DESCRIPTION

SULFONATED AMINO ACID DERIVATIVES AND METALLOPROTEINASE INHIBITORS CONTAINING THE SAME

Ins off)

10

15

20

25

Technical Field

This application relates to sulfonated amino acid derivatives and metalloproteinase inhibitors containing the same.

Background Art

An extracellular matrix consists of collagen, proteoglycan, etc., has a function to support tissues, and plays a role in a maintaining of a cell functions, for example propagation, differentiation, adhesion, or the like. Matrix metalloproteinases (MMP) such as gelatinase, stromelysin, collagenase, and the like have an important role in degradation of an extracellular matrix, and these enzymes work for growth, tissue remodeling, etc. under physiological conditions. Therefore, it is considered that these enzymes participate in progression of various kind of diseases involving breakdown and fibrosis of tissues, such as osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontitis, metastasis and invasion of tumor, and virus infection (for example, HIV infection). At the present time, it is not clear which enzyme participates in the above diseases seriously, but it is considered that these enzymes at least participate in tissue breakdown. As metalloproteinase inhibitors of amino acid derivatives, for example hydroxamic acid derivatives of amino acids (JP-A-6-2562939), carboxylic acid derivatives of amino acid and/or their hydroxamic acid derivatives (WO95/35276), etc. are disclosed.

Disclosure of Invention

If it is able to inhibit the activity of MMP, it is considered that MMP inhibitors contribute to an improvement and prevention of the above diseases caused by or

related to its activity. Therefore, development of MMP inhibitors has long been desired.

In the above situation, the inventors of the present invention found that a kind of sulfonamide derivatives have strong activity to inhibit MMP.

The present invention relates \overline{to} a composition for inhibiting metalloproteinase which contains a compound of the formula \underline{I} :

5

10

15

20

$$R^{5}-R^{4}-R^{3}-SO_{2}-N$$
 R^{5}
 R^{5}
 R^{5}

wherein R^1 is optionally substituted lower alkyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R^2 is hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aryl, or optionally substituted heteroarylalkyl; R^3 is a bond, optionally substituted arylene, or optionally substituted heteroarylene; R^4 is a bond, $\cdot(CH_2)m_{\cdot}$, $\cdot CH=CH_{\cdot}$, $\cdot C\equiv C_{\cdot}$, $\cdot CO_{\cdot}$, $\cdot CO_{\cdot}NH_{\cdot}$, $\cdot N=N_{\cdot}$, $\cdot N(R^A)_{\cdot}$, $\cdot NH_{\cdot}CO_{\cdot}NH_{\cdot}$, $\cdot NH_{\cdot}CO_{\cdot}$, $\cdot O_{\cdot}$, $\cdot S_{\cdot}$, $\cdot SO_{2}NH_{\cdot}$, $\cdot SO_{2}NH_{\cdot}N=CH_{\cdot}$, or tetrazol-diyl; R^5 is optionally substituted lower alkyl, optionally substituted $C_3 \cdot C_8$ cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or an optionally substituted non-aromatic heterocyclic group; R^A is hydrogen atom or lower alkyl; Y is $\cdot NHOH$ or $\cdot OH$; and m is 1 or 2; provided R^2 is hydrogen atom when Y is $\cdot NHOH$, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

Mentioned in more detail, the invention relates to the following a)-b), 1)-16), and A)-C).

a) A composition for inhibiting metalloproteinase which contains a compound of the formula <u>I</u>:

$$R^5-R^4-R^3-SO_2-N$$
 COY I

10

15

20

wherein R1 is optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R2 is hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R3 is a bond, optionally substituted arylene, or optionally substituted heteroarylene; R^4 is a bond, $-(CH_2)m_{-}$, $-CH=CH_{-}$, $-C \equiv C_{-}$, $-CO_{-}$, -CO-NH-, -N=N-, -N(R^A)-, -NH-CO-NH-, -NH-CO-, -O-, -S-, -SO₂NH-, -SO₂-NH-N=CH-, or tetrazol-diyl; R5 is optionally substituted lower alkyl, optionally substituted C3-C8 cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or an optionally substituted non-aromatic heterocyclic group; RA is hydrogen atom or lower alkyl; Y is -NHOH or -OH; and m is 1 or 2; provided R2 is hydrogen atom when Y is -NHOH, R5 is optionally substituted aryl or optionally substituted heteroaryl when R3 is optionally substituted arylene or optionally substituted heteroarylene and R4 is -CO-NH- or -NH-CO-, R⁵ is optionally substituted aryl or optionally substituted heteroaryl when R³ is optionally substituted arylene or optionally substituted heteroarylene and R⁴ is tetrazol-diyl, R⁵ is lower alkyl, aryl substituted by lower alkyl or optionally substituted aryl, or heteroaryl substituted by lower alkyl or optionally substituted aryl when R³ is optionally substituted arylene and R⁴ is a bond, both of R³ and R4 are not a bond at the same time, and R4 is not -O- when R3 is optionally substituted arylene or optionally substituted heteroarylene, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof. b) A composition for inhibiting metalloproteinase as mentioned above, which is a composition for inhibiting type-IV collagenase.

Preferred embodiment of the present invention are as follows.

1) A compound of the formula \underline{I} :

$$T_1$$
COHO

 $R^5 - R^4 - R^3 - SO_2 - N$
 R^2
 R^3

wherein R1 is optionally substituted lower alkyl, optionally substituted aryl, optionally

15

20

substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R2 is hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; R3 is a bond, optionally substituted arylene, or optionally substituted heteroarylene; R⁴ is a bond, \cdot (CH₂)m-, \cdot CH=CH-, \cdot C \equiv C-, \cdot CO-, -CO-NH-, -N=N-, -N(R^A)-, -NH-CO-NH-, -NH-CO-, -O-, -S-, -SO₂NH-, -SO₂-NH-N=CH-, or tetrazol-diyl; R⁵ is optionally substituted lower alkyl, optionally substituted C₃-C₈ cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or an optionally substituted non-aromatic heterocyclic group; RA is hydrogen atom or lower alkyl; Y is -NHOH or -OH; and m is 1 or 2; provided R2 is hydrogen atom when Y is -NHOH, R5 is optionally substituted aryl or optionally substituted heteroaryl when R3 is optionally substituted arylene or optionally substituted heteroarylene and R4 is -CO-NH- or -NH-CO- (when R3 is phenylene and R4 is -CO-NH-, R1 is not methyl or phenyl and R⁵ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl), R⁵ is lower alkyl, optionally substituted aryl, or optionally substituted heteroaryl when R3 is optionally substituted arylene or optionally substituted heteroarylene and R4 is tetrazol-diyl, R5 is lower alkyl, aryl substituted with lower alkyl or optionally substituted aryl, or heteroaryl substituted with lower alkyl or optionally substituted aryl when R³ is optionally substituted arylene and R⁴ is a bond, both of R³ and R⁴ are not a bond at the same time, and R4 is not -O- when R3 is optionally substituted arylene or optionally substituted heteroarylene, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

2) A compound of the formula II:

25

$$R^{7}-R^{6} \xrightarrow{\stackrel{R^{8}}{=}} SO_{2}-N \xrightarrow{\stackrel{R^{1}}{=}} COY \qquad \underline{II}$$

wherein R^6 is -CH=CH-, -C \equiv C-, -N=N-, -NH-CO-NH-, -S-, -SO₂NH-, or -SO₂-NH-N=CH-; R^7 is optionally substituted aryl or optionally substituted heteroaryl; R^8 and R^9 are each independently hydrogen atom, lower alkoxy, or nitro; R¹, R², and Y are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

3) A compound of the formula III:

7,000

$$R^7 - R^{10} - \begin{cases} R^8 & R^1 \\ - & SO_2 - N \\ R^9 & R^2 \end{cases}$$
 COY

5

wherein R¹⁰ is -(CH₂)m-, -CO-, -CO-NH-, -N(R^A)-, -NHCO-, or tetrazol-diyl; m is 1 or 2; R¹, R², R⁷, R⁸, R⁹, R^A, and Y are as defined above, provided R¹ is not methyl or phenyl and R⁷ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl when R¹⁰ is -NH-CO-, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

10

4) A compound of the formula <u>IV</u>:

#T,0061

wherein R^{11} is a bond, -CH=CH-, or -C \equiv C-; X is oxygen atom or sulfur atom, R^1 , R^2 , R^7 , and Y are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

5) A compound of the formula \underline{I} :

T,0002

15

wherein R¹' is benzyl, (indol-3-yl)methyl, (1-methylindol-3-yl)methyl, (5-methylindol-3-yl)methyl, (1-acetylindol-3-yl)methyl, (1-methylsulfonylindol-3-yl)methyl, (1-alkoxycarbonyl-3-yl)methyl (for example ethoxycarbonylmethyl), or i-propyl; R²' is hydrogen atom, methyl, 4-aminobutyl, or benzyl; R³' is 1,4-phenylene; R⁴' is -O-; R⁵' is phenyl or 4-hydroxy-phenyl; and Y is as defined above, its optically active substance,

their pharmaceutically acceptable salt, or hydrate thereof.

6) A compound of the formula <u>I"</u>:

5

10

15

wherein R¹" is 4-thiazolylmethyl, (indol-3-yl)methyl, (5-methoxyindol-3-yl)methyl, 1-naphthylmethyl, 2-naphthylmethyl, 4-biphenylylmethyl, 2,2,2-trifluoroethyl, 2-phenylethyl, benzyl, i-propyl, 4-nitrobenzyl, 4-fluorobenzyl, cyclohexylmethyl, (1-methylindol-3-yl)methyl, (5-methylindol-3-yl)methyl, (5-fluoroindol-3-yl)methyl, (pyridin-4-yl)methyl, (benzothiazol-2-yl)methyl, (phenyl)(hydroxy)methyl, phenyl, carboxymethyl, 2-carboxyethyl, hydroxymethyl, phenylmethoxymethyl, 4-carboxybenzyl, (benzimidazol-2-yl)methyl, (1-methylsulfonylindol-3-yl)methyl, or (1-ethoxycarbonylindol-3-yl)methyl; R²" is hydrogen atom; R³" is 1,4-phenylene; R⁴" is a bond; R⁵" is phenyl, 3- methoxyphenyl, 4-methoxyphenyl, 4-methylphenyl, 4-tertbutylphenyl, 4-trifluoromethylphenyl, 4-fluorophenyl, 4-methylthiophenyl, 4-biphenylyl, 2-thienyl, benzoxazol-2-yl, benzothiazol-2-yl, or tetrazol-2-yl; and Y is as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

7) A compound of the formula $\underline{\mathbf{V}}$:

20

$$R^7 - R^{12} - SO_2 - N + COOH$$
 Y

wherein R^{12} is -CH=CH- or -C \equiv C-; R^1 , R^2 , R^7 , R^8 , and R^9 are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof. 8) A compound of the formula \underline{VI} :

$$R^{14} - C - N \xrightarrow{R^8} R^{8} \xrightarrow{R^{13}} COOH \qquad \underline{VI}$$

wherein R², R⁸, and R⁹ are as defined above, R¹³ is optionally substituted lower alkyl, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl; and R¹⁴ is optionally substituted aryl, or optionally substituted heteroaryl; provided R¹³ is not methyl or phenyl and R¹⁴ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

9) A compound of the formula VII:

$$\begin{array}{c|c}
 & R^8 & R^1 \\
 & N & N & R^2 \\
 & N & N & R^2 \\
 & R^7 - N & N & R^2 \\
 & R^9 & R^2 & COOH & VII
\end{array}$$

wherein R¹, R², R⁷, R⁸, and R⁹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

10) A compound of the formula VIII:

15

10

wherein R¹, R², R⁷, and R¹¹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

11) A compound of the formula $\overline{\text{VIII}}$:

$$R^7-O$$

$$= SO_2-N$$

$$= R^9$$

$$= R^9$$

$$= R^1$$

$$= COOH$$

$$= IX$$

wherein R^1 , R^2 , R^7 , R^8 , and R^9 are as defined above, its optically active substance, their

12) A compound of the formula \underline{X} :

$$R^7 - R^{12} - SO_2 - N - COOH$$
 X

wherein R^{12} is -CH=CH- or -C \equiv C-; R^1 , R^7 , R^8 , and R^9 are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

13) A compound of the formula XI:

17009

5

$$R^{14}-C-N \xrightarrow{R^8} SO_2-N \xrightarrow{R^{13}} COOH XI$$

wherein R⁸, R⁹, R¹³, and R¹⁴ are as defined above, provided R¹³ is not methyl or phenyl and R¹⁴ is not 2-chlorophenyl, 4-chlorophenyl, or 2,4-dichlorophenyl, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

14) A compound of the formula XII:

7,0092

$$R^7 - N N = N SO_2 - N COOH XIII$$

wherein R¹, R⁷, R⁸, and R⁹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

15 15) A compound of the formula XIII:

T,0093

wherein R¹, R⁷, and R¹¹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

10

15

20

16) A compound of the formula XIV:

wherein R¹, R⁷, R⁸, and R⁹ are as defined above, its optically active substance, their pharmaceutically acceptable salt, or hydrate thereof.

A compound of the invention is more specifically illustrated below:

A) The compound of any one of above 1) to 16), wherein R^1 , $R^{1'}$, $R^{1''}$, and R^{13} are i-propyl, benzyl, or (indol-3-yl) methyl.

B) The compound of any one of above 1) to 4) and 7) to 16), wherein R⁵, R⁷, and R¹⁴ are phenyl optionally substituted with one or more substituents selected from the group consisting of alkoxy, alkylthio, and alkyl.

C) The compound of any one of above 1) to 16), wherein a configuration of asymmetric carbon atoms bonding with R^1 , $R^{1'}$, $R^{1''}$, and R^{13} is R configuration.

Further, this invention relates to a pharmaceutical composition, a composition for inhibiting metalloproteinase, and a composition for inhibiting type IV collagenase which contain the compound above 1) to 16) and A) to C)

All of compounds of above 1) to 16) and A) to C) have strong metalloproteinase inhibitory activity, and the following compound is more preferable:

- A compound wherein R¹ is i-propyl, benzyl, or (indol-3-yl) methyl, R² is hydrogen atom, R³ is 1,4-phenylene, R⁴ is ·C ≡ C-, and R⁵ is optionally substituted phenyl.
 A compound wherein R¹ is i-propyl, benzyl, or (indol-3-yl) methyl, R² is hydrogen atom, R³ is optionally substituted 2,5-thiophen-diyl, R⁴ is ·C ≡ C-, and R⁵ is optionally substituted phenyl.
- 3) A compound wherein R¹ is i-propyl, benzyl, or (indol-3-yl)methyl, R² is hydrogen

10

15

20

25

atom, R3 is 1,4-phenylene, R4 is tetrazol-diyl, and R5 is optionally substituted phenyl.

The term "alkyl" herein used means C₁-C₁₀ straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, i-pentyl, neo-pentyl, tert-pentyl, and the like.

The term "lower alkyl" herein used means C₁-C₆ straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tertbutyl, and the like.

The term "C₃-C₈ cycloalkyl" herein used is exemplified by cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and the like.

The term "aryl" herein used means monocyclic or condensed ring aromatic hydrocarbons. Examples of the aryl are phenyl, naphthyl, and the like.

The term "aralkyl" herein used means the above mentioned alkyl substituted by the above mentioned aryl at any possible position. Examples of the aralkyl are benzyl, phenethyl, phenylpropyl (e.g., 3-phenylpropyl), naphthylmethyl (anaphthylmethyl), anthrylmethyl (9-anthrylmethyl), and the like. Benzyl is preferred. The aryl part may optionally be substituted.

The term "heteroaryl" herein used means a 5 to 6 membered aromatic heterocyclic group which contains one or more hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in the ring and may be fused with a carbocyclic ring or other heterocyclic ring at any possible position. Examples of the heteroaryl are pyrrolyl (e.g., 1-pyrrolyl), indolyl (e.g., 2-indolyl), carbazolyl (e.g., 3-carbazolyl), imidazolyl (e.g., 4- imidazolyl), pyrazolyl (e.g., 1-pyrazolyl), benzimidazolyl (e.g., 2-benzimidazolyl), indazolyl (e.g., 3-indazolyl), indolizinyl (e.g., 6-indolizinyl), pyridyl (e.g., 4-pyridyl), quinolyl (e.g., 5-quinolyl), isoquinolyl (e.g., 3-isoquinolyl), acridinyl (e.g., 1-acridinyl), phenanthridinyl (e.g., 2-phenanthridinyl), pyridazinyl (e.g., 3-pyridazinyl), pyrimidinyl (e.g., 4-pyrimidinyl), pyrazinyl (e.g., 2-pyrazinyl), cinnolinyl (e.g., 3-cinnolinyl), phthalazinyl (e.g., 2-phthalazinyl), quinazolinyl (e.g., 2-quinazolinyl), isoxazolyl (e.g., 3-isoxazolyl), benzisoxazolyl (e.g., 3-benzisoxazolyl), oxazolyl (e.g., 2-oxazolyl), benzoxazolyl (e.g., 2-benzoxazolyl), benzoxadiazolyl (e.g., 4-

10

15

20

25

benzoxadiazolyl), isothiazolyl (e.g., 3-isothiazolyl), benzisothiazolyl (e.g., 2-benzothiazolyl), thiazolyl (e.g., 2-thiazolyl), benzothiazolyl (e.g., 2-benzothiazolyl), furyl (e.g., 3-furyl), benzofuryl (e.g., 3-benzofuryl), thienyl (e.g., 2-thienyl), benzothienyl (e.g., 2-benzothienyl), tetrazolyl, and the like. The aryl part of the above heteroaryl is optionally substituted.

The term "heteroarylalkyl" herein used means the above mentioned alkyl substituted with the above mentioned heteroaryl at any possible position. Examples of the heteroarylalkyl are thiazolylmethyl (e.g., 4-thiazolylmethyl), thiazolylethyl (e.g., 5-thiazolyl-2-ethyl), indolylmethyl (e.g., 2-indolylmethyl), imidazolylmethyl (e.g., 4-imidazolylmethyl), benzothiazolylmethyl (e.g., 2-benzothiazolylmethyl), benzopyrazolylmethyl (e.g., 4-benzotriazolylmethyl), benzotriazolylmethyl (e.g., 4-benzotriazolylmethyl), benzoquinolylmethyl (e.g., 2-benzoquinolylmethyl), benzimidazolylmethyl (e.g., 2-benzimidazolylmethyl), pyridylmethyl (e.g., 2-pyridylmethyl), and the like. The aryl part of the above heteroaryl is optionally substituted.

The term "arylene" herein used is exemplified by phenylene, naphthylene, and the like. Mentioned in more detail, it is exemplified by 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, and the like.

The term "heteroarylene" herein used is exemplified by thiophen-diyl, furandiyl, pyridin-diyl, and the like, in more detail, by 2,5-thiophen-diyl, 2,5-furan-diyl, and the like.

The term "non-aromatic heterocyclic group" herein used means 5 to 6 membered non-aromatic heterocyclic group which contains one or more hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in the ring, and may bind at any possible positin. Examples of the non-aromatic heterocyclic group are morpholino, piperidino, pyrrolidino, and the like.

The term "alkoxy" herein used means alkoxy of which alkyl part is the above mentioned alkyl. Examples of the alkoxy are methoxy, ethoxy, propoxy, butoxy, pentyloxy, and the like.

10

15

20

25

The term "lower alkoxy" herein used means alkoxy of which alkyl part is the above mentioned lower alkyl. Examples of the lower alkoxy are methoxy, ethoxy, n-propoxy, i-propoxy, i-butoxy, i-butoxy, sec-butoxy, tert-butoxy, and the like.

The term "halogen" herein used means fluoro, chloro, bromo, and iodo.

The term "alkylthio" herein used means alkylthio whose alkyl part is the above mentioned lower alkyl. Examples of the alkylthio are methylthio, ethylthio, and the like.

Substituents for "optionally substituted alkyl", "optionally substituted C₃-C₈ cycloalkyl", and "optionally substituted non-aromatic heterocyclic group" are hydroxy, alkoxy (e.g., methoxy and ethoxy), mercapto, alkylthio (e.g., methylthio), cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl), halogen (e.g., fluoro, chloro, bromo, and iodo), carboxy, alkoxycarbonyl (e.g., methoxycarbonyl and ethoxycarbonyl), nitro, cyano, haloalkyl (e.g., trifluoromethyl), substituted or unsubstituted amino (e.g., methylamino, dimethylamino, and carbamoylamino), guanidino, phenyl, benzyloxy, and the like. These substituents are able to bind them at one or more of any possible positions.

