#### ADVANCED CONTROL SYSTEMS

## Manipulator Dynamics

#### Riccardo Muradore





#### Outline





Kinetic and Potential Energy of a Rigid body

**PROJECT** 

**Equations of Motion** 

**PROJECT** 

# Kinetic and Potential Energy of a Rigid body





#### Kinematic description of Link i



- $ightharpoonup \Sigma_0 = \{x_0, y_0, z_0\}$  base reference frame
- ▶ m<sub>i</sub> mass of link i

$$m_i = \int_{V_{\ell_i}} \rho dV = \int_{V_{\ell_i}} \rho(x, y, z) dx dy dz$$

- ▶  $p_i^*$  position (∈  $\mathbb{R}^3$ ) of the generic point w.r.t.  $\Sigma_0$
- $p_{\ell_i}$  position ( $\in \mathbb{R}^3$ ) of the center of mass w.r.t.  $\Sigma_0$

$$p_{\ell_i} = rac{1}{m_{\ell_i}} \int_{V_{\ell_i}} p_i^* 
ho dV$$

$$p_i^* = p_{\ell_i} + r_i \qquad \qquad r_i = p_i^* - p_{\ell_i}$$





#### Kinematic description of Link i



- $\dot{p}_{\ell_i}$  linear velocity ( $\in \mathbb{R}^3$ ) of the center of mass w.r.t.  $\Sigma_0$
- ▶  $ω_i$  angular velocity (∈  $\mathbb{R}^3$ ) of the center of mass w.r.t.  $Σ_0$
- $\dot{p}_{i}^{*}$  linear velocity ( $\in \mathbb{R}^{3}$ ) of the generic point w.r.t.  $\Sigma_{0}$

$$\dot{p}_i^* = \dot{p}_{\ell_i} + \omega_i \times r_i$$

$$= \dot{p}_{\ell_i} + S(\omega_i)r_i$$





Assumption 1: rigid links

Assumption 2: rigid transmission

The total kinetic energy is given by the sum of the contributions relative to the motion of each link  $(\mathcal{T}_{\ell_i})$  and the contributions relative to the motion of each joint motor actuator  $(\mathcal{T}_{m_i})$ 

$$\mathcal{T} = \sum_{i=1}^n (\mathcal{T}_{\ell_i} + \mathcal{T}_{m_i})$$

From now on, we will consider only  $\mathcal{T}_{\ell_i}$ . The equations for  $\mathcal{T}_{m_i}$  can be found in the textbook.

$$\mathcal{T}_{\ell_i} = rac{1}{2} \int_{V_{\ell_i}} (\dot{p}_i^*)^T \dot{p}_i^* 
ho dV$$





$$\mathcal{T}_{\ell_{i}} = \frac{1}{2} \int_{V_{\ell_{i}}} (\dot{p}_{i}^{*})^{T} \dot{p}_{i}^{*} \rho dV$$

$$= \frac{1}{2} \int_{V_{\ell_{i}}} (\dot{p}_{\ell_{i}} + S(\omega_{i})r_{i})^{T} (\dot{p}_{\ell_{i}} + S(\omega_{i})r_{i}) \rho dV$$

$$= \underbrace{\frac{1}{2} \int_{V_{\ell_{i}}} \dot{p}_{\ell_{i}}^{T} \dot{p}_{\ell_{i}} \rho dV}_{Translational} + \underbrace{\int_{V_{\ell_{i}}} (\dot{p}_{\ell_{i}})^{T} S(\omega_{i}) r_{i} \rho dV}_{Mutual} + \underbrace{\frac{1}{2} \int_{V_{\ell_{i}}} r_{i}^{T} S(\omega_{i})^{T} S(\omega_{i}) r_{i} \rho dV}_{Rotational}$$

where the translational energy is the kinetic energy of a point mass at CoM

$$\underbrace{\frac{1}{2}\int_{V_{\ell_{i}}}\dot{p}_{\ell_{i}}^{T}\dot{p}_{\ell_{i}}\rho dV}_{Translational} \ \stackrel{(\star)}{=} \ \dot{p}_{\ell_{i}}^{T}\dot{p}_{\ell_{i}}\frac{1}{2}\int_{V_{\ell_{i}}}\rho dV = \frac{1}{2}m_{\ell_{i}}\dot{p}_{\ell_{i}}^{T}\dot{p}_{\ell_{i}}$$

