Question 1

Let \mathcal{L} be our first-order language supplemented with primitive vocabulary for talking about arithmetic. Let f be an embedding of R in R. For any valuation σ based on R, let $f\sigma$ be the valuation based on R such that, for each variable g, we have $g^{f\sigma} = f(g^{\sigma})$.

(i)

Show: $t^{f\sigma} = f(t^{\sigma})$, for every term t.

Proof by induction on the complexity of terms.

Convention: When dealing with the structure *R , we will use the convention in 10.3.2 (page 218). i.e. *0 is 0^{*R} and *s is s^{*R} and ${}^*+$ is $+^{*R}$ and ${}^*\times$ is \times^{*R} . This convention is also given in lecture notes 10.

Base Case: deg(t) = 0. Hence, t = y, where y is a variable. By definition we know that $y^{f\sigma} = f(y^{\sigma})$.

Inductive Hypothesis: Assume for every term t such that deg(t) < n, we have that $t^{f\sigma} = f(t^{\sigma})$.

Now we will show $t^{f\sigma} = f(t^{\sigma})$ when deg(t) = n. We will consider several cases.

Case 1: t = 0.

$$f(0^{\sigma}) = f(0^{R})$$

= *0 By def of embedding
= $0^{f\sigma}$

Case 2: t = sr where deg(r) < n.

By inductive hypothesis we know that $r^{f\sigma} = f(r^{\sigma})$. Consider the following.

$$f((sr)^{\sigma}) = f(s^{\sigma}(r^{\sigma}))$$

 $= f(r^{\sigma} + 1)$ + is standard addition on N
 $= *s(f(r^{\sigma}))$ By def of embedding
 $= *s(r^{f\sigma})$ By Inductive Hypothesis
 $= s^{f\sigma}(r^{f\sigma})$ Since $s^{f\sigma} = *s$
 $= (sr)^{f\sigma}$

Case 3: $t = r_1 + r_2$ where $deg(r_1) < n$ and $deg(r_2) < n$.

Note, we are using informal infix notation for simplicity and readability.

By inductive hypothesis we know that $r_1^{f\sigma} = f(r_1^{\sigma})$ and $r_2^{f\sigma} = f(r_2^{\sigma})$. Consider the following.

$$f((r_1 + r_2)^{\sigma}) = f(r_1^{\sigma} + r_2^{\sigma})$$

$$= f(r_1^{\sigma} + r_2^{\sigma}) + \text{is standard addition on } N$$

$$= f(r_1^{\sigma})^* + (r_2^{\sigma}) + \text{is standard addition on } N$$

$$= f(r_1^{\sigma})^* + (r_2^{\sigma}) + \text{is standard addition on } N$$

$$= r_1^{f\sigma} + r_2^{f\sigma} + r_2^$$

Case 4: $t = r_1 \times r_2$ where $deg(r_1) < n$ and $deg(r_2) < n$.

Note, we are using informal infix notation for simplicity and readability.

By inductive hypothesis we know that $r_1^{f\sigma} = f(r_1^{\sigma})$ and $r_2^{f\sigma} = f(r_2^{\sigma})$. Consider the following.

$$f((r_1 \times r_2)^{\sigma}) = f(r_1^{\sigma} \times^{\sigma} r_2^{\sigma})$$

$$= f(r_1^{\sigma} r_2^{\sigma}) \qquad \text{standard multiplication on } N$$

$$= f(r_1^{\sigma})^* \times f(r_2^{\sigma}) \qquad \text{By def of embedding}$$

$$= r_1^{f\sigma} \times r_2^{f\sigma} \qquad \text{By Inductive Hypothesis}$$

$$= r_1^{f\sigma} \times^{f\sigma} r_2^{f\sigma} \qquad \text{Since } \times^{f\sigma} = {}^* \times$$

$$= (r_1 \times r_2)^{f\sigma}$$

Therefore, by induction on the complexity of terms we have proven that $t^{f\sigma} = f(t^{\sigma})$ for every term t.

(ii)

Show: $f[\sigma(x/n)] = (f\sigma)(x/fn)$, for any variable x and number n.

Let x be an arbitrary variable. Let n by any number.

Let y be an arbitrary variable. Either y = x or $y \neq x$. We will consider each case separately.

