1 Multivariate Commitments for a single degree bound

Notation roughly follows that of Marlin. For an ℓ -variate polynomial, p, denote deg(p) as the total degree. Let $\mathcal{W}_{\ell,D}$ be the set of all multisets of $\{1, \dots, \ell\}$ with cardinality of any individual element at most D.

This scheme follows the hiding strategy of Marlin where polynomial commitments are masked by a random polynomial evaluated at the same points. This technique requires $B \cdot \ell + 1$ additional elements (where B is the hiding bound) in ck, when compared to PST. We will refer to this commitment scheme as MC_m .

Setup. On input a security parameter λ (in unary), the number of variables $\ell \in \mathbb{N}$, a hiding bound B, and a maximum degree bound $D \in \mathbb{N}$ MC_{m} . Setup samples a key pair (ck, rk) as follows. Sample a bilinear group $\langle \mathsf{group} \rangle \leftarrow \mathsf{SampleGrp}(1^{\lambda})$ and parse $\langle \mathsf{group} \rangle$ as a tuple $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, q, G, H, e)$. Sample random elements $\beta_1, \dots, \beta_\ell \in \mathbb{F}_q$ and $\gamma \in \mathbb{F}_q^*$. Then compute the vector:

$$\Sigma := \begin{pmatrix} \{ (\prod_{i \in W} \beta_i)G \}_{W \in \mathcal{W}_{\ell,D}} \\ \gamma G, \{ \gamma \beta_i G, \cdots, \gamma \beta_i^B G \}_{i \in [\ell]} \end{pmatrix} \in \mathbb{G}_1^{D^{\ell} + B\ell + 1}$$

Set $\mathsf{ck} := (\langle \mathsf{group} \rangle, \Sigma)$ and $\mathsf{rk} := (D, \langle \mathsf{group} \rangle, \gamma G, \beta_1 H, \cdots, \beta_\ell H)$, and then output the public parameters $(\mathsf{ck}, \mathsf{rk})$. These public parameters will support ℓ -variate polynomials over the field \mathbb{F}_q of degree at most D.

Commit. On input ck, ℓ -variate polynomials $\boldsymbol{p} := [p_i]_{i=1}^n$ over \mathbb{F}_q , and randomness $\boldsymbol{\omega} := [\omega_i]_{i=1}^n$ over \mathbb{F}_q . MC_m.Commit outputs commitments $\boldsymbol{c} := [c_i]_{i=1}^n$ that are computed as follows. If for any $p_i \in \boldsymbol{p}$, $deg(p_i) > D$, abort. Else, for each $i \in [n]$, if ω_i is not \perp then obtain random polynomial \bar{p}_i with individual degree B in each variable from ω_i , otherwise set \bar{p}_i to be a zero polynomial. For each $i \in [n]$, output $c_i := p_i(\boldsymbol{\beta})G + \gamma \bar{p}_i(\boldsymbol{\beta})G$.

Open. On input ck, ℓ -variate polynomials $\boldsymbol{p}:=[p_i]_{i=1}^n$ over \mathbb{F}_q , evaluation point $\boldsymbol{z}\in\mathbb{F}_q^\ell$, opening challenge $\xi\in\mathbb{F}_q$, and randomness $\boldsymbol{\omega}:=[\omega_i]_{i=1}^n$ (the same randomness used for $\mathsf{MC_m.Commit}$), $\mathsf{MC_m.Open}$ outputs an evaluation proof π that is computed as follows. If for any $p_i\in\boldsymbol{p}$, $deg(p_i)>D$, abort. Else, for each $i\in[n]$, if ω_i is not \bot then obtain random polynomial \bar{p}_i of individual degree B in each variable from ω_i , otherwise set \bar{p}_i to be a zero polynomial. Then compute the linear combination of polynomials $p(\boldsymbol{X}):=\sum_{i=1}^n \xi^i p_i(\boldsymbol{X})$ and $\bar{p}(\boldsymbol{X}):=\sum_{i=1}^n \xi^i \bar{p}_i(\boldsymbol{X})$. Compute $\boldsymbol{w}:=[w_j]_{j=1}^\ell$ and $\bar{\boldsymbol{w}}:=[\bar{w}_j]_{i=j}^\ell$ satisfying:

$$p(\boldsymbol{X}) - p(\boldsymbol{z}) = \sum_{j=1}^{\ell} (X_j - z_j) w_j(\boldsymbol{X})$$

$$\bar{p}(\boldsymbol{X}) - \bar{p}(\boldsymbol{z}) = \sum_{j=1}^{\ell} (X_j - z_j) \bar{w}_j(\boldsymbol{X})$$

