760	12.504		
ATOM	1310	CA	TRP A	468	23.114	11.203	-5.476	1.00 27.13
MOTA	1311	CB	TRP A		23.703	10.431	-4.286	1.00 30.38
	1312	CG	TRP A		25.196	10.650	-4.109	1.00 33.34
ATOM					26.241	10.375	-5.068	1.00 34.52
ATOM	1313	CD2				10.3/3		1.00 34.97
ATOM	1314	CE2			27.453	10.853	-4.510	
ATOM	1315	CE3			26.271	9.778	-6.345	1.00 33.99
MOTA	1316		L TRP A		25.807	11.246	-3.043	1.00 35.05
ATOM	1317	NE:	L TRP A	468	27.152	11.376	-3.278	1.00 35.95
AIOH	/				-	_		

z mow	1318	C72	TRP A 4	68	28.688	10.755	-5.182	1.00	32.97
MOTA	1319		TRP A 4		27.494	9.677	-7.012	1.00	29.70
MOTA	1320		TRP A 4		28.686	10.167	-6.425	1.00	34.34
ATOM			TRP A 4		21.602	11.121	-5.472	1.00	27.07
MOTA	1321		TRP A 4		21.042	10.084	-5.105		29.52
ATOM	1322	0	TRP A 4	60	20.921	12.190	-5.874		27.42
ATOM	1323		LEU A 4			12.139	-5.945		30.07
MOTA	1324		LEU A 4		19.456				28.28
MOTA	1325		LEU A 4		18.910	13.539	-6.099		24.65
MOTA	1326		LEU A 4		18.898	14.353	-4.824		
MOTA	1327	CD1	LEU A 4	.69	18.463	.15.758	-5.160		26.09
ATOM	1328	CD2	LEU A 4	.69	17.929	13.704	-3.867		20.08
ATOM	1329	С	LEU A 4	.69	19.028	11.294	-7.155		33.83
ATOM	1330	0	LEU A 4	.69	19.735	11.285	-8.146		39.39
ATOM	1331	N	GLN A 4	.70	17.916	10.564	-7.077		34.69
ATOM	1332	CA	GLN A 4		17.463	9.757	-8.224		39.38
ATOM	1333	CB	GLN A 4	70	16.832	8.443	-7.779		40.10
ATOM	1334	ĊĠ	GLN A 4		17.796	7.485	-7.120	1.00	50.51
ATOM	1335	CD	GLN A 4		17.111	6.245	-6.571		55.73
ATOM	1336		GLN A 4		15.993	5.911	-6.964		57.73
MOTA	1337	NE2	GLN A 4		17.776	5.565	-5.643	1.00	58.82
	1338	C	GLN A 4		16.444	10.524	-9.050	1.00	40.91
MOTA	1339	ŏ	GLN A 4		16.619	10.727	-10.250		42.98
MOTA		N	GLU A 4		15.383	10.960	-8.386	1.00	40.83
ATOM	1340		GLU A 4		14.308	11.720	-9.013		40.88
MOTA	1341	CA	GLU A 4		13.001	11.447	-8.269		40.93
ATOM	1342	CB	GLU A 4		12.699	9.972	-8.077		48.61
ATOM	1343	CG			11.560	9.737	-7.098		53.74
ATOM	1344	CD	GLU A 4		10.392	10.051	-7.438		52.66
ATOM	1345	OE1	GLU A 4		11.841	9.243	-5.981		59.20
ATOM	1346	OE2	GLU A 4		14.588	13.235	-9.046		41.53
MOTA	1347	C	GLU A 4	1/1		14.027	-8.551		42.72
ATOM	1348	0	GLU A 4		13.780		-9.657		41.50
ATOM	1349	N	LYS A 4		15.707	13.634	-9.037 -9.750	1.00	
ATOM	1350	CA	LYS A 4		16.086	15.044	10 614		38.72
MOTA	1351	CB	LYS A 4		17.332		-10.614		43.30
ATOM	1352	CG	LYS A 4		18.592	14.669	-9.971		
MOTA	1353	CD	LYS A 4		19.731		-10.033		46.29
ATOM	1354	CE	LYS A 4		20.679	15.517	-8.831	1.00	
MOTA	1.355	NZ	LYS A 4		21.892	16.398	-8.804		46.13
MOTA	1356	С	LYS A 4		14.978		-10.287	1.00	
MOTA	1357	0	LYS A 4		14.628	16.963	-9.689		43.75
MOTA	1358	N	VAL A		14.399		-11.402	1.00	
ATOM	1359	CA	VAL A		13.326		-12.084	1.00	
ATOM	1360	CB	VAL A 4		12.963		-13.416		49.53
MOTA	1361	CG1	VAL A		11.696		-14.040	1.00	51.00
ATOM	1362	CG2	VAL A		14.155		-14.395		49.56
ATOM	1363	С	VAL A	473	12.076		-11.235		37.01
MOTA	1364	0	VAL A	473	11.536		-11.212		33.80
MOTA	1365	N	LYS A	474	11.609	15.415	-10.570	1.00	36.39
ATOM	1366	CA	LYS A	474	10.440	15.508	-9.695		36.93
ATOM	1367	CB	LYS A		10.084	14.126	-9.147		35.35
ATOM	1368	CG	LYS A	474	8.886	14.077	-8.218		38.41
ATOM	1369	CD	LYS A	474	8.579	12.626	-7.848		46.48
ATOM	1370	CE	LYS A	474	7.746	12.480	-6.569		53.40
ATOM	1371	NZ	LYS A		6.298	12.790	-6.709		57.86
ATOM	1372	C	LYS A		10.713	16.495	-8.537		37.36
ATOM	1373	ŏ	LYS A		9.887	17.359	-8.250	1.00	36.85
ATOM	1374	N	ILE A	475	11.897	16.422	-7.927	1.00	37.31
ATOM	1375	CA	ILE A		12.231	17.328	-6.820		37.61
ATOM	1376	CB	ILE A		13.535	16.887	-6.067		35.04
ATOM	1377	CG2			13.834	17.877	-4.931		34.59
ATOM	1378	CG1	ILE A		13.368	15.464	-5.488	1.00	27.42
ATOM	1379	CD1		475	14.680	14.711	-5.243	1.00	18.44
ATOM	1380	C	ILE A		12.349	18.766	-7.352	1.00	40.05
ATOM	1381	ŏ	ILE A	475	11.882	19.727	-6.721	1.00	38.84
ATOM	1382	N	GLU A	476	12.913	18.896	-8.550	1.00	41.69
ATOM	1383	CA	GLU A	476	13.066	20.184	-9.207	1.00	43.30
431 OF1	2000								

PCT/EP03/04433 WO 03/093312

- 53 -

3 (IIOM	1384	CB GLU A 47	6 13.755	19.984 -10.552	1.00 48.95
ATOM		CG GLU A 47	TI TI I	21.196 -11.464	
ATOM	1385		T .	22.442 -10.846	
ATOM	1386	CD GLU A 47		22.338 -10.274	
ATOM	1387	OE1 GLU A 47			
MOTA	1388	OE2 GLU A 47		23.532 -10.947	
ATOM	1389	C GLU A 47		20.850 -9.413	
ATOM	1390	O GLU A 47	6 11.547	22.050 -9.183	1.00 38.37
ATOM	1391	N LYS A 47		20.066 -9.854	1.00 41.95
	1392	CA LYS A 47		20.580 -10.072	1.00 45.24
MOTA				19.496 -10.643	
MOTA	1393	CB LYS A 47	•	18.848 -11.905	
MOTA	1394	CG LYS A 47			
MOTA	1395	CD LYS A 47		19.879 -12.984	
MOTA	1396	CE LYS A 47	9.721	19.258 -14.243	
ATOM	1397	NZ LYS A 47		20.220 -15.382	
ATOM	1398	C LYS A 47	77 8.798	21.075 -8.753	
ATOM	1399	O LYS A 47		22.207 -8.668	1.00 44.88
	1400	N LEU A 47		20.216 -7.728	1.00 42.02
ATOM				20.575 -6.403	
ATOM	1401			19.411 -5.419	
MOTA	1402	CB LEU A 47			
MOTA	1403	CG LEU A 47			
ATOM	1404	CD1 LEU A 47		17.062 -4.658	
ATOM	1405	CD2 LEU A 47		18.653 -5.389	
ATOM	1406	C LEU A 47	78 9.020	21.856 -5.875	
ATOM	1407	O LEU A 47		22.767 -5.399	1.00 37.49
ATOM	1408	N GLN A 47		21.963 -6.057	7 1.00 37.80
				23.144 -5.607	
ATOM	1409			22.987 -5.772	
MOTA	1410	CB GLN A 47			
ATOM	1411	CG GLN A 47			
ATOM	1412	CD GLN A 47		24.122 -5.452	
MOTA	1413	OE1 GLN A 47		23.469 -6.392	
ATOM	1414	NE2 GLN A 47	79 15.702	24.820 -4.616	
ATOM	1415	C GLN A 47	79 10.589	24.379 -6.343	
ATOM	1416	O GLN A 47		25.426 -5.718	3 1.00 42.08
	1417	N GLN A 48		24.251 -7.650	1.00 39.34
ATOM		CA GLN A 48		25.371 -8.460	
MOTA	1419			24.917 -9.894	
MOTA	1419	CB GLN A 48		24.407 -10.70	
ATOM	1420	CG GLN A 48			
MOTA	1421	CD GLN A 48		23.533 -11.889	
ATOM	1422	OE1 GLN A 48		23.582 -12.310	
ATOM	1423	NE2 GLN A 48	80 11.211	22.732 -12.425	
MOTA	1424	C GLN A 48		25.987 -7.853	
ATOM	1425	O GLN A 48	80 8.499	27.198 -7.658	
ATOM	1426	N LYS A 48		25.139 -7.54	5 1.00 35.17
ATOM	1427	CA LYS A 48		25.614 -6.95	7 1.00 37.36
	1428	CB LYS A 48	· ·	24.470 -6.80	
ATOM		-		23.975 -8.112	
ATOM	1429	CG LYS A 48		23.105 -7.90	
MOTA	1430	CD LYS A 4			
MOTA	1431	CE LYS A 48	81 2.989		
MOTA	1432	NZ LYS A 48		21.950 -9.050	
MOTA	1433	C LYS A 4		26.317 -5.62	
ATOM	1434	O LYS A 4	81 5.976	27.353 -5.36	
ATOM	1435	N ILE A 4	82 7.486	25.748 -4.80	6 1.00 38.76
ATOM	1436	CA ILE A 4		26.299 -3.49	4 1.00 36.16
		CB ILE A 4		25.381 -2.70	5 1.00 32.89
MOTA	1437	CG2 ILE A 4		26.130 -1.51	
MOTA	1438	CGZ IDE M 4		24.093 -2.23	
MOTA	1439	CG1 ILE A 4			
MOTA	1440	CD1 ILE A 4	82 9.070		
MOTA	1441	C ILE A 4		27.681 -3.63	9 1.00 35.37
MOTA	1442	O ILE A 4		28.579 - 2.86	
ATOM	1443	N GLN A 4	83 9.256	27.862 -4.66	
MOTA	1444	CA GLN A 4		29.164 -4.89	
ATOM	1445	CB GLN A 4		29.071 -5.95	
	1446	CG GLN A 4		30.342 -6.05	
ATOM		CD GLN A 4		30.296 -7.19	
ATOM	1447	OE1 GLN A 4		29.303 -7.86	
ATOM	1448	OFT GUN W #		31.368 -7.40	
MOTA	1449	NE2 GLN A 4	00 13.440	51.500 -7.40	

- 54 -

					0.040	20 220	E 204	1.00 40.84
ATOM	1450	С	GLN A	483	8.843	30.239	-5.284	
ATOM	1451	0	GLN A	483	8.969	31.422	-4.923	1.00 38.66
					7.802	29.820	-6.002	1.00 39.88
MOTA	1452	N	LEU A					
MOTA	1453	CA	LEU A	484	6.754	30.730	-6.439	1.00 42.14
ATOM	1454	CB	LEU A	484	5.812	30.033	-7.416	1.00 45.74
			LEU A		6.403	29.624	-8.765	1.00 48.71
MOTA	1455	CG						
ATOM	1456	CD1	LEU A	484	5.337	28.943	-9.615	1.00 48.20
ATOM	1457		LEU A		6.966	30.856	-9.472	1.00 50.22
		-			5.957	31.241	-5.252	1.00 42.55
MOTA	1458	С	LEU A					
ATOM	1459	0	LEU A	484	5.622	32.424	-5.181	1.00 42.64
	1460	N	ALA A		5.626	30.329	-4.338	1.00 43.56
MOTA						30.672	-3.128	1.00 40.84
ATOM	1461	CA	ALA A		4.872			
ATOM	1462	CB	ALA A	485	4.350	29.403	-2.449	1.00 41.40
	1463	Ċ	ALA A		5.729	31.497	-2.162	1.00 37.33
ATOM						32.298	-1.388	1.00 37.52
ATOM	1464	0	ALA A		5.204			
ATOM	1465	N	LEU A	486	7.047	31.293	-2.215	1.00 35.33
	1466	CA	LEU A		7.979	32.036	-1.380	1.00 38.02
ATOM							-1.395	1.00 32.53
ATOM	1467	CB	LEU A		9.371	31.401		
MOTA	1468	CG	LEU A	486	10.451	32.287	-0.758	1.00 33.21
	1469		LEU A		10.176	32.478	0.723	1.00 32.27
MOTA				400	11.818	31.693	-0.965	1.00 31.01
ATOM	1470		LEU A					
MOTA	1471	С	LEU A	486	8.049	33.457	-1.942	1.00 42.86
	1472	Ō	LEU A	486	8.077	34.446	-1.190	1.00 44.35
MOTA					8.070	33.545	-3.271	1.00 44.64
ATOM	1473	N	GLN A					
ATOM	1474	CA	GLN A	487	8.112	34.813	-3.998	1.00 47.16
ATOM	1475	CB	GLN A	487	8.145	34.502	-5.486	1.00 51.86
					9.000	35.408	-6.310	1.00 61.53
MOTA	1476	CG	GLN A					
ATOM	1477	$^{\rm CD}$	GLN A	487	9.486	34.714	-7.571	1.00 65.93
ATOM	1478	OE1	GLN A	487	9.083	33.587	-7.865	1.00 66.76
					10.369	35.373	-8.311	1.00 70.60
ATOM	1479	NE2						1.00 47.05
ATOM	1480	С	GLN A	487	6.823	35.579	-3.655	
ATOM	1481	0	GLN A	487	6.844	36.754	-3.307	1.00 45.17
			HIS A		5.702	34.874	-3.741	1.00 47.07
ATOM	1482	Ŋ						1.00 48.67
MOTA	1483	CA	HIS A		4.387	35.405	-3.423	
ATOM	1484	CB	HIS A	488	3.374	34.280	-3.608	1.00 51.60
		CG	HIS A		2.095	34.484	-2.868	1.00 59.15
ATOM	1485	CG					-1.715	1.00 62.57
ATOM	1486		HIS A		1.638	33.939		
MOTA	1487	ND1	HIS A	488	1.097	35.317	-3.322	1.00 63.45
	1488		HIS A		0.074	35.272	-2.485	1.00 64.94
ATOM					0.378	34.444	-1.500	1.00 65.61
MOTA	1489		HIS A					
ATOM	1490	С	HIS A	488	4.334	35.962	-1.986	1.00 49.05
MOTA	1491	0	HIS A	488	3.925	37.097	-1.757	1.00 48.47
			VAL A		4.755	35.154	-1.021	1.00 48.07
MOTA	1492	N						1.00 45.44
ATOM	1493	CA	VAL A	489	4.763	35.571	0.381	
ATOM	1494	CB	VAL A	489	5.220	34.401	1.302	1.00 46.07
	1495		VAL A		5.592	34.911	2.692	1.00 44.85
MOTA		CGT	מ שביי	400	4.115	33.372	1.409	1.00 41.76
ATOM	1496		VAL A					
MOTA	1497	С	VAL A	489	5.682	36.773		1.00 43.28
ATOM	1498	0	VAL A	489	5.319	37.741	1.229	1.00 41.87
			T 7777 B	400	6.866	36.706	-0.006	1.00 44.44
MOTA	1499	N	LEU A					
ATOM	1500	CA	LEU A		7.865	37.763	0.103	1.00 49.79
ATOM	1501	CB	LEU A	490	9.075	37.410	-0.766	1.00 50.68
			LEU A		10.389	36.884	-0.181	1.00 54.00
MOTA	1502	CG						
ATOM	1503	CD1	LEU A	490	10.223	36.100	1.115	1.00 54.10
ATOM	1504	CD2		490	11.034	36.035	-1.241	1.00 54.17
					7.338	39.122	-0.310	1.00 52.92
ATOM	1505	C	LEU A					
MOTA	1506	0	LEU A		7.224	40.037	0.498	1.00 50.59
MOTA	1507	N	GLN A	491	7.014	39.243	-1.587	1.00 60.06
	1508	CA	GLN A		6.513	40.494	-2.107	1.00 66.69
MOTA							-3.638	1.00 72.00
MOTA	1509	СВ	GLN A		6.560	40.523		
ATOM	1510	CG	GLN A	491	6.078	39.292	-4.373	1.00 75.89
ATOM	1511	CD	GLN A		6.340	39.394	-5.862	1.00 79.38
		_			7.133	40.231	-6.302	1.00 82.32
ATOM	1512	OE1						
ATOM	1513	NE2	GLN A	491	5.672	38.554	-6.647	1.00 81.82
ATOM	1514	С	GLN A	491	5.144	40.863	-1.555	1.00 68.27
ATOM	1515	ŏ	GLN A		4.820	42.045	-1.433	1.00 69.36
T Ou		_						

							1 100	1.00 69.33
ATOM	1516		LYS A		4.360	39.863	-1.168	
ATOM	1517	CA	LYS A	492	3.055	40.123	-0.581	1.00 70.57
ATOM	1518	CB	LYS A	492	2.464	38.825	-0.036	1.00 63.87
	1519	CG	LYS A		1.419	39.011	1.021	1.00 55.18
ATOM			LYS A		0.936	37.684	1.518	1.00 50.15
MOTA	1520	CD	T110 1	1 400	0.170	36.960	0.445	1.00 47.92
MOTA	1521	CE	LYS A	492			0.955	1.00 49.79
ATOM	1522	NZ	LYS A	4 492	-0.429	35.700		
ATOM	1523	С	LYS A	A 492	3.258	41.101	0.561	1.00 76.10
ATOM	1524	0	LYS A	A 492	2.447	41.991	0.778	1.00 78.57
MOTA	1525	Ň	ASN A	493	4.387	40.955	1.245	1.00 83.09
	1526	CA	ASN A		4.724	41.795	2.380	1.00 90.65
MOTA				A 493	5.326	40.936	3.510	1.00 91.76
ATOM	1527	CB .			4.413	39.791	3.960	1.00 91.33
MOTA	1528	CG		A 493		39.989	4.743	1.00 90.45
MOTA	1529	OD1			3.483		3.525	1.00 90.60
MOTA	1530	ND2		A 493	4.727	38.576		1.00 96.54
MOTA	1531	С		A 493	5.703	42.929	2.053	
ATOM	1532	0	ASN A	A 493	5.445	44.097	2.361	1.00 97.40
ATOM	1533	N	HIS A	A 494	6.815	42.593	1.401	1.00104.63
	1534	CA		A 494	7.847	43.592	1.111	1.00112.99
ATOM	1535	CB		A 494	9.092	43.302	1.972	1.00118.20
ATOM					8.776	42.865	3.375	1.00123.22
ATOM	1536	CG		A 494	8.606	41.630	3.906	1.00124.65
MOTA	1537			A 494			4.409	1.00125.31
MOTA	1538			A 494	8.580	43.754		1.00125.71
MOTA	1539	CE1	HIS .	A 494	8.306	43.087	5.517	
ATOM	1540	NE2	HIS .	A 494	8.314	41.796	5.238	1.00124.45
ATOM	1541	C	HIS.	A 494	8.283	43.810	-0.343	1.00115.21
ATOM	1542	ŏ		A 494	9.414	43.476	-0.719	1.00113.88
		N		A 495	7.411	44.411	-1.150	1.00118.74
ATOM	1543			A 495	7.771	44.693	-2.539	1.00123.08
ATOM	1544	CA			6.532	44.895	-3.411	1.00124.19
MOTA	1545	CB		A 495		43.611	-3.923	1.00125.95
ATOM	1546	CG	ARG	A 495	5.922			1.00128.86
MOTA	1547	CD		A 495	4.905	43.869	-5.022	
ATOM	1548	NE	ARG	A 495	4.097	42.688	-5.336	1.00130.65
ATOM	1549	CZ	ARG	A 495	2.771	42.700	-5.469	1.00131.44
MOTA	1550	NHÎ	ARG	A 495	2.089	43.829	-5.316	1.00132.26
	1551	NH2		A 495	2.122	41.580	-5.755	1.00132.05
MOTA			ADC:	A 495	8.677	45.927	-2.632	1.00124.82
ATOM	1552	C	ANG	A 495	9.086	46.332	-3.723	1.00125.80
ATOM	1553	0			8.979	46.520	-1.479	1.00125.27
MOTA	1554	N		A 496	9.840	47.694	-1.403	1.00125.62
MOTA	1555	ca	GLU	A 496			0.060	1.00125.24
ATOM	1556	CB	GLU	A 496	10.086	48.053		1.00125.43
ATOM	1557	CG		A 496	10.364	46.856	0.953	
ATOM	1558	$^{\rm CD}$		A 496	10.161	47.175	2.414	1.00127.70
MOTA	1559	OE1	GLU	A 496	11.014	47.880	2.992	1.00129.15
ATOM	1560	OE2	GLU	A 496	9.137	46.733	2.981	1.00127.94
ATOM	1561	C		A 496	11.162	47.439	-2.117	1.00126.43
ATOM	1562	ŏ	CLII	A 496	11.731	48.346	-2.723	1.00127.96
	1563			A 497	11.635	46.195	-2.047	1.00126.16
ATOM		N		A 497	12.886	45.790	-2.693	1.00124.22
MOTA	1564	CA	ADE	A 407	14.036	45.643	-1.669	1.00124.95
ATOM	1565	CB	ASP	A 497		46.260	-0.317	1.00125.55
MOTA	1566	CG		A 497	13.719			1.00125.55
ATOM	1567	OD1	. ASP	A 497	13.970	47.468	-0.132	1.00125.33
MOTA	1568	OD2	2 ASP	A 497	13.221	45.530	0.565	1.00120.00
ATOM	1569	С	ASP	A 497	12.646	44.446	-3.392	1.00121.48
ATOM	1570	0	ASP	A 497	11.524	44.142	-3.807	1.00121.28
ATOM	1571	N		A 498	13.711	43.655	-3.527	1.00118.36
	1572	CA		A 498	13.637	42.337	-4.142	1.00112.17
ATOM				A 498	14.617	41.465	-3.374	1.00106.96
ATOM	1573	C	CLA	A 400	15.677	41.104	-3.889	1.00107.39
MOTA	1574	0		A 498	14.253	41.158	-2.128	1.00100.38
MOTA	1575	N		A 499			-1.187	1.00 90.88
ATOM	1576	CA		A 499	15.058	40.378		1.00 89.37
MOTA	1577	CB		A 499	14.545	40.644		
ATOM	1578	CG2		A 499	14.172	39.362	0.988	1.00 88.94
MOTA	1579		LILE	A 499	15.573	41.483	1.013	1.00 88.59
ATOM	1580		L ILE	A 499	16.015	42.736	0.254	1.00 88.83
ATOM	1581	C	ILE	A 499	15.254	38.885	-1.469	1.00 85.97
		-						

ATOM	1582	0	ILE A 499	16.120	38.243	-0.872	1.00	
ATOM	1583	N	LEU A 500	14.482	38.353	-2.412		82.32
	1584	CA	LEU A 500	14.572	36.945	-2.784	1.00	79.33
ATOM		CB	LEU A 500	13.593	36.610	-3.926	1.00	75.45
ATOM	1585	-		13.480	35.160	-4.427		72.35
MOTA	1586	CG	LEU A 500	13.020	34.209	-3.345		70.46
MOTA	1587	CD1			35.104	-5.569		74.01
MOTA	1588	CD2	LEU A 500	12.509				78.86
MOTA	1589	C	LEU A 500	15.994	36.594	-3.191		80.08
MOTA	1590	0	LEU A 500	16.443	35.483	-2.943		78.15
ATOM	1591	N	THR A 501	16.709	37.548	-3.786		
ATOM	1592	CA	THR A 501	18.085	37.316	-4.224		79.02
ATOM	1593	CB	THR A 501	18.654	38.487	-5.065		82.06
MOTA	1594	OG1	THR A 501	18.870	39.635	-4.225		84.30
MOTA	1595	CG2	THR A 501	17.708	38.834	-6.214		83.64
ATOM	1596	C	THR A 501	18.935	37.193	-2.988		77.23
ATOM	1597	ŏ	THR A 501	19.694	36.236	-2.831		77.82
ATOM	1598	Ň	LYS A 502	18.776	38.185	-2.117		74.83
ATOM	1599	CA	LYS A 502	19.478	38.276	-0.847		72.92
	1600	CB	LYS A 502	18.834	39.402	-0.025	1.00	79.85
ATOM	1601	CG	LYS A 502	19.726	40.108	0.995	1.00	85.84
MOTA	1601	CD	LYS A 502	18.937	41.231	1.690	1.00	89.85
MOTA			LYS A 502	19.744	41.963	2.764	1.00	94.60
ATOM	1603	CE	LYS A 502	18.918	42.984	3.487		95.90
ATOM	1604	NZ	LYS A 502	19.282	36.922	-0.158		66.91
ATOM	1605	C		20.227	36.332	0.360		65.72
MOTA	1606	0	LYS A 502	18.060	36.409	-0.267		59.20
MOTA	1607	N	LEU A 503		35.134	0.306		52.88
MOTA	1608	CA	LEU A 503	17.662	34.971	0.156		47.50
MOTA	1609	CB	LEU A 503	16.158	-	1.365	1.00	
MOTA	1610	CG	LEU A 503	15.466	34.377 34.928	2.664		46.78
ATOM	1611	CD1		16.066		1.270		51.22
MOTA	1612	CD2		13.990	34.688			51.55
ATOM	1613	С	LEU A 503	18.374	33.938	-0.314		49.38
MOTA	1614	0	LEU A 503	19.200	33.301	0.334		50.92
MOTA	1615	N	ILE A 504	18.087	33.645	-1.579		
ATOM	1616	ĊĀ	ILE A 504	18.715	32.499	-2.231		51.60
ATOM	1617	CB	ILE A 504	18.054	32.153	-3.588		55.42
ATOM	1618	CG2		16.718	31.464	-3.360		52.28
ATOM	1619	CG1	ILE A 504	17.860	33.415	-4.418	1.00	
ATOM	1620	CD1	ILE A 504	16.623	33.368	-5.320	1.00	
ATOM	1621	С	ILE A 504	20.233	32.598	-2.336		49.75
ATOM	1622	0	ILE A 504	20.917	31.593	-2.485	1.00	
ATOM	1623	N	CYS A 505	20.773	33.798	-2.192		48.02
ATOM	1624	CA	CYS A 505	22.221	33.974	-2.220	1.00	
ATOM	1625	CB	CYS A 505	22.557	35.465	-2.457	1.00	58.96
ATOM	1626	SG	CYS A 505	23.762	36.304	-1.354	1.00	
MOTA	1627	Ċ	CYS A 505	22.791	33.433	-0.891	1.00	
ATOM	1628	0	CYS A 505	23.956	33.014	-0.803		41.30
ATOM	1629	N	LYS A 506	21.939	33.398	0.131		40.06
ATOM	1630	CA	LYS A 506	22.336	32.890	1.425		37.35
MOTA	1631	CB	LYS A 506	21.286	33.221	2.481		40.11
MOTA	1632	CG	LYS A 506	20.957	34.686	2.596		43.49
ATOM	1633	CD	LYS A 506	22.217	35.514	2.611	1.00	51.34
ATOM	1634	CE	LYS A 506	22.343	36.269	3.891		55.65
ATOM	1635	NZ	LYS A 506	22.139	35.376	5.071	1.00	63.77
	1636	C	LYS A 506	22.466	31.389	1.309		36.27
MOTA		Õ	LYS A 506	23.267	30.786	2.005	1.00	40.04
ATOM	1637		VAL A 507	21.692	30.784	0.417		32.90
ATOM	1638	N	VAL A 507	21.735	29.341	0.227		35.32
ATOM	1639	CA	VAL A 507	20.809	28.932	-0.926		39.14
MOTA	1640	CB CC1	L VAL A 507	20.872	27.438	-1.155		41.89
ATOM	1641	CG2		19.382	29.364	-0.630		35.73
ATOM	1642		VAL A 507	23.146	28.782	-0.016	1.00	
ATOM	1643	C	VAL A 507	23.447	27.642	0.318		36.47
ATOM	1644	0 N	SER A 508	24.009	29.584	-0.616	1.00	
ATOM	1645	N	SER A 508	25.372	29.159	-0.886		37.66
MOTA	1646	CA	SER A 508	25.996	30.084	-1.941		38.93
MOTA	1647	СВ	DEK W JOO	٥٠٠.٠٥	55.50 x			

ATOM	1648	OG	SER A 5	508	27.309	29.693	-2.294	1.00	45.66
ATOM	1649	C	SER A 5		26.192	29.172	0.420	1.00	37.79
			SER A 5		27.026	28.280	0.647	1.00	37.44
MOTA	1650	0					1.267		35.49
MOTA	1651	N	THR A		25.949	30.178			
ATOM	1652	CA	THR A 5		26.627	30.326	2.553		32.31
ATOM	1653	CB	THR A 5	509	26.250	31.644	3.236		35.78
ATOM	1654	OG1	THR A 5		26.405	32.720	2.305	1.00	42.43
	1655	CG2	THR A		27.157	31.895	4.437	1.00	35.82
MOTA		-			26.231	29.187	3.469		28.28
MOTA	1656	C	THR A			28.665	4.178		32.41
MOTA	1657	0	THR A		27.065				
MOTA	1658	N	LEU A 5		24.958	28.812	3.452		28.16
MOTA	1659	CA	LEU A 5	510	24.452	27.696	4.249		29.00
ATOM	1660	CB	LEU A S	510	22.994	27.394	3.885	1.00	26.48
ATOM	1661	CG	LEU A		21.819	28.079	4.571	1.00	29.80
	1662	CD1	LEU A		20.544	27.623	3.907	1.00	28.25
MOTA			LEU A	510	21.793	27.717	6.063		30.36
MOTA	1663	CD2				26.437	3.969		32.43
MOTA	1664	Ç	LEU A		25.267				32.33
MOTA	1665	0	LEU A		25.639	25.698	4.885		
ATOM	1666	N	ARG A		25.524	26.194	2.685		31.40
ATOM	1667	CA	ARG A !	511	26.272	25.027	2.233		28.94
ATOM	1668	CB	ARG A	511	26.170	24.909	0.706	1.00	34.59
ATOM	1669	CG	ARG A		24.716	24.741	0.261	1.00	34.26
		CD	ARG A		24.547	24.611	-1.225	1.00	36.35
ATOM	1670		ANG A.	J L L E 1 1	23.192	24.185	-1.556		31.13
ATOM	1671	NE	ARG A				-2.545		31.68
MOTA	1672	CZ	ARG A		22.887	23.356			32.54
MOTA	1673	NH1			23.839	22.856	-3.324		
MOTA	1674	NH2			21.628	23.004	-2.730		27.68
ATOM	1675	С	ARG A	511	27.710	25.049	2.695		26.34
ATOM	1676	Ō	ARG A		28.270	24.011	3.015	1.00	28.74
ATOM	1677	Ň	ALA A	512	28.314	26.235	2.693	1.00	25.39
		CA	ALA A	512	29.687	26.409	3.161	1.00	24.68
ATOM	1678		272 2	512 E13	30.157	27.796	2.830		22.96
MOTA	1679	CB	ALA A				4.691		27.69
MOTA	1680	C	ALA A		29.732	26.195		1.00	27.18
ATOM	1681	0	ALA A		30.622	25.518	5.231		
ATOM	1682	Ñ	LEU A	513	28.773	26.814	5.373		27.16
ATOM	1683	CA	LEU A	513	28.638	26.708	6.815		26.64
MOTA	1684	CB	LEU A	513	27.427	27.528	7.256	1.00	24.45
ATOM	1685	ĊĠ	LEU A		27.228	27.696	8.758	1.00	28.40
	1686	CD1			28.492	28.230	9.403	1.00	25.85
ATOM					26.053	28.607	9.013		30.72
ATOM	1687	CD2			28.490	25.209	7.192	1.00	
MOTA	1688	C	LEU A			24.683	8.008	1.00	31.91
MOTA	1689	0	LEU A	513	29.259				26.57
ATOM	1690	N		514	27.543	24.512	6.566	1.00	
MOTA	1691	CA	CYS A	514	27.351	23.104	6.851	1.00	26.98
ATOM	1692	CB	CYS A	514	26.025	22.614	6.269	1.00	
ATOM	1693	SG	CYS A	514	24.579	23.438	7.009	1.00	30.96
ATOM	1694	Ĉ	CYS A	514	28.538	22.250	6.404	1.00	28.07
ATOM	1695	ŏ	CYS A	514	28.764	21.161	6.931	1.00	27.30
			GLY A	515	29.298	22.741	5.431	1.00	29.78
MOTA	1696	N	GDI A	515 E1E	30.477	22.027	4.980		29.40
ATOM	1697	CA	GLY A				6.040		30.10
MOTA	1698	С	GLY A	272	31.570	22.004			
MOTA	1699	0	GLY A	515	32.190	20.965	6.266		30.71
MOTA	1700	N	ARG A	516	31.810	23.142	6.693		33.97
ATOM	1701	CA	ARG A	516	32.811	23.217	7.748		34.03
ATOM	1702	CB	ARG A		33.065	24.652	8.178	1.00	37.07
ATOM	1703	CG	ARG A		33.921	25.429	7.198	1.00	52.01
			ARG A	516	34.465	26.715	7.807	1.00	56.98
MOTA	1704	CD			35.467	26.438	8.836	1 00	61.64
MOTA	1705	NE	ARG A				9.699		62.65
MOTA	1706	CZ	ARG A		35.927	27.342			
MOTA	1707		ARG A	516	35.466	28:590	9.665	1.00	
MOTA	1708	NH2		516	36.879	27.005	10.566		60.38
MOTA	1709	С	ARG A	516	32.380	22.395	8.947		33.89
ATOM	1710	Õ	ARG A	516	33.227	21.847	9.634		33.31
ATOM	1711	N	HIS A	517	31.075	22.322	9.215		33.19
ATOM	1712	CA	HIS A	517	30.616	21.517	10.337	1.00	34.62
		CB	HIS A		29.085	21.466	10.440		34.29
MOTA	1713	CB	HTO M	J	22.000	22.300			