Case 1: y = x

Consider the following.

$$y^{f[\sigma(x/n)]} = x^{f[\sigma(x/n)]}$$
 Since $y = x$
 $= f(x^{\sigma(x/n)})$
 $= fn$
 $= x^{(f\sigma)(x/fn)}$
 $= y^{(f\sigma)(x/fn)}$ Since $y = x$

Case 2: $y \neq x$

Consider the following.

$$y^{f[\sigma(x/n)]} = f(y^{\sigma(x/n)})$$

= $f(y^{\sigma})$ Since $y \neq x$
= $y^{f\sigma}$
= $y^{(f\sigma)(x/fn)}$ Since $y \neq x$

In either case we have that $y^{f[\sigma(x/n)]} = y^{(f\sigma)(x/fn)}$.

Since y was an arbitrary variable, we have that $f[\sigma(x/n)] = (f\sigma)(x/fn)$, as required.

(iii)

Required to Prove: If f is an isomorphism between R and R, then $\alpha^{f\sigma} = \alpha^{\sigma}$ for every formula α .

Assume f is an isomorphism between R and R.

To show our required result, we will first prove the following Claim.

Claim: $\alpha^{f\sigma} = \top$ iff $\alpha^{\sigma} = \top$ for every formula α and every valuation σ based on R.

Proof by induction on the complexity of formulas.

Base Case: $deg(\alpha) = 0$. Hence, α is atomic. The only predicate symbol in our language is equality. Hence, α is of the form $t_1 = t_2$ where t_1 and t_2 are terms.

Consider the following.

$$\alpha^{f\sigma} = \top \text{ iff } (t_1 = t_2)^{f\sigma} = \top$$

$$\text{iff } \langle t_1^{f\sigma}, t_2^{f\sigma} \rangle \in id_{{}^*N}$$

$$\text{iff } \langle f(t_1^{\sigma}), f(t_2^{\sigma}) \rangle \in id_{{}^*N} \qquad \text{By part (i)}$$

$$\text{iff } \langle t_1^{\sigma}, t_2^{\sigma} \rangle \in id_N \qquad \text{By injectivity of } f$$

$$\text{iff } (t_1 = t_2)^{\sigma} = \top$$

$$\text{iff } \alpha^{\sigma} = \top$$

Therefore, our claim holds in the Base Case.

Inductive Hypothesis: Assume $\alpha^{f\sigma} = \top$ iff $\alpha^{\sigma} = \top$ for every formula α such that $deg(\alpha) < n$ and every valuation σ based on R.

Now we will show $\alpha^{f\sigma} = \top$ iff $\alpha^{\sigma} = \top$ when $deg(\alpha) = n$ for any valuation σ based on R.

We will consider several cases.

Case 1: $\alpha = \neg \beta$, where $deg(\beta) = n - 1$.

Consider the following.

$$\alpha^{f\sigma} = \top \text{ iff } (\neg \beta)^{f\sigma} = \top$$
 iff $\beta^{f\sigma} = \bot$ By Inductive Hypothesis on β iff $(\neg \beta)^{\sigma} = \top$ iff $\alpha^{\sigma} = \top$

Therefore, our claim holds in Case 1.

Case 2: $\alpha = \beta \to \gamma$, where $deg(\beta) < n$ and $deg(\gamma) < n$.

Consider the following.

$$\begin{array}{ll} \alpha^{f\sigma} = \top & \text{iff} & (\beta \to \gamma)^{f\sigma} = \top \\ & \text{iff} & \beta^{f\sigma} = \bot & \text{or} & \gamma^{f\sigma} = \top \\ & \text{iff} & \beta^{\sigma} = \bot & \text{or} & \gamma^{\sigma} = \top \\ & \text{iff} & (\beta \to \gamma)^{\sigma} = \top \\ & \text{iff} & \alpha^{\sigma} = \top \end{array} \qquad \begin{array}{ll} \text{By Inductive Hypothesis on } \beta \text{ and } \gamma \end{array}$$

Therefore, our claim holds in Case 2.

Case 3: $\alpha = \forall x \beta$, where $deg(\beta) = n - 1$.

Show: $\alpha^{f\sigma} = \top$ iff $\alpha^{\sigma} = \top$ where $\alpha = \forall x\beta$ for any valuation σ based on R.

We will prove both directions of the biconditional separately.

