Análise IV

Ricardo P. da Silva

2010

Sumário

1	Integrais curvilíneas		3	
	1.1	Integral de Riemann	3	
		1.1.1 Definições básicas		
	1.2	Integral de Riemann-Stiltjes		
2	Inte	egrais Múltiplas	5	
	2.1	Definições básicas	5	
	2.2	Caracterização das funções integráveis	11	
	2.3	A integral sobre conjuntos limitados		
	2.4	Integração repetida		
	2.5	Integrais Impróprias		
	2.6	Mudança de Variáveis		
		2.6.1 Partições da Unidade		
3	Integração em Cadeias 33			
	3.1	Tensores e formas	31	
		3.1.1 Tensores Alternados		
	3.2	Vetores tangentes		

2 SUMÁRIO

Capítulo 1

Integrais curvilíneas

1.1 Integral de Riemann

1.1.1 Definições básicas

Uma partição de um intervalo fechado $[a,b] \subset \mathbb{R}$ é um subconjunto finito $P \subset [a,b]$ contendo os extremos a e b do intervalo. É usual, por conveniência de notação, indexar os elementos de P em ordem crescente $P = \{a = t_0 < t_1 < \cdots < t_k = b\}$. Cada intervalo $[t_{i-1}, t_i], i = 1, \cdots, k$, é chamado de subintervalo determinado por P do intervalo [a, b].

Consideremos agora uma função limitada, $f:[a,b] \to \mathbb{R}$, definida em [a,b]. Se $P = \{t_0 < t_1 < \cdots < t_k\}$ é uma partição de [a,b], para cada sub-intervalo determinado por P sejam

$$m_i(f) = \inf_{t \in [t_{i-1}, t_i]} f(t)$$
 e $M_i(f) = \sup_{t \in [t_{i-1}, t_i]} f(x)$, $i = 1, \dots, k$.

Definimos as somas de Riemann, inferior e superior, respectivamente, de f com respeito à partição P, por:

$$s(f, P) = \sum_{i=1}^{k} m_i(f)(t_i - t_{i-1})$$
 e $S(f, P) = \sum_{i=1}^{k} M_i(f)(t_i - t_{i-1}).$

Como $m_i(f) \leqslant M_i(f)$, $i = 1, \dots, k$, é evidente que $s(f, P) \leqslant S(f, P)$.

Além disso, como $f:[a,b]\to\mathbb{R}$ é uma função limitada, temos que para toda partição P de [a,b]

$$k(b-a) \leqslant s(f,P) \leqslant S(f,P) \leqslant K(b-a),$$

onde $k = \inf_{t \in [a,b]} f(t)$ e $K = \sup_{t \in [a,b]} f(t)$.

Portanto existem os números

$$\int_{[a,b]} f := \sup_{P} s(f,P) \quad \text{ e } \quad \int_{[a,b]} f := \inf_{P} S(f,P)$$

chamados respectivamente de integral superior e integral inferior de f. Observemos que os supremo e ínfimo acima são tomados sobre todas as partições P do intervalo [a, b]. Dizemos que $f : [a, b] \to \mathbb{R}$

é Riemann integrável, se $\int_{[a,b]} f = \int_{[a,b]} \bar{f}$. Este valor comum é chamado a integral de Riemann de f no intervalo [a,b] e denotado por $\int_{[a,b]} f$

no intervalo [a,b] e denotado por $\int_{[a,b]} f$.

Como observado as integrais superior e inferior de uma função limitada, $f:[a,b] \to \mathbb{R}$, sempre existem. A questão da igualdade é, por outro lado, uma questão um pouco mais delicada e será explorada na próxima seção em um contexto mais geral.

1.2 Integral de Riemann-Stiltjes

Seja $\alpha:[a,b]\to\mathbb{R}$ uma função monótona não-decrescente, isto é, uma função tal que $\alpha(x)\leqslant \alpha(y)$ sempre que $a\leqslant x\leqslant y\leqslant b$.

Dados uma função limitada, $f:[a,b] \to \mathbb{R}$, e $P = \{t_0 < t_1 < \cdots < t_k\}$ uma partição de [a,b], com a mesma notação da seção anterior definimos as somas de Riemann-Stieltjes, inferior e superior de f com respeito à partição P e a função α , por:

$$s(f, \alpha, P) = \sum_{i=1}^{k} m_i(f)(\alpha(t_i) - \alpha(t_{i-1}))$$
 e $S(f, \alpha, P) = \sum_{i=1}^{k} M_i(f)(\alpha(t_i) - \alpha(t_{i-1}))$

respectivamente.

Similarmente como $k\alpha(a)(b-a) \leqslant s(f,\alpha,P) \leqslant S(f,\alpha,P) \leqslant K\alpha(b)(b-a)$, existem os números

$$\int_{\bar{a},b} f \, d\alpha := \sup_{P} s(f,\alpha,P) \quad \text{e} \quad \int_{\bar{a},b} \bar{f} \, d\alpha := \inf_{P} S(f,\alpha,P)$$

onde os supremo e ínfimo acima são tomados sobre todas as partições P do intervalo [a,b]. Dizemos que $f:[a,b]\to\mathbb{R}$ é Riemann-Stiltjes integrável com respeito a função α no intervalo [a,b], se $\int\limits_{[a,b]} f\,d\alpha = \int\limits_{[a,b]} f\,d\alpha.$ Este valor comum é chamado a integral de Riemann-Stiltjes de f com respeito

a α em [a,b] e denotado por $\int_{[a,b]} f d\alpha$. Usaremos a notação $f \in \mathcal{R}(\alpha)$ para dizermos que f é Riemann integrável com respeito a α .

Observação Note que a integral de Riemann é obtida como um caso particular da integral de Riemann-Stieltjes tomando $\alpha(t) = t$, a função identidade.

Capítulo 2

Integrais Múltiplas

2.1 Definições básicas

Recordemos que uma partição de um intervalo fechado $[a,b] \subset \mathbb{R}$ é um subconjunto finito $P \subset [a,b]$, contendo os extremos a e b do intervalo. É usual, por conveniência de notação, indexar os elementos de P em ordem crescente $P = \{a = t_0 < t_1 < \cdots < t_k = b\}$. Cada intervalo $[t_{i-1},t_i]$, $i = 1, \dots, k$, é chamado de subintervalo determinado por P do intervalo [a,b].

Para um retângulo n-dimensional $A = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$, uma partição é um subconjunto $P = P_1 \times \cdots \times P_n$, onde cada P_i é uma partição do respectivo intervalo $[a_i, b_i]$. Se para cada i, L_i é um dos subintervalos determinados por P_i do intervalo $[a_i, b_i]$, então o retângulo $S = L_1 \times \cdots \times L_n$ é chamado de sub-retângulo determinado por P do retângulo A, e escrevemos $S \in P$. Evidentemente se P_i divide o intervalo $[a_i, b_i]$ em N_i subintervalos, então $P = P_1 \times \cdots \times P_n$ decompõe o retângulo A em $N = N_1 \cdots N_n$ sub-retângulos.

O retângulo $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ é um subconjunto compacto de \mathbb{R}^n , e seu interior, denominado retângulo aberto, é o produto cartesiano, int $A = (a_1, b_1) \times \cdots \times (a_n, b_n)$, dos intervalos abertos (a_i, b_i) . Definimos o volume n-dimensional de A e int A por vol $(A) = \text{vol}(\text{int } A) := \prod_{i=1}^{n} (b_i - a_i)$.

Sejam $P=P_1\times\cdots\times P_n$ e $Q=Q_1\times\cdots\times Q_n$ partições do retângulo A. Dizemos que Q é mais fina do que P, ou Q é um refinamento de P, se $P\subset Q$, isto é, se e somente se $P_i\subset Q_i$, $i=1,\cdots,n$. Neste caso cada sub-retângulo determinado pela partição Q está contido em um único sub-retângulo determinado pela partição P, enquanto que todo sub-retângulo determinado por P é uma reunião dos sub-retângulos determinados por Q neles contidos. Além disso, dadas as duas partições P e Q, a partição $P+Q:=(P_1\cup Q_1)\times\cdots\times(P_n\cup Q_n)$ é um refinamento de ambas, e será chamada o refinamento comum das partições P e Q.

Consideremos agora uma função $f:A\to\mathbb{R}$ limitada, definida no retângulo $A\subset\mathbb{R}^n$. Se P é uma partição de A, para cada sub-retângulo S determinado por P sejam

$$m_S(f) = \inf_S f(x)$$
 e $M_S(f) = \sup_S f(x)$.

Definimos as somas inferior e superior de f relativamente à partição P, respectivamente por:

$$s(f,P) = \sum_{S \in P} m_S(f) \operatorname{vol}(S) \quad \text{ e } \quad S(f,P) = \sum_{S \in P} M_S(f) \operatorname{vol}(S).$$

Como $m_S(f) \leq M_S(f)$, é evidente que $s(f,P) \leq S(f,P)$. Menos evidente porém, é a monotonicidade das somas inferior e superior com relação a refinamentos.

Lema 2.1 Sejam P uma partição do retângulo A e $f:A\to\mathbb{R}$ uma função limitada. Se Q é um refinamento de P, então

$$s(f, P) \leqslant s(f, Q) \leqslant S(f, Q) \leqslant S(f, P).$$

Demonstração: Provemos a primeira desigualdade.

Observe que todo sub-retângulo $S \in P$ é escrito como uma reunião $S = \bigcup_{S' \subset S} S'$ de sub-retângulos

 $S' \in Q$, e portanto, $\operatorname{vol}(S) = \sum_{S' \subset S} \operatorname{vol}(S')$. Além disso, como $m_S(f) \leqslant m_{S'}(f)$, temos

$$m_S(f)\operatorname{vol}(S) = m_S(f) \sum_{S' \subset S} \operatorname{vol}(S') \leqslant \sum_{S' \subset S} m_{S'}(f)\operatorname{vol}(S').$$
 (2.1)

Portanto,

$$s(f,P) = \sum_{S \in P} m_S(f) \operatorname{vol}(S) \leqslant \sum_{S \in P} \sum_{S' \subset S} m_{S'}(f) \operatorname{vol}(S') = \sum_{S' \in Q} m_{S'}(f) \operatorname{vol}(S') = s(f,Q).$$

Para mostrar a terceira desigualdade observemos que $M_S(f) \ge M_{S'}(f)$ para todos $S \in P$ e $S' \subset S$ com $S' \in Q$. Dessa forma, de maneira análoga a (2.1) obtemos

$$M_S(f)\operatorname{vol}(S) \geqslant \sum_{S' \subset S} M_{S'}(f)\operatorname{vol}(S'),$$

e novamente, de maneira similar, obtemos

$$S(f,P) \geqslant \sum_{S \in P} \sum_{S' \subset S} M_{S'}(f) \operatorname{vol}(S') = S(f,Q).$$

Corolário 2.2 Sejam A um retângulo e $f:A \to \mathbb{R}$ uma função limitada. Se P e Q são duas partições quaisquer de A, então

$$s(f, P) \leqslant S(f, Q). \tag{2.2}$$

Demonstração: Valendo-nos do refinamento comum P + Q das partições P e Q, segue do Lema anterior que,

$$s(f, P) \leqslant s(f, P + Q) \leqslant S(f, P + Q) \leqslant S(f, Q).$$

Deduzimos deste Corolário que o supremo tomado sobre todas as somas inferiores de f é menor ou igual ao ínfimo tomado sobre todas as somas superiores de f. Dessa forma, ficam bem definidas as integrais: superior e inferior, de uma função limitada $f: A \to \mathbb{R}$, definidas por

$$\int_{\bar{A}} f := \sup_{P} s(f, P) \quad \text{e} \quad \int_{\bar{A}} \bar{f} := \inf_{P} S(f, P)$$

respectivamente.

Dizemos que uma função limitada, $f:A\to\mathbb{R}$, definida no retângulo $A\subset\mathbb{R}^n$ é integrável, se $\int_A f = \int_A f.$ Este valor comum é chamado a integral de f sobre A e denotado por $\int_A f.$

Teorema 2.3 (Critério de Riemman) Uma função limitada, $f: A \to \mathbb{R}$, definida no retângulo $A \subset \mathbb{R}^n$ é integrável, se, e somente se, dado $\epsilon > 0$ arbitrário, existe uma partição P de A tal que $S(f, P) - s(f, P) < \epsilon$.

Demonstração: Suponhamos que $\int_{\bar{A}} f = \int_{\bar{A}} f$. Dado $\epsilon > 0$, sejam P' e P'' partições de A tais que $\int_{\bar{A}} f - s(f, P') < \frac{\epsilon}{2}$ e $S(f, P'') - \int_{\bar{A}} \bar{f} < \frac{\epsilon}{2}$. Desde que

$$s(f, P') \le s(f, P' + P'') \le S(f, P' + P'') \le S(f, P''),$$

segue portanto que $S(f, P' + P'') - s(f, P' + P'') < \epsilon$.

Reciprocamente suponhamos que $\epsilon=\int\limits_A^{\bar{}}f-\int\limits_{\bar{}A}f>0$. Observando que para qualquer partição P de A

$$s(f,P) \leqslant \int_{A} f < \int_{A} \bar{f} \leqslant S(f,P),$$

temos que a soma inferior dista da soma superior de f no mínimo ϵ , independentemente da partição P, e dessa forma a condição de Riemann não se verifica.

Exemplo 2.4

1. Toda função constante $f:A\to\mathbb{R}$ é integrável. Além disso, se f(x)=c, então $\int_A f=c \operatorname{vol}(A)=c\sum_{S\in P}\operatorname{vol}(S)$, qualquer que seja a partição P de A.

2. A função $f:[0,1]\times[0,1]\to\mathbb{R}$ definida por $f(x,y)=\begin{cases} 0,\ se\ x\in\mathbb{Q}\\ 1,\ se\ x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$ não é integrável.

3. A função $f:[0,1] \to \mathbb{R}$ definida por $f(x) = \begin{cases} \frac{1}{q}, & se \ x = \frac{p}{q} \in \mathbb{Q} \ e \ (p,q) = 1 \\ 0, & caso \ contrário \end{cases}$ é integrável.

Para vê-lo apliquemos o critério de Riemman para a função f.

 $Dado \ \epsilon > 0$, $basta\ tomar\ q \in \mathbb{N}\ satisfazendo\ \frac{1}{q} < \epsilon$. $Considerando\ a\ partição\ P = \{0, \frac{1}{q}, \frac{2}{q}, \cdots, 1\}$ $de\ [0, 1]$, $observamos\ que\ M_{\left[\frac{i-1}{q}, \frac{i}{q}\right]} = \frac{1}{q}\ e\ m_{\left[\frac{i-1}{q}, \frac{i}{q}\right]} = 0$, $para\ todo\ i = 1, \cdots, q$. Logo

$$S(f,P) - s(f,P) = \sum_{i=1}^{q} (M_{[\frac{i-1}{q},\frac{i}{q}]} - m_{[\frac{i-1}{q},\frac{i}{q}]}) (\frac{i}{q} - \frac{i-1}{q}) = \frac{1}{q} < \epsilon.$$

4. Sejam $f, g : [0,1] \to \mathbb{R}$ duas funções não-negativas e não-decrescentes. A função $h : [0,1] \times [0,1] \to \mathbb{R}$ definida por h(x,y) = f(x)g(y) é integrável.

