1. 令 X(t) 为二阶矩存在的随机过程,试证它是宽平稳的当且仅当 EX(s) 与 E[X(s)X(s+t)] 都不依赖 s.

证明:充分性:若 X(t) 为宽平稳的,则由定义知

EX(t)= L, EX(s)X(s+t)=r(t) 均与 s 无关

必要性:若 EX(s) 与 EX(s)X(s+t) 都与 s 无关,说明 $EX(t)= 常数 , \qquad EX(s)X(s+t) \qquad 为 \ t \ 的函数$

2. 记U₁,...,U_n为在(0,1)中均匀分布的独立随机变量,对 0<t,x<1 定义

$$\begin{cases}
1, & x \leq t, \\
0, & x > t,
\end{cases}$$

并记 X(t)= $\frac{1}{n}\sum_{k=1}^{n}I\left(t,U_{k}\right)$, $0\leq t\leq 1$, 这是 U_{1} , . . . , U_{n} 的经验分布函数。

试求过程 X(t)的均值和协方差函数。

解: EI
$$(t, U_k) = P(U_k \le t) = t$$

D
$$(I(t,U_k)) = EI(t,U_k) - (EI(t,U_k))^2$$

= t $-t^2 = t(1 - t)$

$$k \neq j$$
, cov $(I(t,U_k), I(s,U_j)) = EI(t, U_k)I(s, U_j) - EI(t, U_k)EI(s, U_j)$

$$k = j$$
 , cov $(I(t,U_k), I(s,U_j)) = EI(t, U_k)I(s, U_j)$ - st
= min(t,s) - st

$$EX(t) = \frac{1}{n} \sum_{k=1}^{n} EI(t, U_k) = \frac{1}{n} \sum_{k=1}^{n} t = t$$

$$cov (X (t), X (s)) = \frac{1}{n^2} \sum_{k=1}^{n} cov(I (t, U_k), I (s, U_k)) + \frac{1}{n^2} \sum_{k\neq j} cov(I (t, U_k), I (s, U_j))$$

$$= \frac{1}{n^2} \sum_{k=1}^{n} \left[\min(s,t) - st \right]$$

$$= \frac{1}{n} (\min(s,t) - st)$$

3.令 Z_1 , Z_2 为独立的正态分布随机变量,均值为 0 , 方差为 σ^2 , λ 为实数,定义过程 $X(t)=Z_1\cos\lambda t+Z_2\sin\lambda t$.试求 X(t)的均值函数和协方差函数 ,它是宽平稳的吗?

Solution:
$$Z_1, Z_2 \sim N(0, \sigma^2)$$
. $EZ_1^2 = EZ_2^2 = 0$.
$$D(Z_1) = D(Z_2) = \sigma^2 \qquad , \qquad Cov(Z_1, Z_2) = 0 \qquad , \qquad EX(t) = 0 \qquad ,$$

$$Cov(X(t) X(s)) = E\left[Z_1Cos\lambda t + Z_2Sin\lambda t\right] \cdot (Z_1Cos\lambda s + Z_2Sin\lambda s)$$

$$= E\left[Z_1^2C \text{ o st } C \text{ o st } C \text{ o st } C \text{ o st } S \text{ i ht } S$$

{x (t)}为宽平稳过程 .

4.Poisson过程 X (t) t ≥ 0 满足 (i) X (0) = 0; (ii) 对 t > s, X (t) – X (s) 服从均值为
λ (t - s) 的 Poisson分布; (iii) 过程是有独立增量的 . 试求其均值函数和协方差函数. 它是宽平稳的吗?

Solution EX (t)= E(X (t)- X (0))=
$$\lambda$$
t , D(X (t))= λ t
Cov(X (t) X (s))= EX (t)X (s)- λ t · λ s
= E(X (t)- X (s))X (s)+ EX 2 (s)- λ^2 ts
= 0 + D(X (s))+ (EX (s)) 2 - λ^2 ts
= λ s + (λ s) 2 - λ^2 ts
= λ s (1 + λ s - λ t)

显然 X(t)不是宽平稳的.

5. X(t)为第 4 题中的 Poisson 过程,记 y(t) = X(t+1) - X(t),试求过程 y(t)的均值函数和协方差函数,并研究其平稳性 .

Solution Ey(t)=
$$\lambda$$
 1 = λ , D(y(t))= λ

Cov(y(t),y(s))=Ey(t)y(s)-Ey(t)y(s)

=
$$E(x(t+1)-x(t))(x(s+1)-x(s))-\lambda^{2}$$

- (1) 若 s+1<t, 即 s t-1 ,则 $Cov(y(t),y(s))=0-\lambda^2=-\lambda^2$
- (2) 若 t<s+1 t+1, 即 t>s>t-1, 则

$$Cov(y(t),y(s)) = E[x(t+1)-x(s+1)+x(s+1)-x(t)][x(s+1)-x(t)+x(t)-x(s)] - \lambda^{2}$$

$$= E(x(t+1)-x(s+1))(x(s+1)-x(t))+E(x(t+1)-x(s+1))(x(t)-x(s))$$

$$+E(x(s+1)-x(t))+E(x(s+1)-x(t))(x(t)-x(s))-\lambda^{2}$$

$$= \lambda (s+1-t) = \lambda - \lambda (t-s) - \lambda^{2}$$

(3) 若 t<s<t+1

 $Ex_t = 0$

Cov(y(t),y(s))= E [x(t+1)-x(s)+x(s)-x(t)] [x(s+1)-x(t+1)+x(t+1)-x(s)]-
$$\lambda^2$$

