Objective:

Design and implement a machine learning model to classify Amazon product reviews as positive or negative using two popular algorithms, Naive Bayes and Logistic Regression. The dataset consists of two columns: 'reviewText' containing the text of the review and 'Positive' where a value of 1 indicates a positive review and 0 indicates a negative review.

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from wordcloud import WordCloud
import re
import shap
```

Dataset: The dataset includes labeled examples where each review is associated with a binary label, indicating whether the sentiment of the review is positive or negative.

Tasks:

- 1. Data Preprocessing:
- Load the dataset

```
In [2]: data = pd.read_csv("https://github.com/rashakil-ds/Public-Datasets/raw/main/amazon.csv")
```

Perform basic exploratory data analysis (EDA).

View the first few rows

```
In [3]: data.head()
```

Out[3]:

	reviewText	Positive
0	This is a one of the best apps acording to a b	1
1	This is a pretty good version of the game for \dots	1
2	this is a really cool game. there are a bunch \dots	1
3	This is a silly game and can be frustrating, b	1
4	This is a terrific game on any pad. Hrs of fun	1

Check data types and missing values

```
0 reviewText 20000 non-null object
1 Positive 20000 non-null int64
dtypes: int64(1), object(1)
```

memory usage: 312.6+ KB

```
In [5]: data.describe()
```

Out[5]:

Positive
20000.000000
0.761650
0.426085
0.000000
1.000000
1.000000
1.000000
1.000000

- Handle missing values

```
In [6]: data.dropna(inplace = True)
```

- Perform text preprocessing on the 'reviewText' column

```
Preprocess Data: reviewText Positive

0 this is a one of the best apps acording to a b... 1

1 this is a pretty good version of the game for ... 1

2 this is a really cool game there are a bunch o... 1

3 this is a silly game and can be frustrating bu... 1

4 this is a terrific game on any pad hrs of fun ... 1
```

2. Data Splitting:

• Split the dataset into training and testing sets.

```
In [8]: X_train, X_test, y_train, y_test = train_test_split(data["reviewText"], data["Positive"], test_size = 0.2, rand
```

3. Feature Extraction:

```
In [9]: vectorizer = TfidfVectorizer()
#vectorizer = CountVectorizer()

X_train_features = vectorizer.fit_transform(X_train)
X_test_features = vectorizer.transform(X_test)

print(X_train_features.shape)

print(X_test_features.shape)

(16000, 21104)
(4000, 21104)
```

4. Model Training:

- Implement a Naive Bayes classifier and a Logistic Regression classifier.

5. Model Evaluation:

In [10]: | nb_model = MultinomialNB()

- Evaluate the performance of each model on the testing dataset using appropriate metrics (e.g., accuracy, precision, recall, F1-score).

```
In [13]: def evaluate_model(model, X_test, y_test):
    y_predict = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_predict)
    precision = precision_score(y_test, y_predict)
    recall = recall_score(y_test, y_predict)
    f1 = f1_score(y_test, y_predict)

    print(f"Accuracy: {accuracy:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1:.4f}")
```

- Compare the performance of Naive Bayes and Logistic Regression models.

```
In [14]: print("Naive Bayes Evaluation:")
    evaluate_model(nb_model, X_test_features, y_test)

    print("\nLogistic Regression:")
    evaluate_model(lr_model, X_test_features, y_test)

Naive Bayes Evaluation:
    Accuracy: 0.7778, Precision: 0.7748, Recall: 0.9977, F1 Score: 0.8723

Logistic Regression:
    Accuracy: 0.8972, Precision: 0.9041, Recall: 0.9675, F1 Score: 0.9347
```

7. Model Interpretability:

- Analyze and interpret the results of the models. Identify key features contributing to positive and negative classifications.

```
In [15]: vectorizer = TfidfVectorizer()
         X_train_tfidf = vectorizer.fit_transform(X_train)
         lr_model = LogisticRegression()
         lr_model.fit(X_train_tfidf, y_train)
         feature_names = vectorizer.get_feature_names_out()
         coefficients = lr_model.coef_[0]
         feature_importance_df = pd.DataFrame({"Feature": feature_names, "Coefficient": coefficients})
         top_positive_features = feature_importance_df.sort_values(by="Coefficient", ascending=False).head(10)
         top_negative_features = feature_importance_df.sort_values(by="Coefficient").head(10)
         print("Top Positive Features:")
         print(top_positive_features)
         print("\nTop Negative Features:")
         print(top_negative_features)
         Top Positive Features:
               Feature Coefficient
                 love 8.792185
         11225
                 great 8.455654
         8443
         6092
                 easy 5.369187
         7800
                        4.754772
                   fun
         2122
               awesome
                          4.684346
                          4.658619
         2518
                 best
```

Top Negative Features:

works 12445 nice 3.239536 1327 amazing 2.928522

20737

3272

Feature Coefficient 12603 not -7.252453 20239 waste -5.504894 5126 deleted -4.662284 19536 uninstalled -4.374884 -4.104906 17799 sucks 2823 boring -4.066113 17702 -3.997631 stupid 19778 useless -3.630121 -3.583701 5742 dont 20776 worst -3.524706

4.434474

can 2.892711

Visualize key features for positive and negative reviews using Naive Bayes

