SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN LAPTOP DENGAN METODE ANALYTICAL HIERARCHY PROCESS (AHP)

DECISION SUPPORT SYSTEM FOR SELECTION LAPTOP WITH ANALYTICAL HIERARCHY PROCESS (AHP)

Yulian Saputra

Jurusan Teknik Informatika Fakultas Ilmu Komputer Universitas Dian Nuswantoro

Jl. Nakula I, No. 5-11, Semarang

ABSTRAK

Proses pemilihan sebuah laptop harus didasarkan pada kemampuan dan kebutuhan pembeli. Ketika pembeli dihadapkan pada banyak pilihan merk laptop dan berbagai sepesifikasinya,kebanyakan pembeli jadi kebingungan memilih laptop yang sesuai untuknya. Dari hal tersebut dibuatlah sebuah sistem pendukung keputusan yang ditujukan untuk membantu pembeli memilih laptop yang sesuai dengan kemampuan dan kebutuhan pembeli.

Sistem pendukung keputusan berperan dalam membantu pembeli mendapatkan rekomendasi yang tepat dalam pemilihan laptop. Sistem pendukung keputusan ini juga dibuat untuk membantu pembeli memilih laptop yang sesuai dengan kebutuhannya supaya pembeli tidak kebingungan karena banyaknya merk laptop yang dihadapkan pada pembeli karena admin sudah mempunyai rekomendasi yang sesuai menurut kebutuhan pembeli dengan memanfaatkan metode Analytical Hierarchy Process (AHP).

Sistem ini diimplementasikan dengan menggunakan bahasa pemrograman PHP, dan untuk database menggunakan SQL Server. Dari hasil penelitian pemanfaatan metode Analytical Hierarchy Process (AHP) dengan bahasa pemrograman PHP sebagai sistem pendukung keputusan dapat membantu admin memberikan rekomendasi laptop kepada pembeli dengan lebih cepat,efektif dan transparan.

Kata Kunci: Laptop, Sistem Pendukung Keputusan, Analytical Hierarchy Process.

1. PENDAHULUAN

1.1. Latar Belakang Masalah

Laptop adalah salah satu jenis komputer yang bisa di bawa kemanamana, berat dari laptop tersebut tergantung dari ukuran laptop, bahan, dan spesifikasi laptop tersebut. Komponen yang terdapat di dalam laptop sama dengan komponen pada personal komputer(PC) bedanya adalah komponen pada laptop ukurannya di perkecil, di buat lebih ringan, dan hemat daya. Dan seiring kemajuan teknologi banyak merk-merk laptop bermunculan dan dari setiap merk meluncurkan laptop dengan berbagai keunggulannya.

Dari berbagai jenis merk laptop, spesifikasi, dan fungsinya sering kali konsumen tidak bisa memilih antara merk satu dengan lainnya dan sering kali konsumen membeli laptop yang tidak sesuai dengan kebutuhannya. Dari hal tersebut maka diperlukan suatu sistem pemilihan laptop. Proses penentuannya dengan mempertimbangkan harga,merk dan spesifikasi laptop diantaranya prosesor,ram,memori. Sehubungan dengan itu maka penulis mencoba mengangkat hal tersebut dalam tugas akhir dengan judul "Sistem Pendukung Keputusan Pemilihan Laptop Dengan Metode Analytical Hierarchy Process (AHP)".

1.2. Perumusan Masalah

Berdasarkan permasalahan yang terdapat latar belakang diatas pada muncul suatu masalah yang dapat diangkat dalam tugas akhir ini yaitu : "Bagaimana merancang sistem pendukung keputusan pemilihan laptop agar dapat mempermudah konsumen dalam memilih laptop yang sesuai dengan kebutuhan".

1.3. Batasan Masalah

Agar tidak terjadi pembahasan diluar masalah, maka dierlukan adanya pembatasan masalah untuk dapat memberikan gambaran yang lebih terarah pada masalah. Adapun batasan masalahnya adalah:

- Membuat sistem pendukung keputusan pemilihan laptop.
- Menggunakan metode Analytical Hierarchy Process (AHP) dalam pembuatan sistem pendukung keputusan ini.
- 3. Pembuatan sistem pendukung keputusan ini menggunakan bahasa pemrograman Php.

1.4. Tujuan Penelitian

Dari uraian permasalahan diatas tujuan dari tugas akhir ini adalah membuat sebuah sistem pendukung keputusan pemilihan laptop yang akan membantu memberikan solusi bagi konsumen dalam memilih laptop yang sesuai dengan kebutuhan.