=(x(t+1)-x(s))(x(s+1)-x(t+1))+E(x(t+1)-x(s))(x(t+1)-x(s))
+E(x(s)-x(t))(x(s+1)-x(t+1))+E(x(s)-x(t))(x(t+1)-x(s))- λ^2
=0+ λ (t+1-s)+0- λ^2

- (4) 若 s>t+1 Cov(y(t),y(s))=0- $\lambda^2=-\lambda^2$ 由此知,故方差只与 t-s 有关,与 t,s 无关 故此过程为宽平稳的。

 $cov(x_t, x_s) = E(x_t, x_s) = E(z_1^2 cos \lambda tcos \lambda s + z_2^2 sin \lambda tsin \lambda s + z_1 z_2 cos \lambda tsin \lambda s + z_1 z_2 sin \lambda tcos \lambda s)$

 $=\cos \lambda t \cos \lambda s + \sin \lambda t \sin \lambda s + 0 + 0 = \cos(t - s)$

故 x(t) 为宽平稳的。

而

$$x(t) \qquad \begin{vmatrix} \cos \lambda t + \sin \lambda t & \cos \lambda t - \sin \lambda t & -\cos \lambda t + \sin \lambda t & -\cos \lambda t - \sin \lambda t \end{vmatrix}$$

$$P \qquad \frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4}$$

$$x(t + h) \begin{vmatrix} \cos(\lambda(t + h) + \sin\lambda(t + h)) \end{vmatrix} = \cos(\lambda(t + h) - \sin\lambda(t + h)) \begin{vmatrix} -\cos\lambda(t + h) + \sin\lambda(t + h) \end{vmatrix}$$

$$P \begin{vmatrix} \frac{1}{4} \end{vmatrix} = \frac{1}{4}$$

$$\frac{1}{4}$$

$$x(t +h) = -\cos \lambda(t +h) - \sin \lambda(t +h)$$

$$P = \frac{1}{4}$$

显然, x(t) 与 x(t+h) 的分布不相等, 故不是严平稳的。

7、试证:若 Z_0 , Z_1 ,..... 为独立同分布的随机变量 , 定义 $X_n = Z_0 + Z_1 + ... + Z_n$,则 { x_n , $n \ge 0$ } 是独立增量过程。

8、若 $X_1, X_2...$ 为独立随机变量,还要添加什么条件才能确保它是严平稳的随机过程?

Solution: 添加 $X_1, X_2 ...$,同分布的条件。

Solution: $P(X > Y) = \iint_{x>y} f(x, y) dxdy = \frac{1}{2}$

$$P(X^{2}+Y^{2} \ge \frac{3}{4}|X>Y) = P(X^{2}+Y^{2} \ge \frac{3}{4},X>Y) = 2 \cdot \int_{\frac{\pi}{2}}^{1} \int_{\frac{\pi}{4}}^{\frac{9}{4}} \pi \cdot \frac{1}{2} r d\theta dr = 1$$

$$P(X>Y) = P(X>Y)$$

10. 粒子依参数为 的 Poisson 分布进入计数器,两粒子到达的时间间隔 T1, T2, ...是独立的参数为 的指数分布随机变量。记 S是 [0,1] 时段中的粒子总数,时间区间 I [0,1],其长度记为 |I|. 试证明 P(T1 I,S=1)=P(T1 I,T1+T2>1),并由此计算 P(T1 I|S=1)=|I|. Proof。 $\{T1\ I$,S=1 $\}$ 表明在 I 内来到了一个粒子,在 $\{0,1\}$ -I 内再也没有来到粒子,也就是说第二个粒子的到来在 $\{0,1\}$ 之后,即 T1+T2>1. $\{T1+T2\}$ 为第二个粒子来到的时间 $\}$ 。从而 $\{T1\ I$,S=1 $\}$ =P $\{T1\ I$,T1+T2>1 $\}$

$$P(T1 | I|S=1) = P(T1 | I,S=1) / P(S=1)$$

$$= P(T1 | I,T1+T2>1) / P(S=1) | S\sim P()$$

$$= \{ | I|e^{-|I|}*((1-|I|)) | ^{0}*e^{-(1-|I|)} \} / e^{-(1-|I|)}$$

11.X,Y 为两独立随机变量且分布相同,证明 E(x|x+y=z)=E(y|x+y=z). 并试求基于 x+y=z 的 x 的最佳预报,并求出预报误差 E(x+y+y+z)=E(y|x+y+z).

