Isolation Heuristic Analysis

Mingyi Zhang

Definition

I defined three heuristics $custom_score()$, $custom_score_2()$ and $custom_score_3()$. All heuristics are given by the difference between the number of legal moves of active player and inactive player. The general formula of the heuristics H

$$H = a \times N_{
m active} - b \times N_{
m inactive}$$

where a and b are two parameters that a+b=1; $N_{\rm active}$ is the number of legal moves of the active player, while $N_{\rm inactive}$ is of the inactive player. For the three heuristics, I set a and b as

- custom_score(): a=0.05, b=0.95. The number of legal moves of the inactive player dominants the heuristic. The player tends to consider the move that the opponent has fewer moves.
- custom_score2(): a=0.5, b=0.5. The numbers of legal moves of both the active player and the inactive player have the same contribution to the heuristic. Player will maximize the number of its own moves while minimize the number of the opponent's moves.
- custom_score3(): a=0.95, b=0.05. The number of legal moves of the active player dominants the heuristic. The player tends to play the move that maximize the possibility of its own moves.

The following is an example of the implementation of <code>custom_score()</code>

```
def custom_score(game, player):
    if game.is_loser(player):
        return float('-inf')
    if game.is_winner(player):
        return float('inf')
    # number of possible moves for active player and inactive player
    act_moves = len(game.get_legal_moves(player))
    inact_moves = len(game.get_legal_moves(game.get_opponent(player)))

return float(0.05 * act_moves - 0.95 * inact_moves)
```

Result

I set the parameter NUM_MATCHES, number of matches against each opponent, to be 20 in the tournament.py, so in total, each heuristic has 40 matches with each predefined heuristics.

The result is

This script evaluates the performance of the custom_score evaluation function against a baseline agent using alpha-beta search and iterative deepening (ID) called `AB_Improved`. The three `AB_Custom` agents use ID and alpha-beta search with the custom_score functions defined in game_agent.py.									

Playing Matches									
Match #	Opponent	AB_Improved		AB_Custom		AB Custom 2		AB_Custom_3	
		Won	Lost	Won	Lost	Won	Lost	Won	Lost
1	Random	36	4	35	5	33	7	27	13
$\overline{2}$	MM_Open	25	15	29	11	29	11	30	10
2 3	MM_Center	29	$\overline{11}$	31	9	33	7	28	12
4	MM_Improved	27	13	23	17	27	13	23	17
4 5	AB_Open	19	21	23	17	21	19	20	20
6	AB_Center	24	16	23	17	23	17	27	13
7	AB_Improved	19	21	19	21	23	17	20	20
	Win Rate:	63.9%		65.4%		67.5%		62.5%	

Figure 1: tournament.py results with 40 matches each and 150ms time limit.

We can find that

- the win rates of all players are around 65%.
- the player AB_Custom_2 with heuristic custom_score2() outperforms the baseline player AB_Improved . AB_Custom_2 plays the best against all opponents.

Recommendation

I would recommend <code>custom_score2()</code> because it has the best win rate. It consider the active and inactive player equally. And it is simple enough to explain and it is fast to compute.

This script evaluates the performance of the custom_score evaluation function against a baseline agent using alpha-beta search and iterative deepening (ID) called `AB_Improved`. The three `AB_Custom` agents use ID and alpha-beta search with the custom_score functions defined in game_agent.py. ******* Playing Matches Match # Opponent AB_Improved AB_Custom AB_Custom_2 AB_Custom_3 Lost Won 87 Won Lost Lost Lost Won Won 15 33 27 31 13 31 25 34 85 82 68 86 14 18 123456 Random 32 18 33 MM_Open MM_Center 67 79 67 73 69 21 34 82 63 75 37 45 37 45 69 66 66 MM_Improved 54 56 AB_Open 53 46 55 51 49 58 42 61 AB_Center 44 63 39 50 43 45 55 55 AB_Improved 50 Win Rate: 65.6% 65.9% 66.9% 66.3%

Figure 2: tournament.py results with 100 matches each and 150ms time limit.