

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9939(XX)00000-0

A NOTE ON FINITE ABELIAN GERBES OVER TORIC DELIGNE-MUMFORD STACKS

YUNFENG JIANG

ABSTRACT. Any toric Deligne-Mumford stack is a μ -gerbe over the underlying toric orbifold for a finite abelian group μ . In this paper we give a sufficient condition so that certain kinds of gerbes over a toric Deligne-Mumford stack are again toric Deligne-Mumford stacks.

1. INTRODUCTION

Let $\Sigma := (N, \Sigma, \beta)$ be a stacky fan of $\text{rank}(N) = d$ as defined in [4]. If there are n one-dimensional cones in the fan Σ , then modelling the construction of toric varieties [5],[6], the toric Deligne-Mumford stack $\mathcal{X}(\Sigma) = [Z/G]$ is a quotient stack, where $Z = \mathbb{C}^n - V$, the close subvariety $V \subset \mathbb{C}^n$ is determined by the ideal J_Σ generated by $\{\prod_{\rho_i \not\subseteq \sigma} z_i : \sigma \in \Sigma\}$ and G acts on Z through the map $\alpha : G \rightarrow (\mathbb{C}^\times)^n$ in the following exact sequence determined by the stacky fan (see [4]):

$$(1.1) \quad 1 \longrightarrow \mu \longrightarrow G \xrightarrow{\alpha} (\mathbb{C}^\times)^n \longrightarrow T \longrightarrow 1.$$

Let $\overline{G} = \text{Im}(\alpha)$, then $[Z/\overline{G}]$ is the underlying toric orbifold $\mathcal{X}(\Sigma_{\text{red}})$. The toric Deligne-Mumford stack $\mathcal{X}(\Sigma)$ is a μ -gerbe over $\mathcal{X}(\Sigma_{\text{red}})$.

Let $\mathcal{X}(\Sigma)$ be a toric Deligne-Mumford stack associated to the stacky fan Σ . Let ν be a finite abelian group, and let \mathcal{G} be a ν -gerbe over $\mathcal{X}(\Sigma)$. We give a sufficient condition so that \mathcal{G} is also a toric Deligne-Mumford stack. We have the following theorem:

Theorem 1.1. *Let $\mathcal{X}(\Sigma)$ be a toric Deligne-Mumford stack with stacky fan Σ . Then every ν -gerbe \mathcal{G} over $\mathcal{X}(\Sigma)$ is induced by a central extension*

$$1 \longrightarrow \nu \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 1,$$

i.e., we have a Cartesian diagram:

$$\begin{array}{ccc} \mathcal{G} & \longrightarrow & \mathcal{B}\tilde{G} \\ \downarrow & & \downarrow \\ \mathcal{X}(\Sigma) & \longrightarrow & \mathcal{B}G. \end{array}$$

In general, the ν -gerbe \mathcal{G} is not a toric Deligne-Mumford stack. But if the central extension is abelian, then we have:

2000 *Mathematics Subject Classification.* Primary 14E20; Secondary 46E25.

Key words and phrases. Gerbes, Toric Deligne-Mumford stacks.

Received by the editors September 11, 2006, and, in revised form, May 8, 2007, June 10, 2007, October 11, 2007, and November 6, 2007.

Corollary 1.2. *If the ν -gerbe \mathcal{G} is induced from an abelian central extension, it is a toric Deligne-Mumford stack.*

This small note is organized as follows. In Section 2 we construct the new toric Deligne-Mumford stack from an abelian central extension and prove the main results. In Section 3 we give an example of ν -gerbe over a toric Deligne-Mumford stack.

In this paper, by an *orbifold* we mean a smooth Deligne-Mumford stack with trivial stabilizers at the generic points.

2. THE PROOF OF MAIN RESULTS

We refer the reader to [4] for the construction and notation of toric Deligne-Mumford stacks. For the general theory of stacks, see [2].

