BABI

PENDAHULUAN

1.1 Latar Belakang

Reaktor merupakan alat utama pada industri yang digunakan untuk proses kimia yaitu untuk mengubah bahan baku menjadi produk. Reaktor dapat diklasifikasikan atas dasar cara operasi, geometrinya, dan fase reaksinya. Berdasarkan cara operasinya dikenal reaktor *batch*, *semi batch*, dan kontinyu. Jika ditinjau dari geometrinya dibedakan menjadi reaktor tangki berpengaduk, reaktor kolom, dan reaktor fluidisasi. Sedangkan bila ditinjau berdasarkan fase reaksi yang terjadi di dalamnya, reaktor diklasifikasikan menjadi reaktor homogen dan reaktor heterogen.

Reaktor heterogen adalah reaktor yang digunakan untuk mereaksikan komponen yang terdiri dari minimal 2 fase, seperti fase gas-cair. Reaktor yang digunakan untuk kontak fase gas-cair, diantaranya dikenal reaktor kolom gelembung (bubble column reaktor) dan reaktor air-lift. Reaktor jenis ini banyak digunakan pada proses industri kimia dengan reaksi yang sangat lambat, proses produksi yang menggunakan mikroba (bioreaktor) dan juga pada unit pengolahan limbah secara biologis menggunakan lumpur aktif.

Pada perancangan reaktor pengetahuan kinetika reaksi harus dipelajari secara komprehensif dengan peristiwa-peristiwa perpindahan massa, panas, dan momentum untuk mengoptimalkan kinerja reaktor. Fenomena hidrodinamika yang meliputi hold up gas dan cairan, laju sirkulasi merupakan faktor yang penting yang berkaitan dengan laju perpindahan massa. Pada percobaan ini akan mempelajari hidrodinamika pada reaktor air-lift, terutama berkaitan dengan pengaruh laju alir udara, viskositas, dan densitas terhadap hold up, laju sirkulasi dan koefisien perpindahan massa gas-cair pada sistem sequantial batch.

1.2 Tujuan Percobaan

Setelah melakukan percobaan ini, mahasiswa diharapkan dapat :

- 1. Menentukan pengaruh variabel kondisi operasi terhadap *hold-up gas* (ε) .
- 2. Menentukan pengaruh variabel kondisi operasi terhadap laju sirkulasi (V_L).
- Menentukan pengaruh variabel kondisi operasi terhadap koefisien transfer massa gas-cair (K_{La}).
- 4. Menentukan pengaruh waktu tinggal Na₂SO₃ terhadap K_{La}.

1.3 Manfaat Percobaan

- Mahasiswa dapat menentukan pengaruh variabel kondisi operasi terhadap hold-up gas (ε).
- 2. Mahasiswa dapat menentukan pengaruh variabel kondisi operasi terhadap laju sirkulasi (V_L) .
- Mahasiswa dapat menentukan pengaruh variabel kondisi operasi terhadap koefisien transfer massa gas-cair (K_{La}).
- 4. Mahasiswa dapat menentukan pengaruh waktu tinggal Na_2SO_3 terhadap K_{La} .

Process

Laboratory

BAB II

TINJAUAN PUSTAKA

2.1 Reaktor Kolom Gelembung dan Air Lift

Reaktor adalah suatu alat tempat terjadinya suatu reaksi kimia untuk mengubah suatu bahan menjadi bahan lain yang mempunyai nilai ekonomis lebih tinggi. Reaktor kolom gelembung merupakan reaktor heterogen yang mereaksikan dua zat dengan fase yang berbeda yaitu fase cair-gas. Reaktor airlift adalah jenis spesifik dari reaktor kolom gelembung yang memiliki sirkulasi cairan akibat dari aliran udara yang masuk dalam reaktor tersebut (Im et al., 2019). Reaktor kolom gelembung memiliki desain yang sangat sederhana terdiri dari satu zona dengan sparger yang dipasang dibagian bawah reaktor. Keberadaan sparger ini menghasilkan gelembung gas halus yang memungkinkan pencampuran dan aerasi. Desain yang sederhana dari reaktor kolom gelembung menjadikan reaktor kolom gelembung memiliki keunggulan dari segi biaya yang lebih murah. Berbeda dengan reaktor kolom gelembung, reaktor air-lift terdiri dari dua zona yang saling terhubung. Dua zona ini terdiri dari riser yang terdapat sparger dimana campuran gas disemburkan dan memiliki aliran ke atas. Sedangkan zona yang satunya disebut downcomer yang tidak menerima gas dan memiliki aliran kebawah. Adanya sirkulasi dari reaktor air-lift memiliki kelebihan dalam efisiensi pencampuran tanpa adanya agitasi fisik (Uyar et al., 2023). Pada zona downcomer atau riser memungkinkan terdapat plate penyaringan pada dinding, terdapat satu atau dua buah baffle. Jadi banyak sekali kemungkinan bentuk reaktor dengan keuntungan penggunaan dan tujuan yang berbeda-beda (Widayat, 2004).

