5. Use of MC (multicolumn) utility where appropriate (FORDEX, PERDEX, AUTDEX, JRNDEX) to produce final listing.

The storage of certain keys within the master Bibliographic File, the avoidance of step 4 for all but one index, and the use of locally written, fast utilities at steps 3 and 5 all serve to reduce computation time to a minimum. The use of step 5, where appropriate, also serves to reduce printed output to a minimum. The only high-level language involvement is in steps 1 and 4.

DISCUSSION

The six indexes described from an integrated cross-linked system which has a number of applications:

- As a stand-alone search tool providing data-base entry via the four major bibliographic information fields.
- As an adjunct to computer search techniques.⁴ A rapid index scan yields accurate estimates of the number of "hits" to expect for a given query. Such knowledge may suggest query refinement to expand or diminish the scope of the search.
- As an aid to file maintenance and for spot checks on file consistency. The compound name and author indexes present material in an ordered form, particularly useful for visual scanning to detect spelling errors or lack of standardization. Such listings are always generated during the checkout of new input material.
- As part of our information dissemination program. The index system, on magnetic tape, is an integral part of regular data-base releases to 17 Affiliated Data Centres worldwide. All programs, except JRNDEX, are interfaced with typesetting software and contribute to MSD volumes^{5,8} and, more recently, to the Organic Supplement of the NBS publication *Crystal Data*. Finally a NAMDEX listing always accompanies the Current Awareness listing of new entries.

ACKNOWLEDGMENT

I wish to acknowledge the valuable programming contri-

butions of Dr. J. R. Rodgers and Mrs. A. Doubleday, and the Staff of CCDC, particularly Drs. O. Kennard and D. G. Watson for advice and discussion. The Science Research Council and CCDC Affiliated Data Centres are thanked for financial support. All programs are written in Fortran IV for a 512K IBM 370/165 computer. Sort operations use the IBM Sort/Merge Package. The Staff of the University of Cambridge Computer Centre are thanked for advice and cooperation in the use of local utilities and implementations.

REFERENCES AND NOTES

- O. Kennard, D. G. Watson, F. H. Allen, W. D. S. Motherwell, W. G. Town, and J. R. Rodgers, *Chem. Br.*, 11, 213 (1975).
- O. Kennard, D. G. Watson, and W. G. Town, J. Chem. Doc., 12, 14 (1972).
- (3) F. H. Allen, O. Kennard, W. D. S. Motherwall, W. G. Town, and D. G. Watson, J. Chem. Doc., 13, 119 (1973).
- (4) O. Kennard, F. H. Allen, M. D. Brice, T. W. A. Hummelink, W. D. S. Motherwell, J. R. Rodgers, and D. G. Watson, Pure Appl. Chem., 49, 1807 (1977).
- (5) O. Kennard and D. G. Watson, "Molecular Structures and Dimensions", Vols. 1-3; with W. G. Town: Vols. 4, 5, Oosthoek, Utrecht, 1970, 1972, 1973, 1974; with F. H. Allen and S. M. Weeds: Vols. 6-10, Bohn, Scheltema, and Holkema, Utrecht, 1975, 1976, 1977, 1978, 1979.
- (6) O. Kennard, D. G. Watson, F. H. Allen, N. W. Isaacs, W. D. S. Motherwell, R. C. Pettersen, and W. G. Town, "Molecular Structures and Dimensions", Vol. Al, Oosthoek, Utrecht, 1973.
- (7) F. H. Allen, N. W. Isaacs, O. Kennard, W. D. S. Motherwell, R. C. Pettersen, W. G. Town, and D. G. Watson, J. Chem. Doc., 13, 211 (1973).
- (8) O. Kennard, F. H. Allen and D. G. Watson, "Molecular Structures and Dimensions: Guide to the Literature 1935-1976", Bohn, Scheltema, and Holkema, Utrecht, 1977.
- (9) H. Skolnik, J. Chem. Inf. Comput. Sci., 16, 187 (1976).
- (10) F. H. Allen and W. G. Town, J. Chem. Inf. Comput. Sci., 17, 9 (1977).
- (11) E. Garfield, J. Chem. Doc., 3, 97 (1963).
- (12) "The 1967 Volume Index", Chemical Abstracts Service, Columbus, Ohio, 1967.
- (13) O. Kennard, D. G. Watson, J. R. Rodgers, and S. M. Weeds, "Crystal Data", 3rd ed, Vol. 3 (Organic Compounds), 1967-74, National Bureau of Standards, Washington D.C., 1979.

The Chemical Abstracts Service Chemical Registry System. VI. Substance-Related Statistics

ROBERT E. STOBAUGH

Chemical Abstracts Service, P.O. Box 3012, Columbus, Ohio 43210

Received October 24, 1979

Statistics on types of substances, ring systems, and elemental composition have been determined for the Chemical Abstracts Service Registry Structure File at different points in time. This paper reports these statistics and offers some comparisons to show the various shifts in file characteristics.

INTRODUCTION

The Chemical Abstracts Service (CAS) Chemical Registry System is a computer-based system that uniquely identifies chemical substances on the basis of their molecular structure. The design, content, and functions of the Registry System have been described in detail in previous papers.¹⁻⁵ In addition, the function of the system as an interfile linking agent for information resources has also been described.⁶

The computer-readable structure records that make up the Registry files are basically records of the atoms and bonds present in the molecular structure of the substances. They represent the ring systems that are present, the substituents attached to the rings, and any substituents that link two or more rings. From these structure records, statistics can be

obtained routinely and with little difficulty for analyses of elemental composition and ring characteristics. These statistics, along with those for types of structures, are presented in this paper.

