Zusammenfassung Datennetze 1

Mathis Hermann

November 15, 2022

Diese Zusammenfassung ist anhand der Lernziele aufgebaut. Dementsprechend sind nicht ganz alle Themen der Vorlesung enthalten.

1 Übersicht über Datennetze

Client-Server Paradigma – Meiste Kommunikation; Daten auf Server; User können Daten auf Server bearbeiten

Peer-to-Peer Paradigma – Rechner kann Server und Client sein; Einfach aufzusetzen, weniger Komplexität, weniger Kosten; Keine zentralisierte Administration, nicht so sicher, nicht skalierbar

LAN und WAN – Es gibt verschiedene Typen von Netzen: Kriterien:

- Kanalzugang
 - Multiaccess Netze
 - Punkt-zu-Punkt Netze
- Ausdehnung
 - LAN (sind immer Multiaccess Netze)
 - WAN (traditionell: Punkt-zu-Punkt Netze; neu auch Multiaccess Netze)

Begriffe

Begriff	Erklärung	
Client	Wird ein- und ausgeschaltet; wechselt IP; stellt Anfrage an Server	
Server	Ein Programm, das immer läuft; fixe IP; meistens DNS- Eintrag; läuft ununterbrochen und wartet auf Anfragen	
LAN	Local-Area Network; Enthält Endgeräte; Medium-Access Control; multi-access Netz	
WAN	Wide-Area Network; Keine Endgeräte; point-to- point Leitungen	
Physikalische Darstellung	Definiert die physikalischen Verbindungen und Konfigurationen; Zeigt welches Gerät sich wo befindet und mit welchem verbunden ist	
Logische Darstellung	Darstellung Ebene 3; Netze werden gezeichnet	
Switch	Layer 2 Kommunikation; leitet Rahmen innerhalb eines Netzwerkes weiter	
Router	Layer 3; Verbindet IP-Netze; leitet Pakete von einem Netz in ein anderes	
Konvergierte Netze	Ein Netz für alle Dienste; single point of failure im Netz durch Komplexität; billiger im Unterhalt	
Downstream	(Stärke der) Leitung von ISP zu Konsument	
Upstream	(Stärke der) Leitung von Konsument zu ISP	
QoS	Dienstgüte	
Leitungs- vermittlung	Endgerät baut Leitung zu Ziel auf; feste Bandbreite wird reserviert in festem zeitlichen Rahmen; starke QoS; geringer Durchsatz (stark begrenzt in Bandbreite); sicher	
Paket- vermittlung	Nachricht wird segmentiert; Pakete werden anhand der Informationen (Absender, Empfänger) verteilt; gute Ausnützung der Bandbreite; nicht so sicher; viel Overhead bei Paketen - nicht so effizient	

Netzwerkelemente und deren Funktion – Netzwerkelemente sind Endgeräte (Computer, Laptop, Drucker, Tablet); Zwischengeschaltete Geräte (Router, Switch); Anschlussleitung (Wireless Media, LAN Media, WAN Media)

Dedizierte und Konvergierte Netze – verschiedene Dienste über das Internet

Dedizierte Netze – Spezifische Netze für entsprechende Anwendungen; Konvergente Netze – Ein Netz für alle Dienste;

Logische und Physikalische Darstellung von Netzwerken – Logische Sicht Beschreibt welche IP-Netze (Benutzergruppen) es gibt; Physikalische Sicht Beschreibt wo welches Netzelement befindet

Grundanforderungen des Internets Kriterien für zuverlässige Netze:

- Fehlertoleranz (z.B. bei Leitungunterbruch)
- Skalierbarkeit
- Dienstgüte
- Sicherheit (e.g. Abhören oder Manipulation der Daten)

Anforderung verschiedener Anwendungen an die verschiedenen Parameter der Dienstgüte

An- wendung	Durch- satz	Ver- zögerung	Jitter	Paket- vermittlung
Web	Hoch	Gering	Gering	Hoch
E- Mail	Gering	Gering	Gering	Gering
Sprache	Gering	Hoch	Hoch	Gering (VoIP)
Video	Mittel	Hoch	Hoch	Gering

Unterschied: Leitungsvermittlung und Paketvermittlung Leitungsvermittlung – Viele mögliche Pfade; ein Pfad wird gewählt pro Call; Wenn ein Call etabliert ist, geht alle Kommunikation über diesen Pfad; Eine Leitung ist bestimmt für die gesamte Dauer des Calls

Paketvermittlung – Viele verschiedene Pfade können verwendet werden, um individuelle Pakete zum Ziel zu routen; kein fixer Pfad; Pakete werden entsprechend des besten Pfades zur Zeit geroutet

2 Konfiguration von Netzen

Zugänge zum Betriebssystem IOS von Cisco – Hauptsächlich über drei HW-Schnittstellen kann ein Router konfiguriert werden: 1) Console Port, blau: Management Port für lokale Konfiguration (Lokale Konsole, Serial), 2) Auxiliary Port, schwarz: Management Port für entfernte Konfiguration ("Remote out-of-band", wird kaum mehr genutzt), 3) LAN Anschlüsse, gelb: Remote Management ("inband management") mit SSH, Telnet.

Kommandos IOS – Drei verschiedene Arten von Kommandos in IOS: 1) Betriebskommandos ("ping"; Speichern von Konfiguration etc), 2) Konfigurationskommandos (zur Konfiguration eines Interfaces, Passwort etc.), 3) Statusabfragen.

