

Outline

- Introduction to High Performance Computing
 - Definitions
 - Parallel programming
- SURF facilities
 - Presentation
 - Systems and specifications
- Running jobs
 - Definitions for jobs
 - Hands-on exercises with the files available in your home directories

Outline

- Introduction to High Performance Computing
 - Definitions
 - Parallel programming
- SURF facilities
 - Presentation
 - Systems and specifications
- Running jobs
 - Definitions for jobs
 - Hands-on exercises with the files available in your home directories

High-performance computing (HPC) is ...

Image source: https://spacenews.com/astranis-lands-anchor-customer-for-its-first-small-geo-satellite

Image source: https://medium.com/@info_89535/applications-of-fullerene-in-medicine-20942944e41d

Image source: https://thestrategybridge.org/the-bridge/2016/8/16/a-new-plan-using-complexity-in-the-modern-world

High-performance computing (HPC) is ...

- ... an area of computer-based computation. It includes all computing work that requires a high computing capacity or storage capacity.
- ... the use of parallel processing for running advanced application programs efficiently, reliably and fast.
- ... the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business.
- ... the use of super computers and parallel processing techniques for solving complex computational problems.

A computer is ...

A computer is ...

... and Boolean logic (0's and 1's)

A central processing unit (CPU) is ...

Image source: https://bit-tech.net/reviews/tech/cpus/intel-sandy-bridge-review/1/

A larger computer could be ...

A larger computer actually is ...

A larger computer actually is ...

A larger computer actually is ...

High-performance computing (HPC) ...

- ... is an area of computer-based computation. It includes all computing work that requires a high computing capacity or storage capacity.
- ... is the use of parallel processing for running advanced application programs efficiently, reliably and fast.
- ... refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business.
- ... is the use of super computers and parallel processing techniques for solving complex computational problems.

High-performance computing (HPC) ...

- ... is an area of computer-based computation. It includes all computing work that requires a high computing capacity or storage capacity.
- ... is the use of parallel processing for running advanced application programs efficiently, reliably and fast.
- ... refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business.
- ... is the use of super computers and parallel processing techniques for solving complex computational problems.
- ... is the part of computing focused on making computers collaborate efficiently up to very large scales
- ... is optimized and scalable computer coordination (hardware and software)

Outline

- Introduction to High Performance Computing
 - Definitions
 - Parallel programming
- SURF facilities
 - Presentation
 - Systems and specifications
- Running jobs
 - Definitions for jobs
 - Hands-on exercises with the files available in your home directories

Dutch national supercomputers: performance increase

Year	Machine	R _{peak} (GFlop/s)	kW	GFlop/s/ kW	
1984	CDC Cyber 205 1-pipe	0.1	250	0.0004	
1988	CDC Cyber 205 2-pipe	0.2	250	0.0008	
1991	Cray Y-MP/4128	1.33	200	0.0067	
1994	Cray C98/4256	4	300	0.0133	
1997	Cray C916/121024	12	500	0.024	
2000	SGI Origin 3800	1,024	300	3.4	
2004	SGI Origin 3800 +SGI Altix 3700	3,200	500	6.4	
2007	IBM p575 Power5+	14,592	375	40	
2008	IBM p575 Power6	62,566	540	116	
2009	IBM p575 Power6	64,973	560	116	
2013	Bull bullx DLC	250,000	260	962	
2014	Bull bullx DLC	~ 1,000,000	520	1923	
2017	Bull bullx DLC + KNL	~ 1,840,000	850	2168	
2021	Lenovo AMD (1st phase)	~ 6,100,000	610	10000	
2023	Lenovo AMD (2 nd phase)	~ 14,900,000	1050	14190	
2016	Raspberry PI 3 (35 euro)	0.44	0.004	110	

Schematic overview of a supercomputer

Specific example: architecture of our old Lisa cluster

Specific example: Snellius architecture

Specific example: Snellius architecture

Compute power on Snellius (Phases 1 + 2)

Partition	Number of nodes	Memory per node	Sockets per node	Cores per socket	CPU model	CPU clock	Accelerator	Accelerator memory
rome	522	256 GB	2	64	AMD Rome 7H12	2.6 GHz		
genoa	785	384 GB	2	96	AMD Genoa 9654	2.4 GHz		
fat	72	1 TB	2	64	AMD Rome 7H12	2.6 GHz		
himem_4tb	2	4 TB	2	64	AMD Rome 7H12	2.6 GHz		
himem_8tb	2	8 TB	2	64	AMD Rome 7H12	2.6 GHz		
gpu	70	512 GB	2	36	Intel Xeon Platinum 8360Y	2.5 GHz	4x NVIDIA A100	4x 40 GB
staging	10	256 GB	2	8	AMD EPYC 7F32	3.2 GHz		
login	3	Login nodes may have different configurations.						

