Text Mining Tutorial 5:

Matrix Factorization: on Movie Recommender

Prof. Hsing-Kuo Pao

Teaching Assistant: Ghaluh Indah Permata Sari

Outline

- Introduction to Matrix Factorization
- Task: Recommendation System
 - Case: Netflix

$$A \cdot B = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 7 \\ 3 & 5 \end{bmatrix}$$

Introduction

- Matrix factorization is a simple embedding model.
- Given the feedback matrix $A \in \mathbb{R}^{m \times n}$, where m is the number of users (or queries) and n is the number of items, the model learns:
 - A user embedding matrix $U \in \mathbb{R}^{m \times d}$, where row i is the embedding for user i.
 - An item embedding matrix $V \in \mathbb{R}^{m \times d}$, where row j is the embedding for item j.

Netflix Recommendation

Users

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Netflix Ratings

How they obtain the rating?

Rating Database

	M1	M2	M3	M4	M5
(3)	1	3	2	5	4
(<u>:</u>)	2	1	1	1	5
	3	2	3	1	5
(3)	2	4	1	5	2

	M1	M2	M3	M4	M5
(33)					4
•••					
(3)					

How do humans behave?

Table 1

Table 2

Table 3

	M1	M2	M3	M4	M5
	3	3	3	3	3
①	3	3	3	3	3
	3	3	3	3	3
(3)	3	3	3	3	3

	M1	M2	M3	M4	M5
	3	1	1	3	1
①	1	2	4	1	3
	3	1	1	3	1
3	4	3	5	4	4

	M1	M2	M3	M4	M5
(3)	1	3	2	5	4
(<u>•</u>	2	1	1	1	5
	3	2	3	1	5
(3)	2	4	1	5	2

Unreal

$$G = C = C = C$$

M1 = M2 = M3 = M4 = M5

Let's take an observe to this table

The dependencies in Table 2

	M1	M2	МЗ	M4	M5
(3)	3	1	1	3	1
•••					
	3	1	1	3	1
(3)					

Movie 4

Analysis

Netflix treated these users as the same person, in terms of preferences.

Similar movies so that users gave them similar ratings.

The dependencies in Table 2

	M1	M2	M3	M4	M5		l love comedy!		
						I love			I love action
①	1	2	4	1	3	action!			and comedy!
	3	1	1	3	1		• + 😂 =	(3)	
(3)	4	3	5	4	4		. П	C	

	M1	M2	M3	M4	M5
(3)		1	1		1
••		2	4		3
		1	1		1
(3)		3	5		4

Rating prediction based on user's behavior

Table 1

	M1	M2	M3	M4	M5
(3)	3	3	3	3	3
•••	3	3	3	3	3
	3	3	3	?.	3
(3)	3	3	3	3	3

G S H C

$$M1 = M2 = M3 = M4 = M5$$

Rating prediction based on user's behavior

Table 2

	M1	M2	M3	M4	M5
	3	1	1	3	1
①	1	2	4	1	3
	3	1	1	3	?
3	4	3	5	4	4

Question: How do we figure out all these dependencies?

Answer: Matrix Factorization!!

Matrix Factorization

Factorization

$$7 \times 5 = 35$$

Matrix Factorization

	M1	M2	M3	M4	M5
(3)	3	1	1	3	1
(<u>•</u>	1	2	4	1	3
	3	1	1	3	1
(3)	4	3	5	4	4

Features (attributes)

Drama

J.K. Rowling

Dot product

	Comedy	Action	Example
Gloom			
MAU GOP MAU BLABT MOVIE 1	3	1	Rating ******* 3

Dot product

Dot product

Examples

Categories

•	
Movie	1

	Comedy	Action
<u>M1</u>	3	1
M2	1	2
M3	1	4
M4	3	1
M5	1	3

$F_{actorization}$ 7x5 = 35

Matrix Factorization

	Comedy	Action
M1	3	1
M2	1	2
M3	1	4
M4	3	1
M5	1	3

	Comedy	Action
(3)		×
•	×	
		×
(3)		

