HOW DOES SEMI-SUPERVISED LEARNING WITH PSEUDO-LABELERS WORK? A CASE STUDY

Shared by :Jiarui Jiang

January 23, 2024

Abstract

HOW DOES SEMI-SUPERVISED LEARNING WITH PSEUDO-LABELERS WORK? A CASE STUDY

Yiwen Kou¹, Zixiang Chen¹, Yuan Cao^{2,3}, Quanquan Gu¹

qgu@cs.ucla.edu

ABSTRACT

Semi-supervised learning is a popular machine learning paradigm that utilizes a large amount of unlabeled data as well as a small amount of labeled data to facilitate learning tasks. While semi-supervised learning has achieved great success in training neural networks, its theoretical understanding remains largely open. In this paper, we aim to theoretically understand a semi-supervised learning approach based on pre-training and linear probing. In particular, the semi-supervised learning approach we consider first trains a two-layer neural network based on the unlabeled data with the help of pseudo-labelers. Then it linearly probes the pre-trained network on a small amount of labeled data. We prove that, under a certain toy data generation model and two-layer convolutional neural network, the semi-supervised learning approach can achieve nearly zero test loss, while a neural network directly trained by supervised learning on the same amount of labeled

¹Department of Computer Science, University of California, Los Angeles

²Department of Statistics and Actuarial Science, The University of Hong Kong

³Department of Mathematics, The University of Hong Kong evankou@ucla.edu, chenzx19@cs.ucla.edu, yuancao@hku.hk,

Feature Learning

黄伟 👜

深度学习理论爱好者

十 关注他

● 你经常看 图像处理 相关内容

继Neural Tangent Kernel (NTK)之后,深度学习理论出现了一个理论分支,人们常常称它为feature learning (theory)。不同于NTK,feature learning认为神经网络在梯度下降过程中可以学习到数据中的feature或者signal。

Feature learning理论一般会假设具体的数据生成模型,例如Gaussian mixture, signal-noise model, sparse-coding模型等,然后考察一个具体的神经网络(常常是两层网络,固定第二层权由重)在梯度下降算法下,其权重是如何学习数据中的信号和噪声。通过将复杂的神经网络的动力学转换成一个更加简单的"信号学习"和"噪声记忆"组成的动力学,feature learning theory可以刻画网络的在训练过程的优化性能以及网络收敛后的泛化能力。

由于feature learning抓住了数据 (image) 和神经网络动力学交互中的内在本质,其在各种算法和学习框架的可解释性上取得了空前的成功,将深度学习可解释性推向了一个新的高度。

Supervised Learning

Supervised Learning

Based on existing datasets, understand the relationship between input and output results, and then train an optimal model based on this known relationship.

examples

- classification
- regression
- decision tree
- KNN

Unsupervised Learning

Unsupervised Learning

Using a certain algorithm to train an unlabeled training set allows us to identify the underlying structure of this set of data.

examples

- K-means
- GMM
- PCA
- t-SNE

Semi-Supervised Learning

Semi-Supervised Learning

In traditional supervised learning, each training data is composed of data and labels. However, in general, only a large amount of data can be obtained, and labels are difficult to obtain. Adding labels to data requires a lot of prior knowledge, which consumes a lot of cost.

examples

- generative models
- semi-supervised support vector machines
- graph-based methods
- co-training
- consistency regularization methods
- pseudo-labeling methods

pseudo-labeling methods

Figure 2: Illustration of our model. The left figure characterizes semi-supervised pre-train schema: NN is trained by minimizing errors between pseudo-labels \hat{y} and predictions $f_{\mathbf{W}}(\mathbf{x})$. After semi-supervised pre-training finished, the learned parameters $\{\mathbf{W}_k^*\}_{k=1}^K$ serve as pre-trained models and are adapted to a downstream task using linear probing, as shown in the right figure.

data model

Definition 3.1. Each data point (\mathbf{x},y) with $\mathbf{x} = [\mathbf{x}^{(1)\top},\mathbf{x}^{(2)\top}]^{\top} \in \mathbb{R}^{2d}$ and $y \in \{-1,+1\}$ is generated as follows: the label y is generated as a Rademacher random variable; one of $\mathbf{x}^{(1)},\mathbf{x}^{(2)}$ is given by the feature vector $y \cdot \mathbf{v}$, the other is given by a noise vector $\boldsymbol{\xi}$ that is generated from a d-dimensional Gaussian distribution $\mathcal{N}\left(\mathbf{0},\sigma_p^2(\mathbf{I}-\mathbf{v}\mathbf{v}^{\top}/\|\mathbf{v}\|_2^2\right)\right)$. We denote by \mathcal{D} the joint distribution of (\mathbf{x},y) , and denote by $\mathcal{D}_{\mathbf{x}}$ the marginal distribution of \mathbf{x} .

we consider learning a CNN with n_l labeled examples $S' = \{(x_i', y_i')\}_{i=1}^{n_l}$ generated from the distribution D and n_u labeled examples $S = \{(x_i')\}_{i=1}^{n_u}$ generated from the marginal distribution D_x

CNN model

For supervised learning, we consider a two-layer CNN whose filters are applied to the patches $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ respectively and parameters in the second layers are set to be ± 1 . Then the CNN can be written as $f_{\mathbf{W}}(\mathbf{x}) = f_{\mathbf{W}}^{+1}(\mathbf{x}) - f_{\mathbf{W}}^{-1}(\mathbf{x})$ where $f_{\mathbf{W}}(\mathbf{x})^{+1}$, $f_{\mathbf{W}}(\mathbf{x})^{-1}$ are formulated as

$$f_{\mathbf{W}}^{+1}(\mathbf{x}) = \sum_{j=1}^{m} \left[\sigma(\langle \mathbf{w}_{j}, \mathbf{x}^{(1)} \rangle) + \sigma(\langle \mathbf{w}_{j}, \mathbf{x}^{(2)} \rangle) \right],$$

$$f_{\mathbf{W}}^{-1}(\mathbf{x}) = \sum_{j=m+1}^{2m} \left[\sigma(\langle \mathbf{w}_{j}, \mathbf{x}^{(1)} \rangle) + \sigma(\langle \mathbf{w}_{j}, \mathbf{x}^{(2)} \rangle) \right].$$
(3.1)