 $(\star)$ :  $\dot{p}_{\ell_i}$  does not depend on dV





The mutual energy is equal to zero

$$\underbrace{\int_{V_{\ell_i}} (\dot{p}_{\ell_i})^T S(\omega_i) r_i \rho dV}_{\text{Mutual}} = \int_{V_{\ell_i}} (\dot{p}_{\ell_i})^T S(\omega_i) (p_i^* - p_{\ell_i}) \rho dV$$

$$\stackrel{(\square)}{=} (\dot{p}_{\ell_i})^T S(\omega_i) \left( \int_{V_{\ell_i}} p_i^* \rho dV - p_{\ell_i} m_{\ell_i} \right)$$

$$= (\dot{p}_{\ell_i})^T S(\omega_i) (p_{\ell_i} m_{\ell_i} - p_{\ell_i} m_{\ell_i})$$

$$= 0$$

(□):  $\dot{p}_{\ell_i}$  and  $\omega_i$  do not depend on dV





The rotational energy

$$\underbrace{\frac{1}{2} \int_{V_{\ell_i}} r_i^T S(\omega_i)^T S(\omega_i) r_i \rho dV}_{Rotational} \stackrel{\stackrel{(\triangle)}{=}}{=} \underbrace{\frac{1}{2} \int_{V_{\ell_i}} \omega_i^T S(r_i)^T S(r_i) \omega_i \rho dV}_{\stackrel{(\nabla)}{=} \underbrace{\frac{1}{2} \omega_i^T \left( \int_{V_{\ell_i}} S(r_i)^T S(r_i) \rho dV \right) \omega_i}_{\stackrel{(\triangle)}{=} \underbrace{\frac{1}{2} \omega_i^T I_{\ell_i} \omega_i}}$$

$$(\triangle)$$
:  $S(\omega_i)r_i = -S(r_i)\omega_i, \hspace{0.5cm} S(r_i) = egin{bmatrix} 0 & -r_{iz} & r_{iy} \ r_{iz} & 0 & -r_{ix} \ -r_{iy} & r_{ix} & 0 \end{bmatrix}$ 

(∇):  $ω_i$  does not depend on dV

$$(\diamondsuit): I_{\ell_i} \triangleq \int_{V_{\ell_i}} S(r_i)^T S(r_i) \rho dV = \begin{bmatrix} I_{\ell_i xx} & -I_{\ell_i xy} & -I_{\ell_i xz} \\ * & I_{\ell_i yy} & -I_{\ell_i yz} \\ * & * & I_{\ell_i zz} \\ \text{Biccardo Muradore} \end{bmatrix}$$





- ▶  $I_{\ell_i}$  is the *inertia tensor* relative to the centre of mass of Link i expressed in the base frame  $\Sigma_0$
- $ightharpoonup I_{\ell_i} = I_{\ell_i}^T$ , symmetric matrix
- $ightharpoonup I_{\ell_i}$  depends on q, i.e. it is *configuration-dependent*





- ▶  $I_{\ell_i}$  is the *inertia tensor* relative to the centre of mass of Link i expressed in the base frame  $\Sigma_0$
- $ightharpoonup I_{\ell_i} = I_{\ell_i}^T$ , symmetric matrix
- $ightharpoonup I_{\ell_i}$  depends on q, i.e. it is *configuration-dependent*

What happens to the inertia tensor when expressed w.r.t. the frame  $\Sigma_i$  ( $l_{\ell_i}^i$ ) attached to the Link i instead of  $\Sigma_0$ ?





