EXAMPLE 1: RANGE AND FREQUENCY TABLE IN R

Date	Rabbit late by		
Jan 1, 2016	40 mins		
Jan 2, 2016	30 mins		
Jan 3, 2016	20 mins		
Jan 4, 2016	45 mins		
Jan 5, 2016	60 mins		
Jan 6, 2016	120 mins		
Jan 7, 2016	35 mins		
Jan 8, 2016	40 mins		
Jan 9, 2016	50 mins		
Jan 10, 2016	55 mins		
Jan 11, 2016	53 mins		
Jan 12, 2016	22 mins		
Jan 13, 2016	27 mins		
Jan 14, 2016	48 mins		
Jan 15, 2016	62 mins		
Jan 16, 2016	33 mins		
Jan 17, 2016	35 mins		
Jan 18, 2016	40 mins		
Jan 19, 2016	45 mins		

FIRST WE NEED A VARIABLE THAT HOLDS THE DATA

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)
```

THE C() FUNCTION COMBINES ALL THESE VALUES INTO A VARIABLE OF TYPE VECTOR

VECTORS ARE SPECIAL DATA STRUCTURES IN R, WE'LL LEARN A LOT MORE ABOUT THEM LATER

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)
```

LET'S FIND THE RANGE OF THE VALUES


```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)
```

range (rabbitLateness)

1] 20 120

LET'S CREATE A FREQUENCY TABLE

FIRST CREATE INTERVALS FROM THE VALUES

20-29 mins	
30-39 mins	
40-49 mins	
50-59 mins	
60-69 mins	
70-79 mins	
80-89 mins	
90-99 mins	
100-109 mins	
110 -120 mins	

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)

range(rabbitLateness)
[1] 20 120
```

```
bins <- seq(20,130,by=10)
bins 20 30 40 50 60 70 80 90 100 110 120 130
```

WE CREATE A SEQUENCE OF VALUES TO REPRESENT THE START OF EACH INTERVAL

20-29 mins
30-39 mins
40-49 mins
50-59 mins
60-69 mins
70-79 mins
80-89 mins
90-99 mins
100-109 mins
110 -120 mins

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)

range(rabbitLateness)
[1] 20 120
```

```
bins <- seq(20,130,by=10)
bins
[1] 20 30 40 50 60 70 80 90 100 110 120 130
intervals <- cut(rabbitLateness,bins,right=FALSE)</pre>
```

THE CUT() FUNCTION WILL USE THIS SEQUENCE TO CREATE THE INTERVALS WE WANT

20-29 mins	
30-39 mins	
40-49 mins	
50-59 mins	
60-69 mins	
70-79 mins	
80-89 mins	
90-99 mins	
100-109 mins	
110 -120 mins	

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)

range(rabbitLateness)
[1] 20 120
```

```
bins <- seq(20,130,by=10)
bins
[1] 20 30 40 50 60 70 80 90 100 110 120 130
intervals <- cut(rabbitLateness,bins,right=FALSE)</pre>
```

FIRST IT TAKES THE SEQUENCE AND CREATES INTERVALS

20-29 mins 30-39 mins 40-49 mins 50-59 mins 60-69 mins 70-79 mins 80-89 mins 90-99 mins 100-109 mins 110 -120 mins

20-29 mins

30-39 mins

40-49 mins

50-59 mins

60-69 mins

70-79 mins

80-89 mins

90-99 mins

100-109 mins

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40,
                   50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)
range (rabbitLateress)
     20 120
LET'S CREATE A FREQUENCY TABLE
bins <- seq(20, 130, by=10)
 bins
 [1] 20
              40 50 60 70 80
                                    90 100 110 120 130
 intervals <- cut(rabbitLateness)bins,right=FALSE)</pre>
intervals
 [1] [40,50)
          [30,40)
                    [20,30) [,50) [60,70) [120,130) [30,40)
          [50,60) [50,60) [50,60) [20,30) [20,30) [40,50)
 [8] [40,50)
[15] [60,70) [30,40) [30,40) [40,50) [40,50)
11 Levels: [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) ... [120,130)
```

THEN IT ASSIGNS EACH ELEMENT TO THE CORRESPONDING INTERVAL

JKKESPUNVING INJEKVAL

110-120 mins

EXAMPLE 1: RANGE AND FREQUENCY TABLE IN R

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)

range(rabbitLateness)
[1] 20 120
```

```
LET'S CREATE A FREQUENCY TABLE
```

bins <- seq(20,130,by=10)

intervals <- cut(rabbitLateness, bins, right=FALSE)</pre>

table(intervals)

NEXT, COUNT HOW OFTEN EACH INTERVAL OCCURS

20-29 mins	3
30-39 mins	4
40-49 mins	6
50-59 mins	3
60-69 mins	2
	0
70-79 mins	0
80-89 mins	0
90-99 mins	0
100-109 mins	0
110 -120 mins	1

