LV.TST.1979.10.2: Pierādīt, ka eksistē tāds naturāls skaitlis n, ka $n^2 + 1$ dalās ar 5^{1979} .

LV.TST.1985.11.2: Pierādīt, ka eksistē 1985 pēc kārtas ņemti naturāli skaitļi, no kuriem neviens nav naturāla skaitļa pakāpe, augstāka par pirmo.

LV.TST.2004.3: Skaitļu virkni a_0, a_1, a_2, \ldots veido sekojoši: $a_0 = 1$; $a_1 = 1$; $a_{n+2} = 7a_{n+1} - a_n - 2$ pie $n \ge 0$. Pierādīt, ka visi virknes locekli ir naturālu skaitlu kvadrāti.

LV.TST.2012.1: Ar S(n) apzīmēsim skaitļa x ciparu summu. Aprēķināt $S(S(S(2^{2012})))$.

LV.TST.2014.4: Pierādīt, ka vienādojumam $(a - b)^2 = 6ab + 7$ nav atrisinājuma naturālos skaitļos.

LV.TST.2015.3: Naturālus skaitļus x un y sauc par draudzīgiem, ja xy + 1 ir naturāla skaitļa kvadrāts. Piemēram, skaitļi 2 un 40 ir draudzīgi. Pierādīt: ja skaitļi a un b ir draudzīgi, tad eksistē tāds naturāls skaitlis c, ka vienlaikus a un c ir draudzīgi, un arī b un c ir draudzīgi.

LV.TST.2015.4: Atrast visas funkcijas, kas definētas veseliem skaitļiem un pieņem veselas vērtības, tādas, ka f(1) = f(-1) un visiem veseliem x un y izpildās

$$f(x) + f(y) = f(x + 2xy) + f(y - 2xy)$$

.

LV.TST.2016.3: Atrast visus tādus pirmskaitļus p, ka $3^{p^2-1} + 20$ arī ir pirmskaitlis!

LV.TST.2016.5: Vai eksistē tāda bezgalīga naturālu skaitļu virkne (a_n) , ka katram naturālam n, skaitļu a_{n+1} , a_{n+2} , ..., a_{n+a_n} vidējais aritmētiskais ir vienāds ar n?

LV.TST.2018.3: Pierādīt, ka vienādojumam $5m^2-6mn+7n^2=20182018$ nav atrisinājuma naturālos skaitļos!

Henzela Lemma. Pieņemsim, ka P(x) ir polinoms ar veseliem koeficientiem, bet p ir pirmskaitlis. Ja r ir P(x) vienkārša sakne (t.i. $P(r) \equiv 0$ un $P'(r) \not\equiv 0$ pēc p moduļa), tad polinomam P(x) eksistē vienkārša sakne arī pēc jebkura moduļa p^k , kur k > 1.

 $Piem\bar{e}rs.\ P(x)=x^2-2$ eksistē sakne $x_0=3$ pēc 7 moduļa. Vienlaikus, atvasinājumam P(x)=2x šī $x_0=3$ nav sakne (tātad x_0 ir vienkārša sakne). Tādēļ var atrast atrisinājumu arī kongruencēm $x^2-2\equiv 0$ pēc jebkura 7^k . Piemēram, šis skaitlis

$$3 + 1 \cdot 7 + 2 \cdot 7^2 + 6 \cdot 7^3 + 1 \cdot 7^4 + 2 \cdot 7^5 + 1 \cdot 7^6 + 2 \cdot 7^7 + 4 \cdot 7^8$$

būs sakne polinomam $P(x) = x^2 - 2$ pēc 7^8 .