Since December 1978, statistics have been determined for the various classes of substances in the CAS Chemical Registry System files. The tables in this paper present a comparison of cumulative occurrence data concerning ring graphs for the years 1974 and 1978 and ring systems for 1974, 1976, and 1978. Also compared are the cumulative occurrence data for elemental composition for the years 1967, 1974, and 1979. Tables report the percentage increase from 1974 to 1979 for the occurrence of elements and for substances containing the given elements. Similarly, statistics are provided for the

Table I. CAS Chemical Registry Coverage (December 1978)

_	
Types of Substance	Number
Fully-defined substances	3,622,448
Incompletely-defined substances	63,807
Polymers	160,845
Coordination compounds	288,778
Alloys	82,715
Mixtures	10,822
Minerals	1,416
Radical ions	7,584
Ring parents	45,764
TOTAL	4,284,159

Figure 1. Types of substances.

percentage increase for ring graphs and ring systems.

TYPES OF SUBSTANCES

A list of the numbers of registered substances for various classes of chemical substances as of December 1978 is provided in Table I. These numbers are for those substances registered by machine processing and do not include those registered by manual techniques.⁷ This is by no means an exhaustive classification of chemical substances. The only classes listed are those for which statistics are routinely obtained during operation of the CAS Chemical Registry System. The classes are mutually exclusive; e.g., a coordination compound is not also counted as fully defined, or incompletely defined, or a polymer, even though it is also a member of at least one of these classes.

Examples of these classes are shown in Figure 1. More detailed descriptions of the classes have previously been published, 1 except for the class "ring parent". A ring parent is the particular bond variation of a ring system chosen as the representative of the family of index parents which is illustrated in the "Parent Compound Handbook" and the CA Chemical Substance Index to show ring-system numbering. Even when the ring parent itself does not exist, it is entered into the CAS Chemical Registry System. Figure 2 provides examples of ring parents.

Figure 2. Ring parents.

$$(CH_2 = CH_2)_x$$

$$(CH_2 = C - COCH_3 \cdot CH_2 - CH_2 -$$

Figure 3. Expressions.

Fe . Co . Al . Cu

Table II. Expression Statistics (December 1978)

Expressions	528,913
With one component	39,319
With two components	374,233
With three components	51,379
With four or more components	63,622
Components/expression · · average	2.4
Components/expression - · highest	19

STRUCTURAL CHARACTERISTICS

Chemical substances are recorded in the CAS Chemical Registry System in terms of components, a component being a set of contiguous atoms. For some substances more than one component is necessary for adequate representation, for example, salts of acids, salts of bases, polymers, mixtures, and other types. In the CAS Chemical Registry System such a combination of components is called an "expression". Figure 3 gives some examples. About 12.2% of the substances recorded are made up of expressions, as shown in Table II. From 1 to 19 components can be present in expressions; the average number is 2.4. An expression may consist of only one component, if additional information such as the polymer subscript x is present. Expressions containing two components are by far the most common. Those containing more than five are almost always alloys.

The large majority, 87.9%, of chemical substances are represented by a single component, and these may either be acyclic or cyclic. Table III lists statistics for these single component substances. A relatively small percentage (12.5%) contain no rings at all. The number of atoms in these acyclic substances averages approximately 15. Of the cyclic substances, almost half (48.0%) contain one ring system and another third (31.8%) contain two ring systems. A ring system is defined as being any cyclic arrangement of atoms and bonds, for example, cyclopentane, naphthalene, pyrrole, or perylene.

A basic design feature of the CAS Chemical Registry System is that the ring systems present in a structure are recognized during the registration process.¹ The systems are stored in the structural record of a given substance only as an identifying number which links the structure record to a file of ring systems. In this file, ring systems are recorded as composites of the ring graphs, or basic patterns; as graph-node

Table III. Component Statistics (December 1978)

Components	3,755,246
Acyclic	465,030
Atoms/acyclic component average	14.9
Cyclic	3,290,216
With one ring system	1,571,517
With two ring systems	1,046,907
With three ring systems	411,852
With four or more systems	259,940
Ring systems/cyclic component average	1.8

Table IV. Ring Statistics

		Total	Average	Highest
Ring graph	rs.	22,463		
Ring	s/ring graph		7.2	4,751
Ring-node	sets	85,351		
Sets/	ring graph		3.7	1,421
Coordinati	on ring node sets	36,146		
Ring-node-	bond sets	162,859		
Sets/	ring node variant		1.9	322
		`c _c		
` \ '	S C C N C	2-2		
	~_o_c	- ''	"~"	·o/ \

Figure 4. Examples of ring graph-node-bond variations.

(atom) variations, in which the atoms have specific identities; and as graph-node-bond variations for fully specified systems. Examples of these are given in Figure 4. Statistics for the ring system constituents, given in Table IV, show that in the total Registry file of over 4 million substances, there are only 22 463 basic ring graphs and 162 859 different ring systems. The number of rings per graph ranges from 1 to 4751, the average number being 7.2. For each graph, there is an average of 3.7 different sets of specified atoms, the range being from 1 to 1421. For each graph-node variant, there are almost 2 (1.9) specific bond variations, ranging from 1 to 321.

Ring systems are very common in chemical substances. Not only do 3 290 216 substances contain them, but there are 5 922 389 total occurrences, since many substances contain more than one ring system. Of the total occurrences, 3 269 266 (55%) are phenyl rings, both unsubstituted and substituted. There are 200 ring graphs that account for over 96% of the ring systems' occurrences. These 200 ring graphs are categorized as listed in Table V. More fused ring systems are present than any other type of ring system, but there is a wide variety of structural types including the complex of metallocenes and the polyhedral cage typical of some carboranes.

