## Hypothesis Testing & Causal Inference

Benjamin S. Skrainka

September 15, 2016

# Standards (1/2)

### Today's standards:

- Given a dataset, state and test the null vs. alternative hypothesis, using the p-value for the difference of means or proportions
- Given a dataset, state and test the null vs. alternative hypothesis, using the p-value for Chi-square test of independence
- Describe a situation in which a one-tailed test would be appropriate vs. a two-tailed test
- State when to test hypothesis using:
  - z-test
  - ► t-test
  - two sample t-test (one-sided and two-sided)
  - two sample z-test (one-sided and two-sided)

# Standards (2/2)

#### Today's standards:

- Define and state application of p-value, Type I Error, Type II Error, significance level, and power
- Account for the multiple hypotheses using Bonferroni correction
- Compute the difference of two independent random normal variables
- ullet State when to use an A/B test to evaluate the efficacy of a treatment
- Design a simple A/B test

## **Objectives**

#### Today's objectives:

- List key properties for experimental data
- Differentiate between experimental and observational data
- Perform hypothesis testing
- $\bullet$  Design an A/B test to establish causality
- Measure treatment effects

## Agenda

### Today's plan:

- Frequentist hypothesis testing
- Yey concepts: experimental vs. observational data
- Experimental design

### References

A couple references, ranked roughly by decreasing friendliness:

- Statistical Inference introduces basic probability and statistics
- All of Statistics: A Concise Course in Statistical Inference summarizes all things statistics
- A First Course in Design and Analysis of Experiments
- Experimental and Quasi-Experimental Designs for Generalized Causal Inference is a popular introduction to experimental design for social scientists
- Causal Inference for Statistics, Social, and Biomedical Sciences trenchantly explains the Rubin causal model
- Causality covers the structural causal model
- The Design of Experiments by R. A. Fisher is the classic reference, sadly out of print
- Sequential Analysis

# Frequentist hypothesis testing

## Frequentist hypothesis testing

### To test a hypothesis:

- State null hypothesis,  $H_0$
- 2 State alternative hypothesis,  $H_1$  ( $H_A$ )
- **3** Choose a significance level,  $\alpha$
- Choose and compute appropriate test statistics
- **6** Compute p-value and 'reject' or 'fail to reject'  $H_0$

## Null hypothesis vs. alternative hypothesis

### Null hypothesis $(H_0)$ :

- Typically, the status quo, such as no effect
- $H_0: \mu = 0$

### Alternative hypothesis $(H_A)$

- ullet The alternative, such as advertising causes 1% lift
- $H_A: \mu \neq 0 \text{ or } H_A: \mu \geq 0$
- Sometimes written as  $H_1$

#### Statistics is conservative:

- Cannot 'accept a hypothesis'
- Can only 'fail to reject' it

### Two-sided vs. one-sided tests

By default, we compute a *two-sided* test:

- Reject  $H_0$  if test statistic is in upper or lower tail
- Compute p-value using probability of being in either tail

But, sometimes, we expect an effect to be in only one direction:

- Example: advertising should not decrease sales
- Use one-sided test
- $H_0: \theta \leq \theta_0$  vs.  $H_A: \theta > \theta_0$
- Reject  $H_0$  if test statistic is in the wrong tail
- Compute p-value using the probability of being in only one tail

## Type I and Type II errors

#### Type I error:

- Rejecting  $H_0$  when it is true
- Example:
  - ► *H*<sub>0</sub> : defendant is innocent
  - ► Convicting someone who is innocent

#### Type II error:

- Failing to reject  $H_0$  when it is false
- Example:
  - ► H<sub>A</sub>: defendant is guilty
  - Acquitting someone who is guilty

# $H_0$ vs. $H_A$



|                       | H <sub>o</sub> is true    | H <sub>o</sub> is false      |
|-----------------------|---------------------------|------------------------------|
| Accept H <sub>0</sub> | Correct Decision<br>(1-α) | Type II Error<br>(β)         |
| Reject H <sub>0</sub> | Type   Error<br>(α)       | Correction Decision<br>(1-β) |

Figure 1: $H_0$  vs.  $H_A$ 

### **Statistics**

We compute statistics to perform inference and characterize parameters of interest:

- A statistic,  $\Theta_n(X)$ , is a function of data which characterizes some parameter of interest:
  - Depends on the n observations (rows)
  - ► Is a random variable
- A statistic,  $\Theta_n(X)$ , is *sufficient* for the parameter  $\theta_0$  if conditioning on it and the true parameter provides the same information as just conditioning on the statistic:

$$\Pr[x|\Theta_n(x),\theta_0] = \Pr[x|\Theta_n(x)]$$



## Properties of statistics

A good statistic is usually unbiased and consistent:

