Série d'exercices

Exercice 1

- **1** Cocher la bonne réponse :
- ☐ La force d'attraction universelle est une force à distance.
- ☐ La force d'attraction universelle entre deux corps est proportionnelle à la distance qui les sépare .
- ☐ La force d'attraction universelle entre deux corps est proportionnelle au produit de leurs masses.
- ☐ Les deux forces d'attraction gravitationnelle qui s'exercent ente deux corps ont les mêmes sens .
- ☐ La constante gravitationnelle G déponde du rayon de la planète.
- L'intensité de pesanteur d'une planète est indépendante de son rayon .

Exercice 2

- 1 Compléter le tableau ci-dessous.
- 2 Placer les longueurs précédentes dans l'axe des longueurs ci-dessous.

Longueur	Écriture scientifique en (m)	Ordre de grandeur
Rayon de l'atome d'hydrogène: $r_h = 53pm$		
Épaisseur du fil d'araignée: $d=40\mu m$.		
Rayon de la Terre est: $R_T = 6,4Mm$.		
Rayon du soleil est: $R_S = 0$, $696 \times Gm$.		
La hauteur de la tour Hassan à Rabat : $h = 4,167Km$		

Exercice 3

- 1 Calculer l'intensité de la force d'attraction gravitationnelle exercée par le soleil sur Terre.
- 2 Représenter sur un schéma les forces d'attraction gravitationnelle $\vec{F}_{S/T}$ et $\vec{F}_{T/S}$, en précisant l'échelle utilisée. Données:
 - □ Masse du soleil : $M_S = 1,99 \times 10^{30} Kg$
 - \square Masse de la Terre : $M_T = 5,98 \times 10^{24} Kg$
 - \square Distance moyen entre le centre de la Terre et celui du soleil $D=1,5\times 10^8 Km$
 - \Box La constante d'attraction universelle : $G = 6,67 \times 10^{-11} Nm^2/Kg^2$

Série d'exercices

Exercice 4

- Quelle est la valeur du poids P d'une boule de masse m=800~g, se trouvant à la surface de la Terre ?
- Quelle est la valeur de la force gravitationnelle F exercée par la Terre sur la même boule ?
- 3 Comparer ces deux forces et conclure.
- **1** En déduire l'expression de l'intensité de la pesanteur g_0 en fonction de G, M_T et R_T .
 - \square Masse de la Terre : $M_T = 5,98 \times 10^{24} Kg$
- **Données :** \square Rayon de la Terre est: $R_T = 6.4 \times 10^3 Km$
 - \square L'intensité de pesanteur : $g_0 = 9.81N/Kg$
 - \Box La constante d'attraction universelle : $G = 6,67 \times 10^{-11} Nm^2/Kg^2$

Exercice 5

Ganymède est un satellite de Jupiter

- 1 Calculer la force d'attraction gravitationnelle $\vec{F}_{G_{/I}}$ exercée par Ganymède sur Jupiter.
- $oldsymbol{@}$ Calculer la force d'attraction gravitationnelle $ec{oldsymbol{F}}_{s_{/_{I}}}$ exercée par le Soleil sur Jupiter .
- **3** Faire un schéma où les centres du Soleil , de Jupiter et de Ganymède sont placés dans le plan de
 - la feuille . Représenter les forces d'attraction gravitationnelle calculées précédemment à l'échelle 1cm pour $10^{23}N$.
- Calculer le rapport $F_{G_{/I}}/F_{S_{/I}}$ des valeurs des deux forces et conclure .

Données:

- \square Masse du soleil : $M_S = 1,99 \times 10^{30} Kg$
- □ Masse de Jupiter Terre : $M_J = 1,90 \times 10^{27} Kg$
- \square Masse de Ganymède : $M_G = 1,48 \times 10^{23} Kg$
- □ Distance moyen entre le centre de Jupiter et celui du soleil $D = 7,78 \times 10^8 \text{Km}$
- \square Distance moyen entre le centre de Jupiter et Ganymède $d = 1,07 \times 10^6 \text{Km}$
- \Box La constante d'attraction universelle : $G = 6,67 \times 10^{-11} Nm^2/Kg^2$

Exercice 6

Au voisinage de la Terre, l'intensité de la pesanteur en un point donné dépond de l'altitude

Z tel que : $g = g_0 \times \left(\frac{R_T}{R_T + Z}\right)^2$ où $g_0 = 9,81 \text{N/Kg}$ est l'intensité de pesanteur au sol et

 $R_T = 6400Km$ le rayon de la Terre.

- Calculer l'intensité de pesanteur en un point d'altitude $Z = 10^3 Km$
- ² Le poids d'un corps de masse m , au niveau du sol a pour valeur 500N . Quelle est la valeur du poids de ce corps en un point d'altitude $Z=10^3Km$
- § Par quel facteur le poids d'un corps est-il divisé lorsque le corps passe , en s'élevant, du niveau du sol à l'altitude $Z = 2R_T$

