Clustering Negara Menggunakan Unsupervised Learning untuk International HELP

Tugas Case-based 2

Mata Kuliah Pembelajaran Mesin: Unsupervised Learning

Khalilullah Al Faath – 1301204376 Kode Dosen Pengampu: DDR

Program Studi S-1 Informatika, Fakultas Informatika Universitas Telkom, Jl. Telekomunikasi, Terusan Buahbatu, Sukapura E-mail (gmail): khalilullahalfaath@student.telkomuniversity.ac.id

Abstrak—salah satu algoritma dalam pembelajaran mesin adalah unsupervised learning, yaitu algoritma yang mengidentifikasi pola dari data set yang mana data pointnya belum diklasifikasi atau dilabelkan. Dataset yang digunakan di sini adalah dataset yang diuat oleh HELP Internasional yang mengumpulkan data-data dari negara yang kemudian akan dikelompokkan, apakah membutuhkan bantuin atau tidak. Di sini penulis menggunakan algoritma k-means dalam pengerjaannya.

Keywords—unsupervised, learning, k-means

I. PENDAHULUAN

A. Definisi unsupervised learning

Pada algoritma unsupervised learning, data tidak memiliki label secara eksplisit dan model mampu belajar dari data dengan menemukan pola yang implisit. Sangat berbeda dengan supervised learning, unsupervised learning merupakan jenis learning yang hanya mempunyai variabel input tapi tidak mempunyai variabel output yang berhubungan. Tujuan dari Machine Learning ini adalah untuk memodelkan struktur data dan menyimpulkan fungsi yang mendeskripsikan data tersebut.

Unsupervised learning adalah salah satu tipe algoritma machine learning yang digunakan untuk menarik kesimpulan dari dataset. Metode ini hanya akan mempelajari suatu data berdasarkan kedekatannya saja atau yang biasa disebut dengan clustering. Metode unsupervised learning yang paling umum adalah analisis cluster, yang digunakan pada analisa data untuk mencari pola-pola tersembunyi atau pengelompokan dalam data (Miftah Rezkia, 2020).

B. Definisi k-means

Algoritma k-means adalah salah satu algoritma unsupervised learning yang mana pengelompokan data dilakukan berdasarkan kedekatannya dengan suatu centroid yang kemudian data dikelompokkna sebanyak k-cluster untuk setiap centroid (Delyani Nursyafitri, 2022).

Fig 1. Contoh penerapan k-means

1) Proses klasterisasi dengan k-means

Untuk melakukan klasterisasi, dilakukan beberapa tahapan berikut:

- Penentuan nilai k atau cluster yang akan dibuat.
- Inisialisasi nilai centroid¹ secara random.
- Menetapkan jarak setiap data point ke centroid terdekat.
- Menghitung ulang nilai centroid dari cluster yang baru terbentuk dengan nilai rata-rata setiap data point yang memiliki jarak terdekat dari setiap centroid.
- Melakukan optimasi agar kriteria terpenuhi dengan mengulang step 3 dan 4 (Delyani Nursyafitri, 2022).
- 2) Kelebihan dan kekuranganklasterisasi dengan k-means Berikut ini adalah kelebihan yang dimiliki oleh K-Means Clustering:
- Terbilang cukup mudah untuk dipahami dan diimplementasikan.
- Proses pembelajaran membutuhkan waktu yang relatif cepat.
- Sangat umum digunakan sebagai teknik clustering Selain kelebihan, k-Means Clustering tentunya juga memiliki kekurangan. Beberapa kekurangannya adalah:

 $^{^{1}}$ Centroid merupakan nilai pusat (center) dari sebuah cluster. Misalkan kita mengatur k = 3, maka akan terbentuk centroid C1, C2, dan C3 secara random.