- ▶  $I_{\ell_i}$  is the *inertia tensor* relative to the centre of mass of Link i expressed in the base frame  $\Sigma_0$
- $ightharpoonup I_{\ell_i} = I_{\ell_i}^T$ , symmetric matrix
- ▶  $I_{\ell_i}$  depends on q, i.e. it is *configuration-dependent*

What happens to the inertia tensor when expressed w.r.t. the frame  $\Sigma_i$  ( $l_{\ell_i}^i$ ) attached to the Link i instead of  $\Sigma_0$ ?

Since

$$\frac{1}{2}\omega_i^T I_{\ell_i}\omega_i = \frac{1}{2}(\omega_i^i)^T I_{\ell_i}^i\omega_i^i$$

(i.e. the product is invariant with respect to the chosen reference frame) and exploiting  $\omega_i^i = R_i^T \omega_i$ , we have

$$I_{\ell_i} = R_i I_{\ell_i}^i R_i^T$$
,

$$(I_{\ell_i}^i = R_i^T I_{\ell_i} R_i)$$





- $ightharpoonup I_{\ell_i}^i$  is constant, configuration-independent
- ▶ If the axes of Link *i* frame coincide with the central axes of inertia, then the inertia cross-products are null and the inertia tensor relative to the centre of mass is a diagonal matrix





- ► I<sup>i</sup><sub>ℓ</sub> is constant, configuration-independent
- ► If the axes of Link i frame coincide with the central axes of inertia, then the inertia cross-products are null and the inertia tensor relative to the centre of mass is a diagonal matrix

The kinetic energy is

$$\mathcal{T}_{\ell_i} = \frac{1}{2} m_{\ell_i} \dot{p}_{\ell_i}^T \dot{p}_{\ell_i} + \frac{1}{2} \omega_i^T I_{\ell_i} \omega_i$$
$$= \frac{1}{2} m_{\ell_i} \dot{p}_{\ell_i}^T \dot{p}_{\ell_i} + \frac{1}{2} \omega_i^T R_i I_{\ell_i}^i R_i^T \omega_i$$

where  $\dot{p}_{\ell_i}$  and  $\omega_i$  are function of q (besides  $R_i$ , of course)





We actually proved the König's theorem

#### **Theorem**

The kinetic energy of a system of particles is the sum of the kinetic energy associated to the movement of the center of mass  $(\star)$  and the kinetic energy associated to the movement of the particles relative to the center of mass  $(\lozenge)$ .

$$\mathcal{T}_{\ell_{i}} = \underbrace{\frac{1}{2} m_{\ell_{i}} \dot{p}_{\ell_{i}}^{\mathsf{T}} \dot{p}_{\ell_{i}}}_{(\star)} + \underbrace{\frac{1}{2} \omega_{i}^{\mathsf{T}} R_{i} \, l_{\ell_{i}}^{i} \, R_{i}^{\mathsf{T}} \omega_{i}}_{(\diamondsuit)}$$

## Examples of body inertia matrices





Assumptions: homogeneous body of mass m with symmetry

Body inertia matrices (w.r.t CoM): 
$$I_C = \begin{bmatrix} I_{C,xx} & 0 & 0 \\ 0 & I_{C,yy} & 0 \\ 0 & 0 & I_{C,zz} \end{bmatrix}$$



$$J_C = egin{bmatrix} rac{1}{12} m(b^2 + c^2) & & & \\ 0 & & rac{1}{12} m(a) \\ 0 & & & \end{pmatrix}$$

$$I_C = \begin{bmatrix} \frac{1}{12}m(b^2 + c^2) & 0 & 0\\ 0 & \frac{1}{12}m(a^2 + c^2) & 0\\ 0 & 0 & \frac{1}{12}m(a^2 + b^2) \end{bmatrix}$$



$$I_C = \begin{bmatrix} \frac{1}{2}m(a^2 + b^2) & 0 & 0\\ 0 & \frac{1}{2}m(3(a^2 + b^2)^2 + h^2) & 0\\ 0 & 0 & \frac{1}{2}m(3(a^2 + b^2)^2 + h^2) \end{bmatrix}$$

$$\frac{1}{2}m(3(a^2+b^2)^2+h^2)$$

#### Parallel axis theorem





Parallel axis theorem (Steiner theorem)

