```
In [134]: import pandas as pd
import numpy as np
from IPython.display import HTML, display
```

```
In [135]: df = pd.read_json('purchase_data.json')
    df.head()
```

Out[135]:

	Age	Gender	Item ID	Item Name	Price	SN
0	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46
2	34	Male	174	Primitive Blade	2.46	Assastnya25
3	21	Male	92	Final Critic	1.36	Pheusrical25
4	23	Male	63	Stormfury Mace	1.27	Aela59

```
Total Number of Players: 573
```

```
In [137]: unique_items = len(df["Item ID"].value_counts())
    average_price = round(df["Price"].mean(), 2)
    total_purchases = df.count()[0]
    total_revenue = round(df["Price"].sum(), 2)

data2 = [
        ["Number of Unique Items: ", "Average Purchase Price: ", "Total Nu mber of Purchases: ", "Total Revenue: "],
        [unique_items, average_price, total_purchases, total_revenue],
        ]

display(HTML('{}'.format(''.format(''.join('>{}'.format(''.format(''.format('
'.format('
'.format('
'.format('
'.format('
'.format('
'.format('
'.format('
'.format('
'.format('
```

Number of Unique Items:	Average Purchase Price:	Total Number of Purchases:	Total Revenue:
183	2.93	780	2286.33

```
In [138]: group_gender = df.groupby(by="Gender")
    [female_count, male_count, other_count] = group_gender["SN"].nunique()
    male_pct = male_count/(male_count + female_count + other_count)
    female_pct = female_count/(male_count + female_count + other_count)
    other_pct = other_count/(male_count + female_count + other_count)

data3 = [
    ["","Percentage","Count"],
    ["Male", str(round(male_pct*100)) + "%", male_count],
    ["Female", str(round(female_pct*100)) + "%", female_count],
    ["Other", str(round(other_pct*100)) + "%", other_count],
    ]

display(HTML('{}'.format(''.format(''.format(''.format(''.format(''.format(''.format('
'.format('
```

	Percentage	Count
Male	81.0%	465
Female	17.0%	100
Other	1.0%	8

In [143]: [female purchase, male purchase, other purchase] = group gender["Age"] .count() [female avg, male avg, other avg] = group gender["Price"].mean() [female revenue, male revenue, other revenue] = group gender["Price"]. sum() data4 = [["", "Purchase Count", "Average Purchase Price", "Total Purchase V alue", "Normalized Totals"], ["Male", male purchase, round(male avg, 2), male revenue, round(ma le revenue/male count, 2)], ["Female", female purchase, round(female avg, 2), female revenue, round(female revenue/female count, 2)], ["Other", other purchase, round(other avg, 2), other revenue, roun d(other revenue/other count, 2)], display(HTML('{}'.format(''.join('<td</pre> >{}'.format(''.join(str(_) for _ in row)) for row in dat a4))))

	Purchase Count	Average Purchase Price	Total Purchase Value	Normalized Totals
Male	633	2.95	1867.68	4.02
Female	136	2.82	382.91	3.83
Other	11	3.25	35.74	4.47

```
In [152]:
         bins = [0, 10, 20, 30, 40, 50]
         labels = ["0-10", "11-20", "21-30", "31-40", "41-50"]
         df["Age Group"] = pd.cut(df["Age"], bins, labels=labels)
         group age = df.groupby(by="Age Group")
         [count 0, count 10, count 20, count 30, count 40] = group age["SN"].nu
         nique()
         [purchase 0, purchase 10, purchase 20, purchase 30, purchase 40] = gro
         up age["SN"].count()
         [avg 0, avg 10, avg 20, avg 30, avg 40] = group age["Price"].mean()
         [sum 0, sum 10, sum 20, sum 30, sum 40] = group age["Price"].sum()
         data5 = [
             ["Age", "Purchase Count", "Average Purchase Price", "Total Purchas
         e Value", "Normalized Totals"],
             ["0-10", purchase 0, round(avg 0, 2), sum 0, round(sum 0/count 0,
         2)],
             ["11-20", purchase 10, round(avg 10, 2), sum 10, round(sum 10/coun
         t 10, 2)],
             ["21-30", purchase 20, round(avg 20, 2), sum 20, round(sum 20/coun
         t 20, 2)],
             ["31-40", purchase 30, round(avg 30, 2), sum 30, round(sum 30/coun
         t 30, 2)],
             ["41-50", purchase 40, round(avg 40, 2), sum 40, round(sum 40/coun
         t 40, 2)],
             1
         >{}'.format(''.join(str() for in row)) for row in dat
         a5))))
```

Age	Purchase Count	Average Purchase Price	Total Purchase Value	Normalized Totals
0-10	32	3.02	96.62	4.39
11-20	262	2.87	752.89	3.9
21-30	381	2.95	1122.43	3.92
31-40	102	3.0	305.75	4.43
41-50	3	2.88	8.64	2.88

In [213]:

```
group top = df.groupby(by="SN")
spender5 = group top["Price"].sum().sort values(ascending=False)[0:5]
# spender5.index[0:5]
#group top.count().loc[spender5.index[0]][0]
data6 = [
    ["SN", "Purchase Count", "Average Purchase Price", "Total Purchase
Value"1,
    [spender5.index[0], group top.count().loc[spender5.index[0]][0], r
ound(spender5[0]/group top.count().loc[spender5.index[0]][0], 2), spen
der5[0]],
    [spender5.index[1], group top.count().loc[spender5.index[1]][0], r
ound(spender5[1]/group top.count().loc[spender5.index[1]][0], 2), spen
der5[1]],
    [spender5.index[2], group top.count().loc[spender5.index[2]][0], r
ound(spender5[2]/group top.count().loc[spender5.index[2]][0], 2), spen
der5[2]],
    [spender5.index[3], group_top.count().loc[spender5.index[3]][0], r
ound(spender5[3]/group top.count().loc[spender5.index[4]][0], 2), spen
der5[3]],
    [spender5.index[4], group top.count().loc[spender5.index[4]][0], r
ound(spender5[4]/group top.count().loc[spender5.index[4]][0], 2), spen
der5[4]],
    1
>{}'.format(''.join(str() for in row)) for row in dat
a6))))
```

SN	Purchase Count	Average Purchase Price	Total Purchase Value
Undirrala66	5	3.41	17.06
Saedue76	4	3.39	13.56
Mindimnya67	4	3.18	12.74
Haellysu29	3	4.24	12.73
Eoda93	3	3.86	11.58

Item Name	Purchase Count
Final Critic	14
Betrayal, Whisper of Grieving Widows	11
Arcane Gem	11
Stormcaller	10
Woeful Adamantite Claymore	9

Item Name	Total Purchase Value
Final Critic	38.6
Retribution Axe	37.26
Stormcaller	34.65
Spectral Diamond Doomblade	29.75
Orenmir	29.7