(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 November 2002 (21.11.2002)

PCT

(10) International Publication Number WO 02/092015 A2

(51) International Patent Classification7:

A61K

(21) International Application Number: PCT/US02/15982

(22) International Filing Date: 17 May 2002 (17.05.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/291,311 17 May 2001 (17.05.2001) US 60/353,058 1 February 2002 (01.02.2002) US 60/361,293 4 March 2002 (04.03.2002) US

(71) Applicants (for all designated States except US):

GENOME THERAPEUTICS CORPORATION
[US/US]; 100 Beaver Street, Waltham, MA 02453 (US).

WYETH [US/US]; Five Giralda Farms, Madison, NJ 07928 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ALLEN, Kristina [US/US]; 11 Oliver Lane, Hopkinton, MA 01748-3108

- (US). ANISOWICZ, Anthony [US/US]; 50 Upham Street, West Newton, MA 02465 (US). BHAT, Bheem, M. [IN/US]; 1214 Mayapple Lane, West Chester, PA 19380 (US). DAMAGNEZ, Veronique [FR/US]; 125 Water Street, Framingham, MA 01701 (US). ROBINSON, John, Allen [US/US]; 23 Webb Road, Downingtown, PA 19335 (US). YAWORSKY, Paul, J. [US/US]; 13 Hobart Lane, Rockland, MA 02370 (US).
- (74) Agents: REA, Teresa, Stanek et al.; Burns, Doane, Swecker & Mathis L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

- With Wnt1 the TCF-signal generated by LRP5 is greater than that of LRP6.
- LRP5/6 -Wnt1 induced TCF- is efficiently blocked byDkk1

(57) Abstract: The present invention provides reagents, compounds, compositions, and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk, including Dkk-1. The various nucleic acids, polypeptides, antibodies, assay methods, diagnostic methods, and methods of treatment of the present invention are related to and impact on Dkk, LRP5, LRP6, HBM, and Wnt signaling. Dkk, LRP5, LRP6, HBM, and Wnt are implicated in bone and lipid cellular signaling. Thus, the present invention provides reagents and methods for modulating lipid levels and/or bone mass and is useful in the treatment and diagnosis of abnormal lipid levels and bone mass disorders, such as osteoporosis.

02/092015 A2

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

FIELD OF THE INVENTION

The present invention relates to signal transduction, bone development, bone loss disorders, modulation of lipid-related conditions, research reagents, methods of screening drug leads, drug development, treatments for bone and/or lipid disorders, screening and development of therapies, molecular, cellular, and animal models of bone and/or lipid development and maintenance, which are mediated by Dkk, including Dkk-1, and/or LRP5, LRP6, HBM or other members of the Wnt pathway.

10

15

20

25

5

BACKGROUND OF THE INVENTION

Two of the most common types of osteoporosis are postmenopausal and senile osteoporosis. Osteoporosis affects both men and women, and, taken with other abnormalities of bone, presents an ever-increasing health risk for an aging population. The most common type of osteoporosis is that associated with menopause. Most women lose between 20-60% of the bone mass in the trabecular compartment of the bone within 3-6 years after the cessation of menses. This rapid bone loss is generally associated with an increase of bone resorption and formation. However, the resorptive cycle is more dominant and the result is a net loss of bone mass. Osteoporosis is a common and serious disease among postmenopausal women. There are an estimated 25 million women in the United States alone who are afflicted with this disease. The results of osteoporosis are personally harmful. and also account for a large economic loss due to its chronicity and the need for extensive and long-term support (e.g., hospitalization and nursing home care) from disease sequelae. This is especially true in elderly patients. Additionally, while osteoporosis is generally not thought of as a life-threatening condition, a 20-30% mortality rate is related to hip fractures in elderly women. A large percentage of this mortality rate can be directly associated with postmenopausal osteoporosis.

The most vulnerable tissue in the bone to the effects of postmenopausal osteoporosis is the trabecular bone. This tissue is often referred to as spongy bone and is particularly concentrated near the ends of the bone, near the joints, and in the vertebrae of the spine. The trabecular tissue is characterized by small structures which inter-connect with each other as well as the more solid and dense cortical tissue which makes up the outer surface and central shaft of the bone. This criscross network of trabeculae gives lateral support to the outer cortical structure and is critical to the biomechanical strength of the overall structure. In postmenopausal osteoporosis, it is primarily the net resorption and loss of the trabeculae which lead to the failure and fracture of the bone. In light of the loss of the trabeculae in postmenopausal women, it is not surprising that the most common fractures are those associated with bones which are highly dependent on trabecular support, e.g., the vertebrae, the neck of the femur, and the forearm. Indeed, hip fracture, Colle's fractures, and vertebral crush fractures are indicative of postmenopausal osteoporosis. Osteoporosis affects cortical as well as trabecular bone. Alterations in endosteal bone resorption and Haversian remodeling with age affect cortical thickness and structural integrity contributing the increased risk for fracture.

5

10

15

20

25

30

One of the earliest generally accepted methods for treatment of postmenopausal osteoporosis was estrogen replacement therapy. Although this therapy frequently is successful, patient compliance is low, primarily due to the undesirable side-effects of chronic estrogen treatment. Frequently cited side-effects of estrogen replacement therapy include reinitiation of menses, bloating, depression, and, potentially, increased risk of breast or uterine cancer. In order to limit the known threat of uterine cancer in women who have not had a hysterectomy, a protocol of estrogen and progestin cyclic therapy is often employed. This protocol is similar to that used in birth control regimens, and often is not tolerated by women because of the side-effects characteristic of progestin. More recently, certain antiestrogens, originally developed for the treatment of breast cancer, have been shown in experimental models of postmenopausal osteoporosis to be efficacious. Among these agents is raloxifene (See, U.S. Patent No. 5,393,763; Black et al., J.

Clin. Invest., 93:63-69 (1994); and Ettinger et al., JAMA 282:637-45 (1999)). In addition, tamoxifen, a widely used clinical agent for treating breast cancer, has been shown to increase bone mineral density in post menopausal women suffering from breast cancer (Love et al., N. Engl. J. Med., 326:852-856 (1992)).

5

10

15

Another therapy for the treatment of postmenopausal osteoporosis is the use of calcitonin. Calcitonin is a naturally occurring peptide which inhibits bone resorption and has been approved for this use in many countries (Overgaard *et al.*, *Br. Med. J.*, 305:556-561 (1992)). The use of calcitonin has been somewhat limited, however. Its effects are very modest in increasing bone mineral density, and the treatment is very expensive. Another therapy for the treatment of postmenopausal osteoporosis is the use of bisphosphonates. These compounds were originally developed for treating Paget's disease and malignant hypercalcemia. They have been shown to inhibit bone resorption. Alendronate, a bisphosphonate, has been approved for the treatment of postmenopausal osteoporosis. These agents may be helpful in the treatment of osteoporosis, but these agents also have potential liabilities which include osteomalacia, extremely long half-life in bone (greater than 2 years), and possible "frozen bone syndrome," *e.g.*, the cessation of normal bone remodeling.

20

Senile osteoporosis is similar to postmenopausal osteoporosis in that it is marked by the loss of bone mineral density and resulting increase in fracture rate, morbidity, and associated mortality. Generally, it occurs in later life, *i.e.*, after 70 years of age. Historically, senile osteoporosis has been more common in females, but with the advent of a more elderly male population, this disease is becoming a major factor in the health of both sexes. It is not clear what, if any, role hormones such as testosterone or estrogen have in this disease, and its etiology remains obscure. Treatment of this disease has not been very satisfactory. Hormone therapy, estrogen in women and testosterone in men, has shown equivocal results; calcitonin and bisphosphonates may be of some utility.

25

The peak mass of the skeleton at maturity is largely under genetic control.

Twin studies have shown that the variance in bone mass between adult monozygotic

twins is smaller than between dizygotic twins (Slemenda *et al.*, *J. Bone Miner. Res.*, 6: 561-567 (1991); Young *et al.*, *J. Bone Miner. Res.*, 6:561-567 (1995); Pocock *et al.*, *J. Clin. Invest.*, 80:706-710 (1987); Kelly *et al.*, *J. Bone Miner. Res.*, 8:11-17 (1993)). It has been estimated that up to 60% or more of the variance in skeletal mass is inherited (Krall *et al.*, *J. Bone Miner. Res.*, 10:S367 (1993)). Peak skeletal mass is the most powerful determinant of bone mass in elderly years (Hui *et al.*, *Ann. Int. Med.*, 111:355-361 (1989)), even though the rate of age-related bone loss in adult and later life is also a strong determinant (Hui *et al.*, *Osteoporosis Int.*, 1:30-34 (1995)). Since bone mass is the principal measurable determinant of fracture risk, the inherited peak skeletal mass achieved at maturity is an important determinant of an individual's risk of fracture later in life. Thus, study of the genetic basis of bone mass is of considerable interest in the etiology of fractures due to osteoporosis.

5

10

15

20

25

30

Recently, a strong interest in the genetic control of peak bone mass has developed in the field of osteoporosis. The interest has focused mainly on candidate genes with suitable polymorphisms to test for association with variation in bone mass within the normal range, or has focused on examination of genes and gene loci associated with low bone mass in the range found in patients with osteoporosis. The vitamin D receptor locus (VDR) (Morrison et al., Nature, 367:284-287 (1994)), PTH gene (Howard et al., J. Clin. Endocrinol. Metab., 80:2800-2805 (1995); Johnson et al., J. Bone Miner. Res., 8:11-17 (1995); Gong et al., J. Bone Miner. Res., 10:S462 (1995)) and the estrogen receptor gene (Hosoi et al., J. Bone Miner, Res., 10;S170 (1995); Morrison et al., Nature, 367:284-287 (1994)) have figured most prominently in this work. These studies are difficult because bone mass (i.e., the phenotype) is a continuous, quantitative, polygenic trait, and is confounded by environmental factors such as nutrition, co-morbid disease, age, physical activity, and other factors. Also, this type of study design requires large numbers of subjects. In particular, the results of VDR studies to date have been confusing and contradictory (Garnero et al., J. Bone Miner. Res., 10:1283-1288 (1995); Eisman et al., J. Bone. Miner. Res., 10:1289-1293 (1995); Peacock, J. Bone Miner. Res., 10:1294-1297 (1995)).

Furthermore, thus far, the art has not determined the mechanism(s) whereby the genetic influences exert their effect on bone mass.

5

10

15

20

25

30

While it is well known that peak bone mass is largely determined by genetic rather than environmental factors, studies to determine the gene loci (and ultimately the genes) linked to variation in bone mass are difficult and expensive. Study designs which utilize the power of linkage analysis, *e.g.*, sib-pair or extended family, are generally more informative than simple association studies, although the latter do have value. However, genetic linkage studies involving bone mass are hampered by two major problems. The first problem is the phenotype, as discussed briefly above. Bone mass is a continuous, quantitative trait, and establishing a discrete phenotype is difficult. Each anatomical site for measurement may be influenced by several genes, many of which may be different from site to site. The second problem is the age component of the phenotype. By the time an individual can be identified as having low bone mass, there is a high probability that their parents or other members of prior generations will be deceased and therefore unavailable for study, and younger generations may not have even reached peak bone mass, making their phenotyping uncertain for genetic analysis.

Thus, there is a need in the art for additional research tools for the elucidation of the molecular mechanism of bone modulation, for the screening and development of candidate drugs, and for treatments of bone development and bone loss disorders. The present invention is directed to these, as well as other, important ends.

In addition to bone modulation, the present invention relates to modulation of lipid levels. Cardiovascular disease is the most common cause of mortality in the United States, and atherosclerosis is the major cause of heart disease and stroke. It is widely appreciated that cholesterol plays an important role in atherogenesis. Normally, most cholesterol serves as a structural element in the walls of cells, whereas much of the rest is in transit through the blood or functions as the starting material for the synthesis of bile acids in the liver, steroid hormones in endocrine cells and vitamin D in skin. The transport of cholesterol and other lipids through the

circulatory system is facilitated by their packaging into lipoprotein carriers. These spherical particles comprise protein and phospholipid shells surrounding a core of neutral lipid, including unesterified ("free") or esterified cholesterol and triglycerides. Risk for atherosclerosis increases with increasing concentrations of low density lipoprotein (LDL) cholesterol, whereas risk is inversely proportional to levels of high-density lipoprotein (HDL) cholesterol. The receptor-mediated control of plasma LDL levels has been well-defined, and recent studies have now provided new insights into HDL metabolism.

5

10

15

20

25

30

The elucidation of LDL metabolism began in 1974 by Michael Brown and Joseph Goldstein. In brief, the liver synthesizes a precursor lipoprotein (very low density lipoprotein, VLDL) that is converted during circulation to intermediate density lipoprotein (IDL) and then to LDL. The majority of the LDL receptors expressed in the body are on the surfaces of liver cells, although virtually all other tissues ("peripheral tissues") express some LDL receptors. After binding, the receptorlipoprotein complex is internalized by the cells via coated pits and vesicles, and the entire LDL particle is delivered to lysosomes, wherein it is dissembled by enzymatic hydrolysis, releasing cholesterol for subsequent cellular metabolism. This wholeparticle uptake pathway is called "receptor-mediated endocytosis." Cholesterolmediated feedback regulation of both the levels of LDL receptors and cellular cholesterol biosynthesis help ensure cellular cholesterol homeostasis. Genetic defects in the LDL receptor in humans results in familial hypercholesterolemia, a disease characterized by elevated plasma LDL cholesterol and premature atherosclerosis and heart attacks. One hypothesis for the deleterious effects of excess plasma LDL cholesterol is that LDL enters the artery wall, is chemically modified, and then is recognized by a special class of receptors called macrophage scavenger receptors, that mediate the cellular accumulation of the LDL cholesterol in the artery, eventually leading to the formation of an atherosclerotic lesion.

The major lipoprotein classes include intestinally derived chylomicrons that transport dietary fats and cholesterol, hepatic-derived VLDL, IDL, and LDL that can be atherogenic, and hepatic- and intestinally-derived HDL that are antiatherogenic.

Apoprotein B (ApoB) is necessary for the secretion of chylomicrons (ApoB48) and VLDL, IDL, and LDL (ApoB100). Plasma levels of VLDL triglycerides are determined mainly by the rates of secretion in LDL lipolytic activity. Plasma levels of LDL cholesterol are determined mainly by the secretion of ApoB100 into plasma, the efficacy with which VLDL are converted to LDL and by LDL receptor-mediated clearance. Regulation of HDL cholesterol levels is complex and is affected by rates of synthesis of its Apo proteins, rates of esterification of free cholesterol to cholesterol ester by LCAT, levels of triglyceride-rich lipoproteins and CETP-mediated transfer of cholesterol esters from HDL, and clearance from plasma of HDL lipids and Apo proteins.

5

10

15

20

25

30

Normal lipoprotein transport is associated with low levels of triglycerides and LDL cholesterol and high levels of HDL cholesterol. When lipoprotein transport is abnormal, lipoprotein levels can change in ways that predispose individuals to atherosclerosis and arteriosclerosis (see Ginsburg, *Endocrinol. Metab. Clin. North Am.*, 27:503-19 (1998)).

Several lipoprotein receptors may be involved in cellular lipid uptake. These receptors include: scavenger receptors; LDL receptor-related protein/α2-macroglobulin receptor (LRP); LDL receptor; and VLDL receptor. With the exception of the LDL receptor, all of these receptors are expressed in atherosclerotic lesions while scavenger receptors are mostly expressed in macrophages, the LRP and VLDL receptors may play an important role in mediating lipid uptake in smooth muscle cells (Hiltunen *et al.*, *Atherosclerosis*, 137 suppl.:S81-8 (1998)).

A major breakthrough in the pharmacologic treatment of hypercholesterolemia has been the development of the "statin" class of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG CoA reductase) inhibitory drugs. 3-hydroxy-3-methylglutaryl-CoA reductase is the rate controlling enzyme in cholesterol biosynthesis, and its inhibition in the liver stimulates LDL receptor expression. As a consequence, both plasma LDL cholesterol levels and the risk for atherosclerosis decrease. The discovery and analysis of the LDL receptor system has had a profound impact on cell biology, physiology, and medicine.

HDL is thought to remove unesterified, or "free" cholesterol (FC) from peripheral tissues, after which most of the cholesterol is converted to cholesterol ester (CE) by enzymes in the plasma. Subsequently, HDL cholesterol is efficiently delivered directly to the liver and steroidogenic tissues via a selective uptake pathway and the HDL receptor, SR-BI (class B type I scavenger receptor) or, in some species, transferred to other lipoproteins for additional transport in metabolism (see Krieger, *Proc. Natl. Acad. Sci. USA*, 95:4077-4080 (1998)).

These issues illustrate a need in the art for additional research tools for the elucidation of the molecular mechanism of lipid modulation, for the screening and development of candidate drugs, and for treatments of lipid levels and lipid level modulation disorders. The present invention is directed to these, as well as other, important ends.

SUMMARY OF THE INVENTION

15

20

25

30

10

5

The present invention provides reagents, compounds, compositions and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk proteins. LRP5 is also referred to as Zmax1 or Zmax. Thus, when discussing methods, reagents, compounds, and compositions of the invention which relate to the interaction between Dkk and LRP5 (or Zmax1). the invention is also to be understood to encompass embodiments relating to interactions between Dkk and LRP6 and Dkk and HBM. Moreover, where Dkk is discussed herein, it is to be understood that the methods, reagents, compounds, and compositions of the present invention include the Dkk family members, including but not limited to Dkk-1, Dkk-2, Dkk-3, Dkk-4 and Soggy. Furthermore, the invention encompasses novel fragments of Dkk-1 which demonstrate a binding interaction between the ligand binding domain (LBD) of LRP5 and additional proteins and/or which can modulate an interaction between LRP5, or a variant or fragment thereof. and a Dkk protein. The invention provides assays, methods, compositions, and compounds relating to Dkk-Wnt signaling. Numerous Wnt proteins are compatible with the present invention, including Wnt1-Wnt19, and particularly, Wnt1, Wnt3.

Wnt3a, and Wnt10b. The present invention further provides reagents, compounds, compositions and methods modulating interactions between one or more other proteins and Dkk-1. The present invention also provides a series of peptide aptamers which bind to Dkk-1 or to LRP5 (or HBM and/or LRP6).

5

The polypeptides of the invention, for example in the form of peptide oligomers, aptamers, proteins, and protein fragments as well as the nucleic acids of the invention, for example in the form of nucleic acids which encode the polypeptides of the invention as well as antisense, or complimentary nucleic acids, are useful as reagents for the study of bone mass and lipid level modulation. The polypeptides and nucleic acids of the invention are also useful as therapeutic and diagnostic agents.

10

The present invention provides useful reagents for the modulation of Dkk proteins with LRP5, LRP6, and/or HBM, the modulation Dkk-1 and/or Dkk-1 interacting protein activity, and modulation of LRP5/Dkk-1, LRP6/Dkk1 and HBM/Dkk-1 interactions and Dkk-1/Dkk-1 interacting protein interactions. The present invention provides a series of peptide aptamers which bind Dkk-1 or LRP5, LRP6, and/or HBM.

20

15

An object of the invention is to provide for a method of regulating LRP5/LRP6/HBM/HBM-like activity in a subject comprising administering a therapeutically effective amount of a composition which modulates Dkk activity. The subject can be a vertebrate or an invertebrate organism, but more preferably the organism is a canine, a feline, an ovine, a primate, an equine, a porcine, a caprine, a camelid, an avian, a bovine, or a rodent organism. A more preferred organism is a human. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular

30

connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. The invention further provides such a method wherein the composition comprises a Dkk, Dkk-1 or a LRP5/LRP6/HBM binding fragment thereof, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The invention further provides such a method wherein the composition comprises one or more of the proteins which interact with Dkk, including Dkk-1, such as those depicted in Figure 5, or a Dkk-binding fragment thereof, or an antisense, siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises an LRP5/LRP6/Zmax1 antibody, Dkk antibody, a Dkk-1 antibody or an antibody to a Dkk-1 interacting protein. The invention further provides such a method wherein the compositions comprise an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188). or a mimetic of such an aptamer. The method further provides that invention further provides such a method wherein the compositions comprise an aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer.

5

10

15

20

25

30

A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk to LRP5/LRP6/Zmax1, particularly Dkk-1, or the binding of Dkk-1 to a Dkk-1 interacting protein, such as those shown in Figure 5. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NOs:189-192) (particularly, peptide (SEQ ID NO:191) and 13 (including SEQ IDNOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies.

Another aspect of the invention is to provide for a method of regulating Dkk-Wnt pathway activity in a subject comprising administering a therapeutically effective amount of a composition which modulates Dkk-Wnt pathway activity. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass

and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter. and an increase in inorganic bone content. In another preferred embodiment, the Wnt is Wnt1-Wnt19. In a particularly preferred embodiment, the Wnt is Wnt1, Wn3, Wnt3a, or Wnt10b. Preferred compositions comprise Dkk-modulating or Dkk-1modulating compounds or one or more Dkk interacting or Dkk-1 interacting proteins. or a Dkk-binding fragment thereof. Other preferred Dkk modulating compositions comprise a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk. including Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk, including Dkk-1, to LRP5, LRP6, or HBM or the binding of Dkk, including Dkk-1, to a Dkk interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein the composition comprises an aptamer of Dkk or Dkk-1, such as those depicted. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208). Preferred compositions of the present invention also comprise LRP5 antibodies.

5

10

15 .

20

25

30

A further aspect of the invention is to provide for a method of modulating Wnt signaling in a subject comprising administering a therapeutically effective amount of a composition which modulates Dkk activity or modulates Dkk interaction with LRP5

(or LRP6 or HBM). In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. In another preferred embodiment, the Wnt is Wnt1-Wnt19. In a particularly preferred embodiment, the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b. Preferred Wnt modulating compositions comprise one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active or LRP5/LRP6/HBM binding fragment thereof. Also contemplated are antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk or Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or blocking the binding of Dkk, including Dkk-1, to LRP5, LRP6, or HBM or the binding of Dkk or Dkk-1 to a Dkk interacting or Dkk-1 interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein compositions comprising an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such an aptamer. The invention further provides such a method wherein the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. The invention further provides such a method wherein compositions of an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NO:189-192

5

10

15

20

25

(particularly peptide (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Additional preferred compositions of the present invention also comprise LRP5 antibodies.

5

10

15

20

25

30

Additionally, the invention provides for a method of modulating bone mass and/or lipid levels in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5 in an amount effective to modulate bone mass and/or lipid levels, wherein bone mass and/or lipid levels are in need of modulation. In a preferred embodiment, the Dkk protein is Dkk-1. In a particularly preferred embodiment, Dkk-1 activity is decreased. In another embodiment, Dkk activity modulates bone mass and/or lipid levels. In a preferred embodiment, bone mass is increased and/or lipid levels are decreased. In another preferred embodiment, the modulation in bone mass is an increase in bone strength determined via one or more of a decrease in fracture rate, an increase in areal bone density, an increase in volumetric mineral bone density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density or thickness, an increase in bone diameter, and an increase in inorganic bone content. Preferred bone mass and/or lipid modulating compositions comprise one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active or LRP5/LRP6/HBM binding fragment thereof. Also contemplated are antisense. siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding one or more Dkk interacting or Dkk-1 interacting proteins. The invention further provides such a method wherein the composition comprises a biologically active or LRP5/LRP6/HBM binding fragment of Dkk, including Dkk-1, such as those depicted in Figure 6 or a mimetic of those fragments depicted in Figure 6. The Dkk modulating composition may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The invention further provides such a method wherein the composition comprises an aptamer of Dkk or Dkk-1, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such an aptamer. A composition of the present invention may modulate activity either by enhancing or inhibiting the binding of Dkk, including Dkk-1, to LRP5, LRP6.

or HBM or the binding of Dkk, including Dkk-1, to a Dkk interacting protein, such as those shown in Figure 5. The invention further provides such a method wherein the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figures 4 (SEQ ID NO:189-192 (particularly peptide 13 (SEQ ID NO:191)) and 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies. It is a further aspect of the invention that such lipid-modulated diseases include a cardiac condition, atherosclerosis, familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and an elevated lipid level of unknown etiology.

15

10

5

Bone disorders contemplated for treatment and/or diagnosis by the methods and compositions disclosed herein include a bone development disorder, a bone fracture, age related loss of bone, a chondrodystrophy, a drug-induced bone disorder, high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and rickets.

20

It is a further object of the invention to provide a method of screening for compounds or compositions which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

25

- (a) exposing Dkk or a LRP5/LRP6/HBM binding fragment thereof to a compound; and
- (b) determining whether said compound binds to Dkk or the LRP5/LRP6/HBM binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1. In a particularly preferred embodiment, the binding of Dkk-1 to LRP5/LRP6/HBM is decreased.

It is a further object of the invention to provide a method of screening compounds or compositions which modulate the interaction of DKK with LRP5, LRP6, HBM, or a DKK-finding fragment thereof comprising:

(a) exposing DKK or a LRP5/LRP6/HBM binding fragment thereof to a compound; and,

(b) determining whether said compound modulates the interaction of Dkk with LRP5, LRP6, or HBM, or the Dkk-binding fragment of LRP5/LRP6/HBM.

In a preferred embodiment, the Dkk is Dkk-1. In a particularly preferred embodiment, the interaction of Dkk-1 with LRP5/LRP6/HBM is decreased.

It is a further object of the invention to provide a method of screening for compounds or compositions which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

- (a) exposing Dkk or a LRP5/LRP6/HBM binding fragment thereof to a compound;
- (b) determining whether said compound binds to Dkk or the LRP5/LRP6/HBM binding fragment thereof; and,
- (c) further determining whether said compound modulates the interaction of Dkk with LRP5, LRP6, or HBM, or the Dkk-binding fragment of LRP5/LRP6/HBM.

In preferred embodiments of such methods, Dkk or a biologically active fragment thereof is attached to a solid substrate. In an alternative embodiment of the invention, LRP5/LRP6/HBM, or a biologically active fragment thereof (such as the ligand binding domain), is exposed to the compound. Another aspect of the invention provides for compounds and compositions identified by the disclosed methods. A preferred embodiment of the invention provides that the compound screened in an afore-mentioned method is one or more proteins which interact with Dkk, particularly Dkk-1, as depicted in Figure 5, or a LRP5/LRP6/HBM-binding fragment thereof. Another preferred embodiment provides that the compound comprises a Dkk or Dkk-1 peptide aptamer, such as those depicted in Figure 3 (SEQ

10

5

15

20

25

ID NOs:171-188), or a mimetic of such aptamers. The compound may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The method further provides that the compound comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk-1 interacting protein. The invention further provides that the compound may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compounds of the present invention also comprise LRP5 antibodies.

10

5

It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

15

- (a) exposing a Dkk interacting proteins or a Dkkbinding fragment thereof to a compound; and,
- (b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

20

It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

25

- (a) exposing Dkk interacting protein(s) or a Dkkbinding fragment thereof to a compounds; and,
- (b) determining whether said compound modulatesthe interaction of Dkk and Dkk interacting proteins.

It is a further object of the invention to provide a method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:

30

(a) exposing a Dkk interacting proteins or a Dkkbinding fragment thereof to a compound;

(b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof; and,

(c) further determining whether said compound modulates the interaction of Dkk and Dkk interacting proteins.

In a preferred embodiment, Dkk is Dkk-1.

In preferred embodiments of such methods, the Dkk interacting proteins, particularly Dkk-1 interacting proteins, or a Dkk-binding fragment thereof are attached to a solid substrate. Another aspect of the invention provides for compounds and compositions identified by the disclosed methods. A preferred embodiment provides that the compound comprises a Dkk or Dkk-1 peptide aptamer, such as those depicted in Figure 3 (SEQ ID NOs:171-188), or a mimetic of such aptamers. The compound may also comprise a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. The compound may also comprise an antibody to a Dkk interacting or Dkk-1 interacting protein.

It is another object of the invention to provide for a composition for treating bone mass disorders comprising a LRP5/LRP6/HBM modulating compound and a pharmaceutically acceptable excipient and/or carrier therefor. Preferred LRP5 (or LRP6 or HBM) modulating compounds include Dkk or Dkk-1 or a LRP5/LRP6/HBM binding fragment thereof. Also contemplated are compounds which comprise monoclonal or polyclonal antibodies or immunologically active fragments thereof which bind to Dkk, including Dkk-1, and a pharmaceutically acceptable excipient and/or carrier. Another preferred embodiment provides that the modulating compound comprises one or more Dkk interacting or Dkk-1 interacting proteins, or a biologically active fragment thereof. Also contemplated are compounds which comprise monoclonal or polyclonal antibodies or immunologically active fragments thereof which bind to Dkk interacting or Dkk-1 interacting proteins, or a biologically active fragment thereof, and a pharmaceutically acceptable excipient and/or carrier.

30

25

5

10

15

Another preferred embodiment provides that the modulating compound comprises an antisense, siRNA, and shRNA molecule which recognizes and binds to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. Another preferred embodiment provides that the modulating compound comprises a Dkk or Dkk-1 peptide aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. Another embodiment provides that the compound comprises an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compounds of the present invention also comprise LRP5 antibodies.

5

10

15

20

25

It is a further object of the invention to provide a pharmaceutical composition for treating a Dkk-mediated disease or condition comprising a compound which modulates Dkk activity and a carrier therefor, including pharmaceutically acceptable excipients. Such compositions include those wherein the compound comprises an antisense, siRNA, and shRNA molecule or an antibody which binds to Dkk, including Dkk-1, and thereby prevents it from interacting with LRP5, LRP6, or HBM. Other such compositions include one or more of Dkk interacting or Dkk-1 interacting proteins, such as those depicted in Figure 5, or a Dkk-binding fragment thereof, or a monoclonal or polyclonal antibody, or immunologically active fragment thereof, which binds to a Dkk interacting or Dkk-1 interacting protein or Dkk-binding fragment thereof. Other contemplated compositions include antisense, siRNA, and shRNA molecules which recognize and bind to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. Further contemplated compositions include Dkk and Dkk-1 peptide aptamers, such as those depicted in Figure 3 (SEQ ID NOs;171-188). mimetics of such aptamers, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein, or a mimetic of such an aptamer. Other contemplated compositions comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191))

and Figure 13 (including SEQ ID NO:204-214), or a mimetic of such an aptamer. Other preferred compositions of the present invention comprise LRP5 antibodies.

A further object of the invention to provide for a method of modulating the expression of a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein in an organism, such as those shown in Figure 5, comprising the step of administering to the organism an effective amount of composition which modulates the expression of a nucleic acid encoding a Dkk-1 interacting protein. In a preferred embodiment, said composition comprises an antisense, siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein.

5

10

15

20

25

One aspect of the invention provides for a method of modulating at least one activity of Dkk or a Dkk-1 interacting protein comprising administering an effective amount of a composition which modulates at least one activity of Dkk or a Dkk-1 interacting protein. The invention provides for a composition comprising a Dkk interacting or Dkk-1 interacting protein, such as those shown in Figure 5, or a biologically active fragment thereof. Other agents contemplated for this method are antisense, siRNA, or shRNA molecules which recognize and bind to a nucleic acid encoding a Dkk interacting or Dkk-1 interacting protein. The method further provides that the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacing or Dkk-1 interacting protein. In another preferred embodiment, the composition comprises a Dkk or Dkk-1 peptide aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a peptide aptamer of a Dkk interacting or Dkk-1 interacting protein. or a mimetic of such an aptamer. The method provides that a composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NO:189-192) (particularly peptide including (SEQ ID NO:191)) and Figure including (SEQ ID NOs:204-214), or a mimetic of such an aptamer. Preferred compositions of the present invention also comprise LRP5 antibodies. In a further preferred embodiment, the modulated Dkk activity is lipid modulation or bone mass modulation.

In all of the testing/screening embodiments of the present invention discussed below to obtain compounds or compositions which ultimately impact LRP5/LRP6/HBM signaling, one skilled in the art will recognize that HBM can be used as a control in the absence of a test sample or compound. Further, the effect of a test sample of compound on Wnt signaling through the interaction of Dkk with LRP5/LRP6/HBM does not necessarily require a direct measurement of an association or interaction of Dkk and LRP5/LRP6/HBM. Other positive phenotypes/activities established by the High Bone Mass phenotype or by using HBM as a control.

10

5

One aspect of the invention provides for a method of identifying binding partners for a Dkk protein comprising the steps of:

- (a) exposing the Dkk protein(s) or a LRP5/LRP6 binding fragment thereof to a potential binding partner; and
- (b) determining if the potential binding partner binds to a Dkk protein or the LRP5/LRP6 binding fragment thereof.

15

In a preferred embodiment, the Dkk is Dkk-1.

Another aspect of the invention is to provide for a method of identifying a compound that effects Dkk-mediated activity comprising

20

(a) providing a group of transgenic animals having (1) a regulatable one or more Dkk interacting protein genes, (2) a knock-out of one or more Dkk interacting protein genes, or (3) a knock-in of one or more Dkk interacting protein genes;

25

(b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and

(c) exposing the transgenic animal group and the control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and

(d) comparing the transgenic animal group and the control animal group and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.

In a preferred embodiment, the Dkk is Dkk-1.

It is another aspect of the invention to provide for a method for determining whether a compound modulates a Dkk interacting protein, said method comprising the steps of:

10

5

 (a) mixing the Dkk interacting protein or a Dkk-binding fragment thereof with the ligand binding domain of Dkk in the presence of said at least one compound;

15

(b) measuring the amount of said binding domain of Dkk bound to said Dkk interacting protein or the Dkk-binding fragment thereof as compared to a control without said at least one compound; and

20

25

(c) determining whether the compound reduces the amount of said binding domain of Dkk binding to said Dkk interacting protein or Dkk-binding fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

In a preferred embodiment, the binding domain is attached to a solid substrate. The invention further provides for compounds identified by this method. In a preferred embodiment, the invention provides that the Dkk interacting or Dkk-1 interacting protein is detected by antibodies. In another preferred embodiment, the solid substrate is a microarray. Another preferred embodiment provides that the ligand binding domain of Dkk and/or Dkk interacting protein is fused or conjugated to a peptide or protein. The invention also provides that the compounds include Dkk

and Dkk-1 peptide aptamers, mimetics of Dkk and Dkk-1 peptide aptamers, Dkk and Dkk-1 interacting proteins peptide aptamers, or mimetics of such aptamers.

5

10

15

20

25

An aspect of the invention provides a composition comprising one or more polypeptide sequences of one or more Dkk-1 interacting proteins, or a biologically active fragment thereof, one or more Dkk proteins, or a biologically active fragment thereof, or LRP5/LRP6/HBM polypeptide sequences or a biologically active fragment thereof (for example, the ligand binding domain) and a pharmaceutically acceptable excipient and/or carrier. Another aspect of the invention provides that the composition comprises a Dkk or Dkk-1 antibody or an antibody to a Dkk interacting or Dkk-1 interacting protein and a pharmaceutically acceptable excipient. A composition of the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. A composition of the present invention may comprise a Dkk peptide aptamer, for example as shown in Figure 3 (SEQ ID NOs:171-188). Preferred compositions of the present invention also comprise LRP5 antibodies.

Another aspect of the invention is to provide an antibody or immunologically active antibody fragment which recognizes and binds to a Dkk-1 amino acid sequence selected from the group consisting of: Asn34-His266 (SEQ ID NO:110), Asn34-Cys245 (SEQ ID NO:111), Asn34-Lys182 (SEQ ID NO:112), Cys97-His266 (SEQ ID NO:113), Val139-His266 (SEQ ID NO:114), Gly183-His266 (SEQ ID NO:115), Cys97-Cys245 (SEQ ID NO:116), or Val139-Cys245 (SEQ ID NO:117) of human Dkk-1. Additional antibodies may bind to any of the sequences depicted in Figures 3 (SEQ ID NOs:171-188) and Figure 4 (SEQ ID NOs:189-192). Another aspect of the invention is to provide for polyclonal antibodies to one or more amino acid sequences: Peptide 1 -GNKYQTIDNYQPYPC (SEQ ID NO:118), Peptide 2 - LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119), Peptide 3 - RIQKDHHQASNSSRLHTCQRH (SEQ ID NO:120), Peptide 4 - RGEIEETITESFGND (SEQ ID NO:121), and Peptide 5 - EIFQRCYCGEGLSCRIQKD (SEQ ID NO: 122).

It is a further object of the invention to provide a nucleic acid encoding a Dkk protein, e.g. Dkk-1, a Dkk interacting or Dkk-1 interacting protein aptamer, or an LRP5 aptamer comprising a nucleic acid encoding a scaffold protein in-frame with the activation domain of Gal4 or LexA that is in-frame with a nucleic acid which encodes for a Dkk or Dkk-1 or Dkk interacting or Dkk-1 interacting protein amino acid sequence. Preferably the scaffold protein is thioredoxin (trxA), S1 nuclease from *Staphylococcus* or M13. Other preferable embodiments include Dkk-1 amino acid sequences selected from Figure 6.

It is yet a further object of the invention to provide a composition comprising a polypeptide sequence of Figure 3 (SEQ ID NOs:171-188), Figure 4 (SEQ ID NO:189-192), or of Dkk-1 interacting proteins identified in Figure 5 and a pharmaceutically acceptable excipient and/or carrier.

Another aspect of the invention includes a method of detecting the modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair that bind through extracellular interaction in their natural environment, comprising:

- culturing at least one eukaryotic cell, wherein the eukaryotic cell comprises;
 - a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;
 - b) a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

20

5

10

15

c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element produces a selected phenotype;

5

- (ii) incubating a compound with the eukaryotic cell under conditions suitable to detect the selected phenotype; and
- (iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which produces the selected phenotype;

10

wherein (1) said first peptide is a Dkk peptide and said second peptide is a peptide selected from LRP5, HBM, LRP6, and the Dkk-binding portion of LRP5/LRP6/HBM or (2) said first peptide is a Dkk-interacting protein or the Dkk-binding fragment thereof, and said second peptide is a Dkk peptide.

15

20

25

In one embodiment, the eukaryotic cell is a yeast cell. In a preferred embodiment, the yeast cell is Saccharomyces. In a particularly preferred embodiment, the Saccharomyces cell is Saccharomyces cerevisiae. The invention further provides that the compound may comprise a Dkk interacting or Dkk-1 interacting protein, or a biologically active fragment thereof. In one embodiment, the Dkk interacting or Dkk-1 interacting protein, or a Dkk-binding fragment thereof, is added directly to the assay. In another embodiment, the Dkk interacting or Dkk-1 interacting protein, or a Dkk-binding fragment thereof, is recombinantly expressed by the eukaryotic cell in addition to the first and second peptides. In a preferred embodiment the compound comprises a Dkk or Dkk-1 aptamer, a mimetic of a Dkk or Dkk-1 peptide aptamer, a Dkk interacting or Dkk-1 interacting protein aptamer, or a mimetic of a Dkk-1 interacting protein aptamer. Other preferred embodiments provide that the compound comprises an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NOs:189-192) (particularly peptide 13 (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Alternatively, the present invention also provides that the compound may

comprise LRP5 antibodies or Dkk antibodies. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter element, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In another embodiment, the peptide binding pair comprises a ligand and a receptor to which the ligand binds. In one embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In another embodiment, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In one embodiment, the DNA binding domain comprises a heterologous DNA-binding domain of a transcriptional activation protein. In a preferred embodiment, the DNA binding protein is selected from the group consisting of a mammalian steroid receptor and bacterial LexA protein. In another embodiment, the reporter element is selected from the group consisting of lacZ, a polynucleotide encoding luciferase, a polynucleotide encoding green fluorescent protein (GFP), and a polynucleotide encoding chloramphenicol acetyltransferase. In a particularly preferred embodiment, the reporter element is lacZ

5

10

15

20

25

The invention further provides for a rescue screen for detecting the activity of a compound for modulating the binding interaction of a first peptide and a second peptide of a peptide binding pair, comprising:

- (i) culturing at least one yeast cell, wherein the yeast cell comprises;
 - a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;
 - b) a nucleotide sequence encoding a second heterologous

fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

- a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter gene prevents exhibition of a selected phenotype;
- (ii) incubating a compound with the yeast cell under conditions suitable to detect the selected phenotype; and
- (iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which prevents exhibition of the selected phenotype,

wherein said first peptide is a Dkk peptide and said second peptide is a peptide selected from LRP5, HBM, LRP6 and a Dkk-binding fragment of LRP5/LRP6/HBM.

20

25

30

5

10

15

In a preferred embodiment, the invention provides that the yeast cell is *Saccharomyces*. In a particularly preferred embodiment, the *Saccharomyces* cell is *Saccharomyces cerevisiae*. In one embodiment, the compound comprises one or more Dkk interacting or Dkk-1 interacting proteins, or a Dkk-binding fragment thereof. Compounds used in the present invention may comprise an LRP5 peptide aptamer, such as OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NO:189-192) (particularly peptide 13 (SEQ ID NO:191)) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer. Alternatively, the compound may comprise LRP5 antibodies or Dkk antibodies. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a

transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter gene, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In another embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In one embodiment, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In another embodiment, the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

10

5

The invention also provides for a rescue screen for detecting the modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair, comprising:

15

(i) culturing at least one yeast cell, wherein the yeast cell comprises;

15

 a) a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a DNA binding domain of a transcriptional activation protein;

20

 a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation domain of a transcriptional activation protein;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

- a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element prevents exhibition of a selected phenotype;
- (ii) incubating a compound with the yeast cell under conditions suitable to detect the selected phenotype; and

(iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which prevents exhibition of the selected phenotype,

5

10

wherein said first peptide is a Dkk interacting or Dkk-1 interacting protein peptide and said second peptide is a Dkk or Dkk-1 peptide.

In a preferred embodiment of the rescue screen, the yeast cell is *Saccharomyces*. In a particularly preferred embodiment, the *Saccharomyces* cell is *Saccharomyces cerevisiae*. In another embodiment, the yeast cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter gene, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion. In one embodiment, the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor. In another embodiment of the rescue screen, at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid. In another embodiment, the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

20

15

The invention also provides for a method for identifying potential compounds which modulate Dkk activity comprising:

25

- a) measuring the effect on binding of one or more Dkk interacting protein, or a Dkk-binding fragment thereof, with Dkk or a LRP5/LRP6/HBM binding fragment thereof in the presence and absence of a compound; and
- b) identifying as a potential Dkk modulatory compound a compound which modulates the binding between one or more Dkk interacting proteins or Dkk-binding fragment thereof and Dkk or LRP5/LRP6/HBM fragment thereof.

In a preferred embodiment, the Dkk is Dkk-1.

The invention further provides for any of the Dkk peptide aptamers of Figure 3 (SEQ ID NOs:171-188). The invention also provides for any of the LRP peptide aptamers of Figure 4 (SEQ ID NOs:189-192).

Another aspect of the invention provides for a method of identifying agents which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) injecting mRNA encoding Dkk and an agent into a *Xenopus* blastomere;
- (b) assessing axis duplication or analyzing marker gene expression; and

(c) identifying agents which elicit changes in axis duplication or marker gene expression as agents which modulate the interaction of Dkk with the Wnt signaling pathway. Wherein the agent may be chosen from among mRNA encoding Dkk interacting proteins, fragments thereof, siRNA, shRNA, antisense nucleotides, and antibodies. In a preferred embodiment, Dkk is Dkk-1. In a further embodiment, mRNA of HBM, LRP5/6, any Wnt (including Wnt1-Wnt19, particularly Wnt1, Wnt3, Wnt3a, and Wnt10b), Wnt antagonist, or combination of these is co-injected into the *Xenopus* blastomere. In another embodiment, the marker gene analyzed could include Siamois, Xnr3, slug, Xbra, HNK-1, endodermin, Xlhbox8, BMP2, BMP4, XLRP6, EF-1, or ODC.

The present invention provides for a method for identifying agents which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) transfecting cells with constructs encoding Dkk and potential Dkk interacting proteins, mRNA fragments thereof, siRNA, shRNA, or antisense, antibodies to LRP5/HBM/LRP6/Dkk/Dkk-interacting protein;
- (b) assessing changes in expression of a reporter gene linked to a Wntresponsive promoter; and,
- (c) identifying as a Dkk interacting protein any protein which alters reporter gene expression compared with cells transfected with a Dkk construct alone. In a further preferred embodiment, the cells may be HOB-03-CE6, HEK293, or U2OS cells.

30

5

10

15

20

In alternative embodiments, the Wnt-responsive promoter is TCF or LEF. In other preferred embodiments, the cells are co-transfected with CMV beta-galactosidase or tk-Renilla.

The present invention further provides for a LRP5/HBM monoclonal or polyclonal antibody to one or more peptides of amino acid sequences MYWTDWVETPRIE (SEQ ID NO:123), MYWTDWGETPRIE (SEQ ID NO:124), KRTGGKRKEILSA (SEQ ID NO:125), ERVEKTTGDKRTRIQGR (SEQ ID NO:126), or KQQCDSFPDCIDGSDE (SEQ ID NO:127).

Additionally, the present invention provides a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
- (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and
- (c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HMB using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag.

In one embodiment, the Dkk is Dkk-1. In a preferred embodiment, the epitope tag is alkaline phosphatase, histidine, myc, or a V5 tag.

Another embodiment of the present invention provides for a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) creating an LRP5, LRP6, or HBM fluorescent fusion protein using a first fluorescent tag;
- (b) creating a Dkk fusion protein comprising a second fluorescent tag;
- (c) adding a test compound; and,
- (d) assessing changes in the ratio of fluorescent tag emissions using Fluorescence Resonance Energy Transfer (FRET) or Bioluminescent Resonance Energy Transfer (BRET) to determine whether the compound modulates Dkk and LRP5/LRP6/HBM interactions.
- In a preferred embodiment, the Dkk is Dkk-1.

5

10

15

20

The present invention also provides for a method of diagnosing low or high bone mass and/or low or high lipid levels in a subject comprising examining expression of Dkk, LRP5, LRP6, HBM or HBM-like variant in the subject and determining whether Dkk, LRP5, LRP6, or HBM or a HBM-like variant is over- or under-expressed to determine whether subject has (a) high or low bone mass and/or (b) high or low lipid levels.

The invention further provides for a transgenic animal wherein Dkk is knocked out in a tissue-specific fashion. In a preferred embodiment, the Dkk is Dkk-1. In one preferred embodiment, the tissue specificity is bone tissue. In another preferred embodiment, the tissue specificity is liver or other tissues or cells involved in regulating lipid metabolism or cancer tissue.

The present invention further provides a method of screening for compounds which modulate the interaction of Dkk with LRP5, LRP6, or HBM comprising:

- (a) exposing LRP5, LRP6, or HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM to a compound; and
- (b) determining whether said compound bound to LRP5, LRP6, or HBM or the Dkk-binding fragment of LRP5, LRP6, or HBM and further determining whether said compound modulates the interaction of Dkk and LRP5, LRP6, or HBM.

In one embodiment, the Dkk is Dkk-1. In a preferred embodiment, the compound comprises an LRP5 peptide aptamer. Other preferred compositions include the peptide aptamer, OST262 (SEQ ID NO:208), Figure 4 (SEQ ID NO:189-192) (particularly peptide 13 (SEQ ID NO:191) and Figure 13 (including SEQ ID NOs:204-214), or a mimetic of such an aptamer, and an LRP5 antibody.

The present invention also provides a method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:

- (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
- (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and

15

10

5

20

(c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HBM using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag. In a preferred embodiment, the epitope tag is alkaline phosphatase, histidine, myc or a V5 tag.

5

In a preferred embodiment, the Dkk is Dkk-1.

The invention also provides for a method for identifying compounds which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

(a) transfecting cells with constructs containing Dkk and Wnt proteins;

10

- (b) assessing changes in expression of a reporter element linked to a Wntresponsive promoter; and
- (c) identifying as a Dkk/Wnt interaction modulating compound any compound which alters reporter gene expression compared with cells transfected with a Dkk construct alone.

15

In one embodiment, the Dkk is Dkk-1. In another embodiment, the Wnt is any of Wnt1-Wnt19. In a preferred embodiment, the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b. In a particularly preferred embodiment, the Wnt construct contains Wnt3a. In another particularly preferred embodiment, the Wnt construct contains Wnt1. In another preferred embodiment, the Wnt construct encodes for a Wnt that signals through the canonical Wnt pathway. In a particularly preferred embodiment, both Wnt3a and Wnt1 constructs are co-transfected into the cells. In another embodiment, the cells may be U2-OS, HOB-03-CE6, or HEK293 cells. In another embodiment, the reporter element used is TCF-luciferase, tk-Renilla, or a combination thereof.

25

20

The invention also provides for a method of testing compounds that modulate Dkk-mediated activity in a mammal comprising:

(a) providing a group of transgenic animals having (1) a regulatable one or more Dkk genes, (2) a knock-out of Dkk genes, or (3) a knock-in of one or more Dkk genes;

(b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and

- (c) exposing the transgenic animal group and control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and
- (d) comparing the transgenic animals and the control group of animals and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.

In a preferred embodiment, the Dkk is Dkk-1.

5

10

15

20

25

30

The invention further provides variants of LRP5 which demonstrate HBM biological activity, i.e., that are "HBM-like." In preferred embodiments, variants G171F, M282V, G171K, G171Q, A65V, G171V, G171I, and A214V of LRP5 are provided. The invention further provides for the use any of these variants in the forgoing methods.

חחורה

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a schematic of the components of the Wnt signal transduction pathway. Schematic obtained from:

http://www.stanford.edu/~rnusse/pathways/cell2.html

Figure 2 (A-C) show bait sequences (SEQ ID NOs:168-170) utilized in yeast two hybrid (Y2H) screens for protein-protein interactions.

Figure 3 shows a table of peptide aptamer insert sequences (SEQ ID NOs: 171-192) identified in Y2H screen with a Dkk-1 bait sequence.

Figure 4 shows a table of peptide aptamer insert sequences identified in a Y2H screen using a LRP5 ligand binding domain bait sequence.

Figure 5 shows a table of proteins identified in a Y2H screen using a Dkk-1 bait sequence. These proteins are identified by both their nucleic acid and amino acid accession numbers.

Figure 6 shows the results of a minimum interaction domain mapping screen of Dkk-1 with LRP5. At the top, a map of Dkk-1 showing the location of the signal

sequence, and cysteine rich domains 1 and 2. Below, the extent of domains examined using LRP5 LBD baits, LBD1 and LBD4, of Figure 2. To the right, scoring of the binding results observed in the experiment.

Figure 7 shows a diagram of the Xenopus Embryo Assay for Wnt activity.

Figure 8 shows the effects of Zmax/LRP5 and HBM on Wnt signaling in the *Xenopus* embryo assay.

Figure 9 shows the effects of Zmax/LRP5 and HBM on induction of secondary axis formation in the *Xenopus* embryo assay.

Figure 10 shows the effects of human Dkk-1 on the repression of the canonical Wnt pathway.

5

10

15

20

25

30

Figure 11 shows the effects of human Dkk-1 on Zmax/LRP5 and HBM-mediated Wnt signaling.

Figure 12 shows pcDNA3.1 construct names with nucleotide sequences (including SEQ ID NOs:193-203) for LRP5-binding peptide aptamers, Dkk-1 peptides and control constructs.

Figure 13 shows the amino acid sequences (including SEQ ID NOs:204-214) for the corresponding LRP5-binding peptides, Dkk-1 peptide aptamers and control constructs in Figure 12.

Figure 14 shows the effects of Dkk-1 and Dkk-2 on Wnt1 signaling with coreceptors LRP5, HBM, and LRP6 in HOB03CE6 cells.

Figure 15 shows the effects of Dkk-1 and Dkk-2 on Wnt3a signaling with coreceptors LRP5, HBM, and LRP6 in HOB03CE6 cells.

Figure 16 demonstrates that the LRP5-LBD peptide aptamer 262 activates Wnt signaling in the presence of Wnt3a in U2OS cells.

Figure 17 shows the differential binding of an antibody generated to a sequence (a.a. 165-177) containing the HBM mutation in LRP5 in LRP5 and HBM virus-infected cells.

Figure 18 shows data generated from a Y2H interaction trap where a mutant Dkk-1 (C220A) is unable to bind to LRP5 and demonstrating the window of capability of detecting small molecule effects on LRP and Dkk interactions.

Figure 19 shows that Dkk-1 represses Wnt3a-mediated Wnt signaling in U2OS bone cells using the cell-based reporter gene assay for high throughput screening.

Figure 20 demonstrates that Wnt1-HBM generated signaling is not efficiently inhibited by Dkk-1 in U2OS bone cells while LRP5 and LRP6-mediated signaling are using the cell-based reporter gene assay for high throughput screening.

5

10

15

20

25

Figure 21 shows that the TCF signal in the cell-based reporter gene assay for high throughput screening can be modulated by Dkk-1 and Dkk-1-AP without Wnt DNA transfection.

Figure 22 shows the morphological results in the Xenopus assay using aptamers 261 and 262 from the LRP5-LBD to activate Wnt signaling.

Figure 23 demonstrates that LRP5-LBD aptamers 261 and 262 induce Wnt signaling over other LRP5 aptamers.

Figure 24 shows that the mutation G171F in LRP5 produces a greater activation of the Wnt pathway than LRP5 which is consistent with HBM activity.

Figure 25 shows that the mutation M282V in LRP5 produces an activation of the Wnt pathway which is consistent with HBM activity in U2OS cells.

Figure 26 shows the amino acid sequence of the various peptides of dkk-1 selected to generate polyclonal antibodies, their relationship to the Dkk-1 amino acid sequence and identities of polyclonal antibodies generated.

Figure 27 shows a Western blot demonstrating that polyclonal antibody #5521 to amino acids 165-186 of Dkk-1 was able to detect Dkk1-V5 and Dkk1-AP from conditioned medium.

Figure 28 shows a Western blot demonstrating that polyclonal antibody #74397 to amino acids 147-161 was able to detect Dkk1-V5 in both conditioned medium and immunoprecipitated conditioned medium.

DETAILED DESCRIPTION OF THE INVENTION

1. **Definitions**

5

10

15

20

25

In general, terms in the present application are used consistent with the manner in which those terms are understood in the art. To aid in the understanding of the specification and claims, the following definitions are provided.

"Gene" refers to a DNA sequence that encodes through its template or messenger RNA a sequence of amino acids characteristic of a specific peptide. The term "gene" includes intervening, non-coding regions, as well as regulatory regions, and can include 5' and 3' ends.

By "nucleic acid" is meant to include single stranded and double stranded nucleic acids including, but not limited to DNAs, RNAs (e.g., mRNA, tRNAs, siRNAs), cDNAs, recombinant DNA (rDNA), rRNAs, antisense nucleic acids, oligonucleotides, and oligomers, and polynucleotides. The term may also include hybrids such as triple stranded regions of RNA and/or DNA or double stranded RNA:DNA hybrids. The term also is contemplated to include modified nucleic acids such as, but not limited to biotinylated nucleic acids, tritylated nucleic acids, fluorophor labeled nucleic acids, inosine, and the like.

"Gene sequence" refers to a nucleic acid molecule, including DNA which contains a non-transcribed or non-translated sequence, which comprises a gene. The term is also intended to include any combination of gene(s), gene fragment(s), non-transcribed sequence(s) or non-translated sequence(s) which are present on the same DNA molecule.

The nucleic acid sequences of the present invention may be derived from a variety of sources including DNA, cDNA, synthetic DNA, synthetic RNA or combinations thereof. Such sequences may comprise genomic DNA which may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with promoter regions and/or poly (A) sequences. The sequences, genomic DNA or cDNA may be obtained in any of several ways. Genomic DNA can be extracted and purified from suitable cells by means well

known in the art. Alternatively, mRNA can be isolated from a cell and used to produce cDNA by reverse transcription or other means.

5

10

15

20

25

30

"cDNA" refers to complementary or copy DNA produced from an RNA template by the action of RNA-dependent DNA polymerase (reverse transcriptase). Thus, a "cDNA clone" means a duplex DNA sequence for which one strand is complementary to an RNA molecule of interest, carried in a cloning vector or PCR amplified. cDNA can also be single stranded after first strand synthesis by reverse transcriptase. In this form, it is a useful PCR template and does not need to be carried in a cloning vector. This term includes genes from which the intervening sequences have been removed. Thus, the term "gene", as sometimes used generically, can also include nucleic acid molecules comprising cDNA and cDNA clones.

"Recombinant DNA" means a molecule that has been engineered by splicing in vitro a cDNA or genomic DNA sequence or altering a sequence by methods such as PCR mutagenesis.

"Cloning" refers to the use of *in vitro* recombination techniques to insert a particular gene or other DNA sequence into a vector molecule. In order to successfully clone a desired gene, it is necessary to use methods for generating DNA fragments, for joining the fragments to vector molecules, for introducing the composite DNA molecule into a host cell in which it can replicate, and for selecting the clone having the target gene from amongst the recipient host cells.

"cDNA library" refers to a collection of recombinant DNA molecules containing cDNA inserts which together comprise the entire or a partial repertoire of genes expressed in a particular tissue or cell source. Such a cDNA library can be prepared by methods known to one skilled in the art and described by, for example, Cowell and Austin, "cDNA Library Protocols," *Methods in Molecular Biology* (1997).

"Cloning vehicle" refers to a plasmid or phage DNA or other DNA sequence which is able to replicate in a host cell. This term can also include artificial chromosomes such as BACs and YACs. The cloning vehicle is characterized by one or more endonuclease recognition sites at which such DNA sequences may be cut in

a determinable fashion without loss of an essential biological function of the DNA, which may contain a marker suitable for use in the identification of transformed cells.

5

10

15

20

25

30

"Expression" refers to the process comprising transcription of a gene sequence and subsequent processing steps, such as translation of a resultant mRNA to produce the final end product of a gene. The end product may be a protein (such as an enzyme or receptor) or a nucleic acid (such as a tRNA, antisense RNA, or other regulatory factor). The term "expression control sequence" refers to a sequence of nucleotides that control or regulate expression of structural genes when operably linked to those genes. These include, for example, the lac systems, the trp system, major operator and promoter regions of the phage lambda, the control region of fd coat protein and other sequences known to control the expression of genes in prokaryotic or eukaryotic cells. Expression control sequences will vary depending on whether the vector is designed to express the operably linked gene in a prokaryotic or eukaryotic host, and may contain transcriptional elements such as enhancer elements, termination sequences, tissue-specificity elements and/or translational initiation and termination sites.

"Expression vehicle" refers to a vehicle or vector similar to a cloning vehicle but which is capable of expressing a gene which has been cloned into it, after transformation into a host. The cloned gene is usually placed under the control of (i.e., operably linked to) an expression control sequence.

"Operator" refers to a DNA sequence capable of interacting with the specific repressor, thereby controlling the transcription of adjacent gene(s).

"Promoter" refers to a DNA sequence that can be recognized by an RNA polymerase. The presence of such a sequence permits the RNA polymerase to bind and initiate transcription of operably linked gene sequences.

"Promoter region" is intended to include the promoter as well as other gene sequences which may be necessary for the initiation of transcription. The presence of a promoter region is sufficient to cause the expression of an operably linked gene sequence. The term "promoter" is sometimes used in the art to generically indicate a promoter region. Many different promoters are known in the art which direct

expression of a gene in a certain cell types. Tissue-specific promoters can comprise nucleic acid sequences which cause a greater (or decreased) level of expression in cells of a certain tissue type.

"Operably linked" means that the promoter controls the initiation of expression of the gene. A promoter is operably linked to a sequence of proximal DNA if upon introduction into a host cell the promoter determines the transcription of the proximal DNA sequence(s) into one or more species of RNA. A promoter is operably linked to a DNA sequence if the promoter is capable of initiating transcription of that DNA sequence.

5

10

15

20

25

30

"Prokaryote" refers to all organisms without a true nucleus, including bacteria.

"Eukaryote" refers to organisms and cells that have a true nucleus, including mammalian cells.

"Host" includes prokaryotes and eukaryotes, such as yeast and filamentous fungi, as well as plant and animal cells. The term includes an organism or cell that is the recipient of a replicable expression vehicle.

The term "animal" is used herein to include all vertebrate animals, except humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages. Preferred animals include higher eukaryotes such as avians, rodents (e.g., mice, rabbits, rats, chinchillas, guinea pigs, hamsters and the like), and mammals. Preferred mammals include bovine, equine, feline, canine, ovine, caprine, porcine, buffalo, humans, and primates.

A "transgenic animal" is an animal containing one or more cells bearing genetic information received, directly or indirectly, by deliberate genetic manipulation or by inheritance from a manipulated progenitor at a subcellular level, such as by microinjection or infection with a recombinant viral vector (e.g., adenovirus, retrovirus, herpes virus, adeno-associated virus, lentivirus). This introduced DNA molecule may be integrated within a chromosome, or it may be extra-chromosomally replicating DNA.

"Embryonic stem cells" or "ES cells" as used herein are cells or cell lines usually derived from embryos which are pluripotent meaning that they are un-

differentiated cells. These cells are also capable of incorporating exogenous DNA by homologous recombination and subsequently developing into any tissue in the body when incorporated into a host embryo. It is possible to isolate pluripotent cells from sources other than embryonic tissue by methods which are well understood in the art.

5

10

15

20

25

30

Embryonic stem cells in mice have enabled researchers to select for transgenic cells and perform gene targeting. This allows more genetic engineering than is possible with other transgenic techniques. For example, mouse ES cells are relatively easy to grow as colonies *in vitro*. The cells can be transfected by standard procedures and transgenic cells clonally selected by antibiotic resistance. See, for example, Doetschman *et al..*, 1994, *Gene transfer in embryonic stem cells*. In Pinkert (Ed.) <u>Transgenic Animal Technology: A Laboratory Handbook</u>. Academic Press Inc., New York, pp.115-146. Furthermore, the efficiency of this process is such that sufficient transgenic colonies (hundreds to thousands) can be produced to allow a second selection for homologous recombinants. Mouse ES cells can then be combined with a normal host embryo and, because they retain their potency, can develop into all the tissues in the resulting chimeric animal, including the germ cells. The transgenic modification can then be transmitted to subsequent generations.

Methods for deriving embryonic stem (ES) cell lines *in vitro* from early preimplantation mouse embryos are well known. See for example, Evans *et al.*, 1981 *Nature* 29: 154-6 and Martin, 1981, *Proc. Nat. Acad. Sci. USA*, 78: 7634-8. ES cells can be passaged in an undifferentiated state, provided that a feeder layer of fibroblast cells or a differentiation inhibiting source is present.

The term "somatic cell" indicates any animal or human cell which is not a sperm or egg cell or is capable of becoming a sperm or egg cell. The term "germ cell" or "germ-line cell" refers to any cell which is either a sperm or egg cell or is capable of developing into a sperm or egg cell and can therefore pass its genetic information to offspring. The term "germ cell-line transgenic animal" refers to a transgenic animal in which the genetic information was incorporated in a germ line cell, thereby conferring the ability to transfer the information to offspring. If such

offspring in fact possess some or all of that information, then they, too, are transgenic animals.

5

10

15

20

25

30

The genetic alteration of genetic information may be foreign to the species of animal to which the recipient belongs, or foreign only to the particular individual recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.

"Fragment" of a gene refers to any portion of a gene sequence. A
"biologically active fragment" refers to any portion of the gene that retains at least
one biological activity of that gene. For example, the fragment can perhaps
hybridize to its cognate sequence or is capable of being translated into a polypeptide
fragment encoded by the gene from which it is derived.

"Variant" refers to a gene that is substantially similar in structure and biological activity or immunological characteristics to either the entire gene or to a fragment of the gene. Provided that the two genes possess a similar activity, they are considered variant as that term is used herein even if the sequence of encoded amino acid residues is not identical. Preferentially, as used herein (unless otherwise defined) the variant is one of LRP5, HBM or LRP6. The variant preferably is one that yields an HBM-like phenotype (i.e., enhances bones mass and/or modulates lipid levels). These variants include missense mutations, single nucleotide polymorphisms (SNPs), mutations which result in changes in the amino acid sequence of the protein encoded by the gene or nucleic acid, and combinations thereof, as well as com in the exon domains of the HBM gene and mutations in LRP5 or LRP6 which result in an HBM like phenotype.

"Amplification of nucleic acids" refers to methods such as polymerase chain reaction (PCR), ligation amplification (or ligase chain reaction, LCR) and amplification methods based on the use of Q-beta replicase. These methods are well known in the art and described, for example, in U.S. Patent Nos. 4,683,195 and 4,683,202. Reagents and hardware for conducting PCR are commercially available. Primers useful for amplifying sequences from the HBM region are preferably complementary to, and hybridize specifically to sequences in the HBM region or in

regions that flank a target region therein. HBM sequences generated by amplification may be sequenced directly. Alternatively, the amplified sequence(s) may be cloned prior to sequence analysis.

5

10

15

20

25

"Antibodies" may refer to polyclonal and/or monoclonal antibodies and fragments thereof, and immunologic binding equivalents thereof, that can bind to the HBM proteins and fragments thereof or to nucleic acid sequences from the HBM region, particularly from the HBM locus or a portion thereof. Preferred antibodies also include those capable of binding to LRP5, LRP6 and HBM variants. The term antibody is used both to refer to a homogeneous molecular entity, or a mixture such as a serum product made up of a plurality of different molecular entities. Proteins may be prepared synthetically in a protein synthesizer and coupled to a carrier molecule and injected over several months into rabbits. Rabbit sera is tested for immunoreactivity to the HBM protein or fragment. Monoclonal antibodies may be made by injecting mice with the proteins, or fragments thereof. Monoclonal antibodies will be screened by ELISA and tested for specific immunoreactivity with HBM protein or fragments thereof. Harlow et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988) and Using Antibodies: A Laboratory Manual, Harlow, Ed and Lane, David (Cold Spring Harbor Press, 1999). These antibodies will be useful in assays as well as pharmaceuticals. By "antibody" is meant to include but not limited to polyclonal, monoclonal, chimeric, human, humanized, bispecific, multispecific, primatized™ antibodies.

"HBM protein" refers to a protein that is identical to a Zmax1 (LRP5) protein except that it contains an alteration of glycine 171 to a valine. An HBM protein is defined for any organism that encodes a Zmax1 (LRP5) true homolog. For example, a mouse HBM protein refers to the mouse Zmax1 (LRP5) protein having the glycine 170 to valine substitution.

By "HBM-like" is meant a variant of LRP5, LRP6 or HBM which when expressed in a cell is capable of modulating bone mass, lipid levels, Dkk activity, and/or Wnt activity.

In one embodiment of the present invention, "HBM gene" refers to the genomic DNA sequence found in individuals showing the HBM characteristic or phenotype, where the sequence encodes the protein indicated by SEQ ID NO: 4. The HBM gene and the Zmax1 (LRP5) gene are allelic. The protein encoded by the HBM gene has the property of causing elevated bone mass, while the protein encoded by the Zmax1 (LRP5) gene does not. The HBM gene and the Zmax1 (LRP5) gene differ in that the HBM gene has a thymine at position 582, while the Zmax1 gene has a guanine at position 582. The HBM gene comprises the nucleic acid sequence shown as SEQ ID NO: 2. The HBM gene may also be referred to as an "HBM polymorphism." Other HBM genes may further have silent mutations, such as those discussed in Section 3 below.

5

10

15

20

25

In alternative embodiments of the present invention, "HBM gene" may also refer to any allelic variant of Zmax1 (LRP5) or LRP6 which results in the HBM phenotype. Such variants may include alteration from the wild-type protein coding sequence as described herein and/or alteration in expression control sequences of Zmax1 (LRP5) or contains an amino acid mutation in LRP5 or LRP6, such that the resulting protein produces a phenotype which enhances bone mass and/or modulates lipid levels. A preferred example of such a variant is an alteration of the endogenous Zmax1 (LRP5) promoter region resulting in increased expression of the Zmax1 (LRP5) protein.

"Normal," "wild-type," "unaffected", "Zmax1", "Zmax", "LR3" and "LRP5" all refer to the genomic DNA sequence that encodes the protein indicated by SEQ ID NO: 3. LRP5 has also been referred to LRP7 in mouse. Zmax1, LRP5 and Zmax may be used interchangeably throughout the specification and are meant to be the same gene, perhaps only relating to the gene in a different organism. The Zmax1 gene has a guanine at position 582 in the human sequence. The Zmax1 gene of human comprises the nucleic acid sequence shown as SEQ ID NO: 1. "Normal," "wild-type," "unaffected", "Zmax1" and "LRP5" also refer to allelic variants of the genomic sequence that encodes proteins that do not contribute to elevated bone

mass. The Zmax1 (LRP5) gene is common in the human population, while the HBM gene is rare.

"Bone development" generally refers to any process involved in the change of bone over time, including, for example, normal development, changes that occur during disease states, and changes that occur during aging. This may refer to structural changes and dynamic rate changes such as growth rates, resorption rates, bone repair rates, and etc. "Bone development disorder" particularly refers to any disorders in bone development including, for example, changes that occur during disease states and changes that occur during aging. Bone development may be progressive or cyclical in nature. Aspects of bone that may change during development include, for example, mineralization, formation of specific anatomical features, and relative or absolute numbers of various cell types.

5

10

15

20

25

30

"Bone modulation" or "modulation of bone formation" refers to the ability to affect any of the physiological processes involved in bone remodeling, as will be appreciated by one skilled in the art, including, for example, bone resorption and appositional bone growth, by, *inter alia*, osteoclastic and osteoblastic activity, and may comprise some or all of bone formation and development as used herein.

Bone is a dynamic tissue that is continually adapting and renewing itself through the renewal of old or unnecessary bone by osteoclasts and the rebuilding of new bone by osteoblasts. The nature of the coupling between these processes is responsible for both the modeling of bone during growth as well as the maintenance of adult skeletal integrity through remodeling and repair to meet the everyday needs of mechanical usage. There are a number of diseases that result from an uncoupling of the balance between bone resorption and formation. With aging there is a gradual "physiologic" imbalance in bone turnover, which is particularly exacerbated in women due to menopausal loss of estrogen support, that leads to a progressive loss of bone. As bone mineral density falls below population norms there is a consequent increase in bone fragility and susceptibility to spontaneous fractures. For every 10 percent of bone that is lost, the risk of fracture doubles. Individuals with bone mineral density (BMD) in the spine or proximal femur 2.5 or

more standard deviations below normal peak bone mass are classified as osteoporotic. However, osteopenic individuals with BMD between 1 and 2.5 standard deviations below the norm are clearly at risk.

Bone is measured by several different forms of X-ray absorptiometry. All of the instruments measure the inorganic or bone mineral content of the bone. Standard DXA measurements give a value that is an areal density, not a true density measurement by the classical definition of density (mass/unit volume). Nevertheless, this is the type of measurement used clinically to diagnose osteoporosis. However, while BMD is a major contributing factor to bone strength, as much as 40% of bone strength stems from other factors including: 1) bone size (i.e., larger diameters increase organ-level stiffness, even in the face of lower density); 2) the connectivity of trabecular structures; 3) the level of remodeling (remodeling loci are local concentrators of strain); and 4) the intrinsic strength of the bony material itself, which in turn is a function of loading history (i.e., through accumulated fatigue damage) and the extent of collagen cross-linking and level of mineralization. There is good evidence that all of these strength/fragility factors play some role in osteoporotic fractures, as do a host of extraskeletal influences as well (such as fall patterns, soft tissue padding, and central nervous system reflex responsiveness).

20

25

30

5

10

15

Additional analytical instruments can be used to address these features of bone. For example, the pQCT allows measurement of separate trabecular and cortical compartments for size and density and the μ CT provides quantitative information on architectural features such as trabecular connectivity. The μ CT also gives a true bone density measurement. With these tools, the important non-BMD parameters can be measured for diagnosing the extent of disease and the efficacy of treatments. Current treatments for osteoporosis are based on the ability of drugs to prevent or retard bone resorption. Although newer anti-resorptive agents are proving to be useful in the therapy of osteoporosis, they are viewed as short-term solutions to the more definitive challenge to develop treatments that will increase bone mass and/or the bone quality parameters mentioned above.

Thus, bone modulation may be assessed by measuring parameters such as bone mineral density (BMD) and bone mineral content (BMC) by pDXA X-ray methods. bone size, thickness or volume as measured by X-ray, bone formation rates as measured for example by calcien labeling, total, trabecular, and mid-shaft density as measured by pQCT and/or μ CT methods, connectivity and other histological parameters as measured by μ CT methods, mechanical bending and compressive strengths as preferably measured in femur and vertebrae respectively. Due to the nature of these measurements, each may be more or less appropriate for a given situation as the skilled practitioner will appreciate. Furthermore, parameters and methodologies such as a clinical history of freedom from fracture, bone shape, bone morphology, connectivity, normal histology, fracture repair rates, and other bone quality parameters are known and used in the art. Most preferably, bone quality may be assessed by the compressive strength of vertebra when such a measurement is appropriate. Bone modulation may also be assessed by rates of change in the various parameters. Most preferably, bone modulation is assessed at more than one age.

5

10

15

20

25

30

"Normal bone density" refers to a bone density within two standard deviations of a Z score of 0 in the context of the HBM linkage study. In a general context, the range of normal bone density parameters is determined by routine statistical methods. A normal parameter is within about 1 or 2 standard deviations of the age and sex normalized parameter, preferably about 2 standard deviations. A statistical measure of meaningfulness is the P value which can represent the likelihood that the associated measurement is significantly different from the mean. Significant P values are P < 0.05, 0.01, 0.005, and 0.001, preferably at least P < 0.01.

"HBM" refers to "high bone mass" although this term may also be expressed in terms of bone density, mineral content, and size.

The "HBM phenotype" and "HBM-like phenotype" may be characterized by an increase of about 2 or more standard deviations, preferably 2, 2.5, 3, or more standard deviations in 1, 2, 3, 4, 5, or more quantitative parameters of bone modulation, preferably bone density and mineral content and bone strength

parameters, above the age and sex norm for that parameter. The HBM phenotype and HBM-like phenotype are characterized by statistically significant increases in at least one parameter, preferably at least 2 parameters, and more preferably at least 3 or more parameters. The HBM phenotype and the HBM-like phenotype may also be characterized by an increase in one or more bone quality parameters and most preferably increasing parameters are not accompanied by a decrease in any bone quality parameters. Most preferably, an increase in bone modulation parameters and/or bone quality measurements is observed at more than one age. The HBM phenotype and HBM-like phenotype also includes changes of lipid levels, Wnt activity and/or Dkk activity.

. 5

10

15

20

25

The terms "isolated" and "purified" refer to a substance altered by hand of man from the natural environment. An isolated peptide may be for example in a substantially pure form or otherwise displaced from its native environment such as by expression in an isolated cell line or transgenic animal. An isolated sequence may for example be a molecule in substantially pure form or displaced from its native environment such that at least one end of said isolated sequence is not contiguous with the sequence it would be contiguous with in nature.

"Biologically active" refers to those forms of proteins and polypeptides, including conservatively substituted variants, alleles of genes encoding a protein or polypeptide fragments of proteins which retain a biological and/or immunological activity of the wild-type protein or polypeptide. Preferably the activity is one which induces a change in Dkk activity, such as inhibiting the interaction of Dkk with a ligand binding partner (e.g., LRP5 or LRP6 or Dkk-1 with a Dkk-1 interacting protein such as those shown in Figure 5). By biologically active is also meant to include any form which modulates Wnt signaling.

By "modulate" and "regulate" is meant methods, conditions, or agents which increase or decrease the wild-type activity of an enzyme, inhibitor, signal transducer, receptor, transcription activator, co-factor, and the like. This change in activity can be an increase or decrease of mRNA translation, mRNA or DNA transcription, and/or

mRNA or protein degradation, which may in turn correspond to an increase or decrease in biological activity.

By "modulated activity" is meant any activity, condition, disease or phenotype which is modulated by a biologically active form of a protein. Modulation may be effected by affecting the concentration or subcellular localization of biologically active protein, *i.e.*, by regulating expression or degradation, or by direct agonistic or antagonistic effect as, for example, through inhibition, activation, binding, or release of substrate, modification either chemically or structurally, or by direct or indirect interaction which may involve additional factors.

10

5

By "effective amount" or "dose effective amount" or "therapeutically effective amount" is meant an amount of an agent which modulates a biological activity of the polypeptide of the invention.

By "immunologically active" is meant any immunoglobulin protein or fragment thereof which recognizes and binds to an antigen.

15

By "Dkk" is meant to refer to the nucleic acids and proteins of members of the Dkk (Dickkopf) family. This includes, but is not limited to, Dkk-1, Dkk-2, Dkk-3, Dkk-4, Soggy, and related Dkk proteins. Dkk-1 is a preferred embodiment of the present invention. However, the Dkk proteins have substantial homology and one skilled in the art will appreciate that all of the embodiments of the present invention utilizing Dkk-1 may also be utilized with the other Dkk proteins.

20

25

By "Dkk-1" is meant to refer to the Dkk-1 protein and nucleic acids which encode the Dkk-1 protein. Dkk-1 refers to Dickkopf-1, and in *Xenopus* it is related to at least Dkk-2, Dkk-3, and Dkk-4 (see Krupnik et al., Gene 238:301-313 (1999)). Dkk-1 was first identified in *Xenopus* (Glinka et al., Nature 391:357-62 (1998)). It was recognized as a factor capable of inducing ectopic head formation in the presence of inhibition of the BMP pathway. It was then also found to inhibit the axis-inducing activity of several *Xenopus* Wnt molecules by acting as an extracellular antagonist of Wnt signaling. Mammalian homologs have been found including Dkk-1, Dkk-2, Dkk-3, Dkk-4 and soggy (Fedi et al., 1999 and Krupnick et al. 1999). Human Dkk-1 was also referred to as sk (Fedi et al., 1999). As used herein, Dkk-1 is

30

meant to include proteins from any species having a Wnt pathway in which Dkk-1 interacts. Particularly preferred are mammalian species (e.g., murine, caprine, canine, bovine, feline, equine, primate, ovine, porcine and the like), with particularly preferred mammals being humans. Nucleic acid sequences encoding Dkk-1 include, but are not limited to human Dkk-1 (GenBank Accession Nos. AH009834, XM 005730, AF261158, AF261157, AF177394, AF127563 and NM 012242), Mus musculus dickkopf homolog 1 (GenBank Accession No. NM 010051), and Danio rerio dickkopf-1 (GenBank Accession Nos. AF116852 and AB023488). The genomic sequences with exon annotation are GenBank Accession Nos. AF261157 and AF261158. Also contemplated are homologs of these sequences which have Dkk-1 activity in the Wnt pathway. Dkk-1 amino acid sequences include, but are not limited to human dickkopf homolog 1 (GenBank Accession Nos. AAG15544, BAA34651, NP_036374, AAF02674, AAD21087, and XP_005730), Danio rerio (zebrafish) dickkopf1 (GenBank Accession Nos. BAA82135 and AAD22461) and murine dickkopf-1 (GenBank Accession Nos. O54908 and NP 034181). Variants and homologs of these sequences which possess Dkk-1 activity are also included when referring to Dkk-1.

5

10

15

20

25

30

By "Dkk mediated" disorder, condition or disease is any abnormal state that involves Dkk activity. The abnormal state can be induced by environmental exposure or drug administration. Alternatively, the disease or disorder can be due to a genetic defect. Dkk mediated diseases, disorders and conditions include but are not limited to bone mass disorders or conditions and lipid disorders and conditions. For example, bone mass disorders/conditions/diseases, which may be mediated by Dkk, include but are not limited to age related loss of bone, bone fractures (e.g., hip fracture, Colle's fracture, vertebral crush fractures), chondrodystrophies, druginduced disorders (e.g., osteoporosis due to administration of glucocorticoids or heparin and osteomalacia due to administration of aluminum hydroxide, anticonvulsants, or glutethimide), high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and rickets.

Lipid disorders/diseases/conditions, which may be mediated by Dkk, include but are not limited to familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and elevated lipid levels of unknown etiologies

The term "recognizes and binds," when used to define interactions of antisense nucleotides, siRNAs (small inhibitory RNA), or shRNA (short hairpin RNA) with a target sequence, means that a particular antisense, siRNA, or shRNA sequence is substantially complementary to the target sequence, and thus will specifically bind to a portion of an mRNA encoding polypeptide. As such, typically the sequences will be highly complementary to the mRNA target sequence, and will have no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 base mismatches throughout the sequence. In many instances, it may be desirable for the sequences to be exact matches, i.e. be completely complementary to the sequence to which the oligonucleotide specifically binds, and therefore have zero mismatches along the complementary stretch. As such, highly complementary sequences will typically bind quite specifically to the target sequence region of the mRNA and will therefore be highly efficient in reducing, and/or even inhibiting the translation of the target mRNA sequence into polypeptide product.

Substantially complementary oligonucleotide sequences will be greater than about 80 percent complementary (or `% exact-match`) to the corresponding mRNA target sequence to which the oligonucleotide specifically binds, and will, more preferably be greater than about 85 percent complementary to the corresponding mRNA target sequence to which the oligonucleotide specifically binds. In certain aspects, as described above, it will be desirable to have even more substantially complementary oligonucleotide sequences for use in the practice of the invention, and in such instances, the oligonucleotide sequences will be greater than about 90 percent complementary to the corresponding mRNA target sequence to which the oligonucleotide specifically binds, and may in certain embodiments be greater than about 95 percent complementary to the corresponding mRNA target sequence to

which the oligonucleotide specifically binds, and even up to and including 96%, 97%, 98%, 99%, and even 100% exact match complementary to the target mRNA to which the designed oligonucleotide specifically binds.

Percent similarity or percent complementary of any of the disclosed sequences may be determined, for example, by comparing sequence information using the GAP computer program, version 6.0, available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (1970). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess (1986), (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

By "mimetic" is meant a compound or molecule that performs the same function or behaves similarly to the compound mimicked.

By "reporter element" is meant a polynucleotide that encodes a poplypeptide capable of being detected in a screening assays. Examples of polypeptides encoded by reporter elements include, but are not limited to, lacZ, GFP, luciferase, and chloramphenicol acetyltransferase.

2. Introduction

5

10

15

20

25

30

A polymorphism in LRP5 (Zmax), G171V, designated as HBM, has been identified as conferring a high bone mass phenotype in a population of related subjects as described in co-pending applications International Patent Application PCT/US 00/16951, and U.S. Patent Application Nos. 09/543,771 and 09/544,398, which are hereby incorporated by reference in their entirety (Little *et al.*, *Am J Hum Genet*. 70:11-19 (2002)). LRP5 is also described in International Patent Application WO 98/46743, which is incorporated by reference in its entirety. Loss of LRP5

function has been shown to have a deleterious effect on bone (Gong et al., Cell 107:513-523 (2001)). Additionally, the HBM polymorphism and LRP5 may also be important in cardiac health and lipid-mediated disorders. Thus, methods of regulating their activity can serve as methods of treating and/or preventing cardiac and lipid-mediated disorders.

Recent studies have indicated that LRP5 participates in the Wnt signal transduction pathway. The Wnt pathway is critical in limb early embryological development. A recently published sketch of the components of Wnt signaling is shown in Figure 1

5

10

15

20

25

30

(Nusse, 2001 http://www.stanford.edu/~rnusse/pathways/cell2.html) (see also, Nusse, Nature 411:255-6 (2001); and Mao et al., Nature 411:321-5 (2001)). Briefly summarized, Wnt proteins are secreted proteins which interact with the transmembrane protein Frizzled (Fz). LRP proteins, such as LRP5 and LRP6, are believed to modulate the Wnt signal in a complex with Fz (Tamai et al., Nature 407:530-5 (2000)). The Wnt pathway acts intracellularly through the Disheveled protein (Dsh) which in turn inhibits glycogen synthetase kinase-3 (GSK3) from phosphorylating β -catenin. Phosphorylated β -catenin is rapidly degraded following ubiquitination. However, the stabilized β -catenin accumulates and translocates to the nucleus where it acts as a cofactor of the T-cell factor (TCF) transcription activator complex.

The protein dickkopf-1 (Dkk-1) is reported to be an antagonist of Wnt pathway. Dkk-1 is required for head formation in early development. Dkk-1 and its function in the Wnt pathway are described in *e.g.*, Krupnik, *et al.*, *Gene* 238:301-13 (1999); Fedi *et al.*, *J. Biol. Chem.* 274:19465-72 (1999); see *also* for Dkk-1 and the Wnt pathway, Wu *et al.*, *Curr. Biol.* 10:1611-4 (2000), Shinya *et al.*, *Mech. Dev.* 98:3-17 (2000), Mukhopadhyay *et al.*, *Dev Cell* 1:423-434 (2001) and in PCT Patent Application No. WO 00/52047, and in references cited in each. It has been known that Dkk-1 acts upstream of Dsh, however the nature of the mechanism of inhibition by Dkk-1 is just beginning to be elucidated. Dkk-1 is expressed in the mouse embryonic limb bud and its disruption results in abnormal limb morphogensis, among

other developmental defects (Gotewold et al., Mech. Dev. 89:151-3 (1999); and, Mukhopadhyay et al., Dev Cell 1:423-434 (2001)).

Related U.S. provisional application 60/291,311 disclosed a novel interaction between Dkk-1 (GenBank Accession No. XM 005730) and LRP5. The interaction between Dkk-1 and LRP5 was discovered by a yeast two hybrid (Y2H) screen for proteins which interact with the ligand binding domain of LRP5, as described in Example 1. The two-hybrid screen is a common procedure in the art, which is described, for example, by Gietz et al., Mol. Cell. Biochem. 172:67-79 (1997); Young, Biol. Reprod. 58:302-11 (1998); Brent and Finley, Ann. Rev. Genet. 31:663-704 (1997); and Lu and Hannon, eds., Yeast Hybrid Technologies, Eaton Publishing, Natick MA, (2000). More recently, other studies confirm that Dkk-1 is a binding partner for LRP and modulates the Wnt pathway via direct binding with LRP (R. Nusse, Nature 411:255-256 (2001); A. Bafico et al., Nat. Cell Biol. 3:683-686 (2001); M. Semënov, Curr. Biol. 11:951-961 (2001); B. Mao, Nature 411:321-325 (2001), Zorn, Curr. Biol. 11:R592-5 (2001)); and, L. Li et al., J. Biol Chem. 277:5977-81 (2002)).

Mao and colleagues (2001) identified Dkk-1 as a ligand for LRP6. Mao et al. suggest that Dkk-1 and LRP6 interact antagonistically where Dkk proteins inhibit the Wnt coreceptor functions of LRP6. Using co-immunoprecipitation, the group verified that the Dkk-1/LRP6 interaction was direct. Dkk-2 was also found to directly bind LRP6. Contrary to data contained in provisional application 60/291,311, Mao et al. report that no interaction was detected between any Dkk protein and LRP5, as well as no interaction with LDLR, VLDLR, ApoER, or LRP). Additionally, Mao et al. demonstrated that LRP6 can titrate Dkk-1's effects of inhibiting Wnt signaling using the commercial TCF-luciferase reporter gene assay (TOPFLASH). A similar conclusion was drawn from analogous studies in *Xenopus* embryos. Deletion analyses of LRP6 functional domains revealed that EGF repeats (beta-propellers) 3 and 4 were necessary for Dkk-1 binding and that the ligand binding domains of LRP6 had no effect on Dkk-1 binding. The findings of Mao et al. contrast with data obtained by the present inventors indication that the ligand binding domains of LRP5

were necessary and sufficient for Dkk-1 binding in yeast. Using classical biochemical ligand-receptor studies, Mao *et al.* determined a Kd=0.34 nM for Dkk-1/LRP6 and a Kd=0.73 nM for Dkk-2/LRP6.

5

10

15

20

25

30

Semenov *et al.* (2001) verified the Mao group's results and confirmed by coimmunoprecipitation that Dkk-1 does not directly bind to Wnt or Frizzled but rather interacts with LRP6. Their Scatchard analyses found a Kd=0.5 nM for Dkk-1/LRP6. Semenov *et al.* also demonstrated that Dkk-1 could abolish an LRP5/Frizzled8 complex implying that Dkk-1 can also repress Wnt signaling via interactions with LRP5. A Dkk-1 mutant where cysteine 220 was changed to alanine abolished LRP6 binding and was unable to repress Wnt signaling. Studies in *Xenopus* embryos confirmed the results and revealed a functional consequence of Dkk-1/LRP6: repression of Wnt signaling. Their *Xenopus* work also suggested that LRP6/Dkk-1 may be specific for the canonical, β-catenin-mediated, Wnt pathways as opposed to the Wnt Planar Cell Polarity pathway.

Bafico *et al.* (2001) employed a ¹²⁵I-labeled Dkk-1 molecule to identify LRP6 as its sole membrane receptor with a Kd=0.39 nM. Again, the functional consequences of the Dkk-1/LRP6 interaction was a repression of the canonical Wnt signaling even when Dkk-1 was added at extremely low concentrations (30 pM).

Not wishing to be bound by theory, it is believed that the present invention provides an explanation for the mechanism of Dkk-1 inhibition of the Wnt pathway and provides a mechanism whereby the Wnt pathway may be modulated. The present application and related provisional application 60/291,311 describe Dkk-1/LRP5 interactions and demonstrate that the interaction between LRP5/LRP6/HBM and Dkk can be used in a method as an intervention point in the Wnt pathway for an anabolic bone therapeutic or a modulator of lipid metabolism.

As detailed below, in the section "Methods to Identify Binding Partners" and Examples 6 and 7, Dkk-1 is able to repress LRP5-mediated Wnt signaling but not HBM-mediated Wnt signaling. This observation is of particular interest because the HBM mutation in LRP5 is a gain of function or activation mutation. That is, Wnt signaling, via the canonical pathway, is enhanced with HBM versus LRP5. The

present data suggest the mechanism of this functional activation: the inability of Dkk-1 to repress HBM-mediated Wnt signaling. Further investigations of other Wnt or Dkk family members show differential activities in the canonical Wnt pathway that demonstrate the complexity and variability in Wnt signaling that can be achieved depending on the LRP/Dkk/Wnt/Frizzled repertoire that is expressed in a particular cell or tissue. This may attest to the apparent bone specificity of the HBM phenotype in humans and in the HBM transgenic animals.

Furthermore, the present data reveal the importance and functional consequence for the potential structural perturbation of the first beta-propeller domain of LRP5. Our data identified the ligand binding domain of LRP5 as the interacting region with Dkk-1 while the Mao et al. publication demonstrated the functional role of propellers 3 and 4 in their LRP6/Dkk-1 studies. In the present invention, we implicate the first beta propeller domain, via the HBM mutation at residue 171, as having a functional consequence in the Dkk-1-mediated Wnt pathway. The involvement of position 171 of propeller 1 may be direct or indirect with Dkk-1. Direct involvement could arise from perturbations of the 3-dimensional structure of the HBM extracellular domain that render Dkk-1 unable to bind. Alternatively, residue 171 of propeller 1 may directly interact with Dkk-1; however, by itself, it is insufficient to bind and requires other LRP5 domains. Potential indirect candidate molecules may be among the proteins identified the Dkk-1 yeast-two-hybrid experiments.

It may be that the disruption of Dkk activity is not necessarily mediated by enhancing or preventing the binding of Dkk to LRP5/LRP6/HBM. More than one mechanism may be involved. Indeed, the inventors have observed that Dkk-1 binds LRP5, LRP6, and HBM. It is able to effectively inhibit LRP6, and to a slightly lesser extent, LRP5 activity. Further, has been observed that different members of the Dkk family differentially affect LRP5/LRP6/HBM activity. For example, Dkk-1 inhibits LRP5/LRP6/HBM activity while another Dkk may enhance LRP5/LRP6/HBM activity. An endpoint to consider is the modulation of the LRP5/LRP6/HBM activity, not simply binding.

The present disclosure shows that targeting the disruption of the Dkk-1/LRP5 interaction is a therapeutic intervention point for an HBM mimetic agent. A therapeutic agent of the invention may be a small molecule, peptide or nucleic acid aptamer, antibody, or other peptide/protein, etc. Methods of reducing Dkk-1 expression may also be therapeutic using methodologies such as: RNA interference, antisense oligonucleotides, morpholino oligonucleotides, PNAs, antibodies to Dkk-1 or Dkk-1 interacting proteins, decoy or scavenger LRP5 or LRP6 receptors, and knockdown of Dkk-1 or Dkk-1 interactor transcription.

5

10

15

20

25

30

In an embodiment of the present invention, the activity of Dkk-1 or the activity of a Dkk-1 interacting protein may be modulated for example by binding with a peptide aptamer of the present invention. In another embodiment, LRP5 activity may be modulated by a reagent provided by the present invention (e.g., a peptide aptamer). In another embodiment, the Dkk-1/LRP5 interaction may be modulated by a reagent of the present invention (e.g., a Dkk-1 interacting protein such as those identified in Figure 5). In another embodiment, the Wnt signal transduction pathway may be modulated by use of one or more of the above methods. In a preferred embodiment of the present invention, the Dkk-1 mediated activity of the Wnt pathway may be specifically modulated by one or more of the above methods. In another preferred embodiment of the present invention, the Wnt signal transduction pathway may be stimulated by down-regulating Dkk-1 interacting protein activity; such down-regulation could, for example, yield greater LRP5 activity. In a more preferred embodiment, by stimulating LRP5 activity, bone mass regulation may be stimulated to restore or maintain a more optimal level. In another preferred embodiment, by stimulating LRP5 activity, lipid metabolism may be stimulated to restore or maintain a more optimal level. Alternative embodiments provide methods for screening candidate drugs and therapies directed to correction of bone mass disorders or lipid metabolism disorders. And, preferred embodiments of the present invention provide drugs and therapies developed by the use of the reagents and/or methods of the present invention. One skilled in the art will understand that the present invention provides important research tools to develop an effective model of

osteoporosis, to increase understanding of bone mass and lipid modulation, and to modulate bone mass and lipid metabolism.

Previous investigation of a large family in which high bone mass is inherited as a single gene (autosomal dominant) trait (HBM-1) has provided important insight into the mechanism by which bone density might be modulated. Members of this family have significantly increased spinal and hip BMD (>3 standard deviations above the norm) which affects young adults as well as elderly family members into the ninth decade. The bones of affected members, while appearing very dense radiographically, have normal external shape and outer dimensions. Cortical bone is thickened on endosteal surfaces and "affected" individuals are asymptomatic without any other phenotypic abnormalities. Assays of biochemical markers that reflect skeletal turnover suggest that the disorder is associated with a normal rate of bone remodeling. Affected individuals have achieved a balance in bone turnover at a density that is significantly greater than necessary for normal skeletal stresses. Importantly, the bones most affected are load-bearing bones which are subjected to the greatest mechanical and gravitational stresses (spine and hip). These are the most important bones to target fir therapeutic interventions in osteoporosis. The gene identified as being responsible for this phenotype, Zmax or LRP5, was not previously associated with bone physiology. The fact that modification of this gene, such as that produced by the polymorphism leading to the autosomal dominant inheritance of the HBM family phenotype, identifies Zmax/LRP5 and the pathway by which it is regulated, including Dkk/Wnt pathways discussed above, as an important target for developing modulators of bone density. Modulation of Zmax/LRP5 to mimic the gain in function provided by the HBM polymorphism would be expected to provide an important therapy for bone wasting conditions. Additionally, such modulation in young adults could enhance peak bone mass and prevent or delay fracture risk later in life. Alternatively, modulation to reduce function could be employed to treat conditions where bone is being inappropriately produced.

5

10

15

20

25

3. Polypeptides

5

10

15

30

Polypeptides contemplated for use in this invention include those which modulate Dkk and Dkk interacting protein activities. Preferred polypeptides and peptides include those which modulate the Wnt pathway. Examples of preferred sequences include the Y2H baits exemplified in Figure 2, peptide aptamers of Figure 3 (SEQ ID NOs:171-188) and Figure 4 (SEQ ID NOs:189-192), the polypeptides of the Dkk-1 interacting proteins identified in Figure 5, those polypeptides shown in Figure 6, the LRP binding domain of Dkk (amino acids 138-266 of hDkk1), the cysteine-rich domain 2 (a.a. 183-245 of hDkk-1), the cysteine-rich domain 1 (a.a. 97-138 of hDkk), and LRP5 binding aptamers of Figure 13 (including SEQ ID NOs:204-213). Although Dkk-1 is exemplified, the other Dkk proteins contain substantially similar regions and may also be used according to the present invention.

For example, the baits depicted in Figure 2 were used in a yeast two hybrid (Y2H) screen. The Y2H screen was performed as described in Example 2 to determine the minimum required binding domain for Dkk-1 to bind LRP5. The minimum binding domain constructs (*i.e.*, residues 139-266 in bold below and residues 97-245 which are underlined, of Dkk-1) include the second cysteine rich domain which has sequence homology to a colipase fold.

20 mmalgaagat rvfvamvaaa lgghpllgvs atlnsvlnsn aiknlppplg gaaghpgsav 60 saapgilypg gnkyqtidny qpypcaedee cgtdey<u>casp trqqdaqvqi clacrkrrkr</u> 120 <u>cmrhamccpq nycknqicvs sdqnhfrqei eetitesfqn dhstldgysr rttlsskmyh</u> 180 <u>tkqqeqsvcl rssdcasqlc carhfwskic kpvlkeqqvc tkhrrkqshq leifqrcycq</u> 240 <u>eqlsc</u>riqkd hhqasnssrl htcqrh (GenBank Accession No. XP_005730) (SEQ ID NO:128).

This homology suggests a lipid-binding function and may facilitate Dkk-1 interactions at the plasma membrane (van Tilbeurgh, H., *Biochim. Biophys. Acta.* 1441:173-84 (1999)). An interaction domain of Dkk-1 that is able to interact with the ligand binding domain (LBD) of LRP5 is a useful reagent in the modulation of LRP5 activity

and modulation of Dkk-1/LRP5 complex formation. Similar screens can be prepared for Dkk-1 and Dkk-1 interacting proteins or polypeptides.

5

10

15

20

25

30

A set of peptide aptamers was identified from a library of random peptides constrained and presented in a thioredoxin A (trxA) scaffold as described in Example 3. Peptide aptamers are powerful new tools for molecular medicine as reviewed by Hoppe-Seyler & Butz, J. Mol. Med., 78:426-430 (2000); Brody and Gold, Rev. Mol. Biotech., 74:5-13 (2000); and Colas, Curr. Opin. in Chem. Biol. 4:54-9 (2000) and the references cited therein. Briefly, peptide aptamers have been shown to be highly specific reagents capable of binding in vivo. As such, peptide aptamers provide a method of modulating the function of a protein and may serve as a substitute for conventional knock-out methods, knock-down or complete loss of function. Peptide aptamers are also useful reagents for the validation of targets for drug development and may be used as therapeutic compounds directly or provide the necessary foundation for drug design. Once identified, the peptide insert may be synthesized and used directly or incorporated into another carrier molecule. References reviewed and cited by Brody and Gold (2000, supra) describe demonstrated therapeutic and diagnostic applications of peptide aptamers and would be known to the skilled artisan.

The peptide aptamers of the present invention are useful reagents in the binding of Dkk-1 to its ligands and thereby modulation of the Wnt pathway and may be used to prevent Dkk-1 from inhibiting LRP5 modulation or Dkk-1 interacting protein modulation of the Wnt pathway. The sequence of these peptide aptamers is shown in Figure 3 (SEQ ID NOs:171-188). The peptide aptamers refers to the peptide constrained by the thioredoxin scaffold. The aptamers are also contemplated as therapeutic agents to treat Dkk-1 mediated diseases and conditions. Such aptamers are useful structural guides to chemists, for the design of mimetic compounds of the aptamers.

Peptide aptamers were likewise developed to the LRP5 ligand binding domain (LBD) bait sequences. The sequences of these peptide aptamers is shown in Figure 4 (SEQ ID NOs:189-192). These are useful reagents which may be used to disrupt

the Dkk-1/LRP5 binding interface while leaving Dkk-1 undisturbed. These can be used as comparative controls for Wnt signaling, thus, a control is provided for the specificity of any drug or therapy screened. The aptamers are also useful therapeutic agents to treat LRP mediated diseases and conditions. Such aptamers may also be used as structural guides to chemists, for the design of mimetic compounds of the aptamers.

Thirty proteins were identified which interact with Dkk-1, Dkk-1 interacting proteins, were identified in a yeast-two-hybrid screen using the Dkk-1 bait and are shown in Figure 5. It was noted that these results suggest an interaction of Dkk-1 with Notch-2. It has been suggested that cross-talk exists between the Wnt and Notch signaling pathways. For instance, Presenilin1 (Ps1) is required for Notch processing and inhibits the downstream Wnt pathway. The extracellular domain of Notch is thought to interact with Wnt. Furthermore, the Notch intracellular domain is thought to interact with disheveled and in signal induced processing, the intracellular domain is thought to interact with presenilin. (Soriano et al., J. Cell Biol. 152:785-94 (2001)). For additional information regarding the relationships between Notch and Wnt signaling, see Wesley, Mol. Cell. Biol. 19:5743-58 (1999) and Axelrod et al., Science 271:1826-32 (1996).

An interaction between Dkk-1 and chordin has also been noted; suggesting that cross-talk exists between the Wnt and TGF-beta/BMP signaling pathways (Letamendia *et al., J. Bone Joint Surg. Am.* 83A:S31 (2001); Labbe *et al., Proc. Natl. Acad. Sci. USA* 97:8358-63 (2000); Nishita *et al., Nature* 403:781-5 (2000); DeRobertis *et al., Int. J. Dev. Biol.* 45:1389-97 (2001); and Saint-Jeannet *et al., Proc. Natl. Acad. Sci. USA* 94:13713-8 (1997)). The BMP signaling pathway has an established role in bone and connective tissue development, repair and homeostasis (review in Rosen and Wozney "Bone Morphogenetic Proteins" In: Principles of Bone Biology, 2nd Edition, Eds. J. Bilezikian, L. Raisz and G. Rodan, Academic Press, pp. 919-28 (2002)). Chordin is an important molecule during development which also modulates BMP signaling in adults by sequestering BMPs in latent complexes (Piccolo *et al., Cell* 86:589-98 (1996) reviewed in Reddi, *Arthritis Res.* 3:1-5 (2001);

DeRobertis et al., Int. J. Dev. Biol. 45:189-97 (2001)). It may be that Dkk effects bone mass modulation through both the Wnt signaling pathway via LRP and the BMP pathway via chordin.

