Exercices: 15 - Cinématique du point

— Solutions —

A. Repérage

1. Le vol de la libellule

Réponses : $\dot{r} = -v_0 \cos \alpha$, $r\dot{\theta} = v_0 \sin \alpha$, $t_{proie} = \frac{a}{v_0 \cos \alpha}$; $\theta(t) = \tan \alpha \ln \frac{a}{a - v_0 \cos \alpha t}$; spirale logarithmique; $\vec{a} = -\frac{v_0^2}{a} (\sin^2 \alpha \vec{e_r} + \sin \alpha \cos \alpha \vec{e_\theta})$.

2. Un insecte sur un élastique

Réponses : l'extrémité de l'élastique obéit à la loi X=L+Vt. À une date t, on note x_i l'abscisse de l'insecte par rapport au mur où est fixée une extrémité de l'élastique. La vitesse de l'insecte par rapport à l'élastique est v mais le support sur lequel il se déplace l'entraîne du fait que l'élastique s'allonge. Dans un fonctionnement homogène de l'allongement de l'élastique, la vitesse de l'allongement est proportionnelle à l'abscisse du point considéré. On a une vitesse locale de l'élastique de la forme $\frac{x_i}{X}V$. On peut voir les cas particulier $x_i=0$, le morceau de l'élastique ne se déplace pas, sa vitesse est nulle. À l'extrémité en $x_i=X$, il se déplace à la vitesse V. La vitesse de l'insecte par rapport au mur est donc $\frac{dx_i}{dt}=v+\frac{x_i}{X}V$. On passe en variable X avec $\frac{dX}{dt}=V$ pour obtenir l'équation différentielle $V\frac{dx_i}{dX}=v+\frac{x_i}{X}V$. En cherchant la solution sous la forme proposée, on aboutit à $\frac{df}{dX}=\frac{v}{VX}$. Et donc $f(X)=\frac{v}{v}\ln\frac{X}{L}$. L'insecte atteint l'extrémité de l'élastique lorsque $x_i=X$ et donc on a $X=L\exp\frac{V}{v}=L+Vt_a$. Le temps pour atteindre $t_a=\frac{L}{V}\left(\exp\frac{V}{v}-1\right)$. Avec $\exp\frac{V}{v}=\exp 1\,000$, on peut être certain que l'élastique s'est coupé bien avant ou que l'insecte est mort! On peut encore aborder la question posée en disant que $\int_0^{t_a} \frac{vdt}{X(t)}=1$. En effet, cette relation exprime le fait que la distance à parcourir est dépendante du temps, il n'est pas possible d'écrire comme on le fait habituellement $L=vt_a$ que l'on pourrait écrire $\int_0^{t_a} \frac{vdt}{L}=1$. Ici, il faut raisonner de façon infinitésimale entre une date t et t+dt où la distance parcourue est vdt sur l'élastique qui à ce moment-là possède une longueur X(t)=L+Vt. C'est pour cela que l'on écrit que $\int_0^{t_a} \frac{vdt}{X(t)}=1=\int_0^{t_a} \frac{vdt}{L+Vt}$. On retrouve heureusement la même expression qu'avant.

3. Lecture d'un CD

Réponses : $r = r_0 + \frac{p}{2\pi}\theta$, $L = \int_{\theta=0}^{\theta_f} r d\theta$, l'angle total parcouru est θ_f tel que $r_1 = r_0 + \frac{p}{2\pi}\theta_f$, $L = r_0\theta_f + \frac{p}{2\pi}\frac{\theta_f^2}{2}$ d'où $L = \pi\frac{r_1^2 - r_0^2}{p}$ et L = 5,38 km; $T = \frac{L}{V}$, 1 heure et 15 minutes; $p \ll r_0$ d'où $V = r\omega(r)$ et $\omega(r) = \frac{V}{r}$, $\omega_0 = \frac{V}{r_0} = 48,0$ rad · s⁻¹ ce qui fait 460 tours par minute et $\omega_1 = \frac{V}{r_1} = 20,7$ rad · s⁻¹, c'est-à-dire 200 tours par minute; $\dot{u}(r) = \frac{dr}{dt} = \frac{dr}{d\theta}\frac{d\theta}{dt}$ et $\frac{p}{2\pi}\frac{V}{r}$, $\dot{u}_0 = \frac{p}{2\pi}\frac{V}{r_0} = 12,2$ µm · s⁻¹ et $\dot{u}_1 = \frac{p}{2\pi}\frac{V}{r_1} = 5,3$ µm · s⁻¹.

