CSE-313
Notos
Correlation: is usually defined as a measure
of the linear relationship between two
quantitative variables (e.g. height and weight)
t is a statistical measure that indicates
the extent to which two or more variables
fluctuate together.
KRosi A positive conrelation indicates the
extent to which those variables increase
or decrease in parallel.
<u></u>
•
•
X A regative correlation indicates the ext to which one variable increases as the
to which one variable increases as the
other decreases.
4.
SSL WIRELESS® WWW.SSlwirele

-> A connelation coefficient is a statistical
Notes une of the degree to which changes to the value of one variable predict
change to the value of another.
change to the value of another.
Peanson's Product moment Coefficient &:
$r_{A,B} = \frac{\tilde{z}}{i=1} (a_i - \bar{A}) (b_i - \bar{B})$
n da dis
= (a,bi)-nAB
Hore
n = no. of tuples Ā and B are the respective
and in are the respective
means
on and on are the respective
5.D of A and B
DIF PABO, A and B are
positively connelated (A's values
increase as Bs). The higher, the
stronger correlation.
-D ra = 0; independent; -D There is no correlation
- There is no correlation
SSL WIRELESS* WWW.sslwireless.com

3	Notes D	(0:-	negat	rively	corr	selat	ed
3	Notes	One	0-110	ibete	***		
3	A CE	MARRE	Cation	0	1 in	di cat	es a
3	perf	ect	POSIT	ive c	0000	102 TI OF	1
3	B A	corr	elati	on o	f*	1 +	ove to his
3	,		pen	fect ne	90710	E 20	rrelation
3				*			
				•			
3							
		÷		A	. ,		
	weak	neg	pative	ly		J.	• • • • • • • • • • • • • • • • • • • •
	corr	1	d de			•	itvey
3		-	-			4. S.G.	ated da
3	age	23	23	127	27	39	41
3	1/ fat	9:5	26.5	17.8	31.7	31.7	25.9
3	47	49	50	52	54	154	56
3	27.4	27.2	31.2	34.6	42.5	28-8	33.4
3 2	SSL WIRELESS	0.	•		1	www	v.sslwireless.com

Regression:

There is single response variable Y, also called the dependent variable, which depends on the value of a set of input, also called independent variables x_1, x_2, \dots, x_n .

or more variables where a change in with and depends on, a change in one or more independent variables.

* Regression analysis is a powerful statistical method that allows you to examine the relationship between two or more variable of interest.

The simplest tippe of relationship between the dependent variable Y and the input variables x,, -.., xn is a linear relationship for some constraints Bo, B,,....Pn

SSL WIRELESS

www.sslwireless.com

Explained = Yi - Y Notes Unexplained = Y: - Yi SSR = Sum of squares due to regression ≥ (Yi - Y)~ SSE = Sum of squares due to errory 2 (Yi - Yi) 2 SST = Sum of squared total SSR +SSE of total variation that -Proportion explained Linear Regression Function Regression r = Pearson's Conrelati r . Coefficient 2 (x-7), 2 (y-y SSL WIRELESS

Scanned by CamScanner

Notes	Y -	intere	ept o	f re	gnessi	n	line: 1	
_	a	= Y	- bx					
2	7	ス- Σ	19-9	(x-x	X25 (2	- え)し	(4.5)	
17	94							
13	73			1			7	
12	59							
15	80		b					
16	93			1				
14	85							
16	66	j j						
16	79	4						
18	77	<i>K</i> . 1						
19	91	4						
	5-	1) F	Find	the	regr	essi	n egn	
7 -) -			and	drav	the	negres	
54		1 2	(4-5)	L	•	F	1/2 = 12	
		\forall m	-		>7	1	n=1	
The c	0-0-	ficient		ataona	\ ! !'-			
sample	2 (0	rrela	371.00	cooff	2	in s	The -	
	1 10							
D	meas	use	the	amou	nt o	f vi	orsiation	•
in +	ne.	set	of re	espon	se ~	asia	bles	
in the set of response variables G SSL WIRELESS* WWW.SSlwireless.com								
						ww.ssiwire	eless.com	

of the amount of the amount of values Y,,
of variation in a set of values Y,,
, Yn is given by,
55T = 2 (Y: - Y)
Y 01-10(a)///
SSE = ElYi-Yi)
R =
<u> </u>
R represents the proposition of the
variation in the response variables
that is explained by the different
types of input values. It's called the
coefficient of determination.
0 4 R2 41
If R-DI, it indicates that most of
the variation of the response data is
explained by the different input value
R2-20, it indicates that little of the
variation is explained by the different
input values www.sslwireless.com

Now the sample cornelation co-efficient 三人(スノーズ)(ソノーダ) Notes ろ (ス:-ス) を(ソ:-ヤ)と or is a unitless coefficient, it As provides a measure of the degree to which high value of a are paired with high values of Y and low values of a with low values of Y! r → 1 strongly correlated large x values are strongly associated with small y values and san small or values a with large y values. Thus (r) = similar to R = VR~ of a class of 9 Q: The grades students on a midterm report the final examly) (2) and on G SSL WRELESS C OLS follows: www.sslwireless.com

Scanned by CamScanner

 $SSE = \frac{2}{5}(y_i - \hat{y}_i)^2$ = = (yi - bo - b, xi)2 = -2 \(\frac{1}{2}\)\((\frac{1}{2}\)\(-\frac{1}{2}\)\(-\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1} -2 2 (y. -b. -b1 x;) x; $g(y_i - b_0 - b_1 x_i) = 0$ €00 . £y: -nbo - b, £x; =0 nbo+b, えか; = 差y. - boisxi - 4,2 x; =0 => bo 2x; + b, 2x; www.sslwirelesslcom

Notes $b_1 \{ x_i \} = (2\pi i)^2$ $= x \leq x_i \cdot y_i - 2\pi i \leq y_i$