• Bias:

$$bias = \mathbb{E}[\Theta_n(X)] - \theta_0,$$

where  $\theta_0$  is the 'truth'

Consistency: a statistic is consistent if:

$$\underset{n\to\infty}{plim}\,\Theta_n(X)\to\theta_0$$

- Robustness: works well for a wide variety of distributions
- Will often accept some bias to decrease variance (Will discuss bias-variance trade-off in a couple weeks)

## Significance level

### Significance level is the cutoff for rejecting $H_0$ :

- ullet  $\alpha$  is significance level
- $\alpha = \Pr[\text{reject } H_0 | H_0 \text{ is true}]$
- Confidence level is  $(1 \alpha) \times 100$ , e.g., 95%

# Example: significance level



### P-value

A *p-value* is the probability of observing data which is at least as extreme as what was observed:

- For a statistic  $\Theta(X)$ , p-value =  $\Pr[\Theta(X) \ge \Theta(x)]$
- Large values of  $\Theta(X)$  (small p-values) increase our belief that  $H_A$  is likely
- Reject  $H_0$  if p-value  $\leq \alpha$
- P-values can be controversial
- Beware of 'p-hacking' manipulation to generate a significant result

Example: p-value for z-test

$$p$$
-value =  $Pr[Z < -|z| \text{ or } |z| < Z]$ 

# Confidence interval (CI)

To get a sense of the true value of the parameter of interest, compute a confidence interval:

| Term                                 | Symbol                  |
|--------------------------------------|-------------------------|
| Significance level                   | $\alpha$                |
| Parameter estimate                   | $\hat{	heta}$           |
| Standard error                       | $\hat{\sigma}_{\theta}$ |
| Critical z-value for $CI^{1-\alpha}$ | $z_{1-\alpha/2}$        |

$$CI^{1-lpha} = \left[\hat{ heta} - \hat{\sigma}_{ heta} \cdot z_{1-lpha/2}, \hat{ heta} + \hat{\sigma}_{ heta} \cdot z_{1-lpha/2}\right]$$

Note: 95% CI  $\iff$  significance level  $\alpha = 0.05$ 

### More on confidence intervals

#### A couple things to note:

- Meaning of CI: if you compute CIs from multiple random samples from population, then 95% will contain the true, population value
- ullet Popular values for  $lpha \in \{0.10, 0.05, 0.01\}$
- $\bullet$  Use appropriate distribution to compute CI: e.g., for a t-statistic with  $\nu$  degrees of freedom,

$$\mathit{CI}^{1-lpha} = \left[\hat{ heta} - \hat{\sigma}_{ heta} \cdot t^{
u}_{1-lpha/2}, \hat{ heta} + \hat{\sigma}_{ heta} \cdot t^{
u}_{1-lpha/2}
ight]$$

### Getting the critical value

import scipy as sp

Can compute critical values using scipy.stats for any distribution:

```
# To determine shape parameters, see <dist>.shapes
>>> sp.stats.t.shapes
'df'
>>> alpha = 0.05
>>> df = 20
>>> sp.stats.t.ppf(1 - alpha / 2, df=df)
2.0859634472658364
```

### Power

Power is the probability of not making a Type II error, i.e., rejecting  $H_0$  when  $H_A$  is true:

- $\beta = \Pr[\text{reject } H_A | H_A \text{ is true}]$
- $\beta$  is similar to  $\alpha$ , but if  $H_A$  is true
- $power = 1 \beta$
- An experiment with high power is more likely to reject H<sub>0</sub> when it is false
- ullet Typically, set power = 1 eta = 0.80

# Example: power



### Trade-off: significance level vs. power

You must trade-off significance level and power:

- Decreasing chance of Type I error will increase chance of Type II error
- Wise men recommend:

| Та има           | Value               |
|------------------|---------------------|
| Term             |                     |
| Confidence level | 0.05<br>95%<br>0.80 |

# Factors affecting measurement of a signal

To increase probability of measuring a signal (rejecting  $H_0$ ):

- Increase number of observations, n
- Increase effect size, i.e.,  $\theta_A \theta_0$
- Decrease noise,  $\sigma^2$

### Common test statistics

#### Common test statistics:

- z-statistic
- t-statistic
- $\chi^2$  for Wald test, score (LM) test, LR test
- *F* to test restrictions in linear regression

Example: regression parameter estimate

$$t=rac{\hat{eta}}{\hat{\sigma}(\hat{eta})}$$

#### z-test

Use a z-test when the variance is known:

- $H_0: \overline{x} = \mu$
- ullet We test if the mean is  $\mu$ , which could be known from past experiments
- z-statistic:

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

- Sample variance is known:  $\sigma^2$
- Compute p-value using Normal(0, 1)

#### t-test

Use a t-test when variance is unknown:

- $\bullet \ H_0: \overline{x} = \mu$
- t-statistic:

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

Use sample variance for denominator:

$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{j} - \overline{x})^{2}$$

- Compute p-value using Student's t distribution
- Must specify degrees of freedom,  $\nu$ :
  - Number of free parameters
  - $\nu = n k$ , where k is number of fitted parameters.

