Chemistry 107: Exam 2A

The 100 pts exam consists of 8 questions and students have 2 hours to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table and formulas are provided at the end. Additional scratch paper will be provided. Fill in your name along with your student ID number.

Problem 1: True/False Determine whether the statement is true or false. (20 pts)

(a)	Catalysts speed up the chemical reaction by lowering the activation Energy. (E_A)
(b)	Chemical reactions that release heat to the surrounding are endothermic reactions.
(c)	For a solution at concentration M , doubling the volume of the solution leads to doubling the concentration.
(d)	When mixing 1L of 90°C water and 0.5L of 10°C water, the final temperature at thermal
	equilibrium is 50°C.
(e)	For a chemical reaction, the theoretical yield of a product depends on the excess reagent.
(f)	As the wavelength increases, the energy of the photon decreases.
(g)	Chemical equations are balanced by changing the subscripts of the compounds.
(h)	An example of an endothermic process is the melting of ice into water.
(i)	Suppose a system is in thermal equilibrium with a heat bath. When the temperature of the heat bath increases, the temperature of the system increases.
(j)	The Bohr model can accurately predict the spectra of large atoms.

Problem 2 : Thermal Equilibrium (12 pts)

figures.			J/(g °C), respecti quilibrium. Report	vely. Determine to 4 significant
	sing illustrations a		ermal equilibrium	is achieved. In-

Problem 3 : Nomenclature Provide either the molecular formula or compound name for the following. (12 pts)

(a)	Magnesium oxide
(b)	Carbon Monoxide
(c)	HClO_4
(d)	$Ca(HCO_3)_2$
(e)	Carbonic acid
(C)	II DO
(1)	$\mathrm{H_{3}PO_{4}}$
(g)	$(\mathrm{NH_4})_2\mathrm{Cr}_2\mathrm{O}_7$
(8)	
(h)	BF_3
()	
(i)	Phosphorus pentafluoride
(j)	Sulfurous acid
(k)	Chromium(VI) oxide
(l)	$ m V_2O_5$

Problem 4 : Preparing Solutions Anhydrous calcium chloride $(CaCl_2)$ can easily absorb water from the air. To prepare a solution, the stable solid calcium chloride dihydrate $(CaCl_2 \cdot 2H_2O)$ is more suitable to prepare stock solutions. Answer the following questions and report to 3 significant figures. (12 pts)

(a) A scientist prepares 2L stock solution of 5M CaCl₂. Determine what mass (in g) of CaCl₂·2H₂O needed to prepare the solution.

(b) Using the prepared 5M CaCl₂ stock solution, the scientist is diluting the solution to make 250.mL of 1.5M CaCl₂. What volume in L of stock solution is needed to dilute to prepare 250.mL of 1.5M CaCl₂?

(c) From part (b), describe how to dilute concentrated 5M CaCl₂ solution to make 250.mL of 1.5M CaCl₂. Include the solvent and main lab equipment(s) used to perform the dilution.

Problem 5 : Predicting Chemical Reactions For the following reagents, determine the products formed by writing the balanced chemical equation including states and if there is no reaction, write "no reaction." (10 pts)

(a)	Solid iron wool ignited in the presence of oxygen gas						
(b)	Placing solid lithium metal into water						
(c)	The combustion of fructose $(C_6H_{12}O_6)$ in the presence of oxygen gas						
(3)							
(d)	Mixing aqueous silver nitrate and aqueous potassium dichromate						
(-)	Minimum and Common (II) Culfate and a manner adding background						
(e)	Mixing aqeuous Copper(II) Sulfate and aqueous sodium hydroxide						
	olem 6 : Acid-Base Reaction To neutralize phosphoric acid, sodium hydroxide is used to a salt and water. Report to 3 significant figures. (6 pts)						
(a)	Write the balanced chemical equation including states.						
(b)	Suppose there is 50mL of 1M phosphoric acid, how much volume in L of 1.25M sodium hydroxide is needed to completely react with phosphoric acid?						

Problem 7: Combustion Reaction Methane is a colorless, odorless gas which is used as a fuel in most gas stoves to cook food. Per year, the US uses approximately 31.13 trillion ($\times 10^{12}$) ft³ of methan per year. Approximately 2% of that is used for cooking. Report to 4 significant figures. (14 pts) (a) Write the balanced chemical equation including states of the combustion reaction of methane. (b) In the presence of excess oxygen gas, determine the amount of carbon dioxide is produced in g? Report in scientific notation and the density of methane is 19.06g/ft³. (c) The combustion reaction of methane releases 810.0 kJ/mol. Is this an exothermic or endothermic reaction? How much heat is generated from cooking? Report in scientific notation. (d) Gas companies add a compound which has an odor to help detect gas leaks should they arise. The compound that is added to natural gas is call t-butyl mercaptan and has the formula C₄H₉SH. Predict the products by writing out the balanced chemical equation including states. (e) From part (c), determine the amount of carbon dioxide in kg is produced from 1kg of t-butyl mercaptan.