Moreover, a number of putative growth factors, growth factor related proteins, and extracellular matrix proteins have been identified as Dkk-1 interacting proteins. Additional information regarding Dkk-1 interacting proteins identified in the Y2H assay may be obtained from publicly available databases such as PubMed via the use of the accession numbers provided in the present application. In a preferred embodiment of the invention, the amino acid sequences of these Dkk-1 interacting proteins or biologically active fragments thereof be used to modulate Dkk, Dkk-1, LRP5, LRP6, HBM, or Wnt activity. Although these proteins were identified as interacting with Dkk-1, due to the substantial homology between the various Dkk proteins, such interacting proteins are contemplated to interact with the other Dkk family members.

15

20

25

30

10

5

4. Aptamer Mimetics

The present invention further provides for mimetics of Dkk, particularly Dkk-1, and LRP5 peptide aptamers. Such aptamers may serve as structural guides to chemists for the design of mimetic compounds of the aptamers. The aptamers and their mimetics are useful as therapeutic agents to treat LRP- or Dkk-mediated diseases and conditions.

5. Nucleic Acid Molecules

The present invention further provides nucleic acid molecules that encode polypeptides and proteins which interact with Dkk and Dkk interacting proteins, and/or LRP5 (also LRP6 and HBM) to modulate biological activities of these proteins. Preferred embodiments provide nucleic acids encoding for fragments of Dkk-1 protein, including the nucleic acids of Figure 7, the Dkk-1 interacting proteins listed in Figure 5, polypeptide aptamers of Dkk-1 (Figure 3 - SEQ ID NOs:171-188), LRP5 (Figure 4 - SEQ ID NOs:189-192), Figure 13 peptide aptamers (including SEQ

ID NO:204-214) encoded by Figure 12 polynucleotides (including SEQ ID NO:193-203), LRP6 and HBM and the related fusion proteins herein described, preferably in isolated or purified form. As used herein, "nucleic acid" is defined as RNA, DNA, or cDNA that encodes a peptide as defined above, or is complementary to a nucleic acid sequence encoding such peptides, or hybridizes to either the sense or antisense strands of the nucleic acid and remains stably bound to it under appropriate stringency conditions. The nucleic acid may encode a polypeptide sharing at least about 75% sequence identity, preferably at least about 80%, and more preferably at least about 85%, with the peptide sequences; at least about 90%, 95%, 96%, 97%, 98%, and 99% or greater are also contemplated. Specifically contemplated are genomic DNA, cDNA, mRNA, antisense molecules, enzymatically active nucleic acids (e.g., ribozymes), as well as nucleic acids based on an alternative backbone or including alternative bases, whether derived from natural sources or synthesized. Such hybridizing or complementary nucleic acids, however, are defined further as being novel and nonobvious over any prior art nucleic acid including that which encodes, hybridizes under appropriate stringency conditions, or is complementary to a nucleic acid encoding a protein according to the present invention.

5

10

15

20

25

30.

As used herein, the terms "hybridization" (hybridizing) and "specificity" (specific for) in the context of nucleotide sequences are used interchangeably. The ability of two nucleotide sequences to hybridize to each other is based upon the degree of complementarity of the two nucleotide sequences, which in turn is based on the fraction of matched complementary nucleotide pairs. The more nucleotides in a given sequence that are complementary to another sequence, the greater the degree of hybridization of one to the other. The degree of hybridization also depends on the conditions of stringency which include temperature, solvent ratios, salt concentrations, and the like. In particular, "selective hybridization" pertains to conditions in which the degree of hybridization of a polynucleotide of the invention to its target would require complete or nearly complete complementarity. The complementarity must be sufficiently high so as to assure that the polynucleotide of

the invention will bind specifically to the target nucleotide sequence relative to the binding of other nucleic acids present in the hybridization medium. With selective hybridization, complementarity will be about 90-100%, preferably about 95-100%, more preferably about 100%.

5

"Stringent conditions" are those that (1) employ low ionic strength and high temperature for washing, for example: 0.015 M NaCl, 0.0015 M sodium titrate, 0.1% SDS at 50°C; or (2) employ during hybridization a denaturing agent such as formamide, for example, 50% (vol/vol) formamide with 0.1% bovine serum albumin, 0.1% Ficoll, 0.1% polyvinylpyrrolidone, 50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCl, 75 mM sodium citrate at 42°C. Another example is use of 50% formamide, 5X SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5X Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2X SSC and 0.1% SDS. A skilled artisan can readily determine and vary the stringency conditions appropriately to obtain a clear and detectable hybridization signal.

15

10

As used herein, a nucleic acid molecule is said to be "isolated" or "purified" when the nucleic acid molecule is substantially separated from contaminant nucleic acid encoding other polypeptides from the source of nucleic acid. Isolated or purified is also meant to include nucleic acids which encode Dkk or fragments thereof which lack surrounding genomic sequences that flank the *Dkk* gene. Isolated or purified is further intended to include nucleic acids which encode Dkk interacting proteins or biologically active fragments thereof which lack surrounding genomic sequences that flank the Dkk interacting protein genes.

25

20

The present invention further provides fragments of the encoding nucleic acid molecule. As used herein, a fragment of an encoding nucleic acid molecule refers to a small portion of the entire protein encoding sequence. The size of the fragment will be determined by the intended use. For example, if the fragment is chosen so as to encode an active portion of the protein, the fragment will need to be large enough to encode the functional region(s) of the protein. If the fragment is to be used as a

30

nucleic acid probe or PCR primer, then the fragment length is chosen so as to obtain a relatively small number of false positives during probing/priming.

Fragments of the encoding nucleic acid molecules of the present invention (*i.e.*, synthetic oligonucleotides) that are used as probes or specific primers for the polymerase chain reaction (PCR), or to synthesize gene sequences encoding proteins of the invention can easily be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci *et al.* (*J. Am. Chem. Soc.* 103:3185-3191 (1981)) or using automated synthesis methods. In addition, larger DNA segments can readily be prepared by well known methods, such as synthesis of a group of oligonucleotides that define various modular segments of the gene, followed by ligation of oligonucleotides to build the complete modified gene.

5

10

15

20

25

The polypeptide encoding nucleic acid molecules of the present invention may further be modified to contain a detectable label for diagnostic and probe purposes. A variety of such labels are known in the art and can readily be employed with the encoding molecules herein described. Suitable labels include, but are not limited to, biotin, radiolabeled nucleotides and the like. A skilled artisan can employ any of the art known labels to obtain a labeled encoding nucleic acid molecule.

Modifications to the primary structure itself by deletion, addition, or alteration of the amino acids incorporated into the protein sequence during translation can be made without destroying the activity of the protein. Such substitutions or other alterations result in proteins having an amino acid sequence encoded by a nucleic acid falling within the contemplated scope of the present invention.

Antisense molecules corresponding to the polypeptide coding or complementary sequence may be prepared. Methods of making antisense molecules which bind to mRNA, form triple helices or are enzymatically active and cleave TSG RNA and single stranded DNA (ssDNA) are known in the art. See, e.g., Antisense and Ribozyme Methodology:Laboratory Companion (lan Gibson, ed., Chapman & Hall, 1997) and Ribozyme Protocols: Methods in Molecular Biology (Phillip C. Turner, ed., Humana Press, Clifton, NJ, 1997).

Also contemplated is the use of compounds which mediate postranscriptional gene silencing (PTGS), quelling and RNA interference (RNAi). These compounds typically are about 21 to about 25 nucleotides and are also known as short interfering RNAs or short inhibitory RNAs (siRNAs). The siRNAs are produced from an initiating double stranded RNA (dsRNA). Although the full mechanism by which the siRNAs function is not fully elucidated, it is known that these siRNAs transform the target mRNA into dsRNA, which is then degraded. Preferred forms are 5' phosphorylated siRNAs, however, hydroxylated forms may also be utilized. For additional background regarding the preparation and mechanism of siRNAs generally, see, e.g., Lipardi et al., Cell 107(3): 297-307 (2001); Boutla et al., Curr. Biol. 11(22): 1776-80 (2001); Djikeng et al., RNA 7(11): 1522-30 (2001); Elbashir et al., EMBO J. 20(23): 6877-88 (2001); Harborth et al., J. Cell. Sci. 114(Pt. 24): 4557-65 (2001); Hutvagner et al., Science 293(5531): 811-3 (2001); and Elbashir et al., Nature 411:494-98 (2001).

Also contemplated are short hairpin RNAs (shRNAs). shRNAs are a modification of the siRNA method described above. Instead of transfecting exogenously synthesized dsRNA into a cell, sequence-specific silencing can be achieved by stabling expressing siRNA from a DNA template as a fold-back stemloop, or hairpin. This approach is known as shRNA. This method permits the analysis of loss of function phenotypes due to sequence-specific gene silencing in mammalian cells by avoiding many of the problems associated with siRNAs, such as RNase degradation of the reagents, expensive chemical synthesis, etc. For additional background regarding the preparation and mechanism of shRNAs generally, see, e.g., Yu et al., PNAS 99:6047-6052 (2002); Paddison et al., Genes and Devel. 16:948-58 (2002); and Brummelkamp et al., Science 296:550-553 (2002). For additional background on the use of this method in mammalian gene knockdown methodologies, see Tuschl, Nature Biotech. 20:446-448 (2002) (and references therein).

In one preferred embodiment, the siRNA or shRNA is directed to a Dkk encoding mRNA, wherein a preferred Dkk is Dkk-1. In another embodiment, the

siRNA or shRNA is directed towards a protein which binds to and modulates the activity of or is modulated by a Dkk; these proteins include LRP5, LRP6 and HBM as well as other members of the Wnt pathway.

6. <u>Isolation of Other Related Nucleic Acid Molecules</u>

5

10

15

20

25

30

The identification of the nucleic acid molecule of Dkk allows a skilled artisan to isolate nucleic acid molecules that encode other members of the Dkk family (see, Krupnik et al., 1999). Further, the presently disclosed nucleic acid molecules allow a skilled artisan to isolate nucleic acid molecules that encode Dkk-1-like proteins, in addition to Dkk-1. The presently disclosed Dkk-1 interacting proteins and their corresponding nucleic acid molecules allows a skilled artisan to further isolate other related protein family members which interact with Dkk-1.

A skilled artisan can readily use the amino acid sequence of Dkk and Dkk interacting proteins to generate antibody probes to screen expression libraries prepared from appropriate cells. Typically, polyclonal antiserum from mammals such as rabbits immunized with the purified protein (as described below) or monoclonal antibodies can be used to probe a mammalian cDNA or genomic expression library, such as a human macrophage library, to obtain the appropriate coding sequence for other members of the protein family. The cloned cDNA sequence can be expressed as a fusion protein, expressed directly using its own control sequences, or expressed by constructions using control sequences appropriate to the particular host used for expression of the desired protein.

Alternatively, a portion of the coding sequence herein described can be synthesized and used as a probe to retrieve DNA encoding a member of the protein family from any mammalian organism. Oligomers containing approximately 18-20 nucleotides (encoding about a 6-7 amino acid stretch) are prepared and used to screen genomic DNA or cDNA libraries to obtain hybridization under stringent conditions or conditions of sufficient stringency to eliminate an undue level of false positives.

Additionally, pairs of oligonucleotide primers can be prepared for use in a polymerase chain reaction (PCR) to selectively clone an encoding nucleic acid

molecule. A PCR denature/anneal/extend cycle for using such PCR primers is well known in the art and can readily be adapted for use in isolating other encoding nucleic acid molecules. For example, degenerate primers can be utilized to obtain sequences related to Dkk-1 or Dkk-1 interacting proteins. Primers can be designed that are not perfectly complementary and can still hybridize to a portion of a target sequence or flanking sequence and thereby provide for amplification of all or a portion of a target sequence. Primers of about 20 nucleotides or less, preferably have about one to three mismatches located at the 5' and/or 3' ends. Primers of about 20 to 30 nucleotides have up to about 30% mismatches and can still hybridize to a target sequence. Hybridization conditions for primers with mismatch can be determined by the method described in Maniatis et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982) or by reference to known methods. The ability of the primer to hybridize to a sequence of either Dkk-1, a Dkk-1 interacting protein, or a related sequence under varying conditions can be determined using this method. Because a target sequence is known, the effect of mismatches can be determined by methods known to those of skill in the art. Degenerate primers would be based on putative conserved amino acid sequences of the Dkk-1 and Dkk-1 interacting protein genes.

7. <u>rDNA Molecules for Polypeptide Expression</u>

5

10

15

20

25

30

The present invention further provides recombinant DNA molecules (rDNAs) that contain a polypeptide coding sequence. As used herein, a rDNA molecule is a DNA molecule that has been subjected to molecular manipulation *in situ*. Methods for generating rDNA molecules are well known in the art, for example, see Sambrook *et al.*, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989). In the preferred rDNA molecules, a coding DNA sequence is operably linked to expression control sequences and/or vector sequences.

The choice of vector and/or expression control sequences to which one of the protein family encoding sequences of the present invention is operably linked depends directly, as is well known in the art, on the functional properties desired, e.g., protein

expression, and the host cell to be transformed. A vector contemplated by the present invention is at least capable of directing the replication and/or insertion into the host chromosome, and preferably also expression, of the structural gene included in the rDNA molecule.

5

10

15

20

Expression control elements that are used for regulating the expression of an operably linked protein encoding sequence are known in the art and include, but are not limited to, inducible promoters, constitutive promoters, secretion signals, and other regulatory elements. Preferably, the inducible promoter is readily controlled, such as being responsive to a nutrient in the host cell's medium. Preferred promoters include yeast promoters, which include promoter regions for metallothionein, 3phosphoglycerate kinase or other glycolytic enzymes such as enolase or glyceraldehyde-3-phosphate dehydrogenase, enzymes responsible for maltose and galactose utilization, and others. Vectors and promoters suitable for use in yeast expression are further described in EP 73,675A. Appropriate non-native mammalian promoters might include the early and late promoters from SV40 (Fiers et al, Nature, 273:113 (1978)) or promoters derived from Moloney murine leukemia virus, mouse tumor virus, avian sarcoma viruses, adenovirus II, bovine papilloma virus or polyoma. In addition, the construct may be joined to an amplifiable gene (e.g., DHFR) so that multiple copies of the gene may be made. For appropriate enhancer and other expression control sequences, see also Enhancers and Eukaryotic Gene Expression (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1983). Preferred bone related promoters include CMVbActin or type I collagen promoters to drive expression of the human HBM, Zmax1/LRP5 or LRP6 cDNA. Other preferred promoters for mammalian expression are from cytomegalovirus (CMV), Rous sarcoma virus (RSV), Simian virus 40 (SV40), and EF-1a (human elongation factor 1a-subunit).

25

30

In one embodiment, the vector containing a coding nucleic acid molecule will include a prokaryotic replicon, *i.e.*, a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a prokaryotic host cell, such as a bacterial host cell, transformed therewith. Such replicons are well known in the art. In addition, vectors with a

68

prokaryotic replicon may also include a gene whose expression confers a detectable marker such as a drug resistance. Typical bacterial drug resistance genes are those that confer resistance to ampicillin or tetracycline.

Vectors that include a prokaryotic replicon can further include a prokaryotic or bacteriophage promoter capable of directing the expression (transcription and translation) of the coding gene sequences in a bacterial host cell, such as *E. coli*. A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention. Typical of such vector plasmids are pUC8, pUC9, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, CA), and pPL and pKK223 available from Pharmacia (Piscataway, NJ).

Expression vectors compatible with eukaryotic cells, preferably those compatible with vertebrate cells, can also be used to form a rDNA molecule that contains a coding sequence. Eukaryotic cell expression vectors are well known in the art and are available from several commercial sources. Typically, such vectors are provided containing convenient restriction sites for insertion of a desired DNA segment. Typical of such vectors are pSVL and pKSV-10 (Pharmacia), pBPV-1/pML2d (International Biotechnologies, Inc.), vector systems that include Histidine Tags and periplasmic secretion, or other vectors described in the art.

Eukaryotic cell expression vectors used to construct the rDNA molecules of the present invention may further include a selectable marker that is effective in an eukaryotic cell, preferably a drug resistance selection marker. A preferred drug resistance marker is the gene whose expression results in neomycin resistance, *i.e.*, the neomycin phosphotransferase (*neo*) gene (Southern *et al.*, *J. Mol. Anal. Genet*. 1:327-341 (1982)). Alternatively, the selectable marker can be present on a separate plasmid, and the two vectors introduced by co-transfection of the host cell, and selected by culturing in the appropriate drug for the selectable marker.

30

25

5

10

15

20

8. <u>Host Cells Containing an Exogenously Supplied rDNA Nucleic Acid</u> Molecule

5

10

15

20

25

30

The present invention further provides host cells transformed with a nucleic acid molecule that encodes a polypeptide or protein of the present invention. The host cell can be either prokaryotic or eukaryotic. Eukaryotic cells useful for expression of a protein of the invention are not limited, so long as the cell line is compatible with cell culture methods and compatible with the propagation of the expression vector and expression of the gene product. Preferred eukaryotic host cells include, but are not limited to, yeast, insect and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human cell line but also can include invertebrates with, for example, cartilage. Preferred eukaryotic host cells include but are not limited to Chinese hamster ovary (CHO) cells (ATCC No. CCL61), NIH Swiss mouse embryo cells NIH/3T3 (ATCC No. CRL 1658), baby hamster kidney cells (BHK), HOB-03-CE6 osteoblast cells, and other like eukaryotic tissue culture cell lines.

Any prokaryotic host can be used to express a rDNA molecule encoding a protein of the invention. A preferred prokaryotic host is *E. coli*.

Transformation of appropriate cell hosts with a recombinant DNA (rDNA) molecule of the present invention is accomplished by well known methods that typically depend on the type of vector used and host system employed. With regard to transformation of prokaryotic host cells, electroporation and salt treatment methods are typically employed; see, for example, Cohen *et al.*, *Proc. Natl. Acad. Sci. USA* 69: 2110 (1972); Maniatis *et al.* (1982); and Sambrook *et al.* (1989). With regard to transformation of vertebrate cells with vectors containing rDNAs, electroporation, cationic lipid or salt treatment methods are typically employed; see, for example, Graham *et al.*, *Virol.* 52: 456 (1973); Wigler *et al.*, *Proc. Natl. Acad. Sci. USA* 76: 1373-76 (1979).

Successfully transformed cells, *i.e.*, cells that contain a rDNA molecule of the present invention, can be identified by well known techniques including the selection for a selectable marker. For example, cells resulting from the introduction of an rDNA of the present invention can be cloned to produce single colonies. Cells from those

colonies can be harvested, lysed and their DNA content examined for the presence of the rDNA using a method such as that described by Southern, *J. Mol. Biol.* 98: 503 (1975), or Berent *et al.*, *Biotech.* 3: 208 (1985). Alternatively, the cells can be cultured to produce the proteins encoded by the rDNA and the proteins harvested and assayed, using for example, any suitable immunological method. See, *e.g.*, Harlow *et al.*, (1988).

Recombinant DNA can also be utilized to analyze the function of coding and non-coding sequences. Sequences that modulate the translation of the mRNA can be utilized in an affinity matrix system to purify proteins obtained from cell lysates that associate with the Dkk-1 or Dkk-1 interacting protein or expression control sequence. Synthetic oligonucleotides would be coupled to the beads and probed with the lysates, as is commonly known in the art. Associated proteins could then be separated using, for example, a two dimensional SDS-PAGE system. Proteins thus isolated could be further identified using mass spectroscopy or protein sequencing. Additional methods would be apparent to the skilled artisan.

15

20

25

30

10

5

9. <u>Production of Recombinant Peptides and Proteins using a cDNA or Other</u> Recombinant Nucleic Acids

The invention also relates to nucleic acid molecules which encode a Dkk protein and polypeptide fragments thereof, and proteins and polypeptides which bind to Dkk (e.g., LRP5, LRP6 and HBM, Dkk interacting proteins such as the proteins of Figure 5) and molecular analogues. The polypeptides of the present invention include the full length Dkk and polypeptide fragments thereof, Dkk binding proteins and polypeptides thereof. Preferably these proteins are mammalian proteins, and most preferably human proteins and biologically active fragments thereof. Alternative embodiments include nucleic acid molecules encoding polypeptide fragments having a consecutive amino acid sequence of at least about 3, 5, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, or 200 amino acid residues from a common polypeptide sequence; amino acid sequence variants of a common polypeptide sequence wherein an amino acid residue has been inserted N- or C-terminal to, or within, the polypeptide sequence or its fragments; and amino acid sequence variants of the common

polypeptide sequence or its fragments, which have been substituted by another conserved residue. Recombinant nucleic acid molecules which encode polypeptides include those containing predetermined mutations by, e.g., homologous recombination, site-directed or PCR mutagenesis, and recombinant Dkk proteins or polypeptide fragments of other animal species, including but not limited to vertebrates (e.g., rabbit, rat, murine, porcine, camelid, reptilian, caprine, avian, fish, bovine, ovine, equine and non-human primate species) as well as invertebrates, and alleles or other naturally occurring variants and homologs of Dkk binding proteins of the foregoing species and of human sequences. Also contemplated herein are derivatives of the commonly known Dkk, Dkk interacting proteins, or fragments thereof, wherein Dkk, Dkk interacting proteins, or their fragments have been covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example a detectable moiety such as an enzyme or radioisotope) and soluble forms of Dkk. It is further contemplated that the present invention also includes nucleic acids with silent mutations which will hybridize to the endogenous sequence and which will still encode the same polypeptide.

The nucleic acid molecules encoding Dkk binding proteins, the LRP5 binding domain fragment of Dkk, or other polypeptides of the present invention are preferably those which share a common biological activity (e.g., mediate Dkk activity such as its interaction with LRP5, HBM or LRP6). The polypeptides of the present invention include those encoded by a nucleic acid molecule with silent mutations, as well as those nucleic acids encoding a biologically active protein with conservative amino acid substitutions, allelic variants, and other variants of the disclosed polypeptides which maintain at least one Dkk activity.

25

20

5

10

15

The amino acid compounds of the invention are polypeptides which are partially defined in terms of amino acid residues of designated classes. Polypeptide homologs would include conservative amino acid substitutions within the amino acid classes described below. Amino acid residues can be generally sub-classified into four major subclasses as follows:

Acidic: The residue has a negative charge due to loss of H⁺ ion at physiological pH, and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium, at physiological pH.

5

Basic: The residue has a positive charge due to association with H⁺ ion at physiological pH, and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.

10

Neutral/non-polar: The residues are not charged at physiological pH, but the residue is repelled by aqueous solution so as to seek the inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium. These residues are also designated "hydrophobic."

15

<u>Neutral/polar:</u> The residues are not charged at physiological pH, but the residue is attracted by aqueous solution so as to seek the outer positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.

20

It is understood, of course, that in a statistical collection of individual residue molecules some molecules will be charged, and some not, and there will be an attraction for or repulsion from an aqueous medium to a greater or lesser extent. To fit the definition of "charged", a significant percentage (at least approximately 25%) of the individual molecules are charged at physiological pH. The degree of attraction or repulsion required for classification as polar or nonpolar is arbitrary and, therefore, amino acids specifically contemplated by the invention have been classified as one or the other. Most amino acids not specifically named can be classified on the basis of known behavior.

25

Amino acid residues can be further subclassified as cyclic or noncyclic, and aromatic or non-aromatic, self-explanatory classifications with respect to the side chain substituent groups of the residues, and as small or large. The residue is considered small if it contains a total of 4 carbon atoms or less, inclusive of the carboxyl carbon. Small residues are, of course, always nonaromatic.

The gene-encoded secondary amino acid proline, although technically within the group neutral/nonpolar/large/cyclic and nonaromatic, is a special case due to its known effects on the secondary conformation of peptide chains, and is not, therefore, included in this defined group.

Other amino acid substitutions of those encoded in the gene can also be included in peptide compounds within the scope of the invention and can be classified within this general scheme according to their structure.

5

10

15

20

25

30

All of the compounds of the invention may be in the form of the pharmaceutically acceptable salts or esters. Salts may be, for example, Na⁺, K⁺, Ca⁺², Mg⁺² and the like; the esters are generally those of alcohols of 1-6 carbons.

The present invention further provides methods for producing a protein of the invention using nucleic acid molecules herein described. In general terms, the production of a recombinant form of a protein typically involves the following steps.

First, a nucleic acid molecule is obtained that encodes Dkk, such as a nucleic acid molecule encoding human Dkk or any other Dkk sequence, or that encodes a Dkk binding protein, a Dkk aptamer or a biologically active fragment thereof. Particularly for Dkk binding peptides, the nucleotides encoding the peptide are incorporated into a nucleic acid in the form of an in-frame fusion, insertion into or appended to a thioredoxin coding sequence. The coding sequence (ORF) is directly suitable for expression in any host, as it is not interrupted by introns.

These DNAs can be transfected into host cells such as eukaryotic cells or prokaryotic cells. Eukaryotic hosts include mammalian cells and vertebrate (e.g., osteoblasts, osteosarcoma cell lines, Drosophila S2 cells, hepatocytes, tumor cell lines and other bone cells of any mammal, as well as insect cells, such as Sf9 cells using recombinant baculovirus). For example, a DNA expressing an open reading frame (ORF) under control of a type I collagen promoter, or such osteoblast promoters as osteocalcin histone, type I collagen, TGFβ1, MSX2, cfos/cJun and Cbfa1, can be used to regulate the Dkk in animal cells. Alternatively, the nucleic acid can be placed downstream from an inducible promoter, which can then be placed into vertebrate or invertebrate cells or be used in creating a transgenic animal model.

Alternatively, proteins and polypeptides of the present invention can be expressed in an heterologous system. The human cell line GM637, SV-40 transformed human fibroblasts, can be transfected, with a plasmid containing a Dkk ligand binding domain coding sequence under the control of the chicken actin promoter (Reis *et al.*, EMBO J. 11: 185-193 (1992)). Such transfected cells could be used as a source of Dkk binding domain in functional assays. Alternatively, polypeptides encoding only a portion of Dkk or any of the disclosed Dkk binding peptides Dkk aptamers or a polypeptide encoding a Dkk interacting protein can be expressed alone or in the form of a fusion protein. For example, Dkk derived peptides can be expressed in bacteria (e.g., E. coli) as GST- or His-Tag fusion proteins. These fusion proteins are then purified and can be used to generate polyclonal antibodies or can be used to identify other Dkk ligands.

The nucleic acid coding sequence is preferably placed in operable linkage with suitable control sequences, as described above, to form an expression unit containing the protein encoding open reading frame. The expression unit is used to transform a suitable host and the transformed host is cultured under conditions that allow the production of the recombinant protein. Optionally the recombinant protein is isolated from the medium or from the cells; recovery and purification of the protein may not be necessary in some instances where some impurities may be tolerated.

Each of the foregoing steps can be done in a variety of ways. For example, the desired coding sequences may be obtained from genomic fragments and used directly in appropriate hosts. The construction of expression vectors that are operable in a variety of hosts is accomplished using appropriate replicons and control sequences, as set forth above. The control sequences, expression vectors, and transformation methods are dependent on the type of host cell used to express the gene and were discussed in detail earlier. Suitable restriction sites can, if not normally available, be added to the ends of the coding sequence so as to provide an excisable gene to insert into these vectors. A skilled artisan can readily adapt any host/expression system known in the art for use with the nucleic acid molecules of the invention to produce recombinant protein.

10. <u>Methods to Identify Binding Partners</u>

5

10

15

20

25

30

Another embodiment of the present invention provides methods for use in isolating and identifying binding partners of Dkk or Dkk interacting proteins. Dkk or a Dkk interacting protein or a polypeptide fragment thereof can be mixed with a potential binding partner or an extract or fraction of a cell under conditions that allow the association of potential binding partners with Dkk or with Dkk interacting proteins. After mixing, the peptides, polypeptides, proteins or other molecules that have become associated with Dkk or a Dkk interacting protein are separated from the mixture. The binding partner that bound to the polypeptide then can be purified and further analyzed. Determination of binding partners of Dkk and Dkk interacting proteins as well as agents which prevent the interaction of Dkk with one of its interacting proteins (e.a., LRP5. LRP6, HBM, or those proteins listed in Figure 5) can be performed using a variety of different competition assays as are known in the art. For example, the minimal sequence of Dkk, as described herein, can be used to identify antibodies which compete with LRP5 (or LRP6, HBM or other ligand binding partners) for binding to Dkk-1 and vice versa. The minimal Dkk sequence can be bound to the bottom of a 96-well plate (or other solid substrate), and antibodies or other potential binding agents (e.g., polypeptides, mimetics, homologs, antibody fragments and the like) can be screened in a competition assay to identify agents with binding affinities, for example, greater than the natural ligand binding partner of Dkk.

In the present invention, suitable cells are used for preparing assays, for the expression of a LRP and/or Dkk or proteins that interact therewith. The cells may be made or derived from mammals, yeast, fungi, or viruses. A suitable cell for the purposes of this invention is one that includes but is not limited to a cell that can exhibit a detectable Dkk-LRP (or HBM) interaction, and preferably, the differential interaction between Dkk-1-LRP5 and Dkk-1-HBM. For the desired assay, the cell type may vary. In several embodiments, bone cells are preferred, for example, a human osteoblast cell (e.g. hOB-03-CE6) or osteosarcoma cell (e.g. U2OS). Additional hOB cells are hOB-03-C5, hOB-02-02 and, an immortalized pre-osteocytic cell line referred to as hOB-01-C1-PS-09 cells (which are deposited with American Type Culture Collection in

Manassas, Va. with the designation PTA-785), Examples of osteosarcoma cells would include SaoS2, MG63 and HOS TE85. Immortalized refers to a substantially continuous and permanently established cell culture with substantially unlimited cell division potential. That is, the cells can be cultured substantially indefinitely, i.e., for at least about 6 months under rapid conditions of growth, preferably much longer under slower growth conditions, and can be propagated rapidly and continually using routine cell culture techniques. Alternatively stated, preferred cells can be cultured for at least about 100, 150 or 200 population doublings. These cells produce a complement of proteins characteristic of normal human osteoblastic cells and are capable of osteoblastic differentiation. They can be used in cell culture studies of osteoblastic cell sensitivity to various agents, such as hormones, cytokines, and growth factors, or in tissue therapy. Certain non bone cells such as HEK 293 cells that exhibit detectable Dkk-LRP (or HBM) interaction are also be useful for the assays of this invention.

To identify and isolate a binding partner, the entire Dkk protein (e.g., human Dkk-1, GenBank Accession No. BAA34651) or a Dkk interacting protein (Genbank Accession Nos. for some Dkk-1 interacting proteins are given in Figure 5) can be used. Alternatively, a polypeptide fragment of the protein can be used. Suitable fragments of the protein include at least about 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150 or more contiguous amino acid residues of any Dkk or Dkk interactor sequence. Preferable sequences of Dkk include portions or all of one or both of the cysteine rich domains (e.g., Cys-1 and Cys-2 of Dkk-1) or the conserved sequences at the amino terminus of Dkk-1 (See Krupnik et al., Gene 238: 301-313 (1999)). Alternatively, portions of LRP5, LRP6, HBM and other Dkk interacting proteins such as those in Figure 5 that interact with Dkk-1 can be used to identify and isolate agents which modulate Dkk interacting proteins such as those in Figure 5 that interact with Dkk-1 can be used to identify and isolate agents which modulate Dkk activity.

As used herein, a cellular extract refers to a preparation or fraction which is made from a lysed or disrupted cell. A variety of methods can be used to obtain cell

extracts. Cells can be disrupted using either physical or chemical disruption methods. Examples of physical disruption methods include, but are not limited to, sonication and mechanical shearing. Examples of chemical lysis methods include, but are not limited to, detergent lysis and enzyme lysis. A skilled artisan can readily adapt methods for preparing cellular extracts in order to obtain extracts for use in the present methods.

5

10

15

20

25

Once an extract of a cell is prepared, the extract is mixed with the protein of the invention under conditions in which association of the protein with the binding partner can occur. A variety of conditions can be used, the most preferred being conditions that closely resemble conditions found in the cytoplasm of a human cell. Features such as osmolarity, pH, temperature, and the concentration of cellular extract used, can be varied to optimize the association of the protein with the binding partner.

After mixing under appropriate conditions, the bound complex is separated from the mixture. A variety of techniques can be utilized to separate the mixture. For example, antibodies specific to a protein of the invention can be used to immunoprecipitate the binding partner complex. Alternatively, standard chemical separation techniques such as chromatography and density/sediment centrifugation can be used. For example, a protein of the invention is expressed with an affinity tag such as a His tag. The His labeled protein and any bound molecule may be retained and selectively eluted from a Ni-NTA column.

After removal of non-associated cellular constituents found in the extract, the binding partner can be dissociated from the complex using conventional methods. For example, dissociation can be accomplished by altering the salt concentration or pH of the mixture.

To aid in separating associated binding partner pairs from the mixed extract, the protein of the invention can be immobilized on a solid support. For example, the protein can be attached to a nitrocellulose matrix or acrylic beads. Attachment of the protein to a solid support aids in separating peptide/binding partner pairs from other constituents found in the extract. The identified binding partners can be either a single protein or a complex made up of two or more proteins.

Alternatively, the nucleic acid molecules of the invention can be used in a Y2H system. The Y2H system has been used to identify other protein partner pairs and can readily be adapted to employ the nucleic acid molecules herein described. Methods of performing and using Y2H systems are known. See, e.g., Finley et al., "Two-Hybrid Analysis of Genetic Regulatory Networks," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Meijia Yang, "Use of a Combinatorial Peptide Library in the Two-Hybrid Assay," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Gietz et al., "Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system," Mol. & Cell. Biochem. 172: 67-9 (1997); K. H. Young, "Yeast Two-Hybrid: So Many Interactions, (in) so Little Time," Biol. Reprod. 58: 302-311 (1998); R. Brent et al., "Understanding Gene and Allele Function with Two-Hybrid Methods," Annu. Rev. Genet. 31:663-704 (1997) and U.S. Patent No. 5,989,808. The Dkk-1 interacting proteins identified in Figure 5 were identified using the Y2H interacting system using Dkk-1 as bait.

5

10

15

20

25

30

One preferred in vitro binding assay for Dkk modulators would comprise a mixture of a LRP binding domain of Dkk and one or more candidate binding targets or substrates. After incubating the mixture under appropriate conditions, one would determine whether Dkk or a fragment thereof bound with the candidate modulator present. For cell-free binding assays, one or more of the components usually comprises or is coupled to a label. The label may provide for direct detection, such as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods may be employed to detect the label depending on the nature of the label and other assay components. For example, the label may be detected bound to the solid substrate or a portion of the bound complex containing the label may be separated from the solid substrate, and the label thereafter detected. Fluorescence resonance energy transfer may be utilized to monitor the interaction of two labeled molecules. For example, a fluorescence label on Dkk and another label on LRP5 or a soluble fragment thereof such as the extracellular domain will exchange fluorescence resonance energy when in close proximity indicating that the two molecules are bound. A preferred binding partner for Dkk will

increase or decrease the affinity between Dkk and LRP5 which will be readily observable in a fluorescence spectrometer. Alternatively, an instrument, such as a surface plasmon resonance detector manufactured by BIAcore (Uppsala, Sweden), may be used to observe interactions with a fixed target. One skilled in the art knows of many other methods which may be employed for this purpose.

Thereby, the present invention provides methods for screening candidates including polypeptides of the present invention for activity which identifies these candidates as valuable drug leads. Other suitable methods are also known in the art and are suitable for use herein, including *Xenopus* oocyte injection studies and TCF luciferase assays.

Additional assays can be used to identify the activity of Dkk and Dkk interacting proteins in the Wnt pathway, as well as the impact of modulators of Dkk and Dkk interacting proteins on the Wnt pathway. These include, for example, a *Xenopus* embryo assay and a TCF-luciferase reporter gene assay to monitor Wnt signaling modulation.

Xenopus embryos are an informative *in vivo* assay system to evaluate the modulation of Wnt signaling. Ectopic expression of certain Wnts or other activators of the Wnt signaling pathway results in a bifurcation of the anterior neural plate. This bifurcation results in a duplicated body axis, which suggests a role for Wnt signaling during embryonic development (McMahon *et al.*, *Cell* 58: 1075-84 (1989); Sokol *et al.*, *Cell* 67: 741-52 (1991)). Since these original observations, the *Xenopus* embryo assay has been extensively used as an assay system for evaluating modulation of the Wnt signaling pathway. One preferred embodiment of the present invention is demonstrated in Example 6.

Constructs for *Xenopus* expression can be prepared as would be known in the art. For example, a variety of cDNAs have been engineered into the vector pCS2+ (Turner *et al.*, *Genes Devel.* 8: 1434-1447 (1994)) to facilitate the *in vitro* generation of mRNA for use in *Xenopus* embryo injection experiments. DNA inserts are subcloned in the sense orientation with respect to the vector SP6 promoter. Downstream of the insert, the vector provides an SV40 virus polyadenlylation signal and a T3 promoter

5

10

15

20

sequence (*i.e.*, for the generation of antisense mRNA). Constructs can be generated for various Dkk family members, LRP5, LRP6, HBM, Dkk-1 interactors, etc. Constructs could be generated in pCS2⁺ that contain the nucleic acid sequence encoding for the peptide aptamers that were identified in yeast screens. These sequences would be fused to a 5' synthetic translation initiation sequence followed by a canonical signal sequence to ensure that the peptide aptamer would be translated and secreted from the cell.

5

10

15

20

25

30

Once these constructs are made then mRNA can be synthesized and injected into *Xenopus* oocytes. mRNA for microinjection into *Xenopus* embryos is generated by *in vitro* transcription using the cDNA constructs in the pCS2⁺ vector described above as template. Various amounts of RNA can be injected into the ventral blastomere of the 4-or 8-cell *Xenopus* embryo substantially as described in Moon *et al.*, *Technique-J. of Methods in Cell and Mol. Biol.* 1: 76-89 (1989), and Peng, *Meth. Cell. Biol.* 36: 657-62 (1991).

Previous data has shown that expression of LRP5, in the presence of Wnt5a, results in a Wnt-induced duplicated axis formation in *Xenopus* embryos (Tamai *et al.*, *Nature* 407: 530-535 (2000)). The roles of Dkk-1 and Dkk-2, and Dkk-1 interacting proteins, in modulating the LRP5-mediated Wnt response *in vivo* can be analyzed using, for example, the *Xenopus* embryo. In addition, the peptide aptamers, Dkk interacting proteins, or combinations of the above can be evaluated in a similar manner.

Experiments can also be conducted wherein RNA is injected into the dorsal blastomere to ensure the specificity of the observed phenotypes. Lineage tracing experiments can be performed where a marker gene such as green fluorescent protein (GFP) or LacZ is co-injected with the experimental RNAs. Detecting marker gene expression would identify the targeted cells of the microinjection and aid in elucidating the mechanism of action. In addition to the Wnt signaling components listed above, the point at which HBM acts upon the Wnt pathway can also be analyzed. This can be done by co-injections of various dominant-negative constructs. For example, a dominant negative TCF-3 construct would be useful to demonstrate that the observed axis duplication (and Wnt activation) is mediated via the β-catenin-TCF response. If so,

such a construct would be expected to abolish the observed duplicated axis phenotype. Another example would include a dominant negative Dsh construct. Since Dsh is far upstream in the Wnt signaling pathway, a dominant negative construct should abolish the activation of the Wnt response and the observed axis duplication. If it does not, this would suggest that axis duplication is being induced via a different signaling pathway.

The marker genes of the injected *Xenopus* embryos can be analyzed as follows. Representative embryos are collected at stage 10.5 (11 hours post fertilization) for marker gene analysis. RNA is extracted and purified from the embryos following standard protocols (Sambrook *et al.*, 1989 at 7.16). Marker genes could include the following: Siamois (*i.e.*, Wnt responsive gene), Xnr3 (*i.e.*, Wnt responsive gene), slug (*i.e.*, neural crest marker), Xbra (*i.e.*, early mesoderm marker), HNK-1 (*i.e.*, ectodermal/neural marker), endodermin (*i.e.*, endoderm), Xlhbox8 (*i.e.*, pancreatic), BMP2 and BMP4 (*i.e.*, early mesoderm), XLRP6 (*i.e.*, maternal and zygotic expression, it is also the LRP6 homolog in the frog), EF-1 (*i.e.*, control) and ODC (*i.e.*, control). Induction of marker genes is analyzed and quantitated by RT-PCR/TaqMan®.

This type of marker analysis is excellent to monitor changes in gene expression that result very early in the embryo as a direct result of signaling perturbation. Other experiments could be designed that would monitor changes in gene expression in a more tissue or spatially-restricted fashion. Examples would include the generation of a transgenic *Xenopus* model. For example, Zmax/LRP5 and HBM expression could be under the control of the brachyury or cardiac-actin promoters directing gene expression transiently in the mesoderm or in the somites, respectively. Phenotype analyses of these transgenic *Xenopus* animals would include marker gene analysis/transcriptional profiling (from a restricted tissue source) and histologic examination of the tissue.

A TCF-luciferase assay system such as that described in Example 7 can also be used to monitor Wnt signaling activity, Dkk activity and Dkk interacting protein activity. Constructs for the TCF-luciferase assays can be prepared as would be known in the art. For example, Dkk and Dkk interacting protein peptides, LRP5/LRP6, among others, can be expressed in pcDNA3.1, using Kozak and signal sequences to target peptides for secretion.

5

10

15

20

Once constructs have been prepared, cells such as osteoblasts and HEK293 cells are seeded in well plates and transfected with construct DNA, CMV betagalactosidase plasmid DNA, and TCF-luciferase reporter DNA. The cells are then lysed and assayed for beta-galactosidase and luciferase activity to determine whether Dkk, Dkk interacting proteins, or other molecules such as antibodies affect Wnt signaling.

Additional assays for monitoring Wnt signaling activity, Dkk activity, and Dkk interacting protein activity include:

5

10

15

20

25

30

Modulation of another Wnt-responsive transcription factor, LEF, as visualized by a reporter gene activity. One example includes the activation of the LEF1 promoter region fused to the luciferase reporter gene (Hsu *et al.*, *Mol. Cell. Biol.* 18: 4807-18 (1999)).

Alterations in cell proliferation, cell cycle or apoptosis. There are numerous examples describing Wnt-mediated cellular transformations including Shimizu *et al.*, *Cell. Growth Differ.* 8: 1349-58 (1997).

Stabilization and cellular localization of de-phosphorylated β -catenin as an indicator of Wnt activation (Shimizu et al., 1997).

Additional methods of assaying Wnt signaling, through either the canonical or non-canonical pathways, would be apparent to the artisan of ordinary skill.

11. <u>Methods to Identify Agents that Modulate the Expression of a Nucleic Acid</u> <u>Encoding the Dkk and/or LRP5 Proteins and/or Dkk interacting proteins</u>

Another embodiment of the present invention provides methods for identifying agents that modulate the expression of a nucleic acid encoding Dkk. Such assays may utilize any available means of monitoring for changes in the expression level of the nucleic acids of the invention. As used herein, an agent is said to modulate the expression of Dkk, if it is capable of up- or down-regulating expression of the nucleic acid in a cell (e.g., mRNA).

In one assay format, cell lines that contain reporter gene fusions between the nucleic acid encoding Dkk (or proteins which modulate the activity of Dkk) and any

assayable fusion partner may be prepared. Numerous assayable fusion partners are known and readily available, including but not limited to the firefly luciferase gene and the gene encoding chloramphenicol acetyltransferase (Alam *et al.*, *Anal. Biochem.* 188: 245-254 (1990)). Cell lines containing the reporter gene fusions are then exposed to the agent to be tested under appropriate conditions and time. Differential expression of the reporter gene between samples exposed to the agent and control samples identifies agents which modulate the expression of a nucleic acid encoding Dkk or other protein which modulates Dkk activity. Such assays can similarly be used to determine whether LRP5 and even LRP6 activity is modulated by regulating Dkk activity.

10

15

5

Additional assay formats may be used to monitor the ability of the agent(s) to modulate the expression of a nucleic acid encoding Dkk, alone or Dkk and LRP5, and/or Dkk interacting proteins such as those identified in Figure 5. For instance, mRNA expression may be monitored directly by hybridization to the nucleic acids of the invention. Cell lines are exposed to the agent to be tested under appropriate conditions and time and total RNA or mRNA is isolated by standard procedures such those disclosed in Sambrook *et al.* (1989); Ausubel *et al.*, Current Protocols in Molecular Biology (Greene Publishing Co., NY, 1995); Maniatis *et al.*, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982); and Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (Frederick M. Ausubel *et al.*, April 1999).

20

25

Probes to detect differences in RNA expression levels between cells exposed to the agent and control cells may be prepared from the nucleic acids of the invention. It is preferable, but not necessary, to design probes which hybridize only with target nucleic acids under conditions of high stringency. Only highly complementary nucleic acid hybrids form under conditions of high stringency. Accordingly, the stringency of the assay conditions determines the amount of complementarity which should exist between two nucleic acid strands in order to form a hybrid. Stringency should be chosen to maximize the difference in stability between the probe:target hybrid and potential probe:non-target hybrids.

Probes may be designed from the nucleic acids of the invention through methods known in the art. For instance, the G+C content of the probe and the probe length can affect probe binding to its target sequence. Methods to optimize probe specificity are commonly available. See for example, Sambrook *et al.* (1989) or Ausubel *et al.* (Current Protocols in Molecular Biology, Greene Publishing Co., NY, 1995).

5

10

15

20

25

30

Hybridization conditions are modified using known methods, such as those described by Sambrook et al. (1989) and Ausubel et al. (1995), as suitable for each probe. Hybridization of total cellular RNA or RNA enriched for polyA RNA can be accomplished in any available format. For instance, total cellular RNA or RNA enriched for polyA RNA can be affixed to a solid support and the solid support exposed to at least one probe comprising at least one, or part of one of the nucleic acid sequences of the invention under conditions in which the probe will specifically hybridize. Alternatively, nucleic acid fragments comprising at least one, or part of one of the sequences of the invention can be affixed to a solid support, such as a porous glass wafer. The glass or silica wafer can then be exposed to total cellular RNA or polyA RNA from a sample under conditions in which the affixed sequences will specifically hybridize. Such glass wafers and hybridization methods are widely available, for example, those disclosed by Beattie (WO 95/11755). By examining for the ability of a given probe to specifically hybridize to an RNA sample from an untreated cell population and from a cell population exposed to the agent, agents which up- or downregulate the expression of a nucleic acid encoding Dkk, a Dkk interacting protein, and/or LRP5 can be identified.

Microarray technology and transcriptional profiling are examples of methods which can be used to analyze the impact of putative Dkk or Dkk interacting protein modulating compounds. For transcriptional profiling, mRNA from cells exposed *in vivo* to a potential Dkk modulating agent, such as the Dkk interacting proteins identified in the present invention (*e.g.*, those identified in Figure 5), agents which modulate Dkk interacting proteins, and mRNA from the same type of cells that were not exposed to the agent could be reverse transcribed and hybridized to a chip containing DNA from

numerous genes, to thereby compare the expression of genes in cells treated and not treated with the agent. If, for example a putative Dkk modulating agent down-regulates the expression of Dkk in the cells, then use of the agent may be undesirable in certain patient populations. For additional methods of transcriptional profiling and the use of microarrays, refer to, for example, U.S. Patent No. 6,124,120 issued to Lizardi (2000).

5

10

15

20

25

30

Additional methods for screening the impact of Dkk and Dkk interacting protein modulating compounds or the impact of Dkk or Dkk interacting proteins on modulation of LRP5, LRP6, HBM or the Wnt pathway include the use of TaqMan PCR, conventional reverse transcriptase PCR (RT-PCR), changes in downstream surrogate markers (*i.e.*, Wnt responsive genes), and anti-Dkk Western blots for protein detection. Other methods would be readily apparent to the artisan of ordinary skill.

12. <u>Methods to Identify Agents that Modulate at Least One Activity of Dkk, a</u> <u>Dkk Interacting Protein, or LRP5/LRP6/HBM</u>

Another embodiment of the present invention provides methods for identifying agents that modulate at least one activity of Dkk, Dkk interacting proteins, and/or LRP5/LRP6/HBM proteins or preferably which specifically modulate an activity of a Dkk/Dkk interacting protein complex or an LRP5(or LRP6/HBM)/Dkk complex, or a biologically active fragment of Dkk (e.g., comprising the domain which binds LRP5/LRP6/HBM) or a Dkk interacting protein complex. Such methods or assays may utilize any means of monitoring or detecting the desired activity as would be known in the art (See, e.g., Wu et al., Curr. Biol. 10:1611-4 (2000); Fedi et al., J. Biol. Chem. 274:19465-72 (1991); Grotewold et al., Mech. Dev. 89:151-3 (1999); Shibata et al., Mech. Dev. 96:243-6 (2000); Wang et al., Oncogene 19:1843-8 (2000); and Glinka et al., Nature 391:357-62 (1998)). Potential agents which modulate Dkk include, for example, p53, the tumor suppressor protein, which can induce Dkk-1. Damage to DNA has also been observed to up-regulate Dkk-1 expression via a stabilization and activation of p53 (Wang et al., Oncogene 19:1843-48 (2000)); and, Shou et al., Oncogene 21:878-89 (2002)). Additionally, Fedi et al. (1999) purportedly showed that Dkk-1 can block the Wnt2-induced oncogenic transformation of NIH-3T3 cells.

Furthermore, it has been suggested that Dkk expression can be modulated by BMP signaling in the developing skeleton (Mukhopadhyay *et al.*, *Dev. Cell.* 1:423-34 (2001); and Grotewold *et al.*, *EMBO J.* 21:966-75 (2002)). Grotewold *et al.* additionally describe altered Dkk expression levels in response to stress signals including UV irradiation and other genotoxic stimuli. They propose that Dkk expression is proapoptotic. In animals expressing HBM constructs conferring high bone mass, a reduced osteoblast apoptosis effect was observed. Thus, HBM and HBM-like variants may control/alter Dkk's role in programmed cell death. Other agents which potentially modulate Dkk activity include the Dkk interacting proteins identified in Figure 5.

In one embodiment, the relative amounts of Dkk or a Dkk interacting protein of a cell population that has been exposed to the agent to be tested is compared to an unexposed control cell population. Antibodies can be used to monitor the differential expression of the protein in the different cell populations. Cell lines or populations are exposed to the agent to be tested under appropriate conditions and time. Cellular lysates may be prepared from the exposed cell line or population and a control, unexposed cell line or population. The cellular lysates are then analyzed with the probe, as would be known in the art. See, e.g., Ed Harlow and David Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor, NY, 1988) and Ed Harlow and David Lane, Using Antibodies: A Laboratory Manual (Cold Spring Harbor, NY, 1998).

For example, N- and C- terminal fragments of Dkk can be expressed in bacteria and used to search for proteins which bind to these fragments. Fusion proteins, such as His-tag or GST fusion to the N- or C-terminal regions of Dkk (or to biologically active domains of Dkk-1) or a whole Dkk protein can be prepared. These fusion proteins can be coupled to, for example, Talon or Glutathione-Sepharose beads and then probed with cell lysates to identify molecules which bind to Dkk. Prior to lysis, the cells may be treated with purified Wnt proteins, RNA, or drugs which may modulate Wnt signaling or proteins that interact with downstream elements of the Wnt pathway. Lysate proteins binding to the fusion proteins can be resolved by SDS-PAGE, isolated and identified by, for example protein sequencing or mass spectroscopy, as is known in the art. See, e.g., Protein Purification Applications: A Practical Approach (Simon Roe, ed., 2nd ed.

Oxford Univ. Press, 2001) and "Guide to Protein Purification" in *Meth. Enzymology* vol. 182 (Academic Press, 1997).

5

10

15

20

25

The activity of Dkk, a Dkk interacting protein, or a complex of Dkk with LRP5/LRP6/HBM may be affected by compounds which modulate the interaction between Dkk and a Dkk interacting protein (such as those shown in Figure 5) and/or Dkk and LRP5/LRP6/HBM. The present invention provides methods and research tools for the discovery and characterization of these compounds. The interaction between Dkk and a Dkk interacting protein and/or Dkk and LRP5/6/HBM may be monitored in vivo and in vitro. Compounds which modulate the stability of a Dkk -LRP5/LRP6/HBM complex are potential therapeutic compounds. Example in vitro methods include: Binding LRP5/6/HBM, Dkk, or a Dkk interacting protein to a sensor chip designed for an instrument such are made by Biacore (Uppsala, Sweden) for the performance of an plasmon resonance spectroscopy observation. In this method, the chip with one of Dkk, a Dkk interacting protein, or LRP5/6 is first exposed to the other under conditions which permit them to form the complex. A test compound is then introduced and the output signal of the instrument provides an indication of any effect exerted by the test compound. By this method, compounds may be rapidly screened. Another, in vitro, method is exemplified by the SAR-by-NMR methods (Shuker et al., Science. 274:1531-4 (1996)). Briefly, a Dkk-1 binding domain and/or LRP 5 or 6 LBD are expressed and purified as ¹⁵N labeled protein by expression in labeled media. The labeled protein(s) are allowed to form the complex in solution in an NMR sample tube. The heteronuclear correlation spectrum in the presence and absence of a test compound provides data at the level of individual residues with regard to interactions with the test compound and changes at the protein-protein interface of the complex. One of skill in the art knows of many other protocols, e.g. affinity capillary electrophoresis (Okun et al. J Biol Chem 276:1057-62 (2001); Vergun and Chu. Methods, 19:270-7 (1999)), fluorescence spectroscopy, electron paramagnetic resonance, etc. which can monitor the modulation of a complex and/or measure binding affinities for complex formation.

In vitro protocols for monitoring the modulation of a Dkk/LRP5/LRP6/HBM complex include the yeast two hybrid protocol. The yeast two hybrid method may be used to monitor the modulation of a complex in vivo by monitoring the expression of genes activated by the formation of a complex of fusion proteins of Dkk and LRP ligand binding domains. Nucleic acids according to the invention which encode the interacting Dkk and LRP LBD domains are incorporated into bait and prey plasmids. The Y2H protocol is performed in the presence of one or more test compounds. The modulation of the complex is observed by a change in expression of the complex activated gene. It will be appreciated by one skilled in the art that test compounds can be added to the assay directly or, in the case of proteins, can be coexpressed in the yeast with the bait and prey compounds. Similarly, fusion proteins of Dkk and Dkk interacting proteins can also be used in a Y2H screen to identify other proteins which modulate the Dkk/Dkk interacting protein complex.

Assay protocols such as these may be used in methods to screen for compounds, drugs, treatments which modulate the Dkk/Dkk interacting protein and/or Dkk/LRP5/6 complex, whether such modulation occurs by competitive binding, or by altering the structure of either LRP 5/6 or Dkk at the binding site, or by stabilizing or destablizing the protein-protein interface. It may be anticipated that peptide aptamers may competitively bind, although induction of an altered binding site structure by steric effects is also possible.

12.1 <u>Antibodies and Antibody Fragments</u>

5

10

15

20

25

30

Polyclonal and monoclonal antibodies and fragments of these antibodies which bind to Dkk or LRP5/LRP6/HBM can be prepared as would be known in the art. For example, suitable host animals can be immunized using appropriate immunization protocols and the peptides, polypeptides or proteins of the invention. Peptides for use in immunization are typically about 8-40 residues long. If necessary or desired, the polypeptide immunogens can be conjugated to suitable carriers. Methods for preparing immunogenic conjugates with carriers such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), or other carrier proteins are well known in the art (See.

Harlow *et al.*, 1988). In some circumstances, direct conjugation using, for example, carbodiimide reagents, may be effective; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, may be desirable to provide accessibility to the polypeptide or hapten. The hapten peptides can be extended at either the amino or carboxy terminus with a cysteine residue or interspersed with cysteine residues, for example, to facilitate linking to a carrier. Administration of the immunogens is conducted generally by injection over a suitable time period and with use of suitable adjuvants, as is generally understood in the art. During the immunization schedule, titers of antibodies are taken to determine adequacy of antibody formation.

5

10

15

20

25

30

Anti-peptide antibodies can be generated using synthetic peptides, for example, the peptides derived from the sequence of any Dkk, including Dkk-1, or LRP5/LRP6/HBM. Synthetic peptides can be as small as 2-3 amino acids in length, but are preferably at least 3, 5, 10, or 15 or more amino acid residues long. Such peptides can be determined using programs such as DNAStar. The peptides are coupled to KLH using standard methods and can be immunized into animals such as rabbits. Polyclonal anti-Dkk or anti-LRP5/LRP6/HBM peptide antibodies can then be purified, for example using Actigel beads containing the covalently bound peptide.

While the polyclonal antisera produced in this way may be satisfactory for some applications, for pharmaceutical compositions, use of monoclonal preparations is preferred. Immortalized cell lines which secrete the desired monoclonal antibodies may be prepared using the standard method of Kohler and Milstein or modifications which effect immortalization of lymphocytes or spleen cells, as is generally known (See, e.g., Harlow *et al.*, 1988 and 1998). The immortalized cell lines secreting the desired antibodies can be screened by immunoassay in which the antigen is the peptide hapten, polypeptide or protein. When the appropriate immortalized cell culture secreting the desired antibody is identified, the cells can be cultured either *in vitro* or by production in ascites fluid.

The desired monoclonal antibodies are then recovered from the culture supernatant or from the ascites supernatant. Fragments of the monoclonal antibodies

which contain the immunologically significant portion can be used as agonists or antagonists of Dkk activity. Use of immunologically reactive fragments, such as the Fab, scFV, Fab', of F(ab')₂ fragments are often preferable, especially in a therapeutic context, as these fragments are generally less immunogenic than the whole immunoglobulin.

5

10

15

20

25

The antibodies or fragments may also be produced, using current technology, by recombinant means. Regions that bind specifically to the desired regions of Dkk or LRP5/LRP6/HBM can also be produced in the context of chimeras with multiple species origin. Antibody reagents so created are contemplated for use diagnostically or as stimulants or inhibitors of Dkk activity.

In one embodiment, antibodies against Dkk, bind Dkk with high affinity, i.e., ranging from 10⁻⁵ to 10⁻⁹ M. Preferably, the anti-Dkk antibody will comprise a chimeric, primate, Primatized®, human or humanized antibody. Also, the invention embraces the use of antibody fragments, e.g., Fab's, Fv's, Fab's, F(ab)₂, and aggregates thereof.

Another embodiment contemplates chimeric antibodies which recognize Dkk or LRP5/LRP6/HBM. A chimeric antibody is intended to refer to an antibody with non-human variable regions and human constant regions, most typically rodent variable regions and human constant regions.

A "primatized® antibody" refers to an antibody with primate variable regions, e.g., CDR's, and human constant regions. Preferably, such primate variable regions are derived from an Old World monkey.

A "humanized antibody" refers to an antibody with substantially human framework and constant regions, and non-human complementarity-determining regions (CDRs). "Substantially" refers to the fact that humanized antibodies typically retain at least several donor framework residues (*i.e.*, of non-human parent antibody from which CDRs are derived).

Methods for producing chimeric, primate, primatized®, humanized and human antibodies are well known in the art. See, e.g., U.S. Patent 5,530,101, issued to Queen et al.; U.S. Patent 5,225,539, issued to Winter et al.; U.S. Patents 4,816,397 and

4,816,567, issued to Boss *et al.* and Cabilly *et al.* respectively, all of which are incorporated by reference in their entirety.

The selection of human constant regions may be significant to the therapeutic efficacy of the subject anti-Dkk or LRP5/LRP6/HBM antibody. In a preferred embodiment, the subject anti-Dkk or LRP5/LRP6/HBM antibody will comprise human, gamma 1, or gamma 3 constant regions and, more preferably, human gamma 1 constant regions.

Methods for making human antibodies are also known and include, by way of example, production in SCID mice, and *in vitro* immunization.

The subject anti-Dkk or LRP5/LRP6/HBM antibodies can be administered by various routes of administration, typically parenteral. This is intended to include intravenous, intramuscular, subcutaneous, rectal, vaginal, and administration with intravenous infusion being preferred.

The anti-Dkk or LRP5/LRP6/HBM antibody will be formulated for therapeutic usage by standard methods, *e.g.*, by addition of pharmaceutically acceptable buffers, *e.g.*, sterile saline, sterile buffered water, propylene glycol, and combinations thereof.

Effective dosages will depend on the specific antibody, condition of the patient, age, weight, or any other treatments, among other factors. Typically effective dosages will range from about 0.001 to about 30 mg/kg body weight, more preferably from about 0.01 to 25 mg/kg body weight, and most preferably from about 0.1 to about 20 mg/kg body weight.

Such administration may be effected by various protocols, e.g., weekly, biweekly, or monthly, depending on the dosage administered and patient response. Also, it may be desirable to combine such administration with other treatments.

Antibodies to Dkk-1 interacting proteins, such as those identified in Figure 5, are also contemplated according to the present invention, and can be used similarly to the Dkk-1 antibodies mentioned in the above methodology.

The antibodies of the present invention can be utilized in experimental screening, as diagnostic reagents, and in therapeutic compositions.

25

5

10

15

12.2 Chemical Libraries

5

10

25

30

included.

Agents that are assayed by these methods can be randomly selected or rationally selected or designed. As used herein, an agent is said to be randomly selected when the agent is chosen randomly without considering the specific sequences involved in the association of Dkk-1 alone, Dkk-1 interacting proteins alone, or with their associated substrates, binding partners, etc. An example of randomly selected agents is the use of a chemical library or a peptide combinatorial library, or a growth broth of an organism.

The agents of the present invention can be, as examples, peptides, small molecules, vitamin derivatives, as well as carbohydrates. A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents of the present invention.

12.3 Peptide Synthesis

The peptide agents of the invention can be prepared using standard solid phase (or solution phase) peptide synthesis methods, as is known in the art. In addition, the DNA encoding these peptides may be synthesized using commercially available oligonucleotide synthesis instrumentation and produced recombinantly using standard recombinant production systems. The production of polypeptides using solid phase peptide synthesis is necessitated if non-nucleic acid-encoded amino acids are to be

13. <u>Uses for Agents that Modulate at Least One Activity of Dkk, a Dkk</u>

<u>Interacting Protein, a Dkk/Dkk Interacting Protein Complex, or a Dkk/LRP5 or Dkk/LRP6 Complex</u>

The proteins and nucleic acids of the invention, such as the proteins or polypeptides containing an amino acid sequence of LRP5, Dkk, and Dkk interacting proteins are involved in bone mass modulation and lipid modulation of other Wnt pathway mediated activity. Agents that modulate (*i.e.*, up and down-regulate) the expression of Dkk or Dkk interacting proteins, or agents, such as agonists and

antagonists respectively, of at least one activity of Dkk or a Dkk interacting protein may be used to modulate biological and pathologic processes associated with the function and activity of Dkk or a Dkk interacting protein.

As used herein, a subject can be preferably any mammal, so long as the mammal is in need of modulation of a pathological or biological process modulated by a protein of the invention. The term "mammal" means an individual belonging to the class *Mammalia*. The invention is particularly useful in the treatment of human subjects.

5

10

15

20

25

30

As used herein, a biological or pathological process modulated by Dkk or a Dkk interacting protein may include binding of Dkk to a Dkk interacting protein, Dkk to LRP5 or LRP6 or release therefrom, inhibiting or activating Dkk or a Dkk interacting protein mRNA synthesis or inhibiting Dkk or Dkk interacting protein modulated inhibition of LRP5 or LRP6 mediated Wnt signaling. Further bone-related markers may be observed such as alkaline phosphatase activity, osteocalcin production, or mineralization.

Pathological processes refer to a category of biological processes which produce a deleterious effect. For example, expression or up-regulation of expression of LRP5 or LRP6 and/or Dkk and/or a Dkk interacting protein may be associated with certain diseases or pathological conditions. As used herein, an agent is said to modulate a pathological process when the agent statistically significantly (p < 0.05) alters the process from its base level in the subject. For example, the agent may reduce the degree or severity of the process mediated by that protein in the subject to which the agent was administered. For instance, a disease or pathological condition may be prevented, or disease progression modulated by the administration of agents which reduce or modulate in some way the expression or at least one activity of a protein of the invention.

As LRP5/6 and Dkk are involved both directly and indirectly in bone mass modulation, one embodiment of this invention is to use Dkk or Dkk interacting protein expression as a method of diagnosing a bone condition or disease. Certain markers are associated with specific Wnt signaling conditions (*e.g., TCF/LEF* activation). Diagnostic tests for bone conditions may include the steps of testing a sample or an

extract thereof for the presence of Dkk or Dkk interacting protein nucleic acids (*i.e.*, DNA or RNA), oligomers or fragments thereof or protein products of TCF/LEF regulated expression. For example, standard *in situ* hybridization or other imaging techniques can be utilized to observe products of Wnt signaling.

5

10

15

20

25

30

This invention also relates to methods of modulating bone development or bone loss conditions. Inhibition of bone loss may be achieved by inhibiting or modulating changes in the LRP5/6 mediated Wnt signaling pathway. For example, absence of LRP5 activity may be associated with low bone mass. Increased activity LRP5 may be associated with high bone mass. Therefore, modulation of LRP5 activity will in turn modulate bone development. Modulation of the Dkk/LRP5/6 or Dkk/Dkk interacting protein complex via agonists and antagonists is one embodiment of a method to regulate bone development. Such modulation of bone development can result from inhibition of the activity of, for example, a Dkk/LRP(5/6) protein complex, a Dkk/Dkk

The agents of the present invention can be provided alone, or in combination with other agents that modulate a particular pathological process. As used herein, two agents are said to be administered in combination when the two agents are administered simultaneously or are administered independently in a fashion such that the agents will act at the same time.

interacting protein complex, upregulated transcription of the LRP5 gene or inhibited

translation of Dkk or Dkk interacting protein mRNA.

The agents of the present invention can be administered via parenteral, subcutaneous (sc), intravenous (iv), intramuscular (im), intraperitoneal (ip), transdermal or buccal routes. Alternatively, or concurrently, administration may be by the oral route. The dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

The present invention further provides compositions containing one or more agents which modulate expression or at least one activity of a protein of the invention. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art. Typical dosages of the active agent which

mediate Dkk or Dkk interacting protein activity comprise from about 0.0001 to about 50 mg/kg body weight. The preferred dosages comprise from about 0.001 to about 50 mg/kg body weight. The most preferred dosages comprise from about 0.1 to about 1 mg/kg body weight. In an average human of 70 kg, the range would be from about 7 µg to about 3.5 g, with a preferred range of about 0.5 mg to about 5 mg.

5

10

15

20

25

30

In addition to the pharmacologically active agent, the compositions of the present invention may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically for delivery to the site of action. Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, (e.g., ethyl oleate or triglycerides). Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran. Optionally, the suspension may also contain stabilizers. Liposomes and other non-viral vectors can also be used to encapsulate the agent for delivery into the cell.

The pharmaceutical formulation for systemic administration according to the invention may be formulated for enteral, parenteral, or topical (top) administration. Indeed, all three types of formulations may be used simultaneously to achieve systemic administration of the active ingredient.

Suitable formulations for oral administration include hard or soft gelatin capsules, pills, tablets, including coated tablets, elixirs, suspensions, syrups or inhalations and controlled release forms thereof.

Potentially, any compound which binds Dkk or a Dkk interacting protein or modulates the Dkk/LRP5 or Dkk/LRP6 or Dkk/Dkk interacting protein complex may be a therapeutic compound. In one embodiment of the invention, a peptide or nucleic acid aptamer according to the invention is used in a therapeutic composition. Such compositions may comprise an aptamer, or a LRP5 or LRP6 fragment unmodified or

modified. In another embodiment, the therapeutic compound comprises a Dkk-1 interacting protein, or biologically active fragment thereof.

5

10

15

20

25

30

Nucleic acid aptamers have been used in compositions for example by chemical bonding to a carrier molecule such as polyethylene glycol (PEG) which may facilitate uptake or stabilize the aptamer. A di-alkylgylcerol moiety attached to an RNA will embed the aptamer in liposomes, thus stabilizing the compound. Incorporating chemical substitutions (i.e. changing the 2'OH group of ribose to a 2'NH in RNA confers ribonuclease resistance) and capping, etc. can prevent breakdown. Several such techniques are discussed for RNA aptamers in Brody and Gold (Rev. Mol. Biol. 74:3-13 (2000)).

Peptide aptamers may by used in therapeutic applications by the introduction of an expression vector directing aptamer expression into the affected tissue such as for example by retroviral delivery, by encapsulating the DNA in a delivery complex or simple by naked DNA injection. Or, the aptamer itself or a synthetic analog may be used directly as a drug. Encapsulation in polymers and lipids may assist in delivery. The use of peptide aptamers as therapeutic and diagnostic agents is reviewed by Hoppe-Syler and Butz (*J. Mol. Med.* 78:426-430 (2000)).

In another aspect of the invention. The structure of a constrained peptide aptamer of the invention may be determined such as by NMR or X-ray crystallography. (Cavanagh et al., Protein NMR Spectroscopy: Principles and Practice, Academic Press, 1996; Drenth, Principles of Protein X-Ray Crystallography, Springer Verlag, 1999) Preferably the structure is determined in complex with the target protein. A small molecule analog is then designed according to the positions of functional elements of the 3D structure of the aptamer. (Guidebook on Molecular Modeling in Drug Design, Cohen, Ed., Academic Press, 1996; Molecular Modeling and Drug Design (Topics in Molecular and Structural Biology), Vinter and Gardner Eds., CRC Press, 1994) Thus the present invention provides a method for the design of effective and specific drugs which modulate the activity of Dkk, Dkk interacting proteins, Dkk/Dkk interacting protein complex and the Dkk/LRP complex. Small molecule mimetics of the peptide aptamers of the present invention are encompassed within the scope of the invention.

In practicing the methods of this invention, the compounds of this invention may be used alone or in combination, or in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this invention may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice. For example, the compounds of this invention can be administered in combination with other therapeutic agents for the treatment of bone loss. Bone loss mediating agents include bone resorption inhibitors such as bisphosphonates (e.g., alendronic acid, clodronic acid, etidronic acid, pamidronic acid, risedronic acid and tiludronic acid), vitamin D and vitamin D analogs, cathepsin K inhibitors, hormonal agents (e.g., calcitonin and estrogen), and selective estrogen receptor modulators or SERMs (e.g., raloxifene). And bone forming agents such as parathyroid hormone (PTH) and bone morphogenetic proteins (BMP).

Additionally contemplated are combinations of agents which regulate Dkk-1 and agents which regulate lipid levels such as HMG-CoA reductase inhibitors (*i.e.*, statins such as Mevacor®, Lipitor® and other inhibitors such as Baycol®, Lescol®, Pravachol® and Zocor®), bile acid sequestrants (e.g., Colestid® and Welchol®), fibric acid derivatives (Atromid-S®, Lopid®, Tricor®), and nicotinic acid.

[0001] The compounds of this invention can be utilized *in vivo*, ordinarily in vertebrates and preferably in mammals, such as humans, sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

14. Transgenic Animals

5

10

15

20

25

30

Transgenic animal models can be created which conditionally express Dkk and/or LRP5 or LRP6 and/or Dkk interacting proteins, such as those shown in Figure 5. These animals can be used as research tools for the study of the physiological effects of the Dkk-1/Dkk-1 interacting protein interaction and/or the LRP5 / Dkk interaction. Alternatively, transgenic animals can be created which express a transgenic form of Dkk alone or in addition to a transgenic form of HBM or express Dkk interacting proteins alone or in addition to a transgenic form of Dkk. Transgenic animals expressing HBM or LRP5 can be crossed with transgenic animals expressing Dkk or

Dkk interacting proteins to obtain heterozygote as well as homozygote animals which express both desired genes.

5

10

15

20

25

30

Animal models may be created to directly modulate the Dkk/Dkk interacting protein or Dkk/ LRP5 interaction activity in vivo to serve as a research tool for determining the efficacy of candidate compounds which modulate the Dkk/Dkk interacting protein or LRP5 / Dkk interaction activity in vitro. Animals, such as transgenic mice, can be created using the techniques employed to make transgenic mice that express for example, human Dkk or a Dkk interacting protein, or knockouts (KO), which may be conditional, of the gene encoding mouse Dkk or Dkk interacting protein. Knock-in animals include animals wherein genes have been introduced and animals wherein a gene that was previously knocked-out is reintroduced into the animal. Other transgenic animals can be created with inducible forms of Dkk or a Dkk interacting protein to study the effects of the gene on bone mass development and loss as well as lipid level regulation. These animals can also be used to study long term effects of Dkk or Dkk interacting protein modulation. Transgenic animals may be created to express peptide aptamers, or produce RNA aptamers. The transgenic vectors may direct expression in a tissue specific manner by the use of tissue specific promoters. In a preferred embodiment, a peptide aptamer fusion protein is expressed using a bone specific promoter. Such systems can provide a tissue specific knock-out of Dkk or Dkk interacting protein activity.

General methods for creating transgenic animals are known in the art, and are described in, for example, Strategies in Transgenic Animal Science (Glenn M. Monastersky and James M. Robl eds., ASM Press; Washington, DC, 1995);

Transgenic Animal Technology: A Laboratory Handbook (Carl A. Pinkert ed., Academic Press 1994); Transgenic Animals (Louis Marie Houdebine, ed., Harwood Academic Press, 1997); Overexpression and Knockout of Cytokines in Transgenic Mice (Chaim O. Jacob, ed., Academic Press 1994); Microinjection and Transgenesis: Strategies and Protocols (Springer Lab Manual) (Angel Cid-Arregui and Alejandro Garcia-Carranca, eds., Springer Verlag 1998); and Manipulating the Mouse Embryo: A Laboratory Manual (Brigid Hogan et al., eds., Cold Spring Harbor Laboratory Press 1994).

15. Peptide and Nucleotide Aptamers and Peptide Aptamer Mimetics

Another embodiment contemplates the use of peptide and nucleotide aptamer technology to screen for agents which interact with Dkk, which block Dkk from interacting with LRP5 or LRP6, or which block any other Dkk ligand interaction, or which interact with Dkk interacting proteins, such as those shown in Figure 5. Peptide aptamers are molecules in which a variable peptide domain is displayed from a scaffold protein. Thioredoxin A (trxA) is commonly used for a scaffold. The peptide insert destroys the catalytic site of trxA. It is recognized that numerous proteins may also be used as scaffolding proteins to constrain and/or present a peptide aptamer. Other scaffold proteins that could display a constrained peptide aptamer could include staphylococcal nuclease, the protease inhibitor eglin C, the *Streptomyces tendea* alphaamylase inhibitor Tendamistat, Sp1, and green fluorescent protein (GFP) (reviewed in Hoppe-Seyler *et al.*, *J. Steroid Biochem Mol. Biol.* 78:105-11 (2001)), and the S1 nuclease from *Staphylococcus* or M13 for phage display. Any molecule to which the aptamer could be anchored and presented in its bioactive conformation would be suitable.

Aptamers can then specifically bind to a given target protein *in vitro* and *in vivo* and have the potential to selectively block the function of their target protein. Peptide aptamers are selected from randomized expression libraries on the basis of their *in vivo* binding capacity to the desired target protein. Briefly, a target protein (e.g., Dkk, a Dkk interacting protein, or LRP5/6) is linked to a heterologous DNA binding domain (BD) and expressed as bait in a yeast test strain. Concomitantly, a library coding for different peptides (e.g., 16-mers) of randomized sequence inserted in a scaffold protein sequence, which are linked to a heterologous transcriptional activation domain (AD) is expressed as prey. If a peptide binds to a target protein, a functional transcription factor is reconstituted, in which the BD and AD are bridged together by interacting proteins. This transcription factor is then able to activate the promoter of a marker gene which can be monitored by colorimetric enzymatic assays or by growth selection. Additional variation, methods of preparing and screening methodologies are described in, for example, Hoppe-Seyler *et al.*, *J. Mol. Med.* 78: 426-430 (2000).

Nucleotide aptamers are described for example in Brody et al., Trends Mol. Biotechnol. 74: 5-13 (2000). Additional methods of making and using nucleotide aptamers include SELEX, i.e., Systematic Evolution of Ligands by Exponential Enrichment. SELEX is a process of isolating oligonucleotide ligands of a chosen target molecule (see Tuerk and Gold, Science 249:505-510 (1990); U.S. Pat. Nos. 5,475,096, 5,595,877, and 5,660,985). SELEX, as described in Tuerk and Gold, involves admixing the target molecule with a pool of oligonucleotides (e.g., RNA) of diverse sequences; retaining complexes formed between the target and oligonucleotides; recovering the oligonucleotides bound to the target; reverse-transcribing the RNA into DNA; amplifying the DNA with polymerase chain reactions (PCR); transcribing the amplified DNA into RNA; and repeating the cycle with ever increasing binding stringency. Three enzymatic reactions are required for each cycle. It usually takes 12-15 cycles to isolate aptamers of high affinity and specificity to the target. An aptamer is an oligonucleotide that is capable of binding to an intended target substance but not other molecules under the same conditions.

5

10

· 15

20

25

30

In another reference, Bock et al., Nature 355:564-566 (1990), describe a different process from the SELEX method of Tuerk and Gold in that only one enzymatic reaction is required for each cycle (i.e., PCR) because the nucleic acid library in Bock's method is comprised of DNA instead of RNA. The identification and isolation of aptamers of high specificity and affinity with the method of Bock et al. still requires repeated cycles in a chromatographic column.

Other nucleotide aptamer methods include those described by Conrad *et al.*, *Meth. Enzymol.* 267:336-367 (1996). Conrad *et al.* describe a variety of methods for isolating aptamers, all of which employ repeated cycles to enrich target-bound ligands and require a large amount of purified target molecules. More recently described methods of making and using nucleotide aptamers include, but are not limited to those described in U.S. Patent Nos. 6,180,348; 6,051,388; 5,840,867; 5,780,610, 5,756,291 and 5,582,981.

Potentially, any compound which binds Dkk or a Dkk interacting protein or modulates the Dkk/Dkk interacting protein or Dkk/LRP5 or Dkk/LRP6 complex may be

a therapeutic compound. In one embodiment of the invention, a peptide or nucleic acid aptamer according to the invention is used in a therapeutic composition. Such compositions may comprise an aptamer, or a LRP5 or LRP6 fragment unmodified or modified.

5

Nucleic acid aptamers have been used in compositions for example by chemical bonding to a carrier molecule such as polyethylene glycol (PEG) which may facilitate uptake or stabilize the aptamer. A di-alkylglycerol moiety attached to an RNA will embed the aptamer in liposomes, thus stabilizing the compound. Incorporating chemical substitutions (*i.e.*, changing the 2'-OH group of ribose to a 2'-NH in RNA confers ribonuclease resistance) and capping, etc. can prevent breakdown. Several such techniques are discussed for RNA aptamers in Brody and Gold *Rev. Mol. Biol.* 74:3-13 (2000).

15

10

Peptide aptamers may by used in therapeutic applications by the introduction of an expression vector directing aptamer expression into the affected tissue such as for example by retroviral delivery, by encapsulating the DNA in a delivery complex or simple by naked DNA injection. Or, the aptamer itself or a synthetic analog may be used directly as a drug. Encapsulation in polymers and lipids may assist in delivery. The use of peptide aptamers as therapeutic and diagnostic agents is reviewed by Hoppe-Syler and Butz *J. Mol. Med.* 78:426-430 (2000).

20

25

In another aspect of the invention, the structure of a constrained peptide aptamer of the invention may be determined such as by NMR or X-ray crystallography. (Cavanagh et al., Protein NMR Spectroscopy: Principles and Practice, Academic Press, 1996; Drenth, Principles of Protein X-Ray Crystallography, Springer Verlag, 1999) Preferably the structure is determined in complex with the target protein. A small molecule analog is then designed according to the positions of functional elements of the 3D structure of the aptamer. (Guidebook on Molecular Modeling in Drug Design, Cohen, Ed., Academic Press, 1996; Molecular Modeling and Drug Design (Topics in Molecular and Structural Biology), Vinter and Gardner Eds., CRC Press, 1994) Thus, a method is provided for the design of effective and specific drugs which modulate the activity of Dkk, Dkk interacting proteins, Dkk/Dkk interacting protein

complex, and the Dkk/LRP complex. Small molecule mimics of the peptide aptamers of the present invention are also encompassed within the scope of the invention.

16. <u>Alternative Variants of LRP5/LRP6 Having HBM Activity</u>

A structural model of the LRP5/Zmax1 first beta-propeller module was generated based on a model prediction in Springer et al., (1998) *J. Molecular Biology*, 283:837-862. Based on the model, certain amino acid residues were identified as important variants of LRP5/HBM/Zmax1. The following three categories provide examples of such variants:

The shape of the beta-propeller resembles a disk with inward-sloping sides and a hole down the middle. Residue 171 is in a loop on the outer or top surface of the domain in blade 4 of propeller module 1. Thus, variants comprising changed residues in structurally equivalent positions in other blades; as well as residues that are slightly more interior to the binding pocket, but still accessible to the surface, are important embodiments of the present invention for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention. The following are examples of such variants:

A214V (a position equivalent to 171 in blade 5; alanine is not conserved in other propellers),

E128V (a position equivalent to 171 in blade 3; glutamate is not conserved in other propellers),

A65V (a position equivalent to 171 in blade 2; alanine is conserved in propellers 1-3 but not 4),

G199V (an accessible interior position in blade 5; glycine is conserved in propellers 1-3 but not 4), and M282V (accessible interior position in blade 1; methionine is conserved in propellers 1-3 but not 4).

LRP5/Zmax1 has four beta-propeller structures; the first three beta-propeller modules conserve a glycine in the position corresponding to residue 171 in human

10

5

15

20

25

LRP5/Zmax1. Therefore, variants bearing a valine in the equivalent positions in the other propellers are important embodiments of the present invention. The following variants are useful for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention: G479V, G781V, and Q1087V.

The G171V HBM polymorphism results in "occupied space" of the beta-propeller 1, with the side-chain from the valine residue sticking out into an open binding pocket and potentially altering a ligand/protein interaction. The glycine residue is conserved in LRP5/Zmax1 propellers 1, 2 and 3 but is a glutamine in propeller 4. Therefore, the following variants of LRP5/HBM are important embodiments of the present invention for the study of bone mass modulation by LRP5/HBM, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention:

G171K (which introduces a charged side-chain).

G171F (which introduces a ringed side-chain),

5

10

15

20

25

G1711 (which introduces a branched side-chain), and

G171Q (which introduces the propeller 4 residue).

Furthermore, LRP6 is the closest homolog of LRP5/Zmax1. LRP6 has a beta-propeller structure predicted to be similar, if not identical to Zmax1. The position corresponding to glycine 171 in human LRP5/Zmax1 is glycine 158 of human LRP6. Thus, corresponding variants of LRP6 are an important embodiment of the present invention for the study of the specificity of LRP5/Zmax1 versus its related family member, for the development of pharmaceuticals and treatments of bone mass disorders, and for other objectives of the present invention. Specifically, for example, a glycine to valine substitution at the structurally equivalent position, residue 158, of human LRP6 and similar variants of other species' LRP6 homologs represent important research tools.

Site-directed mutants of LRP5 were generated in the full-length human LRP5 cDNA using the QuikChange XL-Site-Directed Mutagenesis Kit (catalog #200516,

Stratagene, La Jolla, CA) following the manufacturer's protocol. The mutant sequences were introduced using complementary synthetic oligonucleotides:

A65V: TGGTCAGCGGCCTGGAGGATGTGGCCGCAGTGGACTTCC (SEQ ID NO:129) and GGAAGTCCACTGCGGCCACATCCTCCAGGCCGCTGACCA (SEQ ID

NO:130)

E128V: AAGCTGTACTGGACGGACTCAGTGACCAACCGCATCGAGG (SEQ ID NO:131) and

CCTCGATGCGGTTGGTCACTGAGTCCGTCCAGTACAGCTT (SEQ ID

10 NO:132)
G171K: ATGTACTGGACAGACTGGAAGGAGACGCCCCGGATTGAGCG
(SEQ ID NO: 133) and

CGCTCAATCCGGGGCGTCTCCTTCCAGTCTGTCCAGTACAT (SEQ ID NO:134)

15 G171F: ATGTACTGGACAGACTGGTTTGAGACGCCCCGGATTGAGCG (SEQ ID NO:135) and CGCTCAATCCGGGGCGTCTCAAACCAGTCTGTCCAGTACAT (SEQ ID

NO:136)

G1711: ATGTACTGGACAGACTGGATTGAGACGCCCCGGATTGAGCG (SEQ

20 ID NO:137) and

5

CGCTCAATCCGGGGCGTCTCAATCCAGTCTGTCCAGTACAT (SEQ ID

NO:138)

G171Q: ATGTACTGGACAGACTGGCAGGAGACGCCCCGGATTGAGCG

(SEQ ID NO:139) and

25 CGCTCAATCCGGGGCGTCTCCTGCCAGTCTGTCCAGTACAT (SEQ ID

NO:140)

G199V: CGGACATTTACTGGCCCAATGTACTGACCATCGACCTGGAGG

(SEQ ID NO:141) and

CCTCCAGGTCGATGGTCAGTACATTGGGCCAGTAAATGTCCG (SEQ ID

30 NO:142)

	A214V: AGCTCTACTGGGCTGACGTCAAGCTCAGCTTCATCCACCG (SEQ
	ID NO: 143) and
	CGGTGGATGAAGCTGAGCTTGACGTCAGCCCAGTAGAGCT (SEQ ID
	NO:144)
5	M282V: GAGTGCCCTCTACTCACCCGTGGACATCCAGGTGCTGAGCC (SEQ
	ID NO:145) and
	GGCTCAGCACCTGGATGTCCACGGGTGAGTAGAGGGCACTC (SEQ ID
	NO:146)
	G479V: CATGTACTGGACAGACTGGGTAGAGAACCCTAAAATCGAGTGTGC
10	(SEQ ID NO:147) and
	GCACACTCGATTTTAGGGTTCTCTACCCAGTCTGTCCAGTACATG (SEQ ID
	NO:148)
	G781V: CATCTACTGGACCGAGTGGGTCGGCAAGCCGAGGATCGTGCG
	(SEQ ID NO:149) and
15	CGCACGATCCTCGGCTTGCCGACCCACTCGGTCCAGTAGATG (SEQ ID
	NO:150)
	Q1087V: GTACTTCACCAACATGGTGGACCGGGCAGCCAAGATCGAACG
	(SEQ ID NO:151) and
	CGTTCGATCTTGGCTGCCCGGTCCACCATGTTGGTGAAGTAC (SEQ ID
20	NO:152)
	LRP6 G158V:
	GTACTGGACAGACTGGGTAGAAGTGCCAAAGATAGAACGTGC (SEQ ID
	NO:153) and
	GCACGTTCTATCTTTGGCACTTCTACCCAGTCTGTCCAGTAC (SEQ ID
25	NO:154).
	All constructs were sequence verified to ensure that only the engineered
	modification was present in the gene. Once verified, each variant was functionally
	evaluated in the TCF-luciferase assay in U2OS cells (essentially as described in
	Example 7. Other functional evaluations could also be performed, such as the Xenopus

embryo assay (essentially as described in Example 6), or other assays to evaluate Wnt

signaling, Dkk modulation, or anabolic bone effect. Binding of these mutants to Dkk, LRP-interacting proteins, Dkk-interacting proteins, or peptide aptamers to any of the preceding could also be investigated in a variety of ways such as in a two-hybrid system (such as in yeast as described in this application), or other methods.

5

Figure 24 shows the effects of the G171F mutation in propeller 1 of LRP5. This mutation is at the same position as HBM's G171V substitution. Expression of G171F results in an HBM effect. That is, in the presence of Wnt, G171F is able to activate the TCF-luciferase reporter construct. In fact, it may activate the reporter to a greater extent than either LRP5 or HBM. Furthermore, in the presence of Dkk1 and Wnt1, G171F is less susceptible than LRP5 to modulation by Dkk. These data exemplify that the G171F variant modulates Wnt signaling in a manner similar to HBM. In addition, this data confirms that HBM's valine residue at 171 is not the only modification at 171 that can result in an HBM effect. Together these data support an important role for LRP5 propeller 1 in modulating Wnt pathway activity; in responding to Dkk modulation; and, in the ability to generate an HBM effect.

15

10

Figure 25 shows the effects of the M282V mutation in propeller 1 of LRP5. M282 expression results in an HBM-effect. That is, in the presence of Wnt, M282 is able to activate the TCF-luciferase reporter construct. Furthermore, in the presence of Dkk1 and Wnt1, M282V is less susceptible than LRP5 to modulation by Dkk. These data show that the M282V variant modulates Wnt signaling in a manner similar to HBM. In addition, this data confirms that modifications of other residues in propeller 1 of LRP5 can result in an HBM effect.

25

20

These data support an "occupied space" model of the HBM mutation in propeller 1 and show that multiple mutations of propeller 1 are capable of generating an HBM effect; the original G171V HBM mutation is not unique in this ability. Moreover, various perturbations in propeller 1 can modulate Dkk activity.

30

These data illustrate the molecular mechanism of Dkk modulation of LRP signaling. Using the methods disclosed herein and in U.S. Application 60/290,071, generation of a comprehensive mutant panel will reveal residues in LRP that function in Dkk modulation of Wnt signaling. Such variants of LRP5 and LRP6 that modulate Dkk

activity and the residues which distinguish them from LRP5 and LRP6 are points for therapeutic intervention by small molecule compound, antibody, peptide aptamer, or other agents. Furthermore, models of each HBM-effect mutation/polymorphism may be used in rational drug design of an HBM mimetic agent.

5

10

15

20

25

These are only a few illustrative examples presented to better describe the present invention. Variants of LRP5 which have demonstrated HBM activity in assays include G171F, M282V, G171K, G171Q and A214V. Clearly, other variants may be contemplated within the scope of the present invention. Furthermore, wherever HBM is recited in the methods of the invention, it should be understood that any such alternative variant of LRP which demonstrates HBM biological activity is also encompassed by those claims.

17. Screening Assays

The two-hybrid system is extremely useful for studying protein:protein interactions. See, e.g., Chien et al., Proc. Natl Acad. Sci. USA 88:9578-82 (1991); Fields et al., Trends Genetics 10:286-92 (1994); Harper et al., Cell 75:805-16 (1993); Vojtek et al., Cell 74:205-14 (1993); Luban et al., Cell 73:1067-78 (1993); Li et al., FASEB J. 7:957-63 (1993); Zang et al., Nature 364:308-13 (1993); Golemis et al., Mol. Cell. Biol. 12:3006-14 (1992); Sato et al., Proc. Natl Acad. Sci. USA 91:9238-42 (1994); Coghlan et al., Science 267:108-111 (1995); Kalpana et al., Science 266:2002-6 (1994); Helps et al., FEBS Lett. 340:93-8 (1994); Yeung et al., Genes & Devel. 8:2087-9 (1994); Durfee et al., Genes & Devel. 7:555-569 (1993); Paetkau et al., Genes & Devel. 8:2035-45; Spaargaren et al., 1994 Proc. Natl. Acad. Sci. USA 91:12609-13 (1994); Ye et al., Proc. Natl Acad. Sci. USA 91:12629-33 (1994); and U.S. Patent Nos. 5,989,808; 6,251,602; and 6,284,519.

Variations of the system are available for screening yeast phagemid (see, e.g., Harper, Cellular Interactions and Development: A Practical Approach, 153-179 (1993); Elledge et al., Proc. Natl Acad. Sci. USA 88:1731-5 (1991)) or plasmid (Bartel, 1993)

and Bartel, Cell 14:920-4 (1993)); Finley et al., Proc. Natl Acad. Sci. USA 91:12980-4

(1994)) cDNA libraries to clone interacting proteins, as well as for studying known protein pairs.

The success of the two-hybrid system relies upon the fact that the DNA binding and polymerase activation domains of many transcription factors, such as GAL4, can be separated and then rejoined to restore functionality (Morin *et al.*, *Nuc. Acids Res.* 21:2157-63 (1993)). While these examples describe two-hybrid screens in the yeast system, it is understood that a two-hybrid screen may be conducted in other systems such as mammalian cell lines. The invention is therefore not limited to the use of a yeast two-hybrid system, but encompasses such alternative systems.

10

15

5

Yeast strains with integrated copies of various reporter gene cassettes, such as for example GAL.fwdarw.LacZ, GAL.fwdarw.HIS3 or GAL.fwdarw.URA3 (Bartel, in Cellular Interactions and Development: A Practical Approach, 153-179 (1993); Harper et al., Cell 75:805-16 (1993); Fields et al., Trends Genetics 10:286-92 (1994)) are cotransformed with two plasmids, each expressing a different fusion protein. One plasmid encodes a fusion between protein "X" and the DNA binding domain of, for example, the GAL4 yeast transcription activator (Brent et al., Cell 43:729-36 (1985); Ma et al., Cell 48:847-53 (1987); Keegan et al., Science 231:699-704 (1986)), while the other plasmid encodes a fusion between protein "Y" and the RNA polymerase activation domain of GAL4 (Keegan et al., 1986). The plasmids are transformed into a strain of the yeast that contains a reporter gene, such as lacZ, whose regulatory region contains GAL4 binding sites. If proteins X and Y interact, they reconstitute a functional GAL4 transcription activator protein by bringing the two GAL4 components into sufficient proximity to activate transcription. It is well understood that the role of bait and prey proteins may be alternatively switched and thus the embodiments of this invention contemplate and encompass both alternative arrangements.

25

20

Either hybrid protein alone must be unable to activate transcription of the reporter gene, the DNA-binding domain hybrid, because it does not provide an activation function, and the activation domain hybrid, because it cannot localize to the GAL4 binding sites. Interaction of the two test proteins reconstitutes the function of GAL4 and results in expression of the reporter gene. The reporter gene cassettes

consist of minimal promoters that contain the GAL4 DNA recognition site (Johnson *et al.*, *Mol. Cell. Biol.* 4:1440-8 (1984); Lorch *et al.*, *J. Mol. Biol.* 186:821-824 (1984)) cloned 5' to their TATA box. Transcription activation is scored by measuring either the expression of β-galactosidase or the growth of the transformants on minimal medium lacking the specific nutrient that permits auxotrophic selection for the transcription product, *e.g.*, URA3 (uracil selection) or HIS3 (histidine selection). See, *e.g.*, Bartel, 1993; Durfee *et al.*, *Genes & Devel.* 7:555-569 (1993); Fields *et al.*, *Trends Genet.* 10:286-292 (1994); and U.S. Pat. No. 5,283,173.

5

10

15

20

25

30

Generally, these methods include two proteins to be tested for interaction which are expressed as hybrids in the nucleus of a yeast cell. One of the proteins is fused to the DNA-binding domain (DBD) of a transcription factor and the other is fused to a transcription activation domain (AD). If the proteins interact, they reconstitute a functional transcription factor that activates one or more reporter genes that contain binding sites for the DBD. Exemplary two-hybrid assays which have been used for Dkk-1/LRP5 are presented in the Examples below.

Additional methods of preparing two hybrid assay systems for Dkk-1 interactors would be evident to one of ordinary skill in the art. See for example, Finley *et al.*, "Two-Hybrid Analysis of Genetic Regulatory Networks," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Meijia Yang, "Use of a Combinatorial Peptide Library in the Two-Hybrid Assay," in The Yeast Two-Hybrid System (Paul L. Bartel et al., eds., Oxford, 1997); Gietz *et al.*, "Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system," *Mol. & Cell. Biochem.* 172:67-9 (1997); K. H. Young, "Yeast Two-Hybrid: So Many Interactions,(in) so Little Time," *Biol. Reprod.* 58:302-311 (1998); R. Brent *et al.*, "Understanding Gene and Allele Function with Two-Hybrid Methods," *Annu. Rev. Genet.* 31:663-704 (1997). It will be appreciated that protein networks can be elucidated by performing sequential screens of activation domain-fusion libraries.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The

following working examples therefore, specifically point out preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.

5

EXAMPLES

The present invention is described by reference to the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well-known in the art or the techniques specifically described below were utilized.

10

For routine practice of the protocols referenced below, one of skill in the art is directed to the references cited in this application as well as the several <u>Current Protocol</u> guides, which are continuously updated, widely available and published by John Wiley and Sons, (New York). In the life sciences, <u>Current Protocols</u> publishes comprehensive manuals in Molecular Biology, Immunology, Human Genetics, Protein Science, Cytometry, Neuroscience, Pharmacology, Cell Biology, Toxicology, and Nucleic Acid Chemistry. Additional sources are known to one of skill in the art.

15

Example 1

Yeast Two Hybrid Screen Using LRP5 Ligand Binding Domain (LBD) Bait Sequences

20

In a screen against human osteoblast library (*i.e.*, HOB03C5, a custom Gibco generated Y2H compatible cDNA library from a human osteoblast cell line as described by Bodine and Komm, *Bone* 25:535-43 (1999)), an interaction with Dkk-1 was identified. The LRP5 ligand binding domain (LBD) baits used for this screen are depicted in Figures 2B and C. The basic protocol is as follows:

25

An overnight culture of the yeast strain containing the bait of interest is grown in 20 ml of appropriate selective medium containing 2% glucose at 30°C. The overnight culture is diluted by a 10 fold factor into YPDmedia supplemented with 40 mg/l of adenine, and grown for 4 hours at 30°C.

For each mating event, an aliquot of the frozen prey library is grown in 150 ml YAPD medium for 5 hours at 30°C.

Appropriate volumes calculated by measuring the OD600 of each culture are combined into a tube. The number of diploids to be screened is typically ten times the number of clones originally present in the prey library of interest. Assuming a mating efficiency of 20% minimum, fifty times (*i.e.*, ten times coverage multiplied by 20% mating efficiency) as many haploid cells containing the bait and as many cells containing the prey are used in any given mating event. The mixture is filtered over a 47 mm, 0.45 mm sterile Metricel filter membrane (Gelman).

Using sterile forceps, the filter is transferred onto a 100 mm² YAPD agar plate with the cell side up, removing all air bubbles underneath the filter. The plate is incubated overnight at room temperature.

The filter is transferred into a 50 ml Falcon tube using sterile forceps and 10 ml SD medium containing 2% glucose are added to resuspend the cells. The filter, once free of cells, is removed and the cell suspension is spun for 5 min. at 2,000 xg.

The cells are resuspended in 10 ml SD medium containing 2% glucose. An aliquot of 100 μ l is set aside for titration.

The cells are plated onto large square plates containing appropriate selective media and incubated at 30°C for three to five days.

To calculate the mating efficiency and to determine the total number of diploid cells screened, the 100 μ l aliquot set aside for titration is diluted and plated onto different selective media. The mating efficiency is calculated by dividing the number of diploids/ml by the lowest number of haploids/ml, either bait or prey, and multiplied by 100. For example, if 2 million diploids were obtained by mating 10 million of haploids containing a bait and 12 million of haploids containing a prey, then the mating efficiency is calculated by dividing 2 million by 10 million, which equals 0.2 and multiplied by 100 which equals 20%. Typical mating efficiencies under the above conditions are within about 20 to about 40%. The total number of diploids screened in a mating event is obtained by multiplying the number of diploids/ml by the total number of ml plated, typically about 10.

5

10

15

20

Isolation of colonies containing pairs of interacting proteins.

Yeast colonies from the interaction selection (large square) plates are picked with a sterile toothpick and patched onto plates containing the appropriate selective media and incubated at 30°C for two days.

To further ensure purity of the yeast, the plates are replicated onto another plate containing the same media and incubated at 30°C for another two days.

Yeast patches are scraped using a sterile toothpick and placed into a 96-well format plate containing 100 μ l SD –L –W –H with 2% glucose liquid medium.

Half the volume of the plate is transferred to a 96-well plate containing 50 μ I of 40% glycerol for storage. The other half is set aside for replication and galactosidase-activity assay (see below).

Cells are replicated onto a SD –L –W –H plate with 2% glucose plate to create a master plate, and incubated two days at 30°C. The master plate is replicated onto different selective media to score the strength of each interaction.

Cells are also replicated onto media selecting for the prey vector only for colony PCR and incubated two days at 30°C.

Galactosidase activity assay

Ten microliters from the 96-well plate (set aside from above) are transferred into another 96-well plate containing 100 μ l SD and 2% glucose media. The cell density is measured at OD₆₀₀ using a spectrophotometer, the OD₆₀₀ is usually between 0.03 and 0.1. Fifty microliters of Galactosidase reaction mixture (Tropix) are added to microplates (Marsh) specifically designed for the luminometer (Hewlett Packard Lumicount). Fifty microliters of the diluted cells are then added and mixed by pipetting. The reaction is incubated sixty to one hundred twenty minutes at room temperature. Relative Light Units (RLUs) are read by the luminometer. Each plate contains a negative control, constituted by diploid yeast containing the bait of interest and an empty prey vector. To be scored as positive, the diploids tested have to have an RLU number at least twice as high as the negative control.

5

10

15

20

Example 2

Minimum interaction domain mapping

Further analysis of yeast two hybrid (Y2H) interacting proteins includes the dissection of protein motifs responsible for the interaction. Sequence alignment of multiple clones identified in the Y2H screens can help identify the smallest common region responsible for the interaction. In the absence of appropriate clones, deletion mapping of interacting domains is necessary.

