LABORATÓRIO 5: Regressão Linear

Fernado Bispo, Jeff Caponero

Sumário

arte 1: Regressão Linear Simples - I	Dia	gn	ós	tic	co	$\mathbf{d}\mathbf{c}$	r	no	\mathbf{d}	elo)				
Metodologia															
Resultados															
Ajuste do Modelo															
Significância do Modelo															
Análise de Resíduos															
Testes de Diagnósticos do Modelo															
Transformações dos Dados															
Conclusão															

Introdução

O laboratório desta semana está subdividido em duas partes com análises de dois conjuntos de dados distintos que visa a continuidade da aplicação das técnicas de Regressão Linear Simples com a aplicabilidade das técnicas de análise de resíduos e transformação de variáveis inclusive. Para melhor desenvolvimento do processo de analise, este relatório foi dividido em duas partes contendo as análises de cada um dos conjuntos de dados e contando com suas respectivas apresentações sobre o contexto a ser analisado.

Parte 1: Regressão Linear Simples - Diagnóstico do modelo

Metodologia

O conjunto de dados *trees*, disponível no pacote *datasets*, contém informações de 31 cerejeiras (*Black cherry*) da Floresta Nacional de Allegheny, relativas a três características numéricas contínuas:

- Volume de madeira útil (em metros cúbicos (m³));
- Altura (em metros (m));
- Circunferência (em metros(m)) a 1,37 de altura.

Para esta atividade serão considerados apenas as informações referentes ao volume e altura das árvores. Com base nestes dados se desenvolverá:

- (a) Ajuste um modelo linear simples para volume como função da altura da árvore;
- (b) Avalação gráfica dos resíduos Jacknife para diagnóstico do modelo ajustado;
- (c) Transformações da característrica utilizada como variável resposta do modelo;
- (d) Avaliação da transformação mais apropriada dentro da família proposta por Box e Cox;
- (e) Indicação da melhor transformação analisada.

Resultados

Ajuste do Modelo

Com base na Figura 1 é possível sugerir uma relação positiva entre as variáveis **Volume** e **Altura**, fato confirmado pelo Coeficiente de Correlação de Pearson (**R**) que após o teste de hipótese para avaliar a significância da correlação, demonstrou possuir correlação não nula. A Tabela 1 traz os resultados do teste de hipóteses para correlação e o Intervalo de Confiança para o verdadeiro valor da correlação, podendo concluir, com base no p-valor menor que o nível de significância ($\alpha = 5\%$), que a hipótese nula (H_0) foi rejeitada, assumindo-se a hipótese alternativa (H_1) que afirma que $\rho \neq 0$.

O Coeficiente de Determinação (R^2) apresenta um valor baixo, podendo afirmar que apenas aproximadamente 36% da variabilidade dos dados está sendo explicada pelo modelo de regressão calculado.

Tabela 1: Teste de Hipótese para Correlação entre Volume e Altura

	t	p-valor	LI	LS
Altura	4,02051	0,00038	0,30952	0,78598

Nota: Teste realizado com 5% de significância

Significância do Modelo

Após o ajuste do modelo existe a necessidade de se avaliar a significância do mesmo, o teste de hipótese para tal situação será realizado, contendo as seguintes hipóteses:

$$H_0: \hat{\beta_1} = 0$$

$$H_1: \hat{\beta_1} \neq 0.$$

As Tabelas 4 e 5 trazem os principais resultados da tabela ANOVA e do Intervalo de Confiança para os parâmetros, possibilitando assim inferir sobre o modelo ajustado.

Tabela 2: Análise de Variância (ANOVA)

	GL	Soma de Quadrados	Quadrado Médio	Estatística F-Snedecor	p-valor
Regressão	1	2,326	2,326	16,1645	0,0004
Resíduos	29	4,174	0,144		

Legenda:

Tabela 3: Intervalos de Confiança para os parâmetros estimados no MRLS.

	LI	LS
Beta 0	-4,162	-0,772
Beta 1	0,070	0,216

Legenda:

Com base na Tabela 1, avaliando o p-valor é possível afirmar que o modelo é significante rejeitando assim H_0 que tem como pressuposto $\hat{\beta}_1 = 0$.

Através dos Intervalos de Confiança calculados é possível afirmar com 95% de confiança que o verdadeiro valor de β_0 está entre (-4,1624; -0,7717) e que o verdadeiro valor de β_1 está entre (0,0704; 0,2163).

¹ GL: Graus de Liberdade

¹ LI: Limite Inferior (alpha = 2.5%)

 $^{^2}$ LS: Limite Superior (alpha = 97,5%)

^{*} Nível de Significância de 5%.

