UNIVERSIDADE FEDERAL DE VIÇOSA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE ENGENHARIA ELÉTRICA - ELT 310 - ELETRÔNICA I - PROFESSORA KÉTIA SOARES MOREIRA

SOARLS WORLINA					Salson Sal
Nome:	Matrícula:	Turma:	Data:	_//	

ROTEIRO DE AULA PRÁTICA 6 – REGULADOR ZENER- SIMULAÇÃO

Objetivos

Verificar a operação de um circuito regulador zener, considerando-se os parâmetros Vs e Rs.

MATERIAL UTILIZADO:

02 Resistores de $1k\Omega$

01 diodo Zener 1N756 (8,2V 400mW)

PARTE TEORICA

Para o circuito abaixo, considere RS = 1 k Ω , RL = 1 k Ω , Vz=8,2 e a potência máxima que o diodo suporta de 400mW.

- 1- Calcule os valores máximos e mínimos de Vi para o diodo trabalhar na região zener.
- 2- Considerando Vi=16V, calcule os valores de RL para o circuito trabalhar na região zener.

PARTE PRÁTICA

CIRCUITO REGULADOR ZENER

Considere RS = 1 k Ω e RL = 1 k Ω , Vz = ____V (verificar no software de simulação=~8,2V) e a potência máxima do diodo _____W (verificar no software de simulação).

TEORIA – CÁLCULOS PRÁTICOS

- 3- Sendo VZ = ____ V e PZ = ____ W (diodo zener). Calcule a corrente máxima no zener. IZM = ____ mA.
- 4- Qual é a tensão nos terminais a e b suficiente para disparar o diodo zener?
- 5 Determine o valor de RL mínimo no circuito da Figura que garanta que VL = VZ, considerando Vi = 16 V e RS = $1k\Omega$. Conclua.

- 6- Determine o valor de RL máximo no circuito da Figura que garanta que VL=VZ , considerando $Vi=16~V~e~RS=1k\Omega$. Conclua.
- 7- Determine o valor de Vi mínimo no circuito da Figura que garanta que VL=VZ , considerando $RL=1k\Omega$ e $RS=1k\Omega$. Conclua.
- 8 Determine o valor de Vi máximo no circuito da Figura que não danifique o zener, considerando $RL=1k\Omega$ e $RS=1k\Omega$. Conclua.
- 9- Determine A ESPECIFICAÇÃO DE POTÊNCIA para a fonte, o zener (= \sim 8,2V) e resistores, considerando um Vi=50V, RL = 1k Ω e RS = 1k Ω . Conclua.

PARTE PRÁTICA

a) Montar o circuito a Figura. Para RL = 1 k Ω e RS =1 k Ω , varie Vi. Preencha a tabela.

$RL(\Omega)$	1 kΩ						
Vi (V)	1	2	4	8	10	12	13
VRL (V)							
VRS (V)							
IRS (mA)							
IRL (mA)							
IZ (mA)							

$RL(\Omega)$	1 kΩ					
Vi (V)	14	15	16	17	18	20
VRL (V)						
VRS (V)						
IRS (mA)						
IRL (mA)						
IZ (mA)						

$RL(\Omega)$	1 kΩ						
Vi (V)	22	25	30	35	40	45	50
VRL (V)							
VRS (V)							
IRS (mA)							
IRL (mA)							
IZ (mA)							

- b) Elaborar conclusões sobre o diodo zener e regulador zener.
- c) Coloque os resultados da simulação:

Esquema elétrico.

Diagramas nos principais pontos. Explique detalhadamente os resultados da simulação e seus valores.

d) Conclua seus resultados e observações.