Xử lý tín hiệu số

Chương 2. Tín hiệu và hệ thống rời rạc 2.2. Hệ thống rời rạc

Nguyễn Hồng Quang

Bộ môn Kỹ thuật máy tính Viện Công nghệ thông tin và truyền thông Trường Đại học Bách Khoa Hà Nội

Chương 2. Tín hiệu và hệ thống rời rạc

- 2.2. Hệ thống rời rạc
 - 2.2.1. Giới thiệu
 - 2.2.2. Khởi tạo relax
- 2.3. Phân tích hệ LTI
 - 2.3.1. Hệ thống tuyến tính
 - 2.3.2. Hệ tuyến tính bất biến
 - 2.3.3. Một số định nghĩa khác
 - 2.3.4. Hệ LTI nhân quả
 - 2.3.5. Hệ LTI ổn định

2.2. Hệ thống rời rạc

$$x(n)$$
Input signal or excitation

Discrete-time System

Output signal or response

$$x(n) = \begin{cases} |n|, & -3 \le n \le 3 \\ 0, & \text{otherwise} \end{cases}$$

(a)
$$y(n) = x(n)$$

(b)
$$y(n) = x(n-1)$$

(c)
$$y(n) = x(n+1)$$

$$y(n) \equiv \mathcal{T}[x(n)]$$

$$x(n) \xrightarrow{\mathcal{T}} y(n)$$

- y(n) = y(n-1) + x(n)
- Bài toán:
 - Biết x(n), $\forall n \ge n_0$
 - Xác định y(n), \forall n ≥ n_0

Khởi tạo relax (Initially relaxed)

(d)
$$y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$$

$$y(n_0-1) = 0$$

(e)
$$y(n) = max\{x(n+1), x(n), x(n-1)\}$$

(f)
$$y(n) = \sum_{k=-\infty}^{n} x(k) = x(n) + x(n-1) + x(n-2) + \cdots$$

2.2. Hệ thống tuyến tính – Định nghĩa

$$T[a_1x_1(n) + a_2x_2(n)] = a_1T[x_1(n)] + a_2T[x_2(n)]$$

Ưu điểm của hê tuyến tính?

Tính tỷ lệ, tính tổ hợp

(a)
$$y(n) = nx(n)$$
 (b) $y(n) = x(n^2)$ (c) $y(n) = x^2(n)$

(b)
$$y(n) = x(n^2)$$

(c)
$$y(n) = x^2(n)$$

(d)
$$y(n) = Ax(n) + B$$
 (e) $y(n) = e^{x(n)}$

(e)
$$y(n) = e^{x(n)}$$

Phân tích hệ tuyến tính

$$x(n) = \sum_{k=1}^{M-1} a_k x_k(n) \xrightarrow{\mathcal{T}} y(n) = \sum_{k=1}^{M-1} a_k y_k(n) \quad x(n) = \sum_{k=-\infty}^{\infty} x(k) \delta(n-k)$$

$$y(n, k) \equiv h(n, k) = \mathcal{T}[\delta(n - k)]$$

$$y(n) = \mathcal{T}[x(n)] = \mathcal{T}\left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right] = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

$$y(n) = 2.x(n) + 3.x(n-1)$$

 $y(n) - a.y(n-1) = x(n)$

$$x(n) \xrightarrow{\mathcal{T}} y(n) \longrightarrow x(n-k) \xrightarrow{\mathcal{T}} y(n-k) \quad \forall x(n) \ \forall k$$

$$\begin{array}{c|c} x(n) & y(n) = nx(n) \\ \hline & \end{array} \begin{array}{c} h(n) \equiv T[\delta(n)] & y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) \\ \hline & \text{Convolution sum} \end{array}$$

- Giải thuật :
 - 1. Folding: h(k) → h(-k).
 - 2. Shifting: dịch h(-k) n₀ mẫu sang phải (trái) nếu n₀ dương (âm) → h(n₀ k).
 - 3. Multiplication: $v_{n0}(k) = x(k).h(n0 k)$.
 - 4. Summation: Tính tổng v_{n0}(k)
 → y(n₀)

5

$$x(n) = x(n) \cos \omega_0 n$$

$$h(n) = \{1, 2, 1, -1\}$$

$$x(n) = x(n) - x(n) - x(n) - x(n)$$

$$x(n) = x(n) + x(n) - x(n)$$

 $x(n) = u(n) | h(n) = a^n u(n), |a| < 1$

Tính chất của tổng chập

$$y(n) = x(n) * h(n) \equiv \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

x(n) * h(n) = h(n) * x(n)a. Giao hoán (Commutative law):

