Лабораторная работа №3

Вариационный ряд

Цель работы: вычислить математические характеристики вариационного ряда

Оборудование: ПК, табличный процессор Excel

Задание 1

Постановка задачи:

В качестве изучаемого признака рассматривается число продаж каждого из 26 случайно выбранных продавцов универмага:

16, 12, 15, 15, 23, 9, 15, 13, 14, 14, 21, 15, 14, 17, 27, 15, 16, 12, 16, 19, 14, 16, 17, 13, 14, 14.

Необходимо сделать следующее:

- 1) Построит вариационный ряд;
- 2) Провести анализ построенного вариационного ряда:

Решение:

Для удобства был построен интервальный ряд

1. Определили минимальный, максимальный элементы, нашли кол-во интервалов по формуле Стеджерса и длину каждого интервала:

min	9
max	27
k	6
Δ	3

$$k = 1 + 1, 4 * ln(n) \approx 6$$

 $\Delta = \frac{max - min}{k} = 3$

2. Строим таблицу интервалов и указываем для каждого частоту:

Интервалы		mi
9	12	1
12	15	10
15	18	11

18	21	1
21	24	2
24	27	0
27	inf	1

3. Строим таблицу с накопленными частотами:

a_i	W _{ai}	p_{i}
9	0	0,006410256
12	0,038461538	0,064102564
15	0,423076923	0,070512821
18	0,846153846	0,006410256
21	0,884615385	0,012820513
24	0,961538462	0
27	0,961538462	0,006410256
30	1	

4. По полученным данным строим графики:

5. Для нахождения математических характеристик строим отдельно таблицы:

гнИ	сервалы	X _i	m_{i}
9	12	10,5	1
12	15	13,5	10
15	18	16,5	11
18	21	19,5	1

21	24	22,5	2
24	27	25,5	1

W _i	X _i *W _i
0,038461538	0,403846154
0,384615385	5,192307692
0,423076923	6,980769231
0,038461538	0,75
0,076923077	1,730769231
0,038461538	0,980769231

(X _i - X ⁻) ² * W _i	$(x_i - x^-)^3 * W_i$	$(X_i - X^-)^4 * W_i$
1,179790624	-6,534224992	36,1895538
2,478379609	-6,291271314	15,97015026
0,090122895	0,041595182	0,019197776
0,460855712	1,595269773	5,522087677
3,211652253	20,75221456	134,0912325
3,443104233	32,57706313	308,2291357

$$x^{-} = \sum x_i * w_i = 16,03846154$$

$$D = \sum (x_i - x^-)^2 * w_i = 10,86390533$$

$$S = \sqrt{D} = 3,29604389$$

$$v = \frac{S * 100\%}{x^{-}} = 20,55087318$$

$$A = \sum (x_i - x^-)^3 * w_i = 1,176853041$$

$$E = \sum (x_i - x^-)^4 * w_i = 1,236591696$$

6. Анализ:

A>0 и |A|>0.5 => выборка значительно ассиметричная Так как E>0 распределение островершинное и скачок считается значительным

Задание 2

Постановка задачи:

- 1. Вопрос: Какова нижняя и верхняя границы интервалов по таблице 1? Ответ: Нижняя - 100, верхняя - 1300
- 2. Изучите распределение, представленное в таблице 2

	Таблица 2
Интервалы	Число регионов
До 60	10
60-70	29
70-80	2
80-90	13
90-100	
Свыше 100	6

1) Длина интервала
$$\Delta = 70$$
 - $60 = 10$

Находим n:
$$n = 10 + 29 + 2 + 13 + 0 + 6 = 60$$

Аналогично предыдущему заданию строим таблицу с интервалами, их серединами и частотами:

Интервалы	X _i	m _i
-----------	----------------	----------------

50	60	55	10
60	70	65	29
70	80	75	2
80	90	85	13
90	100	95	0
100	110	105	6

С накопленными частостями:

Wi	$X_i^*W_i$
0,166666667	9,166666667
0,483333333	31,41666667
0,033333333	2,5
0,216666667	18,41666667
0	0
0,1	10,5

И вспомогательные таблицы:

$(x_i - x^-)^2 * w_i$	$(x_i - x^-)^3 * w_i$	$(x_i - x^-)^4 * w_i$
48,16666667	-818,8333333	13920,16667
23,68333333	-165,7833333	1160,483333
0,3	0,9	2,7
36,61666667	476,0166667	6188,216667
0	0	0
108,9	3593,7	118592,1

$$x^- = \sum x_i * w_i = 72$$

$$D = \sum (x_i - x^-)^2 * w_i = 217,6666667$$

$$S = \sqrt{D} = 14,75353065$$

$$v = \frac{S*100\%}{x^{-}} = 20,49101479\%$$

$$A = \sum (x_i - x^{-})^3 * w_i = 0,960966022$$

$$E = \sum (x_i - x^{-})^4 * w_i = -0,047968031$$

Анализ:

