Modelagem de Decisões no Jiu-Jitsu Competitivo usando MDP

Objetivo: Criar estratégias ótimas para atletas de Jiu-Jitsu utilizando um modelo matemático.

Método: Processos de Decisão Markovianos (MDP).

Motivação: Combinar regras da IBJJF, hierarquia posicional e probabilidades para melhorar tomadas de decisão.

O que é um Processo de Decisão Markoviano?

- 1 Estados (S)
 - Situações no combate. Exemplos: guarda fechada, montada ou controle de costas.
- 3 Transições (P)

Probabilidade de mudar entre estados após uma ação.

2 Ações (A)

Movimentos que o atleta pode fazer. Ataques, defesas e transições.

4 Recompensas (R)

Pontos e melhoria da posição durante as transições.

Estados e Hierarquia Posicional no Modelo

Estados (Posições)

O modelo considera diferentes posições como estados. Cada estado tem um valor estratégico.

- Controle de Costas
- Montada
- Guarda Aberta
- Meia Guarda
- Guarda Fechada
- Embaixo (Desfavorável)

Hierarquia Posicional

Cada posição possui um valor numérico. Este valor reflete a vantagem estratégica da posição.

Posição	Valor
Controle de Costas	1.5
Montada	1.3
Guarda Aberta	1.0
Meia Guarda	0.7
Guarda Fechada	0.3
Embaixo	-0.5

Ações no Jiu-Jitsu Competitivo

1 Posições Superiores

Atletas buscam passar a guarda. Também manter o controle e finalizar.

3 Exemplo: Meia Guarda

Na meia guarda, pode-se passar ou finalizar. Estratégia crucial. Posições Inferiores

O objetivo é raspar ou defender. Finalizar também é uma opção.

4 Posição "Embaixo"

Pode-se tentar raspar ou defender. A finalização também é possível.

Probabilidades e Transição: Guarda Aberta para Montada

A recompensa total reflete o valor da transição. Inclui pontos IBJJF e ganho posicional.

llustramos o cálculo da recompensa ao passar da Guarda Aberta para a Montada.

Componente	Detalhes	Valor
Pontos IBJJF	2 pontos IBJJF (presumido) * 8	16
ΔPosição	2.5 (Montada) – 2.0 (Guarda Aberta) * 20	10
Recompensa Total Estimada	Soma dos componentes	≈ 26

Cálculo da Recompensa no Modelo

A recompensa total reflete o valor da transição. Ela combina pontos IBJJF e ganho posicional.

O objetivo é maximizar a recompensa total. Isso influencia as decisões do atleta.

Pontos IBJJF

Baseados nas regras oficiais da IBJJF. Multiplicados por um fator de escala.

Δ Posição

Diferença no valor posicional antes e depois da transição. Amplificada para refletir o impacto tático.

Dinâmica Competitiva Simétrica do Modelo

O modelo mantém o equilíbrio com estados simétricos para cada atleta. Cada posição dominante tem um estado inferior correspondente.

Estado Atleta 1 (Dominante)	Estado Atleta 2 (Inferior)
Montada	Embaixo
Guarda Aberta	Embaixo
Meia Guarda	Embaixo (Meia Guarda)

Hierarquia de Posições de Domínio no Jiu-Jitsu

A hierarquia de posições guia as decisões estratégicas. O modelo sugere ações ótimas baseadas nessa hierarquia. O controle de costas é o mais dominante. A guarda fechada é a menos dominante.

Algoritmos de Solução do MDP

Value Iteration

Calcula valores ideais iterativamente. Garante convergência para a solução ótima.

- Atualiza a função valor.
- Baseado em Bellman.
- Menos custo computacional por iteração.

Policy Iteration

Alterna entre avaliação e melhoria da política. Consegue a estratégia ideal em menos iterações.

- Avalia a política atual.
- Melhora a política com base na avaliação.
- Pode ser mais intensivo computacionalmente.

Comparação de Performance dos Algoritmos

Análise da performance dos algoritmos Value Iteration e Policy Iteration. Avaliamos iterações e tempo para encontrar a solução ideal no Jiu-Jitsu.

Método	Iterações	Tempo Total	Tempo por Iteração
Value Iteration	47	3.3 ms	0.07 ms/iter
Policy Iteration	3	1.6 ms	0.53 ms/iter

Value Iteration realiza mais iterações de forma rápida. Policy Iteration chega à solução em menos iterações.

Estratégias Ótimas Encontradas

1 Posições Dominantes

Finalizar o oponente é a ação mais recompensadora. Maximiza os ganhos no modelo MDP. Posições Inferiores

Raspar para inverter a posição é crucial. Recuperar a dominância é o objetivo.

3 Defesa

Priorizar a fuga de finalizações é vital. Evitar a derrota imediata é fundamental.

O Que os Resultados Significam na Prática?

1 Priorizar Domínio

Buscar posições dominantes aumenta as chances de finalização. Reverter Desvantagens

Estratégias para inverter posições são cruciais.

3 Decisões Embasadas

O modelo auxilia na tomada de decisões estratégicas.

Próximas Etapas do Modelo

Validação Empírica: Comparar as estratégias do modelo com as de atletas profissionais.

Melhoria Contínua: Refinar parâmetros com dados reais de lutas.

Expansão do Modelo: Adicionar novas posições, como "joelho na barriga".

Conclusões e Aplicações

Estratégias Concretas

O modelo MDP oferece estratégias quantificáveis para combates competitivos.

Impacto Positivo

Há potencial significativo para impactar treinos e decisões táticas.

Eficiência Analítica

A utilização analítica traz clareza e eficiência ao esporte.