Gambar 2.1 Reaktor kolom gelembung dan reaktor air-lift

Secara umum reaktor *air-lift* dikelompokkan menjadi 2, yaitu reaktor *air-lift* dengan internal *loop* dan eksternal *loop* (Christi, 1989; William, 2002).

Reaktor *air-lift* dengan internal *loop* merupakan kolom bergelembung yang dibagi menjadi 2 bagian, *riser* dan *downcomer* dengan internal *baffle* dimana bagian atas dan bawah *riser* dan *downcomer* terhubung. Reaktor *air-lift* dengan eksternal *loop* merupakan kolom bergelembung dimana *riser* dan *downcomer* merupakan 2 tabung yang terpisah dan dihubungkan secara horizontal antara bagian atas dan bawah reaktor. Selain itu reaktor *air-lift* juga dikelompokkan berdasarkan *sparger* yang dipakai, yaitu statis dan dinamis. Pada reaktor *air lift* dengan *sparger* dinamis, sparger ditempatkan pada *riser* dan atau *downcomer* yang dapat diubah-ubah letaknya (Christi, 1989; William, 2002).

Secara teoritis reaktor *air-lift* digunakan untuk beberapa proses kontak gas cairan atau *slurry*. Reaktor ini sering digunakan untuk beberapa fermentasi aerob, pengolahan limbah, dan operasi-operasi sejenis.

Gambar 2.2 Tipe reaktor air-lift

Keuntungan penggunaan reaktor *air-lift* dibanding reaktor konvensional lainnya, diantaranya :

- 1. Perancangannya sederhana, tanpa ada bagian yang bergerak.
- 2. Aliran dan pengadukan mudah dikendalikan.
- 3. Waktu tinggal dalam reaktor seragam.
- 4. Kontak area lebih luas dengan input yang rendah.
- 5. Meningkatkan perpindahan massa.
- 6. Memungkinkan tangki yang besar sehingga meningkatkan produk.

Kelemahan reaktor air lift antara lain:

- 1. Biaya investasi awal mahal terutama skala besar.
- 2. Membutuhkan tekanan tinggi untuk skala proses yang besar.
- 3. Efisiensi kompresi gas rendah.
- 4. Pemisahan gas dan cairan tidak efisien karena timbul busa (foaming).

Dalam aplikasi reaktor *air-lift* terdapat 2 hal yang mendasari mekanisme kerja dari reaktor tersebut, yaitu hidrodinamika dan transfer gas-cair.

2.2 Hidrodinamika Reaktor

Di dalam perancangan bioreaktor, faktor yang sangat berpengaruh adalah hidrodinamika reaktor, transfer massa gas-cair, rheologi proses, dan morfologi produktifitas organisme. Hidrodinamika reaktor mempelajari perubahan dinamika cairan dalam reaktor sebagai akibat laju alir yang masuk reaktor dan karakterisik cairannya. Hidrodinamika reaktor meliputi hold up gas (fraksi gas saat penghamburan) dan laju sirkulasi cairan. Kecepatan sirkulasi cairan dikontrol oleh hold up gas, sedangkan hold up gas dipengaruhi oleh kecepatan kenaikan gelembung. Sirkulasi juga mempengaruhi turbulensi, koefisien perpindahan massa dan panas serta tenaga yang dihasilkan.

