Kapitel 3 – Kombinatorische Logik

- 1. Kombinatorische Schaltkreise
- 2. Boolesche Algebren
- 3. Boolesche Ausdrücke, Normalformen, zweistufige Synthese
- 4. Berechnung eines Minimalpolynoms
- 5. Arithmetische Schaltungen
- 6. Anwendung: ALU von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Billigste Überdeckung der markierten Ecken

Wir suchen ein sogenanntes Minimalpolynom, das heißt ein Polynom mit minimalen Kosten.

Definition

Ein Minimalpolynom p einer booleschen Funktion f ist ein f (g) Polynom von f mit minimalen Kosten, das heißt mit der Eigenschaft $cost(p) \leq cost(p')$ für jedes andere Polynom p' von f.

Quine's Primimplikantensatz

Satz

Jedes Minimalpolynom p einer booleschen Funktion f besteht ausschließlich aus Primimplikanten von f.

Beweis:

- N= mn+ ...+min+ m+mith+ ...+mz
- Nehme an, dass p einen nicht primen Implikanten m von f enthält.
- m wird durch einen Primimplikanten m' von f überdeckt, ist also in m' enthalten.
- Es gilt demnach cost(m') < cost(m).
- Ersetzt man in p den Implikanten m durch den Primimplikanten m', so erhält man ein Polynom p', das ein Polynom von f ist mit cost(p') < cost(p).
- Widerspruch dazu, dass p ein Minimalpolynom ist.

Berechnung von Implikanten

Lemma 1

Ist m ein Implikant von f, so auch $m \cdot x$ und $m \cdot x'$ für jede Variable x, die in m weder als positives, noch als negatives Literal vorkommt. mx

Beweis:

- $m \cdot x$ und $m \cdot x'$ sind Teilwürfel des Würfels m
- Sind also alle Ecken von m markiert, so auch alle Ecken von $m \cdot x$ und $m \cdot x'$.

m

Lemma 2

Sind $m \cdot x$ und $m \cdot x'$ Implikanten von f, so auch m.

Beweis: ...

mx Impl. von
$$f \Rightarrow ON(\gamma(mx)) \subseteq ON(f)$$
 $m\overline{\chi}$ """ $\Rightarrow ON(\gamma(m\overline{\chi})) \subseteq ON(f)$
 $ON(\gamma(mx)) \cup ON(\gamma(m\overline{\chi})) \subseteq ON(f)$
 $\Rightarrow ON(\gamma(mx)) \vee \gamma(m\overline{\chi}) \subseteq ON(f)$
 $\Rightarrow ON(\gamma(m) \cdot \gamma(x) \vee \gamma(m) \cdot \gamma(\overline{\chi})) \subseteq ON(f)$
 $\Rightarrow ON(\gamma(m) \cdot (\gamma(x) \vee \overline{\gamma(x)})) \subseteq ON(f)$
 $\Rightarrow ON(\gamma(m)) \subseteq ON(f)$
 $\Rightarrow ON(\gamma(m)) \subseteq ON(f)$
 $\Rightarrow ON(\gamma(m)) \subseteq ON(f)$
 $\Rightarrow ON(\gamma(m)) \subseteq ON(f)$

Charakterisierung von Implikanten

Satz

Ein Monom m ist genau dann ein Implikant von f, wenn entweder

- m ein Minterm von f ist, oder
- $m \cdot x$ und $m \cdot x'$ Implikanten von f sind für eine Variable x, die nicht in m vorkommt.
- Äquivalente Schreibweise:

```
m \in Implikant(f)

\Leftrightarrow (m \in Minterm(f)) \lor (\underline{m} \cdot \underline{x}, \underline{m} \cdot \underline{x}' \in Implikant(f))
```

Beweis folgt unmittelbar aus Lemma 1 und Lemma 2.

Berechnung eines Minimalpolynoms

Verfahren von Quine-McCluskey zur Berechnung aller Primimplikanten.

