Large Language Models

Scaling Laws

ELL881 - AIL821

Sourish Dasgupta

Assistant Professor, DA-IICT, Gandhinagar https://daiict.ac.in/faculty/sourish-dasgupta

"Emergent" abilities in LLM

LLMs are few-shot learners (and larger is better!)

LLMs are few-shot learners (and larger is better!)

LLMs are few-shot learners (and larger is better!)

6

LLMs are few-shot learners (*more training is better too!*)

Google BIG-BENCH benchmark

Consider a single Model Family e.g. PaLM

Let x_n be the scale of one family member e.g. PaLM-540B

Let y_n be the family member's score on some <u>Task</u> and <u>Metric</u>

Sort the pairs (x_n,y_n) by model scale x_n , smallest to largest

LLMs "seems" to get more intelligent with the following:

Recap on Parameter size & FLOPs

Operation	Parameters	FLOPs per Token
Embed //	$(n_{\text{vocab}} + n_{\text{ctx}}) d_{\text{model}}$	$4d_{\mathrm{model}}$
Attention: QKV	$n_{ m layer} d_{ m model} 3 d_{ m attn}$	$2n_{\text{layer}}d_{\text{model}}3d_{\text{attn}}$
Attention: Mask	_	$2n_{\text{layer}}n_{\text{ctx}}d_{\text{attn}}$
Attention: Project	$n_{ m layer} d_{ m attn} d_{ m model}$	$2n_{\text{layer}}d_{\text{attn}}d_{\text{embd}}$
Feedforward	$n_{ m layer} 2 d_{ m model} d_{ m ff}$	$2n_{ m layer}2d_{ m model}d_{ m ff}$
De-embed	- Soul in the Birth	$2d_{ m model}n_{ m vocab}$
Total (Non-Embedding)	$N = 2d_{\text{model}}n_{\text{layer}} \left(2d_{\text{attn}} + d_{\text{ff}}\right)$	$C_{\text{forward}} = 2N + 2n_{\text{layer}}n_{\text{ctx}}d_{\text{attn}}$

Emergent abilities are <u>unpredictable</u>

If that's true, we never get to know the following:

- Which abilities (and when) exactly will emerge?
- *What* controls the trigger?
- Can we make <u>desirable abilities</u> to emerge *faster*?
- Can we make <u>undesirable abilities</u> to be <u>suppressed</u>?

Is the value of scaling laws only in predicting?

- How much <u>return</u> for a given compute (resource) budget?
- How to <u>allocate</u> the compute budget model size vs. dataset size?

Can there be a curve that fits "emergence"? *Intuition*

Input: $x_1 \dots x_n \sim N(\mu, \sigma^2)$

Task: estimate the average as $\hat{\mu} = \frac{\sum_{i} x_{i}}{n}$

What's the error? By standard arguments..

$$\mathbb{E}[(\hat{\mu} - \mu)^2] = \frac{\sigma^2}{n}$$

This is a scaling law!!

$$\log(Error) = -\log n + 2\log \sigma$$

More generally, any polynomial rate $1/n^{\alpha}$ s a scaling law

Source: CS-324, Stanford University

What about fitting "emergence" in <u>non-parametric</u> setting

Neural nets can approximate arbitrary functions. Lets turn that into an example.

Input: $x_1 \dots x_n$ uniform in 2D unit box. $y_i = f(x_i) + N(0,1)$

Task: estimate f(x)

Approach: cut up the (2)D space into boxes with length $n^{-\frac{1}{4}}$, average in each box

What's our estimation error?

Informally, we have \sqrt{n} boxes, each box gets \sqrt{n} samples.

$$Error \approx \frac{1}{\sqrt{n}} + (other\ smoothness\ terms)$$

In d-dimensions, this becomes $Error = n^{-1}$. This means scaling is $y = -\frac{1}{d}x + C$

Takeaway: flexible 'nonparametric' learning has dimension dependent scaling laws.

Source: CS-324, Stanford University

What if the loss-drop (i.e., emergence) follows power-law?