Proof : 因 x 与 y 独立,且分布相同,则 x|x+y=z =d y|x+y=z

故 E(x|x+y=z)=E(y|x+y=z)

而 E(x+y|x+y=z)=z, 故 E(x|x+y=z)=z/2

用任意的 (z)来对 x 做预报,预报误差为:

$$E = (x - (z))^{2} = E(x - E(x|x+y=z) + E(x|x+y=z) - (z))^{2}$$

$$= E(x - E(x|x+y=z))^{2} + E(E(x|x+y=z) - (z))^{2}$$

$$+ 2E(x - E(x|x+y=z))^{2} + E(E(x|x+y=z) - (z))^{2}$$

$$= E(x - E(x|x+y=z))^{2} + E(E(x|x+y=z) - (z))^{2}$$

$$E(x - E(x|x+y=z))^{2}$$

12、气体分子的速度 V 有三个垂直分量 V_x , V_y , V_z , 它们的联合分布密度依

Maxwell-Boltzman 定律为

$$f_{V_{x},V_{y},V_{z}}(V_{1},V_{2},V_{3}) = \frac{1}{(2\pi\kappa T)^{\frac{3}{p}}} \exp \left\{ \left(\frac{V_{1}^{2} + V_{2}^{2} + V_{3}^{2}}{2\kappa T} \right) \right\},$$

其中 k 是 Boltzman 常数 , T 为绝对温度 , 给定分子的总动能为 e. 试求分子沿 x 方向的动量的绝对值的期望值。

解:由于 V_x , V_y , V_z 的联合密度函数为

$$f_{V_{x},V_{y},V_{z}}(V_{1},V_{2},V_{3}) = \frac{1}{(2\pi\kappa T)^{\frac{3}{2}}} \exp\left\{\left(\frac{V_{1}^{2}+V_{2}^{2}+V_{3}^{2}}{2\kappa T}\right)\right\}$$

$$= \frac{1}{(2\pi\kappa T)^{\frac{3}{2}}} \exp\left\{\frac{V_{1}^{2}}{2kT}\right\}. \frac{1}{(2\pi\kappa T)^{\frac{3}{2}}} \exp\left\{\frac{V_{2}^{2}}{2kT}\right\}.$$

$$\exp\left\{\frac{V_{2}^{2}}{2kT}\right\}. \frac{1}{(2\pi\kappa T)^{\frac{3}{2}}} \exp\left\{\frac{V_{3}^{2}}{2kT}\right\}$$

因此, V_x , V_y , V_z 互相独立,且 V_x , V_y , V_z 都服从正态分布 N (0 , T) . 故气体分子的总动能为

$$e = \frac{1}{2} m E(V_x^2 + V_y^2 + V_z^2) = \frac{3}{2} m \kappa T$$

$$m = \frac{2 e}{3 \kappa T}$$
 (1)

由此可得

而气体沿 x 方向的动量的绝对值的期望值为

$$mE \quad (|V_{x}|) = \frac{m}{(2\pi\kappa T)^{\frac{1}{2}}} \int_{-\infty}^{+\infty} |V_{1}| \exp\left\{-\frac{v_{1}^{2}}{2\kappa T}\right\} dV_{1}$$

$$= \frac{m}{(2\pi\kappa T)^{\frac{1}{2}}} \left[-\int_{-\infty}^{0} v_{1} \exp\left\{-\frac{v_{1}^{2}}{2\kappa T}\right\} dV_{1} + \int_{0}^{+\infty} v_{1} \exp\left\{-\frac{v_{1}^{2}}{2\kappa T}\right\} dV_{1}\right]$$

$$= \frac{2m}{(2\pi\kappa T)^{\frac{1}{2}}} \int_{0}^{+\infty} v_{1} \exp\left\{-\frac{v_{1}^{2}}{2\kappa T}\right\} dV_{1}$$

$$= \frac{m}{(2\pi\kappa T)^{\frac{1}{2}}} \int_{0}^{+\infty} \exp\left\{-\frac{v_{1}^{2}}{2\kappa T}\right\} d(v_{1}^{2})$$

$$= m \left(\frac{2\kappa T}{\pi}\right)^{\frac{1}{2}}$$

由此及(1)可得

$$mE(|V_x|) = \frac{2e}{3} \left(\frac{2}{\pi \kappa T}\right)^2$$

13. 若 X_1, X_2, \ldots, X_n 独立同分布,他们服从参数 λ 的指数分布,试证: $\sum_{i=1}^n X_i$ 是参数 $\left(1, \lambda\right)$ 为 Γ 的分布,其密度函数为: $f(t) = \lambda \exp\{-\lambda t\}(\lambda t)^{n-1}/(n-1)!$ $t \geq 0$ \Pr oof. $X_1 \sim f(x) = \lambda e^{-\lambda x}, x \geq 0$

$$\varphi_{x_1}(t) = Ee^{X_1t} = \int_0^{+\infty} e^{xt} \cdot \lambda e^{-\lambda x} dx = \frac{\lambda}{t-\lambda} = \frac{\lambda}{\lambda-t} \quad (\lambda > t)$$

$$\phi_{\sum_{i=1}^n x_i}(t) = \left(\frac{\lambda}{\lambda-t}\right)^n$$

记 Y~ $\Gamma(n,\lambda,y)$, 则

$$\begin{split} \phi_y(t) &= E e^{yt} = \int_0^{+\infty} \frac{e^{yt} \cdot \lambda e^{-\lambda y} \cdot (\lambda y)^{n-1}}{(n-1)!} dy \\ &= \frac{\lambda^n}{(n-1)!} \int_0^{+\infty} e^{-(\lambda-t)y} \cdot y^{n-1} dy \\ &= (\frac{\lambda}{\lambda-t})^n \qquad (\lambda > t) \end{split}$$

由矩母函数与分布函数相互唯一决定知 $\sum_{i=1}^{n} X_i$ 为 Γ 分布。

 X_1, X_2 为相互独立的均值为 λ_1 和 λ_2 的 Poisson 随机变量。试求 $X_1 + X_2$ 的分布。并计算给定 $X_1 + X_2 = n$ 时 X_1 的条件分布。

