Novo Espaço – Matemática A 11.º ano

Proposta de resolução do teste de avaliação [janeiro - 2023]

1.

Afirmação	V (Verdadeira)	F (Falsa)
A. Se $\overline{AC} = 5$, então $\overline{BA} \cdot \overline{AC} = 25$		F
B. $\overrightarrow{AD} \cdot \overrightarrow{AB} = \overrightarrow{AE} \cdot \overrightarrow{AB}$	V	
C. $\overrightarrow{BA} \cdot \overrightarrow{DE} = \overrightarrow{BC} \cdot \overrightarrow{AD}$	V	
D. $\overrightarrow{BA} \cdot \overrightarrow{BD} > 0$		F

2.
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AB} = \left(\overrightarrow{AB}\right)^2 = 4$$

$$\overline{AB} = 2$$

Seja x a medida da aresta do cubo.

$$x^2 + x^2 = 2^2 \Leftrightarrow 2x^2 = 4 \Leftrightarrow x^2 = 2$$

Daqui resulta que $x = \sqrt{2}$.

O volume do cubo é dado por $x^3 = \left(\sqrt{2}\right)^3 = 2\sqrt{2}$.

Resposta: Opção (D) $2\sqrt{2}$

3.

3.1
$$(x,y) = (-1,3) + k(3,-1), k \in \mathbb{R}$$

Declive da reta r: $-\frac{1}{3}$

O declive de qualquer reta perpendicular à reta $r \in m = 3$.

A reta pretendida tem equação reduzida do tipo y = 3x + b e passa em C(-2,1).

$$1 = -6 + b \Leftrightarrow b = 7$$

Resposta: y = 3x + 7

3.2 A inclinação da reta r, em função de θ , é dada por $\pi - \left(\frac{\pi}{2} - \theta\right)$, ou seja, $\frac{\pi}{2} + \theta$.

$$\text{Então, } \tan \left(\frac{\pi}{2} + \theta \right) = -\frac{1}{3} \Leftrightarrow \frac{\sin \left(\frac{\pi}{2} + \theta \right)}{\cos \left(\frac{\pi}{2} + \theta \right)} = -\frac{1}{3} \Leftrightarrow \frac{\cos \left(\theta \right)}{-\sin \left(\theta \right)} = -\frac{1}{3} \Leftrightarrow -\frac{1}{\tan \left(\theta \right)} = -\frac{1}{3} \,.$$

Daqui resulta que $tan(\theta) = 3$.

Recorrendo à calculadora, obtém-se $\theta \approx 71.6^{\circ}$.

Resposta: Opção (B) 71,6

4. O centro, C, da circunferência tem coordenadas (-1,2) e é o ponto médio do segmento de reta [AB], sendo A(-4,3).

Sejam (x_0, y_0) as coordenadas do ponto B.

$$\begin{cases} \frac{-4 + x_0}{2} = -1 \\ \frac{3 + y_0}{2} = 2 \end{cases} \Leftrightarrow \begin{cases} x_0 = 2 \\ y_0 = 1 \end{cases}$$

Então, B(2,1).

Seja P(x,y) um ponto qualquer da reta t.

$$\overrightarrow{CB} \cdot \overrightarrow{BP} = 0 \Leftrightarrow (3,-1) \cdot (x-2,y-1) = 0 \Leftrightarrow 3x-6-y+1=0 \Leftrightarrow y=3x-5$$

Resposta: y = 3x - 5

5.1 Um vetor diretor da reta $AB \in \vec{u}(2,-1)$ e um vetor diretor do eixo $Ox \in \vec{v}(1,0)$.

Seja θ o ângulo formado pela reta AB e o eixo Ox.

$$\cos\theta = \frac{\left|\vec{u} \cdot \vec{v}\right|}{\left\|\vec{u}\right\| \times \left\|\vec{v}\right\|} = \frac{\left|2 - 0\right|}{\sqrt{5} \times \sqrt{1}} = \frac{2}{\sqrt{5}}$$

Recorrendo à calculadora, obtém-se: $\theta \approx 26,6^{\circ}$

Resposta: 26,6°

5.2 Uma equação da reta DA é y = 2x + 3.

O ponto A é o ponto de interseção das retas AB e DA.

$$\begin{cases} y = -\frac{1}{2}x - 2 \Leftrightarrow \begin{cases} 2x + 3 = -\frac{1}{2}x - 2 \Leftrightarrow \begin{cases} 5x = -10 \\ y = 2x + 3 \end{cases} \Leftrightarrow \begin{cases} x = -2 \\ y = -1 \end{cases} \end{cases}$$

O ponto A tem coordenadas (-2,-1)

$$\overline{AD} = \sqrt{(-2-0)^2 + (-1-3)^2} = \sqrt{20} = 2\sqrt{5}$$

Perímetro do quadrado: $4 \times \overline{AD} = 8\sqrt{5}$

Resposta: $8\sqrt{5}$

6.

6.1 Área do triângulo
$$[OAP]$$
: $\frac{1 \times \sin x}{2} = \frac{\sin x}{2}$

Área do triângulo
$$[OP'B]$$
: $\frac{1 \times \cos x}{2} = \frac{\cos x}{2}$

Área da região sombreada:
$$\frac{\sin x + \cos x}{2}$$

Se
$$x = \frac{\pi}{6}$$
: $\frac{\sin\frac{\pi}{6} + \cos\frac{\pi}{6}}{2} = \frac{\frac{1}{2} + \frac{\sqrt{3}}{2}}{2} = \frac{1 + \sqrt{3}}{4}$

Resposta:
$$\frac{1+\sqrt{3}}{4}$$

6.2 Inserem-se as expressões das funções e define-se uma janela de acordo com o domínio da função.

Resposta: x = 1,11 rad