Chalmers tekniska högskola Kungliga tekniska högskolan Stockholms universitet Göteborgs universitet

Matematik- och fysikprovet Chalmers, KTH, SU, GU Matematikprovet GU

CHALMERS: Arkitektur och teknik, Automation och mekatronik, Elektroteknik, Kemiteknik med fysik, Teknisk fysik, Teknisk matematik

KTH: Design och produktframtagning, Elektroteknik, Farkostteknik, Maskinteknik, Materialdesign, Teknisk fysik, Teknisk matematik

SU: Kandidatprogrammen i astronomi, i fysik, i meteorologi, samt Sjukhusfysikerprogrammet

GU: Kandidatprogrammen i fysik, samt i matematik

Antagningsprov 2024 - MATEMATIK

2024-05-18, kl. 9.00 - 12.00

Skrivtid: 180 min

Inga hjälpmedel tillåtna.

Svar på uppgifterna i del A (uppgifter 1 - 20) och del B (uppgifter 21 - 30) lämnas in på utdelat svarsformulär. Den fullständiga lösningen till uppgiften i del C lämnas in på utdelat lösblad. Tesen med uppgifterna och kladdpapper lämnas *inte* in. Du rekommenderas att ta med dig tesen med dina svar inringade / ifyllda, för att i efterhand kunna jämföra med facit.

A. Markera rätt svar genom att ringa in rätt svarsalternativ på svarsformuläret. (1p för varje rätt svar; OBS! Endast ett rätt svar per uppgift.)

1. Talen a och b är reella. Givet att $x=(a+b\sqrt{3})^3-(a-b\sqrt{3})^3,$ så gäller att x är lika med

(a)
$$2ab(3a+b)$$
; (b) $6b\sqrt{3}(a^2+b^2)$; (c) $2b(3a^2+b^2)$; (d) inget av (a)-(c).

2. Om a och b är reella tal så är villkoret "minst ett av talen a och b är skilt från 0" ekvivalent med

(a)
$$ab \neq 0$$
; (b) $a^2 + b^2 \neq 0$; (c) $\frac{a}{b} + \frac{b}{a} \neq 0$; (d) inget av (a)-(c).

3. Om x är ett reellt tal och $\sqrt{x^2 + 2x + 1} - \sqrt{x^2 - 2x + 1} = -2$, så gäller

(a)
$$x \ge 1$$
; (b) $-1 \le x \le 1$; (c) $x \le -1$; (d) inget av (a)-(c).

	(a) $x < 0$; (b) $x < 2$; (c) $x < -2$; (d) inget av (a)-(c).		
5.	Alla lösningar till olikheten $\frac{x}{2x-1} \ge \frac{1}{x}$ ges av		
	(a) alla negativa x samt alla $x \ge 1$; (b) alla reella x ;		
	(c) alla negativa x samt alla $x > \frac{1}{2}$; (d) inget av (a)-(c).		
6.	Om $x \boxplus y = x - x + y - y $ för alla reella tal x och y , så gäller för alla x och y att		
	(a) $x \boxplus y = y \boxplus x$; (b) $(2x) \boxplus (-x) = 2x$; (c) $x \boxplus y \ge 0$; (d) inget av (a)-(c) gäller generellt.		
7.	Antalet heltalslösningar till olikheten $bx + 17 - 2x^2 > 0$, där b är ett reellt tal, är		
	(a) 0; (b) ändligt, skilt från 0; (c) oändligt; (d) kan ej avgöras.		
8.	. Givet är ekvationen $az^2 + bz + c = 0$, där $abc \neq 0$. Två av de tre koefficientern a, b, c är reella och en är icke-reell. Då kan man dra slutsatsen att ekvationen int är ekvivalent med någon ekvation $Az^2 + Bz + C = 0$, där		
	 (a) alla tre koefficienterna är reella; (b) alla tre koefficienterna är icke-reella; (c) en koefficient är reell och två av koefficienterna är icke-reella; (d) inget av (a)-(c), den kan vara ekvivalent med ekvationer av alla tre typerna. 		
9.	. Givet är ekvationen $az^2+bz+c=0$, där $abc\neq 0$. Två av de tre koefficientern a,b,c är reella och en är icke-reell. Då kan man dra slutsatsen att		
	 (a) en av ekvationens lösningar är reell och den andra icke-reell; (b) minst en av ekvationens lösningar är icke-reell; (c) minst en av ekvationens lösningar är reell; (d) inget av (a)-(c). 		
10.	Priset för en förpackning av en viss produkt har ökat med 10%, medan innehållets vikt har minskat med 10%. Kilopriset för produkten har då ökat med		
	(a) mindre än 20%; (b) exakt 20%; (c) mer än 20%; (d) det går inte att avgöra		

4. Olikheten $\left(\frac{1}{2}\right)^x < 4$ är ekvivalent med olikheten

(c) kan ej avgöras; (d) inget av (a)-(c).

