PARTICIPEZ À UNE COMPÉTITION KAGGLE!

OPENCLASSROOMS - INGÉNIEUR MACHINE LEARNING

THIBAUD GROSJEAN - MARS 2022

OBJECTIFS DU PROJET

- Participer à une compétition Kaggle ("The House of Data Science")
- Utiliser les ressources partagées par la communauté
- Partager un élément intéressant avec la communauté
- Expliciter le modèle selectionné

COMPÉTITION

- NBME Score Clinical Patient Notes
 - United States Medical Licensing Examination® (USMLE®)
 - Examen de compétences cliniques
 - Simulation de consultation
 - Historique du patient

VERSIONNAGE

X Viewing Version 72: ✓ Quick Version • April 22, 2022, 7:34 PM

Go to Viewer

Introduction

Dear Machine Learners,

- This is my first time using BERT & HuggingFace, therefore I have decided to share this journey of discovery...
- In this notebook, you will learn about the *BERT* model and its implementation with *TensorFlow, Keras* and *HuggingFace* to solve this competitions problematic.
- I also haven't used Kaggle in a long time...
- In this notebook, you will learn how to implement models for scoring, without the internet (a rule of this competition).
- Thanks a lot to Jude Tchaye for his NBME-TensorFlow-Bert-Baseline notebook which I enriched with comments and ressources.
- If you notice errors (english mistakes included) or have any questions do not hesitate to comment.

Happy reading!

Environment

Version History advances theory Quick Version • Diff: +108 -90 Ran in 6 seconds tries warmup Save & Run All • Diff: +252 -232 Failed after 5 minutes and 36 seconds advances text Save & Run All • Diff: +176 -94 Ran in 14 minutes and 26 seconds roberta Save & Run All • Diff: +51 -55 Ran in 1 minute and 29 seconds roberta 10ep Save & Run All • Diff: +117 -67 Ran in 13 minutes and 55 seconds submit Save & Run All • Diff: +0 -0 Failed after 1 minute and 3 seconds

ENVIRONNEMENT

- Kaggle Notebooks
- Internet
- Parallelisation

OBJECTIF

- Natural Langage Processing (NLP)
- Named-entity Recognition (NER)
- Evaluation (score F1 micromoyenné)

TRANFORMEURS

- BERT
- RoBERTa
- Modèles auto-supervisés

DONNÉES

- Patient Notes (42146)
- Features (143)
- Création d'un fichier plat (14300 samples)

EMBEDDINGS

- Vecteurs representant numériquement les caractéristiques du document
- Input ids (tokens)
- Attention masks
- Labels (cibles)

PIPELINE

- Simple en apparence...
- Mais complexe
- Le *Tokenizer* permet d'inverser les *logits* du modèle

Comparison	BERT October 11, 2018	RoBERTa July 26, 2019	DistilBERT October 2, 2019	ALBERT September 26, 2019
Parameters	Base: 110M Large: 340M	Base: 125 Large: 355	Base: 66	Base: 12M Large: 18M
Layers / Hidden Dimensions / Self- Attention Heads	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 6 / 768 / 12	Base: 12 / 768 / 12 Large: 24 / 1024 / 16
Training Time	Base: 8 x V100 x 12d Large: 280 x V100 x 1d	1024 x V100 x 1 day (4-5x more than BERT)	Base: 8 x V100 x 3.5d (4 times less than BERT)	[not given] Large: 1.7x faster
Performance	Outperforming SOTA in Oct 2018	88.5 on GLUE	97% of BERT-base's performance on GLUE	89.4 on GLUE
Pre-Training Data	BooksCorpus + English Wikipedia = 16 GB	BERT + CCNews + OpenWebText + Stories = 160 GB	BooksCorpus + English Wikipedia = 16 GB	BooksCorpus + English Wikipedia = 16 GB
Method	Bidirectional Trans- former, MLM & NSP	BERT without NSP, Using Dynamic Masking	BERT Distillation	BERT with reduced para- meters & SOP (not NSP)

AMÉLIORATION DU SCORE

- Parallélisation
- Split des données
- Visualisation
- Implémentation d'un modèle plus performant (RoBERTa)
- Optimisation du nombre d'epochs
- Model Checkpoint

ENTRAINEMENT & OPTIMISATION

• Le modèle *merge* correctement

AMÉLIORATION DU SCORE

AMÉLIORATION DE LA RESSOURCE EXISTANTE

- Création d'une ressource dictatisée
- Ajout de commentaires & de ressources
- Simplification du process Kaggle notebooks
- Amélioration du style
- Amélioration de la méthodologie en Data Science

CONCLUSION & PISTES D'AMÉLIORATION

- Prise de main de Kaggle Notebooks & de la Parallelisation
- Découverte des Transformers & de Hugging Face

- Utilisation des ressources communautaires
- Amélioration du score
- Partage de la ressource créée

ÉCHANGE & QUESTIONS

Merci de votre attention!