Primeiramente observemos que se f(0) = f(1) e g(0) = g(1) então h é uma função constante e portanto integrável. Suponhamos portanto que ou $f(0) \neq f(1)$ ou $g(0) \neq g(1)$, ou seja, suponhamos que $h(0,0) \neq h(1,1)$.

Dado $\epsilon > 0$, tomemos $k \in \mathbb{N}$ satisfazendo $\frac{(2k-1)(h(1,1)-h(0,0))}{k^2} < \epsilon$ (basta tomar $k > \frac{(h(1,1)-h(0,0))-\sqrt{1-\frac{\epsilon}{(h(1,1)-h(0,0))}}}{\epsilon}$)¹.

Seja $P=\{0,\frac{1}{k},\frac{2}{k},\cdots,1\}$ uma partição do intervalo [0,1] e consideremos a partição $P'=P\times P$ de $[0,1]\times[0,1]$.

Notemos que se $S \in P'$, então $\operatorname{vol}(S) = \frac{1}{k^2}$. Além disso $M_S(h)$ e $m_S(h)$ são atingidos, respectivamente, nos extremos superior direito e inferior esquerdo de S, isto é, se $S = [a_1, b_1] \times [a_2, b_2]$ então

$$M_S(h) = h(b_1, b_2)$$
 e $m_S(h) = h(a_1, a_2)$.

Observemos ainda que na diferença S(h,P)-s(h,P), após cancelamentos de termos comuns, restarão 2k-1 parcelas que podem ser majoradas por $(h(1,1)-h(0,0))\operatorname{vol}(S)$, pois $h(0,0) \leq h(x,y) \leq h(1,1)$, qualquer que seja $(x,y) \in [0,1] \times [0,1]$. Portanto

$$S(h, P) - s(h, P) \le (2k - 1)(h(1, 1) - h(0, 0))\frac{1}{k^2} < \epsilon.$$

 $[\]epsilon \leq h(1,1) - h(0,0)$

Logo a função h é integrável pelo critério de Riemann.

Exercícios

Proposição 2.5 Sejam $f, g: A \to \mathbb{R}$ funções limitadas e integráveis no retângulo $A \subset \mathbb{R}^n$. Então:

- 1. A função f+g é integrável $e\int_A f+g=\int_A f+\int_A g$.
- 2. Se $\alpha \in \mathbb{R}$ a função $\alpha.f$ é integrável e $\int_A \alpha f = \alpha \int_A f$.
- 3. Se $f(x) \ge 0$ para todo $x \in A$ então $\int_A f \ge 0$. Em particular se $g(x) \ge f(x)$ para todo $x \in A$ então $\int_A g \ge \int_A f$.
- 4. A função |f| é integrável e $\left|\int_A f\right| \leqslant \int_A |f|$. Em particular se $|f(x)| \leqslant M$ para todo $x \in A$ então $\left|\int_A f\right| \leqslant M \operatorname{vol}(A)$.
- 5. Se f é contínua então existe $\xi \in A$ tal que $\int_A f = f(\xi) \operatorname{vol}(A)$;

Demonstração:

1. Observemos que para todo subconjunto $S \subset A$, $m_S(f) + m_S(g) \leq m_S(f+g)$ e $M_S(f) + M_S(g) \geq M_S(f+g)$. Logo, para quaisquer partições $P \in Q$ de A:

$$s(f, P) + s(g, P) \leqslant s(f + g, P) \leqslant S(f + g, Q) \leqslant S(f, Q) + S(g, Q).$$

Portanto

$$\begin{split} \sup_{P} \{s(f,P) + s(g,P)\} &= \sup_{P} \{s(f,P)\} + \sup_{P} \{s(g,P)\} = \int_{-A} f + \int_{-A} g \\ &\leqslant \int_{-A} f + g \leqslant \int_{A} \bar{f} + g \\ &\leqslant \inf_{Q} \{S(f,Q) + S(g,Q)\} = \inf_{Q} \{S(f,Q)\} + \inf_{Q} \{S(g,Q)\} = \int_{-A} \bar{f} + \int_{-A} g. \end{split}$$

2. Se $\alpha \geqslant 0$, então $s(\alpha.f,P) = \alpha \, s(f,P)$, enquanto que se $\alpha < 0$, $s(\alpha.f,P) = \alpha \, S(f,P)$ qualquer que seja a partição P de A.

Dessa forma se $\alpha \leq 0$, então

$$\int_{A}^{\bar{c}} \alpha f = \inf_{P} S(\alpha.f, P) = \inf_{P} \alpha s(f, P) = \alpha \sup_{P} s(f, P) = \alpha \int_{A}^{\bar{c}} f,$$
e
$$\int_{A}^{\bar{c}} \alpha f = \sup_{P} s(\alpha.f, P) = \sup_{P} \alpha S(f, P) = \alpha \inf_{P} S(f, P) = \alpha \int_{A}^{\bar{c}} f.$$

O caso $\alpha > 0$ é de imediata verificação.

3. Se $f \ge 0$ em A, então $m_S(f) \ge 0$ para todo sub-retângulo S de toda partição P de A. Consequentemente, $s(f,P) \ge 0$ para toda partição P e portanto $\int_A f = \int_A f = \sup_P s(f,P) \ge 0$.

Agora se $g(x) \geqslant f(x)$ então $g(x) - f(x) \geqslant 0$ e portanto $\int_A g - f \geqslant 0$. Dos itens anteriores temos $\int_A g - \int_A f = \int_A g - f \geqslant 0$, ou seja $\int_A g \geqslant \int_A f$.

4. Consideremos a função auxiliar $h(x) = \max\{f(x), 0\}$. Observemos que para todo subconjunto $S \subset A$, $M_S(h) = \max\{M_S(f), 0\}$ e $m_S(h) = \max\{m_S(f), 0\}$. Observemos ainda se $M_S(f) \ge 0$ então $M_S(h) - m_S(h) = M_S(f) - m_S(h) \le M_S(f) - m_S(f)$; e se $M_S(f) \le 0$ então $M_S(h) - m_S(h) = 0 - 0 \le M_S(f) - m_S(f)$.

Agora, dado $\epsilon>0$, pelo Teorema 2.3, existe uma partição P de A tal que $S(f,P)-s(f,P)<\epsilon$. Logo

$$S(h, P) - s(h, P) = \sum_{S \in P} \operatorname{vol}(S)(M_S(h) - m_S(h))$$

$$\leq \sum_{S \in P} \operatorname{vol}(S)(M_S(f) - m_S(f)) = S(f, P) - s(f, P) < \epsilon,$$

mostrando ser h uma função integrável.

Similarmente mostra-se que a função $k(x) = \min\{f(x), 0\}$ é integrável. Desde que |f| = h - k, segue que |f| é integrável pelos itens 1 e 2. Agora, já que $-|f(x)| \le f(x) \le |f(x)|$ em A, temos pelo item 3 que

$$-\int_{A}|f|\leqslant \int_{A}f\leqslant \int_{A}|f|,$$

ou seja,

$$\left| \int_A f \right| \leqslant \int_A |f|.$$

5. Sejam $m=\inf_A f(x)$ e $M=\sup_A f(x)$. Pelo item 4, $m\operatorname{vol}(A)\leqslant \int_A f\leqslant M\operatorname{vol}(A)$, ou seja, $m\leqslant \frac{1}{\operatorname{vol}(A)}\int_A f\leqslant M$. Sendo A compacto, conexo e $f:A\to\mathbb{R}$ uma função contínua,

segue do Teorema do Valor Intermediário que f(A) = [m, M], ou seja, existe $\xi \in A$ tal que $f(\xi) = \frac{1}{\operatorname{vol}(A)} \int_A f$.

Observação Observamos que os itens 1 e 2 da Proposição anterior garantem que o conjunto das funções limitadas sobre um retângulo $A \subset \mathbb{R}^n$ é um espaço vetorial real, e a correspondência $f \mapsto \int_A f$ é um funcional linear neste espaço. O item 4 garante que este funcional é contínuo quando se considera no espaço das funções (limitadas) integráveis a norma da convergência uniforme.

Exercícios

- 1. Sejam $f, g: A \to \mathbb{R}$ funções limitadas. Mostre que
 - a) $m_S(f) + m_S(g) \leq m_S(f+g)$ e $M_S(f) + M_S(g) \geq M_S(f+g)$, qualquer que seja $S \subset A$,
 - b) Se $\alpha < 0$ então $s(\alpha.f, P) = \alpha S(f, P)$, qualquer que seja a partição P de A.
 - c) Sejam $h, k : A \to \mathbb{R}$ dadas por $h(x) = \max\{f(x), 0\}$ e $k(x) = \min\{f(x), 0\}$. Mostre que $M_S(h) = \max\{M_S(f), 0\}$ e $m_S(h) = \max\{m_S(f), 0\}$, qualquer que seja $S \subset A$. Enuncie e prove identidades similares para a função k.
- 2. Seja $f:A\to\mathbb{R}$ uma função limitada. A oscilação de f em A é o número real $\omega(f,A)=\sup_A f(x)-\inf_A f(x)$. Mostre que $\omega(f,A)=\sup_A |f(x)-f(y)|$.

2.2 Caracterização das funções integráveis

Dizemos que um subconjunto $A \subset \mathbb{R}^n$ possui medida nula em \mathbb{R}^n se para todo $\epsilon > 0$, existe uma cobertura de A por retângulos n-dimensionais Q_1, Q_2, \cdots , tal que

$$\sum_{i=1}^{\infty} \operatorname{vol}(Q_i) < \epsilon.$$

Se na definição acima pudermos extrair uma subcobertura finita então dizemos que A possui conteúdo nulo. Apesar de evidente é útil observar que se um subconjunto compacto $A \subset \mathbb{R}^n$ possui medida nula, então A também possui conteúdo nulo.

A seguir derivamos algumas propriedades dos conjuntos de medida nula. Primeiramente provemos o seguinte Lema

Lema 2.6 Sejam A um retângulo e Q_1, \dots, Q_k uma cobertura finita de A, constituída por retângulos de \mathbb{R}^n . Então

$$\operatorname{vol}(A) \leqslant \sum_{i=1}^{k} \operatorname{vol}(Q_i).$$

Demonstração: Seja $Q \supset \bigcup_{i=1}^k Q_i$ um retângulo de \mathbb{R}^n . Consideremos os extremos dos intervalos das componentes dos retângulos A, Q_1, \cdots, Q_k para construir uma partição P de Q. Portanto cada um dos retângulos A, Q_1, \cdots, Q_k é uma reunião de sub-retângulos determinados por P, e em particular, $\operatorname{vol}(A) = \sum_{S \subset A} \operatorname{vol}(S), S \in P$. Como cada sub-retângulo $S \subset A$ está também contido em pelo menos um dos retângulos Q_1, \cdots, Q_k , temos

$$\operatorname{vol}(A) = \sum_{S \subset A} \operatorname{vol}(S) \leqslant \sum_{i=1}^{k} \sum_{S \subset Q_i} \operatorname{vol}(S) = \sum_{i=1}^{k} \operatorname{vol}(Q_i),$$

provando o Lema.

Lema 2.7

- 1. Se A possui medida nula em \mathbb{R}^n e $B \subset A$, então B possui medida nula em \mathbb{R}^n .
- 2. Se $\{A_1, A_2, \dots\}$ é uma família enumerável de conjuntos de medida nula em \mathbb{R}^n , então $\bigcup_{i=1} A_i$ possui medida nula em \mathbb{R}^n . Em particular, todo subconjunto enumerável de \mathbb{R}^n possui medida nula.
- 3. Um subconjunto $A \subset \mathbb{R}^n$ possui medida nula em \mathbb{R}^n , se e somente se, para todo $\epsilon > 0$, existe uma cobertura enumerável de A por retângulos abertos int Q_1 , int Q_2 , · · · tais que

$$\sum_{i=1}^{\infty} \operatorname{vol}(Q_i) < \epsilon. \tag{2.3}$$

Ou seja, podemos usar retângulos abertos na definição de conjuntos de medida nula.

- 4. Se $A \subset \mathbb{R}^n$ é um retângulo, então a fronteira de A, ∂A , possui medida nula em \mathbb{R}^n , mas A não.
- 5. Se $A \subset \mathbb{R}^n$ é tal que para todo $\epsilon > 0$ existe uma sequência de retângulos Q_1, Q_2, \cdots tais que $\sum_{i=1}^{\infty} \operatorname{vol}(Q_i) < \epsilon \ e \ A \subset (\bigcup_{i=1}^{\infty} Q_i) \cup X, \ com \ X \ de \ medida \ nula, \ então \ A \ possui \ medida \ nula.$

Demonstração:

- 1. Evidente.
- 2. Dado $\epsilon > 0$, consideremos para cada $i = 1, 2, \cdots$, uma cobertura de A_i , constituída por retângulos $Q_{i,1}, Q_{i,2}, \cdots$ com $\sum_{j=1}^{\infty} \operatorname{vol}(Q_{i,j}) < \frac{\epsilon}{2^i}$. Então a coleção de retângulos $\{Q_{i,j}\}$ é uma

cobertura enumerável de $\bigcup_{i=1}^{\infty} A_i$. Além disso, dado qualquer subconjunto finito $F \subset \mathbb{N} \times \mathbb{N}$, existe $k \in \mathbb{N}$ tal que se $(i,j) \in F$ então $i,j \leq k$ e portanto

$$\sum_{(i,j)\in F} \operatorname{vol}(Q_{i,j}) \leqslant \sum_{i=1}^k \sum_{j=1}^k \operatorname{vol}(Q_{i,j}) < \sum_{i=1}^k \frac{\epsilon}{2^i} < \epsilon.$$

Portanto, independentemente da ordenação dos $Q_{i,j}$ temos $\sum_{i,j=1}^{\infty} \operatorname{vol}(Q_{i,j}) < \epsilon$.

- 3. Se os retângulos abertos int Q_1 , int Q_2, \cdots cobrem A assim também os retângulos Q_1, Q_2, \cdots . Juntamente com (2.3), isto implica que A possui medida nula. Reciprocamente, suponhamos que A possua medida nula. Dado $\epsilon > 0$, sejam $\tilde{Q}_1, \tilde{Q}_2, \cdots$ uma cobertura de A por retângulos satisfazendo $\sum_{i=1}^{\infty} \operatorname{vol}(\tilde{Q}_i) < \frac{\epsilon}{2}$. Como $\operatorname{vol}(\tilde{Q}_i)$, onde $\tilde{Q}_i = [a_{i_1}, b_{i_1}] \times \cdots \times [a_{i_n}, b_{i_n}]$, é uma função contínua dos extremos $a_{i_1}, b_{i_1}, a_{i_2}, b_{i_2} \cdots, a_{i_n}, b_{i_n}$ de cada intervalo em cada componente de \tilde{Q}_i , podemos escolher retângulos Q_i com $\tilde{Q}_i \subset \operatorname{int} Q_i$ e $\operatorname{vol}(Q_i) < 2 \operatorname{vol}(\tilde{Q}_i)$. Portanto int Q_1 , int Q_2, \cdots é uma cobertura de A constituída por retângulos abertos de \mathbb{R}^n satisfazendo $\sum_{i=1}^{\infty} \operatorname{vol}(Q_i) < \epsilon$.
- 4. Seja $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Para cada $i = 1, \dots, n$, os conjuntos $F_i = \{(x_1, \dots, x_n) \in A : x_i = a_i\}$ e $G_i = \{(x_1, \dots, x_n) \in A : x_i = b_i\}$ são chamados as i-ésimas faces do retângulo A. É fácil ver que cada face possui medida nula em \mathbb{R}^n . Por exemplo a face F_i pode ser coberta por um único retângulo

$$F_i^{\delta} = [a_1, b_1] \times \cdots \times [a_i, a_i + \delta] \cdots \times [a_n, b_n],$$

cujo volume pode ser feito tão pequeno quanto se queira. Uma vez que ∂A é reunião finita de tais faces, segue que ∂A possui medida nula.