Such \boldsymbol{w} and $\bar{\boldsymbol{w}}$ can always be found efficiently by Lemma 1.4. For $j \in [\ell]$, set $w_j := w_j(\boldsymbol{\beta})G + \gamma \bar{w}_j(\boldsymbol{\beta})G \in \mathbb{G}_1$ and $\bar{v} := \bar{p}(\boldsymbol{\beta}) \in \mathbb{F}_q$. The evaluation proof is $\pi := ([\mathbf{w}_j]_{j=1}^{\ell}, \bar{v})$

Check. On input rk, commitments $\boldsymbol{c} := [c_i]_{i=1}^n$, evaluation point $\boldsymbol{z} \in \mathbb{F}_q^\ell$, alleged evaluations $\boldsymbol{v} := [v_i]_{i=1}^n$ over \mathbb{F}_q , evaluation proof $\pi := ([\mathbf{w}_j]_{j=1}^\ell, \bar{\boldsymbol{v}})$, and challenge $\xi \in \mathbb{F}_q$, MC_m . Check proceeds as follows. Compute the linear combination $C := \sum_{i=1}^n \xi^i c_i$, then compute the linear combination of evaluations $v := \sum_{i=1}^n \xi^i v_i$, and check the evaluation proof via the equality $e(C - vG - \gamma \bar{v}G, H) = \prod_{j=1}^\ell e(\mathbf{w}_j, \beta_j H - z_j H)$

Lemma 1.1. The commitment scheme MC_m achieves completeness following Definition B.1

Proof. Fix any number of variables ℓ , hiding bound B, maximum degree bound D and efficient adversary \mathcal{A} . Let $(\mathsf{ck}, \mathsf{rk}) \leftarrow \mathsf{MC_m.Setup}(1^\lambda, \ell, B, D)$ and $\langle \mathsf{group} \rangle, \mathbb{F}_q$ be the corresponding algebraic structures given by $(\mathsf{ck}, \mathsf{rk})$.

Let \mathcal{A} (ck, rk) select ℓ -variate polynomials $\boldsymbol{p} := [p_i]_{i=1}^n$ over \mathbb{F}_q , evaluation point $\boldsymbol{z} \in \mathbb{F}_q^\ell$, and opening challenge $\xi \in \mathbb{F}_q$. By assumption, we only consider \mathcal{A} which choose \boldsymbol{p} , s.t. $deg(\boldsymbol{p}) \leq D$.

Given $\boldsymbol{c} \leftarrow \mathsf{MC}_{\mathsf{m}}$. Commit(ck, \boldsymbol{p}) and $\pi \leftarrow \mathsf{MC}_{\mathsf{m}}$. Open(ck, $\boldsymbol{p}, \boldsymbol{z}, \xi$) we show that for $\boldsymbol{v} := \boldsymbol{p}(\boldsymbol{z})$:

$$MC_m$$
.Check $(\mathsf{rk}, \boldsymbol{c}, \boldsymbol{z}, \boldsymbol{v}, \pi, \xi) = 1$