- Perlu inisialisasi nilai k menggunakan metode lain untuk mendapatkan nilai k yang optimal.
- Apabila hasil nilai random untuk centroid kurang baik, maka hasil clustering yang didapatkan menjadi tidak optima
- Cukup sulit jika digunakan untuk mencari jarak dari data yang berdimensi banyak (Delyani Nursyafitri, 2022).

3) PCA (Principal Component Analysis)

PCA pada dasarnya merupakan dasar dari analisis data multivariat yang menerapkan metode proyeksi. Teknik analisis ini biasanya digunakan untuk meringkas tabel data multivariat dalam skala besar hingga bisa dijadikan kumpulan variabel yang lebih kecil atau indeks ringkasan. Dari situ, kemudian variabel dianalisis untuk mengetahui tren tertentu, klaster variabel, hingga outlier.

II. INFORMASI TERKAIT DATASET

A. Judul Dataset

Dataset yang digunakan berjudul "Clustering the Countries by using Unsupervised Learning for HELP International".

B. Tujuan dari dataset

Dataset ini bertujuan untuk meng-kategorisasi negara berdasarkan factor sosio-ekonomi dan Kesehatan untuk menentukan bagaimana kemajuan suatu negara secara umum².

C. File dataset

Dataset ini diambil dari Kaggle dengan judul "Unsupervised Learning on Country Data". Terdapat dua file, yaitu country-data.csv dan data-dictionary.csv.

Dataset ini terdiri dari 167 baris yang terdiri dari negaranegara dan 10 kolom yang berisi aspek-aspek sosio-ekonomi dan Kesehatan suatu negara.

III. IKHTISAR KUMPULAN DATA YANG DIPILIH

A. Penjelasan Tiap Kolom

Informasi terkait dataset di file data-dictionary.csv

country: Nama negara

child_mort

Death of children under 5 years of age per 1000 live births

exports: Jumlah eksport barang dan servis percapita. Diberikan sebagai persentase dari GDP perkapita

exports

Exports of goods and services per capita. Given as %age of the GDP per capita

health: Jumlah pengeluaran untuk biaya kesehatan perkapita. Diberikan sebagai persentase GDP perkapita

health

Total health spending per capita. Given as %age of GDP per capita

child_mort: Kematian anak di bawah umur 5 tahun setiap 1000 kelahiran

imports: Jumlah import barang dan servis perkapita. Diberikan sebagai persentase GDP perkapita

 $[\]frac{2}{\underline{\text{https://www.kaggle.com/datasets/rohan0301/unsupervised-learning-on-country-data}}$

imports

Imports of goods and services per capita. Given as %age of the GDP per capita

Income: Pendapatan bersih perorang

income

Net income per person

Inflation: Pengukuran dari pertambahan jumlah GDP pertahun

inflation

The measurement of the annual growth rate of the Total GDP

life_expec: Rata-rata jumlah tahun dari anak yang belum lahir akan hidup jika pola mortalitas tetap sama

life_expec

The average number of years a new born child would live if the current mortality patterns are to remain the same

total_fer: Banyak anak yang akan lahir untuk setiap wanita jika age-fertility sekarang masih sama

total_fer

The number of children that would be born to each woman if the current age-fertility rates remain the same.

gdpp: GDP perkapita. Dihitung dari total GDP dan dibagi dengan banyaknya populasi

gdpp

The GDP per capita. Calculated as the Total GDP divided by the total population.

B. Jumlah baris dan kolom

Jumlah baris dan kolom dari dataset dapat dicek sebagai berikut:

Fig 1. Dimensi terkait dataset

C. Tiga data pertama

#6	Mad(3)										
	country	shilld meet	exports	health.	Ispects	liense	Self-lattion.	life_espec	total_fer	ples	×
	Algramition										
	Attento	40.0	29.0	6.55	41.t	9000)	4.63			60000	
	Agents					12000				4100)	