Hold up gas atau fraksi kekosongan gas adalah fraksi volume fase gas pada disperse gas-cair atau slurry. Hold up gas keseluruhan (ε).

$$\varepsilon = \frac{V_{\varepsilon}}{V_{L} + V_{\varepsilon}} \dots (1)$$

dimana: = hold up gas

 V_{ϵ} = volume gas (cc/s) V_{L} = volume cairan (cc/s)

Hold up gas digunakan untuk menentukan waktu tinggal gas dalam cairan. Hold up gas dan ukuran gelembung mempengaruhi luas permukaan gas cair yang diperlukan untuk perpindahan massa. Hold up gas tergantung pada kecepatan kenaikan gelembung, luas gelembung dan pola aliran. Inverted manometer adalah manometer yang digunakan untuk mengetahui beda tinggi cairan akibat aliran gas, yang selanjutnya dipakai pada perhitungan hold up gas (ε) pada riser dan downcomer. Besarnya hold up gas pada riser dan downcomer dapat dihitung dengan persamaan:

$$\frac{\varepsilon = \frac{\rho_L}{\rho_L - \rho_\varepsilon} \times \frac{\Delta h}{z} \dots (2)}{\frac{\rho_L}{\rho_L - \rho_g} \times \frac{\Delta h_r}{z} \dots (3)}$$

$$\varepsilon_d = \frac{\rho_L}{\rho_L - \rho_g} \times \frac{\Delta h_d}{z} \dots (4)$$

dimana:

= hold up gas

= hold up gas riser

 $\epsilon_{\rm d}$ = hold up gas downcomer

= densitas cairan (gr/cc) PL

= densitas gas (gr/cc) ρ_g

= perbedaan tinggi manometer riser (cm) Δh_r

 Δh_d = perbedaan tinggi manometer downcomer (cm)

z = perbedaan antara taps tekanan

Hold up gas total dalam reaktor dapat dihitung dari keadaan tinggi dispersi pada saat aliran gas masuk reaktor sudah mencapai keadaan tunak (steady state). Persamaan untuk menghitung hold up gas total adalah sebagai berikut:

$$\varepsilon = \frac{h_0 - h_i}{h_0} \dots (5)$$

dimana : $\varepsilon = hold up gas$

h₀ = tinggi campuran gas setelah kondisi tunak (cm)

h_i = tinggi cairan mula-mula dalam reaktor (cm)

Hubungan antara *hold up gas riser* (ϵ_r) dan *donwcomer* (ϵ_d) dapat dinyatakan dengan persamaan 6 :

$$\varepsilon = \frac{A_r \cdot \varepsilon_r + A_d \cdot \varepsilon_d}{A_r + A_d} \dots (6)$$

dimana: $A_r = luas bidang zona riser (cm²)$

 A_d = luas bidang zona downcomer (cm²)

Sirkulasi cairan dalam reaktor *air lift* disebabkan oleh perbedaan *hold up* gas riser dan downcomer. Sirkulasi fluida ini dapat dilihat dari perubahan fluida, yaitu naiknya aliran fluida pada riser dan menurunnya aliran pada downcomer. Besarnya laju sirkulasi cairan pada downcomer (U_{ld}) ditunjukkan oleh persamaan 7 dan laju sirkulasi cairan pada riser ditunjukan oleh persamaan 8:

$$U_{ld} = \frac{L_C}{t_C} \dots (7)$$

dimana:

Uld = laju sirkulasi cairan pada downcomer (cm/s)

L_C = panjang lintasan dalam reaktor (cm)

$$t_C = waktu(s)$$

Dikarenakan tinggi dan volumetric aliran liquid pada riser dan downcomer sama, maka hubungan antara laju aliran cairan pada riser dan downcomer yaitu:

$$U_{lr}. A_r = U_{ld}. A_d ... (8)$$

dimana: U_{lr} = laju sirkulasi cairan *riser* (cm/s)

U_{ld} = laju sirkulasi cairan downcomer (cm/s)

 A_r = luas bidang zona riser (cm²)

 A_d = luas bidang zona downcomer (cm²)

Waktu tinggal t_{ld} dan t_{lr} dari sirkulasi *liquid* pada *downcomer* dan *riser* tergantung pada *hold up gas* seperti ditunjukan pada persamaan berikut:

$$\frac{t_{lr}}{t_{ld}} = \frac{A_d}{A_r} \frac{1 - \varepsilon_r}{1 - \varepsilon_d} \quad \dots (9)$$

dimana:

t_{lr} = waktu tinggal sirkulasi *liquid* pada *riser* (s)

t_{ld} = waktu tinggal sirkulasi *liquid* pada *downcomer* (s)

 A_r = luas bidang zona riser (cm²)

 A_d = luas bidang zona downcomer (cm²)

 $\varepsilon_{\rm r} = hold \ up \ gas \ riser$

 $\epsilon_d = hold \ up \ gas \ downcomer$

2.3 Perpindahan Massa

Perpindahan massa antar fase gas-cair terjadi karena adanya beda konsentrasi antara kedua fase. Perpindahan massa yang terjadi yaitu oksigen dari fase gas ke fase cair. Kecepatan perpindahan massa ini dapat ditentukan dengan koefisien perpindahan massa.

