

DPP - 1 (Vectors)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/43

Video Solution on YouTube:-

https://youtu.be/odnOvjKGVqQ

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/84

- Q 1. Two vectors are said to be equal only if they have:
 - (a) Same magnitude and same direction (b) Same magnitude and opposite direction
 - (c) Same magnitude only
- (d) Same direction only
- Q 2. Vectors shown in figure are:

- (a) Parallel vector
- (b) Antiparallel vector
- (c) Equal vector
- (d) None of these
- Q 3. Find angle between vectors $\vec{A} \& \vec{B}$:

- $\theta = 30^{\circ}$

- (a) 150°
- (b) 120°
- (c) 60^{0}
- (d) 30^{0}
- Q 4. Vectors \vec{A} , \vec{B} & \vec{C} forms an equilateral triangle. Then angles between them are:

- (a) 60° , 60° , 60°
- (b) 60° , 120° , 60°
- (c) 120^{0} , 120^{0} , 120^{0}
- (d) None of these
- Q 5. Two vectors have magnitudes 6 and 8 units respectively. Find the magnitude of the resultant vector if the angle between vectors is 60° :
 - (a) 10 unit

(b) $2\sqrt{13}$ unit

hysicsaholics

(c) $2\sqrt{37}$ unit

(d) $2\sqrt{2}$ unit

Given that $\vec{A} + \vec{B} + \vec{C} = 0$. Out of three vectors, two are equal in magnitude and the Q 6. magnitude of third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. Then, the angles between the vectors are given by.

(a) 30° , 60° , 90°

(b) 45° , 45° , 90°

(c) 45° , 60° , 90°

(d) 90° , 135° , 135°

Two non-zero vectors \vec{A} and \vec{B} are drawn from a common point and $\vec{C} = \vec{A} + \vec{B}$, then Q 7. which of the option incorrect regarding the angle between \vec{A} and \vec{B}

(a) 90° if $C^2 = A^2 + B^2$

(b) Greater than 90° if $C^{2} < A^{2} + B^{2}$

(a) 90° II $C^2 = A^2 + B^2$ (c) Greater than 90° if $C^2 > A^2 + B^2$

(d) Less than 90° if $C^2 > A^2 + B^2$

A vector **a** makes 30° , and vector **b** makes 120° angle with the x-axis. The magnitude Q 8. of these vectors are 3 unit and 4 unit, respectively. The magnitude of resultant vector is:

(a) 5 unit

(b) 4 unit

(c) 3 unit

- (d) 7 unit
- Two Vectors having equal magnitude of 5 units, have an angle of 60° between them. Q 9. Find the magnitude of their resultant vector and its angle α from one of the vectors:

(a) 8.66 unit, 90°

(b) 8.66 unit, 30°

(c) $16.8 \text{ unit}, 30^{\circ}$

- (d) 8.66 unit, 45⁰
- Q 10. A force of 6 N and another of 8 N can be applied together to produce the effect of a single force of:

(a) 1 N

(b) 11 N

(d) $20 \, \text{N}$

Answer Key

Q.1 a Q.2 b	Q.3 d	Q.4 c	Q.5 c	
-------------	-------	-------	-------	--

P hysicsaholics

Q.6 d Q.7 c Q.8 a Q.9 b Q.10 b

