Planejamento de um Mapeamento Sistemático da Literatura

Diogo C. T. Batista¹

¹Universidade Federal do Paraná (UFPR) Curitiba – Paraná – Brasil

diogocezar@ufpr.br

Resumo. Este artigo descreve a elaboração do planejamento de um mapeamento sistemático da literatura.

1. Contexto

O objetivo deste Mapeamento Sistmático é avaliar um subconjunto inicial de artigos relevantes ao tópico de pesquisa utilizando uma metodologia confiável, rigorosa e auditável. Com este estudo, será possível obter uma melhor compreesão dos temas que envolvem o objeto de pesquisa e principalmente a exploração de trabalhos semelhantes, e a análise de seus resultados que devem embasar e direcionar o foco de estudos do trabalho de Doutorado.

O tema da pesquisa está relacionado com a exploração de métodos, técnicas ou ferramentas de Engenharia de Software para o desenvolvimento de sistemas de monitoramento de plantações e de colaboração entre usuários no contexto da Agricultura 4.0.

A Agricultura 4.0 explora a utilização das mais recentes tecnologias computacionais tais como: a automação, a robótica agrícola, *big data*, a Internet das Coisas, entre outras. Com essa exploração, busca-se uma produção agrícola eficiente e sustentável, além de ferramentas que apoiem as tomadas de decisão por parte dos envolvidos em toda a cadeia agrícola.

Entretanto, o acesso aos recursos necessários, como sensores, para a exploração dessas tecnologias não é a realidade de grande parte do setor agrícola. Adicionalmente, a resistência na adoção de novas tecnologias é um problema ainda em aberto.

Por isso, a exploração de métodos, técnicas ou ferramentas para a elaboração de um sistema que possa aproximar os agricultores da tecnologia, bem como, mostrar os benefícios da tomada de decisão de forma colaborativa são temas a serem abordados pelo trabalho.

Com este Mapeamento Sistemático busca-se analisar inicialmente, projetos que envolvam tecnologias da Agricultura 4.0 em trabalhos relacionados a interface, experiência dos usuários e colaboração entre usuários. Não serão considerados neste mapeamento o tema relacionado a monitoramento de plantações.

A seguir, estão detalhados os passos e contextos a serem utilizados no Planejamento Sistemático.

2. Objetivo

Como objetivos principais deste planejamento pode-se destacar:

• Analisar: publicações Científicas;

- Com o propósito de: categorizar os trabalhos encontrados e Analisar seus conteúdos;
- Com relação a: Agricultura 4.0, Indústria 4.0, usabilidade, experiência do usuário e colaboração entre Usuários;
- Do ponto de vista de: pesquisadores da área de IHC e Engenharia de Software;
- No contexto de: pesquisas primárias sobre IHC, Agricultura 4.0, Indústria 4.0, usabilidade, experiência do usuário e colaboração entre Usuários;

3. Questões de Pesquisa

Nesta seção descreve-se quais são as questões utilizadas para o refinamento dos materiais encontrados. São elas:

- Em qual contexto o experimento foi aplicado?
- Quais técnicas de usabilidade foram aplicadas?
- Quais técnicas de experiência do usuário foram aplicadas?
- Quais técnicas sobre colaboração foram aplicadas?
- Qual foi a metodologia utilizada para o desenvolvimento do projeto?
- Quais foram os métodos utilizados para os testes no experimento?
- Quais foram os resultados do projeto?

4. Escopo

Como critério para a seleção das fontes de dados utilizou-se os repositórios com maior possibilidade para a obtenção de artigos relacionados ao tema de pesquisa e Engenharia de Software.

Os repositórios explorados foram:

- https://app.dimensions.ai/discover/publication
- https://www.tandfonline.com
- https://eric.ed.gov
- https://ieeexplore.ieee.org/Xplore/home.jsp
- https://dl.acm.org

5. Idiomas

Para os artigos explorados, buscou-se no idioma Inglês, por ser o mais utilizados em artigos da área e utilizados pela maioria dos pesquisados.

6. Método de Busca das Publicações

Para a definição dos termos utilizados na *string* de busca, utilizou a metodologia *PICO*.