Substituents for the aromatic ring of "optionally substituted aryl", "optionally substituted aralkyl", "optionally substituted heteroaryl", "optionally substituted heteroarylalkyl", "optionally substituted arylene", and "optionally substituted heteroarylene" are, for example, hydroxy, alkoxy (e.g., methoxy and ethoxy), mercapto, alkylthio (e.g., methylthio), cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl), halogen (e.g., fluoro, chloro, bromo, and iodo), carboxy, alkoxycarbonyl (e.g., methoxycarbonyl and ethoxycarbonyl), nitro, cyano, haloalkyl (e.g., trifluoromethyl), aryloxy (e.g., phenyloxy) substituted or unsubstituted amino (e.g., methylamino, dimethylamino, diethylamino, and benzylidenamino), guanidino, alkyl (e.g., methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, i-pentyl, neopentyl, and tert-pentyl), alkenyl (e.g., vinyl and propenyl), alkynyl (e.g., ethynyl and phenylethynyl), alkanoyl (e.g., formyl, acetyl, and propionyl), acyloxy (e.g., acetyloxy), acylamino, alkylsulfonyl (e.g., methylsulfonyl), phenyl, benzyl, an azo group (e.g.,

10

15

20

25

phenylazo), optionally substituted heteroaryl (e.g., 3-pyridyl), optionally substituted ureido (e.g., ureido and phenylureido), and the like. These substituents are able to bind to it at one or more of any possible position.

Best Mode for Carrying Out the Invention

Compounds (Ia) and (Ib) of the invention are able to be synthesized from the corresponding α -amino acids represented by the formula (XV) by means of the following 6 synthetic methods. Generally, it is possible to produce the compounds of the invention by means of the method A. Each classified type of the compounds is possible to be produced by means of methods the B to F. However, these methods are only examples to produce the compounds represented by the formula I. A compound represented by the formula I produced by any other method is included in this invention.

Method A: A general synthetic method of the compound represented by the formula I.

Method B: A synthetic method of the compound wherein and R^3 is optionally substituted arylene or optionally substituted heteroarylene, R^4 is $-C \equiv C$ -, and R^5 is optionally substituted aryl or optionally substituted heteroaryl.

Method C: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is a bond, and R⁵ is optionally substituted aryl or optionally substituted heteroaryl.

Method D: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is -CO-NH-, and R⁵ is optionally substituted aryl or optionally substituted heteroaryl.

Method E: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is tetrazol-diyl, and R⁵ is optionally substituted aryl or optionally substituted heteroaryl.

Method F: A synthetic method of the compound wherein R³ is optionally substituted arylene or optionally substituted heteroarylene, R⁴ is -CH=CH-, and R⁵ is

optionally substituted aryl or optionally substituted heteroaryl.

Details of these methods are explained as follows.

(Method A)

 $\frac{\text{Process 3}}{\text{R}^5 - \text{R}^4 - \text{R}^3 - \text{SO}_2 - \text{N}} + \text{CONHOR}^{\frac{16}{2}}$ XVI

wherein R1, R2, R3, R4, and R5 are as defined above, R15 is hydrogen atom or a carboxy protective group, R¹⁶ is a hydroxy protective group, and Hal is halogen.

Conversion of compound (XV) to compound (Ia-1) is sulfonation of an amino group of the compound (XV) (process 1). If necessary, after this reaction, N-alkylation, deprotection of a carboxyl protective group, etc. are carried out. Conversion of compound (Ia-1) to compound (Ib-1) is to obtain hydroxamic acid derivatives from carboxylic acid derivatives (process 2). To obtain compound (Ib-1) from compound (Ia-1), compound (Ia-1) may also be reacted with hydroxylamine having a hydroxyl protective group or its acidic salts to give compound (XVI) (process 3), followed by and deprotection (process 4). Conversion to sulfonyl derivatives and hydroxamic acid derivatives are able to be carried out according to an usual method. For example, an amino acid represented by the formula (XV) is reacted with a sulfonating agent such as sulfonyl halide represented by R5-R4-R3-SO₂Hal (R3, R4, and R5 are as defined above; and Hal is halogen) and then hydroxylamine. Each process will hereinafter be described in more detail.

5

10

15

(Process 1)

5

10

15

20

25

Some of amino acids represented by the formula (XV) or its acidic salts (e.g., hydrochloride, p-toluenesulfonate, and trifluoroacetate) which are starting materials are commercially available. The other are able to be synthesized in accordance with a method described in Zikkenkagakukoza, vol. 22, IV (nihonkagakukai), J. Med. Chem. 38, 1689-1700, 1995, Gary M. Ksander et. al., etc. some of sulfonating agents are commercially available and the other are synthesized in accordance with a method described Shin-zikkenkagakukoza, vol. 14, 1787, 1978, Synthesis 852-854, 1986, etc. A carboxyl protective group is exemplified by esters (e.g., methyl ester, tert-butyl ester and benzyl ester). Deprotection of this protective group may be carried out by hydrolysis with acid (e.g., hydrochloride and trifluoroacetic acid) or base (e.g., sodium hydroxide) depending on the type of the group, or by catalytic reduction, e.g., under 10% palladium-carbon catalyst condition. To obtain a compound (Ib-1), the esters may directly be converted to hydroxamic acid by the method of process 2. When a compound (XV) is an amino acid wherein R15 is hydrogen atom, preferable solvents for this sulfonylation are dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, water, or mixed solvents thereof. When a compound (XV) is an amino acid wherein R¹⁵ is a protective group such as an ester, a solvent for this sulfonylation is exemplified by the above solvents and mixed solvents of waterinsoluble solvents (e.g., benzene and dichloromethane) and the above solvents. A base to be used in this sulfonylation is exemplified by organic bases such as triethylamine, N-methylmorpholine, etc. and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, and the like. Usually this reaction can be carried out at ice-cooling to room temperature. When R1, R3, R4, R5, or R15 of compound (Ia-1) contains a functional group(s) possibly interfering this sulfonylation (e.g., hydroxy, mercapto, amino, and guanidino), it can previously be protected in accordance with a method described in "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)) and then deprotected at an appropriate process. When \mathbb{R}^2 is not hydrogen atom, compound (Ia-1) wherein R² is hydrogen atom is further reacted with

haloalkyl (e.g., methyl iodide, and ethyl iodide) or haloaralkyl (e.g., benzyl chloride, and benzyl bromide) in dimethylformamide, tetrahydrofuran, dioxane, and the like at a temperature range of ice-cooling to 80 °C, preferably ice-cooling to room temperature, for 3-10 hours, preferably 10-20 hours to give the desired N-R² derivative.

(Process 2)

5

10

15

20

25

A hydroxylamine is reacted with compound (Ia-1) or its reactive derivatives to give hydroxamic acid derivatives (Ib-1). A hydroxylamine is usually used as its acidic salts (e.g., hydrochloride, and phosphate, sulfate: commercially available) in the presence of a base. A base to be used in this reaction is exemplified by organic bases such as triethylamine, N, N-dimethylaniline, N-methylmorpholine, etc. and inorganic bases such as sodium hydroxide, potassium hydroxide, potassium carbonate, etc.

When compound (Ia-1) is used as a starting material of conversion to hydroxamic acid, this reaction is carried out in the presence of a peptide condensing agent (e.g., dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N-carbonyldiimidazole, or a mixture of one of the above agents with 1-hydroxybenzotriazole, N-hydroxy sucinicimide, etc.). A solvent for this reaction may be dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, water, and mixed solvent thereof. This reaction is carried out at -20 °C to 40 °C, preferably ice-cooling to room temperature, for 1 to 16 hours.

Acid anhydrides (especially, mixed acid anhydrides), acid halides, acid azides, and esters can be utilized in this reaction as a reactive derivative of compound (Ia·1). These reactive derivatives are produced by usual methods. For example, the acid anhydride derivatives can be produced by a reaction of compound (Ia·1) with acid halide derivatives (e.g., ethyl chlorocarbonate) in the presence of a base (e.g., triethylamine), and acid halide derivatives can be produced by a reaction of compound (Ia·1) with a halogenation agent (e.g., oxalylchloride, and thionylchloride). Ester derivatives may be inactive or active. Sulfonyl derivatives converted from a compound (XV) wherein R¹⁵ is a carboxyl protective groups (e.g., methyl, tert-butyl, and benzyl) at process 1 can be used as inactive esters without deprotection. Active

esters can be produced by a reaction of compound (Ia-1), carbodiimide reagents (e.g., dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), and hydroxy derivatives corresponding to the active ester residue such as 1-hydroxybenzotriazole, N-hydroxysuccinimide, or the like. A reaction condition of conversion of the reactive derivatives of compound (Ia-1) to hydroxamic acid may be the same as that of conversion of compound (Ia-1) itself to hydroxamic acid. The reactions of processes 1 and 2 are able to continuously be carried out in one-pot reaction.

(Process 3)

10

5

A protected hydroxylamine to be used in this reaction includes Obenzylhydroxylamine, O-(p-methoxybenzyl)hydroxylamine, O-(tertbutyl)hydroxylamine, or the like. This reaction condition may be in the same manner as that of process 2.

(Process 4)

15

This process for deprotection is carried out by catalytic reduction, treatment with conc. hydrochloric acid, or treatment with trifluoroacetic acid to give the desired compound (Ib-1). The compounds of this invention (Ia-1) and (Ib-1) can be isolated and purified by usual separation methods and purification methods (e.g., chromatography, crystallization, etc.).

20 (Method B)

7,0180

10

15

$$\begin{array}{c|c}
R^{1} & & \\
 & & \\
 & & \\
 & & \\
\hline
 & & \\
 & & \\
 & & \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$R^{7}-C \equiv C-R^{17}-SO_{2}-N + COOR^{15} + Process 3 + R^{7}-C \equiv C-R^{17}-SO_{2}-N + COOH$$

$$XVIII$$

$$Ia-2$$

Process 4

$$R^7 - C = C - R^{17} - SO_2 - N$$

R

CONHOH

R

1b-2

wherein R^1 , R^2 , R^7 , R^{15} , and Hal are as defined above, R^{17} is optionally substituted aryl or optionally substituted heteroaryl.

Conversion of compound (XV) to compound (XVII) is performed by sulfonation of an amino group of compound (XV) (process 1) in the same manner as that described in process 1 of method A. Conversion of compound (XVII) to compound (XVIII) is performed by Heck reaction (K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Lett., 4467(1975) etc.) wherein halogen of R¹⁷ is utilized to insert a triple bond (process 2). Conversion of compound (XVIII) to compound (Ia-2) is N-alkylation, deprotection of a carboxyl protective group, etc. (process 3), which can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-2) to compound (Ib-2) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 4), which can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(Process 1)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 2)

10

15

Compound (XVII) is reacted with optionally substituted aryl or optionally substituted heteroaryl having an ethynyl group such as ethynylbenzene in a solvent such as dimethylformamide, toluene, xylene, benzene, tetrahydrofuran etc. in the presence of a palladium catalyst (e.g., Pd(Ph₃P)₂Cl₂), a divalent copper reagent (e.g., CuI), and an organic base (e.g., triethylamine, and diisopropylethylamine) to give a desired compound (XVIII) (Heck reaction). This reaction is carried out at room temperature to 100 °C, preferably room temperature to 80 °C. This reaction is completed for 3 to 30 hours, preferably 10 to 20 hours. When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)), and then deprotected at an appropriate step. (Process 3)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 4)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

(Method C)

20

$$(Hal-)R^{17}-SO_{2}-N \xrightarrow{R^{1}}COOR^{15} \xrightarrow{Process 1} R^{7}-R^{17}-SO_{2}-N \xrightarrow{R^{1}}COOR^{15}$$

$$XVII \qquad XIX$$

$$Process 2 \qquad R^{7}-R^{17}-SO_{2}-N \xrightarrow{R^{1}}COOH \xrightarrow{Process 3} R^{7}-R^{17}-SO_{2}-N \xrightarrow{R^{2}}CONHORMAL$$

$$Ia-3 \qquad Ib-3$$

wherein R1, R2, R7, R15, R17, and Hal are as defined above.

Conversion of compound (XVII) to compound (XIX) is performed by Suzuki reaction (M. J. Sharp and V. Shieckus, Tetrahedron Lett., 26, 5997 (1985) etc.) wherein

halogen of R¹⁷ is utilized to introduce aryl or heteroaryl (process 1). Conversion of compound (XIX) to compound (Ia-3) is N-alkylation, deprotection of a carboxyl protective group, etc. (process 2) and this process can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-3) to compound (Ib-3) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 3), and this process can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(process 1)

5

10

15

20

Compound (XVII) is reacted with optionally substituted aryl or optionally substituted heteroaryl having a B(OH)₂ (otherwise B(Et)₂) group such as phenylboronic acid in a solvent such as dimethylformamide, toluene, xylene, benzene, tetrahydrofuran etc. in the presence of a palladium catalyst (e.g., Pd(Ph₃P)₄) and a base (e.g., potassium carbonate, calcium carbonate, triethylamine, sodium methoxide etc.) to give the desired compound (XIX) (Suzuki reaction). This reaction is carried out at room temperature to 100 °C, preferably room temperature to 80 °C. This reaction is completed for 5 to 50 hours, preferably 15 to 30 hours. When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)) and then deprotected at an appropriate step.

(Process 2)

This process may be carried out in the same manner as that described in process 1 of method A.

25 (Process 3)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

(Method D)

T,0210

21

10

15

$$\begin{array}{c|c}
R^{1} & & \\
 & \downarrow \\$$

$$(H_2N-)R^{17}-SO_2-N + COOR^{15} + Process 3 + R^7-C-N-R^{17}-SO_2-N + COOR^{15}$$

$$XXII$$

$$XXII$$

$$XXIII$$

Process 4
$$R^{7} - C - N - R^{17} - SO_{2} - N$$

$$Ia-4$$

$$R^{1}$$
Process 5
$$R^{1}$$

$$R^{2}$$

$$R^7$$
- C - N - R^{17} - SO_2 - N - R^2

$$\frac{R^1}{R^2}$$
CONHOH
$$\frac{Ib-4}{R^2}$$

wherein R^1 , R^2 , R^7 , R^{15} , R^{17} , and Hal are as defined above.

Conversion of compound (XV) to compound (XX) is sulfonation of an amino group of the compound (XV) (process 1) and this process may be carried out in the same manner as that described in process 1 of method A. Conversion of compound (XX) to compound (XXI) is reduction of a nitro group of R¹⁷ to an amino group (process 2) and this process can be carried out by catalytic reduction or other reduction using hydrochloric chloride - Fe, hydrochloric chloride - Sn, etc. Conversion of compound (XXI) to compound (XXII) is performed by usual amide bond formation reaction wherein an amino group of R¹⁷ is utilized (process 3). Conversion of compound (XXII) to compound (Ia-4) is N-alkylation, deprotection of a carboxyl protective group, etc. (process 4) of compound (XXII) and this process can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-4) to compound (Ib-4) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 5) and this process can be carried out in the same manner as those described

in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(process 1)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 2)

5

10

15

20

Compound (XX) is treated with hydrogen in a solvent such as methanol, ethanol, ethyl acetate, acetic acid, etc. in the presence of a catalyst (e.g., Pd-C, PtO₂, Raney Ni etc.), under a no-pressure or pressured condition to give the desired compound (XXI). This reaction is carried out at a temperature under ice-cooling to 80 °C, preferably room temperature to 50 °C, and is completed for 1 to 10 hours, preferably 2 to 5 hours.

(Process 3)

Compound (XXI) is reacted with optionally substituted aryl or optionally substituted heteroaryl having an acid halide (otherwise an active ester) group such as benzoyl chloride in a solvent such as dimethylformamide, tetrahydrofuran, dioxane, dimethylsulfoxide, acetonitrile, xylene, toluene, benzene, dichloromethane, etc. in the presence of a base (e.g., triethylamine, N-methylmorpholine, potassium carbonate etc.) to give the desired compound (XXII). This reaction is carried out at a temperature under ice-cooling to 100 °C, preferably room temperature to 60 °C, and is completed for 3 to 30 hours, preferably 10 to 25 hours.

(Process 4)

This process may be carried out in the same manner as that described in process 1 of method A.

25 (Process 5)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

(Method E)

T,0230

10

15

wherein R1, R2, R7, R15, R17, and Hal are as defined above.

Conversion of compound (XV) to compound (XXIII) is performed by sulfonating an amino group of the compound (XV) (process 1) in the same manner as that described in process 1 of method A. Conversion of compound (XXIII) to compound (XXIV) is done by the reduction wherein an ethenyl group of R¹⁷ is converted into an aldehyde group (process 2). Conversion of compound (XXIV) to compound (XXVI) is performed by a tetrazole ring formation reaction (processes 3 and 4). Conversion of compound (XXVI) to compound (Ia-5) is N-alkylation, deprotection of a carboxyl protective group, etc. of compound (XXVI) (process 5), and this process can be carried out in the same manner as that described in process 1 of method A. Conversion of compound (Ia-5) to compound (Ib-5) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 6), which can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail.

(process 1)

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 2)

5

10

15

20

25

A compound (XXIII) is treated with ozone in a solvent such as dichloromethane, ethyl acetate, methanol, etc. to form an ozonide, and then a reagent such as zinc-acetic acid, triethylphosphate, dimethylsulfide, etc. is added to this reaction mixture for reduction to give the desired aldehyde derivatives (XXIV). The reduction can also be carried out by catalytic hydrogenation. This reaction is carried out at -100 °C to room temperature, preferably -78 °C to a temperature under ice-cooling, and is completed for 0.5 to 10 hours, preferably 1 to 3 hours. (Process 3)

A compound (XXIV) is reacted with benzensulfonylhydrazide in a solvent such as tetrahydrofuran, ether, etc. mixed with a solvent such as methanol, ethanol, etc. to give the desired compound (XXV). This reaction is carried out at a temperature under ice-cooling to 80 °C, preferably room temperature to 50 °C, and is completed for 3 to 30 hours, preferably 10 to 20 hours.

(Process 4)

Optionally substituted aryl or optionally substituted heteroaryl having amino group such as aniline is dissolved in a mixed solvent such as alcohol (e.g., ethanol) and water. To this mixture conc. hydrochloric acid and a diazotizing agent such as a sodium nitrite aqueous solution are added at -20 °C to 10 °C, preferably 0 °C to 5 °C, to give a diazonium salt. The reaction time is 5 min to 1 hr, preferably 10 to 30 min. This reaction mixture is added to a pyridine solution of compound (XXV) and allowed react for 1 to 10 hr, preferably 2 to 5 hr, at -30 °C to 50 °C, preferably -15 °C to room temperature to give the desired compound (XXVI). When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)), and then deprotected at an appropriate step.

(Process 5)

This process may be carried out in the same manner as that described in

process 1 of method A.

(Process 6)

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

(Method F) 5

10

15

 $(OHC-)R^{17}-SO_2-N + COOR^{15} \xrightarrow{Process 1} R^7-C=C-R^{17}-SO_2-N + COOR^{15}$

Process 2
$$R^7 - C = C - R^{17} - SO_2 - N COOH$$

$$Ia-6$$

$$R^1$$

$$R^{7}-C=C-R^{17}-SO_{2}-N$$
 R^{2}
CONHOH
$$\frac{Ib-6}{R^{2}}$$

wherein R1, R2, R7, R15, R17, and Hal are as defined above.

Conversion of compound (XXIV) to compound (XXVII) is performed by Wittig reaction (G. Wittig et al., Chem. Berr. 87, 1318 (1954)) wherein an aldehyde group of R¹⁷ is utilized to introduce aryl or heteroaryl through a double bond (process 1). Conversion of compound (XXVII) to compound (Ia-6) is N-alkylation, deprotection, etc. of compound (XXVII) (process 2), and this process can be carried out the same similar as described in process 1 of method A. Conversion of compound (Ia-6) to compound (Ib-6) is that of carboxylic acid derivatives to hydroxamic acid derivatives (process 3), and this process can be carried out in the same manner as those described in processes 2 to 4 of method A. Each process will hereinafter be described in more detail. (process 1)

Compound (XXIV) is reacted with ylide derivatives of optionally substituted aryl or optionally substituted heteroaryl such as Ph₃P=CHPh, etc., which is produced by an usual method, in a solvent such as toluene, xylene, tetrahydrofuran, ether, dimethylformamide, etc. at -100 °C to room temperature, preferably -78 °C to ice-cooling for 1 to 20 hours, preferably 1 to 5 hours, to give the desired compound (XXVII). When optionally substituted aryl or optionally substituted heteroaryl has a substituent(s) interfering this reaction, the substituent(s) can previously be protected in accordance with a method of "Protective Groups in Organic Synthesis" (Theodora W. Green (John Wiley & Sons)), and deprotected at an appropriate step.

This process may be carried out in the same manner as that described in process 1 of method A.

(Process 3)

5

10

15

20

25

This process may be carried out in the same manner as those described in processes 2 to 4 of method A.

The term "compound of the present invention" herein used includes pharmaceutically acceptable salt or hydrate of the compound. The salt is exemplified by a salt with alkali metals (e.g., lithium, sodium, and potassium), alkaline earth metals (e.g., magnesium and calcium), ammonium, organic bases, amino acids, mineral acids (e.g., hydrochloric acid, hydrobromic acid, phosphoric acid, and sulfuric acid), or organic acids (e.g., acetic acid, citric acid, mallein acid, fumaric acid, benzenesulfonic acid, and p-toluenesulfonic acid). These salts can be formed by the usual method.

