

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Reed, Steven G.
 Skeiky, Yasir
 Dillon, Davin C.
 Campos-Neto, Antonio
 - (ii) TITLE OF INVENTION: Compounds and Methods for Immunotherapy and Diagnosis of Tuberculosis
 - (iii) NUMBER OF SEQUENCES: 155
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Townsend and Townsend and Crew LLP
 - (B) STREET: Two Embarcadero Center, Eighth Floor
 - (C) CITY: San Francisco
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94111-3834
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/724,685
 - (B) FILING DATE: 28-NOV-2000
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/523,436
 - (B) FILING DATE: 01-SEP-1995
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/533,634
 - (B) FILING DATE: 22-SEP-1995
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/620,874
 - (B) FILING DATE: 22-MAR-1996
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/659,683
 - (B) FILING DATE: 05-JUN-1996
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/680,574
 - (B) FILING DATE: 12-JUL-1996
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: WO PCT/US96/14674
 - (B) FILING DATE: 30-AUG-1996
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/730,511
 - (B) FILING DATE: 11-OCT-1996

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: US 08/818,112
- (B) FILING DATE: 13-MAR-1997

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Bastian, Kevin L.
- (B) REGISTRATION NUMBER: 34,774
- (C) REFERENCE/DOCKET NUMBER: 014058-008561US

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (415) 576-0200
- (B) TELEFAX: (415) 576-0300

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 766 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGAGGCACCG GTAGTTTGAA CCAAACGCAC AATCGACGGG CAAACGAACG GAAGAACACA 60 ACCATGAAGA TGGTGAAATC GATCGCCGCA GGTCTGACCG CCGCGGCTGC AATCGGCGCC 120 GCTGCGGCCG GTGTGACTTC GATCATGGCT GGCGGCCCGG TCGTATACCA GATGCAGCCG 180 GTCGTCTTCG GCGCGCCACT GCCGTTGGAC CCGGCATCCG CCCCTGACGT CCCGACCGCC 240 300 GCCCAGTTGA CCAGCCTGCT CAACAGCCTC GCCGATCCCA ACGTGTCGTT TGCGAACAAG GGCAGTCTGG TCGAGGGCGG CATCGGGGGC ACCGAGGCGC GCATCGCCGA CCACAAGCTG 360 AAGAAGGCCG CCGAGCACGG GGATCTGCCG CTGTCGTTCA GCGTGACGAA CATCCAGCCG 420 GCGGCCGCCG GTTCGGCCAC CGCCGACGTT TCCGTCTCGG GTCCGAAGCT CTCGTCGCCG 480 GTCACGCAGA ACGTCACGTT CGTGAATCAA GGCGGCTGGA TGCTGTCACG CGCATCGGCG 540 ATGGAGTTGC TGCAGGCCGC AGGGNAACTG ATTGGCGGGC CGGNTTCAGC CCGCTGTTCA 600 GCTACGCCGC CCGCCTGGTG ACGCGTCCAT GTCGAACACT CGCGCGTGTA GCACGGTGCG 660 GTNTGCGCAG GGNCGCACGC ACCGCCCGGT GCAAGCCGTC CTCGAGATAG GTGGTGNCTC 720 766 GNCACCAGNG ANCACCCCCN NNTCGNCNNT TCTCGNTGNT GNATGA

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 752 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGCATCACC	ATCACCATCA	CGATGAAGTC	ACGGTAGAGA	CGACCTCCGT	CTTCCGCGCA	60
GACTTCCTCA	GCGAGCTGGA	CGCTCCTGCG	CAAGCGGGTA	CGGAGAGCGC	GGTCTCCGGG	120
GTGGAAGGGC	TCCCGCCGGG	CTCGGCGTTG	CTGGTAGTCA	AACGAGGCCC	CAACGCCGGG	180
TCCCGGTTCC	TACTCGACCA	AGCCATCACG	TCGGCTGGTC	GGCATCCCGA	CAGCGACATA	240
TTTCTCGACG	ACGTGACCGT	GAGCCGTCGC	CATGCTGAAT	TCCGGTTGGA	AAACAACGAA	300
TTCAATGTCG	TCGATGTCGG	GAGTCTCAAC	GGCACCTACG	TCAACCGCGA	GCCCGTGGAT	360
TCGGCGGTGC	TGGCGAACGG	CGACGAGGTC	CAGATCGGCA	AGCTCCGGTT	GGTGTTCTTG	420
ACCGGACCCA	AGCAAGGCGA	GGATGACGGG	AGTACCGGGG	GCCCGTGAGC	GCACCCGATA	480
GCCCCGCGCT	GGCCGGGATG	TCGATCGGGG	CGGTCCTCCG	ACCTGCTACG	ACCGGATTTT	540
CCCTGATGTC	CACCATCTCC	AAGATTCGAT	TCTTGGGAGG	CTTGAGGGTC	NGGGTGACCC	600
CCCCGCGGGC	CTCATTCNGG	GGTNTCGGCN	GGTTTCACCC	CNTACCNACT	GCCNCCCGGN	660
TTGCNAATTC	NTTCTTCNCT	GCCCNNAAAG	GGACCNTTAN	CTTGCCGCTN	GAAANGGTNA	720
TCCNGGGCCC	NTCCTNGAAN	CCCCNTCCCC	СТ			752

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 813 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CATATGCATC ACCATCACCA TCACACTTCT AACCGCCCAG CGCGTCGGGG GCGTCGAGCA 60 CCACGCGACA CCGGGCCCGA TCGATCTGCT AGCTTGAGTC TGGTCAGGCA TCGTCGTCAG 120 CAGCGCGATG CCCTATGTTT GTCGTCGACT CAGATATCGC GGCAATCCAA TCTCCCGCCT 180 GCGGCCGGCG GTGCTGCAAA CTACTCCCGG AGGAATTTCG ACGTGCGCAT CAAGATCTTC 240 ATGCTGGTCA CGGCTGTCGT TTTGCTCTGT TGTTCGGGTG TGGCCACGGC CGCGCCCAAG 300 ACCTACTGCG AGGAGTTGAA AGGCACCGAT ACCGGCCAGG CGTGCCAGAT TCAAATGTCC 360 GACCCGGCCT ACAACATCAA CATCAGCCTG CCCAGTTACT ACCCCGACCA GAAGTCGCTG 420 GAAAATTACA TCGCCCAGAC GCGCGACAAG TTCCTCAGCG CGGCCACATC GTCCACTCCA 480 CGCGAAGCCC CCTACGAATT GAATATCACC TCGGCCACAT ACCAGTCCGC GATACCGCCG 540 CGTGGTACGC AGGCCGTGGT GCTCAMGGTC TACCACAACG CCGGCGGCAC GCACCCAACG 600 ACCACGTACA AGGCCTTCGA TTGGGACCAG GCCTATCGCA AGCCAATCAC CTATGACACG 660

CTGTGGCAGG	CTGACACCGA	TCCGCTGCCA	GTCGTCTTCC	CCATTGTTGC	AAGGTGAACT	720
GAGCAACGCA	GACCGGGACA	ACWGGTATCG	ATAGCCGCCN	AATGCCGGCT	TGGAACCCNG	780
TGAAATTATC	ACAACTTCGC	AGTCACNAAA	NAA			813

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 447 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CGGTATGAAC ACGGCCGCGT CCGATAACTT CCAGCTGTCC CAGGGTGGGC AGGGATTCGC 60 CATTCCGATC GGGCAGGCGA TGGCGATCGC GGGCCAGATC CGATCGGGTG GGGGGTCACC 120 CACCGTTCAT ATCGGGCCTA CCGCCTTCCT CGGCTTGGGT GTTGTCGACA ACAACGGCAA 180 CGGCGCACGA GTCCAACGCG TGGTCGGGAG CGCTCCGGCG GCAAGTCTCG GCATCTCCAC 240 CGGCGACGTG ATCACCGCGG TCGACGGCGC TCCGATCAAC TCGGCCACCG CGATGGCGGA 300 CGCGCTTAAC GGGCATCATC CCGGTGACGT CATCTCGGTG AACTGGCAAA CCAAGTCGGG 360 CGGCACGCGT ACAGGGAACG TGACATTGGC CGAGGGACCC CCGGCCTGAT TTCGTCGYGG 420 447 ATACCACCCG CCGGCCGGCC AATTGGA

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 604 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GTCCCACTGC GGTCGCCGAG TATGTCGCCC AGCAAATGTC TGGCAGCCGC CCAACGGAAT 60 CCGGTGATCC GACGTCGCAG GTTGTCGAAC CCGCCGCCGC GGAAGTATCG GTCCATGCCT 120 AGCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCGGGCAAT TTGGCGGGGC 180 CCGGCGACGG NGAGCGCCGG AATGGCGCGA GTGAGGAGGT GGNCAGTCAT GCCCAGNGTG 240 ATCCAATCAA CCTGNATTCG GNCTGNGGGN CCATTTGACA ATCGAGGTAG TGAGCGCAAA 300 TGAATGATGG AAAACGGGNG GNGACGTCCG NTGTTCTGGT GGTGNTAGGT GNCTGNCTGG 360 NGTNGNGGNT ATCAGGATGT TCTTCGNCGA AANCTGATGN CGAGGAACAG GGTGTNCCCG 420 NNANNCCNAN GGNGTCCNAN CCCNNNNTCC TCGNCGANAT CANANAGNCG NTTGATGNGA 480 NAAAAGGGTG GANCAGNNNN AANTNGNGGN CCNAANAANC NNNANNGNNG NNAGNTNGNT 540

NNNTNTTNNC ANNNNNNTG NNGNNGNNCN NNNCAANCNN	NTNNNGNAA	NNGGNTTNTT	600						
NAAT			604						
(2) INFORMATION FOR SEQ ID NO:6:									
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 633 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	(A) LENGTH: 633 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single								
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:									
TTGCANGTCG AACCACCTCA CTAAAGGGAA CAAAAGCTNG	AGCTCCACCG	CGGTGGCGGC	60						
CGCTCTAGAA CTAGTGKATM YYYCKGGCTG CAGSAATYCG	GYACGAGCAT	TAGGACAGTC	120						
TAACGGTCCT GTTACGGTGA TCGAATGACC GACGACATCC	TGCTGATCGA	CACCGACGAA	180						
CGGGTGCGAA CCCTCACCCT CAACCGGCCG CAGTCCCGYA	ACGCGCTCTC	GGCGGCGCTA	240						
CGGGATCGGT TTTTCGCGGY GTTGGYCGAC GCCGAGGYCG	ACGACGACAT	CGACGTCGTC	300						
ATCCTCACCG GYGCCGATCC GGTGTTCTGC GCCGGACTGG	ACCTCAAGGT	AGCTGGCCGG	360						
GCAGACCGCG CTGCCGGACA TCTCACCGCG GTGGGCGGCC	ATGACCAAGC	CGGTGATCGG	420						
CGCGATCAAC GGCGCCGCGG TCACCGGCGG GCTCGAACTG	GCGCTGTACT	GCGACATCCT	480						
GATCGCCTCC GAGCACGCCC GCTTCGNCGA CACCCACGCC	CGGGTGGGGC	TGCTGCCCAC	540						
CTGGGGACTC AGTGTGTGCT TGCCGCAAAA GGTCGGCATC	GGNCTGGGCC	GGTGGATGAG	600						
CCTGACCGGC GACTACCTGT CCGTGACCGA CGC			633						
(2) INFORMATION FOR SEQ ID NO:7:									
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1362 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear									
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:									
CGACGACGAC GGCGCCGGAG AGCGGCGCG AACGGCGATC	GACGCGGCCC	TGGCCAGAGT	60						
CGGCACCACC CAGGAGGGAG TCGAATCATG AAATTTGTCA	ACCATATTGA	GCCCGTCGCG	120						
CCCCGCCGAG CCGGCGCGC GGTCGCCGAG GTCTATGCCG	AGGCCCGCCG	CGAGTTCGGC	180						
CGGCTGCCCG AGCCGCTCGC CATGCTGTCC CCGGACGAGG	GACTGCTCAC	CGCCGGCTGG	240						
GCGACGTTGC GCGAGACACT GCTGGTGGGC CAGGTGCCGC	GTGGCCGCAA	GGAAGCCGTC	300						
GCCGCCGCCG TCGCGGCCAG CCTGCGCTGC CCCTGGTGCG	TCGACGCACA	CACCACCATG	360						

CTGTACGCGG CAGGCCAAAC CGACACCGCC GCGGCGATCT TGGCCGGCAC AGCACCTGCC 420

GCCGGTGACC	CGAACGCGCC	GTATGTGGCG	TGGGCGGCAG	GAACCGGGAC	ACCGGCGGGA	480
CCGCCGGCAC	CGTTCGGCCC	GGATGTCGCC	GCCGAATACC	TGGGCACCGC	GGTGCAATTC	540
CACTTCATCG	CACGCCTGGT	CCTGGTGCTG	CTGGACGAAA	CCTTCCTGCC	GGGGGCCCG	600
CGCGCCCAAC	AGCTCATGCG	CCGCGCCGGT	GGACTGGTGT	TCGCCCGCAA	GGTGCGCGCG	660
GAGCATCGGC	CGGGCCGCTC	CACCCGCCGG	CTCGAGCCGC	GAACGCTGCC	CGACGATCTG	720
GCATGGGCAA	CACCGTCCGA	GCCCATAGCA	ACCGCGTTCG	CCGCGCTCAG	CCACCACCTG	780
GACACCGCGC	CGCACCTGCC	GCCACCGACT	CGTCAGGTGG	TCAGGCGGGT	CGTGGGGTCG	840
TGGCACGGCG	AGCCAATGCC	GATGAGCAGT	CGCTGGACGA	ACGAGCACAC	CGCCGAGCTG	900
CCCGCCGACC	TGCACGCGCC	CACCCGTCTT	GCCCTGCTGA	CCGGCCTGGC	CCCGCATCAG	960
GTGACCGACG	ACGACGTCGC	CGCGGCCCGA	TCCCTGCTCG	ACACCGATGC	GGCGCTGGTT	1020
GGCGCCCTGG	CCTGGGCCGC	CTTCACCGCC	GCGCGGCGCA	TCGGCACCTG	GATCGGCGCC	1080
GCCGCCGAGG	GCCAGGTGTC	GCGGCAAAAC	CCGACTGGGT	GAGTGTGCGC	GCCCTGTCGG	1140
TAGGGTGTCA	TCGCTGGCCC	GAGGGATCTC	GCGGCGGCGA	ACGGAGGTGG	CGACACAGGT	1200
GGAAGCTGCG	CCCACTGGCT	TGCGCCCCAA	CGCCGTCGTG	GGCGTTCGGT	TGGCCGCACT	1260
GGCCGATCAG	GTCGGCGCCG	GCCCTTGGCC	GAAGGTCCAG	CTCAACGTGC	CGTCACCGAA	1320
GGAÇCGGACG	GTCACCGGGG	GTCACCCTGC	GCGCCCAAGG	AA		1362

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1458 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCGACGACCC CGATATGCCG GGCACCGTAG CGAAAGCCGT CGCCGACGCA CTCGGGCGCG 60 GTATCGCTCC CGTTGAGGAC ATTCAGGACT GCGTGGAGGC CCGGCTGGGG GAAGCCGGTC 120 TGGATGACGT GGCCCGTGTT TACATCATCT ACCGGCAGCG GCGCGCCGAG CTGCGGACGG 180 CTAAGGCCTT GCTCGGCGTG CGGGACGAGT TAAAGCTGAG CTTGGCGGCC GTGACGGTAC 240 TGCGCGAGCG CTATCTGCTG CACGACGAGC AGGGCCGGCC GGCCGAGTCG ACCGGCGAGC 300 TGATGGACCG ATCGGCGCGC TGTGTCGCGG CGGCCGAGGA CCAGTATGAG CCGGGCTCGT 360 CGAGGCGGTG GGCCGAGCGG TTCGCCACGC TATTACGCAA CCTGGAATTC CTGCCGAATT 420 CGCCCACGTT GATGAACTCT GGCACCGACC TGGGACTGCT CGCCGGCTGT TTTGTTCTGC 480 CGATTGAGGA TTCGCTGCAA TCGATCTTTG CGACGCTGGG ACAGGCCGCC GAGCTGCAGC 540

GGGCTGGAGG	CGGCACCGGA	TATGCGTTCA	GCCACCTGCG	ACCCGCCGGG	GATCGGGTGG	600
CCTCCACGGG	CGGCACGGCC	AGCGGACCGG	TGTCGTTTCT	ACGGCTGTAT	GACAGTGCCG	660
CGGGTGTGGT	CTCCATGGGC	GGTCGCCGGC	GTGGCGCCTG	TATGGCTGTG	CTTGATGTGT	720
CGCACCCGGA	TATCTGTGAT	TTCGTCACCG	CCAAGGCCGA	ATCCCCCAGC	GAGCTCCCGC	780
ATTTCAACCT	ATCGGTTGGT	GTGACCGACG	CGTTCCTGCG	GGCCGTCGAA	CGCAACGGCC	840
TACACCGGCT	GGTCAATCCG	CGAACCGGCA	AGATCGTCGC	GCGGATGCCC	GCCGCCGAGC	900
TGTTCGACGC	CATCTGCAAA	GCCGCGCACG	CCGGTGGCGA	TCCCGGGCTG	GTGTTTCTCG	960
ACACGATCAA	TAGGGCAAAC	CCGGTGCCGG	GGAGAGGCCG	CATCGAGGCG	ACCAACCCGT	1020
GCGGGGAGGT	CCCACTGCTG	CCTTACGAGT	CATGTAATCT	CGGCTCGATC	AACCTCGCCC	1080
GGATGCTCGC	CGACGGTCGC	GTCGACTGGG	ACCGGCTCGA	GGAGGTCGCC	GGTGTGGCGG	1140
TGCGGTTCCT	TGATGACGTC	ATCGATGTCA	GCCGCTACCC	CTTCCCCGAA	CTGGGTGAGG	1200
CGGCCCGCGC	CACCCGCAAG	ATCGGGCTGG	GAGTCATGGG	TTTGGCGGAA	CTGCTTGCCG	1260
CACTGGGTAT	TCCGTACGAC	AGTGAAGAAG	CCGTGCGGTT	AGCCACCCGG	CTCATGCGTC	1320
GCATACAGCA	GGCGGCGCAC	ACGGCATCGC	GGAGGCTGGC	CGAAGAGCGG	GGCGCATTCC	1380
CGGCGTTCAC	CGATAGCCGG	TTCGCGCGGT	CGGGCCCGAG	GCGCAACGCA	CAGGTCACCT	1440
CCGTCGCTCC	GACGGGCA					1458

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 862 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

60 ACGGTGTAAT CGTGCTGGAT CTGGAACCGC GTGGCCCGCT ACCTACCGAG ATCTACTGGC GGCGCAGGGG GCTGGCCCTG GGCATCGCGG TCGTCGTAGT CGGGATCGCG GTGGCCATCG 120 TCATCGCCTT CGTCGACAGC AGCGCCGGTG CCAAACCGGT CAGCGCCGAC AAGCCGGCCT CCGCCCAGAG CCATCCGGGC TCGCCGGCAC CCCAAGCACC CCAGCCGGCC GGGCAAACCG 240 AAGGTAACGC CGCCGCGGCC CCGCCGCAGG GCCAAAACCC CGAGACACCC ACGCCCACCG 300 CCGCGGTGCA GCCGCCG GTGCTCAAGG AAGGGGACGA TTGCCCCGAT TCGACGCTGG 360 CCGTCAAAGG TTTGACCAAC GCGCCGCAGT ACTACGTCGG CGACCAGCCG AAGTTCACCA 420 TGGTGGTCAC CAACATCGGC CTGGTGTCCT GTAAACGCGA CGTTGGGGCC GCGGTGTTGG 480 CCGCCTACGT TTACTCGCTG GACAACAAGC GGTTGTGGTC CAACCTGGAC TGCGCGCCCT 540

CGAATGAGAC	GCTGGTCAAG	ACGTTTTCCC	CCGGTGAGCA	GGTAACGACC	GCGGTGACCT	600
GGACCGGGAT	GGGATCGGCG	CCGCGCTGCC	CATTGCCGCG	GCCGGCGATC	GGGCCGGGCA	660
CCTACAATCT	CGTGGTACAA	CTGGGCAATC	TGCGCTCGCT	GCCGGTTCCG	TTCATCCTGA	720
ATCAGCCGCC	GCCGCCGCCC	GGGCCGGTAC	CCGCTCCGGG	TCCAGCGCAG	GCGCCTCCGC	780
CGGAGTCTCC	CGCGCAAGGC	GGATAATTAT	TGATCGCTGA	TGGTCGATTC	CGCCAGCTGT	840
GACAACCCCT	CGCCTCGTGC	CG				862

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 622 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

TTGATCAGCA CCGGCAAGGC GTCACATGCC TCCCTGGGTG TGCAGGTGAC CAATGACAAA 60 GACACCCGG GCGCCAAGAT CGTCGAAGTA GTGGCCGGTG GTGCTGCCGC GAACGCTGGA 120 GTGCCGAAGG GCGTCGTTGT CACCAAGGTC GACGACCGCC CGATCAACAG CGCGGACGCG 180 TTGGTTGCCG CCGTGCGGTC CAAAGCGCCG GGCGCCACGG TGGCGCTAAC CTTTCAGGAT 240 CCCTCGGGCG GTAGCCGCAC AGTGCAAGTC ACCCTCGGCA AGGCGGAGCA GTGATGAAGG 300 TCGCCGCGCA GTGTTCAAAG CTCGGATATA CGGTGGCACC CATGGAACAG CGTGCGGAGT 360 TGGTGGTTGG CCGGGCACTT GTCGTCGTCG TTGACGATCG CACGGCGCAC GGCGATGAAG 420 ACCACAGCGG GCCGCTTGTC ACCGAGCTGC TCACCGAGGC CGGGTTTGTT GTCGACGGCG 480 TGGTGGCGGT GTCGGCCGAC GAGGTCGAGA TCCGAAATGC GCTGAACACA GCGGTGATCG 540 GCGGGGTGGA CCTGGTGGTG TCGGTCGGCG GGACCGGNGT GACGNCTCGC GATGTCACCC 600 622 CGGAAGCCAC CCGNGACATT CT

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1200 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGCGCAGCGG TAAGCCTGTT GGCCGCCGGC ACACTGGTGT TGACAGCATG CGGCGGTGGC 60

ACCAACAGCT CGTCGTCAGG CGCAGGCGGA ACGTCTGGGT CGGTGCACTG CGGCGGCAAG 120

AAGGAGCTCC ACTCCAGCGG CTCGACCGCA CAAGAAAATG CCATGGAGCA GTTCGTCTAT 180

GCCTACGTGC	GATCGTGCCC	GGGCTACACG	TTGGACTACA	ACGCCAACGG	GTCCGGTGCC	240
GGGGTGACCC	AGTTTCTCAA	CAACGAAACC	GATTTCGCCG	GCTCGGATGT	CCCGTTGAAT	300
CCGTCGACCG	GTCAACCTGA	CCGGTCGGCG	GAGCGGTGCG	GTTCCCCGGC	ATGGGACCTG	360
CCGACGGTGT	TCGGCCCGAT	CGCGATCACC	TACAATATCA	AGGGCGTGAG	CACGCTGAAT	420
CTTGACGGAC	CCACTACCGC	CAAGATTTTC	AACGGCACCA	TCACCGTGTG	GAATGATCCA	480
CAGATCCAAG	CCCTCAACTC	CGGCACCGAC	CTGCCGCCAA	CACCGATTAG	CGTTATCTTC	540
CGCAGCGACA	AGTCCGGTAC	GTCGGACAAC	TTCCAGAAAT	ACCTCGACGG	TGTATCCAAC	600
GGGGCGTGGG	GCAAAGGCGC	CAGCGAAACG	TTCAGCGGGG	GCGTCGGCGT	CGGCGCCAGC	660
GGGAACAACG	GAACGTCGGC	CCTACTGCAG	ACGACCGACG	GGTCGATCAC	CTACAACGAG	720
TGGTCGTTTG	CGGTGGGTAA	GCAGTTGAAC	ATGGCCCAGA	TCATCACGTC	GGCGGGTCCG	780
GATCCAGTGG	CGATCACCAC	CGAGTCGGTC	GGTAAGACAA	TCGCCGGGGC	CAAGATCATG	840
GGACAAGGCA	ACGACCTGGT	ATTGGACACG	TCGTCGTTCT	ACAGACCCAC	CCAGCCTGGC	900
TCTTACCCGA	TCGTGCTGGC	GACCTATGAG	ATCGTCTGCT	CGAAATACCC	GGATGCGACG	960
ACCGGTACTG	CGGTAAGGGC	GTTTATGCAA	GCCGCGATTG	GTCCAGGCCA	AGAAGGCCTG	1020
GACCAATACG	GCTCCATTCC	GTTGCCCAAA	TCGTTCCAAG	CAAAATTGGC	GGCCGCGGTG	1080
AATGCTATTT	CTTGACCTAG	TGAAGGGAAT	TCGACGGTGA	GCGATGCCGT	TCCGCAGGTA	1140
GGGTCGCAAT	TTGGGCCGTA	TCAGCTATTG	CGGCTGCTGG	GCCGAGGCGG	GATGGGCGAG	1200

