

Dominando o Amazon SageMaker

Construção, treinamento e otimização de modelos de aprendizado de máquina

Tiago Simão

Arquiteto de Soluções - Enterprise AWS

Agenda

- Construção, Treinamento e Otimização de modelos de ML
- Sagemaker Studio
- Demonstrações

SageMaker: Construindo modelos de ML

Construindo modelos de ML

Notebooks totalmente gerenciados e compartilháveis no Amazon EC2

Notebooks Jupyter, gerenciados e compartilháveis

Implemente notebooks em recursos de computação elástica

Algoritmos integrados

15 algoritmos integrados disponíveis como imagens de containers

Soluções integradas e modelos de código abertoMais de 150 modelos populares

AutoML

Crie modelos de ML automaticamente com total visibilidade

Suporte aos principais frameworks e ferramentas

Otimizado para estruturas populares de aprendizado profundo (DL), como TensorFlow, PyTorch, Apache MXNet e Hugging Face

Notebooks no SageMaker

O AMAZON SAGEMAKER OFERECE DOIS TIPOS DE NOTEBOOKS JUPYTER TOTALMENTE GERENCIADOS COM UM CLIQUE PARA EXPLORAÇÃO DE DADOS E CRIAÇÃO DE MODELOS DE ML

Studio Notebooks

Notebooks colaborativos de início rápido que se integram a ferramentas de ML criadas especificamente no SageMaker e em outros serviços da AWS

Notebook Instances

Instâncias autônomas e totalmente gerenciadas do Jupyter Notebook na console do Amazon SageMaker

Amazon SageMaker tem algoritmos integrados ou você pode trazer o seu

Classificação

Linear Learner | XGBoost | KNN

Trabalhando com Texto

BlazingText | Supervised | Unsupervised

Tradução de Sequências

Seq2Seq

Visão Computacional

Image classification | Object detection | Semantic segmentation

Recomendação

Factorization machines

Regressão

Linear Learner | XGBoost | KNN

Modelagem de Tópicos

LDA | NTM

Previsão

DeepAR

Agrupamento

KMeans

Detecção de Anomalia

Random cut forests | IP Insights

Redução de Recursos

PCA

SageMaker: Aprofundando no treinamento de modelos de ML

Treinamento de modelos de ML

Treinamento de modelos de ML de forma rápida e custo efetiva

Gerenciamento de experimentos e ajuste de modelos

Economize semanas de esforço rastreando automaticamente o treinamento e hiperparâmetros de ajuste

Defina o perfil e a depuração do treinamento

Use métricas em tempo real para corrigir problemas de desempenho

Treinamento distribuído

Complete distributed training up to 40% faster

Compilador de Treinamento

Acelere os tempos de treinamento em até 50% por meio do uso mais eficiente de GPUs

Treinamento gerenciado com Spot

Reduza os custos de treinamento em até 90%

Treinamento com o Amazon Sagemaker

inputs = {"train": s3_inputs_train, "test": s3_inputs_test}

{"Name": "loss", "Regex": "loss: ([0-9\\.]+)"},

metric_definitions = [

Estimador de Treinamento

```
# Input data from s3
inputs = {"train": s3_inputs_train, "test": s3_inputs_test}
metric_definitions = [
    {"Name": "loss", "Regex": "loss: ([0-9\\.]+)"},
    {"Name": "accuracy", "Regex": "accuracy: ([0-9\\.]+)"},
    {"Name": "val loss", "Regex": "val loss: ([0-9\\.]+)"},
    {"Name": "val accuracy", "Regex": "val accuracy: ([0-9)\.]+)"},
# Create a TensorFlow Estimator
tf2 california housing estimator = TensorFlow(
    entry point="california housing tf2.py",
    source_dir="code",
    role=sagemaker.get_execution_role(),
    instance_count=1,
    instance_type="ml.m5.large",
    framework_version="2.4.1",
    hyperparameters={
        "learning_rate": 0.1,
        "epochs": 100
    py_version="py37",
    metric definitions=metric definitions,
    enable_sagemaker_metrics=True,
    tags=[{"Key": "trial-desc", "Value": trial_desc}],
# Launch a training job
tf2_california_housing_estimator.fit( inputs, job_name=training_job_name)
```


Amazon SageMaker Ajuste Automático de Modelos

Ajuste automaticamente os hiperparâmetros em seus algoritmos

Otimização em escala

Ajuste milhares de diferentes combinações de parâmetros do algoritmo

Automatizado

Usa ML para encontrar os melhores parâmetros

Mais rápido

Elimine dias ou semanas de trabalho manual

Árvores de decisão

Tree depth | Max leaf nodes | Gamma | Eta | Lambda | Alpha

Redes Neurais

Number of layers | Hidden layer width | Learning rate | Embedding dimensions | Dropout

Amazon SageMaker Ajuste Automático de Modelos

AJUSTE DE HIPERPARÂMETROS

Amazon SageMaker Ajuste de Modelo Automático

E SE EU PRECISAR QUE TODOS OS MEUS TRABALHOS SEJAM AJUSTADOS AO MESMO TEMPO?