The compound of the present invention is not restricted to any particular isomers but includes all possible isomers and racemic modifications.

The compound of the present invention has an excellent activity for inhibiting metalloproteinase, especially activity for inhibiting MMP, and inhibits matrix dissolution, as described in the following test example. Therefore, the compound of the present invention is useful to treat or prevent diseases which are caused by MMP and relative enzymes such as TNF- α converting enzyme, etc.

Definitely, the compounds of the present invention are useful in the prevention or treatment of diseases such as osteoarthritis, rheumatoid arthritis,

10

15

20

25

corneal ulceration, periodontal disease, metastasis and invasion of tumor, advanced virus infection (e.g., HIV), arteriosclerosis obliterans, arteriosclerotic aneurysm, atherosclerosis, restenosis, sepsis, septic shock, coronary thrombosis, aberrant angiogenesis, scleritis, multiple sclerosis, open angle glaucoma, retinopathies, proliferative retinopathy, neovascular glaucoma, pterygium, keratitis, epidermolysis bullosa, psoriasis, diabetes, nephritis, neurodegengerative disease, gingivitis, tumor growth, tumor angiogenesis, ocular tumor, angiofibroma, hemangioma, fever, hemorrhage, coagulation, cachexia, anorexia, acute infection, shock, autoimmune disease, malaria, Crohn disease, meningitis, and gastric ulcer.

When the compound of the present invention is administered to a person for treatment or prevention of the above diseases, they can be administered by oral administration such as powder, granules, tablets, capsules, pilulae, and liquid medicine, or by parenteral administration such as injections, suppository, percutaneous formulations, insufflation, or the like. An effective dose of the compound of the invention is formulated by being mixed with medicinal admixture such as excipient, penetrant, disintegrators, lubricant, and the like if necessary. When parenteral injection is prepared, the compound of the invention and an appropriate carrier are sterilized to prepare it.

An appropriate dosage varies with the conditions of the patients, an administration route, their age, their body weight and the like and should be determined by a physician in the end. In the case of oral administration, a daily dosage can generally be between 0.1 - 100 mg/kg/day, preferably 1 - 20 mg/kg/day. In the case of parenteral administration, the daily dosage can generally be between 0.01 - 10 mg/kg/day, preferably 0.1 - 1 mg/kg/day. The daily dosage can be administrated in one to several divisions.

The following examples are provided to further illustrate the present invention and are not to be constructed as limiting the scope thereof.

Abbreviations described below are used in the following examples.
p-TsOH: p-toluenesulfonic acid

DMSO: dimethylsulfoxide

Me: methyl

10

15

20

^tBu: tert-butyl

Example 1 (Method A)

To a suspension of (R)-(+)-phenylalanine (compound XV-1, 1.65g (10 mmol)) in 50 ml of dimethylformamide and 35 ml of water was stirred and treated with 2.78 ml (20 mmol) of triethylamine under ice-cooling. Then, 2.52g(10 mmol) of 4-biphenylsulfonyl chloride in 10 ml of dimethylformamide was added dropwise to the mixture over 5 min. After the reaction mixture was stirred for 2 h at the same temperature, 1.35 g (10 mmol) of 1-hydroxybenzotriazole hydrate, 2.1 g (11 mmol) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, 3.47 g (50 mmol) of hydroxylamine hydrochloride, and 7 ml (50 mmol) of triethylamine were added to the mixture. After being stirred for 16 h at room temperature, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CHCl₃ / MeOH = 40/1 to 20/1 were collected to yield 1.70 g of compound (Ib-1-1) as a foam. Yield 43%. mp. 169-170°C.

Elemental analysis (%) C21H20N2O4S

Calcd. : C; 63.62, H; 5.08, N; 7.07, S; 8.09

Found: C;63.61, H; 5.12, N; 6.98, S; 8.06

IR ν max (cm⁻¹) (Nujol): 3365, 3295, 3266, 1674, 1320, 1159.

NMR (δ ppm) d₆-DMSO: 2.61 (dd, J=8.6, 13.4Hz, 1H), 2.80 (dd, J=6.0, 13.6Hz, 1H), 3.80

5 (m, 1H).

 $[\alpha]_D$: +18.5 ± 1.2 (c=0.503 %, 25°C, DMSO)

Example 1'

Another synthetic method of compound (Ib-1-1)

10 Process 1

15

To a solution of (R)-phenylalanine benzyl ester tosylate (compound XV-1', 2.5 g (5.85 mmol)) in 60 ml of dichloromethane was added triethylamine (1.8 ml, 12.87 mmol) and 4-biphenylsulfonyl chloride(1.63 g, 6.44 mmol) under ice-cooling. After being stirred for 2 h at room temperature, the reaction mixture was washed with 2N HCl, 5% NaHCO₃ and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CHCl₃ / MeOH = 40/1 to 20/1 were collected and crystallized from dichloromethane / hexane to give 2.32 g of

15

25

compound (Ia-1-1'). Yield 84.1%. mp. 130-131℃.

Elemental analysis (%) C28H25NO4S

Calcd. : C; 71.32, H; 5.34, N; 2.97, S; 6.80

Found: C; 71.05, H; 5.41, N; 3.00, S; 6.81

5 IR ν max (cm⁻¹) (Nujol): 3352, 1732, 1341, 1190, 1163.

NMR (δ ppm) (CDCl₃): 3.06 (d, J=5.8Hz, 2H), 4.30 (dt, J=6.0, 9.0Hz, 1H), 4.89 (s, 2H),

5.12 (d, J=9.0Hz, 1H), 6.98-7.81 (m, 14H).

 $[\alpha]_D$: -16.4 ± 1.1(c=0.506 %, 25°C, MeOH)

Process 2

A solution of compound (Ia-1-1') (2.28 g) which was obtained process 1 in 50 ml of mixed solvents of methanol / ethyl acetate =1/1, was hydrogenated using 10 % Pd/C (200 mg) for 25 min. The reaction mixture was filtered off, and the filtrate was concentrated in vacuo. The residue was recrystallized from dichloromethane / hexane to give 1.83 g of compound (Ia-1-1"). Yield 99.1 %. mp. 146-147°C.

Elemental analysis (%) C21H19NO4S

Calcd.: C; 66.12, H; 5.02, N; 3.67, S; 8.41

Found: C;65.97, H; 5.06, N; 3.61, S; 8.48

IR ν max (cm⁻¹) (Nujol): 3408, 3305, 1751, 1325, 1161, 1134.

NMR (δ ppm) (CDCl₃): 2.97 (dd, J=7.0, 13.8Hz, 1H), 3.14 (dd, J=5.2, 14.0Hz,1H), 4.13

20 (m, 1H), 7.03-7.78 (m, 14H).

 $[\alpha]_D$: -4.0 ± 0.4(c=1.000 %, 25°C, MeOH)

Process 3

To a solution of compound (Ia-1-1", 1.0 g (2.62 mmol)) which was obtained process 2 in dichloromethane (20 ml) was added 0.33 ml (3.93 mmol) of oxalyl chloride and one drop of dimethylformamide. After being stirred for stirred for 1 h at room temperature, the reaction mixture was concentrated in vacuo. The residue was dissolved in 10 ml of tetrahydrofuran. A solution of hydroxylamine hydrochloride (911 mg (13.1 mmol)) and NaHCO₃ 1.54 g (18.34 mmol) in 10ml of tetrahydrofuran and 10ml of water was stirred for 5 min under ice-cooling. To the mixture was added the

15

25

above solution of acid chloride in tetrahydrofuran and the resulting mixture was stirred for 30 min. The reaction mixture was poured into water, and extracted with ethyl acetate. The organic layer was washed with 5% NaHCO₃, and water, and concentrated in vacuo to give compound (Ia-1) (969 mg). Yield 93.3 %.

5 Process 4

To a solution of compound (Ia-1-1", 2.0 g, 5.24 mmol) which was obtained process 2 in dimethylformamide (20 ml) was added 1-hydroxybenzotriazole hydrate (0.7 g, 5.24 mmol), N-methylmorpholine (2.9 ml, 26.2 mmol), 1-ethyl-3-(3-diisopropylamino) carbodiimide hydrochloride (8 mmol), and O-benzylhydroxylamine hydrochloride (1.67 g, 10.48 mmol), and the resulting mixture was stirred for 6 h at room temperature. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, and concentrated in vacuo. The residue was subjected to silica gel column chromatography and the fractions eluting with CH₂Cl₂ / hexane = 1/1 were collected and recrystallized from dichloromethane / hexane to give 2.04 g of compound (XVI-1). Yield 80 %. mp. 171-173°C.

Elemental analysis (%) C28H26N2O4S

Calcd.: C; 69.12, H; 5.39, N; 5.76, S; 6.59

Found: C; 68.85, H; 5.46, N; 5.76, S; 6.78

20 IR ν max (cm⁻¹) (Nujol): 3248, 1661, 1594, 1333, 1163.

NMR (δ ppm) (CDCl₃): 2.85-3.60 (m, 2H), 3.86 (m, 1H), 4.77 (ABq-Apart, J=11.4Hz, 1H), 4.82 (ABq-Bpart, J=11.4Hz, 1H), 5.00 (m, 1H), 6.95-7.70 (m, 19H).

 $[\alpha]_D$: -40.2 ± 1.6 (c=0.505 %, 25°C, DMSO)

Process 5

A solution of compound (XVI-1) (1.97 g) which was obtained process 4 in a 60 ml of mixed solvents of methanol / ethyl acetate =1/1 was hydrogenated using 10 % Pd-C (200 mg) for 3.5 h. The reaction mixture was filtered off, and the filtrate was concentrated in vacuo. The residue was recrystallized from dichloromethane / hexane to give 1.35 g of compound (Ib-1-1). Yield 84.4-%.

31

Example 2 - 91

The compounds which were shown in Tables 1 to 22 were synthesized in a manner similar to those described in Example 1'

R¹⁸SO₂NH , CONHOH (lb)

			_					
¹ H-NMR(δ ppm) d ₆ -DMSO	2.87(dd,J=5.6,14.2Hz,1H), 2.98(dd, J=8.4,14.2Hz,1H),4.02(dd,J=2.2, 8.6Hz,1H), 7.24(d,J=2.0Hz,1H), 8.83(d,J=2.2Hz,1H)	2.72(dd,J=7.2,13.8Hz,1H),2.97(dd, 7.0,14.8Hz,1H),3.81(m,1H),	-	3.12(dd,J=10.3,14.3Hz,1H), 3.89(dd, J=3.3,13.5Hz,1H),4.20(m,1H), 5.90 (brs,1H)	2.67(dd,J=9.2,13.1Hz,1H), 2.84(dd, J=5.3,13.5Hz,1H),3.82(m,1H)	2.2-2.7(m,2H),3.99(t,J=7.0Hz,1H)	1.68(m,2H), 2.37(m,2H), 3.64(t, J=6.9Hz,1H)	2.61(dd,J=9.4,13.8Hz,1H),2.78(dd, J=6.0,13.8Hz,1H),3.78(m,1H),7.43 (d,J=8.2Hz,2H),7.60(d,J=8.2Hz,2H),
IR (v cm·¹) (KBr)	3258,1650,1377, 1348,1163 (Nujol)	3403,3386,3265,1673 ,1320,1162 (Nujol)	l	3277,1669,1397, 1322,1159,	3262,1663,1322, 1157,	. 3265,1676,1642, 1337,1161 (Nujol)	3403,3261,1669, 1321,1160	3700-2200br,3264, 1635,1342,1164,
mp (decomp.) (C)	173 >	203-206	ı	124-126	139-141	167-169	172-173	144-146
*	RS	R	RS	RS	R	Я	RS	R
R 18								Br
. R	S N —— CH₂-	CH ₂ .	H ₃ CO	Ş.	CH2-CH2-	CF ₃ CH ₂ .	€у-снъснъ-	.²-cH₂-
Example No.	2	က	4	လ	9	2	&	6

T,0350

R¹⁸SO₂NH *CONHOH (lb)

Example No.	Г	R 18	*	mp (decomp.) (C)	IR (v cm·¹) (KBr)	'H-NMR(& ppm) de-DMSO
1 0	СН ₂ -	F ₃ C	R	116-118	3600-2400br,3257, 1743,1721,1323,1132,	2.60-2.82(m,2H),3.84(m,1H),7.00- 7.18(m,5H),7.62-7.80(m,4H),
11	-²H⊃-CH₂-	NZ(PL)	R	91-92	3700-2100br,3176, 1664,1320,1143,	2.70-2.93(m,2H),2.82(s,6H), 3.75(m,1H),
1.2	—нэ ^г (сн ³)	-{_}_>00 [€] H	R	178-179	3268,1632,1598, 1336,1162	0.71(d,J=6.8Hz,3H),0.74(d,J=5.4Hz,3H),1. 73(m,1H),1.73(m,1H),3.22(m,1H),3.82(s,3 H),7.05(d,J=9.0Hz,2H),7.69(d,J=9.0Hz,2H)
13	O ₂ N		RS	184-185	3257,1662,1516, 1344,1322,1160,	2.80(dd,J=10.0,13.8Hz,1H),2.92(dd, J=5.0,12.8Hz,1H),3.90(dd,J=5.4, 9.6Hz,1H),
14	F CH ₂ ·		. RS	128-130	3258,1669,1509, 1322,1157	2.62(dd,J=9.9,13.5Hz,1H),2.78(dd, J=5.8,13.0Hz,1H),3.77(t,J=6.2Hz, 1H),
15	CH ₂ -		R	165-166	3278,2920,1632, 1337,1161	0.50-1.62(m,13H), 3.56(t,J= 7.4Hz,1H)
16	OFF.		SS.	172-173	3272,1631,1332, 1161	2.71(dd,J=7.9,14.2Hz,1H),2.94(dd, J=6.9,14,2Hz,1H),3.57(s,3H),3.83 (dd,J=7.0,7.4Hz,1H)
17	H ₃ C		RS	144-146	3404,1670,1320, 1159	2.25(s,3H),2.67(dd,J=7.5,14.2Hz, 1H),2.95(dd,J=7.7,14.6Hz,1H), 3.81(dd,J=6.2,14.2Hz,1H)

34

R¹ R¹®SO₂NH CONHOH (lb)

4.88(d,J=9.4Hz,1H),8.74(d,J=9.4Hz,1H),8.98(s,1H),10.92(s,1H) 2.68(dd,J=9.8,13.7Hz,1H),2.79(dd, J=5.6,12.8Hz,1H),3.85(1,J=7.0Hz,1H), 2.72(dd,J=8.0,14.0Hz,1H),2.90(dd, J=6.2,14.2Hz,1H),3.82(m,1H) 2.69(dd,J=7.6,13.5Hz,1H),2.93(dd, J=7.6,13.5Hz,1H),3.77(t,J=7.6Hz, 2.74(dd,J=8.3,13.5Hz,1H),2.95(dd, J=6.5,13.5Hz,1H),3.87(dd,J=6.5, 8.3Hz,1H),(CD₃OD) 3.22-3.38(m,2H),4.17-4.24(m,2H), 7.80(d,J=8.0Hz,2H),7.96(d,J=6.4 Hz,2H) 3.86(d,J=3.6Hz,1H),4.91 (d,J=3.6Hz,1H) ¹H-NMR(ô ppm) d₆-DMSO ı 1H),(CD₃OD) 3700-2200(br),3278, 1706,1645,1322,1162 3700-2400(br),3473, 1675,1310,1152 3455,3362,1672, 1398,1162 3700-2400br,3252, 1668,1326,1160 3404,3315,1669, 1594,1316,1162 3186,1593,1480, 1379 3420,1670,1592, 1321,1159 IR (v cm⁻¹) (RBr) mp (decomp.) 196-197 111-115 197-199 201-202 154-158 ව 1 1 ı SS SS 83 RS 83 2 2 2 * R 18 **₩** CH₂. -ĊH₂--CH2--g-G-g-/_____CH₂-CH₂-프슈-异 2 Example 24 1 8 20 2 1 വ 19 2 က ŝ ~ 2 2

T₁0360

R¹ R¹®SO₂NH CONHOH (Ib)

R! R!# # mi	*		8	mp (decomp.) (C)	IR (v cm·1) (KBr)	'H-NMR(& ppm) ds-DMSO
CH2-CH2- F	F R	R		63-65	3700-2200(br),3362,1670, 1590,1336,1152	2.60(dd,J=9.0,13.8Hz,1H),2.79(dd, J=9.3,13.8Hz,1H),3.76(m,1H)
CH2- O2N R	\Diamond	~	ļ	70-71	3700-2200br,3372,1674, 1531,1348,1310,1161	2.66(dd,J=9.5,13.6Hz,1H),2.79(dd,J=5. 4,13.6Hz,1H),3.84(m,1H),7.73(A ₂ B ₂ qJ= 8.9Hz,2H),8.20(A ₂ B ₂ q,J=8.9Hz,2H),8.7 2(d,J=9.0Hz,1H),8.86(s,1H),10.7(s,1H)
чоос-сн₂-	R R	R		-	f	
ноос-сн ₂ -сн ₂ -	R R	R		ı	1	I
HOCH ₂ . R	В	8		192-193	3700-2400(br),3392, 1667,1320,1161	3.29(dd,J=5.7,10.7Hz,1H),3.43(dd,J= 8.4,10.7Hz,1H),3.62(m,1H),7.86(A ₂ B 2q,J=8.7Hz,2H),7.88(A ₂ B ₂ q,J=8.7Hz, 2H),7.98(d,J=7.8Hz,1H),10.61(s,1H)
(_ \	æ		69-70	3700-2200(br),1671, 1329,1163	2.69(dd,J=7.6,13.5Hz,1H),2.93(dd, J=7.6,13.5Hz,1H),3.77(t,J=7.6Hz, 1H),(CD ₃ OD)
ноос-{	R - R	R		-	_	1
CH ₂ .		84		160-162	3401,3260,1673, 1316,1165	2.66(dd,J=7.5,13.4Hz,1H),2.96(dd, J=7.6,14.2Hz,1H),3.81(m,1H)

T10380

	1H-NMR(δ ppm) d ₆ -DMSO	-	2.84-3.21(m,2H),4.29(m,1H)
(al) HOH!	IR (v cm·¹) (KBr)	I	3700-2400(br),1672, 1443,1327,1094
R ¹ R ¹⁸ SO ₂ NH * CONHOH	mp (decomp.) (C)	I	141-145
H ¹⁸ -S	*	æ	SS.
	8. E.	Br (S	
	- a	IZ B	Z N
	Example No.	3.4	3.5

OGLECIBL OVEEDS

B¹ ├ B·SO₃NH → COOH (k

(u),3.12(dd, 1,1H),7.29 :8.6Hz,1H 79(br,1H)	1),3.09(dd, n,1H),8.23 0(br,1H)	,3H),3.90	J=5.6Hz,),3.03(dd, 1,1H),8.38	1,1H),8.51 1H)	,3.70(m,	
¹ H-NMR(2.95(dd,J=9.0,14.0Hz,1H),3.12(dd, J=5.4,14.0Hz,1H),4.13(m,1H),7.29 (d,J=2.0Hz,1H),8.34(d,J=8.6Hz,1H),8.88(d,J=2.0Hz,1H),12.79(br,1H)	2.88(dd,J=8.0,14.0Hz,1H),3.09(dd, J=6.0,14.0Hz,1H),3.91(m,1H),8.23 (m,1H),10.79(s,1H),12.70(br,1H)	2.75-3.06(m,2H),3.69(s,3H),3.90 (m,1H)	3.17(dd,J=7.4,13.8Hz,1H),3.57(dd, J=5.5,13.9Hz,1H),3.80(t,J=5.6Hz, 1H),8.11(d,J=7.4Hz,1H)	2.77(dd,J=9.7,13.7Hz,1H),3.03(dd, J=4.9,13.3Hz,1H),3.93(m,1H),8.38 (d,J=8.8Hz,1H)	2.40-2.90(m,2H),4.05(m,1H),8.51 (d,J=9.0Hz,1H),13.2(br,1H)	1.83(m,2H),2.52(m,2H),3.70(m, 1H),8.32(d,J=9.0Hz,1H)	
IR (v cm·¹) (KBr)	3276,2503br,1897br, 1724,1344,1170(Nujol)	3386,3305,1747,1363, 1323,1161,1135(Nujol)	2400-3700(br),1734, 1484,1327,1160	3446,3065,1594,1397, 1303,1154,1094	3184,1723,1337, 1317,1156	3276,1706,1344, 1260,1165	3289,1739,1326, 1159,1089	
mp (decomp.)	159-161	227-229	181-189	198-200	213-215	176-177	153-156	
*	RS	R	RS	RS	Ж	æ	SS.	
R -8								
R.1	S ^N ————————————————————————————————————	CH ₂ .	H ₃ CO H ₃ CO	-²40 ()	CH2-CH2-	CF ₃ CH ₂ -	-zH2cH2-	
Example No.	2	3	4	9	9	7	8	