Solution.
$$\begin{split} P(X_1 + X_2 &= k) = \sum_{m=0}^{\infty} P(X_1 = m, X_2 = k - m) \\ &= \sum_{m=0}^{k} \frac{\lambda_1^m}{m!} e^{-\lambda_1} \cdot \frac{\lambda_2^{k-m}}{(k-m)!} e^{-\lambda_2} \\ &= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \sum_{m=0}^{k} \frac{k!}{m! (k-m!)} \cdot \lambda_1^m \lambda_2^{k-m} \\ &= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \sum_{m=0}^{k} \frac{k!}{m! (k-m!)} \cdot \lambda_1^m \lambda_2^{k-m} \\ &= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \sum_{m=0}^{k} \frac{k!}{m! (k-m!)} \cdot \lambda_1^m \lambda_2^{k-m} \\ &= \frac{(\lambda_1 + \lambda_2)^k}{k!} e^{-(\lambda_1 + \lambda_2)}, k = 0,1,2, \dots \\ P(X_1 = \ell | X_1 + X_2 = n) &= \frac{(X_1 = \ell | X_1 + X_2 = n)}{P(X_1 + X_2 = n)} = \frac{\frac{\lambda_1^{\ell}}{\ell!} e^{-\lambda_1} \cdot \frac{\lambda_1^{n-\ell}}{(n-\ell)!} e^{-\lambda_2}}{\frac{(\lambda_1 + \lambda_2)^n}{n!} e^{-(\lambda_1 + \lambda_2)}} \\ &= C_n^{\ell} (\frac{\lambda_1}{\lambda_1 + \lambda_2})^{\ell} (\frac{\lambda_2}{\lambda_1 + \lambda_2})^{n-\ell} \quad \ell = 0,1,2,\dots \end{split}$$

$$= \sum_{n=1}^{\infty} \int_{0}^{y} \frac{\lambda^{n} t^{n-1}}{(n-1)!} e^{-\lambda} dt \cdot \beta \left(1 - \beta\right)^{n-1},$$

$$f(y) = \sum_{n=1}^{\infty} \frac{\beta \lambda}{(n-1)!} \frac{\lambda 1 - \beta}{(n-1)!} e^{-\lambda y}$$

$$= \beta \lambda \cdot e^{-\lambda y} \sum_{n=1}^{\infty} \frac{\lambda 1 - \beta}{(n-1)!} y^{n-1}$$

$$= \beta \lambda \cdot e^{-\lambda y} \cdot e^{\lambda 1 - \beta} y = \lambda \beta e^{-\lambda \beta y}.(y > 0)$$

$$y \sim E(\lambda^{\beta})$$

16. 若
$$X_1$$
 , X_2 , ...独立同分布 , $P(X_i = \pm 1) = \frac{1}{2}$, $N = X_i$, $i = 1$ 独立且服从参数为 β

的几何分布, $0 < \beta < 1$. 试求随机和 $Y = \sum_{i=1}^{N} X_{i}$ 的均值,方差和三、四阶矩。

$$\begin{aligned} \text{$\mathsf{H}:$} \ &\mathsf{E}(\mathsf{X}_{i}) = (-1)^{\times} \frac{1}{2} + 1^{\times} \frac{1}{2} = 0 \;, \quad \mathsf{E}(\mathsf{X}_{i}^{2}) = \; \mathsf{D}(\mathsf{X}_{i}) = \; (-1)^{2} \times \frac{1}{2} + (1)^{2} \times \frac{1}{2} = 1 \\ &\mathsf{E}(\mathsf{X}_{i}^{3}) = \; (-1)^{3} \times \frac{1}{2} + (1)^{3} \times \frac{1}{2} = 0 \;, \quad \mathsf{E}(\mathsf{X}_{i}^{4}) = \; (-1)^{4} \times \frac{1}{2} + (1)^{4} \times \frac{1}{2} = 1 \\ &\mathsf{E}\mathsf{N} = \frac{1}{\beta} \;\;, \; \mathsf{E}\mathsf{e}^{\mathsf{t}\mathsf{X}_{i}} \; = \; \mathsf{e}^{\mathsf{-t}} \; \cdot \frac{1}{2} + \; \mathsf{e}^{\mathsf{t}} \; \cdot \frac{1}{2} = \frac{1}{2} (\; \mathsf{e}^{\mathsf{-t}} + \; \mathsf{e}^{\mathsf{t}} \;) = \; \mathsf{ch} \; (\; \mathsf{t} \;) \end{aligned}$$

$$g_{y}(t) = Ee^{ty} = E[E(e^{t\sum_{i \neq j} X_{i}} | N = n)] = E(Ee^{tX_{i}})^{N}$$

$$= E(ch(t))^{N} = \sum_{n \neq j} (ch(t))^{n} \cdot {}^{\beta}1 - {}^{\beta}^{n-4}$$

$$= {}^{\beta} \cdot ch(t) \cdot \frac{1}{1 - (1 - {}^{\beta}) \cdot ch(t)}$$

$$Ey^n = g^{(n)}(0)$$

$$g'(t) = \frac{\beta sh(t)}{(1-(1-\beta)ch(t))^2}, g'(0) = 0$$

$$g''(t) = \frac{\beta ch(t) - \beta (1 - \beta) + \beta (1 - \beta) sh^{2}(t)}{(1 - (1 - \beta))ch(t)}, g''(0) = \frac{\beta - \beta (1 - \beta)}{(1 - (1 - \beta))^{3}} = \frac{1}{\beta}$$

$$\sinh(t) = \frac{e^t - e^{-t}}{2}$$
, ch (t) = sh(t), sh (t) = ch(t) sh(0) = 0,ch(0) = 1

