Computergrafik, SS 2014 — 2. Übungsblatt

Schriftliche Abgabe bis Freitag 2. Mai 2014, 10:15 Uhr (außer Aufgabe 12)

10. Homogene Koordinaten (10 Punkte)

Dies ist eine alte Klausuraufgabe.

(a) Stellen Sie für die Gerade durch die Punkte (2,3) und (4,5) in der Ebene eine Geradengleichung der Form

$$ax + by + cw = 0$$

in homogenen Koordinaten (x, y, w) auf.

(b) Die Gleichung

$$x^2 + 2xw + y^2 - 12w^2 - 3wy = 0$$

in homogenen Koordinaten (x, y, w) beschreibt einen Kreis in der Ebene. Bestimmen Sie seinen Radius und den Mittelpunkt (in kartesischen Koordinaten).

11. Zentralprojektion (10 Punkte)

Bestimmen Sie die Abbildungsmatrix A (in homogenen Koordinaten) für die Zentralprojektion vom Punkt P = (4, 2) auf die Gerade g: 2x + y + 1 = 0.

12. Koordinatensysteme (12 Punkte, zu bearbeiten bis Donnerstag 7. Mai 2014)

(a) Eine Kamera steht im Punkt $\begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$ und blickt in Richtung auf den Punkt $\begin{pmatrix} 7 \\ 5 \\ 4 \end{pmatrix}$.

Bestimmen Sie das entsprechende rechtwinklige Augenkoordinatensystem so, dass die Kamera aufrecht steht.

(b) Bestimmen Sie die 4×4 - Transformationsmatrix zur Umrechnung von Weltkoordinaten in Augenkoordinaten.

Sie sollen in der Lage sein, die Aufgabe auch mit abgeänderten Zahlen zu lösen.

13. Scherungen in der Ebene (8 Punkte)

Die Transformationsmatrizen $\begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ und $\begin{pmatrix} 1 & 0 & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ beschreiben eine *Scherung* in *x*-Richtung bzw. in *y*-Richtung $(a,b \in \mathbb{R})$.

- (a) Welche Punkte der Ebene werden dabei in sich selbst überführt (Fixpunkte)?
- (b) Welche Geraden werden in sich selbst überführt (Fixgeraden)?
- (c) Wenden Sie eine Scherung mit a=0.7 und unabhängig davon eine Scherung mit b=-0.3 auf folgende Abbildung an, und zeichnen Sie die Ergebnisse.

- (d) (0 Punkte) Scherungen erhalten den Flächeninhalt.
- (e) (0 Punkte) Rotationen erhalten ebenfalls den Flächeninhalt. Jede Rotation kann als Produkt von drei Scherungen geschrieben werden.

4