Identifiability dan Fitting Model SQRshadow

1 **Model SQRshadow**

Gambar 1.1. Model kompartemen SQRshadow disesuaikan dengan istilah baru di Indonesia

Secara matematis model kompartemen pada Gambar 1.1 direpresentasikan dengan tujuh persamaan dinamis berupa ordinary differential equation (ODE) sebagai berikut

$$\frac{dS}{dt} = -\beta \cdot \frac{S \cdot Q}{N_{pop}} - \beta_S \cdot \frac{S \cdot Q_S}{N_{pop}} \tag{1}$$

$$\frac{dQ}{dt} = \beta \cdot \frac{S \cdot Q}{N_{pop}} - \gamma \cdot Q - \mu_{I} \cdot Q + \lambda \cdot Q_{S} \tag{2}$$

$$\frac{dR}{dt} = \gamma \cdot Q \tag{3}$$

$$\frac{dR}{dt} = \gamma \cdot Q \tag{3}$$

$$\frac{dD}{dt} = \mu_I \cdot Q \tag{4}$$

$$\frac{dQ_s}{dt} = \mu_I \cdot Q$$

$$\frac{dQ_s}{dt} = \beta_s \cdot \frac{S \cdot Q_s}{N_{pop}} - \gamma \cdot Q_s - \mu_I \cdot Q_s - \lambda \cdot Q_s$$

$$\frac{dQ_s}{dt} = \beta_s \cdot \frac{Q_s}{N_{pop}} - \gamma \cdot Q_s - \mu_I \cdot Q_s - \lambda \cdot Q_s$$
(5)

$$\frac{dR_s}{dR_s} = \gamma \cdot Q_s \tag{6}$$

$$\frac{dR_s}{dt} = \gamma \cdot Q_s$$

$$\frac{dD_s}{dt} = \mu_I \cdot Q_s$$
(6)

Nilai-nilai parameter model:

$$\hat{\bar{\lambda}} = [\beta \, \gamma \, \mu_I \, \beta_s \, \lambda]^T$$

$$\beta = \text{hasil fitting} \quad \gamma = \frac{1}{T_{recov}} \quad \mu_I = \frac{1}{T_{death}} \quad \beta_s = \frac{R_t}{T_{inf}}$$

$$R = \text{angka reproduksi. range } (0.5 - 6.0)$$

 $R_t =$ angka reproduksi, range (0.5 - 6.0)

 T_{inf} =jumlah hari periode infectious (dapat menyebarkan virus), range (1.5 – 10)

 T_{recov} =jumlah hari pasien diisolasi hingga sembuh, range (7 - 50)

 T_{death} = jumlah hari inkubasi hingga meninggal, range (6 - 41)

Sumber:

http://gabgoh.github.io/COVID/

https://medicalxpress.com/news/2020-04-recover-coronavirus.html

https://www.worldometers.info/coronavirus/coronavirus-death-rate/#days

Identifiability model SQRshadow diuji dengan melakukan fitting pada data dummy. Model identifiable jika parameter hasil fitting tidak jauh berbeda dengan parameter dummy.

2 Time-based Parameter Identifiability

Parameter dummy yang dilakukan fitting adalah parameter berbasis waktu berdasarkan pengetahuan jangka waktu periode infeksi, penyembuhan, dll.

Parameter	Dummy	Lower	Upper	Fitted/Estimated
		Limit	Limit	
beta	2e-1	0	0.5	0.20000000015283
Rt	2.0	0.1	4	1.97277145448837
Trecov	15	7	50	15.0000000000013
Tdeath	20	6	41	20.0000000000000000000
Tinf	6	1.5	10	5.91831436364630
lambda	5e-2	0	0.1	0.0499999999918991

Tabel 2.1. Time-based parameters

Secara numerik, parameter hasil fitting tidak jauh berbeda dengan parameter dummy.

Gambar 2.1. Hasil fitting data dummy dengan time-based parameter

Secara visual, data dummy berhasil dilakukan fitting dengan time-based parameter.

3 Rate-based Parameter Identifiability

Parameter yang dilakukan fitting adalah parameter berbasis laju antar kompartemen. Nilai parameter dummy merupakan hasil konversi parameter dummy time-based dari Tabel 2.1. Batas atas dibuat 10 kali nilai dari parameter dummy untuk membuktikan apakah parameter masih dapat di-fitting jika nilai awal tebakan tidak dekat dengan parameter dummy.