Agora suponhamos por um momento que o retângulo A possua medida nula em \mathbb{R}^n . Seja $\epsilon = \operatorname{vol}(A)$. Podemos cobrir A por retângulos abertos int Q_1 , int Q_2, \cdots com $\sum_{i=1}^{\infty} \operatorname{vol}(Q_i) < \epsilon$. Sendo A compacto, podemos extrair uma subcobertura finita, digamos, int Q_1, \cdots , int Q_r . Assim $\sum_{i=1}^r \operatorname{vol}(Q_i) < \epsilon$ contradizendo o Lema 2.6.

5. Dado $\epsilon > 0$, sejam os retângulos Q_1, Q_2, \cdots tais que $\sum_{i=1}^{\infty} \operatorname{vol}(Q_i) < \frac{\epsilon}{2}$ e X de medida nula tal que $A \subset (\bigcup_{i=1}^{\infty} Q_i) \cup X$. Consideremos agora uma cobertura de X por retângulos Q_1', Q_2', \cdots tais que $\sum_{i=1}^{\infty} \operatorname{vol}(Q_i') < \frac{\epsilon}{2}$. Logo $Q_1, Q_1', Q_2, Q_2' \cdots$ é uma cobertura de A constituída por

retângulos, tal que
$$\sum_{i=1}^{\infty} (\operatorname{vol}(Q_i) + \operatorname{vol}(Q_i')) < \epsilon.$$

Exemplo 2.8

1. O gráfico de uma função contínua $f:[a,b]\to\mathbb{R}$ possui medida nula em \mathbb{R}^2 .

De fato, dado $\epsilon > 0$, pela continuidade uniforme de f existe uma partição $P = \{a = t_0 < t_1 < \cdots < t_k = b\}$ do intervalo [a,b] tal que se $x,y \in [t_{i-1},t_i]$, $i=1,\cdots,k$ então $|f(x)-f(y)| < \frac{\epsilon}{b-a}$. Se M_i e m_i são, respectivamente, o supremo e o ínfimo de f restrita a cada subintervalo $[t_{i-1},t_i]$, então, supondo que $M_i \neq m_i$, os retângulos $Q_i := [t_{i-1},t_i] \times [m_i,M_i]$ cobrem o gráfico de f e além disso,

$$\sum_{i=1}^{k} \operatorname{vol}(Q_i) = \sum_{i=1}^{k} (t_i - t_{i-1})(M_i - m_i) < \frac{\epsilon}{b - a} \sum_{i=1}^{k} (t_i - t_i) = \epsilon.$$

No caso em que $M_i = m_i$ para algum i, escolhendo $x_i \in [t_{i-1}, t_i]$ arbitrário, podemos cobrir a respectiva porção do gráfico de f pelo retângulo $[t_{i-1}, t_i] \times [f(x_i), f(x_i) + \delta]$ com volume tão pequeno quanto se queira.

O Teorema 2.9 descreve a classe das funções limitadas $f:A\to\mathbb{R}$, definidas em um retângulo $A\subset\mathbb{R}^n$ que são integráveis. Como veremos, a integrabilidade de f está intrinsecamente relacionada com o seu conjunto de (des)continuidade, de modo que nos será útil estudar o quanto f deixa de ser contínua em um dado ponto de seu domínio.

Sejam $f:A\to\mathbb{R}$ uma função limitada e $a\in A$. Dado $\delta>0$, definimos $\omega(f,a,\delta)=\sup_{x,y\in B(a,\delta)}|f(x)-f(y)|$. Como $\omega(f,a,\delta)$ é decrescente relativamente à δ , fica bem definido o número $\omega(f,a):=\lim_{\delta\to 0}\omega(f,a,\delta)=\lim_{\delta\to 0}\omega(f,a,\delta)$, chamado oscilação de f em a. Fica a cargo do leitor mostrar que f é contínua em a se, e somente se, $\omega(f,a)=0$ (exercício 1.a.).

Teorema 2.9 (Lebesgue) Uma função limitada $f: A \to \mathbb{R}$, definida no retângulo $A \subset \mathbb{R}^n$ é integrável, se e somente se, o conjunto de seus pontos de descontinuidade possui medida nula em \mathbb{R}^n .

Demonstração: Sejam $D = \{x \in A : f \text{ \'e descontínua em } x\}$ e M > 0 tal que $|f(x)| \leq M$, para todo $x \in A$. Suponhamos que D possua medida nula e mostremos que f \acute{e} integrável através do Critério de Riemann.

Dado
$$\epsilon > 0$$
, seja $\epsilon' = \frac{\epsilon}{2(M + \operatorname{vol}(A))}$.

Seja int Q_1 , int Q_2 , \cdots uma cobertura de D por retângulos abertos tal que $\sum_{i=1}^{\infty} \operatorname{vol}(Q_i) < \epsilon'$. Consideremos também para cada $a \in A \setminus D$, um retângulo aberto, int Q_a tal que $|f(a) - f(x)| < \epsilon'$ qualquer que seja $x \in Q_a \cap A$. Logo $\{\operatorname{int} Q_1, \operatorname{int} Q_2, \cdots\} \cup \{\operatorname{int} Q_a : a \in A \setminus D\}$ é uma cobertura aberta de A. Sendo A compacto podemos extrair uma subcobertura finita int Q_1, \cdots , int Q_l , int Q_{a_1}, \cdots , int Q_{a_k} .

²notemos que os retângulos int Q_1 , int Q_2 , \cdots , int Q_l podem não cobrir D.

Por conveniência, a partir de agora, denotaremos por Q_i (ou Q_{a_j}), a intersecção do respectivo retângulo com A. Esses novos retângulos ainda cobrem A e satisfazem $\sum_{i=1}^{l} \operatorname{vol}(Q_i) < \epsilon'$ e $|f(x) - f(y)| < 2\epsilon', x, y \in Q_{a_j}, j = 1, \dots, k$.

Seja P a partição de A determinada pelos pontos extremos de cada intervalo em cada componente desses retângulos. Todo sub-retângulo $S \in P$ está contido em algum dos Q'_{ij} s ou Q'_{a_j} s. Façamos uma divisão desses sub-retângulos em duas categorias (não necessariamente disjuntas):

R:=coleção dos sub-retângulos S contidos em algum dos Q_i^\prime s e

 $R' := \text{coleção dos sub-retângulos } S \text{ contidos em algum dos } Q'_{a_i}$ s.

Portanto

$$S(f,P) - s(f,P) \leqslant \sum_{S \in R} (M_S(f) - m_S(f)) \operatorname{vol}(S) + \sum_{S \in R'} (M_S(f) - m_S(f)) \operatorname{vol}(S)$$

$$\leqslant 2M \sum_{S \in R} \operatorname{vol}(S) + 2\epsilon' \sum_{S \in R'} \operatorname{vol}(S)$$

$$< 2M\epsilon' + 2\epsilon' \operatorname{vol}(A) = \epsilon,$$

mostrando a integrabilidade de f.

Reciprocamente, suponhamos que f seja integrável. Para $\delta>0$ dado, consideremos o conjunto $D_\delta:=\{x\in A:\omega(f,x)\geqslant \delta\}. \text{ \'E evidente que }D=\bigcup_{n=1}^\infty D_{\frac{1}{n}}, \text{ dessa forma \'e suficiente mostrar que cada }D_{\frac{1}{n}} \text{ possui medida nula.}$

Dado $\epsilon > 0$, seja P uma partição de A tal que $S(f,P) - s(f,P) < \frac{\epsilon}{n}$, e consideremos a coleção S de sub-retângulos $S \in P$, cujo interior int S, intercepta $D_{\frac{1}{n}}$. Para todo $S \in S$ tem-se $M_S(f) - m_S(f) \geqslant \frac{1}{n}$, e portanto,

$$\frac{1}{n}\sum_{S\in\mathcal{S}}\operatorname{vol}(S)\leqslant \sum_{S\in\mathcal{S}}(M_S(f)-m_S(f))\operatorname{vol}(S)\leqslant \sum_{S\in\mathcal{P}}(M_S(f)-m_S(f))\operatorname{vol}(S)<\frac{\epsilon}{n},$$

donde se conclui que $\sum_{S \in S} \text{vol}(S) < \epsilon$.

Finalmente observando que $D_{\frac{1}{n}} \setminus (\bigcup_{S \in \mathcal{S}} S) \subset (\bigcup_{S \in P} \partial S)$ e $\bigcup_{S \in P} \partial S$ possui medida nula, então $D_{\frac{1}{n}} \subset (\bigcup_{S \in \mathcal{S}} S) \cup (\bigcup_{S \in P} \partial S)$ e segue do Lema 2.7, que $D_{\frac{1}{n}}$ possui medida nula.

Teorema 2.10 Seja $f: A \to \mathbb{R}$ uma função integrável no retângulo $A \subset \mathbb{R}^n$.

- 1. Se f é identicamente nula, exceto em um conjunto de medida nula, então $\int_A f = 0$.
- 2. Se $f \geqslant 0$ e $\int_A f = 0$, então f é identicamente nula, exceto em um conjunto de medida nula.

Demonstração:

1. Suponhamos que f seja identicamente nula, exceto no conjunto de medida nula $E \subset A$. Se P é uma partição de A sabemos que se $S \in P$ então S não esta contido em E. Logo f se anula em algum ponto de S qualquer que seja $S \in P$, e portanto, $M_S(f) \ge 0$ e $m_S(f) \le 0$. Como essas desigualdades valem para toda partição de A,

$$\int_{\bar{A}} f \leqslant 0 \quad \text{e} \quad \int_{A} \bar{f} \geqslant 0,$$

o que implica $\int_A f = 0$.

2. Mostremos que se $f\geqslant 0$ e $\int_A f=0$ e além disso, se f é contínua em a, então f(a)=0.

De fato, se f é contínua em a, supondo f(a) > 0 e tomando $\epsilon = \frac{f(a)}{2}$, existe $\delta > 0$ tal que $\epsilon < f(x) < 3\epsilon$, qualquer que seja $x \in B(a,\delta) \cap A$. Seja P uma partição de A com malha³ $||P|| < \delta$. Logo se $S_0 \in P$ contém a, então $m_{S_0}(f) \geqslant \epsilon$ e com isso

$$s(f, P) = \sum_{S \in P} m_S(f) \operatorname{vol}(S) \ge \epsilon \operatorname{vol}(S_0) > 0.$$

Mas $s(f, P) \leq \int_A f$, portanto temos uma contradição. Além disso, já que f integrável, temos pelo Teorema 2.9 que f é descontínua no máximo em um conjunto de medida nula e portanto f é (possivelmente) diferente de 0 somente neste conjunto.

Observação Dado um retângulo $A \subset \mathbb{R}^n$, considerando $\mathcal{I} = \{f : A \to \mathbb{R} : f \text{ \'e limitada e integrável}\}$, então da Proposição 2.5 sabemos que \mathcal{I} possui uma estrutura natural de espaço vetorial real. A aplicação $\|\cdot\|: \mathcal{I} \to \mathbb{R}$ definida por $\mathcal{I} \ni f \mapsto \int_A |f|$ é uma norma em \mathcal{I} ? Que estrutura você imporia em \mathcal{I} para que eventualmente $\|\cdot\|$ seja norma ?

Exercícios

1.

- a. Seja $f:A\to\mathbb{R}$ uma função limitada. Mostre que f é contínua em $a\in A$ se, e somente se, $\omega(f,a)=0$.
- b. Se $A \subset \mathbb{R}^n$ é fechado, dado $\epsilon > 0$, o conjunto $\{x \in A : \omega(f, x) \ge \epsilon\}$ é fechado.

2.

a. Seja $f:[a,b] \to \mathbb{R}$ uma função crescente. Dados distintos pontos $x_1, x_2, \dots, x_n \in [a,b]$, mostre que $\sum_{i=1}^n \omega(f,x_i) < f(b) - f(a)$.

³maior diâmetro entre todos os sub-retângulos $S \in P$.

- b. Mostre que o conjunto dos pontos de descontinuidades de f tem medida nula. (sugestão: o item a. permite demonstrar que para todo $n \in \mathbb{N}$, o conjunto $\{x \in [a,b] : \omega(f,x) > \frac{1}{n}\}$ é finito).
- 3. Mostre que se $X \subset \mathbb{R}^n$ possui medida nula e $g: \mathbb{R}^n \to \mathbb{R}^n$ é de classe C^1 então g(X) possui medida nula.
- 4. Mostre que se $f, g: A \to \mathbb{R}$ são integráveis, então $f, g: A \to \mathbb{R}$ é integrável.
- 5. Mostre que se $B\subset A$ é um retângulo e $f:A\to\mathbb{R}$ é integrável, então a restrição $f_{|B}$ de f à B é integrável e $\int_{B} f_{|B} \leqslant \int_{A} f$.

2.3 A integral sobre conjuntos limitados

Nesta seção estenderemos o conceito de integral para funções definidas em subconjuntos de \mathbb{R}^n mais gerais que retângulos.

Sejam $X\subset\mathbb{R}^n$ um conjunto limitado e $f:X\to\mathbb{R}$ uma função limitada. Consideremos a extensão \tilde{f} de f à \mathbb{R}^n definida por $\tilde{f}(x) = \begin{cases} f(x), & x \in X \\ 0, & x \in \mathbb{R}^n \setminus X \end{cases}$. Se $\tilde{A} \subset \mathbb{R}^n$ é um retângulo que contém X, dizemos que f é integrável sobre X, se a restrição

 $\hat{f}_{|A}$ de \hat{f} à A é uma função integrável, e a integral de f sobre X é definida como

$$\int_X f := \int_A \tilde{f}_{|A}. \tag{2.4}$$

Uma vez que a definição acima leva em conta uma escolha arbitrária de um retângulo arbitrário A contendo o conjunto X, devemos mostrar que esta definição independe desta particular escolha.

Lema 2.11 Sejam A, A' retângulos em \mathbb{R}^n . Se $f : \mathbb{R}^n \to \mathbb{R}$ é uma função limitada identicamente nula em $\mathbb{R}^n \setminus (A \cap A')$, então $\int_A f_{|A}$ existe se, e somente se, $\int_{A'} f_{|A'}$ existe, e neste caso

$$\int_A f_{|A} = \int_{A'} f_{|A'}.$$

Demonstração: Consideremos primeiramente o caso $A \subset A'$. Se $E = \{x \in \text{int } A : f \text{ não \'e contínua em } x\}$, então ambas as funções $f_{|A}:A\to\mathbb{R}$ e $f_{|A'}:A'\to\mathbb{R}$ são contínuas exceto nos pontos de E e possivelmente em ∂A^4 . Dessa forma a existência de cada integral equivale a E ter medida nula.

