



中国北京 2024.7.26

主办方: 中国计算机学会 | 承办方: CCF开源发展委员会、夜莺项目开源社区







# 字节跳动观测数据埋点标准化实践



舒博

字节跳动可观测团队 高级工程师

中国北京 2024.7.26

## 大纲

- •背景
- 埋点标准化的挑战与拆解思路
- 实践与效果
- 总结



## 背景

随着字节业务规模越来越大,稳定性治理就成为了一个越来越重要的话题。

观测数据标准化及配套的数据链路就是后续稳定性建设的数据基石。

统一的观测数据标准,可以极大程度提升团队间排障效率,从人肉分析提升到更大程度自助/自动化排障的阶段。



### 埋点标准化的重要性

提高研发效率且降低研发协同成本

为AIOps 提供强有力的数据支撑



### 提高研发效率且降低研发协同成本

面向排障: 跨层间上下文过滤便捷并统一术语

历史数仓分析 整体pipeline 逻辑和适配成本降低很多

降低用户的学习曲线 以及 心智理解负担





### 为AIOps 提供强有力的数据支撑

清华大学裴丹老师的 < AIOps 落地的 15 条原则 > 的架构路线 也提到了 数据的重要性:

数据知识驱动、算法代码联动、人机协同

观测数据是基石之一

有了数据标准化和统一的访问体验,为后续稳定性终极目标 MTTR 1-5-10 提供了数据层面的保障,包括同层数据的聚合/过滤以及跨层数据的下钻和上卷 都会有统一的使用姿势。



## 埋点标准化的挑战与拆解思路

挑战: 历史上可观测性埋点质量偏低

思路: 分层&向后兼容推进埋点标准化

卡点: 识别和解决



埋点标准化的定义:

覆盖完整 定义统一 计量准确 面向引擎友好





### 2020年之前, 字节整体观测数据埋点质量情况

### 第二届CCF·夜莺开发者创新论坛

|               | M. T. L 横向覆盖是否完整                            | 定义统一                                 | 计量准确            | 面向引擎友好                                       |
|---------------|---------------------------------------------|--------------------------------------|-----------------|----------------------------------------------|
| TLB           | N/A                                         | 高                                    | 中之前打点丢失问题较严重    | 低 •之前指标打点对于配置预计算不 友好 •指标名膨胀也比较严重             |
| 微服务           | 中<br>20 年前 Tracing 方案还在 V1 版本               | 高                                    | 中之前遇到高基数的指标会被封禁 | 低 •之前指标打点 对于配置预计算不 友好 •指标名膨胀也比较严重 •加权计算也不好实现 |
| 语言 runtime    | N/A                                         | 低 Golang & c++ 框架 不同的版本定义 的指标格式都不太一样 | <b>声</b>        | 低<br>•之前指标打点 对于配置预计算不<br>友好                  |
| 容器指标          | 低 •没有日志采集覆盖                                 | <b>声</b>                             | 中之前遇到高基数的指标会被封禁 | 低<br>•之前指标打点 对于配置预计算不<br>友好                  |
| 基础架构 存储 & 数据库 | 低<br>存储、数据库、MQ 客户端也没有<br>黄金指标打点<br>没有日志采集覆盖 | 低不同存储、数据库、MQ产品打点格式都不一                | 中               | 低<br>•之前指标打点 对于配置预计算不<br>友好                  |



### 服务端观测数据质量大致分3类问题:

- 同层数据/跨层数据不统一
- 观测多模态数据类型[指标、日志、链路]数据定义不统一
- 观测数据格式面向引擎不够友好, 比如所有的数据都在 default 租户一个大仓,再如很多观测指标定义对于预计算不友好。



思路: 分层和向后兼容推进埋点标准化

[问题一] 同层数据/跨层数据不统一

解决方案: 协作组件设计打点规范

• 微服务RPC: 引入多租户+多值 & 对齐TagKV 术语

• TLB: 引入多租户+多值 & 面向预计算友好

• 容器指标:引入多租户+多值 & 对齐TagKV 术语:



思路: 分层和向后兼容推进埋点标准化

[问题二]观测多模态数据类型[指标、日志、链路]数据定义不统一

解决方案: 采集覆盖+埋点术语统一

- 日志采集覆盖: 微服务+容器
- 链路覆盖: SDK 基线版本升级
- TLB: 引入多租户+多值 & 面向预计算友好
- 多模观测数据埋点术语统一: 统一 M.T.L SDK TagKV定义; 埋点vendor SDK 感知运行时环境 定义TagKV



思路: 分层和向后兼容推进埋点标准化

[问题三] 观测数据格式面向引擎不够友好

解决方案:指标标准化

引入metrics 2.0 [多租户 & 多值]: 2.0 SDK 在性能开销&传输效率都优于1.0



团队历年来在多个观测对象上埋点做出的业务推进







卡点:识别和解决

如何高效推动业务升级?

如何进一步提升核心组件的埋点质量?

如何保障观测数据迁移对于在线核心观测大盘和报警影响最小化?

如何降低对接的人力成本?



### 如何高效推动业务升级

### BytedTrace SDK 集成 RPC 框架

BytedTrace 团队为公司常用框架和组件集成了 BytedTrace SDK。目前对于大部分 RPC 框架和存储端 Client 都已完成。

按服务优先级来看,公司当前 PO 服务已有 94%接入 Bytedtrace SDK

| level | V2 服务接<br>入率 | V1+V2 服务<br>接入率 | V2 服务数 | V1+V2 服务<br>数 | 服务 总数 |
|-------|--------------|-----------------|--------|---------------|-------|
| P0    | 0.9546       | 0.9597          | 1682   | 1691          | 1762  |
| P1    | 0.8988       | 0.9150          | 2008   | 2044          | 2234  |
| P2    | 0.8233       | 0.8577          | 5964   | 6213          | 7244  |
| P3    | 0.8190       | 0.8558          | 267    | 279           | 326   |



### 如何高效推动业务升级

联合 bytesib 团队计划实现 sdk 自动升级功能





### 如何进一步提升核心组件的埋点质量?

### 容器 / Runtime 打点格式设计思路

| 层次  | 核心组件/着手点                                | 埋点标准化设计思路                                             |
|-----|-----------------------------------------|-------------------------------------------------------|
| 业务层 | Metrics 2.0 SDK                         | 内置统一公共的TagKV,提供横向跨语言、跨服务的TagKV<br>统一                  |
| 应用层 | Runtime 指标、RPC 指标                       | 横向上,提供统一的、跨语言的指标名定义<br>纵向上,对齐Metrics 2.0 SDK公共TagKV规范 |
| 容器层 | 与调度合作,对容器指标采集<br>agent(sysprobe)进行标准化改造 | 对齐Metrics 2.0 SDK公共TagKV规范                            |



# 如何保障观测数据迁移对于在线核心观测大盘和报警影响最小化?

推动SDK的升级,指标名、TagKV的语义统一,必然会引起存量观测大盘、报警规则的不一致。看板在千级别数量级、涉及的报警规则的数量在十万级别



# 如何保障观测数据迁移对于在线核心观测大盘和报警影响最小化?

语义化指标替换 --- Measurement

对原始 metrics 打点的语义化封装

识别在不同条件下,能使用对应版本的指标查询以及对应的 tagkv



# 如何保障观测数据迁移对于在线核心观测大盘和报警影响最小化?

- 1.通过元信息获取观测对象的信息
- 2.根据信息和处理逻辑,选择应使用的 standardmetrics。
- 3.根据输入region等信息和standardmetrics的 datasource type,获取数据引擎和数据源endpoint。
- 4.渲染standardmetrics的query语句,参数为:
  - 1. 指标中的具体观测对象实体
  - 2. 经过预先设定的mapping映射,将各个指标之间有差异的tag key 对齐。
- 5.根据渲染完成的query 去数据引擎层中请求对应的数据源endpoint 获得数据。





# 如何保障观测数据迁移对于在线核心观测大盘和报警影响最小化?

抽象出 measurement 服务 作为观测大盘和报警的一个数据源。 在尽量不需要用户介入的情况下完成数据打 点的迁移和替换,这里包括观测大盘和报警 能力

rpc、http框架,tce容器、faas、bernard平台、以及tlb、redis、mysql、bytedoc、bmq、rmq等基础组件,及go runtime等都做了统一的标准化语义封装。这些语义化封装在服务端Argos观测平台上都有体现。

