sine basis 02

Statistics: p-values adjusted for search volume

set-	level		cluster-lev	peak-level					mm mm mm		
p	С	p_{FWE-c}	<i>g k</i> corrFDR-corr	p _{uncorr}	p_{FWE-c}	<i>q</i> corrFDR-co	<i>T</i> orr	$(Z_{_{\equiv}})$	p _{uncorr}	1111111	
		1.000 1.000	0.802 8 0.337 54	0.414 0.043	1.000 1.000	0.860	3.29 3.26	3.27 3.25	0.001	-22 -18	52 -18 -72 -48
		1 000	0 660 24	0 160	1.000	0.889	2.93 2.78 3.25	2.91 2.76	0.002 0.003 0.001	-18 -26	-82 -46 -84 -42
		1.000	0.660 24 0.660 23	0.160 0.168	1.000 1.000 1.000	0.860 0.965 0.860	2.62 3.25	3.23 2.61 3.23	0.001 0.004 0.001	-12 -8 -26	10 -8 12 0 -22 -4
		0.560	0.062 12		1.000 1.000 1.000	0.860 0.922 0.965	3.23 2.89 2.68	3.21 2.88 2.67	0.001 0.002 0.004	-8 4 -8	36 6 40 -2 38 -2
		0.233	0.028 16	2 0.001	1.000 1.000 1.000	0.860 0.860 1.000	3.23 3.14 2.38	3.21 3.12 2.37	0.001 0.001 0.009	46 58 36	-70 34 -62 32 -82 32
		0.857	0.115 94	0.011	1.000 1.000 1.000	0.860 0.883 0.965	3.20 3.07 2.70	3.18 3.05 2.69	0.001 0.001 0.004	-8 0 -18	-34 46 -24 42 -28 38
		1.000	0.515 35	0.095	1.000 1.000	0.860 0.965	3.19 2.64	3.17 2.63	0.001 0.004	-14 -16	-32 -24 -22 -28
		1.000 1.000 1.000 1.000	0.802 13 0.742 19 0.461 41 0.729 20	0.296 0.208 0.073 0.197	1.000 1.000 1.000 1.000	0.860 0.860 0.860 0.860	3.18 3.16 3.13 3.13	3.16 3.14 3.12 3.11	0.001 0.001 0.001 0.001	-18 -36 18 -54	-18 28 44 18 2 -10 12 12

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 7.1 6.9 7.3 mm mm mm; 3.5 3.4 3.7 {voxels}

Expected voxels per cluster, $\langle k \rangle = 12.855$ Volume: 1663728 = 207966 voxels = 4303.3 resels

Expected number of clusters, $\langle c \rangle = 185.23$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 44.67 voxels)

FWEp: 5.065, FDRp: Inf, FWEc: 294, FDRo? 4964