ATOM	1714	CG	HIS A	517	28.576	20.462	11.440	1.00 33.44
ATOM	1715	CD2	HIS A	517	28.646	20.433	12.793	1.00 31.33
ATOM	1716		HIS A		27.909	19.311	11.072	1.00 28.67
ATOM	1717		HIS A		27.589	18.619	12.151	1.00 27.08
ATOM	1718		HIS A		28.027	19.279	13.208	1.00 28.43
ATOM	1719		HIS A		31.147	20.107	10.127	1.00 36.73
ATOM	1720		HIS A		31.825	19.567	10.994	1.00 34.74
ATOM	1721	N	THR A		30.884	19.541	8.950	1.00 36.75
ATOM	1722	CA	THR A		31.343	18.192	8.662	1.00 36.81
ATOM	1723	CB	THR A		30.692	17.620	7.406	1.00 35.05
ATOM	1724		THR A		29.327	17.303	7.688	1.00 37.15
	1725		THR A		31.382	16.346	6.980	1.00 38.73
MOTA	1726	C	THR A		32.862	18.100	8.608	1.00 37.39
ATOM	1727	Ö	THR A		33.430	17.077	8.962	1.00 42.45
MOTA	1728	N	GLU A	519	33.531	19.175	8.220	1.00 38.67
MOTA	1729	CA	GLU A		34.990	19.166	8.196	1.00 43.58
ATOM	1730	CB	GLU A		35.516	20.438	7.500	1.00 54.27
MOTA	1731	CG	GLU A		35.261	20.537	5.964	1.00 63.20
ATOM	1732	CD	GLU A		35.380	21.975	5.406	1.00 65.12
ATOM	1733	OE1			34.782	22.258	4.342	1.00 66.49
ATOM	1734	OE2	_		36.053	22.826	6.035	1.00 67.73
ATOM	1735	CEZ	GLU A		35.516	19.099	9.649	1.00 42.46
MOTA	1736		GLU A		36.470	18.382	9.959	1.00 39.74
MOTA	1737	N O	LYS A	520	34.857	19.843	10.535	1.00 41.75
MOTA	1738	CA	LYS A	520	35.222	19.895	11.945	1.00 37.07
ATOM	1739	CB	LYS A	520	34.481	21.049	12.651	1.00 41.10
MOTA	1740	CG	LYS A		34.939	22.467	12.235	1.00 44.66
ATOM		CD	LYS A	520	36.383	22.748	12.670	1.00 53.92
ATOM	1741 1742	CE	LYS A		37.078	23.819	11.819	1.00 56.95
MOTA	1743	NZ	LYS A		37.313	23.411	10.388	1.00 63.31
MOTA MOTA	1744	C	LYS A		34.911	18.560	12.618	1.00 34.80
ATOM	1745	ŏ	LYS A		35.770	17.983	13.278	1.00 34.89
ATOM	1746	Ň	LEU A		33.703	18.051	12.394	1.00 33.45
ATOM	1747	CA	LEU A	521	33.270	16.782	12.956	1.00 33.31
ATOM	1748	CB	LEU A		31.839	16.460	12.526	1,00 26,37
ATOM	1749	CG	LEU A	521	31.268	15.095	12.905	1.00 24.78
ATOM	1750	CD1	LEU A	521	31.380	14.865	14.394	1.00 29.22
ATOM	1751	CD2	LEU A	521	29.832	15.021	12.520	1.00 24.85
ATOM	1752	С	LEU A		34.214	15.633	12.601	1.00 38.43
MOTA	1753	0	LEU A		34.564	14.843	13.477	1.00 38.10
ATOM	1754	N	MET A		34.694	15.581	11.356	1.00 39.97 1.00 41.97
MOTA	1755	CA	MET A	. 522	35.601	14.507	10.947 9.426	1.00 41.97
ATOM	1756	CB	MET A		35.725	14.431		1.00 58.55
ATOM	1757	CG	MET A		34.430	14.035	8.707 9.548	1.00 53.55
MOTA	1758	SD	MET A	522	33.355 34.455	12.804 11.351	9.732	1.00 65.55
ATOM	1759	CE	MET A	522	36.982	14.574	11.596	1.00 40.03
ATOM	1760	C	MET A	522	37.578	13.539	11.900	1.00 37.83
MOTA	1761	0	ALA A	522	37.497	15.782	11.798	1.00 37.94
MOTA	1762	N	ALA A		38.790	15.936	12.452	1.00 39.72
MOTA	1763 1764	CA CB	ALA A		39.272	17.353	12.304	1.00 45.50
MOTA	1765	CD	ALA A	523	38.640	15.587	13.938	1.00 41.81
MOTA MOTA	1766	Ö	ALA A	523	39.523	14.997	14.547	1.00 44.06
ATOM	1767	N	PHE A		37.509	15.971	14.519	1.00 41.49
ATOM	1768	CA	PHE A	524	37.238	15.674	15.915	1.00 39.19
ATOM	1769	CB	PHE A		35.923	16.334	16.360	1.00 35.12
ATOM	1770	CG	PHE A	524	35.511	15.998	17.781	1.00 30.17
ATOM	1771		PHE A	524	35.968	16.762	18.852	1.00 28.22
MOTA	1772	CD2	PHE A	524	34.644	14.924	18.040	1.00 26.69
ATOM	1773	CE1	PHE A	524	35.569	16.465	20.166	1.00 25.14
ATOM	1774	CE2	PHE A	524	34.240	14.620	19.341	1.00 27.45
ATOM	1775	CZ	PHE A	524	34.709	15.398	20.408	1.00 25.33
ATOM	1776	C	PHE A	524	37.151	14.157	16.093	1.00 38.05
MOTA	1777	0	PHE A	524	37.788	13.602	16.989	1.00 39.38
MOTA	1778	N	LYS A		36.370	13.494	15.240	1.00 33.74
MOTA	1779	CA	LYS A	1 525	36.188	12.053	15.336	1.00 32.28

MOM	1780	СВ	LYS A 5	25	35.150	11.566	14.341	1.00	32.43
MOTA	1781	CG	LYS A 5	25	35.058	10.061	14.265	1.00	32.27
ATOM			TIO A S	25	34.049	9.588	13.234	1.00	39.70
ATOM	1782	CD	LYS A 5	22	34.182	8.085	13.027		43.60
ATOM	1783	CE	LYS A 5	25			12.274		52.36
MOTA	1784	NZ	LYS A 5	25	33.052	7.475	15.141		37.02
MOTA	1785	C	LYS A 5	25	37.486	11.292			
ATOM	1786	0	LYS A 5	25	37.572	10.113	15.458		38.38
ATOM	1787	N		26	38.514	11.972	14.651		38.57
MOTA	1788	CA	ALA A 5	26	39.796	11.312	14.442		42.31
ATOM	1789	CB	ALA A 5	26	40.639	12.098	13.429		42.02
ATOM	1790	Č	ALA A 5	26	40.523	11.230	15.774		43.27
ATOM	1791	ŏ	ALA A 5	26	41.174	10.226	16.091	1.00	43.91
	1792	N	ILE A 5	27	40.348	12.293	16.555	1.00	41.76
ATOM	1793	CA	ILE A 5	27	40.961	12.455	17.866	1.00	40.21
ATOM				27	41.127	13.946	18.166	1.00	40.67
ATOM	1794	CB		27	41.824	14.145	19.503		42.82
ATOM	1795	CG2			41.897	14.612	17.026		39.18
MOTA	1796	CG1	ILE A 5	041	41.864	16.128	17.066		37.42
MOTA	1797	CD1	ILE A 5	27			19.015		38.56
MOTA	1798	C	ILE A 5		40.195	11.786	19.013	1.00	38.98
ATOM	1799	0		527	40.800	11.309			34.57
ATOM	1800	N	TYR A 5		38.871	11.727	18.900		
ATOM	1801	CA		528	38.023	11.135	19.930		31.38
ATOM	1802	CB	TYR A 5	528	37.209	12.229	20.645		31.31
ATOM	1803	CG	TYR A 5	528	38.046	13.379	21.159		34.92
ATOM	1804	CD1	TYR A 5	528	38.337	14.471	20.345		34.80
ATOM	1805	CE1	TYR A 5	528	39.157	15.513	20.789		39.08
ATOM	1806	CD2	TYR A 5	528	38.592	13.355	22.442		34.45
ATOM	1807	CE2	TYR A 5		39.417	14.394	22.895		37.74
ATOM	1808	CZ	TYR A 5		39.695	15.468	22.062	1.00	39.56
ATOM	1809	ОН	TYR A 5	528	40.520	16.489	22.489	1.00	45.36
	1810	C	TYR A 5		37.066	10.113	19.333	1.00	32.21
ATOM		Ö	TYR A 5	528	35.843	10.289	19.388	1.00	35.37
ATOM	1811			529	37.601	9.010	18.777		32.25
ATOM	1812	N		529	39.034	8.705	18.673	1.00	
ATOM	1813	CD		529 529	36.809	7.939	18.160	1.00	30.81
ATOM	1814	CA			37.875	6.895	17.822	1.00	30.02
MOTA	1815	CB	PRO A 5	223	39.061	7.703	17.564	1.00	29.92
ATOM	1816	CG	PRO A 5			7.703	19.040	1.00	33.28
MOTA	1817	C	PRO A 5		35.706	7.201	18.606	1.00	32.51
ATOM	1818	0	PRO A		34.553		20.272		35.37
MOTA	1819	N		530	36.066	6.953			35.88
MOTA	1820	CA	ASP A		35.110	6.338	21.195	1.00	
MOTA	1821	CB	ASP A		35.831	5.563	22.293	1.00	58.80
MOTA	1822	CG	ASP A		36.564	4.341	21.758		
ATOM	1823	OD1			36.010	3.219	21.852	1.00	64.43
MOTA	1824	OD2		530	37.697	4.503	21.240	1.00	63.77
ATOM	1825	С	ASP A		34.127	7.309	21.799	1.00	29.27
ATOM	1826	0	ASP A		33.037	6.909	22.221	1.00	29.58
ATOM	1827	N	ILE A S	531	34.525	8.577	21.892	1.00	30.58
MOTA	1828	CA	ILE A S	531	33.629	9.593	22.426		29.77
ATOM	1829	СВ	ILE A S	531	34.302	10.998	22.576		35.01
ATOM	1830	CG2			33.230	12.090	22.817		33.87
ATOM	1831	CG1		531	35.247	10.998	23.781	1.00	36.43
ATOM	1832	CD1		531	34.549	10.604	25.107		
ATOM	1833	C	ILE A	531	32.500	9.673	21.440	1.00	29.02
	1834	ŏ	ILE A	531	31.344	9.560	21.819		
MOTA			VAL A		32.841	9.787	20.158	1.00	29.79
ATOM	1835	N	VAL A	532 532	31.814	9.857	19.129		25.98
MOTA	1836	CA	VAL A	532 532	32.446	10.141	17.746		27.17
ATOM	1837	CB	VALIA	532 532	31.376	10.244	16.699		26.57
MOTA	1838		VAL A		33.246	11.437	17.788		23.54
ATOM	1839	CG2		JJ4 E33		8.567	19.111		22.88
MOTA	1840	C	VAL A	534 533	30.984		19.258		25.44
MOTA	1841	0	VAL A	532 533	29.765	8.596	19.238		24.52
MOTA	1842	N	ARG A	533	31.662	7.429		1 00	23.99
MOTA	1843	CA	ARG A	533	30.980	6.136	18.997		28.41
MOTA	1844	СВ	ARG A	533	32.028	5.030	18.941		37.43
MOTA	1845	CG	ARG A	533	31.444	3.657	18.777	1.00	57.43

ATOM	1846	GD	ARG A 533	22 551	0 607	10 660	1 00 15 20
	18/16	CD .	ARG A DOD	32.551	2.627	18.668	1.00 45.29
	1847	NE	ARG A 533	32.255	1.490	19.528	1.00 51.73
MOTA	1848	CZ	ARG A 533	32.897	1.228	20.658	1.00 55.49
ATOM		NILI1	ARG A 533	33.899	2.010	21.052	1.00 51.92
MOTA	1849		ARG A 533	32.459	0.254	21.445	1.00 59.77
MOTA	1850	NHZ	ARG A JJJ	30.024	5.861	20.136	1.00 24.93
MOTA	1851		ARG A 533	28.866	5.504	19.935	1.00 24.06
MOTA	1852		ARG A 533		6.093	21.348	1.00 30.94
MOTA	1853		LEU A 534	30.519		22.582	1.00 26.49
MOTA	1854		LEU A 534	29.778	5.846		1.00 28.50
ATOM	1855		LEU A 534	30.773	5.408	23.658	1.00 28.71
ATOM	1856		LEU A 534	31.461	4.072	23.339	1.00 28.71
ATOM	1857	CD1	LEU A 534	32.692	3.806	24.193	
ATOM	1858	CD2	LEU A 534	30.436	2.985	23.497	1.00 29.34
MOTA	1859	С	LEU A 534	28.877	6.956	23.118	1.00 24.89
ATOM	1860	0	LEU A 534	27.803	6.669	23.649	1.00 24.01
ATOM	1861	N	HIS A 535	29.234	8.214	22.875	1.00 25.63
ATOM	1862	CA	HIS A 535	28.458	9.317	23.439	1.00 27.16
ATOM	1863	CB	HIS A 535	29.358	10.074	24.423	1.00 26.58
ATOM	1864	CG	HIS A 535	30.001	9.174	25.430	1.00 25.50
	1865	CD3	HIS A 535	31.245	8.641	25.487	1.00 25.11
ATOM ATOM	1866	NID1	HIS A 535	29.302	8.631	26.487	1.00 26.41
	1867	CE1	HIS A 535	30.086	7.802	27.151	1.00 24.19
MOTA	1868		HIS A 535	31.270	7.790	26.564	1.00 26.77
ATOM		C	HIS A 535	27.669	10.284	22.553	1.00 28.58
ATOM	1869		HIS A 535	26.881	11.073	23.082	1.00 27.81
MOTA	1870	0	PHE A 536	27.851	10.228	21.226	1.00 33.00
MOTA	1871	N	PHE A 536	27.092	11.108	20.313	1.00 31.11
MOTA	1872	CA	PHE A 330	27.895	11.401	19.043	1.00 29.90
MOTA	1873	CB	PHE A 536	28.915	12.512	19.192	1.00 29.99
MOTA	1874	CG	PHE A 536	29.678	12.643	20.337	1.00 24.61
MOTA	1875	CD1			13.406	18.153	1.00 25.96
MOTA	1876	CD2	PHE A 536	29.132	13.400	20.439	1.00 23.54
MOTA	1877	CE1		30.644		18.256	1.00 24.50
ATOM	1878	CE2	PHE A 536	30.095	14.406	19.394	1.00 24.21
MOTA	1879	$\mathbf{C}\mathbf{Z}$	PHE A 536	30.849	14.523	19.334	1.00 24.21
MOTA	1880	Ĉ	PHE A 536	25.713	10.487		1.00 34.36
MOTA	1881	0	PHE A 536	25.581	9.259	19.956	1.00 34.30
MOTA	1882	N	PRO A 537	24.664	11.321	19.756	1.00 27.60
MOTA	1883	CD	PRO A 537	24.632	12.793	19.845	1.00 25.30
MOTA	1884	CA	PRO A 537	23.335	10.795	19.432	1.00 23.10
ATOM	1885	CB	PRO A 537	22.501	12.068	19.256	1.00 23.10
ATOM	1886	CG	PRO A 537	23.189	13.062	20.157	1.00 22.43
MOTA	1887	С	PRO A 537	23.392	9.975	18.128	1.00 30.48
ATOM	1888	0	PRO A 537	24.122	10.336	17.185	1.00 28.04
ATOM	1889	N	PRO A 538	22.690	8.823	18.091	1.00 31.20
ATOM	1890	CD	PRO A 538	22.017	8.173	19.227	1.00 28.91
MOTA	1891	CA	PRO A 538	22.654	7.946	16.908	
MOTA	1892	CB	PRO A 538	21.592	6.931	17.293	1.00 29.35
MOTA	1893	CG	PRO A 538	21.911	6.731		1.00 28.32
ATOM	1894	С	PRO A 538	22.311	8.708	15.623	1.00 32.64
ATOM	1895	0	PRO A 538	23.086	8.680	14.669	1.00 30.42
MOTA	1896	N	LEU A 539	21.207	9.460	15.652	1.00 34.18
ATOM	1897	CA	LEU A 539	20.773	10.273	14.510	1.00 30.02
MOTA	1898	CB	LEU A 539	19.512	11.069	14.895	1.00 29.47
ATOM	1899	CG	LEU A 539	18.858	11.924	13.802	1.00 29.66
ATOM	1900	CD1	LEU A 539	18.592	11.029	12.608	1.00 31.73
ATOM	1901	CD2	LEU A 539	17.583	12.604	14.267	1.00 25.29
ATOM	1902	C	LEU A 539	21.887	11.215	14.009	1.00 29.19
ATOM	1903	ŏ	LEU A 539	22.131	11.326	12.816	1.00 30.25
	1904	Ŋ	TYR A 540	22.581	11.877	14.925	1.00 25.32
ATOM	1904	CA	TYR A 540	23.643	12.778	14.546	1.00 22.42
ATOM	1905		TYR A 540	24.280	13.355	15.791	1.00 21.19
MOTA		CG	TYR A 540	25.343	14.387	15.535	1.00 17.26
	1907 1908	CD1	TYR A 540	25.016	15.733	15.400	1.00 17.30
MOTA	1708		1111 5 0 20	25.982	16.676	15.216	1.00 12.79
ATOM		<u>ሮ</u> ሮ1	ጥላዊ ል ካል።	43.304		10.210	1.00 12.73
ATOM ATOM	1909		TYR A 540			15.464	1.00 19.93
ATOM		CD2	TYR A 540 TYR A 540 TYR A 540	26.680 27.657	14.028 14.976		

WO 03/093312 PCT/EP03/04433

				4.0	27.294	16.299	15.150	1.00	13.88
MOTA	1912	CZ	TYR A 5	40			14.997	1.00	
MOTA	1913	OH	TYR A 5	40	28.276	17.244		1.00	
ATOM	1914	С	TYR A 5	40	24.708	12.009	13.780		
ATOM	1915	0	TYR A 5	40	25.296	12.508	12.811	1.00	
MOTA	1916	N	LYS A 5	41	25.008	10.802	14.244	1.00	
ATOM	1917	CA	LYS A 5	41	26.029	9.999	13.574	1.00	
ATOM	1918	CB	LYS A 5		26.482	8.874	14.497	1.00	
	1919	CG	LYS A 5		27.219	9.383	15.714	1.00	
ATOM	1920	CD	LYS A 5		27.712	8.227	16.528	1.00	
ATOM		CE	LYS A 5	111	26.561	7.418	17.035	1.00	22.56
ATOM	1921		LYS A 5	74.1 : // 1	27.091	6.148	17.574	1.00	31.19
MOTA	1922	NZ	LID A	74.T	25.563	9.467	12.204	1.00	
MOTA	1923	C	LYS A 5		26.324	9.441	11.250		34.75
MOTA	1924	0	LYS A			9.069	12.126	1 00	32.04
MOTA	1925	N	GLU A		24.298		10.888		35.69
ATOM	1926	ca	GLU A		23.726	8.570			38.46
ATOM	1927	CB	GLU A	42	22.316	8.074	11.129	1 00	52.51
ATOM	1928	CG	GLU A 5	542	22.269	6.772	11.888		
ATOM	1929	CD	GLU A 5		20.882	6.443	12.403		59.88
ATOM	1930	OE1	GLU A	542	20.795	5.892	13.531		65.14
ATOM	1931	OE2		542	19.889	6.732	11.684		59.01
ATOM	1932	C	GLU A !		23.661	9.668	9.855		36.75
ATOM	1933	ō	GLU A		23.668	9.393	8.666		39.22
ATOM	1934	Ň	LEU A		23.557	10.913	10.312		35.21
ATOM	1935	CA	LEU A	543	23.449	12.047	9.407		33.98
	1936	CB	LEU A		22.549	13.145	9.990	1.00	31.70
ATOM		CG	LEU A		21.045	12.927	10.118	1.00	34.06
ATOM	1937		LEU A		20.457	14.088	10.891	1.00	35.24
MOTA	1938	CDI	LEU A	543 543	20.388	12.826	8.761	1.00	35.42
ATOM	1939				24.731	12.702	8.959		32.29
ATOM	1940	C	LEU A		24.776	13.231	7.859		39.03
MOTA	1941	0	LEU A			12.651	9.762		29.28
MOTA	1942	N	PHE A		25.781		9.389		29.14
MOTA	1943	CA	PHE A	544	26.997	13.354	10.330		32.64
MOTA	1944	CB	PHE A		27.203	14.561	10.528		32.31
ATOM	1945	CG	PHE A	544	25.969	15.425			27.53
ATOM	1946	CD1	PHE A	544	25.295	15.431	$\frac{11}{2},746$		32.38
MOTA	1947		PHE A		25.491	16.247	9.501		26.56
MOTA	1948		PHE A		24.165	16.239	11.943		
ATOM	1949	CE2	PHE A	544	24.354	17.065	9.690	1.00	29.30
MOTA	1950	CZ	PHE A		23.694	17.057	10.914		30.03
ATOM	1951	С	PHE A		28.269	12.505	9.356	1.00	33.29
ATOM	1952	0	PHE A	544	28.193	11.266	9.571		36.40
ATOM	1953	OX	PHE A	544	29.349	13.102	9.110	1.00	34.60
ATOM	1954	01	HOH V	1	19.571	24.015	22.830		11.92
ATOM	1955	01	HOH V	2	12.600	24.091	16.912		16.18
ATOM	1956	01	HOH V	3	14.052	22.894	14.638		22.41
ATOM	1957	01	HOH V	4	28.663	16.841	27.507	1.00	23.15
ATOM	1958	01	HOH V	5	26.725	9.526	26.728		24.50
MOTA	1959	01	HOH V	6	18.179	21.587	21.082		24.52
	1960	01	HOH V	7	34.584	18.654	31.591	1.00	24.62
MOTA	1961	01	HOH V	8	38.207	8.705	22.227	1.00	25.07
ATOM			HOH V	9	18.077	19.002	0.819	1.00	25.07
ATOM	1962	01	HOH V	10	17.420	26.679	24.799	1.00	25.52
ATOM	1963	01		11	11.110	25.828	9.180		25.56
ATOM	1964	01	HOH V	12	25.371	34.354	26.992	1.00	
ATOM	1965	01	HOH V		35.321	27.213	19.620		25.99
ATOM	1966	01	нон у	13		26.166	21.645	1.00	
ATOM	1967	01	HOH V	14	18.045		17.919		26.31
MOTA	1968	01	HOH V	15	19.454	10.080	13.415		26.89
MOTA	1969	01	HOH V	16	37.357	26.490		1 00	27.31
MOTA	1970	01	HOH V	17	11.508	26.772	18.302	1.00	
MOTA	1971	01	HOH V	18	15.147	25.780	21.426		
MOTA	1972	01	HOH V	19	26.400	37.545	37.765	1.00	
MOTA	1973	01	HOH V	20	24.927	38.184	32.702		28.88 29.31
ATOM	1974	01		21	22.535	18.724	7.093		
MOTA	1975	01		22	19.050	8.455	-3.987		29.80
MOTA	1976	01		23	20.732	38.540	24.291		30.07
ATOM	1977	01	HOH V	24	14.054	28.783	15.745	T.00	31.20
•									

ATOM	1978	01	нон V	25	25.356	15.005	28.051		31.83
	1979	01	HOH V	26	33.279	26.348	25.938		32.16
ATOM		01	HOH V	27	14.590	28.615	28.744	1.00	32.70
MOTA	1980		HOH V	28	4.102	35.198	9.164	1.00	32.70
MOTA	1981	01		29	13.577	30.615	29.768	1.00	32.70
MOTA	1982	01	HOH V	30	28.564	37.851	14.236		32.76
ATOM	1983	01	HOH V		22.927	14.143	0.962		33.39
ATOM	1984	01	HOH V	31		38.081	22.254		33.51
ATOM	1985	01	HOH V	32	27.550		9.792		33.68
ATOM	1986	01	HOH V	33	4.343	30.099			33.73
ATOM	1987	01	HOH V	34	13.758	27.478	19.451		33.73
ATOM	1988	01	HOH V	35	31.045	36.851	16.729		33.94
ATOM	1989	01	HOH V	36	19.213	14.762	21.135		
MOTA	1990	01	HOH V	37	30.260	38.889	20.375		34.05
MOTA	1991	01	HOH V	38	21.211	20.354	29.122		34.10
ATOM	1992	01	HOH V	39	32.966	5.622	27.344		34.62
ATOM	1993	01	HOH V	40	26.116	6.668	20.629		35.56
ATOM	1994	01	HOH V	41	-1.516	28.517	7.655		35.63
	1995	01	HOH V	42	34.189	32.470	17.850		35.68
ATOM	1996	01	HOH V	43	24.220	21.292	3.001		35.74
MOTA	1997	01	HOH V	44	5.910	27.836	16.119	1.00	36.07
ATOM		01	HOH V	45	26.026	15.360	5.513	1.00	36.54
MOTA	1998		HOH V	46	24.021	14.774	-1.204	1.00	36.65
ATOM	1999	01	HOH V	47	20.363	26.930	31.179	1.00	36.70
MOTA	2000	01		48	35.665	32.840	10.425	1.00	36.70
MOTA	2001	01	HOH V		26.360	37.660	34.946		36.83
MOTA	2002	01	HOH V	49	25.128	17.207	-1.881		36.96
MOTA	2003	01	HOH V	50	24.114	21.504	30.329		37.03
MOTA	2004	01	HOH V	51	15.366	43.743	10.778		37.39
MOTA	2005	01	HOH V	52	30.933	6.183	15.530		37.82
MOTA	2006	01	HOH V	53		36.868	5.949		38.21
MOTA	2007	01	HOH V	54	4.304	35.710	19.412		39.01
MOTA	2008	01	V HOH	55	14.763		9.921		39.03
MOTA	2009	01	HOH V	56	1.357	20.195	19.724	1.00	39.09
MOTA	2010	01	HOH V	57	13.913	23.892	-11.744	1.00	39.57
MOTA	2011	01	HOH V	58	12.354				39.60
MOTA	2012	01	HOH V	59	19.367	4.873	15.945	1.00	39.87
MOTA	2013	01	HOH V	60	28.823	27.044	-1.138		
ATOM	2014	01	HOH V	61	24.086	5.629	14.333	1.00	
ATOM	2015	01	HOH V	62	6.227	36.542	12.153	1.00	39.94
ATOM	2016	01	HOH V	63	25.257	19.031	30.271	1.00	40.01
ATOM	2017	01	HOH V	64	33.091	35.051	17.676	1.00	
ATOM	2018	01	HOH V	65	33.832	31.154	20.549	1.00	
ATOM	2019	01	HOH V	66	40.477	15.296	9.510		41.20
ATOM	2020	01	HOH V	67	23.525	9.325	-8.918	1.00	41.87
ATOM	2021	01	HOH V	68	18.624	25.089	-4.128	1.00	42.15
ATOM	2022	01	HOH V	69	24.673	39.002	-1.542	1.00	42.21
ATOM	2023	01	HOH V	70	25.134	15.085	2.723	1.00	42.21
ATOM	2024	01	HOH V	71	10.336	29.797	26.075	1.00	42.37
ATOM	2025	01	HOH V	72	16.798	18.655	-11.711	1.00	42.43
ATOM	2026	01	HOH V	73	-2.391	33.028	0.604		42.69
ATOM	2027	01	HOH V	74	7.033	20.764	20.270		43.01
ATOM	2028	01	HOH V	75	27.375	26.586	32.414		43.08
MOTA	2029	01	HOH V	76	24.651	12.458	27.335		43.14
ATOM	2030	01	HOH V	77	21.223	24.850	0.260		43.31
ATOM	2031	01	HOH V	78	13.059	10.272	13.532	1.00	43.63
	2032	01	HOH V	79	27.284	19.103	8.210	1.00	44.00
MOTA		01	HOH V	80	34.897	34.595	21.757	1.00	44.35
ATOM	2033	01	HOH V	81	19.496	24.289	-1.468	1.00	44.41
ATOM	2034			82	26.589	22.429	32.257		44.58
MOTA	2035	01	HOH V	83	41.875	11.753	22.776		44.72
ATOM	2036	01	HOH V	84	24.041	16.824	29.300	1.00	
ATOM	2037	01	HOH V	85	39.182	23.600	24.591	1.00	
ATOM	2038	01			16.711	29.367	31.469		45.22
ATOM	2039	01			26.474	37.247	27.330		45.42
ATOM	2040	01			10.580	10.952	7.001		45.46
ATOM	2041				17.919	17.134	23.482		45.53
ATOM	2042				22.700	27.169	33.013		45.86
MOTA	2043	01	HOH V	20	22.700	21.103			

								1 00 46 30
ATOM	2044	01	HOH V 91		20.218	40.609	29.025	1.00 46.30
ATOM	2045	01	HOH V 92		21.955	40.569	26.103	1.00 46.31
ATOM	2046	01	HOH V 93		5.333	26.234	18.852	1.00 46.91
ATOM	2047	01	HOH V 94		6.403	18.038	15.920	1.00 47.12
ATOM	2048	01	HOH V 95		37.307	11.015	10.807	1.00 47.31
ATOM	2049	01	HOH V 96		11.338	13.464	13.985	1.00 47.96
ATOM	2050	01	HOH V 97		10.441	37.707	30.346	1.00 48.02
ATOM	2051	01	HOH V 98		30.888	36.428	14.084	1.00 48.48
MOTA	2052	01	HOH V 99		27.882	17.980	29.841	1.00 48.50
MOTA	2053	01	HOH V 100		33.749	37.917	8.734	1.00 48.51
MOTA	2054	01	HOH V 101		18.379	27.870	33.046	1.00 48.64
ATOM	2055	01	HOH V 102		35.449	31.668	8.141	1.00 48.94
ATOM	2056	01	HOH V 103		29.164	17.601	3.576	1.00 49.29
ATOM	2057	01	HOH V 104		33.653	32.899	6.888	1.00 49.36
MOTA	2058	01	HOH V 105		42.507	15.827	13.475	1.00 49.69
ATOM	2059	01	HOH V 106		37.222	20.712	33.061	1.00 49.71
ATOM	2060	01	HOH V 107		19.173	42.140	26.556	1.00 49.87
MOTA	2061	01	HOH V 108		-1.128	28.133	10.338	1.00 50.07
ATOM	2062	01	HOH V 109		13.605	40.750	25.634	1.00 50.16
ATOM	2063	01	HOH V 110		-1.457	28.059	-4.001	1.00 50.19 1.00 50.25
MOTA	2064	01	HOH V 111		-0.092	31.118	6.416	1.00 50.25
MOTA	2065	01	HOH V 112		3.374	39.612	-3.935	1.00 50.31
MOTA	2066	01	HOH V 113		32.127	18.267	32.763	1.00 50.57
MOTA	2067	01	HOH V 114		18.258	23.101	26.041	1.00 50.51
MOTA	2068	01	HOH V 115		26.516	26.089	-3.694 19.784	1.00 50.83
MOTA	2069	01	HOH V 116		13.352	17.048 6.108	12.167	1.00 50.03
ATOM	2070	01	нон V 117		10.647		1.891	1.00 50.94
MOTA	2071	01	HOH V 118		26.146	17.547 21.870	20.133	1.00 50.98
MOTA	2072	01	HOH V 119	,	15.203	18.786	4.116	1.00 51.10
MOTA	2073	01	HOH V 120	,	32.029 22.114	18.269	27.109	1.00 51.46
ATOM	2074	01	HOH V 121		25.668	18,396	5.657	1.00 51.52
MOTA	2075	01	HOH V 122	•	41.989	18.102	20.145	1.00 51.77
ATOM	2076	01	HOH V 124	, ì	36.078	5.753	14.297	1.00 52.16
MOTA	2077	01 01	HOH V 125		-4.191	23,385	-0.546	1.00 52.19
ATOM	2078 2079	01	HOH V 12	;	38.840	23.465	28.263	1.00 52.44
ATOM	2079	01	HOH V 12	,	17.889	40.107	16.024	1.00 52.46
ATOM ATOM	2081	01	HOH V 128	3	10.480	31.213	29.646	1.00 52.47
ATOM	2082	01	HOH V 12	9	11.041	40.539	4.064	1.00 52.63
ATOM	2083	01	HOH V 13)	25.662	37.407	30.124	1.00 52.65
MOTA	2084	01	HOH V 13	Ļ	37.583	19.513	14.379	1.00 52.79
ATOM	2085	01	HOH V 13	2	31.355	36.654	28.009	1.00 52.82
ATOM	2086	01	HOH V 13	3	24.495	25.685	32.162	1.00 52.92
ATOM	2087	01	HOH V 13	4	29.710	0.923	19.113	1.00 52.92 1.00 52.96
MOTA	2088	01	HOH V 13	5	17.608	9.016	9.185	1.00 52.96 1.00 53.32
MOTA	2089	01	HOH V 13		24.883	4.742	16.973	1.00 54.00
MOTA	2090	01	нон V 13		29.325	41.144	15.563	1.00 54.14
MOTA	2091	01	HOH V 13	3	8.148	32.691 44.302	27.089 17.088	1.00 54.60
MOTA	2092	01	HOH V 13	9	25.869	24.098	0.471	1.00 54.96
MOTA	2093	01	HOH V 14	1	31.180 32.092	39.604	16.380	1.00 55.48
MOTA	2094	01	HOH V 14	7	20.031	28.982	35.641	1.00 55.95
MOTA	2095	01	HOH V 14	<u> </u>	19.537	17.716	26.209	1.00 56.58
ATOM	2096	01	HOH V 14 HOH V 14	3 1	3.004	26.615	21.765	1.00 56.65
MOTA	2097	01	HOH V 14	ቴ ጜ	3.566	13.601	10.033	1.00 56.98
MOTA	2098	01	HOH V 14	ر د	16.090	48.803	-0.839	1.00 57.02
MOTA	2099 2100	01 01	HOH V 14	7	41.521	30.957	16.321	1.00 57.24
MOTA	2100	01	HOH V 14		21.322	6.331	6.002	1.00 57.58
ATOM ATOM	2101	01	HOH V 14	9	9.375	39.538	12.218	1.00 57.59
ATOM	2102	01	HOH V 15	0	15.176	39.661	18.686	1.00 58.07
ATOM	2104	01	HOH V 15	1	20.363	24.179	31.362	1.00 58.21
ATOM	2105	01	HOH V 15	2	14.157	40.583	21.313	1.00 58.26
MOTA	2106	01	HOH V 15	3	13.420	36.512	16.363	1.00 58.51
ATOM	2107	01	HOH V 15	4	1.911	36.126	4.549	1.00 58.55
MOTA	2108	01	HOH V 15	5	16.108	6.884	12.075	1.00 58.70 1.00 58.74
MOTA	2109		HOH V 15	6	-4.815	29.631	-4.704	1.00 30.74

