# Finite State Automata COMP3220 – Principle of Programming Languages

Zhitao Gong

2016 Spring

#### Outline

#### Introduction

Man Wolf Goat Cabbage

Deterministic Finite Automata

Non-deterministic Finite Automata

Summary

# Goal – Define A Language

#### One way To define a language

- 1. Construct an automaton (i.e., a kind of abstract computer) that takes a string as input and produces a *yes* or *no* answer.
- 2. The language it defines is the set of all strings for which it says yes.

The simplest kind of automaton is the *finite automaton*, which has a *finite* memory or *states*.

## Automata Hierarchy



Figure: All the automata

- Combinational Logic used in computer circuits to perform Boolean algebra on input signals and on stored data. E.g., ALU.
- ► FSA used in communication protocol design, language parsing, etc.

### Concepts and Representation

State is a description of the status of a system that is waiting to execute a transition.

Transition is a set of actions to be executed when a condition is fulfilled or when an event is received.

Representation include state/event table, UML state machine, SDL state machine, etc.



Figure: Toss A Coin

#### Outline

Introduction

Man Wolf Goat Cabbage

Deterministic Finite Automata

Non-deterministic Finite Automata

Summary

#### The Classic Riddle

- Problem
  - A man travels with wolf, goat and cabbage.
  - ▶ He wants to cross a river from east to west.
- Conditions
  - A rowboat is available, but only large enough for the man plus one possession.
  - Wolf eats goat if left alone together.
  - ► Goat eats cabbage if left alone together
- Goal how can the man cross without loss?

# Solution String

Four moves may be encoded as four symbols

- Man crosses with wolf w
- Man crosses with goat g
- Man crosses with cabbage c
- Man crosses with nothing n

Then a sequence of moves constitute a string. E.g., <code>gnwgcng</code>: cross with goat, cross back with nothing, cross with wolf, cross back with goat, etc.

#### State and Transition

- ► State The current items on east *E* and west *W* bank constitute the current state
- ► Transition The moves are transitions, i.e., they change the current state.
- ▶ Man is represented with *m* which is *not* in the language.



Figure: MWGC Example

## Transition Diagram Version 0



## The Language of Solution

Given an alphabet  $\Sigma = \{w, g, c, n\}$ , every path yields a string  $x \in \Sigma^*$ . And all the strings constitute the language of solutions.

 $\{x \in \{w, g, c, n\}^* \mid \text{ starts in the starting state,}$  follows the transitions of x and ends in the accepting state  $\}$ 



The starting state is  $\searrow$ , and the accepting stat

- The language is infinite.
- ► Two shortest strings in the language are *gnwgcng* and *gncgwng*.

## Diagram Gets Stuck

What happens to strings not in the language, e.g., *c*, *gncn*. The previous diagram is not complete, it gets stuck when the strings are not solutions.



Figure: Error State

# Transition Diagram Version 1



## Complete Specification

- ► The above diagram shows exactly *one* transition from every state on every symbol in  $\Sigma = \{w, g, c, n\}$ .
- ▶ It gives a computational procedure for deciding whether a given string is a solution:
  - 1. Start in the start state, and
  - 2. make one transition for each symbol in the string.
  - 3. Accept if end in the accepting state, reject if error.

#### Outline

Introduction

Man Wolf Goat Cabbage

Deterministic Finite Automata

Non-deterministic Finite Automata

Summary

#### **DFA Informal**

- ▶ A diagram with *finite* number of states, represented by circles.
- ► Two special states, the starting state (usually pointed to by an arrow from start) and accepting state (usually double circled).
- For every state, for every symbol in Σ, there is exactly one arrow labeled with that symbol going to another state (or loop back to self)

## Concepts

- ▶ Given a string over  $\Sigma$ , the DFA can read the string and follow its transition as denoted by the string.
- ▶ At the end of the string, if DFA reaches an accepting state, we say it accepts the string, otherwise it rejects the string.
- ▶ The language defined by a DFA is the set of strings in  $\Sigma^*$  that it accepts.

## Example



Figure: DFA Toy Example

► This DFA defines (a set-builder notation)

## Example



Figure: DFA Toy Example

- ▶ This DFA defines (a set-builder notation)  $\{xa \mid x \in \{a, b\}^*\}$ .
- Meaningless states, may be omitted.