População: agricultores de baixa renda;

Intervenção: métodos, técnicas ou ferramentas para de colaboração entre usuários no contexto da Agricultura 4.0;

Comparação: Não se aplica pois é um estudo exploratório;

Resultados: *Software* usável, acessível, inclusivo e de baixo custo.

Após as definições do *PICO* extraí-se as seguintes palavras-chave:

População: farmers, farmer, low income, small farmers, agriculture 4, agriculture 4.0, digital agriculture, precision agriculture, industry 4, industry 4.0;

Intervenção: software, method, toll, technique, framework, approach;

Resultados: usability, accessibility, inclusive, user experience, user interface, experience, interface, ux, ui, ux/ui, mobile, app, web application;

Com isso, gerou-se a string de busca detalhada no Código 1.

```
(
     "farmers" OR
2
     "farmer" OR
     "low income" OR
     "small farmers" OR
    "agriculture 4" OR
     "agriculture 4.0" OR
    "digital agriculture" OR
   "precision agriculture"
  )
10
11 AND
12
     "software" OR
13
   "method" OR
14
    "toll" OR
15
     "technique" OR
16
     "framework" OR
17
     "approach"
18
  )
19
  AND
20
21
     "usability" OR
22
    "accessibility" OR
23
    "inclusive" OR
24
    "user experience" OR
25
     "user interface" OR
26
     "experience" OR
27
     "interface" OR
     "ux" OR
     "ui" OR
     "ux/ui" OR
31
     "mobile"
32
     "app" OR
33
     "web application"
  )
35
```

Código 1. String de Busca Gerada

7. Piloto

Após a primeira busca, notou-se que os resultados gerados não foram satisfatórios.

Os números obtidos estão dispostos na Tabela 1.

Ferramenta de Busca	Resultados
Dimensions	1.808,178
Taylor	2.269
Eric	1.379
IEEE Xplore	206
ACM	2.691

Tabela 1. Resultados da Primeira Busca

Apesar de um volume considerável de trabalhos encontrados, vários destes trouxeram o foco em palavras-chave que não tinham relação com o tema a ser explorado.

Por isso, um refinamento na busca foi aplicado, ficando com a string final demonstrada no Código 2.

```
"agriculture 4.0" OR
    "digital agriculture" OR
    "precision agriculture"
5
  AND
     "software" OR
    "method" OR
    "technique" OR
    "framework" OR
    "approach"
  )
13
14 AND
15
    "usability" OR
16
    "accessibility" OR
17
    "user experience" OR
18
     "user interface"
19
  )
20
```

Código 2. String de Busca Gerada

Após os refinamentos, os resultados obtidos estão tabulados em 2

Ferramenta de Busca	Resultados
Dimensions	9.578
Taylor	115
Eric	1
IEEE Xplore	10
ACM	54

Tabela 2. Resultados da Busca Refinada

Após o refinamento da string de busca, notou-se que apesar da diminuição no

número de trabalhos encontrados, em uma análise rápida feita apenas pelos títulos, os temos são mais pertinentes ao tema a ser explorado.

8. Procedimentos de Seleção e Critérios

Para o escopo deste trabalho, apesar das strings testadas em diferentes fontes de publicações o foco será nos artigos encontrados na ACM.

Após a busca de publicações realizada através da string refinada, os resultados precisam passar por um processo de seleção antes de serem incluídos no Mapeamento Sistemático da Literatura. Para isso, definiu-se os seguintes critérios de inclusão e exclusão.

8.1. Critérios de Inclusão

Para uma publicação ser adicionada ao Mapeamento, deve ser incluído em pelo menos um dos critérios:

- CI1 Publicações que apresentem métodos, técnicas ou ferramentas de engenharia de software:
- CI2 Publicações que apresentem temáticas relacionada à usabilidade, experiência do usuário ou sistemas colaborativos:
- CI3 Publicações que apresentem contextos inseridos no cenário da Agricultura 4.0.