Fig 2. Tiga data pertama dari dataset

D. Tiga data terakhir

	country.	dillionet.	equets.	Besith	Reports:	m	Inflation	Mile espec	notal, for	999	1
184	Vienan.					4490				1313	
165	Timen	563	30.0	2.19	369	4400	23.6		4.67	1310	
185	Zwei			5.63	355	3250				1453	

Fig 3. Tiga data terakhir dari dataset

E. Tiga data sampel

	neetry	child_med	especta.	Femality	Imports	Section 1	Inflation.	life report	Telfall_for	stee
119				3.00		5060				9000
-	Matte	68	113.0	818	154.0	anson.	0.00	80.3	1.86	51100
	Carch Reputati									19600

Fig 4. Tiga data sampel dari dataset

F. Informasi terkait dataset

[8]	df.i	nfo()		
	Rang	eIndex: 167	ore.frame.DataFr entries, 0 to 16 tal 10 columns):	6
	#	Column	Non-Null Count	Dtype
			167 non-null	_
		_	167 non-null	
	2	exports	167 non-null	float64
	3	health	167 non-null	float64
	4	imports	167 non-null	float64
	5	income	167 non-null	int64
	6	inflation	167 non-null	float64
	7	life_expec	167 non-null	float64
	8	total_fer	167 non-null	float64
	9	gdpp	167 non-null	int64
	dtyp	es: float64(7), int64(2), ob	ject(1)
	memo	ry usage: 13	.2+ KB	

Fig 5. Info tipe data dari dataset

Dapat dilihat bahwa dataset di atas memiliki kolom sebanyak 10 dengan baris sebanyak 167 dan tidak ada datanull. Tipe data yang ada, yaitu object (string) untuk data country, integer untuk data income dan gdpp, dan selainnya adalah float (floating number integer) atau data kontinu.

G. Informasi terkait dataset secara deskriptif

	child nort	eigents	Sealth.	- Imports	Ancome	intiation	life_mpsi	tital for	851
1000	167/300000	167/988989	167343168	167 (00000)	167 (00000)		167 (00000)	WTODAY.	107 (00000)
****	28.270000	41.108876	6.815mm	46.890219	17114 14823	7.701632	75 moles	2047914	12964-11000
884				3439888				X.012848	UNDER PEARS
100	J 600000	ti 100000	1.010000	0.062300	609.690006	4.310000	31 100000	1.100000	231 00000
HN.	E.250000	23.000000	#30E00				41 300000	1.750000	1300.00000
80%	19.30000	35.000mm	62000	41.389008	9900 000000	5.0000	71 10000	-E-MARKE	ANDORRE
TEN.			0.000000	in record	38000 (10000)		Visitation (I	-	14990 (00000
Fide	IRR 000000	210.000000	17100000	174 (000000)	127000 000000	101.000000	\$1,00000	1 400000	100000.00000

Fig 6. Informasi dataset secara deskriptif

Dapat dilihat bahwa untuk rata-rata data terdistribusi ke kiri (condong ke arah kiri). Kecuali untuk data life_expec yang condong ke kanan.

Data dengan variansi data yang lebar atau jauh dari rata-rata antara lain:

- Child mort
- Gdpp
- Income
- Total fer

Data yang memiliki data negative hanyalah inflation.

H. Kualitas Data

Dapat dilihat dari keterangan di atas bahwa dataset di atas memiliki kualitas yang cukup bagus. Walaupun tidak terdistribusi secara normal. Untuk selengkapnya bisa dilihat dari beberapa diagram berikut.

Fig 7. Pemisahan data kolom 'country' karena merupakan string. Sheingga tidak bisa diolah

I. Pemilihan Preprocessing yang dilakukan

1) Mengecek duplikasi data

Data yang merupakan data duplikasi harus dihapus karena bisa saja nanti akan merusak model algoritma yang telah dibangun

2) Mengecek missing values

Missing values adalah data yang tidak memiliki nilai. Sehingga harus dilakukan handling

3) Mengecek outlier

Outlier adalah data pencilan. Sebuah pencilan adalah titik data yang terpaut jauh dari titik data lainnya.

