CS F320: FODS Assgnment 2

Group Members:

Arjun Muthiah	2019B3A70374H
Sanket Bhatt	2019A7PS0147H
Hitaishi Desai	2019B3A70602H

Question 2A

We began by preprocessing our data, standardizing it and creating a 80:20 training-testing split. We then calculated the covariances and subsequently the Pearson correlation coefficient of all of the features with the target attribute.

The correlation coefficients of all of the features are tabulated below.

Correlation Table (Descending order of magnitude of correlation of features with the target/dependent variable)

<u>Feature</u>	Correlation with Appliances
RH_out	-0.161303
Т6	0.115728
T2	0.104107
Windspeed	0.099430
T_out	0.098223
RH_8	-0.088983
RH_6	-0.081840
RH_1	0.077535
Т3	0.073009
RH_2	-0.064780
RH_7	-0.059866
RH_9	-0.046869

T1	0.038151
	0.004405
T4	0.034465
RH_3	0.030070
Т8	0.027894
Press_mm_hg	-0.020707
Т7	0.016085
RH_4	0.013843
RH_5	0.012830
Tdewpoint	0.006252
Т5	0.004402
Visibility	-0.004089
rv1	-0.000477
rv2	-0.000477
Т9	-0.000158

Once the best features in order of their correlations were found, we built regression models with the best feature, best 2 features and so on until we had built 26 models, the last including all of the features. The training and testing errors of those are tabulated below.

Error Table for selecting features from model based on correlation with Appliances

Number of Features	Training Error	Testing Error
1	3074.859095	773.067820
2	3072.167489	771.862965
3	3071.987684	771.219975
4	3056.168895	771.142216
5	3032.216043	767.365689
6	3028.668054	764.739219
7	3005.855997	756.296494
8	2901.353860	733.283750

9	2878.851167	724.034315
10	2788.876470	697.030222
11	2784.534018	695.997843
12	2783.334807	694.408392
13	2780.509641	693.308572
14	2779.146938	691.012884
15	2763.723163	689.215512
16	2760.911179	689.692525
17	2758.368081	690.540145
18	2746.002855	684.244519
19	2742.456468	683.019264
20	2738.546067	682.953432
21	2738.976209	683.445370
22	2732.894148	685.661840
23	2731.482650	685.167724
24	2731.045416	685.181467
25	2729.622624	683.804988
26	2713.040922	680.551286

The features used in the model with 26 features:

['RH_out', 'T6', 'T2', 'Windspeed', 'T_out', 'RH_8', 'RH_6', 'RH_1', 'T3', 'RH_2', 'RH_7', 'RH_9', 'T1', 'T4', 'RH_3', 'T8', 'Press_mm_hg', 'T7', 'RH_4', 'RH_5', 'Tdewpoint', 'T5', 'Visibility', 'rv1', 'rv2', 'T9']

Testing Loss vs No. of features graph for model based on correlation with appliances

Principal Component Analysis

When dealing with larger datasets, we are faced with the challenge of reducing the number of dimensions to reduce our computation time, while also preserving all of the variability and information the dataset gives us.

To remedy this, we use principal component analysis. We try to find a vector to project all of our features onto such that maximum variance is preserved.

We begin by computing the variance-covariance matrix of all of the features, and we then find its eigenvalues and eigenvectors. This allows us to reduce dimensionality without losing much information, i.e. with the largest amount of variance.

The eigenvectors represent the direction of the axes where there is the most variance, and the eigenvalues represent the amount of variance carried in each principal component.

We started off by taking the eigenvector with the highest eigenvalue, and calculated the first principal component by taking the dot product of that eigenvector with each of the training examples. We trained this model on the training dataset.

The second principal component was calculated by taking the dot product of the eigenvector with the second highest eigenvalue, and trained this on the training data. We continued this process until all 26 of the principal components were included in the model.

The eigenvalues and the percentage of variance of the original dataset captured by the corresponding principal components has been given in the table below. Eigen Value Table

No. of features	<u>Eigenvalue</u>	Percentage of Variance Captured
1	1160.813811	54.686415
2	410.555786	74.027866
3	155.871522	81.371038
4	135.544179	87.756580
5	101.110456	92.519935
6	66.905370	95.671874
7	47.403072	97.905052
8	11.386269	98.441464
9	7.743336	98.806256
10	7.575849	99.163157
11	3.922708	99.347958
12	3.347663	99.505667

13	2.653064	99.630654
14	2.585955	99.752480
15	1.298401	99.813648
16	0.914461	99.856728
17	0.716957	99.890505
18	0.627985	99.920089
19	0.482533	99.942822
20	0.403027	99.961808
21	0.292856	99.975605
22	0.217012	99.985828
23	0.133460	99.992116
24	0.097064	99.996689
25	0.070292	100.000000
26	0.000000	100.000000

