Best Linear Unbiased Estimators

STA 721: Lecture 4

Merlise Clyde (clyde@duke.edu)

Duke University

Outline

- Characterizing Linear Unbiased Estimators
- Gauss-Markov Theorem
- Best Linear Unbiased Estimators

Readings: - Christensen Chapter 1-2 and Appendix B - Seber & Lee Chapter 3

Full Rank Case

- Model: $\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$
- Minimal Assumptions:
 - lacksquare Mean $oldsymbol{\mu} \in C(\mathbf{X})$ for $\mathbf{X} \in \mathbb{R}^{n imes p}$
 - lacksquare Errors $\mathsf{E}[m{\epsilon}] = m{0}_n$
 - **▼ Definition:** Linear Unbiased Estimators (LUEs)

An estimator $\tilde{oldsymbol{eta}}$ is a **Linear Unbiased Estimator** (LUE) of $oldsymbol{eta}$ if

- 1. linearity: $ilde{m{eta}} = \mathbf{AY}$ for $\mathbf{A} \in \mathbb{R}^{p imes n}$
- 2. unbiasedness: $\mathsf{E}[ilde{oldsymbol{eta}}] = oldsymbol{eta}$ for all $oldsymbol{eta} \in \mathbb{R}^p$

The class of linear unbiased estimators is the same for every model with parameter space $\beta \in \mathbb{R}^p$ and $P \in \mathcal{P}$, for any collection \mathcal{P} of mean-zero distributions over \mathbb{R}^n .

Linear Unbiased Estimators (LUEs)

- Let ${\sf N}$ be an ONB for ${\cal N}={\cal M}^\perp=N({f X}^T)$:
 - $\blacksquare \mathsf{N}^T \mathbf{m} = \mathsf{N}^T \mathbf{X} \mathbf{b} = \mathbf{0} \quad \forall \mathbf{m} = \mathbf{X} \mathbf{b} \in \mathcal{M}$
 - $lacksquare \mathsf{N}^T\mathsf{N} = \mathbf{I}_{n-p}$

Consider another linear estimator $ilde{oldsymbol{eta}} = \mathbf{A}\mathbf{Y}$

LUEs continued

Since each column of ${f H}$ is in ${f \mathcal N}$ there exists a ${f G}\in\mathbb{R}^{p imes(n-p)}\ni{f H}={f N}{f G}^T$

Rewriting $\delta = ilde{m{eta}} - \hat{m{eta}}$:

$$egin{align} \hat{oldsymbol{eta}} &= \hat{oldsymbol{eta}} + \delta \ &= \hat{oldsymbol{eta}} + \mathbf{H}^T \mathbf{Y} \ &= \hat{oldsymbol{eta}} + \mathbf{G} \mathbf{N}^T \mathbf{Y} \ \end{aligned}$$

• therefore $\tilde{oldsymbol{eta}}$ is linear and unbiased:

$$egin{aligned} \mathsf{E}[ilde{oldsymbol{eta}} &= \mathsf{E}[\hat{oldsymbol{eta}} + \mathbf{G} \mathsf{N}^T \mathbf{Y}] \ &= oldsymbol{eta} + \mathsf{E}[\mathbf{G} \mathsf{N}^T \mathbf{X} oldsymbol{eta}] \ &= oldsymbol{eta} \end{aligned}$$

Characterization of LUEs

Summary of previous results:

▼ Theorem

An estimator $\tilde{m{\beta}}$ is a linear unbiased estimator of $m{\beta}$ in a linear statistical model if and only if

$$\hat{oldsymbol{eta}} = \hat{oldsymbol{eta}} + \mathbf{H}^T \mathbf{Y}$$

for some $\mathbf{H} \in \mathbb{R}^{n \times p}$ such that $\mathbf{X}^T\mathbf{H} = \mathbf{0}$ or equivalently for some $\mathbf{G} \in \mathbb{R}^{p \times (n-p)}$

$$ilde{oldsymbol{eta}} = \hat{oldsymbol{eta}} + \mathbf{G} \mathsf{N}^T \mathbf{Y}$$

Numerical

```
1 # X is model matrix; Y is response
2  p = ncol(X)
3  n = nrow(X)
4  G = matrix(rnorm(p*(n-p)), nrow=p, ncol=n-p)
5  H = MASS::Null(X) %*% t(G)
6  btilde = bhat + t(H) %*% Y
```

infinite number of LUEs!

