东南大学电工电子实验中心 实验报告

课程名称: 棋	漠拟电子电路实验
---------	-----------------

第六次实验

实验	佥名 称	ĸ: _	三极管	放大电路	<u> </u>	诗性的测量与	研究
院	(系)) <u>.</u>	电气工程	<u>学院</u> 专	业: 1	电气工程及其	自动化
姓	名	: _	王皓冬	学	号:_	16022627	
实	验室	፤: _	401	实验	组别:		
同纟	且人员	i: _		实验	时间:	2024年 5	月7日
评知	定成绩	ŧ: _		审阅]教师:		

一、实验目的

- (1) 理解三极管放大电路频率特性的基本概念
- (2) 理解三极管放大电路频率特性的测量方法
- (3) 掌握三极管放大电路频率特性的逐点测量法
- (4) 理解三极管放大电路参数对频率特性的影响

二、实验原理

1. 基本概念

放大电路的频率特性是指放大电路的放大倍数与信号频率的关系,包括放大倍数的幅值与信号频率的关系,也叫幅频特性;放大倍数的相位与信号频率的关系,也叫相频特性。

(1) 幅频特性

一般RC耦合放大电路的幅频特性如图 2-11-1 (a) 所示, 从幅频特性曲线上可以看出, 放大电路的频率特性可以分成 3 个区域, 分别叫做中频区、低频区和高频区。中间比较平坦的区域叫中频区, 左边频率相当低的区域叫做低频区, 低频区与中频区的分界点叫下限截止频率 f_L , 右边相对频率较高的区域叫高频区, 高频区与中频区的分界点叫上限截止频率 f_H 。上限频率与下限频率的差值 f_H — f_L = BW, 叫放大电路的频带宽度, 也叫带宽。

(2) 相频特性

RC 耦合放大电路的相频特性如图 2-11-1 (b) 所示, 从相频特性曲线上可以看出, 该放大电路在中频区已经有 180°的相位差, 也就是反相放大, 而在低频区和高频区, 又在原有 180°相位基础上增加了附加相位, 分别为超前移相和滞后移相。

(3) 频率特性波特图表示

如果把放大倍数用分贝(dB)表示,频率用10倍频线性表示,可以得到放大电路频率特性的折线表示方式,也叫波特图表示法,其同相放大电路的幅频特性和相频特性波特图表示法如图2-11-2 所示。

图 2-11-1 放大电路的频率特性

图 2-11-2 放大电路频率特性的波特图

图 2-11-3 分压式偏置共发射极放大电路

2. 分压式偏置共发射极放大电路的频率特性

以 NPN 三极管 9013 为核心构成的分压式偏置共发射极放大电路图 2-11-3 所示。

(1) 低频特性

在 2. 10 实验过程中, 要求输入信号的频率不能太高也不能太低, 一般选择在 1kHz 左右, 也就是在中频区。当输入信号频率逐渐降低时, 由于电容的容抗与信号频率成反比, 使原来在中频区可以认为对交流信号短路的输入耦合电容 C_1 、输出耦合电容 C_2 , 以及射极旁路电容 C_E 要呈现出阻抗特性, 导致放大电路的输出信号受信号频率的影响, 出现了放大电路的低频特性。

(2) 高频特性

由于三极管的极间电容如 $C_{b'c}$ 、 $C_{b'e}$,以及电路分布电容等一些容量较小的电容,原来在中频区可以按开路处理,但随着信号频率的增大,也将呈现出容抗效应,导致放大电路的输出信号将随着输入信号频率的变化而变化,呈现出放大电路的高频特性。

三、预习思考

1. 实验要求

以图 2-11-4 电路为例,采用两种不同的测量方法,完成放大电路频率特性的测量,并通过实验研究电路参数对频率特性的影响。频率特性的测量方法一般有逐点测量法和扫频仪测量法。(具体测量方法见第一章 1. 4. 4 节)