Here σ is activation function $\operatorname{ReLU}^q(\cdot) = [\cdot]_+^q(q > 2)$, m is the width of the network, $\mathbf{w}_j \in \mathbb{R}^d$ denotes the j-th filter, and \mathbf{W} is the collection of all filters $\{\mathbf{w}_j\}_{j=1}^{2m}$. Given labeled training dataset $S' = \{(\mathbf{x}_i', y_i')\}_{i=1}^{n}$, we train the CNN model by minimizing the empirical cross-entropy loss

$$L_{S'}(\mathbf{W}) = \frac{1}{n_1} \sum_{i=1}^{n_1} L_i(\mathbf{W}),$$

where $L_i(\mathbf{W}) = \ell(y_i' \cdot f_{\mathbf{W}}(\mathbf{x}_i'))$ with $\ell(z) = \log(1 + \exp(-z))$ denotes the individual loss for the training example (\mathbf{x}_i, y_i) . We minimize the empirical function $L_{S'}(\mathbf{W})$ with gradient descent as follows

$$\mathbf{w}_{j}^{(t+1)} = \mathbf{w}_{j}^{(t)} - \eta \cdot \nabla_{\mathbf{w}_{j}} L_{S'}(\mathbf{W}^{(t)}), \quad \mathbf{w}_{j}^{(0)} \sim \mathcal{N}(\mathbf{0}, \sigma_{0}^{2}\mathbf{I}), \quad j \in [2m],$$

where $\eta > 0$ is the learning rate and σ_0 defines the scale of random initialization.

Semi-Supervised Learning Models

For semi-supervised pre-training, we assume that we have access to K pseudo-labelers $\{f_k^w\}_{k=1}^K$. The accuracy of k-th pseudo-labeler is $p_k \in (1/2,1)$. Then we use K pseudo-labelers to generate K pseudo-labeled dataset $\{S_k\}_{k=1}^K$, where $S_k := \{(\mathbf{x}_i, \hat{y}_{k,i}) \mid \hat{y}_{k,i} = f_k^w(\mathbf{x}_i)\}_{i=1}^{n_u}$. Next we solve K pre-training tasks with two-layer CNN models $\{f_{\mathbf{W}_k}\}_{k=1}^K$ defined in (\mathbf{S}_k) using $\{S_k\}_{k=1}^K$ respectively. Note that our result can cover K=1 as a special case, where there is only one pseudo-labeler.

We consider learning the model parameter \mathbf{W}_k by optimizing the empirical loss of both pseudolabeled dataset S_k and labeled dataset $S' = \{(\mathbf{x}'_i, y'_i)\}_{i=1}^{n_1}$ with weight decay regularization

$$L_{S_k \cup S'}(\mathbf{W}_k) = \frac{1}{n_{\mathrm{u}} + n_{\mathrm{l}}} \left(\sum_{i=1}^{n_{\mathrm{u}}} L_i(\mathbf{W}_k) + \sum_{i'=1}^{n_{\mathrm{l}}} L_{i'}(\mathbf{W}_k) \right) + \frac{\lambda}{2} \|\mathbf{W}_k\|_F^2,$$

$$\mathbf{w}_{k,j}^{(t+1)} = \mathbf{w}_{k,j}^{(t)} - \eta \cdot \nabla_{\mathbf{w}_{k,j}} L_{S_k \cup S'}(\mathbf{W}_k^{(t)}), \quad \mathbf{w}_{k,j}^{(0)} \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I}_d), \quad j \in [2m], k \in [K]$$

Downstream Task: Linear Model

$$g_{\mathbf{a}}(\mathbf{x}) = \sum_{k=1}^{K} a_k f_{\mathbf{W}_k^*}(\mathbf{x}),$$

$$L_{S'}(\mathbf{a}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y'_i \cdot g_{\mathbf{a}}(\mathbf{x}'_i)).$$

$$\mathbf{a}^{(t+1)} = \mathbf{a}^{(t)} - \eta \cdot \nabla_{\mathbf{a}} L_{S'}(\mathbf{a}^{(t)}), \ \mathbf{a}^{(0)} = \mathbf{0}.$$

Condition 4.1. The strength of the signal is $\|\mathbf{v}\|_2^2 = \Theta(d)$, the noise variance is $\sigma_p = \Theta(d^\epsilon)$, where $0 < \epsilon < 1/8$ is a small constant, and the width of the network satisfies m = polylog(d). We also assume that the size of the unlabeled dataset $n_{\rm u} = \Omega(d^{4\epsilon})$, and labeled data $n_1 = \widetilde{\Theta}(1)$. For both supervise learning and semi-supervised learning settings, we initialize the weight with $\sigma_0 = \Theta(d^{-3/4})$. For semi-supervised learning, we require $\lambda = o(d^{3/4})$ and assume that there exists a constant C such that for all pseudo-labelers, their test accuracy $p_k > 1/2 + C$.

Since we generate the noise patch from the Gaussian distribution, the strength of the noise patch is $\|\boldsymbol{\xi}\|_2^2 \approx d^{1+\epsilon}$ by standard concentration inequalities, which is larger than the strength of the signal patch $\|\mathbf{v}\|_2^2 = \Theta(d)$. Therefore, Condition $\underline{\mathbf{d}}$. defines a setting with large noises. The condition of $d \gg n_u \gg n_t$ further ensures that learning is in a sufficiently over-parameterized setting. Here we only require the neural network width m to be polylogarithmic in the dimension d and require the psudolablers to perform better than a random guess.

Theorem 4.2 (Semi-supervised Learning: Pre-training). Let $k \in [K]$ and consider the semi-supervised pre-training of $f_{\mathbf{W}_k}(\mathbf{x})$. For any test data point (\mathbf{x},y) , denote $\widehat{y} = f_k^w(\mathbf{x})$. Then under Condition 4.1, after $T_0 = \widetilde{\Theta}(d^{-\frac{3}{4}}\eta^{-1})$ training iterations with learning rate $\eta = O(d^{-1.1})$, the trained neural network can achieve nearly 0 test error on the distribution \mathcal{D} : $\mathbb{P}_{(\mathbf{x},y)\sim\mathcal{D}}[y\cdot f_{\mathbf{W}_k^{(T_0)}}(\mathbf{x})\leq 0] = o(1)$.

Theorem $\blacksquare 2$ characterizes the prediction power of the feature representation learned in the pretrained models using unlabeled data. For any test data point (\mathbf{x},y) , the sign of y can be predicted based on $f_{\mathbf{W}^{(T_0)}}(\mathbf{x})$ with high probability.

