ExPASy Home page Site Map Search ExPASy Contact us Swiss-Prot

Search Swiss-Prot/TrEMBL for pseudomonas exotoxi Go Clear

NiceProt View of Swiss-Prot: P11439

Printer-friendly view

Submit update

Quick BlastP search

[Entry info] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information

Entry name TOXA_PSEAE

Primary accession number P11439

Secondary accession number Q9I4I7
Entered in Swiss-Prot in Release 12, October 1989

Sequence was last modified in Release 40, October 2001
Annotations were last modified in Release 46, February 2005

Name and origin of the protein

Protein name Exotoxin A [Precursor]

Synonyms NAD-dependent ADP-ribosyltransferase

EC 2.4.2.-

Gene name Name: eta

OrderedLocusNames: PA1148

From Pseudomonas aeruginosa [TaxID: 287]

Taxonomy Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;

Pseudomonadaceae; Pseudomonas.

References

[1] NUCLEOTIDE SEQUENCE, AND PROTEIN SEQUENCE OF 26-53.

MEDLINE=84194063; PubMed=6201861 [NCBI, ExPASy, EBI, Israel, Japan]

Gray G.L., Smith D.H., Baldridge J.S., Harkins R.N., Vasil M.L., Chen E.Y., Heyneker H.L.;

"Cloning, nucleotide sequence, and expression in Escherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa.";

Proc. Natl. Acad. Sci. U.S.A. 81:2645-2649(1984).

[2] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].

STRAIN=ATCC 15692 / PAO1;

DOI=10.1038/35023079;MEDLINE=20437337;PubMed=10984043 [NCBI, ExPASy, EBI, Israel, Japan]

Stover C.K., Pham X.-Q.T., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F.S.L., Hufnagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L.L., Coulter S.N., Folger K.R., Kas A., 🕶 , Olson M.V.;

"Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen."; Nature 406:959-964(2000).

[3] ACTIVE SITE.

MEDLINE=87250491; PubMed=2885323 [NCBI, ExPASy, EBI, Israel, Japan] Carroll S.F., Collier R.J.;

"Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin."; J. Biol. Chem. 262:8707-8711(1987).

[4] DOMAINS.

MEDLINE=90375493; PubMed=2118903 [NCBI, ExPASy, EBI, Israel, Japan]

Chaudhary V.K., Jinno Y., Galo M.G., Fitzgerald D., Pastan I.;

"Mutagenesis of Pseudomonas exotoxin in identification of sequences responsible for the animal toxicity.";

J. Biol. Chem. 265:16306-16310(1990).

[5] DOMAINS.

MEDLINE=91006124; PubMed=2170123 [NCBI, ExPASy, EBI, Israel, Japan]

Bourdenet S., Vacheron M.-J., Guinand M., Michel G., Arminjon F.;

"Biochemical and immunochemical studies of proteolytic fragments of exotoxin A from Pseudomonas aeruginosa.";

Eur. J. Biochem. 192:379-385(1990).

[6] DISULFIDE BOND.

DOI=10.1021/bi991308+;MEDLINE=20068844;PubMed=10600112 [NCBI, ExPASy, EBI, Israel, Japan]

McKee M.L., FitzGerald D.J.;

"Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story.";

Biochemistry 38:16507-16513(1999).

[7] X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 424-638.

MEDLINE=96016159; PubMed=7568123 [NCBI, ExPASy, EBI, Israel, Japan]

Li M., Dyda F., Benhar I., Pastan I., Davies D.R.:

"The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin.";

Proc. Natl. Acad. Sci. U.S.A. 92:9308-9312(1995).

[8] X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 424-638.

DOI=10.1073/pnas.93.14.6902;MEDLINE=96293446;PubMed=8692916 [NCBI, ExPASy, EBI, Israel, Japan]

Li M., Dyda F., Benhar I., Pastan I., Davies D.R.:

"Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation.";

Proc. Natl. Acad. Sci. U.S.A. 93:6902-6906(1996).