Kommandostruktur von IOS – Es gibt vier verschiedene Modi im IOS: 1) User Mode, 2) Privileged Mode, 3)Global Config Mode, 4) Config Mode (und Sub-Menus).

```
Router>enable
              // exec zu privileged mode
Router#configure terminal // in Konfigurationsmodus
Router (config)#interface FastEthernet 0/0
// IF-Konfigurationsmodus - Interfaces konfigurieren
Router(config-if)# // Ebene zurueck
Router(config)# // Ebene zurueck
Router#disable // zurueck in den user mode
Router>
// Hilfe im IOS
Router# cl? //liste von commands, die mit "cl" starten
clear clock
Router#clock set ? // next possible arguments
 hh:mm:ss
                Current Time
Router#clock set 19:50:00 ? // mehrere Argumente
 <1-31>
                Day of the month
 MONTH
                Month of the year
```

Grundkonfiguration für Router und Switch Eine Grundkonfiguration beinhaltet:

- Hostname
- Einschränkung des Zugangs zu Netzelementen mit Passwörtern
 - Lokales Einloggen (Console)
 - Entferntes Einloggen (Telnet, SSH)
 - Übergang user mode zu privileged mode
- Rechtlicher Hinweis mit einem Banner

```
Router**enable
Router*#configure terminal

// Hostname
Router(config)*#hostname NAME
NAME(config)*#

// Loeschen eines Konfigurationsbefehls
NAME(config)*#no hostname NAME
Router(config)*#

// PW fuer lokales Einloggen
Router(config)*#line console 0
Router(config-line)*#password PASSWORD
```

```
Router (config-line)#login
// PW fuer entferntes Einloggen (telnet)
Router(config)#line vty 0 4 // sesions 0-4
Router (config-line)#password PASSWORD
Router (config-line)#login
Router(config-line)# transport input telnet
// PW fuer privileged mode ohne Verschluesselung
Router(config)#enable password PASSWORD
// PW fuer privileged mode mit Verschluesselung
Router(config)#enable secret PASSWORD
// Verschluesselung aller PW in Konfiguration
Router (config) # service password - encryption
// Rechtlicher Hinweis
Router (config)#banner motd "
Authorized Access Only!
// Speichern von Konfiguration in NVRAM
Router#copy running-config startup-config
// Speichern auf TFTP-Server
Router#copy running-config tftp
// Speichern in Datei
Router#show running-config // copy & paste in externe Datei
// Loeschen von lokal gespeicherten Konfigurationen
// Router
Router#erase startup-config
// Switch
S1#erase startup-config
S1#delete flash:vlan.dat
```

```
// Router
    // interface konfigurieren
Router(config)#interface Fastethernet 0/0
Router(config-if)#ip address IF-ADRESSE NETZMASKE
Router(config-f)#no shutdown // IF einschalten
// Switch
S1(config)#interface vlan 1
S1(config-if)#ip address IF-ADRESSE NETZMASKE
S1(config-if)#no shutdown
```

Zustand von Leitungen abfragen und Erreichbarkeit von Netzelementen prüfen Wenn die IP-Adresse bekannt ist, kann mit ping geprüft werden, ob ein Netzelement erreichbar ist.

3 Netzwerkprotokolle und Datenkapselung

Protokoll Bei Rechnernetzen gibt es Regeln, wie Nachrichten auszutauschen sind:

- Kodierung der Daten (wie wird ein Zeichen kodiert)
- Format für die Kapselung der Nachricht (welche Informationen werden wie ausgetauscht)
- Maximal erlaubte Grösse
- Zeitliche Abfolge (Wie erfolgt der Zugang zum Übertragungskanal? Wie schnell darf ein Sender senden?)
- Optionen, auf die sich beide Seiten einigen können
- Fehlerbehandlung

Ein Protokoll ist ein Satz von Regeln, der die Form der Kommunikation hinreichend genau bestimmt, so dass Rechner verschiedener Hersteller effizient miteinander Daten austauschen können.

Protokolle im TCP/IP-Modell TCP/IP ist einer der meist angewendeten Protokoll-Stapel. Dieser beinhaltet verschiedene Protokolle und deren Integration.

Schicht	Protokolle
Application Layer	DNS (Name System), DHCP (Host Config), SMTP (Email), FTP (File Transfer), HTTP (Web)
Transport Layer	UDP, TCP
Internet Layer	IP, ICMP (IP Support), OSFP (Routing Protocols)
Network Access Layer	ARP, PPP, Ethernet

Standardisierungsbehörden

- \bullet The Internet Architecture Board (IAB)
- The Internet Engineering Task Force (IETF) Standardisiert viele Protokolle
- Internet Assigned Numbers Authority (IANA) vergibt IP Adressen
- The Institute of Electrical and Electronics Engineers (IEEE) kontrolliert Protokolle in der unteren Schicht
- The International Standardization Organization (ISO)

Aufgaben der Schichten im OSI-Modell

#	Schicht	Aufgabenbereich
7	Anwendung	Stellt die Dienste und Funktionalitäten für den Anwender bereit
6	Darstellung	Verwaltet die Darstellungsinformation des Dateninhalts (Komprimierung, Ver- schlüsselung)
5	Sitzung	Verwaltet die verschiedenen Sitzungen zwischen den Endpunkten
4	Transport	Stellt der Anwendung zwei Dienste für die Übertragung der Daten von der Quelle zum Ziel bereit (Endgerät zu Endgerät)
3	Netzwerk	Wegleitung vom Netz der Quelle zum Ziel- netz
2	Sicherung	Legt fest, wie die Daten innerhalb eines Netzes ausgetauscht werden
1	Physik	Legt die elektrischen Signalformen für die Übertragung innerhalb eines Netzes fest

Mechanismen beim Versenden von Daten Grosse Datenblöcke verschiedener Teilnehmer werden beim Sender segmentiert und "gemultiplext" über eine Leitung übertragen. Jede Leitung legt eine maximale Grösse eines einzelnen Rahmens (MTU = maximal transmission unit) fest. Datenkapselung: Protocol Data Unit (PDU) = [Header, Payload]

Kapselung verschiedener Protokolle beim Sender – Die Sendeseite fügt einen Header hinzu und übergibt die PDU der darunter liegenden Schicht.

