ZDM - BI-SPOL-32

Metody řešení rekurentních rovnic, sestavování a řešení rekurentních rovnic při analýze časové složitosti algoritmů.

Obsah

1	Rekurentní rovnice			
	1.1	Obecná rekurentní rovnice		
	1.2	Rekurentní rovnice s konstantími koeficienty (LRRsKK)		
		Moivre-ova věta		
	Řeš	ešení		
	2.1	Substituční metoda		
	2.2	Iterační metoda		
	2.3	Mistrovská metoda		

1 Rekurentní rovnice

1.1 Obecná rekurentní rovnice

Obecnou rekurentní rovnicí rozumíme jakýkoliv vztah typu

$$a_{n+k} = f(a_0n + k - 1), a_0n + k - 2), ..., a_n, n).$$

Nadále se ale budeme spíše zabývat lineárními rekurentními rovnicemi řádu $k \in N$:

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + c_1(n)a_{n+1} + c_0(n)a_n = b_n$$
 pro každé $n \ge n_0$,

kde:

- $n \ge n_0$
- $n_0 \in Z$
- $c_i(n)$ pro i = 0, ..., k-1 jsou funkce $Z \to R$
- $c_0(n) \neq 0$
- $\{b_n\}_{n=n_0}^{\infty}$ (pravá strana rovnice)
- $\{a_n\}_{n=n_0}^{\infty}$ (řešení)
- pokud $\{\bar{a_n}\}_{n=n_0}^{\infty}$ je řešení, potom je $\{a_n\}_{n=n_0}^{\infty}$ řešením této rovnice právě tehdy, když se dá zapsat jako $\{a_n\}_{n=n_0}^{\infty} = \{\bar{a_n}\}_{n=n_0}^{\infty} + \{\tilde{a_n}\}_{n=n_0}^{\infty}$, kde $\{\tilde{a_n}\}_{n=n_0}^{\infty}$ je nějaké řešení přidružené homogení rovnice.

1.2 Rekurentní rovnice s konstantími koeficienty (LRRsKK)

Lineární rekurentní rovnice řádu k s konstantními koeficienty je libovolná rekurentní rovnice ve tvaru:

$$a_{n+k} + c_{k1}a_{n+k1} + c_1a_{n+1} + c_0a_n = b_n$$

- $n \ge n_0$
- $n_0 \in Z$
- $c_i \in R$ pro i = 0, ..., k1 jsou konstanty
- $c_0 \neq 0$
- $\{b_n\}_{n=n_0}^{\infty}$ (pravá strana rovnice)
- $p(\lambda) = \lambda^k + c_{k1}\lambda^{k1} + c_1\lambda + c_0$ je charakteristický polynom této rovnice
- λ je chararistické, či vlastní číslo
- $\{\lambda\}_{n=n_0}^{\infty}$ je řešení homogení LRRsKK, pokud je λ vlastní číslo této LRRsKK
- pokud existuje k ruzných λ_i , potom $\{\lambda\}_{n=n_0}^{\infty}$ tvoří bázi prostoru řešení dané rovnice (stačí najít prvních k členů)

1.3 Moivre-ova věta

$$\alpha \pm i\beta = r[\cos(\Phi) \pm i\sin(\Phi)] \implies (\alpha \pm i\beta)^n = r^n[\cos(n\Phi) \pm i\sin(n\Phi)]$$

Tuto větu použijeme při hledání dvou nezávislých realných posloupností.

2 Řešení

2.1 Substituční metoda

- Odhadneme (uhádneme) tvar řešení (=indukční hypotéza).
- Pomocí matematické indukce nalezneme konstanty a ověříme správnosti odhadnutého řešení

• Využívá se k odhadu horní a dolní meze

Uvažujme rovnici $t(n) = 2t(\lfloor n/2 \rfloor) + n$. Jako horní odhad řešení zkusme $t(n) \le cn \log n$, kde c > 0 je vhodně zvolená konstanta. Indukcí dokážme správnost odhadu, tedy že pro řešení rovnice platí $t(n) = O(n \log n)$.

