Filtro para "difuminar" una imágen

Reporte técnico

Iván Aram González Su

A01022584

Septiembre 2018

Resumen

En el presente proyecto se trabaja con filtros en imágenes, específicamente con un filtro para transformar una imágen normal a la misma pero que se vea borrosa. Para lograr aplicar un filtro a una imágen (no solo el de este trabajo) se utilizan matrices, de manera que agarres cierto número de pixeles y formes otra matriz para después multiplicar cada valor con el valor correspondiente en la matriz del filtro y al final sumar los valores. El valor resultante se coloca en el pixel central de la matriz de pixeles y así se obtiene la imagen con el filtro aplicado.

1. Especificaciones del proyecto

Para hacer la parte sequencial utilicé 2 ciclos anidados para iterar sobre la imagen y dentro de cada iteración utilicé otros 2 ciclos para iterar sobre la matriz del filtro. Para la versión con los procesadores de mi computadora (4 físicos y 4 virtuales) dividí el número de filas entre 8 y cada hilo de procesamiento se ocupaba de un intervalo de dicha división. Para la version de CUDA utilicé un kernel de bloques de 2 dimensiones, de los cuales cada bloque igual era de 2 dimensiones y relacioné cada hilo con cada pixel de la matriz.

2. Desarrollo

Desarrollé 3 códigos, el primero llamado blur_cpu.cpp el cual tiene la versión de CPU sin hilos. El segundo llamado blur_threads.cpp que contiene la versión de CPU con hilos, y el tercero llamado blur_cuda.cu en el cual se encuentra la multiplicación de matrices hecha en CUDA.

Las siguientes tablas muestran la comparación de los tiempos tomados para aplicar el filtro en las 3 diferentes vesiones, el cual hice ejecutando el programa 10 veces y obteniendo el promedio del tiempo:

En milisegundos:

Versión	Tiempo
CPU sin hilos	45.79379 ms
CPU con hilos	12.91716 ms
GPU	2.08005 ms

El Speedup lo obtuve con las siguiente fórmula y se muestra en la siguiente tabla:

$$Speedup = \frac{Tiempo \, secuencial}{Tiempo \, paralelo}$$

Versión	Speedup
CPU sin hilos vs CPU con hilos	3.5452
CPU sin hilos vs GPU	22.0157
CPU con hilos vs GPU	6.2100

Hice un Makefile para compilar los 3 códigos sin problema el cual tiene la regla 'all' para compilar todos, la regla 'rebuild' para borrar los ejecutables y volver a compilar los códigos y la regla 'clean' para borrar los ejecutables.