- more	2110	01	HOH V 157	17.728	4.118	0.882	1.00 5	59.17
ATOM			HOH V 158	11.034	33.423	31.437	1.00 5	59.38
MOTA	2111	01	HOH V 158	39.277	19.752	9.565	1.00 9	59.80
MOTA	2112	01	HOH V 123		23.224	-9.945		59.89
ATOM	2113	01	HOH V 160	20.830		31.510		60.09
MOTA	2114	01	HOH V 161	29.709	18.612	_		
MOTA	2115	01	HOH V 162	27.074	2.621	20.642	1.00	
MOTA	2116	01	HOH V 163	5.858	22.161	-4.489		60.19
	2117	01	HOH V 164	15.034	44.034	5.590	1.00	
MOTA		01	HOH V 165	33.009	22.978	33.387	1.00	60.43
MOTA	2118		HOH V 166	2.030	21.719	-4.397	1.00	60.59
MOTA	2119	01	HOR V 160	3.774	21.532	3.731	1.00	
MOTA	2120	01	HOH V 167		13.665	-7.177	1.00	
MOTA	2121	01	HOH V 168	28.412		31.337	1.00	
MOTA	2122	01	HOH V 169	39.061	22.162		1.00	
ATOM	2123	01	HOH V 170	30.385	11.086	11.347		
ATOM	2124	01	HOH V 171	38.929	11.728	26.423	1.00	
ATOM	2125	01	HOH V 172	9.596	6.343	-6.409	1.00	
ATOM	2126	01	HOH V 173	27.960	21.516	2.108	1.00	
	2127	01	HOH V 174	4.313	13.515	-0.097	1.00	
MOTA		01	HOH V 175	-4.186	27.811	7.260	1.00	62.60
MOTA	2128		HOH V 176	10.940	41.489	27.508	1.00	63.29
ATOM	2129	01	HOR V 170	24.701	19.822	-1.623	1.00	
MOTA	2130	01	HOH V 177		18.535	10.330	1.00	
ATOM	2131	01	нон V 178	42.644			1.00	
MOTA	2132	01	HOH V 179	1.986	36.706	26.540	1.00	
MOTA	2133	01	HOH V 180	22.345	47.189	18.548		
ATOM	2134	01	HOH V 181	7.492	6.994	1.249	1.00	
ATOM	2135	01	HOH V 182	29.348	37.819	26.783	1.00	
ATOM	2136	01	HOH V 183	39.883	20.258	25.832	1.00	65.05
	2137	01	HOH V 184	33.197	24.977	3.656	1.00	65.28
MOTA	2138		HOH V 185	1.167	34.045	3.205	1.00	65.41
ATOM		01	HOH V 185	36.275	32.735	23.649		65.48
MOTA	2139	01		-2.787	30.904	-0.828		65.58
MOTA	2140	01	HOH V 187			-10.695		66.34
ATOM	2141	01	HOH V 188	6.538				66.87
MOTA	2142	01	HOH V 189	10.682	8.724	11.380		67.21
MOTA	2143	01	HOH V 190	14.198		-12.442		
ATOM	2144	01	HOH V 191	-2.267	38.672	-2.479		67.22
ATOM	2145	01	HOH V 192	29.224	8.950	12.107		67.30
ATOM	2146	01	HOH V 193	11.819	8.883	6.281		67.62
ATOM	2147	01	HOH V 194	38.489	16.915	8.462		68.36
	2148	01	HOH V 195	33.987	7.482	15.967	1.00	68.84
MOTA		01	HOH V 196	4.892	34.328	-7.351	1.00	68.88
MOTA	2149	-	HOH V 197	39.056		8.823	1.00	68.92
ATOM	2150	01		9.884		3.712		69.08
MOTA	2151	01	HOH V 198	37.843		12.256	1.00	69.20
ATOM	2152	01	HOH V 199			19.667	1.00	
ATOM	2153	01	HOH V 200	34.349		20.411	1.00	70.03
ATOM	2154	01	HOH V 201	38.474			1.00	70.03
MOTA	2155	01	HOH V 202	27.053		25.134		
MOTA	2156	01	HOH V 203	28.267		29.494	1.00	70.65
MOTA	2157	01	HOH V 204	25.427		1.694		71.85
ATOM	2158	01	HOH V 205	18.375	3.341	9.734		72.08
ATOM	2159	01	HOH V 206	29.055		-1.260	1.00	72.11
	2160	01	HOH V 207	15.436		-5.477	1.00	72.50
ATOM			HOH V 208	2.845		17.594	1.00	72.71
ATOM	2161	01	HOH V 208	31.127		33.793	1.00	74.83
ATOM	2162	01	HOH V 203	15.559		-12.936	1.00	75.70
MOTA	2163	01	HOH V 210			22.103	1.00	76.15
MOTA	2164	01	HOH V 211	40.158		15.563	1.00	77.51
MOTA	2165	01	HOH V 212	3.811				
ATOM	2166	01	HOH V 213	21.251		7.011	1.00	78.54
ATOM	2167	01	HOH V 214	31.582		24.269	1.00	79.14
ATOM	2168	01	HOH V 215	-0.088		7.373	1.00	79.61
ATOM	2169	01	HOH V 216	34.466		35.188	1.00	80.04
ATOM	2170	01	HOH V 217	5.299		2.187		82.20
	2171	01		-0.119		-1.190		82.43
ATOM	_			21.612				83.22
ATOM	2172	01		18.145				83.87
ATOM	2173	01	TOU V 220	38.141				84.27
MOTA	2174	01	HOH V 221	15.645				86.80
MOTA	2175	01	HOH V 222	10.040	, 5,5		•	

7	MOTA MOTA MOTA	2176 2177 2178	01 01 01	НОН НОН НОН	V	224 225	33.347 26.717 13.496 0.897	0.052 9.812 7.603 31.611	24.088 6.181 15.584 9.140	1.00 1.00	88.51 89.08 89.47 89.58
_	MOTA	2179	01	НОН			13.018	26.525	-7.628		90.92
_	MOTA	2180	01	НОН			6.286	19.849	17.755		91.50
-	MOTA	2181	01	НОН	V	228	19.825	7.712	0.669		92.59
	MOTA	2182	01	НОН			16.141	11.181	20.218		93.48
	MOTA	2183	01	HOH			30.341	41.381	18.146	1.00	94.31
	MOTA	2184	01	НОН			18.565	26.648	16.097	1.00	17.77
	MOTA	2185	C1	CHO		1 1	17.062	26.995	16.208	1.00	14.30
	MOTA	2186	C4	CHO		1	16.300	25.791	16.806	1.00	16.71
	ATOM	2187	C7	CHO		i	16.836	25.493	18.221	1.00	17.53
	MOTA	2188	C9	CHO		1	18.329	25.274	18.190	1.00	21.09
	MOTA	2189	C12 C13	CHO		1	18.814	24.179	18.791	1.00	17.61
	ATOM	2190	C15	CHO		1	20.283	23.851	18.848	1.00	16.99
	MOTA	2191	C18			1	21.159	25.087	18.576	1.00	18.07
	MOTA	2192 2193		CHO		ī	20.643	25.806	17.292	1.00	18.92
	MOTA	2193	C22			ī	19.182	26.326	17.485	1.00	20.91
	MOTA	2194	C23	CHO		ī	21.613	26.937	16.851	1.00	19.33
	ATOM ATOM	2196	C26	CHO		ī	23.077	26.440	16.727	1.00	23.26
	ATOM	2197	C29	CHO		1	23.552	25.816	18.063	1.00	24.98
	ATOM	2198	C30			1	22.616	24.628	18.351	1.00	19.40
	ATOM	2199	C32			1	23.316	23.866	19.486	1.00	18.81
	ATOM	2200	C35				24.818	24.074	19.179	1.00	18.34
	MOTA	2201		CHO	L	1	24.905	25.059	17.980	1.00	20.78
	MOTA	2202	C40	CHO	L	1	23.518	26.864	19.214	1.00	25.58
	ATOM	2203		CHO			19.179	27.650	18.304	1.00	21.74
	ATOM	2204	C48	CHO	L	1	26.193	25.932	18.008	1.00	18.44
	ATOM	2205	C50	CHO	L	1	26.277	26.915	16.822	1.00	20.10 18.74
	ATOM	2206	C54	CHO	L		27.502	25.106	18.059	1.00	19.99
	ATOM	2207	C57				27.623	23.980	17.005	1.00	22.47
	MOTA	2208	C60				29.075	23.453	17.059 16.245	1.00	
	MOTA	2209	C63				29.308	22.160	16.245	1.00	21.49
	ATOM	2210	C65				30.827	21.916	16.934	1.00	23.08
	MOTA	2211	C69			_	28.658	20.944	16.934	1.00	
•	ATOM END	2212	073	СНО	I	. 1	14.905	26.073	10.343	1.00	44.11

1	Гa	ы	6	9

Iubic			40 005	1 00 60 00
ATOM	1 N HIS A 2	261 -18.369	28.759 -10.025	1.00 60.80
	2 CA HIS A 2		28.056 -11.002	1.00 61.14
ATOM			27.204 -11.961	1.00 61.45
ATOM	3 CB HIS A 2		26.743 -13.153	1.00 63.15
ATOM	4 CG HIS A 2	- - -	27.465 -14.327	1.00 65.59
MOTA	5 ND1 HIS A 2	261 -17.467		1.00 66.06
ATOM	6 CE1 HIS A 2	261 -16.705		
ATOM	7 NE2 HIS A 2	261	25.723 -14.620	1.00 66.44
ATOM	8 CD2 HIS A 2	261 -16.754	25.650 -13.342	1.00 65.64
	9 C HIS A 2	261 -16.640	29.033 -11.812	1.00 60.44
MOTA			29.012 -11.759	1.00 60.45
MOTA			29.814 -12.647	1.00 59.75
MOTA	11 N HIS A		30.904 -13.361	1.00 59.30
ATOM	12 CA HIS A 2		21 (52 14 100	1.00 58.98
ATOM	13 CB HIS A 2	262 -17.695	31.652 -14.199	1.00 59.57
ATOM	14 CG HIS A 2	262 -18.358	30.763 -15.209	1.00 59.37
ATOM	15 ND1 HIS A	262 -19.391	29.908 -14.883	1.00 59.43
	16 CE1 HIS A	-19.744	29.220 -15.954	1.00 60.29
ATOM			29.586 -16.959	1.00 59.72
ATOM	17 NE2 HIS A	-	30.538 -16.516	1.00 59.13
MOTA	18 CD2 HIS A		31.792 -12.437	1.00 59.09
ATOM	19 C HIS A			1.00 58.61
ATOM	20 O HIS A	262 -14.698	32.162 -12.810	1.00 58.77
MOTA	21 N LEUA	263 –16.300	32.109 -11.235	1.00 50.77
ATOM	22 CA LEU A	263 -15.449	32.829 -10.282	1.00 58.96
ATOM	23 CB LEU A		33.286 -9.044	1.00 58.85
		263 -16.866	34.666 -9.101	1.00 58.28
ATOM			34.934 -7.824	1.00 57.90
ATOM	25 CD1 LEU A		35.758 -9.332	1.00 57.75
ATOM	26 CD2 LEU A		30	1.00 59.44
MOTA	27 C LEU A	263 -14.261		1.00 59.40
MOTA	28 O LEU A	263 -13.154	32.463 -9.682	
ATOM	29 N GLUA	264 -14.497	30.672 -9.638	1.00 60.29
ATOM	30 CA GLU A	264 -13.450	29.748 -9.204	1.00 60.91
		264 -14.038	28.349 -8.952	1.00 61.72
MOTA			27.462 -8.006	1.00 64.54
ATOM		-	25.995 -8.002	<u>1,00 68.63</u>
MOTA	33 CD GLŪĀ		25.693 -7.476	1.00 69.87
MOTA	34 OE1 GLU A	264 -14.800		1.00 70.91
ATOM	35 OE2 GLU A	264 -12.934		1.00 60.26
ATOM	36 C GLU A	264 -12.339	29.694 -10.251	
ATOM	37 O GLU A	264 -11.161	29.596 -9.920	1.00 60.38
ATOM	38 N VAL A	265 -12.709	29.797 -11.516	1.00 59.34
	39 CA VAL A	265 -11.722	29.766 -12.574	1.00 58.79
MOTA			29.559 -13.923	1.00 58.56
ATOM	40 CB VAL A		29.892 -15.064	1.00 58.68
MOTA	41 CG1 VAL A		28.140 -14.025	1.00 57.58
MOTA	42 CG2 VAL A		31.034 -12.599	1.00 58.95
MOTA	43 C VAL A	265 -10.878	31.034 -12.333	1.00 58.69
ATOM	44 O VAL A	265 -9.689	30.984 -12.896	1.00 59.10
ATOM	45 N LEUA	266 -11.488	32.164 -12.282	
MOTA	46 CA LEU A	266 -10.780	33.433 -12.254	1.00 59.95
ATOM	47 CB LEU A	266 -11.780	34.586 -12.145	1.00 59.85
	48 CG LEU A		34.829 -13.408	1.00 59.43
ATOM		266 -13.498	36.026 -13.226	1.00 58.82
MOTA			35.012 -14.604	1.00 58.96
MOTA	50 CD2 LEU A		33.556 -11.108	1.00 60.75
MOTA	51 C LEU A		34.423 -11.140	1.00 60.71
ATOM	52 O LEU A			1.00 62.00
ATOM	53 N PHE A	267 -9.914	32.713 -10.094	
ATOM	54 CA PHE A	267 -9.035	32.758 - 8.931	1.00 63.40
MOTA	55 CB PHE A	267 –9.881	32.790 -7.656	1.00 63.54
	56 CG PHE A	267 -10.498	34.119 -7.397	1.00 64.83
MOTA	_		34.368 -7.719	1.00 66.41
ATOM	57 CD1 PHE A		35.615 -7.500	1.00 67.05
MOTA	58 CE1 PHE A		36.617 -6.969	1.00 67.09
MOTA	59 CZ PHE A	 - ·		1.00 67.35
MOTA	60 CE2 PHE A	267 -10.298		1.00 66.42
ATOM	61 CD2 PHE A	267 -9.745	35.138 -6.864	
ATOM	62 C PHE A	267 -8.042	31.595 -8.858	1.00 64.32
ATOM	63 O PHE A	267 –7.031		1.00 65.16
MOTA	64 N GLN A	268 -8.325	30.519 -9.587	1.00 64.99
211 011				

	65 CA GLN A 268	-7.514	29.299 -	9.542	1.00 65.36
ATOM	65 CA GLN A 268 66 CB GLN A 268	-7.800	28.433 -1	0.770	1.00 65.80
ATOM ATOM	67 CG GLN A 268	-7.456	26.956 - 1	0.580	1.00 67.88
ATOM	68 CD GLN A 268	-7.793	26.122 -1	1.809	1.00 70.56
ATOM	69 OE1 GLN A 268	-8.555	26.568 -1	2.681	1.00 72.72
ATOM	70 NE2 GLN A 268	-7.223	24.919 -1		1.00 71.16 1.00 64.81
ATOM	71 C GLN A 268	-6.001		-9.415	1.00 64.81
ATOM	72 O GLN A 268	-5.350	28.832	-8.630	1.00 64.05
ATOM	73 N GLY A 269	-5.441	30.451 -1 30.686 -1	0.120	1.00 63.44
MOTA	74 CA GLY A 269	-4.005	31.020	-8.723	1.00 62.74
MOTA	75 C GLY A 269	-3.523 -3.081		-7.971	1.00 62.53
ATOM	76 O GLY A 269 77 N PRO A 270	-3.623		-8.369	1.00 61.62
MOTA		-3.226		-7.046	1.00 60.71
MOTA	78 CA PRO A 270 79 CB PRO A 270	-3.788		-7.019	1.00 61.06
ATOM ATOM	80 CG PRO A 270	-3.818	34.625 -	-8.460	1.00 61.54
ATOM	81 CD PRO A 270	-4.122		-9.238	1.00 61.80
ATOM	82 C PRO A 270	-3.805		-5.894	1.00 59.59
ATOM	83 O PRO A 270	-3.131		-4.878	1.00 59.46
ATOM	84 N ALA A 271	-5.019		-6.034	1.00 57.85 1.00 56.85
MOTA	85 CA ALA A 271	-5.583		-4.955 -5.330	1.00 56.89
MOTA	86 CB ALA A 271	-6.933		-3.330 -4.624	1.00 55.87
ATOM	87 C ALA A 271	-4.642 -4.414		-3.461	1.00 54.85
MOTA	88 O ALA A 271	-4.123	28.906	-5.669	1.00 55.03
ATOM	89 N GLU A 272 90 CA GLU A 272	-3.219		-5.542	1.00 54.75
ATOM		-2.898		-6.926	1.00 55.29
ATOM	91 CB GLU A 272 92 CG GLU A 272	-2.191		-6.930	1.00 58.02
MOTA MOTA	93 CD GLU A 272	-3.117	24.691	-6.580	1.00 62.00
ATOM	94 OE1 GLU A 272	-4.000		-5.694	1.00 62.47
ATOM	95 OE2 GLU A 272	-2.966		-7.202	1.00 63.34
ATOM	96 C GLU A 272	-1.923		-4.819	1.00 53.60 1.00 52.90
ATOM	97 O GLUA 272	-1.420		-4.019	1.00 52.90
MOTA	98 N LEUA 273	-1.392		-5.100 -4.440	1.00 52.74
ΑΤΌΜ	99 CA LEU A 273	-0.187		-5.029	1.00 53.24
MOTA	100 CB LEU A 273	0.295 0.578		-6.522	1.00 54.92
ATOM	101 CG LEU A 273 102 CD1 LEU A 273	1.291		-6.819	1.00 55.95
MOTA		1.400		-7.007	1.00 56.45
ATOM ATOM	103 CD2 LEU A 273 104 C LEU A 273	-0.489		-2.984	1.00 51.81
ATOM	105 O LEU A 273	0.302		-2.103	1.00 51.57
ATOM	106 N GLU A 274	-1.638		-2.729	1.00 50.55
MOTA	107 CA GLU A 274	-2.025	30.937	-1.362	1.00 49.74 1.00 49.87
ATOM	108 CB GLU A 274	-3.276	31.827	-1.321	1.00 49.87
ATOM	109 CG GLU A 274	-3.526	32.505 33.359	$0.016 \\ 0.481$	1.00 52.00
ATOM	110 CD GLU A 274	-2.357 -1.827	34.142	-0.341	1.00 52.15
ATOM	111 OE1 GLU A 274	-1.974		1.665	1.00 56.29
ATOM	112 OE2 GLU A 274 113 C GLU A 274	-2.248	29.627	-0.629	1.00 48.42
MOTA	113 C GLU A 274 114 O GLU A 274	-1.817	29.475	0.505	1.00 48.21
ATOM ATOM	115 N HIS A 275	-2.879	28.668	-1.285	1.00 47.05
ATOM	116 CA HIS A 275	-3.148	27.394	-0.623	1.00 46.52
ATOM	117 CB HIS A 275	-3.928	26.445	-1.530	1.00 46.60
ATOM	118 CG HIS A 275	-4.241	25.113	-0.905	1.00 48.13
MOTA	119 ND1 HIS A 275	-5.321	24.914	-0.070	1.00 49.08 1.00 51.04
ATOM	120 CE1 HIS A 275	-5.360	23.647	0.312 -0.248	1.00 51.04
MOTA	121 NE2 HIS A 275	-4.345 -3.631	23.009 23.903	-1.019	1.00 50.94
ATOM	122 CD2 HIS A 275	-3.631 -1.857	26.721	-0.193	1.00 45.34
ATOM	123 C HIS A 275 124 O HIS A 275	-1.766	26.218	0.917	1.00 45.39
ATOM		-0.866	26.692	-1.078	1.00 44.20
ATOM	125 N LEU A 276 126 CA LEU A 276	0.405	26.056	-0.762	1.00 43.43
MOTA MOTA	127 CB LEU A 276	1.243	25.889	-2.034	1.00 43.73
ATOM	128 CG LEU A 276	2.652	25.291	-1.877	1.00 43.56
ATOM	129 CD1 LEU A 276	2.568	23.818	-1.557	1.00 43.50
MOTA	130 CD2 LEU A 276	3.486	25.536	-3.127	1.00 43.26

		_		. 076		1.172	26.881	0.310	1.00 42.47
ATOM	131		LEU A			1.879	26.346	1.153	1.00 40.97
ATOM	132		LEU A			1.035	28.190	0.302	1.00 41.76
ATOM	133	N	ALA A	A 277		1.737	28.961	1.324	1.00 41.55
ATOM	134		ALA A			1.716	30.419	1.004	1.00 41.80
ATOM	135	CB		A 277		1.124	28.718	2.699	1.00 41.51
MOTA	136	C	ALIA A	A 277		1.832	28.631	3.708	1.00 41.21
ATOM	137	0	CLN A	A 278		0.192	28.545	2.734	1.00 41.43
ATOM	138 139	N CA	CLM A	A 278		0.870	28.331	4.000	1.00 41.87
ATOM	140	CB	GLN 2	A 278		2.373	28.610	3.879	1.00 42.96
ATOM ATOM	141	CG	GLN :	A 278		2.684	30.122	3.749	1.00 45.63
ATOM	142	CD		A 278	_	4.182	30.476	3.501	1.00 49.42
MOTA	143			A 278	-	5.098	29.751	3.921	1.00 52.18
ATOM	144	NE2	GLN .	A 278		4.410	31.605	2.836	1.00 50.77
ATOM	145	C	GLN .	A 278		0.570	26.945	4.521	1.00 40.99
ATOM	146	0		A 278		0.411	26.736	5.719	1.00 40.26
ATOM	147	N	ASN .	A 279		0.449	25.993	3.621	1.00 40.42
MOTA	148	CA		A 279		0.117	24.635	4.021	1.00 40.51 1.00 41.05
MOTA	149	CB		A 279	_	0.075	23.755	2.795	1.00 41.05
ATOM	150	CG	ASN	A 279		0.276	22.322 21.573	3.120 3.640	1.00 48.82
MOTA	151	OD1	ASN	A 279	_	0.554	21.973	2.818	1.00 51.37
MOTA	152		ASN	A 279		1.522	24.550	4.702	1.00 39.60
ATOM	153	C		A 279		1.242 1.411	23.920	5.746	1.00 40.22
MOTA	154	0		A 279 A 280		2.219	25.170	4.073	1.00 38.39
ATOM	155	N	TLE	A 280		3.563	25.150	4.550	1.00 37.67
ATOM	156 157	CA CB	TT.E	A 280		4.493	25.612	3.419	1.00 37.61
ATOM ATOM	158			A 280		4.506	24.532	2.322	1.00 38.20
ATOM	159	CD1		A 280		5.666	24.586	1.341	1.00 39.82
ATOM	160			A 280		5.892	25.864	3.974	1.00 38.20
ATOM	161	C	ILE	A 280		3.697	25.986	5.823	1.00 36.72
ATOM	162	ō		A 280		4.355	25.583	6.765	1.00 35.34
ATOM	163	N	SER	A 281		3.060	27.146	5.842	1.00 36.72
MOTA	164	CA	SER	A 281		3.018	27.979	7.043	1.00 36.93 1.00 37.23
ATOM	165	CB	SER	A 281		2.091	29.161	6.831	
MOTA	166	OG	SER	A 281		2.681	30.069	5.909 8.237	1.00 38.94 1.00 36.20
ATOM	167	С		A 281		2.543	27.219 27.298	9.295	1.00 35.26
MOTA	168	0		A 281		3.131 1.467	26.470	8.068	1.00 36.67
MOTA	169	N		A 282 A 282		0.880	25.704	9.158	1.00 37.15
ATOM	170	CA		A 282		-0.479	25.107	8.730	1.00 38.10
MOTA	171 172	CB CG		A 282		-1.305	24.498	9.860	1.00 40.15
MOTA	173	CD	T.VS	A 282		-2.704	24.142	9.337	1.00 46.19
ATOM ATOM	174	CE	LYS	A 282		-3.414	23.021	10.139	1.00 49.27
ATOM	175	NZ	LYS	A 282		-3.455	21.732	9.376	1.00 51.98
ATOM	176	C		A 282		1.794	24.585	9.604	1.00 36.50
MOTA	177	0	LYS	A 282		1.940	24.307	10.798	1.00 35.79
ATOM	178	N	SER	A 283		2.409	23.916	8.643	1.00 35.63
MOTA	179	CA	SER	A 283		3.316	22.836	8.997 7.744	1.00 34.48 1.00 34.45
MOTA	180	CB		A 283		3.848	22.181	7.003	1.00 34.45
ATOM	181	OG	SER	A 283		2.754	21.707 23.381	9.830	1.00 33.76
MOTA	182	C	SER	A 283		4.441 4.830	22.758	10.789	1.00 33.46
MOTA	183	0	SER	A 283		4.943	24.552	9.471	1.00 33.35
ATOM	184	N	nro	A 284 A 284		6.007	25.195	10.224	1.00 34.42
MOTA	185	CA CB	DIR	A 284		6.402	26.460	9.513	1.00 34.00
ATOM	186 187	CG		A 284		7.306	27.355	10.288	1.00 34.20
ATOM ATOM	188			A 284		8.677	27.240	10.249	1.00 32.90
ATOM	189	CE1	HIS	A 284		9.221	28.201	10.968	1.00 33.90
ATOM	190	NE	HIS	A 284		8.249	28.946	11.472	1.00 35.01
ATOM	191	CD2	HIS	A 284		7.042	28.448	11.045	1.00 36.29
ATOM	192	C	HIS	A 284		5.629	25.530	11.660	1.00 35.30
ATOM	193	0	HIS	A 284		6.391	25.244	12.589	1.00 34.75
ATOM	194	N	LEU	A 285		4.469	26.172	11.824 13.136	1.00 36.71 1.00 37.40
MOTA	195	CA		A 285		3.947	26.548	12.997	1.00 37.40
MOTA	196	СВ	LEU	A 285		2.579	27.208	22.771	

					_		07 637	14 272	1.00 41.84
MOTA	197		LEU A			838	27.637	14.272	1.00 42.97
MOTA	198		LEU A			525	28.826	14.913	1.00 42.37
MOTA	199		LEU A			385	27.982	13.934	1.00 43.37
MOTA	200		LEU A			846	25.351	14.046	1.00 37.27
MOTA	201		LEU A			. 279	25.403	15.206	1.00 37.97
ATOM	202		GLU A			.369	24.237	13.510	1.00 36.96
MOTA	203	CA	GLU A	286		.134	23.058	14.337	1.00 37.46
ATOM	204	CB	GLU A	286		. 988	22.229	13.722	1.00 37.40
MOTA	205		GLU A			.751	23.091	13.462	1.00 42.20
MOTA	206	CD	GLU A			. 487	22.289	13.142	1.00 48.23
MOTA	207	OE1	GLU A	286		.343	21.219	12.510	1.00 52.12
MOTA	208		GLU A	286		.601	22.726	13.534 14.572	1.00 35.80
MOTA	209	С	GLU A			.350	22.157	15.303	1.00 33.00
MOTA	210	0	GLU A			.231	21.190		1.00 34.46
MOTA	211	N	THR A	287		.485	22.439	13.931 14.118	1.00 34.18
MOTA	212	CA	THR A			.684	21.616	12.814	1.00 34.10
MOTA	213	CB	THR A			.154	20.957	11.807	1.00 33.50
ATOM	214	OG1	THR A	287		.367	21.952	12.250	1.00 34.40
ATOM	215	CG2	THR A			.122	20.050	14.670	1.00 34.80
ATOM	216	С	THR A	287		.879	22.382	14.681	1.00 35.10
ATOM	217	0	THR A			.965	21.849	15.047	1.00 35.78
MOTA	218	N	CYS A			.709	23.638	15.740	1.00 35.70
MOTA	219	CA	CYS A			.764	24.346	15.552	1.00 36.72
ATOM	220	CB	CYS A			.642	25.851	13.966	1.00 30.32
MOTA	221	SG	CYS A	. 288		.235	26.481	17.230	1.00 36.71
MOTA	222	С	CYS A			.682	23.996	17.792	1.00 36.87
MOTA	223	0	CYS A	. 288		.602	23.895	17.792	1.00 37.19
MOTA	224	N	GLN A			.830	23.812 23.516	19.278	1.00 37.25
ATOM	225	CA	GLN A			.862	23.310	19.694	1.00 37.23
MOTA	226	CB	GLN A			.279	22.864	21.168	1.00 38.95
MOTA	227	CG	GLN A			.409	22.072	21.551	1.00 40.39
MOTA	228	CD	GLN A			.661 .694	22.072	20.847	1.00 39.04
ATOM	229	OE1				.567	21.369	22.682	1.00 38.81
ATOM	230	NE2		289		.288	24.683	20.141	1.00 37.72
ATOM	231	C	GLN A	285		.603	24.432	21.124	1.00 37.80
ATOM	232	0	GLN A	200		.519	25.935	19.744	1.00 38.28
MOTA	233	N	TYR A	290		.072	27.105	20.501	1.00 38.43
MOTA	234	CA	TYR A			.268	27.813	21.152	1.00 38.66
ATOM	235	CB	TYR A			.241	26.912	21.906	1.00 37.22
ATOM	236	CG CD1				.438	26.540	21.332	1.00 35.94
MOTA	237		_			.339	25.731	21.989	1.00 34.88
ATOM	238	CE1	TYR A			.061	25.293	23.244	1.00 35.86
ATOM	239 240	CZ OH	TYR A			.983	24.491	23.870	1.00 34.34
MOTA	241	CE2				.872	25.660	23.866	1.00 36.55
ATOM	241	CD2				.978	26.487	23.193	1.00 35.75
ATOM	243	CDZ	TYR A			.329	28.158	19.650	1.00 39.65
MOTA	244	Ö	TYR Z	290		.582	28.309	18.443	1.00 39.27
ATOM ATOM	245	N	LEU 2	291		.443	28.924	20.296	1.00 40.18
ATOM	246	CA		A 291		.740	29.985	19.611	1.00 40.92
ATOM	247	CB		A 291		.444	30.367	20.327	1.00 41.69
ATOM	248	CG	LEU	A 291		.371	29.301	20.591	1.00 43.47
ATOM	249		LEU			.295	29.850	21.586	1.00 45.13
ATOM	250	CD2	LEU	A 291		.716	28.890	19.300	1.00 43.40
ATOM	251	CDZ	LEU	A 291		.635	31.202	19.487	1.00 41.12
ATOM	252	ŏ	LEU	A 291		3.382	31.554	20.393	1.00 40.66
ATOM	253	N	ARG	A 292		7.508	31.876	18.356	1.00 41.62
ATOM	254	CA	ARG	A 292		3.317	33.034	18.065	1.00 42.34
ATOM	255	CB	ARG	A 292		7.830	33.695	16.766	1.00 42.90
ATOM	256	CG	ARG	A 292		3.712	34.814	16.241	1.00 45.07
ATOM	257	CD	ARG	A 292		0.053	34.331	15.752	1.00 48.94
ATOM	258	NE		A 292		.873	35.373	15.134	1.00 50.47
ATOM	259	CZ	ARG	A 292	10	786	35.746	13.871	1.00 54.17
MOTA	260	NH1	ARG	A 292		9.874	35.206	13.051	1.00 55.75
MOTA	261	NH2	ARG	A 292		1.605	36.684	13.420	1.00 55.53
ATOM	262	C	ARG	A 292	8	3.206	34.005	19.199	1.00 42.41
		·							

ORENDED DE LA COMPONICIO DE LA COMPONICIO

ATOM	263	0	ARG A 292	9.213	34.496	19.732	1.00 41.10
ATOM	264	N	GLU A 293	6.958	34.287	19.564	1.00 43.20
ATOM	265		GLU A 293	6.675	35.284	20.586	1.00 43.83
	266		GLU A 293	5.164	35.519	20.679	1.00 44.63
ATOM			GLU A 293	4.562	36.144	19.410	1.00 47.94
ATOM	267	_		4.517	35.201	18.194	1.00 51.44
MOTA	268		GLU A 293		33.955	18.392	1.00 52.38
ATOM	269		GLU A 293	4.477		17.033	1.00 52.22
MOTA	270		GLU A 293	4.516	35.711		1.00 43.00
MOTA	271	С	GLU A 293	7.299	34.887	21.928	
ATOM	272	0	GLU A 293	7.878	35.732	22.598	1.00 43.39
ATOM	273	N	GLU A 294	7.207	33.613	22.303	1.00 42.66
ATOM	274	CA	GLU A 294	7.870	33.111	23.522	1.00 42.27
MOTA	275	CB	GLU A 294	7.845	31.564	23.632	1.00 43.09
ATOM	276	CG	GLU A 294	6.544	30.813	23.909	1.00 45.45
	277	CD	GLU A 294	6.529	29.398	23.262	1.00 47.89
ATOM			GLU A 294	7.355	28.479	23.591	1.00 42.98
ATOM	278		GLU A 294	5.666	29.204	22.369	1.00 50.76
MOTA	279	OE2	GLU A 234	9.364	33.469	23.488	1.00 40.96
MOTA	280	C	GLU A 294		33.993	24.447	1.00 40.53
ATOM	281	0	GLU A 294	9.919		22.388	1.00 39.12
MOTA	282	N	LEU A 295	10.017	33.106		1.00 39.12
MOTA	283	CA	LEU A 295	11.462	33.297	22.239	
MOTA	284	CB	LEU A 295	11.959	32.681	20.918	1.00 38.19
ATOM	285	CG	LEU A 295	11.815	31.163	20.806	1.00 38.68
ATOM	286	CD1	LEU A 295	11.654	30.733	19.372	1.00 40.29
ATOM	287	CD2	LEU A 295	13.003	30.450	21.445	1.00 38.56
	288	C	LEU A 295	11.866	34.759	22.318	1.00 37.73
ATOM		ŏ	LEU A 295	12.884	35.075	22.907	1.00 36.93
ATOM	289		GLN A 296	11.052	35.640	21.749	1.00 38.09
ATOM	290	N	GLN A 296	11.323	37.083	21.755	1.00 39.08
ATOM	291	CA		10.390	37.802	20.775	1.00 39.49
MOTA	292	CB	GLN A 296		37.498	19.284	1.00 43.93
ATOM	293	CG	GLN A 296	10.709		18.263	1.00 47.60
ATOM	294	CD	GLN A 296	9.671	38.037		1.00 50.71
ATOM	295	OE1		8.471	38.104	18.537	
ATOM	296	NE2	GLN A 296	10.152	38.397	17.079	1.00 49.60
ATOM	297	C	GLN A 296	11.203	37,728	23.148	1.00 38.56
ATOM	298	0	GLN A 296	11.898	38.696	23.461	1.00 38.91
ATOM	299	N	GLN A 297	10.351	37.176	23.988	1.00 38.53
ATOM	300	CA	GLN A 297	10.104	37.771	25.297	1.00 38.64
ATOM	301	CB	GLN A 297	8.692	37.402	25.783	1.00 38.82
ATOM	302	CG	GLN A 297	7.621	38.365	25.195	1.00 42.59
	302	CD	GLN A 297	6.170	37.850	25.288	1.00 48.07
ATOM	304	OE1		5.797	37.151	26.239	1.00 50.31
MOTA				5.356	38.199	24.289	1.00 51.73
ATOM	305	NE2	GLN A 297	11.177	37.428	26.347	1.00 37.73
ATOM	306	Ç		11.210	38.040	27.413	1.00 37.76
MOTA	307	0	GLN A 297		36.452	26.059	1.00 36.25
ATOM	308	N	ILE A 298	12.045		27.007	1.00 34.28
ATOM	309	CA	ILE A 298	13.087	36.084		
MOTA	310	CB	ILE A 298	12.920	34.651	27.472	1.00 34.23 1.00 34.17
ATOM	311	CG1	ILE A 298	12.999	33.705	26.282	1.00 34.17
ATOM	312	CD1	ILE A 298	13.013	32.277	26.693	1.00 37.43
ATOM	313	CG2		11.588	34.413	28.205	1.00 36.82
ATOM	314	С	ILE A 298	14.520	36.278	26.479	1.00 32.82
ATOM	315	ō	ILE A 298	15.421	35.612	26.959	1.00 32.45
ATOM	316	Ň	THR A 299	14.748	37.175	25.518	1.00 32.29
MOTA	317	CA	THR A 299	16.110	37.434	25.027	1.00 32.00
		CB	THR A 299	16.149	38.398	23.832	1.00 32.50
ATOM	318	001	THR A 299	15.244	39.478	24.047	1.00 34.44
MOTA	319			15.653	37.762	22.528	1.00 33.01
ATOM	320	CG2	THR A 299	17.000	38.007	26.104	1.00 31.05
MOTA	321	C	THE A 233	18.212	37.917	26.015	1.00 30.68
MOTA	322	0	THR A 299		38.607	27.132	1.00 30.79
MOTA	323	N	TRP A 300	16.412		28.237	1.00 29.80
ATOM	324	CA	TRP A 300	17.218	39.162		1.00 29.57
MOTA	325	CB	TRP A 300	16.413	40.155	29.094	1.00 29.37
MOTA	326	CG	TRP A 300	15.189	39.547	29.664	
MOTA	327	CD1	TRP A 300	13.988	39.423	29.044	1.00 25.70
MOTA	328	NE1	TRP A 300	13.096	38.775	29.862	1.00 24.08

