

AD-A054 328

AD

MEMORANDUM REPORT ARBRL-MR-02816

MOLECULAR BEAM SAMPLING MASS SPECTROMETRY OF HIGH
HEATING RATE PYROLYSIS: DESCRIPTION OF DATA
ACQUISITION SYSTEM AND PYROLYSIS OF HMX IN A
POLYURETHANE BINDER

Richard A. Beyer

TECHNICAL
LIBRARY

March 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED 3

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute endorsement of any commercial product.*

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER MEMORANDUM REPORT ARBRL-MR-02816	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Molecular Beam Sampling Mass Spectrometry of High Heating Rate Pyrolysis: Description of Data Acquisition System and Pyrolysis of HMX in a Polyurethane Binder		5. TYPE OF REPORT & PERIOD COVERED BRL Memorandum Report
7. AUTHOR(s) Richard A. Beyer		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory (ATTN: DRDAR-BLP) Aberdeen Proving Ground, MD 21005		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS RDT&E 1L161102AH60
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command US Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, MD 21005		12. REPORT DATE MARCH 1978
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 28
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) molecular beam mass spectroscopy pyrolysis kinetics HMX (cyclotetramethylenetrinitramine)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The data acquisition capability of the time-of-flight mass spectrometer used with the molecular beam sampling system has been expanded. An oscilloscope intensity-modulated raster technique using negative film scanned by a micro-densitometer provides simultaneous semi-quantitative time-resolved mass spectra of all masses up to 160 amu with time resolution down to 10 ms. A system of parallel sample/hold channels which follow predetermined masses with time resolution near that of the spectrometer cycle time has been assembled and		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

shown to have good dynamic range, adequate mass resolution, and provide good reproducibility. This system has been used to study the products of low pressure pyrolysis of nitrocellulose and cyclotetramethylene tetranitramine/polyurethane binder. Using a carbon dioxide laser for heating the samples up to 5000 deg/s heating rate effects are clearly demonstrated for NC but are not observed for HMX/PU. Relative amounts of the major decomposition species observed for the HMX/PU were nitrous oxide, 100; nitrogen dioxide, 54; hydrogen cyanide, 42; formaldehyde, 39; and nitric oxide, 27. The large amounts of nitrogen dioxide is compatible with the breaking of the N-N bond as the first step of the thermal decomposition of HMX.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	<u>Page</u>
LIST OF FIGURES.	5
I. INTRODUCTION	7
II. EXPERIMENTAL	7
III. LOW PRESSURE PYROLYSIS STUDIES	12
IV. DISCUSSION OF RESULTS.	18
V. CONCLUSIONS.	21
REFERENCES	22
DISTRIBUTION LIST.	23

LIST OF FIGURES

	<u>Page</u>
Figure 1. Block Diagram for Oscilloscope Intensity- Modulated Raster Recording Technique.	9
Figure 2. Temporal Behavior of Four Selected Mass/ Charge Peaks During and After Rapid Pyrolysis of NC.	11
Figure 3. Typical Results of Slow Scans of the Background Mass Spectrum Showing Resolution of a) The Analog Scanner System and b) A Sample/Hold Channel.	13
Figure 4. Slow Time-Resolved Pyrolysis of 0.5 micron NC Film.	15
Figure 5. Slow Time-Resolved Pyrolysis of HMX/PU. Sources of Observed Masses are N ₂ O (44) HCHO (30 and 29), and NO and NO ₂ (30).	16
Figure 6. Rapid Pyrolysis Behavior of HMX/PU. Mass/Charge Peaks not Identified in Figure 5 are HCN (27), NO ₂ (46), and CO ₄ (44).	17

I. INTRODUCTION

The detection and concentration measurement of the chemical species present in the ignition and combustion of propellants and related materials is a basic input to computer models which hold the potential of rational design of propellants to optimize necessary performance parameters. The method used in the work described here consists of extracting a sample of the gases from the process of interest by expanding it through a supersonic nozzle which forms the species into a molecular beam. The molecular beam is characterized by low vibrational and rotational temperatures and a narrow velocity distribution which result in the quenching of further chemical reactions. The sampled species are then ionized by impact with low energy electrons (10 to 70 eV) and the resultant ions analyzed by a mass spectrometer. This technique has been used successfully by many previous investigators¹ to study both stable and highly reactive species. The design details of the apparatus used in our laboratory studies have been described in detail elsewhere.²

The choice of a time-of-flight mass spectrometer for our applications yields the time response required, but also results in difficulties in recording the data due to the high rate at which information is presented. In this report traditional recording methods and new methods developed for our studies are described in detail. Preliminary results from studies of low pressure pyrolysis of some propellant materials at high heating rates are presented and the meaning of these data discussed.

