

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 9

Непрерывные случайные величины и векторы

Непрерывные случайные величины

Случайная величина ξ называется непрерывной, если существует такая функция $f_{\xi}(x)$, что для всех $x \in R$ функция распределения ξ выражается следующей формулой $F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t) dt$, при этом $f_{\xi}(x)$ называется плотностью распределения непрерывной случайной величины ξ .

Из этого определения следует: вероятность того, что непрерывная случайная величина примет конкретное значение $x \in R$, равна нулю.

Если случайная величина принимает значения только на интервале $[0,+\infty)$, то она называется неотрицательной.

Непрерывные случайные величины

Свойства плотности непрерывной случайной величины:

- 1) $f_{\xi}(x) \ge 0$ (для всех x где $f_{\xi}(x)$ непрерывна);
- 2) $\int_{-\infty}^{+\infty} f_{\xi}(t)dt = 1$ (свойство нормировки);
- 3) $f_{\xi}(x) = \frac{d}{dx} F_{\xi}(x)$, если $f_{\xi}(x)$ непрерывна в точке x;

4)
$$P(C_1 < \xi < C_2) = P(C_1 < \xi \le C_2) = P(C_1 \le \xi < C_2) =$$

$$=P(C_1 \le \xi \le C_2) = \int_{C_1}^{C_2} f_{\xi}(t)dt.$$

Случайные векторы

$$\vec{\xi} = (\xi_1, ..., \xi_n)$$
 - случайный вектор; $\xi_i : \Omega \to R$

Функция распределения случайного вектора $\vec{\xi}$:

$$F_{\xi}(x_1,...,x_n) = P(\xi_1 \le x_1; \xi_2 \le x_2;...; \xi_n \le x_n) = F_{\xi_1,...,\xi_n}(x_1,...,x_n)$$

(функция совместного распределения случайных величин ξ₁,...,ξ_n)

Функция распределения случайного вектора

Свойства $F_{\xi}(x_1,...,x_n)$:

1)
$$\forall (x_1, \dots, x_n) \in \mathbb{R}^n : 0 \leq F_{\xi}(x_1, \dots, x_n) \leq 1$$

2)
$$x_i \leq y_i \Rightarrow F_{\overline{\xi}}(x_1, \dots, x_n) \leq F_{\overline{\xi}}(y_1, \dots, y_n)$$

3)
$$\lim_{\{x_1 \to \infty\}} F_{\xi}(x_1, ..., x_n) = 0$$

4)
$$\lim_{\{x_i \to +\infty\}} F_{\xi}(x_1, ..., x_n) = 1$$

Независимые случайные величины

Случайные величины ξ_1 и ξ_2 - независимы, если

$$\forall (x_1, x_2) \in \mathbb{R}^2$$
: $F_{\xi_1, \xi_2}(x_1, x_2) = F_{\xi_1}(x_1) F_{\xi_2}(x_2)$

Случайные величины $\xi_1,...,\xi_n$ - независимы в совокупности, если $\forall (i_1,...,i_k)$ и

$$\forall (y_1,\ldots,y_k)\in R^k$$
:

$$F_{\underline{\zeta_1}...\underline{\zeta_k}}(y_1,\ldots,y_k) = F_{\underline{\zeta_1}}(y_1)\cdot..\cdot F_{\underline{\zeta_k}}(y_k)$$

Непрерывные случайные векторы

Случайный вектор $\vec{\xi} = (\xi_1, ..., \xi_n)$ называется непрерывным, если существует такая функция $f_{\xi}(x_1, ..., x_n)$, что для всех $(x_1, ..., x_n) \in \mathbb{R}^n$ функция распределения $\vec{\xi}$

$$F_{\xi}(x_1,...,x_n) = \int_{-\infty}^{x_1} dt_1 \int_{-\infty}^{x_2} dt_2 ... \int_{-\infty}^{x_n} f_{\xi}(t_1,...,t_n) dt_n,$$

 $f_{\xi}(x_1,...,x_n)$ - плотность распределения непрерывного случайного вектора $\vec{\xi}$ (совместная плотность случайных величин $\xi_1,...,\xi_n$).

Плотность непрерывного случайного вектора

Свойства $f_{\xi}(x_1,...,x_n)$:

1)
$$f_{\xi}(x_1,...,x_n) \ge 0$$
;

2)
$$\int_{-\infty}^{+\infty} dx_1 \dots \int_{-\infty}^{+\infty} f_{\xi}(x_1, \dots, x_n) dx_n = 1;$$

3)
$$f_{\xi}(x_1,...,x_n) = \frac{\partial^n}{\partial x_1...\partial x_n} F_{\xi}(x_1,...,x_n)$$
,

если $f_{\bar{\xi}}$ - непрерывна в точке (x_1, \dots, x_n) .

4)
$$P(\vec{\xi} \in D) = \int_{D} \int_{\bar{\xi}} (x_1, \dots, x_n) dx_1 \dots dx_n$$

Непрерывные случайные векторы

Теорема.

 ξ и η - независимые, <u>непрерывные</u> случайные величины $\Leftrightarrow f_{\xi,\eta}(x,y) = f_{\xi}(x)f_{\eta}(y)$ для (x,y): $f_{\xi,\eta}$ - непрерывна в точке (x,y).

Доказательство:

$$=> F_{\xi,\eta}(x,y) = F_{\xi}(x)F_{\eta}(y)$$

$$f_{\xi,\eta}(x,y) = \frac{\partial^{2}}{\partial x \partial y} (F_{\xi}(x)F_{\eta}(y)) = (\frac{\partial}{\partial x} F_{\xi}(x))(\frac{\partial}{\partial y} F_{\eta}(y)) = f_{\xi}(x)f_{\eta}(y)$$

$$= F_{\xi,\eta}(x,y) = \int_{-\infty}^{x} d t \int_{-\infty}^{y} f_{\xi,\eta}(t,s)d s = \int_{-\infty}^{x} d t \int_{-\infty}^{y} f_{\xi}(t)f_{\eta}(s)d s =$$

$$= \left(\int_{-\infty}^{x} f_{\xi}(t)d t\right) \left(\int_{-\infty}^{y} f_{\eta}(s)d s\right) = F_{\xi}(x)F_{\eta}(y)$$

Свойства случайных векторов

Теорема.

1.
$$(\xi,\eta)$$
 — случайный вектор => $F_{\xi}(x) = \lim_{y \to +\infty} F_{\xi,\eta}(x,y)$; $F_{\eta}(y) = \lim_{x \to +\infty} F_{\xi,\eta}(x,y)$

2. (ξ,η) – непрерывный случайный вектор с плотностью $f_{\xi,\eta}(x,y) =>$

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f_{\xi,\eta}(x,y) dy$$
; $f_{\eta}(y) = \int_{-\infty}^{+\infty} f_{\xi,\eta}(x,y) dx$