Comments

- FUNCTION: This toxin is a NAD-dependent ADP-ribosyltransferase. It catalyzes the transfer of the ADP ribosyl moiety of oxidized NAD onto elongation factor 2 (EF-2) thus arresting protein synthesis.
- PTM: The 8 cysteines participate in intrachain disulfide bonds.

Copyright

This Swiss-Prot entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use as long as its content is in no way modified and this statement is not removed.

Cross-references

EMBL K01397; AAB59097.1; -. [EMBL / GenBank / DDBJ] [CoDingSequence]

AE004544; AAG04537.1; -.[EMBL / GenBank / DDBJ] [CoDingSequence] A30347; A30347. PIR C83503; C83503. 1AER; X-ray; A=425-634, B=425-625.[ExPASy / RCSB / EBI] 1DMA; X-ray; A/B=425-638. [ExPASy / RCSB / EBI] PDB 1IKP; X-ray; A=26-638. [ExPASy / RCSB / EBI] 1IKQ; X-ray; A=26-638. [ExPASy / RCSB / EBI] Detailed list of linked structures. SWISS-3DIMAGE P11439. **CMR** P11439; PA1148. IPR008985; ConA like lec gl. InterPro Graphical view of domain structure. **ProDom** [Domain structure / List of seq. sharing at least 1 domain] HOBACGEN [Family / Alignment / Tree] BLOCKS P11439.

 BLOCKS
 P11439.

 ProtoNet
 P11439.

 ProtoMap
 P11439.

 PRESAGE
 P11439.

 DIP
 P11439.

 ModBase
 P11439.

SMR P11439; 7B9AAD56A27C700A.

SWISS-2DPAGE Get region on 2D PAGE.

UniRef View cluster of proteins with at least 50% / 90% identity.

Keywords

3D-structure; Complete proteome; Direct protein sequencing; Glycosyltransferase; NAD; Signal; Toxin; Transferase.

Features

Feature table viewer

Feature aligner

Key	From	To	Length	Description
SIGNAL	1	25	25	
CHAIN	26	638	613	Exotoxin A.
DOMAIN	26	277	252	IA (required for target cell recognition).
NIAMOD	278	389	112	II (required for translocation in target cell cytoplasm).
DOMAIN	390	429	40	IB.
DOMAIN	430	638	209	<pre>III (required for ADP-ribosyl activity).</pre>
NP_BIND	465	481	17	NAD.
ACT_SITE	578	578		
DISULFID	290	312		
CONFLICT	4	4		T -> I (in Ref. 1).
CONFLICT	22	22		F -> S (in Ref. 1).
CONFLICT	204	204		$A \rightarrow T \text{ (in Ref. 1).} \longrightarrow A$
CONFLICT	389	389		S -> N (in Ref. 1).
CONFLICT	432	432		I -> V (in Ref. 1) 13

UniProt entr	derous				
•					C. STROJA-
CONFLICT	540	540		G -> S (in Ref. 1).	· 17)
STRAND	29	29	1		=
HELIX	32	35	4		
STRAND	39	43	5		
TURN	45	46	2		
STRAND	49	54	6		
HELIX	57	60	4		
TURN	61	61	1		
STRAND	65	74	10		
TURN	76	79	4		
STRAND	81	85	5		
TURN	86	88	3		
STRAND	89	93	5		
STRAND	97	102	6		
STRAND	110	115	6		
STRAND	122	131	10		
TURN	132	133	2		
STRAND	137	145	9		
TURN	147	148	2		
STRAND	151	154	4		
STRAND	157	161	5		
HELIX	164	170	7		
TURN	171	172	2		
STRAND	173	180	8		
STRAND	189	201	13		
HELIX	213	216	4		
HELIX	218	223	6		
HELIX	225	227	3		
TURN	228	229	2		
HELIX	230	235	6		
HELIX	243	246	4		
TURN	247	247	1		
STRAND	249	255	7		
STRAND	262	262	1		
STRAND	270	273	4		
TURN	276	277	2		
HELIX	280	290	11		
TURN	291	291	1		
HELIX	294	298	5		
HELIX	307	311	5		
TURN	312	312	1		
HELIX	313	325	13		
TURN HELIX	326	327 332	2 3		
HELIX	330 333	332 342	3 10		
TURN	344	342	4		
HELIX	344	356	9		
HELIX	358	376	19		
	550	370	17		