Let $\Sigma := (N, \Sigma, \beta)$ be a stacky fan. From Proposition 2.2 in [4], we have the following exact sequences:

$$0 \longrightarrow DG(\beta)^* \longrightarrow \mathbb{Z}^n \xrightarrow{\beta} N \longrightarrow \text{Coker}(\beta) \longrightarrow 0,$$

$$0 \longrightarrow N^* \longrightarrow \mathbb{Z}^n \xrightarrow{\beta^\vee} DG(\beta) \longrightarrow \text{Coker}(\beta^\vee) \longrightarrow 0,$$

where β^\vee is the Gale dual of β . As a \mathbb{Z} -module, \mathbb{C}^\times is divisible, so it is an injective \mathbb{Z} -module and hence the functor $\text{Hom}_{\mathbb{Z}}(-, \mathbb{C}^\times)$ is exact. We get the exact sequence:

$$\begin{aligned} 1 \longrightarrow \text{Hom}_{\mathbb{Z}}(\text{Coker}(\beta^\vee), \mathbb{C}^\times) &\longrightarrow \text{Hom}_{\mathbb{Z}}(DG(\beta), \mathbb{C}^\times) \longrightarrow \text{Hom}_{\mathbb{Z}}(\mathbb{Z}^n, \mathbb{C}^\times) \\ &\longrightarrow \text{Hom}_{\mathbb{Z}}(N^*, \mathbb{C}^\times) \longrightarrow 1. \end{aligned}$$

Let $\mu := \text{Hom}_{\mathbb{Z}}(\text{Coker}(\beta^\vee), \mathbb{C}^\times)$, we have the exact sequence (1.1). Let $\Sigma(1) = n$ be the set of one dimensional cones in Σ and $V \subset \mathbb{C}^n$ the closed subvariety defined by the ideal generated by

$$J_\Sigma = \left\langle \prod_{\rho_i \not\subseteq \sigma} z_i : \sigma \in \Sigma \right\rangle.$$

Let $Z := \mathbb{C}^n \setminus V$. From [5], the complex codimension of V in \mathbb{C}^n is at least 2. The toric Deligne-Mumford stack $\mathcal{X}(\Sigma) = [Z/G]$ is the quotient stack where the action of G is through the map α in (1.1).

Lemma 2.1. *If $\text{Codim}_{\mathbb{C}}(V, \mathbb{C}^n) \geq 2$, then $H^1(Z, \nu) = H^2(Z, \nu) = 0$, where ν is a finite abelian group.*

Proof. Consider the following exact sequence:

$$\begin{aligned} 0 \longrightarrow H_V^0(\mathbb{C}^n, \nu) &\longrightarrow H^0(\mathbb{C}^n, \nu) \longrightarrow H^0(Z, \nu) \longrightarrow \\ &\longrightarrow H_V^1(\mathbb{C}^n, \nu) \longrightarrow H^1(\mathbb{C}^n, \nu) \longrightarrow H^1(Z, \nu) \longrightarrow \\ &\longrightarrow H_V^2(\mathbb{C}^n, \nu) \longrightarrow \dots \end{aligned}$$

Since $\text{Codim}_{\mathbb{C}}(V, \mathbb{C}^n) \geq 2$, so the real codimension is at least 4 and $H_V^i(\mathbb{C}^n, \nu) = 0$ for $i = 1, 2, 3$, so from the exact sequence and $H^i(\mathbb{C}^n, \nu) = 0$ for all $i > 0$ we prove the lemma. \square

2.1. The Proof of Theorem 1.1. Consider the following diagram

$$\begin{array}{ccc} Z & \longrightarrow & pt \\ \downarrow & & \downarrow \\ [Z/G] & \xrightarrow{\pi} & BG \end{array}$$

which is Cartesian. Consider the Leray spectral sequence for the fibration π :

$$H^p(BG, R^q\pi_*\nu) \Longrightarrow H^{p+q}([Z/G], \nu).$$

We compute

$$H^2([Z/G], \nu) = \bigoplus_{p+q=2} H^p(BG, R^q\pi_*\nu).$$

First we have that $R^q\pi_*\nu = [H^q(Z, \nu)/G]$. There are three cases.

