1

EECS 16A Spring 2021

Designing Information Devices and Systems I Discussion 11B $\,$

Reference: Inner products

For this course we will use a standard inner product definition from matrix-vector multiplication:

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_v$$
, for any $\vec{x}, \vec{y} \in \mathbb{R}^n$.

In general, any inner product $\langle \cdot, \cdot \rangle$ on a real vector space $\mathbb V$ is a bilinear function that satisfies the following three properties:

- (a) **Symmetry:** $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$.
- (b) **Linearity:** $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$ and $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$, where $c \in \mathbb{R}$ is a real number.
- (c) **Non-negativity:** $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$.

Here \vec{x} , \vec{y} , and \vec{z} can be any vectors in the vector space \mathbb{V} .

The norm (or length) of a vector $\vec{x} = [x_1, x_2, ..., x_n]^T$ is defined using the inner product as

$$\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle} \equiv \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

1. Inner Product Properties

For this question we will verify our coordinate definition of the inner product

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_v$$
, for any $\vec{x}, \vec{y} \in \mathbb{R}^n$

indeed satisfies the key properties required for all inner products, but presently for the 2-dimensional case. Suppose $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2$ for the following parts:

(a) Show symmetry $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$:

Answer: This is seen by direct expansion: Let $x_i, y_i \in \mathbb{R}$, then

$$\left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle = x_1 \cdot y_1 + x_2 \cdot y_2$$
$$= y_1 \cdot x_1 + y_2 \cdot x_2$$
$$= \left\langle \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\rangle$$

(b) Show linearity $\langle \vec{x}, c\vec{y} + d\vec{z} \rangle = c \langle \vec{x}, \vec{y} \rangle + d \langle \vec{x}, \vec{z} \rangle$, where $c \in \mathbb{R}$ is a real number.

Answer: This is accomplished through a direct expansion:

$$\left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, c \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + d \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} cy_1 + dz_1 \\ cy_2 + dz_2 \end{bmatrix} \right\rangle$$

$$= x_1(cy_1 + dz_1) + x_2(cy_2 + dz_2)$$

$$= c(x_1y_1 + x_2y_2) + d(x_1z_1 + x_2z_2)$$

$$= c \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle + d \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle$$

$$= c \left\langle \vec{x}, \vec{y} \right\rangle + d \left\langle \vec{x}, \vec{z} \right\rangle$$

(c) Show non-negativity $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$:

Answer: This part requires just a bit more thought beyond a direct expansion of $\langle \vec{x}, \vec{x} \rangle$, but we first recognize that this inner product is the definition of the norm (or length) of \vec{x} . So it is at least in intuitive that a length of some vector (squared) cannot be negative:

$$\langle \vec{x}, \vec{x} \rangle = \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\rangle$$
$$= x_1^2 + x_2^2$$

From this result we notice if either x_1 or x_2 are nonzero (even negative) values, then the inner product HAS to be positive. The only case in which the inner product $\langle \vec{x}, \vec{x} \rangle$ is identically zero is when both $x_1 = 0$ AND $x_2 = 0$, which verifies the final part of the property: $\langle \vec{x}, \vec{x} \rangle = 0$ ONLY IF $\vec{x} = \vec{0}$.

As a bonus, suppose we re-label our vector components $x_1 = a$ and $x_2 = b$.

The we see $\langle \vec{x}, \vec{x} \rangle = c^2 = a^2 + b^2$, which is the Pythagorean theorem!

This verifies that $\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle} = c$ can be geometrically understood as the length of vector \vec{x} .

2. Geometric Interpretation of the Inner Product

In this problem we explore the geometric interpretation of the Euclidean inner product, restricting ourselves to vectors in \mathbb{R}^2 .

(a) Derive a formula for the inner product of two vectors in terms of their magnitudes and the angle between them. The figure below may be helpful:

Answer: From trigonometric calculation, if $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, then we know that $x_1 = \|\vec{x}\| \cdot \cos \alpha$, $x_2 = \|\vec{x}\| \cdot \sin \alpha$, $y_1 = \|\vec{y}\| \cdot \cos \beta$ and $y_2 = \|\vec{y}\| \cdot \sin \beta$ (as in the figure). Then you can directly write

$$\langle \vec{x}, \vec{y} \rangle = x_1 \cdot y_1 + x_2 \cdot y_2 =$$

$$= \underbrace{\|\vec{x}\| \cdot \cos \alpha}_{x_1} \cdot \underbrace{\|\vec{y}\| \cdot \cos \beta}_{y_1} + \underbrace{\|\vec{x}\| \cdot \sin \alpha}_{x_2} \cdot \underbrace{\|\vec{y}\| \cdot \sin \beta}_{y_2}$$

$$= \|\vec{x}\| \|\vec{y}\| (\cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta) =$$

$$= \|\vec{x}\| \|\vec{y}\| \cdot \cos (\beta - \alpha)$$

$$= \|\vec{x}\| \|\vec{y}\| \cdot \cos \theta$$

- (b) For each sub-part, identify any two (nonzero) vectors $\vec{x}, \vec{y} \in \mathbb{R}^2$ that satisfy the stated condition and compute their inner product.
 - i. Identify a pair of parallel vectors:

Answer: Parallel vectors point in the same direction (have an angle of 0° between them). This means we must have $\vec{y} = \alpha \vec{x}$ for some $\alpha > 0$. Having only this condition leaves a lot of freedom.

