Spam AutoML

What's in this session?

- 1. Install ML.NET Model Builder
- Create new .NET CORE console project and add Machine Learning job
- 3. Pick a Scenario / Price Prediction
- 4. Set Data File
- 5. Set train time
- 6. Understand Train result
- 7. Understand evaluation result
- 8. Generate Code
- 9. Examine Code

Install ML.NET Model Builder

https://marketplace.visualstudio.com/items?itemName=MLNET.07

Create new .NET CORE console project and add Machine Learning

Pick a Scenario / Custom Scenario

Classify data into 2 categories (binary classification), e.g. predict positive or negative sentiment of comments.

Set Data File

Data / File spam-train -autoML.tsv Label column name = class class 0 = ham 1 = spam

Task = multiclass-classification

Time = 60 seconds

Understand the Train result

Progress

Start training to see progress and results

Status: Done

Best Accuracy: 99.07%

Best Algorithm: LinearSvmBinary

Last Algorithm: LinearSvmBinary

Understand evaluation result

Output

ML Task: binary-classification

Dataset: spam-train

Column to Predict (Label): class

Best Model: LinearSvmBinary

Best Model Accuracy: 99.07%

Training Time: 60.47 seconds

Models Explored (Total): 19

Top 5 models explored

Rank	Trainer	Accuracy	AUC	AUPRC	F1-score	Duration
1	LinearSvmBinary	0.9907	0.9937	0.9812	0.9667	0.3
2	SgdCalibratedBinary	0.9884	0.9923	0.9769	0.9580	0.4
3	SgdCalibratedBinary	0.9884	0.9922	0.9768	0.9580	0.4
4	LinearSvmBinary	0.9884	0.9943	0.9832	0.9580	0.4
5	SgdCalibratedBinary	0.9884	0.9914	0.9749	0.9580	0.3

GreatFriends.Biz Microsoft ML.NET

Examine Code

- Solution 'Spam' (3 of 3 projects)
- SpamML.ConsoleApp
 - Dependencies
 - ▶ c* ModelBuilder.cs
 - ▶ c* Program.cs
- - Dependencies
 - DataModels
 - □ MLModel.zip
- - Dependencies
 - ▶ c* Program.cs

Next Step

Write Code to build, train, evaluate, and use ML model