T/0400

R¹ COOH (la)

				1			1	
¹ H-NMR(ô ppm) d ₆ -DMSO	2.86(dd,J=10.2,13.2Hz,1H), 3.14(dd,J=4.5,13.7Hz,1H), 4.02(m,1H),8.42(d,J=8.4Hz,1H)	2.71(dd,J=9.9,13.7Hz,1H),2.96(dd, J=5.3,13.5Hz,1H),3.89(m,1H), 8.34(d,J=9.0Hz,1H)	0.52-1.72(m,13H),3.68(m,1H), 8.20(br.s,1H)	2.80-3.12(m,2H),3.61(s,3H), 3.94(m,1H),8.30(d,J=8.6Hz,1H)	2.28(s,3H),2.78-3.10(m,2H),3.91 (m,1H),8.29(d,J=8.3Hz,1H)	2.80-3.10(m,2H),3.92(m,1H), 8.29(d,J=8.2Hz,1H)	2.60-3.04(m,2H),3.98(m,1H)	3.24-3.56(m,2H),4,34(m,1H)
IR (\(\nu\) cm ⁻¹) (KBr)	3113,1724,1520, 1345,1158	3426,3114,1715, 1509,1224,1159	2919,1688,1448, 1335,1326,1169	3432,3294.1713, 1482,1341,1159	3419,3397,3291,1736, 1482,1336,1321,1165	3407,3285,1751,1735, 1703,1486,1321,1162	2600-3700br,1635,1594, 1335,1163,1095	2200-3700br,1713br, 1345,1125
mp (decomp.)	212-213	164-165	85-87	179-183	115-120	208-211	197-205	196-199
*	RS	RS	R	RS	RS	RS	RS	RS
R 18								
R.	O ₂ N()-CH ₂ -	F CH2-	-₹но-{	P. N. P.	La CH2.	CH2.	NCH ₂ -	CH2.
Example No.	13	14	1.5	16	17	18	2 0	2.1

R1 -P.CO.NH COOH (

			j,	z, dd,	dd,	ģ,	dd,
·H·NMR(δ ppm) ds·DMSO	4.10(d.J=3.2Hz,1H),5.13(d,J=3.2Hz,1H)	4.94(d,J=9.4Hz,1H),8.80(d,J= 9.4Hz,1H),13.0(br.s,1H)	2.45(dd,J=6.2,16.4Hz,1H)2.63(dd, J=6.6,16.4Hz,1H),	1.68(dd,J=7.9,14.1Hz,1H),1.87(dd, J=6.0,13.4Hz,1H),2.22(t,J=7.2Hz, 2H),3.80(m,1H),	3.51(dd,J=6.0,12.9Hz,1H),3.55(dd, J=5.4,12.9Hz,1H),3.80(m,1H), 8.06(d,J=8.7Hz,1H)	3.54(dd,J=4.8,9.9Hz,1H),3.60(dd, J=5.7,9.9Hz,1H),4.04(m,1H), 4.39(s,2H),8.34(d,J=8.1Hz,1H)	2.81(dd,J=9.7,13.7Hz,1H),3.05(dd, J=4.8,13.4Hz,1H),3.96(m,1H), 8.40(d,J=9.0Hz,1H),12.88(br.s,1H)
H	4.10(d.J=3 3.2Hz,1H)	4.94(d,J= 9.4Hz,1H	2.45(dd,J=6.2,16. [.] J=6.6,16.4Hz,1H)	1.68(dd,J=7.9,1 J=6.0,13.4Hz,11 2H),3.80(m,1H),	3.51 (dd,J=6.0,12.9) J=5.4,12.9Hz,1H),3 8.06(d,J=8.7Hz,1H)	3.54(dd,J= J=5.7,9.9H 4.39(s,2H)	2.81(dd,J=9 J=4.8,13.41 8.40(d,J=9.
IR (v cm·1) (KBr)	3335,3246,1732, 1315,1152	3316,1734,1325, 1159(Nujol)	3353,1752,1326, 1155,1096	3270.1709,1336, 1159,1093	2200-3700br,3430, 3292,1728,1324,1162	2200-3700br,3432, 3289,1733,1330,1165	3319,3052,1701,1317, 1284,1162
mp (decomp.) (C)	141-143	211-214	171-173	185-187	277-279	89-91	>270
*	SS.	x	æ	84	~	æ	24
R 18							
- -	H-0-0		HOOC-CH ₂ -	ноос-сн5-сн5-	-²ноон	CH2OCH2-	ноос
Example No.	2 2	2 3	2 8	2 9	3.0	3 1	3.2

·

R1 COOH (la)

3.06(dd,J=5.4,14.4Hz,1H),3.14(dd, J=5.1,14.4Hz,1H),3.65(t,J=5.4Hz, 1H),6.92(m,1H),10.72(s,1H) 3.17-3.50(m,2H),4.51(m,1H) 'H-NMR(ô ppm) ds-DMSO 2200-3700br,1734, 1334,1161 3420,1588,1402, 1324,1151 IR (v cm·1) (KBr) (la) R¹®-SO₂NH∕, COOH mp (decomp.) 151-156 243-246 RS 2 <u>۽</u> ھ -CH2-숙 2 Example 3 2 ģ 34

ω,				,					
	Elemental analysis	-	l	C ₂₄ H ₂₂ N ₂ O ₅ S•0.5H ₂ O Calc. C:62.73 H:5.04 N:6.10 S:6.98 Foun.C:62.75 H:5.08 N:6.31 S:7.05	C ₂₄ H ₂₂ N ₂ O ₅ S•0.8H ₂ O Calc. C:62.00 H:5.12 N:6.03 S:6.90 Foun.C:62.03 H:5.06 N:6.08 S:6.82	I	I	.1	C ₁₇ H ₁₉ NO ₄ S-0.1CF ₃ COOH Calc. C:59.99 H:5.58 N:4.06 S:9.30 Foun.C:60.37 H:5.74 N:4.13 S:9.76
	IR (v cm·¹) (KBr)	1726,1354 1326,1161	1732,1594 1404,1155	1607,1594 1294,1153	1724,1594 1326,1159	1685,1349 1166	1725,1599 1372,1173	1745,1653 1391,1147	1714,1594 1334,1166
	mp (decomp.) (C)	>145	ı	188-190	90-93	149-152	104-107	167-169	155-157
70	*	SA	RS	R	R	ห	R	R	æ
	R ! 8			-{}-{}-00°H	H ₃ CO \	-{_}_>-2 ^E H		-{_}\\>50°H	
	R 1	SO ₂ CH ₃	COOC2H ₂ .	CH2.	H CH ₂ -	H CH ₂ -	CH ₂ .	N CH2.	(СН ₃)2СН-
	Example No.	3 6	3.7	3 8	3 6	4 0	4 1	4 2	4 3

T/0440

	Elemental analysis	C ₂₁ H ₂₇ NO ₄ S•0.3H ₂ O Calc. C:63.87 H:7.04 N:3.55 S:8.12 Foun.C:63.84 H:6.86 N:3.42 S:8.01	C ₂₃ H ₂₃ NO ₄ S-0.3H ₂ O Calc. C:66.58 H:5.73 N:3.38 S:7.73 Foun.C:66.45 H:5.52 N:3.24 S:7.56	-	-	C ₁₇ H ₁₈ FNO ₄ S Calc. C:58.11 H:5.16 F:5.41 N:3.99 S:9.12 Foun.C:58.11 H:5.17 F:5.86 N:3.92 S:9.69	l	-	C ₂₇ H ₂₃ NO ₄ S•0.7H ₂ O Calc. C:68.98 H:5.23 N:2.98 S:6.82 Foun.C:69.08 H:5.09 N:2.91 S:6.73
	IR (v cm·¹) (KBr)	1724,1340 1328,1167	1734,1719 1324,1160	1670,1375 1148	1717,1694 1349,1165	1634,1334 1158	1681,1319 1162	1725,1340 1159	1750,1324 1159
	mp (decomp.)	196-197	241-243	157-159	175-176	145-147	183-186	183-184	224-226
3	*	24	R	R	R	24	R	R	æ
	ж. 8-	- And I may		F ₃ C	H3CO-{}		43c	H3CO-()-()	
	- - -	СН3)2СН-	-но ² (сн ³)	(CH ₃) ₂ CH-	-но²(сн₃)	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	-сн5-	CH ₂ -
	Example No.	4 4	4 5	4 6	4.7	. 48	4 9	2 0	5.1

R¹ H¹8-SO₂NH ★COOH (Ia)

_									
	Elemental analysis	I	1		C ₁₈ H ₂₁ NO ₄ S ₂ ·0.2H ₂ O Calc. C:56.43 H:5.63 N:3.66 S:16.74 Foun.C:56.74 H:5.67 N:3.86 S:16.35	ţ	ſ	C ₂₁ H ₁₈ N ₂ O ₄ S ₂ •0.3H ₂ O Calc. C:58.40 H:4.34 N:6.45 S:14.85 Foun.C:58.40 H:4.44 N:6.58 S:14.57	C ₁₇ H ₁₄ CIN ₃ O ₆ S·0.3H ₂ O Calc. C:47.48 H:3.44 Ci:8.39 N:9.65 S:7.52 Foun.C:47.57 H:3.43 Ci:8.26 N:9.79 S:7.47
	IR (v cm·1) (KBr)	1685,1349 1166	1691,1567 1390,1159	1749,1592 1323,1164	1746,1337 1164	1649,1337 1165	1588,1308 1141	1744,1592 1323,1160	1751,1734 1537,1347 1172
	mp (decomp.) (C)	157-160	111-112	194-195	197-199	108-110	187-190	239-243	222-224
	*	R	R	R	R	24	R	ж	ม
	R ! 8	-{_}_⊃ [¢] H	{ <u>}</u>	-{_}\\Sɔ ^ɛ H	H ₃ CS	-{_}	(H3C) ² (J ² (H)		O ₂ N CI
	R¹	CH2-	СН2-СН2-	-ZH2CH2-	(CH ₃) ₂ CH-	CH ₂ .	CH ₂ .	COOC ₂ H ₅	HO L
	Example No.	5 2	53	54	5 5	5 6	2 2	5.8	5 9

T,0460

R¹8SO₂NH CONHOH (lb)

'H-NMR(ô ppm) d ₆ -DMSO	2.60(dd,J=8.7,13.7Hz,1H), 2.79(dd, J=6.0,13.7Hz,1H),3.75(ddd,J=6.0, 8.7,9.0,1H),6.94(d,J=8.9Hz.2H)	2.71(dd,J=7.0,14.4Hz,1H), 2.96(dd, J=7.0,14.2Hz,1H),3.78(t,J=7.6Hz, 1H)	2.71(dd,J=7.9,14.4Hz,1H),2.96(dd, J=7.6,14.4Hz,1H),3.78(dd,J=7.2, 7.3Hz,1H)	0.76(d,J=6.6Hz,6H), 1.77(m,1H), 3.26(m,1H)	2.71(dd,J=7.9,14.2Hz,1H),2.93(dd, J=6.5,14.3Hz,1H),3.65(s,3H),3.78 (dd,J=7.1,7.2Hz,1H)	2.34(s,3H),2.65(dd,J=7.8,14.1Hz, 1H),2.93(dd,J=7.8,14.4Hz,1H), 3.75(dd,J=8.8,7.7Hz,1H)	2.71(dd,J=8.9,14.4Hz,1H),2.89(dd, J=6.6,14.4Hz,1H),3.75(dd,J=6.5, 6.8Hz,1H)	2.54(s,3H),2.69-2.89(m,2H),3.87 (m,1H)
IR (v cm ⁻¹) (KBr)	3700-2400br,3277, 1669,1325,1152	3302,1667,1324, 1153(Nujol)	3406,1670,1582, 1325,1153	3268,1634,1584, 1336,1157	3314,1669,1582, 1420,1328,1154	3405,1671,1582, 1487,1324,1154	3317,1670,1582, 1488,1323,1153	3421,1702,1676,1582, 1354,1328,1153
mp (decomp.) (C)	foam	115-118	ı	149-151	1	l	1	I
*	æ	R	တ	æ	83	RS	RS	RS
R 18	♦	√ >0√	√ >°⟨¬		-{\rightarrow-{\chinn-{\rightarrow-{\chinn-{\rightarrow-{\chinn-{\rightarrow-{\end-{\cirin-{\end-{\cirin-{\end-{\cirin-{\cirin-{\end-{\cirin-{\end-{\cirin-{\end-{\cirin-{\cirin-{\cirin-{\	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√ >∘ ⟨ }	√ 0.√○
R I	CH ₂ -	CH2 CH2	TZ J	(CH ₃) ₂ CH-	£-2	TZ CH2.	HA HO	COCH ₃
Example No.	0 9	6 1	6.2	63	6.4	6.5	99	2 9

BEERLOL ESEDELEO

R¹8-SO₂NH ★ COOH (Ia)

* mp (decomp.)
PO R 108-109 2400-3600br,3345,3213, 1735,1700,1346,1163
COC R 82-87 3410,3276,1724,1582, 1488,1331,1152(Nujol)
S foam 3412,1724,1582,1488,
-0 (R 137-138 3154,1720,1688,1583,
-0 () RS - 3273,1724,1582,1487.
→O← RS - 3415,1725,1582,1488, 1329,1196,1174,1152
+0-(-) RS 236-237 3296,1742,1647,1604,

Table 15

OPIECES OZESS

	Elemental analysis	-	C ₂₄ H ₂₂ N ₂ O ₇ S ₂ Calc. C:56.02 H:4.31 N:5.44 S:12.46 Foun.C:55.75 H:4.40 N:5.41 S:12.21	ŧ
a)	mp (decomp.) IR (\(\nu\) cm ⁻¹) (C)	1608,1590 1507,1232 1157	1735,1583 1362,1171	1733,1583 1150
R¹8-SO ₂ NH → COOH (1a)	mp (decomp.) (C)	>240	ı	۱ _
O ₂ NH	*	æ	RS.	SS.
R ¹⁸ .SC	R 18	-{}-0-{}-ОН	⟨` }• ⟨ ⟩	⟨ }•-⟨⟩
	. R	TZ HÖ	SO ₂ CH ₃	COOC2H ₅
	Example No.	8 9	6 9	7.0

R¹ R¹8SO₂NH CONHOH (lb)

Example No.	ä.	R 18	*	mp (decomp.) (C)	IR (v cm·1) (KBr)	'H-NMR(& ppm) d ₆ -DMSO
7.1	CH2-	CH3(CH2)4	8	129-131	3700-2400br,3247, 1636,1337,1160	0.90(t,J=6.8Hz,3H),1.22-1.40(m,4H),1.52-1.6 7(m,2H),2.62(t,J=7.7Hz,2H),2.86(dd,J=8.4.13 .7Hz,1H),3.02(dd,J=5.7,13.7Hz,1H) (CDCl ₃)
7.2	-2HO-	CH ₃ (CH ₂),—	æ	oil	3700-2400br,1663, 1320,1145 (film)	0.87(t,J=6.3Hz,3H),2.50(t,J=7.4Hz,2H), 2.76(dd,J=9.6,14.0Hz,1H),2.87(dd,J=5. 8,14.0Hz,1H),3.84(dd,J=5.8,9.6Hz,1H),
7.3	.z⊬⊃-{}	СН ₃ (СН ₂)3—	R	lio	3600-2400br,3262,1673, 1321,1142 (CHCb)	0.79(t,J=7.0Hz,3H),2.32-2.56(m,2H), 2.92(m,1H),3.26(m,1H),
7.4	CH ₂ .	CI CH3	R	-		I
7.5	-CH ₂ -		æ	85-86	3700-2200(br),3262, 1639,1332,1156	2.80(m,1H),2.96(m,1H),3.94(s,2H),3.86(m,1H),6.80-7.52(m,10H),7.08(A ₂ B ₂ qJ=7. 5Hz,2H),7.42(A ₂ B ₂ q,J=7.5Hz,2H)(CDCI ₃)
9 2	CH ₂ -	-N_O	æ	ı	ı	

...

	9
<u>-</u>	R ¹⁸ SO ₂ NH CONHOH

Example No.	R¹	. R 1	*	mp (decomp.)	IR (v cm·¹) (KBr)	'H-NMR(ô ppm) ds-DMSO
7.7	CH2-		24	138-139	3700-2400(br),3312, 1629,1329,1144	2.79(dd,J=8.5,13.4Hz,1H),2.89(dd, J=6.0,13.4Hz,1H),3.81(dd,J=6.0, 8.5Hz,1H),6.55(d,J=15.5Hz,1H)
7.8	CH2-	-CH2-	æ	69-70	3700-2200(br),1670, 1318,1152	2.78(dd,J=8.6,13.4Hz,1H),2.91(dd,J=6 .0,13.4Hz,1H),3.92(ABq,J=13.5Hz,1H) ,3.90(m,1H),9.01(s,1H),10.78(s,1H)
6 2	IX B	-NH-	R	I.	I	1

T,050

T,0510

R¹ ⊢ R¹8·SO₂NH → COOH (Ia)

Example No.	R 1	R¹ª	*	mp (decomp.) (C)	IR (ν cm·1) (KBr)	¹ H·NMR(δ ppm) ds·DMSO
7.1	.z _H o-{	CH3(CH2)4	R	121-122	2300-3700br,3426,3318, 1713,1330,1159	0.89(1,J=6.7Hz,3H),2.62(1,J=7.6Hz,2H),2.96(d d,J=7.0,13.9Hz,1H),3.10(dd,J=5.4,13.9Hz,1H) ,4.19(d1,J=6.9,8.2Hz,1H),5.30(d,J=8.2Hz,1H),
7.2	-2H2-	CH ₃ (CH ₂) ₇ —	æ	iio	2400-3600br,3340,1736, 1334,1142(CHCb)	0.88(t,J=6.9Hz,3H),2.55-2.73(m,2H),2.9 7(dd,J=8.4,13.8Hz,1H),3.24(dd,J=4.8,13. 8Hz,1H),4.35(m,1H),4.98(m,1H) (CDCg)
7.3	-ZHD-CH2-	CH ₃ (CH ₂) ₃ —	~	89-90	2300-3700br,3240, 1725,1341,1144	0.84(i,J=7.1Hz,3H),2.57-2.70(m,2H),2.97(d d,J=8.4,13.9Hz,1H),3.25(dd,J=4.8,13.9Hz,1 H),4.35(m,1H),4.96(d,J=9.6Hz,1H) (CDC\b)
7 4	N N OH.	CI CH ₃	æ	>250	3421,1580,1333, 1421,1153	2.41(s,3H),3.01(dd,J=6.0,14.4Hz,1H),3. 12(dd,J=4.5,14.4Hz,1H),3.67(t,J=5.4Hz, 1H),6.79(m,1H),6.89(m,1H),10.59(s,1H)
9 2	CH ₂ .	0 N-N-	R	foam	3413,1594,1456, 1416,1157	3.03(dd,J=6.5,15.1Hz,1H),3.15 (dd,J=4.7,14.1Hz,1H),3.64(t, J=5.1Hz,1H),10.68(s,1H)
2.2	-ZHD-CH2-		R	ı	2400-3700br,3252,1765, 1725,1301,1140	2.81(dd,J=9.2,13.7Hz,1H),3.03(dd,J=5.4,13.7H z,1H),3.94(dt,J=5.4,9.2Hz,1H),6.66(d,J=15.2H z,1H),7.16(d,J=15.2Hz,1H),8.01(d,J=9.2Hz,1H)
8 2	- ² HD-{	СР-СН2-	R	1	2200-3700br,3268,1726, 1321,1152(film)	2.81(dd,J=9.2,13.7Hz,1H),3.00(dd,J =5.6,13.7Hz,1H),4.01(ABq,J=13.7Hz ,2H),4.01(m,1H),7.65(d,J=8.3Hz,1H)
6 2	H CH2	-NH-	R	I	3413,2931,1720,1585, 1455,1421,1313,1144	0.90-1.68(m,9H),1.78(m,1H),2.74 (m,1H),3.00-3.20(m,2H),3.77(m, 1H)6.45(br.s,1H),6.77(br.s,1H)

.9						
	Elemental analysis		1	C ₂₄ H ₁₉ N ₃ O ₅ S•1.3H ₂ O Calc. C:59.45 H:4.49 N:8.67 S:6.61 Foun.C:59.43 H:4.45 N:8.59 S:6.58	l	
	IR (v cm·¹) (KBr)	1704,1596 1349,1164	1576,1356 1139	1732,1342 1167	1745,1590 1316,1157	1594,1456 1200,1188
	mp (decomp.) (C)	153-155	>130	128-130	210-214	198-200
	*	R	æ	22	æ	æ
	R 18		n-C ₈ H ₁₇ -		$\left\langle \right\rangle \left\langle \right$	
	R.	CH ₂	TX B	TZ G	IZ TO	IZ O
	Example No.	0 8	8 1	8 2	8 3	8 4