II. EXPERIMENTAL

The time-of-flight mass spectrometer (TOFMS) is a simple device for analyzing the mass-to-charge (m/e) ratio of a collection of ions, either extracted from some physical process or created by impact of a short pulse of low energy electrons on a gas of molecules or atoms.

- ¹a. J. W. Hastie, "Sampling Reactive Species From Flames by Mass Spectrometry", *Int. J. of Mass. Spectry. and Ions Physics*, 16, 89-100 (1975).
- b. R. V. Serauskas, G. R. Brown, and R. Pertel, "A Supersonic Molecular Beam Atmospheric Pressure Flame Sampling System", *Int. J. of Mass Spectry and Ion Physics*, 16, 69-87 (1975).
- c. J. C. Biordi, C. P. Lazzara, and J. F. Papp", "Flame-Structure Studies of CF_3Br -Inhibited Methane Flames", *Symp. (Int.) Comb. (Proc.)*, 14th, 367 (1973).
- ²K. J. White and R. W. Reynolds, "Apparatus for Detecting Interior Ballistic Combustion Products", *BRL Memorandum Report No. 2497*, AD #A013372 (1975).

The ions are accelerated to a kinetic energy of typically 2 KeV. Since all ions have the same energy, the lighter have higher velocities and therefore arrive at the detector in shorter time. In our configuration, the ions with m/e from one to 160 amu/charge arrive at the signal anode within 10 μ s with each m/e peak 10 to 20 ns wide. If no masses greater than 160 amu are expected one may repeat this cycle at 100 KHz and obtain a complete mass spectrum each 10 μ s. Since these signals require at least 30 MHz bandwidth for recording, conventional analog magnetic tape is too slow; faster methods are limited by ability to store the quantities of information generated. The alternative methods of recording the mass spectra are discussed below.

In studying phenomena which vary on time scales near the 10 μ s spacing of spectra from the TOFMS, recording oscilloscope traces of the spectra photographically is a useful method of data acquisition. The use of vertical and horizontal offsets allows the recording of multiple spectra with one picture; high speed cameras can be used for recording spectra over longer time periods. The principal difficulties associated with this technique include the effort involved with extracting numerical values from pictures, unsatisfactory signal averaging techniques such as multiple exposures of spectra, and the large quantities of data involved with events occurring over time periods of milliseconds or longer.

The analog recorder is the second commercially available option, and the one most commonly used for studies of steady state phenomena where one may leisurely scan the mass spectrum or in time dependent phenomena where information from one mass will be adequate. In this system, a fast voltage pulse gates the electrons resulting from a single mass onto a separate anode near the end of the electron multiplier. This current is then amplified by an electrometer with rise-time as fast as 1 ms, resulting in a well-behaved easily-recorded signal. By using a variable delay with the gate pulse one may select masses sampled or sweep the mass spectrum at an appropriate rate.

The analog recorder is limited in versatility by the restriction in the number of masses which can be followed in time; systems of up to four gates are possible with some effort. A major disadvantage is that the gate pulses distort the mass spectrum signal and thus make simultaneous observation of the entire mass spectrum very difficult. The limitations imposed by the electrometer time response may be important in very fast studies.

The Oscilloscope Intensity-Modulated Raster technique was first reported³ a number of years ago as useful for making qualitative records. Figure 1 shows a block diagram for this method. If one

³ K. A. Lincoln, "Simple Display System for Recording Time-Resolved Mass Spectra", *Rev. Sci. Instr.*, 35, 1688 (1964).

Figure 1. Block Diagram for Oscilloscope Intensity-Modulated Raster Recording Technique

suitably amplifies the pulses which make up the mass spectrum they may be used to modulate the intensity of an oscilloscope. If that trace is adjusted to the point where no trace is visible when no mass is detected, the oscilloscope displays a series of dots with position identifying the mass and intensity the relative signal strength. A ramp is then used to move the successive spectra up the oscilloscope screen during the event being measured. The result is a three-dimensional display of the complete mass spectrum as a function of time. Use of a fast film such as type 107 Polaroid yields a good qualitative record of the event. A major improvement was made in our capability by using type 665 positive/negative film. With either film, good results are obtained for scans as short as 100 ms with time resolution of approximately 10 ms. However, with the negative one may use a microdensitometer to convert the data to graphic or numerical form. Figure 2 shows a smoothed plot from a microdensitometer scan of NC pyrolysis at low pressures.