### 第二届CCF·夜莺开发者创新论坛







# 如何保障观测数据迁移对于在线核心观测大盘和报警影响最小化?

帮助业务平滑迁移到新租户,且确保新老指标查询方式都可查询,是推动业务租户迁移中遇到比较大的课题。Metrics团队发起对用户无感知的被动租户迁移方案 ----

Metrics 前缀分流



# 如何保障观测数据迁移对于在线核心观测大盘和报警影响最小化?

根据特定的指标前缀,一级/二级前缀 经过配置将指标分别路由到不同的新租 户

在新租户上支持查询翻译,支持在用户不修改查询租户的情况下,使用Default租户查询依然可以正常查询到数据





### 如何降低对接的人力成本?

### metrics 租户运营平台化

•独立租户自助申请。租户创建表单提供了非常多的定制化参数给到用户,用户可以结合自己的使用场景,比如业务打点精度、部署的机房、热存的保存时长、是否需要使用冷存等,来定制化独立租户。

•租户变更申请。在使用过程中,用户可以根据实际使用情况来调整租户运行中的一些参数,比如数据存储策略、写入管控策略。



## 实践与效果 --- 标准化质量体现

### 第二届CCF·夜莺开发者创新论坛

|                  | M. T. L 横向覆盖是否完整                                         | 定义统一                                   | 计量准确                                                                                 | 面向引擎友好                                   | 成本收益                                                                                                                                                                            |
|------------------|----------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TLB              | N/A                                                      | 高                                      | 高[20 年前 低] •通过 2.0 SDK 三个特性,基本消除 丢点的问题                                               | 高 [20 年前 低]<br>实际效果:<br>•面向 <u>预计算友好</u> | 1.Metrics 2. 0 打点商品成本相对 1.0 下降 94%。 2.Metrics 2. 0 很好地解决了打点封禁问题,特别是在一些配置量巨大的核心集群,解决了其超过 90%打点无法查询的情况。 3.Metrics 2. 0 TLB 机器成本初步统计主容器和 adaptor 打平,同时相对 1.0 节约了 ms 2 的 15000 核资源。 |
| 微服务              | 高 [20 年前 中]<br>•80%以上 PSM 覆盖到<br>bytedTrace SDK 集成       | 高                                      | 中+ •高基数的指标封禁问题 由于迁移到了新租户可以做封禁阈值定制化 •[计划中] 升级 bytedTrace 内的metrics 2.0 SDK 降低丢点的风险    | 高 [20 年前 低]<br>实际效果:<br>•面向 <u>预计算友好</u> | 1.以计算关键组件 Consumer 为例,新租户只需要老租户 20%的资源,就可以完成相同数据的写入计算(下面说明会介绍推导方法);其他写入计算类组件也类似 2.以存储关键组件 tsdc 为例,新租户只需要老租户 55%的资源,就可以完成想通过数据的写入、存储                                             |
| 语言 runtime       | N/A                                                      | 高 [20 年前 低] •统一了不同语言 和框架的 runtime 打点格式 | 高                                                                                    | 低                                        |                                                                                                                                                                                 |
| 容器指标             | 中 [20 年前 低] •Godel 接入日志租户                                | 亩                                      | 高 [20 年前 中] •引入多值 降低指标名数量 •高基数的指标封禁问题 由于迁移到了新租户可以做封禁阈值定制化 •通过 2.0 SDK 三个特性,基本消除丢点的问题 | 高 [20 年前 低] •之前指标打点 对于配置预计算不友好           | 进行中                                                                                                                                                                             |
| 基础架构 存储<br>& 数据库 | 低<br>•[进行中] 目前有 10+组件 在<br>接入 metrics 2.0 SDK + 租户<br>独立 | 低 •不同存储、数据 库、MQ产品打点 格式都不一              | 高 [20 年前 中] •引入多值 降低指标名数量 •高基数的指标封禁问题 由于迁移到了新租户可以做封禁阈值定制化 •通过 2.0 SDK 三个特性,基本消除丢点的问题 | 中 [20 年前 低] •打点格式调整的<br>支持预计算配置          | 以 mysql 迁移为例 •Mysql 租户 成本 <b>节省 45。7%</b> •Mysql 租户 带宽 <b>节省了 80%</b>                                                                                                           |



