

DEPARTAMENTO DE MATEMÁTICA ESTATÍSTICA PARA A SAÚDE

1.º Semestre - 2023/2024 1.º Teste (Modelo)

Data: novembro de 2023 Duração: 2 horas

• Parte do teste foi resolvido recorrendo ao software R: ver script_1teste_modelo.R.

Resolução

- 1. Os dados referem-se ao peso das bagagens individuais numa amostra de dimensão n = 90.
 - (a) Variável em estudo: peso da bagagem, em kg Classificação da variável em estudo: Variável Quantitativa Contínua
 - (b) número de bagagens com peso inferior a 15 kg = 5+5+A=10+A a proporção de bagagens com peso inferior a 15 kg = $\frac{10+A}{90}$ logo

$$\frac{10+A}{90} = 0.20 \Leftrightarrow A = 8$$

Como a amostra tem dimensão n = 90, tem-se

$$5+5+A+30+B+10=90 \Leftrightarrow 5+5+8+30+B+10=90 \Leftrightarrow B=32$$

(c) A = B = 20.

Tabela de frequências:

	Peso da bagagem	Freq.	Freq.	Freq. Abs.	Freq. Rel.	
	(em kg)	Absoluta	Relativa	Acumulada	Acumulada	
i	Classe - c_i	n_i	f_i	N_i	F_i	
1	[0, 5[5	$\frac{5}{90} = 0.056$	5	0.056	
2	[5, 10[5	$\frac{5}{90} = 0.056$	5 + 5 = 10	0.056 + 0.056 = 0.112	
3	[10, 15[20	$\frac{20}{90} = 0.222$	10 + 20 = 30	0.112 + 0.222 = 0.334	
4	[15, 20[30	$\frac{30}{90} = 0.333$	30 + 30 = 60	0.334 + 0.333 = 0.667	
5	[20, 25[20	$\frac{20}{90} = 0.222$	60 + 20 = 80	0.667 + 0.222 = 0.889	
6	[25, 30]	10	$\frac{10}{90} = 0.111$	80 + 10 = 90	0.889 + 0.111 = 1	
		n = 90	1			

2. (a) População: todos os passageiros do Titanic

Dimensão da População: Não se sabe, estima-se que eram 2224 pessoas a bordo, entre passageiros e tripulação

Amostra: os passageiros no ficheiro titanic0.txtDimensão da Amostra: n=712 passageiros

Unidade estatística: passageiros

Variável estatística: Survived Dados estatísticos: Não, Sim Classificação: Qualitativa nominal

Variável estatística: Pclass

Dados estatísticos: 1ª classe, 2ª classe, 3ª classe

Classificação: Qualitativa ordinal

Variável estatística: Sex

Dados estatísticos: feminino, masculino Classificação: Qualitativa nominal

Variável estatística: Age

Dados estatísticos: qualquer número maior que zero

Classificação: Quantitativa contínua

Variável estatística: Fare

Dados estatísticos: qualquer número maior que zero

Classificação: Quantitativa contínua

(b) O género feminino foi o que sobreviveu mais, 67.71% dos sobreviventes era do género feminino. Representação gráfica: gráfico de barras (o gráfico podia estar só no script)

(c) Tabela de frequências:

	Classificação	Idade	Freq.	Freq.	Freq. Abs.	Freq. Rel.
	passageiros	(em anos)	Absoluta	Relativa	Acumulada	Acumulada
i	x_i	Classe - c_i	n_i	f_i	N_i	F_i
1	crianças]0, 18]	139	0.195	139	0.195
2	jovens]18, 25]	162	0.228	301	0.423
3	adultos]25,65]	403	0.566	704	0.989
4	idosos]65, 80]	8	0.011	712	1
			n = 712	1		

Representação gráfica: histograma (o gráfico podia estar só no script)

(d) Medidas de localização central e dispersão:

Medidas de localização central

• moda = 13 libras

• média = 34.567 libras

• mediana = 15.645 libras

Medidas de dispersão

• amplitude total = 512.329 libras

• amplitude interquartil = 24.95 libras

• variância = 2802.5 libras^2

• desvio padrão = 52.939 libras

• coeficiente de variação = 153.147%

Diagrama de extremos e quartis (com a indicação de "outliers" a partir dos moderados) (o gráfico podia estar só no script)

Preço da passagem

Só há dados considerados "outliers" no extremo superior dos dados. Há 95 dados considerados "outliers", 49 são considerados "outliers" moderados e 46 são considerados "ouliers" severos.