70530	H-NMR(& ppm) do-DMSO	2.65(dd,J=8.9,13.6Hz,1H), 2.82(dd, J=6.6,13.6Hz,1H),3.86(m,1H),7.75 (d,J=7.8Hz,2H),7.87(d,J=8.7Hz,2H)	2.62(dd,J=8.6,13.5Hz,1H),2.81(dd,J=6. 5,13.6Hz,1H),3.09(s,6H),3.83(m,1H),6 .86(d,J=9.0Hz,2H),7.83(d,J=8.8Hz,2H)	3700-2400(br),3357,1686, H),3.76(m,1H),8.02(d,J=8.7Hz,1H),8.8 1641,1314,1155 5(d,J=1.7Hz,1H),9.06(s,1H),10.59(d,J=1.7Hz,1H)
6 . :	(ib) IR (\(\nu\) cm \(^1\) (KBr)	3700-2400br,3273, 1633,1338,1166	3700-2400br,2921, 1672,1314,1165,	3700-2400(br),3357,1686, 1641,1314,1155
CONHOH	mp (decomp.)	157-160	138-142	206-207
(A)	: *	æ	~	တ
	۳. ۋ.		Mezn N-N-W	
	. W	CH2-	-ç45-	CH2-
	Sxample No.	8 5	9 8	8.7

R¹⁸-SO₂NH → COOH (la)

Example No.	R.	R -8	*	mp (decomp.) (C)	IR (v cm·l) (KBr)	'H-NMR(8 ppm) de-DMSO
8 5	-ZH2-()	⟨	R	172-174	2400-3600br,3426,3296, 1698,1350,1167	2.75(dd,J=9.1,13.7Hz,1H),2.98(dd, J=5.5,13.7Hz,1H),3.96(ddd,J=5.5, 9.1,9.1Hz,1H),8.51(d,J+9.1Hz,1H)
8 6	-445-{	MegN \\ _\-\ \	æ	93-94	2200-3700br,3431, 1735,1391,1154	2.74(dd,J=9.1,13.6Hz,1H),2.96(dd,J=5.7,13.6Hz,1H),3.09(s,6H),3.93(dt,J=5.7,9.1Hz,1H),8.39(d,J=9.1Hz,1H)
8.7	-4но-{}	S -Chylo	S	203-204	2300-3700br,3358, 3262,1718,1686, 1660,1313,1159	2.71(dd,J=9.1,13.7Hz,1H),2.93(dd,J=5.6 ,13.7Hz,1H),3.84(dt,J=5.6,9.1Hz,1H),8. 11(d,J=9.1Hz,1H),8.78(s,1H),9.06(s,1H)

	(la)
r-	R ¹⁸ -SO ₂ NH COOH

Table 22				-	
	Elemental analysis	•	C ₁₇ H ₂₀ N ₂ O ₆ S ₂ •0.9Ethylether Calc. C:51.63 H:6.10 N:5.85 S:13.38 Foun.C:51.23 H:6.17 N:5.87 S:13.11	C ₁₈ H ₂₁ N ₃ O ₆ S ₂ •0.8Ethylether Calc. C:51.05 H:5.86 N:8.42 S:12.86 Foun.C:50.75 H:5.89 N:8.15 S:12.47	C ₂₁ H ₁₉ BrN ₂ O ₆ S ₂ ·0.5CF ₃ COOH Calc. C:44.30 H:3.30 Br:13.40 N:4.70 S:10.75 Foun.C:44.62 H:3.52 Br:13.07 N:4.64 S:10.85
(ia)	IR (\(\nu \cm^1\) (KBr)	1719,1390 1229	1734,1461 1327,1158	1724,1325 1168	1735,1598 1327,1185
R¹ ⁸ ·SO ₂ NH → COOH (Ia)	mp (decomp.) (C)	103-108	66-96	110-112	98-101
NSO2NH	*	R	æ	22	æ
R ¹⁸	R 18	-{_>-8-N{_}}	-S-N-S-V	H=N-S-N-S-	Br-{\rightarrow_S-N-{\rightarrow_Q2H}\rightarrow_Q2H}
	R.	TZ HS	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	-cH2CH2-
	Example No.	8 8	6 8	0 6	9.1

5

10

15

HCl COOMe XVII-1 **XV-2**

Process 1

To a solution of D-valine methylester hydrochloride (XV-2) (755 mg, 4.5 mmol) in dichloromethane(12 ml) was added N-methylmorpholine (1.49 ml, 3×4.5 mmol) and 5-bromo-2-thiophensulfonyl chloride (1.24 g, 1.05×4.5 mmol) was added under icecooling. After being stirred for 15 h at room temperature, the reaction mixture was washed with 2N HCl, 5% NaHCO3, and water. The organic layer was concentrated in vacuo, and dried over Na₂SO₄. The residue was subjected to silica gel column chromatography and the fractions eluting with ethyl acetate / hexane = 1/3 were collected and washed with n-hexane to give 1.32 g of the desired compound (XVII-1). Yield 82 %. mp. 109-110℃.

Elemental analysis C10H14BrNO4S2

Calcd. : C; 33.71 H; 3.96 Br; 22.43 N; 3.93 S;1 8.00

Found: C; 33.75 H; 3.89 Br; 22.43 N; 3.96 S; 17.86

 $[\alpha]_D: -34.5 \pm 0.7 (c=1.012 \text{ CHCl}_3 25^{\circ})$

 $IR(CHCl_3, \nu \text{ max cm}^{-1})1737,1356,1164,1138$

NMR (CDCl₃, δ ppm): 0.89(d, J=6.8 Hz, 3H), 1.00(d, J=6.8 Hz, 3H), 2.00 (m, 1H), 3.60(s, 3H), 3.83(dd, J=5.2, 10.0 Hz, 1H), 5.20(d, J=10.0 Hz, 1H), 7.04(d, J=4.1 Hz, 1H), 7.32(d, J=4.1 Hz, 1H

Process 2

5

10

15

20

25

To a degassed solution of 400 mg (1.12 mmol) of compound (XVII-1) in 5 ml of dimethylformamide was added 222 mg (1.5 x 1.12 mmol) of 4-methoxyphenylacetylene and 21 mg(0.1 x 1.12 mmol) of copper iodide (I) under an argon atmosphere. Then 39 mg (0.05 x 1.12 mmol) of bis(triphenylphosphine)palladium dichloride (II) and 0.47 ml (3 x 1.12 mmol) of triethylamine were added to the reaction mixture. The resulting mixture was degassed and stirred overnight under an argon atmosphere at 50 °C. The reaction mixture was diluted with ethyl acetate. The organic later was washed with 1N HCl, 5 % NaHCO₃, and water, dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was column chromatographed on silica gel. The fractions eluting with n-hexane / ethyl acetate = 2/1 were collected and recrystallized from ethyl acetate / n-hexane to give 392 mg of the desired compound (XVIII-1). Yield 86 %. mp. 131-132°C.

Elemental analysis C₁₉H₂₁NO₅S₂·0.2 H₂O

Calcd. : C; 55.51 H; 5.25 N; 3.41 S; 15.60

Found: C; 55.80 H; 5.19 N; 3.38 S; 15.36

 $IR(KBr, \nu \text{ max cm}^{-1}): 3268,2203,1736,1604,1524,1348,1164.$

NMR(CDCl₃, δ ppm): 0.90(d, J=6.6 Hz, 3H), 1.00(d, J=7.0 Hz, 3H), 2.00(m, 1H), 3.60(s, 3H), 3.84(s, 3H), 3.86(dd, J=5.0, 10.2 Hz, 1H), 5.21(d, J=10.2 Hz, 1H), 6.90(d, J=9.0 Hz, 2H), 7.44(d, J=9.0 Hz, 2H), 7.12(d, J=4.0 Hz, 1H), 7.44(d, J=4.0 Hz, 1H).

Process 3

To a solution of 407 mg (1 mmol) of compound (XVII-1) in 8 ml of tetrahydrofuran and 8 ml of methanol was added 5.1 ml of 1N NaOH. The resulting mixture was stirred for 6 h at 60 ℃. The reaction mixture was concentrated in vacuo to remove an organic solvent, and the residue was diluted with ethyl acetate. The mixture was acidified with aqueous solution of citric acid and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo to give 373 mg of compound (Ia-2-1). Yield 100%. mp. 147-

148℃.

5

IR (KBr, ν max cm⁻¹): 1710,1604,1351,1216.

Elemental analysis C₁₈H₁₉NO₅S₂ · 0.2H₂O

Calcd. : C; 54.45 H; 4.92 N; 3.53 S; 16.15

Found: C; 54.39 H; 4.93 N; 3.79 S; 15.96

Example 93 - 156

The compounds which were shown in Tables 23 to 30 were synthesized in a manner similar to those described in Example 92.

R¹ ↓ SO₃NH → COOH (Ia)

Elemental analysis	ı	C ₂₆ H ₂₂ N ₂ O ₅ S Calc. C:65.81 H:4.67 N:5.90 S:6.76 Foun.C:65.34 H:4.90 N:5.56 S:6.40	_	-	ı	-	C ₂₆ H ₂₀ N ₂ O ₆ S•0.4H ₂ O Calc. C:63.00 H:4.23 N:5.65 S:6.47 Foun.C:62.99 H:4.32 N:5.82 S:6.76	C ₂₅ H ₂₁ N ₃ O ₄ S•0.8H ₂ O Calc. C:63.36 H:4.81 N:8.87 S:6.77 Foun.C:63.45 H:4.92 N:8.77 S:6.57
IR (v cm·¹) (KBr)	1590,1316 1137	1747,1323 1134	1724,1325 1135	1739,1336 1163	1710,1511 1329,1161	1725,1618 1373,1163	1706,1606 1350,1164	1735,1633 1321,1173
mp (decomp.) (C)	165-170	. 223-226	216-218	111-114	178-180	105-108	>250	176-177
*	R	R	R	Ж	R	R	R	R
R 18	√ >⊃≡⊃- √	H3CO-{_}-CEC-{_}-	-{_}о≡о-{_}он	H₃coco-{_}-C≡C-{_}-	F-_>-C=C-_>	-C≡C-{_}-C≡C	-{_}с≣с-{_}-ооон	H ₂ N-{}C≣C-{}
R ¹	CH ₂ .	H CH ₂ .	H CH ₂ .	N N N N N N N N N N N N N N N N N N N	CH ₂ .	HD I CH2-	-ZHO N	CH ₂ -
Example No.	9.3	9.4	9 2	9 6	2 6	8 6	66	100

	(la)
<u>-</u> cc-	18-SO2NH COOH

Table 24									
	Elemental analysis	C ₂₆ H ₂₂ N ₂ O ₄ S-0.2H ₂ O Calc. C:67.57 H:4.89 N:6.06 S:6.94 Foun.C:67.66 H:4.77 N:6.09 S:6.71	ļ	l	1	ļ	C ₁₉ H ₁₈ N ₂ O ₆ S•0.1H ₂ O Calc. C:56.46 H:4.54 N:6.93 S:7.93 Foun.C:56.30 H:4.37 N:7.14 S:7.85		1
(la)	IR (v cm ⁻¹) (KBr)	1736,1618 1398,1168	1735,1654 1399,1164	1732,1631 1372,1148	1600,1558 1336,1171	1795,1718 1331,1166	1719,1595 1344,1167	1728,1631 1372,1148	1728,1332 1172
R¹ ⁸ -SO ₂ NH → COOH (I	mp (decomp.) (C)	227-229	230-233	234-236	>200 decomp.	146-149	231-232	166-169	163-165
R NoonH	*	æ	æ	æ	R	R	_ _K	R	R
R ¹⁸ .S	8 1 H	H3C-{_}_C≡C-{_}_}	-{_>о≘о-{_>о≘он	MB2N CEC	-{_}C≡C{_}-O5€H	-{_}c≘c-{_}-costH	O2N-{}C=C-{}	H_2N $C \equiv C$	-{_}о≣о-{_}он
	R ¹	TN S	H CH ₂ -	CH.	H CH2-	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	(СН ₃) ₂ СН-	(CH ₃) ₂ CH-
:	Example No.	101	102	103	104	105	106	107	108

T10610

دی ا				•			T		
	Elemental analysis	l		C ₂₁ H ₂₃ NO ₅ S•1.3H ₂ O Calc. C:59.36 H:6.07 N:3.30 S:7.55 Foun.C:59.36 H:6.06 N:3.50 S:7.44	I	l	1	C ₂₃ H ₁₈ FNO ₄ S ₂ 0.3H ₂ O Calc. C:64.41 H:4.37 F:4.43 N:3.27 S:7.48 Foun.C:64.37 H:4.38 F:4.96 N:3.31 S:7.24	I
	IR (\(\nu\) cm ⁻¹) (KBr)	1720,1656 1319,1165	1724,1635 1366,1158	1711,1683 1600,1328 1159	1732,1680 1329,1167	1735,1651 1348,1165	1727,1604 1335,1182	1725,1663 1399,1197	1728,1332 1172
	mp (decomp.) (C)	187-189	111-114	161-162	157-159	133-136	183-185	166-168	163-165
3	*	R	R	R	R	R	R	R	R
	R 18	H³C-{}C≣C-{}	-{_}-c≡c-{_}-	H3CO-{_}-C≣C-{_}	H ₃ CO-{}C≣C-{}	-{_}-C≡C-{_}-O056H	-{_}>-c≡c-{_}>-0¢H	F-{_}-CEC-{_}-	-С≣С-С
	R 1	(СН₃)₂СН-	(CH ₃) ₂ CH.	.Сн ₃) ₃ С-	CH ₃ CH ₂ (CH ₃)CH-	CH₂-	CH₂-	-2HO-()	(CH ₃) ₂ CH .
	Example No.	1 0 9	1 1 0	111	112	113	114	115	116

	Elemental analysis	-	l	I	l	I	1	l	C ₁₈ H ₁₉ NO ₅ S ₂ •0.2H ₂ O Calc. C:54.45 H:4.92 N:3.53 S:16.15 Foun.C:54.39 H:4.93 N:3.79 S:15.96
(ia)	.IR (v cm ⁻¹) (KBr)	1720,1656 1319,1165	1724,1635 1366,1158	1585,1318 1153	1605,1523 1340,1151	1604,1524 1336,1173	1721,1620 1339,1163	1729,1675 1340,1168	1710,1604 1351,1216
R ¹⁸ -SO ₂ NH + COOH (I	mp (decomp.) (C)	187-189	111-114	167-169	. 1	1	103-106	180-182	147-148
- \HN2C	*	R	R	H.	R	R	R	R	R
P. ¹⁸ .S.	R 18	H3C-{}-C≡C-{}}-	F-{}-C≡C-{}	CEC CS	$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - C \equiv C - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ NO_2	H₃CO-{}-C≣C-{_}>	-{\$}_0≡0-{-}}-	-{\$}_⊃≡⊃-{_}>-5#	H3CO-{_}C≣C-{_}}
	-2	(CH ₃) ₂ CH-	CH ₂ .	CH ₂ .	TX CH2	CH ₂ .	CH2.	TX TX TX	(CH ₃) ₂ CH-
	Example No.	117	118	1 1 9	120	121	122	123	124

R¹⁸-SO₂NH COOH (la)

21									
1,177	Elemental analysis	C ₁₈ H ₁₉ NO ₄ S ₂ •0.2H ₂ O Calc. C:56.73 H:5.13 N:3.68 S:16.83 Foun.C:57.03 H:5.30 N:3.89 S:16.56	-	C ₂₂ H ₁₈ NO ₅ S ₂ •0.2H ₂ O Calc. C:59.36 H:4.39 N:3.15 S:14.41 Foun.C:59.43 H:4.61 N:3.25 S:14.02	-	C ₂₁ H ₁₆ FNO ₄ S ₂ Calc. C:58.73 H:3.75 F:4.42 N:3.26 S:14.93 Foun.C:58.66 H:3.93 F:4.52 N:3.33 S:14.41	l	-	-
	IR (v cm ⁻¹) (KBr)	1712,1350. 1163	1710,1499 1356,1165	1695,1334 1184	1710,1329 1180	1734,1699 1324,1105		I	l
	mp (decomp.) (C)	157-158	154-156	149-150	161-164	155-158	1	ŧ	1
	*	R	æ	R	R	R	R	æ	æ
C	R.18	-√S ⊃=o-√_)-o₅н	F-CEC-CS	H3CO-{_}-C≣C-{_}	-{\$}-C≣C-{\$}	F-()-CEC-()-	°H20 - H20	—{	CEC C
	-	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	-cH ₂ -	CH ₂ -	CH ₂ -CH ₂ -	СМ₂-	-ZHD-CH2-	-ZHD-CH2-
	Example No.	1 2 5	126	127	128	129	130	131	1 3 2

T/0640

R¹8-SO₂NH → COOH (Ia)

	Elemental analysis	1	•	-	· •.	-	-	_	
(ia)	IR (\(\nu\) cm \(^1\) (KBr)	ı	-	ı	ı	ı	l v	1	-
H. 30214 + 0000 - H	mp (decomp.) (C)	l	ı	•	ı	I	· I	. I	ı
Jakn	*	R	R	R	R	R	R	R	R
Sal	R ! 8	C=C-{}	{}⊃≘⊃- ^ç (²н⊃)²н⊃	-{_}_5=5-{_}oosen	~\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F-CEC-CS		CI-CEC-CS	—⟨\$_О≡С-{_}_Он
	R 1	⟨}-сн₂-	-сн₂-	CH ₂ -CH ₂ -	-ZH2−CH2-	СН₂-	CH2-	CH ₂ -	-ZHD-CH2-
	Example No.	1 3 3	134	135	136	137	138	139	140

T10650

	(la)
<u>_</u> c-	R ¹⁸ -SO ₂ NH COOH

				mn (downn)		
R' R'8	R 18		*	mp (decomp.) (C)	IK (v cm·¹) (KBr)	Elemental analysis
CH2- CH2- CEC- (S)		1	R	l	ŧ	-
CH2-CH2-		1	R	ı	ŧ	-
(<u>}</u>	R	1	-	l
CH2-CH2-	\$-0=0-{\}	S	24	l	_	1
CH2-CH2-			æ	ı	i	-
CH2-CH2-)	æ		-	
СН2- СЭ-СН2-		$\mathbb{R}^{\mathbb{Z}}$	R	1	1	ľ
(S	æ	t	ı	ţ

Elemental analy	-	-	į	ţ	į	l	l	!
IR (\(\nu\) cm ⁻¹) (KBr)	ı	1	-	1	1	l	ı	1
mp (decomp.) (C)	ı	-	-	l	ı	l	l	-
*	R	R	R	R	R	R	R	R
R 18	H ₂ NOC - CEC - S	—{\$ — С≡С —{ — Эно	$O_2N - C = C - C$	H_2N $C \in C$	MB2N CEC	M80 ₂ S - C=C - S	HS CEC SH	NC CEC S
R.	CH₂-	CH₂-	CH2-	CH₂-	CH₂-	СН₂-	СН₂-	CH2-CH2-
	R 1 8 mp (decomp.) IR (ν cm.¹) (KBr)	$R^{18} \qquad * \qquad mp (decomp.) \qquad IR (\nu cm.¹) $ $CH_2 \qquad H_2NOC \swarrow C = C \swarrow R \qquad - \qquad$	$CH_{2^{-}} \qquad \begin{array}{c cccc} R^{18} & * & mp (decomp.) & IR (\nu cm^{-}) \\ \hline CH_{2^{-}} & H_{2}NOC & & & & \\ \hline CH_{2^{-}} & H_{2}NOC & & & & \\ \hline CH_{2^{-}} & OHC & & & & \\ \hline CH_{2^{-}} & OHC & & & \\ \hline \end{array}$	R i R i B mp (decomp.) IR (ν cm.1) (KBr)	R ! R ! # mp (decomp.) IR (ν cm.¹) \nearrow -CH2- H2NOC \nearrow -CEC R - \nearrow -CH2- OHC R - \nearrow -CH2- OHC R - \nearrow -CH2- O2N R - \nearrow -CH2- R - - \nearrow -CH2- R - -	R 1 R 18 R 18 R 16 CH2 CH2 H2NOC CEC S R	R 1 R 1 B (ν cm ⁻¹) (KBr) CH2- CH3- CH3-	R1 R1 is * mp (decomp.) IR (ν cm·1) (KBr) ρ -CH2 H2NOC \leftarrow ρ -CEC \leftarrow R - - ρ -CH2 OHC \leftarrow ρ -CEC \leftarrow R - - ρ -CH2 OHC \leftarrow ρ -CEC \leftarrow R - - ρ -CH2 M62N \leftarrow ρ -CEC \leftarrow R - - ρ -CH2 M602S \leftarrow ρ -CEC \leftarrow R - - ρ -CH2 M602S \leftarrow ρ -CEC \leftarrow R - - ρ -CH2 HS \leftarrow ρ -CEC \leftarrow R - -

Example No.