#### **Theorem**

Let  $I_C$  be the inertia matrix with respect to a reference frame  $\Sigma_C$  with origin on the center of mass. The inertia I with respect to another reference frame  $\Sigma$  obtained translating  $\Sigma_C$  by the vector  $r \in \mathbb{R}^3$  is given by

$$I = I_C + mS^T(r)S(r) = I_C + m(r^Tr I_{3\times 3} - rr^T)$$

## Examples of body inertia matrices





#### Homework. Prove

$$I_C + mS^T(r)S(r) = I_C + m(r^Tr I_{3\times 3} - rr^T)$$

#### Homework.



$$I = I_C + m \left( \begin{bmatrix} -\frac{a}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{a}{2} \\ 0 \\ 0 \end{bmatrix} I_{3\times 3} - \begin{bmatrix} -\frac{a}{2} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{a}{2} \\ 0 \\ 0 \end{bmatrix}^T \right) = \cdots$$



$$I = I_C + m \left( \begin{bmatrix} -\frac{h}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{h}{2} \\ 0 \\ 0 \end{bmatrix} I_{3\times 3} - \begin{bmatrix} -\frac{h}{2} \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{h}{2} \\ 0 \\ 0 \end{bmatrix}^T \right) = \cdots$$





Given  $\mathcal{T}_{\ell_i} = \frac{1}{2} m_{\ell_i} \dot{p}_{\ell_i}^T \dot{p}_{\ell_i} + \frac{1}{2} \omega_i^T R_i I_{\ell_i}^i R_i^T \omega_i$ , how can we compute

$$\dot{p}_{\ell_i}(q) = ?$$
  $\omega_i(q) = ?$ 

We know that the Cartesian velocity of the EE is related to the joint velocity via the Jacobian; however, this relationship holds also for intermediate links i = 1, ..., n (*Partial Jacobians*)

$$\dot{p}_{\ell_i} = J_P^{\ell_i}(q) \dot{q}, \qquad \qquad \omega_i = J_O^{\ell_i}(q) \dot{q}$$

$$\dot{p}_{\ell_i} = egin{bmatrix} \dot{\ell}_{i}^{\ell_i} & j_{P2}^{\ell_i} & \cdots & j_{Pi}^{\ell_i} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \dot{q}_i \\ \dot{q}_{i+1} \\ \vdots \\ \dot{q}_n \end{bmatrix}, \qquad \omega_i = egin{bmatrix} j_{O_1}^{\ell_i} & j_{O_2}^{\ell_i} & \cdots & j_{O_i}^{\ell_i} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \dot{q}_i \\ \dot{q}_{i+1} \\ \vdots \\ \dot{q}_n \end{bmatrix}$$





$$\dot{p}_{\ell_i} = \begin{bmatrix} j_{P1}^{\ell_i} & j_{P2}^{\ell_i} & \cdots & j_{P_i}^{\ell_i} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \dot{q}_i \\ \dot{q}_{i+1} \\ \vdots \\ \dot{q}_n \end{bmatrix}, \quad \omega_i = \begin{bmatrix} j_{\ell_i}^{\ell_i} & j_{\ell_i}^{\ell_i} & \cdots & j_{O_i}^{\ell_i} & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \dot{q}_i \\ \dot{q}_{i+1} \\ \vdots \\ \dot{q}_n \end{bmatrix}$$

The columns of the Jacobians are

$$j_{Pj}^{\ell_i} = \left\{ egin{array}{ll} z_{j-1}, & ext{prismatic joint} \ z_{j-1} imes (p_{\ell_i} - p_{j-1}), & ext{revolute joint} \end{array} 
ight. \, j_{Oj}^{\ell_i}$$

$$j_{Oj}^{\ell_{i}} = \left\{ egin{array}{ll} 0, & ext{prismatic joint} \ z_{j-1}, & ext{revolute joint} \end{array} 
ight.$$

where

- $\triangleright$   $p_{j-1}$  is the position vector of the origin of Frame  $\Sigma_{j-1}$  w.r.t.  $\Sigma_0$
- $\triangleright$   $z_{j-1}$  is the unit vector of axis z of Frame  $\sum_{j-1}$  w.r.t.  $\sum_{0}$





