Auto Regressive Models on Transport Data

Author: Ahmed Tidiane BALDE Supervisors: Vincent GUIGUE, Nicolas BASKIOTIS

June 4, 2019

Summary

- Intro
- 2 Data Analysis and Preprocessing
- 3 Models
- 4 Metrics
- 6 Results
- **6** Model of Models
- Conclusion

Goal

Predicting accurately the affluence of stations.

To achieve so, we will inspect and use Auto Regressive Models and its variants like Auto Regressive Moving Average Models.

S Lip Used Tables

While there are many tables, we are only interested in a few of them. The ones which contain features on **validations count**:

station
id
network_code
transporter_code
station_code
name
X
y
pricing_zone
validations_count

validation
user_id
station_id
mode
operation_date
time
nature
trip_portion_id

Below an exemple of rows in the *station* table.

id	nc	tc	sc	name	Х	у	pricing_zone	val_count
2	12	112	266	Mairie	634777.498849	6860011.06668	4	554

As for *validation* table, here is an exemple :

user_id	station_id	mode	operation_date	time	nature	tp_id
89787145276371350004	53389	3	2015-10-01	19:46:12	031	2

Discretization of validations table

By using validations table, we applied a 15 minutes discretization.

				2015- 10-03																2015- 12-30	
major	minor																				
198	00:00:00	38.0	70.0	57.0	26.0	26.0	39.0	46.0	53.0	46.0	70.0	 26.0	20.0	21.0	12.0	35.0	11.0	11.0	27.0	29.0	0.0
	00:15:00	20.0	49.0	67.0	13.0	10.0	20.0	31.0	30.0	29.0	84.0	 14.0	23.0	21.0	19.0	36.0	14.0	17.0	11.0	18.0	0.0
	00:30:00	13.0	39.0	48.0	18.0	4.0	4.0	9.0	26.0	33.0	50.0	 13.0	5.0	2.0	11.0	22.0	8.0	13.0	36.0	12.0	0.0
	00:45:00	3.0	43.0	61.0	3.0	2.0	6.0	4.0	7.0	33.0	24.0	 4.0	5.0	9.0	10.0	6.0	1.0	2.0	2.0	3.0	0.0
	01:00:00	1.0	23.0	48.0	0.0	0.0	2.0	3.0	1.0	25.0	25.0	5.0	2.0	5.0	1.0	9.0	2.0	1.0	2.0	2.0	0.0

Normalization

Normalization between -1 and 1 according to each station

Data dimensions: 78 x 301 x 80

<u>Train</u>: 57 x 301 x 80 <u>Test</u>: 21 x 301 x 80

Auto Regressive model (AR)

$$X_t = c + \sum_{i=1}^p \theta_i X_{t-i} + \epsilon_t \tag{1}$$

where p is the auto-regressive parameter, θ_1 , ..., θ_p are the model weights, c is a constant and ϵ_t the white noise, wiki : Autoregressive_model.

- Linear Regression
- XGBoost

Auto Regressive Moving Average (ARMA)

$$X_t = c + \sum_{i=1}^p \theta_i X_{t-i} + \epsilon_t + \sum_{i=1}^q \beta_i \epsilon_{t-i}$$
 (2)

where p again is the auto-regressive parameter, q the Moving Average(MA) parameter, $\epsilon_1, ..., \epsilon_q$, are the errors, $wiki: Autoregressive_moving_average_model$.

X	Υ				
04:00 04:15 04:30 04:45	05:00				
	:				
04:15	05:15				
	:				
04:30 04:45 05:00 05:15	05:30				
04:45	05:45				
05:00 05:15 05:30 05:45	06:00				
•	•				
•	•				

remplacer cette colonne par

T+1		T+2		T+3				
×	Y	х	Υ	х	Υ			
04:00 04:15 04:30 04:45	05:00	04:00 04:15 04:30 04:45	05:15	04:00 04:15 04:30 04:45	05:30			
04:15 04:30 04:45 05:00	05:15	04:15 04:30 04:45 05:00	05:30	04:15 04:30 04:45 05:00	05:45			
04:30 04:45 05:00 05:15	05:30	04:30 04:45 05:00 05:15	05:45	04:30 04:45 05:00 05:15	06:00			
04:45 05:00 05:15 05:30	05:45	04:45 05:00 05:15 05:30	06:00	04:45 05:00 05:15 05:30	06:15			
05:00 05:15 05:30 05:45	06:00	05:00 05:15 05:30 05:45	06:15	05:00 05:15 05:30 05:45	06:30			

22/42

		X_tr	ain		Y_train	X_test						
X1	X2	хз	X4	eps1		X1	X2	хз	X4	eps1		
04:00	04:15	04:30	04:45	f(X) - Y	05:00	04:00	04:15	04:30	04:45			
										0		
										0		
										0		
04:15	04:30	04:45	05:00		05:15	04:15	04:30	04:45	05:00			
										0		
										0		
								•		0		
04:30	04:45	05:00	05:15		05:30	04:30	04:45	05:00	05:15			
										0		
										0		
		•			'			•		0		
04:45	05:00	05:15	05:30		05:45	04:45	05:00	05:15	05:30			
										0		
										0		
		٠								0		
05:00	05:15	05:30	05:45		06:00	05:00	05:15	05:30	05:45	_		
										0		
										0		
										0		

Different cases for each auto-regressive models:

- General Baseline
- Baseline per day
- Baseline per station
- Baseline per station per day

The goal is to do better than the baselines. Specially the last one which is quite strong.

In order to evaluate our models we used different metrics among which:

RMSE

$$RMSE = \sqrt{\frac{1}{N} \sum_{y \in Y \text{ and } \hat{y} \in Y_{pred}} (y - \hat{y})^2}$$
 (3)

Figure: RMSE Score error for General Model with Baseline per station: XGBoost

fime

Figure: RMSE Score error for General Model with Baseline per station: XGBoost

Figure: RMSE Score error for General Model with Baseline per station: XGBoost

We then tried to test the AR models in a more accurate and specific way, for instance:

- One model per day
- One model per station
- One model per station and per day

We have seen that when we add the baseline per station and per day it works better so for each of those listed above, we did add the baseline ber station and per day.

Figure: RMSE Score error for General Model with Baseline per station: XGBoost

Figure: MAPE curves of stations

Figure: MAPE clusters map of stations

Stacking

Model Stacking also called Meta Ensembling consists in combining information from mutiple predictive models (base models) to generate a new one.

Often times, **Stacking** provides better results.

Conclusion

Thank You!

Questions?