### Algorithmen zur Integer-Multiplikation

- Multiplikation zweier *n*-Bit Zahlen ist zurückführbar auf wiederholte **bedingte Additionen und Schiebeoperationen** (in einfachen Prozessoren wird daher oft auf Multiplizierwerke verzichtet!)
- das Produkt p zweier vorzeichenloser n-Bit Zahlen a und b erfordert 2n Bit, Zahlenbereich von p:  $0 \dots 2^{2n} 2^{n+1} + 1$

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

31

# Algorithmen zur Multiplikation (Forts.)

```
modifizierter
                       p = 0
 Algorithmus:
                        for i = 0 to n-1 {
                           if (b_i = 1)
                                 (\boldsymbol{p}_{2n-1}\text{ ,}\ldots,\text{ }\boldsymbol{p}_{n}\text{ })\text{ = }(\boldsymbol{p}_{2n-1}\text{,}\ldots,\text{ }\boldsymbol{p}_{n})\text{ + }\boldsymbol{a}
                           shift right p by 1
                        }
                                                           01010
                                                                           01101
                        Beispiel (für n = 5):
                                                           00000
                                                         + 01010
                                                                           add
                                                           01010
                                                                           shift
                                                           001010
 in der 2n-Bit Variablen p werden
                                                           0001010
                                                                           shift
                                                         + 01010
                                                                           add
 n partielle Produkte akkumuliert;
                                                           0110010
 Rechtsschieben von p ersetzt
                                                           00110010
                                                                           shift
 die Multiplikation von a mit 2^i
                                                        + 01010
                                                                           add
                                                           10000010
                                                           010000010
                                                                           shift
                                                     p = 00100|00010 shift
```

### Algorithmen zur Multiplikation (Forts.)

• Erweiterung für **vorzeichenbehaftete** *n*-Bit Zahlen *a* und *b*:

### 1) bei Kodierung durch Vorzeichen und Betrag:

- für das Produkt *p* werden 2*n*−1 Bit benötigt!
- vorzeichenlose Multiplikation der (n-1)-Bit Beträge |a| und |b| ergibt (2n-2)-Bit Produkt |p| mit |p/ aus  $0 \dots 2^{2n-2} 2^n + 1$
- separate Generierung des korrekten Vorzeichenbits  $p_{2n-2} = a_{n-1} \oplus b_{n-1}$

### 2) bei Kodierung im Einerkomplement:

- für das Produkt *p* werden 2*n*−1 Bit benötigt!
- symmetrischer Zahlenbereich für p:  $-2^{2n-2} + 2^n 1 \dots 2^{2n-2} 2^n + 1$
- Addition von **Korrekturtermen** erforderlich, da Algorithmus für a < 0 oder b < 0 falsche Ergebnisse: liefert

$$a \cdot -b = a \cdot (2^{n} - 1 - b) = a \cdot 2^{n} - a - a \cdot b$$

$$-a \cdot b = (2^{n} - 1 - a) \cdot b = b \cdot 2^{n} - b - a \cdot b$$

$$-a \cdot -b = (2^{n} - 1 - a) \cdot (2^{n} - 1 - b)$$

$$= 2^{2n} - 2^{n}(a + b + 2) + a \cdot b + a + b + 1$$
(statt  $2^{2n} - 1 - a \cdot b$ )
(statt  $a \cdot b$ )

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

33

## Algorithmen zur Multiplikation (Forts.)

### 3) bei Kodierung im Zweierkomplement:

- asymmetrischer Zahlenbereich für  $p: -2^{2n-2} + 2^{n-1} \dots 2^{2n-2}$
- für das Produkt p werden 2n Bit benötigt, wobei das Bit  $p_{2n-2}$  nur für einen einzelnen Produktwert relevant ist!
- Addition von **Korrekturtermen** erforderlich, da Algorithmus für a < 0 oder b < 0 falsche Ergebnisse liefert:

$$a \cdot -b = a \cdot (2^{n} - b) = a \cdot 2^{n} - a \cdot b$$
 (statt  $2^{2n} - a \cdot b$ )  
 $-a \cdot b = (2^{n} - a) \cdot b = b \cdot 2^{n} - a \cdot b$  (statt  $2^{2n} - a \cdot b$ )  
 $-a \cdot -b = (2^{n} - a) \cdot (2^{n} - b) = 2^{2n} - a \cdot 2^{n} - b \cdot 2^{n} + a \cdot b$  (statt  $a \cdot b$ )

