Pondichéry. 2017. Enseignement spécifique. Corrigé

EXERCICE 1

Partie A

1) D'après la formule des probabilités totales

$$p(C) = p(A) \times p_A(C) + p(\overline{A}) \times p_{\overline{A}}(C) = 0,98x + 0,95(1-x) = 0,03x + 0,95.$$

2) Si de plus P(C) = 0.96, alors 0.03x + 0.95 = 0.96 puis 0.03x = 0.01 ou encore $x = \frac{1}{3}$. Dans ce cas, $p(A) = \frac{1}{3}$ et $p(\overline{A}) = 1 - \frac{1}{3} = \frac{2}{3} = 2 \times p(A)$.

Si 96% des tablettes sont commercialisables, la probabilité que la tablette provienne de la chaîne B est deux fois supérieure à la probabilité que la tablette provienne de la chaîne A.

Partie B

- 1) On sait que l'espérance de la loi exponentielle de paramètre λ est $\frac{1}{\lambda}$. Ici, $\frac{1}{\lambda} = 5$ ou encore $\lambda = \frac{1}{5} = 0, 2$.
- 2) Pour $t \geqslant 0$

$$P(Z \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = 1 - e^{-\lambda t} = 1 - e^{-0.2t},$$

puis

$$P(Z > t) = 1 - P(Z \le t) = 1 - (1 - e^{-0.2t}) = e^{-0.2t}.$$

En particulier, $P(Z > 2) = e^{-0.2 \times 2} = e^{-0.4} = 0.670$ arrondie au millième.

3) On sait que la loi exponentielle de paramètre λ est une loi sans vieillissement ou encore

$$P_{Z>3}(Z>5) = P_{Z>3-3}(Z>5-3) = P(Z>2) = e^{-0.4} = 0.670$$
 arrondie au millième.

Partie C

1) La calculatrice (ou le cours) fournit $P(83 \le X \le 87) = P(\mu - \sigma \le X \le \mu + \sigma) = 0,683$ arrondie au millième.

La teneur en cacao annoncée sur l'emballage est de 85%. La probabilité demandée est $1-P(83 \le X \le 87)=0,317$ arrondie au millième.

2) Pour des raisons de symétrie,

$$P(85 - a \le X \le 85 + a) = 1 - P(X \le 85 - a) - P(X \ge 85 + a) = 1 - 2P(X \ge 85 - a)$$

et donc

$$P(85 - a \le X \le 85 + a) = 0.9 \Leftrightarrow 1 - 2P(X \le 85 - a) = 0.9 \Leftrightarrow P(X \le 85 - a) = 0.05.$$

La calculatrice fournit $85 - \alpha = 81,7102...$ puis $\alpha = 3,290$ arrondi au millième. Ceci signifie que la probabilité que la teneur en cacao soit différente d'au plus 3,3% de la valeur affichée est d'environ 0,95.

3) Ici, n=550 et on suppose que p=0,9. On note que $n\geqslant 30$, $np=495\geqslant 5$ et $n(1-p)=55\geqslant 5$. Un intervalle de fluctuation asymptotique au seuil 95% est

$$\left\lceil p-1,96\sqrt{\frac{p(1-p)}{n}};p+1,96\sqrt{\frac{p(1-p)}{n}}\right\rceil = \left\lceil 0,9-1,96\sqrt{\frac{0,9\times0,1}{550}};0,9-1,96\sqrt{\frac{0,9\times0,1}{550}}\right\rceil = \left[0,874;0,926\right]$$

en arrondissant de manière à élargir légèrement l'intervalle. La fréquence observée sur l'échantillon est $f = 1 - \frac{80}{550} = \frac{470}{550} = 0,8545...$

La fréquence f n'appartient pas à l'intervalle de fluctuation et on peut donc affirmer que la chocolaterie ment au risque de se tromper de 5%.