Finally

$$\mathcal{T}_{\ell_i} = \frac{1}{2} m_{\ell_i} \dot{q}^T (J_P^{\ell_i})^T J_P^{\ell_i} \dot{q} + \frac{1}{2} \dot{q}^T (J_O^{\ell_i})^T R_i I_{\ell_i}^i R_i^T J_O^{\ell_i} \dot{q}$$

where only the blue terms depend on a

$$\mathcal{T}_{\ell_{i}} = \frac{1}{2} m_{\ell_{i}} \dot{q}^{T} (J_{P}^{\ell_{i}})^{T} J_{P}^{\ell_{i}} \dot{q} + \frac{1}{2} \dot{q}^{T} (J_{O}^{\ell_{i}})^{T} R_{i} J_{\ell_{i}}^{i} R_{i}^{T} J_{O}^{\ell_{i}} \dot{q}$$

The total Kinetic Energy is a configuration-dependent quadratic function in  $\dot{q}$ 

$$\mathcal{T}(q, \dot{q}) = \sum_{i=1}^{n} \mathcal{T}_{\ell_{i}} = \frac{1}{2} \sum_{i=1}^{n} \left( m_{\ell_{i}} \dot{q}^{T} (J_{P}^{\ell_{i}})^{T} J_{P}^{\ell_{i}} \dot{q} + \dot{q}^{T} (J_{O}^{\ell_{i}})^{T} R_{i} I_{\ell_{i}}^{i} R_{i}^{T} J_{O}^{\ell_{i}} \dot{q} \right) \\
= \frac{1}{2} \dot{q}^{T} \left[ \sum_{i=1}^{n} \left( m_{\ell_{i}} (J_{P}^{\ell_{i}})^{T} J_{P}^{\ell_{i}} + (J_{O}^{\ell_{i}})^{T} R_{i} I_{\ell_{i}}^{i} R_{i}^{T} J_{O}^{\ell_{i}} \right) \right] \dot{q} = \frac{1}{2} \dot{q}^{T} B(q) \dot{q}$$





$$\mathcal{T}(q,\dot{q}) = rac{1}{2}\dot{q}^T B(q)\dot{q}$$

where  $B(q) \in \mathbb{R}^{n \times n}$  is the *inertia matrix* which is

- ▶ symmetric  $B(q) = B(q)^T$ ,  $\forall q \in \mathbb{R}^n$
- ▶ positive definite  $B(q) \succ 0$ ,  $\forall q \in \mathbb{R}^n$  ( $\Rightarrow$  nonsingular matrix  $\forall q \in \mathbb{R}^n$ )
- configuration-dependent

#### Remarks

- 1.  $\mathcal{T}(q,\dot{q}) \geq 0$
- 2.  $\mathcal{T}(q,\dot{q})=0$  if and only if  $\dot{q}=0$





$$\mathcal{T}(q,\dot{q}) = rac{1}{2}\dot{q}^T B(q)\dot{q}$$

where  $B(q) \in \mathbb{R}^{n \times n}$  is the *inertia matrix* which is

- ▶ symmetric  $B(q) = B(q)^T$ ,  $\forall q \in \mathbb{R}^n$
- ▶ positive definite  $B(q) \succ 0$ ,  $\forall q \in \mathbb{R}^n$  ( $\Rightarrow$  nonsingular matrix  $\forall q \in \mathbb{R}^n$ )
- configuration-dependent

#### Remarks

- 1.  $\mathcal{T}(q,\dot{q}) \geq 0$
- 2.  $\mathcal{T}(q,\dot{q})=0$  if and only if  $\dot{q}=0$



These properties are the same for selecting a candidate Lyapunov function... it is not a coincidence and it will be exploited later!

