Appendix: Mathematical background for stability.

Definition. A subset SCR^n is bounded if $\exists k \in \infty$ such that $\forall x \in S$, $\|x\| \leq k$.

Equivalently, one can say that SCTR's bounded if $\exists k < \infty$ such that SCBx(0).

emma. Suppose that $V: \mathbb{R}^n \to \mathbb{R}$. Is continuous. Then, $\forall c \in \mathbb{R}$, the set of points (i.e, the sublevel sets) $f(c) = \{ x \in \mathbb{R}^n \mid V(x) \leq c \} \text{ is closed.}$

Note: -> We used that Lemma last time when we were considering the sublevel sets of the function V we had defined.

Proof of the Lemma: To prove the lemma, we will use the sequence characterization of closed sets. Let (x_n) be a sequence of points in $\mathcal{L}(c)$, that is, $\forall n \geq 1$, $V(x_n) \leq C$, and such that $x_n \longrightarrow \overline{x}$, i.e. $\limsup_{n \to \infty} x_n = \overline{x}$.

We want to show that $\bar{x} \in \mathcal{L}(c)$, [i.e, that means $V(\bar{x}) \leq c$]

To prove that, we first note that since V is continuous, we have that $V(\bar{x}) = \lim_{n \to \infty} V(x_n)$. [Recall Problem 2 in your HW2.]

Moreover, by definition we have $\forall n \ge 1$, $V(x_n) \le C$. That means, $V(x_n)$ is a convergent sequence in $(-\infty, C] \subset \mathbb{R}$, where by

definition (-∞, c) is a closed set.

Now, we have that the limit point $V(\bar{x})$ of $V(x_n)$ should belong into $(-\infty, c)$, because if a set S is closed, then it contains its limit points]

[Recall Problem 3 in your HWZ.]

Hence we proved that $\bar{x} \in L(c)$, i.e., $V(\bar{x}) \leq c$.

Definition. We often denote iR = [0,+00]

A function $V: \mathbb{R}^n \to \mathbb{R}_+$ is radially unbounded if $\forall c < \infty$, $\exists k < \infty$ such that $||x|| > k \Rightarrow V(x) > c$.

Notation \rightarrow This definition essentially tells us that: $V(x) \rightarrow \infty$ as $||x|| \rightarrow \infty$.

Lemma Suppose that V: IRM > IR is

- (1) continuous
- (ii) V(x) -> 00, as 11x11->00.

Then, $\forall c \geq 0$, $L(c) = \{x \in \mathbb{R}^n \mid V(x) \leq c\}$ are closed and bounded.

Proof We proved that L(c) is closed earlier. It suffices to show that L(c) is bounded.

Fix c>0. We will show that

if L(c) is <u>Not</u> bounded, then V is <u>Not</u>

radially unbounded.

If L(c) is NOT bounded, then $\forall k \in \infty$, $\exists x \in L(c)$ with ||x|| > K. (note we regated the property of bounded set) That means, $\forall k \in \infty$, $\exists x$ such that $V(x) \leq c$ and at the same time $||x|| \geq k$, since $x \in L(c)$ which implies that V is NOT radiably unbounded. This completes the proof.

Definition. A subset SCIR's compact if it is closed and bounded.

Note: This definition is not valid for infinite-dimensional normed spaces!

Definition [Weierstrass Theorem.] Suppose that $f: S \rightarrow IR$ is continuous and that S is compact. Then f achieves a minimum and a maximum on S; that is, $\exists s^* \in S$ and $s_* \in S$ such that $f(s^*) = \sup f(x)$, $f(s_*) = \inf f(x)$ xeS $= \max f(x)$ $= \max f(x)$ $= \min f(x)$ $= \min f(x)$

Non-Examples.

S= [0,+00) CIR is closed, but is not bounded.

Consider the function $f(x) = \frac{1}{1+x^2} > 0 \quad \forall x \in S$

We have inf f(x) = 0. That means, $Z \in S$ such that xes $f(s_*) = 0$,

since fa>0 txes.

In this case, the minimum is not achieved.

Note also that in this case there happens to be a maximum since $\sup_{x \in S} f(x) = 1 = f(0)$, though it is not $\sup_{x \in S} f(x) = 1 = \sup_{x \in S} f(x) = 1 = \sup_{x \in S} f(x) = \sup_{x$

2) S=(0,1) CIR is bounded but it is not closed.

Consider the function f(x) = x

We have inf f(x) = 0 BUT $\not\exists x_{*} \in S$ such that $f(x_{*}) = 0$. xeS (minimum is not achieved.)

> sup f(x) = 1 BUT $\not\exists x^* \in S$ such that $f(x^*) = 1$ $x \in S$ (maximum is not achieved)

Definition. h: SCIR -> IR is uniformly continuous

if $V \in >0$, $\exists \delta(e)>0$ such that $\forall x_i y_i \in S$,

11x-y11< 3 >> 11h(x)-h(y)11< E.

Key Point: The same & must work for all x,y! Of course, as & gets smaller, you may require & to get smaller too, so & does depend on E.

Non-example. $h(x) = e^x$. It is continuous at every xelt, but not uniformly continuous.

Proof: We want to show that $h(x) = e^x$ is not uniformly continuous. We start by negating the property of uniform continuity.

 $\exists \epsilon > 0$ such that $\forall \exists (\epsilon) > 0$, $\exists x, y \in \mathbb{R}$ such that $|x-y| < \delta$ but $|e^x - e^y| \geqslant \epsilon$.

Let E=1, and 0>0 arbitrary but fixed.

Let $x = -ln(e^{0.9\delta}-1)$ and $y=x+0.9\delta$. Then,

1x-y1 = 0,95<5 and

$$|e^{x}-e^{4}| = |e^{x}-e^{x}| = |e^{x}-e^{x}| = |e^{x}-e^{x}| = |e^{x}-e^{x}| = |e^{x}-e^{x}-e^{x}| = |e^{x}-e^{$$

Example. h: IR > IR by $x \to e^{-|x|}$ (i.e., $h(x) = e^{-|x|}$)
is uniformly continuous.

Theorem If h: S-> IR is continuous and S is compact, then h is uniformly continuous.

[continuity + compactness] => uniform continuity.

Non-Example: Consider S=(0,1] and h(x)=1, then h(x) is not uniformly continuous over S

Example: Consider $S = [10^3, 1]$ and $h(x) = \frac{1}{x}$, then h(x) is uniformly continuous over S.

Definition. A function h: R > IR Is bounded from below if Im>-00 such that h(x) > m, \text{ \text{x}} \in R.

Definition A function h: $\mathbb{R} \to \mathbb{R}$ is non-increasing if $y = x \implies h(y) \le h(x)$.

Remark. In a similar manner we can define bounded from above, and non-decreasing.

Examples. Note that to be non-increasing, a function can be constant for awhile, then decreasing for awhile, and so on. It does not have to be strictly decreated sing (.i.e, x<y =) h(x) > h(y)) in order to be sing (.i.e, x<y =) h(x) > h(y)) in order to be continuous non-increasing. Neither does it have to be continuous

Fig (1) Example of bounded from below and non-increasing.

Fig@ Example of bounded from above and non-decreasing. Theorem If h: IR > IR is non-increasing, and bounded from below then there exists a unique $C \in IR$ such that $\lim_{x \to \infty} h(x) = C$

Similarly, if h is non-decreasing, and bounded from above, then there exists a unique CER such that lim h(x) = C

Definition. lim h(x) = c if $\forall e>0$, $\exists k<\infty$ such that

XZK=) |h(x)-c/ce.