EXERCICE 2

1) a) Le discriminant de l'équation (E) est

$$\Delta = (-6)^2 - 4c = 36 - 4c = 4(9 - c).$$

Puisque c > 9, on a $\Delta < 0$ et donc l'équation (E) admet deux solutions complexes non réelles conjuguées z_A et z_B .

$$\mathbf{b)} \text{ Puisque } \Delta = -4(c-9) \text{ avec } c-9 > 0, \text{ on a } z_A = \frac{6+i\sqrt{4(c-9)}}{2\times 1} = \frac{6+2i\sqrt{c-9}}{2} = 3+i\sqrt{c-9} \text{ et } z_B = 3-i\sqrt{c-9}.$$

2) OA =
$$|z_A| = |3 + i\sqrt{c - 9}| = \sqrt{3^2 + (\sqrt{c - 9})^2} = \sqrt{9 + c - 9} = \sqrt{c}$$

2)
$$OA = |z_A| = |3 + i\sqrt{c - 9}| = \sqrt{3^2 + (\sqrt{c - 9})^2} = \sqrt{9 + c - 9} = \sqrt{c}$$
.
De même, $OB = |3 - i\sqrt{c - 9}| = \sqrt{3^2 + (-\sqrt{c - 9})^2} = \sqrt{9 + c - 9} = \sqrt{c}$ (on peut aussi écrire $OB = |z_B| = |\overline{z_A}| = |z_A| = OA$).

Puisque OA = OB, le triangle OAB est isocèle en O.

3) BA =
$$|z_A - z_B| = |2i\sqrt{c-9}| = 2\sqrt{c-9}|i| = 2\sqrt{c-9}$$
. Puis

$$BA^{2} = OA^{2} + OB^{2} \Leftrightarrow \left(2\sqrt{c-9}\right)^{2} = \left(\sqrt{c}\right)^{2} + \left(\sqrt{c}\right)^{2}$$
$$\Leftrightarrow 4(c-9) = 2c \Leftrightarrow 4c - 36 = 2c \Leftrightarrow 2c = 36$$
$$\Leftrightarrow c = 18.$$

De plus, on a effectivement 18 > 9. D'après la réciproque du théorème de Pythagore, si c = 18, le triangle OAB est rectangle en O.

EXERCICE 3

Partie A

1) Si $x \in [-2,5;2,5]$, $0 \le x^2 \le 2,5^2$ ou encore $0 \le x^2 \le 6,25$ puis $-12,5 \le -2x^2 \le 0$ et enfin $1 \le -2x^2 + 13,5 \le 13,5$. En particulier, si $x \in [-2,5;2,5]$, alors $-2x^2 + 13,5 > 0$.

f est de la forme $x \mapsto \ln(u(x))$ avec $u(x) = -2x^2 + 13,5$. D'après ce qui précède, pour tout x de [-2,5;2,5], u(x) > 0. Donc, f est dérivable sur [-2,5;2,5] et pour tout x de [-2,5;2,5],

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{-4x}{-2x^2 + 13.5}.$$

2) Pour $x \in [-2,5;2,5]$, $-2x^2 + 13,5 > 0$. Donc, pour $x \in [-2,5;2,5]$, f'(x) est du signe de -4x ou encore du signe de -x. Donc, la fonction f' est strictement positive sur [-2,5;0] et strictement négative sur [0;2,5] puis la fonction f' est strictement croissante sur [-2,5;0] et strictement décroissante sur [0,;2,5]. De plus, $f(-2,5) = \ln(-2 \times 2,5^2 + 13,5) = \ln(1) = 0$. On en déduit le tableau de variations de f:

х	-2,5		0		2,5
f'(x)		+	0	_	
f	ln(13,5)		→ 0		

Puisque f est croissante sur [-2,5;0], si $-2,5 \le x \le 0$, alors $f(x) \ge f(-2,5)$ ou encore $f(x) \ge 0$. Ainsi, la fonction f est positive sur [-2,5;0]. De même, la fonction f est positive sur [0;2,5] et finalement sur [-2,5;2,5].