Pesquisa bayesiana

Pesquisa aleatória

Configurando a tarefa de ajuste de hiperparâmetros

1.

Escolha hiperparâmetros e intervalos

2.

Escolha a métrica objetiva

```
objective_metric_name = 'validation:auc'
```

3.

Escolha os parâmetros do trabalho

Amazon SageMaker Ajuste Automático de Modelos

POSSO USAR O AJUSTE DE HIPERPARÂMETROS COM MEU PRÓPRIO MODELO?

Algoritmos Integrados

Docker (Totalmente Customizável)

Script Mode (Totalmente Customizável)

Amazon SageMaker Automatic Model Tuning

POSSO USAR O AJUSTE DE HIPERPARÂMETROS COM MEU PRÓPRIO MODELO?

Amazon SageMaker Automatic Model Tuning

POSSO USAR O AJUSTE DE HIPERPARÂMETROS COM MEU PRÓPRIO MODELO?

Treinamento gerenciado com Spot

Treinamento gerenciado com Spot

Economize até 90% em custos de treinamento de modelos

Principais considerações

Treinando apenas com Spot

Os trabalhos interrompidos são retomados se forem verificados e se as instâncias Spot estiverem disponíveis; os trabalhos serão reiniciados se não forem verificados*

Funciona com ajuste automatizado de modelos

Os trabalhos de treinamento só podem ser executados com uma única instância - digite uma única - AZ

Ainda não se integra com o Spot Fleet e Spot Block

Checkpoint

Algoritmos integrados checkpoints automatizados

Para modelos personalizados, o checkpoint deve ser ativado

Checkpoints são salvos no S3

Os modelos que não fazem o checkpoint estão sujeitos ao MaxWaitTime de 60 minutos

Preço

Veja as economias no console da AWS ou use a API DescribeTrainingJob

Cobrado pela duração do treinamento antes da conclusão ou encerramento; não é cobrado pelo tempo ocioso, o faturamento começa quando as instâncias estão prontas

Cobrado pelo tempo de download de dados apenas uma vez, mesmo que o trabalho seja interrompido várias vezes

^{*} Checkpointing is a best practice and is highly recommended

Gere modelos de ML com mais rapidez

Detecte gargalos e problemas durante o treinamento em tempo real e corrija problemas para implantar modelos mais rapidamente, com uma ferramenta unificada

Depurador

Otimize recursos sem código adicional

Monitore e crie o perfil dos recursos do sistema sem codificação e obtenha recomendações para otimizar recursos de forma eficaz

Torne o treinamento de ML transparente

Obtenha informações completas sobre o processo de treinamento de ML em tempo real e offline

Amazon SageMaker Debugger — Como Funciona

Monitore e crie o perfil de utilização dos recursos do sistema

Monitore automaticamente a utilização dos recursos do sistema

Crie um perfil de trabalhos de treinamento para coletar métricas da estrutura de ML

Visualize a utilização de recursos do sistema para GPU, CPU, rede e memória no SageMaker Studio

Analyze errors and take action

Built-in analysis in the form of rules

Automatically analyze training data including inputs, outputs, tensors

Detect if a model is overfitting or overtraining, or determine if gradient values are incorrect

Specify custom actions to stop training or send alerts

Amplo suporte a algoritmos e frameworks

1. Suporta

algoritmos de ML
populares, como o
XGBoost, e frameworks de
aprendizado profundo,
como TensorFlow,
PyTorch, Apache MXNet e
Keras, com contêineres
integrados do SageMaker

2. Integra

com o AWS Lambda para agir com base nos resultados dos alertas

3. Invoque ações

para interromper automaticamente um trabalho de treinamento ao detectar uma ação não convergente, como perdas aumentando continuamente

Amazon SageMaker Studio

Traz ferramentas para cada etapa do ciclo de vida do ML em uma interface de usuário visual unificada

Obrigado!

Tiago Simão

simaot@amazon.com
www.linkedin.com/in/simaot