SSIE 660: Applied Stochastic Processes Dr. Sung H. Chung Note 9 Chapter 4. Discrete Markov Chains

True / False Test

1.	(T F) All states in a finite Markov Chain (with finite number of states) can be transient.
2.	(T F) All states in a finite irreducible Markov Chain are recurrent.
3.	(T F) No transient state can be reached from any recurrent state.
4.	(T F) From a recurrent state, only recurrent states can be reached.
•	A recurrent state i is said to be <i>positive recurrent</i> , if starting in i , the expected time until the system returns to state i is
	Otherwise, the recurrent state is
•	Positive recurrence is a class property. If any one state in a class is positive recurrent, then
•	In a finite Markov Chain,

- Let δ be the greatest common divisor of the set of all $n \ge 1$, for which $P_{jj}^n > 0$.
 - 1. If $\delta = 1$, then
 - 2. If $\delta \geq 2$, then

Let us recall the previous five examples.

$$P = \left[\begin{array}{cccc} 0.3 & 0 & 0.7 \\ 0.4 & 0.3 & 0.3 \\ 0.2 & 0.4 & 0.4 \end{array} \right]$$

$$P = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

(C)
$$P = \begin{bmatrix} 0.3 & 0.3 & 0.4 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0 & 1 \end{bmatrix}$$

(D)
$$P = \begin{bmatrix} 0.2 & 0.8 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 \\ 0 & 0 & 0.3 & 0.7 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

One more,

(E)

$$P = \left[\begin{array}{ccc} 0 & 0.5 & 0.5 \\ 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \end{array} \right]$$

- Ergodic: A state which is positive recurrent and aperiodic is called ergodic.
- If all the states in a Markov Chain are ergodic, then the Markov Chain is said to be ergodic.
- Now let us check which of the four Markov Chains we have been using as examples are irreducible and ergodic Markov Chains.

(A)

$$P = \left[\begin{array}{cccc} 0.3 & 0 & 0.7 \\ 0.4 & 0.3 & 0.3 \\ 0.2 & 0.4 & 0.4 \end{array} \right]$$

(B)

$$P = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

(C)
$$P = \begin{bmatrix} 0.3 & 0.3 & 0.4 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0 & 1 \end{bmatrix}$$

(D)
$$P = \begin{bmatrix} 0.2 & 0.8 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 \\ 0 & 0 & 0.3 & 0.7 \\ 0 & 0 & 0.5 & 0.5 \end{bmatrix}$$

Theorem 1 (Thm 4.1 in the text book). For an irreducible ergodic Markov Chain, $\lim_{n\to\infty} P_{ij}^n$ exists and is independent of i (starting state). $\lim_{n\to\infty} P_{ij}^n = \pi_j$. These are called stationary or steady state probabilities.

As per this theorem, () can have steady state probabilities.

How to find steady state probabilities

Let us look at P^{12} and P^{13} of (A).

$$P^{12} = \begin{bmatrix} 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \end{bmatrix}, P^{13} = \begin{bmatrix} 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \end{bmatrix}$$

(Here, the system reaches steady state when n=12, subjecting to rounding off. Most Markov Chains ready steady state when $n<\infty$. Theoretically, steady state is achieved only when $n=\infty$.)

- As we noted earlier:
 - Rows of P^n are the same.
 - Row of f P^{n+1} are the same as those of P^n .
- We know that $P^{n+1} =$ or
- In (A),

$$\begin{bmatrix} 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \end{bmatrix} * \begin{bmatrix} 0.3 & 0 & 0.7 \\ 0.4 & 0.3 & 0.3 \\ 0.2 & 0.4 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \\ 0.280 & 0.262 & 0.458 \end{bmatrix}$$

• The row of P^{12} and P^{13} are the same and hence any row of P^{12} and P^{13} can be considered. Let us look at row 1.

$$\begin{bmatrix} 0.280 & 0.262 & 0.458 \end{bmatrix} * \begin{bmatrix} 0.3 & 0 & 0.7 \\ 0.4 & 0.3 & 0.3 \\ 0.2 & 0.4 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.280 & 0.262 & 0.458 \end{bmatrix}$$

- In this example, $\pi_1 =$, $\pi_2 =$, $\pi_3 =$.
- In general,

$$\pi = [\pi_1 \ \pi_2 \ \cdots \ \pi_m] \tag{1}$$

• From (1), we obtain the following equations:

(equations here)

• The equations to be solved are:

$$-0.7\pi_1 + 0.4\pi_3 = 0 \tag{2}$$

$$0.7\pi_1 + 0.3\pi_2 - 0.6\pi_3 = 0 \tag{3}$$

and

• We have already obtained the following relations using (2) and (3):

$$\pi_2 = \frac{4}{7}\pi_3, \ \pi_1 = \frac{3}{4.9}\pi_3$$

• In general,

$$[\pi_1 \ \pi_2 \ \cdots \ \pi_m] \left[\begin{array}{cccc} P_{11} & P_{12} & \cdots & P_{1m} \\ P_{21} & P_{22} & \cdots & P_{2m} \\ \vdots & & & \vdots \\ P_{m1} & P_{m2} & \cdots & P_{mm} \end{array} \right] = [\pi_1 \ \pi_2 \ \cdots \ \pi_m]$$

and