Auto-Logistic Actor Attribute Models (ALAAMs) INSNA Sunbelt XLV Paris 2025

Johan Koskinen

Department of Statistics Stockholm University University of Melbourne

June 23, 2025

Koskinen Sunbelt XLV ALAAM June 23, 2025 1/81

Preamble

- All material is on the workshop repository https://github.com/johankoskinen/ALAAM
 - Download the RMarkdown file ALAAM-INSNA-XVL.Rmd
 - ▶ Download the (proto) manual https: //github.com/johankoskinen/ALAAM/blob/main/alaam_effects.pdf
 - After the introductory Rmd we can do selected parts of Advanced-ALAAM-INSNA-XVL.Rmd
- In order to run the Markdown you need
 - ▶ The R-package **R**
 - ► The RStudio interface RStudio
- We will predominantly use the packages
 - sna
 - network
- as well as balaam, R from GitHub

Koskinen Sunbelt XLV ALAAM June 23, 2025 2 / 81

What is new

If you have used BayesALAAM before

- Entirely new
 - ► MultivarALAAM.R ⇒ balaam.R
 - Documentation: alaam_effects.pdf
- Define and estimate the model using
 - ▶ Standard formula agree \sim odegree + mood + sex + simple
 - ▶ Main function estimate.alaam returns estimate.alaam.obj
- The object prevBayes
 - ▶ Continue previous estimation estimate.alaam.obj
 - recalibrate the proposal variance-covariance matrix
- Model selection
 - ▶ Obtain posterior deviance from post.deviance.alaam applied on estimate.alaam.obj
 - Calculate DIC using alaam.dic directly on object returned by post.deviance.alaam
- ... and a lot of other tweaks that may or may not have broken the functionality

Koskinen Sunbelt XLV ALAAM June 23, 2025 3 / 81

Agenda

- Data
- Homophily
- ALAAM
- Contagion
- 3 Estimation
 - Monitoring performance
 - GOF
- Model selection
- 6 Missing data
 - Interactions
 - miceractio.
 - SBC
 - Fully Bayesian
- 9 HALAAM
- 10 Further topics

Koskinen Sunbelt XLV ALAAM June 23, 2025 4 / 81

Data structure and homophily

Data structure and homophily

Koskinen Sunbelt XLV ALAAM June 23, 2025 5 / 81

Data - binary outcomes

Tie-variables:

$$X_{ij} = \begin{cases} 1, & \text{if tie from } i \text{ to } j \\ 0, & \text{else} \end{cases}$$

Adjacency matrix

$$\mathbf{X} = (X_{ij})_{ij \in V \times V} = \begin{vmatrix} \cdot & 1 & 1 & 0 & 0 \\ 1 & \cdot & 1 & 0 & 0 \\ 1 & 1 & \cdot & 1 & 1 \\ 0 & 0 & 1 & \cdot & 0 \\ 0 & 0 & 1 & 0 & \cdot \end{vmatrix}$$

Nodes: $V = \{1, 2, \dots, n\}$ Attribute vector

$$oldsymbol{y} = egin{bmatrix} oldsymbol{1} & oldsymbol{1} & oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \end{bmatrix}^{ op}$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 6/81

Data - Continuous outcomes

Tie-variables:

$$X_{ij} = \begin{cases} 1, & \text{if tie from } i \text{ to } j \\ 0, & \text{else} \end{cases}$$

$y_2 = 1$

Adjacency matrix

$$\mathbf{X} = = egin{bmatrix} \cdot & 1 & 1 & 0 & 0 \ 1 & \cdot & 1 & 0 & 0 \ 1 & 1 & \cdot & 1 & 1 \ 0 & 0 & 1 & \cdot & 0 \ 0 & 0 & 1 & 0 & \cdot \end{bmatrix}$$

Nodes: $V = \{1, 2, ..., n\}$

Attribute vector

$$y = \begin{bmatrix} 2.25 & 1 & 1.99 & .05 & .15 \end{bmatrix}^{\top}$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 7/81

Homophily

Koskinen Sunbelt XLV ALAAM June 23, 2025 8/81

Homophily - empirical evidence

We repeatedly **observe** that people that are *similar* hang together

Koskinen Sunbelt XLV ALAAM June 23, 2025 9 / 81

Yuval Kalish - school kids Israel (1)

Koskinen Sunbelt XLV ALAAM June 23, 2025 10 / 81

Yuval Kalish - school kids Israel (2)

Koskinen Sunbelt XLV ALAAM June 23, 2025 11 / 81

Ad Health - school kids of different races (Moody et al)

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 12 / 81

Democrats and Republicans on twitter (Brady et al., 2017)

Sunbelt XLV ALAAM June 23, 2025 13/81

Homophily

Hanging together, being similar

$$y_1 = 1$$
 $y_2 = 1$

$$y_1 = 1$$
 $y_2 = 0$

Continuous Y_i :

$$y_1 = 2.25 \qquad y_2 = 1$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 14 / 81

Correlations of continuous outcomes (1)

Correlation for variables U and V:

$$corr(U, V) = \frac{\sum_{i=1}^{n} (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\sum_{i=1}^{n} (u_i - \bar{u})^2 \sum_{i=1}^{n} (v_i - \bar{v})^2}}$$