PCR primers containing restriction sites suitable for cloning are designed to cover multiple sub-domains of the protein of interest (bait or prey). The methods involved in cloning, sequencing, yeast transformation, mating, and scoring of interactions are readily performed by one of ordinary skill in the art of molecular biology and genetic engineering.

Materials and Methods

15

10

5

Minimum interaction domain: primers were designed for PCR of the Dkk-1 clone isolated by screening a primary osteoblast cell strain (HOB03C5) library with pooled Zmax1/LRP5 ligand binding domain (LBD) baits: LBD1 (Leu969-Pro1376) and LBD4 (Arg1070-Pro1376). The primers, which are presented in 5' to 3' orientation, were as follows:

	SEQ ID NO	<u>Primer</u>	<u>Sequence</u>		
25	155	Forward 1	TTTTTGTCGACCAATTCCAACGCTATCAAG		
	156	Forward 2	TTTTTTGTCGACCTGCGCTAGTCCCACCCGC		
	157	Forward 3	TTTTTTGTCGACCGTGTCTTCTGATCAAAATC		
	158	Forward 4	TTTTTTGTCGACCGGACAAGAAGGTTCTGTTTG		
	159	Reverse 1	TTTTTTGCGGCCGCTTATTTGGTGTGATACATTTTTG		
	160	Reverse 2	TTTTTTGCGGCCGCTTAGCAAGACAGACCTTCTCC		
	161	Reverse 3	TTTTTTGCGGCCGCTTAGTGTCTCTGACAAGTGTG		

PCR was performed using PfuTurbo® polymerase (Stratagene). The PCR products were gel purified, digested with *Sall/Not*l and ligated to pPC86 (Gibco/BRL) which had been linearized with *Sall/Not*l. Clones were recovered and sequenced to ascertain that the structure was as expected and that the Gal4 activation domain and Dkk-1 were in-frame. The ORF of Dkk-1 was Met1-His266, as in human Dkk-1 (GenBank Accession No. XM_005730).

The clones used were as follows: D5 (F1/R3: Asn34-His266), D4 (F1/R2: Asn34-Cys245), D3 (F1/R1: Asn34-Lys182), D9 (F2/R3: Cys97-His266), D12 (F3/R3, val139-His266), D14 (F4/R3: Gly183-His266), D8 (F2/R2: Cys97-Cys245), and D11 (F3/R2: Val139-Cys245). F1, F2, F3 and F4 refer respectively to Forward primers 1, 2, 3 and 4. R1, R2 and R3 refer respectively to reverse primers 1, 2 and 3.

These clones were transformed into yeast and mated with each of three yeast strains containing pDBleu (Gibco/BRL), pDBleuLBD1, and pDBleuLBD4. Positive interactions were detected by growth of the hybrids on appropriate selective media.

Results

5

10

15

20

25

Minimum interaction domain: Figure 6 shows that while growth was observed in diploids of D4, D5, D8, D9, and D12, no growth was observed in hybrids of D3, D11, and D12. Carboxy terminal (C-terminal) deletions indicated that while the C-terminal amino acids of Dkk-1 containing the potential N-glycosylation site (Arg246-His266) are not required for interaction with Zmax1/LRP5 LBD baits, the Cys2 domain, Gly183-Cys245, is required. N-terminal deletions also demonstrated that the region between the two cysteine domains, *i.e.* Val139 to Lys182, is also required. Two minimum interaction domain constructs were isolated: D12 (Val139-His266) and D8 (Cys97-Cys245). Similar constructs could be prepared for Dkk-1 interactors.

Example 3

Yeast-2 Hybrid screen for peptide aptamer sequences to Dkk-1
Peptide aptamer library construction

A peptide aptamer library, Tpep, was constructed, which provides a means to identify chimeric proteins that bind to a protein target (or bait) of interest using classic yeast two hybrid (Y2H) assays. The Tpep library is a combinatorial aptamer library composed of constrained random peptides, expressed within the context of the disulfide loop of *E. coli* thioredoxin (trxA), and as C-termini fusion to the *S. cerevisiae* Gal4 activation domain. The Tpep library was generated using a restriction enzyme modified recombinant Y2H prey vector, pPC86 (Gibco), which contains the trxA scaffold protein.

Generation of aptamer-encoding sequences

5

10

15

20

25

Aptamer-encoding sequences were produced as follows. DNA encoding random stretches of approximately sixteen amino acids surrounded by appropriate restriction sites were generated by semi-random oligonucleotide synthesis. The synthetic oligonucleotides were PCR-amplified, restriction digested, and cloned into the permissive sites within the trxA scaffold protein. The cloning strategy was to insert the random oligonucleotide sequence is in-frame with the scaffold protein coding sequence, resulting in expression of a scaffold protein-aptamer chimera. The scaffold protein is itself in-frame with the activation domain of Gal4, within the pPC86 vector that is appropriate for the aptamer to be expressed and functional in a regular Y2H assay. Additional methods of preparing aptamers would be apparent to the skilled artisan.

Generation of a permissive recombinant pPC86 vector containing the trxA coding sequence

First the *Rsr*II restriction site located within the Gal4 activation domain of pPC86 (Gibco) was eliminated by site-directed mutagenesis (Quickchange™ kit, Stratagene). The amino acid sequence of the Gal4 activation domain was unchanged by this modification. The strength of different control interactions was verified to be unchanged by the modification.

Second, the *E. coli* trxA coding sequence was cloned into the *Sall* and *Notl* sites of the *Rsrll*-modified pPC86. *EcoRl* and *Spel* sites were then introduced within the trxA

RsrII site. The oligonucleotides encoding the peptide aptamers were cloned into the EcoRI and Spel sites of the resulting vector.

Example 4

Yeast-2 Hybrid screen for Dkk-1 interacting proteins

5

10

15

20

25

30

A Dkk-1 bait sequence was utilized in a yeast two hybrid screen to identify Dkk-1 interacting proteins. The procedure for the Y2H was carried out similarly to that employed in Example 1, except that the Dkk-1 bait from Figure 2C was used instead of LRP baits. The screen was performed using Hela and fetal brain libraries (Invitrogen Corporation, Carlsbad, CA). Multiple libraries were used to identify additional Dkk-1 interacting proteins and to confirm interactions found in other libraries.

The list of Dkk-1 interacting proteins uncovered in these Y2H screens are listed in Figure 5.

The interacting proteins identified in the Dkk-1 bait screen can be used in other Y2H screens with LRP baits and other Dkk-1 interacting proteins to determine more complex interactions which may modulate Dkk-1/LRP interactions and/or Wnt signaling.

Example 5

Generation of antibodies

In each of the following antibody-generating examples, the synthesis of these linear peptides is followed by injection into two New Zealand Rabbits. Subsequent boosts and bleeds are taken according to a standard ten-week protocol. The end-user receives back 5 mgs of peptide, aliquots of pre-bleeds, roughly 80 ml of crude sera from each of the two rabbits and, and ELISA titration data is obtained.

Generation of LRP5 Polymorphism-specific antibodies

Antibodies were generated to the following peptides to obtain antibodies which distinguish the HBM polymorphism versus wild-type LRP5/Zmax: MYWTDWVETPRIE

(SEQ ID NO:123) (mutant peptide) and MYWTDWGETPRIE (SEQ ID NO:124) (wild-type peptide for negative selection). Immunofluorescence data confirmed that the antibody, after affinity purification, is specific for HBM and does not recognize LRP5 (Figure 17).

5

10

15

20

25

Generation of LRP5 Monospecific antibodies

LRP5 monospecific polyclonal antibodies were generated to the following amino acid sequences of LRP5: Peptide 1 (a.a. 265-277) - KRTGGKRKEILSA (SEQ ID NO:125), Peptide 2 (a.a. 1178-1194) - ERVEKTTGDKRTRIQGR (SEQ ID NO:126), and Peptide 3 (a.a. 1352-1375) - KQQCDSFPDCIDGSDE (SEQ ID NO:127). Immunofluorescence confirmed that the antibody generated detects LRP5.

Generation of Dkk-1 monospecific polyclonal antibodies

Dkk-1 monospecific polyclonal antibodies were generated to the following amino acid sequences of Dkk-1: Peptide 1 (a.a. 71-85) - GNKYQTIDNYQPYPC (SEQ ID NO:118), Peptide 2 (a.a. 165-186) - LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119), Peptide 3 (a.a. 246-266) - RIQKDHHQASNSSRLHTCQRH (SEQ ID NO:120), Peptide 4 (a.a. 147-161) - RGEIEETITESFGND (SEQ ID NO:121), and Peptide 5 (232-250) - EIFQRCYCGEGLSCRIQKD (SEQ ID NO:122) of human Dkk-1. Figure 26 shows the location of the various peptides selected, their relationship to the Dkk-1 amino acid sequence and polyclonal antibodies generated.

Western blots demonstrated that the antibodies generated against peptides 2 (Antibody #5521) (Figure 27) and 4 (Antibody #74397) (Figure 28) are specific toward Dkk-1. Figure 27 shows Western blots using 500 μ l of conditioned medium (CM) from non-transfected 293 cells or from 293 cells transfected with Dkk1-V5 that were immunoprecipitated by anti-V5 antibody. Bead elutes were separated by non-reducing SDS-PAGE (lanes #4, 5 of Figure 27). 20 μ l of conditioned medium from both samples (lanes #2, 3 of Figure 27) and from Dkk1-AP transfected 293 cells (lane #6 of Figure 27) were additionally separated on the gel. The Western was performed using

antibodies Anti-V5/AP (1:10,000) and Ab#5521 (10 μ g/ml). Ab#5521 detected Dkk1-V5 and Dkk1-AP from conditioned medium.

Figure 28 shows Western blot results using Ab#74397. Anti-V5/AP was tested at a 1:4000 dilution and Ab#74397 was tested at a 1:500 dilution. Ab#74397 was able to detect Dkk1-V5 in both conditioned medium and immunoprecipitated conditioned medium.

The results obtained with antibodies #5521 and #74397 are summarized in the following table:

Rabbit No.	Peptide Position	Peptide Sequence	Purified (Y/N)	Western	Immuno- precipitation	Location
5521	165-186	LDGYSR RTTLSSK MYHTKG QEG	Y (Protein G purified)	Y	N/A	Between Cy1 and Cys2 domain
74397	147-161	RGEIEETI TESFGN D	N	Y	N/A	Between Cy1 and Cys2 domain

15

Example 6

Effects of exogenous Dkk-1 on Wnt-mediated signaling in the Xenopus embryo assay

Xenopus embryos are an informative and well-established *in vivo* assay system to evaluate the modulation of Wnt signaling (McMahon *et al.*, *Cell* 58: 1075-84 (1989); Smith and Harland, 1991; reviewed in Wodarz and Nusse 1998).

Modification of the Wnt signaling pathway can be visualized by examining the embryos for a dorsalization phenotype (duplicated body axis) after RNA injection into the ventral blastomere at the 4- or 8-cell stage. On the molecular level, phenotypes can be analyzed by looking for expression of various marker genes in stage 10.5 embryos. Such markers would include general endoderm, mesoderm, and ectoderm markers as well as a variety of tissue-specific transcripts.

25

20

5

Analysis can be done by RT-PCR/TaqMan® and can be done on whole embryo tissue or in a more restricted fashion (microdissection). Because this system is very flexible and rapid, by injecting combinations of transcripts, such as HBM and different Wnts or Wnt antagonists, the mechanism of HBM in the Wnt pathwaycan thereby be dissected. Furthermore, investigations are conducted to determine whether Zmax/LRP5 and HBM differentially modulate Wnt signaling either alone, or in combination with other components. Previous studies have demonstrated that LRP6 alone or LRP5 + Wnt5a were able to induce axis duplication (dorsalization) in this system (Tamai et al., Nature 407: 530-35 (2000)).

10

15

20

25

30

5

Constructs for Xenopus Expression (Vector pCS2*)

Constructs were prepared using the vector pCS2*. DNA inserts were subcloned in the sense orientation with respect to the vector SP6 promoter. The pCS2* vector contains an SV40 virus polyadenylation signal and T3 promoter sequence (for generation of antisense mRNA) downstream of the insert.

Full length Zmax/LRP5 and HBM ORF cDNA: Insert cDNA was isolated from the full length cDNA retrovirus constructs (with optimized Kozak sequences) by Bg/II-EcoRI digestion and subcloned into the BamHI-EcoRI sites of the pCS2⁺ vector.

Full length XWnt8: This cDNA was PCR amplified from a Xenopus embryo cDNA library using oligos 114484 (SEQ ID NO:162) (5'-CAGTGAATTCACCATGCAAAACACCACTTTGTTC-3') and 114487 (SEQ ID NO:163) (5'-CAGTTGCGGCCGCTCATCTCCGGTGGCCTCTG-3'). The oligos were designed to amplify the ORF with a consensus Kozak sequence at the 5' end as determined from GenBank #X57234. PCR was carried out using the following conditions: 96°C, 45 sec.; 63°C, 45 sec.; 72°C, 2 min. for 30 cycles. The resulting PCR product was purified, subcloned into pCRII-TOPO (Invitrogen Corp.), sequence verified, and digested with BamHI/Xhol. This insert was subcloned into the vector at the BamHI-Xhol sites.

<u>Full length Wnt5a:</u> A murine Wnt5a cDNA clone was purchased from Upstate Biotechnology (Lake Placid, NY) and subcloned into the *EcoR*I site of the vector. Sequencing confirmed insert orientation.

Full length human Dkk-1: A human cDNA with GenBank accession number AF127563 was available in the public database. Using this sequence, PCR primers were designed to amplify the open reading frame with a consensus Kozak sequence immediately upstream of the initiating ATG. Oligos 117162 (SEQ ID NO:164) (5'-CAATAGTCGACGAATTCACCATGGCTCTGGGCGCAGCGG-3') and 117163 (SEQ ID NO:165) (5'-GTATTGCGGCCGCTCTAGATTAGTGTCTCTGACAAGTGTGAA-3') were used to screen a human uterus cDNA library by PCR. The resulting PCR product was purified, subcloned into pCRII-TOPO (Invitrogen Corp.), sequence verified, and digested with *EcoRI/Xhol*. This insert was subcloned into the pCS2⁺ vector at the *EcoRI-Xhol* sites.

5

10

15

20

25

30

Full length human Dkk-2: A full length cDNA encoding human Dkk-2 was isolated to investigate the specificity of the Zmax/LRP5/HBM interaction with the Dkk family of molecules. Dkk-1 was identified in yeast as a potential binding partner of Zmax/LRP5/HBM. Dkk-1 has also been shown in the literature to be an antagonist of the Wnt signaling pathway, while Dkk-2 is not (Krupnik et al., 1999). The Dkk-2 full length cDNA serves as a tool to discriminate the specificity and biological significance of Zmax/LRP5/HBM interactions with the Dkk family (e.g., Dkk-1, Dkk-2, Dkk-3, Dkk-4, Soggy, their homologs and variant, etc.). A human cDNA sequence for Dkk-2 (GenBank Accession No. NM_014421) was available in the public database. Using this sequence, PCR primers were designed to amplify the open reading frame with a consensus Kozak sequence immediately upstream of the initiating ATG. Oligos 51409 (SEQ ID NO:166) (5'- CTAACGGATCCACCATGGCCGCGTTGATGCGG-3') and 51411 (SEQ ID NO:167) (5'-GATTCGAATTCTCAAATTTTCTGACACACATGG-3') were used to screen human embryo and brain cDNA libraries by PCR. The resulting PCR product was purified, subcloned into pCRII-TOPO, sequence verified, and digested with BamHI/EcoRI. This insert was subcloned into the pCS2⁺ vector at the BamHI-EcoRI sites.

Full length LRP6 was isolated from the pED6dpc4 vector by *Xhol-Xbal* digestion. The full length cDNA was reassembled into the *Xhol-Xbal* sites of pCS2⁺. Insert orientation was confirmed by DNA sequencing.

mRNA Synthesis and Microinjection Protocol

5

10

15

20

25

30

mRNA for microinjection into *Xenopus* embryos is generated by *in vitro* transcription using the cDNA constructs in the pCS2⁺ vector described above as template. RNA is synthesized using the Ambion mMessage mMachine high yield capped RNA transcription kit (Cat. #1340) following the manufacturer's specifications for the Sp6 polymerase reactions. RNA products were brought up to a final volume of 50 µl in sterile, glass-distilled water and purified over Quick Spin Columns for Radiolabelled RNA Purification G50-Sephadex (Roche, Cat. #1274015) following the manufacturer's specifications. The resulting eluate was finally extracted with phenol:chloroform:isoamyl alcohol and isopropanol precipitated using standard protocols (Sambrook et al., 1989). Final RNA volumes were approximately 50 µl. RNA concentration was determined by absorbance values at 260 nm and 280 nm. RNA integrity was visualized by ethidium bromide staining of denaturing (formaldehyde) agarose gel electrophoresis (Sambrook et al., 1989). Various amounts of RNA (2 pg to 1 ng) are injected into the ventral blastomere of the 4- or 8-cell Xenopus embryo. These protocols are described in Moon et al., Technique-J. of Methods in Cell and Mol. Biol. 1: 76-89 (1989), and Peng, Meth. Cell. Biol. 36: 657-62 (1991).

Screening for Duplicated Body Axis

In vitro transcribed RNA is purified and injected into a ventral blasomere of the 4-or 8-cell *Xenopus* embryo (approx. 2 hours post-fertilization). At stage 10.5 (approx. 11 hours post-fertilization), the injected embryos are cultured for a total of 72 hours and then screened for the presence of a duplicated body axis (dorsalization) (Figure 7). Using XWnt8-injected (2-10 pg) as a positive control (Christian et al. (1991)) and water-injected or non-injected embryos as negative controls, we replicated the published observation that Zmax(LRP5) + Wnt5a (500 and 20 pg, respectively) could induce axis duplication. Wnt5a (20 pg) alone could not induce axis duplication (as previously reported by Moon *et al.* (1993)). We have also injected GFP RNA (100-770 pg) as a negative control to show that the amount of RNA injected is not perturbing embryo development (not shown). Strikingly, HBM + Wnt5a (500 and 20 pg, respectively)

yielded an approximately 3.5 fold more robust response of the phenotype (p=0.043 by Fisher's exact test) compared to Zmax(LRP5) + Wnt5a, suggesting that the HBM mutation is activating the Wnt pathway (Figures 8 and 9). The HBM/Wnt5a embryos also appear to be more "anteriorized" than the Zmax(LRP5)/Wnt5a embryos, again suggestive of a gain-of-function mutation.

The role of Dkk-1 as a modulator of Zmax/LRP5- and HBM-mediated Wnt signaling was investigated. Literature reports have previously characterized *Xenopus* and murine Dkk-1 as antagonists of the canonical Wnt pathway in the *Xenopus* system (Glinka *et al.*, *Nature* 391:357-362 (1998)). Using the human Dkk-1 construct, a doseresponse assay was performed to confirm that our construct was functional and to identify the optimal amount of RNA for microinjection. Using 250 pg/embryo of hDkk-1 RNA, over 90% (p<0.001) of the embryos were observed to display enlarged anterior structures (big heads) as anticipated from the published reports (Figure 10).

The mechanism of hDkk-1 modulation of Wnt signaling in the presence of Zmax/LRP5 or HBM was also investigated. Without any hDkk-1 present, it was confirmed that HBM + Wnt5a was a more potent activator of Wnt signaling than Zmax/LRP5 + Wnt5a (p<0.05). Interestingly, in the presence of hDkk-1 (250 pg), Zmax/LRP5-mediated Wnt signaling was repressed (p<0.05) but hDkk-1 was unable to repress HBM-mediated Wnt signaling (p<0.01) (Figure 11). The specificity of this observation can be further addressed by investigating other members of the Dkk family, other Wnt genes, LRP6, additional Zmax/LRP5 mutants, and the peptide aptamers.

Example 7

Effects of exogenous Dkk and LRP5 on Wnt signaling in the TCF-luciferase Assay

25

30

20

5

10

15

Wnt activity can be antagonized by many proteins including secreted Frizzled related proteins (SFRPs), Cerberus, Wnt Inhibitory Factor-1 and Dkk-1 (Krupnik *et al.*, 1999). The Dkk family of proteins consists of Dkk-1-4 and Soggy, a Dkk-3-like protein. Dkk-1 and Dkk-4 have been shown to antagonize Wnt mediated *Xenopus* embryo development, whereas Dkk-2, Dkk-3, and Soggy do not. Unlike many of these proteins

that antagonize Wnt activity by directly interacting with Wnt proteins, Dkk-1 acts by binding to two recently identified Wnt coreceptors, LRP5 and LRP6. (Mao *et al.*, 2001; Bafico *et al.*, 2001). The details of this interaction have been examined by the present inventors and Mao et al. using deletion constructs of LRP6, which demonstrated that EGF repeats 3 and 4 are important for Dkk-1 interaction. Accordingly, the activity of two Dkk proteins, Dkk-1 and Dkk-2, were investigated with various Wnt members, LRP5, LRP6, and the mutant form of LRP5, designated HBM. The present invention explores whether there is any functional difference between LRP5 and HBM with regard to Dkk action on Wnt mediated signaling. Various reagents were developed, including Dkk-1 peptides, constrained LRP5 peptide aptamers, constrained Dkk-1 peptide aptamers and polyclonal antibodies to Dkk-1 (in Example 5 above) to identify factors that mimic HBM mediated Wnt signaling.

Methods

5

10

15

20

25

30

Various LRP5 constrained peptides were developed. Specifically, four peptides that interact with the LBD of LRP5 (Figure 4,constructs OST259-262 in Figure 12) and three peptides that interact with the cytoplasmic domain of LRP5 (constructs OST266-OST268 in Figure 12). In addition two Dkk-1 peptides were developed: constructs OST264 and OST265 in Figure 12, corresponding to Dkk-1 amino acids 139-266 and 96-245, containing the smallest region of Dkk-1 that interacts with LRP5 (Figure 6). The cDNA clones encoding the LRP5 LBD interacting peptides and the Dkk-1 peptides were subcloned into pcDNA3.1 with the addition of a Kozak and signal sequence to target the peptide for secretion. The constructs encoding the three peptides interacting with the cytoplasmic domain of LRP5 were also subcloned into pcDNA3.1. However, these latter constructs do not contain a signal sequence.

HOB-03-CE6 osteoblastic cells developed by Wyeth Ayerst (Philadelphia, PA) were seeded into 24-well plates at 150,000 cells per well in 1 ml of the growth media (D-MEM/F12 phenol red-free) containing 10% (v/v) heat-inactivated FBS, 1X penicillin streptomycin, and 1X Glutamax-1, and incubated overnight at 34°C. The following day, the cells were transfected using Lipofectamine 2000® (as described by the

manufacturer, Invitrogen) in OptiMEM (Invitrogen) with 0.35 μ g /well of LRP5, HBM, or control plasmid DNA (empty vector pcDNA3.1) and either Wnt1 or Wnt3a plasmid DNA. Similar experiments were performed with LRP6 plasmid DNA (0.35 μ g/well) or a control pEDdpc4 empty vector. Furthermore, each of these groups were then divided into three groups, those receiving 0.35 μ g/well Dkk-1, Dkk-2, or pcDNA3.1 control DNA. All wells were transfected with 0.025 μ g/well of CMV beta-galactosidase plasmid DNA and 0.35 μ g/well 16X TCF(AS)-luciferase reporter DNA (developed by Ramesh Bhat, Wyeth-Ayerst (Philadelphia, PA)). After 4 hours of incubation, the cells were rinsed and 1 ml of fresh growth media was added to each well. The cells were cultured overnight at 34°C, followed by a wash and a change of media. Cells were cultured for an additional 18-24 hours at 37°C. Cells were then lysed with 50 μ l/well of 1X lysis buffer. The extracts were assayed for beta-galactosidase activity (Galacto Reaction Buffer Diluent & Light Emission Accelerator, Tropix) using 5 μ l extract + 50 μ l beta-galactosidase diluent and luciferase activity (Luciferase Assay Reagent, Promega) using 20 μ l extract.

U2OS human osteosarcoma cells were also utilized. U2OS cells (ATCC) were seeded into 96-well plates at 30,000 cells per well in 200ul of the growth media (McCoy's 5A) containing 10% (v/v) heat-inactivated FBS, 1X penicillin streptomycin, and 1X Glutamax-1, and incubated overnight at 37°C. The following day, the nmedia was replaced with OptiMEM (Invitroge) and cells were transfected using Lipofectamine 2000® (as described by the manufacturer, Invitrogen) with 0.005μg/well of LRP5, HBM, LRP6 or contol plasmid DNA (empty vector pcDNA3.1) and either Wnt1 (.0025ug/well) or Wnt3a (.0025ug/well) plasmid DNA. In addition, the 16x-(AS) TCF-TK-firefly-luciferase (Ramesh Bhat, WHRI, Wyeth) and control TK-renilla luciferase (Promega Corp.) were co-transfected at 0.3ug/well and 0.06ug/well respectively in all experiments. Futhermore, each of these groups was then divided into different groups, those receiving 0.05ug/well Dkk-1, Dkk-2, Dkk3, Dkk1-Alkaline Phosphatase (AP), mutant Dkk-1 (C220A), Soggy or pcDNA3.1 control DNA. In other experiments, cells were co-transfected with 0.005 μg/well of LRP5, 0.0025ug/well of Wnt1 or Wnt3a (using 0.0025 μg/well of a control pcDNA3.1) with LRP5-interacting aptamers (0.05ug/well).

Cells were cultured for an additional 18-20 hours at 37°C. Culture medium was removed. Cells were cultured for an additional 18-20 hours at 37°C. Culture medium was removed. Cells were then lysed with 100 μ l/well of 1X Passive Lysis Buffer (PLB) of Dual Luciferase Reagent kit (DLR-kit-Promega Corp.) 20 μ l of the lysates were combined with LARII reagent of DLR-kit and assayed for TCF-firefly luciferase signal in Top Count (Packard) instrument. After measuring the Firefly readings, 100 μ l of the "Stop and Glo" reagent of DLR kit that contains a quencher and a substrate for renilla luciferase was added into each well. Immediately the renilla luciferase reading was measured using the Top Count (Packard) Instrument. The ratios of the TCF-firefly luciferase to control renilla readings were calculated for each well and the mean ratio of triplicate or more wells was expressed in all data.

Results

5

10

15

20

25

30

The results of these experiments demonstrate that Dkk-1, in the presence of Wnt1 and LRP5, significantly antagonized TCF-luciferase activity (Figure 14). In marked contrast, Dkk-1 had no effect on HBM/Wnt1 mediated TCF-luciferase activity (Figure 14). In similar experiments, Dkk-1 was also able to antagonize LRP5/Wnt3a but not HBM/Wnt3a mediated TCF-luciferase activity (Figure 15). These results indicate that the HBM mutation renders Dkk-1 inactive as an antagonist of Wnt1 and Wnt3a signaling in HOB03CE6 osteoblastic cells. In other experiments with Wnt1, Dkk-1 had no effect on LRP5 or HBM mediated TCF-luciferase activity (Figure 14). In contrast, with either LRP5 or HBM in the presence of Wnt3a, Dkk-2 was able to antagonize the TCF-luciferase activity (Figure 15). These latter results indicate that the HBM mutation has no effect on Dkk-2 action in the presence of Wnt3a. Experiments were also performed using the closely related LRP6 cDNA in HOB-03-CE6 cells. In these experiments, LRP6/Wnt1 and LRP6/Wnt3a mediated TCF-luciferase were regulated in the same manner as LRP5. Specifically, Dkk-1 antagonized LRP6/Wnt1 mediated TCF-luciferase activity, whereas Dkk-2 had no effect (Figure 14). However, similar to the action of Dkk-2 with LRP5/Wnt3a, Dkk-2 was able to antagonize LRP6/Wnt3a mediated TCF-luciferase activity (Figure 15).

The results in the U2OS cells show a robust effect of the OST262 LRP5 peptide aptamer activation of Wnt signaling in the presence of Wnt3a (Figure 16). These functional results are confirmed by the results shown below in Example 11 using LRP5 peptide aptamers in the Xenopus assay. Such results affirmatively demonstrate that the effects of small molecules on LRP5/LRP6/HBM signaling can be detected using the TCF-luciferase assay.

These data demonstrate that there is a functional difference between LRP5 and HBM regarding the ability of Dkk-1 to antagonize Wnt1 and Wnt3a signaling. These data and previous data showing that Dkk-1 directly interacts with LRP5 suggests that the inability of Dkk-1 to antagonize HBM/Wnt signaling may in part contribute to the HBM phenotype. These experiments further demonstrate the ability to test various molecules (e.g., small molecules, aptamers, peptides, antibodies, LRP5 interacting proteins or Dkk-1 interacting proteins, and the like) for a LRP5 ligand that mimics HBM mediated Wnt signaling or factors that block Dkk-1 interaction with LRP5.

15

20

25

30

10

5

Example 8

Yeast-2 Hybrid Interaction Trap

Small molecule inhibitors (or partial inhibitors) of the Dkk-LRP interaction may be an excellent osteogenic therapeutic. One way to investigate this important protein-protein interaction is using Y2H techniques substantially as described above and as is well known in the art. Regions of LRP5, such as LRP5 LBD, have been found to functionally interact with Dkk. This interaction is quantitated using a reporter element known in the art, e.g., LacZ or luciferase, which is only activated when bait and prey interact. The Y2H assay is used to screen for compounds which modulate the LRP-Dkk interaction. Such a modulation would be visualized by a reduction in reporter element activation signifying a weaker or disrupted interaction, or by an enhancement of the reporter element activation signifying a stronger interaction. Thus, the Y2H assay can be used as a high-throughput screening technique to identify compounds which disrupt or enhance Dkk interaction with LRP5/LRP6/HBM, which may serve as potential therapeutics.

For example, the Interaction Trap methodology can be used as follows. The LRP5 LBD, for example, was fused with LexA and Dkk-1 was fused with either Gal4-AD or B42. With the LRP5LBD-LexA bait and the Gal4AD-Dkk prey, over a 20-fold activation of a lacZ reporter (under the control of a single LexA operator) was detected over the background. Using a Dkk-1 mutant (C220A) that is unable to bind to LRP, the interaction was reduced in yeast, showing the specificity of this interaction and system (Figure 18). As a result, small molecules may be identified that modulate this interaction between LRP and Dkk.

10

15.

5

Example 9

Cell-Based Functional High-Throughput Assay

To develop a high throughput assay, the TCF-luciferase assay described in Example 7 was modified utilizing low level expression of endogenous LRP5/6 in U2OS and HEK293 cells. However, HOB-03-CE6 cells and any other cells which show a differential response to Dkk depending on whether LRP5, LRP6 or HBM are expressed. Using U2OS (human osteosarcoma) and HEK293 (ATCC) cells, the TCF-luciferase and tk-Renilla reporter element constructs were co-transfected along with Wnt3a/1 and Dkk. Wnt3a alone, by using endogenous LRP5/6, was able to stimulate TCF reporter gene activation. When Dkk, is co-transfected with Wnt3a/Wnt 1 and reporters (TCF-luci and tk-Renilla), Dkk represses reporter element activity. In addition, the TCF-luci signal is activated by Wnt3a/Wnt1 can be repressed by the addition of Dkk-enriched conditioned media to the cells containing Wnt3a/Wnt1 and reporters. The assay is further validated by the lack of TCF-reporter inhibition by a point mutant construct (C220A) of Dkk1.

25

20

The Dkk-mediated repression of the reporter is dependent upon the concentration of transfected Dkk cDNA or on the amount of Dkk-conditioned media added. In addition, the Dkk-mediated reporter suppression can be altered by the cotransfection of LRP5, LRP6, and HBM cDNAs in the U2OS or HEK293 cells. In general, U2OS cells show greater sensitivity to Dkk-mediated reporter suppression than that in HEK-293 cells. In U2OS cells, the transfection of LRP5/LRP6/HBM cDNA leads

to moderate activation of TCF-luci in the absence of Wnt3a/Wnt1 transfection. This activation presumably utilizes the endogenous Wnts present in U2OS cells. Under this condition, Dkk1 can repress TCF-luci and shows a differential signal between LRP5 and HBM. By co-transfecting Wnt3a/Wnt1, there is a generalized increase in the TCF-luci signal in the assay. Further, one can detect Dkk-mediated differential repression of the reporter due to LRP5 and HBM cDNA expression as well as between LRP5 and LRP6 cDNA. The repression is maximal with LRP6, moderate with LRP5, and least with HBM cDNA expression. In addition, the assay can detect the functional impact of the LRP5 interacting peptide aptamers (Figure 4), Dkk1 interacting aptamers and binding domains of Dkk-1 (Figure 6; OST264 and OST265 of Figures 12 and 13).

Using this system with a suppressed Wnt-TCF signal due to the presence of both Dkk and Wnt3a, one can screen for compounds that could alter Dkk modulation of Wnt signaling, by looking for compounds that activate or the TCF-luciferase reporter, and thereby relieve the Dkk-mediated repression of the Wnt pathway. Such compounds identified may potentially serve as HBM-mimetics and be useful, for example, as osteogenic therapeutics. Data generated from this high throughput screen are demonstrated in Figures 19-21. Figure 19 shows that Dkk1 represses Wnt3a-mediated signaling in U2OS bone cells. Figure 20 demonstrates the functional differences between LRP5, LRP6, and HBM. Dkk-1 represses LRP6 and LRP5 but has little or no effect on HBM-generated Wnt1 signaling in U2OS cells. Figure 21 demonstrates the differential effects of various Dkk family members and modified Dkks, including Dkk-1, a mutated Dkk-1 (C220A), Dkk-1-AP (modified with alkaline phosphatase), Dkk-3, and Soggy.

25

30

5

10

15

20

Example 10

DKK/LRP5/6/HBM ELISA Assay

A further method to investigate Dkk binding to LRP is via ELISA assay. Two possible permutations of this assay are exemplified. LRP5 is immobilized to a solid surface, such as a tissue culture plate well. One skilled in the art will recognize that other supports such as a nylon or nitrocellulose membrane, a silicon chip, a glass slide,

beads, etc. can be utilized. In this example, the form of LRP5 used is actually a fusion protein where the extracellular domain of LRP5 is fused to the Fc portion of human IgG. The LRP5-Fc fusion protein is produced in CHO cell extracts from stable cell lines. The LRP5-Fc fusion protein is immobilized on the solid surface via anti-human Fc antibody or by Protein-A or Protein G-coated plates, for example. The plate is then washed to remove any non-bound protein. Conditioned media containing secreted Dkk protein or secreted Dkk-epitope tagged protein (or purified Dkk or purified Dkk-epitope tagged protein) is incubated in the wells and binding of Dkk to LRP is investigated using antibodies to either Dkk or to an epitope tag. Dkk-V5 epitope tagged protein would be detected using an alkaline phosphatase tagged anti-V5 antibody.

Alternatively, the Dkk protein could be directly fused to a detection marker, such as alkaline phosphatase. Here the detection of the Dkk-LRP interaction can be directly investigated without subsequent antibody-based experiments. The bound Dkk is detected in an alkaline phosphatase assay. If the Dkk-alkaline phosphatase fusion protein is bound to the immobilized LRP5, alkaline phosphatase activity would be detected in a colorimetric readout. As a result, one can assay the ability of small molecule compounds to alter the binding of Dkk to LRP using this system.

Compounds, when added with Dkk (or epitope-tagged Dkk) to each well of the plate, can be scored for their ability to modulate the interaction between Dkk and LRP based on the signal intensity of bound Dkk present in the well after a suitable incubation time and washing. The assay can be calibrated by doing cold competition experiments with unlabeled Dkk or with a second type of epitope-tagged Dkk. Any small molecule that is able to modulate the Dkk-LRP interaction may be a suitable therapeutic candidate, more preferably an osteogenic therapeutic candidate.

25

30

20

5

10

15

Example 11

Functional Evaluation of Peptide Aptamers in Xenopus

The constrained peptide aptamers constructs OST258-263 (where 258 contains the signal sequence by itself and 263 contains an irrelevant constrained peptide)

(Figures 12 and 13) were used to generate RNA substantially as described in Example

7, except the vector was linearized by restriction endonuclease digestion and RNA was generated using T7 RNA polymerase.

Aptamer RNA was injected at 250 pg per blastomere using the protocol of Example 7. Wnt signaling was activated, as visualized by embryo dorsalization (duplicated body axis) with aptamers 261 and, more strongly, 262. The results of this assay are shown in Figures 22 and 23. These results suggest that aptamers 261 and 262 are able to activate Wnt signaling possibly by binding to the LBD of LRP, thereby preventing the modulation of LRP-mediated signaling by Dkk.

5

10

15

20

25

30

The aptamers of the present invention can serve as HBM-mimetics. In the Xenopus system they are able to induce Wnt signaling all by themselves. They may also serve as tools for rational drug design by enhancing the understanding of how peptides are able to interact with LRP and modulate Wnt signaling at the specific amino acid level. Thus, one would be able to design small molecules to mimic their effects as therapeutics. In addition, the aptamers identified as positives in this assay may be used as therapeutic molecules themselves.

Example 12

Homogenous Assay

An excellent method to investigate perturbations in protein-protein interactions is via Fluorescence Resonance Energy Transfer (FRET). FRET is a quantum mechanical process where a fluorescent molecule, the donor, transfers energy to an acceptor chromophore molecule which is in close proximity. This system has been successfully used in the literature to characterize the intermolecular interactions between LRP5 and Axin (Mao et al., *Molec. Cell Biol.* 7:801-809). There are many different fluorescent tags available for such studies and there are several ways to fluorescently tag the proteins of interest. For example, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein) can be used as donor and acceptor, respecively. Fusion proteins, with a donor and an acceptor, can be engineered, expressed, and purified.

For instance, purified LRP protein, or portions or domains thereof, fused to CFP and purified Dkk protein, or portions or domains thereof that interact with Dkk or LRP

respectively, fused to YFP can be generated and purified using standard approaches. If LRP-CFP and Dkk-YFP are in close proximity, the transfer of energy from CFP to YFP will result in a reduction of CFP emission and an increase in YFP emission. Energy is supplied with an excitation wavelength of 450 nm and the energy transfer is recorded at emission wavelengths of 480 nm and 570 nm. The ratio of YFP emission to CFP emission provides a guage for changes in the interaction between LRP and Dkk. This system is amenable for screening small molecule compounds that may alter the Dkk-LRP protein-protein interaction. Compounds that disrupt the interaction would be identified by a decrease in the ratio of YFP emission to CFP emission. Such compounds that modulate the LRP-Dkk interaction would then be considered candidate HBM mimetic molecules. Further characterization of the compounds can be done using the TCF-luciferase or Xenopus embryo assays to elucidate the effects of the compounds on Wnt signaling.

While the above example describes a cell-fee, solution-phase assay using purified components, a similar cell-based assay could also be performed. For example, LRP-CFP fusion protein can be expressed in cells. The Dkk-YFP fusion protein then could be added to the cells either as purified protein or as conditioned media. The interaction of LRP and Dkk is then monitored as described above.

All references cited herein are hereby incorporated by reference in their entirety for all purposes. The following applications are also incorporated by reference in their entirety herein for all purposes: U.S. Application No. 60/290,071, filed May 11, 2001; U.S. Application No. 09/544,398, filed on April 5, 2000; U.S. Application No. 09/543,771, filed April 5, 2000; 09/578,900; U.S. Application No. 09/229,319, filed January 13, 1999; U.S. Provisional Application 60/071,449, filed January 13, 1998; and International Application PCT/US00/16951, filed June 21, 2000; International PCT Application entitled "HBM Variants That Modulate Bone Mass and Lipid Levels," filed May 13, 2002; and International PCT Application entitled "Transgenic Animal Model of Bone Mass Modulation," filed May 13, 2002. Additionally, this application claims priority to U.S. provisional applications 60/291,311, filed May 17, 2001; 60/353,058, filed

February 1, 2002; and 60/361,293, filed March 4, 2002; the texts of which are herein incorporated by reference in their entirety for all purposes.

CLAIMS

5

10

We claim:

 A method of regulating LRP5, LRP6, or HBM activity in a subject comprising administering a composition which modulates a Dkk activity in an amount effective to regulate LRP5, LRP6, or HBM activity.

- 2. The method of any of Claims 1, 24, 28, 33, 36, 37, 48, 64, 65, 93, 98, 101, 105, 107, 111, or 112, wherein the Dkk is Dkk-1.
- 3. The method of any of Claims 1, 24, 28, or 33, wherein the Dkk is Dkk-1 and the Dkk activity is inhibited.
- 4. The method of Claims 1 or 24, wherein the Dkk activity modulates bone mass and/or lipid levels.
 - 5. The method of Claim 4, wherein bone mass is increased and/or lipid levels are decreased.
- 6. The method of Claim 5, wherein the increase in bone mass is determined via one or more of a decrease in fracture rate, an increase in bone strength, an increase in bone density, an increase in bone mineral density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density, an increase in bone diameter, and an increase in inorganic bone content.
 - 7. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises one or more compounds selected from the group consisting of Dkk interacting proteins, or a Dkk-binding fragment thereof.

8. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises an antisense, a siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk interacting proteins.

5

9. The method of any of Claims 1, 24, 28, or 33, and wherein said composition comprises a Dkk peptide aptamer.

10

- 10. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a mimetic of a Dkk peptide aptamer.
- 11. The method of any of Claims 1, 24, 28, or 33, wherein said composition inhibits Dkk binding to LRP5, LRP6, or HBM.

15

12. The method of any of Claims 1, 24, 28, or 33, wherein said composition enhances binding of Dkk to LRP5, LRP6, or HBM.

20

- 13. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a Dkk interacting protein peptide aptamer.
- 14. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises a mimetic of a Dkk interacting protein peptide aptamer.

25

15. The method of any of Claims 1, 24, 28 or 33, wherein said composition inhibits Dkk interacting protein or Dkk-binding fragment thereof binding to Dkk.

30

16. The method of any of Claims 1, 24, 28, or 33, wherein said composition enhances binding of Dkk interacting protein or Dkk-binding fragment thereof to Dkk.

17. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a vertebrate or an invertebrate organism.

- 18. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a mammal.
 - 19. The method of any of Claims 1, 24, 28, or 33, wherein said subject is a canine, a feline, an ovine, a primate, an equine, a porcine, a caprine, a camelid, an avian, a bovine, or a rodent.

10

- 20. The method of Claim 19, wherein said primate is a human.
- 21. The method of any of Claims 1, 24, 28, or 33, wherein said composition comprises an LRP5 peptide aptamer.

15

- 22. The method of Claim 21, wherein said peptide aptamer is OST262 (SEQ ID NO:208).
- 23. The method of any of Claims 1, 24, 28 or 33, wherein the composition comprises an LRP5 antibody or an immunologically active fragment thereof.
 - 24. A method of regulating Dkk-Wnt pathway activity in a subject comprising administering a composition which modulates Dkk activity in an amount effective to regulate Dkk-Wnt pathway activity.
 - 25. The method of Claims 24, 101, or 107, wherein the Wnt is one or more of Wnt1-Wnt19.

26. The method of Claim 25, wherein the Wnt is Wnt1, Wnt3, Wnt3a, or Wnt10b.

27. The method of Claim 24 wherein said composition which modulates Dkk activity or modulates Dkk interaction with LRP5/LRP6/HBM is administered in an amount effective to modulate Wnt signaling.

5

10

25

- 28. A method of modulating bone mass in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM in an amount effective to modulate bone mass in the subject.
 - 29. The method of Claim 28, wherein bone mass is increased.
- 30. The method of the previous claim, wherein the increase in bone mass is determined via one or more of a decrease in fracture rate, an increase in bone strength, an increase in bone density, an increase in bone mineral density, an increase in trabecular connectivity, an increase in trabecular density, an increase in cortical density, an increase in bone diameter, and an increase in inorganic bone content.
 - 31. The method of Claims 28 or 36, wherein said subject has a bone mass disorder selected from the group consisting of a bone development disorder, a bone fracture, age-related loss of bone, chrondrodystrophy, druginduced bone disorder, high bone turnover, hypercalcemia, hyperostosis, osteogenesis imperfecta, osteomalacia, osteomyelitis, osteoporosis, Paget's disease, osteoarthritis, and rickets.
 - 32. The method of Claim 28, wherein the composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM is

administered in an amount effective to modulate the amount of trabecular and/or cortical tissue.

- 33. A method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates Dkk activity or Dkk interaction with LRP5, LRP6, or HBM in an amount effective to modulate lipid levels in the subject.
 - 34. The method of Claim 33, wherein lipid levels are decreased.

10

15

5

35. The method of Claim 33 or 36, wherein the subject has a lipid-modulated disorder and wherein the lipid-modulated disorder is selected from the group consisting of a cardiac condition, atherosclerosis, familial lipoprotein lipase deficiency, familial apoprotein CII deficiency, familial type 3 hyperlipoproteinemia, familial hypercholesterolemia, familial hypertriglyceridemia, multiple lipoprotein-type hyperlipidemia, elevated lipid levels due to dialysis and/or diabetes, and elevated lipid levels of unknown etiology.

20

36. A method of diagnosing low or high bone mass and/or high or low lipid levels in a subject comprising examining expression of Dkk, LRP5, LRP6, HBM, or and HBM-like variant in the subject and determining whether Dkk, LRP5, LRP6, HBM, or an HBM-like variant is over- or under-expressed to determine whether subject has (a) high or low bone mass and/or (b) has high or low lipid levels.

25

37. A method of screening for a compound which modulates the interaction of Dkk with LRP5, LRP6, HBM, or a Dkk-binding fragment of LRP5, LRP6, or HBM comprising:

(a) exposing Dkk and a LRP5, LRP6, and/or HBM binding fragment thereof to a compound; and

(b) determining whether said compound modulates Dkk interaction with the LRP5/LRP6/HBM binding fragment.

5

38. The method of Claim 37, wherein said modulation is determined by whether said compound binds to Dkk or the LRP5, LRP6, or HBM binding fragment thereof.

10

15

- 39. The method of Claim 37, wherein Dkk or a LRP-binding fragment thereof is attached to a substrate.
- 40. The method of Claim 37, wherein said compound comprises one or more compounds selected from the group consisting of Dkk interacting proteins, or a Dkk-binding fragment thereof.
- 41. The method of Claim 37 or 48, wherein said compound comprises a Dkk peptide aptamer.

20

- 42. The method of Claim 37 or 48, wherein said compound comprises a mimetic of a Dkk peptide aptamer.
- 43. The method of Claim 37 or 48, wherein said compound comprises a Dkk interacting protein peptide aptamer.

- 44. The method of Claim 37 or 48, wherein the compound comprises an LRP5 peptide aptamer.
- 45. The method of Claim 44, wherein the peptide aptamer is OST262 (SEQ ID NO:208).

46. The method of Claim 37 or 48, wherein the compound comprises an LRP5 antibody.

- 47. The method of Claim 37 or 48, wherein said compound is a mimetic of a Dkk interacting protein peptide aptamer.
 - 48. A method of screening for a compound which modulates the interaction of Dkk with a Dkk interacting protein comprising:
 - (a) exposing a Dkk interacting protein or a Dkk-binding fragment thereof to a compound; and
 - (b) determining whether said compound bound to a Dkk interacting protein or the Dkk-binding fragment thereof; and
 - (c) further determining whether said compound modulates the interaction of Dkk interacting protein and Dkk.
 - 49. The method of Claim 48, wherein the Dkk interacting protein or a Dkk-binding fragment thereof is attached to a substrate.
- 50. A composition comprising a LRP5, LRP6, or HBM activity-modulating compound and a pharmaceutically acceptable carrier therefor.
- 51. The composition of Claim 50, wherein said LRP5, LRP6, or HBM activity-modulating compound comprises a compound which binds to Dkk thereby modulating the interaction of Dkk with LRP5, LRP6, or HBM.
- 52. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises one or more Dkk interacting proteins and Dkk-binding fragments thereof.

5

10

15

53. The composition of Claim 50, wherein said LRP5, or LRP6, or HBM modulating compound is a monoclonal antibody or an immunologically active fragment thereof which binds to a Dkk interacting protein, or a Dkk-binding fragment thereof.

5

- 54. The composition of Claim 53, wherein the monoclonal antibody is human, chimeric, humanized, primatized®, or bispecific.
- 55. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises an antisense, a siRNA, or shRNA molecule which recognizes and binds to a nucleic acid encoding one or more Dkk interacting proteins.
 - 56. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a Dkk peptide aptamer.
 - 57. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a mimetic of a Dkk peptide aptamer.

20

25

- 58. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a Dkk interacting protein peptide aptamer.
- 59. The composition of Claim 50, wherein said LRP5, LRP6, or HBM modulating compound comprises a mimetic of a Dkk interacting protein peptide aptamer.
- 60. The composition of Claim 50, wherein the compound comprises an LRP5 peptide aptamer.

61. The composition of Claim 60, wherein the peptide aptamer is OST262.

- 62. The composition of Claim 50, wherein the compound comprises an LRP5 antibody.
 - 63. A pharmaceutical composition comprising a compound which modulates Dkk activity and a pharmaceutically acceptable carrier therefor.
- 10 64. A method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:
 - (a) creating an LRP5, LRP6, or HBM fluorescent fusion protein using a first fluorescent tag; and
 - (b) creating a Dkk fusion protein comprising a second fluorescent tag;
 - (c) adding a test compound; and

15

20

25

(d) assessing changes in the ratio of fluorescent tag emissions using Fluorescence Resonance Energy Transfer (FRET) or Bioluminescence Resonance Energy Transfer (BRET) to determine whether the compound modulates Dkk and LRP5/LRP6/HBM interactions.

65. A method of identifying binding partners for a Dkk protein comprising the steps of:

- (a) exposing the Dkk protein(s) or a LRP5/LRP6 binding fragment thereof to a potential binding partner; and
 - (b) determining if the potential binding partner binds to a Dkk protein or the LRP5/LRP6 binding fragment thereof.
- 66. A nucleic acid encoding a Dkk interacting protein peptide aptamer comprising a nucleic acid encoding a scaffold protein in-frame with the activation

domain of Gal4 or LexA that is in-frame with a nucleic acid that encodes a Dkk interacting protein amino acid sequence.

- 67. A vector comprising the nucleic acid of Claim 66.
- 68. The nucleic acid of Claim 66, wherein the scaffold protein is trxA.
- 69. A method of detecting a modulatory activity of a compound on the binding interaction of a first peptide and a second peptide of a peptide binding pair that bind through extracellular interaction in their natural environment, comprising:
 - (i) culturing at least one eukaryotic cell comprising:
 - a nucleotide sequence encoding a first heterologous fusion protein comprising the first peptide or a segment thereof joined to a transcriptional activation protein DNA binding domain:
 - a nucleotide sequence encoding a second heterologous fusion protein comprising the second peptide or a segment thereof joined to a transcriptional activation protein transcriptional activation domain;

wherein binding of the first peptide or segment thereof and the second peptide or segment thereof reconstitutes a transcriptional activation protein; and

- c) a reporter element activated under positive transcriptional control of the reconstituted transcriptional activation protein, wherein expression of the reporter element produces a selected phenotype;
- (ii) incubating the eukaryotic cell in the presence of a compound under conditions suitable to detect the selected phenotype; and

15

5

20

(iii) detecting the ability of the compound to affect the binding interaction of the peptide binding pair by determining whether the compound affects the expression of the reporter element which produces the selected phenotype;

- wherein (1) said first peptide is a Dkk peptide and the second peptide is a peptide selected from LRP5, HBM, LRP6 and the Dkk-binding portion of LRP5/LRP6/HBM or (2) said first peptide is a Dkk interacting protein or the Dkk-binding fragment thereof and said second peptide is a Dkk peptide.
- 70. The method of Claim 69, wherein the eukaryotic cell is a yeast cell.
 - 71. The method of Claim 70, wherein the yeast cell is *Saccharomyces*.

15

20

25

30

72. The method of Claim 71, wherein the *Saccharomyces* cell is *Saccharomyces cerevisiae*.

- 73. The method of Claim 69, wherein the Dkk is Dkk-1 and wherein the compound comprises one or more Dkk interacting proteins or a Dkk-binding fragment thereof.
- 74. The method of Claim 73, wherein the compound is directly added to assay.
- 75. The method of Claim 73, wherein the compound is recombinantly expressed by said eukaryotic cell in addition to said first and second peptides.
- 76. The method of Claim 69, wherein the compound comprises a Dkk peptide aptamer.

77. The method of Claim 69, wherein the compound comprises a mimetic of a Dkk peptide aptamer.

- 78. The method of Claim 69, wherein the compound comprises a Dkk interacting protein peptide aptamer.
 - 79. The method of Claim 69, wherein the compound comprises a mimetic of a Dkk interacting protein peptide aptamer.
- 10 80. The method of Claim 69, wherein the eukaryotic cell further comprises at least one endogenous nucleotide sequence selected from the group consisting of a nucleotide sequence encoding the DNA binding domain of a transcriptional activation protein, a nucleotide sequence encoding the transcriptional activation domain of a transcriptional activation protein, and a nucleotide sequence encoding the reporter element, wherein at least one of the endogenous nucleotide sequences is inactivated by mutation or deletion.
 - 81. The method of Claim 69, wherein the peptide binding pair comprises a ligand and a receptor to which the ligand binds.
 - 82. The method of Claim 69, wherein the transcriptional activation protein is Gal4, Gcn4, Hap1, Adr1, Swi5, Ste12, Mcm1, Yap1, Ace1, Ppr1, Arg81, Lac9, Qa1F, VP16, or a mammalian nuclear receptor.
 - 83. The method of Claim 69, wherein at least one of the heterologous fusion proteins is expressed from an autonomously-replicating plasmid.
 - 84. The method of Claim 69, wherein the DNA binding domain is a heterologous DNA-binding domain of a transcriptional activation protein.

20

25

85. The method of Claim 84, wherein the DNA binding protein is selected from the group consisting of a mammalian steroid receptor and bacterial LexA protein.

5

86. The method of Claim 69, wherein the reporter element is selected from the group consisting of lacZ, a polynucleotide encoding luciferase, a polynucleotide encoding green fluorescent protein (GFP), and a polynucleotide encoding chloramphenicol acetyltransferase.

10

- 87. The method of Claim 86, wherein the reporter element is LacZ.
- 88. The method of Claim 69, wherein the test sample comprises an LRP5 peptide aptamer.

15

- 89. The method of Claim 88, wherein the peptide aptamer is OST262 (SEQ ID NO:208).
- 90. The method of Claim 69, wherein the test sample comprises an LRP5 antibody.

20

91. A transgenic animal wherein Dkk-1 is knocked out in a tissuespecific fashion.

25

- 92. The transgenic animal of Claim 91, wherein the tissue specificity is bone tissue, cancer tissue, or liver tissue.
- 93. A method for identifying potential compounds which modulate Dkk activity comprising:
 - a) measuring the effect on binding of one or more Dkk interacting proteins, or a Dkk-binding fragment thereof, with Dkk or a

fragment thereof in the presence and absence of a compound; and

b) identifying as a potential Dkk modulatory compound a compound which modulates the binding between one or more Dkk interacting proteins or Dkk-binding fragment thereof and Dkk or fragment thereof.

OA A mantida antaman of Figure 0 (050)

94. A peptide aptamer of Figure 3 (SEQ ID NOs:171-188) or Figure 4 (SEQ ID NOs:189-192).

10

15

5

95. An antibody or antibody fragment which recognizes and binds to one or more peptides of amino acid sequences GNKYQTIDNYQPYPC (SEQ ID NO:118), LDGYSRRTTLSSKMYHTKGQEG (SEQ ID NO:119), RIQKDHHQASNSSRLHTCQRH (SEQ ID NO:120), RGEIEETITESFGND (SEQ ID NO:121), EIFQRCYCGEGLSCRIQKD (SEQ ID NO:122), MYWTDWVETPRIE (SEQ ID NO:123), MYWTDWGETPRIE (SEQ ID NO:124), KRTGGKRKEILSA (SEQ ID NO:125), ERVEKTTGDKRTRIQGR (SEQ ID NO:126), KQQCDSFPDCIDGSDE (SEQ ID NO:127), or a Dkk-1 amino acid sequence selected from the group consisting Asn34-His266 (SEQ ID NO:110), Asn34-Cys245 (SEQ ID NO:111), Asn34-Lys182 (SEQ ID NO:112), Cys97-His266 (SEQ ID NO:113), Val139-His266 (SEQ ID NO:114), Gly183-His266 (SEQ ID NO:115), Cys97-Cys245 (SEQ ID NO:116), or Val139-Cys245 (SEQ ID NO:117).

25

20

- 96. The antibody or antibody fragment of Claim 95, wherein the antibody is a monoclonal antibody.
- 97. The antibody or antibody fragment of Claim 95, wherein the antibody is a polyclonal antibody

98. A method of identifying Dkk interacting proteins which modulate the interaction of Dkk with the Wnt signaling pathway comprising:

- (a) injecting Dkk and potential Dkk interacting protein mRNA into a *Xenopus* blastomere; and
- (b) assessing axis duplication or analyzing marker gene expression; and
- (c) identifying compositions which elicit changes in axis duplication or marker gene expression as Dkk interacting proteins which modulate the interaction of Dkk with the Wnt signaling pathway.

10

5

99. The method of Claim 98, wherein the mRNA of HBM, LRP5/6, any Wnt, Wnt antagonist, Wnt pathway modulator, or combination of these is coinjected into the *Xenopus* blastomere.

15

- 100. The method of Claim 98, wherein the marker gene analyzed is Siamois, Xnr3, slug, Xbra, HNK-1, endodermin, Xlhbox8, BMP2, BMP4, XLRP6, EF-1, or ODC.
- 101. A method for identifying Dkk interacting proteins which modulate 20 the interaction of Dkk with the Wnt signaling pathway comprising:
 - (a) transfecting cells with constructs containing Dkk and potential Dkk interacting proteins; and
 - (b) assessing changes in expression of a reporter gene linked to a Wnt-responsive promoter; and

25

- (c) identifying as a Dkk interacting protein any protein which alters reporter gene expression compared with cells transfected with a Dkk construct alone.
- 102. The method of Claim 101, wherein the cells are HOB-03-CE6, HEK293, or U2OS cells.

103. The method of Claim 101, wherein the Wnt-responsive promoter is TCF or LEF.

- 104. The method of Claim 101, wherein the cells are co-transfected with CMV β-galactosidase.
 - 105. A method for identifying compounds which modulate Dkk and LRP5/LRP6/HBM interactions comprising:
 - (a) immobilizing LRP5/LRP6/HBM to a solid surface; and
 - (b) treating the solid surface with a secreted Dkk protein or a secreted epitope-tagged Dkk and a test compound; and
 - (c) determining whether the compound regulates binding between Dkk and LRP5/LRP6/HBM using antibodies to Dkk or the epitope tag or by directly measuring activity of an epitope tag.

106. The method of Claim 105, wherein the epitope tag is alkaline phosphatase, histidine, or a V5 tag.

- 107. A method for identifying compounds which modulate the interaction of Dkk with the Wnt signaling pathway comprising:
 - (a) transfecting cells with constructs containing Dkk and Wnt proteins;
- (b) assessing changes in expression of a reporter element linked to a Wnt- responsive promoter; and
- (c) identifying as a Dkk/Wnt interaction modulating compound any compound which alters reporter gene expression compared with cells transfected with a Dkk construct alone.
- 108. The method according to Claim 107, wherein Wnt3a and Wnt1 constructs are co-transfected into the cells.

5

10

15

20

109. The method according to Claim 107, wherein the cells are U2-OS, HOB-03-CE6, or HEK293 cells.

- 110. The method according to Claim 107, wherein the reporter element used is TCF-luciferase, tk-Renilla, or a combination thereof.
 - 111. A method of testing compounds that modulate Dkk-mediated activity in a mammal comprising
 - (a) providing a group of transgenic animals having (1) a regulatable one or more Dkk genes, (2) a knock-out of Dkk genes, or (3) a knock-in of one or more Dkk genes;
 - (b) providing a second group of control animals respectively for the group of transgenic animals in step (a); and
 - (c) exposing the transgenic animal group and control animal group to a potential Dkk-modulating compound which modulates bone mass or lipid levels; and
 - (d) comparing the transgenic animals and the control group of animals and determining the effect of the compound on bone mass or lipid levels in the transgenic animals as compared to the control animals.
 - 112. A method of screening for compounds or compositions which modulate the interaction of Dkk and a Dkk interacting protein comprising:
 - (a) exposing a Dkk interacting proteins or a Dkkbinding fragment thereof to a compound; and
 - (b) determining whether said compound binds to a Dkk interacting proteins or the Dkk-binding fragment thereof.

10

5

15

20

113. The method of Claim 112, wherein said modulation is determined by whether said compound binds to the Dkk interacting protein or the Dkk-binding fragment thereof.

5 114. An antibody or antibody fragment which recognizes and binds to a sequence depicted in Figure 3 (SEQ ID NOs:171-188) or Figure 4 (SEQ ID NOs:189-192).

Model of Wnt signaling

FIG. 1

RECTIFIED SHEET (RULE 91)

Sequence of baits used in Y2H screens >DKK1 (SEQ ID N0: 168)

AATTCCAACGCTATCAAGAACCTGCCCCCACCGCTGGGCGCGCTG
CGGGGCACCCAGGCTCTGCAGTCAGCGCCGCGCGCGGGAATCCTGTA
CCCGGGCGGAATAAGTACCAGACCATTGACAACTACCAGCCGTAC
CCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCT
AGTCCCACCCGCGGAGGGGACGCGGGCGTGCAAATCTGTCTCGCCT
GCAGGAAGCGCCGAAAACGCTGCATGCGTCACGCTATGTGCTGCCC
CGGGAATTACTGCAAAAATGGAATATGTGTCTTCTGATCAAAAT
CATTTCCGAGGAGAAAATTGAGGAAACCATCACTGAAAGCTTTGGTA
ATGATCATAGCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTC
TTCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTTTGTCTC
CGGTCATCAGACTGTGCCTCAGGATTGTGTTGTCTCTGTCCCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACC
AAGCATAGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTT
GTTACTGTGGAGAAAGATCACCA
TCAAGCCAGTAATTCTTCTAGGCTTCACACCTTGTCAGAGACACTAA

FIG. 2A

>zmax1 LBD1 (SEQ ID NO: 169)

CTCATCCTGCCCTGCATGGACTGAGGAACGTCAAAGCCATCGACTAT GACCCACTGGACAAGTTCATCTACTGGGTGGATGGGCGCCAGAACATC AAGCGAGCCAAGGACGACGGGACCCAGCCCTTTGTTTTGACCTCTCTG AGCCAAGGCCAAAACCCAGACAGGCAGCCCCACGACCTCAGCATCGA CATCTACAGCCGGACACTGTTCTGGACGTGCGAGGCCACCAATACCAT CAACGTCCACAGGCTGAGCGGGGAAGCCATGGGGGTGGTGCTGCGTG GGGACCGCGACAAGCCCAGGGCCATCGTCGTCAACGCGGAGCGAGGG TACCTGTACTTCACCAACATGCAGGACCGGGCAGCCAAGATCGAACGC GCAGCCTGGACGCACCGAGCGCGAGGTCCTCTTCACCACCGGCCTC ATCCGCCCTGTGGCCCTGGTGGTAGACAACACACTGGGCAAGCTGTTC TGGGTGGACGCGGACCTGAAGCGCATTGAGAGCTGTGACCTGTCAGG GGCCAACCGCCTGACCCTGGAGGACGCCAACATCGTGCAGCCTCTGGG CCTGACCATCCTTGGCAAGCATCTCTACTGGATCGACCGCCAGCAGCA GATGATCGAGCGTGTGGAGAAGACCACCGGGGACAAGCGGACTCGCA TCCAGGGCCGTGTCGCCCACCTCACTGGCATCCATGCAGTGGAGGAAG TCAGCCTGGAGGAGTTCTCAGCCCACCCATGTGCCCGTGACAATGGTG GCTGCTCCCACATCTGTATTGCCAAGGGTGATGGGACACCACGGTGCT CATGCCCAGTCCACCTCGTGCTCCTGCAGAACCTGCTGACCTGTGGAG AGCCGCCCACCTGCTCCCCGGACCAGTTTGCATGTGCCACAGGGGAGA TCGACTGTATCCCCGGGGCCTGGCGCTGTGACGGCTTTCCCGAGTGCG ATGACCAGAGCGACGAGGAGGGCTGCCCCGTGTGCTCCGCCGCCCAGT TCCCTGCGCGCGGGGTCAGTGTGTGGACCTGCGCCTGCGCTGCGACG GCGAGGCAGACTGTCAGGACCGCTCAGACGAGGCGGACTGTGACGCC ATCTGCCTGCCCAACCAGTTCCGGTGTGCGAGCGGCCAGTGTGTCCTC ATCAAACAGCAGTGCGACTCCTTCCCCGACTGTATCGACGGCTCCGAC GAGCTCATGTGTGAAATCACCAAGCCGCCC

FIG. 2B

>zmax1 LBD4 (SEQ ID NO: 170)

AGGGCCATCGTCAACGCGGAGCGAGGGTACCTGTACTTCACCAA CATGCAGGACCGGCAGCCAAGATCGAACGCGCAGCCCTGGACGGCA CCGAGCGCGAGGTCCTCTTCACCACCGGCCTCATCCGCCCTGTGGCCC TGGTGGTAGACAACACACTGGGCAAGCTGTTCTGGGTGGACGCGGAC CTGAAGCGCATTGAGAGCTGTGACCTGTCAGGGGCCAACCGCCTGAC CCTGGAGGACGCCAACATCGTGCAGCCTCTGGGCCTGACCATCCTTGG CAAGCATCTCTACTGGATCGACCGCCAGCAGCAGATGATCGAGCGTG TGGAGAAGACCACCGGGGACAAGCGGACTCGCATCCAGGGCCGTGTC GCCCACCTCACTGGCATCCATGCAGTGGAGGAAGTCAGCCTGGAGGA GTTCTCAGCCCACCCATGTGCCCGTGACAATGGTGGCTGCTCCCACAT CTGTATTGCCAAGGGTGATGGGACACCACGGTGCTCATGCCCAGTCCA CCTCGTGCTCCTGCAGAACCTGCTGACCTGTGGAGAGCCGCCCACCTG CTCCCGGACCAGTTTGCATGTGCCACAGGGGAGATCGACTGTATCCC CGGGGCCTGGCGCTGTGACGGCTTTCCCGAGTGCGATGACCAGAGCG ACGAGGAGGCTGCCCCGTGTGCTCCGCCGCCCAGTTCCCCTGCGCGC GGGGTCAGTGTGGACCTGCGCCTGCGCTGCGACGGCGAGGCAGAC CAACCAGTTCCGGTGTGCGAGCGGCCAGTGTGTCCTCATCAAACAGC AGTGCGACTCCTTCCCCGACTGTATCGACGGCTCCGACGAGCTCATGT GTGAAATCACCAAGCCGCCCTAAGCGGCCGC

FIG. 2C

Screen of DKK1 X Peptide Library

, optido Elbidi,			SEQ ID
name	motif	# hits	NO:
252-1	SVGCLLCAGLGVWSLS	3	171
252-2	WCCCGLFRGVCVWSCGAD	2	172
	D		
252-3	GWRRCDWCGCVSWCWV	1	173
252-4	MPGSVSHCWGGICEAL	8	174
252-15	SCCAVDVCLRCGGWFR	1	175
252-16	SVLGTCCCGGWILCE	2	176
252-17	VLSVCEVCGGVFVRRC	1	177
252-18	GMWYWSGRDCALCWL	1	178
252-19	CTAVMWGVGSVAYLGE	1	179
252-20	WCWWCGCRGVVWR	1	180
252-21	CVCASFCCCVCGLRLL	1	181
252-23	TYEVCEECGGRVRMWV	6	182
252-25	VVVCASCGQVWHGSGA	2	183
252-26	CCRCCHCWDCEWHMCV	1	184
252-27	FCASCCWCGCDCFGWV	2	185
252-32	CDYCWSCGVWCPSSWL	3	186
252-47	VYLCVWCGAARFGCYG	1	187
252-48	FCVCGCCWCWCAACWC	1	188

FIG. 3

peptide #	peptide seq	# hits	SEQ ID NO:
9	VVLCSRCGRLWRWSCG	1	189
12	EVRQVTCIRCRRGFLL	1	190
13	GGGGMWEAWSCYACG	1	191
14	GWRWCGRCGALWWRRV	3	192

FIG. 4

	Genbank	Protein
Gene	Accession #	Accession #
granulin	M75161	AAA58617
similar to cys/His rich protein	BC004544	AAH04544
IGF-BINDING PROTEIN 6	M69054	AAA88070
latent TGFb binding protein 4	AF051344	AAC39879
NOTCH 2	AF315356	AAG37073
fibulin 1	X53743	CAA37772
MDC15 (ADAM15)	U46005	AAC51112
DKFZp761G02121(notch1 Ca++ binding like)	AL137311	CAB70690
chordin	AF076612	AAC69835
fibronectin 1	U42594	AAD00019
MG50(melanoma associated antigen)	AF200348	AAF06354
unknown (notch 4-like)	AX068260	CAC27245
Slit 1	AB017167	BAA35184
tomoregulin (agarin repeat homology)	AB004064	BAA90820
sprouty 1	AF041037	AAC39566
sprouty 2	AF039843	AAC04258
NOV1	X96584	CAA65403
agrin	AF016903	AAC39776
fibrillin 1	L13923	AAB02036
thrombospondin1	X04665	CAA28370
ADAM19	AF134707	AAF22162
Nafl alpha	AJ011895	CAA09855
laminin alpha 5	Z95636	CAB09137
CRIM1	AF167706	AAF34409
nidogen	M30269	AAA59932
fibulin-2	X82494	CAA57876
thrombospondin 2	L12350	AAA03703
KIAA1323	AB037744	BAA92561
fibrillin-2	U03272	AAA18950
MEGF9	AB011542	BAA32470
integrin beta 1	X07979	CAA30790
matrilin-2 precursor	U69263	AAC51260
tenascin	X56160	A32160

FIG. 5

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

HBM1 + Wnt5a

HBM1

Both Zmax and HBM1, in the presence of Wnt5a, induce secondary axis formation in Xenopus (photos at 48 hrs post-injection) Zmax + Wnt5a XWnt8 Wnt5a Zmax

FIG. 10

SUBSTITUTE SHEET (RULE 26)

Listed are the pcDNA3.1 construct names followed by the DNA sequence OST258 (control for OST 259-OST262 and OST264,OST265)

AAGCTTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTGTGGGTTCCACTGGTGACGG
ATCC

OST259 (SEQ ID NO: 193)

AAGCTTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAAGCGGACGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAATTCCGTGGTTCTGTGTTCGCGTTGTGGGCGTTTGTGGCGTGG
TCGTGTGGGACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST260 (SEQ ID NO: 194)

AAGCTTGCCACCATGGAGACAGACACTCCTGCTATGGGTACTGCTGCTGTTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAATTCCGGGTGGTGGTGGTGGTGGTGGGGCTTTGTGGTGG
CGGCGTGTTACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCCGCAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST261 (SEQ ID NO: 195)

AGCTTGCCACCATGGAGACAGACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCC
TCGTCGATTTCMCCCCCGTGCAAAATGATCCCCCGAGGTGCGGCAGGTTACGTGTATTAGGTGTCGTCGGGGT
TTTCTGTTGACTAGTGGTCCGTGCAAAATGATCGCCCCGGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST262 (SEQ ID NO: 196)

AAGCTTGCCACCATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAATTCCGGTGGTGGGGGGGATGATTTGGGAGGCTTGGAGTTGTTAT
GCGTTGGGACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACCGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

OST263 (SEQ ID NO: 197)

AAGCTTGCCACCATGEAGACAGACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGG
ATCCATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGCGATCC
TCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGAATTCCTTGTGGATTGGGCCGGGTGATCAGGGTCTGTTTCGGCGT
TTTGTTTTTACTAGTGGTCCGTGCAAAATGATCGCCCCGATTCTGGATGAAATCGCTGACGAATATCAGGGCAAACT
GACCGTTGCAAAACTGAACATCGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGC
TGCTGTTCAAAAACCGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGAC
GCTAACCTGGCGTAAGCGGCCGC

FTGURE 12A

OST264 (SEQ ID NO: 198)

OST265 (SEQ ID NO: 199)

OST266 (SEQ ID NO: 200)

OST267 (SEQ ID NO: 201)

OST268 (SEQ ID NO: 202)

FIGURE 12B

Listed below are the amino acid sequences corresponding to the pcDNA3.1 constructs in Appendix 1A OST258

METDTLLLWVLLLWVPGSTGDGS

OST259 (SEQ ID NO: 204)

metdtllinvlliwvpgstgdgsmsdkiihltddsfdtdvlkadgailvdfwaewcgpnsvvlcsrcgrlwrwscgt sgpckmiapildeiadeyggkltvaklnidqnpgtapkygirgiptllfkngevaatkvgalskgqlkefldanla

OST260 (SEQ ID NO: 205)

METDTLLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSGWRWCGRCGALWWRRVT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST261 (SEQ ID NO: 206)

metdtllwvlllwvpgstgdgsmsdkiihltddsfdtdvlkadgailvdfwaewcgpnsevrqvtcircrrgfllt sgpckmiapildeiadeyqgkltvaklnidqnpgtapkygirgiptllfkngevaatkvgalskgqlkefldanla

OST262 (SEQ ID NO: 207)

METDTLLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSGGGGMIWEAWSCYACGT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST263 (SEQ ID NO: 208)

METDTLLLWVLLLWVPGSTGDGSMSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSLWIGPGDQGLFRRFVFT SGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST264 (SEQ ID NO: 209)

METDTLLLWVLLLWVPGSTGDGSVSSDQNHFRGEIEETLTESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRS SDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQKDHHQASNSSRLHTCQRH

OST265 (SEQ ID NO: 210)

METDTLLLWVLLLWVFGSTGDGSCASPTRGGDAGVQICLACRKRRKRCMRHAMCCFGNYCKNGICVSSDQNHFRGEI EETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKG SHGLEI

FORCYCGEGLSC.

OST256 (SEQ ID NO: 211)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSYAWLFSCSRCRWWLPWTSGPCKMIAPILDEIADEYQGKLT VAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST267 (SEQ ID NO: 212)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAENCGPNSICEVVRLWSRYFWSWVTSGPCKMIAPILDEIADEYQGKLT VAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST268 · (SEQ ID NO: 213)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSGCTSAVCGAWAEAGRFYCTSGPCKMIAFILDEIADEYQGK LTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

OST269 (SEQ ID NO: 214)

MGDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPNSLWIGPGDQGLFRRFVFTSGPCKMIAPILDEIADEYQGKLT VAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA

FIGURE 13

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Antibody to: aa 165-177 (Mutation)

• A mutant DKK1,C220A, unable to bind to LRP5, was cloned in GalAD and B42 and tested for its ability to bind to LBD in Y2H

Interaction LBD-DKK1 20 fold above background

Interaction LBD-DKK1 C220A 2 to 3 fold above background

Interaction LBD-DKK1 10 fold above LBD-DKK1 C220A mutant

FIG. 18

SUBSTITUTE SHEET (RULE 26)

FIG. 20

• With Wnt1 the TCF-signal generated by LRP5 is greater than that of LRP6. LRP5/6 -Wnt1 induced TCF- is efficiently blocked byDkk1

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 22

SUBSTITUTE SHEET (RULE 26)

FIG. 23

LRP5 Peptide Aptamers 261 and 262 Induce Wnt Signaling

250 pg 250 pg 250 pg 250 pg 250 pg 250 pg RNA: 250 pg

• G171E mutation involves the ringed R group (F) alteration and leads to marginally greater TCF-luci activation than that with HBM1 mutation G171V

FIG. 24

• In blade 1, propeller 1, M282 is at the accessible interior position.

• It is conserved in propellers 1-3

FIG. 25

DKK1 Protein Polyclonal Antibodies

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<110> Allen, Kristina M.
Anisowicz, Anthony
Bhat, Bheem
Damagnez, Veronique
Robinson, John
Yaworsky, Paul

<120> Reagents and Method for Modulating DKK-Mediated Interactions

<130> 032796-132

<150> US 60/291,311 <151> 2001-05-17

<150> US 60/353,058

<151> 2002-02-01

<150> US 60/361,293

<151> 2002-03-04

<160> 214

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 5120

<212> DNA

<213> Homo sapiens

<400> 1

actaaagcgc cgccgccgcg ccatggagcc cgagtgagcg cggcgcgggc ccgtccggcc	60
gccggacaac atg gag gca gcg ccg ccc ggg ccg ccg tgg ccg ctg ctg	109
ctg ctg ctg ctg ctg ctg gcg ctg tgc ggc tgc ccg gcc ccc gcc Leu Leu Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala 15 20 25	157
gcg gcc tcg ccg ctc ctg cta ttt gcc aac cgc cgg gac gta cgg ctg Ala Ala Ser Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu 30 35 40 45	205
gtg gac gcc ggc gga gtc aag ctg gag tcc acc atc gtg gtc agc ggc Val Asp Ala Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly 50 55 60	253
ctg gag gat gcg gcc gca gtg gac ttc cag ttt tcc aag gga gcc gtg Leu Glu Asp Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val 65 70 75	301
tac tgg aca gac gtg agc gag gcc atc aag cag acc tac ctg aac Tyr Trp Thr Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn 80 85 90	349
cag acg ggg gcc gcc gtg cag aac gtg gtc atc tcc ggc ctg gtc tct	397

Gln	Thr 95	Gly	Ala	Ala	Val	Gln 100	Asn	Val	Val	Ile	Ser 105	Gly	Leu	Val	Ser	
CCC	gac Asp	ggc Gl v	ctc	gcc	tgc Cvs	gac	tgg	gtg Val	ggc	aag	aag	ctg	tac	tgg	acg	445
110					115					120			_	-	125	
gac	tca	gag	acc	aac	cgc	atc	gag	gtg	gcc	aac	ctc	aat	ggc	aca	tcc	493
Asp	Ser	Glu	Thr	Asn 130	Arg	Ile	Glu	Val	Ala 135	Asn	Leu	Asn	Gly	Thr 140	Ser	
	aag															541
	Lys		145					150				_	155			
	gac															589
Leu	Asp	Pro 160	Ala	His	Gly	Tyr	Met 165	Tyr	Trp	Thr	Asp	Trp 170	Gly	Glu	Thr	
CCC	cgg	att	gag	cgg	gca	ggg	atg	gat	ggc	agc	acc	cgg	aag	atc	att	637
	Arg 175			_		180		_	_		185	•	-			
	gac															685
Val	Asp	Ser	Asp	Ile	Tyr	Trp	Pro	Asn	Gly	Leu	Thr	Ile	Asp	Leu	Glu	
190					195				,	200					205	
gag	cag	aag	ctc	tac	tgg	gct	gac	gcc	aag	ctc	agc	ttc	atc	cac	cgt	733
Glu	Gln	Lys	Leu	Tyr 210	Trp	Ala	Asp	Ala	Lys 215	Leu	Ser	Phe	Ile	His 220	Arg	
gcc	aac	ctg	gac	ggc	tcg	ttc	cgg	cag	aag	gtg	gtg	gag	ggc	agc	ctg	781
Ala	Asn	Leu	Asp 225	Gly	Ser	Phe	Arg	Gln 230	Lys	Val	Val	Glu	Gly 235	Ser	Leu	
acg	cac	ccc	ttc	gcc	ctg	acg	ctc	tcc	ggg	gac	act	ctg	tac	tgg	aca	829
Thr	His	Pro 240	Phe	Ala	Leu	Thr	Leu 245	Ser	Gly	Asp	Thr	Leu 250	Tyr	Trp	Thr	
gac	tgg	cag	acc	cgc	tcc	atc	cat	gcc	tgc	aac	aag	cgc	act	ggg	ggg	877
Asp	Trp 255	Gln	Thr	Arg	Ser	Ile 260	His	Ala	Cys	Asn	Lys 265	Arg	Thr	Gly	Gly	
aag	agg	aag	gag	atc	ctg	agt	gcc	ctc	tac	tca	ccc	atg	gac	atc	cag	925
Lys 270	Arg	Lys	Glu	Ile	Leu 275	Ser	Ala	Leu	Tyr	Ser 280	Pro	Met	Asp	Ile	Gln 285	
gtg	ctg	agc	cag	gag	cgg	cag	cct	ttc	ttc	cac	act	cgc	tgt	gag	gag	973
Val	Leu	Ser	Gln	Glu 290	Arg	Gln	Pro	Phe	Phe 295	His	Thr	Arg	Cys	Glu 300	Glu	
gac	aat	ggc	ggc	tgc	tcc	cac	ctg	tgc	ctg	ctg	tcc	cca	agc	gag	cct	1021
Asp	Asn	Gly	Gly 305	Cys	Ser	His	Leu	Cys 310	Leu	Leu	Ser	Pro	Ser 315	Glu	Pro	
	tac															1069
Phe	Tyr ·	Thr 320	Cys	Ala	Cys	Pro	Thr 325	Gly	Val	Gln	Leu	Gln 330	Asp	Asn	Gly	
agg	acg	tgt	aag	gca	gga	gcc	gag	gag	gtg	ctg	ctg	ctg	gcc	cgg	cgg	1117
Arg	Thr 335	Cys	Lys	Ala	Gly	Ala 340	Glu	Glu	Val	Leu	Leu 345	Leu	Ala	Arg	Arg	•
acg	gac	cta	cgg	agg	atc	tcg	ctg	gac	acg	ccg	gac	ttc	acc	gac	atc	1165
Thr 350	Asp	Leu	Arg	Arg	Ile 355	Ser	Leu	Asp	Thr	Pro 360	Asp	Phe	Thr	Asp	Ile 365	
gtg	ctg	cag	gtg	gac	gac	atc	cgg	cac	gcc	att	gcc	atc	gac	tac	gac	1213
	Leu															
ccg	cta	gag	ggc	tat	gtc	tac	tgg	aca	gat	gac	gag	gtg	cgg	gcc	atc	1261
	Leu															
cgc	agg	gcg	tac	ctg	gac	ggg	tct	ggg	gcg	cag	acg	ctg	gtc	aac	acc	1309

A	rg	Arg	Ala 400	Tyr	Leu	Asp	Gly	Ser 405	Gly	Ala	Gln	Thr	Leu 410	Val	Asn	Thr	
			aac Asn														1357
L			tgg Trp														1405
			acc Thr														1453
	-	_	atc Ile	-	_			Val	_			_				_	1501
			gag Glu 480														1549
			gtg Val														1597
L			ctg Leu														1645
			gag Glu														1693
			aag Lys														1741
			tgg Trp 560														1789
			gcc Ala														1837
G			aaa Lys														1885
g A	cg la	gac Asp	agg Arg	aac Asn	ggg Gly 610	ggg Gly	tgc Cys	agc Ser	cac His	ctg Leu 615	tgc Cys	ttc Phe	ttc Phe	aca Thr	ccc Pro 620	cac His	1933
			cgg Arg														1981
			tgc Cys 640														2029
			cac His														2077
P		ctc	acg Thr									gac					2125
а	ac		cac His								ctg						2173
g	cc	ttc	atg	aac		agc	tcg	gtg	gag	cac	gtg	gtg	gag	ttt		ctt	2221

Ala	Phe	Met	Asn 705	Gly	Ser	Ser	Val	Glu 710	His	Val	Val	Glu	Phe	Gly	Leu	
Asp	Tyr	Pro 720	Glu	Gly	atg Met	Ala	Val 725	Asp	Trp	Met	Gly	Lys 730	aac Asn	Leu	Tyr	2269
Trp	Ala 735	Asp	Thr	Gly	acc Thr	Asn 740	Arg	Ile	Glu	Val	Ala 745	Arg	Leu	Asp	Gly	2317
Gln 750	Phe	Arg	Gln	Val	ctc Leu 755	Val	Trp	Arg	Asp	Leu 760	Asp	Asn	Pro	Arg	Ser 765	2365
					acc Thr											2413
					gtg Val											2461
					gtg Val											2509
					tac Tyr											2557
					ggt Gly 835											2605
					ctg Leu											2653
					agc Ser											2701
					cag Gln											2749
					cgc Arg											2797
					cag Gln 915											2845
					cac His											2893
					ttc Phe											2941
					gac Asp											2989
		_			gtc Val		-		-		-		_	_	-	3037
					gat Asp 995						Lys					3085
	ggg	acc	cag	ccc	ttt	gtt	ttg	acc	tct			caa	ggc	caa		3133

				Pro 101	כ				1019	5			•	1020	כ	
cca Pro	gac Asp	agg Arg	Cag Gln 1025	ccc Pro	cac His	gac Asp	ctc Leu	agc Ser 1030	Ile	gac Asp	atc Ile	tac Tyr	agc Ser 1035	Arg	aca Thr	3181
Leu	Phe	Trp	Thr	tgc Cys	Glu	Ala	Thr 1045	Asn 5	Thr	Ile	Asn	Val 1050	His)	Arg	Leu	3229
Ser	Gly 1055	Glu 5	Ala	atg Met	Gly	Val 1060	Val	Leu	Arg	Gly	Asp 1065	Arg	Asp	Lys	Pro	3277
Arg 1070	Ala)	Ile	Val.	gtc Val	Asn 1075	Ala	Glu	Arg	Gly	Tyr 1080	Leu)	Tyr	Phe	Thr	Asn 1085	3325
Met	Gln	Asp	Arg	gca Ala 1090	Ala)	Lys ·	Ile	Glu	Arg 1095	Ala	Ala	Leu	Asp	Gly 1100	Thr)	3373
Glu	Arg	Glu	Val 1105		Phe	Thr	Thr	Gly 1110	Leu)	Ile	Arg	Pro	Val 1115	Āla	Leu	3421
Val	Val	Asp 1120	Asn)	aca Thr	Leu	Gly	Lys 1125	Leu	Phe	Trp	Val	Asp 1130	Ala)	Asp	Leu	3469
aag Lys	cgc Arg 1135	Ile	gag Glu	agc Ser	tgt Cys	gac Asp 1140	Leu	tca Ser	ggg Gly	gcc Ala	aac Asn 1145	Arg	ctg Leu	acc Thr	ctg Leu	3517
	Asp			atc Ile		Gln					Thr					3565
				atc Ile 1170	Asp					Met					Glu	3613
				gac Asp					Ile					Ala		3661
			Ile	cat His				Glu					Glu			3709
		Pro		gcc Ala			Asn					His				3757
-	Lys		-	ggg Gly		Pro		_		-	Pro	_				3805
				ctg Leu 1250	Leu					Pro					Pro	3853
				tgt Cys					Ile					Gly		3901
			Asp	ggc Gly				Cys					Asp			3949
		Pro		tgc Cys			Ala					Ala				3997
tgt	gtg	gac	ctg	cgc	ctg	cgc	tgc	gac	ggc	gag	gca	gac	tgt	cag	gac	4045

Cys 1310		Asp	Leu	Arg	Leu 1315		Cys	Asp	Gly	Glu 1320		Asp	Cys	Gln	Asp 1325	
				Val	gac Asp				Ile	Cys				Gln	Phe	4093
caa	tat	aca	age	1330) cag	tat	atc	ctc	1335 atc		cag	cad	tac	1340		4141
				Gly	Gln				Ile					Asp		4141
					gac											4189
		1360)		Asp		1365	i				1370)			
					gac Asp											4237
=	1375			_		1380)				1385	i				4005
					ctc Leu											4285
1390		U.Y	110	110	1395					1400		017		-1-	1405	
					gtg											4333
Val	Cys	Gln	Arg		Val	Cys	Gln	Arg			Gly	Ala	Asn			
++0	000	C2C	~~~	1410	gtc	300	aaa	200	1415		ata	~~~	ctc	1420		4381
					Val											4301
		0	1425	-			1	1430					1435			
					tcc											4429
Ile				Gly	Ser	Gln	His 1445		Pro	Phe	Thr	Gly 1450		Ala	Cys	
aas		1440		ato	agc	tcc			cta	atα	aaa			aac	aaa	4477
	-		-	-	Ser			-	-	_						4411
-	1455					1460					1465		-	-	-	
					cgg											4525
Val 1470		Leu	Tyr	Asp	Arg		His	Val	Thr	Gly 1480		Ser	Ser	Ser	Ser 1485	
		age	acq	ааσ	1475 gcc		cta	tac	cca			cta	aac	cca		4573
					Ala											
				1490)				1495	5				1500)	
					gac											4621
Pro	Ser	Pro	A1a 1505		Asp	Pro	Ser	Leu 1510		Asn	Met	Asp	Met 1519		Tyr	
tct	tca	aac			gcc	act	aca			tac	agg	ccc			att	4669
					Ala											
		1520					1525					1530				
					ccg											4717
Arg	1535		Ата	Pro	Pro	1540		Pro	Cys	Ser	1545		vai	Cys	Asp	
agc			agc	acc	agc		-	aaq	qcc	agc			tac	cta	gat	4765
					Ser											
1.550					155					1560					1565	
					gac											4813
			-	1570	•				1575	5				158	0	
					gag											4861
	-		1585	5	Glu			1590	כ				159	5		4000
					ctc											4909
vrd	Ser	1600		nis	Leu	Ene	1609		510	ETO	Ser	1610	_	inr	voh	
tca	tcc			ggc (cggg	ccaci			tctc	t gt	gccc		-	tagt	ttt	4965

Ser Ser 1615 5025 taaaaacatg agaaatgtga actgtgatgg ggtgggcagg gctgggagaa ctttgtacaq 5085 tggagaaata tttataaact taattttgta aaaca 5120 <210> 2 <211> 5120 <212> DNA <213> Homo sapiens <400> 2 actaaagege egeegeegeg ceatggagee egagtgageg eggegegge eegteeggee 60 geoggacaac atg gag gea geg eeg eec ggg eeg eeg tgg eeg etg etg 109 Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu ctg ctg ctg ctg ctg ctg ctg gcg ctg tgc ggc tgc ccc gcc 157 Leu Leu Leu Leu Leu Leu Ala Leu Cys Gly Cys Pro Ala Pro Ala 20 gcg gcc tcg ccg ctc ctg cta ttt gcc aac cgc cgg gac gta cgg ctg 205 Ala Ala Ser Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu 40 35 gtg gac gcc ggc gga gtc aag ctg gag tcc acc atc gtg gtc agc ggc 253 Val Asp Ala Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly 50 ctg gag gat gcg gcc gca gtg gac ttc cag ttt tcc aag gga gcc gtg 301 Leu Glu Asp Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val tac tgg aca gac gtg agc gag gcc atc aag cag acc tac ctg aac 349 Tyr Trp Thr Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn 80 85 cag acg ggg gcc gcc gtg cag aac gtg gtc atc tcc ggc ctg gtc tct 397 Gln Thr Gly Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser 100 ccc gac ggc ctc gcc tgc gac tgg gtg ggc aag aag ctg tac tgg acg 445 Pro Asp Gly Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr 115 120 gac toa gag acc aac cgc atc gag gtg gcc aac ctc aat ggc aca tcc 493 Asp Ser Glu Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser 130 135 cgg aag gtg ctc ttc tgg cag gac ctt gac cag ccg agg gcc atc gcc 541 Arg Lys Val Leu Phe Trp Gln Asp Leu Asp Gln Pro Arg Ala Ile Ala 150 ttg gac ccc gct cac ggg tac atg tac tgg aca gac tgg gtt gag acg 589 Leu Asp Pro Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Val Glu Thr 165 170 637 ecc egg att gag egg gea ggg atg gat gge age acc egg aag ate att Pro Arg Ile Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile 175 180 gtq qac tcq qac att tac tqq ccc aat gga ctq acc atc qac ctq qaq 685 Val Asp Ser Asp Ile Tyr Trp Pro Asn Gly Leu Thr Ile Asp Leu Glu 195 200 gaq caq aaq etc tac tgq get gac gec aag etc age tte atc cac egt 733 Glu Gln Lys Leu Tyr Trp Ala Asp Ala Lys Leu Ser Phe Ile His Arg

				210					215					220			
gcc	aac	ctg	gac	ggc	tcg	ttc	cgg	cag	aag	gtg	gtg	gag	ggc	agc	ctg		781
Ala	Asn	Leu	Asp	Gly	Ser	Phe	Arg	Gln	Lys	Val	Val	Glu	Gly	Ser	Leu		
			225					220					225				
200	cac	CCC		acc	ot a	300	ctc	230	aaa	72	20+	ctg	235	taa	3.63		829
												Leu					029
		240			Dou	****	245	001	02,		****	250	- 1 -		****		
qac	taa		acc	cac	tcc	atc		acc	tqc	aac	aag	cgc	act	aga	aaa		877
												Arg					
-	255			_		260					265	_		_	<u>-</u> .		
												atg					925
_	Arg	Lys	Glu	Ile		Ser	Ala	Leu	Tyr		Pro	Met	Asp	Ile			
270					275					280					285		
												cgc					973
vai	Leu	ser	GIN	290	Arg	GIN	PIO	Pne	295	urs	Inr	Arg	Cys	300	GIU		
gac	aat	aac	aac		tcc	cac	cta	tac		cta	tcc	cca	agc		cct		1021
												Pro					1021
			305	-1-				310					315				
ttc	tac	aca	tgc	gcc	tgc	ccc	acg	ggt	gtg	cag	ctg	cag	gac	aac	ggc		1069
Phe	Tyr	Thr	Cys	Āla	Cys	Pro	Thr	ĞÎy	Val	Gln	Leu	Gln	Asp	Asn	Gly		
		320					325					330					
												ctg					1117
Arg		Cys	Lys	Ala	Gly		Glu	Glu	Val	Leu		Leu	Ala	Arg	Arg		
	335					340					345						1165
												ttc Phe					1165
350	nsp	neu	ALG	Arg	355	Ser	nea	HSP	1111	360	vaħ	FIIG	1111	waħ	365		
	cta	caq	ata	gac		atc	caa	cac	acc		acc	atc	gac	tac		•	1213
												Ile					
				370	•		-		375				-	380	•		
ccg	cta	gag	ggc	tat	gtc	tac	tgg	aca	gat	gac	gag	gtg	cgg	gcc	atc		1261
Pro	Leu	Glu	_	Tyr	Val	Tyr	Trp		Asp	Asp	Glu	Val	_	Ala	Ile		
			385	_				390					395				1 2 2 2
_				_	_					_	_	ctg	_				1309
Arg	Arg	400	ıyr	Leu	Asp	GIÀ	3er 405	GTA	Ala	GIN	Thr	Leu 410	vai	ASI	THE		
asa	atc		gac	CCC	aat	aac		aca	atc	aac	taa	gtg	acc	cga	aac		1357
												Val					100.
	415					420					425			9			
ctc	tac	tgg	acc	gac	acg	ggc	acg	gac	cgc	atc	gag	gtg	acg	cgc	ctc		1405
												Val					
430					435					440					445		
												ctg					1453
Asn	Gly	Thr	Ser		Lys	Ile	Leu	Val		Glu	Asp	Leu	Asp		Pro		
				450				a t	455		~ + ~	+		460			1501
												tac Tyr					1501
vrd	WIG	тте	465	rea	uT2	110	val	470	GIĀ	neu	1.16.	r y r	475	THE	ოახ		
taa	aaa	σаσ		cct	aaa	atc	gag		acc	aac	tta	gat		cag	gag		1549
												Asp					
_	_	480					485					490					
		gtg										aac					1597
Arg	_	Val	Leu	Val	Asn		Ser	Leu	Gly	Trp		Asn	Gly	Leu	Ala		
	495					500			_		505	_					1615
ctg	gac	ctg	cag	gag	ggg	aag	ctc	tac	£gg	gga	gac	gcc	aag	aca	gac		1645

510	Asp				515					520			_		525	
aag Lys	atc Ile	gag Glu	gtg Val	atc Ile 530	aat Asn	gtt Val	gat Asp	ggg Gly	acg Thr 535	aag Lys	agg Arg	cgg Arg	acc Thr	ctc Leu 540	ctg Leu	1693
	gac Asp															1741
	tac Tyr															1789
	aag Lys 575															1837
	ctc Leu															1885
	gac Asp															1933
	acc Thr															1981
	acc Thr															2029
	atc Ile 655															2077
	ctc Leu															2125
	aac Asn															2173
	ttc Phe															2221
	tac Tyr															2269
	gcc Ala 735															2317
	ttc Phe															2365
	gcc Ala															2413
	aag Lys													tgc		2461
_	ctg Leu	_	-	_				-		-				-		2509
gct	gac	cag	cgc	ctc	tac	tgg	acc	gac	ctg	gac	acc	aac	atg	atc	gag	2557