We demonstrate this directly:

$$\begin{split} e(C-vG-\gamma\bar{v}G,H) &= e(\sum_{i=1}^n \xi^i c_i - (\sum_{i=1}^n \xi^i v_i)G-\gamma\bar{p}(\boldsymbol{z})G,H) \\ &= e((p(\boldsymbol{\beta})-p(\boldsymbol{z})+\gamma(\bar{p}(\boldsymbol{\beta})-\bar{p}(\boldsymbol{z})))G,H) \\ &= e((\sum_{j=1}^\ell (\beta_j-z_j)w_i(\boldsymbol{\beta})+\sum_{j=1}^\ell \gamma(\beta_j-z_j)\bar{w}_j(\boldsymbol{\beta}))G,H) \\ &= e((\sum_{j=1}^\ell (\beta_j-z_j)(w_j(\boldsymbol{\beta})+\gamma\bar{w}_j(\boldsymbol{\beta}))G,H) \\ &= \prod_{j=1}^\ell e((\beta_j-z_j)(w_j(\boldsymbol{\beta})+\gamma\bar{w}_j(\boldsymbol{\beta}))G,H) \\ &= \prod_{j=1}^\ell e(\mathbf{w}_{\mathbf{j}},\beta_jH-z_jH) \end{split}$$

Lemma 1.2. The commitment scheme MC_m achieves succinctness following Definition B.3

Proof. For a list of n ℓ -variate polynomials, the scheme $\mathsf{MC_m}$ requires n \mathbb{G}_1 elements to commit to c, $\ell+1$ \mathbb{G}_1 elements for the evaluation proof, and the time to check this proof of evaluation requires $\ell+1$ pairings and one variable-base multi-scalar multiplication of size n.

Theorem 1.3. The commitment scheme MC_m achieves hiding following Definition B.4

Proof. We describe a polynomial-time simulator S such that, for every number of variables ℓ , hiding bound B, maximum degree D, and efficient adversary $A = (A_1, A_2, A_3)$, the adversary A cannot distinguish between the real and ideal world experiments.

 \mathcal{S} is defined as follows:

```
\mathcal{S}. Setup(1^{\lambda}, \ell, B, D):
 1. Run MC_7. Setup(1^{\lambda}, \ell, B, D) and define trap := (ck, rk, \beta, \gamma)
 2. Output (ck, rk, trap)
S.Commit(trap, k; \omega):
1. Parse \boldsymbol{\omega} as [\omega_i]_{i=1}^n
2. For i = 1, \dots, k:
     (a) Obtain the random polynomial \bar{p}_i(\mathbf{X}) from \omega_i
    (b) Set c_i := \bar{p}_i(\boldsymbol{\beta}) \gamma G
3. Output c := [c_i]_{i=1}^k
S.\mathsf{Open}(\mathsf{trap}, \boldsymbol{p}, \boldsymbol{v}, \boldsymbol{Q}, \boldsymbol{\xi}; \ \boldsymbol{r}):
1. Parse \boldsymbol{p}:=[p_i]_{i=1}^n,\ \boldsymbol{v}:=[v_i]_{i=1}^n, and \boldsymbol{\omega}:=[\omega_i]_{i=1}^n
2. Parse query set \boldsymbol{Q} as T\times \boldsymbol{z} for some T\subseteq [n] and \boldsymbol{z}\in \mathbb{F}_q^\ell
     (a) Obtain the random polynomial \bar{p}_i(\mathbf{X}) from \omega_i
    (b) Set \tilde{v}_i := \bar{p}_i(\boldsymbol{z}) - \frac{v_i}{2}
4. Compute \bar{v} := \sum_{i=1}^{n} \xi^{i} \tilde{v}_{i}, \ v := \sum_{i=1}^{n} \xi^{i} v_{i}, \ \bar{p}(\boldsymbol{X}) = \sum_{i=1}^{n} \xi^{i} \bar{p}_{i}(\boldsymbol{X})
5. Compute \bar{\boldsymbol{w}} := [\bar{w}_{j}]_{j=1}^{\ell} which satisfies \bar{p}(\boldsymbol{X}) - \bar{p}(\boldsymbol{z}) = \sum_{j=1}^{\ell} (X_{j} - z_{j}) \bar{w}_{j}(\boldsymbol{X})
 6. If \mathbf{z} \neq \boldsymbol{\beta}: compute \mathbf{w}_j = \bar{w}_j(\boldsymbol{\beta}) \gamma G
 7. Else z = \beta: compute w_j = 0G
 8. Output \pi = ([w_j]_{j=1}^{\ell}, \bar{v})
```