окороновороно

ATOM	329	CE2 TR	PA:	300		3.727	38.462	31.033	1.00 24.93
ATOM	330	CD2 TR	PA:	300		5.045	38.926	30.936	1.00 23.62
ATOM	331	CE3 TR	PA:	300	1	5.884	38.761	32.030	1.00 26.31
ATOM	332	CZ3 TR	PA:	300	1	5.415	38.153	33.128	1.00 27.39
ATOM	333		PA:		1	4.083	37.700	33.201	1.00 28.78
ATOM	334	CZ2 TR			1	3.231	37.857	32.168	1.00 24.74
ATOM	335		PA		1	7.803	38.099	29.155	1.00 29.45
ATOM	336		PA		1	8.751	38.365	29.906	1.00 30.38
ATOM	337		NA		1	7.231	36.897	29.103	1.00 29.27
ATOM	338		NA			7.695	35.781	29.923	1.00 29.27
ATOM	339		N A		1	6.616	34.701	30.038	1.00 28.84
ATOM	340		N A		1	5.419	35.171	30.791	1.00 30.22
ATOM	341		N A			4.251	34.170	30.897	1.00 33.05
ATOM	342	OE1 GL	N A	301	1	4.340	33.032	30.464	1.00 32.79
ATOM	343	NE2 GL	N A	301		3.144	34.633	31.479	1.00 34.45
ATOM	344	C GL	N A	301		8.964	35.186	29.327	1.00 29.50
ATOM	345		N A			8.926	34.117	28.725	1.00 30.22
ATOM	346	N TH	IR A	302		0.081	35.884	29.484	1.00 29.33
ATOM	347	CA TH	IR A	302		1.372	35.407	29.007	1.00 29.03
MOTA	348		IR A			2.271	36.588	28.567	1.00 29.13
ATOM	349	OG1 TH	IR A	302		2.307	37.572	29.603	1.00 28.27
MOTA	350	CG2 TH	IR A	302		1.695	37.317	27.362	1.00 29.18
ATOM	351	C TH	ir a	302		2.024	34.662	30.165	1.00 29.23
ATOM	352		IR A			1.615	34.836	31.308	1.00 29.31 1.00 29.05
ATOM	353		IE A			2.987	33.791	29.874	1.00 29.03
ATOM	354	CA PI	IE A	303		3.704	33.101	30.929	1.00 29.37
MOTA	355	CB Pi	IE A	303	2	4.678	32.033	30.380	1.00 27.12
ATOM	356	CG PI	IE A	303	2	3.998	30.815	29.837 28.475	1.00 27.07
ATOM	357	CD1 PH	IE A	303		3.798	30.691	27.957	1.00 27.03
MOTA	358	CE1 PI				23.156	29.630	28.795	1.00 27.76
MOTA	359		HE A			22.699	28.639 28.746	30.156	1.00 27.13
MOTA	360		E A			22.884 23.530	29.833	30.669	1.00 26.38
MOTA	361		HE A			24.461	34.134	31.780	1.00 30.22
ATOM	362		HE A			24.913	35.153	31.291	1.00 30.40
ATOM	363		EU A			24.598	33.854	33.053	1.00 31.25
ATOM	364		EU A			25.332	34.733	33.954	1.00 32.65
ATOM	365 366		EU A			24.930	34.475		1.00 32.80
MOTA	367		EU A			23.457	34.647		1.00 33.60
ATOM ATOM	368	CD1 Li			- 3	23.213	34.101	37.076	1.00 35.11
ATOM	369	CD2 L			-	23.051	36.084	35.695	1.00 35.33
ATOM	370		EU A			26.800	34.424	33.797	1.00 34.30
ATOM	371		EU A			27.171	33.345	33.332	1.00 32.86
ATOM	372		LN A			27.647	35.360		1.00 36.15
ATOM	373		LN A		- :	29.077	35.180		1.00 38.54
ATOM	374		LN A		:	29.852	36.381		1.00 39.68
ATOM	375		LN A			31.293	36.596		1.00 42.48
ATOM	376	CD G	LN A	305		31.436	36.533		1.00 46.39
ATOM	377	OE1 G	LN A	305		30.636	37.118		1.00 46.08
MOTA	378	NE2 G	LN A	305		32.497	35.850		1.00 48.27
MOTA	379		LN A			29.584	33.832	34.575	1.00 38.86
ATOM	380	_	LN A			30.428	33.194		1.00 39.34
MOTA	381		LU A			29.031	33.391		
MOTA	382		LU A			29.451	32.155		
MOTA	383		LU A			28.756	31.992		
MOTA	384		LU A			29.089	33.078		
MOTA	385	CD G	LU A	306		28.167	33.080		
ATOM	386	OE1 G	LU A	306		27.643	31.999 34.167		
ATOM	387	OE2 G	TII A	30 <i>6</i>		27.962 29.132	30.952		
ATOM	388	C G	LU A	306		29.132	30.932		
ATOM	389		LU A			27.943	30.967		_
MOTA	390		LU A			27.514	29.927		
MOTA	391 392		LU A			26.032	30.117		
MOTA	392		LU A			25.062	30.047		
MOTA MOTA	394	CD G	LU A	307		23.620	30.319		
ATOM	224	CD G							

 σ

ATOM	395	OE1	GLU A	307		785	29.3		34.543			36.82	
ATOM	396	OE2	GLU A	307			31.4		33.946		L.00	32.29	
ATOM	397		GLU A			.395	29.9	-	32.716			33.42	
ATOM	398	0	GLU A	307		.752	28.9		32.177			30.28 32.73	
MOTA	399	N	ILE A			.778	31.1		32.264			33.52	
ATOM	400		ILE A			.593	31.2		31.062 30.595			33.52	
MOTA	401		ILE A			.723	32.7		30.061			34.47	
MOTA	402	CG1	ILE A			.384	33.1 34.6		29.697			34.55	
MOTA	403	CD1	ILE A			. 385 . 758	32.8		29.484			33.46	
ATOM	404		ILE A			. 933	30.5		31.324		1.00	34.15	
ATOM	405		ILE A ILE A			.373	29.7		30.560			33.82	
MOTA	406	0	GLU A			.549	30.8		32.447			35.66	
MOTA	407 408	N CA	GLU A			.813	30.2		32.858	: :	1.00	36.34	
ATOM ATOM	409		GLU A	309	33	.280	30.8		34.199) [1.00	37.37	
ATOM	410		GLU A		33	.860	32.2		34.048			41.64	
ATOM	411	CD	GLU A			.687	33.1	L71	35.295			46.42	
ATOM	412	OE1	GLU A	309	33	.419	32.6		36.387			49.14	
MOTA	413	OE2	GLU A	309	33	.805	34.4		35.174			51.22	
ATOM	414	С	GLU A	309		.718	28.		32.941			35.17	
ATOM	415		GLU A	309	33	.580	28.0		32.431			35.55 34.21	
ATOM	416		ASN A	310	31	.679	28.2		33.578 33.603			34.21	
ATOM	417	CA	ASN A	310	3 L	.4/8	26.8		34.282			35.39	
ATOM	418	CB	ASN A	310	30	.108	26.9 25.0		34.346			38.20	
ATOM	419	CG	ASN A	310	20	.679 .478 .168 .871	24.2		34.994			45.99	
ATOM	420		ASN A	310	28	.778	24.		33.712			42.62	
MOTA	421	ND2 C	ASN A			.488			32.212			33.34	
ATOM	422 423	Ö	ASN A			.171	25.		31.987	7	1.00	33.73	
ATOM ATOM	424	Ŋ	TYR A			.780	26.	795	31.247	7	1.00	31.41	
ATOM	425	CA	TYR A			.793	26.3	215	29.919			30.92	
ATOM	426	CB	TYR A		29	.821	26.	904	28.959			30.60	
ATOM	427	CG	TYR A			.362	26.		29.117			29.73	
ATOM	428	CD1	TYR A	311	27	.421	27.		29.445		1.00	28.73	
ATOM	429	ŒĨ.	TYR A	311		.090	27.		29.590			29.50	
ATOM	430	CZ	TYR A			.671	25.		29.403			29.74 32.23	
ATOM	431	OH	TYR A			.332	25.		29.55° 29.056			29.37	
MOTA	432	CE2	TYR A			.578 .925	24. 25.		28.91		1.00	29.13	
ATOM	433	CD2				.192	26.		29.36	7		31.46	
ATOM	434	C	TYR A		32	.635	25.		28.63			30.86	
ATOM	435 436	N	GLN A			.890		398	29.688			32.56	
ATOM ATOM	437	CA	GLN A			.251		554	29.20	9		33.54	
ATOM	438	CB	GLN A			.706	29.	010	29.30		1.00	33.50	
ATOM	439	ĊĠ	GLN A			.082		859	28.23			33.49	
MOTA	440	CD	GLN A	312		.392		302	28.46			34.18	
ATOM	441	OE1		312		.841		667	29.54			35.47	
MOTA	442	NE2	GLN A	312		1.172		127	27.44	9	1.00	31.68 34.41	
ATOM	443	С	GLN A	312		.202		603	29.92 29.39	0 /		34.43	
MOTA	444	0	GLN A	312		5.250		270 151	31.11			35.17	
MOTA	445	N	ASN A	7 212		1.834		192	31.82		1.00	36.70	
ATOM	446	CA	ASN A	7 313 7 3T3		3.383		209	33.33			37.66	
ATOM	447	CB	ASN A	1 313 1 313		5.992		423	34.05			41.22	
MOTA	448	CG OD1	ASN A	3 313		5.882		096	33.52			42.54	
ATOM ATOM	449 450	ארווא סידר	ASN A	313		5.478		717	35.26	5		44.69	
ATOM	451	C	ASN A	A 313		5.531		745	31.31	0		36.84	
ATOM	452	ŏ	ASN A	A 313	36	5.405		889	31.56			36.22	
ATOM	453	Ň	LYS A	A 314	34	1.412		459	30.61			36.29	
ATOM	454	CA	LYS A	A 314		1.166		111	30.11		1.00	35.35	
ATOM	455	CB	LYS 2	A 314		2.761		940	29.52		1.00	35.14	
MOTA	456	CG	LYS A	A 314		1.628		.032	30.52			35.45 38.14	
MOTA	457	CD	LYS A	A 314		0.290		.978 .009	29.78 30.73			39.70	
ATOM	458		LYS A	A 314		9.085		.009	31.91			44.38	
ATOM	459	NZ	LYS A	A 314 A 314		9.206 5.186		.752	29.05			35.29	
MOTA	460	С	DID 1	. コナ.	J		~			-			

 \mathbf{c}

7.500	461 O LYS A 314	35.676	22.605	28.307	1.00 35.12
ATOM		35.484	20.452	29.000	1.00 34.85
MOTA		36.430	19.906	28.048	1.00 34.64
MOTA		36.771	18.469	28.417	1.00 34.90
ATOM		37.502	18.260	29.733	1.00 39.29
ATOM		38.919	18.804	29.697	1.00 44.94
MOTA		39.685	18.490	28.787	1.00 50.63
ATOM		39.264	19.634	30.677	1.00 47.61
MOTA		35.846	19.884	26.647	1.00 33.86
MOTA	469 C GLN A 315	34.631	19.748	26.460	1.00 32.99
MOTA	470 O GLN A 315 471 N ARG A 316	36.729	19.965	25.664	1.00 32.95
MOTA		36.315	19.977	24.292	1.00 32.86
ATOM		37.519	19.829	23.385	1.00 33.76
ATOM		37.205	20.195	21.947	1.00 38.32
ATOM		38.414	20.275	21.047	1.00 43.87
ATOM	475 CD ARG A 316 476 NE ARG A 316	38.022	20.301	19.640	1.00 49.79
ATOM	477 CZ ARG A 316	38.804	19.922	18.624	1.00 53.81
ATOM	478 NH1 ARG A 316	40.036	19.479	18.847	1.00 55.22
ATOM	479 NH2 ARG A 316	38.347	19.990	17.381	1.00 55.07
MOTA	480 C ARG A 316	35.289	18.895	23.966	1.00 31.22
ATOM ATOM	481 O ARG A 316	34.241	19.187	23.405	1.00 28.96
ATOM	482 N GLU A 317	35.575	17.649	24.327	1.00 30.76
MOTA	483 CA GLU A 317	34.680	16.574	23.930	1.00 30.63
ATOM	484 CB GLU A 317	35.315	15.181	24.082	1.00 31.32
ATOM	485 CG GLU A 317	35.547	14.697	25.484	1.00 33.23
ATOM	486 CD GLU A 317	36.850	15.194	26.090	1.00 38.72
ATOM	487 OE1 GLU A 317	37.349	14.502	27.024	1.00 44.77
ATOM	488 OE2 GLU A 317	37.365	16.259	25.674	1.00 34.98
ATOM	489 C GLU A 317	33.351	16.695	24.640	1.00 29.33
ATOM	490 O GLU A 317	32.344	16.314	24.099	1.00 30.11
MOTA	491 N VAL A 318	33.365	17.256	25.829	1.00 27.92 1.00 27.86
ATOM	492 CA VAL A 318	32.173	17.464	26.628	1.00 27.86
ATOM	493 CB VAL A 318	32.529	17.835	28.082	1.00 28.20
ATOM	494 CG1 VAL A 318	31.275	18.177	28.870	1.00 28.77
ATOM	495 CG2 VAL A 318	33.263	16.646	28.741 26.013	1.00 27.21
MOTA	496 C VAL A 318	31.244	18.528	25.886	1.00 27.21
MOTA	497 O VAL A 318	30.048	18.287 19.670	25.603	1.00 26.29
MOTA	498 N MET A 319	31.799	20.716	24.961	1.00 26.24
MOTA	499 CA MET A 319	31.018	22.004	24.831	1.00 27.30
MOTA	500 CB MET A 319	31.852 31.050	23.268	24.597	1.00 28.90
MOTA	501 CG MET A 319	29.794	23.654	25.828	1.00 33.36
MOTA	502 SD MET A 319	28.848	24.807	24.932	1.00 31.15
MOTA	503 CE MET A 319 504 C MET A 319	30.472	20.228	23.615	1.00 25.53
MOTA		29.325	20.447	23.281	1.00 25.99
MOTA		31.267	19.511	22.857	1.00 25.05
MOTA	506 N TRP A 320 507 CA TRP A 320	30.790		21.621	1.00 24.82
MOTA		31.923	18.183	20.921	1.00 24.80
ATOM	508 CB TRP A 320 509 CG TRP A 320	32.634	18.949	19.867	1.00 27.31
MOTA	510 CD1 TRP A 320	33.705	19.786	20.039	1.00 30.43
MOTA	511 NE1 TRP A 320	34.100	20.301	18.831	1.00 31.02
ATOM ATOM	512 CE2 TRP A 320	33.268	19.826	17.854	1.00 28.25
MOTA	513 CD2 TRP A 320	32.338	18.969	18.470	1.00 28.17
ATOM	514 CE3 TRP A 320	31.357	18.366	17.675	1.00 29.23
ATOM	515 CZ3 TRP A 320	31.356	18.606	16.320	1.00 28.97
MOTA	516 CH2 TRP A 320	32.293	19.478	15.739	1.00 28.19
MOTA	517 CZ2 TRP A 320	33.260		16.492	1.00 28.61
ATOM	518 C TRP A 320	29.594		21.832	1.00 24.11
ATOM	519 O TRP A 320	28.638		21.080	1.00 23.54 1.00 24.43
ATOM	520 N GLN A 321	29.644		22.832	1.00 24.43
ATOM	521 CA GLN A 321	28.544		23.043	1.00 24.39
ATOM	522 CB GLN A 321	28.836		24.168	1.00 24.76
MOTA	523 CG GLN A 321	27.876		24.140 25.417	1.00 24.34
MOTA	524 CD GLN A 321	27.120		26.271	
MOTA	525 OE1 GLN A 321	27.146		25.556	
ATOM	526 NE2 GLN A 321	26.444	12.02/	20.000	

					- 00 04 10
ATOM	527 C GLN A	321 27.24		23.359	1.00 24.19
ATOM	528 O GLN A	321 26.18	16.559	22.832	1.00 24.08
	529 N LEU A	322 27.36	3 17.924	24.178	1.00 24.78
ATOM	530 CA LEU A	322 26.23	5 18.733	24.579	1.00 25.69
ATOM				25.683	1.00 26.07
MOTA	• • • •			26.235	1.00 27.41
MOTA				26.909	1.00 29.40
MOTA	_			27.190	1.00 30.22
MOTA	534 CD2 LEU A			23.374	1.00 26.06
MOTA	535 C LEU A			23.125	1.00 26.90
MOTA	536 O LEU A			22.587	1.00 25.58
ATOM	537 N CYS A	323 26.42		21.384	1.00 25.11
ATOM	538 CA CYS A	323 25.89		20.686	1.00 25.72
MOTA	539 CB CYS A	323 26.99	•	21.675	1.00 29.20
ATOM	540 SG CYS A	323 27.60		20.419	1.00 25.04
MOTA	541 C CYS A	323 25.24		19.816	1.00 23.70
ATOM	542 O CYS A	323 24.21			1.00 24.13
MOTA	543 N ALA A	324 25.84		20.272	1.00 24.13
ATOM	544 CA ALA A	324 25.27		19.398	1.00 23.45
ATOM	545 CB ALA A	324 26.22		19.222	1.00 24.03
MOTA	546 C ALA A	324 23.91		19.912	1.00 23.43
MOTA	547 O ALA A	324 23.01		19.125	1.00 22.57
MOTA	548 N ILE A	A 325 23.77		21.218	1.00 23.59
ATOM	549 CA ILE A	325 22.48		21.791	1.00 24.38
ATOM	550 CB ILE A	3 3 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3		23.323	1.00 24.71
MOTA	551 CG1 ILE A	A 325 23.29	3 15.136	23.709	1.00 25.02
ATOM	552 CD1 ILE A		9 15.149	25.190	1.00 27.28
ATOM		A 325 21.15	8 16.398	23.942	1.00 22.26
ATOM	554 C ILE A	A 325 21.47	9 17.705	21.501	1.00 24.86
ATOM	555 O ILE A	A 325 20.38	4 17.453	21.044	1.00 24.56
ATOM	556 N LYS A	A 326 21.85	6 18.940	21.772	1.00 25.56
	557 CA LYS A	A 326 20.92	6 20.047	21.580	1.00 26.26
MOTA	558 CB LYS 2	A 326 21.48	9 21.318	22.184	1.00 26.21
ATOM	559 CG LYS A	A 326 21.74		23.681	1.00 29.37
MOTA		A 326 20.47		24.433	1.00 33.36
ATOM		A 326 20.72		25.926	1.00 36.77
ATOM	561 CE LYS 2 562 NZ LYS 2	A 326 19.69		26.567	1.00 37.66
ATOM		A 326 20.5		20.094	1.00 26.40
ATOM		A 326 19.3	· · · · · · · · · · · · · · · · · · ·	19.803	1.00 25.16
ATOM		A 327 21.4		19.175	1.00 26.86
MOTA	T	A 327 21.2		17.740	1.00 28.16
ATOM	J V J J	A 327 22.5		16.930	1.00 29.15
ATOM	:	A 327 22.6		16.335	1.00 35.09
ATOM	•	A 327 23.9		15.538	1.00 39.84
MOTA		A 327 22.4		15.745	1.00 31.87
ATOM	• • • • •	A 327 20.3		17.250	1.00 27.66
ATOM		A 327 19.5		16.361	1.00 27.77
ATOM	572 O ILE	A 328 20.5		17.811	1.00 27.88
ATOM	573 N THR	A 328 19.8		17.415	1.00 28.75
ATOM		A 328 20.3		18.028	1.00 29.15
MOTA		A 328 21.6		17.581	1.00 28.97
ATOM		A 328 19.5			1.00 30.09
MOTA		A 328 18.3	43 16.927		1.00 28.80
MOTA	-	A 328 17.4			1.00 27.42
MOTA					1.00 29.14
MOTA					1.00 30.60
ATOM					1.00 31.73
ATOM					1.00 37.45
MOTA					1.00 43.70
MOTA			78 19.802		1.00 42.77
MOTA					1.00 49.00
MOTA					1.00 29.00
MOTA					1.00 28.96
MOTA					
MOTA					
MOTA					
MOTA					
MOTA	592 C ALA	A 330 15.9	20 20.007		

	593 O ALA A 330	14.911	20.208	14.753	1.00 27.51
ATOM	593 O ALA A 330 594 N ILE A 331		19.109	15.070	1.00 26.90
ATOM ATOM	595 CA ILE A 331		18.308	13.860	1.00 27.25
ATOM	596 CB ILE A 331		17.520	13.585	1.00 26.89 1.00 27.96
ATOM	597 CG1 ILE A 331		18.507	13.149 12.923	1.00 27.30
MOTA	598 CD1 ILE A 331		17.877 16.414	12.484	1.00 26.39
MOTA	599 CG2 ILE A 331		17.390	13.885	1.00 27.69
MOTA	600 C ILE A 331 601 O ILE A 331		17.205	12.859	1.00 27.06
MOTA	601 O ILE A 331 602 N GLN A 332	15.160	16.830	15.041	1.00 28.59
ATOM ATOM	603 CA GLN A 332		15.988	15.167	1.00 30.50
ATOM	604 CB GLN A 332		15.439	16.579	1.00 31.71 1.00 36.53
ATOM	605 CG GLN A 332		14.109 13.693	16.681 18.084	1.00 30.33
ATOM	606 CD GLN A 332		14.274	19.043	1.00 46.43
ATOM	607 OE1 GLN A 332 608 NE2 GLN A 332		12.680	18.228	1.00 46.39
ATOM ATOM	609 C GLN A 332	12.736	16.742	14.763	1.00 30.16
ATOM	610 O GLN A 332	11.879	16.192	14.086	1.00 29.89
ATOM	611 N TYR A 333		18.012	15.142 14.773	1.00 29.91 1.00 29.79
MOTA	612 CA TYR A 333	11.548 11.552	18.863 20.152	15.632	1.00 30.02
MOTA	613 CB TYR A 333 614 CG TYR A 333	11.052	19.929	17.038	1.00 30.98
ATOM	614 CG TYR A 333 615 CD1 TYR A 333	11.928	19.789	18.095	1.00 32.18
ATOM ATOM	616 CE1 TYR A 333	11.460	19.555	19.372	1.00 34.65
ATOM	617 CZ TYR A 333	10.097	19.474	19.605	1.00 35.79 1.00 40.22
ATOM	618 OH TYR A 333	9.635	19.256 19.621	20.875 18.590	1.00 40.22
MOTA	619 CE2 TYR A 333	9.207 9.687	19.858	17.305	1.00 34.75
MOTA	620 CD2 TYR A 333 621 C TYR A 333	11.543	19.187	13.272	1.00 29.21
MOTA MOTA	621 C TYR A 333 622 O TYR A 333	10.498	19.330	12.658	1.00 29.48
ATOM	623 N VAL A 334	12.711	19.337	12.683	1.00 28.49
MOTA	624 CA VAL A 334	12.781	19.602 20.060	11.247 10.872	1.00 28.13 1.00 28.00
ATOM	625 CB VAL A 334	14.204 14.470	19.953	9.349	1.00 28.89
ATOM	626 CG1 VAL A 334 627 CG2 VAL A 334	14.441	21,427	11.401	1.00 26.70
MÒTA MOTA	627 CG2 VAL A 334 628 C VAL A 334	12.347	18.349	10.439	1.00 27.92
MOTA	629 O VAL A 334	11.770	18.465	9.378	1.00 26.84 1.00 28.87
ATOM	630 N VAL A 335	12.612	17.158 15.943	10.948 10.276	1.00 20.07
ATOM	631 CA VAL A 335 632 CB VAL A 335	12.151 12.737	14.699	10.894	1.00 30.00
MOTA	632 CB VAL A 335 633 CG1 VAL A 335	12.072	13.487	10.339	1.00 32.57
MOTA MOTA	634 CG2 VAL A 335	14.210	14.592	10.597	1.00 30.15
ATOM	635 C VAL A 335	10.588	15.881	10.266	1.00 30.90 1.00 29.27
MOTA	636 O VAL A 335	9.984	15.468 16.356	9.263 11.344	1.00 23.27
MOTA	637 N GLU A 336 638 CA GLU A 336	9.953 8.489	16.425	11.393	1.00 32.50
ATOM	638 CA GLU A 336 639 CB GLU A 336	7.961	16.735	12.812	1.00 33.25
MOTA MOTA	640 CG GLU A 336	8.283	15.671	13.862	1.00 36.91
ATOM	641 CD GLU A 336	7.627	14.299	13.616	1.00 44.18 1.00 48.70
ATOM	642 OE1 GLU A 336	6.463 8.276	14.240 13.256	13.123 13.928	1.00 47.83
MOTA	643 OE2 GLU A 336 644 C GLU A 336	7.980	17.440	10.380	1.00 31.88
ATOM	644 C GLU A 336 645 O GLU A 336	6.994	17.194	9.697	1.00 32.26
MOTA MOTA	646 N PHE A 337	8.654	18.569	10.246	1.00 31.25
ATOM	647 CA PHE A 337	8.315	19.488	9.189	1.00 31.26 1.00 31.46
ATOM	648 CB PHE A 337	9.270	20.670 21.746	9.251 8.229	1.00 31.40
ATOM	649 CG PHE A 337 650 CD1 PHE A 337	9.017 7.842	22.467	8.237	1.00 29.18
ATOM ATOM	650 CD1 PHE A 337 651 CE1 PHE A 337	7.643	23.484	7.357	1.00 29.25
ATOM	652 CZ PHE A 337	8.620	23.811	6.418	1.00 30.20
ATOM	653 CE2 PHE A 337	9.799	23.094	6.381 7.287	1.00 30.76 1.00 31.21
MOTA	654 CD2 PHE A 337	9.988 8.364	22.059 18.826	7.779	
ATOM	655 C PHE A 337 656 O PHE A 337	7.402	18.929	7.011	1.00 31.39
MOTA MOTA	656 O PHE A 337 657 N ALA A 338	9.479	18.176	7.438	
ATOM	658 CA ALA A 338	9.618	17.536	6.134	1.00 34.45

						4.4 -0-	6 000	7 00 24 40
MOTA	659	CB	ALA A		10.936	16.787	6.029	1.00 34.40
ATOM	660	С	ALA A		8.448	16.593	5.849	1.00 35.78 1.00 35.41
MOTA	661	0	ALA A		7.848	16.667	4.806	
ATOM	662	N	LYS A		8.127	15.725	6.790	1.00 37.72
MOTA	663	CA	LYS A		7.058	14.776	6.598	1.00 39.80
MOTA	664	CB -	LYS A		6.761	14.056	7.886	1.00 40.02
ATOM	665	CG	LYS A		7.901	13.158	8.291	1.00 42.45
ATOM	666	CD	LYS A		7.440	11.942	9.028	1.00 44.60
ATOM	667	CE	LYS A	339	7.206	12.224	10.454	1.00 46.22
ATOM	668	NZ	LYS A	339	7.415	10.966	11.174	1.00 46:80
ATOM	669	С	LYS A	339	5.777	15.391	6.072	1.00 41.25
ATOM	670	0	LYS A		5.091	14.789	5.275	1.00 41.74
ATOM	671	N	ARG A	340	5.485	16.605	6.497	1.00 42.74
ATOM	672	CA	ARG A	340	4.266	17.275	6.127	1.00 43.70
ATOM	673	CB	ARG A	340	3.887	18.223	7.229	1.00 43.78
MOTA	674	CG	ARG A	340	3.550	17.533	8.494	1.00 45.03
ATOM	675	CD	ARG A		3.273	18.483	9.594	1.00 46.53
ATOM	676	NE	ARG A	340	3.333	17.821	10.887	1.00 49.07
ATOM	677	CZ	ARG A	340	2.578	18.165	11.915	1.00 51.42
ATOM	678	NH1	ARG A		1.697	19.167	11.779	1.00 53.86
ATOM	679	NH2	ARG A		2.691	17.510	13.063	1.00 50.56
MOTA	680	C	ARG A	340	4.355	18.086	4.858	1.00 44.39
ATOM	681	0	ARG A	340	3.381	18.710	4.473	1.00 44.75
ATOM	682	N	ILE A	341	5.516	18.136	4.231	1.00 44.93
ATOM	683	CA	ILE A	341	5.626	18.907	3.015	1.00 45.79
ATOM	684	CB	ILE A	341	7.073	19.340	2.776	1.00 45.44
ATOM	685	CG1	ILE A	341	7.446	20.384	3.818	1.00 45.69
ATOM	686	CD1			8.901	20.710	3.847	1.00 46.77
ATOM	687	CG2	ILE A	. 341	7.240	19.881	1.357	1.00 45.67
ATOM	688	C	ILE A	341	5.080	18.035	1.895	1.00 46.85
ATOM	689	0	ILE A		5.483	16.883	1.738	1.00 46.56
ATOM	690	N	ASP A		4.148	18.593	1.129	1.00 48.25
ATOM	691	CA	ASP A	342	3.476	17.821	0.093	1.00 49.01
ATOM	692	CB	ASP A	342	2.306	18.611	-0.490	1.00 50.45
ATOM	693	CG	ASP A		1.152	<u>18.788</u>	0.493	1.00 53.95
ATOM	694	OD1	ASP A	342	0.695	17.786	1.084	1.00 58.87
ATOM	695		ASP A		0.636	19.914	0.713	1.00 59.55
ATOM	696	C	ASP A	342	4.424	17.453	-1.031	1.00 48.01
ATOM	697	0	ASP A		4.927	18.316	-1.747	1.00 47.92
ATOM	698	N	GLY A		4.642	16.155	-1.185	1.00 46.69
ATOM	699	CA	GLY A	343	5.544	15.642	-2.199	1.00 45.52
ATOM	700	С	GLY A		6.710	14.888	-1.596	1.00 43.87
ATOM	701	0	GLY A	343	7.268	13.970	-2.205	1.00 43.67
ATOM	702	N	PHE A		7.045	15.232	-0.365	1.00 41.81
ATOM	703	CA	PHE A	344	8.221	14.673	0.266	1.00 40.97
ATOM	704	CB	PHE A	344	8.588	15.453	1.533	1.00 40.64
MOTA	705	CG	PHE A		9.850	14.977	2.170	1.00 38.48
MOTA	706		PHE A		11.081	15.500	1.814	1.00 36.83
ATOM	707	CE1	PHE A	344	12.245	15.020	2.396	1.00 37.61
ATOM	708	CZ	PHE A	344	12.190	14.000	3.311	1.00 36.20
MOTA	709	CE2	PHE A	344	10.961	13.456	3.658	1.00 36.79
MOTA	710		PHE F	344	9.809	13.939	3.084	1.00 36.78
ATOM	711	С	PHE A	344	7.999	13.204	0.543	1.00 41.48
ATOM	712	0	PHE F	344	8.864	12.366	0.254	1.00 41.42
MOTA	713	N	MET A	345	6.814	12.881	1.056	1.00 42.09
ATOM	714	CA	MET A	A 345	6.447	11.536	1.370	1.00 43.10
ATOM	715	СВ	MET A		5.247	11.496	2.326	1.00 43.84
ATOM	716	ĊĠ	MET A		5.590	11.871	3.775	1.00 46.08
ATOM	717	SD	MET A	¥ 345	7.102	11.080	4.441	1.00 50.98
ATOM	718	CE	MET A	A 345	6.721	9.279	4.354	1.00 52.61
ATOM	719	c	MET A	345	6.187	10.673	0.109	1.00 43.55
ATOM	720	ŏ	MET A	A 345	6.190	9.427	0.184	1.00 42.43
ATOM	721	N	GLU A	346	5.974	11.311	-1.040	1.00 44.36
ATOM	722	CA	GLU A	¥ 346	5.839	10.568	-2.291	1.00 45.64
ATOM	723	CB	GLU A	A 346	5.107	11.384	-3.339	1.00 46.00
ATOM	724	CG		A 346	3.616	11.455	-3.132	1.00 49.03