Entkapselung beim Empfänger – Die Empfangsseite wertet den Header aus, entfernt ihn wieder und übergibt die Payload der darüberliegenden Schicht.

Adressen in den verschiedenen Schichten

Abläufe beim Senden einer Dateneinheit Ziel im gleichen Netz – Schicht 2 MAC-Adressen (Destination, Source), Schicht 3 IP (Source, Destination), Data; Header bleiben gleich

Ziel in anderem Netz – Schicht 2 MAC-Adressen (Destination, Source), Schicht 3 IP (Source, Destination), Data; Schicht 3 Header bleibt gleich, Schicht 2 Header wird ausgetauscht.

- Die Schicht 3 geht von Ende zu Ende
- Die Schicht 2 wird beim Übergang von einem Netz in ein anderes neu gebildet

4 Schichten 1 und 2: Network Access

Aufgaben Schicht 1 Die physikalische Schicht (Layer 1) bietet der Sicherungsschicht (Layer 2) den Dienst an, Bits über einen Link zu übertragen. Ethernet umfasst Layer 1 und Layer 2.

Wichtigste Physikalische Schnittstellen an Netzelementen Folgende physikalische Komponenten werden standardisiert:

- Netzwerkanschlüsse (Network Interface Card NIC)
- Übertragungsmedien (Leitungen)
- Steckverbinder
- Elektrische Signale
- Kodierung

Drei wichtigste Übertragungsmethoden und deren Eigenschaften

- \bullet Synchrone $\ddot{U}bertragung$ Das Taktsignal wird mit dem Datensignal mit übertragen
- Asynchrone Übertragung Nur das Datensignal wird übertragen. Der Empfänger benötigt eine Taktrückgewinnung

Im Allgemeinen wird asynchron übertragen. Der Empfänger muss das Taktsignal aus dem Empfangssignal zurückgewinnen. Das Ziel ist es, 1) so viele Daten pro Zeiteinheit wie möglich und 2) so weit wie möglich zu übertragen. Die Dämpfung elektrischer Signale in einem Leiter nimmt i.A. mit der Frequenz zu.

Das Empfangssignal ist ein analoges Signal. Der Empfänger entscheidet um welches Symbol es sich handelt. Dabei können Fehler auftreten.

Wichtigste Kabel und wie sie eingesteckt werden

- Unshielded Twisted-Pair Cable Verschiedene Kabel mit verdrillten Kupferadern
- Shielded Twisted-Pair Cable Verschiedene Kabel mit verdrillten Kupferadern; abgeschirmt
- Coaxial cable

Medium	Eigenschaften	Vorteile	Nachteile
Kupfer	Twisted / Un- twisted	Billiges Material	Dämpfung hoch bei hohen Fre- quenzen
Glas	Multimode (mehrere Pfade für das Licht), Singlemode (Pfad in eine Richtung)	Störungs- unabhängig, dämpfungs- arm	Teure Hardware
Luft	Signal wird auf Träger mod- uliert	Mobilität	Hohe Dämpfung bei hohen Fre- quenzen, alle können Signale empfangen und mithören, Inter- ferenzen mit an- deren Sendern, beschränkte Bandbreite wird geteilt

Leitungscode Der Sender wandelt das binäre Signal zuerst in einen dem Kanal angepassten Leitungscode um. Der Leitungscode legt fest, wie das Signal übertragen wird. Dabei ist es wichtig, das Signal dem Übertragungsmediom entsprechend anzupassen, um eine optimale Übertragung zu erreichen.

Aufgaben der Sicherungsschicht (data link layer)

- Rahmenbildung um Pakete zu begrenzen
- Regelung des Zugriffs auf den Übertragungskanal
- Fehlererkennung
- Optional (von Ethernet nicht unterstützt)
 - Aufbau, Halten und Auflösen einer Verbindung
 - Fehlerkorrektur durch Übertragungswiederholung
 - Flusssteuerung

Dafür werden Protokolle der Sicherungsschicht verwendet: LAN – Ethernet2, Ethernet IEE 802.3, TokenBus IEEE 802.4, Token Ring IEEE 802.5, WLAN IEEE 802.11; WAN – HDLC (High-Level Data Link Control), PPP, FrameRelay

Allgemeine Struktur eines Schicht-2-Rahmens Die Schicht 2 legt die Felder des Rahmens und die maximale Länge der Daten (Maximum Transmission Unit, MTU) in einem Rahmen fest.

Verschiedene logische Topologien in LAN

- Stern
- Erweiterte Stern
- Bus
- Ring

LAN Ursprünglich Shared Medium. Viele Stationen benützen denselben Kommunikationskanal. Weiterentwicklung: *switched networks*

Half-Duplex – Ein Endgerät kann zu einem Zeitpunkt entweder senden oder empfangen (Ethernet mit einem Hub; Wireless Access Point)

 $\mathit{Half-Duplex}$ – Beide Enden können gleichzeitig senden und empfangen (Ethernet mit Switches).

Maximum Transmission Unit

- Jedes L2-Protokolldefiniert eine MTU
- Ein Rahmen darf nicht grösser sein als die MTU; ggf. muss das Schicht 3 Protokoll einen Rahmen fragmentieren, wenn er für einen Link zu gross ist
- Typische MTU: 1500 Bytes
- Grund: Ein Benutzer darf einen Kanal nicht zu lange belegen damit andere auch senden / empfangen können

Verschiedene logische Topologien in WAN

- Punkt-zu-Punkt dedizierte Leitungen
- Point-to-Multipoint Hub and Spoke, partial mesh; Hub Standort mit mehreren Standorten verbunden
- Full Mesh Alle Geräte können miteinander kommunizieren
- Ring Weniger anfällig auf Fehler wegen Verbindung im Kreis; kein single-point-of-failure
- Stern nur zentraler Hub kann single-point-of-failure werden

Kategorien des Kanalzugriffsverfahren Controlled Access – Jede Station hat eine Zeit, die für sie zum Senden reserviert ist. In dieser Zeit darf nur sie senden (Token Ring, FDDI).

