Empirical Exercise 6.1

Zheng Tian

[2016-05-04 Wed]

This file include answers and R codes for completing Empirical Exercise 6.1 in Introduction to Econometrics (3rd edition) by Stock and Watson.

1 Instructions

1.1 Read the data

As usual, we first read the data and load the AER package

library(AER)
library(foreign)
teachingdata <- read.dta("TeachingRatings.dta")
summary(teachingdata)</pre>

mino	rity	ag	ge	fer	nale	onecr	edit
Min.	:0.0000	Min.	:29.00	Min.	:0.0000	Min.	:0.0000
1st Qu.	:0.0000	1st Qu.	:42.00	1st Qu.	:0.000	1st Qu.	:0.0000
Median	:0.0000	Median	:48.00	${\tt Median}$:0.0000	Median	:0.0000
Mean	:0.1382	Mean	:48.37	Mean	:0.4212	Mean	:0.05832
3rd Qu.	:0.0000	3rd Qu.	:57.00	3rd Qu.	:1.0000	3rd Qu.	:0.0000
Max.	:1.0000	Max.	:73.00	Max.	:1.0000	Max.	:1.00000
,							
bea	uty	cour	se_eval	j	intro	nne	nglish
	uty :-1.45049				intro :0.0000	nne Min.	•
Min.	v	Min.		Min.		Min.	•
Min. 1st Qu.	:-1.45049	Min. 1st (:2.100	Min. 1st (:0.0000	Min. 1st Qı	:0.00000
Min. 1st Qu. Median	:-1.45049 :-0.65627	Min. 1st (Media	:2.100 u.:3.600	Min. 1st (:0.0000 Qu.:0.0000 an :0.0000	Min. 1st Qı	:0.00000 u.:0.00000 n :0.00000
Min. 1st Qu. Median Mean	:-1.45049 :-0.65627 :-0.06801	Min. 1st (Media Mean	:2.100 Qu.:3.600 an :4.000	Min. 1st (Media Mean	:0.0000 Qu.:0.0000 an :0.0000	Min. 1st Qı Median Mean	:0.00000 u.:0.00000 n :0.00000

1.2 Run regressions

Run a simple regression of Course_Eval on Beauty

We first run a simple linear regression model of Course_Eval on Beauty.

```
mod1 <- lm(course_eval ~ beauty, data = teachingdata)
summary(mod1)</pre>
```

Run a multiple regression model

Then we run a multiple regression model.

Re-run the multiple regression model to test the FWL theorem

1.3 Prediction

Prediction can be made with predict(). First, we need to define a data.frame object for Professor Smith. Then, use it in the function.

2 Answers

2.1 Answers for a and b

The results of the simple linear regression model and the multiple regression model are summarized in Table 1.

The coefficient on beauty in the simple linear regression model is 0.133, while that in the multiple regression model is 0.1656. The difference between the two estimated coefficients are not very large, which may imply that the omitted variable bias in the simple regression model is not very serious.

2.2 Answer for c

The estimation following the three steps in the FWL theorem yields the estimate of the coefficient on beauty is 0.1656, which is identical to that in the multiple regression model shown above.

Table 1: The OLS Estimation of the Simple and Multiple Regressions

	$Dependent\ variable:$				
	course-eval				
	(1)	(2)			
beauty	0.1330***	0.1656***			
	(0.0322)	(0.0307)			
intro		0.0113			
		(0.0545)			
onecredit		0.6345***			
		(0.1113)			
female		-0.1735^{***}			
		(0.0493)			
minority		-0.1666**			
		(0.0763)			
nnenglish		-0.2442^{**}			
		(0.1070)			
Constant	3.9983***	4.0683***			
	(0.0253)	(0.0375)			
Observations	463	463			
\mathbb{R}^2	0.0357	0.1546			
Adjusted R ²	0.0336	0.1435			
Residual Std. Error	$0.5455 \; (\mathrm{df} = 461)$	$0.5135 \; (\mathrm{df} = 456)$			
F Statistic	$17.0847^{***} (df = 1; 461)$	13.9036***(df = 6; 456)			

Note:

*p<0.1; **p<0.05; ***p<0.01

2.3 Answer for d

The predicted course evaluation for Professor Smith is 3.9017, calculated as $4.0683 + 0.1656 \times 0 + 0.0113 \times 0 + 0.6345 \times 0 - 0.1735 \times 0 - 0.1666 \times 1 - 0.2442 \times 0 = 3.9017$.

3 Appendix: R codes

```
library(AER)
library(foreign)
teachingdata <- read.dta("TeachingRatings.dta")</pre>
summary(teachingdata)
# simple regression
mod1 <- lm(course_eval ~ beauty, data = teachingdata)</pre>
summary(mod1)
# multiple regression
mod2 <- lm(course_eval ~ beauty + intro + onecredit + female</pre>
           + minority + nnenglish, data = teachingdata)
summary(mod2)
# FWL regressions
mod2.a <- lm(course_eval ~ intro + onecredit + female</pre>
             + minority + nnenglish, data = teachingdata)
mod2.b <- lm(beauty ~ intro + onecredit + female</pre>
             + minority + nnenglish, data = teachingdata)
mod2.c <- lm(resid(mod2.a) ~ resid(mod2.b) - 1)</pre>
summary(mod2.c)
# prediction
smith <- data.frame(minority = 1, female = 0,</pre>
                     beauty = mean(teachingdata$beauty),
                     nnenglish = 0, intro = 0, onecredit = 0)
smith.hat <- predict(mod2, smith)</pre>
b1.mod1 <- coef(mod1)[2]
b1.mod2 <- coef(mod2)[2]
b1.mod2c <- coef(mod2.c)[1]
library(stargazer)
stargazer(mod1, mod2,
          title = "The OLS Estimation of the Simple and Multiple Regressions",
          label = "tab:results_ab",
          dep.var.labels = "course_eval",
          digits = 4, no.space = TRUE)
```