Partie B

- 1) Soient A et B les points de la courbe $\mathscr C$ d'abscisses respectives 2,5 et 0. A a donc pour coordonnées (2,5;0) et B a pour coordonnées $(0; \ln(13,5))$. Donc, OA = 2,5 et $OB = \ln(13,5)$ avec $\ln(13,5) = 2,6...$ On a $OA \neq OB$ et donc, la courbe $\mathscr C$ n'est pas un arc de cercle de centre O.
- 2) On note \mathcal{D} l'ensemble des points du plan situés entre l'axe des abscisses et la courbe \mathscr{C} . Puisque la courbe \mathscr{C} est symétrique par rapport à l'axe des ordonnées, l'aire de \mathcal{D} , exprimée en unités d'aire est le double de celle de la partie de \mathcal{D} située à droite de l'axe (Oy).

Puisque la fonction f est positive sur [0;2,5], cette aire exprimée en unités d'aire est égale à $2\int_0^{2,5} f(x) dx$. Enfin, l'unité de longueur est de 2m et donc l'unité d'aire est égale à $4m^2$. Finalement, l'aire de \mathcal{D} , exprimée en m^2 , notée \mathcal{A} est

$$\mathscr{A} = 4 \times 2 \int_{0}^{2,5} f(x) dx = 8 \int_{0}^{2,5} f(x) dx.$$

3) a) Tableau complété

La case située ligne k = 1, colonne R, est $R = \frac{2.5}{50} f\left(\frac{2.5}{50}\right) = 0,130$ 115 puis en colonne S, S = 0 + R = 0,130 115. En ligne k = 4, la colonne R contient $\frac{2.5}{50} f\left(\frac{2.5}{50} \times 4\right) = 0,129$ 837. En colonne S, on écrit le résultat de 0,390 144 + 0,129 837 soit 0,518 981.

k	R	S	
1	0, 130 115	0, 130 115	
2	0, 130 060	0, 260 176	
3	0, 129 968	0,390 144	
4	0, 129 837	0,518 981	
:		:	
24	0, 118 137	3,025 705	
25	0, 129 837	3, 142 675	
:		:	
49	0,020 106	5, 197 538	
50	0	5, 197 538	

L'algorithme affiche S = 5, 197538.

b) On prend donc
$$\mathfrak{a}=5,197$$
 538. On a $\frac{f(0)-f(2,5)}{\mathfrak{n}}=\frac{\ln(13,5)}{50}$. D'après l'énoncé,
$$5,197$$
 538 $\leqslant I \leqslant 5,197$ 538 $+\frac{\ln(13,5)}{50}$,

$$5,197538 \leqslant I \leqslant 5,197538 + \frac{\ln(13,5)}{50}$$

et donc, puisque $\mathcal{A} = 8I$,

$$8 \times 5,197538 \leqslant \mathscr{A} \leqslant 8 \times \left(5,197538 + \frac{\ln(13,5)}{50}\right),$$

et donc

$$41,580\ 304 \leqslant \mathcal{A} \leqslant 41,996\ 735.$$

L'aire de la zone de creusement est donc 42m^2 au m^2 près.

EXERCICE 4.

Partie A

- 1) En B3, on a écrit $=2^B2-A2+3$ et en C3, on a écrit $=2^A3$.
- 2) Il semble que $\lim_{n\to+\infty} u_n = +\infty$.

D'autre part,
$$\frac{u_{10}}{v_{10}} = 3,007 \ 8...$$
 puis $\frac{u_{11}}{v_{11}} = 3,004 \ 3...$ puis $\frac{u_{12}}{v_{12}} = 3,002 \ 4...$ et $\frac{u_{13}}{v_{13}} = 3,001 \ 3...$ Il semble que $\lim_{n \to +\infty} \frac{u_n}{v_n} = 3$.

Partie B

- 1) Montrons par récurrence que pour tout entier naturel n, $u_n = 3 \times 2^n + n 2$.
 - $3 \times 2^0 + 0 2 = 3 2 = 1 = u_0$. Donc, l'égalité est vraie quand n = 0.
 - Soit $n \ge 0$.

$$\begin{split} u_{n+1} &= 2u_n - n + 3 \\ &= 2\left(3 \times 2^n + n - 2\right) - n + 3 \text{ (par hypothèse de récurrence)} \\ &= 3 \times 2 \times 2^n + 2n - 4 - n + 3 = 3 \times 2^{n+1} + n - 1 \\ &= 3 \times 2^{n+1} + (n+1) - 2. \end{split}$$

On a montré par récurrence que pour tout entier naturel $n, u_n = 3 \times 2^n + n - 2$.