8.2. Critérios de Exclusão

Para um artigo ser excluído do Mapeamento, deve ser incluído em pelo menos um dos critérios:

- CE1 Publicações que não contemplam nenhum dos critérios de inclusão;
- CE2 Publicações que cujo idioma não seja inglês ou português;
- CE3 Publicações que não exploram cenários de desenvolvimento de software;
- CE4 Publicações que não exploram cenários de usuabilidade;
- CE5 Publicações que não exploram cenários de experiência do usuário;
- CE6 Publicações que não exploram cenários de sistemas colaborativos:
- CE7 Publicações que não exploram temática relacionada com Agricultura 4.0.

8.3. Filtros para Seleção de Artigos

Filtro 1: Deve-se aplicar uma seleção preliminar filtrando publicações através de leitura parcial (título de *abstract*), com o objetivo de selecionar no mínimo 5 publicações para o próximo filtro;

Filtro 2: Selecionar publicações através da leitura completa, aceitando apenas aquelas com total relevância para o Mapeamento Sistemático.

9. Procedimentos para Extração dos Dados

Para garantir que as questões de pesquisa sejam suficientemente atendidas pela análise das publicações foi definido o formulário para extração de dados demostrados na Tabela 3.

10. Listagem dos Artigos Encontrados

Apesar da análise das 50 primeiras publicações, indexou-se neste material as 30 publicações mais relevantes. A Tabela 4 compila as informações coletadas.

Questão	Resposta
Qual ou quais técnicas, métodos ou ferramentas de Enge-	Diferentes técnicas, métodos ou ferramen-
nharia de Software foram utilizadas?	tas de Engenharia de Software.
Quais foram as estratégias de usabilidade utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Quais foram as estratégias de colaboração utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Foi traçado um perfil de usuário?	Sim-Não
Em que área da Agricultura 4.0 o projeto foi desenvol-	Diferentes áreas da Agricultura 4.0
vido?	
Em que plataforma o projeto foi desenvolvido?	Aplicativo - Desktop - Web

Tabela 3. Extração de Dados

ID	Título	Ano	Autores	Publicação	
1	An Agile Farm Manage- ment Information System Framework for Precision Agriculture	2017	Pradeep Hewage, Mark Anderson, Hui Fang	ICIME 2017: Proceedings of the 9th International Con- ference on Information Ma- nagement and Engineering	
2	Improving digital ecosystems for agriculture: users participation in the design of a mobile app for agrometeorological monitoring	2015	Luciana A S Romani, Gabriel Magalhaes, Martha D Bambini, Silvio R M Evangelista	MEDES '15: Proceedings of the 7th International Conference on Management of computational and collective intElligence in Digital EcoSystems	
3	Mires: a publish/subscribe middleware for sensor networks	2005	Eduardo J Pereira Souto, Germano F Guimarães, Glauco Vasconcelos, Mar- doqueu Souza Vieira, Nelson Souto Rosa, Carlos André Guimarães Ferraz, Judith Kelner	Personal and Ubiquitous Computing	
4	A Mixed Usability Evalu- ation on a Multi Crite- ria Group Decision Support System in Agriculture	2018	Julián Grigera, Alejandra Garrido, Pascale Zaraté, Guy Camilleri, Alejandro Fernández	dings of the XIX Internati-	
5	TERRA-REF Data Processing Infrastructure	2018	Maxwell Burnette, Rob Kooper, John D Maloney, Gareth S Rohde, Jeffrey A Terstriep, Craig Wil- lis, Noah Fahlgren, Todd Mockler, Maria Newcomb	PEARC '18: Proceedings of the Practice and Experi- ence on Advanced Research Computing	
6	A peer-to-peer environment for monitoring multiple wi- reless sensor networks	2007	Athanasios Antoniou, Io- annis Chatzigiannakis, Athanasios Kinalis, Ge- orgios Mylonas, Sotiris E Nikoletseas, Apostolos Papageorgiou	PM2HW2N '07: Proceedings of the 2nd ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks	
7	Software Radios for Unmanned Aerial Systems	2020	Keith Powell, Aly Sabri Abdalla, Daniel Brennan, Vuk Marojevic, R Michael Barts, Ashwin Panicker, Ozgur Ozdemir, İsmail Güvenç	OpenWireless'20: Proceedings of the 1st International Workshop on Open Software Defined Wireless Networks	