"Baltic Way" atlases sacensības: Skaitļu teorija. Uzdevumi - http://www.dudajevagatve.lv/nt/index.html			
$(a+b)^4 = a^4 +$	Binomiālie koeficienti: $(a + b)^n = a^n +$	$(a+b+c+d)^4 =$	Polinomiālie koeficienti: $(a_1 + a_2 + \cdots + a_m)^n$
$4a^3b + 6a^2b^2 + 4ab^3 + b^4.$	$\binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + b^n$, kur $\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$.	+ $12a^2bc$ +, jo $\frac{4!}{2!1!1!}$ =	izvirzījums satur $a_1^{k_1}a_2^{k_2}\cdots a_m^{k_m}$ ar koeficientu $\frac{n!}{k_1!k_2!\cdots k_m!}, \text{ ja } k_1+k_2+\cdots+k_m=n.$
$a^3 + b^3 = (a + b)^2$	Nepāru pakāpju summa: $a^{2n+1} + b^{2n+1} =$	12. $a^3 - b^3 = (a - b^3)^2 + (a^3 - b^3)^2 $	Pakāpju starpība: $a^n - b^n = (a - b)(a^{n-1} +$
$b)(a^2 - ab + b^2).$ $ax^2 + bx + c =$	$(a+b)(a^{2n}-a^{2n-1}b+\cdots-ab^{2n-1}+b^{2n}).$ Identiski polinomi: Ja $P(x)$ un $Q(x)$ ir n -	$b)(a^2+ab+b^2).$ $P(x) = 4x^3 -$	$a^{n-2}b + \cdots + ab^{n-2} + b^{n-1}$. Polinoms $P(x)$ dalās ar $(x-a)$ tad un tikai tad,
$0 \text{ ir } 3 \text{ saknes} \Rightarrow \\ a = b = c = 0$	tās pakāpes polinomi un to vērtības sakrīt $n+1$ dažādiem x_i , tad $P(x)=Q(x)$.	$3x^2 - 25x - 6$ $dal\bar{a}s \text{ ar } (x-3).$	ja a ir $P(x)$ sakne.
(x-1)(x-1) $(x-5) = x^3 -$	Vispārināta Vjeta teorēma: Ja n -tās pakāpes polinomam $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$	3x - 2 = 0 $sakne x = 2/3.$	Racionālo sakņu teorēma: Ja polinomam ar veseliem koeficientiem
$7x^2 + 11x - 5$ jo 1 + 1 + 5 = 7,	ir n reālas saknes r_1, \ldots, r_n , tad $a_0 = (-1)^n r_1 r_2 \cdots r_n$,		$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$
$ 1 \cdot 1 + 1 \cdot 5 + 1 \cdot 5 = 11, 1 \cdot 1 \cdot 5 = 5. $	$a_{n-2} = \sum_{i,j \in \overline{1,n}} r_i r_j,$ $a_{n-1} = -(r_1 + r_2 + \dots + r_n).$		ir racionāla sakne $x=p/q,$ kur $a,b\in\mathbb{Z},$ tad a_0 dalās ar $p,$ bet a_n dalās ar $q.$
Dalāmība un pirmskaitļi: Veseliem a un d ($d \neq 0$) rakstām $d \mid a$, ja a dalās ar d . Atlikums, a dalot ar b : ($a \mod b$).			
Pirmskaitļu 2, 3, 5, ir bezgalīgi daudz. (No pretējā: ja būtu galīgs skaits, tad $p_1p_2\cdots p_k+1$ nedalītos ne ar vienu no tiem.) Eksistē cik patīk garas \mathbb{N} apakšvirknes bez pirmskaitļu (Piemēram, $m!+2, m!+3, m!+m$ satur $m-1$ saliktu skaitli.)			2, m! + 3, m! + m satur $m - 1$ saliktu skaitli.)
$2016 = 2^5 3^2 7.$ $2017 = 2017^1.$ $2018 = 2 \cdot 1009.$	Aritmētikas pamatteorēma: Katru $n \in \mathbb{N}$ var tieši vienā veidā izteikt kā pirmskaitļu pakāpju reizinājumu: $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$.	$60 = 2^2 \cdot 3^1 \cdot 5^1$ ir $3 \cdot 2 \cdot 2 = 12$ dalītāji.	Dalītāju skaits: Katram $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ pozitīvo dalītāju skaits, ieskaitot 1 un n , ir $d(n) = (a_1 + 1) \cdots (a_k + 1)$.
100: 9 dalītāji; 1000: 16 dal.	Dalītāju skaits: Skaitlis $n \in \mathbb{N}$ ir pilns kvadrāts t.t.t., ja tam ir nepāru skaits pozitīvu dalītāju.	n = 12: $(1, 12)$, $(2, 6)$ un $(3, 4)$.	Dalītāju pāri: Visus n dalītājus (izņemot \sqrt{n}) var grupēt pāros: $d_1 < \sqrt{n} < d_2$, kur $d_2 = n/d_1$.
gcd(192, 78) =	Eiklīda algoritms:	Piemērs polinomiem:	
$\gcd(78,36) = \gcd(36,6) =$	<pre>function gcd(a, b) if (b == 0) { return a; }</pre>	$\gcd(n^2+3, n^2+2n+4) = \gcd(n^2+3, 2n+1) = \gcd(2n^2+6, 2n+1) = \gcd(-n+6, 2n+1) = \gcd(n-6, 13).$	