## Potential Energy





20

Assumption 1: rigid links

Assumption 2: rigid transmission

The total Potential energy is given by the sum of the contributions relative to each link  $(\mathcal{U}_{\ell_i})$  and the contributions relative to each joint motor actuator  $(\mathcal{U}_{m_i})$ 

$$\mathcal{U} = \sum_{i=1}^{n} (\mathcal{U}_{\ell_i} + \mathcal{U}_{m_i})$$

From now on, we will consider only  $\mathcal{U}_{\ell_i}$ . The equations for  $\mathcal{U}_{m_i}$  can be found in the textbook. Without elastic components, the potential energy is only due to the gravitational forces

$$\mathcal{U}_{\ell_i} = -\int_{V_{\ell_i}} g_0^\mathsf{T} p_i^* 
ho dV = -m_{\ell_i} g_0^\mathsf{T} p_{\ell_i}, \hspace{0.5cm} \mathcal{U} = -\sum_{i=1}^n m_{\ell_i} g_0^\mathsf{T} p_{\ell_i}$$

where  $g_0$  is the gravity acceleration vector in the base frame  $\Sigma_0$  ( $\mathbf{g}_0 = \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix}$ )

#### **Potential Energy**





$$\mathcal{U} = \sum_{i=1}^n \mathcal{U}_i = -\sum_{i=1}^n m_{\ell_i} g_0^T p_{\ell_i}$$

The position of the center of mass of the link i w.r.t. the base reference frame  $\Sigma_0$ ,  $p_{\ell_i}$ , can be expressed w.r.t. the reference frame  $\Sigma_i$  attached to the link,  $p_{\ell_i}^i$ , by

$$\begin{pmatrix} p_{\ell_i} \\ 1 \end{pmatrix} = T_1^0(q_1)T_2^1(q_2)\cdots T_i^{i-1}(q_i)\begin{pmatrix} p_{\ell_i}^i \\ 1 \end{pmatrix}$$

where  $T_i^{j-1}(q_i)$  are the homogeneous transformation matrices.

- ► The coordinate of the CoM with respect to  $\Sigma_i$ ,  $p_{\ell_i}^i$ , is constant
- ▶  $U_i = U_i(q_1, q_2, ..., q_i)$  for open kinematic chain manipulators  $p_{\ell_1}$  is a function of  $q_1$ ,  $p_{\ell_2}$  is a function of  $q_1, q_2, ...$

"link" causality



## PROJECT – Assignment # 2





#### To do

- Compute the kinetic energy
- Compute the potential energy





The Lagrangian is given by

$$\mathcal{L}(q,\dot{q}) = \mathcal{T}(q,\dot{q}) - \mathcal{U}(q) = rac{1}{2}\dot{q}^T B(q)\dot{q} + \sum_{i=1}^n m_{\ell_i} g_0^T 
ho_{\ell_i}$$

We have to solve

$$\frac{\mathbf{d}}{\mathbf{d}t} \left( \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right)^T - \left( \frac{\partial \mathcal{L}}{\partial \mathbf{q}} \right)^T = \tau$$

where  $\tau_i$  is the generalized force performing work on the  $q_i$  generalized coordinate.  $\tau_i$  is non-conservative.

Let's compute all the derivatives one by one

$$\begin{pmatrix} \frac{\partial \mathcal{L}}{\partial \dot{q}} \end{pmatrix}^{T} = B(q)\dot{q}, \qquad \frac{d}{dt} \left( \frac{\partial \mathcal{L}}{\partial \dot{q}} \right)^{T} = B(q)\dot{q} + \dot{B}(q)\dot{q} 
\begin{pmatrix} \frac{\partial \mathcal{L}}{\partial q} \end{pmatrix}^{T} = \frac{1}{2} \left( \frac{\partial}{\partial q} \dot{q}^{T} B(q) \dot{q} \right)^{T} - \left( \frac{\partial \mathcal{U}}{\partial q} \right)^{T}$$





$$B(q)\ddot{q} + \dot{B}(q)\dot{q} - \frac{1}{2}\left(\frac{\partial}{\partial q}\dot{q}^TB(q)\dot{q}\right)^T + \left(\frac{\partial \mathcal{U}}{\partial q}\right)^T = \tau$$