8	Modeling and analyzing per- formance of software for wi- reless sensor networks	2011	Luca Berardinelli, Vittorio Cortellessa, Stefano Pace	SESENA '11: Proceedings of the 2nd Workshop on Software Engineering for Sensor Network Applicati- onsMay 2011
9	Context-aware agriculture organizer	2012	Zafar Khaydarov, Teemu H Laine, Silvia Gaiani, Jinchul Choi, Chaewoo Lee	ICUIMC '12: Proceedings of the 6th International Con- ference on Ubiquitous In- formation Management and Communication
10	IoT system to control gree- nhouse agriculture based on the needs of Palestinian far- mers	2018	Waleed Abdallah, Mohamad Khdair, Mos'ab Ayyash, Issa Asad	ICFNDS '18: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems
11	Spatial knowledge inter- change environment: levera- ging web 2.0 technologies to breach the knowledge divide in agricultural development	2012	Tricia Melville, Orrette Ba- ker, David Raveena Judie Dolly	GEOCROWD '12: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information
12	Understanding the user in self-managing systems	2015	Markus Wallmyr,	ECSAW '15: Proceedings of the 2015 European Con- ference on Software Archi- tecture Workshops
13	Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming	2018	David Christian Rose, Jason Chilvers	Science, Society and Sustainability (3S) Research Group, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
14	Data in the garden: a fra- mework for exploring pro- vocative prototypes as part of research in the wild	2017	Geraint Rhys Sethu-Jones, Y. Rogers, Nicolai Mar- quardt	OZCHI '17: Proceedings of the 29th Australian Confe- rence on Computer-Human Interaction
15	LeafcheckIT: a banana leaf analyzer for identifying ma- cronutrient deficiency	2017	Jonilyn A. Tejada, Glenn Paul Gara	ICCIP '17: Proceedings of the 3rd International Con- ference on Communication and Information Processing
16	Special issue on Agri-Food 4.0 and digitalization in agriculture supplychains - New directions, challenges and applications	2020	che , Jorge E. Hernandez Hormazabal, Maria del Mar Eva Alemany Diaz , Janusz Kacprzyk	
17	Priorities for science to over- come hurdlesthwarting the full promise of the 'digitala- griculture' revolution	2018	Mark Shepherd, James A Turner, Bruce Small, Da- vidWheeler	Journal of the Science of Food and Agriculture pu- blished by John Wiley & Sons Ltd on behalf of Soci- ety of Chemical Industry.

18	Embracing Opportunities of Livestock Big Data Inte- gration with Privacy Cons- traints	2019	Franz Papst, Olga Saukh, Kay Romer, Florian Grandl, Igor Jakovljevic, Franz Stei- ninger, Martin Mayerhofer, Jurgen Duda, Christa Egger- Danner	IoT 2019: Proceedings of the 9th International Con- ference on the Internet of Things
19	Seesaw: end-to-end dynamic sensing for IoT using machine learning	2020	Vidushi Goyal, Valeria Bertacco, Reetuparna Das	DAC '20: Proceedings of the 57th ACM/EDAC/IEEE Design Automation Confe- rence
20	Fruit Are Heavy: A Prototype Public IoT System to Support Urban Foraging	2017	Carl F DiSalvo, Tom Jenkins	DIS '17: Proceedings of the 2017 Conference on Designing Interactive Systems
21	Mobile Pollution Data Sensing Using UAVs	2015	Óscar Alvear, C. T. Ca- lafate, Enrique Hernández, Juan Carlos Cano, Pietro Manzoni	MoMM 2015: Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia
22	Experiences Deploying an Always-on Farm Network	2017	Zerina Kapetanovic, Deepak Vasisht, Jongho Won, Ran- veer Chandra, Mark Kimball	GetMobile: Mobile Computing and Communications
23	Wireless sensor networking for rain-fed farming deci- sion support	2008	Jacques Panchard, Seshagiri Rao, Madavalam S Sheshshayee, Panagiotis (Panos) Papadimitratos, Sumanth Kumar, Jean-Pierre Hubaux	NSDR '08: Proceedings of the second ACM SIG- COMM workshop on Networked systems for developing regions
24	Fire Safety and Alert System Using Arduino Sensors with IoT Integration	2018	Fernandino S. Perilla, George R Villanueva, Napoleon M Cacanindin, Thelma Domingo Palaoag	ICSCA 2018: Proceedings of the 2018 7th International Conference on Software and Computer Applications
25	The land management tool: Developing a climate service in Southwest UK	2018	Pete Falloon, Marta Bruno Soares, Rodrigo Manzanas, Daniel San-Martin, Felicity Liggins, Inika Taylor, Ron Kahana, John Wilding, Ceris Jones, Ruth Comer, Ernst de Vreede, Wim Som de Cerff, Carlo Buontempo, Anca Brookshaw, Simon Stanley, Ross Middleham, Daisy Pittams, Ellen Lawrence, Emily Bate, Hannah Peter, Katherine Uzell, Matt Richards	Climate ServicesVolume 9, January 2018, Pages 86-100
26	Agriculture Information Service Built on Geospatial Data Infrastructure and Crop Modeling	2014	Kiyoshi Honda, Amor V M Ines, Akihiro Yui, Apichon Witayangkurn, Rassa- rin Chinnachodteeranun, Kumpee Teeravech	IWWISS '14: Proceedings of the 2014 International Workshop on Web Intelli- gence and Smart Sensing
27	Designing Speculative Civics	2016	Carl DiSalvo, Tom Jenkins, Thomas James Lodato	CHI '16: Proceedings of the 2016 CHI Conference on Human Factors in Compu- ting Systems