- 232,464 cores + 280 GPUs: 14.9 Pflop/s (peak performance) + 1,421 TB memory.
- Low-latency interconnection network: InfiniBand HDR100 (100 Gb/s), fat tree.
- File systems: 720 TB for home directories and 12.4 PB for scratch and project spaces (GPFS).
- Specific policy for software installation and maintenance.

File systems on Snellius

/home/user

- User home directory. Currently 200 GB.
- Backed up.
- Storage of important files: sources, scripts, input and output data.

File systems on Snellius

/scratch-*

- /scratch-local & /scratch-shared
 - Variable quota depending on disk. Currently 8 TB guaranteed.
 - Not backed up.
 - Temporary storage. Data is removed after 6/14 days!
 - Based on GPFS: fast synchronization for parallel jobs.

/scratch-node

- Truly node-local scratch. 6.4 TB available on some nodes (--constraint=scratch-node).
- Not backed up.
- Temporary storage. Data is deleted after the end of the job!
- Based on NVMe SSD: fastest file system.

File systems on Snellius

/project

- Large and fast. Given upon request for projects requiring large, shared, permanent space.
- Not backed up, but permanent until the end of the associated project.
- Based on GPFS: comparable in speed with /scratch-local & /scratch-shared.

/archive

- Connected to the tape robot. Quota on demand, virtually unlimited.
- Given upon request for long-term storage of files (in compressed format).
- Backed up.
- Slow—especially to retrieve "old" data—and not available on compute nodes.

Before using the system, connect to the user portal!

https://portal.cua.surf.nl

Connecting to Snellius

- Windows operating system
 - MobaXterm (recommended): https://mobaxterm.mobatek.net/
 - PLEASE DOWNLOAD THE PORTABLE EDITION !!!
 - Putty
- MacOS
 - Terminal (preinstalled)
 - XQuartz (<u>http://www.xquartz.org</u>)
- Linux
 - You are already well equipped!

Connecting to Snellius

- When you log in with ssh, you access the login nodes
- Alternative for untrusted connections: ssh <username>@doornode.surfsara.nl

```
user@local:~$ ssh scur0000@snellius.surf.nl
Password:
scur0000@int2:~$ ls
snellius-file.txt
```

With scp you can transfer files to/from your local machine

```
user@local:~$ ls
local-file.txt
user@local:~$ scp local file.txt scur0000@snellius.surf.nl:
user@local:~$ scp scur0000@snellius.surf.nl:snellius_file.txt .
user@local:~$ ls
snellius-file.txt local-file.txt
user@local:~$ ssh scur0000@snellius.surf.nl
Password:
scur0000@int2:~$ ls
snellius-file.txt local-file.txt
```


Outline

- Introduction to High Performance Computing
 - Definitions
 - Parallel programming
- SURF facilities
 - Presentation
 - Systems and specifications
- Running jobs
 - Definitions for jobs
 - Hands-on exercises with the files available in your home directories

Running jobs: how-to guide

- Schedulers distribute work to batch nodes.
- Workflow:
 - 1. You upload your data from your computer to the cluster system
 - 2. You create a job script with the work steps
 - 3. You submit the job script to the scheduler
 - 4. The scheduler looks for available computers to run your work
 - 5. When a batch node with the requirements you specified becomes available, your work runs
 - 6. When the job is finished, you download the results to your computer
- Batch scheduler on Snellius: SLURM (http://slurm.schedmd.com)