## Warning: ddof

Many Numpy functions compute population values by default:

• Example: np.var(..., ddof=0, ...) computes

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Must set ddof=1 to get sample variance!

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- ddof means 'delta degrees of freedom'
- In Pandas, ddof defaults to 1



### Comparing two means: one sample

To compare a sample vs a known mean,  $\mu_0$ , use the 1-sample t-statistic:

$$t = \frac{\overline{x} - \mu_0}{\sqrt{s^2/n}}$$

Then compute p-value:

import scipy as sp

(tstat, pval) = sp.stats.ttest\_1samp(data, truth)

### Unpaired: comparison of two random samples

To compare two independent samples, use the two-sample t-statistic:

$$t = \frac{x_1 - x_2}{\sqrt{s^2}}$$
$$s^2 = \frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}$$

import scipy as sp

```
x = sp.stats.norm.rvs(loc=1, size=10)
y = sp.stats.norm.rvs(loc=1.1, size=12)
(tstat, pval) = sp.stats.ttest_ind(x, y)
# Returns: (1.2729753413788905, 0.21762566433145955)
```

### Paired: comparison of paired samples

When you can pair data, use a paired t-test:

- Example: twin studies each twin is assigned a different treatment
- Equivalent to a one-sample test on the paired differences
- Compute mean based on paired differences because samples are not independent

$$t = rac{\overline{d} - \mu_0}{s_{diff}/\sqrt{n}}$$
  $s_{diff}^2 = rac{1}{n-1} {\sum_{i=1}^n} (d_i - \overline{d})^2$   $d_i = x_{i1} - x_{i2}$ 

• Use sp.stats.ttest\_rel()

### Review: Central Limit Theorem

How does the Central Limit Theorem motivate these tests?

# Multiple hypothesis testing

Q: If you test 20 different button colors and button color has no effect, how many button colors would you expect to be significant at the 5% level on average?

### Bonferroni confidence intervals

When testing multiple hypotheses together, we must be more conservative:

- Correct significance level to ensure overall significance remains the same
- Bonferroni:  $\alpha \to \alpha/m$  if you have m tests:

$$\Pr[\bigcup (p_i \leq \frac{\alpha}{m})] \leq \sum_i \Pr[p_i \leq \frac{\alpha}{m}] \leq \alpha,$$

where  $p_i$  is the p-value for the i-th hypothesis

Other corrections exist...

Key concepts: experimental vs. observational data

## Models of causality: Rubin or Pearl

### There are two main models of causality:

- Rubin causal model
- Structural causality model
  - Use to establish causality with observational data
  - See Judea Pearl's Causality

# Potential outcomes notation (Neyman, 1923)

I adopt the notation of Imbens & Rubin:

- $Y_i(0)$  i's response if untreated
- $Y_i(1)$  i's response if treated
- ullet  $W_i \in \{0,1\}$  indicates treatment status

Note:  $Y_i(0)$  and  $Y_i(1)$  may well have different distributions

## Assumption: SUTVA

#### Stable unit treatment value assumption:

- Treatment is the same for all units
- Treatment of one unit does not affect the outcome of another
- Example: does aspirin cure headaches?
  - ▶ If you receive an aspirin, it has same effect on everyone
  - Giving you an aspirin, does not affect my headache

## Key assumptions to establish causality

#### Assignment to treatment should be:

- Individualistic
  - ► A unit's probability of assignment is not affected by assignment status of other units
  - $p_i(X, Y(0), Y(1)) = q(X_i, Y_i(0), Y_i(1))$
- Probabilistic
  - Unit has non-zero probability of receiving either treatment
  - $0 < p_i(X, Y(0), Y(1)) < 1$
- Unconfounded
  - Assignment is independent of potential outcomes

## Experimental vs. observational data

#### A classical random experiment:

- Is individualistic, probabilistic, and unconfounded
- Has a known assignment mechanism, Pr[W|X, Y(0), Y(1)]
- If the assignment mechanism is unknown, the data is observational