4. Trois chiens se courent après

Réponses : à chaque instant, on a un triangle équilatéral puisque les trois chiens font toujours la même chose. On peut représenter la situation initiale comme à la figure 1. On utilisera les coordonnées polaires d'angle θ avec, à la date t=0, un angle $\alpha=\pi/6$ puisque l'on va raisonner sur un angle repéré par rapport à l'axe Gx. Le centre de gravité G du triangle est à la distance $C_iG=\frac{2}{3}C_iH$, en l'occurrence C_2 sur le schéma. Par trigonométrie, on trouve que $C_2H=D\cos\alpha=D\cos\frac{\pi}{6}$. Comme $\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$, on en déduit que $C_iG=\frac{D}{\sqrt{3}}$.

Figure 1 – La course des trois chiens

On pose $\overrightarrow{GC_1} = r\vec{e}_r = \frac{D}{\sqrt{3}}\vec{e}_r$. La vitesse en coordonnées polaires est $\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta$. Après chaque durée infinitésimale, le triangle a tourné d'un petit angle θ mais on retrouve toujours le triangle équilatéral mais avec un côté de longueur plus petite que D. On peut reproduire la même chose qu'à la date t=0, le triangle tournant et se rétrécissant. On a donc $\vec{v} = -v\cos\alpha\vec{e}_r - v\sin\alpha\vec{e}_\theta$. On en déduit que $\forall t$, on a $-v\cos\alpha = \dot{r}$. Le rayon $r = GC_2$ diminue selon la loi $r = \frac{D}{\sqrt{3}} - v\cos\alpha$. Les chiens se rejoignent lorsque r=0. C'est pour la date

 $t_r = \frac{D}{c\cos\alpha\sqrt{3}} = \frac{2D}{3v}$ puisque $\cos\alpha = \frac{\sqrt{3}}{2}$ et $\sin\alpha = \frac{1}{2}$. Comme la norme de la vitesse est constante, on peut écrire que $\frac{ds}{dt} = v$, l'abscisse curviligne s correspond à la distance parcourue par chaque chien. $s = v \int_0^{t_c} \mathrm{d}t = vt_c = \frac{2D}{3}$. La bonne réponse est donc la réponse c). Les chiens font une spirale autour de G. On peut s'intéresser à l'évolution de l'angle θ en disant qu'à tout moment, on a $r\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\sin\alpha$. Cela permet de calculer $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{v\sin\alpha}{\sqrt{3}-v\cos\alpha t}$. On peut intégrer et avec la condition initiale $\theta(t=0) = \alpha = \frac{\pi}{6}$, on arrive à $\theta = \frac{\pi}{6} - \frac{1}{\sqrt{3}} \ln \frac{1}{1-\frac{3v}{2D}t}$. On peut voir que cet angle diverge lorsque l'on approche t_r . C'est normal parce que l'on a utilisé des chiens représentés par des points. En utilisant un modèle donnant au chien une certaine taille, on n'aurait pas de divergence de l'angle parcouru.

5. Trajectoire en polaire

Réponses : r_0 est la distance à l'origine lorsque $\theta=0$, $\cos\theta=\cos(-\theta)$ il y a symétrie par rapport à Ox, $d\overrightarrow{OM}=dr\overrightarrow{e}_r+rd\theta\overrightarrow{e}_\theta$, $\left(\frac{ds}{d\theta}\right)^2=r_0^2\cos^2\frac{\theta}{2}$, pour $\theta\in[0,\pi]$ $ds=r_0\cos\frac{\theta}{2}d\theta$ et $s(\theta)=2r_0\sin\frac{\theta}{2}$ ce qui fait $2r_0$ entre 0 et π ; $\overrightarrow{v}=\frac{\omega r_0}{2}(-\sin\theta\overrightarrow{e}_r+(1+\cos\theta)\overrightarrow{e}_\theta)$; \overrightarrow{u}_t est tangent à la trajectoire donc porté par la vitesse $\overrightarrow{v}=v\overrightarrow{u}_t=\frac{\omega r_0}{2}(-\sin\theta\overrightarrow{e}_r+(1+\cos\theta)\overrightarrow{e}_\theta)$ avec $v=\omega r_0\cos\frac{\theta}{2}$, on trouve $\overrightarrow{u}_t=[-\sin\frac{\theta}{2}\overrightarrow{e}_r+\cos\frac{\theta}{2}\overrightarrow{e}_\theta]$ d'où $\theta_t=\frac{\theta}{2}+\frac{\pi}{2}$; le vecteur \overrightarrow{u}_n se déduit de \overrightarrow{u}_t par une rotation d'angle $\frac{\pi}{2}$ dans le sens de définition de θ d'où $\overrightarrow{u}_n=-\cos\frac{\theta}{2}\overrightarrow{e}_r-\sin\frac{\theta}{2}\overrightarrow{e}_\theta$, $\overrightarrow{d}=\omega^2r_0\overrightarrow{f}$ avec $\overrightarrow{F}=\frac{d}{d\theta}[-\cos\frac{\theta}{2}\sin\frac{\theta}{2}\overrightarrow{e}_r+\cos^2\frac{\theta}{2}\overrightarrow{e}_\theta]$, on calcule $\overrightarrow{F}=\frac{1}{2}(1-4\cos^2\frac{\theta}{2})\overrightarrow{e}_r-2\cos\frac{\theta}{2}\sin\frac{\theta}{2}\overrightarrow{e}_\theta$, on obtient $\overrightarrow{F}\cdot\overrightarrow{u}_n=\frac{3}{2}\cos\frac{\theta}{2}$, on a donc $a_n=\frac{3}{2}\omega^2r_0\cos\frac{\theta}{2}$ et comme $v^2=\omega^2r_0^2\cos^2\frac{\theta}{2}$ ainsi que $v^2=R_ca_n$, on obtient $R_c=\frac{2}{3}r_0\cos\frac{\theta}{2}$.