Suponhamos agora que ambas integrais existam. Sejam P' uma partição de A' e P o refinamento de P' obtido reunindo a cada componente de P' os pontos extremos dos intervalos de cada componente do retângulo A. Logo A é uma reunião de sub-retângulos determinados por P. Se $S \in P$ não está contido em A, então f se anula em algum ponto de S, e portanto $m_S(f) \leq 0$. Assim

$$s(f, P') \leqslant s(f, P) \leqslant \sum_{S \subset A} m_S(f) \operatorname{vol}(S) \leqslant \int_A f_{|A}.$$

⁴Lembre-se que $f \equiv 0$ em $A' \setminus A$.

Com um argumento similar podemos mostrar que $S(f,P')\geqslant \int_A f_{|A}$. Desde que P' é uma partição arbitrária de A', segue que $\int_A f_{|A}=\int_{A'} f_{|A'}$.

Para demonstrar o caso geral, basta tomar um retângulo Q contendo simultaneamente A e A' e seremos capazes de demonstrar que

$$\int_{A} f_{|A} = \int_{Q} f_{|Q} = \int_{A'} f_{|A'}.$$

Portanto se A,A' são retângulos contendo X como \tilde{f} se anula identicamente em $\mathbb{R}^n \setminus (A \cap A')$, segue do Lema anterior que $\int_A f = \int_{A'} f = \int_X f$, sempre que existirem $\int_A f$ ou $\int_{A'} f$. Dizemos que um conjunto limitado $X \subset \mathbb{R}^n$ é J-mensurável, quando a função constante igual a

Dizemos que um conjunto limitado $X \subset \mathbb{R}^{\hat{n}}$ é J-mensurável, quando a função constante igual a 1 é integrável sobre X. Neste caso, o volume n-dimensional de X é definido como vol $(X) := \int_X 1$.

Corolário 2.12 O conjunto limitado $X \subset \mathbb{R}^n$ é J-mensurável se, e somente se, a fronteira ∂X de X possui medida nula.

Corolário 2.13 Sejam $X \subset \mathbb{R}^n$ J-mensurável e $f: X \to \mathbb{R}$ uma função limitada. Então f é integrável se, e somente se, o conjunto de seus pontos de descontinuidade possui medida nula.

Demonstração: Sejam D_f e $D_{\tilde{f}}$, os conjuntos dos pontos de descontinuidade de f e de sua extensão \tilde{f} respectivamente. Se $x \in D_f$, existe uma sequência $\{x_k\}$ em $X, x_k \to x$, com $f(x_k) \nrightarrow f(x)$. Evidentemente $\tilde{f}(x_k) = f(x_k) \nrightarrow f(x) = \tilde{f}(x)$, ou seja, $x \in D_{\tilde{f}}$, mostrando que $D_f \subset D_{\tilde{f}}$.

Por sua vez, os pontos de descontinuidade de \tilde{f} , ou já eram pontos de descontinuidade de f ou estão na fronteira, ∂X , de X, e assim podemos escrever $D_f \subset D_{\tilde{f}} \subset D_f \cup \partial X$. Sendo ∂X de medida nula, D_f possui medida nula se, e somente se, $D_{\tilde{f}}$ possui medida nula. Ora da definição, f integrável significa \tilde{f} integrável o que equivale a $D_{\tilde{f}}$ possuir medida nula.

Teorema 2.14 Sejam $X,Y \subset \mathbb{R}^n$ J-mensuráveis. A função $f:X \cup Y \to \mathbb{R}$ é integrável se, e somente se, as restrições $f_{|X}$ e $f_{|Y}$ são integráveis. Neste caso

$$\int_{X \cup Y} f + \int_{X \cap Y} f = \int_X f + \int_Y f.$$

Demonstração: Indicando por D_f, D_X, D_Y os conjuntos dos pontos de descontinuidade de $f, f_{|X}$ e $f_{|Y}$ respectivamente, temos

$$D_X \cup D_Y \subset D_f \subset D_X \cup D_Y \cup \partial X \cup \partial Y$$
.

Logo, D_f possui medida nula se e somente se, D_X e D_Y possuem medida nula.

Neste caso, sejam $A \subset \mathbb{R}^n$ um retângulo contendo $X \cup Y$ e \tilde{f} a extensão de f. Então $\tilde{f} = \tilde{f}.\chi_{X \cup Y}$, onde χ_S denota a função característica do conjunto S. Como $\chi_{X \cup Y} = \chi_X + \chi_Y - \chi_{X \cap Y}$ concluímos que $\tilde{f} = \tilde{f}\chi_X + \tilde{f}\chi_Y - \tilde{f}\chi_{X \cap Y} = \widetilde{f}_{|X} + \widetilde{f}_{|Y} - \widetilde{f}_{|X \cap Y}$. Logo

$$\int_{X \cup Y} f = \int_{A} \widetilde{f} = \int_{A} \left[\widetilde{f_{|X}} + \widetilde{f_{|Y}} - \widetilde{f_{|X \cap Y}} \right] = \int_{X} f + \int_{Y} f - \int_{X \cap Y} f.$$

Corolário 2.15 Se X e Y são conjuntos J-mensuráveis sem pontos interiores em comum, então

$$\int_{X \cup Y} f = \int_X f + \int_Y f.$$

Demonstração: Basta observar que a integral de f sobre $X \cap Y$ é nula pelo Teorema 2.10.

Corolário 2.16 Se $f: X \to \mathbb{R}$ é uma função limitada e integrável no conjunto J-mensurável $X \subset \mathbb{R}^n$ e $Y \subset X$ é J-mensurável com $\operatorname{int}(X \setminus Y) = \emptyset$, então $\int_X f = \int_Y f$. Em particular $\int_X f = \int_{\operatorname{int} X} f$.

Demonstração: Note que $X = (X \setminus Y) \cup (X \cap Y) = (X \setminus Y) \cup Y$.

Este último Corolário nos diz que ao considerarmos integrais sobre conjuntos J-mensuráveis de \mathbb{R}^n , não há qualquer perda em supô-los abertos.

Exercícios

- 1. Prove que se $X \subset \mathbb{R}^n$ é um conjunto J-mensurável então a integral sobre X possui propriedades similares as apresentadas na Proposição 2.5 .
- 2. Seja $f: X \to \mathbb{R}$ uma função limitada e integrável no conjunto J-mensurável $X \subset \mathbb{R}^n$. Mostre que se X possui medida nula, então $\int_X f = 0$.
- 3. Sejam X um conjunto J-mensurável e $Y \subset X$ t
mbém J-mensurável. Se $f: X \to \mathbb{R}$ é integrável, então a restrição $f_{|X}$ de f à X é integrável e $\int_Y f_{|Y} \leqslant \int_X f$.

2.4 Integração repetida

Nesta seção mostraremos que sob algumas hipóteses a integral $\int_A f$ de uma função limitada f sobre o retângulo $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ pode ser escrita como uma integral repetida $\int_{[a_1, b_1]} \int_{[a_2, b_2]} \cdots \int_{[a_n, b_n]} f(x_1, x_2, \cdots, x_n) dx_n \cdots dx_2 dx_1.$

Teorema 2.17 (Fubini) Sejam $A \subset \mathbb{R}^n$ e $B \subset \mathbb{R}^m$ retângulos e $f: A \times B \to \mathbb{R}$ uma função limitada e integrável. Para cada $x \in A$ seja $g_x: B \to \mathbb{R}$ dada por $g_x(y) = f(x,y)$. Então as funções

$$\mathcal{L}(x) := \int_{B} g_x \ e \ \mathcal{U}(x) := \int_{B} g_x \ s\tilde{ao} \ integráveis \ sobre \ A, \ e \ valem \ as \ identidades$$

$$\int_{A\times B} f = \int_{A} \mathcal{L} := \int_{A} \left[\int_{B} f(x, y) dy \right] dx \tag{2.5}$$

$$\int_{A\times B} f = \int_{A} \mathcal{U} := \int_{A} \left[\int_{B}^{\bar{f}} f(x, y) dy \right] dx \tag{2.6}$$

As integrais no terceiro membro são chamadas de integrais repetidas, ou integrais iteradas de f.

Demonstração: Sejam P_A e P_B partições de A e B respectivamente. Então $P = P_A \times P_B$ é uma partição de $A \times B$ e se $S \in P$ temos que $S = S_A \times S_B$ para algum $S_A \in P_A$ e $S_B \in P_B$. Portanto

$$s(f, P) = \sum_{S \in P} m_S(f) \text{vol}(S) = \sum_{S_A \in P_A} \sum_{S_B \in P_B} m_{S_A \times S_B}(f) \text{vol}(S_A \times S_B)$$
$$= \sum_{S_A \in P_A} \left[\sum_{S_B \in P_B} m_{S_A \times S_B}(f) \text{vol}(S_B) \right] \text{vol}(S_A).$$

Observando que para $x \in S_A$, temos que $m_{S_A \times S_B}(f) \leq m_{S_B}(g_x)$ e consequentemente

$$\sum_{S_B \in P_B} m_{S_A \times S_B}(f) \operatorname{vol}(S_B) \leqslant \sum_{S_B \in P_B} m_{S_B}(g_x) \operatorname{vol}(S_B) = s(g_x, P_B) \leqslant \int_B g_x = \mathcal{L}(x),$$

o que implica

$$\sum_{S_B \in P_B} m_{S_A \times S_B}(f) \operatorname{vol}(S_B) \leqslant m_{S_A}(\mathcal{L}).$$

Portanto

$$s(f,P) = \sum_{S_A \in P_A} \left[\sum_{S_B \in P_B} m_{S_A \times S_B}(f) \operatorname{vol}(S_B) \right] \operatorname{vol}(S_A) \leqslant \sum_{S_A \in P_A} m_{S_A}(\mathcal{L}) \operatorname{vol}(S_A) = s(\mathcal{L}, P_A)$$

De maneira análoga temos que

$$S(f,P) = \sum_{S_A \in P_A} \left[\sum_{S_B \in P_B} M_{S_A \times S_B}(f) \operatorname{vol}(S_B) \right] \operatorname{vol}(S_A).$$

E observando que também para $x \in S_A, M_{S_A \times S_B}(f) \geqslant M_{S_B}(g_x)$ segue que

$$\sum_{S_B \in P_B} M_{S_A \times S_B}(f) \operatorname{vol}(S_B) \geqslant \sum_{S_B \in P_B} M_{S_B}(g_x) \operatorname{vol}(S_B) = S(g_x, P_B) \geqslant \int_B^{\bar{}} g_x = \mathcal{U}(x),$$

o que implica

$$\sum_{S_B \in P_B} M_{S_A \times S_B}(f) \operatorname{vol}(S_B) \geqslant M_{S_A}(\mathcal{U}),$$

e que implica

$$S(f, P) \geqslant S(\mathcal{U}, P_A).$$

Com isso temos

$$s(f, P) \leqslant s(\mathcal{L}, P_A) \leqslant S(\mathcal{L}, P_A) \leqslant S(\mathcal{U}, P_A) \leqslant S(f, P).$$

o que mostra que \mathcal{L} é integrável e a identidade (2.5).

Finalmente observando que

$$s(f, P) \leqslant s(\mathcal{L}, P_A) \leqslant s(\mathcal{U}, P_A) \leqslant S(\mathcal{U}, P_A) \leqslant S(f, P).$$

temos que \mathcal{U} é integrável e a identidade (2.6).

2.5 Integrais Impróprias

Nesta seção estenderemos nosso conceito de integral para funções $f: X \to \mathbb{R}$ não necessariamente limitadas, definidas em subconjuntos de \mathbb{R}^n não necessariamente limitados. Entretanto nesta apresentação nos restringiremos somente ao caso em que X é aberto.

Seja $f: X \to \mathbb{R}$ uma função contínua e não-negativa definida no aberto $X \subset \mathbb{R}^n$. Se sup $\left\{ \int_K f: K \subset X \text{ \'e compacto, J-mensur\'avel} \right\} < \infty$, dizemos que f é "integrável", e definimos a integral imprópria de f sobre X como

$$\int_X f := \sup \big\{ \int_K f : K \subset X \text{ \'e compacto, J-mensur\'avel} \big\}.$$

Mais geralmente se $f: X \to \mathbb{R}$ é uma função contínua definida no aberto $X \subset \mathbb{R}^n$, denotando por f_+ e f_- as partes positiva e negativa de f respectivamente,⁵ dizemos que f é "integrável" se ambos f_+ e f_- o forem, e neste caso definimos

$$\tilde{\int}_X f := \tilde{\int}_X f_+ - \tilde{\int}_X f_-.$$

Se o aberto $X \subset \mathbb{R}^n$ e a função f forem limitados, então é natural perguntar: existe uma relação entre $\int_X f$ e $\tilde{\int}_X f$ (caso existam)? Ou, a existência de uma integral garante a existência da outra?

Como veremos se f for integrável então f será "integrável" e $\int_X f = \tilde{\int}_X f$.

Primeiramente consideremos a seguinte construção.

Lema 2.18 Se X é um aberto de \mathbb{R}^n , então existe uma sequência K_1, K_2, \cdots de compactos Jmensuráveis de X, tal que $K_n \subset \operatorname{int} K_{n+1}$ e $X = \bigcup_{n=1}^{\infty} K_n$.

 $[\]overline{{}^{5}f_{+}(x) = \max\{f(x), 0\} \text{ e } f_{-}(x) = \max\{-f(x), 0\}}$

Demonstração: Dado $n \in \mathbb{N}$, seja $D_n = \{x \in X : \operatorname{dist}(x, X^c) \geqslant \frac{1}{n} e ||x|| \leqslant n\}$. Não é difícil verificar que D_n possui as propriedades desejadas, exceto, possivelmente, ser J-mensurável. Para resolver isso para cada $x \in D_n$, consideremos um retângulo contendo x em seu interior e contido em int D_{n+1} . Assim o interior desses cubos cobrem D_n , que é compacto, e portanto admite uma subcobertura finita. Seja K_n a reunião dessa subcobertura finita. Então K_n é J-mensurável⁶,

$$D_n \subset \operatorname{int} K_n \subset K_n \subset \operatorname{int} D_{n+1} \subset D_{n+1} \subset \operatorname{int} K_{n+1}, X = \bigcup_{n=1}^{\infty} K_n.$$

Teorema 2.19 Seja $f: X \to \mathbb{R}$ uma função contínua definida no aberto $X \subset \mathbb{R}^n$. Se $\{K_n\}$ é uma sequência de compactos J-mensuráveis de X tal que $X = \bigcup_{n=1}^{\infty} K_n$ e $K_n \subset \operatorname{int} K_{n+1}$, então f é integrável sobre X se, e somente se a sequência $\{\int_{K_n} |f|\}$ é limitada, valendo neste caso,

$$\tilde{\int}_X f = \lim_{n \to \infty} \int_{K_n} f.$$

Observemos que deste Teorema f é integrável se, e somente se, |f| é integrável.

Demonstração: Suponhamos primeiramente que $f \ge 0$. Logo a sequência $\left\{ \int_{K_n} f \right\}$ é crescente, e portanto converge se, e somente se, é limitada.