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1155 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAAGCAGCT GCAGGTCGTG CTGTTCGACG AACTGGGCAT GCCGAAGACC AAACGCACCA 60 AGACCGGCTA CACCACGGAT GCCGACGCGC TGCAGTCGTT GTTCGACAAG ACCGGGCATC 120 CGTTTCTGCA ACATCTGCTC GCCCACCGCG ACGTCACCCG GCTCAAGGTC ACCGTCGACG 180 GGTTGCTCCA AGCGGTGGCC GCCGACGGCC GCATCCACAC CACGTTCAAC CAGACGATCG 240 CCGCGACCGG CCGGCTCTCC TCGACCGAAC CCAACCTGCA GAACATCCCG ATCCGCACCG 300 ACGCGGGCCG GCGGATCCGG GACGCGTTCG TGGTCGGGGA CGGTTACGCC GAGTTGATGA 360 CGGCCGACTA CAGCCAGATC GAGATGCGGA TCATGGGGCA CCTGTCCGGG GACGAGGGCC 420 TCATCGAGGC GTTCAACACC GGGGAGGACC TGTATTCGTT CGTCGCGTCC CGGGTGTTCG 480

GTGTGCCCAT	CGACGAGGTC	ACCGGCGAGT	TGCGGCGCCG	GGTCAAGGCG	ATGTCCTACG	540
GGCTGGTTTA	CGGGTTGAGC	GCCTACGGCC	TGTCGCAGCA	GTTGAAAATC	TCCACCGAGG	600
AAGCCAACGA	GCAGATGGAC	GCGTATTTCG	CCCGATTCGG	CGGGGTGCGC	GACTACCTGC	660
GCGCCGTAGT	CGAGCGGGCC	CGCAAGGACG	GCTACACCTC	GACGGTGCTG	GGCCGTCGCC	720
GCTACCTGCC	CGAGCTGGAC	AGCAGCAACC	GTCAAGTGCG	GGAGGCCGCC	GAGCGGGCGG	780
CGCTGAACGC	GCCGATCCAG	GGCAGCGCGG	CCGACATCAT	CAAGGTGGCC	ATGATCCAGG	840
TCGACAAGGC	GCTCAACGAG	GCACAGCTGG	CGTCGCGCAT	GCTGCTGCAG	GTCCACGACG	900
AGCTGCTGTT	CGAAATCGCC	CCCGGTGAAC	GCGAGCGGGT	CGAGGCCCTG	GTGCGCGACA	960
AGATGGGCGG	CGCTTACCCG	CTCGACGTCC	CGCTGGAGGT	GTCGGTGGGC	TACGGCCGCA	1020
GCTGGGACGC	GGCGGCGCAC	TGAGTGCCGA	GCGTGCATCT	GGGGCGGAA	TTCGGCGATT	1080
TTTCCGCCCT	GAGTTCACGC	TCGGCGCAAT	CGGGACCGAG	TTTGTCCAGC	GTGTACCCGT	1140
CGAGTAGCCT	CGTCA					1155

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1771 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCGCCGTC TGGTGTTTGA ACGGTTTTAC CGGTCGGCAT CGGCACGGGC GTTGCCGGGT 60 TCGGGCCTCG GGTTGGCGAT CGTCAAACAG GTGGTGCTCA ACCACGGCGG ATTGCTGCGC 120 ATCGAAGACA CCGACCCAGG CGGCCAGCCC CCTGGAACGT CGATTTACGT GCTGCTCCCC 180 GGCCGTCGGA TGCCGATTCC GCAGCTTCCC GGTGCGACGG CTGGCGCTCG GAGCACGGAC 240 ATCGAGAACT CTCGGGGTTC GGCGAACGTT ATCTCAGTGG AATCTCAGTC CACGCGCGCA 300 ACCTAGTTGT GCAGTTACTG TTGAAAGCCA CACCCATGCC AGTCCACGCA TGGCCAAGTT 360 GGCCCGAGTA GTGGGCCTAG TACAGGAAGA GCAACCTAGC GACATGACGA ATCACCCACG 420 GTATTCGCCA CCGCCGCAGC AGCCGGGAAC CCCAGGTTAT GCTCAGGGGC AGCAGCAAAC 480 GTACAGCCAG CAGTTCGACT GGCGTTACCC ACCGTCCCCG CCCCCGCAGC CAACCCAGTA 540 CCGTCAACCC TACGAGGCGT TGGGTGGTAC CCGGCCGGGT CTGATACCTG GCGTGATTCC 600 GACCATGACG CCCCTCCTG GGATGGTTCG CCAACGCCCT CGTGCAGGCA TGTTGGCCAT 660 CGGCGCGGTG ACGATAGCGG TGGTGTCCGC CGGCATCGGC GGCGCGGCCG CATCCCTGGT 720 CGGGTTCAAC CGGGCACCCG CCGGCCCCAG CGGCGCCCA GTGGCTGCCA GCGCGGCGCC 780

AAGCATCCCC	GCAGCAAACA	TGCCGCCGGG	GTCGGTCGAA	CAGGTGGCGG	CCAAGGTGGT	840
GCCCAGTGTC	GTCATGTTGG	AAACCGATCT	GGGCCGCCAG	TCGGAGGAGG	GCTCCGGCAT	900
CATTCTGTCT	GCCGAGGGC	TGATCTTGAC	CAACAACCAC	GTGATCGCGG	CGGCCGCCAA	960
GCCTCCCCTG	GGCAGTCCGC	CGCCGAAAAC	GACGGTAACC	TTCTCTGACG	GGCGGACCGC	1020
ACCCTTCACG	GTGGTGGGG	CTGACCCCAC	CAGTGATATC	GCCGTCGTCC	GTGTTCAGGG	1080
CGTCTCCGGG	CTCACCCCGA	TCTCCCTGGG	TTCCTCCTCG	GACCTGAGGG	TCGGTCAGCC	1140
GGTGCTGGCG	ATCGGGTCGC	CGCTCGGTTT	GGAGGGCACC	GTGACCACGG	GGATCGTCAG	1200
CGCTCTCAAC	CGTCCAGTGT	CGACGACCGG	CGAGGCCGGC	AACCAGAACA	CCGTGCTGGA	1260
CGCCATTCAG	ACCGACGCCG	CGATCAACCC	CGGTAACTCC	GGGGGCGCGC	TGGTGAACAT	1320
GAACGCTCAA	CTCGTCGGAG	TCAACTCGGC	CATTGCCACG	CTGGGCGCGG	ACTCAGCCGA	1380
TGCGCAGAGC	GGCTCGATCG	GTCTCGGTTT	TGCGATTCCA	GTCGACCAGG	CCAAGCGCAT	1440
CGCCGACGAG	TTGATCAGCA	CCGGCAAGGC	GTCACATGCC	TCCCTGGGTG	TGCAGGTGAC	1500
CAATGACAAA	GACACCCCGG	GCGCCAAGAT	CGTCGAAGTA	GTGGCCGGTG	GTGCTGCCGC	1560
GAACGCTGGA	GTGCCGAAGG	GCGTCGTTGT	CACCAAGGTC	GACGACCGCC	CGATCAACAG	1620
CGCGGACGCG	TTGGTTGCCG	CCGTGCGGTC	CAAAGCGCCG	GGCGCCACGG	TGGCGCTAAC	1680
CTTTCAGGAT	CCCTCGGGCG	GTAGCCGCAC	AGTGCAAGTC	ACCCTCGGCA	AGGCGGAGCA	1740
GTGATGAAGG	TCGCCGCGCA	GTGTTCAAAG	С			1771

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1058 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCCACCGCG GTGGCGGCCG CTCTAGAACT AGTGGATCCC CCGGGCTGCA GGAATTCGGC 60 ACGAGGATCC GACGTCGCAG GTTGTCGAAC CCGCCGCCGC GGAAGTATCG GTCCATGCCT 120 AGCCCGGCGA CGGCGAGCGC CGGAATGGCG CGAGTGAGGA GGCGGGCAAT TTGGCGGGGC 180 CCGGCGACGG CGAGCGCCGG AATGGCGCGA GTGAGGAGGC GGGCAGTCAT GCCCAGCGTG 240 ATCCAATCAA CCTGCATTCG GCCTGCGGGC CCATTTGACA ATCGAGGTAG TGAGCGCAAA 300 TGAATGATGG AAAACGGGCG GTGACGTCCG CTGTTCTGGT GGTGCTAGGT GCCTGCCTGG 360 CGTTGTGGCT ATCAGGATGT TCTTCGCCGA AACCTGATGC CGAGGAACAG GGTGTTCCCG 420 TGAGCCCGAC GGCGTCCGAC CCCGCGCTCC TCGCCGAGAT CAGGCAGTCG CTTGATGCGA 480 CAAAAGGGTT GACCAGCGTG CACGTAGCGG TCCGAACAAC CGGGAAAGTC GACAGCTTGC 540 TGGGTATTAC CAGTGCCGAT GTCGACGTCC GGGCCAATCC GCTCGCGGCA AAGGGCGTAT 600 GCACCTACAA CGACGAGCAG GGTGTCCCGT TTCGGGTACA AGGCGACAAC ATCTCGGTGA 660 AACTGTTCGA CGACTGGAGC AATCTCGGCT CGATTTCTGA ACTGTCAACT TCACGCGTGC 720 TCGATCCTGC CGCTGGGGTG ACGCAGCTGC TGTCCGGTGT CACGAACCTC CAAGCGCAAG 780 840 GTACCGAAGT GATAGACGGA ATTTCGACCA CCAAAATCAC CGGGACCATC CCCGCGAGCT CTGTCAAGAT GCTTGATCCT GGCGCCAAGA GTGCAAGGCC GGCGACCGTG TGGATTGCCC 900 AGGACGGCTC GCACCACCTC GTCCGAGCGA GCATCGACCT CGGATCCGGG TCGATTCAGC 960 TCACGCAGTC GAAATGGAAC GAACCCGTCA ACGTCGACTA GGCCGAAGTT GCGTCGACGC 1020 GTTGNTCGAA ACGCCCTTGT GAACGGTGTC AACGGNAC 1058

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 542 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA CGAGAGGTGA TCGACATCAT CGGGACCAGC CCCACATCCT GGGAACAGGC 60 GGCGGCGGAG GCGGTCCAGC GGGCGCGGGA TAGCGTCGAT GACATCCGCG TCGCTCGGGT 120 180 CATTGAGCAG GACATGGCCG TGGACAGCGC CGGCAAGATC ACCTACCGCA TCAAGCTCGA AGTGTCGTTC AAGATGAGGC CGGCGCAACC GCGCTAGCAC GGGCCGGCGA GCAAGACGCA 240 AAATCGCACG GTTTGCGGTT GATTCGTGCG ATTTTGTGTC TGCTCGCCGA GGCCTACCAG 300 GCGCGGCCCA GGTCCGCGTG CTGCCGTATC CAGGCGTGCA TCGCGATTCC GGCGGCCACG 360 CCGGAGTTAA TGCTTCGCGT CGACCCGAAC TGGGCGATCC GCCGGNGAGC TGATCGATGA 420 CCGTGGCCAG CCCGTCGATG CCCGAGTTGC CCGAGGAAAC GTGCTGCCAG GCCGGTAGGA 480 AGCGTCCGTA GGCGGCGGTG CTGACCGGCT CTGCCTGCGC CCTCAGTGCG GCCAGCGAGC 540 542 GG

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 913 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCCGCC	CGCGCCTCCG	TTGCCCCCAT	TGCCGCCGTC	GCCGATCAGC	TGCGCATCGC	60
CACCATCACC	GCCTTTGCCG	CCGGCACCGC	CGGTGGCGCC	GGGGCCGCCG	ATGCCACCGC	120
TTGACCCTGG	CCGCCGGCGC	CGCCATTGCC	ATACAGCACC	ccgccgggg	CACCGTTACC	180
GCCGTCGCCA	CCGTCGCCGC	CGCTGCCGTT	TCAGGCCGGG	GAGGCCGAAT	GAACCGCCGC	240
CAAGCCCGCC	GCCGGCACCG	TTGCCGCCTT	TTCCGCCCGC	cccgccggcg	CCGCCAATTG	300
CCGAACAGCC	AMGCACCGTT	GCCGCCAGCC	CCGCCGCCGT	TAACGGCGCT	GCCGGGCGCC	360
GCCGCCGGAC	CCGCCATTAC	CGCCGTTCCC	GTTCGGTGCC	CCGCCGTTAC	CGGCGCCCC	420
GTTTGCCGCC	AATATTCGGC	GGGCACCGCC	AGACCCGCCG	GGGCCACCAT	TGCCGCCGGG	480
CACCGAAACA	ACAGCCCAAC	GGTGCCGCCG	GCCCCGCCGT	TTGCCGCCAT	CACCGGCCAT	540
TCACCGCCAG	CACCGCCGTT	AATGTTTATG	AACCCGGTAC	CGCCAGCGCG	GCCCCTATTG	600
ccgggcgccg	GAGNGCGTGC	CCGCCGGCGC	CGCCAACGCC	CAAAAGCCCG	GGGTTGCCAC	660
CGGCCCCGCC	GGACCCACCG	GTCCCGCCGA	TCCCCCCGTT	GCCGCCGGTG	CCGCCGCCAT	720
TGGTGCTGCT	GAAGCCGTTA	GCGCCGGTTC	CGCSGGTTCC	GGCGGTGGCG	CCNTGGCCGC	780
CGGCCCCGCC	GTTGCCGTAC	AGCCACCCCC	CGGTGGCGCC	GTTGCCGCCA	TTGCCGCCAT	840
TGCCGCCGTT	GCCGCCATTG	CCGCCGTTCC	CGCCGCCACC	GCCGGNTTGG	CCGCCGGCGC	900
CGCCGGCGGC	CGC					913

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1872 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GACTACGTTG GTGTAGAAAA ATCCTGCCGC CCGGACCCTT AAGGCTGGGA CAATTTCTGA 60
TAGCTACCCC GACACAGGAG GTTACGGGAT GAGCAATTCG CGCCGCCGCT CACTCAGGTG 120
GTCATGGTTG CTGAGCGTGC TGGCTGCCGT CGGGCTGGGC CTGGCCACGG CGCCGCCCA 180
GGCGGCCCCG CCGGCCTTGT CGCAGGACCG GTTCGCCGAC TTCCCCGCGC TGCCCCTCGA 240
CCCGTCCGCG ATGGTCGCCC AAGTGGCGCC ACAGGTGGTC AACATCAACA CCAAACTGGG 300
CTACAACAAC GCCGTGGGCG CCGGGACCGG CATCGTCATC GATCCCAACG GTGTCGTGCT 360
GACCAACAAC CACGTGATCG CGGGCCCAC CGACATCAAT GCGTTCAGCG TCGGCTCCGG 420
CCAAACCTAC GGCGTCGATG TGGTCGGGTA TGACCGCACC CAGGATGTCG CGGTGCTGCA 480

GCTGCGCGGT GCCGGTGGCC TGCCGTCGGC GGCGATCGGT GGCGGCGTCG CGGTTGGTGA 540 GCCCGTCGTC GCGATGGGCA ACAGCGGTGG GCAGGGCGGA ACGCCCCGTG CGGTGCCTGG 600 CAGGGTGGTC GCGCTCGGCC AAACCGTGCA GGCGTCGGAT TCGCTGACCG GTGCCGAAGA 660 GACATTGAAC GGGTTGATCC AGTTCGATGC CGCAATCCAG CCCGGTGATT CGGGCGGGCC 720 CGTCGTCAAC GGCCTAGGAC AGGTGGTCGG TATGAACACG GCCGCGTCCG ATAACTTCCA 780 GCTGTCCCAG GGTGGCCAGG GATTCGCCAT TCCGATCGGG CAGGCGATGG CGATCGCGGG 840 CCAAATCCGA TCGGGTGGGG GGTCACCCAC CGTTCATATC GGGCCTACCG CCTTCCTCGG 900 CTTGGGTGTT GTCGACAACA ACGGCAACGG CGCACGAGTC CAACGCGTGG TCGGAAGCGC 960 TCCGGCGGCA AGTCTCGGCA TCTCCACCGG CGACGTGATC ACCGCGGTCG ACGGCGCTCC 1020 GATCAACTCG GCCACCGCGA TGGCGGACGC GCTTAACGGG CATCATCCCG GTGACGTCAT 1080 CTCGGTGAAC TGGCAAACCA AGTCGGGCGG CACGCGTACA GGGAACGTGA CATTGGCCGA 1140 GGGACCCCCG GCCTGATTTG TCGCGGATAC CACCCGCCGG CCGGCCAATT GGATTGGCGC 1200 CAGCCGTGAT TGCCGCGTGA GCCCCCGAGT TCCGTCTCCC GTGCGCGTGG CATTGTGGAA 1260 GCAATGAACG AGGCAGAACA CAGCGTTGAG CACCCTCCCG TGCAGGGCAG TTACGTCGAA 1320 GGCGGTGTGG TCGAGCATCC GGATGCCAAG GACTTCGGCA GCGCCGCCGC CCTGCCCGCC 1380 GATCCGACCT GGTTTAAGCA CGCCGTCTTC TACGAGGTGC TGGTCCGGGC GTTCTTCGAC 1440 GCCAGCGCGG ACGGTTCCGN CGATCTGCGT GGACTCATCG ATCGCCTCGA CTACCTGCAG 1500 TGGCTTGGCA TCGACTGCAT CTGTTGCCGC CGTTCCTACG ACTCACCGCT GCGCGACGGC 1560 GGTTACGACA TTCGCGACTT CTACAAGGTG CTGCCCGAAT TCGGCACCGT CGACGATTTC 1620 GTCGCCCTGG TCGACACCGC TCACCGGCGA GGTATCCGCA TCATCACCGA CCTGGTGATG 1680 AATCACACCT CGGAGTCGCA CCCCTGGTTT CAGGAGTCCC GCCGCGACCC AGACGGACCG 1740 TACGGTGACT ATTACGTGTG GAGCGACACC AGCGAGCGCT ACACCGACGC CCGGATCATC 1800 TTCGTCGACA CCGAAGAGTC GAACTGGTCA TTCGATCCTG TCCGCCGACA GTTNCTACTG 1860 1872 GCACCGATTC TT

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

120	ACCAGCGTGC	AAAAGGGTTG	TTGATGCGAC	AGGCAGTCGC	CGCCGAGATC	CCGCGCTCCT
180	AGTGCCGATG	GGGTATTACC	ACAGCTTGCT	GGGAAAGTCG	CCGAACAACC	ACGTAGCGGT
240	GACGAGCAGG	CACCTACAAC	AGGGCGTATG	CTCGCGGCAA	GGCCAATCCG	TCGACGTCCG
300	GACTGGAGCA	ACTGTTCGAC	TCTCGGTGAA	GGCGACAACA	TCGGGTACAA	GTGTCCCGTT
360	GCTGGGGTGA	CGATCCTGCC	CACGCGTGCT	CTGTCAACTT	GATTTCTGAA	ATCTCGGCTC
420	ATAGACGGAA	TACCGAAGTG	AAGCGCAAGG	ACGAACCTCC	GTCCGGTGTC	CGCAGCTGCT
480	CTTGATCCTG	TGTCAAGATG	CCGCGAGCTC	GGGACCATCC	CAAAATCACC	TTTCGACCAC
540	CACCACCTCG	GGACGGCTCG	GGATTGCCCA	GCGACCGTGT	TGCAAGGCCG	GCGCCAAGAG
600	AAATGGAACG	CACGCAGTCG	CGATTCAGCT	GGATCCGGGT	CATCGACCTC	TCCGAGCGAG
660	CGCCCTTGTG	TTGCTCGAAA	CGTCGACGCG	GCCGAAGTTG	CGTCGACTAG	AACCCGTCAA
720	TGACCCCCTA	ATCTGAAAAT	CCCTGACGGC	AAAACTGACC	ACGGCACCCG	AACGGTGTCA
780	GCCGAGGTCG	GTGGGACGCG	GTTCCGGCTG	TTCTTCGGTG	TTGGTGGTTA	GACCGGGCGG
840	GTGGACGAGG	CTTCAGCATG	AGGGCGACGA	GTCGCCTTTG	GCCGGTAGCT	CGGTCTTTGA
900	CCACCGGCCG	AAACCTCGCC	TCGCCGCCGA	AACGACGTCG	TGGCGGCAGC	CGGTCGATCA
960	CACCAGCTGG	ACCGGGAGGA	GCCCGCTCAT	GATCAAGCTG	TGGACGTGAC	AAGGCCTTAT
1020	AACCACCAGG	CGACTTCGTC	GGAATGTAAC	GGGCTCAAAC	TGGCGGCCTC	AAGAAGAGGT
1080	GTGAGCCTCG	GCCCGGCGTG	GCGTAGATGC	GGTGAGTTCG	GGCCAAACCG	AGCGGATAGC
1140	GGCCTGACAC	CCCGATGACC	GCGAACAGCA	GGCGGCGGTG	CTACCCATTC	GCGAACCGTG
1200	GGCCCAAAAA	TGCCAGGCGG	GTCTTCCCGG	CGCAAGATGA	CCAGGCCGAC	GCGCGTATCG
1260	TGGTGTCGCG	AGATGTGCGA	CAGGGTGCCC	TGATGAAATC	TCGCGGGCGG	CACGACGTTA
1320	CCGGGAAGCG	GACTTCCGAA	CTCTTCCAAC	CAAAGTCGAA	CGAGCATGCT	TTTGAGGCCA
1380	CCCGCTGCAG	GCTGACACTT	GGACTCCCGG	CACCACCATG	ATGCGGCCCT	ggcggcgcgg
1440	CGGCCAGCCG	CGGGCGCGAT	GTTCTCGGCG	CGTGGCTCCA	AGGTATTCTT	GCAGGCGGCC
1482		GT	CAATGCTCTT	TGGGAGCTTT	TCACGCAGGG	GGACACTGAC

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 876 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CGTGCTCGGG GCCACCGCG GGCGCACCAC CCTGACCGGT GAGGGCCTGC AACACGCCGA 120 CGGTCACTCG TTGCTGCTGG ACGCCACCAA CCCGGCGGTG GTTGCCTACG ACCCGGCCTT 180 CGCCTACGAA ATCGGCTACA TCGNGGAAAG CGGACTGGCC AGGATGTGCG GGGAGAACCC 240 GGAGAACATC TTCTTCTACA TCACCGTCTA CAACGAGCCG TACGTGCAGC CGCCGGAGCC 300 GGAGAACTTC GATCCCGAGG GCGTGCTGGG GGGTATCTAC CGNTATCACG CGGCCACCGA 360 GCAACGCACC AACAAGGNGC AGATCCTGGC CTCCGGGGTA GCGATGCCCG CGGCGCTGCG 420 GGCAGCACAG ATGCTGGCCG CCGAGTGGGA TGTCGCCGCC GACGTGTGGT CGGTGACCAG 480 TTGGGGCGAG CTAAACCGCG ACGGGGTGGT CATCGAGACC GAGAAGCTCC GCCACCCCGA 540 TCGGCCGGCG GGCGTGCCCT ACGTGACGAG AGCGCTGGAG AATGCTCGGG GCCCGGTGAT 600 CGCGGTGTCG GACTGGATGC GCGCGGTCCC CGAGCAGATC CGACCGTGGG TGCCGGGCAC 660 ATACCTCACG TTGGGCACCG ACGGGTTCGG TTTTTCCGAC ACTCGGCCCG CCGGTCGTCG 720 TTACTTCAAC ACCGACGCG AATCCCAGGT TGGTCGCGGT TTTGGGAGGG GTTGGCCGGG 780 TCGACGGGTG AATATCGACC CATTCGGTGC CGGTCGTGGG CCGCCCGCCC AGTTACCCGG 840 876 ATTCGACGAA GGTGGGGGGT TGCGCCCGAN TAAGTT

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 1021 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

ATCCCCCGG GCTGCAGGAA TTCGGCACGA GAGACAAAAT TCCACGCGTT AATGCAGGAA 60 CAGATTCATA ACGAATTCAC AGCGGCACAA CAATATGTCG CGATCGCGGT TTATTTCGAC 120 AGCGAAGACC TGCCGCAGTT GGCGAAGCAT TTTTACAGCC AAGCGGTCGA GGAACGAAAC 180 CATGCAATGA TGCTCGTGCA ACACCTGCTC GACCGCGACC TTCGTGTCGA AATTCCCGGC 240 GTAGACACGG TGCGAAACCA GTTCGACAGA CCCCGCGAGG CACTGGCGCT GGCGCTCGAT 300 CAGGAACGCA CAGTCACCGA CCAGGTCGGT CGGCTGACAG CGGTGGCCCG CGACGAGGGC 360 GATTTCCTCG GCGAGCAGTT CATGCAGTGG TTCTTGCAGG AACAGATCGA AGAGGTGGCC 420 TTGATGGCAA CCCTGGTGCG GGTTGCCGAT CGGGCCGGGG CCAACCTGTT CGAGCTAGAG 480 AACTTCGTCG CACGTGAAGT GGATGTGGCG CCGGCCGCAT CAGGCGCCCC GCACGCTGCC 540 GGGGGCCGCC TCTAGATCCC TGGGGGGGAT CAGCGAGTGG TCCCGTTCGC CCGCCCGTCT 600 TCCAGCCAGG CCTTGGTGCG GCCGGGGTGG TGAGTACCAA TCCAGGCCAC CCCGACCTCC 660

