Math 202	Name (Print):
Sparing 2019	
Midterm	
04/12/2019	
Time Limit: 50 Minutes	
This exam contains 8 pages (including this are missing.	s cover page) and 5 problems. Check to see if any page
Statement of Ethics	
I agree to complete this exam without unaut	thorized assistance from any person, materials, or device
Signature	Date
1 Lin T 1:30-2:20 Shriver 104	
2 Lin T 3:00-3:50 Hodson 301	
3 Sherwood Th 4:30-5:20 Gilman 119	
4 Sherwood Th 3:00-3:50 Maryland 309	
5 Koh T 4:30-5:20 Gilman 119	
6 Stubis Th 1:30-2:20 Hodson 313	
7 Stubis Th 3:00-3:50 Hodson 301	
8 VanBlargan T 3:00-3:50 Gilman 119	
Your section number:	

You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this.

Points	Score
20	
20	
20	
20	
20	
100	
	20 20 20 20 20 20

Do not write in the table to the right.

1. (a) (5 points) Compute the arc length of $c(t) = (x(t), y(t)) = (t, t^2), 0 \le t \le 1$. A $\frac{\sqrt{5}}{2} - \frac{\ln(-2+\sqrt{5})}{4}$.

(b) (5 points) Let $\mathbf{F}(x,y,z)=(zy,xz,xy)$. Find a function $f:\mathbb{R}^3\to\mathbb{R}$ such that $\mathbf{F}=\triangledown f$. A: xyz.

(c) (5 points) Compute the curl of $V(x,y,z)=xy{\pmb i}-x{\pmb j}+0{\pmb k}.$ A: $-(x+1){\pmb k}.$

(d) (5 points) Let ${\pmb F}=(x+y,z,x),$ compute $\nabla\cdot(\nabla\times{\pmb F}).$ A: 0.

2. (20 points) Find the volume of the region bounded by z=0, x=1, x=2, y=1, y=2 and the paraboloid $z=9-x^2-y^2$.

A: The region is $\{(x,y,z)|1\leq x\leq 2, 1\leq y\leq 2, 0\leq z\leq 9-x^2-y^2\}$. The volume is

$$\int_{1}^{2} \int_{1}^{2} \int_{0}^{9-x^{2}-y^{2}} dz dy dx = \frac{13}{3}.$$

3. (20 points) Let $D_a = \{(x,y)|x^2 + y^2 \le a^2\}$, compute

$$\iint_{D_a} dx dy.$$

A: $a^2\pi$.

4. (20 points) Calculate

$$\int_0^1 \int_{\sqrt{x}}^1 x e^{y^5} dy dx.$$

A:
$$\int_0^1 \int_{\sqrt{x}}^1 x e^{y^5} dy dx = \int_0^1 \int_0^{y^2} x e^{y^5} dx dy = \int_0^1 \frac{1}{2} y^4 e^{y^5} dy = \frac{1}{10} e^{y^5} \Big|_0^1 = \frac{1}{10} (e - 1).$$

5. (20 points) Evaluate $\iint_D (x+y) dx dy$ where T is the triangle in the xy plane bounded by the lines y=x, x+y=2, y=0 using the linear change of variables u=x+y, v=x-y.

A: The line y=x maps to v=0, the line x+y=2 maps to u=2 and the line y=0 maps to v=u hence $\iint_T (x+y) dA == \int_0^2 \int_0^u \frac{1}{2} u dv du = \frac{1}{2} \int_0^2 u^2 du = \frac{4}{3}$

Please estimate your score.