Funciones continuas

1.3. Definición de límite de una función

La continuidad existe si existe continuidad por la izquierda y por la derecha.

Definición 1.1 (Definición de entorno de un punoto) Cualquier intervalo abierto que contenga un punto p como su punto medio se denomina entorno de p.

Notación.- Designemos los entornos con $N(p), N_1(p), N_2(p)$, etc. Puesto que un entorno N(p) es un intervalo abierto simétrico respecto a p, consta de todos los números reales x que satisfagan p-r < x < p+r para un cierto r>0. El número positivo r se llama radio del entorno. En lugar de N(p) ponemos N(p;r) si deseamos especificar su radio. Las desigualdades p-r < x < p+r son equivalentes a -r < x-p < r, y a |x-p| < r. Así pues, N(p;r) consta de todos los puntos x, cuya distancia a p es menor que r.

En la definición que sigue suponemos que A es un número real y que f es una función definida en un cierto entorno de un punto p (excepción hecha acaso del mismo p). La función puede estar definida en p pero esto no interviene en la definición.

Definición 1.2 (Definición de límite de una función) El simbolismo

$$\lim_{x\to p} f(x) = A \qquad [o\ f(x)\to A \quad x\to p]$$

significa que para todo entorno $N_1(A)$ existe un cierto entorno $N_2(p)$ tal que

$$f(x) \in N_1(A)$$
 siempre que $x \in N_2(p)$ y $x \neq p$

El entorno $N_2(A)$ se cita en primer lugar, e indica cuán próximo queremos que sea f(x) a su límite A. El segundo entorno, $N_2(p)$, nos indica lo próximo que debe estar x de p para que f(x) sea interior al primer entorno $N_1(p)$. El entorno $N_2(p)$ dependerá del $N_1(A)$ elegido. Un entorno $N_2(p)$ que sirva para un $N_1(A)$ determinado servirá también, naturalmente, para cualquier $N_1(A)$ mayor, pero puede no ser útil para todo $N_1(A)$ más pequeño.

Decir que $f(x) \in N_1(A)$ es equivalente a la designaldad $|f(x) - A| < \epsilon$ y poner que $x \in N_2(p)$, $x \neq p$ es lo mismo que escribir $0 < |x-p| < \delta$. Por lo tanto, la definición de límite puede también expresarse así:

El símbolo $\lim_{x\to p} f(x) = A$ significa que para todo $\epsilon>0$, existe un $\delta>0$ tal que

$$|f(x) - A| < \epsilon$$
 siempre que $0 < |x - p| < \delta$.

Observamos que las tres desigualdades,

$$\lim_{x \to p} f(x) = A, \ \lim_{x \to p} (f(x) - A) = 0, \ \lim_{x \to p} [f(x) - A] = 0$$

Son equivalentes. También son equivalentes las desigualdades,

$$\lim_{x\to p} f(x) = A, \ \lim_{h\to 0} f(p+h) = A.$$