The 20 most frequently occurring ring graphs, with the number of occurrences given as of March 1974 and December

Table V. 200 Most Frequent Ring Graphs

Туре	Number
Fused	98
Spiro-fused	26
Bridged-fused	25
Bridged	17
Single	15
Spiro	13
Macro	. 3
π -complex	2
Polyhedral	1

1978, are pictured in Table VI. It is not surprising that the six-membered graph, typical of benzenes, pyridines, pyrans, morpholines, pyrimidines, etc., is the most frequently occurring. The remaining three of the most frequent four ring graphs include the five-membered graph, the basis for cyclopentanes, pyrroles, thiazoles, furans, etc.; the two ortho-fused six-membered graphs, typical of naphthalenes, quinolines, benzopyrans, etc.; and the ortho-fused six- and five-membered graphs, basic to indenes, indoles, benzothiophenes, etc. Altogether these top-ranking four types of graphs comprise the majority of ring graphs.

In considering specific ring systems, the benzene ring is by far the most common, with pyridine second, cyclohexane third, naphthalene fourth, and piperidine fifth. Table VII shows the 20 most frequently occurring ring systems with frequencies given as of March 1974, June 1976, and December 1978. The top three have remained in the same order consistently, while there have been some variations in the order of the less frequently occurring systems. Six-membered rings, single and fused, account for over 69% of all rings.

The total number of ring graphs showed a 55.4% increase from 1974 to 1978. Examination of the percentage increase in the number of occurrences of individual ring graphs from 1974 to 1978 shows that, of the 20 most common, the bicyclo[4.2.0] graph increased the most (222%), followed by the bicyclo[3.2.0] graph (131%), and the bicyclo[3.3.0] graph (116%), with the tetracyclic graph typical of steroids showing the least increase (38.6%) in frequency. Such figures indicate that the 1974 to 1978 period was one of high publishing activity for research in the fields of cephalosporins, penicillins, and prostaglandins, but of relatively low activity for steroids.

Figures on the percentage increase in occurrence of ring systems support this indication for steroids, since the only steroid-type ring system appearing in the 20 most frequently occurring ring graphs shows an increase of only 42%, the lowest of the top 20. There is no one specific bicyclo[4.2.0], bicyclo[3.2.0], or bicyclo[3.3.0] system appearing in the first 20 ring systems. Hence, the increase in occurrence of those three ring graphs probably involves a number of ring systems, but the cephalosporins, penicillins, and prostaglandin-related compounds must certainly play a prominent role. The cyclopentane ring system shows the largest increase (145.8%) in number of occurrences from 1974 to 1978, followed by the tetrahydropyran system (121.4%), and the tetrahydrofuran system (101.4%).

ELEMENT STATISTICS

Statistics have been obtained at varying time intervals on the occurrence of the elements in the CAS Registry Structure File. Table VIII shows the number of substances containing

Table VI. Ring Graph Frequency

1974 Ring Graph 2,362,044 4,143,118 368.894 689, 176 202,188 358,567 210,128 342,957 67.395 93.378 47.116 85,826 45,175 70,063 21,325 39,303 21.282 35.109 15,150 16.299 26,560 26,321 16,239 13,500 23,447 13.572 23 124 1*.372 19,298 8 339 19.218 16.421 8,729 15,739

a given element and the percent of the total as of 1967,9 1974, and 1979, and Table IX lists the analogous data for occurrences (number of atoms) of the elements. The 1967 statistics are included for historical more than comparative purposes.

Table VII. Frequently Occurring Ring Systems

Ring System	1974	Occurrences 1976	1978
	3,861,106	2,577.641	3.269,266
	95.086	130,190	161.097
\bigcirc	80,004	112,132	142,050
	44,935	69.716	99.482
	61,509	78.793	95,295
NH NH	57,048	74,685	93,236
$\overline{\Box}$	37,767	56,355	76,062
	40.285	56,110	75.046
C ^B	27,794	39,152	48,643
C°)	27.959	37,565	46,152
	27,116	36,751	44,873
	22,549	32,128	41,141
	23 139	32,739	41 068
	25 531	33,743	40.829
	16.366	26,527	40,224
	25,087	32,564	39 564
\bigvee	17.130	24,570	33,304
\bigcirc	17,919	25.801	33,147
	22,323	27.236	31.693
\searrow	16.912	24,496	31,554

At that time the CAS Chemical Registry System had been operating for not quite $2^1/_2$ years and contained the substances

Percent

.000053 .007703 .025417 .000251 .021208 .00083 .004035 .091002 .003798 .002863 .004644 .000057 .188365

. 188365 37.963829 .007006 .006078 .002721 .000073 .791616 .000127 .039455 .027656 .003292 .036250

.001627 .001722 .00044 .02091 .589231 .053881 .00039 .00099 .00092 .00151 .0151 .01581 .02280 .00151 .01682 .004828 .004828 .004828 .004828 .00592 .00592 .00592 .00592 .00592 .00592 .00592 .00592 .00592 .00592 .00592 .00592

.026117

.026562 4.009267 .036691 .010358 .002770 .000080 .038460 .000032

7.446133 .002924 .232826 .000253 .007582 .010439 .000114 .000122 .014089 .000542 .000599 .002132 .014089 .000542 .000597 .002132 .000597 .002140 .000597 .002140 .00059

