Written Exercises, Pages 412-413

1. The locus is the $2 \parallel \text{lines.}$ is $\parallel \text{to } YZ$ and a units from YZ.

3. The \bigcirc , of radius a, has ctr. at the int. pt. of the bis. of $\angle XYZ$ and a line that is $\parallel \text{to } YZ$ and a units from YZ.

5. The locus is a pair of lines, both $\parallel \text{to } \overline{AB}$ and r units from \overline{AB} .

7. Const. $j \perp k$ at M. Const. \overline{MA} on j so that MA = s and then $\cong \text{segs. } \overline{AB}$ and \overline{AC} , B and B on B. Draw an arc with ctr. B and B and

Ex. 7

Ex. 9

11. Const. $\angle A$ with meas. n. Const. a line \parallel to and s units from \overrightarrow{AX} in order to locate point C. Const. $\overline{BC} \perp \overline{AC}$.

13. Const. \overline{AB} such that AB = t. Const. the \perp bis. of \overline{AB} to locate midpt. M of \overline{AB} . Const. line k, \parallel to and r units from, \overline{AB} . With ctr. M and radius s, draw an arc int. k at pt. C. Draw \overline{AC} and \overline{BC} .

Ex. 11

Ex. 13

Self-Test 3, Page 414

1. the bis. of the vert. \triangle formed by j and k (2 lines)
2. the sphere with ctr. P and radius t3. the \bot bis. plane of \overline{WX} 4. the int. of the bis. of $\angle DEF$ and a pair of rays \parallel to \overline{EF} and each 4 cm from \overline{EF} (1 pt.)
5. the int. of $\bigcirc A$ with radius 4 cm and a line \parallel to s and t halfway between them. (0, 1, or 2 pts.)
6. Use Const. 4 to const. the \bot bis. of 2 sides of $\triangle RST$. The locus is the pt. of int. of the \bot bis.
7. Const. may vary; for example, const. $\angle X \cong \angle 1$. Const. $\overline{XY} \cong \overline{BC}$ on one side of $\angle X$. Const. a line from $Y \bot$ to the other side of $\angle X$.

Extra, Pages 414-415

3. Some of the pts. are the same: L and R, M and S, N and T. The \odot has ctr. H.

5. Key steps of proof: $\overline{NM} \parallel \overline{AB}$; $\overline{XY} \parallel \overline{AB}$; $NM = \frac{1}{2}AB$; $XY = \frac{1}{2}AB$ (Thm. 5-11) 2. XYMN is a \square . (Thm. 5-5) 3. $\overline{NX} \parallel \overline{CH}$ (Thm. 5-11) 4. $\overline{NM} \perp \overline{NX}$ (Thm. 3-4) 5. XYMN is a rect. (Thm. 5-16)

Chapter Review, Pages 416-417

1. Const. 1 3. Const. 3 5. Const. 5 7. Const. 7 9. \angle bis. 11. 1:2 13. Const. 9 15. Const. 10 17. Const. 13 19. a line \parallel to l and m and halfway between them planes and halfway between them 23. the int. of the \perp bis. of \overline{PQ} and $\bigcirc P$ with radius 8 cm (2 pts.) 25. 0 pts., 1 pt., a \bigcirc , a \bigcirc and a pt., or 2 \bigcirc s, dep. on the int. of 2 planes \parallel to Q and 1 m from Q and a sphere with ctr. Z and radius 2 m.