The most serious disadvantages of this method are that the system appears to have a limited dynamic range as well as a potential threshold below which masses are not detected. It is also quite difficult to provide a good calibration for absolute concentration measurements of species. However, this method can provide a good survey of masses evolving during a process, help in identification of chemical species through peak height ratios, and provide good quantitative information where absolute concentrations are not important.

As mentioned earlier, magnetic recorders do not have the bandwidth necessary to record the TOFMS signal directly to make use of their good memory size. Solid state transient recorders are available with sufficient bandwidth but are of limited memory size. It would take at least 2 ms to dump the memory of a typical transient recorder into a microprocessor or other device after recording 20 μ s of data. This deadtime is quite undesirable since the averaging of several adjacent mass spectra without loss of time resolution is essential for good signal-to-noise ratios. Attempts have been made to use two transient records to eliminate storage when no mass peaks are present. The first recorder is turned on electronically whenever a mass peak is present and records the peak; the second recorder is used to mark the times and therefore identify the masses. In this manner, the amount of recorded information between memory dumps would be greatly increased. A microprocessor or other device could then be used to reconstruct the mass spectra as a function of time. Unfortunately, in preliminary trials of this technique it proved unreliable, although it possibly could be made to work if more attention were paid to quality of switching pulses, and other details.

VACUUM PYROLYSIS
OF NC

Figure 2. Temporal Behavior of Four Selected Mass/Charge Peaks During and After Rapid Pyrolysis of NC

The next most desirable option is a system of parallel channels each of which could follow a pre-selected mass without limiting the time resolution. In order to maximize the signal-to-noise without decrease in the already limited duty cycle of the mass spectrometer, the ideal gate element of such a system should integrate the mass peak over its limits and provide an output without major reduction in the 100 KHz rate of the spectrometer. Good charge digitizers take about 20 μ s to digitize data with further time required for storage of the data. Available non-digital devices are designed to give out a pulse proportional to the area integrated; the time required for pulse height analysis again is substantial.

Another possibility using commercial integrated circuit components is to have a wide-band sample/hold module for each of the masses to be measured. The sample/hold is a simple device which follows the analog signal until its logic command is switched; it then acquires the signal voltage and maintains an output at that level until the logic command is reset. Although some sacrifice in signal-to-noise is made in using only the peak rather than the entire area, these circuits have been found to provide good dynamic range with reproducible operation and are readily calibrated. For this work a model 1024 from Optical Electronics Inc. was utilized in each circuit. These modules were selected primarily on the basis of their 30 MHz tracking bandwidth and 3 ns aperture time. The amount of jitter in the gate generator providing the logic pulse is the major limitation in mass resolution. Standard solid state pulse and gate generators from three different manufacturers were found to give mass resolution similar to that of Figure 3. Use of digital delay generators and 100 MHz bandwidth devices should result in mass resolution equal to that of the mass spectrometer. The time resolution is in principal the cycle time of the mass spectrometer, although in practice one would usually prefer to sacrifice some time resolution to increase the signal-to-noise ratio. There are currently four parallel circuits in use with this apparatus; the number of channels can be expanded arbitrarily for approximately \$1K per channel, up to the limit of the recording device. The system is designed for either analog tape recording of the channels output or direct digitization by a computer. For the preliminary studies reported here, the outputs have been recorded by a four-channel storage oscilloscope.

III. LOW PRESSURE PYROLYSIS STUDIES

In order to apply our system to the study of early thermal decomposition species of energetic materials, a small vacuum chamber was mounted around the sampling area with provisions for mounting a sample of the material of interest near the sampling nozzle. The heat source used in these studies was a nominal 50W CO₂ laser which was directed unfocused onto the sample through a NaCl window on the vacuum pyrolysis chamber. Although no temperature measurements were made, estimates of the heating rate based on delay from start of heating to arrival of products yield values near 5000 deg/s. Pumping of the chamber was pro-

Figure 3. Typical Results of Slow Scans of the Background Mass Spectrum Showing Resolution of (a) The Analog Scanner System, and (b) A Sample/Hold Channel

vided solely by the 2.5 mm diameter nozzle. Pressures were monitored by a capacitance manometer; typical background pressures were a few mTorr or less with peak pressures varying up to several hundred mTorr. The geometry is such that the early signals should be dominated by species which have left the heated surface and are sampled without experiencing wall collisions.