.005425 .001788 .014940 .003434 .000877 .006323 .013361 .022214 .00320 .002842 .001462 .014117

Table VIII. Elemental Composition Statistics by Substance

	VIII. Elem							IX. Eleme	1/67		28/74		8/79
Element Symbol	No. of Substances	1/67 Percent	No. of Substances	28/74 Percent	No. of Substances	7.79 Percent	Element Symbol	No. of Occurrences		No. of Occurrence		No. of Occurrence	
Ac	Buoscances		62	0.002275	106	0,002328	Ac	occur check	1010010	64	.000054	108	
Ag Al	88 909	0.014756 0.152422	6,336 19,436	0.232474	12,162 37,902	0.267151 0.832558	Ag Al	91 947	.0003	9,129 29,753	.007725	15,448 50,972	
Am Ar	2	0.000335	332 127	0.012181	451 200	0.009906	Am Ar	2 2		368 173	.000311	504 243	
As	2,165	0.363030	15,162	0.556309	25,162	0.552710	As At	2,496	.0102	25,610 93	.021672	42,531 167	
At Au	2 144	0.000335 0.024146	86 3,117	0.003155 0.114366	160 6,541	0.003514 0.145876	Au	144	. 0006	4,530	.003833	8,092	
B Ba	5,417 39	0.908333 0.006539	36,057 4,282	1.322970 0.157111	58,428 7,035	1.283433 0.154531	B Ba	7,279 39	.0300	115,237 5,717	.097516 .004838	182,493 7,618	
Be Bi	76 186	0.012744	2,669 3,002	0.097928	4,174 5,367	0.091686 0.117891	Be Bi	77 193	.0003	4,664 5,101	.003947 .004317	5,743 9,314	
Bk Br	24,378	4.087750	53 147,014	0.001945 5.394095	107 243,199	0.002350 5.342127	Bk Br	34,255	.1413	56 228,223	.000047	115 377,743	
C Ca	594,706 72		2,630,958	96.532551	4,293,917 11,770	94.320495 0.258540		9,400,518 73	38.7785 .0003	44,959,807 9,915	38.045697 .008390	76,131,591 14,051	
Cd	120	0.020113	6,266	0.229906	0,445 4,363	0.229435 0.095837	Cd Ce	120	.0004	7,653 3,384	.006476	12,190 5,458	
Cf Cf	8	0.001341	2,412 76	0.002789	134	0.002943	Cf Cl	149,248	.6157	79 974,531	.000067	1,587,485	
C1 Cm	83,432	13.990043	544,891 130	19.992610 0.004770	894,992 214	19.659459	Cm			163	.824663	255	
Co Cr	1 <i>7</i> 9 136	0.030015 0.022805	38,157 22,740	1.400014 0.834354	67,243 49,691	1.477064 1.091516	Co Cr	1 98 15 9	.0008	46,754 26,216	.039564 .022184	79,123 55,462	
Cs Cu	25 25 1	0.004192	3,789 32,635	0.139022 1.197412	6,275 61,081	0.137837 1.341709	Cs Cu	26 262	.0001	4,423 39,908	.003743	6,602 72,696	
Dy	2,806	0.470516	15,977	0.586213 0.048946	30,028 2,378	0.659597	D Dy	7,833 7	.0323	52,560 2,043	.044477	99,610 3,263	
Ēr	10	0.001676	1,575	0.057788	2,655 88	0.058319	Er Es	10		2,764 35	.002339	3,455 90	
Es Eu	8	0.001341	2,043	0.074960	3,308 265,714	0.072663 5.836693	Eu F	8 211,854	.8730	2,473 723,577	.002093	4,195 1,181,628	
F Fe	58,687 146	9.840752 C.024481	166,386 40,322	6. 04873 1.479456	90,688	1.992059	Fe	149	.0006	51,396	.043492	108,053	
Por Fr			42 45	0.001541 0.001651	77 78	0.001691 0.001713	Pm Pr			44 49	.000037	79 80	
Ga Gd	10 4 9	0.017439 0.001509	3,252 1,888	0.119319	5,594 3,447	0.122878 0.075717	G a Gd	108 9	.0004	5,290 3,014	.004476 .002550	7,872 4,820	
Ge H	1,306 596,347	0.218992	8,677 2,636,306	0.318368 96.728775	14,030 4,289,454	0.308184 94.22246°	Ge H 1	1,563 1,547,701	.0064 47.6360	13,219	.011186 47.050257	20,331 94,297,072	
He Hf	8	0.001341	1,252	0.003926	156 2,455	0.003425 0.053925	He Hf	8		137 1,835	.000116	203 3,032	
Hg	1,769	0.296629	11,601	0.425653	18,273 2,017	0.401386	Hg Ho	1,974	.0081	14,071	.011907	22,044	
Ho I	6,957	0.000503 1.166563	1,214 64,849	2.379376	99,516	2.185975	I In	10,429 47	.0430	94,153 4,406	.079674	146,121 7,187	
In Ir	45 16	0.007546 0.002683	3,279 4,717	0.120310 0.173072	5,817 8,472	0.127776 0.186096	Ir	16		5,322	.004504	9,682	
K Kr	161	0.026997	17,433 184	0.639635 0.006751	28,174 290	0.618872 0.006370	K Kr	180	.0007	19,439 191	.016450	29,139 308	
La Li	11 298	0.001844	2,843 7,786	0.104313 0.285676	4,847 14,496	0.106469 0.318420	La Li	11 347	.0014	4,590 9,971	.003884	7,212 16,536	
Lr Lu	3	0.000503	14 931	0.000514	53 1,521	0.001164	Lr Lu	3		16 1,248	.000014	55 1,921	
Md	320		8,726	0.0009.7	58	0.001274	Md Mg	328	.0013	27 12,155	.000023	60 18,916	
Mg Mn	66	0.053658	19,931	0.320166 0.731289	16,277 48,062	1.055733	Mn	69	.0002	22,979 24,867	.019445	52,376 53,268	