CGGNAAAAGT	CGATGTCCTC	GTACTCATCG	ACGTTCCAGG	AGTACACCGC	CCGGCCCTGA	720
GCTGCCGAGC	GGTCAACGAG	TTGCGGATAT	TCCTTTAACG	CAGGCAGTGA	GGGTCCCACG	780
GCGGTTGGCC	CGACCGCCGT	GGCCGCACTG	CTGGTCAGGT	ATCGGGGGGT	CTTGGCGAGC	840
AACAACGTCG	GCAGGAGGGG	TGGAGCCCGC	CGGATCCGCA	GACCGGGGGG	GCGAAAACGA	900
CATCAACACC	GCACGGGATC	GATCTGCGGA	GGGGGGTGCG	GGAATACCGA	ACCGGTGTAG	960
GAGCGCCAGC	AGTTGTTTTT	CCACCAGCGA	AGCGTTTTCG	GGTCATCGGN	GGCNNTTAAG	1020
Т				•		1021

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGTGCCGACG AACGGAAGAA CACAACCATG AAGATGGTGA AATCGATCGC CGCAGGTCTG 60

ACCGCCGCGG CTGCAATCGG CGCCGCTGCG GCCGGTGTGA CTTCGATCAT GGCTGGCGGN 120

CCGGTCGTAT ACCAGATGCA GCCGGTCGTC TTCGGCGCGC CACTGCCGTT GGACCCGGNA 180

TCCGCCCCTG ANGTCCCGAC CGCCGCCCAG TGGACCAGNC TGCTCAACAG NCTCGNCGAT 240

CCCAACGTGT CGTTTGNGAA CAAGGGNAGT CTGGTCGAGG GNGGNATCGG NGGNANCGAG 300

GGNGNGNATC GNCGANCACA A 321

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 373 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TCTTATCGGT TCCGGTTGGC GACGGGTTTT GGGNGCGGGT GGTTAACCCG CTCGGCCAGC 60

CGATCGACGG GCGCGAGAC GTCGACTCCG ATACTCGGCG CGCGCTGGAG CTCCAGGCGC 120

CCTCGGTGGT GNACCGGCAA GGCGTGAAGG AGCCGTTGNA GACCGGGATC AAGGCGATTG 180

ACGCGATGAC CCCGATCGGC CGCGGGCAGC GCCAGCTGAT CATCGGGGAC CGCAAGACCG 240

GCAAAAACCG CCGTCTGTGT CGGACACCAT CCTCAAACCA GCGGGAAGAA CTGGGAGTCC 300

GGTGGATCCC AAGAAGCAGG TGCGCTTGTG TATACGTTGG CCATCGGGCA AGAAGGGGAA 360

CTTACCATCG CCG

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 352 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTGACGCCGT GATGGGATTC CTGGGCGGGG CCGGTCCGCT GGCGGTGGTG GATCAGCAAC 60
TGGTTACCCG GGTGCCGCAA GGCTGGTCGT TTGCTCAGGC AGCCGCTGTG CCGGTGGTGT 120
TCTTGACGGC CTGGTACGGG TTGGCCGATT TAGCCGAGAT CAAGGCGGGC GAATCGGTGC 180
TGATCCATGC CGGTACCGGC GGTGTGGGCA TGGCGGCTGT GCAGCTGGCT CGCCAGTGGG 240
GCGTGGAGGT TTTCGTCACC GCCAGCCGTG GNAAGTGGGA CACGCTGCGC GCCATNGNGT 300
TTGACGACGA NCCATATCGG NGATTCCCNC ACATNCGAAG TTCCGANGGA GA 352

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 726 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GAAATCCGCG TTCATTCCGT TCGACCAGCG GCTGGCGATA ATCGACGAAG TGATCAAGCC 60 GCGGTTCGCG GCGCTCATGG GTCACAGCGA GTAATCAGCA AGTTCTCTGG TATATCGCAC 120 CTAGCGTCCA GTTGCTTGCC AGATCGCTTT CGTACCGTCA TCGCATGTAC CGGTTCGCGT 180 GCCGCACGCT CATGCTGGCG GCGTGCATCC TGGCCACGGG TGTGGCGGGT CTCGGGGTCG 240 GCGCGCAGTC CGCAGCCCAA ACCGCGCCGG TGCCCGACTA CTACTGGTGC CCGGGGCAGC 300 CTTTCGACCC CGCATGGGGG CCCAACTGGG ATCCCTACAC CTGCCATGAC GACTTCCACC 360 GCGACAGCGA CGGCCCCGAC CACAGCCGCG ACTACCCCGG ACCCATCCTC GAAGGTCCCG 420 TGCTTGACGA TCCCGGTGCT GCGCCGCCGC CCCCGGCTGC CGGTGGCGGC GCATAGCGCT 480 CGTTGACCGG GCCGCATCAG CGAATACGCG TATAAACCCG GGCGTGCCCC CGGCAAGCTA 540 CGACCCCGG CGGGGCAGAT TTACGCTCCC GTGCCGATGG ATCGCGCCGT CCGATGACAG 600 AAAATAGGCG ACGGTTTTGG CAACCGCTTG GAGGACGCTT GAAGGGAACC TGTCATGAAC 660 GGCGACAGCG CCTCCACCAT CGACATCGAC AAGGTTGTTA CCCGCACACC CGTTCGCCGG 720 726 ATCGTG

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 580 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CGCGACGACG	ACGAACGTCG	GGCCCACCAC	CGCCTATGCG	TTGATGCAGG	CGACCGGGAT	60
GGTCGCCGAC	CATATCCAAG	CATGCTGGGT	GCCCACTGAG	CGACCTTTTG	ACCAGCCGGG	120
CTGCCCGATG	GCGGCCCGGT	GAAGTCATTG	CGCCGGGGCT	TGTGCACCTG	ATGAACCCGA	180
ATAGGGAACA	ATAGGGGGGT	GATTTGGCAG	TTCAATGTCG	GGTATGGCTG	GAAATCCAAT	240
GGCGGGGCAT	GCTCGGCGCC	GACCAGGCTC	GCGCAGGCGG	GCCAGCCCGA	ATCTGGAGGG	300
AGCACTCAAT	GGCGGCGATG	AAGCCCCGGA	CCGGCGACGG	TCCTTTGGAA	GCAACTAAGG	360
AGGGGCGCGG	CATTGTGATG	CGAGTACCAC	TTGAGGGTGG	CGGTCGCCTG	GTCGTCGAGC	420
TGACACCCGA	CGAAGCCGCC	GCACTGGGTG	ACGAACTCAA	AGGCGTTACT	AGCTAAGACC	480
AGCCCAACGG	CGAATGGTCG	GCGTTACGCG	CACACCTTCC	GGTAGATGTC	CAGTGTCTGC	540
TCGGCGATGT	ATGCCCAGGA	GAACTCTTGG	ATACAGCGCT			580

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

AACGGAGGCG	CCGGGGGTTT	TGGCGGGGCC	GGGGCGGTCG	GCGGCAACGG	CGGGGCCGGC	60
GGTACCGCCG	GGTTGTTCGG	TGTCGGCGGG	GCCGGTGGGG	CCGGAGGCAA	CGGCATCGCC	120
GGTGTCACGG	GTACGTCGGC	CAGCACACCG	GGTGGATCCG			160

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GACACCGATA CGATGGTGAT GTACGCCAAC GTTGTCGACA CGCTCGAGGC GTTCACGATC 60
CAGCGCACAC CCGACGGCGT GACCATCGGC GATGCGGCCC CGTTCGCGGA GGCGGCTGCC 120

AAGGCGATGG GAATCGACAA GCTGCGGGTA ATTCATACCG GAATGGACCC CGTCGTCGCT	180
GAACGCGAAC AGTGGGACGA CGGCAACAAC ACGTTGGCGT TGGCGCCCGG TGTCGTTGTC	240
GCCTACGAGC GCAACGTACA GACCAACGCC CG	272
(2) INFORMATION FOR SEQ ID NO:28:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 317 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GCAGCCGGTG GTTCTCGGAC TATCTGCGCA CGGTGACGCA GCGCGACGTG CGCGAGCTGA	60
AGCGGATCGA GCAGACGGAT CGCCTGCCGC GGTTCATGCG CTACCTGGCC GCTATCACCG	120
CGCAGGAGCT GAACGTGGCC GAAGCGGCGC GGGTCATCGG GGTCGACGCG GGGACGATCC	180
GTTCGGATCT GGCGTGGTTC GAGACGGTCT ATCTGGTACA TCGCCTGCCC GCCTGGTCGC	240
GGAATCTGAC CGCGAAGATC AAGAAGCGGT CAAAGATCCA CGTCGTCGAC AGTGGCTTCG	300
CGGCCTGGTT GCGCGGG	317
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 182 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GATCGTGGAG CTGTCGATGA ACAGCGTTGC CGGACGCGCG GCGGCCAGCA CGTCGGTGTA	60
GCAGCGCCGG ACCACCTCGC CGGTGGGCAG CATGGTGATG ACCACGTCGG CCTCGGCCAC	120
CGCTTCGGGC GCGCTACGAA ACACCGCGAC ACCGTGCGCG GCGGCGCCGG ACGCCGCCGT	180
GG	182
(2) INFORMATION FOR SEQ ID NO:30:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 308 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
GATCGCGAAG TTTGGTGAGC AGGTGGTCGA CGCGAAAGTC TGGGCGCCTG CGAAGCGGGT	60

CGGCGTTCAC	GAGGCGAAGA	CACGCCTGTC	CGAGCTGCTG	CGGCTCGTCT	ACGGCGGCA	120
GAGGTTGAGA	TTGCCCGCCG	CGGCGAGCCG	GTAGCAAAGC	TTGTGCCGCT	GCATCCTCAT	180
GAGACTCGGC	GGTTAGGCAT	TGACCATGGC	GTGTACCGCG	TGCCCGACGA	TTTGGACGCT	240
CCGTTGTCAG	ACGACGTGCT	CGAACGCTTT	CACCGGTGAA	GCGCTACCTC	ATCGACACCC	300
ACGTTTGG						308

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CCGACGACGA GCAACTCACG TGGATGATGG TCGGCAGCGG CATTGAGGAC GGAGAGAATC 60
CGGCCGAAGC TGCCGCGCG CAAGTGCTCA TAGTGACCGG CCGTAGAGGG CTCCCCCGAT 120
GGCACCGGAC TATTCTGGTG TGCCGCTGGC CGGTAAGAGC GGGTAAAAGA ATGTGAGGGG 180
ACACGATGAG CAATCACACC TACCGAGTGA TCGAGATCGT CGGGACCTCG CCCGACGGCG 240
TCGACGCGGC AATCCAGGGC GGTCTGG 267

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1539 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CTCGTGCCGA AAGAATGTGA GGGGACACGA TGAGCAATCA CACCTACCGA GTGATCGAGA 60 TCGTCGGGAC CTCGCCCGAC GGCGTCGACG CGGCAATCCA GGGCGGTCTG GCCCGAGCTG 120 CGCAGACCAT GCGCGCGCTG GACTGGTTCG AAGTACAGTC AATTCGAGGC CACCTGGTCG 180 240 ACGGAGCGGT CGCGCACTTC CAGGTGACTA TGAAAGTCGG CTTCCGCTGG AGGATTCCTG AACCTTCAAG CGCGGCCGAT AACTGAGGTG CATCATTAAG CGACTTTTCC AGAACATCCT 300 GACGCGCTCG AAACGCGGTT CAGCCGACGG TGGCTCCGCC GAGGCGCTGC CTCCAAAATC 360 CCTGCGACAA TTCGTCGGCG GCGCCTACAA GGAAGTCGGT GCTGAATTCG TCGGGTATCT 420 GGTCGACCTG TGTGGGCTGC AGCCGGACGA AGCGGTGCTC GACGTCGGCT GCGGCTCGGG 480 GCGGATGGCG TTGCCGCTCA CCGGCTATCT GAACAGCGAG GGACGCTACG CCGGCTTCGA 540 TATCTCGCAG AAAGCCATCG CGTGGTGCCA GGAGCACATC ACCTCGGCGC ACCCCAACTT 600

CCAGTTCGAG	GTCTCCGACA	TCTACAACTC	GCTGTACAAC	CCGAAAGGGA	AATACCAGTC	660
ACTAGACTTT	CGCTTTCCAT	ATCCGGATGC	GTCGTTCGAT	GTGGTGTTTC	TTACCTCGGT	720
GTTCACCCAC	ATGTTTCCGC	CGGACGTGGA	GCACTATCTG	GACGAGATCT	CCCGCGTGCT	780
GAAGCCCGGC	GGACGATGCC	TGTGCACGTA	CTTCTTGCTC	AATGACGAGT	CGTTAGCCCA	840
CATCGCGGAA	GGAAAGAGTG	CGCACAACTT	CCAGCATGAG	GGACCGGGTT	ATCGGACAAT	900
CCACAAGAAG	CGGCCCGAAG	AAGCAATCGG	CTTGCCGGAG	ACCTTCGTCA	GGGATGTCTA	960
TGGCAAGTTC	GGCCTCGCCG	TGCACGAACC	ATTGCACTAC	GGCTCATGGA	GTGGCCGGGA	1020
ACCACGCCTA	AGCTTCCAGG	ACATCGTCAT	CGCGACCAAA	ACCGCGAGCT	AGGTCGGCAT	1080
CCGGGAAGCA	TCGCGACACC	GTGGCGCCGA	GCGCCGCTGC	CGGCAGGCCG	ATTAGGCGGG	1140
CAGATTAGCC	CGCCGCGGCT	CCCGGCTCCG	AGTACGGCGC	CCCGAATGGC	GTCACCGGCT	1200
GGTAACCACG	CTTGCGCGCC	TGGGCGGCGG	CCTGCCGGAT	CAGGTGGTAG	ATGCCGACAA	1260
AGCCTGCGTG	ATCGGTCATC	ACCAACGGTG	ACAGCAGCCG	GTTGTGCACC	AGCGCGAACG	1320
CCACCCCGGT	CTCCGGGTCT	GTCCAGCCGA	TCGAGCCGCC	CAAGCCCACA	TGACCAAACC	1380
CCGGCATCAC	GTTGCCGATC	GGCATACCGT	GATAGCCAAG	ATGAAAATTT	AAGGGCACCA	1440
ATAGATTTCG	ATCCGGCAGA	ACTTGCCGTC	GGTTGCGGGT	CAGGCCCGTG	ACCAGCTCCC	1500
GCGACAAGAA	CCGTATGCCG	TCGATCTCGC	CTCGTGCCG			1539

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 851 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CTGCAGGGTG GCGTGGATGA GCGTCACCGC GGGGCAGGCC GAGCTGACCG CCGCCCAGGT 60 CCGGGTTGCT GCGGCGGCCT ACGAGACGGC GTATGGGCTG ACGGTGCCCC CGCCGGTGAT 120 CGCCGAGAAC CGTGCTGAAC TGATGATTCT GATAGCGACC AACCTCTTGG GGCAAAACAC 180 CCCGGCGATC GCGGTCAACG AGGCCGAATA CGGCGAGATG TGGGCCCAAG ACGCCGCCGC 240 GATGTTTGGC TACGCCGCGG CGACGGCGAC GGCGACGGCG ACGTTGCTGC CGTTCGAGGA 300 GGCGCCGGAG ATGACCAGCG CGGGTGGGCT CCTCGAGCAG GCCGCCGCGG TCGAGGAGGC 360 CTCCGACACC GCCGCGGCGA ACCAGTTGAT GAACAATGTG CCCCAGGCGC TGAAACAGTT 420 GGCCCAGCCC ACGCAGGGCA CCACGCCTTC TTCCAAGCTG GGTGGCCTGT GGAAGACGGT 480 CTCGCCGCAT CGGTCGCCGA TCAGCAACAT GGTGTCGATG GCCAACAACC ACATGTCGAT 540

GACCAACTCG	GGTGTGTCGA	TGACCAACAC	CTTGAGCTCG	ATGTTGAAGG	GCTTTGCTCC	600
GGCGGCGGCC	GCCCAGGCCG	TGCAAACCGC	GGCGCAAAAC	GGGGTCCGGG	CGATGAGCTC	660
GCTGGGCAGC	TCGCTGGGTT	CTTCGGGTCT	GGGCGGTGGG	GTGGCCGCCA	ACTTGGGTCG	720
GGCGGCCTCG	GTACGGTATG	GTCACCGGGA	TGGCGGAAAA	TATGCANAGT	CTGGTCGGCG	780
GAACGGTGGT	CCGGCGTAAG	GTTTACCCCC	GTTTTCTGGA	TGCGGTGAAC	TTCGTCAACG	840
GAAACAGTTA	С					851

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 254 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GATCGATCGG GCGGAAATTT GGACCAGATT CGCCTCCGGC GATAACCCAA TCAATCGAAC 60
CTAGATTTAT TCCGTCCAGG GGCCCGAGTA ATGGCTCGCA GGAGAGGAAC CTTACTGCTG 120
CGGGCACCTG TCGTAGGTCC TCGATACGGC GGAAGGCGTC GACATTTTCC ACCGACACCC 180
CCATCCAAAC GTTCGAGGGC CACTCCAGCT TGTGAGCGAG GCGACGCAGT CGCAGGCTGC 240
GCTTGGTCAA GATC 254

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1227 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GATCCTGACC GAAGCGGCCG CCGCCAAGGC GAAGTCGCTG TTGGACCAGG AGGGACGGGA 60 CGATCTGGCG CTGCGGATCG CGGTTCAGCC GGGGGGGTGC GCTGGATTGC GCTATAACCT 120 TTTCTTCGAC GACCGGACGC TGGATGGTGA CCAAACCGCG GAGTTCGGTG GTGTCAGGTT 180 GATCGTGGAC CGGATGAGCG CGCCGTATGT GGAAGGCGCG TCGATCGATT TCGTCGACAC 240 TATTGAGAAG CAAGGTTCAC CATCGACAAT CCCAACGCCA CCGGCTCCTG CGCGTGCGGG 300 GATTCGTTCA ACTGATAAAA CGCTAGTACG ACCCCGCGGT GCGCAACACG TACGAGCACA 360 CCAAGACCTG ACCGCGCTGG AAAAGCAACT GAGCGATGCC TTGCACCTGA CCGCGTGGCG 420 GGCCGCCGGC GGCAGGTGTC ACCTGCATGG TGAACAGCAC CTGGGCCTGA TATTGCGACC 480 AGTACACGAT TTTGTCGATC GAGGTCACTT CGACCTGGGA GAACTGCTTG CGGAACGCGT 540

CGCTGCTCAG	CTTGGCCAAG	GCCTGATCGG	AGCGCTTGTC	GCGCACGCCG	TCGTGGATAC	600
CGCACAGCGC	ATTGCGAACG	ATGGTGTCCA	CATCGCGGTT	CTCCAGCGCG	TTGAGGTATC	660
CCTGAATCGC	GGTTTTGGCC	GGTCCCTCCG	AGAATGTGCC	TGCCGTGTTG	GCTCCGTTGG	720
TGCGGACCCC	GTATATGATC	GCCGCCGTCA	TAGCCGACAC	CAGCGCGAGG	GCTACCACAA	780
TGCCGATCAG	CAGCCGCTTG	TGCCGTCGCT	TCGGGTAGGA	CACCTGCGGC	GGCACGCCGG	840
GATATGCGGC	GGGCGGCAGC	GCCGCGTCGT	CTGCCGGTCC	CGGGGCGAAG	GCCGGTTCGG	900
CGGCGCCGAG	GTCGTGGGGG	TAGTCCAGGG	CTTGGGGTTC	GTGGGATGAG	GGCTCGGGGT	960
ACGGCGCCGG	TCCGTTGGTG	CCGACACCGG	GGTTCGGCGA	GTGGGGACCG	GGCATTGTGG	1020
TTCTCCTAGG	GTGGTGGACG	GGACCAGCTG	CTAGGGCGAC	AACCGCCCGT	CGCGTCAGCC	1080
GGCAGCATCG	GCAATCAGGT	GAGCTCCCTA	GGCAGGCTAG	CGCAACAGCT	GCCGTCAGCT	1140
CTCAACGCGA	CGGGGCGGGC	CGCGGCGCCG	ATAATGTTGA	AAGACTAGGC	AACCTTAGGA	1200
ACGAAGGACG	GAGATTTTGT	GACGATC				1227

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 181 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGGGCCGGC GGGGCCGGCG 60

GGACCGGCGC TAACGGTGGT GCCGGCGGCA ACGCCTGGTT GTTCGGGGCC GGCGGGTCCG 120

GCGGNGCCGG CACCAATGGT GGNGTCGGCG GGTCCGGCGG ATTTGTCTAC GGCAACGGCG 180

G 181

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 290 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GCGGTGTCGG CGGATCCGGC GGGTGGTTGA ACGGCAACGG CGGTGTCGGC GGCCGGGGCG 60

GCGACGGCGT CTTTGCCGGT GCCGGCGCC AGGGCGGCCT CGGTGGGCAG GGCGGCAATG 120

GCGGCGGCTC CACCGGCGGC AACGGCGGTC TTGGCGGCGC GGGCGGTGGC GGAGGCAACG 180

CCCCGGACGG CGGCTTCGGT GGCAACGGCG GTAAGGGTGG CCAGGGCGAN ATTGGCGGCG 240

GCACTCAGAG CGCGACCGGC CTCGGNGGTG ACGGCGGTGA CGGCGGTGAC	290
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GATCCAGTGG CATGGNGGGT GTCAGTGGAA GCAT	34
(2) INFORMATION FOR SEQ ID NO:39:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 155 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GATCGCTGCT CGTCCCCCC TTGCCGCCGA CGCCACCGGT CCCACCGTTA CCGAACAAGC	60
TGGCGTGGTC GCCAGCACCC CCGGCACCGC CGACGCCGGA GTCGAACAAT GGCACCGTCG	120
TATCCCCACC ATTGCCGCCG GNCCCACCGG CACCG	155
(2) INFORMATION FOR SEQ ID NO:40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
ATGGCGTTCA CGGGGCGCCG GGGACCGGGC AGCCCGGNGG GGCCGGGGG TGG	53
(2) INFORMATION FOR SEQ ID NO:41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GATCCACCGC GGGTGCAGAC GGTGCCCGCG GCGCCACCCC GACCAGCGGC GGCAACGGCG	60
GCACCGGCGG CAACGCCGCACCG TCGTCGGNGG GGCCGGCGGG GCCGGCGGCA	120
AGGGCGGCAA CG	132

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GATCGGCGGC	CGGNACGGNC	GGGGACGGCG	GCAAGGGCGG	NAACGGGGGC	GCCGNAGCCA		60
CCNGCCAAGA	ATCCTCCGNG	TCCNCCAATG	GCGCGAATGG	CGGACAGGGC	GGCAACGGCG	. :	120
GCANCGGCGG	CA					:	132

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 702 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CGGCACGAGG	ATCGGTACCC	CGCGGCATCG	GCAGCTGCCG	ATTCGCCGGG	TTTCCCCACC	60
CGAGGAAAGC	CGCTACCAGA	TGGCGCTGCC	GAAGTAGGGC	GATCCGTTCG	CGATGCCGGC	120
ATGAACGGGC	GGCATCAAAT	TAGTGCAGGA	ACCTTTCAGT	TTAGCGACGA	TAATGGCTAT	180
AGCACTAAGG	AGGATGATCC	GATATGACGC	AGTCGCAGAC	CGTGACGGTG	GATCAGCAAG	240
AGATTTTGAA	CAGGGCCAAC	GAGGTGGAGG	CCCCGATGGC	GGACCCACCG	ACTGATGTCC	300
CCATCACACC	GTGCGAACTC	ACGGNGGNTA	AAAACGCCGC	CCAACAGNTG	GTNTTGTCCG	360
CCGACAACAT	GCGGGAATAC	CTGGCGGCCG	GTGCCAAAGA	GCGGCAGCGT	CTGGCGACCT	420
CGCTGCGCAA	CGCGGCCAAG	GNGTATGGCG	AGGTTGATGA	GGAGGCTGCG	ACCGCGCTGG	480
ACAACGACGG	CGAAGGAACT	GTGCAGGCAG	AATCGGCCGG	GGCCGTCGGA	GGGGACAGTT	540
CGGCCGAACT	AACCGATACG	CCGAGGGTGG	CCACGGCCGG	TGAACCCAAC	TTCATGGATC	600
TCAAAGAAGC	GGCAAGGAAG	CTCGAAACGG	GCGACCAAGG	CGCATCGCTC	GCGCACTGNG	660
GGGATGGGTG	GAACACTTNC	ACCCTGACGC	TGCAAGGCGA	CG		702

