

PROBABILISTIC MODELS

Why

We have a space X and a family of probability measures \mathcal{P} on this space. Assume $x \in X$ drawn from a fixed, unknown measure $P \in \mathcal{P}$. Given x, how should we guess P?

Definition

A probabilistic model (or statistical model, parametric statistical model, statistical experiment) is a family of probability measures over the same measurable space (X, \mathcal{F}) . Call the index set the parameter set or set of parameters. The set X is called the sample space. A statistic is any function on the sample space.

Notation

Let (X, \mathcal{F}) denote a measurable space. We usually denote the parameter by Θ , and denote the family

$$\mathcal{P} = \{ \mathbf{P}_{\theta} : \mathcal{F} \to [0, 1] \mid \mathbf{P}_{\theta} \text{ a measure}, \theta \in \Theta \}.$$

Often $\Theta \subset \mathbf{R}^d$.

Example: coin flips

The usual model for n flips of a coin takes $X = \{0,1\}^n$, the set of binary n-tuples. For $\theta \in [0,1]$, a distribution $p_{\theta}(x) = \theta^t (1-\theta)^{n-t(x)}$ where $t(x) = x_1 + \cdots + x_n$ is defined on X. A probability measure \mathbf{P}_{θ} is defined on $\mathcal{P}(X)$ in the the usual way. Thus, the probabilistic model is $\{\mathbf{P}_{\theta} \mid \theta \in [0,1]\}$. Given x, we are asked to guess θ .

Example: gaussian

A common model for quantities takes $X = \mathbf{R}^d$, the d-dimensional real space.

Decisions

A decision procedure (estimator, statistical procedure) is a measurable function that $A: \mathcal{X} \to \mathcal{A}$ where \mathcal{A} is a set of possible decisions, or actions. A loss function is