Koefisien perpindahan massa *volumetric* (K_{La}) adalah kecepatan spesifik dari perpindahan massa (gas teradsobsi per unit waktu, per unit luas kontak, per beda konsentrasi). K_{La} tergantung pada sifat fisik dari sistem dan dinamika fluida. Terdapat 3 istilah tentang koefisien transfer massa *volumetric*, yaitu:

- Koefisien transfer massa K_{La}, dimana tergantung pada sifat fisik dari cairan dan dinamika fluida yang dekat dengan permukaan cairan.
- 2. Luas dari gelembung per unit volum dari reaktor.
- Ketergantungan K_{La} pada energi masuk adalah kecil, dimana luas kontak adalah fungsi dari sifat fisik design geometri dan hidrodinamika.

Luas kontak adalah parameter gelembung yang tidak bisa ditetapkan. Di sisi lain koefisien transfer massa pada kenyataannya merupakan faktor yang proposional antara fluks massa dan substrat (atau bahan kimia yang ditransfer), N_s, dan gradien yang mempengaruhi fenomena beda konsentrasi. Hal ini dapat dirumuskan dengan persamaan 10:

$$N = K_{La}(C_1 - C_2)$$
 ...(10)

dimana: N = fluks massa

 K_{La} = koefisien transfer massa gas-cair (1/detik)

 C_1 = konsentrasi O_2 masuk (gr/L)

 C_2 = konsentrasi O_2 keluar (gr/L)

Untuk perpindahan massa oksigen ke dalam cairan dapat dirumuskan sebagai kinetika proses, seperti di dalam persamaan 11 :

$$\frac{dC}{dt} = K_{La}(C_1 - C_2) \dots (11)$$

dimana: C = konsentrasi udara (gr/L)

Koefisien perpindahan gas-cair merupakan fungsi dari laju alir udara atau kecepatan *superfitial* gas, viskositas, dan luas area *riser*, dan *downcomer/geometric* alat.

Pengukuran konstanta perpindahan massa gas-cair dapat dilakukan dengan metode sebagai berikut:

1. Metode OTR-Cd

Dasar dari metode ini adalah persamaan perpindahan massa (persamaan 11) semua variabel kecuali K₀A dapat terukur. Ini berarti bahwa dapat digunakan dalam sistem kebutuhan oksigen, konsentrasi oksigen dari fase gas yang masuk dan meninggalkan bioreaktor dapat dianalisa.

2. Metode Dinamik

Metode ini berdasarkan pengukuran C₀i dari cairan, deoksigenasi sebagai fungsi waktu, setelah aliran udara masuk. Deoksigenasi dapat diperoleh dengan mengalirkan oksigen melalui cairan atau menghentikan aliran udara, dalam hal ini kebutuhan oksigen dalam fermentasi.

3. Metode Serapan Kimia

Metode ini berdasarkan reaksi kimia dari absorbsi gas (O₂, CO₂) dengan penambahan bahan kimia pada fase cair (Na₂SO₃, KOH). Reaksi ini sering digunakan pada reaksi bagian dimana konsentrasi bulk cairan dalam komponen gas = 0 dan absorpsi dapat mempertinggi perpindahan kimia.

4. Metode Kimia OTR-Coi

Metode ini pada dasarnya sama dengan metode OTR-Cd. Namun, seperti diketahui beberapa sulfit secara terus-menerus ditambahkan pada cairan selama kondisi reaksi tetap dijaga pada daerah dimana nilai C₀i dapat diketahui. C₀i dapat diukur dari penambahan sulfit. Juga reaksi konsumsi oksigen yang lain dapat digunakan.