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 298 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GAAGCCGCAG CGCTGTCGGG CGACGTGGCG GTCAAAGCGG CATCGCTCGG TGGCGGTGGA 60
GGCGGCGGGG TGCCGTCGGC GCCGTTGGGA TCCGCGATCG GGGGCGCCGA ATCGGTGCGG 120
CCCGCTGGCG CTGGTGACAT TGCCGGCTTA GGCCAGGGAA GGGCCGGCG CGGCGCCGCG 180
CTGGGCGGCG GTGGCATGGG AATGCCGATG GGTGCCGCC ATCAGGGACA AGGGGGCGCC 240
AAGTCCAAGG GTTCTCAGCA GGAAGACGAG GCGCTCTACA CCGAGGATCC TCGTGCCG 298

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CGGCACGAGG ATCGAATCGC GTCGCCGGGA GCACAGCGTC GCACTGCACC AGTGGAGGAG 60 CCATGACCTA CTCGCCGGGT AACCCCGGAT ACCCGCAAGC GCAGCCCGCA GGCTCCTACG 120 GAGGCGTCAC ACCCTCGTTC GCCCACGCCG ATGAGGGTGC GAGCAAGCTA CCGATGTACC 180 TGAACATCGC GGTGGCAGTG CTCGGTCTGG CTGCGTACTT CGCCAGCTTC GGCCCAATGT 240 TCACCCTCAG TACCGAACTC GGGGGGGGTG ATGGCGCAGT GTCCGGTGAC ACTGGGCTGC 300 CGGTCGGGGT GGCTCTGCTG GCTGCGCTGC TTGCCGGGGT GGTTCTGGTG CCTAAGGCCA 360 AGAGCCATGT GACGGTAGTT GCGGTGCTCG GGGTACTCGG CGTATTTCTG ATGGTCTCGG 420 CGACGTTTAA CAAGCCCAGC GCCTATTCGA CCGGTTGGGC ATTGTGGGTT GTGTTGGCTT 480 TCATCGTGTT CCAGGCGGTT GCGGCAGTCC TGGCGCTCTT GGTGGAGACC GGCGCTATCA 540 CCGCGCCGGC GCCGCGCCC AAGTTCGACC CGTATGGACA GTACGGGCGG TACGGGCAGT 600 ACGGGCAGTA CGGGGTGCAG CCGGGTGGGT ACTACGGTCA GCAGGGTGCT CAGCAGGCCG 660 CGGGACTGCA GTCGCCCGGC CCGCAGCAGT CTCCGCAGCC TCCCGGATAT GGGTCGCAGT 720 ACGGCGGCTA TTCGTCCAGT CCGAGCCAAT CGGGCAGTGG ATACACTGCT CAGCCCCCGG 780 CCCAGCCGCC GGCGCAGTCC GGGTCGCAAC AATCGCACCA GGGCCCATCC ACGCCACCTA 840 CCGGCTTTCC GAGCTTCAGC CCACCACCAC CGGTCAGTGC CGGGACGGGG TCGCAGGCTG 900 GTTCGGCTCC AGTCAACTAT TCAAACCCCA GCGGGGGCGA GCAGTCGTCG TCCCCCGGGG 960 GGGCGCCGGT CTAACCGGGC GTTCCCGCGT CCGGTCGCGC GTGTGCGCGA AGAGTGAACA 1020 1058 GGGTGTCAGC AAGCGCGGAC GATCCTCGTG CCGAATTC

(2) INFORMATION FOR SEQ ID NO:46:

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 327 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
CGGCACGAGA GACCGATGCC GCTACCCTCG CGCAGGAGGC AGGTAATTTC GAGCGGATCT	60
CCGGCGACCT GAAAACCCAG ATCGACCAGG TGGAGTCGAC GGCAGGTTCG TTGCAGGGCC	120
AGTGGCGCGG CGCGGCGGGG ACGGCCGCCC AGGCCGCGGT GGTGCGCTTC CAAGAAGCAG	180
CCAATAAGCA GAAGCAGGAA CTCGACGAGA TCTCGACGAA TATTCGTCAG GCCGGCGTCC	240
AATACTCGAG GGCCGACGAG GAGCAGCAGC AGGCGCTGTC CTCGCAAATG GGCTTCTGAC	300
CCGCTAATAC GAAAAGAAAC GGAGCAA	327
(2) INFORMATION FOR SEQ ID NO:47: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 170 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
CGGTCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA	60
CCAACAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTTCT	120
TCTTCATCAG GAAGTGCACA CCGGCCACCC TGCCCTCGGN TACCTTTCGG	170
(2) INFORMATION FOR SEQ ID NO:48: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 127 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG	60
CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGGCACG	120
GGGCCGT	127

(2) INFORMATION FOR SEQ ID NO:49:

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 81 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEOUENCE DESCRIPTION: SEQ ID NO:49:	
CGGCGGCAAG GGCGGCACCG CCGGCAACGG GAGCGGCGCG GCCGGCGGCA ACGGCGGCAA	60
	81
CGGCGGCTCC GGCCTCAACG G	01
(2) INFORMATION FOR SEQ ID NO:50:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 149 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
GATCAGGGCT GGCCGGCTCC GGCCAGAAGG GCGGTAACGG AGGAGCTGCC GGATTGTTTG	60
GCAACGGCGG GGCCGGNGGT GCCGGCGCT CCAACCAAGC CGGTAACGGC GGNGCCGGCG	120
GAAACGGTGG TGCCGGTGGG CTGATCTGG	149
(2) INFORMATION FOR SEQ ID NO:51: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	CO
CGGCACGAGA TCACACCTAC CGAGTGATCG AGATCGTCGG GACCTCGCCC GACGGTGTCG	60
ACGCGGNAAT CCAGGGCGGT CTGGCCCGAG CTGCGCAGAC CATGCGCGCG CTGGACTGGT	
TCGAAGTACA GTCAATTCGA GGCCACCTGG TCGACGGAGC GGTCGCGCAC TTCCAGGTGA	180
CTATGAAAGT CGGCTTCCGC CTGGAGGATT CCTGAACCTT CAAGCGCGGC CGATAACTGA	240
GGTGCATCAT TAAGCGACTT TTCCAGAACA TCCTGACGCG CTCGAAACGC GGTTCAGCCG	300
ACGGTGGCTC CGCCGAGGCG CTGCCTCCAA AATCCCTGCG ACAATTCGTC GGCGG	355

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 999 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ATGCATCACC	ATCACCATCA	CATGCATCAG	GTGGACCCCA	ACTTGACACG	TCGCAAGGGA	60
CGATTGGCGG	CACTGGCTAT	CGCGGCGATG	GCCAGCGCCA	GCCTGGTGAC	CGTTGCGGTG	120
CCCGCGACCG	CCAACGCCGA	TCCGGAGCCA	GCGCCCCGG	TACCCACAAC	GGCCGCCTCG	180
CCGCCGTCGA	CCGCTGCAGC	GCCACCCGCA	CCGGCGACAC	CTGTTGCCCC	CCCACCACCG	240
GCCGCCGCCA	ACACGCCGAA	TGCCCAGCCG	GGCGATCCCA	ACGCAGCACC	TCCGCCGGCC	300
GACCCGAACG	CACCGCCGCC	ACCTGTCATT	GCCCCAAACG	CACCCCAACC	TGTCCGGATC	360
GACAACCCGG	TTGGAGGATT	CAGCTTCGCG	CTGCCTGCTG	GCTGGGTGGA	GTCTGACGCC	420
GCCCACTTCG	ACTACGGTTC	AGCACTCCTC	AGCAAAACCA	CCGGGGACCC	GCCATTTCCC	480
GGACAGCCGC	CGCCGGTGGC	CAATGACACC	CGTATCGTGC	TCGGCCGGCT	AGACCAAAAG	540
CTTTACGCCA	GCGCCGAAGC	CACCGACTCC	AAGGCCGCGG	CCCGGTTGGG	CTCGGACATG	600
GGTGAGTTCT	ATATGCCCTA	CCCGGGCACC	CGGATCAACC	AGGAAACCGT	CTCGCTCGAC	660
GCCAACGGGG	TGTCTGGAAG	CGCGTCGTAT	TACGAAGTCA	AGTTCAGCGA	TCCGAGTAAG	720
CCGAACGGCC	AGATCTGGAC	GGGCGTAATC	GGCTCGCCCG	CGGCGAACGC	ACCGGACGCC	780
GGGCCCCCTC	AGCGCTGGTT	TGTGGTATGG	CTCGGGACCG	CCAACAACCC	GGTGGACAAG	840
GGCGCGGCCA	AGGCGCTGGC	CGAATCGATC	CGGCCTTTGG	TCGCCCCGCC	GCCGGCGCCG	900
GCACCGGCTC	CTGCAGAGCC	CGCTCCGGCG	cceececee	CCGGGGAAGT	CGCTCCTACC	960
CCGACGACAC	CGACACCGCA	GCGGACCTTA	CCGGCCTGA			999

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met His His His His His Met His Gln Val Asp Pro Asn Leu Thr

Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile Ala Ala Met Ala Ser 25

- Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro 35 40 45
- Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro Ser Thr 50 55 60
- Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro Pro 65 70 75 80
- Ala Ala Ala Asn Thr Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 85 90 95
- Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro Pro Val Ile Ala Pro
 100 105 110
- Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Phe Ser 115 120 125
- Phe Ala Leu Pro Ala Gly Trp Val Glu Ser Asp Ala Ala His Phe Asp 130 135 140
- Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe Pro 145 150 155 160
- Gly Gln Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg 165 170 175
- Leu Asp Gln Lys Leu Tyr Ala Ser Ala Glu Ala Thr Asp Ser Lys Ala 180 185 190
- Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro Tyr Pro 195 200 205
- Gly Thr Arg Ile Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 210 215 220
- Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser Asp Pro Ser Lys 225 230 235 240
- Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn 245 250 255
- Ala Pro Asp Ala Gly Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly
 260 265 270
- Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys Ala Leu Ala Glu 275 280 285
- Ser Ile Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 290 295 300
- Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly Glu Val Ala Pro Thr 305 310 315 320
- Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala 325 330

- (2) INFORMATION FOR SEQ ID NO:54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Xaa Asn Tyr Gly Gln Val 1 10 15

Val Ala Ala Leu 20

- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys
1 10 15

Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro
1 10 15

- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro 1 5 10 15

Ala

- (2) INFORMATION FOR SEQ ID NO:61:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly
1 10 15

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Gln Thr Ser

1 10 15

Leu Leu Asn Asn Leu Ala Asp Pro Asp Val Ser Phe Ala Asp 20 25 30

(2) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 187 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

Thr Gly Ser Leu Asn Gln Thr His Asn Arg Arg Ala Asn Glu Arg Lys

1 10 15

Asn Thr Thr Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala 20 25 30

Ala Ala Ala Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala 35 40 45

Gly Gly Pro Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro 50 60

Leu Pro Leu Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln 65 70 75 80

Leu Thr Ser Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala 85 90 95

Asn Lys Gly Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg 100 105 110

Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro 115 120 125

Leu Ser Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala 130 135 140

Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr 145 150 155 160

Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala 165 170 175 Ser Ala Met Glu Leu Leu Gln Ala Ala Gly Xaa 180 185

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 148 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

Asp Glu Val Thr Val Glu Thr Thr Ser Val Phe Arg Ala Asp Phe Leu

5 10 15

Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala Val Ser 20 25 30

Gly Val Glu Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg 35 40 45

Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp Gln Ala Ile Thr Ser 50 55 60

Ala Gly Arg His Pro Asp Ser Asp Ile Phe Leu Asp Asp Val Thr Val 65 70 75 80

Ser Arg Arg His Ala Glu Phe Arg Leu Glu Asn Asn Glu Phe Asn Val 85 90 95

Val Asp Val Gly Ser Leu Asn Gly Thr Tyr Val Asn Arg Glu Pro Val 100 105 110

Asp Ser Ala Val Leu Ala Asn Gly Asp Glu Val Gln Ile Gly Lys Leu 115 120 125

Arg Leu Val Phe Leu Thr Gly Pro Lys Gln Gly Glu Asp Asp Gly Ser 130 135 140

Thr Gly Gly Pro 145

(2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 230 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp Thr

Gly Pro Asp Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln

Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr Gln Ile Ser Arg Gln Ser 35 40 45

Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Asn 50 \cdot 55 60

Phe Asp Val Arg Ile Lys Ile Phe Met Leu Val Thr Ala Val Val Leu 65 70 . 75 80

Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr Cys Glu 85 90 95

Glu Leu Lys Gly Thr Asp Thr Gly Gln Ala Cys Gln Ile Gln Met Ser 100 105 110

Asp Pro Ala Tyr Asn Ile Asn Ile Ser Leu Pro Ser Tyr Tyr Pro Asp 115 120 125

Gln Lys Ser Leu Glu Asn Tyr Ile Ala Gln Thr Arg Asp Lys Phe Leu 130 135 140

Ser Ala Ala Thr Ser Ser Thr Pro Arg Glu Ala Pro Tyr Glu Leu Asn 145 150 155 160

Ile Thr Ser Ala Thr Tyr Gln Ser Ala Ile Pro Pro Arg Gly Thr Gln 165 170 175

Ala Val Val Leu Xaa Val Tyr His Asn Ala Gly Gly Thr His Pro Thr 180 185 190

Thr Thr Tyr Lys Ala Phe Asp Trp Asp Gln Ala Tyr Arg Lys Pro Ile 195 200 205

Thr Tyr Asp Thr Leu Trp Gln Ala Asp Thr Asp Pro Leu Pro Val Val 210 215 220

Phe Pro Ile Val Ala Arg 225 230

(2) INFORMATION FOR SEQ ID NO:66:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 132 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe 5 10 15

Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser 20 25 30

Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
35 40 45

Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 50 55 60 Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val 65 70 75 80

Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala 85 90 95

Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp
100 105 110

Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu 115 120 125

Gly Pro Pro Ala 130

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

Val Pro Leu Arg Ser Pro Ser Met Ser Pro Ser Lys Cys Leu Ala Ala 1 5 10 15

Ala Gln Arg Asn Pro Val Ile Arg Arg Arg Leu Ser Asn Pro Pro 20 25 30

Pro Arg Lys Tyr Arg Ser Met Pro Ser Pro Ala Thr Ala Ser Ala Gly 35 40 45

Met Ala Arg Val Arg Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa 50 55 60

Ser Ala Gly Met Ala Arg Val Arg Arg Trp Xaa Val Met Pro Xaa Val 65 70 75 80

Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly 85 90 95

Ser Glu Arg Lys 100

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg Thr 1 5 10 15

Leu Thr Leu Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu 20 25 30

Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp Ala Glu Xaa Asp Asp Asp 35 40 45

Ile Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly 50 55 60

Leu Asp Leu Lys Val Ala Gly Arg Ala Asp Arg Ala Ala Gly His Leu 65 70 75 80

Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Asp Gln Arg 85 90 95

Arg Arg Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro 100 105 110

Asp Arg Leu Arg Ala Arg Pro Leu Arg Arg His Pro Arg Pro Gly Gly
115 120 125

Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg 130 135 140

His Arg Xaa Gly Pro Val Asp Glu Pro Asp Arg Arg Leu Pro Val Arg 145 150 155 160

Asp Arg Arg

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 344 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Arg Ala Gly
1 5 10 15

Gly Ala Val Ala Glu Val Tyr Ala Glu Ala Arg Arg Glu Phe Gly Arg 20 25 30

Leu Pro Glu Pro Leu Ala Met Leu Ser Pro Asp Glu Gly Leu Leu Thr 35 40 45

Ala Gly Trp Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro 50 55 60

Arg Gly Arg Lys Glu Ala Val Ala Ala Ala Val Ala Ala Ser Leu Arg
65 70 75 80

Cys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly 85 90 95

Gln Thr Asp Thr Ala Ala Ala Ile Leu Ala Gly Thr Ala Pro Ala Ala 100 105 110 Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala Gly Thr Gly Thr
115 120 125

Pro Ala Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr 130 135 140

Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala Arg Leu Val Leu Val 145 150 155 160

Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu 165 170 175

Met Arg Arg Ala Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu 180 185 190

His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu Pro Arg Thr Leu Pro 195 200 205

Asp Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe 210 215 220

Ala Ala Leu Ser His His Leu Asp Thr Ala Pro His Leu Pro Pro Pro 225 230 235 240

Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu Pro 245 250 255

Met Pro Met Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro 260 265 270

Ala Asp Leu His Ala Pro Thr Arg Leu Ala Leu Leu Thr Gly Leu Ala 275 280 285

Pro His Gln Val Thr Asp Asp Asp Val Ala Ala Ala Arg Ser Leu Leu 290 295 300

Asp Thr Asp Ala Ala Leu Val Gly Ala Leu Ala Trp Ala Ala Phe Thr 305 310 315 320

Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala Ala Glu Gly Gln 325 330 335

Val Ser Arg Gln Asn Pro Thr Gly 340

(2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 485 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Asp Asp Pro Asp Met Pro Gly Thr Val Ala Lys Ala Val Ala Asp Ala 1 5 10 15

Leu Gly Arg Gly Ile Ala Pro Val Glu Asp Ile Gln Asp Cys Val Glu 20 25 30

- Ala Arg Leu Gly Glu Ala Gly Leu Asp Asp Val Ala Arg Val Tyr Ile 35 40 45
- Ile Tyr Arg Gln Arg Arg Ala Glu Leu Arg Thr Ala Lys Ala Leu Leu 50 55 60
- Gly Val Arg Asp Glu Leu Lys Leu Ser Leu Ala Ala Val Thr Val Leu 65 70 75 80
- Arg Glu Arg Tyr Leu Leu His Asp Glu Gln Gly Arg Pro Ala Glu Ser 85 90 95
- Thr Gly Glu Leu Met Asp Arg Ser Ala Arg Cys Val Ala Ala Ala Glu 100 105 110
- Asp Gln Tyr Glu Pro Gly Ser Ser Arg Arg Trp Ala Glu Arg Phe Ala 115 120 125
- Thr Leu Leu Arg Asn Leu Glu Phe Leu Pro Asn Ser Pro Thr Leu Met 130 135 140
- Asn Ser Gly Thr Asp Leu Gly Leu Leu Ala Gly Cys Phe Val Leu Pro 145 150 155 160
- Ile Glu Asp Ser Leu Gln Ser Ile Phe Ala Thr Leu Gly Gln Ala Ala 165 170 175
- Glu Leu Gln Arg Ala Gly Gly Gly Thr Gly Tyr Ala Phe Ser His Leu 180 185 190
- Arg Pro Ala Gly Asp Arg Val Ala Ser Thr Gly Gly Thr Ala Ser Gly
 195 200 205
- Pro Val Ser Phe Leu Arg Leu Tyr Asp Ser Ala Ala Gly Val Val Ser 210 215 220
- Met Gly Gly Arg Arg Gly Ala Cys Met Ala Val Leu Asp Val Ser 225 230 235 240
- His Pro Asp Ile Cys Asp Phe Val Thr Ala Lys Ala Glu Ser Pro Ser 245 250 255
- Glu Leu Pro His Phe Asn Leu Ser Val Gly Val Thr Asp Ala Phe Leu 260 265 270
- Arg Ala Val Glu Arg Asn Gly Leu His Arg Leu Val Asn Pro Arg Thr 275 280 285
- Gly Lys Ile Val Ala Arg Met Pro Ala Ala Glu Leu Phe Asp Ala Ile 290 295 300
- Cys Lys Ala Ala His Ala Gly Gly Asp Pro Gly Leu Val Phe Leu Asp 305 310 315 320
- Thr Ile Asn Arg Ala Asn Pro Val Pro Gly Arg Gly Arg Ile Glu Ala 325 330 335
- Thr Asn Pro Cys Gly Glu Val Pro Leu Leu Pro Tyr Glu Ser Cys Asn 340 345 350

Leu Gly Ser Ile Asn Leu Ala Arg Met Leu Ala Asp Gly Arg Val Asp 355 360 365

Trp Asp Arg Leu Glu Glu Val Ala Gly Val Ala Val Arg Phe Leu Asp 370 375 380

Asp Val Ile Asp Val Ser Arg Tyr Pro Phe Pro Glu Leu Gly Glu Ala 385 390 395 400

Ala Arg Ala Thr Arg Lys Ile Gly Leu Gly Val Met Gly Leu Ala Glu 405 410 415

Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp Ser Glu Glu Ala Val Arg
420 425 430

Leu Ala Thr Arg Leu Met Arg Arg Ile Gln Gln Ala Ala His Thr Ala 435 440 445

Ser Arg Arg Leu Ala Glu Glu Arg Gly Ala Phe Pro Ala Phe Thr Asp 450 455 460

Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr Ser 465 470 475 480

Val Ala Pro Thr Gly 485

(2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

Gly Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu 1 5 10 15

Ile Tyr Trp Arg Arg Gly Leu Ala Leu Gly Ile Ala Val Val
20 25 30

Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser Ser Ala 35 40 45

Gly Ala Lys Pro Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His 50 55 60

Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly Gln Thr Glu 65 70 75 80

Gly Asn Ala Ala Ala Pro Pro Gln Gly Gln Asn Pro Glu Thr Pro 85 90 95

Thr Pro Thr Ala Ala Val Gln Pro Pro Pro Val Leu Lys Glu Gly Asp 100 105 110

Asp Cys Pro Asp Ser Thr Leu Ala Val Lys Gly Leu Thr Asn Ala Pro 115 120 125

- Gln Tyr Tyr Val Gly Asp Gln Pro Lys Phe Thr Met Val Val Thr Asn 130 135 140
- Ile Gly Leu Val Ser Cys Lys Arg Asp Val Gly Ala Ala Val Leu Ala 145 150 155 160
- Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp 165 170 175
- Cys Ala Pro Ser Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu 180 185 190
- Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met Gly Ser Ala Pro Arg 195 200 205
- Cys Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val 210 215 220
- Val Gln Leu Gly Asn Leu Arg Ser Leu Pro Val Pro Phe Ile Leu Asn 225 230 235 240
- Gln Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala Gln
 245 250 255
- Ala Pro Pro Glu Ser Pro Ala Gln Gly Gly
 260 265

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

- Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly Val Gln Val 1 10 15
- Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val Val Ala 20 25 30
- Gly Gly Ala Ala Asn Ala Gly Val Pro Lys Gly Val Val Val Thr 35 40 45
- Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu Val Ala Ala 50 60
- Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr Phe Gln Asp 65 70 75 80
- Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly Lys Ala Glu 85 90 95

Gln

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 364 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:
- Gly Ala Ala Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala
 1 10 15
- Cys Gly Gly Gly Thr Asn Ser Ser Ser Gly Ala Gly Gly Thr Ser 20 25 30
- Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser
 35 40 45
- Thr Ala Gln Glu Asn Ala Met Glu Gln Phe Val Tyr Ala Tyr Val Arg
 50 55 60
- Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala 65 70 75 80
- Gly Val Thr Gln Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp 85 90 95
- Val Pro Leu Asn Pro Ser Thr Gly Gln Pro Asp Arg Ser Ala Glu Arg 100 105 110
- Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala 115 120 125
- Ile Thr Tyr Asn Ile Lys Gly Val Ser Thr Leu Asn Leu Asp Gly Pro 130 135 140
- Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp Pro 145 150 155 160
- Gln Ile Gln Ala Leu Asn Ser Gly Thr Asp Leu Pro Pro Thr Pro Ile 165 170 175
- Ser Val Ile Phe Arg Ser Asp Lys Ser Gly Thr Ser Asp Asn Phe Gln 180 185 190
- Lys Tyr Leu Asp Gly Val Ser Asn Gly Ala Trp Gly Lys Gly Ala Ser 195 200 205
- Glu Thr Phe Ser Gly Gly Val Gly Val Gly Ala Ser Gly Asn Asn Gly 210 215 220
- Thr Ser Ala Leu Leu Gln Thr Thr Asp Gly Ser Ile Thr Tyr Asn Glu 225 230 235 240
- Trp Ser Phe Ala Val Gly Lys Gln Leu Asn Met Ala Gln Ile Ile Thr
 245 250 255
- Ser Ala Gly Pro Asp Pro Val Ala Ile Thr Thr Glu Ser Val Gly Lys 260 265 270

Thr Ile Ala Gly Ala Lys Ile Met Gly Gln Gly Asn Asp Leu Val Leu 275 280 285

Asp Thr Ser Ser Phe Tyr Arg Pro Thr Gln Pro Gly Ser Tyr Pro Ile 290 295 300

Val Leu Ala Thr Tyr Glu Ile Val Cys Ser Lys Tyr Pro Asp Ala Thr 305 310 315 320

Thr Gly Thr Ala Val Arg Ala Phe Met Gln Ala Ala Ile Gly Pro Gly 325 330 335

Gln Glu Gly Leu Asp Gln Tyr Gly Ser Ile Pro Leu Pro Lys Ser Phe 340 345 350

Gln Ala Lys Leu Ala Ala Ala Val Asn Ala Ile Ser 355 360

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 309 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Gln Ala Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp
1 10 15