Previous studies of the pyrolysis of nitrocellulose have indicated the presence of such final product molecules as CO₂ and H₂O which appear to result directly from the pyrolysis. In slow heating experiments, one may postulate that these species are the results of reactions in the solid phase involving primary decomposition species which are trapped within the volume and therefore not pumped away even though the nominal pressure remains very low. If one increases the heating rate to accelerate the pyrolysis process and eliminate the problem of solid phase reactions one may quickly reach a circumstance where decomposition product generation is so rapid that even unlimited pumping speed might not prevent the reaction of the highly reactive species as they leave the heated sample. Through the addition of time resolution to these studies, one may potentially detect any such difficulties and perhaps extract data on the nature of the primary decomposition species and subsequent reactions among them.

In order to verify that our technique could readily detect effects such as described above, a series of pyrolyses was performed on nitrocellulose (NC) and cyclotetramethylene tetranitramine in a polyurethane binder (HMX/PU). As only semi-quantitative data were sufficient for these studies, recording was with the oscilloscope raster technique and microdensitometer tracing of the resultant negatives. For rapid heating of NC a 100 ms pulse from the laser typically produces behavior such as in Figure 2. The less than 1 mg sample is completely consumed before the end of the laser pulse. It is quite clear that CO₂ (mass peak 44) is a result of gas phase reactions. The other peaks recorded in this figure are from NO₂ (46 and 30), NO (30), HCHO (30 and 29), and possibly other aldehydes contributing to the 29 peak. If one reduces the laser power to near 15W and uses a thin film of NC a slower pyrolysis can be achieved. The results of a typical event can be seen in Figure 4. Even though this event is fast compared with traditional slow temperature controlled thermal decomposition, the effect of solid phase chemistry is seen clearly in the relative enhancement of CO₂ in the second peak near 1.8s.

The results of typical traces of similar experiments on HMX/PU (3:1; 5μ HMX particle size) are shown in Figures 5 and 6. In the slower pyrolyses there generally appears to be no change in the relative intensities of masses 27, 29, 30, 44, and 46 with the exception of a decrease in mass 46 under conditions where it may be lost to reaction with HCHO. The faster, higher power laser pulse heating in some cases shows a second peak of 44, which has been identified as CO₂ by the appearance of CO₂⁺⁺ at 22 amu/e at corresponding times. This species

VACUUM PYROLYSIS
OF NC FILM

Figure 4. Slow Time-Resolved Pyrolysis of 0.5 micron NC Film

VACUUM PYROLYSIS OF HMX/PU

Figure 5. Slow Time-Resolved Pyrolysis of HMX/PU. Sources of Observed Masses are N₂O (44), HCHO (30 and 29), and NO and NO₂ (30).

VACUUM PYROLYSIS OF HMX/PU

Figure 6. Rapid Pyrolysis Behavior of HMX/PU. Mass/Charge Peaks not Identified in Figure 5 are HCH (27), NO₂ (46), and CO₄ (44)

may either be due to gas phase chemistry due to higher temperatures of the products, or may be a result of the binder pyrolysis lagging behind that of the HMX. In most cases, approximately constant relative concentrations of these major species are observed at early times in these preliminary measurements.

To obtain preliminary relative quantitative values for the major stable species data were acquired using the sample/hold system recorded by an oscilloscope and film. Calibration of the system was performed by using NO₂, NO, and N₂O gases and by heating paraformaldehyde in the pyrolysis chamber to form HCHO. Purity of the nitrogen oxides was checked via infrared absorption spectroscopy. The analog scanner was used to monitor the mass spectrum during paraformaldehyde heating to verify that HCHO was the principal gas phase molecule evolved after initial degassing. Calibrations were performed over the pressures of the data acquisition; pressures were measured with a capacitance manometer. The calibration voltages were read on a digital voltmeter to reduce error. These values were then used to reduce the numbers measured from the film to absolute pressures of the species at the chosen time. The numbers quoted in Table I are the average of six runs where measurements were made shortly before the peak signal recorded in each case. As can be seen in the table, the dominant species is N₂O with substantial quantities of NO₂, HCN, and HCHO also produced. In Table II are listed the species and signal strengths from oscilloscope raster scans made under similar conditions. Note that the signal intensity is only indirectly related to actual concentration due to cross section and fragmentation pattern variations when the species are ionized in the electron impact region. The interpretation of these data for the understanding of the mechanism of thermal decomposition of HMX is discussed below.