 (\Rightarrow) : Assume $\alpha^{f\sigma} = \top$. Hence, $(\forall x\beta)^{f\sigma} = \top$. Hence, for each $u \in {}^*N$ we have that $\beta^{(f\sigma)(x/u)} = \top$.

Since f is an isomorphism, we know that f is a bijection from N to N. Hence, we know that $N = \{fn : n \in N\}$.

Hence, for each $n \in N$ we have that $\beta^{(f\sigma)(x/fn)} = \top$.

By part (ii) we know that $f[\sigma(x/n)] = (f\sigma)(x/fn)$, for any variable x and number n.

Hence, for each $n \in N$ we have that $\beta^{f[\sigma(x/n)]} = \top$.

By Inductive Hypothesis, we know that $\beta^{f[\sigma(x/n)]} = \top$ iff $\beta^{\sigma(x/n)} = \top$ for each $n \in \mathbb{N}$.

Hence, for each $n \in N$ we have that $\beta^{\sigma(x/n)} = \top$.

Hence, $(\forall x\beta)^{\sigma} = \top$.

Hence, $\alpha^{\sigma} = \top$.

 (\Leftarrow) : Assume $\alpha^{\sigma} = \top$. Hence, $(\forall x\beta)^{\sigma} = \top$. Hence, for each $n \in N$ we have that $\beta^{\sigma(x/n)} = \top$.

By Inductive Hypothesis, we know that $\beta^{f[\sigma(x/n)]} = \top$ iff $\beta^{\sigma(x/n)} = \top$ for each $n \in \mathbb{N}$.

Hence, for each $n \in N$ we have that $\beta^{f[\sigma(x/n)]} = \top$.

By part (ii) we know that $f[\sigma(x/n)] = (f\sigma)(x/fn)$, for any variable x and number n.

Hence, for each $n \in N$ we have that $\beta^{(f\sigma)(x/fn)} = \top$.

Since f is an isomorphism, we know that f is a bijection from N to N. Hence, we know that $N = \{fn : n \in N\}$.

Hence, for each $u \in {}^*N$ we have that $\beta^{(f\sigma)(x/u)} = \top$.

Hence, $(\forall x\beta)^{f\sigma} = \top$.

Hence, $\alpha^{f\sigma} = \top$.

Combining our two results we get that $\alpha^{f\sigma} = \top$ iff $\alpha^{\sigma} = \top$.

Therefore, our claim holds in Case 3.

Therefore, by induction on the complexity of formulas we have proven our Claim.

Our **Claim** states that $\alpha^{f\sigma} = \top$ iff $\alpha^{\sigma} = \top$ for every formula α and every valuation σ based on R.

This implies that for every formula α and every valuation σ based on R, we have that $\alpha^{f\sigma} = \alpha^{\sigma}$.

This is exactly what we wanted to show, as required.

Question 2

Let *R be any model for Ω . Let f be a mapping from N to *N, defined by: $f(n) = s_n^{*R}$, for all $n \in N$.

(i)

Show: f is injective. i.e. for each $m, n \in \mathbb{N}$, if $m \neq n$, then $f(m) \neq f(n)$.

Let $m, n \in \mathbb{N}$. Assume $m \neq n$. We will show that $f(m) \neq f(n)$.

Consider the formula $s_m \neq s_n$. Let σ be an arbitrary valuation based on the standard model R.

We know that $(s_m \neq s_n)^{\sigma} = \top$ iff $\langle m, n \rangle \notin id_N$. Since $m \neq n$, we know that $\langle m, n \rangle \notin id_N$. Hence, by our biconditional, we have that $(s_m \neq s_n)^{\sigma} = \top$.

Since σ was an arbitrary valuation based on R, we have that $R \models s_m \neq s_n$. Hence, $s_m \neq s_n \in \Omega$.

By assumption, we know that R is a model for Ω . i.e. $R \models \Omega$. Since $s_m \neq s_n \in \Omega$, we have $R \models s_m \neq s_n$.

Let τ be an arbitrary valuation based on *R. We know $(s_m \neq s_n)^{\tau} = \top$ iff $\langle s_m^{\tau}, s_n^{\tau} \rangle \notin id_{*N}$.

Since ${}^*R \models s_m \neq s_n$, we have that $(s_m \neq s_n)^{\tau} = \top$. Hence, by our biconditional we have that $\langle s_m^{\tau}, s_n^{\tau} \rangle \notin id_{{}^*N}$. Hence, $s_m^{\tau} \neq s_n^{\tau}$.

