Filtre de Kalman

Sarah Curtit

1 Presentation du Filtre de Kalman

1.1 Le filtre de Kalman continu

1.1.1 Le modèle

Le filtre de Kalman est un modèle d'état défini par deux équations :

$$\left\{ \begin{array}{l} \dot{x}(t) = Ax(t) + Bu(t) + Mw(t) & \text{\'equation d\'etat} \\ y(t) = Cx(t) + Du(t) + v(t) & \text{\'equation de mesure} \end{array} \right.$$

x est un vecteur d'état, y un vecteur de mesures, u un vecteur de commandes (données déterminées), tandis que les signaux w(k) et v(k) sont des bruits blancs gaussiens centrés de densité spectrale de puissance W et V respectivement. On a

$$E[w(k)w(k+l)^T] = W\delta(l)$$
 $\delta(l) = 1$ si l=0; 0 sinon $E[v(k)v(k+l)^T] = V\delta(l)$ (V doit être inversible) $E[w(k)v(k+l)^T] = 0$

1.1.2 Minimisation de l'erreur d'estimation

En pratique, le filtre doit retourner en sortie l'état estimé du système, noté \hat{x} . L'équation d'état du filtre nous est donnée par

$$\hat{x}(t) = A_f \hat{x}(t) + B_f u(t) + K_f y(t)$$

où A_f B_f et K_f sont des matrices à déterminer.

Soit $\varepsilon(t) = x(t) - \hat{x}(t)$ l'erreur d'estimation du système. On souhaite que cet estimateur soit non biaisé, c'est à dire que $\lim_{t\to+\infty} \bar{\varepsilon} = 0$ quel que soit le profil de commande et quel que soit l'état initial ($\bar{\varepsilon}$ étant l'espérance mathématique de ε).

L'écriture de ces conditions nous donne finalement l'équation du filtre de Kalman

$$\hat{x}(t) = (A\hat{x} + Bu) + K_f(y - C\hat{x} - Du)$$

 K_f est appelé le gain du filtre. C'est lui qui traduit la confiance que l'on a dans le modèle ou les mesures. Si on considère que le modèle est très fiable et les mesures très bruitées on accordera peu d'importance à celles-ci, et K_f sera petit. Si l'on fait au contraire plus confiance aux mesures qu'au modèle, K_f sera grand.

Afin d'obtenir le filtre le plus fiable possible, le gain K_f doit minimiser la variance de l'erreur d'estimation, c'est à dire la trace de la matrice de covariance de l'erreur d'estimation,

$$P(t) = E[(x(t) - \hat{x}(t))(x(t) - \hat{x}(t))^T]$$

P(t) vérifiant l'équation

$$\dot{P}(t) = (A - K_f C)P(t) + P(t)(A - K_f C)^T + MWM^T + K_f V K_f^T$$

En minimisant P on obtient

$$\begin{array}{lcl} K_f & = & P(t)C^TV^{-1} \\ \dot{P}(t) & = & AP(t) + P(t)A^T - P(t)C^TV^{-1}CP(t) + MWM^T \end{array}$$

Cette deuxième équation étant appelée équation différentielle de Riccati.

Une fois les erreurs d'initialisation corrigées (régime constant), on obtient

$$K_f=P(t)C^TV^{-1}$$
 Désormais constant.
$$0=AP(t)+P(t)A^T-P(t)C^TV^{-1}CP(t)+MWM^T \text{ P étant la solution positive de l'équation.}$$

1.2 Le filtre de Kalman discret

1.2.1 Le modèle

Dans les faits, les appareils numériques fonctionnent de manière discrète. On utilisera donc en pratique le modèle de Kalman discret

$$\begin{cases} x(k+1) = A_d x(k) + B_d u(k) + M_d w_d(k) & \text{\'equation d'\'etat} & x \in \mathbb{R}^n, y \in \mathbb{R}^m, w_d \in \mathbb{R}^q \\ y(k) = C_d x(k) + D u(k) + v_d(k) & \text{\'equation de mesure} & y \in \mathbb{R}^m, v_d \in \mathbb{R}^p \end{cases}$$

Les signaux w_d et v_d sont cette fois associés à des matrices de covariance W_d et V_d telles que

$$\begin{array}{ll} E[w_d(k)w_d(k+l)^T] &= W_d\delta(l) \\ E[v_d(k)v_d(k+l)^T] &= V_d\delta(l) \quad (V_d \text{ doit être inversible}) \\ E[w_d(k)v_d(k+l)^T] &= 0 \end{array}$$

On note dt le pas de temps associé au système discret.

1.2.2 Passage du modèle continu au modèle discret

Le modèle de Kalman discret est très proche du modèle continu, et on peut obtenir les nouvelles matrices discrètes à partir de celles du modèle continu. On a

$$A_d = eAdt$$
 $B_d = \int_0^{dt} e^{Av} B dv dv$ $M_d = I_n$ $C_d = C$ $V_d = \frac{V}{dt}$

L'expression de W_d est plus compliquée puisqu'on a $W_d = \int_0^{dt} e^{Av} MW M^T e^{A^T v} dv$ Cependant dans l'hypothèse où dt est petit par rapport au temps de réponse du système, on peut écrire

$$W_d \approx dt M W M^T$$

1.2.3 Représentation d'état, implémentation du filtre en pratique

Comme dans le modèle continu, on souhaite optimiser le gain K_f afin de minimiser l'erreur d'estimation.

