

Learning framework

Two key implementations

Evaluation

Adaboost specification

SET OF **INDEPENDENT VARIABLES AND A BINARY TARGET**

Output data **SET OF**

PREDICTIONS

Data format

SCALED NUMERICAL VARIABLES

Expected behaviour

COMBINE WEAK CLASSIFIERS (DECISION TREES WITH 1 DEPTH) TO **GET ACCURATE BINARY PREDICTIONS**

• **Hypothesis:** Combining weak classifiers $c_j(X)$ can improved the overall accuracy of the prediction $C_M(X)$.

$$C_M(X) = sign(\sum_{j=1}^{M} \alpha_j) * (c_j(X))$$
Significance of each weak classifier
$$\alpha_j = \frac{1}{2} log \frac{1 - Error_j}{Error_i}$$

• Loss function: Uses an exponential with the weight of each boosting round.

$$(w_i^{(j+1)}) = \frac{w_i^j}{Z_j} * \begin{cases} e^{-\alpha_j} & \text{if Prediction of base classifier}(x_i) = y_i \\ e^{\alpha_j} & \text{if Prediction of base classifier}(x_i) ! = y_i \end{cases}$$

$$Error_{j} = \frac{1}{N} \sum_{i=1}^{N} w_{i} * Misclassification_{i}$$

Distribution of Labels

Breast cancer data set https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
Diagnosis (1 = malignant (red), 0 = benign (green))

Two key implementations

Loss function:

Modifications can improve the algorithm performance.

Predictions:

Combining previous predictions deliver a better outcome.

1. Change loss function

$$w_i^{(j+1)} = \frac{w_i^j}{Z_j} * \begin{cases} e^{-\alpha_j} & \text{if Prediction of base classifier}(x_i) = y_i \\ e^{\alpha_j} & \text{if Prediction of base classifier}(x_i) ! = y_i \end{cases}$$

		Model Results	
		True	False
Ground Truth	True	26	19
	False	0	69

F1-SCORE: 87.90%

$$w_i^{(j+1)} = \frac{w_i^j}{Z_j} * \begin{cases} 1/(1 + e^{-\alpha_j}) & \text{if Prediction of base classifier}(x_i) = y_i \\ 1/(1 + e^{\alpha_j}) & \text{if Prediction of base classifier}(x_i) ! = y_i \end{cases}$$

		Model Results	
		True	False
Ground Truth	True	28	17
	False	0	69

F1-SCORE: 89.03%

2. Prediction

$$C_M(X) = sign(\sum_{j=1}^{M} \alpha_j * c_j(X))$$

```
# Each decision stump weak learner is multiplied by the corresponding Alpha value
for dsl_alpha, dsl_model in zip(self.alphas,self.models):
    prediction = dsl_alpha * dsl_model.predict(X)
    predictions.append(prediction)

# It is returned +1 for each value greater than 0, -1 for each value lesser than 0 and 0 if the value is zero
predictions = np.sign(np.sum(np.array(predictions),axis=0))
```

Evaluation

Trade-off between BIAS and VARIANCE

Confusion Matrix

$$w_i^{(j+1)} = \frac{w_i^j}{Z_j} * \begin{cases} e^{-\alpha_j} & \text{if Prediction of base classifier}(x_i) = y_i \\ e^{\alpha_j} & \text{if Prediction of base classifier}(x_i) ! = y_i \end{cases}$$

```
# Update the weights which are going to be used for the training of the next decision stump
weight_loop *= np.exp(alpha * np.where(misclassified == 1, 1, -1))
weight_loop /= np.sum(weight_loop)
weights_loop.append(weight_loop)
```


$$w_i^{(j+1)} = \frac{w_i^j}{Z_j} * \begin{cases} 1/(1 + e^{-\alpha_j}) & \text{if Prediction of base classifier}(x_i) = y_i \\ 1/(1 + e^{\alpha_j}) & \text{if Prediction of base classifier}(x_i) ! = y_i \end{cases}$$

Thank you