For **network correlation** we only need associations

$$(y_i - \bar{y})(y_i - \bar{y})$$

Between i and j that are connected, i.e.

$$x_{ij} = 1$$

$$y_2 = 1$$

Nodes:
$$V = \{1, 2, ..., n\}$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 15 / 81

Correlations of continuous outcomes (2)

$y_2 = 1$ $y_1 = 2.25$ $y_2 = 1$ $y_3 = 1.99$ $y_5 = .15$

Nodes: $V = \{1, 2, ..., n\}$

Moran's I:

$$I_k = \frac{n \sum_{i=1}^n \sum_{j=1}^n (y_i - \bar{y})(y_j - \bar{y}) x_{ij}^{(k)}}{\sum_{i,j} x_{ij}^{(k)} \sum_{j=1} y_j^2}$$

Where

$$x_{ij}^{(1)} = x_{ij}$$

and $x_{ij}^{(2)}$ if i and j are at a distance of 2, etc If I_1, I_2, \ldots are large, neighbouring nodes have similar values

Koskinen Sunbelt XLV ALAAM June 23, 2025 16 / 81

ALAAM - The basic model

The Model

Koskinen Sunbelt XLV ALAAM June 23, 2025 17 / 81

Data - binary outcomes

We want to model binary Attribute vector

$$oldsymbol{y} = egin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^{ op}$$

conditional on Adjacency matrix

$$\mathbf{X} = egin{bmatrix} \cdot & 1 & 1 & 0 & 0 \\ 1 & \cdot & 1 & 0 & 0 \\ 1 & 1 & \cdot & 1 & 1 \\ 0 & 0 & 1 & \cdot & 0 \\ 0 & 0 & 1 & 0 & \cdot \end{bmatrix}$$

Marginally, we can think of modelling the probabilities

$$p_i = \mathbb{E}(Y_i \mid \mathbf{X}) = \Pr(Y_i = 1 \mid \mathbf{X})$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 18 / 81

Logit: Log-odds

Odds

For a probability p, we define the odds as

$$\frac{p}{1-p}$$
.

which is always positive, and increases with p (e.g. $\frac{0.9}{0.1} > \frac{0.5}{0.5} > \frac{0.1}{0.9} > 0$)

Logit

The logarithm of the odds, the log odds, is called logit

$$\operatorname{logit}(p) = \log\left(\frac{p}{1-p}\right)$$

which is increases with p but logit(p) takes all values in $\mathbb R$

Vn ₽sหั` 19 / 81

Koskinen Sunbelt XLV ALAAM June 23, 2025

The logit maps probabilities to all values in $\mathbb R$

Figure: Probabilities against logit function. Logit scale on vertical axis (right)

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 20 / 81

Logit link function and linear predictors

While

$$0 \le p \le 1$$

as $logit(p) \in \mathbb{R}$, we write

$$\operatorname{logit}(p_i) = \eta_i$$

where η_i is the linear predictor

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik}$$

which is a linear regression

Koskinen Sunbelt XLV ALAAM June 23, 2025 21 / 81

The logit-link function

For any x_{i1}, \ldots, x_{ik} , and parameters $\beta_0, \beta_1, \ldots, \beta_k$, we can calculate

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik}$$

and use the inverse logit

$$\eta_i = \underbrace{\log\left(rac{p_i}{1-p_i}
ight)}_{logit} \quad \overset{\Rightarrow}{\underset{\mathsf{solve for } p_i}{\Rightarrow}} \quad p_i = \underbrace{rac{e^{\eta_i}}{1+e^{\eta_i}}}_{\mathsf{inverse logit}}$$

to calculate the probability p_i

Koskinen Sunbelt XLV ALAAM June 23, 2025 22 / 81

Probabilities and the linear predictor: non-linearity

Example (Hypothetical example)

Assume logit $[E(Y \mid x)] = \eta$, where $\eta = -1 + 0.5x$

$$\eta_1 - \eta_0 = \beta_1(x_1 - x_0)$$
, but $logit^{-1}(\eta_1) - logit^{-1}(\eta_0)$

Koskinen Sunbelt XLV ALAAM June 23, 2025

Binary outcomes

We want to model

$$p_i = \Pr(Y_i = 1 \mid \mathbf{X})$$

and if the Y_i are independent

$$p(\mathbf{y} \mid \mathbf{X}) = \prod_{i=1}^{n} \Pr(Y_i = y_i \mid \mathbf{X})$$

where for each $i = 1, \ldots, n$

$$\mathsf{Pr}(Y_i = 1 \mid \mathbf{X}) = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 24 / 81

Auto-Logistic Actor Attribute Model (ALAAM)

What if we let $Pr(Y_i = 1 | \mathbf{X})$ depend on i's position in the network? For example

$$\eta_i = \beta_0 + \beta_{\text{deg}} \sum_j x_{ij} + \beta_{\text{var}} \sum_{j,k} x_{ij} x_{ik} + \beta_{\text{tri}} \sum_{j,k} x_{ij} x_{ik} x_{jk}$$

which gives us a model

$$p(y \mid \mathbf{X}) = \exp\left\{oldsymbol{eta}^{ op} z(y, \mathbf{X}) - \psi(oldsymbol{eta})
ight\}$$

where $z(y, \mathbf{X}) = (z_1, \dots, z_p)^{\top}$, $z_1 = \sum y_i$, and

$$z_2 = \sum_i y_i x_{i+}$$
 $z_3 = \sum_i y_i \sum_{j,k} x_{ij} x_{ik}$ $z_4 = \sum_i y_i \sum_{j,k} x_{ij} x_{ik} x_{jk}$