Clearly, S is polynomial-time. Associated with each p_i output by A there is an independently and randomly sampled degree H polynomial \bar{p}_i defined by ω_i . We define a polynomial \bar{p}_i' such that in the real world, $\bar{p}_i' := \bar{p}_i$, whereas in the ideal world $\bar{p}_i' := \bar{p}_i(X) - \frac{p_i(X)}{\gamma}$. Observe that each \bar{p}_i' is, except with negligible probability, at least degree B in each variable (we will see why this is necessary later) and independently and randomly distributed. It follows that the two polynomials are identically distributed in both worlds for $\leq B$ queries. Furthermore, since S.Setup uses MC_m .Setup to generate (ck, rk), we see that (ck, rk) is also identically distributed.

We claim that upon fixing $(\mathsf{ck}, \mathsf{rk})$ and $\bar{p}_i', \forall i \in [n]$, the resulting c_i are given by a deterministic function in $p_i(\beta)$ and, after fixing a query point z, the evaluation proof π is given by a deterministic function in $(p(X), z, \xi)$. Since these functions are parametrized by values already shown to be identically distributed in the two worlds, it follows that their outputs will also be identically distributed.

We define factor : $\mathbb{F}[X_1, \dots, X_\ell] \to \mathbb{F}[X_1, \dots, X_\ell]^\ell$ to be the polynomial factorizing algorithm at the point z described in Lemma 1.4. Note that this is a linear function. We

claim that the following relations hold in both worlds:

$$c_i(p_i(\boldsymbol{\beta})) := p_i(\boldsymbol{\beta})G + \bar{p}_i'(\boldsymbol{\beta})\gamma G$$
$$\pi = ([\mathbf{w}_j]_{j=1}^{\ell}, \bar{v})$$

where

$$\mathsf{w_j}(\boldsymbol{z}, p_i(\boldsymbol{X})) = \begin{cases} \mathsf{factor}(p(\boldsymbol{X}) + \gamma \bar{p}'(\boldsymbol{X}))_j(\boldsymbol{\beta})G & \text{if } \boldsymbol{z} \neq \boldsymbol{\beta} \\ 0G & \text{if } \boldsymbol{z} = \boldsymbol{\beta} \end{cases}, \qquad \bar{v}(\boldsymbol{z}, \boldsymbol{\xi}) = \sum_{i=1}^n \boldsymbol{\xi}^i \bar{p_i}'(\boldsymbol{z})$$

Now we show that the above describe the outputs of MC_m and S.

Indistinguishability of commitments. In the real world we have:

$$c_i = p_i(\boldsymbol{\beta})G + \bar{p}_i(\boldsymbol{\beta})\gamma G$$

since we have defined $\bar{p}'_i := \bar{p}_i$, equivalence follows immediately. In the ideal world, we have that:

$$c_i = \bar{p}_i(\boldsymbol{\beta})\gamma G$$

here we have defined $\bar{p}'_i(X) := \bar{p}_i(X) - \frac{p(X)}{\gamma}$. Plugging this in we get that:

$$c_{i} = p_{i}(\boldsymbol{\beta})G + \gamma \bar{p}'_{i}(\boldsymbol{\beta})G$$
$$= p_{i}(\boldsymbol{\beta})G + \gamma (\bar{p}_{i}(\boldsymbol{\beta}) - \frac{p_{i}(\boldsymbol{\beta})}{\gamma})G$$
$$= \bar{p}_{i}(\boldsymbol{\beta})\gamma G$$

Which is exactly what S outputs. Thus, the commitments are indistinguishable with respect to all adversaries.

Indistinguishability of evaluation proofs. In the real world, $\bar{v} = \sum_{i=1}^n \xi^i \bar{p}_i(z)$ which coincides directly since $\bar{p}'_i = \bar{p}_i$. In the ideal world we have that $\bar{v} = \sum_{i=1}^n \xi^i \tilde{v}_i$ which also follows directly since $\tilde{v}_i = \bar{p}'_i(z)$. Thus, the \bar{v} are indistinguishable to all adversaries.

