Resultados

1

Contents

1 Notación

2	Prin	ner grafo	2
	2.1	Aer - Versión del paper (primer_grafo/aer-qaoa.ipynb)	3
		2.1.1 Caso correcto	4
		2.1.2 Caso erróneo	5
		2.1.3 Caso subóptimo	6
		2.1.4 Utilizando el parámetro theta obtenido en el artículo	7
	2.2	Aer simulator con restricción extra (primer_grafo/con_restricc/aer-	
		qaoa.ipynb)	8
		2.2.1 Caso correcto	9
		2.2.2 Caso "correcto" con ruido	10
	2.3	Provider	11
1	IN	otación	
		Mínimo local hallado de la función $execute_circuit$ con el optimizador	
		mero de capas (a mayor número el circuito es más profundo)	
		Elista de parámetros $[\beta_1, \ldots, \beta_p, \gamma_1, \ldots, \gamma_p]$ del circuito cuántico	
		erations = Número de iteraciones del compilador necesarias para halla	ar
	nínin		,
		imulator = Semilla utilizada en la ejecución del circuito para fijar ledad en backend.run()	la
X_{ij}	$=$ S ϵ	e refiere a la arista ${f i}$ -> ${f j}$. 1 Si dicha arista es parte del camino resultant	e,
) e	n otre	o caso	
$\mathbf{q_n}$	$= Q_1$	ubit enésimo	
04C	เรตรต	$_{100} = X_{23}X_{13}X_{12}X_{02}X_{01}$	

2 Primer grafo

2.1 Aer - Versión del paper (primer_grafo/aer-qaoa.ipynb)

Pruebas realizadas sobre la versión del código sin la restricción ${\bf X_{13}\,+\,X_{23}\,=\,1}$

Versión equivalente a la de [Multi-Objective Routing Optimization for 6G Communication Networks Using a Quantum Approximate Optimization Algorithmsensors-22-07570-v2]

• Estadísticas:

Realizando la ejecución 1000 veces se han obtenido como caminos resultantes los siguientes:

Qubits	Camino	Frecuencia (1000)
10101	$X_{01}X_{12}X_{23}$	917
10110	$X_{02}X_{12}X_{23}$	82
01001	$X_{01}X_{13}$	1

2.1.1 Caso correcto

fun	theta	num iterations	seed_simulator
29.63	[0.7739, 0.9302]	29	10

Figure 1: seed_simulator=10

Mejor resultado: 10101 (q_4q_3q_2q_1q_0 = $X_{23}X_{13}X_{12}X_{02}X_{01}$) Camino: $X_{01}X_{12}X_{23}$ (Camino óptimo)

2.1.2 Caso erróneo

fun	theta	num iterations	seed_simulator
52.79	$[0.6320 \ 0.7177]$	35	21

Figure 2: $seed_simulator=21$

Mejor resultado: 10110 $(q_4q_3q_2q_1q_0=X_{23}X_{13}X_{12}X_{02}X_{01})$

Camino: $X_{02}X_{12}X_{23}$ (Camino incorrecto. Rompe 2 restricciones)

Restricciones rotas:

 $\substack{X_{02}+X_{12}=X_{23}\\X_{01}=X_{12}+X_{13}}$

2.1.3 Caso subóptimo

Obtenido a mano (no se ha encontrado ninguna semilla que diese este resultado)

fun	theta	
67.33	[-0.4811, 1.566]	

Mejor resultado: 01001 ($q_4q_3q_2q_1q_0=X_{23}X_{13}X_{12}X_{02}X_{01}$) Camino: $X_{01}X_{13}$ (Camino subóptimo, pero no se rompe ninguna restricción)

2.1.4 Utilizando el parámetro theta obtenido en el artículo

fun	theta
65.40	[0.28517317, -5.05969577]

Mejor resultado: 10101 (q_4q_3q_2q_1q_0 = X_{23}X_{13}X_{12}X_{02}X_{01})

Camino: $X_{01}X_{12}X_{23}$ (Camino óptimo)

La gráfica resultante es muy similar a la versión que se intenta replicar. **fun** tiene resultados muy altos, entre 65 y 70 (en comparación con la versión del código con la restricción extra).

2.2 Aer simulator con restricción extra (primer_grafo/con_restricc/aer-qaoa.ipynb)

Con respecto a la función de coste del paper se añade la restricción $\mathbf{X_{13}\,+\,X_{23}\,=\,1}$

Esto sería, que el camino solo llegue al nodo final ${\bf 3}$ por una de las aristas X_{i3} existentes.

• Estadísticas:

Realizando la ejecución 1000 veces se han obtenido como caminos resultantes los siguientes:

Qubits	Camino	Frecuencia (1000)
10101	$X_{01}X_{12}X_{23}$	938
11000	$X_{13}X_{23}$	37
10001	$X_{01}X_{23}$	9
00011	$X_{01}X_{02}$	11
00100	X_{12}	3
00010	X_{02}	1
11111	$X_{01}X_{02}X_{12}X_{13}X_{23}$	1

2.2.1 Caso correcto

fun	theta	num iterations	$seed_simulator$
42.29	[0.5081, 0.9401]	33	3

Figure 3: seed_simulator=3

Mejor resultado: 10101 (q $_4$ q $_3$ q $_2$ q $_1$ q $_0=X_{23}X_{13}X_{12}X_{02}X_{01})$ Camino: $X_{01}X_{12}X_{23}$ (Camino óptimo)

2.2.2 Caso "correcto" con ruido

fun	theta	num iterations	seed_simulator
90.75	[0.9962, 1.995]	27	2

Figure 4: seed_simulator=2

Mejor resultado: 10101 ($q_4q_3q_2q_1q_0 = X_{23}X_{13}X_{12}X_{02}X_{01}$)

Camino: $X_{01}X_{12}X_{23}$ (Camino óptimo)

Aunque se obtenga el resultado óptimo (10101) existen otros resultados demasiado altos, e incluso ejecutando el circuito con el mismo **theta** se dan valores distintos. Podría afectar a los resultados de las estadísticas.

Además se ve que encuentra un valor fun demasiado alto (90.75)

2.3 Provider

 \bullet ibmq_lima

Figure 5: num iterations=2

Solo para comprobar que funciona la ejecución.