Introducción a la Física de Partículas

01 - 03Dinámica

Hernán Asorey

Escuela de Física, Universidad Industrial de Santander Bucaramanga, Colombia hasorey@uis.edu.co 20130910M

01-03-20130910M-HA-dinamica.pdf

◆□ → ◆□ → ◆ □ → ◆ □ →

Contenidos

Repaso clase anterior

Transformaciones de Lorentz

Cálculo Tensorial

La tabla periódica de las partículas

Leptones, quarks y mediadores

Constituyentes

- Materia
- Interacciones
- Masa
- Parece inocente, pero:
 - $(6 \cdot 2)$ leptones = 12l
 - $((6 \cdot 3) \cdot 2) \text{ quarks} = 36q$
 - ► (1+8+3+1) bosones = 13 bosones de gauge
- 61 partículas "fundamentales"

Teorema de Noether

Simetrías de las ecuaciones ↔ Cargas Conservadas

Simetrías

- \bullet Invariancia rotaciones \leftrightarrow Cons. momento angular
- \bullet Invariancia traslaciones espaciales \leftrightarrow Cons. momento lineal
- $\bullet\,$ Invariancia traslaciones temporales \leftrightarrow Cons. Energía
 - ▶ Ver por ejemplo, Landau & Lifshitz, Vol 1 (Mechanics, Cap II)
 - Para simetrías, caldo Knorr, Landay & Lifshitz, Vol 3 (Quantum Mechanics, Non-Relativistic Theory, Cap XII)
- ullet ¡Cuidado! Dice "simetría de las ecuaciones", no del problema \to un cuerpo en rotación puede no tener un sólo eje de simetría pero conserva el impulso angular

Las ecuaciones de movimiento son simétricas \leftrightarrow hay cargas conservadas

Acción, simetrías y cargas

¿Que fue primero, el huevo o la gallina? ¿La conservación de la energía o la invariancia temporal?

Primero fue el huevo...

- \bullet Los principios de conservación se basan en observaciones de los sistemas naturales \to prejuicios
- Las ecuaciones movimiento, y por ende la acción, debe tener las simetrías necesarias para verificar las conservaciones observadas
- Por ejemplo: "La carga [eléctrica] es una magnitud conservada"
- Significa que nunca en la historia (es decir, *nunca hasta hoy y esperamos que eso no cambie -prejuicio-*) se observó un proceso donde la cantidad de carga eléctrica inicial y final difieren

Moralejas

- Nuestra acción deberá incluir alguna simetría que, Noether mediante, contemple la conservación de la carga eléctrica
- Se La física es una ciencia natural, de carácter observacional y/o experimental → no es una ciencia "exacta"

Magnitudes conservadas

LEPTON CLASSIFICATION

	I	Q	L_e	L_{μ}	L_{τ}
	e v _e	-1 0	1	0	0
	μ ν _μ	-1 0	0 0	1	0
ĺ	τ ν _τ	-1 0	0	0 0	1

$$\begin{array}{cccccc} p^+ \bar{\nu_e} & \rightarrow & ne^+ & \mathrm{Si} \\ p^+ \nu_e & \rightarrow & ne^- & \mathrm{No} \\ \mu^- & \rightarrow & e^- \bar{\nu_e} \nu_\mu & \mathrm{Si} \\ p^+ \bar{\nu_u} & \rightarrow & ne^+ & \mathrm{No} \end{array}$$

- Carga eléctrica
- Número leptónico por sabor (flavor)
- Las antipartículas tienen signos opuestos en todos los números
- Entonces, hay 12 leptones diferentes
- Los números antes y después de la reacción deben conservarse

QED (Quantum Electro Dynamics)

Electrodinámica cuántica (QED)

teoría cuántica de campos (relativista) que describe las interacciones EM que ocurren entre partículas con carga eléctrica ($Q \neq 0$)

Vértice fundamental

Diagramáticamente, el proceso elemental en QED puede representarse con el siguiente vértice:

