MisterMusik - Developer Guide

1. Setting up	2
2. Design	2
2.1. Overall Architecture	2
2.2. Main component	3
2.3. UI component	3
2.4. Logic component	3
2.5. Storage component.	3
2.6. Commons	3
3. Implementation	4
3.1. Calendar Table	4
3.2. Check Free Days	5
3.3. Checklists	6
3.4. Clash handling	6
3.5. Add recurring events	8
3.6. Viewing specific dates	9
3.7. Goals List	10
3.8. Reminders	11
4. Documentation	12
5. Testing	12
6. Dev Ops	12
Appendix A: Product Scope	12
A.1. Target User Profile	12
Appendix B: User Stories	12
Appendix C: Use cases	12
C.1. Entering a practice schedule into the system	13
C.2. Entering the details of a recital into the system	13
C.3. Making notes	13
C.4. Viewing upcoming events	14
C.5. Entering the examination details	14
C.6. Rate and comment on the efficiency of practice sessions	14
C.7. Edit descriptions of any existing event	15
C.8. Viewing all events in the coming 7 days.	15
Appendix D: Non-functional requirements	15
Appendix E: Instructions for Manual Testing	15
E.1. Launch and Shutdown	15
E.2. Obtain the list of items currently in stored in the system	16
E.3. Add a Task	16
E.4. Set a Task as done.	17

	E.5. Find tasks that contains a certain keyword or key phrase.	17
	E.6. Get reminder	17
	E.7. View all tasks in a certain day.	17
	E.8. Edit description of an event.	17
	E.9. Reschedule an event	17
	E.10. Check the next 3 free days	17
	E.11. View the calendar table of the next 7 days.	17
	E.12. Contact management	18
4	ppendix F: Instructions for Manual Testing	18
	F.1. Launch and Shutdown	18

By: Team CS2113T-F11-4 Since: Aug 2019 Licence: MIT

1. Setting up

2. Design

2.1. Overall Architecture

This image shows the overall architecture of our program

There are three main components in the overall architecture of the application.

2.2. Main component

Main component has one class called **Duke**. It is responsible for the following:

- 1. On startup: Initializes all components and sets up the correct file path so that the program correctly interacts with the external txt file.
- 2. During runtime: Acts as an intermediary between the Parser class and the Command so that user input can be parsed and then executed accordingly.
- 3. On shutdown: Interacts with the UI class to communicate the shutdown message to the user.

2.3. UI component

UI component contains all classes necessary to interact successfully with the user. The Parser parses input commands from the user whilst the UI class handles all necessary dissemination of information to the user through System.out.

2.4. Logic component

This component contains all necessary classes that:

- 1. Are in charge of handling how all necessary information is internally stored within the program's runtime.
- 2. Alter the internally stored information whenever necessary (i.e when changes are made by the user).
- 3. Extract information requested by the user from the stored information and pass them back to the user through the UI component
- 4. This is achieved through the two classes EventList and Command. EventList decides how information is stored internally as well as how internal stored information is altered and/or extracted. Command commands the EventList class on what needs to be done at any point in time.

2.5. Storage component

This component contains all necessary classes that read and write external txt files. This is where all information is stored while the program is not running.

In particular, the Storage class directly reads from and writes to and external txt file in the data directory.

2.6. Commons

This component represent all other low-level classes required for the program to function.

This includes classes like the Event class which is the abstract parent class for all the types of classes that represent the different types of events(ToDo, Concert, Exam, etc.) a user can input as an entry in the program.

This image shows the sequence diagram when a user input "delete 1" is entered.

3. Implementation

This section describes some noteworthy details on how certain features are implemented.

3.1. Calendar Table

The calendar table is generated from the EventList. It prints on the screen a table of calendar of 7 days starting from a specified day, including the events within this time period.

3.1.1. How it is implemented

Given below is how a calendar table is generated and printed.

Step 1. User enters calendar to start the initialization process of a calendar table with today as the starting day.

Step 2. The program checks the date of the given start day to generate a list of 7 days, starting from given day. It also gets the day of the 7 days (e.g. Monday, Tuesday, etc). This sets the dates info of the table.

E.g. Example of a day and dates list

BOOKUME INVESTOR INVESTOR ANYTHEIR STREET BOOKUME GOOGLESS

Step 3. The program find all events in the EventList that is within the 7 days, and store them correspondingly into 7 queues, representing the 7 days. This is for further printing.

