Tutorial Sheet-2 15B11PH111 Physics-1 (2020-21)

Assignment 1: Discuss the formation of interference fringes due to a thin wedge-shaped film seen by normally reflected sodium light. What will happen if white light is substituted in place of the sodium light?

- 1. A square piece of cellophane film with refractive index 1.5 has a wedge section so that its thickness at two opposite sides is t_1 and t_2 . If by using the light of wavelength $\lambda = 6000 A^0$, the number of fringes appearing in the film is 12, calculate the difference t_2 - t_1 .
- 2. Interference pattern in reflected light for normal incidence on a wedge shaped air film is seen using bichromatic ($\lambda_1 = 5896 A^0$, $\lambda_2 = 5890 A^0$) source of light. The angle of wedge is 0.25^0 of arc. Find out the minimum distance from the edge of the wedge at which the maximum due to each wavelength coincides.
- 3. A surface of refractive index 1.52 is to be coated with a film of refractive index 1.38 to minimize the reflection. Determine the minimum thickness of film for normal incidence of light of wavelength 5500A⁰. [CO1]
- 4. In Newton's rings experiment (NRE) diameter of 8th ring is 0.40 cm and 3rd ring is 0.20 cm. Radius of curvature of the lens is 100 cm. Calculate the wavelength of light used. [CO1]
- 5. The Newton's rings by reflection are formed between two biconvex lenses having equal radii of curvature 100 cm. Calculate the difference between the radius of 5th and 15th dark rings if the monochromatic light of wavelength 5400 A⁰ is used in the experiment. [CO2]
- 6. In the Michelson interferometer arrangement, if one of the mirrors is moved by a distance 0.08 mm, 250 fringes cross the field of view. Calculate the wavelength of light used. [CO3]
- 7. Calculate the distance between successive positions of the movable mirror of the Michelson's interferometer giving best /distinct fringes in the case of a sodium source having lines $\lambda_1 = 5890 A^0$, $\lambda_2 = 5896 A^0$ [CO4]