Problem 8 : Limiting Reagent and Percent Yield Small amounts of chlorine gas can be generated in the laborator from the reaction of manganese(IV) oxide with hydrochloric acd. Report to 3 significant figures. (14 pts)

(a) Balance the following chemical equation :

 $\label{eq:hcl} HCl(aq) \, + \, MnO_2(s) \, \rightarrow \, H_2O(l) \, + \, MnCl_2(s) \, + \, Cl_2(g).$

(b) What is the theoretical yield of Cl₂ produced from 42.7g HCl and 67.0g MnO₂?

(c) How much of the excess reagent in g is leftover?

(d) If 50g of Cl₂(g) is collected, determine the percent yield.

Chemistry 107 : Appendix 1 - Periodic Table

2 Helium 4.003	10 Neon 20.180	18 Argan 39.948	36 Kypton 83.798	54 Kenon 131.293	Radon [222]	000 Oganes son [294]		
	9 Fluorine 18.998	17 Chlorine 35.45	35 Bromine 79.904	53 — bdine 126.904	85 At Astatine [210]	117 5 Ennessine [293]		
	8 Oxygen 15.999	16 Sulfur 32.06	Selenium	53 Tellurium 127.60	84 Pobnium [209]	116 LV Livermorium [293]		
	7 Nitrogen 14.007	15 P Phosphorus 30.974	33 Assenic 74.922	Sb Artimony 121.760	83 D.i 85 muth 208.980	115 MC Moscovium [289]		102 NODelium Nobelium [259]
	6 Carbon 12:011	Sicon 28.085	32 Ge Germanium 72.630	Sn # 118710	82 Pb Lead 207.2	114 F Flerovium [289]	69 Thulium Thulium 168.934	Md Mendelevium [258]
	5 B oron 10.81	13 All Allminum 26.982	31 Ga 69,723	49	81 Thailium 204:38	Nhonium [286]	68 Er Erbium 167.259	100 Fm Fermium [257]
			30 Zinc 65.38	48 Cadmium 112.414	81 Hg Mercury 200.592	Coperation [285]	67 HO Holmium 164.930	99 Einsteinium [252]
			CU Copper 63.546	47 Siver 107.868	80 AU 604 196.997	Roentgenum [281]	66 Dys prosium 162.500	98 Calfonium [251]
			28 Ni Nickel 58.693	46 Pd Palladium 106.42	79 Pt Platinum 195.084	DS Darmstadtium [281]	65 Tb Ferbium 158.925	97 Berkelium [247]
			27 Cobalt 58.933	45 Rh Rhodium 102.906	78	109 Mt Metherium [278]	64 Gaddinium 157.25	96 Curium [247]
			26 Fe lion 55.845	Ruthenium 101.07	76 OS 0s mium 190.23	108 HS Hassium [270]	63 Europium 151.964	Americium [243]
			25 Mn Manganes e 54.938	43 C Technetium [97]	75 Renium 186.207	Bohrium [270]	62 Samarium 5 amarium 150.36	PU Plutconium [244]
			Cr Chromium 51.996	MO Molybdenum 95.95	74 W Tungsten 183.84	Sg seaborgium [269]	Promethium [145]	Neptumium [237]
			23 Vanadium 50.942	41 Niobium 92.906	73 D Tantalum 180.948	105 Db Dubnium [270]		92 Uranium 238.029
			22 T Titanium 47.867	40 Zr zirconium 91.224	72 Hf Hafinium 178.49	104 Rutherfordium [267]	59 Pr Prascodymium 140.908	91 Pa Protactinium 231.036
			Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967	103 C C Lawrencium [262]	58 Cerium 140.116	90 Th Thorium 2332.038
					* 57 - 70	** 89 - 102	57 Lanthanum 138.905	89 AC Actinium [227]
	Beryllium	12 Mgg Magnesium 24.305	Cakium 40.078	Strontium 87.62	56 Ba rium 137.327	88 Rad ium [226]		
1 Hydrogen 1.008	3 Lithium 6.94	Na Sodium 22:990	19 K	Rubidium 85.468	55 CS cesium 132:905	87 Fr Fancium [223]	*Lanthanide series	**Actinide series

Chemistry 107 : Apppendix 2 - Formulas and Constants

$$q = mC\Delta T$$

$$E = \frac{hc}{\lambda} = h\nu$$

$$h = 6.626 \times 10^{-34} \text{J s}$$

$$c = \lambda \nu$$

$$c = 3.00 \times 10^8 \text{m/s}$$