Visualizing Relationships in Python

Contents

- 1. Summarizing Data in Diagrams
 - i. Scatterplot with Regression Line
 - ii. Scatterplot Matrix
 - iii. Bubble Chart
 - iv. Heat Map
 - v. Trend Line
 - vi. Motion Chart
- 2. Summarizing Data in Diagrams using Python

Scatter Plot

Each dot represents one child with his or her height measured along the x-axis and weight measured along the y-axis

Case Study

Background

A company has the scores of various attribute tests of their employees

Objective

To understand the factors contributing to the Job Proficiency of an employee.

To see the relationship between these various factors

Sample Size

25

Data Snapshot

JOB PROFICIENCY DATA

Variables

empno	aptitude	testofen	tech_	g_k_	job_prof
1	86	110	100	87	88
2	62	62	99	100	80
3	110	107	103	103	96
			7.2	7222	1

	Columns	Description	Type	Measurement	Possible values
	empno	Employee No	Numeric	-	-
	aptitude	Aptitude	Numeric	-	positive values
	testofen	Test of English	Numeric	-	positive values
	tech_	Technical Score	Numeric	-	positive values
	g_k_	General Knowledge	Numeric	-	positive values
-	job_prof	Job Proficiency	Numeric	-	positive values

Observations

ScatterPlot with Regression Line in Python

```
#Importing Data
import pandas as pd
                                                                     index col= 0
job=pd.read csv('JOB PROFICIENCY DATA.csv', index col=0) ←
                                                                     instead of
                                                                     None (take
#Importing Library Seaborn
                                                                     first column
import seaborn as sns
                                                                     as index by
import matplotlib.pyplot as plt
                                                                     default)
#Scatterplot of job proficiency against aptitude with Regression
Line
sns.lmplot('aptitude','job_prof',data=job);plt.xlabel('Aptitude');plt.
ylabel('Job Proficiency');plt.title('Fig.No. 1: ScatterPlot with
Regression Line')
          sns.Implot() calls a scatter plot from sns object with regression line
          plt.xlabel provides a user defined label for the variable on x axis
          plt.ylabel provides a user defined label for the variable on y axis
          plt.title gives title to the plot
```

ScatterPlot with Regression Line in Python

Interpretation:

- ☐ Scatter plot above shows that, as the aptitude score increases job proficiency also increases.
- ☐ For a given aptitude score, the job proficiency can be estimated and vice-a-versa using the regression line.

Scatter Plot Matrix

ScatterPlot Matrix
sns.pairplot(job);plt.title('Fig.No. 2: ScatterPlot Matrix')

pairplot() from sns is used to plot pairwise comparison

Scatter Plot Matrix in Python

Output

Interpretation:

- Scatter plot matrix above shows that, as the aptitude score, English language score, technical score and general knowledge score increases job proficiency also increases.
- Technical score and GK score has slight positive relation but other variables are not related to each other.

Bubble Chart

Bubble Chart in Python

Bubble Chart

```
sns.scatterplot('tech_', 'job_prof', data=job,
hue='aptitude',size='aptitude'); plt.title('Fig.No. 3: BUBBLE CHART');
plt_xlabel('Technical'); plt.ylabel('Job Proficiency')

sns.scatterplot() calls a scatter plot from sns object
tech_, job_prof are variables to be plotted on x and y axis
hue gives colors based on aptitude score
size assigns the size to the bubble based on aptitude score
```

Bubble Chart in Python

Output

Interpretation:

Here we observe that as Technical score increases Job Proficiency also increases however, Aptitude score does not show any such consistent direction.

Heat Map

Case Study

To get a better understanding of the subject, we shall consider the below case as an example.

Background

NY Temperature varies across months over the years

Objective

To visually see the hottest months in the years
To see how temperature has fluctuated over the years

Sample Size

108

Data Snapshot

Average Temperatures in NY

Variables

	Year	Month	Temperature	
	2009	Jan	27.9	
	2009	Feb	36.7	
	2009	Mar	42.4	
	2009	Apr	54.5	
	2009	May	62.5	
	2009	Jun	67.5	
	150000000000000000000000000000000000000	230.00		

Columns	Description	Type	Measurement	Possible values
Year	Years listed from 2009-2017	Categorical	2009 – 2017	9
Month	Months of the year	Categorical	Jan - Dec	12
Temperature	Average Temperature in degree Fahrenheit	Numeric	-	-