Karena k-means adalah algoritma yang sensitive pada pencilan maka perlu dilakukan penghandlingan jika perlu.

4) Scaling data dengan min-max scaling

Untuk memudahkan komputasi, dilakukan min-max scaling untuk mentransformasi data sehingga data hanya terdiri atas [0,1]

Rumus min-max scaling adalah sebagai berikut:

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

- J. Feature engineering atau feature selection yang dilakukan
 - PCA
 - Pembagian secara literal berdasarkan kelompok
 - Feature selection berdasarkan korelasi

K. Plot

1) plot density (kedalaman data)

```
colors = ['#FF781F','#2D2926']
fig, ax = plt.subplots(nrows = 3,ncols = 3,figsize = (15,15))
for i in range(len(col_num)):
    plt.subplot(3,3,i+1)
    sns.distplot(df[col_num[i]],color = colors[0])
    title = 'Distribution : ' + col_num[i]
    plt.title(title)
plt.show()
```

Fig 8. Kode untuk menghitung plot density

Dari diagram di atas dapat kita lihat bagaimana distribusi dari data yang ada. Kalau datanya berkumpul di arah kiri berarti datanya condong ke arah kiri dan apabila datanya berkumpul di arah kanan maka datanya condong ke arah kanan. Dengan hasil sebagai berikut:

- Condong ke-kiri: Semua fitur kecuali life_expec
- Condong ke-kanan: life expec

2) Plot korelasi

df.corr()									
	child mer	exports.	health	Suports	lac-	Sefferion	life expec	total fer	290
thing_most	1.000000	-0.2(0003	0.200402	-0.127219	0.524015	0.799275	-0.000676	0.546478	-0 A13032
exports	431000	1.000000	-0.114406	0.737301	0.516784	-0.107294	0.516213	-0.320011	0.418720
Health:	-0.200402	-0.114408	1.000000	8.006717	0.020579	-0.250370	0.3710000	-0.196074	0.345068
imports	-0.127211	0.230381	0.005717	1.000000	0.122406	412/49994	0.054381	-0.109048	11.11.9498
Henne	0.024015	0.516784	0.129579	6.132439	1.000000	0.14775	0.911962	0.001040	0.895571
entiation	⇒256276	0.107294	6.255376	0.246994	-0.147756	1.000000	41239705	0.016921	4.221631
life aspec	0.086676			0.054391			1.000000	0.790078	0.000000
total fer	0.048470	-6.330011	-d 196674	-0.155048	-0.501640	0.510021	-0.700675	1.000000	-0.454010
gapp	-0.483002		0.045966		0.896071		0.600689	-0.464910	1.000000

Fig 9. Korelasi dalam bentuk tabel

```
fig, as - plt:subplots(figsize-(16, 6))

mask - np.triu(np.ones_like(df.corr(), dtyse-bool))

heataup - sns.heataup(df.corr(), mask-mask, wain-1, waax-1, annot-live)

plt.subtlo("borrelation Flor", ha-lift', s-0.155, y-1.60, fontsize-38, fontselght-"bold")

plt.title("borelati intara Scherapa flor", loc-"left", fontsize-32)

plt.tib()

plt.show()
```

Fig 10. Code untuk korelasi plot

Correlation Plot

Fig 11. Plot korelasi

Fig 12. Kode plot korelasi yang hanya menampilkan yang >= 0.5 dan <= 0.5

Fig 13. Plot korelasi yang kurang dari sama dengan -0.5 dan lebih dari sama dengan 0.5

Dapat dilihat dari korelasi plot di atas bahwa yang bis akita pilih untuk fitur selection adalah life_expec, total_fer, dan gdpp. Karena memiliki korelasi yang baik untuk semua fitur.