## Ceteris paribus

#### Ceteris paribus means 'other things equal':

- We cannot compare apples to oranges
- Attempt to establish causality by holding everything else fixed
- Or, randomizing so unobserved effects average to 0
- Condition on observables to establish causality, e.g.,

$$\mathbb{E}[\cdot|X=x]$$

#### Selection bias

We would like compute the treatment effect as

$$\tau = Avg_n[Y_i(1)] - Avg_n[Y_i(0)]$$

But, we do not observe response to counterfactual treatment. Thus, we would actually compute the direct effect.

$$Avg_n[Y_i(1)|W_i = 1] - Avg_n[Y_i(0)|W_i = 0]$$

Which is equivalent to **treatment effect** + **selection bias**:

observed effect = 
$$\underbrace{Avg_n[Y_i(1)|W_i=1] - Avg_n[Y_i(1)|W_i=0]}_{\text{direct effect}} + \underbrace{Avg_n[Y_i(1)|W_i=0] - Avg_n[Y_i(0)|W_i=0]}_{\text{selection}}$$

#### Selection bias

#### Selection bias occurs when:

- Treatment and control group have different distributions
- Unconfoundedness is violated:
  - ▶ Treatment status is correlated with responsiveness to treatment
  - ▶ Unobserved factors are correlated with outcomes and treatment status
  - ► E.g., smarter students are assigned to smaller classes
- Random assignment to treatment  $\Rightarrow Y_i(0), Y_i(1) \perp W_i$
- Selection bias is everywhere beware!

## Example: selection bias

An MBA stack ranks zip codes by sales and advertises in the best performing zip codes:

- Is this a good idea?
- Can you establish causality?
- How would you measure the impact of the advertising campaign?

# Why randomize?

To ensure that the treatment and control group have the same distribution:

- Block on observables to control for observable heterogeneity:
  - Stratified sampling
  - Clustered sampling
  - Systematic sampling
- Randomize over everything else
  - Should eliminate bias from unobserved heterogeneity (factors) on average
- Should ensure that our experiment has internal validity
- External validity: can we generalize our results to the world beyond our laboratory?

# Experimental design

## Review: significance vs. power

**Q**: What is the difference between significance and power?

**Q**: Which is more important when designing an experiment?

 $\boldsymbol{\mathsf{Q}} :$  How does changing the effect size, standard deviation, and sample affect power?

#### Overview

The goal of experimental design is to establish causality, estimate effect size, and avoid bias:

- Block on observables
- Randomize over everything else to avoid bias
- Distribution of treatment and control group should be the same

#### Power calculation

Always perform a power calculation to calculate number of observations needed to measure a signal:

- Make sensible guess about effect size and standard deviation . . . or run a pilot experiment
- ullet Use lpha= 0.05 and power= 0.80 unless you know better
- Usually, effect size is 'standardized,' i.e., divided by standard deviation
- ullet Lift from advertising is often small, e.g., 1%
- For more complicated situations, compute power via Monte Carlo simulation

### Power calculation



## Example: power calculation

```
How big do N_c and N_t need to be to measure an effect?
import statsmodels.stats.power as smp
import statsmodels.stats.api as sm
# Solve for number of observations needed
smp.zt_ind_solve_power(effect_size=0.01, alpha=0.05,
    power=0.80, alternative='two-sided')
# returns: 156977.21019023287
# Compute power for an design
smp.zt ind solve power(effect size=0.01, nobs1=10,
    alpha=0.05, ratio=1.0, alternative='two-sided')
# Returns: 0.050057277123711996
```

#### Check for balance

#### After designing your experiment, check for balance:

- Are distributions of exogenous covariates in different treatments the same?
- Are outcomes similar prior to treatment?
- Examine:
  - Moments of distribution (mean, standard deviation)
  - Compare distributions with Kolmogorov-Smirnov test
  - ► Train a logit model to predict if an observation is in the treatment or control group

# Example: measure impact of advertising on click-through-rate (CTR)

Your engineering team ran an experiment where they changed the color of the checkout button from red to blue. How would you test if blue is better?

| Data             | Control        | Treatment      |
|------------------|----------------|----------------|
| Total visitors   | $N_C$          | $N_T$          |
| Number of clicks | n <sub>C</sub> | n <sub>T</sub> |

#### Questions:

- What is  $H_0$ ?
- What is the CTR for each treatment?
- What is the effect size?
- What is the standard error?
- What test should you perform to test  $H_0$ ?