- Fallunterscheidung:

für 
$$a \cdot -b$$
 wird  $2^{2n} - a \cdot 2^n = \mathbf{2}^n \cdot (\mathbf{2}^n - a)$  zu  $p$  addiert für  $-a \cdot b$  wird  $2^{2n} - b \cdot 2^n = \mathbf{2}^n \cdot (\mathbf{2}^n - b)$  zu  $p$  addiert für  $-a \cdot -b$  wird  $2^{2n} - (a + b) \cdot 2^n = \mathbf{2}^n \cdot (\mathbf{2}^n - a - b)$  zu  $p$  addiert

Realisierung: p wird mit Korrekturterm anstatt mit 0 initialisiert!

### Beschleunigung der Multiplikation

- $n \times n$  Bit Multiplikation benötigt n Schritte, jeweils aus:
  - einer *n*-Bit Addition, z.B. Carry Ripple Addierer mit Zeit  $(2n-1)\tau$
  - einer Schiebeoperation auf 2*n*-Bit Wort
- Möglichkeiten der Beschleunigung:
  - 1) Beschleunigung der Addition durch Einsatz schnellerer Addierer
  - 2) **vorzeitige Terminierung** in Schritt *i*, wenn  $b_{n-1} = b_{n-2} = ... = b_i = 0$
  - 3) Schieben über Ketten aus Nullen oder Einsen im Multiplikator
  - 4) Analyse mehrerer Bits des Multiplikators und Addition von entsprechenden Vielfachen des Multiplikanden in jedem Schritt
  - 5) Berücksichtigung des Übertrags aus Addition in Schritt i erst bei Addition in Schritt i+1 ( $\Rightarrow$  "Carry Save" Addition)
  - 6) parallele Addition mehrerer partieller Produkte in jedem Schritt
- auch Kombinationen von 1) bis 6) üblich!

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

35

### Schieben über Ketten aus Nullen oder Einsen

- wenn die k Multiplikator-Bitstellen  $b_{i+k-1} = ... = b_{i+1} = b_i = 0$  sind, kann in Schritt i das bisher akkumulierte Produkt p direkt um k Stellen nach rechts geschoben werden
- wenn die k Multiplikator-Bitstellen  $b_{i+k-1} = \dots = b_{i+1} = b_i = 1$  sind, entspricht dies einer Multiplikation von a mit dem Term  $2^{i+k-1} + 2^{i+k-2} + \dots + 2^{i+1} + 2^i = 2^{i+k} 2^i$

somit können die k Additionen können ersetzt werden durch

- in Schritt i: Subtraktion von a und Rechtsschieben von p um k
- in Schritt *i+k*: Addition von *a* und Rechtsschieben von *p* um 1
- Nachteile:
  - Multiplikationszeit ist nicht mehr vorhersagbar, d.h. hängt vom Wert des Multiplikators b ab !
  - hoher Aufwand für Barrel-Shifter und für Analyse des Multiplikators!

### Analyse mehrerer Bits des Multiplikators

#### • Idee:

- Analyse von k benachbarten Bitstellen  $b_{i+k-1}$  ...  $b_i$  des Multiplikators b
- Addition des  $(b_{i+k-1} \dots b_i)$ -fachen von a zu p
- Rechtsschieben von p um k Positionen
- Vorgehensweise (,, $multiplier\ scanning$ ") für k=2:

| $b_{i+1} b_{\mathrm{i}}$ | durchzuführende Operationen                            |
|--------------------------|--------------------------------------------------------|
| 00                       | schiebe <i>p</i> um 2 Stellen nach rechts              |
| 01                       | Addiere a zu p und schiebe p um 2 Stellen nach rechts  |
| 10                       | Addiere 2a zu p und schiebe p um 2 Stellen nach rechts |
| 11                       | Addiere 3a zu p und schiebe p um 2 Stellen nach rechts |

- Bereitstellung aller Vielfachen von a durch Linksschieben und Addieren (z.B. 3a = 2a + a, d.h. schiebe a um 1 nach links und addiere a)
- wird nur für  $k \le 3$  eingesetzt! (da für k > 3 der Aufwand für die Bereitstellung aller Vielfachen zu hoch ist)