LUEs via Generalized Inverses

Let $ildem{eta}={f AY}$ be a LUE in the statistical linear model ${f Y}={f X}m{eta}+m{\epsilon}$ with ${f X}$ full column rank p

$$egin{aligned} \mathsf{E}[ilde{oldsymbol{eta}}] &= \mathsf{E}[\mathbf{A}\mathbf{Y}] \ &= \mathbf{A}\mathsf{E}[\mathbf{Y}] \ &= \mathbf{A}\mathbf{X}oldsymbol{eta} \ \ orall oldsymbol{eta} \in \mathbb{R}^p \end{aligned}$$

- Must have $\mathbf{A}\mathbf{X} = \mathbf{I}_p$ (\mathbf{A} is a generalized inverse of \mathbf{X})
- $XX^-X = X$
- ullet one generalized inverse is $\mathbf{X}_{MP}^- = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$
- $\mathbf{X}_{MP}^- = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T = \mathbf{V}\mathbf{\Delta}^{-1}\mathbf{U}^T$ (using SVD of $\mathbf{X} = \mathbf{U}\mathbf{\Delta}\mathbf{V}^T$)
- ${f A}$ is a generalized inverse of ${f X}$ iff ${f A}={f X}_{MP}^-+{f H}^T$ for ${f H}\in\mathbb{R}^{n imes p}\ni{f H}^T{f U}={f 0}$
- $\mathbf{A}\mathbf{Y} = (\mathbf{X}_{MP}^- + \mathbf{H}^T)\mathbf{Y} = \hat{\boldsymbol{\beta}} + \mathbf{H}^T\mathbf{Y}$

Best Linear Unbiased Estimators

- the distribution of values of any unbiased estimator is centered around $oldsymbol{eta}$
- out of the infinite number of LUEs is there one that is more concentrated around β ?
- is there an unbiased estimator that has a lower variance than all other unbiased estimators?
- Recall variance-covariance matrix of a random vector ${f Z}$ with mean ${m heta}$

$$\mathsf{Cov}[\mathbf{Z}] \equiv \mathsf{E}[(\mathbf{Z} - oldsymbol{ heta})(\mathbf{Z} - oldsymbol{ heta})^T] \ \mathsf{Cov}[\mathbf{Z}]_{ij} = \mathsf{E}[(z_i - heta_i)(z_j - heta_j)]$$

(i) Lemma

Let $\mathbf{A} \in \mathbb{R}^{q \times p}$ and $\mathbf{b} \in \mathbb{R}^q$ with \mathbf{Z} a random vector in \mathbb{R}^p then

$$\mathsf{Cov}[\mathbf{AZ} + \mathbf{b}] = \mathbf{ACov}[\mathbf{Z}]\mathbf{A}^T \geq 0$$

Variance of Linear Unbiased Estimators

Let's look at the variance of any LUE under assumption $\mathsf{Cov}[m{\epsilon}] = \sigma^2 \mathbf{I}_n$

$$ullet$$
 for $\hat{oldsymbol{eta}}=(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}=oldsymbol{eta}+(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Toldsymbol{\epsilon}$

$$egin{aligned} \mathsf{Cov}[\hat{oldsymbol{eta}}] &= \mathsf{Cov}[oldsymbol{eta} + (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Toldsymbol{\epsilon}] \\ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathsf{Cov}[oldsymbol{\epsilon}]\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}^T\mathbf{X})^{-1} \end{aligned}$$

- ullet Covariance is increasing in σ^2 and generally decreasing in n
- Rewrite $\mathbf{X}^T\mathbf{X}$ as $\mathbf{X}^T\mathbf{X} = \sum_{i=1}^n \mathbf{x}_i\mathbf{x}_i^T$ (a sum of n outer-products)

