第十二章 随机需求下的投资项目决策

条件:商品需求遵从正态概率分布

例:某种产品的需求量服从正态分布,均值为120万件,标准差为20万件,单件售价20元。

方案甲: 固定成本400万元,可变成本每件11.5元, 年最大生产能力130万件

方案乙: 固定成本200万元,可变成本每件15元, 年最大生产能力100万件

方案丙: 固定成本600万元,可变成本每件10元, 年最大生产能力160万件 甲: 固定成本400万元,可变成本每件11.5元,年最大生产能力130万件

乙: 固定成本200万元,可变成本每件15元,年最大生产能力100万件

丙: 固定成本600万元,可变成本每件10元,年最大生产能力160万件

1、盈亏平衡点 (利润为0时的销售量) P单价,Q产量,F固定成本, C_V 可变成本

收益 =
$$PQ$$
 = 成本 = $F + C_V \cdot Q$ $\Rightarrow Q^* = \frac{F}{P - C_V}$

$$Q_{\parallel}^* = \frac{400}{20 - 11.5} = 47.06 万件$$

$$Q_{\rm Z}^* = \frac{200}{20-15} = 40 万件$$

$$Q_{\overline{P}}^* = \frac{600}{20-10} = 60万件$$

$$\therefore Q_{\mathrm{Z}}^* < Q_{\mathrm{P}}^* < Q_{\mathrm{P}}^*$$

固定成本↔利润增长率

甲: 固定成本400万元,可变成本每件11.5元,年最大生产能力130万件

乙: 固定成本200万元,可变成本每件15元,年最大生产能力100万件

丙: 固定成本600万元,可变成本每件10元,年最大生产能力160万件

2、盈利可能性:
$$f(Q) = \frac{1}{\sqrt{2\pi \cdot 20}} e^{-\frac{1}{2}(\frac{Q-120}{20})^2}$$

$$\exists P(Q > Q_{\exists}^*) = \int_{Q_{\exists}^*}^{+\infty} f(Q) dQ = 99.95\%$$

$$Z: P(Q > Q_Z^*) = \int_{40}^{+\infty} f(Q)dQ = 99.99\%$$

河:
$$P(Q > Q_{\overline{\text{p}}}^*) = \int_{60}^{+\infty} f(Q)dQ = 99.86\%$$

$$P(Q > Q_{\overline{||}}) = P\left(\frac{Q - 120}{20} > \frac{Q_{\overline{||}}^* - 120}{20}\right) = P\left(\frac{Q - 120}{20} > \frac{60 - 120}{20}\right)$$

$$= P\left(\frac{Q-120}{20} > -3\right) = P(\xi > -3) = P(\xi < 3) = \Phi(3)$$

续表 [』(2)

$x = \Phi(x)$	<i>π</i> Φ(<i>π</i>)	$x \Phi(x)$
2. 40 0. 9918	2. 70 0. 9965	3. 00 0. 9987
2. 41 0. 9920	2. 71 0. 9966	3. 01 0. 9987
2. 42 0. 9922	2. 72 0. 9967	3. 02 0. 9987
2. 43 0. 9925	2. 73 0. 9968	3. 03 0. 9988
2. 44 0. 9927	2. 74 0. 9969	3. 04 0. 9988

甲: 固定成本400万元,可变成本每件11.5元,年最大生产能力130万件

乙: 固定成本200万元,可变成本每件15元,年最大生产能力100万件

丙: 固定成本600万元,可变成本每件10元,年最大生产能力160万件

3、盈利300万以上的可能性

$$\exists$$
: $300 \le 20Q - 400 - 11.5Q$

$$Q \ge \frac{300 + 400}{20 - 11.5} = 82.35$$

$$P = \int_{\frac{300+400}{20-11.5}}^{+\infty} f(Q)dQ = 97\%$$

$$\angle : 20Q - 200 - 15Q \ge 300$$

$$:: Q \ge \frac{300 + 200}{20 - 15} = 100$$
而乙的最大生产能力为 100 万件。

::可能性为0

丙:
$$20Q - 600 - 10Q \ge 300$$

$$Q \ge 90$$

$$P = \int_{90}^{+\infty} f(Q)dQ = 93.3\%$$

$$P(Q > Q_{\overline{|\beta|}}^*) = P\left(\frac{Q - 120}{20} > \frac{Q_{\overline{|\beta|}}^* - 120}{20}\right) = P\left(\frac{Q - 120}{20} > \frac{90 - 120}{20}\right)$$
$$= P\left(\frac{Q - 120}{20} > -1.5\right) = P(\xi > -1.5) = P(\xi < 1.5) = \Phi(1.5)$$