	Ala	Asp 815	Gln	Arg	Leu	Tyr	Trp 820	Thr	Asp	Leu	Asp	Thr 825	Asn	Met	Ile	Glu	
	tca	tcc	aac	atq	cta	aat	cag	gag	caa	atc	gtg	att	acc	gac	gat	ctc	2605
	Ser	Ser	Asn	Met	Len	Glv	Gla	Clu	722	Val	Val	Tlo	λla	Acn	Aco	Tou	2003
	830					835	01	GIU	Arg	• • • •		116	AIG	nsp	vəb		
									_		840					845	
											gat						2653
	Pro	His	Pro	Phe	Gly	Leu	Thr	Gln	Tyr	Ser	Asp	Tyr	Ile	Tyr	Trp	Thr	
					850					855					860		
	gac	taa	aat	cta	cac	agc	att	σασ	caa	acc	gac	aaσ	act	age	aac	caa	2701
											Asp						
				865				014	870		. LOP	2,3		875	Gry	ALG	
											ttc						2749
	Asn	Arg		Leu	Ile	Gln	Gly	His	Leu	Asp	Phe	Val	Met	Asp	Ile	Leu	
			880					885					890				
	gtg	ttc	cac	tcc	tcc	cgc	cag	gat	ggc	ctc	aat	qac	tgt	atq	cac	aac	2797
	Val	Phe	His	Ser	Ser	Ara	Gln	Asp	Glv	Leu	Asn	Āsp	Cvs	Met	His	Asn	
	-	895				• •	900					905	-1-				
	220		~~~	+~+	~~~	000		+~~	a++	~~~							2045
											atc						2845
		GTÅ	GIN	Cys	GTÀ		Leu	Cys	Leu	АТа	Ile	Pro	GIÀ	GIA	His	Arg	
	910					915					920					925	
	tgc	ggc	tgc	gcc	tca	cac	tac	acc	ctg	gac	CCC	agc	agc	cgc	aac	tgc	2893
											Pro						
	-	-	-		930		•			935					940	-1-	
	200	000		200		++0	++~	cta	++0		cag	222	+ a+	~~~		204	2941
																	2941
	ser	Pro	Pro		Thr	Pne	Leu	Leu		ser	Gln	гÀг	ser		TIE	Ser	
				945					950					955		•	
											gat						2989
	Arg	Met	Ile	Pro	Asp	Asp	Gln	His	Ser	Pro	Asp	Leu	Ile	Leu	Pro	Leu	
•			960					965					970				
	cat	σσα	cta	aσσ	aac	atc	aaa	acc	atc	gac	tat	gac	cca	cta	gac	ааσ	3037
											Tyr						•••
	1123	975	шси	rar g	non	V a I	980	ALU	116	ngp	1 Y L	_	110	пеа	тэр	гуз	
			.									985					2005
											atc						3085
	Phe	Ile	Tyr	Trp	Val	Asp	Gly	Arg	Gln	Asn	Ile	Lys	Arg	Ala	Lys	Asp	
	990					995					1000)				1005	
	gac	aga	acc	caq	ccc	ttt	att	ttq	acc	tct	ctg	agc	caa	aac	caa	aac	3133
	-			•			-	_			Leu	_					
		1			1010					1015				 3	1020		
		~~~						_+_									2101
											gac						3181
	Pro	Asp	Arg			His	Asp	Leu			Asp	lle	Tyr		_	Thr	
				1025					1030					1035			
	ctg	ttc	tgg	acg	tgc	gag	gcc	acc	aat	acc	atc	aac	gtc	cac	agg	ctg	3229
	Leu	Phe	Trp	Thr	Cys	Glu	Ala	Thr	Asn	Thr	Ile	Asn	Val	His	Arq	Leu	
			1040		-			1045					1050		•		
	200	~~~			ata	aaa	ata			cat	ggg	G2C			224	000	3277
																	3211
	ser			ATA	Mec	Grà			ren	Arg	Gly		_	Asp	гÄг	Pro	
		1055					1060					1065					٠,
	agg	gcc	atc	gtc	gtc	aac	gcg	gag	cga	ggg	tac	ctg	tac	ttc	acc	aac	3325
	Arg	Ala	Ile	Val	Val	Asn	Ala	Glu	Arg	Gly	Tyr	Leu	Tyr	Phe	Thr	Asn	
	1070					1075			_	-	1080		-			1085	
			asc	caa	αca			atc	gaa	cac	gca		cta	asc	aac		3373
																	55.5
	ine (	OTU	nsp	vr d			пλ2	116	GIU	_	Ala	VIQ	TEU	wab	_		
					1090					1095					1100		
											atc						3421
	Glu	Arg	Glu	Val	Leu	Phe	Thr	Thr			Ile	Arg	Pro	Val	Ala	Leu	
				1105	5				1110	)				1115	5		
	gtg	gtg	gac	aac	aca	ctg	ggc	aag	ctg	ttc	tgg	gtg	gac	gcq	gac	ctg	3469

Val																
141	Val	Asp 112		Thr	Leu	Gly	Lys 1125		Phe	Trp	Val	Asp 1130		Asp	Leu	
aag Lys	cgc Arg	Ile	gag Glu	agc Ser	tgt Cys	Asp	Leu	tca Ser	ggg Gly	gcc Ala	Asn	Arg	ctg Leu	acc Thr	ctg Leu	3517
	113	_				1140	-				1145	-				
gag	gac	gcc	aac	atc	gtg	cag	cct	ctg	ggc	ctg	acc	atc	ctt	ggc	aag	3565
Glu	Asp	Ala	Asn	Ile			Pro	Leu	Gly	Leu	Thr	Ile	Leu	Gly	Lys	
115	0				1155	5				1160	)			_	1165	
cat	ctc	tac	taa	atc	gac	cac	cag	cag	cag	atσ	atc	gag	cat	ata	ααα	3613
His	Leu	Tur	Trn	Tle	ASD	Ara	Gln	Gln	Gln	Mot	Tla	Glu	Ara	Val	Clu	3013
		-1-		1170		9	O	0111	1175		116	GIU	arg			
	200												- 4	1180		
	acc															3661
гĀг	Thr	Thr			Lys	Arg	Thr			GIn	Gly	Arg			His	
			1185					1190			٠		1195			
ctc	act	ggc	atc	cat	gca	gtg	gag	gaa	gtc	agc	ctg	gag	gag	ttc	tca	3709
Leu	Thr	Gly	Ile	His	Ala	Val	Glu	Glu	Val	Ser	Leu	Glu	Glu	Phe	Ser	
		1200					1205					1210				
acc	cac	cca	tat	acc	cat	gac			aac	tac	tcc			+~+	2++	3757
Ala	His	Pro	Cve	Ala	Ara	Asp	Asn	Glv	Glv	Cue	202	uic	TIO	Cua	Tio	3/3/
	1215		Cys	AIG	ALG	1220		GLY	GLy	Cys			TTE	Cys	TTG	
											1225					
	aag															3805
	Lys	Gly	Asp	Gly	Thr	Pro	Arg	Cys	Ser	Cys	Pro	Val	His	Leu	Val	
1230	)				1235	5				1240	)				1245	
ctc	ctg	cag	aac	ctg	ctg	acc	tgt	gga	gag	ccq	ccc	acc	tqc	tcc	ccg.	3853
Leu	Leu	Gln	Asn	Leu	Leu	Thr	Cvs	Ğĺv	Glu	Pro	Pro	Thr	Cvs	Ser	Pro	
				1250			-		1255			<u>-</u>	- 3 -	1260		
gac	cag	+++	aca			aca.	aaa	nan			tat	atc	~~~			3901
																3901
vah	Gln	FILE			AIA	THE	GTA			ASP	Cys	тте		_	Ala	
			1265			•		1270					1275			
								A								
													gac			3949
	Arg	Cys	Asp				Glu	Cys								3949
Trp	Arg	Cys 1280	Asp )	Gly	Phe	Pro	Glu 1285	Cys	Asp	Asp	Gln	Ser 1290	Asp	Glu	Glu	3949
Trp	Arg	Cys 1280	Asp )	Gly	Phe	Pro	Glu 1285	Cys	Asp	Asp	Gln	Ser 1290	Asp	Glu	Glu	3949 3997
Trp	Arg tgc	Cys 1280 ccc	Asp ) gtg	Gly tgc	Phe tcc	Pro gcc	Glu 1285 gcc	Cys cag	Asp	Asp	Gln tgc	Ser 1290 gcg	Asp ) cgg	Glu ggt	Glu	
Trp	Arg	Cys 1280 ccc Pro	Asp ) gtg	Gly tgc	Phe tcc	Pro gcc Ala	Glu 1285 gcc Ala	Cys cag	Asp	Asp	Gln tgc Cys	Ser 1290 gcg Ala	Asp ) cgg	Glu ggt	Glu	
ggc Gly	Arg tgc Cys 1295	Cys 1280 ccc Pro	Asp ) gtg Val	Gly tgc Cys	Phe tcc Ser	Pro gcc Ala 1300	Glu 1285 gcc Ala	Cys cag Gln	Asp ttc Phe	Asp ccc Pro	Gln tgc Cys 1305	Ser 1290 gcg Ala	Asp cgg Arg	Glu ggt Gly	Glu cag Gln	3997
Trp ggc Gly tgt	tgc Cys 1295 gtg	Cys 1280 ccc Pro gac	Asp ) gtg Val ctg	Gly tgc Cys cgc	Phe tcc Ser ctg	Pro gcc Ala 1300 cgc	Glu 1285 gcc Ala tgc	Cys cag Gln gac	Asp ttc Phe ggc	Asp ccc Pro	Gln tgc Cys 1305 gca	Ser 1290 gcg Ala gac	Asp cgg Arg	Glu ggt Gly cag	Glu cag Gln gac	
ggc Gly tgt Cys	tgc Cys 1295 gtg Val	Cys 1280 ccc Pro gac	Asp ) gtg Val ctg	Gly tgc Cys cgc	Phe tcc Ser ctg Leu	Pro gcc Ala 1300 cgc Arg	Glu 1285 gcc Ala tgc	Cys cag Gln gac	Asp ttc Phe ggc	Asp ccc Pro gag Glu	tgc Cys 1305 gca Ala	Ser 1290 gcg Ala gac	Asp cgg Arg	Glu ggt Gly cag	Glu cag Gln gac Asp	3997
ggc Gly tgt Cys 1310	tgc Cys 1295 gtg Val	Cys 1280 ccc Pro gac Asp	Asp gtg Val ctg Leu	tgc Cys cgc Arg	Phe tcc Ser ctg Leu 1315	gcc Ala 1300 cgc Arg	Glu 1285 gcc Ala ) tgc Cys	Cys cag Gln gac Asp	Asp ttc Phe ggc Gly	Asp ccc Pro gag Glu 1320	tgc Cys 1305 gca Ala	Ser 1290 gcg Ala gac Asp	Asp cgg Arg tgt Cys	Glu ggt Gly cag Gln	Glu cag Gln gac Asp 1325	3997 4045
ggc Gly tgt Cys 1310	tgc Cys 1295 gtg Val tca	Cys 1280 ccc Pro gac Asp	Asp gtg Val ctg Leu	tgc Cys cgc Arg	Phe tcc Ser ctg Leu 1315 gac	gcc Ala 1300 cgc Arg	Glu 1285 gcc Ala ) tgc Cys	Cys cag Gln gac Asp	Asp ttc Phe ggc Gly atc	Asp ccc Pro gag Glu 1320 tgc	tgc Cys 1305 gca Ala	Ser 1290 gcg Ala gac Asp	Asp cgg Arg tgt Cys	Glu ggt Gly cag Gln cag	Glu cag Gln gac Asp 1325 ttc	3997
ggc Gly tgt Cys 1310	tgc Cys 1295 gtg Val	Cys 1280 ccc Pro gac Asp	Asp gtg Val ctg Leu	tgc Cys cgc Arg gtg Val	Phe tcc Ser ctg Leu 1315 gac Asp	gcc Ala 1300 cgc Arg	Glu 1285 gcc Ala ) tgc Cys	Cys cag Gln gac Asp	Asp ttc Phe ggc Gly atc Ile	Asp ccc Pro gag Glu 1320 tgc Cys	tgc Cys 1305 gca Ala	Ser 1290 gcg Ala gac Asp	Asp cgg Arg tgt Cys	Glu ggt Gly cag Gln cag Gln	Glu cag Gln gac Asp 1325 ttc Phe	3997 4045
ggc Gly tgt Cys 1310 cgc Arg	tgc Cys 1295 gtg Val tca Ser	Cys 1280 ccc Pro gac Asp gac Asp	Asp gtg Val ctg Leu gag Glu	tgc Cys cgc Arg gtg Val 1330	tcc Ser ctg Leu 1315 gac Asp	gcc Ala 1300 cgc Arg tgt Cys	Glu 1285 gcc Ala tgc Cys gac Asp	Cys cag Gln gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335	Asp ccc Pro gag Glu 1320 tgc Cys	tgc Cys 1305 gca Ala ctg Leu	Ser 1290 gcg Ala gac Asp ccc Pro	Asp cgg Arg tgt Cys aac Asn	Glu ggt Gly cag Gln cag Gln 1340	Cag Gln gac Asp 1325 ttc Phe	3997 4045
ggc Gly tgt Cys 1310 cgc Arg	tgc Cys 1295 gtg Val tca	Cys 1280 ccc Pro gac Asp gac Asp	Asp gtg Val ctg Leu gag Glu	tgc Cys cgc Arg gtg Val 1330	tcc Ser ctg Leu 1315 gac Asp	gcc Ala 1300 cgc Arg tgt Cys	Glu 1285 gcc Ala tgc Cys gac Asp	Cys cag Gln gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335	Asp ccc Pro gag Glu 1320 tgc Cys	tgc Cys 1305 gca Ala ctg Leu	Ser 1290 gcg Ala gac Asp ccc Pro	Asp cgg Arg tgt Cys aac Asn	Glu ggt Gly cag Gln cag Gln 1340	Cag Gln gac Asp 1325 ttc Phe	3997 4045
ggc Gly tgt Cys 1310 cgc Arg	tgc Cys 1295 gtg Val ) tca Ser	Cys 1280 ccc Pro gac Asp gac Asp	Asp gtg Val ctg Leu gag Glu	tgc Cys cgc Arg gtg Val 1330 ggc	tcc Ser ctg Leu 1315 gac Asp	Pro gcc Ala 1300 cgc Arg tgt Cys	Glu 1285 gcc Ala tgc Cys gac Asp	Cys cag Gln gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335 atc	Asp ccc Pro gag Glu 1320 tgc Cys aaa	tgc Cys 1305 gca Ala ctg Leu	Ser 1290 gcg Ala gac Asp ccc Pro	Asp cgg Arg tgt Cys aac Asn	Glu ggt Gly cag Gln cag Gln 1340 gac	Cag Gln  gac Asp 1325 ttc Phe	3997 4045 4093
ggc Gly tgt Cys 1310 cgc Arg	tgc Cys 1295 gtg Val tca Ser	Cys 1280 ccc Pro gac Asp gac Asp	Asp gtg Val ctg Leu gag Glu agc Ser	tgc Cys cgc Arg gtg Val 1330 ggc Gly	tcc Ser ctg Leu 1315 gac Asp	Pro gcc Ala 1300 cgc Arg tgt Cys	Glu 1285 gcc Ala tgc Cys gac Asp	Cys cag Gln gac Asp gcc Ala ctc Leu	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile	Asp ccc Pro gag Glu 1320 tgc Cys aaa	tgc Cys 1305 gca Ala ctg Leu	Ser 1290 gcg Ala gac Asp ccc Pro	Asp cgg Arg tgt Cys aac Asn	Glu ggt Gly cag Gln cag Gln 1340 gac Asp	Cag Gln  gac Asp 1325 ttc Phe	3997 4045 4093
ggc Gly tgt Cys 1310 cgc Arg	tgc Cys 1295 gtg Val tca Ser tgt Cys	Cys 1280 ccc Pro gac Asp gac Asp	Asp gtg Val ctg Leu gag Glu agc Ser 1345	tgc Cys cgc Arg gtg Val 1330 ggc Gly	tcc Ser ctg Leu 1315 gac Asp cag Gln	gcc Ala 1300 cgc Arg tgt Cys	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val	Cys cag Gln gac Asp gcc Ala ctc Leu 1350	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys	tgc Cys 1305 gca Ala ctg Leu cag Gln	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln	cgg Arg tgt Cys aac Asn tgc Cys 1355	Glu ggt Gly cag Gln cag Gln 1340 gac Asp	Glu  cag Gln  gac Asp 1325 ttc Phe tcc Ser	3997 4045 4093 4141
Trp ggc Gly tgt Cys 1310 cgc Arg cgg Arg	tgc Cys 1295 gtg Val tca Ser tgt Cys	Cys 1280 ccc Pro gac Asp gac Asp	gtg Val ctg Leu gag Glu agc Ser 1345	tgc Cys cgc Arg gtg Val 1330 ggc Gly	tcc Ser ctg Leu 1315 gac Asp cag Gln	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val	Cys cag Gln gac Asp gcc Ala ctc Leu 1350 gac	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys	tgc Cys 1305 gca Ala ctg Leu cag Gln	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln	cgg Arg tgt Cys aac Asn tgc Cys 1355 gaa	Glu  ggt Gly  cag Gln  cag Gln 1340 gac Asp	Glu cag Gln gac Asp 1325 ttc Phe tcc Ser acc	3997 4045 4093
Trp ggc Gly tgt Cys 1310 cgc Arg cgg Arg	tgc Cys 1295 gtg Val tca Ser tgt Cys	Cys 1280 ccc Pro gac Asp gac Asp gac Asp	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt	tgc Cys cgc Arg gtg Val 1330 ggc Gly	tcc Ser ctg Leu 1315 gac Asp cag Gln	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser	Cys cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys	tgc Cys 1305 gca Ala ctg Leu cag Gln	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys	cgg Arg tgt Cys aac Asn tgc Cys 1355 gaa Glu	Glu  ggt Gly  cag Gln  cag Gln 1340 gac Asp	Glu cag Gln gac Asp 1325 ttc Phe tcc Ser acc	3997 4045 4093 4141
ggc Gly tgt Cys 1310 cgc Arg cgg Arg	tgc Cys 1295 gtg Val tca Ser tgt Cys	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc	tcc Ser ctg Leu 1315 gac Asp cag Gln gac	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365	cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu	tgc Cys 1305 gca Ala ctg Leu cag Gln atg	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370	tgt Cys aac Asn tgc Cys 1355 gaa Glu	Glu ggt Gly cag Gln cag Gln 1340 gac Asp atc	Glu cag Gln gac Asp 1325 ttc Phe tcc Ser acc Thr	3997 4045 4093 4141 4189
ggc Gly tgt Cys 1310 cgc Arg cgg Arg	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg	Cys cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc	tgt Cys aac Asn tgc Cys 1355 gaa Glu	Glu  ggt Gly  cag Gln  cag Gln 1340 gac Asp atc Ile	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr	3997 4045 4093 4141
ggc Gly tgt Cys 1310 cgc Arg cgg Arg	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc Ser	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro	Cys cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala	tgt Cys aac Asn tgc Cys 1355 gaa Glu	Glu  ggt Gly  cag Gln  cag Gln 1340 gac Asp atc Ile	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr	3997 4045 4093 4141 4189
ggc Gly tgt Cys 1310 cgc Arg cgg Arg ttc Phe	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc Ser 1380	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro	cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Ser	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt Ser 1385	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile	ggt Gly cag Gln cag Gln 1340 gac Asp atc Ile	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro	3997 4045 4093 4141 4189
ggc Gly tgt Cys 1310 cgc Arg cgg Arg ttc Phe	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc Ser 1380	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro	cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Ser	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt Ser 1385	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile	ggt Gly cag Gln cag Gln 1340 gac Asp atc Ile	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro	3997 4045 4093 4141 4189 
Trp ggc Gly tgt Cys 1310 cgc Arg cgg Arg ttc Phe aag Lys gtc	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro ccg Pro 1375 att	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser atc	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile gac Asp	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc Ser 1380 tct	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro	Cys cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac His	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Ser atg	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt 5285 ggt	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile	Glu  ggt Gly  cag Gln  cag Gln  1340 gac Asp  atc Ile  ggg Gly  tat	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro	3997 4045 4093 4141 4189
ggc Gly tgt Cys 1310 cgc Arg Cgg Arg ttc Phe aag Lys	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro 1375 att	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser atc	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile gac Asp	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp ctc Leu	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc Ser 1380 tct Ser	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro	Cys cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac His	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Ser atg Met	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt 1385 ggt Gly	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile	Glu  ggt Gly  cag Gln  cag Gln  1340 gac Asp  atc Ile  ggg Gly  tat	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro  ttt Phe	3997 4045 4093 4141 4189 
Trp ggc Gly tgt Cys 1310 cgc Arg Cgg Arg ttc Phe aag Lys gtc Val 1390	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro 1375 att Ile	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser atc Ile	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile ac Asp	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp ctc Leu 1395	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc Ser 1380 tct Ser	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro ctc Leu	cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Ala	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac His	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Ser atg Met	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt 1385 ggt Gly	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala ggt Gly	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile	ggt Gly cag Gln cag Gln 1340 gac Asp atc Ile ggg Gly tat	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro  ttt Phe 1405	3997 4045 4093 4141 4189 4237
Trp ggc Gly tgt Cys 1310 cgc Arg Cgg Arg ttc Phe aag Lys gtc Val 1390 gtg	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro 1375 att Ile	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro ggc Gly cag	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser atc Ile	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile gac Asp	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp ctc Leu 1395 gac	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc 1380 tct Ser tgc	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro ctc Leu cag	Cys Cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Asp	Asp ttc Phe ggc Gly atc Ile 1335 atc Ile gag Glu cac His gtc Val	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Ser atg Met 1400 gcg	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt 1385 ggt Gly	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala ggt Gly	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile gtc Val	ggt Gly cag Gln cag Gln 1340 gac Asp atc Ile ggg Gly tat Tyr	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro  ttt Phe 1405 ccc	3997 4045 4093 4141 4189 
Trp ggc Gly tgt Cys 1310 cgc Arg Cgg Arg ttc Phe aag Lys gtc Val 1390 gtg	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro 1375 att Ile	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro ggc Gly	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser atc Ile	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile gac Asp atc Ile	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp gac Asp gac Yal	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc 1380 tct Ser tgc	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc Ser 1365 ccg Pro ctc Leu cag	Cys Cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Asp	Asp ttc Phe ggc atc Ile 1335 atc Ile gag Glu cac His gtc Val tat	Asp CCC Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Ser atg Met 1400 gcg Ala	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt 1385 ggt Gly	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala ggt Gly	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile gtc Val	Glu  ggt Gly  cag Gln  cag Gln  1340 gac Asp  atc Ile  ggg Gly  tat Tyr	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro  ttt Phe 1405 ccc Pro	3997 4045 4093 4141 4189 4237
Trp ggc Gly tgt Cys 1310 cgc Arg Cgg Arg ttc Phe aag Lys gtc Val 1390 gtg Val	tgc Cys 1295 gtg Val tca Ser tgt Cys ccc Pro 1375 att Ile	Cys 1280 ccc Pro gac Asp gac Asp gac Asp 1360 ccc Pro ggc Gly	Asp gtg Val ctg Leu gag Glu agc Ser 1345 tgt Cys tca Ser atc Ile cgc	tgc Cys cgc Arg gtg Val 1330 ggc Gly atc Ile gac Asp atc Ile gtg Val	tcc Ser ctg Leu 1315 gac Asp cag Gln gac Asp ctc Leu 1395 gac	Pro gcc Ala 1300 cgc Arg tgt Cys tgt Cys ggc Gly agc 1380 tct Ser tgc Cys	Glu 1285 gcc Ala tgc Cys gac Asp gtc Val tcc 1365 ccg Pro ctc Leu cag Gln	cag Gln gac Asp gcc Ala ctc Leu 1350 gac Asp gcc Ala ttc Phe	Asp ttc Phe ggc atc Ile 1335 atc Ile gag Glu cac His ytc Val tat Tyr	Asp ccc Pro gag Glu 1320 tgc Cys aaa Lys ctc Leu agc Atg Met 1400 gcg Ala	tgc Cys 1305 gca Ala ctg Leu cag Gln atg Met agt 1385 ggt Gly	Ser 1290 gcg Ala gac Asp ccc Pro cag Gln tgt Cys 1370 gcc Ala ggt Gly	tgt Cys aac Asn tgc Cys 1355 gaa Glu atc Ile gtc Val	Glu  ggt Gly  cag Gln  cag Gln  1340 gac Asp  atc Ile  ggg Gly  tat Tyr  ggg Gly  1420	Glu  cag Gln  gac Asp 1325 ttc Phe  tcc Ser  acc Thr  ccc Pro  ttt Phe 1405 ccc Pro	3997 4045 4093 4141 4189 4237

Phe	Pro	His	Glu 1425	Tyr	Val	Ser	Gly	Thr 1430		His	Val	Pro	Leu 1435		Phe		
ata	acc	cca	aac	ggt	tcc	cag	cat	aac	ccc	ttc	aca	aac	atc	gca	tac		1429
				Ġĺγ													
		1440	)				1445	5				1450	)		-		
gga	aag	tcc	atg	atg	agc	tcc	gtg	agc	ctg	atg	ggg	ggc	cgg	ggc	ggg	4	1477
Gly	Lys	Ser	Met	Met	Ser	Ser	Val	Ser	Leu	Met	Gly	Gly	Arg	Gly	Gly		
_	1455	5				1460	)				1465	; -	_	-	•		
ata	CCC	ctc	tac	gac	caa	aac	cac	qtc	aca	aga	qcc	tca	tcc	agc	agc		1525
				Asp													
1470			- , -		1475					1480					1485		
		300	200	aag			cta	tac	cca		•	cta	220	cca			1573
				Lys												•	13/3
Ser	Ser	ser	IIII	_		1111	Leu	IAT			116	rea	ASII				
	_			1490			_		1495				_	1500			
		-	-	acg	-			-			-	_	_			4	1621
Pro	Ser	Pro	Ala	Thr	Asp	Pro	Ser		_	Asn	Met	Asp			Tyr		
			1505	5				1510	)				1515	<b>,</b>			
tct	tca	aac	att	ccg	gcc	act	gcg	aga	ccg	tac	agg	ccc	tac	atc	att	4	1669
Ser	Ser	Asn	Ile	Pro	Ala	Thr	Ala	Arg	Pro	Tyr	Arg	Pro	Tyr	Ile	Ile		
		1520					1525	_		_	•	1530	-				
cga	gga	ato	aca	ccc	cca	acσ	асσ	ccc	tac	agc	acc	gac	ata	tat.	gac		1717
				Pro													
	1535					1540			-1-		1545			0,0	р		
300			300	gcc	200			227	acc	300			+	a+ a	ast		1765
_	-		-	-	_	_		-	-	_	_			-	-	•	1 / 03
	_	Tyr	ser	Ala		_	Trp	Lys	Ala		_	Tyr	Tyr	Leu	-		
1550					1555					1560					1565		
				tca												4	1813
Leu	Asn	Ser	Asp	Ser	Asp	Pro	Tyr	Pro	Pro	Pro	Pro	Thr	Pro	His	Ser		
		-		1570	)				1575	i				1580	)		
cag	tac	ctg	tcg	gcg	gag	gac	agc	tgc	ccg	ccc	tcg	ccc	gcc	acc	gag	4	1861
				Ala													
	•		1585			-		1590					1599				
agg	agc	tac	ttc	cat	ctc	ttc	cca	CCC	cct	cca	tcc	ccc	tac	асσ	gac	4	1909
	_			His			•			-			-	_	-		
9	001	1600			DCG		1605			110	501	1610	_	1111	p		
tica	tcc	tgad	ata	ggc d	caaaa	cact	c to	actt	ctct	ato	racaa	tat	aaat	agtt	tt		1965
Ser		-9		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	יכפפי			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. 90:	,	,,,,					
Jei	1615																
+																	ENDE
aaata	-		-					-									5025
taaaa										igg (	gctg	ggaga	aa ci	ttgt	acag		5085
tggag	gaaat	a tt	tata	aaact	taa	attt	gta	aaac	a							-	5120

<210> 3 <211> 1615 <212> PRT <213> Homo sapiens

#### <400> 3

 Met
 Glu
 Ala
 Pro
 Pro
 Gly
 Pro
 Pro
 Trp
 Pro
 Leu
 Leu
 Leu
 Leu
 Leu
 Pro
 Pro
 Leu
 Leu
 Leu
 Leu
 Cys
 Gly
 Cys
 Pro
 Ala
 Pro
 Ala
 Ala
 Ala
 Ser

 Pro
 Leu
 Leu
 Leu
 Pro
 Ala
 Asp
 Val
 Arg
 Leu
 Val
 Asp
 Ala

 Gly
 Gly
 Val
 Leu
 Cly
 Leu
 Cly
 Cly

	50					55					60				
65					70					75			Tyr	_	80
Asp	Val	Ser	Glu	Glu 85	Ala	Ile	Lys	Gln	Thr 90	Tyr	Leu	Asn	Gln	Thr 95	Gly
Ala	Ala	Val	Gln 100	Asn	Val	Val	Ile	Ser 105	Gly	Leu	Val	Ser	Pro 110	Asp	Gly
		115	-	-		_	120	-			_	125	Asp		
	130					135					140		Arg	-	
145		_		_	150	_			_	155			Leu	-	160
				165					170				Pro	17Š	
			180					185					Val 190		
		195	_			_	200			_		205	Glu		_
	210	_		_		215					220	_	Ala		
225	_			_	230	-				235			Thr		240
				245		_	_		250	_	_		Asp	255	
			260			_		265	_			-	Lys 270	-	_
		275				_	280			_		285	Val		
	290	_				295			-	-	300		Asp		_
305	_				310					315			Phe	_	320
_		_		325	_				330	-		_	Arg	335	-
-		_	340					345			_	_	Thr 350	_	
_		355					360					365	Val		
	370	_		_		375				_	380	-	Pro Arg		
385	-		_	-	390	_	_			395			Glu	_	400
_			_	405	_				410				Leu	415	
_			420					425					430 Asn	_	_
	-	435	_		-	_	440				-	445	Arg	_	
	450	•				455		_		_	460		Trp		
465	reu	птэ	PLO	vaı	470	GIY	Leu	Het	ıyı	475	1111	Asp	пр	GLY	480
Asn				485	_				490				Arg	495	Val
Leu	Val	Asn	Ala 500	Ser	Leu	Gly	Trp	Pro 505	Asn	Gly	Leu	Ala	Leu 510	Asp	Leu

Gln	Glu	Gly 515	Lys	Leu	Tyr	Trp	Gly 520	Asp	Ala	Lys	Thr	Asp 525	Lys	Ile	Glu
Val	Ile 530		Val	Asp	Gly	Thr 535		Arg	Arg	Thr	Leu 540		Glu	Asp	Lys
Leu 545	Pro	His	Ile	Phe	Gly 550	Phe	Thr	Leu	Leu	Gly 555	Asp	Phe	Ile	Tyr	Trp 560
Thr	Asp	Trp	Gln	Arg 565	Arg	Ser	Ile	Glu	Arg 570	Val	His	Lys	Val	Lys 575	Ala
		_	580		Tle			585					590		•
Ala	Val	Asn 595	Val	Ala	Lys	Val	Val 600	Gly	Thr	Asn	Pro	Cys 605	Ala	Asp	Arg
	610	_	_		His	615	_				620				-
625		-			Gly 630					635			_		640
				645	Phe				650					655	
			660		Thr			665					670		
		675			Ser		680					685			
	690				Val	695					700				
705	_	٠,			Glu 710					715	_		-	_	720
	_			725	Asp	-			730			_	-	735	-
	_		740	_	Ile			745			_	_	750		
		755		_	Arg	-	760	-			-	765			
_	770		-	_	Tyr	775	_	-			780	_	-	-	
785					Phe 790					795					800
				805	Ala				810		-	_		815	
_		_	820		Asp		_	825					830		
		835			Arg		840					845			
	850				Tyr	855	_			_	860		-	_	
865					Arg 870		_	_		875	_	_		_	880
			_	885	Leu	_			890	_				895	
		-	900		Gly			905	-				910	_	
	-	915		_	Leu		920		_	_		925	_		-
	930				Leu	935				••	940				
945					Phe 950					955			_		960
Pro	Asp	Asp	Gln	His	Ser	Pro	Asp	Leu	Ile	Leu	Pro	Leu	His	Gly	Leu

_				965					970					975	
Arg	Asn	Val	Lys 980	Ala	Ile	Asp	Tyr	Asp 985	Pro	Leu	Asp	Lys	Phe 990		Tyr
Trp	Val	Asp 995	Gly	Arg	Gln	Asn	Ile 1000		Arg	Ala	Lys	Asp 1005	Asp	Gly	Thr
	1010	)				1015	5			Gly	1020	Asn )	Pro	_	_
102	5				1030	)				Ser 1035	5				1040
				1045	5				1050					1055	5
		•	1060	)				1065	5	Asp			1070	)	
		1075	5	٠			1080	)		Phe		1085	<b>,</b>		-
	1090	)				1095	,			Asp	1100	)			
1105	5				1110	)				Val 1115	•				1120
				1125	5				1130				_	1135	<b>,</b>
			1140	)				1145	<b>)</b>	Leu			1150	) _	
		1155	;				1160	)		Leu		1165	•		_
	1170	)				1175	,			Arg	1180	)	_		
1185	5				1190	)				Val 1195	,				1200
				1205	i				1210					1215	•
			1220	)				1225	<b>,</b>	Ile			1230	)	_
ASP	GIV	11117	PTO	Arg	Cys	Ser	Cys -	PIO	vaı	His	Leu	vai 1245		Leu	GIn
		1235	<b>5</b> .				1240		m >	C	o			<b>61</b>	-
Asn	Leu 1250	1235 Leu	i. Thr	Cys	Gly	Glu 1255	1240 Pro	Pro		Cys	1260	Pro	Asp		
Asn Ala 1269	Leu 1250 Cys	1235 Leu Ala	Thr Thr	Cys Gly	Gly Glu 1270	Glu 1255 Ile	1240 Pro Asp	Pro Cys	Ile	Pro 1275	1260 Gly	Pro Ala	Asp Trp	Arg	Cys 1280
Asn Ala 1269 Asp	Leu 1250 Cys Gly	1235 Leu Ala Phe	Thr Thr Thr	Cys Gly Glu 1285	Gly Glu 1270 Cys	Glu 1255 Ile Asp	1240 Pro Asp Asp	Pro Cys Gln	Ile Ser 1290	Pro 1275 Asp	1260 Gly Glu	Pro Ala Glu	Asp Trp Gly	Arg Cys 1295	Cys 1280 Pro
Asn Ala 1269 Asp Val	Leu 1250 Cys Gly	1235 Leu Ala Phe Ser	Thr Thr Pro Ala	Cys Gly Glu 1285 Ala	Glu 1270 Cys Gln	Glu 1255 Ile Asp Phe	1240 Pro Asp Asp	Pro Cys Gln Cys 1305	Ile Ser 1290 Ala	Pro 1275 Asp Arg	1260 Gly Glu Gly	Pro Ala Glu Gln	Asp Trp Gly Cys 1310	Arg Cys 1295 Val	Cys 1280 Pro Asp
Asn Ala 1265 Asp Val Leu	Leu 1250 Cys Gly Cys	Ala Phe Ser Leu 1315	Thr Thr Pro Ala 1300 Arg	Cys Glu 1285 Ala Cys	Glu 1270 Cys Gln Asp	Glu 1255 Ile Asp Phe Gly	1240 Pro Asp Asp Pro Glu 1320	Pro Cys Gln Cys 1305 Ala	Ser 1290 Ala Asp	Pro 1275 Asp Arg Cys	Gly Glu Gly Gly	Pro Ala Glu Gln Asp 1325	Asp Trp Gly Cys 1310 Arg	Arg Cys 1295 Val Ser	Cys 1280 Pro Asp
Asn Ala 1265 Asp Val Leu Glu	Leu 1250 Cys Gly Cys Arg Val 1330	Ala Phe Ser Leu 1315 Asp	Thr Thr Pro Ala 1300 Arg	Cys Gly Glu 1285 Ala Cys Asp	Gly Glu 1270 Cys Gln Asp	Glu 1255 Ile Asp Phe Gly Ile 1335	Asp Asp Pro Glu 1320 Cys	Pro Cys Gln Cys 1305 Ala	Ser 1290 Ala Asp	Pro 1275 Asp Arg Cys	Glu Gly Glu Gly Gln Gln 1340	Pro Ala Glu Gln Asp 1325 Phe	Asp Trp Gly Cys 1310 Arg	Cys 1295 Val Ser	Cys 1280 Pro Asp Asp
Asn Ala 1265 Asp Val Leu Glu Ser 1345	Leu 1250 Cys Gly Cys Arg Val 1330 Gly	Ala Phe Ser Leu 1315 Asp	Thr Thr Pro Ala 1300 Arg Cys	Cys Glu 1285 Ala Cys Asp Val	Glu 1270 Cys Gln Asp Ala Leu 1350	Glu 1255 Ile Asp Phe Gly Ile 1335 Ile	Asp Asp Pro Glu 1320 Cys	Cys Gln Cys 1305 Ala Leu Gln	Ser 1290 Ala Asp Pro	Pro 1275 Asp Arg Cys Asn Cys 1355	Gly Glu Gly Gln Gln Asp	Ala Glu Gln Asp 1325 Phe	Asp Trp Gly Cys 1310 Arg Arg	Cys 1295 Val Ser Cys	Cys 1280 Pro Asp Asp Ala Asp 1360
Asn Ala 1265 Asp Val Leu Glu Ser 1345 Cys	Leu 1250 Cys Gly Cys Arg Val 1330 Gly	Ala Phe Ser Leu 1315 Asp Gln Asp	Thr Thr Pro Ala 1300 Arg Cys Cys	Cys Glu 1285 Ala Cys Asp Val Ser 1365	Gly Glu 1270 Cys Gln Asp Ala Leu 1350 Asp	Glu 1255 Ile Asp Phe Gly Ile 1335 Ile	Asp Asp Pro Glu 1320 Cys Lys Leu	Cys Gln Cys 1305 Ala Leu Gln Met	Ser 1290 Ala Asp Pro Gln Cys 1370	Pro 1275 Asp Arg Cys Asn Cys 1355 Glu	Glu Gly Gln Gln Harden Gln Asp	Pro Ala Glu Gln Asp 1325 Phe Ser	Asp Trp Gly Cys 1310 Arg Arg Phe	Cys 1295 Val Ser Cys Pro 1375	Cys 1280 Pro Asp Asp Ala Asp 1360 Pro
Asn Ala 1265 Asp Val Leu Glu Ser 1345 Cys	Leu 1250 Cys Gly Cys Arg Val 1330 Gly Ile	Ala Phe Ser Leu 1315 Asp Gln Asp	Thr Thr Pro Ala 1300 Arg Cys Cys Gly Ser 1380	Cys Glu 1285 Ala Cys Asp Val Ser 1365 Pro	Gly Glu 1270 Cys Gln Asp Ala Leu 1350 Asp	Glu 1255 Ile Asp Phe Gly Ile 1335 Ile Glu His	Asp Asp Pro Glu 1320 Cys Lys Leu Ser	Cys Gln Cys 1305 Ala Leu Gln Met Ser 1385	Ser 1290 Ala Asp Pro Gln Cys 1370 Ala	Pro 1275 Asp Arg Cys Asn Cys 1355 Glu	Glu Gly Gln Gln 1340 Asp Ile	Pro Ala Glu Gln Asp 1325 Phe Ser Thr	Trp Gly Cys 1310 Arg Arg Phe Lys Val	Cys 1295 Val Ser Cys Pro 1375 Ile	Cys 1280 Pro Asp Asp Ala Asp 1360 Pro
Asn Ala 1265 Asp Val Leu Glu Ser 1345 Cys Ser Ile	Leu 1250 Cys Gly Cys Arg Val 1330 Gly Ile Asp	Ala Phe Ser Leu 1315 Asp Gln Asp Leu 1395	Thr Thr Pro Ala 1300 Arg Cys Cys Gly Ser 1380 Ser	Glu 1285 Ala Cys Asp Val Ser 1365 Pro	Gly Glu 1270 Cys Gln Asp Ala Leu 1350 Asp Ala Phe	Glu 1255 Ile Asp Phe Gly Ile 1335 Ile Glu His	Asp Asp Pro Glu 1320 Cys Lys Leu Ser Met 1400	Cys Gln Cys 1305 Ala Leu Gln Met Ser 1385 Gly	Ser 1290 Ala Asp Pro Gln Cys 1370 Ala	Pro 1275 Asp Arg Cys Asn Cys 1355 Glu	Glu Gly Gln Gln 1340 Asp Ile Gly	Pro Ala Glu Gln Asp 1325 Phe Thr Pro Phe 1405	Trp Gly Cys 1310 Arg Arg Phe Lys Val 1390 Val	Cys 1295 Val Ser Cys Pro 1375 Ile Cys	Cys 1280 Pro Asp Asp Ala Asp 1360 Pro Gly

Glu Tyr Val Ser Gly Thr Pro His Val Pro Leu Asn Phe Ile Ala Pro 1430 1435 Gly Gly Ser Gln His Gly Pro Phe Thr Gly Ile Ala Cys Gly Lys Ser 1445 1450 Met Met Ser Ser Val Ser Leu Met Gly Gly Arg Gly Gly Val Pro Leu 1465 Tyr Asp Arg Asn His Val Thr Gly Ala Ser Ser Ser Ser Ser Ser Ser 1475 1480 Thr Lys Ala Thr Leu Tyr Pro Pro Ile Leu Asn Pro Pro Pro Ser Pro 1495 1500 Ala Thr Asp Pro Ser Leu Tyr Asn Met Asp Met Phe Tyr Ser Ser Asn 1510 1515 Ile Pro Ala Thr Ala Arg Pro Tyr Arg Pro Tyr Ile Ile Arg Gly Met 1525 1530 Ala Pro Pro Thr Thr Pro Cys Ser Thr Asp Val Cys Asp Ser Asp Tyr 1540 1545 Ser Ala Ser Arg Trp Lys Ala Ser Lys Tyr Tyr Leu Asp Leu Asn Ser 1560 1565 Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr Pro His Ser Gln Tyr Leu 1575 1580 Ser Ala Glu Asp Ser Cys Pro Pro Ser Pro Ala Thr Glu Arg Ser Tyr 1590 1595 Phe His Leu Phe Pro Pro Pro Pro Ser Pro Cys Thr Asp Ser Ser 1605 1610

<210> 4 <211> 1615 <212> PRT <213> Homo sapiens

#### <400> 4 Met Glu Ala Ala Pro Pro Gly Pro Pro Trp Pro Leu Leu Leu Leu Leu Leu Leu Leu Leu Cys Gly Cys Pro Ala Pro Ala Ala Ala Ser 25 Pro Leu Leu Phe Ala Asn Arg Arg Asp Val Arg Leu Val Asp Ala Gly Gly Val Lys Leu Glu Ser Thr Ile Val Val Ser Gly Leu Glu Asp 55 Ala Ala Ala Val Asp Phe Gln Phe Ser Lys Gly Ala Val Tyr Trp Thr 70 75 Asp Val Ser Glu Glu Ala Ile Lys Gln Thr Tyr Leu Asn Gln Thr Gly 85 Ala Ala Val Gln Asn Val Val Ile Ser Gly Leu Val Ser Pro Asp Gly Leu Ala Cys Asp Trp Val Gly Lys Lys Leu Tyr Trp Thr Asp Ser Glu 115 120 125 Thr Asn Arg Ile Glu Val Ala Asn Leu Asn Gly Thr Ser Arg Lys Val 135 Leu Phe Trp Gln Asp Leu Asp Gln Pro Lys Ala Ile Ala Leu Asp Pro 150 155 Ala His Gly Tyr Met Tyr Trp Thr Asp Trp Val Glu Thr Pro Arg Ile 165 170 Glu Arg Ala Gly Met Asp Gly Ser Thr Arg Lys Ile Ile Val Asp Ser 180 185

Asp	Ile	Tyr 195	Trp	Pro	Asn	Gly	Leu 200	Thr	Ile	Asp	Leu	Glu 205	Glu	Gln	Lys
Leu	Tyr 210	Trp	Ala	Asp	Ala	Lys 215	Leu	Ser	Phe	Ile	His 220	Arg	Ala	Asn	Leu
Asp 225	Gly	Ser	Phe	Arg	Gln 230	Lys	Val	Val	Glu	Gly 235	Ser	Leu	Thr	His	Pro 240
Phe	Ala	Leu	Thr	Leu 245	Ser	Gly	Asp	Thr	Leu 250	Tyr	Trp	Thr	Asp	Trp 255	Gln
Thr	Arg	Ser	Ile 260	His	Ala	Cys	Asn	Lys 265	Arg	Thr	Gly	Gly	Lys 270	Arg	Lys
Glu	Ile	Leu 275	Ser	Ala	Leu	Tyr	Ser 280	Pro	Met	Asp	Ile	Gln 285	Val	Leu	Ser
Gln	Glu 290	Arg	Gln	Pro	Phe	Phe 295	His	Thr	Arg	Cys	Glu 300	Glu	Asp	Asn	Gly
Gly 305	Trp	Ser	His	Leu	Cys 310	Leu	Leu	Ser	Pro	Ser 315	Glu	Pro	Phe	Tyr	Thr 320
Cys	Ala	Cys	Pro	Thr 325	Gly	Val	Gln	Met	Gln 330	Asp	Asn	Gly	Arg	Thr 335	Cys
Lys	Ala	Gly	Ala 340	Glu	Glu	Val	Leu	Leu 345	Leu	Ala	Arg	Arg	Thr 350	Asp	Leu
Arg	Arg	Ile 355	Ser	Leu	Asp	Thr	Pro 360	Asp	Phe	Thr	Asp	Ile 365	Val	Leu	Gln
	Asp 370	_		_		375				_	380	-			
385	Tyr	•	-	-	390	•	-			395			•	•	400
	Leu	_	_	405	-				410					415	
	Pro	_	420				_	425			_		430	_	-
	Asp	435	_		-	_	440				-	445		-	
	Arg 450	_				455		-		-	460				
465	Leu				470	_			_	475		_	_	_	480
	Pro			485	_				490	_			_	495	
	Val		500			_	-	505		-			510	-	
		515	_		_	_	520	_		_		525	_		Glu
	11e 530				_	535					540			_	_
545	Pro				550					555				_	560
				565	_				570			_		575	Ala
	Arg	_	580			_		585		_			590		_
••	Val	595			_		600	_	_			605		-	-
	610					615	_			••	620				Arg
625	Gly				630					635			_		640
Ile	Val	Pro	Glu	Ala	Phe	Leu	Val	Phe	Thr	Ser	Arg	Ala	Ala	Ile	His

				645					650					655	
			Leu 660					665					670		
		675	Glu				680			_		685			
	690		Thr			695					700				
705			Ser		710					715	_		_	-	720
			Ala	725					730				_	735	_
			Asn 740	_				745	_		_	_	750		•
		755	Val	_	_	_	760	_				765			
	770		Lys		_	775					780	_	_	_	
785			Arg		790			_		795	_				800
			Gly	805					810		-	_		815	
			Trp 820					825			•		830		
		835	Gln Thr		-		840			-	_	845			
	850		Ile			855					860		_		
865			Gly		870					875		_	-	_	880
			Gln	885		•			890	-				895	
			900 Leu					905	-				910	_	
	_	915	Tyr	_			920		_	_		925	-	-	-
	930		Leu			935				_	940	-			
945			Gln		950					955					960
			Lys	965					970					975	
-			980 Gly			_	_	985				_	990		-
		995	Val				1000	)				1005	5	_	
	1010	)				1015	5			_	1020	)		•	_
1025	5		_		1030	)	_			1039	5				Trp 1040
			Ala	1045	5				1050	)	_			1055	5
			Val 1060 Ala	)				1069	5				107	)	
		1075					1080	)	_			1085	5		_
urd	1090		ъys	116	GIU	1095		nia	rea	wah	1100		GIU	wrd	GIU

1105	Thr		1110	)				111	5				1120
Asn Thr Leu	•	1125	•				1130	0				1135	5
Glu Ser Cys	1140					1145	5				1150	)	
Asn Ile Val	5				1160	)				1165	5		-
Trp Ile Asp 1170				1175	5				1180	)	_		
Gly Asp Lys 1185			1190	)	•			1195	5				1200
Ile His Ala	1	1205					1210	)				1215	, ·
Cys Ala Arg	1220					1225	i		_		1230	) _	-
Asp Gly Thr 123	5				1240	)				1245	i		
Asn Leu Leu 1250				1255	5				1260	)	_		
Ala Cys Ala 1265			1270					1275	,				1280
Asp Gly Phe	. ]	1285					1290	)				1295	,
Val Cys Ser	1300					1305	i	•			1310	)	
Leu Arg Leu 1315	5				1320			•		1325	ı		
Glu Val Asp 1330	Cys F	Asp A		Ile 1335		Leu	Pro	Asn			Arg	Cys	Ala
									1340				
Ser Gly Gln 1345		:	Leu 1350	Ile	Lys			1355	Asp	Ser			1360
1345 Cys Ile Asp	Gly S	Ser 1 1365	Leu 1350 Asp	Ile Glu	Lys Leu	Met	Cys 1370	1355 Glu	Asp	Ser Thr	Lys	Pro 1375	1360 Pro
1345 Cys Ile Asp Ser Asp Asp	Gly S Ser E 1380	Ser 1365 Pro	Leu 1350 Asp Ala	Ile Glu His	Lys Leu Ser	Met Ser 1385	Cys 1370 Ala	1355 Glu Ile	Asp Ile Gly	Ser Thr Pro	Lys Val 1390	Pro 1375 Ile	1360 Pro Gly
1345 Cys Ile Asp Ser Asp Asp Ile Ile Leu 1395	Gly S Ser E 1380 Ser I	Ser 1365 Pro i	Leu 1350 Asp Ala Phe	Ile Glu His Val	Lys Leu Ser Met 1400	Met Ser 1385 Gly	Cys 1370 Ala Gly	1355 Glu Ile Val	Asp Ile Gly Tyr	Ser Thr Pro Phe 1405	Lys Val 1390 Val	Pro 1375 Ile Cys	1360 Pro Gly Gln
Ser Asp Asp  Ile Ile Leu 1395  Arg Val Val 1410	Gly S Ser F 1380 Ser I Cys G	Ser 1 1365 Pro 1 Leu 1	Leu 1350 Asp Ala Phe Arg	Ile Glu His Val Tyr 1415	Lys Leu Ser Met 1400 Ala	Met Ser 1385 Gly Gly	Cys 1370 Ala Gly Ala	1355 Glu Ile Val Asn	Asp Ile Gly Tyr Gly 1420	Ser Thr Pro Phe 1405 Pro	Lys Val 1390 Val Phe	Pro 1375 Ile Cys	1360 Pro Gly Gln His
Cys Ile Asp Ser Asp Asp Ile Ile Leu 1395 Arg Val Val 1410 Glu Tyr Val 1425	Gly S Ser F 1380 Ser I Cys G	Ser A	Leu 1350 Asp Ala Phe Arg Thr 1430	Ile Glu His Val Tyr 1415 Pro	Lys Leu Ser Met 1400 Ala His	Met Ser 1385 Gly Gly Val	Cys 1370 Ala Gly Ala Pro	1355 Glu Ile Val Asn Leu 1435	Asp Ile Gly Tyr Gly 1420 Asn	Thr Pro Phe 1405 Pro	Lys Val 1390 Val Phe Ile	Pro 1375 Ile Cys Pro	1360 Pro Gly Gln His Pro 1440
Cys Ile Asp Ser Asp Asp Ile Ile Leu 1395 Arg Val Val 1410 Glu Tyr Val 1425 Gly Gly Ser	Gly S 1 Ser F 1380 Ser I Cys G Ser G	Ser 1 1365 Pro 1 Leu 1 Slu 1 His (1	Leu 1350 Asp Ala Phe Arg Thr 1430 Gly	Ile Glu His Val Tyr 1415 Pro	Lys Leu Ser Met 1400 Ala His	Met Ser 1385 Gly Gly Val	Cys 1370 Ala Gly Ala Pro Gly 1450	1355 Glu Ile Val Asn Leu 1435 Ile	Asp Ile Gly Tyr Gly 1420 Asn	Thr Pro Phe 1405 Pro Phe Cys	Lys Val 1390 Val Phe Ile Gly	Pro 1375 Ile Cys Pro Ala Lys 1455	1360 Pro Gly Gln His Pro 1440 Ser
Cys Ile Asp Ser Asp Asp Ile Ile Leu 1395 Arg Val Val 1410 Glu Tyr Val 1425 Gly Gly Ser Met Met Ser	Gly Ser Financial Ser Financial Gly Ser Gly	Ser All Ser Al	Leu 1350 Asp Ala Phe Arg Thr 1430 Gly Ser	Ile Glu His Val Tyr 1415 Pro Pro Leu	Lys Leu Ser Met 1400 Ala His Phe Met	Met Ser 1385 Gly Gly Val Thr Gly 1465	Cys 1370 Ala Gly Ala Pro Gly 1450 Gly	1355 Glu Ile Val Asn Leu 1435 Ile Arg	Asp Ile Gly Tyr Gly 1420 Asn Ala	Ser Thr Pro Phe 1405 Pro Phe Cys	Lys Val 1390 Val Phe Gly Val 1470	Pro 1375 Ile Cys Pro Ala Lys 1455 Pro	1360 Pro Gly Gln His Pro 1440 Ser
Cys Ile Asp Ser Asp Asp Ile Ile Leu 1399 Arg Val Val 1410 Glu Tyr Val 1425 Gly Gly Ser Met Met Ser Tyr Asp Arg 1475	Gly Ser F 1380 Ser I Gly Gly Gly F 1 Ser V 1460 Asn F	Ser All Ser Al	Leu 1350 Asp Ala Phe Arg Thr 1430 Gly Ser Val	Ile Glu His Val Tyr 1415 Pro Pro Leu	Lys Leu Ser Met 1400 Ala His Phe Met Gly 1480	Met Ser 1385 Gly Gly Val Thr Gly 1465 Ala	Cys 1370 Ala Gly Ala Pro Gly 1450 Gly	1355 Glu Ile Val Asn Leu 1435 Ile Arg	Asp Ile Gly Tyr Gly 1420 Asn Ala Gly Ser	Thr Pro Phe 1405 Pro Cys Gly Ser 1485	Lys Val 1390 Val Phe Gly Val 1470 Ser	Pro 1375 Ile Cys Pro Ala Lys 1455 Pro	1360 Pro Gly Gln His Pro 1440 Ser Leu Ser
Cys Ile Asp  Ser Asp Asp  Ile Ile Leu 1395  Arg Val Val 1410  Glu Tyr Val 1425  Gly Gly Ser  Met Met Ser  Tyr Asp Arg 1475  Thr Lys Ala 1490	Gly Ser F 1380 Ser I G Cys G Ser G F 1 Ser V 1460 Asn F F Thr I	Ser Alas Ser	Leu 1350 Asp Ala Phe Arg Thr 1430 Gly Ser Val	Ile Glu His Val Tyr 1415 Pro Leu Thr Pro 1495	Lys Leu Ser Met 1400 Ala His Phe Met Gly 1480 Pro	Met Ser 1385 Gly Gly Val Thr Gly 1465 Ala	Cys 1370 Ala Gly Ala Pro Gly 1450 Gly Ser Leu	I355 Glu Ile Val Asn Leu 1435 Ile Arg Ser Asn	Asp Ile Gly Tyr Gly 1420 Asn Ala Gly Ser Pro 1500	Thr Pro Phe 1405 Pro Cys Gly Ser 1485 Pro	Lys Val 1390 Val Phe Gly Val 1470 Ser	Pro 1375 Ile Cys Pro Ala Lys 1455 Pro Ser	1360 Pro Gly Gln His Pro 1440 Ser Leu Ser
Ser Asp Asp  Ile Ile Leu 1395 Arg Val Val 1410 Glu Tyr Val 1425 Gly Gly Ser  Met Met Ser  Tyr Asp Arg 1475 Thr Lys Ala 1490 Ala Thr Asp 1505	Gly S 1380 Ser I 1380 Cys G Ser G 11460 Asn H 11 Pro S	Ser All Ser Al	Leu 1350 Asp Ala Phe Arg Thr 1430 Gly Ser Val Tyr Leu 1510	Ile Glu His Val Tyr 1415 Pro Pro Leu Thr Pro 1495 Tyr	Lys Leu Ser Met 1400 Ala His Phe Met Gly 1480 Pro Asn	Met Ser 1385 Gly Gly Val Thr Gly 1465 Ala Ile Met	Cys 1370 Ala Gly Ala Pro Gly 1450 Gly Ser Leu	I355 Glu Ile Val Asn Leu 1435 Ile Arg Ser Asn Met 1515	Asp Ile Gly Tyr Gly 1420 Asn Ala Gly Ser Pro 1500 Phe	Thr Pro Phe 1405 Pro Phe Cys Gly Ser 1485 Pro	Lys Val 1390 Val Phe Gly Val 1470 Ser Pro	Pro 1375 Ile Cys Pro Ala Lys 1455 Pro Ser Ser	1360 Pro Gly Gln His Pro 1440 Ser Leu Ser Pro Asn 1520
Cys Ile Asp  Ser Asp Asp  Ile Ile Leu 1395  Arg Val Val 1410  Glu Tyr Val 1425  Gly Gly Ser  Met Met Ser  Tyr Asp Arg 1475  Thr Lys Ala 1490  Ala Thr Asp 1505  Ile Pro Ala	Gly S  Ser I  Ser I  Cys G  Ser G  Gln H  Ser V  1460  Asn H  Thr I  Pro S	Ser Ala	Leu 1350 Asp Ala Phe Arg Thr 1430 Gly Ser Val Tyr Leu 1510 Arg	Ile Glu His Val Tyr 1415 Pro Pro Leu Thr Pro 1495 Tyr	Lys Leu Ser Met 1400 Ala His Phe Met Gly 1480 Pro Asn Tyr	Met Ser 1385 Gly Gly Val Thr Gly 1465 Ala Ile Met Arg	Cys 1370 Ala Gly Ala Pro Gly Ser Leu Asp	I355 Glu Ile Val Asn Leu 1435 Ile Arg Ser Asn Met 1515 Tyr	Asp Ile Gly Tyr Gly 1420 Asn Ala Gly Ser Pro 1500 Phe Ile	Thr Pro Phe 1405 Pro Phe Cys Gly Ser 1485 Pro Tyr Ile	Lys Val 1390 Val Phe Gly Val 1470 Ser Pro Ser Arg	Pro 1375 Ile Cys Pro Ala Lys 1455 Pro Ser Ser Ser Gly 1535	1360 Pro Gly Gln His Pro 1440 Ser Leu Ser Pro Asn 1520 Met
Ser Asp Asp  Ile Ile Leu 1395 Arg Val Val 1410 Glu Tyr Val 1425 Gly Gly Ser  Met Met Ser  Tyr Asp Arg 1475 Thr Lys Ala 1490 Ala Thr Asp 1505	Gly Ser Financial Ser Financia	Ser 1 1365 Pro 1 Leu 1 Sln 1 His 0 1445 Val 3 Leu 1 Ser 1 Ala 1 1525 Thr 1	Leu 1350 Asp Ala Phe Arg Thr 1430 Gly Ser Val Tyr Leu 1510 Arg	Ile Glu His Val Tyr 1415 Pro Pro Leu Thr Pro 1495 Tyr Pro Cys	Lys Leu Ser Met 1400 Ala His Phe Met Gly 1480 Pro Asn Tyr Ser	Met Ser 1385 Gly Gly Val Thr Gly 1465 Ala Ile Met Arg Thr 1545	Cys 1370 Ala Gly Ala Pro Gly Ser Leu Asp Pro 1530 Asp	I355 Glu Ile Val Asn Leu 1435 Ile Arg Ser Asn Met 1515 Tyr Val	Asp Ile Gly Tyr Gly 1420 Asn Ala Gly Ser Pro 1500 Phe Ile Cys	Ser Thr Pro Phe 1405 Pro Phe Cys Gly Ser 1485 Pro Tyr Ile Asp	Lys Val 1390 Val Phe Gly Val 1470 Ser Pro Ser Arg	Pro 1375 Ile Cys Pro Ala Lys 1455 Pro Ser Ser Gly 1535 Asp	1360 Pro Gly Gln His Pro 1440 Ser Leu Ser Pro Asn 1520 Met

1555

Asp Ser Asp Pro Tyr Pro Pro Pro Pro Thr Pro His Ser Gln Tyr Leu
1570

Ser Ala Glu Asp Ser Cys Pro Pro Ser Pro Ala Thr Glu Arg Ser Tyr
1585

Phe His Leu Phe Pro Pro Pro Pro Ser Pro Cys Thr Asp Ser Ser
1605

1560

1565

1580

1580

1580

1580

1580

1680

1680

1680

1680

1680

1680

1680

1680

1680

<210> 5 <211> 3096 <212> DNA <213> Homo sapiens

#### <400> 5

catcttctca cacgatetet egettegeae teetteettt gattggtttt caccatttae 60 teagacgacg greettette gatetttgea cattetteta teatetaeta cetteatace 120 cageteegte cectaatatt catgegegga tggcccatte cgtggtgaaa atteeettet 180 actotgotaa totgotgtto tototocoto cogtogggtt otgotoctgo cacgttotoc 240 cctctccca ccaaaggctg ggttttcttt gtcagggctc ctttcccctt tggaaqaagg 300 ggggctgtat ggccttggtg cgaggccctc cagtgacagg atcccccatc acccagagtt 360 ccacaggccc tggtagggag gagggggagc agaagaggag gtgccatctt tgcctqctqq 420 ggaagggcag gggccaccca cacagagctc tcccatttgc tgtggaccct qggqccactq 480 cccagttcct tccaaaggaa agccagctcc ccaggtggtg ggagagtgat atggcttcct 540 cttaaactta gggaattgag tgtgtggttg cttctaagtg ccttagaagc cgggagcgqc 600 tectggaaag ageetgeetg ceacageggg cettaceetg getgtgeeca cagatgteee 660 tggggcctgc cgctcctqcc cgqctctcct ggcctccccc qqtqtqqqtt qqqaaaaqca 720 cagcaaatta aaaaacacct ccatctctgg cctttgaaga atgcatctga acagccgaga 780 gtgtaaaccg tggtgaaatg tggtctttcc agtttgggga gaagcagggc agagctgggg 840 900 ccqctgggac ctccagctgt aatagggaag gttttactgg gttgctggcc actgtggact 960 gcccctaagg gcaggtatgc ctgcctttac ccgggttccc ctcctgcctg gaagatacag 1020 cccatgggag gcctgttgtc tgtgggatcc tccagcatca gagacactgg gqccagcqtc 1080 tgcctggtga ggtgcaggcc tggcaggccc ggtcccccac ctgcttgagc acccacqqtq 1140 gtgqqqqctc gctqcctccc qaqacaatct atqtcattqt tqtccaaqqa aqctaattta 1200 gagtagaaag ttccgtgtcc agtcccactc tgtgcgtgtg ttagcagggg actctcgggc 1260 cggagctggg tccaccctgg tagggggact tcatggggcc tgggcgacag cactgtgtat 1320 ttgtgtgtgt gtgtgtttgt gtgtgtgtgt gtctgaggag gtggaccagt ttctcaaaag 1380 gcctgtgacc ccaagaacca aggaatttca gcctgggtgg atcacacctt cactggtgag 1440 1500 tgggacaage tgggggeeet egecacagga geagecaggg catggggeae agttggeete 1560 attcacaaaa tgggagtata agtgatccct gctctggcgg ccaggacgat gagtgggaac acaccgtgtg ggggctgcct ggcctgggtg tgccgcgggt gtccttgttg gtgatggttc 1620 cacctgcttg tgccaccagt gccctctggg tctcacacac aactctcttc ccagcgaagg 1680 cccctcctgc cctcaggcct cagtgctgct tccgtctcgg aaggccccag gagctcctqc 1740 atcetgggcg tgatteetgt gtgeetgeag acceeetege ggetgeeate teateetttg 1800 · gtgcacctgt tggccagacc tcctggtagc gggtgctgca ctcccctgaa tgtqccgggg 1860 cctgggggca gggacctggg ctcctccctc actgagtgga gggaactcag tgtcttggag 1920 ttggggtgcc tgcaggctgg gtggtgcagg tgaaatgcag acctctcagc tggtgttcca 1980 gagcagetge ettecceege eegagggaet teaccegeag eecagteagg ggtggegeet 2040 gggtqcatcg cccqcaqqct gggtaggqqt ggagcctggg tqqccctgcc tqtqaqctqc 2100 ataqttqtcq cctttqaccc tqaqttttct tcgttatctq tttqqacctq tttqqqqcaq 2160 gcaggggatg agatctgaag ataaatgcct tagctgtgac catctccttt tgtqagaggt 2220 caatgtccag ttccgctgca gttataacat cccatttttt gatttctttt tatttttcc 2280 tttttctttt tgagatggag tctcgctctg tcacccaggc tggagtgcaa tqqqqtgacc 2340 tcagctcact gcaacctcca cttctcgggt tcaagtgatt ctcctgcctc agcctcctga 2400

```
ctagcagggg ttacaggcgt gagccaccac gcccagctaa tttttgtatt tttagtagag
                                                                     2460
gcaaggtttc gtcatgttgg ccaggctggt ctcaaactcc tggccttaag tgatctgccc
                                                                     2520
gcctcggcct cccaaagtgc tgagatgaca ggtgtgagcc accgtgcccg gcccagaact
                                                                     2580
ctttaattcc cacctgaaac ttgccqcctt aagcaqgtcc ccagtctccc tcccctaqtc
                                                                     2640
cctggtccca ccattctgct ttctgtctca atgaatttgc ctaccqtaaq tacctcatat
                                                                     2700
aaattgaatc ataaagtatt tgtcttttta tatctggctt atttcactta gcataacatt
                                                                     2760
cttaagtttc atccatgttg tagcatgtgt cagaatctct ctctttttt tttttttt
                                                                     2820
ttttttttt ttttgcagac agagtctcgc tctgtcatct agactggagt tcaqtggcac
                                                                     2880
gatctcggtt cactgcaaca tctgcctcct gggtccaagc aattctcctg cctcaqcctc
                                                                     2940
cttagcagct ggaactacag gcgcgtgcca ccatgccttg ctaatttttg tattttatg
                                                                     3000
tggaggcagg gtttcaccat cttggccagg ctggtctcga attcctggtc ttcaccacgg
                                                                     3060
gggcccgaag gacccgggca aagcgtggag gggagg
                                                                     3096
```

<210> 6 <211> 26928 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (12044), (12489), (26433), (26434), (26435), (26436), (26439), (26441)

<223> Identity of nucleotide sequences at the above locations are unknown.

```
<400> 6
gaagaccaag ggcacacage gaggcagttt cagggcgggc agcctggggc cccacggggc
                                                                     60
ggccccggac acttgttctc acctgtggag ggcagagaag ggaacaggga gagaagtgqc
                                                                     120
cggctgggag tggaggtggg tttgaggttt tactgtaaac taaatgtgta ccctctacct
                                                                     180
tagttatgaa ttatgagaca cgaagactgc gaaacagaca cactcctcta aaagtgcctc
                                                                     240
taggctgaca gggagaaagt cccgccaggc tcccagacgc cacctttgag tccttcaaca
                                                                     300
                                                                     360
agcccgccag ggcctcttgc ccaccggtgt cagctcagcc actgaaccct ccaggaagaa
                                                                     420
gacqtqctqq taqqaqaaqa atctcaccca qqcacaqcct qqaaqqqqca caqaaqqqqc
teeggaacca geaageecaa gttggaacte eeagtetget actttetaga acgaetgtge
                                                                      480
                                                                     540
ccttggcggg tctaagtaga acctctccgc gcactctttc ctcctttgta aagtggggac
                                                                      600
agcaatggcc accttgcagg ttcagagagg gcttgcagta cctcacagaa ctgagtgccc
gtgaacgtgt gtgttcctcc agatttgtga cagctttgcc aggctggagt caggctgaac
                                                                      660
gcctctgccc tcatggggtt tatattctag gaagaccaac aaaaacaaga agacggaaaa
                                                                      720
                                                                      780
ttaaaacaac aaaagcccca ttgacaggcc gtgaagaatg ccatgaaaaa tgaatggcgt
tgtgctgcag tctttgggga aacgggctta cggaaagaag gacacttgag ctgctaccaa
                                                                      840
                                                                      900
tgagcagccg tccggtggga gggcagttca ggaagagcag acatccactg aggaggcgct
qqqqcaqaqq qcaqcctqqt cqctqqattc qqqqqaqqaa ccacatcaqq ccatqaqctq
                                                                      960
gagetggtgg tagaatgtac aggagaggee agecagggee ageteatgte agaceteaag
                                                                      1020
                                                                     1080
cggggaagat gaatcgagaa tgcaccccac gagcaatggg aagccagtct acgatttaag
                                                                     1140
cagcaaaaat attttccctt cttccacct gcatccagct ctaccagcac agcctggggt
totattttca agatagaata gacccagact cocagctett ettacaette tactactgee
                                                                      1200 .
acctgtcacc cactcatgcg tececacttg cageetegae ecectteeae etgateteat
                                                                      1260
ggcagccagg gaagctccag ggctcgtgag ggctgccatc tcaggaaaga agcaaaagcc
                                                                      1320
tteggeacet geagggeetg etecaaceae acttetteet tgacetetea getteettag
                                                                     1380
ccactccctt cccacatctc accctqctcc agccacagtg gtgtctctgt gggttctcaa
                                                                      1440
acacaccagg tgcactcctq cctcagggcc tttgtgcttg ctgttctctg ctgggactct
                                                                      1500
ttttttttt tttttttt agacagggtc tcactctgtg gcccaggctg gagtgtagtg
                                                                     1560
gtgtgatcgt ageteattge aaceteaaac teetgggete aageaateet eecaceteag
                                                                      1620
cototoaagt agttagottt tgttgttttg ttttgagatg ggatotoact ctgttgccca
                                                                      1680
ggctggagtg cagtggggca atcttggctc accacaacct ctgcctccca ggctcaagca
                                                                      1740
attetectge etcageetce caagtagetg ggattacagg catgtgecae caegeecage
                                                                     1800
```

ttatttttgt	atttttagta	gagacagggt	ttcaccatgt	tggtctggct	ggtcttgaac	1860
tcctggcctc	agatgatcca	cctgcctcgg	cctcccaaag	tgctgggatg	acaggcatga	1920
gcctgtctct	agtagttagg	actacagaga	ggggccatca	tgcctggtga	tcctcccacc	1980
ttttctgctc	caactctttc	accccactta	gcctcgtggc	tcactctctt	acctcttcag	2040
			aaaattgcaa			2100
cacccactat	tgccagcact	ttctactcca	tttctctgct	ttacttttct	cctttgtact	2160
catcaccacc	tgactcatta	catgtttacg	tatctttctt	ctctccacta	gcatggaagc	2220
tccaggagag	cagagagtgt	agttttattc	cctgatgtgt	ttcctgtgcc	cgtaccaggg	2280
cctagcacac	agtaggtgct	cagtaaatgt	gtgttggatg	aacaaataca	gtgaaaggat	2340
ctgatctaca	tttataaaga	aggcactctg	gctgctgagt	ggggatgaga	ctgtcaggag	2400
			aggtgggtac			2460
agggcctctt	ggactcaagt	ggatggggcc	tgctcagggc	tccggccaca	ggaacaaagg	2520
gaagggggcc	caggatggcc	tgtcatagag	gacacattac	aactggccca	aagttcaagt	2580
			aaaactaaag			2640
			gaattaaaaa			2700
			agggactatg			2760
			ggagggtgga			2820
			gtttctacta			2880
			tactcgggag			2940
			cgagattgag			3000
			agaaaaaaa			3060
			ggtgggtgga			3120
			tctctactta			3180
			acttgggagg			3240
			gagattgcgc			3300
			aaaaaaaaa			3360
			actactcggg			3420
			gccgatatca			3480
			gaaaaaaaa			3540
			tcccagggtg			3600
			aaattcagca			3660
			ccttcagtaa			3720
			gcctgtcaca			3780
			ctctcagttc			3840
			gtccaatctc			3900
			acttgggcaa			3960
			tacgctgggc			4020
			ccctggggct			4080
			agagtgccca			4140
			atgcttctca			4200
			ctgggctctg			4260
			gaaggacaca			4320
			tcatgatatc			4380
			taaaaatact			4440
			tctcacccag			4500
			gctcaagtga			4560
			gcacctggat			4620
			agtggtgcac			4680
			ttcagtctcc			4740
			gaaggatggg			4800
			taccttcctc			4860
			atcctaccac			4920
			tatagagatg			4980
			ggatcaagcc			5040
			accttacctt			5100
			gcaagatctt			5160
			cctcccgagt			5220
	,		3-9-	5 5 5 5		

WO 02/092015

gccaccacac	ccagctaatt	ttgtatttt	agtagagatg	gagtttctct	atatacetta	5280
			gattaacatg			5340
gatgaatgag	ccaggcagtc	acctcggctg	tcaccctcca	cttctctcct	Cottotosos	5400
gtcatcgtcc	atccgtttct	acaactattt	gtttgactct	cctgatgatt	ttacttaca	5460
			gggcaggccc			5520
			ggtccacaga			
cacatcaacc	agttgagatt	caagtagtet	totoatttat	gcagcoccac	angenerate	5580
cagacgaagg	agecyacace	ttassessa	tctcatttat	aagtgttta	aayacacata	5640
cagiggaily	aacagtggcc	cccaaaaaya	tgtatctaca	tectaateec	tgggacctgt	5700
			cccgggtgtc			5760
atgaggaget	catcgtggat	tatccaggtg	gaccctgcat	ccaaggacaa	atggtcctta	5820
			ctcaagcctg			5880
			agttcgagag			5940
			agcaaggcat			6000
ccagctactc	aggaagctga	ggcaggagaa	tggcttgcac	ctgggaggcg	gaggttgcag	6060
			ctgagggaga			6120
			gacagaagag			6180
catgtgaaga	tgaggcagag	gttggagcca	tgcagccaca	agccaaggaa	tacctggagc	6240
cccagaagtt	gcaagaggta	ggaagaagcc	tcccctagag	cctccagacg	gagcacagcc	6300
ctgccaacac	ctccacctca	gacttctggc	ctccagcact	gtgagataat	caactgctgt	6360
			gttatggcag			6420
			aaggaaactg			6480
			ctataaagaa			6540
tggctcacgc	ctgtaatccc	agcactttgg	qaqqccaaqq	tgagtggatc	acttgaggtc	6600
aggagttcaa	gaccagcctg	gacaacatgg	tgaaacccca	tttctactga	aaatatgaaa	6660
			gtcccagcta			6720
			tagtgagcca			6780
			caaaataaat			6840
			actggctccc			6900
			aaggcttcag			6960
			caaaagcagg			7020
			tctcacgaga			7080
			cccaaacctc			7140
cattoggaat	tacacttcaa	catgaggttt	ggggggacaa	atatocasao	tatatoatto	7200
			ctcacattgc			7260
cantancece	ccaaagtett	aactcatccc	agcattaact	casasatoco	attoccaset	7320
						7380
			cacctacaag			
			ggcattaggt			7440
			ggccccaagc			7500
			cctccttaaa			7560
			gccttgggca			7620
			gattggagat			7680
			cattctgggg			7740
			ggggactcta			7800
			tgcagcagcc			7860
			atggtgtcaa			7920
			aagctgccaa			7980
			cctttgagcc			8040
ctagatgcag	gcagggagca	gtgtcctgag	gctgtgcaga	gcagcagggc	cctgtgcctg	8100
					gttgtggaag	8160
atctctgaaa	tgcctttgag	gcctttttgc	ctctgaggcc	tatttcctat	tgtctcagtt	8220
			aatcctctag			8280
ggcttgaact	cctctcctga	aaaagctttt	tctttctttg	tcacatggcc	aggctgcaaa	8340
			ttaaatataa			8400
			caaagaagct			8460
			tggctcacac			8520
					caacatggtg	8580
					agacctgtag	8640

tcccagctac tggagaggct gaggcaggag aattacttga acctgggagg cagaggttgc 8700 agtgagccca gatcatgcca ctgcactcca gcctggtgac agaataagat ttgatctcga 8760 aaggaaggaa ggaaggagga agggaagaaa tgtcttcccc ccagatgtcc tgggtcatcc 8820 ctcttatgtt caaacttcaa cagatcccta gggcatgaaa ataatacagc caaattattt 8880 gctaaggcat aacgaaagtg acctttgctc cagttcccaa taagttcctc atttccatct 8940 gagacteate accetggeet tggettgtce atateactgt cageattttg gtcacaatea 9000 tttaaccagc taatcgggag gctgaggcaa gaggatcact tgaacccagg aggttgaggc 9060 tgcagtgagc tgtgatcaca tcactgcagt ccagcttggg caacagagca agatcctqtc 9120 tcaataaata aataaataaa tacataaata acttaagttt atttaaagct gcatctttgc 9180 caccatggag aaaggccagg ccagctcctt ctctctttct gcacgtgttc ctcccacctc 9240 agetgeetet geteeteaag gaggaacaga gggagtagga aaggeeatee caggaggeee 9300 agcaccccat gacctggctc tggggccttg tgggtttatg gattcccagt gctgagtcat 9360 ccctcacagg ctcttgtggg caccttggac attggtcaga agcatgtggt ccccggqaac 9420 acaccttttc ctgatcatct gggaagggca gcttgtgcca gcgaggccac ctgttcagcg 9480 ccacggcccg ccagacagct gcagccacag ccttgccttt gatcagagca aacaccagac 9540 atgtgtgtca tgcccccaac ccatctccag gggacacatg tcctttcttg ccaggcctga 9600 gatgaacaag agagggacaa gtccccaagc ctctctctcc ttcctgcctc acccactccq 9660 ctgttagatt ctcaaggtgg atggtgggct aactagggca accgaccatc ctggtttacc 9720 tagaactgag ggggcatttt caggaataaa actgcaaaag tctggagcaa acaggagcaa 9780 gttggtcact ctggggctgg tggagtcagg tttccttctg caggccccct ccccgcaagc 9840 atgggtggaa cccaggacag gaacacagag caggccccag gaccgggctt gtcacttaca 9900 agtetttttt ttttttttt ttttgagatg gagtettget etgteateag ggetggagta 9960 cagtggtgcc atcttagctc actgcaacct ctgccttctg ggttcaagtg atcccctgc 10020 ctcagcctcc tgagtagctg ggactacagg tggcaccacc acgcccagct aattttttgt 10080 atttotagta gagatgagat ggocaggotg gtottgaact cotgacotca agtgatotgo 10140 ccgccttggc ctcccaaagt gctgggatta caggtgtgag ccactgtgcc tggccccact 10200 cacaagtett aaaccatgee teageacate aatgeeattt acaaaaaggt agagggattt 10260 tccaggcaaa aatagatgaa agacatagga tgattgatca tgtcctgctt aaacataggt 10320 ctgatgctat taagaattga gggctgggag cggtggctca cgcctgtaat cccagcactt 10380 tgggaggccg aggcgggcgg atcacgaggt caggagatcg agaccatcct ggctaacacg 10440 gtgaaacccc atctctacta aaaatacaaa aaatggccgc gcgcggtgac tcacgcctgt 10500 aatcccagca ctttgggagg ccaaggcggg cggatcacga ggtcaggaga tcgagaccat 10560 cctggctaac acagtgaagc cccgtctcta ctaaaaaaata caaaaaaaat tagccagqca 10620 tggtggcggg cgcctgtagt cccagcaact tgggaggctg aggcaggaga agaatggtqt 10680 gaacctggga ggtggagctt ccagtgagcc gagatcacac cactgcactc cagcctgggc 10740 gacagagtga aactccatct caaaaaaaaa ataaataaat aaataagaat tgttagtatt 10800 ttgcaggtgt gacaaatgat tctgtttctg tggcagaatg ttctcaggag atctcttttg 10860 aactctcatg gaaagcatca tgctgttggc aacatcacat ttatttttat ttatttatta 10920 ttttttagag acagggtett getetgttge ecaggetgga gtgeagtgge acaateaeag 10980 ctcactgcag cctcaacctc ctgggctcaa gcaatcctcc tgcctcagcc tcccaaagta 11040 gctgggacca caggcgtgag ccactgcact cagcccaatg taccttcaat atttacattt 11100 ctggcaaagg tagcaaaacc ttaacaaatt ttgaatctag ataataaaat tatgaggctg 11160 ggtgcagtgg ccctgacagg gatggctcac atctgtaatc tcaacatttt gggaggccaa 11220 ggtaggcgga tcacctgagg ccaggagttt gagaccagcc tggccaacat ggtgtaaccc 11280 tgtctctaac aaaaatacaa aaaaattagc cagacgtggt ggtgcacgtc tgtcatccca 11340 gctactaggg aggctgaggc aggagaattg cttgaacccg agaggcagag gttgtgatga 11400 geogagateg egteattgea etceageetg ggeaaaagea agagegaaae teteteteea 11460 aaaaataaaa aaaaaataaa ttaatgaatt aattaaaata aaataaaata atggatagtc 11520 actgtaaaga aaaaataaat gtatatatca gccaacaagt gatggaatag agcacccat 11580 ctccctggct ggacagatac atcccacaac acctggaagg cggctccatg tagaactttc 11640 tggactgctt gaggtgctgt gctggagcac ggtgacagag gagctggacc atggacctcc 11700 eceggeeec aceaagggeg aggteeect gtggtgggte tgagggagge ateegtatgg 11760 cctctgcggc ttgggcaggg aatttggggt ccaagtactt ggtgcaaagc ctggaaagag 11820 ggtttgggtg ctgagggcat atcccctggg ccacatgggg gcaqaagtgg gqccccctqa 11880 agettggagt cetgggeagg ggeatetatt ttgetgtetg aggeetteag tacttgaage 11940 12000 aaaatggagg cagaatgtcc caccttaatg cccctgattc ctccaaacca attccagaga cagcaagggc cagaacaggg atggccctgc ccagggtcat gcancgagga agtggccagg 12060

ctgggatctg	aacccaggct	aatcccctcc	cttgtcctcc	tccaggccct	cacccctgca	12120
tagagccctc	cagctcactc	atcctcggcc	agctccatct	cctcagcttg	taaacccccc	12180
cgggattttc	ctttcttaaa	aaacaaaggc	ttggccaggc	acggtggctc	acgcctgtac	12240
tttgggggtg	gctcccagca	ctttgggagg	ccaaggtggg	cggatcatga	ggtcaagaga	12300
ttgagaccat	tctggccagc	atggtgaaac	cctgtattta	ctaaaaaaaa	aaaaattaac	12360
tgggcatggt	ggctagctac	ttaggaggct	gaggcaggag	aatcgcttga	acctgggaga	12420
aagaggttgc	agtgagccaa	gatcgcgcca	ctccacttta	acctggcaac	agaacaagat	12480
tecgtttena	aaaacaaaca	aacaaacaaa	taaacaaaaa	aaggcggagc	gcgatggctc	12540
		ttgggaggct				12600
		atggtgaaac				12660
		tgtaatccca				12720
cttgaaccca	tgacctggag	gctacagtga	gctgagattg	coccactota	ctccaactta	12780
ggcaacaaga	tttatttctc	taaaaaaaaa	aaaaaaaaga	ctgaccette	cccttcacct	12840
cttcctcagg	gtccctgagc	actctacacc	cccgtctaca	ctgagcactc	caccetacta	12900
tctacactga	gcactccacc	ctgccatcta	cactgaggac	togagoccac	tatctacact	12960
aactacctcc	caccctcacc	tcctgctaag	gccattcccc	actacateta	tettetagat	13020
tctgcagcct	tcagcacgct	gggcccctcc	tttatccct	tgagccacct	ccarctagat	13080
cctgagctgc	tactcctctc	ccagcagcct	ccacccaade	ccctccagtc	cccaaactat	13140
cccttgcatc	cagcactgcc	cttccacgtg	cccttccct	ccarcttcac	accaracter	13200
		tgtgcccatc				13260
acagggatat	gcatggactt	gggacgtcca	agtetagae	ggcgggagcc	teatteatea	13320
agtgtggagg	gaacggaacc	ctttcaggta	gagaggat	aggggcage	tagacagacag	13380
agegeggegg	aaggataggga	ctaecataaa	aaatattata	cassttosts	tttaaaatta	13440
ctagaactca	gacactggcc	ctgacctggg	ccaccettce	tagataga	restantes	13500
cagtgagette	ctactctaca	ggctctcacc	aggacggatg	rgcaggacac	tastassassas	13560
tacccaaac	caagagaattt	catctccagc	agcacggacg	ggaaaggaag	teateaaagg	
agetaaggae	aggaggeeee	ttctggaggt	ggcagaggag	ggtgtgggte	ccagggetet	13620
tacctactac	aagcgcggga	ggtcttaggt	cigcaccage	cccgrgaagg	cccctcctgc	13680
etttetee	ttactactat	ggaacagcag	tacatacas	ctagcaggag	tgggtagggg	13740
		gccagcagga				13800
		agtgaggaac				13860
		agctgagagc				13920
		ccaggatcgc				13980
		gcaaagatca				14040
		tgccagagcc				14100
		ttttcaccat				14160
		aagctgcagc				14220
		ccctactcgc		_		14280
		acagaggga				14340
		cgtggagctg				14400
		gaaggctgag				14460
		cgtgcggcca				14520
		tccgtcccag				14580
		gcgtggaaga				14640
		gaagggaaag				14700
		ctgcatggcc				14760
		tttttgagac				14820
		cactgctgcc				14880 ·
cctcctgcgt	agctgggacc	ccaggtatgt	gtcaccacag	ccggctaatt	tttgtatttt	14940
		ccgtattgcc				15000
		ccaaagtgct				15060
		cctgtgccag				15120
		tgaccgggta				15180
gccccaggct	gggttagcag	cggtggtcag	ggctgctgct	tcctggcctg	agctcgaagg	15240
agggccctca	ttaccacctg	ggtgagtcct	cgtccaagcc	tggcactgct	gcgtgggaat	15300
aacttctgcc	acccaagttg	gcagattgtg	tgcaaagtta	agtcctgact	ctgtggggtg	15360
gacttcgagg	cctcttcatc	ggacctgctt	ccggtgactg	cattcgcacc	tcctcctgtt	15420
cctggtttaa	cacagcccag	ctttcctcct	gctgagccct	ccctgggcct	gctgtcaccc	15480

tcgtgccgct	gtgcctcgca	gtgccactcc	ctgtaccctg	aatactttgc	cctgcctctc	15540
cacccagctg	agagtcaggg	cccctgtgag	gctctgccca	gcccgtcctc	cgggtttctg	15600
cctctgctga	gcacttccct	gcatgattgc	ttctgagagt	cccccagcc	tgtgagcttc	15660
tcaggactgg	gacagcttct	caggaccgag	gcttcctggt	ctgcttgcaa	ttttacaggc	15720
				tgcagatctg		15780
				ccattctgta		15840
				tcagctgcag		15900
tgagatatgc	acctgcggct	ctqctcacaq	ggtcctgcac	agactgctgc	togaoccacc	15960
				tccctcagcc		16020
				accccgtca		16080
				ggcctggcct		16140
				gaagagatgc		16200
				agctgggctc		16260
				gttcctttca		16320
				ttatggtttt		16380
				tatgtattta		16440
				caatcatagc		16500
				cctgagtagc		16560
				ttttgtggag		16620
				gcaatcctcc		16680
				ggcctggaat		16740
				tgaaaataaa		16800
				ctgctattaa		16860
				ttattttatt		16920
				attttattt		16980
				acaatggagt		17040
				ctcagccttc		17100
ggactaaagt	gtgagtctgg	ctaattttt	ttactttttg	tattgacaga	ggtctcacta	17160
tgttgcccag	gctgatctca	aactcctggg	ttcaagcgat	cctcccacct	tggactccca	17220
aagtgctggg	attacaggca	tgagccacca	tgcctggcct	aaaatgccac	tttttgtcat	17280
ttactaaaat	cccatggaca	ctttgacatg	tctgtattct	atgctattga	tctgactgtt	17340
ggcatctaca	tcattatggc	catctatcat	ctatcataat	ccattttaac	attaaaattg	17400
tgctgctgct	tagatttttc	tggcctgtct	cctatttgta	ttcttccaga	taaattttag	17460
aatcatttta	tcaaattccc	cttgcagaaa	aagccctatt	ggattttggt	tgaaaaatac	17520
				gctcacgcct		17580
				gagtttgaga		17640
				tgccaggcgc		17700
				acgaggtcag		17760
				atacaaaaaa		17820
				gaggcaggag		17880
				ctgcactcca		17940
				tacaaaaatt		18000
				ggcaggagaa		18060
		_		gtactccagc	- •	18120
				ttgagactct		18180
				tcaagccttt		18240
				tcttataaaa		18300 -
-	_	-		tttcatttgt	-	18360
				tttgattact		18420
				aattttgact		18480
				ttaacccagt		18540
				agaatcaacc		18600
				ttcttctact		18660
				gttgtcattt		18720
				tcatgacttt		18780
				ctcagtttgg		18840
ayttttttgt	garragateg	aggicatgea	ccaccggaga	gggtgccacc	ycctcgatgt	18900

gcaagctcaa	tgcatcatat	cagagggttt	gtaatgtcag	tttataccgc	cggagaccct	18960
aacctggagc	atttcgtgaa	ggtgctgtct	gccaggattc	tccactagaa	agttactatt	19020
tttccctttt	taattactga	atgtctgagg	ggaaatactt	tgagactatg	caaatatcct	19080
gtttctgctt	taacttcggc	tcactaagtt	tagcattcat	ctatggatct	cgcttatagc	19140
aagtattact	gtggagttct	aatggtaatt	ttctgtttct	ctcattcctt	caacctttat	19200
taatatgctt	cttcctcact	tattcatttt	gtttcagttg	tttataccaa	catggatttg	19260
tggatattgg	ttttattctt	tgggttgcaa	ttgaatccta	tcattatttt	gttagtcagt	19320
			cttgaaattt			19380
			ccaggtttga			19440
			gcaattctcc			19500
			cggctaattt			19560
			caaactcctg			19620
			cgtgagccac			19680
attttaacat	acceptettt	tettttett	tectaette	tatasetata	agaagataga	19740
gastacattt	ttactaccat	agasttages	tcctactttc	change	agaageteea	
ggatacattt	tagttage	agacttagec	tcaatcagtt	cccagaaaag	etetggttet	19800
			tatggcctgg			19860
accccagtac	cccgggagge	egaggegge	agatcacaga	tcacgaagtc	aggagatcaa	19920
			tctctactaa			19980
adcacaaraa	cdddcdccrd	tagtcccagc	tactcaggag	gctgaggcag	gagaacggca	20040
tgaacccggg	aggcggagct	tgcagtgagc	cgagatcggc	agccactgca	ctccagcctg	20100
ggccacagag	cgagactccg	tctcaaaaaa	aaaaaagga	aaaagaaaaa	agaaaactag	20160
			ggtctctctt.			20220
gcacgatcac	agctcactgt	agcctcaacc	ttctgggctc	aagcaatcct	cctgcctcag	20280
			accaccgtac			20340
tttgtagaga	tggagtctcc	ctatgttgcc	tggtctggaa	ctcctggcct	caagtgatcc	20400
tcctgcctcg	gcctcccaaa	gtgctgagat	tacaggcatg	agccactgta	cctggcctgg	20460
ccaaggtctg	tctttttta	aaagaagttg	ttgtatagtt	gtttttttt	ttatttttt	20520
ttctgagacg	gagtctcgct	ctgtcgccca	ggctggagtg	cagtggtgcg	atctcggctc	20580
actgcaagct	ccgcctccca	ggttcacgcc	attctcctgc	ctcagcctcc	cgagtagctg	20640
ggcctacagg	cgcccgctac	cacgcccggc	taattttttg	catttttagt	agagacgggg	20700
tttcaccgtg	ttagccagga	tggtctcgat	ctcctgacct	cgtgatccgc	ccgcctcggc	20760
			ccaccgcgcc			20820
atctcgagtt	ttctagcgat	ttaatcatat	tggttacaaa	aaaggatgat	tttactacct	20880
			tttatctaac			20940
			aatgtgcaaa			21000
			tcttaacgtg			21060
taacattatt	attcactgaa	gtccacactt	tcttttttt	tttttctgag	acqqaqtcta	21120
			gcaatctcgg			21180
			cccaagtagc			21240
			gtagagatgg			21300
	•	-	gcctgcctca			21360
			atactttctt			21420
			tccagaaagc			21480
			gttcctcaga			21540
			agtctgtttt			21600
-			atgtattctt		-	21660
			ctctggtttc			21720
						21720
			tctcactgca aatgggcatt			21780
			tctcaacctt			21900
			aaaaggcttc			21960
			attttaaatt			22020
			tcatgtattt			22080
			atgtataatt			22140
			ctggagtgca			22200
			tctcctgcct			22260
actgcaggtg	cctgccacca	cgcccggcta	attttttgta	tttttagtag	agatggagtt	22320

				tgatccaccc		22380
				gcctaaattt		22440
				ttattgcaaa		22500
ggttgaagtt	tgtaaagaaa	atgtggcctc	atacagttgt	gtagttggaa	aggcaagagt	22560
attttgattc	tctcttcaaa	caactatgga	caacctgctg	ttacaaaacc	agaatgcaaa	22620
aagttgtagt	aaatacaggt	taggtgtagt	gtggaatctg	aaagcatgtg	aatgaacttt	22680
ctgagttttg	taacattaaa	gtccagttgc	gttaagctac	tgtgatagca	tatagcattg	22740
tcctaatact	ggaattagta	tcagaagtgg	ggtgctactg	ttaataaata	aaaagaaata	22800
				ctgtgtggaa		22860
				gtcatgatga		22920
				agtataaaac		22980
				ttaaacaaaa		23040
				aataaacaga		23100
				acaccgtata		23160
				tcagcgcggt		23220
				tgaggaggca		23280
				attacttgca		23340
				gggaattgca		23400
				aaaaacaatc		23460
				atcctctaag		23520
				gacactggac		23580
				tcagctgcct		23640
				atcatcattt		23700
				atgatcatgg		23760
				agtagctggg		23820
				agggetetea		23880
				cctcagctcc		23940
				tttttttgta		24000
				tcacttgage		24060
				ctgggcaaca		24120
				caaagatagg		24180
				gccctattgg		24240
				ctatgggtgc		24300
				agggaagctg		24360
				attgttttgg		24420
				tgggtggatc		24480
						24540
				gaaatcccat		24600
				tcccagctac		24660
				cagtgagcca ttcctcgatt		24720
		_		-		24780
				tggctacatg tcaaggataa		24840
				ctgataaaac		24900
						24960
				taacaaactt		25020
			_	tactcagaac		25020
				tcacaggagt		
				gaaaacaaaa		25140
				acaaatggat		25200
				tgagaatact		25260
				actcatatgt		25320
				ggtggatcac		25380
				tctactaaaa		25440
				aacccaggag		25500
				acagagcgag		25560
				tcatgcctgt		25620
				tcgagactat		25680
acggtgaaac	cccgcctcta	ctaaaaatac	aaaaaatta	gccaggcgtg	gtggcgggtg	25740

```
cetgtagtee cagetactea ggaggetgag geaggagaat qteatgaace caggaggeag
                                                                     25800
agettgcagt gageegagat egegeeactq tactecagee tqqqcaacaq agaqaqacte
                                                                     25860
tgtctcaaaa aaaaaaaaa gttaatggga taaacatcca tctcaagaag ttagaaagga
                                                                     25920
atgacaaata aaccaaaaaa aaaaaaatca aaagaagaaa atcataaggt caagactata
                                                                     25980
aagagagtgg ctgggtgcag tggctcaggc ctgtaatctc aqcattttqg gaaqcagagg
                                                                     26040
tgggcagatc acttgagccc aggagttcaa gaccagcctg agtaacatag agagacctca
                                                                     26100
tctttgctga aaataaaaat aaaaaattag ccaggcatgg tggtactgag gtgggaggat
                                                                     26160
cacttgagcc taggaggttg aggctgcagt aagccatgat tgtgccactg cacttcagcc
                                                                     26220
tgggtgacag agtgggaccc tgtctctaaa aaactaaaat aaggctgggc gcggtggctc
                                                                     26280
aaatctgtaa tcccaccact ttgggaggcc aaggctgagg tcagcagttt gagaacagct
                                                                     26340
tggccaacaa gatgaaacct catctctact aaaaatacaa aaaattagtt gggtgtggtg
                                                                     26400
gcatgtgcct gtaatcccag ctacttagga ggnnnnctnt ngattatatt ttctccttcc
                                                                     26460
tacgtcgtta ttggactgaa ttcagaatga tgactctcat tggagctctt cctgtctct
                                                                     26520
aactacagtg getteegace ceactetggt ttteacttea ecectetget geteatacga
                                                                     26580
gtagatactt cottoottot ttotoacttg ttgotottoc tcaacccccc coqttqqtqt
                                                                     26640
cccctcctct ttatctttt ctcgcgacac ctgcgttctc ttgccctctt atcatccctt
                                                                     26700
tetegaggeg gteettteet ttateeaget taaatacett eteetetgtt tatttggggg
                                                                     26760
ttgggttttt atctctcacc ctccctctaa tttctttcct ctttccqcac ccatcaaqcc
                                                                     26820
tetegtggtt tetetteete tacteteggg teececeet eteceettet tttttette
                                                                     26880
accccccaa gcgctttgcc ttttttttct ttgcccttta ttcccccc
                                                                     26928
```

<210> 7 <211> 29430 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (4336), (4345), (4349), (4392), (4447), (4490)

<223> Identity of nucleotide sequences at the above locations are unknown.

#### <400> 7

