一、単	项选择题(35~	分, 単选题每题	2分,多选题每	:题3分)					
1,	下面关于算法	的说法错误的点	是()。						
A.	算法必须有输	前出							
В.	算法必须在计	算机上实现							
C.	算法不一定有	输入							
D.	算法必须在有	「限步执行后能	结束						
2,	2 、 $O(n)$ 表示关于 n 的线性阶,那么 $\sum_{1 \le k \le n} O(n)$ 的阶是()。								
Α.	0(n) E	3. $0(n^2)$	C. $O(n^3)$	D. $0(1.5n^2)$					
3、	3、以下关于渐进记号的性质是正确的是()。								
A.	A. $f(n) = \Theta(g(n)), g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$								
B.	$f(n) = \mathcal{O}(g(n))$	g(n) = O(h(n))	$\Rightarrow h(n) = O(f(n))$)					
C.	O(f(n))+O(g(n))	$(n)) = O(\min\{f(n)\})$	$(n), g(n)\}$						
D.	$f(n) = \mathcal{O}(g(n))$	\Leftrightarrow g(n) = O(f(n))	n))						
4、	某算法的时间	复杂度表达式	为 T(n)=an²+bnlg	gn+cn+d,其中,n	为问题的规模, a、				
b、c和	d为常数,用	O 表示其渐近	时间复杂度为() 。					
Α.	O(n)	B. O(nl	$(gn+n^2)$						
C.	$O(n^2)$	D. O(<i>n</i>	lgn)						
5、	考虑下面函数	:							
f(x)	$n)=2^n, \ g(n)$	= n!, h(n) =	$n^{\log n}$						
下	面哪个选项对ƒ	f(n)、 $g(n)$ 和 h	(n)渐近行为的抗	描述是正确的() 。				
Α.	f(n) = 0(g(n)))); g(n) = 0	(h(n))						
В.	$f(n) = \Omega(g(n))$	g(n) = 0	(h(n))						

C. g(n) = O(f(n)); h(n) = O(f(n))

```
D. h(n) = O(f(n)); g(n) = \Omega(f(n)).
6、考虑下面 C 函数,令n \ge m。该函数会进行多少次递归调用?(
Int gcd(int n, int m) {
   If (n\%m ==0)
       Return m:
   N = n\%m;
   Return gcd(m, n);
}
                              B. \Omega(n)
A. \Theta(\log_2 n)
C. O(1)
                              D. \Theta(n)
```

7、一组记录的排序码为 {46, 79, 56, 38, 40, 84}, 则利用堆排序(建立大根堆) 的方法建立的初始堆为()。

A. 79, 46, 56, 38, 40, 80

B. 84, 79, 56, 38, 40, 46

C. 84, 79, 56, 46, 40, 38

D. 84, 56, 79, 40, 46, 38

8、对一组数据(84, 47, 25, 15, 21)排序,数据的排序次序在排序过程中变化 如下: (1) 47 84 25 15 21 (2) 25 47 84 15 21 (3) 15 25 47 84 21 (4) 15 21 25 47 84 则采用的排序方法是(

- A. 选择排序
- B. 快速排序 C. 插入排序 D. 堆排序

9、设问题 P 的输入规模是 n, 下述三个算法是求解 P 的不同的分治算法. 算法 1: 在常 数时间将原问题划分为规模减半的5个子问题,递归求解每个子问题,最多用线性时间将 子问题的解综合而得到原问题的解. 算法 2: 先递归求解 2 个规模为 n-1 的子问题, 最多用 常量时间将子问题的解综合得到原问题的解. 算法 3: 在常数时间将原问题划分为规模 n/3 的 9 个子问题,递归求解每个子问题,最多用 $O(n^3)$ 时间将子问题的解综合得到原问题的 解. 设最坏情况下时间复杂度最低的算法为 A, A 在最坏情况下的时间复杂度是 O

() .

