Problème du sac à dos TP de Licence Informatique

Exposé du problème

On veut écrire un programme parallèle pour résoudre le problème du sac-à-dos :

- on dispose de N objets caractérisés par leur masse M[i] et leur utilité U[i] (Ø≤i<N) et d'un sac à dos de capacité C (masse totale maximale).
- on veut choisir un sous-ensemble d'objets dont la somme des masses est inférieure ou égale à C et qui maximise la somme des utilités.

objet	M[i]	U[i]
0	4	3
1	2	4
2	3	2
3	1	1
4	3	3

Configurations possibles:

```
 objets 0 et 1 → masse=6 et utilité=7
```

•

objet	M[i]	U[i]
0	4	3
1	2	4
2	3	2
3	1	1
4	3	3

$$C = 6$$

Configurations possibles:

- objets 0 et 1 → masse=6 et utilité=7 ✓
- objets 1, 2 et 3 → masse=6 et utilité=7
- objets 2 et 4 → masse=6 et utilité=5 🗸
- objets 1 et 2
 masse=5 et utilité=6
- objets 0, 1 et 2 → masse=9 et utilité=9 X
- objets 1, 3 et 4 → masse=6 et utilité=8 ✓

Il s'agit de construire un tableau S de taille $N\times(C+1)$, tel que S[i][j] représente l'utilité maximale que l'on peut obtenir choisissant des objets parmi ceux numérotés de 0 à i, et en limitant la somme des masses à j.

Une fois le tableau S calculé, l'utilité maximale est donnée par S[N-1][C].

On peut alors construire le tableau E de dimension N tel que E[i]=1 si l'objet i doit être emporté et E[i]=0 sinon. Pour cela, il faut remonter dans le tableau pour retrouver les décisions qui ont permis d'atteindre S[N-1][C].

Il s'agit de construire un tableau **S** de taille N×(C+1), tel que **S**[i][j] représente l'utilité maximale que l'on peut obtenir choisissant des objets parmi ceux numérotés de 0 à i, et en limitant la somme des masses à j.

Une fois le tableau S calculé, l'utilité maximale est donnée par S[N-1][C].

La ligne 0 de ce tableau est facile à calculer :

- S[0][j]=0 si M[0]>j (la masse de l'objet 0 est supérieure à la capacité j, donc on ne peut pas le prendre)
- S[0][j]=U[0] si M[0]≤j (on peut prendre l'objet 0)

capacité

Lorsque l'on passe d'une ligne à la suivante, on élargit l'ensemble des objets qu'on peut sélectionner. Lorsque l'on calcule S[i][j], la question qui se pose est : faut-il inclure l'objet i ?

- si on n'inclut pas l'objet i, l'utilité optimale est S[i-1][j].
- si on inclut l'objet i, il faut ensuite compléter le sac à dos avec la meilleure combinaison parmi les objets 0 à i-1. L'utilité obtenue est alors : S[i-1][j-M[i]] + U[i]
- on choisit la solution qui apporte l'utilité maximale tout en respectant la contrainte de capacité

		0	1	2	j - M[i]		j			С	capacité
	0	0	0	0	0	U[0]	U[0]	U[0]	U[0]	U[0]	
	1	••		••	••			••	••		
ts	2	••		••							
objets											
0	i-1						ł		••		
	i					+U[i]	** *				
Université Fédéra	N-1										

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1							
3	2	2							
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4	4	4	4	7
3	2	2	0	0	4	4			
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4	4	4	4	7
3	2	2	0	0	4	4	4		
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0 —	4	4	4	4	7
3	2	2	0	0	4 +	2 4	2 4		
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4	4	4	4	7
3	2	2	0	0	4	4	4		
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4	4	4	4	7
3	2	2	0	0	4	4	4		
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4	4	4	4	7
3	2	2	0	0	4	4	4	4	
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4 –	4	4	4	7
3	2	2	0	0	4	4 +	2 4	6 4	
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4	4	4	4	7
3	2	2	0	0	4	4	4	6	
1	1	3							
3	3	4							

M[i]	U[i]	objet	0	1	2	3	4	5	6
4	3	0	0	0	0	0	3	3	3
2	4	1	0	0	4	4	4	4	7
3	2	2	0	0	4	4	4	6	7
1	1	3	0	1	4	5	5	6	7
3	3	4	0	1	4	5	5	7	8

l'utilité maximale que l'on peut obtenir

On peut alors construire le tableau E de dimension N tel que E[i]=1 si l'objet i doit être emporté et E[i]=0 sinon. Pour cela, il faut remonter dans le tableau pour retrouver les décisions qui ont permis d'atteindre S[N-1][C].

solution au problème (utilité maximale)

faut-il prendre l'objet N-1 pour atteindre cette valeur?

capacité

$$E[N-1] = 0$$

on continue depuis cette case...

on continue depuis cette case...

$$E[N-2] = ...$$

capacité

$$E[N-1] = 1$$

on continue depuis cette case...

capacité

on continue depuis cette case...

$$E[N-2] = ...$$

capacité

$$E[0] = ...$$