L. Boxplot

Distribution : total_fer

Dapat dilihat dengan lebih jelas distribusi dari data yang semuanya kecuali fitur life_expec condong ke kiri daripada ke kanan. Selain itu, semua data memiliki outlier. Fitur dengan outlier terbanyak ada di gdpp, income, dan inflation.

IV. RINGKASAN PRA-PEMROSESAN DATA YANG DIUSULKAN

A. Mengecek duplikasi data

```
[11] bool_series = df_duplicated()

print(bool_series)

### False

| False |
```

Didapatkan bahwa tidak ada duplikasi data untuk setiap baris yang ada.

B. Mengecek missing values

Fig 14. Code untuk mengecek missing values

```
sns.heatmap(df.isnull(),cbar=False)
plt.title("Heatmap missing value")
plt.show()
```

Fig 15. Kode untuk mengecek heatmap dari missing values

Fig 16. Heatmap missing values

Karena missing values tidak ditemukan maka tidak perlu dilakukan handling missing values.

C. Menghitung Outlier

```
ef hitungOutliers(df):
    qt = df.quantile(0.25)
    q2 = df.quantile(0.25)
    iQ8 = q4 = qt
    outliers = df[((df<(q1-1.5*1Q8)) | (df>(q3+1.5*IQR)))]
    return outliers

for i in col_num:
    outliers = hitungOutliers(df[i])
    percentage = lan(outliers)/lan(df[i])*188
    print(i)
    print('number of outliers' + str(lan(outliers)))
    print('number of outliers' + str(outliers.num()))
    print('number of outliers' + str(outliers.num()))
    print('number outlier value: ' + str(outliers.num()))
    print('dutliers purcostage: '* str(float(f'(percentage: 2ff'))*")')
    print('Outliers purcostage: '* str(float(f'(percentage: 2ff'))*")')
    print(')
```

Fig 17. Kode untuk menghitung missing values dan iterasi untuk setiap kolom

```
child_mort
number of outliers: 4
max outlier value: 268.8
min outlier value: 149.8
Outliers percentage: 2.4%
exports
number of outliers: 5
max outlier value: 208.8
min outlier value: 93.8
Outliers percentage: 2.99%
health
number of outliers: 2
max outlier value: 17.9
min outlier value: 14.2
Outliers percentage: 1.2%
```

```
imports
number of outliers: 4
max outlier value: 174.0
min outlier value: 188.0
Outliers percentage: 2.4%

income
number of outliers: 8
max outlier value: 125000
min outlier value: 55500
Outliers percentage: 4.79%
inflation
number of outliers: 5
max outlier value: 164.0
min outlier value: 24.9
Outliers percentage: 2.99%
```

```
life_exper
number of outliers: 3
max outlier value: 47.5
min outlier value: 32.1
Outliers percentage: 1.8%
total_fer
number of outliers: 1
max outlier value: 7.49
min outlier value: 7.49
Outliers percentage: 8.6%
```

gdpp number of outliers: 25 max outlier value: 105000 min outlier value: 33700 Outliers percentage: 14.97%

Dapat dilihat bahwa:

- Outlier di bawah 1%: total_fer
- Outlier di atas 1% di bawah 5%: child_mort, exports, health, imports, income, inflation, life_expect
- Outlier di atas 10%: gdpp

Karena hanya kolom gdpp yang memiliki outlier di atas 10% dan ini wajar karena gdpp antara negara terbelakang dan negara maju itu sangat jauh. Biasanya dilakukan handling dengan mepetkan outlier, tetapi penulis rasa tidak perlu.