- 3. Seja X número de cafés vendidos diariamente nesse bar, uma variável aleatória discreta.
 - (a) Como, em média, são vendidos diariamente 115 cafés, então

$$E[X] = 115 \Leftrightarrow 50 \times 0.2 + 100 \times a + 150 \times b + 200 \times 0.1 = 115 \Leftrightarrow 100a + 150b = 85$$

Por outro lado, como f(x) é função de probabilidade, sabe-se que

$$\sum_{x} f(x) = 1 \Leftrightarrow 0.2 + a + b + 0.1 = 1 \Leftrightarrow a + b = 0.7 \Leftrightarrow b = 0.7 - a$$

Voltando à primeira expressão

$$100a + 150 \times (0.7 - a) = 85 \Leftrightarrow 100a + 105 - 150a = 85 \Leftrightarrow a = 0.4$$

Desta forma,

$$b = 0.7 - 0.4 \Leftrightarrow b = 0.3$$

(b) Considerando a = 0.3 e b = 0.4 tem-se

3

Assim:

$$P(X > 150|X \ge 100) = \frac{P(X > 150 \land X \ge 100)}{P(X \ge 100)} = \frac{P(X > 150)}{P(X \ge 100)} =$$
$$= \frac{f(200)}{f(100) + f(150) + f(200)} = \frac{0.1}{0.4 + 0.3 + 0.1} = \frac{0.1}{0.8} = 0.125$$

(c) Seja Y— vendas semanais de gasolina, em milhares de litros, uma variável aleatória contínua Pretende-se a variância do lucro semanal, ou seja, V[2Y-1]. Utilizando as propriedades da variância, vem que:

$$V[2Y - 1] = 2^2 \times V[Y] = 4 \times (E[Y^2] - E^2[Y])$$

Como E[Y] = 2, falta calcular $E[Y^2]$. Assim

$$\begin{split} E\left[Y^2\right] &= \int_{-\infty}^{+\infty} y^2 f\left(y\right) dy = \\ &= \int_{-\infty}^{1} y^2 \times 0 dy + \int_{1}^{2} y^2 \times (y-1) dy + \int_{2}^{3} y^2 \times (3-y) dy + \int_{3}^{+\infty} y^2 \times 0 dy = \\ &= 0 + \int_{1}^{2} \left(y^3 - y^2\right) dy + \int_{2}^{3} \left(3y^2 - y^3\right) dy + 0 = \left[\frac{y^4}{4} - \frac{y^3}{3}\right]_{1}^{2} + \left[\frac{3y^3}{3} - \frac{y^4}{4}\right]_{2}^{3} = \\ &= \left(\frac{2^4}{4} - \frac{2^3}{3}\right) - \left(\frac{1^4}{4} - \frac{1^3}{3}\right) + \left(3^3 - \frac{3^4}{4}\right) - \left(2^3 - \frac{2^4}{4}\right) = \frac{25}{6} = 4.1667 \end{split}$$

(*) os seguintes cálculos podem estar apenas no script

Desta forma,

$$V[2Y - 1] = 4 \times (E[Y^2] - E^2[Y]) = 4 \times (\frac{25}{6} - 2^2) = \frac{2}{3}$$

- 4. De um total de 1000 declarações de IRS, das quais se sabe que 100 apresentam erros, foram selecionadas aleatoriamente 20 declarações. Sabe-se que o número de declarações analisadas por hora tem distribuição de Poisson com variância 3.
 - (a) Seja X a variável aleatória discreta:

 $X \to$ número de declarações analisadas com erro, em 20. $X \sim B\left(20,0.1\right)$ pois

n=20 declarações selecionadas

 $p=P\left(\text{Sucesso}\right)=P\left(\text{declaração conter erros}\right)=\frac{100}{1000}=0.1$

então

$$P(X > 1) = 1 - P(X \le 1) = 1 - F(1) = 1 - 0.3917 = 0.6083$$

(b) Seja Y a variável aleatória discreta:

 $Y \rightarrow$ número de declarações analisadas em 1 hora. $Y \sim P(3)$ pois

$$Y \sim P(\lambda)$$
 com $V(Y) = \lambda = 3$

então

 $Y' \rightarrow$ número de declarações analisadas em 6 horas. $Y' \sim P\left(18\right)$ pois

$$\begin{array}{cccc} 1 \text{ hora} & \mapsto & \lambda = 3 \\ 6 \text{ horas} & \mapsto & \lambda = 3 \times 6 = 18 \end{array}$$

Pretende-se

$$P\left(Y' \ge \frac{1}{4} \times 20\right) = P\left(Y' \ge 5\right) = 1 - P\left(Y' < 5\right) \underset{\text{v.a. discreta}}{=} 1 - P\left(Y' \le 4\right) = 1 - F\left(4\right) = 1 - 0.0001 = 0.9999$$

Conclusão: É quase certo que o fiscal consiga analisar um quarto das declarações selecionadas pois a probabilidade está próxima de 1.

(c) Seja W a variável aleatória contínua:

 $W \to {\rm tempo}$ que demora a preencher a declaração de IRS, em minutos.

$$W \sim N\left(25.6, 1.6\right)$$
 pois $E[W] = \mu = 25.6$ minutos e $\sqrt{V[W]} = \sigma = 1.6$ minutos.

i.
$$P\left(24.256 < W < 27.472\right) = F\left(27.472\right) - F\left(24.256\right) = 0.8790 - 0.2005 = 0.6785$$

ii. Pretende-se determinar m tal que:

$$P(W \le m) = 0.0179 \Leftrightarrow F(m) = 0.0179 \Leftrightarrow m = 22.24 \text{ minutos}$$