$\gcd(6,0)=6.$	<pre>else { return gcd(b, a mod b); }</pre>	gea (210 0,210	+1) = gea(-n+0,2n+1) = gea(n-0,10).
$a = 8, b = 13$ $\Rightarrow 5a - 3b = 1.$	Bezū lemma: Ja $a, b \in \mathbb{N}$ un $d = \gcd(a, b)$, tad eksistē $x, y \in \mathbb{Z}$, kam $ax + by = d$. Eiklīda lemma: Dots pirmskaitlis p un $a, b \in \mathbb{Z}$. Ja $p \mid ab$, tad $p \mid a$ vai $p \mid b$.	$(n_1, n_2, n_3) =$ (2, 3, 5), $(x_1, x_2, x_3) =$ $(1, 2, 3) \Rightarrow x \equiv$ $23 \pmod{30}.$	Ķīniešu atlikumu teorēma: Ja n_1, \ldots, n_k ir naturāli skaitļi, $\gcd(n_i, n_j) = 1$ visiem $i \neq j$, tad visiem naturāliem x_1, \ldots, x_k eksistē tieši viena kongruenču klase x pēc moduļa $n = n_1 \cdots n_k$, kam $x \equiv x_i \pmod{n_i}$ visiem i .
Pakāpes pacelšanas lemmas: Kā noteikt $\nu_p(a^n \pm b^n)$. Burtu ν lasa "nī": $\nu_p(n) = a$, ja pirmskaitlis p ir n pirmreizinātājs pakāpē a . Lifting the Exponent Lemmas.			
1001001 · 111 ·	Lemma 1: Ja x un y ir veseli skaitļi (ne obligāti	$\nu_{11}(10^{121} + 1)$	Lemma 2: Ja x un y ir veseli skaitļi (ne obligāti
9 = 999999999 un $\nu_3(10^9 - 1^9) = 4$.	pozitīvi), n ir naturāls skaitlis un p ir nepāru pirmskaitlis tāds, ka $p \mid x - y$, bet ne x ne y nedalās ar p , tad $\nu_p (x^n - y^n) = \nu_p (x - y) + \nu_p (n)$.	$= \nu_{11}(10+1) + \nu_{11}(121) = 1 + 2 = 3.$	pozitīvi), n ir nepāru naturāls skaitlis un p ir nepāru pirmskaitlis tāds, ka $p \mid x+y$, bet ne x ne y nedalās ar p , tad $\nu_p(x^n+y^n)=\nu_p(x+y)+\nu_p(n)$.
$\nu_2(5^{128} - 1) = 2 + 7 = 9.$	Lemma 3: Ja x un y ir nepāru skaitļi, kam $x-y$ dalās ar 4, tad $\nu_2(x^n-y^n)=\nu(x-y)+\nu_2(n)$.	$\nu_2(3^{16} - 1) = 1 + 2 + 4 - 1 = 6.$	Lemma 4: Ja x un y ir divi nepāru veseli skaitļi un m ir pāru naturāls skaitlis. Tādā gadījumā: $\nu_2(x^m-y^m)=\nu_2(x-y)+\nu_2(x+y)+\nu_2(m)-1.$
Kongruences: Veseliem a, b, m rakstām $a \equiv b \pmod{m}$, ja $a - b$ daļās ar m .			
$1^6 \equiv 2^6 \equiv 3^6 \equiv 4^6 \equiv 5^6 \equiv 6^6 \equiv 1 \pmod{7}.$	Mazā Fermā teorēma: Ja p ir pirmskaitlis un $gcd(a, p) = 1$, tad $a^{p-1} \equiv 1 \pmod{p}$.	$3^k \equiv 3, 2, 6, 4,$ 5, 1 (mod 7) ja $k = 1, \dots, 6.$	Primitīvā sakne: Katram pirmskaitlim p eksistē tāds a , kuram kongruenču klases a^1, a^2, \dots, a^{p-1} pieņem visas vērtības $1, 2, \dots, p-1$.
Skaitļi ar neparastām īpašībām: Fermā skaitļi, Mersena skaitļi, Viferiha skaitļi.			
$F_{0,\dots,4} = 3, 5, 17, 257, 65537.$	Ja $2^n + 1$ ir pirmskaitlis, tad n jābūt 2^k . Skaitļus $F_n = 2^{2^k} + 1$ sauc par Fermā (Fermat) skaitļiem; pirmie pieci no tiem ir pirmskaitļi (nav zināms, vai ir vēl kāds pirmskaitlis F_k , $k > 4$).	$W_1 = 1093,$ $W_2 = 3511.$	Par Viferiha (<i>Wieferich</i>) pirmskaitļiem sauc pirmskaitļus p , kam 2^{p-1} dalās ne vien ar p (Mazā Fermā teorēma), bet uzreiz ar p^2 . Šobrīd zināmi tikai divi Viferiha pirmskaitļi.
$M_{2,3,5,7,13} = 3,7,31,127,8191$	Ja $M_p=2^p-1$ ir pirmskaitlis, tad p jābūt pirmskaitlim. Pirmskaitļus šajā formā sauc par Mersena pirmskaitļiem. Bet $2^{11}=2047=23\cdot 89$, t.i. visi M_p nav pirmskaitļi.	$561 = 3 \cdot 11 \cdot 17$	Par Karmaikla ($Carmichael$) skaitļiem sauc saliktus skaitļus n , kas apmierina Fermā teorēmai līdzīgu apgalvojumu: Visiem b , kam nav kopīgu dalītāju ar n : $b^{n-1} \equiv 1 \pmod{n}$. 561 der, jo $(3-1) \mid 560, (10-1) \mid 560,$ and $16 \mid 560$ (Korselta kritērijs).