Agenda: 11/3/15

Calc AB

L850m 63

Critical Number Theorem

Extreme Value Theorem (Max-Min Value Theorem)

. If f is continuous on the closed interval I = [a, b], then f attains a Maximum value M and a minimum value on I.

quite involved and beyond this class. A Obvious Statement but the proof is

* Existence Theorem but doesn't say how to find Hem.

Critical Number Theorem (Closed Interval Theorem)

- . If f is a continuous function on a closed interval I and if f attains a Max or min at x=c where CEI, then either
 - Cis an endpoint of I
- f'co does not exist
 - f'(c) = 0

-2x +3x+12x-1 EX. Find the maximum and minimum values of for)= on the interval [-<1,3]

$$\frac{F(-4)^{2}}{5(-1)^{2}} = -8$$

$$\frac{F(-1)^{2}}{5(-1)^{2}} = -8$$

$$\frac{F(2)^{2}}{5(3)^{2}} = 8$$

of attins a max value of 127 at X=-4 at 1=-1 7 and a min value of

Ex 63,4 Fis continuous on [-2,4]. Also {(-2)=2, {(-1)=-1} and {(4)=5. Eight the values of x wilvere. Fatherns absolute max/min.

47×77	E	£
X=X	0	D
-14×12	(+)	1
ノーンメ	Modefined	undefack
1-7X77-	T	I
×	(X),J	5.1.(X)

Absolute max at Absolute min at X= A