Gln Thr His Gln Asp Arg Leu His His Gly Cys Arg Arg Ala Ala Val 20 25 30

Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser Ala Arg Pro 35 40 45

Pro Arg Arg His Pro Ala Gln Gly His Arg Arg Arg Val Ala Pro Ser 50 55 60

Gly Gly Arg Arg Pro His Pro His His Val Gln Pro Asp Asp Arg 65 70 75 80

Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro 85 90 95

Asp Pro His Arg Arg Gly Pro Ala Asp Pro Gly Arg Val Arg Gly Arg 100 105 110

Gly Arg Leu Arg Arg Val Asp Asp Gly Arg Leu Gln Pro Asp Arg Asp 115 120 125

Ala Asp His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val 130 135 140

Gln His Arg Gly Gly Pro Val Phe Val Arg Arg Val Pro Gly Val Arg 145 150 155 160

Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly 165 170 175 Asp Val Leu Arg Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala 180 185 190

Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg Ala Asp Gly Arg Val 195 200 205

Phe Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg 210 215 220

Ala Gly Pro Gln Gly Arg Leu His Leu Asp Gly Ala Gly Pro Ser Pro 225 230 235 240

Leu Pro Ala Arg Ala Gly Gln Gln Gln Pro Ser Ser Ala Gly Gly Arg
245 250 255

Arg Ala Gly Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His 260 265 270

His Gln Gly Gly His Asp Pro Gly Arg Gln Gly Ala Gln Arg Gly Thr 275 280 285

Ala Gly Val Ala His Ala Ala Ala Gly Pro Arg Arg Ala Ala Val Arg 290 295 300

Asn Arg Pro Arg Arg 305

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

Ser Ala Val Trp Cys Leu Asn Gly Phe Thr Gly Arg His Arg His Gly 1 5 10 15

Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn Arg Trp Cys
20 25 30

Ser Thr Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala 35 40 45

Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys Ser Pro Ala Val Gly Cys 50 55 60

Arg Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr 65 70 75 80

Ser Arg Thr Leu Gly Val Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser 85 90 95

Pro Arg Ala Gln Pro Ser Cys Ala Val Thr Val Glu Ser His Thr His 100 105 110

Ala Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Gly Leu Val Gln
115 120 125

Glu Glu Gln Pro Ser Asp Met Thr Asn His Pro Arg Tyr Ser Pro Pro 135 Pro Gln Gln Pro Gly Thr Pro Gly Tyr Ala Gln Gln Gln Gln Thr 155 Tyr Ser Gln Gln Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Pro Gln 170 Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala Leu Gly Gly Thr Arg Pro Gly Leu Ile Pro Gly Val Ile Pro Thr Met Thr Pro Pro Pro Gly Met Val Arg Gln Arg Pro Arg Ala Gly Met Leu Ala Ile Gly Ala Val Thr 215 Ile Ala Val Val Ser Ala Gly Ile Gly Gly Ala Ala Ala Ser Leu Val Gly Phe Asn Arg Ala Pro Ala Gly Pro Ser Gly Gly Pro Val Ala Ala 250 Ser Ala Ala Pro Ser Ile Pro Ala Ala Asn Met Pro Pro Gly Ser Val Glu Gln Val Ala Ala Lys Val Val Pro Ser Val Val Met Leu Glu Thr Asp Leu Gly Arg Gln Ser Glu Glu Gly Ser Gly Ile Ile Leu Ser Ala 290 Glu Gly Leu Ile Leu Thr Asn Asn His Val Ile Ala Ala Ala Lys Pro Pro Leu Gly Ser Pro Pro Pro Lys Thr Thr Val Thr Phe Ser Asp 325 Gly Arg Thr Ala Pro Phe Thr Val Val Gly Ala Asp Pro Thr Ser Asp Ile Ala Val Val Arg Val Gln Gly Val Ser Gly Leu Thr Pro Ile Ser 360 Leu Gly Ser Ser Asp Leu Arg Val Gly Gln Pro Val Leu Ala Ile Gly Ser Pro Leu Gly Leu Glu Gly Thr Val Thr Thr Gly Ile Val Ser Ala Leu Asn Arg Pro Val Ser Thr Thr Gly Glu Ala Gly Asn Gln Asn Thr Val Leu Asp Ala Ile Gln Thr Asp Ala Ala Ile Asn Pro Gly Asn Ser Gly Gly Ala Leu Val Asn Met Asn Ala Gln Leu Val Gly Val Asn

440

435

Ser Ala Ile Ala Thr Leu Gly Ala Asp Ser Ala Asp Ala Gln Ser Gly 450 455 460

Ser Ile Gly Leu Gly Phe Ala Ile Pro Val Asp Gln Ala Lys Arg Ile 465 470 475 480

Ala Asp Glu Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu Gly 485 490 495

Val Gln Val Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu 500 505 510

Val Val Ala Gly Gly Ala Ala Ala Asn Ala Gly Val Pro Lys Gly Val 515 520 525

Val Val Thr Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu 530 535 540

Val Ala Ala Val Arg Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr 545 550 555 560

Phe Gln Asp Pro Ser Gly Gly Ser Arg Thr Val Gln Val Thr Leu Gly 565 570 575

Lys Ala Glu Gln 580

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

Met Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu 1 5 10 15

Gly Ala Cys Leu Ala Leu Trp Leu Ser Gly Cys Ser Ser Pro Lys Pro 20 25 30

Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser Asp Pro 35 40 45

Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala Thr Lys Gly Leu 50 60

Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val Asp Ser Leu 70 75 80

Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala 85 90 95

Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg 100 105 110

Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp Asp Trp Ser Asn 115 120 125 Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala 130 135 140

Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn Leu Gln Ala Gln 145 150 155 160

Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys Ile Thr Gly Thr 165 170 175

Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly Ala Lys Ser Ala 180 185 190

Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser His His Leu Val 195 200 205

Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln Leu Thr Gln Ser 210 215 220

Lys Trp Asn Glu Pro Val Asn Val Asp 225 230

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 66 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

Val Ile Asp Ile Ile Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala 1 5 10 15

Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val Asp Asp Ile Arg Val 20 25 30

Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile
35 40 45

Thr Tyr Arg Ile Lys Leu Glu Val Ser Phe Lys Met Arg Pro Ala Gln 50 55 60

Pro Arg 65

(2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Val Pro Pro Ala Pro Pro Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser 1 5 10 15 Cys Ala Ser Pro Pro Ser Pro Pro Leu Pro Pro Ala Pro Pro Val Ala 20 25 30

Pro Gly Pro Pro Met Pro Pro Leu Asp Pro Trp Pro Pro Ala Pro Pro 35 40 45

Leu Pro Tyr Ser Thr Pro Pro Gly Ala Pro Leu Pro Pro Ser Pro Pro 50 55 60

Ser Pro Pro Leu Pro 65

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 355 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

Met Ser Asn Ser Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser
1 10 15

Val Leu Ala Ala Val Gly Leu Gly Leu Ala Thr Ala Pro Ala Gln Ala 20 25 30

Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu 35 40 45

Pro Leu Asp Pro Ser Ala Met Val Ala Gln Val Ala Pro Gln Val Val 50 55 60

Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr 65 70 75 80

Gly Ile Val Ile Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val 85 90 95

Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe Ser Val Gly Ser Gly Gln 100 105 110

Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala 115 120 125

Val Leu Gln Leu Arg Gly Ala Gly Gly Leu Pro Ser Ala Ala Ile Gly 130 135 140

Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser Gly 145 150 155 160

Gly Gln Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu 165 170 175

Gly Gln Thr Val Gln Ala Ser Asp Ser Leu Thr Gly Ala Glu Glu Thr 180 185 190

Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly Asp Ser 195 200 205 Gly Gly Pro Val Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr 210 215 220

Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe Ala 225 230 235 240

Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly 245 250 255

Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu 260 265 270

Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val 275 280 285

Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile 290 295 300

Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp 305 310 315 320

Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln-325 330 335

Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly 340 345 350

Pro Pro Ala 355

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

Ser Pro Lys Pro Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr 1 5 10 15

Ala Ser Asp Pro Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala 20 25 30

Thr Lys Gly Leu Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys 35 40 45

Val Asp Ser Leu Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala 50 55 60

Asn Pro Leu Ala Ala Lys Gly Val Cys Thr Tyr Asn Asp Glu Gln Gly 65 70 75 80

Val Pro Phe Arg Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp 85 90 95

Asp Trp Ser Asn Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val 100 105 110 Leu Asp Pro Ala Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr Asn 115 120 125

Leu Gln Ala Gln Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys 130 135 140

Ile Thr Gly Thr Ile Pro Ala Ser Ser Val Lys Met Leu Asp Pro Gly 145 150 155 160

Ala Lys Ser Ala Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly Ser 165 170 175

His His Leu Val Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln 180 185 190

Leu Thr Gln Ser Lys Trp Asn Glu Pro Val Asn Val Asp 195 200 205

(2) INFORMATION FOR SEQ ID NO:81:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 286 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

Gly Asp Ser Phe Trp Ala Ala Asp Gln Met Ala Arg Gly Phe Val 1 5 10 15

Leu Gly Ala Thr Ala Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln 20 25 30

His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr Asn Pro Ala Val 35 40 45

Val Ala Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 50 55 60

Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro Glu Asn Ile Phe Phe 65 70 75 80

Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu 85 90 95

Asn Phe Asp Pro Glu Gly Val Leu Gly Gly Ile Tyr Arg Tyr His Ala 100 105 110

Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu Ala Ser Gly Val

Ala Met Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp 130 135 140

Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser Trp Gly Glu Leu Asn 145 150 155 160

Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg 165 170 175 Pro Ala Gly Val Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly
180 185 190

Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala Val Pro Glu Gln Ile 195 200 205

Arg Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe 210 215 220

Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg Arg Tyr Phe Asn Thr Asp 225 230 235 240

Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly Arg 245 250 255

Arg Val Asn Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln 260 265 270

Leu Pro Gly Phe Asp Glu Gly Gly Gly Leu Arg Pro Xaa Lys
275 280 285

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 173 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Thr Lys Phe His Ala Leu Met Gln Glu Gln Ile His Asn Glu Phe Thr 1 5 10 15

Ala Ala Gln Gln Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser Glu Asp 20 25 30

Leu Pro Gln Leu Ala Lys His Phe Tyr Ser Gln Ala Val Glu Glu Arg
35 40 45

Asn His Ala Met Met Leu Val Gln His Leu Leu Asp Arg Asp Leu Arg 50 55 60

Val Glu Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro 65 70 75 80

Arg Glu Ala Leu Ala Leu Asp Gln Glu Arg Thr Val Thr Asp 85 90 95

Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly Asp Phe Leu 100 105 110

Gly Glu Gln Phe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val 115 120 125

Ala Leu Met Ala Thr Leu Val Arg Val Ala Asp Arg Ala Gly Ala Asn 130 135 140

Leu Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro 145 150 155 160 Ala Ala Ser Gly Ala Pro His Ala Ala Gly Gly Arg Leu 165 170

(2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

Arg Ala Asp Glu Arg Lys Asn Thr Thr Met Lys Met Val Lys Ser Ile

1 10 15

Ala Ala Gly Leu Thr Ala Ala Ala Ala Ile Gly Ala Ala Ala Gly
20 25 30

Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln Met Gln Pro 35 40 45

Val Val Phe Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa 50 55 60

Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn Xaa Leu Xaa Asp 65 70 75 80

Pro Asn Val Ser Phe Xaa Asn Lys Gly Ser Leu Val Glu Gly Gly Ile 85 90 95

Gly Gly Xaa Glu Gly Xaa Xaa Arg Arg Xaa Gln

(2) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 125 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn
1 10 15

Pro Leu Gly Gln Pro Ile Asp Gly Arg Gly Asp Val Asp Ser Asp Thr 20 25 30

Arg Arg Ala Leu Glu Leu Gln Ala Pro Ser Val Val Xaa Arg Gln Gly
35 40 45

Val Lys Glu Pro Leu Xaa Thr Gly Ile Lys Ala Ile Asp Ala Met Thr 50 60

Pro Ile Gly Arg Gly Gln Arg Gln Leu Ile Ile Gly Asp Arg Lys Thr
65 70 75 80

Gly Lys Asn Arg Arg Leu Cys Arg Thr Pro Ser Ser Asn Gln Arg Glu 85 90 95

Glu Leu Gly Val Arg Trp Ile Pro Arg Ser Arg Cys Ala Cys Val Tyr 100 105 110

Val Gly His Arg Ala Arg Arg Gly Thr Tyr His Arg Arg 115 120 125

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

Cys Asp Ala Val Met Gly Phe Leu Gly Gly Ala Gly Pro Leu Ala Val 1 10 15

Val Asp Gln Gln Leu Val Thr Arg Val Pro Gln Gly Trp Ser Phe Ala 20 25 30

Gln Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp Tyr Gly Leu 35 40 45

Ala Asp Leu Ala Glu Ile Lys Ala Gly Glu Ser Val Leu Ile His Ala 50 55 60

Gly Thr Gly Gly Val Gly Met Ala Ala Val Gln Leu Ala Arg Gln Trp 65 70 75 80

Gly Val Glu Val Phe Val Thr Ala Ser Arg Gly Lys Trp Asp Thr Leu 85 90 95

Arg Ala Xaa Yaa Phe Asp Asp Xaa Pro Tyr Arg Xaa Phe Pro His Xaa 100 105 110

Arg Ser Ser Xaa Gly 115

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 103 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

Met Tyr Arg Phe Ala Cys Arg Thr Leu Met Leu Ala Ala Cys Ile Leu 1 5 10 15

Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala Ala Gln 20 25 30

Thr Ala Pro Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 35 40 45

Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr Cys His Asp Asp Phe 50 55 60

His Arg Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro 65 70 75 80

Ile Leu Glu Gly Pro Val Leu Asp Asp Pro Gly Ala Ala Pro Pro Pro 85 90 95

Pro Ala Ala Gly Gly Gly Ala 100

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 88 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

Val Gln Cys Arg Val Trp Leu Glu Ile Gln Trp Arg Gly Met Leu Gly
1 5 10 15

Ala Asp Gln Ala Arg Ala Gly Gly Pro Ala Arg Ile Trp Arg Glu His 20 25 30

Ser Met Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala 35 40 45

Thr Lys Glu Gly Arg Gly Ile Val Met Arg Val Pro Leu Glu Gly Gly 50 55 60

Gly Arg Leu Val Val Glu Leu Thr Pro Asp Glu Ala Ala Leu Gly
65 70 75 80

Asp Glu Leu Lys Gly Val Thr Ser 85

(2) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 95 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile
1 5 10 15

Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala Gly
20 25 30

Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala 35 40 45

Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu Leu 50 55 60

Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg 65 70 75 80

Ala Asp Glu Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 85 90 95

(2) INFORMATION FOR SEQ ID NO:89:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

Met Thr Gln Ser Gln Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn 1 10 15

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val 20 25 30

Pro Ile Thr Pro Cys Glu Leu Thr Xaa Xaa Lys Asn Ala Ala Gln Gln 35 40 45

Xaa Val Leu Ser Ala Asp Asn Met Arg Glu Tyr Leu Ala Ala Gly Ala 50 55 60

Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Xaa 65 70 75 80

Tyr Gly Glu Val Asp Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly 85 90 95

Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala Val Gly Gly Asp Ser 100 105 110

Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro 115 120 125

Asn Phe Met Asp Leu Lys Glu Ala Ala Arg Lys Leu Glu Thr Gly Asp 130 135 140

Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa Thr 145 150 155 160

Leu Thr Leu Gln Gly Asp 165

(2) INFORMATION FOR SEQ ID NO:90:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

Arg Ala Glu Arg Met
1 5

(2) INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 263 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:
- Val Ala Trp Met Ser Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala 1 5 10 15
- Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr Ala Tyr Gly Leu Thr 20 25 30
- Val Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu 35 40 45
- Ile Ala Thr Asn Leu Leu Gly Gln Asn Thr Pro Ala Ile Ala Val Asn 50 55 60
- Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe 70 75 80
- Gly Tyr Ala Ala Ala Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe 85 90 95
- Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly Leu Leu Glu Gln Ala 100 105 110
- Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met 115 120 125
- Asn Asn Val Pro Gln Ala Leu Lys Gln Leu Ala Gln Pro Thr Gln Gly
 130 135 140
- Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser Pro 145 150 155 160
- His Arg Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met
 165 170 175
- Ser Met Thr Asn Ser Gly Val Ser Met Thr Asn Thr Leu Ser Ser Met 180 185 190

Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln Thr Ala 195 200 205

Ala Gln Asn Gly Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly 210 215 220

Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu Gly Arg Ala Ala 225 230 235 240

Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly 245 250 255

Arg Arg Asn Gly Gly Pro Ala 260

(2) INFORMATION FOR SEQ ID NO:92:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 303 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

Met Thr Tyr Ser Pro Gly Asn Pro Gly Tyr Pro Gln Ala Gln Pro Ala 1 10 15

Gly Ser Tyr Gly Gly Val Thr Pro Ser Phe Ala His Ala Asp Glu Gly 20 25 30

Ala Ser Lys Leu Pro Met Tyr Leu Asn Ile Ala Val Ala Val Leu Gly 35 40 45

Leu Ala Ala Tyr Phe Ala Ser Phe Gly Pro Met Phe Thr Leu Ser Thr 50 55 60

Glu Leu Gly Gly Gly Asp Gly Ala Val Ser Gly Asp Thr Gly Leu Pro 65 70 75 80

Val Gly Val Ala Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val 85 90 95

Pro Lys Ala Lys Ser His Val Thr Val Val Ala Val Leu Gly Val Leu 100 105 110

Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr 115 120 125

Ser Thr Gly Trp Ala Leu Trp Val Val Leu Ala Phe Ile Val Phe Gln 130 135 140

Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile Thr 145 150 155 160

Ala Pro Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg 165 170 175

Tyr Gly Gln Tyr Gly Gln Tyr Gly Val Gln Pro Gly Gly Tyr Tyr Gly
180 185 190

Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly Pro Gln 195 200 205

Gln Ser Pro Gln Pro Pro Gly Tyr Gly Ser Gln Tyr Gly Gly Tyr Ser 210 215 220

Ser Ser Pro Ser Gln Ser Gly Ser Gly Tyr Thr Ala Gln Pro Pro Ala 225 230 235 240

Gln Pro Pro Ala Gln Ser Gly Ser Gln Gln Ser His Gln Gly Pro Ser 245 250 255

Thr Pro Pro Thr Gly Phe Pro Ser Phe Ser Pro Pro Pro Val Ser 260 265 270

Ala Gly Thr Gly Ser Gln Ala Gly Ser Ala Pro Val Asn Tyr Ser Asn 275 280 285

Pro Ser Gly Gly Glu Gln Ser Ser Pro Gly Gly Ala Pro Val 290 295 300

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

Gly Cys Gly Glu Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn 1 10 15

Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile 20 25

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly
1 10 15

(2) INFORMATION FOR SEQ ID NO:95:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

Gly Cys Gly Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala 1 5 10 15

Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg

- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

Gly Cys Gly Gly Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu
1 5 10 15

Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu 20 25

- (2) INFORMATION FOR SEQ ID NO:97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

Gly Cys Gly Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr 1 $$ 5 $$ 10 $$ 15

Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg

- (2) INFORMATION FOR SEQ ID NO:98:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

Gly Cys Gly Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala Asp Glu 1 5 10 15

Glu Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 20 25

(2) INFORMATION FOR SEQ ID NO:99:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 507 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGAAGATGG TGAAATCGAT CGCCGCAGGT CTGACCGCCG CGGCTGCAAT CGGCGCCGCT 60 GCGGCCGGTG TGACTTCGAT CATGGCTGGC GGCCCGGTCG TATACCAGAT GCAGCCGGTC 120 GTCTTCGGCG CGCCACTGCC GTTGGACCCG GCATCCGCCC CTGACGTCCC GACCGCCGCC 180 CAGTTGACCA GCCTGCTCAA CAGCCTCGCC GATCCCAACG TGTCGTTTGC GAACAAGGGC 240 AGTCTGGTCG AGGGCGGCAT CGGGGGCACC GAGGCGCGCA TCGCCGACCA CAAGCTGAAG 300 AAGGCCGCCG AGCACGGGGA TCTGCCGCTG TCGTTCAGCG TGACGAACAT CCAGCCGGCG 360 GCCGCCGGTT CGGCCACCGC CGACGTTTCC GTCTCGGGTC CGAAGCTCTC GTCGCCGGTC 420 ACGCAGAACG TCACGTTCGT GAATCAAGGC GGCTGGATGC TGTCACGCGC ATCGGCGATG 4.80 507 GAGTTGCTGC AGGCCGCAGG GAACTGA

(2) INFORMATION FOR SEQ ID NO:100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala Ala Ala Ala 1 5 10 15

Ile Gly Ala Ala Ala Gly Val Thr Ser Ile Met Ala Gly Gly Pro
20 25 30

Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro Leu Pro Leu 35 40 45

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser 50 55 60

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn Lys Gly 65 70 75 80

Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg Ile Ala Asp 85 90 95

His Lys Leu Lys Lys Ala Ala Glu His Gly Asp Leu Pro Leu Ser Phe 100 105 110 Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala Thr Ala Asp 115 120 125

Val Ser Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr Gln Asn Val 130 135 140

Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala Ser Ala Met 145 150 155 160

Glu Leu Leu Gln Ala Ala Gly Asn 165

(2) INFORMATION FOR SEQ ID NO:101:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 500 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

CGTGGCAATG TCGTTGACCG TCGGGGCCGG GGTCGCCTCC GCAGATCCCG TGGACGCGGT 60 CATTAACACC ACCTGCAATT ACGGGCAGGT AGTAGCTGCG CTCAACGCGA CGGATCCGGG 120 GGCTGCCGCA CAGTTCAACG CCTCACCGGT GGCGCAGTCC TATTTGCGCA ATTTCCTCGC 180 CGCACCGCCA CCTCAGCGCG CTGCCATGGC CGCGCAATTG CAAGCTGTGC CGGGGGCGGC 240 ACAGTACATC GGCCTTGTCG AGTCGGTTGC CGGCTCCTGC AACAACTATT AAGCCCATGC 300 GGGCCCCATC CCGCGACCCG GCATCGTCGC CGGGGCTAGG CCAGATTGCC CCGCTCCTCA 360 ACGGGCCGCA TCCCGCGACC CGGCATCGTC GCCGGGGCTA GGCCAGATTG CCCCGCTCCT 420 CAACGGGCCG CATCTCGTGC CGAATTCCTG CAGCCCGGGG GATCCACTAG TTCTAGAGCG 480 GCCGCCACCG CGGTGGAGCT 500

(2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 96 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala Asp Pro 1 5 10 15

Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala 20 25 30

Ala Leu Asn Ala Thr Asp Pro Gly Ala Ala Ala Gln Phe Asn Ala Ser 35 40 45

	Pro	Val 50	Ala	Gln	Ser	Tyr	Leu 55	Arg	Asn	Phe	Leu	Ala 60	Ala	Pro	Pro	Pro	
	Gln 65	Arg	Ala	Ala	Met	Ala 70	Ala	Gln	Leu	Gln	Ala 75	Val	Pro	Gly	Ala	Ala 80	
	Gln	Tyr	Ile	Gly	Leu 85	Val	Glu	Ser	Val	Ala 90	Gly	Ser	Cys	Asn	Asn 95	Tyr	
(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10:10	03:									
	(i)	(A) (B) (C)	LEI TYI STI	NGTH:	: 154 nucle EDNES	bas eic a	singl	airs									
	(xi)	SEQU	JENCI	E DES	SCRIE	OITS	1: SI	EQ II	ои о	:103	:						
ATGA	CAGA	GC AC	GCAG"	rgga <i>i</i>	A TTT	rcgco	GGT	ATC	GAGG	CCG (CGGCZ	AAGCC	C A	ATCC	AGGGA	Ą	60
AATG	TCAC	T C	CATTO	CATTO	c cci	CCT	rgac	GAG	GGGA/	AGC A	AGTCO	CCTGA	AC C	AAGCT	rcgc <i>i</i>	Ą	120
GCGG	CCTG	GG GC	CGGT	AGCGC	TTC	CGGAZ	AGCG	TAC	2								154
(2)	INFO	o Maru	CONT I	ZOD (רוז אונ) · 1 0/	1 .									
(2)					-												
	(1)	(A) (B) (C)	LEI TYI STI	NGTH:	: 51 amino EDNES	amir aci SS: s	sing	cids									
	(xi)	SEQU	JENCI	E DES	SCRII	OITS	N: SI	EQ II	ои с	:104	:						
	Met 1	Thr	Glu	Gln	Gln 5	Trp	Asn	Phe	Ala	Gly 10	Ile	Glu	Ala	Ala	Ala 15	Ser	
	Ala	Ile	Gln	Gly 20	Asn	Val	Thr	Ser	Ile 25	His	Ser	Leu	Leu	Asp 30	Glu	Gly	
	Lys	Gln	Ser 35	Leu	Thr	Lys	Leu	Ala 40	Ala	Ala	Trp	Gly	Gly 45	Ser	Gly	Ser	
	Glu	Ala 50	Tyr														
(2)	INFO	RMAT	ION 1	FOR S	SEQ I	ID NO	0:10	5:									
	(i)	(A) (B) (C)	LEI TYI STI	NGTH PE: 1	: 282 nucle EDNES	2 bas eic a SS: s	sing	airs									
	(xi)	SEOI	IENCI	E DES	SCRII	PTIO	V: SI	EO II	о мо	:105	:						