Theorem 4.3 (Semi-supervised Learning: Downstream). Let $\{f_{\mathbf{W}_{k}^{(T_{0}^{k})}}\}_{k=1}^{a}$ be the neural networks trained according to the K pre-training tasks, and consider the learning of the downstream task based in $\{f_{\mathbf{W}_{k}^{(T_{0}^{k})}}\}_{k=1}^{d}$. Under Condition 4.1, after $T' = \Theta(d^{0.1}/\eta)$ iterations with learning rate $\eta = \Theta(1)$, with probability 1 - o(1), the obtained $\mathbf{a}^{(T')}$ satisfies:

- Training error is 0: $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[y_i \cdot g_{\mathbf{a}^{(T')}}(\mathbf{x}_i) \leq 0] = 0.$
- $\bullet \ \ \text{Test error and loss are nearly 0:} \ \mathbb{P}_{(\mathbf{x},y)\sim\mathcal{D}}[y\cdot g_{\mathbf{a}^{(T')}}(\mathbf{x})\leq 0] = o(1), L_{\mathcal{D}}\big(\mathbf{a}^{(T')}\big) = o(1).$

Theorem shows that the feature representation learned based on the semi-supervised pre-training can ensure small training and test errors for the supervised downstream task. Notably, this result holds even though we assume that there are only a constant number of labeled data. This shows that semi-supervised learning can significantly reduce the need for a large labeled training dataset. For comparison, we also have the following guarantees on the performance of standard supervised learning of CNNs.

Theorem 4.4 (Supervised Learning). Under supervised learning setting, after gradient descent for $T = \widetilde{\Theta}(d^{(1/4-\epsilon)q-3/2}\eta^{-1})$ iterations with learning rate $\eta = O(d^{-1-2\epsilon})$, then there exists $t \leq T$ such that with probability 1 - o(1) the CNNs defined in (3.1) with parameter $\mathbf{W}^{(t)}$ satisfies:

- Training loss is nearly zero: $L_{S'}(\mathbf{W}^{(t)}) = o(1)$.
- Test loss is high: $L_{\mathcal{D}} \big(\mathbf{W}^{(t)} \big) = \Theta(1)$.

Experiment

	Semi-supervised		Supervised
	Pre-train	Downstream	Supervised
Training error	0.1753±0.0259	0	0
Test error	0	0	0.4982 ± 0.0208
Training loss	0.4155 ± 0.0418	0.0150 ± 0.0022	$(6.473\pm5.031)\times10^{-7}$
Test loss	0.2200 ± 0.0886	0.0182 ± 0.0021	0.6931±0.0005

Table 1: Training error and loss, test error and loss for semi-supervised and supervised learning.

Figure: some definitions

Our study of the pre-training focuses on two aspects of the training process: *feature learning* and *noise memorization*. Specifically, we aim to monitor how the filters in the CNN model learn the feature vector \mathbf{v} and the noise vectors $\boldsymbol{\xi}_i$'s. Therefore, we introduce the following notations.

$$\begin{split} \widehat{\Lambda}_1^{(t)} &:= \max_{1 \leq j \leq m} \langle \mathbf{w}_j^{(t)}, \mathbf{v} \rangle, \ \bar{\Lambda}_1^{(t)} := \max_{1 \leq j \leq m} -\langle \mathbf{w}_j^{(t)}, \mathbf{v} \rangle, \\ \widehat{\Lambda}_{-1}^{(t)} &:= \max_{m+1 \leq j \leq 2m} -\langle \mathbf{w}_j^{(t)}, \mathbf{v} \rangle, \ \bar{\Lambda}_{-1}^{(t)} := \max_{m+1 \leq j \leq 2m} \langle \mathbf{w}_j^{(t)}, \mathbf{v} \rangle, \\ \Gamma_i^{(t)} &:= \max_{1 \leq j \leq 2m} \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i \rangle, \ \Gamma_i^{(t)} := \max_{1 \leq j \leq 2m} \langle \mathbf{w}_j^{(t)}, \boldsymbol{\xi}_i' \rangle, \ \Gamma^{(t)} = \max \Big\{ \max_{i \in [n_u]} \Gamma_i^{(t)}, \max_{i \in [n_l]} \Gamma_i^{(t)}, \Big\}. \end{split}$$

the larger $\hat{\Lambda}$, the better the smaller $\overline{\Lambda}$, the better the smaller Γ , the better

Lemma 5.1. Assume we use both unlabeled data with pseudo-labels generated by the pseudo-labeler and labeled data for the training of our CNN model. Then for $r \in \{\pm 1\}$, let T_r be the first iteration that $\widehat{\Lambda}_r^{(t)}$ reaches $\Theta(1/m)$, then for $t \in [0, T_r]$, we have

$$\begin{split} \widehat{\Lambda}_r^{(t+1)} &\geq (1 - \eta \lambda) \cdot \widehat{\Lambda}_r^{(t)} + \eta \cdot C \cdot \Theta(d) \cdot (\widehat{\Lambda}_r^{(t)})^{q-1}, r \in \{\pm 1\}, \\ \bar{\Lambda}_r^{(t+1)} &\leq (1 - \eta \lambda) \cdot \bar{\Lambda}_r^{(t)}, r \in \{\pm 1\}, \\ \Gamma^{(t+1)} &\leq (1 - \eta \lambda) \cdot \Gamma^{(t)} + \eta \cdot \widetilde{\Theta}(d^{1-2\epsilon}) \cdot (\Gamma^{(t)})^{q-1}, \end{split}$$

Lemma 5.2. Assume we use only labeled data for the training of our CNN model. Then for $i \in [n_l]$, let T_i' be the first iteration that $\Gamma_i'^{(t)}$ reaches $\Theta(1/m)$, then we have

$$\begin{split} \widehat{\Lambda}_{r}^{(t+1)} &\leq (1 - \eta \lambda) \cdot \widehat{\Lambda}_{r}^{(t)} + \eta \cdot \Theta(d) \cdot \left((\widehat{\Lambda}_{r}^{(t)})^{q-1} + (\bar{\Lambda}_{r}^{(t)})^{q-1} \right), r \in \{\pm 1\}, \\ \bar{\Lambda}_{r}^{(t+1)} &\leq (1 - \eta \lambda) \cdot \bar{\Lambda}_{r}^{(t)}, r \in \{\pm 1\}, \\ \Gamma_{i}^{\prime(t+1)} &\geq (1 - \eta \lambda) \cdot \Gamma_{i}^{\prime(t)} + \eta \cdot \widetilde{\Theta}(d^{1+2\epsilon}) \cdot (\Gamma_{i}^{\prime(t)})^{q-1}, i \in [n_{l}], \text{ for } t \in [0, T_{i}^{\prime}]. \end{split}$$

