

Introduction into Deep Learning

Neural Networks and Multi-Layered Perceptron. Backpropagation. Tips and tricks for training NNs.

Fourth Machine Learning in High Energy Physics Summer School, MLHEP 2018, August 6--12

Alexey Artemov^{1,2}

¹Skoltech ²National Research University Higher School of Economics

Lecture overview

- The basic principle of deep learning
- The one you will be applying to all problems hereinafter
- Absolutely essential for all future material
- Step-by-step example of training a neural network via backpropagation
 - You'll need the knowledge when using the advanced architectures

Principles of linear vs. nonlinear models

Recap: linear models

$$W \cdot x + b \longrightarrow P(y = +1|x)$$

- *x*: features vector
- *W, b*: model slope and intercept

Linear dependency

Nonlinear dependencies

Somewhat nonlinear dependencies

Extremely nonlinear dependencies

Most of the dependencies in this world!

cat

Brain tumors as seen on MRI

Self-driving LiDAR 8

Extremely nonlinear dependencies

- Decouple feature extractor from the classifier
- Training and inference really can have multiple stages!

Feature extraction?

Feature extraction

- Manually extracted features
- Training is left with finding $\underset{\theta_1}{\operatorname{argmin}} L(y, P(y \mid x))$

Can it be done automatically?

- Automatically extracted features
- Training still needs to find $argminL(y, P(y \mid x))$
- Yet, we face a different challenge of finding θ_2

Try stacked linear models

$$h_j = \sum w_{ij}^h x_i + b_j^h \quad j \in \{1, 2, ..., n\}$$

• Compute features
$$h_j = \sum_i w_{ij}^h x_i + b_j^h \quad j \in \{1,2,\dots,n\}$$
• Eventual output of the model
$$y_{pred} = \sigma \left(\sum_j w_j^o h_j + b^o \right)$$
• Train by jointly minimizing loss to search for $\underset{w^h,w^0,b^h,b^0}{\operatorname{argmin}} L(y,P(y\mid x))$

$$\underset{w^{h},w^{0},b^{h},b^{0}}{\operatorname{argmin}} L(y,P(y \mid x))$$

A question

Will stacking linear functions improve quality?

Answer: no

- Why?
- A combination of linear models is a linear model:

$$P(y \mid x) = \sigma \left(\sum_{j} w_{j}^{o} \left(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h} \right) + b^{o} \right)$$

$$w'_{i} = \sum_{j} w_{j}^{o} w_{ij}^{h} \quad b' = \sum_{j} w_{j}^{o} b_{j}^{h} + b^{o}$$

$$P(y \mid x) = \sigma \left(\sum_{i} w'_{i} x_{i} + b' \right)$$

The nonlinearity

Linear model
$$\sigma(h)$$
 Logistic Regression $\sigma(h)$

• Compute features
$$h_j = \sigma \left(\sum_i w_{ij}^h x_i + b_j^h \right) \quad j \in \{1, 2, \dots, n\}$$

- Compute features $h_j = \sigma\left(\sum_i w_{ij}^h x_i + b_j^h\right)$ $j \in \{1, 2, ..., n\}$ Eventual output of the model $y_{pred} = \sigma\left(\sum_i w_j^o h_j + b^o\right)$ Compositionality: $P(y \mid x) = \sigma\left(\sum_i w_j^o \sigma\left(\sum_i w_{ij}^h x_i + b_j^h\right) + b^o\right)$

Effect of the nonlinearity

Types of nonlinearity

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Wei Di, https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/

Recap and terminology

- Layer is a building block for neural network:
 - Input layer
 - Dense layer: f(x) = Wx + b Nonlinearity layer: $f(x) = \sigma(x)$ Hidden layers

 - A few more: we will cover later
- Output layer
- Activation is layer output
 - i. e. some intermediate signal in the neural network

Potential caveats?