TCAAGCGCGG CCGATAACTG AGGTGCATCA TTAAGCGACT TTTCCAGAAC ATCCTGACGC 120
GCTCGAAACG CGGCACAGCC GACGGTGGCT CCGNCGAGGC GCTGNCTCCA AAATCCCTGA 180
GACAATTCGN CGGGGGCGCC TACAAGGAAG TCGGTGCTGA ATTCGNCGNG TATCTGGTCG 240
ACCTGTGTGG TCTGNAGCCG GACGAAGCGG TGCTCGACGT CG 282

(2) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

GATCGTACCC GTGCGAGTGC TCGGGCCGTT TGAGGATGGA GTGCACGTGT CTTTCGTGAT 60 GGCATACCCA GAGATGTTGG CGGCGGCGGC TGACACCCTG CAGAGCATCG GTGCTACCAC 120 TGTGGCTAGC AATGCCGCTG CGGCGCCCC GACGACTGGG GTGGTGCCCC CCGCTGCCGA 180 TGAGGTGTCG GCGCTGACTG CGGCGCACTT CGCCGCACAT GCGGCGATGT ATCAGTCCGT 240 GAGCGCTCGG GCTGCTGCGA TTCATGACCA GTTCGTGGCC ACCCTTGCCA GCAGCGCCAG 300 CTCGTATGCG GCCACTGAAG TCGCCAATGC GGCGGCGGCC AGCTAAGCCA GGAACAGTCG 360 GCACGAGAAA CCACGAGAAA TAGGGACACG TAATGGTGGA TTTCGGGGCG TTACCACCGG 420 AGATCAACTC CGCGAGGATG TACGCCGGCC CGGGTTCGGC CTCGCTGGTG GCCGCGGCTC 480 AGATGTGGGA CAGCGTGGCG AGTGACCTGT TTTCGGCCGC GTCGGCGTTT CAGTCGGTGG 540 TCTGGGGTCT GACGGTGGGG TCGTGGATAG GTTCGTCGGC GGGTCTGATG GTGGCGGCGG 600 CCTCGCCGTA TGTGGCGTGG ATGAGCGTCA CCGCGGGGCA GGCCGAGCTG ACCGCCGCCC 660 AGGTCCGGGT TGCTGCGGCG GCCTACGAGA CGGCGTATGG GCTGACGGTG CCCCCGCCGG 720 TGATCGCCGA GAACCGTGCT GAACTGATGA TTCTGATAGC GACCAACCTC TTGGGGCAAA 780 ACACCCCGGC GATCGCGGTC AACGAGGCCG AATACGGCGA GATGTGGGCC CAAGACGCCG 840 CCGCGATGTT TGGCTACGCC GCGGCGACGG CGACGGCGAC GGCGACGTTG CTGCCGTTCG 900 AGGAGGCGCC GGAGATGACC AGCGCGGTG GGCTCCTCGA GCAGGCCGCC GCGGTCGAGG 960 AGGCCTCCGA CACCGCCGCG GCGAACCAGT TGATGAACAA TGTGCCCCAG GCGCTGCAAC 1020 AGCTGGCCCA GCCCACGCAG GGCACCACGC CTTCTTCCAA GCTGGGTGGC CTGTGGAAGA 1080 CGGTCTCGCC GCATCGGTCG CCGATCAGCA ACATGGTGTC GATGGCCAAC AACCACATGT 1140 CGATGACCAA CTCGGGTGTG TCGATGACCA ACACCTTGAG CTCGATGTTG AAGGGCTTTG 1200 CTCCGGCGGC GGCCGCCAG GCCGTGCAAA CCGCGGCGCA AAACGGGGTC CGGGCGATGA 1260

TCGCTGGG	CAGCTCGCTG	GGTTCTTCGG	GTCTGGGCGG	TGGGGTGGCC	GCCAACTTGG	1320
CGGGCGGC	CTCGGTCGGT	TCGTTGTCGG	TGCCGCAGGC	CTGGGCCGCG	GCCAACCAGG	1380
GTCACCCC	GGCGGCGCGG	GCGCTGCCGC	TGACCAGCCT	GACCAGCGCC	GCGGAAAGAG	1440
CCCGGGCA	GATGCTGGGC	GGGCTGCCGG	TGGGGCAGAT	GGGCGCCAGG	GCCGGTGGTG	1500
CTCAGTGG	TGTGCTGCGT	GTTCCGCCGC	GACCCTATGT	GATGCCGCAT	TCTCCGGCGG	1560
GGCTAGGA	GAGGGGGCGC	AGACTGTCGT	TATTTGACCA	GTGATCGGCG	GTCTCGGTGT	1620
ccgcggcc	GGCTATGACA	ACAGTCAATG	TGCATGACAA	GTTACAGGTA	TTAGGTCCAG	1680
TCAACAAG	GAGACAGGCA	ACATGGCCTC	ACGTTTTATG	ACGGATCCGC	ACGCGATGCG	1740
ACATGGCG	GGCCGTTTTG	AGGTGCACGC	CCAGACGGTG	GAGGACGAGG	CTCGCCGGAT	1800
GGGCGTCC	GCGCAAAACA	TTTCCGGTGC	GGGCTGGAGT	GGCATGGCCG	AGGCGACCTC	1860
TAGACACC	ATGGCCCAGA	TGAATCAGGC	GTTTCGCAAC	ATCGTGAACA	TGCTGCACGG	1920
TGCGTGAC	GGGCTGGTTC	GCGACGCCAA	CAACTACGAG	CAGCAAGAGC	AGGCCTCCCA	1980
AGATCCTC	AGCAGCTAAC	GTCAGCCGCT	GCAGCACAAT	ACTTTTACAA	GCGAAGGAGA	2040
AGGTTCGA	TGACCATCAA	CTATCAATTC	GGGGATGTCG	ACGCTCACGG	CGCCATGATC	2100
CGCTCAGG	CCGGGTTGCT	GGAGGCCGAG	CATCAGGCCA	TCATTCGTGA	TGTGTTGACC	2160
GAGTGACT	TTTGGGGCGG	CGCCGGTTCG	GCGGCCTGCC	AGGGGTTCAT	TACCCAGTTG	2220
CCGTAACT	TCCAGGTGAT	CTACGAGCAG	GCCAACGCCC	ACGGGCAGAA	GGTGCAGGCT	2280
CGGCAACA	ACATGGCGCA	AACCGACAGC	GCCGTCGGCT	CCAGCTGGGC	CTGACACCAG	2340
CAAGGCCA	GGGACGTGGT	GTACGAGTGA	AGTTCCTCGC	GTGATCCTTC	GGGTGGCAGT	2400
AAGTGGTC	AGTGCTGGGG	TGTTGGTGGT	TTGCTGCTTG	GCGGGTTCTT	CGGTGCTGGT	2460
GTGCTGCT	CGGGCTCGGG	TGAGGACCTC	GAGGCCCAGG	TAGCGCCGTC	CTTCGATCCA	2520
CGTCGTGT	TGTTCGGCGA	GGACGGCTCC	GACGAGGCGG	ATGATCGAGG	CGCGGTCGGG	2580
AGATGCCC	ACGACGTCGG	TTCGGCGTCG	TACCTCTCGG	TTGAGGCGTT	CCTGGGGGTT	2640
TGGACCAG	ATTTGGCGCC	AGATCTGCTT	GGGGAAGGCG	GTGAACGCCA	GCAGGTCGGT	2700
GGGCGGTG	TCGAGGTGCT	CGGCCACCGC	GGGGAGTTTG	TCGGTCAGAG	CGTCGAGTAC	2760
GATCATAT	TGGGCAACAA	CTGATTCGGC	GTCGGGCTGG	TCGTAGATGG	AGTGCAGCAG	2820
TGCGCACC	CACGGCCAGG	AGGGCTTCGG	GGTGGCTGCC	ATCAGATTGG	CTGCGTAGTG	2880
	CGCTGCCAGG	CCGCTGCGGG	CAGGGTGGCG	CCGATCGCGG	CCACCAGGCC	2940
STTCTGCAG	CGCTGCCAGG TCGCTGGTGA					2940 3000
	CCGGCGCC CCGGGCCC CCGCGGCC CCGCGGCC CCGCGGCC CCGCGGCC CCGCGGCC CCGCGGCC CCGCGGCC CCGCGGCC CCGGCGCC CCGGCGCC CCGGCGCC CCGGCGCC CCGGCGCC CCGGCGCC CCGGCGCC CCGGCGCC CCGGCGCC CCGGCACA CCGGCACA CCGGCACA CCAAGGCCA CCAAGGCCA CCAAGGCCA CCGCGTGCC CCGTCGTGT CCGTCGTGT CCGTCGTGT CCGGCCGG	CCGGGCGGC CTCGGTCGGT CCCGGGCA GATGCTGGGC CCCGGGCA GATGCTGCGT CGGCTAGGA GAGGGGGCGC CCGCGGCC GGCTATGACA CTCAACAAG GAGACAGGCA CACATGGCG GGCCAAAACA CTAGACACC ATGGCCCAGA CTGGTTCGA GGGCTGGTT CAGGTTCGA TGACCATCAA CCGCTCAGG CCGGGTTGCT CAGGTTCGA TGACCATCAA CCGGCAACA TTTGGGGCGG CCGGCAACA ACATGGCCAA CCGGCAACA ACATGGCGCA CCAAGGCCA GGGACGTGGT CAAGTGCC GGGACGTGGT CAAGTGCC ACATGGCGA CCAAGGCCA ACATGGCGCA CCAAGGCCA GGGACGTGGT CAAGTGCC ACGGCTCGGG CCGTCGTG TGTTCGGCGA ACATGCCC ACGACGTCGG CCGTCGTG TGTTCGGCGA ACATGCCC ACGACGTCGG CTGGACCA ACTTGGCGCA CCGGCGTGT TGTTCGGCGA ACATGCCC ACGACGTCGG CTGGACCA ACTTGGCGCC CCGGCGTGT TGTTCGGCGA ACGTCGCG ACGACGTCGG CTGGGCGGT TCGAGGTGCT CGGGCGGTG TCGAGGTGCT CGGGCGGTG TCGAGGTGCT CGGGCGGTG TCGAGGTGCT CGGGCGGTG TCGAGGTGCT CGGGCGGTG TCGAGGTGCT CGGGCGGTG TCGAGGTGCT CGGGCGACAA	ACCEGACACA CEGACACACACACACACACACACACACACACACACACACA	COGGGCGGC CTCGGTCGGT TCGTTGTCGG TGCCGCAGGC AGTCACCCC GGCGGCGGG GCGCTGCCGC TGACCAGCCT AGCCGGGCA GATGCTGGGC GGGCTGCCGG TGGGGCAGAT AGCCGGGCA GATGCTGCGT GTTCCGCCGC GACCCTATGT AGGCTAGGA GAGGGGGCGC AGACTGTCGT TATTTGACCA ACCCGCGGCC GGCTATGACA ACAGTCAATG TGCATGACAA ACATGCCG GGCGTTTTG AGGTGCACGC CCAGACGGTG AGCATGACA ACATGCCCC GCGCAAAACA TTTCCGGTGC GGGCTGAGT AGACACC ATGGCCCAGA TGAATCAGGC GTTTCGCAAC AGGTTCGA GGGCTGGTT GCGACGCCAA CAACTACGAG AGATCCTC AGCACTAAC GTCAGCCGCT GCAGCACAAT AGGGTTCGA TGACCATCAA CTATCAATTC GGGGATGTCG AGGGTTCGA TGACCATCAA CTATCAATTC GGGGATGCG AGAGTCAGG CCGGGTTGCT GGAGGCCGAG CATCAGGCCA ACATGGCGAAACA ACATGGCGC GCGCGCTGCC AGAGTGACT TTCGGGGGG CGCCGGTTCG GCGCCTGCC ACAGGCCAA ACATGGCGCA AACCGACAGC GCCGCCCCC ACAGGCCAA ACATGGCGCA AACCGACAGC GCCGCTGCC ACAGGCCAA ACATGGCGCA AACCGACAGC GCCGTCGCC ACAGGCCAA ACATGGCGCA GAGCACACCC ACAGGCCAA ACATGGCGCA AACCGACAGC GCCGTCGCC ACAGGCCA GGGACGTGGT GTACGAGTGA AGTTCCTCGC ACAGGCCA GGGCCTGGG TGAGGACCTC GAGGCCCAGG ACGTCGTT TGTTCGGCGA GGACGGCTC GAGGCCCAGG ACGTCGTT TGTTCGGCGA GGACGGCTC GAGGCCCAGG ACGTCGTT TGTTCGGCGA GGACGGCTC GAGGCCCAGG ACGACCACA ACTTGGCGCA AACCGCCC GACGACGCCC ACAGGCCA ACTTGGCGCA GGACGGCTC GAGGCCCAGG ACGTCGTCT TGTTCGGCGA GGACGGCTC GAGGCCCAGG ACGTCGTT TGTTCGGCGA GGACGGCTC GAGGCCCAGG ACGTCGGT TGTTCGGCGA GAGCCGCC GAGGACGCCC ACGGCCACAA ATTTGGCGCC AGATCTGCTT GGGGAAGGCG ACGGCCGGT TCGGCGTCG TACCTCTCGG ACGGCCGGT TCGAGGTGCT TCGGCGCTC GGGGAAGGCG ACGGCCGGT TCGAGGTGCT TCGGCGCTC GGGGAAGGCG ACGGCCGGT TCGAGGTGCT TCGGCGCTC GGGGAAGGCG ACGGCCGGT TCGAGGTGCT TCGGCGCTCG GGGGAAGGCG ACGACCGTCG TCGGCGCTCC GGGGAAGGCG ACGGCCGGT TCGAGGTGCT TCGGCGCTCG GGGGAAGGCG ACGACCACACA ACTTGCCC AGGCCCCCC ACGGCCACCAC GGGGAAGCCC ACGGCCGGT TCGGCGCTCC GGGGAAGGCG ACGACCACACA ACTTGCTTCGCC ACGGCCACCGC GGGGAAGCCC ACGGCCACCAC GGGGGAGTTTG ACGACCACACACAC CGCGCGCGC GGGGAGTTTG ACGACCACACAC CGCGCGCGCGCGCGCGCGCGCGCGCGC	COGGECGEC CTCGGTCGGT TCGTTGTCGG TGCCGCAGGC CTGGGCCGCG GTCACCCC GGCGGCCGG GCGCTGCCGC TGACCAGCCT GACCAGCGCC GCCCGGGCA GATGCTGGGC GGGCTGCCGG TGGGGCAGAT GGGCCCAGG GCCCGGGCA GATGCTGCGT GTTCCGCCGC GACCCTATGT GATGCCGCAT GCGCTAGGA GAGGGGGCCC AGACTGTCGT TATTTGACCA GTGATCGGCG GCCGGGCC GGCTATGACA ACAGTCAATG TGCATGACAA GTTACAGGTA GCACAACAAG GAGACAGGCA ACATGGCCT ACGTTTATG ACGGATCCGC GCCAGGCC GCCCAAAACA TTTCCGGTCC GCGACACACA ACCGTCGACAC GCGCGGCC GCCCAAAACA TTTCCGGTCC GGGCTGAGT GGCATGGCCG GCACAAACA TTTCCGGTCC GCGCACACAC ATCGTGAACA GCGCTGCCC GCGCAAAACA TTTCCGGTCC GCGCACACAA ACCTTCACACA GCGCTGCAC GGGCTGGTC GCGACGCCA CAACTACGAG CAGCAAGAGC GCGCTCAG CGGCTTCC GCGACGCCA CAACTACGAG CAGCACAAT ACTTTTACAA GCGGTCAG CCGGGTTGCT GGAGGCCCA CAACTACGAG CAGCACAAT GCGTCAGG CCGGGTTGCT GGAGGCCGA CAACTACGAC ACCTTCACGG GCGCTCAGG CCGGGTTGCT GGAGGCCGA CAACTACGGC ACGGCTCACGG GCGCTCAGG CCGGGTTGCT GGAGGCCGA GCCAACGACC ACGGCCAGAAA GCGCTCAGG CCGGGTTGCT GCAGCCCC ACGGGCTCAC GCGGCAACA ACATGGCGC GCCGGTTCG GCGGCCTGC ACGGCTCAC GCGGCAACA ACATGGCGC GCCGGTTCG GCGGCCTGC ACGGCTACAC GCGGCAACA ACATGGCGC GCCGGTTCG GCGGCCTGC ACGGGCTGCC GCGGCAACA ACATGGCGC GCCGGTTCG GCGGCCTGC GCGGCAACA ACATGGCGC TCACGACGCC ACGGCCAGAA GCGGCAACA ACATGGCGC TCACGACGCC ACGGCCTGC GCGCAACA ACATGGCGC TCACGACGC GCGGCTTCT GCGGCAACA ACATGGCGC TCAGCTGGC TCAGCCCC GCGGCTCGC TCGGCTTCT GCGGCAACA ACATGGCGC TCAGCGCC ACGGCCTCC GCGGCTCGC TCGGCTTCT GCGCCAGC TCGGC TGGGCC TCGC TCGCC TCGCC GCGCTCGC TTGCTGCG TTGCTGCG TTGCTCTC GCGCCACC ACGACGCC GGGCCCCC GCGGCCTCC ACGGCCTCC ACGGCCACA ACCGCCC GGGCACGCC TCACCCCC TCGCCTCC ACGGCCACC TCGCGCTCC GAGCCCCC TCGCC TCGCCCC ACGGCCACC TCGCGCTCC GGGCCCCC GCGGCCCCC ACGGCCACC TCGCCCCC GGGCACCCC GCGGCCCCC ACGGCCACCCC GGGCACCCC GCGGCCCCC GCGCCCCC ACGGCCACCCC GGGCACCCC GCGGACCCC GCGCCCCC ACGCCGCCCCC GGGCACCCC GCGGCCCCC GCGCCCCC ACGCCACCCC GCGCCCCC GCGGACCCC GCGCCCCCC ACGCCCCCC GCGCCCCC GCGGCCCC GCGCCCCC GCCCCCC	Tregerege Cagereger Gertettee Gertettee Technology Geraactee Geraa

(2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 391 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:
- Met Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met

 1 10 15
- Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Gln Met Trp 20 25 30
- Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser
- Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 60
- Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80
- Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala 85 90 95
- Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110
- Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly
 115 120 125
- Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140
- Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala 145 150 155 160
- Thr Ala Thr Ala Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr 165 170 175
- Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala Ala Val Glu Glu Ala Ser 180 185 190
- Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205
- Gln Gln Leu Ala Gln Pro Thr Gln Gly Thr Thr Pro Ser Ser Lys Leu 210 215 220
- Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser Asn 225 230 235 240
- Met Val Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val
 245 250 255
- Ser Met Thr Asn Thr Leu Ser Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265 270

Pro His Ser Pro Ala Ala Gly 385 390

(2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1725 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

GACGTCAGCA CCCGCCGTGC AGGGCTGGAG CGTGGTCGGT TTTGATCTGC GGTCAAGGTG 60 ACGTCCCTCG GCGTGTCGCC GGCGTGGATG CAGACTCGAT GCCGCTCTTT AGTGCAACTA 120 ATTTCGTTGA AGTGCCTGCG AGGTATAGGA CTTCACGATT GGTTAATGTA GCGTTCACCC 180 CGTGTTGGGG TCGATTTGGC CGGACCAGTC GTCACCAACG CTTGGCGTGC GCGCCAGGCG 240 GGCGATCAGA TCGCTTGACT ACCAATCAAT CTTGAGCTCC CGGGCCGATG CTCGGGCTAA 300 ATGAGGAGGA GCACGCGTGT CTTTCACTGC GCAACCGGAG ATGTTGGCGG CCGCGGCTGG 360 CGAACTTCGT TCCCTGGGGG CAACGCTGAA GGCTAGCAAT GCCGCCGCAG CCGTGCCGAC 420 GACTGGGGTG GTGCCCCGG CTGCCGACGA GGTGTCGCTG CTGCTTGCCA CACAATTCCG 480 TACGCATGCG GCGACGTATC AGACGCCAG CGCCAAGGCC GCGGTGATCC ATGAGCAGTT 540 TGTGACCACG CTGGCCACCA GCGCTAGTTC ATATGCGGAC ACCGAGGCCG CCAACGCTGT 600 GGTCACCGGC TAGCTGACCT GACGGTATTC GAGCGGAAGG ATTATCGAAG TGGTGGATTT 660 CGGGGCGTTA CCACCGGAGA TCAACTCCGC GAGGATGTAC GCCGGCCCGG GTTCGGCCTC 720 GCTGGTGGCC GCCGCGAAGA TGTGGGACAG CGTGGCGAGT GACCTGTTTT CGGCCGCGTC 780

GGCGTTTCAG	TCGGTGGTCT	GGGGTCTGAC	GGTGGGGTCG	TGGATAGGTT	CGTCGGCGGG	840
TCTGATGGCG	GCGGCGGCCT	CGCCGTATGT	GGCGTGGATG	AGCGTCACCG	CGGGGCAGGC	900
CCAGCTGACC	GCCGCCCAGG	TCCGGGTTGC	TGCGGCGGCC	TACGAGACAG	CGTATAGGCT	960
GACGGTGCCC	CCGCCGGTGA	TCGCCGAGAA	CCGTACCGAA	CTGATGACGC	TGACCGCGAC	1020
CAACCTCTTG	GGGCAAAACA	CGCCGGCGAT	CGAGGCCAAT	CAGGCCGCAT	ACAGCCAGAT	1080
GTGGGGCCAA	GACGCGGAGG	CGATGTATGG	CTACGCCGCC	ACGGCGGCGA	CGGCGACCGA	1140
GGCGTTGCTG	CCGTTCGAGG	ACGCCCCACT	GATCACCAAC	CCCGGCGGGC	TCCTTGAGCA	1200
GGCCGTCGCG	GTCGAGGAGG	CCATCGACAC	CGCCGCGGCG	AACCAGTTGA	TGAACAATGT	1260
GCCCCAAGCG	CTGCAACAGC	TGGCCCAGCC	AGCGCAGGGC	GTCGTACCTT	CTTCCAAGCT	1320
GGGTGGGCTG	TGGACGGCGG	TCTCGCCGCA	TCTGTCGCCG	CTCAGCAACG	TCAGTTCGAT	1380
AGCCAACAAC	CACATGTCGA	TGATGGGCAC	GGGTGTGTCG	ATGACCAACA	CCTTGCACTC	1440
GATGTTGAAG	GGCTTAGCTC	CGGCGGCGGC	TCAGGCCGTG	GAAACCGCGG	CGGAAAACGG	1500
GGTCTGGGCG	ATGAGCTCGC	TGGGCAGCCA	GCTGGGTTCG	TCGCTGGGTT	CTTCGGGTCT	1560
GGGCGCTGGG	GTGGCCGCCA	ACTTGGGTCG	GGCGGCCTCG	GTCGGTTCGT	TGTCGGTGCC	1620
GCCAGCATGG	GCCGCGGCCA	ACCAGGCGGT	CACCCGGCG	GCGCGGGCGC	TGCCGCTGAC	1680
CAGCCTGACC	AGCGCCGCCC	AAACCGCCCC	CGGACACATG	CTGGG		1725

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met
1 5 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

Val Val Trp Gly Leu Thr Val Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60

Leu Met Ala Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80

Ala Gly Gln Ala Gln Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 90 95

			_		_			_				_	_	_	1
			100					105					110		
Ala	Tyr	Glu	Thr	Ala	тyr	Arg	ьeu	Inr	vaı	Pro	Pro	Pro	vaı	тте	Ala

Glu Asn Arg Thr Glu Leu Met Thr Leu Thr Ala Thr Asn Leu Leu Gly 115 120 125

Gln Asn Thr Pro Ala Ile Glu Ala Asn Gln Ala Ala Tyr Ser Gln Met 130 135 140

Trp Gly Gln Asp Ala Glu Ala Met Tyr Gly Tyr Ala Ala Thr Ala Ala 145 150 155 160

Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr
165 170 175

Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile 180 185 190

Asp Thr Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200 205

Gln Gln Leu Ala Gln Pro Ala Gln Gly Val Val Pro Ser Ser Lys Leu 210 215 220

Gly Gly Leu Trp Thr Ala Val Ser Pro His Leu Ser Pro Leu Ser Asn 225 230 235 240

Val Ser Ser Ile Ala Asn Asn His Met Ser Met Met Gly Thr Gly Val 245 250 255

Ser Met Thr Asn Thr Leu His Ser Met Leu Lys Gly Leu Ala Pro Ala 260 265 270

Ala Ala Gln Ala Val Glu Thr Ala Ala Glu Asn Gly Val Trp Ala Met 275 280 285

Ser Ser Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu 290 295 300

Gly Ala Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser 305 310 315 320

Leu Ser Val Pro Pro Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro 325 330 335

Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr 340 345 350

Ala Pro Gly His Met Leu Gly 355

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3027 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

