TEORIA DE LA PROBABILITAT

ApuntsFME

BARCELONA, OCTUBRE 2018

Darrera modificació: 22 d'octubre de 2018.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Continguts

1	\mathbf{Esp}	Espai de probabilitat			
	1.1	Definició axiomàtica de probabilitat	1		
		Desigualtats de Bonferroni	2		
	1.2	Probabilitat condicionada	4		
	1.3	Independència	5		
	1.4	Espai producte	6		
	1.5	Lema de Borel-Cantelli	6		
		Lema de Borel-Cantelli	8		
2	Variables aleatòries				
	2.1	Definició i propietats bàsiques de les variables aleatòries			
		Teorema de l'existència d'una funció de distribució	12		
	2.2	Esperança d'una variable aleatòria. Desigualtats de Markov i Txebixov . 13			
		Desigualtat de Markov	16		
		Desigualtat de Txebixov	16		
	2.3	Vectors de variables aleatòries. Independència de variables aleatòries	16		
3	Variables aleatòries discretes 21				
	3.1	Definició i objectes relacionats	21		
	3.2	Funció generadora de probabilitat	23		
	3.3	Models de variables aleatòries discretes	25		
	3.4	Distribucions condicionades i esperança condicionada	29		
Ín	dex .	alfabètic	31		

iv CONTINGUTS

Tema 1

Espai de probabilitat

1.1 Definició axiomàtica de probabilitat

Definició 1.1.1. Un espai de probabilitat és un espai de mesura format per la terna (Ω, \mathcal{A}, p) tal que $p(\Omega) = 1$. Diem que

- Ω és l'espai mostral,
- \mathcal{A} és el conjunt d'esdeveniments o de successos,
- p és la funció de probabilitat.

Observació 1.1.2. Recordem que (Ω, \mathcal{A}) és un espai mesurable si $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ és una σ -àlgebra d' Ω , és a dir,

- i) $\varnothing \in \mathcal{A}$,
- ii) $A \in \mathcal{A} \iff \overline{A} \in \mathcal{A}$,
- iii) Si $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$, aleshores $\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}$.

I que $(\Omega, \mathcal{A}, \mu)$ és un espai de mesura si μ és una mesura sobre l'espai mesurable (Ω, \mathcal{A}) , és a dir,

- i) $\mu(\varnothing) = 0$,
- ii) $\forall A \in \mathcal{A}, \quad \mu(A) \ge 0,$
- iii) (σ -additivitat) Si $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ és tal que $\forall i\neq j,\ A_i\cap A_j=\varnothing,$ aleshores

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu(A_i).$$

Proposició 1.1.3. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat. Aleshores,

i) Si
$$A_1, \ldots, A_r \in \mathcal{A}$$
 t.q. $\forall i \neq j, A_i \cup A_j = \emptyset$, aleshores $p\left(\bigcap_{i=1}^r A_i\right) = \sum_{i=1}^r p\left(A_i\right)$.

- ii) $A \in \mathcal{A} \implies p(\overline{A}) = 1 p(A)$.
- iii) $A, B \in \mathcal{A}, A \subseteq B \implies p(B \setminus A) = p(B) p(A).$
- iv) $A, B \in \mathcal{A}, A \subseteq B \implies p(A) \le p(B)$.
- v) Successions monòtones:
 - a) Si $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ són tals que $A_i\subseteq A_{i+1}$, aleshores $p\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\lim_{i\to\infty}p\left(A_i\right)$.
 - b) Si $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ són tals que $A_i\supseteq A_{i+1}$, aleshores $p\left(\bigcap_{i\in\mathbb{N}}A_i\right)=\lim_{i\to\infty}p\left(A_i\right)$.

Demostració.

- 1. Conseqüència directa de la σ -additivitat.
- 2. Consequència directa de ii) usant que $A = A \cup \overline{A}$.
- 3. Com que $A \subseteq B$, $B = (B \setminus A) \cup A$ i, per tant, $p(B \setminus A) = p(B) p(A)$.
- 4. Conseqüència directa de iii) ja que $p(B \setminus A) \ge 0$.

5.

a) Sigui $B_0 = A_0$ i per i > 0 sigui $B_i = A_i \setminus A_{i-1}$. Aleshores, es compleix que $\forall i \neq j, B_i \cap B_j = \emptyset$ i que $\bigcup_{i \in \mathbb{N}} B_i = \bigcup_{i \in \mathbb{N}} A_i$, de manera que

$$p\left(\bigcup_{i\in\mathbb{N}}A_i\right) = p\left(\bigcup_{i\in\mathbb{N}}B_i\right) = \sum_{i\in\mathbb{N}}p\left(B_i\right) =$$
$$= \lim_{N\to\infty}\sum_{i=0}^{N}p\left(B_i\right) = \lim_{N\to\infty}p\left(\bigcup_{i=0}^{N}B_i\right) = \lim_{N\to\infty}p\left(A_N\right).$$

b) Anàleg al cas anterior.

Observem que l'apartat v) només es pot aplicar en casos molt particulars. En general, si tenim A_i, \ldots, A_r successos, hi ha estimacions per a $p(\bigcup_{i=1}^r A_i)$ com es veu al teorema següent.

Teorema 1.1.4. Designaltats de Bonferroni. Siguin $A_1, \ldots, A_r \in \mathcal{A}$, i per $I \subseteq \{1, \ldots, r\}$ sigui $A_I = \bigcap_{i \in I} A_i$. Definim

$$S_k = \sum_{I \in \{1, \dots, n\}, \#I = k} p(A_I),$$

això és, $S_1 = \sum p(A_i)$, $S_2 = \sum_{i \neq j} p(A_i \cap A_j)$,.... Aleshores:

i) Si t és parell,

$$p\left(\bigcup_{i=1}^{r} A_i\right) \ge \sum_{i=1}^{t} (-1)^{i+1} S_i$$

ii) Si t és senar,

$$p\left(\bigcup_{i=1}^{r} A_i\right) \le \sum_{i=1}^{t} (-1)^{i+1} S_i$$

Observació 1.1.5. Amb els casos t = 1 (designaltat de Boole) i t = 2 es poden donar fites inferiors i superiors.

Exemple 1.1.6.

1. Espais de probabilitat numerables.

Prenem un conjunt numerable $\Omega = \{a_i\}_{i\geq 1}$. Prenem $\mathcal{A} = \mathcal{P}(\Omega)$ (que és una σ -àlgebra). Per a definir la probabilitat sobre (Ω, \mathcal{A}) prenem una successió $\{p_i\}_{i\geq 1}$ tal que $0 \leq p_i \leq 1$ que compleix que $\forall i, p(a_i) = p_i$ i $\sum p_i = 1$. Per tant, per a qualsevol element $A \in \mathcal{A}$, tenim que

$$p\left(\bigcup_{a\in A} \{a\}\right) = p(A) = \sum_{i\geq 1} p(\{a\}).$$

Si, a més, $|\Omega| < +\infty$, $\mathcal{A} = \mathcal{P}(\Omega)$ té $2^{|\Omega|}$ elements i si premnem $\Omega = \{a_i\}_{i=1}^N$ i $p_1 = p_2 = \cdots = p_N = \frac{1}{N}$ obtenim un espai clàssic de probabilitat.

2. Espai de probabilitat en $[a, b] \subseteq \mathbb{R}$.

Sigui $\Omega = [a, b]$ i prenem $\mathcal{A} = \mathcal{B} \cap [a, b]$ amb \mathcal{B} un borelià i com a funció de probabilitat $p = \frac{\lambda}{b-a}$, on λ és la mesura de Lebesgue. Observem que no podem prendre tot \mathbb{R} perquè no podem normalitzar $\lambda(\mathbb{R})$. Malgrat això, usant λ construirem més endavant funcions de probabilitat sobre $(\mathbb{R}, \mathcal{B})$.

3. Tirada indefinida d'una moneda.

En aquest cas tenim que $\Omega = \{a_i\}_{i \geq 1}, a_i \in \{0,1\}$ de la forma

00010001110110 . . . 01001110101101 . . . 100101111110010 . . .

sent 0 creu i 1 cara. Aquest conjunt és no numerable fàcilment demostrable amb l'argument de la diagonal de Cantor. Per a construir una σ -àlgebra sobre Ω trobem una "bijecció" amb [0,1] de la forma

$$\varphi \colon \Omega \to [0,1] \subseteq \mathbb{R}$$
$$a = a_1 a_2 \dots \mapsto 0.a_1 a_2 \dots$$

on $0.a_1a_2...$ és un nombre en binari. No és una bijecció completa ja que hi ha elements diferents que van a la mateixa imatge degut als nombres que acaben en

1 periòdic, però al ser tots racionals, el conjunt d'aquests nombres és numerable i per tant té mesura nul·la. És per això que podem definir una σ -àlgebra sobre Ω prenent $\left\{ \varphi^{-1}\left(A\right)\right\} _{A\subset\mathcal{B}\cup[0,1]}$. Similarment ho fem amb la mesura.

1.2 Probabilitat condicionada

Definició 1.2.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $A, B \in \mathcal{A}$. Definim la probabilitat d'A condicionada a B com

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}.$$

Observació 1.2.2. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $B \in \mathcal{A}$ t. q. p(B) > 0. Aleshores, l'aplicació

$$p_B \colon \mathcal{A} \to \mathbb{R}$$

 $A \mapsto p_B(A) := p(A \mid B)$

defineix un espai de probabilitat $(\Omega, \mathcal{A}, p_B)$.