```
aggggaaggg ccggctccqt aqctcacacc tataatccca gcactttccq aggaqaqaqq
                                                                      60
atcatctcag gccaggagtt caagaccagc ctgggcaaca cagcaagacc gcatctctac
                                                                     120
aaaaacttct tttaaagctt aaaaaaaaaa aaaaaagcaa agaggacagt tcaggagaaa
                                                                     180
agcetgtaga ggeageacae taaggaggag aegeageeca ggeaecagga ggggetggee
                                                                     240
atgggcactc actoctocag caggcgagtg cocagcacca gotggcccac coagacacco
                                                                      300
aggacacggc ctgaatggct ccgtattcac gtgggtggta ataaacaagc aatacacata
                                                                      360
gccaataagg acaccttagt aatgttacat cataaacgct gcagatcagg gaaatggtqc
                                                                      420
agggtgaagt gggttggggg gctgcatgct acatgagaag tgggtcgggg ggctqcatgc
                                                                      480
tacctgagac agagcaggcc ttgctgggaa agaaggagcc ggcaggcctg ggcaaaggtc
                                                                      540
ctggggtggg agcacactgg agcagagtgt gggggtagca tggcgggtgc tggtcctctg
                                                                      600
ggcgccttcc caccacgtca tgtgcccatg tgcccaaggt ctctcgtttc acagccccct
                                                                      660
gaageteagg ggteaeaget acacageece cagatacett ggeetgeece aggteattee
                                                                      720
atccaqtgat ggacctgctq acctctaqcc tqacctctqq gcaqcqtaat ttqaqaaqqa
                                                                      780
ggagaaggga gggcaacaga cctggggcga tgagggatgc acagggtggc agacacctga
                                                                      840
ggctgcacct tggagcctca gttctgggtg tgggtggggg atggacaggc tgagggctga
                                                                      900
agcagetggg cccggccacc atcacacccc aggacccacc agatcaccat gaaaaaccga
                                                                      960
atgtcaactg gcagcccaga gtgcagaaca aacctttcag aaacacggtg gtgactgccg
                                                                      1020
catcatgaac ataaaataat tacgccctct ccccagggat cacccctgca ggagtttgtc
                                                                      1080
ccaagaaaca ccagaaagaa ggaaaacgtc tgagtcacaa tatttgctga ggccttattt
                                                                      1140
gtaatagcaa aaaaaaaaaa aaaaaaagaa caatctccag cggcaggggt aactagacta
                                                                      1200
ttgtctccgt ggaaaggtag caccaattaa ctagtaacaa aatgactgcg gtaacaacaa
                                                                      1260
aacgttcgac atgtcaacac caaaaaccac acacccagca taaccgtgaa ccatgatttc
                                                                      1320
```

tactagaatg	aatggcagtt	atgagaaagc	accagcggag	acaaagattg	aaaaagtaaa	1380
			gtaatatatt			1440
gtttttaata	tattttttaa	ttccaaattc	catatatgtt	cctatgaagc	tatttctgca	1500
aatattttt	tcaggaccgt	acatcacaaa	ggcaaaaggg	ccaggtcagc	tctccagctg	1560
			tccagggtta			1620
gcccatgaca	atcactcaac	ccctctgacc	tcaacatcct	gtctgtgaaa	tggggataat	1680
			cttaaacagg			1740
			ttttcattaa			1800
			accatccact			1860
			ttccgggcag			1920
ctcagtttcc	tcattcatga	aacaggaagt	gatcattcct	tttattttta	tttttattt	1980
			ccaggctgga			2040
			gcgattctcc			2100
ctgggattac	aggcacacgc	caccacgccc	agctaatttt	gtatttttag	tagagacggg	2160
gttttgccat	gttggtcagg	ctggtctcga	actcctgacc	tcaggtgatc	cgcccgcctt	2220
			gagccaccaa			2280
			gcctggtagt			2340
gaatgatcct	atgaccagta	attccactcc	tacatatata	cccaaaagaa	ctgaacccct	2400
			gcatgttaac			2460
aacatggaaa	cagctcaaat	gtccataacc	gatgaacgga	taaatgaaac	gtagtctatt	2520
caccacctga	cggaggtgag	aggggccata	aaaaggaatg	atgcataaaa	acgaatatta	2580
tggccaggta	tggtggctca	cgcctgtaat	cccaggactt	tgggaggctg	aggcgggcgg	2640
atcacgaggt	aaggagttcg	agaccagcct	ggccaacacg	gtgaaacccc	atctctacta	2700
aaaatacaca	aattagctgg	gcatggtgga	gggcgcctgt	aataccagct	actccggagg	2760
ctgaggcaag	agaatccctt	gaacctggga	aacagaggtt	gcagtgagct	gagattgcac	2820
cactgcactc	cagcctgggc	gacagaccaa	aactccgttt	cggaaaaaaa	agaaaaaatt	2880
agccaggtgt	ggtggcgggt	gggtccctgt	aatcccagct	ctacttggga	tactgaggca	2940
			tagcggtgag			3000
tccagcctgt	gtgacagaag	gagactctgt	ctctaaaaaa	caaaaacaaa	aaaggcccga	3060
			tttgggaagc			3120
			cacggtgaaa			3180
			ctgtaatccc			3240
caggagaatc	gcttgaaccc	aggaagcgga	ggttgcagtg	agccgacatt	gcaccattat	3300
actccagcct	gggtgacaga	gtgagattct	gtctcaaaaa	aaaaaaaaa	aaaaaaaaa	3360
			tgttgtcaag			3420
atgcagataa	tttgtttaaa	aggcaccatg	cacactgggc	aggctggctt	cccctgggaa	3480
cgtcttcttt	tgcctggatt	cccagttggt	ttaatcgggc	gtagaacact	ttcttcaatc	3540
			ctcagtacac			3600
			gattcagatc			3660
ctgccactcc	caggaacgcc	cacttctggc	aagtcagtgt	cagagaaagg	ccagctcgtg	3720
gcccctcctg	ccttgagtcc	caggacccgt	gatcagtcct	acccggagca	gaatcaggag	3780
tttgaaaacc	caagtgccaa	caatctcatt	ttaacccatg	taagcatatc	caatatttat	3840
atatagaatt	cataacagat	gtctgggctt	ccattccaat	agcctatatt	ttacactgtt	3900
tatttacatg	gttacaccaa	acaagactca	attcaaggta	acccaatcct	ttgctactat	3960
accaaaataa	gcaacatttt	cagtccatgc	cttatatata	ttcaccaagc	attacactag	4020
			gcctggacac			4080
aggaatgatc	ctgcgtccag	tgccagcatg	atggaagaga	cagagaaaca	gaagacatca	4140
			gttgggcagg			4200
			aaggtgggat			4260
			caggtggccc			4320
gaagacctgg	ctgtangtgg	ggtangcang	ctttctaaat	ggggaaaatc	tggctgtgga	4380
tggagttggc	angtttccga	aaagaagaaa	agctgactat	gggtacacct	ggctgttggt	4440
ggaacangca	ggcttcttgg	aagaagaaaa	tetggetgtg	ggtggatcan	gcaagcttct	4500
tggaagaagt	aaacctgact	atgggtggac	caggcaggct	tcctagagga	agaagaccgg	4560
			agaggaagat			4620
			tgggtagacc			4680
			ttgaaaaaca			4740
_		· -		_	<del>-</del>	

_						
gagcatgccc	aggcctgatc	cccagaggca	attacgcact	caagttactt	aattctactc	4800
	acaaacaact					4860
	agcagttatt					4920
gggacaggag	ttctgccaga	tgccaaagct	cctgatgcca	aagcctgggt	ctgcttccgg	4980
geteetettg	gtctaactgt	ccaccccgca	tcggcatgat	gtgcaaaaac	aaggctttgc	5040
aatctgccct	gatgcctggc	ggagcgagtc	cctcccgatt	cgtctccttc	agaaacacct	5100
gggctgccct	ggtcctgtta	tacccccaac	acattctaca	gtcagctccg	caagttccac	5160
	gctggcgttt					5220
	cagctcagcc					5280
ttgtttgtgg	tcaagaaagt	ctgttttcaa	tgatttatta	aattgtggtg	ggagatggat	5340
ggtggcagtg	gttaccagca	acatgaatgt	tcttaatgcc	actgaacttc	acacttacaa	5400
atggttacga	cgataagtgt	tatatgtatt	ttaccacaat	taaaaacagg	taaatgcagg	5460
	tggctcacga					5520
	aggggttcga					5580
	attagccaga					5640
	aaatagcttg					5700
	agcctgggtg					5760
aaaataggta	aatgcaaaca	tatggtatag	taatattatg	ggctattatg	agctacaaaa	5820
aagaatgact	tgggactaca	gttacagccc	tcattcagga	atttgtttta	aatgtgggtt	5880
ggtcgctaag	gcatgtacac	aacattttga	cgttcaaata	ttcctagatt	tggacagtga	5940
gcacccctct	aagctggctc	ttctgtccca	gaggtcccca	ccagtcctcc	agaacttctt	6000
	cacaataaga					6060
	tcttcgtgga					6120
	ggctctggtg					6180
	gtaggatata					6240
	gctaacattt					6300
	acttgcagag					6360
	gccacaacgc					6420
	gtctagctag					6480
ttgctgtata	aaatgtcccc	tgcacatatg	ctgctgtgta	gtgctcctag	gtgcatgagg	6540
ctgccccacg	ccttacagag	agaatatgca	tgagaggctt	tattcaggta	tgagttatag	6600
cgtagttggc	catgaattca	atgttaatga	atcaacaata	tacagtaaat	aaggtgcttt	6660
	ggtctcactc					6720
	tcaacctcct					6780
gggattacag	gcgtgagcta	ctgcactcag	cctaaataag	gtgtcttaga	aacacacata	6840
	atgggctgag					6900
caaggtggga	ggttcacttg	aggccagaag	tttgagacta	gcctgggcaa	catggcaaga	6960
	atatttttt					7020
tactggagag	gctgaggcag	gaaaatggcc	tgagcccagg	aggtcaaggc	tgcagtgacc	7080
catgattgta	ccactgcatt	ccagcctggg	gtgacacagc	aagacgctgt	cttaaaaaaa	7140
	aagccaggtc					7200
cacaggaacc	tagcccgatg	tttcccctag	gagcaatggt	tcagtattca	ataattcagg	7260
gttcccagtg	actttatgga	gcataacttt	caagaataac	aagaaccaac	tgtacgtgtg	7320
tatgtatact	cacactttta	ttttatttta	ttttatttt	tgagacagag	tctcactctg	7380
	tggagtaaaa					7440
tcaagtgatt	ctcagcctcc	caagtagctg	ggattacagg	tgtgccccca	caaccggcta	7500
atttctgtat	ttttagtaga	gacggagttt	cgccacattg	gccacgctgg	tctcaaactc	7560
ctaacctcaa	gtgatccacc	cacctcagcc	tcccaaagtg	ctggaattac	aggcatgagc	7620
tgccgtgcct	agcctacata	cacttttata	cacacatgca	tctatgacta	tttctctatt	7680
tctgtgcatg	tgtgcgtggc	agtacctaca	gtttcagcta	tgtgtctggg	tactgtctcg	7740
tccaagtttg	taagcacctt	ctccaaagtg	caaagcctgg	cttgtgttac	tatccatatg	7800
	tgctcaatca					7860
	gctgtcagtc					7920
	cccgacacct					7980
	tttgagatgg					8040
tccaggctca	ctgcaacgtc	cgcctcctgg	gttcaagtga	ttctcctgcc	tcagcttctc	8100
aaatagctgg	gattacaggt	gcccaccacc	acgcccagct	aatttttgta	tttttagtag	8160
-					- <del>-</del>	

		ggccaggctg				8220
cttggcctct	caaagtgctg	ggattacagg	tgtgagccac	cgcgcctggt	ctgcttcttt	8280
aaatgccagg	caccaacatt	tgtgcaatgg	ggtgggagga	aagaacaggg	aggagagcac	8340
		atccactgat				8400
		atctactgca				8460
		cttgcatatt				8520
taaaattcaa	accacattta	aaaaaataaa	actagcatga	ctataacgga	gtctgcaaca	8580
ttctcacaga	ctttatgata	aaacatgaaa	cttcaaagat	acttagggtg	gggcagggac	8640
		agcctcccca				8700
		agcactgatc				8760
		ctcctccatt				8820
		ttgccaagaa				8880
atattcattg	ctgggccatt	aacaacattc	ttggcaaaac	cataccttag	cttctcgtgg	8940
aaatttctta	aggtagaaga	aacaggaaac	acccaggctc	gcttttatgt	agacagttcc	9000
atgaagccag	ggaccttccc	cacatccacg	tttcaattac	ctgcacgcag	ctcacagtgt	9060
attcaacatc	tacgcgtctc	tcctactggg	gtggcggtgg	ccactcaaac	cctcatgcag	9120
ctacgatgac	cgcaattttg	gcaacataat	ttcatgtttt	tccttgggct	tttacccaag	9180
tcagtgacac	aattctgcag	ttgtctaaag	·attcaaaatg	agggacttga	catttacaac	9240
		cctttaacca				9300
		ggatacttgc				9360
tactccccca	tttccacctt	ggctgaacca	tctatatccc	accaattccc	ccaacatccc	9420
		cccaaggacc				9480
ccacagcctg	gcctcagccc	acaagggctc	tctctacatg	aatcccaccg	caccagagta	9540
gaccaagtct	cccgtagact	ccaccctgac	cacctccatg	cctccagcca	ttcccacccc	9600
taaaaaccct	ccctggtctc	tacacccagc	tgatgaatac	ttggctgaat	gtgacctggc	9660
ctcctggacc	caggtgaagc	ccacgtcctc	cgtaagcccg	ccagctcacc	ctgcctctgc	9720
accttcactg	gagagagccc	gcacttcacc	tcctcagggc	aggcatggct	gatgccaccc	9780
agtggaatct	ggtgcaaagc	agggcccggt	gcagagcagg	gctgcctgca	gagcaaggcc	9840
ctggtgctgg	ggccgagcac	ctccaatgct	ggccgtggaa	ccatccctcc	cattccaggt	9900
		gcgagctgct				9960
catattttgc	ttcaaatcca	gaatagatgt	ggccagggtt	ggcatatgac	tgttgggaaa	10020
ggacagtttg	cctcttccca	aaccaacttg	gattataaaa	agcttttctt	aacgaccaca	10080
agagcggagg	agctcagggg	cagacaaaag	gaaggctggc	tgcagaaggc	gggagagtgg	10140
ggccttcagg	ggcgggtggg	gagagagaaa	gcctggagct	gcacccccaa	ggtctgtgta	10200
catcaggtgc	tacagaataa	caccacctct	tccagcttgg	ccccacctg	ccctctccca	10260
		cccactccc				10320
ctcaccagct	tcggctctca	atgcaacctg	gaacctgccc	ttggcctctc	agctcagcca	10380
ccccattcc	tgttggcccc	tggcccccca	tcgaattctc	tctaatccta	atgcacacac	10440
ttgcacactc	aaacacacac	acacacac	acacacacag	cccagaggaa	aaccataatt	10500
gactgaggtc	caggcaagtt	tecegageag	ggaccacatt	tcaaaggtca	gggaagcagg	10560
		ggcacgtttg				10620
caaaagataa	aaagaaaatg	aggtagctgg	tttcagacac	ctcggagcac	acagaacagg	10680
		cctcaacagg				10740
		ggccctgaca				10800
tgttctcctg	cctgtgctcc	cgggcagggc	ctggccccac	aagggaactg	gccgaaggct	10860
ctgcttggct	actccggaaa	gtcctgggag	acaagcaaag	gacttgctag	gtcactccaa	10920
acggcccaga	tgtgacaact	gtgaagaagc	cacaccaaag	caaggtgaca	gaacaatgtt	10980.
ggtgacgtca	ggttatcagc	ttacgctcaa	ctccacttac	ccggactcac	ccgtaacctg	11040
ccgtctcttc	ccaaccagta	aaggatgcct	aggtagaggg	gcacaaggcc	tggagcataa	11100
ttaccatttt	aaaggctctg	agaagtcctg	cggtgaggaa	gcctagttca	ctttctctcc	11160
		cctgatcaca				11220
		tagaggcaga				11280
		gaacggtcag				11340
ccccagcttg	gcatgctccc	ctccctgggc	ccagaccgcc	tccccccatt	tcctggataa	11400
gaaggctaat	gcgcatcagg	gtgaagggct	tgcctgggct	acacccccag	gctcgcccca	11460
caccaatcgc	gctcctgcga	gagccagtga	ctttcttgat	ttggctactg	tggaattgtt	11520
		acagatacaa				11580

WO 02/092015

caggtctctg	tgatacggct	tcatgcagcc	agcatggcta	gtgccgtgca	gaatgagaat	11640
gaccccaggc	aagtecttgc	ctcccagacc	cagaacccca	tggagcccac	cagggctggt	11700
	tgtctgggtc					11760
ggagccagtt	accagaagca	aatcgcctct	tccaaaaccc	aggctattaa	tggagtccac	11820
tgttgagtgg	agctggggtc	tagctatgga	atactgcaca	gcagagatct	tcctgagaga	11880
aagcagtttt	ccctgaaagc	catgtgtcct	ccactaactg	tgttttaatt	gggcgaacgt	11940
ctgtatctca	ttgcagtggc	cgcgcatgtg	ctgacaaggg	gctgggggcg	gggtggggag	12000
cagaagctca	ggggcctggg	agggaaggaa	acaggccacc	agggctcccc	agaaggcatg	12060
tatctctctc	acaaacacac	gcatgcacac	acacgtgcac	acatactctg	caagccctga	12120
gttagcaact	gtggaatgtg	accageteag	tgatcccagg	acaagctgct	agggaatatg	12180
	gatgtctgca					12240
	tgtatttcag					12300
attcttattt	tcaacaaaat	atagcattct	gattacatac	catcttggtt	ccacgcctcc	12360
tgccttgcca	agcccccgga	agcggcccaa	ggccatggca	aatagtgaga	gaaacagttc	12420
cagggtggag	actgactcag	gggtgtcagt	cagtggggcg	ctgatggccg	gtgggaggcc	12480
agcagtcatc	accctctcct	tgggacagtt	gagtagctct	ccccagggt	catgtggcca	12540
ctcaggttca	tatgggaggc	gagaggagtg	gcagagtcca	ggagagtggc	tccgaagtca	12600
ctgttccctc	caggcctcag	tgtcttcatc	cattaaatgg	gtaggctgag	gtctgggatg	12660
acaaggaggg	cttgcactta	ctgaaaccca	tgggaggctg	ttcgccgatt	tcttttattg	12720
atggaagaaa	acactcgtat	aattcaagta	ccaattaaaa	ggcaggcact	ggaaccaccg	12780
tctgccaatt	cctagttttg	cctataccaa	atttgagcaa	gttaattgac	ctctcccagc	12840
ctcagtttct	tcgtctgtaa	aatgagggta	gggatggccc	ccagcccaca	gggcagctgg	12900
aaggattaaa	gaaatcaaac	atctcttaga	gcccacctgg	cacactgtga	tacacaacaa	12960
	tttttgtcta					13020
	taaaaacaag					13080
					tttatacagg	. 13140
	gtccttcaaa					13200
	cacacgtgtg					13260
	gtcacaaagc					13320
cgtgaagcca	ccaactctac	ctctgcgccg	tgtcctgcag	actgggctac	cctttgggtg	13380
gggaccagca	tttgatgcaa	gaaaggcaga	cagaaaagga	aaagggcaag	ttcgactcca	13440
	acagtaccaa					13500
	acacagcaaa					13560
	ccctgcaaat					13620
	ggcacagact					13680
	atgcccactg					13740
	ttcctcacag					13800
	agaacatctg					13860
	tttctttaag					13920
	caaaatccct					13980
	aaaattgcag					14040
	tgccacctcg					14100
	ccacggtttg					14160
	tctttgagga					14220
	aaagtccagt					14280 14340
tagataaact	ggaagttaag	aagaatttgg	tagaagetgag	cactatggtg	ctgcaggccc	
coggigaaci	cttccaccaa	geatteatty	eggactgaca	gegegegagg	ggctctgcag	14400 · 14460
cttoctaaga	aggacgaaac	acatteegre	cgggggaaac	topcaggaaa	geteectett	14460
tgagteteat	tgccgggcct	etteteette	grecetacce	tocatgeetg	tagaagetee	14520
	gtgggagctg accccatttt					14580
	cacttgtggg					14640
	tgttttcatg					14760
	gtcaagcaca					14700
	ccatacctgg					14880
	cctcccagga					14940
	gactgtgagg					15000
• · · · · · · · · · · · · · · · · · · ·	J J - J J -	2223	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	335-0	- 5	

actgcccctt	ctcaggggca	agaaccgtcc	tggaggactt	ggctttggag	ggggagcctg	15060
ggaggccagt	aagtcaacaa	gcctctactg	ctcatgggtg	ggatcccacc	gcaggccccc	15120
acctgctggg	gcgggcaggg	acgggcggca	cagcttggcc	agggcagata	acccccacct	15180
tggccagggc	gaaggcagga	cacgtgggct	ccagcctggc	cccaccatcc	ctgcacaaca	15240
ctgggcaaag	tccacgtttt	cctcaactgg	gtgttgacat	ctgcaggaca	ggggcatgga	15300
ggtacagagc	gctgaagcca	cacagcaacc	taggagcgag	actccatgcc	tccccgggga	15360
cccctcccca	ccatgaggac	catgaaggct	tcccatgtgc	cgcaaggact	ctggtgtgga	15420
gacacacgtc	tcctacacag	ccaggcctaa	cgctcttgta	actgggtggt	cccacctggg	15480
ctcacagctg	gagggccagg	agctcaaggc	ttcgcagggt	ctgctctcat	cccagagggg	15540
atggggagcc	acagcaggct	gcaggagaga	gggtgggccc	cctccacttc	agaggccca	15600
tctggcccac	agactggaga	gcacatctct	cagcaaccac	ggagcgccaa	ctgcgcacag	15660
ggcctggtcg	tcagagcggg	gcaaaggcac	tgaccgtcac	ggccagggg	agggaagacg	15720
ggtgggcagg	gaccttgggc	agagggggaa	gaacctggtg	cccaggctgg	ccctaccttc	15780
agcagtgaag	ctgagtgggg	aggcgctgat	gcagggggcc	agaaagggct	gctggtcagc	15840
cgggaggagc	ccccacaga	ggaagcagcc	agcccagacg	cagatogcag	ggtccctca	15900
acaatgtcct	ctgaaaagga	qaqqcqqqqa	ctgctctggt	gacacctaca	aatagatagt	15960
cagccctcag	cccctgcca	tacttctgac	aaagcagagg	CCCCcadada	aggcgcaccc	16020
			tagagcccac			16080
ctccagctac	aaaataaatq	ccgaggccag	ctaggcaagg	acqcacactc	ggtaccgact	16140
gaataggete	cacqttqtca	tgagcgcaac	ccacaggcca	ccaggccaca	ctatocadao	16200
ctgagatggt	ttcggccaag	cagcetetea	gctgagctga	acaagtccag	agteceagag	16260
gggtcgtcac	tatggagtaa	caattgcgat	gcgatggtaa	ccctaacage	taaccotcac	16320
tgagccaggc	cctgagctag	gtacttttca	acgctgcctc	tetacage	cadecagceae	16380
ctataggage	ataaagatca	ttccctatca	cggatgggga	aactgagete	tassacsatt	16440
aacgtgcttg	tcccagaccg	cagagetagg	agcaggacac	aacegageee	caddcadrc	16500
caaataaaaa	gggcctgcat	agasttetet	ggaggctgcg	catacacaca	accccaggaa	16560
ccccaccct	gggcctgcac	ctcactacta	cccctcagt	gactcoagea	acccccagga	16620
taggggaagg	addetadaaa	tacctcaaat	gtccgaaaca	gaececagea	etterages	16680
actoctocat	aataattaat	acceagge	ccccaagcca	cetatacese	ctctggaggee	16740
cttccagcat	accttaataa	ccaactaca	cttaggtgct	atagagagaga	aagaatagaa	16800
caddacccac	ccctcctctt	cacageegge	caaagcaaga	graggeagee	tagaatagaa	16860
gcatccctct	anctcaanna	cctcaccaca	cacaggggtc	aggggggact	cogactgagt	16920
cattcccatc	tacctttcat	cctcatggat	cacaggggcc	agggcaagat	ggggagates	16920
ctgaacctgt	ttctcaccta	aaacacatca	caacaacagc	cagugaggut	ggggacatcc	
coctaatoo	tasatataat	aaacacacca	taccattgga	stageset	ccgggagagg	17040
			cactggttaa			17100
			gtggtggtat			17160
accergatgg	aggaggtetg	tagteagaae	cgggctgtgc	agggcacagg	agcccagagg	17220
			gcagggctcc			17280
acagcaagga	ggeegeeeag	ageceagege	ctagcaccca	gragegrace	agacctgcct	17340
			gtcagtcatg			17400
			aagaaggcct			17460
			ccaccagcct			17520
			taataaacgt			17580
			aattaaaact			17640
			ccatcctctg			17700
			ggtgagaatc			17760
			agggcacacg			17820
			agggccacac			17880
			caccccacta			17940
			agagccatgg			18000
caggtagtca	cttgctccac	agggadaggd	aacgccgcac	ttgggggctg	ctctgcggca	18060
ggactagagc	tccagcagct	cagccctcct	gagaaggaga	actccatgct	ctaagaggca	18120
gacgcagcgg	acggcaccaa	agccaccaca	agcccacggg	gccctgcatg	gcaggtcagg	18180
agtccctgac	cactcgctct	ttgtaaccag	agctgcagtg	gagtctacga	ggcaaggact	18240
gtgggcggca	gtggccacag	caaatgaatg	agtgtcccaa	gggagcaggc	ggctgcgggg	18300
aggcacagcc	gggacccagg	agtcctccgg	cactgcagca	aactccctgg	gccccctgag	18360
			cgggggcata			18420
					-	

		gaacgcatta				18480
		gtagccaggc				18540
		gatcacttaa				18600
		caaaaaaagt				18660
		ctcaggaggc				18720
aggtagaggc	tgcagtaggc	tgtgatggca	ccactgcact	ccagcctggg	taacagagtc	18780
agactctatc	tcaaaataaa	tttaaaaagc	accaagccag	gcttggtggc	tcacacctgt	18840
aatcccagca	ctcagggagg	ctgaggcaag	tggatcacct	gagtcagaag	ttcgagacca	18900
gcccagccaa	catggtgaaa	ctccatctcc	actaaaaata	caaaaattac	ccaggcgtgg	18960
tggcgggtgc	ctgtaatccc	agctactcag	gaagctgagg	caggagaact	gcttgaaccc	19020
aggaggcaga	ggttgcagtg	agccaagact	gtgctactgc	actcaagcct	gggagacaga	19080
acgagactcc	atctcaaaaa	ataaataaat	caatcaaaac	caccaagact	ttttaatata	19140
aacatttatt	attccataat	tccttttttg	catgattaaa	aatgtttata	taaagtttcc	19200
tgaaaatggt	aagaatgcca	agtgaaggct	gcaaatgccc	aagcccccac	cgtggcatct	19260
		aggctggtgg				19320
		ggtttcccac				19380
		ggcccagaag				19440
		tgctccagca				19500
		gatgaggcct				19560
		aggggcgcag				19620
		aaggttccag				19680
		ctgctcaggg				19740
		ggcacgactg				19800
		ggccagagca				19860
		aagctgatgt				19920
		ggtaaagcct				19980
		cctgtgtcta				20040
		agtgaggagg				20100
		agttcgctct				20160
		catatettge				20220
		gagacagtct				20280
		gcacccaggc				20340
		tgagcaattt				20400
		gggtacatcc				20460
		ggggagtgat				20520
		gcattagaat				20580
		gcaagtcggc		-		20640
		gtcaaggccg				20700
		gctcatcgga				20760
		gtccccagat				20820
		aaagcataaa				20880
		ttacataact				20940
		gtacacaaag				21000
		tgtctgtgga				21060
		cccaccaagg				21120
		caaaaaaaaa				21180
		agtaacagtc				21240
		agggatagga				21300
		atctttatga				21360
		aaacctgaaa				21420
						21480
		tctataagaa gggaggcgga				21460
		ggtgaaaccc				21540
		tagtcccagc				21660
		tgcagtgaac				21720
		tctgtctcaa				21720
						21780
yaaaayaadd	ayacaacaya	aaaatgggcc	aayyacaayt	grayyraart	cycayaaaay	21040

taaataccaa	taaaccagaa	atgagggttg	tgcaaatcaa	aaggtgttat	aatttttaac	21900
caaactggac	caaagaaaac	accaaaaacc	aaaatcttgt	aattgccagc	atcagagagg	21960
atataggaaa	gtgtgtgttc	tcgtagatgc	ttgcaggtat	gaactgctac	agccttttag	22020
gagttatgta	tgtatgtatg	cttgtatgta	tgtatttgag	acagggtctc	gctctgttgc	22080
ccaggctaga	tctgttgcag	tgctgtgatc	atggcttact	gcagccttga	cctcctgagc	22140
tcaatagatt	ttcccacctc	agcctttcaa	gtagctgaga	ctacaggagt	gtgcaatcat	22200
actcagctaa	ttttttaaat	tttttgtaga	catggggggt	ctcccaattt	tgcccaggct	22260
ggtctcgaac	tcctggactc	aagtgatcct	cctgcctcaa	cctcccaaag	tgctgggatt	22320
acctggatga	gccactgtgc	ccggcctcaa	tatctttaaa	aacagaaatg	gacacactct	22380
ttgactagga	atgtatccta	taaaaacact	tatacacatg	cagagacaca	cgagcaagca	22440
tgctttgtaa	tagcaatgaa	ggctggaaaa	actcctcaat	caggtaaatg	ctgtcaagtg	22500
cacctgtgta	ctatgaaatg	gcacttggct	tttaacaaga	gcaaagacag	aaaagcaaaa	22560
gtacaaagta	gggtgtgatg	gcacatgcct	gcagtcccag	ctactcagga	ggctgaggca	22620
ggaagatcct	ttgagcccag	gagttggagg	ccaggagctg	ggcaatagtg	agaaaaaata	22680
aaattaaata	ataataataa	taaaataggc	tgggcacagc	ggctcatgcc	tgtaatccca	22740
acactttggg	aggctgaggt	gggaggatcg	cttgatccca	ggagttcaag	gccagcctgg	22800
gcagcaaagc	aagacaccca	tctcaacgac	aaattttaaa	aaatcagcca	ggcaggctgg	22860
gcatggtggc	tcacgcctgt	aatcccagca	ctttgggagg	ccgaggcagg	cagatcactt	22920
gaggtcagga	gttcgagacc	agcctggcca	acgtggcaaa	accctgtctc	tactaaaaat	22980
acaaaaatta	gctgggcatg	gtggcagatg	cctgtagtcc	cagctactga	ggcacaagaa	23040
tcgcttgaac	cagggtggca	gaagttacag	tgagccgaga	tcgtgccacc	gcactccatc	23100
ctgggcgtga	gtgagactcc	tgtctcaaaa	aaaaaaaaa	aaaaaaaca	aggagccagg	23160
	tgagggaggg					23220
agcgatccag	aggcctcagg	atcctgaagg	gagaaaaaac	gtgaagctcc	gtgctagaag	23280
agaccataga	gattggaatc	agctgġttct	attttacaaa	aaaaggaaac	tgaggccctc	23340
agaaggtgag	tgcctctcaa	tgccccacag	ggaggcaggg	agagggctct	gagccctgca	23400
gggccctgga	ttcttgcaat	ggggtggagt	ggagcctgtg	ccgccccac	caggcacctt	23460
ctcaggagag	gagccgttgt	catatccttg	aaggggtcct	tgagcccctc	aaaaggctaa	` 23520
aaaccacttt	cctccttgag	tgaaccttca	cctcagttta	accacaagaa	aaactacatt	23580
aaggcccagc	gcagtggctc	atgtctgtaa	tcccagcact	ttgggaggct	gaggtgggtg	23640
gatcgcttga	gcccaggagt	tcaagaccag	cctgggcaac	ataqtqaaac	cctgtctcta	23700
caaaaaacaa	caaaatcagc	tgggcgtggt	ggtgcacacc	tgaggtccca	actacttqcq	23760
	agaggattgc					23820
atcactgcac	tccagcctca	gcaacagagc	aagactcaaa	aaaaaaaaa	aaagcaggcc	23880
gggtgtggtg	gctcacgcct	gtaatcccag	caccttqqqa	qqccqaqcqq	gaggatcagg	23940
agatggagac	catcctggct	aacacggtga	aaccccqtct	ctactaaaaa	tocaaaaaat	24000
tagccgggcg	tggtggcggg	tgcctgtagt	tccagctact	caggaggctg	aggcaggaga	24060
aaggcgtgac	cctgggaggt	ggagettgea	gtgagctgag	atcacaccac	tocactccao	24120
	agagcaagac					24180
	aaactaaaag					24240
gagcaaatac	gaaaataccc	agaaaacaca	atccccqcac	ccccaggaca	acctcccagg	24300
	caagagaccc					24360
	tcaggctcta					24420
	agccacgggc					24480
	gtgacaaact					24540
	tggggctggg					24600
	atgcgcatgc					24660
	aggcagcccc					24720
	ctcagggctc					24780
	acccacctcc					24840
qtcacaccct	cggggtactc	ttcaaaggac	agctggatgg	a a a a a a a a a a a a a a a a a a a	gagettttgg	24900
	cctcacccca					24900
	cccgattttg					25020
	agagaatgca					25080
	ccacagctgc					25080
	cggcctggca					25140
	aagccgagga					25260 25260
aggccacc	y-cyayya	cocyyacyca	guccuyyuu	ccyccayyyc	CCCCCCaca	45460

				_		
gactccccat	ttggagagcg	cattaagtgt	ttccaaagcc	tcacaaacca	cagatgtccg	25320
gctgtctcac	ggcttctgta	acctgaactt	ggccctcact	ctgccctccc	agcactcctc	25380
tcagggccca	ggcccctcct	ctgagatgcc	agcactgact	ccccaacttg	tccccatcac	25440
ctggctcgtt	cctgaacctc	ggcaggagag	tctcaggcca	gatcctccca	ccaqccacct	25500
ccaccaggat	gcaggaggca	tgagacctgc	tcgtgccggc	tgggagatgc	aaccaaccaa	25560
		gaactgacaa				25620
		gctgaaatag				25680
		gccggcagct				25740
		gtctctacta				25800
		acttgggagc				25860
		aagatcgcac				25920
		ataaaaggct				25980
		aaccaaggaa				26040
		acaggcagaa				26100
ccaggggatc	cggggagagg	gaacgggaag	tcaccgtgta	atgggtatgg	gttttatttt	26160
ggggtgatgg	aaatctctta	taacttgata	gaagagaggg	ttgtaaacac	tgtgaatgta	26220
		ctttaatatt				26280
		tttcacctag				26340
taactcctgc	ctaaagcctt	ccagaagctt	ccactacctt	gtggatcaca	accagactec	26400
acaccatgat	ctggcctcta	agggcctctc	gcaggacacc	ccgagggtga	addadcaccc	26460
atagaccac	ctctgcatag	ctgcaaagct	tettteeta	tectecete	tacatagasa	26520
		gccttatctg				26580
		gcaaaacagc				26640
		ggaaggattc				26700
		cttcctaagc				26760
		ctctgtccac				26820
gctgcagcgg	tgagtgagtg	agtttgtcag	tggactggat	gtccaaggtc	atacaggaaa	26880
aatccagact	attgtaataa	cagcctctag	accggctggg	gccagaaaga	tcgaggacgc	. 26940
tgacacacaa	ctgcgctcac	tgcagctctg	ccagggatgg	ggctaaaggt	ctcacacagg	27000
		cctgggagag				27060
ggtgcccgaa	gtcaaacagc	cactgagcat	gtaaacccag	gtgggtctga	cccaaaccc	27120
		caacccgtcg				27180
		cgtgtgtgtg				27240
		gttccaaaaa				27300
		ggatcgggtt				27360
						27420
		tgctttggag				
		cttctgggct				27480
		gggggagagg				27540
		gaggactagg				27600
		tttccgtgcg				27660
tcaggaaaaa	taattagcgg	cccacttact	ggcttcgctg	aggtccgagg	catgtatttc	27720
		taacatcaaa				27780
ttccatttta	ggcctggatc	accacattca	ctggggctcc	caggccttgc	tgcctaatgt	27840
taaaataatc	aactctattt	ttgcctcaca	cacaactgaa	ctctacagct	ataattcttt	27900
		catggacgac				27960
		ctgcaatgag				28020
		ttccccaaaa				28080
		gcctgtactc				28140
		aaggccccac				28200
		gaatctctag				28260
					ggctgcagcc	28320
					attcagggag	28380
					cgctaaactg	28440
					acttggccag	28500
					agcaagaggc	28560
					gtttcacgac	28620
tgcttaagtt	tcctgagtcc	tcctgacctc	aactccaccc	cctgggaaac	accaaaagtt	28680
_					-	

```
ggatgagaaa gttcccccgc cctacctctc cccacgggag tgtacaactg aggcacaagc
                                                                      28740
etgeeteece caetgeeceg egatetggga ceaegtetee teegegtage egaceegggg
                                                                      28800
atggacacta tetggggace eggeggecae aeggggeatt egggtegeee gggcacetgg
                                                                      28860
caggtgtcag teegettgga aacecacage caegeggete acaggageag egecacegge
                                                                      28920
taggccgccc cgcgcccggg ctcagaactt tctcgctgcc acttcagccc gtcctcggag
                                                                      28980
cacgcggggc ggccgcgcgg ccgctggaaa caggcttgcg aaccggctcc ccgggccagg
                                                                      29040
ecegecteeg egeceeaagt eceegetegg tgeeeggeee gggeeacaeg ggeeeagege
                                                                      29100
gggctcggct cggctcccgg cttcccgcgg gctcgggcag gtgaggaccc gcccgcgcg
                                                                      29160
cacctggcgg agcgggcgcc ctcctcgcca gcccgggacg cagcgtcccc ggggagggcc
                                                                      29220
cgggtgggga gacaaagggc ccgcgcgtgg cggggacgcc gggggacggca gggggatccc
                                                                      29280
gggcgcgcgc cccaactcgc tcccaactcg ccaagtcgct tccgagacgg cggcggcgc
                                                                      29340
cgcgcacttg gccgcggggc cgcccgggcc attgtccgag caacccgcgg cccgtcttac
                                                                      29400
acgccgggcg cgggaaggta tcgaatcagg
                                                                      29430
<210> 8
<211> 33769
<212> DNA
```

<220>

<221> unsure

<213> Homo sapiens

<222> (33739), (33749), (33758)

<223> Identity of nucleotide sequences at the above locations are unknown.

#### <400> 8 cttcccctta cactggtcct tcgacccgcc tcggatgaaa actgaatggg tttagcctta 60 gaggeteteg gtetetaagg gaggtgggte aggatgeegg ggaeagggte etetteetgg 120 ggcaacgtgg gggaacgagc cacctacccc tccactgaat tgccctgggg tgtgggtacc 180 gacggctcat tcggtgtcca gggtctgaga tgtgttgaca ggaagaatga aaggggatgg 240 gagggatggg gcgaaagaag ccacctgcag ccccaggaac tatctggcca gcacaccgtc 300 acccagegge etgagecace eetgecagag eeaggaggag accetgecaa tgggteacea 360 gtgtgcagga actcagaagg tcatcacagt taataccctc catgccccaa tgtgggaaaa 420 480 ccccggacac ctccatccca cctcatcacc cagccgcagg gccccggcca tccctgcaga 540 cagagtggat gtcacaacct ccctgcaccg aaccaagtgc agctcccagg ccacaggcca 600 cccaggaaag gtccagtggc ccccggaggc tcccaccgca ggcctcccac cacagccggc 660 accaacccag gatagctgtg ttctcctggc ttcttttcac acgggtagca gaaagctgag 720 atccggggaa agctgagatc cagggaaagc tgagaatcgg cctctgctgc ccggacgccc 780 acceccaget etgeteccag etecagggee teetteteag gtgeeettae aggaggeaga 840 gggcttgagc cacctcctgg gcctggggca cgcaggatga acggggtcac ggtgcaggcc 900 actgtccact gcgcagatcc caaggccata aacagcctgg ccacagtggc ttcccagctg 960 gcaggcggcc agattattt tgttgtttag caattgatta agtttctccg ctgcccccag 1020 gggtaagtgg tggggcaaat gccgcaaccg cagcatttga cccgggatcc tgtgccaagt 1080 gaccataggg tcacaaagca caagggaagt ggctgggccc gatgctggct ctgctggaac 1140 . ctgaggccgg ccactgtcac ctgcacggtg cctgggacct tccagcaagc acagagaagc 1200 tatggccctc caggagcagc tggcaggcac cttggcctgc agtcaggggc tctgtctgct 1260 cagetetaaa acaggaaagt egetgetetg eetggggtea gggeageeag agagtgacea 1320 agtcagtgcc ggcctcagga agggacctgc aggcgggtcc cttcctctcc catccctcgg 1380 tgccagccag cccctcctgt ggccccccac tgcctgcctc tgcccccatg ccccaccaca 1440 acctcaggcc catggctgca tggccactcc ccaggcaggc agtggggatg ggatttcacc 1500 atgttggcca ggctggtctc gaactcctga cctcaggtga ggagttccta aagtgctggg 1560 attacaggeg tgagecaceg egecageeet eeetgtggta etaaacaete acaceeett 1620 gctggggacc ctggtgaggg aacacagcct cacaagtgaa gtgtggtttt gttgagcaaa 1680 tgacgcctgg gcagccctct catctttgcc taaaactgaa gaatttaggg gcgtggatgt

1740

WO 02/092015 PCT/US02/15982

		aatgaaaaag				1800
		cacagggtgc				1860
		ttgtactgct				1920
ggetecagee	tgacgcatgg	ctgcgcccct	ccgcaaggcc	accccggtat	acatggaaac	1980
		ggccggccag				2040
tcctccatag	acctcagcga	gctctcggca	ccatgtgcct	caggcccatt	taagaagtag	2100
		tcatgcctgt				2160
		gagatcgaga				2220
		taagccgagt				2280
		aatcgcttga				2340
		gcctaggtga				2400
		cagggccagc				2460
cgcgtgcctg	ggtatagggc	tcaggaccat	gaccgctgca	gtggccccca	agaaacgtta	2520
		tcagtggcag				2580
		aactgacaga				2640
cctatcacaa	gtgcagggca	ctctacaact	tatgcatcct	tccccagaca	ccgtcctttc	2700
		gcacacaggg				2760
		tctgatttcc				2820
		aaagtcaaga				2880
		tcttgaaggt				2940
		ggacacagga				3000
		gagggctgcg				3060
		gtggccgggg				3120
gtgggcacag	cacgagcagg	ggcagggagg	tccacactca	gatgtgcaca	gggagaaaca	3180
aatcgtgcat	ttccattgga	ataggcggta	aaaggtagaa	aaacagagtg	ggggccagga	3240
agggagtcgg	agccttctag	tgtctctctg	caggtgagcg	gcagcccgag	gtgtcagctc	-3300
agcagacttg	gggtccaggg	gccgtgtctt	ctatcactga	ccccagggca	cacggaactg	3360
gggagggaga	gcagaggcac	agggcacggt	cagtgaaacg	aaacaaggag	tcatcaccaa	3420
atgcggaaag	ggcaaggagt	gcccgcagcc	gcacaagggt	tctgtctggg	caacgtgggc	3480
gtcccaccag	gccccgcacc	ctgcaagcgc	aaagctcgcc	actgaagata	aagggaagct	3540
gttggagctg	cggagctggt	ctggggtccg	catggagctg	ggcttatgct	gcagtcacaa	3600
gggggacatg	gaagaggctg	caggggacaa	aaccagtgac	cacagtctaa	ctctgagcct	3660
gtggaaaggc	gcccacagca	ttcacccatc	ccagagatgc	cattccccct	gtgcccccgc	3720
tccacggtga	cagcgttctc	caggaatatg	atgcgcccct	ctcctcttgc	atcagccctg	3780
		aaagcagaag				3840
		aatccaaggt				3900
gggggttgag	gatggcaaag	gggcaccggg	aactttccca	gtggtagaaa	tgttctctgt	3960
ctggaccgtg	tggtagttat	gcagacatat	gcagctgtca	aagttaatcc	aaatgtacac	4020
		ttgcctgcaa				4080
cactcaggct	tcttccacaa	cttcctgaac	cgtgtgagct	gattttcttg	ctattaaaaa	4140
		acagcagctg				4200
tgcccggccg	cggcagactc	ggccccacag	gacctccttt	ctttttccc	tttgacctac	4260
ttccctgata	agtgacaaga	cagccagact	ctgggaacaa	acgcccgtta	ttcggccccg	4320
		ctgagctaat				4380
		gtcagtctgc				4440
		atccccgact				4500
		gggtgagctg				4560
		ctgccgggag				4620
		acgtgtggcc				4680
		aggagggatg				4740
		gctggagggg				4800
		aaggcctcac				4860
		cgaagccagc				4920
		caggetetge				4980
		cagccgccat				5040
		cctgccctgt				5100
		gctagcggtc				5160
	,	J= j j j =	J = J =	222224	,	

accaecttes.	2000202020	036t				5000
			cccccccgc			5220
			ctgctccctg			5280
			gcacctgact			5340
			tcaagacatc			5400
			caggaggag			5460
			tgtttccagc			5520
			actcacagat			5580
			gggtggggct			5640
aagagtctga	gtgattctga	cacagccagg	ccctgccccc	ctcctgacct	tcgcccaca	5700
ggaaagggag	ccacacgcct	gaagcgccca	gcacaccccc	ctccgtcctc	cccaggtcac	5760
ccgctggccg	tgtgagccgt	gctccccact	gccccttcac	ccaccccagc	tcctcctggc	5820
			acaaccgccg			5880
			ctgctcagca			5940
			cccctttcta			6000
			caacacgatg			6060
			cggtctgcct			6120
			ctcctcgccg			6180
			gggtccgcct			6240
			ctcctcgccg			6300
			gggtccgcct			6360
			ctcctcaaca			6420
			agtcccgggt			6480
			ctgcatttcc			6540
			ggtcccgggt			6600
			acaaaccaag			6660
			tccctcggga			6720.
			tagcccaggg			6780
			tggacctcac			6840
			ccgactctga			6900
			cctccatggg			6960
			acgaggcctc			7020
			tttcacgttt			7080
			gaggcgtccc			7140
			caataccaat			7200
			ctcaggtgac			7260
			gcaaggaatg			7320
			gtctgctttg			7380
			tgactcacca			7440
			aggacaaagc			7500
			cttctagaac			7560
			ctaagaagag			7620
			cagctgcccc			7680
agggcccagg	gcagggagac	ggaggagcca	gcatccacac	cgagcaccag	cctgttaatt	7740
aacgggaagc	gggtggggcc	catctccagg	cagctctgag	gtcagactgg	ggaaccatgc	7800
ttacaaaaaa	aagtgaactg	aaacgctcac	gtcctcatgc	aaaaccagac	tcccagttgc	7860
atctttctgt	ctcattgagg	agctttttcc	tccctttgac	agaacaccct	acacacggca	7920
			agagtaaaac			7980
			agcagggcct			8040
			agttatgtgt			8100
			aaaggtgacc			8160
			gccctgacgg			8220
			ccagcggtcc			8280
			ggggccagag			8340
			accacccct			8400
			ccccgcttg			8460
			ggagactggg			8520
			cagccagtcc			8580
-			_	<del>-</del>		

PCT/US02/15982

```
ctgttagaac cctgggagcc agcaaagagc caggggctcc acctaagtct atagcccctg
                                                                     8640
cctcttctgg ttgggaaaga aatcaacgcc cctttactgg ctcccactga cagcccactc
                                                                     8700
ccccaggtat gggaggattc tgggacgatg caggcaaacc tggaccctga gtgaacctgc
                                                                     8760
cccagctctc acgggcctgg caccagccac agcacctaag gcgccggtca tggtgacaac
                                                                     8820
atgaaggtga taagggcatg gacagtggac atggcagctg gacactgggc acccactgga
                                                                     8880
tgccaggcac ccagcacggc tccgtcaccc ctggatgagc agtggccctt tgcaagccag
                                                                     8940
ggtagcctgg gcaagttatt tgggggtctc caagcttgtc cagctgtgcg acttcactga
                                                                     9000
gccatgagtc tgggatttta tcagggccca cacccgttcc tggaactctg atacgtgagg
                                                                     9060
gagecacaca gggaccetta acaaaagete ecagggeaae atgttetett geeteagtet
                                                                     9120
cccaaatagc tgggattaca ggcgcacgac taccgcccgg ctaatttttg tattttagt
                                                                     9180
agagacaggg tttcaccatg ttggccaggc tggtcttgaa cccctgacct caaatgatcc
                                                                     9240
ttecactgtt agggeaagge acctgaeagg cacgaetgea egatetgett gttggggget
                                                                     9300
gtgtccattc cccactcctt cgacaaatgt ccacacccag ccttgctttg acaccccaag
                                                                     9360
aacagagatg gtgacacctg cttcctacat gcccattgct ctcccaaggc agacatcccc
                                                                    9420
agcagatgca acacagtgtt taggcagaca tcaccaatcg atggtggcaa cagacaccag
                                                                    9480
gccctgctcc ctctaactcc agtggccagg ccccaagcca gctctcacct gcccactccc
                                                                    9540
aacccacage ageaagacte agaaatggca aaaacacaaa gagaacagaa acgccccata
                                                                     9600
gcgggaggat gactaaaaga catgtettga taagatattg tteaggeata ggeeaggeae
                                                                     9660
agtggctcat gcctgtgatc ctagaacttt aggaggctga ggtaggtgga tcacctgagg
                                                                     9720
ttaggagttc aagaccagcc tagccaacat ggtgaaaccc catctctact aaacatacaa
                                                                    9780
aaattagcca gacatagtag cgggcgcctg taatcccagc tgcttgggag gctgaggcag
                                                                    9840
gagaattgct tgaacctggg aggtggaagc tgctgtgagc cactgtactc caacctggac
                                                                    9900
9960
atgtetttga tacatattta eeteetgeaa tegeaaatge ttetgeagtg cataaagtga
                                                                    10020
aataaatagc aggaagcctt acggttcgat cacccacaca gacacacagt cacatacagg
                                                                    10080
aaaaacgcag ggagggctgg ggaacaaaaa aacagaagat aaaatgtgga gacagacaca
                                                                    10140
ccaagagagt aagagaccac ctccagacct cccttcagct tctcaaacac acgagccggg
                                                                    10200
cccqttacag aatttqcqqq gaccqctqca aaatqqaaqt gcaqacaqcc ccttactcaa
                                                                    10260
aaggtaggaa tttcaggtca acaacagagc tcacctcata tgactacaca qgtcacacag
                                                                    10320
cccqtqaagt cggtcccaac accagcatgc tcctgcctca aagccgctgc acgtgctgtt
                                                                    10380
cettetegee titecetett tragteette agateteagg ceteetgaga gagaeetetg
                                                                    10440
acctgccggc tcaggcggcc acacccccag tacaggagtc tccggctcag cccctgctgt
                                                                    10500
gttccgtacc cgatccaggt ctgtcctatg tccatctgtg tgccggcttg cttcctgaca
                                                                    10560
tggcccccac cacacgtgtg cctcggggca ggggaacagg cccgtctcat taactgcttt
                                                                    10620
cttctcagat attttctgga atatttgtgg atattgggca acatatatgc tccacctttt
                                                                    10680
tcagactage caggacgage tgcattttt ttttttttt tttgagacag ggtctcactc
                                                                     10740
tgttgcccag gctggagtat agcggcatga tcttggctca gtgcaacctc cgcctcctag
                                                                    10800
getcaageaa tteteetgee teagteteee aagtagetgg gattaeagge eegtgeeaet
                                                                    10860
                                                                    10920
actgcccage taatttttat atttttagta gagatggagt ttcaccatgt tggccagget
ggtcttgaac tcctgacctc aaatgatcca cctgccttgg actcccaaat tgttgggatt
                                                                    10980
acaggegtga gecaetgege eeggeeegag etgeetgttt tacacetttg eeatatteeg
                                                                     11040
gtgattetet eteceeteeg teeceeggee etgactgtgg tggecaetee etgeegteat
                                                                     11100
gagecegtat gteeteacte ttteeettte egecaggaet teaaceaaca etgeagageg
                                                                     11160
cagggtccag ctccagcact gagttcagcc tcttctcacc aacagacagg caggaaagaa
                                                                     11220
aacaaactct gagaaggcca aggttcccgg gcagccagca agccaagcat ccttctccgc
                                                                     11280
tgaggcttgt gcagccgagg cacccctcc tccagggagc aggcagcgtc ctggggcagt
                                                                     11340
ctgcgaggga gaccagggcc cttgctccac cagggcccca ggtatggggg cagcagcaaa
                                                                     11400 -
ctcatggctc tgggagccag accccacctg ctagaaccta ctatgccacc tgctgtgggc
                                                                     11460
aaccccaggc tggtgacttg ccctggcctc ctctgtaaac aaagggctca tccaacctgg
                                                                     11520
tcaaaccact cctcccttc aagggtctat aatcctccct taacctgctt ggtccaaacc
                                                                     11580
Cctggtgtcg ccaggtcact caggaggcag ctcatctgga ctccttccct gggtccagtt
                                                                     11640
teteteteaa cattgeettt gaggeegagg tgaaeggtea acagegaagg geeceagagg
                                                                     11700
tgatggagga gcgggtgtcc aagacactca ccctttctaa tgcactgact ccctcgtgga
                                                                     11760
ctcacttgtg ccgtctcccc cacccaccca gccccagagc ccagagtgcg agcgccagag
                                                                     11820
gcccgggatt ctgtctgcac cgcggggtcc ccagtgcctc ggagcaatgc cagcacccgg
                                                                     11880
caagtgttcg acaaatgcct gctgaatgag caaatggatg gatgaacgaa tgaatgagca
                                                                     11940
agcagatgaa tgaatggggt gctgtccaga gccgtgagga ctaggccgcc caagtcccca
                                                                     12000
```

tttctcaaat	teteattata	22225tt===	22222424		ma	
agesteece	tctccttctc	ccgacttggg	aaacaagacg	cceggeeggg	gaggetetee	12060
aaccaccccc	tgcagcagcc	ggcacagegg	acagaccccc	tgatgtaaca	gccatgtctt	12120
cattadagat	gccctgctct	cagaaagaga	aagacaaata	caaacctgga	aaatcctcac	12180
Caaacycagy	acccctgcca	gggagcagag	aaaagaccca	cacgccacgg	gcgccacgac	12240
cacacacaca	ccccagccgc	tgcacacaaa	cacagaccct	agccagcaag	aacaggggga	12300
ccaggaaact	gttcctaaag	tcaggacccc	catgtgctca	gacagcagtg	agagcaagga	12360
cacttctcca	tccaccggat	gccaggagag	tccttttagg	gggccccaca	ccgagactct	12420
gcccttagga	ctgttcctga	gtgtggaagc	cagcccactt	ggaagccccc	tgccctcccg	12480
agtgggacac	cggcacagga	agcaggccct	gtcccccacc	actttctgca	agctgggccc	12540
catcacgcta	cagaaacggg	gaggactggt	cccagggatg	gcgctttcct	gacacctctc	12600
gttaccccct	cgcttgccag	gccccagggt	cagccccaga	ggccagactg	gctatcccag	12660
gcccgggagc	atccccgaag	gcgagctgca	tcctgaacgt	gtgtgatttc	ccgaagggc	12720
cgccccgaac	cgacacctgg	aaagaaagat	cctcagccgg	tgccccagag	gagaagagcc	12780
atgcctcact	gcaacacagt	cccaggaagc	accaagtgcc	tgaggaccaa	ggcggagagt	12840
aaaaagtgg	aaaatatctg	gggcaaaaat	aaaacaaaac	aaaacaggat	tgacctcctg	12900
ggctcaagca	atcctcccaa	ctcagcttcc	cgagtagctg	ggaccacaga	cttgaatcac	12960
cacacccgcc	aagtggatca	tttcgaacgg	gtttgccgag	attectteta	addcycccc	13020
ggcggccgca	acccattccc	accadacccc	accedaced	cccaccccat	cccatcccac	13020
cgcctcacct	gccttacacg	tectaceatt	gtcctgcagc	tacacaccca	tagaaceaac	13140
gcatgtgtag	aaaggctcgc	ttaaaaacaa	canneacann	taggaggagg	caccattata	13200
ctcctcacag	cgagtgtgga	ctggggacag	caggeacagg	taaaaaaaa	ttaaaaaaaa	13260
ggaccgtcac	ttatttata	atgagtcaca	tectacetea	toccocatas	ccccagaaga	
tatatacata	ttgtttctga	togagecaca	ataaastasa	ccccccgcga	cayeereeag	13320
ttccacctcc	tgcccaaaca	coggetteaa	graggeareag	ggacctcccc	gegggeacea	13380
gazatttaga	ctcatcgctg	geeeegteea	catggggccc	teageetgge	cagacggcct	13440
gcaatttccc	caaaaccagc	egigacette	ctggccaccc	tcacacccag	atgtgacctg	13500
cccatggagt	gacatcctcc	ccatctgctt	cctcccacca	agctcctatg	actagaacac	13560
cccccage	tcctcggagc	ccccaaagga	cacccctctg	caaaggctgc	ccccacgct	13620
ccaatggeeg	gggtcaggac	ctgcctgtgt	ggtagtgacg	ggaaccccag	agacaatggg	13680
ctcctgggca	aaaggcttgt	cttgtctttg	tgctatgtgt	ggacccagca	gcttccatag	13740
gaacactgtc	cttcttgctg	ggatggccaa	gcttgtcact	ctcccaagcc	ctcctatgac	13800
	tgaacggaac					13860
	gcagccccaa					13920
	cctcatgctg					13980
	ctccagagag					14040
cctaggcccc	acatttcaat	tcaaagtcca	aaccttccat	aatggcctgg	ccagaaatct	14100
ccatccctgg	tccctgtggg	agtgggccac	tgtccccaga	gccgcagccc	cactgtcaca	14160
gaagctggtg	catttcccca	tcagggacct	ctgtcacaac	ccagcgtggc	ccccaggctg	14220
	attctgggca					14280
tggtggctca	tacctgtgac	cccagcactt	tgggaagtca	aggtgtgagg	atcactggag	14340
	tgagacaagc					14400
	cacacaca					14460
	cacacatacg					14520
	ggccttgaaa					14580
	gcccccatga					14640
	cctccctcca					14700
	gcagggaggg					14760
	atcctcccac					14820
	tgccccaacc					14880
	ggtgagtata					14940
	tggatggagc					15000
	aaggggtgcg					15060
	ggagccatca					15120
	ttttttgaga					15180
	tcactgcaac					15240
	tgggatcact					15300
	gtttcatcat					15360
CACCCACCTC	agcctctcaa	agegetggga	tcacaggcgt	gcgccaccat	gccaggcttc	15420

```
ccatttgctt tcaaccagac aagtgaggcc aggtcaagag ccccaggagc tggcgcctc
                                                                      15480
gtacatttct cccggcgtgc acagggcacc tcccaaacac agcctgtgat ggtgacacac
                                                                      15540
gggctccccc aggtcaagtg gcaaagtctc ccccagggaa gaaaggagga agccatgcct
                                                                      15600
ggcaaaaagc acacctctcc tgcccaacgc tttaacctct gtatacaaat caggccatgt
                                                                      15660
geactegete ettettacaa tgeteataat ttataettte agagtaaatg aaacttggea
                                                                      15720
tcaacccgag aaacagctat tcttttctag atgcttacag tgcccagcaa atgaggactc
                                                                      15780
gggtgtaatg agattatgga cactggaaac aggatcataa tgtgacgtgg tcggtaatgt
                                                                      15840
gcagttttat ttgcttaatg accetcgccc cgtgacaggc tccctgaggg tgggcctggg
                                                                      15900
ggcagaggtc cccgccacgt ccccagccct cagcacagtt gccaggagag ggtgacactc
                                                                      15960
atgaagtggc acagggaaga tgggagctgt gggctctgca gatccaccac ctcttctgtt
                                                                      16020
catttttgtt gatgctgttt tttaagaaaa ttattgaagt aaaattcaca ggacatacgt
                                                                      16080
ttactttttt ttttttttt ggagatgggg tctcactctg tcacccaggt tggagtgcag
                                                                      16140
tggtgtgatc tcagctcact gcaacctctg cctcccaggt tcaagcgatt ctcccacctc
                                                                      16200
cgcctccaga gtagctggga ccacaggcgt gcaccaccac acccagctaa tttttggggg
                                                                      16260
gtatettttt ggtagagaea gggtttegee atgttgeeea aggetggtet tgaageeetg
                                                                      16320
ageteaggeg atecaceege ettggeetet caaagtgetg ggattacagg cataageeae
                                                                      16380
tgcacccage ctaaatttac cactttaaag tgaatagtgt tacctagtgc attcgcaagg
                                                                      16440
eggtgcagee tecaettetg tetagtteca aageaettee attgeceeae aggeaaacee
                                                                      16500
cacaccogge ageagteatg ecceagteee egeeeceage eccggeaaae aettttgatg
                                                                      16560
gacttaacta cacacattct caacatctca tataaacgga atcacaatat acagcctctg
                                                                      16620
atgtotgtot totttgactt ggcaccatgt tttcgaggtt catccaggot gtagcatgtc
                                                                      16680
agtgcttcat cccgttttag gggtgaacca tattccagtg tgcagacaga aaccaatctg
                                                                      16740
tgcatccatt cacccactgg gggacctttg tgtcatttcc accctcggct gttqtqcaca
                                                                      16800
gtgctgctac ggacattact gtccattcac attttgtgtg aagacctgtt ttcgattctt
                                                                      16860
aagagtatac agctaggagc ggaattgctg ggtcatacgt aaatcaatgt ttacgtctca
                                                                      16920
aggaatcaac aaactgtttt ccacaatgtt gtcttttttg tttgttttct gagacagggt
                                                                      16980
cttgctctgt cacccaggct ggagtgcggt ggtgtgatca tggctcactg cagcctcaat
                                                                      17040
etectaaget caatecatee teetgeetea geeteetgag tagetgggaa cacaggtatg
                                                                      17100
taccaccatg gccagctaat tttctaattt tattttttt tgtttttgtt tttttgagac
                                                                      17160
agagtetege tetgtegeee aggetggagt geagtggtge cateteaget caetgeaage
                                                                      17220
tetgeeteee gggtteacae catteteetg ceteageete eegagtgget gggaetatag
                                                                      17280
tcaccggcca ccacgcctgg ctaatttttt tgtattttta gtagagatgg ggtttcaccg
                                                                      17340
tgttacccag gatggtctcg atctcctaac ttcatgatcc acctgccttg gcctcccaaa
                                                                      17400
gttctgggat tacaggcgtg agccaccacg cccgacctta cttttaattt tttaatttta
                                                                      17460
ttattttatt ttatttttt tttttttgag acagagtete getetgtage ceaggetgga
                                                                      17520
gtgcagtggc gggatctcag ctcactgcaa gctccacctc ccaggttcac gccattctcc
                                                                      17580
tgcctcagcc tcccgagtag ctgggactac aggtgcccac cacgatgccc ggctaatttt
                                                                      17640
ttgtattttt agtagagaca gggtttcact gtgttagcca ggatgatctc aatctcctga
                                                                      17700
cctcgtgatc cgcccgtctc agcctcccaa agtgctggga ttacaggcgt gagccaccgc
                                                                      17760
gcccagcctt ttttttttt ttttttttt ttttgagata gagtcttgct ctgtcgccca
                                                                      17820
ggctggagtg cagtggcggg atctcagctc actgcaagct ccgcctccca ggttcacgcc
                                                                      17880
atteteetge etcageetee egagtagetg ggaetacagg cacecaccae cacacetgge
                                                                      17940
taatgttttg tatttttagt agagacgagg tttcaccgtg ttagccagga tggtctcgat
                                                                      18000
ctcctgacct cgtaatccgc ccgcctcggc ctcccaaagt gctgggatta cacgcgtaag
                                                                      18060
ccatggcgcc cagcccatgt ggccattttt cagtgagaga agccagaggc ccatcactct
                                                                      18120
eggttgetee etgggeeatg etetgeetea geeagaagea etgagggaag gteageeteg
                                                                      18180
gcccttgccc cagccacagt cacagataaa ggggcctgca caggtctgtg tggctccaga
                                                                      18240.
gctcgtcacc caacacacga cgcttccatg tgaatagccc caggtgcatc atgaagagcg
                                                                      18300
atggccgctg cagaggcaga agaatcccgc ggggaagcag gtgggagaga ggctgagaac
                                                                      18360
agaccagacc ctggagctac agaccctatg ttccaaccct ggctgggact agctgtqtqq
                                                                      18420
ctotgggcaa attoacatgc ttototgtgc acaggggatc aaaatagcaa acacaggcta
                                                                      18480
ggcacagtgg ttcacaccta taatcccagt gctttgagag gccgaggtgg acacatggct
                                                                      18540 .
taagctcagg agtttgagac cagcctgggc aacatggtga aacctcgtct ctacaaaaaa
                                                                      18600
aataccaaat aaattagcca ggcgtggtgg tacgtgcctg tggtctcagc tacttgqaag
                                                                      18660
gctgaggegg gaggaacact tgagcccaag aagtcaaggc tgtggccgcg tgtggtqqct
                                                                      18720
cacgcctgta atcccagcac tttgagaggc tcaggtgggt ggatcacttg tgatcaggag
                                                                      18780
ttcaagacca gcctggccaa catggtgaaa ccccgtccct actaaaaaaa tacaacaatt
                                                                      18840
```

tgccaggcgt	ggtggcgggc	acctgtaatc	ccagctactt	gggaggctga	ggcaggagaa	18900
tagttagaac	: ttgggaggtg	gaggttgtag	r ttagccaaga	tggtgccgct	gcactccagc	18960
cagggggaca	gagcaagact	ccatcccaaa	aaaaaaaaa	acaaacaaac	aaacaaaaaa	19020
agaggtcaag	gctgcagtga	accatgattg	tgccaatgca	ctccagcctg	ggtgacaaag	19080
tgagaccctg	cctcaaaaca	ataaaaatat	aaataaaaat	aaaacataat	agcaaacgtt	19140
tcatagaggt	ggtatgagca	ttaaatgaac	tgataaacgt	ccctggaaaa	cagtaagtgc	19200
tatggaagga	ttcgctgccg	ccaccgccac	caccattagc	atgtttcaac	ctccatcacc	19260
ctcactgtcc	cctgtcacca	tcctttgacc	agggcactcc	cagctgcagc	ctttctatcc	19320
tcttgtccac	ccttcataac	tgtaagatca	ctcagctccc	aagaaccaca	qtctacaggg	19380
taaccacatt	tccaaatctc	aaaccagacc	cgctggtctg	cacttccagg	gacaacagga	19440
tattttcaaa	ccagcccaaa	agagatgtgt	ggctcagcat	aagaggaaca	ggagaaactg	19500
aggcctcttg	ccctgagaat	gagcttggaa	gtggatgtcc	cggcctcact	caaaccttca	19560
gatgactgag	gcccagccag	gagcttgagt	gtaccctcag	gtcataccct	qaqccagaag	19620
cacccagcta	atccactcct	catcactgac	tccctcccca	taaaaaacct	atttactatt	19680
tcaggctgtt	aagttgtggg	ctgttttgtt	acacagcaat	ggataactaa	cacacgagge	19740
ctggcaagtg	tggagcaaag	ctgcccaagc	cctcaagtct	gttcatgtgg	gtattaacct	19800
gtgtttgcag	aaatccagcc	actgagtcct	cccatgcagt	cactactocc	Ctctgcacag	19860
acacctgcca	catccctgcc	tgggccagga	gctccactag	tocaogaato	agatetacea	19920
tcccaggagg	atccctgaca	cctagcacag	ggctagcagc	aggcagcact	taattaataa	19980
ataaactgcc	cttcacctgt	acacagaagg	gatgtttcta	taaggggtaa	ttaagtagag	20040
agctgggaag	ctatgctgac	cagaaggete	taaaagcaat	taaccaacga	adddaaaacc	20100
cttcctactc	attctcggcc	cattttattq	agcactgacc	atgtggaagg	cccctaata	20160
agactgggga	atgcaccaat	aactgagaca	acttccaact	attaccetea	ggatgcctga	20220
gctgggatag	ggccagggtg	agagtagtac	gtgtgacagg	gttactgttc	acaaccctgc	20280
cgggccataa	gccctcccca	acaattccaa	aatccaaaac	gctctgaaga	tagaaaactt	20340
ttgttgctca	tctggtgaca	aaacctcatt	tagtacatag	accoagtaca	ataactcaca	20400
cctgtaatcc	cagcactctg	ggagccgagg	ggaaggatcc	cttgagetta	gragettacg	20460
accagootga	gcaacatgtg	agaccccgtc	totaccaaaa	atacaaaaat	taggeegag	20520
tagtagcaca	ctcctgtagt	cccagctact	cadagaacta	acacaaaaac	atcacttana	20580
cctgggaggt	gggggctgca	gtgagctgag	attatgacat	tacactecaa	cctacatass	20640
agagtgagac	tctgtctcaa	aaaaacaaag	ttaaaaaaaa	aaaaactoto	cataggtgta	20700
ggctacagat	agtcttttct	gccctactta	gaatgaacgt	accacattta	ctatagaaat	20760
attcaagggc	tggtggcaaa	tgccacacag	accetgacge	tattccaaat	tetaagaaat	20780
cctgcattcc	tcagggcccc	agagtttcag	agaagagtet	gtaggetga	attaagaaga	20820
aacqccttca	aaagccctgg	ggacaaaggg	gaaaggggtg	cccaggeetga	gccaagaagg	20940
ctaccggaac	gagccgtcca	ggttggcacg	ataastassa	ctgagettgg	catcagggtac	21000
gtagagette	tgctcctcca	ggtcgatggt	cagtccattg	aaccaataaa	tatecasate	21060
cacaatoato	ttccgggtgc	toccatccat	ccctacccac	tcaatccaaa	gggtgtgagtc	21120
ccagtctgtc	cagtacatgt	acctgtgacg	addacadac	aadadaadca	gotoccaco	21120
atctgttttt	tgtttttgtc	tocatagato	cadacatdaa	acaacacaca	stanasttas	21100
cctaaaatct	cacccatcgg	aaataaccaa	cagacacgaa	ttcaggtatt	cctccctta	21300
gctgggcaat	caaaatatac	tatttccaac	ttattata	ttaacagtaa	attotoco	
ccttcccttc	ttgtggatag	aaagatteet	tattattta	atrattroot	acticigggea	21360 21420
gctgtaagtt	ttttaaagaa	cttcadatta	tttctcattt	ttttactace	agriguacies	
totaaatoaa	cctctaaaag	gcaattcaaa	acacteages	tagastatta	atgaaaatgc	21480
taaagaaatg	agctatcggc	tagacccaat	acacccayga	totantacca	cccagcggta	21540
addccaaddc	agatacatca	caacatcaaa	ggctcacacc	cctaatccca	gcactttggg	21600
aaccccatcc	gggtggatca	tacaaaacat	tagaccaayac	tactetigget	aacacagtga	21660.
cccarctact	ctactaaaaa	accadadcat	atoatttass	cggtagtgag	cacctgtagt	21720
gtgaggaga	taggaggctg	tacactocat	cotococc	cccgggaggg	ggaggttgca	21780
aaaaaaaaaa	atcgcaccat	aagaaatgat	ctatossas	agagegagae	ccatctcaa	21840
cttaaatgca	aagaaaagaa	tassanaa	antotatet =	acgaaaagac	atggaggaaa	21900
ggaaaaagge	tgttagtagg	ancagt anne	aatuugtatg	agtccagttc	taaacactct	21960
adddatdaat	aatacacaga	gacaytaadg	calcagtggt	tgccaggagt	rggagaggag	22020
atantanata	gagtggagca	ctcatctata	gggcagtgga	actatectgt	atgacatgga	22080
CCCtcctct	catgtcctta	ttaggtasta	caaaccaaga	acgtacaaat	caagggcgaa	22140
agatotacca	aacgtggatt	astactase-	gracyccage	cagctttcat	cagttgtaac	22200
udatytatta	ccctgcacag	gatgotgada	gccgggaagg	ctgtgtgggt	gtgaggacag	22260

ggatgtatag	gaactcagta	cctactacta	atcaattttg	ctgtgaacct	acaactottt	22320
qaaaaaatta	agtctattta	aaaacaacaa	aacatggcca	ggcacgatgg	cttgcacctg	22380
taattccagt	acttcgggag	gctgaggtgg	gtgggtcact	tgagccaccc	tagacaacat	22440
ggcaaaatcc	cacctctaca	aaaaataaaa	attaaaaaaa	agttagctgg	acataataac	22500
acactettqt	agtcccagct	acttgggagg	ctgacgtggg	aggatecett	cadccctddd	22560
aggtcgaggc	tgcagtgagc	tataactata	ccactgcact	ccaacctaga	tracararta	22500
agaccctgcc	taaaaaaaaa	aaaaaaaaaa	ctaaatacaa	taactcatac	ctataattaa	22620
agcoctttoo	gaggccgaga	tagacageta	acqaqqtqaq	ggctcatgc	ccycaactcc	
taacacaata	aaaccccatc	totactasas	atacaaaaa	gagaccgaga	ccatcctggc	22740
caacacaggeg	aaaccccgtc	cctactaaaa	gracaaaaa	addattage	cgggcatggt	22800
ggeggaeace	tgtagtcaca	gocactoggg	aggetgagge	ayyayaatgg	egtgaaceeg	22860
agaggagag	cttgcagtga	gccaagacca	caccactgea	ctctcagect	gggagacagc	22920
accaccccgc	ctcaaaaaaa	adayaataaa	acceatigget	gggatggace	ctgaacetge	22980
agecycagec	gttcctgggt	catcacasas	acquestos	torgettete	catgiticeea	23040
statasassa	atcacccatc	catgagaaac	aagcacatcc	teagggegee	cttacgtgat	23100
ccccggccaa	tgaaccaaga	caaagtgage	agacaccagg	cctgggatgg	caggtcccac	23160
coccaccage	gcccagtgtg	ccctgtttgg	aggigaceae	agggtgtgtg	cccagaggct	23220
gggcgcgact	ctcagcggag	accagagggg	aaccacacca	gcttggagga	ctcagttccc	23280
	gctgggatga					23340
	cagcagagaa					23400
	ccttgtaaaa					23460
	ttcccctcag					23520
aggcatgaga	gtgatcccgg	gacacaggga	gaacaagccc	cgctttgccc	tctgggggtc	23580
tccattcagc	agaagaggca	aatgacagac	acacageege	ctcctcccc	accatggtgc	23640
tctgcagcct	caggagcctc	aggtgcacca	agggccaccc	catccagggg	gccatgcttc	23700
cttgagtggt	atcgttcctg	agcgagtacc	atctccacct	tccagagggg	ctgtgacaag	23760
	atgagggcat					23820
	cagctgctat					23880
agaggggtgt	cacatggaac	agctctccaa	acagtccctc	tcaagctgct	gtctcctgtg	23940
catctagtga	gaacccaacc	aacaaaggga	aggtgggaat	tgctattccc	attaggcaga	24000
tgagaaaact	gaggccccga	aaggctggcc	tgttccaggt	tacaggcgct	gagcggctgc	24060
tctgggaaca	cacttggtgt	ctgctgaggg	cccgagcccg	gccatcatat	gactcaccct	24120
tcgccagcaa	agcccgggtg	tgggtgaact	tttcctggca	gcctgggact	ccaaggtgct	24180
ggcagccagc	ccagggaagg	ctcccgcgtg	cctgcggcag	acgccttgct	ttacctgcac	24240
	ctaggagcct					24300
	agtctggact					24360
	gaaaaggctg					24420
	tccccgagtt					24480
	cggtgaccag					24540
	gcccagccaa					24600
	tcgtgcagag					24660
	tttaaagagg					24720
	cccttgtcag					24780
	cccagatcct					24840
	ccctgggcct					24900
	cctgcattgc					24960
	ctcttgatcc					25020
	catgatgatg					25080
						25140
	actgcaggag					25200
ccactataca	gctcctcgca	acageage	tacacacaca	atayayyata	aacccaccct	
ctgaggaga	cactctcagg	cartattta	caacaacaac	ttastassas	acacctatge	25260 25320
acagggacca	ctattcaagt	tataattigg	cyaycagggg	regetgeege	yygcgctgtg	
acayyorgya	atcctctccc	22202222	bacatasta	yacatggagc	ccacagggac	25380
ayayccagca	cctcagggta	ggaccatggc	tggcgtcatc	agcatcactg	gatctgatga	25440
graggageeg	gcatctcact	getttcactc	tctcattcaa	atgactggag	caaagggaag	25500
graciagagag	aggcccagga	atcaacacta	aggreaactt	rgcccccagg	ggcaggggtg	25560
ggagtgaaca	gccacaggtg	tgatcctggg	gagggcttct	gggagagaat	tcagaggcaa	25620
gcatgtagag	gaaccatttc	aaatagttaa	gaaaagccag	agccaaacag	ggacagttgg	25680

```
ctcgcagaga tgatgcaggc aaagccagct cagatctgag catgggaaag actactccca
                                                                      25740
accaagggcc cagcatetee caaccaagea ccaagtacet cecaaccaaa tgccaagcac
                                                                      25800
ctcccaatca aatacctccc aaccaagcac ctagcacctc tcaactggac accaactact
                                                                      25860
cccaaccagg caccaagtac ctcccaacca agtgccaagc acctcccaac caagtaccaa
                                                                      25920
ttacctccca accaagcgcc tagcacctcc caactgagca tcatgcacct cccaacagag
                                                                      25980
catctagcac ctcccaactg atcacctccc aacctagcac cgagcacctc ccaaccaagt
                                                                      26040
gcagagcacc tcccaaccaa gtgccaagca cctcccaatc aaatacctcc caaccaagca
                                                                      26100
cctagcacct ctcaactgga caccaacaac tcccaaccaa gcgccaagca cctcctaaca
                                                                      26160
aagtaccaat caccttccaa ccgagcacct agcacctccc aactgagcat catgcacctc
                                                                      26220
ccaacaaatc acctagcacc tcccgactga tcacctccca acctagcact gagcacttcc
                                                                      26280
caaccaacat agcaaaagcc ataaagaagt aaaaagacaa aaccacgtag gcatggagac
                                                                      26340
tggacttctg gtggcgagga aagggcattt ttattataac gacagctaac atttgttgaa
                                                                      26400
ctcacaaact gttcttggtg ttttcctcat gacatgcagc atggtcacgc ctctgtacag
                                                                      26460
acaaggatac tgaggcacag agtggcaccg tgccaacctt gtctcatctt tttatcgaac
                                                                      26520
ctacatgcag agtgccagca aatccagctg tcttttctct tcagaacaga tcccaaatct
                                                                      26580
egecacteet tacceccaea agtgaggtgt eccegetget getttetgte gecaggatee
                                                                      26640
eggtaataac egtggagagg geteetgeee ceaegeeace caccecacag etcacteteg
                                                                      26700
ctccagccac caggggatgc cttccagcac gagtcagagc tggcacctcc tctgctcgag
                                                                      26760
acctcatgtg tecteteete acacettggg ceetgtttee etacattetg etacageece
                                                                      26820
tcaaacaggc cccgccccaa accagcccag ggcctttgca ctggctgatc cctctgcctg
                                                                      26880
gaccgcgctg cccccagaca gccacacggt tctcagcctc atctgcttcc agtctcgact
                                                                      26940
caaaagtcac caagaggcct tcccagcacc tgagctccga cggaagcccc tcgccacagc
                                                                      27000
acccaageae tgetttatee ecetaegeae aegteeettt caaataetat teatttaeea
                                                                      27060
tetectecca eteactgaaa gggecagaga etgggetata eeegetgegt ggggageagg
                                                                      27120
accaggegea agggeteaca aatgeagtgg atgeetggtt gggaggtgag ggagetgeag
                                                                      27180
cgacccacgc tgggagggaa cgcaatgaca ggaggagcgc aggtcctggc gacacgatgg
                                                                      27240
ccatggcagc cgctggtgag caaccgcagg ccggccctgg gagagggctt ctagcaagct
                                                                      27300
getatettea geeteteega etaetgeaga tgeeceetee tageeagaga caetgetaca
                                                                     27360
ccagccgacc cttccaaaaa gaaggtcagt aaccccgcga ctcctggagc cacagtgcag
                                                                      27420
ggggagaggg ctgagagggc aacagttcac caagcggaac agaggctgcc ccqqaqqtca
                                                                      27480
gctggctccc cggcagctgc aggggtggct agcccactcg gagggcagcg agggcatacg
                                                                      27540
aggggeteca gggatgagtg gttgeecage acageaceee tgggaggeeg ggggeaette
                                                                      27600
tcaggtagtg ggggcacgag gctgctctgg cctgacctca gggactcaaa atactttggc
                                                                      27660
gataaattcc acceptgtccc acceptgctg gtaccecata cttacacaca gactggttca
                                                                      27720
gatgcagaca ctctcgcgca catactcgct cacacgggca catacacgtg cacacacagt
                                                                      27780
cacatgogca cactoataca cacacaaata tocactoaca ogcatgoatg cacacacacg
                                                                      27840
gacacacaca ggctcacacg tatgcacgca tatgcgtgca cacgcacaca cacacaca
                                                                      27900
egeteacate eteceactee cacacteagt tgeteagaca cacacaegee tggeteteae
                                                                      27960
acaaacctgt tgggctctga aaggctccag cccttcccat gctcgtcaga agccagtcaa
                                                                      28020
tggcttccta agtcaccaca cagatcaaag aggtgaactt ggccacatgg cactctgctt
                                                                      28080
cetgagetee caaacaccag cettggtgag gacagaccet caccccacae cetcattece
                                                                      28140
actaccetgg gcaggcccag aggaggggca tetgcaggat etggcaacca gccceteceg
                                                                      28200
eceggeteet geageeggea ceatgggagt cagggggagg teactgeaaa qqqeaacaqe
                                                                      28260
aagttggtgg ccccaggact agagcccagg ggtcttcagt cctactccag agcttggaca
                                                                      28320
ctgtcccaca gggcatggcc aagggaaggg cttccagagc cctgacttca gggaggaggg
                                                                      28380
caggoggget cetgtggcag geetggatge atggcegeee acteetggga etttetaace
                                                                      28440
tagaatatct aggtcaggct gggtgcagtg gctcacgcct gcaatcccaa cactttggga
                                                                      28500
ggccgaggag ggtggatcac ttgaggttag gagtttgaga ccagcctggc caacatggcg
                                                                      28560
aaaccctgtg tctactaaaa atacaaaacc tagccaggtg tggtagtgca cgcctgtaat
                                                                      28620
cacagctact caggaggctg aggcaggaga atcacttgaa ctcgggaggt ggaggttqca
                                                                      28680
gtgagctgag atcgtgccat tgcgcaaaga agatctaggc cggcccctca accggtgagg
                                                                      28740
tecaggetgg gagtgetgag agaetgtggt gacaetgaat gaactaacag geaaaggget
                                                                      28800
tecaactgag cetgggggtg gtgggaaatg getettgtgt tetagteaag acetetgeea
                                                                      28860
accagttetg acactgacce agcacagaac etgacaggte agcaagggee agggettage
                                                                      28920
acagcccagg taagggtgtg tgtacggccc ccagagtcac tcccaggctg caagaaaagg
                                                                      28980
gacaaaggag ggacaagggg tggccaagca aactgttccc tctgctcggg agtctggggt
                                                                      29040
gacctggcct agctggccag tggagctggg ccacctcccc ttaaactctc cacccggac
                                                                      29100
```

PCT/US02/15982

ttcgactcca	aagctttcct	gccacccacg	ctctccccac	ctgggatcac	ggccaggccc	29160
tgagccttca	agggcccagg	tgaactcagc	cagactagga	gctgaggagg	acacagggca	29220
gcttccagaa	cggacccgag	aaccactccc	agcaggttct	gcttccagac	aaggagctgc	29280
actttttcag	ccaatgcaat	tagaaagcca	ggagaaggtg	caaattccac	ctgcctgagc	29340
gtccgcactt	cccaggccgc	ccaccataca	cacagcaaag	atgtgtttaa	ccattcaaac	29400
ccatggccaa	ccacatcggt	tgcctcagac	atgcaagttt	taaaaaggaa	cataactatg	29460
ggccaggcac	ggtggttcac	gtctgtaatc	ccagcacttt	gggaggccga	ggtgggtgga	29520
tcacctgagg	tcaggagttc	gagaccagcc	tagacaccat	ggtgaaaccc	catctgtacc	29580
aaaactacaa	aaattagctg	ggcgtggtgg	tgggcgcctg	taatcccagc	tacttgggaa	29640
gctgaggcag	gagaatcact	tgaacccggg	aggcgaaggt	tgcagtgagc	cgagattgtg	29700
				caattaaaaa		29760
aaaaaggaac	ataactatgg	agtctcaagg	ggaagtaatt	ccttcaacaa	taacaaatct	29820
tgaaagctga	gctcttttt	ttttttgaga	caggatctcc	tcactttgtc	gcccaggctg	29880
gagtgcagtg	gtgggatcac	agctcactgc	agcctcgatc	tcccaggctc	aaatgatcct	29940
cctacctcag	cctcccaaga	agctgggatt	acaggtgcat	accatcacac	ccgattcatt	30000
tttgtatact	ttgaagagat	ggggtctcac	catgttgccc	agtgtggtct	tgaattcctg	30060
gactcaggtg	atctgcccgc	cttggcctcc	cagagtgctg	ggattacagg	cctgagccaa	30120
cacccccacg	ggttcatttt	cagagtcgca	ccgagtgctg	gggttacagg	cctgagccaa	30180
ccccccacg	ggttcatttt	aagagtgaca	ccgagtgctg	gggttacagg	cctgaaccaa	30240
ccccccacg	agttcatttt	cagagtcgca	ccgagtgctg	gggttacagg	cctgagccaa	30300
ccccccacg	ggttcatttt	aagagtgaca	ccgagtgctg	gggttacagg	cctgagccaa	30360
cacccccacg	ggttcatttt	cagagtcaca	ccgagtgctg	gggttacagg	cctgagccaa	30420
ccccccacg	ggttcatttt	cagagtcaca	ccctttttct	gaaaaacaac	ttgggctcat	30480
gcaaattcga	gagagagatg	gtgacactcc	ccgccccctg	gacccaggtg	gagtcgcagc	30540
				gctggtcaag		30600
				cgatgcggtt		30660
tccgtccagt	acagettett	gcccacccag	tcqcaqqcqa	ggccgtcggg	agagaccagg	30720
ccggagatga	ccacgttctg	cacqqcqqcc	cccqtctqqt	tcaggtaggt	ctacttaata	30780
gcctcctcgc	tcacqtctqt	ccaqtacacq	actecettaa	aaaactggaa	atccactaca	30840
				gcttgactcc		30900
accagccgta	catcccaaca	gttggcaaat	agcaggagcg	gcgaggctgt	ggggcagaag	30960
				gccctgggat		31020
				cctccagttc		31080
cccctaaggc	gttgtcagga	agttgcctgg	gcagccccgg	cccgcatcat	tcagaggete	31140
ctgcagcgca	qcaaacaqcc	ttcttcccac	attcggtgac	agcacctgtt	totttaccaa	31200
ctgttacgtc	tgttccccca	gatatgggtg	accettecte	ccatgcccaa	aacctcccac	31260
atcqtcctcc	agaggctaca	gaaaccctat	cctattctac	agagaagcca	cateceettt	31320
gttggcctga	cacaggggat	ggggacatgc	aggcacagca	ctggccatgc	tactcactac	31380
agacccagcc	acagggccac	atttttgag	gggttcagag	cccaggccag	acadadecte	31440
aagattccct	tacaagtett	tgaccactgt	ccaageteag	gcccgtttcc	ttaaccataa	31500
catcagette	ccatccaccc	ctgtattcca	tatttctccc	accetgette	tagacattcc	31560
				agacaccttc		31620
				tggcctccaa		31680
				gcattcctga		31740
				cagccccttc		31800
agaageetea	totoacagae	aacqqtctca	ttcccacaac	gggctcaatg	agaaatcagg	31860
				tcggaccagg		31920
				aggagtgaac		31980
gacaggagga	gattaaggac	ctccaggga	ctccatcagt	ccgtgttctg	ctatcaacaa	32040
				tgaagccttg		32100
gctgacattc	ctcatgaaaa	ctgcagaccc	ctagatecte	ctgcgcagat	addadaaca	32160
aucoaaccc	acacteceae	cttcaccaa	aaananaaaa	ccaaaacaaa	ctcaactcac	32220
				ttggtttcat		32220
				agggccagag		32340
				cctccctgcc		32340
				ctccacagga		32400
						32520
cacayayyac	ccyayyccay	yaaaatyaca	geggegeee	cgccgcccca	cocgegeege	32320

```
catcatctta ggtctacagt tctttgtggc aacgagggac actgtgaaag tcaaacaaca
                                                                      32580
ggaaggcata ggccacaaat aaagacaaac gggacttcat gggaagctaa agattttgtg
                                                                      32640
catcaaaaga cactatcgag agagtaaaaa ggcaacccac agaatgagag aaaatatttc
                                                                      32700
caaatcatag atctactaag agattaatat ccatgaaata cagagaactc ctaaaactca
                                                                      32760
acaatgagaa aacaactaag ccaactcaaa aatgggcaaa caacttgaac agacatttct
                                                                      32820
ccaaagatga catataaatg gccaataaac acatcaaaac aggcttaata tatccctaat
                                                                      32880
catcagggaa atgcaaatca aaactacaat aagataccat cttgcaccaa ttaggacggc
                                                                      32940
tactatcaaa aaaacaaaat agcaagtgtt ggtgaggatc tggagcaact ggaacccttg
                                                                      33000
tgcaccactg gcaaaaatgt gaaatggtgc agctactatg gaaaacagca tggcagttcc
                                                                      33060
ccaaaaactt aaacacagaa ttaccatatg acccagcaat ttcgctttgg gttatatacc
                                                                      33120
caaaagaact gaaaacaggg acacaatcag atatgcatac accttggatc acagcagcat
                                                                      33180
ccttcccaac agctaaaaca tggaggcagc caggcatggt ggctcacgcc tgtaatccca
                                                                      33240
gcactttggg aggctgaggc gggtggatca cctgaggtca ggagttcgag accagcctgg
                                                                      33300
ccaacatggt gaaaccccgt ctctactaaa atacaaaaat tagctgggcg tagtgacggg
                                                                      33360
cacctgtaat cccagctact cacaagtctg aggcaggaga atcacttgaa ccctggaagt
                                                                      33420
ggacgttgca gtgagccaag attgcgccac tgcattccag cctgggtgac acagcgagac
                                                                      33480
tctgtctcaa aaaacagcaa aacaaaaca aaaaaacaaa caaacatgga agcaacccaa
                                                                      33540
gcgtccctct actgagggat gaatagcggg gcaaaatctg ctccatccac acaatggagt
                                                                      33600
actattcagt ctcaaaaagg aaaaagattc tggtcaggca cggtggctca tgcctgtaat
                                                                      33660
eccagcaett ggggaggetg aggegggtgg ateacetgaa gteaggaatt caaggeeege
                                                                      33720
ctggccaaga ctggcaccna gctacacana aagtatangg ccccggaaa
                                                                      33769
```

<210> 9 <211> 72049 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (8356), (8385), (38585)

<223> Identity of nucleotide sequences at the above locations are unknown.

#### <400> 9

```
tataccttgc gcggaccttc ggctcctgtg gtgaagacaa tatgaagaaa atagaaatta
                                                                   60
cccataattt tgccacacag acttagttgt gtccatgtat cttgtgcacc ttttttctgt
                                                                   120
ttacggatca aaatcgactt ttagggtcag gcgcggtggc tcacacctgt aatcccaaca
                                                                   180
ctttgggagg ctggagttgg ggttgggggg tggatcactg aagatcagga gtttgagacc
                                                                   240
agcetggeea acatggegaa actecatete tactaaaaat aaaagattag ceaggegtgg
                                                                   300
tggtgggtgc ctctaatccc agctactccg gaggctgagg caggagaatc gcttgaaccc
                                                                   360
aggagacaga ggttgcagtg agccaggatc acgccactgc actccagcct ggcaacagag
                                                                   420
480
taggagattg gttcaaacaa tgtgtgtaat gttgtgtctg agtgtttttc atttatcgtt
                                                                   540
catgcaaatt ccgacatcat tcactcttct ccagagtgtg ctgttttcct gcctgtgtca
                                                                   600
tcacccgtca ccttgaatgc cctcgtttag gtaaaataag tacattttat tcaaaaatat
                                                                   660
ttgaggacat ttgggttgtc tccaggttct tggtcttgag ttttgctgtt cttgtggagc
                                                                   720
catggtggtg tctggttgca ggaacctcca tgcgttccag ctgctgcttc tgcctqtgtt
                                                                   780
cttagagagg aaatgctggg gtccgcggtt cccgggctgc tgaccaggaa gcctgcggtg
                                                                   840
ctttacggcc cttccagaag cgggagatgc ccccacttaa gtgtcagaca ggcctttcca
                                                                   900
cctcactggc agctctgagc ggctcccttc tatttgcaga tgactgagaa gttaccaatt
                                                                   960
tecaegitta etgaetgetg titeteetgt taatitgtat tiatagiett egetaatita
                                                                   1020
ttgctagggt tttggtgttg tccctattga cttgtatgcc ttttaatttt ttaaacaaca
                                                                   1080
ttaatatact tcatttttt agagcagttt taagtttaca ggaaaattaa gggacaagta
                                                                   1140
cagagagtte ettecacetg etgteeteet etecteetee ceacetteec teetteecet
                                                                   1200
attgtaactt tetttetgat attataaaag teacteatgg etgggegtgg tggeteaege
                                                                   1260
```

ctgtaatccc	agcacgttgg	gaggcagagg	caggcagatc	acctgaggtc	aggagttcca	1320
gaccagcctg	gccaacatgg	tgaaaccccg	tctctactaa	aaacacaaaa	agttagccag	1380
gcgtggtggc	gggcacctgt	aatcccagct	actcaggagg	ctgaggcagg	agaatggcgt	1440
gaacctggga	ggcagaggtt	acagtgagtc	gagatcgcgc	cactgcactc	cagcctgggc	1500
aataagagtg	aagcttcgtc	tcaaaaacaa	agtcacacac	gcttcttgta	cgagggtcat	1560
ttggccgagg	ggccagatgg	ctcaccatct	agttgggaca	ggccatgagc	tcggaatgct	1620
ttttacatat	ttacatggtt	gagaagaaaa	tcaggagaat	aatgttttgg	gacatgggaa	1680
aatgacatgg	aatttgcatt	ttagtgtcca	taaatgaagt	tttgtttgct	cccagctgtg	1740
ttgactgagg	caggctggct	tcctacagct	gcggcagagc	tgaggaggcg	ggaaggagac	1800
cgtgcaggcc	gcagcaccga	aaatatttgc	tctctggccc	ttcccagagt	gcttgccgac	1860
ctctgtccga	cagctagaag	gaaggatagg	acccgtccga	cgataaccac	tgttgacatt	1920
tgagcgcgtt	tccttcccgg	cttttgtgtg	agagtggcag	tctgtttgct	tttgtggtcg	1980
ggatctgctg	cacgcacggc	gggctgtttg	catgaggctt	cctggaggat	agggctgggc	2040
tcggagctgc	acgcagtggg	gcgtgtcctg	catgcagtgg	ggcctcagaa	gagagctgtg	2100
gtgggcgggg	cagtgccaac	gctggtgggt	gccaggcctc	cacgctcaga	tcagccccqq	2160
cgacaggttt	gggccaccct	ctctctggcc	tctgtgcagt	ggcccaggcc	gtctgctctg	2220
cctggcacac	ttgcctctgt	ccttccactg	aagcgctcct	cttaccctct	gctcccggct	2280
gggtacgttg	aattgtgtcc	ctcaaggaga	tatgctaaag	gtctaacccc	aggaacctgt	2340
gtatgtgatc	taatttggaa	acagggtctt	ggctgatgta	atcaagcgag	gatgaggtca	2400
ccctagagta	gggggcctat	atccacggtg	ctggtgtcct	catgagagca	ggtgagcaga	2460
cactgacact	caggggtgaa	ggctgcatgg	agtcagaaca	gggcttagtg	cgatggcggc	2520
cacaagccaa	ggaactccaa	gtatttcctg	caacaccaga	agctggaaga	tgccaggaag	2580
gatcctgccc	tggagccttc	ggagggagtc	tgtccctgca	gacgtcttga	cttttgattg	2640
cagggatgca	tgtcttaggg	tgtgtgggg	ggtgcatttc	tgatgttaga	agccacctgg	2700
ttggtggcga	tgtgtcacgg	gagccctctg	caggttctgc	gtgtccatgt	ggtcggggac	2760
agaggtgggc	agggacggac	ggtgtcgagc	tggacatgtc	catgacgtcg	gccatccctt	2820
gggatggctt	ttttgttttg	aggataaggc	tgcctgccag	gaagctgtgc	cctacctaac	2880
ccttgcccca	agcccctggc	ctgtgcttgg	cctcgcggaa	gggatgtcgc	ccttctctcc	2940
tgcatgcgtg	cagggaggaa	ggggagaggt	cagcagcccg	cctggaggag	gctcgggcga	3000
ggggaaggtt	tcactttcag	gcaatgttgt	ggggctgttt	aaacaacccc	aaagaaaacc	3060
atttggccaa	actgttagtt	tccaaacatt	ttacttcctt	ggtgtttaaa	taaattccta	3120
ccaagactct	gtagctggtc	ccagggaagg	agttggcctc	tcttctttat	agcccggcac	3180
agtcagtccc	ctgcacctgc	ccctcccaac	cccaggcctg	cttccccgtg	gccatggctg	3240
ctgcccggac	ctctctacac	acagaacctc	ctggaggcca	gctgtgggca	ccageettag	3300
cagggctgtg	gcqqaqccca	aactactaat	actctctctq	cagctgctcc	ctactaacct	3360
ggctggacag	cgtccccacc	accactgggg	tcacctctqt	gctggtcaca	gctcactcag	3420
accttcaggc	aaatgggttg	gatectgeet	ctctcccagg	tgtctcagtc	tctgcaaaac	3480
tcaaaaacct	cagaggcctt	gcagcctgag	gggtgtcaga	gacacctcct	tcgaatcagt	3540
aaacacctac	agattcaccc.	cagcagtgaa	aggactgctt	cgccacagag	gtttgattta	3600
ctcctaagta	attggaaggg	atgccgagaa	taggttcctc	atggtgggac	tagagggggt	3660
ctgctgacct	agttaacaga	gggctagggc	tagatatact	cageceetga	aggttctagg	3720
cccatttggg	acaccccccc	agaacctgcc	acaacctocc	atgtggtgac	agctacctaa	3780
atcccagagg	ctcttgagct	ggagagcaga	cctctcaatc	tcagcaggcc	cccacacag	3840
accccataac	cctagtctgc	cttcacagta	cagttcgtgg	ctatgtgttc	acquatqutq	3900
ttgttcacct	aaggtctctg	ccctgtgacc	ccaagggggt	cctgagggca	dattccaadt	3960
ctatttcatc	cacccctcct	tccctagcag	cadatccada	gcctggcctg	aactagette	4020
ccacagagat	actootoooa	tgatgaaggc	agccaggcgg	caagtgaaaa	acccacttcc	4080
tgcatgtgct	gactectaga	attgaagtgt	ttgaggaag	aaagtgaagt	gagettteet	4140
cttacaacta	tatateetta	aaccaaaaac	ctaccetete	tgagcgttgg	gatecttate	4200
agtagaatgg	ggcatectea	tageteaagg	agtagtatat	gaaaattgtg	ctattatatt	4260
actttaatga	tttttttt	ttcgagacaa	agtotoacco	caacgcgcag	actagaetae	4320
agtgggggga	totoagetea	ttacaacete	tacctcctaa	gttcaagtga	ttctcctccc	4320
tcagcctccc	aagtageteg	aattacagge	atacaccacc	aggcccggca	tatttt	4440
tttttantan	agagggggt	ttaccatatt	gagagaacta	gtcttgaact	cotgeoctes	4500
agtastocac	-a-aaaaaaacc	ctcccaaact	actagastta	caagcatgag	coacocce	4560
Caacctactt	tagtgatttc	ttaggagge	anannnaann	ggctggcaag	acadactta	
aatotottt	addates	accaatttct	atctaceect	ggcgttctct	ataggeetgg	4620
aacycycccc	gggaccaagt	geeggeeee	gictygcact	ggcgctdtdt	grggggcat	4680

			tcgtcttgcg			4740
ggaaagttct	gtagacatcg	tgtggatggg	gctcttcccg	gccaagccct	tggggacctt	4800
ccaggactgt	gatctcccca	cagtggctgt	taagcaggga	cctttcgtga	agtggagtct	4860
ctggtcccct	ccaagtcata	gctagacagg	gactcgggca	tcgccaagcc	tggctgatta	4920
ttcactggat	gaggagacag	gcccagagag	gggcaggaac	ctgcccgagg	tcacccagca	4980
ggccccagag	gtttcggtct	cggattctcc	ctgctcatcc	ctggatgtag	tgctgctgtg	5040
			gcagggggct			5100
ggtggcgccc	tcgccatgag	gccgactgtt	ggtatggggc	ggccatccac	tggggtgtgg	5160
ggaggaacag	ctttcctgag	gaggaggtgg	cgggaggaac	agcttccctg	aggaggaggt	5220
ggcggtgctg	tgtgacctgg	gccttgaagg	acaggtccat	tgtcaacaga	acattttggg	5280
agtggagcct	agagggagaa	aatttgttga	aattcagatt	ccctcccc	taccaataca	5340
caccaaatca	gatgcccctg	accagatcta	aatttggctc	tcagagattt	ccattgtagc	5400
			ctctgcctct			5460
			gccatcacgt			5520
			ggagtcagga			5580
aaacgttgga	tgccgggatc	ctggaacagt	ctctgcattc	ctcctggcga	gaaccagage	5640
ctgggcacag	gggaccatct	gttgtttgaa	ggctgcagcc	tggcagggca	ctcaggagat	5700
			ggccagggca			5760
			cctgggcccc			5820
			ttcttggctc			5880
			ctaacctggg			5940
			tatggggcac			6000
			gctctgataa			6060
			tgtggagcct			6120
			agagaatcct			6180
			ggttggggg			6240
			cctctgggcc			6300
			tgctctcaga			6360
			tigtacgcig			6420
			aactttcctt			6480
			tagagagggg			6540
			gtccagcctg			6600
			aagtgccact			6660
			gccagcagca			6720
			ttcgtggcgt			6780
			gtgggaccct			6840
			cccagctgtg			6900
			cgtgaccaga			6960
			tcaagtggtc			7020
			aggcctcaga			7080
			caaagagggc			7140
			tgctggggcc			7200
			gctgggcagg			7260
			ccagcagctg			7320
			ccaggagagg			7380
			aagcccaatg			7440
			tctctcattt			7500
			gaacgagtga			7560
			aggagagece			7620
						7680
			ttgtgcctgc ggaggtgctg			7740
			cttcaccgac			7800
						7860
			cccgctagag			7920
			cctggacggg			7920
			cgcggtcgac			
			ggtgacgcgc			8040
gattcttggtg	ccyyaygacc	rggacgagcc	ccgagccatc	geacegeace	ccgcgatggg	8100

gtaagacggg	g cgggggctgg	ggcctggagc	: cagggccagg	CCAAGCACAC	gcgagaggga	8160
gattgacctg	gacctgtcat	tctgggacac	tatettacat	Cadaacccc	aggagggctt	
gttaaaacac	cggcagctgc	geeceacee	Cagageggto	attcaddag	tccagggcgg	8220
ggctgaagac	ttgggtttct	aacaagcacc	CCagtggtc	agtactacta	ctgggtccat	8280
gcgtagaaag	ccctgnaaac	tggaggagc	cetteatece	cctancttca	gtttcctcat	8340
ctgtagaatg	gaacggtcca	tctgggtgat	ttccaggatg	acantantna	cagtaagggc	8400
agcctctgtg	acactgacca	cagtacagge	caggetett	tttttcttt	tttttttgag	8460
atggagtete	actctgtcgc	ccaggetgga	ataceataat	atastatasa	ctcactacaa	8520
cctctqcctc	ctgggctcaa	gtgattetee	tgcctcagcc	tectaaataa	ctcactacaa	8580
aggtgcctgc	cactgtgctt	ggctaatgtt	totattttt	atagagatag	ggtttcaccg	8640
tcttggccag	gctggtcgca	aactcctgac	ctcaggtgat	CCacctacct	ggtttcaccg	8700
aagtgctggg	attacaggca	tgagccacca	cgcccggtca	gggggggg	cagectecea	8760
ctttgcacac	catgggtctt	ttcatccagg	ggggtaggta	Cagttgtaca	cttttgaaca	8820
ctgaagccca	gagaggetea	gggacttgc	cagggtcaca	caguiguata	guigaggada	8880
agactagac	ctagcagcat	ggggcccgcc	ttccagcata	caycayyaty	tggcaggtgt	8940
atttatcaat	Cogtaggga	gactttctga	gacccgcccc	aggagatasa	aaagcagata	9000
ccaggggcct	tectagagae	tcataaccca	gaacactgaa	tagasssa	agggtagtag	9060
aggcgcagtg	gagetgtggg	taccastaaa	aagtcccaga	agagetage	ctgatggagg	9120
gatactaccc	tctatagaac	acttactccc	caccaggtgt	ggagetggga	ggtcagtagc	9180.
gggacctgaa	geteagaagg	tgaagtaact	tgcccagggc	gccccaggc	ccatggeeet	9240
cagaggattt	ataaactata	gaagtatet	teateasees	accegreggg	cageggeggg	9300
actaaccaaa	gagettttee	tacaaataa	tcgtggccca	gccccggggg	tigigagigi	9360
Caggcagcgg	gagtgcagca	adcadcada	ctggtgtcta	ggagccagca	tgtcaggcag	9420
accatecata	gagegeagea	ggcagcggga	gcacagcagg	cagagggggg	ggctcgagca	9480
tgaagggtg	aattataccc	cacygayyca	tgtgggagag	ggetgeteca	tggcagtggc	9540
actttagcaa	garagaracc	aggagggt	ggatgagggt	aagaagtggg	gtccccaggg	9600
gaggtcagga	acttaatcaa	atosatatat	tgccagctac	agtgaaggga	acacggccct	9660
aaggaagga	taaaaaaact	gecaccyccc	acatgggcct	eggtgteete	atctgtgaaa	9720
ggatcccagg	gacatogget	taggageteta	cccctcctag	ccctggtttc	atgagtctga	9780
caccgagetg	gacacgggcc	acagagagag	acctgtgagg	ccgcggggce	cagggaggg	9840
gaggetgtga	cttgggggg	gcagaggggc	tggccggctg	ggtcagacac	agctgaagca	9900
teceteetta	addaggggg	aggaacette	accectgage	tgccacccca	ggatctgggt	9960
actatataca	gagggcccca	gygaacaagt	cacctgtcct	ttgcataggg	gagcccttca	10020
ccactagtgca	gaaggccccg	taccacacac	tcctcctct	aggtgctcag	ctcctccagc	10080
tttaggatag	gacycyaggc	cyccccagae	cctgggcagg	gtcatttctg	tccactgacc	10140
acecaggacgg	gagatgaget	tantata	gagagtccaa	gggctggtgt	ggtgaaaccc	10200
acttaccact	gaagtgggca	tecetgtece	aggggagccc	ccagggactc	tggtcactgg	10260
acatttaga	ggcatgctca	greereage	acttactgac	accagcatct	actgacacca	10320
acatttacaa	acaccgacat	tgaccgacac	cgacatttac	cgacactgac	atttaccaac	10380
actiguetace	aacaccgaca	tctactgaca	ctggcatcta	ccaacactga	catttaccga	10440
acaccacaca	ttaccaacact	atttaccaac	actgacatct	actgacattg	gcatctacca	10500
acaccaacac	tttaccgacac	caacatttac	caacactgaa	atttaccgac	accgacattt	10560
taccaacact	cccaccaca	ccgacgttta	ccgacaccga	catttaccga	cactgatatt	10620
Caccaacact	gacatetact	gacgctggca	tctactgaca	ccgatgccag	catctaccaa	10680
caccyacacc	caccaacacc	gacatttace	aacactgaca	tttaccgaca	ttgacattta	10740
totactors	catetaetga	cactggcate	tactgacact	gacgtttacc	gacactagca	10800
cctactgaca	ctgacattta	ccaacaccag	catctaccaa	caccgacatt	taccaacact	10860
gacatttact	gacactgata	tctactgaca	ctggcatcta	ctgacaccaa	catttaccaa	10920
Caccagcate	taccaacacc	gacatttacc	aacaccagca	tttaccaaca	ccgatgttta	10980
tttaaaaaa	cgtttaccga	cgccagcatc	taccaacact	gacatttacc	gacaccgaca	11040
catactgaca	ccgacattta	ctgacactga	catctactga	tactggcatc	taccgacact	11100
yalatttacc	aacgccagca	tctactgaca	ctgatgttta	ccaacaccga	catttacgag	11160
Caccgacatt	tactgacacc	aatatttact	gacatcaaca	tttagccatg	tgatgggggc	11220
eggettgggg	gcaggccttg	ctcttggcac	tggggatgct	gcagagacca	gacagactca	11280
Lygggtcatg	gacttctgct	tcttctccag	cctcatgtac	tggacagact	ggggagagaa	11340
ccctaaaatc	gagtgtgcca	acttggatgg	gcaggagcgg	cgtgtgctgg	tcaatgcctc	11400
cctcgggtgg	cccaacggcc	tggccctgga	cctgcaggag	gggaagctct	actggggaga	11460

cgccaagaca	gacaagatcg	aggtgaggct	cctgtggaca	tgtttgatcc	aggaggccag	11520
gcccagccac	cccctqcaqc	cagatgtacg	tattggcgag	qcaccqatqq	gtacctatac	11580
		aatgcttgag				11640
		tacaacgtcc				11700
		acttggagac				11760
		aggggacaca				11820
tgtgagattt	aaattatttc	acaatacaaa	attaagacaa	aaagttaatc	acatatccac	11880
tgccctgctt	aagacagaaa	acatgggtgt	tgttgaagcc	agaggcagct	gctggcctga	11940
		gcagttgaag				12000
		tegeeetget				12060
		ccgctgtggt				12120
		gtcgggtttc				12180
		tcagtggcct				12240
		ctcgtcctgt				12300
ggtttcagtg	gcctcgtccc	atgggcgtgc	tttggcagct	ttttgctcac	ctgtggagcc	12360
tctcttgagc	ttttttgttt	gttgtttgtt	tttgtttgat	tttgtttgat	tgtttgtttt	12420
		aggctggagt				12480
		ccattctcct				12540
agtgccccc	accacacacta	gctaaatttt	gtattttag	tagacagggg	otttcaccat	12600
attaatcaaa	ctaatctaaa	actcctggtc	tcacatoato	cagacagggg	geeceaccae	12660
		gagccaccgc				.12720
		tgtacatgtg				12780
tgacattggt	gcctétecte	ggggtggatg	cctccctctg	tttccagcaa	cttctgaagg	12840
attttcctga	gctgcatcag	tccttgttga	cgtcaccatc	ggggtcacct	ttgctctcct	12900
		cgaatcaggc				12960
		aggatttcag				13020
		agggatgggg				13080
		gccatttcct				13140
						13200
		gccgctgagg				
		cgcgtgtctg				13260
		ggttttcttg				13320
gagtgcagtg	gcgcaatcac	ggctcgctgt	agcctcaatc	tccctgggct	caggtgatcc	13380
tcctgcctca	ccctctgagt	agctgggact	acagacacat	accaccacac	ccagctagtt	13440
		ggagatgggg				13500
		cacctgcctc				13560
		atgattttat				13620
		tgaacagttc				13680
		aggtgggcag				13740
		cagtctctac				13800
		ctactcggga				13860
gaggtggagg	ttgcagtgat	ctgagatcat	gccactgcac	tccaatctgt	gtgacagagc	13920
aagactctgt	cttgaaaaat	aaataaataa	aaaaaatttt	aaaaagtgaa	caattcaggg	13980
catttagtat	gaggacaatg	tggtgcaggt	atctctgcta	ctatctactt	ctagaacact	14040
		ccccatgccc				14100
		aatctacttt				14160
		gcaatatgtg				14220
						14280 -
		acacattgtc				
		aatcctaaca				14340
		gcctggccag				14400
		tggtggtggg				14460
gaggttggag	gatcgcttaa	gcccaggagg	tcaaggctgc	agtgagctat	gatcgcacca	14520
ctqcactcca	qcctqqacaa	cagagcaaga	ccctgtctga	aaaaaaaac	aaaaaaaaa	14580
		ggatgacatc				14640
		cagtggtttc				14700
		ttttgtttga				14760
		tcctatggta				14820
aaactgtttt	caacagtggc	tgcgccgttc	tgcatcccca	ccggcagtgt	gtgagggttc	14880

WO 02/092015

