

Organización del Computador 1 Conversión A/D y D/A

Dr. Marcelo Risk

1 de noviembre de 2022

Conversión de analógico a digital y al revés

 Necesidad de conectar sensores y transductores analógicos a computadoras digitales:

conversión A-D (Analógico→Digital)

► Ejemplos de sensores analógicos: luz, temperatura, niveles, sonido, distancias, etc.

Conversión de analógico a digital y al revés

 Necesidad de conectar sensores y transductores analógicos a computadoras digitales:

conversión A-D (Analógico→Digital)

- Ejemplos de sensores analógicos: luz, temperatura, niveles, sonido, distancias, etc.
- Necesidad de conectar transductores de salida analógica a computadoras digitales:

conversión D-A (Digital→Analógico)

► Ejemplos de transductores analógicos: parlantes (audio), resistencias disipadoras, motores, etc.

Sistema de procesamiento de señales

Señal analógica: puede tener cualquier valor dentro de un rango de la unidad de la variable, y en cualquier instante de tiempo, es continua en amplitud y tiempo.

Sistema de procesamiento de señales

- Señal analógica: puede tener cualquier valor dentro de un rango de la unidad de la variable, y en cualquier instante de tiempo, es continua en amplitud y tiempo.
- Señal digital: tiene valores dentro de un rango numérico, y en instantes discretos en el tiempo, es discreta en amplitud y tiempo.

Digitalización de una señal analógica

- ightharpoonup x(t) es *muestreada* en el tiempo a un intervalo Δt
- dentro del *rango dinámico* (x_{min} , x_{max}) es *muestreada* en amplitud a un intervalo Δx
- N muestras en total en amplitud

Teorema del muestreo (tiempo) y muestreo en amplitud

- ▶ Muestreo en el tiempo: dada una señal analógica x(t), con una frecuencia máxima $F_{\text{máxima}}$ y la frecuencia de muestreo $F_{\text{muestreo}} = \frac{1}{\Delta t}$
- ► Teorema del muestreo: $F_{\text{muestreo}} >= 2F_{\text{máxima}}$

Teorema del muestreo (tiempo) y muestreo en amplitud

- ▶ Muestreo en el tiempo: dada una señal analógica x(t), con una frecuencia máxima $F_{\text{máxima}}$ y la frecuencia de muestreo $F_{\text{muestreo}} = \frac{1}{\Delta t}$
- ► Teorema del muestreo: $F_{\text{muestreo}} >= 2F_{\text{máxima}}$
- ► Muestreo en amplitud: dado un *rango dinámico* (x_{min} , x_{max}), entonces $\Delta x = \frac{x_{max} x_{min}}{N}$
- N: se determina con la *cantidad de bits* del conversor analógico-digital $N = 2^{bits}$

Teorema del muestreo (tiempo) y muestreo en amplitud

- ▶ Muestreo en el tiempo: dada una señal analógica x(t), con una frecuencia máxima $F_{\text{máxima}}$ y la frecuencia de muestreo $F_{\text{muestreo}} = \frac{1}{\Delta t}$
- ► Teorema del muestreo: $F_{\text{muestreo}} >= 2F_{\text{máxima}}$
- ► **Muestreo en amplitud**: dado un *rango dinámico* (x_{min} , x_{max}), entonces $\Delta x = \frac{x_{max} x_{min}}{N}$
- N: se determina con la cantidad de bits del conversor analógico-digital N = 2^{bits}
- ▶ **Ejemplo**: un CD de música F_{maxima} = 20 KHz es muestreado en el tiempo a $F_{muestreo}$ = 44 KHz y en amplitud con 16 bit, es decir N = 65536

Conversión A-D

Conversión A-D

Conversión A-D

Conversión A-D: AD0808

Conversión A-D: flash ADC

Conversión D-A

Conversión D-A: DAC0800