Suponhamos f "integrável". Então

$$\int_{K_n} f \leqslant \sup \big\{ \int_K f : K \subset X \text{ \'e compacto, J-mensur\'avel} \big\} = \tilde{\int}_X f,$$

ou seja, a sequência $\left\{ \int_{K_n} f \right\}$ é limitada.

Reciprocamente suponhamos que $\left\{\int_{K_n} f\right\}$ seja limitada. Se $K \subset X$ é um compacto J-mensurável, então $K \subset \bigcup_{n=1}^{\infty} \operatorname{int} K_n$ e podemos extrair uma subcobertura finita de K. Logo da monotonicidade da cobertura $\{K_n\}, K \subset K_m$ para algum m. Portanto $\int_K f \leqslant \int_{K_m} f \leqslant \lim_{n \to \infty} \int_{K_n} f$. Sendo K arbitrário, concluímos que f é "integrável" e $\int_X f \leqslant \lim_{n \to \infty} \int_{K_n} f$.

No caso geral f é "integrável" se, e somente se, o são f_+ e f_- , e isto ocorre (do que já provamos) se, e somente se, as sequências $\left\{\int_{K_n} f_+\right\}$ e $\left\{\int_{K_n} f_-\right\}$ são limitadas. Observando que $0 \leqslant f_+(x), f_-(x) \leqslant |f(x)|,$ e que $|f(x)| = f_+(x) + f_-(x),$ vemos que as sequências $\left\{\int_{K_n} f_+\right\}$ e

⁶reunião finita de conjuntos J-mensuráveis

 $\left\{ \int_{K_n} f_- \right\} \text{ são limitadas se, e somente se, a sequência } \left\{ \int_{K_n} |f| \right\} \text{ \'e limitada. Neste caso temos ainda}$ que $\int_{K_n} f_+ \to \tilde{\int}_X f_+ \text{ e } \int_{K_n} f_- \to \tilde{\int}_X f_- \text{ e portanto } \int_{K_n} f = \int_{K_n} f_+ - \int_{K_n} f_- \to \tilde{\int}_X f_+ - \tilde{\int}_X f_- = \tilde{\int}_X f_ \tilde{\int}_X f_- = \tilde{\int}_X$

Teorema 2.20 Se $f: X \to \mathbb{R}$ é uma função contínua e limitada definida em um aberto limitado $X \subset \mathbb{R}^n$, então f é "integrável". Adicionalmente se f é integrável, então

$$\tilde{\int}_X f = \int_X f. \tag{2.7}$$

Demonstração: Sejam A um retângulo contendo X e M>0 tal que $|f(x)|\leqslant M, x\in X$. Portanto para todo compacto J-mensurável $K\subset X,$ $\int_K |f|\leqslant M.\mathrm{vol}(A),$ mostrando que f é "integrável".

Para mostrar (2.7), suponhamos $f \ge 0$ e integrável.

Então se $K \subset X$ é um compacto J-mensurável,

$$\int_K f \leqslant \int_A \tilde{f}_{|X} = \int_X f \implies \tilde{\int}_X f \leqslant \int_X f.$$

Por outro lado, se P é uma partição de A, sejam S_1, S_2, \cdots, S_r , os sub-retângulos determinados por P contidos em X. É fácil ver que $s(\tilde{f}_{|X}, P) = \sum_{i=1}^r m_{S_i}(f) \operatorname{vol}(S_i)$.

Além disso, considerando o compacto $K = \bigcup_{i=1}^{r} S_i$, temos

$$\sum_{i=1}^{r} m_{S_i}(f) \operatorname{vol}(S_i) \leqslant \sum_{i=1}^{r} \int_{S_i} f = \int_K f \leqslant \tilde{\int}_X f,$$

e concluímos que $\int_X f \leqslant \tilde{\int}_X f$.

Para o caso geral, escrevemos $f = f_+ - f_-$. Sendo f integráve, são integráveis f_+ e f_- , e portanto do que já provamos segue que

$$\int_{X} f = \int_{X} f_{+} - \int_{X} f_{-} = \int_{X} f_{+} - \int_{X} f_{-} = \int_{X} f,$$

como queríamos.

Corolário 2.21 Sejam $X \subset \mathbb{R}^n$ limitado e $f: X \to \mathbb{R}$ uma função contínua e limitada. Se f é integrável então

$$\int_X f = \tilde{\int}_{\text{int } X} f$$

Exemplo 2.22 Seja $X = \{(x,y) \in \mathbb{R}^2 : x > 1, y > 1\}$. Mostre que $f(x,y) = \frac{1}{x^2y^2}$ é "integrável" sobre X e calcule sua integral imprópria.

Considerando a família de subconjuntos compactos $K_n = [1 + \frac{1}{n}, n]^2 \subset X$, segue que a coleção K_n satisfaz as condições do Teorema 2.19 e portanto f é "integrável"se, e somente se, a sequência $\int_{K_n} f$ é limitada. Do Teorema de Fubini temos,

$$\int_{K_n} f = \int_{[1+\frac{1}{n},n]} \int_{[1+\frac{1}{n},n]} \frac{1}{x^2 y^2} dx \, dy = \left[\int_{[1+\frac{1}{n},n]} \frac{1}{x^2} dx \right]^2 = \left[\frac{n(n-1)-1}{n(n+1)} \right]^2 \longrightarrow 1.$$

Exercícios

- 1. Prove que se $X \subset \mathbb{R}^n$ é um conjunto aberto J-mensurável então a integral sobre X possui propriedades similares as apresentadas na Proposição 2.5.
- 2. Prove que se $f, g: X \to \mathbb{R}$ são integráveis, então as funções g, h definadas respectivamente por $g(x) = \max\{f(x), g(x)\}$ e $h(x) = \min\{f(x), g(x)\}$ são integráveis.

2.6 Mudança de Variáveis

Para demonstrar o Teorema de Mudança de Variáveis para Integrais Múltiplas precisamos introduzir o conceito de partição da unidade.

2.6.1 Partições da Unidade

Lema 2.23 Seja $A \subset \mathbb{R}^n$ um retângulo. Então existe uma função $\phi : \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} , tal que $\phi > 0$ em int A e $\phi \equiv 0$ caso contrário.

Demonstração: Consideremos $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \begin{cases} e^{\frac{-1}{x}}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, e definamos g(x) = f(x).f(1-x). Então $g \in C^{\infty}$, além disso, g é positiva para 0 < x < 1 e identicamente nula caso contrário.

Finalmente se
$$A = [a_1, b_1] \times \cdots \times [a_n, b_n]$$
, definimos $\phi(x) = g(\frac{x_1 - a_1}{b_1 - a_1}) \cdot g(\frac{x_2 - a_2}{b_2 - a_2}) \cdot \cdots \cdot g(\frac{x_n - a_n}{b_n - a_n})$.

Lema 2.24 Seja \mathcal{A} uma coleção de abertos de \mathbb{R}^n . Se $A = \bigcup_{U \in \mathcal{A}} U$, então existe uma sequência Q_1, Q_2, \cdots de retângulos contidos em A tais que $A \subset \operatorname{int} \bigcup_{i=1}^{\infty} Q_i$. Além disso, para cada i existe $U \in \mathcal{A}$ tal que $Q_i \subset U$ e todo ponto de A possui uma vizinhança que intercepta somente um número finito dos retângulos Q_i .

⁷Dizemos que a família Q_1, Q_2, \cdots é uma cobertura localmente finita de A.

Demonstração: Sejam K_1, K_2, \cdots uma sequência de compactos contidos em A como no Lema 2.18. Definimos $B_1 = K_1$ e para $i \geq 2$, $B_i = K_i \setminus \operatorname{int} K_{i-1}$. Então cada B_i é compacto e disjunto de K_{i-2} , visto que $K_{i-2} \subset \operatorname{int} K_{i-1}$. Para cada $x \in B_i$, considere o retângulo C_x centrado em x contido em A, disjunto de K_{i-2} e contido em algum aberto da coleção A.

Os interiores dos retângulos C_x cobrem B_i e dessa forma podemos extrair um número finito deles que ainda cobrem B_i . Seja C_i esta coleção finita de retângulos.

Seja $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2 \cdots$. Esta é uma família enumerável e mostraremos que ela satisfaz as conclusões do Lema.

De fato, por construção cada elemento de \mathcal{C} é um retângulo contido em algum elemento da coleção \mathcal{A} . Além disso, se $x \in A$, seja i o menor natural tal que $x \in \operatorname{int} K_i$. Então $x \in B_i = K_i \setminus \operatorname{int} K_{n-1}$. Desde que os interiores dos retângulos pertencentes a \mathcal{C}_i cobrem B_i , segue que x pertence ao interior de algum desses retângulos.

Finalmente dado $x \in A$ temos que $x \in \text{int } K_i$ para algum i. Cada retângulo pertencente a uma das coleções $\mathcal{C}_{i+2}, \mathcal{C}_{i+3}, \cdots$ é disjunto de K_i por construção, dessa forma o aberto, int K_i , pode interceptar, eventualmente, somente os retângulos das coleções $\mathcal{C}_1, \cdots, \mathcal{C}_{i+1}$.

Se $\phi : \mathbb{R}^n \to \mathbb{R}$ é uma função, então o suporte de ϕ é o conjunto $\operatorname{supp}_{\phi} = \overline{\{x \in \mathbb{R}^n : \phi(x) \neq 0\}}$.

Teorema 2.25 Seja \mathcal{A} uma coleção de abertos de \mathbb{R}^n . Se $A = \bigcup_{U \in \mathcal{A}} U$, então existe uma sequência de funções $\phi_1, \phi_2, \dots : \mathbb{R}^n \to \mathbb{R}$ de classe C^{∞} tais que:

- i) $\phi_i \geqslant 0$;
- ii) Cada ponto de A possui uma vizinhança que intercepta somente um número finito de conjunto $\operatorname{supp}_{\phi_i}$;
- iii) Para cada $x \in A$, $\sum_{i=1}^{\infty} \phi_i(x) = 1$;
- iv) Para cada i, o conjunto supp_{ϕ_i} é compacto;
- v) Para cada i, o conjunto $\operatorname{supp}_{\phi_i}$ está contido em um elemento de A.

A família de funções ϕ_1, ϕ_2, \cdots é chamada de partição da unidade subordinada à coleção \mathcal{A} .

Demonstração: Dados \mathcal{A} e A sejam Q_1, Q_2, \cdots a sequência de retângulos como no Lema 2.24. Para cada i seja $\psi_i : \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^{∞} estritamente positiva em int Q_i e identicamente nula caso contrário. Então $\psi_i \geqslant 0$ e supp $\psi_i = Q_i$ que é um compacto contido em algum elemento de \mathcal{A} e além disso, cada ponto de A possui uma vizinhança que intercepta somente um número finito de Q_i 's.

Resta-nos, portanto, verificar a propriedade iii). Mas observemos que se $x \in A$, somente um número finito dos $\psi_1(x), \psi_2(x), \cdots$ são diferentes de 0, e a série

$$\Psi(x) = \sum_{i=1}^{\infty} \psi_i(x)$$

é trivialmente convergente. Como todo $x \in A$ possui uma vizinhança na qual a função Ψ é uma soma finita de funções C^{∞} , segue que $\Psi \in C^{\infty}$. Além disso, já que, $\Psi(x) > 0$ qualquer que seja $x \in A$, podemos definir, para cada i, a função $\phi_i = \frac{\psi_i}{\Psi}$ que satisfaz cada condição do Teorema.

Agora exploremos a conexão entre partições da unidade e a integral imprópria. Primeiramente provemos um Lema auxiliar.

Lema 2.26 Seja $f: X \to \mathbb{R}$ uma função contínua definida no aberto $X \subset \mathbb{R}^n$. Se f é identicamente nula fora do compacto J-mensurável $K \subset X$, então f é "integrável" e

$$\tilde{\int}_X f = \int_K f.$$

Demonstração: Note que a integral $\int_K f$ existe pelo Corolário 2.13.

Seja agora $\{K_n\}$ uma sequência de compactos J-mensuráveis de X como no Lema 2.18. Logo existe $m \in \mathbb{N}$ tal que $K \subset \operatorname{int} K_m$. Como f é identicamente nula fora de K temos, pelo Lema 2.11,

$$\int_{K} f = \int_{K_{n}} f$$

para todo $n \ge m$. Este argumento aplicado à função |f| mostra que a sequência $\{\int_{K_n} |f|\}$ é convergente e mostrando portanto f é "integrável" sobre X e $\tilde{\int}_X f = \int_K f$.

Teorema 2.27 Sejam $f: X \to \mathbb{R}$ uma função contínua definida no aberto $X \subset \mathbb{R}^n$, $e \{\phi_n\}$ uma partição da unidade em X. Então a integral $\int_X^\infty f$ existe se e somente a série $\sum_{i=1}^\infty \int_X^\infty \phi_i |f|$ é convergente, e neste caso,

$$\tilde{\int}_X f = \sum_{i=1}^{\infty} \tilde{\int}_X \phi_i f.$$

Observemos que a integral $\int_X \phi_i f$ existe e é igual, pelo Lema anterior, a $\int_{\text{supp }\phi_i} \phi_i f$, visto que supp ϕ_i é um compacto J-mensurável.

Demonstração: Consideremos primeiramente o caso $f \ge 0$.

Suponhamos a série $\sum_{i=1}^{\infty} \int_{X} \phi_{i} |f|$ convergente. Se $K \subset X$ é um compacto J-mensurável, então existe $m \in \mathbb{N}$ tal que supp $\phi_{i} \cap K = \emptyset$, para todo i > m. Logo $f(x) = \sum_{i=1}^{m} \phi(x) f(x)$, qualquer que seja $x \in K$. Agora por linearidade e monotonicidade temos

$$\int_{K} f = \int_{K} \sum_{i=1}^{m} \phi_{i} f = \sum_{i=1}^{m} \int_{K} \phi_{i} f \leqslant \sum_{i=1}^{m} \int_{K \cup \operatorname{supp} \phi_{i}} \phi_{i} f = \sum_{i=1}^{m} \tilde{\int}_{X} \phi_{i} f \leqslant \sum_{i=1}^{\infty} \tilde{\int}_{X} \phi_{i} f,$$

onde na penúltima igualdade usamos o Lema anterior.

Portanto
$$f$$
 é "integrável" sobre X e $\int_X^\infty f \leqslant \sum_{i=1}^\infty \int_X^\infty \phi_i f$.

Por outro, supondo f "integrável" sobre X, para todo natural $m \in \mathbb{N}$ temos que $\sum_{i=1}^{m} \tilde{\int}_{X} \phi_{i} f =$

$$\tilde{\int}_X \sum_{i=1}^m \phi_i f \leqslant \tilde{\int}_X f, \text{ mostrando que a série } \sum_{i=1}^\infty \tilde{\int}_X \phi_i f \text{ \'e convergente e } \sum_{i=1}^\infty \tilde{\int}_X \phi_i f \leqslant \tilde{\int}_X f.$$

No caso geral temos que f é "integrável" se e somente se |f| é "integrável". Além disso do que demonstramos segue que

$$\tilde{\int}_{X} f = \tilde{\int}_{X} f_{+} - \tilde{\int}_{X} f_{=} \sum_{i=1}^{\infty} \tilde{\int}_{X} \phi_{i} f_{+} - \sum_{i=1}^{\infty} \tilde{\int}_{X} \phi_{i} f_{-} = \sum_{i=1}^{\infty} \tilde{\int}_{X} \phi_{i} (f_{+} - f_{-}) = \sum_{i=1}^{\infty} \tilde{\int}_{X} \phi_{i} f,$$

onde na penúltima igualdade somamos termos de séries convergentes.

