测试

中文题目名	印章	多边形	扔球
可执行文件名	seal	polygon	ball
输入文件名	seal.in	polygon.in	ball.in
输出文件名	seal.out	polygon.out	ball.out
每个测试点时限	1秒	1秒	2秒
内存限制	256M	256M	256M
测试点数目	10	10	10
每个测试点分值	10	10	10
结果比较方式	全文比较 (过滤行末空格及文末回车)		

- 1、测试点时限可能会根据评测机具体情况进行更改,请随时注意更改时限的通知;
- 2、输入输出 long long 类型请使用%lld;
- 3、允许使用<bits/stdc++.h>;
- 4、编译选项为-Im -WI, -stack=268435456, 即栈空间与题目内存限制相同, 不开启 02, 不开启 C++11。

Problem 1 印章(seal.cpp/c/pas)

【题目描述】

给你一张 n*m 的方格纸与一个 r*c 的印章。方格纸有些位置要染黑,另外的位置不能染色。r*c 的印章上有些位置是凸起,可以沾墨水印在方格纸上,但要求:印章和纸不能旋转,不能把墨水印到纸外面,也不能使某个格子被重复印墨水。

给出方格纸与印章的图案,你要判断是否能用该印章印出方格纸需要的图 案。

【输入格式】

第一行一个正整数 T,表示测试点组数。

接下来 T 组测试点,每个测试点中:

第一行包含 4 个正整数, 分别为 n, m, r, c。

接下来 n 行,每行 m 个字符,描述纸上的图案。'.'表示留白,'x'表示需要染黑。

接下来 r 行,每行 c 个字符,描述印章。'.'表示不能沾墨水,'x'表示能沾墨水。

【输出格式】

对每个测试点输出一行, 若可以印出需要的图案则输出'Yes', 否则输出'No'。(不含引号)

【样例输入】

2

3 4 4 2

ΧΧ..

. XX.

ΧХ..

х.

. X

х.

• •

2 2 2 2

XX

XX

. X

X.

【样例输出】

Yes

No

【数据范围】

对于 20%的数据, 1<=n, m, r, c<=4;

对于 60%的数据, 1<=n, m<=150, 1<=r, c<=20;

对于 100%的数据, 1<=n, m, r, c<=1000, 1<=T<=10;

Problem 2 多边形(polygon.cpp/c/pas)

【题目描述】

我们如下定义一种称为"k-n 边形"的平面无向图: 0-n 边形为一个 n 个点的环,如下为 0-4 边形(拐点处为图的节点):

k-n 边形为: 在(k-1)-n 边形的基础上,对于每条最外一圈的边,再添加 n-2 个点和 n-1 条边,与这条边两端的点连成一个 n 个点的环。

如下为 1-4 边形与 2-4 边形:

给出 k, n, 求 k-n 边形的生成树个数, 对 998244353 取模。

【输入格式】

一行,两个非负整数 k,n。

【输出格式】

一个整数表示答案。

【样例输入1】

1 4

【样例输出1】

768

【样例输入2】

3 5

【样例输出2】

380581061

【样例输入3】

666666 233333333

【样例输出3】

338004436

【数据范围】

对于 0%的数据, k=0。

对于10%的数据,边数不超过10。

对于 30%的数据, 边数不超过 21。

对于 50%的数据, 点数不超过 400。

对于第6、7个测试点, k=1。

对于第8个测试点,0<=k<=100, n=3。

对于 100%的数据, 0<=k<=10⁶, 3<=n<=10⁹.

【注意】

第8个测试点仅用于留有梯度,使同学们发挥创新力,不保证出题人有针对 这部分数据的做法。同时不保证该题是否有数据范围更大的做法。

Problem 3 扔球(ball.cpp/c/pas)

【题目描述】

cwbc 有 n 个小球和 n 个瓶子,编号均为 1..n。

cwbc 要把这些小球扔到瓶子里,对于每一个小球, cwbc 会给它钦定一个瓶子的集合,那么这个小球只能扔到这个集合中的某一个瓶子中,**若集合为空,则扔球过程中跳过该球**。具体方式如下:

cwbc 依次扔每一个小球。扔一个小球前,首先将钦定给它的集合中的瓶子拿出来,并按编号从小到大排成一排。cwbc 按瓶子排好的顺序依次尝试将小球扔入瓶子中,若扔进,则把所有瓶子放回原位,开始下一个小球,否则尝试下一个瓶子。若扔遍所有瓶子后小球依然没进,则从第一个瓶子开始再来一轮,直到小球扔进为止。

当扔完所有小球后, cwbc 统计出第 i 个小球被扔进了哪个瓶子, 记为 a[i]。 突然间, cwbc 对序列 a[]中的逆序对数很感兴趣。现在, cwbc 告诉你每个小球被钦定的集合, 并告诉你他每次将球投进的概率为 p, 请你求出序列 a[]中逆序对的期望对数。

规定: 若第 i 个小球的集合为空,则 a[i]记为空,即 a[i]不与其他位置产生逆序对。

【输入格式】

第一行两个正整数 n, m, 其中 m 为所有小球被钦定的集合的大小之和。

第二行一个实数 p, 即 cwbc 每次把球扔进的概率。

接下来 m 行,每行两个正整数 x, y,表示瓶子 y 在小球 x 所被钦定的集合中,保证每一组 (x,y) 不会重复输入。

【输出格式】

一行,一个实数,表示逆序对的期望对数,四舍五入保留2位小数。

【样例输入】

5 5

0.5

5 1

3 2

2 2

2 1

3 1

【样例输出】

0.89

【数据范围】

记每个小球被钦定的集合大小为|S|对于 10%的数据, n, m<=5, |S|<=2;

对于 20%的数据,n, m <= 10, |S| <= 3;对于第 3 个测试点,n, m <= 1000, |S| <= 1;对于 60%的数据,n, m <= 5000;对于第 7 个测试点,n, m <= 100000, |S| <= 1;对于 100%的数据 n, m <= 500000, 0.4 <= p <= 0.6;