28	Citrus Greening Infection	2019	Charles T. Soini, Sofiane	ICISDM 2019: Proceedings	
	Detection (CiGID) by Com-		Fellah, Muhammad Rizwan	of the 2019 3rd International	
	puter Vision and Deep Lear-		Abid	Conference on Information	
	ning			System and Data Mining	
29	Digital Platform for Data	2015	Divya Piplani, Dineshkumar	IndiaHCI'15: Proceedings	
	Driven Aquaculture Farm		Singh, Karthik Srinivasan, N	of the 7th International Con-	
	Management		Ramesh, Anil Kumar, Viswa	ference on HCI, IndiaHCI	
			Kumar	2015	
30	AcuTe: acoustic thermome-	2020	Chao Cai, Zhe Chen, Hen-	SenSys '20: Proceedings of	
	ter empowered by a single		glin Pu, Liyuan Ye, Menglan	the 18th Conference on Em-	
	smartphone		Hu, Jun Luo	bedded Networked Sensor	
				Systems	

Tabela 4. 30 primeiras publicações registradas

11. Realização do Primeiro Filtro

Os 30 artigos foram submetidos ao critérios de inclusão e exclusão previamente definidos, a análise foi feita através da leitura do título e resumo.

ID	Título	Inclusão	Excl	usão	Status
1	An Agile Farm Management Information System	CI1, CI3	CE4,	CE5,	Excluído
	Framework for Precision Agriculture		CE6		
2	Improving digital ecosystems for agriculture:	CI1, CI2, CI3	CE6		Selecionado
	users participation in the design of a mobile app				
	for agrometeorological monitoring				
3	Mires: a publish/subscribe middleware for sensor	CI3	CE3,	CE4,	Excluído
	networks		CE5, C	CE6	
4	A Mixed Usability Evaluation on a Multi Criteria	CI1, CI2, CI3	CE4		Selecionado
	Group Decision Support System in Agriculture				
5	TERRA-REF Data Processing Infrastructure	CI3	CE4,	CE5,	Excluído
			CE6		
6	A peer-to-peer environment for monitoring multi-	CI1	CE4,	CE5,	Excluído
	ple wireless sensor networks		CE6, C	CE7	
7	Software Radios for Unmanned Aerial Systems	CI4	CE4,	CE5,	Excluído
			CE6		
8	Modeling and analyzing performance of software	CI1	CE4,	CE5,	Excluído
	for wireless sensor networks		CE6, C	CE7	
9	Context-aware agriculture organizer	CI1, CI3	CE4, C	CE6	Selecionado
10	IoT system to control greenhouse agriculture ba-	CI1, CI2, CI3	CE4		Selecionado
	sed on the needs of Palestinian farmers				
11	Spatial knowledge interchange environment: le-	CI1	CE4,	CE5,	Excluído
	veraging web 2.0 technologies to breach the kno-		CE6, C	E7	
	wledge divide in agricultural development				
12	Understanding the user in self-managing systems	CI2	CE4,	CE5,	Excluído
			CE6, C	E7	
13	Agriculture 4.0: Broadening Responsible Innova-	CI1, CI3	CE6		Selecionado
	tion in an Era of Smart Farming				
14	Data in the garden: a framework for exploring	CI1	CE4,	CE5,	Excluído
	provocative prototypes as part of research in the		CE6, C	CE7	
	wild				
15	LeafcheckIT: a banana leaf analyzer for iden-	CI1, CI3	CE4,	CE5,	Excluído
	tifying macronutrient deficiency		CE6		