 $B_* \sim 2 \cdot 10^8$ tokens, $\alpha_B \sim 0.21$

A more reliable version:

$$L(C_{\min}) = \left(C_{\mathrm{c}}^{\min}/C_{\min}\right)^{\alpha_C^{\min}}$$

$$\alpha_C^{\rm min} \sim 0.050, \quad C_c^{\rm min} \sim 3.1 \times 10^8 \, (\text{PF-days})$$

$$C_{\min}(C) \equiv \frac{C}{1 + B/B_{\mathrm{crit}}(L)}$$
 (minimum compute, at $B \ll B_{\mathrm{crit}}$)

Parameters	Data	Comp	ute	Batch S	Size
Optimal	∞	C	0	Fixed	d
	* \	/S.	Cov	nort;	7
$N_{ m opt}$	$D_{ m opt}$	$C_{ m min}$	n	$B \ll B_c$	crit
				Us	TL

Compute-Efficient Value	Power Law	Scale	
$N_{ m opt} = N_e \cdot C_{ m min}^{p_N}$	$p_N = 0.73$	$N_e=1.3\cdot 10^9$ params	
$B \ll B_{\text{crit}} = \frac{B_*}{L^{1/\alpha_B}} = B_e C_{\min}^{p_B}$	$p_B = 0.24$	$B_e = 2.0 \cdot 10^6$ tokens	

Kaplan Laws

We are in luck! Turns out that scale <u>is</u> predictable

Observation 1a: Universality of Overfitting

Observation 1b: Sample Efficiency

Key takeaway 1: Both parameter and dataset to be scaled

Observation 2: What about training time (steps & FLOPs)?

23

Key takeaway 2: *Universality of training*

$$L(N,S) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{S_c}{S_{\min}(S)}\right)^{\alpha_S}$$

$$L(N,D) = \left[\left(\frac{N_c}{N} \right)^{\frac{\alpha_N}{\alpha_D}} + \frac{D_c}{D} \right]^{\alpha_D}$$

 $S_c \approx 2.1 \times 10^3$ and $\alpha_S \approx 0.76$, and $S_{\min}(S)$ is the minimum possible number of optimization steps

Parameter	α_N	α_D	N_c	D_c	
Value	0.076	0.103	6.4×10^{13}	1.8×10^{13}	

Parameter	α_N	α_S	N_c	S_c
Value	0.077	0.76	6.5×10^{13}	2.1×10^3

Kaplan Laws

Are we only to worry about

???

Key Takeaway 3: Model shape does not matter!

Key Takeaway 4: Embedding matrix does not matter!

Key Takeaway 5: Dataset composition does not matter!

Kaplan Scaling Laws at a glance:

	Power Law	Scale (tokenization-dependent)		
	$\alpha_N = 0.076$	$N_{\rm c} = 8.8 \times 10^{13} \ {\rm params} \ ({\rm non\text{-}embed})$		
ĺ	$\alpha_D = 0.095$	$D_c = 5.4 \times 10^{13}$ tokens		
	$\alpha_C = 0.057$	$C_c = 1.6 \times 10^7 \text{ PF-days}$		
	$\alpha_C^{\rm min} = 0.050$	$C_{\mathrm{c}}^{\mathrm{min}} = 3.1 \times 10^{8} \mathrm{PF}\text{-days}$		
=	$\alpha_B = 0.21$	$B_* = 2.1 \times 10^8$ tokens		
-	$\alpha_S = 0.76$	$S_{\rm c}=2.1 \times 10^3 { m \ steps}$		

					ac - 0.001
Parameters	Data	Compute	Batch Size	Equation	$\alpha_C^{\rm min}=0.050$
N	∞	∞	Fixed	$L\left(N\right) = \left(N_{\rm c}/N\right)^{\alpha_N}$	$\alpha_B = 0.21$
∞	D	Early Stop	Fixed	$L\left(D\right) = \left(D_{\rm c}/D\right)^{\alpha_D}$	$\alpha_S = 0.76$
Optimal	∞	C	Fixed	$L\left(C\right) = \left(C_{\rm c}/C\right)^{\alpha_C}$ (naive	:)
$N_{ m opt}$	$D_{ m opt}$	C_{\min}	$B \ll B_{\rm crit}$	$L(C_{\min}) = (C_{c}^{\min}/C_{\min})$	α_C^{\min}
N	D	Early Stop	Fixed	$L(N, D) = \left[\left(\frac{N_c}{N} \right)^{\frac{\alpha_N}{\alpha_D}} + \frac{1}{2} \right]$	$\frac{D_c}{D}$
N	∞	S steps	В	$L(N,S) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{1}{S}\right)^{\alpha_N}$	$\frac{S_c}{S_{\min}(S,B)}$

