

Contents

• Adaptive Random Testing (ART)

Random Testing

A popular and important test case selection method

- Advantages
- Disadvantages

1

Random Testing (continued)

- Advantages
 - Intuitively simple
 - Allows statistical quantitative estimation of the software's reliability
- Disadvantage
 - Ineffective (not using any information to guide the selection of test cases)

Random Testing (continued)

- With replacement
 - Previously selected inputs could be selected again
- Without replacement
 - Previously selected inputs could not be selected again

4

How to improve random testing?

• Any common information or characteristics to all faulty programs?

How to improve random testing? (continued)

• Any common information or characteristics to all faulty programs?

failure-causing inputs

7

Patterns of Failure-Causing Inputs

- Strip Pattern
- Block Pattern
- Point Pattern

Types of Failure Patterns

Strip Pattern

Block Pattern

Point Pattern

ç

Strip Pattern

Two Dimensional Input Domain

If
$$(2*x - y > 10)$$

/* the correct statement is
If
$$(2*x - y > 20)$$
 */
 $z = x/2 *y$;
else
 $z := x*y$;

Block Pattern

Two Dimensional Input Domain


```
If (x >= 4 and x <=6)
and
(y >= 4 and y <= 6)
z := x + y;
/* the correct statement is
z := x - y; */
else
z := 100;
```

11

Point Pattern

```
Two Dimensional Input Domain
```



```
If ((x \mod 10) = 0)
and
((y \mod 10) = 0)
and
(x > 2) then
z := f(x, y);
/* should be
z := g(x,y); */
else
z := f(x, y);
```

Which pattern occurs more frequently?

block and strip patterns

1

Failure-causing pattern fixed but unknown

Adaptive Random Testing

for non-point failure patterns –
an even spread of random test cases will enhance
the fault detection capabilities

-11

Fixed-Size-Candidate-Set ART

- Generate a fixed size set of random candidates
- For each candidate, find its nearest already executed test case
- Select the candidate with the greatest distance to its nearest already executed test case, as the next test case

References

- R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey and X. Xia, A Survey on Adaptive Random Testing, IEEE Transactions on Software Engineering, in press.
- Z. Zhang, Y. Wang, Z. Wang and J. Qian, How to Effectively Reduce Tens of Millions of Tests: An Industrial Case Study on Adaptive Random Testing, IEEE Transactions on Reliability, Vol..68(4), 1429-1443, 2019.