Contention-based Access – Als Wettbewerb: Der schnellere darf senden. Es ist ein Verfahren definiert, wie vorzugehen ist, wenn zwei Stationen gleichzeitig senden.

5 Ethernet

OSI-Schichten von Ethernet abgedeckt – Ethernet deckt die Schichten 1 (Physikalisch) und 2 (Data Link, Sicherung) ab.

Aufgaben der MAC-Schicht

- Kapselung der Daten
 - Markierung des Beginns eines Rahmens
 - Adressierung
 - Fehler Detektion
- Kontrolle des Kanalzugangs
 - Platzierung der Rahmen auf den Kanal
 - Fehlerbehandlung bei Kollisionen

Physikalische Unterlagen von Ethernet

- Coax N-Style 500m
- Coax BNC 185m
- UTP RJ45 100m
- STP mini-DB-9 25m
- MM Fiber SC 220-550m
- MM Fiber SC 550-5000m

Topologie vom ursprünglichen Ethernet

- Offen
- Einfachheit, einfacher Unterhalt, Zuverlässigkeit
- Neue Technologien integrieren, ohne Alte ersetzen zu müssen.
- Günstig in Installation und Aufrüstung

Mit Koaxkabel ("Bus") wurde das Ethernet ursprünglich entwickelt.

Kollisionsdomänen – Kollisionsdomänen werden unterteilt nach Geräten, die gleichzeitig senden / empfangen können. Wenn zwei Rechner in der gleichen Kollisionsdomäne sind, kann je nur einer der beiden gleichzeitig senden / empfangen.

Kollisionsdomänen können mit Hub erweitert (mehr Geräte einschliessen) und mit Switch oder Bridge in mehrere aufgetrennt werden.

Ethernet-Adressen – Allgemein werden entsprechend dem Adressaten drei Arten von Paketen unterschieden

- Unicast Ziel ist ein Rechner
 - Unicast-Adressen LSB des ersten Byte ist Null
- Multicast Ziel ist eine Gruppe von Rechnern oder NIC
 - Die IP-Adressen von 224.0.0.0 231.255.255.255 repräsentieren Multicast-Gruppen
 - Wenn sich eine Anwendung an einer Multicast-Gruppe anmeldet, wird dem Rechner eine IP-Adresse vom Multicast-Bereich zugeordnet
 - Zuordnung geschieht auf Schicht 3. Schicht 2 wird nachgezogen (Für IP-MC muss auch MAC-Adresse gebildet werden)
- Broadcast Ziel sind alle NIC in einem Netz
 - Ziel-Adresse lautet FF:FF:FF:FF:FF

Aufbau MAC-Adresse – MAC-Adressen bestehen aus zwei Teilen (je 3x 2 Oktet). Somit werden die ersten 6 Oktet der dem Hersteller (Organisationally Unique Identifier, OUI) vergeben. Der zweite Teil kann der Hersteller frei vergeben (Vendor Assigned; NIC, Interfaces)

Es gibt 2^{48} mögliche MAC-Adressen. Eine Organisation kann also 2^{24} verschiedene MAC-Adressen generieren.

Normen für Ethernet Als Standards werden hauptsächlich *IEEE 802.3* und *Ethernet2* verwendet.

Die Definition eines Ethernet-Rahmens impliziert, dass sie eine MTU (1500 Bytes) und eine Minimum Transmission-Unit (46 Bytes).

Anhand Byte 13 und 14 kann unterschieden werden nach welchem Standard, der Rahmen aufgebaut ist:

• Inhalt $> 0 \times 0600$: Ethernet2

• Inhalt < 0x0600: IEEE 802.3

Das Netzwerk-Interface prüft bei jedem Rahmen, wie er interpretiert werden muss. Bei IEEE-Rahmen folgt auf das Feld Length/Type das Feld LLC (3 Byte). LLC enthält den Protokollcode für das innere Protokoll der Payload. Alle IEEE 802.n-Normen haben das gleiche LLC-Feld.

Kanalzugriffsverfahren für Ethernet Carrier Sense Multiple Access / Collision Detection: Eine Station, die senden möchte, hört zuerst, ob der Kanal frei ist. Wenn Kanal frei ist, darf gesendet werden. Dabei kann es zur Kollision kommen.

Eine Kollision muss sicher von jeder Station detektiert werden. Bei einer Kollision: 1) Senden des Jam-Signals; 2) Rückzug vom Kanal; 3) Station generiert Zufällige n und wartet $n * t_s$ wobei t_s die Slotzeit ist. Dafür muss jeder Ethernet-Rahmen eine minimale Länge haben.

Repeater und Bridge Ein Repeater ist ein elektrischer Verstärker in einem "shared medium". Segment 1 und 2 bleiben Verbunden und bilden somit eine Kollisionsdomäne.

Eine Bridge macht Zwischenspeicherung von Rahmen in Layer 2. Somit wird in zwei Kollisionsdomänen aufgetrennt.

Multiport Bridge – Switch: Auftrennung in verschiedene Kollisionsdomänen.

MAC-Tabelle – Lernen der MAC-Adressen: Switch merkt sich für jeden ankommenden Rahmen den *Eingangsport* und die *Absenderadresse*. Die Absenderadresse wird in die entsprechende Zeile eingefüllt. Nicht mehr auftretende MAC-Adressen werden wieder gelöscht.