11. Antalet reella lösningar till ekvationen $9e^{2x} + ae^x - 1 = 0$ för a > 0 är

(a) 1;

(b) 2;

13. För alla positiva reella tal x och p gäller att		
(a) $p \ln x = \ln x^p$;	b) $p \ln x = (\ln x)^p$;	
(c) $p \ln x = \ln (x + e^p)$	d) inget av (a)-(c) gäller generellt.	
14. Om $\sin\alpha>0$ och $\tan\alpha=p,$ så gäller att $\cos\alpha$ är lika med		
(a) $\frac{p}{\sqrt{1+p^2}}$; (b) $\frac{ p }{\sqrt{1+p^2}}$; (c) $\frac{1}{\sqrt{1+p^2}}$	$ \frac{1}{\sqrt{2}} $; (d) inget av (a)-(c) gäller generellt.	
15. Om $\cos \alpha > 0$ och $\tan \alpha = p$, så gäller att	$\sin\alpha$ är lika med	
(a) $\frac{p}{\sqrt{1+p^2}}$; (b) $\frac{ p }{\sqrt{1+p^2}}$; (c) $\frac{1}{\sqrt{1+p^2}}$	$ \frac{1}{\sqrt{2}} $; (d) inget av (a)-(c) gäller generellt.	
16. Om $\alpha \in [0, 2\pi]$, så gäller		
(a) $\sin \frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{2}};$ (b)	$\sin\frac{\alpha}{2} = \sqrt{\frac{1 - \cos\alpha}{2}};$	
(c) $\sin \frac{\alpha}{2} = \sqrt{\frac{1 - \sin \alpha}{2}};$ (d)) ingen av formlerna gäller generellt.	
17. Ekvationen $x^2 + bx + c = 0$, där koefficient		
$x_{1,2} = \frac{-b \pm \sqrt{23}}{2}$. Man kan då dra slutsa	tsen att	
	st ett av talen b och c inte är ett heltal; t av (a)-(c).	
18. En triangel har sidlängderna $\sqrt{11}$, $\sqrt{39}$, triangeln är då	$\sqrt{92}$ längdenheter. Den minsta vinkeln i	
(a) 30°;	(b) skild från 30°;	
(c) det går inte att avgöra;	(d) det finns ingen sådan triangel.	
19. En triangel har sidlängderna $\sqrt{13}$, $\sqrt{41}$, triangeln är då	$\sqrt{52}$ längdenheter. Den minsta vinkeln i	
(a) 30°;	(b) skild från 30°;	
(c) det går inte att avgöra;	(d) det finns ingen sådan triangel.	
20. Givet är en tetraeder $ABCD$, sådan att $ ABCD $ och de tre plana vinklarna vid hörnet $ABCD$ mot sidan BCD har i samma längdenhet	är räta. Tetraederns höjd från hörnet A	
(a) $\frac{\sqrt{6}}{2}$;	(b) annat tal;	

(b) $\ln x + \ln y = \ln (x + y);$

(d) inget av (a)-(c) gäller generellt.

12. För alla positiva reella tal \boldsymbol{x} och \boldsymbol{y} gäller att

(a) $\ln x + \ln y = \ln x \cdot \ln y$;

(c) $\ln x + \ln y = \ln (xy)$;

(c) det går inte att avgöra;

(d) det finns ingen sådan tetraeder.

- B. Lös uppgifterna nedan; ange endast svar på svarsformuläret. (2p för varje rätt svar)
- 21. Beräkna

$$\frac{\frac{4}{7} - \frac{3}{2}}{\frac{2}{5} + \frac{1}{4}}.$$

Ange svaret på formen $\frac{p}{q}$, där p,q är heltal och bråket $\frac{p}{q}$ är maximalt förkortat.

- 22. Bestäm alla reella tal a, för vilka ekvationen $x^2 2ax + (a^2 + 2) = 0$ har två icke-reella lösningar som befinner sig på avstånd 5 från talet 0. Ange det minsta talet a med den egenskapen.
- 23. Givet funktionen $f(x) = \ln \frac{1-x^2}{1+x^2}$, beräkna f'(x) och ange $f'\left(-\frac{1}{2}\right)$.
- 24. Beräkna $\int_0^2 \left(e^{-2x} \frac{2}{3-x} + \cos \frac{x}{3} \right) dx$.
- 25. En geometrisk talföljd har kvoten q. Bestäm de värden q kan ha givet att det andra elementet i följden är 1 och summan av de fyra första elementen i följden är 4. Ange summan av dessa värden.
- 26. Lös ekvationen

$$\frac{1+\tan^2 x}{1-\tan^2 x} = 4\sin 2x.$$

Ange summan av de två minsta positiva lösningarna.

27. Lös olikheten

$$(2x-3)^3(x+7)^7(x+5)^4 < 0.$$

Ange summan av olikhetens heltalslösningar.

- 28. I triangeln ABC gäller att |AB| = 7 l.e., |AC| = |BC| = 6 l.e. Beräkna och ange längden av höjden från hörnet A mot sidan BC.
- 29. Två cirklar tangerar den räta linjen t och ligger på samma sida om den. Den ena cirkeln har medelpunkt O_1 och radie R, den andra har medelpunkt O_2 och radie r, där r < R. Avståndet mellan de två medelpunkterna är $|O_1O_2| = d > R + r$. Linjen t skär linjen som binder samman cirklarnas medelpunkter i punkten P. Beräkna och ange avståndet $|PO_2|$. (Alla längder och avstånd mäts i samma längdenhet.)
- 30. Romben ABCD har sidlängd a (längdenheter). Summan av dess diagonallängder är |AC| + |BD| = 2d (längdenheter). Beräkna och ange rombens area.

4

C. Ge fullständig lösning till uppgiften nedan. (max 5p)

Lös olikheten

$$\sqrt{4x - 3 - x^2} - \sqrt{7x - 10 - x^2} \ge 1.$$