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

37

# Multiplikation nach Booth

#### • Idee:

- Kombination der Analyse von zwei Multiplikatorbits und des Schiebens über Ketten aus Nullen oder Einsen
- Verzicht auf Addition des Vielfachen von a innerhalb einer Kette aus Einsen im Multiplikator b, statt dessen Subtraktion von a bei Beginn einer Kette aus Einsen (10) und Addition von a am Kettenende (01)
- realisierbar durch **überlappende** Analyse von zwei Bitstellen  $b_i$   $b_{i-1}$  und **Umkodierung** von  $b_i$  ( $\Rightarrow$  1 bei Addition, -1 bzw.  $\overline{1}$  bei Subtraktion)
- Vorgehensweise (,,multiplier recoding"):

| $b_ib_{\mathrm{i-1}}$ | durchzuführende Operationen                                                                  | recoding |
|-----------------------|----------------------------------------------------------------------------------------------|----------|
| 00                    | schiebe p um 1 Stelle nach rechts                                                            | 0        |
| 01                    | Addiere a zu p und schiebe p um 1 Stelle nach rechts                                         | 1        |
| 10                    | <b>Subtrahiere</b> <i>a</i> <b>von</b> <i>p</i> und schiebe <i>p</i> um 1 Stelle nach rechts | 1        |
| 11                    | schiebe p um 1 Stelle nach rechts                                                            | 0        |

### Multiplikation nach Booth (Forts.)

- Ergänzung von  $b_{-1} = 0$  erforderlich
- funktioniert auch bei im Zweierkomplement kodierten negativen Zahlen (ursprüngliches Ziel von Booth)!
- Beispiele:

```
01010 \times 10011 | 0 \leftarrow b_{-1} 10110 \times 01101 | 0 \leftarrow b_{-1} 10110 \times 10011 | 0 \leftarrow b_{-1}
   1111110110 <- 1001<mark>10</mark>
   00001010 <- 10<mark>01</mark>10
   110110 ← 100110
  111011111110 = (-130)_{10}
  ignorieren!
```

```
1) (10)_{10} \times (-13)_{10} 2) (-10)_{10} \times (13)_{10} 3) (-10)_{10} \times (-13)_{10}
                                 0000001010 < 0110<mark>10</mark>
                                    111110110 ← 011<mark>01</mark>0
                                  00001010 < 01<mark>10</mark>10
                                    110110
                                                  ← 011010
                                  111011111110 = (-130)_{10}
                                   ignorieren!
```

```
0000001010 \le 100110
11110110 ← 10<mark>01</mark>10
10010000010 = (130)_{10}
ignorieren!
```

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm

Kapitel 2 : Integer-Arithmetik

# Multiplikation nach Booth (Forts.)

- Verallgemeinerung für k > 2 Bits möglich:
  - Addition und Subtraktion des 1-fachen, 2-fachen, ..., (k-1)-fachen von a je Schritt, abhängig von Multiplikatorbits  $b_{i+k-2}$  ...,  $b_i$ ,  $b_{i-1}$
  - − Rechtsschieben von p um k−1 Positionen je Schritt
  - Umkodieren des Multiplikators mit  $b_i \in \{\overline{k-1}, \dots, \overline{1}, 0, 1, \dots, k-1\}$
  - typische Wahl: k = 3

### Implementierung

- Möglichkeiten der Hardware-Implementierung einer n × n Bit Multiplikation:
  - 1) Verwendung eines *n*-Bit Addierers und eines 2*n*-Bit Schieberegisters
  - 2) Verwendung eines *n*-Bit Carry-Save Addierers und eines 2*n*-Bit Schieberegisters
  - 3) **parallele Addition** mit mehreren Carry Save Addierern

allgemeiner Aufbau eines Multiplizierers:



- Bemerkungen:
  - folgende Darstellung nur für einfachen Algorithmus, Verallgemeinerung für mehrere Multiplikatorbits bzw. Booth-Verfahren möglich
  - ein n-Bit (Schiebe-)Register kostet 8n CUs, Verzögerung für Laden bzw. Schieben ist  $\tau$

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

41

## Sequentieller Multiplizierer

 direkte Realisierung des modifizierten Algorithmus in Hardware:

n UND-Gattern-Bit Addierer2n-Bit Schieberegister p



- Kosten (ohne **p**):  $C_{Add} + 2n CUs$ , Zeit:  $n \cdot (\Delta_{Add} + 3\tau)$
- Kosten und Zeit bei verschiedenen Addierern:

| für $n = 32$ : | Ripple | CLA  | RCLA | Carry-Select |
|----------------|--------|------|------|--------------|
| Kosten (CUs)   | 512    | 7456 | 1184 | 1056         |
| Zeit (τ)       | 2112   | 224  | 416  | 288          |

### Carry-Save Addierer (CSA)

• *Idee*: bei *n* aufeinander folgenden Additionen müssen die Carry-Signale nicht propagiert werden, sondern können erst bei der jeweils **folgenden** Addition berücksichtigt werden!