Anhand der Tabelle werden ankommende Rahmen weitergeleitet.

Hub und Switch – Weiterleitung von Ethernet-Rahmen

Auf Hub muss geprüft werden, ob Bus frei, dann kann gesendet werden. Wenn ein Switch verwendet wird, können alle senden und empfangen – Switch handelt den Verkehr.

Ein Switch hat vier Operationen: 1) Learning (MAC-Tabelle), 2) Aging (nach ca. 2 Min ohne Auftreten wird ein Eintrag gelöscht), 3) Flooding, 4) Selective Forwarding

Flooding – Wenn Zieladresse von ankommendem Rahmen nicht in MAC-Tabelle: Rahmen wird an alle Ports (ausser Eingansport) weitergeleitet.

Selective Forwarding – Zieladresse ist in MAC-Tabelle: Rahmen wird nur an den entsprechenden Port weitergeleitet.

Ablauf ARP Wenn der Quellrechner die Ziel-Adresse, aber nicht die Ziel-MAC-Adresse kenn wird die Zuordnung der MAC-Adresse zu einer IP-Adresse mittels Address Resolution Protocol gemacht. Rechner und Router speichern die MAC-Adresse con Ziel-IP-Adressen lokal in der ARP Tabelle. Nach entsprechender Zeit werden die Einträge in der Tabelle entfernt (gealtert).

Probleme – Zu viel Broadcastverkehr; ARP-Spoofing (Attacker gibt sich als Default Gateway aus und kann so allen Verkehr mitlesen)

6 Netzwerkschicht

Von einem Netz ins andere und Protokolle IPv4, IPv6, AppleTalk, ICMP, OSPF und andere werden angewendet. Daten von Schicht 2 werden in Schicht 3 gekapselt.

Aufgaben Schicht 3

- Adressierung
- Kapselung in Senderichtung
- Wegleitung Routing durch viele Netze
- Entkapselung beim Empfang
- Fehlerbehandlung

Eigenschaften IP Das Protokoll *IP* ist:

- *verbindungslos* Es werden IP-Pakete bei der Quelle los geschickt ohne, dass das Ziel davon weiss
- best effort Das Netz leitet soviele Pakete weiter, wie gerade möglich; Pakete werden weggeworfen bei Überlauf
- Media independent Läuft über allen möglichen Schicht 2 Protokollen (Ethernet, TokenRing, PPP, ATM) und Schicht 1 Medien

Header: IPv4 – Der Header wird mit Zeilen à vier Byte dargestellt.

- Version IP Version 4
- IP Header Length Header hat nicht immer Länge von 20 Bytes; wird in Anzahl Zeilen, n*4 Bytes angegeben
- Differentiated Services ursprünglich vorgesehen, Verkehr zu priorisieren wird nicht angewendet; kann in lokalen Services für QoS für e.g. Sprachanwendungen verwendet werden
- Total Length Länge des gesamten Paketes
- Identification, Flag, Fragment Offset werden (selten) verwendet, wenn Paket grösser als zulässige länge für Schicht 2 Protokoll (e.g. 1500 Bytes für Ethernet); Oft machen Implementationen der Transport Schicht (Layer 4) Segmente mit einer maximalen Länge von 1460 Bytes;

- Time-to-live Zahl dekrementiert bei jedem Hop; wenn TTL=0 wird das Paket verworfen und über ICMP Meldung an Absender; wird benötigt, damit Pakete nicht unendlich lange kreisen
- Protocol gibt an, welchem Protokoll ein angekommenes IP-Paket übergeben werden soll
- Header Checksum Paket wird verworfen, wenn Checksum nicht korrekt
- Source IP Address Adresslänge 4 Bytes
- Destination IP Address Adresslänge 4 Bytes
- Options wird oft nicht verwendet;
- Padding

Header: IPv6

- Version Inhalt ist 6
- Traffic Class (4 bit) ursprünglich vorgesehen, Verkehr zu priorisieren wird nicht angewendet; kann in lokalen Services für QoS für e.g. Sprachanwendungen verwendet werden
- Flow Label (20 bit) Spezial-Dienst für Echtzeitanwendungen; Information an die Router, den selben Pfad für den Strom beizubehalten; Pakete müssen an Ziel nicht geordnet werden
- Payload Length (16 bit) Länge des ganzen IP-Paketes; exklusive Header und Extension Header
- Next Header (8 bit) Gibt das Protokoll an, das auf den IPv6-Header folgt
- Hop Limit (8 bit) Wird bei jedem Router dekrementiert. Erreicht es 0 wird das Paket verworfen und es wird eine ICMPv6 Meldung an Quelle gesendet (Paket nicht an Ziel angekommen)
- Source IP Address (128 bit)
- Destination IP Address (128 bit)

Was macht ein Router mit einem eingehenden Paket? – Paket wird anhand der Routing-Tabelle weitergeleitet

Funktion von Default Gateway — Ein Default Gateway muss an jedem Rechner (der nach aussen kommunizieren soll), auf jedem Switch (der aus anderen Netzen angesprochen werden soll) und auf jedem Router konfiguriert werden.

Das Default Gateway wird beim Rechner entweder manuell oder per DHCP-Server definiert.

Auf Switch: S1(config)#ip default-gateway 192.168.10.1

Funktion von Routing-Tabelle – Es kann zwischen Routing-Tabelle auf Rechner und Router unterschieden werden.

In der Routing-Tabelle auf dem Rechner wird das Loopback Interface (127.0.0.1), das lokale Netz und eine Default-Route eingetragen. Für die Default-Route muss das Default Gateway konfiguriert sein. Wird entweder durch DHCP Server oder manuell gesetzt.