6. Durée minimale

Réponses : $vt_{AI} = \sqrt{d_1^2 + (d-x)^2}$ et $Vt_{IB} = \sqrt{d_2^2 + x^2}$; $\frac{dt_{tot}}{dx} = 0$ avec $t_{tot} = t_{AI} + t_{IB}$, $-\frac{1}{v} \frac{(d-x)}{\sqrt{d_1^2 + (d-x)^2}} + \frac{1}{V} \frac{x}{\sqrt{d_2^2 + x^2}} = 0$; lois de Descartes de l'optique géométrique $\frac{1}{v} \sin i_1 = \frac{1}{V} \sin i_2$.

7. Mouvement cycloïdal

Réponses : $x = v_0 t + r \sin \omega t$ et $z = a + r \cos \omega t$, $\vec{v} = (v_0 + r \omega \cos \omega t) \vec{e}_x - r \omega \sin \omega t \vec{e}_z$; on s'intéresse à la vitesse d'un point situé à la périphérie de la roue lorsqu'il arrive au niveau du sol c'est-à-dire lorsque $\omega t = \pi[2\pi]$, $\vec{v} = (v_0 - a\omega)\vec{e}_x$ avec l'hypothèse $v_0 = \omega a$, on voit que la vitesse du point est nulle lorsqu'il arrive au contact du sol, il n'y a pas de différence de vitesse entre les deux points l'un de la roue, l'autre du sol qui coïncident, il n'y a pas de glissement; les équations paramétriques correspondent à $x = v_0 t + r \sin \omega t$ et $z = a + r \cos \omega t$, les trajectoires sont représentées sur les graphiques de la figure 2.

FIGURE 2 – Mouvements cycloïdaux

8. Mouvement sur une trajectoire particulière

Réponses : cercle de rayon R et de centre (x=R,y=0), on a $x=r\cos\theta$ d'où $r^2=2Rx=x^2+y^2$, on peut écrire cette équation sous la forme $(x-R)^2+y^2=R^2$; on calcule la vitesse par $\vec{v}=\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}\theta}\dot{\theta}$ d'où $\vec{v}=\frac{2R\Omega}{\cos^2\theta}\left[-\sin\theta\vec{e}_r+\cos\theta\vec{e}_\theta\right]$, puis $\vec{a}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}\theta}\dot{\theta}$, $\vec{a}=-\frac{8R\Omega^2}{\cos^5\theta}\vec{e}_r$ toujours dirigée vers O, $\Omega\mathrm{d}t=\cos^2\theta\mathrm{d}\theta$ d'où en intégrant $\Omega\Delta t=\pi$, $\Delta t=\frac{\pi}{2\Omega}$.

