Tuning employee turnover classifier

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Hrant Davtyan

Overfitting

Existence of overfitting:

- Training accuracy: 100%
- Testing accuracy: 97.23%

Methods to fight it:

- Limiting tree maximum depth
- Limiting minimum sample size in leafs

Pruning the tree

Limiting Depth

Limiting Samples

Evaluating the model

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Hrant Davtyan

Prediction errors

Confusion Matrix		Reality	
		0	1
Predicted	0	TN	FN
	1	FP	TP

Evaluation metrics (1)

- If target is leavers, focus on FN
 - Recall score = TP/(TP+FN)
 - Lower FN, higher Recall score
 - Recall score % of correct predictions among 1s (leavers)
- If target is stayers, focus on FP
 - Specificity = TN/(TN+FP)
 - Lower FP, higher Specificity,
 - Specificity % of correct predictions among 0s (stayers)

Evaluation metrics (2)

- Even if target is leavers, you may still focus on FP:
 - Precision score = TP/(TP+FP)
 - Lower FP, higher Recall score
 - Precision score % of leavers in reality, among those predicted to leave

Targeting both leavers and stayers

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Hrant Davtyan

AUC score

- Vertical axis: Recall
- Horizontal axis: 1 Specificity
- Blue line: ROC
- Green line: baseline
- Area between blue and green: AUC

Class imbalance

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Hrant Davtyan

Prior probabilities

Without balance

•
$$P_0 = 0.76$$

•
$$P_1 = 0.24$$

•
$$Gini = 0.36$$

With balance

•
$$P_0 = 0.5$$

•
$$P_1 = 0.5$$

•
$$Gini = 0.5$$