Proposició 1.2.3. Sigui I un conjunt numerable o finit i siguin $\{A_i\}_{i\in I}\subseteq\mathcal{A}$ tals que

- i) $p(A_i) > 0$,
- ii) $i \neq j \implies A_i \cap A_i = \emptyset$,
- iii) $\bigcup_{i \in I} A_i = \Omega$.

Aleshores,

1) Probabilitat total:

$$p(B) = \sum_{i \in I} p(B \mid A_i) p(A_i), \quad \forall B \in \mathcal{A}.$$

2) Fórmula de Bayes:

$$p(A_i \mid B) = \frac{P(B \mid A_i) p(A_i)}{\sum\limits_{j \in I} p(B \mid A_j) p(A_j)}, \quad \forall B \in \mathcal{A} \text{ amb } p(B) > 0.$$

Demostració.

1) Com que els A_i són disjunts i $\bigcup_{i \in I} A_i = \Omega$, $\forall B \in \mathcal{A}$, $B = \bigcup_{i \in I} B \cap A_i$, i la unió és disjunta. Es té

$$p(B) = p\left(\bigcup_{i \in I} B \cap A_i\right) \stackrel{\sigma-add.}{=} \sum_{i \in I} p(B \cap A_i) = \sum_{i \in I} p(B|A_i)p(A_i).$$

$$p(A_i|B) \sum_{j \in I} p(B|A_j) p(A_j) \stackrel{i)}{=} p(A_i|B) p(B) =$$

$$\frac{p(B \cap A_i)}{p(B)} p(B) = p(B \cap A_i) = P(B \mid A_i) p(A_i).$$

Problema 1.2.4. Ruïna del jugador. Partim d'un capital de k unitats i, en cada jugada (sense memòria) augmenta o disminueix el capital en una unitat, amb probabilitats 1/2 i 1/2. El joc acaba si ens quedem sense capital o si assolim un objectiu N (N > k). Quina és la probabilitat de perdre tot el capital?

Solució. Sigui A_k el succés "el jugador, començant amb capital k, perd". Condicionem A_k a la primera tirada de la moneda i definim B com el succés "la primera tirada surt cara". Aleshores,

$$p(A_k) = p(A_k|B)p(B) + p(A_k|\overline{B})p(\overline{B}) = \frac{p(A_k|B)}{2} + \frac{p(A_k|\overline{B})}{2}$$

 $\implies 2p(A_k) = p(A_{k-1}) + p(A_{k+1}) \implies p(A_k) - p(A_{k-1}) = p(A_{k+1}) - p(A_k) = C,$

el que ens diu que la diferència entre nivells és constant. Per tant $p(A_k) = p(A_0) + kC$. Sabent que $p(A_0) = 1$ i $p(A_N) = 0$ ens queda que

$$0 = 1 + CN \implies C = -\frac{1}{n} \implies p(A_k) = 1 - \frac{k}{N}.$$

1.3 Independència

Definició 1.3.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat, sigui I un conjunt finit o numerable i sigui $\{A_i\}_{i\in I}\subseteq \mathcal{A}$. Diem que els esdeveniments A_i són independents si $\forall J\subseteq I$ amb $|J|\in\mathbb{N}$ es té que

$$p\left(\bigcap_{j\in J} A_j\right) = \prod_{j\in J} p\left(A_j\right).$$

Exemple 1.3.2.

- 1. \varnothing , Ω són independents entre si.
- 2. A és independent amb si mateix si i només si p(A) = 1 o p(A) = 0.
- 3. No tenim independència si només les interseccións dos a dos compleixen que la probabilitat de la intersecció és el producte de probabilitats.
- 4. A i B independents \iff A i \overline{B} independents, ja que

$$p(A \cap \overline{B}) = p(A) - p(A \cap B) = p(A) - p(A)(B)$$
$$= p(A) (p(B) + p(\overline{B}) - p(B)) = p(A) p(\overline{B})$$

1.4 Espai producte

Donats dos espais de probabilitat $(\Omega_1, \mathcal{A}_1, p_1)$ i $(\Omega_2, \mathcal{A}_2, p_2)$, volem construir un nou espai de probabilitat $(\Omega_3, \mathcal{A}_3, p_3)$ que codifiqui els dos espais de probabilitat inicials. A aquest espai de probabilitat l'anomenarem espai de probabilitat producte.

Definició 1.4.1. Siguin $(\Omega_1, \mathcal{A}_1, p_1)$ i $(\Omega_2, \mathcal{A}_2, p_2)$ dos espais de probabilitat. Anomenem espai de probabilitat producte a la terna $(\Omega_3, \mathcal{A}_3, p_3)$ tal que

- i) $\Omega_3 = \Omega_1 \times \Omega_2$
- ii) $A_3 = \sigma (A_1 \times A_2) (\sigma$ -àlgebra generada per $A_1 \times A_2$)
- iii) p_3 és una funció de probabilitat que cumpleix que $\forall A_1, A_2$ t. q. $A_1 \times A_2 \in \mathcal{A}_1 \times \mathcal{A}_2$ aleshores $p_3(A_1 \times A_2) = p_1(A_1) p_2(A_2)$.

Observació 1.4.2. p_3 està ben definida ja que pel Teorema d'extensió de Carathéodory podem construir una σ -àlgebra sobre $\Omega_1 \times \Omega_2$ a partir d'una extensió de $\sigma(\mathcal{A}_1 \times \mathcal{A}_2)$ i restringir p_3 segons iii).

Observació 1.4.3. Podem extendre λ (la mesura de Lebesgue) a \mathbb{R}^2 de la següent forma. Sabem que $([0,1], \mathcal{B} \cap [0,1], \lambda_{[0,1]})$ és un espai de probabilitat. Aleshores

$$([0,1] \times [0,1], \sigma(\mathcal{B} \cap [0,1] \times \mathcal{B} \cap [0,1]), \lambda_{[0,1] \times [0,1]})$$

defineix un espai de probabilitat a \mathbb{R}^2 .

Problema 1.4.4. Agulla de Buffon. Considerem el pla \mathbb{R}^2 tesel·lat amb linies paral·leles indefinides separades per una distància L. Llancem una agulla de longitud $l \leq L$ sobre el pla. Trobar quina és la probabilitat que l'agulla toqui una de les linies.

Solució. Considerarem dues variables: x com la distància del centre de l'agulla a la linia més propera i θ com l'angle de l'agulla amb la direcció de les lines. Tenim que $x \in \left[0, \frac{L}{2}\right]$ i $\theta \in [0, \pi)$ i per tant, $\Omega = \left[0, \frac{L}{2}\right] \times [0, \pi)$, \mathcal{A} són els borelians del conjunt i p la mesura de Lebesgue normalitzada en \mathcal{A} . Sigui $A \in \mathcal{A}$ l'esdeveniment "l'agulla talla una recta" i $\omega \in \Omega$ una tirada. Aleshores $w \in A \iff x \leq \frac{l}{2} \sin \theta$. Per tant,

$$p(A) = \frac{\int_0^{\pi} \frac{l}{2} \sin \theta \, d\theta}{\frac{L\pi}{2}} = \frac{2l}{L\pi}.$$

1.5 Lema de Borel-Cantelli

Siguin (Ω, \mathcal{A}, p) un espai de probabilitat i $\{A_n\}_{n\geq 1} \subseteq \mathcal{A}$. Volem donar-li un sentit a "límit de $\{A_n\}_{n\geq 1}$ ". Farem com a \mathbb{R} i definirem els límits superior i inferior (que sempre existiran) i, si coincideixen, aquest serà el límit.

Definició 1.5.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat. Donats $\{A_n\}_{n\geq 1} \subseteq \mathcal{A}$, definim els límits superior i inferior de la successió de successos $\{A_n\}_{n\geq 1}$ com

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k,$$
$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Observació 1.5.2. Els dos límits pertanyen a \mathcal{A} ja que són unió i intersecció numerable de sucessos.

Proposició 1.5.3. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$. Aleshores,

- i) $\liminf_{n\to\infty} A_n = \{\omega \in \Omega \colon \exists m \equiv m(\omega) \text{ amb } \omega \in A_r \ \forall r \geq m(\omega)\},\$
- ii) $\limsup_{n\to\infty} A_n = \{\omega \in \Omega : \omega \text{ pertany a un nombre infinit dels } A_n\},$
- iii) $\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$.

Demostració.

- i) $\omega \in \liminf A_n \iff \omega \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \iff \exists m \equiv m(\omega) \text{ t. q. } \omega \in \bigcap_{k=m(\omega)}^{\infty} A_k, \text{ és a dir, si } \exists m \equiv m(\omega) \text{ t. q. } \omega \in A_r \quad \forall r \geq m(\omega).$
- ii) $\omega \in \limsup A_n \iff \omega \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \iff \omega \in \bigcup_{k=n}^{\infty} A_k \quad \forall n \iff \forall n, \exists n_0 \ge n \text{ t. q. } \omega \in A_{n_0} \iff \omega \text{ pertany a un nombre infinit dels } A_n.$
- iii) Si $\omega \in \liminf A_n$, aleshores $\omega \in A_r$, $\forall r \geq m(\omega)$, de manera que pertany a un nombre infinit dels A_n i, en conseqüència, pertany a $\limsup A_n$.

Proposició 1.5.4. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$, amb $\lim A_n = A$. Aleshores, $p(A) = p(\lim A_n) = \lim p(A_n)$ i aquest límit existeix.

Demostració. Definim $B_n = \bigcup_{k \geq n} A_k$ i $C_n = \bigcap_{k \geq n} A_k$. Observem que $\{B_n\}_{n \geq 1}$ és decreixent i que $\{C_n\}_{n \geq 1}$ és creixent. Naturalment tenim que, $C_n \subseteq A_n \subseteq B_n$, $\limsup A_n = \bigcap_{n \geq 1} B_n$ i $\liminf A_n = \bigcup_{n \geq 1} C_n$.