16	Special issue on Agri-Food 4.0 and digitalization in agriculture supplychains - New directions, challenges and applications	CI1, CI2, CI3	CE4	Selecionado
17	Priorities for science to overcome hurdlesthwarting the full promise of the 'digitalagriculture' revolution	CI1, CI2, CI3	CE4, CE5	Selecionado
18	Embracing Opportunities of Livestock Big Data Integration with Privacy Constraints	CI1, CI3	CE4, CE5	Excluído
19	Seesaw: end-to-end dynamic sensing for IoT using machine learning	CI1	CE4, CE5, CE6, CE7	Excluído
20	Fruit Are Heavy: A Prototype Public IoT System to Support Urban Foraging	CI1, CI3	CE4, CE5, CE6	Selecionado
21	Mobile Pollution Data Sensing Using UAVs	-	CE1	Excluído
22	Experiences Deploying an Always-on Farm	CI1, CI3	CE4, CE5,	Excluído
22	Network	GIA GIA GIA	CE6	0.1
23	Wireless sensor networking for rain-fed farming decision support	CI1, CI2, CI3	-	Selecionado
24	Fire Safety and Alert System Using Arduino Sensors with IoT Integration	CI1	CE4, CE5, CE6	Excluído
25	The land management tool: Developing a climate service in Southwest UK	CI1, CI2, CI3	CE4, CE5	Selecionado
26	Agriculture Information Service Built on Geospatial Data Infrastructure and Crop Modeling	CI1, CI2, CI3	CE4, CE5	Selecionado
27	Designing Speculative Civics	-	CE1	Excluiído
28	Citrus Greening Infection Detection (CiGID) by Computer Vision and Deep Learning	-	CE1	Excluiído
29	Digital Platform for Data Driven Aquaculture Farm Management	CI1, CI2, CI3	CE4, CE5	Selecionado
30	AcuTe: acoustic thermometer empowered by a single smartphone	-	CE1	Excluiído

Tabela 5. 30 primeiras publicações registradas

Após a realização do primeiro filtro, 18 publicações foram excluídas e 12 selecionadas para o próximo filtro

12. Realização do Segundo Filtro

Das 12 publicações restantes, os critérios anteriormente definidos foram aplicados mediante à leitura do artigo.

ID	Título	Inclusão	Exclusão	Status
1	Improving digital ecosystems for agriculture:	CI1, CI2, CI3	CE6	Excluído
	users participation in the design of a mobile app			
	for agrometeorological monitoring			
2	A Mixed Usability Evaluation on a Multi Criteria	CI1, CI2, CI3	CE4	Selecionado
	Group Decision Support System in Agriculture			
3	Context-aware agriculture organizer	CI1, CI3	CE4, CE6	Excluído
4	IoT system to control greenhouse agriculture ba-	CI1, CI2, CI3	CE4	Excluído
	sed on the needs of Palestinian farmers			
5	Agriculture 4.0: Broadening Responsible Innova-	CI1, CI3	CE6	Selecionado
	tion in an Era of Smart Farming			