(1) When $p = 2, q = 0$, $R^0\pi_*\nu = \nu$ because Z is connected, so

$$H^p(BG, R^q\pi_*\nu) = H^2(BG, \nu);$$

(2) When $p = 1, q = 1$, $R^1\pi_*\nu = [H^1(Z, \nu)/G]$, so

$$H^p(BG, R^q\pi_*\nu) = H^1(BG, H^1(Z, \nu)),$$

and by Lemma 2.1, $H^1(Z, \nu) = 0$, so we have $H^p(BG, R^q\pi_*\nu) = 0$;

(3) When $p = 0, q = 2$, $R^2\pi_*\nu = [H^2(Z, \nu)/G]$, so

$$H^p(BG, R^q\pi_*\nu) = H^0(BG, H^2(Z, \nu)),$$

also from Lemma 2.1, $H^2(Z, \nu) = 0$, we have $H^p(BG, R^q\pi_*\nu) = 0$.

So we get that

$$H^2([Z/G], \nu) \cong H^2(BG, \nu).$$

Since for the finite abelian group ν , the ν -gerbes are classified by the second cohomology group with coefficient in the group ν . Theorem 1.1 is proved. \square

2.2. The Proof of Corollary 1.2. Let $\mathcal{X}(\Sigma) = [Z/G]$. The ν -gerbe \mathcal{G} over $[Z/G]$ is induced from a ν -gerbe $\mathcal{B}\tilde{G}$ over BG in the following central extension

$$1 \longrightarrow \nu \longrightarrow \tilde{G} \xrightarrow{\varphi} G \longrightarrow 1,$$

where \tilde{G} is an abelian group. So the pullback gerbe over Z under the map $Z \longrightarrow [Z/G]$ is trivial. So we have

$$\mathcal{G} = \mathcal{B}\tilde{G} \times_{BG} [Z/G] = [Z/\tilde{G}].$$

The stack $[Z/\tilde{G}]$ is this ν -gerbe \mathcal{G} over $[Z/G]$. Consider the commutative diagram:

$$(2.1) \quad \begin{array}{ccc} \tilde{G} & \xrightarrow{\varphi} & G \\ \tilde{\alpha} \downarrow & & \downarrow \alpha \\ (\mathbb{C}^\times)^n & \xrightarrow{\cong} & (\mathbb{C}^\times)^n \end{array}$$

where α is the map in (1.1). So we have the following exact sequences:

$$1 \longrightarrow \nu \longrightarrow \ker(\tilde{\alpha}) \longrightarrow \mu \longrightarrow 1$$

and

$$1 \longrightarrow \ker(\tilde{\alpha}) \longrightarrow \tilde{G} \xrightarrow{\tilde{\alpha}} (\mathbb{C}^\times)^n \longrightarrow T \longrightarrow 1,$$

where T is the torus of the simplicial toric variety $X(\Sigma)$. Since the abelian groups \tilde{G} , G and $(\mathbb{C}^\times)^n$ are all locally compact topological groups, taking Pontryagin duality and Gale dual, we have the following diagrams:

$$\begin{array}{ccccccc}
 0 & \longrightarrow & N^* & \longrightarrow & \mathbb{Z}^n & \xrightarrow{\beta^\vee} & DG(\beta) \longrightarrow Coker(\beta^\vee) \longrightarrow 0 \\
 & & \downarrow & & \downarrow id & & \downarrow p_\varphi \\
 0 & \longrightarrow & \tilde{N}^* & \longrightarrow & \mathbb{Z}^n & \xrightarrow{(\tilde{\beta})^\vee} & DG(\tilde{\beta}) \longrightarrow Coker((\tilde{\beta})^\vee) \longrightarrow 0,
 \end{array}$$

$$\begin{array}{ccccccc}
 0 & \longrightarrow & DG(\tilde{\beta})^* & \longrightarrow & \mathbb{Z}^n & \xrightarrow{\tilde{\beta}} & \tilde{N} \longrightarrow Coker(\tilde{\beta}) \longrightarrow 0 \\
 & & \downarrow & & \downarrow id & & \downarrow \\
 0 & \longrightarrow & DG(\beta)^* & \longrightarrow & \mathbb{Z}^n & \xrightarrow{\beta} & N \longrightarrow Coker(\beta) \longrightarrow 0,
 \end{array}$$

where p_φ is induced by φ in (2.1) under the Pontryagin duality. Suppose $\tilde{\beta} : \mathbb{Z}^n \longrightarrow \tilde{N}$ is given by $\{\tilde{b}_1, \dots, \tilde{b}_n\}$, then $\tilde{\Sigma} := (\tilde{N}, \Sigma, \tilde{\beta})$ is a new stacky fan. The toric Deligne-Mumford stack $\mathcal{X}(\tilde{\Sigma}) = [Z/\tilde{G}]$ is the ν -gerbe \mathcal{G} over $\mathcal{X}(\Sigma)$. \square

Remark 2.2. From Proposition 4.6 in [3], any Deligne-Mumford stack is a ν -gerbe over an orbifold for a finite group ν . Our results are the toric case of that general result.