Let us choose
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{y} = 2$ $\vec{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. $\langle \vec{x}, \vec{y} \rangle = 1 \cdot 2 + 1 \cdot 2 = 4$

ii. Identify a pair of anti-parallel vectors:

Answer: Anti-parallel vectors point in opposite directions (have an angle of 180° between them).

This means we must have $\vec{y} = \alpha \vec{x}$ again, but now for some negative $\alpha < 0$. Having only this condition still leaves a lot of freedom.

Let us choose
$$\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and then set $\vec{y} = -2 \ \vec{x} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$.
$$\langle \vec{x}, \vec{y} \rangle = 1 \cdot -2 + 0 \cdot 0 = -2$$

iii. Identify a pair of perpendicular vectors:

Answer: Anti-parallel vectors point in 90° directions with respect to each-other. Most importantly, the Euclidean inner product $\langle \vec{x}, \vec{y} \rangle = 0$ whenever \vec{x}, \vec{y} are perpendicular.

For our example we will fix
$$\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, and then leave $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ general.
$$\langle \vec{x}, \vec{y} \rangle = 1 \cdot y_1 + 0 \cdot y_2 = y_1 \equiv 0.$$

Thus we must set $y_1 = 0$, but y_2 can assume any nonzero value!

3. Correlation

We are given the following two signals, $s_1[n]$ and $s_2[n]$ respectively.

Find the cross correlations, $corr_{s_1}(s_2)$ and $corr_{s_2}(s_1)$ for signals s[n] and s[n]. Recall

$$\operatorname{corr}_{x}(y)[k] = \sum_{i=-\infty}^{\infty} x[i]y[i-k].$$

$i=-\infty$													
$\operatorname{corr}_{ec{s_1}}(ec{s_2})[k]$													
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n+2]$													
$\langle \vec{s}_1, \vec{s}_2[n+2] \rangle$	-	+	+	+	+	+	+	=					
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n+1]$													
$\langle \vec{s}_1, \vec{s}_2[n+1] \rangle$	-	+	+	+	+	+	+	=					
	1												
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n]$								_					
	+	_		+ .	+ -	+ +	- =	_					
(1 / 2 3 /													
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n-1]$													
$\langle \vec{s}_1, \vec{s}_2[n-1] \rangle$	-	+	+	+	+	+	+	=					
$\frac{\begin{vmatrix} \vec{s}_1 \\ \vec{s}_2[n] \end{vmatrix}}{\langle \vec{s}_1, \vec{s}_2[n] \rangle}$ $\frac{\vec{s}_1}{\vec{s}_2[n-1]}$	+	0	1	+ 2	3	0	0 =	_ _ _ _					

$$\operatorname{corr}_{\vec{s_2}}(\vec{s_1})[k]$$

Answer: The linear cross-correlation is calculated by shifting the second signal both forward and backward until there is no overlap between the signals. When there is no overlap, the cross-correlation goes to zero. Both of these cross-correlations should have only zeros outside the range: $-2 \le n \le 2$.

$\operatorname{corr}_{ec{s}_1}(ec{s}_2)[k]$													
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n+2]$	2	4	3	0	0	0	0						
$\langle \vec{s}_1, \vec{s}_2[n+2] \rangle$	0	+ 0 -	+ 3	+ 0 -	+ 0 +	0 +	0 = 3						
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n+1]$	0	2	4	3	0	0	0						
$\langle \vec{s}_1, \vec{s}_2[n+1] \rangle$	0 -	+ 0 +	- 4 -	+ 6 +	- 0 +	0 +	0 = 10						
\vec{s}_1	0	0	1	2	3	0	0						
	0	0	2	4		0	0						
$\frac{\vec{s}_2[n]}{\vec{s}_2[n]}$													
$\langle \vec{s}_1, \vec{s}_2[n] \rangle$	0 +	0 +	2 +	8 +	9 +	0 +	0 = 19						
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n-1]$	0	0	0	2	4	3	0						
$\langle \vec{s}_1, \vec{s}_2[n-1] \rangle$	0 +	- 0 +	0 +	- 4 +	12 +	0 +	0 = 16						

\vec{s}_1	0		0		1		2		3		0		0	
$\vec{s}_2[n-2]$	0		0		0		0		2		4		3	
$\langle \vec{s}_1, \vec{s}_2[n-2] \rangle$	0	+	0	+	0	+	0	+	6	+	0	+	0	= 6

$\operatorname{corr}_{ec{s}_2}(ec{s}_1)[k]$														
$\vec{s}_2[n]$	0		0		2		4		3		0		0	
$\vec{s}_1[n+2]$	1		2		3		0		0		0		0	
$\langle \vec{s}_2, \vec{s}_1[n+2] \rangle$	0	+	0	+	6	+	0	+	0	+	0	+	0	= 6

$\vec{s}_2[n]$	0		0		2		4		3		0		0	
$\vec{s}_2[n-2]$	0		0		0		0		1		2		3	
$\langle \vec{s}_2, \vec{s}_1[n-2] \rangle$	0	+	0	+	0	+	0	+	3	+	0	+	0	=3

Notice that $\operatorname{corr}_{\vec{s}_1}(\vec{s}_2)[k] = \operatorname{corr}_{\vec{s}_2}(\vec{s}_1)[-k]$, i.e. changing the order of the signals reverses the cross-correlation sequence.