Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 4: May 8th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

4.1 Generating Series

General Counting Problem:

Suppose S is a set, and for each element $\sigma \in S$ has associated a non-negative weight $w(\sigma)$. Given $k \in (0, 1, 2, ...)$, how many elements in s have weight k?

Example 4.1 General Counting problem with $S = all \ subsets \ of (1,2,3,)$.

$$w(\sigma) = \mid \sigma \mid$$

$$S = \langle \emptyset, \{1\}, \{2\}, \{3\}, \{2, 1\}, \{2, 3\}, \{1, 2, 3\} \rangle$$

k	Number of σ with $w(\sigma) = k$
0	1
1	3
2	3
3	1

Instead of using a table we encode this information as a coefficients of a polynomial

Definition 4.2 Let S be a set, suppose each $\sigma \in S$ has a non-negative weight $w(\sigma)$. The <u>generating series</u> for S with respect to w is defined as:

$$\phi_s(x) = \sum_{\sigma inS} x^{w(\sigma)}$$

Equivalently, this is equal to

$$\phi_s(x) = \sum_{n \ge 0} a_n x^n$$

where a_n denotes the number of elements in S that have weight k

Problem 4.3 Find the generating series of the previous example

σ	$w(\sigma)$	$x^{w(\sigma)}$	
Ø	0	x^0	
{1}	1	x^1	
{2}	1	x^1	
{3}	1	x^1	
$\boxed{\{1,2\}}$	2	x^2	
$\{1,3\}$	2	x^2	
$\{2,3\}$	2	x^2	
$\{1, 2, 3\}$	3	x^3	

$$\phi_S(x) = x^0 + 3x^1 + 3x^2 + x^3$$

In general, if S is the set of all subsets of (1, ..., n), $w(\sigma) = |\sigma|$ then,

$$\phi_S(x) = \binom{n}{0} x^0 + \binom{n}{1} x^1 + \ldots + \binom{n}{n} x^n = (1+x)^n$$

Theorem 4.4 Let S be a finite set with a weight function w.

- (a) $\phi_S(1) = |S|$
- (b) $\phi_S'(1) = sum \text{ of all weights} = \sum_{\sigma \in S} w(\sigma)$
- (c) $\frac{\phi'S(1)}{\phi_S(1)} = average \ weight = \frac{1}{|S|} \sum_{\sigma \in S} w(\sigma)$

Example 4.5 $S = all \ subsets \ of \langle 1, \ldots, n \rangle$

$$\begin{split} &w(\sigma) = \mid \sigma \mid \\ &\phi_S(x) = (1+x)^n \\ &\phi_S(1) = (1+1)^n = 2^n \\ &\phi_S' = ((1+x)^n) = n(1+x)^{n-1} \\ &\phi_S' = n \cdot (1+1)^{n-1} = n \cdot 2^{n-1} = sum \ of \ all \ weights \quad average = \frac{n \cdot 2^{n-1}}{2^n} = \frac{n}{2} \end{split}$$

Proof:

(a)

$$\phi_S(1) = \sum_{\sigma \in S} (1)^{w(\sigma)} = \sum_{\sigma \in S} 1 = |S|$$

(b)

$$\phi_S'(x) = (\sum_{\sigma \in S} x^{w(\sigma)}) \mathbf{1} = \sum_{\sigma \in S} w(\sigma) \cdot x^{w(\sigma) - 1}$$

$$\phi_S'(1) = \sum_{\sigma \in S} w(\sigma) 1^{w(\sigma) - 1} = \sum_{\sigma \in S} w(\sigma)$$

(c) Follows from (a) and (b)

4.2 Formal Power Series

Definition 4.6 Given a sequence a_n, a_1, a_3, \ldots of rational numbers (i.e. $\frac{2}{3}, 4$, and not π)

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n \ge 0} a_n x^n = \sum_{n = 0} a_n X^n$$

Example 4.7

$$(1,1,\ldots,) \to P(x) = 1 + x + x^2 + x^3 + \ldots = \sum_{n=0}^{\infty} x^n$$

$$(0,1,2,3,\ldots) \to Q(x) = 0 + x + 2x^2 + 3x^3 + \ldots = \sum_{n\geq 0} nx^n$$

$$P(x) + Q(x) = (1+0) + (1+1)x + (1+2)x^2 + \ldots$$