Dans la suite de cette section, on distinguera

l'état prédit à l'instant k+1 $\hat{x}(k+1|k)$

connaissant toutes les mesures jusqu'à l'instant k

l'état estimé connaissant la mesure à l'instant k+1 (après recalage) $\hat{x}(k+1|k+1)$

L'état prédit est calculé de façon déterministe

$$\hat{x}(k+1|k) = A_d \hat{x}(k|k) + B_d u(k)$$

Tandis que l'équation d'état du filtre

$$\hat{x}(k|k) = A_d \hat{x}(k|k) + B_d u(k) + K_f(k+1) (y(k) - C_d \hat{x}(k|k) - D\hat{x}(k|k))$$

nous donne

$$\hat{x}(k+1|k+1) = \hat{x}(k+1|k) + K_f(k+1)(y(k) - C_d\hat{x}(k|k) - D\hat{x}(k|k))$$

La combinaison de ces deux équations nous permet d'obtenir la représentation d'état du filtre de Kalman permanent :

$$\begin{cases} \hat{x}(k|k) &= (I - K_f C_d) \hat{x}(k|k-1) + \left(K_f - K_f D\right) \begin{pmatrix} y(k) \\ u(k) \end{pmatrix} \\ \hat{x}(k+1|k) &= A_d (I - K_f C_d) \hat{x}(k|k-1) + \left(A_d K_f B_d - A_d K_f D\right) \begin{pmatrix} y(k) \\ u(k) \end{pmatrix} \end{cases}$$

C'est la deuxième équation, calculant l'état prédit à l'instant k+1 qui nous intéresse et qui sera implémenté dans l'algorythme du filtre de Kalman.

Afin de totalement déterminer cette équation, il reste cependant à déterminer K_f , choisi encore une fois afin de minimiser l'erreur d'estimation P(k+1|k+1) (dont l'expression est extrêmement compliquée).

La résolution de l'équation différentielle nous donne

$$K_f(k+1) = P(k+1|k)C_d^T(C_dP(k+1|k)C_d^T + V_d)^{-1}$$

$$P(k+1|k) = A_dP(k|k-1)A_d^T - A_dP(k|k-1)C_d^T(C_dP(k|k-1)C_d^T + V_d)^{-1}C_dP(k|k-1)A_d^T$$

$$+M_dW_dM_d^T$$

En régime permanent la matrice de covariance de l'erreur de prédiction est constante et vérifie l'équation discrète de Riccati

$$P_{p} = A_{d}P_{p}A_{d}^{T} - A_{d}P_{p}C_{d}^{T}(C_{d}P_{p}C_{d}^{T} + V_{d})^{-1}C_{d}P_{p}A_{d}^{T} + M_{d}W_{d}M_{d}^{T}$$

On peut en déduire le gain du filtre et la matrice de covariance de l'erreur d'estimation

$$K_f = P_p C_d^T (C_d P_p C_d^T + V_d)^{-1}$$

 $P_e = (I - K_f C_d) P_p$

La plupart des solveurs actuels proposent des fonctions permettant de résoudre l'équation de Riccati. Dans le cadre de ce projet, nous avons travaillé avec Python et la fonction scipy.linalg.solve_discrete_are.

2 Application au problème

2.1 Problème 1D

Pour simplifier le problème, considérons tout d'abord que l'outil utilisé est parfaitement perpendiculaire à la surface au point de contact et qu'il n'y a pas de frottement. Dans ce cas, on peut se permettre de considérer seulement les données selon z (repère orienté selon la normale à la surface au point courant).

On prend alors comme vecteurs d'état et de mesure respectivement

$$x = \begin{pmatrix} z & \dot{z} \end{pmatrix}, \quad y = \begin{pmatrix} F_z \end{pmatrix}, \quad u = \underline{0}$$

ce qui simplifie grandement le problème

v et w sont ici respectivement le vecteur des signaux aléatoires qui polluent les mesures y et le vecteur des signaux inconnus qui viennent perturber directement l'équation d'état du système. Ici v représente l'imprécision du capteur et w rend compte des aspérités de la surface et de l'imprécision du robot.

La matrice M relie le bruit d'état w_x à w par la relation $w_x = Mw$

En faisant pour l'instant abstraction des vecteurs d'erreurs (et donc du dernier terme de chaque égalité) le système s'écrit dans notre cas comme

$$\begin{cases} \begin{pmatrix} \dot{z} \\ \ddot{z} \end{pmatrix} &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} z \\ \dot{z} \end{pmatrix} \\ (F_z) &= \begin{pmatrix} k & 0 \end{pmatrix} \cdot \begin{pmatrix} z \\ \dot{z} \end{pmatrix} \end{cases}$$

Expliquons ce modèle.