Variance of Arbitrary LUE

- for $\tilde{m{eta}} = \left((\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T + \mathbf{H}^T \right)\mathbf{Y} = m{eta} + \left((\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T + \mathbf{H}^T \right)m{\epsilon}$
- recall $\mathbf{X}_{MP}^- \equiv (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$

$$egin{aligned} \mathsf{Cov}[ilde{oldsymbol{eta}}] &= \mathsf{Cov}[ig(\mathbf{X}_{MP}^- + \mathbf{H}^Tig)oldsymbol{\epsilon}] \ &= \sigma^2 ig(\mathbf{X}_{MP}^- + \mathbf{H}^Tig)ig(\mathbf{X}_{MP}^- + \mathbf{H}^Tig)^T \ &= \sigma^2 ig(\mathbf{X}_{MP}^- (\mathbf{X}_{MP}^-)^T + \mathbf{X}_{MP}^- \mathbf{H} + \mathbf{H}^T (\mathbf{X}_{MP}^-)^T + \mathbf{H}^T \mathbf{H}ig) \ &= \sigma^2 ig((\mathbf{X}^T \mathbf{X})^{-1} + \mathbf{H}^T \mathbf{H}ig) \end{aligned}$$

- ullet Cross-product term $\mathbf{H}^T(\mathbf{X}_{MP}^-)^T = \mathbf{H}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} = \mathbf{0}$
- ullet Therefor the $\mathsf{Cov}[ilde{oldsymbol{eta}}] = \mathsf{Cov}[\hat{oldsymbol{eta}}] + \mathbf{H}^T\mathbf{H}$
- the sum of a positive definite matrix plus a positive semi-definite matrix

Gauss-Markov Theorem

Is $\mathsf{Cov}[\tilde{oldsymbol{eta}}] \geq \mathsf{Cov}[\hat{oldsymbol{eta}}]$ in some sense?

▼ Definition: Loewner Ordering

For two positive semi-definite matrices Σ_1 and Σ_2 , we say that $\Sigma_1 > \Sigma_2$ if $\Sigma_1 - \Sigma_2$ is positive definite, $\mathbf{x}^T(\Sigma_1 - \Sigma_2)\mathbf{x}) > 0$, and $\Sigma_1 \geq \Sigma_2$ if $\Sigma_1 - \Sigma_2$ is positive semi-definite, $\mathbf{x}^T(\Sigma_1 - \Sigma_2)\mathbf{x}) \geq 0$

• Since $\mathsf{Cov}[ilde{m{eta}}] - \mathsf{Cov}[\hat{m{eta}}] = \mathbf{H}^T\mathbf{H}$, we have that $\mathsf{Cov}[ilde{m{eta}}] \geq \mathsf{Cov}[\hat{m{eta}}]$

▼ Theorem: Gauss-Markov

Let $\tilde{\boldsymbol{\beta}}$ be a linear unbiased estimator of $\boldsymbol{\beta}$ in a linear model where $\mathsf{E}[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta}, \boldsymbol{\beta} \in \mathbb{R}^p, \mathbf{X}$ rank p, and $\mathsf{Cov}[\mathbf{Y}] = \sigma^2\mathbf{I}_n, \sigma^2 > 0$. Then $\mathsf{Cov}[\tilde{\boldsymbol{\beta}}] \geq \mathsf{Cov}[\hat{\boldsymbol{\beta}}]$ where $\hat{\boldsymbol{\beta}}$ is the OLS estimator and is the **Best Linear Unbiased Estimator** (BLUE) of $\boldsymbol{\beta}$.

▼ Theorem: Gauss-Markov Theorem (Classic)

For $\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$, with $\boldsymbol{\mu} \in \boldsymbol{\mathcal{M}}$, $\mathsf{E}[\boldsymbol{\epsilon}] = \mathbf{0}_n$ and $\mathsf{Cov}[\boldsymbol{\epsilon}] = \sigma^2 \mathbf{I}_n$ and \mathbf{P} the orthogonal projection onto $\boldsymbol{\mathcal{M}}$, $\mathbf{PY} = \hat{\boldsymbol{\mu}}$ is the BLUE of $\boldsymbol{\mu}$ out of the class of LUEs \mathbf{AY} where $\mathsf{E}[\mathbf{AY}] = \boldsymbol{\mu}$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ equality iff $\mathbf{A} = \mathbf{P}$

▶ Proof

Estimation of Linear Functionals of μ

If $\mathbf{PY} = \hat{m{\mu}}$ is the BLUE of $m{\mu}$, is $\mathbf{BPY} = \mathbf{B}\hat{m{\mu}}$ the BLUE of $\mathbf{B}m{\mu}$?

Yes! Similar proof as above to show that out of the class of LUEs ${f AY}$ of ${f B}\mu$ where ${f A}\in\mathbb{R}^{d imes n}$ that

$$\mathsf{E}[\|\mathbf{A}\mathbf{Y} - \mathbf{B}oldsymbol{\mu}\|^2] \geq \mathsf{E}[\|\mathbf{B}\mathbf{P}\mathbf{Y} - \mathbf{B}oldsymbol{\mu}\|^2]$$

with equality iff $\mathbf{A} = \mathbf{BP}$.