IV. DISCUSSION OF RESULTS

The absence of a substantial heating rate effect in the pyrolysis of HMX/PU over the limited range of variation of these studies may be due to several factors. It is possible that the heating rate is already sufficiently high that variations in it are no longer important. A second possibility is that the sample absorbs the laser light in an extremely thin surface layer, resulting in the removal of the pyrolyzed layer without substantial interaction with the remaining solid. Thus one must have information about the relative optical densities and depth of absorption of the light before comparing observed behavior of two different materials such as NC and HMX/PU. It is certainly more likely that one will observe heating rate effects in heating solids with filaments since the removal of gaseous species from the surface is necessarily slower, except as the material thickness becomes extremely small. It is probably most correct to interpret the data presented here as related to the primary decomposition products, whereas filament pyrolysis, especially at higher pressure, produces a mixture of primary and secondary products when the species are highly reactive.

Table I. Relative Intensities of Major Pyrolysis Products from HMX/PU

<u>Species</u>	<u>Concentration</u>
N ₂ O	100
NO ₂	54
HCN	42
HCHO	39
NO	27

Table II. Species Observed in Pyrolysis of HMX/PU

<u>m/e</u>	<u>Signal Intensity^a</u>	<u>Identification</u>
14	w	CH ₂ , N
15	w	CH ₃ , NH
16	w	O, NH ₂
17	w	OH
18	m	H ₂ O
26	m	CN
27	ms	HCN
28	s	CO, N ₂
29	s	CHO
30	s	H ₂ CO, NO
41	mw	*
42	mw	*, CNO
43	mw	*
44	s	N ₂ O, CO ₂
46	ms	NO ₂
47	w	HONO
55-60	w	*
70	w	*

^a w=weak, m=medium, s=strong

*ring fragments

The presence of N₂O and HCHO among the decomposition products of nitramines has been known since the earliest studies⁴. Through the use of isotopic labeling of the nitro-N, Suryanarayana et al⁵ were able to show in a study of thermal decomposition followed by mass spectroscopy that the N-N bond is not broken in going from HMX to N₂O. This result has led them to propose a concerted decomposition mechanism which may be written as

with an oxadiazol intermediate. This mechanism was also proposed in essence by Robertson⁴ although without the support of the isotope labeling results. Although the idea of a concerted mechanism is probably not generally accepted⁶, current discussions in the community of nitramine research often imply that N₂O/HCHO chemistry is dominant in the understanding of ignition and combustion of these materials.

Thermochemical studies⁷, as well as chemical intuition, suggest that since it is the weakest bond the N-NO₂ bond should be the first to break. This step would then be followed by ring breakup and further chemistry. The amounts of NO₂ and the presence of ring fragments as observed in our studies strongly support this mechanism and suggest that some of the earlier studies^{4,5} are misleading due to the possibility of substantial reactions between the primary decomposition species before any measurements are made. The N₂O could result from the further reactions of the ring fragments, in agreement with the findings of Suryanarayana et al⁵.

⁴ A. J. B. Robertson, "The Thermal Decomposition of Explosives: Part II. Cyclotrimethylenetrinitramine and Cyclotetramethylenetetrinitramine", *Trans. Faraday Soc. (Part 1)*, 45, 85-93 (1949).

⁵ a. B. Suryanarayana, R. J. Graybush, and J. R. Autera, "Thermal Degradation of Secondary Nitramines: A Nitrogen-15 Tracer Study of HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane)", *Chem. and Ind.* p 2177 (1967).
 b. B. Suryanarayana and R. J. Graybush, "Thermal Decomposition of 1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane (HMX): A Mass Spectrometric Study of the Products from β -HMX", *Proc. of the 39th Cong. on Ind. Chem., Brussels, Belgium* (1966).
 c. B. Suryanarayana, J. R. Autera, and R. J. Graybush, "Mechanism of Thermal Decomposition of HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane (HMX))", *Proc. of the 1968 Army Sci. Conf. (OCRD), West Point, NY*, 2, 423 (1968).

⁶ K. P. McCarty, "HMX Propellant Combustion Studies", *AFRPL-TR-76-59, AD #B017527, 9-12* (1976).

⁷ R. Shaw, "Estimated Kinetics and Thermochemistry of Some Initial Unimolecular Reactions in the Thermal Decomposition of HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) in the Gas Phase", *J. Phys. Chem.* (in press).

Preliminary studies with infrared absorption spectroscopy detection of the product species verify that the laser method of heating is not causing substantially enhanced N-NO₂ bond breaking as compared to rapid heating of a hot pyrex vessel containing HMX or RDX. This work also indicates that the binder is not causing a major change in the relative amount of NO₂ produced in decomposition of HMX/PU compared to that of HMX. These results will be published separately upon completion.