2. 仿真实验

电路如图 2-11-4 所示, 通过调整上偏置电阻中的电位器 Rw, 使发射极电阻上的电压约为 2V, 即三极管静态工作点电流 $I_c=2mA$ 。

逐点测量法:将信号源接到放大电路的输入端,用双通道示波器分别连接信号源和放大电路的输出端。选择一个合适的信号幅度并固定不变,通过不断改变输人信号的频率,测量输出信号的幅度变化并计算出增益,测量输出信号与输人信号的相位差,画出增益值、相位差随频率变化的规律,得到放大电路的幅频特性曲线及相频特性曲线。

扫频仪测量法:将放大电路的输入端接信号源,同时连接到波特图测试仪的输入端,放大电路的输出端连接到波特图测试仪的输出(注意:仿真和实物的连接方式不同,实物扫频仪不需要信号源,实物扫频仪的输出端要连接放大电路的输入端,实物扫频仪的输人端连接到放大电路的输出端),合理设置相关参数,选择需要显示的是幅频特性还是相频特性,就可以得到完整的频率响应特性曲线,如图 2-11-5 所示。

搭接仿真电路如图所示。

其测量结果如下。

低频:

高频:

四、实验内容

3. 电路实验

电路按照图 2-11-4 所示正确连接, 元器件参数和实验 2. 10 一致, 确保正确无误, 调整电源值为 12V, 调整 R_W , 使静态集电极电流 I_{CO} =2mA

(1) 逐点法测量放大电路的频率特性

选择合适的输入信号幅度,确保在整个测量过程中,放大电路能够不失真放大,输入信号幅度不变,通过调整不同的信号频率,测量输出信号幅度。将实验数据记录在表 2-11-1 中,并计算得到的增益值,画出该放大电路的幅频特性曲线。(注意:输入输出选用一致的电压,如峰峰值、峰值、有效值、瞬时值等)

注意: f_L 为下限截止频率, f_H 为上限截止频率, f_M 为中频区频率, 以下雷同。 电路搭接如下。

调整 e 极电压约为 2V,读出此时 R_W 的值:

//分析实验数据的方式、所推导的公式、表格格式 均为本人自编,如有雷同报告说明抄袭。本人提供报告文件是出于学习交流之意,若出现直接复制的情况与本人无关

首先对电路进行理论分析。由于这是一个共射放大电路,很容易得出电路的中频段放大 倍数应为

$$\dot{A}_u = \beta \cdot \frac{R_L'}{r_{be} + (1+\beta)R_E}$$

式中, $R'_L = R_L //R_c$ 。

则 $C_2 = 100 \mu F$ 时,在中频段近似忽略 C_2 的作用,其中频段增益为

$$\dot{A}_u = 200 \cdot \frac{1.5k}{r_{be} + (1+\beta)R_E}$$

由 C_1 和 C_E 确定的下限截止频率为:

$$f_{L1} = \frac{1}{2\pi C_1'(R_S + r_{he})}$$

式中,
$$C_1' = \frac{C_1 C_E}{(1+\beta)C_1 + C_E}$$
;

由 C_2 确定的下限截止频率为:

$$f_{L2} = \frac{1}{2\pi C_2 (R_C + R_L)}$$

取β为仿真值 200,则各物理量理论数据如下:

$$C_1' = \frac{C_1 C_E}{(1+\beta)C_1 + C_E} = 0.0157 \mu F$$

$$f_{L2} = \frac{1}{2\pi C_2 (R_C + R_L)} = 0.265 Hz$$

由于 r_{be} 参数未知,无法得出电路理论的频率截止点。因此我们考虑实验的思路,先利用扫频获取中频段的放大倍数,再读取对应 0.707 倍放大倍数的点为截止点。

扫频结果如下。(信号源 20mVpp)

对应中频段放大倍数为 A_u = 93.44,则截止点对应的放大倍数应为93.44 × 0.707 = 66.06。 找出与之最邻近的点:

读出数值:

$$\begin{cases} f_L = 58Hz \\ f_H = 960kHz \end{cases}$$

$$f_L = 58Hz \qquad f_M = 1.4kHz \qquad f_H = 960kHz$$

逐点法测试如下。

由于易派最高只能输出 100kHz 的信号, 故无法测出上限截止频率部分。

实验室测量数据如下。由于实测在频率较低(10Hz 时),输入到 u_i 的信号会大幅衰减(输入电阻隔直通交),因此难以获取准确的测量值。因此,10Hz 的数据仅供参考。

f = 10Hz:

f = 54Hz:

 $f_L = 58Hz$:

f = 500Hz:

f = 10kHz:

f = 100kHz:

f = 1MHz:

f = 1.37MHz:

f = 2MHz:

	易派测量												
f/Hz	$f_1 = 10$	$f_2 = 30$	$f_3 = 54$	f_L = 58	$f_4 = 100$	$f_5 = 200$	f_M = 1.4 k	$f_6 = 10k$	$f_7 = 100k$				
u _i /mV		20											
u_o/V	0.207	1.06	1.28	1.32	1.57	1.75	1.87	1.84	1.84				
A_u	10.35	50.30	64.00	66.00	78.50	87.5	93.5	92	92				

	实验室测量											
f	f_1	f_2	f_3	f_L	f_4	f_{M}	f_5	f_H	f_6	f_7		
/Hz	= 10	= 30	= 54	= 58	= 500	=10k	= 100k	= 1M	= 1.37M	=2M		
u _i /mV		20										
u _o /V	0.352	0.904	1.28	1.40	1.98	2.00	1.98	1.42	1.28	0.940		
A_u	17.6	45.2	64	70	99	100	99	71	64	47		

以实验室数据为准,利用 Origin2022b 绘制幅频特性折线图如下(由于实验公式未知,且无合适的预设公式,因此无法拟合数据)。折线图可以近似为波特图。

结果表明,电路是一个*带通电路*,_其频率特性分别为

$f_L = 58Hz$	$f_M = 10kHz$	$f_H = 1MHz$
--------------	---------------	--------------

该结果与扫频测量结果相差不大。

(2) 扫频仪测量放大电路的频率特性

利用扫频仪测量放大电路的幅频特性曲线,并通过扫频仪的游标设置,直接读出放大电路的上,下限截止频率,将测量数据填入表 2-11-2 中。

(3) 研究放大电路参数对频率特性的影响

由理论分析可知,图 2-11-3 所示共发射极放大电路的低频响应是由耦合电容 C_1 、 C_2 ,以及射极旁路电容 C_E 决定的,尤其是 C_E 对电路的下限频率影响更大。以改变 C_E 为例,如果把电路中的 C_E 由原来的 100μ F改为 33μ F,再测量该电路的频率特性,将测量数据记录在表 2-11-3 中,分析研究电路参数对电路性能的影响。改变 C_1 、 C_2 ,对电路频率特性影响的实验方法类同,可以自行完成。

 C_E 改为33 μ F后,静态工作点未发生改变,仿真结果如下。低频:

扫频结果如下。(信号源 20mVpp)

对应中频段放大倍数为 A_u = 90.92,则截止点对应的放大倍数应为90.92 × 0.707 = 64.28。 找出与之最邻近的点:

读出数值:

$$\begin{cases} f_L = 360Hz \\ f_H = 960kHz \end{cases}$$

 $f_L = 360Hz \qquad f_M = 10kHz \qquad f_H = 960kHz$

同样,由于易派最高只能输出 $100 \mathrm{kHz}$ 的信号,故无法测出上限截止频率部分。由于实测在频率较低($10 \mathrm{Hz}$ 时),输入到 u_i 的信号会大幅衰减(输入电阻隔直通交),因此难以获取准确的测量值。该电路中信号源频率为 $10 \mathrm{Hz}$ 的情况下,输入为 $20 \mathrm{mV}$ 时实际 u_i 约为 $5 \mathrm{mV}$,差距过大,因此**舍弃了 10 \mathrm{Hz} 的数据测量**,直接从 $100 \mathrm{Hz}$ 开始。

f = 100Hz:

f = 300Hz:

 $f_L = 380 Hz$:

f = 1kHz:

f = 5kHz:

f = 10kHz:

f = 100kHz:

f = 500kHz:

f = 1MHz:

f = 1.37MHz:

f = 2MHz:

	易派測量											
f/Hz	$f_1 = 10$	$f_2 = 100$	$f_3 = 300$	$f_L = 360$	f_4 = 1 k	f_5 = $5k$	$f_M = 10k$	$f_6 = 100k$	f_7			
u _i /mV					20							
u_o/V	0.262	0.665	1.28	1.34	1.66	1.75	1.88	1.95	/			
A_u	13.10	33.25	64.00	67.00	83.00	87.5	94.00	97.50	/			

	实验室测量										
f	f_1	f_2	f_L	f_3	f_4	f_{M}	f_5	f_6	f_H	f_7	f_8
/Hz	= 100	= 300	= 380	=1k	=5k	=10k	= 100k	= 500k	= 1M	= 1.37	=2M
u _i /mV	= 100 = 300 = 380 = 1k = 5k = 10k = 100k = 500k = 1M = 1.37 = 20										

u _o /V	0.968	1.28	1.42	1.66	1.96	2.00	2.02	1.82	1.43	1.31	0.90 4
A_u	48.4	64	71	83	98	100	101	91	71.5	65.5	45.2

以实验室数据为准,利用 Origin2022b 绘制幅频特性曲线如下(同样,由于实验公式未知,且无合适的预设公式,因此无法拟合数据)。折线图可以近似为波特图。

拟合结果表明, 电路是一个*带通电路*, 其频率特性分别为

$$f_L = 380Hz \qquad f_M = 10kHz \qquad f_H = 1M$$

与扫频测量结果相差不大,可以作为实际通频特性的测量数据。

对比分析:

与改变电容前的实验结果对比,可以发现,减小射极旁路电容的容值,会使下限截止频率右移,而对高频特性影响不大。同时,其频带较窄。这表明电路更适用于专一地放大某一频带的信号。

这是因为,旁路电容 C_E 主要决定着电路的低频特性,电路的高频特性主要由其他电容决定。当旁路电容的容值增大时,其与负载电阻并联的等效电容增大,导致高通滤波器的截止频率减小:输入信号的低频部分将被更有效地通过,从而使得下限频率降低。反之,高通滤波器的截止频率增加,导致下限频率升高。

误差分析:

本次实验(包括上次实验)所测出的结果都与仿真结果有较大差异。推测其原因如下。 查阅资料后发现,9013 号三极管实际放大倍数会在约 150~240 间波动,而仿真时三极 管的β取值为 200。同时,三极管实际的**结电容**是不同的,其频率特性有很大不同。这是造成误差的主要原因。

本次实验结果中,**低频特性均与仿真无太大差异,而高频特性与仿真差别较大**。推测 这主要是结电容不同造成的。该推测可以由实验结果佐证:由于**低频特性主要取决于C_E**, 因此 C_E 误差不大时,实际低频特性与仿真相差不会太大。而高频特性会随结电容的变化而 明显变化,因此实验中低频特性均符合仿真结果,高频特性差异较大。

五、实验总结

本次实验中我们主要研究了三极管放大电路的频率响应相关性能。本次实验应该是这学期最轻松的一次实验了,实验内容也和运放频率响应实验差不多。不过,显然,实验中对频

率特性的研究是不够的。本次实验佐证教材的最大的一点,在于多级容阻耦合电路会带来极大的频率漂移累积。因此,容阻耦合电路虽然能够隔离每级放大电路的静态工作点,但频率特性极差,集成运放中并不采用,甚至不采用单支放大的射极放大电路。