1.5. Manfaat Penelitian

- a. Memberikan alternatif solusi yang tepat untuk memilih laptop yang sesuai dengan kebutuhan.
- Memperluas pengetauan tentang sistem pendukung keputusan dengan metode Analytical Hierarchy Process.

2. LANDASAN TEORI

1.1. Sistem Pendukung Keputusan

DSS (Decision Support System) adalah sebuah sistem yang dimaksudkan untuk mendukung keputusan semiterstruktur. DSS dimaksudkan untuk menjadi alat bantu bagi para pengambil keputusan untuk memperluas kapabilitas mereka, namun tidak untuk menggantikan penilaian mereka. DSS ditunjukan untuk keputusan-keputusan yang memerlukan penilaian atau pada keputusan-keputusan yang sama sekali tidak dapat didukung oleh algoritma.

Tujuan dari DSS adalah (Riyani, Awang Harsa Kiradalaksana dan Ahmad Rofiq Hakim,2010).

- Membantu manajer dalam pengambilan keputusan atas masalah semistruktur.
- Memberikan dukungan atas pertimbangan manajer dan bukannya dimaksudkan untuk mengganti fungsi manajer.

- Meningkatkan efektifitas keputusan yang diambil lebih daripada perbaikan efisiensinya.
- Kecepatan komputasi, komputer memungkinkan para pengambil keputusan untuk melakukan banyak komputasi secara cepat dengan biaya rendah.
- 5. Peningkatan produktivitas.
- 6. Dukungan kualitas.
- 7. Berdaya saing.
- 8. Mengatasi keterbatasan kognitif dalam pemrosesan dan penyimpangan.

1.2. Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) merupakan suatu model pendukung keputusan yang dikembangkan oleh Thomas L. Saaty. Model pendukung keputusan ini akan menguraikan masalah multi faktor atau multi kriteria yang kompleks menjadi suatu hirarki, menurut Saaty, hirarki didefinisikan sebagai suatu representasi dari sebuah permasalahan kompleks dalam suatu struktur yang multi level dimana level pertama adalah tujuan, yang diikuti level faktor, kriteria, sub kriteria, dan seterusnya ke bawah hingga level terakhir dari alternatif. Dengan hirarki, suatu masalah yang kompleks dapat diuraikan ke dalam kelompok-kelompoknya yang kemudian diatur menjadi suatu bentuk hirarki permasalahan akan tampak sehingga

lebih terstruktur dan sistematis. sering digunakan sebagai metode pemecahan masalah dibanding dengan metode yang lain karena alasan-alasan sebagai berikut.

- Struktur yang berhirarki,sebagai konsekuensi dari kriteria yang dipilih, sampai pada subkriteria yang paling dalam.
- 2. Memperhitungkan validitas sampai dengan batas toleransi inkonsistensi berbagai kriteria dan alternatif yang dipilih oleh pengambil keputusan. Memperhitungkan daya tahan output analisis sensitivitas pengambilan keputusan.

3. PEMBAHASAN

Seseorang akan membeli laptop, alternatif laptop yang akan dipilih adalah acer, toshiba, apple. Sedangkan kriteria yang di pilih adalah prosesor, ram, memori.

Selanjutnya lakukan perbandingan berpasangan dengan Skala Saaty untuk mendapatkan bobot kriteria:

a. Perbandingan berpasangan dengan skala saaty.

	Proseso	Ra	Memor
	r	m	i
Proseso	1	3	5
r			
Ram	1/3	1	2
Memori	1/5	1/2	1

- b. Hitung bobot kriteria (priority vector) dengan cara :
 - Menjadikan nilai perbandingan berpasangan menjadi nilai desimal dan menjumlahkan setiap kolomnya.

	Proseso	Ra	Memo
	r	m	ri
Proseso	1.00	3.0	5.00
r		0	
Ram	0.33	1.0	2.00
		0	
Memor	0.20	0.5	1.00
i		0	
Kol	1.53	4.5	8.00
Sums		0	

Kolom 1 : 1.00 + 0.33 + 0.20 =

- 1.53 Begitu seterusnya sampai semua nilai terpenuhi.
- 2) normalisasi nilai setiap kolom matrik perbandingan berpasangan dengan membagi setiap nilai pada kolom matrik dengan hasil penjumlahan kolom yang bersesuaian.

	Proseso	Ra	Memo
	r	m	ri
Proseso	0.65	0.6	0.62
r		7	
Ram	0.22	0.2	0.25
		2	
Memor	0.13	0.1	0.13
i		1	

Cara normalisasi setiap nilai :
Nilai kolom 1 baris 1 (1.00) dibagi
dengan hasil penjumlahan per
kolom (1.53) hasilnya masuk
kolom 1 baris 1 0.65 begitu
seterusnya sampai semua nilai
terpenuhi.