```
In [16]: def plot_wordcloud(text, title):
    wordcloud = WordCloud(width=800, height=400, random_state=21, max_font_size=110, background_color='white').;
    plt.figure(figsize=(10, 7))
    plt.imshow(wordcloud, interpolation="bilinear")
    plt.axis('off')
    plt.title(title)
    plt.show()

positive_reviews = ' '.join(data[data['Positive'] == 1]['reviewText'])
    negative_reviews = ' '.join(data[data['Positive'] == 0]['reviewText'])

plot_wordcloud(positive_reviews, 'Word Cloud for Positive Reviews')
    plot_wordcloud(negative_reviews, 'Word Cloud for Negative Reviews')
```

Word Cloud for Positive Reviews

Word Cloud for Negative Reviews


```
In [17]: feature_names = vectorizer.get_feature_names_out()
    coefs = lr_model.coef_[0]
    top_positive_features = sorted(zip(feature_names, coefs), key=lambda x: x[1], reverse=True)[:10]
    top_negative_features = sorted(zip(feature_names, coefs), key=lambda x: x[1])[:10]

plt.figure(figsize=(10, 5))
    plt.bar(range(len(top_positive_features)), [x[1] for x in top_positive_features])
    plt.title("Top Positive Features for Logistic Regression")
    plt.show()

plt.figure(figsize=(10, 5))
    plt.bar(range(len(top_negative_features)), [-x[1] for x in top_negative_features])
    plt.sticks(range(len(top_negative_features)), [x[0] for x in top_negative_features], rotation=60)
    plt.title("Top Negative Features for Logistic Regression")
    plt.show()
```


Top Negative Features for Logistic Regression

Visualize the average impact of each feature on the model output

```
In [18]: data['reviewText'] = data['reviewText'].str.lower()
    data['reviewText'] = data['reviewText'].str.replace('[^\w\s]', '')

X_train, X_test, y_train, y_test = train_test_split(data['reviewText'], data['Positive'], test_size=0.2, random

vectorizer = TfidfVectorizer()
    X_train_tfidf = vectorizer.fit_transform(X_train)
    X_test_tfidf = vectorizer.fringform(X_test)

lr_model = LogisticRegression()
    lr_model.fit(X_train_tfidf, y_train)

explainer = shap.Explainer(lr_model, X_train_tfidf)

num_samples = 100
    shap_values = explainer.shap_values(X_test_tfidf[:num_samples])

shap.summary_plot(shap_values, X_test_tfidf[:num_samples], feature_names=vectorizer.get_feature_names_out())
```


Task 8: Conclusion and Recommendations

Summary and Findings:

Model Performance:

Naive Bayes:

Accuracy: 0.7778Precision: 0.7748Recall: 0.9977F1 Score: 0.8723

Logistic Regression:

Accuracy: 0.8972Precision: 0.9041

Recall: 0.9675F1 Score: 0.9347

** Interpretability: **

Logistic Regression:

· Top positive features contributing to positive sentiment:

love: 8.792185
great: 8.455654
easy: 5.369187
fun: 4.754772
awesome: 4.684346
best: 4.658619
works: 4.434474

nice: 3.239536amazing: 2.928522

■ can: 2.892711

• Top negative features contributing to negative sentiment:

not: -7.252453
waste: -5.504894
deleted: -4.662284
uninstalled: -4.374884
sucks: -4.104906
boring: -4.066113
stupid: -3.997631
useless: -3.630121
dont: -3.583701
worst: -3.524706

Recommendations:

Based on the analysis, the Logistic Regression model outperformed Naive Bayes in terms of accuracy and F1 score. The interpretability analysis revealed key features influencing positive and negative sentiment.

1. Experiment with Different Vectorization Techniques:

• Try different text vectorization techniques such as Word Embeddings or Doc2Vec to explore their impact on model performance.

2. Fine-Tuning Model Hyperparameters:

· Perform hyperparameter tuning for both Naive Bayes and Logistic Regression models to optimize their performance.

3. Address Class Imbalance:

• If there is a significant class imbalance, consider techniques such as oversampling or undersampling to improve model robustness.

4. Collect Additional Data:

• Gathering more labeled data can enhance model generalization and improve overall performance.

5. Continuous Monitoring and Updating:

· Regularly monitor model performance and update the models as new data becomes available to maintain relevance.

Conclusion

In conclusion, the Logistic Regression model, based on TF-IDF features, demonstrated superior performance in sentiment classification. The identified key features provide valuable insights into factors influencing positive and negative sentiments in Amazon product reviews.