COLUMBU OFEED

5

10

15

Ia-2-66, Ia-2-67 Process 1 ($R^2 = CH_3$)

To a solution of 150 mg (0.33 mmol) of compound (XVIII-2) in 2 ml of dimethylformamide which was synthesized the same manner as those described in Example 96 was added 227 mg (5 x 0.33 mmol) of potassium carbonate and 0.1 ml (5 x 0.33 mmol) of methyl iodide, and the resulting mixture was stirred overnight at room temperature. The reaction mixture was poured into water and extracted with ethyl The organic layer was washed with water, dried over Na₂SO₄, and acetate. concentrated in vacuo to give 373 mg of N-methyl derivative as an oil. Yield 91%.

Elemental analysis C24H23NO5S2

Calcd. : C; 61.39 H; 4.94 N; 2.98 S; 13.66

XVIII-2

Found: C; 61.22 H; 5.18 N; 2.93 S; 13.27

Further, a solution of 140 mg of the above oily compound which was obtained the above process in 2 ml of methanol was added 0.6 ml of 1N NaOH, and the resulting mixture was stirred overnight at room temperature. The reaction mixture was acidified with 2N HCl and extracted with ethyl acetate. The organic layer was washed with water, dried over Na₂SO₄, and concentrated in vacuo to give 105 mg of compound (Ia·2·66) (R= Me). Yield 77 %. mp. 185 · 186℃.

20 Elemental analysis C23H21NO5S

5

MENCO TENTOPIO

Calcd. : C; 60.64 H; 4.65 N; 3.07 S; 14.08

Found: C; 60.56 H; 4.84 N; 3.01 S; 13.94.

IR (KBr, v max cm⁻¹): 3600-2300br, 3426, 2203, 1710, 1604, 1503, 1344, 1151.

NMR (d₆-DMSO, δ ppm) : 2.88(s, 3H), 2.93(dd, J=12.0, 10.2 Hz, 1H), 3.19 (dd, J=14.2, 5.6 Hz, 1H), 3.81(s, 3H), 4.74(dd, J=5.4, 10.2 Hz, 1H), 6.99-7.04(m, 2H), 7.20-7.35(m, 7H), 7.52-7.56(m, 2H), 6.90(d, J=9.0 Hz, 2H), 7.44(d, J=9.0 Hz, 2H), 7.12(d, J=4.0 Hz, 1H), 7.44(d, J=4.0 Hz, 1H).

The compound (Ia-2-67) ($R^2 = CH_2Ph$) was synthesized in the same manner as those described in Example 157,.

 $IR(KBr, v max cm^{-1}): 2200,1722,1340,1151.$ 10

> NMR (d_6 -DMSO, δ ppm): 2.94(d_6 , J=7.6, 13.8 Hz, 1H), 3.19(d_6 , J=7.2, 14.4 Hz, 1H), 3.83(s, 3H), 4.29(d, J=16.2 Hz, 1H), 4.62(d, J=16.2 Hz, 1H) (Only characteristic peaks are shown.)

Example 159 (Method C)

Process 1

15

20

To a solution of 500 mg (1.4 mmol) of compound(XVII-2) which was obtained Example 96 in 12 ml of dry tetrahydrofuran was added 387 mg (2 x 1.4 mmol) of powdery potassium carbonate, 319 mg (1.5x1.4 mmol) of 4-methoxyphenylboronic acid and 81 mg (0.05 x 1.4 mmol) of tetrakis(triphenylphosphine)palladium. The resulting mixture was stirred under argon atmosphere for 48 h at 75°C. The reaction mixture was diluted with ethyl acetate. The organic layer was washed with 1N HCl, 5% NaHCO₃ aq., and water, dried over Na₂SO₄, and concentrated in vacuo. The residue

was column chromatographed on silica gel. The fractions eluting with n-hexane / ethyl acetate = 3/1 were collected and recrystallized from n-hexane to give 447 mg of the desired compound (XIX-1). Yield 83 %. mp. 122-123℃.

Elemental analysis C17H21NO5S2

Calcd. : C; 53.25 H; 5.52 N; 3.65 S; 16.72

Found: C; 53.26 H; 5.50 N; 3.69 S; 16.63

 $[\alpha]_D$ -21.7±0.6 (c=1.000 DMSO 25°C)

IR (KBr, $v \max cm^{-1}$): 1735,1605,1505,1350,1167,1136

NMR (CDCl₃, δ ppm): 0.90(d, J=7.0 Hz, 3H), 1.00(d, J=6.6 Hz, 3H), 2.10(m, 1H), 3.54(s, 3H), 3.85(s, 3H), 3.87(dd, J=5.0, 10.2 Hz, 1H), 5.20(d, J=10.2 Hz, 1H), 6.94(d, J=9.0 Hz, 2H), 7.52(d, J=9.0 Hz, 2H), 7.11(d, J=4.0 Hz, 1H), 7.49(d, J=4.0 Hz, 1H).

Process 2

5

10

15

To a solution of 390 mg (1.01 mmol) of compound (XIX-1) in 8ml of tetrahydrofuran and 8ml of methanol was added 5.1 ml of 1N NaOH, and resulting mixture was stirred at 60℃ for 6 h. The reaction mixture was concentrated in vacuo to remove an organic solvent. The resulting residue was diluted with ethyl acetate. The mixture was acidified with aqueous solution of citric acid and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo to give 373 mg of compound (Ia-3-1). Yield 100%. mp. : 174 -

20 176℃

 $IR(KBr, v \max cm^{-1}): 1735, 1503, 1343, 1163.$

Example 160 - 175

The compounds which were shown in Tables 31 to 32 were synthesized in a manner similar to those described in Example 159,.

R¹⁸-SO₂NH COOH (Ia)

1				-					
	Elemental analysis	I	1	I	C ₂₂ H ₂₀ N ₂ O ₄ S ₃ ·0.4H ₂ O Calc. C:55.07 H:4.37 N:5.84 S:20.05 Foun.C:55.35 H:4.43 N:6.04 S:19.65	1	į	C ₁₅ H ₁₆ FNO ₄ S ₂ •0.1H ₂ O Calc. C:50.15 H:4.55 F:5.29 N:3.90 S:17.85 Foun.C:49.99 H:4.58 F:5.22 N:4.05 S:17.77	C ₁₆ H ₁₉ NO ₄ S ₃ Calc. C:49.85 H:4.97 N:3.63 S:24.95 Foun.C:49.70 H:5.00 N:3.93 S:24.96
	IR (v cm·1) (KBr)	1667,1337 1180	1670,1339 1194	1725,1598 1371,1185	1735,1341 1159	1735,1503 1343,1163	1713,1353 1163	1702,1504 1352,1168	1747,1324 1159
	mp (decomp.) (C)	96-66	157-159	168-171	226-230	174-176	165-167	146-147	157-159
	*	R	R	R	R	R	В	R	æ
	R 18	-{S}-{S}-005€H	H3C	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H ₃ CS	~{\$}~{_}}~00°H	√S> ⊃ ⁶ H	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H ₃ CS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Z.	TX B	CH.	N N CH2	TX B	-но²(снэ)	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	-H2 ² (6H3)
	Example No.	160	161	162	163	164	165	166	167

R¹8-SO₂NH COOH (Ia)

Example No.	<u>~</u>	R 18	*	mp (decomp.) (C)	IR (v cm·¹) (KBr)	Elemental analysis
168	CH2-CH2-	H ₃ CO-{}	24	161-165	1735,1698 1374,1163	C ₂₀ H ₁₉ NO ₅ S ₂ Calc. C:57.54 H:4.59 N:3.35 S:15.36 Foun.C:57.62 H:4.72 N:3.52 S:15.27
169	CH2-CH2-	H ₃ C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W.	166-167	1713,1609 1378,1194	C ₂₀ H ₁₉ NO ₄ S ₂ Calc. C:59.83 H:4.77 N:3.49 S:15.97 Foun.C:59.77 H:4.86 N:3.61 S:15.86
170	CH ₂ .	r S	æ	174-175	1721,1654 1365,1148	C ₁₉ H ₁₆ FNO ₄ S ₂ Calc. C:56.28 H:3.98 F:4.09 N:3.45 S:15.82 Foun.C:56.33 H:4.09 F:4.65 N:3.65 S:15.84
171	-CH ₂ -	H ₃ CS	x	203-205	1750,1730 1428,1325 1155	C ₂₀ H ₁₉ NO ₄ S ₃ ·0.2H ₂ O Calc. C:54.95 H:4.47 N:3.20 S:22.00 Foun.C:55.05 H:4.52 N:3.34 S:22.04
172	CH ₂ -	H ₂ N ₄ H	R	I	1	l
173	-CH2-	Me ₂ N N ₂ eM	æ	-: -	1	l
174	-CH ₂ -	F ₃ C	æ	l	Į.	i
175	-2HDCH2-	NC \\ S	æ	l	ţ	-

Example 176 (Method D)

Process 1

5

10

To a solution of 10 g (47.68 mmol) of D-valine tert-butyl ester hydrochloride (XV-3) in 100 ml of dichloromethane was added 15.7 ml (3 x 47.68 mmol) of Nmethylmorpholine and 14.1 g(1.2 x 47.68 mmol) of 4-nitrobenzenesulfonyl chloride under ice-cooling. After being stirred for 5 h at room temperature the reaction mixture was washed with 2N HCl, 5% NaHCO₃, water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo, and the resulting residue was recrystallized from dichloromethane / n-hexane to give 13.3g of the desired compound (XX-1). Yield 77.8%. mp. 89-90℃.

Elemental analysis C₁₅H₂₂N₂O₆S

Calcd. : C; 50.27 H; 6.19 N; 7.82 S; 8.95

Found: C; 50.04 H; 6.10 N; 7.89 S; 8.84

 $[\alpha]_D$ -2.9±0.8(c=0.512 DMSO 23°C) 15

IR(KBr, v max cm⁻¹): 3430br, 3301, 1722, 1698, 1525, 1362, 1348, 1181, 1174, 1159.

20

25

Process 2

A solution of 13.29 g (37.08 mmol) of compound (XX-1) in 200 ml of methanol was hydrogenated using 10% Pd/C (1g) for 2h at room temperature. The reaction mixture was filtered off and the filtrate was concentrated in vacuo. The residue was recrystallized from acetone / n-hexane to give 11.5g of amine derivative (XXI-1). Yield 94.4%. mp. 164-166℃

Elemental analysisC₁₅H₂₄N₂O₄S

Calcd. : C; 54.86 H; 7.37 N; 8.53 S; 9.76

Found: C; 54.84 H; 7.33 N; 8 63 S; 9.50

10 $[\alpha]_D + 10.3 \pm 1.0 (c=0.515 DMSO 23^{\circ})$

 $IR(KBr, v max cm^{-1}): 3461, 3375, 1716, 1638, 1598, 1344, 1313.$

NMR(d-DMSO, δ ppm) : 0.80(d, J=6.8 Hz, 3H), 0.82(d, J=6.6 Hz, 3H), 1.23(s, 9H), 1.83(m, 1H), 3.30(m, 1H), 5.86(s, 2H), 6.56(d, J=8.8 Hz, 2H), 7.36(d, J=8.6 Hz, 2H), 7.47(d, J=9.6 Hz, 1H)

15 Process 3

To a solution of 328 mg (1mmol) of compound (XXI-1) in 10 ml of dichloromethane was added 0.33 ml (3 x 1 mmol) of N-methylmorpholine and 280 mg (1.5 x 1 mmol) of 4-(methylthio)benzoyl chloride under ice-cooling. The reaction mixture was stirred overnight at room temperature. To the reaction mixture was added ethyl ether and precipitation were collected and washed with ice-water and ethyl ether, The solid were recrystallized from acetone / ethyl ether to give 433 mg of the desired compound (XXII-1). Yield 90.5%. mp. 235-238℃.

Elemental analysisC23H30N2O5S2

Calcd. : C; 57.72 H; 6.32 N; 5.85 S; 13.40

Found: C; 57.63 H; 6.28 N; 5.86 S; 13.20

 $[\alpha]_D +5.7 \pm 0.9 (c=0.512 DMSO 25^{\circ})$

 $IR(KBr, v \max cm^{-1}): 3366, 3284, 1713, 1667, 1592, 1514, 1498, 1341, 1317.$

NMR(d₆-DMSO, δ ppm) : 0.82(d, J=6.6 Hz, 3H), 0.84(d, J=6.8 Hz, 3H), 1.22(s, 9H), 1.91(m, 1H), 2.55(s, 3H), 3.32(s, 3H), 3.44(dd, J=6.2, 8.6 Hz, 1H), 7.40(d, J=8.6 Hz, 2H),

7.73(d, J=8.6 Hz, 2H), 7.90-8.01(m, 5H), 10.48 (s, 1H).

Process 4

5

10

To a solution of 405 mg (0.85 mmol) of compound (XXII-1) in 3 ml of dichloromethane was added 3.3 ml (50 x 0.85 mmol) of trifluoroacetic acid and resulting mixture was stirred for 2 h at room temperature. The reaction mixture was concentrated in vacuo and the resulting residue was washed with ethyl ether to give 340 mg of the desired compound (Ia-4-1). Yield 94.7 %. mp. 231-234℃

 $IR(KBr, v \max cm^{-1}): 1748, 1655, 1592, 1323, 1161.$

Elemental analysis C₁₉H₂₂N₂O₅S₂ · 0.1CF₃COOH

Calcd. : C; 53.14 H; 5.13 N; 6.46 S; 14.78

Found: C; 53.48 H; 5.31 N; 6.57 S; 15.06

Example 177 - 208

The compounds which were shown in Tables 33 to 36 were synthesized in a manner similar to those described in Example 176.

T10750

Example No.	R¹	⁻ R 18	*	mp (decomp.) (C)	IR (v cm ⁻¹) (KBr)	Elemental analysis
177	CH2.	-_\H_9-\(\)	R	215-217	1732,1641 1341,1163	1
178	H CH ₂ .	H3CO-(-)-O2FH	R	233-234	1726,1655 1323,1177	C ₂₅ H ₂₃ N ₃ O ₆ S·0.9H ₂ O Calc. C:58.91 H:4.90 N:8.24 S:6.29 Foun.C:58.97 H:5.07 N:7.95 S:6.10
179	H CH2.	-{H_9-{	æ	216-218	1723,1633 1361,1149	
180	N N N N N N N N N N N N N N N N N N N	~____\\^2o	24	211-213	1719,1629 1340,1156	C ₂₄ H ₂₀ N ₄ O ₇ S+1.1H ₂ O Calc. C:54.56 H:4.24 N:10.60 S:6.07 Foun.C:54.51 H:4.32 N:10.83 S:6.15
181	IX OF	(H3C)2N-C-N-C)-N2(D8H)	~	236-238	1732,1653 1399,1199	C ₂₆ H ₂₆ N ₄ O ₅ S•0.9H ₂ O Calc. C:59.73 H:5.36 N:10.72 S:6.13 Foun.C:59.58 H:5.23 N:10.85 S:6.47
182	N N N N N N N N N N N N N N N N N N N	H3C-C-N-S-H	~	240-244	1731,1656 1591,1327 1160	C ₂₅ H ₂₃ N ₃ O ₅ S-0.9H ₂ O Calc. C:60.82 H:5.06 N:8.51 S:6.49 Foun.C:60.83 H:5.19 N:8.86 S:6.66
183	CH ₂ .	-K-S-(-)-18	84	215-218	1727,1668 1590,1316 1154	C ₂₄ H ₂₀ BrN ₃ O ₅ S•0.6H ₂ O Calc. C:52.11 H:3.86 Br:14.44 N:7.60 S:5.80 Foun.C:52.13 H:4.04 Br:14.57 N:7.43 S:5.70
184	-4HD	H ₃ CS-()-S-N-()-	æ	244-249	1728,1653 1593,1323 1159	C ₂₅ H ₂₃ N ₃ O ₅ S ₂ •0.7H ₂ O Calc. C:57.50 H:4.71 N:8.05 S:12.28 Foun.C:57.63 H:4.79 N:8.00 S:12.08

7,0760

R1 COOH	

Elemental analysis	C ₂₄ H ₂₀ FN ₃ O ₅ S•0.6H ₂ O Calc. C:58.55 H:4.34 F:3.86 N:8.54 S:6.51 Foun.C:58.67 H:4.51 F:3.77 N:8.42 S:6.47	C ₂₃ H ₂₂ N ₂ O ₆ S Calc. C:60.78 H:4.88 N:6.16 S:7.05 Foun.C:60.50 H:4.99 N:6.14 S:7.31	C ₂₂ H ₁₉ N ₃ O ₇ S Calc. C:56.29 H:4.08 N:8.95 S:6.83 Foun.C:56.01 H:4.09 N:8.93 S:6.75	C ₂₂ H ₂₀ N ₂ O ₅ S-0.5CF ₃ COOH Calc. C:57.37 H:4.29 N:5.82 S:6.66 Foun.C:57.53 H:4.45 N:5.75 S:7.11	C ₂₂ H ₁₉ BrN ₂ O ₅ S·CF ₃ COOH Calc. C:46.69 H:3.27 Br:12.94 N:4.54 S:5.19 Foun.C:46.79 H:3.41 Br:12.86 N:4.57 S:5.37	C ₂₃ H ₂₂ N ₂ O ₅ S Calc. C:63.00 H:5.06 N:6.39 S:7.31 Foun.C:62.70 H:5.13 N:6.36 S:7.36	C ₂₃ H ₂₂ N ₂ O ₅ S ₂ •0.8CF ₃ COOH Calc. C:52.59 H:4.09 N:4.99 S:11.42 Foun.C:52.77 H:4.24 N:5.12 S:11.58	C ₂₂ H ₁₉ FN ₂ O ₅ S Calc. C:59.72 H:4.33 F:4.29 N:6.33 S:7.25 Foun.C:59.59 H:4.42 F:4.30 N:6.37 S:7.24
IR (\(\nu\) cm ⁻¹) (KBr)	1730,1651 1603,1333 1161	1723,1651 1591,1322 1161	1719,1672 1593,1327 1159	1748,1658 1592,1325 1159	1743,1670 1591,1335 1167	1752,1726 1656,1591 1324,1160	1742,1667 1591,1334 1161	1737,1651 1598,1324 1160
mp (decomp.)	170-175	237-239	235-239	114-115	242-243	242-244	232-235	218-220
*	~	R	Я	~	æ	~	æ	8 4
R 18	F-8-N-9	-{	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	-N-9-()	-N-S-√ -N-8	-N-8-(-)-0°H	H-S-(-)-so ⁶ H	F-8-N-9-
R.	TX S	-CH2-	CH ₂ -	CH ₂ .	-CH2-	-cH ₂ -	-cH2-	CH ₂ .
Example No.	185	186	187	1 8 8	189	190	191	192

R¹ ⊢ R¹8-SO₂NH → СООН (Ia)

	(KBr) (KBr) (KBr) (KBr) (KBr) 124,16 156 156 156 160 160 1725,16 160 1748,16 748,16		3	R 18 (decomp.) (C) (C) (C) (C) (C) (C) (C) (R in (decomp.) (C) (C) (C) (C) (C) (C) (C) (
1724,1673 C ₂₁ H ₁₈ ClN ₃ O ₅ S 1592,1326 Calc. C:54.84 H: 1156 Foun.C:54.39 H:			201-203 206-208 254-256 257-229	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CI - \begin{cases} CI - \\ N = \\ CI - \\ C$
30 0			206-208	N=C-N-C-N C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1725,1682 Calc. C.55.15 H.4.19 Cl.7.33 N.8.69 S.6.63 1592,1332 Foun.C.55.25 H.4.28 Cl.7.10 N.8.80 S.6.80 1160		254-256		R - S-N-S-N-S-	H ₃ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
C ₂₄ H ₂₄ N ₂ O ₅ S-0.5H ₂ O (590,1324 Calc. C:62.46 H:5.46 N:6.07 S:6.95 Foun.C:62.42 H:5.54 N:6.26 S:6.97	_	227-229		H C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N	H ₃ C \\ _\C _\L \\ _\C _\R \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
749, 1658 C ₁₉ H ₂₂ N ₂ O ₅ S-0.2H ₂ O Calc. C:57.91 H:5.73 N:7.11 S:8.14 Foun.C:57.94 H:5.69 N:7.03 S:8.14			_		
1748,1655 C ₁₉ H ₂₂ N ₂ O ₅ S ₂ -0.1CF ₃ COOH 1592,1323 Calc. C:53.14 H:5.13 N:6.46 S:14.78 1161 Foun.C:53.48 H:5.31 N:6.57 S:15.06		231-234	R 231-234	N HO	
1749,1726 C ₁₈ H ₁₉ FN ₂ O ₅ S-0.1CF ₃ COOH 1668,1597 Calc. C:53.86 H:4.74 F:6.09 N:6.90 S:7.90 1322,1160 Foun.C:53.82 H:4.85 F:5.60 N:6.93 S:7.78	1	235-236	R 235-236	-	ч -8-н-9-
1728,1661 C ₁₈ H ₂₀ N ₂ O ₅ S ₂ 0.1H ₂ O 1591,1317 Calc. C:57.16 H:5.38 N:7.41 S:8.48 159 Foun.C:57.01 H:5.46 N:7.57 S:8.57	1	226-227	R 226-227		В
1696,1654 C ₁₉ H ₂₂ N ₂ O ₆ S-0.2H ₂ O 1591,1317 Calc. C:55.65 H:5.51 N:6.83 S:7.82 1255 Foun.C:55.63 H:5.48 N:7.03 S:7.75	•	220-221	R 220-221		R -C-N-O-