## 实践与效果 ---效果总结

### 赋能 AIOps 跨层根因定位

通过指标标准化 & 多模观测数据 [指标,日志,链路]标签术语的标准化,实现面向微服务的上卷 & 下钻关联分析。

也使得跨层问题根因分析有了可能性

▶ 错误码分析 命中 ▶ 单上游检测 命中 ▶ 集群检测 命中 ▶ 单 method 检测 命中 ▶ 调用链中上下游错误信息 命中 ▶ 错误日志关联分析 命中 ▶ 单机房检测 未命中 ▶ 下游关联分析 未命中 ▶ Goroutine泄露检测 未命中 ▶ CPU过载检测 未命中 ▶ 变更事件分析 未命中 ▶ 业务SLI关联分析 未命中

中国北京 2024.7.26

| 可用性下降分析 智能归因                                           | 延迟上涨分析 智能归因                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 图表下拉切换                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 筛选条件上下文携带                            |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 选择可用性下降的时刻触发可用性下降分析,辅助<br>问题排查,提升排查效率                  | 选择延迟上涨的时刻触发延迟上涨分析,辅助问题<br>排查,提升排查效率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 图表支持下拉切换指标,可根据不同场景选择相应<br>指标查看                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tab 页间通过变量携带,传递上下文信息                 |
| 上游模角可用性 🗸 ⑦ 2023-08-29 12-02:10                        | MAKE I A SOUTH STATE OF THE SOUT | Lileting TI Elet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 個英 上牌 接口 下游                          |
| E級使用可用性                                                | 服务延迟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 上游视角可用性 ^ ③   C · ① ② · :<br>上游视角可用性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | method 诗世塔 v cluster write v dc 演选择  |
| 99.945 为                                               | 780.00 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 上游戏角以PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 極党 上路 独口 下游                          |
| 99.945 % 可用性下降分析 New 99.920 % 可指性下降分析 New 图 整備相关 Trace | 380.00 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STATE STATE OF THE | method 语法语 ~ cluster write ~ dic 语法语 |
| 99.895 % 国有相关 TLB 日志                                   | 180,00 ms // 機滴次分析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 上海视角东欧 OPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 模党 上牌 接口 下游                          |
| 12:00 12:11<br>— sli-arvailobility-success_rate        | 12:00 12:15 电 查看相关 Trace — sh-latency-latency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 12:30<br>失败 QPS 按状态码分组                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cluster wife v do 情感体 v deploy_stage |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |

## 实践与效果 ---效果总结

### Metrics 存储收益

稳定性: 由于定义了租户, 就可通过逻辑租户映射到物理资源来降低故障半径, 减少不同

租户间流量相互干扰。

成本: 通过每个租户的副本数 & 存储时长 TTL 以及打点最小精度 和 多值定义来最大程度降

低写入流量以及存储容量的成本。

#### 流量来看,老集群:

- 1. 写入网关流量下降: 6.5%
- 2. 写入网关视角: byetrace指标在新租户流量只有老租户的 **17.6%**
- 3. BMQ入流下降: **12.3%~14%**
- 4. tsdc DataPoint流量下降: 9.7%

中国北京 2024.7.26

#### 关键资源使用看,老集群:

- 1. Producer平均cpu使用率下降: 8.2%
- 2. consumer平均cpu使用率下降: 9.5%
- 3. Streaming平均cpu使用率下降: 26.5%
- 4. tsdc内存使用下降: 13.2%





## 总结与规划

经过近3年的 bytedTrace 推广 & metrics 2.0 租户迁移,字节后端观测数据质量 无论在覆盖完整度、定义统一、计量准确、面向引擎友好四个方面都有相当程度的改善,也为后续全景全栈排障 进而 AlOps 提供了坚实的基础。

#### 未来会在如下两方面继续推进:

- 协助服务端观测平台的监控和报警方向进一步闭环上述标准化数据访问、下线老数据的写入流量以及推广到全球的多区域;
- •推动火山引擎云产品接入上述的数据标准化, 提供内外一致的数据质量体验。



# 感谢聆听

Thank you for listening