Thee '. Beredne sogar alle Timplicanter. Dan wind Alar, welde davon Brinimpl. sind.

- Verfahren zur Lösung des "Überdeckungsproblems".
 - Treffe unter den Primimplikanten eine geeignete Auswahl, so dass die Disjunktion der ausgewählten Primimplikanten ein Polynom für *f* ist und minimale Kosten hat.

Verfahren von Quine: Der Algorithmus

Prime implicants function **Quine** $(f : \mathbb{B}^n \to \mathbb{B})$

```
egin

Many allo Minterne von f = Many allor Myllantin

L_0 := Minterm(f);

der Range <math>n
begin
  i := 0:
   Prim(f) := \emptyset
    while (L_i \neq \emptyset) and (i < n)
   //L_i enthält alle Implikanten von f der Länge n-i.
    loop L_{i+1} := \{ m \mid \underline{m \cdot x} \text{ und } \underline{m \cdot x'} \text{ sind in } L_i \text{ für ein } x \};
       Prim(f) := Prim(f) \cup
       \{m' \mid m' \in L_i \text{ und } m' \text{ wird von keinem } q \in L_{i+1} \text{ überdeckt}\};
       i := i + 1
                                            bew. Dogist kin x, so dass
    end loop;
                                                   m'= mxeli und qxeli, no dens
qeli+n obt
m'= qxeli und qxeli, no dens
    return Prim(f) \cup L_i;
end;
```

Verbesserung durch McCluskey

- Vergleiche nur Monome untereinander
 - die die gleichen Variablen enthalten und
 - bei denen sich die Anzahl der positiven Literale nur um 1 $L_{n}^{i} = (x_{n} \overline{x_{2}} x_{3} | x_{n} \overline{x_{2}} x_{3} | x_{3} x_{4} \overline{x_{5}})$ $L_{n}^{i} = (x_{n} \overline{x_{2}} x_{3} | x_{n} \overline{x_{2}} x_{3} | x_{3} x_{4} \overline{x_{5}})$ $L_{n}^{i} = (x_{n} \overline{x_{2}} x_{3} | x_{n} \overline{x_{2}} x_{3})$ $L_{n}^{i} = (x_{n} \overline{x_{2}} x_{3} | x_{n} \overline{x_{2}} x_{3})$ $L_{n}^{i} = (x_{n} \overline{x_{2}} x_{3} | x_{n} \overline{x_{2}} x_{3})$ unterscheidet.
- Dies wird erreicht durch:
 - Partitionierung von L_i in Klassen L_i^M , mit $M \subseteq \{x_1, ..., x_n\}$ und |M| = n - i.
 - \blacksquare L_i^M enthält die Implikanten aus L_i , deren Literale alle aus Msind.
 - Anordnung der Monome in L_i^M gemäß der Anzahl der positiven Literale.

Beispiel Quine-McCluskey

Vergleiche im Folgenden nur Monome aus benachbarten Blöcken!

Beispiel Quine-McCluskey: Bestimmung von L_1 (1/4)

Beispiel Quine-McCluskey: Bestimmung von L_1 (2/4)

Beispiel Quine-McCluskey: Bestimmung von L_1 (3/4)

Beispiel Quine-McCluskey: Bestimmung von L_1 (4/4)

Nicht kürzbar, da nicht Ecken der gleichen Kante.

Beispiel Quine-McCluskey: Alle bestimmten Mengen L_1

$$\underline{L_{1}^{\{X_{1},X_{2},X_{4}\}}}: \underline{L_{1}^{\{X_{1},X_{2},X_{3}\}}}$$

$$\begin{array}{cccc}
0 & 0 & -1 & & & & \\
1 & 0 & 0 & & & & \\
\hline
0 & 1 & 0 & & & & \\
\hline
0 & 1 & -1 & & & & \\
1 & 1 & 0 & & & \\
\end{array}$$

Alle Minterme von f sind Eckpunkte von Kanten, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_2 (1/2)