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 25 / 81

Auto-Logistic Actor Attribute Model (ALAAM)

If $eta_{
m deg}>0$ then nodes with high degree centrality are more likely to have $y_i=1$ than nodes with low degree

Koskinen Sunbelt XLV ALAAM June 23, 2025 26 / 81

The network activity ALAAM

Frank and Strauss (1986) derived an ERGM for interdependent network ties from a Markov dependence assumption. For attributes:

Markov dependence assumption (Robins et al., 2001)

Considering the collection of variables $\mathbf{M} = (y, \mathbf{X})$ Let variables M_u and M_v be conditionally independent if $u \cap v = \emptyset$

Example (Conditionally dependent variables)

The outcomes Y_i and X_{ij} are conditionally dependent as $\{i\} \cap \{i,j\} = \{i\}$

Example (Conditionally independent variables)

The outcomes Y_i and X_{kj} are conditionally independent as $\{i\} \cap \{i,j\} = \emptyset$

Koskinen Sunbelt XLV ALAAM June 23, 2025 27 / 81

Deriving model from dependence (as in ERGM)

Figure: Dependence graph (a) and Moral graph (b) of network activity dependence model (Robins et al., 2001)

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 28 / 81

The network activity ALAAM

The statistics z_r correspond to cliques in the Moral graph, and includes

- intercept: $\sum y_i$
- degree: $\sum y_i \sum_i x_{ij}$
- stars: $\sum y_i \sum x_{ij_1} \cdots x_{ij_k}$

But crucially, no statistics of the type

$$y_i y_j x_{ij}$$

and thus Y_i and Y_j are independent given **X**

$$\Pr(Y_i = y_i, Y_j = y_j \mid \mathbf{X}, \boldsymbol{y}_{-i,j}) = \Pr(Y_i = y_i \mid \mathbf{X}, \boldsymbol{y}_{-i,j}) \Pr(Y_j = y_j \mid \mathbf{X}, \boldsymbol{y}_{-i,j})$$

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 29 / 81

The network activity ALAAM - logistic regression

The network activity ALAAM is equivalent to logistic regression with

$$logit(p_i) = \beta_0 + \beta_1 z_{i1} + \dots + \beta_1 z_{ip}$$

where the statistics z_{ih} are summaries of i's network position

Koskinen Sunbelt XLV ALAAM June 23, 2025 30 / 81

The network activity ALAAM - logistic regression

Example (Modern contraceptive use in rural Kenya)

	Mean	Description		
mcUse	0.35	Do you use modern contraceptive (MC)		
		techniques?		
Age	34.41	Age (sd:16.04)		
Female	0.60	Female (1) or Male (0)		
HasChildren	0.68	Have one child or more		
relevan Others Approve	0.45	Other people's approval is important		
relevan Others Use	0.67	I care if other people use MC		
mcUseConflict	0.68	The use of MC is contentious and causes		
		conflict		
numFriends	0.88	Tallied: the number of names of people		
		they spend their free time with		

Table: Variables in Kenya study on Modern contraception usage (Not exact question wordings)(NSF-CMMI-2005661). Modi, Koskinen, DeChurch, Contractor, 2025, SocNet

Koskinen Sunbelt XLV ALAAM June 23, 2025 31 / 81

The network activity ALAAM - logistic regression

Example (Modern contraceptive use in rural Kenya (cont.)n = 1303)

Estimated logistic regression

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.6340	0.2601	-2.44	0.0148
Age	-0.0554	0.0067	-8.24	0.0000
Female	-1.0232	0.1538	-6.65	0.0000
HasChildren	1.9622	0.2068	9.49	0.0000
relevan Others Approve	1.4696	0.1514	9.70	0.0000
relevan Others Use	0.3415	0.1720	1.99	0.0471
mcUseConflict	-0.3835	0.1474	-2.60	0.0093
numFriends	0.3349	0.0828	4.04	0.0001

How much is the increase in the probability of mcUse if you acquire another friend?

32 / 81

Koskinen Sunbelt XLV ALAAM June 23, 2025

How account for dependencies through the network

Intuitively¹, we would want the response of i and j not to be independent

$$\Pr(Y_i = 1, Y_j = 1 \mid Y_{-ij}) \neq \Pr(Y_i = 1 \mid Y_{-ij}) \Pr(Y_j = 1 \mid Y_{-ij})$$

If there is a tie from i to j, $x_{ij} = 1$. Suggesting a statistic

$$\sum_{i=1}^{n} y_{i} \sum_{\text{your succes}} \sum_{j \neq i} y_{j} x_{ij}$$

$$\sharp_{\text{successful friends}}$$

33 / 81

Koskinen Sunbelt XLV ALAAM June 23, 2025

¹And this is what Robins et al., 2001, did

Ising model (Besag, 1972)

Probability spin $+ \approx \sharp$ neighbours $j \in N(i)$ with spin +

$$\Pr(Y_i = 1 | Y_{N(i)} = y_{N(i)}) \propto \exp\{\theta_1 + \theta_2 \sum_{j \in N(i)} y_j\}$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 34 / 81

