THE FUNDAMENTAL LEMMA OF GAME PLAYING

ADVANCED TOPICS IN CYBERSECURITY CRYPTOGRAPHY (7CCSMATC)

Martin R Albrecht

OUTLINE

Introduction

CTR Mode

Fundamental Lemma of Game Playing

INTRODUCTION

RECAP

- We have defined what it means for an encryption scheme to be secure (IND-CPA + INT-CTXT = IND-CCA).
- We have shown that the OTP achieves IND-CPA security, even unconditionally.

The One-Time Pad is impractical, we want something more manageable \Rightarrow Pseudorandomness!

MAIN REFERENCE

Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security of Triple Encryption. Cryptology ePrint Archive, Report 2004/331. 2004. URL: https://eprint.iacr.org/2004/331

Mihir Bellare is a professor at UCSD

2003 RSA Conference's Sixth Annual Award

2013 Fellow of the Association for Computing Machinery.

2019 Levchin Prize for Real-World Cryptography

CTR Mode

CTR Mode

Picture credit: https://www.iacr.org/authors/tikz/

CTR MODE STREAM

$$r_i \in \{0,1\}^{\lambda}$$

Want: n+1 Pseudorandom Strings of Length λ

Definition (PRF)

A PRF is a keyed function $F_k : \{0,1\}^{\lambda} \to \{0,1\}^N$ where N depends on λ and for $k \leftarrow \mathcal{K}$. We say F_k is (t,ε) -secure PRF if for Game₀ and Game₁ defined below we have:

$$\forall\,\mathcal{D}\in t \text{ steps: } \mathsf{Adv}^{\mathrm{prf}}_{\mathit{F}}(\mathcal{D}) = \left|\mathsf{Pr}[\mathcal{D}^{\mathsf{Game}_1} = 1] - \mathsf{Pr}[\mathcal{D}^{\mathsf{Game}_0} = 1]\right| < \varepsilon$$

$Game_0$	F(x)	
1: $f \leftarrow \emptyset$	1:	if $x \notin f$.keys then $f[x] \leftarrow \$ \{0,1\}^N$
2 : return \mathcal{D}^F	2:	$y \leftarrow f[x]$
Game ₁	3:	$y \leftarrow F_k(x) //Game_1$
1: $f \leftarrow \emptyset$; $k \leftarrow \$ \mathcal{K}$	4:	return y
2 : return \mathcal{D}^F		

Have: n+1 calls to Pseudorandom Permutation of Length λ

Definition (PRP)

A PRP is a keyed permutation $E_k : \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ for $k \leftrightarrow \mathcal{K}$. We say E is (t,ε) -secure **PRP** if for Gameo and Gameo defined below we have:

$$\forall\,\mathcal{D}\in t \text{ steps: } \mathsf{Adv}^{\mathrm{prp}}_{\mathit{E}}(\mathcal{D}) = \left|\mathsf{Pr}[\mathcal{D}^{\mathsf{Game}_1} = 1] - \mathsf{Pr}[\mathcal{D}^{\mathsf{Game}_0} = 1]\right| < \varepsilon$$

$$\begin{array}{lll} & & & & & & \\ \hline 1: & f \leftarrow \emptyset & & & & \\ 2: & \text{return } \mathcal{D}^{P} & & & \\ \hline Game_{1} & & & & \\ \hline 1: & f \leftarrow \emptyset; k \leftarrow \sharp \mathcal{K} & & \\ \hline 2: & \text{return } \mathcal{D}^{P} & & \\ \hline \end{array}$$

THE GAP

```
F(x)
Game₀
 1: f \leftarrow \emptyset 1: if x \in f.keys then
 2: return \mathcal{D}^F 2: y \leftarrow f[x]
Game<sub>1</sub> 3: else
1: f \leftarrow \emptyset; 4: y \leftarrow \$ \{0,1\}^{\lambda} \setminus f. values
 2: return \mathcal{D}^F 5: y \leftrightarrow \{0,1\}^{\lambda} //Game<sub>1</sub>
                          6: f[x] \leftarrow y
                          7: return V
```

PRP-PRF SWITCHING LEMMA

Lemma

Let π be a random **permutation** from $\{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$; let ρ be a random **function** from $\{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$. Let \mathcal{A} be an adversary making at most q queries to its oracle, then:

$$|\Pr[\mathcal{A}^{\pi}] - \Pr[\mathcal{A}^{\rho}]| \le \frac{q \cdot (q-1)}{2^{\lambda+1}}.$$

PRP-PRF SWITCHING LEMMA I

Consider the following games:

PRP-PRF SWITCHING LEMMA II

$$|\Pr[\mathcal{A}^{\pi}] - \Pr[\mathcal{A}^{\rho}]| = |\Pr[\mathcal{A}^{Game_0}] - \Pr[\mathcal{A}^{Game_1}]|$$
 (1)

$$\leq \Pr[\mathcal{A}^{Game_0}] \text{ sets bad}$$
 (2)

$$\leq q \cdot (q+1)/2^{\lambda+1} \tag{3}$$

On Eq. (1): Game₀ perfectly simulates a random function ρ and Game₁ perfectly simulates a random permutation π , by the principle of lazy sampling. Thus, we have

$$\Pr[\mathcal{A}^{\rho}] = \Pr[\mathcal{A}^{Game_0}] \text{ and } \Pr[\mathcal{A}^{Game_1}] = \Pr[\mathcal{A}^{\pi}].$$

On Eq. (2): we will appeal to the fundamental lemma of game playing.

On Eq. (3): by the union bound the probability that $y \in \pi$.values, is at most

$$\frac{\left(1+2+\cdots+\left(q-1\right)\right)}{2^{\lambda}}=\frac{q\cdot\left(q-1\right)}{2^{\lambda+1}}.$$

FUNDAMENTAL LEMMA OF GAME

PLAYING

GAME PLAYING

We say Game₀ and Game₁ are "identical-until-bad" if they are ... identical until some flag bad is set.

FUNDAMENTAL LEMMA OF GAME PLAYING

Lemma (Fundamental Lemma of Game Playing)

Let $Game_0$, $Game_1$, $Game_2$ be identical-until-bad games and $\mathcal A$ be an adversary. Then

$$\left|\Pr[\mathcal{A}^{\mathsf{Game}_0}] - \Pr[\mathcal{A}^{\mathsf{Game}_1}]\right| \le \Pr[\mathcal{A}^{\mathsf{Game}_2} \text{ sets bad}] \text{ and }$$
 $\left|\Pr[\mathsf{Game}_0^{\mathcal{A}}] - \Pr[\mathsf{Game}_1^{\mathcal{A}}]\right| \le \Pr[\mathsf{Game}_2^{\mathcal{A}} \text{ sets bad}].$

- · The first statement follows immediately from the second.
- For the second statement we first prove it with $Game_2 = Game_0$ and then generalise.

(OPTIONAL) PROOF I

We require that both the adversary and the game always terminate in finite time.

- For any adversary \mathcal{A} there must exist an integer T such that \mathcal{A} always halts within T steps (regardless of the random choices \mathcal{A} makes and the answers it receives to its oracle queries).
- For any game Game there must exist an integer *T* such that Game always halts within *T* steps (regardless of the random choices made).

(OPTIONAL) PROOF II

Since A and Game terminate in finite time,

- \cdot there must be an integer T such that they each execute at most T random-assignment statements, and
- there must be an integer B such that the size of the set S in any random-assignment statement $s \leftrightarrow S$ executed by the adversary or the game is at most B.
- \Rightarrow The execution of Game with $\mathcal A$ uses finite randomness, meaning Game and $\mathcal A$ are underlain by a finite sample space Ω .

Punchline

Probabilities are well-defined and we can talk about the probabilities of various events in the execution.

(OPTIONAL) PROOF III

• This means that there exists an integer z such that the execution of $Game_0$ with $\mathcal A$ and the execution of $Game_1$ with $\mathcal A$ perform no more than z random-assignment statements, each of these sampling from a set of size at most z.

(OPTIONAL) PROOF IV

• Let $C := \text{Coins}(A, \text{Game}_0, \text{Game}_1) = [1...z!]^z$ be the set of z-tuples of numbers, each number between 0 and z!.

```
z = 2
R = IntegerModRing(factorial(z)); offset = vector(R, z, [1]*z).lift()
Coins = [coin.lift() + offset for coin in FreeModule(R, z)]
print(Coins)
```

- [(1, 1), (2, 1), (1, 2), (2, 2)]
- For $\mathbf{c} = (c_0, \dots, c_{z-1}) \in \mathcal{C}$, the execution of Game with \mathcal{A} on coins c is defined as follows:
 - On the *i*-th random-assignment statement, call it $x \leftrightarrow \mathcal{U}(\mathcal{S})$, where $\mathcal{S} := \{s_i\}_{0 \le i < m}$, if $\mathcal{S} \ne \emptyset$, return $s_{c_i \mod |\mathcal{S}|}$, otherwise return \bot .
- This way to perform random-assignment statements is done regardless of whether it is $\mathcal A$ or one of the procedures from Game that is is performing the random-assignment statement.