Alle Implikanten aus $L_1^{\{x_1,x_2,x_4\}}$ sind Kanten von Flächen, die Implikanten sind: $Prim(f)=\emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_2 (2/2)

Alle Implikanten aus L_1^M sind Kanten von Flächen, die Implikanten sind: $Prim(f) = \emptyset$

Beispiel Quine-McCluskey: Bestimmung von L_3 (1/2)

$$L_{2}^{\{x_{1},x_{2}\}}: \qquad L_{2}^{\{x_{1},x_{3}\}}:$$

$$L_{2}^{\{x_{1},x_{4}\}}: \qquad \underbrace{\begin{array}{c} L_{2}^{\{x_{1},x_{3}\}}:\\ \hline x_{n} \overline{x_{3}} & 0 \cdot 0 \cdot \\ \hline x_{n} \overline{x_{3}} & 1 \cdot 0 \cdot \end{array} }_{x_{n} \overline{x_{3}}}:$$

$$\underbrace{\begin{array}{c} 0 \cdot -1 \\ \hline 1 \cdot -0 \end{array}}_{x_{n} \overline{x_{4}}} \qquad \underbrace{\begin{array}{c} L_{2}^{\{x_{2},x_{3}\}}:\\ \hline -0 \cdot 0 \cdot \\ \hline -1 \cdot 0 \cdot \end{array} }_{x_{3}}:$$

$$L_{2}^{\{x_{2},x_{4}\}}: \qquad \underbrace{\begin{array}{c} L_{2}^{\{x_{2},x_{4}\}}:\\ \hline -0 \cdot 0 \cdot \\ \hline -0 \cdot 1 \end{array} }_{x_{3}}$$

Die markierten Implikanten-Flächen sind nicht Rand eines 3-dim. Implikanten. Sie sind also prim! $\Rightarrow Prim(f) = \{x'_1x_4, x_1x'_4\}$

Beispiel Quine-McCluskey: Bestimmung von L_3 (2/2)

$$L_{2}^{\{X_{1},X_{2}\}}: \qquad L_{2}^{\{X_{1},X_{3}\}}:$$

$$L_{2}^{\{X_{1},X_{4}\}}:$$

$$0 - 1 \leftarrow L_{2}^{\{X_{2},X_{3}\}}:$$

$$1 - 0 \leftarrow L_{2}^{\{X_{2},X_{3}\}}:$$

$$L_{2}^{\{X_{2},X_{3}\}}:$$

$$L_{2}^{\{X_{2},X_{4}\}}:$$

$$L_{2}^{\{X_{3},X_{4}\}}:$$

$$- 0 0 \leftarrow L_{2}^{\{X_{3},X_{4}\}}:$$

$$- - 0 1 \leftarrow L_{2}^{\{X_{3},X_{4}\}}:$$

Die markierten Implikanten-Flächen sind Rand eines 3-dimensionalen Implikanten. Sie sind also nicht prim! $\Rightarrow Prim(f) = \{x_1, x_4, x_1, x_4'\}$

Beispiel Quine-McCluskey: Ende

$$L_{3}^{\{x_{1}\}}: \qquad L_{3}^{\{x_{2}\}}:$$

$$L_{3}^{\{x_{3}\}}: \qquad L_{3}^{\{x_{4}\}}:$$

$$-0 - \underbrace{x_{3}}_{2}$$

$$L_{4} = \emptyset$$

$$Prim(f) = \underbrace{\{x'_{1}x_{4}, x_{1}x'_{4}\}}_{2}$$

$$\Rightarrow Prim(f) = \underbrace{\{x'_{1}x_{4}, x_{1}x'_{4}, x'_{3}\}}_{2}$$

$$p_{complete}(f) = x'_{1}x_{4} + x_{1}x'_{4} + x'_{3}$$

Korrektheit von Quine-McCluskey (1/2)