V. CONCLUSIONS

The data acquisition system for the time-of-flight mass spectrometer used with the molecular beam sampling facility has been described in detail. The oscilloscope intensification raster display method has been substantially improved upon with the use of positive/negative film and microdensitometer scanning of the negative. This technique allows one to record semi-quantitative time resolved data for the entire mass spectrum with good time resolution. A wide-band sample-and-hold system has been designed and assembled which allows acquisition of temporal behavior of at least four masses with reproducibility, ease of calibration, and good time resolution.

Pyrolysis of NC and HMX/PU has been studied using CO₂ laser heating and rapid sampling and analysis of the resulting chemical species. These studies indicate that there is no heating rate effect for the pyrolysis of HMX/PU under the conditions of these experiments. The chemical species observed support a decomposition mechanism for HMX which involves breaking of the N-NO₂ bond as the primary step. These results are in agreement with chemical intuition and recent thermochemical calculations.

REFERENCES

1. a. J. W. Hastie, "Sampling Reactive Species From Flames by Mass Spectrometry", Int. J. of Mass Spectry and Ion Physics, 16, 89-100 (1975).
b. R. V. Serauskas, G. R. Brown, and R. Pertel, "A Supersonic Molecular Beam Atmospheric Pressure Flame Sampling System", Int. J. of Mass Spectry and Ion Physics, 16, 69-87 (1975).
c. J. C. Biordi, C. P. Lazzara, and F. J. Papp, "Flame-Structure Studies of CF_3Br -Inhibited Methane Flames", Symp. (Int.) Comb. (Proc.), 14th, 367 (1973).
2. K. J. White and R. W. Reynolds, "Apparatus for Detecting Interior Ballistic Combustion Products", BRL Memorandum Report No. 2497, AD #A013372 (1975).
3. K. A. Lincoln, Rev. Sci. Instr., 35, 1688 (1964).
4. A. J. B. Robertson, "The Thermal Decomposition of Explosives: Part II. Cyclotrimethylenetrinitramine and Cyclotetramethylene-tetranitramine", Trans. Faraday Soc. (Part 1), 45, 85-93 (1949).
5. a. B. Suryanarayana, R. J. Graybush, and J. R. Autera, "Thermal Degradation of Secondary Nitramines: A Nitrogen-15 Tracer Study of HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane)", Chem. and Ind., p 2177 (1967).
b. B. Suryanarayana and R. J. Graybush, "Thermal Decomposition of 1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane (HMX): A Mass Spectrometric Study of the Products from β -HMX", Proc. of the 39th Cong. on Ind. Chem., Brussels, Belgium (1966).
c. B. Suryanarayana, J. R. Autera, and R. J. Graybush, "Mechanism of Thermal Decomposition of HMX (1,3,5,7- ...)", Proc. of the 1968 Army Science Conf. (OCRD), West Point, NY, 2, 423 (1968).
6. K. P. McCarty, "HMX Propellant Combustion Studies", AFRPL-TR-76-59, AD #B017527, 9-12 (1976).
7. R. Shaw, "Estimated Kinetics and Thermochemistry of Some Initial Unimolecular Reactions in the Thermal Decomposition of HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) in the Gas Phase", J. Phys. Chem. (in press).

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Documentation Center ATTN: DCC-TCA Cameron Station Alexandria, VA 22314	1	Commander US Army Missile Research and Development Command ATTN: DRDMI-R Redstone Arsenal, AL 35809
1	Director Defense Advanced Research Projects Agency ATTN: C. R. Lehner 1400 Wilson Boulevard Arlington, VA 22209	1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-RWL Warren, MI 48090
2	Director Institute for Defense Analyses ATTN: Dr. H. Wolfhard Mr. R. T. Oliver 400 Army-Navy Drive Arlington, VA 22202	2	Commander US Army Mobility Equipment Research & Development Command ATTN: Tech Doc Ctr, Bldg 315 DRSME-RZT Ft. Belvoir, VA 22060
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166	7	Commander US Army Armament Research and Development Command ATTN: DRDAR-LC, Dr. J. P. Picard DRDAR-LCE, Mr. C. Lenchitz DRDAR-LCE, Dr. R. F. Walker DRDAR-LCE-CI, Dr. J. Lannon SCA-CC, Mr. C. Dickey SCA-PP, Mr. L. Stiefel DRDAR-TSS Dover, NJ 07801
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Commander US Army White Sands Missile Range ATTN: STEWS-VT WSMR, NM 88002
1	Commander US Army Electronics Command ATTN: DRSEL-RD Ft. Monmouth, NJ 07703	1	Commander US Army Watervliet Arsenal ATTN: R. Thierry/Code SARWV-RD Watervliet, NY 12189