E.g. Example of an event list of 7 days

| Strategie | Stra

Step 4. The program now have all the information of these 7 days and is then able to print the calendar table.

- 1. It initiates an empty string to store all info of the calendar and for later printing.
- 2. It puts the header of he table into the string.
- 3. It puts the days of week and dates info into the string.
- 4. To add in events, each event takes 3 rows (time info, description, and dashes) to print. For each 3 rows, there can be at most 7 events. The events are added per 3 rows. For each 3 rows, the program creates an array of 3 * 7 to store the details. Whenever there exists an event at the position of a day, details of the event will be added to the corresponding 3 rows (1 column) of the array. The array is then added by rows into the string.

E.g. Example of a row of events stored for printing

3.1.2. Commands for CalendarView

- calendar This prints the calendar table of this 7 days.
- calendar next This prints the calendar table of the next 7 days.
- calendar last This prints the calendar table of the last 7 days.

3.2. Check Free Days

CheckFreeDays is a command that allows the program to search for the next 3 days without any events (except ToDos).

- 1. When the user enters check, starting from the current day, the program checks all the events whether any is in this day.
- 2. If not, this day will be added into a list.
- 3. Above process will continue until the list has 3 days, which will then be printed.

The following logic diagram shows how check free days is implemented.

3.3. Checklists

Checklist of each event can be used to remind users of certain items (e.g. bring glasses to concert). This is implemented by storing an array list of strings in Event objects.

Checklist implementation contains 4 operations:

3.3.1. add checklist item

checklist add <event index>/<checklist item> This adds an item into a specific event's checklist.

3.3.2. view checklist

checklist view <event index> This prints on the screen the checklist of an event.

3.3.3. edit checklist item

checklist edit <event index> <item index> /<new item> This edits a specific item in the checklist of an event.

3.3.4. delete checklist item

checklist delete <event index> <item index> This deletes an item from the checklist of an event.

3.4. Clash handling

3.4.1. Activity diagram

3.4.2. How is it implemented

The program is able to **detect clashes when creating new events**. When the user enters the command to add a new Event entry to the list, the method EventList.addEvent is called from the Command class object upon execution.

The addEvent method will then call the EventList.clashEvent method to check the existing entries for any clash in schedule. This is done by first searching the list for an event that has a matching date with the new event.

If no such event is found, the method returns a *null* value, indicating that there is no schedule clash. If an event is found with a matching date, the clashEvent then calls the EventList.timeClash method to check whether the two events have overlapping time periods.

If there is any overlap, the timeClash method will return *true* as a boolean, indicating there is a schedule clash. The clashEvent method then throws an exception ClashException, indicating that there was indeed a schedule clash between the desired new entry and some pre-existing Event.

The details of the clashing Event are passed back to Command object so that it can be used to inform the user about the clashing event. The user is then required to fix the conflict before continuing, either by rescheduling or deleting the pre-existing event, or by choosing a different date/time for the new Event entry.

3.4.3. Why it is implemented this way

The process of checking for a clash was implemented as small, simple components so as to ensure scalability, reliability, and to reduce dependencies.

The choice to use exception handling to deal with an event clash was done so that it could be easily re-purposed for any incremental extension that required checking for a schedule clash. Catching of the ClashException should be performed in the Command class, and the info regarding the schedule clash can be easily obtained for further action.

By having the clashEvent method return a *null* value or a reference to a clashing event in the schedule, the clashEvent method can now be used for any further increments to the code requiring addition of events.

It was thus easy to implement this clash detection as a part of adding recurrent events (to check for clashes when recurrent events were automatically entered) as well as the rescheduling function (to check for clashes when the user attempts to reschedule an existing event, so that he/she does not inadvertently create a new schedule conflict).

