18

CLAIMS.

5

1. A method for preparing a supported catalyst component comprising the steps of:

a) providing a halogenated bisimine precursor component of formula (I)

10

(1)

- reacting the halogenated bisimine precursor with an ionic liquid precursor in a solvent to prepare an ionic liquid;
- reacting the ionic liquid prepared in step b) with a metallic precursor of formula (II)

wherein L is a labile ligand, M is a metal selected from Ni o r Pd and Y is a halogen

d) retrieving a supported single site catalyst component.

20

15

- 2. The method of claim 1 wherein the ionic liquid precursor is N -alkylimidazolium or pyridinium.
- 3. The method of claim 1 or claim 2 wherein between step b) and step c), the reaction product of step b) is reacted with an ionic compound C ⁺A⁻, wherein

C⁺ is a cation selected from K⁺, Na⁺, NH₄⁺, and A⁻ is an anion selected from PF₆⁻, SbF₆⁻, BF₄⁻, (CF₃-SO₂)₂N⁻, ClO4⁻, CF₃SO₃⁻, NO₃⁻ or CF₃CO₂⁻.

- 4. The method of any one of the preceding claims wherein the solvent used in steps b) and step c) is selected from THF, CH ₂Cl₂ or CH₃CN.
 - 5. A catalyst component supported on an ionic liquid obtainable by the method of any one of claims 1 to 4.
- 10 6. A catalyst system supported on an ionic li quid comprising the catalyst component of claim 5 and an activating agent.
 - 7. The catalyst system supported on an ionic liquid of claim 6 wherein the activating agent is methylaluminoxane.

15

5

- 8. The catalyst system supported on an ionic liquid of claim 7 wherein the amount of methylaluminoxane is such that the Al/M ratio is of from 100 to 1000.
- 9. A method for homopolymerising or copolymerising alpha -olefins that comprises the steps of:
 - a) injecting the catalytic system supported on an ionic liquid of any one of claims 6 to 8 with an apolar solvent into the reactor,
 - b) injecting the monomer and optional comonomer into the reactor,
- 25 c) maintaining under polymerisation conditions;
 - d) retrieving the polymer under the form of chips or blocks.
 - 10. The method of claim 9 wherein the apola r solvent is n-heptane.
- 30 11. The method of claim 9 or claim 10 wherein the monomer is ethylene or propylene.

20

- 12. A polymer under the shape of chips and blocks obtainable by the process of any one of claims 9 to 11.
- 5 13. The polymer of claim 12 wherein the amount of c hips is of less than 25 wt%, based on the total weight of the polymer.