TURN	377	378	2
TURN	380	381	2
HELIX	384	387	4
TURN	388	389	2
STRAND	392	396	5
HELIX	408	410	3
TURN	411	412	2
STRAND	414	418	5
HELIX	422	424	3
TURN	436	437	2.
TURN	440	441	2
HELIX	444	456	13
TURN	457	458	2
STRAND	459	467	9
HELIX	469	477	9
TURN	478	478	1
HELIX	489	491	3
STRAND	494	497	4
HELIX	500	504	5
TURN	505	506	2
STRAND	508	508	1
TURN	514	515	2
STRAND	520	520	1
STRAND	522	529	8
HELIX	530	535	6
STRAND	536	538	3
TURN	543	544	2
TURN	546	547	2
HELIX	548	556	9
TURN	557	557	1
STRAND	566	570	5
TURN	573	574	2
STRAND	577	581	5
HELIX	583	587	5
TURN	588	588	1
STRAND	590	593	4
TURN	600	601	2
TURN	603	604	2
HELIX	609	611	3
HELIX	614	617	4
TURN	618	619	2
STRAND	626	626	1

Sequence information

Length: 638 AA [This is the length of the unprocessed precursor]

Molecular weight: 69284 Da [This is the MW of the unprocessed precursor]

CRC64: **7B9AAD56A27C700A** [This is a checksum on the sequence]

 $\frac{10}{\text{MHLTPHWIPL}} \quad 20 \quad 30 \quad 40 \quad 50 \quad 60$ MHLTPHWIPL VASLGLLAGG SFASAAEEAF DLWNECAKAC VLDLKDGVRS SRMSVDPAIA

7 <u>0</u> DTNGQGVLHY		9 <u>0</u> LKLAIDNALS			
13 <u>0</u> SWSLNWLVPI		15 <u>0</u> FIHELNAGNQ			
19 <u>0</u> HESNEMQPTL		21 <u>0</u> MAQAQPRREK			
		27 <u>0</u> DLDIKPTVIS			
		33 <u>0</u> ALYLAARLSW			
37 <u>0</u> ARLALTLAAA		39 <u>0</u> GNDEAGAASA			
43 <u>0</u> TGAEFLGDGG		45 <u>0</u> NWTVERLLQA			
49 <u>0</u> RARSQDLDAI		51 <u>0</u> ALAYGYAQDQ		54 <u>0</u> SSLPGFYRTG	
55 <u>0</u> LTLAAPEAAG		57 <u>0</u> PLRLDAITGP	_	 60 <u>0</u> VIPSAIPTDP	
61 <u>0</u> RNVGGDLDPS	_	63 <u>0</u> ALPDYASQPG	KPPREDLK		P11439 in FASTA format

View entry in original Swiss-Prot format View entry in raw text format (no links) Report form for errors/updates in this Swiss-Prot entry

BLAST submission on BLAST ExPASy/SIB or at NCBI (USA)

Sequence analysis tools: ProtParam, ProtScale, Compute pI/Mw, PeptideMass, PeptideCutter, Dotlet (Java)

ScanProsite, MotifScan

Search the SWISS-MODEL Repository

📤 ExPASy H	Site	Map	Search E	C	ontact	is Swiss-Prot			
Hosted by NCSC Mirror Sites:		Australia	Bolivia	Brazil <u>new</u>	Canada	China	Korea	Switzerlan	dTaiwan