

Table des matières

1	Gro	oupes libres et colimites 5
	1.1	Propriété universelle ou adjonction?
	1.2	Construction de $L(S)$
	1.3	Colimites de groupes
	1.4	Remarque
2	Son	nmes amalgamées et arbres 7
	2.1	Somme amalgamée à deux éléments
	2.2	Exemple
	2.3	Somme amalgamée générale
		2.3.1 Mots réduits
		2.3.2 Théorème
		2.3.3 Unicité
		2.3.4 Existence
	2.4	Description systématique
		2.4.1 Nouveau résumé
	2.5	Longueurs de mots et applications du théorème
		2.5.1 Cycliquement réduit et ordre
	2.6	Sous somme amalgamées
		2.6.1 Conséquence : produit libre et produit abélien libre 12
		2.6.2 Conséquence marrante

TABLE DES MATIÈRES

Chapitre 1

Groupes libres et colimites

1.1 Propriété universelle ou adjonction?

Le truc bizarre c'est que les objets et objets sont dans Set et/ou dans Grp. Ducoup en notant $i(G) \in Set$ le foncteur d'oubli on a

$$\operatorname{Hom}_{Grp}(L(S), G) \simeq \operatorname{Hom}_{Set}(S, i(G))$$

Et la propriété universelle du groupe libre sur $S \in Set$ est donnée par

$$S \xrightarrow{j} L(S)$$

$$\downarrow \exists ! L(k)$$

$$G$$

1.2 Construction de L(S)

Pour construire le groupes libre on prend les suites finies à coefficients dans $S \times \{\pm 1\}$ munies de la concaténation et l'élement neutre c'est le vide.

1.3 Colimites de groupes

Étant donné $(G_i)_i$ un petit diagramme dans Grp. On a

$$f_i \colon L(G_i) \to L(\sqcup G_i)$$

via $G_i \to \sqcup G_i$ dans Set et

$$0 \to N_i \to L(G_i) \to G_i \to 0$$

dans Grp via $G_i o G_i$ l'identité! Ensuite on a $N := L(\sqcup N_i) o L(\sqcup G_i)$ puis $L(\sqcup G_i)/N$ est pas tout à faire universel, à ce stade c'est le coproduit dans Grp. On identifie les G_i et leurs image dans $L(\sqcup G_i)$ puis on quotiente par le sous groupe normal (normalisé? Oui faut normaliser) engendré par l'ensemble des $x\rho_{ij}^{-1}(x)$ pour tout $x \in G_i$ et $f_{ij} \in F_{ij}$ (on prend un diagramme petit quelconque).

Pour prouver que c'est universel on peut juste obtenir d'abord $L(\sqcup G_i) \to H$ puis montrer que ça passe au quotient de manière unique.

1.4 Remarque

Dans un groupe libre L = L(S), l'ensemble des mots engendrés par une partie S' est en fait L(S').

Chapitre 2

Sommes amalgamées et arbres

2.1 Somme amalgamée à deux éléments

C'est le cas particulier

$$\begin{array}{ccc}
C & \xrightarrow{i_1} & A_1 \\
\downarrow^{i_2} & & \downarrow \\
A_2 & \xrightarrow{} & A_1 *_C A_2
\end{array}$$

et dans ce cas, on peut écrire une présentation de $A_1 *_C A_2$ à partir de présentations de A_1 et A_2 . On a construit la limite générale à partir de celle du bas :

$$0 \longrightarrow R_i \longrightarrow S_i$$

$$0 \longrightarrow N_i \longrightarrow L(A_i) \longrightarrow A_i \longrightarrow 0$$

Pour utiliser celle du haut on remarque qu'on a π_i : $L(S_i) \to A_i$ surjection canonique et $L(R_i) \to L(S_i)$ injective, où plutôt le groupe engendré par R_i . On regarde dans $L(S_1 \sqcup S_2)$ le groupe (libre) engendré par

$$< R_1 \sqcup R_2 \sqcup \{a_1 a_2^{-1} | (a_1, a_2) \in \pi_1^{-1}(i_1(c)) \times \pi_2^{-1}(i_2(c)), c \in C\}$$