Lemma 5.3. If both pseudo-labeled and labeled data are used to train CNN, for $r \in \{\pm 1\}$, let T_r be the first iteration that $\widehat{\Lambda}_r^{(t)}$ reaches $\Theta(1/m)$ respectively. Let $T_0 = \max_{r \in \{\pm 1\}} \{T_r\}$. Then, it holds that $\widehat{\Lambda}_r^{(T_0)} = \widetilde{\Theta}(1)$, $\overline{\Lambda}_r^{(t)} = \widetilde{O}(d^{-\frac{1}{4}})$ and $\Gamma^{(t)} = \widetilde{O}(d^{-\frac{1}{4}+\epsilon})$ for all $t \in [0, T_0]$.

Lemma 5.4. If only labeled data are used to train CNN, for $i \in [n_l]$, let T_i' be the first iteration that $\Gamma_i'^{(t)}$ reaches $\Theta(1/m)$. Let $T_0' = \max_{i \in [n_l]} T_i'$. Then, it holds that $\widehat{\Lambda}_r = \widetilde{O}(d^{-\frac{1}{4}})$, $\overline{\Lambda}_r = \widetilde{O}(d^{-\frac{1}{4}})$ for $r \in \{\pm 1\}$ and $\Gamma_i'^{(t)} = \widetilde{\Theta}(1)$ for $i \in [n_l]$.

Lemma 5.5. For any learning rate $\eta = \Theta(1)$, we have $\|\mathbf{a}^{(t)}\|_1 = \log(t)/\widetilde{\Theta}(1)$. For any labeled data $(\mathbf{x}_i', y_i') \in S'$, we have with high probability that $y_i' \cdot f_{\mathbf{W}^{(t)}}(\mathbf{x}_i') = \|\mathbf{a}^{(t)}\|_1 \cdot \widetilde{\Theta}(1)$. For any newly generated data $(\mathbf{x}, y) \sim \mathcal{D}$, we also have with high probability that $y \cdot f_{\mathbf{W}^{(t)}}(\mathbf{x}) = \|\mathbf{a}^{(t)}\|_1 \cdot \widetilde{\Theta}(1)$.

With the help of the above lemma and note that training error and test error are related to $y \cdot f_{\mathbf{W}(T_0)}(\mathbf{x})$ and test loss is related to $\|\mathbf{a}^{(T_0)}\|_1$, we can prove that after $T = \Theta(d^{0.1}/\eta)$ iterations with learning rate $\eta = \Theta(1)$, the model can achieve nearly zero training error, test error, training loss and test loss.

Gradient

Lemma A.1 (Gradient Calculation). The gradient of loss function $L_S(\mathbf{W})$ with respect to weight parameters \mathbf{w}_j is

$$\nabla_{\mathbf{w}_{j}} L_{S \cup S'}(\mathbf{W}) = -\frac{q}{n_{l} + n_{\mathbf{u}}} \left(\sum_{i=1}^{n_{\mathbf{u}}} c_{i} \widehat{y}_{i} \left(\left[\langle \mathbf{w}_{j}, y_{i} \cdot \mathbf{v} \rangle \right]_{+}^{q-1} \cdot y_{i} \cdot \mathbf{v} + \left[\langle \mathbf{w}_{j}, \boldsymbol{\xi}_{i} \rangle \right]_{+}^{q-1} \cdot \boldsymbol{\xi}_{i} \right) \right.$$

$$\left. + \sum_{i=1}^{n_{l}} b_{i} y_{i}' \left(\left[\langle \mathbf{w}_{j}, y_{i}' \cdot \mathbf{v} \rangle \right]_{+}^{q-1} \cdot y_{i}' \cdot \mathbf{v} + \left[\langle \mathbf{w}_{j}, \boldsymbol{\xi}_{i}' \rangle \right]_{+}^{q-1} \cdot \boldsymbol{\xi}_{i}' \right) \right) + \lambda \cdot \mathbf{w}_{j},$$

for $1 \le j \le m$; and

$$\nabla_{\mathbf{w}_{j}} L_{S \cup S'}(\mathbf{W}) = \frac{q}{n_{1} + n_{\mathbf{u}}} \left(\sum_{i=1}^{n_{\mathbf{u}}} c_{i} \widehat{y}_{i} \left([\langle \mathbf{w}_{j}, y_{i} \cdot \mathbf{v} \rangle]_{+}^{q-1} \cdot y_{i} \cdot \mathbf{v} + [\langle \mathbf{w}_{j}, \boldsymbol{\xi}_{i} \rangle]_{+}^{q-1} \cdot \boldsymbol{\xi}_{i} \right) \right.$$

$$\left. + \sum_{i=1}^{n_{1}} b_{i} y_{i}' \left([\langle \mathbf{w}_{j}, y_{i}' \cdot \mathbf{v} \rangle]_{+}^{q-1} \cdot y_{i}' \cdot \mathbf{v} + [\langle \mathbf{w}_{j}, \boldsymbol{\xi}_{i}' \rangle]_{+}^{q-1} \cdot \boldsymbol{\xi}_{i}' \right) \right) + \lambda \cdot \mathbf{w}_{j},$$

for $m+1 \leq j \leq 2m$, where $-\ell'\big(\widehat{y}_i \cdot f_{\mathbf{W}}(\mathbf{x}_i)\big) = \exp{[-\widehat{y}_i \cdot f_{\mathbf{W}}(\mathbf{x}_i)]/(1+\exp{[-\widehat{y}_i \cdot f_{\mathbf{W}}(\mathbf{x}_i)]})}$ is denoted by c_i and $-\ell'(y_i' \cdot f_{\mathbf{W}}(\mathbf{x}_i')) = \exp{[-y_i' \cdot f_{\mathbf{W}}(\mathbf{x}_i')]/(1+\exp{[-y_i' \cdot f_{\mathbf{W}}(\mathbf{x}_i')]})}$ is denoted by b_i .