9. Une hélice

Réponses : base $(\vec{e}_r, \vec{e}_\theta, \vec{e}_z)$, $x = R\cos^2\theta = \frac{R}{2}(1+\cos 2\theta)$ et $y = \frac{R}{2}\sin 2\theta$ d'où $(x - \frac{R}{2})^2 + y^2 = \frac{R^2}{4}$ cercle de centre $(\frac{R}{2}, 0)$ et de rayon $\frac{R}{2}$; $\vec{v} = \dot{\theta}(-R\sin\theta\vec{e}_r + R\cos\theta\vec{e}_\theta)$ d'où $v = R\dot{\theta}$ avec $\dot{\theta} > 0$, $\vec{v} = v(-\sin\theta\vec{e}_r + \cos\theta\vec{e}_\theta)$, $\vec{a} = -\frac{2v^2}{R}(\cos\theta\vec{e}_r + \sin\theta\vec{e}_\theta)$; $\vec{v} = R\omega(-\sin\theta\vec{e}_r + \cos\theta\vec{e}_\theta)$, $\vec{a} = -2\omega^2R(\cos\theta\vec{e}_r + \sin\theta\vec{e}_\theta)$; avec $z = \frac{h}{2\pi}\theta$, on a une hélice que se développe sur l'axe Oz à vitesse constante puisque $\dot{z} = \frac{h}{2\pi}\frac{v}{R}$ et $\ddot{z} = 0$, les composantes de la vitesse et de l'accélération sont les mêmes qu'avant.

10. Mouvement le long d'une came

Réponses : la trajectoire est représentée sur le schéma de la figure 3; $\vec{v} = \omega(c\sin\theta\vec{e}_r + (b-c\cos\theta)\vec{e}_\theta)$; $\vec{a} = \omega^2(-b\vec{e}_r + 2c\sin\theta\vec{e}_\theta)$; $\theta = \pi/2$ sur l'axe Oy, $\omega = 189\,\mathrm{rad}\cdot\mathrm{s}^{-1}$, $\vec{v} = \omega(c\vec{e}_r + b\vec{e}_\theta)$ d'où $v = \omega\sqrt{c^2 + b^2} = 4, 2\,\mathrm{m}\cdot\mathrm{s}^{-1}$, $\vec{a} = \omega^2(-b\vec{e}_r + 2c\vec{e}_\theta)$ d'où $a = \omega^2\sqrt{4c^2 + b^2} = 10^3\,\mathrm{m}\cdot\mathrm{s}^{-2}$.

Figure 3 – Trajectoire d'un point sur le pourtour d'une came

B. Lois de composition des vitesses et des accélérations

11. Un nageur

Réponses : composition des vitesses donne $\vec{v}_{na/sol} = \vec{v}_{na/eau} + \vec{v}_{eau/sol}$ d'où $\vec{v}_{na/sol} = V\vec{e} - v\vec{e}_x$, or $\vec{v}_{na/sol} = \pm v_{na/sol}\vec{e}_y$ en fonction du sens de parcours, on obtient donc $V\vec{e} = v\vec{e}_x \pm v_{na/sol}\vec{e}_y$ d'où $V^2 = v^2 + v_{na/sol}^2$ et par conséquent $v_{na/sol} = \sqrt{V^2 - v^2}$ et donc $t_1 = \frac{2d}{\sqrt{V^2 - v^2}} = \frac{2d}{V} \frac{1}{\sqrt{1 - v^2/V^2}}$, pour le trajet AC on a $\vec{v}_{na/sol} = (V - v)\vec{e}_x$ et pour CA cela donne $\vec{v}_{na/sol} = (V + v)\vec{e}_x$ et donc $t_2 = \frac{2d}{V - v} + \frac{2d}{V + v} = \frac{2d}{V} \frac{2}{1 - v^2/V^2}$ et par conséquent $\frac{t_2}{t_1} = \frac{2}{\sqrt{V^2 - v^2}}$; on trouve $v = \frac{\sqrt{3}}{2}V$, on a toujours $V\vec{e} = \vec{v}_{na/sol}\vec{e}_y + v\vec{e}_x$ pour le trajet AB, en appelant α l'angle entre $V\vec{e}$ et l'axe Ox, on a $\cos\alpha = \frac{v}{V} = \frac{\sqrt{3}}{2}$ d'où $\alpha = 30$ °, pour AB on a $t_1 = \frac{2d}{\sqrt{V^2 - v^2}} = \frac{2d}{V} \frac{1}{\sqrt{1 - \frac{v^2}{V^2}}}$ alors que dans une eau calme, on obtient $t_0 = \frac{2d}{V}$ d'où $t_0 = \frac{1}{2}t_1$ ce qui fait $t_0 = 2$ mn.

12. Promener son chien

Réponses : le second homme possède une vitesse de $2\,\mathrm{km}\cdot\mathrm{h}^{-1}$ par rapport au premier promeneur. Comme ce dernier est parti une heure avant, au moment où part le second promeneur, le premier promeneur possède une avance de $2\,\mathrm{km}$. Il faut donc une heure pour que les promeneurs se rejoignent. Le chien va donc gambader pendant une heure, avec la vitesse constante qu'il est sensé garder. Il parcourra donc $D = 10\,\mathrm{km}$. Il s'agit de la réponse c).