Mo N	29 383,050	0.004863 64.230583	14,476 1,751,974	0.531139 64.281725	34,336 2,872,142	0.754227 63.089681	Mo N	29 9 17 ,258	3.7838	4,674,936	3.956004	8,040,072	
Na Nb	1 87 50	0.03°356 0.008384	41,217 5,328	1.512295 C.195490	71,326 11,441	1.566752 0.251313	Na Nb	215 50	.0009	44,699 11,393	.037825	73,581 20,772	
Nd Ne	10	0.001677	2,435	0.089343 0.003669	4,016 135	0.088215 0.002965	Nd Ne	10		3,652 121	.003090	5,556 161	
Ni No	*17	0.019619	34,294 23	1.258282 0.000844	69,436 64	1.525236 0.001405	Ni No	119	.0004	39,706 27	.033600	77,127 66	
Np O	492,746	82.624625	561 2,215,027	0.020584 81.271616	886 3,630,656	0.019461 79.751256	Np O	1,715,545	7.0769	623 8,702,367	.000527 7.364080	988 14,932,265	
0.5	47	0,007881	2,000	0.073382	4,062	0.089226	Os P	47 35,706	.0002	2,669 260,947	.002259	5,864 466,904	
P Pa	28,044	4.702473	169,677 356	6.225623 0.013062	292,133 441	6.4°7014 0.009687	Pa Pb	470	.0019	4 16 9 ,529	.000352	509 15,205	
P5 Pd	404 36	0.067743	6,707 8,564	0.246087 0.3:4222	11,351 17,305	0.249336 0.380122	Pd	37	.0001	10,740	.009088	20,936	
Pm Po	62	0.010396	:43 162	0.005247	205 241	0.004503 0.005293	Pm Po	6.2	.0002	156 165	.000132	229 245	
Pr Pt	9 *7.2	0.001509	1,894 12,378	0.069493 0.454162	3,181 24,745	0.069874 0.543550	Pr Pt	9 174	.0007	2,873 14,426	.002431 .012208	4,276 28,255	
Pu Ra	3	0.000503	656 72	0.024069 0.002642	980	0.021526 0.002613	Pu Ra	3		891 72	.000754	1,088 119	
Rb Re	14 13	0.002347	2,485 3,606	0.091214	4,140 6,526	0.090939	. Rb Re	- 4 13		3,061 4,980	.002590	4,445 8,874	
Rh	3	0.000503	6,906	0.253388	14,108	0.309897	Rh Bn	3		8,810 54	.007455	17,881	
Rn Pu	7	0.001174	54 4,746	0.001981 0.174136	9,724	0.00°779 0.213598	Ru S	7 166,664	.6875	5,987 881,655	.005066 .746070	12,227 1,500,099	
5 Sb	118,536 881	19.876351 0.147728	569,805 8,442	20.905731 0.309746	967,434 14,741	21.250726	Sb	967	.0040	10,787	.009 128	19,600	
Sc Se	16 2,116	0.002683 0.354815	1,513 14,765	0.055514	2,163 25,251	0.047512 0.554665	Se Se	-16 2,534	.0104	1,986 25,105	.001681 .021244	2,965 41,282	
Si Sm	8,628 46	1,446760	56,152 2,068	2.427185 0.075877	125,165 3,483	2.749383 0.076507	Si Sm	16,362 46	.0675 .0002	°20,257 2,903	.101763 .002457	208,384 4,699	
Sn Sr	2,857 25	0.479067	21,605 2,325	0.792710	36,652 3,863	0.805100 0.084854	Sn Sr	3,496 25	.0144	26,774 3,684	.022657 .003117	43,476 4,518	
T	57 9	0.097088	2,313	0.084866	4,059	0.089379	T Ta	857 38	.0035	3,486 5,653	.002950	6,458 10,251	
Ta Tb	38 5	0.006372	2,971 1,190	0.109009	6,024 2,002	0.132323	Tb To	5		1,740 424	.001472	2,689 749	
Te Te	225	0.000671 0.037728	345 3,506	0.012658 0.128639	650 6,153	0.014277 0.135157	Te Th	23 ⁴ 48	.0009	6,889 2,349	.005830	10,881 3,587	
Th Ti	48 407	0.008049 0.068247	1,966	0.072135 0.455042	3,053 24,710	0.067062 0.542781	71	47.8	.0019	17,36!	.014691	29,962 6,888	
T1 Tm	129	0.021631	3,467 829	0.127208 0.030417	5,846 1,361	0.128413 0.029895	T1 Tm	140	.0006	4,193 1,:70	.003548	1,760	
U V	137 145	0.022972	5,799 8,705	0.212771	9,675 17,437	0.212521	U V	141	.0005 .0006	7,512 4,492	.006357 .012263	12,681 26,794	
W	145 57	0.024314	9,255	0.297564	18,122	0.398069	W Xe	59	.0002	134,149 462	.020*13 .000391	44,549 643	
Xe Y	9	0.001509	422 2,192	0.015484	574 3,985	0.087534	Y Yb	9 5		3,442 1,854	.002913	5,700 2,932	
Yb Zn	5 595	0.000838	1,320	0.048432	2,233 25,030	0.049050	Zn Zr	6 13 57	.0025	19,132 6,747	.016190	28,311 12,063	
Zr	57	0.009558	4,914	0.180300	9,703	0.213136				.,		-,	

indexed for almost five volumes of Chemical Abstracts, the total collection of fluorine-containing compounds from 1907 to date, and some CAS internal working files. Organic compounds only were being processed, and these did not include polymers, coordination compounds, or incompletely defined substances; hence the file as of 31 May 1967 was not representative of the entire chemical field. Statistics of 1974 and 1979, however, have been obtained from Registry files that encompass all types of chemical substances and are fully representative.