17. 随机变量 N服从参数为 $^{\lambda}$ 的 poisson 分布,给定 N=n,随机变量 M服从以 n 和 p 为参数的 二项分布,试求 M的无条件概率分布。

$$P(M = m | N = n) = C_n^m P^m (1 - p)^{n-m}, m = 0.1.2...n$$

$$P(N = n) = \frac{\lambda^{n}}{n!} e^{-\lambda}, n = 0,1,...$$

$$P(M = m) = \sum_{n=0}^{\infty} P(M = m, N = n) = \sum_{n=m}^{\infty} P(M = m, N = n)$$

$$= \sum_{n=m}^{\infty} P(M = m \mid N = n) \cdot P(N = n)$$

$$= \sum_{n=m}^{\infty} C_{n}^{m} P^{m} (1 - P)^{n-m} \cdot \frac{\lambda^{n}}{n!} e^{-\lambda}$$

$$= \sum_{n=m}^{\infty} \frac{n!}{m!(n-m)!} \cdot \frac{(1-p)}{n!}^{n-m} \cdot \lambda^{n-m} \cdot (\lambda p)^{m} e^{-\lambda}$$

$$= \frac{(\lambda p)^{m}}{m!} \sum_{l=n-m=0}^{\infty} \frac{1}{l!} (1-p)^{l} \lambda^{l} \cdot e^{-\lambda}$$

$$= \frac{(\lambda p)^{m}}{m!} e^{-\lambda} \cdot e^{\lambda(1-p)} = \frac{(\lambda p)^{m}}{m!} e^{-\lambda p}, m = 0,1,2...$$

p(N(s) = k, N(t) = n)

Solution: p(N(s) = k | N(t) = n)

$$p(N(t) = n)$$
=
$$\frac{p(N(s) = k \cdot p(N(t) - N(s) = n - k))}{p(N(t) = n)}$$

$$\frac{\left(\frac{\lambda}{s}\right)^{k}}{k!} e^{-\lambda s} \cdot \frac{\left[\frac{\lambda}{(t-s)}\right]^{n-k}}{(n-k)!} e^{-\lambda (t-s)}$$

$$\frac{\left(\frac{\lambda}{t}\right)^{n}}{n!} e^{-\lambda t}$$

$$= \frac{n!}{k!(n-k)!} \left(\frac{s}{t}\right)^k \left(1-\frac{s}{t}\right)^{n-k}$$

2、{N(t),t0}为一强度是的 Poisson 过程,对 s>0 试计算: E[N(t) · N(s)]

Solution: $E[N(t) \cdot N(t+s)] = E[N(t)] \cdot [N(t+s) - N(t) + N(t)]$

=
$$E[N(t)]$$
 $\cdot [N(t+s)-N(t)]+ E\{N^{2}[(t)]\}$

(独立增量) =
$$E[N(t)]$$
 · $E[N(t+s)-N(t)]+$ t+(t) 2 = t (s) + t+(t) 2

$$= t + ^2 t (t+s)$$

注:
$$E[N(t)]=$$
 t $D[N(t)]=$ t $E[N^{2}(t)]=$ t+(t)

- 3、电报依平均速度为每小时 3 个的 Poisson 过程到达电报局,试问:
- ()从早上八点到中午没收到电报的概率?
- ()下午第一份电报到达时间的分布是什么?

注:以八点为初始时刻

Solution: 用 N(t) 表示在时间 t 内到达的电报数,则 N(t)~P (t)

- () P(N(2)-N(8)=0)=((4) $^{0}/0!)$ e $^{-4}$ = e^{-12}
- ()设 T为下午第一份电报到达时间,则:

P (12 T t) =
$$P(N(t)-N(12)=1)=3(t-12)e^{-3(t-12)}$$
, t 12

$$P\{N(1) \le 2\}$$
 为 $\lambda = 2$ 的 possion 过程,试求

(1)
$$P\{N(1) \le 2\}$$

(2)
$$P\{N(1)=1,N(2)=3\}$$

(3)
$$P\{N(1)\geq 2 \mid N(1)\geq 1\}$$

Solution : (1)
$$P\{N(1) \le 2\} = \frac{2^0}{0!}e^{-2} + \frac{2^1}{1!}e^{-2} + \frac{2^2}{2!}e^{-2} = 5e^{-2}$$

