13 вопрос

Ансар Каржаспаев @ansark4

23 октября 2022 г.

1 Критерий Коши существования предела функции. Односторонние пределы и теорема Вейерштрасса о существовани односторонних пределов монотонной ограниченной функции.

1.1 Критерий Коши существования предела функции.

Теорема 65 (Критерий Коши). Пусть f: D \to R и а предельная точка D. Предел $\lim_{x\to a} f(x)$ существует тогда и только тогда, когда для каждого $\epsilon>0$ найдется такое $\delta>0$, что для каждых $x,y\in B_{\delta}'(a)\cap D$ выполнено $|f(x)-f(y)|<\epsilon$.

Доказательство. Если $\lim_{x\to a} f(x) = A$, то для каждого $\epsilon>0$ найдется такое $\delta>0$, что для произвольной точки $x\in B'_\delta(a)\cap D$ выполнено $|f(x)-A|<\epsilon/2$. Тогда для произвольных точек $x,y\in B'_\delta(a)\cap D$ выполнено $|f(x)-f(y)|\leq |f(x)-A|+|A-f(y)|<\epsilon$.

Предположим, что выполнено условие Копш. Тогда для произвольной последовательности точек $x_n \in D\setminus \{a\}, \ x_n \to a$, последовательность $\{f(x_n)\}$ является фундаментальной, а значит сходится. Пусть $\lim_{x\to\infty} f(x_n) = A$. Если есть другая последовательность точек $y_n \in D\setminus \{a\}, y_n \to a$, то рассмотрим новую последовательность $z_{2k1} = x_k, z_{2k} = y_k$, т.е. эта последовательность вида $x_1, y_1, x_2, y_2, \dots \in D\setminus \{a\}$. Эта последовательность также сходится к а, поэтому последовательность образов $f(x_1), f(y_1), f(x_2), f(y_2), \dots$ снова оказывается фундаментальной, а потому сходится. В силу того, что предел подпоследовательности сходящейся последовательности совпадает с пределом всей последовательности, получаем, что $\lim_{x\to\infty} f(y_n) = A$. Таким образом, доказано существование предела по Гейне.

1.2 Односторонние пределы и теорема Вейерштрасса о существовани односторонних пределов монотонной ограниченной функции.

Пусть $D_a^+:=D\cap(a,+\infty)$ и $D_a^-:=D\cap(-\infty,a)$

Определение 66. Пусть точка а предельная для множества D_a^+ и существует предел функции f по множеству D_a^+ в точке а. Этот предел называют пределом справа функции f в точке а и обозначают $\lim_{x\to a+0} f(x)$. Аналогично определяется предел слева, который обозначают $\lim_{x\to a-0} f(x)$.

Теорема 67 (Вейерштрасс). Пусть f не убывает и ограничена на множестве D, а - предельная точка множества D_a^- . Тогда существует предел слева

$$\lim_{x\to a-0}f(x)=\sup\{f(x):x\in D_a^-\}$$

Пусть f не убывает и ограничена на множестве D, а предельная точка множества D_a^+ .

$$\lim_{x\to a+0}f(x)=\inf\{f(x):x\in D_a^+\}$$

Аналогичные утверждения с заменой inf на sup справедливы и для невозрастающей функции. Доказательство. Пусть $M=\sup\{f(x):x\in D_a^-.$ Тогда для каждого $\epsilon>0$ найдется такая точка $x_0\in D_a^-.$ что $M-\epsilon< f(x_0).$ Т.к. f не убывает на $D_a^-.$ то для каждого $x\in (x_0,a)\cap D_a'$ выполнено $M-\epsilon< f(x_0)\le f(x)\le M< M+\epsilon.$ Тогда, взяв $\delta:=a-x_0$ получаем, что для каждого $x\in B_\delta'(a)\cap D_a^-$ выполнено $|f(x)-M|<\epsilon.$