Examination of the statistics of Tables VIII and IX corroborates some well-known facts and reveals others not so evident. Hydrogen (not including its isotopes, deuterium and tritium) occurs in more substances than any other element, followed closely by carbon. In succession, in lesser percentage for all these samples, are oxygen, nitrogen, sulfur, and chlorine. Table X shows the first 20 most commonly occurring elements in substances. After the first six, which are identical, there are variations, but relatively minor ones between the 1974 and 1979 samples. The 1967 rankings show the bias toward

Table X. Twenty Most Frequently Occurring Elements According to Number of Substances

	1967		1974	-	979
Н	99.99%	Н	96.73%	С	94.32%
С	99.68	С	96.53	н	94.22
0	82.62	0	81.27	0	79.75
N	64.23	N	64.28	N	63.09
S	19.88	S	20.91	S	21.25
CI	13.99	CI	19.99	CI	19.66
F	9.84	Р	6.23	Р	6.42
Ρ	4.70	F	6.10	F	5.84
Br	4.09	Br	5.39	Br	5.34
Si	1.45	Si	2.43	Si	2.75
1	1.17	1	2.34	1	2.19
В	0.91	Na	1.51	Fe	1.99
Sn	0.48	Fe	1.48	Na	1.57
D	0.47	Co	1.40	Ni	1.53
As	0.36	В	1.32	Co	1.48
Se	0.35	Ni	1.26	Cu	1.34
Hg	0.30	Cu	1.20	В	1.28
Ge	0.22	Cr	0.83	Cr	1.09
ΑI	0.152	Sn	0.79	Mn	1.06
Sb	0.148	Mn	0.73	ΑI	0.83

Table XI. Twenty Most Frequently Occurring Elements According to Number of Atoms

1967		1967 1974			1979
Н	47.64%	Н	47.05%	Н	47.02%
С	38.79	С	38.05	С	37.96
0	7.08	0	7.36	0	7.45
Ν	3.78	N	3.96	N	4.01
F	0.87	CI	0.82	CI	0.79
S	0.69	S	0.75	S	0.75
ÇI	0.62	F	0.61	F	0.59
Ρ	0.15	Р	0.22	Р	0.23
Br	0.14	Br	0.19	Br	0.19
Si	0.07	Si	0.10	Si	0.10
1	0.04	В	0.098	В	0.093
D	0.032	1	0.080	1	0.074
В	0.030	D	0.044	Fe	0.052
Sn	0.014	Fe	0.044	D	0.050
Se	0.010	Co	0.040	Co	0.039
As	0.010	Cu	0.034	Ni	0.038
Hg	0.008	Ni	0.034	Cu	0.036
Ge	0.006	Al	0.025	Cr	0.028
ΑI	0.004	Sn	0.023	Αl	0.025
Sb	0.004	Cr	0.022	\$ n	0.022

Table XII. Registry Structure File Statistics

	1967	1974	1979
No. of substances	596,367	2,725,462	4,552,475
No. of atoms	24,241,534	118,173,172	200.537.175

fluorine, for the reason stated previously.

Table XI shows the 20 highest occurring elements in terms of total numbers of atoms, rather than substances. Hydrogen, carbon, oxygen, and nitrogen, in that order, head the list as illustrated in Table X. Below these, there is some variation, again, only minor, between the 1974 and 1979 samples.

Table XII lists the number of substances and the number of total atoms in the three samples of the structure file. The percentage increase in number of substances from the 1974 to 1979 sample is 67.0%, for the number of atoms, 69.7%. For individual elements, the percentage increase (Table XIII) of substances and of occurrences (atoms) varied widely from 22.4% (protactinium) to 278.6% (lawrencium) for substances, and from 22.1% (protactinium) to 243% (lawrencium) for occurrence. Several of the actinide elements, berkelium, einsteinium, lawrencium, nobelium, and mendelevium, showed very high percentage increases in substances containing them and in total occurrence in the 1974-1979 period. However,