This implementation is reliable because it can always be expected to work whenever it is necessary to add new events to the list, provided the unit tests for this functionality under MainTest work. It is also not dependent on any other functionality, allowing for developers to change the implementation of other parts of the application without affecting the clash handling

3.4.4. Expected behaviour of functionality

When a user attempts to add an event(recurring or otherwise) and the program detects a clash with an existing event in the pre-existing list, the following output should be printed:

"That event clashes with another in the schedule! Please resolve the conflict and try again!"
This is followed by the following line indicating the details of the detected clash:

"Clashes with: [E][X] YST Final project review START: Tue, 03 Dec 2019, 15:00 END: Tue, 03 Dec 2019, 18:00

3.5. Add recurring events

3.5.1. How it is implemented

The program is able to detect recurring events and their periods when creating new events. When the user enters the command to add a new Lesson or Practice event with a period (in days) followed, createNewEvent method will call entryForEvent to get the period.

If the new event is not a recurring event, the period value will be assigned to NON-PERIOD and then call the addEvent method in the EventList class.

After getting the period, the createNewEvent method will call the addRecurringEvent method in the EventList class to create and store new events in the eventList.

The calculation of dates are done by Java Calendar, Calendar, add function is called to calculate the startDate and endDate of new events in Java Date type. The number of recurring events is depended on the period, since the maximum date between the first recurring event and the last one is up to ONE_SEMESTER_DAYS which is assigned to 16 weeks (112 days) now.

When creating the startEventDate and endEventDate of the new event, calendar.getTime is called and the identifier in EventDate will be assigned to DATE_TO_STRING, so that the startDateAndTime and endDateAndTime are in String type, which fits the requirement of the Event class.

All the events created in the addRecurringEvent method will be checked whether having clash with the events in the current eventList and then added in a temporary event list one by one. If no clash happens, the tempEventList will be added to the current eventList.

Given below is an example usage scenario compared to adding non-recurring event.

Recurring event: Lesson or Practice <event description> /dd-MM-yyyy HHmm HHmm /period(in days)

Non-recurring event: <event type> <event description> /dd-MM-yyyy HHmm HHmm

3.5.2. Sequence diagram

The following sequence diagram shows how the adding recurring event operation works.

3.5.3. Why it is implemented this way

- 1. Whether the input command has a period is considered at the first, so that the dependency between adding recurrent events and adding normal events could be reduced.
- 2. The add(int field, int amount) method of Calendar class is used to add or subtract from the given calendar field and a specific amount of time, based on the calendar's rules.

 public abstract void add(int field, int amount)
- 3. Since the number of recurrent events with a short period could be large, it is more likely to have clashes with the current eventList. Hence, before added in the temporary event list, the new event need to be ensured that no clash happens.
- 4. To keep the format of creating new events, the format process of changing Java Date to String is done in the EventDate class instead of messing the Event class to accept both Date and String types as input date and time.

3.6. Viewing specific dates

3.6.1. How is it implemented

The implementation is a simple for loop that runs through the existing task list. If a matching date is detected, it will return the corresponding task and add it to a temporary list of found tasks. After running through the whole list, the temporary list will be printed out to display all the tasks of a specific date.

Step 1: When the command "view <date>" is given, the viewEvents() method will be called.

- Step 2: A temporary ArrayList is created by the method to be populated.
- Step 3: The date string from the input command is passed into the EventDate class to be formatted into the same format as that of each event and returned as a string.
- Step 4: The returned string is compared with each task in the event list to check for any event with a matching date.
- Step 5: When an event with a matching date is found, the event is added to the temporary list.
- Step 6: After the entire list has been checked, the temporary list is passed into a UI instance
- Step 7: The printFoundEvents() method will be called. The said method then prints out the temporary list, displaying the list of events taking place on a specific date.

In the situation when an empty temporary list is passed into the UI for it to print, an exception will occur and the printFoundEvents() method will catch the exception before printing out a string to inform the user that there are no tasks taking place on that specific date.

3.6.2. Activity Diagram

[DGViewEventsDiagram] | DGViewEventsDiagram.png

3.6.3. Why is it implemented this way

The matching events are being stored individually into a separate temporary list before being printed out. This is to allow an easier handling of individual tasks as separate instances in case the user wishes to edit a particular task from the temporary list.

3.6.4. Alternative implementations considered

Storing all the matching events as a single string, passing the string into the printFoundEvents() method to print out. This implementation is undesirable as it will be difficult to access individual matching events in the case the user wishes to edit them as mentioned above.

3.7. Goals List

3.7.1. How is it implemented

The goals list is an array list type that stores a list of goals to be achieved by the user for each individual event, particularly for Lesson and Practice type events. When the user first creates the event, the event is created without a goal list. Only when the user types in "goal add <event ID>" then a goal list is created for the specified event. The user can then manipulate the goal list by using "goal edit", "goal delete" or "goal view" commands.