Finally, we consider each $[w_j]_{j=1}^{\ell}$. In the real world, we have that:

$$\mathbf{w}_{j} = \mathsf{factor}(p(\boldsymbol{X}))_{j}(\boldsymbol{\beta})G + \gamma \mathsf{factor}(\bar{p}(\boldsymbol{X}))_{j}(\boldsymbol{\beta})G$$
$$= \mathsf{factor}(p(\boldsymbol{X}) + \gamma \bar{p}(\boldsymbol{X}))_{j}(\boldsymbol{\beta})G$$

since we have defined $\bar{p}'_i := \bar{p}_i$, equivalence follows immediately. In the ideal world, we have that:

$$\mathbf{w}_j := \mathsf{factor}(\gamma \bar{p}(\mathbf{X}))_j(\boldsymbol{\beta})G$$

here we have defined $\bar{p}'_i(\mathbf{X}) := \bar{p}_i(\mathbf{X}) - \frac{p(\mathbf{X})}{\gamma}$. Plugging in we get that:

$$\begin{split} \mathbf{w}_j &= \mathsf{factor}(p(\pmb{X}) + \gamma \bar{p}'(\pmb{X}))_j(\pmb{\beta})G \\ &= \mathsf{factor}(p(\pmb{X}) + \gamma (\bar{p}(\pmb{X}) - \frac{p(\pmb{X})}{\gamma}))_j(\pmb{\beta})G \\ &= \mathsf{factor}(\gamma \bar{p}(\pmb{X}))_j(\pmb{\beta})G \end{split}$$

Thus, our expression for $[\mathbf{w}_j]_{j=1}^{\ell}$ is correct. Note that for any polynomial $q \in \mathbb{F}_q[X_1, \dots, X_{\ell}]$, if q does not contain the indeterminate X_j , it will be in the kernel of $\mathsf{factor}(q)_j$. It follow that each \mathbf{w}_j leaks whether \bar{p}' contains the indeterminate X_j . Thus, in order for the \bar{p}' to be indistinguishable, we must require that they have at least degree 1 in each of the ℓ indeterminates. We conclude that no adversary can distinguish between the two worlds. \square

Lemma 1.4. Let $p(X) \in \mathbb{F}_q[X]$ be an ℓ -variate polynomial. Then $\forall z \in \mathbb{F}_q^{\ell}$, there exists polynomials $w_i(X)$ such that $p(X) - p(z) = \sum_{i=1}^{\ell} (X_i - z_i) w_i(X)$. Furthermore, all the w_i s can be found with a polynomial-time algorithm.

Proof. We can recover each w_i with a single polynomial division. Start by dividing $p(\mathbf{X}) - p(\mathbf{z})$ by $(X_1 - z_1)$ and define the quotient as $w_1(\mathbf{X})$. We have can now express $p(\mathbf{X}) - p(\mathbf{z}) = (X_1 - z_1)w_1(\mathbf{X}) + r(X_2, \dots, X_\ell)$. Notably, the remainder of the division is a polynomial in terms of X_2, \dots, X_ℓ . We divide this polynomial by $(X_2 - z_2)$, yielding $w_2(\mathbf{X})$ and a remainder in terms of X_3, \dots, X_ℓ . We continue this until we can express $p(\mathbf{X}) - p(\mathbf{z}) = \sum_{i=1}^{\ell} (X_i - z_i)w_i(\mathbf{X}) + r$. We evaluate the indeterminate \mathbf{X} at \mathbf{z} :

$$p(\mathbf{z}) - p(\mathbf{z}) = \sum_{i=1}^{\ell} (z_i - z_i) w_i(\mathbf{X}) + r$$
$$0 = 0 + r$$
$$\implies p(\mathbf{X}) - p(\mathbf{z}) = \sum_{i=1}^{\ell} (X_i - z_i) w_i(\mathbf{X})$$