Complexes

Jérémy Meynier

Exercice 1

Prouver à l'aide des complexes que $\cos(p) + \cos(q) = 2\cos(\frac{p+q}{2})\cos(\frac{p-q}{2})$

Exercice 2

Linéarisation et calcul de $\sum_{k=0}^{n} \cos(kt)$

Exercice 3

Trouver les $z \in \mathbb{C}$ tel que $z^2 = 3 + i$

Exercice 4

Trouver les $z/in\mathbb{C}$ tel que $(z+i)^n=(z-i)^n$

Exercice 5

Soit
$$f(z) = \frac{z+1}{z-i}$$
.

- 1. Donner l'ensemble des $z \in \mathbb{C}$ tels que $f(z) \in \mathbb{R}$
- 2. Donner l'ensemble des $z\in\mathbb{C}$ tels que |f(z)|=2

Exercice 6

Montrer que $|u+v|^2 + |u-v|^2 = 2(|u|^2 + |v|^2)$

Exercice 7

Calculer, pour $\alpha \in \mathbb{R}$ avec $\cos(\alpha) \neq 0$, $A_n = \sum_{k=0}^n \frac{\cos(k\alpha)}{\cos^k(\alpha)}$ et $B_n = \sum_{k=0}^n \frac{\sin(k\alpha)}{\cos^k(\alpha)}$

1

Exercice 8

Résoudre $z^2 - (4+2i)z + (11+10i) = 0$

Jérémy Meynier 2

Exercice 9

Donner une condition nécessaire et suffisante sur $(a,b) \in \mathbb{C}^2$ pour que les solutions de $z^2+az+b=0$ soient imaginaires pures.