Inner Product Update Rule

Lemma A.2 (Inner Product Update Rule). The feature learning and noise memorization performance of gradient descent can be formulated by

$$\begin{split} \langle \mathbf{w}_{j}^{(t+1)}, \mathbf{v} \rangle &= (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j}^{(t)}, \mathbf{v} \rangle + \frac{q \eta u_{j}}{n_{l} + n_{u}} \bigg(\sum_{i=1}^{n_{u}} y_{i} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j}^{(t)}, y_{i} \cdot \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2} \\ &+ \sum_{i=1}^{n_{l}} b_{i}^{(t)} [\langle \mathbf{w}_{j}^{(t)}, y_{i}' \cdot \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2} \bigg), \\ \langle \mathbf{w}_{j}^{(t+1)}, \boldsymbol{\xi}_{l} \rangle &= (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j}^{(t)}, \boldsymbol{\xi}_{l} \rangle + \frac{q \eta u_{j}}{n_{l} + n_{u}} \bigg(\sum_{i=1}^{n_{u}} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j}^{(t)}, \boldsymbol{\xi}_{i} \rangle]_{+}^{q-1} \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle \\ &+ \sum_{i=1}^{n_{l}} y_{i}' b_{i}^{(t)} [\langle \mathbf{w}_{j}^{(t)}, \boldsymbol{\xi}_{i}' \rangle]_{+}^{q-1} \langle \boldsymbol{\xi}_{i}', \boldsymbol{\xi}_{l} \rangle \bigg), \\ \langle \mathbf{w}_{j}^{(t+1)}, \boldsymbol{\xi}_{l}' \rangle &= (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j}^{(t)}, \boldsymbol{\xi}_{l}' \rangle + \frac{q \eta u_{j}}{n_{l} + n_{u}} \bigg(\sum_{i=1}^{n_{u}} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j}^{(t)}, \boldsymbol{\xi}_{i} \rangle]_{+}^{q-1} \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l}' \rangle \\ &+ \sum_{i=1}^{n_{l}} y_{i}' b_{i}^{(t)} [\langle \mathbf{w}_{j}^{(t)}, \boldsymbol{\xi}_{i}' \rangle]_{+}^{q-1} \langle \boldsymbol{\xi}_{i}', \boldsymbol{\xi}_{l}' \rangle \bigg), \end{split}$$

where $j \in [2m]$, $l \in [n_u]$ and $u_j := \mathbb{1}_{[1 \le j \le m]} - \mathbb{1}_{[m+1 \le j \le 2m]}$.

Some Interesting Lemma

Lemma A.5. As long as $\max_{r \in \{\pm 1\}} \left\{ \widehat{\Lambda}_r^{(t)}, \overline{\Lambda}_r^{(t)} \right\} \leq \Theta(m^{-1})$, we have $c_i^{(t)} := -\ell' \left(\widehat{y}_i \cdot f_{\mathbf{W}^{(t)}}(\mathbf{x}_i) \right)$ and $b_i^{(t)} := -\ell' \left(y_i' \cdot f_{\mathbf{W}^{(t)}}(\mathbf{x}_i') \right)$ remains $1/2 \pm o(1)$.

Lemma A.6. For any $\delta < 1/2$, with probability at least $1-2\delta$ over pseudo-labels generated by the pseudo-labeler, we have

$$\left|\frac{1}{n_{\mathrm{u}}}\sum_{i=1}^{n_{\mathrm{u}}}\widehat{y}_{i}y_{i}c_{i}^{(t)}-\left(p-\frac{1}{2}\right)\right|<\sqrt{\frac{1}{8n_{\mathrm{u}}}\log\frac{1}{\delta}}+o(1),$$

where o(1) is with respect to d.

Feature Learning

Lemma A.9. For $\widehat{\Lambda}_1^{(t)} := \max_{1 \leq j \leq m} \langle \mathbf{w}_j^{(t)}, \mathbf{v} \rangle$ and $\widehat{\Lambda}_{-1}^{(t)} := \max_{m+1 \leq j \leq 2m} \langle \mathbf{w}_j^{(t)}, -\mathbf{v} \rangle$, we have with high probability that

$$\widehat{\Lambda}_r^{(t+1)} \geq (1-\eta\lambda) \cdot \widehat{\Lambda}_r^{(t)} + \eta \cdot \left(p - \frac{1}{2}\right) \cdot \Theta(d) \cdot (\widehat{\Lambda}_r^{(t)})^{q-1}, r \in \{\pm 1\}.$$

For $\bar{\Lambda}_1^{(t)}:=\max_{m+1\leq j\leq 2m}\langle \mathbf{w}_j^{(t)},\mathbf{v}\rangle$ and $\bar{\Lambda}_1^{(t)}:=\max_{1\leq j\leq m}\langle \mathbf{w}_j^{(t)},-\mathbf{v}\rangle$, we have with high probability that

$$\bar{\Lambda}_r^{(t+1)} \le (1 - \eta \lambda) \cdot \bar{\Lambda}_r^{(t)}, r \in \{\pm 1\}.$$

Proof of Lemma A.9. We first prove the former inequality. Let $j^* = \arg\max_{1 \le j \le m} \langle \mathbf{w}_j^{(t)}, \mathbf{v} \rangle$ and note that $u_{j^*} = \mathbb{1}_{[1 \le j \le m]} - \mathbb{1}_{[m+1 \le j \le 2m]} = 1$, then we have

$$\widehat{\Lambda}_1^{(t+1)} \geq \langle \mathbf{w}_{j^*}^{(t+1)}, \mathbf{v} \rangle$$

$$= (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j^*}^{(t)}, \mathbf{v} \rangle + \frac{q \eta}{n_l + n_u} \left(\sum_{i=1}^{n_u} y_i \widehat{y}_i c_i^{(t)} [\langle \mathbf{w}_{j^*}^{(t)}, y_i \cdot \mathbf{v} \rangle]_+^{q-1} \|\mathbf{v}\|_2^2 + \sum_{i=1}^{n_l} b_i^{(t)} [\langle \mathbf{w}_{j^*}^{(t)}, y_i' \cdot \mathbf{v} \rangle]_+^{q-1} \|\mathbf{v}\|_2^2 \right)$$

Then we respectively estimate terms \clubsuit and \bigstar .

Calculate ...