ATOM ATOM ATOM ATOM ATOM	725 726 727 728 729	CD GLU A 346 OE1 GLU A 346 OE2 GLU A 346 C GLU A 346 O GLU A 346	2.989 3.726 1.740 7.182 7.209 8.288	12.662 13.555 12.718 10.143 9.327 10.691	-3.821 -4.328 -3.852 -2.901 -3.826 -2.411	1.00 54.25 1.00 56.30 1.00 58.05 1.00 45.79 1.00 46.33 1.00 45.30
MOTA	730 731	N LEU A 347 CA LEU A 347	9.593	10.361	-2.983	1.00 44.95
ATOM ATOM	732	CB LEU A 347	10.618	11.445	-2.650	1.00 44.65
ATOM	733	CG LEU A 347	10.252	12.868	-3.077	1.00 44.22
ATOM	734	CD1 LEU A 347	11.065	13.905	-2.341	1.00 43.57 1.00 44.47
ATOM	735	CD2 LEU A 347	10.447	13.049 9.010	-4.576 -2.469	1.00 44.47
MOTA	736	C LEU A 347	10.086 9.634	8.530	-2.409	1.00 43.99
MOTA	737	O LEU A 347 N CYS A 348	11.007	8.392	-3.205	1.00 44.39
MOTA	738 739	N CYS A 348 CA CYS A 348	11.599	7.132	-2.754	1.00 44.78
MOTA MOTA	740	CB CYS A 348	12.511	6.526	-3.835	1.00 44.94
ATOM	741	SG CYS A 348	13.860	7.612		1.00 48.13
ATOM	742	C CYS A 348	12.388	7.401	-1.474	1.00 43.97 1.00 42.90
MOTA	743	O CYS A 348	12.982	8.475 6.427	-1.326 -0.567	1.00 42.30
MOTA	744	N GLN A 349	12.401 13.096	6.569	0.708	1.00 44.41
ATOM	745	CA GLN A 349 CB GLN A 349	13.178	5.250	1.487	1.00 45.15
ATOM ATOM	746 747	CB GLN A 349 CG GLN A 349	13.587	5.479	2.949	1.00 47.77
ATOM	748	CD GLN A 349	13.747	4.207	3.723	1.00 51.04
ATOM	749	OE1 GLN A 349	13.880	3.124	3.139	1.00 53.73 1.00 53.95
MOTA	750	NE2 GLN A 349	13.761	4.325 7.124	5.040 0.495	1.00 33.93
MOTA	751	C GLN A 349	14.499 15.017	7.862	1.324	1.00 43.52
ATOM	752 753	O GLN A 349 N ASN A 350	15.106	6.753	-0.623	1.00 43.26
MOTA MOTA	754	N ASN A 350 CA ASN A 350	16.451	7.175	-0.929	1.00 43.16
ATOM	755	CB ASN A 350	16.936	6.460	-2.175	1.00 43.98
ATOM	756	CG ASN A 350	16.970	4.940	-1.994	1.00 48.26 1.00 52.77
MOTA	757	OD1 ASN A 350	18.058	4.340	-1.904 -1.934	1.00 52.77
ATOM	758	ND2 ASN A 350	15.773 16.563	4.305 8.686	-1.116	1,00 40.98
MOTA	759	C ASN A 350 O ASN A 350	17.499	9.296	-0.637	1.00 40.25
MOTA MOTA	760 761	O ASN A 350 N ASP A 351	15.638	9.266	-1.860	1.00 39.10
ATOM	762	CA ASP A 351	15.643	10.696	-2.065	1.00 38.32
ATOM	763	CB ASP A 351	14.794	11.100	-3.253	1.00 38.60 1.00 41.32
MOTA	764	CG ASP A 351	15.504	10.847 10.309	-4.590 -4.587	1.00 41.32
MOTA	765	OD1 ASP A 351	16.656 14.977	11.143	-5.686	1.00 42.98
ATOM	766 767	OD2 ASP A 351 C ASP A 351	15.194	11.404	-0.783	1.00 36.92
ATOM ATOM	768	O ASP A 351	15.721	12.435	-0.464	1.00 35.52
ATOM	769	N GLN A 352	14.279	10.813	-0.023	1.00 35.97
ATOM	770	CA GLN A 352	13.905	11.377	1.265	1.00 35.61 1.00 35.48
MOTA	771	CB GLN A 352	12.875	10.478 10.599	1.950 1.322	1.00 37.95
ATOM	772	CG GLN A 352	11.497 10.561	9.498	1.737	1.00 40.62
MOTA	773 774	CD GLN A 352 OE1 GLN A 352	10.668	8.974	2.839	1.00 40.95
ATOM ATOM	775		9.649	9.123	0.848	1.00 44.80
ATOM	776	C GLN A 352	15.154	11.554	2.137	1.00 34.57
MOTA	777	O GLN A 352	15.388	12.611	2.720	1.00 32.40 1.00 33.88
ATOM	778	N ILE A 353	15.970 17.178	10.508 10.487	2.184 3.002	1.00 34.01
ATOM	779		17.772	9.049	2.998	1.00 33.98
MOTA	780 781		16.805	8.112	3.715	1.00 36.61
MOTA MOTA	782		17.075	6.631	3.477	1.00 38.26
ATOM	783	CG2 ILE A 353	19.101	9.002	3.715	1.00 34.10
ATOM	784	C ILE A 353	18.225		2.548 3.364	1.00 32.99 1.00 32.18
MOTA	785		18.821 18.466		1.246	
MOTA	786		19.433		0.698	1.00 31.38
MOTA MOTA	787 788		19.569		-0.821	1.00 31.50
ATOM	789	CG1 VAL A 354	20.148	13.516	-1.458	
MOTA	790		20.388	11.039	-1.149	1.00 32.45

noonos on a construction on a

	701 C	VAL A 354	19.066	13.988	0.998	1.00 29.81
ATOM	791 C 792 O	VAL A 354 VAL A 354	19.939	14.794	1.317	1.00 29.46
MOTA	793 N	055	17.780	14.316	0.901	1.00 28.52
MOTA MOTA	794 C		17.317	15.673	1.175	1.00 27.57
ATOM	795 C		15.867	15.859	0.755	1.00 27.23
ATOM	796 C	G LEU A 355	15.593	15.830	-0.741	1.00 27.16
ATOM	797 C	D1 LEU A 355	14.104	15.935	-0.931	1.00 28.72
ATOM	798 C	D2 LEU A 355	16.337	16.878	-1.514	1.00 26.89 1.00 26.38
MOTA	799 C	LEU A 355	17.435	16.028	2.642 2.969	1.00 24.91
MOTA	800 O		17.724	17.171 15.067	3.522	1.00 26.87
MOTA	801 N		17.184 17.330	15.291	4.962	1.00 28.02
MOTA	802 C	A LEU A 356	16.567	14.232	5.788	1.00 28.75
ATOM	803 C		15.046	14.442	5.700	1.00 31.27
ATOM	804 C 805 C	D1 LEU A 356	14.317	13.319	6.329	1.00 33.71
MOTA		D2 LEU A 356	14.608	15.740	6.323	1.00 31.98
ATOM ATOM	807 C		18.785	15.340	5.404	1.00 27.73
ATOM	808 O		19.138	16.160	6.234	1.00 27.81
ATOM	809 N	LYS A 357	19.631	14.463	4.891	1.00 28.00 1.00 29.47
ATOM	810 C	A LYS A 357	21.038	14.523	5.263	1.00 29.47
ATOM		B LYS A 357	21.875	13.426	4.613 5.037	1.00 29.33
MOTA		G LYS A 357	21.562	12.033 11.034	4.457	1.00 37.74
MOTA		D LYS A 357	22.586 22.683	9.804	5.331	1.00 41.03
ATOM		E LYS A 357 IZ LYS A 357	23.255	8.598	4.607	1.00 43.01
ATOM			21.600	15.853	4.830	1.00 29.89
MOTA	816 C 817 C	LYS A 357	22.382	16.444	5.542	1.00 30.98
ATOM ATOM		ALA A 358	21.207	16.338	3.657	1.00 30.12
ATOM		A ALA A 358	21.750	17.612	3.181	1.00 30.98
ATOM	_	CB ALA A 358	21.753	17.654	1.658	1.00 31.73 1.00 30.81
MOTA		C ALA A 358	21.056	18.857	3.702 3.875	1.00 30.81
MOTA) ALA A 358	21.686	19.893 18.777	3.875	1.00 33.30
MOTA		N GLY A 359	19.765 19.040	19.938	4.331	1.00 28.50
MOTA		CA GLY A 359	18.606	20.119	5.764	1.00 27.82
ATOM		C GLY A 359 O GLY A 359	18.236	21.223	6.110	1.00 27.60
ATOM		O GLY A 359 N SER A 360	18.630	19.089	6.591	1.00 26.28
ATOM ATOM		CA SER A 360	18.064	19.239	7.905	1.00 26.79
ATOM		CB SER A 360	17.984	17.889	8.631	1.00 27.01
ATOM		OG SER A 360	19.287	17.372	8.858	1.00 30.95 1.00 26.61
MOTA	831 (C SER A 360	18.786	20.315	8.699	1.00 26.71
MOTA		O SER A 360	18.139	21.164 20.345	9.310 8.635	1.00 26.46
MOTA		N LEU A 361	20.116 20.887	21.373	9.338	1.00 26.75
MOTA		CA LEU A 361 CB LEU A 361	22.380	21.042	9.306	1.00 26.79
MOTA		CB LEU A 361 CG LEU A 361	23.250	21.762	10.334	1.00 28.75
ATOM		CD1 LEU A 361	22.803	21.528	11.780	1.00 28.83
MOTA ATOM		CD2 LEU A 361	24.747	21.342	10.154	1.00 30.56
ATOM		C LEU A 361	20.660	22.765	8.782	1.00 26.67 1.00 26.63
ATOM		O LEU A 361	20.593	23.740	9.545	1.00 25.93
MOTA		N GLU A 362	20.550	22.885 24.192	7.468 6.875	1.00 26.57
MOTA	-	CA GLU A 362	20.258 20.158	24.192	5.357	1.00 26.98
MOTA		CB GLU A 362 CG GLU A 362	21.329	23.433	4.674	1.00 31.21
ATOM		CG GLU A 362 CD GLU A 362	21.206	23.396	3.149	1.00 37.21
ATOM ATOM	845 846	OE1 GLU A 362	22.086	22.796	2.478	1.00 41.59
ATOM	847	OE2 GLU A 362	20.212	23.932	2.619	1.00 43.73
ATOM		C GLU A 362	18.931	24.726	7.430	1.00 25.89
ATOM		O GLU A 362	18.823	25.921	7.697	1.00 24.74 1.00 25.19
ATOM	850	N VAL A 363	17.920	23.868	7.592	1.00 25.19
MOTA		CA VAL A 363	16.647		8.112 7.990	
MOTA		CB VAL A 363	15.494 14.256		8.658	
ATOM		CG1 VAL A 363 CG2 VAL A 363	15.182		6.538	1.00 27.46
MOTA		CGZ VAL A 363	16.815		9.574	1.00 25.70
ATOM ATOM	855 856	O VAL A 363	16.210		10.020	
AIOH	050					

				264	17.682	24.091	10.308	1.00 26.29
ATOM	857 858		VAL A VAL A		17.942	24.451	11.690	1.00 25.82
ATOM ATOM	859		VAL A		18.867	23.435	12.363	1.00 26.43
ATOM	860		VAL A		19.315	23.910	13.716	1.00 25.43
MOTA	861	CG2	VAL A	364	18.171	22.105	12.538	1.00 27.04
ATOM	862		VAL A		18.528	25.865	11.747 12.570	1.00 26.05 1.00 25.23
MOTA	863		VAL A		18.110	26.692	10.877	1.00 25.23
ATOM	864	N	PHE A	365	19.491	26.162 27.491	10.877	1.00 25.45
MOTA	865	CA	PHE A	365 365	20.098 21.372	27.506	10.102	1.00 26.05
MOTA	866	CB CG	PHE A PHE A	365	22.482	26.755	10.743	1.00 26.79
MOTA	867 868	CD1	PHE A	365	22.830	26.990	12.046	1.00 28.32
ATOM ATOM	869	CE1	PHE A	365	23.869	26.329	12.628	1.00 29.90
ATOM	870		PHE A		24.601	25.430	11.894	1.00 31.06
ATOM	871	CE2	PHE A	365	24.290	25.215	10.614	1.00 30.47 1.00 29.26
MOTA	872		PHE A		23.226	25.886 28.591	10.024 10.418	1.00 25.25
ATOM	873	C	PHE A	365	19.157 19.265	29.745	10.416	1.00 26.08
ATOM	874		PHE A	365	18.213	28.242	9.554	1.00 26.60
MOTA	875 876	N CA	ILE A	366	17.183	29.194	9.178	1.00 27.03
ATOM	877	CB	ILE A		16.365	28.719	7.970	1.00 27.55
ATOM ATOM	878		ILE A		17.273	28.657	6.731	1.00 27.31
ATOM	879		ILE A	366	16.641	28.018	5.520	1.00 26.80
ATOM	880	CG2	ILE A	366	15.179	29.670	7.720	1.00 27.78 1.00 26.64
MOTA	881	С	ILE A		16.325	29.422 30.523	10.404 10.833	1.00 20.04
MOTA	882	0	ILE A		16.186 15.792	28.375	11.009	1.00 27.45
ATOM	883	N	ARG A		14.990	28.542	12.229	1.00 27.84
ATOM	884 885	CA CB	ARG A		14.500	27.204	12.733	1.00 27.21
ATOM ATOM	886	CG	ARG A		13.501	26.572	11.840	1.00 27.21
ATOM	887	CD	ARG A		12.989	25.262	12.377	1.00 26.26
ATOM	888	NE	ARG A	367	11.797	24.825	11.687	1.00 27.92
ATOM	889	CZ	ARG A		11.017	23.827	12.095	1.00 30.29 1.00 30.75
MOTA	890	NH1	ARG A	367	11.308	23.140 23.528	13.190 11.412	1.00 30.73
MOTA	891		ARG A		9.933 15.723	29.268	13.367	1.00 28.32
ATOM	892	C	ARG A		15.104	29.904	14.228	1.00 28.51
MOTA	893 894	N O	MET A		17.038	29.172	13.374	1.00 29.28
ATOM ATOM	895	CA	MET A		17.832	29.887	14.359	1.00 30.61
ATOM	896	CB	MET A	368	19.311	29.754	14.039	1.00 30.32
ATOM	897	CG	MET A		20.188	30.279	15.100	1.00 30.51 1.00 31.75
MOTA	898	SD	MET A		21.905	29.966 30.986	14.792 13.388	1.00 31.73
MOTA	899	CE	MET A		22.107 17.484	31.372	14.427	1.00 31.27
ATOM	900	C	MET A	. 300 368	17.590	31.982	15.481	1.00 31.35
ATOM	901 902	N O	CYS A		17.074	31.963	13.328	1.00 32.36
MOTA MOTA	903	CA	CYS A		16.775	33.385	13.375	1.00 34.85
ATOM	904	CB	CYS A	369	16.614	34.005	11.987	1.00 35.08
ATOM	905	SG	CYS A	369	15.048	33.719	11.195	1.00 41.49 1.00 34.66
ATOM	906	С	CYS A	369	15.601	33.738	14.286 14.785	1.00 36.34
MOTA	907	0	CYS A	369	15.556 14.705	34.844 32.794	14.769	1.00 33.99
ATOM	908	N	ARG A	370	13.589	33.045	15.460	1.00 32.77
ATOM	909	CA CB	ARG A	370	12.559	31.933	15.319	1.00 32.42
ATOM ATOM	910 911	CG	ARG A	370	12.173	31.608	13.890	1.00 32.81
ATOM	912	CD	ARG A	370	11.507	30.270	13.790	1.00 33.89
ATOM	913	NE	ARG A	370	10.153	30.290	14.304	1.00 32.17
ATOM	914	CZ	ARG A	370	9.752	29.738	15.412	1.00 32.53 1.00 35.61
MOTA	915	NH1	ARG A	370	10.598	29.098	16.193 15.748	1.00 33.61
MOTA	916	NH2	ARG A	370	8.472 14.051	29.815 33.036	16.912	1.00 33.43
ATOM	917	C	ARG A	1 3/U 1 370	13.322	33.465	17.817	1.00 32.92
MOTA	918	O N	ARG A	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15.241	32.488	17.131	1.00 31.07
MOTA	919 920	N CA	ALA A	371	15.757	32.294	18.455	1.00 29.60
MOTA MOTA	921	CB	ALA A	371	15.928	30.792	18.720	1.00 29.76
MOTA	922		ALA A	A 371	17.077	33.001	18.554	1.00 28.59
0								

ATOM	923	0	ALA A	371	17.964	32.561	19.226	1.00 27.57
ATOM	924	N	PHE A		17.198	34.127	17.888	1.00 28.91 1.00 28.90
ATOM	925	CA	PHE A		18.452	34.836	17.848 16.480	1.00 28.04
ATOM	926	CB	PHE A		19.079	34.660 35.112	16.406	1.00 27.18
MOTA	927	CG	PHE A	372	20.485 21.515	34.231	16.614	1.00 28.47
MOTA	928		PHE A		22.829	34.661	16.546	1.00 30.76
MOTA	929	CE1	PHE A		23.107	36.004	16.312	1.00 28.92
ATOM	930	CZ	PHE A	372	22.085	36.873	16.119	1.00 28.65
ATOM	931	CE2 CD2	PHE A	372	20.781	36.429	16.158	1.00 27.09
ATOM	932 933	CDZ	PHE A		18.202	36.304	18.127	1.00 30.17
ATOM ATOM	934	Õ	PHE A		17.312	36.889	17.543	1.00 30.94
ATOM	935	N	ASP A	373	19.005	36.885	19.000	1.00 31.57
ATOM	936	CA	ASP A	373	18.910	38.293	19.376	1.00 33.31
ATOM	937	CB	ASP A	373	19.058	38.438	20.900	1.00 33.82
ATOM	938	CG	ASP A	. 373	18.989	39.902	21.381	1.00 36.02 1.00 41.04
ATOM	939	OD1	ASP A	. 373	18.985	40.818	20.530 22.591	1.00 41.04
ATOM	940		ASP A	. 373	18.972	40.227 39.049	18.649	1.00 34.95
MOTA	941	C	ASP A	373	20.020 21.198	39.063	19.064	1.00 34.64
MOTA	942	0	ASP A	3/3	19.636	39.678	17.553	1.00 36.75
ATOM	943	N	SER A	27/	20.585	40.409	16.717	1.00 39.28
MOTA	944	CA	SER A	374	19.866	40.916	15.474	1.00 39.26
MOTA	945 946	CB OG	SER A		20.836	41.201	14.487	1.00 43.88
ATOM ATOM	947	C	SER A	374	21.325	41.581	17.378	1.00 39.94
ATOM	948	Ö	SER A		22.515	41.766	17.173	1.00 40.56
ATOM	949	Ň	GLN A		20.626	42.366	18.186	1.00 41.01
ATOM	950	CA	GLN A	375	21.239	43.516	18.810	1.00 41.65
ATOM	951	CB	GLN A	375	20.197	44.362	19.565	1.00 42.91 1.00 47.27
MOTA	952	CG	GLN A	¥ 375	18.913	44.675	18.767 19.353	1.00 47.27
MOTA	953	CD	GLN A	A 375	18.116	45.864 46.997	19.333	1.00 57.17
MOTA	954		GLN A	A 375	18.626 16.877	45.608	19.788	1.00 54.72
ATOM	955	NE2	GLN A		22.344	43.098	19.762	1.00 40.86
ATOM	956	C	GLN A		23.365	43.773	19,858	1.00 41.50
MOTA	957 958	O N	ASN A		22.155	41.987	20.463	1.00 39.20
MOTA MOTA	959	CA	ASN A	A 376	23.137	41.552	21.441	1.00 38.16
ATOM	960	CB	ASN A	A 376	22.438	41.264	22.766	1.00 38.40
ATOM	961	CG	ASN A	A 376	21.791	42.527	23.387	1.00 40.33
MOTA	962	OD1		A 376	22.488	43.368	23.935	1.00 41.58 1.00 40.49
ATOM	963	ND2		A 376	20.452	42.644	23.301	1.00 40.49
MOTA	964	С	ASN A	A 376	24.019	40.360 39.906	21.002 21.769	1.00 37.34
MOTA	965	0		A 376	24.852 23.840	39.859	19.789	1.00 33.92
MOTA	966	N		A 377 A 377	24.632	38.727	19.284	1.00 32.39
ATOM	967	CA		A 377	26.094	39.138	19.079	1.00 31.52
MOTA	968 969	CB CG	ASM .	A 377	26.772	38.334	17.993	1.00 31.73
MOTA MOTA	970	OD1	L ASN	A 377	26.142	37.995	16.998	1.00 33.03
ATOM	971	ND	2 ASN	A 377	28.050	38.007	18.176	1.00 27.90
MOTA	972	C	ASN	A 377	24.550	37.477	20.194	1.00 31.00
ATOM	973	0	ASN	A 377	25.560	37.005	20.708	1.00 31.17 1.00 29.28
ATOM	974	N	THR	A 378	23.336	36.976	20.410	1.00 29.28
MOTA	975	CA	THR	A 378	23.110	35.831 36.241	21.282 22.727	1.00 29.06
MOTA	976	CB	THR	A 378	22.643 21.395	36.949	22.674	1.00 27.46
MOTA	977	OG:	I THR	A 378	23.663	37.127	23.462	1.00 28.26
ATOM	978		THK 2	A 378 A 378	22.070	34.895	20.708	1.00 26.71
MOTA	979 980	C	LUZ TUV	A 378	21.139	35.318	20.011	1.00 26.15
ATOM ATOM	980		TAV.	A 379	22.231	33.615	21.032	1.00 26.22
ATOM	982			A 379	21.361	32.557	20.517	1.00 24.86
MOTA	983	CB	VAL	A 379	22.149	31.671	19.525	1.00 24.33
MOTA	984	CG	1 VAL	A 379	23.217	30.881	20.210	1.00 24.14
ATOM	985	CG	2 VAL	A 379	21.210		18.777	1.00 24.47 1.00 24.23
ATOM	986	C	VAL	A 379	20.815		21.637	1.00 24.23
ATOM	987		VAL	A 379	21.507		22.559 21.519	1.00 24.94
MOTA	988	N	TYR	A 380	19.569	31.203	21.313	

					40 005	20 450	22.506	1.00 25.03
ATOM	989	CA	TYR A	380	18.905	30.450		1.00 24.86
ATOM	990	CB	TYR A	380	17.410	30.313	22.141	1.00 24.00
ATOM	991	CG	TYR A	380	16.514	29.758	23.215	
MOTA	992	CD1	TYR A	380	16.614	30.197	24.535	1.00 32.61
ATOM	993	CE1	TYR A		15.799	29.705	25.521	1.00 32.61
	994	CZ	TYR A		14.852	28.746	25.210	1.00 35.82
MOTA	-	OH	TYR A		14.038	28.236	26.193	1.00 38.69
MOTA	995		TYR A		14.742	28.277	23.938	1.00 34.16
ATOM	996	CE2	TYR A	200	15.589	28.791	22.939	1.00 32.66
MOTA	997	CD2	TIK A	300	19.589	29.086	22.523	1.00 25.13
MOTA	998	C	TYR A		19.647	28.416	21.514	1.00 25.44
MOTA	999	0	TYR A		20.127	28.698	23.675	1.00 25.96
ATOM	1000	N	PHE A	381		27.470	23.824	1.00 25.59
ATOM	1001	CA	PHE A		20.902		23.471	1:00 25.60
ATOM	1002	CB	PHE A		22.328	27.773	23.828	1.00 25.28
ATOM	1003	CG	PHE A		23.263	26.709		1.00 26.68
ATOM	1004	CD1	PHE A	381	23.306	25.561	23.106	1.00 20.00
ATOM	1005	CE1	PHE A	381	24.190	24.559	23.454	
ATOM	1006	CZ	PHE A	381	25.049	24.733	24.537	1.00 28.60
ATOM	1007	CE2	PHE A	381	25.007	25.865	25.234	1.00 28.13
ATOM	1008	CD2	PHE A	381	24.107	26.851	24.895	1.00 27.85
ATOM	1009	Č	PHE A	381	20.879	26.914	25.251	1.00 26.62
	1010	ŏ	PHE A	381	21.215	27.604	26.209	1.00 26.25
MOTA	1011	N	ASP A		20.481	25.664	25.416	1.00 27.37
ATOM	1011		ASP A	382	20.441	25.075	26.766	1.00 28.62
ATOM		CA	ASP A	382	21.885	24.760	27.242	1.00 28.80
ATOM	1013	CB	ASP A	302	21.936	23.653	28.283	1.00 31.74
MOTA	1014	CG	ASP A	202	20.973	22.859	28.374	1.00 34.71
MOTA	1015	ODT	ASP A	304	22.911	23.477	29.045	1.00 34.98
MOTA	1016		ASP A	382	19.705	25.888	27.853	1.00 28.15
ATOM	1017	С	ASP A	382		25.923	28.997	1.00 29.36
MOTA	1018	0	ASP A	382	20.150	26.485	27.514	1.00 28.44
MOTA	1019	N	GLY A		18.564		28.488	1.00 28.32
MOTA	1020	CA	GLY A		17.770	27.238		1.00 27.86
MOTA	1021	С	GLY A	383	17.958	28.758	28.594	1.00 27.00
ATOM	1022	0	GLY A		17.144	29.476	29.196	
ATOM	1023	N	LYS A		19.032	29.289	28.033	
ATOM	1024	CA	LYS A		19.241	30.731	28.108	1.00 26.42
MOTA	1025	CB	LYS A	384	20.185	31.068	29.267	1.00 26.08
ATOM	1026	CG	LYS A		19.627	30.747	30.653	1.00 28.51
ATOM	1027	CD	LYS A		20.486	31.424	31.751	1.00 29.39
MOTA	1028	CE	LYS A	384	20.028	31.086	33.196	1.00 30.70
ATOM	1029	NZ	LYS A		20.910	31.746	34.288	1.00 29.22
ATOM	1030	C	LYS A	384	19.797	31.259	26.791	1.00 25.94
ATOM	1031	ŏ	LYS A	384	20.097	30.466	25.900	1.00 26.76
	1032	N	TYR A		19.974	32.578	26.672	1.00 24.63
ATOM	1032	CA	TYR A	385	20.572	33.145	25.466	1.00 24.57
MOTA		CB	TYR A	385	19.948	34.488	25.115	1.00 24.03
MOTA	1034	CG	TYR A	385	18.685	34.353	24.311	1.00 24.39
MOTA	1035				17.468	34.095	24.917	1.00 26.02
MOTA	1036	CD1			16.320	34.000	24.163	1.00 26.31
ATOM	1037	CE:			16.411	34.121	22.799	1.00 28.74
ATOM	1038	CZ	TYR A	305	15.321	33.976	21.988	1.00 27.24
MOTA	1039	OH	TYR A	305	17.628	34.353	22.195	1.00 26.89
MOTA	1040	CE				34.458	22.944	1.00 24.65
MOTA	1041	CD2		1 385	18.723	33.213	25.671	1.00 24.69
MOTA	1042	С	TYR A	1 385	22.101		26.720	1.00 25.62
MOTA	1043	0	TYR A	385	22.590	33.626		1.00 24.40
MOTA	1044	N	ALA A	¥ 386	22.825	32.741	24.671	1.00 24.40
ATOM	1045	ca	ALA A		24.254	32.515	24.738	1.00 24.38
ATOM	1046	CB	ALA A		24.514	31.107	24.385	1.00 25.79
ATOM	1047	С	ALA A	A 386	25.008	33.368	23.745	1.00 25.29
MOTA	1048	ō	ALA A	A 386	24.623	33.438	22.579	1.00 26.61
ATOM	1049	Ň	SER A		26.085			1.00 25.98
MOTA	1050	CA		A 387	27.031	34.711	23.369	1.00 26.98
ATOM	1051	CB	SER 7	A 387	27.840	35.628	24.236	1.00 26.78
ATOM	1052	OG	SER	A 387	28.416		25.267	1.00 30.72
ATOM	1052		SER	A 387	27.985			1.00 27.67
	1053		SER	A 387	27.984			1.00 26.96
MOTA	1004	J	2010		·			

- mos/	1055	N	PRO A	388	28.776	34.084	21.785	1.00 28.55
ATOM	1055 1056	CA	PRO A		29.788	33.193	21.216	1.00 29.40
ATOM	1057	CB	PRO A	388	30.510	34.088	20.180	1.00 29.67
MOTA	1057	CG	PRO A		29.538	35.118	19.839	1.00 29.41
MOTA	1059	CD	PRO A		28.781	35.393	21.107	1.00 29.03
MOTA	1060	CD	PRO A		30.775	32.659	22.250	1.00 30.29
MOTA	1061	ŏ	PRO A		31.346	31.581	22.052	1.00 30.55
MOTA MOTA	1062	N	ASP A	389	30.972	33.389	23.338	1.00 31.61
ATOM	1063	CA	ASP A	389	31.864	32.951	24.406	1.00 32.74
ATOM	1064	CB	ASP A	389	31.882	33.986	25.510	1.00 34.07
ATOM	1065	CG	ASP A	389	32.640	35.207	25.127	1.00 39.93
MOTA	1066		ASP A		33.325	35.175	24.070	1.00 47.04
ATOM	1067	OD2	ASP A	389	32.601	36.259	25.813	1.00 46.60
ATOM	1068	C	ASP A	389	31.484	31.614	25.044	1.00 31.53
ATOM	1069	ō	ASP A	389	32.359	30.893	25.528	1.00 31.63
ATOM	1070	N	VAL A	390	30.189	31.317	25.069	1.00 29.87
ATOM	1071	CA	VAL A	390	29.667	30.079	25.616	1.00 29.20 1.00 29.33
ATOM	1072	CB	VAL A		28.119	30.083	25.572	1.00 29.50
ATOM	1073	CG1	VAL A	390	27.579	28.705	25.643	1.00 29.08
ATOM	1074	CG2	VAL A	390	27.582	30.907	26.704	1.00 29.00
ATOM	1075	С	VAL A	390	30.183	28.865	24.870 25.440	1.00 28.58
ATOM	1076	0	VAL A	390	30.307	27.811	23.440	1.00 28.30
MOTA	1077	N	PHE A	391	30.551	29.038	22.785	1.00 27.98
MOTA	1078	CA	PHE A	391	31.038	27.943 28.034	21.431	1.00 27.73
MOTA	1079	CB	PHE A	391	30.365	28.034	21.514	1.00 26.60
MOTA	1080	CG	PHE A	391	28.882 28.180	29.233	21.549	1.00 25.13
ATOM	1081	CD1	PHE A	391	26.814	29.228	21.640	1.00 24.90
MOTA	1082		PHE A	391	26.129	28.025	21.674	1.00 24.94
MOTA	1083	CZ	PHE A		26.812	26.837	21.650	1.00 24.26
ATOM	1084	CE2		201	28.180	26.840	21.574	1.00 25.61
ATOM	1085	CD2	PHE A	391	32.566	27.838	22.571	1.00 28.31
MOTA	1086	C	PHE A	391	33.018	27.054	21.729	1.00 27.05
ATOM	1087	N O	LYS A	392	33.328	28.579	23.356	1.00 29.26
ATOM	1088 1089	CA	LYS A	303	34.795	28.578	23.281	1.00 31.34
MOTA	1099	CB	LYS A	392	35.366	29.495	24.377	1.00 32.61
ATOM	1091	CG	LYS A	392	36.861	29.771	24.281	1.00 35.79
MOTA MOTA	1092	CD	LYS A		37.301	30.620	25.474	1.00 39.49
ATOM	1093	CE	LYS A		38.826	30.579	25.699	1.00 41.94
ATOM	1094	NZ	LYS A	392	39.185	31.071	27.075	1.00 42.28
ATOM	1095	C	LYS A	392	35.456	27.202	23.366	1.00 31.54 1.00 31.50
ATOM	1096	0	LYS A	392	36.322	26.898	22.567	1.00 31.50
ATOM	1097	N	SER A	393	35.008	26.343	24.288	1.00 32.44
MOTA	1098	CA	SER A	393	35.571	25.003	24.431	1.00 32.44
MOTA	1099	CB	SER A	393	34.989	24.270	25.624 26.784	1.00 35.03
ATOM	1100	OG	SER A	393	35.056	25.069 24.110	23.240	1.00 32.29
MOTA	1101	С	SER A	. 393	35.400 36.048	24.110	23.169	
MOTA	1102	0	SER A	. 393	34.534	24.465	22.303	1.00 32.26
ATOM	1103	N	LEU A	. 394	34.436	23.653	21.121	1.00 31.95
MOTA	1104	CA	LEU A	201	33.304	24.091	20.195	1.00 32.22
ATOM	1105	CB	LEU A	301	31.829	23.898	20.560	1.00 30.03
ATOM	1106	CG	LEU A	394	30.964	24.445	19.463	1.00 27.50
ATOM	1107	CD.	L LEU A	394	31.547	22.458	20.809	1.00 31.13
MOTA	1108 1109	CD.	LEU A	394	35.720	23.720	20.316	1.00 32.56
ATOM	1110		LEU A	394	35.948	22.892	19.493	1.00 32.76
ATOM ATOM	1111	N	GLY A	395	36.520	24.749	20.498	1.00 35.25
ATOM	1112			395	37.717	24.928	19.696	1.00 36.37
ATOM	1113		GLY A	395	37.426		18.243	1.00 37.83
ATOM	1114		GLY A	395	38.249		17.367	1.00 38.76
MOTA	1115		CYS A	396	36.300		17.988	1.00 38.87
ATOM	1116		CYS F	396	35.877		16.626	1.00 39.61
ATOM	1117		CYS F	396	34.603		16.231	1.00 40.04
ATOM	1118		CYS A		34.493		16.532	1.00 47.12 1.00 38.76
ATOM	1119	C	CYS A		35.483			1.00 37.44
MOTA	1120	0	CYS A	396	34.364	28.140	10.003	1.00 37.44