Ising model (Besag, 1972)

Probability spin $+ \approx \sharp$ neighbours $j \in N(i)$ with spin +

$$\Pr(Y_i = 1 | Y_{N(i)} = y_{N(i)}) \propto \exp\{\theta_1 + \theta_2 \sum_{j \in N(i)} y_j\}$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 35 / 81

Ising model (Besag, 1972)

Probability spin $+ \approx \sharp$ neighbours $j \in N(i)$ with spin +

$$\Pr(Y_i = 1 | Y_{N(i)} = y_{N(i)}) \propto \exp\{\theta_1 + \theta_2 \sum_{j \in N(i)} y_j\}$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 36 / 81

Markov random fields for Social Networks

- ppls' networks are not regular lattices
- ppls' attitudes/behaviours also depend on SES, SEX, Education, etc

Koskinen Sunbelt XLV ALAAM June 23, 2025 37 / 81

Social dependence is messy

In Graphical models

Conditional independence graph: $i \sim j$ unless

$$X_i \perp X_j | X_{V \setminus \{i,j\}}$$

each node represents one variable (with many observations) some dependence structures are easier than others

not decomposable

decomposable

Koskinen Sunbelt XLV ALAAM June 23, 2025 38 / 81

Adding dependence between outcomes

Figure: Dependence graph (a) and Moral graph (b) of model with dependence between attributes that share tie-variables

Koskinen Sunbelt XLV ALAAM June 23, 2025 39 / 81

Deriving contagion statistics is non-trivial

To derive a non-trivial set of statistics use *realization-dependence* (Baddeley & Möller, 1989).

- Partial dependence graph $Q_{\mathcal{B}}$, is a graph on $\mathcal{V}_{-\mathcal{B}}$
- where $\{i,j\} \in \mathcal{Q}_{\mathcal{B}}$ if
 - \checkmark variables i and j are not conditionally independent conditional on variables $\mathcal{V}_{-\mathcal{B},i,j}$,
 - \checkmark and all variables corresponding to the index set $\mathcal B$ are zero.

In the model, the parameter for the statistic $A\subset\mathcal{V}$ is non-zero only if A is a clique of \mathcal{M} and A is a clique of $\mathcal{Q}_{\mathcal{B}}$ for all \mathcal{B} .

Daraganova (2009) - derived statistics

Koskinen Sunbelt XLV ALAAM June 23, 2025 40 / 81

Standard ALAAM

From this, and

- Making some Homogeneity assumptions and
- setting some higher-order statistics to zero,

we arrive at the following contagion model

$$\rho_{\theta}(\boldsymbol{y}|\mathbf{X}) = \exp\left\{\theta_{0} \sum_{i=1}^{n} y_{i} + \theta_{\text{out}} \sum_{i=1}^{n} y_{i} \sum_{j \neq i} x_{ij} + \theta_{in} \sum_{i=1}^{n} y_{i} \sum_{j \neq i} x_{ji} + \theta_{\text{con}} \sum_{i,j:i \neq y_{j}} y_{i} y_{j} (x_{ij} + x_{ji}) - \psi(\theta)\right\}$$

This includes an interaction term similar to that of Besag's (1972) classic auto-logistic model but it is subtly different in the definition of the neighbourhood.

Koskinen Sunbelt XLV ALAAM June 23, 2025 41 / 81

Auto-Logistic Actor Attribute Model (ALAAM)

ALAAM defines a distribution on attributes $oldsymbol{y} \in \mathcal{Y} = \{0,1\}^V$

ALAAM pmf

$$p_{ heta}(oldsymbol{y}|oldsymbol{\mathsf{X}}) = \exp\{ heta^{ op}z(oldsymbol{y};oldsymbol{\mathsf{X}}) - \psi(heta)\}$$

ERGM-like model for cross-sectional contagion, e.g.

Koskinen Sunbelt XLV ALAAM June 23, 2025 42 / 81

The network activity ALAAM - social influence

Example (Modern contraceptive use in rural Kenya (cont.))

Estimated ALAAM

	Posterior		95% CI	
	Estimate	sd	0.025	0.975
intercept	-0.762	0.291	-1.273	-0.188
contagion	0.457	0.076	0.303	0.592
Age	-0.049	0.007	-0.063	-0.035
Female	-1.091	0.178	-1.461	-0.747
HasChildren	1.710	0.233	1.240	2.154
relevan Others Approve	1.473	0.165	1.140	1.802
relevan Others Use	0.353	0.179	-0.005	0.697
mcUseConflict	-0.359	0.164	-0.678	-0.026

How much is the increase in the probability of mcUse if your friend uses?