```
tgactttacc tcctcacaaa cgcttctttt ccatttaaaa aaatattcag ccaggtgctc
                                                                     14940
tggctcacgc ctgtaatccc agcactttgg gaggccgtgg cgggcggatc acctgaggtc
                                                                     15000
aggagttcga gacgagcctg gccaacatgg tgtaacccca tctctaccaa aaatataaaa
                                                                     15060
attagccggg tgtggcagcg ggcgcctgta atcccagcta cttgggaggc tgaggcagga
                                                                     15120
gaatcacttg aaccogggag gcagaggttg cagtgagcca agatcgcgcc actacactcc
                                                                     15180
15240
atttattaaa acattcatca cagccagcct agtgggtgtc ccatgtggct ttgcctcqca
                                                                    15300
tttccctgat aactaggatg ctgagcgtct tgtcccaggc ttgccacacc tcagcacttt
                                                                     15360
gagatacgtc gcacagtccc catttgcgaa cgagaaatga ggtttaggga acagcagctg
                                                                    15420
tgtcatgtca cacagegage agggggtete tgageegtet gaeeccaeag eegaeeaage
                                                                    15480
tecaateett acegeeteet agtgttgtgg atgtageeca gggtgeteec acatttttea
                                                                    15540
gatgagaaca ccgaagctca aaacaggagc gttttgtcca cattggatac acgatgtctg
                                                                    15600
tggtttggtc ctgaagtcac tttatatctc agtggtccag actggagtag gacagggggt
                                                                    15660
tctggggaat ggggaaggtg tctcaggtga aaggaaggaa ttccagattc tccatactgt
                                                                    15720
ccttgggaag ttagaagact cagagggtct ggcaaagtca gacaaagcaa gagaaatgca
                                                                    15780
gtcaggagga agcggagctg tccaggaaca ggggggtcgc aggagctcac ccccaggaac
                                                                    15840
tacacttgct ggggccttcg tgtcacaatg acgtgagcac tgcgtgttga ttacccactt
                                                                    15900
tttttttttt tttgaggtgg agtctcgctc tcttgcccag tctggagtgc agtggcacga
                                                                    15960
teteggetea etgeaagete tgeeteeegg gtteatgeea tteteetgee teageeteee
                                                                    16020
gcgtagctgg gactacaggc gcctgccacc gcgcccggct aatttttgta tttttagtag
                                                                    16080
agatgggatt tcactacatt agccaggatg gtctcgatct cctgacctca tgatccgccc
                                                                    16140
gteteggeet cecaaagtge tgggattaca ggegtgagee acegegeeg geeegattte
                                                                    16200
ccactttaag aatctgtctg tacatcctca aagccctata cacagtgctg ggttgctata
                                                                    16260
gggaatatga ggcttacagg ccatggtgct ggacacacag aagggacgga ggtcaggagg
                                                                    16320
tagaagggcg gagagaggga acaggcggag gtcacatcct tggctttcaa aatgggccag
                                                                    16380
ggagagacac cctctgagca tggtaggaca ggaaagcaag attggaacac attgagagca
                                                                    16440
accgaggtgg ctgggcgtgg tggcttacgc ctgtaatccc aacactttgg aaagctgagg
                                                                    16500
tgggtggatt gcttgaggcc aggagttcaa gaccagcctg gccaacatgg tgagaccccg
                                                                    16560
tetetaetaa atatacaaaa attageeagg egtgatggtg catacetgta ateceagetg
                                                                    16620
cttgggaggc tgaggcagga gaattgctta aacctgggag gcggaggttg cagtgagccg
                                                                    16680
agatecegee aetgeaetee ageetgggee acagagtgag aetecatete aaaaaaaaa
                                                                    16740
aaaaaaaaga taaaaagacc aaccgaggaa ttgaagtggg ggggcgtcac agtagcagaa
                                                                    16800
gggggatcgt ggagcaggcc accetgtggt catgcactgg aagetcatta cetgacgatt
                                                                    16860
tggagctcat cactgggggc ctaaggagaa tagatactga aggatgagga gtgatggcgc
                                                                    16920
ggggcacggg tgtctttggt ggccagaact tggggactgc tggggtgcct cactgcaggc
                                                                    16980
cttctcagcg ccctttatat gcttacacag gctgtttcta agagggggat acattgcata
                                                                    17040
agogttttca gactacctca tcatgggtcc ctttctttac cctctgtggc cctggtggcg
                                                                    17100
cactetetgg gaaggtgeag gtggatgeec agaceegeec tgeeateeac etgeaegtee
                                                                    17160
agagetgaet tageetegag attgetgetg geaceteetg eeeegggaea eeteggatgt
                                                                    17220
gcccgtggag atgctggctc tgtgttttct gctggagttt ggtgcgtctt ttcctcctgc
                                                                    17280
aagtggccac cgctcttggg tatgtcctca ggcttctgcg agtcatggct gcttctcagg
                                                                    17340
teettgeeca gegeeaggag caaaceetee tggeaetttg tteaggggtg gatgegeeag
                                                                    17400
tgttcctgct gtggaccgcc atctcacatg agggtcttgg gcctgcaggc tcgttcagga
                                                                    17460
aacacccgct gagtatgcag tgtgtgccag ctgtgtccca ggcaatggcg gggacagtgg
                                                                    17520
ctgctgctgg ggttgtggtg gcttctgggg actctgggga cagctgaggt gcaaggagcc
                                                                    17580
acggeteett gaggatgeag ttggaeteea ggtggaaggg atggttgggg gaggtataaa
                                                                    17640
tggggtcagg gaggagacac atttggaaca atgggaacat ttttaagatg ctatgtcggg
                                                                    17700 -
aggeaacaag gtggccaacc caggtgctga ggagcccaca ccagccctgg acgtgttttq
                                                                     17760
ccgctcacct ttgctgggga gtggtgggag agaggattcc gttccacgtg gtggtgtgcg
                                                                    17820
cagetggget gtgtggaget gggegetagg aggaaggtge tttetgeggg getageeggg
                                                                     17880
etetgeettt gaacacaate aggeteeagg titteageat ceagtgeatg agaggaette
                                                                     17940
acgggcagct gtggctgatc ccttgatgaa ttgggagaag aacaaaggtc tatgaaatga
                                                                     18000
ggtttcatgt agatggcatt agagacgccc acaacagatt tacagagtgg agcggagacg
                                                                    18060
gcggatgggt ctgggaggcc cctcctgctg gccttgactg tgacagctgt cctgggaatc
                                                                    18120
agettecagg cegececage ageetgactg acaeacaeag gggttttage eccateetge
                                                                    18180
gaccagetgt tgccatcate agtgacaget gggagtggeg gtggttccag ceetgggcae
                                                                     18240
cctccccacc tgctggggcc cacccagggc agtcctgaca cctacaggtt gcttggagcc
                                                                     18300
```

PCT/US02/15982

		cacgtgtgaa				18360
attgcatccc	cacttccctt	ctgcttcaca	tagctgcctc	ttctcaccgt	ttttccagcc	18420
		tgttgtgctg				18480
		ggggttggaa				18540
ctcagcttct	cctgtgagcc	tccagcatgt	cccctcagga	ccaagccctc	acgttcttgc	18600
ctccccgccc	acctgggctc	agccagggga	aggcctggct	gggagcgtct	cccctctgcc	18660
ctgcccttct	cccctcctac	cctgcccttc	tctcctctgc	cccgccatgg	cttttatatc	18720
ctgtgccaca	agacatggct	gtgtgtgaaa	gtggcagggt	ctggcatctc	tgtgggtctc	18780
tgaggcccac	gctccagtgc	cactcttccc	acccgctggc	cgtgccctca	tgctggaggg	18840
		accccagccc				18900
ctggaagccg	gggtcactcc	agccgtatgc	catggtgggg	acatcctgct	tccttggcct	18960
tccagggaag	gtcctctttc	caaatggcga	cacctggtcc	ctgcctggag	gctggaagct	19020
		cagggtctgt				19080
		gtcatttcgc				19140
		gcctgagttg				19200
		tcaggagtga				19260
		gtggaggtga				19320
		tcccagggat				19380
		ttgtgtgtgt				19440
		acatgtgtat				19500
		gggttttgtg				19560
		aaacacgtgc				19620
		ggaaacacag				19680
		caggacggca				19740
		cgtcattccc				19800
		gggcgtgcgc				19860
		cagggctgga				19920
		ctcgggtcta				19980
		ctacggcccc				20040
		tgggttttac				20100
		tgaaaattat				20160
		aaataatttc				20220
		atggctcgct				20280
		gtagctggga				20340
		agacagggtc				20400
		gctgggatta				20460
		ttttgccggg				20520
		cttaagccca				20580
		attgcattcc				20640
		agtattgggt				20700
		gatggcttga				20760
		gcctgggtga				20820
		ggaacacagc				20880
		cttatggcct				20940
		tcctggaaaa				21000
		ttggcccctg				21060
		gcacgttctc			-	21120
		ggaaatatct				21180
		ccaggtctgg				21240
		agatgtgctg				21300
		caactgagag				21360
		ccctgggatt				21420
		gaatccaggt				21420
		tgtgggaggc				21400
		ttgcgcttgc				21600
		actttgtttt				21660
					gggccctctg	21720
2~2~3493499	aaytyyttyt	cygocyccyc	Juaguaceee	cycligett	gggccccccg	21/20

```
tgggctcctt tttattgctc ttcaatgaag ccagggaaat ggacttcctt gcctcacttc
                                                                      21780
agttcaacat gtctggaagt ttggtattaa aattaagaaa gtgtggaaat agagcaagaa
                                                                      21840
gagaaaaatc tctccaagag ataatagtga cctctgagct gggcgcggtg gctcacgcct
                                                                      21900
gtaaatccca gtactttggg aggctgaggc gggcagatca cctgaggtcg ggagtttgtg
                                                                      21960
accggcctga ccaagatgga gaaaccccgt ctctactaaa aataaataaa taaataaata
                                                                      22020
aataaataca aaattagcca ggcatggtgg cgcctgccta taatcccagc taaggcagga
                                                                      22080
gaatcgcttg aacctgggag gcaaaggttg cagtgagcca agatcacgcc attgcactct
                                                                      22140
agtctgggca acaagagtga aactccgtct caaaaaaaat aaataaataa aaaataaaaa
                                                                      22200
tagtgacctc tggccaggtg tggcagctca tacccgtaat cccagcactt tggaaggaag
                                                                      22260
gccgagatgg gcagattgct ttagcacagg agtttgagac cagcctggcc aacatggtgg
                                                                      22320
aaccccatct ctacaaaaat agaataaaat ttaagaggta atagtgacct tttggtagat
                                                                      22380
cgaaacctgg attgctttct ttttctaaat gctgattctt ttctttgtgg tgtttgtgtt
                                                                      22440
ctgtgccgat gtccctcccc cagccctgtt attgtgagtg gaagaagggg aaagggttcg
                                                                      22500
eccgctactg tgagececte eteteacget gggtgteett ggagaageet geacttette
                                                                      22560
attgtacgcc agggctgggt ccctccctgg agtggttctg tgctgctggg atggggccaa
                                                                      22620
cocctcagat gttttctgag tgtcacacac aggtgtgtgc attcatggcc tttgcgtgtc
                                                                      22680
ttcctgttgt ggaggcaaaa atgtgaagaa ccctagatga ttttgggacc agggctccat
                                                                      22740
cacctgctgt tcattgcaca ccggagcatc caggcatggg tggagagctc agacttccaq
                                                                      22800
gcacggtcgc aggggctggt ctaaccatgt tcccgcccgc ctgctcgtca gaaccgcctg
                                                                      22860
ttgggagctg ttatcatgat accatacctg ggccctgggc tatccgattc tgacttaatt
                                                                      22920
gctccaggtt ggggccaggc cgttgtttgc tgttttgttg tttcttctgt gacgttagcc
                                                                      22980
actgggctaa tetgageeee teagttacag gtggagaaae tgagaeeeat gggggtgeaa
                                                                      23040
ggacttgccg aggacccaga gccccttggg ggcagagctg aggcggggcc tggctttggg
                                                                      23100
teccagaget tecagteece ttecegetet ectaacaget tttttttttg agacaagate
                                                                      23160
teacectyte acceaggety gagtycaaty geatyatete gyeteactyc aatetteget
                                                                      23220
agctgcgttc cagcgattct cctgcctcag cctcccgagc agctgggatt acaggtgtgt
                                                                      23280
gccgccatgc ccagctcgtt tttttttgta cttttagtag agatagggtt tcaccatgt
                                                                      23340
ggccaggctg atctcgaact cctgacctca aatgatccgc ctgcctcggc ctcccaaagt
                                                                      23400
gctaggatta caggctggga tcacactgtg cctggcccta gcagctttgt cctgtgccat
                                                                      23460
ccaacaacag atgaccgaag tetttgttte ttaacatgca ttecatetge ettacagttt
                                                                      23520
tgccacctgc aaaacagagg acttgtcgct tttctggtaa gctggaaatg taatctggta
                                                                      23580
gcaggaggcc tgtggaagct tgcctttaat ggccttgtgt ctctttcatc ctgtcctgag
                                                                      23640
agccggagaa cttggatgtt gcacctaact caaccttect gttaacatac agttetgcag
                                                                      23700
geteatggat cateagaace aegteetate teaegegget gtatgettee gttggtteag
                                                                      23760
gtgtttttac cttgacagta ttttctcctc ggtggctttt gcggtggttg cttttaatca
                                                                      23820
gcattgactc ttcaagaaaa atatttagct gctacatctc agaggagaca gggtggaaag
                                                                      23880
catctgagac ctgcaggctc agacttagaa ccagaagtgc cctcagagtt catccggccc
                                                                      23940
tgacccagcg ggaaatgagt tcacagagaa gcgggagaac tttgccccag gccctgccgt
                                                                      24000
tgctcataac tgccccaggt ccttacattt gctccaggtc ctgccccagg ccctgcagtt
                                                                      24060
getcataact geceeaggte ettatatttg etceaggtee tgeeceaggt eetgeagttg
                                                                      24120
ctctgtgtgg tgggtgtgat ctggagccct ccgcccattg ctgcacctgg ggcaggcatt
                                                                      24180
gctaattgat cccaggactc cttcctgcgg agcacgccct ggttctccag gcagccgctg
                                                                      24240
cctgtcagcc tgcagtggtt cgggagagga cacctgcttg cctggtctgt tccaaatctt
                                                                      24300
gcttctcatc ccagcacagg tagggggtgc tatgggaaag ggatcctcag ttggccctgt
                                                                      24360
cactgeteta teagetgggg acgtggeate etagtgaaaa cateatggee gggegeggtg
                                                                      24420
gctcacgcct ggaatcccag cactttggga ggctgaggag ggtggatcac ttgaggtcag
                                                                      24480
aagttcgaga ccagcctggt caacatggtg aaacccatct ctactaaaaa tacaaaaatt
                                                                      24540.
cgccaggtgt ggtggcgggt acctgtaatc cgagctactc gggaggctga ggcaggagaa
                                                                      24600
tegettgaac etgggaggtg gagettgeag tgageegaga tettgeeact geacteeage
                                                                      24660
ctgggcaaca gagtgagacg ctgtctcaaa atctcaaaca aacaaacaaa caaaaacaa
                                                                      24720
acaaacaaag cgtcatttat ccagcacccc tggggaacca tgctacctgg tgttttatgg
                                                                      24780
tacctggcaa ggtgcaggtg aagttgctgc tcttgggcat tgaacccgtc ttgtttgggg
                                                                      24840
cageteagge eccaggeagg gteegggttg getetegttg gtgtggeeet ggeecateea
                                                                      24900
gacctatatt tctgccgtcc tgcaggtgat caatgttgat gggacgaaga ggcggaccct
                                                                      24960
cctggaggac aagctcccgc acattttcgg gttcacgctg ctgggggact tcatctactg
                                                                      25020
gactgactgg cagcgccgca gcatcgagcg ggtgcacaag gtcaaggcca gccgggacgt
                                                                      25080
catcattgac cagctgcccg acctgatggg gctcaaagct gtgaatgtgg ccaaggtcgt
                                                                      25140
```

caataaatcc	gagagatece	aagccatggc	traggratur	agacttgcat	gaggaggaag	25200
taacaaatcc	atacctagac	ataagtgttg	ageteaggtg	ccccaecta	gaggaggaag	25260
gacaggaaa	aataacaata	tctggccaag	agecoaggig	220002000	gggaagggca	
tagggagtag	ttatogacta	ggaatgtcgg	taacaataat	tagagactaa	gggagetgat	25320
ttgaggagag	actatataca	caacactaa	caacaacggt	catacacaca	atanana	25380
ctacaaatat	actteettee	cggccctggc	etagageeee	egigeeeaca	grgaccccgt	25440
cigcaaacgc	agetteetige	cctactcgca	ccggggagca	ggacgcagag	ccgtgcaact	25500
cacaggigee	aageteagga	ctccctcctg	ggtctgcctg	ggctgggctg	tgcttgttgc	25560
ccctgtggcc	cacgcatgtg	caccttccac	ctgaaagcca	ggatcttcag	gacgeteece	25620
gaggaggtcg	ttgtctggca	caatgatttg	tetetteetg	aaaaggtgac	agagttacac	25680
tggagagagc	agcatccagg	tgcggcaggg	araggeetgg	ggctcgcggg	cagggactct	25740
gtgtcctgcc	ggggtcccac	actgcacctg	cttgtcagag	gcactcagtc	aatctttgct	25800
gatgaaggat	gagaggacag	aggacgtgat	gcttgctgct	gcattgcctg	cagtcctggg	25860
tgagatgccc	gggttgactc	tgctgcccgt	cgggtggatg	tgatgtcaga	tccccggctt	25920
taaaatacga	gggagctggg	aattgaggga	gcaggttggg	gcagaaagca	cagccccgtg	25980
gaagcctgga	gctgaggcag	tgtgggcgac	ccctggagca	gtgagtgctt	ccttcatggc	26040
cttcatcgca	ccctgcagtc	ctcatgtagg	ggatgccatc	catgaattta	gttttcccag	26100
cctcctttaa	aaacgcgttc	atgctggggc	cggggcagtg	cagtggctca	catctgaaat	26160
cccaccactt	tgggaggccg	aggcgggtgg	atcatgaggt	caggagatcg	agaccatcct	26220
ggctaacaag	gtgaaacccc	gtctctacta	aaaatacaaa	aaattagccg	ggtgcggtgg	26280
cgggcgcctg	tagtcccagc	tactcgggag	gctgaggcag	gagaatggcg	tgaacccggg	26340
aagcggagct	tgcagtgagc	cgagattgcg	ccactgcagt	ccgcagtccg	gcctgggcga	26400
cagagcgaga	ctccgtctca	aaaaaaaaa	aaaaagtaca	aaaaaaaaa	aattagtotg	26460
		taatctcact				26520
aacccaggag	gtagaggttg	tagtgagccc	gtatcgtacc	actgccctcc	acctgggcaa	26580
		aaaagaaaaa				26640
		gaactttgga				26700
		ctgggcaaca				26760
aaaattagcc	cggcatggtg	gcatatccct	gtggtcccag	ctacttaggg	ggctgacgtg	26820
gcaggatcac	ctgagtctgg	aggcagaggt	tgaagtgagc	tgagatcatg	ccactgcact	26880
ccaqcctqqq	tgacagacag	agaccctgtc	tcaaaaaaaa	aaaaaaaaa	aagcatttac	26940
tatccaccat	ggaaggtgag	actgacctgt	gagtgattgt	tcaaagaaca	aaaaataaac	27000
cccagagata	agacaaaagg	gtgcctccat	gggggtgtga	tttaaagctg	agaaattggg	27060
cttcttcccc	ctccctctc	accccgtggt	ttgctaaagg	agatgggaaa	aaggattett	27120
tttttaacta	aaatatttaa	cactaaatta	aagccaattt	taacagcact	ttaattaata	27180
agtgaaatta	acagactogc	caaaaataaa	cgaacggtct	gtactatgta	aaaaaaaaaa	27240
		aatgtgagtt				27300
		ctctcaggag				27360
cctaccctaa	accettcact	gctttcttcc	tagaccagat	cacagggggaac	gaggetggee	27420
cactagacta	ggegtttact	cgagctgctc	cctcacttcc	taacastaat	gaggeeggae	27420
accttactac	actttacttt	cottosatos	aaaataaaaa	tgaccatget	tectroagea	
aacataaata	gagtgagttc	ccttgaatga	ctccctccc	cyayaacayc	cectaeetee	27540
		ggacaggtga				27600
		ctgctgttac				27660
		tctcccacca				27720
		ttggagcttt				27780
		gcctggccaa				27840
		ccctgagctg				27900
		tgctgggctg				27960·
cttccaggaa	ccaacccgtg	tgcggacagg	aacggggggt	gcagccacct	gtgcttctgc	28020
		tggctgcccc				28080
		cttcttggtc				28140
		cgacgtggcc				28200
gccctggact	ttgatgtgtc	caacaaccac	atctactgga	cagacgtcag	cctgaaggta	28260
gcgtgggcca	gaacgtgcac	acaggcagcc	tttatgggaa	aaccttgcct	ctgttcctgc	28320
ctcaaaggct	tcagacactt	ttcttaaagc	actatcgtat	ttattgtaac	gcagttcaag	28380
ctaatcaaat	atgagcaagc	ctatttaaaa	aaaaaaaga	tgattataat	gagcaagtcc	28440
ggtagacaca	cataagggct	tttgtgaaat	gcttgtgtga	atgtgaaata	tttgttgtcc	28500
gttgagcttg	acttcagaca	cccacccac	tecettgteg	gtgcccgttt	gctcagcaga	28560

```
ctctttcttc atttatagtg caaatgtaaa catccaggac aaatacagga agacttttt
                                                                28620
ttttttttt tgagacagag tcttactctg ttgcccaggc tggagtaccg tagcgtgagc
                                                                28680
tragetract graacetreg cetecraget traagegatt ettetgeete ageetretga
                                                                28740
gtagctggga ctacagacat gcaccaccac acccagctaa tttttttat attttagta
                                                                28800
gagacagggt ttcatcatgt tggccaggct ggtcttgaac tcctgacctc aggggaacag
                                                                28860
acggggttgg cctcccaaag ggcggaaata acaggggtga gccaccgttc ccggcctagg
                                                                28920
aaaacttttt gccttctaaa gaagagttta gcaaactagt ctgtgggctg gccttctgat
                                                                28980
tctgtaaaga aagtttgatt ggtggctggg tgcggtggct cacacctgta atcccagcac
                                                                29040
tttgggaggc cgaggtgggc agatcacctg aggtcgggag ttcgagacca gcctcaccaa
                                                                29100
cgtggagaaa ccccgtctct actaaaaata caaaaaaaaa attaaccggg catggcggcg
                                                                29160~
cctgcctgta atcgcagcta ctcaggaggc tgaagcagga gaattgcttg aacctgggag
                                                                29220
gcggaggttg tggtgagctg agatggcacc attgcactcc agcctgggca acaaaagtga
                                                                29280
aactccgtct cagaaaaaaa aaagtttgat tggtgtaacc aaagcgcatt tgtttatgga
                                                                29340
ttgtctgtgg cagcttttgt tctgccgaga tgagttgtga cagatctgta tgggctctaa
                                                                29400
agcctaaaac atgtgccatc cgccccttta cagaaaaagt gtgctgacct ctgttctaaa
                                                                29460
gtattggaca actacaatgt ttgctcattt attattctat gatttgtttt ctgctttttg
                                                                29520
ttgttgttgt tgttgttgag atagggtttc cctctgtcac tcaggctgga gtgcagtggt
                                                                29580
gtaatttcag ctcactgcag cctcgacctc ctgggctcta gtgatcctct catctcagcc
                                                                29640
tecetagtag etgggaetae aggeaeaeae caccacteet ggetgatttt tttttttt
                                                                29700
tttttttttt gtggagacag ggtttccgca tgttgcccag gctggtttca aactcctagg
                                                                29760
ctcaaacacc cacctcagcc tcccaaagtg ctgggattac aggcgtgagc caccatgccc
                                                                29820
agcctattct actgtttgta ttacatagct ttaaaagatt ttttatgact ttaagtcaca
                                                                29880
29940
ccataacctc tccagccaga gacgaccgtt gctgacacct cagcatattg cctttaagtc
                                                                30000
ttttttctct aagatagcat ttctcttcat cacagtcata tgctacgcag aattctgtat
                                                                30060
cctgattttt tcacttgaca ttacaacagg tatttgatgg cgctgtgaca aactctttgg
                                                                30120
cacaatcttt taaatgtatg aaatactcca ctgcacagat gtttgctttt aggcttaact
                                                                30180
gttcttttat tttgcgtgtg ctggttacag ccgggcacag tggctcatgc ctgtaatcac
                                                                30240
aacactttga gagggtgagg caggaggatc acttgagccc agaagtttga gaccggcctg
                                                                30300
ggcaacatag tgagacccca tctctacaaa aaactttttt aataagtcgg gcgtagtggt
                                                                30360
geatagetgt agteccagee accaaggagg etgagttggg aggattgett gageeccagg
                                                                30420
aggitgatge tgeagtgace tgagattact ceaetgtact ceaecetgag cgacagagea
                                                                30480
30540
tatacataca cgcacacaca cataatataa aaatatatat ttataaatat ataatatata
                                                                30600
atataaaaat atatatttat aaataaaatt tataaattat atttataagt aaatatataa
                                                                30660
30720
30780
30840
taaaatatat ataaaatctc caagttgctt tttccaaaaa ggtgtcttgc tgcatttcaa
                                                                30900
acattcattt aaaaacttga atgctggtga tctggtccag aatgtgttca gtagctgctg
                                                                30960
ccagtggcca agcatctcgg gagatgtcta caaaacacgc tggttctggc ctggcgtggt
                                                                31020
ggctcacgcc tgtaatctca gcactttggg aggctgaggc aggtggatca actgaggtct
                                                                31080
ggatttcgag accagecttg ccagettggt gaaaceceat etetaetaat aatacaaaaa
                                                                31140
aattagccag gcgtggtggc atgtgcctgt aatcccacct acttgggagg ctaaggctgg
                                                                31200
agaatcgctt gaacccaggg ggcagaggtt gcagtgagcc gagatcgcac cattgcactc
                                                                31260
caggctgggc aagaagagcg aaactccgtc tcaaaaaaaa aaaaaaagat gctggttcct
                                                                31320
aaaatgtggc ccttttcctc ctcacctgct gccagaccat cagccgcgcc ttcatgaacg
                                                                31380
ggagctcggt ggagcacgtg gtggagtttg gccttgacta ccccgagggc atggccgttg
                                                                31440
actggatggg caagaacctc tactgggccg acactgggac caacagaatc gaagtggcgc
                                                                31500
ggctggacgg gcagttccgg caagtcctcg tgtggaggga cttggacaac ccgaggtcgc
                                                                31560
tggccctgga tcccaccaag gggtaagtgt ttgcctgtcc cgtgcgtcct tgtgttcacc
                                                                31620
tegtatgaga cagtgegggg gtgecaactg ggeaaggtgg caggetgtee gtgtggeeet
                                                                31680
cagtgattag agetgtactg atgtcattag cettgatggt ggccaggact ggtagggccc
                                                                31740
tcagaggtca tggagttcct tcgtggagcg ggtgctgagg ctgtatcagg cacagtgctg
                                                                31800
gctgctttca cctgggccgt ctcaccgaag tgtccatgga gcctgcgtag ggtgggtatc
                                                                31860
tgtgtcgatt ttacagatgc agaaacaggc tcagagaaac cgagtgactt ccctaaggtc
                                                                31920
acatacccag ttagagcaga gctgggccag gaagtgctgt ctcaggctcc tgaccaggtc
                                                                31980
```

teettgettt	geactettge	caaaaccatg	atccagaact	gactttgagg	tccccggacc	32040
tcaggctcct	ccgaaatggc	ctcttggagg	ctgctgagcc	acagcttagg	acccacctcg	32100
agaggcaaat	gtgctttgag	ctgccaggcg	tcctgggggc	cctgccttgg	gcacggggtt	32160
cagacaggcc	ccagatgtgt	ggggcgtctt	tctggacttg	agttttcttt	tctgtgtggt	32220
ggacacagtg	ctcacccctt	aaagcacctg	tgatgtgtgc	agcagcccaa	tccctgcctg	32280
tcgcctgttc	tgctagggaa	ggaaggaata	cttcaggatg	gcaggacaac	agaaagaggt	32340
ccaggtttta	gagcaagggc	aggtcaaact	tagaaaattc	tggaatgagg	atgtgcattt	32400
cctcttctgg	atctgctaaa	agaagaggga	aggaggggct	gctgggggag	gagcccagag	32460
ccgagtttac	atccggatcc	cgcaaggcct	ccctgccct	gaggtettgt	tttgtgatgt	32520
gcttgtgtcc	atcctqqttt	ctaccatate	cccaacatcc	ggccaagett	aggtggatgt	32580
tccagcacac	actcaccctg	tctgtgcacc	tgtttttgtg	tecataaata	antatttact	32640
caccttacga	gtgagccact	gtgggaattc	agggaggtgg	cacaataacc	accetege	32700
ggatatgtgt	ataacaaaaa	tcgagggtct	cgcccttccc	tacttectac	acceceggag	32760
ctccaggacg	addaddacta	anctraarar	gtggggacag	ttacatcaca	gegeggeete	
ctatectaca	atasasacsa	ageegaagag	cetaccetta	tegegreece	ctyccaccca	32820
catchacter	accasataca	acceactgag	cctgcccttc	coccutge	cttecageta	32880
catctactgg	accyaycygy	geggeaagee	gaggatcgtg	egggeettea	Lggacgggac	32940
tascasaaa	acgccggcgg	acaaygtggg	ccgggccaac	gacetcaeca	ttgactacgc	33000
cgaccagege	ccctactyga	ccgacctgga	caccaacatg	atcgagtcgt	ccaacatgct	33060
gggrgaggg	cgggctgggg	cettetggte	atggagggg	gggcagccgg	gcgttggcca	33120
cccccagec	tegeegeaeg	taccctgtgg	cctgcaagtt	ccccaacctg	gcaggagctg	33180
tggccacacc	cacgactgcc	cagcagcctc	accetetget	gtgggagttg	tccccgtcca	33240
			ggagaggctc			33300
gcacctgctg	ggcactaggt	cccagctaat	ccctgtgcca	ggactctaat	ttcaccctaa	33360
cacacatggt	ggttttcatt	gctggggaag	ctgaggcctg	agcacatgac	ttgccttagg	33420
tcacatagct	ggtgagttca	ggatccccca	gagataccag	ggccagcact	cgatccccac	33480
ccagccctga	accccaccat	gtgctgggat	tgtgctggga	gtgtccacac	gcctgggacc	33540
ccagggctgg	tgctctcatc	tectttttee	agatcatgag	aatgaggctc	agggaagttt	33600
gaaaaaaacc	tatcccaagt	cacacagcaa	caggagcagg	atttgaaccc	agaaaagggg	33660
accgcacact	ctgttctgct	agagtagtta	gctgtcctgg	gtgatatggc	aggtgacagg	33720
ggcaactgtg	cttaacaaag	gaacccccat	ccccctgcc	aagttgggag	actagaaggt	33780
caggggcaga	agctctgaag	ggccaggtgc	agtggctgac	acctctaatc	ccagcacttt	33840
			ccaggagttc			33900
agtgagacgc	catctctaca	aaaaaatttt	ttaaaaatta	gctgggcatg	gtggttcatg	33960
			gtgggaggat			34020
			cactccagcc			34080
			gaagctctga			34140
			agggtcacct			34200
			ccctaggaga			34260
			tttggcttct			34320
			tttacagatg			34380
			ggcagagctg			34440
agttatcact	aaaaataaac	tgcaccctga	cttgtgaggc	cagtagcaag	atttacacat	34500
			acatecegtg			34560
			tcaccgcaca			34620
			cagactcaga			34680
			ggccatgtgc			
						34740
			cggatgttta			34800
acggaaggcc	aggicciaci	togetgeggag	tgaaggatgc	acagecagge	ctgacatgat	34860
gagaacaaga	acciggagic	cogolgoolg	ggtggtaatc	ctggccctgc	cacttagcaa	34920
ttantanta	gragecagge	cacttaattt	tgctagatcc	tgcctgcgct	tcagtggatc	34980
gatta	Local	ccaaacactt	taaggcattc	atgtggtcgc	taggctgcag	35040
			cgtgtgctct			35100
toss	gecegtgtgt	gttcatgcag	gtcaggagcg	ggccgcgatt	gccgacgatc	35160
			gcgattatat			35220
			gcggccggaa			35280
			tccactcctc			35340
actgtatgca	caacaacggg	cagtgtgggc	agctgtgcct	tgccatcccc	ggcggccacc	35400

gctgcggctg	cgcctcacac	tacaccctgg	accccagcag	ccgcaactgc	agccgtaagt	35460
gcctcatggt	ccccgcacc	tcactccctc	gttagatcag	gctggttctg	ggagctgacg	35520
ctgaaaggag	cttctcatct	ggggttcctg	ggtgtacata	gatggttggg	taggttgtgc	35580
	ctgcatgatg					35640
ttcatcagga	catagataaa	tggccaaaac	tcctcagctg	gaaggtcctg	ggcaggatct	35700
ttgggtgtga	aaaccagtca	caggggaagg	gtgcttgctc	atactgccag	cacagtgctg	35760
agtgctttcc	atagcgctcg	tttactcctc	aagcctggag	ggtggggagt	agcatggtcc	35820
catttcacgt	acaaggaacc	cgatgcacag	agaggtgtgg	caacccatcc	aaggccatac	35880
aactggggtg	ggttgagccg	gggttgactg	tggcaggctg	gctcaagagt	ccctgctcct	35940
gaacccttgc	caggcagcct	ggcatcagct	cggggaattt	ttgccctgac	ccttggaagc	36000
aagtgggcct	ctttgttctc	atgtcagtga	tgagaagagt	gactttccta	tggcccctct	36060
	tgtttcctgt					36120
	acgcagaact					36180
agtctcacgc	agacctggtc	gcaggcgggg	ctggtcttgc	ctgtcccagc	tgcatggatg	36240
gggaacttga	ggcttgcaaa	ggttaagggg	ctgttcgagg	cccacgctgg	caggagatgg	36300
gcctgggcca	gagtctggga	cttcccatgc	ctgggctgtc	tttggtcctg	ttgctcacca	36360
tecetecetg	gggccatgac	cttagagagc	caaatggagg	tgcaggtaac	ccacggcaag	36420
	catgactcag					36480
tggatttcag	accagecact	gtagcccgct	gacggtgcgc	tcgaagtgcc	acagettetg	36540
	ggactcaggc					36600
atgttctggt	tctgctagag	agctggttct	tcggatcctg	gtaccagtgc	actgagagga	36660
ggcccagctt	gattctgggg	ctgccttgtg	gtggcatgtg	ctgctcactg	acaccctcga	36720
	ctctcgggct					36780
	tagcaaaccg					36840
	ctaccattac					36900
	gacgcggtgg					36960
	tgaggtcagg					37020
	tacaaaatta					37080
	gcaggagaat					37140
	cagtccagcg					37200
	aaaaataaat					37260
	atatgacacg					37320
	cgtctttccc					37380
	ctatcccgtc					37440
	ctcctctagc					37500
	tcccggacga					37560
	aagccatcga		_	-		37620
	tcaagcgagc					37680
	gcttcccaag					37740
	aggaaacaga					37800
	gtatgaccct					37860
	ccgttgttta					37920
	gaaaatggtc					37980
	ttttgtggga					38040
	cctatgcaaa					38100
	agccctcaaa					38160
	gigccttttg					38220
	aatgctgcaa					38280
	gaagggtgta					38340
	ggaaagttct					38400
	gaggtcagag					38460
	gttttttgca					38520
	cgtgctgtgc					38580
	tttttttt					38640
	gtggcatgat					38700
	cagcctcctg					38760
	ttttgaaaca					38820
J 3 - 9	,		222 3-336	22	- 9	

gcactgtggg	aggccgaggc	aggtggatca	cctgaggtca	ggggttcgag	accagectgg	38880
ccaacatggt	gaaaccccgt	ctctactgaa	tatacaaaaa	tcagctgggt	gtggtggcgg	38940
gtgcctgtaa	tcccagctac	tcaggaggct	gaggcaggag	aattgcttga	acccaggagg	39000
cagaggttgc	ggtgagccga	gatcacacca	ttgcactcca	gcctgggcaa	caagagcaaa	39060
actccatctc	aaaaaataaa	aaatagaaaa	acaagtgctg	tagcggaagt	gaggactttg	39120
cggagtcagg	cttatataac	ctattccaca	aatgatgtgc	tcacggtggc	ctcaddccca	39180
cctggagtct	gcagcatggg	acacaacaaa	ttcattagtg	tagaattcca	agacagacct	39240
ggctcctaag	carcettett	ttacaaaaac	tacadaaccc	gcctgtatcg	taggacttte	39300
adaddccdaa	ataaataast	caccaccatca	ggagttgaag	accagectgg	caycacticg	
gaaggeegaa	CtCtactaaa	tataccasasa	ttagetegat	accageergg	ccaacatggt	39360
teccagetae	tegggagget	and and and	tasttassas	gtggtggcac	gegeetgtag	39420
gatetgagae	catatoatta	gayycayaat	tagacca	tgggaggtgg	aggttgcagg	39480
22222222	tacaccacca	caccccagcc	tyggcaacag	agcgagacgc	catctcaaaa	39540
tattattata	cacayaycca	cacggeetet	treceaeeg	agtgttggtg	tgggagcttg	39600
cyclategeg	grgadarer	ggtacttet	tgaggcagag	agaggctgag	cgcctggaga	39660
gactttcaca	tgggtcgcca	tgteegeegt	cggtttcgct	gttgtgctcc	ccatctgaag	39720
gctggtgccg	tccagacagg	ctggacgccc	ctttccacca	gatccttcct	cccgcagcag	39780
				gatggcaaaa		39840
ttgaaattca	gagccatgcc	tggctccctg	gagettetet	cctgggcagc	tgtgatcatt	39900
gcctctgctg	tggtgtgggt	ggtggaaatg	gattcctttc	atcttgcttg	ctacaggtga	39960
ctgtcacgtg	gagtcctttg	gagagagga	cgtgttaatt	gatggatgtg	gctcccatgc	40020
tgagaaagct	cctgggcgta	cattgcctta	gagtttcatt	ggagctgcgt	tcttttatgg	40080
tgtctgctag	gcagaagtga	tgaagacttg	gaagaaaacc	cagaaggttt	tccacttaat	40140
ttggaaaatg	tgcttttccc	ctcctgtgtc	ttttgctaag	gtccagcctc	ctgcagcctc	40200
cccgctctgt	ggactctggc	tttgattctt	tattaggagt	cccctgctc	ccccaaaaga	40260
tggtgtctaa	attatcatcc	aattggccga	ggttttgttt	tctattaatt	gtttttattt	40320
				taattgtttt		40380
tttttgagac	agggtctcac	cccagtgccc	aggctggagt	gcagtggtgc	gatcatggct	40440
cactgcagcc	tcagcctcca	gggctccagt	gatcctctca	cctcagcctc	tctagtagcc	40500
gggactacag	gcatacacta	ccacatctgg	ctgattttt	gtatttttt	tttattgtag	40560
agacccgcta	tgttgcccag	gctggtctca	actcctggac	tcaagccatc	ctcccacctc	40620
accctcccaa	agtgctggga	ttacaggcat	gagccacaac	acccagccat	tttaattttt	40680
				ctggagtgca		40740
				tctcctgcct		40800
ccgagtagct	gggattacag	gtgcccatca	ctatgcctgg	ctaatttttg	tattttttag	40860
				actcctaacc		40920
cccgcctcgg	cctcccaaaa	tgctgagatt	acaggtgtga	gccaccgtgc	ccggcctttt	40980
tttgtttttg	agacagggtc	ttgccctgtc	acccagactg	gagtgcaatg	gtgggctctt	41040
ggctcactgc	agcctccgcc	tcccaggctc	aagttgtgca	cctccacacc	tggctaactg	41100
				gggcttgaaa		41160
cagtccaccc	acctcagcct	cccaaagtgc	tgagattaca	ggcgcgagcc	accocaccca	41220
				tcagtcagtt		41280
				gcagatgtcc		41340
gcattgaaca	cactcctcat	ctccctctga	cagccaccat	tctactttgt	atctctctct	41400
gccttctcta	ggtacctcat	gtaagtggaa	ttataccaat	atttgccctt	gtgtgactgg	41460
				ttatagcctg		41520
				gggcgcggtg		41580
				cttgaggtca		41640 ·
				agtacaaaat		41700
				aggcaggaga		41760
CCCddusuuc	agaggttgca	atraaccaac	attotocoto	tgcagtccag	catagatasa	41760
agaphanac	tteetatete	aaaaaaaaa	aaaatcatca	gatggatgga	caraccactt	41820
cttottatt	atccatccac	agatacteca	tttcttccc	ctttccttcc	ogtgaccaccc	41880
				ctttggttgt		41940
				tagtgaggaa		
				accataagta		42060
aaaatyd	aayeecayyg	geegggegeg	grygereacg	cctgtaatcc	cagcactttg	42120
00200000	acaaaaaa	antan======	ggagataa	2002test		40100
agaggeeagg	gegggeggat	catyayytta	yyayaccaag	accatcctgg	ccaacatggt	42180

PCT/US02/15982

```
gaaaccccgt ctctactaaa aataccaaaa aactagccag gtgtggtggc gggcacctgt
                                                                    42240
agtcccagct acttgggagg ctgaggcagg agaatggcgt gaacccggga ggcggagctt
                                                                    42300
gcggtgagcc gagatcgctt cactgcactc gagcctgggc aacagagcaa gactccgtct
                                                                    42360
cacgcaaaac tetgteteac geaagaetee gteteaaaaa aaaaaagagt teagggttta
                                                                    42420
tgaaactggc cagccgcgta aagtttgctg tgttgttttt gtgcccggga ggagtgtggc
                                                                    42480
cagggtgtca cgtcacacag tacacgtttc tcagatggtg gttctccaga ctgctgtccc
                                                                    42540
aaagtotgtt tttgcatotg gttoccacag accoaccotc cacggtgago ctgattttgg
                                                                    42600
ccagggtagc tggaatcttg cttgtctttc agcccggcag ctgtaccagt ccagggtcca
                                                                    42660
cagctagtgg cttttaggaa ggaatttgtt cagttggctt tgacacatgg ccccctaggg
                                                                    42720
tocacagete tgtagtgatg tggatgttgt tatetacaaa gacacatgat cettegtgte
                                                                    42780
cagatgaaag tgatgatgtc tttgcagctg cccagcaagg ctgtgtgtgt gtgtgtgt
                                                                    42840
42900
42960
gtgtgtggtg tgtgtgtg tatgggggag gcaccctttc catctgggtc caagagactg
                                                                   43020
ggcctgggga agacgcttct ttttatctac ttagagactt tgttttattt gtattttt
                                                                   43080
gagacagggt ctcactctgt cacccaggct ggggtatggt gatatgagca tagctcactq
                                                                    43140
cagectegge eteccagget gaagegatee teccacetea geettetgaa tagetgggae
                                                                    43200
tgtaggcgtg cgtcaccata ctgagctatt gttttttttg tttggttggt ttaattttt
                                                                    43260
ttgatacaga tggagtcttg ctatgttgcc cagactagtc tcaaactcct gaactcaagt
                                                                    43320
gattetecea ceteagttte ecgacattet gggateaeag gtgtgageea etgetgtete
                                                                    43380
cctgttttat taactgctga aagacctaga taaagaaagt ctgaaaagac ttactatcag
                                                                    43440
agcaccatcc taagatgatt ccctctgact caatggagag ggaggggagc ttttccttca
                                                                    43500
ggcctgggtg gcaggagccc aggtgctcca ggccccattt gccccaggcc aaatcactcg
                                                                   43560
ggaacttgga tgcagctgtc tttcagggta acccaaagga accagatccc cgcaggcagt
                                                                   43620
aggettetgg getgteetet eeteetaegt eageteagta agageeette gaagggatge
                                                                   43680
tgtgtcggag gccccaaaag cccaggctca tccctgagat gcacagggtg ggctgggctt
                                                                   43740
aggcagcgct cgagcatctc ctggacggtg accccagaga gtgtggagac ggagagtcct
                                                                   43800
tgagagtcac tgagagacgt ggctgccctg ccttcccaag aggggctctg agtcattccc
                                                                   43860
cacacteace tgeccetace cacdeteace tggcccccag ceteacetac ecceacatet
                                                                   43920
gtaccgatcc ctttacccgc accttcccta cccaccctca cctcccctgt accttcacct
                                                                   43980
ccccactca cccgcccctg caccctcacc tgtcccccac cttcacctaa cccccaccct
                                                                   44040
cacctgccct cccctcacct ggcctccttc cgttggggaa ggggttgtaa ggggcggccc
                                                                   44100
ccaaactgtc tgtcctggtg ccctgcagag aaaacagtac gtgagggccg cagtccaaaa
                                                                   44160
gcttgagtcc tggaaggtgg aggagacagg gatgtgttgg gaagggcccc atggtcttgg
                                                                   44220
atcccttctc gactgtcaat ggggccttca tgggagcgcc agtctagtga tgcacagctg
                                                                   44280
ggtgcccggc gggtggctga ggaggcctaa agtccgaggc ggcaagagct cttccagagg
                                                                   44340
ctgttgtcct aatcgctctg gcatactcag gcgggcacgt agttaggagc tgattggaga
                                                                   44400
ggagagaccc ccacaccaat actgggattt gactttcagg ctaaacttga gaagtgtggc
                                                                   44460
etetgetgte etgeeagage tetecageea gtgeeeaggg etetecagee agtgeeeggg
                                                                   44520
ggtctccacc agtgcccggg ggtctccgcc agtgccaggg gtctccgcca gtgcccaggg
                                                                   44580
gteteegeea gtgeteagga gtettggttt etttgtetta eageeetttg ttttgaeete
                                                                   44640
tctgagccaa ggccaaaacc cagacaggca gccccacgac ctcagcatcg acatctacag
                                                                   44700
ccggacactg ttctggacgt gcgaggccac caataccatc aacgtccaca ggctgagcgg
                                                                   44760
ggaagccatg ggggtggtgc tgcgtgggga ccgcgacaag cccagggcca tcgtcgtcaa
                                                                   44820
cgcggagcga gggtaggagg ccaacgggtg ggtgggggtg ctgcccgtcc aggcqtqccc
                                                                   44880
gccgtgtctt ctgccgaatg ccagcctctc acaggctggg gagactttcc accctgggga
                                                                   44940
tccaatgggt ggctttccag ggtcccaaaa gcaaacacag gctctttcac agcccctcca
                                                                   45000· ·
ggaaagcaga aagccccaag ggctggaagg gaagggggag ctctgctgag aggttacaag
                                                                   45060
gcagcgctgg ccgacgggag ttgcagttga taggttttgt atcatccttg ttaaacttga
                                                                   45120
accetqtgca gaaateeett ceaeggeatg ggggetgeet gttgaetege teetgtteea
                                                                   45180
ccacagggag ctcctgggct tcttcctccc agaggccccc gacgctccca cctgttggtc
                                                                    45240
gtcagagctt ctggttggtg ggaaggcacc caggaccttg aggtctccag agagaaaagc
                                                                   45300
cagggaaaga gggagaccga aacccatgtg acatgaaact caggctccaa actgagcacg
                                                                   45360
ggaacgtttg gggacaggag cgcgatggcc ttcctcagat agctgggggg ctggcatgaa
                                                                   45420
gacgggaget acagecagea caggteetgg geegggagee cagagattga geeetgaete
                                                                   45480
tgtcacttac tggccacgtg accttgggcg ggtggcatag cctcttggag actcagtttc
                                                                   45540
ctcattggta ggagtgacgg ccacagtggt gcggcctctg cagcacacgg ggggctcggt
                                                                   45600
```

~~~~~~~~	cccccct at a	*				
gggcggaagc	cccgggtcta	taaggcggct	gtgcaggagc	cagccgagct	ggtctcccaa	45660
cagecaggge	teeggggtee	ttagcagctg	tggggggcct	gcacctgttt	cccatggctg	45720
ctgtcagaaa	ttaccagaag	ccaggtggct	gagagtaatg	gacacttgtt	ctctcacagt	45780
tcctgagggc	tgaagcccga	gatcgaggtg	tgggcagggc	cctgcgccct	ctgaaggctc	45840
tgagggaacc	tttgggcttc	tggtggctcc	aggcacccct	tgacttgtgg	tcctqtcact	45900
ccagtctctc	tgtctggctg	cacatggcgt	ggcctcttct	gtaccattga	aggacacttc	45960
agttggattt	agggcctacc	ctcacccatt	gtggtcgtat	cttgatcctt	catgacattt	46020
gtaaagaccc	tgcttccaaa	taagctcaca	ttctgaggtt	ctagaataaa	Cooggaattto	46080
gagagcattg	ttcaactagt	atagaatgtg	acctgtcage	ctcaaacaac	Cotagagaa	46140
aggggctttc	cacageccag	ctgggtgccc	tagactccat	actatecasa	cacagagaga	46200
ccccacaccc	atcetteace	cgccaccctc	ccacaaatac	ctatacttca	Garacataa	
adaccadaca	accaacatea	aacgcgcagc	cctaggeac	3000300000	ccaacatgca	46260
ggacogggca	steatesass	statageset	cctggacggc	accgagegeg	aggicetett	46320
caccaccggc	accased	ctgtggccct	ggrggrggac	aacacactgg	gcaagctgtt	46380
ccgggcggac	geggaeetga	agcgcattga	gagetgtgae	ctgtcaggta	cdcdccccdd	46440
ggeetgeeet	aaccgcagac	acccggcctt	cattgtcagt	aatggcagca	gctgccacat	46500
tgtccgagac	ctgccgtgag	cccagtgccg	cgccaggggc	tttgtgtgta	gcgtgttttg	46560
tcctcacact	gacagctgta	ggctggggtt	ctgagtgagc	cccacagggc	agaggcagaa	46620
aatgagtctc	agagagggtg	agcgagctgc	ttggggcccc	acagcaggag	atggagcagg	46680
actgcagcct	agcctctgcc	cccagcacct	gcgcaagaag	ctgctctgct	ctggactgtg	46740
ttaggctgcg	agggctggag	agaaatgaga	gttggtgctt	agagagggg	cgcaggtccc	46800
		tgaggtagat				46860
		ttggaactga				46920
		ttgtcttggg				46980
tcccacccct	gtccaaagca	tggaatcccc	caggeteect	ggcagtcctg	tcaacctctc	47040
tcctcccaag	ctgagtgtgg	ggcaagttct	ggaggtcagc	actoctcago	addacccsca	47100
agctacttac	aggggccaac	cgcctgaccc	tagaggacgc	caacatcoto	carctetas	47160
gcctgaccat	ccttaacaaa	catctctact	agategacea	ccaccaccac	atastassa	47220
atataaaaa	ascessaga	G2C22GGGG	ctcccstccs	acceptate	acquicigage	
gtgtggagaa	tacactagg	gacaagcgga	tagagagatt	gggccgtgtc	geceacetea	47280
		gaagtcagcc				47340
Lggggtgggt	agggtggcct	ctaaacccga	ceeeeggagg	aggetggagg	ccagtgcaag	47400
		ggcggtggtc				47460
		gtcccgaggc				47520
		ttaagacaac				47580
		cccaggctgg				47640
gcctcgacct	ctgggcttaa	ttaagtgaac	accttgcctc	agcctcccag	gtagctggga	47700
ctacaggtgg	gcaccaccac	acctggctaa	ttttttttg	tagagacggg	gtttccccat	47760
gttgcccagg	ctggtctgca	actcctgggc	acaagctatc	tgcctgctgt	ggcctcccaa	47820
		gagccactgg				47880
		cacagcgtgg				47940
ggggccagaa	tcaaggtgtc	aggaacgctg	ggccctcagc	ggaggctctg	tggagaaatt	48000
		aggtagcagt				48060
		tcagctccta				48120
		ggctccctgc				48180
		tgtgattcgg				48240
		ggctgattaa				48300
		ccgtgctggg				48360
		ttgctgtgtc				48420
		cctccatggt				48480
		atccctacaa				48540
		atcccagcac				48600
		gcctgcccaa				48660
		tggcaggcgc				48720
		gggaggcgga				48780
		gtgagactcc				48840
		cccaaaaaaa				48900
		ggtggggcag				48960
		cctccaagct				49020
755-5-5	J = = = J = = = = =		•			

```
ggacacattt ggttaactgg atagaataac gcgagttccc agggacttgg tccatttgct
                                                                    49080
49140
tgagatggag tttcgttttt gtcgcccagg ctggagtgca gtggcgcgat ctcggttcac
                                                                    49200
tgcaacctct gcctcccagg ttcaagtgat tctcctacct cagccttcca agtaactggg
                                                                    49260
attacaggca cccaccacca taccaggcta attttttgt atttttagta gagacgggtt
                                                                    49320
ttcgccattt tgcccaggct ggtcttcaac tcctagcctc aggtgatcca cgcacctcgg
                                                                    49380
cctcccaaag tgctgggatt acaggcatga gccaccacgc ctggcaccat ttgctatttt
                                                                    49440
aattcccatg tgtattagtg tcccacggct gctgtaacaa atgaccacaa actggatggc
                                                                    49500
ttaaagcaac agaaatggat tcccccaatg tgctggagac cagaagcctg cgaccaaact
                                                                    49560
gttgggaggg ctgtgcttcc tctgggggct ccagggagga tctatttgtt ggcccttcca
                                                                    49620
gtgctgtggg tgccagcgtt ccacacttgt ggatgcgccg cctcaacctc tgcccatctt
                                                                    49680
catgtgtcca teteetttgt gtetgegtet ttacetette ttettgtetg tgttgcetet
                                                                    49740
tataaggacg tttgtcattg ggtttagggc ccacccaaat catccgagat gacctcgtct
                                                                    49800
tgagateett aacetgeaaa gaeeettttt eeaaaaaaag gttatgetea eagattetag
                                                                    49860
gccttaagac atgggtgtat ctttctgggg ggcactatcc aaccccttat acaatgaaag
                                                                    49920
acgggaagag ggccaggtgt ggtagttcac gcctgtaatc tcagcacttt aggaagctga
                                                                    49980
agcgggagga teacttgage ceaggagttt acaagtaget aggcaacatg atgagacee
                                                                    50040
atttctacaa aaagtaaaaa aaaaaaaaaa aaaaaaaaag ccaggtgtgg tggctcacac
                                                                    50100
ctgtaatccc agcactttgg gaggctgagg caggcagatc acgaggtcag gagattgaga
                                                                    50160
ccatcctggc taacacggtg aaaccccgtc tctactaaaa atacaaaaaa ttatggccgg
                                                                    50220
gcgcagtggc tcccgcctgt aatcccagca ctttgggagg ccgaggtggg tgaattacaa
                                                                    50280
ggtcaagaga tcgagaccat cttggctaac acggtgaaac cccatcaaga tcacaaggtc
                                                                    50340
aagagatgga gaccatcctg gctaacacgg tgaaaccccg tctctactaa aaatacaaaa
                                                                    50400
aattagccgg gcatggtagc gggcgcctgt agtcccagct gctcgggagg ctgaggcagg
                                                                    50460
agaatggcgt gaacccggga ggcggagctt gcggtgagcc gagatcgctc catgccattg
                                                                    50520
50580
agccaggcac agtggcaggt gcctattgtc ccagctactt gggaggctaa ggcaggagaa
                                                                    50640
tggcatgaac ccgggaggtg gagtttgcag tgagccgaga tcatgccact gcgctccagc
                                                                    50700
ctgggcgata gagcaagact ctgtctcaaa aaaaaaagcc aggcatggtg gtgcatgcct
                                                                    50760
gtagtcccag ctactcaaga ggctgaggca ggagggttgt tcgacccacg gagatcaagg
                                                                    50820
ctacagtgag ccatgatcgc accactgccc tccagcctgg gtgacagagt gtgaccctgt
                                                                    50880
ctcaaagtaa gtaaatagga ggagagacaa gtgggcagtt cagactgatg gtatgggcac
                                                                    50940
agtagagact ggtgcagaca ggctggcctg tgatgtcaag caacttctgt aactgtttcc
                                                                    51000
ggcatccatt tgtgtgtcaa tttccgtgtc agtaggaaga ctctgtaggc tgccaagagg
                                                                    51060
aataagtggg aggateetee cagagaggee gggeetgeag gagggeeagt teteatgagt
                                                                    51120
tettatttgg eccetaceet ceaggetgtg gttetgaggt gggagaeaga geetgaeete
                                                                    51180
tgtttgtctt gttttgtctt tgcagcagcc cacccatgtg cccgtgacaa tggtggctgc
                                                                    51240
teccacatet gtattgecaa gggtgatggg acaceaeggt geteatgece agtecaeete
                                                                    51300
gtgctcctgc agaacctgct gacctgtgga ggtaggtgtg acctaggtgc tcctttgggg .
                                                                    51360
tgatggacag gtacctgatt ctctgcctgc taggctgctg cctggcatcc ttttaaaatc.
                                                                    51420
acagtocotg tggcatocag tttocaaago tgattgtgto ttootttgco etcetttott
                                                                    51480
ttctactatg tgcattcggt gctatgaatt ttcctctaag tactgcgttt cctgcatctc
                                                                    51540
acaaattttg ttacattttc attttcaggt agtttgaata tttttacact tctcctgaga
                                                                    51600
tgacatcttt ggctcatgtg ttatttagaa gtgttgctta gtttctaaag agttggggct
                                                                    51660
tttccagctg tctctctgca actgatttct aatttaattc tactgtagtc tgagagctta
                                                                    51720
ttttatatga tttctgttat tttaaatgtg ttgggtgtgg tgtttttgtt qttattqttt
                                                                    51780
ttgtgtcttt ttgttttgtt ttgcttcgtt tgttttgttt ttgagacagt qtcttqctct
                                                                    51840·
gtcactcagg ctggagtgca atggcgcgat ctcagctcac cgcaacctct gcctcccggg
                                                                    51900
ttcaagtgat cctcttgcct cagcctcctg agtagctggg attacaggtg cacgccacca
                                                                    51960
tacccagcta atttttgtat ttttagtaga gacggggttt caccatgttg gtcaggctgg
                                                                    52020
tetegaacte etgacetegt gateegeeca ceteggeete ceaaagtget qqqattataq
                                                                    52080
gcgtgagcca ctgtgcctgg ccattaggtg tgttttatca cccagcatca tgcagtttat
                                                                    52140
cttggtgaat gttctgtgta ctcttgaaaa gaatgtggat tctgctgttg ttgggtggag
                                                                    52200
tgttccagaa acatcaatta gatccagttg gttaatagtg ctcatcaggt tgtctctatc
                                                                    52260
cttccttcct gactgcctgc ttgagctgtc agttattgac aggggtgtgg agtctccaac
                                                                    52320
totaatggtg gattigttia titotootag tagticiato tititototo citotaccot
                                                                    52380
tgatcctctt ctccccctag ggcttcctgg tgttggtggt gggagagtgg ggtagtgaag
                                                                    52440
```

PCT/US02/15982

aacctggact	ttagggccaa	agaggccagg	gttcaaatcc	taactetate	acttoccart	52500
tgagtgaccc	tggctggtgc	ctgaatctct	gtgagcctcc	acttcctcct	ctotoccage	52560
gagagcactt	acctggcagg	ctgtcatggg	catcaagtaa	cagggcactc	Cacctagacc	52620
ctgacacgtg	atgcacagga	atoccaocto	ctatoccato	agtatagea	tagtaataaa	52680
gtgaccatct	gtatcctcac	cacagtgaag	cctatccaga	actttctctc	Ctatocccc	52740
atocctccao	gtggccttgg	atcctgttgg	ttctatactc	tactcaacaa	Cottestas	52800
gtgggagttc	ctgggggttc	agetteatee	tacadacado	ageagages	gastatassa	
ccttttttt	tttttttt	ttttttta	gatggagtet	agcacacacc	ggctgtgcac	52860
aagtgcagtg	gtgtgatctt	aactcactac	accytatec	tostagette	gegeaggetg	52920
cctacctcac	cctcccaact	agetagaatt	accectace	rectiggette	aagtgattt	52980
tttgtattt	cctcccaagt	agetyyyatt	catattages	accaccacge	ccggctaatt	53040
acctcacata	cagtagagat	stangatas	catgitigged	aggatggtet	tgaactcctg	53100
cacacccaggig	atccgcccac	tttttagcag	tttatatat	tostacagg	cgtgagccac	53160
acceacegga	gtgccggttg	aggeogeag	atactaceta	nanatagag	actggctcct	53220
gcccaggagc	tcggggagta	aggeegeggg	tosts	acacctegag	tttggccgta	53280
ttacaccca	acattttgtg	tagatttaga	accessore	cccagcagct	tttctccaag	53340
taccagecca	aaagctcagg	agactigea	acceaacggt	gtetgtgeae	ctcccactga	53400
gggggtgact	gccctggcca	ayaaacyggg	ccgccagaac	gctgcactaa	ctgcagcctt	53460
gggcccccac	gccagaggcc	atgecettee	atccaccacc	ccctggcctg	ggccctggcc	53520
cccctggctc	gggaactcca	ggeeeettee	tcacggatcg	agagacgtgt	atttaccgca	53580
caggigettg	tcattctctt	gragecterr	ctccagggag	accacagaag	gacagggcct	53640
cactgaggtc	tcggacatgg	accetttgat	agtggcagga	gccaggctgg	gcaagaggcg	53700
gecacagtea	cctcagcagt	gccatcacca	ccgccattca	gcccttccct	gagccgggcg	53760
cgcccctggc	tctggcccca	gtgtcccagt	tacageteae	aggagcttgt	ggtgcccagc	53820
ggctgctct	gattgagagt	cgaggtcgga	ggctttggga	ggctgagagg	ctgctcggtt	53880
	tgagggagac					53940
	ggtcctccgt					54000
	agccgtcgtg					54060
ggacagctgc	ttccttttat	taccctagaa	ctctcgtctt	tgatcaggcc	ccctccccta	54120
tgccacacag	tccctgtcac	tcgggtgagc	ccagtagtca	tggggaaggc	ctgcgggttc	54180
caaacatcca	aaggcttgcg	tgcagcatga	cagcttgaaa	ccgatgtttt	ttaccttgat	54240
cagatttcag	cttggcgggg	gctttgctca	gctttcagtg	aggcctgggc	cgatttccca	54300
gcatcccctc	ctgaggccag	cctctgtttc	ctgtgatttt	ctgcacaaag	tgggagggag	54360
gagtcttagg	aaatgggggg	ccacctcgaa	acctaggcct	cctctggctt	ctctgtgcca	54420
gtgcccccac	gctttgtgtc	tgtgtcccca	gcccatggga	ctgtgttatt	ccctgagtgc	54480
tgccgcatgc	ccagcccgca	ctgaggacgt	ggagccccga	ggggcaggat	ggcctccatg	54540
gtcacacgta	ggaagtggcc	tccaccctcc	gatgatcctc	tecececte	cctttcagcg	54600
ccttccccgg	gggtgtcatc	agccctcctg	cctgtgcttt	gtcccgtctt	ctgcaggcgc	54660
atgggacgtg	ctgacaggtc	ctctgccggg	ttcctgcctt	gctatgcgca	cgctggtcac	54720
cacagaggcc	tggcccttct	tctgtagcag	tcccacaccc	gcaacaggtg	tggctgctga	54780
ccacctgctt	tctgcccctc	tggtcctgag	gagggcgcag	tgggcactca	ggcgtggctg	54840
	tgttgccggg					54900
cggagcattt	ctgctgtatt	tggtgtagcg	cctgctgctt	aaagctctga	ttcccagttg	54960
	ccttctgcat					55020
	gcctctcttc					55080
	atgtgcgggt					55140
	cttctgcttt					55200
	atgttctcct					55260 ·
	gccacagggg					55320
	gatgaccaga					55380
	cggggtcagt					55440
tcaggaccgc	tcagacgagg	tggactgtga	cggtgaggcc	ctccccatca	aggetetace	55500
aagaccctgg	ccctgccctc	cgggatacga	gcttgaaact	acctccaacc	tcacaggagt	55560
	aaaacctttg					55620
aggaaaactc	tgcagttcca	cccatcctot	cccaccaggt	agtgtggctt	gaaggcagac	55680
tgtgagggtc	tatctcacct	tcctqcatta	ggtcaggagt	ttcacagaaa	cctgaggcac	55740
attcaggggt	gggctgcaga	ggtccatggc	tcacacccta	gaaaatccoc	cccaaaaga	55800
cagtgctgtc	tccactgacc	agtctgtggg	atagtgctta	agcctgagtg	gtttctatca	55860
	•	, ,,,,		- 55-5-5	,	

acatgtagaa	tcaggaggta	taaagagatt	tgctcaggca	tcctgggccc	tctctgacca	55920
gcaggatett	cctttagatc	ttgacagtga	aacacatctc	ttctgtgccc	cctgtgagtt	55980
ttctttcatt	cattcattca	ttcattcatt	cattcattca	ttcgagacag	agtcttgctc	56040
tgtcacccag	gctggagtgc	cctggtgtaa	tctcggctca	ctgcaacctc	tgcctccagg	56100
gttcaatcga	ttctcctgcc	tcagcctccc	gagtagctgg	gatgacaggt	gcgcaccacc	56160
atgcctggct	aatttttgta	tttttagtag	agacagggtt	tcaccatgtt	ggccaggctg	56220
gtctcgaact	cctgacctca	ggtgatccgc	ccgcctcagc	ctcccaaagt	gctgggatta	56280
caggcatgag	ccaccgcgcc	cggcctgagt	tttcctttta	tgaaggacct	gcttggttgg	56340
ttgcctgcca	catgttgtca	gcaccatggg	cccaggactg	ctgaggagct	gttgatgccc	56400
tegetetece	agagccaccg	gctctgttag	ataattcaca	tgcagtctgg	ccactgtcct	56460
acgtcctcat	tcacaaagag	cagacatttc	gtagaagatg	agggcctggg	agtaacctcc	56520
ctgcatgttt	ttctataaag	gcatagtggt	taagtccttc	cagctcattg	accattggag	56580
aattttatgg	aggctgtaga	ctaggggctg	gtaaactaag	ggcccagggg	ccaaatccag	56640
cctgccacct	acttttgtaa	ataaagtttt	cttggtgcac	agccatgccc	attcattcat	56700
ttgcacaatg	tctgtggctg	ctttcatgcc	aaaagcagga	gaactgagtg	gttatgctgg	56760
agacctacgg	ccttcaaagc	cccagacctc	acgtctggcc	cttgacagac	agagetteee	56820
cagccctgct	gcgcatcctg	gcccagcatg	tgctgtgtgt	gtgatttcag	cttgcaggag	56880
ccgtggttag	gaattgtccc	tgtgttggtc	cattttgcat	tgctatgaag	gagcacctga	56940
ggccgggtag	attatgaagg	aaagaggtct	gtctggctca	tggttctgta	ggcagcacca	57000
gtatggcacc	cgcatctgct	cagcttctag	tgaggtctca	ggaagctttg	actcatggtg	57060
gaagtcgaag	cgggagcagg	tgcatcacat	ggtgagagag	ggagcaacgg	agagagagag	57120
agagagagag	agagcgcctc	tccctcttgc	cctcaccttg	agaggagatg	ccaggctcct	57180
ttaagtaacc	agctcccatg	tgaactcaca	gtgagagccc	atttgctact	gcggagaggg	57240
caccaggcat	ctgctcccat	gacccaaaca	ctgcccacca	ggccctacct	ccaaccttgg	57300
ggtcatattt	tattctgttc	tatgctatgc	tatgctatgc	catgccatgc	catgccatgc	57360
tattcctatt	ctattatttg	agacagaatc	tcgctctgtt	gcccaggctg	gagtgcagtg	57420
gcatgatctt	ggctcactgc	aacctccacc	tcccaggttc	aagcgattct	cctgcctcag	57480
cctcccgagt	agctgggatt	acaggcacac	accaccacac	ccgggtaatt	tttgtatttt	57540
caatagagat	ggggtttcac	catgttggcc	aggctggtct	caaactcctg	gcctcaagtg	57600
atccacttac	ctcggcctcc	caaagtgcca	tgattacaga	tgtgagtcac	tgcgcccagt	57660
gagggtcaca	tttccgttga	gatttggagg	ggcagacgtt	ggagccatct	gagccccctc	57720
gtcccgctct	agcttctcct	cccgtgtgcc	ccgcggtgct	ggtggcaggc	ccttacgccg	57780
gttctggctg	cacgctctgt	tccagaagct	ttcttccctg	cttggttacc	agaaaatcat	57840
cccatccatt	acaaggacag	ggtcccctta	tctcccattc	ccagggcagg	acaccggggg	57900
cagggcaggt	ggggaactga	gcaagttctc	tgggggcagg	cgtggctatg	gctccctctg	57960
ggtgggcgtc	tggggagggg	tggaggcagc	cgtcagcgcc	ctggcttgct	cttcctccct	58020
ggccagagac	tgtggccttg	tgctgctccc	gtgtgggctg	cctgcacctc	cagtgggttg	58080
tgctccctcc	cctcccctcc	cctcaagctc	tgctgagcac	cactgccttc	cacagccccc	58140
actctcggga	ggcgaggctc	ctcgtggcca	ttcctgtcct	tggcacccac	cccccacca	58200
acctggtaga	gccttgggcg	gggtctgtta	ctccttgcat	ggcgtagacc	tccccacagt	58260
				gcgttgaggt		58320
				catcgagggt		58380
tgtactagac	cactccccgc	tggtcctaga	aagggtccca	tctgtctgct	ctctgtttgg	58440
agtccagacc	ttggttgctg	tgccctgcat	ggtgggctgg	ggggcaccct	ccagcctctc	58500
				ccagttccgg		58560
gccagtgtgt	cctcatcaaa	cagcagtgcg	actccttccc	cgactgtatc	gacggctccg	58620
				ggggcgtccg		58680.
				cagcggggct		58740
tgggagactc	aggcggctgg	gaggeteett	gcgggaggca	gggaagcctt	tcccagggca	58800
gcggccagga	ggacagactg	tgagctgtgg	gctcggcggc	tacagagtct	gcctcagtgg	58860
gcggggctga	tggtgtccag	gtgcctgcag	cacgcaccca	cccacgggac	cttgctgagc	58920
agcgtctgtc	aggcagcaag	attacccgag	ggctgcagtg	gtcctgttcc	ctggcagctt	58980
				atgtcatgtg		59040
cacatgacaa	catcccacat	gctcctcaaa	tagcatgacc	tgtacagtca	cggatatagg	59100
				ccagaggcag		59160
				taggaagtag		59220
ccgtgtctgg	ggacatggcc	actccttcgc	tgcagaggga	cctgggctga	gagctcctct	59280

cttatggctg	cagtcgggag	agaagtctgt	tggggggaga	agggggcttc	ctcaagggac	59340
tccctgtgcc	ctttggcacc	ttcgtgccag	gtcaggcttg	aggcctgaag	gcagtggtgg	59400
gggccaccaa	gggtcgcctc	ctctgctggg	caagttccca	gtctgacggg	cctgtgccgt	59460
gggccccagc	raragaaaca	ctgttgatgc	gcagccaggc	ctcgccgcca	gagcccgcac	59520
gcttccattc	cgctgacttc	atcgacgccc	tcaggatcgc	tgggccggcc	ctgtgggaga	59580
gtgaatgtgg	cttttgccaa	agttgagtct	ggagcctgga	aacttcccta	tgggcagcct	59640
tgatagtgga	gtggcccaag	gagcccaccc	agccgaccct	gcccctcccg	tggctggtgg	59700
gcggcaccag	gggctgcctg	gctttgctcg	ttcaccaaca	tcacccgggc	tggccagggc	59760
gcgctcactt	ctgccaccac	cgagggccct	gggcgaagga	gtgaatacca	ggctgccttg	59820
gcagggatgt	gttgagggct	gtggggagtc	ggacagcggc	gggggtcaga	ggaggaggag	59880
ggtgcaccgt	gcaggctgaa	gggccacgtt	accctgaggt	tggccaggct	ccccaggcct	59940
agcctcccag	ctccccact	ttctccccac	cctccaccag	tggcaaagcc	agccccttca	60000
gggcgcacgg	tgtctgcccc	caaggagggc	ccattccgtt	ggggttaatg	ttggccacct	60060
ctttctgttt	gtctctggca	gaaatcacca	agccgccctc	agacgacagc	ccggcccaca	60120
gcagtgccat	cgggcccgtc	attggcatca	tcctctctct	cttcgtcatg	ggtggtgtct	60180
attttgtgtg	ccagcgcgtg	gtgtgccagc	gctatgcggg	ggccaacggg	cccttcccgc	60240
acgagtatgt	cagcgggacc	ccgcacgtgc	ccctcaattt	catagccccg	ggcggttccc	60300
agcatggccc	cttcacaggt	aaggagcctg	agatatggaa	tgatctggag	gaggcaggag	60360
agtagtctgg	gcagctttgg	ggagtggagc	agggatgtgc	taccccaggc	cctcttgcac	60420
atgtggcaga	cattgctaat	cgatcacagc	attcagcctt	tcccactgag	cctgtgcttg	60480
gcatcagaat	ccttcaacac	agaggcctgc	atggctgtag	caacccaccc	tttggcactg	60540
taggtgtgga	gaaagctcct	tggacttgac	cttcatattc	tagtaggaca	tgtgctgtgt	60600
tgtccacaaa	tcctcatgta	ccctagaaat	gaatgtgggg	gcggctgggc	tctctccaga	60660
gctgaaggaa	tcactctgta	ccatacagca	gctttgtctt	gagtgcagct	gggatttgtg	60720
gctgagcagt	tacaattcct	acgtggccca	ggcaccagga	acgcaggctg	tgtttgtaga	60780
tggctgggca	gccgcaccgc	agagctgcac	catgctggtt	tgtatcacat	gggtgaccat	60840
ggtatgtcta	agaaggtgga	gtccctgtga	ggtctgcagg	tgcccccaca	gctccaggcc	60900
accttgagga	ttgcctctgc	ctgcccagcc	ctgagttccc	tctcccctgt	cctgtcccac	60960
tgtcacccca	agccggcctc	attgggagcc	tgttggatgg	cagggtatag	atgtaacctg	61020
attctctctg	gggagcgggg	ttatctggct	tctcaagagc	tcctaggagc	ccacagtggt	61080
ggcaccatca	cagtcgcagc	agcccccaga	gaacgcggcc	ctgtctgttc	ctggcgtgct	61140
ctgtgctgcc	ccgcctgggt	tccctgcccc	agtcgcaggc	cccttggagg	aggtaccatg	61200
tgtctcccgt	ttcacagatg	agccccgggg	agctcactct	agtagtggcc	agagaggcct	61260
gcggctcagg	gagcggggca	catttccaac	aggacacacc	gccctggtct	gagtctcgtg	61320
ggtagtggga	gcagaggaga	gcgccctatg	tctgtggggc	ggcttggctg	agcctggaag	61380
ccacctgacc	tececegtee	cttccctgcc	aggcatcgca	tgcggaaagt	ccatgatgag	61440
		gccggggcgg				61500
aggggcctcg	tccagcagct	cgtccagcac	gaaggccacg	ctgtacccgc	cggtgagggg	61560
cggggccggg	gaggggggg	gcgggatggg	gctgtgggcc	cctcccaccg	tcagtgctgg	61620
ccaccggagg	cttcccgggt	tcctgggggc	tgtgccaccg	cctctgaggc	atgcttgctt	61680
tetteeettt	tcaaaccctt	ctgcttcctt	ctttaatgac	attgttgatt	gtggataatc	61740
tgaaaactac	acaaaaatat	aaagagccaa	aatctcaccc	aaatccacct	cctagagtgg	61800
ctgttgggct	ccgtcagcat	ccaggcggcc	gtctgtgttc	cgcacggccc	agcccatcga	61860
tagccgcctg	caccaggcct	gtctgccctc	tgtgagcctc	cccacagggt	tccctccaca	61920
aacaccctgt	tctcccaccc	agggctggct	gcttcctgga	aaacagctgg	atggttttgt	61980
gcatgacaga	caaacacagg	gtgattttcg	tggctaaaat	actccctgga	gcttttggca	62040
gggtgagggg	ctggctccag	ctgagccacg	ccttgagtga	aatgactgtg	aggagaataa	62100 -
actgccgctg	ccctccagga	tcactggggc	tggctgggga	gaacccccgt	ttctgggagc	62160
acagtcccag	gatgccaagg	cgagcttggt	gccgagatgt	gaactcctga	gtgtaaacag	62220
cyggggctga	cttgacatgc	tttgtatgct	tttcatttgt	tcctgcagct	gtatgcccct	62280
aaggtgagtc	cagccccctt	ctgcttcctc	rggggcctcg	ccagtgagcc	ccaccttgct	62340
yyggctggtt	cctcctgccc	ttctgggtat	ccctcacatc	tggggtcttg	tcttcttgtt	62400
cuattttttt	ctttttttt	agacggagtt	tcacttttgt	tgcccaggct	tcagtgcaat	62460
yytgtgatct	ctaggeteae	cgcaacctct	gcctcccagg	ttcaagcagt	tctcctgcct	62520
taycctccct	agtagctggg	attacaggca	tgtgccacca	cgcccagcta	attttgtatt	62580
tastasasas	acggggtttc	tccatgttgg	tcaggctgat	cttgaactcc	ctacctcagg	62640
ryatccgccc	accttggcct	cccaaagtgc	tgggattaca	ggcgtgagcc	accgcacctg	62700

acceptatect	tttcttttct	tttct++++	ctgagagaga	at at cost of		627.60
ctagaataca	ataatataat	Categotose	teeseestet	gtctcgctct	greacecagg	62760
cctcccatct	caggogottaa	at aget age	cycaycccc	accttctagg	ctcaagcaat	62820
tatttacatt	tttataaa	grageragga	ctgcacgcat	gcatccccat	gcccagctaa	62880
tacctcacc	ccccgcagag	acgaageee	actatattgc	ccaggctggt	ctccaactcc	62940
Lygacicgay	cgatcccccc	gccccggcct	ccccaggrgc	tgggattaca	ggcgtgagcc	63000
acceptycety	geetggggta	ttgtcttctt	atggcacctg	actgtggtgg	gccctgggaa	63060
ggaagtagca	gaagagggtt	cttcttggtt	tcctggacag	taactgagtg	ttctggaggc	63120
cccagggcct	ggctttgttt	agggacaaag	ggaactggta	accagaagcc	gagagtttaa	63180
acacccactg	cccttcttcc	ctgctcctgc	tgctgcaacc	cagcttaacc	agccaggagt	63240
gctaggaacc	caagcagggc	ccccgagcac	acagcaggca	gctcacgaat	tctcttttcc	63300
tgttctccct	tgggagctgg	gaggatctta	atcaggcaat	aagagatggc	actgagcagc	63360
cagctaattt	tttaaatcac	tttattgttt	aaccatatga	ctcacccact	taaaaaaggg	63420
tacagttcag	tgggttttag	tgtattcaca	gatgtgtgca	accctcacca	cagttaattt	63480
tagaacattt	tcctgcccct	aaaagaaact	ctgcatgaag	ccagctgttt	ttaaattagc	63540
aaagttattt	tgcatccttt	aaatatatqt	tcatqqtaca	aaattcaaaa	gatacagaag	63600
agtctgcagt	ccaaagagac	tccqcccca	tgacgccaag	caggactccc	taggaggcat	63660
ggcctcctgc	agtgtgtttc	ttctatgtcc	ccccaggggt	catctgtaca	tatgcaagca	63720
tacaagagcg	tggactttgt	tttccaagcc	agaagataat	tgtagattta	tatacaatta	63780
tgagaaagag	cacagaccca	tttatcctct	acctaattte	cccagtgct	acctaccate	63840
ttgcatgact	tccattccta	tcataagcaa	gacactgata	acgattcttt	caccttattc	63900
agattgacat	aagtgttttt	tatttattet	taaaacaaac	ttcctctgtc	accettace	63960
agtocagtoo	cacaatcaca	actcactaca	acctcaaact	cctgggctca	acceageggg	64020
ctacctcaat	ccctcaact	acctcactgca	gccccaaacc	accateates	agegattete	64080
tttasatttt	ttataaaaat	ageceagacg	taaatttaat	accatcatgo	taggeraari	
acctabactc	atectestes	gaggeeteae	caaatttttt	gggctagtct	tgaactcctg	64140
tacacataca	attectetige	tattttatt	caaagtggta	ggattacagg	catgagccac	64200
attacagett	cogacatacy	rational	agecegaaag	atagcatctg	aagagtcaac	64260
accyaycccc	taccatatas	getaatgatg	tataaaaget	gctgttctga	gcatttcgga	64320
ggeteetage	tgeegtgtge	accetgeeta	gagetetace	gtaacccatc	tccgggagga	64380
ggtgctattg	ttttcctcat	tttgcaacaa	ggaggctgaa	gaactgagca	tgaaccactg	64440
geetgggteg	ttcggttggt	aggcagtggg	gccaggccat	ccaactcaca	accaccttct	64500
actetgette	ccccgcaccc	tgaagtttgt	tctgttttga	ggacacagcc	gtcacattct	64560
tggtggctga	acagcactcc	ttgtcaggtg	tggctgggcc	cccactggag	ggcatcatgg	64620
				actcctgcca		64680
				tggcaaaacg		64740
ccctttctct	ccacctgtct	aațatagagt	aaaaatggta	tcatgttaag	atcttcattt	64800
				tgtttaagaa		64860
cagcgtgatg	gcttgcagct	gtaatctcag	cactttagga	ggctgagatg	agcggatcac	64920
ttgaggccgg	gagtttgaga	ccagcctggc	caacatggag	aaaccccgtc	tctagtaaaa	64980
atttaaaaat	tagccgggta	tggtgatccc	agctacttgg	gagtctgaag	catgagaatt	65040
				gcgccattgc		65100
				aaagaaaaga		65160
				atatatat		65220
				taaaaaacaa		65280
				gttgcccagg		65340
				ttggagtgat		65400
taccttccco	agtagctggg	attataggca	tocaccacca	tgcctggcta	attttgtact	65460
tttagtagag	acgggggttt	ctccatgttg	atcaaactaa	tctcgaactc	accecatacc	65520.
gtgatccacc	cacctcggcc	toccaaagtg	ctaggattac	agacgtgagc	caccatacca	65580
ageceacact	ctctttctta	acatectect	cctttcattt	tacgttcaca	tatttaatta	65640
ttctgggatg	taattagatt	tastasacss	agtagagata	cagcttgttt	cttcaaccc	
aacttataaa	taaccagact	tagtcagagat	ctatcaccac	caycuiguu	tatasasat	65700
traacacaca	aartteerte	tacaccetta	ttaccases	gcagaaactc	cacyagaatt	65760
				ctggaatagc		65820
Ctatastass	acayayaac	asassassas	cayyaatagg	ccaggcatgg	Lggctcacac	65880
daggarant=	ageactityg	yayaccaayg	totototo	acctgaggtc	aggagttcga	65940
gatetectes	gccaacatag	taataaaaa	ttotoccaa	aaatacaaaa	aaattagctg	66000
ygrgrggrgg	egeatgeetg	Laatcccagc	ccccgggag	tctgaggctg	gagaatcact	66060
cyaacctggg	aggcagaggt	tgtagtgagc	cgagatcatg	ccattgtact	ccagcctggg	66120

caacaagagc	gagactcagt	caaaacaaca	acaacgcagg	aatagcagat	gagccgaggt	66180
ggggcctccc	cagcccccac	ccccacccc	gcaccctggg	ccgagatcca	gtcctctttg	66240
aatagggcct	gggcgtggtt	cacgggacat	ctgagacatt	gccgaggcgc	tgcactggtg	66300
gatcttgcca	gaagtctgcc	cagtgcagat	ttgggcagaa	tctcaaactg	ccttgggatg	66360
taggagagaa	accaggcctg	gtcaagttca	tgggaagagg	tggaaacaga	ccccataggc	66420
tggggcttgg	gcagctgtag	gaagccctct	ctgctgcctc	cctgcctgct	ctctgctttg	66480
aagcatcttc	cccagtgccc	ccagtctcat	gccctctcaa	cgttggggtc	adatcctgag	66540
gaatacccag	actggctctc	tgggccaaag	aggaccctct	ccagaaagag	cagggcccag	66600
tgcggcttcc	taaagggcag	gggaagggcc	tggccactcc	ccagaggcta	ctcaccagcc	66660
		caggccttct				66720
		ttttttgaga				66780
		ccactgcagc				66840
		tgggattaca				66900
atattttag	tagagacgag	gtttcaccat	gttggccagg	ctggtctcga	actcctgacc	66960
		ggcctcccaa				67020
agaaactgag	gctgaggtaa	attccctccc	cagggatcct	gctgcagcca	gaaggtggta	67080
aaacaggact	tcacccgggt	ctgtctggcg	tgaaaggcag	tattcttata	ccaccctagg	67140
gggcctgaga	gaactgagtc	cctcgggcat	aactgacagt	tctgttccca	ttattcccca	67200
ggggctcgga	tctqqctqta	tgctttccag	gatggccttg	gagacccaca	taagccctac	67260
accetttggg	aagctgcatg	ttgggttggg	gtgccgtcag	togcacttot	ggaaggtgca	67320
		cccagggccc				67380
		ggggcacgtt				67440
		cacaggccct				67500
		gtggtgactt				67560
		gggcgtcatt				67620
		cagaaggaga				67680
		ggacactcag				67740
		gccgaagtcc				67800
						67860
acctttcact	gedettggdd	gggcgcgggc	taactactac	atagegeerg	gtcccccc	67920
tttaccaact	gagacgaccc	tcggggcagg aggggtcctg	agaagaaga	aaaccaaaaa	costatatas	67980
aaggaaagg	casaaaatat	aggggccccg	agaagcaggg	gggccagaag	aggetetage	68040
teaccetace	ttaastataa	gggaggaagg	aaggaatgee	caygooggeg	aggetetaag	
tecetetaca	acategacat	tcagatcctg	tananantta	cccccccggc	cacggacece	68100 68160
aggtaggaga	toccetacae	gttctactct	ccaaacattt	eggeeaetge	gagaeegtae	
		ccctccatgg				68220
		tgatgagggg				68280
tosaaaaa	ctgcctccct	ctgctctgcc	aaccacacta	ggetgeetee	ccagacaagc	68340
teagegggea	cigcatging	ggttcagaaa	tcagcagaac	tccacgttct	gagetgetet	68400
ccaagiigei	cctatggggg	ttacttttaa	gctgggaaat	ggctgtggcg	tcgaggggcc	68460
gggggcttgg	getecaaaet	ctgactgtgt	gtttgagtcc	ggctgtggaa	acctagccat	68520
tgagatgeee	ectettggtg	gctctgtcct	cttaggatgg	gacaagtctg	tgaaggctgc	68580
tgcagcaccc	accgtagacc	cctaatcgtg	tgacgtcacc	aggatggtcc	gggctgctca	68640
		gagcccggga				68700
		ggggtcacag				68760
		acccaggtgt				68820
tgggatgggc	agggtgagcc	tcctgacctt	taacccagtg	gtgtcaggca	acgtggccca	68880
cccgccagcc	gcaccaggcc	ccacccccgc	aggtgaaggg	gtgggatagg	ctgggcctgg	68940.
gccaggacac	ctctggacca	cgcattcctc	attgcttggg	tccctggagc	agcagggcct	69000
		ccacctagtg				69060
		ccatttccac				69120
		gtcacagtct				69180
gaatggtcac	atccacactg	ggcagcccag	tctcgctagt	tcctcgtccc	acctcctgcc	69240
		tctgggccca				69300
ctgacctcac	agcagctggg	ccccaagagg	agtatcctgt	cctgctgcac	ttttctcaac	69360
acccggtgtt	ggctgcacct	tcccacccat	tgcaggcccc	tctgtgacag	gacgggggct	69420
		gagtctgaac				69480
acagttgggt	gcaggtagcc	tctgggagga	tgggaggtca	ggagccatct	tgcgagtcag	69540

```
gttgcttgaa ctcaggatgg aagtgttccg ggcccattgg ttgctgtatt agcctgttct
                                                                      69600
cacgctgcta ataaagacat acccaagact gggtaattgt aaaggaaaga ggtttaacgg
                                                                      69660
actcacagtt ccacctgcct ggggtggcct cacaatcatg gtagaagaca aggaggagca
                                                                      69720
agtcacatct tacatggctt cagggaacag acagcatgag aaccaagcga aaggggtttc
                                                                      69780
cccttgtaaa accatcaagt ctagtgagat ttattcacta ccacgagaac agtatggggg
                                                                      69840
gaaccacccc catgattcaa tcatctccca ctgggtccct cccacagcac gtgggaatta
                                                                      69900
tgggagtaca attcaagatg agatttgggt ggggacacag ccaaacccta tcggttgcca
                                                                      69960
acatttacag taacagtgtt aggtgaacag ttgtccagtc tcctgttttg tcggacactg
                                                                      70020
tttctagcac cttccaggca gaatctcatg tatccttcac tttcgaaatg ggtactattt
                                                                      70080
catccccact tttatcaatg agaaactaaa gctcgaagag gtcaagtaag ttcctggcca
                                                                      70140
aggtcagcta gcaggctcta gaggcctcgt tctccttaga ggcagccttg ccagggccca
                                                                      70200
ggcttggcag gctgcagggc aggtgcgggc atgcccatgg tagaggtggg accattgagg
                                                                      70260
ctcagagagg gtaagtgatg agccctggcg acacagcggg gtgggtccag agtccggcct
                                                                      70320
gcatcttctg gagctggcca gtggacaggc ctttcccgtt cacagccccg gggctgctgt
                                                                      70380
gcccaccagg gcggatgtgc ctaccgaatc ccactcctct gtgtgtgtcc ctttcaggcc
                                                                      70440
ctacatcatt cgaggaatgg cgccccgac gacgccctgc agcaccgacg tgtgtgacag
                                                                      70500
cgactacage gecageeget ggaaggeeag caagtactae etggatttga acteggaete
                                                                      70560
agacccctat ccacccccac ccacgcccca cagccagtac ctgtcggcgg aggacagctg
                                                                      70620
cccgccctcg cccgccaccg agaggagcta cttccatctc ttcccgcccc ctccgtcccc
                                                                      70680
ctgcacggac tcatcctgac ctcggccggg ccactctggc ttctctgtgc ccctgtaaat
                                                                      70740
agttttaaat atgaacaaag aaaaaaatat attttatgat ttaaaaaata aatataattg
                                                                      70800
ggattttaaa aacatgagaa atgtgaactg tgatggggtg ggcagggctg ggagaacttt
                                                                     70860
gtacagtgga gaaatattta taaacttaat tttgtaaaac agaactgcca ttctttgtg
                                                                     70920
ccctgtgtgc atttgagttg tgtgtccccg tggagggaat gccgacccc ggaccaccat
                                                                     70980
gagagteete etgeaceegg gegteeetet gteeggetee tgeagggaag ggetgggee
                                                                     71040
ttgggcagag gtggatatet cccctgggat gcatccctga gctgcaggcc gggccggctt
                                                                     71100
tatgtgcgtg tggcctgtgc cgtcagaaag ggccctgggc ttcatcacgc tgttgctgtt
                                                                     71160
cgtcttcctc agattcttag tcttttttt ttttttttt ttttgagacg gagtctttct
                                                                     71220
ctgtcatcca ggctggagtg cagtggtaca atctcagctc actgcaagct ccgactccca
                                                                     71280
ggttcaagtg agtctcctgc ctcagcctcc cgagtagctg ggactacagg tgcgcgccac
                                                                     71340
cacacccgcc cagctaattt ttgtattttt agtagagatg gggtttcacc atgttggcca
                                                                     71400
ggatgatete gatetettga cetegtgate egeceacete ggeeteecaa agtgetggga
                                                                     71460
ttataggcat gagccactgt acccagctga ctcttagtca cttttaagaa ggggactgtg
                                                                     71520
ccttcatttt tcactgggcc ctgcagaata tatgcctggg ctctgggctc ttctgaacct
                                                                     71580
gtgttggctt ccatctgacc tetetgtgcc agcccaaggc tgctgctctt cctgagggca
                                                                     71640
aggagececa tgactgegtg ttgacteget ggatgggget getgagecea etetgecaea
                                                                     71700
ccacgtgccc ctggcaggga gggaatccct gggtcctcac aggaacagtc agcaagccac
                                                                     71760
acctgacgcc tgctgtgggc ccatccctgc ggtgctggag aagacagaca aggcctggtc
                                                                     71820
actgcctctg cagggtcccc agtccgtgga aggagacagt aatctaggca ttttcggtgg
                                                                     71880
ggaagctgag ctgttctcgt gtcctgaagg ccaggcggga acagccgtct tcagagggaa
                                                                     71940
gggagaaaat gcacatcgca tcagtggaga agggcctgac ttccctcagc atggtggagg
                                                                     72000
gaggtcagaa aacagtcaag cttgagtatt ctatagtgtc acctaaata
                                                                     72049
<210> 10
<211> 8705
<212> DNA
```

<213> Homo sapiens

<400> 10

ggactcaggggcagcagggaggtacaccatggttagtgggcggaccatagggggtaatg60agagggtgaatcgatggaaccaatcgaagtggttccagagtcgggctgta120ctaattaaagagacgggcagtggacaggcattttcagttgactgcccagggagtgttct180gcccaacagggaggatatgcgtacagaatcatactcgatcagcatgagtccaattcagac240cgtacatcagtggagatatggtcccccgatgactccgtggaacactgatgtttgtgaca300ggggagtacagcaccagccatcagcaggccagtaaatcataccggcctgcgaaattggac360