- Hardcore overfitting
- No "golden standard" for architecture
- Computationally heavy

The backpropagation algorithm

- Parameters:
 - Weight w and bias b
- Input: *x*
- Target: *y*

Also known as least squares linear regression

- Parameters:
 - Weight w and bias b
- Input: *x*
- Target: y

L is just a function of parameters, features and target:

$$L = f(y, g(x, w, b))$$

• Gradient?

$$\bullet \ \frac{\partial L}{\partial b} = \frac{\partial L}{\partial h} \cdot \frac{\partial h}{\partial b}$$

Let's fit

$$- y = 3, x = 1$$

$$- w = 0.1, b = 1$$

h	L	$\frac{\partial L}{\partial h}$	$\frac{\partial L}{\partial w}$	$\frac{\partial L}{\partial b}$	W	b

Forward pass

• Let's fit

$$- y = 3, x = 1$$

$$- w = 0.1, b = 1$$

h	L	$\frac{\partial L}{\partial h}$	$\frac{\partial L}{\partial w}$	$\frac{\partial L}{\partial b}$	W	b
1.1	1.80					

• Let's fit

$$- y = 3, x = 1$$

$$- w = 0.1, b = 1$$

h	L	$\frac{\partial L}{\partial h}$	$\frac{\partial L}{\partial w}$	$\frac{\partial L}{\partial b}$	W	b
1.1	1.80	-1.9				

$$- y = 3, x = 1$$

$$- w = 0.1, b = 1$$

		OW	Oit	O VV	UD	Oil	U
h	L	$\frac{\partial L}{\partial h}$	$\frac{\partial L}{\partial w}$	$\frac{\partial L}{\partial b}$	w	b	
1.1	1.80						

• Let's fit

$$- y = 3, x = 1$$

$$- w = 0.1, b = 1$$

h	L	$rac{\partial L}{\partial h}$	$\frac{\partial L}{\partial b}$	W	b
1.1	1.80	-1.9			

Initial

$$- w = 0.1, b = 1$$

- y = 3, x = 1

h	L	$\frac{\partial L}{\partial h}$	$\frac{\partial L}{\partial w}$	$\frac{\partial L}{\partial b}$	W	b
1.1	1.80	-1.9				

input dense squared error loss $h = x \cdot w + b$ $\frac{\partial h}{\partial b} = 1 \quad \frac{\partial h}{\partial w} = x \qquad \frac{\partial L}{\partial w} = \frac{\partial L}{\partial h} \cdot \frac{\partial h}{\partial w} \qquad \frac{\partial L}{\partial b} = \frac{\partial L}{\partial h} \cdot \frac{\partial h}{\partial b}$

• Let's fit

$$- y = 3, x = 1$$

$$- w = 0.1, b = 1$$

h
U

 ∂L

• Update parameters:

$$w = \eta \frac{\partial L}{\partial w}$$

$$b = \eta \frac{\partial L}{\partial b}$$

$$\eta = 0.2$$

			010			010
h	I	∂L	∂L	∂L	W	h
11	L	$\overline{\partial h}$	$\overline{\partial w}$	$\overline{\partial b}$	VV	D
1.1	1.80	-1.9	-1.9	-1.9	0.48	1.38

 $\frac{\partial w}{\partial w} - \frac{\partial h}{\partial h} \cdot \frac{\partial w}{\partial w}$

 $\partial L \quad \partial h$

 $\partial L \partial h$

After a few more updates...

Update parameters:

$$w = \eta \frac{\partial L}{\partial w}$$

$$b = \eta \frac{\partial L}{\partial b}$$

$$\eta = 0.2$$

h	L	$\frac{\partial L}{\partial h}$	$\frac{\partial L}{\partial w}$	$\frac{\partial L}{\partial b}$	W	b
1.1	1.80	-1.9	-1.9	-1.9	0.48	1.38
1.86	0.65	-1.14	-1.14	-1.14	0.71	1.61
2.32	0.23	-0.68	-0.68	-0.68	0.84	1.75

What if we go deeper? output hidden sigmoid softmax dense nonlinearity dense log-loss input 01 χ $L = y \cdot \log(o_1) +$ $h = x \cdot w + b$ $\log(o_2)(1-y) \log(e^{o_1} + e^{o_2})$

- Parameters:
 - Weight w and bias b
 - Weights v_1 , v_2

What if we go deeper?

hidden sigmoid input dense nonlinearity $h = x \cdot w + b \qquad q = \frac{1}{1 + e^{-h}}$

- Parameters:
 - Weight w and bias b
 - Weights v_1 , v_2

What if we go deeper?