Vegem que $p(\liminf A_n) \leq \liminf p(A_n)$.

$$p\left(\liminf A_n\right) = p\left(\bigcup_{n\geq 1} C_n\right) = \lim p\left(C_n\right) = \lim p\left(\bigcap_{k\geq n} A_k\right) \leq \liminf p\left(A_n\right).$$

Al darrer pas hem utilitzat el fet que $p\left(\bigcap_{k\geq n}A_k\right)\leq p\left(A_n\right)$. Anàlogament, tenim que $\limsup p\left(A_n\right)\leq p\left(\limsup A_n\right)$. Així doncs,

$$p\left(\liminf A_n\right) \le \liminf p\left(A_n\right) \le \limsup p\left(A_n\right) \le p\left(\limsup A_n\right).$$

Atàs que $p(\liminf A_n) = p(\limsup A_n) = p(A)$, concloem que

$$\lim\inf p\left(A_{n}\right)=\lim\sup p\left(A_{n}\right)=\lim p\left(A_{n}\right)=p\left(A\right).$$

Teorema 1.5.5. Lema de Borel-Cantelli.

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i siguin $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$. Aleshores,

- i) $\sum_{n>1} p(A_n) < \infty \implies p(\limsup A_n) = 0.$
- ii) Si $\{A_n\}_{n\geq 1}$ és independent, $\sum_{n\geq 1} p(A_n) = \infty \implies p(\limsup A_n) = 1$.

Demostració. Anomenem $A = \limsup_{n > 1} A_n = \bigcap_{n > 1} \bigcup_{k > n} A_k$.

i) Sabem que

$$0 \le p(A) \le p\left(\bigcup_{k \ge n} A_k\right) \le \sum_{k \ge n} p(A_k), \, \forall n \in \mathbb{N}$$

i que $\sum\limits_{n\geq 1}p\left(A_{n}\right)<\infty,$ de manera que $\lim\limits_{k\geq n}\sum\limits_{p}p\left(A_{k}\right)=0$ i immediatament deduïm que $p\left(A\right)=0.$

ii) Observem primer que $\overline{A} = \bigcap_{n \geq 1} \bigcup_{k \geq n} A_k = \bigcup_{n \geq 1} \bigcap_{k \geq n} \overline{A}_k = \liminf \overline{A}_n$. Veurem que $p(\overline{A}) = 0$. Calculem $p\left(\bigcap_{m \geq n} \overline{A}_m\right)$.

$$0 \le p\left(\bigcap_{m \ge n} \overline{A}_m\right) = \lim_{r \to \infty} p\left(\bigcap_{m = n}^r \overline{A}_m\right) = \lim_{r \to \infty} \prod_{m = n}^r \left(p\left(\overline{A}_m\right)\right) =$$

$$= \lim_{r \to \infty} \prod_{m = n}^r \left(1 - p\left(A_m\right)\right) \le \lim_{r \to \infty} \prod_{m = n}^r \left(e^{-p(A_m)}\right) =$$

$$= \lim_{r \to \infty} e^{-\sum_{m = n}^r p(A_m)} = 0,$$

de manera que $p\left(\bigcap_{m\geq n} \overline{A}_m\right) = 0, \forall n \in \mathbb{N}$. Finalment,

$$0 \le p\left(\overline{A}\right) = p\left(\bigcup_{n \ge 1} \bigcap_{m \ge n} \overline{A}_m\right) \le \sum_{n \ge 1} p\left(\bigcap_{m \ge n} \overline{A}_m\right) = 0 + 0 + \dots = 0,$$

i concloem que p(A) = 1.

Tema 2

Variables aleatòries

2.1 Definició i propietats bàsiques de les variables aleatòries

Definició 2.1.1. Siguin $(\Omega_1, \mathcal{A}_1)$ i $(\Omega_2, \mathcal{A}_2)$ espais mesurables. Diem que $X \colon \Omega_1 \to \Omega_2$ és una variable aleatòria si

$$X^{-1}(A_2) \in \mathcal{A}_1, \forall A_2 \in \mathcal{A}_2.$$

En aquest curs, sempre pendrem $(\Omega_2, \mathcal{A}_2) = (\mathbb{R}, \mathcal{B})$. Per tant, quan parlem de variable aleatòria ens estarem referint a una aplicació $X \colon \Omega \to \mathbb{R}$ amb $B \in \mathcal{B} \implies X^{-1}(B) \in \mathcal{A}$, on (Ω, \mathcal{A}) és un espai de mesura.

Exemple 2.1.2.

1. Sigui (Ω, \mathcal{A}) un espai de mesura. Aleshores, $\forall c \in \mathbb{R}$, l'aplicació

$$X \colon \Omega \to \mathbb{R}$$
$$\omega \mapsto c$$

és una variable aleatòria, atès que $\forall B \in \mathcal{B}$, es té que

$$X^{-1}(B) = \begin{cases} \Omega, & \text{si } c \in B, \\ \emptyset, & \text{si } c \notin B. \end{cases}$$

- 2. Siguin X i Y variables aleatòries. Aleshores, també son variables aleatòries les següents funcions
 - X + Y
 - X − Y
 - $aX, \forall a \in \mathbb{R}$
 - XY
 - |X|
 - $\max\{X,Y\}$

- $\min\{X,Y\}$
- X+
- X⁻
- g(X,Y), on $g: \mathbb{R}^2 \to \mathbb{R}$ és una funció mesurable.
- 3. Sigui (Ω, \mathcal{A}) un espai de mesura i sigui $A \in \mathcal{A}$. Definim la variable aleatòria indicadora d'A com

$$\mathbb{I}_{A} \equiv \mathbb{1}_{A} \colon \Omega \to \mathbb{R}$$

$$\omega \mapsto \mathbb{I}_{A} (\omega) = \begin{cases} 0, & \text{si } \omega \notin A, \\ 1, & \text{si } \omega \in A. \end{cases}$$

Vegem que, efectivament, es tracta d'una variable aleatòria. Sigui $B \in \mathcal{B}$. Aleshores,

$$\mathbb{I}_{A}^{-1}(B) = \begin{cases}
\Omega, & \text{si } 0 \in B, 1 \in B, \\
\overline{A}, & \text{si } 0 \in B, 1 \notin B, \\
A, & \text{si } 0 \notin B, 1 \in B, \\
\varnothing, & \text{si } 0 \notin B, 1 \notin B.
\end{cases}$$

Observació 2.1.3. A partir d'ara, emprarem la notació següent. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $B \in \mathcal{B}$, escrivim

$$p\left(X\in B\right):=p\left(\left\{\omega\in\Omega\mid\omega\in X^{-1}\left(B\right)\right\}\right).$$

Exemple 2.1.4. Per a considerar la probabilitat de que X sigui més petit o igual que 2 escriurem

$$p(X \le 2) = p(\{\omega \in \Omega \mid X(\omega) \le 2\}).$$

Observació 2.1.5. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui X una variable aleatòria. X indueix una funció de probabilitat P_X sobre l'espai de mesura $(\mathbb{R}, \mathcal{B})$ de la forma

$$P_X(B) := p(X \in B).$$

És a dir, $(\mathbb{R}, \mathcal{B}, P_x)$ és un espai de probabilitat. Comprovem, primer, que és un espai de mesura.

- i) $P_X(\varnothing) = p\left(\left\{\omega \in \Omega \mid \omega \in X^{-1}(\varnothing)\right\}\right) = p(\varnothing) = 0$, atès que p és una funció de probabilitat.
- ii) $0 \le p\left(\left\{\omega \in \Omega \mid \omega \in X^{-1}\left(B\right)\right\}\right) = P_X\left(B\right)$, atès que p és una funció de probabilitat.
- iii) Si $\{B_i\}_{i\in\mathbb{N}}\subseteq\mathcal{B}$ són disjunts dos a dos, aleshores $\{X^{-1}\left(B_i\right)\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$ també són

disjunts dos a dos. I, per ser p una funció de probabilitat, es té que

$$P_X\left(\bigcup_{i\in\mathbb{N}}B_i\right) = p\left(\left\{\omega\in\Omega\mid\omega\in X^{-1}\left(\bigcup_{i\in\mathbb{N}}B_i\right)\right\}\right) =$$

$$= \sum_{i\in\mathbb{N}}p\left(\left\{\omega\in\Omega\mid\omega\in X^{-1}\left(B_i\right)\right\}\right) =$$

$$= \sum_{i\in\mathbb{N}}P_X\left(B_i\right).$$

A més a més, per ser p una funció de probabilitat,

$$P_X(\mathbb{R}) = p\left(\left\{\omega \in \Omega \mid \omega \in X^{-1}(\mathbb{R})\right\}\right) = p(\Omega) = 1$$

i $(\mathbb{R}, \mathcal{B}, P_x)$ és un espai de probabilitat.

Observació 2.1.6. Sigui (Ω, \mathcal{A}) un espai mesurable. Recordem que $X : \Omega \to \mathbb{R}$ és una funció mesurable si i només si $X^{-1}((-\infty, a]) \in \mathcal{A}, \forall a \in \mathbb{R}$.