Running jobs: useful commands of the SLURM scheduler

sbatch <jobscript>

- submit a job to the scheduler

squeue -j <job_id>

- inspect the status of job < job_id>

squeue -u <user_id>

- inspect all jobs of user <user_id>

scancel <job_id>

- cancel job <job_id>

scontrol show job <job_id>

- show estimated job start

Running jobs: first example

```
#!/bin/bash
#SBATCH --job-name="firsttest"
#SBATCH --nodes=1
#SBATCH --ntasks=10
#SBATCH --time=00:01:00
#SBATCH --partition=rome
echo "Who am I?"
whoami
echo
echo "Where ?"
srun hostname
echo
sleep 120
date
echo "DONE"
```

- Create a text file with exactly the first lines;
 name the file "job.sh"
- Submit this job with "sbatch job.sh" and look the status with "squeue –u login_id"
- Use "scontrol show job job_id" to find out when your job will run
- Look at your home-directory to see what happens there; look at the files (use *Is* command).
- Which files were created? Look at those files.
- Try to play with email notifications! Add the following two lines together:
 - #SBATCH -- mail-type=BEGIN, END
 - #SBATCH --mail-user=<your_email_address>

Running jobs: best practices

Give the scheduler a realistic walltime estimate.

Your home directory is slow. Use \$TMPDIR.

 Load software modules as part of your job script—this improves reproducibility.

 Run parallel versions of your programs (and use "srun" to ask SLURM to run multi-process applications).

Anatomy of a "real-world" job script

- Job scripts consist of:
 - the "shebang" line: #!/bin/bash
 - scheduler directives
 - command(s) that load software modules and set the environment
 - command(s) to prepare the input
 - command(s) that run your main task(s)
 - command(s) to save your output

```
#!/bin/bash
#SBATCH --job-name="firsttest"
#SBATCH --nodes=1
 SBATCH --ntasks=10
#SBATCH --time=00:01:00
#SBATCH --partition=rome
module load 2019
module load foss/2018b
  -r <my folder> $TMPDIR
  $TMPDIR
srun a.out
       $TMDPDIR/* ~/results
```


Module management: useful commands

module avail

- available modules in the system

module load <mod>

- load <mod> in the shell environment

module list

- show a list of all loaded modules

module unload <mod>

- remove <mod> from the environment

module purge

- unload all modules

module whatis <mod>

- show information about <mod>

SURF

Running jobs: second example

```
#!/bin/bash
#SBATCH --job-name="r_test"
#SBATCH --nodes=1
#SBATCH --ntasks=10
#SBATCH --time=00:01:00
#SBATCH --partition=rome

<< LOAD MODULES >>
echo "START"
<< CALL THE R SCRIPT >>
echo "DONE"
```

- Could you modify the initial script to prepare it as a template for the next session with R???
 - You will need to add the needed modules and also include the call to the command "Rscript"
 - Sample hint: Rscript -e "rnorm(1)"
- Explore the module environment to find the modules (module avail, module load...)
- Remember that you can submit this job with "sbatch job.sh" and look the status with "squeue –u login_id"
- Can you see the output of the call?

Running jobs: third example

```
#!/bin/bash
#SBATCH --job-name="pi"
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=32
#SBATCH --time=00:10:00
#SBATCH --partition=rome
module purge
module load 2022
module load GCCcore-11.3.0
echo "OpenMP parallelism"
for ncores in `seq 8 4 48`
do
  export OMP NUM THREADS=$ncores
  echo "CPUS: " $OMP NUM THREADS
  echo "CPUS: " $OMP NUM THREADS >&2
  ./pi
  echo "DONE "
done
```

- Check the file "python.sh" in your home directory:
 - linux-cluster-computing/cluster/batch
- Submit this job with "sbatch python.sh" and look the status with "squeue –u login_id"
- If you needed to use some input file or you would generate an output file... where would you put the copy commands for scratch?
- Now try the same with "pi.sh"... but first compile the code! (./compilepi)
- Can you play around with the variable 'ncores' and see some parallel efficiency?

Everything about jobs: service desk info pages

https://servicedesk.surf.nl/wiki/display/WIKI/Snellius

- More courses by SURF (for research and more):
 - EuroCC Netherlands Agenda
 - https://eurocc-netherlands.nl/calendar/category/training-en/
 - SURF Agenda
 - https://www.surf.nl/en/agenda
 - SURF training mailing list
 - https://lists.surfsara.nl/listinfo/training-announce

Download the portable edition of MobaXterm

Open a new remote session

Open a new remote session

Change the root/home folders (via Settings->Configuration):

Change the root/home folders (via Settings->Configuration):