For \clubsuit , note the definition of j^* that $\widehat{\Lambda}_1^{(t)} = \langle \mathbf{w}_{j^*}^{(t)}, \mathbf{v} \rangle$ and note the increasing property of $\widehat{\Lambda}_1^{(t)}$ and $\widehat{\Lambda}_1^{(0)} > 0$ with high probability, we have $\langle \mathbf{w}_{i^*}^{(t)}, \mathbf{v} \rangle > 0$. It follows that

$$\sum_{i=1}^{n_{u}} y_{i} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j^{*}}^{(t)}, y_{i} \cdot \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2} = \sum_{i \in S_{1}} y_{i} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j^{*}}^{(t)}, \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2} + \sum_{i \in S_{-1}} y_{i} \widehat{y}_{i} c_{i}^{(t)} [-\langle \mathbf{w}_{j^{*}}^{(t)}, \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2}$$

$$= \sum_{i \in S_{1}} y_{i} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j^{*}}^{(t)}, \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2}$$

$$= \left(\sum_{i \in S_{1}} y_{i} \widehat{y}_{i} c_{i}^{(t)}\right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot (\widehat{\Lambda}_{1}^{(t)})^{q-1}$$

$$= n_{1} \cdot \left(p - \frac{1}{2} \pm o(1)\right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot (\widehat{\Lambda}_{1}^{(t)})^{q-1}, \tag{A.7}$$

where $S_1 := \{(\mathbf{x}_i, y_i) | y_i = 1, i \in [n_u]\}, S_{-1} := \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_1 = |S_1| \text{ and the } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_1 = |S_1| \text{ and the } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_1 = |S_1| \text{ and the } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_1 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_2 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_3 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1| \text{ and } \{(\mathbf{x}_i, y_i) | y_i = -1, i \in [n_u]\}, n_4 = |S_1|$ last equality is due to (A.6).

(A.7)

Calculate *

For ★, similarly we have

$$\begin{split} \underbrace{\sum_{i=1}^{n_1} b_i^{(t)} [\langle \mathbf{w}_{j^*}^{(t)}, y_i' \cdot \mathbf{v} \rangle]_+^{q-1} \|\mathbf{v}\|_2^2}_{+} &= \sum_{i \in S_1'} b_i^{(t)} [\langle \mathbf{w}_{j^*}^{(t)}, \mathbf{v} \rangle]_+^{q-1} \|\mathbf{v}\|_2^2 + \sum_{i \in S_{-1}'} b_i^{(t)} [-\langle \mathbf{w}_{j^*}^{(t)}, \mathbf{v} \rangle]_+^{q-1} \|\mathbf{v}\|_2^2 \\ &= \sum_{i \in S_1'} b_i^{(t)} [\langle \mathbf{w}_{j^*}^{(t)}, \mathbf{v} \rangle]_+^{q-1} \|\mathbf{v}\|_2^2 \\ &= \left(\sum_{i \in S_1'} b_i^{(t)}\right) \cdot \|\mathbf{v}\|_2^2 \cdot (\widehat{\Lambda}_1^{(t)})^{q-1} \\ &= n_1' \cdot \left(\frac{1}{2} \pm o(1)\right) \cdot \|\mathbf{v}\|_2^2 \cdot (\widehat{\Lambda}_1^{(t)})^{q-1}, \end{split} \tag{A.8}$$

Plug ♣ and ★

$$\begin{split} \widehat{\Lambda}_{1}^{(t+1)} & \geq (1 - \eta \lambda) \cdot \widehat{\Lambda}_{1}^{(t)} + \frac{q \eta}{n_{1} + n_{u}} \left(n_{1} \cdot \left(p - \frac{1}{2} \pm o(1) \right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot \left(\widehat{\Lambda}_{1}^{(t)} \right)^{q-1} + n_{1}' \cdot \left(\frac{1}{2} \pm o(1) \right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot \left(\widehat{\Lambda}_{1}^{(t)} \right)^{q-1} \right) \\ & = (1 - \eta \lambda) \cdot \widehat{\Lambda}_{1}^{(t)} + \frac{q \eta n_{1}}{n_{1} + n_{u}} \cdot \left(p - \frac{1}{2} \pm o(1) \right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot \left(\widehat{\Lambda}_{1}^{(t)} \right)^{q-1} + \frac{q \eta n_{1}'}{n_{1} + n_{u}} \cdot \left(\frac{1}{2} \pm o(1) \right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot \left(\widehat{\Lambda}_{1}^{(t)} \right)^{q-1} \\ & = (1 - \eta \lambda) \cdot \widehat{\Lambda}_{1}^{(t)} + q \eta \cdot \left(\frac{n_{1}}{n_{1} + n_{u}} \cdot \left(p - \frac{1}{2} \pm o(1) \right) + \frac{n_{1}'}{n_{1} + n_{u}} \cdot \left(\frac{1}{2} \pm o(1) \right) \right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot \left(\widehat{\Lambda}_{1}^{(t)} \right)^{q-1} \\ & = (1 - \eta \lambda) \cdot \widehat{\Lambda}_{1}^{(t)} + q \eta \cdot \left(\underbrace{\frac{n_{1}}{n_{1} + n_{u}} \cdot \left(p - \frac{1}{2} \right) + \frac{n_{1}'}{n_{1} + n_{u}} \cdot \frac{1}{2}}_{\Phi} \pm o(1) \right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot \left(\widehat{\Lambda}_{1}^{(t)} \right)^{q-1}. \quad (A.9) \end{split}$$

$$\underbrace{\frac{n_1}{n_1 + n_u} \cdot \left(p - \frac{1}{2}\right) + \frac{n'_1}{n_1 + n_u} \cdot \frac{1}{2}}_{\bullet} = \frac{n_u}{2(n_1 + n_u)} \cdot \left(p - \frac{1}{2}\right) + \frac{n_l}{2(n_1 + n_u)} \cdot \frac{1}{2} \pm o(1)$$

$$= \frac{1}{2} \cdot \left(p - \frac{1}{2}\right) \pm o(1) \tag{A.10}$$

$$\begin{split} \widehat{\Lambda}_{1}^{(t+1)} &\geq (1 - \eta \lambda) \cdot \widehat{\Lambda}_{1}^{(t)} + q \eta \cdot \left(\frac{1}{2} \cdot \left(p - \frac{1}{2}\right) \pm o(1)\right) \cdot \|\mathbf{v}\|_{2}^{2} \cdot \left(\widehat{\Lambda}_{1}^{(t)}\right)^{q - 1} \\ &= (1 - \eta \lambda) \cdot \widehat{\Lambda}_{1}^{(t)} + \eta \cdot \left(p - \frac{1}{2}\right) \cdot \Theta(d) \cdot \left(\widehat{\Lambda}_{1}^{(t)}\right)^{q - 1}, \end{split}$$