Definició 2.1.7. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui X una variable aleatòria. Anomenem funció de distribució de probabilitat d'X a l'aplicació

$$F_X \colon \mathbb{R} \to [0, 1]$$

 $x \mapsto F_X(x) = p(X \le x) = P_X((-\infty, x]).$

Proposició 2.1.8. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui F_X la funció de distribució de probabilitat d'una variable aleatòria X sobre (Ω, \mathcal{A}, p) . Aleshores,

- i) $x_1 \leq x_2 \implies F_X(x_1) \leq F_X(x_2)$.
- ii) $\lim_{x \to -\infty} F_X(x) = 0$ i $\lim_{x \to \infty} F_X(x) = 1$.
- iii) F_X és contínua per la dreta, és a dir, $\lim_{h\to 0^+} F_X\left(x+h\right) = F_X\left(x\right)$.

Demostració.

- i) $F_X\left(x_1\right) = p\left(\left\{\omega \in \Omega \mid X\left(\omega\right) \leq x_1\right\}\right) \leq p\left(\left\{\omega \in \Omega \mid X\left(\omega\right) \leq x_2\right\}\right) = F_X\left(x_2\right)$, atès que $\left\{\omega \in \Omega \mid X\left(\omega\right) \leq x_1\right\} \subseteq \left\{\omega \in \Omega \mid X\left(\omega\right) \leq x_2\right\}$ i que p és una funció mesurable.
- ii) Vegem que $\forall \{x_n\}_{n\in\mathbb{N}}$ tal que $\lim_{n\to\infty} x_n = -\infty$, es té que $\lim_{n\to\infty} F_X(x_n) = 0$. Definim $A_n = \{\omega \in \Omega \mid X(\omega) \leq x_n\}$. Tenim que $\varnothing \subseteq \liminf A_n \subseteq \limsup A_n$. A més, $\limsup A_n = \varnothing$ perquè, altrament, hi hauria un nombre infinit de conjunts A_n contenint un $\omega \in \Omega$ determinat. Per tant,

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} p(A_n) = p\left(\lim_{n \to \infty} A_n\right) = p(\varnothing) = 0.$$

Anàlogament, es demostra que $\lim_{x\to\infty} F_X(x) = 1$.

iii) Fixat x, volem veure que $\lim_{h\to 0^+} F_X(x+h) = F_X(x)$.

Prenem $C_n = \{ \omega \in \Omega \mid X(\omega) \leq x + h_n \}$, on $\{h_n\}$ és una successió de reals no negatius amb límit zero. Aleshores, $\liminf C_n = \limsup C_n = \{ \omega \in \Omega \mid X(\omega) \leq x \}$. Això ens diu que

$$\lim_{n \to \infty} F_X(x + h_n) = \lim_{n \to \infty} p(C_n) = p\left(\lim_{n \to \infty} C_n\right) = p(C) = F_X(x).$$

Com això és cert $\forall h$ t. q. $\{h_n\} \to 0$, tenim que $\lim_{h \to 0^+} F_X(x+h) = F_X(x)$.

Observació 2.1.9. En general no podem assegurar que sigui contínua per l'esquerra. Fent la mateixa prova prenent $x - h_n$ amb $h_n \to 0^+$ en comptes de $x + h_n$, obtenim que $C = \{\omega \in \Omega \mid X(\omega) < x\}$ i, per tant

$$\lim_{h \to 0^{-}} F_X(x+h) = p(X < x) = F_X(x) - p(X = x).$$

Lema 2.1.10. Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció creixent i fitada. Aleshores f és mesurable Lebesgue.

Demostració. Suposem que f té un nombre no numerable de discontinuïats. Observem que totes les discontinuïtats són de salt. Sigui $D \subseteq \mathbb{R}$ el conjunt de punts on f és discontínua. Aleshores, tenim que, per tots els punts $x_d \in D$, existeixen els límits $\lim_{x \to x_d^+} f(x)$ i $\lim_{x \to x_d^-} f(x)$. Definim, per tot $n \in \mathbb{N}$, els conjunts

$$A_{n} = \left\{ x_{d} \in D \mid \frac{1}{n+1} \le \lim_{x \to x_{d}^{+}} f(x) - \lim_{x \to x_{d}^{-}} f(x) < \frac{1}{n} \right\},\,$$

on cometem l'abús de notació $\frac{1}{0} = \infty$. Com que D és no numerable, hi ha un nombre numerable de conjunts A_n i $\bigcup_{n \in \mathbb{N}} A_n = D$, necessàriament $\exists n \in \mathbb{N}$ tal que $|A_n| \notin \mathbb{N}$. Per tant, hi ha un nombre infinit de salts de, com a mínim $\frac{1}{n+1}$, la qual cosa contradiu la hipòtesi que f és fitada. Per tant, f té un nombre numerable de discontinuïtats i és, doncs, mesurable.

Teorema 2.1.11. Teorema de l'existència d'una funció de distribució. Sigui $F: \mathbb{R} \to [0,1]$ una funció de probabilitat tal que

- i) $x_1 \le x_2 \implies F(x_1) \le F(x_2)$.
- ii) $\lim_{x \to -\infty} F(x) = 0$ i $\lim_{x \to \infty} F(x) = 1$.
- iii) F és contínua per la dreta, és a dir, $\lim_{h\to 0^+}F\left(x+h\right)=F\left(x\right)$.

Aleshores, existeixen un espai de probabilitat (Ω, \mathcal{A}, p) i una variàble aleatòria $X : \Omega \to \mathbb{R}$ tals que $F_X(x) = F(x)$.

Demostració. Prenem $(\Omega, \mathcal{A}, p) = ([0, 1], \mathcal{B} \cap [0, 1], \lambda_{[0, 1]})$ i definim

$$X \colon [0,1] \to [0,1]$$

$$\omega \mapsto X(\omega) = \sup \{ y \in \mathbb{R} \mid F(y) \le \omega \}.$$

Observem que a tots els punts on F és contínua X també ho és, de manera que X és una funció mesurable. Vegem que $F_X(x) = F(x)$, $\forall x \in \mathbb{R}$. Donat $x \in \mathbb{R}$, definim els conjunts

$$A = \{\omega \in [0, 1] \mid X(\omega) \le x\},\$$

$$B = \{\omega \in [0, 1] \mid \omega \le F(x)\}$$

i observem que

$$P(A) = P(X \le x) = F_X(x),$$

$$P(B) = \lambda ([0, F(x)]) = F(x).$$

Si demostrem que A = B, haurem acabat. Però tenim que

- $\omega \in B \implies \omega \le F(x) \implies x \notin \{y \in \mathbb{R} \mid F(y) < \omega\} \implies x \ge X(\omega) \implies \omega \in A$.
- $\omega \notin B \Longrightarrow \omega > F(x) \Longrightarrow \exists \varepsilon > 0 \text{ t. q. } \omega > F(x+\varepsilon) \Longrightarrow x(\omega) \ge x+\varepsilon > x \Longrightarrow X(\omega) > x \Longrightarrow \omega \notin A.$

2.2 Esperança d'una variable aleatòria. Desigualtats de Markov i Txebixov

Definició 2.2.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $X : \Omega \to \mathbb{R}$ una variable aleatòria. Com ja sabem, X indueix una probabilitat P_X sobre $(\mathbb{R}, \mathcal{B})$. Definim l'esperança de la variable aleatòria d'X, $\mathbb{E}[X]$ com

$$\mathbb{E}[X] = \int_{\Omega} X \, \mathrm{d}p = \int_{\mathbb{R}} x \, \mathrm{d}P_X,$$

si existeix aquesta integral.

Observació 2.2.2. La demostració que aquestes dues integrals són iguals resulta de l'aplicació de la definició de la integral de Lebesgue, però escapa dels objectius d'aquest curs i no l'escriurem.

Observació 2.2.3. Igual que es va veure al curs de teoria de la mesura, pot ser que $\mathbb{E}[X]$ no existeixi o que sigui infinita. No obstant això, atès que $|\int_{\Omega} f \, \mathrm{d}p| \leq \int_{\Omega} |f| \, \mathrm{d}p$, sovint demanarem que $\mathbb{E}[|X|] \leq +\infty$ per poder afirmar que $\mathbb{E}[X] \leq +\infty$.

Exemple 2.2.4. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $A \in \mathcal{A}$. Considerem la variable aleatòria

$$X(\omega) = \mathbb{I}_A(\omega) = \begin{cases} 1 & \text{si } \omega \in A, \\ 0 & \text{si } \omega \notin A. \end{cases}$$

Observem que, donat $B \in \mathcal{B}$,

$$P_{\mathbb{I}_{A}}(B) = \begin{cases} 1 & \text{si } 0, 1 \in B, \\ p(A) & \text{si } 0 \notin B, 1 \in B, \\ p(\overline{A}) & \text{si } 0 \in B, 1 \notin B, \\ 0 & \text{si } 0, 1 \notin B. \end{cases}$$

Així, podem calcular l'esperança amb les dues integrals i comprovar que el resultat és el matex.

$$\mathbb{E}[\mathbb{I}_A] = \int_{\Omega} \mathbb{I}_A \, \mathrm{d}p = 1 \cdot p(A) + 0 \cdot p(\overline{A}) = p(A),$$

$$\mathbb{E}[\mathbb{I}_A] = \int_{\mathbb{R}} x \, \mathrm{d}P_{\mathbb{I}_A} = 1 \cdot P_{\mathbb{I}_A} \left(\{1\} \right) + 0 \cdot P_{\mathbb{I}_A} \left(\{0\} \right) + \int_{\mathbb{R} \setminus \{0,1\}} x \, \mathrm{d}P_{\mathbb{I}_A} = P_{\mathbb{I}_A} \left(\{1\} \right) = p(A).$$

Proposició 2.2.5. Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció mesurable i sigui X una variable aleatòria. Aleshores, f(X) és una variable aleatòria i

$$\mathbb{E}[f(X)] = \int_{\Omega} f(X) \, \mathrm{d}p = \int_{\mathbb{R}} x \, \mathrm{d}P_{f(X)}.$$

Demostració. Si f és mesurable, aleshores f(X) també, de manera que f(X) és una varible aleatòria i la resta segueix de la definició.

