Problema 6

Missão de Fuga em Cibersegurança

Tempo limite: 0,5 s (C/C++), 1,5s (Python/Java)

Em uma instalação de cibersegurança ultra-secreta, um agente de elite se encontra em uma sala altamente segura cheia de uma grade complexa de servidores de computador. Cada servidor pode estar em um de dois estados: "seguro" (representado por um azulejo preto) ou "comprometido" (representado por um azulejo vermelho). O agente inicia sua missão em pé sobre um servidor seguro e precisa navegar pela sala para acessar o maior número possível de servidores seguros.

O agente pode se mover de um servidor para um servidor adjacente em quatro direções (para cima, para baixo, para a esquerda ou para a direita). No entanto, há uma ressalva: ele não pode se mover para um servidor comprometido, uma vez que isso pode acionar alarmes e colocar a missão em risco.

Sua tarefa é escrever um programa que conte o número de servidores seguros que o agente pode acessar seguindo essas regras de movimento.

Entrada

Cada conjunto de entrada começa com uma linha contendo dois inteiros positivos, W e H, que representam o número de servidores nas direções x e y, respectivamente. W e H são ambos menores ou iguais a 20.

As seguintes *H* linhas do conjunto de dados contêm cada uma *W* caracteres. Cada caractere representa o estado de um servidor de acordo com as seguintes regras:

- '.' representa um servidor seguro (azulejo preto).
- '#' representa um servidor comprometido (azulejo vermelho).
- '@' representa o agente, inicialmente posicionado em um servidor seguro. O símbolo '@' aparece exatamente uma vez em cada conjunto de dados.

Saída

Seu programa deve imprimir uma linha contendo o número de servidores seguros que o agente pode acessar a partir do servidor inicial. Essa contagem inclui o servidor inicial em si.

Exemplo de Entrada	Exemplo de Saída
6 9	45
#.	
#	
• • • • •	
#@#	
.##.	
Exemplo de Entrada	Exemplo de Saída
11 9	59
.#	
.#	
.#	
.#.######.	
.#.#######. .#.##. .#.#.###.#.	
.#.#######. .#.##. .#.#.###.#. .#.#@#.#.	
.#.#######. .#.##. .#.#.###.#. .#.#.@#.#. .#.#####.#.	
#.###### #.##. #.#.##.#. #.#.@#.#. #.#####.#. #.#####.#.	
.#.#######. .#.##. .#.#.##.#. .#.#@#.#. .#.#####.#.	
.#.#######.###.#.####.#.##.#	
.#.#######.###.#.####.#.##.#	
.#.#######.###.#.######.#.###.##.#.@#.##.#########.	

Exemplo de Entrada	Exemplo de Saída
11 6##########@######	6
Exemplo de Entrada	Exemplo de Saída
7 7 #.# #.#	13
###.### @ ###.###	
#.#	