Prime implicants function **Quine** ($f : \mathbb{B}^n \to \mathbb{B}$)

```
begin
      L_0 := Minterm(f);
      i := 0:
      Prim(f) := \emptyset
       while (L_i \neq \emptyset) and (i < n)
\longrightarrow //L_i enthält alle Implikanten von f der Länge n-i.
       loop L_{i+1} := \{ m \mid m \cdot x \text{ und } m \cdot x' \text{ sind in } L_i \text{ für ein } x \};
         Prim(f) := Prim(f) \cup
         \{m' \mid m' \in L_i \text{ und } m' \text{ wird von keinem } q \in L_{i+1} \text{ überdeckt}\};
         i := i + 1
       end loop;
       return Prim(f) \cup L_i
  end;
```

Korrektheit von Quine-McCluskey (2/2)

Satz

Für alle i = 0, 1, ..., n gilt:

- \blacksquare L_i enthält nur Monome mit n-i Literalen.
- L_i enthält genau die Implikanten von f mit n-i Literalen.
- Nach Iteration i enthält Prim(f) genau die Primimplikanten von f mit mindestens n-i Literalen.

Beweis:

Induktion über i

- Abbruchbedingung $(L_i = \emptyset)$ oder (i = n):
- $L_i = \emptyset$ bedeutet, dass keine Implikanten bei der "Partnersuche" entstanden sind, d.h. L_{i-1} ist vollständig in Prim(f) aufgegangen.
- i = n bedeutet, dass L_n berechnet wurde, es gilt dann $\underline{L_n = \emptyset}$ oder $L_n = \{1\}$, letzteres bedeutet f ist die Eins-Funktion und $Prim(f) = \{1\}$.

Kosten des Verfahrens

Frage Whe wile Elittle braucht der Mgorthmus? Emfader Wherich Implianter Resent man im Alimenter Fall?

Lemma

Es gib (3^n) verschiedene Monome in n Variablen.

Beweis:

Für jedes Monom m und jede der n Variablen x liegt genau eine der drei folgenden Situationen vor:

- \blacksquare *m* enthält weder das positive noch das negative Literal von x.
- \blacksquare *m* enthält das positive Literal x.
- \blacksquare m enthält das negative Literal x'.

Jedes Monom ist durch diese Beschreibung auch eindeutig bestimmt.

Komplexität des Verfahrens von Quine-McCluskey

Satz

Die Laufzeit des Verfahrens liegt in $O(n^2 \cdot 3^n)$ beziehungsweise in $O(\log^2(N) \cdot N^{\log(3)})$, wobei $N = 2^n$ die Größe der Funktionstabelle ist.

Beweisidee:

Jedes der 3^n Monome wird im Verlauf des Verfahrens mit höchstens n anderen Monomen verglichen.

Gegeben sei ein Monom \underline{mx} . Die Erzeugung von \underline{mx}' und die Suche nach \underline{mx}' in L_i ist bei Verwendung geeigneter Datenstrukturen in $\underline{O(n)}$ durchführbar.

$$O(\underline{n^2 \cdot 3^n}) = O(\underline{\log^2(N) \cdot N^{\log(3)}}) \text{ durch Nachrechnen:} \qquad \underbrace{N = 2^n} = 0 \text{ for } N = n$$

$$3^n = (2^{\log_2(3)})^n = (2^n)^{\log(3)} = \underline{N^{\log(3)}} = \underline{N^{\log(3)}} = N^{n \cdot 5}$$

$$(\chi^n)^{\frac{n}{2}} = \chi^{-\frac{n}{2}} = \chi^{$$

Einsteing:
$$f(x) \in O(g(x)) \iff c \in \mathbb{R}^{d}, x_{0} \in \mathbb{R}^{d} \text{ mit } f(x) \leq x_{0} \cdot g(x) \quad \forall x > x_{0}.$$
where dung:
$$f(x) = a_{0} \cdot x_{0} + a_{0} \cdot x_{0} +$$

Das Matrix-Überdeckungsproblem

- Wir haben nun durch das Verfahren von Quine-McCluskey alle Primimplikanten von f bestimmt.
- Die Disjunktion aller Primimplikanten ist ein Polynom, das f implementiert. Es ist aber im Allgemeinen kein Minimalpolynom von f.
- Für das Minimalpolynom benötigen wir eine kostenminimale Teilmenge M von Prim(f), so dass die Monome von M f überdecken.
- Diese Art von Problemen wird Matrix-Überdeckungsproblem genannt.