Agora provemos a seguinte versão do Teorema de Mudança de variáveis.

Teorema 2.28 (Mudança de Variáveis) Seja $g: X \to \mathbb{R}^n$ uma função de classe C^1 injetora no aberto $X \subset \mathbb{R}^n$ tal que g'(x) é não singular para todo $x \in X$. Se $f: g(X) \to \mathbb{R}$ é integrável, então $(f \circ g)|\det g'|: X \to \mathbb{R}$ é integrável e

$$\int_{g(X)} f = \int_X (f \circ g) |\det g'|.$$

Demonstração: Iniciamos a prova com algumas importantes simplificações.

1ª redução - Se \mathcal{U} é uma coleção de abertos tal que $X = \bigcup_{U \in \mathcal{U}} U$ e para cada $U \in \mathcal{U}$ o Teorema é verdadeiro, então o Teorema é verdadeiro.

De fato, como g é uma aplicação aberta⁸, então $\{g(U):U\in\mathcal{U}\}$ é uma coleção de abertos tal que $g(X)=\bigcup_{U\in\mathcal{U}}g(U)$. Seja $\{\phi_i\}$ uma partição da unidade subordinada a esta cobertura. Se $\phi_i=0$ fora de g(U), sendo g injetora, temos que $(\phi_if)\circ g=0$ fora de U. Dessa forma temos

$$\int_{g(X)} \phi_i f = \int_{g(U)} \phi_i f = \int_{U} (\phi_i f) \circ g|\det g'| = \int_{X} (\phi_i f) \circ g|\det g'|.$$

Assim

$$\int_{g(X)} f = \sum_{i=1}^{\infty} \int_{g(X)} \phi_i f = \sum_{i=1}^{\infty} \int_X (\phi_i f) \circ g |\det g'| = \sum_{i=1}^{\infty} \int_X (\phi_i \circ g) (f \circ g) |\det g'| = \int_X (f \circ g) |\det g'|,$$

aqui usamos que $\{\phi_i \circ g\}$ é uma partição da unidade subordinada à coleção \mathcal{U} .

Observemos que o Teorema também segue supondo $\int_V f = \int_{g^{-1}(V)} (f \circ g) |\det g'|$, para todo V em uma cobertura por abertos de $g(X)^9$.

⁸Teorema da Função Inversa

⁹basta tomar a função g^{-1} .

 2^{a} redução - É suficiente provar o Teorema para a função f=1.

De fato, se o Teorema é válido para a função f=1, ele será válido para qualquer função constante.

Seja V um retângulo em g(X) e P uma partição de V. Para cada sub-retângulo $S \in P$ seja f_S a função constante igual a $m_S(f)$. Então

$$s(f,P) = \sum_{S \in P} m_S(f) \operatorname{vol}(S) = \sum_{S \in P} \int_{\text{int } S} f_S = \sum_{S \in P} \int_{g^{-1}(\text{int } S)} (f_S \circ g) |\det g'|$$

$$\leqslant \sum_{S \in P} \int_{g^{-1}(\text{int } S)} (f \circ g) |\det g'| \leqslant \int_{g^{-1}(V)} (f \circ g) |\det g'|.$$

Isso mostra que $\int_V f \leqslant \int_{g^{-1}(V)} (f \circ g) |\det g'|$. Um argumento similar, tomando $f_S = M_S(f)$, mostra que $\int_{g^{-1}(V)} (f \circ g) |\det g'| \leqslant \int_V f$ e o resultado segue da observação anterior.

 $3^{\mathbf{a}}$ redução - Sé o Teorema for válido para $g: X \to \mathbb{R}^n$ e para $h: Y \to \mathbb{R}^n$, com $g(X) \subset Y$, então ele será válido para a composição $h \circ g: X \to \mathbb{R}^n$.

De fato,

$$\int_{h\circ g(X)} f = \int_{g(X)} (f\circ h) |\det h'| = \int_X [(f\circ h)\circ g][|\det h'|\circ g] |\det g'| = \int_X [(f\circ h)\circ g] |\det (h\circ g)'|.$$

 $4^{\rm a}$ redução - O Teorema é válido se g for linear.

De fato, das reduções anteriores é suficiente mostrar que para todo retângulo aberto $V \subset X$ tem-se $\int_{q(V)} 1 = \int_{V} |\det g'|$. (Fato demostrado na última aula).

As reduções 3^a e 4^a juntas garantem que podemos assumir para qualquer $x \in X$ que g'(x) = I, pois trocando g pela composição $g'(x)^{-1} \circ g$, temos que $(g'(x)^{-1} \circ g)'(x) = I$, e sendo o Teorema válido para g'(x), se for válido para $g'(x)^{-1} \circ g$ ele será válido para a composição $g'(x) \circ g'(x)^{-1} \circ g = g$.

Observados tais fatos, provemos o Teorema por indução sobre n. Fica a cargo do leitor o caso n=1. Suponhamos então que o teorema seja válido em dimensão n-1.

Para cada $x_0 \in X$ é suficiente encontrar uma vizinhança aberta $U \subset X$ de x_0 para o qual o Teorema seja válido. Além disso podemos supor que $g'(x_0) = I$.

Seja $h: X \to \mathbb{R}^n$ dada por $h(x) = (g_1(x), \dots, g_{n-1}(x), x_n)$, onde $x = (x_1, \dots, x_n)$. Então $h'(x_0) = I$. Portanto existe uma vizinhança aberta $U' \subset X$ de x_0 , tal que h é injetora e det $h'(x) \neq 0$. Logo fica bem definida a função $k: h(U') \to \mathbb{R}^n$ por $k(x) = (x_1, \dots, x_{n-1}, g_n(h^{-1}(x)))$ e note que $g = k \circ h$.

Como $(g \circ h^{-1})'(h(x_0)) = g'(x_0)(h'(x_0))^{-1} = I$, temos que $\frac{\partial (g_n \circ h^{-1})}{\partial x_n}(h(x_0)) = 1$, e portanto $k'(h(x_0)) = I$. Assim em alguma vizinhança aberta $V \subset h(U')$ de $h(x_0)$, a função k é injetora e det $k'(x) \neq 0$. Pondo $U = k^{-1}(V)$ temos a decomposição $g = k \circ h$ satisfazendo a 3ª redução, isto é com $h: U \to \mathbb{R}^n$ e $k: V \to \mathbb{R}^n$ com $h(U) \subset V$.

Pela 3^a redução é suficiente mostrar o Teorema para as funções h e k, e pela 1^a redução basta tomar retângulos em U e V respectivamente.

Para a função h, seja $W \subset U$ um retângulo da forma $W = D \times [a_n, b_n]$, onde D é um retângulo n-1 dimensional. Como h preserva a última coordenada, h(W) está contido em um retângulo da

forma $E \times [a_n, b_n]$, onde E é um retângulo n-1 dimensional. Tomando extensões por 0 fora de h(W), segue pelo Teorema de Fubini que,

$$\int_{h(W)} 1 = \int_{[a_n, b_n]} \left[\int_E 1 \, dx_1 \cdots dx_{n-1} \right] dx_n.$$

Seja $h_{x_n}: D \to \mathbb{R}^{n-1}$ dada por $h_{x_n}(x_1, \dots, x_{n-1}) = (g_1(x_1, \dots, x_n), \dots, g_{n-1}(x_1, \dots, x_n))$. Então cada h_{x_n} é evidentemente injetora, visto que h o é, e

$$\det (h_{x_n})'(x_1, \dots, x_{n-1}) = \det h'(x_1, \dots, x_n) \neq 0.$$

Além disso,

$$\int_{E} 1 \ dx_{1} \cdots dx_{n-1} = \int_{h_{x_{n}}(D)} 1 \ dx_{1} \cdots dx_{n-1}.$$

Finalmente aplicando o Teorema no caso n-1 temos

$$\int_{h(W)} 1 = \int_{[a_n, b_n]} \left[\int_{h_{x_n}(D)} 1 \, dx_1 \cdots dx_{n-1} \right] dx_n$$

$$= \int_{[a_n, b_n]} \left[\int_{D} |\det (h_{x_n})'(x_1, \dots, x_{n-1})| \, dx_1 \cdots dx_{n-1} \right] dx_n$$

$$= \int_{[a_n, b_n]} \left[\int_{D} |\det (h'(x_1, \dots, x_{n-1})| \, dx_1 \cdots dx_{n-1} \right] dx_n = \int_{W} |\det h'|.$$

A verificação desta identidade para a função k é similar.

A condição det $g'(x) \neq 0$ pode ser eliminada das hipóteses do Teorema 2.28 via a seguinte versão do Teorema de Sard.

Teorema 2.29 (Teorema de Sard) Sejam $g: X \to \mathbb{R}^n$ de classe C^1 no aberto $X \subset \mathbb{R}^n$ e $B = \{x \in X : \det g'(x) = 0\}$. Então g(B) possui medida nula.

Demonstração: Seja $A \subset X$ um retângulo com todos os lados de comprimento, digamos, l > 0. Dado $\epsilon > 0$, seja $m \in \mathbb{N}$ tal que dividindo A em m^n retângulos, com lados iguais a $\frac{l}{m}$, tenhamos, para cada x em um tal retângulo S,

$$||g'(x)(y-x) - g(y) - g(x)|| < \epsilon ||x - y|| \le \epsilon \frac{l\sqrt{n}}{m}, \ \forall y \in S.$$
 (2.8)

Agora se $x \in S \cap B$, como det g'(x) = 0, o conjunto $\{g'(x)(y-x) : y \in S\}$ está contido em um subespaço (n-1) dimensional V de \mathbb{R}^n . Além disso de (2.8) temos que o conjunto $\{g(y) - g(x) : y \in S\}$ dista menos de $\epsilon \frac{l\sqrt{n}}{m}$ de V, e assim o conjunto $\{g(y) : y \in S\}$ dista menos de $\epsilon \frac{l\sqrt{n}}{m}$ do hiperplano V + g(x). Além disso, se $M = \sup_{\xi \in S} \|g'(\xi)\|$ então $\|g(x) - g(y)\| \leqslant M\|x - y\| \leqslant M \frac{l\sqrt{n}}{m}$.

Assim, se S intercepta B, o conjunto $\{g(y):y\in S\}$ está contido em um cilindro cuja altura é menor que $2\epsilon\frac{l\sqrt{n}}{m}$ e cuja base é uma esfera (n-1) dimensional de raio menor que $M\frac{l\sqrt{n}}{m}$.

Este cilindro tem, portanto, volume menor que $\epsilon C \frac{l^n}{m^n}$, onde C = C(n) é uma constante. Como existem no máximo m^n tais retângulos, $g(A \cap B)$ está contido em um conjunto de volume menor que $\epsilon C \frac{l^n}{m^n} m^n = \epsilon C l^n$. Sendo $\epsilon > 0$ arbitrário, segue que $g(A \cap B)$ tem medida nula. Como \mathbb{R}^n é Lindelöf, podemos cobrir X por uma sequência de tais retângulos A, e assim provamos o resultado.

Exercícios

- 1. Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \begin{cases} e^{\frac{-1}{x}}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$ é de classe C^{∞} , porém não é analítica
- 2. Mostre que se $x \notin \operatorname{supp}_{\phi},$ então existe uma vizinhança U de x tal que $\phi_{|U} \equiv 0.$
- 3. Prove o Teorema 2.28 no caso n = 1.
- 4. Prove o Teorema 2.28 sem a hipótese det $g'(x) \neq 0$.
- 5. Calcule o volume da esfera n-dimensional de raio r.

Capítulo 3

Integração em Cadeias

3.1 Tensores e formas

Seja V um espaço vetorial real. O produto cartesiano $V \times \cdots \times V$ de k cópias de V será denotado por V^k . Dizemos que o funcional $f:V^k \to \mathbb{R}$ é multilinear se for linear em cada coordenada. Chamamos tal funcional de um tensor de ordem k sobre V, ou simplesmente um k-tensor em V. O conjunto dos k-tensores em V será denotado por $\mathcal{I}^k(V)$. Com as operações usuais, é fácil ver que $\mathcal{I}^k(V)$ é um espaço vetorial real.

Podemos também introduzir uma operação entre tensores de diferentes ordens. Se $f \in \mathcal{I}^k(V)$ e $g \in \mathcal{I}^l(V)$ definimos o produto tensorial de f e g como o tensor $f \otimes g \in \mathcal{I}^{k+l}(V)$ dado por

$$f \otimes g(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = f(v_1, \dots, v_k,)g(v_{k+1}, \dots, v_{k+l}).$$

É imediato que esta operação é associativa e distributiva com relação a soma (ver Exercícios), porém não é, em geral comutativa. Por exemplo, dados dois funcionais não nulos $f,g \in V^*, f \neq g$ é fácil ver que $f \otimes g \neq g \otimes f$.

Observando que $\mathcal{I}^1(V) = V^*$ o produto tensorial \otimes nos permite expressar os demais $\mathcal{I}^k(V)$, em termos de $\mathcal{I}^1(V)$.

Teorema 3.1 Sejam $B = \{v_1, \dots, v_n\}$ uma base de V e $B^* = \{\varphi_1, \dots, \varphi_n\}$ sua base dual. Então o conjunto $\{\varphi_{i_1} \otimes \dots \otimes \varphi_{i_k} \in \mathcal{I}^k(V) : 1 \leqslant i_1, \dots, i_k \leqslant n\}$, é uma base de $\mathcal{I}^k(V)$, o qual portanto, possui dimensão n^k .

