Revisão de UML Problema do Gasto de Combustível

Vinícius S. Branco¹

¹Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

vinicius.branco@acad.pucrs.br

Resumo. Este artigo traz uma breve introdução e descrição de modelos UML, o enunciado de um problema que serviu de base para a modelagem de dois diagramas, casos de uso e classes, e uma lista com as definições de pronto do trabalho. Esse trabalho foi proposto na disciplina de Engenharia de Software Orientada a Modelos, do período de 2020/2.

1. UML

A UML, Linguagem Unificada de Modelagem, é uma linguagem gráfica para visualização, especificação, construção e documentação de artefatos do sistemas complexos de software. Seu primeiro esboço sendo lançado em 1995 com os motivos de: com o aumento de métodos de de análise de projetos orientados da objetos, fazia mais sentido continuar essa evolução de forma conjunta. Com a unificação traria mais estabilidade ao mercado de orientada a objetos. Por fim, com a criação de um novo método seria aprimorado com o aprendizado adquirido nos métodos passados. [Booch et al. 2006]

A UML proporciona um padrão para construção e documentação de arquitetura de projetos de sistemas, incluindo aspectos conceituais tais como processos de negócios e funções do sistema, além de itens concretos como as classes escritas em determinada linguagem de programação, esquemas de banco de dados e componentes de software reutilizáveis.[Booch et al. 2006] Trazendo a versatilidade de trabalhar a especificação de diferentes partes do sistema, aumentando a capacidade de organização do sistema, facilidade de garantir a conformidade com requisitos, trabalhar a escalabilidade, reutilização e manutenção do software. Pode ser utilizado como o principal artefato para a implementação de um sistema de alta qualidade.

A modelagem é uma parte central de todas as atividades que levam à implementação de um bom software. Construímos modelos para comunicar a estrutura e o comportamento desejados do sistema, conformidade com requisitos. Construímos modelos para visualizar e controlar a arquitetura do sistema. Construímos modelos para compreender melhor o sistema que estamos elaborando, muitas vezes expondo oportunidades de simplificação e reaproveitamento, diminuição da complexidade de desenvolvimento do sistema. Construímos modelos para gerenciar os riscos e documentar decisões tomadas.

2. Enunciado e Modelos

O trabalho 1 da disciplina de Engenharia de Software Orientada a Modelos traz a proposta de com base em um enunciado escolhido previamente, desenvolver uma comunicação organizada, para isso era necessário desenvolver dois diagramas UML, o de casos de uso

e de classes. Também como uma forma de organização era necessário desenvolver uma lista de verificação, com pontos que deviam ser feitos nas tarefas para estar pronto, podese dizer que são as *definition of done*. Para desenvolvimento dos diagramas foi utilizada a ferramenta UML Astah, todos os artefatos gerados no trabalho estão no repositório https://github.com/vinisbranco/t1ESmodelos.

2.1. Enunciado

O Joãozinho quer calcular e mostrar a quantidade de litros de combustível gasto em uma viagem, usando um carro que faz 12Km/L. Para isso, ele gostaria que você o ajudasse por meio de um programa simples. Para realizar o cálculo, é necessário ler o tempo gasto (em horas) e a mesma velocidade média (km / h). Desta forma, você pode obter a distância e então calcular quantos litros seriam necessários. Mostre o valor com três casas decimais após o ponto. [Judge 2020]

2.2. Diagrama de Casos de Uso

Seguindo a especificação do problema, o caso de uso do sistema é calcular o quanto de gasolina foi consumida em um determinado trajeto usando um determinado carro, por isso no diagrama é descrito apenas uma associação do ator com o caso de uso *Calculate Fuel Spent* representado na Figura 1. Como o caculo do gasto de combustível inclui outros dois cálculos, o de calculo de distancia percorrida e calculo de litros necessários para percorrer essa distancia, foi descrito no diagrama esses outros dois casos incluídos no primeiro.

Figura 1. Diagrama de Casos de Uso

3. Diagrama de Classes

Com o objetivo de separar responsabilidades na arquitetura do sistema, facilitando possíveis incrementos no desenvolvimento da solução. Foram modeladas duas classes

no diagrama apresentado na Figura 2. A classe *travelInformation* que é responsável por ter os dados de uma viagem e calcular as informações necessárias sobre esta viagem específica, e a classe *CalculateFuelSpent* que recebe os dados do usuário, e gerencia os cálculos e informações de entrada e saída do sistema.

Figura 2. Diagrama de Classes

4. Lista de Verificação

Os seguintes itens da Figura 3 foram considerados essenciais para executar a tarefa proposta, e depois de realizadas podendo considerar a tarefa pronta. São itens tanto de tarefas que deviam ser executadas e também de pontos a serem avaliados para garantir a qualidade do que foi desenvolvido.

1	Utiliza tipos primitivos?	✓
2	Conformidade com requisitos?	✓
3	Separação de responsabilidades nas classes?	✓
4	Todos casos de uso cobertos?	✓
5	Possibilidade de calculo de combustivel com diferentes circunstancias	✓
6	Arquitetura escalavel	✓
5	Lista de Verificação com no minimo 7 itens	✓
6	Repositório com todos artefatos	✓
7	Diagrama de Classes	✓
8	Diagrama de Casos de Uso	~
9	Relatório no formato SBC	✓
10	Referências	✓

Figura 3. Lista de Verificação

Referências

Booch, G., Rumbaugh, J., and Jacobson, I. (2006). *UML: guia do usuário*. Elsevier Brasil.

Judge, O. (2020). Fuel spent problem.