HWS.

$oldsymbol{x}_n$	y_n	g	$ f_1 $	f_2	f_3	f_4	f_5	f_6	f_7	f_8
0 0 0	0	0	0	0	0	0	0	0	0	0
0 0 1	•	•	•	•	•	•	•	•	•	•
0 1 0	•	•	•	•	•	•	•	•	•	•
0 1 1	0	0	0	0	0	0	0	0	0	0
1 0 0	•	•	•	•	•	•	•	•	•	•
1 0 1		?	0	0	0	0	•	•	•	•
1 1 0		?	0	0	•	•	0	0	•	•
1 1 1		?	0	•	0	•	0	•	0	•

•

$$\lambda$$
: $\{f_2, f_3, t_5\}$

3.
$$\chi_{n} \sim Bern oulli los)$$
, $\overline{\chi}_{N} = (\frac{1}{N}) \sum_{n=1}^{N} \chi_{n}$

9) Show
$$\mathbb{P}(\bar{X}_{W} - M \geq \epsilon) \in 2^{-\beta N}$$
.

$$\beta = 1 + (\frac{1}{2} + \epsilon) \log_2(\frac{1}{2} + \epsilon) + (\frac{1}{2} - \epsilon) \log_2(\frac{1}{2} - \epsilon)$$
 $\mu = 0.5$.

chernoff bound states that:

$$P(X_{N}-M>E) = P(\frac{1}{N}\sum_{h=1}^{N}X_{h}-M>E)$$

$$=P(\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N)$$

$$=P(\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N)$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$=\sum_{e}\sum_{h=1}^{N}X_{h}>(\Sigma+\mu)N$$

$$\overline{\mathbb{P}}(\overline{X}_{N}-M\geq E) \leq e^{\left(-S(Eth) + \log\left(e^{S}M + N-M\right)\right)N}$$

$$\frac{Me^{S}}{\Sigma + M} = Me^{S} + 1 - M.$$

$$\frac{Me^{S}}{\Sigma + M} = Me^{S} + 1 - M.$$

$$Me^{S} \left(\frac{1}{\Sigma + M} - 1\right) = 1 - M.$$

$$Me^{S} \left(\frac{1 - \Sigma - M}{\Sigma + M}\right) = 1 - M.$$

$$e^{Smin} = \frac{1 + M}{(M - \Sigma)}.$$

$$Smin = \log \left(\frac{\Sigma + M}{M - \Sigma}\right).$$

sub som back

$$P(\overline{Y}_{N}-\mu>\epsilon) \leq \exp\{-\log\left[\frac{(\epsilon+\mu)}{(\mu-\epsilon)}\right] (\epsilon + \mu) + \log\left[\frac{(\epsilon+\mu)\mu}{(\mu-\epsilon)} + \mu\right]\}$$

$$= \exp\left(-\log\left[\frac{\epsilon+\mu}{\mu-\epsilon}\right] (\epsilon + \mu) + \log\left[\frac{m \cdot 2\mu}{\mu-\epsilon}\right]\right\}^{N}$$

$$= \exp\left(-\log\left[\frac{\epsilon+\mu}{\mu-\epsilon}\right] (\epsilon + \mu) + \log\left[\frac{m}{\mu-\epsilon}\right]\right\}^{N}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |(\epsilon + \mu) + \log\left[\frac{m}{\mu-\epsilon}\right] |(\epsilon + \mu) + \log\left[\frac{m}{\mu-\epsilon}\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |(\epsilon + \mu) + \log\left[\frac{m}{\mu-\epsilon}\right] |(\epsilon + \mu) + \log\left[\frac{m}{\mu-\epsilon}\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |(\epsilon + \mu) + \log\left[\frac{m}{\mu-\epsilon}\right] |($$

Project: Still trypy to figure out the code for N2N.