ЛЕКЦИЯ 12.2 МЕТОДЫ ХОРД И НЬЮТОНА

В этой части мы продолжим изучение методов численного решения нелинейных уравнений. Задача заключается в нахождении приближённого значения корня нелинейного уравнения

$$f(x) = 0. (1)$$

1. Метод хорд

1.1. Расчётная формула

Пусть на отрезке [a;b] локализован корень уравнения (1), функция f непрерывна на нём и принимает на его концах значения разных знаков, т.е. f(a)f(b) < 0. Показать ход итерационного процесса лучше всего графически. Стягиваем крайние точки дуги кривой y = f(x) на отрезке [a;b] хордой (рис. 1). Точка пересечения хордой оси абсцисс – точка (c;0). Её абсциссу c возьмём за начальное приближение $x^{(0)}$ к корню (очевидно, что $x^{(0)} \in [a;b]$). Далее определяем, на каком из отрезков [a;c] или [c;b] находится корень.

Рис. 1. Метод хорд

Для этого проверяем знак произведения f(a)f(c). Если f(a)f(c) < 0, то корень на отрезке [a;c], если f(a)f(c) > 0, то корень на отрезке [c;b]. За новый отрезок локализации [a;b] возьмём тот, на котором находится корень:

$$[a;b] = \begin{cases} [a;c], \text{если } f(a)f(c) < 0, \\ [c;b], \text{если } f(a)f(c) > 0. \end{cases}$$

Для него проделываем ту же операцию: проводим хорду, находим точку пересечения с осью абсцисс, получаем новую итерацию $x^{(1)}$ (рис. 2). На этом рисунке корень находится на отрезке [c;b], поэтому новый отрезок [a;b] есть [c;b]. Этот процесс продолжаем до тех пор, пока не будет достигнута требуемая точность корня δ , т.е. до достижения неравенства $b-a<\delta$. Или же пока не будет достигнута точность выполнения приближённого равенства $f(c)\approx 0$: $|f(c)|<\varepsilon$.

Рис. 2. Метод хорд. Вторая итерация

Выведем расчётную формулу метода. Пусть [a;b] – текущий отрезок локализации на k-м шаге (k=0,1,2,...). Запишем уравнение прямой, содержащей хорду:

$$\frac{y - f(a)}{f(b) - f(a)} = \frac{x - a}{b - a}.$$

Далее находим точку её пересечения с осью абсцисс. Подставляем в уравнение y=0, x=c:

$$c = a - f(a)\frac{b - a}{f(b) - f(a)}.$$

Учитывая, что c – очередная итерация, приходим к расчётной формуле метода:

$$x^{(k)} = a - f(a) \frac{b - a}{f(b) - f(a)},$$
(2)

k=0,1,2,... Чем меньше длина начального отрезка [a;b], тем лучше приближение к корню, тем быстрее сойдётся метод.

На рисунке 3 изображена блок-схема алгоритма метода хорд.

1.2. Сходимость

Ход итерационного процесса сильно зависит от свойств функции f. Пусть, например, функция f непрерывна и монотонна и имеет монотонную и непрерывную производную на [a;b]. Пусть для определённости f монотонно возрастает, и f' не убывает на [a;b], т.е. f'(x) > 0, $f''(x) \ge 0$, $x \in [a;b]$. Эта ситуация изображена на рисунке 4. Корень каждый раз оказывается на отрезке [c;b]. Поэтому на k-м шаге левый конец отрезка [a;b] есть предыдущая итерация $x^{(k-1)}$. Расчётную формулу можно записать так:

$$x^{(k)} = x^{(k-1)} - f(x^{(k-1)}) \frac{b - x^{(k-1)}}{f(b) - f(x^{(k-1)})'}$$

$$k = 1, 2, \dots, x^{(0)} = a.$$

Это метод хорд с «закреплённым» правым концом. Можно строго аналитически доказать, что последовательность итераций не выходит за пределы отрезка [a;b], не убывает и сходится к точному корню x.

Аналогично рассматриваются и остальные случаи знаков производных. Эти результаты можно свести в теорему 1.

Теорема 1. Пусть функция f непрерывна и монотонна, имеет непрерывную и монотонную производную на [a;b], и f(a)f(b) < 0.