For the i - th DOF, we have

$$\sum_{j=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{j=1}^{n} \frac{db_{ij}(q)}{dt} \dot{q}_{j} - \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial b_{jk}(q)}{\partial q_{i}} \dot{q}_{k} \dot{q}_{j} - \sum_{j=1}^{n} m_{\ell_{j}} g_{0}^{T} \frac{\partial p_{\ell_{j}}}{\partial q_{i}} = \tau_{i}$$

and finally

$$\sum_{j=1}^{n} b_{ij}(q) \ddot{q}_{j} + \underbrace{\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial b_{ij}(q)}{\partial q_{k}} \dot{q}_{k} \dot{q}_{j} - \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial b_{jk}(q)}{\partial q_{i}} \dot{q}_{k} \dot{q}_{j} - \sum_{j=1}^{n} m_{\ell_{j}} g_{0}^{\mathsf{T}} \dot{f}_{Pi}^{\ell_{j}}(q)}_{\triangleq g_{i}(q)} = \tau_{i}$$

$$\triangleq \sum_{j=1}^{n} \sum_{k=1}^{n} h_{ijk}(q) \dot{q}_{k} \dot{q}_{j} \qquad \triangleq g_{i}(q)$$





$$\sum_{i=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{i=1}^{n} \sum_{k=1}^{n} h_{ijk}(q) \dot{q}_{k} \dot{q}_{j} + g_{i}(q) = \tau_{i}, \qquad i = 1, \dots, n$$

- ▶  $b_{ii}(q)$  is the moment of inertia at Joint i axis when the other joints are blocked  $(q_i = const, \forall j \neq i)$
- ▶  $b_{ii}(q) = b_{ii} > 0$
- b<sub>ij</sub> effects of acceleration of Joint j on Joint i





$$\sum_{i=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{i=1}^{n} \sum_{k=1}^{n} h_{ijk}(q) \dot{q}_{k} \dot{q}_{j} + g_{i}(q) = \tau_{i}, \qquad i = 1, \ldots, n$$

- ▶  $b_{ii}(q)$  is the moment of inertia at Joint i axis when the other joints are blocked  $(q_i = const, \forall j \neq i)$
- ▶  $b_{ii}(q) = b_{ii} > 0$
- ▶ b<sub>ij</sub> effects of acceleration of Joint j on Joint i
- $h_{ijj}\dot{q}_{j}^{2}$  is the centrifugal effect induced on Joint i by velocity of Joint j,  $h_{ijj} = 0$ ,  $\forall i$
- $h_{ijk}\dot{q}_j\dot{q}_k$  is the Coriolis effect induced on Joint i by velocities of Joints j and k





$$\sum_{j=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} h_{ijk}(q) \dot{q}_{k} \dot{q}_{j} + g_{i}(q) = au_{i}, \qquad i = 1, \ldots, n$$

- ▶  $b_{ii}(q)$  is the moment of inertia at Joint i axis when the other joints are blocked  $(q_i = const, \forall j \neq i)$
- $b_{ii}(q) = b_{ii} > 0$
- ▶ b<sub>ij</sub> effects of acceleration of Joint j on Joint i
- $h_{ijj}\dot{q}_{j}^{2}$  is the centrifugal effect induced on Joint i by velocity of Joint j,  $h_{ijj}\equiv 0, \forall i$
- $ightharpoonup h_{ijk}\dot{q}_i\dot{q}_k$  is the Coriolis effect induced on Joint *i* by velocities of Joints *j* and *k*
- $\triangleright$   $g_i$  is the moment generated at Joint i axis of the manipulator by gravity.





$$\sum_{i=1}^{n} \frac{b_{ij}(q)\ddot{q}_{i}}{b_{ij}(q)\ddot{q}_{i}} + \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{h_{ijk}(q)\dot{q}_{k}\dot{q}_{j}}{d_{i}(q)\dot{q}_{k}\dot{q}_{j}} + \frac{g_{i}(q)}{g_{i}(q)} = \tau_{i}, \qquad i = 1, \ldots, n$$