A. $nlog_5n$

B. n^{log_25}

C. logn D. n

- 10、栈和队列的共同点是()。
- A. 都是先进先出
- B. 都是先进后出
- C. 只允许在端点处插入和删除元素
- D. 没有共同点

11、有n项任务的集合T = $\{1,2,...,n\}$,每项任务需要先放到机器 A 上进行预处理,然后再放到机器 B 上加工。第i(i=1,2,...,n)项任务的预处理和加工时间分别是a(i)和b(i),这里的a(i)和b(i)都是正整数。如果机器 A 只有 1 台,机器 B 的数量不限,即只要任务 i 在机器 A 上加工完毕,就可以立刻放到某台机器 B 上加工。问如何安排这些任务在机器 A 上的处理顺序,以使得总的加工时间最短?(总加工时间的含义是:从 0 时刻机器 A 开始预处理,到 t 时刻最后一台机器 B 停止工作,即全部任务在机器 A、B 上的加工都结束,那么总加工时间就是 t。)考虑对该调度问题使用贪心法求解,在机器 A 上安排加工顺序,正确的贪心策略是()。

- A. 在机器 A 上加工时间短的优先安排
- B. 在机器 B 上加工时间长的优先安排
- C. 在机器 A 的加工时间减去在机器 B 的加工时间,这个差越小的越优先安排
- D. 在机器 A 和 B 上加工时间之和小的优先安排

12、下述 Find-Second-Min 算法是找第二小算法,输入是 n 个不等的数构成的数组 S,输出是第二小的数 SecondMin。在最坏情况下,该算法做多少次比较? 从下述备选的答案中选择正确答案的标号填入()内。

Find-Second-Min(S, n)

- 1. if S[1] < S[2]
- 2. then $min \leftarrow S[1]$, $SecondMin \leftarrow S[2]$
- 3. else $min \leftarrow S[2]$, $SecondMin \leftarrow S[1]$
- 4. for $i \leftarrow 3$ to n do
- 5. if S[i] < SecondMin
- 6. then if S[i] < min
- 7. then $SecondMin \leftarrow min, min \leftarrow S[i]$
- 8. else $SecondMin \leftarrow S[i]$
- A. 2*n* B. *n*
- C. 2n-1 D. 2n-3
- 13、下列关于不确定知识描述错误的是()。
- A. 若对某些输入实例,算法均能终止于正确的输出,则该算法必定是正确的。
- B. 算法的最坏运行时间是指所有输入实例的最长运行时间。
- C. 算法的时间复杂度为O(1)是指算法的运行时间与输入实例的大小n无关。
- D. 长度为 n 的序列执行插入排序算法,在特定输入实例下,排序时间复杂度为 $\Theta(n)$ 。
- 14、一条水平方向的公路上有 n 个地点,设公路的起点位置为 0,对于i=1,2,...,n,地点 i 到起点的距离是 d_i ,且满足 $0 < d_1 < d_2 < \cdots < d_n$ 地点 i 放置广告牌的收益是 v_i 。上述距离和收益都是正整数。如果要求任意两个广告牌之间的距离至少是 5 公里,应该如何选择放置广告牌的位置使得总收益达到最大?使用动态规划算法,设考虑前 k 个地点的最大收益是F(k), k=1,2,...,n,那么递推方程是()。

A.
$$F(k) = \max\{F(k), F(k-1) + v_k\}$$

B.
$$F(k) = \max\{F(k-1), F(k-5) + v_k\}$$

C.
$$F(k) = \max\{F(k-1), F(t(k)) + v_k\}, t(k) = \max\{j | 1 \le j < k, d_k - d_j \ge 5\}$$

D.
$$F(k) = \max\{F(k-1), F(j) + v_k\}, d_k - d_j \ge 5, j = 1, 2, ..., k - 1$$

15、给定含有个不同的数的数组 $L = [x_1, x_2, ..., x_n]$ 。如果 $L + x_i (1 < i < n)$,使得 $x_1 < x_2 < ... < x_{i-1} < x_i$,并且 $x_i > x_{i+1} > ... > x_n$,则称 L 是单峰的,并称 x_i 是 L 的"峰顶"。现在已知 L 是单峰顶,请把 a、b、c 三行代码按正确的顺序补全到算法中,使得算法正确找的 L 的峰顶()。