- 2) Puisque 2 > 1, $\lim_{n \to +\infty} 2^n = +\infty$ puis $\lim_{n \to +\infty} 3 \times 2^n = +\infty$. D'autre part, $\lim_{n \to +\infty} n 2 = +\infty$. En additionnant, on obtient $\lim_{n \to +\infty} u_n = +\infty$.
- 3) Valeurs de \mathfrak{u}_n pour $\mathfrak{n}\geqslant 14.$ La calculatrice fournit

n	$\mathfrak{u}_{\mathfrak{n}}$
14	49 164
15	98 317
16	196 622
17	393 231
18	786 448
19	1 572 881

 u_{19} est le premier terme de la suite supérieur ou égal à 1 million.

Partie C

1) Soit n un entier naturel.
$$\frac{u_n}{v_n} = \frac{3 \times 2^n + n - 2}{2^n} = \frac{3 \times 2^n}{2^n} + \frac{n - 2}{2^n} = 3 + \frac{n - 2}{2^n}$$
. Ensuite,

$$\begin{split} \frac{u_{n+1}}{\nu_{n+1}} - \frac{u_n}{\nu_n} &= \left(3 + \frac{(n+1)-2}{2^{n+1}}\right) - \left(3 + \frac{n-2}{2^n}\right) = \frac{n-1}{2^{n+1}} - \frac{n-2}{2^n} \\ &= \frac{n-1}{2^{n+1}} - \frac{2(n-2)}{2^{n+1}} = \frac{n-1-2n+4}{2^{n+1}} = \frac{-n+3}{2^{n+1}}. \end{split}$$

 $\mathrm{Si}\ \mathrm{de}\ \mathrm{plus},\ n\geqslant 3,\ \mathrm{alors}\ \frac{-n+3}{2^{n+1}}\leqslant 0\ \mathrm{puis}\ \frac{u_{n+1}}{v_{n+1}}-\frac{u_n}{v_n}\leqslant 0.$

On a montré que la suite $\left(\frac{u_n}{v_n}\right)$ est décroissante à partir du rang 3.

2) Pour tout entier naturel n, $\frac{u_n}{v_n} = 3 + \frac{n}{2^n} - \frac{2}{2^n}$.

Pour $n \geqslant 4$, $0 < \frac{n}{2^n} \leqslant \frac{1}{n}$ et donc $0 \leqslant \frac{n}{2^n} \leqslant \frac{1}{n}$. Puisque $\lim_{n \to +\infty} \frac{1}{n} = 0$, le théorème des gendarmes permet d'affirmer que $\lim_{n \to +\infty} \frac{n}{2^n} = 0$.

D'autre part, $\lim_{n\to +\infty} 2^n = +\infty$ et donc $\lim_{n\to +\infty} \frac{2}{2^n} = 0$.

 $\mathrm{Finalement}\ \lim_{n\to+\infty}\frac{u_n}{\nu_n}=3+0-0=3.$

$$\lim_{n\to +\infty}\frac{u_n}{\nu_n}=3.$$

EXERCICE 5.

Le plan \mathscr{P} n'est parallèle à aucune des faces du cube car un vecteur normal à \mathscr{P} est le vecteur $\overrightarrow{n}\left(1,\frac{1}{2},\frac{1}{3}\right)$ qui n'est orthogonal à aucun des vecteurs \overrightarrow{AB} , \overrightarrow{AD} ou \overrightarrow{AE} .