(OPTIONAL) PROOF V

• Note that $m = |\mathcal{S}|$ satisfies m|z! so if **c** is chosen at random from \mathcal{C} then the mechanism above will return a point x drawn uniformly from \mathcal{S} , and also the values for each random-assignment statement are independent.

(OPTIONAL) PROOF VI

- For $\mathbf{c} \in \mathcal{C}$ we let $\mathsf{Game}_0^{\mathcal{A}}(\mathbf{c})$ denote the output of Game_0 when Game_0 is executed with \mathcal{A} on coins \mathbf{c} . Same for Game_1 .
- Write $C_{i,one} := \{ \mathbf{c} \in C : \mathsf{Game_i}^{\mathcal{A}}(\mathbf{c}) \Rightarrow 1 \}$
- Write $C_i^{bad} \subseteq C$ for the coins that result in bad being set to **true** when running Game_i^A.
- Partition $C_{i,\text{one}}$ into $C_{i,\text{one}}^{bad}$ and $C_{i,\text{one}}^{good}$ depending on whether bad was set or not in game Game_i.
- Because games $Game_0$ and $Game_1$ are identical-until-bad, an element $\mathbf{c} \in \mathcal{C}$ is in $\mathcal{C}_{0,one}^{good}$ if and only if it is in $\mathcal{C}_{1,one}^{good}$.
 - Bad is never set so the sets are same and in particular have the same size.

(OPTIONAL) PROOF VII

We then get:

$$\begin{split} \Pr[\mathsf{Game_0}^{\mathcal{A}}] - \Pr[\mathsf{Game_1}^{\mathcal{A}}] &= \frac{\mathcal{C}_{0,\mathrm{one}}}{\mathcal{C}} - \frac{\mathcal{C}_{1,\mathrm{one}}}{\mathcal{C}} \\ &= \frac{\mathcal{C}_{0,\mathrm{one}}^{good} + \mathcal{C}_{0,\mathrm{one}}^{bad}}{\mathcal{C}} - \frac{\mathcal{C}_{1,\mathrm{one}}^{good} + \mathcal{C}_{1,\mathrm{one}}^{bad}}{\mathcal{C}} \\ &= \frac{\mathcal{C}_{0,\mathrm{one}}^{bad}}{\mathcal{C}} - \frac{\mathcal{C}_{1,\mathrm{one}}^{bad}}{\mathcal{C}} \\ &\leq \frac{\mathcal{C}_{0,\mathrm{one}}^{bad}}{\mathcal{C}} \\ &\leq \frac{\mathcal{C}_{0,\mathrm{one}}^{bad}}{\mathcal{C}} \\ &= \Pr[\mathsf{Game_0}^{\mathcal{A}} \; \mathsf{sets} \; \mathsf{bad}]. \end{split}$$

(OPTIONAL) PROOF VIII

To prove the second statement we rely on the following lemma.

Lemma

Let Game_0 and Game_1 be identical-until-bad games. Let $\mathcal A$ be an adversary. Then

 $Pr[Game_0^A sets bad] = Pr[Game_1^A sets bad].$

(OPTIONAL) PROOF IX

- Since $Game_0$ and $Game_1$ are identical-until-bad, each $\mathbf{c} \in \mathcal{C}$ causes bad to be set in $Game_0^{\mathcal{A}}$ if and only if it is set in $Game_1^{\mathcal{A}}$.
- Thus

$$\begin{split} \mathcal{C}_{1}^{bad} &= \mathcal{C}_{2}^{bad} \\ |\mathcal{C}_{1}^{bad}| &= |\mathcal{C}_{2}^{bad}| \\ |\mathcal{C}_{1}^{bad}|/|\mathcal{C}| &= |\mathcal{C}_{2}^{bad}|/|\mathcal{C}| \\ \text{Pr[Game}_{1}^{\mathcal{A}} \text{ sets bad]} &= \text{Pr[Game}_{2}^{\mathcal{A}} \text{ sets bad]}. \end{split}$$

MATCHING ATTACK

- Call $\sqrt{2^{\lambda}} = 2^{\lambda/2}$ times and check if any answer repeats.
- By the birthday bound this happens with constant probability

Memory-less Attack

Read about the Pollard-rho attack to learn how to make this attack use poly(λ) memory instead of $2^{\lambda/2}$.

FIN

We want to approximate the one-time pad If we have a PRF, this is straight-forward If we "only" have a PRP, an ideal primitive, this breaks down after $q=\sqrt{2^{\lambda}}$ queries, e.g. 2^{64} for $\lambda=128$ (AES-128).

NEXT: How do we get a PRP?

REFERENCES I

[BR04] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security of Triple Encryption. Cryptology ePrint Archive, Report 2004/331. 2004. URL: https://eprint.iacr.org/2004/331.