

Definindo uma Matriz Explicitamente

- Elementos de uma linha são separados por espaços ou vírgulas.
- O final de cada linha é indicado por um ponto-e-vírgula.
- A lista de elementos é delimitada por colchetes [].

Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando e m-files
 - Interface gráfica (NNTool)

CA

Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando e m-files
 - Interface gráfica (NNTool)

.

Passos para a Criação de uma RN

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

<u>ICA</u>

O Problema do OU Exclusivo

X ₁	X_2	valor
0	0	0
0	1	1
1	0	1
1	1	0

Passos para a Criação de uma RN

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Definindo os Padrões

X ₁	X ₂	valor
0	0	0
0	1	1
1	0	1
1	1	0

Vetor de entrada:
$$P = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow P = \begin{bmatrix} 0 & 0 & 1 & 1; & 0 & 1 & 0 & 1 \end{bmatrix}$$

Vetor de saída: $T = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$

Passos para a Criação de uma RN

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Inicializando a Rede Neural

Função "newff" Redes Feed-forward:

net = newff([min(P')' max(P')'], (limites dos padrões de entrada) [N_hidden 1], 'traingd');

(número de neurônios de cada camada) { 'tansig' 'logsig'}, (função de ativação de cada camada) (algoritmo de treinamento)

Funções de Ativação

Linear purelin logsig Sigmóide

tansig Tangente hiperbólica satlin(s) Linear com saturação

Algoritmos de Treinamento

traingd Gradient descent backpropagation

traingdm Gradient descent backpropagation com momentum traingda Gradient descent backpropagation com taxa adaptativa traingdx Gradient descent backpropagation com momentum e

taxa adaptativa

trainlm Levenberg-Marquardt backpropagation (default)

trainrp Resilient backpropagation (Rprop)

Definindo parâmetros de treinamento

net.trainParam.epochs = 100;
net.trainParam.goal = 1e-8;
net.trainParam.lr = 0.01;
net.trainParam.lr = 0.01;
net.trainParam.show = 25;

net.trainParam.mc = 0.9;

Taxa de aprendizado
Atualização da tela (epochs)

Taxa de momentum

net.trainParam.lr_inc = 1.05;
net.trainParam.lr_dec = 0.7;
net.trainParam.ar_perf_inc = 1.04;
Taxa de decremento da l.r.

Passos para a Criação de uma RN

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Passos para a Criação de uma RN

- Definir os padrões
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Treinando a Rede Neural net = train(net, P, T);

Passos para a Criação de uma RN Definir os padrões Inicializar a rede Definir os parâmetros de treinamento Treinar a rede Testar a rede

M-file desenvolvida para o XOR

TESTE 2: Rede neural com uma camada escondida de processadores (Multi-Layer Perceptron);

xor2.m

Validação Cruzada

```
% Inicializa a rede neural
net = newff([min(P')' max(P')'],[10 1],{'tansig' 'logsig'},'traingd');
net.trainParam.goal = 1e-8;
% Treina a rede iterativamente, de 5 em 5 epochs,
% até o total de 100 epochs, calculando os erros
Nepoch = 5;
NN = 20;
mape_min = 1e38;
for i = 1:NN,
 net.trainParam.epochs = Nepoch;
 net = train(net, Ptrain, Ttrain);
  Ctrain = sim(net, Ptrain);
 Cvalid = sim(net, Pvalid);
  % Calcula os erros MAPE para os padrões de treinamento e validação
  mape_train(i) = 100*mean(abs((Ttrain-Ctrain)./Ttrain))
  mape_valid(i) = 100*mean(abs((Tvalid-Cvalid)./Tvalid))
```

Validação Cruzada

- Dividir os padrões disponíveis em três conjuntos:
 - treinamento (70%): matrizes Ptrain, Ttrain
 - validação (20%): matrizes Pvalid, Tvalid
 - teste (10%): matrizes Ptest, Ttest

Validação Cruzada

```
% encontra o número de epochs ótimo
if (mape_valid(i) < mape_min)
  mape_min = mape_valid(i);
  net_opt = net;
  Noptim = Nepoch * i;
  end
end

% Melhor rede:
  net = net_opt;

% Testa a rede com os 3 conjuntos de padrões
  Ctrain = sim(net, Ptrain);
  Cvalid = sim(net, Pvalid);
  Ctest = sim(net, Ptest);</pre>
```

<u>ICA</u>

Redes Neurais no MATLAB

- Duas formas de utilização:
 - Linhas de comando, e m-files
 - Interface gráfica (NNTool)

Pout Delay States: Networks and Data Help New Data New Network Import Export Viey Data Networks only Train Approximation Approximation

Passos para a Criação de uma RN

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

Passos para a Criação de uma RN

Interface Gráfica NNTool

- Definir os padrões
- Criar a rede
- Inicializar a rede
- Definir os parâmetros de treinamento
- Treinar a rede
- Testar a rede

CK

Passos para a Criação de uma RN Definir os padrões Criar a rede Inicializar a rede Definir os parâmetros de treinamento Treinar a rede Testar a rede

Passos para a Criação de uma RN Definir os padrões Criar a rede Inicializar a rede Definir os parâmetros de treinamento Treinar a rede Testar a rede

Definição das Redes

Network name: network35

• Tipo: feed-forward backprop

• Input Ranges: Get from input

• Training Function: TRAINGDM

• Number of layers: 2

- Layer 1: 35 neurons **TANSIG PURELIN**

-Layer 2: 10 neurons

Treinamento das Redes

10000 • Epochs:

• Goal (MSE): 0.5e-3

• Learning Rate (Ir): 0.1

Momentum: 0.0

Treinamento das Redes

<u>ICK</u>

• Epochs: 10000

• Goal (MSE): 0.5e-3

• Learning Rate (Ir): 0.4

Momentum: 0.0

Treinamento das Redes

10000 • Epochs:

• Goal (MSE): 0.5e-3

• Learning Rate (Ir): 0.9

Momentum: 0.0

<u>ICK</u>

Treinamento das Redes

• **Epochs**: 10000

• Goal (MSE): 0.5e-3

• Learning Rate (Ir): 0.1

• Momentum: 0.4

ICA

Treinamento das Redes

• **Epochs**: 10000

• Goal (MSE): 0.5e-3

• Learning Rate (Ir): 0.9

• Momentum: 0.4

<u>CA</u>

