MO9 Komunikace po sběrnici

#technicke_vybaveni_pocitacu

Komunikace

Synchronní

- přenosy se synchronizují pomocí společného hodinového signálu (CLK)
- CLK
 - je generován <u>masterem</u>
 - určuje, kdy mají být data čtena nebo zapsaná
 - určuje rychlost přenosu dat
- data jsou posílána v rámcích; obsahují bit určující čas čtení/zápisu
- přenosy jsou náchylnější na rušení elektromagnetickým polem; ztráty se objevují také i na přenosech ve velké vzdálenosti

Asynchronní

- místo hodin komunikace používá dva signály navíc, zejména start a stop bity ke znázornění začátku a konce každého bytu dat
- zařízení mezi sebou komunikují různou rychlostí; rychlosti jsou nastavovány pomocí baudové rychlosti (počet bitů
 přenesených za jednu sekundu; rychlost musí být stejně nastavená na obou stranách)
- náchylnější na chyby dat; obsahuje paritní bity sloužící k opravě chyb

Výhody a nevýhody

- výhody
 - umožňuje snadné propojení více zařízení do jednoho systému
 - možnost přidávat nová zařízení nebo aktualizovat stávající bez fyzické změny připojení
 - poskytují centralizovaný přístup k zk. systémovým zdrojům
- nevýhody
 - omezená <u>šířka pásma</u> ovlivňující výkon systému
 - může docházet ke kolizím
 - omezená <u>délka sběrnice</u>
 - můžou se objevovat chyby při přenosu způsobující nespolehlivou komunikaci

Přidělení sběrnice

Obvody

- MUX
 - umožňují přepínat mezi vícero vstupy
 - mohou vybírat konkrétní zařízení, které se připojí ke sběrnici, nebo signál, který bude na sběrnici vyslán
- adresový dekodér
 - vstup dva či více bitů
 - pokud se na adresní sběrnici objeví adresa konkrétního zařízení, dekodér aktivuje výběrový vodič tohoto zařízení
 - každé zařízení může mít svůj dekodér, nebo může být jeden společný
 - pokud se dekodér používá pro více zařízení, dekodér s n počtem bitů se dá použít až pro 2^n zařízení; obvod 74154 má 4 adresní vstupy, tudíž může obsloužit 16 zařízení (2^4)

- enkodér priority
 - přiřazují prioritu zařízením na sběrnici
 - určující pořadí přenosu dat po sběrnici
- sběrnicový řadič
 - spravují přístup ke sběrnici
 - zajišťují koordinaci komunikace mezi periferními zařízeními
- signály řazení
 - k označení zařízení které může komunikovat na sběrnici
 - např.: Chip Select (CS)

Základní techniky

- centrální řízení
 - jedno zařízení zvoleno jako master
 - ostatní zařízení musí čekat, až budou mít právo přistoupit ke sběrnici
 - neefektivní, pokud je činnost na sběrnici vysoká
- priority scheduling
 - každé zařízení má přidělenou prioritu
 - vyšší priorita má přednost
- Round Robin
 - imaginární token putuje mezi zařízeními
 - zařízení má nastavený časový úsek, jak dlouho může mít "u sebe" token
 - zařízení s tokenem smí přistoupit ke sběrnici
 - po uplinutí časového úsek u "předá" token na další zařízení
- token passing
 - podobný jako Round Robin ale bez časového úseku
 - čeká se, až zařízení odešle všechna data
- sběrnicové řadiče
- stavový automat

Multiplexovaná sběrnice

• několik zřízení sdílí fyzické médium přenosu dat

Časově

- zařízení je přiřazen časový slot, kdy může posílat/přijímat data
- časové sloty mohou být
 - 1. statické čas. slot je pevně daný
 - 2. dynamické čas. slot se mění podle potřeby
- ostatní zařízení musí čekat na svůj čas. slot
- výhodou je snížení konfliktů o přístup ke sběrnici, jednoduchá implementace a efektivní využití přenos. média

Frekvenčně

- signálům jsou přiřazené různé frekvence kmitočtového pásma po kterých jsou vysílané
- je možné realizovat amplitudovou <u>modulací</u>
- vysílání obsahuje více frekvencí současně
- datové toky jsou následně kombinovány do komplexního signálu