Table XIII. Elemental Composition Increases 1974 to 1979

	Substances No.	3	Occurrences No.	
Ac	44	71.0	44	68.8
Ag	5,826	92.0 95.0	6,319	69.2
All Am	18 , 465 1 ! 9	35.8	21,219 136 70	7 ¹ .3 37.0
Ar	73 10,000	57.5 66.0	70	40.5 66.1
As At	74	86.0	15,921 74	80.0
Au	2 5 20	113.1	3,562 67,256	78.6
B Ba	22,371 2,753	62.0 64.3	1,901	58.4 33.3
Вe	1,505	55.4	1,079	23.1
Bi Bk	2,365 54	78.8 '01.9	4 ,2 13 59	82.6 105.4
Br	95,185	65.4	149.520	65.5
C	1,662,959	53.2	31,171,184 4,136	69.3 4.7
Ca Cd	4,931 4,179	72.1 66.7	4.537	59.3 61.3
Ce	1,951	83.8	2.074	61.3
Cf Cl	58 350,101	76.3 64.3	68 612,955	86.1 62.9
Cm	84	64.6	92	56.4
Co Cr	29,086 26,951	76.2 18.5	32,369 29,246	69.2
Cs	2,486	65.6	2,179	49.3
Cu	28,446	87.2	32,788	82.2
D Dy	°4,03° 1044	87.1 78.3	47,041 220	89.5 59.7
Εr	1080	58.5	69'	25.0 157.
Es Su	55 1265	166.7 61.2	55 1,722	59.5
F	99,328	59.7	458,051	63.3 110.2 79.5
Fe Fm	50,366 35	∙24.9 83.3	56,657 36	110.2
Fr	33	73.3	3.1	53.3
Sa	2,342	72.0 82.6	2,582	48.8
Gd Ge	1,559 5,353	61.7	1,806 7,112	59.9 53.8
Н	1,653,148	52.7	38,696,291	69.6
He Hf	.,203	45.8 96.1	66 1,197	48.2 65.2
Hg	6.672	57.5	7,973	65.2 56.7
Ho I	803 34,667	66.† 53.5	9.26	50.2
În	2,538	77.4	51,968 2,78°	55.2 63.1
Ir	2,538 3,755	79.6	4,360 9,700	81.9
K Kr	10,741 106	61.6 57.5	9,700	49.9 51.3
La	2,004	70.5	2,622	57.
Li	6,710	86.2	6,565	65.8
Lr Lu	39 590	278.6 63.4	39 673	243.8 53.9
Md	33	132.0	22	122.2
Mg Mn	7,551	86.5 141.1	6,76° 29,397	55.6 127.9
Mo	28,131 19,860	137.2	28,401	114.2
N	1.120.168	63.9	3,365,136	72.0
Na Nb	30,109 6,113	73.1 114.7	28,881 9,379	64.6 82.3
Nd	1,581	54.9	1,904	52.1
Ne Ni	35 35,142	35.0 102.5	40 37,421	33.1 01.2
No	<u>ų 1</u>	175.3	39	144.4
Np O	325	57.9 63.9	365	58.6 71.6
0s	1,415,629 2,062	103.1	6,229,898 3,195 205,597	119,7
P	122,458 85	72.2	205,597	78.9
Pa Pb	4,644	23.9 69.2	93 5.676	22.4 59.6
Pd	8,741	102.1	5,676 10,195	94.9
Pm Po	52 79	48.8	73 80	45.8 -9.5
Pr	:,287	68.0	1,403 13,829	48.8
Pt Pu	12,36? 324	99.9 49.4	*3,829	95.9 22.1
Ra	47	65.3	107 47	65.3
Rb Re	1,654	66.5	1,384 3,894	45.2 78.2
Rh	2,920 7,202	81.0 104.3	9,07	103.0
Rn	27	50.0	27	50.0
នួច	4,978 397,629	69.8 69.8	6,240 518,444	164.2 70.
Sb	6,299	74.6	B 8 13	81,7
Sc c-	650	43.0	979	19.7
Se Si	10,486 59,013	71.0 89.2	979 15,777 86,127 1,796 16,702	64.4 73.7 61.0
Sm	1.415	65.4	1,796	6.0
Sn Sr	15,047 1,538	69.6 66.2	16,702 834	50 F
T	1,756 3,053	75,9	2,927	85.3
Ta To	3,053 812	102.8 68.2	4,598 949	91.3 54.5
Te	305	88.4	325	75.7
Te Th	2,647	75.5	3,992	57.9
	1,087 12,308	55.3 99.2	1,238 12,601	52.7 72.6
Ti			2,694	20.00
Ti Tl	2,379	68.5	£ 103-	64.2
Ti Tl Tm	2,379 532	54.2	590	50.4
Ti Tm U V	2,379 532 3,876 8,732	54.2 66.8 100.3	590 5,169 12,302	50.4 68.8 84.9
Ti Ti Tm U V	2,379 532 3,876 8,732 7,696	64.2 66.8 100.3 94.9	590 5,169 12,302 15,516	58.4 68.8 84.9 65.3
Ti Tm U V	2,379 532 3,876 8,732 7,696	64.2 66.8 100.3 94.9 36.0	590 5,169 12,302 15,516 181	50.4 58.8 84.9 65.3 39.2
Ti Tm U V W Xe	2,379 532 3,876 8,732 7,696	64.2 66.8 100.3 94.9	590 5,169 12,302 15,516	50.4 68.8 84.9 65.3

substances containing several more common elements showed very high percentage increases: gold (113.1%), chromium (118.5), iron (124.9%), manganese (141.1%), molybdenum (137.2%), rhodium (104.3%), ruthenium (104.3%), osmium (103.1%), and nickel (102.5%). For total occurrence (atoms), a similar list is obtained: chromium (111.6%), iron (110.2%), manganese (127.9%), molybdenum (114.2%), osmium (119.7%), rhodium (103.0%), and ruthenium (104.2%).

The statistics reported here show variations in ring and element characteristics over relatively short time periods. The absolute values will increase with time, but the percentage of the total file will probably show little change. Percentage increase over time may show substantial variation, depending on the substances reported in the literature.