#### **DFA** Convention

▶ No two arrows have the same source and destination



▶ Instead, one arrow with list of transitions (symbols)



#### **DFA Formal**

#### A DFA $\mathcal{M}$ is a 5-tuple

$$\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$$

- Q finite set of states
- $\triangleright$   $\Sigma$  alphabet, i.e., *finite* set of symbols
- ▶  $\delta \in (Q \times \Sigma \to Q)$  transition function
- ▶  $q_0 \in Q$  the start state
- $F \subseteq Q$  the set of accepting states

# Example



Figure: This DFA defines  $\{xa \mid x \in \{a, b\}^*\}$ 

Formally,  $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$  where

- $P Q = \{q_0, q_1\}$
- $\triangleright$   $\Sigma = \{a, b\}$
- $ightharpoonup F = q_1$
- $\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_0, \ \delta(q_1, a) = q_1, \ \delta(q_1, b) = q_0.$

#### The $\delta^*$ Function

- $\triangleright$   $\delta$  defines 1-symbole moves
- lackbox gives whole-string results by applying zero or more  $\delta$  moves

$$\delta^*(q, \epsilon) = q$$

$$\delta^*(q, xa) = \delta(\delta^*(q, x), a)$$

# $\mathcal{M}$ Accepts x

 $\delta^*(q,x)$  is the state  ${\mathcal M}$  ends up in, starting from state q and reading all of string x

#### Theorem

Given a DFA  $\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$ , a string  $x\in\Sigma^*$  is accepted by  $\mathcal{M}$  if and only if  $\delta^*(q_0,x)\in F$ .

## Language Defined by DFA

For any DFA  $\mathcal{M}=(Q,\Sigma,\delta,q_0,F),~\mathcal{L}(\mathcal{M})$  denotes the language accepted by  $\mathcal{M}$ 

$$\mathcal{L}(\mathcal{M}) = \{ x \in \Sigma^* \mid \delta^*(q_0, x) \in F \}$$

#### Outline

Introduction

Man Wolf Goat Cabbage

Deterministic Finite Automata

Non-deterministic Finite Automata

Summary

# NFA Advantage

 $\{x \in \{0,1\}^* \mid x$ 's next-to-last symbol is  $1\}$ 

# NFA Advantage

 $\{x \in \{0,1\}^* \mid x\text{'s next-to-last symbol is } 1\}$ 

#### **DFA**



# NFA Advantage

 $\{x \in \{0,1\}^* \mid x$ 's next-to-last symbol is  $1\}$ 





# NFA Advantage Cont'd

 $\{xa \mid x \in \{a, b\}^*\}$ 

# NFA Advantage Cont'd





#### DFA v.s. NFA

- ► A DFA has exactly one transition from every state on every symbol in the alphabet.
- ▶ By relaxing this requirement we get a related but more flexible automaton: the non-deterministic finite automaton (NFA).
- DFA is a special case of NFA.

## Simple NFA



Figure: Simple NFA

Does not have exactly one transition from every state on every symbol:

- ▶ Two transitions from  $q_0$  on symbol a
- ightharpoonup No transitions from  $q_1$

## Possible Move Sequences



Figure: Simple NFA

Consider all the possible move sequences for the string aa.

- $q_0 o q_0$  rejecting
- $ightharpoonup q_0 
  ightarrow q_1$  accepting
- $q_0 \rightarrow q_1$  stuck on the last a

 $\mathcal{M}$  accepts x (i.e.,  $x \in \mathcal{L}(\mathcal{M})$ ) if there is at least one accepting sequence.

#### $\epsilon$ -Transition



- NFA may make a state transition (spontaneously) without consuming an input symbol, or consuming an  $\epsilon$ . (NFA- $\epsilon$ )
- ► DFA cannot.

## Accept $\epsilon$



Consider all the possible move sequences for  $\epsilon$ , i.e., (empty string)

- $ightharpoonup q_0$  no moves, ending in  $q_0$ , rejecting
- $q_0 o q_1$  accepting
- $q_0 o q_2$  accepting

Any state with an  $\epsilon$ -transition to an accepting state ends up working like an accepting state too.

# $NFA(-\epsilon)$ Formal

#### An NFA- $\epsilon$ $\mathcal{M}$ is a quintuple

$$\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$$

- Q finite set of states
- $\triangleright$   $\Sigma$  alphabet, i.e., *finite* set of symbols
- ▶  $\delta \in (Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q))$  transition function
- ▶  $q_0 \in Q$  the start state
- ▶  $F \subseteq Q$  the set of accepting states

#### And note that

- $\epsilon \notin \Sigma$

### Powerset

If S is a set, the *powerset* of S is the set of all subsets of S

$$\mathcal{P}(S) = \{R \mid R \subseteq S\}$$

E.g., if 
$$S = 1, 2, 3$$
, then

$$\mathcal{P}(S) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

## NFA Example



Figure: 
$$\mathcal{L}(\mathcal{M}) = \{a, b\}^*$$

$$\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$$

- $Q = \{q_0, q_1, q_2\}$
- $\triangleright \ \Sigma = \{a, b\}$
- $F = q_2$
- δ?

### NFA v.s. NFA- $\epsilon$

#### **Theorem**

Any NFA- $\epsilon$  can be turned into an NFA.

- ightharpoonup  $\epsilon$ -transitions are just syntax sugar.
- ▶ Both NFA- $\epsilon$  and NFA recognize *exactly* the same languages.
- ▶ NFA and NFA- $\epsilon$  may be converted to each other.

## $\epsilon$ -Transition for Correct Union



Figure:  $A = \{a^n \mid n \text{ is odd}\}$ 



Figure:  $B = \{b^n \mid n \text{ is odd}\}$ 



Figure:  $C = A \bigcup B$ ???

