

_| Escuela de Computación Ingeniería de Computación _ Curso Simulación | Inventarios

Introducción.

A continuación se presenta un estudio de un sistema de inventarios sencillo, para el cual es necesario identificar dos variables primordiales. La cantidad de la orden denotada por "q" y el punto de reorden denotado por "r". Por consiguiente para evaluar el funcionamiento del sistema se toman valores de "q" y "r" que minimicen los costos totales de operación.

Al inicio de cada día se revisa el nivel de inventario. Cuando el nivel de inventario es menor o igual al valor de reorden de "r". Se debe solicitar un nuevo pedido. El tiempo de entrega en días del pedido está dado por:

Días	Probabilidad				
1 2	0.30 0.40				
3	0.30				

La demanda se suele construir a través de datos históricos de la empresa. Estos datos se pueden usar directamente como una tabla o bien se puede tratar de construir una distribución de probabilidad que se ajuste a los datos.

En este ejemplo se supondrá que la demanda diaria se comporta como una distribución Poisson con un parámetro de lambda de 7.

$$p(x) = 7^x * e^{(-7)}$$
 $y = 0,1,2,3,...$

La información de costos está dada por los siguientes elementos:

- () El costo fijo de hacer un pedido será de \$100. No importa la cantidad que se ordene se deben pagar \$100 por el pedido.
- () El costo del inventario se calculará con base en el inventario al final de cada día. Este cuesta \$20 por unidad por día.
- () Cuando algún cliente solicita un pedido y este no está disponible se estima un costo de \$50 por unidad no satisfecha de forma acumulada. Este es un costo de penalización por la insatisfacción del cliente y otros gastos.

A continuación se presenta una tabla con una ejecución de este problema de inventarios. Para la presenta tabla se han tomado los siguientes supuestos:

Inventario inicial: i = 50

Cantidad por ordenar: q = 50

Punto de reorden: r = 20

Inventario inicial i = 50

Cantidad por ordenar q = 50

Punto de reorden r = 20

No	ini	q?	r1	t	r2	X	fin	
1	50				0.6825	8	42	
2	42				0.2244	5	37	
3	37				0.7822	9	28	
4	28				0.4765	7	21	
5	21				0.6172	8	13	
6	13	si	0.8245	3	0.6842	8	5	
7	5			2	0.9365	11	-6	
8	-6			1	0.5024	7	-13	
9	50				0.2865	5	45	
10	45				0.8387	10	35	
11	35				0.6393	8	27	
12	27				0.9800	13	14	
13	14	si	0.6911	2	0.1976	5	9	
14	9			1	0.9940	14	-5	
15	50				0.8491	10	40	
16	40				0.3476	6	34	
17	34				0.1987	5	29	
18	29				0.7683	9	20	
19	20	si	0.2134	1	0.2980	5	15	
20	65				0.5951	7	58	
21	58				0.0626	3	55	
22	55				0.2103	5	50	
23	50				0.8477	10	40	
24	40				0.0506	3	37	
25	37				0.4523	7	30	

Ahora es importante calcular los costos en que se incurre al utilizar este modelo de inventarios. Tal como se había señalado se deben contabilizar tres costos diferentes.

() El costo fijo por orden:

Tal como se observa en la tabla se requirió hacer un pedido en tres ocasiones distintas, por cada una de ellas se deben pagar \$100.

```
costo_fijo = 3 * 100 = 300
```

() El costo por mantener inventario.

Existen muchas formas de contabilizar el costo del inventario. En nuestro caso se aplicará este costo únicamente a las piezas de inventario que no se han vendido. Observe además que se hay un faltante el costo de inventario de esa día es de 0.

```
costo_inventario = 20 * ( 42 + 37 + 28 + 21 + 13
 + 5 + 0 + 0 + 45 + 35
 + 27 + 14 + 9 + 0 + 40
 + 34 + 29 + 20 + 15 + 58
 + 55 + 50 + 40 + 37 + 30
```

costo_inventario = 20 * 684

costo inventario = \$ 13680

() El costo de penalización.

Cuando un cliente no encuentra el producto en inventario se incurre en un costo de penalización. En nuestro caso se había estimado en \$50 por unidad.

```
costo_penalización = 50 * (6 + 13 + 5)

costo_penalización = 50 * 24

costo_penalización = $1200
```

() Por lo tanto el costo total de la política q = 50, r = 20 se puede estimar en:

costo_total = 300 + 13680 + 1200

costo_total = \$ 15180

En esta caso sería muy interesante estudiar otras políticas de cantidad por ordenar y punto de reorden, es decir otros valores para "q" y "r". En general se buscaría encontrar valores de "q" y "r" que minimicen el valor del costo total, dadas las condiciones de demanda y tiempo de reorden de este problema.

Asímismo, se correrá la simulación por un año, es decir 365 días. En cada simulación se tendrá un inventario inicial de 50 unidades.

2. Desarrollo del Problema.

Se debe generar la siguiente simulación.

- * Iniciar con la cantidad de 50 unidades.
- * Revisar si hay que reordenar, Si hay que reordenar, generar una orden con el tiempo de entrega respectivo.
- * Generar la demanda del día.
- * Disminuir el inventario del dia con la demanda.
- * Se debe repetir el proceso por 365 días. y estimar el costo total
- * Se desea establecer el valor del costo total.

3. Entregables.

- Costo total del inventario para q=50 y r=20. Costo total, costo fijo, costo inventario y costo de penalización.
- Qué valores de "q" y "r" minimizan este problema? Evaluar 0 <= q <= 100 Evaluar 0 <= r <= q Entregue una tabla con los valores calculados
- Código del programa.

4. Bibliografía.

https://es.wikipedia.org/wiki/Inventario (inventarios determinísticos) Apuntes de clase, Capítulo de Generación de VA. Apuntes de clase, Capítulo de Ejemplos.