Feature Learning Part.2

$$\begin{split} \bar{\Lambda}_{1}^{(t+1)} &= \langle \mathbf{w}_{j^{\natural}}^{(t+1)}, \mathbf{v} \rangle \\ &= (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j^{\natural}}^{(t)}, \mathbf{v} \rangle - \frac{q \eta}{n_{1} + n_{\mathbf{u}}} \bigg(\underbrace{\sum_{i=1}^{n_{\mathbf{u}}} y_{i} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j^{\natural}}^{(t)}, y_{i} \cdot \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2}}_{\mathbf{\Phi}} \\ &+ \underbrace{\sum_{i=1}^{n_{1}} b_{i}^{(t)} [\langle \mathbf{w}_{j^{\natural}}^{(t)}, y_{i}' \cdot \mathbf{v} \rangle]_{+}^{q-1} \|\mathbf{v}\|_{2}^{2}}_{\mathbf{\Phi}} \bigg). \end{split}$$

here we have $\clubsuit \ge 0$ and $\bigstar \ge 0$ so:

$$\bar{\Lambda}_1^{(t+1)} \leq (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j^{\natural}}^{(t)}, \mathbf{v} \rangle \leq (1 - \eta \lambda) \bar{\Lambda}_1^{(t)}.$$

Noise Memorization

Lemma A.11. For $\Gamma_i^{(t)} := \max_{j \in [2m]} \langle \mathbf{w}_j, \boldsymbol{\xi}_i \rangle, i \in [n_{\mathrm{u}}], \ \Gamma_i'^{(t)} := \max_{j \in [2m]} \langle \mathbf{w}_j, \boldsymbol{\xi}_i' \rangle, i \in [n_{\mathrm{l}}], \ \Gamma^{(t)} := \max\{\max_{i \in [n_{\mathrm{u}}]} \Gamma_i^{(t)}, \max_{i \in [n_{\mathrm{l}}]} \Gamma_i'^{(t)}\}, \text{ we have with high probability that}$

$$\Gamma_{i}^{(t+1)} \leq (1 - \eta \lambda) \cdot \Gamma_{i}^{(t)} + \eta \cdot \max \left\{ \widetilde{\Theta}(d^{\frac{1}{2} + 2\epsilon}), \widetilde{\Theta}\left(\frac{d^{1+2\epsilon}}{n_{u}}\right) \right\} \cdot \left(\Gamma^{(t)}\right)^{q-1}, i \in [n_{l}],$$

$$\Gamma_{i}^{\prime(t+1)} \leq (1 - \eta \lambda) \cdot \Gamma_{i}^{\prime(t)} + \eta \cdot \max \left\{ \widetilde{\Theta}(d^{\frac{1}{2} + 2\epsilon}), \widetilde{\Theta}\left(\frac{d^{1+2\epsilon}}{n_{u}}\right) \right\} \cdot \left(\Gamma^{(t)}\right)^{q-1}, i \in [n_{l}],$$

and

$$\Gamma^{(t+1)} \le (1 - \eta \lambda) \cdot \Gamma^{(t)} + \eta \cdot \max \left\{ \widetilde{\Theta}(d^{\frac{1}{2} + 2\epsilon}), \widetilde{\Theta}\left(\frac{d^{1+2\epsilon}}{n_{\mathrm{u}}}\right) \right\} \cdot \left(\Gamma^{(t)}\right)^{q-1},$$

where $\epsilon < 1/8$.

$$\begin{split} &\Gamma_{l}^{(t+1)} = \langle \mathbf{w}_{j^{\star}}^{(t+1)}, \boldsymbol{\xi}_{l} \rangle \\ &= (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle + \frac{q \eta u_{j^{\star}}}{n_{l} + n_{u}} \left(\sum_{i=1}^{n_{u}} \widehat{y}_{i} c_{i}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{i} \rangle]_{+}^{q-1} \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle + \sum_{i=1}^{n_{l}} y_{l}' b_{i}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l}' \rangle]_{+}^{q-1} \langle \boldsymbol{\xi}_{i}', \boldsymbol{\xi}_{l} \rangle \right) \\ &\leq (1 - \eta \lambda) \cdot \langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle + \frac{q \eta}{n_{l} + n_{u}} \left(\sum_{i=1}^{n_{u}} c_{i}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{i} \rangle]_{+}^{q-1} |\langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle| + \sum_{i=1}^{n_{l}} b_{i}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{i}' \rangle]_{+}^{q-1} |\langle \boldsymbol{\xi}_{i}', \boldsymbol{\xi}_{l} \rangle| \right), \end{split}$$

Bound ♣ and ★

For \clubsuit , note that $l \in [n_u]$ and there exists an $i \in [n_u]$ equivalent to l, it follows that

$$\underbrace{\sum_{i=1}^{n_{\mathbf{u}}} c_{i}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{i} \rangle]_{+}^{q-1} |\langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle|}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} [\langle \mathbf{w}_{j^{\star}}^{(t)}, \boldsymbol{\xi}_{l} \rangle]_{+}^{q-1} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} \|\boldsymbol{\xi}_{l} \|_{2}^{2}}_{+} \underbrace{\left\{ \langle \boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{l} \rangle | + c_{l}^{(t)} \|\boldsymbol{\xi}_{l} \|_{2}^{2}$$

For \bigstar , we have

$$\underbrace{\sum_{i=1}^{n_{\mathrm{l}}}b_{i}^{(t)}[\langle\mathbf{w}_{j^{\star}}^{(t)},\boldsymbol{\xi}_{i}^{\prime}\rangle]_{+}^{q-1}|\langle\boldsymbol{\xi}_{i}^{\prime},\boldsymbol{\xi}_{l}\rangle|}_{\mathbf{I}}\leq n_{\mathrm{l}}\cdot\left(\frac{1}{2}+o(1)\right)\cdot\widetilde{\Theta}(d^{\frac{1}{2}+2\epsilon})\cdot\left(\Gamma^{(t)}\right)^{q-1}=n_{\mathrm{l}}\cdot\widetilde{\Theta}(d^{\frac{1}{2}+2\epsilon})\cdot\left(\Gamma^{(t)}\right)^{q-1},$$

