ALMA MATER STUDIORUM A.D. 1088 UNIVERSITA DI BOLOGNA

PREDICTION OF PROTEIN-PROTEIN INTERACTION SITES WITH A NEW PROBABILISTIC METHOD

Presentata da: Saeideh NAZERI

Relatore:

Chiar.mo Prof. Pier Luigi Martelli

Correlatori:

Dr. Castrense Savojardo

Protein Interactions

- How proteins come together to construct metabolic and signaling pathways
- Determining protein interfaces by experimental methods are expensive and time consuming
- particularly problematic for transient complexes

Computational Methods

protein interaction prediction

if two protein interact?

protein-protein docking

pairwise residue contacts between the two binding protein

protein interface prediction

identify a subset of residues on a protein, which might interact with the presumed binding partner

Sequence Labeling Problem

1D6R_I

Basic Definitions

Surface of Protein

- Exposed residues as those with a Relative Solvent Accessibility (RSA*) above 16% (10%, 5%).
- > The higher the threshold, the lower the number of surface exposed residues.

^{*} Lee, B; Richards, FM. (1971). "The interpretation of protein structures: estimation of static accessibility"

Basic Definitions

- Interacting Residue
 - Differences in the solvent accessible surface area (RSA) when the monomers are separated(using DSSP* application)
 - ΔRSA) in bound and unbound state for each residue

Prediction of Secondary Structural Elements in the Phosphatidycholine-Transfer Protein from Bovine Liver.R. Akeroyd, J. Lenstra, J. Westerman, G. Vriend, K. Wirtz, L. v. Deenen,

Sequence Labeling

Input data(X): Vector of features

each entity often has a rich set of features that can aid classification

Label(Y): "N" or "I": Data Classification

Graphical Model

Generative
 Hidden Markov Model(HMM)

Discriminative

Conditional Random field(CRF)

Grammatical-Restrained Hidden CRF*

- Include hidden variable into the model
- Provide meaningful results
- Exert our prior knowledge

*Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications, Piero Fariselli, Castrense Savojardo, Pier Luigi Martelli, and Rita Casadio1, 2009

Grammar Definition

Grammar A

pegin I1 end N2

Grammar B

Basic Grammar

Grammar for predicting longer interacting sites

Dataset

Benchmark 5.0

225 protein complexes

High range of interaction types

Bound and unbound state

Non redundant

Experimentally-measured

BM609

Sequence identity <= 25%

X-ray resolution 3.25 Å

At least 50 residues

609 non redundant chain

Features

General Features

- Hydrophobicity
- Multiple Sequence Alignment
- B-Factors
- Electrostatic potential
- Depth and protrusion index
- Simple predicted RSA using SABLE*

Our Method features

- Evolutionary information** of spatial neighbors
- Average of solvent exposure of spatial neighbors

^{*}Accurate prediction of solvent accessibility using neural networks–based regression,R. Adamczak, A. Porollo, J. Meller,2004

^{**}PSSM: profile based on a multiple sequence alignment was created using the PSI-BLAST

Feature 1: Spatial Neighbors

A sphere with radius of 12Å around each residue and we mark the residues on that area which are on the surface

```
Neighbors for residue Number 7: 8, 9, 10, 11, 34, 254, 255, 256, 282
```

PSSM for neighbor residues:

```
8  0 83 2 0 0 13 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 9 33 1 1 0 9 1 1 0 0 1 0 4 0 0 0 27 18 0 10 2 0 2 0 0 0 0 94 0 0 0 0 0 0 0 2 0 0 0 0 1 6 0 0 0 1 2 1 0 2 1 0 0 0 1 6 80 0 0 1 3 4 4 16 3 0 1 5 2 0 0 5 0 0 0 0 256 5 3 3 3 1 4 6 7 1 0 2 8 0 2 33 9 5 1 1 1 282 6 8 3 5 3 3 7 3 3 2 0 35 3 2 6 4 3 0 0 3
```


Feature 2: RSA difference

Neighbors for residue Number 7:

8,9,10,11,34,254,255,256,282

Residue	RSA DSSP	RSA SABLE	Difference
8	0.7	0.3	0.4
9	0.0	0.4	-0.4
10	0.3	0.0	3.0
11	0.1	0.0	1.0
34	0.1	0.2	-0.1
254	0.0	0.1	-0.1
255	0.4	0.2	0.2
256	0.1	0.0	0.1
282	0.0	0.0	0.0

Average = 0.44

Evaluation

10 fold cross validation

repeat 10 times
each part have similar percentage of
surface and interacting residues

Scoring Index formulas

True Positive Rate

Precision

Accuracy

MCC

$$\frac{TP}{TP+FN}$$

$$\frac{TP}{TP+FP}$$

$$\frac{TP+TN}{TP+FP+TN+FN}$$

$$\frac{TP*TN-FP*FN}{\sqrt{(TP+FP)(TP+FN)(FP+FN)(TN+FN)}}$$

Results Detail

DATASET	TPR	PPV	ACC	MCC
Window 17	32%±0.01	67%±0.02	76%±0.04	34%±0.02*
Window 13	30%±0.07	66%±0.08	76%±0.01	32%±0.06
Window 9	28%±0.06	66%±0.01	75%±0.06	30%±0.08
Window 5	25%±0.04	65%±0.06	75 %±0.03	29%±0.03

Grammar B on BM_609 Dataset

Comparison

Predictors	TPR	PPV	ACC	MCC
Pseudo-meta	69%±0.02	41%±0.07	88%±0.07	48%±0.01
PredUs	70%±0.01	30%±0.02	30%±0.02	38%±0.03
eFindSite PPI	39%±0.06	45%±0.09	90%±0.05	37%±0.05
Best Result	32%±0.01	67%±0.02	76%±0.04	34%±0.02
cons-PPISP	27%±0.09	33%±0.08	88%±0.08	24%±0.07
SPPIDER	34%±0.00	20%±0.08	82%±0.07	17%±0.03
ProMate	52%±0.06	21%±0.00	68%±0.04	16%±0.05
WHISCY	13%±0.00	33%±0.04	90%±0.00	16%±0.04
PIER	06%±0.06	34%±0.02	90%±0.06	11%±0.08
VORFFIP	53%±0.01	33%±0.07	57%±0.09	11%±0.07
PSIVER	64%±0.05	11%±0.08	54%±0.06	10%±0.03
InterProSurf	43%±0.05	16%±0.03	67%±0.07	10%±0.00

Conclusion

- >Stable performance given group of proteins
- True interface is usually in common by one or more predictors

There is high capacity of improvement by expanding features and defining more sophisticated grammars