43 / 81

Koskinen Sunbelt XLV ALAAM June 23, 2025

The network activity ALAAM - social influence

A closer look at the pmf

$$p(y \mid \mathbf{X}) = \exp\{\theta^{\top} z(y; \mathbf{X}) - \underbrace{\psi(\theta)}_{\text{norm. const.}}\} = \underbrace{\frac{e^{\theta^{\top} z(y, \mathbf{X})}}{\sum_{y \in \mathcal{X}} e^{\theta^{\top} z(y, \mathbf{X})}}}_{\mathbf{2}^{n} \text{ terms}}$$

We can **only** evaluate *conditional* probabilities

$$\Pr(Y_i = 1 \mid \mathbf{X}, \boldsymbol{y}_{-i}) = \frac{e^{\theta^\top z(\boldsymbol{y}^{i+}, \mathbf{X})}}{e^{\theta^\top z(\boldsymbol{y}^{i+}, \mathbf{X})} + e^{\theta^\top z(\boldsymbol{y}^{i-}, \mathbf{X})}}$$

where y^{i+} is y with $y_i = 1$, and y^{i-} is y with $y_i = 0$

Koskinen Sunbelt XLV ALAAM June 23, 2025 44 / 81

Estimation

Markov chain Monte Carlo

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 45 / 81

Simulating from likelihood

We cannot evaluate likelihood for any θ , but for any θ we can simulate Y_i given $y_1, \ldots, y_{i-1}, y_{i+1}, \cdots, y_n$ using probabilities

$$\mathsf{logit} igg\{ \mathsf{Pr}_{ heta}(Y_i = 1 | oldsymbol{y}_{-i}, oldsymbol{\mathsf{X}}) igg\} = heta^ op \{ z(oldsymbol{y}^{i+}, oldsymbol{\mathsf{X}}) - z(oldsymbol{y}^{i-}, oldsymbol{\mathsf{X}}) \}$$

giving us samples from

$$\boldsymbol{y} \mid \mathbf{X}, \boldsymbol{\theta}$$

We will use this for

- estimation, and
- goodness-of-fit (GOF)

MPNet uses samples in stochastic approximation for MLE

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 46 / 81

Simulating from likelihood: Metropolis algorithm

Initialising in vector $y := y_0$, in each iteration t

- Pick $i \in V$ at random
- 2 Propose to set $y_i := 1 y_i$
- **3** Accept and set $y_t := \Delta_i y$, with probability

$$\min\left\{1, \exp\{\theta^\top[z(\Delta_i \boldsymbol{y}, \boldsymbol{\mathsf{X}}) - z(\boldsymbol{y}, \boldsymbol{\mathsf{X}})]\}\right\}$$

4 Otherwise set $y_t := y_{t-1}$

This gives us a sequence

$$y_0,y_1,\ldots,y_k$$
 , $y_{k+1},\ldots,y_{T+1},y_T$ first k will remember y_0

For sufficiently large burnin k, y_{k+1} a draw from model.

Koskinen Sunbelt XLV ALAAM June 23, 2025 47 / 81

MCMC for un-normalized distributions

MCMC: Sample $\theta^{(0)}, \theta^{(1)}, \ldots$ from $\pi(\theta)$ by

- propose update $\theta^{(t)}$ to θ^* $q(\theta^*|\theta^{(t)})$
- set $\theta^{(t+1)} := \theta^*$ w.p. min $\{1, H\}$

$$H = \frac{\pi(\theta^*)}{\pi(\theta^{(t)})} \frac{q(\theta^{(t)}|\theta^*)}{q(\theta^*|\theta^{(t)})}$$

(Works when $\pi(\theta) = f(\theta)/c(\theta)$ and $c(\theta)$ intractable)

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 48 / 81

Inference: ALAAM

For our target distribtuion $\pi(\theta|z)$

$$H = \frac{\exp\{\theta^{*\top}z(\boldsymbol{y}; \mathbf{X}) - \psi(\theta^*)\}\pi(\theta^*)}{\exp\{\theta^{(t)\top}z(\boldsymbol{y}; \mathbf{X}) - \psi(\theta^{(t)})\}\pi(\theta^{(t)})} \frac{q(\theta^{(t)}|\theta^*)}{q(\theta^*|\theta^{(t)})}$$

normalising constant $\psi(\cdot)$ of *likelihood* cannot be evaluated (model is doubly intractable)

Koskinen Sunbelt XLV ALAAM June 23, 2025 49 / 81

Solution to double intractability

Approximate $\hat{\lambda}(\theta, \theta^*) \approx \exp\{\psi(\theta) - \psi(\theta^*)\}$

- off-line importance sample (Koskinen, 2004)
- 'exact' auxiliary variable-based online importance sample with sample size of 1 - (Møller et al., 2006)
- 'exact' online (linked) path sampler auxiliary variable (Koskinen, 2008; Koskinen, 2009)
- online self-tuning auxiliary variable (Murray et al., 2006)
 [Approximate Exchange Algorithm]

ERGO: we can obtain posterior for θ when y is observed

Koskinen Sunbelt XLV ALAAM June 23, 2025 50 / 81

Monitoring performance of MCMC

Ideally, in our MCMC sample

$$\theta^{(0)}, \theta^{(1)}, \ldots, \theta^{(M)}$$

the samples points are independent draws

$$\theta^{(m)} \stackrel{\textit{iid}}{\sim} \pi(\theta|\boldsymbol{y}, \mathbf{X})$$

so that we use Monte Carlo estimators

$$\hat{\mathbb{E}}(\theta|m{y},m{\mathsf{X}}) = ar{ heta} = rac{1}{M}\sum_{m=1}^M heta^{(m)}$$
 , and $\widehat{\mathbb{Cov}}(\theta|m{y},m{\mathsf{X}}) = rac{1}{M}\sum_{m=1}^M (heta^{(m)} - ar{ heta})(heta^{(m)} - ar{ heta})^{ op}$

as well as approximate probabilities $Pr(\theta \in C)$, for any $C \subset \Theta$