5. Metode Sulfit

Metode ini berdasarkan pada reaksi reduksi natrium sulfit. Mekanisme reaksi yang terjadi:

Reaksi dalam reaktor:

$$Na_2SO_3 + 0.5O_2 \rightarrow Na_2SO_4 + Na_2SO_3$$
 (sisa)

Reaksi saat analisa:

$$Na_2SO_3$$
 (sisa) + KI + KIO₃ $\rightarrow Na_2SO_4 + 2KIO_2 + I_2$ (sisa)

$$I_2$$
 (sisa) + $2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$

Mol Na₂SO₃ mula-mula (a)

$$= \frac{\text{N Na}_2\text{SO}_3}{\text{eq}} \times \text{V reaktor}$$

Mol I2 excess (b)

$$= \frac{N KI}{eq} \times V KI$$

Mol Na₂SO₃ sisa (c)

$$= b - \frac{1}{2} \left(\frac{N \operatorname{Na}_2 \operatorname{S}_2 \operatorname{O}_3}{\operatorname{eq}} \times \operatorname{V} \operatorname{Na}_2 \operatorname{S}_2 \operatorname{O}_3 \right)$$

Mol O2 yang bereaksi (d)

$$=\frac{1}{2}\times(a-c)$$

O2 yang masuk reaktor (e)

$$= \frac{d \times BM O_2}{t \times 60}$$

Koefisien transfer massa gas-cair (KLa)

$$K_{La} = \frac{e}{0,008}$$

Nilai konstanta 0,008 pada persamaan K_{La} diperoleh dari persamaan *volumetric* O₂ *transfer coefficient* sebagai berikut:

$$K_{La} = \frac{nO_2}{\Delta C}$$

Dimana:

nO₂ = Fluks perpindahan massa O₂

 ΔC = Concentration driving force kedua fase

Reaksi:

$$0.5 O_2 + SO_3^{2-} \rightarrow SO_4^{2-}$$

Massa Na₂SO₃ yang dibutuhkan untuk 1 gram O₂:

$$\frac{1 \text{ mol } O_2}{32 \text{ g } O_2} \times \frac{1 \text{ mol } Na_2SO_3}{0.5 \text{ mol } O_2} \times \frac{126 \text{ g } Na_2SO_3}{\text{mol } Na_2SO_3} = 7,875 \frac{126 \text{ g } Na_2SO_3}{\text{mol } Na_2SO_3}$$

$$\Delta C = \frac{7,875 \text{ g } Na_2SO_3}{L} = 0,007875 \frac{\text{g } Na_2SO_3}{L} = 0,008 \frac{\text{g } Na_2SO_3}{L}$$

Jadi, nilai K_{La} adalah:

$$K_{La} = \frac{nO_2}{\Delta C} = \frac{e}{0.008}$$

BAB III

METODE PRAKTIKUM

3.1 Rancangan Percobaan

3.1.1 Rancangan Praktikum

Gambar 3.1 Skema rancangan praktikum

3.1.2 Penetapan Variabel Variabel tetap : Laboratory Variabel berubah :

3.2 Bahan dan Alat yang Digunakan

3.2.1 Bahan

- 1. Na₂S₂O₃.5H₂O 0,1 N
- 2. KI 0,1 N
- 3. Na₂SO₃
- 4. Larutan amylum
- 5. Zat warna
- 6. Aquadest

3.2.2 Alat

- 1. Buret, statif, klem
- 2. Gelas arloji
- 3. Beaker glass
- 4. Rotameter
- 5. Erlenmeyer
- 6. Inverted manometer
- 7. Gelas ukur
- 8. Sparger
- 9. Pipet tetes
- 10. Tangki cairan
- 11. Kompresor
- 12. Reaktor
- 13. Sendok reagen
- 14. Piknometer

3.3 Gambat Rangkaian Alat

Gambar 3.2 Rangkaian alat hidrodinamika reaktor

Keterangan:

- A. Kompresor
- Laboratory
- C. Rotameter daerah riser
- D. Pompa
- E. Tangki penampung cairan
- F. Reaktor
- G. Inverted manometer
- H. Inverted manometer