3) Hitung nilai rata-rata dari penjumlahan setiap baris matrik

	Prose	Ra	Mem	Prio
	sor	m	ori	riti
				Vek
				tor
Prose	0.65	0.6	0.62	0.65
sor		7		
Ram	0.22	0.2	0.25	0.23
		2		
Mem	0.13	0.1	0.13	0.12
ori		1		

Mendapatkan nilai prioriti vektor:

Baris 1 :
$$0.65 + 0.67 + 0.62 / n = 0.65$$

Baris 2:
$$0.22 + 0.22 + 0.25 / n = 0.23$$

n = Jumlah kriteria yang dipakai.

	Prose	Ra	Mem	Prio
	FIUSE	Na	MICIII	1110
	sor	m	ori	riti
				Vek
				tor
Prose	1.00	3.0	5.00	0.65
sor		0		
Ram	0.33	1.0	2.00	<u>0.23</u>
		0		
Mem	0.20	0.5	1.00	<u>0.12</u>
ori		0		
Kol	1.53	4.5	8.00	
Sums		0		

= (3.03 - 3) / 2 = 0.02

Tabel IR

Ordo Matrik	RI	Ordo Matrik	RI	Ordo Matrik	RI
1	0	6	1,24	11	1,51
2	0	7	1,32	12	1,48
3	0,58	8	1,41	13	1,56
4	0,9	9	1,45	14	1,57
5	1,12	10	1,49	15	1,59

Sehingga:

$$CR = CI/IR$$

= 0,02 / 0,58 = 0,03

d. Susunan hierarki yang baru (lengkap dengan bobot kriteria)

c. Hitung CI

- e. Perhitungan bobot alternatif untuk kriteria Prosesor
 - a. Perbandingan berpasangan

Proseso	Ace	Toshib	Appl
<u>r</u>	r	a	e
Acer	1	3	5
Toshiba	1/3	1	1/3
Apple	1/5	3	1

 Bobot kriteria (prioriti vektor)
 Mendesimalkan dan menjumlahkan tiap kolom

Proseso	Ace	Toshib	Appl
<u>r</u>	r	a	e
Acer	1.00	3.00	5.00
Toshiba	0.33	1.00	0.33
Apple	0.20	3.00	1.00
Kol	1.53	7.00	6.33
sum			

Normalisasi

<u>Proseso</u>	Ace	Toshib	Appl
<u>r</u>	r	a	e
Acer	0.65	0.43	0.79
Toshiba	0.22	0.14	0.05
Apple	0.13	0.43	0.16

Mendapatkan nilai prioriti vektor

<u>Prose</u>	Ac	Toshi	App	Prior
sor	er	ba	le	iti

				vekt
				or
Acer	0.6	0.43	0.7	0.62
	5		9	
Toshi	0.2	0.14	0.0	0.14
ba	2		5	
Apple	0.1	0.43	0.1	0.24
	3		6	

- f. Perhitungan bobot alternatif untuk kriteria Ram
 - a. Perbandingan berpasangan

RAM	Acer	Toshiba	Apple
Acer	1	3	1/5
Toshiba	1/3	1	1/3
Apple	5	3	1

b. Bobot kriteria (prioriti vektor)Mendesimalkan dan menjumlahkan tiap kolom

RAM	Acer	Toshiba	Apple
Acer	1.00	3.00	0.20
Toshiba	0.33	1.00	0.33
Apple	5.00	3.00	1.00
Kol	6.33	7.00	1.53
sum			

Normalisasi

RAM	Acer	Toshiba	Apple
Acer	0.16	0.43	0.13
Toshiba	0.05	0.14	0.22
Apple	0.79	0.43	0.65

Mendapatkan nilai prioriti vektor

RAM	Ac	Toshi	App	Prior
	er	ba	le	iti

				vekt
				or
Acer	0.1	0.43	0.13	0.24
	6			
Toshi	0.0	0.14	0.22	0.14
ba	5			
Appl	0.7	0.43	0.65	0.62
e	9			

g. Perhitungan bobot alternatif untuk kriteria Memori

a. Perbandingan berpasangan

Memori	Acer	Toshiba	Apple
Acer	1	3	2
Toshiba	1/3	1	3
Apple	1/2	1/3	1

 Bobot kriteria (prioriti vektor)
 Mendesimalkan dan menjumlahkan tiap kolom

<u>Memori</u>	Acer	Toshiba	Apple
Acer	1.00	3.00	2.00
Toshiba	0.33	1.00	3.00
Apple	0.5	0.33	1.00
Kol	1.83	4.33	6.00
sum			