Graph of Percentage of Variance captured vs No. of Principal Components

Error Table for PCA

Number of Principal Components	Percentage of Variance Captured	<u>Training</u> <u>Error</u>	<u>Testing</u> <u>Error</u>
1	54.686415	3154.033739	790.126675
2	74.027866	3153.825464	790.156444
3	81.371038	3136.331051	788.208147
4	87.756580	3087.147012	778.826058
5	92.519935	3086.129502	777.569683
6	95.671874	3049.788724	772.813163
7	97.905052	3049.718016	772.737215
8	98.441464	3042.571841	769.762495
9	98.806256	2999.781651	767.127146
10	99.163157	2952.446909	746.508038
11	99.347958	2951.242702	745.777358
12	99.505667	2950.734840	745.898530
13	99.630654	2949.042075	744.658691
14	99.752480	2931.423533	743.275388
15	99.813648	2903.919835	735.794105
16	99.856728	2856.588835	722.604916
17	99.890505	2843.231617	717.448181
18	99.920089	2822.347015	711.330997
19	99.942822	2820.165690	710.995003
20	99.961808	2826.361538	710.804504
21	99.975605	2793.308777	701.845155
22	99.985828	2794.039176	703.246394
23	99.992116	2764.474291	694.545445

24	99.996689	2752.525506	689.406464
25	100.000000	2730.183749	679.944818
26	100.000000	2722.254961	681.162635

We find that the model with 6 principal components explains 95% of the variation in data, one with 10 explains 99% of the variance in the data, and that with 25 explains 100% of the variation in data.

Training Loss vs No. of Principal Components

Testing Loss vs No. of Principal Components

Question 2B

We are now posed with the problem of selecting the features out of the 26 we have that explain the data best. Ideally, we would take every subset of the feature set and compute the training and testing errors to find which best fit our data, but due to the computational complexity of that, we employ a heuristic approach instead.

We use greedy feature forward and backward algorithms.

Greedy Feature Forward Selection

We begin by building 26 models, each with one feature, and finding the best feature amongst all. We then build 25 models with the best feature and each of the others, continuing to add the best set of features in each iteration until we find that our model's performance is not boosted by adding a new feature.

In our feature forward selection, we get the following features selected as optimal for our predictive model.

Feature Index	Feature Label
20	RH_out

After selecting this feature, the greedy model bottomed out and did not appreciably change the testing and training errors when taking more features. Hence, it can be said that the optimal model is the one which includes only RH_out - if considering greedy feature forward selection algorithm.

Following this, we ran our gradient descent algorithm on this revised Data Frame - the RH_out column and the Appliances target variable.

No bias was included in this model (i.e w0 = 0)

The results of that are given below

Feature Label	Coefficient
RH_out	-15.81841883

Hence, to distill this model into an equation

Y = Appliances X1 = RH_out

$$Y = -15.81841883 * X1$$

Now, note that a necessary deviation from 2-A is a change in the loss function values from Sum of Squares to R.M.S.E to ensure ranged values. The training and testing error of this model are given below:

Feature Set	<u>Training Error</u>	Testing Error
['RH_out']	141.88400113694817	144.04237988159022

Greedy Feature Backward Elimination

In this approach, we begin with a model that contains all 26 features, and iteratively eliminate the least significant feature until we observe no improvement in our model's errors on removing a feature.

In our feature backward selection, we get the following features selected as optimal for our predictive model.

Feature Index	Feature Label
3	RH_2

11	RH_6
13	RH_7
15	RH_8
16	Т9
17	RH_9
19	Press_mm_hg
20	RH_out
22	Visibility

After selecting thesefeature, the greedy model bottomed out and did not appreciably change the testing and training errors when taking more features. Hence, it can be said that the optimal model is the one which includes only these 9 features - if considering greedy feature backwardselection algorithm.

Following this, we ran our gradient descent algorithm on this revised Data Frame.

No bias was included in this model (i.e w0 = 0)

The results of that are given below

Feature Label	Coefficient
RH_2	2.41794018e-112
RH_6	2.41794018e-112
RH_7	2.41794018e-112
RH_8	2.41794018e-112
Т9	2.41794018e-112
RH_9	2.41794018e-112
Press_mm_hg	2.41794018e-112
RH_out	-16.473459
Visibility	2.41794018e-112

Now, note that a necessary deviation from 2-A is a change in the loss function values from Sum of Squares to R.M.S.E to ensure ranged values. The training and testing error of this model are given below:

<u>Feature Set</u>	<u>Training Error</u>	<u>Testing Error</u>
['RH_2', 'RH_6', 'RH_7', 'RH_8', 'T9', 'RH_9', 'Press_mm_hg', 'RH_out', 'Visibility', 'Appliances']	114.5974826	114.79562959

Question 2C

In 2A, we found the best model to be one that included all 26 features, that gave a sum of squares error of 2783 for the trainings set and 680 for the testing data. In 2B, we find our greedy feature forward algorithm to give us the best model with one feature, RH_out, with training and testing errors (root mean square) of 141 and 144 respectively. Our feature backward elimination algorithm gave us a model with 9 features, with training and testing errors of 114.5 and 114.7 respectively.

In conclusion, we find the best model to be the one obtained using the feature forward selection technique, as that has the lowest error, the least number of features, and the most generality. However, this is as far as empirical analysis can take us, and we would need our results to be supported by extensive domain knowledge to correctly ascertain the features that most influence our target variable.