			26 250	28.747	16.928	1.00 38.45
ATOM	1121	N GLU A 397	36.359		16.905	1.00 39.15
ATOM	1122	CA GLU A 397	35.995	30.158	17.392	1.00 39.98
ATOM	1123	CB GLU A 397	37.123	31.064	18.702	1.00 45.20
ATOM	1124	CG GLU A 397	37.786	30.611	19.991	1.00 51.31
MOTA	1125	CD GLU A 397	37.249	31.254	20.323	1.00 55.26
ATOM	1126	OE1 GLU A 397	36.045	31.041		1.00 53.20
MOTA	1127	OE2 GLU A 397	38.046	31.920	20.717	1.00 33.17
ATOM	1128	C GLU A 397	35.487	30.605	15.520	1.00 37.56
ATOM	1129	O GLU A 397	34.511	31.296	15.465	1.00 37.26
ATOM	1130	N ASP A 398	36.118	30.197	14.423 13.091	1.00 37.20
ATOM	1131	CA ASP A 398	35.685	30.640	12.000	1.00 37.00
ATOM	1132	CB ASP A 398	36.695	30.253	12.007	1.00 42.86
ATOM	1133	CG ASP A 398	38.008	31.019	12.844	1.00 48.94
MOTA	1134	OD1 ASP A 398	38.097	32.024	11.450	1.00 47.39
ATOM	1135	OD2 ASP A 398	39.018	30.660	12.676	1.00 35.53
MOTA	1136	C ASP A 398	34.305	30.103 30.848	12.182	1.00 35.67
MOTA	1137	O ASP A 398	33.472	28.814	12.852	1.00 33.02
ATOM	1138	N PHE A 399	34.075	28.264	12.574	1.00 31.62
MOTA	1139	CA PHE A 399	32.755	26.754	12.735	1.00 31.05
MOTA	1140	CB PHE A 399	32.757	26.151	12.729	1.00 30.78
MOTA	1141	CG PHE A 399	31.399 30.702	26.027	11.567	1.00 30.86
MOTA	1142	CD1 PHE A 399	29.437	25.502	11.561	1.00 31.41
MOTA	1143	CE1 PHE A 399	28.856	25.092	12.742	1.00 31.17
MOTA	1144	CZ PHE A 399	29.526	25.243	13.905	1.00 30.20
MOTA	1145	CE2 PHE A 399	30.797	25.777	13.906	1.00 29.57
MOTA	1146	CD2 PHE A 399	31.665	28.932	13.466	1.00 30.38
MOTA	1147	C PHE A 399	30.567	29.240	13.014	1.00 30.06
MOTA	1148	O PHE A 399 N ILE A 400	31.975	29.187	14.718	1.00 29.09
ATOM	1149		30.988	29.793	15.584	1.00 28.21
MOTA	1150		31.453	29.709	17.022	1.00 27.49
ATOM	1151	CB ILE A 400 CG1 ILE A 400	31.426	28.255	17.501	1.00 28.01
MOTA	1152		30.013	27.629	17.525	1.00 27.35
MOTA	1153	CD1 ILE A 400 CG2 ILE A 400	30.557	30.501	17.930	1.00 28.61
ATOM	1154	C ILE A 400	30.717	31.213	15.132	1.00 28.30
ATOM	1155 1156	O ILE A 400	29.538	31.652	15.105	1.00 27.29
MOTA	1157	N SER A 401	31.774	31.949	14.758	1.00 27.64
MOTA	1158	CA SER A 401	31.552	33.329	14.298	1.00 28.85
MOTA MOTA	1159	CB SER A 401	32.850	34.152	14.224	1.00 28.93
ATOM	1160	OG SER A 401	33.622	33.761	13.129	1.00 35.10
MOTA	1161	C SER A 401	30.736	33.397	12.997	1.00 27.77
ATOM	1162	O SER A 401	29.938	34.283	12.818	1.00 28.99
MOTA	1163	N PHE A 402	30.910	32.423	12.133	1.00 27.14
MOTA	1164	CA PHE A 402	30.144	32.276	10.923	1.00 27.41
ATOM	1165	CB PHE A 402	30.800	31.145	10.137	1.00 27.67 1.00 30.03
ATOM	1166	CG PHE A 402	30.303	30.940	8.733	1.00 30.03
ATOM	1167	CD1 PHE A 402	29.486	31.840	8.091 6.813	
MOTA	1168	CE1 PHE A 402	29.061	31.618	6.124	1.00 30.13
MOTA	1169	CZ PHE A 402	29.438	30.512 29.595	6.712	1.00 33.09
ATOM	1170	CE2 PHE A 402	30.266	29.815	8.030	1.00 34.00
MOTA	1171	CD2 PHE A 402	30.704	31.992	11.290	1.00 26.84
MOTA	1172	C PHE A 402	28.657	32.571	10.717	1.00 25.94
ATOM	1173	O PHE A 402	27.733 28.416	31.141	12.280	1.00 26.02
MOTA	1174	N VAL A 403	27.035	30.855	12.669	1.00 25.17
MOTA	1175	CA VAL A 403	26.967	29.787	13.797	1.00 24.18
MOTA	1176	CB VAL A 403	25.606		14.394	1.00 25.35
MOTA	1177	CG1 VAL A 403	27.294		13.255	1.00 24.23
ATOM	1178	CG2 VAL A 403 C VAL A 403	26.339		13.158	1.00 24.80
ATOM		- 400	25.194		12.831	1.00 24.70
MOTA			27.011			1.00 24.99
MOTA			26.398			1.00 25.96
MOTA		404	27.212	_		1.00 26.02
ATOM		404	26.912		17.037	
ATOM		_ 404	27.378		17.296	1.00 26.60
MOTA MOTA			27.087			1.00 27.71
ATOM	T100	<u> </u>				

					26 250	32.572	19.475	1.00 26.31
MOTA	1187	CZ	PHE A		26.358	33.846	19.230	1.00 29.49
ATOM	1188	CE2	PHE A		25.881	34.501	18.010	1.00 28.52
MOTA	1189		PHE A		26.178	35.121	13.488	1.00 26.66
MOTA	1190	С	PHE A	404	26.232		13.515	1.00 27.41
MOTA	1191	0	PHE A	404	25.278	35.891	12.537	1.00 27.79
MOTA	1192	N	GLU A	405	27.151	35.166	11.487	1.00 27.80
MOTA	1193	CA	GLU A		27.078	36.165	10.623	1.00 28.35
MOTA	1194	CB	GLU A		28.339	36.163	9.384	1.00 20.33
ATOM	1195	CG	GLU A		28.147	37.016	-	1.00 35.82
ATOM	1196	CD	GLU A		29.446	37.528	8.769 9.096	1.00 37.08
ATOM	1197	OE1	GLU A	405	30.552	37.009		1.00 37.00
ATOM	1198	OE2	GLU A	405	29.334	38.448	7.937	1.00 33.33
ATOM	1199	С	GLU A		25.861	35.864	10.629	1.00 27.90
ATOM	1200	0	GLU A		25.126	36.773	10.228	1.00 23.82
ATOM	1201	N	PHE A	406	25.658	34.576	10.373	1.00 27.37
MOTA	1202	CA	PHE A		24.508	34.148	9.629	1.00 28.50
ATOM	1203	CB	PHE A		24.549	32.656	9.326	1.00 20.30
ATOM .	1204	CG	PHE A		23.459	32.229	8.434	1.00 29.33
ATOM	1205	CD1	PHE A	406	23.588	32.396	7.058	1.00 31.20
ATOM	1206	CE1	PHE A	406	22.574	32.049	6.214	1.00 30.86
ATOM	1207	CZ	PHE A		21.389	31.531	6.737	
MOTA	1208	CE2			21.253	31.340	8.104	1.00 30.00 1.00 27.04
ATOM	1209	CD2			22.277	31.698	8.949	
ATOM	1210	С	PHE A		23.204	34.511	10.367	1.00 30.08 1.00 29.57
ATOM	1211	0	PHE A		22.238	34.936	9.746	
ATOM	1212	N	GLY A	4 407	23.186	34.337	11.681	
ATOM	1213	CA	GLY A		22.009	34.643	12.485	
ATOM	1214	С	GLY A		21.699	36.116	12.401	
ATOM	1215	0		4 407	20.581	36.539	12.135	
ATOM	1216	N	LYS A	A 408	22.729	36.915	12.577	1.00 35.20
ATOM	1217	CA	LYS A	A 408	22.586	38.344	12.430	1.00 36.71
ATOM	1218	CB	LYS I	A 408	23.931	38.993	12.688	1.00 37.55
ATOM	1219	CG	LYS 2	A 408	23.845	40.473	12.958	1.00 40.89
ATOM	1220	CD	LYS 2	A 408	25.125	41.000	13.605	1.00 44.55
ATOM	1221	CE		A 408	25.143	40.758	15.121	1,00 46.16
ATOM	1222	NZ	LYS	A 408	26.310	41.466	15.786	1.00 47.26
ATOM	1223	С	LYS .	A 408	22.090	38.756	11.033	1.00 37.33
ATOM	1224	0		A 408	21.233	39.637	10.881	1.00 37.08 1.00 37.62
ATOM	1225	N		A 409	22.610	38.106	10.005	
ATOM	1226	CA	SER .	A 409	22.258	38.499	8.649	1.00 38.03
ATOM	1227	CB		A 409	23.258	37.906	7.681	1.00 37.87 1.00 43.04
ATOM	1228	OG		A 409	22.671	37.759	6.421	1.00 43.04
ATOM	1229	C		A 409	20.816	38.139	8.273	1.00 37.55
MOTA	1230	0	SER	A 409	20.146	38.891	7.596	
MOTA	1231	N		A 410	20.330	36.994	8.730	1.00 38.00 1.00 38.06
MOTA	1232	CA		A 410	18.944	36.599	8.476	1.00 37.93
ATOM	1233	CB		A 410	18.771	35.108	8.728	
ATOM	1234	CG	LEU	A 410	17.711	34.363	7.930	1.00 39.48
ATOM	1235	CD1	LEU	A 410	17.866	34.566	6.431	1.00 40.04
ATOM	1236	CD2	LEU	A 410	17.795	32.873	8.280	1.00 37.89
ATOM	1237	C	LEU	A 410	17.969	37.447	9.323	1.00 37.89
ATOM	1238	0	LEU	A 410	16.907	37.826	8.859	
MOTA	1239	N	CYS	A 411	18.344	37.745	10.558	1.00 39.15
ATOM	1240	CA	CYS	A 411	17.552	38.634	11.416	1.00 40.62
MOTA	1241	CB		A 411	18.243	38.819	12.753	1.00 41.09
ATOM	1242	SG	CYS	A 411	18.069	37.449	13.893	1.00 41.89
MOTA	1243	С	CYS	A 411	17.371	40.029	10.822	1.00 41.43
MOTA	1244	0	CYS	A 411	16.301	40.596	10.880	1.00 41.63
MOTA	1245	N	SER	A 412	18.433	40.579	10.253	1.00 42.39
ATOM	1246	CA	SER	A 412	18.381	41.897	9.641	1.00 43.17
ATOM	1247	CB	SER	A 412	19.756	42.278	9.067	1.00 42.83
ATOM	1248		SER	A 412	19.897	41.811	7.730	1.00 43.89
ATOM	1249		SER	A 412	17.325		8.534	1.00 44.19
ATOM	1250		SER	A 412	17.030		8.072	1.00 45.40
ATOM	1251			A 413	16.771			1.00 43.86
ATOM	1252		MET	A 413	15.732	40.913	7.065	1.00 44.53

АТОМ	1253	CB MET A 413	15.874	39.740 39.724	6.102 5.375	1.00 44.68 1.00 45.77
MOTA	1254	CG MET A 413	17.179 17.293	38.227	4.484	1.00 52.29
MOTA	1255	SD MET A 413	19.021	38.123	4.084	1.00 52.15
MOTA	1256	CE MET A 413 C MET A 413	14.319	40.920	7.666	1.00 44.82
ATOM	1257	443	13.354	41.154	6.948	1.00 45.27
MOTA	1258	444	14.207	40.686	8.969	1.00 44.42
ATOM	1259		12.917	40.694	9.651	1.00 45.37
MOTA	1260	CA HIS A 414 CB HIS A 414	12.369	42.124	9.831	1.00 46.54
MOTA	1261 1262	CG HIS A 414	13.414	43.131	10.202	1.00 49.03
ATOM	1263	ND1 HIS A 414	13.905	43.252	11.484	1.00 52.00
MOTA MOTA	1264	CE1 HIS A 414	14.830	44.198	11.511	1.00 52.74
ATOM	1265	NE2 HIS A 414	14.956	44.694	10.290	1.00 53.78
ATOM	1266	CD2 HIS A 414	14.078	44.046	9.452	1.00 51.02 1.00 44.54
ATOM	1267	C HIS A 414	11.920	39.867	8.867	1.00 45.13
ATOM	1268	O HIS A 414	10.905	40.380	8.397 8.712	1.00 43.13
ATOM	1269	N LEU A 415	12.221	38.586 37.696	7.992	1.00 42.05
MOTA	1270	CA LEU A 415	11.345 12.098	36.448	7.563	1.00 42.25
MOTA	1271	CB LEU A 415	13.274	36.739	6.635	1.00 42.37
MOTA	1272	CG LEU A 415	14.213	35.584	6.615	1.00 43.50
ATOM	1273	CD1 LEU A 415 CD2 LEU A 415	12.736	37.013	5.254	1.00 42.77
MOTA	1274		10.200	37.311	8.889	1.00 41.21
ATOM	1275 1276	C LEU A 415 O LEU A 415	10.379	37.116	10.073	1.00 40.43
MOTA	1277	N THR A 416	9.019	37.191	8.310	1.00 40.22
ATOM ATOM	1278	CA THR A 416	7.852	36.771	9.050	1.00 39.80
ATOM	1279	CB THR A 416	6.587	37.152	8.269	1.00 39.84
ATOM	1280	OG1 THR A 416	6.623	36.538	6.978	1.00 39.74
ATOM	1281	CG2 THR A 416	6.546	38.636	7.950	1.00 39.98 1.00 39.01
ATOM	1282	C THR A 416	7.890	35.270	9.203 8.553	1.00 39.01
ATOM	1283	O THR A 416	8.698	34.609	10.035	1.00 38.46
MOTA	1284	N GLU A 417	7.004	34.728 33.289	10.033	1.00 38.70
ATOM	1285	CA GLU A 417	6.925 5.879	32.940	11.318	1.00 38.85
<u>ϔ</u> ͲΟΜ	1286	CB GLU A 417	6.350	33.068	12.768	1.00 41.11
ATOM	1287	CG GLU A 417 CD GLU A 417	7.583	32.225	13.115	1.00 41.56
MOTA	1288	CD GLU A 417 OE1 GLU A 417	7.436	31.070	13.527	1.00 40.66
MOTA	1289 1290	OE2 GLU A 417	8.707	32.744	13.014	1.00 44.69
ATOM ATOM	1291	C GLU A 417	6.599	32.558	8.921	1.00 38.40
ATOM	1292	O GLU A 417	7.140	31.493	8.629	1.00 37.21
ATOM	1293	N ASP A 418	5.717	33.122	8.117	1.00 38.52 1.00 39.36
ATOM	1294	CA ASP A 418	5.382	32.489	6.845	1.00 39.30
ATOM	1295	CB ASP A 418	4.134	33.115	6.221 7.007	1.00 44.36
ATOM	1296		2.858	32.783 31.961	7.953	1.00 50.10
ATOM	1297	OD1 ASP A 418	2.931 1.736	33.282	6.742	1.00 48.86
MOTA	1298		6.540	32.531	5.865	1.00 38.10
ATOM	1299		6.712			1.00 37.14
ATOM	1300		7.311	33.602	5.925	1.00 37.67
MOTA MOTA	1301 1302		8.479		5.074	1.00 37.99
ATOM	1302	410	9.062	35.165	5.163	1.00 38.22
MOTA	1304		8.269		4.336	1.00 40.90
ATOM	1305	CD GLU A 419	8.530		4.682	1.00 41.76 1.00 43.26
ATOM	1306	OE1 GLU A 419	9.193		5.685	1.00 45.26
MOTA	1307	OE2 GLU A 419	8.059		3.938	1.00 45.04
MOTA	1308	C GLU A 419	9.519	32.657	5.459 4.590	
ATOM	1309		10.106 9.708		6.760	
ATOM	1310		10.695	_	7.233	1.00 35.74
MOTA	1311		10.899		8.740	1.00 36.17
MOTA	1312 1313		11.712		9.008	1.00 38.07
MOTA			11.838		10.464	
MOTA ATOM			11.617	30.377	9.287	
ATOM		5 C ILE A 420	10.311	30.085	6.856	
ATOM		7 O ILE A 420	11.156			1.00 33.17 1.00 33.91
MOTA			9.013	29.813	6.914	T.00 33.3T

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1319 CA ALA A 421 1320 CB ALA A 421 1321 C ALA A 421 1322 O ALA A 421 1323 N LEU A 422 1324 CA LEU A 422 1325 CB LEU A 422 1326 CG LEU A 422 1327 CD1 LEU A 422 1328 CD2 LEU A 422 1329 C LEU A 422 1330 O LEU A 422 1331 N PHE A 423 1331 CB PHE A 423 1333 CB PHE A 423 1334 CG PHE A 423	8.459 28.535 6.558 1.00 32.70 7.024 28.543 6.813 1.00 33.68 8.676 28.194 5.084 1.00 32.56 9.065 27.064 4.769 1.00 31.53 8.384 29.140 4.188 1.00 31.71 8.508 28.871 2.773 1.00 32.27 7.779 29.923 1.948 1.00 33.13 6.261 29.927 2.141 1.00 37.47 5.611 30.995 1.361 1.00 40.39 5.677 28.631 1.696 1.00 40.84 9.972 28.770 2.367 1.00 31.63 10.319 28.037 1.452 1.00 31.46 10.828 29.525 3.046 1.00 31.46 12.247 29.487 2.758 1.00 31.86 12.957 30.654 3.414 1.00 32.18 14.396 30.795 3.015 1.00 32.59 14.800 30.6
ATOM	1335 CD1 PHE A 423	14.000 30.070 1.00 24 47
MOTA	1336 CE1 PHE A 423	16.128 30.853 1.357 1.00 34.47 17.056 31.142 2.336 1.00 33.24
MOTA	1337 CZ PHE A 423 1338 CE2 PHE A 423	16 654 31 246 3.647 1.00 34.02
MOTA	1338 CE2 PHE A 423 1339 CD2 PHE A 423	15.342 31.079 3.977 1.00 33.39
MOTA ATOM	1340 C PHE A 423	12.852 28.159 3.239 1.00 31.47 13.743 27.612 2.592 1.00 31.65
ATOM	1341 O PHE A 423	13.743 27.64
ATOM	1342 N SER A 424	12 730 26 364 4.874 1.00 29.56
ATOM	1343 CA SER A 424 1344 CB SER A 424	12 038 26 069 6.182 1.00 28.62
MOTA MOTA	1344 CB SER A 424 1345 OG SER A 424	12.536 26.902 7.175 1.00 30.82
MOTA	1346 C SER A 424	12.337 25.283 3.897 1.00 28.62 13.121 24.391 3.610 1.00 28.23
MOTA	1347 O SER A 424	13.111 2 100 20 24
MOTA	1348 N ALA A 425	10 643 24 333 2.465 1.00 28.61
MOTA	1349 CA ALA A 425 1350 CB ALA A 425	9.139 24.429 2.249 1.00 28.26
ATOM ATOM	1351 C ALA A 425	11.389 24.386 1.123 1.00 29.02
ATOM	1352 O ALA A 425	11.530 23.372 0.434 1.00 30.06 11.873 25.567 0.778 1.00 30.03
ATOM	1353 N PHE A 426	11.873 25.567 0.778 1.00 30.03 12.611 25.820 -0.451 1.00 31.03
MOTA	1354 CA PHE A 426 1355 CB PHE A 426	12 751 27 342 -0.637 1.00 30.64
MOTA MOTA	1355 CB PHE A 426 1356 CG PHE A 426	13.479 27.713 -1.875 1.00 33.04
MOTA	1357 CD1 PHE A 426	12.835 27.731 -3.094 1.00 32.88 13.524 28.021 -4.238 1.00 34.86
MOTA	1358 CE1 PHE A 426	13.524 28.021 -4.238 1.00 34.86 14.872 28.293 -4.189 1.00 34.01
MOTA	1359 CZ PHE A 426 1360 CE2 PHE A 426	15 515 28 287 -2.986 1.00 34.91
MOTA	1360 CE2 PHE A 426 1361 CD2 PHE A 426	14.817 28.006 -1.834 1.00 35.40
MOTA MOTA	1362 C PHE A 426	14.009 25.142 -0.447 1.00 31.56 14.328 24.361 -1.329 1.00 31.28
MOTA	1363 O PHE A 426	14.000 01.00
MOTA	1364 N VAL A 427	16 204 24 824 0.597 1.00 33.10
ATOM	1365 CA VAL A 427 1366 CB VAL A 427	17.168 25.602 1.524 1.00 33.53
MOTA MOTA	1366 CB VAL A 427 1367 CG1 VAL A 427	17.205 27.072 1.140 1.00 34.66
MOTA	1368 CG2 VAL A 427	16.772 25.463 2.953 1.00 35.57 16.186 23.370 0.987 1.00 32.54
MOTA	1369 C VAL A 427	16.186 23.370 0.987 1.00 32.54 17.182 22.637 0.881 1.00 32.60
ATOM	1370 O VAL A 427 1371 N LEU A 428	15 030 22 933 1.433 1.00 33.17
MOTA	1371 N LEU A 428 1372 CA LEU A 428	14.895 21.543 1.788 1.00 33.15
MOTA MOTA	1373 CB LEU A 428	13.754 21.382 2.751 1.00 33.88 13.731 20.007 3.346 1.00 35.63
MOTA	1374 CG LEU A 428	10.751 2000 100 26 20
MOTA		12 345 19.712 3.830 1.00 40.57
MOTA		14.640 20.688 0.563 1.00 32.72
MOTA MOTA	1378 O LEU A 428	15.188 19.577 0.444 1.00 32.28
ATOM	1379 N MET A 429	13.702 22.22.2
ATOM		11 977 20 670 -1.871 1.00 35.55
ATOM	7 A A A A A A A A A A A A A A A A A A A	11 036 20.479 -0.714 1.00 38.33
ATOM ATOM	1383 SD MET A 429	10.845 18.793 -0.205 1.00 43.35
MOTA	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10.460 18.095 -1.842 1.00 40.58

	1205	C	MET A	129	14.293	20.979	-2.639	1.00 35.57
ATOM	1385 1386		MET A		13.772	21.578	-3.556	1.00 35.78
ATOM ATOM	1387	N	SER A	430	15.602	20.813	-2.559	1.00 36.04
ATOM	1388	CA	SER A	430	16.465	21.298	-3.608	1.00 37.23
ATOM	1389	CB	SER A		17.782	21.792	-3.060	1.00 37.79 1.00 40.76
ATOM	1390	OG	SER A	430	17.672	22.092	-1.698 -4.507	1.00 40.76
ATOM	1391	C	SER A		16.760 17.088	20.144 19.054	-4.307 -4.034	1.00 37.02
MOTA	1392	0	SER A		16.683	20.375	-5.800	1.00 37.33
MOTA	1393	N	ALA A	431 431	16.869	19.301	-6.749	1.00 38.02
ATOM	1394 1395	CA CB	ALA A	431	16.086	19.581	-7.999	1.00 38.37
MOTA MOTA	1396	C	ALA A	431	18.332	19.088	-7.071	1.00 39.47
ATOM	1397	ŏ	ALA A		18.675	18.155	-7.801	1.00 40.70
ATOM	1398	N	ASP A	432	19.219	19.916	-6.528	1.00 40.30 1.00 41.30
MOTA	1399	CA	ASP A		20.619	19.731 21.041	-6.853 -7.201	1.00 42.25
ATOM	1400	CB	ASP A		21.304 21.026	22.093	-6.217	1.00 45.95
ATOM	1401	CG	ASP A	434 432	21.919	22.947	-6.001	1.00 48.76
MOTA	1402 1403	ODS	ASP A	432	19.930	22.144	-5.610	1.00 53.78
ATOM ATOM	1404	C	ASP A	432	21.425	18.985	-5.818	1.00 40.17
ATOM	1405	ŏ	ASP A	432	22.623	18.843	-5.968	1.00 42.18
ATOM	1406	N	ARG A	433	20.810	18.440	-4.800	1.00 38.39 1.00 37.16
MOTA	1407	CA	ARG A	433	21.597	17.625	-3.915 -2.804	1.00 37.10
MOTA	1408	CB	ARG A	433	20.744	17.081 18.117	-2.004	1.00 37.06
MOTA	1409	CG	ARG A	433	19.976 20.810	19.149	-1.420	1.00 36.88
MOTA	1410 1411	CD NE	ARG A	433	19.938	19.958	-0.589	1.00 38.16
ATOM ATOM	1412	CZ	ARG A	433	20.335	20.952	0.180	1.00 37.36
ATOM	1413	NH1	ARG A		21.611	21.301	0.238	1.00 34.55
ATOM	1414	NH2	ARG A	433	19.443	21.633	0.885	1.00 38.38 1.00 37.08
MOTA	1415	C	ARG A		22.145	16.450	-4.731 -5.593	1.00 37.08 1.00 35.43
MOTA	1416	0	ARG A		21.441	15.925 16.022	-3.333 -4.430	1.00 35.43
ATOM	1417	N	SER A	434	23.370 23.963	14.877	-5.105	1.00 36.76
MON	1418 1419	CA CB	SER F		25.390	14.603	-4.593	1.00 36.85
ATOM ATOM	1420	OG	SER A		26.176	15.757	-4.604	1.00 38.46
ATOM	1421	C	SER A	434	23.196	13.630	-4.782	1.00 36.80
ATOM	1422	0	SER A	4 434	22.660	13.481	-3.670	1.00 35.82 1.00 36.33
MOTA	1423	N	TRP A		23.206	12.720	-5.754 -5.614	1.00 36.33 1.00 36.22
MOTA	1424	CA	TRP A		22.706 23.314	11.376 10.715	-4.376	1.00 36.57
ATOM	1425	CB	TRP A	A 435 A 435	24.778	10.979	-4.204	1.00 38.75
ATOM ATOM	1426 1427	CG CD1		4 435	25.379	11.502	-3.115	1.00 40.89
ATOM	1428	NE1			26.733	11.585	-3.315	1.00 41.15
MOTA	1429	CEZ			27.026	11.109	-4.560	1.00 39.69
MOTA	1430	CD2			25.825	10.717	-5.147	1.00 38.76 1.00 40.76
MOTA	1431	CE3			25.862	10.172 10.049	-6.425 -7.063	1.00 41.43
MOTA	1432	CZ3	TRP	A 435	27.074 28.250	10.450	-6.451	1.00 41.35
MOTA	1433	CH2	TRP	A 435	28.249	10.976	-5.195	1.00 41.84
MOTA MOTA	1434 1435	C	TRP	A 435	21.193	11.264	-5.575	1.00 36.43
ATOM	1436	ŏ	TRP	A 435	20.674	10.269	-5.110	1.00 35.92
MOTA	1437	N	LEU	A 436	20.483	12.272	-6.048	1.00 37.43
MOTA	1438	CA	LEU	A 436	19.013	12.185	-6.139 -6.194	1.00 38.64 1.00 38.27
MOTA	1439	CB	LEU	A 436	18.419 18.387	13.585 14.376	-4.902	1.00 37.94
ATOM	1440	CG	LEU .	A 436 A 436	17.844	15.752	-5.190	1.00 38.90
MOTA	1441 1442	כם). כם)	LEU . LEU .	A 436	17.547	13.667	-3.885	1.00 37.76
MOTA ATOM	1442	CD.	LEU	A 436	18.531	11.436	-7.394	1.00 40.22
MOTA	1444	ŏ	LEU	A 436	19.022	11.691	-8.497	1.00 40.43
MOTA	1445		GLN	A 437	17.542	10.562	-7.241	1.00 42.27
ATOM	1446	CA	GLN	A 437	16.981	9.825	-8.370 -7.896	1.00 43.95 1.00 44.38
ATOM	1447		GLN	A 437	16.334 17.247	8.537 7.710	-7.059 -7.059	1.00 46.96
MOTA	1448		GLIN CT.N	A 437 A 437	16.647	6.389	-6.653	1.00 50.03
ATOM	1449 1450	CD OE	1 GLN	A 437	15.546		-7.084	1.00 54.83
MOTA	T-370	ندب		- ·	· -			

MOTA	1451	NE2	GLN A	437	17.370	5.640	-5.826	1.00 50.03
MOTA	1452	C	GLN A	437	15.958	10.644	-9.136	1.00 44.68 1.00 45.04
ATOM	1453	0	GLN A		16.051	10.788		1.00 45.84
MOTA	1454	N	GLU A		15.000	11.221	-8.433 -9.093	1.00 45.74
MOTA	1455	CA	GLU A		13.933	11.977 11.716	-8.360	1.00 47.49
ATOM	1456	CB	GLU A	438	12.628	10.254	-8.005	1.00 49.80
ATOM	1457	CG	GLU A		12.433 11.318	10.254	-7.011	1.00 54.24
MOTA	1458	CD	GLU A		10.145	10.256	-7.410	1.00 55.09
ATOM	1459	OE1 OE2	GLU A		11.625	9.744	-5.832	1.00 58.98
MOTA	1460 1461	C	GLU A	438	14.169	13.475	-9.154	1.00 46.63
ATOM ATOM	1462	Ö	GLU A	438	13.399	14.242	-8.586	1.00 47.40
ATOM	1463	N	LYS A		15.192	13.897	-9.887	1.00 46.50
MOTA	1464	CA	LYS A		15.535	15.311	-9.995	1.00 45.87
ATOM	1465	СВ	LYS A	439	16.834		-10.794	1.00 46.05
ATOM	1466	CG	LYS A		18.096		-10.113	1.00 48.48 1.00 51.35
ATOM	1467	CD	LYS A		19.417		-10.247 -8.875	1.00 54.04
MOTA	1468	CE	LYS A	439	20.205	15.702 16.236	-8.775	1.00 53.95
MOTA	1469	NZ	LYS A		21.624 14.405		-10.609	1.00 45.17
ATOM	1470	C	LYS A		14.405		-10.179	1.00 44.73
ATOM	1471	0	LYS A		13.723		-11.607	1.00 44.46
MOTA	1472	N CA	VAL A		12.665		-12.279	1.00 43.79
MOTA	1473 1474	CB	VAL A	440	12.234	15.633	-13.601	1.00 44.85
ATOM ATOM	1475	CG1	VAL A	440	10.895	16.199	-14.096	1.00 43.93
ATOM	1476	CG2	VAL A	440	13.359	15.762	-14.686	1.00 44.89
ATOM	1477	C	VAL A		11.437	16.574	-11.385	1.00 42.76
ATOM	1478	Ó	VAL A		10.908	17.667	-11.371	1.00 42.48 1.00 42.10
ATOM	1479	N	LYS A		10.981		-10.638 -9.737	1.00 42.10
MOTA	1480	CA	LYS A		9.842	15.811	-9.737 -9.167	1.00 42.37
MOTA	1481	CB	LYS F		9.337 8.268	14.469 14.551	-8.058	1.00 44.18
MOTA	1482	CG	LYS A	7 44T	7.770	13.145	-7.635	1.00 46.69
ATOM	1483	CD	LYS A	1 441 1 1/1	7.415	13.029	-6.135	1.00 48.06
MOM	1484 1485	CE NZ	LYS A		6.374	13.988	-5.640	1.00 50.40
ATOM ATOM	1486	C	LYS A		10.222	16.812	-8.621	1.00 41.30
ATOM	1487	ŏ	LYS	441	9.493	17.751	-8.337	1.00 41.41
ATOM	1488	N		A 442	11.384	16.639	-8.016	1.00 40.14
MOTA	1489	CA		A 442	11.792	17.530	-6.947	1.00 39.47 1.00 39.22
MOTA	1490	CB		A 442	13.092	17.036	-6.347 -5.642	1.00 39.22 1.00 37.84
MOTA	1491	CG1	. ILE A	A 442	12.817	15.709	-5.155	1.00 36.84
MOTA	1492	CD1		A 442	14.038 13.694	14.971 18.109	-5.421	1.00 38.41
MOTA	1493	CG2		A 442 A 442	11.924	18.939	-7.475	1.00 40.04
MOTA	1494 1495	C	TI.E	A 442	11.519	19.907		1.00 39.89
ATOM ATOM	1496	N	CLTI	A 443	12.474	19.068	-8.671	1.00 40.56
MOTA	1497	CA	GLU .	A 443	12.583	20.380	-9.305	1.00 41.62
ATOM	1498	CB	GLU .	A 443	13.325	20.252	-10.625	1.00 42.43
ATOM	1499	CG	GLU .	A 443	13.473	21.556	-11.384	1.00 46.01 1.00 52.43
ATOM	1500	CD	GLU .	A 443	14.586	22.409	-10.832	1.00 52.43
MOTA	1501		r Gra	A 443	15.520	21.840	-10.224 -10.991	1.00 56.77
MOTA	1502	OE:	2 GLU	A 443	14.540 11.221	23.049		1.00 41.19
ATOM	1503	C		A 443	11.051	22.217		1.00 41.75
MOTA	1504	0		A 443 A 444	10.241		-10.027	1.00 41.34
ATOM	1505 1506	N CA		A 444 A 444	8.918	20.906	-10.222	1.00 41.91
MOTA MOTA	1506	CB	LYS	A 444	7.954	19.921	-10.887	1.00 42.50
MOTA	1508	CG	LYS	A 444	8.359	19.402	-12.287	1.00 46.11
ATOM	1509	CD		A 444	8.622	20.539	-13.249	1.00 50.76
ATOM	1510		LYS	A 444	9.166		-14.593	1.00 53.57
ATOM	1511		LYS	A 444	10.041		-15.193	1.00 55.91 1.00 41.11
MOTA	1512			A 444	8.333			1.00 41.11
MOTA	1513			A 444	7.669 8.564			1.00 40.57
MOTA	1514			A 445	8.564 8.100			
MOTA	1515			A 445 A 445	8.291			
ATOM	1516	CD	0 ندید					