En gros on a quotienté $L(S_1 \sqcup S_2)$ plutôt que $L(A_1 \sqcup A_2)$. On a quand même

$$0 \longrightarrow L(R_1 \sqcup R_2) \longrightarrow L(S_1 \sqcup S_2) \longrightarrow L(G_1 \sqcup G_2) \longrightarrow 0$$

2.2 Exemple

Si je me suis pas trompé, on a via $\mathbb{Z}/20\mathbb{Z} \to \mathbb{Z}/10\mathbb{Z}; 1 \mapsto 1 := a$ et $\mathbb{Z}/20\mathbb{Z} \to D_{10}; 1 \mapsto r$:

$$\mathbb{Z}/10\mathbb{Z} *_{\mathbb{Z}/20\mathbb{Z}} D_{10} = \langle a, r, s | a^{10} = 1, r^5 = 1, s^2 = 1, srs = r^{-1}, ar^{-1} = 1 \rangle$$

d'où $\mathbb{Z}/10\mathbb{Z} *_{\mathbb{Z}/20\mathbb{Z}} D_{10} = D_{10}$ à cause de la relation $ar^{-1} = 1$. J'ai mis que celle là parce que $i_1(i) = i(i_1(1)) = a^i$ et $i_2(i) = i(i_2(1)) = r^i$.

2.3 Somme amalgamée générale

Si on a une famille $(G_i)_{i\in I}$ et $A\to G_i$. ON peut former $*_AG_i=:G$. Là le quotient à une forme spéciale, on peut décrire assez bien ses éléments. On a quelques bijections, si on note S_i les classes à gauche de A dans G_i . On

$$A \times S_i \to G_i$$

via $(a, s) \mapsto a.s$ une bijection.

2.3.1 Mots réduits

À chaque $s \in \sqcup S_i$ on peut associer i_s l'unique élément de $\{i | s \in S_i\}$. Alors une suite finie de la forme $(a, s_1, s_2, \ldots, s_n)$ avec $s_j \in S_{i_{s_j}} - \{e\}$ et $i_{s_j} \neq i_{s_{j+1}}$ est appelé réduit. En gros on peut regarder chaque lettre modulo A et concentrer A à l'avant. Et deux lettres adjacentes sont dans des S_i différents.

2.3.2 Théorème

On a que pour tout $g \in G$, g a une forme réduite unique, i.e. $g = f(a)f_{i_{s_1}}(s_1)\dots f_{i_{s_n}}(s_n)$ On identifie les G_i à leurs images dans G. Si on note X l'ensemble des mots réduits On peut faire agir G dessus. Y suffit de faire agir chaque G_i tel que l'action de A ne dépende pas de i. On peut définir $Y_i := \{(1, s_1, \dots, s_n) | i_{s_1} \neq i\}$. On a

$$A \times Y_i \to X$$

 $(a, (1, s_1, \dots, s_n)) \mapsto (a, s_1, \dots, s_n)$ et

$$A \times S_i - \{e\} \times Y_i \to X$$

via $(a, s, (1, s_1, \ldots, s_n)) \mapsto (a, s, s_1, \ldots, s_n)$. Le point c'est que $A \times Y_i$ c'est les mots réduits où $i_{s_1} \neq i$ et $A \times S_i - \{e\} \times Y_i$ c'est les mots réduits où $i_{s_1} = i$. Ducoup on a une bijection

$$A \times Y_i \cup A \times S_i - \{e\} \times Y_i \to X$$

Sommes amalgamées et arbres

et si on identifie $A \times Y_i$ et $A \times \{e\} \times Y_i$ le membre de gauche c'est $G_i \times Y_i$. Donc on a une bijection

$$G_i \times Y_i \to X$$

et on peut agir avec G_i sur le truc de gauche via g((a, s), (m)) = (g.a.s, (m)). et si $g \in A$ g(a, s) = (ga, s). D'où G agit sur X.

