FPGA RISC-V Softcore Processor for Network Security

Lachlan Comino, s4532119; Supervised by Matthew D'Souza

REIT4814

Project Aims, Goals and Scope

2016 saw the most damaging DDOS attack in history...

Constructed from a botnet of unsecured *IoT* devices, it achieved a throughput of 1.2Tbps and targeted *Dyn* servers, taking down a majority of the internet.

∴ Security in IoT devices is critical.

However, additional security protocols can strain IoT devices. Speed-up is required for critical processes.

Aim: Speed-up AES-128-CBC

Algorithm Steps

- 1. ExpandKey
- 2. AddRoundKey

Loop for *n* rounds:

- 1. ByteSub
- 2. ShiftRow
- MixColumn
- 4. AddRoundKey

Three ways we can **speed** up AES:

- 1. Precompute SBoxes in **BRAM**
- 2. Implement operations at the ISA-level
- Combine operations into a single operation

Parallelisation is not possible (CBC relies on previous block ciphers).

Figure 1: Diagram showing ciphering

Goal: Implement an Encryption SoC Server on FPGA Hardware

Using Open-Source Tools:

Tool	Xilinx	Open-Source
SC CPU	ARM Cortex M series	VexRiscv (RISC-V)
HDL	Verilog, VHDL	SpinalHDL
Synthesis	Vivado	F4PGA (Yosys)
SoC Building	Add IP Core in Vivado	LiteX SoC Builder
Linux Variant	PetaLinux	Buildroot Linux

Performance Benchmarks

Encryption Rate

Stress-ng Tests

Figure 4: Stress-ng Performance Comparison Across Configurations

Ethernet Throughput

With the dual-core 100MHz VexRiscv, an average TCP throughput of 9.9Mbits/s was achieved in iPerf3.

Wait for ACK

Begin data

File done. Send metrics

Client

Stage 1: Acknowledgement and Queuing

Send operation byte, (encrypt OR decrypt)

Send "QUEUED"

Send "ACK"

Stage 2: File Transfer and Operation

Stage 3: File Transfer Complete

Send Connection Closed

Server

Max clients

reached. Keep

Encrypt OR

Close connection The server will know the file is

done if

st_chunk_size <

With 150Mhz dual-core, the TCP stream average increased to 22.4Mbits/s.

Server Application, Python3

Figure 2 (Right): Diagram showing Server-Client Relationship

Implemented in full Python3 running on Buildroot Linux.

Client streams input chunks to the

Server then encrypts or decrypts depending on what the client specified.

Server sends back the processed chunk and the transaction is closed.

This process supports the threading of multiple clients on the same port.

For analysing performance, "metrics" are collected both server-side and client-side.

These results are then posted to a HTTP server that uses a SQLite DB.

Q: Does Overall Throughput Increase with CPU Core Amount?

A: No. Because of Resource Contention

Server Application Performance

Average throughput from each configuration, serving 100 total clients, in 10 client chunks.

Tool	Xilinx	Open-Source
SC CPU	ARM Cortex M series	VexRiscv (RISC-V)
HDL	Verilog, VHDL	SpinalHDL
Synthesis	Vivado	F4PGA (Yosys)
SoC Building	Add IP Core in Vivado	LiteX SoC Builder
Linux Variant	PetaLinux	Buildroot Linux