Definició 2.2.6. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $X \colon \Omega \to \mathbb{R}$ una variable aleatòria. Aleshores, definim

• Moment d'ordre r d'X:

on $r \in \mathbb{R}$ i hem suposat que $\mathbb{E}\left[\left|X\right|^r\right] < +\infty$.

• Moment factorial d'ordre r d'X:

$$\mathbb{E}\left[(X)_r \right] = X \left(X - 1 \right) \cdots \left(X - r + 1 \right),$$

on $r \in \mathbb{N}$.

• Variància d'X:

$$\mathbb{V}$$
ar $[X] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right]$.

• Desviació típica d'X:

$$\sigma = \sqrt{\mathbb{V}\mathrm{ar}\left[X\right]}.$$

Proposició 2.2.7. Siguin X, Y variables aleatòries, siguin $a, b \in \mathbb{R}$ i sigui $A \in \mathcal{A}$. Es tenen les següents propietats de l'esperança.

- i) $\mathbb{E}[a] = a$,
- ii) $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y],$
- iii) $\mathbb{E}\left[\mathbb{I}_A\right] = p\left(A\right)$,
- iv) $|\mathbb{E}[X]| \leq \mathbb{E}[X]$.

Demostració. La demostració d'aquestes propietats es deixa com a exercici ja que es dedueixen directament de la definició o d'altres propietats bàsiques.

Proposició 2.2.8. Siguin X, Y variables aleatòries, siguin $a, b \in \mathbb{R}$ i sigui $A \in \mathcal{A}$. Es tenen les següents propietats de la variància.

i)
$$\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right] = \mathbb{E}\left[X^2 + \mathbb{E}[X]^2 - 2X\mathbb{E}[X]\right] = \mathbb{E}\left[X^2\right] + \mathbb{E}[X]^2 - 2\mathbb{E}[X]^2 = \mathbb{E}\left[X^2\right] - \mathbb{E}[X]^2$$
,

- ii) $\operatorname{Var}[a] = 0$,
- iii) Var[a+X] = Var[X],
- iv) $\operatorname{Var}[aX] = a^2 \operatorname{Var}[X]$.

Demostració. La demostració d'aquestes propietats es deixa com a exercici ja que es dedueixen directament de la definició o d'altres propietats bàsiques.

Proposició 2.2.9. Designaltat de Holder. Siguin X, Y variables aleatòries i siguin $p, q \in \mathbb{R}$ tals que $\frac{1}{p} + \frac{1}{q} = 1$. Si $\mathbb{E}\left[|X|^p \right], \mathbb{E}\left[|Y|^q \right] < +\infty$, aleshores

$$\mathbb{E}\left[\left|XY\right|\right] \leq \mathbb{E}\left[\left|X\right|^{p}\right]^{\frac{1}{p}} \mathbb{E}\left[\left|Y\right|^{q}\right]^{\frac{1}{q}} < +\infty.$$

Desigualtat de Cauchy-Schwarz. Siguin X,Y variables aleatòries. Si $\mathbb{E}\left[|X|^2\right], \mathbb{E}\left[|Y|^2\right] < +\infty$, aleshores

$$\mathbb{E}\left[\left|XY\right|\right] \leq \mathbb{E}\left[\left|X\right|^2\right]^{\frac{1}{2}} \mathbb{E}\left[\left|Y\right|^2\right]^{\frac{1}{2}} < +\infty.$$

Designatat de Minkowsky. Siguin X,Y variables aleatòries i sigui $p \in \mathbb{R}$. Si $\mathbb{E}\left[\left|X\right|^p\right]$, $\mathbb{E}\left[\left|Y\right|^p\right] < +\infty$, aleshores

$$\mathbb{E}\left[\left|X+Y\right|^{p}\right]^{\frac{1}{p}} \leq \mathbb{E}\left[\left|X\right|^{p}\right]^{\frac{1}{p}} + \mathbb{E}\left[\left|Y\right|^{p}\right]^{\frac{1}{p}} < +\infty.$$

Demostraci'o. Tots aquests resultats són l'aplicaci\'o de les designaltats corresponents demostrades al curs de teoria de la mesura.

Observació 2.2.10. La designaltat de Cauchy-Schwarz és el cas particular p=q=2 de la designaltat de Holder.

Teorema 2.2.11. Designatat de Markov.

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat, sigui $X \colon \Omega \to \mathbb{R}$ una variable aleatòria amb X > 0 i sigui $a \in \mathbb{R}^+$. Aleshores,

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$
.

Demostració. Sigui $A=\{\omega\in\Omega\mid X(\omega)\geq a\}$. Com que X és mesurable, A és un succés. Observem que

$$a\mathbb{I}_{A}(\omega) \leq X(\omega), \forall \omega \in \Omega.$$

Aleshores,

$$ap(X \ge a) = \mathbb{E}\left[a\mathbb{I}_A(\omega)\right] \le \mathbb{E}\left[X(\omega)\right] = \mathbb{E}\left[X\right].$$

Teorema 2.2.12. Designaltat de Txebixov.

Sigui X una variable aleatòria amb $\mathbb{E}[X] < +\infty$, \mathbb{V} ar [X] i \mathbb{V} ar $[X] \neq 0$. Aleshores, per tot k > 0, es té que

$$P\left(\left|X - \mathbb{E}\left[X\right]\right| \ge k \operatorname{\mathbb{V}ar}\left[X\right]^{\frac{1}{2}}\right) \le \frac{1}{k^2}.$$

Demostració. Posem $Y:=|X-\mathbb{E}[X]|$. Observem que Y és una variable aleatòria. Tenim que, per tot a>0,

$$\begin{split} P\left(Y \geq a\right) &= P\left(\left|X - \mathbb{E}\left[X\right]\right| \geq a\right) = \\ &= P\left(\left(X - \mathbb{E}\left[X\right]\right)^2 \geq a^2\right) \leq \\ &\leq \frac{\mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right]}{a^2} = \\ &= \frac{\mathbb{V}\mathrm{ar}\left[X\right]}{a^2}, \end{split}$$

on hem aplicat la desigual
tat de Markov. Prenent ara $a=k\,\mathbb{V}\mathrm{ar}\,[X]^{\frac{1}{2}},$ deduïm el resultat volgut.

Observació 2.2.13. Quan Var[X] = 0, seguim tenint que, per tot a > 0,

$$0 \le P(|X - \mathbb{E}[X]| \ge a) \le \frac{\mathbb{V}\mathrm{ar}[X]}{a^2} = 0,$$

i tenim que $P(X = \mathbb{E}[X]) = 1$.

2.3 Vectors de variables aleatòries. Independència de variables aleatòries

Definició 2.3.1. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat. Diem que un vector de variables aleatòries o una variable aleatòria multidimensional de dimensió n és una funció mesurable $\vec{X}: \Omega \to \mathbb{R}^n$.

Observació 2.3.2. La funció

$$\pi_i \colon \mathbb{R}^n \to \mathbb{R}$$

 $(x_1, \cdots, x_n) \mapsto x_i$

és una funció mesurable. Per tant, les components $\pi_i \circ \vec{X} = \pi_i \left(\vec{X} \right) = X_i$ d' \vec{X} són variables aleatòries.

Definició 2.3.3. Sigui $\vec{X} = (X_1, \dots, X_n)$ un vector de variables aleatòries de dimensió n. Anomenem funció de distribució de probabilitat d' \vec{X} a

$$F_{\vec{X}}(x_1,\ldots,x_n) = P(X_1 \le x_1,\ldots,X_n \le x_n).$$

Proposició 2.3.4. Sigui (Ω, \mathcal{A}, p) un espai de probabilitat i sigui $\vec{X} = (X, Y) : \Omega \to \mathbb{R}^2$ un vector de variables aleatòries amb funció de distribució $F_{\vec{X}}(x, y)$. Aleshores,

i)
$$\lim_{(x,y)\to(-\infty,-\infty)}F_{\vec{x}}\left(x,y\right)=0 \text{ i } \lim_{(x,y)\to(+\infty,+\infty)}F_{\vec{x}}\left(x,y\right)=1.$$

ii)
$$x_1 \leq x_2 \implies F_{\vec{X}}(x_1, y) \leq F_{\vec{X}}(x_2, y), \forall y \in \mathbb{R}.$$

iii)
$$\lim_{(x,y)\to(x_0^+,y_0^+)} F_{\vec{x}}(x,y) = F_{\vec{X}}(x_0,y_0).$$

iv) $\lim_{y\to+\infty}F_{\vec{x}}\left(x,y\right)=F_{X}\left(x\right)$ i les anomenem distribucions marginals.

v)
$$P(a < x \le b, c < y \le d) = F_{\vec{x}}(b, d) - F_{\vec{x}}(b, c) - F_{\vec{x}}(a, d) + F_{\vec{x}}(a, c) = \Delta_R F$$

on R és el rectangle que determinen a, b, c, d.

Demostraci'o. Les demostracions de les tres primeres propietats son anàlogues a les de una sola dimensi\'o. Les altres no les farem.

Proposició 2.3.5. Sigui una F(x,y) una funció que satisfà les cinc propietats de la proposició anterior i tal que $\Delta_R F > 0$ per tot rectangle R. Aleshores,

$$\exists \vec{X} = (X, Y)$$
 variable aleatòria tal que $F(x, y) = F_{\vec{X}}$.

Demostració. La demostració és llarga i pesada, i no la farem.

