

Bac Maths Classe:

Série: Fonction exponentielle

Nom du Prof : Mohamed Hedi

Ghomriani

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5) 25 min

5 pts

Calculer

1) a)
$$\lim_{x \to -\infty} e^x - xe^{-x}$$

b)
$$\lim_{x\to +\infty} \frac{e^x-1}{e^{2x}}$$

1) a)
$$\lim_{x \to +\infty} e^x - xe^{-x}$$
 b) $\lim_{x \to +\infty} \frac{e^x - 1}{e^{2x}}$ c) $\lim_{x \to +\infty} \frac{\sqrt{e^x - x}}{e^x}$

d)
$$\lim_{x\to 0^+} \frac{\sqrt{e^{2x}-1}}{x}$$
 e) $\lim_{x\to 1^+} \frac{e^{\sqrt{x-1}}-1}{x-1}$

e)
$$\lim_{x\to 1^+} \frac{e^{\sqrt{x-1}}-1}{x-1}$$

2) a)
$$\int_0^{\ln 2} e^{-x} dx$$
 b) $\int_0^1 \frac{e^x}{2 + e^x} dx$ d) $\int_0^1 \frac{1}{1 + e^x} dx$

b)
$$\int_0^1 \frac{e^x}{2 + e^x} dx$$

d)
$$\int_0^1 \frac{1}{1+e^x} dx$$

e)
$$\int_1^{\ln 3} \left(\frac{1}{x^2 e^{-\frac{1}{x}}} \right) dx$$

Exercice 2

5pts

Soit
$$f(x) = e^{2x} - 3e^x + x + 2$$

- 1) a) Dresser le tableau de variation de f
 - b) Montrer que C_f admet une asymptote oblique D.
- 2) a) Déterminer les points d'intersections de C_f avec la droite Δ : y=x.
 - b) Préciser la position de C_f par rapport à la droite Δ et à D. Tracer C_f .
- 3) Soit U la suite définie par $U_0 = \frac{\ln 2}{2}$ et $U_{n+1} = f(U_n)$
 - a) Montrer que pour tout $n \in IN$; $0 < U_n \le \frac{\ln 2}{2}$
 - b) Montrer que U est décroissante, conclure.

4) Soit
$$S_n = \sum_{k=0}^{n-1} \left(e^{U_k} - \frac{3}{2} \right)^2$$
, $n \in IN^*$

- a) Montrer que pour , tout $n \in IN^*$, $S_n = U_n \frac{1}{2}ln2 + \frac{n}{4}$
- b) Calculer $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{S_n}{n}$

Exercice 3

(S) 40 min

7 pts

Soit f la fonction définie sur $[0,+\infty[$ par $f(x) = \sqrt{e^x - 1}$.

On note (C_f) sa courbe représentative dans un repère orthonormé $(O_i \vec{l}_i \vec{j})$.

1°) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.

2°) a) Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.

b) Montrer que pour tout $x \in]0,+\infty[$, $f'(x) = \frac{e^x}{2\sqrt{e^x - 1}}$.

c) Dresser le tableau de variation de f.

d) En déduire que $e^x - 1 \le \sqrt{e^x - 1}$, si et seulement si, $0 \le x \le ln2$.

3°) Montrer que le point $\mathbf{B}(\ln 2, 1)$ est un point d'inflexion de (C_f) .

4°) Dans la figure ci-dessous, on a tracé dans le repère $(0,\vec{i},\vec{j})$ la courbe Γ de la fonction $\mathbf{x} \mapsto \mathbf{e}^{\mathbf{x}} - \mathbf{1}$.

a) Etudier la position relative de $\left(\mathcal{C}_{\scriptscriptstyle f}\right)$ par rapport à Γ .

b) Tracer la courbe (C_f) .