D. Feature Selection

1) Pengelompokan kolom berdasarkan kategori

```
## [literal = pd.9staFrame()
## [literal | pd.9staFrame()
## [literal | pd.9staFrame()
## [literal | pd.9staFrame()
## [literal | pd.9staFrame() |
## [literal | licalth'] = ((df['locathy'] = aco()) + (eff | life | post | ] = aco()) + (eff | life | post | ] = aco()) + (eff | life | post | ] = (df['literal | ps.'] | ps. |
## [literal | far | /df['literal | ps.'] | ps. |
## [literal | far | /df['literal | ps.'] | ps. |
## [literal | far | ps.'] | ps. |
## [literal | far | ps.'] | ps. |
## [literal | far | ps.'] | ps. |
## [literal | far | ps.'] | ps. |
## [literal | far | ps.'] | ps. |
## [literal | far | ps.'] | ps. |
## [literal | ps.'] |
```

Dapat dilihat bahwa data bisa dibagi setidaknya dengan pengelompokan literal sebagai berikut:

- * Health: Health, child_mort, life_expec, total fer
- * economics: exports, imports
- * moneter: income, gdpp, inflation

2) Reduksi dimensi dengan PCA

Sebelum mereduksi dimensi dengan PCA, perlu dilakukan untuk menentukan banyaknya komponen PCA terbaik. Hal ini bisa dilakukan dnegan menghitung variansi dari PCA untuk tiap fitur.

```
plt.reference['figure.figure'] - (12.6)

fig. as - pit.subplows()

sl = np.scange(1, nel. Step-1)

y - np.rescuspite.explained_contained_ratio_)

pit.pin(si.y., nerver-'w', linestyle-'-', sche-'w')

pit.side(('benew of Companies'))

pit.side(('benew of Companies'))

pit.side(('Osmolativ' variants (1)'))

pit.side(('Osmolativ' variants (1)')

pit.title('the number of importants benefit to replain variants')

pit.sid((o., c.o., 'unit number of threshold', color - 'val', fastaire-10)

as.grid(adis-'x')

pit.time():
```

Setelah itu kita memanggil diagram untuk melihat bagaiman variansi untuk tiap komponen

Dapat dilihat bahwa minimal 6 komponen yang dibutuhkan untuk mempertahankan 95% variansi.

```
plt.step(list(range(1,n=1)), np.cumsum(pca.explained_variance_ratio_))
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('Eigen Values')
plt.ylabel('Harie of Variance Explained')
plt.title('Variance Covered by each Eigen Value')

plt.axhline(y=0.95, color='black', linestyle='dashed')
plt.text(5, 0.90, '95% cut-off threshold', color = 'red', fontsize=16)
plt.show()
```

Selain itu, bisa juga dilihat berdasarkan eigen valuenya.

Atau dengan melihat scree plotnya

Semua plot di atas menyatakan bahwa minimal 6 komponen yang kita perlukan untuk PCA nantinya.

```
pca = PCA(n_components=6)
pca_features = pca.fit_transform(x)
print('Shape before PCA: ', x.shape)
print('Shape after PCA: ', pca_features.shape)
_,n = pca features.shape
columnsPCA = []
for i in range(1,n+1):
  colName = "PC"+str(i)
  columnsPCA.append(colName)
print(columnsPCA)
pca_df = pd.DataFrame(
    data=pca_features,
    columns=columnsPCA)
Shape before PCA: (167, 9)
Shape after PCA: (167, 6)
['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6']
```

Penerapan 6 komponen PCA

Hasilnya:

E. Feature Selection dengan Korelasi dan treshold 0.75 Reduksi dimensi dapat juga dilihat dari korelasinya dengan kode sebagai berikut:

Hasilnya:

F. Scaling

Kodenya:

prediction:
ind stableScaling(df) :
 return (df.Sloc[:,1:] - df.Sloc[:,1:].min()) / (df.Sloc[:,1:].max() - df.Sloc[:,1:].min())