					_	
teagaceegg	acceaecetg	accgacgtcc	caagccccca	cccccaccc	cccaccatgg	420
geegagatee	ageceeeee	gaatagggcc	rggccgrggr	tcacgggaca	tctgagacat	480
tgccgaggcg	ctgcattggt	ggatcttgcc	agaagtttgc	ccagtgcaga	tttgggcaga	540
atctcaaact	gccttgggat	gtaggagaga	aaccaggcct	ggtcaagttc	atgggaagag	600
gtggaaacag	accccatagg	ctggggcttg	ggcagctgta	ggaagccctc	tctgctgcct	660
ccctgcctgc	tctctgcttt	gaagcatctt	ccccagtgcc	cccagtctca	tgccctctca	720
acgttggggt	caaatcctga	ggaataccca	gactggctct	ctgggccaaa	gaggaccctc	780
tccagaaaga	gcagggccca	gtgcggcttc	ctaaagggca	ggggaagggc	ctggccactc	840
cccagaggct	actcaccage	catcaggata	gccccaggaa	gcaggccttc	tcgagcccat	900
tttattactt	tattttatta	ttttatttaa	ttttaaattt	attttttgag	acagagtctc	960
actitgttgc	ccaggctgga	gtgcagtggt	gcgatctcaa	cccactgcag	cctctgcctc	1020
cagggttcaa	gggattctcc	cacctcagcc	tcccaagtag	ctgggattac	aggtgcccgc	1080
caccacaccc	ggctaatttt	catatttta	gtagagatga	ggtttcacca	tgttggccag	1140
		ctcaagtgat				1200
tcaagcccat	tttaaagttg	aagaaactga	ggctgaggta	aattccctcc	ccagggatcc	1260
		aaaacaggac				1320
gtgttcttgt	accaccctag	ggggcctgag	agaactgagt	ccctcgggca	taactgacag	1380
ttctgttccc	attattccgc	aggggctcgg	atctggctgt	atgctttcca	ggatggcctt	1440
ggagacccac	ataagcccta	caccctttgg	gaagctgcat	gttgggttgg	ggtgccgtca	1500
		agacctgtgt				1560
tcctcccttt	gtagggctgg	ttgtgtgctg	cctggacctg	gggggcacgt	tcacgtggtg	1620
		ccgctttggg				1680
ggtgcctttg	tctggagtgg	gactgtggcc	cctccctcag	cgtggtgact	tctgtgtcag	1740
		gcccctgagt				1800
agactgtgtg	tgatggaggg	aggaggggca	ggaggaaagg	tcagaaggag	agttcctggg	1860
aaggtccctg	aggagcctgg	tgaggtgcta	actggtgtgg	aggacactca	gggcctgtgg	1920
		ggccagccac				1980
cttcacagcc	cagcatctgg	tcacaaggca	ggtacttgga	agggcgcggg	cacctgggcc	2040
aaaagtgcct	gggttccctt	tgcctttcac	tgagatgacc	ttcggggcag	gtggctgctg	2100
		ttttgccaac				2160
		caaggaaagc				2220
		gtcaccctgg				2280
ccctccccgg	ccacggaccc	ctccctgtac	aacatggaca	tgttctactc	ttcaaacatt	2340
		caggtaggac				2400
		ggggcctaat				2460
		cgggcccagc				2520
		ctcagcgggc				2580
		ttcaagttgc				2640
		cgggggcttg				2700
		ttgagatgcc				2760
		ctgcagcacc				2820
		acttgccaca				2880
		gccccccgag				2940
		ctgagagtgt				3000
		ctgggatggg				3060
		acccgccagc				3120
		ggccaggaca				3180
		tcccgagtgt				3240
		ggggagccgg				3300
		gcctcagtat				3360
		agaatggtca				3420
		ctttgctcat				3480
		tctgacctca				3540
		cacccggtgt				3600
		tcctaaacac				3660
		cacagttggg				3720
		ggttgcttga				3780
-33agooaco	y-yayıca	agergerega	acconggacy	yaayeyeecc	gygucuatry	3,00

```
gttgctgtat tagcctgttc tcacgctgct aataaagaca tacccaagac tgggtaattg
                                                                      3840
taaaggaaag aggtttaacg gactcacagt tccacctgcc tggggtggcc tcacaatcat
                                                                      3900
ggtagaagac aaggaggagc aagtcacatc ttacatggct tcagggaaca gacagcatga
                                                                      3960
gaaccaagcg aaaggggttt ccccttgtaa aaccatcaag tctagtgaga tttattcact
                                                                      4020
accacgagaa cagtatgggg ggaaccaccc ccatgattca atcatctccc actgggtccc
                                                                      4080
tcccacagca cgtgggaatt atgggagtac aattcaagat gagatttggg tggggacaca
                                                                      4140
gccaaaccct atcggttgcc aacatttaca gtaacagtgt taggtgaaca gttgtccagt
                                                                      4200
ctcctgtttt gtcggacact gtttctagca ccttccaggc agaatctcat gtatccttca
                                                                      4260
ctttcgaaat gggtactatt tcatccccac ttttatcaat gagaaactaa agctcgaaga
                                                                      4320
ggtcaagtaa gttcctggcc aaggtcagct agcaggctct agaggcctcg ttctccttag
                                                                      4380
aggcagcctt gccagggccc aggcttggca ggctgcaggg caggtgcggg catgcccatg
                                                                      4440
gtagaggtgg gaccattgag gctcagagag ggtaagtgat gagccctggc gacacagcgg
                                                                      4500
ggtgggtcca gagtccggcc tgcatcttct ggagctggcc agtggacagg cctttcccgt
                                                                      4560
teacageece ggggetgetg tgeccaceag ggeggatgtg cetacegaat eccacteete
                                                                      4620
tgtgtgtgtc cctttcaggc cctacatcat tcgaggaatg gcgcccccga cgacgccctg
                                                                      4680
cagcaccgac gtgtgtgaca gcgactacag cgccagccgc tggaaggcca gcaagtacta
                                                                      4740
cctggatttg aactcggact cagaccccta tccaccccca cccacgcccc acagccagta
                                                                      4800
cctgtcggcg gaggacagct gcccgccctc gcccgccacc gagaggagct acttccatct
                                                                      4860
cttcccgccc cctccgtccc cctgcacgga ctcatcctga cctcggccgg gccactctgg
                                                                      4920
cttctctgtg cccctgtaaa tagttttaaa tatgaacaaa gaaaaaaata tattttatga
                                                                      4980
tttaaaaaat aaatataatt gggattttaa aaacatgaga aatgtgaact gtgatgggt
                                                                      5040
gggcagggct gggagaactt tgtacagtgg agaaatattt ataaacttaa ttttgtaaaa
                                                                      5100
cagaactgcc attettegt geeetgtgtg catttgagtt gtgtgteecc gtggagggaa
                                                                      5160
tgccgacccc cggaccacca tgagagtect cetgcacccg ggcgtccctc tgtccggctc
                                                                      5220
ctgcagggaa gggctggggc cttgggcaga ggtggatatc tcccctggga tgcatccctg
                                                                      5280
agctgcaggc cgggccggct ttatgtgcgt gtggcctgtg ccgtcagaaa gggccctggg
                                                                      5340
cttcatcacg ctgttgctgt tcgtcttcct cagattctta gtctttttt tttttttt
                                                                      5400
ttttttgaga cggagtcttt ctctgtcatc caggctggag tgcagtggta caatctcagc
                                                                      5460
tcactgcaag ctccgactcc caggttcaag tgagtctcct gcctcagcct cccgagtagc
                                                                      5520
tgggactaca ggtgcgccc accaccccg cccagctaat ttttgtattt ttagtagaga
                                                                      5580
tggggtttca ccatgttggc caggatgatc tcgatctctt gacctcgtga tccgccacc
                                                                      5640
teggeeteec aaagtgetgg gattatagge atgageeact gtacceaget gactettagt
                                                                      5700
cacttttaag aaggggactg tgccttcatt tttcactggg ccctgcagaa tatatgcctg
                                                                      5760
ggctctgggc tcttctgaac ctgtgttggc ttccatctga cctctctgtg ccagcccaag
                                                                      5820
gctgctgctc ttcctgaggg caaggagccc catgactgcg tgttgactcg ctggatgggg
                                                                      5880
ctgctgagcc cactctgcca caccacgtgc ccctggcagg gagggaatcc ctgggtcctc
                                                                      5940
acaggaacag tcagcaagcc acacctgacg cctgctgtgg gcccatccct gcggtgctgg
                                                                      6000
agaagacaga caaggcctgg tcactgcctc tgcagggtcc ccagtccgtg gaaggagaca
                                                                      6060
gtaatctagg cattttcggt ggggaagctg agctgttctc gtgtcctgaa ggccaggcgg
                                                                      6120
gaacagccgt cttcagaggg aagggagaaa atgcacatcg catcagtgga gaagggcctg
                                                                      6180
acttccctca gcatggtgga gggaggtcag aaaacagtca agcttgttgc tgggtgacag
                                                                      6240
tgcatttaat aatcaaaata taggctgggt acggtggctc atgcctgtaa tcccagcact
                                                                      6300
ttgggaggct gaggcaggtg gatcacttga ggccaggagt ttgagaccgg cctggccaac
                                                                      6360
atggcaaaac ctcaactact aaaatacaaa aactagccgg gcgtggtggt gcacgcctgt
                                                                      6420
aatcccagct acttgggagg ctgaggcagg agaattgctt gaacctggga ggcggaggct
                                                                      6480
gcagtgagcc gagattgtgc cactgcactc cagcctgggc aacagagcaa gactctgtct
                                                                      6540
caaaaaaaaa aaaaaaaaa gcaatacaaa atacaaatat cactttcact aaaagaaggg
                                                                      6600
atggaagacc caaaacaaac agaaaacaac aaaatggcag gagtaagtcc ccacttatca
                                                                      6660
ataataacat tgactgtaaa taggctaagc tetgcaatca aaagagtggg ccaggagegg
                                                                      6720
tggctcacgc ctgtaattcc aacgctttgg gaggctgagg cggatggatc atttgatgtc
                                                                      6780
acgagtttta agaccagcct ggccaacaag gtgaaacccc atctgtacta aaaatacaaa
                                                                      6840
aattageeag geggtagtgg caegeaeetg taateeeage taettgtgag getgaggeag
                                                                      6900
gagaatcact ggaggctggg aagcggaggt tgctgtgagc caagatggag ccactgcact
                                                                      6960
CCCacctggg cgacagagtg agatcctgtc ttaagaaaaa aaagagtgga tgaatqqatc
                                                                      7020
aaaaaacaag acccaaccat ctcttgcata caagaaacac actttaccta taaaaacaca
                                                                      7080
ctaggccagg tgtggtggct cacacctgta atcccagccc tttgggaggc ctgactggca
                                                                      7140
gatcacctga ggccaggagt ttcagaccag cttgaccgac atggcaaaac cccatctctc
                                                                      7200
```

```
ctaaaaatac aaaaaaacaa aaaaaagaaa aaggctggaa gtagtgatgt gtgcctgtag
                                                                   7260
ecceagetae ttgggagget gaggeaggag aattgettga ateegggaag tggaggttge
                                                                   7320
agtgagccag gatggtgcca ctgcactcca gcctgggtga cagagcgaga ccctgtcata
                                                                   7380
7440
gaaataataa agatcagaac aggccaggct catgggcaca gtggctcaac tcctacctgc
                                                                   7500
tcaggagttt gagaccagtc tggccaacat ggcaaaaccc catctctcct aaaaatatga
                                                                   7560
aaaaaaaaaa ataggctgga tgtggtgatg tgtgtgtgcc tgtagcccca gctacttggg
                                                                   7620
aggetgaggt gggagaatea ettgageeea ggaagtggag getgeagega gteatgaatg
                                                                   7680
caccetgeae tetagetggg taactggagt gagattetgt etcaaaaaag caaagaccag
                                                                   7740
agcagaaata aatgaaatgg aaatgaagga aacaatgcaa aatgatacaa aaagttttt
                                                                   7800
cgaaaagata aacaaaatca acaaaccttt agccagatta agaaaaaaag agagaagacc
                                                                   7860
caaataaata aaatccgaga ttaaaaagga gacattacca ctgataccac agaaattcaa
                                                                   7920
aggatcatta gaggcaacta tgtgcaacta tatgctaatg aactggaaaa cctagaagaa
                                                                   7980
ctgggtaaat ttctagacac atacaaccta tcaagattga accatgaaga aatccaaaac
                                                                   8040
ctgaacaggc cgggcacggt ggcttacgcc tgtaatccca gcactttgga aggcctgaga
                                                                   8100
tcaggagttc gagaccagcc tggccaacat ggtgaaaccc catctctact qaaaaaatat
                                                                   8160
aaaaattagc cgggcgtggt ggcgggtgcc tctaatgtca gccactcggg aggctgaggc
                                                                   8220
aggaaaatca cttgaacctg ggaggcatag gttgcagcga gccgaggttg caccactgca
                                                                   8280
ctccagcctt ggcgacagag ccagactcca tctcaaaaaa attaaaataa caaaaacctg
                                                                   8340
aacagaccaa taacaagtaa tgcgatgaaa actgtaataa aatgtttccc aacaaagaaa
                                                                   8400
gcccaggaac aaatggcttc actgctgaat tttaccaaac atttttttt ttttgagacg
                                                                   8460
gagtotogot otgtogocca ggotggagtg cagtggtgta acctoggtto gotggtaact
                                                                   8520
tatgeetete aggetgeaag tgatttteet getteaggee eeeegagtgg etggaaatta
                                                                   8580
gatggtactt gtcaaacaag gcctggctaa atttctatat ttccttcaag tagaagatgt
                                                                   8640
gcttccaaca aaggttgggt tacggctggc ttctgaaaat cttggatttc aaggctcccc
                                                                   8700
aaaag
                                                                   8705
```

<210> 11 <211> 66933 <212> DNA

<213> Homo sapiens

<400> 11

tataatcaag cgcgttccgt ccagtccggt gggaagattt tcgatatgct tcgtgatctg 60 ctcaagaacg ttgatcttaa agggttcgag cctgatgtac gtattttgct taccaaatac 120 agcaatagta atggctctca gtccccgtgg atggaggagc aaattcggga tgcctgggga 180 agcatggttc taaaaaatgt tgtacgtgaa acggatgaag ttggtaaagg tcagatccgg 240 atgagaactg tttttgaaca ggccattgat caacgctctt caactggtgc ctggagaaat 300 getettteta tttgggaace tgtetgeaat gaaatttteg ategtetgat taaaceaege 360 tgggagatta gataatgaag cgtgcgcctg ttattccaaa acatacgctc aatactcaac 420 eggttgaaga tacttegtta tegacaceag etgeceegat ggtggatteg ttaattgege 480 gcgtaggagt aatggctcgc ggtaatgcca ttactttgcc tgtatgtggt cgggatgtga 540 agtttactct tgaagtgctc cggggtgata gtgttgagaa gacctctcgg gtatggtcag 600 gtaatgaacg tgaccaggag ctgcttactg aggacgcact ggatgatctc atcccttctt 660 ttctactgac tggtcaacag acaccggcgt tcggtcgaag agtatctggt gtcatagaaa 720 ttgccgatgg gagtcgccgt cgtaaagctg ctgcacttac cgaaagtgat tatcgtgttc 780 tggttggcga gctggatgat gagcagatgg ctgcattatc cagattgggt aacgattatc 840 gcccaacaag tgcttatgaa cgtggtcagc gttatgcaag ccgattgcag aatgaatttg 900 ctggaaatat ttctgcgctg gctgatgcgg aaaatatttc acgtaagatt attacccgct 960 gtatcaacac cgccaaattg cctaaatcag ttgttgctct tttttctcac cccggtgaac 1020 tatctgcccg gtcaggtgat gcacttcaaa aagcctttac agataaagag gaattactta 1080 agcagcaggc atctaacctt catgagcaga aaaaagctgg ggtgatattt gaagctgaag 1140 aagttatcac tettttaact tetgtgetta aaaegteate tgeateaaga actagtttaa 1200 geteaegaea teagtttget eetggagega eagtattgta taagggegat aaaatggtge 1260 ttaacctgga caggtotogt gttocaactg agtgtataga gaaaattgag gccattotta 1320

WO 02/092015

aggaacttga	222000200					
tacttaatet	aaagccagca	ccctyatgcg	accacquicu	agtetacgtt	tatotgtott	1380
cacctaatgt	cctttgttac	aggccagaaa	gcataactgg	cctgaatatt	ctctctgggc	1440
testestes	acttgtatcg	teggtetgat	aatcagactg	ggaccacggt	cccactcgta	1500
tegteggtet	gattattagt	ctgggaccac	ggtcccactc	gtatcgtcgg	tctgattatt	1560
agtctgggac	cacggtccca	ctcgtatcgt	cggtctgata	atcagactgg	gaccacggtc	1620
ccactcgtat	cgtcggtctg	attattagtc	tgggaccatg	gtcccactcg	tatcgtcggt	1680
ctgattatta	gtctgggacc	acggtcccac	tcgtatcgtc	ggtctgatta	ttagtctgga	1740
accacggtcc	cactcgtatc	gtcggtctga	ttattagtct	gggaccacgg	tcccactcgt	1800
atcgtcggtc	tgattattag	tctgggacca	cgatcccact	cgtgttgtcg	gtctgattat	1860
cggtctggga	ccacggtccc	acttgtattg	tcgatcagac	tatcagcqtq	agactacgat	1920
tccatcaatg	cctgtcaagg	gcaagtattg	acatgtcgtc	gtaacctgta	gaacggagta	1980
acctcggtgt	gcggttgtat	gcctgctgtg	gattgctgct	gtgtcctgct	tatccacaac	2040
attttgcgca	cggttatgtg	gacaaaatac	ctggttaccc	aggccgtgcc	ggcacgttaa	2100
ccgggctgca	tccgatgcaa	atatatcact	gtcgacgagc	tcgcgagete	ggacatgagg	2160
ttgccccgta	ttcagtgtcg	ctgatttgta	ttgtctgaag	ttgtttttac	attaaattaa	2220
tgcagatcaa	ttaatacgat	acctgcgtca	taattgatta	tttgacgtgg	tttaataaca	2280
tccacqcacq	ttgtgatatg	tagatgataa	tcattatcac	tttacaaatc	ctttccasta	2340
atccgacagg	ttacggggcg	acasecteae	gggttttcgc	tatttatga	asttttaaaa	
tttaaggcgt	ttccgttctt	cttcatcata	acttastatt	tttatttaaa	attectedge	2400
aaaagaaagg	aaacgacagg	tactassac	gagetttta	gostotataa	ataccetete	2460
ctattttat	ccataassta	agecgaaage	gagettettg	stantanta		2520
acatacatta	ccgtggaatg	tattogatag	geeegageee	accyctaata	acttegtata	2580
gacacactata	tacgaagtta	taccegatge	ggccgcaagg	ggttcgcgtc	agegggtgtt	2640
catatocoot	ggggctggct	caactatgcg	geaceagage	agattgtact	gagagtgcac	2700
tacacycygu	gtgaaatacc	gcacagacge	gtaaggagaa	aataccgcat	caggcgccat	2760
cogocatte	ggctgcgcaa	ctgttgggaa	gggcgatcgg	tgcgggcctc	ttcgctatta	2820
toccagetgg	cgaaaggggg	acgegeegea	aggegattaa	gttgggtaac	gccagggttt	2880
coccagicac	gacgttgtaa	aacgacggcc	agtgaattgt	aatacgactc	actatagggc	2940
gaattegage	tcggtacccg	gggatcetet	agagtcgacc	tgcaggcatg	caagettete	3000
ttgtgccggt	tgtacgctgt	caggtcacac	tggtgagtta	ggcagggcac	agatgcccag	3060
agcagaggga	actttccttg	gggattcaac	acgtgcaagt	cttaggggct	ggcaaatcct	3120
gccctcagct	agagagggg	cttttatttg	agaccagaat	cacctgagca	tcctcctgtc	3180
cccagctgtg	tccagcctgt	ctgcagggac	atcctgagag	gaccaggete	tcccctcatc	3240
cacctgccta	agtgccactc	tgaaccctgt	ccacctgtgc	cgtggagggg	cgtgacctca	3300
agctgctcag	ccagcagcag	gcttggccct	ggggggcagc	agagacccag	gtggctgtgg	3360
ggtgggtgct	tcgtggcgtg	gttctgaaac	ttcgttggaa	gtgtgtggac	agtgccttgc	3420
ctgttctctg	tgggacccta	tttagaaacg	aggtctgagt	tactgggggt	catcactgtg	3480
ttctgatggc	ccagctgtgt	ggaggccgcg	gtgcagcccc	atccaaggag	ccagggccct	3540
gggtctagcc	gtgaccagaa	tgcatgcccc	ggaggtgttt	ctcatctcgc	acctgtgttg	3600
cctggtgtgt	caagtggtcg	tgaaactctg	tgttagctct	tggtgttcct	gaaagtgccc	3660
ccgggtctca	ggcctcagaa	ccagggtttc	ccttcatctc	ggtggcctgg	gagcatctgg	3720
gcagttgagc	aaagagggcg	attcacttga	aggatgtgtc	tggccctgcc'	taggagcccc	3780
ccggcacggt	gctggggcct	gaagctgccc	tcgggtggtg	gagaggaggg	agcgatgaag	3840
tggcgtcgag	ctgggcagga	agggtgagcc	cctgcaaggt	gggcatgctg	gggacgctga	3900
	cagcagctgg					3960
	caggagaggg					4020
cagcagctga	agcccaatgg	cctaactata	tageteteag	ctgcgtgcat	aacctctcag	4080
tgcttcagtt	ctctcatttg	taaaatgagg	aaacaaacag	taccaacete	ccagaggtgt	4140
catgaggatg	aacgagtgac	catgtagcat	agactagata	catatcacct	aacatcacca	4200
qcctttqcaa	ggagagccct	agaaacctaa	ctgagtattt	cccttaccca	accaccacca	4260
ggcctagact	tgtgcctgct	gcaggccctt	gacccctgac	cccattacac	ctatatacaa	4320
aggagccgag	gaggtgctgc	tactaaccca	gcggacggac	ctacagaga	tetegetege	4380
Cacacaaaa	ttcaccgaca	teatactaca	aataaacaac	atccccacaca	ccatteres	4440
Cdactacdac	ccgctagagg	actatatata	ctanacanat	dacdadatac	ggggattaca	4500
Caggggggtac	ctggacgggt	ctagagagaga	gacgetggge	aacacccaaca	tcaaccaccc	4560
Cdatacate	gcggtcgact	adataaccca	aaacctctac	tagaggaga	caacgaccc	4560
CCCcatccac	gtgacgcgcc	teaacaacac	ctcccccac	atcotactat	conserved	
adacdadece	cgagccatcg	cactocacco	catastagg	taananaaa	aggaggacet	4680
Jacquyccc	ugagecaccy	Lactycacco	-9-9-1-19999	caayacgggc	aaaaaccaaa	4740

WO 02/092015

gcctggagcc	agggccaggc	caagcacagg	cgagagggag	attgacctgg	acctgtcatt	4800
ctgggacact	gictigcate	agaacccgga	ggagggcttg	ttaaaacacc	ggcagctggg	4860
ccccacccc	agagcggtga	ttcaggagct	ccagggcggg	gctgaagact	tgggtttcta	4920
acaagcaccc	cagtggtccg	gtgctgctgc	tgggtccatg	cgtagaaagc	cctggagacc	4980
tggagggagc	cctttgttcc	cctggcttca	gtttcctcat	ctgtagaatg	gaacggtcca	5040
tctgggtgat	ttccaggatg	acagtagtga	cagtaagggc	agcctctgtg	acactgacca	5100
cagtacaggc	caggcctctt	tttttcttt	ttttttttg	agatggagtc	tcactctata	5160
gcccaggctg	gagtgcagtg	gtgtgatctc	agctcactac	aacctctgcc	tcctgggctc	5220
aagtgattct	cctgcctcag	cctcctgagt	agctgggatt	acaggtgcct	qccactqtqc	5280
ttggctaatg	tttgtatttt	tggtagagat	ggggtttcac	cgtcttggcc	aggctggtcg	5340
caaactcctg	acctcaggtg	atccacctgc	ctcagcctcc	caaagtgctg	ggattacagg	5400
catgagccac	cacgcccggt	caggccaggc	ctcttttgaa	cactttqcac	accatgggtc	5460
ttttcatcca	ggggggtagg	tacagttgta	cagttgagga	cactgaagcc	cagagagget	5520
cagggacttg	cccagggtca	cacagcagga	tgtggcaggt	gtggggctgg	gcctggcagc	5580
gtggctccag	ctttccagca	tagaaatctg	tgaaagcaga	tagtttgtcg	gtcggtaggg	5640
gagactttct	gagacccgcc	ccagcggctc	agagggtagt	agccaggggc	cttcctagaa	5700
gctcataacc	cagaacactg	aatgggaaaa	ccctgatgga	ggaggcgcag	tggagctgtg	5760
ggtgccgatg	ggaagtccca	gaggagctgg	gaggtcagta	gcggtgctgc	cctctgtgga	5820
gcacttagtg	ggcaccaggt	gtgtttccag	gttcatggcc	ctgggacctg	aagctcagaa	5880
ggtgaagtaa	cttgcccagg	gcacccgtcg	ggcagcggcg	ggcagaggat	ttataaacta	5940
tggagcctgt	gctcgtggcc	cagccctggg	ggttgtgagt	gtgctggccg	gggagctttt	6000
cctgcaagtg	gactggtgtc	taggagccag	catqtcaqqc	agcaggcagc	gggagtgcag	6060
caggcagcgg	gagcacagca	ggcagagggc	ggggctcgag	cagccatccg	togaccctog	6120
ggcacggagg	catgtgggag	agggctgctc	catggcagtg	gctgaagggc	tagattatac	6180
cccgaggagg	gtggatgagg	gtaagaagtg	gggtccccag	gggctttagc	aagaggaggc	6240
ccaggaactg	gttgccagct	acagtgaagg	gaacacggcc	ctgaggtcag	gagettggte	6300
aagtcactgt	ctacatgggc	ctcggtgtcc	tcatctgtga	aaaaggaagg	gatggggaag	6360
ctgactccaa	ggcccctcct	agccctggtt	tcatgagtct	gaggatccca	addacatada	6420
cttggcagtc	tgacctgtga	gatcatagaa	tccagggagg	ggcaccgagc	tagaaacaaa	6480
aggcagaggg	gctggccggc	tgggtcagac	acagctgaag	cagaggctgt	gacttgggg	6540
ctcagaacct	tcacccctga	gctgccaccc	caggatetgg	gttccctcct	tagaaaaccc	6600
cagggaacaa	gtcacctgtc	ctttgcatag	gggagccctt	cagctatgtg	cagaaggttc	6660
tgctctgccc	cttcctccct	ctaggtgctc	agctcctcca	gcccactagt	cagaaggeee	6720
gctgccccag	accetagaca	gggtcatttc	totccactoa	cctttgggat	agacycyay	6780
ctcttggccc	ctgagagtcc	aagggctggt	gtggtgaaac	ccgcacaggg	tagaaataaa	6840
catecetqte	ccaggggagc	ccccagggac	tctggtcact	gggcttgccg	ctaccatact	6900
cagtcctcca	gcacttactg	acaccagcat	ctactgacac	caacatttac	aaacacccac	6960
attgaccgac	accgacattt	accoacacto	acatttacca	acactgttta	ccaacactga	7020
catctactga	cactggcatc	taccaacact	gacatttacc	gacactgaca	tttaccaaca	7080
ctatttacca	acactgacat	ctactgacat	tagcatctac	caacaccaac	atttaccasc	7140
accaacattt	accaacactg	aaatttacco	acaccgacat	ttaccgacac	catttaccaa	7200
caccgacgtt	taccgacacc	gacatttacc	gacactgata	tttaccaaca	ctgacatcta	7260
ctgacgctgg	catctactga	caccgatgcc	agcatctacc	aacaccgaca	tttaccaaca	7320
ctgacattta	ctgacactga	tatctactga	cactggcatc	tactgacacc	aacatttaco	7380
aacaccagca	tctaccaaca	ccgacattta	ccaacaccac	catttaccaa	aacacccacc	7440
taccaacgcc	gacgtttacc	dacaccaaca	tctaccaaca	ctgacattta	caccyatytt	7500
catttaccga	cactgacatt	tactgacact	gacatctact	gatactggca	totacacega	
ctgatattta	ccaacaccaa	catctactga	cactcatct	taccaacacc	cccaccgaca	7560
agcaccgaca	tttactgaca	ccaatattta	ctgacators	catttagcca	gacatttacg	7620
accaacttan	adacadace+	tactettaac	actogogote	ctgcagagac	cgcgatgggg	7680
Catoggates	togacttctc	cttcttctc	accetostat	actggacaga	cagacagact	7740
aaccctaaaa	togagtetee	caacttggat	agacagagaga	accygacaga	ccggggagag	7800
tccctcaaa	accessor=	catagggat	gagetass	ggcgtgtgct	ggtcaatgcc	7860
gacgccaags	caracaaras	canagedeerg	otootet==	aggggaagct	ctactgggga	7920
accoccacya	accectace	cyayytyayy	catath	catgtttgat	ccaggaggcc	7980
actotagee	ttaaaaaaa	goodgatgta	cycattggcg	aggcaccgat	gggtgcctgt	8040
accost	aggetagge	tatacases	agaaaatagt	tacaatactt	tctgacaaaa	8100
acyccicyay	ayyytaycyc	cacacacyt	cergragera	cgtaagatgt	tatcattcgg	8160

ccaaatacct	atamanana	at a at t				
actttcaccc	Gagacacag	ccacccggag	actgaggtgg	gaggatcgct	ggagtccaag	8220
agtttgaggt	cagcccgggc	tasasstass	caggaateet	ctgcactgct	tttgccactt	8280
actgcgagac	ttaagagaga	assestant	adattadyac	aaaaagttaa	tcacatatcc	8340
gagtttggtg	ttaagacaga	adacatgggt	geegeegaag	ccagaggcag	ctgctggcct	8400
totoottta	attggttcct	aagcagttga	aggcagtttt	gtttttccat	agatgtctgt	8460
castage	ctgggtgcag	cetegeeetg	ctgctgtggt	cgggtttcag	tggcctcgtc	8520
ccgtggacge	agcctcgccc	rgccgcrgrg	gregggttte	agtggcctcg	tcccgtggac	8580
geageerege	cctgctgctg	rggrcgggtt	tcagtggcct	cgtcccgtgg	acgcagcctc	8640
geeetgeege	tgtggtcggg	tttcagtggc	ctcgtcccgt	ggacgcagcc	tcgccctgcc	8700
gctgtggtcg	ggtttcagtg	gcctcgtccc	atgggcgtgc	tttggcagct	ttttgctcac	8760
ctgtggagcc	tctcttgagc	ttttttgttt	gttgtttgtt	tttgtttgat	tttgtttgat	8820
tgtttgttt	tgttgtcgtt	gttgttgccc	aggctggagt	gcagtggcgc	gatctcagct	8880
cactgaaacc	tctgcctcct	tgggttcatg	ccattctcct	gcctcagcct	cccacatagc	8940
tgggattaca	agtgcccgcc	accacgcctg	gctaaatttt	gtatttttag	tagacagggg	9000
gtttcaccat	gttggtcagg	ctggtctgga	actcctggtc	tcacatgatc	cacctgcctc	9060
ggcctcccaa	agtgttggga	ttacaggcgt	gagccaccgc	gcccagcctc	tattaagcat	9120
attttgaggt	tctcttggtg	ccagtgatat	gtacatgtgt	ccccatcgca	ccatcgtcac	9180
ccattgaggt	gacattggtg	cctctcctcg	gggtggatgc	ctccctctgt	ttccagcaac	9240
ttctgaagga	ttttcctgag	ctgcatcagt	ccttgttgac	gtcaccatcg	gggtcacctt	9300
tgctctcctc	agggctccca	ggggaggccc	gaatcaggca	gcttgcaggg	cagggcagga	9360
tggagaacac	gagtgtgtgt	ctgtgttgca	ggatttcaga	ccctgcttct	gagcgggagg	9420
agtctcagca	ccttcagggt	ggggaaccca	gggatggggg	aggctgagtg	gacgcccttc	9480
ccacgaaaac	cctaggagct	gcaggtgtgg	ccatttcctg	ctggagctcc	ttgtaaatgt	9540
tttgtttttg	gcaaggccca	tgtttgcggg	ccgctgagga	tgatttgcct	tcacgcatcc	9600
ccgctacccg	'tgggagcagg	tcagggactc	gcgtgtctgt	qqcacaccag	gcctgtgaca	9660
ggcgttgttc	catgtactgt	ctcagcagtg	gttttcttga	gacagggtct	cactcactca	9720
cccaggcgag	agtgcagtgg	cqcaatcacq	gctcgctgta	gcctcaatct	ccctagactc	9780
aggtgatcct	cctgcctcac	cctctgagta	gctgggacta	cagacacata	ccaccacacc	9840
cagctagttt	ttgtgtattt	tttataaaaa	gagatggggt	ttcactataa	tacccaaact	9900
gatctcaaac	tcctgaggca	caagcgatcc	acctdcctcd	gcctcccaaa	gtgctgggat	9960
gacaggcatc	agccgtcaca	cgcagctcaa	tgattttatt	gtggtaaaat	aaacatagca	10020
caaaattgat	gattttaacc	attttaaagt	gaacagttca	gactagacat	aataacttat	10080
gcttgtaatc	ccagtacttt	gagaggetga	gatagacaga	tcacctgagg	tranganttt	10140
gagaccagcc	tggccaacat	gatgaaatcc	agtetetact	aaaaatacaa	aaattagggg	10200
ggcatggtgg	caggtgcctg	taatcccage	tactcoodag	actalacacaa	gagaateget	10260
tgagcccggg	aggtggaggt	tacagtaatc	tgagatcatg	ccactgcact	ccaatctgtc	10200
tgacagagca	agactctgtc	ttgaaaaata	aataaataaa	aaaaatttta	aaaaataaaa	10320
aattcagggc	atttagtatg	aggacaatgt	aatacaaata	teteteetae	tatotaotto	
tagaacactt	tcttctgccc	traarraaac	cccataccca	cccccgctac	catctacttc	10440
ccctctctc	ccagcctctg	tcaaccacta	atctacttto	tatatataaa	cgcccattet	10500
ttctggacgt	tttgtgtgac	tagaatacta	castatataa	toottootto	tachtatt	10560 10620
ccatagcatt	atattttcca	gatterees	caacacgtgg	cccctgcgcg	rantatant	
cctaactaaa	gtgttttcca	taggeteta	atactaacat	tataaaaaaa	gaateteatt	10680
castasetta	tgcagtgggt	thanana	accctaacat	cctgggaggc	caaggcggga	10740
assassattt	aggcaggagt	transactas	cetggeeage	ctagcaagac	cccagctacc	10800
tassassta	aaaagttaac	tyaacgtggt	ggtggtgggc	acttgtggtt	cccagctacc	10860
tyggaggetg	aggtgggagg	accgettaag	cccaggaggt	caaggctgca	gtgagctatg	10920
accycaccac	tgcactccag	cctggacaac	agagcaagac	cctgtctgaa	aaaaaaaca	10980.
aaaaaaaag	ttcctttctt	tttgtggctg	gatgacatcc	cattgtatgg	ccacagcaca	11040
nature and a	ctgtttatcg	ggtggtgggc	agtggtttcc	accttttgtc	tcctgtgaat	11100
aatgetgetg	tgaacatttg	aattcaagtt	tttgtttgaa	cacctgttgt	gaattatttg	11160
yacatatgtg	taggggtagg	artgetgagt	cctatggtaa	tgttaggttt	gacttactga	11220
ygaaccatta	aactgttttc	aacagtggct	gcgccgttct	gcatccccac	cggcagtgtg	11280
rgagggttct	gactttacct	cctcacaaac	gcttcttttc	catttaaaaa	aatattcagc	11340
caggtgctct	ggctcacgcc	tgtaatccca	gcactttggg	aggccgtggc	gggcggatca	11400
cctgaggtca	ggagttcgag	acgagcctgg	ccaacatggt	gtaaccccat	ctctaccaaa	11460
aatataaaaa	ttagccgggt	gtggcagcgg	gcgcctgtaa	tcccagctac	ttgggaggct	11520
gaggcaggag	aatcacttga	acccgggagg	cagaggttgc	agtgagccaa	gatcgcgcca	11580

WO 02/092015

-+t	goot game.			_		
tacacicca	gcctgggtga	caagagtgaa	actccatcta	aaataaaaca	aaaataaaaa	11640
taaataaaaa	tttattaaaa	cattcatcac	agccagccta	gtgggtgtcc	catgtggctt	11700
cyccicycat	ttccctgata	actaggatgc	tgagcgtctt	gtcccaggct	tgccacacct	11760
cagcacttty	agatacgtcg	cacagtcccc	atttgcgaac	gagaaatgag	gtttagggaa	11820
cagcagctgt	gtcatgtcac	acagcgagca	gggggtctct	gagccgtctg	accccacage	11880
cgaccaagct	ccaatcctta	ccgcctccta	gtgttgtgga	tgtagcccag	ggtgctccca	11940
catttttcag	atgagaacac	cgaagctcaa	aacaggagcg	ttttgtccac	attggataca	12000
cgatgtctgt	ggtttggtcc	tgaagtcact	ttatatctca	gtggtccaga	ctggagtagg	12060
acagggggtt	ctggggaatg	gggaaggtgt	ctcaggtgaa	aggaaggaat	tccagattct	12120
ccatactgtc	cttgggaagt	tagaagactc	agagggtctg	gcaaagtcag	acaaagcaag	12180
agaaatgcag	tcaggaggaa	gcggagctgt	ccaggaacag	gggggtcgca	ggagctcacc	12240
cccaggaact	acacttgctg	gggccttcgt	gtcacaatga	cgtgagcact	gcgtgttgat	12300
tacccacttt	ttttttttt	ttgaggtgga	gtctcgctct	cttgcccagt	ctggagtgca	12360
gtggcacgat	ctcggctcac	tgcaagctct	gcctcccggg	ttcatgccat	tctcctgcct	12420
cagcctcccg	cgtagctggg	actacaggcg	cctgccaccg	cgcccggcta	atttttgtat	12480
ttttagtaga	gatgggattt	cactacatta	gccaggatgg	tctcgatctc	ctgacctcat	12540
gatccgcccg	tctcggcctc	ccaaagtgct	gggattacag	gcgtgagcca	ccgcgcccqq	12600
cccgatttcc	cactttaaga	atctgtctgt	acatcctcaa	agccctatac	acagtgctgg	12660
gttgctatag	ggaatatgag	gcttacaggc	catggtgctg	gacacacaga	agggacggag	12720
gtcaggaggt	agaagggcgg	agagagggaa	caggcggagg	tcacatcctt	ggctttcaaa	12780
atgggccagg	gagagacacc	ctctgagcat	ggtaggacag	gaaagcaaga	ttggaacaca	12840
ttgagagcaa	ccgaggtggc	tgggcgtggt	ggcttacgcc	tgtaatccca	acactttgga	12900
aagctgaggt	gggtggattg	cttgaggcca	ggagttcaag	accagectgg	ccaacatggt	12960
gagaccccgt	ctctactaaa	tatacaaaaa	ttagccaggc	gtgatggtgc	atacctgtaa	13020
tcccagctgc	ttgggaggct	gaggcaggag	aattgcttaa	acctgggagg	cggaggttgc	13080
agtgagccga	gatcccgcca	ctgcactcca	gcctgggcca	cagagtgaga	ctccatctca	13140
aaaaaaaaa	aaaaaaaga	taaaaagacc	aaccgaggaa	ttgaagtggg	ggggcgtcac	13200
agtagcagaa	gggggatcgt	ggagcaggcc	accctgtggt	catgcactgg	aaqctcatta	13260
cctgacgatt	tggagctcat	cactgggggc	ctaaggagaa	tagatactga	aggatgagga	13320
gtgatggcgc	ggggcacggg	tgtctttggt	ggccagaact	tggggactgc	tagaatacct	13380
cactgcaggc	cttctcagcg	ccctttatat	gcttacacag	gctgtttcta	agaggggat	13440
acattgcata	agcgttttca	gactacctca	tcatgggtcc	ctttctttac	cctctataac	13500
cctggtggcg	cactctctgg	gaaggtgcag	gtggatgccc	agacccgccc	toccatccac	13560
ctgcacgtcc	agagctgact	tagcctcgag	attgctgctg	gcacctcctg	ccccgggaca	13620
cctcggatgt	gcccgtggag	atgctggctc	tgtgttttct	gctggagttt	gatacatett	13680
ttcctcctgc	aagtggccac	cactettaga	tatotcctca	gacttctaca	agtcatggct	13740
gcttctcagg	tccttgccca	gcqccaqqaq	caaaccctcc	tggcactttg	ttcaggggtg	13800
gatgcgccag	tgttcctgct	gtggaccccc	atctcacato	agggtcttgg	acctacagac	13860
tcgttcagga	aacacccgct	gagtacgcag	tatataccaa	ctgtgtccca	gacaataaca	13920
gggacagtgg	ctgctgctgg	aattataata	acttctagag	actctgggga	cagctgaggt	13980
gcaaggagcc	acggctcctt	gaggatgcag	ttggactcca	gatagaagga	atggttgggg	14040
gaggtataaa	tggggtcagg	gaggagacac	atttggaaca	atoggaacat	ttttaagatg	14100
ctatgtcggg	aggcaacaag	gtggccaacc	caggtgctga	ggagccaca	ccageetaa	14160
acqtqttttq	ccgctcacct	ttactagaga	ataataaaaa	agaggattcc	attccacata	14220
	cagctgggct					14280
gctagccggg	ctctgccttt	gaacacaatc	aggetecagg	ttttcagcat	ccactacata	14340
agaggacttc	acgggcagct	gtagctgatc	ccttgatgaa	ttaaaaaaa	aacaaacato	14400.
	ggtttcatgt					14460
adcddagacd	gcggatgggt	ctaggagge	cctcctacta	accttaacta	taacaaatat	14520
cctaggaate	agcttccagg	-cadacadace	adoctoacto	acacacacac	agatttt	14520
	gaccagctgt					14580
Coctagação	cctccccacc	tactagaacc	Cacccage	agtoctocco	grygriccag	14640
acttagaacc	gcatccgagt	cctacccac	Cacatatass	agecerates	tostssst	
aggtccctg	attgcatccc	cacttooctt	ctacttaias	tageteest	ttotossee	14760
ttttccaccc	tectagaeta	daattccac	tattatasta	actttace=	cicicaccgt	14820
cttagecete	tcctgggcta	tagaggggg	agaattaass	attetace=	aggacacctc	14880
tocanceace	ttcctgagtc	cetatasaca	tccaccatat	gererggeee	ccgggacacc	14940
Tycayccaca	ctcagcttct	cccycyaycc	cocaycatgt	cocceagga	ccaagccctc	15000

acattettae eteesaaaa	.			
acgitating eteconomics acc	Lyggete agecagggg	a aggcctggct	gggagcgtct	15060
	CLUCAGO CEGCCCTEC	CCCCtctacc	C000001+	15120
Table of the care	aluuclu tototoaaa	7	****	15180
aragacetacy cele	caytyce acteteces	1 cccactaaca	######################################	15240
googless ougcedayed etc	LCCCGAA CCCCAACCC	· atotococca	0 t	15300
Eggaageequ que	Jacteca decembrace	· atootoooo		15360
Total Section Coagging Coc	LUTTUCC ABATOOCOAC	· acctaataaa	* h	15420
	JUCCECC ADDOTETATA	, cactcaatta	COC	15480
and a carract are are	sicatto teattremen	tatetatasa.	000000	15540
training agagaceete tyac	NUCCAU CCEGAGEEGG	COTTCTCCC+~	atasses.	15600
system aggacgeace aggi	.cuqqu caddadtdac	CCCCaaacct	Catanaska	15660
Jacob Congacter got	layiyyy Eddaddidac	: Afcacttaca	CCCCCCCC	15720
aggacaggg cargarggat gaat	LULUCT CCCadddatc	taaaaaaaa	0+3+3+3	15780
garage acceptaged total	ludude Edeatatatata	tatatatata	the party and a second control of	15840
-9-9-9-9-9 cgcgcgcgcd cctc	COTOCO COCACATOTO	tataagatgt		15900
The second decorate definition	LLLCCL CCCGGGCCCC	atattcaaca	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	15960
cugacaacag aact	CLCCCC tttaaacaca	tactatasas	aaat aaat at	16020
taggette taggette	cqaqtc agaggaaaca	cagggttctt	antanan	16080
guadagea ggegaeegee caqa	dreade cracadasca	acaacaacca	+~~~~	16140
-youngeed gggcgggccg Cttt	qqqatc tcccqtcatt	CCCTCCCAGC	+ ~ ~ ~ ~ ~ ~ ~ ~ ~	16200
The state of the s	rudrea adagaacata	cacctactet .	actaraant.	16260
January agaage age	cyyaya qqacaqqqct	ggaccettgg :	ataacototo	16320
googgacoac occactgice teag	acacad cctctcgggt	ctagtttcat :	ttcotasss	16380
	agtega gagetaegge	CCCCGGGCCa (gateeaeeee	16440
egocaccige circacacca tgct	caaget gagtgggttt	tacattttt	22++20++	16500
addaddada gccadaggag gttt	catgac ccatgaaaat	tatatogaat k	t c = = = = = = = =	16560
gyaaccaaa ([[c	autute cataaataat	ttottoagac :	accetatana	16620
and a second and constant and a second a second and a second a second and a second a second a second a second and a second a	tuctat docatooche	actataceet (tandataa	16680
age codaged accepting of Ca	qcctcc tdadtadchd	ddactaceee 4	tatataaaa	16740
	littag taaagacagg	gtotttotat /	711777777	16800
activity activity ddic	cccaa agtgctggga	ttacadocto /	~~~~~~	16860
goodagoodg celeligetet teca	ctgata aagttttgcc	agatataata d	7+ 7+ 7+ 7-7+	16920
gguggutga ggug	Juaqua Ecocttaacc	ccaggagttt /	Tannat anna	16980
Today Gaco aggaggigaa Clat	gatcat gtcattgcat	tecadected a	Ttazazzaa	17040
- dance con contradada (ala	lattta aaaagtaffa	aatataataa a	3+ 03 0 0 0 0 0 0	17100
Tyguecouge cacceaggea ECEG	aggigg gaggatggct	tgagcccagg :	artttaaaat	17160
- sought caagategeg teach	lacact ctagectggg	tgacagagee 6	-anancatan	17220
and a decided an	icatut attudaacac	agccatacet a	***	17280
gtgctctcca tgctgctttc tgctc	cagag accettates	cctgaaagct c	72222tatt	17340
totaccett acaaaaaagt (Eqc)	qacct ctgtcctgga	aaattcatct c	CC22Gttot	17400
arrecygear rygogricor gggt	icccia aatttggccc	ctottatttc t	Gaactictict	17460
tttggctctg ttccctccca ggage	cagga caggcacgtt	ctctgcatct t	atcccctae	17520
agacayayy ceryyeteyy ctea	IGCATT CTTGGAAATA	tetageteca e	702220022	
aggestest transacta gagge	maacet deceande	tagagaaaa a	ggaaaggcag Stassassas	17580
agagtggctt ttgccgatgg gttgg	accad tcaadatata	ctgaaagttg t	cotosase	17640
gecactttgg gatteettee teeac	itatta gagcaachga	dadctactes t	tacaagaag	17700
gatgttttcc cagttggccg ggtcc	accaa ataccetaga	attotagast o	tacatama	17760
agtaggggc ttgggggagt gtcct	aggtt ctggaatcca	actorgagat c	cyggiggaa	17820.
agggagtggc ttctgagcca ccata	aggat ctctataga	ggctggcaagt g	grgaggere	17880
ttccgcaggc cctgccggcc cagac	CCago atottagget	taccasacet e	rcccaggaga	17940
The standard of the standard o	CECCE CECACTIFAL	tttaaaaaaa -		18000
tiggagcaagg gtagagaggg aggaa	ataac taccaacca	taccosaca e	ccgggagtg	18060
cttgggccct ctgtgggctc ctttt	tatto ctcttcaatc	aggerage c	cctgtttgc	18120
cttgcctcac ttcagttcaa catgt	ctoga antitontat	aayuuaggga a	atggacttc	18180
aatagagcaa gaagagaaaa atcto	tocaa dadataat	taaaattaag a	aagtgtgga	18240
gtggctcacg cctgtaaatc ccagt	acttt gggagggta-	cyacetetga g	craaacaca	18300
tcgggagttt gtgaccggcc tgacc	aadat ddadaaaa===	ggcgggcaga t	cacctgagg	18360
	arc adadagaccc	egiciciact a	aaaataaat	18420

```
aaataaataa ataaataaat acaaaattag ccaggcatgg tggcgcctgc ctataatccc
                                                                      18480
agctaaggca ggagaatcgc ttgaacctgg gaggcaaagg ttgcagtgag ccaagatcac
                                                                      18540
gccattgcac tctagtctgg gcaacaagag tgaaactccg tctcaaaaaa aataaataaa
                                                                      18600
taaaaaataa aaatagtgac ctctggccag gtgtggcagc tcatacccgt aatcccagca
                                                                      18660
ctttggaagg aaggccgaga tgggcagatt gctttagcac aggagtttga gaccagcctg
                                                                      18720
gccaacatgg tggaacccca tctctacaaa aatagaataa aatttaagag gtaatagtga
                                                                      18780
ccttttggta gatcgaaacc tggattgctt tcttttcta aatgctgatt cttttctttg
                                                                      18840
tggtgtttgt gttctgtgcc gatgtccctc ccccagccct gttattgtga gtggaagaag
                                                                      18900
gggaaagggt tcgcccgcta ctgtgagccc ctcctctcac gctgggtgtc cttggagaag
                                                                      18960
cetgeactic ticatigtae gecagggetg ggteeeteee tggagtggtt etgtgetget
                                                                      19020
gggatggggc caacccctca gatgttttct gagtgtcaca cacaggtgtg tgcattcatg
                                                                      19080
gcctttgcgt gtcttcctgt tgtggaggca aaaatgtgaa gaaccctaga tgattttggg
                                                                      19140
accagggete cateacetge tgttcattge acaceggage atccaggeat gggtggagag
                                                                      19200
ctcagacttc caggcacggt cgcaggggct ggtctaacca tgttcccgcc cgcctgctcg
                                                                      19260
teagaacege etgttgggag etgttateat gataceatae etgggeeetg ggetateega
                                                                      19320
ttctgactta attgctccag gttggggcca ggccgttgtt tgctgttttg ttgtttcttc
                                                                      19380
tgtgacgtta gccactgggc taatctgagc ccctcagtta caggtggaga aactgagacc
                                                                      19440
catgggggtg caaggacttg ccgaggaccc agagcccctt gggggcagag ctgaggcggg
                                                                      19500
gcctggcttt gggtcccaga gcttccagtc cccttcccgc tctcctaaca gcttttttt
                                                                      19560
ttgagacaag atctcaccct gtcacccagg ctggagtgca atggcatgat ctcggctcac
                                                                      19620
tgcaatcttc gctagctgcg ttccagcgat tctcctgcct cagcctcccg agcagctggg
                                                                      19680
attacaggtg tgtgccgcca tgcccagctc gtttttttt gtacttttag tagagatagg
                                                                      19740
gtttcaccat gttggccagg ctgatctcga actcctgacc tcaaatgatc cgcctgcctc
                                                                      19800
ggcctcccaa agtgctagga ttacaggctg ggatcacact gtgcctggcc ctagcagctt
                                                                      19860
tgtcctgtgc catccaacaa cagatgaccg aagtctttgt ttcttaacat gcattccatc
                                                                      19920
tgccttacag ttttgccacc tgcaaaacag aggacttgtc gcttttctgg taagctggaa
                                                                      19980
atgtaatctg gtagcaggag gcctgtggaa gcttgccttt aatggccttg tgtctctttc
                                                                      20040
atcctgtcct gagagccgga gaacttggat gttgcaccta actcaacctt cctgttaaca
                                                                      20100
tacagttetg caggeteatg gateateaga accaegteet ateteaegeg getgtatget
                                                                      20160
tccgttggtt caggtgtttt taccttgaca gtattttctc ctcggtggct tttgcggtgg
                                                                      20220
ttgcttttaa tcagcattga ctcttcaaga aaaatattta gctgctacat ctcagaggag
                                                                      20280
acagggtgga aagcatctga gacctgcagg ctcagactta gaaccagaag tgccctcaga
                                                                      20340
gttcatccgg ccctgaccca gcgggaaatg agttcacaga gaagcgggag aactttgccc
                                                                      20400
caggeeetge egttgeteat aactgeeeca ggteettaca tttgeteeag gteetgeeee
                                                                      20460
aggccctgca gttgctcata actgccccag gtccttatat ttgctccagg tcctgccca
                                                                      20520
ggtcctgcag ttgctctgtg tggtgggtgt gatctggagc cctccgccca ttgctgcacc
                                                                      20580
tggggcaggc attgctaatt gatcccagga ctccttcctg cggagcacgc cctggttctc
                                                                      20640
caggcageeg etgeetgtea geetgeagtg gttegggaga ggaeaeetge ttgeetggte
                                                                      20700
tgttccaaat cttgcttctc atcccagcac aggtaggggg tgctatggga aagggatcct
                                                                      20760
cagttggccc tgtcactgct ctatcagctg gggacgtggc atcctagtga aaacatcatg
                                                                      20820
gccgggcgcg gtggctcacg cctggaatcc cagcactttg ggaggctgag gagggtggat
                                                                      20880
cacttgaggt cagaagttcg agaccagcct ggtcaacatg gtgaaaccca tctctactaa
                                                                      20940
aaatacaaaa attcgccagg tgtggtggcg ggtacctgta atccgagcta ctcgggaggc
                                                                      21000
tgaggcagga gaatcgcttg aacctgggag gtggagcttg cagtgagccg agatcttgcc
                                                                      21060
actgcactcc agcctgggca acagagtgag acgctgtctc aaaatctcaa acaaacaaac
                                                                      21120
aaacaaaaaa caaacaaaca aagcgtcatt tatccagcac ccctggggaa ccatgctacc
                                                                      21180
tggtgtttta tggtacctgg caaggtgcag gtgaagttgc tgctcttggg cattgaaccc
                                                                      21240.
gtcttgtttg gggcagctca ggccccaggc agggtccggg ttggctctcg ttggtgtgc
                                                                      21300
cctggcccat ccagacctat atttctgccg tcctgcaggt gatcaatgtt gatgggacga
                                                                      21360
agaggcggac cctcctggag gacaagctcc cgcacatttt cgggttcacg ctgctggggg
                                                                      21420
acttcatcta ctggactgac tggcagcgcc gcagcatcga gcgggtgcac aaggtcaagg
                                                                      21480
ccagccggga cgtcatcatt gaccagctgc ccgacctgat ggggctcaaa gctgtgaatg
                                                                      21540
tggccaaggt cgtcggtgag tccggggggt cccaagccat ggctcagcca tgcagacttg
                                                                      21600
catgaggagg aagtgacggg tocatgcctg ggcataagtg ttgagctcag gtgccccgac
                                                                      21660
ctggggaagg gcaggacagg aaaggtgaca gtatctggcc aaggacagat gggaagggac
                                                                      21720
caagggagct gattagggag tggttatgga ctaggaatgt cggtaacaat ggttagaaag
                                                                      21780
tgactaacat ttgttgagca cetgetgtgt geeeggeeet ggeegggage ettegtgeee
                                                                      21840
```

WO 02/092015 PCT/US02/15982

```
acagtgaccc cgtctgcaaa tgtagttcct tgccctactc gcactgggga gcaggacgca
                                                                    21900
21960
ctgtgcttgt tgcccctgtg gcccacgcat gtgcaccttc cacctgaaag ccaggatctt
                                                                    22020
caggacgete eccgaggagg tegttgtetg geacaatgat ttgtetette etgaaaaggt
                                                                    22080
gacagagtta cactggagag agcagcatcc aggtgcggca gggacaggcc tggggctcgc
                                                                    22140
gggcagggac tetgtgteet geeggggtee caeactgeae etgettgtea gaggeactea
                                                                    22200
gtcaatcttt gctgatgaag gatgagagga cagaggacgt gatgcttgct gctgcattgc
                                                                    22260
ctgcagtcct gggtgagatg cccgggttga ctctgctgcc cgtcgggtgg atgtgatgtc
                                                                    22320
agatccccgg ctttaaaata cgagggagct gggaattgag ggagcaggtt ggggcagaaa
                                                                    22380
gcacagecee gtggaageet ggagetgagg cagtgtggge gacecetgga geagtgagtg
                                                                    22440
cttccttcat ggccttcatc gcaccctgca gtcctcatgt aggggatgcc atccatgaat
                                                                    22500
ttagttttcc cagceteett taaaaacgeg tteatgetgg ggeeggggea gtgeagtgge
                                                                    22560
tcacatctga aatcccacca ctttgggagg ccgaggcggg tggatcatga ggtcaggaga
                                                                    22620
togagaccat cotggotaac aaggtgaaac cocgtotota ctaaaaatac aaaaaattag
                                                                    22680
ccgggtgcgg tggcggcgc ctgtagtccc agctactcgg gaggctgagg caggagaatg
                                                                    22740
gcgtgaaccc gggaagcgga gcttgcagtg agccgagatt gcgccactgc agtccgcagt
                                                                    22800
ccggcctggg cgacagagcg agactccgtc tcaaaaaaaa aaaaaaaagt acaaaaaaa
                                                                    22860
aaaaattagt ctgggtgtgg tatcacgcgc ctataatctc actactcgag aggctgaggc
                                                                    22920
ggagaattgc ttgaacccag gaggtagagg ttgtagtgag cccgtatcgt accactgccc
                                                                    22980
tccacctggg caatagagcg agactctgtc tcaaaaagaa aaaaaaaaa agaacattta
                                                                    23040
tgccaggtgt ggtggctcat gcctgaaatc ccagaacttt ggaagactga ggcaggagga
                                                                    23100
tcacttgage ccagaaattt gagagtgtet teeetgggea acatagagag aceteatete
                                                                    23160
taccagaaaa aaaaaaatta geeeggeatg gtggcatate eetgtggtee cagetaetta
                                                                    23220
gggggctgac gtggcaggat cacctgagtc tggaggcaga ggttgaagtg agctgagatc
                                                                    23280
atgccactgc actccagcct gggtgacaga cagagaccct gtctcaaaaa aaaaaaaaa
                                                                    23340
aaaaagcatt tactatccac catggaaggt gagactgacc tgtgagtgat tgttcaaaga
                                                                    23400
acaaaaaata aaccccagag ataagacaaa agggtgcctc catgggggtg tgatttaaag
                                                                    23460
ctgagaaatt gggcttette ceceteceet etcaeeeegt ggtttgetaa aggagatggg
                                                                    23520
aaaaaggatt ctttttttgg ctgaaatatt taacactaaa ttaaagccaa ttttaacagc
                                                                   23580
actttggttg atgagtgaaa ttaacagact ggccaaaaat aaacgaacgg tctgtactat
                                                                   23640
gtgaaaaaga ggcagctttg gccatgctgg gccaatgtga gttttcaggg ttgctgggaa
                                                                   23700
tgtctgtgaa tcggaggaag ggcctagctg ggactctcag gagccaaggc cctgaggggc
                                                                   23760
aacttgcctg gtccctgccc tgaggcgttc actgctttct tcctgggcca gatcacaggc
                                                                   23820
ccggaggctg gaccactggg ctggcactct tgccgagctg ctccctgact tcctgaccat
                                                                   23880
gctcctttca gcagccttgc tgcactttag tttccttgaa tgaaaaatgg ggatgagaat
                                                                   23940
agetectace tecaaggtga atggagtgag tteggaeagg tgaetecetg ggaeeagtge
                                                                   24000
ctggcgcctg acaaggtcca gtcagagccc gcactgctgt tactgatacc cttggctgta
                                                                   24060
ccaggggaga acttggttgc cattgccagg tgttctccca ccacccccac tactgtccct
                                                                   24120
gtttgatgtg tggcgggaat aaagctgtgc acattggagc ttttggcaca tcctggcttt
                                                                   24180
caggtgaaag gtgcgtgtgt gtttgagggt ttagcctggc caacccagcc atgaggtcgg
                                                                  . 24240
acctgacctg ggggtgagtc ctgagctcgg cacccctgag ctgtgtggct cacggcagca
                                                                   24300
ttcattgtgt ggcttggccg cacccctttc cctgctgggc tgttgatgtt tagactggag
                                                                   24360
cctctgtgtt cgcttccagg aaccaacccg tgtgcggaca ggaacggggg gtgcagccac
                                                                   24420
ctgtgcttct tcacacccca cgcaacccgg tgtggctgcc ccatcggcct ggagctgctg
                                                                   24480
agtgacatga agacctgcat cgtgcctgag gccttcttgg tcttcaccag cagagccgcc
                                                                   24540
atccacagga tetecetega gaccaataae aacgaegtgg ceateceget caegggegte
                                                                   24600
aaggaggeet cageeetgga etttgatgtg tecaacaace acatetactg gacagacgte
                                                                   24660.
agcctgaagg tagcgtgggc cagaacgtgc acacaggcag cctttatggg aaaaccttgc
                                                                   24720
ctctgttcct gcctcaaagg cttcagacac ttttcttaaa gcactatcgt atttattgta
                                                                   24780
acgcagttca agctaatcaa atatgagcaa gcctatttaa aaaaaaaaa gatgattata
                                                                   24840
atgagcaagt ccggtagaca cacataaggg cttttgtgaa atgcttgtgt gaatgtgaaa
                                                                   24900
24960
ttgctcagca gactctttct tcatttatag tgcaaatgta aacatccagg acaaatacag
                                                                   25020
gaagactttt tttttttt tttgagacag agtcttactc tgttgcccag gctggagtac
                                                                   25080
cgtagcgtga gctcagctca ctgcaacctc cgcctcccag gttcaagcga ttcttctgcc
                                                                   25140
tcagcctcct gagtagctgg gactacagac atgcaccacc acacccagct aattttttt
                                                                   25200
atatttttag tagagacagg gtttcatcat gttggccagg ctggtcttga actcctgacc
                                                                   25260
```

tcaggtgatc	tgcccgcctc	ggcctcccaa	agtgctgaga	taacaggtgt	gagccaccgt	25320
tcccggcata	ggaaaacttt	ttgccttcta	aagaagagtt	tagcaaacta	gtctgtgggc	25380
tggccttctg	attctgtaaa	gaaagtttga	ttggtggctg	ggtgcggtgg	ctcacacctg	25440
taatcccatc	actttgggag	gccgacgtgg	gcatatcacc	tgatgtcggg	acttcgagac	25500
	aacgtggaga					25560
	cgcctgcctg					25620
	aggcggaggt					25680
	gaaactccgt					25740
	gattgtctgt					25800
	aaagcctaaa					25860
	aagtattgga					25920
	tgttgttgtt					25980
	gtgtaatctc					26040
	cctccctagt					26100
	tttttttt					26160
	ggctcaaaca					26220
	ccagcctatt					26280
	caagggttct					2.6340
	gtccataacc					26400
	tcttttttct					26460
	atcctgattt					26520
	ggcacaatct					26580
the state of the s	ctgttcttt					26640
	acaacacttt					26700
	tgggcaacat					26760
	gtgcatagct					26820
	ggaggttgat					26880
	caagacttgt					26940
	tatatacata					27000
	taatataaaa					27060
	aatatataat					27120
	tatatttata					27180
	tatattttt			-		27240
	tataaaatat	-				27300
	aaacattcat					27360
	tgccagtggc					27420
	gtggctcacg					27480
	ctggatttcg					27540
	aaaattagcc					27600
	ggagaatcgc					27660
	tccaggctgg					27720
	ctaaaatgtg					27780
	cgggagctcg					27840
	tgactggatg					27900
	gcggctggac					27960
	gctggccctg					28020
	cctcgtatga					28080.
	ctcagtgatt					28140
						28200
	cctcagaggt tggctgcttt					28260
	tctgtgtcga					28320
	tcacataccc					28380
	tctccttgct					28440 28500
	cctcaggctc					28560
	cgagaggcaa					28560
	ttcagacagg					28620
ceeegegeg	gtggacacag	Lycicacocc	ccaaaycacc	Lycyacycyt	grayrayccc	20000

WO 02/092015 PCT/US02/15982

			•			
aatccctgcc	tgtcgcctgt	tctgctaggg	aaggaaggaa	gacttcagga	tggcaggaca	28740
acagaaagag	gtccaggttt	tagagcaagg	gcaggtcaaa	cttagaaaat	tctggaatga	28800
ggatgtgcat	ttcctcttct	ggatctgcta	aaagaagagg	gaaggaggg	ctgctggggg	28860
aggagcccag	agccgagttt	acatccggat	cccgcaaggc	ctcccctgcc	ctgaggtctt	28920
gttttgtgat	gtgcttgtgt	ccatcctggt	ttctgccgtg	tccccaacat	ccggccaagc	28980
ttaggtggat	gttccagcac	acactcaccc	tgtctgtgca	cctgtttttg	tgtccgtaag	29040
tgggtattta	ctcaccttac	gagtgagcca	ctgtgggaat	tcagggaggt	ggcgcagtga	29100
		gtgtggcagg				29160
		cggggagggc				29220
ccccgccacc	cactgtcctg	cggtgagagc	agactcactg	agcctgccct	tctcccttgt	29280
		ggaccgagtg				29340
catggacggg	accaactgca	tgacgctggt	ggacaaggtg	ggccgggcca	acgacctcac	29400
cattgactac	gctgaccagc	gcctctactg	gaccgacctg	gacaccaaca	tgatcgagtc	29460
gtccaacatg	ctgggtgagg	gccgggctgg	ggccttctgg	tcatggaggg	cggggcagcc	29520
gggcgttggc	cacctcccag	cctcgccgca	cgtaccctgt	ggcctgcaag	ttccccaacc	29580
tggcaggagc	tgtggccaca	cccacgactg	cccagcagcc	tcaccctctg	ctgtgggagt	29640
		tgcctttgct				29700
gctgtttcct	gtgcacctgc	tgggcactag	gtcccagcta	atccctgtgc	caggactcta	29760
atttcaccct	aacacacatg	gtggttttca	ttgctgggga	agctgaggcc	tgagcacatg	29820
acttgcctta	ggtcacatag	ctggtgagtt	caggatcccc	cagagatacc	agggccagca	29880
ctcgatcccc	acccagccct	gaaccccacc	atgtgctggg	attgtgctgg	gagtgtccac	29940
acgcctggga	ccccagggct	ggtgctctca	tctccttttt	ccagatcatg	agaatgaggc	30000
tcagggaagt	ttgaaaaaaa	cctatcccaa	gtcacacagc	aacaggagca	ggatttgaac	30060
ccagaaaagg	ggaccgcaca	ctctgttctg	ctagagtagt	tagctgtcct	gggtgatatg	30120
		tgcttaacaa				30180
agactagaag	gtcaggggca	gaagctctga	agggccaggt	gcagtggctg	acacctctaa	30240
		aaggcgggca				30300
		gccatctcta				30360
		ccaagctact				30420
		gtgagctgtg				30480
agagtgagac	cgtctccaaa	aaaaaaaaa	gaagaagaaa	aagaagctct	gaggetecaa	30540
gtccccaggc	accccttggc	ttgagggcag	acaagggagg	agagggtcac	ctgggcagcc	30600
ctgacttttg	tcccctggca	aagggacctt	cagtgacctt	ggccctagga	gagcctctga	30660
gcacgtcagc	catgtcgaac	cgctcaggaa	gggcagcaag	aatttggctt	ctgacctctg	30720
		cactgggtgt				30780
		gccttgtccc				30840
		ctgggggtgg				30900
		gaccgtcacc				30960
		ctgttgccag				31020
		attaatcacc				31080
		atgtgaccct				31140
		cgtgttttgg		_		31200
		cctggtctca				31260
		gaacctggag				31320
		ctgtagccag				31380
		tttccaaggt				31440
		cctggctcac				31500.
		gtgcccgtgt				31560
		ccgttcggtc				31620
		attgagcggg				31680
		ttcgtgatgg				31740
		cacaacaacg				31800
		tgcgcctcac				31860
		gtcccccgca				31920
		agcttctcat				31980
		agctgcatga				32040
		gacatagata				32100
		, , , , ,			- 3 3 3 3	

tgggcaggat	ctttgggtgt	gaaaaccagt	cacaggggaa	gggtgcttgc	tcatactgcc	32160
agcacagtgc	tgagtgcttt	ccatagcgct	cgtttactcc	tcaagcctgg	agggtgggga	32220
gtagcatggt	cccatttcac	gtacaaggaa	cccgatgcac	agagaggtgt	ggcaacccat	32280
ccaaggccat	acaactgggg	tgggttgagc	cggggttgac	tgtggcaggc	tggctcaaga	32340
gtccctgctc	ctgaaccctt	gccaggcagc	ctggcatcag	ctcggggaat	ttttgccctg	32400
acccttggaa	gcaagtgggc	ctctttgttc	tcatgtcagt	gatgagaaga	gtgactttcc	32460
tatggcccct	ctggagtaca	ggtgtttcct	gttggcgggc	tcttccccca	tgacatcagc	32520
		ctacgcagaa				32580
		gcagacctgg				32640
		gaggcttgca				32700
ggcaggagat	gggcctgggc	cagagtctgg	gacttcccat	gcctgggctg	tctttqqtcc	32760
tgttgctcac	catccctccc	tggggccatg	accttagaga	gccaaatgga	ggtgcaggta	32820
		gccatgactc				32880
		agaccagcca				32940
ccacagette	tgaagccagg	caggactcag	qccaqqaqac	tctqttaqct	gttgagaggg	33000
agaggccaac	ggatgttctg	gttctgctag	agagctggtt	cttcggatcc	togtaccagt	33060
gcactgagag	gaggccagc	ttgattctgg	aactacctta	tagtagcata	tactactese	33120
tgacaccctc	gaggagtgtc	ttctctcggg	cttgttgact	atacccaatt	ttccgcagtt	33180
		catagcaaac				33240
		cactaccatt				33300
		tggacgcggt				33360
						33420
		cctgaggtca				
		aatacaaaat				33480
		aggcaggaga				33540
		tgcagtccag				33600
		agaaaaataa				33660
		acatatgaca				33720
		cccgtctttc				33780
		tgctatcccg				33840
		gcctcctcta				33900
		gatcccggac				33960
		caaagccatc				34020
		catcaagcga				34080
		gtgcttccca				34140
tgcccctgtc	cttagcagag	ggaggaaaca	gaggatggct	ctgggtgaat	gatgacttgg	34200
gcttcgatta	tgtagtcaca	gggtatgacc	ctgagatgcg	tggaaccccg	agactgtgat	34260
tatatgtaga	aactgggttt	ccccgttgtt	taagtagtca	tggtggggtc	agaccccaca	34320
		aagaaaatgg				34380
		tattttgtgg				34440
		cacctatgca				34500
		acagccctca				34560
gaggaacctg	ggaaatagca	aagtgccttt	tgcacattaa	atggttagct	atatcccaca	34620
		ttaatgctgc				34680
		tggaagggtg				34740
		atggaaagtt				34800
		gggaggtcag				34860
		tagttttttg				34920.
		accgtgctgt				34980
		tttttttt				35040
		cagtggcatg				35100
		ctcagcctcc				35160
		tttttgaaac				35220
		gaggccgagg				35280
		tgaaaccccg				35340
		atcccagcta				35400
					agcctgggca	35460
acaagagcaa	aactccatct	caaaaaataa	aaaatagaaa	aacaagtgct	gtagcggaag	35520

taaacacttt	acaasatasa	~~++~+~+		2224		25500
		gcttgtgtgg				35580
cccaggccc	acceggage	tgcagcatgg	ggcacaacag	grecattage	gragaattcc	35640
		gcagccttct				35700
ctagcacttt	gggaggccga	agtgggtgga	tcacgaggtc	aggagttcaa	gaccagcctg	35760
gccaacatgg	tgaaacccca	tctctactaa	atatacgaaa	attagctggg	tgtggtggca	35820
		ctcgggaggc				35880
gaggttgcag	ggatctgaga	ccatgtcatt	gcactccagc	ctgggcaaca	gagcgagacg	35940
		ctacagagcc				36000
gtgggagctt	gtgttattgt	ggtgaaatct	tggtactttc	ttgaggcaga	gagaggetga	36060
gcgcctggag	agactttcac	atgggtcgcc	atgtccgccg	tcaatttcac	tattatactc	36120
cccatctgaa	aactaatacc	gtccagacag	gctggacgcc	cctttccacc	agateettee	36180
		acgttgtact				36240
		agagccatgc				36300
		gtggtgtggg				36360
		ggagtccttt				36420
		tcctgggcgt				36480
		ggcagaagtg				36540
		gtgcttttcc				36600
		tggactctgg				36660
		aattatcatc				36720
		gtaaatttat				36780
tgttattgtt	gtttttgaga	cagggtctca	ccccagtgcc	caggctggag	tgcagtggtg	36840
cgatcatggc	tcactgcagc	ctcagcctcc	agggctccag	tgatcctctc	acctcagcct	36900
		ggcatacact				36960
		atgttgccca				37020
		aagtgctggg				37080
		tttgagatgg				37140
		ctgcaacctc				37200
		tgggattaca				37260
		ggtttcacca				37320
ctaataataa	acceacetea	gcctcccaaa	atactasast	tacaggetete	adccccaac	37380
cccaccttt	ttttatttt	gececedaa	cttaccetat	cacaggegeg	agecacegeg	
		gagacagggt				37440
		cagcctccgc				37500
		tagagacaga				37560
		cacctcagcc				37620
		acctattctg				37680
		ccattcatct				37740
		acactcctca				37800
tatctctctc	tgccttctct	aggtacctca	tgtaagtgga	attataccaa	tatttgccct	37860
tgtgtgactg	gcttctttca	tgtgacatgg	tgtcctcaag	gttcatctgt	gttatagcct	37920
gtgtcagaat	ttccttcctt	aaagcctgaa	taataacccg	ttgtaaaggc	tgggcgcggt	37980
ggctcacacc	ctctaatccc	agcattttgg	gagtccgagg	tgggcagatc	acttgaggtc	38040
aggagtttga	gaccagcctg	gccaacatag	tgaaaccctg	gctctactaa	aagtacaaaa	38100
		gcacctgtaa				38160
		cagaggttgc				38220
		cttcctgtct				38280
		tatccatcca				38340.
		aacatttcct				38400
		gcataggatt				38460
		aaagctcagg				38520
		ggcgggcgga				38580
		tctctactaa				38640
		tacttgggag				38700
		cgagatcgct				38760
		ctctgtctca				38820
		ccagccgcgt				38880
aggagtgtgg	ccagggtgtc	acgtcacaca	gtacacgttt	ctcagatggt	ggttctccag	38940

```
actgctgtcc caaagtetgt ttttgcatct ggttcccaca gacccaccct ccacggtgag
                                                                    39000
cctgattttg gccagggtag ctggaatctt gcttgtcttt cagcccggca gctgtaccag
                                                                    39060
tocagggtcc acagctagtg gcttttagga aggaatttgt tcagttggct ttgacacatg
                                                                    39120
gccccctagg gtccacaget etgtagtgat gtggatgttg ttatetacaa agacacatga
                                                                    39180
teettegtgt ceagatgaaa gtgatgatgt etttgeaget geecageaag getgtgtgtg
                                                                    39240
39300
ggggagggag gcaccettte catetggggg tgtgtgtgtg tggggtgtgt gtgtgtgt
                                                                    39360
gegegtgtgt gtggtgtgtg gtgtgtgtgt gtgtatgggg gaggeaeeet ttecatetgg
                                                                    39420
gtccaagaga ctgggcctgg ggaagacgct tctttttatc tacttagaga ctttgtttta
                                                                    39480
tttgtatttt tttgagacag ggtctcactc tgtcacccag gctggggtat ggtgatatga
                                                                    39540
gcatagetea etgeageete ggeeteecag getgaagega teeteecace teageettet
                                                                    39600
gaatagctgg gactgtaggc gtgcgtcacc atactgagct attgtttttt ttgtttggtt
                                                                    39660
ggtttaattt tttttgatac agatggagtc ttgctatgtt gcccagacta gtctcaaact
                                                                    39720
cctgaactca agtgattctc ccacctcagt ttcccgacat tctgggatca caggtgtgag
                                                                    39780
ccactgctgt ctccctgttt tattaactgc tgaaagacct agataaagaa agtctgaaaa
                                                                    39840
gacttactat cagagcacca toctaagatg attocctotg actcaatgga gagggagggg
                                                                    39900
agetttteet teaggeetgg gtggeaggag eecaggtget eeaggeeeca tttgeeecag
                                                                    39960
gccaaatcac togggaactt ggatgcagct gtotttcagg gtaacccaaa ggaaccagat
                                                                    40020
eccegeagge agtaggette tgggetgtee teteeteeta egteagetea gtaagageee
                                                                    40080
ttcgaaggga tgctgtgtcg gaggccccaa aagcccaggc tcatccctga gatgcacagg
                                                                    40140
gtgggctggg cttaggcagc gctcgagcat ctcctggacg gtgaccccag agagtgtgga
                                                                    40200
gacggagagt cettgagagt cactgagaga egtggetgee etgeetteee aagagggget
                                                                    40260
ctgagtcatt ccccacactc acctgcccct acccaccctc acctggcccc cagcctcacc
                                                                    40320
tacccccaca tetgtacega tecetttace egcacettee etacccacee teacetecee
                                                                    40380
tgtacettca cetececcae teaccegece etgeacecte acetgtecce cacetteace
                                                                    40440
taacccccac cctcacctgc cctcccctca cctggcctcc ttccgttggg gaaggggttg
                                                                    40500
taaggggegg ecceeaaact gtetgteetg gtgeeetgea gagaaaacag taegtgaggg
                                                                    40560
ccgcagtcca aaagcttgag tcctggaagg tggaggagac agggatgtgt tgggaaggg
                                                                    40620
cccatggtct tggatccctt ctcgactgtc aatggggcct tcatgggagc gccagtctag
                                                                    40680
tgatgcacag ctgggtgccc ggcgggtggc tgaggaggcc taaagtccga ggcggcaaga
                                                                    40740
getettecag aggetgttgt cetaateget etggeataet eaggegggea egtagttagg
                                                                    40800
                                                                    40860
agctgattgg agaggagaga cccccacacc aatactggga tttgactttc aggctaaact
tgagaagtgt ggcctctgct gtcctgccag agctctccag ccagtgccca gggctctcca
                                                                    40920
gecagtgeec gggggtetee accagtgeec gggggtetee gecagtgeea ggggteteeg
                                                                    40980
ccagtgccca ggggtctccg ccagtgctca ggagtcttgg tttctttgtc ttacagccct
                                                                    41040
ttgttttgac ctctctgagc caaggccaaa acccagacag gcagccccac gacctcagca
                                                                    41100
tegacateta cageeggaca etgttetgga egtgegagge caceaatace ateaaegtee
                                                                    41160
acaggetgag eggggaagee atgggggtgg tgetgegtgg ggaeegegae aageeeaggg
                                                                    41220
                                                                    41280
ccatcgtcgt caacgcggag cgagggtagg aggccaacgg gtgggtgggg gtgctgcccg
tecaggegtg ecegeegtgt ettatgeega atgecageet eteacagget ggggagaett
                                                                    41340
tecacetggg gatecaatgg gtggetttee agggteeeaa aageaaacae aggttttea
                                                                    41400
cagecegtee gggaaageag aaageeecaa ggggetggaa ggggaaaggg ggagetetge
                                                                    41460
tgagaggtta caaggcagcg ctggccgacg ggagttgcag ttgataggtt ttgtatcatc
                                                                    41520
                                                                    41580
cttgttaaac ttgaaccctg tgcagaaatc ccttccacgg catgggggct gcctgttgac
tegeteetgt tecaceaeag ggageteetg ggettettee teceagagge eeeegaeget
                                                                    41640
cccacctgtt ggtcgtcaga gcttctggtt ggtgggaagg cacccaggac cttgaggtct
                                                                    41700
ccagagagaa aagccaggga aagagggaga ccgaaaccca tgtgacatga aactcaggct
                                                                    41760.
ccaaactgag cacgggaacg tttggggaca ggagcgcgat ggccttcctc agatagctgg
                                                                    41820
ggggctggca tgaagacggg agctacagcc agcacaggtc ctgggccggg agcccagaga
                                                                    41880
ttgagecetg actetgteae ttactggeea egtgacettg ggegggtgge atageetett
                                                                    41940
ggagactcag tttcctcatt ggtaggagtg acggccacag tggtgcggcc tctgcagcac
                                                                    42000
acggggggct cggtgggcgg aagccccggg totataaggc ggctgtgcag gagccagccg
                                                                    42060
                                                                    42120
agctggtctc ccaacagcca gggctccggg gtccttagca gctgtggggg gcctgcacct
                                                                    42180
gtttcccatg gctgctgtca gaaattacca gaagccaggt ggctgagagt aatggacact
tgttctctca cagttcctga gggctgaagc ccgagatcga ggtgtgggca gggccctgcg
                                                                    42240
                                                                    42300
ccctctgaag gctctgaggg aacctttggg cttctggtgg ctccaggcac cccttgactt
                                                                    42360
gtggtcctgt cactccagtc tctctgtctg gctgcacatg gcgtggcctc ttctgtacca
```

```
ttgaaggaca cttcagttgg atttagggcc tacceteace cattgtggte gtatettgat
                                                                     42420
ectteatgae atttgtaaag accetgette caaataaget cacattetga ggttetgggg
                                                                     42480
tgagcgggaa tttggagagc attgttcaac tagtatagaa tgtgacctgt cagcctcggg
                                                                     42540
cagccctgag aggcaggggc tttccacagc ccagctgggt gccctgggct ccgtgctgtc
                                                                     42600
cgaggagacg ccatccccac acceptectt caccegecae cetecegeag gtacetgtae
                                                                     42660
ttcaccaaca tgcaggaccg ggcagccaag atcgaacgcg cagccctgga cggcaccgag
                                                                     42720
cgcgaggtcc tcttcaccac cggcctcatc cgccctgtgg ccctggtggt agacaacaca
                                                                     42780
ctgggcaagc tgttctgggt ggacgcggac ctgaagcgca ttgagagctg tgacctgtca
                                                                     42840
ggtacgcgcc ccggggcctg ccctaaccgc agacacccgg ccttcattgt cagtaatggc
                                                                     42900
agcagetgee acattgteeg agacetgeeg tgageecagt geegegeeag gggetttgtg
                                                                     42960
tgtagcgtgt tttgtcctca cactgacagc tgtaggctgg ggttctgagt gagccccaca
                                                                     43020
gggcagaggc agaaaatgag tctcagagag ggtgagcgag ctgcttgggg ccccacagca
                                                                     43080
ggagatggag caggactgca gcctagcctc tgcccccagc acctgcgcaa gaagctgctc
                                                                     43140
tgctctggac tgtgttaggc tgcgagggct ggagagaaat gagagttggt gcttagagag
                                                                     43200
ggggcgcagg tccccatggc ttttcctctt atgatgaggt agatgggtga agggaggggc
                                                                     43260
catgettgea ggggecagtg accgaggece geegttggaa etgatggeet teatceegag
                                                                     43320
eccageccag gtgggageag ggettteega gggettgtet tgggteggee tgetteeagg
                                                                     43380
gactotgotg cagotoccac cootgtocaa agoatggaat cooccaggot cootggoagt
                                                                     43440
cctgtcaacc tctgtcctcc caagctgagt gtggggcaag ttctggaggt cagcactgct
                                                                     43500
caggggggcc cacgggctgc ttgcaggggc caaccgcctg accctggagg acgccaacat
                                                                     43560
cgtgcagcct ctgggcctga ccatccttgg caagcatctc tactggatcg accgccagca
                                                                     43620
gcagatgate gagegtgtgg agaagaceae eggggaeaag eggaetegea teeagggeeg
                                                                     43680
tgtcgcccac ctcactggca tccatgcagt ggaggaagtc agcctggagg agttctgtac
                                                                     43740
gtgggggctg gcagtggggt gggcagggtg gcctctaaac ccgacccctg gaggaggctg
                                                                     43800
gaggccagtg caagatcctg tgtggcctca gccaggcggt ggtctctgcc agatgccaac
                                                                     43860
tgttgcccgc tggggttcag cgacatgtcc gaatgtcccg aggcctctga ggttgttttc
                                                                     43920
ttttgccgca gaacaaatca ccacgaacag cgttttaaga caacaccaac tcttttttt
                                                                     43980
ttttttttt tgagtcagga tcttgctctg ttgcccaggc tggggtgccc tggtgcaaac
                                                                     44040
acagttcact gcagcctcga cctctgggct taattaagtg aacaccttgc ctcagcctcc
                                                                     44100
caggtagctg ggactacagg tgggcaccac cacacctggc taattttttt ttgtagagac
                                                                     44160
ggggtttccc catgttgccc aggctggtct gcaactcctg ggcacaagct atctgcctgc
                                                                     44220
tgtggcctcc caaagtgcta ggattatagg tgtgagccac tggcctgaca acacccacgg
                                                                     44280
attgtctctc agttctgtaa ggcaaagtcc aggcacagcg tggctcacct gggttctctg
                                                                     44340
ctcagggtct cacggggcca gaatcaaggt gtcaggaacg ctgggccctc agcggaggct
                                                                     44400
ctgtggagaa attagcttcc ttgctcactc agcaggtagc agttgtggga tcgaggttct
                                                                     44460
gttttctctc tggttattgg tcggggacca ctctcagctc ctagaggcca ccacaggtcc
                                                                     44520
ttgccccgtg gccctctctg cctcagcagt gggggctccc tgcgtcagtc cctcccacac
                                                                     44580
cttgagtctc tctgatttgc ttctaaaggg ccctgtgatt cggctcagcc acctttagat
                                                                     44640
taggttagcc tcccctttga tagactccaa gtcggctgat taataacctt aatcacatct
                                                                     44700
gcagaatccc ttctgccaca taaggtcatg acgccgtgct ggggactggg gtgggaaatt
                                                                     44760
acggggtcat ttaggattct gcctgccact gccttgctgt gtcccagggc ttgggggagg
                                                                     44820
ggcctccaca gctgggacca cagtccttcc tcccctccat ggtaaccatc tqaqqattac
                                                                     44880
ttgagaccag cctgggcaac atggtgagaa cccatcccta caaaaaatac aaacaaaaag
                                                                     44940
ggaccagget gggettggtg geteatgeet ataateceag caetttggga gaccaaggtg
                                                                     45000
ggctgatcac ttgaggttgg gagttcgaga ccagcctgcc caacatagtg aaatcccqtc
                                                                     45060
tctactaaaa atacaaaaat tagctgggtg tggtggcagg cgcctgtatt cccagctact
                                                                     45120
ggggaggctg aggtgggaga attacttgaa cctgggaggc ggaagttgca qtqaqccaaa
                                                                     45180.
attacgccac tgcactccag cctaggcaat agagtgagac tccqtctcaa aaaaaaaaa
                                                                     45240
gggccagggg tggtagtgac aaagagaccc tatcccaaaa aaaccgaaca ctgaatcctt
                                                                     45300
gagactgagt aaggacactg tgaaattttt ctgggtgggg cagggaacag agcgtcttct
                                                                     45360
gtcatttett ccacctgggt gtggtcaget etcectecaa getgeeteet ettettetea
                                                                     45420
ttgtccgggt gttggacaca tttggttaac tggatagaat aacgcgagtt cccaqqgact
                                                                     45480
45540
tttatttatt tattgagatg gagtttcgtt tttgtcgccc aggctggagt gcagtggcgc
                                                                     45600
gatctcggtt cactgcaacc tctgcctccc aggttcaagt gattctccta cctcagcctt
                                                                     45660
ccaagtaact gggattacag gcacccacca ccataccagg ctaattttt tgtatttta
                                                                     45720
gtagagacgg gttttcgcca ttttgcccag gctggtcttc aactcctagc ctcaggtgat
                                                                     45780
```

PCT/US02/15982

ccacgcacct	cggcctccca	aagtgctggg	attacaggca	tgagccacca	cgcctggcac	45840
catttgctat	tttaattccc	atgtgtatta	gtgtcccacg	gctgctgtaa	caaatgacca	45900
caaactggat	ggcttaaagc	aacagaaatg	gattccccca	atgtgctgga	gaccagaagc	45960
ctgcgaccaa	actgttggga	gggctgtgct	tectetgggg	gctccaggga	ggatctattt	46020
gttggccctt	ccagtgctgt	gggtgccagc	gttccacact	tgtggatgcg	ccgcctcaac	46080
etetgeceat	cttcatgtgt	ccatctcctt	tgtgtctgcg	tctttacctc	ttcttcttgt	46140
etgtgttgee	tettataagg	acgtttgtca	ttgggtttag	ggcccaccca	aatcatccga	46200
		cttaacctgc				46260
		gacatgggtg				46320
		gagggccagg				46380
		ggatcacttg				46440
		caaaaagtga				46500
		cccagcactt				46560
		ggctaacacg				46620 46680
adattaegge	caacetcaac	ggctcccgcc agatcgagac	catcttggct	geaccetagg	aggeegagge	46740
		ggagaccatc				46800
		cgggcatggt				46860
		cgtgaacccg				46920
		gcctgggtga				46980
		aattagccag				47040
acttgggagg	ctaaggcagg	agaatggcat	gaacccggga	aggegeetat	acagtaaacc	47100
gagatcatgc	cactgcgctc	cagcctgggc	gatagagga	gactetatet	caasaasaa	47160
agccaggcat	ggtggtgcat	gcctgtagtc	ccagctactc	aagaggctga	aacaaaaaaa	47220
ttgttcgacc	cacqqaqatc	aaggctacag	tgagccatga	togcaccact	gccctccagc	47280
ctgggtgaca	gagtgtgacc	ctgtctcaaa	gtaagtaaat	aggaggagag	acaagtgggc	47340
		gcacagtaga				47400
		ttccggcatc				47460
		gaggaataag				47520
gcaggaggc	cagttctcat	gagttctcat	ttggccccta	ccctccaggc	tataatteta	47580
aggtgggaga	cagageetga	cctctgtttg	tcttattta	tctttgcagc	agcccaccca	47640
		ctgctcccac				47700
		cctcgtgctc				47760
		ggggtgatgg				47820
		aatcacagtc				47880
		tcttttctac				47940
		tctcacaaat				48000
		gagatgacat				48060
		ggcttttcca				48120
attctactgt	agtctgagag	cttattttat	atgatttctg	ttattttaaa	tgtgttgggt	48180
gtggtgtttt	tgttgttatt	gtttttgtgt	ctttttgttt	tgttttgctt	cgtttgtttt	48240
gtttttgaga	cagtgtcttg	ctctgtcact	caggctggag	tgcaatggcg	cgatctcagc	48300
tcaccgcaac	ctctgcctcc	cgggttcaag	tgatcctctt	gcctcagcct	cctgagtagc	48360
tgggattaca	ggtgcacgcc	accataccca	gctaattttt	gtatttttag	tagagacggg	48420
gtttcaccat	gttggtcagg	ctggtctcga	actcctgacc	tcgtgatccg	cccacctcgg	48480
		ataggcgtga				48540
		ttatcttggt				48600.
		ggagtgttcc				48660
		tatccttcct				48720
		caactctaat				48780
tatctttttc	tctccttcta	cccttgatcc	tcttctcccc	ctagggcttc	ctggtgttag	48840
		gaagaacctg				48900
		cagttgagtg				48960
		aattgagagc				49020
		gaccctgaca				49080
		taaagtgacc				49140
cagggctttc	tctcctatgc	ccccatgcct	ccaggtggcc	ttggatcctg	ttggttctgt	49200

actotactos	acaacettta	+	~+++			
cancancaca	Cactagetet	ceeegtggga	gttcctgggg	gttcagcttc	atcctacaga	49260
teteaetttt	ttcacacaca	geacecttt	tttttttt	777777777	tgagatggag	49320
acctectee	ttcaagtaat	ctgaagtgca	gtggtgtgat	cttggctcac	tgcaacctct	49380
cccaccacca	Caccaagegae	ttteetgeet	caccctccca	agtagetggg	attacaggct	49440
accadataa	tettessete	atttttgtat	tttcagtaga	garggrgttt	caccatgttg	49500
gccaggatgg	coctgaactc	ctgacctcag	gtgatccgcc	cacctcagcc	tcccaaagtg	49560
tattactac	aggegtgage	caccacaccc	ggagtgccgg	ttgtttttag	cagtttgtct	49620
checologya	gagactggct	cctgcccagg	agctcgggga	gtagggccgc	ggggtgctgc	49680
ctcacacete	gagtttggcc	gtaagcagag	gggacatttt	gtgactgtcc	ccctcctgag	49740
cttcccagca	gcttttctcc	aagttacagc	ccaaaagctc	aggtggattt	gcaacccaac	49800
ggtgtctgtg	cacctcccac	tgatgcccga	actgccctgg	ccaagaaacg	gggccgtcag	49860
aacgctgcac	taactgcagc	cttgggcctc	catgccagag	gccatgccct	tccatccacc	49920
accccctggc	ctgggccctg	ggccctcctg	gctcgggaac	tccaggcccc	ttcctcacgg	49980
ctcgagagac	gtgtatttac	cgcacaggtg	cttgtcattc	tcttgtggcc	tcttctccag	50040
ggagatcaca	gaaggacagg	gcctcactga	ggtctcggac	atggaccctt	tgatagtggc	50100
aggagccagg	ctgggcaaga	ggcggccaca	gtcacctcag	cagtgccatc	accaccgcca	50160
ttcagccctt	ccctgagccg	ggcgcgcccc	tggctctggc	cccagtgtcc	cagttacage	50220
tcacaggagc	ttgtggtgcc	cageggetge	ttctgattga	gagtcgaggt	cggaggcttt	50280
gggaggctga	gaggctgctc	ggtttcacaa	ctgctgaggg	agacttgggc	tccatctcag	50340
gtatgcccca	tgtcgccctc	aacctccagc	caccggtcct	ccgtqtcccc	catggccagg	50400
cacggcttgc	agacatctgt	cgttggctcc	tctcagccgt	cgtgggctga	ccctqqcacq	50460
tcctcctgtg	gctgagccca	gtggggacag	ctgcttcctt	ttattaccct	agaactctcg	50520
tctttgatca	ggccccctcc	cctatgccac	acagtccctg	tcactcgggt	gagcccagta	50580
gtcatgggga	aggcctgcgg	gttccaaaca	tccaaaggct	tacatacaac	atgacagett	50640
gaaaccgatg	ttttttacct	tgatcagatt	tcagcttggc	agagacttta	ctcagctttc	50700
agtgaggcct	gggccgattt	cccaqcatcc	cctcctgagg	ccagcctctg	tttcctgtga	50760
ttttctgcac	aaagtgggag	ggaggagtcc	taggaaatgg	ggggcacct	cgaagcctag	50820
gcctcctctg	gcttctctgt	gccagtgccc	ccacgctttg	tatctatatc	cccagcccat	50880
gggactctgc	tattccctqa	gtactaccac	atgcccagcc	cacactaaga	acgtggagcc	50940
ccgaggggca	ggatggcctc	catootcaca	cgtaggaagt	ggcctccacc	ctccgatgat	51000
cctctccctc	ctccctttca	acaccetece	cgggggtgtc	ctcagccctc	ctacctatac	51060
tttgtcccgt	cttctgcagg	cacctaggac	gtgctgacag	atcetetace	aactectace	51120
ttgctatgcg	cacactaatc	accacagagg	cctggccctt	cttctctatacc	agtoccacac	51180
ccqcaacaqq	tataactact	gaccacctgc	tttctgcccc	tetaateeta	agececacae	51240
agtgggcact	caggcgtggc	tgagcagatg	tgtgttgccg	adadaadaa	aggagggege	51300
agtcagggct	gaatttccca	cccagaacat	ttctgctgta	tttaatataa	ggactgctcc	
ttaaagctct	gattcccagt	tagcaccett	tecettetge	attgaaaaa	atacagatag	51360 51420
atgtettett	gcagtgaatg	totattetee	cagcctctct	totacettac	acacggacgc	
adadcadcac	acadegaded	cadcactece	ggatgtgcgg	atassassassassassassassassassassassassas	ggctggaggt	51480
gggatgccaa	acconcacta	agtccttt	agacycycyy	ttassassass	ccgtacagca	51540
tacctagatt	ttactagaca	agectecete	aacttctgct	ctgaageeea	gtcacgccat	51600
cacccaccta	ctccccaac	cagtttggt	tgatgttctc	cretyteeet	ccccagage	51660
agacctaaca	ctatazaaa	tttaccaset	gtgccacagg	ggagategae	cgtateceeg	51720
ccatatacta	caccaccac	tteecegage	gcgatgacca	gagcgacgag	gagggctgcc	51780
actacasca	cgccgcccag	treeeeegeg	cgcggggtca	grgrgrggac	ctgcgcctgc	51840
geegegaegg	cgaggcagac	cgccaggacc	gctcagacga	ggcggactgt	gacggtgagg	51900
ctctccccgt	caaggetetg	ccaagaccct	ggccctgccc	tccgggatac	gagcttgggg	51960
ctgeeteegg	ccccacagga	gtaggggctc	tgaaaacctt	tgcttgcagg	gagattgcca	52020 -
agtetgtett	ttaggcccaa	caaggaaaac	tctgcagttc	cacccatcct	gtcccaccag	52080
gragrage	LLgaaggcag	actgtgaggg	tctatctcac	cttcctgcat	taggtcagga	52140
yettcacaga	aacctgaggc	acattcaggg	gtgggctgca	gaggtccatg	gctcacaccc	52200
Lggaaaatcc	gcccccaaaa	gacagtgctg	tctccactga	ccagtctgtg	ggatagtgct	52260
Laagcctgag	rggrttctat	caacatgtag	aatcaggagg	tataaagaga	tttgctcagg	52320
catcetggge	cctctctgac	cagcaggatc	ttcctttaga	tcttgacagt	gaaacacatc	52380
tettetgtge	cccctgtgag	ttttctttca	ttcattcatt	cattcattca	ttcattcatt	52440
cattcattcg	agacagagtc	ttgctctgtc	acccaggctg	gagtgccctg	gtgtaatctc	52500
ggctcactgc	aacctctgcc	tccagggttc	aatcgattct	cctgcctcag	cctcccgagt	52560
agctgggatg	acaggtgcgc	accaccatgo	ctggctaatt	tttgtatttt	tagtagagac	52620

WO 02/092015

agggtttcac	catgttggcc	aggetogtet	cgaactcctg	acctcaggtg	atconconn	52680
ctcagcctcc	caaaqtqctq	ggattacagg	catgagccac	cacacccaac	ctaratttta	52740
cttttatgaa	ggacctgctt	ggttggttgc	ctgccacatg	ttatcagge	Catagagaga	+
ggactgctga	ggagctgttg	atoccetege	tctcccagag	ccaccagete	tattagataa	52800
ttcacatgca	gtctggccac	tatectacat	cctcattcac	aaadaggaga	Cattteetae	52860
aagatgaggg	cctgggagta	acctccctgc	atgtttttct	ataaaaacat	actecticgiag	52920
tccttccage	tcattgacca	ttggagaatt	ttatggaggc	tatagagtag	agragical	52980
actaagggcc	caggggccaa	atccarcctr	ccacctactt	ttataaataa	gggctggtaa	53040
gtgcacagcc	atgcccattc	attcatttqc	acaatgtctg	tagetaettt	agtititity	53100
gcaagagaac	taaataatta	tactacacac	ctacggcctt	caaaccccc	catgecaaaa	53160
ctaaccetta	acagacagag	cttccccacc	cctgctgcgc	atcetagee	gacctcacgt	53220
atatatata	tttcagcttg	cagaaacat	ggttaggaat	tatacatata	agcatgtget	53280
ttacattact	atgaaggagg	acctgageege	gggtagatta	tassassas	reguecatt	53340
aactcataat	tctataggage	acaccagtat	ggcacccgca	totactacas	aggicigiei	53400
atctcaagaa	actttaacta	ataataaaa	togaagggg	aggaran	tectagtgag	53460
agagaggag	caacagaaca	acggcgaaag	tcgaagcggg	tottoooto	cacatggtg	53520
gagatgcag	actectttaa	agagagagag	cgcctctccc	character	accttgagag	53580
actactacaa	303000000	graactager	cccatgtgaa	cccacagtga	gageceattt	53640
ctactccaa	cettagaata	aggeatetge	tcccatgacc	caaacactgc	ccaccaggec	53700
ccataccata	ccctggggtc	acacttact	ctgttctatg	ctatgctatg	ctatgccatg	53760
aggetgaagt	acast acast	cctattctat	tatttgagac	agaatctcgc	tctgttgccc	53820
aggerggage	tatasasas	gatettgget	cactgcaacc	tccacctccc	aggttcaagc	53880
otastttta	tattageete	ccgagtagct	gggattacag	gcacacacca	ccacacccgg	53940
ctaatttttg	cattttcaat	agagatgggg	tttcaccatg	ttggccaggc	tggtctcaaa	54000
ctcctggcct	caagtgatcc	acctacctcg	gcctcccaaa	gtgccatgat	tacagatgtg	54060
agteactgeg	cccagtgagg	gtcacatttc	cgttgagatt	tggagggca	gacgttggag	54120
ccatctgage	cccctcgtcc	cgctctagct	tctcctcccg	tgtgccccgc	ggtgctggtg	54180
gcaggccctt	acgccggttc	tggctgcatg	ctctgttcca	gaagctttct	tccctgcttg	54240
gttaccagaa	aatcatccca	tccattacaa	ggacagggtc	cccttatctc	ccattcccag	54300
ggcaggacac	cgggggcagg	gcaggtgggg	aactgagcaa	gttctctggg	ggcaggcgtg	54360
gctatggctc	cctctgggtg	ggcgtctggg	gaggggtgga	ggcagccgtc	agcgccctgg	54420
cttgctcttc	ctccctggcc	agagactgtg	gccttgtgct	gctcccgtgt	gggctgcctg	54480
cacctccagt	gggttgtgct	ccctccctc	ccctcccctc	aagctctgct	gagcaccact	54540
gccttccaca	gcccccactc	tcgggaggcg	aggctcctcg	tggccattcc	tgtccttggc	54600
acccacccc	ccaccaacct	ggtagagcct	tgggcggggt	ctgttactcc	ttgcatggcg	54660
tagacctccc	cacagtaggc	acctgacaca	tacctcctgg	ggggcaggca	ggaggtgcgt	54720
tgaggtctca	gccctggcag	tccctcccct	gcgtggcata	ggcctcgcca	cagggtcatc	54780
gagggtgggt	ggagactgta	ctagaccact	ccccgctggt	cctagaaagg	gtcccatctg	54840
tctgctctct	gtttggagtc	cagaccttgg	ttgctgtgcc	ctgcatggtg	ggctgggggg	54900
caccctccag	cctctctgag	tgcatggcct	ctccttgcag	ccatctgcct	gcccaaccag	54960
ttccggtgtg	cgagcggcca	gtgtgtcctc	atcaaacagc	agtgcgactc	cttccccgac	55020
tgtatcgacg	gctccgacga	gctcatgtgt	ggtgagccag	cttctggcac	ggggaagggg	55080
cgtccgggct	gggttccccc	aggaacgtgg	agtttagggg	aggagacgtg	cctttccagc	55140
			ggctgggagg			55200
agcctttccc	agggcagcgg	ccaggaggac	agactgtgag	ctgtgggctc	ggcggctaca	55260
gagtctgcct	cagtgggcgg	ggctgatggt	gtccaggtgc	ctgcagcacg	cacccaccca	55320
cgggaccttg	ctgagcagcg	tctgtcaggc	agcaagatta	cccgagggct	gcagtggtcc	55380
tgttccctgg	cagcttactg	tctggctgag	gaggagtgat	gttcacatat	gcacacatgt	55440.
catgtgcaca	cacatgtaca	tgacaacatc	ccacatgctc	ctcaaatagc	atgacctgta	55500
cagtcacgga	tatagggcct	aggggatagg	aggccaagac	agtcagggaa	gactttccag	55560
aggcagtggc	tcctgaaagg	ctgtctgatt	caggcaggaa	gggagctgag	ttcagatagg	55620
aagtagcaat	gagtcattqt	gtctggggac	atggccactc	cttcactaca	gagggacctg	55680
ggctgagagc	tcctctctta	tagctacagt	cgggagagaa	atctattaga	addydydda	55740
ggcttcctca	agggactccc	tataccettt	ggcaccttcg	taccadatca	aacttaaaac	55800
ctgaaggcag	tggtgagaac	caccaagggt	cgcctcctct	actagacaaa	ttcccartct	55860
gacqqqcctq	taccataaac	cccagctgtg	ggggcgctgt	taatacacaa	ccadacctca	55920
ccqccagagc	ccqcacactt	ccattccact	gacttcatcg	acqccctcaq	gatcactaga	55980
ccqqccctat	gggagagtga	atgtggcttt	tgccaaagtt	gagtetogag	CCTGGGGGGG	56040
,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-9	Jaycocyyay	uccyyaaact	20040