La matrice A est déterminée à l'aide du premier principe de Newton. Celui-ci nous donne l'équation $ma_z = k * (dz)$, où m est la masse totale du système et k est la raideur du ressort (on néglige toujours les frottements)

La matrice C est elle déterminée à partir d'une simple loi de Hooke : $F_z = k * d_z$.

Déterminons désormais les matrices associées vecteurs d'erreur v et w. on note

$$v=\begin{pmatrix} v_z & v_z \end{pmatrix}^T$$
 où v_z représente l'incertitude sur F_z $w=\begin{pmatrix} w_z & w_z & w_{\delta z} \end{pmatrix}^T$ où w_z représente l'incertitude de position du robot selon z w_z représente l'incertitude de vitesse selon z $w_{\delta z}$ représente l'incertitude sur les aspérités de la surface

w(t) et v(t) sont des vecteurs gaussiens centrés de densité spectrale de puissance W et V respectivement. On a :

$$E[w(t)w(t+\tau)^T] = W\delta(\tau)$$

$$E[v(t)v(t+\tau)^T] = V\delta(\tau)$$

$$E[w(t)v(t+\tau)^T] = 0$$

V peut-être calculé à partir des données d'échantillonnage du capteur. On a en effet les précisions suivantes :

	$\mathbf{F}_{\mathbf{y}}$				
1.00%	1.25%	0.75%	1.00%	1.25%	1.50%

On estime également les ordres de grandeur des forces et moments qui seront rencontrés par le capteur

$\mathbf{F}_{\mathbf{x}}$	$\mathbf{F}_{\mathbf{y}}$	$\mathbf{F}_{\mathbf{z}}$	${ m M_x}$	${f M_y}$	$ m M_z$
1N	1N	20N	1N.m	1N.m	1N.m

En notant δF_z la précision de la force F_z et $\overline{F_z}$ son ordre de grandeur on obtient

$$V = \left(\overline{F_z}^2 \delta F_z - (\overline{F_z} \delta F_z)^2\right)$$
$$= (2.978)$$

On calcule ensuite W dont les termes diagonaux de la matrice sont les fonctions scalaires d'auto-corrélation de chaque composante du vecteur, tandis que les termes inter-diagonaux sont les fonctions d'inter-corrélation entre les différentes composantes. Les différentes composantes du vecteur étant indépendantes, W est une matrice diagonale.

$$E[w(t)w(t+\tau)^T] = W\delta(\tau)$$

En considérant que la précision du robot est de 0,02mm en position ou en vitesse et que la précision de l'usinage de la surface est de 0,1mm, on en déduit W :

$$W = \begin{pmatrix} 0.02 - 0.02^2 & 0 & 0\\ 0 & 0.02 - 0.02^2 & 0\\ 0 & 0 & 0.1 - 0.1^2 \end{pmatrix}$$
$$= \begin{pmatrix} 0.0196 & 0 & 0\\ 0 & 0.0196 & 0\\ 0 & 0 & 0.09 \end{pmatrix}$$

Déterminons enfin la matrice M qui permet de "relier" le vecteur w à ttl'équation d'état

$$M = \begin{pmatrix} 0 & 1 & 0 \\ \frac{k}{m} & 0 & \frac{k}{m} \end{pmatrix}$$

Toutes les données de l'équation ayant été définies, on peut désormais calculer la matrice d'erreur P à partir de l'équation de Ricatti.

$$AP + PA^T - PC^TV^{-1}CP + MWM^T$$

Une résolution numérique nous donne

$$P = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2.2 Modèle 2D

Afin d'être plus réalistes, considérons désormais des forces selon les axes x et z, ainsi que le moment autours de l'axe y. Nous négligerons cependant toujours les frottements.

Plaçons nous dans le cas où l'outil n'est plus perpendiculaire à la surface (voir schéma ci-dessus)

Etant donné qu'il n'est pas possible de changer l'orientation du robot XXX -> CARO, nous nous bornerons toujours à corriger la trajectoire du robot.

Les valeurs mesurées par le capteur dépendent désormais de l'angle α formé avec l'horizontale. On a

$$F_x = F_N sin(\alpha)$$

 $F_z = F_N cos(\alpha)$
 $M_y = F_x * H$
 $= F_N sin(\alpha) * H$ en faisant l'hypothèse que la hauteur découverte de la bille est négligeable devant la hauteur du poussoir

L'objectif force devant désormais être mesuré selon la nouvelle normale à la surface, il convient de corriger en amont la valeur de F_z injectée dans le filtre. On détermine tout d'abord α grâce aux données du capteur :

$$\alpha = \arctan(\frac{F_{x_c}}{F_{z_c}})$$

On a

$$\begin{array}{rcl} F_{N_c} & = & \frac{F_{z_c}}{cos(\alpha)} \\ F_N & = & F_{N_c} - F_{obj} \\ F_z & = & F_{z_c} - F_{obj}cos(\alpha) \end{array}$$

Afin de tenir compte de la pente imprévue, il faut également ajuster le déplacement et la vitesse selon z.

Pour cela, ..

$$u = (\dot{x}_{robot})$$
$$D = \begin{pmatrix} \sin(\alpha) \\ 0 \end{pmatrix}$$

On