Indukční krok (ověření, že $t(n) \le cn \log n$ vyhovuje rekurenci $t(n) = 2t(\lfloor n/2 \rfloor) + n)$ Předpokládejme, že platí pro $\lfloor n/2 \rfloor$ a dosaďme $t(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \log \lfloor n/2 \rfloor$ do počáteční rovnice. Dostaneme

$$t(n) \le 2(c \lfloor n/2 \rfloor \log \lfloor n/2 \rfloor) + n$$

$$= cn \log (n/2) + n$$

$$= cn \log n - cn \log 2 + n$$

$$= cn \log n - cn + n$$

$$= cn \log n - (c - 1) \cdot n$$

$$\le cn \log n, \text{ pokud } c \ge 1$$

2.2 Iterační metoda

- Expandujeme rovnici dle iterací a získáme rozvoj na konečnou řadu a zkusíme najt aritmetickou či
 geometrickou posloupnost
- Využívá se k odhadu horní a dolní meze

Uvažujme rovnici $t(n) = 3t(\lfloor n/4 \rfloor) + n$ Protože platí $\lfloor \lfloor n/4 \rfloor/4 \rfloor = \lfloor n/4^2 \rfloor$ atd., postupnou iterací dostaneme

$$\begin{split} t(n) &= n + 3t(\lfloor n/4 \rfloor) \\ &= n + 3\lfloor n/4 \rfloor + 3^2t(\lfloor n/4^2 \rfloor) \\ &= n + 3\lfloor n/4 \rfloor + 3^2\lfloor n/4^2 \rfloor + 3^3t(\lfloor n/4^3 \rfloor) \\ &= \dots \\ &= n + 3\lfloor n/4 \rfloor + 3^2\lfloor n/4^2 \rfloor + 3^3\lfloor n/4^3 \rfloor) + + 3^{\log_4 n}\Theta(1). \end{split}$$

Po zanedbání zaokrouhlovacích chyb a doplněním na nekonečnou konvergentní geometrickou řadu dostaneme $t(n) \le n \sum_{i=0}^{\infty} (\frac{3}{4})^i = 4n$.

2.3 Mistrovská metoda

Nech $a \ge 1ab > 1$ jsou konstanty, f(n) funkce jedné proměnné. Uvažujme rekurentní rovnici: (zanedbáváme ceil a floor)

$$t(n) = at(n/b) + f(n)$$

Pak t(n) má následující řešení:

- 1. Pokud $f(n) = O(n^{\log_b a \epsilon})$ pro nějakou konstantu $\epsilon > 0$, pak $t(n) = \Theta(n^{\log_b a})$.
- 2. Pokud $f(n) = \Theta(n^{\log_b a})$, pak $t(n) = \Theta(n^{\log_b a} \log n)$.
- 3. Pokud $f(n) = \Omega(n^{\log_b a + \epsilon})$ pro nějakou konstantu $\epsilon > 0$ a pokud $af(n/b) \le cf(n)$ pro nějakou konstantu c < 1 a všechna $n \ge n_0$, pak $t(n) = \Theta(f(n))$.
- 4. Pokud je rozdíl mezi funkcemi menší než polynomiální, nelze tuto metodu použít!

Příklad 1

Rovnice
$$t(n) = 6t(n/4) + n$$
.
 $a = 6, b = 4$

$$n^{\log_4 6} \doteq n^{1,3} = \Omega(n) \implies f(n) = O(n^{\log_4 6 - 0,1}) \implies \text{p\'ripad (1)}.$$
 Čili $t(n) = \Theta(n^{\log_4 6}).$

Příklad 2

Rovnice (MergeSort)
$$t(n) = 2t(n/2) + n$$

 $a = 2, b = 2$
 $n^{\log_2 2} = n = \Theta(n) \implies \text{případ (2)}.$
Čili $t(n) = \Theta(n \log n).$

Příklad 3

Rovnice
$$t(n)=3t(n/4)+n^2$$
 $a=3,b=4$ $n^{\log_4 3}\doteq n^{0,7}=o(n^2)$ a platí, že $3\cdot(\frac{n}{4})^2\leq cn^2$ pro nějakou $c<1\implies$ případ (3). Čili $t(n)=(n^2)$