 \mathbf{r}

			m 451	10 577	-5.846	1.00 43.76
ATOM	1517	CG LEU A 445	7.471	18.577	-5.224	1.00 46.83
MOTA	1518	CD1 LEU A 445	8.070	17.339 18.699	-5.405	1.00 45.67
MOTA	1519	CD2 LEU A 445	6.006	22.264	-5.932	1.00 39.05
MOTA	1520	C LEU A 445	8.802	23.148	-5.355	1.00 38.44
MOTA	1521	O LEU A 445	8.162	22.379	-6.131	1.00 37.84
MOTA	1522	N GLN A 446	10.113		-5.630	1.00 37.19
MOTA	1523	CA GLN A 446	10.804	23.553	-5.770	1.00 36.98
MOTA	1524	CB GLN A 446	12.322	23.443	-5.128	1.00 38.75
ATOM	1525	CG GLN A 446	13.058	24.617	-5.312	1.00 40.58
MOTA	1526	CD GLN A 446	14.563	24.588 24.583	-6.428	1.00 42.73
MOTA	1527	OE1 GLN A 446	15.065	24.503	-4.206	1.00 41.51
MOTA	1528	NE2 GLN A 446	15.284	24.399	-6.332	1.00 36.39
MOTA	1529	C GLN A 446	10.312	25.880	-5.715	1.00 35.15
MOTA	1530	O GLN A 446	10.218	24.680	-7.626	1.00 36.58
ATOM	1531	N GLN A 447	10.037 9.547	25.810	-8.415	1.00 37.09
MOTA	1532	CA GLN A 447	9.316	25.428	-9.872	1.00 37.88
MOTA	1533	CB GLN A 447	10.545	25.058		1.00 42.37
MOTA	1534	CG GLN A 447	10.176	24.683	-12.104	1.00 49.26
MOTA	1535	CD GLN A 447	9.144	25.147	-12.634	1.00 53.32
ATOM	1536	OE1 GLN A 447	10.993	23.831	-12.729	1.00 52.11
MOTA	1537	NE2 GLN A 447	8.231	26.343	-7.845	1.00 35.60
ATOM	1538	C GLN A 447	8.075	27.518	-7.726	1.00 33.62
MOTA	1539	O GLN A 447	7.305	25.461	-7.508	1.00 35.56
MOTA	1540	N LYS A 448	6.055	25.897	-6.903	1.00 36.26
ATOM	1541	CA LYS A 448 CB LYS A 448	5.125	24.707	-6.684	1.00 36.75
MOTA	1542	4.40	4.434	24.265	-7.968	1.00 41.05
ATOM	1543	CG LYS A 448 CD LYS A 448	3.642	22.962	-7.752	1.00 45.62
ATOM	1544 1545	CE LYS A 448	2.734	22.623	-8.941	1.00 47.75
MOTA	1545	NZ LYS A 448	1.655	21.655	-8.507	1.00 51.38
MOTA	1547	C LYS A 448	6.304	26.615	-5.584	1.00 35.43
ATOM ATOM	1548	O LYS A 448	5.762	27.697	-5.345	1.00 34.04
ATOM	1549	N ILE A 449	7.118	25.997	-4.720	1.00 35.23
ATOM	1550	CA ILE A 449	7.422	26.574	-3.428	1.00 35.08
ATOM	1551	CB ILE A 449	8.400	25,663	-2.647	1.00 35.31
MOTA	1552	CG1 ILE A 449	7.662	24.412	-2.135	1.00 34.62
MOTA	1553	CD1 ILE A 449	8.565	23.272	-1.666	1.00 35.68
ATOM	1554	CG2 ILE A 449	9.036	26.439	-1.508	1.00 34.70
ATOM	1555	C ILE A 449	8.009	27.950	-3.648	1.00 35.67
ATOM	1556	O ILE A 449	7.663	28.891	-2.954	1.00 36.39
ATOM	1557	N GLN A 450	8.863	28.092	-4.648	1.00 36.15 1.00 37.22
ATOM	1558	CA GLN A 450	9.491	29.383	-4.898	1.00 37.22
ATOM	1559	CB GLN A 450	10.624	29.245	-5.929	1.00 37.71
MOTA	1560	CG GLN A 450	11.440	30.525	-6.143 -7.271	1.00 44.24
MOTA	1561	CD GLN A 450	12.459	30.381	-7.409	1.00 46.56
MOTA	1562	OE1 GLN A 450	13.107	29.339 31.421	-8.071	1.00 46.99
MOTA	1563	NE2 GLN A 450	12.603	30.453	-5.351	1.00 37.23
MOTA	1564	C GLN A 450	8.497 8.668	31.629	-5.033	1.00 36.57
MOTA	1565	O GLN A 450	7.460	30.067	-6.095	1.00 37.47
MOTA	1566	N LEU A 451	6.491	31.055	-6.548	1.00 38.17
MOTA	1567	CA LEU A 451	5.602	30.496	-7.658	1.00 39.23
ATOM	1568	CB LEU A 451 CG LEU A 451	6.299	30.228	-8.992	1.00 40.16
MOTA	1569		5.417	29.356	-9.874	1.00 42.60
MOTA	1570		6.671	31.543	-9.709	1.00 40.87
MOTA	1571		5.675	31.479	-5.350	1.00 38.38
MOTA	1572		5.328		-5.177	1.00 37.56
MOTA	1573 1574		5.396			1.00 38.51
ATOM	1575	- 4=0	4.683			1.00 39.16
MOTA MOTA	1576		4.352		-2.566	
MOTA	1577		5.492	31.668	-2.335	
MOTA	1578		4.960	32.541	-1.667	
MOTA	1579		6.793			
MOTA	1580	CA LEU A 453	7.650	32.284	-1.454	
ATOM	1581	. CB LEU A 453	9.078		-1.455	
MOTA	1582	450	10.108	32.594	-0.724	1.00 38.75

ATOM	1583	CD1 LEU A 453	9.785	32.702	0.737	1.00 37.68 1.00 39.28
MOTA	1584	CD2 LEU A 453	11.487	31.994 33.727	-0.924 -1.936	1.00 33.20
MOTA	1585	C LEU A 453	7.649 7.559	34.652	-1.143	1.00 40.74
MOTA	1586	O LEU A 453	7.784	33.912	-3.245	1.00 43.21
MOTA	1587	N GLN A 454 CA GLN A 454	7.778	35.242	-3.857	1.00 44.37
MOTA	1588 1589	CA GLN A 454 CB GLN A 454	8.018	35.097	-5.353	1.00 44.93
MOTA	1590	CG GLN A 454	8.139	36.413	-6.092	1.00 47.00
MOTA MOTA	1591	CD GLN A 454	8.484	36.232	-7.549	1.00 50.13
ATOM	1592	OE1 GLN A 454	7.937	35.355	-8.224	1.00 51.04
ATOM	1593	NE2 GLN A 454	9.397	37.062	-8.044	1.00 52.53
MOTA	1594	C GLN A 454	6.438	35.937	-3.580	1.00 45.15 1.00 45.17
MOTA	1595	O GLN A 454	6.385	37.105 35.186	-3.193 -3.735	1.00 46.23
MOTA	1596	N HIS A 455	5.363 4.029	35.654	-3.418	1.00 47.70
MOTA	1597	CA HIS A 455 CB HIS A 455	3.064	34.479	-3.557	1.00 47.88
MOTA	1598		1.659	34.782	-3.164	1.00 50.63
MOTA	1599 1600	CG HIS A 455 ND1 HIS A 455	0.939	35.826	-3.706	1.00 52.70
MOTA MOTA	1601	CE1 HIS A 455	-0.272	35.843	-3.172	1.00 53.57
ATOM	1602	NE2 HIS A 455	-0.363	34.844	-2.309	1.00 53.78
ATOM	1603	CD2 HIS A 455	0.833	34.167	-2.283	1.00 52.74 1.00 48.21
MOTA	1604	C HIS A 455	3.974	36.276 37.425	-2.018 -1.852	1.00 48.61
MOTA	1605	O HIS A 455	3.561 4.436	35.544	-1.017	1.00 48.96
MOTA	1606	N VAL A 456 CA VAL A 456	4.409	36.035	0.369	1.00 49.83
ATOM ATOM	1607 1608	CA VAL A 456 CB VAL A 456	4.656	34.884	1.353	1.00 49.91
ATOM	1609	CG1 VAL A 456	4.882	35.394	2.759	1.00 50.35
ATOM	1610	CG2 VAL A 456	3.498	33.899	1.325	1.00 50.07 1.00 50.39
ATOM	1611	C VAL A 456	5.437	37.101	0.684 1.625	1.00 50.33
MOTA	1612	O VAL A 456	5.262 6.529	37.865 37.119	-0.062	1.00 50.47
ATOM	1613	N LEU A 457 CA LEU A 457	7.538	38.140	0.143	1.00 53.31
MOTA	1614 1615	CA LEU A 457 CB LEU A 457	8.801	37.829	-0.648	1.00 53.04
ATOM ATOM	1616	CG LEU A 457	9.664	36.711	-0.065	1.00 52.30
ATOM	1617	CD1 LEU A 457	10.705	36.350	-1.081	1.00 51.56 1.00 50.93
MOTA	1618	CD2 LEU A 457	10.296	37.172	$1.254 \\ -0.294$	1.00 55.43
MOTA	1619	C LEU A 457	6.979 7.071	39.480 40.456	0.437	1.00 54.68
ATOM	1620	O LEU A 457 N GLN A 458	6.372	39.516	-1.480	1.00 58.58
ATOM ATOM	1621 1622	N GLN A 458 CA GLN A 458	5.836	40.764	-2.020	1.00 61.31
ATOM	1623	CB GLN A 458	5.596	40.661	-3.538	1.00 61.66
ATOM	1624	CG GLN A 458	4.556	39.646	-4.008	1.00 63.40 1.00 65.86
ATOM	1625	CD GLN A 458	4.816	39.189	-5.449 -6.069	1.00 63.86
MOTA	1626	OE1 GLN A 458	5.793 3.949	39.622 38.313	-5.978	1.00 66.76
MOTA	1627	NE2 GLN A 458	4.591	41.256	-1.265	1.00 63.26
MOTA	1628 1629	C GLN A 458 O GLN A 458	4.268	42.434	-1.282	1.00 63.33
MOTA MOTA	1630	N LYS A 459	3.929	40.359	-0.560	1.00 65.71
MOTA	1631	CA LYS A 459	2.770	40.732	0.228	1.00 67.66
ATOM	1632	CB LYS A 459	2.241		0.894 1.825	1.00 67.68 1.00 67.62
MOTA	1633	CG LYS A 459	1.061 0.638		2.332	1.00 67.67
ATOM	1634	CD LYS A 459	-0.042		1.241	1.00 67.92
MOTA	1635 1636	CE LYS A 459 NZ LYS A 459	-0.160		1.597	1.00 68.58
ATOM ATOM	1637	C LYS A 459	3.116		1.290	1.00 69.97
MOTA	1638	O LYS A 459	2.285	42.618	1.648	1.00 70.29
ATOM	1639	n asna 460	4.361		1.755	1.00 72.42 1.00 74.25
MOTA	1640	CA ASN A 460	4.802		2.871 3.896	
ATOM	1641	CB ASN A 460	5.508 4.624		4.390	
MOTA	1642 1643		3.556		4.964	1.00 74.61
MOTA MOTA	1644		5.071	39.292	4.165	
MOTA	1645	C ASN A 460	5.731		2.501	
MOTA	1646	O ASN A 460	5.676			
MOTA	1647		6.582 7.564			
MOTA	1648	CA HIS A 461	, . 504	. 11.000		

ATOM	1649 CB HIS A 461	8.846 44.307 1.932 1.00 80.20
	1650 CG HIS A 461	8.629 44.208 3.407 1.00 81.84
ATOM	1651 ND1 HIS A 461	8.597 45.312 4.234 1.00 84.02
ATOM		9 377 44 919 5.478 1.00 84.23
MOTA		8 253 43 603 5.484 1.00 83.90
MOTA	1653 NE2 HIS A 461	8.406 43.135 4.201 1.00 83.33
MOTA	1654 CD2 HIS A 461	0.400 1000000000000000000000000000000000
ATOM	1655 C HIS A 461	7.507
ATOM	1656 O HIS A 461	3.007
ATOM	1657 N ARG A 462	0.544 22.00
MOTA	1658 CA ARG A 462	7.194 45.051 -2.605 1.00 83.28
	1659 CB ARG A 462	5.903 45.330 -3.393 1.00 83.78
ATOM		5.303 44.070 -4.042 1.00 85.00
ATOM		2 999 <i>AA</i> 230 -4.665 1.00 86.49
MOTA		3 505 43 033 -5.417 1.00 87.52
MOTA		2 281 42 778 -5.865 1.00 88.16
ATOM	1663 CZ ARG A 462	1.283 43.636 -5.655 1.00 88.54
MOTA	1664 NH1 ARG A 462	# 400
MOTA	1665 NH2 ARG A 462	2.056 41.653 -6.532 1.00 87.86 8.191 46.222 -2.687 1.00 83.63 8.541 46.699 -3.770 1.00 83.73
MOTA	1666 C ARG A 462	8.191 46.222 -2.337 1.30 83.73
ATOM	1667 O ARG A 462	8.541 46.699 -3.770 1.00 83.73 8.649 46.649 -1.506 1.00 83.89
ATOM	1668 N GLU A 463	8.649 46.649 -1.506 1.00 83.89 9.624 47.723 -1.335 1.00 83.96
ATOM	1669 CA GLU A 463	3.024 1.1.12
	1670 CB GLU A 463	9.04/ 4/.5/0 0.250 1.00 04 07
MOTA	1671 CG GLU A 463	10.746 46.939 0.821 1.00 84.97
ATOM		10 741 47 071 2.326 1.00 85.96
MOTA		10 286 48 126 2.808 1.00 87.00
MOTA		11 182 46 126 3.020 1.00 86.69
MOTA	1674 OE2 GLU A 463	10.980 47.413 -1.965 1.00 83.47
MOTA	1675 C GLU A 463	11.752 48.325 -2.276 1.00 83.54
ATOM	1676 O GLU A 463	11.752 10.00 00 00
MOTA	1677 N ASP A 464 1678 CA ASP A 464	12.532 45.673 -2.691 1.00 82.00
ATOM	1678 CA ASP A 464	12.532 45.673 -2.691 1.00 82.00 13.576 45.440 -1.582 1.00 82.03
ATOM	1679 CB ASP A 464 1680 CG ASP A 464	13.576 45.440 -1.582 1.00 82.03 14.138 46.743 -1.000 1.00 82.58
MOTA	1680 CG ASP A 464	14.138 46.743 -1.000 1.00 82.58 13.981 47.814 -1.626 1.00 82.80
ATOM	1680 CG ASP A 464 1681 OD1 ASP A 464 1682 OD2 ASP A 464 1683 C ASP A 464 1684 O ASP A 464 1685 N GLY A 465	13.981 47.814 -1.626 1.00 82.80 14.766 46.795 0.079 1.00 82.96
MOTA	1682 OD2 ASP A 464	14.766 46.795 0.079 1.00 82.96
ATOM	1683 C ASP A 464	12.251 44.380 -3.467 1.00 81.10
	1684 O ASP A 464	11.103 44.121 -3.868 1.00 81.10
MOTA	1685 N GLY A 465	13.305 43.599 -3.701 1.00 79.69
MOTA	1686 CA GLY A 465	13.210 42.292 -4.339 1:00 70.12
MOTA		14 125 41 358 -3.567 1.00 77.09
MOTA		15 055 40 776 -4.128 1.00 76.83
MOTA		12 829 A1 229 -2.269 1.00 /5.34
ATOM		14 687 40 507 -1.318 1.00 73.67
MOTA		14 195 40 728 0.123 1.00 73.83
MOTA	1691 CB ILE A 466 1692 CG1 ILE A 466	
MOTA		13.216 42.442 1.714 1.00 75.46
MOTA	1693 CD1 ILE A 466	15.312 40.453 1.110 1.00 74.24
ATOM	1694 CG2 ILE A 466	14.756 39.023 -1.579 1.00 71.72
MOTA	1695 C ILE A 466	15.601 38.329 -1.009 1.00 71.07
MOTA	1696 O ILE A 466	10.001
MOTA	1697 N LEUA 467	100 60 60
MOTA	1698 CA LEU A 467	2 200 1 00 60 53
ATOM	1699 CB LEU A 467	12,045 50,000
ATOM	1700 CG LEU A 467	12.722 33.11
MOTA	1701 CD1 LEU A 467	12.138 34.497 -3.294 1.00 69.10
	1702 CD2 LEU A 467	11.854 35.347 -5.579 1.00 70.26
MOTA	1702 CB2 BB3 H 107	15.273 36.746 -3.247 1.00 67.31
MOTA		15 733 35 642 -2.961 1.00 67.18
MOTA		15 954 37 660 -3.934 1.00 65.58
MOTA		17 285 37 382 -4.452 1.00 64.62
MOTA		17 695 38 399 -5.584 1.00 64.88
MOTA	1707 CB THR A 468	17 784 39 733 -5.065 1.00 64.25
MOTA	1708 OG1 THR A 468	16 631 38 493 -6.680 1.00 64.06
MOTA	1709 CG2 THR A 468	18.316 37.367 -3.331 1.00 63.63
MOTA		10.010
ATOM		15.200 50.525
MOTA		10.213 30.32
MOTA	1713 CA LYS A 469	19.000 30.307
MOTA		18.797 39.647 -0.484 1.00 62.13

		19.486	39.829	0.860	1.00 62.89
MOTA	1715 CG LYS A 469 1716 CD LYS A 469	19.256	41.310	1.276	1.00 64.52
ATOM		19.505	41.608	2.756	1.00 65.74
ATOM		18.942	42.951	3.178	1.00 66.28
ATOM	1718 NZ LYS A 469 1719 C LYS A 469	18.854	37.133	-0.355	1.00 59.69
ATOM	1720 O LYS A 469	19.766	36.645	0.317	1.00 59.53
ATOM ATOM	1721 N LEU A 470	17.627	36.633	-0.360	1.00 57.33
ATOM	1722 CA LEU A 470	17.292	35.439	0.387	1.00 56.01
ATOM	1723 CB LEU A 470	15.771	35.324	0.527	1.00 55.44 1.00 54.97
ATOM	1724 CG LEU A 470	15.242	34.622	1.770	1.00 54.97
ATOM	1725 CD1 LEU A 470	15.881	35.167	3.018 1.859	1.00 54.00
MOTA	1726 CD2 LEU A 470	13.721	34.701 34.213	-0.331	1.00 55.43
MOTA	1727 C LEU A 470	17.861 18.522	33.382	0.281	1.00 54.90
MOTA	1728 O LEU A 470 1729 N ILE A 471	17.624	34.111	-1.635	1.00 54.68
MOTA		18.120	32.986	-2.412	1.00 54.43
MOTA		17.538	33.016	-3.836	1.00 54.76
MOTA MOTA	1731 CB ILE A 4/1 1732 CG1 ILE A 471	16.097	32.526	-3.792	1.00 55.40
ATOM	1733 CD1 ILE A 471	15.438	32.478	-5.119	1.00 56.34
ATOM	1734 CG2 ILE A 471	18.372	32.144	-4.798	1.00 55.26 1.00 53.73
ATOM	1735 C ILE A 471	19.631	33.016	-2.433	1.00 53.73 1.00 53.69
ATOM	1736 O ILE A 471	20.281	31.996	-2.616 -2.239	1.00 52.86
MOTA	1737 N CYS A 472	20.189	34.198 34.347	-2.239	1.00 52.63
MOTA	1738 CA CYS A 472	21.625 21.979	35.829	-1.990	1.00 52.92
MOTA	1739 CB CYS A 472 1740 SG CYS A 472	22.874	36.495	-3.399	1.00 58.34
MOTA		22.157	33.604	-0.886	1.00 50.97
MOTA	1741 C CYS A 472 1742 O CYS A 472	23.290	33.104	-0.901	1.00 50.65
ATOM ATOM	1742 N LYS A 473	21.348	33.555	0.179	1.00 48.54
MOTA	1744 CA LYS A 473	21.758	32.936	1.439	1.00 47.29
ATOM	1745 CB LYS A 473	20.754	33.227	2.562	1.00 47.39 1.00 49.59
MOTA	1746 CG LYS A 473	20.619	34.712	2.930 3.708	1.00 49.39
MOTA	1747 CD LYS A 473	21.832	35.243 36.733	3.414	1.00 54.59
MOTA	1748 CE LYS A 473	22.062 23.470	30.733 37.017	2.981	1.00 56.43
MOTA	1749 NZ LYS A 473 1750 C LYS A 473	21.875	31.450	1.277	1.00 45.26
ATOM		22.631	30.804	1.995	1.00 45.05
MOTA	1751 O LYS A 473 1752 N VAL A 474	21.122	30.919	0.327	1.00 43.23
MOTA MOTA	1753 CA VAL A 474	21.136	29.518	0.102	1.00 42.19
MOTA	1754 CB VAL A 474	20.387	29.116	-1.145	1.00 42.59
ATOM	1755 CG1 VAL A 474	20.645	27.663	-1.449	1.00 42.42 1.00 42.39
MOTA	1756 CG2 VAL A 474	18.910	29.383 29.055	-0.957 -0.055	1.00 41.04
MOTA	1757 C VAL A 474	22.546 22.919	28.042	0.503	1.00 39.72
MOTA	1758 O VAL A 474	23.345	29.780	-0.812	1.00 39.27
ATOM	1759 N SER A 475 1760 CA SER A 475	24.718	29.353	-0.979	1.00 38.63
ATOM	1760 CA SER A 475	25.402	30.157	-2.070	1.00 38.92
MOTA MOTA	1762 OG SER A 475	26.788	29.921	-2.029	1.00 40.43
MOTA	1763 C SER A 475	25.490	29.483	0.336	1.00 37.50
ATOM	1764 O SER A 475	26.430	28.759	0.576	1.00 36.17 1.00 36.92
MOTA	1765 N THR A 476	25.118	30.425 30.597	1.192 2.443	1.00 36.78
MOTA	1766 CA THR A 476	25.854 25.460	31.898	3.133	1.00 37.27
ATOM	1767 CB THR A 476	25.293	32.946	2.166	1.00 39.90
MOTA	1768 OG1 THR A 476 1769 CG2 THR A 476	26.543	32.416	4.043	1.00 37.41
ATOM	1769 CG2 THR A 476 1770 C THR A 476	25.588		3.378	1.00 36.02
ATOM ATOM	1771 O THR A 476	26.489	28.981	4.084	
ATOM	1772 N LEU A 477	24.355	28.916	3.360	
ATOM	1773 CA LEU A 477	23.939		4.200	
ATOM	1774 CB LEU A 477	22.457		4.019 4.875	
MOTA		21.480		4.875	
MOTA		20.057 21.584		6.279	
MOTA		24.670			1.00 35.75
ATOM		24.966		4.792	1.00 35.71
ATOM ATOM	470	24.941			1.00 35.96
ALOM					

 \mathbf{z}

WO 03/093312 PCT/EP03/04433

ATOM	1781	CA	ARG A	478	25.659	25.124	2.183	1.00 36.68
MOTA	1782	CB	ARG A	478	25.606	24.989	0.666	1.00 37.49
ATOM	1783	CG	ARG A	478	24.216	24.645	0.185	1.00 39.62
ATOM	1784	CD	ARG A	478	24.110	24.375	-1.293	1.00 41.13 1.00 42.25
ATOM	1785	NE	ARG A		22.727	24.112	-1.658	1.00 42.23
ATOM	1786	CZ	ARG A	478	22.342	23.503	-2.763	1.00 45.76
ATOM	1787	NH1	ARG A	478	23.246	23.088	-3.641 -3.003	1.00 42.39
MOTA	1788	NH2	ARG A	478	21.045	23.312 25.179	2.666	1.00 36.22
ATOM	1789	C	ARG A		27.093	24.170	3.056	1.00 36.31
MOTA	1790	0	ARG A		27.655 27.690	26.361	2.645	1.00 35.43
MOTA	1791	N	ALA A		29.045	26.502	3.144	1.00 34.83
MOTA	1792	CA	ALA A	479	29.634	27.829	2.714	1.00 34.35
MOTA	1793	CB	ALA A	479	29.029	26.382	4.674	1.00 34.50
ATOM	1794	C	ALA A	479	29.923	25.803	5.254	1.00 33.03
MOTA	1795 1796	N O	LEU A		28.011	26.924	5.330	1.00 34.39
ATOM	1797	CA	LEU A	480	27.931	26.756	6.768	1.00 35.19
ATOM ATOM	1798	CB	LEU A	480	26.787	27.598	7.348	1.00 35.91
ATOM	1799	CG	LEU A		26.747	27.805	8.845	1.00 35.84
ATOM	1800	CD1	LEU A		28.051	28.355	9.382	1.00 37.04
ATOM	1801	CD2	LEU A		25.590	28.734	9.189	1.00 36.87 1.00 35.48
ATOM	1802	С	LEU A	480	27.787	25.276	7.138	1.00 35.48 1.00 36.43
MOTA	1803	0	LEU A		28.525	24.768	7.999 6.482	1.00 34.90
MOTA	1804	N	CYS A		26.886	24.557	6.768	1.00 35.75
MOTA	1805	CA	CYS A		26.721	23.150 22.617	6.151	1.00 35.51
MOTA	1806	СВ	CYS A		25.408 23.970	23.492	6.880	1.00 39.57
MOTA	1807	SG	CYS A	. 481	27.955	22.339	6.343	1.00 35.95
MOTA	1808	C	CYS A		28.248	21.278	6.914	1.00 35.58
ATOM	1809	0	CYS A	. 401 182	28.690	22.846	5.359	1.00 35.86
ATOM	1810	N CA	GLY A		29.909	22.197	4.922	1.00 35.86
ATOM	1811 1812	CA	GLY A		30.978	22.309	5.983	1.00 35.56
ATOM ATOM	1813	Ö	GLY A	482	31.689	21.375	6.268	1.00 35.07
ATOM	1814	N	ARG A		31.111	23.464	6.587	1.00 36.33
ATOM	1815	CA	ARG A		32.099	23.572	7.623	1.00 37.63
MOTA	1816	CB	ARG A		32.250	25.000	8.046	$1.00 \ 38.73$ $1.00 \ 43.48$
ATOM	1817	CG	ARG A	483	32.770	25.873	6.900	1.00 43.46
MOTA	1818	$^{\rm CD}$	ARG A	483	34.089	26.567	7.220 6.699	1.00 43.73
ATOM	1819	NE	ARG A	483	34.129	27.928 29.016	7.463	1.00 56.41
MOTA	1820	CZ	ARG A	483	34.148 34.138	28.914	8.793	1.00 55.60
ATOM	1821	NH1			34.177	30.224	6.894	1.00 59.68
MOTA	1822	NH2	ARG A	1 403 1 103	31.767	22.661	8.813	1.00 37.14
MOTA	1823	C	ARG A		32.662	22.026	9.401	1.00 36.58
MOTA	1824 1825	O N	HIS A		30.486	22.567	9.161	1.00 36.27
ATOM ATOM	1826	CA	HIS A		30.119	21.712	10.270	1.00 35.26
ATOM	1827	CB	HIS A		28.615	21.655	10.449	1.00 34.25
ATOM	1828	CG	HIS A	A 484	28.161	20.599	11.394	1.00 31.44
ATOM	1829	ND3	L HIS A	A 484	27.481	19.481	10.975	1.00 26.89
ATOM	1830	CE:	L HIS A	A 484	27.178	18.740	12.032	1.00 29.68 1.00 26.36
MOTA	1831	NE	2 HIS A	A 484	27.689	19.307	13.111	1.00 29.62
ATOM	1832	CD2		A 484	28.293	20.484	12.740	1.00 25.02
ATOM	1833	С	HIS I	A 484	30.656	20.333	10.013 10.893	1.00 35.93
MOTA	1834	0	HIS	A 484	31.264	19.740	8.805	1.00 38.13
MOTA	1835	N	THR	A 485	30.457 30.881	19.818 18.466	8.520	1.00 39.75
MOTA	1836	CA	THR	A 485	30.881	18.400	7.111	1.00 40.58
MOTA	1837	CB		A 485	29.011	17.726	7.102	1.00 42.13
MOTA	1838	OG:	T THK .	A 485 A 485	31.050		6.702	1.00 41.01
MOTA	1839	CG:	TIR.	A 485	32.404		8.663	1.00 40.64
ATOM	1840 1841	0	THE.	A 485	32.903		9.092	1.00 41.11
ATOM	1842	N	GLII	A 486	33.136		8.297	1.00 41.10
MOTA MOTA	1843		GLU	A 486	34.583	19.329	8.343	
ATOM	1844		GLU	A 486	35.200	20.533	7.597	
ATOM	1845			A 486	35.297		6.080	
MOTA	1846			A 486	35.265	21.577	5.215	1.00 48.00

7 COM	1847	OE1 GLU A 486	34.972	21.411	4.013	1.00 50.12
MOTA	1848	OE2 GLU A 486	35.538	22.715	5.690	1.00 50.93
MOTA	1849	C GLU A 486	35.048	19.311	9.775	1.00 40.94
MOTA	1850	O GLU A 486	35.970	18.573	10.146	1.00 40.53
MOTA	1851	N LYS A 487	34.445	20.161	10.584	1.00 39.75
MOTA		CA LYS A 487	34.828	20.215	11.976	1.00 38.97
ATOM	1852		34.122	21.369	12.697	1.00 39.27
ATOM	1853		34.760	22.719	12.395	1.00 42.48
MOTA	1854		36.275	22.575	12.241	1.00 45.26
ATOM	1855		36.953	23.908	12.119	1.00 47.44
MOTA	1856	CE LYS A 487	37.048	24.550	13.468	1.00 50.31
MOTA	1857	NZ LYS A 487	34.509	18.896	12.637	1.00 38.04
MOTA	1858	C LYS A 487	35.306	18.390	13.405	1.00 37.61
MOTA	1859	O LYS A 487	33.354	18.329	12.317	1.00 37.23
MOTA	1860	N LEU A 488	32.937	17.098	12.946	1.00 37.18
MOTA	1861	CA LEU A 488	31.502	16.755	12.561	1.00 36.30
MOTA	1862	CB LEU A 488	31.030	15.382	12.993	1.00 36.25
MOTA	1863	CG LEU A 488	31.060	15.184	14.496	1.00 37.06
MOTA	1864	CD1 LEU A 488	29.636	15.172	12.465	1.00 37.46
MOTA	1865	CD2 LEU A 488	33.885	15.955	12.593	1.00 37.99
ATOM	1866	C LEU A 488		15.147	13.466	1.00 37.01
MOTA	1867	O LEU A 488	34.238	15.851	11.317	1.00 38.60
ATOM	1868	N MET A 489	34.263 35.240	14.828	10.932	1.00 40.07
MOTA	1869	CA MET A 489		14.694	9.409	1.00 40.81
MOTA	1870	CB MET A 489	35.412 34.178	14.171	8.704	1.00 44.15
ATOM	1871	CG MET A 489	33.194	12.913	9.641	1.00 54.88
ATOM	1872	SD MET A 489	33.194	11.239	9.132	1.00 55.79
ATOM	1873	CE MET A 489	36.572	15.107	11.636	1.00 39.24
ATOM	1874	C MET A 489	37.216	14.197	12.086	1.00 38.99
MOTA	1875	O MET A 489		16.356	11.813	1.00 39.22
MOTA	1876	N ALA A 490	36.960 38.226	16.606	12.512	1.00 39.46
ATOM	1877	CA ALA A 490	38.623	18.062	12.412	1.00 38.63
MOTA	1878	CB ALA A 490	38.152	16.166	13.997	1.00 40.06
ATOM	1879	C ALA A 490	39.131	15.669	14.568	1.00 40.68
MOTA	1880	O ALA A 490 N PHE A 491	36.979	16.351	14.602	1.00 39.40
ATOM	1881		36.756	15.996	15.982	1.00 38.41
MOTA	1882	CA PHE A 491 CB PHE A 491	35.449	16.640	16.482	1.00 37.82
ATOM	1883	CG PHE A 491	35.055	16.218	17.871	1.00 34.23
MOTA	1884 1885		35.515	16.907	18.979	1.00 31.46
MOTA	1886		35.168	16.507	20.263	1.00 31.14
MOTA MOTA	1887		34.329	15.411	20.445	1.00 29.45
ATOM	1888		33.873	14.724	19.340	1.00 32.47
MOTA	1889		34.233	15.134	18.058	1.00 31.03
MOTA	1890		36.695	14.484	16.112	1.00 39.01
MOTA	1891	_ ^ ^	37.183	13.910	17.079	1.00 38.94
ATOM	1892	N LYS A 492	36.077	13.831	15.153	1.00 39.53 1.00 40.55
ATOM	1893	CA LYS A 492	35.941	12.401	15.226	
ATOM	1894	CB LYS A 492	34.934	11.958	14.192	1.00 40.93 1.00 42.40
ATOM	1895	CG LYS A 492	34.730	10.473	14.114	
ATOM	1896	CD LYS A 492	33.670	10.118	13.098	
MOTA	1897	CE LYS A 492	33.493	8.628		
MOTA	1898	NZ LYS A 492	32.414			
MOTA	1899		37.283			
ATOM	1900		37.425			
MOTA	1901		38.275			
MOTA	1902		39.570			
MOTA	1903		40.374 40.340			
MOTA	1904		41.244			
MOTA	1905		39.979			
MOTA	1906		40.651			1.00 42.35
ATOM	1907		40.873			1.00 42.63
MOTA	1908 1909		41.824			1.00 44.49
ATOM			41.756		17.142	1.00 44.88
ATOM			41.451		19.560	1.00 44.25
MOTA MOTA			39.882		18.942	2 1.00 41.61
AIOM						

			40 405	11.551	19.953	1.00 41.78
ATOM	1913	O ILE A 494	40.485		18.796	1.00 40.39
ATOM	1914	N TYR A 495	38.566	11.796	19.830	1.00 39.98
ATOM	1915	CA TYR A 495	37.722	11.225	20.513	1.00 39.79
ATOM	1916	CB TYR A 495	36.916	12.324	21.115	1.00 38.81
ATOM		CG TYR A 495	37.731	13.430	21.115	1.00 38.27
ATOM	1918	CD1 TYR A 495	37.949	14.585	20.415	1.00 38.45
ATOM	1919	CE1 TYR A 495	38.685	15.600	20.932	1.00 30.43
ATOM	1920	CZ TYR A 495	39.209	15.508	22.194	1.00 40.01
ATOM	1921	OH TYR A 495	39.947	16.582	22.669 22.941	1.00 38.56
ATOM	1922	CE2 TYR A 495	39.013	14.366	22.402	1.00 38.69
ATOM	1923	CD2 TYR A 495	38.260	13.329	19.257	1.00 40.43
MOTA	1924	C TYR A 495	36.747	10.209	19.237	1.00 40.56
MOTA	1925	O TYR A 495	35.548	10.290	18.567	1.00 40.98
ATOM	1926	N PRO A 496	37.255	9.201 8.261	17.871	1.00 40.62
ATOM	1927	CA PRO A 496	36.379	7.229	17.288	1.00 41.12
ATOM	1928	CB PRO A 496	37.344	7.789	17.496	1.00 41.49
MOTA	1929	CG PRO A 496	38.747 38.682	-8.848	18.486	1.00 40.68
MOTA	1930	CD PRO A 496	35.392	7.567	18.796	1.00 40.79
MOTA	1931	C PRO A 496	34.263	7.261	18.404	1.00 41.69
MOTA	1932	O PRO A 496	35.814	7.254	20.008	1.00 40.89
MOTA	1933	N ASP A 497	34.937	6.528	20.913	1.00 40.80
MOTA	1934	CA ASP A 497	35.745	5.792	21.988	1.00 41.84
MOTA	1935	CB ASP A 497	36.300	4.475	21.485	1.00 45.64
MOTA	1936	CG ASP A 497	36.821	3.696	22.320	1.00 53.60
MOTA	1937	OD1 ASP A 497	36.249	4.124	20.282	1.00 48.70
MOTA	1938	OD2 ASP A 497 C ASP A 497	33.902	7.409	21.579	1.00 39.07
MOTA	1939	107	32.847	6.919	21.956	1.00 38.09
MOTA	1940		34.211	8.697	21.744	1.00 38.14
ATOM	1941		33.230	9.640	22.273	1.00 37.33
MOTA	1942	CA ILE A 498 CB ILE A 498	33.864	11.039	22.491	1.00 38.00
ATOM	1943 1944	CG1 ILE A 498	34.902	11.018	23.627	1.00 39.27
ATOM	1944	CD1 ILE A 498	34.375	10.559	24.947	1.00 40.90
MOTA	1946	CG2 ILE A 498	32.797	12.090	22.770	1.00 37.86
MOTA	1947	C ILE V 498	32.092	9.696	21.272	1.00 36.02
ATOM	1948	O ILE A 498	30.929	9.572	21.625	1.00 35.72
MOTA MOTA	1949	N VAL A 499	32.429	9.814	20.002	1.00 35.39
ATOM	1950	CA VAL A 499	31.400	9.915	18.994	1.00 35.49
ATOM	1951	CB VAL A 499	31.969	10.182	17.580	1.00 34.87
ATOM	1952	CG1 VAL A 499	30.868	10.168	16.543	1.00 34.58
ATOM	1953	CG2 VAL A 499	32.686	11.485	17.542	1.00 34.93 1.00 35.88
MOTA	1954	C VAL A 499	30.598	8.647	18.975	1.00 35.88
ATOM	1955	O VAL A 499	29.384	8.684	18.933	1.00 36.41
ATOM	1956	N ARG A 500	31.278	7.515	19.004	1.00 36.86
ATOM	1957	CA ARG A 500	30.600	6.237	18.880 18.714	1.00 37.54
MOTA	1958	CB ARG A 500	31.629	5.129 3.739	18.596	1.00 37.54
MOTA	1959	CG ARG A 500	31.058			
ATOM	1960	CD ARG A 500	32.137	1.588	19.576	1.00 51.65
MOTA	1961	NE ARG A 500	31.814	1.331	20.688	1.00 52.82
MOTA	1962	CZ ARG A 500	32.514	2.013	20.978	1.00 53.74
ATOM	1963	NH1 ARG A 500	33.613 32.117	0.370	21.508	1.00 54.03
MOTA	1964	NH2 ARG A 500	29.724		20.066	1.00 36.07
MOTA	1965	C ARG A 500	28.570		19.884	1.00 36.22
MOTA	1966	O ARG A 500 N LEU A 501	30.247		21.277	1.00 35.25
MOTA	1967	N LEU A 501	29.493		22.495	1.00 35.10
MOTA	1968	CA LEU A 501 CB LEU A 501	30.444			1.00 35.42
ATOM	1969		31.187			1.00 38.90
MOTA	1970	CG LEU A 501 CD1 LEU A 501	32.025			1.00 41.10
ATOM	1971 1972	CD2 LEU A 501	30.219			
MOTA		C LEU A 501	28.609		23.083	1.00 33.61
ATOM ATOM		O LEU A 501	27.660	6.590		
ATOM		N HIS A 502	28.891	8.152	22.799	1.00 33.08
ATOM		CA HIS A 502	28.121	9.226		1.00 32.46
ATOM		CB HIS A 502	29.049		24.480	1.00 32.21
ATOM	_	CG HIS A 502	29.690	8.993	25.454	1.00 32.45
111 011	_,,,	-				