					•	
60	ACCGAACCAC	GGCTGAGACA	TATCCACGAT	TGACGGGCTG	AGAATGATAC	AGTTCAGTCG
120	GCCGAAGCCG	GGCCGCCGAA	CGATGGCGTT	CAAGCCGACG	GGGGACATCG	CGTCGGACGC
180	CGGTTGAAGC	CCGTGCCGCC	GGGCCCGTGC	GCCGCGGCGC	AGCGCTGGCC	CCGAAGCCGA
240	ATGCAGACTG	CCCCGAGGAT	ACGAGAACGT	CCAGCCGAGG	GGCGATGGCC	GTGAGGCGCT
300	AGGAGGCCGC	GCCGCAGACC	CGACTATGAG	ACGACTATGA	GAAGACTATG	GGAAGACGCC
360	CCACGATTGC	CCAAGACTGT	GGTGCGGTTA	GGCGGTTGCG	TCCTGGCGAC	ACGGTCGGCA
420	ACATTGTGTG	CTCAGCGGAT	CTTCACCGGG	TCATCTGCGG	GCAGTCGTCA	CATGGCGGCC
480	CCGGAGCCAA	GCGTTCGCCG	GCGCGCCGCG	AACGCCAGCA	GAGGCCACCG	GCAACACCAT
540	ACGTCGCGCG	GCCAAAGAAG	CTTCAACAAG	CCTCGCTGGA	ATCAACATGA	GCAAGGTGTC
600	CAGCCGATTT	CAGCAGCGGG	GGATGACTTC	GCGAATTCAG	AGCTCCACCG	TGTGATCGAC
660	CGACAGCCGT	ACGGTGAACG	CACCGAAGGC	CCAAAGTGGT	GTCGAACAGT	CACCAAGGTT
720	GGGTCACCAA	GCGACTTCAC	GCTCGTCGCG	CCGCCGTGGT	AACGAGCATT	CGAATCCATG
780	TGACCGAAGA	AAAGTGACCG	GTGGCGGCTC	AACCACGTGC	GCGAAAGACG	TTCCGCTGGG
840	CGTACGCGAC	TGACCGATGA	GTTCGTACCG	CGAAAGTTGA	TACAAGATGT	GGGGGGACAG
900	CGCAGGCGAA	TCGACTCAGC	GTCGCTGAGA	CGCCACCGAA	AAACCACTGA	GTCAACACCG
960	TACCGCGCAG	CAACGGAATC	ACCGACTCTG	GGCATTTGAC	CGGCGACCGA	GCCGGTGATT
1020	CGTTCCGGTG	CCTTGAAACC	ATGCAGGTTA	CCTGTGGCGA	GGCACCGTGA	AAGGGTCAGC
1080	CCTTGAGCAA	GATGGCTATA	GGCGCGACGG	GATCTCTGGG	TGCTCATGTT	ATTCTCATCC
1140	GCGGCGTCTG	TGCCGTCGCC	CCGCCCGTGC	GACTCCGGCG	TCAGCAGACG	TACGACCCGA
1200	CGCTACCGCC	ACCAAGACTT	CGACACGTCG	TGTATTCACC	CGCGCTGTTG	ACGGGACAAT
1260	CAGATCGTGG	GTTCACGCAG	TATACGACCA	TTTCCTGTCC	TCGCCGGCGA	AGGTCGCACC
1320	GCGGCCGTGT	GGTGGTGCGC	CCACCGCCAA	TCACTGAAAA	CAAACAGAAG	CTCCGGCGGC
1380	ACTACCAGTA	CGACCAGAGC	TGGTTTTTGT	GCCGTCGTTC	TCCGGATTCG	CGGAGCTACA
1440	GCCAAGGTCG	GGTGACCCTA	GCAGCGTGAT	ATGGCGGCCA	CAATCCGTCG	AGGACAGCCC
1500	GGTCGCCAAG	TGCCGTAGGC	CGGTTTAGGT	AAGTTCACCC	GCTGATCACC	ACGGCAATTG
1560	GACAATCACG	CCGTTCTCCG	GAGATACCGG	CTGCTCGTGC	GCGCGGGTGG	TCTGACGGGG
1620	AGATTAGTTG	GGGTTATTTA	CTAATCGGCC	CGGCCGCTGT	AAACAGATCT	GCCCGACCTC
1680	GCAGGGCGGC	TAGCTTCGCG	CAGCTGGATT	TCAGATTGTT	TACCTGATGT	CCACTGTATT
1740	TGCCGACGTT	TTTGACCTGT	CTTGAGAGAA	GTTGTGACTA	TGCATCTGGG	TGGTGCACTT
1800	AAGTGGTGGA	AGGATTATCG	GCCGAGCGGA	GCTAGTTATG	CATCATTGGT	GTTTGCTGTC

CTTCGGGGCG	TTACCACCGG	AGATCAACTC	CGCGAGGATG	TACGCCGGCC	CGGGTTCGGC	1860
CTCGCTGGTG	GCCGCCGCGA	AGATGTGGGA	CAGCGTGGCG	AGTGACCTGT	TTTCGGCCGC	1920
GTCGGCGTTT	CAGTCGGTGG	TCTGGGGTCT	GACGACGGGA	TCGTGGATAG	GTTCGTCGGC	1980
GGGTCTGATG	GTGGCGGCGG	CCTCGCCGTA	TGTGGCGTGG	ATGAGCGTCA	CCGCGGGGCA	2040
GGCCGAGCTG	ACCGCCGCCC	AGGTCCGGGT	TGCTGCGGCG	GCCTACGAGA	CGGCGTATGG	2100
GCTGACGGTG	CCCCCGCCGG	TGATCGCCGA	GAACCGTGCT	GAACTGATGA	TTCTGATAGC	2160
GACCAACCTC	TTGGGGCAAA	ACACCCCGGC	GATCGCGGTC	AACGAGGCCG	AATACGGGGA	2220
GATGTGGGCC	CAAGACGCCG	CCGCGATGTT	TGGCTACGCC	GCCACGGCGG	CGACGGCGAC	2280
CGAGGCGTTG	CTGCCGTTCG	AGGACGCCCC	ACTGATCACC	AACCCCGGCG	GGCTCCTTGA	2340
GCAGGCCGTC	GCGGTCGAGG	AGGCCATCGA	CACCGCCGCG	GCGAACCAGT	TGATGAACAA	2400
TGTGCCCCAA	GCGCTGCAAC	AACTGGCCCA	GCCCACGAAA	AGCATCTGGC	CGTTCGACCA	2460
ACTGAGTGAA	CTCTGGAAAG	CCATCTCGCC	GCATCTGTCG	CCGCTCAGCA	ACATCGTGTC	2520
GATGCTCAAC	AACCACGTGT	CGATGACCAA	CTCGGGTGTG	TCGATGGCCA	GCACCTTGCA	2580
CTCAATGTTG	AAGGGCTTTG	CTCCGGCGGC	GGCTCAGGCC	GTGGAAACCG	CGGCGCAAAA	2640
CGGGGTCCAG	GCGATGAGCT	CGCTGGGCAG	CCAGCTGGGT	TCGTCGCTGG	GTTCTTCGGG	2700
TCTGGGCGCT	GGGGTGGCCG	CCAACTTGGG	TCGGGCGGCC	TCGGTCGGTT	CGTTGTCGGT	2760
GCCGCAGGCC	TGGGCCGCGG	CCAACCAGGC	GGTCACCCCG	GCGGCGCGGG	CGCTGCCGCT	2820
GACCAGCCTG	ACCAGCGCCG	CCCAAACCGC	CCCCGGACAC	ATGCTGGGCG	GGCTACCGCT	2880
GGGGCAACTG	ACCAATAGCG	GCGGCGGGTT	CGGCGGGGTT	AGCAATGCGT	TGCGGATGCC	2940
GCCGCGGGCG	TACGTAATGC	CCCGTGTGCC	CGCCGCCGGG	TAACGCCGAT	CCGCACGCAA	3000
TGCGGGCCCT	CTATGCGGGC	AGCGATC				3027

(2) INFORMATION FOR SEQ ID NO:111:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala Arg Met 1 5 10 15

Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20 25 30

Asp Ser Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35 40 45

- Val Val Trp Gly Leu Thr Thr Gly Ser Trp Ile Gly Ser Ser Ala Gly 50 55 60
- Leu Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr 65 70 75 80
- Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85 90 95
- Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 100 105 110
- Glu Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly
 115 120 125
- Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met 130 135 140
- Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Thr Ala Ala 145 150 155 160
- Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr 165 170 175
- Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile 180 185 190
- Asp Thr Ala Ala Asa Gln Leu Met Asa Asa Val Pro Gln Ala Leu
 195 200 205
- Gln Gln Leu Ala Gln Pro Thr Lys Ser Ile Trp Pro Phe Asp Gln Leu 210 215 220
- Ser Glu Leu Trp Lys Ala Ile Ser Pro His Leu Ser Pro Leu Ser Asn 225 230 235 240
- Ile Val Ser Met Leu Asn Asn His Val Ser Met Thr Asn Ser Gly Val 245 250 255
- Ser Met Ala Ser Thr Leu His Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265 270
- Ala Ala Gln Ala Val Glu Thr Ala Ala Gln Asn Gly Val Gln Ala Met 275 280 285
- Ser Ser Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu 290 295 300
- Gly Ala Gly Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser 305 310 315
- Leu Ser Val Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro 325 330 335
- Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr 340 345 350
- Ala Pro Gly His Met Leu Gly Gly Leu Pro Leu Gly Gln Leu Thr Asn 355 360 365

Ser Gly Gly Gly Phe Gly Gly Val Ser Asn Ala Leu Arg Met Pro Pro 370 375 380

Arg Ala Tyr Val Met Pro Arg Val Pro Ala Ala Gly 385 390 395

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1616 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

CATCGGAGGG	AGTGATCACC	ATGCTGTGGC	ACGCAATGCC	ACCGGAGTAA	ATACCGCACG	60
GCTGATGGCC	GGCGCGGGTC	CGGCTCCAAT	GCTTGCGGCG	GCCGCGGGAT	GGCAGACGCT	120
TTCGGCGGCT	CTGGACGCTC	AGGCCGTCGA	GTTGACCGCG	CGCCTGAACT	CTCTGGGAGA	180
AGCCTGGACT	GGAGGTGGCA	GCGACAAGGC	GCTTGCGGCT	GCAACGCCGA	TGGTGGTCTG	240
GCTACAAACC	GCGTCAACAC	AGGCCAAGAC	CCGTGCGATG	CAGGCGACGG	CGCAAGCCGC	300
GGCATACACC	CAGGCCATGG	CCACGACGCC	GTCGCTGCCG	GAGATCGCCG	CCAACCACAT	360
CACCCAGGCC	GTCCTTACGG	CCACCAACTT	CTTCGGTATC	AACACGATCC	CGATCGCGTT	420
GACCGAGATG	GATTATTTCA	TCCGTATGTG	GAACCAGGCA	GCCCTGGCAA	TGGAGGTCTA	480
CCAGGCCGAG	ACCGCGGTTA	ACACGCTTTT	CGAGAAGCTC	GAGCCGATGG	CGTCGATCCT	540
TGATCCCGGC	GCGAGCCAGA	GCACGACGAA	CCCGATCTTC	GGAATGCCCT	CCCCTGGCAG	600
CTCAACACCG	GTTGGCCAGT	TGCCGCCGGC	GGCTACCCAG	ACCCTCGGCC	AACTGGGTGA	660
GATGAGCGGC	CCGATGCAGC	AGCTGACCCA	GCCGCTGCAG	CAGGTGACGT	CGTTGTTCAG	720
CCAGGTGGGC	GGCACCGGCG	GCGGCAACCC	AGCCGACGAG	GAAGCCGCGC	AGATGGGCCT	780
GCTCGGCACC	AGTCCGCTGT	CGAACCATCC	GCTGGCTGGT	GGATCAGGCC	CCAGCGCGGG	840
CGCGGGCCTG	CTGCGCGCGG	AGTCGCTACC	TGGCGCAGGT	GGGTCGTTGA	CCCGCACGCC	900
GCTGATGTCT	CAGCTGATCG	AAAAGCCGGT	TGCCCCCTCG	GTGATGCCGG	CGGCTGCTGC	960
CGGATCGTCG	GCGACGGGTG	GCGCCGCTCC	GGTGGGTGCG	GGAGCGATGG	GCCAGGGTGC	1020
GCAATCCGGC	GGCTCCACCA	GGCCGGGTCT	GGTCGCGCCG	GCACCGCTCG	CGCAGGAGCG	1080
TGAAGAAGAC	GACGAGGACG	ACTGGGACGA	AGAGGACGAC	TGGTGAGCTC	CCGTAATGAC	1140
AACAGACTTC	CCGGCCACCC	GGGCCGGAAG	ACTTGCCAAC	ATTTTGGCGA	GGAAGGTAAA	1200
GAGAGAAAGT	AGTCCAGCAT	GGCAGAGATG	AAGACCGATG	CCGCTACCCT	CGCGCAGGAG	1260
GCAGGTAATT	TCGAGCGGAT	CTCCGGCGAC	CTGAAAACCC	AGATCGACCA	GGTGGAGTCG	1320

ACGGCAGGTT	CGTTGCAGGG	CCAGTGGCGC	GGCGCGGCGG	GGACGGCCGC	CCAGGCCGCG	1380
GTGGTGCGCT	TCCAAGAAGC	AGCCAATAAG	CAGAAGCAGG	AACTCGACGA	GATCTCGACG	1440
AATATTCGTC	AGGCCGGCGT	CCAATACTCG	AGGGCCGACG	AGGAGCAGCA	GCAGGCGCTG	1500
TCCTCGCAAA	TGGGCTTCTG	ACCCGCTAAT	ACGAAAAGAA	ACGGAGCAAA	AACATGACAG	1560
AGCAGCAGTG	GAATTTCGCG	GGTATCGAGG	CCGCGGCAAG	CGCAATCCAG	GGAAAT	1616

(2) INFORMATION FOR SEQ ID NO:113:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

CTAGTGGATG GGACCATGGC CATTTTCTGC AGTCTCACTG CCTTCTGTGT TGACATTTTG 60 GCACGCCGGC GGAAACGAAG CACTGGGGTC GAAGAACGGC TGCGCTGCCA TATCGTCCGG 120 AGCTTCCATA CCTTCGTGCG GCCGGAAGAG CTTGTCGTAG TCGGCCGCCA TGACAACCTC 180 TCAGAGTGCG CTCAAACGTA TAAACACGAG AAAGGGCGAG ACCGACGGAA GGTCGAACTC 240 GCCCGATCCC GTGTTTCGCT ATTCTACGCG AACTCGGCGT TGCCCTATGC GAACATCCCA 300 GTGACGTTGC CTTCGGTCGA AGCCATTGCC TGACCGGCTT CGCTGATCGT CCGCGCCAGG 360 TTCTGCAGCG CGTTGTTCAG CTCGGTAGCC GTGGCGTCCC ATTTTTGCTG GACACCCTGG 420 TACGCCTCCG AA 432

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 368 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Met Leu Trp His Ala Met Pro Pro Glu Xaa Asn Thr Ala Arg Leu Met 1 5 10 15

Ala Gly Ala Gly Pro Ala Pro Met Leu Ala Ala Ala Ala Gly Trp Gln 20 25 30

Thr Leu Ser Ala Ala Leu Asp Ala Gln Ala Val Glu Leu Thr Ala Arg
35 40 45

Leu Asn Ser Leu Gly Glu Ala Trp Thr Gly Gly Gly Ser Asp Lys Ala 50 55 60

- Leu Ala Ala Ala Thr Pro Met Val Val Trp Leu Gln Thr Ala Ser Thr 65 70 75 80
- Gln Ala Lys Thr Arg Ala Met Gln Ala Thr Ala Gln Ala Ala Ala Tyr 85 90 95
- Thr Gln Ala Met Ala Thr Thr Pro Ser Leu Pro Glu Ile Ala Ala Asn 100 105 110
- His Ile Thr Gln Ala Val Leu Thr Ala Thr Asn Phe Phe Gly Ile Asn 115 120 125
- Thr Ile Pro Ile Ala Leu Thr Glu Met Asp Tyr Phe Ile Arg Met Trp 130 135 140
- Asn Gln Ala Ala Leu Ala Met Glu Val Tyr Gln Ala Glu Thr Ala Val 145 150 155 160
- Asn Thr Leu Phe Glu Lys Leu Glu Pro Met Ala Ser Ile Leu Asp Pro 165 170 175
- Gly Ala Ser Gln Ser Thr Thr Asn Pro Ile Phe Gly Mét Pro Ser Pro 180 185 190
- Gly Ser Ser Thr Pro Val Gly Gln Leu Pro Pro Ala Ala Thr Gln Thr 195 200 205
- Leu Gly Gln Leu Gly Glu Met Ser Gly Pro Met Gln Gln Leu Thr Gln 210 215 220
- Pro Leu Gln Gln Val Thr Ser Leu Phe Ser Gln Val Gly Gly Thr Gly 225 230 235 240
- Gly Gly Asn Pro Ala Asp Glu Glu Ala Ala Gln Met Gly Leu Leu Gly 245 250 255
- Thr Ser Pro Leu Ser Asn His Pro Leu Ala Gly Gly Ser Gly Pro Ser 260 265 270
- Ala Gly Ala Gly Leu Leu Arg Ala Glu Ser Leu Pro Gly Ala Gly Gly 275 280 285
- Ser Leu Thr Arg Thr Pro Leu Met Ser Gln Leu Ile Glu Lys Pro Val 290 295 300
- Ala Pro Ser Val Met Pro Ala Ala Ala Gly Ser Ser Ala Thr Gly 305 310 315 320
- Gly Ala Ala Pro Val Gly Ala Gly Ala Met Gly Gln Gly Ala Gln Ser 325 330 335
- Gly Gly Ser Thr Arg Pro Gly Leu Val Ala Pro Ala Pro Leu Ala Gln 340 345 350
- Glu Arg Glu Glu Asp Asp Glu Asp Asp Trp Asp Glu Glu Asp Asp Trp 355 360 365

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly

1 10 15

Asn Phe Glu Arg Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val 20 25 30

Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly 40 45

Thr Ala Ala Gln Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys 50 55 60

Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly 65 70 75 80

Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser 85 90 95

Gln Met Gly Phe 100

(2) INFORMATION FOR SEQ ID NO:116:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 396 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

GATCTCCGGC GACCTGAAAA CCCAGATCGA CCAGGTGGAG TCGACGGCAG GTTCGTTGCA 60
GGGCCAGTGG CGCGGCGCG CGGGGACGGC CGCCCAGGCC GCGGTGGTGC GCTTCCAAGA 120
AGCAGCCAAT AAGCAGAAGC AGGAACTCGA CGAGATCTCG ACGAATATTC GTCAGGCCGG 180
CGTCCAATAC TCGAGGGCCG ACGAGGAGCA GCAGCAGGCG CTGTCCTCGC AAATGGGCTT 240
CTGACCCGCT AATACGAAAA GAAACGGAGC AAAAACATGA CAGAGCAGCA GTGGAATTTC 300
GCGGGTATCG AGGCCGCGC AAGCGCAATC CAGGGAAATG TCACGTCCAT TCATTCCCTC 360
CTTGACGAGG GGAAGCAGTC CCTGACCAAG CTCGCA 396

(2) INFORMATION FOR SEQ ID NO:117:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala
1 5 10 15

Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln
20 25 30

Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu
35 40 45

Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser
50 60

Arg Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 70 75 80

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 387 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

GTGGATCCG ATCCCGTGTT TCGCTATTCT ACGCGAACTC GGCGTTGCCC TATGCGAACA 60

TCCCAGTGAC GTTGCCTTCG GTCGAAGCCA TTGCCTGACC GGCTTCGCTG ATCGTCCGCG 120

CCAGGTTCTG CAGCGCGTTG TTCAGCTCGG TAGCCGTGGC GTCCCATTTT TGCTGGACAC 180

CCTGGTACGC CTCCGAACCG CTACCGCCCC AGGCCGCTGC GAGCTTGGTC AGGGACTGCT 240

TCCCCTCGTC AAGGAGGGAA TGAATGGACG TGACATTTCC CTGGATTGCG CTTGCCGCGG 300

CCTCGATACC CGCGAAATTC CACTGCTGCT CTGTCATGTT TTTGCTCCGT TTCTTTCGT 360

ATTAGCGGGT CAGAAGCCCA TTTGCGA

(2) INFORMATION FOR SEQ ID NO:119:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(X1) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
CGGCACGAGG ATCTCGGTTG GCCCAACGGC GCTGGCGAGG GCTCCGTTCC GG	GGGCGAGC 60
TGCGCGCCGG ATGCTTCCTC TGCCCGCAGC CGCGCCTGGA TGGATGGACC AG	STTGCTACC 120
TTCCCGACGT TTCGTTCGGT GTCTGTGCGA TAGCGGTGAC CCCGGCGCGC AC	CGTCGGGAG 180
TGTTGGGGGG CAGGCCGGGT CGGTGGTTCG GCCGGGGACG CAGACGGTCT GG	SACGGAACG 240
GGCGGGGGTT CGCCGATTGG CATCTTTGCC CA	272

(2) INFORMATION FOR SEQ ID NO:120:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val 1 10 15

Val Ala Ala Leu 20

(2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser
1 5 10 15

(2) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys
1 10 15

Glu Gly Arg

- (2) INFORMATION FOR SEQ ID NO:123:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val

- (2) INFORMATION FOR SEQ ID NO:125:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro 1 5 10

- (2) INFORMATION FOR SEQ ID NO:126:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Asp Pro Glu Pro Ala Pro Pro Val Pro Thr Thr Ala Ala Ser Pro Pro 1 10 15

Ser

- (2) INFORMATION FOR SEQ ID NO:127:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Ala Pro Lys Thr Tyr Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Asp Pro Ala Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser 1 10 15

Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala Asn 20 25 30

- (2) INFORMATION FOR SEQ ID NO:129:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Asp Pro Pro Asp Pro His Gln Xaa Asp Met Thr Lys Gly Tyr Tyr Pro 1 5 10 15

Gly Gly Arg Arg Xaa Phe 20

- (2) INFORMATION FOR SEQ ID NO:130:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Asp Pro Gly Tyr Thr Pro Gly
1 5

- (2) INFORMATION FOR SEQ ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa = Pro or Thr"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Xaa Xaa Gly Phe Thr Gly Pro Gln Phe Tyr
1 5 10

- (2) INFORMATION FOR SEQ ID NO:132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /product= "OTHER" /note= "Xaa = Gln or Leu"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Xaa Pro Xaa Val Thr Ala Tyr Ala Gly 1 5

- (2) INFORMATION FOR SEQ ID NO:133:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Xaa Xaa Xaa Glu Lys Pro Phe Leu Arg 1 5

(2)	INFORMATION	FOR	SEO	TD	NO:134:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Xaa Asp Ser Glu Lys Ser Ala Thr Ile Lys Val Thr Asp Ala Ser

1 10 15

- (2) INFORMATION FOR SEQ ID NO:135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Ala Gly Asp Thr Xaa Ile Tyr Ile Val Gly Asn Leu Thr Ala Asp 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:136:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Ala Pro Glu Ser Gly Ala Gly Leu Gly Gly Thr Val Gln Ala Gly
1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:137:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Xaa Tyr Ile Ala Tyr Xaa Thr Thr Ala Gly Ile Val Pro Gly Lys Ile 1 5 10 15

Asn Val His Leu Val

20

(2) INFORMATION FOR SEQ ID NO:138:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 882 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

GCAACGCTGT	CGTGGCCTTT	GCGGTGATCG	GTTTCGCCTC	GCTGGCGGTG	GCGGTGGCGG	60
TCACCATCCG	ACCGACCGCG	GCCTCAAAAC	CGGTAGAGGG	ACACCAAAAC	GCCCAGCCAG	120
GGAAGTTCAT	GCCGTTGTTG	CCGACGCAAC	AGCAGGCGCC	GGTCCCGCCG	CCTCCGCCCG	180
ATGATCCCAC	CGCTGGATTC	CAGGGCGGCA	CCATTCCGGC	TGTACAGAAC	GTGGTGCCGC	240
GGCCGGGTAC	CTCACCCGGG	GTGGGTGGGA	CGCCGGCTTC	GCCTGCGCCG	GAAGCGCCGG	300
CCGTGCCCGG	TGTTGTGCCT	GCCCCGGTGC	CAATCCCGGT	CCCGATCATC	ATTCCCCCGT	360
TCCCGGGTTG	GCAGCCTGGA	ATGCCGACCA	TCCCCACCGC	ACCGCCGACG	ACGCCGGTGA	420
CCACGTCGGC	GACGACGCCG	CCGACCACGC	CGCCGACCAC	GCCGGTGACC	ACGCCGCCAA	480
CGACGCCGCC	GACCACGCCG	GTGACCACGC	CGCCAACGAC	GCCGCCGACC	ACGCCGGTGA	540
CCACGCCACC	AACGACCGTC	GCCCCGACGA	CCGTCGCCCC	GACGACGGTC	GCTCCGACCA	600
CCGTCGCCCC	GACCACGGTC	GCTCCAGCCA	CCGCCACGCC	GACGACCGTC	GCTCCGCAGC	660
CGACGCAGCA	GCCCACGCAA	CAACCAACCC	AACAGATGCC	AACCCAGCAG	CAGACCGTGG	720
CCCCGCAGAC	GGTGGCGCCG	GCTCCGCAGC	CGCCGTCCGG	TGGCCGCAAC	GGCAGCGGCG	780
GGGGCGACTT	ATTCGGCGGG	TTCTGATCAC	GGTCGCGGCT	TCACTACGGT	CGGAGGACAT	840
GGCCGGTGAT	GCGGTGACGG	TGGTGCTGCC	CTGTCTCAAC	GA		882

