$2\,r_{.\,2}\,\partial_{i}\mathcal{A}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,+2\,r_{.\,2}\,\partial_{\theta}\mathcal{A}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,-4\,r_{.\,2}\,\partial_{\theta}\mathcal{A}_{\alpha\,i\,\beta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\,+4\,t_{.\,2}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,2}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\theta\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A}_{i\,\alpha}\,\partial^{\theta}f^{\alpha\,i}\,+4\,t_{.\,3}\,\mathcal{A$

PSALTer results panel

 $2\underbrace{t.}_{2}\partial_{\alpha}f_{i\theta}\partial^{\theta}f^{\alpha i} - \underbrace{t.}_{2}\partial_{\alpha}f_{\theta i}\partial^{\theta}f^{\alpha i} - \underbrace{t.}_{2}\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha i} + \underbrace{t.}_{2}\partial_{\theta}f_{\alpha i}\partial^{\theta}f^{\alpha i} - \underbrace{t.}_{2}\partial_{\theta}f_{i\alpha}\partial^{\theta}f^{\alpha i} - \underbrace{t.}_{2}\partial_{\theta}f_{\alpha i}\partial^{\theta}f^{\alpha i} - \underbrace{t.}_{2}\partial_{\theta}f^{\alpha i}\partial^{\theta}f^{\alpha$ $4t. \mathcal{A}_{\alpha\theta_{i}}\left(\mathcal{A}^{\alpha_{i}\theta}+\partial^{\theta}f^{\alpha_{i}}\right)+2t. \mathcal{A}_{\alpha_{i}\theta}\left(\mathcal{A}^{\alpha_{i}\theta}+2\,\partial^{\theta}f^{\alpha_{i}}\right)\right)\left[t,\,x,\,y,\,z\right]dz\,dy\,dx\,dt$ <u>Wave</u> <u>operator</u> ${\stackrel{0^+}{\cdot}}\mathcal{H}^{\parallel} {\stackrel{0^+}{\cdot}}{f}^{\parallel} {\stackrel{0^+}{\cdot}}{f}^{\perp}$

 $\mathcal{S} = \iiint\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\left[\frac{1}{6}\left(6\ \mathcal{A}^{\alpha\beta\chi}\ \sigma_{\alpha\beta\chi} + 6\ f^{\alpha\beta}\ \tau\left(\Delta + \mathcal{K}\right)_{\alpha\beta} + 8\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{\alpha\,i\,\theta}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{\alpha\theta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} + 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{i\,\theta\alpha}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{\alpha\theta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} + 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{i\,\theta\alpha}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}_{\alpha\theta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i} - 4\ r_{\underbrace{2}}\ \partial_{\beta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{\alpha\beta\,i}\ \partial^{\theta}\mathcal{A}^{$

$^{0^{\scriptscriptstyle +}}\mathcal{A}^{\parallel}$ † 0 ${\stackrel{0^+}{\cdot}}f^{\parallel}$ † 0 0 0 0

0 0

 $k^2 r_{\bullet} + t_{\bullet}$

 ${\overset{0^+}{\cdot}}f^\perp$ †

^{o-}Æ[∥]†

 $^{0^{+}}\tau^{\perp}$ †

 $^{0^{-}}\sigma^{\parallel}$ †

0 0 0

0

0

0

0

0

0

0

$\frac{3}{(3+k^2)^2 t_2} \quad \frac{3 i k}{(3+k^2)^2 t_2}$ $1_{1}^{+} \uparrow^{\alpha\beta} - \frac{3i\sqrt{2}k}{(3+k^2)^2 t_{\frac{1}{2}}} - \frac{3ik}{(3+k^2)^2 t_{\frac{1}{2}}} \frac{3k^2}{(3+k^2)^2 t_{\frac{1}{2}}}$

 $^{1^{-}}\sigma^{\parallel}$ $^{\alpha}$

 $\stackrel{1^{-}}{\cdot}\sigma^{\perp}\uparrow^{\alpha}$

 $\frac{1}{k^2}r_{\cdot}+t_{\cdot}$

 $^{1^{+}}\sigma^{\parallel}_{\alpha\beta}$

1	L- _τ + α	0	0	0	0	0	0	0				
		0		0	0	Θ	Θ	0	2 ⁺ σ αμ	2 ⁺ τ αβ	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$	
								$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0	
								$^{2^{+}}_{\bullet}\tau^{\parallel}\uparrow^{\alpha\beta}$	0	0	0	
								$^{2^{-}}\sigma^{\parallel}\uparrow^{lphaeta\chi}$	0	0	0	
Source co	onst	rai	<u>nts</u>									
Spin-parity form	Cova	riant for	n									Multiplicities
$ \stackrel{0^+}{\cdot} \tau^{\perp} == 0 $	$\partial_{\beta}\partial_{\alpha}\tau$ ($\Delta + \mathcal{K})^{\alpha\beta} =$	0									1
⊕ τ∥ == Θ	$\partial_{\beta}\partial_{\alpha}\tau$ (Δ+ <i>K</i>) ^{αβ} ==	$\partial_{\beta}\partial^{\beta}\tau (\Delta + \mathcal{I})$	$(C)^{\alpha}_{\alpha}$								1
⁰⁺ _• σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	$\partial_{\beta}\sigma_{\alpha}^{\alpha\beta} = 0$									1	
1- _τ ^Δ == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}$	$\tau \left(\Delta + \mathcal{K}\right)^{\beta \chi}$	$==\partial_{\chi}\partial^{\chi}\partial_{\beta\tau}$	$(\Delta + \mathcal{K})^{\alpha\beta}$								3
1- _t ^{\alpha} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}$	$\tau \left(\Delta + \mathcal{K}\right)^{\beta \chi}$	$==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau$	$(\Delta + \mathcal{K})^{\beta \alpha}$								3
1- _σ ¹ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta}$	^{αχ} == 0										3
1 ⁻ ₋ σ ^α == 0	$\partial_{\delta}\partial^{\alpha}\sigma^{\lambda}$	$\frac{\delta}{x} + \partial_{\delta} \partial^{\delta} c$	$\int_{X}^{X\alpha} = \partial_{\delta}\partial_{\alpha}$	$\chi^{\sigma^{\chi_{\alpha\delta}}}$								3
- 1 μαβ 1 μαβ 0	α	βх	B	χα ν		αβ .	В	χαδ	αβ	/		•

$\left \begin{array}{c} 1^{-} \sigma \right ^{\alpha} = 0$	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha} = \partial_{\delta}\partial_{\chi}\sigma_{\chi}^{\chi\alpha\delta}$	3
$i k \cdot \frac{1}{\cdot} \sigma^{\parallel} \alpha^{\beta} + \cdot \frac{1}{\cdot} \tau^{\parallel} \alpha^{\beta} = 0$	$\partial \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	3
	$\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}$	
$1^+ \sigma^{\parallel}^{\alpha\beta} = 1^+ \sigma^{\perp}^{\alpha\beta}$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\chi \alpha \beta} = 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi}$	3
$2^{-}_{\bullet}\sigma^{\parallel}^{\alpha\beta\chi} = 0$	$3 \ \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \ \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \ \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} +$	5
	$2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$	
	$3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\ \delta} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\ \delta} =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} + \\$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta} {}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$	
2 _• ⁺ _τ ^{αβ} == Θ	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} + \\$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi}$	
2 ⁺ _• σ ^{αβ} == 0	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = $	5
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma_{\chi}^{\chi \ \delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$	
Total expected ga	36	

(There are no massless particles)

<u>Gauge symmetries</u>

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

r. < 0 && t. > 0

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)