Type 1 Diabetes project

Prediction of T1D status based on immunological features

Kseniia Lupyr Artemiy Dakhnovets Valeriia Vladyina

Problem statement

Type I diabetes

The immune system of patients with T1D attacks their own body

Can we develop a therapy that targets crazy immune cells?

Dataset: tables of special immunological features. One table for a donor with sequences and their abundance

Goal: prediction of T1D status based on immunological data and identification feature that have the greatest impact

Difficulty: an extreme number of features

Test and training datasets were constructed on independent batches

dataset	status	batch	
train	T1D	T1D batch 2	230
	Healthy	rosati	66
test	T1D	T1D batch 1	153
	Healthy	aging	57

Current solutions

Preprint that is very similar to our work

medRxiv 2024.12.10.24318751

- No data available
- Machine learning analysis yielded AUROC of 0.77 on test cohort
- No immunological features that were shared between most of T1D patients

Novelty

- We implemented reasonable methods from this work on our data
- Additional methods were employed
- Got better performance
- Identified immunological features that are shared between half of T1D patients

Models used with TCRnet and F-test selected features

Feature Selection Method	F1	AUROC
TCRnet	0.85	0.68
F-test	0.89	0.87

Model	F1-score	AUROC
LogReg+Elas ticNet	0.84	0.89
LogReg+L2	0.89	0.87
Random Forest	0.91	0.91
XGBoost	0.90	0.86
SVM	0.90	0.92

0.2

0.4

Recall (Sensitivity)

SVM (AUC = 0.968)

0.8

0.6

ESM-2 protein language model to construct sequence embeddings

- We used pre-trained ESM-2 T33 UR50D model with 650 million parameters and 33 layers.
- First, per-sequence embeddings are mean-pooled across all tokens.
- Second, per-patient embeddings as weighted averaged per-sequence embeddings. Weights are immuno sequence abundances in a patient.
- Additional feature entropy of immuno-sequence abundances to capture immunological sequence diversity.
- In total: 1280 embedding dims + 1 entropy = 1281 features.

Model evaluation on ESM-derived embeddings

Model	Balanced Acc	F1-score	AUROC
RBFSampler+LogReg	0.624	0.862	0.542
PCA+Random forest	0.562	0.845	0.836
UMAP+Random forest	0.516	0.852	0.782
PCA+XGBoost	0.588	0.852	0.782
UMAP+XGBoost	0.588	0.852	0.841

Conclusions

- 1. We implemented ML models following:
 - **a.** statistical feature selection approach
 - **b.** feature selection using immunological software
 - **c.** deep learning scheme for feature engineering
- **2.** Classical classification framework demonstrated higher performance compared to ESM-2 embedding approach
- **3.** Random forest and SVM classifiers displayed the strongest performance with AUROC 0.92 and 0.91 respectively
- **4.** We analyzed feature importance and identify immune features shared between half of the patients

Acknowledgments

Georgy Sharonov Irina Shagina Mikhail Pogorelyy Vladimir Zagainov Dmitry Chudakov Olga Britanova

Supplementary

Introduction

CD8+ cells kill infected and cancer cells

CD4+ cells regulate immune response by activating (Th) and inhibiting (Treg)

- T-cell specificity is defined by T-cell receptor (TCR)
- TCR is formed by quasi-stochastic process – V(D)J recombination
- Some TCRs have a greater generation probability than others

$$P_{gen}(\sigma) = P_V \times P_{DJ} \times P_{del} \times P_{ins}$$

Skoltech

Type I diabetes

8.7 million

32 years

people are living with T1D diabetes around the world

of healthy life lost on average per person

According to [3]

- **Insulin therapy** is the only one generally accepted method of treating T1D
- Insulin therapy does not prevent the development of severe chronic complications

an autoimmune disease in which insulin-producing β -cells are destroyed by the immune system

Is T-cell targeted treatment possible for Type I Diabetes?

- T1D associated HLA haplotypes **DR3-DQ2** and **DR4-DQ8** are present in up to 90% of individuals with T1D [4,5]
- Genetic variations that are associated with a high expression of proinsulin in the thymus causes a T1D protective effect by enhancing T cell tolerance [6-8]
- T1D-associated gene variants are particularly enriched in the open chromatin of stimulated CD4+ effector T cells [9]

Drugs and mechanisms that have shown efficacy in TD1

- Anti-CD20 mAb
- blocking of CD28 costimulatory signals
- anti-thymocyte globulin
- anti-CD3 mAb

- blocking of CD2 costimulatory receptor
- anti-TNF mAb
- JAK1/JAK2 inhibition
- tyrosine kinase inhibitor [10-19]

	Cohort 1
Model	AUROC
HLA risk score	0,7279
CDR3 risk scores	0,7533
Average CDR3 risk score	0,7146
pHLA-motif	0,6804
nHLA-motif	0,5869
Logistic regression (LR)	1
DeepRC	0,7603
Ensemble DeepRC (LR)	0,7894
DeepRC-motif	0,7054
Consensus-motif*	0,6844

Bulk dataset description

TCR repertoires of patients with T1D:

batch 1 – 158 TCR repertoires

batch 2 – **250** TCR repertoires

batch 3 – **3** patients, 2 TCR repertoires per patient

TCR repertoires of healthy patients:

Aging – **65** TCR repertoires

Rosati – **100** TCR repertoires

414 TCR repertoires of patients with T1D **165** TCR repertoire of healthy individuals

TCR repertoires were normalized to 30k UMIs per sample

Bulk dataset description

TCR repertoires of patients with T1D:

batch 1 - 158 TCR repertoires

batch 2 - 250 TCR repertoires

batch 3 – **3** patients, 2 TCR repertoires per patient

TCR repertoires of healthy patients:

Aging – **65** TCR repertoires

Rosati – **100** TCR repertoires

414 TCR repertoires of patients with T1D **165** TCR repertoires of healthy individuals

normalization

TCR repertoires of patients with T1D:

batch 1 – 153 TCR repertoires

batch 2 - 230 TCR repertoires

batch 3 – **3** patients, 2 TCR repertoires per patient

TCR repertoires of healthy patients:

Aging – **57** TCR repertoires

Rosati – **66** TCR repertoires

389 TCR repertoires of patients with T1D **123** TCR repertoires of healthy individuals

Identification of T1D-associated TCRs as feature selection problem

Emerson et al. 2017

Autoimmunity

Three levels of defence

- Central tolerance
- 2. Peripheral tolerance
- 3. Low levels of self-peptides presentation by APCs

Target treatment of autoimmunity

- Treg therapy
- Treg inducing-vaccines
- Depletion of autoimmune clonotypes

Therapeutic antibody for TRBV9+ T-cells depletion in patients with AS was registered in Russia in April

Breaking self-tolerance

Ankylosing Spondylitis (AS) example