Example No.	R.	۳. ع-	*	mp (decomp.) (C)	IR (v cm ⁻¹) (KBr)	Elemental analysis
201	(CH ₃) ₂ CH-	-\\\-\\\-\\\-\\\\-\\\\\\\\\\\\\\\\\\\\	24	240-242	1726,1688 1591,1347 1166	C18H19N3O7S+0.4H2O Calc. C:50.44 H:4.66 N:9.80 S:7.48 Foun.C:50.40 H:4.55 N:9.90 S:7.44
202	(СН3)2СН-	-N-0-1-N-0-	~	229-230	1726,1663 1592,1318 1159	C ₁₈ H ₁₉ BrN ₂ O ₅ S•0.2Ethylether Calc. C:48.03 H:4.50 Br:17.00 N:5.96 S:6.82 Foun.C:48.04 H:4.61 Br:16.83 N:5.96 S:6.86
203	-0E(6H2)	H ² CO-K-9-N-9-OD ⁶ H	æ	214-216	1659,1591 1316,1159	C ₂₀ H ₂₄ N ₂ O ₆ S•0.4H ₂ O Calc. C:56.17 H:5.84 N:6.55 S:7.50 Foun.C:56.21 H:6.02 N:6.50 S:7.33
204	CH ₂ -	H ₃ C-N-S-N-N-S _H	~	236-237	1723,1679 1590,1337 1162	C ₂₁ H ₂₀ N ₄ O ₅ S-0.25CF ₃ COOH Calc. C:55.06 H:4.35 N:11.95 S:6.84 Foun.C:54.80 H:4.90 N:12.16 S:7.10
205	-ZH2−CH2-	-N-3-(N	~	272-275	1719,1672 1594,1339 1165	C ₂₁ H ₁₉ N ₃ O ₅ S Calc. C:59.28 H:4.50 N:9.88 S:7.54 Foun.C:58.84 H:4.56 N:9.71 S:7.36
206	CH2-	H ₃ C N,O C-N	æ	214-215	1733,1685 1594,1319 1154	C ₂₀ H ₁₉ N ₃ O ₆ S Calc. C:55.94 H:4.46 N:9.78 S:7.47 Foun.C:55.50 H:4.47 N:9.74 S:7.31
207	-ZHD-CH2-	- N-8-H-C-N-	Ж	217-220	1732,1679 1592,1312 1155	-
208	-CH2CH2-	-______\\\^2\	R	I	ļ	-

Example 209 (Method E)

$$\begin{array}{c|c}
O_2 H & H \\
S-N-N=C & SO_2-N & COO^tBu
\end{array}$$

$$\begin{array}{c|c}
Process 4 \\
XXV-1
\end{array}$$

Process 1

5

10

DOLECTE COLLEGE

To a solution of 20.94 g (99.8 mmol) of D-valine tert-butyl ester hydrochloride (XV-3) in 200 ml of dichloromethane was added 22 ml (2 x 99.8 mmol) of N-methylmorpholine and 20.27 g (99.8 mmol) of p-styrenesulfonyl chloride under ice-cooling. After being stirred for 15 h at room temperature, the reaction mixture was washed with 2N HCl, 5% NaHCO₃, water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo, and the resulting residue was column chromatographed on silica gel. The fractions eluting with ethyl acetate / n-hexane / chloroform = 1/3/1 were collected and washed with n-hexane to give 28.93 g of the desired compound (XXIII-1). Yield 85 %. mp. 118-120°C.

IR(KBr, v max cm⁻¹): 3419, 3283, 1716, 1348, 1168.

NMR(CDCl₃, δ ppm): 0.85(d, J=6.9 Hz, 3H), 1.00(d, J=6.6 Hz, 3H), 1.21(s, 9H), 2.04(m, 1H), 3.62(dd, J=9.8, 4.5 Hz, 1H), 5.09(d, J=9.8 Hz, 1H), 5.41(dd, J=0.5, 10.9 Hz, 1H), 5.84(dd, J=0.5, 17.6 Hz, 1H), 6.72(dd, J=10.9, 17.6 Hz, 1H), 7.49(d, J=8.4 Hz, 2H), 7.79(d, J=8.4 Hz, 2H).

Process 2

5

10

20

25

Ozone gas was bubbled through a solution of 5.09 g (15 mmol) of compound (XXIII-1) in 300 ml of dichloromethane for 15 h at -78°C. To this solution was added 22 ml (20 x 15 mmol) of methylsulfide, and the reaction mixture was allowed to warm to room temperature gradually over 80 min and concentrated in vacuo to give 6.03g aldehyde derivative (XXIV-1).

 $IR(CHCl_3, v \max cm^{-1}): 3322, 1710, 1351, 1170.$

NMR(CDCl₃, δ ppm): 0.85(d, J=6.9 Hz, 3H), 1.00(d, J=6.9 Hz, 3H), 1.22(s, 9H), 2.07(m, 1H), 3.69(dd, J=4.5, 9.9 Hz, 1H), 8.01(s, 4H), 10.08(s, 1H).

15 Process 3

To a solution of 6.02 g(15 mmol) of compound (XXIV-1) in 60 ml of ethanol and 15 ml of tetrahydrofuran was added 2.72 g (1.05 x 15 mmol) of benzenesulfonyl hydrazide at room temperature. After being stirred for 2 h, the resulting mixture was concentrated in vacuo. The residue which was obtained by concentration in vacuo was column chromatographed on silica gel and the fractions eluting with chloroform / ethyl acetate = 1/4 were collected and recrystallized from ethyl acetate to give 4.44 g of the desired compound (XXV-1). Yield from process 2.60%. mp. 163-164%.

Elemental analysis C22H29N3O6S2

Calcd. : C; 53.32 H; 5.90 N; 8.48 S; 12.94

Found: C; 53.15 H; 5.87 N; 8.32 S; 12.82

 $[\alpha]_D$ -11.6 ± 1.0(c=0.509 DMSO 23.5°C)

 $IR(KBr, v max cm^{-1}): 3430, 3274, 1711, 1364, 1343, 1172.$

NMR(CDCl₃ δ ppm): 0.84(d, J=6.9 Hz, 3H), 0.99(d, J=6.6 Hz, 3H), 1.19(s, 9H), 2.00(m, 1H), 3.63(dd, J=4.5, 9.9 Hz, 1H), 5.16(d, J=9.9 Hz, 1H), 7.50-7.68(m, 5H), 7.73(s, 1H),

7.78-7.84(m, 2H), 7.96-8.02(m, 2H), 8.16(brs, 1H).

Process 4

5

10

15

20

25

To a solution of 0.14 ml (1.11 x 1 mmol) of 4-(methylmercapto)aniline and 0.3 ml of conc. hydrochloric acid in 3 ml of aqueous 50% ethanol solution was added a solution of 78.4 mg (1.14 x 1 mmol) of sodium nitrite in 1 ml of water at 0 to 5 °C of the internal temperature and the reaction mixture was stirred for 15 min at the same temperature. To a solution of 496 mg (1 mmol) of compound (XXV-1) in 5 ml of dry pyridine was added the above reaction mixture over 8 min at -25°C. This reaction mixture was stirred for additional 4 h at -15°C to rt, poured into water, and extracted with ethyl acetate. The organic layer was washed with 2N HCl, 5% NaHCO₃, and water, dried over Na₂SO₄, and concentrated in vacuo. The residue was column chromatographed on silica gel and the fractions eluting with chloroform / ethyl acetate = 1/9 were collected to give 374 mg of the desired compound (XXVI-1). Yield 74%.

Elemental analysis C23H29N5O4S2 · 0.3H2O

Calcd. : C; 54.27 H; 5.86 N; 13.76 S; 12.60

Found: C; 54.25 H; 5.77 N; 13.87 S; 12.52

 $IR(KBr, v \max cm^{-1}): 3422, 3310, 1705, 1345, 1171.$

NMR(d₆-DMSO, δ ppm): 0.83(d, J=6.9 Hz, 3H), 0.86(d, J=7.2 Hz, 3H), 1.19(s, 9H), 2.00(m, 1H), 2.59(s, 3H), 3.54(dd, J=6.3, 9.6 Hz, 1H), 7.56(d, J=8.7 Hz, 2H), 8.00(d, J=8.6 Hz, 2H), 8.10(d, J=8.7 Hz, 2H), 8.33(d, J=9.6 Hz, 2H), 8.34(d, J=8.7 Hz, 2H).

Process 5

A solution of 353 mg of compound (XXVI-1) in 2.5 ml of dichloromethane and 2.5 ml of trifluoroacetic acid was stirred for 3 h at room temperature. The reaction mixture was concentrated in vacuo and the resulting residue was washed with ethyl ether to give 308 mg of compound (Ia-5-1). Yield 98%. mp. 194 - 195°C.

 $IR(KBr, v max cm^{-1}): 1720, 1343, 1166.$

Elemental analysis C₁₉H₂₁N₅O₄S₂ · 1.1H₂O

Calcd. : C; 48.83 H; 5.00 N; 14.99 S; 13.72

Found: C; 49.13 H; 5.25 N; 14.55 S; 13.34

Example 210 - 251

The compounds which were shown in Tables 37 to 43 were synthesized in a manner similar to those described in Example 209.

R¹¹ R¹⁸SO₂NH → CONHOH (lb)

mp (decomp.) IR (ν cm·¹) 'H-NMR(δ ppm) (C) (KBr) da-DMSO	1	2.65(dd,J=9.3,13.1Hz,1H),2.82(dd, J=5.8,13.1Hz,1H),3.86(dt,J=5.8,9.3 Hz,1H),7.72(A ₂ B ₂ q,J=8.1Hz,2H), 1634,1337,1160 8.19(A ₂ B ₂ q,J=8.1Hz,2H),8.49(d,J= 9.3Hz,1H),8.88(s,1H),10.69(s,1H)
R 18 * m	R R	N=N N. N. N
. a	IN NO.	CH ₂ -
Example No.	210	211

7/

7,0840		1H-NMR(δ ppm) da-DMSO	I	2.75(dd,J=9.3,13.7Hz,1H),2.99(dd,J=5.3,13.7Hz,1H),3.96(dt,J= 5.3,9.3Hz,1H),8.53(d,J=9.3Hz, 1H)
() () C) C, () C,)ОН (Іа)	IR (v cm·1) (KBr)	1	2400-3700br,3422,3337, 1733,1698,1347,1170
	R¹8-SO₂NH * COOH (Ia)	mp (decomp.) (C)	ı	215-216
ww	Ē	*	~	24
		۳. *-	-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	N-N.
		. R	NT CH2.	CH ₂ .

Example No.

2 1 0

83

R¹⁸-SO₂NH → COOH (Ia)

					·			
Elemental analysis	C ₂₅ H ₂₂ N ₆ O ₄ S-0.5Ethylether Calc. C:60.10 H:5.04 N:15.57 S:5.94 Foun.C:60.41 H:4.69 N:15.52 S:5.57	C ₂₄ H ₁₉ FN ₆ O ₄ S•0.4Ethylether Calc. C:57.35 H:4.32 F:3.54 N:15.67 S:5.98 Foun.C:56.74 H:4.37 F:3.47 N:15.17 S:568	C ₁₉ H ₂₁ N ₅ O ₄ S Calc. C:54,93 H:5.09 N:16.86 S:7.72 Foun.C:54.75 H:5.14 N:16.81 S:7.55	C ₁₈ H ₁₈ N ₅ O ₄ S Calc. C:53.38 H:4.83 N:17.29 S:7.92 Foun.C:53.38 H:4.80 N:17.05 S:7.67	ı	C ₂₈ H ₂₃ N ₅ O ₄ S·0.6H ₂ O Calc. C:62.70 H:4.55 N:13.06 S:5.98 Foun.C:62.61 H:4.50 N:13.29 S:5.87	C ₂₆ H ₂₁ N ₅ O ₄ S-0.2H ₂ O Calc. C:62.07 H:4.29 N:13.92 S:6.37 Foun.C:61.93 H:4.30 N:14.01 S:6.43	C ₂₅ H ₂₀ N ₆ O ₅ S ⁴ H ₂ O Calc. C:56.17 H:4.15 N:15.72 S:6.00 Foun.C:56.20 H:4.18 N:15.68 S:6.10
IR (v cm ¹) (KBr)	1734,1337 1161	1728,1338 1166	1720,1595 1338,1170	1696,1594 1349,1173	1727,1337 1163	1735,1495 1336,1160	1721,1418 1344,1163	1727,1703 1459,1332 1165
mp (decomp.) (C)	199-202	224-225	202-204	221-222	145-148	203-205	225-227	111-114
*	RS	RS	R	R	RS	24	RS	ж
R ! #	N=N N-N-N-	N=N-N-	N=N N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	N=N.N-N.N-N.N-N.N-N.N-N.N-N.N-N.N-N.N-N.	N=N.N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	N=N.N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	N=N N-N-N-N	N=N N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
<u>~</u>	5 2	N N N N N N N N N N N N N N N N N N N	(CH ₃) ₂ CHCH ₂	(СН3)2СН-	₹ - - - - - -	CH2-CH2-	_ -ŧ	CHO N CH2
Example No.	212	213	214	2 1 5	216	217	218	219

^{R¹} Р¹⁸-SO₂NH <mark>→</mark> СООН (Ia)

Elemental analysis	C ₂₅ H ₂₂ N ₆ O ₅ S Calc. C:57.91 H:4.28 N:16.21 S:6.18 Foun.C:57.77 H:4.29 N:16.01 S:6.37	C ₁₉ H ₂₁ N ₅ O ₄ S Calc. C:54.93 H:5.09 N:16.86 S:7.72 Foun.C:54.71 H:5.09 N:16.70 S:7.56	C ₂₀ H ₂₃ N ₅ O ₅ S•0.4H ₂ O Calc. C:53.06 H:5.30 N:15.47 S:7.08 Foun.C:53.13 H:5.13 N:15.12 S:7.14	1	C ₂₀ H ₂₃ N ₅ O ₅ S•0.4H ₂ O Calc. C:53.06 H:5.30 N:15.47 S:7.08 Foun.C:53.13 H:5.13 N:15.12 S:7.14	C ₁₈ H ₁₈ BrN ₅ O ₄ S•0.8H ₂ O Calc. C:43.70 H:3.99 Br:16.15 N:14.16 S:6.48 Foun.C:43.93 H:3.85 Br:15.92 N:13.87 S:6.47	_	
IR (\(\nu\) cm ⁻¹) (KBr)	1749,1719 1331,1165	1730,1693 1349,1173	1729,1693 1337,1170	1718,1601 1385,1162	1719,1304 1162	1696,1348 1171	1698,1344 1168	1757,1738 1331,1163
mp (decomp.) (C)	195-196	205-207	204-207	190 decomp.	195-197	227-228	204-207	203-205
*	R	R	R	В	В	R	R	R
R 18	H3CO - N=N - N=N	$ \underbrace{ \left\langle \right\rangle_{N=N}^{N,N} - \left\langle \right\rangle_{N=N}^{N} }_{N=N} $	H3CO () N=N N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	- $ -$ OH	H_3CO \longrightarrow $N=N$		H_3 co $\left(\right)$ $N=N$	F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
R 1	CH2-CH2-	CH ₃ CH ₂ (CH ₃)CH-	CH3CH2(CH3)CH-	(СН ₃)2СН-	(CH ₃) ₂ CH-	(СН₃)₂СН-	-Э ^{ε(г} нЭ)	CH ₂ .
Example No.	220	2 2 1	2.2.2	223	224	225	226	227

R1 COOH (Ia)

Example No.	R¹	R ! 8	*	mp (decomp.) (C)	IR (v cm·¹) (KBr)	Elemental analysis
2 2 8	- ² HO-	Br-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	R	197-199	1744,1325 1154	l
2 2 9	CH ₂ -CH ₂ -	F ₃ C \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	æ	197-198	1738,1707 1328,1169	C ₂₃ H ₁₈ F ₃ N ₅ O ₄ S Calc. C:53.38 H:3.51 F:11.01 N:13.53 S:6.20 Foun.C:53.11 H:3.55 F:10.89 N:13.66 S:6.31
230	-CH2-	$- \bigvee_{N=N}^{N=N} \bigvee_{N} N^{2}O$	R	190-191	1730,1597 1345,1161	C ₂₂ H ₁₈ N ₆ O ₆ S-0.4H ₂ O Calc. C:52.67 H:3.78 N:16.73 S:6.39 Foun.C:52.73 H:3.92 N:16.53 S:6.55
231	-4HD{	F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	æ	205-207	1730,1509 1236,1165	C ₂₂ H ₁₈ FN ₅ O ₄ S+0.2H ₂ O Calc. C:56.09 H:3.94 F:4.03 N:14.87 S:6.81 Foun.C:56.10 H:4.09 F:4.12 N:14.84 S:7.08
232	-ZHO-CH2-		R	204-206	1730,1493 1346,1164	C ₂₂ H ₁₈ CiN ₅ O ₄ S•0.6H ₂ O Calc. C:53.41 H:3.91 Ci:7.17 N:14.16 S:6.48 Foun.C:53.33 H:3.90 Ci:7.22 N:14.19 S:6.68
233	-²H⊃- ⟨ _}	H ₃ C-()-N' _N -()-O _E H	R	226-227	1732,1697 1509,1373 1345,1170	C ₂₃ H ₂₁ N ₅ O ₄ S•1.2H ₂ O Calc. C:56.94 H:4.86 N:14.44 S:6.61 Foun.C:56.88 H:4.49 N:14.31 S:6.72
234	- ² HO-	H ₃ CO \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R	214-216	1732,1697 1345,1168	C ₂₃ H ₂₁ N ₅ O ₅ S+1.7H ₂ O Calc. C:54.15 H:4.82 N:13.73 S:6.29 Foun.C:54.05 H:4.35 N:13.60 S:6.77
235	CH₂-	NC NC NC NS	ਸ਼	190-192	1731,1605 1336,1160	C ₂₃ H ₁₈ N ₆ O ₄ S·0.8H ₂ O Calc. C:56.50 H:4.04 N:17.19 S:6.56 Foun.C:56.52 H:4.16 N:17.00 S:6.52

	Elemental analysis	C ₂₆ H ₂₇ N ₅ O ₄ S Calc. C:61.77 H:5.38 N:13.85 S:6.34 Foun.C:61.59 H:5.45 N:13.89 S:6.27	C ₂₈ H ₂₉ N ₅ O ₄ S•0.3H ₂ O Calc. C:62.62 H:5.56 N:13.04 S:5.97 Foun.C:62.46 H:5.52 N:13.43 S:6.28	-	Ι	C ₂₄ H ₁₉ BrN ₆ O ₄ S-1.7H ₂ O Calc. C:48.20 H:3.78 Br:13.36 N:14.05 S:5.36 Foun.C:48.27 H:3.75 Br:13.16 N:14.11 S:5.38	C ₂₅ H ₂₂ N ₆ O ₄ S•0.6H ₂ O Calc. C:58.49 H:4.56 N:16.37 S:6.25 Foun.C:58.52 H:4.69 N:16.71 S:5.90	C ₁₉ H ₂₁ N ₅ O ₄ S•0.8H ₂ O Calc. C:53.09 H:5.30 N:16.29 S:7.46 Foun.C:53.20 H:5.14 N:16.06 S:7.70	G ₁₈ H ₁₈ FN ₅ O ₄ S·0.2H ₂ O Calc. C:51.11 H:4.38 F:4.49 N:16.55 S:7.58 Foun.C:50.90 H:4.37 F:4.89 N:16.28 S:7.46
	IR (\(\nu\) cm ⁻¹) (KBr)	1738,1328 1314,1149	1739,1512 1329,1178	1587,1506 1242,1159	1713,1514 1341,1159	1744,1716 1490,1327 1159	1718,1685 1334,1170	1716,1346 1165	1746,1726 1715,1334 1159
	mp (decomp.) (C)	224-226	225-227	182-184	226-228	205-207	199-201	206-207	208-209
, [*	R	R	R	8	æ	R	R	R
	R 18	-	$= \bigvee_{N=N}^{N-N} - \bigvee_{N=N}^{N} - \bigvee_{N=N}^{N-N} - \bigvee_{N=N}^{N} - \bigvee_{N=N$	O-O-()-N-N-N-()-O-()	$- \bigvee_{N=N}^{N-N} \bigvee_{i=N}^{N-N} OH$	Br-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	H ₃ C — N=N N=N N _N — D _E H	$H_3C - \bigvee_{N=N}^{N=N} V_{N-N} - \bigvee_{N=N}^{N=N} V_{N-N} + V_{N-N} - V_{N-N} -$	F-(
	R¹	-2H2−<	CH₂-	⟨}-CH₂-	-ZHO-	CP.	H CH ₂ .	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-
	Example No.	236	237	238	2 3 9	240	241	242	243

Table 43									
	Elemental analysis	I	C ₁₉ H ₂₁ N ₅ O ₄ S ₂ *1.1H ₂ O Calc. C:48.83 H:5.00 N:14.99 S:13.72 Foun.C:49.13 H:5.25 N:14.55 S:13.34	C ₂₃ H ₂₁ N ₅ O ₄ S ₂ -0.2H ₂ O Calc. C:55.34 H:4.32 N:14.03 S:12.85 Foun.C:55.37 H:4.35 N:14.00 S:12.86	C ₂₅ H ₂₂ N ₆ O ₄ S ₂ ·1.1H ₂ O Calc. C:54.16 H:4.40 N:15.16 S:11.57 Foun.C:54.20 H:4.66 N:15.09 S:11.62	C ₁₈ H ₁₆ N ₆ O ₄ S-0.4H ₂ O Calc. C:51.52 H:4.04 N:20.03 S:7.64 Foun.C:51.34 H:3.96 N:19.76 S:8.02	ı		ı
(la)	IR (v cm·¹) (KBr)	1696,1348 1171	1720,1343 1166	1753,1497 1325,1165	1718,1677 1495,1333 1170	1698,1430 1327,1163	-	1	I
^{R¹} R¹ ⁸ ·SO₂NH <mark>→</mark> СООН ((mp (decomp.) (C)	223-225	194-195	222-224	213-216	>220		ı	ı
R ↓ SO ₂ NH →	*	æ	22	ж	В	R	ж	R	æ
R ¹⁸ ·S	R 18		H ₃ CS \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H ₃ CS \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	H3CS - N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	N=N-NH	$- \bigvee_{N=N}^{N-N} - \bigvee_{N=N}^{N-N-N} + V^{2}H$	HS-N-N-N-SH	OHC N=N, N=N
·	R¹	(СН ₃) ₂ СН-	(CH ₃) ₂ CH-	CH ₂ -CH ₂ -	() H CH ₂ .	CT CH2.	CH ₂ -CH ₂ -	CH2-	⟨_}-CH₂-
	Example No.	244	245	246	247	248	249	250	251

Example 252 - 266

The compounds which were shown in Tables 44 to 45 were synthesized in a manner similar to those described in Example 157.