- ▶ linear terms in acceleration ä
- quadratic terms in velocity q
- nonlinear terms in position q





The equations of motion

$$\sum_{i=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{i=1}^{n} \sum_{k=1}^{n} h_{ijk}(q) \dot{q}_{k} \dot{q}_{j} + g_{i}(q) = \tau_{i}, \qquad i = 1, \dots, n$$

can be rewritten as

$$\sum_{i=1}^n b_{ij}(q)\ddot{q}_j + \sum_{i=1}^n c_{ij}(q,\dot{q})\dot{q}_j + g_i(q) = au_i, \qquad i=1,\ldots,n$$





The equations of motion

$$\sum_{j=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} h_{ijk}(q) \dot{q}_{k} \dot{q}_{j} + g_{i}(q) = \tau_{i}, \qquad i = 1, \ldots, n$$

can be rewritten as

$$\sum_{i=1}^n b_{ij}(q) \ddot{q}_j + \sum_{i=1}^n c_{ij}(q,\dot{q}) \dot{q}_j + g_i(q) = \tau_i, \qquad i=1,\ldots,n$$



The choice of  $\{c_{ij}\}$  is not unique!





The equations of motion

$$\sum_{j=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} h_{ijk}(q) \dot{q}_{k} \dot{q}_{j} + g_{i}(q) = \tau_{i}, \qquad i = 1, \ldots, n$$

can be rewritten as

$$\sum_{i=1}^n b_{ij}(q) \ddot{q}_j + \sum_{i=1}^n c_{ij}(q,\dot{q}) \dot{q}_j + g_i(q) = \tau_i, \qquad i=1,\ldots,n$$



The choice of  $\{c_{ij}\}$  is not unique!

However, there is a clever choice: Christoffel symbols of the first type

#### Christoffel symbols of the first type





$$\sum_{j=1}^{n} c_{ij}(q) \dot{q}_{j} = \sum_{j=1}^{n} \sum_{k=1}^{n} h_{ijk} \dot{q}_{k} \dot{q}_{j} = \sum_{j=1}^{n} \sum_{k=1}^{n} \left( \frac{\partial b_{ij}}{\partial q_{k}} - \frac{1}{2} \frac{\partial b_{ij}}{\partial q_{i}} \right) \dot{q}_{k} \dot{q}_{j}$$

$$= \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial b_{ij}}{\partial q_{k}} \dot{q}_{k} \dot{q}_{j} + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \left( \frac{\partial b_{ik}}{\partial q_{j}} - \frac{\partial b_{jk}}{\partial q_{i}} \right) \dot{q}_{k} \dot{q}_{j}$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} \underbrace{\frac{1}{2} \left( \frac{\partial b_{ij}}{\partial q_{k}} + \frac{\partial b_{ik}}{\partial q_{j}} - \frac{\partial b_{jk}}{\partial q_{i}} \right)}_{\triangleq c_{ijk}} \dot{q}_{k} \dot{q}_{j}$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} c_{ijk} \dot{q}_{k} \dot{q}_{j}$$





The *n* equations of motion

$$\sum_{j=1}^{n} b_{ij}(q) \ddot{q}_{j} + \sum_{j=1}^{n} c_{ij}(q, \dot{q}) \dot{q}_{j} + g_{i}(q) = \tau_{i}, \qquad i = 1, \dots, n$$

can be written more compactly as

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau$$

If we have to take into account friction (viscous friction  $F_v\dot{q}$ , Coulomb friction  $F_s sign(\dot{q})$ )

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_{\nu}\dot{q} + F_{s}\mathrm{sign}(\dot{q}) + g(q) = \tau$$

If the end-effector interacts with the environment via the external wrench he we end up with

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_{\nu}\dot{q} + F_{s}\mathrm{sign}(\dot{q}) + g(q) = \tau - J^{T}(q)h_{e}$$

Set of *n* nonlinear second-order differential equations.



## PROJECT – Assignment # 3





To do

equations of motion (dynamic model)