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783	2	Commander US Naval Surface Weapons Center ATTN: S. J. Jacobs/Code 240 Code 730 Silver Spring, MD 20910
1	Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-ATL Watertown, MA 02172	1	Commander US Naval Surface Weapons Center ATTN: Library Br., DX-21 Dahlgren, VA 22448
1	Commander US Army Natick Research and Development Command ATTN: DRXRE, Dr. D. Sieling Natick, MA 01762	1	Commander US Naval Underwater Systems Center Energy Conversion Department ATTN: R. S. Lazar/Code 5B331 Newport, RI 02840
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	2	Commander US Naval Weapons Center ATTN: Dr. R. Derr Mr. C. Thelen China Lake, CA 93555
1	Commander US Army Research Office ATTN: Tech Lib P. O. Box 12211 Research Triangle Park, NC 27706	1	Commander US Naval Research Laboratory ATTN: Code 6180 Washington, DC 20375
1	Chief of Naval Research ATTN: Code 473 800 N. Quincy Street Arlington, VA 22217	3	Superintendent US Naval Postgraduate School ATTN: Tech Lib Dr. David Netzer Dr. Allen Fuhs Monterey, CA 93940
1	Commander US Naval Sea Systems Command ATTN: J. W. Murrin (NAVSEA-0331) National Center, Bldg. 2, Rm 6E08 Washington, DC 20360	2	Commander US Naval Ordnance Station ATTN: Dr. A. Roberts Tech Lib Indian Head, MS 20640
		2	AFOSR ATTN: J. F. Masi Dr. B. T. Wolfson Bolling AFB, DC 20332

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	AFATL/DDDL ATTN: Capt. Robert J. Powers Eglin AFB, FL 32542	1	AVCO Corporation AVCO Everett Research Lab Div ATTN: D. Stickler 2385 Revere Beach Parkway Everett, MA 02149
2	AFRPL (DYSC) ATTN: Dr. D. George Mr. J. N. Levine Edwards AFB, CA 93523	2	Calspan Corporation ATTN: Dr. E. B. Fisher A. P. Trippe P. O. Box 235 Buffalo, NY 14221
1	Director US Bureau of Mines ATTN: Dr. Yael Miron 4800 Forbes Avenue Pittsburgh, PA 15213	1	ENKI Corporation ATTN: M. I. Madison 9015 Fulbright Avenue Chatsworth, CA 91311
2	Director National Bureau of Standards ATTN: Dr. John Hastie Dr. Takashi Kashiwagi Washington, DC 20234	1	Foster Miller Associates, Inc. ATTN: A. J. Erickson 135 Second Avenue Waltham, MA 02154
1	Midwest Research Institute ATTN: Dr. Thomas Milne 425 Volder Boulevard Kansas City, MO 64110	1	General Electric Company Armament Department ATTN: M. J. Bulman Lakeside Avenue Burlington, VT 05402
1	Lockheed Palo Alto Rsch Labs ATTN: Tech Info Ctr 3521 Hanover Street Palo Alto, CA 94304	1	General Electric Company Flight Propulsion Division ATTN: Tech Lib Cincinnati, OH 45215
1	Aerojet Solid Propulsion Co. ATTN: Dr. P. Micheli Sacramento, CA 95813	2	Hercules Incorporated Alleghany Ballistic Lqb ATTN: Dr. R. Miller Tech Lib Cumberland, MD 21501
1	ARO Incorporated ATTN: Mr. N. Dougherty Arnold AFS, TN 37389	2	Hercules Incorporated Bacchus Works ATTN: Dr. M. Beckstead Dr. R. Simmons Magna, UT 84044
1	Atlantic Research Corporation ATTN: Dr. M. K. King 5390 Cherokee Avenue Alexandria, VA 22314		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	IITRI ATTN: Dr. M.J. Klein 10 West 35th Street Chicago, IL 60615	2	Rockwell International Corp. Rocketdyne Division ATTN: Mr. W. Haymes Tech Lib McGregor, TX 76657
1	Olin Corporation Badger Army Ammunition Plant ATTN: J. Ramnarace Baraboo, WI 53913	1	Shock Hydrodynamics, Inc. ATTN: Dr. W.H. Anderson 4710-16 Vineland Avenue North Hollywood, CA 91602
2	Olin Corporation New Haven Plant ATTN: R.L. Cook D.W. Riefler 275 Winchester Avenue New Haven, CT 06504	1	Thiokol Corporation Elkton Division ATTN: E. Sutton Elkton, MD 21921
1	Paul Gough Associates, Inc. ATTN: Dr. P.S. Gough P.O. Box 1614 Portsmouth, NH 03801	3	Thiokol Corporation Huntsville Division ATTN: Dr. D. Flanigan Dr. R. Glick Tech Lib Huntsville, AL 35807
1	Physics International Company 2700 Merced Street Leandro, CA 94577	2	Thiokol Corporation Wasatch Division ATTN: Dr. John Peterson Tech Lib P.O. Box 524 Brigham City, UT 84302
1	Pulsepower Systems, Inc. ATTN: L.C. Elmore 815 American Street San Carlos, CA 94070	1	TRW Systems Group ATTN: Dr. H. Korman One Space Park Redondo Beach, CA 90278
1	Science Applications, Inc. ATTN: Dr. R.B. Edelman 23146 Cumorah Crest Woodland Hills, CA 91364	2	United Technology Center ATTN: Dr. R. Brown Tech Lib P.O. Box 358 Sunnyvale, CA 94088
2	Rockwell International Corp. Rocketdyne Division ATTN: Dr. C. Obert Dr. J.E. Flanagan 6633 Canoga Avenue Canoga Park, CA 91304	1	Universal Propulsion Co. ATTN: H.J. McSpadden P.O. Box 546 Riverside, CA 92502

