Peer-graded Assignment: Battle of Neighbourhoods – Final Report

Potential Analysis - Germany

Table of contents

1.		Intro	oduction
	1.:	1.	Background1
	1.2	2.	Problem
	1.3	3.	Interest
2.		Data	acquisition and cleaning1
	2.:	1.	Data sources
	2.2	2.	Data cleaning
	2.3	3.	Feature selection
3.		Expl	oratory Data Analysis3
	3.:	1.	Calculation of target variable
	3.2	2.	Relationship between improvement and age
	3.3	3.	Relationship between improvement and overall ability
	3.4	4.	Relationship between improvement and minutes played
	3.!	5.	Relationship between improvement and games played
	3.6	6.	Relationship between improvement and positions
	3.	7.	Relationship between improvement and last year's improvement
	3.8	8.	Relationship between improvement and draft positions
	3.9	9.	Relationship be tween improvement and teams
4.		Pred	lictive Modeling
	4.	1.	Regression models
		4.1.1	1. Applying standard algorithms and their problems
		4.1.2	2. Solution to the problems
5.		Cond	clusions2
6		Cu+	directions

1.Introduction

1.1. Disclaimer

All details are given without guarantee.

All information mentioned here has been prepared for the course: "Capstone Project - The Battle of Neighborhoods" and does not serve the purpose of business use. Likewise, it is not a recommendation which is hereby pronounced.

1.2. Background

Currently there is no possibility to have all data in one place, so it is not visible and has to be evaluated again and again. Pytohn offers the possibility to evaluate the data based on the libraries.

1.3. Problem

A person who on the one hand works in a large company or can be a private individual needs to make a decision, where a new store is opened, usually comprehensive location information. This information can be information about the population in a city, the GDP per person or how many coffee's there are already in a city. On the basis of this information, as a person of a company not operating in Germany, you can get an overview of which areas within Germany have the potential to open a business.

In addition to the advantages mentioned above, this chart can also be used to illustrate real estate investment decisions.

1.4. Interest

The interests are to learn, as an outsider, how the German economy is organised. This is pointed out by the GDP per head. Furthermore it is represented by the Foursqure API how many Caffees are within the city centre. In combination of these two data, it can be balanced which city is suitable for the opening of a coffee bar.

2. Data acquisition and cleaning

2.1. Data sources

The project is based on various publicly available data.

This includes information from Wikipedia:

https://de.wikipedia.org/wiki/Liste_der_Gro%C3%9Fst%C3%A4dte_in_Deutschland

 $https://de.wikipedia.org/wiki/Liste_der_deutschen_St\%C3\%A4dte_nach_Bruttoinlandsprodukt$

Furthermore, information was extracted from the Foursqare API.

2.2. Data cleaning

	City	Inhabitants_2018	Area km²(2016)	Inahb./km²(2018)	Region	
0	Berlin	3.644.826	89168	4.088	Berlin	
1	Hamburg	1.841.179	75522	2.438	Hamburg	
2	München	1.471.508	31070	4.736	Bayern	
3	Köln	1.085.664		2.681	Nordrhein-Westfaler	
4	Frankfurt am Main	753.056	24831	3.033	Hessen	

	City	Bruttoinlandsproduktin Mio. €	Bruttoinlandsproduktpro Kopf in €			
0	Berlin	130.537	36.798			
1	Hamburg	112.959	62.793			
2	München	109.571	75.186			
3	Frankfurt am Main	66.917	91.099			
4	Köln	63.463	59.407			

		City	Inhabitants_2018	Area km²(2016)	Inahb./km²(2018)	Region	GDP in MIO	GDP per capita	Avearage GDP per capita (Region)
1	0	Berlin	3.644.826	89168	4.088	Berlin	130.537	36.798	40.568
	1	Hamburg	1.841.179	75522	2.438	Hamburg	112.959	62.793	65.603
1	2	München	1.471.508	31070	4.736	Bayern	109.571	75.186	47.946
;	3	Nürnberg	518.365	18638	2.781	Bayern	28.130	55.071	47.946
4	4	Augsburg	295.135	14684	2.010	Bayern	14.060	48.824	47.946

	City	Inhabitants_2018	Area km²(2016)	Inahb./km²(2018)	Region	GDP in MIO	GDP per capita		Latitude	Longitude
0	Berlin	3.644.826	89168	4.088	Berlin	130.537	36.798	40.568	52.517037	13.388860
1	Hamburg	1.841.179	75522	2.438	Hamburg	112.959	62.793	65.603	53.550341	10.000654
2	München	1.471.508	31070	4.736	Bayern	109.571	75.186	47.946	48.137108	11.575382
3	Nürnberg	518.365	18638	2.781	Bayern	28.130	55.071	47.946	49.453872	11.077298
4	Augsburg	295.135	14684	2.010	Bayern	14.060	48.824	47.946	48.366804	10.898697

Г	nama	antamarian	addraga	city	diatanas	lat	Ina	atata
	name	categories	address	City	distance	lat	ing	state

2.3. Feature selection

3. Exploratory Data Analysis

3.1. Calculation of target variable

3.2. Relationship between improvement and age

3.3. Relationship between improvement and overall ability

3.4. Relationship between improvement and minutes played

- 3.5. Relationship between improvement and games played
- 3.6. Relationship between improvement and positions
- 3.7. Relationship between improvement and last year's improvement
- 3.8. Relationship between improvement and draft positions
- 3.9. Relationship be tween improvement and teams

4. Predictive Modeling

- 4.1. Regression models
 - 4.1.1. Applying standard algorithms and their problems
 - 4.1.2. Solution to the problems

5. Conclusions

6. Future directions