3.4 Prosedur Praktikum

- 1. Menentukan hold-up pada riser dan downcomer
 - a. Mengisi reaktor dengan air dan menghidupkan pompa, setelah reaktor terisi air ... cm maka pompa dimatikan.
 - Menambahkan Na₂SO₃ ... N ke dalam reaktor, ditunggu 5 menit agar larutan Na₂SO₃ larut dalam air.
 - c. Melihat ketinggian inverted manometer.
 - d. Hidupkan kompressor kemudian melihat ketinggian inverted manometer setelah kompressor dihidupkan.
 - e. Ambil sampel untuk titrasi dan menghitung densitasnya.
 - f. Menghitung besarnya hold-up gas.
 - g. Mengulangi langkah-langkah tersebut untuk variabel operasi lainnya.
- 2. Menentukan konstanta perpindahan massa gas-cair
 - a. Mengambil sampel sebanyak 10 ml.
 - b. Menambahkan KI sebanyak 5 ml ke dalam sampel.
 - c. Menitrasi dengan Na₂SO₃.5H₂O ... N sampai terjadi perubahan warna dari coklat tua menjadi kuning jernih.
 - d. Menambahkan 3 tetes amilum.
 - e. Menitrasi sampel kembali dengan larutan Na₂SO₃.5H₂O ... N.
 - f. TAT didapat setelah warna putih keruh.
 - g. Mencatat kebutuhan titran.
 - h. Ulangi sampai volume titran tiap 5 menit konstan.
 - i. Mengulangi langkah-langkah tersebut untuk variabel operasi lainnya.
- 3. Menentukan kecepatan sirkulasi
 - a. Merangkai alat yang digunakan.
 - b. Mengisi reaktor dengan air dan Na₂SO₃ ... N
 - c. Menghidupkan kompresor.
 - d. Memasukkan zat warna secukupnya pada reaktor downcomer.
 - e. Mengukur waktu yang dibutuhkan oleh cairan dengan indikator zat warna tertentu untuk mencapai lintasan yang telah digunakan.
 - f. Menghitung besarnya kecepatan sirkulasi.
 - g. Mengulangi langkah-langkah tersebut untuk variabel operasi lainnya.

IDENTIFIKASI BAHAYA DAN ANALISA RESIKO MATERI : HIDRODINAMIKA REAKTOR

DENTIFIKASI BAHAYA (IB)

A	Mekanik		D	Lingkungan	E	Bahan Kimia		G	Bahaya Lainnya
A1	Penanganan manual	V	D1	Kebisingan √	E1		/	G1	Gas Terkompresi
A2	Bagian yang bergerak	√	D2	Getaran √	E2			G2	Radiasi Pengion
A3	Bagian yang berputar		D3	Penerangan	E3			G3	Radiasi UV
A4	Pemotongan		D4	Kelembaban	E4	Karsinogenik		G4	Kelelahan
В	Biologi		D5	Temperatur	E5	Mudah Terbakar		G5	Ruang Sempit
В1	Bakteri		D6	Bahaya Perjalanan	E6	Mudah Meledak		G6	Penuh Sesak
B2	Virus		D 7	Permukaan yang Licin √	E7	Cryoge <mark>n</mark> ics		G7	Termometer
В3	Jamur		D8	Limbah Padat	F	Peralatan			
C	Listrik		D9	Kualitas Udara	FI	Bejana Tekan			
C1	Voltase Tinggi		D10	Pekerjaan Soliter	F2	Peralatan Panas			
C2	Listrik Statis		D 11	Percikan/ Tetesan/ Banjir	F3	Laser			
C3	Kabel	V	D12	Tumpahan Serbuk	F4	Pembuluh Kaca			

	DETAIL RESIKO								
IB F	Resiko (setelah tindakan pengendalian)		kan	Identifikasi Resiko	Tindakan Pengendalian Untuk Meminimalisir Resiko	Tindakan Pertolongan Pertan			
Tinggi	Sedang	Rendah	Minimal	0					
. PREPAI	RASI/TAF	IAP AWA	L						
	\checkmark			 Reagen tumpah saat sedang menimbang Reagen tumpah saat pemasukkan titran ke dalam buret Reagen tumpah saat sedang mengukur densitas dengan piknometer Terkena paparan reagen 	Menggunakan alat pelindung diri (APD) lengkap seperti jas lab, sarung tangan lateks, kacamata pelindung, masker dan menggunakan sepatu.	 Menghentikan sumber tumpahan Menjauh dari tumpahan reager Membersihkan tumpahan reagen Apabila terhirup, pergi ke tempat dengan udara segar Apabila terkena kulit dan mat bilaslah dengan air yang banyak Apabila tertelan, minum air putih sebanyak 2 gelas Melepaskan pakaian yang terkontaminasi reagen 			