			1	
Parameter	Dummy	Lower	Upper	Fitted/Estimated
		Limit	Limit	
beta	2e-1	0	10*2e-1	0.200000000015286
gamma	1/15	0	10*1/15	0.066666666666669
muI	1/20	0	10*1/20	0.0499999999999999
beta_s	2.0/6	0	10*2.0/6	0.3333333333323127
lambda	5e-2	0	10*5e-2	0.0499999999918971

Tabel 3.1. Rate-based parameters

Secara numerik, parameter hasil fitting hampir sama dengan parameter dummy.

Gambar 3.1. Hasil fitting data dummy dengan rate-based parameter

Secara visual, data dummy berhasil dilakukan fitting dengan rate-based parameter.

Jadi, model SQRshadow **identifiable** baik menggunakan time-based maupun rate-based parameter yang ditunjukkan oleh parameter hasil fitting yang hampir sama dengan parameter dummy.

4 Fitting Data DKI Jakarta dengan Time-Based Parameter

Fitting dilakukan pada data DKI Jakarta 17 Juli – 28 September 2020. Kompartemen shadow diberi nilai awal berikut: $Q_s(1)=Q(1)$, $R_s(1)=Q(1)$, $D_s(1)=D(1)$

Secara visual, terjadi underfitting pada kompartemen D (warna ungu). Hal ini kemungkinan terjadi karena Tdeath bisa saja lebih besar dari batas atas (41 hari). Hal ini juga sesuai dengan parameter Tdeath hasil fitting pada Tabel 4.1 yang terjebak pada batas atas. Jika dilihat kompartemen Q_s (warna merah muda), nilainya cenderung turun menuju nol, bahkan belum melewati puncak sudah konvergen menuju nol.

Tabel 4.1. Time-based parameter pada fitting data DKI Jakarta

Parameter	Lower	Upper	PSBB Transisi (17	PSBB Total (14-28	
	Limit	Limit	Juli-13 September)	September)	
beta	0	0.5	0.104985193721567	0.107066413130666	
Rt	0.1	4	0.100000000000022	4.65593865393603	
Trecov	7	50	14.1716781383733	11.5502348982254	
Tdeath	6	41	41.0000000000000	41.0000000000000	
Tinf	1.5	10	9.9999999999998	2.10684316025844	
lambda	0	2.0	2.22044604925e-14	1.9999999999998	

Dari hasil di atas, fitting menggunakan time-based parameter kurang akurat dikarenakan batas-batas parameter waktu yang bisa saja kurang sesuai untuk menggambarkan karakteristik penyebaran kasus pada DKI Jakarta.

5 Fitting Data DKI Jakarta dengan Rate-Based Parameter

Secara visual, hasil fitting dengan rate-based parameter lebih baik.

Tabel 5.1. Rate-based parameter pada fitting data DKI Jakarta

Parameter	Lower	Upper	PSBB Transisi (17	PSBB Total (14-28	
	Limit	Limit	Juli-13 September)	September)	
beta	0	1	0.0693941649653822	0.0533566071484087	
gamma	0	1	0.0597014246404199	0.0836457459718674	
muI	0	1	0.00142325926018751	0.00162447189740429	
beta_s	0	1	0.0797967684872709	0.126778987942841	
lambda	0	1	0.00972825593854873	0.0720728027082950	

Kemudian rate-based parameter dicoba dikonversi kembali ke time-based parameter untuk mengecek apakah nilainya masih masuk batas.

$$T_{recov} = \frac{1}{\gamma}$$
 $T_{death} = \frac{1}{\mu_I}$

Rate-based Parameter	PSBB Transisi	PSBB Total	Time-based parameter	PSBB Transisi	PSBB Total
gamma	0.05970142	0.08364575	Trecov	16.75002	11.95518
muI	0.00142326	0.00162447	Tdeath	702.6127	615.5847

Ternyata parameter Tdeath hasil konversi (dalam jangkauan ratusan hari) jauh melebihi batas atas (41 hari).

6 Kesimpulan Sementara

- Model SQRshadow identifiable baik menggunakan time-based parameter maupun rate-based parameter.
- Time-based parameter lebih intuitif namun kurang akurat untuk fitting data DKI Jakarta.
- Rate-based parameter kurang intuitif namun lebih akurat untuk fitting data DKI Jakarta.