	M1	M2	M3	M4	M5
(3)	3	1	1	3	1
①	1	2	4	1	3
	3	1	1	3	1
(3)	4	3	5	4	4

Matrix Factorization

	M1	M2	M3	M4	M5
	3	1	1	3	1
	1	2	4	1	2

	M1	M2	M3	M4	M5
(3)	3	1	1	3	1
•••	1	2	4	1	3
	3	1	1	3	1
(3)	4	3	5	4	4

Save space

9554MANA NON

9559MANANION Save space Action Comedy TWISTER

How many parameters can be saved?

2000 users

 $2000 \times 1000 = 2M$ parameters

1000 movies

How many parameters can be saved?

2000 users

 $2000 \times 100 = 200K$ parameters

100 features

1000 x 100 = 100K parameters 1000 movies

Total 300K features

How many parameters can be saved?

300K parameters

How to find the right factorization?

Example from Table 2

M1	M2	M3	M4	M5
3	1	1	3	1
1	2	4	1	2

	S Comedy	Action
	1	0
•••	0	1
	1	0
(3)	1	1

	M1	M2	M3	M4	M5
(3)	3	1	1	3	1
②	1	2	4	1	3
	3	1	1	3	1
(3)	4	3	5	4	4

Example from Table 2

Calculate dot product

dot product

 $(1.2\times0.2)+(2.4\times0.5)=1.44$

	M1	M2	M3	M4	M5
F1	1.2	3.1	0.3	2.5	0.2
F2	2.4	1.5	4.4	0.4	1.1

	F1	F2		M1	M2	M3	M4	M5
	0.2	0.5	(3)	1.44	1.37	2.26	0.7	0.59
•••	0.3	0.4	•••	1.32	1.53	1.85	0.91	0.5
	0.7	0.8		2.76	3.37	3.73	2.07	1.02
3	0.4	0.5	3	1.68	1.99	2.32	1.2	0.63

F1 & F2 = features (comedy& action)

Example from Table 2

Optimize the value

	M1	M2	M3	M4	M5
F1	1.2	3.1	0.3	2.5	0.2
F2	2.4	1.5	4.4	0.4	1.1

			-	•				
	F1	F2		M1	M2	M3	M4	M5
	0.2	0.5		1.44	1.83			
•••	0.3	0.4	•••					
	0.7	0.8						
3	0.4	0.5	3					

New values

 $(1.4\times0.3)+(2.5\times0.6)=(1.92)$

Assume: Closé enough

	M1	M2	M3	M4	M5
(3)	3	1	1	3	1
•••	1	2	4	1	3
	3	1	1	3	1
(3)	4	3	5	4	4

Let's learn about Error Function

Error function with Gradient Descent

Gradient Descent explanation:

https://www.youtube.com/watch?v=sDv4f4s2SB8

	M1	M2	M3	M4	M5
F1	1.2	3.1	0.3	2.5	0.2
F2	2.4	1.5	4.4	0.4	1.1

	F1	F2		M1	M2	M3	M4	M5
(3)	0.2	0.5		1.44	1.37			
•••	0.3	0.4	•••					
	0.7	0.8						
(3)	0.4	0.5	9					

Gradient Descent

How to apply it in the movie recommender?

Let's fill in the blank

	F1	F2
(3)	1	0
②	0	1
	1	0
(3)	1	1

	M1	M2	M3	M4	M5
F1	3	1	1	3	1
F2	1	2	4	1	2

	M1	M2	M3	M4	M5
	3		1		1
•••	1		4	1	
	3	1		3	1
3		3		4	4

How to apply it in the movie recommender?