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 51 / 81

Monitoring performance of MCMC - trace plots

In plots, trace plots, of

$$\theta^{(0)}, \theta^{(1)}, \ldots, \theta^{(M)}$$

we should **not** see any

- trend/drift (independence of starting point)
 - select the number of initial iterations to discard burnin
- serial correlation (good mixing)
 - \triangleright space out sample points $\theta^{(k)}, \theta^{(2k)}, \theta^{(3k)}, \ldots$ thinning of sample

Koskinen Sunbelt XLV ALAAM June 23, 2025 52 / 81

Monitoring performance of MCMC - SACF & ESS

The sample autocorrelation function (SACF) measures serial correlation between sample points

$$\theta^{(m-k)}, \theta^{(m)}$$

at different lags k

If SACF at lag k is low, say 30 (SIC?), then taking every k'th sample point will yield an approximately independent sample

The *effective sample size* (**ESS**) tells us roughly how many independent sample points we have

Improving mixing

In our implementation the proposal distribution in each iteration

$$\theta^* \mid \theta^{(t)} \sim \mathcal{N}_{p}(\theta^{(t)}, \mathbf{\Sigma}_{p})$$

SACF can be lowered and mixing improved through improved Σ_p .

Koskinen Sunbelt XLV ALAAM June 23, 2025 53 / 81

Goodness-of-fit

Goodness-of-fit

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 54 / 81

Goodness-of-fit (GOF)

Once we have a draw

$$\theta^{(0)}, \theta^{(1)}, \dots, \theta^{(M)}$$

from $\pi(\theta|\mathbf{y})$, we can generate draws

$$y^{(0)}, y^{(1)}, \dots, y^{(M)}$$

each from

$$p_{ heta^{(m)}}(oldsymbol{y}^{(m)}|\mathbf{X})$$

GOF evaluation

lf

$$y^{(0)}, y^{(1)}, \dots, y^{(M)}$$

are 'similar' to y, then model has good fit

Koskinen Sunbelt XLV ALAAM June 23, 2025

55 / 81

Model selection

Picking the 'best' model

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 56 / 81

Posterior deviance

The deviance is defined as minus twice the log likelihood

$$D(\boldsymbol{\theta}) = -2\log[p_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{X})].$$

Aitkin et al. (2017) graphical comparison of models can be done through comparing the posterior distribution of the deviance Assume a sample

$$\theta_0, \theta_1, \ldots, \theta_T$$

Calculate the deviance $D(\theta_t)$ for the parameters in your posterior.

Koskinen Sunbelt XLV ALAAM June 23, 2025 57 / 81

Posterior deviance: important

We cannot evaluate log likelihood

$$p_{\theta}(\mathbf{y}|\mathbf{X}),$$

because of $\psi(\theta)$.

But for pairs $\tilde{\theta}$ and θ , we can approximate $\hat{\lambda}(\theta, \tilde{\theta}) \approx \exp\{\psi(\theta) - \psi(\tilde{\theta})\}$. Intuition: for bridges $\tilde{\theta} = \theta^{(0)}, \theta^{(1)}, \dots, \theta^{(M)} = \theta$, we draw

$$m{y}_0^{(j)}, m{y}_{2k}^{(j)}, \dots, m{y}_{3k}^{(j)}, m{y}_{4k}^{(j)}, \dots, m{y}_{Tk}^{(j)} \sim m{p}_{ heta^{(j)}}(m{y} \mid m{\mathsf{X}})$$

and use² $\bar{z}^{(j)} = \frac{1}{T} \sum z(y_t^{(j)}, \mathbf{X})$ to get estimate $\hat{\lambda}(\theta, \tilde{\theta}) \approx \exp\{\psi(\theta) - \psi(\tilde{\theta})\}$

NB: Sensitive to T and thinning k - samples $\{y_t^{(j)}\}$ have to be good

58 / 81

Koskinen Sunbelt XLV ALAAM June 23, 2025

²Requires a bit more thought ...

Deviance information criterion

Using the posterior distribution of the deviance, we can calculate

$$DIC = E[D(\theta)] + V(D(\theta))/2$$

Models with smaller DIC prefered to models with LARGER DIC

Koskinen Sunbelt XLV ALAAM June 23, 2025 59 / 81

Missing data

Missing outcomes

Koskinen Sunbelt XLV ALAAM June 23, 2025 60 / 81

Missing data (cp Bayesian data augmentation for ERGM)

Under assumption of Missing at Random (MAR) Define the missing data mechanism $f(I|y, \phi)$, where

$$I_i = \begin{cases} 1, & \text{if response } y_i \text{ is unobserved for } i \\ 0, & \text{else} \end{cases}$$

update (impute) missing response by toggling and accepting w.p.

$$\min \left[1, \exp\{\theta^\top (z(\Delta_i y, x) - z(y, x))\} \frac{f(I|\Delta_i y, \phi)}{f(I|y, \phi)}\right]$$

where $\Delta_i y$ is y with element i toggled and set to $1 - y_i$. Update ϕ , with MH-updating and Hastings ratio

$$\min \Big\{1, \frac{f(I|y, \phi^*)\pi(\phi^*)}{f(I|y, \phi)\pi(\phi)}\Big\}.$$

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 61 / 81

Missing data (cp Bayesian data augmentation for ERGM)

