Computing the Reachable Matrix

Warshall's algorithm constructs a sequence of $n \times n$ matrices R_0 , R_1, \ldots, R_n where:

- n is the number of vertices of the graph.
- R₀ is obtained from the adjacency matrix A by replacing the positive elements with ones.
- The reachable matrix R is obtained from R_n changing the diagonal elements of R_n into ones.

Denote the elements of the matrices R_k by

$$R_k = [r_{ij}^{(k)}]_{1 \leq i,j \leq n}, \quad k = 0, 1, 2, \dots, n,$$

then Warshall's algorithm computes these elements as

$$r_{ij}^{(k)}=1 \Longleftrightarrow \left\{egin{array}{l} r_{ij}^{(k-1)}=1 \ & oldsymbol{\acute{o}} \ r_{ik}^{(k-1)}=r_{kj}^{(k-1)}=1 \end{array}
ight. \ k=1,2,\ldots,n.$$

Computing the Reachable Matrix

Example. Consider the graph with adjacency matrix

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Compute the reachable matrix R using the Warshall's algorithm.

R₀ is obtained from the adjacency matrix A by replacing the positive elements with ones.

$$A = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

Computing the Reachable Matrix

$$\mathsf{R}_0 = \begin{bmatrix} \begin{smallmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies r_{ij}^{(k)} = 1 \Longleftrightarrow \begin{cases} \begin{matrix} r_{ij}^{(k-1)} = 1 \\ \bullet \\ r_{ik}^{(k-1)} = r_{kj}^{(k-1)} = 1 \end{matrix} \\ k = 1, 2, \dots, n. \end{cases}$$

Now R₁ is computed from R₀ applying algorithm:

•Entry r⁽¹⁾11

i=1

k=1

$$r^{(0)}_{11} = 0$$

 $r^{(0)}_{11} = 0$

•Entry r⁽¹⁾22

j=2

k=1

Elements to

compare:

$$r^{(0)}_{21} = 1$$

 $r^{(0)}_{12} = 1$

$$r^{(1)}_{22} = 1$$

$$r^{(1)}_{22}=1 \qquad \qquad \boxed{\begin{array}{c|c} 0 & 1 \\ 1 & 1 & 1 \\ & & 1 \end{array}}$$

Computing the Reachable Matrix

Remark: Note that building iteration **k**, the elements to compare are in **row k** and **column k**.

First: Mark row k, column k

Second: copy the ones

Third: Compare ik with ki (draw a cross)

From
$$R_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 \Rightarrow $R_1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

From
$$R_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 \Rightarrow $R_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ & & & 1 \end{bmatrix}$ \Rightarrow $R_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

From
$$R_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 $R_3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

From
$$R_3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix}$$
 $R_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Computing the Reachable Matrix

•The reachable matrix R is obtained from R_n changing the diagonal elements of R_n into ones.

$$R_4 = \left[egin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{array}
ight] \hspace{3cm} R = \left[egin{array}{ccccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{array}
ight]$$