- in Schritt t wird  $s_i(t) = s_i(t-1) \oplus a_i(t) \oplus c_i(t-1)$  berechnet
- nach *n* Schritten ist eine Addition der verbleibenden Überträge erforderlich (z.B. mit RCA oder CLA)

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm Kapitel 2: Integer-Arithmetik

43

### sequentieller Multiplizierer mit CSA

 Architektur eines CSA-basierten Multiplizierers:

Anmerkungen:

- nach jedem Schritt
   wird s um eine Stelle
   nach rechts geschoben
- daher muß im CSA an der Bitposition i $c_{i+1}(t-1)$  anstatt  $c_i(t-1)$  addiert werden!



• Kosten (ohne **p**): C<sub>Add</sub> + (14+16+2)*n* CUs

• Zeit:  $\Delta_{Add} + 6n\tau$ 

| für $n = 32$ : | Ripple | CLA  | RCLA | Carry-Select |
|----------------|--------|------|------|--------------|
| Kosten (CUs)   | 1472   | 8416 | 2144 | 2016         |
| Zeit (t)       | 255    | 196  | 202  | 198          |

### Paralleler Multiplizierer

- *Idee*: parallele Addition von kTeilprodukten  $a \cdot b_{i+k-1}$ , ...,  $a \cdot b_i$ je Takt durch Verwendung von k CSA-Addierern
- Beispiel für k = 4 (vereinfacht):
- Summenausgänge jedes CSA müssen um eine Stelle nach rechts geschoben werden
- Aufwand:  $C_{Add} + 14kn + 16n + 2kn$  CUs
- Zeit:  $\Delta_{\text{Add}} + n/k \cdot (3k+3)\tau$
- Probleme: Carry Ripple zwischen CSAs, Rückkopplung für c und s



 $Kapitel\ 2: Integer-Arithmetik$ 

15

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm

## Paralleler Multiplizierer (Forts.)

- *Idee*: Auflösen der Rückkopplung und Aufbau einer Addiererkette
- Beispiel für n = 6 (vereinfacht):
- für jeden CSA ist eine geeignete Verschiebung der Eingangssignale erforderlich
- rein kombinatorische Logik!
- Aufwand:  $C_{Add} + 14(n-2)(n-1) + 2n^2 CUs$
- Zeit:  $\Delta_{Add} + \tau + 3(n-2)\tau$ =  $\Delta_{Add} + (3n-5)\tau$
- Pipelining prinzipiell möglich!



### Paralleler Multiplizierer (Forts.)

- eine Addiererkette wird oft auch als Feldmultiplizierer ("array multiplier") bezeichnet
- Darstellung

für n = 5:



 Kosten und Zeit für verschiedene Addierer

| für <i>n</i> = 32: | Ripple | CLA   | RCLA  | Carry-Select |
|--------------------|--------|-------|-------|--------------|
| Kosten (CUs)       | 15516  | 22524 | 16188 | 16060        |
| Zeit (τ)           | 154    | 95    | 101   | 97           |

Computer-Arithmetik, SS 2005 A. Strey, Universität Ulm  $Kapitel\ 2: Integer-Arithmetik$ 

47

## Paralleler Multiplizierer (Forts.)

- Beschleunigung möglich durch Verwendung eines **Addierbaums** ("Wallace tree")
- Beispiel für n = 8 (vereinfacht):
- Anzahl Stufen:  $\lceil \log_{1.5} n/2 \rceil$
- Kosten:  $C_{Add} + 16n^2 14 CUs$
- Zeit:  $\Delta_{Add} + (3 \lceil \log_{1.5} n/2 \rceil + 1)\tau$
- häufig eingesetzter Multiplizierer (oft kombiniert mit Pipelining)

| für <i>n</i> = 32: | Ripple | CLA   | RCLA  | Carry-Select |
|--------------------|--------|-------|-------|--------------|
| Kosten (CUs)       | 17238  | 23762 | 17490 | 17362        |
| Zeit (τ)           | 85     | 26    | 32    | 28           |