1. Если f'(x) > 0, $f''(x) \ge 0$ или f'(x) < 0, $f''(x) \le 0$, то итерационная последовательность метода хорд вычисляется по формуле

Рис. 3. Блок-схема алгоритма метода хорд

Рис. 4. Метод хорд, f'(x) > 0, $f''(x) \ge 0$

$$x^{(k)} = x^{(k-1)} - f(x^{(k-1)}) \frac{b - x^{(k-1)}}{f(b) - f(x^{(k-1)})'}$$

 $k=1,2,\dots,x^{(0)}=a$. При этом она не выходит за пределы отрезка [a;b], не убывает и сходится к точному корню x.

2. Если $f'(x) < 0, f''(x) \ge 0$ или $f'(x) > 0, f''(x) \le 0$, то итерационная последовательность метода хорд вычисляется по формуле

$$x^{(k)} = x^{(k-1)} - f(a) \frac{x^{(k-1)} - a}{f(x^{(k-1)}) - f(a)},$$

 $k=1,2,...\,,\,x^{(0)}=b.$ При этом она не выходит за пределы отрезка [a;b], не возрастает и сходится к точному корню x.

Первый случай (одинаковые знаки производных) – это метод хорд с «закреплённым» правым концом, второй (разные знаки) – с левым.

Теперь оценим погрешность итерации. Учитывая, что f(x)=0, если x – точный корень, запишем $f\left(x^{(k)}\right)$ как

$$f(x^{(k)}) = f(x^{(k)}) - f(x)$$

и применим формулу Лагранжа:

$$f(x^{(k)}) - f(x) = (x^{(k)} - x)f'(\xi_k),$$

где ξ_k – некоторая точка между x и $x^{(k)}$. Отсюда следует равенство

$$x^{(k)} - x = \frac{f(x^{(k)})}{f'(\xi_k)},$$

из которого получаем оценку

$$\Delta x^{(k)} = \left| x - x^{(k)} \right| \le \frac{\left| f\left(x^{(k)}\right) \right|}{m},$$

где

$$m = \min_{x \in [a;b]} |f'(x)|.$$

Эту оценку можно также использовать для останова вычислений наряду с описанными ранее.

Что касается скорости сходимости, то отметим, что она выше, чем у методов половинного деления и простой итерации, которые имеют линейную скорость. Нестрогие оценки показывают, что метод хорд имеет сходимость порядка

$$p = \frac{1 + \sqrt{5}}{2} \approx 1,618 \dots$$

Этот результат справедлив, когда функция f дважды дифференцируема, а её производная не обращается в ноль на [a;b].

Пример. Решим методом хорд уравнение $\sin x = 0$. Начинаем с отрезка локализации [-0,5;1,17]. Легко проверить, что теорема 1 неприменима, «закреплённого конца» нет. В таблице 1 приведены несколько приближений, вычисленных по формуле (2). Видно, что для рассматриваемого уравнения метод хорд сходится быстрее метода половинного деления.

2. Метод Ньютона

Метод Ньютона (касательных) относится к быстро сходящимся. Его также лучше описать геометрически. Задаем некоторое начальное приближение к корню $x^{(0)}$. К графику функции f в точке с абсциссой $x^{(0)}$ проводим касательную (рис. 5). Точку пересечения касательной и оси абсцисс примем за следующее приближение к корню $x^{(1)}$. Затем в точке с абсциссой $x^{(1)}$ проводим еще касательную, и пересечение ее с осью абсцисс – новое

Табл. 1. Итерации метода хорд в примере на с. 6

Шаг	1	2	3	
а	-0,5	-0,5	-0,003	
b	1,17	0,072	0,072	
С	0,072	-0,003	$2 \cdot 10^{-6}$	
f(a)	-0,479	-0,479	-0,003	
f(b)	0,921	0,329	0,072	
f(c)	0,329	-0,082	$2 \cdot 10^{-6}$	
b-a	1,67	0,572	0,074	

Рис. 5. Метод касательных

приближение к корню $x^{(2)}$ (рис. 6). Затем для $x^{(2)}$ повторяется та же процедура и т.д.