ס טייים מייים מ

		28.998	8.440	26.515	1.00 34.45
ATOM	1979 ND1 HIS A 502 1980 CE1 HIS A 502	29.796	7.616	27.175	1.00 33.23
ATOM	1980 CE1 HIS A 502 1981 NE2 HIS A 502	30.978	7.610		1.00 32.06
MOTA	1982 CD2 HIS A 502	30.940	8.457		1.00 32.50
ATOM ATOM	1983 C HIS A 502	27.392	10.237		1.00 31.35
ATOM	1984 O HIS A 502		11.084	23.064	1.00 32.31 1.00 30.30
MOTA	1985 N PHE A 503		10.171	21.269	1.00 30.30
MOTA	1986 CA PHE A 503		11.071	20.401	1.00 28.59
ATOM	1987 CB PHE A 503		11.366	19.123 19.253	1.00 27.67
ATOM	1988 CG PHE A 503		12.527 12.774	20.443	1.00 28.62
MOTA	1989 CD1 PHE A 503		13.869	20.575	1.00 24.57
MOTA	1990 CE1 PHE A 503 1991 CZ PHE A 503		14.715	19.523	1.00 23.93
MOTA			14.481	18.322	1.00 27.80
MOTA	1992 CE2 PHE A 503 1993 CD2 PHE A 503		13.402	18.194	1.00 27.49
MOTA MOTA	1994 C PHE A 503	25.465	10.483	20.086	1.00 29.88
MOTA	1995 O PHE A 503	25.301	9.290	20.004	1.00 29.58 1.00 30.28
ATOM	1996 N PRO A 504	24.472	11.327	19.887 19.561	1.00 30.28
ATOM	1997 CA PRO A 504	23.131	10.838	19.361	1.00 30.42
ATOM	1998 CB PRO A 504	22.305	12.107 13.163	20.095	1.00 30.50
MOTA.	1999 CG PRO A 504	23.129 24.559	12.793	19.900	1.00 29.70
MOTA	2000 CD PRO A 504 2001 C PRO A 504	23.112	10.094	18.232	1.00 30.68
ATOM		23.698	10.533	17.261	1.00 29.79
MOTA	2002 O PRO A 504 2003 N PRO A 505	22.410	8.973	18.199	1.00 31.99
MOTA MOTA	2004 CA PRO A 505	22.330	8.126	16.997	1.00 32.55
ATOM	2005 CB PRO A 505	21.334	7.055	17.397	1.00 32.91 1.00 33.39
ATOM	2006 CG PRO A 505	21.520	6.943	18.876 19.347	1.00 33.39
ATOM	2007 CD PRO A 505	21.710	8.384	15.736	1.00 32.64
ATOM	2008 C PRO A 505	21.866	8.820 8.540	14.662	1.00 33.22
ATOM	2009 O PRO A 505	22.416 20.888	9.709	15.843	1.00 32.69
MOTA	2010 N LEU A 506 2011 CA LEU A 506	20.388	10.427	14.673	1.00 32.07
MOTA		19.117	11.204	15.015	1.00 32.44
ATOM	2012 CB LEU A 506 2013 CG LEU A 506	18.566	12.012	13.840	1.00 31.16
ATOM ATOM	2014 CD1 LEU A 506	18.156	11.092	12.722	1.00 33.03
ATOM	2015 CD2 LEU A 506	17.398	12.836	14.302	1.00 32.49 1.00 32.28
ATOM	2016 C LEU A 506	21.425	11.369	14.091 12.893	1.00 32.20
ATOM	2017 O LEU A 506	21.491	11.528 12.012	14.949	1.00 32.83
MOTA	2018 N TYR A 507	22.210 23.327	12.879	14.533	1.00 32.73
MOTA	2019 CA TYR A 507 2020 CB TYR A 507	23.927	13.589	15.762	1.00 32.18
MOTA		25.025	14.643	15.516	1.00 30.21
MOTA	2021 CG TYR A 507 2022 CD1 TYR A 507	24.733	15.980	15.458	1.00 27.51
MOTA MOTA	2023 CE1 TYR A 507	25.715	16.908	15.284	1.00 28.26 1.00 29.93
MOTA	2024 CZ TYR A 507	27.020	16.500		1.00 29.93
MOTA	2025 OH TYR A 507	28.032	17.414	14.997 15.239	1.00 28.89
MOTA	2026 CE2 TYR A 507	27.336	15.180 14.273		1.00 29.57
MOTA	2027 CD2 TYR A 507	26.365 24.405	12.054		1.00 33.67
MOTA	2028 C TYR A 507 2029 O TYR A 507	24.928	12.468	12.770	1.00 32.52
ATOM		24.730	10.895	14.351	1.00 35.19
MOTA		25.674	9.979		1.00 36.84
MOTA MOTA		25.931	8.740		1.00 36.89 1.00 38.78
MOTA	2033 CG LYS A 508	26.837	8.988		
MOTA	2034 CD LYS A 508	27.446	7.686 7.042	16.296 17.265	
MOTA	2035 CE LYS A 508	26.536 27.053	5.702		1.00 42.04
MOTA		25.165	9.560		1.00 37.51
ATOM	TIC N END	25.908	9.643		1.00 37.79
ATOM	GTTT 3 EOO	23.893	9.165	12.232	
ATOM ATOM		23.313	8.734	1 10.968	
ATOM	2041 CB GLU A 509	21.863	8.281		
ATOM	2042 CG GLU A 509	21.670	6.932		
ATOM	2043 CD GLU A 509	20.198 19.956			
MOTA	2044 OE1 GLU A 509	13.330	J. 044		

 \mathbf{z}

		0=0 <i>(</i>	OT 17 3 EO	٥	19.285	7.028	11.285	1.00 50.58	
MOTA		OEZ (GLU A 50 GLU A 50	9 9	23.333	9.841	9.937	1.00 39.53	
MOTA		C (GLU A 50	9	23.504	9.571		1.00 39.45	
MOTA		N :	LEU A 51	ó	23.126	11.083	10.379	1.00 39.18	
MOTA		CA :	LEU A 51	0	23.067	12.201	9.456	1.00 39.07	
MOTA		CB :	LEU A 51	0	22.226	13.338	10.040	1.00 39.33	
MOTA		CG	LEU A 51	0	20.725	13.091	10.200	1.00 39.95	
MOTA	2052	CD1	LEU A 51	.0	20.091	14.296	10.800	1.00 41.52	
ATOM ATOM		CD2	LEU A 51	.0	20.058	12.768	8.899	1.00 40.94	
ATOM		C	LEU A 51	.0	24.401	12.783	9.030	1.00 38.89 1.00 39.03	
ATOM	2055	0	LEU A 51	.0	24.503	13.334	7.943	1.00 39.03	
ATOM		N	PHE A 51	.1	25.427	12.680	9.854 9.591	1.00 38.51	
ATOM	2057	CA	PHE A 51	1	26.619	13.464	10.646	1.00 38.47	
ATOM	2058	_	PHE A 51	.1	26.736	14.569 15.483	10.711	1.00 39.17	
MOTA	2059	CG	PHE A 51	11	25.542	15.463	11.910	1.00 37.90	
MOTA	2060	CD1	PHE A 51	L1	24.848 23.762	16.508	11.985	1.00 37.16	
MOTA	2061		PHE A 51	L	23.702	17.165	10.866	1.00 39.02	
MOTA	2062	CZ	PHE A 51	L 1. 1 1	24.005	16.998	9.653	1.00 39.88	
ATOM	2063	CEZ	PHE A 51 PHE A 51	1.1	25.113	16.167	9.587	1.00 40.32	
MOTA	2064		PHE A 5	11	27.915	12.682	9.565	1.00 38.68	
MOTA	2065 2066	C O	PHE A 5	11	28.923	13.297	9.211	1.00 38.22	
MOTA	2067	OXT	PHE A 5	11	27.963	11.489	9.895	1.00 39.77	
ATOM ATOM	2068	C65	CHS L	1	29.670	21.352	16.280	1.00 40.20	
ATOM	2069	C63	CHS L	1	28.173	21.713	16.502	1.00 35.49 1.00 36.38	
MOTA	2070	C69	CHS L	1	27.552	20.583	17.354	1.00 33.50	
MOTA	2071	C60	CHS L	1	28.076	23.102	17.181 17.026	1.00 29.77	
ATOM	2072	C57	CHS L	1	26.755	23.921 24.885	18.224	1.00 26.05	
MOTA	2073	C54	CHS L	1	26.543	25.868	18.122	1.00 27.06	
MOTA	2074	C48	CHS L	1	25.339 25.416	26.630	16.786	1.00 30.39	
MOTA	2075	C50	CHS L	1 1	23.999	25.113	18.108	1.00 27.35	
MOTA	2076	C38	CHS L CHS L	1	23.898	24.161	19.333	1.00 25.32	
MOTA	2077	635	CHS L	1	22.637	25.885	18.088	1.00 25.81	
MOTA	2078 2079	C25	CHE L	ī	22.075	26.442	16.760	1.00 25.48	
ATOM ATOM	2080	C40	CHS L	1	22.674	27.065	19.089	1.00 24.66	
ATOM	2081		CHS L	1	21.683	24.733	18.480	1.00 24.66 1.00 25.34	
ATOM	2082	C32	CHS L	1	22.378	23.988	19.639 18.823	1.00 23.54	
ATOM	2083	C18	CHS L	1	20.267	25.269	19.379	1.00 27.21	
ATOM	2084	C15	CHS L	1	19.389	24.126 25.910	17.559	1.00 25.94	
MOTA	2085	C20	CHS L	1	19.656 20.616	26.987	16.956	1.00 25.70	
MOTA	2086	C23	CHS L	1 1	18.195		17.788	1.00 25.96	
MOTA	2087	C22	CHS L CHS L	1	18.216		18.461	1.00 23.41	
MOTA	2088		CHS L	1	17.391		18.627	1.00 27.66	
ATOM	2089 2090	C12	CHS L	ī	15.878	25.602	18.705	1.00 27.52	
ATOM ATOM	2091	C13		ī	17.928	24.439		1.00 28.47	
MOTA	2092	C1	CHS L	1	17.457		16.432	1.00 24.95 1.00 25.61	
MOTA	2093	C4	CHS L	1	15.966			1.00 27.22	
MOTA	2094	C7	CHS L	1	15.184			1.00 33.31	
MOTA	2095	06	CHS L	1	13.884				
ATOM	2096	S1	CHS L	1	12.600				
MOTA	2097	03	CHS L	1	11.492 12.386			1.00 34.23	
ATOM	2098	02	CHS L	1 1	12.791			1.00 31.69	
ATOM	2099	04	CHS L HOH V	1	34.374			1.00 24.18	
MOTA	2100	0	HOH V	2	13.751		14.717	1.00 25.05	
MOTA	2101 2102		HOH V	3	17.585	18.928			
ATOM ATOM	2102		HOH V	4	19.468	3 24.062			
ATOM			нон V	5	28.242				
MOTA			HOH V	6	26.219				
ATOM			HOH V	7	25.424				
MOTA	2107		HOH V	8	37.940 34.532				
ATOM			HOH V	9 10	36.53			1.00 30.95	
MOTA		_	HOH V	10 11	19.92				
MOTA	2110	0	HOH A						

					20 464	36.924	16.913	1.00 3	2.33	0	
MOTA		0	HOH V	12 13	30.464 39.694		26.277	1.00 3	2.46	0	
ATOM	2112 2113	0	HOH V	14	10.618	25.915	9.224	1.00 3	3.09	0	
ATOM ATOM	2113	Ö	HOH V	15	19.089	15.060	21.458	1.00 3	3.35	0	
ATOM	2115	ŏ	HOH V	16	19.982	38.502	24.574	1.00 3	14 82	ő	
MOTA	2116	Ō	HOH V	17	29.188	18.773	31.889 25.939	1.00 3		ŏ	
ATOM	2117	0	HOH V	18	32.816	26.367 13.531	27.380	1.00 3	35.38	0	
ATOM	2118	0	нон V	19	21.757 21.923	18.531	7.233	1.00	35.96	0	
MOTA	2119	0	HOH V	20 21	33.494	32.602	17.864	1.00 3	36.22	0	
MOTA	2120 2121	0	HOH V	22	29.529	39.171	20.916	1.00	36.73	0	
ATOM ATOM	2121	Ö	HOH V	23	26.956	19.335	8.080	1.00	37.09 27.10	0	
ATOM	2123	ŏ	HOH V	24	17.942	26.092	21.769 14.123	1.00	37.60	ŏ	
ATOM	2124	0	HOH V	25	30.129	36.843 35.078	38.228	1.00	37.66	0	
ATOM	2125	0	HOH V	26	26.979 11.702	12.320	-11.449	1.00	37.83	0	
ATOM	2126	0	HOH V	27 28	24.019	40.426	26.459	1.00	38.20	0	
MOTA	2127 2128	0	HOH V	29	32.889	38.167	8.976	1.00	38.30	0	
ATOM ATOM	2129	ŏ	HOH V	30	26.368	37.122	27.563	1.00	38.38 20 65	ő	
MOTA	2130	Ō	HOH V	31	26.038	37.728	37.444 6.895	1.00	38.91	ō	
MOTA	2131	0	HOH V	32	-0.184 24.132	22.111 19.988	-1.108	1.00	39.60	0	
MOTA	2132	0	HOH V	33 34	17.228	26.642	24.728	1.00	39.66	0	
MOTA	2133	0	HOH V	35	24.430	17.401	-1.616	1.00	40.07	0	
MOTA MOTA	2134 2135	Ö	HOH V	36	14.466	37.465	9.931	1.00	40.09	0	
ATOM	2136	ŏ	HOH V	37	38.590	23.562	23.909	1.00	40.15 40.16	Ö	
MOTA	2137	0	HOH V	38	20.064 5.285	26.866 36.507	31.634 11.739	1.00	40.86	Ċ	
ATOM	2138	0	HOH V	39	5.285	30.530	16.484	1.00	40.87	C	
ATOM	2139	0	HOH V	40 41	24.115	12.660	27.541	1.00	40.92	C	
ATOM ATOM	2140 2141	0	V HOH	42	23.756	5.602	14.704	1.00	41.17	C	
MOTA	2142	ŏ	HOH V	43	10.524	40.707	27.825 20.648	1.00	41.34 41.58	Č	
ATOM	2143	0	HOH V	44	26.115	7.036 14.371	0.739	1.00	41.86	C)
<u>vā.</u> OM	2144	0	HOH V	45	22.909 38.001	12.389	26.816	1.00	42.12	Ç	
MOTA	2145	0	HOH V	46 47	27.038	38.349	22.646	1.00	42.13))
MOTA MOTA	2146 2147	0	HOH V	48	27.926	38.210	14.696	1.00	42.24		5
MOTA	2148	ŏ	HOH V	49	19.208	17.322	27.275	1 00	42.36 42.43		5
ATOM	2149	0	нон V		17.702	22.996 40.403	26.002 26.071	1.00	42.44		0
MOTA	2150	0	HOH V		21.518 29.008	37.276	26.773	1.00	42.97		0
MOTA	2151	0	нон V нон V		16.797	40.023	17.063	1.00	43.20		0
MOTA	2152 2153	0	HOH V		27.959	18.192	30.078	1.00	43.25		0
MOTA MOTA	2154		HOH V		27.189	38.094	30.644	1.00	43.31 43.36		ŏ
ATOM	2155	0	HOH V		32.853		27.654 28.345	1.00	43.59		0
MOTA	2156		HOH V		25.498 26.277		24.349	1.00	43.69		0
ATOM	2157	0	HOH V		24.431	4.474	16.791		43.83		0
ATOM ATOM	2158 2159		HOH V		17.931	21.585			43.86		0 0
ATOM	2160		HOH V	61	3.622				43.90 44.03		ŏ
ATOM	2161	. 0	HOH V		29.565	0.033 27.196			44.11		0
MOTA	2162		HOH V		37.471 14.114			1.00	44.14		0
ATOM	2163		/ НОН / НОН		32.375			1.00	44.29		0
MOTA MOTA	2164 2165		7 HOH		23.674	14.801	_1.168		44.29		0
ATOM	2166		ИОН 7		10.607		4.126		44.59 45.31		ŏ
MOTA	2167		/ HOH		5.553		, -4.232 , -3.851		45.45		Ō
MOTA			HOH V		18.683 31.216			1.00	45.65		0
ATOM			HOH 7		32.042		12.898	1.00	45.78		0
MOTA MOTA			HOH T		41.57	18.538	3 20.942	1.00	45.85		0
ATOM			нон ч	_	24.52	9 18.718			45.93 45.97		ŏ
ATOM	2173	3 0	нон ч		12.53				46.25		Õ
MOTA	2174				41.60 21.19			1 1.00	46.47		0
ATOM					29.51				46.60		0
MOTA	2176			• • •	- •						

ATOM	2177	0	HOH V 78	32.636	35.308	17.598	1.00 47.00	
ATOM	2178	ŏ	HOH V 79	13.479	40.537	21.946	1.00 47.13 1.00 47.21	
ATOM	2179	Õ	HOH V 80	32.129	25.488	3.702	1.00 47.21	
ATOM	2180	0	HOH V 81	5.317	15.523	10.878	1.00 47.24	
ATOM	2181	0	HOH V 82	14.590	12.994 -	32.632	1.00 47.42	
MOTA	2182	0	HOH V 83	31.688	18.521 41.724	24.627	1.00 47.58	
ATOM	2183	0	HOH V 84	17.527	27.645	-6.136	1.00 47.76	
ATOM	2184	0	HOH V 85	2.758 39.479	15.402	9.361	1.00 47.77	
MOTA	2185	0	HOH V 86	27.097	39.457	7.716	1.00 47.80	
MOTA	2186	Ó	HOH V 87 HOH V 88	14.854	38.493	18.833	1.00 48.18	
MOTA	2187	0	HOH V 88	16.442	28.965	31.902	1.00 48.22	
MOTA	2188	0	HOH V 90	6.592	18.094	16.102	1.00 48.28	
MOTA	2189 2190	0	HOH V 91	25.862	43.114	20.667	1.00 48.28	
MOTA	2191	ŏ	HOH V 92	25.820	31.283	38.083	1.00 48.37	
MOTA MOTA	2192	ŏ	HOH V 93	21.448	8.215	-6.909	1.00 48.43	
ATOM	2193	ŏ	HOH V 94	30.315	7.953	13.447	1.00 48.47 1.00 48.50	
ATOM	2194	Ō	HOH V 95	11.333	3.609	-1.448	1.00 48.54	
ATOM	2195	0	HOH V 96	25.475	26.684	-3.988	1.00 48.57	
MOTA	2196	0	HOH V 97	21.825	7.068	6.249 9.743	1.00 48.67	
ATOM	2197	0	HOH V 98	26.277	39.627 33.053	31.840	1.00 48.70	
MOTA	2198	0	HOH V 99	10.637 8.248	10.674	15.177	1.00 48.90	
MOTA	2199	0	HOH V 100	5.925	25.750	18.970	1.00 48.97	
MOTA	2200	Ó	HOH V 101 HOH V 102	15.403	29.322	-7.859	1.00 49.09	
MOTA	2201	0	HOH V 102	3.536	35.057	9.239	1.00 49.16	
MOTA	2202 2203	0	HOH V 103	24.615	19.046	6.759	1.00 49.20	
MOTA MOTA	2203	ő	HOH V 105	26.458	22.354	32.348	1.00 49.22	
ATOM	2205	ŏ	HOH V 106	29.329	9.438	8.558	1.00 49.24	
ATOM	2206	ŏ	HOH V 107	38.968	26.081	25.260	1.00 49.30 1.00 49.55	
MOTA	2207	Ō	HOH V 108	33.166	31.078	20.463	1.00 49.55	
ATOM	2208	0	HOH V 109	23.661	41.348	9.046 -2.103	1.00 49.58	
MOTA	2209	0	HOH V 110	-1.905	38.422	32.172	1.00 49.84	
MOTA	2210	0	HOH V 111	23.567	25.829 28.173	18.167	1.00 49.89	
ATOM	2211	0	HOH V 112	39. <u>1</u> 74 6.546	17.330	-8.809	1.00 50.15	
MOTA	2212	0	HOH V 113 HOH V 114	15.378	36.610	16.329	1.00 50.24	
ATOM	2213	0	HOH V 114	24.014	21.545	30.393	1.00 50.25	
MOTA	2214 2215	0	HOH V 116	13.119	40.412	25.848	1.00 50.51	
ATOM ATOM	2216	ŏ	HOH V 117	34.344	32.657	10.572	1.00 50.99	
ATOM	2217	ŏ	HOH V 118	26.462	26.162	35.827	1.00 51.01	
ATOM	2218	Ö	HOH V 119	37.119	20.213	15.138	1.00 51.01 1.00 51.21	
MOTA	2219	0	HOH V 120	20.402 32.907 18.316	7.809		1.00 51.21	
ATOM	2220	0	HOH V 121	32.907	23.096 15.239		1.00 51.36	
MOTA	2221	0	HOH V 122	18.316 22.210	27.272		1.00 51.39	
MOTA	2222	0	HOH V 123		34.446		1.00 51.56	
MOTA	2223	0	HOH V 124 HOH V 125	-11.176	24.480	-12.026	1.00 51.70	
MOTA	2224		HOH V 125	29.201	40.901	16.488	1.00 51.72	
MOTA	2225 2226	0	HOH V 127	-14.169		-15.792	1.00 51.83	
ATOM	2227		HOH V 128	27.174	21.751		1.00 51.83	
MOTA MOTA	2228		HOH V 129	12.661	30.921			
ATOM	2229		HOH V 130	16.175				
ATOM	2230		HOH V 131	20.211	40.398	29.373		
MOTA	2231		HOH V 132	-13.899		-18.098 16.408		
MOTA	2232	0	HOH V 133	15.844	9.719 39.552			
MOTA	2233		HOH V 134	31.386 0.640				
ATOM	2234		HOH V 135	42.270			1.00 52.68	
MOTA	2235		нон V 136 нон V 137	17.490			1.00 52.79	
MOTA	2236		HOH V 137	29.839	40.760	8.920	1.00 52.82	•
MOTA	2237 2238		HOH V 139	4.290		9.865		
ATOM ATOM			HOH V 140	19.892	7.267	7 -2.229		
ATOM			HOH V 141	9.212	2 35.423		1.00 53.10	
MOTA			HOH V 142	31.95		37.099	1.00 53.23 1.00 53.27	
ATOM		_	4 4 7	40.970	31.344	14.438	1.00 33.27	

WO 03/093312 PCT/EP03/04433

MOTA	2243	0	HOH V 144	40.7		22.485	20.153	1.00 53.4	
ATOM	2244	0	HOH V 145	4.6		33.007		1.00 53.6 1.00 53.6	
MOTA	2245	0	HOH V 146	12.4		42.730	-6.583 23.343	1.00 53.9	
MOTA	2246	0	HOH V 147	30.1		41.753 19.731	15.626	1.00 54.0	
ATOM	2247	0	HOH V 148	40.3 9.9			-10.125	1.00 54.0	
MOTA	2248	0	HOH V 149	35.6		26.966	10.324	1.00 54.1	
MOTA	2249	0	HOH V 150 HOH V 151	3.2		13.849	9.818	1.00 54.3	
ATOM	2250	0	HOH V 151	8.9		41.917	8.500	1.00 54.3	13
MOTA	2251 2252	0	HOH V 152	25.4		7.351	8.323	1.00 54.3	
ATOM ATOM	2253	Ö	HOH V 154	-19.8		30.788	-6.983	1.00 54.3	14
ATOM	2254	ŏ	HOH V 155	28.1	L90	2.825	26.243	1.00 54.2	
ATOM	2255	ŏ	HOH V 156	14.7	754	37.385	13.109	1.00 54.3	
ATOM	2256	0	HOH V 157	13.9			-11.887	1.00 54.	
MOTA	2257	Ö	HOH V 158	5.6		27.878	16.557	1.00 54.5 1.00 54.5	
MOTA	2258	0	HOH V 159	35.6		5.102	13.754 -1.504	1.00 54.	
MOTA	2259	0	HOH V 160	24.3		35.094 18.154	4.417	1.00 54.	
MOTA	2260	0	HOH V 161	28.3 34.8		34.791	30.514	1.00 54.	
MOTA	2261	0	HOH V 162 HOH V 163		910	16.781	14.763	1.00 55.	
MOTA	2262 2263	0	HOH V 164	11.0	023	5.038	5.200	1.00 55.	13
MOTA	2264	0	HOH V 165	39.		17.117	25.841	1.00 55.	
ATOM ATOM	2265	ŏ	HOH V 166	24.3		37.780	-6.091	1.00 55.	
ATOM	2266	ŏ	HOH V 167	20.	889	19.941	29.200	1.00 55.	
ATOM	2267	ŏ	HOH V 168		752		-14.805	1.00 55.	
MOTA	2268	0	HOH V 169	25.		5.963	12.276	1.00 55. 1.00 55.	50 51
MOTA	2269	0	HOH V 170	28.		39.754	12.521	1.00 55.	21
MOTA	2270	0	HOH V 171	11.		13.390 35.439	$14.244 \\ 2.257$	1.00 55.	
MOTA	2271	0	HOH V 172	24.		34.403	25.458	1.00 55.	
MOTA	2272	0	HOH V 173	36.	631	6.595	3.959	1.00 55.	
ATOM	2273	0	HOH V 174 HOH V 175	38.		17.337	8.038	1.00 55.	
ATOM	2274 2275	0	HOH V 175		834	36.938	9.105	1.00 55.	
ATOM ATOM	2276	ŏ	HOH V 177	30.		6.285	15.282	1.00 55.	
ATOM	2277	ŏ	HOH V 178	36.	456	34.296	14.233	1.00 55.	
ATOM	2278	ō	HOH V 179	-16.		27.510	-6.376	1.00 56.	
ATOM	2279	Ó	HOH V 180		830	28.498	-7.217	1.00 56.	
ATOM	2280	0	HOH V 181		092	42.066	23.041	1.00 56. 1.00 56.	
MOTA	2281	0	HOH V 182		854	20.918 36.555	3.041 20.279	1.00 56.	
MOTA	2282	0	HOH V 183		531 161	9.790	11.459	1.00 56.	
ATOM	2283	0	HOH V 184 HOH V 185		947	21.061	33.802	1.00 56.	
MOTA	2284 2285	0	HOH V 185		419	10.917	12.329	1.00 57.	
ATOM ATOM	2286	0	HOH V 187		731	21.349	33.562	1.00 57.	
ATOM	2287	ŏ	HOH V 188		127	34.435	-7.921	1.00 57.	
ATOM	2288	ŏ	HOH V 189		815	39.636	5.433	1.00 57.	
ATOM	2289	0	HOH V 190		135		~10.450	1.00 57. 1.00 57.	
MOTA	2290	0	HOH V 191	28.	755	27.074	-0.804 20.845	1.00 58	. 30 . 09
ATOM	2291	0	HOH V 192		694	28.335 17.839		1.00 58	
MOTA	2292	0	HOH V 193		.094 .739	12.034		1.00 58	
MOTA	2293	0	HOH V 194 HOH V 195		658	34.834		1.00 58	
MOTA	2294 2295	0	HOH V 195		325	23.731		1.00 58	.22
MOTA MOTA	2296	ő	HOH V 197		239	32.219		1.00 58	
ATOM	2297	ŏ	HOH V 198		.009	17.600	28.618	1.00 58	
ATOM	2298	ŏ	HOH V 199	13.	. 977	43.767		1.00 58	
ATOM	2299	ŏ	HOH V 200		.099	2.261		1.00 58	.43
MOTA	2300	0	HOH V 201		.967	4.492		1.00 58 1.00 58	
ATOM	2301	0	HOH V 202		.860	29.231		1.00 58	
MOTA	2302	0	HOH V 203		.071 .529	45.087 32.968		1.00 59	
ATOM	2303	0	HOH V 204		.799	19.843		1.00 59	
MOTA	2304	0	HOH V 205 HOH V 206		.137	24.412		1.00 59	. 65
ATOM ATOM	2305 2306	0	HOH V 200		.855	22.367	32.296	1.00 59	.84
ATOM	2307	ő	HOH V 208		.008	31.149	11.774	1.00 59	
ATOM	2308		HOH V 209	25	.290	39.928	29.735	1.00 59	.89

л птом	2309	0	HOH V 210	20.546	26.076	-5.981	1.00 60.27	0
ATOM ATOM	2310	ŏ	HOH V 211	7.922	7.232	-0.636	1.00 60.32	0
ATOM	2311	ŏ	HOH V 212	7.268	35.864		1.00 60.42	0
ATOM	2312	ŏ	HOH V 213	5.789	26.044	-10.740	1.00 60.43	0
ATOM	2312	ŏ	HOH V 214	26.552	14.136	-0.935	1.00 60.54	0
ATOM	2314	ŏ	HOH V 215	41.103	32.645	22.002	1.00 60.87	0
ATOM	2315	ŏ	HOH V 216	10.211	45.156	8.475	1.00 61.19	0
ATOM	2316	ŏ	HOH V 217	25.176	9.626	5.053	1.00 61.26	0
ATOM	2317	ŏ	HOH V 218	11.154	41.223	20.664	1.00 61.36	0
ATOM	2318	ŏ	HOH V 219	12.673	39.495	16.829	1.00 61.48	0
ATOM	2319	ŏ	HOH V 220	6.931	21.130	20.882	1.00 61.81	0
MOTA	2320	ŏ	HOH V 221	34.324	35.314	27.782	1.00 61.99	0
ATOM	2321	ŏ	HOH V 222	22.533	27.773	-4.889	1.00 62.36	0
ATOM	2322	ŏ	HOH V 223	26.615	24.563	-3.514	1.00 62.43	0
ATOM	2323	ŏ	HOH V 224	22.620	8.612	-0.252	1.00 62.66	0
MOTA	2324	ō	HOH V 225	7.850	40.686	5.273	1.00 62.89	0
ATOM	2325	ŏ	HOH V 226	13.072	10.222	19.270	1.00 62.97	0
ATOM	2326	ō	HOH V 227	36.863	23.365	8.281	1.00 63.29	0
ATOM	2327	Ō	HOH V 228	3.086	21.555	0.662	1.00 63.45	0
ATOM	2328	0	HOH V 229	40.090	16.185	28.416	1.00 63.62	0
ATOM	2329	0	HOH V 230	28.499	41.692	20.652	1.00 63.74	0
ATOM	2330	0	HOH V 231	5.053	21.524	-0.933	1.00 63.76	0
ATOM	2331	0	HOH V 232	18.279	22.767	-9.711	1.00 63.86	0
MOTA	2332	0	HOH V 233	4.021	13.207	14.475	1.00 64.13	0
ATOM	2333	0	HOH V 234	20.707	46.785	18.023	1.00 64.17	0
ATOM	2334	0	HOH V 235	18.269	24.266	-5.185	1.00 64.61	0
ATOM	2335	0	HOH V 236	-1.075	31.083	6.459	1.00 64.71	0
MOTA	2336	0	HOH V 237	36.067	6.771	10.766	1.00 64.72	0
MOTA .	2337	0	нон у 238	41.379	11.059	22.312	1.00 64.85	. 0
ATOM	2338	0	HOH V 239	2.764	21.069	-4.139	1.00 64.89	0
ATOM	2339	0	HOH V 240	36.774	12.493	29.500	1.00 64.91	Ö
MOTA	2340	0	HOH V 241	33.576	7.054	15.865	1.00 65.14 1.00 65.39	0
MOTA	2341	0	HOH V 242	14.783	25.737	26.607	1.00 65.39	Ö
MOTA	2342	0	HOH V 243	19.632	29.934	-8.079	1.00 65.40	ő
MOTA	2343	0	HOH V 244	19.893	42.353	12.315 32.883	1.00 65.15	ŏ
ATOM	2344	0	HOH V 245	30.511	40.345	-13.514	1.00 66.20	ŏ
MOTA	2345	0	HOH V 246	6.494 41.592	29.824	26.952	1.00 67.14	ŏ
ATOM	2346	0	HOH V 247	10.095	12 065	-13.010	1.00 68.08	ŏ
MOTA	2347	0	HOH V 248	28.076	13.999	7.164	1.00 68.53	ō
MOTA	2348	0	HOH V 249 HOH V 250	16.142	3.364	3.323	1.00 68.80	Ö
ATOM	2349	0	HOH V 250	11.453	41.019	-1.487	1.00 68.99	Ō
ATOM	2350	0	HOH V 252	22.049	30.697	36.943	1.00 69.14	0
ATOM	2351 2352	0	HOH V 252	31.306	29.631	39.320	1.00 69.25	0
MOTA	2352	0	HOH V 254	26.120	35.578	0.298	1.00 69.34	0
ATOM ATOM	2354	Ö	HOH V 255	37.240	33.402	37.433	1.00 69.56	0
ATOM	2355	ŏ	HOH V 256	14.450	19.763	22.059	1.00 70.09	0
ATOM	ددد	U	11011 4 200	22.200				