$$1+x \leq e \times \rho(x) \leq \frac{1}{1-x}$$

-1 < x < 1

$$\frac{1}{100} = e \times p(-x) = 1 - x$$

$$exP(x) \leq \frac{A}{A-x}$$

りつとく

בוכ חת הושינה:

$$\lambda = (1-x)+1 \leq ex \rho(x)-1 \leq \frac{1}{1-x}-1 = \frac{x}{1-x}$$

הוכחת המסקנה:

$$e \times P(o + x) = e \times P(o) \cdot e \times P(x)$$

	•	•	•	•	٠	•	•	50 mg	. المر.	,9,3°U	مر	•	کاد ر	וצר	
4(x) -f((~) \^E	<u>د</u> .	x-0-	دۍ .	b	ĵ								· •	•
t(r+x)) - {(o)	دو چي	[٢]	د گ	e 1 ²	, ,	_/s·	. p . & ~	· · · · · · · · · · · · · · · · · · ·	J .		. 0 1	 ייפר ב	15 t(o-1)	•
	٠	۰	٠		٠	۰	٠	٠	• •	٠	٠			ا عندر	
•		•	•	٠	•	•	•			•	. e.v.			e×P	1 .
•	•	•	•	•	•	•	•		• •	•				הוכ חת	
0	•	•	0	•	•	0	•		• •	•				امر ،	
0	•	•		•		· (v-x))		· • •(x). o v		. exp(x	٠	•	> e ×ρ(×	• •	0
0	•	•	exi (,) = e x	۴ (پُ.							. 7			•
•	•	•	•	•	•	0	•				•	•	· · ·	174(•
0	•	•	•	•	•	•	•		lime - ∞	x ρ (×) =	. O		.β:m exp	• •	
0	•	•	•	•	•	•	•		• •	٠		•	0 0	· · ·	
•		•	•	•	•		Ø							:3-W	•
٠	٠	٠	٠	٠	۰	٠	٠	· - «	h exp(x)) = [im	e × p (- ×)	= fih	0 e x f (x)	= 0	,
0	٠	•	٠	•	٠		•	•	• •		•	0		Norle	
•		•	•	•	•	•	•	•	. fr	* ๊กก	ex	p: R		∞ `)	•

$$\begin{aligned} & \{ a_{1}(x,y) : \{ a_{1}(x) \cdot b_{1}(y) \} \\ & \{ a_{2}(x,y) : \{ a_{1}(x) \cdot b_{1}(y) \} \\ & \{ a_{2}(x,y) : \{ a_{1}(x) \cdot b_{1}(y) \} \\ & \{ a_{2}(x,y) : \{ a_{1}(x) \cdot b_{1}(y) \} \\ & \{ a_{2}(x,y) : \{ a_{1}(x) \cdot b_{1}(y) \} \\ & \{ a_{2}(x,y) : \{ a_{1}(x) \cdot b_{1}(y) \} \\ & \{ a_{2}(x,y) : \{ a_{1}(x) \cdot b_{1}(y) \} \\ & \{ a_{2}(x,y) : \{ a_{2}(x,y) \} \\ & \{ a_{$$

$$\chi_{1} = \chi_{2} = \dots = \chi_{m} = \omega \qquad \text{np.} \qquad \text{ne.} M \in \mathbb{N} \qquad \text{y.} f$$

$$I_{m}(\omega^{m}) = u I_{n}(\omega)$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) + I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) + I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega)$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega)$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega)$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega)$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega)$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_{n}(\omega^{m})$$

$$I_{n}(\omega^{m}) = I_{n}(\omega^{m}) = I_$$

la a = v lu (v) $o' = e \times \rho(ln(a)) = e \times \rho(vln(a))$