Aula 11: LEDs e diodo Zener

Objetivos

- Aprender a utilizar diodos emissores de luz (light-emitting diodes LEDs)
- Implementar circuitos com diodos Zener

Lista de material

- Osciloscópio, gerador de sinais e multímetro;
- Resistores: 330 Ω , 2 x 560 Ω , 1,2 k Ω .
- Capacitor de 100 μF.
- Diodos retificadores: 4x 1N4007.
- Diodo emissor de luz (LED): amarelo, verde ou vermelho.
- Diodo Zener: $2x 1N4733 (V_z = 5.1 \text{ V e } P_{Zm\acute{a}x} = 1 \text{ W}) \text{ e } 1N4735 (V_z = 6.2 \text{ V e } P_{Zm\acute{a}x} = 1 \text{ W}).$

Instruções

Roteiro da experiência

1) Diodo emissor de luz (LED).

a) Considerando a queda de tensão $V_{D0} \approx 2 \ V$ (em um LED de cor amarela, verde ou vermelha). Calcule a resistência R_1 para obter uma corrente $I_D = 20 \ mA$ no circuito acima.

- b) Monte o circuito acima com $R_x = R_1$ (valor comercial mais próximo do valor calculado).
- c) Utilizando o multímetro, meça a tensão e a corrente no LED e preencha a Tabela 1.
- d) Adicione um resistor $\mathbf{R_2}$ em série com $\mathbf{R_1}$ de modo que $\mathbf{R_2}$ = $\mathbf{R_1}$. O que aconteceu com a intensidade luminosa do LED? Explique.

e) Utilizando o multímetro, meça a tensão e a corrente no LED e preencha a Tabela 1.

Tabela 1

$R_x[\Omega]$	V _D [V]	I _D [mA]
$R_1 =$		
$R_1 + R_2 =$		

2) Ceifador com diodo Zener. Monte o circuito abaixo. Utilize R_1 = 560 Ω e 2x 1N4733.

- a) Aplique na entrada V_{in} um sinal **triangular** com valor de pico a pico V_{pp} = 20 V, valor médio V_m = 0 V e frequência f = 1 kHz.
- b) Esboce o sinal de saída (CH2) juntamente com o sinal de entrada (CH1). Indique as escalas de tensão e tempo utilizadas e marque no gráfico a referência de tensão.

c) Faça as medições dos valores de pico a pico da tensão de entrada $(V_{i,pp})$ e da tensão de saída $(V_{o,pp})$, do valor mínimo da tensão de saída $(V_{o,mín})$, do valor máximo da tensão de saída $(V_{o,máx})$ e preencha a Tabela 3.

Tabela 3

$V_{i,pp}$ [V] $V_{o,pp}$ [V]		V _{o,mín} [V]	V _{o,máx} [V]		

3) Regulador de tensão com diodo Zener. Monte o circuito abaixo. Utilize R_1 = 560 Ω .

a)	Calcule a resistência R	L mínima para o	diodo Vz operar	· como regulador d	e tensão.
----	-------------------------	------------------------	-----------------	--------------------	-----------

b)	Calcule o valor máximo da corrente I_Z para o circuito acima (ou seja, considere $R_L = \infty$) ϵ
	compare com $I_{r_{ij}} = P_{r_{ij}} / V_{r_{ij}}$

c) Considerando os valores de R_L descritos na Tabela 2, meça a tensão V_Z e as correntes I_L e I_R e preencha a Tabela 2. Calcule I_Z a partir de I_L e I_R .

Tabela 2

$R_L[\Omega]$	I _L [mA]	I _R [mA]	Iz [mA]	V _z [V]
Sem Carga				
1,2 kΩ				
560 Ω				
330 Ω				

d)	Substitua o	diodo	Zener	1N4733	por	1N4735	e repita	os	itens	a),	b) e	c)	preench	endo a
	Tabela 3.													

Tabela 3

$R_L[\Omega]$	I _L [mA]	I _R [mA]	I _Z [mA]	V _z [V]
Sem Carga				
1,2 kΩ				
560 Ω				
330 Ω				

4) **Fonte regulada completa.** Substitua a fonte de tensão por um transformador, um retificador ponte completa a diodos (1N4007) e um capacitor $C_1 = 100 \, \mu F$, conforme o circuito abaixo.

a) Esboce a tensão do secundário do transformador juntamente com a tensão no capacitor. Utilize o osciloscópio, mas realize uma medida de cada vez.

b) Compare os resultados obtidos com os da Tabela 3.