In der Routing-Tabelle auf einem Router werden direkt angeschlossene Netze, entfernte Netze (statische Einträge; dynamische Routingprotokolle) und die Default Route eingetragen

Aufbau Router; Prozess während Aufstarten Ein Router hat:

- CPU Weiterleitung Pakete; rechnet Routing-Algorithmus
- RAM IOS wird nach Aufstarten in RAM geladen; enthält runningconfig; enthält Routing-Tabelle; enthält ARP-cache
- ROM Diagnostic Software für Tests bei Aufstarten (POST: Power On Self Test); Speichert bootstrap BefehleM
- Flash Permanente Speicherung IOS
- NVRAM nichtflüchtiger Speicher für startup-config
- mindestens 2 Netzwerk-Interfaces Anschlüsse

Beim Aufstarten wird 1) POST durchgeführt, 2) die bootstrap Befehle geladen, 3) das IOS lokalisiert und geladen, 4) und das configuration file lokalisiert und geladen.

Die Konfiguration wird entweder aus dem NVRAM oder von einem TFTP-Server geladen.

Router#show ip interface brief // IF Zustand Router#show ip route // Routing—Tabelle

7 IP-Addressierung

IPv4: Adresse und Subnetzmaske

- Netzadresse Hat lauter Nullen im Hostteil (erste Adresse des Netzes)
- Broadcastadresse Hat lauter Einsen im Hostteil (letzte Adresse)
- Hostdressen alles zwischen Netz- und Broadcastadressen

Rechner- und Router-IFs erhalten immer eine Hostadresse.

IPv4: Unicast, Multicast und Broadcast – Es gibt drei verschiedene Arten von Ziel-Adressen:

- *Unicast* Ein IP-Paket geht an genau ein IF. In einem /24-er Netz sind dies die Adressen 1 bis 254
 - Werden auf Rechner entweder über DHCP-Server oder manuell eingerichtet
- Broadcast Ein Rechner stellt eine Anfrage mit lauter Einsen im Hostteil (255)
- Multicast Pakete an eine Gruppe von Rechnern senden; 224.0.0.0 239.255.255.255; 224.0.0.0 224.0.0.255 nur link-lokal und werden nicht geroutet; 224.0.1.0 239.255.255.255 sind globale Multicast Adressen
 - Hilft bei Verteilung eines Datenstroms; Sender sendet Pakete nur einmal und Switch/Router leiten Pakete an jeweilige Ports weiter

Unterscheiden: Öffentliche und Private Adressen – Es sind drei Adressräume für private Verwendung vorgesehen: 10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16

Private Adressen werden im öffentlichen Internet nicht weitergeleitet.

Spezielle Adressen

- 127.0.0.1 Loopback (127.0.0.1/8 ist reserviert)
- 169.254.0.0/16 Link-lokale Adressen; können automatisch dem "Local Host" zugewiesen werden
- 192.0.2.0/24 Unterricht und Dokumentation
- 240.0.0.0/4 ist reserviert und darf nicht gebraucht werden

Klassenbezogene und Klassenlose Adressierung – Ursprünglich wurde der IPv4 Adressbereich in fünf Klassen unterteilt (A-E). Mit der Netzklasse wird nicht die tatsächliche Grösse eines Netzes angegeben, sondern wie viele Adressen es umfassen kann.

- \bullet B 128.0.0.0 191.255.255.255; 10 + 14 bit Netz, 16 bit Host; 16'384 Netze; 65'534 hosts
- C 192.0.0.0 223.255.255.255; 110 + 21 bit Netz, 8 bit Host; 2'097'150 Netze; 254 Hosts pro Netz
- \bullet D 224.0.0.0 239.255.255.255 (Multicast Gruppe); 1110 + 28 bit Multicast-Gruppen-ID
- E 240.0.0.0 255.255.255.255 (reserviert; wird nicht genutzt); 1111 + 28 bit

Mittlerweile ist diese Technologie veraltet und es wird mit Subnetzmasken definiert, welchen Adressbereich ein Netz abdeckt. Dies nennt man klassenlos oder Classless Inter-Domain Routing (CIDR).

IPv6: Adressierung, Struktur mit Präfix. Subnet-ID und Interface-ID Mit der Einführung von IPv6 wird 1) ein grösserer Adressraum eingeführt 2) hierarchische Vergabe der Adressen unterstützt 3) eine feste Headerlänge definiert 4) das ICMP verbessert und 5) Network Address Translation (NAT) abgeschafft.

IPv6-Adressen bestehen aus einem Prefix und einer Interface ID. Diese sind definiert durch "/n" nach der Adresse, wobei es n-bit des Prefixes definiert. 2001:0DB8:000A::/64 entspricht also 2001:0DB8:000A:0000 (prefix) :0000:0000:0000:0000 (Interface ID)

Übergang IPv4 zu IPv6 – Mit tunneling von IPv6-Inseln über ein IPv4-Netz können IPv6-Netze miteinander sprechen.

Dual-Stack ist, wenn IPv4 und IPv6 koexistieren. Dabei laufen beide Protokolle parallel. Wenn beide Enden IPv6 unterstützen, läuft Kommunikation über IPv6, ansonsten über IPv4.

