1.2 CONVERSÃO ENTRE OS SISTEMAS DE NUMERAÇÃO

Para converter do sistema Decimal para um sistema de outra base, basta dividir o número decimal pela base do sistema desejado. O resultado é obtido fazendo a leitura do último quociente encontrado até o resto da primeira divisão conforme exemplos a seguir.

EXEMPLOS:

DECIMAL PARA BINÁRIO

Resposta: $8_{10} = 1000_2$ Resposta: $13_{10} = 1101_2$

DECIMAL PARA OCTAL

Resposta: 94₁₀ = 136₈ Resposta: 22₁₀ = 26₈

DECIMAL PARA HEXADECIMAL

Resposta: $49_{10} = 31_{16}$

Resposta: 504₁₀ = 1F8₁₆

Para converter de binário, octal ou hexadecimal para decimal, deve-se multiplicar cada algarismo da direita para a esquerda da vírgula pela base do sistema, elevado a0, 1, 2, 3, 4, respectivamente, somando-se então os resultados individuais.

EXEMPLOS:

BINÁRIO PARA DECIMAL

$$1001_2 = ?_{10}$$

$$1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

 $8 + 0 + 0 + 1$

Resposta: $1001_2 = 9_{10}$

$$110_2 = ?_{10}$$

$$1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

 $4 + 2 + 0$

Resposta: $110_2 = 6_{10}$

OCTAL PARA DECIMAL

$$75_8 = ?_{10}$$

$$7 \times 8^{1} + 5 \times 8^{0}$$

56 + 5

Resposta: $75_8 = 61_{10}$

$$103_8 = ?_{10}$$

$$1 \times 8^2 + 0 \times 8^1 + 3 \times 8^0$$

$$64 + 0 + 3$$

Resposta: $103_8 = 67_{10}$

HEXADECIMAL PARA DECIMAL

$$CA8_{16} = ?_{10}$$
 $10C_{16} = ?_{10}$ $1 \times 16^2 + A \times 16^1 + 8 \times 16^0$ $1 \times 16^2 + 0 \times 16^1 + C \times 16^0$ $12 \times 16^2 + 10 \times 16^1 + 8 \times 16^0$ $1 \times 16^2 + 0 \times 16^1 + 12 \times 16^0$ $3072 + 160 + 8$ $256 + 0 + 12$ Resposta: $CA8_{16} = 3240_{10}$ Resposta: $10F_{16} = 268_{10}$

Note que $A_{16} = 10_{10}$ e $C_{16} = 12_{10}$.

CONVERSÃO BINÁRIO→OCTAL E OCTAL→BINÁRIO

Cada algarismo octal corresponde a três dígitos binários $(7_8 = 111_2)$. Separa-se o número binário de três em três algarismos e converte-os para o sistema decimal, o qual dará o algarismo octal $(101\ 111_2 = 57_8)$. Na conversão de octal para binário, cada algarismo octal se transforma em um binário de três algarismos.

BINÁRIO PARA OCTAL

$$10\ 100\ 101_2 = ?_8$$

010 100 101
$$0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} \quad 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0} \quad 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$
$$0 + 2 + 0 \quad 4 + 0 + 0 \quad 4 + 0 + 1$$

Resposta: $10\ 100\ 101_2 = 245_8$

OCTAL PARA BINÁRIO

$$243_8 = ?_2$$

Resposta: $243_8 = 010\ 100\ 011_2$

CONVERSÃO BINÁRIO-HEXADECIMAL E HEXADECIMAL-BINÁRIO

Procede-se da mesma forma que na transformação binário/octal e octal/binário, porém um algarismo hexadecimal corresponde a quatro algarismos binários $(F_{16}=1111_2)$.

BINÁRIO PARA HEXADECIMAL

$$10\ 1101_2 = ?_{16}$$

Resposta: $10\ 1101_2 = 2D_{16}$

HEXADECIMAL PARA BINÁRIO

$$C28_{16} = ?_2$$

 $R = C_2 8_{16} = 110000101000_2$

1.3 NÚMEROS BINÁRIOS E DECIMAIS FRACIONÁRIOS

BINÁRIO PARA DECIMAL

Resposta: $100,11_2 = 4,75_{10}$

DECIMAL PARA BINÁRIO

Ex.: 8,375₁₀ = ? ₂

Retira-se a parte inteira e transforma-se a mesma para base 2.

Resposta: 8₁₀ = 1000₂

Pega-se a parte decimal e multiplica-se por 2, sendo que do resultado obtido retirase a parte inteira e permanece multiplicando a parte decimal até encontrar-se parte decimal igual a zero.

Então: 8,375₁₀ = 1000,011₂

1.3.1 Exercícios

1. Conversão de binário para decimal.

Binário	Decimal	Binário	Decimal
111010		101010	
10110		110110	
1111000		11111111	
101100		1011000	

2. Conversão de octal para decimal.

Octal	Decimal	Octal	Decimal
43		10	
57		100	
744		177	
52		4723	