Análise de Resíduos

Figura 2: Análise de resíduos do modelo ajustado

Valores Ajustados

A Figura 2 Sub.Fig A apresenta um comportamento assimétrico dos resíduos, podendo constatar uma pequena variabilidade inicial e um aumento desta à medida que os valores ajustados aumentam, caracterizando uma heterocedasticidade. A Sub.Fig C, que trada da Homogeneidade de Variâncias (Locação-Escala) mostra que há um problema na variabilidade dos dados, corrobora com a interpretação feita na análise da Sub.Fig. A, de que há uma mudança na variabilidade dos dados, caracterizando Heterocedasticidade dos dados. A Sub.Fig. B que traz o gráfico para avaliação da normalidade dos dados, mostra que apesar dos dados não estarem precisamente sobre a reta de referência, os mesmos estão contidos na região pertencente ao Intervalo de Confiança - IC, podendo assumir que há normalidade, contudo tal avaliação será confirmada após os Testes de Diagnóstico.

Testes de Diagnósticos do Modelo

Para avaliar se o modelo atende aos pressupostos, além da análise gráfica podem ser realizados testes de diagnósticos, que são testes de hipóteses para avaliação dos pressupostos que são:

• Normalidade;

 H_0 : Os resíduos possuem normalidade.

 $H_1:$ Os resíduos **não** possuem normalidade.

• Homoscedasticidade (Homogeneidade de Variância);

 H_0 : Os resíduos possuem variância constante.

 $H_1:$ Os resíduos **não** possuem variância constante.

- Linearidade;
- Independência.

 H_0 : Existe correlação serial entre os resíduos.

 H_1 : Não existe correlação serial entre os resíduos.

Para tanto serão utilizados os seguintes testes:

- Shapiro-Wilk, para avaliar a Normalidade;
- Breush-Pagan, para avaliar a Homoscedasticidade;
- Durbin-Watson, para avaliar a Independência.

Tabela 4: Testes de Diagnósticos dos Resíduos

	Estatística de teste	p-valor
Shapiro-Wilk	0,95078	0,1640
Breush-Pagan	7,49015	0,0062
Durbin-Watson	0,50090	0,0000

Transformações dos Dados

Tendo em vista que o modelo não atendeu aos pressupostos se faz necessário a utilização de técnicas para buscar uma melhora de performace do modelo antes da possibilidade de descarte e para tanto algumas transformações são sugeridas, sendo estas:

- T1 = \sqrt{Y} ;
- T2 = log(Y);
- $T3 = Y^2$.

Sendo Y a variável resposta do modelo representada pelo Volume.

Tabela 5: Medidas Resumo da característica Volume com e sem transformações.

	Mín	Q1	Med	Média	Q3	Máx	Desv.padrão	CV
1. Volume	0,289	0,541	0,685	0,854	1,085	2,180	0,465	0,545
2. √Volume	0,537	0,735	0,828	0,894	1,041	1,477	$0,\!239$	0,267
3. log(Volume)	-1,242	-0,615	-0,378	-0,292	0,081	0,780	$0,\!526$	-1,805
4. Volume ²	0,083	$0,\!293$	$0,\!470$	0,940	$1,\!176$	4,754	1,051	1,119

Figura 4: Transformação Box-Cox

Analisando o gráfico das **famílias de transformações Box-Cox** é possível identificar que $-0, 5 < \lambda_{mx} < 0$ (\$ _{máx} \$-0,182), partindo do princípio que o valor zero está incluso no intervalo de valores possíveis de λ que minimizam a variância residual, mesmo o zero não sendo o máximo valor assumido, ainda assim, visando a escolha de uma transformação que possibilite uma interpretação facilitada, a escolha da transformação log(Y) torna-se a escolha mais assertiva. Para avaliar esta situação a Figura 3 foi construída.

Figura 3: Modelo ajustado e suas transformações

Comparativo entre o modelo ajustado sem transformação com os modelos após a transformações da variável resposta

Com base nos valores do Coeficiente de Determinação R^2 dos gráficos da Figura 3, é possível constatar que o gráfico cuja transformação log(Y) foi aplicada apresentou uma melhora no que diz respeito a possibilidade do modelo explicar a variabilidade dos dados, mesmo não sendo um valor considerado satisfatório, ainda assim é possível constatar a melhora de performance ao aplicar a transformação na característica utilizada como variável resposta.

Conclusão

Após as análises realizadas no modelo ajustado é possível afirmar que para cada aumento de 1 metro na atura da árvore, há uma redução média de aproximadamente exp(-4,4) m³ no volume ou aproximadamente 0.012 m³ no volume da árvore.

Parte 2: Regressão Linear Múltipla -Estimação pontual