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Battelle Memorial Institute ATTN: Tech Lib 505 King Avenue Columbus, OH 43201	1	Massachusetts Institute of Technology Dept of Mechanical Engineering ATTN: Prof. T. Toong Cambridge, MA 02139
1	Brigham Young University Dept of Chemical Engineering ATTN: Prof. R. Coates Provo, UT 84601	1	Pennsylvania State University Applied Research Lab ATTN: Dr. G.M. Faeth P.O. Box 30 State College, PA 16801
1	California Institute of Tech 204 Karman Lab ATTN: Prof. F.E.C. Culick Mail Stop 301-46 1201 E. California Street Pasadena, CA 91125	1	Pennsylvania State University Dept of Mechanical Engineering ATTN: Prof. K. Kuo University Park, PA 16801
1	Case Western Reserve Univ. Division of Aerospace Sciences ATTN: Prof. J. Tien Cleveland, OH 44135	3	Forrestal Campus Library Princeton University ATTN: Prof. M. Summerfield Dr. L. Caveny Tech Lib P.O. Box 710 Princeton, NJ 08540
3	Georgia Institute of Technology School of Aerospace Engineering ATTN: Prof. B.T. Zinn Prof. E. Price Prof. W.C. Strahle Atlanta, GA 30332	2	Purdue University School of Mechanical Engineering ATTN: Prof. J. Osborn Prof. S.N.B. Murthy TSPC Chaffee Hall West Lafayette, IN 47906
1	Institute of Gas Technology ATTN: Dr. D. Gidaspow 3424 S. State Street Chicago, IL 60616	1	Rutgers State University Dept of Mechanical and Aerospace Engineering ATTN: Prof. S. Temkin University Heights Campus New Brunswick, NJ 08903
1	Johns Hopkins University Applied Physics Laboratory Chemical Propulsion Information Agency ATTN: Mr. T. Christian Johns Hopkins Road Laurel, MD 20810	1	Southwest Research Institute Fire Research Section ATTN: W.H. McLain P.O. Drawer 28510 San Antonio, TX 78228

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>
1	Stanford Research Institute Propulsion Sciences Division ATTN: Tech Lib 333 Ravenswood Avenue Menlo Park, CA 94024
1	Stevens Institute of Technology Davidson Laboratory ATTN: Prof. R. McAlevy, III Hoboken, NJ 07030
1	University of California, San Diego AMES Department ATTN: Prof. F. Williams P.O. Box 109 La Jolla, CA 92037
1	University of Illinois Dept of Aeronautical Engineering ATTN: Prof. H. Krier Transportation Bldg, Rm 105 Urbana, IL 61801
1	University of Minnesota Dept of Mechanical Engineering ATTN: Prof. E. Fletcher Minneapolis, MN 55455
2	University of Utah Dept of Chemical Engineering ATTN: Prof. A. Baer Prof. G. Flandro Salt Lake City, UT 84112
<u>Aberdeen Proving Ground</u>	
	Marine Corps Ln Ofc Dir, USAMSA