Quiz: Deep Learning with Python

Due Feb 17 at 3:30pm	Points 7	Questions 2	Time Limit None

Instructions

This exercise is a continuation of the quiz "OLS with Python". Make sure that you complete that quiz first correctly. Then follow the instructions in the document

<u>Fintech Fracassi Assignment Deep Learning with Python.pdf</u>
(https://app.box.com/embed_widget/s/usIn2ls5oglr0beqwcxp6kppux5aamxu?
view=list&sort=name&direction=ASC&theme=dark), and finally answer the questions below.

This is an individual exercise, and has no time limit.

Attempt History

	Attempt	Time	Score		
LATEST	Attempt 1	9 minutes	5 out of 7 *		
* Some questions not yet graded					

Score for this quiz: **5** out of 7 * Submitted Feb 8 at 11:39am This attempt took 9 minutes.

Question 1	5 / 5 pts
What is the mean squared error of the deep learning model?	
0.8260754410623826	
0.8660754410623826	
0.8060754410623826	
0.8460754410623826	
	What is the mean squared error of the deep learning model? 0.8260754410623826 0.8660754410623826 0.8060754410623826

Question 2

Not yet graded / 2 pts

Copy and paste the code below. Your Answer: # # OLS # # In[155]: import pandas as pd import numpy as np from sklearn.datasets import make classification from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.metrics import mean squared error import math from matplotlib import pyplot import os import statsmodels.api as sm # In[156]: df=pd.read_csv('Stock Return Data.csv') df.columns # In[157]: df.head() # In[158]: df['Mkt_rf_lead'] = df['Mkt_rf'].shift(-1) df['Mkt_rf_lead']

```
# In[159]:
#df['Mkt rf lead'].dropna(how='any', inplace=True)
df.dropna(how='any', inplace=True)
df
# In[160]:
X = np.asarray(df.drop(['Date','Mkt_rf','Mkt_rf_lead'],axis=1))
y = np.asarray(df['Mkt_rf_lead'])
# Create linear regression object
reg = linear_model.LinearRegression()
# Train the model using the training sets
reg.fit(X, y)
# Make predictions using the testing set
pred x = reg.predict(X)
# The mean absolute error
MSE = mean squared error(y, pred x, squared=True)
RMSE = mean_squared_error(y, pred_x, squared=False)
print(MSE)
print(RMSE)
## Deep Learning
#
# In[162]:
from sklearn.neural network import MLPRegressor
# In[164]:
X = np.asarray(df.drop(['Date','Mkt_rf','Mkt_rf_lead'],axis=1))
y = np.asarray(df['Mkt rf lead'])
```

```
# In[165]:

neuro =
MLPRegressor(random_state=42,solver='sgd',max_iter=10000,activation=
'relu',hidden_layer_sizes=(20, 10, 3))
neuro.fit(X,y)
pred_x = neuro.predict(X)
MSE = mean_squared_error(y, pred_x, squared=True)
RMSE = mean_squared_error(y, pred_x, squared=False)
print(MSE)
print(RMSE)
```

Quiz Score: 5 out of 7