Calcul Numeric – Proba practică Informatică, Anul III

INSTRUCȚIUNI:

- 1. Comentați și explicați toate rezolvările trimise. Codurile necomentate/neexplicate nu se punctează.
- 2. Codurile vor fi salvate cu următoarea denumire Nume_Prenume_Grupa.py și vor fi trimise titularului de laborator până în data de 29 ianuarie 2021, ora 14:30.

Factorizarea QR:

Fie $A=(a_{ij})_{i,j=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R})$. Numim descompunere QR a matricei A, descompunerea de forma A=QR unde $Q=(q_{ij})_{i,j=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R})$ este o matrice ortogonală, i.e. $Q^TQ=QQ^T=I$, iar $R=(r_{ij})_{i,j=\overline{1,n}}\in\mathcal{M}_n(\mathbb{R})$ este o matrice superior triunghiulară.

Dacă $A = (a_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R})$ este o matrice inversabilă, atunci există și este unică descompunerea QR a matricei A cu $Q \in \mathcal{M}_n(\mathbb{R})$ o matrice ortogonală și $R \in \mathcal{M}_n(\mathbb{R})$ o matrice superior triunghiulară având componentele pe diagonala principală $r_{kk} > 0, k = \overline{1, n}$.

Sistemul Ax = b devine QRx = b. Cum Q este ortogonală $(Q^TQ = I)$, înmulțind relația QRx = b cu Q^T obținem $Rx = Q^Tb$. Cum R este superior triunghiulară sistemul $Rx = Q^Tb$ se rezolvă conform metodei substituției descendente.

ALGORITM (Metoda Givens de descompunere QR)

Date de intrare: $A = (a_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R})$, $b = (b_i)_{i=\overline{1,n}} \in \mathcal{M}_{n,1}(\mathbb{R})$; Date de ieşire: $Q = (q_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R})$, $R = (r_{ij})_{i,j=\overline{1,n}} \in \mathcal{M}_n(\mathbb{R})$, $x = (x_i)_{i=\overline{1,n}} \in \mathcal{M}_{n,1}(\mathbb{R})$;

PASUL 1: Iniţializează $Q \leftarrow I_n$.

PASUL 2: Pentru $i = \overline{1,n}$ și $j = \overline{i+1,n}$ execută:

• Determină parametrii rotației Givens:

$$\sigma = \sqrt{a_{ii}^2 + a_{ji}^2}, \quad c = \frac{a_{ii}}{\sigma}, \quad s = \frac{a_{ji}}{\sigma}.$$

ullet Pentru $k=\overline{1,n}$ aplică matricea de rotație Givens matricei A, vectorului b și memorează rotația în matricea Q:

$$u \leftarrow ca_{ik} + sa_{jk}$$
, $v \leftarrow -sa_{ik} + ca_{jk}$, $a_{ik} \leftarrow u$, $a_{jk} \leftarrow v$;

$$u \leftarrow cq_{ik} + sq_{jk}$$
, $v \leftarrow -sq_{ik} + cq_{jk}$, $q_{ik} \leftarrow u$, $q_{jk} \leftarrow v$;

PASUL 3: Alege $R \leftarrow A$ și $Q \leftarrow Q^T$.

PASUL 4: Determină soluția ${\bf x}$ a sistemului ${\rm R}{\bf x}$ = ${\rm Q}^{\rm T}{\rm b}$ conform metodei substituției descendente.

Ex. 1 Fie matricea $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ și $b = (1, 2, 5)^T$.

- a) Să se implementeze în Python procedura $\mathbf{DescQRGivens}(A)$ care returnează matricele Q, R şi soluția x a sistemului Ax = b;
- b) Să se rezolve numeric sistemul Ax = b în baza procedurii **DescQRGivens**;
- c) Să se verifice soluția obținută.

Ex. 2

(a) Creați funcția newton_raphson care determină numeric soluția ecuației:

$$f(x) = x^3 - 6x^2 - x + 6 = 0, (1)$$

prin metoda Newton-Raphson și are ca date de intrare:

- funcția care determină ecuația (1), f;
- derivata funcției care determină ecuația (1), df;
- punctul de start al metodei Newton-Raphson, x_0 ;
- toleranţa erorii specifice metodei Newton-Raphson, eps;

iar ca date de ieșire:

- soluţia numerică obţinută, x_{aprox};
- numărul de iterații necesare, N;
- (b) Alegeţi subintervalele şi punctele de start ale metodei respectând ipotezele teoremei de convergenţă ale metodei Newton-Raphson, astfel încât şirurile aproximărilor să rămână în subintervalele selectate şi să conveargă la soluţii. Justificaţi atât alegerea subintervalelor, cât şi a valorilor iniţiale.

Aflați toate soluțiile ecuației (1) apelând funcția newton_raphson cu eroarea de aproximare eps = 10^{-3} și construiți punctele obținute pe graficul funcției.