Heat Map in Python

```
# Installing and calling the package
import seaborn as sns
import calendar
# Importing Data and Arranging the Months in the right order :
heatmapdata=pd.read csv('Average Temperatures in NY.csv')
agg=pd.pivot table(heatmapdata, index=['Month '], columns=['Year '])
agg.columns = (heatmapdata['Year ']).unique()
agg = agg.reindex(list(calendar.month abbr))
                                      calendar library gives the functions related to
                                      calendar manipulations such as Year, Month.
# Heat Map
plt.show; ax=sns.heatmap(agg);ax.set(xlabel='Year', ylabel='Age
Group',title='Heatmap')
```

Heat Map in Python

Output for Heat Map :

Interpretation:

- Heat map above shows that July is the hottest season across the year.
- 2015 showed a longer hot period as compared to other years extending from may to September

Trend Line

Case Study

To get a better understanding of the subject, we shall consider the below case as an example.

Background Telecom Weekly Data for 24 weeks Objective To visually observe the trend of total calls over 24 weeks Sample Size 21902

Data Snapshot

Plotting a trendline requires time-element. Consider the following datasets. Week can be taken as the time element.

TelecomData_WeeklyData

Variables Minutes CustID Week Calls Amt Observations 56 202 79 / 1001 Possible Measurem Columns Description CustID Customer ID Numeric Week no. 1-24 24 Week Numeric Calls No. of Calls positive values Numeric **Total Minutes** Minutes positive values Minutes Numeric Amount Amt Numeric Rs. positive values 20 Charged

Trend Line in Python

```
# Importing Data
transaction = pd.read csv("TelecomData WeeklyData.csv")
# Merging and Formatting Data
trend=(transaction.groupby('Week')['Calls'].sum().to_frame()).reset_index(
# Trend Line
plt.plot(trend['Calls'], marker='o');plt.xlabel('Week');plt.ylabel('No.
of Calls');plt.title('TREND LINE')
    The basic function is plot(x, data, marker, color)
    x is a vector containing the numeric values.
    marker plots simple line, "o" used to draw both points and lines.
    plt.xlabel is the label for x axis.
    plt.ylabel is the label for y axis.
    plt.title is the Title of the chart.
    color is used to give colors to both the points and lines.
                                                                     21
```

Trend Line in Python

Output

Interpretation:

Upto first 4 weeks, number of calls increases continuously. After 5th week there are more ups and down in number of calls among customers.

Motion Chart

- A Motion Chart is a dynamic bubble chart which allows efficient and interactive exploration and visualization of longitudinal multivariate Data.
- It allows you to plot the dimension values in your report against up to four metrics across time.

Case Study

To get a better understanding of the subject, we shall consider the below case as an example.

Background

Sales Data & it's penetration in each Region over the years

Objective

To visually observe the sales & penetration in motion over the years

Sample Size

22

Data Snapshot

Sales Data (Motion Chart)

Variables

Year Region Sales Penetrartion 2006 North 40.23 721 Possible Description Columns Type Measurement values Observations Year Numeric 2006-2016 11 Year Region Categorical North,West 2 Region Sales in a Positive Sales Rs. particular Numeric values Year Penetration Positive in a Penetration Numeric particular values Year

Motion Chart in Python

To create a motion chart in python execute the following code in Jupyter Notebook.

```
#Importing Data
 sales = pd.read csv("Sales Data (Motion Chart).csv")
#Installing plotly-express
                                        Install plotly-express using pip installer with this
 pip install plotly-express ←
                                        command in anaconda prompt
 #Installing
                                               plotly-express is the best package we can use
 import plotly.express as px
                                               to plot an effective Motion Chart in Python
# Motion Chart
px.scatter(sales, x="Penetration", y="Sales", animation frame="Year",
animation group="Region", size="Sales", color="Region",
hover name="Region", log x=True, size max=55, range x=[700,2000],
         px.scatter is the function used to create a motion chart
rang
         sales is the data that is used
         animation frame= inputs time variable
         animation group= inputs of categorical variable
         \log x = (\text{default False}) If True, the x-axis is log-scaled in cartesian coordinates.
```

Motion Chart in Python

Get an Edge!

Choosing the right graph

Quick Recap

In this session, we learnt data visualisation using basics graphs

Chart Types and Functions in Python

- Scatterplot with Regression Line **sns.lmplot()**
- Scatterplot Matrix sns.pairplot()
- Bubble Chart sns.lmplot()
- Heat Map sns.heatmap()
- Trend Line plot()
- Motion Chart px.scatter from package "plotly.express"