Statistical Inference Course Assignment

Carolinecoder

December 21, 2015

In this project you will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

1. Show the sample mean and compare it to the theoretical mean of the distribution.

```
# Create 1000 simulations of 40 exponentials with lamba = 0.2 set.seed(111) n <- 40 lambda <- 0.2 sims <- seq(1:1000) Averages <- sapply(sims, function(s) { n <- 40 lambda <- 0.2 exp_dist <- rexp(n, lambda) mean(exp_dist) }) # Calculate the expected population mean, \mu 1/lambda
```

```
## [1] 5
```

```
# Calculate the mean of the 1000 sample means
mean(Averages)
```

```
## [1] 5.02562
```

```
# The theoretical population mean of 5 is very close to the sample mean of 5.03.
```

2. Show how variable the sample is and compare it to the theoretical variance of the distribution.

```
# Calculate the expected variance of the population, using the Central Limit Theorem  (1/lambda/sqrt(n))^2
```

```
## [1] 0.625
```

```
# Calculate the variance of the 1000 sample means var(Averages)
```

[1] 0.6069798

Again, the theoretical population variance of 0.625 is quite close to the sample variance of 0.607.

3. Show that the distribution is approximately normal.

First, plot 40 random exponential variables
hist(rexp(40), col="red")

Histogram of rexp(40)


```
# The distribution of 40 exponentials is not normal
# Second, plot the averages of 1000 simulations of 40 exponentials
par(mfrow=c(1, 2))
hist(Averages, col="red")
hist(Averages, prob=TRUE, col="red")
curve(dnorm(x, mean=mean(Averages), sd=sd(Averages)), 2, 8, add=TRUE, col="blue")
```


Histogram of Averages

Here, we see that the sample averages are normally distributed