Demonstração: Esta demonstração é a extensão natural daquela sobre bases duais. Observando primeiramente que

$$\varphi_{i_1} \otimes \cdots \otimes \varphi_{i_k}(v_{j_1}, \cdots, v_{j_k}) = \delta_{i_1, j_1} \cdots \delta_{i_k, j_k} = \begin{cases} 1, & \text{se } j_1 = i_1, \cdots, j_k = i_k \\ 0, & \text{caso contrário} \end{cases}$$

para todos $\varphi_{i_1}, \dots, \varphi_{i_k} \in B^*$ e $v_{j_1}, \dots, v_{j_k} \in B$, temos para $w_i = \sum_{j=1}^n \alpha_{i,j} v_j \in V$, $i = 1, \dots, k$ que

$$\varphi_{i_1} \otimes \cdots \otimes \varphi_{i_k}(w_1, \cdots, v_k) = \varphi_{i_1}(\sum_{j=1}^n \alpha_{1,j}v_j) \cdots \varphi_{i_k}(\sum_{j=1}^n \alpha_{k,j}v_j) = \alpha_{1,i_1} \cdots \alpha_{1,i_k}$$

Portanto, se $f \in \mathcal{I}^k(V)$ temos

$$f(w_{1}, \dots, w_{k}) = \sum_{j_{1}=1}^{n} \alpha_{1,j_{1}} f(v_{j_{1}}, w_{2}, \dots, w_{k}) = \sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \alpha_{1,j_{1}} \alpha_{2,j_{2}} f(v_{j_{1}}, v_{j_{2}}, w_{3}, \dots, w_{k})$$

$$= \dots = \sum_{j_{1}, \dots, j_{k}=1}^{n} \alpha_{1,j_{1}} \dots \alpha_{k,j_{k}} f(v_{j_{1}}, \dots, v_{j_{k}})$$

$$= \sum_{j_{1}, \dots, j_{k}=1}^{n} f(v_{j_{1}}, \dots, v_{j_{k}}) \varphi_{j_{1}} \otimes \dots \otimes \varphi_{j_{k}}(w_{1}, \dots, w_{k}).$$

Ou seja,

$$f = \sum_{j_1, \dots, j_k=1}^n f(v_{j_1}, \dots, v_{j_k}) \varphi_{j_1} \otimes \dots \otimes \varphi_{j_k}.$$

Para mostrar a independência linear, suponhamos que existam números reais $\alpha_{i_1,\cdots,i_k} \in \mathbb{R}$ tais que

$$\sum_{i_1,\dots,i_k=1}^n \alpha_{i_1,\dots,i_k} \varphi_{i_1} \otimes \dots \otimes \varphi_{i_k} = 0.$$

Então

$$\sum_{i_1=1}^n \cdots \sum_{i_k=1}^n \alpha_{i_1,\cdots,i_k} \varphi_{i_1} \otimes \cdots \otimes \varphi_{i_k}(v_{j_1},\cdots,v_{j_k}) = \sum_{i_1=1}^n \cdots \sum_{i_k=1}^n \alpha_{i_1,\cdots,i_k} \delta_{i_1,j_1} \cdots \delta_{i_k,j_k} = \alpha_{j_1,\cdots,j_k} = 0.$$

Podemos estender para o caso de tensores a seguinte construção já familiar para espaços duais. Sejam V e W espaços vetoriais e $T:V\to W$ uma transformação linear. Definimos $T^*:\mathcal{I}^k(W)\to\mathcal{I}^k(V)$ por

$$T^*(f)(v_1,\cdots,v_k)=f(Tv_1,\cdots,Tv_k).$$

É fácil ver que T^* é uma transformação linear e $T^*(f \otimes g) = T^*f \otimes T^*g$.

Definição Dizemos que um elemento $g \in \mathcal{I}^2(V)$ é um produto interno em V, se g é simétrico e positivo definido, isto é, g(u,v) = g(v,u), $\forall u,v \in V$ e g(u,u) > 0, $\forall u \neq 0$. Reservamos o símbolo \langle , \rangle para o produto interno usual em \mathbb{R}^n .

Teorema 3.2 Se $g \in \mathcal{I}^2(V)$ é um produto interno em V então existe uma base $\{v_1, \dots, v_n\}$ de V tal que $g(v_i, v_j) = \delta_{i,j}$. Portanto existe um isomorfismo $T : \mathbb{R}^n \to V$ para o qual $g(Tx, Ty) = \langle x, y \rangle, \forall x, y \in \mathbb{R}^n$, isto é $T^*g = \langle , \rangle$.

Demonstração: Análoga à prova do método de ortogonalização de Gram-Schmidt em \mathbb{R}^n .

Exercícios

- 1. Seja V um espaço vetorial real.
 - (a) Se $f \in \mathcal{I}^k(V)$ e $g \in \mathcal{I}^l(V)$, mostre que $f \otimes g \in \mathcal{I}^{k+l}(V)$.
 - (b) Se $h \in \mathcal{I}^m(V)$ mostre que $(f \otimes g) \otimes h = f \otimes (g \otimes h)$. Se l = m mostre que $f \otimes (g + h) = f \otimes g + f \otimes h$.

(c)

3.1.1 Tensores Alternados

Dizemos que um k-tensor $f \in \mathcal{I}^k(V)$ é alternado se $f(v_1, \dots, v_k) = 0$ sempre que houver repetições $v_i = v_j$ com $i \neq j$. Denotamos por $\Omega^k(V)$ o subespaço de $\mathcal{I}^k(V)$ constituído pelos k-tensores alternados.

Dizemos que um k-tensor $f \in \mathcal{I}^k(V)$ é anti-simétrico quando $f(v_1, \dots, v_i, \dots, v_j, \dots, v_k) = -f(v_1, \dots, v_j, \dots, v_i, \dots, v_k)$. É fácil ver que $f \in \Omega^k(V)$ se e somente se f é anti-simétrico.

Para tornar elegante algumas demonstrações das propriedades dos k-tensores alternados, introduzimos o grupo simétrico G_k das permutações $\sigma: \{1, 2, \cdots, k\} \to \{1, 2, \cdots, k\}$. Recordemos que uma transposição é uma permutação $\tau \in G_k$ que para algum $i \neq j$ tem $\tau(i) = j$ e $\tau(j) = i$ com os demais elementos permancendo fixos. Recordemos também que $\#G_k = k!$.

Toda permutação $\sigma \in G_k$ se escreve como um produto $\sigma = \tau_1 \cdots \tau_s$ de transposições. Isto pode ser feito de diversas formas, porém o número $\operatorname{sgn} \sigma := (-1)^s$ depende somente de σ . É claro que $\operatorname{sgn}(\sigma.\rho) = \operatorname{sgn} \sigma \operatorname{sgn} \rho$ e $\operatorname{sgn} \sigma^{-1} = \operatorname{sgn} \sigma$.

Agora se $\sigma \in G_k$ e $f \in \mathcal{I}^k(V)$, definimos o tensor $f^{\sigma} \in \mathcal{I}^k(V)$ por $f^{\sigma}(v_1, \dots, v_k) := f(v_{\sigma(1)}, \dots, v_{\sigma(k)})$. Não é difícil mostrar que $(f^{\sigma})^{\rho} = f^{\rho,\sigma} \, \forall \, \sigma, \rho \in G_k$.

Com esta definição podemos mostrar que o tensor $f \in \mathcal{I}^k(V)$ é alternado se, e somente se, $f^{\sigma} = \operatorname{sgn} \sigma f, \forall \sigma \in G_k$.

Lema 3.3 Seja $B = \{v_1, \dots, v_n\}$ uma base de V. Se $f, g \in \Omega^k(V)$ são tais que $f(v_{i_1}, \dots, v_{i_k}) = g(v_{i_1}, \dots, v_{i_k})$ para toda sequência crescente $(i_1 < \dots < i_k)$ de elementos do conjunto $\{1, \dots, n\}$, então f = g.

Demonstração:

Teorema 3.4 Seja $B = \{v_1, \dots, v_n\}$ uma base de V e $I = (i_1 < \dots < i_k)$ uma sequência crescente de elementos do conjunto $\{1, \dots, n\}$. Então existe um único tensor $\psi_I \in \Omega^k(V)$ tal que para toda sequência crescente $J = (j_1 < \dots < k_k)$ de elementos do conjunto $\{1, \dots, n\}$

$$\psi_I(v_{j_1}, \dots, v_{j_k}) = \begin{cases} 0, & \text{se } I \neq J \\ 1, & \text{se } I = J. \end{cases}$$

Os tensores ψ_I são chamados elementares e formam uma base de $\Omega^k(V)$. Além disso, podemos escrever

$$\psi_I = \sum_{\sigma \in G_k} \operatorname{sgn} \sigma \left(\varphi_{i_1} \otimes \cdots \otimes \varphi_{i_k} \right)^{\sigma}, \tag{3.1}$$

onde $B^* = \{\varphi_1, \dots, \varphi_n\}$ é a base dual da base B.

Demonstração:

Portanto
$$\dim(\Omega^k(V)) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

Lema 3.5 Seja $T: V \to W$ uma trasformação linear. Se $f \in \Omega^k(V)$ então $T^*f \in \Omega^k(W)$.

Demonstração:

Exemplo 3.6 Um representante importante em $\Omega^n(\mathbb{R}^n)$ é o determinante. Como $\dim(\Omega^n(\mathbb{R}^n)) = 1$ o único n-tensor elementar em \mathbb{R}^n é o tensor $\psi_{(1,\dots,n)}$. Dessa forma se $v_i = (v_{1i},\dots,v_{ni}) \in \mathbb{R}^n$, $i = 1,\dots,n$, definimos o determinante da matrix (v_{ij}) pela equação

$$\det(v_{ij}) = \psi_{(1,\dots,n)}(v_1,\dots,v_n)$$

A fórmula (3.1) para ψ_I dá uma expressão para o cálculo da função determinante:

$$\det(v_{ij}) = \sum_{\sigma \in G_n} \operatorname{sgn} \sigma (\varphi_1 \otimes \cdots \otimes \varphi_n)^{\sigma} (v_1, \cdots, v_n)$$

$$= \sum_{\sigma \in G_n} \operatorname{sgn} \sigma (\varphi_1 \otimes \cdots \otimes \varphi_n) (v_{\sigma(1)}, \cdots, v_{\sigma(n)})$$

$$= \sum_{\sigma \in G_n} \operatorname{sgn} \sigma \varphi_1 (v_{\sigma(1)}) \cdots \varphi_n (v_{\sigma(n)})$$

$$= \sum_{\sigma \in G_n} \operatorname{sgn} \sigma v_{1\sigma(1)} \cdots v_{n\sigma(n)}$$

Finalmente podemos expressar todo $\psi_I \in \Omega^k(\mathbb{R}^n)$ diretamente como uma função de k-uplas de vetores de \mathbb{R}^n .

Teorema 3.7 Seja ψ_I um tensor alternado elementar em \mathbb{R}^n correspondente a base canônica de \mathbb{R}^n , onde $I = (i_1 < \cdots < i_k)$ é uma sequência crescente em $\{1, \cdots, n\}$. Dados os vetores $v_i = (v_{1i}, \cdots, v_{ni}) \in \mathbb{R}^n$, $i = 1, \cdots, k$ em \mathbb{R}^n temos

$$\psi_I(v_1,\cdots,v_k)=\det X_I,$$

onde $X_I = (v_{lj})_{k \times k}$ é a matriz obtida da matriz $(v_{i,j})_{n \times k}$ cujas linhas são as indexadas por $I = (i_1 < \cdots < i_k)$.

Demonstração: Um cálculo direto mostra que

$$\psi_I(v_1, \dots, v_k) = \sum_{\sigma \in G_k} \operatorname{sgn} \sigma \, \varphi_{i_1}(v_{\sigma(1)}) \dots \varphi_{i_k}(v_{\sigma(k)})$$
$$= \sum_{\sigma \in G_k} \operatorname{sgn} \sigma \, v_{i_1 \sigma(1)} \dots v_{i_k \sigma(k)}$$

que é a formula para o determinante da matriz X_I .

Em particular podemos derivar o seguinte resultado.

Teorema 3.8 Sejam $\{v_1, \dots, v_n\}$ uma base de V e $f \in \Omega^n(V)$. Então dados $\omega_i = \sum_{j=1}^n \alpha_{ij} v_j \in V$, $i = 1, \dots, n$ temos

$$f(w_1, \cdots, w_n) = f(v_1, \cdots, v_n) \det(\alpha_{ij}).$$

Exemplo 3.9 Um tensor alternado elementar no espaço $\Omega^3(\mathbb{R}^4)$, correspondente a base canônica de \mathbb{R}^4 é dado por

$$\psi_I(x, y, z) = \det \begin{bmatrix} x_i & y_i & z_i \\ x_j & y_j & z_j \\ x_k & y_k & z_k \end{bmatrix},$$

onde $x = (x_1, x_2, x_3, x_4)$, $y = (y_1, y_2, y_3, y_4)$, $z = (z_1, z_2, z_3, z_4)$ e I = (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4). Portanto um elemento arbitrário de $\Omega^3(\mathbb{R}^4)$ é uma combinação linear desses quatro tensores.

Observamos que do Teorema 3.8 um tensor alternado $f \in \Omega^n(V)$ separa as bases de V em duas classes disjuntas, a saber aquelas para os quais $f(v_1, \dots, v_n) > 0$ e aquelas para os quais $f(v_1, \dots, v_n) < 0$. Ainda deste Teorema duas bases $B_1 = \{v_1, \dots, v_n\}$ e $B_2 = \{w_1, \dots, w_n\}$ de V relacionadas por sua matriz de mudança de base A, pertencem a mesma classe, se e somente se, det A > 0. Fixado uma base $\{v_1, \dots, v_n\}$ denotamos por $[v_1, \dots, v_n]$ sua classe de equivalência e chamamos de orientação do espaço V.

Agora sejam $T \in \mathcal{I}^2(V)$ é um produto interno em V e $\{v_1, \dots, v_n\}$ e $\{w_1, \dots, w_n\}$ são bases de V ortonormais com relação a T. Sendo $A = (a_{ij})$ a matriz mudança de base

$$w_i = \sum_{j=1}^n a_{ij} v_j,$$

tem-se que

$$\delta_{ij} = T(w_i, w_j) = T(\sum_{l=1}^n a_{il} v_l), \sum_{k=1}^n a_{jk} v_k) = \sum_{l,k=1}^n a_{il} a_{jk} T(v_l, v_k) = \sum_{k=1}^n a_{ik} a_{jk}$$

que corresponde ao termo b_{ij} do produto AA^T . Portanto $AA^T=I$ donde det $A=\pm 1$. Dessa forma se $f\in\Omega^n(V)$ é tal que $f(v_1,\dots,v_n)=\pm 1$ então $f(w_1,\dots,w_n)=\pm 1$. Logo fixada uma orientação $[v_1,\dots,v_n]$ para V, segue que existe um único tensor alternado $\omega\in\Omega^n(V)$ para o qual

$$\omega(w_1,\cdots,w_n)=1$$

qualquer que seja a base ortonormal $\{w_1, \dots, w_n\}$ de V. Este tensor é chamado o elemento de volume de V, associado ao produto interno T e à orientação $[v_1, \dots, v_n]$.

Com esta nomenclatura o det é o elemento de volume de \mathbb{R}^n determinado pelo produto interno canônico e a orientação usual $[e_1, \dots, e_n]$. Além disso, como já foi observado no capítulo anterior $|\det(v_1, \dots, v_n)|$ é o volume do retângulo determinado pelos segmentos que unem a origem aos vetores v_1, \dots, v_n .

Concluímos com a seguinte construção:

Dados $v_1, \dots, v_{n-1} \in \mathbb{R}^n$ consideremos o seguinte funcional linear: $\mathbb{R}^n \ni \xi \mapsto \det(v_1, \dots, v_{n-1}, \xi) \in \mathbb{R}$. Segue do Teorema de Representação de Riez que existe um único $z \in \mathbb{R}^n$ tal que $\langle \xi, z \rangle = \det(v_1, \dots, v_{n-1}, \xi)$. Tal elemento é denotado por $z = v_1 \times \dots \times v_{n-1}$ e é chamado o produto vetorial dos vetores v_1, \dots, v_{n-1} . É imediato que $\xi \perp v_j, j = 1, \dots, n-1$.

Produto exterior

Observamos que o tensor produto $f \otimes g$ definido para $f \in \mathcal{I}^k$ e $g \in \mathcal{I}^l$ é em geral não alternado mesmo quando f e g o são. Algumas vezes isso é necessário. Dessa forma introduziremos uma nova operação, cujas propriedades que ela satisfaz, são para nossas necessidades mais importantes que sua própria definição.