A>0 и |A|>0.5 => выборка значительно ассиметричная E<0, но E очень близко к нулю, поэтому эксцесс можно считать нормальным

3. Для задания №1 определите оптимальную величину интервала и представьте ряд из этого задания в виде интервального ряда. Ответ:

min	9
max	27
k	6
Δ	3

Интервалы		mi
9	12	1
12	15	10
15	18	11
18	21	1
21	24	2
24	27	0
27	inf	1

См. Задание №1

4. Вопрос:

Интервальные ряды бывают с равными и неравными интервалами. Иногда при группировке с равными интервалами <u>сначала определяют</u> число интервалов (групп) z при заданном объеме совокупности, используя формулу:

$$L = 2 \ln n$$

и тогда k в формуле Стеджерса вычисляется по формуле

$$\kappa = \frac{x_{max} - x_{min}}{L}$$

Для Задания 1 вычислите оптимальную величину интервала по данной формуле и сравните его с интервалом, вычисленным по формуле Стеджерса.

Ответ:

L	7
k	2,571428571

По формуле Стеджерса число групп получается меньше, а длина интервала больше:

k	6
Δ	3

5. Вопрос:

Для данных таблицы 1 накопленные частоты и расположите их в таблице в восходящем порядке и в нисходящем порядке. На <u>чо</u> они указывают? Поясните.

Ответ:

6. Вопрос: постройте полигон распределения для Задания 1:

График см. ниже

Ход решения см. в Задании 1

7. Постройте гистограмму и кумулянту для данных таблицы 2:

Таблица для построения		
кумулянты		
55	0	
65	10	
75	39	
85	41	
95	54	
105	54	
115	60	

Полученный график:

Гистограмма:

8. Постройте огиву для данных таблицы 2:

Таблица для построения		
ОГИВЫ		
0	55	
10	65	
39	75	
41	85	

54	95
54	105
60	115

9. Для данных Задания №1 вычислить:

25-й, 50-й, 90-й перцентиль:

Решение:

$$\frac{(n+1)*25}{100}=6,75 \Longrightarrow$$
 Между 6 и 7, 6ой = 14, 7ой = 14 \Longrightarrow 25 перцентиль = 14

$$\frac{(n+1)*50}{100}=13,5 \Longrightarrow$$
 Между 13 и 14, 13й = 15, 14 = 15 \Longrightarrow перцентиль = 15

$$\frac{(n+1)*90}{100} = 24,3 =>$$
Между 24 и 25, 24й = 21, 25й = 23 => перцентиль = 21 + 0,3 * 2 = 21,6

10. Вопрос: По данным таблицы 2 вычислить медиану Решение:

Определим модальный интервал (тот интервал, в котором наибольшая частота): *60-70*

Начало модального интервала: 60

Длина модального интервала: 70-60 = 10

Частота модального интервала: 29

Частота интервала, предшествующего модального: 10

Частота интервала, следующего за модальным: 2

Мода:

$$M_0 = 60 + 10 * \frac{29 - 10}{29 - 10 + 29 - 2} = 64,13043478$$

11. Вопрос: по данным таблицы 2 вычислить моду

Решение:

Определим медианный интервал: сумма накопленных частот, превышающих половину суммы всех значений ряда, соответствует интервалу **60-70**

$$n = 60$$
; $n/2 = 30$

Длина интервала: 10

Частота медианного интервала: 29

Накопленная частота до медианного интервала: 10

$$M_e = 60 + 10 * \frac{30 - 10}{29} = 66,89655172$$

- 12. Вычислите среднюю арифметическую для данных Задания №1 по формулам:
 - Средней арифметической
 - Средней арифметической взвешанной

Решение: средняя арифметическая была вычислена ранее (см.

Задание 1), $x^- = 16,03846154$

Для вычисления средней взвешанной была построена таблица:

xi	mi	xi * mi
10,5	1	10,5
13,5	10	135
16,5	11	181,5
19,5	1	19,5
22,5	2	45
25,5	1	25,5

$$x \text{ cp} = \frac{\sum x_i * m_i}{\sum m_i} = 16,03846154$$

Средняя и средняя взвешанная оказались равными

13.

14. Может ли в одном ряду быть несколько мод? Обоснуйте Мод может быть несколько если несколько чисел повторяются в одинаковом количестве.

Например: 4 4 4 5 5 5 6 7 8 8 8 - тут мода: 4;5;8