- Parameters:
 - Weight w and bias b
 - Weights v_1 , v_2

$$\frac{\partial L}{\partial a} = v_1 \cdot \frac{\partial L}{\partial o_1} + v_2 \cdot \frac{\partial L}{\partial o_2}$$

$$\frac{\partial L}{\partial v_1} = \frac{\partial L}{\partial o_1} \cdot q$$

$$\frac{\partial L}{\partial v_2} = \frac{\partial L}{\partial o_2} \cdot q$$

What if we go deeper?

hidden sigmoid input dense nonlinearity

 $x \rightarrow h$

$$h = x \cdot w + b$$

 $=\frac{1}{1+e^{-h}}$

$$o_i = q$$
.

$$L = y \cdot \log(o_1) + \log(o_2)(1 - y) - \log(e^{o_1} + e^{o_2})$$

- Parameters:
 - Weight w and bias b
 - Weights v_1 , v_2

$$\frac{\partial L}{\partial h} = \frac{\partial L}{\partial q} \frac{e^{-q}}{(1 + e^{-q})^2}$$

Backpropagation: the algorithm

- Chain rule can be evaluated numerically!
- Compute the network output and the loss value
- Compute "dLoss" / "dActivation_of_output_layer"
- For each layer, starting from the last:
 - Compute "dActivation" / "dLayer_parameters","dActivation" / "dLayer_input"
 - Multiply it by "dLoss" / "dActivation", get "dLoss" /...
- Make optimization step for the parameters

Intermediate conclusion

- You can have any crazy layer as long as you can compute its gradient
- In fact: no need to compute the gradients by hand!
 - There are frameworks for that (e.g. theano, tensorflow, and pytorch)

Tricks for training deep neural models

Sigmoid activation

Sigmoid activation

Sigmoid activation

- Sigmoid neurons can saturate and lead to vanishing gradients
- Not zero-centered
- e^x is computationally expensive

Tanh activation

- Zero-centered
- But still pretty much like sigmoid

ReLU activation

- Fast to compute
- Gradients do not vanish for x > 0
- Provides faster convergence in practice!

ReLU activation

- Fast to compute.
- Gradients do not vanish for x>0.
- Provides faster convergence in practice!
- Not zero-centered.
- Can die: if not activated, never updates!

Leaky ReLU activation

- Will not die!
- $a \neq 1$

Maybe start with all zeros?

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial \sigma_1} \sigma_1 (1 - \sigma_1) \sigma_2$$

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial \sigma_1} \sigma_1 (1 - \sigma_1) \sigma_3$$

$$\sigma_2 \text{ and } \sigma_3 \text{ will always}$$

Maybe start with all zeros?

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial \sigma_1} \sigma_1 (1 - \sigma_1) \sigma_2$$

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial \sigma_1} \sigma_1 (1 - \sigma_1) \sigma_3$$

 σ_2 and σ_3 will always get the same updates!

- Maybe start with all zeros?
- Need to break symmetry!
- Maybe start with small random numbers then?
- But how small? $0.03 \cdot \mathcal{N}(0,1)$?

- Linear models work best when inputs are normalized.
- Neuron is a linear combination of inputs + activation.
- Neuron output will be used by consecutive layers.

• Let's look at the neuron output **before activation**: $\sum_{i=1}^{n} x_i w_i$.

• If $E(x_i) = E(w_i) = 0$ and we generate weights independently from inputs, then $E(\sum_{i=1}^{n} x_i w_i) = 0$.

But variance can grow with consecutive layers.

Empirically this hurts convergence for deep networks!

• Let's look at the variance of $\sum_{i=1}^{n} x_i w_i$:

• Let's look at the variance of $\sum_{i=1}^{n} x_i w_i$: i.i.d. w_i and mostly uncorrelated x_i

$$Var(\sum_{i=1}^{n} x_i w_i) =$$

$$= \sum_{i=1}^{n} Var(x_i w_i) =$$

• Let's look at the variance of $\sum_{i=1}^{n} x_i w_i$: i.i.d. w_i and mostly uncorrelated x_i

$$Var(\sum_{i=1}^{n} x_{i}w_{i}) =$$

$$= \sum_{i=1}^{n} Var(x_{i}w_{i}) =$$

$$= \sum_{i=1}^{n} \left(\frac{[E(x_{i})]^{2}Var(w_{i})}{+[E(w_{i})]^{2}Var(x_{i})} \right) =$$

$$+Var(x_{i})Var(w_{i})$$

independent factors w_i and x_i

• Let's look at the variance of $\sum_{i=1}^{n} x_i w_i$: i.i.d. w_i and mostly uncorrelated x_i