## $\epsilon$ -Transition for Correct Union



Figure:  $A = \{a^n \mid n \text{ is odd}\}$ 



Figure:  $B = \{b^n \mid n \text{ is odd}\}$ 



Figure:  $C = A \bigcup B$ ???

NO, this accepts aab.

## $\epsilon$ -Transition for Correct Union

$$\operatorname{start} \to \bigcup_{a} \bigcap_{a}$$

Figure:  $A = \{a^n \mid n \text{ is odd}\}$ 



Figure:  $B = \{b^n \mid n \text{ is odd}\}$ 



Figure:  $C = A \bigcup B$ 

## $\epsilon$ -Transition for Correct Concatenation



Figure:  $A = \{a^n \mid n \text{ is odd}\}$ 



Figure:  $C = \{xy | x \in A \text{ and } y \in B\}$ ???

$$\operatorname{start} \to \bigcup_{b}$$

Figure:  $B = \{b^n \mid n \text{ is odd}\}$ 

## $\epsilon$ -Transition for Correct Concatenation



Figure:  $A = \{a^n \mid n \text{ is odd}\}$ 



Figure:  $B = \{b^n \mid n \text{ is odd}\}$ 



Figure:  $C = \{xy | x \in A \text{ and } y \in B\}$ ???

NO, this accepts abbaab.

## $\epsilon$ -Transition for Correct Concatenation



Figure:  $A = \{a^n \mid n \text{ is odd}\}$ 



Figure:  $B = \{b^n \mid n \text{ is odd}\}$ 



Figure:  $C = \{xy | x \in A \text{ and } y \in B\}$ 

### $\delta^*$ Function

- $\blacktriangleright$   $\delta$  function gives 1-symbol move.
- $\delta^*$  gives a whole-string result.

$$\delta^*(q,x) = \{r \mid (q,x) \mapsto^* (r,\epsilon)\}$$

Intuitively,  $\delta^*(q,x)$  is the set of all states the NFA might be in starting in state q and reading whole x.

### NFA ID

Instantaneous Description (ID) is a description of a point in an NFA's execution.

Suppose I is an ID, I = (q, x)

- ▶  $q \in Q$  is the current state
- ▶  $x \in \Sigma^*$  is the *unread* part of the input

And given an NFA  $\mathcal{M}$  and a string x,

- ▶ Initially, before  $\mathcal{M}$  processes the x, we have ID  $(q_0, x)$ .
- ▶ When  $\mathcal{M}$  accepts x, it ends in an ID  $(f, \epsilon)$  where  $f \in F$ .

#### Move Relation on ID

▶ One-Move Relation If  $I = (q, \omega x)$  and J = (r, x),  $\forall x \in \Sigma^*, \forall \omega \in \Sigma$  or  $\omega = \epsilon$ 

$$I\mapsto J$$
 if and only if  $r\in\delta(q,\omega)$ 

Zero-or-More-Move Relation if there is a sequence of zero or more moves that starts with I and ends with J

$$I \mapsto^* J$$

Note that  $I \mapsto^* I$ 

# $\mathcal{M}$ Accepts x

#### **Theorem**

A string  $x \in \Sigma^*$  is accepted by an NFA  $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$  if and only if  $\delta^*(q_0, x) \cap F \neq \emptyset$ .

## Language Defined by NFA

For any NFA  $\mathcal{M}=(Q,\Sigma,\delta,q_0,F),~\mathcal{L}(\mathcal{M})$  denotes the language accepted by  $\mathcal{M}$ 

$$\mathcal{L}(\mathcal{M}) = \{ x \in \Sigma^* \mid \delta^*(q_0, x) \cap F \neq \emptyset \}$$

## Outline

Introduction

Man Wolf Goat Cabbage

Deterministic Finite Automata

Non-deterministic Finite Automata

Summary

## **DFA Summary**

- Good Faster and simpler
- Bad
  - ► There are languages for which DFA-based implementation takes exponentially more space than NFA-based.
  - Harder to extend for non-regular constructs
- Example: scanner in compiler
  - Speed is critical
  - Token languages do not usually bring out the exponential-size pathology of DFAs

## NFA Summary

- Good
  - ▶ Easier to extend for non-regular language constructs
  - No exponential-space pathology
- Bad slower and trigger
- Example: regular expression features in Python, Per1, etc.
   Need to handle non-regular constructs as well as regular ones.

# D/N-FA Accept Regular Languages

 $\mathcal{L}_{DFA}$  All languages accepted by DFAs  $\mathcal{L}_{NFA}$  All languages accepted by NFAs  $\mathcal{L}_{R}$  Regular Languages

$$\mathcal{L}_{DFA} = \mathcal{L}_{NFA} = \mathcal{L}_{R}$$

## Advanced Topics

- Conversion between DFA and NFA
- $ightharpoonup \epsilon$ -transition elimination
- Equivalence prove
- ► Implementation