

Selected2 cover sheet

Faculty of computer and artificial intelligence.

CS396_Selected CS2 (2021-2022).

Team: #30

Name	ID
Ali Ehab Ali Yousef	201900483
Nehad Ahmed Ali NourEldein	201900902
Nehal Ashraf Elsayed Elsayed	201900903
Mohamed Ashraf Abdelaziz Ibrahim	201900635
Mohamed Hassan Ali Amen Hendy	201900654
Omar Abdel Nasser Tawfik Adam	201900517
Hesham Mahmoud Ibrahim	201900942
Nourhan Mouhamed Radwan	201900916

2-Paper details:

Received October 26, 2017, accepted December 31, 2017, date of publication January 25, 2018, date of current version March 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2796722

Image Classification Based on the Boost

Convolutional Neural Network

SHIN-JYE LEE (1), TONGLIN CHEN (2), LUN YU (2), AND CHIN-HUI LAI (3)

- (1) Institute of Technology Management, National Chiao Tung University, Hsinchu 30010, Taiwan
- (2) National Pilot School of Software, Yunnan University, Kunming 650091, China
- (3) Department of Information Management, Chung Yuan Christian University, Chungli 302023, Taiwan Corresponding author: Chin-Hui Lai (chlai@cycu.edu.tw)

This work was supported in part by the Key Laboratory of Software Engineering of Yunnan Province under Grant 2017SE202, in part by

the Applied Basic Research Foundation of Yunnan Province under Grant 2016FB104, in part by the Yunnan Provincial Innovation Team

under Grant SJ2016-1, in part by the Natural Science Foundation of China under Grant 61402397, Grant 61663046, Grant 61379032, and

Grant 61662085, and in part by the Ministry of Science and Technology of Taiwan under Grant MOST 106-2410-H-033-013.

TABLE 1. Hardware and software of computer.

Item	Content
Processor	Intel(R) core(TM)
	i7-6700HQ CPU
GPU	NVIDIA GeForce GTX
	960M
Memory	8G
Operating	Windows 10
System	
Tensorflow	TensorFlow 1.0
Python	Python 3.5
Cuda	cuda 8.0

TABLE 2. Specification of CNN configuration.

Input:	500000*3072	
Hiden1 Layer	conv	Size 5*5; quantity: 64; method: same
	ReLU	Max(0,x)
	Max Pooling	Size: 3*3; stride:2
	Batch Norm	alpha=0.001 / 9.0, beta=0.75
Hiden2 Layer	conv	Size: 5*5; quantity: 64; method: same
•	ReLU	Max(0,x)
	Max Pooling	Size: 3*3, stride:2
	Batch Norm	alpha=0.001 / 9.0, beta=0.75
Hiden3 Layer	Full connect	Weight size: [1228, 384]
•	ReLU	Max(0,x)
	Dropout	Probability of activation: 0.5
Hiden4 Layer	Full connect	Size of weight: [384, 192]
Output Layer	Softmax	Size of weight: [192, 10]

TABLE 3. Configuration of adaboost.

Torrest	Use the feature extraction
Input	data of the convolution network: [50000,192]
	network. [50000,152]
Softmax1	Size of weight: [192, 10]
Softmax2	Size of weight: [192, 10]
Softmax3	Size of weight: [192, 10]
Softmax4	Size of weight: [192, 10]
Softmax5	Size of weight: [192, 10]
Softmax6	Size of weight: [192, 10]
Softmax7	Size of weight: [192, 10]
Output	Results of weight voting of
	the categories

TABLE 4. Experimental comparison of CIFAR-10 testing datasets.

Classifier	Accuracy of Testing (%)
Softmax	35.5
AdaBoost+ Softmax	52.3
CNN+Softmax	85.3
CNN+AdaBoost (this study)	88.4

Project Description Document:

General Information on the selected dataset:

Rock-Paper-Scissors

https://drive.google.com/drive/folders/1ERpc8o3Z1o8srtvMkmrQKGf-5 1ZdiJH?usp=sharing

Total number of samples: 2892 sample.

the dimension of images: (227, 227, 1).

number of classes: (3).

their labels:

1-paper

2-scissors

3-rock

CIFAR-10

https://www.cs.toronto.edu/~kriz/cifar.html

Total number of samples: 60000 sample.

the dimension of images: (32, 32, 3).

number of classes: (10).

their labels:

(1-airplane, 2-automobile, 3-bird, 4-cat, 5-deer, 6-dog, 7-frog, 8-horse, 9-ship, 10-truck)

Implementation details:

CIFAR-10

Training (83.3%=50000 image), validation (16.67%=10000) and testing (16.67%=10000).

Rock-Paper-Scissors

Training (87.13%=2520 image), validation (0) and testing (12.86%=372).

CNN on cifar-10

hyperparameters used in your model:

learning rate=0.0003

Rock-Paper-Scissors training model

Results details:

CNN on cifar-10

CNN on Rock-Paper-Scissors

```
# Train
loss, acc = model.evaluate(x train, y train)
print('Train')
print(f'loss : {loss}')
print(f'acc : {acc*100}')
64/64 [============ ] - 2s 30ms/step - loss: 2.9230e-07 - accuracy: 1.0000
Train
loss: 2.922998589838244e-07
acc : 100.0
loss, acc = model.evaluate(xtest, np_utils.to_categorical(ytest))
print('Test')
print(f'loss : {loss}')
print(f'acc : {acc*100}')
28/28 [========== ] - 1s 29ms/step - loss: 0.0487 - accuracy: 0.9954
Test
loss: 0.04873378947377205
acc: 99.53917264938354
```