DOLECTED .. CZECOS

Example No.	R.	R -8	R 19	R 20	*	mp (decomp.) (C)	IR (v cm ⁻¹) (KBr)	'H-NMR(ô ppm) ds-DMSO
252	-н⊃²(сн3)		ည်	Н000-	24	ı	1715,1583 1340,1151	0.96(d,J=6.6Hz,3H) 1.01(d,6.8Hz,3H) 2.87(s,3H) 4.17(d,J=10.4Hz,1H)
253	(CH ₃) ₂ CH-	⟨ }•-⟨⟩	-CH ₃	-соинон	R	110-111	3323,1678 1328,1150	0.71(d,J=6.6Hz,3H) 0.88(d,6.4Hz,3H) 2.88(s,3H) 3.48(d,J=10.8Hz,1H)
254	-HO ^Z (EHЭ)		CH₂-	-соинон	В	148-150	3344,1684 1323,1149	0.55(d,J=6.8Hz,3H) 0.82(d,6.6Hz,3H) 3.74(s,3H)
255	(CH ₃) ₂ CH-		-(CH ₂) ₄ NH ₂	нооэ-	R	l	3700-2200br 1681,1319 1212	0.91(d,J=5.6Hz,6H) 1.52-1.69(m,4H) 3.84(d,J=10.4Hz,1H)
256	СН ₉)2СН-	N=N.N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	-CH ₃	Н000-	æ	206-207	3300-2400br 1711,1336 1185	0.95(d,J=6.6Hz,3H) 0.97(d,6.8Hz,3H) 2.89(s,3H) 4.20(d,J=10.6Hz,1H)
257	-сноно ² (сно)	N=N N-N-V	cH3-	-соон	R	132-132,5	3300-2400br 1719,1340 1153	0.92(d,J=6.6Hz,3H) 0.97(d,6.6Hz,3H) 2.84(s,3H) 4.73(t,J=7.4Hz,1H)
258	-2H2	√N=N√	-zH2{	нооэ-	R	_	3640-2400br 1736,1717 1694,1346 1162	2.78(d.d,J=13.8,7.2Hz,1H) 3.14(d.d,J=14.8,7.4Hz,1H) 4.43(d,J=16.4Hz,1H) 4.68(d,J=16.4Hz,1H)
259	-н⊃²(сн³)	H3CS-{\}-\S>-K3-KH	⁶ НЭ-	нооэ-	R	141-144	3284br,1745 1714,1323 1131	0.96(d,J=6.4Hz,3H) 0.97(d,J=6.4Hz,3H) 2.52(s,3H),2.93(s,3H)

T10920		'H-NMR(& ppm) de-DMSO	0.72(d,J=6.4Hz,3H)0.85(d =6.4Hz,3H)2.47(s,3),4.15 J=10.2Hz,1H)4.51(d,J=15 Hz,1H)4.73(d,J=15.5Hz,1	2.54(s,3H),2.78(s,3H) 2.85(d,d,J=14.0,9.4Hz,1H 3.16(d,d,J=14.0,6.0Hz,1H 4.76(d,d,J=10.0,5.8Hz,1H	
		IR (v cm·1) (KBr)	3600-2400br 1718,1344 1151	3600-2400br 1719,1655 1592,1320 1154	
Scale Cate		mp (decomp.) (C)	I	1	
	8	*	24	x	_
) (" (") (") (") (") (")	R¹8SO₂N ♣ R²º R¹8 SO₂N ♣ R²º	R 20	нооэ-	Н000-	HOOJ
m	Œ	R 19	CH2-CH2-	⁶ НЭ-	HJ()
		R 18	H ₃ CS-{}SD ^E H	CH ₂ - H ₃ CS-()-C-N-()-N-()-N-()-N-()-N-()-N-()-N-()	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		R 1	(СН ₃)₂СН-	CH2-CH2-	CH.
		e			

Example No.	R '	R 18	R 1 9	R 20	*	mp (decomp.) (C)	IR (v cm ⁻¹) (KBr)	¹ H-NMR(δ ppm) de-DMSO	
260	(СН3)₂СН-	H ₃ CS-{\rightarrow} \sqrt{\sqrt{\rightarrow}} \sqrt{\rightarrow} \sqr	CH2-CH2-	Н000-	x	l	3600-2400br 1718,1344 1151	0.72(d,J=6.4Hz,3H)0.85(d,J=6.4Hz,3H)2.47(s,3),4.15(d,J=10.2Hz,1H)4.51(d,J=15.5 Hz,1H)4.73(d,J=15.5Hz,1H)	
261	CH ₂ - H ₃ CS-	H³cs-{_}-8-N-9-	-CH3	нооэ-	R	1	3600-2400br 1719,1655 1592,1320 1154	2.54(s,3H),2.78(s,3H) 2.85(d.d,J=14.0,9.4Hz,1H) 3.16(d.d,J=14.0,6.0Hz,1H) 4.76(d.d,J=10.0,5.8Hz,1H)	
262	CH2-CH2-	CH ₂ - H ₃ CS-\(\)\-\\\\\\\\	СН2-СН2-	H000-	Я	ı	l	l	
263	CH2-CH2-	-CH ₂ - H ₃ CO-{}-C≡C-{}	-(CH ₂)4NH ₂	Н000-	×	1	#	I	
264	CH2-	-CH₂- H₃CO-⟨⟨)-C≡C-⟨()-	°HO-	Н00Э-	æ	. 1	1	I	
265	CH2-	н₃со-{_}с≡с-{_}-	-²н⊃-⟨⟩	нооэ-	æ	I	ı	1	
266	CH2-	-CH₂- H₃CO-{_}-C≣C-{_}-	-(CH ₂)4NH ₂	НООЭ-	æ	ļ.	ı	1	

Example 267

The compounds which were shown in Tables 46 were synthesized in a manner similar to those described in Example 92.

R¹ >SO₂HN ★ R²⁰ (I)

xample No.	<u>~</u>	R 18	R 20	*	mp (decomp.) (C)	IR (v cm·1) (KBr)	'H-NWR(8 ppm) de-DMSO
267	-CH2-		-соинон в	æ	156-158	3700-2400br,3267, 2217,1671,1321,1161	2.62(dd,J=8.4,13.5Hz,1H), 2.80(dd, J=6.0,13.5Hz,1H),3.82(ddd,J=6.0, 8.4,8.7Hz,1H),8.38(d,J=8.7Hz,1H)
267	СН2-СН2-	-{\}o≡o-{\}	нооэ-	æ	176-178	2200-3700br,3430, 3292,1728,1324,1162	2.73(dd,J=9.3,13.6Hz,1H),2.96(dd, J=5.4,13.5Hz,1H),3.92(d1,J=5.4, 9.3Hz,1H),8.42(d,J=9.3Hz,1H)

5

10

15

20

25

Test examples on the compounds of the present invention are described below.

The test compounds are the ones described in the Examples and Tables.

Test example

(1) Isolation and purification of MMP-9 (92 kDa, gelatinase B)

Type IV collagenase (MMP-9) was purified according to the methods descrived in the following literature. Scott M. Wilhelm et al., J. Biol. Chem., 264, 17213-17221, (1989), SV40-transformed Human Lung Fibroblasts Secrete a 92-kDa Type IV Collagenase Which Is Identical to That Secreted by Normal Human Macrophages; Yasunori Okada et al., J. Biol. Chem., 267, 21712-21719, (1992), Matrix Metalloproteinase 9 (92-kDa Gelatinase / Type IV Collagenase) from HT 1080 Human Fibrosarcoma Cells; Robin V. Ward et al., Biochem. J., (1991) 278, 179-187, The purification of tissue inhibitor of metalloproteinase-2 from its 72 kDa progelatinase complex.

MMP-9 is secreted from human fibrosarcoma cell line ATCC HT 1080, into its culture medium when it is stimulated with 12-tetradecanoylphorbol-13-acetate (TPA). The production of MMP-9 in this culture was verified by the gelatin zymography as described in the following literature (Hidekazu Tanaka et al., (1993) Biochem. Biophys. Res. Commun., 190, 732-740, Molecular cloning and manifestation of mouse 105-kDa gelatinase cDNA). The condition medium of the stimulated HT 1080 was concentrated and was purified with gelatin-Sepharose 4B, concanavalin A-sepharose, and Sephacryl S-200. The purified pro-MMP-9 (92 kDa, gelatinase B) thus obtained gave a single positive band in the gelatin zymography. Subsequently, activated MMP-9 was obtained by treating the pro-MMP-9 with trypsin.

(2) Assay methods of type IV collagenase inhibitors

Collagenase assay was performed using the activated MMP-9 described above and the substrate supplied in the type IV collagenase activity kit (YAGAI, inc.), according to the manufacturer's protocol. The following 4 assays are performed per compound (inhibitor).

- (A) substrate (type IV collagenase), enzyme (MMP-9), inhibitor
- (B) substrate (type IV collagenase), inhibitor
- (C) substrate (type IV collagenase), enzyme (MMP-9)
- (D) substrate (type IV collagenase)
- According to the manufacturer's protocol, fluorescent intensity was measured and percent inhibition was determined by the following equation.

Inhibition (%) = $\{1 \cdot (A \cdot B) / (C \cdot D)\} \times 100$

 IC_{50} is a concentration at which the percent inhibition reaches 50 %. The results are shown in Tables 47 to 54.

Table 47

T,0970

			T	70 (30)
Example No.	Compound No.	IC ₅₀ (μM)	Compound No.	IC ₅₀ (μM)
1	1a-1-1	0.24	1b-1-1	0.030
2	1a-1-2	2.6	1b-1-2	0.04
3	1a-1-3	0.18	1b-1-3	0.005
4	1a-1-4	2. 25		
5	1a-1-5	0.81	1b-1-5	0.041
6	1a-1-6	0.68	1b-1-6	0.034
7			1b-1-7	0.028
8	1a-1-8	2. 0	1b-1-8	2. 0
9			1b-1-9	0.41
1 0			1b-1-10	2. 1
1 1			1b-1-11	1. 7
1 2			1b-1-12	0.085
1 3			1b-1-13	0.38
1 4	1a-1-14	3. 7	1b-1-14	0.11
1 5			1b-1-15	0.027
1 6	1a-1-16	0.520	1b-1-16	0.0108
1 7	la-1-17	0.205	1b-1-17	0.0203
1 8	1a-1-18	0.500	1b-1-18	0.0282
2 0			1b-1-20	0.134
2 1	la-1-21	4.65	1b-1-21	0.0041
2 3			1b-1-23	0.073
2 4			1b-1-24	0. 2
2 6			1b-1-26	1. 3
2 7			1b-1-27	3. 0
3 0	1a-1-30	1. 16	1b-1-30	0. 213
3 1			1b-1-31	0.0129

Table 48

T/0980

			1	1
Example No.	Compound No.	IC ₅₀ (μM)	Compound No.	IC ₅₀ (μM)
3 3	1a-1-33	0.24	1b-1-33	0.005
3 5	la-1-35	2. 6	1b-1-35	0.0216
3 8	1a-1-38	0.018		
4 0	1a-1-40	0.076		
4 1	la-1-41	0.312		
4 2	1a-1-42	0.0123		
4 3	1a-1-43	0.625		
4 4	la-1-44	1. 910		
4 5	la-1-45	0.040		
4 6	1a-1-46	1. 12		
4 7	la-1-47	0.389		
4 8	la-1-48	1. 15		
4 9	la-1-49	0.249		
5 0	1a-1-50	0.553		
5 1	1a-1-51	0.110		
5 2	1a-1-52	0.329		
5 3	1a-1-53	1.8		
5 4	1a-1-54	0.075		
5 5	la-1-55	0.0398		
6 0	1a-1-60	1. 31	1b-1-60	0.0012
6 1	1a-1-61	0.247	1b-1-61	0.247
6 2			1b-1-62	3. 50
6 3	la-1-63	1.05	1b-1-63	0.00039
6 4	1a-1-64	1. 90	1b-1-64	0.0037
6 5	1a-1-65	0. 291	1b-1-65	0.0035

Table 49

T ₁ (99	9	0
11,	י ע		

Example No.	Compound No.	IC ₅₀ (μM)	Compound No.	IC ₅₀ (μM)
6 7	la-1-67		1b-1-67	0.0061
6 8	1a-1-68	0. 231		
8 0	1a-1-80	1. 91		
8 3	1a-1-83	1. 77		
8 5	1a-1-85	1. 2	1b-1-85	0.013
8 6	1a-1-86	0.35	1b-1-86	0.0053
8 7			1b-1-87	0.940
9 3	1a-2-2	0.237		
9 4	1a-2-3	0.0109		
9 5	1a-2-4	0.0759		
9 6	1a-2-5	0.123		
9 7	1a-2-6	0.088		
9 8	1a-2-7	0.0699		
100	1a-2-9	0.0577		
101	1a-2-10	0.023		
102	1a-2-11	0.0475		
103	1a-2-12	0.0981		
1 0 4	1a-2-13	3. 28		
105	1a-2-14	2. 98		
106	1a-2-15	0.133		
107	1a-2-16	0.325		
109	1a-2-18	1. 19		
110	1a-2-19	0.203		
1 1 1	1a-2-20	3. 41		
112	1a-2-21	3.74		
114	1a-2-23	0.929		

Table 50

T	M	Oc
٠	('`	

Example No.	Compound No.	IC ₅₀ (μM)
1 1 5	1a-2-24	0.161
117	1a-2-26	1. 19
118	1a-2-27	0.088
119	la-2-28	1. 11
1 2 0	1a-2-29	1.53
1 2 1	1a-2-30	0.0736
1 2 2	1a-2-31	0.224
1 2 3	1a-2-32	0.0234
1 2 4	1a-2-33	0.0218
1 2 5	1a-2-34	0.0144
1 2 6	1a-2-35	0.156
1 2 7	1a-2-36	0.0243
1 2 8	1a-2-37	0.0922
1 2 9	1a-2-38	0.222
160	1a-3-2	0.040
161	la-3-3	0.0108
162	1a-3-4	0.873
1 6 3	1a-3-5	0.0126
164	1a-3-6	0.0965
1 6 5	1a-3-7	0.230
166	1a-3-8	1. 28
1 6 7	1a-3-9	0.014
1 6 8	1a-3-10	0.0083
169	1a-3-11	0. 244
170	la-3-12	2. 03
171	1a-3-13	0.0395

Table 51

7,1010

Example No.	Compound No.	IC50 (μM)
177	1a-4-2	0.684
178	1a-4-3	0.0252
179	la-4-4	2.36
180	la-4-5	0.045
181	1a-4-6	0.0539
182	la-4-7	0.0059
183	1a-4-8	0.0027
184	1a-4-9	0.00325
185	1a-4-10	0.0422
186	la-4-11	0.0982
187	1a-4-12	0.177
188	1a-4-13	0.843
189	la-4-14	0.0375
190	la-4-15	0.0597
191	la-4-16	0.0095
192	la-4-17	0.324
193	1a-4-18	0.722
195	1a-4-20	1. 1
196	1a-4-21	0.0573
197	1a-4-22	0.0161
198	1a-4-23	0.493
199	1a-4-24	2.06
200	1a-4-25	0.173
201	1a-4-26	0.252
202	1a-4-27	0.0114
203	1a-4-28	0.173

Table 52

T,1	102	O
-----	-----	---

Example No.	Compound No.	IC50 (μM)	Compound No.	IC ₅₀ (μM)
204	1a-4-29	3. 95	-	
207	1a-4-30	4.44		
2 1 0	1a-5-2	0.024		
2 1 1	1a-5-3	0.210	1 b - 2 1 1	0.00565
2 1 2	1a-5-4	0.393		
2 1 3	1a-5-5	0.128		
214	1a-5-6	0.832		
2 1 5	1a-5-7	0.110		
2 1 6	1a-5-8	0.107		
218	la-5-10	0.744		
219	1a-5-11	0.574		•
220	1a-5-12	0.0167		
2 2 1	1a-5-13	0.316		
2 2 2	la-5-14	0.078		
2 2 3	1a-5-15	0.349		
2 2 4	1a-1-16	0.0101		
2 2 5	la-5-17	0.0122		
2 2 6	1a-5-18	0.166		
2 2 7	1a-5-19	0.0198		
2 2 8	la-5-20	0.106		
2 2 9	la-5-21	0.215		
230	1a-5-22	0.281		
2 3 1	1a-5-23	0.197		
2 3 2	la-5-24	0.144		
2 3 3	la-5-25	0.0864		
2 3 4	la-5-26	0.153		

Example No.	Compound No.	IC ₅₀ (μM)	Compound No.	IC50 (μM)
2 3 5	1a-5-27	0.265		
2 3 6	1a-5-28	0.304		
237	1a-5-29	1. 32		
2 3 8	1a-5-30	2.85		
2 3 9	1a-5-31	0.243		
240	1a-5-32	0.0041		
2 4 1	1a-5-33	0.0131		
242	1a-5-34	0.0239		
2 4 3	1a-5-35	0.0529		
244	1a-5-36	0.0165		
245	la-5-37	0.0059		
246	1a-5-38	0.0108		
247	1a-5-39	0.0035		
267	1a-2-66	1. 5	1b-2-66	0.011

Example No.	Compound No.	IC ₅₀ (μM)
252	1-252	0.24
2 5 3	1-253	0.000039
254	1-254	0.00063
2 5 5	1-255	0.529
2 5 6	1-256	0.601
2 5 7	1-257	0.776
2 5 8	1-258	0.908
259	1-259	0.130
260	1-260	0.159
2 6 1	1-260	0.182

5

10

15

The compound of the present invention showed strong activity for inhibiting type IV collagenase.

Industrial Applicability

It is considered that the compound of the present invention is useful to prevent or treat osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontal disease, metastasis and invasion of tumor, advanced virus infection (e.g., HIV), arteriosclerosis obliterans, arteriosclerotic aneurysm, atherosclerosis, restenosis, sepsis, septic shock, coronary thrombosis, aberrant angiogenesis, scleritis, multiple sclerosis, open angle glaucoma, retinopathies, proliferative retinopathy, neovascular glaucoma, pterygium, keratitis, epidermolysis bullosa, psoriasis, diabetes, nephritis, neurodegengerative disease, gingivitis, tumor growth, tumor angiogenesis, ocular tumor, angiofibroma, hemangioma, fever, hemorrhage, coagulation, cachexia, anorexia, acute infection, shock, autoimmune disease, malaria, Crohn disease, meningitis, and gastric ulcer, because the compound of the present invention has strong inhibitory activity against metalloproteinase, especially MMP.