Lemma 5.1. Assume we use both unlabeled data with pseudo-labels generated by the pseudo-labeler and labeled data for the training of our CNN model. Then for $r \in \{\pm 1\}$, let T_r be the first iteration that $\widehat{\Lambda}_r^{(t)}$ reaches $\Theta(1/m)$, then for $t \in [0, T_r]$, we have

$$\begin{split} \widehat{\Lambda}_r^{(t+1)} &\geq (1 - \eta \lambda) \cdot \widehat{\Lambda}_r^{(t)} + \eta \cdot C \cdot \Theta(d) \cdot (\widehat{\Lambda}_r^{(t)})^{q-1}, r \in \{\pm 1\}, \\ \bar{\Lambda}_r^{(t+1)} &\leq (1 - \eta \lambda) \cdot \bar{\Lambda}_r^{(t)}, r \in \{\pm 1\}, \\ \Gamma^{(t+1)} &\leq (1 - \eta \lambda) \cdot \Gamma^{(t)} + \eta \cdot \widetilde{\Theta}(d^{1-2\epsilon}) \cdot (\Gamma^{(t)})^{q-1}, \end{split}$$

Lemma 5.2. Assume we use only labeled data for the training of our CNN model. Then for $i \in [n_l]$, let T_i' be the first iteration that $\Gamma_i'^{(t)}$ reaches $\Theta(1/m)$, then we have

$$\begin{split} \widehat{\Lambda}_{r}^{(t+1)} &\leq (1 - \eta \lambda) \cdot \widehat{\Lambda}_{r}^{(t)} + \eta \cdot \Theta(d) \cdot \left((\widehat{\Lambda}_{r}^{(t)})^{q-1} + (\bar{\Lambda}_{r}^{(t)})^{q-1} \right), r \in \{\pm 1\}, \\ \bar{\Lambda}_{r}^{(t+1)} &\leq (1 - \eta \lambda) \cdot \bar{\Lambda}_{r}^{(t)}, r \in \{\pm 1\}, \\ \Gamma_{i}^{\prime(t+1)} &\geq (1 - \eta \lambda) \cdot \Gamma_{i}^{\prime(t)} + \eta \cdot \widetilde{\Theta}(d^{1+2\epsilon}) \cdot (\Gamma_{i}^{\prime(t)})^{q-1}, i \in [n_{l}], \text{ for } t \in [0, T_{i}^{\prime}]. \end{split}$$

Lemma 5.3. If both pseudo-labeled and labeled data are used to train CNN, for $r \in \{\pm 1\}$, let T_r be the first iteration that $\widehat{\Lambda}_r^{(t)}$ reaches $\Theta(1/m)$ respectively. Let $T_0 = \max_{r \in \{\pm 1\}} \{T_r\}$. Then, it holds that $\widehat{\Lambda}_r^{(T_0)} = \widetilde{\Theta}(1)$, $\overline{\Lambda}_r^{(t)} = \widetilde{O}(d^{-\frac{1}{4}})$ and $\Gamma^{(t)} = \widetilde{O}(d^{-\frac{1}{4}+\epsilon})$ for all $t \in [0, T_0]$.

Lemma 5.4. If only labeled data are used to train CNN, for $i \in [n_1]$, let T_i' be the first iteration that $\Gamma_i'^{(t)}$ reaches $\Theta(1/m)$. Let $T_0' = \max_{i \in [n_1]} T_i'$. Then, it holds that $\widehat{\Lambda}_r = \widetilde{O}(d^{-\frac{1}{4}})$, $\overline{\Lambda}_r = \widetilde{O}(d^{-\frac{1}{4}})$ for $r \in \{\pm 1\}$ and $\Gamma_i'^{(t)} = \widetilde{\Theta}(1)$ for $i \in [n_1]$.

Lemma 5.5. For any learning rate $\eta = \Theta(1)$, we have $\|\mathbf{a}^{(t)}\|_1 = \log(t)/\widetilde{\Theta}(1)$. For any labeled data $(\mathbf{x}_i', y_i') \in S'$, we have with high probability that $y_i' \cdot f_{\mathbf{W}^{(t)}}(\mathbf{x}_i') = \|\mathbf{a}^{(t)}\|_1 \cdot \widetilde{\Theta}(1)$. For any newly generated data $(\mathbf{x}, y) \sim \mathcal{D}$, we also have with high probability that $y \cdot f_{\mathbf{W}^{(t)}}(\mathbf{x}) = \|\mathbf{a}^{(t)}\|_1 \cdot \widetilde{\Theta}(1)$.

With the help of the above lemma and note that training error and test error are related to $y \cdot f_{\mathbf{W}(T_0)}(\mathbf{x})$ and test loss is related to $\|\mathbf{a}^{(T_0)}\|_1$, we can prove that after $T = \Theta(d^{0.1}/\eta)$ iterations with learning rate $\eta = \Theta(1)$, the model can achieve nearly zero training error, test error, training loss and test loss.

Tensor Power Method

Lemma C.4. Consider an increasing sequence $x_t \ge 0$ defined as $x_{t+1} = x_t + \eta \cdot C_t x_t^{q-1}$, and $C_1 \le C_t \le C_2$ for all t > 0, then we have for $A > x_0$, every $\delta > 0$, and every $\eta > 0$:

$$\sum_{t \geq 0, x_t \leq A} \eta \leq \frac{\delta}{(1 - (1 + \delta)^{-(q-2)}) x_0 C_1} + \eta \cdot \frac{C_2}{C_1} (1 + \delta)^{q-1} \bigg(1 + \frac{\log{(A/x_0)}}{\log{(1 + \delta)}} \bigg),$$

$$\sum_{t \geq 0, x_t \leq A} \eta \geq \frac{\delta \left(1 - (x_0/A)^{q-2}\right)}{(1+\delta)^{q-1} \left(1 - (1+\delta)^{-(q-2)}\right) x_0 C_2} - \eta \cdot (1+\delta)^{-(q-1)} \bigg(1 + \frac{\log{(A/x_0)}}{\log{(1+\delta)}}\bigg).$$