续表Ⅰ』(1)

<i>x</i> Φ(<i>x</i>)		$x \Phi(x)$	
1.20	0.8849	1.50	0.9332
1.21	0.8869	1.51	0.9345
1.22	0.8888	1. 52	0-9357

甲: 固定成本400万元,可变成本每件11.5元,年最大生产能力130万件

乙: 固定成本200万元,可变成本每件15元,年最大生产能力100万件

丙: 固定成本600万元,可变成本每件10元,年最大生产能力160万件

4、期望利润

甲: 固定成本400万元,可变成本每件11.5元,年最大生产能力130万件

乙: 固定成本200万元,可变成本每件15元,年最大生产能力100万件

丙: 固定成本600万元,可变成本每件10元,年最大生产能力160万件

乙: 利润 =
$$\begin{cases} 20Q - 200 - 15Q & Q \le 100 \\ 20 \times 100 - 200 - 15 \times 100 & Q > 100 \end{cases}$$
期望利润 =
$$\int_{-\infty}^{100} (20Q - 200 - 15Q) \cdot P(Q) \cdot dQ + \int_{100}^{+\infty} 300P(Q) \cdot dQ$$
= 291.87万元

甲: 固定成本400万元,可变成本每件11.5元,年最大生产能力130万件

乙: 固定成本200万元,可变成本每件15元,年最大生产能力100万件

丙: 固定成本600万元,可变成本每件10元,年最大生产能力160万件

丙: 利润 =
$$\begin{cases} 20Q - 600 - 10Q & Q \le 160 \\ 20 \times 160 - 600 - 10 \times 160 & Q > 160 \end{cases}$$
期望利润 =
$$\int_{-\infty}^{160} (20Q - 600 - 10Q) \cdot P(Q) \cdot dQ$$

$$+ \int_{160}^{+\infty} (20 \times 160 - 600 - 10 \times 160) \cdot P(Q) \cdot dQ$$
= 598.4万元

5、期望成本

甲: 成本 =
$$\begin{cases} 400 + 11.5Q & Q \le 130 \\ 400 + 11.5 \times 130 & Q > 130 \end{cases}$$
期望成本 =
$$\int_{-\infty}^{130} (400 + 11.5Q) \cdot P(Q) \cdot dQ$$

$$+ \int_{130}^{+\infty} (400 + 11.5 \times 130) \cdot P(Q) \cdot dQ$$
= 1591.837万元

乙: 成本 =
$$\begin{cases} 200 + 15Q & Q \le 100 \\ 200 + 15 \times 100 & Q > 100 \end{cases}$$
期望成本 =
$$\int_{-\infty}^{100} (200 + 15Q) \cdot P(Q) \cdot dQ$$

$$+ \int_{100}^{+\infty} (200 + 15 \times 100) \cdot P(Q) \cdot dQ$$
= 1675.1万元

丙: 成本 =
$$\begin{cases} 600 + 10Q & Q \le 160 \\ 600 + 10 \times 160 & Q > 160 \end{cases}$$
期望成本 =
$$\int_{-\infty}^{160} (600 + 10Q) \cdot P(Q) \cdot dQ$$

$$+ \int_{160}^{+\infty} (600 + 10 \times 160) \cdot P(Q) \cdot dQ$$
= 1798.7万元

甲:固定成本400万元,可变成本每件11.5元,年最大生产能力130万件

乙: 固定成本200万元,可变成本每件15元,年最大生产能力100万件

丙: 固定成本600万元,可变成本每件10元,年最大生产能力160万件

6、实现最低成本的可能性

B点:
$$400+11.5Q_B = 600+10Q_B$$

$$Q_B = \frac{200}{1.5} = 133.3$$
 万元

甲实现最低成本的可能性

$$\int_{Q_A}^{Q_B} P(Q) \cdot dQ = \int_{57.14}^{133.3} \frac{1}{\sqrt{2\pi \cdot 20}} e^{-\frac{1}{2}(\frac{Q-120}{20})^2} dQ$$
$$= 0.741$$