Maths

- **5°)** Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $\mathbf{g}(\mathbf{x}) = \tan \mathbf{x}$.
 - **a)** Montrer que g réalise une bijection de $\left[0, \frac{\pi}{2}\right[$ sur $\left[0, +\infty\right[$. On note \mathbf{g}^{-1} sa fonction réciproque.
 - b) $(g^{-1})(0)$ et $(g^{-1})(1)$.
 - c) Montrer que g^{-1} est dérivable sur $\left[0,+\infty\right[$ et que $\left(g^{-1}\right)^{1}\left(x\right)=\frac{1}{1+x^{2}}$.
 - d) Montrer que $\lim_{x\to 0^+} \frac{g^{-1}(x)}{x} = 1$.
- 6°) On pose pour tout $x \in [0, +\infty[$, $F(x) = \int_0^x f(t) dt$ et $G(x) = 2(f(x) (g^{-1} \circ f)(x))$.
 - a) Montrer que pour tout $x \in]0,+\infty[$, F'(x) = G'(x).
 - **b)** En déduire que pour tout $x \in]0,+\infty[$ F(x) = G(x).
 - c) Soit $m{A}$ l'aire de la partie du plan limitée par la courbe (C_f) , La courbe Γ et les droites d'équations

$$x=0$$
 et $x=\ln 2$. Montrer que $\mathbf{A}=\mathbf{1}+\ln 2-\frac{\pi}{2}$

7°) Soit n un entier tel que $n \ge 2$.

On désigne par \mathbf{f}_n la fonction définie sur $\left[\ln(n), +\infty\right]$ par $\mathbf{f}_n(\mathbf{x}) = \sqrt{\mathbf{e}^{\mathbf{x}} - \mathbf{n}}$.

On note (C_n) sa courbe représentative dans le repère (O, \vec{I}, \vec{j}) .

a) Soit G_n la fonction définie sur $\left[\ln(n), +\infty\right[$ par $G_n(x) = 2\left(f_n(x) - \sqrt{n}g^{-1}\left(\frac{f_n(x)}{\sqrt{n}}\right)\right)$.

Montrer que pour tout, $x \in \left[\ln(n), +\infty\right[$ $G_n(x) = \int_0^x f_n(x) dt$

Montrer que pour tout $x \in [\ln(n), +\infty[$, $G_n(x) = \int_{\ln(n)}^x f_n(t) dt$.

b) Vérifier que pour tout $x \ge ln(n)$, $\sqrt{e^x - n} < \sqrt{e^x - 1}$

En déduire que pour tout $x \ge \ln(n)$, $f_n(x) \le e^x - 1$.

c) Soit \mathbf{A}_n l'aire de la partie du plan limitée par la courbe (\mathcal{C}_n) , la courbe Γ et les droites d'équations

$$x = ln(n)$$
 et $x = ln(n+1)$. Montrer que $\boldsymbol{A}_n = 2\sqrt{n}\,g^{-1}\left(\frac{1}{\sqrt{n}}\right) + ln\left(\frac{n}{n+1}\right) - 1$.

d) Déterminer $\lim_{n\to+\infty} \mathbf{A}_n$

Exercice 4

(S) 35 min

6 pts

Soit la fonction f définie sur
$$\mathbb{R} \setminus \{1\}$$
 par : $f(x) = \frac{e^{-x}}{1-x}$

On note (C_f) la courbe de f dans un repère orthonormé (O, \vec{i}, \vec{j}) (unité graphique 2 cm).

- 1) a) Montrer que pour tout x de $\mathbb{R} \setminus \{1\}$, $f'(x) = \frac{xe^{-x}}{(1-x)^2}$
 - b) Dresser le tableau de variation de f.
- 2) a) Montrer que C_f admet au voisinage de $-\infty$ une branche infinie de direction celle de $\left(0,\vec{j}\right)$.
 - b) Tracer (C_f).
- 3) Soit la fonction g définie sur $]e_x+\infty[$ par $g(x)=\int_2^{lnx}f(t)dt$

On note (Cg) la courbe de g dans le repère orthonormé

- a) Montrer que g est dérivable sur $]e,+\infty[$ et que $g'(x)=\frac{1}{x^2(1-\ln x)}$
- b) En déduire le sens de variation de g.
- c) Ecrire une équation de la tangente T à $\,$ (C_g) au point d'abscisse e^2 .
- 4) Soit la suite U définie sur $\mathbb{N}^* \setminus \{1\}$ par : $\mathbf{U}_n = \int_{-1}^0 \frac{e^{-x}}{\left(1 x\right)^n} dx$
- a) Montrer que U est décroissante.
- b) En déduire que U est convergente.
- c) Montrer à l'aide d'une intégration par parties que : $U_n = \frac{1}{n-1} \left[1 \frac{e}{2^{n-1}} + U_{n-1} \right]$.
- d) En déduire $\underset{n\rightarrow +\infty}{lim}\, U^{}_n$ puis $\underset{n\rightarrow +\infty}{lim}\, nU^{}_n$.