Definició 2.3.6. Sigui $\{X_i\}_{i\in I}$ una família de variables aletòries sobre un espai de probabilitat (Ω, \mathcal{A}, p) . Diem que $\{X_i\}_{i\in I}$ és independent si per tot $J\subseteq I$ amb $|J|<+\infty$ i per qualssevol $B_1,\ldots,B_{|J|}\in\mathcal{B}$ es té que

$$P\left(\bigcap_{j\in J}X_j\in B_j\right)=\prod_{j\in J}P\left(X_j\in B_j\right).$$

En general, no podem conéixer la distribució de X_1, \ldots, X_n si coneixem només les seves distribucions marginals. Tanmateix, sí que podem conéixer-la si les variables aleatòries són independents.

Proposició 2.3.7. Si prenem $B_i = (-\infty, x_i)$ i una família finita de variables aleatòries independents $\{X_i\}_{i=1}^n$ (i posant $\vec{X} = (X_1, \dots, X_n)$), tenim que

$$F_{\vec{X}}(x_1,\ldots,x_n) = \prod_{i=1}^n F_{X_i}(x_i).$$

Demostració. Directament a partir de la definició tenim que

$$F_{\vec{X}}(x_1, \dots, x_n) = p\left(\bigcap_{i=1}^n X_i \in B_i\right) = p\left(\bigcap_{i=1}^n X_i \le x_i\right) =$$
$$= \prod_{i=1}^n P(X_i \le x_i) = \prod_{i=1}^n F_{X_i}(x_i).$$

Observació 2.3.8. Es pot demostrar que la impliació recíproca és certa, és a dir, que si una determinada família de variables aleatòries satisfà la igualtat anterior, aleshores és independent.

Observació 2.3.9. Siguin $\{X_i\}_{i=1}^n$ una família de variables aleatòries independent i siguin $f_1, \ldots, f_n \colon \mathbb{R} \to \mathbb{R}$ funcions mesurables. Aleshores, $\{f_1(X_i)\}_{i=1}^n$ també són independents.

Proposició 2.3.10. Siguin X_1, \ldots, X_n variables aleatòries independents. Aleshores

$$\mathbb{E}[X_1 \dots X_n] = \prod_{i=1}^n \mathbb{E}[X_i].$$

Definició 2.3.11. Siguin X, Y variables aleatòries. La covariància de X i Y és:

$$\mathbb{C}\text{ov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \right]$$

Observació 2.3.12. Està ben definida sempre que $\mathbb{E}[|X|], \mathbb{E}[|Y|] < +\infty$ i

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

Demostració. Directament de la definició de covariància i usant les propietats de l'esperança

$$\mathbb{C}\text{ov}(X,Y) = \mathbb{E}\left[XY - \mathbb{E}[X]Y - \mathbb{E}[Y]X + \mathbb{E}[X]\mathbb{E}[Y]\right] =$$

$$= \mathbb{E}[XY] - 2\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Observació 2.3.13. Si X i Y són independents, aleshores Cov(X, Y) = 0.

Observació 2.3.14. Per X, Y variables aleatòries, es satisfà $\mathbb{V}\operatorname{ar}[X+Y] = \mathbb{V}\operatorname{ar}[X] + \mathbb{V}\operatorname{ar}[Y] + 2\mathbb{C}\operatorname{ov}(X,Y)$. Si a més són independents, $\mathbb{V}\operatorname{ar}[X+Y] = \mathbb{V}\operatorname{ar}[X] + \mathbb{V}\operatorname{ar}[Y]$.

Demostració. Usant la definició de variància tenim que

$$\begin{split} \mathbb{E}[(X+Y)^2] - \mathbb{E}[X+Y]^2 &= \\ &= \mathbb{E}[X^2] + \mathbb{E}[Y^2] + 2 \, \mathbb{E}[XY] - \mathbb{E}[X]^2 - \mathbb{E}[Y]^2 - 2 \, \mathbb{E}[X] \, \mathbb{E}[Y] = \\ &= \mathbb{V}\mathrm{ar}[X] + \mathbb{V}\mathrm{ar}[Y] + 2 \, \mathbb{C}\mathrm{ov}(X,Y). \end{split}$$

Proposició 2.3.15. Siguin X, Y, Z variables aleatòries, i a, b, C constants. Aleshores

- i) $\mathbb{C}ov(C, X) = 0$.
- ii) $\mathbb{C}ov(X, X) = \mathbb{V}ar[X]$.
- iii) $\mathbb{C}ov(X,Y) = \mathbb{C}ov(Y,X)$.
- iv) $\mathbb{C}ov(aX + bY, Z) = a\mathbb{C}ov(X, Z) + b\mathbb{C}ov(Y, Z)$.
- v) $\mathbb{C}ov(X, Y)^2 \le \mathbb{V}ar[X] \mathbb{V}ar[Y]$.

Demostració. Demostrarem només l'últim apartat. Els altres es deixen com exercici pel lector. Tenim doncs que

$$\left| \mathbb{C}\mathrm{ov}(X,Y) \right| = \left| \mathbb{E} \left[\left(X - \mathbb{E}[X] \right) \left(Y - \mathbb{E}[Y] \right) \right] \right| \leq \mathbb{E} \left[\left| \left(X - \mathbb{E}[X] \right) \left(Y - \mathbb{E}[Y] \right) \right| \right]$$

que, aplicant la desigualtat de Cauchy-Schwarz, és menor que

$$\sqrt{\mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right]}\sqrt{\mathbb{E}\left[\left(Y - \mathbb{E}[Y]\right)^2\right]} = \sqrt{\left(\mathbb{V}\mathrm{ar}[X]\right)}\sqrt{\left(\mathbb{V}\mathrm{ar}[Y]\right)}.$$

És a dir, $\mathbb{C}\text{ov}(X,Y)^2 \leq \mathbb{V}\text{ar}[X] \mathbb{V}\text{ar}[Y]$.

Observació 2.3.16. Com es conclou de la designaltat de Cauchy-Schwarz, la designaltat anterior és una igualtat si i només si $X - \mathbb{E}[X] = \lambda(Y - \mathbb{E}[Y])$.

Observació 2.3.17. $\mathbb{C}ov(X,Y) = 0 \implies X,Y$ independents.

Demostració. En donem un contraexemple. Definim X,Y variables aleatòries tals que

$$X = \begin{cases} 1 & \text{amb probabilitat } \frac{1}{2} \\ -1 & \text{amb probabilitat } \frac{1}{2} \end{cases}, Y = \begin{cases} 0 & \text{si } X = -1 \\ \pm 1 & \text{amb probabilitat } \frac{1}{2} \text{ si } X = 1 \end{cases}.$$

En aquest cas,

$$\mathbb{E}[XY] = \int_{\Omega} XY \, dp =$$

$$= 0 \cdot P(X = -1) + 1 \cdot P(X = 1, Y = 1) - 1 \cdot P(X = 1, Y = -1) =$$

$$= \frac{1}{4} - \frac{1}{4} = 0,$$

i també tenim que

$$\mathbb{E}[X] = 1 \cdot P(x = 1) - 1 \cdot P(X = -1) = 0.$$

Per les últimes dues igualtats, $\mathbb{C}\text{ov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y] = 0$. Vegem però que no són indepedents:

$$P(X = 1)P(Y = 0) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Però P(X=1,Y=0)=0, és a dir, com volíem veure X i Y no són independents. \square

Tema 3

Variables aleatòries discretes

3.1 Definició i objectes relacionats

Definició 3.1.1. Sigui (Ω, \mathcal{A}, p) un e. prob. i $X : \Omega \to \mathbb{R}$ una variable aleatòria. Diem que X és discreta si Im(X) és numerable.

Observació 3.1.2. En la pràctica $\text{Im}(X) = \{x_1 < x_2 < \ldots\}$ és un conjunt numerable ordenat, en els casos que veurem $\text{Im}(X) \subseteq \mathbb{Z}$. Escriurem $p_i = p(X = x_i)$.

Observació 3.1.3. Sigui $A \subset \mathcal{B}$, aleshores $p_X(A) = p(x \in A) = \sum_{i \in A} p_i$.

Observació 3.1.4. Donat $\{x_i\}_{i\geq 1}\subset\mathbb{R}$ creixent i valors $\{x_i\}_{i\geq 1}\subset[0,1]$ t. q. $\sum p_i=1$, es pot definir una variable discreta X que pren valors a $\{x_i\}$ tal que $p(X=x_i)=p_i$ $\forall i$.

Observació 3.1.5. La funció de distribució, amb $|\operatorname{Im}(X)| < +\infty$, és

$$F_X(x) = \begin{cases} 0 & \text{si } x < x_1 \\ p_1 + \dots + p_j & \text{si } x_j \le x < x_{j+1} \\ 1 & \text{si } x \ge x_n \end{cases}$$

Proposició 3.1.6. Operador esperança. Sigui X v.a. discreta, aleshores

- i) $\mathbb{E}[X] = \sum_{i \ge 1} x_i p_i$,
- ii) $g: \mathbb{R} \to \mathbb{R}$ mesurable, $\mathbb{E}[g(x)] = \sum_{i \geq 1} g(x_i) p_i$.

Demostració.

i) Fent servir la definició d'esperança tenim que

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \, \mathrm{d}P_x = \sum x_i P_X(X = x_i) + \int_{\mathbb{R} \setminus \cup \{x_i\}} x \mathbb{I}(x) \, \mathrm{d}P_X = \sum_{i \ge 1} x_i p_i + 0$$

perquè $P_X(\mathbb{R} \setminus \bigcup \{x_i\}) = 0$.

ii) Directe a partir del cas anterior i del fet que g és mesurable.