Convenciones diagramáticas

- El tiempo se dibuja en dirección vertical sentido positivo hacia arriba
- La línea ondulada representa el intercambio de un fotón
- La flecha corresponde a una partícula cargada. Si la flecha apunta *contra* el tiempo (sentido hacia abajo), representa a una antipartícula
- Los trazos no representan las trayectorias de las partículas
- En los vértices no pueden violarse las leyes de conservación

Infinitas contribuciones a un mismo estado

- Todos estos procesos tienen el mismo estado asintótico: $e^-e^- o e^-e^-$
- ¿Cuál de todos ellos ocurrió en realidad?
- Imposible saberlo → ocurrieron todos al mismo tiempo, y las infinitas posibles combinaciones también
- En QED, las contribuciones de cada estado al resultado final son cada vez más pequeñas (vértice $\sim \alpha_{\rm EM} \simeq 1/137$)

Contenidos

Repaso clase anterio

Transformaciones de Lorentz

Cálculo Tensorial

Transformaciones de Lorentz (TL \acute{o} Λ)

- Grupo de Poincaré: Grupo de isometrías del espacio tiempo de Minkowsky
 - Traslación temporal (1)
 - Traslaciones espaciales (3)
 - Rotaciones espaciales (3)
 - $x'^{\mu} = x^{\nu} \Lambda^{\mu}_{\nu} + C^{\mu}$ (1) Boosts espaciales (3)
- Forman grupo frente a la composición de operaciones
 - Hay una isometría "unidad" (no hago nada)
 - existe la inversa (voy y vengo)
 - son asociativas
- Las transformaciones de Lorentz (Λ) son un subgrupo del grupo de Poincaré $(C = 0_4)$
- Preservan el origen (invariante) → Rotaciones y Boosts
- Caldo Knorr® sobre Poincaré: se los consigo a pedido

Boosts

- Transformaciones de Lorentz no rotantes: cambios entre marcos de referencia incerciales
- Quedan definidos por el γ de Lorentz (estrictamente $\beta \to \beta = \mathbf{v}/c$)
- $\bullet\,$ Puede demostrarse que un boost γ en la dirección x puede expresarse como

$$\Lambda \equiv \Lambda^{\mu}_{\nu} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2)

• Y luego, $S \rightarrow S'$

$$\begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$
(3)

Tarea 03-I (entrega en la clase 05)

- Verificar que la ecuación (3) representa un boost de un sistema S' a un sistema
 S en la dirección x
- ② Escribir la transformación Λ para un boost en la dirección z
- Verificar que los componentes de la (por ahora) matriz Λ para una transformación general de Lorentz, $\mathbf{x}' = \Lambda \mathbf{x}$, representando un boost a un sistema con velocidad $\mathbf{v} = (\beta_1, \beta_2, \beta_3)c$ respecto al sistema de referencia, están dados por:

$$\begin{split} &\Lambda_{00} &= \gamma, \\ &\Lambda_{i0} = \Lambda_{0i} &= -\beta_i \gamma, \\ &\Lambda_{ij} = \Lambda_{ji} &= \delta_{ij} + (\gamma - 1) \frac{\beta_i \beta_j}{\beta^2}. \end{split}$$

Ejemplo Real

KEK-B beam

- Beam asimétrico
- Colisión e^+e^-
- $E_{e^+} = 3.5 \, \text{GeV}$
- $E_{e^-} = 8.0 \, \text{GeV}$
- Boost del CM:

$$\beta \gamma = \frac{E_{e^-} - E_{e^+}}{\sqrt{4E_{e^-}E_{e^+}}}$$

Tarea (continúa)

• Con los valores especificados para las energías de cada beam, calcular la vida media τ del mesón B en el marco del laboratorio (obtener la vida media τ_0 del mesón B del booklet). Luego, calcular la distancia recorrida por el mesón B en el detector desde que es producido hasta que decae.