Normalisasi

Memori	Acer	Toshiba	Apple
Acer	0.55	0.69	0.33
Toshiba	0.18	0.23	0.5
Apple	0.27	0.08	0.17

Mendapatkan nilai prioriti vektor

Mem	Ac	Toshi	App	Prior
<u>ori</u>	er	ba	le	iti
				vekt
				or

Acer	0.5	0.69	0.33	0.53
	5			
Toshi	0.1	0.23	0.5	0.30
ba	8			
Appl	0.2	0.08	0.17	0.17
e	7			

h. Perangkingan Alternatif (hasil penjumlahan dari perkalian setiap bobot alternatif dengan bobot kriteria yang bersesuaian)

	Proses	Ra	Mem	
	or	m	ori	
				X
Acer	0.62	0.2	0.53	
		4		
Toshi	0.14	0.1	0.30	
ba		4		
Apple	0.24	0.6	0.17	
		2		

	Prior	
	iti	
	Vekt	
X	or	
	0.70	
	020	
	0.10	

	Proses	Ra	Memo	Priori
	or	m	ri	ti
				vekto
				r
Acer	0.43	0.05	0.05	0.53
	(0.62 x	(0.2	(0.53 x	(0.43
	0.70)	4 x	0.10)	+
		0.20		0.05
)		+
				0.05)
Toshib	0.10	0.03	0.03	0.16
a	(0.14 x	(0.1	(0.30 x	(0.10
	0.70)	4 x	0.10)	+

		0.20		0.03
)		+
				0.03)
Apple	0.17	0.13	0.02	0.32
	(0.24 x	(0.6	(0.17 x	(0.17
	0.70)	2 x	0.10)	+
		0.20		0.13
)		+
				0.02)

4. HASIL IMPLEMENTASI

FORM REKO	MENDASI LAPTOP		
Merk Laptop	Asus •		
Processor	AMD E1-2500 •		
RAM	2 • GB		
HDD	1024 • GB		
VGA	- • GB		
Harga Laptop	< Rp. 2.500.000 -	•	
Hasil			

5. KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan respon yang telah diberikan client dapat ditarik kesimpulan bahwa sistem pendukung keputusan yang telah dibuat cukup membantu client dalam memilih laptop yang sesuai dengan kebutuhannya. Hasil perankingan sesuai dengan beberapa kriteria yang telah diinputkan client seperti merk laptop, prosesor, ram, hdd, vga, dan harga. Hasil perankingannya berupa tipe laptop, point(eigen), harga dan ranking.

5.2. Saran

- Kedepan SPK ini bisa dibuat online agar semua user dapat menggunakannya sebagai acuan pembelian laptop.
- 2. Melengkapi merk dan tipe laptop beserta sepesifikasinya agar pemilihan tidak sebatas beberapa merk saja.
- Menambahkan gambar setiap merk dan tipe agar user dapat langsung melihat gambaran laptop yang dibutuhkan.

DAFTAR PUSTAKA

- [1] A.S Perdhana, W.L.Y Saptono, S.Si, M.Kom, S. Siswanti S.Kom, M.Kom, "Sistem Pendukung Keputusan Pemilian Jenis Laptop dengan Menggunakan Metode Analytical Hierarchy Process (AHP)", Jurnal Ilmiah STIMIK Sinar Nusantara, 2013.
- [2] Intan Dwi Utami, "Perancangan Aplikasi Sistem Pendukung Keputusan Pemilihan Produk Laptop dengan Metode Preference Ranking Organization Methhod For Enrichment Evaluation (PROMETHEE)", Yogyakarta, 2013.
- [3] Erika Susilo "Sistem Pendukung Keputusan Perijinan dan Penempatan Kolam Jarang Terapung Menggunakan Metode AHP Studi Kasus PT. PJB Cirata Badan Pengelolaan Waduk Cirata", Bandung, 2011.
- [4] Dina Andayati "Sistem Pendukung Keputusan Pra-Seleksi Penerimaan Siswa Baru (PSB) On-Line Yogyakarta", 2010.
- [5] Efraim Turban, dkk "Decision Support Systems and Intelligent Systems", Andy Yogyakarta, Yogyakarta, Edisi 7.
- [6] http://www.kajianpustaka.com/2013/09/sistempendukung-keputusan-spk.html.
- [7] Sylvia Hartati Suragih, "Penerapan Metode Analitycal Hierarchy Process (AHP) pada Sistem Pendukung Keputusan Pemilihan Laptop", Medan, 2013.