Adding a goal

Step 1: When the command "goal add <event ID>" is entered, the goalsManagement() function will be called.

3.8. Reminders

3.8.1. How it is implemented

The reminder function filters out the tasks that are due or are happening before 2359 three days after the current date, and prints them out as a reminder for the users.

After the user enters 'reminder', the Command.execute method calls Command.remindEvents, which in turn calls the Ui.printReminders function. The Ui.printReminders function calls the EventList.getReminder method, which uses the EventList.filteredList method to filter out a list of events that are due or are happening before 2359 three days after the current date. The EventList.filteredList method filters out events from the stored list of events according to a certain input predicate.

The constructor of the Predicate class takes in two arguments: the reference and the comparator. The reference is the item that is used for the comparison reference (comp) input, and the comparator is the operator that is used for the comparison. The comparator should be either one of the three global integer variables: EQUAL, GREATER_THAN or SMALLER_THAN. The Predicate.check method takes in an input and checks if reference (comp) input is true by calling the appropriate method in the Predicate class depending on the type of the reference and input.

In the EventList.getReminder method, the reference of the input Predicate object is set to an eventDate object set to 2359 three days after the current date, and the comparator is GREATER_THAN. After that, the EventList.getReminder method calls the EventList.filteredList method. In the EventList.filteredList method, the system iterates through the list of Events in eventArrayList.The EventDate object stored in the Event object is passed into the Predicate.check method. If the EventDate object stored in the Event object is a date before the reference date, the Predicate.check method returns true and the Event object is added to the output. After all the elements in EventList.filteredList are parsed and the EventList.filteredList method terminates, EventList.getReminder method returns a string containing the current date and time, the date and time at 2359 three days after the current date, and the filtered list of events. This string is printed to stdout in the Ui.printReminders function.

3.8.2. Sequence diagram

The following sequence diagram shows how the reminder functionality works.

3.8.3. Why it is implemented this way

The reminder function is split the various components into different methods for easier testing. In this case, Ui.printReminders prints the output to the user interface, EventList.getReminder is

responsible for compiling the output whereas EventList.filteredList obtains the filtered list of events from eventArrayList.

This implementation also implements scalability as the Predicate class and the EventList.filteredList method can be reused for other functionalities.

4. Documentation

5. Testing

6. Dev Ops

Appendix A: Product Scope

A.1. Target User Profile

MisterMusik is a scheduler program created for serious music students pursuing a professional music career as a western classical music performer. The program is designed to automate and streamline most of the process in scheduling and organisation of materials, allowing the students to focus more on the important aspects of their education.

Appendix B: User Stories

- 1. As a busy music student with multiple classes, I want to be able to track my practice sessions so that I won't miss any trainings.
- 2. As a music student with a heavy workload, I want to be able to track my upcoming recitals and their details so I can prioritize which pieces/what techniques to practice and focus on.
- 3. As a music student with a tendency to procrastinate in things I need to do, I want to be constantly reminded of my examination dates so i do not wait till the last minute to prepare for them.
- 4. As a student who wants to maximize my efficiency in practice sessions (performer), I want to be able to rate and comment on the efficiency of my practice sessions and be able to review them to make sure that I learn and improve faster.
- 5. As a student who wants to categorize what I learn in classes, I want to be able to take notes and organize them into different categories, so that I can easily review it anytime.
- 6. As a student who wishes to be aware of his upcoming events, I wish to be able to view my schedule within a selected number of weeks so that I can plan for it.

Appendix C: Use cases

C.1. Entering a practice schedule into the system

- 1. User enters a command to add a practice followed by a date, and the details of the intended practice.
- 2. System prompts user about whether or not he wishes to make this a recurring practice (e.g every Tuesday).
- 3. User responds to the prompt accordingly.
- 4. System adds practice session to a stored list and saves it to a file on the user's hard drive.

C.2. Entering the details of a recital into the system

- 1. User choose to enter a recital.
- 2. System requires details of the recital.
- 3. User enters date, time, venue, the pieces to be performed, and a description if needed.
- 4. System adds recital to a stored list and saves it to a file on the user's hard drive.

