DBG0061 - Portfólio

João Vitor Ferreira Cavalcante

2020-06-19

Conteúdo

1	\mathbf{Pre}	fácio	5
2	mR	NA, tRNA e rRNA	7
	2.1	Identifique as funções de cada um	7
	2.2	Nomeie as regiões de um RNA mensageiro	8
	2.3	Geração e modificações pós-transcricionais	8
	2.4	Edição de RNA	10
3	Primers de RNA		
	3.1	O que são?	11
	3.2	Como são gerados?	11
	3.3	Onde são usados?	11
	3.4	Qual a importância deles pros retrovírus?	12

4 CONTEÚDO

Capítulo 1

Prefácio

Esse é o meu portfólio para a disciplina DBG0061 - RNAs Não Codantes, cursada no semestre suplementar 2020.5.

Aqui estarão contidas respostas para os exercícios de cada dia, dúvidas e reflexões sobre os seminários.

Capítulo 2

mRNA, tRNA e rRNA

2.1 Identifique as funções de cada um

- O mRNA é o responsável por carregar a informação codante do genoma, gerado no processo de transcrição, ele é o passo inicial para a produção de proteínas.
- O tRNA é aquele que irá interpretar a informação contida no mRNA processado, se ligando aos seus códons e trazendo consigo o respectivo aminoácido.
- O rRNA, por fim, será aquele responsável pela consolidação final da informação proteica, ao trafegar pelo mRNA, indica quais tRNAs devem se ligar e une os seus respectivos aminoácidos para a formação da proteína.

2.2 Nomeie as regiões de um RNA mensageiro

Pre-mRNA 5' UTR Exon Intron 3' UTR Protein Coding Region 5' Cap Poly-A Tail

Inicialmente, o mRNA possui 3 principais componentes: Os íntrons, que não codificam a informação proteica final, os éxons, a porção codante, e as UTRs em cada ponta, que são, também, regiões não traduzidas. Após o processamento, observa-se a adição de um "capacete" na extremidade 5' e uma sequência poli-A na extremidade 3', ambas estruturas que auxiliam na proteção do mRNA de exonucleases.

2.3 Geração e modificações pós-transcricionais

2.3.1 mRNA

A transcrição, em eucariotos, ocorre por meio da RNA Polimerase II, que junto a um ou mais fatores de transcrição, se liga ao promotor, formando a bolha de transcrição, posteriormente, à medida que as ligações de hidrogênio vão sendo quebradas pela forquilha, vai se formando a fita, com a adição de nucleotídeos de RNA complementares. Ao fim deste processo teremos o pre-mRNA, que passará pelo processamento mencionado em 2.2

2.3.2 tRNA

Seus genes, localizados no nucléolo, são transcritos pela RNA Polimerase III. Em seguida ocorre o processamento do pre-tRNA formado, iniciando com a remoção de certas sequências, tanto na ponta 3' quanto na 5'. Vale destacar que inicialmente alguns tRNAs possuem íntrons, que em procariotos se autoremovem, mas em eucariotos e arqueas são removidos por endonucleases, que reconhecem sua região BHB. Por fim, há a adição de CCA na sua extremidade 3', posteriormente a isso o tRNA ainda pode passar por diversos processamentos, a depender do aminoácido ao qual se relaciona.

E, ultimamente, é claro, há a reação de aminoacilação quando o tRNA for executar sua função na célula.

2.3.3 rRNA

Em eucariotos, ocorre no nucléolo, com a síntese do 45S pela RNA Polimerase I, este possuinte de regiões interespaçadas transcritas que assemelham íntrons,

e no núcleo, com a síntese do 5S pela RNA Polimerase III. O 45S, após passar por modificações realizadas por snoRNAs, como metilação e pseudouridilação, tem seus espaçadores clivados. Os fragmentos resultantes se unem a proteínas ribossomais, formando as duas subunidades conhecidas, a 40S e a 60S.

2.4 Edição de RNA

É o processo no qual ocorrem modificações no RNA que não refletem mutações na sequência genômica original. Essas modificações podem ser inserções, deleções e substituições. Algumas modificações de nota são:

- Edição do gene da ApoB uma troca de C para U reflete nas isoformas observadas da proteína no organismo, a ApoB-100 (hepática) e a ApoB-48 (intestinal), essa última que possui seu tamanho reduzido pois a troca gera um códon de parada.
- Conversão de A para Inosina pela ADAR em miRNAs, que pode impedir o processamento por DROSHA e DICER.

Capítulo 3

Primers de RNA

3.1 O que são?

São pequenas sequências nucleotídicas de fita única, responsáveis pela iniciação da síntese de uma sequência nucleotídica maior, como ocorre na síntese de DNA.

3.2 Como são gerados?

São gerados pela primase, que se acopla à fita de DNA quando ligada a uma molécula de ATP, formando inicialmente um dinucleotídeo pppApG ligado à seu ATP, em seguida organiza os nucleotídeos restantes do primer pela sua complementaridade com o DNA.

3.3 Onde são usados?

São usados na síntese de DNA, como falado anteriomente, visto que as DNAs polimerases não tem capacidade de iniciar o processo sozinhas. Mas também são usados na transcrição reversa, como é o caso da Telomerase em humanos, em que seu componente TERC é fundamental auxilia na manutenção da longevidade da molécula de DNA.

E, é claro, possuem inúmeras aplicações na biologia molecular, destacando-se as principais técnicas usadas nessa área, o PCR e o Sequenciamento, para as quais os primers são indispensáveis.

3.4 Qual a importância deles pros retrovírus?

Os primers de RNA são fundamentais para a replicação dos retrovírus, visto que, como o próprio nome diz, esses vírus utilizam um molde de RNA para sintetizar DNA, o início do processo se dá com um primer. Este primer, que muitas vezes é um tRNA de lisidina, se acopla à seção do genoma viral chamado de PBS, o que possibilita o início da polimerização pela Transcriptase Reversa, adicionando-se nucleotídeos na extremidade 3' do primer. Após a degradação de seções não codantes e repetitivas na extremidade 3' o primer de tRNA se desloca para a extremidade 5', extendendo a nova fita de DNA nesse sentido.