b. Kết hợp
$$[x(n) * h_1(n)] * h_2(n) = x(n) * [h_1(n) * h_2(n)]$$

Bài tập

- **2.16** (a) If y(n) = x(n) * h(n), show that $\sum_{y} = \sum_{x} \sum_{h}$, where $\sum_{x} = \sum_{n=-\infty}^{\infty} x(n)$.
 - **(b)** Compute the convolution y(n) = x(n) * h(n) of the following signals and check the correctness of the results by using the test in (a).
 - (1) $x(n) = \{1, 2, 4\}, h(n) = \{1, 1, 1, 1, 1\}$
 - (2) $x(n) = \{1, 2, -1\}, h(n) = x(n)$
 - (3) $x(n) = \{0, 1, -2, 3, -4\}, h(n) = \{\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}\}$
 - (4) $x(n) = \{1, 2, 3, 4, 5\}, h(n) = \{1\}$
 - (5) $x(n) = \{1, -2, 3\}, h(n) = \{0, 0, 1, 1, 1, 1\}$
 - (6) $x(n) = \{0, 0, 1, 1, 1, 1\}, h(n) = \{1, -2, 3\}$
 - (7) $x(n) = \{0, 1, 4, -3\}, h(n) = \{1, 0, -1, -1\}$
 - (8) $x(n) = \{1, 1, 2\}, h(n) = u(n)$
 - (9) $x(n) = \{1, 1, 0, 1, 1\}, h(n) = \{1, -2, -3, 4\}$
 - (10) $x(n) = \{1, 2, 0, 2, 1\}h(n) = x(n)$
 - (11) $x(n) = (\frac{1}{2})^n u(n), h(n) = (\frac{1}{4})^n u(n)$

Bài tập

Bài tập 1 - 27

Hãy tìm đáp ứng xung h(n) của hệ thống tuyến tính bất biến có sơ đồ trên hình BT 1 - 27 dưới đây

Hình BT 1 - 27.

$$h_1(n) = \delta(n-4)$$

 $h_2(n) = rect_4(n+4)$
 $h_3(n) = \delta(n+2)$
 $h_4(n) = \frac{1}{2}rect_3(n-3)$
 $h_5(n) = \frac{1}{2}rect_3(n-1)$

y(n) = ax(n)

Các tính chất khác $y(n) = nx(n) + bx^3(n)$

Hệ thống tĩnh, không nhớ $y(n) = \mathcal{T}[x(n), n]$

Hệ thống động, có nhớ (Dynamic systems)

Hệ nhân quả
$$y(n) = F[x(n), x(n-1), x(n-2),...]$$

(a)
$$y(n) = x(n) - x(n-1)$$
 (b) $y(n) = \sum_{k=-\infty}^{n} x(k)$ (c) $y(n) = ax(n)$

(d)
$$y(n) = x(n) + 3x(n+4)$$
 (e) $y(n) = x(n^2)$ (f) $y(n) = x(2n)$

(g)
$$y(n) = x(-n)$$

Đáp ứng xung của hệ LTI nhân quả

Tín hiệu nhân quả : y(n) = ???

$$h(n) = a^n u(n) \qquad |a| < 1$$

$$x(n) = u(n)$$

$$y(n) + a_1.y(n-1) + a_2.y(n-2) = x(n)$$

$$y(n) = x(n) + 3x(n-1)$$

$$y(n) = \sum_{k=0}^{n} x(n-k)$$

$$y(n) = \sum_{k=0}^{\infty} x(n-k)$$

Hệ thống ổn định

$$|x(n)| \le M_x < \infty$$

$$|y(n)| < M_v < \infty$$

Hệ ổn định: h(n)???

$$y(n) - a. y(n-1) = x(n)$$

$$h(n) = \begin{cases} a^n, & n \ge 0 \\ b^n, & n < 0 \end{cases}$$

Exercises

Problems 2.6 → 2.24

2.7 A discrete-time system can be

- (1) Static or dynamic
- (2) Linear or nonlinear
- (3) Time invariant or time varying
- (4) Causal or noncausal
- (5) Stable or unstable

Examine the following systems with respect to the properties above.

- (a) $y(n) = \cos[x(n)]$
- **(b)** $y(n) = \sum_{k=-\infty}^{n+1} x(k)$
- (c) $y(n) = x(n) \cos(\omega_0 n)$
- **(d)** y(n) = x(-n+2)
- (e) y(n) = Trun[x(n)], where Trun[x(n)] denotes the integer part of x(n), obtained by truncation
- (f) y(n) = Round[x(n)], where Round[x(n)] denotes the integer part of x(n) obtained by rounding

Remark: The systems in parts (e) and (f) are quantizers that perform truncation and rounding, respectively.

- (g) y(n) = |x(n)|
- **(h)** y(n) = x(n)u(n)
- (i) y(n) = x(n) + nx(n+1)
- (i) y(n) = x(2n)
- (k) $y(n) = \begin{cases} x(n), & \text{if } x(n) \ge 0 \\ 0, & \text{if } x(n) < 0 \end{cases}$
- (1) y(n) = x(-n)
- (m) y(n) = sign[x(n)]
- (n) The ideal sampling system with input $x_a(t)$ and output $x(n) = x_a(nT)$, $-\infty < n < \infty$