$$Var(\sum_{i=1}^{n} x_i w_i) =$$

$$= \sum_{i=1}^{n} Var(x_i w_i) =$$
independent factors w_i and x_i

$$= \sum_{i=1}^{n} \begin{pmatrix} [E(x_i)]^2 Var(w_i) \\ + [E(w_i)]^2 Var(x_i) \\ + Var(x_i) Var(w_i) \end{pmatrix} =$$

$$= \sum_{i=1}^{n} Var(x_i) Var(w_i) = Var(x) [\mathbf{n} Var(\mathbf{w})]$$

• Let's look at the variance of $\sum_{i=1}^{n} x_i w_i$: i.i.d. w_i and mostly uncorrelated x_i

$$Var(\sum_{i=1}^{n} x_{i}w_{i}) =$$

$$= \sum_{i=1}^{n} Var(x_{i}w_{i}) =$$

$$= \sum_{i=1}^{n} Var(x_{i}w_{i}) =$$

$$= \sum_{i=1}^{n} \left(\frac{[E(x_{i})]^{2}Var(w_{i})}{+[E(w_{i})]^{2}Var(x_{i})} \right) =$$

$$+Var(x_{i})Var(w_{i}) = Var(x)[\mathbf{n} Var(\mathbf{w})]$$

$$= \sum_{i=1}^{n} Var(x_{i})Var(w_{i}) = Var(x)[\mathbf{n} Var(\mathbf{w})]$$

We want this to be 1

- Let's use the fact that $Var(aw) = a^2 Var(w)$.
- For [n Var(aw)] to be 1 we need to multiply $\mathcal{N}(0,1)$ weights (Var(w) = 1) by $a = 1/\sqrt{n}$.
- Xavier initialization (Glorot et al.) multiplies weights by $\sqrt{2}/\sqrt{n_{in}+n_{out}}$.
- Initialization for ReLU neurons (He et al.) uses multiplication by $\sqrt{2}/\sqrt{n_{in}}$.

- We know how to initialize our network to constrain variance.
- But what if it grows during backpropagation?
- Batch normalization controls mean and variance of outputs before activations.

• Let's normalize h_i — neuron output before activation:

$$h_i = \gamma_i \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}} + \beta_i$$

$$\rightarrow 0 \text{ mean, unit variance}$$

• Let's normalize h_i — neuron output before activation:

$$h_i = \gamma_i \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}} + \beta_i$$

$$\rightarrow 0 \text{ mean, unit variance}$$

• Where do μ_i and σ_i^2 come from? We can estimate them having a current training batch!

• Let's normalize h_i — neuron output before activation:

$$h_i = \gamma_i \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}} + \beta_i$$

$$\rightarrow 0 \text{ mean, unit variance}$$

- Where do μ_i and σ_i^2 come from? We can estimate them having a current training batch!
- During testing we will use an exponential moving average over batches:

$$0 < \alpha < 1 \qquad \begin{aligned} \mu_i &= \alpha \cdot \mathbf{mean_{batch}} + (1 - \alpha) \cdot \mu_i \\ \sigma_i^2 &= \alpha \cdot \mathbf{variance_{batch}} + (1 - \alpha) \cdot \sigma_i^2 \end{aligned}$$

• Let's normalize h_i — neuron output before activation:

- Where do μ_i and σ_i^2 come from? We can estimate them having a current training batch!
- During testing we will use an exponential moving average over batches:

$$0 < \alpha < 1 \qquad \begin{aligned} \mu_i &= \alpha \cdot \mathbf{mean_{batch}} + (1 - \alpha) \cdot \mu_i \\ \sigma_i^2 &= \alpha \cdot \mathbf{variance_{batch}} + (1 - \alpha) \cdot \sigma_i^2 \end{aligned}$$

Dropout

- A regularization technique to reduce overfitting.
- We keep neurons active (non-zero) with probability p.
- This way we sample the network during training and change only a subset of its parameters on every iteration.

Dropout

• During testing all neurons are present but their outputs are multiplied by p to maintain the scale of inputs:

Nitish Srivastava, http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

 The authors of dropout say it is similar to having an ensemble of exponentially large number of smaller networks.

Takeaways

- Use ReLU activation
- Use He et al. initialization
- Try to add batchnorm or dropout
- Try to augment your training data