6	Special issue on Agri-Food 4.0 and digitalization	CI1, CI2, CI3	CE4	Selecionado
	in agriculture supplychains - New directions, chal-			
	lenges and applications			
7	Priorities for science to overcome hurdlesthwar-	CI1, CI2, CI3	CE4, CE5	Selecionado
	ting the full promise of the 'digitalagriculture' re-			
	volution			
8	Fruit Are Heavy: A Prototype Public IoT System	CI1, CI3	CE4, CE5,	Excluído
	to Support Urban Foraging		CE6	
9	Wireless sensor networking for rain-fed farming	CI1, CI2, CI3	-	Selecionado
	decision support			
10	The land management tool: Developing a climate	CI1, CI2, CI3	CE4, CE5	Selecionado
	service in Southwest UK			
11	Agriculture Information Service Built on Geospa-	CI1, CI2, CI3	CE4, CE5	Excluído
	tial Data Infrastructure and Crop Modeling			
12	Digital Platform for Data Driven Aquaculture	CI1, CI2, CI3	CE4, CE5	Excluído
	Farm Management			

Tabela 6. 30 primeiras publicações registradas

13. Extração de Dados

Os seguintes artigos selecionados e o processo de extração de dados estão documentados nas Tabelas 7, 8, 9, 10 e 11.

Questão	Resposta
Qual ou quais técnicas, métodos ou ferramentas de Enge-	Diferentes técnicas, métodos ou ferramen-
nharia de Software foram utilizadas?	tas de Engenharia de Software.
Quais foram as estratégias de usabilidade utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Quais foram as estratégias de colaboração utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Foi traçado um perfil de usuário?	Sim-Não
Em que área da Agricultura 4.0 o projeto foi desenvol-	Diferentes áreas da Agricultura 4.0
vido?	
Em que plataforma o projeto foi desenvolvido?	Aplicativo - Desktop - Web

Tabela 7. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming

Questão	Resposta
Qual ou quais técnicas, métodos ou ferramentas de Enge-	Diferentes técnicas, métodos ou ferramen-
nharia de Software foram utilizadas?	tas de Engenharia de Software.
Quais foram as estratégias de usabilidade utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Quais foram as estratégias de colaboração utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Foi traçado um perfil de usuário?	Sim-Não
Em que área da Agricultura 4.0 o projeto foi desenvol-	Diferentes áreas da Agricultura 4.0
vido?	
Em que plataforma o projeto foi desenvolvido?	Aplicativo - Desktop - Web

Tabela 8. Special issue on Agri-Food 4.0 and digitalization in agriculture supplychains - New directions, challenges and applications

Questão	Resposta
Qual ou quais técnicas, métodos ou ferramentas de Enge-	Diferentes técnicas, métodos ou ferramen-
nharia de Software foram utilizadas?	tas de Engenharia de Software.
Quais foram as estratégias de usabilidade utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Quais foram as estratégias de colaboração utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Foi traçado um perfil de usuário?	Sim-Não
Em que área da Agricultura 4.0 o projeto foi desenvol-	Diferentes áreas da Agricultura 4.0
vido?	
Em que plataforma o projeto foi desenvolvido?	Aplicativo - Desktop - Web

Tabela 9. Priorities for science to overcome hurdlesthwarting the full promise of the 'digitalagriculture' revolution

Questão	Resposta
Qual ou quais técnicas, métodos ou ferramentas de Enge-	Diferentes técnicas, métodos ou ferramen-
nharia de Software foram utilizadas?	tas de Engenharia de Software.
Quais foram as estratégias de usabilidade utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Quais foram as estratégias de colaboração utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Foi traçado um perfil de usuário?	Sim-Não
Em que área da Agricultura 4.0 o projeto foi desenvol-	Diferentes áreas da Agricultura 4.0
vido?	
Em que plataforma o projeto foi desenvolvido?	Aplicativo - Desktop - Web

Tabela 10. Wireless sensor networking for rain-fed farming decision support

Questão	Resposta
Qual ou quais técnicas, métodos ou ferramentas de Enge-	Diferentes técnicas, métodos ou ferramen-
nharia de Software foram utilizadas?	tas de Engenharia de Software.
Quais foram as estratégias de usabilidade utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Quais foram as estratégias de colaboração utilizadas no	Diferentes estratégias de usabilidade.
projeto?	
Foi traçado um perfil de usuário?	Sim-Não
Em que área da Agricultura 4.0 o projeto foi desenvol-	Diferentes áreas da Agricultura 4.0
vido?	
Em que plataforma o projeto foi desenvolvido?	Aplicativo - Desktop - Web

Tabela 11. The land management tool: Developing a climate service in Southwest UK