Contrôle de cours 2 (1 heure)

Probabilités 1

Exercice 1 (5 points)

Considérons une variable aléatoire infinie X dont la loi est donnée par:

$$X(\Omega) = \mathbb{N}^* \text{ et } \forall n \in \mathbb{N}^*, P(X = n) = \frac{2}{3} \times \left(\frac{1}{3}\right)^{n-1}$$

- 1. Vérifier par le calcul que $\sum_{n=1}^{+\infty} P(X=n) = 1$.
- 2. Déterminer sa fonction génératrice $G_X(t)$. On l'exprimera d'abord sous la forme d'une série entière, puis à l'aide des fonctions usuelles.
- 3. Calculer l'espérance et la variance de X.

2 Familles de vecteurs, base et dimension d'un espace vectoriel

Exercice 2 (8 points)

Soient E un espace vectoriel sur $\mathbb{R}, n \in \mathbb{N}^*$ et $\mathcal{F} = (u_1, ..., u_n)$ une famille de E.

- 1. Écrire la définition de : " \mathcal{F} est une famille libre".
- 2. Écrire la définition de : " \mathcal{F} est une famille liée".
- 3. Écrire la définition de : " \mathcal{F} est une famille génératrice de E".
- 4. Dans cette question, on suppose que n=3, c'est-à-dire $\mathcal{F}=(u_1,u_2,u_3)$, et de plus que u_1 $2u_2 + 3u_3 = 0_E$. Montrer que $Vect(\mathcal{F}) = Vect(u_1, u_3)$.

- 5. Application: dans $E = \mathbb{R}^3$, considérons la famille $\mathcal{F} = (u_1 = (1, -1, 1), u_2 = (5, 1, 1), u_3 =$ (1,2,-1)).
 - (a) La famille $\mathcal F$ est-elle libre ? Justifier votre réponse.
 - (b) Donner une base de $Vect(\mathcal{F})$ et en déduire sa dimension.

Une démonstration de cours (3 points)

Soient E un \mathbb{R} -ev, F et G deux sous-espaces vectoriels de E de dimension finies n et $p, \mathcal{B} = (e_1, ..., e_n)$ une base de F et $\mathcal{B}' = (\varepsilon_1, ..., \varepsilon_p)$ une base de G.

On considère la famille $\mathcal{F} = (e_1, ..., e_n, \varepsilon_1, ..., \varepsilon_p)$ obtenue par concaténation des bases de \mathcal{B} et \mathcal{B}' . Montrer que:

$$\mathcal{F}$$
 libre $\Longrightarrow F \cap G = \{0_E\}$

3 Applications linéaires

Exercice 3 (4 points)

- 1. Donner une exemple d'application $f:\mathbb{R}[X]\longrightarrow\mathbb{R}^3$ qui n'est pas linéaire. Justifier votre réponse.
- 2. Soit E et F deux \mathbb{R} -ev et $f \in \mathcal{L}(E,F)$. Donner les définitions mathématiques de $\mathrm{Ker}(f)$ et $\mathrm{Im}(f)$.
- 3. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \longmapsto & (3x,x-2y+z) \end{array} \right.$. Trouver une base de $\operatorname{Kerf}(f)$ et en déduire sa dimension.