Observació 3.1.7. Sigui X una variable aleatòria, aleshores,

$$\mathbb{V}\operatorname{ar}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \sum_{i \ge 1} x_i^2 p_i - \left(\sum_{i \ge 1} x_i p_i\right)^2.$$

Proposició 3.1.8. X, Y v.a. discretes, $\operatorname{Im}(X) = \{x_i\}_{i \geq 1}$, $\operatorname{Im}(Y) = \{y_i\}_{i \geq 1}$, $g \colon \mathbb{R}^2 \to \mathbb{R}$. Aleshores

$$\mathbb{E}[g(X,Y)] = \sum_{i,j \ge 1} g(x_i, y_i) p(X = x_i, Y = y_i).$$

Demostració. Directe a partir de la definició i del fet que g és mesurable.

Proposició 3.1.9. Siguin X, Y v.a. discretes. Són independents si i només si, $\forall x \in \text{Im}(X)$ i $\forall y \in \text{Im}(Y)$,

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

Demostració. Exercici.

Definició 3.1.10. Sigui $(X,Y): \Omega \to \mathbb{R}^2$ un vector de variables aleatories. Direm que és discret si $\mathrm{Im}((X,Y))$ és numerable.

Observació 3.1.11. Sigui (X,Y) vector de variables aleatories. Aleshores és discret $\iff X$ i Y són discretes.

Definició 3.1.12. Sigui (X, Y) vector de variables aleatories discret, $\forall (X, Y) \in \text{Im}((X, Y))$ definim

$$P(X,Y)(x,y) = P(X=x)P(Y=y)$$

que si X, Y són independents és P(X = x, Y = y).

Lema 3.1.13. Si X, Y són v.a. discretes independents, amb $\mathbb{E}[|X|], \mathbb{E}[|Y|] < +\infty$,

$$\mathbb{E}[XY] = \mathbb{E}[X] \, \mathbb{E}[Y].$$

Demostració.

$$\mathbb{E}[xy] = \int_{\mathbb{R}} x \, dP_{XY}$$

$$= \sum_{u \in \text{Im}(X,Y)} uP(XY = u)$$

$$= \sum_{x \in \text{Im}(X) \setminus \{0\}} \left(\sum_{\frac{u}{x} \in \text{Im}(Y)} uP\left(X = x, Y = \frac{u}{x}\right) \right)$$

3.2 Funció generadora de probabilitat

D'aquí en endavant, prendrem X variable aleatòria discreta amb $\operatorname{Im}(X) \subseteq \mathbb{N}_{\geq 0}$.

Definició 3.2.1. La funció generadora de probabilitat de X és la sèrie formal de potències

$$G_X(z) = \sum_{n>0} P(X=n)z^n.$$

Podem pensar-la també com $\mathbb{E}[z^X]$.

Proposició 3.2.2. $G_X(z)$ satisfà les següents propietats:

- i) $G_X(z)$ és una funció holomorfa al voltant de z=0 amb radi de convergència major o igual a 1.
- ii) $G_X(0) = P(X = 0)$ i $G_X(1) = 1$.

iii)
$$\left. \frac{\mathrm{d}^k G_X(z)}{\mathrm{d}z} \right|_{z=1} = \mathbb{E}\left[X(X-1)\dots(X-k+1) \right] = \mathbb{E}\left[(X)_k \right].$$

Demostració.

i) Si $\rho \in \mathbb{C}$, $|\rho| < 1$, aleshores:

$$0 \le |G_X(\rho)| = \left| \sum_{n \ge 0} P(X = n) \rho^n \right| \le \sum P(X = n) |\rho|^n$$

que, quan $|\rho| \leq 1$, és menor o igual a

$$\sum_{n \ge 0} P(X = n) = 1.$$

Per tant $G_X(\rho)$ és analítica (es pot expressar com una sèrie de potències convergent) a $B_1(0)$, i per tant, com s'ha vist a variable complexa, $G_x(\rho)$ és holomorfa a $B_1(0)$ (per tant infinitament derivable en sentit complex).

ii) Directe a partir de la definició.

iii) Si derivem terme a terme obtenim

$$\frac{\mathrm{d}^k G_X(z)}{\mathrm{d}z} = \frac{\mathrm{d}^k}{\mathrm{d}z} \left(\sum_{n \ge 0} P(X=n) z^n \right) = \sum_{n \ge 0} n(n-1) \dots (n-k+1) P(X=n) z^{n-k},$$

que avaluat en z = 1 és

$$\sum_{n>0} n(n-1) \dots (n-k+1) P(X=n) = \mathbb{E} [(X)_n].$$

Exemple 3.2.3. Definim X com una variable aleatòria discreta tal que P(X=0)=0 i $P(X=n)=\frac{6}{\pi^2}\cdot\frac{1}{n^2}$. Aleshores

$$G_X(z) = \frac{6}{\pi^2} \sum_{n \ge 1} \frac{1}{n^2} z^n,$$

que té radi de convergència igual a 1, i

$$G_X(1) = \frac{6}{\pi^2} \sum_{n>1} \frac{1}{n^2} = \frac{6}{\pi^2} \cdot \frac{\pi^2}{6} = 1.$$

Finalment, en calculem la seva esperança,

$$\mathbb{E}[X] = \frac{\mathrm{d}G_X(z)}{\mathrm{d}z} \bigg|_{z=1} = \frac{6}{\pi^2} \sum_{n \ge 1} \frac{1}{n} = \infty.$$

Observació 3.2.4. $G_X(z)$ codifica totes les probabilitats P(X = n) i per tant coneixent $G_x(z)$ coneixem X.

L'aplicació més útil de les funcions generadores de probabilitat és que ens permet trobar convolucions discretes de variables aleatòries.

Observació 3.2.5. Siguin X, Y variables aleatòries discretes, amb $Im(X) = Im(Y) = \mathbb{N}_{>0}$. Aleshores

$$P(X+Y=n) = \sum_{k=0}^{n} P(X+Y=n, X=k) = \sum_{k=0}^{n} P(Y=n-k, X=k).$$

Proposició 3.2.6. Si X, Y són variables aleatòries discretes independents amb $Im(X) = Im(Y) = \mathbb{N}_{\geq 0}$ aleshores:

$$G_{X+Y}(z) = G_X(z)G_Y(z)$$

Demostració.

$$G_X(z)G_Y(z) = \sum_{i\geq 0} P(X=i)z^i \sum_{j\geq 0} P(X=j)z^j = \sum_{i,j\geq 0} P(X=i)P(Y=j)z^{(i+j)}$$

I, com X i Y són independents, podem unir el producte i obtenim

$$\sum_{i,j\geq 0} P(X=i,Y=j)z^{(i+j)} = \sum_{n\geq 0} \sum_{i=0}^{n} P(X=i,Y=n-i)z^{n} =$$

$$= \sum_{n\geq 0} \sum_{i=0}^{n} P(X=i,X+Y=n)z^{n} =$$

$$= \sum_{n\geq 0} \sum_{i=0}^{n} P(X=i|X+Y=n)P(X+Y=n)z^{n} =$$

$$= \sum_{n\geq 0} \sum_{i=0}^{n} P(X+Y=n)z^{n} \sum_{i=0}^{n} P(X=i|X+Y=n).$$

Si observem que la suma interior val 1 perquè està sumant la probabilitat de tots els esdeveniments possibles, ens queda

$$\sum_{n \ge 0} P(X + Y = n)z^n = G_{X+Y}(z).$$

Observació 3.2.7. Això és equivalent a que si X i Y són variables aleatòries discretes independents amb $\text{Im}(X) = \text{Im}(Y) = \mathbb{N}_{>0}$ aleshores

$$\mathbb{E}[z^X]\,\mathbb{E}[z^Y] = \mathbb{E}[z^{X+Y}].$$

Observació 3.2.8. En general, si X_1, \ldots, X_n són variables aleatòries discretes independents amb Im $X_i = \mathbb{N}_{\geq 0}$:

$$G_{X_1,...,X_n}(z) = \prod_{i=1}^n G_{X_i}(z).$$

3.3 Models de variables aleatòries discretes

En aquesta secció introduirem les variables aleatòries discretes més comunes que torbarem

Observació 3.3.1. En general escriurem $X \sim Y$ si X i Y tenen la mateixa distribució de probabilitat.

Distribució de Bernoulli

Modela l'èxit o fracàs d'un experiment amb probabilitat p d'èxit

Definició 3.3.2. Sigui X una variable aleatoria. Direm que X segueix una distribució de Bernoulli

$$X \sim \mathrm{B}(p) \iff \begin{cases} p(X=1) = p \\ p(X=0) = 1 - p \end{cases}$$
.

També es pot escriure Be(p).

Proposició 3.3.3. Sigui X una variable aleatòria que segueix una distribució de Bernoulli. Aleshores,

i)
$$G_X(z) = (1-p)z^0 + pz^1 = (1-p) + p(z),$$

- ii) $\mathbb{E}[X] = p$,
- iii) Var[X] = p(1-p).

Demostració.

iii)
$$\mathbb{E}[x^2-x] = \mathbb{E}[x(x-1)] = 0 \implies \mathbb{E}[x^2] = p \implies \mathbb{V}\mathrm{ar}[x] = \mathbb{E}[x^2] + \mathbb{E}[x]^2 = p(1-p)$$

Distribució binomial

Modela el nombre d'èxits en fer N experiments independents, on cadascun és Be(p).

Definició 3.3.4. Sigui X una variable aleatoria. Direm que X segueix una distribució binomial

$$X \sim \text{Bin}(N, p) \iff X = X_1 + \dots + X_N,$$

on $\{X_i\}_{i=1}^N$ són independents i $X_i \sim \mathrm{B}(p) \ \forall i$.