Schutzbänder = ochranné pásmo

Prostorově

- na základě fyzického oddělení (v prostoru); není potřeba časového nebo frekvenčního multiplexu
- signály jsou přenášeny nezávisle ve vlastních fyz. cestách → minimální interference mezi jednotlivými kanály
- používá MIMO technologii (Multiple Input, Multiple Output) více antén pro příjem/přenos signálů současně
- schopnost přenosu dat z různých zdrojů do různých cílů

Vlnovou délkou

- používá se v optické komunikaci
- datový tok je rozdělen do několika vlnových délek (každá délka představuje jeden komunikační kanál)
- možnost přenosu více nezávislých dat. toků na jednom optickém vlákně (obousměrně)
- různé signály používají různé frekvence
- Wavelength Division Multiplexing (WDM)
 - muliplexer ve vysílači pro spojení signálů dohromady; demutiplexer v přijímači pro následné rozdělení
 - první WDM umělo kombinovat pouze dva signály; dnes až 160 signálů
 - umožňují rozšiřovat kapacitu sítě bez nutnosti pokládání dalších opt. vláken
 - Dense WDM (DWDM)
 - vlnové délky přiřazeny s velmi malými mezerami
 - umožňuje přenos velkého množství dat
 - Coarse WDM (CWDM)
 - vlnové délky přiřazeny se širšími mezerami

• obvykle pro menší množství kanálů na jednom vláknu

Arbitrace

- mechanismus řešící konflikty o přístup ke sdíleným zdrojům
- v počítačových sítích se využívá k efektivnímu řízení přístupu ke sběrnici
- vzniká v situaci, kdy více zařízení chce přistoupit k společné sběrnici
- proces vyžaduje existenci arbitra (speciální software/hardware) který řídí přidělování přístupu podle předem daných pravidel
- centralizovaná arbitrace systém má jednotlivý bod (arbitra) který koordinuje a rozhoduje o přístupu
- decentralizovaná arbitrace zařízení spolupracují a rozhodují o přístupu bez centrální autority
- prioritní arbitrace zařízení má určitou prioritu, na základě které je mu přidělen přístup
- časová arbitrace přístup je přidělován v určitých časových intervalech
- Carrier Sense Multiple Access with Collision Detection (CSMA/CS)
 - před začátkem přenosu dat zařízení monitoruje nosný signál (carrier sense) zda není obsazen jiným zařízením
 - pokud je nosný sig. volný, zařízení začne přenášet data
 - nosný signál je během přenosu neustále poslouchán, jestli se nepřipojilo další zařízení; pokud ano, oba přenosy jsou
 pozastaveny a začne se řešit kolize
 - při kolizi a následném zastavení přenosu zařízení čekají náhodnou dobu před pokusem znova přenášet
- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
 - často použit u bezdrátových přenosů
 - před začátkem přenosu dat zařízení monitoruje nosný signál zda není obsazen jiným zařízením a jestli kanál je vůbec dostupný; pokud je obsazen, zařízení čeká na vhodnou chvíli k přenosu
 - pokud je nosný sig. volný, zařízení začne přenášet data
 - pokud je nosný sig. obsazen, zařízení čeká náhodnou dobu, před dalším pokusem o připojení
- výhody
 - efektivní využití sdílených zdrojů
 - vyhýbá monopolizaci zdrojů jedním zařízením
 - flexibilní v řízení přístupu k zdrojům; lze nakonfigurovat dle potřebných požadavků
- nevýhody
 - může způsobit zpomalení způsobené čekáním na nosný signál
 - přístup ke zdrojům nemusí být předvídatelný
 - může být složitá na implementaci

Řešení

- softwarové
 - plánování přístupu pomocí algoritmů např.: Round Robin, Priority Scheduling nebo Shortest Job Next
 - pomocí synchronizačních mechanismů (semafor, mutex, atd.)
 - pomocí CSMA/CS nebo CSMA/CA
- hardwarové
 - arbitrační jednotky rozhodující, zda zařízení má právo na přístup ke sběrnici v daném okamžiku
 - sběrnice s implementovanou arbitrační jednotkou
 - řadič paměti
 - řadič RAIDu řídící přístup k datům na více discích