(2)
$$P\{N(1)=1,N(2)=3\} = P\{N(1)=1,N(2)-N(1)=2\}$$

= $P\{N(1)=1\}P\{N(2)-N(1)=2\}$

$$= 2 e^{-2} \cdot \frac{2^2}{2!} e^{-2} = 4e^{-4}$$

(3)
$$P\{N(1) \ge 2 | N(1) \ge 1\} = P\{N(1) \ge 2, N(1) \ge 1\} / P\{N(1) \ge 1\}$$

$$= P\{N(1) \ge 2\}/P\{N(1) \ge 1\}$$

$$= \frac{1 - e^{-2} - 2e^{-2}}{1 - e^{-2}} = 1 - \frac{2e^{-2}}{1 - e^{-2}}$$

$$P_{m}(0)=0$$
, $m=1,2,...$ $p_{m}(0)=0$ $m!$ $p_{m}(0)=0$

证明:(*)的导出已在命题 2.1 中给出,

$$P_0(t) = e^{-\lambda t}$$

$$P_m(t) = -\lambda P_m(t) \Rightarrow P_m(t) = ce^{-\lambda t}$$

$$P_m(t) = c(t)e^{-\lambda t}$$
 代入(*)有
$$c'(t)e^{-\lambda t} - \lambda c(t)e^{-\lambda t} = -\lambda c(t)e^{-\lambda t} + \lambda P_{m-1}(t)$$

$$c(t) = \lambda \int_0^t e^{\lambda t} P_{m-1}(t) dt$$
 从而
$$P_m(t) = ce^{-\lambda t} + \lambda \int_0^t e^{\lambda t} P_{m-1}(t) dt \cdot e^{-\lambda t}$$

 $P_{m}(0) = ce^{-\lambda t} + 0 = 0.(m = 1, 2, ...), c = 0$

 $P_m(t) = \lambda \int_0^t e^{\lambda t} P_{m-1}(t) dt \cdot e^{-\lambda t}$

$$P_1(t) = \lambda \int_0^t e^{\lambda t} \cdot e^{-\lambda t} dt \cdot e^{-\lambda t} = \lambda t \cdot e^{-\lambda t}$$

$$P_2(t) = \lambda \int_0^t e^{\lambda t} \lambda t \cdot e^{-\lambda t} dt \cdot e^{-\lambda t} = \frac{(\lambda t)^2}{2!} e^{-\lambda t},...$$

6. 一部 600 页的著作 , 总共有 240 个印刷错误 , 试利用 Poisson 过程近似求出连续 误的概率。

Solution : 首先求出强度 $\lambda = \frac{240}{600} = 0.4$ $\ell+3$)-N(ℓ)=0)= $e^{-0.4\times3} = e^{-1.2}$ P(N(

(1.1)

7.N(t) 是强度为 λ 的 Poisson 过程,给定 N(t)=n ,试求第 r 个事件 (r ≤n)发生的时刻 W,的 条件概率密度 $f_{W_r/N(t)}(W_r|n)$

Solution:

 $f(W_r \mid n) \leq \Delta W_r = P\{N(W_r) = r-1, N(W_r + \Delta W_r) - N(W_r) = 1, N(t) - N(W_r + \Delta W_r) = n-r|N(t) = n\}$

$$= \frac{\frac{\left(\lambda W_{r}\right)^{r-1}}{(r-1)!} e^{-\lambda W_{r}} \underbrace{\frac{\left(\lambda \Delta W_{r}\right)^{1}}{1!} e^{-\lambda W_{r}} \underbrace{\frac{\left(\lambda \left(t-W_{r}-\Delta W_{r}\right)\right)^{n-2}}{(n-r)!} e^{-\lambda \left(t-W_{r}-\Delta W_{r}\right)}}_{+o(\Delta W_{r})}}{\frac{\left(\lambda t\right)^{n}}{n!} e^{-\lambda t}}$$

$$= \frac{n!}{(r-1)!(n-r)!} g(\frac{W_r}{t})^{r-1} g^{\Delta} W_r g(\frac{t-W_r-\Delta W_r}{t})^{n-r} + o(\Delta W_r)$$

从而
$$f(W_r|n) = \frac{n}{t} 2C_{n-1}^{r-1} 2(\frac{W_r}{t})^{r-1} 2(1 - \frac{W_r}{t})^{n-r}$$

8. 令 { N_i (t) , t ≥0} , i=1 , 2 , , n 为 n 个相互独立的有相同参数 λ 的 Poisson 过程 , 记 T 为全部 n 个过程中至少发生了一件事的时刻 , 试求 T 的颁布。

Solution: 由题意知, $T=f\{t|\sum_{i=1}^{n}N_{i}(t)\geq 1\}$

P(T>x)=P(
$$\sum_{i=1}^{n} N_i(x) = 0) = e^{-n\lambda x} (利用了独立性)$$

(说明在时刻经 x 前, 没有一个事件发生)

$$f_{T}(x) = \begin{cases} n^{\lambda} e^{-n\lambda} x, x > 0 \\ 0, else \end{cases}$$

9. 考察参数为 的 Poisson 过程 N (t) , 若每一事件独立地以概率 p 被观察到 , 并将观

察到的过程记为 $N_1(t)$, 试问: $N_1(t)$ 是什么过程? $N(t) - N_1(t)$ 呢?