1) Scaling dataset awal

Hasil

	country	children's	mante	health	Separate.	-	bellette	Distriction.	total for	-	2
	Mgumitte	IL KOSHES	SAME I	9.35888		0.008047		0.475346	0.756505	4.000AFS	
	Abers	0.068100	0.10003	0.294(83)	0.009057	GOTHEO.	0.0000000	0.071700	0.000004	A GREEK	
	Alpeni		9.101555		E180149	DOMEST		0.875748	827448	II SMEAN	
	Angelo	0.000000	0.31HDR	0.004600	0.24CHH	0.042508	9,54891	0.062388	0.09000	1211400	
	Artists and Defects										
	Western		O ZTONES					0.005/65			
165	Monotonia	11275004	d telepot	0.15380	0.100009	13 1227700	0.460001	0.054045	0.0000	12 1250650	
188	William		demonstrating						DESCRIPTION OF THE PERSON NAMED IN COLUMN	10 10 10 29 10	
***	make	HOUSE	****	120047	0.197307	8.651133	0.057500	000025	11.000.000	3.010299	
144	Zatte	0.001018		425m7s		0.0074673	O MADINE			bonzat	
167 W	nes = 10 caterios										

2) Pembagian Literal berdasarkan kategori di duna nyata Hasil scaling:

3) Scaling hasil dari feature selection Hasilnya:

	elected_normalized. elected_normalized	insert(0, "co	ountry", df	['country'	1)
	country	life_expec	total_fer	gdpp	1
0	Afghanistan	0.475345	0.736593	0.003073	
1	Albania	0.871795	0.078864	0.036833	
2	Algeria	0.875740	0.274448	0.040365	
3	Angola	0.552268	0.790221	0.031488	
4	Antigua and Barbuda	0.881657	0.154574	0.114242	
162	Vanuatu	0.609467	0.370662	0.026143	
163	Venezuela	0.854043	0.208202	0.126650	
164	Vietnam	0.808679	0.126183	0.010299	
165	Yemen	0.698225	0.555205	0.010299	
166	Zambia	0.392505	0.670347	0.011731	
167 rd	ows × 4 columns				

V. PENERAPAN ALGORITMA K-MEANS

Untuk algoritma di bawah, terinspirasi dari video berikut: https://www.youtube.com/watch?v=lX-3nGHDhQg&t=581s dan beberapa artikel di internet.

1) Perhitungan centroid awal secara random

Di sini untuk setiap fitur akan dihitung centroidnya sebanyak banyak cluster. Nilai tersebut teridir atas nilai acak dari [0,1]

Contoh hasilnya adalah sebagai berikut.

```
print(random_centroid(3,9,df_normalized))

0 1 2
child_mort 0.861499 0.272030 0.387913
exports 0.003187 0.510625 0.695391
health 0.925311 0.575251 0.856366
imports 0.333263 0.113942 0.094918
income 0.066344 0.986976 0.930331
inflation 0.946466 0.333323 0.523187
life_expec 0.029486 0.326047 0.503277
total_fer 0.319384 0.981915 0.269904
gdpp 0.572526 0.333178 0.302319
```

2) Perhitungan jarak dan pengelompokan

```
def set_class(data_data_centroids):
    distances = data_centroids.apply(lemode x: np.sert(((data = x)**2).sem(exis=1)))
    return distances.idxmin(axis=1) # secc=1 index dari minima value tiap baris
```

Di sini dilakukan perhitungan jarak degan Euclidean. Setelah itu dijumlahkan untuk mendapatkan jarak dari setiap datapoint ke ke setiap centroid. Setelah itu untuk setiap datapoint akan dihiutng yang mana yang memiliki jarak terpendek untuk setiap centroid. Jarak terpendek itulah yang menajdi class sementara dari datapoint tersebut.

3) Mengupdate nilai centroid

Untuk mendapatkan centroid yang baru, maka perlu dicari untuk setiap data point yang memiliki class yang sama dengan suatu centroid, kemudian dicari rata-ratanya untuk setiap feature.

```
def plot(df, label, centroid, iterasi):
    pca = PCA(n_components=2)
    df_2d = pca.fit_transform(df)
    centroid_2d = pca.fit_transform(centroid.T)
    plt.title(f'Iterasi ke {iterasi}')

plt.scatter(x = df_2d[:,0], y = df_2d[:,1], c = label)
    plt.scatter(x = centroid_2d[:,0], y = centroid_2d[:,1])
    plt.show()
```

Setelah itu terdapat scatter plot yang akan menampikan titiktitik dan pembagian kategori untuk setiap datapoint.

