Cryptography

Reference:

Network Security

PRIVATE Communication in a PUBLIC World.

by Kaufman, Perlman & Speciner.

Netprog: Cryptgraphy

Secret Key Cryptography

- Single key used to encrypt and decrypt.
- Key must be known by both parties.
- Assuming we live in a hostile environment (otherwise - why the need for cryptography?), it may be hard to share a secret key.

Public Key Cryptography (a.k.a. asymmetric cryptography)

 Relatively new field - 1975 (as far as we know, the NSA is not talking).

- Each entity has 2 keys:
 - private key (a secret)
 - public key (well known).

Using Keys

- Private keys are used for decrypting.
- Public keys are used for encrypting.

Digital Signature

 Public key cryptography is also used to provide digital signatures.

Transmitting over an insecure channel.

Alice wants to send Bob a private message.

A_{public} is Alice's public key.

Aprivate is Alice's private key.

B_{public} is Bob's public key.

B_{private} is Bob's private key.

OK Alice, Your place or mine?

Bob's Dilemma

- Nobody can read the message from Alice, but anyone could produce it.
- How does Bob know that the message was really sent from Alice?

 Bob may be comforted to know that only Alice can read his reply.

Alice can sign her message!

- Alice can create a digital signature and prove she sent the message (or someone with knowledge of her private key).
- The signature can be a message digest encrypted with A_{private}.

Message Digest

- Also known as "hash function" or "oneway transformation".
- Transforms a message of any length and computes a fixed length string.
- We want it to be hard to guess what the message was given only the digest.
 - Guessing is always possible.

Alice's Signature

- Alice feeds her original message through a hash function and encrypts the message digest with A_{private}.
- Bob can decrypt the message digest using A_{public}.
- Bob can compute the message digest himself.
- If the 2 message digests are identical, Bob knows Alice sent the message.

Revised Scheme

Why the digest?

 Alice could just encrypt her name, and then Bob could decrypt it with A_{public}.

Why wouldn't this be sufficient?

Implications

Suppose Alice denies she sent the message?

 Bob can prove that only someone with Alice's key could have produced the message.

Another possible problem

 Suppose Bill receives a message from Alice including a digital signature.

"meet me at the library tonight"

- Bill sends the same message to Joe so that it looks like the message came from Alice.
- Bill includes the digital signature from the message Alice sent to him.
- Joe is convinced Alice sent the message!
 Hilarity will surely ensue!

Solution?

- Always start your messages with:
 - Dear Bill,
- Create a digest from the encrypted message and sign that digest.

There are many other schemes as well.

Speed

- Secret key encryption/decryption algorithms are much faster than public key algorithms.
- Many times a combination is used:
 - use public key cryptography to share a secret key.
 - use the secret key to encrypt the bulk of the communication.

Secure Protocols

- There are a growing number of applications for secure protocols:
 - email
 - electronic commerce
 - electronic voting
 - homework submission
 - ordering breakfast

Secure Protocols

- Many application protocols include the use of cryptography as part of the application level protocol.
 - The cryptographic scheme employed is part of the protocol.
 - If stronger cryptographic tools become available, we need to change the protocol.

SSL and TLS

 Secure Sockets Layer (SSL) is a different approach - a new layer is added that provides a secure channel over a TCP link.

 TLS is Transport Layer Security (IETF standard based on SSL).

SSL layer

Advantages of SSL/TLS

- Independent of application layer
- Includes support for negotiated encryption techniques.
 - easy to add new techniques.
- Possible to switch encryption algorithms in the middle of a session.

HTTPS Usage

- HTTPS is HTTP running over SSL.
 - used for most secure web transactions.
 - HTTPS server usually runs on port 443.
 - Includes the notion of verification of server via a certificate.
 - Central trusted source of certificates.
 - Course grading system has an untrusted certificate - Dave is too cheap to pay for a "trusted certificate".
 - certificate or donut what would you pick?