Extension 3.1: System detects there is a clash with a concert/practice session at step 3. 3.1.1. System generates warnings and ask user to delete the corresponding entry and forgo that event. 3.1.2. User responds to the warning, deleting or rescheduling one of the events in a clash if necessary. 3.1.3. System updates the stored list and saves it to the file on the user's hard disk.

Extension 3.2: System detects a clash with another recital or an examination at step 3. 3.2.1. System generates warnings and ask user to reschedule and re-enter one of the events that clash. 3.2.2. User responds to the warning, rescheduling and re-entering one of the events in a clash. 3.2.3. System updates the stored list and saves it to the file on the user's hard disk. Use case ends

C.3. Making notes

- 1. User chooses to enter a command to start a note-taking/viewing session
- 2. System shows the user a list of categories (directories) of notes that have been made previously and prompts the user to enter one or create a new file.
- 3. User makes a choice to enter a category directory or create a new one.
- 4. System shows the user a list of files containing notes, each file is named with the corresponding date, and a description of the file decided by the user. System also prompts the user if he wants to create a new file or enter an existing one.
- 5. User selects a file to enter or chooses to create a new file.
- 6. System opens the file for viewing and editing. The user can choose to make changes to the notes using commands: delete, add and move to delete, add or move notes around the file accordingly.

Extension 3.1: System detects there is no category file that user commands to edit on 3.1.1. System generates warnings and ask the user whether or not he wishes to add a new category and take notes in 3.1.2. User responds to the warning, and choose to add a new category 3.1.3. System adds and opens a new category file with the name given by user

C.4. Viewing upcoming events

- 1. User enters command list followed by an integer N representing the number of weeks in advance he would like to view his schedule.
- 2. System responds by showing the user a list of events in the next N weeks.
- 3. User may enter a command to remove specific tasks from the list, to have a cleaner viewing experience.

Extension 3.1: System can remove types of events from list at user's command 3.1.1. User can enter commands remove examinations for example, to remove the examinations from the display. 3.1.2. System responds accordingly, removing the type of event from the list and altering the list of events displayed.

Extension: 3.2. System can allow the user to only view a specific type of event. 3.2.1. User can also enter commands show examinations for example, to only show examinations in the list of events. 3.2.2. System will respond accordingly, displaying only type of event that the user specified.

Extension: 3.3. System can allow the user to only view events on a specific date. 3.3.1. User can enter the command "view <dd-MM-yyyy>"" to view all events on that specific date. 3.3.2. System will display the events, and the user can edit the events accordingly.

C.5. Entering the examination details

- 1. User enters command examination, together with a description of the examination, along with the date, time, venue and any other notes in a given format.
- 2. The system adds the examination to the list of events.

Extension 1.1: System detects a clash with the examination date entered and another event. 1.1.1. System will prompt the user to reschedule the event of lower priority. (examinations and recitals are of highest priority, followed by concerts and then practices). If the clash is with an event of the same priority, the user is prompted to choose which one to reschedule(simple y/n response). 1.1.2. User reschedules the specified event by entering a date and time. The user is also able to delete an event with the delete command to free up the schedule if he wishes to do so. 1.1.3. System once again checks for clashes and repeats the process of rescheduling if necessary.

C.6. Rate and comment on the efficiency of practice sessions

- 1. User enters a command to rate a practice session
- 2. System brings up a list of practice sessions that the user has already completed
- 3. User selects a practice session
- 4. System displays the details of the selected practice session and prompts the user to select an efficiency rating along with any additional notes
- 5. User rates the efficiency of the practice session and takes down any notes or feedback from

6. System saves the entry onto the hard disk

C.7. Edit descriptions of any existing event

- 1. User enters a command to edit the description of an event
- 2. System edits corresponding description and prompts user of success

Extension 1: System detects a clash of incorrect format entered by the user. 1.1. System will prompt the user that the entered format was incorrect.

Extensions 4.1: Selected practice session has already been rated. 4.1.1. If the selected practice session has already been rated, the system notifies the user and allows them to edit. 4.1.2. The user edits the rating and notes of the practice session accordingly 4.1.3. System saves the changes onto the hard disk

Extensions 5.1: User inputs an invalid rating. 5.1.1. System displays an error message to inform the user of the correct rating format until a valid input is detected.

C.8. Viewing all events in the coming 7 days.