Main program dari k-means

```
k_means1(df):
df asli - df.copy()
df_asli_tampa_country = df.copy()
           in df_asli_tampa_country.columns:
  df_asli_tampa_country.pop('country')
  , n = df as11 tampa country shape
mux iterations - 100
centroids - random_centroid(k,n,df_asli)
old_centroids = pd.DataFrame()
while iteration c max iterations and not centroids equals(old centroids):
 old centroids - centroids
  labels - set_class(df_asli_tampa_country, centroids)
  centroids - set new centroids(df_asli_tampa_country, labels)
  plot(df_asli_tampa_country, labels, centroids, iteration)
  iteration *- 1
return labels
```

Di sini ditentukan bahwa banyak k adalah 3 dan max iterasi adalah 100. Setelah itu memanggil fungsi-fungsi yang ada di atas secara berurutan sesuai proses dari k-means algorithm.

VI. HASIL

Untuk plot negara didapatkan dari: https://www.kaggle.com/code/tanmay111999/clustering-pca-k-means-dbscan-hierarchical

Kode plot negara

2) Hasil dari feature selection dengan korelasi dan treshold 0.75

4) Hasil dari pembagian literal dunia nyata

VII. EVALUASI

```
from alchaera, alcotter import theses
from alchaera, alcotter import all heavity_score

of mainsta(df);
df text * df.tepp()
cas * (1541 * 1154mas = 10
fig = pit.outplots(cross = 1, resis = 2, figuins = (10,5))

if texts pop((152 * )

inclination(152 * )

inclination(152 * )

inclination(152 * )

inclination(152 * )

inclination(153 * )
```

Untuk normalisasi biasa

Untuk reduksi berdasarkan kelompok di dunia nyata

Untuk pca

Untuk reduksi berdasarkan korelasi

Dapat dilihat bahwa untuk setiap feature selection atau engineering yang dilakukan semua menghasilkan bahwa k=3 adalah yang terbaik. Sehingga pengecekan tidak perlu diulangi kembali

VIDEO LINK AT YOUTUBE

https://youtu.be/3QEIDAaY9TE

LINK COLAR

https://colab.research.google.com/drive/1DJ3JAHpmWFva9g2v-z4BMsnGqvtbbL7a?usp=sharing

LINK GITHUB

https://github.com/khalilullahalfaath/case_based_2_ML

KESIMPULAN

Dengan Algoritma k-means clustering kita sudah dapat menentukan negara mana saja yang memerlukan bantuin, mungkin membutuhkan bantuin, dan tidak membutuhkan bantuin. Selain karena mudah diimplementasikan k-means juga cocok untuk data yang sedikit dan cepat dalam komputasinya.

REFERENCES

- [1] Miftah Rezkia. (2020, December 14). Mengenal Lebih Dalam Algoritma Unsupervised Learning. Dqlab. Retrieved December 4, 2022, from https://www.dqlab.id/mengenal-leboh-dalam-algoritma-unsupervised-learning
- $[2] \quad \underline{https://www.youtube.com/watch?v=IX-3nGHDhQg\&t=581s}$
- [3] https://www.kaggle.com/code/tanmay111999/clustering-pca-k-means-dbscan-hierarchical
- [4] Pandas documentation

- [5] Numpy documentation
- [6] Sklearn documentation
- [7] Matlplotlib dan seaborn documtation

PERNYATAAN

Dengan ini saya menyatakan bahwa laporan yang saya tulis ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Desember 2022 Khalilullah Al Faath (1301204376)