Dados os funcionais $\varphi_1, \dots, \varphi_k \in V^*$ definimos o produto exterior $\varphi_1 \wedge \dots \wedge \varphi_k(v_1, \dots, v_k) := \det(\varphi_i(v_j))$.

Corolário 3.10 Com a notação do Teorema 3.4 temos

$$\psi_I = \varphi_{i_1} \wedge \cdots \wedge \varphi_{i_k}.$$

Teorema 3.11 Se $f \in \Omega^k(V)$ e $g \in \Omega^l(V)$ então $f \wedge g \in \Omega^{k+l}(V)$ e são válidas as seguintes propriedades:

- i) $f \wedge (g \wedge h) = (f \wedge g) \wedge h;$
- ii) $(\alpha f) \wedge g = \alpha(f \wedge g) = f \wedge (\alpha g);$
- iii) Se f e g são de mesma ordem então: $(f+g) \wedge h = f \wedge h + g \wedge h$;
- iv) $g \wedge f = (-1)^{kl} f \wedge g$;
- v) Se $T: V \to W$ é linear e f e g são alternados em W então $T^*(f \land g) = T^*f \land T^*g$.

Demonstração:

3.2 Vetores tangentes

Dado $p \in \mathbb{R}^n$, denotamos por $T_p(R^n) := \{p\} \times \mathbb{R}^n$. Um elemento de $T_p(\mathbb{R}^n)$ é um par (p, v), com $v \in \mathbb{R}^n$. Munido das operações:

$$(p, v) + (p, w) := (p, v + w)$$
 e $\alpha(p, v) := (p, \alpha v)$

 $T_p(\mathbb{R}^n)$ é um espaço vetorial chamado o espaço tangente à \mathbb{R}^n no ponto p. Como existe uma estreita relação entre $T_p(\mathbb{R}^n)$ e \mathbb{R}^n é fácil ver que muitas das estruturas que podem ser definidas em \mathbb{R}^n possuem um análogo bastante natural em $T_p(\mathbb{R}^n)$. Por exemplo podemos munir $T_p(\mathbb{R}^n)$ com o produto interno $\langle (p,v),(p,w)\rangle_p:=\langle v,w\rangle$. Também é imediato que se $\{v_1,\cdots,v_n\}$ é uma base ortonormal de \mathbb{R}^n então $\{(p,v_1),\cdots,(p,v_n)\}$ é uma base ortonormal de $T_p(\mathbb{R}^n)$. Além disso, se $\{e_1,\cdots,e_n\}$ é a base canônica de \mathbb{R}^n então $\{(p,e_1),\cdots,(p,e_n)\}$ é chamado de base canônica de $T_p(\mathbb{R}^n)$ e $[(p,e_1),\cdots,(p,e_n)]$ é definida como sua orientação usual.

Nós denotamos por $T(\mathbb{R}^n)$ a união dos espaços tangentes $T(\mathbb{R}^n):=\bigcup_{p\in\mathbb{R}^n}T_p(\mathbb{R}^n)$ chamado fibrado

tangente de \mathbb{R}^n (= $\mathbb{R}^n \times \mathbb{R}^n$). Imitando esta construção denotamos por $\Lambda^k(\mathbb{R}^n) := \bigcup_{p \in \mathbb{R}^n} \Omega^k(T_p(\mathbb{R}^n))$.

Dado um aberto $U \subset \mathbb{R}^n$, um campo vetorial tangente a \mathbb{R}^n definido no aberto U é uma função $F: U \to T(\mathbb{R}^n)$ que a cada $p \in U$ associa $F(p) \in T_p(\mathbb{R}^n)$. Portanto F tem a forma F(p) = (p, f(p)) para alguma função $f: U \to \mathbb{R}^n$. Dizemos que F é de classe C^k se f é de classe C^k .

Analogamente, uma forma diferencial de ordem k definida sobre o aberto U é uma função $\omega: U \to \Lambda^k(\mathbb{R}^n)$ tal que $\omega(p) \in \Omega^k(T_p(\mathbb{R}^n)), \forall p \in U$. Assim para cada $p \in U$, o valor de w(p) em uma k-upla $((p, v_1), \dots, (p, v_k)) \in (T_p(\mathbb{R}^n))^k$ será $\omega(p)((p, v_1), \dots, (p, v_k))$.

Para cada $i=1,\cdots,n$ definimos a 1-forma diferencial $\tilde{\varphi}_i$ pela equação

$$\tilde{\varphi}_i(x)(x, e_j) = \begin{cases} 0, \text{ se } i \neq j \\ 1, \text{ se } i = j. \end{cases}$$

As formas $\tilde{\varphi}_i$ são chamadas elementares em \mathbb{R}^n . Similarmente dado uma sequência crescente $I=(i_1<\cdots,i_k)$ no conjunto $\{1,\cdots,n\}$, definimos a k-forma $\tilde{\psi}_I$ em \mathbb{R}^n pela equação

$$\tilde{\psi}_I(x) = \tilde{\varphi}_{i_1}(x) \wedge \cdots \wedge \tilde{\varphi}_{i_k}(x).$$

Podemos demonstrar que se ω é uma k-forma definida no aberto U então

$$\omega(x) = \sum_{I} \omega(x)((x, e_{i_1}), \cdots, (x, e_{i_k}))\tilde{\psi}_I(x)$$

Observamos ainda que para cada x as 1-formas (funcionais) constituem uma base para $(T_x(\mathbb{R}^n))^* = \mathcal{I}^1(T_x(\mathbb{R}^n))$.

Um campo escalar no aberto U de \mathbb{R}^n é uma função $f:U\to\mathbb{R}$ de classe C^r . Também dizemos que f é uma forma diferencial de ordem 0. Se ω é uma k-forma sobre U então definimos o produto exterior da 0-forma f com a k-forma w pela expressão

$$(f \wedge \omega)(x) := f(x)\omega(x)$$

Diferencial

Primeiramente definimos a diferencial de uma 0-forma.

Seja $f:U\to\mathbb{R}$ uma função de classe C^r definida no aberto $U\subset\mathbb{R}^n$. Definimos a 1-forma df em U pela expressão:

$$df(x)(x,v) := f'(x)v$$

Esta forma é chamada a diferencial de f. Ela é de classe C^{r-1} .

È fácil ver que o operador d é linear em 0-formas.

Usando este operador podemos expressar os elementos $\tilde{\varphi}_i$ como nos cursos de cálculo.

Lema 3.12 Sejam $\tilde{\varphi}_1, \dots, \tilde{\varphi}_n$ as forma elementares em \mathbb{R}^n . Se $\pi_i : \mathbb{R}^n \to \mathbb{R}$ é a i-ésima projeção $\pi_i(x) = x_i$, então $d\pi_i = \tilde{\varphi}_i$.

Demonstração:
$$d\pi_i(x)(x,v) = (\pi_i)'(x)v = [0\cdots 1\ 0\cdots 0]\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = v_i$$

Portanto $d\pi_i = \tilde{\varphi}_i$.

No que segue usaremos o seguinte abuso de notação $\pi_i = x_i$, isto é, denotaremos pela função seu valor em cada ponto, o que é usual em muitos contextos, por exemplo a função exponencial e^x . Com esta observação escreveremos $dx_i = \tilde{\varphi}_i$. Além disso, se $I = (i_1 < \cdots < i_k)$ é uma sequência crescente em $\{1, \cdots, n\}$ também introduzimos a notação $dx_I := dx_{i_1} \wedge \cdots \wedge dx_{i_k}$. Dessa forma uma k-forma arbitrária ω pode ser escrita na forma $\omega = \sum b_I dx_I$, para apropriadas funções b_I .

Lema 3.13 Seja $f: U \to \mathbb{R}$ uma função de classe C^r definida no aberto $U \subset \mathbb{R}^n$. Então

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

Demonstração:

Agora definimos o operador diferencial em geral.

Seja $\Omega^k(U)$ o espaço vetorial de todas as k-formas definidas em U.

Teorema 3.14 Existe uma única transformação linear $d: \Omega^k(U) \to \Omega^{k+1}(U)$ definida para todo $k \ge 0$ tal que

- 1. Se f é uma 0- forma então df(x)(x, v) = f'(x)v;
- 2. Se ω e η são formas de ordem k e l respectivamente, então $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$;
- 3. Para toda forma ω , $d(d\omega) = 0$.

Demonstração: Se $\omega = \sum f_I dx_I$ definimos $d\omega = \sum df_I \wedge dx_I$.

Se $f: U \to \mathbb{R}^m$ é uma aplicação diferenciável então $f'(x) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Com uma pequena adaptação definimos a transformação linear: $f_*: T_x(\mathbb{R}^n) \to T_{f(x)}(\mathbb{R}^m)$ dada por

$$f_*(x,v) := (f(x), f'(x)v)$$

Chamada a aplicação linear induzida pela aplicação diferenciável f.

Observamos que pela regra da cadeia dado (x, v) então o vetor $f_*(x, v)$ é o vetor velocidade da curva $\gamma(t) = f(x + tv)$ em t = 0.

Regra da cadeia implica $(g \circ f)_* = g_* \circ f_*$.

$$U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$$

Esta transformação induz ainda uma outra $f^*: \Omega^k(V) \to \Omega^k(U)$

$$f^*(\omega)(x)((x,v_1),\cdots,(x,v_k)) = \omega(f(x))(f_*(x,v_1),\cdots,f_*(x,v_k)).$$

A relação entre f^* e a adjunta de f_* é a seguinte:

Dado $f: U \to \mathbb{R}^m$ de classe C^{∞} com f(x) = y esta induz a transformação linear

$$T = f_* : T_x(\mathbb{R}^n) \to T_y(\mathbb{R}^m)$$

esta transformação da origem a transformação dual

$$T^*: \Omega^k(T_y(\mathbb{R}^m)) \to \Omega^k(T_x(\mathbb{R}^n))$$

e satisfaz a equação

$$T^*(\omega(y)) = (f^*\omega)(x),$$

$$T^*(\omega(y))((x,v_1),\cdots,(x,v_k)) = \omega(f(x))(f_*(x,v_1),\cdots,f_*(x,v_k)) = (f^*\omega)(x)((x,v_1),\cdots,(x,v_k)).$$

Este fato nos permite escrever resultados anteriores sobre transformações duais T^* como resultados sobre formas.

PROVAS DE ANOS ANTERIORES

Questão 01: Seja $\gamma:[a,b]\to\mathbb{R}^n\ (n>1)$ uma curva contínua e retificável. Mostre que $\gamma([a,b])$ possui medida nula.

Questão 02: Dê exemplos de um conjunto J-mensurável $X \subset \mathbb{R}^2$ e de uma função $f: X \to \mathbb{R}$ limitada para os quais o Teorema de Fubini não se aplica. Justifique.

Questão 03: Seja $f:U\to\mathbb{R}^m$ de classe C^1 no aberto $U\subset\mathbb{R}^m$. Suponha que para algum $a\in U,\,f'(a)$ seja um isomorfismo. Mostre que

$$\lim_{r \to 0} \frac{\operatorname{vol} f(B(a; r))}{\operatorname{vol} B(a; r)} = |\det f'(a)|.$$

Questão 04: Seja $f:[0,1]\to\mathbb{R}$ uma função integrável. Suponha que para $1\leqslant p< q<\infty,$ $\int_{[0,1]}|f|^p\leqslant 1$ e $\int_{[0,1]}|f|^q\leqslant 1$. Mostre que $\int_{[0,1]}|f|^r\leqslant 1$ para todo $p\leqslant r\leqslant q$. (Dica: aplique o Teorema de Fubini para a função $\mathbb{R}^n\ni (x_1,x_2,\cdots,x_n)\mapsto f^{\otimes^n}(x_1,x_2,\cdots,x_n)=f(x_1)f(x_2)\cdots f(x_n)\in\mathbb{R}$).

Questão 05: Seja $f: U \to \mathbb{R}$ definida em $U = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$, por $f(x,y) = e^{-(x^2+y^2)}$. Considere a coleção de compactos $K_n = \{re^{i\theta} : \frac{1}{n} \leqslant r \leqslant n, \frac{1}{n} \leqslant \theta \leqslant \frac{\pi}{2} - \frac{1}{n}\}$. Mostre que a integral imprópria $\int_U f$ é convergente e $\int_U f = \frac{\pi}{4}$. Por outro lado, usando a coleção de compactos $L_n = [\frac{1}{n}, n]^2$, mostre que $\int_U f = (\int_{(0,\infty)} e^{-t^2} dt)^2$. Conclua que $\int_{(0,\infty)} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Questão 01: Seja V um espaço vetorial real n-dimensional. Mostre que dim $\mathcal{I}^k(V) = n^k$.

Questão 02: Sejam V um espaço vetorial real e $T \in L(V)$. Mostre que se dim V = n, então $T^*: \Omega^n(V) \to \Omega^n(V)$ é uma multiplicação por constante. Determine tal constante.

Questão 03: Seja V um espaço vetorial real n-dimensional.

- 1. Se $v_1, \dots, v_{n-1} \in V$, defina $v_1 \times \dots \times v_{n-1}$.
- 2. Se $\omega \in \mathcal{I}^k(V)$ defina $A(\omega) := \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn} \sigma \ \omega^{\sigma}$. Mostre que se $\omega \in \Omega^k(V)$ então $A(\omega) = \omega$.

Questão 04: Sejam c um cubo singular de ordem k e $\varphi : [0,1]^k \to [0,1]^k$ um difeomorfismo de classe C^1 com det $\varphi'(x) > 0$, $\forall x \in [0,1]^k$. Mostre que se ω é uma k-forma sobre $[0,1]^k$ então

$$\int_{c} \omega = \int_{c \circ \varphi} \omega.$$

Questão 01: Seja $f:A\to\mathbb{R}$ uma função limitada definida no retângulo $A\subset\mathbb{R}^n$. Dada uma partição P_0 de A, mostre que $\int_A^{\bar{f}} f=\inf\{S(f,P):P\supset P_0\}$.

Questão 02: Sejam $f:[a,b]\to\mathbb{R}$ e $g:[c,d]\to\mathbb{R}$ duas funções integráveis. Mostre que a função $h:[a,b]\times[c,d]\to\mathbb{R}$ definida por h(x,y)=f(x)g(y) é integrável e

$$\int_{[a,b]\times[c,d]} h = \int_{[a,b]} f \cdot \int_{[c,d]} g$$

Questão 03: Sejam $A, B \subset \mathbb{R}^3$ conjuntos J-mensuráveis. Para cada $c \in \mathbb{R}$ considere

$$A_c = \{(x, y) : (x, y, c) \in A\}$$
 e $B_c = \{(x, y) : (x, y, c) \in B\}.$

Suponha que para todo c os conjuntos A_c e B_c sejam J-mensuráveis e possuam o mesmo volume. Prove que A e B possuem o mesmo volume.

Referências Bibliográficas

- [1] R. G. Bartle, Elementos de Análise Real, Editora Campus, (1983).
- [2] E. L. Lima, Curso de Análise volume 2, 6ª Edição, IMPA, (2000).
- [3] J. R. Munkres, Analysis on Manifolds, Addison-Wesley Publishing Company, (1991).
- [4] M. Spivak, O Cálculo em Variedades, Editora Ciência Moderna, (2003).