```
rabbitLateness <- c(40, 30, 20, 45, 60, 120, 35, 40, 50, 55, 53, 22, 27, 48, 62, 33, 35, 40, 45)

range(rabbitLateness)
```

bins <- seq(20,130,by=10)

intervals <- cut(rabbitLateness, bins, right=FALSE)

table(intervals)

intervals						
[20,30)	[30,40)	[40,50)	[50,60)	[60,70)	[70 , 80)	[80,90)
3	4	6	3	2	0	0
[90,100) [100,110)	[110,120)	[120,130)			
0	0	0	1			

20-29 mins	3
30-39 mins	4
40-49 mins	6
50-59 mins	3
60-69 mins	2
70-79 mins	0
	0
80-89 mins	0
90-99 mins	0
	U
100-109 mins	0
110 -120 mins	1

EXAMPLE 2: DRAWING A HISTOGRAM

```
plot(table(intervals), type = "h", main = "Rabbit Arrival Histogram", xlab =
    "Intervals", ylab = "Frequency" )
```

THE PLOT FUNCTION CAN TAKE A FREQUENCY TABLE AS INPUT

Rabbit Arrival Histogram


```
plot(table(intervals), type = "h" main = "Rabbit Arrival Histogram", xlab =
    "Intervals", ylab = "Frequency" )
```

THIS SPECIFIES THAT THE PLOT IS A HISTOGRAM

Rabbit Arrival Histogram


```
plot(table(intervals), type = "h" main = "Rabbit Arrival Histogram", xlab =
    "Intervals", ylab = "Frequency" )
Rabbit Arrival Histogram
```

THE TITLE OF THE PLOT

THE X-AXIS LABEL


```
plot(table(intervals), type = "h", main = "Rabbit Arrival Histogram", xlab =
      "Intervals", ylab = "Frequency"
                                                                Rabbit Arrival Histogram
                                                        5
                                                    Frequency
        THE Y-AXIS LABEL
                                                        2
                                                                                 [110,120)
                                                         [20,30) [40,50) [60,70) [80,90)
                                                                      Intervals
```

```
plot(table(intervals), type ="h", main = "Rabbit Arrival Histogram", xlab =
    "Intervals", ylab = "Frequency" )
```

FIRST WE CREATED
INTERVALS FROM THE VALUES
THEN WE ASSIGNED EACH
ELEMENT TO THE
CORRESPONDING INTERVAL
NEXT, WE COUNTED HOW
OFTEN EACH INTERVAL OCCURS
LAST, WE PLOTTED THE COUNTS

```
plot(table(intervals), type ="h", main = "Rabbit Arrival Histogram", xlab =
    "Intervals", ylab = "Frequency" )
```

PO ALL OF THIS IN ONE STEP

FIRST WE CREATED
INTERVALS FROM THE VALUES
THEN WE ASSIGNED EACH
ELEMENT TO THE
CORRESPONDING INTERVAL
NEXT, WE COUNTED HOW
OFTEN EACH INTERVAL OCCURS
LAST, WE PLOTTED THE COUNTS

hist(rabbitLateness,breaks = bins)

EXAMPLE 3: FINDING THE MEAN, MEDIAN AND MODE

```
mean(rabbitLateness)
[1] 45.26316
median(rabbitLateness)
[1] 40
```

THERE ARE BUILT-IN FUNCTIONS FOR MEAN AND MEDIAN IN R

```
mean(rabbitLateness)
[1] 45.26316
median(rabbitLateness)
[1] 40
```

sort(table(rabbitLateness),decreasing = TRUE)[1]

THERE ISN'T A BUILT-IN FUNCTION FOR MODE BUT YOU CAN CALCULATE IT WITH A FEW SHENANIGANS

```
mean(rabbitLateness)
[1] 45.26316
median(rabbitLateness)
[1] 40
```

```
sort(table(rabbitLateness),decreasing = TRUE)[1]
```

A TABLE WITH COUNTS FOR EACH VALUE IN THE DATASET

```
mean(rabbitLateness)
[1] 45.26316
median(rabbitLateness)
[1] 40
```

sort(table(rabbitLateness), decreasing = TRUE)[1]

A TABLE WITH COUNTS FOR EACH VALUE IN THE PATASET

SORTEP IN PESCENDING OR PER

```
mean(rabbitLateness)
[1] 45.26316
median(rabbitLateness)
[1] 40
```

```
sort(table(rabbitLateness), decreasing = TRUE)[1]
40
3
```

A TABLE WITH COUNTS FOR EACH VALUE IN THE PATASET

SORTED IN DESCENDING ORDER

THE FIRST ROW IN THAT TABLE

```
mean(rabbitLateness)
[1] 45.26316
median(rabbitLateness)
[1] 40
```

```
sort(table(rabbitLateness),decreasing = TRUE)[1]
```

40

THE MODE

AND THE NUMBER OF TIMES THE MODE APPEARS

A TABLE WITH COUNTS FOR EACH VALUE IN THE DATASET

SORTED IN DESCENDING ORDER

THE FIRST ROW IN THAT TABLE