## Example: continued

#### Answer:

- CTR:  $\widehat{ctr}_C = n_C/N_C$  and  $\widehat{ctr}_T = n_T/N_T$
- $H_0$ :  $ctr_C = ctr_T$ , i.e., treatment has no effect
- Effect size:  $\hat{\delta} = c\hat{t}r_T c\hat{t}r_C$
- Use pooled sample proportion for standard error:

$$\widehat{ctr} = \frac{n_C + n_T}{N_C + N_T}$$

Compute standard error for two independent samples:

$$\widehat{s}^2 = \widehat{ctr} \cdot (1 - \widehat{ctr}) \cdot \left(\frac{1}{N_C} + \frac{1}{N_T}\right)$$



## Example: continued

• Test statistic:

$$z = \frac{\widehat{ctr}_C - \widehat{ctr}_T}{s}$$

z-test – why is a t-test incorrect?

See Stat Trek for details

## Pearson $\chi^2$ test

For comparing counts in a table,  $O_{ij}$ , Pearson's  $\chi^2$  test for independence is easier:

$$U = \sum_{i=1}^{J} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

where the expected number of observations in a cell is:

$$E_{ij} = \frac{O_{i}.O_{\cdot j}}{n}$$

Under  $H_0$ ,  $U\sim\chi^2_{
u}$  where  $u=(I-1)\cdot(J-1)$ , i.e., reject  $H_0$  if  $U>\chi^2_{
u,\alpha}$ 

Discussion based on All of Statistics

# Intuition for Pearson's $\chi^2$ test

Intuition for the  $\chi^2$  test:

- ullet Use test to compare observed and expected cell counts under  $H_0$
- $H_0 \Rightarrow p_{ij} = p_{i\cdot} \cdot p_{\cdot j}$
- So MLE estimator is:

$$\hat{p}_{ij} = \hat{p}_{i\cdot} \cdot \hat{p}_{\cdot j} = \frac{O_{i\cdot}}{n} \cdot \frac{O_{\cdot j}}{n}$$

Then the expected number of observations in each cell is:

$$E_{ij} = n\hat{p}_{ij} = \frac{O_{i\cdot} \cdot O_{\cdot j}}{n}$$

# Example: Pearson's $\chi^2$ test (1/3)

Is tonsillectomy related to Hodgkins disease?

|                  | Hodgkins disease | No disease | O <sub>i</sub> . |
|------------------|------------------|------------|------------------|
| tonsillectomy    | 90               | 165        | 255              |
| no tonsillectomy | 84               | 307        | 391              |
| $O_{\cdot j}$    | 174              | 472        | 646              |

Example from All of Statistics

# Example: Pearson's $\chi^2$ test (2/3)

# Example: Pearson's $\chi^2$ test (3/3)

```
Test Statistic: 14.2651105944
p-value: 0.000158780892398
```

Degrees of Freedom: 1

```
[ 68.68421053 186.31578947]
[ 105.31578947 285.68421053]]
```

#### Other measurement methods

Several methods to measure results, depending on type of data and experimental design:

- Regression/ANOVA, typically with dummy variables for treatment status
- Instrumental variables (IV)
- Difference-in-differences to control for heterogeneity
- Regression discontinuity design

# Other types of experiments

Sometimes, we get lucky and Nature provides a randomization device which effectively creates experimental data:

- Field experiments: occur in field and not laboratory
- Natural experiments: 'nature' provides randomization
- More complex designs:
  - ▶ Multi-factor (A/B/C/...)
  - Latin squared

## Example: natural experiment

A marketing manager runs an experiential marketing campaign on ten university campuses:

- How would you measure if advertising worked?
- What if the manager short-listed 50 campuses but could only obtain access to the chosen ten?
- What assumption(s) did you make?

## Example: best practice

#### Consider this scenario:

- Collecting data is expensive.
- A manager collects data until the results appear significant and then terminates the experiment?

Is this a good idea? Hint: what are the random variables?

## Wald sequential Analysis

Sequential analysis provides method to terminate an experiment once you have collected enough data:

- Treats experiment length as a random variable
- The correct way to terminate an experiment before a fixed time
- ... this is not the same thing as 'terminating early'
- See reference for details
- Example: test quality of parts coming off an assembly line to compare two manufacturing processes

## Summary

**Q:** What is the difference between Type I and Type II errors?

**Q:** How do you compute a confidence interval?

**Q:** To compare two click through rates, should you use a z-test or t-test?

Q: How can you establish causality?

Q: What assumptions must hold to run a classical random experiment?

**Q:** What is the difference between power and significance level? Which matters for inference? Which matters for designing an experiment?

Q: What is selection bias? How can I eliminate it?