Bop.: Prim $(f) = (x_1 \overline{x_2}_1 x_2 x_3_1 x_1 x_3)$.

Without alle Brinimpl. on Brim (f) gebruidt in Minimalpolynom? $\frac{x_1 \overline{x_2} + x_2 x_3}{x_1 \overline{x_2} + x_2 x_3} = x_1 \overline{x_2} + x_2 x_3$

- Definiere eine boolesche Matrix PIT(f), die Primimplikantentafel von f:
 - Die Zeilen entsprechen eindeutig den Primimplikanten von f.
 - Die Spalten entsprechen eindeutig den Mintermen von f. du, line =
 - Sei $min(\alpha)$ ein beliebiger Minterm von f. Dann gilt für Primimplikant $m: PIT(f)[m, min(\alpha)] = 1 \Leftrightarrow m(\alpha) = 1$
- Der Eintrag an der Stelle $[m, min(\alpha)]$ ist also genau dann 1, wenn $min(\alpha)$ eine Ecke des Würfels m beschreibt.

Gesucht:

Eine kostenminimale Teilmenge M von Prim(f), so dass jede Spalte von PIT(f) überdeckt ist,

d.h.
$$\forall \alpha \in ON(f) \quad \exists m \in M \text{ mit } PIT(f)[m, min(\alpha)] = 1.$$

Primimplikantentafel: Beispiel (1/2)

Primimplikantentafel: Beispiel (2/2)

Gesucht:

Eine kostenminimale Teilmenge M von Prim(f), so dass jede Spalte von PIT(f) überdeckt ist, d.h. $\forall \alpha \in ON(f) \quad \exists m \in M \text{ mit } PIT(f)[m, min(\alpha)] = 1$.

Erste Reduktionsregel - Wesentlicher Implikant

Definition

Ein Primimplikant m von f heißt wesentlich, wenn es einen Minterm $min(\alpha)$ von f gibt, der nur von diesem Primimplikanten überdeckt wird, also:

- $PIT(f)[m, min(\alpha)] = 1$
- $PIT(f)[m', min(\alpha)] = 0$

für jeden anderen Primimplikanten m' von f.

Lemma

Jedes Minimalpolynom von f enthält alle wesentlichen Primimplikanten von f.

1. Reduktionsregel: Entferne aus der Primimplikantentafel PIT(f) alle wesentlichen Primimplikanten und alle Minterme, die von diesen überdeckt werden.

Erste Reduktionsregel: Beispiel (1/2)

Erste Reduktionsregel: Beispiel (2/2)

Nach Anwendung der 1. Reduktionsregel

	9	10	11	12	13	14	15	16	17
5	1								1
5 6		1							1
7			1						
8				1					
9	1				1				
10		1				1			1
11			1				1		
12				1				1	
13					1	1	1	1	

Die Matrix enthält keine wesentlichen Zeilen mehr!

Zweite Reduktionsregel - Spaltendominanz

Definition

Sei *A* eine boolesche Matrix. Spalte *j* von *A* dominiert Spalte *i* von *A*, wenn \hat{k} für jede Zeile *k* gilt: A[k, i] < A[k, j].

- Nutzen für unser Problem: Dominiert ein Minterm w' von f einen anderen Minterm w von f, so braucht man w' nicht weiter zu betrachten, da w auf jeden Fall überdeckt werden muss und hierdurch automatisch auch Minterm w' überdeckt wird.
- Jeder in PIT(f) vorhandene Primimplikant p, der w überdeckt, überdeckt auch w'.
- **2. Reduktionsregel:** Entferne aus der Primimplikantentafel PIT(f) alle Minterme, die einen anderen Minterm in PIT(f) dominieren.