$$\angle: \int_{-\infty}^{Q_A} P(Q) \cdot dQ = 0.00135$$

丙:
$$\int_{Q_R}^{+\infty} P(Q) \cdot dQ = 0.2578$$

7、设备利用率

设备利用率 =
$$\frac{$$
生产量 $}{$ 设备的最大生产能力 = $\frac{Q}{Q_{\text{B}}}$

甲充分利用的可能性

$$P(Q \ge 130) = P(\frac{Q - 120}{20} \ge \frac{130 - 120}{20})$$

$$= P(\frac{Q - 120}{20} \ge 0.5)$$

$$= 1 - \Phi(0.5) = 1 - 69.1\% = 30.9\%$$

乙充分利用的可能性

$$P(Q \ge 100) = P(\frac{Q - 120}{20} \ge \frac{100 - 120}{20})$$
$$= P(\frac{Q - 120}{20} \ge -1)$$
$$= \Phi(1) = 84.1\%$$

丙充分利用的可能性

$$P(Q \ge 160) = P(\frac{Q - 120}{20} \ge \frac{160 - 120}{20})$$
$$= P(\frac{Q - 120}{20} \ge 2)$$
$$= 1 - \Phi(2) = 2.3\%$$

甲利用率在80%以上的可能性

$$P(Q \ge 130 \times 0.8) = P(Q \ge 104)$$

$$= P(\frac{Q - 120}{20} \ge \frac{104 - 120}{20}) = P(\frac{Q - 120}{20} \ge -0.8)$$

$$= \Phi(0.8) = 78.8\%$$

乙利用率在80%以上的可能性

$$P(Q \ge 100 \times 0.8) = P(Q \ge 80)$$

$$= P(\frac{Q - 120}{20} \ge \frac{80 - 120}{20})$$

$$= \Phi(2) = 97.7\%$$

丙利用率在80%以上的可能性

$$P(Q \ge 160 \times 0.8) = P(Q \ge 128)$$
$$= P(\frac{Q - 120}{20} \ge 0.4)$$
$$= 1 - \Phi(0.4) = 34.5\%$$

384页

秘书问题

假定需要聘用一名秘书。

有N个候选人应聘,他们的能力可以排成1、2···N。但是决策者不知道每个应聘者的能力排名。

面试一位候选人后,决策者要立即决定是否录用此人。

如果录用,则后面的人不再面试,招聘过程停止;

如果不录用,则继续面试下一位候选人。

决策者目标要保证录用排名第一的候选人概率最大,问 最优策略是什么? 阶段: 1,2, ..., N

状态空间: $S=\{0,1,\Delta\}$

0:前面的候选人中至少有一个比当前的候选人好

1:表示当前的候选人比前面的所有候选人都好

 Δ : 面试过程已结束

行动集: $A(0) = A(1) = \{C, Q\}$ $A(\Delta) = \{C\}$

C:表示拒绝当前的候选人

Q:表示接受当前的候选人

报酬值:
$$r_t(0, Q) = 0$$
, $r_t(1, Q) = \frac{C_{N-1}^{t-1}}{C_N^t} = \frac{t}{N}$

$$r_t(0, C) = r_t(1, C) = 0$$

$$r_t(\Delta, C) = 0$$

状态转移方程:

$$P_{t}(1|0,C) = P_{t}(1|1,C) = \frac{1}{t}$$

$$P_{t}(0|0,C) = P_{t}(0|1,C) = \frac{t-1}{t}$$

$$P_{t}(\Delta|0,Q) = P_{t}(\Delta|1,Q) = P_{t}(\Delta|\Delta,C) = 1$$
其他的 $P_{t}(j|i,a) = 0$

例如:
$$P_t(\Delta | 0, C) = P_t(\Delta | 1, C) = P_t(0 | 0, Q) = P_t(1 | 0, Q) = \cdots = 0$$

- u*(1):表示当刚刚面试过的候选人恰是前面所有面试过的 候选人中最好者时,从当前阶段到面试结束,且每一 阶段决策者都采用最优策略,决策者能够选到最好 候选人的最大概率。
- u_t*(0):表示当刚刚面试过的候选人不是前面所有面试过的 候选人中最好者时,从当前阶段到面试结束,且每一 阶段决策者都采用最优策略,决策者能够选到最好 候选人的最大概率。

$$u_N^*(1)=1$$
, $u_N^*(0)=0$, $u_N^*(\Delta)=0$, $u_t^*(\Delta)=0$