(2) INFORMATION FOR SEQ ID NO:139:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 815 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

CCATCAACCA ACCGCTCGCG CCGCCGCGC CGCCGGATCC GCCGTCGCCG CCACGCCCGC 60

CGGTGCCTCC GGTGCCCCG TTGCCGCCGT CGCCGCCGTC GCCGCCGACC GGCTGGGTGC 120

CTAGGGCGCT GTTACCGCCC TGGTTGGCGG GGACGCCGCC GGCACCACCG GTACCGCCGA 180

TGGCGCCGTT GCCGCCGGCG GCACCGTTGC CACCGTTGCC ACCGTTGCCA CCGTTGCCGA 240

CCAGCCACCC GCCGCGACCA CCGGCACCGC CGGCGCCGC CGCACCGCCG GCGTGCCCGT 300

TCGTGCCCGT ACCGCCGGCA CCGCCGTTGC CGCCGTCACC GCCGACGGAA CTACCGGCGG 360 ACGCGGCCTG CCCGCCGGCG CCGCCCGCAC CGCCATTGGC ACCGCCGTCA CCGCCGGCTG 420 480 GGAGTGCCGC GATTAGGGCA CTGACCGGCG CAACCAGCGC AAGTACTCTC GGTCACCGAG CACTTCCAGA CGACACCACA GCACGGGGTT GTCGGCGGAC TGGGTGAAAT GGCAGCCGAT 540 AGCGGCTAGC TGTCGGCTGC GGTCAACCTC GATCATGATG TCGAGGTGAC CGTGACCGCG 600 CCCCCGAAG GAGGCGCTGA ACTCGGCGTT GAGCCGATCG GCGATCGGTT GGGGCAGTGC 660 720 CCAGGCCAAT ACGGGGATAC CGGGTGTCNA AGCCGCCGCG AGCGCAGCTT CGGTTGCGCG ACNGTGGTCG GGGTGGCCTG TTACGCCGTT GTCNTCGAAC ACGAGTAGCA GGTCTGCTCC 780 GGCGAGGGCA TCCACCACGC GTTGCGTCAG CTCGT 815

(2) INFORMATION FOR SEQ ID NO:140:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

ACCAGCCGCC GGCTGAGGTC TCAGATCAGA GAGTCTCCGG ACTCACCGGG GCGGTTCAGC 60 CTTCTCCCAG AACAACTGCT GAAGATCCTC GCCCGCGAAA CAGGCGCTGA TTTGACGCTC 120 TATGACCGGT TGAACGACGA GATCATCCGG CAGATTGATA TGGCACCGCT GGGCTAACAG 180 GTGCGCAAGA TGGTGCAGCT GTATGTCTCG GACTCCGTGT CGCGGATCAG CTTTGCCGAC 240 GGCCGGGTGA TCGTGTGGAG CGAGGAGCTC GGCGAGAGCC AGTATCCGAT CGAGACGCTG 300 GACGGCATCA CGCTGTTTGG GCGGCCGACG ATGACAACGC CCTTCATCGT TGAGATGCTC 360 AAGCGTGAGC GCGACATCCA GCTCTTCACG ACCGACGGCC ACTACCAGGG CCGGATCTCA 420 ACACCCGACG TGTCATACGC GCCGCGGCTC CGTCAGCAAG TTCACCGCAC CGACGATCCT 480 GCGTTCTGCC TGTCGTTAAG CAAGCGGATC GTGTCGAGGA AGATCCTGAA TCAGCAGGCC 540 TTGATTCGGG CACACACGTC GGGGCAAGAC GTTGCTGAGA GCATCCGCAC GATGAAGCAC 600 TCGCTGGCCT GGGTCGATCG ATCGGGCTCC CTGGCGGAGT TGAACGGGTT CGAGGGAAAT 660 GCCGCAAAGG CATACTTCAC CGCGCTGGGG CATCTCGTCC CGCAGGAGTT CGCATTCCAG 720 GGCCGCTCGA CTCGGCCGCC GTTGGACGCC TTCAACTCGA TGGTCAGCCT CGGCTATTCG 780 CTGCTGTACA AGAACATCAT AGGGGCGATC GAGCGTCACA GCCTGAACGC GTATATCGGT 840 TTCCTACACC AGGATTCACG AGGGCACGCA ACGTCTCGTG CCGAATTCGG CACGAGCTCC 900 GCTGAAACCG CTGGCCGGCT GCTCAGTGCC CGTACGTAAT CCGCTGCGCC CAGGCCGGCC 960

CGCCGGCCGA	ATACCAGCAG	ATCGGACAGC	GAATTGCCGC	CCAGCCGGTT	GGAGCCGTGC	1020
ATACCGCCGG	CACACTCACC	GGCAGCGAAC	AGGCCTGGCA	CCGTGGCGGC	GCCGGTGTCC	1080
GCGTCTACTT	CGACACCGCC	CATCACGTAG	TGACACGTCG	GCCCGACTTC	CATTGCCTGC	1140
GTTCGGCACG	AG					1152

(2) INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 655 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

CTCGTGCCGA TTCGGCAGGG TGTACTTGCC GGTGGTGTAN GCCGCATGAG TGCCGACGAC 60 CAGCAATGCG GCAACAGCAC GGATCCCGGT CAACGACGCC ACCCGGTCCA CGTGGGCGAT 120 CCGCTCGAGT CCGCCCTGGG CGGCTCTTTC CTTGGGCAGG GTCATCCGAC GTGTTTCCGC 180 CGTGGTTTGC CGCCATTATG CCGGCGCGC GCGTCGGGCG GCCGGTATGG CCGAANGTCG 240 ATCAGCACAC CCGAGATACG GGTCTGTGCA AGCTTTTTGA GCGTCGCGCG GGGCAGCTTC 300 GCCGGCAATT CTACTAGCGA GAAGTCTGGC CCGATACGGA TCTGACCGAA GTCGCTGCGG 360 TGCAGCCCAC CCTCATTGGC GATGGCGCCG ACGATGGCGC CTGGACCGAT CTTGTGCCGC 420 TTGCCGACGG CGACGCGGTA GGTGGTCAAG TCCGGTCTAC GCTTGGGCCT TTGCGGACGG 480 TCCCGACGCT GGTCGCGGTT GCGCCGCGAA AGCGGCGGGT CGGGTGCCAT CAGGAATGCC 540 TCACCGCCGC GGCACTGCAC GGCCAGTGCC GCGGCGATGT CAGCCATCGG GACATCATGC 600 TCGCGTTCAT ACTCCTCGAC CAGTCGGCGG AACAGCTCGA TTCCCGGACC GCCCA 655

(2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 267 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

Asn Ala Val Val Ala Phe Ala Val Ile Gly Phe Ala Ser Leu Ala Val 1 5 10 15

Ala Val Ala Val Thr Ile Arg Pro Thr Ala Ala Ser Lys Pro Val Glu 20 25 30

Gly His Gln Asn Ala Gln Pro Gly Lys Phe Met Pro Leu Leu Pro Thr 35 40 45 Gln Gln Gln Ala Pro Val Pro Pro Pro Pro Pro Asp Asp Pro Thr Ala 50 55 60

Gly Phe Gln Gly Gly Thr Ile Pro Ala Val Gln Asn Val Val Pro Arg 65 70 . 75 80

Pro Gly Thr Ser Pro Gly Val Gly Gly Thr Pro Ala Ser Pro Ala Pro
85 90 95

Glu Ala Pro Ala Val Pro Gly Val Val Pro Ala Pro Val Pro Ile Pro 100 105 110

Val Pro Ile Ile Pro Pro Phe Pro Gly Trp Gln Pro Gly Met Pro 115 120 125

Thr Ile Pro Thr Ala Pro Pro Thr Thr Pro Val Thr Thr Ser Ala Thr 130 135 140

Thr Pro Pro Thr Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr 145 150 155 160

Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr Thr Pro Pro Thr
165 170 175

Thr Pro Val Thr Thr Pro Pro Thr Thr Val Ala Pro Thr Thr Val Ala 180 185 190

Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro Thr Thr Val Ala Pro 195 200 205

Ala Thr Ala Thr Pro Thr Thr Val Ala Pro Gln Pro Thr Gln Gln Pro 210 215 220

Thr Gln Gln Pro Thr Gln Gln Met Pro Thr Gln Gln Gln Thr Val Ala
225 230 235 240

Pro Gln Thr Val Ala Pro Ala Pro Gln Pro Pro Ser Gly Gly Arg Asn 245 250 255

Gly Ser Gly Gly Gly Asp Leu Phe Gly Gly Phe 260 265

(2) INFORMATION FOR SEQ ID NO:143:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 174 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

Ile Asn Gln Pro Leu Ala Pro Pro Ala Pro Pro Asp Pro Pro Ser Pro 1 5 10 15

Pro Arg Pro Pro Val Pro Pro Val Pro Pro Leu Pro Pro Ser Pro Pro 20 25 30

Ser Pro Pro Thr Gly Trp Val Pro Arg Ala Leu Leu Pro Pro Trp Leu 35 40 45

Ala Gly Thr Pro Pro Ala Pro Pro Val Pro Pro Met Ala Pro Leu Pro 50 55 60

Pro Ala Ala Pro Leu Pro Pro Leu Pro Pro Leu Pro Pro Leu Pro Thr 65 70 75 80

Ser His Pro Pro Arg Pro Pro Ala Pro Pro Ala Pro Pro 85 90 95

Ala Cys Pro Phe Val Pro Val Pro Pro Ala Pro Pro Leu Pro Pro Ser 100 105 110

Pro Pro Thr Glu Leu Pro Ala Asp Ala Ala Cys Pro Pro Ala Pro Pro 115 120 125

Ala Pro Pro Leu Ala Pro Pro Ser Pro Pro Ala Gly Ser Ala Ala Ile 130 135 140

Arg Ala Leu Thr Gly Ala Thr Ser Ala Ser Thr Leu Gly His Arg Ala 145 150 155 160

Leu Pro Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly 165 170

(2) INFORMATION FOR SEQ ID NO:144:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

Gln Pro Pro Ala Glu Val Ser Asp Gln Arg Val Ser Gly Leu Thr Gly
1 5 10 15

Ala Val Gln Pro Ser Pro Arg Thr Thr Ala Glu Asp Pro Arg Pro Arg 20 25 30

Asn Arg Arg

(2) INFORMATION FOR SEQ ID NO:145:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 104 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

Arg Ala Asp Ser Ala Gly Cys Thr Cys Arg Trp Cys Xaa Pro His Glu 1 10 15

Cys Arg Arg Pro Ala Met Arg Gln Gln His Gly Ser Arg Ser Thr Thr 20 25 30

	Pro	Pro	Gly 35	Pro	Arg	Gly	Arg	Ser 40	Ala	Arg	Val	Arg	Pro 45	Gly	Arg	Leu	
	Phe	Pro 50	Trp	Ala	Gly	Ser	Ser 55	Asp	Val	Phe	Pro	Pro 60	Trp	Phe	Ala	Ala	
	Ile 65	Met	Pro	Ala	Arg	Arg 70	Val	Gly	Arg	Pro	Val 75	Trp	Pro	Xaa	Val	Asp 80	
	Gln	His	Thr	Arg	Asp 85	Thr	Gly	Leu	Cys	Lys 90	Leu	Phe	Glu	Arg	Arg 95	Ala	
	Gly	Gln	Leu	Arg 100	Arg	Gln	Phe	Tyr									
(2)	INFO	RMAT]	гои і	FOR S	SEQ :	ID NO	0:146	5:									
	(i)	(B)	LEN TYI STI	NGTH PE: 1 RANDI	ARACT : 53 nucle EDNES	base eic a SS: s	e pai acid sing!	irs									
	(xi)	SEQU	JENCI	E DE	SCRII	PTIO	1: SI	EQ II	ON O	:146	:						
GGAT	CCAT	AT GO	GCC/	ATCA'	r CA	rcat(CATC	ACG'	IGAT(CGA (CATC	ATCG	G A	CC			53
(2)	INFO	RMAT	ION I	FOR S	SEQ :	ID NO	0:147	7:									
	(i)	(B)	LEI TYI STI	NGTH PE: 1 RAND	ARACT 42 nucle EDNES	base eic a SS: s	e pa: acid sing:	irs				•					
	(xi)	SEQU	JENCI	E DE	SCRI	OITG	N: SI	EQ I	ON C	:147	:						
CCTG	AATT	CA GO	GCT	CGGT'	r gc	GCCG	3CCT	CAT	CTTG	AAC (GΑ						42
(2)	INFO	RMAT	ION I	FOR S	SEQ :	ID NO	0:148	B:									
	(i)	(B)	LEI TYI	NGTH PE: 1 RAND	ARACT : 31 nucle EDNES	base eic a SS: s	e pa: acid sing:	irs									
	(xi)	SEQ	JENCI	E DE	SCRI	PTIO	N: SI	EQ I	D NO	:148	:						
GGAT	CCTG	CA GO	GCTC	GAAA(C CA	CCGA	GCGG	Т									31

(2) INFORMATION FOR SEQ ID NO:149:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
CTCTGAATTC AGCGCTGGAA ATCGTCGCGA T	31
(2) INFORMATION FOR SEQ ID NO:150:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
GGATCCAGCG CTGAGATGAA GACCGATGCC GCT	33
(2) INFORMATION FOR SEQ ID NO:151:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
GAGAGAATTC TCAGAAGCCC ATTTGCGAGG ACA	33
(2) INFORMATION FOR SEQ ID NO:152:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1993 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1521276	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCACCGA ACAGCTGTTC TCCTCGCCGA	60
AGCATGCGGA AACCGCCCGA TACGTCGCCG GACTGTCGGG GGACGTCAAG GACGCCAAGC	120
GCGGAAATTG AAGAGCACAG AAAGGTATGG C GTG AAA ATT CGT TTG CAT ACG Val Lys Ile Arg Leu His Thr 1 5	172

						GCG Ala			220
						GCC Ala		_	268
						TTG Leu			316
						GGT Gly			364
						GGC Gly 85			412
						AAC Asn			460
						CAC His			508
						AAC Asn			556
						GTC Val			604
						CAG Gln 165	_	_	652
						GTT Val			700
 	 					CAG Gln			748
						TTC Phe			796
						AAC Asn			844
						GTG Val 245			892

ATC GGC ATC AGC TTC CTC GAC CAG GCC AGT CAA CGG GGA CTC GGC GAG Ile Gly Ile Ser Phe Leu Asp Gln Ala Ser Gln Arg Gly Leu Gly Glu 250 255 260	940
GCC CAA CTA GGC AAT AGC TCT GGC AAT TTC TTG TTG CCC GAC GCG CAA Ala Gln Leu Gly Asn Ser Ser Gly Asn Phe Leu Leu Pro Asp Ala Gln 265 270 275	988
AGC ATT CAG GCC GCG GCG GCT GGC TTC GCA TCG AAA ACC CCG GCG AAC Ser Ile Gln Ala Ala Ala Gly Phe Ala Ser Lys Thr Pro Ala Asn 280 285 290 295	1036
CAG GCG ATT TCG ATG ATC GAC GGG CCC GCC CCG GAC GGC TAC CCG ATC Gln Ala Ile Ser Met Ile Asp Gly Pro Ala Pro Asp Gly Tyr Pro Ile 300 305 310	1084
ATC AAC TAC GAG TAC GCC ATC GTC AAC AAC CGG CAA AAG GAC GCC GCC Ile Asn Tyr Glu Tyr Ala Ile Val Asn Asn Arg Gln Lys Asp Ala Ala 315 320 325	1132
ACC GCG CAG ACC TTG CAG GCA TTT CTG CAC TGG GCG ATC ACC GAC GGC Thr Ala Gln Thr Leu Gln Ala Phe Leu His Trp Ala Ile Thr Asp Gly 330 335 340	1180
AAC AAG GCC TCG TTC CTC GAC CAG GTT CAT TTC CAG CCG CTG CCC Asn Lys Ala Ser Phe Leu Asp Gln Val His Phe Gln Pro Leu Pro Pro 345 350 355	1228
GCG GTG GTG AAG TTG TCT GAC GCG TTG ATC GCG ACG ATT TCC AGC Ala Val Val Lys Leu Ser Asp Ala Leu Ile Ala Thr Ile Ser Ser 360 365 370	1273
TAGCCTCGTT GACCACCACG CGACAGCAAC CTCCGTCGGG CCATCGGGCT GCTTTGCGGA	1333
GCATGCTGGC CCGTGCCGGT GAAGTCGGCC GCGCTGGCCC GGCCATCCGG TGGTTGGGTG	1393
GGATAGGTGC GGTGATCCCG CTGCTTGCGC TGGTCTTGGT GCTGGTGGTG CTGGTCATCG	1453
AGGCGATGGG TGCGATCAGG CTCAACGGGT TGCATTTCTT CACCGCCACC GAATGGAATC	1513
CAGGCAACAC CTACGGCGAA ACCGTTGTCA CCGACGCGTC GCCCATCCGG TCGGCGCCTA	1573
CTACGGGGCG TTGCCGCTGA TCGTCGGGAC GCTGGCGACC TCGGCAATCG CCCTGATCAT	1633
CGCGGTGCCG GTCTCTGTAG GAGCGGCGCT GGTGATCGTG GAACGGCTGC CGAAACGGTT	1693
GGCCGAGGCT GTGGGAATAG TCCTGGAATT GCTCGCCGGA ATCCCCAGCG TGGTCGTCGG	1753
TTTGTGGGGG GCAATGACGT TCGGGCCGTT CATCGCTCAT CACATCGCTC CGGTGATCGC	1813
TCACAACGCT CCCGATGTGC CGGTGCTGAA CTACTTGCGC GGCGACCCGG GCAACGGGGA	1873
GGGCATGTTG GTGTCCGGTC TGGTGTTGGC GGTGATGGTC GTTCCCATTA TCGCCACCAC	1933
CACTCATGAC CTGTTCCGGC AGGTGCCGGT GTTGCCCCGG GAGGGCGCGA TCGGGAATTC	1993

(2) INFORMATION FOR SEQ ID NO:153:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:
- Val Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 5 10 15
- Leu Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser
 20 25 30
- Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser 35 40 45
- Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 55 60
- Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80
- Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95
- Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly
 100 105 110
- Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125
- Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130 135 140
- Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160
- Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175
- Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190
- Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200 205
- Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210 215 220
- Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 225 230 235 240
- Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 245 250 255
- Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn 260 265 270

Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Gly Phe 275 280 285

Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro 290 295 300

Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Île Val Asn 305 310 315 320

Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu 325 330 335

His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val 340 345 350

His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 355 360 365

Ile Ala Thr Ile Ser Ser 370

(2) INFORMATION FOR SEQ ID NO:154:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

TGTTCTTCGA CGGCAGGCTG GTGGAGGAAG GGCCCACCGA ACAGCTGTTC TCCTCGCCGA 60 AGCATGCGGA AACCGCCCGA TACGTCGCCG GACTGTCGGG GGACGTCAAG GACGCCAAGC 120 GCGGAAATTG AAGAGCACAG AAAGGTATGG CGTGAAAATT CGTTTGCATA CGCTGTTGGC 180 CGTGTTGACC GCTGCGCCGC TGCTGCTAGC AGCGGCGGGC TGTGGCTCGA AACCACCGAG 240 CGGTTCGCCT GAAACGGCCG CCGGCCCGG TACTGTCGCG ACTACCCCCG CGTCGTCGCC 300 GGTGACGTTG GCGGAGACCG GTAGCACGCT GCTCTACCCG CTGTTCAACC TGTGGGGTCC 360 GGCCTTTCAC GAGAGGTATC CGAACGTCAC GATCACCGCT CAGGGCACCG GTTCTGGTGC 420 CGGGATCGCG CAGGCCGCCG CCGGGACGGT CAACATTGGG GCCTCCGACG CCTATCTGTC 480 GGAAGGTGAT ATGGCCGCGC ACAAGGGGCT GATGAACATC GCGCTAGCCA TCTCCGCTCA 540 GCAGGTCAAC TACAACCTGC CCGGAGTGAG CGAGCACCTC AAGCTGAACG GAAAAGTCCT 600 GGCGGCCATG TACCAGGGCA CCATCAAAAC CTGGGACGAC CCGCAGATCG CTGCGCTCAA 660 CCCCGGCGTG AACCTGCCCG GCACCGCGGT AGTTCCGCTG CACCGCTCCG ACGGGTCCGG 720 TGACACCTTC TTGTTCACCC AGTACCTGTC CAAGCAAGAT CCCGAGGGCT GGGGCAAGTC 780 GCCCGGCTTC GGCACCACCG TCGACTTCCC GGCGGTGCCG GGTGCGCTGG GTGAGAACGG 840 CAACGGCGGC ATGGTGACCG GTTGCGCCGA GACACCGGGC TGCGTGGCCT ATATCGGCAT 900

960 CAGCTTCCTC GACCAGGCCA GTCAACGGGG ACTCGGCGAG GCCCAACTAG GCAATAGCTC TGGCAATTTC TTGTTGCCCG ACGCGCAAAG CATTCAGGCC GCGGCGGCTG GCTTCGCATC 1020 GAAAACCCCG GCGAACCAGG CGATTTCGAT GATCGACGGG CCCGCCCCGG ACGGCTACCC 1080 GATCATCAAC TACGAGTACG CCATCGTCAA CAACCGGCAA AAGGACGCCG CCACCGCGCA 1140 GACCTTGCAG GCATTTCTGC ACTGGGCGAT CACCGACGGC AACAAGGCCT CGTTCCTCGA 1200 CCAGGTTCAT TTCCAGCCGC TGCCGCCCGC GGTGGTGAAG TTGTCTGACG CGTTGATCGC 1260 GACGATTTCC AGCTAGCCTC GTTGACCACC ACGCGACAGC AACCTCCGTC GGGCCATCGG 1320 GCTGCTTTGC GGAGCATGCT GGCCCGTGCC GGTGAAGTCG GCCGCGCTGG CCCGGCCATC 1380 CGGTGGTTGG GTGGGATAGG TGCGGTGATC CCGCTGCTTG CGCTGGTCTT GGTGCTGGTG 1440 GTGCTGGTCA TCGAGGCGAT GGGTGCGATC AGGCTCAACG GGTTGCATTT CTTCACCGCC 1500 ACCGAATGGA ATCCAGGCAA CACCTACGGC GAAACCGTTG TCACCGACGC GTCGCCCATC 1560 CGGTCGGCGC CTACTACGGG GCGTTGCCGC TGATCGTCGG GACGCTGGCG ACCTCGGCAA 1620 TCGCCCTGAT CATCGCGGTG CCGGTCTCTG TAGGAGCGGC GCTGGTGATC GTGGAACGGC 1680 TGCCGAAACG GTTGGCCGAG GCTGTGGGAA TAGTCCTGGA ATTGCTCGCC GGAATCCCCA 1740 GCGTGGTCGT CGGTTTGTGG GGGGCAATGA CGTTCGGGCC GTTCATCGCT CATCACATCG 1800 CTCCGGTGAT CGCTCACAAC GCTCCCGATG TGCCGGTGCT GAACTACTTG CGCGGCGACC 1860 CGGGCAACGG GGAGGGCATG TTGGTGTCCG GTCTGGTGTT GGCGGTGATG GTCGTTCCCA 1920 TTATCGCCAC CACCACTCAT GACCTGTTCC GGCAGGTGCC GGTGTTGCCC CGGGAGGGCG 1980 1993 CGATCGGGAA TTC

(2) INFORMATION FOR SEQ ID NO:155:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 374 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

Met Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala Ala Pro 1 5 10 15

Leu Leu Leu Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20 25 30

Pro Glu Thr Gly Ala Gly Ala Gly Thr Val Ala Thr Thr Pro Ala Ser

Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50 55 60

Phe Asn Leu Trp Gly Pro Ala Phe His Glu Arg Tyr Pro Asn Val Thr 65 70 75 80

Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln Ala Ala 85 90 95

Ala Gly Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly
100 105 110

Asp Met Ala Ala His Lys Gly Leu Met Asn Ile Ala Leu Ala Ile Ser 115 120 125

Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys 130 135 140

Leu Asn Gly Lys Val Leu Ala Ala Met Tyr Gln Gly Thr Ile Lys Thr 145 150 155 160

Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly Val Asn Leu Pro 165 170 175

Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr 180 185 190

Phe Leu Phe Thr Gln Tyr Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly
195 200 205

Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val Pro Gly 210 215 220

Ala Leu Gly Glu Asn Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu 225 230 235 240

Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile Ser Phe Leu Asp Gln Ala 245 250 255

Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn 260 265 270

Phe Leu Leu Pro Asp Ala Gln Ser Ile Gln Ala Ala Ala Gly Phe 275 280 285

Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met Ile Asp Gly Pro 290 295 300

Ala Pro Asp Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn 305 310 315 320

Asn Arg Gln Lys Asp Ala Ala Thr Ala Gln Thr Leu Gln Ala Phe Leu 325 330 335

His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe Leu Asp Gln Val

His Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 355 360 365

Ile Ala Thr Ile Ser Ser 370