In particular, from a stacky fan $\Sigma = (N, \Sigma, \beta)$. Let $\Sigma_{\text{red}} = (\overline{N}, \Sigma, \overline{\beta})$ be the *reduced* stacky fan, where \overline{N} is the abelian group N modulo torsion, and $\overline{\beta} : \mathbb{Z}^n \longrightarrow \overline{N}$ is given by $\{\overline{b}_1, \dots, \overline{b}_n\}$ which are the images of $\{b_1, \dots, b_n\}$ under the natural projection $N \longrightarrow \overline{N}$. Then the toric orbifold $\mathcal{X}(\Sigma_{\text{red}}) = [Z/\overline{G}]$. From (1.1), let $\overline{G} = Im(\alpha)$, then we have the following exact sequences:

$$1 \longrightarrow \overline{G} \longrightarrow (\mathbb{C}^\times)^n \longrightarrow T \longrightarrow 1,$$

$$1 \longrightarrow \mu \longrightarrow G \longrightarrow \overline{G} \longrightarrow 1.$$

So G is an abelian central extension of \overline{G} by μ . $\mathcal{X}(\Sigma)$ is a μ -gerbe over the toric orbifold $\mathcal{X}(\Sigma_{\text{red}})$. Any μ -gerbe over the toric orbifold coming from an abelian central extension is a toric Deligne-Mumford stack. This is a special case of the main results and is the toric case of rigidification construction in [1].

Remark 2.3. From the proof of Corollary 1.2 we see that if a ν -gerbe over $\mathcal{X}(\Sigma)$ comes from a gerbe over BG and the central extension is abelian, then we can construct a new toric Deligne-Mumford stack.

3. AN EXAMPLE

Example 3.1. Let Σ be the complete fan of the projective line, $N = \mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, and $\beta : \mathbb{Z}^2 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ be given by the vectors $\{b_1 = (1, 0), b_2 = (-1, 1)\}$. Then $\Sigma = (N, \Sigma, \beta)$ is a stacky fan. We compute that $(\beta)^\vee : \mathbb{Z}^2 \longrightarrow DG(\beta) = \mathbb{Z}$ is given by the matrix [3,3]. So we get the following exact sequence:

$$(3.1) \quad 1 \longrightarrow \mu_3 \longrightarrow \mathbb{C}^\times \xrightarrow{[3,3]^t} (\mathbb{C}^\times)^2 \longrightarrow \mathbb{C}^\times \longrightarrow 1$$

The toric Deligne-Mumford stack $\mathcal{X}(\Sigma) = [\mathbb{C}^2 - \{0\}/\mathbb{C}^\times]$, where the action is given by $\lambda(x, y) = (\lambda^3 x, \lambda^3 y)$. So $\mathcal{X}(\Sigma)$ is the nontrivial μ_3 -gerbe over \mathbb{P}^1 coming from

the canonical line bundle over \mathbb{P}^1 . Let $\mathcal{G} \rightarrow \mathcal{X}(\Sigma)$ be a μ_2 -gerbe such that it comes from the μ_2 -gerbe over \mathcal{BC}^\times given by the central extension

$$(3.2) \quad 1 \longrightarrow \mu_2 \longrightarrow \mathbb{C}^\times \xrightarrow{(\cdot)^2} \mathbb{C}^\times \longrightarrow 1.$$

From the sequence (3.1) and (3.2), we have:

$$1 \longrightarrow \mu_3 \otimes \mu_2 \longrightarrow \mathbb{C}^\times \xrightarrow{[6,6]^t} (\mathbb{C}^\times)^2 \longrightarrow \mathbb{C}^\times \longrightarrow 1.$$