And $s_m^{\tau} = s_m^{*R} = f(m)$.

And $s_n^{\tau} = s_n^{*R} = f(n)$.

Since $s_m^{\tau} \neq s_n^{\tau}$, we have that $f(m) \neq f(n)$.

Therefore, f is injective, as required.

Show: f is an embedding.

Convention: When dealing with the structure *R , we will use the convention in 10.3.2 (page 218). i.e. *0 is 0^{*R} and *s is s^{*R} and ${}^*+$ is $+^{*R}$ and ${}^*\times$ is \times^{*R} . This convention is also given in lecture notes 10.

In particular, s_n is s_n^{R} .

We already know f is injective from part (i). Now we will show that f satisfies the additional 4 conditions for an embedding given in Definition 10.3.4 (page 219). i.e. for every $m, n \in N$,

Condition 1: f0 = *0

Condition 2: f(m+1) = *s(fm)Condition 3: f(m+n) = fm *+ fn

Condition 4: $f(mn) = fm^* \times fn^*$

We will prove each of these facts in turn. Note the use of the convention mentioned earlier.

Proof of Condition 1: $f0 = {}^*0$

$$f0 = *s_0 = *0$$

Proof of Condition 2: f(m+1) = *s(fm)

Let $m \in N$ be arbitrary.

$$f(m+1) = *s_{m+1}$$
$$= *s*s_m$$
$$= *s(fm)$$

Proof of Condition 3: $f(m+n) = fm^* + fn$

Fix an arbitrary $m \in N$. We will use induction on n.

Base Case: n = 0

$$f(m+0) = f(m)$$
 Since $\forall v_1(v_1 + 0 = v_1) \in \Omega$
= $f(m)^* + ^*0$ Since $\forall v_1(v_1 + 0 = v_1) \in \Omega$
= $f(m)^* + ^*0$ By Condition 1

Inductive Hypothesis: Assume $f(m+n) = fm^* + fn$ for any $n \in N$

Show:
$$f(m + (n + 1)) = fm^* + f(n + 1)$$

$$f(m+(n+1)) = f((m+n)+1) \qquad \text{Since } \forall v_1 \forall v_2 (v_1+sv_2=s(v_1+v_2)) \in \Omega$$

$$= *s(f(m+n)) \qquad \text{By Condition 2}$$

$$= *s(fm+fn) \qquad \text{By Inductive Hypothesis}$$

$$= fm *+ *s(fn) \qquad \text{Since } \forall v_1 \forall v_2 (s(v_1+v_2)=v_1+sv_2) \in \Omega$$

$$= fm *+ f(n+1) \qquad \text{By Condition 2}$$

Therefore, by induction on n we have proven Condition 3.

Proof of Condition 4: $f(mn) = fm * \times fn$

Fix an arbitrary $m \in N$. We will use induction on n.

Base Case: n=0

$$f(m0) = f0$$
 Since $\forall v_1(v_1 \times 0 = 0) \in \Omega$
 $= *0$ By Condition 1
 $= fm * \times *0$ Since $\forall v_1(v_1 \times 0 = 0) \in \Omega$
 $= fm * \times f0$ By Condition 1

Inductive Hypothesis: Assume $f(mn) = fm * \times fn$ for any $n \in N$

Show:
$$f(m(n+1)) = fm^* \times f(n+1)$$

$$f(m(n+1)) = f(mn+m) \qquad \text{Since } \forall v_1 \forall v_2 (v_1 \times sv_2 = (v_1 \times v_2) + v_1) \in \Omega$$

$$= f(mn)^* + fm \qquad \text{By Condition 3}$$

$$= (fm^* \times fn)^* + fm \qquad \text{By Inductive Hypothesis}$$

$$= fm^* \times s(fn) \qquad \text{Since } \forall v_1 \forall v_2 ((v_1 \times v_2) + v_1 = v_1 \times sv_2) \in \Omega$$

$$= fm^* \times f(n+1) \qquad \text{By Condition 2}$$

Therefore, by induction on n we have proven Condition 4.

We have verified all 4 conditions given in Definition 10.3.4 (page 219). And we showed in part (i) that f is injective. Therefore, f is an embedding, as required.