 $N_1(t)$ 与 N(t) $N_1(t)$ 是否独立?

$$P(N_{1}(t) = k) = \sum_{\substack{n=0 \\ \infty}}^{\infty} P(N_{1}(t) = k, N(t) = n)$$

$$= \sum_{\substack{n=k \\ n \neq k}}^{\infty} \frac{P(N_{1}(t) = k)}{(N(t) = n) \cdot P(N(t) = n)}$$

$$= \sum_{\substack{n=k \\ n = k}}^{\infty} C_{n}^{k} p^{k} (1 - p)^{n-k} \cdot \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}$$

$$= \frac{p^{k}}{k!} \sum_{n=k}^{\infty} \frac{1}{(n-k)!} \cdot (1-p)^{n-k} \cdot (\lambda t)^{n-k} \cdot (\lambda t)^{k} \cdot e^{-\lambda t}$$

$$= \frac{(\lambda pt)^{k}}{k!} e^{-\lambda t} \cdot \sum_{l=n-k=0}^{\infty} \frac{(\lambda (1-p)t)^{l}}{l!}$$

$$= \frac{(\lambda pt)^{k}}{k!} e^{-\lambda t} \cdot e^{\lambda (1-p)t}$$

$$= \frac{(\lambda pt)^{k}}{k!} e^{-\lambda t}, k = 0,1,2,3....$$

 $N_1(t)$ 为强度参数为 λpt 的 Poisson 过程。

易知 $N(t) - N_1(t)$ 为强度参数为 $\lambda(1 - p)t$ 的 Poisson 过程。

$$i \exists \ N_2(t) = N(t) - N_1(t) \ , \ \ D(N_2(t) = m) = \frac{(\lambda (1-p)t)^m}{m!} e^{-\lambda (1-p)t}$$

$$P(N_1(t) = k, N_2(t) = m) = P(N(t) = m+k) = \frac{(\lambda t)^{m+k}}{(m+k)!} e^{-\lambda t}$$

$$\neq P(N_1(t) = k) \cdot P(N_2(t) = m)$$

故 $N_1(t)$ 与 $N_2(t)$ 不相互独立。

10. 到达某加油站的公路上的卡车数服从强度参数为 λ_1 的 Poisson 过程 $N_1(t)$, 而到达的

小汽车数服从参数为 λ_2 的 Poisson 过程 $N_2(t)$,且 $N_1(t)$ 与 $N_2(t)$ 独立 ,试问: $N_1(t)$ + $N_2(t)$

是什么过程?并计算在总车流数 N(t) 中卡车首先到达的概率。

Solution.
$$P(N(t) = n) = \sum_{k=0}^{\infty} P(N_1(t) = k, N_2(t) = n - k)$$

$$= \sum_{k=0}^{\infty} P(N_1(t) = k) P(N_2(t) = n - k)$$

$$= \sum_{k=0}^{\infty} \frac{(\lambda_1 t)^k}{k!} e^{-\lambda_1 t} \cdot \frac{(\lambda_2 t)^{n-k}}{(n-k)!} \cdot e^{-\lambda_2 t}$$

$$= \frac{1}{n!} e^{-(\lambda_1 + \lambda_2)} \cdot (\lambda_1 t + \lambda_2 t)^n = \frac{((\lambda_1 + \lambda_2)t)^n}{n!} e^{-(\lambda_1 + \lambda_2)t}$$

n=0, 1, 2,

N(t) 为参数 $\lambda_1 + \lambda_2$ 的 Poisson 过程

取 T = inf $\{t \mid N_1(t) = 1, N_2(t) = 0\}$

$$\begin{split} f\left(\tau\mid n\right)\cdot\Delta\tau &= \frac{P\{N(\tau)=0,N_{1}(\tau+\Delta\tau)-N_{1}(\tau)=1,N_{2}(\tau+\Delta\tau)-N_{2}(\tau)=0,N(t)-N(\tau+\Delta\tau=n-1)\}}{P\{N(t)=n\}} \\ &= \frac{\left(\left(\lambda_{1}+\lambda_{2}\right)\tau\right)^{0}}{0!}e^{\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)\tau}\cdot\frac{\lambda_{1}\Delta\tau}{1!}e^{\frac{1}{2}\lambda_{2}\Delta\tau}\cdot e^{\frac{1}{2}\lambda_{2}\Delta\tau}\cdot (t-\tau-\Delta\tau) \\ &\cdot \frac{\left(\left(\lambda_{1}+\lambda_{2}\right)(t-\tau-\Delta\tau)\right)^{n-4}}{(n-1)}e^{\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)t}\int_{-1}^{1}\left[\frac{\left(\left(\lambda_{1}+\lambda_{2}\right)t\right)^{n}}{n!}e^{\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)}\right]+O(\Delta\tau) \\ &= \frac{n!}{(n-1)}\cdot\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\cdot\frac{\left(t-\tau-\Delta\tau\right)^{n-4}}{t}\cdot\Delta\tau+O(\Delta\tau) \\ &= n\cdot\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\cdot\left(1-\frac{\tau}{t}-\frac{\Delta\tau}{t}\right)^{n-4}\cdot\frac{1}{t}\cdot\Delta\tau+O(\Delta\tau) \\ &\Rightarrow f\left(\tau\mid n\right) = n\cdot\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\cdot\frac{1}{t}\left(1-\frac{\tau}{t}\right)^{n-4},0<\tau< t \end{split}$$

11. 冲击模型(shock model):记 N(t) 为某系统到某时刻 t 受到的冲击次数,它是参数为 的 Poisson 过程,设第 k 次冲击对系统的损害大小 $_{k}^{T}$ 服从参数为 $_{k}^{T}$ 的 Poisson 过程,设第 k 次冲击对系统的损害大小 $_{k}^{T}$ 服从参数为 $_{k}^{T}$ 的指数分布, $_{k}^{T}$, $_{k}^$