The Pontryagin dual of $\mathbb{C}^\times \xrightarrow{[6,6]^t} (\mathbb{C}^\times)^2$ is $(\tilde{\beta})^\vee : \mathbb{Z}^2 \rightarrow \mathbb{Z}$ which is given by the matrix [6, 6]. Taking Gale dual we have:

$$\tilde{\beta} : \mathbb{Z}^2 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}_6,$$

which is given by the vectors $\{\tilde{b}_1 = (1, 0), \tilde{b}_2 = (-1, 1)\}$. Let $\tilde{\Sigma} = (\tilde{N}, \Sigma, \tilde{\beta})$ be the new stacky fan, then we have the toric Deligne-Mumford stack $\mathcal{X}(\tilde{\Sigma}) = [\mathbb{C}^2 - \{0\}/\mathbb{C}^\times]$, where the action is given by $\lambda(x, y) = (\lambda^6 x, \lambda^6 y)$. So $\mathcal{X}(\tilde{\Sigma})$ is the canonical μ_6 -gerbe over \mathbb{P}^1 .

If the μ_2 -gerbe over \mathcal{BC}^\times is given by the central extension

$$(3.3) \quad 1 \longrightarrow \mu_2 \longrightarrow \mathbb{C}^\times \times \mu_2 \xrightarrow{\alpha} \mathbb{C}^\times \longrightarrow 1,$$

where α is given by the matrix [1, 0]. Then from (3.1) and (3.3), we have

$$1 \longrightarrow \mu_3 \otimes \mu_2 \longrightarrow \mathbb{C}^\times \times \mu_2 \xrightarrow{\varphi} (\mathbb{C}^\times)^2 \longrightarrow \mathbb{C}^\times \longrightarrow 1,$$

where φ is given by the matrix $\begin{bmatrix} 3 & 0 \\ 3 & 0 \end{bmatrix}$. The Pontryagin dual of φ is: $(\tilde{\beta}')^\vee : \mathbb{Z}^2 \rightarrow \mathbb{Z} \oplus \mathbb{Z}_2$ which is given by the transpose of the above matrix. Taking Gale dual we get

$$\tilde{\beta}' : \mathbb{Z}^2 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2,$$

which is given by the vectors $\{\tilde{b}_1 = (1, 0, 0), \tilde{b}_2 = (-1, 1, 0)\}$. So $\tilde{\Sigma}' = (\tilde{N}', \Sigma, \tilde{\beta}')$ is a stacky fan. The toric Deligne-Mumford stack $\mathcal{X}(\tilde{\Sigma}') = [\mathbb{C}^2 - \{0\}/\mathbb{C}^\times \times \mu_2]$, where the action is $(\lambda_1, \lambda_2) \cdot (x, y) = (\lambda_1^3 x, \lambda_1^3 y)$. So $\mathcal{G}' = \mathcal{X}(\tilde{\Sigma}')$ is the trivial μ_2 -gerbe over $\mathcal{X}(\Sigma)$ and $\mathcal{X}(\tilde{\Sigma}) \not\cong \mathcal{X}(\tilde{\Sigma}')$.

ACKNOWLEDGMENTS

I would like to thank the referee for nice comments about the proof of main results. I thank my advisor Kai Behrend for encouragements and Hsian-Hua Tseng for valuable discussions.

REFERENCES

1. D. Abramovich, A. Corti and A. Vistoli, Twisted bundles and admissible covers, *Commun. Algebra* 31 (2003), no. 8, 3547–3618.
2. K. Behrend, D. Edidin, B. Fantechi, W. Fulton, L. Gottsche, and A. Kresch, *Introduction to stacks*, in preparation.
3. K. Behrend and B. Noohi, Uniformization of Deligne-Mumford curves, *J. Reine Angew. Math.* 599 (2006), 111–153, math.AG/0504309.
4. L. Borisov, L. Chen and G. Smith, The orbifold Chow ring of toric Deligne-Mumford stacks, *J. Amer. Math. Soc.* 18 (2005), no. 1, 193–215, math.AG/0309229.
5. D. Cox, The homogeneous coordinate ring of a toric variety, *J. of Algebraic Geometry*, 4 (1995), 17–50.

6. W. Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies 131, Princeton University Press, Princeton, NJ, 1993.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155S 1400E JWB233, UT 84112
E-mail address: jiangyf@math.utah.edu