En résumé

D'un mot de X, $m=(a,s_1,\ldots,s_n)$, et de $g=g_1\ldots g_n\in G$ on agit successivement sur les deux premiers termes OU sur le premier terme. En gros si $i_{s_1}=i_{g_1}$ alors on calcule $(g_1.a.s_1)=(a',s'_1)$ et on réinjecte. Sinon on calcule $g_1.a=(a',s)$ et on réinjecte! Vu que dans le deuxième cas $s_1\notin S_{ig_1}=S_{is}$ on est bon. En plus, l'action de G sur $X\subset G$ coincide avec l'action de G sur lui même.

2.3.3 Unicité

Le point de l'action d'avant c'est de montrer qu'on a une section $G \to X$. On a une flèche $X \to G$ donnée par

$$(a, s_1, \dots, s_n) \mapsto f(a) f_{i_{s_1}}(s_1) \dots f_{i_{s_n}}(s_n)$$

et une section $G \to X$ donnée par $g \mapsto g((1;))$. On peut remarquer que si $m = as_1 \dots s_n$ et $g = f(a).f_{i_{s_1}}(s_1)\dots f_{i_{s_n}}(s_n)$ alors g(1;) = m. Pour le voir c'est pas dur, comme $i_{s_i} \neq i_{s_{i+1}}$ on est toujours dans le deuxième cas de l'action et on a des représentants directement.

2.3.4 Existence

D'après Serre come $X \to G$ est injective, on peut l'identifier à son image. Ensuite suffit de remarquer que $G_i.X \subset X$. D'où $G.X \subset X$ puis $G \subset X$ car $(1;) = 1 \in X$. En fait c'est vraiment immédiat mdr, ptn c'est magique. Vu autrement on peut remarquer que $f_{iq_1}(g_1) \dots f_{iq_n}(g_n)$ se réecrit

$$f_{i_{g_1}}(g_1)\dots f_{i_{g_n}}(a_ns_n)$$

puis

$$f_{ig_1}(g_1)\dots f_{ig_{n-1}}(g_{n-1}a_n)f_{ig_n}(s_n)$$

d'où par récurrence le résultat. En fait c'est la preuve de Serre dans le sens inverse un peu. On agit par $g_n = a_n s_n$ sur (1;) puis par $a_{n-1} s_{n-1} = g_{n-1}$ sur (a_n, s_n) , etc.. On a bien une réceriture à chaque étape, celle de $a_{n-1}(s_{n_1}a_n)$.

2.4 Description systématique

Avec des nouvelles notations, $\bar{i}=(i_1,\ldots,i_n)$ vérifie (T) si $i_j\neq i_{j+1}$. Serre propose une description systématique du processus de réduction. Si on note $G_i'=G_i-A$ en fait on peut agir sur

$$\prod_{j=1}^{n} G'_{i_j}$$

avec A^{n-1} via

$$(a_1,\ldots,a_{n-1})(g_1,\ldots,g_n)=(g_1a_1^{-1},a_1g_2a_2^{-1},\ldots,a_{n-1}g_n)$$

Remarque 1. Par exemple avec A^2 sur $G'_1 \times G'_2 \times G'_3$ via $(a_1, a_2)(g_1, g_2, g_3) = (g_1 a_1^{-1}, a_1 g_2 a_2^{-1}, a_2 g_3)$.

Maintenant pour tout $\bar{i},$ je note $G'_{\bar{i}}$ le quotient par l'action. On a

$$f_{\bar{i}} \colon G'_{\bar{i}} \to G$$

le morphisme produit qui est passé automatiquement au quotient est injectif vu que dans chaque classe d'équivalence y'a un mot réduit (si \bar{i} vérifie (T), c'est ça qu'il faut éclaircir)! On obtient

$$A \sqcup \bigsqcup_{\bar{i} \text{ v\'erifie (T)}} G'_{\bar{i}} \to G$$

vu que chaque mot à une longueure bien définie. Pour conclure on peut comprendre qu'il y'a un mot réduit dans chaque classe de l'action ca : $g_1 \dots g_n = a_1 s_1 \dots a_n s_n$ puis en notant $a_n =: a'_{n-1}$ on réecrit

$$g_1 \dots g_n = a_1(s_1 a_1'^{-1})(g_2 a_2'^{-1}) \dots (a_{n-1}' g_n)$$

= $a_1((s_1 a_1'^{-1}) \dots (s_{n-1} a_{n-1}'^{-1})) s_n$

maintenant on agit sur le sous mot avec A^{n-1} en mettant $a_{n-1}=1$ puis par récurrence.