Proposició 3.3.5. Sigui X una variable aleatòria que segueix una distribució binomial. Aleshores,

i)
$$p(X = i) = \binom{N}{i} p^{i} (1 - p)^{N-i}$$
,

ii)
$$G_X(z) = \sum_{i=0}^n {N \choose i} p^i (1-p)^{N-i} z^i$$
,

iii)
$$\mathbb{E}[X] = N \mathbb{E}[X_1] = Np$$
,

iv)
$$\operatorname{Var}[X] = N \operatorname{Var}[X_1] = Np(1-p).$$

Demostració.

ii) Per ser X_i independents,

$$G_X(z) = G_{X_1 + \dots + X_N}(z) = \prod_{i=1}^n G_{X_i}(z) = (pz + (1-p))^N =$$

$$= \sum_{i=0}^n \binom{N}{i} (pz)^i (1-p)^{N-i} = \sum_{i=0}^n \binom{N}{i} p^i (1-p)^{N-i} z^i.$$

Observació 3.3.6. La suma de dos variables amb aquesta distribució també té distribució binomial:

$$X \sim \operatorname{Bin}(N_1, p)$$

$$Y \sim \operatorname{Bin}(N_2, p)$$

$$\Longrightarrow G_X(z) = (pz + (1 - p))^{N_1}$$

$$\Longrightarrow G_Y(z) = (pz + (1 - p))^{N_2}$$

$$\Longrightarrow G_{X+Y}(z) = G_X(z)G_Y(z) = (pz + (1 - p))^{N_1 + N_2} \Longrightarrow$$

$$\Longrightarrow X + Y \sim \operatorname{Bin}(N_1 + N_2, p).$$

Distribució uniforme

Definició 3.3.7. Sigui X una variable aleatoria. Direm que X segueix una distribució uniforme

$$X \sim \mathrm{U}[1, n] \iff p(X = i) = \frac{1}{N} \mathrm{per} \ i = 1, \dots, N.$$

Proposició 3.3.8. Sigui X una variable aleatòria que segueix una distribució binomial. Aleshores,

- i) $G_X(z) = \frac{1}{N} \frac{z(z^N 1)}{z 1}$,
- ii) $\mathbb{E}[X] =$,
- iii) Var[x] = .

Demostració. Directament de la definició de distribució uniforme tenim que

i)
$$G_X(z) = \sum_{n=1}^N \frac{1}{N} z^n = \frac{1}{N} (z + z^2 + \dots + z^N) = \frac{1}{N} \frac{z(z^N - 1)}{z - 1}$$
.

Distribució de Poisson

S'usa per modelar successos "estranys" (persones en una cua, emissió de partícules, etc).

Definició 3.3.9. Sigui X una variable aleatoria. Direm que X segueix una distribució de Poisson

$$X \sim P(\lambda) \iff P(X = i) = \frac{\lambda^i}{i!} e^{-\lambda}.$$

També es pot escriure $Po(\lambda)$.

Observació 3.3.10. La distribució està ben definida:

$$\sum_{i=0}^{\infty} p(X=i) = \sum_{i=0}^{\infty} \frac{1}{i!} \lambda^{i} e^{-\lambda} = e^{\lambda} e^{-\lambda} = 1.$$

Proposició 3.3.11. Sigui X una variable aleatòria que segueix una distribució de Poisson. Aleshores,

i)
$$G_X(z) = e^{\lambda(z-1)}$$
,

ii)
$$\mathbb{E}[X] = \lambda$$
,

iii)
$$Var[X] = \lambda$$
.

Demostració.

i)
$$G_X(z) = \sum_{i=0}^{\infty} \frac{1}{i!} \lambda^i e^{-\lambda} z^i = e^{-\lambda} \sum_{i=0}^{\infty} \frac{1}{i!} (\lambda z)^i = e^{-\lambda} e^{\lambda z} = e^{\lambda(z-1)}$$
.

ii)
$$\mathbb{E}[X] = \lambda e^{\lambda(z-1)}|_{z=1} = \lambda.$$

iii)
$$\mathbb{E}[X(X-1)] = \lambda^2 e^{\lambda(z-1)}|_{z=1} = \lambda^2 \implies \mathbb{E}[x^2] = \lambda^2 + \lambda$$
, i per tant, $\mathbb{V}\operatorname{ar}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$.

Observació 3.3.12. La suma de dos variables amb distribució de Poisson també té distribució de Poisson:

$$X \sim \text{Po}(\lambda_1)$$

$$Y \sim \text{Po}(\lambda_2)$$

$$\Longrightarrow G_X(z) = e^{\lambda_1(z-1)}$$

$$\Longrightarrow G_Y(z) = e^{\lambda_2(z-1)}$$

$$\Longrightarrow G_{X+Y}(z) = G_X(z)G_Y(z) = e^{(\lambda_1 + \lambda_2)(z-1)} \Longrightarrow$$

$$\Longrightarrow X + Y \sim \text{Po}(\lambda_1 + \lambda_2).$$

Distribució geomètrica

La distribució geomètrica representa el nombre d'experiments necessaris abans d'obtenir el primer èxit en un succés binari.

Definició 3.3.13. Sigui X una variable aleatoria. Direm que X segueix una distribució geomètrica

$$X \sim \text{Geom}(p) \iff P(X=i) = (1-p)^{i-1} p, \ \forall i \ge 1.$$

Proposició 3.3.14. Sigui X una variable aleatòria que segueix una distribució geomètrica. Aleshores,

i)
$$G_X(z) = \frac{pz}{1 - (1 - p)z}$$
,

ii)
$$\mathbb{E}[X] = \frac{1}{p}$$
,

iii)
$$\operatorname{Var}[X] = \frac{1-p}{p^2}$$
.

Demostració. Directament de les definicions tenim que

i)
$$G_X(z) = \sum_{i \ge 1} (1-p)^{i-1} p z^i = \frac{p}{1-p} \sum_{i \ge 1} ((1-p)z)^i = \frac{p}{1-p} \cdot \frac{(1-p)z}{1-(1-p)z} = \frac{pz}{1-(1-p)z}$$
.

Distribució binomial negativa

Modela el nombre d'experiments necessaris per aconseguir un nombre d'exits donat.

Definició 3.3.15. Sigui X una variable aleatoria. Direm que X segueix una distribució binomial negativa

$$X \sim \text{BinN}(r, p) \iff X = X_1 + \dots + X_r,$$

on $\{X_i\}_{i=1}^r$ són independents i $X_i \sim \text{Geom}(p) \ \forall i$.

Proposició 3.3.16. Sigui X una variable aleatòria que segueix una distribució binomial. Aleshores,

i)
$$p(X = i) = \begin{cases} 0 & \text{si } i < r \\ \binom{i-1}{r-1} p^r (1-p)^{k-r} & \text{si } i \ge r, \end{cases}$$

ii)
$$G_X(z) = \left(\frac{pz}{1-(1-p)z}\right)^r$$
,

iii)
$$\mathbb{E}[X] = N \mathbb{E}[X_1] = \frac{r}{p}$$
,

iv)
$$\operatorname{Var}[X] = N \operatorname{Var}[X_1] = r \frac{1-p}{p^2}$$
.

Demostració.

3.4 Distribucions condicionades i esperança condicionada

Definició 3.4.1. Siguin X i Y variables aleatòries discretes i sigui $x \in \mathbb{R}$ tal que p(X = x) > 0. Aleshores definim

- 1) $F_{Y|X}(y,x) = p(Y \ge y \mid X = x)$ com la funció de distribució condicionada de Y amb X = x,
- 2) $P_{Y|X}(y,x) = p(Y=y \mid X=x)$ com la funció de probabilitat condicionada.

Observació 3.4.2. Una definició anàloga consisteix en prendre $A \in \mathcal{A}$ enlloc de X = x sempre que p(A) > 0. Aleshores tenim

1)
$$F_{Y|X}(y,x) = p(Y \ge y \mid A),$$

2)
$$P_{Y|X}(y,x) = p(Y = y \mid A)$$
.

Exemple 3.4.3. Siguin $\{Y_r\}_{r\geq 1}$ variables aleatòries independents tals que $Y_r \sim \operatorname{Be}(p) \ \forall i$. Sigui X una variable aleatòria tal que X=i si $Y_1=Y_2=\cdots=Y_{i-1}=0$ i $Y_i=1$. Observem que $X\mid \{Y_1=1\}=X|_{Y_1=1}=1,\ X|_{Y_1=0}=1+\operatorname{Geom}(p)$ i $X|_{Y_1=0,Y_2=0}=2+\operatorname{Geom}(p)$.

Índex alfabètic

conjunt	condicionada, 29
d'esdeveniments, 1	de probabilitat, 11
de successos, 1	de probabilitat (2), 17
covariància, 18	de probabilitat, 1
	condicionada, 29
desviació típica, 14	generadora de probabilitat, 23
distribució	
binomial, 26	independència de variables aleatòries, 17
negativa, 29 de Bernoulli, 25	límit
de Poisson, 27	inferior d'esdeveniments, 7
geomètrica, 28	superior d'esdeveniments, 7
marginal, 17	moment
uniforme, 27	d'ordre r , 14
esdeveniments independents, 5	factorial d'ordre r , 14
espai	probabilitat condicionada, 4
de probabilitat, 1	,
producte, 6	variància, 14
mostral, 1	variable aleatòria, 9
esperança d'una variable aleatòria, 13	discreta, 21
•	multidimensional, 16
funció	vector de variables aleatòries, 16
de distribució	discret, 22