Algorithmic Game Theory Assignment 12

Palash Dey Indian Institute of Technology, Kharagpur

- 1. Let \mathcal{D} be a domain contains single-parameter domain as its subset. Also, \mathcal{D} itself is contained in the quasi-linear domain. Then, which of the following allocation rules must be implementable in \mathcal{D} ?
 - (a) affine maximizers
 - (b) allocatively efficient
 - (c) monotone
 - (d) arbitrary

The correct answer is (c).

- 2. What is the kind of domain of the type set of each player in the mechanism design problem of Knapsack allocation?
 - (a) arbitrary
 - (b) quasi-linear but not convex
 - (c) convex but not single parameter
 - (d) single parameter

The correct answer is (d). Refer to Lecture 12.2.

- 3. In a stable matching instance, suppose we have n men and n women. Then which of the following is true in a stable matching of the instance?
 - (a) A man may remain unmatched
 - (b) A woman may remain unmatched
 - (c) It can have a blocking pair
 - (d) A man may not be matched with his most preferred woman

The correct answer is (d). Refer to Lecture 12.3.

- 4. In a stable matching instance, suppose we have n men and n women. Then which of the following is true for the output of the men-proposing deferred acceptance algorithm?
 - (a) Every man is matched with his most preferred woman among all stable matchings.
 - (b) Every man is matched with his most preferred woman among all matchings.
 - (c) Every woman is matched with his most preferred woman among all stable matchings.
 - (d) Every woman is matched with his most preferred woman among all matchings.

The correct answer is (a). Refer to Lecture 12.4.

- 5. Which of the following is not true for the output of men-proposing deferred acceptance algorithm?
 - (a) Every man is matched with his most preferred woman among all stable matchings.
 - (b) Every woman is matched with her least preferred man among all stable matchings.

- (c) During the run of the algorithm, every man, once matched, never becomes unmatched.
- (d) During the run of the algorithm, every woman, once matched, never becomes unmatched.

The correct answer is (a). Refer to Lecture 12.4.

- 6. What is the maximum total number of proposals men make in the deferred acceptance algorithm?
 - (a) $\Theta(n)$
 - (b) $\Theta(n \log n)$
 - (c) $\Theta(n^2)$
 - (d) $\Theta(n^2 \log n)$

The correct answer is (c). Refer to Lecture 12.4.

7. Consider the following instance of the stable matching problem. The preference lists of men are:

$$m_1 : w_2 \succ w_1 \succ w_3 \succ w_4$$

 $m_2 : w_4 \succ w_1 \succ w_2 \succ w_3$
 $m_3 : w_1 \succ w_3 \succ w_2 \succ w_4$
 $m_4 : w_2 \succ w_3 \succ w_1 \succ w_4$

The preference lists of women are:

$$w_1 : m_1 \succ m_3 \succ m_2 \succ m_4$$

 $w_2 : m_3 \succ m_4 \succ m_1 \succ m_2$
 $w_3 : m_4 \succ m_2 \succ m_3 \succ m_1$
 $w_4 : m_3 \succ m_2 \succ m_1 \succ m_4$

In the men-optimal stable matching, who will be the partner of w_2 ?

- (a) m_1
- (b) m₂
- (c) m_3
- (d) m_4

The correct answer is (d). Refer to Lecture 12.4.

8. Consider the following instance of the stable matching problem. The preference lists of men are:

$$m_1 : w_2 \succ w_1 \succ w_3 \succ w_4$$

 $m_2 : w_4 \succ w_1 \succ w_2 \succ w_3$
 $m_3 : w_1 \succ w_3 \succ w_2 \succ w_4$
 $m_4 : w_2 \succ w_3 \succ w_1 \succ w_4$

The preference lists of women are:

$$w_1 : m_1 \succ m_3 \succ m_2 \succ m_4$$

 $w_2 : m_3 \succ m_4 \succ m_1 \succ m_2$
 $w_3 : m_4 \succ m_2 \succ m_3 \succ m_1$
 $w_4 : m_3 \succ m_2 \succ m_1 \succ m_4$

In the men-pessimal stable matching, who will be the partner of w_2 ?

- (a) m_1
- (b) m₂

- (c) m₃
- (d) m_4

The correct answer is (c). Refer to Lecture 12.4.

9. Consider the following instance of the stable matching problem. The preference lists of men are:

$$m_1 : w_2 \succ w_1 \succ w_3 \succ w_4$$

 $m_2 : w_4 \succ w_1 \succ w_2 \succ w_3$
 $m_3 : w_1 \succ w_3 \succ w_2 \succ w_4$
 $m_4 : w_2 \succ w_3 \succ w_1 \succ w_4$

The preference lists of women are:

$$w_1 : m_1 \succ m_3 \succ m_2 \succ m_4$$

 $w_2 : m_3 \succ m_4 \succ m_1 \succ m_2$
 $w_3 : m_4 \succ m_2 \succ m_3 \succ m_1$
 $w_4 : m_3 \succ m_2 \succ m_1 \succ m_4$

In a run of men proposing deferred acceptance algorithm, how many times woman w_4 gets rejected?

- (a) 1
- (b) 2
- (c) 3
- (d) 0

The correct answer is (a). Refer to Lecture 12.4.

- 10. In the women-proposing deferred acceptance algorithm, which of the following is true?
 - (a) A woman, once matched, never becomes unmatched.
 - (b) A man, once matched, never becomes unmatched.
 - (c) A man never rejects any woman.
 - (d) No man or woman ever reject anyone.

The correct answer is (b). Refer to Lecture 12.4.