2.4.1 Nouveau résumé

Pour voir G comme les mots réduits X on fait agir G sur X via G_i sur

$$G_i \times Y_i$$

ou on a deux types d'actions suivant si $i_{s_1} = i$. Puis on a $G \to X$ donné par $g \mapsto g.(1;)$. D'où $X \subset G$. Enfin, $G_i.X \subset X$ par définition puis $G.1 \subset X$.

En plus la réduction de $g_1 \dots g_n$ via

$$g_1 \dots a_n s_n = g_1 \dots (g_{n-1} a_n) s_n = g_1 \dots (a_{n-1} s_{n-1}) s_n = \dots$$

peut se faire dans

$$G'_{\bar{i}} := (\prod G'_{i_j})/A^{|\bar{i}|-1}$$

avec $G'_i := G_i - A$. Donc on a une autre décomposition

$$A \sqcup \bigsqcup_{\bar{i} \in (T)} G'_{\bar{i}}$$

et là $G'_{\bar{i}}$ c'est les mots de type \bar{i} vérifiant (T), i.e. réduits, et A c'est (a;).

2.5 Longueurs de mots et applications du théorème

Nouvelle notation : si $g = as_1 \dots s_n$ alors $i_j(g) := i_{s_j}$. Pour que ce soit bien déf de $\mathbb{N} \times G \to I$ faut ajouter $\{*\}$ à I quand j > l(g). On remarque que la longueur de g donnée par $l(g) = |\bar{i}|$ si g est de type \bar{i} est bien déf !! Donc récurrence hehe. Par exemple, $g \in G$ est cycliquement réduit si $i_1(g)! = i_{l(g)}(g)$.

2.5.1 Cycliquement réduit et ordre

Si g est cycliquement réduit alors $l(g^i) = i.l(g)!$ D'où d'ordre infini. Aussi, un g quelconque est soit conjugué à un élément de G_i soit conjugué à un élément cycliquement réduit. Suffit de remarquer que $g_1^{-1}gg_1 = s_1^{-1}a^{-1}(as_1...s_n)a_1s_1$ est cycliquement réduit où de longueur l(g) - 1 donc récurrence. Penser au fait que $G'_{\bar{i}}$ est stable par réduction, pour voir qu'il suffit de regarder $i_1(s_na_1)!$ Ou $i_1(g_{n-1}g_1)$.

Remarque 2. Un élément d'ordre fini est donc conjugué à un élément d'un G_i . Aussi, si les G_i sont sans torsion, G aussi par contraposée.

2.6 Sous somme amalgamées

Étant donné une famille de sous-groupes $H_i \leq G_i$. Tels que $B = H_i \cap A$ ne dépend pas de i dans G. Alors, étant donné un système de représentants

 $e \in T_i$ du quotient H_i/B on peut l'étendre en S_i de G_i ! D'où les mots réduits de $*_B H_i$ sont des mots réduits de G. D'où $*_B H_i \to *_A G_i$ est injective.

En particulier si $H_i \cap A = \{1\}$ pour tout $i, *_B H_i = *H_i$ est libre dans G.

2.6.1 Conséquence : produit libre et produit abélien libre.

Étant donné $A*B \to A \times B$, son noyau est le groupe engendré par les commutateurs $X := \{[a:b] := a^{-1}b^{-1}ab\}$ ET X est libre dans, je note S le groupe. On peut remarque que pour $a' \in A$ $a'^{-1}[a:b]a' = [aa':b][a':b]^{-1} = [aa':b][b:a']$ (calcul). D'où S est normal dans A*B (on fait pareil avec $b \in B$). Maintenant (A*B)/S est un groupe qui vérifie la propriété universelle du produit $A \times B$. La liberté de X est plus compliquée. Je regarderai plus tard. Faut simplement scruter les mots.

2.6.2 Conséquence marrante

Le produit libre de deux groupes finis contient un groupe libre d'indice fini. Wah dit comme ça ca parait compliqué, en fait A*B contient S qui est libre et $(A*B)/S = A \times B$ qui est fini lol.