- a. return Search(L, k+1, n)
- b. return Search(L, 1, k-1)
- c. return L[k]

Search(L, s, t)

- 1.k = (s + t) / 2;
- 2. if (L[k] > L[k-1]) and (L[k] > L[k+1])
- 3. then _____
- 4. else if (L[k] > L[k-1]) and (L[k] < L[k+1])
- 5. then _____
- 6. else _____
- A. c,a,b

B. c,b,a

C. a,b,c

D. b, a, c

16、给定下述关于分治策略算法的时间复杂度T(n)的递推方程

$$\begin{cases} T(n) = 4T\left(\frac{n}{2}\right) + n^2 \log n \\ T(1) = 1 \end{cases}$$

请问该递推方程的解是 $T(n) = \Theta$ (

A. $n^2 log n$

B. $nlog^2n$

C. nlogn

D. $n^2 log^2 n$

17、(多选)对于给定函数f(x)和g(x)如下表,

序号	f(n)	g(n)	备注
1	$f(n) = \log^k n$	g(n) = n	其中 k 为常数
2	$f(n) = \sqrt{n}$	$g(n) = n^{sinn}$	其中 sin 表示正弦函数
3	$f(n) = \log(n!)$	$g(n) = \log(n^n)$	无
4	$f(n) = \log^2 n$	$g(n) = \sum_{k=1}^{n} \frac{1}{k}$	无
5	$f(n) = n^{\log c}$	$g(n) = c^{\log n}$	无

其中满足关系f(n) = O(g(n))的组号是()

A. 1 B. 2 C. 3 D. 4

- 二、填空(20分,每空2分)
 - 1、给定下述关于分治策略算法的时间复杂度T(n)的递推方程

$$\begin{cases} T(n) = 4T\left(\frac{n}{2}\right) + n^2 \log n \\ T(1) = 1 \end{cases}$$

E. 5

从上述方程看出划分后的子问题有()个?

- 2、根据渐进性,下列三个时间复杂性函数 1: $21 + \frac{1}{n}$ 、2: $10 \lg n^3$ 、3: $\lg 3^n$ 时间复杂度最大的是(只写标号 1、2 或 3)(
 - 3、插入排序的最好时间复杂度是 O()
- 4、一组记录的关键码为 (46,79,56,38,40,50),则利用快速排序的方法,以最后个记录为划分元素得到的一次划分结果为(以英文逗号间隔)()。)。
 - 5、对于双向链表,在两个结点之间插入一个新结点需修改的指针共()个
 - 6、动态规划算法通常用来求解())问题。
 - 7、分治模式在每层递归时都有三个步骤: ()、解决和合并。
- 8、红黑树是许多平衡搜索树的一种,可以保证在最坏情况下基本动态集合操作的时间复杂度为O()(从下面的选项中选取,只写标号1或2或3或...)

1:logn; 2: nlogn; 3: n; 4: n^2 ; 5: n^2 logn; 6: n log^2n ; 7: log^2n ; 8: $lg3^n$

9、快速排序虽然最坏情况时间复杂度很差,但它是实际排序应用中最好的选择,因为它的平均性能好:它的期望时间复杂度是Θ()。(从下面的选项中选取,只写标号1或2或3或...)

1:logn; 2: nlogn; 3: n; 4: n^2 ; 5: n^2 logn; 6: n log^2n ; 7: log^2n ; 8: $lg3^n$ 10、动态规划算法和贪心算法都需要证明其具有() 性质。