Выведем формулу метода. Пусть получена итерация $x^{(k-1)}$ (k=1,2,...). Уравнение касательной к кривой y=f(x) в точке $\left(x^{(k-1)};f\left(x^{(k-1)}\right)\right)$ имеет вид

Рис. 6. Метод касательных. Вторая итерация

$$y = f(x^{(k-1)}) + f'(x^{(k-1)})(x - x^{(k-1)}).$$
(3)

Теперь найдём новую итерацию $x^{(k)}$. Подставляя y=0, $x=x^{(k)}$ в (3) ($x^{(k)}$ – абсцисса точки пересечения касательной с осью OX), получаем

$$f(x^{(k-1)}) + f'(x^{(k-1)})(x^{(k)} - x^{(k-1)}) = 0 \Rightarrow$$

$$\Rightarrow x^{(k)} = x^{(k-1)} - \frac{f(x^{(k-1)})}{f'(x^{(k-1)})},$$
(4)

 $k=1,2,\dots$. Это и есть расчётная формула. Для корректности метода необходимо неравенство нулю производной в некоторой окрестности корня.

Понятно, что последовательность $\{x^{(k)}\}$ может не сходиться к корню. На рисунке 7 показано, как первая итерация вышла за пределы отрезка локализации [a;b]. Теорема 2 даёт некоторые достаточные условия сходимости.

Теорема 2. Пусть функция f дважды непрерывно дифференцируема на [a;b], кроме того, пусть производные f',f'' сохраняют знак на [a;b]. Тогда итерационная последовательность $\{x^{(k)}\}$ сходится к корню x при любом начальном приближении $x^{(0)} \in [a;b]$.

Рис. 7. Расходимость метода касательных

Скорость сходимости метода определяет теорема 3.

Теорема 3. Пусть функция f удовлетворяет условиям:

$$|f'(x)| \ge m_1 > 0, |f''(x)| \le M_2 < \infty, x \in [a; b];$$

Тогда последовательность $\{x^{(k)}\}$ метода Ньютона полностью принадлежит отрезку [a;b] и сходится к корню x. При этом справедливы неравенства

$$\left| x - x^{(k+1)} \right| \le \frac{M_2}{2m_1} \left| x - x^{(k)} \right|^2$$
,

$$\left|x - x^{(k+1)}\right| \le \frac{M_2}{2m_1} \left|x^{(k+1)} - x^{(k)}\right|^2$$
,

 $k = 0, 1, 2, \dots$

Из первого неравенства следует, что метод Ньютона имеет второй порядок сходимости, т.е. он самый быстрый из изученных нами. А второе позволяет оценивать погрешность новой итерации. Поэтому критерием останова может служить выполнение неравенства

$$\left|x^{(k+1)} - x^{(k)}\right|^2 < \varepsilon_1,$$

$$\varepsilon_1 = \frac{2m_1}{M_2} \varepsilon.$$

$$-9 -$$

Эта оценка применяется для останова по достижении заданной точности корня.

Пример. Для уравнения $\sin x = 0$ построим несколько последовательных приближений к корню по формуле (4): $x_0 = 1,16$, $x_1 = -0,598$, $x_2 = 0,083$, $x_3 = -2 \cdot 10^{-4}$. Но метод может и не сходиться. В качестве начального приближения возьмем $x^{(0)} = 1,1656$. Методом Ньютона получим следующие приближения (см. табл. 2).

k	0	1	2	3	4	5	6
$\chi^{(k)}$	1,1656	-1,1658	1,1667	-1,1718	1,2001	-1,373	3,6176
$f(x^{(k)})$	0,919	-0,9191	0,9195	-0,9215	0,9321	-0,9805	-0,4583

Табл. 2. Итерации метода Ньютона в примере на с. 8. Метод расходится

При таком начальном приближении итерационная последовательность не сходится к корню.

Табл. 3. Итерации метода Ньютона в примере на с. 8. Метод сходится

$\chi^{(k)}$	1,1655	-1,1652	1,1638	-1,1558	1,1139	-0,9204	0,394	-0,0217
$f(x^{(k)})$	0,919	-0,9189	0,9183	-0,9151	0,8974	-0,7959	0,3839	-0,0217

Рис. 8. Расходимость метода Ньютона в примере на с. 8

Изменим начальное приближение всего лишь на 0,0001: $x^{(0)}=1,1655$. В таблице 3 показано, что последовательность метода Ньютона сходится к корню x=0.

Последовательность, не сходящаяся к корню x=0, приведена на рисунке 8. Взято начальное приближение $x_0=1,\!17$. Прямые $s,\,s1,\,s2-$ первая, вторая и третья касательные соответственно.