20130910M

Contenidos

Repaso clase anterior

Transformaciones de Lorentz

Cálculo Tensorial

Cálculo Tensorial

Caldo Knorr®: Hernándezở Núñez, "Métodos de Matemáticas Aplicadas", Vol 1, Cap 3

- Convención de Einstein en notación covariante: $\sum_{\mu=0}^{3} x_{\mu} x^{\mu} \equiv x_{\mu} x^{\mu}$
- Índices latinos, i, j, k, \ldots : componentes espaciales $(1 \ldots 3)$,
- Índices griegos μ, ν, ρ, \ldots : espaciotemporales $(0 \dots 3)$
- Métrica de Minkowsky (plana), convención de signos usual en partículas, $\eta = (1, -1, -1, -1).$
- El tensor métrico $g_{\mu\nu}$ queda entonces:

Definimos **cuadrivector contravariante** (cuadrivector) a un tensor contravariante de rango 1, que ante una transformación de Lorentz Λ se comporta como:

$$a'^{\mu} = \Lambda^{\mu}_{\nu} a^{\nu}$$

Cuadrivector

4 □ > 4 □ > 4 □ > 4 □ > □ □

O Verficar que gg⁻¹ = $g_{\nu\rho}g^{\mu\rho} = \delta^{\mu}_{\nu}$

cos y contras

• Cada vector contravariante (vector) tiene asociado un vector covariante (forma), gracias a la métrica (contra \to co)

$$(t, -\mathbf{r}) = a_{\mu} = g_{\mu\nu} a^{\nu} \tag{7}$$

• La transformación inversa co→contra:

$$(t,\mathbf{r}) = a^{\mu} = g^{\mu\nu} a_{\nu} \tag{8}$$

 $g_{\rho\theta} = g_{\mu\nu} \Lambda^{\nu}_{\rho} \Lambda^{\mu}_{\theta}$ $g_{\rho\theta} g^{\rho\sigma} = g_{\mu\nu} \Lambda^{\nu}_{\rho} \Lambda^{\mu}_{\theta} g^{\rho\sigma}$

• ¿Cómo transforma un vector covariante frente a una TL Λ ?

Entonces recordamos (4) y (6):

$$a'_{\mu} = g_{\mu\nu} a'^{\nu}$$

$$a'_{\mu} = g_{\mu\nu} \Lambda^{\nu}_{\rho} a^{\rho}$$

$$a'_{\mu} = g_{\mu\nu} \Lambda^{\nu}_{\rho} g^{\rho\sigma} a_{\sigma}$$
Si Λ es un boost β ,
$$\Lambda^{-1} \text{ es un boost } -\beta$$

$$a'_{\mu} = \left(\Lambda^{-1}\right)^{\sigma}_{\mu} a_{\sigma} \qquad (9)$$

Queremos probar que el factor $g_{\mu\nu}\Lambda^{\nu}_{\rho}g^{\rho\sigma}$ es la TL inversa.

$$\delta^{\sigma}_{\theta} = \underbrace{\left(g_{\mu\nu}\Lambda^{\nu}_{\rho}g^{\rho\sigma}\right)}_{\Xi^{\sigma}_{\mu}}\Lambda^{\mu}_{\theta}$$

$$\delta^{\sigma}_{\theta} = \Xi^{\sigma}_{\mu}\Lambda^{\mu}_{\theta} \to \Xi^{\sigma}_{\mu}\left(\Lambda^{-1}\right)^{\sigma}_{\mu}$$

$$\Rightarrow \left(\Lambda^{-1}\right)_{\mu}^{\sigma} = g_{\mu\nu} \Lambda_{\rho}^{\nu} g^{\rho\sigma} \qquad (10)$$

Tensores co y contravariantes

- Un tensor de rango *n* tendrá *n* índices
- Transforman según *n* TL:

$$\label{eq:final_problem} \vec{F}^{\mu\nu} = \Lambda^{\mu}_{\rho} \Lambda^{\nu}_{\sigma} F^{\rho\sigma} \qquad \qquad O^{\mu\nu\theta} = \Lambda^{\mu}_{\rho} \Lambda^{\nu}_{\sigma} \Lambda^{\theta}_{\tau} O^{\rho\sigma\tau}$$