IPv6 Adressen

- *Unicast* Ein Empfänger
 - Global 2000::/3; weltweig eindeutig; Im Internet geroutet
 - Link-Local weden nur lokal verwendet; FE80::/10
 - Loopback Logisches IF zum eigenen IPv6 Stack; ::1/128
 - Unspecified kann verwendet werden, wenn Quelle irrelevant ist
 - Unique/Site Local Nicht verwenden für Kommunikation ins Internet; Für Kommunikation in Firmennetzen
 - Embedded IPv4 kompatible Adressen für IPv4-IPv6 Translation
- Multicast eine Gruppe von Empfängern
- Anycast Eine unicast Adresse, die Gruppen von Network IFs zugewiesen wird; Das Paket wird an das nächste IF weitergeleitet

IPv6 Unicast Adressen

- Global Routing Prefix Regional Internet Registry vergibt Adressen aus dem Adressraum 2000::/3; ISP erhält /32er-Adressbereiche; ISP geben Kunden /48er oder kleinere Netze;
- Subnet ID Adress-Teil vom 49. bis zum 64. bit
- Interface ID 64 letzte bit; entsprechen Host-Teil von IPv4; Rechner kann mehrere IPv6-Adressen auf einem physikalischen IF haben

Auf Cisco Router muss IPv6-Routing eingeschaltet werden:

ICMPv4/v6 – Mit dem Internet Control Message Protocol kann überprüft werden, ob in einem Netzwerk das Routing soweit stimmt, dass Rechner A den Rechner B in einem anderen Netz erreichen kann.

Die wichtigsten ICMP Meldungen sind:

- Host confirmation mit echo request und echo response feststellen ob ein Host erreichbar ist (ping, traceroute)
- Destination or Service Unreachable Router sendet Nachricht an Absender, wenn er ein Paket nicht weiterleiten kann, weil er keinen passenden Eintrag in der Routingtabelle findet.
- Time exceeded TTL auf null; Fehlermeldung zurück an Absender
- Route redirection Router kann einem direkt angeschlossenen Rechner sagen, dass es einen schnelleren Weg gibt als über diesen Router

Protokoll-Stack von ICMPv4 ist [L2-Header | IP | ICMP] – L2 Header ist meistens ein Ethernet Header; ICMP ist Schicht-3-Protokoll (benützt Dienste von Schicht 3 aber nicht höhere).

Bei ICMPv6 wird zudem 1) Router Solicitation Meldungen (RS), 2) Router Advertisments (RA) 3) Neighbour Solicitation (NS) und 4) Neighbour Advertisment (NA) durchgeführt. RS und RA werden für die Autokonfiguration bei IPv6 verwendet. NS und NA werden für Address resolution (IPv4 ARP) und Duplicate Address Detection verwendet.

Neighbour Solicitation für Adress Resolution – Station sendet eine ICMPv6 NS Meldung zu einer IPv6 Adresse, um zugehörige MAC-Adresse zu finden.

8 Unterteilen und Zusammenfassen von IP-Netzen

Da der IPv4-Adressraum rasch knapp wurde, hat man begonnen Adressraum wo möglich zu sparen. Netze wurde nur so gross gemacht, wie nötig – man hat begonnen IPv4-Netze zu unterteilen.

Zudem ist es sinnvoll, nicht zu grosse Netze zu haben. Jede Station verursacht Broadcast-Anfragen. Viele Hosts in einem Netz machen viel Broadcast-Verkehr.

Mit der Unterteilung von IPv4-Netzen kann dem entgegengewirkt werden.

IPv4-Netz in gleich grosse Subnetze unterteilen – Netze können halbiert werden, um in gleich grosse Subnetze unterteilen. Beispiel: 192.68.1.0/24 in zwei Netze

- 192.68.1.0/25
- 192.68.1.127/25

Somit wurde das ursprüngliche Netz in zwei gleich grosse Subnetze unterteilt. Anzahl Subnetze pro Netz ist jeweils eine 2er-Potenz.

Anzahl nutzbare Host-Adressen ist $2^{32-n}-2$ – also 2er-Potenz minus Netzadresse und Broadcast-Adresse

IPv4-Netz in verschieden grosse Subnetze unterteilen – Für WAN-Netze werden /30er Netze verwendet! Diese werden oft ans Ende des Adressraumes gesetzt.

Berechnungen mit Subnetzmasken variabler Länge Geeignete Subnetzmasken bei variabler Grösse:

- Bis 126 Hosts 255.255.255.128
- Bis 62 Hosts 255.255.255.192
- Bis 30 Hosts 255.255.255.224
- Bis 14 Hosts 255.255.255.240
- Bis 6 Hosts 255.255.255.248
- Bis 2 Hosts 255.255.255.252 (kann für WAN verwendet werden)

Beispiel:

Netzname	#	Subnetzmaske	Netzadresse	Broadcast- Adresse
Sales Office	40	255.255.255.192	172.16.0.0	172.16.0.63
Technical Support	35	255.255.255.192	172.16.0.64	172.16.0.127
Engineering	30	255.255.255.192	172.16.0.128	172.16.0.191
HR	23	255.255.255.224	172.16.0.192	172.16.0.223
Executive Mgmt	10	255.255.255.240	172.16.0.224	172.16.0.239
WAN1	-	255.255.255.252	172.16.0.240	172.16.0.243
WAN2	-	255.255.255.252	172.16.0.244	172.16.0.247
WAN3	-	255.255.255.252	172.16.0.248	172.16.0.251
WAN4	_	255.255.255.252	172.16.0.252	172.16.0.255

Daraus resultieren die Netze:

- 172.16.0.0/26
- 172.16.0.64/26
- 172.16.0.128/26
- 172.16.0.192/27
- 172.16.0.224/28
- 172.16.0.240/30
- 172.16.0.244/30
- 172.16.0.248/30
- 172.16.0.252/30

Netze in IP-Adressräumen zusammenfassen Die Zusammenfassung muss den gleichen Adressraum bedecken, wie die einzelnen Netze.