Zweite Reduktionsregel: Beispiel

Spalte 17 dominiert Spalte 10 ⇒ Spalte 17 kann gelöscht werden!

Dritte Reduktionsregel - Zeilendominanz

Definition

Sei A eine boolesche Matrix. Zeile i von A dominiert Zeile j von A, wenn fürl j jede Spalte k gilt: $A[i,k] \ge A[j,k]$.

(m) dominiert $A[i,k] \ge A[j,k]$.

- Nutzen für unser Problem: Dominiert ein Primimplikant m einen Primimplikanten m', so braucht man m' nicht weiter zu betrachten, wenn $cost(m') \ge cost(m)$ gilt.
- Der Primimplikant m überdeckt jeden noch nicht überdeckten Minterm von f, der von m' überdeckt wird, obwohl er nicht teurer ist.
- **3. Reduktionsregel:** Entferne aus der Primimplikantentafel PIT(f) alle Primimplikanten, die durch einen anderen, nicht teureren Primimplikanten dominiert werden.

Dritte Reduktionsregel: Beispiel

Nehme an, dass die Zeilen 5 bis 12 gleiche Kosten haben.

Dritte Reduktionsregel: Beispiel

Nehme an, dass die Zeilen 5 bis 12 gleiche Kosten haben.

Nach Anwendung der 3. Reduktionsregel

- Offensichtlich kann nun wieder die erste Reduktionsregel angewendet werden, da die Zeilen 9, 10, 11, 12 wesentlich sind.
 - Die resultierende Matrix ist leer.
 - Das gefundene Minimalpolynom ist:

$$1 + 2 + 3 + 4 + 9 + 10 + 11 + 12$$

Ein weiteres Beispiel

$$\textit{Prim}(f) = \{ \{7,5\}, \{5,13\}, \{13,9\}, \{9,11\}, \{11,3\}, \{3,7\} \}$$

Primimplikantentafel PIT(f):

	_3	5	7	9	<u>11</u>	<u>13</u>
{7,5}	0	1	1	0	6	0
{5, 13}		1				1
{13,9}				1		1
$\{9,11\}$				1	1	
{11,3}	1				1	
$\{3,7\}$	1		1			

Ein weiteres Beispiel

 $\textit{Prim}(f) = \{\{7,5\}, \{5,13\}, \{13,9\}, \{9,11\}, \{11,3\}, \{3,7\}\}$

Primimplikantentafel PIT(f):

	3	5	7	9	11	13
{7,5}		1	1			
$\{5, 13\}$		1				1
{13,9}				1		1
{9,11}				1	1	
{11,3}	1				1	
$\{3,7\}$	1		1			

Kein Primimplikant ist wesentlich!

chaferlyn: Redultionergeln 2 and 3 and and milt

$$Prim(f) = \{ \begin{array}{c} \{7,5\} \\ \end{array}, \begin{array}{c} \{5,13\} \\ \end{array}, \begin{array}{c} \{13,9\} \\ \end{array}, \begin{array}{c} \{9,11\} \\ \end{array}, \begin{array}{c} \{11,3\} \\ \end{array}, \begin{array}{c} \{3,7\} \end{array} \}$$

Wie sieht die kostenminimale Lösung aus?

Zyklische Überdeckungsprobleme

Definition

Eine Primimplikantentafel heißt reduziert, wenn keine der drei Reduktionsregeln anwendbar ist.

- Ist eine reduzierte Tafel nicht-leer, spricht man von einem zyklischen Überdeckungsproblem.
- In der Praxis werden solche Probleme heuristisch gelöst. Es gibt auch exakte Methoden (<u>Petrick</u>, Branch-and-Bound).