Solution:

$$ET = \int_0^{+\infty} \tau \cdot P(\tau) d\tau = \int_0^{+\infty} ds \int_0^{\tau} P(\tau) d\tau$$
$$= \int_0^{+\infty} ds \int_0^{+\infty} P(\tau) d\tau = \int_0^{+\infty} P(T > S) ds$$

$$P\{T > S\} = P\{\sum_{k=1}^{N(s)} Y_k < \alpha\}$$

$$\begin{split} & ET = \int_0^{+\infty} P\{\sum_{k=1}^{N(g)} Y_k < \alpha\} ds = \int_0^{+\infty} P\{\sum_{k=1}^{L} Y_k < \alpha \, | \, N(s) = L\} \cdot P\{N(s) = L\} ds \\ & \sum_{k=1}^{L} Y_k \sim \Gamma\left(L, \mu, y\right) = \left\{ \begin{array}{l} \frac{\mu(\mu y)^{L-1}}{(L-1)!} e^{-\mu y} \ , \quad y > 0 \\ 0 \ , \quad else \\ = \int_0^{\infty} 1 \cdot P\{N(s) = 0\} ds + \int_0^{+\infty} \sum_{e=1}^{\infty} P\{\sum_{k=1}^{L} Y_k < \alpha\} \cdot P\{N(s) = L\} ds \\ = \frac{1}{\lambda} + \int_0^{+\infty} \sum_{L=1}^{\infty} \int_0^{\alpha} \frac{\mu(\mu y)^{L-1}}{(L-1)!} e^{-\mu y} \, dy \cdot \frac{\left(\lambda \, s\right)^L}{L!} e^{-\lambda \, s} ds \\ = \frac{1}{\lambda} + \frac{1}{\lambda} \cdot \int_0^{\alpha} \sum_{L=1}^{\infty} \frac{L+1}{(L-1)!} \mu^L y^{L-1} \cdot e^{-\mu y} \, dy \\ = \frac{1}{\lambda} + \frac{1}{\lambda} \int_0^{\alpha} \sum_{k=L-1=0}^{\infty} \frac{k+\alpha}{k!} \mu^{k+1} y^k \cdot e^{-\mu y} \, dy \\ = \frac{1}{\lambda} + \frac{1}{\lambda} \cdot \int_0^{\alpha} \sum_{k=0}^{\infty} \frac{k}{k!} \mu^{k+1} y^k \cdot e^{-\mu y} \, dy + \frac{\alpha}{\lambda} \int_0^{\alpha} \sum_{k=0}^{\infty} \frac{\mu^{k+1}}{k!} y^k \cdot e^{-\mu y} \, dy \\ = \frac{1}{\lambda} + \frac{2}{\lambda} \alpha \mu + \frac{1}{2\lambda} \mu^2 \alpha^2 \end{split}$$

越大,寿命越长,强度 越大,受到的冲击越多,寿命越小。

12. 令 N(t)是强度函数为 $\lambda(t)$ 的非齐次 Poisson 过程, χ_1,χ_2,\cdots 为事件间的时间间隔,

() X_i是否独立;

() X_i是否同分布;

() 试求 X₁及 X₂的分布。

Solution :()根据非齐次 Poisson 过程的定义,其条件(1)在不相交的区间中事件发生的数目相互独立,这说明事件间的时间间隔是相互独立的。

()因为在不同时刻,事件的来到数的分布不同,故 X_i的分布不相同。

()

$$P(X_1 > t) = P(N(t) = 0) = \exp(-\int_0^t \lambda(u) du)$$

 $P(X_2 > t \mid X_1 = s) = P\{(s, s + t] 中事件不发生 \mid X_1 = s\}$
 $= P\{(s, s + t] 中事件不发生 \}(独立增量性)$
 $= P(N(t + s) - N(s) = 0) = \exp(-\int_s^{s + t} \lambda(u) du)$
 $P(X_2 > t) = \int_0^\infty P(X_2 > t \mid X_1 = s) p_{X_1}(s) ds = \int_0^\infty \exp(-\int_s^{t + s} \lambda(u) du) gds$
 $\lambda(s) \exp(-\int_0^s \lambda(u) du) gds$
 $= \int_0^\infty \exp(-\int_s^{s + t} \lambda(u) du) gds$

13. 考虑对所有 t,强度函数 λ (t) 均大于 0 的非齐次 Poisson 过程, $\{(t), t>0\}$ 令 $m(t)=\int_0^{l(t)}\lambda(u)du$,m(t)的反函数为 I(t),记为 $N_1(t)=N(t)$,试证 $N_1(t)$ 是通常的 poisson 过程,试求 $N_1(t)$.

证明:
$$I(m(t))=m(I(t))=t$$

$$\int_{0}^{l(t)} \lambda(u) du = m(l(t)) = t$$

$$p(N_{1}(t) = k) = p(N(I(t)) = k) = \frac{\int_{0}^{I(t)} \lambda(u) du}{k!} \cdot exp\{-\int_{0}^{I(t)} \lambda(u) du\}$$

易知: $\lambda=1$

14. 设 N(t) 为更新过程,试判断下述命题的真伪:

- $(1) \{N(t) < k\} \{W_k > t\}$
- $(2) \{N(t) k\} \{W_k t\}$
- $(3) \{N(t)>k\} \{V_k < t\}$

Sohction 根据更新过程定义:

$$N(t) = max\{ n: W_n \le t \}$$
, $W_n = \sum_{i=1}^n Xi$, $W_0 = 0$.

(2)(3)为真命题,(1)为假命题.