Adressraum sinnvoll einteilen und planen Zudem wird empfohlen bei der Belegung eines Adressraumes nach einem ähnlichen Muster zu folgen. Beispiel:

Engerät	Von	Bis
Router / Switch	.1	.15
Andere Netzw- erkgeräte	16	.23
Server	.24	.31
Clients	.32	.240
Reserve	.241	.255

Entwurfsleitlinien für IPv6 – IPv6-Netze immer gleich gross wählen: /64

9 Transportschicht

Aufgaben der Transportschicht (Schicht 4)

- Multiplexierung
- Falls grosse Datenblöcke erwartet werden:
 - Segmentierung und Wiederzusammensetzen von grossen Datenblöcken
 - Sicherung der Übertragung (fehlerfreie Übertragung)
 - Flusssteuerung

Multiplexierung – Die Datenströme werden beim Empfänger entsprechend der Anwendung zugeordnet. Gewisse Anwendungen (e.g. für Filetransfer) senden / empfangen grosse Datenblöcke.

Segmentierung – Wenn ein Datenblock grösser als die MSS (Maximum Segment Size) ist, segmentiert das Transport-Protokoll die Daten und verpackt jedes Segment einzeln in ein IP-Paket. Segmente werden beim Zielrechner wieder zusammengesetzt.

Anforderungen von Anwendungen an die Kommunikation Es gibt Anwendungen, welche grosse und andere die kleine Datenblöcke senden. Dafür werden zwei Protokolle unterschieden:

Protokolle in Schicht 4 Am verbreitetsten für Schicht 4 sind die Protokolle TCP und UDP.

TCP – Verbindungsorientierte, fehlerfreie Übertragung; viel Overhead
 kann also langsam werden; Anwendungen benötigen einen zuverlässigen
 Dienst

UDP – Anwendungen mit Nachrichten kürzer als die MSS; verbindungslos
 – schnell; Jedes Datagramm wird am Ziel einzeln und sofort der Anwendung abgeliefert;

9.1 TCP

TCP baut eine bidirektionale (verbindungsorientierte) Verbindung zwischen Client und Server auf. Dabei werden zwei Datenströme (A \leftarrow B und A \rightarrow B) vorbereitet und kontrolliert.

TCP segmentiert grosse Blöcke, nummeriert sie, bestätigt empfangene Segmente, wiederholt nicht bestätigte Segmente, ordnet die Reihenfolge empfangener Segmente und regelt die Geschwindigkeit der Übertragung.

Wenn TCP verwendet wird, wird – gesteuert durch das Feld *Control* – eine bidirektionale Verbindung aufgebaut. Dabei werden 1) die Maximum Segment Site (MSS), 2) Selective Acknowledgement (Ja/Nein) und 3) die Skalierung der Window-Size vereinbart.

TCP (Header und Bedeutung der Felder)

- Source Port (16 Bit) Bezeichnung der Anwendung auf der Quellrechner
- Destination Port (16 Bit) Bezeichnung der Anwendung auf der Empfangsrechner
- Sequence Number (32 Bit) Zählen der Bytes, welche gesendet werden
- Acknowledge Number (32 Bit) Zählen der Bytes, die empfangen werden und Bestätigung bei ACK
- Header Length (4 Bit) Länge des Headers
- Reserved (6 Bit) –
- Control Bits (6 Bit) 6 Bits für 6 verschiedene Flags: Urgent (URG),
 Acknowledgement (ACK), Push (PSH), Reset (RST), Synchronize Sequence Numbers (SYN), Finish (FIN)
- Window (16 Bit) gibt an, wie viele Bytes eine Station senden darf, bevor von der Gegenseite der Empfang der Daten bestätigt wurde; Wird gegenseitig zugesprochen
- Checksum (16 Bit) –
- Urgent (16 Bit) -
- Options (0 or 32 Bit) –

Verbindungsaufbau TCP Für den Verbindungsaufbau wird ein Drei-Wege-Handshake ohne Payload angewendet (send nach received):

- 1. Send SYN (Sender \rightarrow Empfänger)
- 2. Send SYN, ACK (Sender \leftarrow Empfänger)
- 3. Send ACK (Sender \rightarrow Empfänger)

Danach ist eine Verbindung etabliert.

Verbindungsabbau TCP Für den Verbindungsabbau werden vier Schritte benötigt (send nach received):

- 1. Send FIN (Sender \rightarrow Empfänger)
- 2. Send ACK (Sender \leftarrow Empfänger)
- 3. Send FIN (Sender \leftarrow Empfänger)
- 4. Send ACK (Sender \rightarrow Empfänger)

Die etablierte Verbindung wird entweder so abgebaut oder es findet ein Time-Out statt.

Schwachstellen TCP Wenn der Client (Sender) den dritten Schritt nicht sendet, bleiben beim Server (Empfänger) ggf. RAM-Ressourcen reserviert. Wenn viele Clients dies machen, dann kann der Server langsam werden.

9.2 UDP

macht keine Flusskontrolle

UDP (Header und Bedeutung der Felder)

Fehlerkorrektur Wenn ein Segment nicht ankommt sendet der Empfänger 3-mal eine ACK. Somit wird dem Sender gezeigt, dass dieses Segment erneut gesendet werden soll. Der Empfänger fordert jedes Segment an, welches nicht in der erwarteten Reihenfolge ankommt – Fast Retransmission.

Flusssteuerung / Flusskontrolle Die Window-Size wird jedesmal halbiert, wenn ein Segment nicht angekommen ist. Somit wird der Fluss gesteuert, damit die Netze nicht überlastet werden. Wenn Segmente wieder durchkommen, wird die Window-Size wieder vergrössert.

Flusskontrolle wird in UDP nicht gemacht.

Vorteile und Gefahren UDP Da der Header von UPD sehr klein ist, entsteht wenig Overhead. Somit können kurze Nachrichten effizient und schnell ausgeführt werden.

Beim UDP-Empfänger wird jedes empfangene Datagramm sofort an die Anwendung geliefert.

Damit e.g. VoIP funktioniert, wird für die Sprache das Real-Time-Protocol (RTP) verwendet. Damit werden die Datagramme nummeriert.

10 Anwendungsschicht