In the actual estimation, simply define

$$y_i = \left\{ egin{array}{ll} 1, & \mbox{if response } y_i = 1 \mbox{ is unobserved for } i \ 0, & \mbox{if response } y_i = 0 \mbox{ is unobserved for } i \ NA, & \mbox{if response is missing for } i \end{array}
ight.$$

Sampling will return draws

$$(\theta^{(0)}, y_{miss}^{(0)}), (\theta^{(1)}, y_{miss}^{(1)}), \dots, (\theta^{(M)}, y_{miss}^{(M)})$$

Koskinen Sunbelt XLV ALAAM June 23, 2025 62 / 81

Interactions with contagion

More complicated contagion effects

Koskinen Sunbelt XLV ALAAM June 23, 2025 63 / 81

More elaborate effects

A number of more elaborate forms of contagion/influence are admissible

influence from some nodes can be θ and for others $\theta + \alpha$

Koskinen Sunbelt XLV ALAAM June 23, 2025 64 / 81

SBC (Koskinen and Daraganova, 2022)

Stockholm Birth Cohort (SBC) cohort study, Stockholm Metropolitan area (Stenberg et al., 2006; Stenberg et al. 2007).

- best-friend network with a cap of three nominations (May 1966)
- Let y be indicators $y_i = 1$ of whether pupils i said that they intended to proceed to higher secondary school, and $y_i = 0$ otherwise (see Koskinen and Stenberg, 2012)
- Here: 19 school classes, six of which are from a school in a suburb in the south of Stockholm and the rest are from three inner-city schools
- The proportion of missing entries range from 0 to 0.286

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 65 / 81

Koskinen Sunbelt XLV ALAAM June 23, 2025 66 / 81

More elaborate effects - interaction example

Example (Simple contagion of intention to go to higher secondary school)

	mean	sd	ESS	SACF 10	SACF 30	2.5 perc	97.5 perc
intercept	-9.67	1.11	178.03	0.68	0.32	-11.83	-7.51
contagion	0.16	0.10	183.10	0.68	0.32	-0.04	0.35
indegree	-0.07	0.11	183.55	0.67	0.32	-0.29	0.13
sex	-0.09	0.29	134.35	0.70	0.39	-0.66	0.47
family attitude	0.48	0.09	164.22	0.70	0.32	0.33	0.65
marks	0.99	0.15	168.66	0.68	0.32	0.69	1.28
social class 1	0.59	0.32	198.40	0.66	0.24	-0.06	1.19

Table: Posterior summaries for model with controls estimated for contagion-model for progression to upper-secondary school in SBC (thinned sample of 10,000 iterations, taking every 20th iteration, with burnin of 1000)

Koskinen Sunbelt XLV ALAAM June 23, 2025 67 / 81

More elaborate effects - interaction example

Example (Contextual contagion of intention to go to higher secondary school)

	mean	sd	ESS	SACF 10	SACF 30	2.5 perc	97.5 perc
intercept	-10.13	1.19	168.32	0.76	0.44	-12.81	-8.04
contagion	0.24	0.12	143.31	0.72	0.39	0.02	0.48
indegree	-0.08	0.12	122.80	0.75	0.41	-0.33	0.13
sex	-0.09	0.28	126.04	0.76	0.45	-0.69	0.47
family attitude	0.48	0.08	140.26	0.72	0.38	0.34	0.65
marks	1.01	0.14	265.08	0.72	0.40	0.76	1.31
composition	0.91	0.55	137.33	0.74	0.39	-0.25	1.97
social class 1	0.57	0.34	143.59	0.73	0.37	-0.07	1.21
contagion int	-0.21	0.16	152.15	0.72	0.37	-0.51	0.11

Table: Posterior summaries for model with controls estimated for contagion-model for progression to upper-secondary school in SBC (thinned sample of 10,000 iterations, taking every 20th iteration, with burnin of 1000) with social class interacted with contagion

Koskinen Sunbelt XLV ALAAM June 23, 2025 68 / 81

Fully Bayesian

Specifying proper priors

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 69 / 81

Fully Bayesian: what priors?

Assuming

$$y \mid \mathbf{X} \sim ALAAM(\theta, \mathbf{X})$$

The model is

$$P(y \mid \mathbf{X}, \boldsymbol{\theta}) = \exp\{\boldsymbol{\theta}^{\top} \boldsymbol{z}(\boldsymbol{y}, \mathbf{X}) - \psi(\boldsymbol{\theta})\}$$

The aim of the Bayesian inference scheme is to obtain the posterior

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto P(\boldsymbol{y} \mid \mathbf{X}, \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

where

$$\pi(\boldsymbol{\theta})$$

is the **prior distribution** for the parameters that *quantify our uncertainty* about the parameter values prior to observing data.

Koskinen Sunbelt XLV ALAAM June 23, 2025 70 / 81

Fully Bayesian: what priors?