13. Parachutiste

Réponses : $\vec{a}_{P/\mathcal{R}'} = \vec{0}$, $\vec{v}_{P/\mathcal{R}'} = -V\vec{e}_x' - v\vec{e}_y'$, droite d'équation $y' = h + \frac{v}{V}x'$, $\vec{a}_{P/\mathcal{R}'} = \vec{0}$, $\vec{v}_{P/\mathcal{R}'} = -(V + v \sin \alpha)\vec{e}_x' - v \cos \alpha \vec{e}_y'$, droite d'équation $y' = h \frac{V \cos \alpha}{V + v \sin \alpha} + \frac{v \cos \alpha}{V + v \sin \alpha}x'$, $\vec{a}_{P/\mathcal{R}'} = -a\vec{e}_x'$, $\vec{v}_{P/\mathcal{R}'} = -at\vec{e}_x' - v\vec{e}_y'$, parabole d'équation $x' = -\frac{1}{2}a(\frac{h-y'}{v})^2$, $\tan \theta_1 = \frac{v}{V}$, $v = 31 \,\mathrm{km} \cdot \mathrm{h}^{-1}$, $\tan \theta_2 = \frac{v \cos \alpha}{V + v \sin \alpha}$, $\theta_2 = 21$ °, $\tan \theta_3 = \frac{v^2}{ah}$, $h = 225 \,\mathrm{m}$.

14. Rotation

Réponses : $\overrightarrow{OP} = v_r t \vec{e}_x{}'$ et $\overrightarrow{OP} = v_r t \cos \omega_0 t \vec{e}_x + v_r t \sin \omega_0 t \vec{e}_y, r = \frac{v_r}{\omega_0} \theta$ spirale régulière, $\vec{v}_{P/\mathcal{R}_0} = v_r \vec{e}_r + v_r \omega_0 t \vec{e}_\theta$, $\vec{a}_{P/\mathcal{R}_0} = -v_r \omega_0^2 t \vec{e}_r + 2v_r \omega_0 \vec{e}_\theta$, $r = r_0$ cercle, $\vec{v}_{P/\mathcal{R}_0} = r_0(\omega + \omega_0) \vec{e}_\theta$, $\vec{a}_{P/\mathcal{R}_0} = -r_0(\omega + \omega_0)^2 \vec{e}_r$, P immobile par rapport à \mathcal{R}_0 .

15. Arroseur de jardin

Réponses : $\vec{v}_{rel} = u \sin \alpha \vec{e}_r - u \cos \alpha \vec{e}_\theta$, $\vec{v}_{ent} = \omega b \vec{e}_\theta$; $\vec{a}_{rel} = \vec{0}$, $\vec{a}_{ent} = -\omega^2 b \vec{e}_r$, $\vec{a}_{Coriolis} = 2\omega u [\cos \alpha \vec{e}_r + \sin \alpha \vec{e}_\theta]$.

16. Horloge

Réponses : l'aiguille est un référentiel en rotation noté \mathcal{R}' , le mouvement est uniforme dans \mathcal{R}' on a $\vec{a}_{M/\mathcal{R}'} = \vec{0}$ et $\vec{v}_{M/\mathcal{R}'} = \frac{L}{T} \vec{e}_r$, la position de l'insecte sur l'aiguille est donnée par $O\vec{M} = \frac{L}{T} t \vec{e}_r$; le point coïncident avec M à une date t quelconque attaché à \mathcal{R}' effectue un mouvement de rotation uniforme de vitesse angulaire $\vec{\omega} = \frac{2\pi}{T} \vec{e}_z$, il se trouve à la distance $\frac{L}{T} t$ de O donc sa vitesse est $\vec{v}_{ent} = \frac{2\pi L}{T^2} t \vec{e}_\theta$, son accélération est $\vec{a}_{ent} = -\omega^2 OM_c \vec{e}_r$ d'où $\vec{a}_{ent} = -\frac{4\pi^2 L}{T^3} t \vec{e}_r$; $\vec{a}_{Cor} = 2\vec{\omega} \wedge \vec{v}_{M/\mathcal{R}'}$ d'où $\vec{a}_{Cor} = \frac{4\pi L}{T^2} \vec{e}_\theta$; $\vec{a}_{M/\mathcal{R}} = \vec{a}_{M/\mathcal{R}'} + \vec{a}_{ent} + \vec{a}_{Cor}$.