According to Eq. (5.7),

$$v_2 = v_1 (5.2.3)$$

Substituting Eqs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yields the closed-loop gain,

$$v_s = \frac{v_o}{9} \qquad \Rightarrow \qquad \frac{v_o}{v_s} = 9 \tag{5.2.4}$$

which is very close to the value of 9.00041 obtained with the nonideal model in Practice Prob. 5.1. This shows that negligibly small error results from assuming ideal op amp characteristics.

At node O,

$$i_o = \frac{v_o}{40+5} + \frac{v_o}{20} \text{mA}$$
 (5.2.5)

From Eq. (5.2.4), when $v_s = 1$ V, $v_o = 9$ V. Substituting for $v_o = 9$ V in Eq. (5.2.5) produces

$$i_0 = 0.2 + 0.45 = 0.65 \,\mathrm{mA}$$

This, again, is close to the value of 0.657 mA obtained in Practice Prob. 5.1 with the nonideal model.

Repeat Example 5.1 using the ideal op amp model.

Practice Problem 5.2

Answer: -2, 200 μ A.

5.4 Inverting Amplifier

In this and the following sections, we consider some useful op amp circuits that often serve as modules for designing more complex circuits. The first of such op amp circuits is the inverting amplifier shown in Fig. 5.10. In this circuit, the noninverting input is grounded, v_i is connected to the inverting input through R_1 , and the feedback resistor R_f is connected between the inverting input and output. Our goal is to obtain the relationship between the input voltage v_i and the output voltage v_o . Applying KCL at node 1,

$$i_1 = i_2 \implies \frac{v_i - v_1}{R_1} = \frac{v_1 - v_o}{R_f}$$
 (5.8)

But $v_1 = v_2 = 0$ for an ideal op amp, since the noninverting terminal is grounded. Hence,

$$\frac{v_i}{R_1} = -\frac{v_o}{R_f}$$

Figure 5.10 The inverting amplifier.

A key feature of the inverting amplifier is that both the input signal and the feedback are applied at the inverting terminal of the op amp.

or

$$v_o = -\frac{R_f}{R_1} v_i \tag{5.9}$$

Note there are two types of gains: The one here is the closed-loop voltage $gain A_{\nu}$, while the op amp itself has an open-loop voltage gain A.

The voltage gain is $A_v = v_o/v_i = -R_f/R_1$. The designation of the circuit in Fig. 5.10 as an *inverter* arises from the negative sign. Thus,

Figure 5.11 An equivalent circuit for the inverter in Fig. 5.10.

An inverting amplifier reverses the polarity of the input signal while amplifying it.

Notice that the gain is the feedback resistance divided by the input resistance which means that the gain depends only on the external elements connected to the op amp. In view of Eq. (5.9), an equivalent circuit for the inverting amplifier is shown in Fig. 5.11. The inverting amplifier is used, for example, in a current-to-voltage converter.

Example 5.3

Figure 5.12 For Example 5.3.

Refer to the op amp in Fig. 5.12. If $v_i = 0.5$ V, calculate: (a) the output voltage v_o , and (b) the current in the 10-k Ω resistor.

Solution:

(a) Using Eq. (5.9),

$$\frac{v_o}{v_i} = -\frac{R_f}{R_1} = -\frac{25}{10} = -2.5$$

$$v_o = -2.5v_i = -2.5(0.5) = -1.25 \text{ V}$$

(b) The current through the 10-k Ω resistor is

$$i = \frac{v_i - 0}{R_1} = \frac{0.5 - 0}{10 \times 10^3} = 50 \,\mu\text{A}$$

Practice Problem 5.3

Figure 5.13 For Practice Prob. 5.3.

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the current through the feedback resistor.

Answer: -3.15 V, $26.25 \mu A$.

Determine v_o in the op amp circuit shown in Fig. 5.14.

Example 5.4

Solution:

Applying KCL at node a,

$$\frac{v_a - v_o}{40 \text{ k}\Omega} = \frac{6 - v_a}{20 \text{ k}\Omega}$$

$$v_a - v_o = 12 - 2v_a \quad \Rightarrow \quad v_o = 3v_a - 12$$

But $v_a = v_b = 2$ V for an ideal op amp, because of the zero voltage drop across the input terminals of the op amp. Hence,

$$v_0 = 6 - 12 = -6 \text{ V}$$

Notice that if $v_b = 0 = v_a$, then $v_o = -12$, as expected from Eq. (5.9).

Figure 5.14 For Example 5.4.