How can a human quantify their uncertainty about the parameter values prior to observing data?

ullet Default prior: constant $\pi(oldsymbol{ heta}) \propto 1$

For ALAAM this is really hard! Possible choices

- Convenient: Multivariate normal distribution $\mathcal{N}_p(\mu, \mathbf{\Sigma})$
 - ▶ Diagonal: $\Sigma = \lambda I$
 - ▶ Scaling: $\mathbf{\Sigma} = \lambda (\mathbf{X}^{\top} \mathbf{X})^{-1}$
- ullet Caution: setting $oldsymbol{\mu}=\mathbf{0}$ pulls posteriors towards 0 bad for e.g. intercept if $ar{y}$ small
- Experiemental: use a prior to 'fix' a nuisance parameter

Koskinen Sunbelt XLV ALAAM June 23, 2025 71 / 81

Hierarchical ALAAM

A multilevel version of ALAAM

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 72 / 81

Hierarchical ALAAM: preamble

The routines for analysing outcomes

$$y^{(1)}, y^{(2)}, \dots, y^{(G)}$$

for *G* independently observed networks

$$\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(G)}$$

is implemented in very old code in MultivarALAAMalt.R

Koskinen Sunbelt XLV ALAAM June 23, 2025 73 / 81

Hierarchical ALAAM: principle

Following Koskinen and Snijders' (2023) work on SAOMs, we assume that independently for each group $g=1,\ldots,G$,

$$y^{(g)} \mid \mathbf{X}^{(g)}, \mathbf{\theta}^{(g)} \sim ALAAM(\mathbf{\theta}^{(g)}, \mathbf{X}^{(g)})$$

where parameters are partitioned

$$oldsymbol{ heta}^{[oldsymbol{g}]} = \left(egin{array}{c} oldsymbol{\gamma}^{[oldsymbol{g}]} \ oldsymbol{\eta} \end{array}
ight),$$

into a set of group-specific parameters $\gamma^{[g]} \in \Gamma \subset \mathbb{R}^q$, and a common parameter $\eta \in H \subset \mathbb{R}^r$, q+r=p.

Koskinen Sunbelt XLV ALAAM June 23, 2025 74 / 81

Hierarchical ALAAM: 'fixed' effects

The common parameter, η , can be used to parse out **group-level** effects, e.g. Public/private school, gender composition of school class, etc. We may assume that η , are independent of $\gamma^{[1]}, \gamma^{[2]}, \ldots, \gamma^{[G]}$, with prior

$$\pi(\boldsymbol{\eta} \mid \boldsymbol{\mu}_{\boldsymbol{\eta}}, \boldsymbol{\Sigma}_{\boldsymbol{\eta}}, \boldsymbol{\gamma}^{[1]}, \boldsymbol{\gamma}^{[2]}, \dots, \boldsymbol{\gamma}^{[G]}) = \pi(\boldsymbol{\eta} \mid \boldsymbol{\mu}_{\boldsymbol{\eta}}, \boldsymbol{\Sigma}_{\boldsymbol{\eta}})$$

which for convenience may be assumed to be $\mathcal{N}_r(\mu_n, \Sigma_n)$.

Koskinen Sunbelt XLV ALAAM June 23, 2025 75 / 81

Hierarchical ALAAM: 'random' effects

The group-level parameters allow, e.g. the intercept and the contagion effect to vary across groups.

We assume

$$\gamma^{[g]} \stackrel{\textit{iid}}{\sim} \mathcal{N}_r(\mu_{\gamma}, \mathbf{\Sigma}_{\gamma}).$$

Assuming that $\gamma^{[g]}$ follow a multivariate normal, it is common (cp Gelman et al., 1995) to assume a Normal-inverse-Wishard prior for the parameters μ_{γ} and Σ_{γ}

$$\mu_{\gamma} \mid \mathbf{\Sigma}_{\gamma} \sim \mathcal{N}_q(\mu_0, \mathbf{\Sigma}_{\gamma}/\kappa_0)$$
, and $\mathbf{\Sigma}_{\gamma} \sim \mathcal{IW}_r(\mathbf{\Lambda}_0, \nu_0)$

Koskinen Sunbelt XLV ALAAM June 23, 2025 76 / 81

Hierarchical ALAAM: the DAG

Figure: Dependence structure of hierarchical network model for $\mathbf{Y}^{[g]}$, $g=1,2,\ldots,G$.

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 77 / 81

Hierarchical ALAAM: example (1)

Acke Arvidsson (Master's thesis) analysed hundreds of school classes in SBC

Outcome is leader $(y_i = 1)$ or not $(y_i = 0)$; Network BFF

Posteriors for group-level contagion $\gamma_2^{(g)}$

Koskinen Sunbelt XLV ALAAM June 23, 2025 78 / 81

Hierarchical ALAAM: example (2)

Acke Arvidsson (Master's thesis) analysed hundreds of school classes in SBC

Outcome is leader $(y_i = 1)$ or not $(y_i = 0)$; Network BFF

Posteriors for μ

C: indegree; D: sex; E: average test score; F: communication

Koskinen Sunbelt XLV ALAAM June 23, 2025 79 / 81

Further topics

Further complications

 Koskinen
 Sunbelt XLV ALAAM
 June 23, 2025
 80 / 81

Further topics: topics

- Missing NOT at random (implemented; also, plug for MNAR ERGM, Januar, Gallagher, Koskinen, Friday 27 8.20AM - OS-65)
- Missing network ties
- Marginal effects: Titanic
- Multivariate ALAAM
- Snowball sample or outlier nodes canchange

Koskinen Sunbelt XLV ALAAM June 23, 2025 81 / 81