- 1. User enters a command to view all events in the next 7 days.
- 2. System shows all events in the next 7 days in a calendar table.

Appendix D: Non-functional requirements

- 1. System should work on windows and linux.
- 2. System response within 1 second.
- 3. Usable by non tech-savvy individuals.
- 4. Clear user prompts
- 5. Visually pleasing display

Appendix E: Instructions for Manual Testing

E.1. Launch and Shutdown

- 1. Initial Launch
 - a. Open Duke.java in src.
 - b. Run the file Expected: The Welcome Message is printed in stdout and the system requests for an input.
- 2. Shutdown
 - a. Key in bye as input.

Expected: The Goodbye Message ('Bye. Hope to see you again soon!') is printed in stdout and the process exits.

E.2. Obtain the list of items currently in stored in the system

1. Key in list as input

Expected: A list of items is printed in stdout.

E.3. Add a Task

1. Add Todo

Key in todo tdtask /01-01-2011 0100

Expected: Output should be Got it. I've added this task:

[x][T] tdtask BY: Sat, 01 Jan 2011, 01:00

Now you have previous number of items + 1> items in the list.

2. Add Exam

Key in exam Music Rudiments /08-08-2018 0800 0900

Expected: Output should be Got it. I've added this task:

[x][E] Music Rudiments START: Wed, 08 Aug 2018, 08:00 END: Wed, 08 Aug 2018, 09:00

Now you have of items + 1> tasks in the list.

3. Add Practice session

Key in practice morningprac /07-08-2018 0800 0900

Expected: Output should be Got it. I've added this event:

[x][P] morningprac START: Tue, 07 Aug 2018, 08:00 END: Tue, 07 Aug 2018, 09:00

Now you have previous number of items + 1> tasks in the list.

4. Add Concert

Key in concert Noon Concert /06-06-2016 1200 1400

Expected: Output should be Got it. I've added this task:

[x][C] Noon Concert START: Mon, 06 Jun 2016, 12:00 END: Mon, 06 Jun 2016, 14:00

Now you have revious number of items + 1> tasks in the list.

5. Add Recital

Key in recital Evening Recital /07-07-2017 1900 2100

Expected: Output should be Got it. I've added this task:

[x][R] Evening Recital START: Fri, 07 Jul 2017, 19:00 END: Fri, 07 Jul 2017, 21:00

Now you have previous number of items + 1> tasks in the list.

6. Add Lesson

Key in lesson Class /09-09-2019 0900 0100

Expected: Output should be Got it. I've added this task:

E.4. Set a Task as done

Key in done 1

Expected: Prints a message that the first task on the list has been marked as done.

E.5. Find tasks that contains a certain keyword or key phrase

Key in find <key>, where <key> is the keyword or key phrase Expected: Prints a list of tasks that contains the <key>.

E.6. Get reminder

Key in reminder

Expected: Prints a list of tasks to be completed in the next three days.

E.7. View all tasks in a certain day

Key in view <date>, where <date> has the format dd/MM/yyyy. Expected: Prints a list of tasks that occurs on the given <date>.

E.8. Edit description of an event

Key in <edit> <event index>/<new description>.+ Expected: Prints the success of editing event of index <event index>.

E.9. Reschedule an event

Key in <reschedule> <event index> <new date> <new start time> <new end time>, where <new date> <new start time> <new end time> has the format dd-MM-yyyy HH:mm HH:mm.

Expected: Prints the success of rescheduling event of index <event index>.

E.10. Check the next 3 free days

Key in check.

Expected: Prints the next 3 days without any events.

E.11. View the calendar table of the next 7 days.

Key in calendar.+ Expected: Prints the calendar table containing all events of the next 7 days, where the first column of the table is the current day.

E.12. Contact management

1. Add contact to an event in the list

Key in contact add <event index> /<name>, <email>, <phone number> Expected: Prints the success of adding the contact.

2. Delete contact

Key in contact delete <event index> <contact index> / Expected: Prints the success of deleting the contact.

3. View contact

Key in contact view <event index> /
Expected: Prints the contacts information in the event.

4. Edit contact

Key in contact edit <event index> <contact index> <edit type> /<new contact information> Expected: Prints the success of editing the contact.

Appendix F: Instructions for Manual Testing

F.1. Launch and Shutdown