What about linear functionals of $m{eta}, m{\Lambda}^T m{eta}$, for $m{X}$ rank $r \leq p$?

- $\hat{m{eta}}$ is not unique if r < p even though $\hat{m{\mu}}$ is unique ($\hat{m{eta}}$ is not BLUE)
- Since $\mathbf{B}\boldsymbol{\mu} = \mathbf{B}\mathbf{X}\boldsymbol{\beta}$ is always identifiable, the only linear functions of $\boldsymbol{\beta}$ that are identifiable and can be estimated uniquely are functions of $\mathbf{X}\boldsymbol{\beta}$, i.e. estimates in the form $\mathbf{\Lambda}^T\boldsymbol{\beta} = \mathbf{B}\mathbf{X}\boldsymbol{\beta}$ or $\mathbf{\Lambda} = \mathbf{X}^T\mathbf{B}^T$.
- ullet columns of $oldsymbol{\Lambda}$ must be in the $C(\mathbf{X}^T)$
- detailed discussion and proof in Christensen Ch. 2 for scalar functionals $\lambda^T \beta$.

BLUE of Λeta

If $\mathbf{\Lambda}^T = \mathbf{B}\mathbf{X}$ for some matrix \mathbf{B} then

- $\mathsf{E}[\mathbf{BPY}] = \mathsf{E}[\mathbf{\Lambda}\hat{\boldsymbol{eta}}] = \mathbf{\Lambda}^T \boldsymbol{eta}$
- The unique OLS estimate of $\mathbf{\Lambda}^T \boldsymbol{\beta}$ is $\mathbf{\Lambda}^T \hat{\boldsymbol{\beta}}$
- $\mathbf{BPY} = \mathbf{\Lambda}^T \hat{oldsymbol{eta}}$ is the BLUE of $\mathbf{\Lambda}^T oldsymbol{eta}$

$$\mathsf{E}[\|\mathbf{BPY} - \mathbf{B}\boldsymbol{\mu}\|^2] \leq \mathsf{E}[\|\mathbf{AY} - \mathbf{B}\boldsymbol{\mu}\|^2]$$

 \Leftrightarrow

$$\mathsf{E}[\|oldsymbol{\Lambda}^T\hat{oldsymbol{eta}}-oldsymbol{\Lambda}^Toldsymbol{eta})\|^2] \leq \mathsf{E}[\|\mathbf{L}^T\hat{oldsymbol{eta}}-oldsymbol{\Lambda}^Toldsymbol{eta}\|^2]$$

for LUE $\mathbf{A}\mathbf{Y}$ and $\mathbf{L}^T\hat{oldsymbol{eta}}$ of $oldsymbol{\Lambda}^Toldsymbol{eta}$

Proof of Cross-Product

Let $\mathbf{D} = \mathbf{HP}$ and write

$$E[(\mathbf{H}^{T}(\mathbf{Y} - \mu))^{T}\mathbf{P}(\mathbf{Y} - \mu)] = E[(\mathbf{Y} - \mu))^{T}\mathbf{H}\mathbf{P}(\mathbf{Y} - \mu)]$$

$$= E[(\mathbf{Y} - \mu))^{T}\mathbf{D}(\mathbf{Y} - \mu)]$$

$$E[(\mathbf{Y} - \mu))^{T}\mathbf{D}(\mathbf{Y} - \mu)] = E[tr(\mathbf{Y} - \mu))^{T}\mathbf{D}(\mathbf{Y} - \mu))]$$

$$= E[tr(\mathbf{D}(\mathbf{Y} - \mu)(\mathbf{Y} - \mu)^{T})]$$

$$= tr(E[\mathbf{D}(\mathbf{Y} - \mu)(\mathbf{Y} - \mu)^{T}])$$

$$= tr(\mathbf{D}E[(\mathbf{Y} - \mu)(\mathbf{Y} - \mu)^{T}])$$

$$= \sigma^{2}tr(\mathbf{D}\mathbf{I}_{n})$$

Since $tr(\mathbf{D}) = tr(\mathbf{HP}) = tr(\mathbf{PH})$ we can conclude that the cross-product term is zero.