√	menyebabkan terpeleset - Terjatuh pada saat pemasukkan reagen - Terjatuh pada saat pengambilan sampel	kecepatan rendah Menaiki kursi dengan hati – hati Memastikan kursi yang akan digunakan kokoh dan tidak rapuh Meminta bantuan orang lain untuk memegangi kursi	Apabila terluka, bersihkan dan obati dengan P3K - Mematikan sumber arus listrik - Dorong tubuh korban dengan
\checkmark	- Saat menyalakan pompa terdapat resiko tersengat listrik atau pompa terbakar	 Memastikan kabel dan colokan sumber listrik tidak basah ataupun terkelupas Memakai APD lengkap 	 benda isolator Cari pertolongan medis jika terdapat luka bakar Gunakan APAR apabila terja

√	 Saat menyalakan kompresor terdapat resiko tersengat listrik/korslet atau kompresor terbakar - Saat menyalakan kompor listrik terdapat resiko tersengat listrik terdapat resiko tersengat listrik - Memakai APD lengkap Menggunakan ear plug - Menggunakan ear plug - Menaiki kursi dengan hati – hati Memastikan kursi yang akan 	 Mematikan sumber arus listrik Dorong tubuh korban dengan benda isolator Cari pertolongan medis jika terdapat luka bakar Gunakan APAR apabila terjadi kebakaran pada pompa Mematikan sumber kebisingan Mengistirahatkan telinga
√	- Terjatuh pada saat pengambilan sampel digunakan kokoh dan tidak rapuh - Meminta bantuan orang lain untuk memegangi kursi	Apabila terluka, bersihkan dan obati dengan P3K
3. ANALISA/TAHAP AKHIR		
√	- Terkena tetesan titran saat (APD) lengkap seperti jas lab, sarung melakukan titrasi tangan lateks, kacamata pelindung, masker dan menggunakan sepatu.	 Apabila terkena kulit dan mata bilaslah dengan air yang banyak Apabila tertelan, minum air putih sebanyak 2 gelas

	- TEN	110		Melepaskan pakaian yang terkontaminasi reagen
√	- Terjadi tumpahan air pada saat proses drainase yang dapat	Melakukan pembukaan valve sesuai prosedur agar air yang keluar maksimal dan langsung ke tempat	-	Menjauh dari tumpahan air Membersihkan tumpahan air Apabila terluka, bersihkan dar
	mengakibatkan terpeleset	pembuangan		obati dengan P3K

Process Laboratory

DAFTAR PUSTAKA

- Christi, M. Y. (1989). Air-lift Bioreactor. El Sevier Applied Science: London.
- Chisti, Y., Wenge, F., & Moo-Young, M. (1995). Relationship between riser and downcomer gas hold-up in internal-loop airlift reactors without gas-liquid separators. *The Chemical Engineering Journal and The Biochemical Engineering Journal*, 57(1), B7-B13.
- Haryani, K. (2011). Studi kinetika pertumbuhan Aspergillus niger pada fermentasi asam sitrat dari kulit nanas dalam reaktor air-lift external loop. *Momentum*, 7(1), 48-52.
- Im, H., Park, J., & Lee, J. W. (2019). Modeling and experiment of gas desorption of bubble column with an external loop in the heterogeneous flow regime. *Korean Journal of Chemical Engineering*, 36(10), 1680-1687. 10.1007/s11814-019-0368-x
- Popovic, M. K., & Robinson, C. W. (1989). Mass transfer studies of external-loop airlifts and a bubble column. *AIChE journal*, 35(3), 393-405. https://doi.org/10.1002/aic.690350307
- Uyar, B., Ali, M. D., & Uyar, G. E. O. (2024). Design parameters comparison of bubble column, airlift and stirred tank photobioreactors for microalgae production. Bioprocess and Biosystems Engineering, 47(2), 195-209. https://doi.org/10.1007/s00449-023-02952-8
- Widayat. (2004). Pengaruh Laju Alir dan Viskositas Terhadap Perpindahan Massa Gas-Cair Fluida Non Newtonian Dalam Reaktor Air Lift Rectangular. Prosiding Seminar Nasional Rekayasa Kimia dan Proses, 21-22 Juli 2004, Semarang, ISSN: 1411-4216, I-9-1 s.d. I-9-4
- Williams, J. A. (2002). Keys to bioreactor selections. *Chemical engineering* progress, 98(3), 34-41.