CONCLUSION

These statistics have been presented for whatever use may be made of them. There has been limited use in the past since the statistics on frequency have not been widely available. Frequency figures on ring system occurrence are used in the definition and internal processing of certain screens in the CAS Online Substructure Search System presently under development. Statistics on elemental occurrence have been used in the development of molecular formula screens in the substructure search system based on *Chemical Abstracts* index nomenclature. 11,12

Applications of pattern recognition techniques to the study of structure-activity relationships have employed structural features involving elemental composition and ring systems among others. ^{13,14} These applications involve the presence of the feature rather than any frequency data. However, frequency figures on ring systems or elemental composition might indicate a particular class of substance as a field for investigation.

It is hoped that the statistics in this paper will provoke new ideas and therefore stimulate research in chemistry, chemometrics, and information science.

ACKNOWLEDGMENT

The development of the CAS Chemical Registry System was substantially supported by the National Science Foundation. Chemical Abstracts Service, a division of the American Chemical Society, gratefully acknowledges this support.

Supplementary Material Available: (1) The cumulative occurrence statistics for the 199 most frequently occurring ring graphs in the CAS Chemical Registry System for the years 1974 and 1978 (25 pages). (2) The cumulative occurrence statistics for the 198 most frequently occurring ring systems in the CAS Chemical Registry System for the years 1974, 1976, and 1978 (20 pages). Ordering information is given on any current masthead page. Copies of these statistics may also be obtained in printed form at the following address: Marketing

Communications Department, Chemical Abstracts Service, 2540 Olentangy River Road, P. O. Box 3012, Columbus, Ohio 43210.

REFERENCES AND NOTES

- Dittmar, P. G.; Stobaugh, R. E.; Watson, C. E. "The Chemical Abstracts Service Chemical Registry System. I. General Design". J. Chem. Inf. Comput. Sci. 1976, 16, 111-124.
- (2) Freeland, R. G.; Funk, S. J.; O'Korn, L. J.; Wilson, G. A. "The Chemical Abstracts Service Chemical Registry System. II. Augmented Connectivity Molecular Formula", J. Chem. Inf. Comput. Sci. 1979, 19, 94-98
- (3) Blackwood, J. E.; Elliott, P. S.; Stobaugh, R. E.; Watson, C. E. "The Chemical Abstracts Service Chemical Registry System. III. Stereochemistry", J. Chem. Inf. Comput. Sci. 1977, 17, 3-8.
 (4) Vander Stouw, G. G.; Gustafson, C. R.; Rule, J. D.; Watson, C. E. "The
- (4) Vander Stouw, G. G.; Gustafson, C. R.; Rule, J. D.; Watson, C. E. "The Chemical Abstracts Service Chemical Registry System. IV. Use of the Registry System to Support the Preparation of Index Nomenclature", J. Chem. Inf. Comput. Sci. 1976, 16, 213-18.
- J. Chem. Inf. Comput. Sci. 1976, 16, 213-18.
 (5) Zamora, A.; Dayton, D. L. "The Chemical Abstracts Service Chemical Registry System. V. Structure Input and Editing", J. Chem. Inf. Comput. Sci. 1976, 16, 219-22.
- (6) Myers, D. C.; Rathbun, J. A.; Tate, F. A.; Weisgerber, D. W. "Bridging and Linking the Information Resources", J. Chem. Inf. Comput. Sci. 1976, 16, 16-19.
- (7) Moosemiller, J. P.; Ryan, A. W.; Stobaugh R. E. "The Chemical Abstracts Service Chemical Registry System. VIII. Manual Registration", J. Chem. Inf. Comput. Sci., following paper in this issue.
- (8) Blake, J. E.; Brown, S. M.; Ebe, T.; Goodson, L. A.; Skevington, J. H.; Watson, C. E. "Parent Compound Handbook: The Successor to the Ring Index", J. Chem. Inf. Comput. Sci., in preparation.
 (9) Leiter, D. P.; Leighner, L. "A Statistical Analysis of the Structure
- (9) Leiter, D. P.; Leighner, L. "A Statistical Analysis of the Structure Registry at Chemical Abstracts Service", presented at the 154th National Meeting of the American Chemical Society, Chicago, Ill., Sept. 1967.
- (10) Fisanick, W.; Haines, R. C. "An Online Substructure Search System. I. Screens and Screening Techniques", presented to the 176th National Meeting of the American Chemical Society, Miami Beach, Fla., Sept. 1978
- (11) Fisanick, W.; Mitchell, L. D.; Scott, J. A.; Vander Stouw, G. G. "Substructure Searching of Computer-Readable Chemical Abstracts Service Ninth Collective Index Chemical Nomenclature Files", J. Chem. Inf. Comput. Sci. 1975, 15, 73-84.
 (12) Dunn, R. G.; Fisanick, W.; Zamra, A. "A Chemical Substructure
- (12) Dunn, R. G.; Fisanick, W.; Zamora, A. "A Chemical Substructure Search System Based on Chemical Abstracts Index Nomenclature", J. Chem. Inf. Comput. Sci. 1977, 17, 212-219.
 (13) Kowalski, B. R.; Bender, C. F. "The Application of Pattern Recognition
- (13) Kowalski, B. R.; Bender, C. F. "The Application of Pattern Recognition to Screening Prospective Anticancer Drugs. Adenocarcinoma 755 Biological Activity Test", J. Am. Chem. Soc. 1974, 96, 916-918.
- (14) Chu, K. C.; Feidmann, R. J.; Shapiro, M. B.; Hazard, G. F.; Geran, R. I. "Pattern Recognition and Structure-Activity Relationship Studies. Computer-Assisted Prediction of Antitumor Activity in Structurally Diverse Drugs in an Experimental Mouse Brain Tumor System", J. Med. Chem. 1975, 18, 539-545.