Let's fill in the blank

	F1	F2
(3)	1	0
②	0	1
	1	0
(3)	1	1

	M1	M2	M3	M4	M5
F1	3	1	1	3	1
F2	1	2	4	1	2

	M1	M2	M3	M4	M5
(3)	3	1	1	3	1
•••	1	2	4	1	3
	3	1	1	3	1
(3)	4	3	5	4	4

Recommend

M3

The highest rating

Gradient descent:

- an iterative first-order optimization algorithm used to find a local minimum/maximum of a given function $(J(\theta)where\ \theta)$ parameters (weights) of the model), typically a loss or cost function. *to maximize function: Gradient Ascent
- Commonly used in machine learning or deep learning (e.g. in Linear regression).

Function requirements:

- Differentiable
- Convex

Don't meet the requirement???

- Regularization (for non-convex, using L1 norm or L2 norm)
- Non-differentiable functions (e.g subgradient descent)
- Non-convex functions (e.g. Stochastic Gradient Descent (SGD), Adam opt., Root Mean Square Propagation (RMSProp))
- Consider using another method: simulated annealing, particle swarm opt., genetic algorithm

Differentiable

 If a function is differentiable it has a derivative for each point in its domain.

*not all functions meet these criteria. First, let's see some examples of functions meeting this criterion:

Figure 1. Differentiable function

Figure 2. Non-Differentiable function

Convex

Function has to be convex.
 For a univariate function, this means that the line segment connecting two function's points lays on or above its curve (it does not cross it). If it does it means that it has a local minimum which is not a global one.

Mathematically, for two points x_1, x_2 laying on the function's curve this condition is expressed as:

$$f(\lambda_{x_1} + (1 - \lambda)_{x_2}) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

where λ denotes a point's location on a section line and its value has to be between 0 (left point) and 1 (right point), e.g. $\lambda = 0.5$ means a location in the middle.

Figure 3. Convex and Non-convex function

Convex

Another way to check mathematically if a univariate function is convex is to calculate the second derivative and check if its value is always bigger than 0.

Example of quasi-convex function:

$$f(x) = x^4 - 2x^3 + 2$$

To calculate the convex function, we can apply the quasi-convex function or saddle-points. For multivariate functions the most appropriate check if a point is a saddle point is to calculate a Hessian matrix.

$$\frac{df(x)}{dx} = 4x^3 - 6x^2 = x^2(4x - 6)$$

A gradient for an n-dimensional function f(x)at a given point p is defined as follows:

dimensional function
$$p$$
 is defined as follows:
$$\nabla f(p) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(p) \\ \vdots \\ \frac{\partial f}{\partial x_n}(p) \end{bmatrix}$$
 It is a so-called *nabla* symbol and you read it "del".
$$\frac{\partial f}{\partial x_n}(p)$$
 It is a so-called *nabla* symbol and you read it "del".
$$\frac{\partial f}{\partial x_n}(p)$$

- > Approach to check convexity in our data:
 - Graphical analysis
- Convex optimization solvers: CVXPY (python), CVX (matlab)
- Second derivative test
- Online convexity checkers

Steps to do:

- 1. choose a starting point (initialization)
- 2. Gradient calculation
 - makes a scaled step in the opposite direction to the gradient (objective: minimize).
- 3. Parameter update
 - Update rule: $\theta := \theta + \alpha \nabla J(\theta)$, where α is the learning rate (hyperparameter to control the size of steps taken in the parameters space).
- 4. Iterative process
 - repeat points 2 and 3 until one of the criteria is met (Convergence/ stopping criteria):
 - maximum number of iterations reached
 - step size is smaller than the tolerance (due to scaling or a small gradient).

Gradient Descent Update Rule

$$p_{n+1} = p_n - \eta \nabla f(p_n)$$

Purpose: to iteratively move the parameter values in the direction of the steepest descent of the objective function f to minimize the function.

Where,

 p_{n+1} is an updated parameters value at iteration n+1.

 p_n is the current parameter value at iteration n.

 η is the learning rate

 $\eta \nabla f(p_n)$ is the gradient of the objective function f with respect to parameter p_n at the current iteration.

Note:

- The smaller learning rate the longer GD converges, or may reach maximum iteration before reaching the optimum point.
- The bigger learning rate the algorithm may not converge to the optimal point (jump around) or even to diverge completely.

Thank you Q & A