Primimplikantentafel PIT(f):

_	3	5	7	9	11	13
(7,5)		1	1			
$\{5, 13\}$		1				1
{13,9}				1		1
{9,11}				1	1	
{11,3}	1				1	
${3,7}$	1		1			

CS – Kapitel 3 – Kombinatorische Logik

Petrick's Methode

Verfahren:

- Übersetze die PIT in ein (OR, AND)-Polynom, das alle Möglichkeiten der Überdeckung enthält.
- Multipliziere das (OR, AND)-Polynom aus, so dass ein (AND-OR)-Polynom entsteht.
- Die gesuchte minimale Überdeckung ist gegeben durch das Monom, das einer PI-Auswahl mit minimalen Kosten entspricht.

bdf minimal.

"Greedy-Heuristik" zur Lösung von Überdeckungsproblemen

- 1. Wende alle möglichen Reduktionsregeln an.
- 2. Ist die Matrix *A* leer, ist man fertig.
- Sonst wähle die Zeile i, die die meisten Spalten überdeckt. Lösche diese Zeile und alle von ihr überdeckten Spalten und gehe zu 1.
 - Dieser Algorithmus liefert nicht immer die optimale Lösung!
 - Hinweis: Bei der Ausgangs-Matrix aus unserem Beispiel überdeckt Zeile 13 die meisten Spalten. Diese ist nicht Teil der gefundenen Lösung!

Zusammenfassung Schaltkreise

- Schaltkreise stellen boolesche Funktionen dar.
- Boolesche Polynome kann man als eingeschränkte Schaltkreise betrachten. Dafür gibt es exakte Minimierungsverfahren.
- Optimale boolesche Polynome k\u00f6nnen sehr viel gr\u00f6\u00dfer sein, als entsprechende Schaltkreise.
 - exponentielle Unterschiede möglich
 - Rechtfertigung f
 ür Einsatz von Schaltkreisen statt PLAs
- Es gibt auch Algorithmen zur Berechnung optimaler (mehrstufiger) Schaltkreise.
 - anspruchsvoller als Optimierung von booleschen Polynomen
 - meist heuristisch (Näherungsverfahren)
 - nicht Gegenstand dieser Vorlesung
- Hier: Schaltkreise für spezielle Funktionen, insbesondere Arithmetik.

ecorn & Bon mit ever $(x_{1}, \dots, x_{m}) = (\sum_{i=1}^{m} x_{i}) \mod 2 = \begin{cases} 1 & \text{falls } \sum_{i=1}^{m} x_{i} \text{ larger de} \\ 0 & \text{falls } \sum_{i=1}^{m} x_{i} \text{ grade} \end{cases}$ Trage. We sidt Minimulpolynon für seotn aus ? - We said die ON-Merge von sear n aus / wievale Elemente 2 Die Kalfe aller Elemente von $(0,1)^m = B^m$ gehört aur ON-Minge. = 2 mm Elemente in der ON-Mange. - Beredne die P. i. dever Aprillimus von Etiene / Mc Busky. Anfang: Beginne mit allen Mintoner (2 nm stud). - Dein Aprilance von & - Mc C. Lever sel gar leine Minterne 1, Rombinion " =) Alle Mintoni sind P. i. - welle P.i. and weartlish => Minimalpolynom kettett aus 2ⁿ⁻¹ Monomer der Känge n.

Béagriel:

= Shitteres for for sear mut n=8. PROTE $(x_{n_1...,n_k}) = \text{prote}(\text{prot}_{(x_{n_1}...,x_k)}) \text{prot}_{(x_{n_1}...,x_k)}$ = rest_(rest_(rest_($x_{n1}x_2$)| rest_($x_{31}x_4$)) Rest 2 (Rest 2 (x51X6) | rest 2 (x71X1))) LEST 2 (LEST 2 (xn | X2) | rest (x0))
= REST 2 (LEST 2 (xn | X2) | X3)

Im allgemeiner Fell " m-1 exers- chotter, lingster Plad : Kog m