Los hay también covariantes. . .:

$$F'_{\mu\nu} = g_{\mu\rho}g_{\nu\sigma}F^{\rho\sigma}$$

• y n-co m-contra (el rango es n + m):

$$O_{\mu}^{\sigma\nu\theta}=g_{\mu\rho}O^{\rho\sigma\nu\theta}$$

 \bullet Ver propiedades generales en Hernández
& Núñez, "Métodos de Matemáticas Aplicadas", Vol 1, Cap 3

(covariantes \cdot contravariantes) \rightarrow invariantes

Propuesta 1: La composición de dos TL es una TL:

$$a'^{\mu} = \Lambda^{\mu}_{\nu} a^{\nu} \quad y \qquad a''^{\rho} = \Lambda'^{\rho}_{\mu} a'^{\mu}$$

$$\rightarrow a''^{\rho} = \Lambda'^{\rho}_{\mu} \Lambda^{\mu}_{\nu} a^{\nu}$$

$$a''^{\rho} = (\Lambda' \Lambda)^{\rho}_{\nu} a^{\nu}$$

$$a''^{\rho} = \Lambda''^{\rho}_{\nu} a^{\nu}$$

$$(11)$$

• Propuesta 2: El producto escalar $\mathbf{a} \cdot \mathbf{b} \equiv a_{\mu} b^{\nu} = a^{\mu} b_{\nu}$ es invariante ante transformaciones de Lorentz:

$$\mathbf{a}' \cdot \mathbf{b}' = a'_{\mu} b'^{\mu}$$

$$\mathbf{a}' \cdot \mathbf{b}' = (\Lambda^{-1})^{\sigma}_{\mu} a_{\sigma} \Lambda^{\mu}_{\rho} b^{\rho}$$

$$\mathbf{a}' \cdot \mathbf{b}' = (\Lambda^{-1})^{\sigma}_{\mu} \Lambda^{\mu}_{\rho} a_{\sigma} b^{\rho}$$

$$\mathbf{a}' \cdot \mathbf{b}' = \delta^{\sigma}_{\rho} a_{\sigma} b^{\rho}$$

$$\mathbf{a}' \cdot \mathbf{b}' = a_{\rho} b^{\rho} = \mathbf{a} \cdot \mathbf{b}$$
(12)

Tres invariantes famosos tres

• Invariante ds^2 :

$$ds^{2} \equiv dx^{\mu} dx_{\mu} = d(ct)^{2} - (dx)^{2} - (dy)^{2} - (dz)^{2}$$
(13)

Derivadas parciales:

$$\frac{\partial}{\partial^{\mu}} \equiv \partial_{\mu} = \left(\frac{\partial}{\partial t}, \nabla\right) \qquad \mathbf{y} \qquad \frac{\partial}{\partial_{\mu}} \equiv \partial^{\mu} = \mathbf{g}^{\mu\nu} \partial_{\nu} = \left(\frac{\partial}{\partial t}, -\nabla\right) \tag{14}$$

y luego, el invariante es el operador D'alambertiano:

$$\partial_{\mu}\partial^{\mu} = \left(\frac{\partial^{2}}{\partial t^{2}} - \nabla^{2}\right) \equiv \Box \tag{15}$$

• Cuadrivector Energía-momento: Recordando clase 01-01: $E = \gamma m_0$ y $\mathbf{p} = \gamma m_0 \mathbf{v}$, podemos formar un cuadrivector:

$$p^{\mu} \equiv (E, \mathbf{p})$$
 \mathbf{y} $p_{\mu} = g_{\mu\nu}p^{\nu} \equiv (E, -\mathbf{p})$ (16)

y luego, contrayendo, obtenemos uno de los invariantes más importantes:

$$p^{\mu}p_{\mu} = E^2 - \mathbf{p}^2 = m_0^2 \tag{17}$$

Tarea 03 (último)

- **③** Verificar explicitamente que $p^{\mu}p_{\mu}$ es un invariante ante TL
- Griffiths: leer sección 3.4, para discutir en clase 04
- Oriffiths: problemas 3.4, 3.11, 3.12, 3.14, y alguno del 3.15