I'll assume you have a sensor that provides data via a function called 'get_air_quality_data()'.

In this script, the 'get_air_quality_data()' function is a placeholder for the actual function you would use to retrieve air quality data from your sensor. The `check air quality()` function displays the air quality data and performs actions based on predefined threshold values.

Please make sure to replace the hypothetical 'get_air_quality_data()' function with the appropriate code to read data from your specific sensor. Also, customize the threshold values and actions according to your requirements.

```
Remember to install any necessary libraries for your sensor, if required, using tools like 'pip'.
```python
Import necessary libraries (you may need additional libraries based on your sensor)
Import time
Function to get air quality data from the sensor (hypothetical function)
Def get_air_quality_data():
 # Replace this with actual code to get data from your sensor
 # For example, if you have a sensor object named 'sensor':
 # return sensor.get_air_quality()
 # For this example, let's assume the data is (PM2.5, PM10, CO2)
 Return (25, 35, 400)
Function to check air quality and display the result
Def check air quality():
 Pm25, pm10, co2 = get_air_quality_data()
 Print(f'PM2.5: \{pm25\} \mu g/m^{3'})
 Print(f'PM10: \{pm10\} \mu g/m^{3'})
 Print(f'CO2: {co2} ppm')
 # Add your own air quality threshold values and corresponding actions here
 If pm25 > 50:
 Print('Warning: High PM2.5 level detected!')
 # Add actions to be taken for high PM2.5 level
 If pm10 > 50:
 Print('Warning: High PM10 level detected!')
```

```
Add actions to be taken for high PM10 level

If co2 > 1000:

Print('Warning: High CO2 level detected!')

Add actions to be taken for high CO2 level

Continuous monitoring loop

While True:

Check_air_quality()

Adjust the sleep time (in seconds) based on your desired monitoring frequency

Time.sleep(60) # Sleep for 1 minute before checking again
```