本章主要掌握以下四种微分方程的解法:

(1)定义:形如 $\frac{dy}{dx} = f(x)g(y)$ 的方程称为可分离变量的微分方程.

解法: 分离变量, 两边积分

(2)定义: 形如 $\frac{dy}{dx} + P(x)y = Q(x)$ 的方程称为一阶线性微分方程,

其中P(x),Q(x)均为已知函数.

解法: 公式法 通解 $y = e^{-\int p(x)dx} \left[\int Q(x)e^{\int p(x)dx} dx + C \right]$

(3)可降阶的三种特殊微分方程

$$y'' = f(x)$$
, $y'' = f(x,y')$, $y'' = f(y,y')$ 的解;

y'' = f(x),解法:直接积分.

注意:两次积分,有两个独立的任意常数.

y'' = f(x, y'), 解法: 降阶

令 y' = p, y'' = p', 方程降为一阶 p' = f(x, p)

y'' = f(y,y'), 解法: 降阶 要求: 了解该类方程

令 y' = p, $y'' = p \frac{dp}{dy}$, 方程降为一阶 $p \frac{dp}{dy} = f(y, p)$

(4)二阶常系数齐次线性微分方程y'' + py' + qy = 0的解.

二阶常系数线性齐次微分方程 y'' + py' + qy = 0, 其中p,q为常数

特征方程: $r^2 + pr + q = 0$

特征方程的根	微分方程的通解
两个不相等的实根 $r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
两个相等的实根 $r_1 = r_2 = r$	$y = C_1 e^{rx} + C_2 \cdot x e^{rx}$
有一对共轭复根 $r_{1,2} = \alpha \pm i\beta$	$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$

一、求下列微分方程的通解

$$(1)xy' - y \ln y = 0 \quad (2)\frac{dy}{dx} + 2xy = 4x \quad (3)xydx + \sqrt{1 - x^2}dy = 0$$

$$(4)\frac{dy}{dx} + y = e^{-x} \qquad (5)y'' = x - e^{x} \qquad (6)y'' = 3x^{2} - 2$$

$$(7)y'' - 9y' = 0$$
 $(8)y'' + y' - 2y = 0$ $(9)y'' - 4y' + 5y = 0$

二、求下列微分方程的特解

(1)
$$(x^2y + y)dy - (x + xy^2)dx = 0$$
, 初始条件 $y(2) = 3$;

$$(2) x dy + 2y dx = 0$$
, 初始条件 $y(2) = 1$;

$$(3)$$
 $\frac{x}{1+y}$ $dx - \frac{y}{1+x}$ $dy = 0$, 初始条件 $y(0) = 0$.

- 三、若 $y = y_1(x)$ 是线性齐次方程y' + p(x)y = 0的解, $y = y^*(x)$ y' + P(x)y = Q(x)的解. 证明: $y = cy_1(x) + y^*(x)$ (c是任意 常数)是y' + P(x)y = Q(x)的解.
- 四、求微分方程 y'' 2y' + y = 0的一个解,使该曲线过点 (0, 2) 且在该点有水平切线.
- 五、写出以函数 $y = c_1 e^{2x} + c_2 e^{-x}$ (其中 c_1 , c_2 为任意常数)为通解的微分方程.