Two kinds of current-to-voltage converters (also known as *transresistance amplifiers*) are shown in Fig. 5.15.

tance amplifiers) are shown in Fig. 5.15.

$$\frac{v_o}{i_o} = -R$$

(b) Show that for the converter in Fig. 5.15(b),

(a) Show that for the converter in Fig. 5.15(a),

$$\frac{v_o}{i_s} = -R_1 \left(1 + \frac{R_3}{R_1} + \frac{R_3}{R_2} \right)$$

Answer: Proof.

Practice Problem 5.4

Figure 5.15 For Practice Prob. 5.4.

5.5 Noninverting Amplifier

Another important application of the op amp is the noninverting amplifier shown in Fig. 5.16. In this case, the input voltage v_i is applied directly at the noninverting input terminal, and resistor R_1 is connected

Figure 5.16The noninverting amplifier.

between the ground and the inverting terminal. We are interested in the output voltage and the voltage gain. Application of KCL at the inverting terminal gives

$$i_1 = i_2 \implies \frac{0 - v_1}{R_1} = \frac{v_1 - v_o}{R_f}$$
 (5.10)

But $v_1 = v_2 = v_i$. Equation (5.10) becomes

$$\frac{-v_i}{R_1} = \frac{v_i - v_o}{R_f}$$

or

$$v_o = \left(1 + \frac{R_f}{R_1}\right) v_i \tag{5.11}$$

The voltage gain is $A_v = v_o/v_i = 1 + R_f/R_1$, which does not have a negative sign. Thus, the output has the same polarity as the input.

A noninverting amplifier is an op amp circuit designed to provide a positive voltage gain.

Again we notice that the gain depends only on the external resistors.

Notice that if feedback resistor $R_f=0$ (short circuit) or $R_1=\infty$ (open circuit) or both, the gain becomes 1. Under these conditions $(R_f=0 \text{ and } R_1=\infty)$, the circuit in Fig. 5.16 becomes that shown in Fig. 5.17, which is called a *voltage follower* (or *unity gain amplifier*) because the output follows the input. Thus, for a voltage follower

$$v_o = v_i \tag{5.12}$$

Such a circuit has a very high input impedance and is therefore useful as an intermediate-stage (or buffer) amplifier to isolate one circuit from another, as portrayed in Fig. 5.18. The voltage follower minimizes interaction between the two stages and eliminates interstage loading.

Figure 5.17 The voltage follower.

Figure 5.18 A voltage follower used to isolate two cascaded stages of a circuit.

Example 5.5

For the op amp circuit in Fig. 5.19, calculate the output voltage v_o .

Solution:

We may solve this in two ways: using superposition and using nodal analysis.

METHOD 1 Using superposition, we let

$$v_{o} = v_{o1} + v_{o2}$$

where v_{o1} is due to the 6-V voltage source, and v_{o2} is due to the 4-V input. To get v_{o1} , we set the 4-V source equal to zero. Under this condition, the circuit becomes an inverter. Hence Eq. (5.9) gives

$$v_{o1} = -\frac{10}{4}(6) = -15 \text{ V}$$

To get v_{o2} , we set the 6-V source equal to zero. The circuit becomes a noninverting amplifier so that Eq. (5.11) applies.

$$v_{o2} = \left(1 + \frac{10}{4}\right)4 = 14 \text{ V}$$

Thus,

$$v_0 = v_{01} + v_{02} = -15 + 14 = -1 \text{ V}$$

METHOD 2 Applying KCL at node a,

$$\frac{6-v_a}{4} = \frac{v_a - v_o}{10}$$

But $v_a = v_b = 4$, and so

$$\frac{6-4}{4} = \frac{4-v_o}{10} \qquad \Rightarrow \qquad 5 = 4-v_o$$

or $v_o = -1$ V, as before.

Figure 5.19 For Example 5.5.

Calculate v_o in the circuit of Fig. 5.20.

Answer: 7 V.

Summing Amplifier 5.6

Besides amplification, the op amp can perform addition and subtraction. The addition is performed by the summing amplifier covered in this section; the subtraction is performed by the difference amplifier covered in the next section.

A summing amplifier is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs.

The summing amplifier, shown in Fig. 5.21, is a variation of the inverting amplifier. It takes advantage of the fact that the inverting configuration can handle many inputs at the same time. We keep in mind

Practice Problem 5.5

Figure 5.20 For Practice Prob. 5.5.

Figure 5.21 The summing amplifier.