1 ère solution. (on obtient les coordonnées exactes des différents sommets de la section)

- Intersection de \mathscr{P} avec (AB). Les points de (AB) sont les points de coordonnées $(\lambda, 0, 0)$. Un tel point appartient à \mathscr{P} si et seulement si $\lambda = 1$. Donc, $\mathscr{P} \cap (AB) = \{B\}$.
- Intersection de \mathscr{P} avec (EF). Le point E a pour coordonnées (0,0,1) et le point F a pour coordonnées (1,0,1). Le vecteur $\overrightarrow{\mathsf{EF}}$ a pour coordonnées (1,0,0). La droite (EF) admet pour représentation paramétrique $\begin{cases} x = \lambda \\ y = 0 \\ z = 1 \end{cases}, \ \lambda \in \mathbb{R}.$ Soit $M(\lambda,0,1)$ un point de (EF). $M \in \mathscr{P} \Leftrightarrow \lambda + \frac{1}{3} 1 = 0 \Leftrightarrow \lambda = \frac{2}{3}$. Donc $\mathscr{P} \cap (\mathsf{EF}) = \{\mathsf{I}\}$ où $\mathsf{I}\left(\frac{2}{3},0,1\right)$.

Mais alors, la section de la face ABFE par le plan $\mathscr P$ est le segment [BI].

• Intersection de \mathscr{P} avec (GH). Le point G a pour coordonnées (1,1,1) et le point H a pour coordonnées (0,1,1). Le vecteur \overrightarrow{GH} a pour coordonnées (-1,0,0). La droite (GH) admet pour représentation paramétrique $\begin{cases} x=1-\lambda \\ y=1 \\ z=1 \end{cases},$ $\lambda \in \mathbb{R}$. Soit $M(1-\lambda,1,1)$ un point de (GH). $M \in \mathscr{P} \Leftrightarrow (1-\lambda)\frac{1}{2}+\frac{1}{3}-1=0 \Leftrightarrow \lambda=\frac{5}{6}$. Donc $\mathscr{P} \cap (GH)=\{J\}$ où $J\left(\frac{1}{6},1,1\right)$.

La section de la face EFGH par le plan \mathscr{P} est le segment [IJ].

 $\begin{array}{l} \bullet \ \textbf{Intersection de} \ \mathscr{P} \ \textbf{avec} \ (CD). \ \textbf{Le point D a pour coordonnées} \ (0,1,0) \ et \ \textbf{le point C a pour coordonnées} \ (1,1,0). \\ \textbf{Le vecteur } \overrightarrow{DC} \ \textbf{a pour coordonnées} \ (1,0,0). \ \textbf{La droite} \ (DC) \ \textbf{admet pour représentation paramétrique} \left\{ \begin{array}{l} x = \lambda \\ y = 1 \\ z = 0 \end{array} \right., \ \lambda \in \mathbb{R}. \\ \textbf{Soit } \ M(\lambda,1,0) \ \textbf{un point de} \ (GH). \ M \in \mathscr{P} \Leftrightarrow \lambda + \frac{1}{2} - 1 = 0 \Leftrightarrow \lambda = \frac{1}{2}. \ \textbf{Donc} \ \mathscr{P} \cap (DC) = \{K\} \ \textbf{où} \ K\left(\frac{1}{2},1,0\right). \\ \end{array}$

La section de la face GHCD par le plan $\mathcal P$ est le segment [JK] puis la section de la face ABCD par le plan $\mathcal P$ est le segment [KB].

On peut alors tracer la section du cube par le plan \mathscr{P} .

2 ème solution. (On se contente de construire les sommets de la section en cherchant d'abord les intersections avec les axes qui sont bien plus simples à déterminer. C'est très certainement cette solution qui était attendue.)

Soit M(x,y,z) un point du plan \mathscr{P} . Si x=y=0, alors z=3, si x=z=0, alors y=2 et si y=z=0, alors x=1. Les points d'intersection du plan \mathscr{P} avec les droites (AB), (AD) et (AE) sont les points B, M et N de coordonnées respectives (1,0,0), (0,2,0) et (0,0,3). En traçant les droites (MB) et (NB), on obtient la trace [BK] du plan \mathscr{P} sur la face ABCD et la trace [BI] du plan \mathscr{P} sur la face ABFE.

La trace [KJ] du plan $\mathcal P$ sur la face CDGH est alors obtenue en traçant la parallèle à (BI) passant par K et enfin la trace du plan $\mathcal P$ sur la face EFGH est le segment [IJ].

