Дисциплина Дифференциальные уравнения

Фамилия студента	№ группы
Сумма баллов Фамилия проверяющего	Оценка Фамилия экзаменатора
1(3). Найти все действительные решения	уравнения $y'' + 4y = 16x \cos 2x$.
$2(3)$. Найти все решения уравнения x^2y'' -	$-x(2x-1)y' + x(x-1)y = e^x, x > 0.$
3(4). Найти экстремали функционала и ис $\int_{0}^{\frac{\pi}{2}} (y^{2} \cos 2x + yy' \sin 2x + y'^{2} + y \cos x - y') dx$	сследовать его на экстремум, определив знак приращения $y'\sin x dx$, $y(0) = 0$.
4(4). Найти положения равновесия сист траектории линеаризованных сист равновесия $\begin{cases} \dot{x} = 2(x-y), \\ \dot{y} = x(1-y). \end{cases}$	гемы, определить их характер и нарисовать фазовые гем на плоскости (x,y) в окрестности положений
5 (4). Найти все решения уравнения $y = $ интегральные кривые.	$xy' + \frac{1}{4}y'^2$, исследовать особые решения и нарисовать
6 (5).В области $x > 0, y > 0$ найти все реш Коши $u = x$ при $x = y^2$.	ения уравнения $2xy\frac{\partial u}{\partial x} + (x+y^2)\frac{\partial u}{\partial y} = 0$ и решить задачу
7 a) (3). Найти все решения системы уравн б) (3). Для матрицы из пункта а) найти е	нений $\dot{\vec{x}} = A\vec{x}$ для $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$.
8 (7). Решить задачу Коши $x^2y'' + 3xy' + y =$	$=2x^2y^3, \ y(1)=1, \ y'(1)=0.$
9 (6). Доказать, что любое решение уравне	ния $y'' + e^x y = 0$ ограничено на $[0; +\infty)$.

Дисциплина Дифференциальные уравнения

Фамилия студента		№ группы
Сумма баллов	Оценка	
Фамилия проверяющего	Фамилия экзаменатор	oa -
1(3). Найти все действительные рег	шения уравнения $y'' + 9y = 36x$	$\cos 3x$.
2(3). Найти все решения уравнения	$xy'' - (2x+1)y' + (x+1)y = 2xe^{x}$	$x^{r}, x > 0.$
3(4). Найти экстремали функциона. $\int_{0}^{\frac{\pi}{4}} (y^2 \sin 2x - yy' \cos 2x - y'^2 - y)^2 dx$	ла и исследовать его на экстрем $y \sin x + y' \cos x dx$, $y(0) = 0$.	лум, определив знак приращения
4(4). Найти положения равновеси траектории линеаризованных равновесия $\begin{cases} \dot{x} = x^2 - 4y^2, \\ \dot{y} = y - 1. \end{cases}$	я системы, определить их х к систем на плоскости (<i>x</i> , <i>y</i>	арактер и нарисовать фазовые) в окрестности положений
5 (4). Найти все решения уравнения интегральные кривые.	$x = \frac{y}{y'} - \frac{1}{{y'}^2}, \text{ исследовать особ}$	ые решения и нарисовать
6 (5). В области $x > 0$, $y > 0$ найти во Коши $u = y$ при $y = x^2$.	се решения уравнения $(x^2 + y)^2$	$\frac{\partial u}{\partial x} + 2xy \frac{\partial u}{\partial y} = 0$ и решить задачу
7 a) (3). Найти все решения системы б) (3). Для матрицы из пункта а) н		
3 (7). Решить задачу Коши $4x^2y'' + 8$.	$xy' + y = 24\sqrt{x}y^2, \ y(1) = 1, \ y'(1) = 1$	$=\frac{3}{2}$.
9 (6). Доказать, что любое решение у	уравнения $y'' + xy = 0$ ограниче	но на [0;+∞).

Дисциплина Дифференциальные уравнения

Фамилия студента	№ группы
Сумма баллов Фамилия проверяющего	Оценка Фамилия экзаменатора
1(3). Найти все действительные решения	и уравнения $y'' + 4y = 16x \sin 2x$.
$2(3)$. Найти все решения уравнения $x^2y'' +$	$x(2x+1)y' + x(x+1)y = e^{-x}, x > 0.$
3(4). Найти экстремали функционала и исс $\int_{0}^{\frac{\pi}{2}} (y^{2} \cos 2x + yy' \sin 2x + 2y'^{2} + 3y \cos x)$	следовать его на экстремум, определив знак приращения $x + 3y' \sin x dx$, $y(0) = 0$.
4(4). Найти положения равновесия системи траектории линеаризованных систем $\begin{cases} \dot{x} = 2(2-x-y), \\ \dot{y} = xy. \end{cases}$	ы, определить их характер и нарисовать фазовые на плоскости (x,y) в окрестности положений равновесия
5 (4). Найти все решения уравнения $y = xy'$ интегральные кривые.	$+2y'^{2}$, исследовать особые решения и нарисовать
6 (5). В области $x > 0$, $y > 0$ найти все решен Коши $u = x^2$ при $x = 2y^2$.	ния уравнения $4xy\frac{\partial u}{\partial x} + (x+2y^2)\frac{\partial u}{\partial y} = 0$ и решить задачу
7 а) (3). Найти все решения системы уравне б) (3). Для матрицы из пункта а) найти e^{tA}	ений $\dot{\vec{x}} = A\vec{x}$ для $A = \begin{pmatrix} -3 & -2 \\ 2 & 1 \end{pmatrix}$. В зависимости от действительного параметра t .
8 (7). Решить задачу Коши $x^2y'' + 3xy' + y =$	$=6xy^2, y(1)=1, y'(1)=1.$
9 (6). Доказать, что любое решение уравне	ения $y'' + e^{2x}y = 0$ ограничено на $[0; +\infty)$.

Дисциплина Дифференциальные уравнения

Фамилия студента	№ группы
Сумма баллов Фамилия проверяющего	Оценка Фамилия экзаменатора
1(3). Найти все действительные реш	ления уравнения $y'' + 9y = 36x \sin 3x$.
2(3). Найти все решения уравнения	$xy'' + (2x-1)y' + (x-1)y = 2xe^{-x}, x > 0.$
3(4). Найти экстремали функционали $\int_{0}^{\frac{\pi}{4}} (y^2 \sin 2x - yy' \cos 2x - 2y'^2 - 3)$	на и исследовать его на экстремум, определив знак приращения $3y\sin x + 3y'\cos x dx$, $y(0) = 0$.
	я системы, определить их характер и нарисовать фазовые систем на плоскости (x,y) в окрестности положений равновесия
5 (4). Найти все решения уравнения интегральные кривые.	$x = \frac{y}{y'} - \frac{1}{2y'^2}$, исследовать особые решения и нарисовать
6 (5). В области $x > 0$, $y > 0$ найти все Коши $u = y^2$ при $y = 2x^2$.	е решения уравнения $(2x^2 + y)\frac{\partial u}{\partial x} + 4xy\frac{\partial u}{\partial y} = 0$ и решить задачу
	и уравнений $\dot{\vec{x}} = A\vec{x}$ для $A = \begin{pmatrix} -1 & 2 \\ -2 & -5 \end{pmatrix}$. айти e'^A в зависимости от действительного параметра t .
8 (7). Решить задачу Коши $4x^2y'' + 8x^2y'' + 8x^2y''$	$xy' + y = 2xy^3$, $y(1) = 1$, $y'(1) = \frac{1}{2}$.
9 (6). Доказать, что любое решение у	уравнения $y'' + x^2y = 0$ ограничено на $[0; +\infty)$.