+ + - +	02000ttast					
tecetatyyy	cagcettgat	agiggagigg	cccaaggage	ccacccagcc	gaccctgccc	56100
ctcccgtggc	tggtgggcgg	caccaggggc	tgcctggctt	tgctcgttca	ccaacatcac	56160
ctgggctggc	cagggcgcgc	tcacttctgc	caccaccgag	ggccctgggc	gaaggagtga	56220
ataccaggct	gccttggcag	ggatgtgttg	agggctgtgg	ggagtcggac	agcggcgggg	56280
gtcagaggag	gaggagggtg	caccgtgcag	gctgaagggc	cacgttaccc	tgaggttggc	56340
caggctcccc	aggcctagcc	tcccagctcc	cccactttct	ccccaccctc	caccagtggc	56400
aaagccagcc	ccttcagggc	gcacggtgtc	tgcccccaag	gagggcccat	tccqttqqqq	56460
ttaatgttgg	ccacctcttt	ctgtttgtct	ctggcagaaa	tcaccaagcc	gccctcagac	56520
gacagcccgg	cccacagcag	tgccatcggg	cccgtcattg	gcatcatcct	ctctctcttc	56580
gtcatgggtg	gtgtctattt	tgtgtgccag	cgcgtggtgt	gccagcgcta	tacaaaaacc	56640
aacgggccct	tcccgcacga	gtatgtcagc	gggaccccgc	acgtgcccct	caatttcata	.56700
gccccgggcg	gttcccagca	tggccccttc	acaggtaagg	agcctgagat	atggaatgat	56760
ctggaggagg	caggagagta	gtctgggcag	ctttggggag	tggagcaggg	atgtgctacc	56820
ccaggccctc	ttgcacatgt	ggcagacatt	gctaatcgat	cacagcattc	ageettteee	56880
actgageetg	tgcttggcat	cagaatcctt	caacacagag	gcctgcatag	ctgtagcaac	56940
ccaccctttq	gcactgtagg	tgtggagaaa	gctccttgga	cttgaccttc	atattctagt	57000
aggacatgtg	ctgtgttgtc	cacaaatcct	catotaccct	agaaatgaat	ataaaaaaaa	57060
ctagactete	tccagagetg	aaggaatcac	tototaccat	acadcadett	tatattaaat	57120
gcagctggga	tttgtggctg	agcagttaca	attectacgt	aacccaaaca	ccaccaaccc	57180
aggetatatt	tgtagatggc	tagacaacca	caccocadad	ctacaccata	ctaggaacgc	57240
tcacatgggt	gaccatggta	totctaagaa	antagaatee	ctatazaata	tacaaataca	57300
cccacagete	caggccacct	tgaggattgc	ctctacctac	ccaccctca	atteastate	57360
	tcccactgtc					57420
	aacctgattc					57480
	agtggtggca					57540
tagaaaaaat	cgtgctctgt	tacastttas	ccgggccccc	rgccccagte	geaggeeeet	57600
ataaaaaaa	accatgtgtc	otocogrecia	cagacgagee	ccggggaget	cactetagta	57660
taatataaat	aggcctgcgg	ataaaaaaa	ggggcacacc	cccaacagga	cacaccgccc	57720
taactaaacc	ctcgtgggta	graggagcag	aggagagege	cctatgtctg	Lggggcggct	57780
	tggaagccac					57840
	gatgagetee					57900
	cgtcacaggg					57960
	gaggggggg					58020
	tgctggccac					58080
ttasttatas	ttgctttctt	cccttttcaa	accettetge	tteettett	aatgacattg	58140
	ataatctgaa					58200
	gagtggctgt					58260
	catcgatage					58320
	tccacaaaca					58380
agctggatgg	ttttgtgcat	gacagacaaa	cacagggtga	ttttcgtggc	taaaatactc	58440
	ttggcagggt					58500
	gaataaactg					58560
	gggagcacag					58620
	aaacagcggg					58680
	gcccctaagg					58740
	cttgctgggg					58800
	cttgttttct					58860 -
	tgcaatggtg					58920
	ctgcctcagc					58980
	tgtattttta					59040
	ctcaggtgat					59100
	cacctggcct					59160
cgctctgtca	cccaggctgg	agtgcaatgg	tgtcatcatg	gctaactgca	gcctctacct	59220
tctaggctca	agcaatcctc	ccatctcagc	ccctaagtag	ctaggactgc	acgcatgcat	59280
ccccatgccc	agctaatatt	tacattttt	gtagagatga	agtttcacta	tattgcccag	59340
gctggtctcc	aactcctgga	ctcgagcgat	cctcctgcct	cggcctcccc	aggtgctggg	59400
attacaggcg	tgagccaccg	tgcctggcct	ggggtattgt	cttcttatgg	cacctgactg	59460
		•	•		-	

PCT/US02/15982

		gtagcagaag				59520
		gggcctggct				59580
		ccactgccct				59640
		ggaacccaag				59700
		ctcccttggg				59760
		taattttta				59820
		gttcagtggg				59880
		acattttcct				59940
		ttattttgca				60000
		tgcagtccaa				60060
		tcctgcagtg				60120
		agagcgtgga				60180
		aaagagcaca				60240
		atgacttcca				60300
		tgacataagt				60360
		cagtggcaca				60420
		ctcagtcccc				60480
		aattttttgt				60540
		aaagtgatcc				60600
		cctgggctga				60660
		agccttgcct				60720
		cccagctgcc				60780
		ctattgtttt				60840
		gggtcgttcg				60900
		tgcttcccc				60960
		ggctgaacag				61020
		ctctcctgct				61080
		agggacagtc				61140
		ttctctccac				61200
		ttattttatc				61260
		gtgatggctt				61320
		ggccgggagt				61380
		aaaaattagc				61440
		gaacatggga				61500
		gacagagcga				61560
		tctcctctt				61620
		ttttttttg				61680
		ttcacactct				61740
		tgcagtggcg				61800 61860
		gccttacctt				61920
-		tacttttagt				61920
		tcaggtgatc				62040
		gcccagccca				62100
		attcttctgg				
		tgatggctta				62160
		aatttgaaca				62220
		tgaacagtga				62280
		acacctgtca				62340
		tcgagaccag				62400
		gctgggtgtg				62460
		cacttgaacc				62520
		tgggtggaag				62580
		gggaaaaatg				62640
		ctggcgctga				62700
		ttggctggtg				62760
		gaggccagct				62820
CCatttcaac	guggaaactg	agctcttctg	GLIGIGETEC	ttetteactg	cattaagatt	62880

PCT/US02/15982

032796-132.ST25

WO 02/092015

			* * - *			
				gatggttggg		62940
				ctgccgtcaa		63000
				gtggcaccct		63060
				tgaaggtgtg		63120
gaggtccaga	ggctgccagc	cgagtggccc	aggagaggga	acctcacagg	ggctgagtgg	63180
gacccaagcc	ctatccaccg	tcctaaccac	ccacatttct	cgggaacaag	acctcccaca	63240.
gtggcctccc	cggcagtgga	aatagccaaa	ctggcaacat	ggactttctt	caactgcccg	63300
ggcgatgctg	cctcagtgcc	ccagggcagg	caggaagctc	ccacacccat	tctggaatga	63360
ggggttggag	gaaggctgag	ctgagcaaag	gacccatctc	tgctctggtt	ggtggggagg	63420
				gtgacagaga		63480
				gtacatgcct		63540
				ataaacaaaa		63600
				cctcagttcc		63660
				ttaaataagc		63720
				ccaagaagcc		63780
				ttagaacaat		63840
				caggggagga		63900
				cagggctgtg		63960
				ggcggatgag		64020
				gacccagcct		64080
				aatttttggg		64140
	-			tgtgttaggg		64200
				atttatttat		64260
				ttgcccaggt		64320
				tcacgccatt		64380
				cctggctaat		64440
				tcttgaatcc		64500
				aggcgtgagc		64560
				ttgagacaga		64620
				gcaatctccg		64680
				tgcaggcacg		64740
				ccatgtggga		64800
				aaagtgctgg		64860
-				tataacgtat		64920
				tttgtgttac		64980
				ttgagacgga		65040
						65100
				tgcaagctct		65160
				gcgagtagct		65220
				tttggtagag		65280
				atccgcccgt		65340
				ctatttattc		65400
aacaaaccac	tgttgactcc	agreacecty	cigigotacc	aaatacggat	ccccccacc	65460
Ctatctaact	gratteetgt	accigitaac	tatetetet	ccacctcacc	ccccaaaccc	65520
actaccette	teagectetg	gtaaccatcc	ttetactete	tatctctatg	agticaatig	65580
tattaatttt	tageteeeg	geegggeaeg	gtggeteaeg	cctgtaatcc	cagcacttca	
ggaggctgag	gcaggtggat	cacgaggtca	ggagtttgag	accagcctgg	ccaacatggt	65640
				gtggtggtgg		65700·
				aactgggagg		65760
		-		cagagtaaga	_	65820
				gtgaagtttc		65880
				ccacgttgtt		65940
				taatcccagc		66000
				tcctggctaa		66060
				gtggtgggca		66120
				ccggaagact		66180
				ccccgagtaa		66240
ctccctcctc	ggattacgct	cacctttccg	cttcaatcac	gttgctccgt	ccccttcccc	66300

attegtacea etecteacti tegtetteet acceccacta tecetitteg teetetetat teettacta etectecee teeteteat acticatee eteegetet eccactegeg eteccactit cacetagtig eceteaceta egitgeeate tegeceette teeagetete egecteteae ecatetgie tetetetae eteteteete atetegetea gacatetete tagaetatee eteactitae etetetagie giettettee tateetiegt tetecatgat eteeagieg ecatetetit tegeceetti eatagiete teteteagie eteteagie eteteagie eteteagie eteteagie teteteagie teteaatea teeagieg ecatetetit tegeceetti eatagiete teteteatie teaateete teegieate tegeteate eteacace eteteetigi getatetaae teaaceatge eteteetaet eteetetat egeceeteea tegetiatige ateetetet atigeaeace egeceeteea tegetiatige ateeteteta egetiatige ateeteteta tegetiatige ateeteteta egetiatigea teeteteta tegetiatige ateeteteta eteeteteta egetiatigea eteeteteta egetiatigea eteeteteta egetiatigea eteeteteta eteete	66360 66420 66480 66540 66600 66660 66720 66780 66840 66900 66933
<210> 12 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 12 ctgagcggaa ttcgtgagac c	21
<210> 13 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 13 ttggtctcac gtattccgct cga	23
<210> 14 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 14 ctcgagaatt ctggatcctc	20
<210> 15 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 15 ttgaggatcc agaattctcg ag	22
<210> 16 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 16 tgtatgcgaa ttcgctgcgc g	21
<210> 17 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 17 ttcgcgcagc gaattcgcat aca	23
<210> 18 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 18 gtccactgaa ttctcagtga g	21
<210> 19 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 19 ttgtcactga gaattcagtg gac	23
<210> 20 <211> 21 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 20 gaatccgaat tcctggtcag c	21
<210> 21 <211> 23	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 21 ttgctgacca ggaattcgga ttc	23
<210> 22	
<211> 33 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 22 cuacuacuac uactgagegg aattegtgag acc	33
and an analogy and an analog and an	33
<210> 23	
<211> 32 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 23 cuacuacuac uactogagaa ttotggatoo to	32
<210> 24	
<211> 33 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 24	33
cuacuacuac uatgtatgcg aattcgctgc gcg	33
<210> 25	

<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 25	
cuacuacuac uagtccactg aattctcagt gag	33
<210> 26	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 26	
cuacuacuac uagaatccga attectggte age	33
<210> 27	
•	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 27	
aactggaaga attcgcggcc gcaggaattt ttttttttt ttttt	45
aactygaaga attogoggee geaggaatte tettettet tette	43
<210> 28	
<211> 13	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 28	
aattcggcac gag	13
<210> 29	
<211> 9	
<212> DNA	
<213> Artificial Sequence	
. VICITICIAL Seductice	
<220>	
<223> Primer	
<400> 29	
ctcgtgccg	9

<210> 30 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 30 gtacgacggc cagt	14
<210> 31 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 31 aacagctatg accatg	16
<210> 32 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 32 ccaagttctg agaagtcc	18
<210> 33 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 33 aatacctgaa accatacctg	20
<210> 34 <211> 57 <212> DNA <213> Artificial Sequence	
<220>	

<223> Primer

<400> agctgo	34 ctcgt agctgtctct c	cctggatca	cgggtacatg	tactggacag	actgggt 5	7
<210> <211> <212> <213>	56	ce				
<220> <223>	Primer					
<400> tgagac	35 egccc ggattgagcg g	gcagggata	gcttattccc	tgtgccgcat	tacggc 5	6
<210><211><211><212><213>	27	ce				
<220>	Primer					
<400> agctgo	36 ctcgt agctgtctct c	cctgga			2	7
-0105						
<210> <211>						
<211>						
	Artificial Sequen	ce				
<220>	•					
	Primer	•				
<400>	37					
gccgta	aatgc ggcacaggga a	taagct			2	7
<210>			·			
<211> <212>						
	Artificial Sequen	ce				
<220>						
	Primer					
<400>	38					
gagago	gctat atccctgggc				2	0
<210>						
<211>						
<212>						
/413>	Artificial Sequen	ice				

<220> <223> Primer	
<400> 39 acagcacgtg tttaaagggg	20
<210> 40 <211> 163 <212> DNA <213> Homo sapiens	
<400> 40 actaaagege egecgeege ceatggagee egagtgaget eggegeggge eegteeggee geeggacaac atggaggeag eteegeeegg geegeegtgg eegetgetge tgetgetget getgetgetg gegetgtgeg getgeeegge eecegeegeg gee	60 120 163
<210> 41 <211> 419 <212> DNA <213> Homo sapiens	
<pre><400> 41 gccccacagc ctcgccgctc ctgctatttg ccaaccgccg ggacgtacgg ctggtggacg ccggcggagt caagctggag tccaccatcg tggtcagcgg cctggaggat gcggccgcag tggacttcca gttttccaag ggagccgtgt actggacaga cgtgagcgag gaggccatca agcagaccta cctgaaccag acgggggccg ccgtgcagaa cgtggtcatc tccggcctgg tctctcccga cggcctcgcc tgcgactggg tgggcaagaa gctgtactgg acggactcag agaccaaccg catcgaggtg gccaacctca atggcacatc ccggaaggtg ctcttctggc aggaccttga ccagccgagg gccatcgcct tggacccgc tcacgggtaa accctgctg</pre>	60 120 180 240 300 360 419
<210> 42 <211> 221 <212> DNA <213> Homo sapiens	
<400> 42 ccccgtcaca ggtacatgta ctggacagac tggggtgaga cgccccggat tgagcgggca gggatggatg gcagcacccg gaagatcatt gtggactcgg acatttactg gcccaatgga ctgaccatcg acctggagga gcagaagctc tactgggctg acgccaagct cagcttcatc caccgtgcca acctggacgg ctcgttccgg taggtaccca c	60 120 180 221
<210> 43 <211> 221 <212> DNA <213> Homo sapiens	
<400> 43 tccctgactg caggcagaag gtggtggagg gcagcctgac gcaccccttc gccctgacgc tctccgggga cactctgtac tggacagact ggcagacccg ctccatccat gcctgcaaca agcgcactgg ggggaagagg aaggagatcc tgagtgccct atactcaccc atggacatcc aggtgctgag ccaggagcgg cagccttttt gtgagtgccg g	60 120 180 221

<210> 44 <211> 156 <212> DNA <213> Homo	sapiens				·	
gtccccaagc		acacatgcgc	ctgccccacg	tggtcccacç ggtgtgcaga		60 120 156
<210> 45 <211> 416 <212> DNA <213> Homo	sapiens		·			
gctggacacg tgccatcgac catccgcagg cgaccccgat cacggaccgc	ccggacttca tacgacccgc gcgtacctgg ggcatcgcgg atcgaggtga	ccgacatcgt tagagggcta acgggtctgg tcgactgggt cgcgcctcaa	gctgcaggtg tgtctactgg ggcgcagacg ggcccgaaac cggcacctcc	acggacctac gacgacatcc acagatgacg ctggtcaaca ctctactgga cgcaagatcc atggggtaag	ggcacgccat aggtgcgggc ccgagatcaa ccgacacggg tggtgtcgga	60 120 180 240 300 360 416
<210> 46 <211> 198 <212> DNA <213> Homo	sapiens			•		
aacttggatg	ggcaggagcg acctgcagga	gcgtgtgctg	gtcaatgcct	accctaaaat ccctcgggtg acgccaagac	gcccaacggc	60 120 180 198
<210> 47 <211> 244 <212> DNA <213> Homo	sapiens					
tcccgcacat gccgcagcat	tttcgggttc cgagcgggtg	acgctgctgg cacaaggtca	gggacttcat aggccagccg	gaccctcctg ctactggact ggacgtcatc ggtcgtcggt	gactggcagc attgaccagc	60 120 180 240 244
<pre><210> 48 <211> 313 <212> DNA <213> Homo</pre>	sapiens					

tctgcacacc tgaagacctg ggatctccct	ccacgcaacc catcgtgcct cgagaccaat ggactttgat	ccgtgtgcgg cggtgtggct gaggcctttt aacaacgacg gtgtccaaca	gcccatcgg tggtcttcac tggccatccc	cctggagctg cagcagagcc gctcacgggc	ctgagtgaca gccatccaca gtcaaggagg	60 120 180 240 300 313
<210> 49 <211> 255 <212> DNA <213> Homo	sapiens	•				
agtttggcct gggccgacac	tgactacccc tgggaccaac gagggacttg	cgcgccttca gagggcatgg agaatcgaag gacaacccga	ccgttgactg tggcgcggct	gatgggcaag ggacgggcag	aacctctact ttccggcaag	60 120 180 240 255
<210> 50 <211> 210 <212> DNA <213> Homo	sapiens			··.		
ttcatggacg accattgact	ggaccaactg	ctggaccgag catgacgctg gcgcctctac gggccgggct	gtggacaagg	tgggccgggc	caacgacctc	60 120 180 210
<210> 51 <211> 352 <212> DNA <213> Homo	sapiens					
tgacgcagta ccgacaagac acatcctggt ggcagtgtgg	cagcgattat tagcggccgg gttccactcc gcagctgtgc	cgggtcgtga atctactgga aaccgcaccc tcccgccagg cttgccatcc agccgcaact	cagactggaa tcatccaggg atggcctcaa ccggcggcca	tctgcacagc ccacctggac tgactgtatg ccgctgcggc	attgagcggg ttcgtgatgg cacaacaacg tgcgcctcac	60 120 180 240 300 352
<210> 52 <211> 225 <212> DNA <213> Homo	sapiens					
atcccggacg	accagcacag	cttcttgctg cccggatctc actggacaag	atcctgcccc	tgcatggact	gaggaacgtc	60 120 180

atcaagcgag	ccaaggacga	cgggacccag	gcaggtgccc	tgtgg		225
<210> 53 <211> 235 <212> DNA <213> Homo	sapiens					
<400> 53						
			tctgagccaa			60 120
caataccatc	aacgtccaca	ggctgagcgg	ccggacactg ggaagccatg	ggggtggtgc	tgcgtgggga	120 180
ccgcgacaag	cccagggcca	tcgtcgtcaa	cgcggagcga	gggtaggagg	ccaac	235
<210> 54 <211> 218 <212> DNA <213> Homo	sapiens					
<400> 54						
ccaccctccc			aacatgcagg			60
			gtcctcttca aagctgttct			120 180
cgcattgaga	gctgtgacct	gtcaggtacg	cgccccgg			218
<210> 55						
<211> 234						
<212> DNA <213> Homo	sapiens					
<400> 55	•					
ggctgcttgc			tggaggacgc			60
			ggatcgaccg ctcgcatcca			120 180
			tggaggagtt			234
<210> 56 <211> 157						
<212> DNA <213> Homo	saniens					
	Saprens					
<400> 56 ttgtctttgc	agcagcccac	ccatgtgccc	gtgacaatgg	tggctgctcc	cacatctgta	60
ttgccaaggg		ccacggtgct	catgcccagt			120
accegacyac	CLYLYYAYYL	aggigigade	caggige			157
<210> 57						
<211> 272 <212> DNA						
<213> Homo	sapiens					
<400> 57						
attetestet	atccctcccc	cagageegee	cacctoctor	ccggaccagt	ttgcatgtgc	60

tgaccagagc gggtcagtgt	gacgaggagg	gctgccccgt gcctgcgctg	gtgctccgcc cgacggcgag	gacggctttc gcccagttcc gcagactgtc	cctgcgcgcg	120 180 240 272
<210> 58 <211> 134 <212> DNA <213> Homo	sapiens				·	
<400> 58 tctccttgca catcaaacag tggtgagcca	cagtgcgact	tgcccaacca ccttccccga	gttccggtgt ctgtatcgac	gcgagcggcc ggctccgacg	agtgtgtcct agctcatgtg	60 120 134
<210> 59 <211> 274 <212> DNA <213> Homo	sapiens	-				
ccatcgggcc tgtgccagcg atgtcagcgg	cgtcattggc cgtggtgtgc	atcatcctct cagcgctatg gtgcccctca	ctctcttcgt cgggggccaa atttcatagc	cagcccggcc catgggtggt cgggcccttc cccgggcggt	gtctattttg ccgcacgagt	60 120 180 240 274
<210> 60 <211> 164 <212> DNA <213> Homo	sapiens					
gccggggcgg	ggtgcccctc	tacgaccgga	ccatgatgag accacgtcac cggtgagggg	ctccgtgagc aggggcctcg cggg	ctgatggggg tccagcagct	60 120 164
<210> 61 <211> 130 <212> DNA <213> Homo	sapiens					
<400> 61 ttggctctcc acatggacat tcccctgcag	tcagatcctg gttctactct	aacccgccgc tcaaacattc	cctccccggc cggccactgc	cacggacccc gagaccgtac	tccctgtaca aggtaggaca	60 120 130
<210> 62 <211> 496 <212> DNA <213> Homo	sapiens		·			

```
<400> 62
tcaaacattc cggccactgc gagaccgtac aggccctaca tcattcgagg aatggcgccc
                                                                      60
ccgacgacgc cctgcagcac cgacgtgtgt gacagcgact acagcgccag ccgctggaag
                                                                      120
gccagcaagt actacctgga tttgaactcg gactcagacc cctatccacc cccacccacg
                                                                      180
ccccacagee agtacetgte ggeggaggae agetgeeege cetegeeege caeegagagg
                                                                      240
agetactice ateteticee geocceteeg tecceetgea eggacteate etgacetegg
                                                                      300
ccgggccact ctggcttctc tgtgcccctg taaatagttt taaatatgaa caaagaaaaa
                                                                      360
aatatatttt atgatttaaa aaataaatat aattgggatt ttaaaaaacat gagaaatgtg
                                                                      420
aactgtgatg gggtgggcag ggctgggaga actttgtaca gtggagaaat atttataaac
                                                                      480
ttaattttgt aaaaca
                                                                      496
<210> 63
<211> 3081
<212> DNA
<213> Homo sapiens
<400> 63
cocgocagee cageceagee caaceetact coeteceae gecagggeag cagecgttge
                                                                        60
tcagagagaa ggtggaggaa gaaatccaga ccctagcacg cgcgcaccat catggaccat
                                                                       120
tatgattctc agcaaaccaa cgattacatg cagccagaag aggactggga ccgggacctg
                                                                       180
ctcctggacc cggcctggga gaagcagcag agaaagacat tcacggcatg gtgtaactcc
                                                                       240
cacctccgga aggcggggac acagatcgag aacatcgaag aggacttccg ggatggcctg
                                                                       300
aageteatge tgetgetgga ggteatetea ggtgaaeget tggeeaagee agagegagge
                                                                       360
aagatgagag tgcacaagat ctccaacgtc aacaaggccc tggatttcat agccagcaaa
                                                                       420
ggcgtcaaac tggtgtccat cggagccgaa gaaatcgtgg atgggaatgt gaagatgacc
                                                                       480
ctgggcatga tctggaccat catcctgcgc tttgccatcc aggacatctc cgtggaagag
                                                                       540
acttcagcca aggaagggct gctcctgtgg tgtcagagaa agacagcccc ttacaaaaat
                                                                       600
gtcaacatcc agaacttcca cataagctgg aaggatggcc tcggcttctg tgctttgatc
                                                                       660
caccgacacc ggcccgagct gattgactac gggaagctgc ggaaggatga tccactcaca
                                                                       720
aatctgaata cggcttttga cgtggcagag aagtacctgg acatccccaa gatgctggat
                                                                       780
gccgaagaca tcgttggaac tgcccgaccg gatgagaaag ccatcatgac ttacgtgtct
                                                                       840
agettetace aegeettete tggageeeag aaggeggaga cageageeaa tegeatetge
                                                                       900
aaggtgttgg ccgtcaacca ggagaacgag cagcttatgg aagactacga gaagctggcc
                                                                       960
agtgatctgt tggagtggat ccgccgcaca atcccgtggc tggagaaccg ggtgcccgag
                                                                      1020
aacaccatge atgccatgca acagaagetg gaggaettee gggaetaceg gegeetgeae
                                                                      1080
aagccgccca aggtgcagga gaagtgccag ctggagatca acttcaacac gctgcagacc
                                                                      1140
                                                                      1200 .
aagctgcggc tcagcaaccg gcctgccttc atgccctctg agggcaggat ggtctcggac
atcaacaatg cctggggctg cctggagcag gtggagaagg gctatgagga gtggttgctg
                                                                      1260
aatgagatcc ggaggctgga gcgactggac cacctggcag agaagttccg gcagaaggcc
                                                                      1320
tecatecacg aggeetggae tgaeggeaaa gaggeeatge tgegaeagaa ggaetatgag
                                                                      1380
acceccacce teteggagat caaggeettg etcaagaage atgaggeett egagagtgae
                                                                      1440
ctggctgccc accaggaccg tgtggagcag attgccgcca tcgcacagga gctcaatgag
                                                                      1500
ctggactatt atgactcacc cagtgtcaac gcccgttgcc aaaagatctg tgaccagtgg
                                                                      1560
gacaatctgg gggccctaac tcagaagcga agggaagctc tggagcggac cgagaaactg
                                                                      1620
ctggagacca ttgaccaget gtacttggag tatgccaage gggetgeace etteaacaae
                                                                      1680
tggatggagg gggccatgga ggacctgcag gacaccttca ttgtgcacac cattgaggag
                                                                      1740
atecagggae tgaccacage ecatgageag tteaaggeea ecetecetga tgeegacaag
                                                                      1800
gagogootgg coatcotggg catocacaat gaggtgtoca agattgtoca gacotaccac
                                                                      1860
gtcaatatgg cgggcaccaa cccctacaca accatcacgc ctcaggagat caatggcaaa
                                                                      1920
tgggaccacg tgcggcagct ggtgcctcgg agggaccaag ctctgacgga ggagcatgcc
                                                                      1980
cgacagcagc acaatgagag gctacgcaag cagtttggag cccaggccaa tgtcatcggg
                                                                      2040
ecctggatee agaceaagat ggaggagate gggaggatet ceattgagat geatgggace
                                                                      2100
ctggaggacc agctcagcca cctgcggcag tatgagaaga gcatcgtcaa ctacaagcca
                                                                      2160
aagattgatc agctggaggg cgaccaccag ctcatccagg aggcgctcat cttcgacaac
                                                                      2220
aagcacacca actacaccat ggagcacatc cgtgtgggct gggagcagct gctcaccacc
                                                                      2280
ategecagga ccateaatga ggtagagaac cagateetga ceegggatge caagggeate
                                                                      2340
```

```
agccaggage agatgaatga gttccgggcc tccttcaacc actttgaccg ggatcactcc
                                                                    2400
ggcacactgg gtcccgagga gttcaaagcc tgcctcatca gcttgggtta tgatattggc
                                                                    2460
aacgaccccc agggagaagc agaatttgcc cgcatcatga gcattgtgga ccccaaccgc
                                                                    2520
ctgggggtag tgacattcca ggccttcatt gacttcatgt cccgcgagac agccgacaca
                                                                    2580
gatacagcag accaagtcat ggcttccttc aagatcctgg ctggggacaa gaactacatt
                                                                    2640
accatggacg agctgcgcg cgagctgcca cccgaccagg ctgagtactg catcgcgcgg
                                                                    2700
atggcccct acaccggccc cgactccgtg ccaggtgctc tggactacat gtccttctcc
                                                                    2760
acggcgctgt acggcgagag tgacctctaa tccaccccgc ccggccgccc tcgtcttgtg
                                                                    2820
cgccgtgccc acagatgtga aatgaatgta atctaataga agcctaatca gcccaccatg
                                                                    2880
ttctccactg aaaaatcctc tttctttggg gtttttcttt ctttctttt tgattttqca
                                                                    2940
ctggacggtg acgtcagcct gtacaggctc ccaggggtgg cgtcaaatgc tattgaaatt
                                                                    3000
gcgctgaatc gtatgctttt tccttttgat aaataaacaa tgtaaaaatg tttcaaaaac
                                                                    3060
ctaataaaat aaataaatac g
                                                                    3081
<210> 64
<211> 1324
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1324)
<223> n = A, T, C or G
<400> 64
ggccgcccgg cgcccccagc agnccgagcc ggggcgcaca gncggggcgc agcccgcgcc
                                                                      60
ccccgccgcg attgacatga tgtttccaca aagcaggcat tcgggctcct cgcacctacc
                                                                     120
ccagcaactc aaattcacca cctcggactc ctgcgaccgc atcaaagacg aatttcagct
                                                                     180
actgcaaget cagtaccaca geeteaaget egaatgtgae aagttggeea gtgagaagte
                                                                     240
agagatgcag cgtcactatg tgatgtacta cgagatgtcc tacggcttga acatcgagat
                                                                     300
gcacaaacag gctgagatcg tcaaaaggct gaacgggatt tgtgcccagg tcctgcccta
                                                                     360
ceteteccaa gageaceage ageaggtett gggageeatt gagagggeea ageaggteae
                                                                     420
cgctcccgag ctgaactcta tcatccgaca gcagctccaa gcccaccagc tgtcccagct
                                                                     480
graggeretg greetgreet tgarceract acceptgggg etgragerge ettrgetgre
                                                                     540
ggcggtcagc gcaggcaccg gcctcctctc gctgtccgcg ctgggttccc aggcccacct
                                                                     600
ctccaaggaa gacaagaacg ggcacgatgg tgacacccac caggaggatg atggcgagaa
                                                                     660.
gtcggattag cagggggccg ggacagggag gttgggaggg gggacagagg ggagacagag.
                                                                     720
gcacggagag aaaggaatgt ttagcacaag acacagcgga gctcgggatt ggctaatctc
                                                                     780
840
ttottoctac occattocgg ettecetect ceteccetge ageotggtta ggtggatace
                                                                     900
tgccctgaca tgtgaggcaa gctaaggcct ggagggtcag atgggagacc aggtcccaag
                                                                     960
ggagcaagac ctgcgaagcg cagcagcccc ggcccttccc ccgttttgaa catgtgtaac
                                                                    1020
cgacagtctg ccctgggcca cagccctctc accctggtac tgcatgcacg caatgctagc
                                                                    1080
tgcccctttc ccgtcctggg caccccgagt ctcccccgac cccgggtccc aggtatgctc
                                                                    1140
ccacctccac etgecccact caccacctct getagtteca gacacctcca egeccacctg
                                                                    1200
gtcctctccc atcgcccaca aaaggggggg cacgagggac gagcttagct gagctggqaq
                                                                    1260
gagcagggtg agggtgggcg acccaggatt ccccctcccc ttcccaaata aagatqaqqq
                                                                    1320
tact
                                                                    1324
<210> 65
<211> 2377
<212> DNA
<213> Homo sapiens
<400> 65
ggtgacaaag agccaacaga gacaatagga gacttgtcaa tttgtcttga tgggctacag
                                                                      60
```

120

```
ttagagtctg aagttgttac caatggtgaa actacatgtt cagaaagtgc ttctcagaat
gatgatggct ccagatccaa ggatgaaaca agagtgagca caaatggatc agatgaccct
                                                                       180
gaagatgcag gagctggtga aaataggaga gtcagtggga ataattctcc atcactctca
                                                                       240
aatggtggtt ttaaaccttc tagacctcca agaccttcac gaccaccacc acccaccca
                                                                       300
cgtagaccag catctgtcaa tggttcacca tctgccactt ctgaaagtga tgggtctagt
                                                                       360
acaggetete tgeegeegae aaatacaaat acaaatacat etgaaggage aacatetgga
                                                                       420
ttaataattc ctcttactat atctggaggc tcaggcccta ggccattaaa tcctgtaact
                                                                       480
caageteect tgecacetgg ttgggageag agagtggace ageaegggeg agtttactat
                                                                       540
gtagatcatg ttgagaaaag aacaacatgg gatagaccag aacctctacc tcctggctgg
                                                                       600
gaacggcggg ttgacaacat gggacgtatt tattatgttg accatttcac aagaacaaca
                                                                       660
acgtggcaga ggccaacact ggaatccgtc cggaactatg aacaatggca gctacaqcqt
                                                                       720
agtcagcttc aaggagcaat gcagcagttt aaccagagat tcatttatgg gaatcaagat
                                                                       780
ttatttgcta catcacaaag taaagaattt gatcctcttg gtccattgcc acctggatgg
                                                                       840
gagaagagaa cagacagcaa tggcagagta tatttcgtca accacaacac acgaattaca
                                                                       900
caatgggaag accccagaag tcaaggtcaa ttaaatgaaa agcccttacc tgaaggttgg
                                                                       960
gaaatgagat tcacagtgga tggaattcca tattttgtgg accacaatag aagaactacc
                                                                      1020
acctatatag atccccgcac aggaaaatct gccctagaca atggacctca gatagcctat
                                                                      1080
gttcgggact tcaaagcaaa ggttcagtat ttccggttct ggtgtcagca actqqccatq
                                                                      1140
ccacagcaca taaagattac agtgacaaga aaaacattgt ttgaggattc ctttcaacaq
                                                                      1200
ataatgaget teagteecca agatetgega agaegtttgt gggtgatttt tecaggagaa
                                                                      1260
gaaggtttag attatggagg tgtagcaaga gaatggttct ttcttttgtc acatgaagtg
                                                                      1320
ttgaacccaa tgtattgcct gtttgaatat gcagggaagg ataactactg cttgcagata
                                                                      1380
aaccccgctt cttacatcaa tccagatcac ctgaaatatt ttcgttttat tqqcaqattt
                                                                      1440
attgccatgg ctctgttcca tgggaaattc atagacacgg gtttttcttt accattctat
                                                                      1500
aagcgtatct tgaacaaacc agttggactc aaggatttag aatctattga tccagaattt
                                                                      1560
tacaattctc tcatctgggt taaggaaaac aatattgagg aatgtgattt ggaaatgtac
                                                                      1620
ttctccgttg acaaagaaat tctaggtgaa attaagagtc atgatctgaa acctaatggt
                                                                      1680
ggcaatattc ttgtaacaga agaaaataaa gaggaataca tcagaatggt agctgagtgg
                                                                      1740
aggttgtctc gaggtgttga agaacagaca caagctttct ttgaaggctt taatgaaatt
                                                                      1800
                                                                      1860
cttccccagc aatatttgca atactttgat gcaaaggaat tagaggtcct tttatgtgga
atgcaagaga ttgatttgaa tgactggcaa agacatgcca tctaccgtca ttatgcaagg
                                                                      1920
accagcaaac aaatcatgtg gttttggcag tttgttaaag aaattgataa tgagaagaga
                                                                      1980
atgagactic tgcagttigt tactggaacc tgccgattgc cagtaggagg attigctgat
                                                                      2040
ctcatgggga gcaatggacc acagaaattc tgcattgaaa aagttgggaa agaaaattgg
                                                                      2100
ctacccagaa gtcatacctg ttttaatcgc ctggacctgc caccatacaa gagctatgag
                                                                      2160
caactgaagg aaaagctgtt gtttgccata gaagaaacag aaggatttgg acaagagtaa
                                                                      2220
cttctgagaa cttgcaccat gaatgggcaa gaacttattt gcaatgtttg tccttctctg
                                                                      2280
cctgttgcac atcttgtaaa attggacaat ggctctttag agagttatct gagtgtaagt
                                                                      2340
aaattaatgt tctcatttaa aaaaaaaaaa aaaaaaa
                                                                      2377
<210> 66
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 66
gggeegeege ceaceeggge ettgeeteta ceteagtegt tgeeceeega tttteggetg
                                                                        60
gageceacgg ecceggeet cageceege tetagetteg ceagtagete ggecagegae
                                                                       120
                                                                       180
gegageaage egteeageee eeggggeage etgetgetgg aeggggeggg ggetggegga
                                                                       240
gctggaggta gccggccctg cagcaatcgc accagcggca tcagcatggg ctacgaccag
egecaeggga geceettgee ageggggeeg tgeetgtttg geceaeceet ggeeggagea
                                                                       300
                                                                       360
eeggeagget atteteeegg aggggteeeg teegeetace eggageteea egeegeeetg
                                                                       420
gaccgattgt acgctcagcg gcccgcgggg ttcggctgcc aggaaagccg ccactcgtat
cccccgqccc tgggcagccc tggagctcta gccggggccc gagtgggagc ggcggggccc
                                                                       480
ttggagagac ggggggcgca acccggacga cactctgtga ccggctacgg ggactgcgcc
                                                                       540
gtgggcgccc ggtaccagga cgagctaaca gctttgcttc gcctgacggt gggcaccggt
                                                                       600
gggcgagaag ccggagcccg cggagaaccc tcggggattg agccgtcggg tctggaggag
                                                                       660
```

PCT/US02/15982

```
ccaccaggtc ctttcgttcc ggaggccgcc cgggcccgga tgcgggagcc agaggccagg
                                                                       720
gaggactact tcggcacctg tatcaagtgc aacaaaggca tctatgggca gagcaatgcc
                                                                        780
tgccaggccc tggacagcct ctaccacacc cagtgctttg tttgctgctc ttgtgggcga
                                                                        840
actttgcgtt gcaaggcttt ctacagtgtc aatggctctg tgtactgtga ggaagattat
                                                                        900
ctgttttcag ggtttcagga ggcagctgag aaatgctgtg tctgtggtca cttgattttg
                                                                       960
gagaagatcc tacaagcaat ggggaagtcc tatcatccag gctgtttccg atgcattgtt
                                                                      1020
tgcaacaagt gcctggatgg catccccttc acagtggact tctccaacca agtatactgt
                                                                      1080
gtcaccgact accacaaaaa ttatgctcct aagtgtgcag cctgtggcca acccatcctc
                                                                      1140
ccctctgagg gctgtgagga catcgtgagg gtgatatcca tggaccggga ttatcacttt
                                                                      1200
gagtgctacc actgtgagga ctgccggatg cagctgagtg atgaggaagg ctgctgtt
                                                                      1260
ttccctctgg atgggcactt gctctgccat ggttg
                                                                      1295
<210> 67
<211> 3411
<212> DNA
<213> Homo sapiens
<400> 67
gggcccgggg tcccgccacc accgcgcgcg ggacagattg attcactttg gagctgtaag
                                                                        60
tactgatgta ttagggtgca gcgctcattg ttcattgacg cagagtccca aaatgaatat
                                                                       120
ccaagagcag ggtttcccot tggacctcgg agcaagtttc accgaagatg ctccccgacc
                                                                       180
eccagtgeet ggtgaggagg gagaactggt gtecacagae cegaggeeeg ecagetacag
                                                                       240
tttctgctcc gggaaaggtg ttggcattaa aggtgagact tcgacggcca ctccgaggcg
                                                                       300
ctcggatctg gacctggggt atgagectga gggeagtgee teeeceacce caccatactt
                                                                       360
gaagtgggct gagtcactgc attccctgct ggatgaccaa gatgggataa qcctqttcaq
                                                                       420
gaettteetg aageaggagg getgtgeega ettgetggae ttetggtttg eetgeaetgg
                                                                       480
cttcaggaag ctggagccct gtgactcgaa cgaggagaag aggctgaagc tggcgagagc
                                                                       540
catctaccga aagtacattc ttgataacaa tggcatcgtg tcccggcaga ccaagccagc
                                                                       600
caccaagage tteataaagg getgeateat gaageagetg ategateetg ceatgtttga
                                                                       660
ccaggcccag accgaaatcc aggccactat ggaggaaaac acctatecet cetteettaa
                                                                       720
gtctgatatt tatttggaat atacgaggac aggctcggag agccccaaag tctgtagtga
                                                                       780
ccagagetet gggtcaggga cagggaaggg catatetgga tacetgeega cettaaatga
                                                                       840
agatgaggaa tggaagtgtg accaggacat ggacgaggac gatggcagag acgctgctcc
                                                                       900
ecceggaaga eteceteaga agetgeteet ggagacaget geecegaggg teteeteeag
                                                                       960
tagacggtac agcgaaggca gagagttcag gtatggatcc tggcgggagc cagtcaaccc
                                                                      1020
ctattatgtc aatgccggct atgccctggc cccagccacc agtgccaacg acagcgagca
                                                                      1080
gcagagcctg tccagcgatg cagacaccct gtccctcacg gacagcagcg tggatgggat
                                                                      1140
eccecatae aggateegta ageageaceg cagggagatg caggagageg egeaggteaa
                                                                      1200
tgggcgggtg cccctacctc acattccccg cacgtaccgg gtgccgaagg aggtccgcgt
                                                                      1260
ggagcctcag aagttcgcgg aggagctcat ccaccgcctg gaggctgtgc agcgcacgcg
                                                                      1320
ggaggccgag gagaagctgg aggagcggct gaagcgcgtg cgcatggagg aggaaggtga
                                                                      1380
ggacggcgat ccatcgtcag ggcccccagg gccgtgtcac aagctgcctc ccgccccgc
                                                                      1440
ttggcaccac ttcccgcccc gcttgtgttg gacatgggct tgtgccgggc tccgggatgc
                                                                      1500
acacgaggag aaccctgaga gcatcctgga cgagcacgta cagcgtgtgc tgaggacaac
                                                                      1560
tggccgccag tcgcctgggc ctggccatcg ctccccggac agtgggcacg tggccaagat
                                                                      1620
gccagtggca ctggggggtg ccgcctcggg gcacgggaag cacgtaccca agtcaggggc
                                                                      1680
gaagetggae geggeeggee tgeaceacea eegacaegte caccaecaeg tecaccaeg
                                                                      1740
cacagecegg eccaaggage aggtggagge egaggecace egeagggece agageagett
                                                                      1800
egectgggge etggaaceae acagecatgg ggeaaggtee egaggetaet eagagagtgt
                                                                      1860
tggcgctgcc cccaacgcca gtgatggcct cgcccacagt gggaaggtgg gcgttgcgtg
                                                                      1920
·Caaaagaaat gccaagaagg ctgagtcggg gaagagcgcc agcaccgagg tgccaggtgc
                                                                      1980
ctcggaggat gcggagaaga accagaaaat catgcagtgg atcattgagg gggaaaagga
                                                                      2040
gateageagg cacegeagga ceggeeaegg gtettegggg aegaggaage cacageecea
                                                                      2100
tgagaactcc agaccyttgt cccttgagca cccctgggcc ggccctcagc tccggacctc
                                                                      2160
egtgeageee teceacetet teatecaaga ecceaceatg ecaececace eageteceaa
                                                                      2220
ccccctaacc cagctggagg aggcgcgccg acgtctggag gaggaagaaa agagagccag
                                                                      2280
ccgagcaccc tccaagcaga ggtatgtgca ggaggttatg cggcggggac gcgcctgcgt
                                                                       2340
```

PCT/US02/15982

```
caggccagcg tgcgcgccgg tgctgcacgt ggtaccagcc gtgtcggaca tggagctctc
                                                                     2400
 cgagacagag acaagatcgc agaggaaggt gggcggcggg agtgcccagc cgtgtgacag
                                                                     2460
 categitiging gegiaciact tetgegggga acceatecee tacegeacee tggtgagggg
                                                                     2520
 ccgcgctgtc accctgggcc agttcaagga gctgctgacc aaaaagggca gctacagata
                                                                     2580
 ctacttcaag aaagtgageg acgagtttga ctgtggggtg gtgtttgagg aggttcgaga
                                                                     2640
 ggacgaggcc gtcctgcccg tctttgagga gaagatcatc ggcaaagtgg agaaggtgga
                                                                     2700
 ctgataggct ggtgggctgg ccgctgtgcc aggcgaggcc cttggcgggc acgggtgtca
                                                                     2760
 cggccaggca gatgacctcg tactcaggag cccgatgggg aacagtgttg ggtgtaccac
                                                                     2820
 ccatccctgt ggtctacccg tgtctagagg caggtagggg gtccctccaa gtggtccaca
                                                                     2880
 agettetgte etgececcaa ggaggeagee tggaceacte etcatageaa taettggagg
                                                                     2940
 gcccagccca agtgaggcag ccgaggtccc tgctgccagc ttcaggtgac cccccccat
                                                                     3000
 cccccggcac ctcccttggg cacgtgtgct gggatctact ttccctctgg gatttgccca
                                                                     3060
 cgtacccagg tctggctggg gcccaggccc ggatgcagag gcctgcaggg cctctgtcaa
                                                                     3120
 ttgtacgcgc caccaagtgc cttcaacaca gcttgtctct tgcctgccac tgtgtgaatc
                                                                     3180
 ggcgacggag cactgcacct gcctccagcc gccggctgtg cagtcctggg tcctcctttc
                                                                     3240
 tgagggcccg tgtaaatatg tacatttctc aggctagggc cagcaggggc tgcccgagtc
                                                                     3300
 tgtttttcat gcgatgacac.ttgtacaatt atcttttcaa aggtacttgg ataataatga
                                                                     3360
 3411
 <210> 68
 <211> 3140
 <212> DNA
 <213> Homo sapiens
· <400> 68
 60
 cataaacagc gattteteag atttgeggga aattaaaaaag caactgetge ttattgeggg
                                                                      120
 cettaceegg gagegggee tactacaeag tageaaatgg teggeggagt tggetttete
                                                                      180
 tetecetgea tigeetetgg cegagetgea accgeeteeg cetattacag aggaagatge
                                                                      240
                                                                      300
 ccaggatatg gatgcctata ccctggccaa ggcctacttt gacgttaaag agtatgatcg
 ggcagcacat ttcctgcatg gctgcaatag caagaaagcc tattttctgt atatgtattc
                                                                      360
 cagatatctg tctggagaaa aaaagaagga cgatgaaaca gttgatagct taggccccct
                                                                      420
 ggaaaaagga caagtgaaaa atgaggcgct tagagaattg agagtggagc tcagcaaaaa
                                                                      480
 acaccaaget egagaacttg atggatttgg actttatetg tatggtgtgg tgettegaaa
                                                                      540
                                                                      600
 actggacttg gttaaagagg ccattgatgt gtttgtggaa gctactcatg ttttgccctt
                                                                      660
 gcattgggga gcctggttag aactctgtaa cctgatcaca gacaaagaga tgctgaagtt
 cctgtctttg ccagacacct ggatgaaaga gttttttctg gctcatatat acacagagtt
                                                                      720
 gcagttgata gaggaggccc tgcaaaagta tcagaatctc attgatgtgg gcttctctaa
                                                                      780
 gagetegtat attgttteee aaattgeagt tgeetateae aatateagag atattgaeaa
                                                                      840
                                                                      900
 agccctctcc atttttaatg agctaaggaa acaagaccct tacaggattg aaaatatgga
                                                                      960
 cacattetee aacettettt atgteaggag catgaaateg gagttgagtt atetggetea
 taacctctgt gagattgata aataccgtgt agaaacgtgc tgtgtaattg gcaattatta
                                                                     1020
 cagtttacgt tctcagcatg agaaagcagc cttatatttc cagagagccc tgaaattaaa
                                                                     1080
                                                                     1140
 tecteggtat ettggtgeet ggacactaat gggacatgag tacatggaga tgaagaacae
                                                                     1200
 gtotgotgot atocaggott atagacatgo cattgaggto aacaaacggg actacagago
                                                                     1260
 ttggtatggc ctcgggcaga cctatgaaat ccttaagatg ccattttact gcctttatta
 ttatagacgg gcccaccagc ttcgacccaa tgattctcgc atgctggttg ctttaggaga
                                                                     1320
                                                                     1380
 atgttacgag aaactcaatc aactagtgga agccaaaaag tgttattgga gagcttacgc
 Cgtgggagat gtggagaaaa tggctctggt gaaactggca aagcttcatg aacagttgac
                                                                     1440
                                                                     1500
 tgagtcagaa caggctgccc agtgttacat caaatatatc caagatatct attcctgtgg
                                                                     1560
 ggaaatagta gaacacttgg aggaaagcac tgcctttcgc tatctggccc agtactattt
                                                                     1620
 taagtgcaaa ctgtgggatg aagcttcaac ttgtgcacaa aagtgttgtg catttaatga
                                                                     1680
 taccoqqqaa qaaqqtaaqq ccttactccq qcaaatccta caqcttcqqa accaaqqcqa
 gactectace accgaggtge etgetecett tttectacet getteactet etgetaacaa
                                                                     1740
 tacccccaca cgcagagttt ctccactcaa cttgtcttct gtcacgccat agttggctac
                                                                     1800
 tctcaagcca gcacattgtt agacccatct taattaagcc ttacctccat gtaaagaaca
                                                                     1860
 gcacqtctqt tccaagqacc tcaqctcttc ttqtttctac aqatqqcaac aqctccataq
                                                                     1920
```

```
ggacagettg tataattace tteagaggee aactgacaga atcetggeag gaacagacat
                                                                     1980
tatcttgcca gttagaagta cttctgtctc acttatgtcc aaagagtggc tatagatctt
                                                                     2040
ggccttcttc cctgaatgct ttttttttt ggcccccaag aaagtccctt ttatagcact
                                                                     2100
ttagcacagg caatgctaca ggaacaaagt ttcaatgctg ctgagagtga aagaaaggag
                                                                     2160
gaaagtctgc cactctaccc tgagctggca gtagggcact gagtaccctt aggaagaagt
                                                                     2220
cagagcaatg gatacaaatg accttgctct tggatttgct gagcatgatc cctattctga
                                                                     2280
tgtcagagat taggtttaaa tggaatagag ctatccattt gttcttactc tctagggaga
                                                                    2340
caatcttcca aaacagtttt gggggggtct tctaaagctt tcaaattgga agtaacttta
                                                                    2400
ttcaactaga gttgaataaa agaagggcaa aaataatctc acagagcttg gaactgctga
                                                                     2460
tagcccttac tgagggcaaa agatggctat attgttagct atactcctac caaagcaagc
                                                                     2520
aaggagatag gattatagat aatttcacgg acatttggaa ataacattgg tgattataca
                                                                    2580
gacaagaata aactcacttc aagctggtct gttttaataa attttcaacg taattgtcta
                                                                    2640
ttttttccc tcccatctgc aacagaatac attttttca gcctttatct agatgaggta
                                                                    2700
aagggaatca ttcttatggt gctcttggag agtttcaggc ctgtgcatgt gtgtacagca
                                                                    2760
ggaggtaata tgctataatg tctgctgtaa tatatttgca cagtagatgc tatggatcat
                                                                    2820
totgagotca gggtocagac tttattotta ttoccagaat tttgtgttac gtttttacct
                                                                    2880
cctaacatat gacacttcat cttatattaa ggaaggttta gaatatctaa tacgacttga
                                                                    2940
atteatttgt tactaageet teteaggeaa getgtataet agttaetggt etecaetgee
                                                                    3000
atgccttttc aaggttccca tggtccagaa tgatgtttga ttcttaattt ttctqtccct
                                                                    3060
tttataattt gttttaatga ttttgctaca tttggaattc aataaaaaat gtgaacaata
                                                                    3120
ataaaaaaa aaaaaaaaa
                                                                    3140
<210> 69
<211> 3513
<212> DNA
<213> Homo sapiens
<400> 69
ccgtgtacca ggtgctgcta gtgggaagca cgctgctgaa ggaagtgcct tccgggctgc
                                                                      60
agctggagca gttgccttct cagagcctgc tgacccacat cccaacggcg gggctgccca
                                                                     120
cttcgctagg aggaggcctg ccttactgcc accaggcctg gctggatttc cgaaggcggc
                                                                     180
                                                                     240
tggaagetet actacagaae tgecaggeag ettgtgeeet getecagggg gecategaaa
gtgtgaaggc tgtgccccag cccatggagc ctggggaggt cggtcagctg ctacagcaga
                                                                     300
cagaggteet gatgeageag gtgetagaet egecatgget ggeatggeta caatgeeagg
                                                                     360
ggggccggga gctgacatgg ctgaagcaag aggtcccaga ggtgaccctg agcccagact
                                                                     420
acaggacggc aatggacaag gctgacgagc tatatgaccg ggtggatgga ttgctgcacc
                                                                     480
aactgaccct gcagagcaac cagcgaatac aggccctaga gttggtccaa acactggagg
                                                                     540
cccgggaaag cggactgcac cagattgaag tgtggctgca gcaggtgggc tggccagcac
                                                                     600
tggaggaggc tggggagccc tcgctggaca tgctgctcca ggcccaaggc tcttttcagg
                                                                     660
agetgtacca ggttgeccag gageaggtea ggeaagggga gaagtttetg eageegetga
                                                                     720
ctggctggga ggcggctgaa ctggaccccc ctggggcacg ctttctggcc ctgcgagccc
                                                                     780
agetgaetga attetetagg getttggeee ageggtgeea geggetggeg gatgetgaga
                                                                     840
ggctgtttca gctcttcagg gaggccttga cgtgggctga ggaggggcag cgagtgttgg
                                                                     900
cagagetgga geaggaaege eegggggttg tgttgeagea getgeagetg eaetggaeea
                                                                     960
ggcaccctga cttgcctcct gcccacttcc gaaagatgtg ggctctggcc acggggctgg
                                                                    1020
getcagagge cateegeeag gagtgeeget gggeetggge geggtgeeag gacaeetgge
                                                                     1080
tggccctgga ccaaaagctt gaggcttcac tgaagctacc accggtgggc agcacagcta
                                                                    1140
gcctgtgtgt cagccaggtc cccgctgcac ctgcccaccc tcccctgagg aaggcctaca
                                                                    1200
gettegateg gaatetgggg cagagtetea gtgaacetge etgecaetge caccatgegg
                                                                     1260
1320
ctactgtgcc tccaccaggc agctctgacc ccaggagcct caacaggcta cagctggtgc
                                                                     1380
tggcagagat ggtggccacg gagcgggagt atgtccgggc tctagagtac actatggaga
                                                                     1440
actatttccc cgagetggat cgccccgatg tgccccaggg cctccgcggt cagegtgccc
                                                                     1500
acctetttgg caacetggag aagetgeggg acttecaetg ceaettette etgegtgage
                                                                     1560
tggaggettg cacceggeac ccaccaegag tggcctatge ettectgege catagggtge
                                                                    1620
agtttgggat gtacgcgctc tacagcaaga ataagcctcg ctccgatgcc ctgatgtcaa
                                                                    1680
gctatgggca caccttcttc aaggacaagc agcaagcact gggggaccac ctggacctgg
                                                                    1740
```

1800

032796-132.ST25

cctcctacct gctaaagccc atccagcgca tgggcaagta cgcactgctg ctgcaggagc

```
tggcacgggc ctgcgggggc cccacgcagg agctcagtgc gctgcgggag gcccaqaqcc
                                                                    1860
ttgtgcactt ccagctgcgg cacggaaacg acctgctggc catggacgcc atccagggct
                                                                    1920
gtgatgttaa cctcaaggaa caggggcagc tggtgcgaca ggatgagttt gtggtqcqca
                                                                    1980
ctgggcgcca caagtccgtg cgccgcatct tcctttttga ggagctgctg ctcttcaqca
                                                                    2040
agcctcgcca tgggcccaca ggggttgaca catttgccta caagcgctcc ttcaagatgg
                                                                    2100
cagaccttgg tctcactgag tgctgtggga acagcaacct gcgcttcgag atctggttcc
                                                                    2160
gccgccgcaa ggccagggac acctttgtgc tgcaggcctc cagcctggct atcaagcagg
                                                                    2220
cctggacage tgacatetee cacetgettt ggaggeagge cgtecacaae aaggaggtge
                                                                    2280
gcatggctga gatggtgtcc atgggtgtgg ggaacaaggc cttccgagac attgctccca
                                                                    2340
gcgaggaagc catcaacgac cgcaccgtca actatgtcct gaagtgccga gaagttcgct
                                                                    2400
ctcgggcgtc cattgccgta gccccgtttg accatgacag cctctacctg ggggcctcga
                                                                    2460
actecettee tggagaceet geetettget etgttetggg gteeeteaac etgeacetgt
                                                                    2520
acagagaccc agetettetg ggteteeget gteccetgta teccagette etagaggaag
                                                                    2580
cagcactgga ggctgaggca gagctgggcg gccagccctc tttgactgct gaggactcag
                                                                    2640
agatetegte ccaatgeeca teageeagtg getecagtgg etetgacage agetgtgtgt
                                                                    2700
cagggcaggc cctgggtagg ggcctggagg acttaccctg tgtctgagcc cgggactgga
                                                                    2760
cgagcagtag atccagcagc ctgcagctcc aaggaacatt gcctctctgg atctgctqtq
                                                                    2820
accagggtgt ggctgacacc tgggctacct ccaacctaca tgtgcaacgc tgttgactac
                                                                    2880
cctttctgat gtgtgtggcc attggactaa ctggcacggg gcctctctag ggaagtctqq
                                                                    2940
ttgtagagcc tgaataggct cctggcccca tgaccccttc tcctgtcccc agctcccatc
                                                                    3000
ccagttgtgg gttaagaata ggctagagca gacattgggt gtttccatgc tgtaggctgg
                                                                    3060
tgggggacca tgtgcctcta ggcagtgact agggtgcccc cacccctcag qaaqaacaca
                                                                    3120
ggtgggctcc tagcagctga tccccaatgc ctggccttaa agccqaqctc agttaccata
                                                                    3180
gggacaggtc cacctctact gggccctcat gcttgccttt cctggccccc aggcccagcc
                                                                    3240
cctttttact ggggcagttt cgttattttg acttgatgcc ttttgaataa ctttcaatag
                                                                    3300
aattgtctaa aattatctta ctggttgtta ggcctttggt gtctcagaga aggagtctag
                                                                    3360
gtctttgatg tgtgatttaa tcttttattt gtttataata aaaaatagac tgatttgtaa
                                                                    3420
3480
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa
                                                                    3513
<210> 70
<211> 3597
<212> DNA
<213> Homo sapiens
<400> 70
catgccagtt acttcctcag gaaaatattt tcttgccttc ttctttcagt atggttttaa
                                                                      60
atttgggaac agtggataac ccaagtgtcc cacaggccaa ggtatattcc aatggcagca
                                                                     120
tgatccctgc acccaaagcc agcccctaaa gcctacccct tgtgcacccg cagcctggta
                                                                     180
                                                                     240
agtgagcttg gctgcttgtg aggagctaca agtgaaagag aagttatttt aaataaatcc
caaaqtttga ggcagactgt ccaggactgt tcccaggaag aagcaggagt tacccacaqq
                                                                     300
aaaagtetet gaeetggtee eetcaggeee agetaeetge geeeaceage agtgaaggtt
                                                                     360
gatgtactgg cccagcatct ccacctcccc catgcaacca ggtccctggt accgtgtctc
                                                                     420
cogttgcatg totggcttot gcctgtgctc ctcctgccac gagcatcctc cctgtccctc
                                                                      480
ctcattccac cgtgtctctc ctgcacacat agcctctgtc ccagggcgat ttatccactt
                                                                     540
gagtacagga getgetcaga cetetcagec cagecetetg tgactgeece agececatee
                                                                      600
taccccaccc aaagctgcct tcctggctgt aggagctccc tcgtctagcc aaggccctat
                                                                      660
gggtccccat ccgaggatcc acaagcaatg acttcccaaa tgacctccac tgcaagaaga
                                                                      720
atccttacca ctgtttccag agccgtgaac gatgctgtga tggcccaggt ctcagcacca
                                                                      780
ccctctgtga cctaaaaaga aaagctcaat ttccatctgt cttctttccc aggaccaagg
                                                                      840
ggacacagta atgtgaagtc aaatacttaa ccgagcaaag ggccagtgtt gttatcagtc
                                                                      900
aaggacaaac ctcccacctc acagacagcc aagcagtgag ggaaagacag acagacatag
                                                                      960
qtaqqaaqqt qctctqcaqq cacaaqqccc agaqaaqccc Ctctccqqqa acttcccctq
                                                                     1020
ctccttccaq qaacagtqaq cccagtgagc agtcccagcc agctcttcaa qqccttcaaq
                                                                     1080
gggtctttcc atgactgagt cacctccagg agctcacctg acccccagag aagacctacc
                                                                     1140
ccaqqcaqct ccqtqccctq qcttctcccc atqccccaaa tccccccaq ccatccctcc
                                                                     1200
```

1260

tggtcctcgt ctacatcaag ggcctcttcc cctcttcctc ccagctctca ggacaggtga

```
1320
gggccattta tttgggattt tggagttgtt tggtttttgt ttttatatct taatagttcg
                                                                   1380
aaagtaagaa gggagccctg ctatggatgt taagtccaaa ttactcggtt agtgggagca
                                                                   1440
aaacctatga cttccaaggg gatgaggaga ggttcagagg acaggaggag cctccccat
                                                                   1500
tgaaaaaaaa aaaatgggtc aggacattcc ctggatgagg acaatgctag ggqtqqcatc
                                                                   1560
tcacatggct gctgctattc ctggtgcttc cccacacttt tgacagatgg agtccttctc
                                                                   1620
ctaccgcctc ctgccacctc accctacagg cattctctat gtaggaaaca agagccttat
                                                                   1680
cttatagagt ggggagctga gacacagcct caggtaacac tgacacagct cccgaatgag
                                                                   1740
gctgggacac tctgcaaacc tctcctcatg gtgctaaggg tggcatgctc ttgacaggaa
                                                                   1800
acctaaatga ccactcctct catttggaaa gtaatccact gcagtaaaag tttcagacat
                                                                   1860
gcaagagaga gtttttttt ttttttacta caaatttttg ctccccata aaattattt
                                                                   1920
tttattagag ggagtatcca agttttaaaa gtatatagaa ttttttggtt gtaagagaaa
                                                                   1980
tacatactca ttaggatccc gattaaattc cttgagtaga ctggtgccta ccagaaagca
                                                                   2040
aagcaaagtt aaacaaaacg aaacaaaatc cttcatatac aaaaagaact ttctgtttgt
                                                                   2100
attggcagag gtagtgaggt gattcaggta ggctgaaaat cctgggttgc gggagcctca
                                                                   2160
ctttattcca ttcccacccg ctttgatgtc tatgcttggc tctctgggct gcccctggta
                                                                   2220
ctgccgaate ctacacatet ettateaget tteeteaaae tttaaggagg etetgtgagg
                                                                   2280
gatgggtcat gggaagaccc aagctttccc tccgccagga ttgcaaaagc aagtagactt
                                                                   2340
ggtctatgca gctcttcttc caacaatttc tttatttgga attagaactt cctttgttag
                                                                   2400
tatctttgat cttttgactc aagcacattt tggaagggct cccttacaaa agtagaattt
                                                                   2460
aaaacagagg atacagttaa agagcaaccc aaaggacgct taagaaaccg agaccacttc
                                                                   2520
accgaacagg actaaggaac actttcgtgc acagaagtca gccgcaatcc aggcacagga
                                                                   2580
cgaagatggg atacacgtgc tcatctgtct gtcctccttt cctctccctc cccqacqttc
                                                                   2640
tagttagctt gttgacttgt taaaccttct gttcttaaaa tgaaaagcta gcttacctca
                                                                   2700
aagaatettg tttecatteg gaaaceaacg attttgtgtt ttagaatgga cageeeteee
                                                                   2760
ctcaccactc cctaccttgg cctggtgtcc ttgagacata cggtctttgc ttagtcgtgt
                                                                   2820
gttggctgct ttgagcagga acgaggcctc caggccctga ggtgggaagg aaggattgga
                                                                   2880
tgccactgcc ctcctcccca ctttagcatg taggggccag cccatctctt ccagcagggt
                                                                   2940
cctgctgagt taccatagca accagcaact ccagggtacc acaacagaca atggctcagc
                                                                   3000
gagecgaegt gtggggatga tgeaggggtt ttggeecage cagaggaece agagttgage
                                                                   3060
ttcaaatgct agagaagggg agaaacagga tggaagggtg gtttaaggaa ctgqcagqqq
                                                                   3120
tetttgagte acatagagaa geegttgaag gaggtaggge aggttatete tgtteeagte
                                                                   3180
acccccttcc agccccatcc cacttctgtt tcaaactaaa gctcccacct cgaacattga
                                                                   3240
ccctttgtta gaacaaagca aagcatatct ttaaacaaca gtgttaaaat gagcctcaaa
                                                                   3300
tgtatgtgga tgagatotot aagaagaggg tottotggtt ttgattttta aagaagagta
                                                                   3360
tcctagtaaa atattaaaaa aaaattaaaa agtttttaaa aaggaaacct atgctattta
                                                                   3420
aattggagcc cagttgtaac ttggtaaagg caagcttctg tacctttgtt ataattaatt
                                                                   3480
gtatacctgt gtatgtaaat ataaggcatt cctattttgc agttcagaac aaaaaaact
                                                                   3540
3597
<210> 71
<211> 855
<212> DNA
<213> Homo sapiens
<400> 71
cgctcaatta tctactcgag tctagactcg aggcggccgc ccattgtgca ctaaagcagg
                                                                     60
ggatagcaac ggcgtccctc ctccccgctc agctgcagcc cgcagtcctc acagtggtaa
                                                                    120
catgccacgt ggtagtctct gtccatggac accacacgga tggttgtctc gcagccctgt
                                                                    180
gcagggagga taggacgggc acaggaggcg cattttggtg caaaaaccgt gtgatagtct
                                                                    240
egeacgeagt agatgttgtt etceacgtee aeggtgaagg gaacceegte eaggeactea
                                                                    300
ttgcacacgg agcaccggaa gcagcctggg tggtaggact tgcccagggc ctqcaqqatc
                                                                    360
atttccatga tgagatgtcc acacacgctg catttgtcgg ccgtctgctg gaacccqqaq
                                                                    420
tacaggaagt cctcctggca gtacactttc tcacccacgt tgtagaacgc cttcccacgg
                                                                    480
agtogtotoc cacacgagto goaggtgaag cagtoagtgt gataaaqact coccattgco
                                                                    540
tggcacgcct gctgggctcc gtagatgcca agcccacact tgatgcaaat gccgaagtag
                                                                    600
```

```
tecegegeeg tgegegeete gagegeeege tecageteee gggtgagege etceageege
                                                                      660
cgctcggccg cgcttgggcc gcctcccgg ccagggggca gcgggagtgc aggcagcggg
                                                                      720
780
aggaagtcag cgtaggcttt agtgcacaat gggaattcgg atccggtcga cactagttct
                                                                      840
aggatctctt ttttt
                                                                      855
<210> 72
<211> 3791
<212> DNA
<213> Homo sapiens
<400> 72
acagacggcg ggtgaacatg gcgtcctcga cttggtctga gacgtgatag gcctgccttc
                                                                      60
tggttgaaga tgtggcgagt gaaaaaactg agcctcagcc tgtcgccttc gccccagacg
                                                                     120
ggaaaaccat ctatgagaac tcctctccgt gaacttaccc tgcagcccgg tgccctcacc
                                                                     180
acctctggaa aaagatcccc cgcttgctcc tcgctgaccc catcactgtg caagctgggg
                                                                     240
ctgcaggaag gcagcaacaa ctcgtctcca gtggattttg taaataacaa gaggacagac
                                                                     300
ttatcttcag aacatttcag tcattcctca aagtggctag aaacttgtca gcatgaatca
                                                                     360
gatgagcagc ctctagatcc aattccccaa attagctcta ctcctaaaac gtctgaggaa
                                                                     420
gcagtagacc cactgggcaa ttatatggtt aaaaccatcg tccttgtacc atctccactg
                                                                     480
gggcagcaac aagacatgat atttgaggcc cgtttagata ccatggcaga gacaaacagc
                                                                     540
atatetttaa atggacettt gagaacagae gatetggtga gagaggaggt ggcaceetge
                                                                     600
atgggagaca ggttttcaga agttgctgct gtatctgaga aacctatctt tcaggaatct
                                                                     660
cogtoccate tettagagga gtetecacea aatecetgtt etgaacaact acattgetee
                                                                     720
aaggaaagcc tgagcagtag aactgaggct gtgcgtgagg acttagtacc ttctgaaagt
                                                                     780
aacgccttct tgccttcctc tgttctctgg ctttcccctt caactgcctt ggcagcagat
                                                                     840
ttccgtgtca atcatgtgga cccagaggag gaaattgtag agcatggagc tatggaggaa
                                                                     900
agagaaatga ggtttcccac acatcctaag gagtctgaaa cagaagatca agcacttgtc
                                                                     960
tcaagtgtgg aagatattct gtccacatgc ctgacaccaa atctagtaga aatggaatcc
                                                                    1020
caagaagctc caggcccagc agtagaagat gttggtagga ttcttggctc tgatacagag
                                                                    1080
tettggatgt ecceaetgge etggetggaa aaaggtgtaa ataceteegt catgetggaa
                                                                    1140
aateteegee aaagettate eetteeeteg atgetteggg atgetgeaat tggeaetace
                                                                    1200
cctttctcta cttgctcggt ggggacttgg tttactcctt cagcaccaca ggaaaagagt
                                                                    1260
acaaacacat cccagacagg cctggttggc accaagcaca gtacttctga gacagagcag
                                                                    1320
ctcctgtgtg gccggcctcc agatctgact gccttgtctc gacatgactt ggaagataac
                                                                    1380
ctgctgagct ctcttgtcat tgtggagttt ctctcccgcc agcttcggga ctggaagagc
                                                                    1440
cagetggetg teceteacee agaaaceeag gacagtagea cacagaetga cacateteae
                                                                    1500
agtgggataa ctaataaact tcagcatctt aaggagagcc atgagatggg acaggcccta
                                                                    1560
cagcaggcca gaaatgtcat gcaatcatgg gtgcttatct ctaaagagct gatatccttg
                                                                    1620
                                                                    1680
cttcacctat ccctgttgca tttagaagaa gataagacta ctgtgaatca ggagtctcgg
cgtgcagaaa cattggtctg ttgctgtttt gatttgctga agaaattgag ggcaaagctc
                                                                     1740
                                                                     1800
cagagcetca aagcagaaag ggaggaggca aggcacagag aggaaatgge tetcagagge
                                                                    1860
aaggatgcgg cagagatagt gttggaggct ttctgtgcac acgccagcca gcgcatcagc
cagctggaac aggacctagc atccatgcgg gaattcagag gccttctgaa ggatgcccag
                                                                    1920
acceaactgg tagggettea tgceaageaa gaagagetgg tteageagae agtgagtett
                                                                     1980
                                                                     2040
acttctacct tgcaacaaga ctggaggtcc atgcaactgg attatacaac atggacagct
ttgctgagtc ggtcccgaca actcacagag aaactcacag tcaagagcca gcaagcctg
                                                                     2100
caggaacgtg atgtggcaat tgaggaaaag caggaggttt ctagggtgct ggaacaagtc
                                                                     2160
tetgeecagt tagaggagtg caaaggeeaa acagaacaac tggagttgga aaacattegt
                                                                     2220
ctagcaacag atctccgggc tcagttgcag attctggcca acatggacag ccagctaaaa
                                                                     2280
gagetacaga gteageatae ceattgtgee caggacetgg etatgaagga tgagttaete
                                                                     2340
tgccagctta cccagagcaa tgaggagcag gctgctcaat gcgtaaagga agagatggca
                                                                     2400
ctaaaacaca tgcaggcaga actgcagcag caacaagctg tcctggccaa agaggtgcgg
                                                                     2460
gacctgaaag agaccttgga gtttgcagac caggagaatc aggttgctca cctggagctg
                                                                     2520
ggtcaggttg agtgtcaatt gaaaaccaca ctggaagtgc tccgggagcg cagcttgcag
                                                                     2580
tgtgagaacc tcaaggacac tgtagagaac ctaacggcta aactggccag caccatagca
                                                                     2640
gataaccagg agcaagatct ggagaaaaca cggcagtact ctcaaaagct agggctgctg
                                                                     2700
```

```
actgagcaac tacagagcet gactetettt etacagacaa aactaaagga gaagactgaa
                                                                      2760
caágagacco ttotgotgag tacagootgt cotoccacco aggaacacco totgoctaat
                                                                      2820
gacaggacct tcctgggaag catcttgaca gcagtggcag atgaagagcc agaatcaact
                                                                      2880
cctgtgccct tgcttggaag tgacaagagt gctttcaccc gagtagcatc aatggtttcc
                                                                      2940
cttcagcccg cagagacccc aggcatggag gagagcctgg cagaaatgag tattatgact
                                                                      3000
actgagette agagtetttg tteeetgeta caagagteta aagaagaage cateaggaet
                                                                      3060
ctgcagcgaa aaatttgtga gctgcaagct aggctgcagg cccaggaaga acagcatcag
                                                                      3120
gaagtccaga aggcaaaaga agcagacata gagaagctga accaggcctt gtgcttgcgc
                                                                      3180
tacaagaatg aaaaggagct ccaggaagtg atacagcaga atgagaagat cctagaacag
                                                                      3240
atagacaaga gtggcgagct cataagcctt agagaggagg tgacccacct tacccqctca
                                                                      3300
cttcggcgtg cggagacaga gaccaaagtg ctccaggagg cctggcaggc cagctggact
                                                                      3360
ccaactgcca gcctatggcc accaattgga tccaggagaa agtgtggctc tctcaggagg
                                                                      3420
tggacaaact gagagtgatg ttcctggaga tgaaaaatga gaaggaaaac tcctgatcaa
                                                                      3480
gttccagagc ccatagaaat atcctagagg agaaccttcg gcgctctgac aaggagttag
                                                                      3540
aaaaactaga tgacattgtt cagcatattt ataagaccct gctctctatt ccagaggtgg
                                                                      3600
tgaggggatg caaagaacta cagggattgc tggaatttct gagctaagaa actgaaagcc
                                                                      3660
agaatttgtt tcacctcttt ttacctgcaa taccccctta ccccaatacc aagaccaact
                                                                      3720
ggcatagagc caactgagat aaatgctatt taaataaagt gtatttaatg aaaaaaaaa
                                                                      3780
aaaaaaaaa a
                                                                      3791
<210> 73
<211> 1683
<212> DNA
<213> Homo sapiens
<400>.73
ctctgagtgt ccagtggtca gttgccccag gatggggacc acagccagag cagccttggt
                                                                        60
cttgacctat ttggctgttg cttctgctgc ctctgaggga ggcttcacgg ctacaggaca
                                                                       120
gaggcagctg aggccagagc actttcaaga agttggctac gcagctcccc cctccccacc
                                                                       180
cctatcccga agcctcccca tggatcaccc tgactcctct cagcatggcc ctccctttga
                                                                       240
gggacagagt caagtgcage cccctccctc tcaggaggcc acccctctcc aacaggaaaa
                                                                       300
gctgctacct gcccaactcc ctgctgaaaa ggaagtgggt ccccctctcc ctcaggaagc
                                                                       360
tgtccccctc caaaaagage tgccctctct ccagcacccc aatgaacaga aggaaggaac
                                                                       420
gccagctcca tttggggacc agagccatcc agaacctgag tcctggaatg cagcccagca
                                                                       480
etgecaacag gaceggteee aagggggetg gggecaeegg etggatgget teeeceetgg
                                                                       540
geggeettet ceagacaate tgaaceaaat etgeetteet aacegteage atgtggtata
                                                                       600
tggtccctgg aacctaccac agtccagcta ctcccacctc actcgccagg gtgagaccct
                                                                       660
caatttcctg gagattggat attcccgctg ctgccactgc cgcagccaca caaaccqcct
                                                                       720
agagtgtgcc aaacttgtgt gggaggaagc aatgagccga ttctgtgagg ccgagttctc
                                                                       780
ggtcaagacc cgaccccact ggtgctgcac gcggcagggg gaggctcggt tctcctgctt
                                                                       840
ccaggaggaa getecceage cacactacea geteegggee tgeeceagee ateageetga
                                                                       900
tatttcctcg ggtcttgagc tgcctttccc tcctggggtg cccacattgg acaatatcaa
                                                                       960
gaacatetge cacetgagge getteegete tgtgeeaege aacetgeeag etactgaeee
                                                                      1020
cctacaaagg gagetgetgg cactgateca getggagagg gagttecage getgetgeeg
                                                                      1080
ccaggggaac aatcacacct gtacatggaa ggcctgggag gatacccttg acaaatactg
                                                                      1140
tgaccgggag tatgctgtga agacccacca ccacttgtgt tgccgccacc ctcccagccc
                                                                      1200
                                                                      1260 .
tactogggat gagtgotttg coogtogggo toottaccco aactatgaco gggacatott
gaccattgac atcagtcgag tcacccccaa cctcatgggc cacctctgtg gaaaccaaag
                                                                      1320
agtteteace aageataaae atatteetgg getgateeae aacatgaetg eeegetgetg
                                                                      1380
tgacctgcca tttccagaac aggcctgctg tgcagaggag gagaaattaa ccttcatcaa
                                                                      1440
tgatctgtgt ggtccccgac gtaacatctg gcgagaccct gccctctgct gttacctgag
                                                                      1500
tcctggggat gaacaggtca actgcttcaa catcaattat ctgaggaacg tggctctagt
                                                                      1560
                                                                      1620
gtotggagac actgagaacg ccaagggcca gggggagcag ggctcaactg gaggaacaaa
                                                                      1680
tatcagetee acctetgage ccaaggaaga atgagteace ccagageeet agagggteag
                                                                      1683
```

<210> 74

<211> 1696 <212> DNA <213> Homo sapiens <400> 74 cacctaaaag ccaaaatggg aaaggaaaag actcatatca acattqtcqt cattqqacac 60 gtagattcgg gcaagtccac cactactggc catctgatct ataaatgcgg tggcatcgac 120 aaaagaacca ttgaaaaatt tgagaaggag gctgctgaga tgggaaaggg ctccttcaag 180 tatgcctggg tcttggataa actgaaagct gagcgtgaac gtggtatcac cattgatatc 240 teettgtgga aatttgagae eageaagtae tatgtgaeta teattgatge eecaggaeae 300 agagacttta tcaaaaacat gattacaggg acatctcagg ctgactgtgc tgtcctgatt 360 qttqctqctq qtqttqqtqa atttqaaqct qqtatctcca aqaatqqqca qacccqaqaq 420 catgcccttc tggcttacac actgggtgtg aaacaactaa ttgtcggtgt taacaaaatq 480 gattccactg agccacccta cagccagaag agatatgagg aaattgttaa ggaagtcagc 540 acttacatta agaaaattgg ctacaacccc gacacagtag catttgtgcc aatttctggt 600 tggaatggtg acaacatgct ggagccaagt gctaacatgc cttggttcaa gggatggaaa 660 gtcacccgta aggatggcaa tgccagtgga accacgctgc ttgaggctgt ggactgcatc 720 ctaccaccaa ctcgtccaac tgacaagccc ttgcgcctgc ctctccagga tgtctacaaa 780 attggtggta ttggtactgt tcctgttggc cgagtggaga ctggtgttct caaacccqqt 840 atggtggtca cetttgetee agteaacgtt acaacggaag taaaatetgt egaaatgeae 900 catgaagctt tgagtgaagc tcttcctggg gacaatgtgg gcttcaatgt caagaatgtg 960 tetgtcaagg atgttcgtcg tggcaacgtt getggtgaca gcaaaaatga cccaccaatg 1020 gaagcagctg gcttcactgc tcaggtgatt atcctgaacc atccaggcca aataagcqcc 1080 ggctatgccc ctgtattgga ttgccacacg gctcacattg catgcaagtt tqctqaqctq 1140 aaggaaaaga ttgatcgccg ttctggtaaa aagctggaag atggccctaa attcttgaag 1200 tctggtgatg ctgccattgt tgatatggtt cctggcaagc ccatgtgtgt tgagagcttc 1260 teagactate cacetttggg tegetttget gttegtgata tgagacagae agttgeggtg 1320 ggtgtcatca aagcagtgga caagaaggct gctggagctg gcaaggtcac caagtctqcc 1380 cagaaagctc agaaggctaa atgaatatta tccctaatac ctgccacccc actcttaatc 1440 agtggtggaa gaacggtctc agaactgttt gtttcaattg gccatttaag tttagtagta 1500 aaagactggt taatgataac aatgcatcgt aaaaccttca gaaggaaagg agaatgtttt 1560 gtggaccact ttggttttct tttttgcgtg tggcagtttt aagttattag tttttaaaat 1620 cagtactttt taatggaaac aacttgacca aaaatttgtc acagaatttt gagacccatt 1680 aaaaaagtta aatgag 1696 <210> 75 <211> 7680 <212> DNA <213> Homo sapiens <400> 75 gaagagcaag aggcaggete agcaaatggt teageeccag teeceggtgg etgteagtea 60 aagcaagccc ggttgttatg acaatggaaa acactatcag ataaatcaac agtgggagcg 120 gacctaccta ggtaatgtgt tggtttgtac ttgttatgga ggaagccgag gttttaactg 180 cgaaagtaaa cctgaagctg aagagacttg ctttgacaag tacactggga acacttaccg 240 agtgggtgac acttatgagc gtcctaaaga ctccatgatc tgggactgta cctgcatcgg 300 ggctgggcga gggagaataa gctgtaccat cgcaaaccgc tgccatgaag ggggtcagtc 360 ctacaagatt ggtgacacct ggaggagacc acatgagact ggtggttaca tgttagagtg 420 tgtgtgtctt ggtaatggaa aaggagaatg gacctgcaag cccatagctg agaagtgttt 480 tgatcatgct gctgggactt cctatgtggt cggagaaacg tgggagaagc cctaccaaqq 540 ctggatgatg gtagattgta cttgcctggg agaaggcagc ggacgcatca cttgcacttc 600 tagaaataga tgcaacgatc aggacacaag gacatcctat agaattggag acacctggag 660 caagaaggat aatcgaggaa acctgctcca gtgcatctgc acaggcaacg gccgaggaga 720 gtggaagtgt gagaggcaca cctctgtgca gaccacatcg agcggatctg gccccttcac 780 egatqttegt geagetgttt accaaeegea geeteaeeee eageeteete eetatgqeea 840 ctgtgtcaca gacagtggtg tggtctactc tgtggggatg cagtggttga agacacaagg 900 aaataagcaa atgctttgca cgtgcctggg caacggagtc agctgccaag agacagctgt 960 WO 02/092015

aacccagact	tacggtggca	acttaaatgg	agagccatgt	gtcttaccat	tcacctacaa	1020
tggcaggacg	ttctactcct	gcaccacgga	agggcgacag	gacggacatc	tttggtgcag	1080
cacaacttcg	aattatgagc	aggaccagaa	atactctttc	tgcacagacc	acactgtttt	1140
ggttcagact	caaggaggaa	attccaatgg	tgccttgtgc	cacttcccct	tcctatacaa	1200
caaccacaat	tacactgatt	gcacttctga	gggcagaaga	gacaacatga	agtggtgtgg	1260
gaccacacag	aactatgatg	ccgaccagaa	gtttgggttc	tgccccatgg	ctgcccacga	1320
		aaggggtcat				1380
gcatgacatg	ggtcacatga	tgaggtgcac	gtgtgttggg	aatggtcgtg	gggaatggac	1440
atgcattgcc	tactcgcaac	ttcgagatca	gtgcattgtt	gatgacatca	cttacaatgt	1500
gaacgacaca	ttccacaagc	gtcatgaaga	ggggcacatg	ctgaactgta	catgcttcgg	1560
		agtgtgatcc				1620
		attcatggga				1680
		ttggggagtg				1740
ctcaagtggt	cctgtcgaag	tatttatcac	tgagactccg	agtcagccca	actcccaccc	1800
catccagtgg	aatgcaccac	agccatctca	catttccaag	tacattctca	ggtggagacc	1860
		ggaaggaagc				1920
		gtgtggtata				1980
		gctttgactt				2040
		agacgactcc				2100
		gtagctttgt				2160
		atgagctgag				2220
		ctgtgaacat				2280
		ctgaggatgg				2340
		ctcctgaccc				2400
		cccaggctcc				2460
		cagaactcaa				2520
		ttcagtataa				2580
		ttcaacaaga				2640
		agtttgtgga				2700
		tgaccggcta				2760
		tgcccatcag				2820
		acttcaaagt				2880
		caaccaaact				2940
		tggtgagatg				3000
		cccgaagagg				3060
		ggaatctgca				3120
						3180
		agagececaa				3240
		acaacaccga				3300
		gttttaagct				3360
		actcaggaag				3420
		aagteetgag				3420
		tgtctccacc				3540
					ctggttatag	
		acggccagca				3600
		ttgataacct				3660
		aggaaagtgt				3720
		gattcaccaa				3780
		atttaaccaa				384.0
tgaggaagat	gttgcagagt	tgtcaatttc	teetteagae	aatgcagtgg	tcttaacaaa	3900
ccccccccc	ggtacagaat	atgtagtgag	tgtctccagt	gtctacgaac	aacatgagag	3960
cacacctctt	agaggaagac	agaaaacagg	tcttgattcc	ccaactggca	ttgacttttc	4020
		ttactgtgca				4080
		ccgagcactt				4140
		ccctcaccaa				4200
catcgttgct	cttaatggca	gagaggaaag	tcccttattg	attggccaac	aatcaacagt	4260
ttctgatgtt	ccgagggacc	tggaagttgt	tgctgcgacc	cccaccagcc	tactgatcag	4320
ctgggatgct	cctgctgtca	cagtgagata	ttacaggatc	acttacggag	aaacaggagg	4380

			_			
	gtccaggagt					4440
	ggagttgatt					4500
ccccgcaagc	agcaagccaa	tttccattaa	ttaccgaaca	gaaattgaca	aaccatccca	4560
	accgatgttc					4620
	ggttacagag					4680
	ggtccagatc					4740
	agtgtctatg					4800
	aacattgatc					4860
catcaaaatt	gcttgggaaa	gcccacaggg	gcaagtttcc	aggtacaggg	tgacctactc	4920
gagccctgag	gatggaatcc	atgagctatt	ccctgcacct	gatggtgaag	aagacactgc	4980
	ggcctcagac					5040
	agccagcccc					5100
	actcaggtca					5160
	ggatatcgag					5220
	gctcctgaca					5280
	agtgtctatg					5340
tgtcaccact	ctggagaatg	tcagcccacc	aagaagggct	cgtgtgacag	atgctactga	5400
	accattagct					5460
	gccaatggcc					5520
	acaggtttac					5580
tgacaatgct	cggagctccc	ctgtggtcat	cgacgcctcc	actgccattg	atgcaccatc	5640
	ttcctggcca					5700
	accggctaca					5760
	ccccgccctg					5820
	atttatgtca					5880
	acagacgagc					5940
accagagatc	ttggatgttc	cttccacagt	tcaaaagacc	cctttcgtca	cccaccctgg	6000
gtatgacact	ggaaatggta	ttcagcttcc	tggcacttct	ggtcagcaac	ccagtgttgg	6060
gcaacaaatg	atctttgagg	aacatggttt	taggcggacc	acaccgccca	caacggccac	6120
	cataggccaa					6180
	tcatgggccc					6240
tgttggcact	gatgaagaac	ccttacagtt	cagggttcct	ggaacttcta	ccagtgccac	6300
	ctcaccagag					6360
gcagaggcat	aaggttcggg	aagaggttgt	taccgtgggc	aactctgtca	acgaaggctt	6420
	acggatgact					6480
	gaacgaatgt					6540
	catttcagat					6600
	gagaagtggg					6660
	ggaaaaggag					6720
	taccacgtag					6780
	tttggaggcc					6840
tgaacccagt	cccgaaggca	ctactggcca	gtcctacaac	cagtattctc	agagatacca	6900
tcagagaaca	aacactaatg	ttaattgccc	aattgagtgc	ttcatgcctt	tagatgtaca	6960
	gaagattccc					7020
ctctctgcca	agatccatct	aaactggagt	gatgttagca	gacccagctt	agagttcttc	7080
	aagccctttg					7140
	tcaccctggg					7200
	cttcgaagta					7260
	gatcaatagg	_	-		-	7320
	aaattttaag					7380
	atactgtagg					7440
	tttttccaaa					7500
	atttttccca					7560
	taagaggaat					7620
	tttactactg					7680
	_		-	-		

<210> 76 <211> 1316 <212> DNA <213> Homo sapiens <400> 76 tectaataeg acteactata gggetegage ggeegeeegg geaggtegaa tgeaggegae 60 ttgcgagctg ggagcgattt aaaacgcttt ggattccccc ggcctgggtg gggagagcga 120 gctgggtgcc ccctagattc cccgcccccg cacctcatga gccgaccctc ggctccatgg 180 agcccggcaa ttatgccacc ttggatggag ccaaggatat cgaaggcttg ctgggagcgg 240 gaggggggg gaatetggte geceaeteee etetgaceag ceaeceageg gegeetaege 300 tgatgcctgc tgtcaactat gcccccttgg atctgccagg ctcggcggag ccgccaaagc 360 aatgccaccc atgccctggg gtgccccagg ggacgtcccc agctcccgtg ccttatggtt 420 actttggagg cgggtactac tcctgccgag tgtcccggag ctcgctgaaa ccctgtgccc 480 aggcagceac cctggccgcg taccccgcgg agactcccac ggccggggaa gagtacccca 540 gtcgccccac tgagtttgcc ttctatccgg gatatccggg aacctaccac gctatggcca 600 gttacctgga cgtgtctgtg gtgcagactc tgggtgctcc tggagaaccg cgacatgact 660 720 ccctgttgcc tgtggacagt taccagtctt gggctctcgc tggtggctgg aacagccaga 780 tgtgttgcca gggagaacag aacccaccag gtcccttttg gaaggcagca tttgcagact ccagcgggca gcaccctcct gacgcctgcg cctttcgtcg cggccgcaag aaacgcattc 840 900 cgtacagcaa ggggcagttg cgggagctgg agcgggagta tgcggctaac aagttcatca ccaaggacaa gaggcgcaag atctcggcag ccaccagcct ctcggagcgc cagattacca . 960 totggtttca gaaccgccgg gtcaaagaga agaaggttct cgccaaggtg aagaacagcg 1020 1080 ctacccctta agagatetee ttgcctgggt gggaggageg aaagtggggg tgtcctgggg agaccagaaa cctgccaagc ccaggctggg gccaaggact ctgctgagag gcccctagag 1140 acaacaccct teccaggeea etggetgetg gaetgtteet eaggagegge etgggtaeee 1200 agtatgtgca gggagacgga accccatgtg acaggcccac tccaccaggg ttcccaaaga 1260 acctggccca gtcataatca ttcatcctca cagtggcaat aatcacgata accagt 1316 <210> 77 <211> 566 <212> DNA <213> Homo sapiens <400> 77 60 cccaccaaac ccataaagag ggtgggtcga cccacgcgtc cgcggacgcg tgggaaatta 120 ttgaattgga aacagaaata gaaaagttta aagctgagaa cgcatcttta gctaaacttc gcattgaacg agaaagtgcc ttggaaaaac tcaggaaaga aattgcagac ttcgaacaac 180 agaaagcaaa agaattagct cgaatagaag agtttaaaaa ggaggagatg aggaagctac 240 aaaaggaacg taaagttttt gaaaagtata ctacagctgc aagaactttt ccagataaaa 300 aggaacgtga agaaatacag actttaaaac ágcaaatagc agatttacgg gaagatttga 360 aaagaaagga gaccaaatgg tcaagtacac acagccgtct cagaagccag atacaaatgt 420 tagtcagaga gaacacagac ctccgggaag aaataaaagt gatggaaaga ttccgactgg 480 atgcctggaa gagagcagaa gccatagaga gcagcctcga ggtggagaag aaggacaagc 540 . 566 ttgcgaacac atctgttcga tttcaa <210> 78 <211> 5067 <212> DNA <213> Homo sapiens <400> 78 60 gcccggacac ctgtctgcag catggataag tatgacgacc tgggcctgga ggccagtaaa 120 ttcatcgagg acctgaacat gtatgaggcc tctaaggatg ggctcttccg agtggacaag ggtqcaqqca acaaccccqa gtttgaggaa actcqcaggg tgttcqccac caagatgqcc 180 aaaatccacc tccagcagca gcagcagcag ctcctgcagg aggagactct gcccaggggg 240 agtagaggcc ctgtcaatgg agggggccgc ctgggcccac aggcccgttg ggaagttgtg 300 WO 02/092015 PCT/US02/15982

ggcagcaagc	tgactgtgga	tggtgctgcc	aagcctcctc	ttgctgcctc	gacaggggca	360
cctggggcag	tcaccaccct	cgctgctggg	cagcccccgt	acccaccgca	ggagcagaga	420
tccaggccat	acctgcatgg	cacgaggcat	ggcagccagg	actgtggttc	cagggagagc	480
ctggcgactt	ctgagatgtc	tgctttccac	cagccaggcc	cctgtgagga	tccttcctgc	540
ctcactcatg	gagactatta	tgacaacctc	tccttggcaa	gcccaaagtg	gggtgacaaa	600
ccaggagtgt	ccccagcat	cggcctgagt	gtagggagtg	ggtggcctag	ctccccgggg	660
agtgacccac	cactgcccaa	accctgcggg	gaccatcccc	taaatcaccg	acagetetee	720
ctgagctcca	gcaggtcttc	tgagggtagc	ctcggtggtc	agaatagtgg	cattggtggc	780
cgcagcagcg	agaagccaac	aggcctttgg	tccactgcct	cctcccagcg	ggtgagccct	840
ggcctgcctt	ccccaaactt	ggagaacgga	gcaccagctg	tggggcctgt	tcagcccagg	900
actecttetg	tgtcagcacc	cttggccctg	agetgeecea	ggcaaggagg	tcttccaaga	960
tcaaactcgg	ggctggggg	tgaggtttca	ggtgtgatgt	ccaaacccaa	tgtggacccc	1020
caaccetggt	tccaggatgg	gcccaaatct	tacctttcca	gttctgcccc	gtcatcctcg	1080
ccagctggcc	tggacggttc	acagcagggt	geggteeetg	ggctggggcc	gaageetgge	1140
tocacagacc	ttggcactgg	ttetaagete	agececaeca	gtcttgtcca	tccagtgatg	1200
ctaggateta	ctgagttatc	cigiaaagag	ggccccccgg	getggtette	tgatggtagc	1260
	tgctcctgga					1320
	gtcctgagct					1380
aaatgcagg	agcgagagat	tagaastaas	cegaaggeeg	actactttgg	agectgtgtg	1440
catgacage	aaggggtgtt	tagagettage	caggeetgte	aggeeatggg	gaacetetae	1500
	gcttcacctg					1560
	gcaaagtgtt gttttctttg					1620 1680
	accccggctg					1740
	tggactcaga					1800
	gtgcagcctg					1860
	tgtccatgga					1920
	tcaatgatga					1980
	gccacgtgaa					2040
	agccagagcc					2100
	ttccggtggc					2160
	cctgtgagca					2220
acctgcctcc	tgcgtgtatt	ttccaagtgc	ttttctctat	toccacattt	tecteagett	2280
	atgctccagc					2340
	ctgtcccctc					2400
	caatatcccc					2460
	ggaaaatacc					2520
	ttcttttcac					2580
	ggcaagaagg					2640
	gagtcaagat					2700
	gtaccccttc					2760
	atgggagtaa					2820
	gcccacgtgt					2880
	cttctgcaag					2940
	tatttaatga					3000
	caaggagagt					3060
	taagttatta					3120
	gtttgaagaa					3180
	ccttcacttt					3240
	ttcaggagga					3300
	actggcttca					3360
	agtggggaat					3420
	agggtggcag					3480
	ctgaagaggt					3540
	ggtatttcga					3600
	gccggggaca					3660
	ggactgggtg					3720

```
tgaactcagg cttttcattg ggcccggctc cacttctagg ccatgttttg actcatttgg
                                                                      3780
taaccattgc ctgtaagcag cacagaattg gtgccatgga ttatctttc catgttgatg
                                                                      3840
gaattcattc tgttggaatc ctttggccag atgtcacttc agccagggtg tgcatcatca
                                                                      3900
ttggttcttt ttcacaggct gagcctcctg aaaacccatg aacgctgggg ctggggaagt
                                                                      3960
gaaccctgag gtggggaccc tctcttccca tcaaatcatc cagctcagtg tggggcgtgg
                                                                      4020
caggggggta aatgaagcca gccaatgtgt taacctgtct ctgtcaacct aagaatgttg
                                                                      4080
gccttactga cacacctttg ctccatgttc aagaccagaa gtagctggga tttgtttgca
                                                                      4140
aattgggtaa ttagtttaaa aatctgtgat tacattttta aatgaaattt tcaaagtggc
                                                                      4200
ctagattgag gtgattcaga taggtttgcg aatataccat tttatattgt tgagaaagaa
                                                                      4260
caaaaaggga atttccagat gtcctagaaa tcctagcaac agatttctct ggttgtcagt
                                                                      4320
ttccctggag aaggcgccag ataggaatct ccaatcagtt gtttttctct tcgcttcagg
                                                                     4380
cccttacaca aaagccatga agagatgttc acctacccgg tattttaaat gttctgtaaa
                                                                     4440
ttattagcca aatagaactg taatggggtt gtatttatgg gcgcctagaa agaaaacaca
                                                                     4500
aggacttggt aggccaggaa gaaaagattt taaaatttag aatgaatagc ccttctgggt
                                                                     4560
tttctttttg acaattcttg gacttgaggt aaaacaagga ggattgtggc cggatttcag
                                                                     4620
atcocaaage cageetecat ettaggeett tgeeteattg tgeettttag gttttettae
                                                                     4680
ccaccgtctc ctgttttgtc ttttttttct tttctcctac ccctatcttg ggacattcag
                                                                     4740
aaactgcctg ggtggtttga gaagagacaa cccagtttga tctgcaatac aaggatccat
                                                                     4800
tegtaatete teteteactg atgttattee eccatetgee gtettggtte ateteaceae
                                                                     4860
agaagggcat ttagtcctac ccagccatcg gctgcggtat gacagcagga tggcacttcc
                                                                     4920
catttctctg tggttagtgc tcgagtgaaa acctctttca gctgagtcct ctgaggttct
                                                                     4980
gctgttgagt cctgggtggc tgatggaatg attgaggagg tctggtcacc ctcaagcgcc
                                                                     5040
gtcatcgcct tgtttccatg ggcttct
                                                                     5067
<210> 79
<211> 950
<212> DNA
<213> Homo sapiens
<400> 79
tegaceggat cegaatteee attgtgeact aaagegtete cetgeteege ggeeeggget
                                                                       60
ggcgggcggg cgctcggctg gcggctgcag cagcagaggg agacccgcgg caaccccggc
                                                                      120
aacccaggge teggegtege tgecaccatg aegggaagea atatgtegga egeettggee
                                                                      180
aacgccgtgt gccagcgctg ccaggcccgc ttctcccccg ccgagcgcat tgtcaacagc
                                                                      240
aatggggage tgtaccatga geactgette gtgtgtgeee agtgetteeg geeetteeee
                                                                      300
gaggggctct tctatgagtt tgaaggccgg aagtactgcg aacacgactt ccaaatgctg
                                                                      360
tttgctccgt gctgtggatc ctgcggtgag ttcatcattg gccgcgtcat caaggccatg
                                                                      420
aacaacaact ggcacccggg ctgcttccgc tgcgagctgt gtgatgtgga gctggctgac
                                                                      480
ctgggctttg tgaagaatgc cggcaggcat ctctgccggc cttgccacaa ccgtgagaag
                                                                      540
gccaagggcc tgggcaagta catctgccag cggtgccacc tggtcatcga cgagcagccc
                                                                      600
ctcatgttca ggagcgacgc ctaccaccct gaccacttca actgcaccca ctgtgggaag
                                                                       660
gagetgacag eegaggeeeg egagetgaag ggtgagetet actgeetgee etgeeatgae
                                                                      720
aagatgggcg ttcccatctg cggggcctgc cgccggccca tcgagggccg agtggtcaac
                                                                      780
gcgctgggca agcagtggca cgtggagcac tttgtctgtg ccaagtgtga gaagccattc
                                                                      840
ctggggcacc ggcactatga gaagaagggc ctggcctact gcgagcttta gtgcacaatg
                                                                       900
ggcggccgcc tcgagtctag actcgagtag ataattgagc ggaatttctt
                                                                       950
<210> 80
<211> 2346
<212> DNA
<213> Homo sapiens
<400> 80
cogcogtogo cocogootoo coctgootoa goggotgooo cogcoagogg googooogot
                                                                        60
cccccgggcc ttgcagcggg ccccggcccg gctggagggg ccccgacccc agctctggtg
                                                                       120
gcgggcagca gcgccgcggc ccccttccct cacggggact cggccctgaa cgagcaggag
                                                                       180
```

240

780

032796-132.ST25

aaggagttgc agcggcggct gaagcgtctc tacccggccg tggacqaaca agagacqccq

```
ctgcctcggt cctggagccc gaaggacaag ttcagctaca tcggcctctc tcagaacaac
                                                                       300
ctgcgggtgc actacaaagg tcatggcaaa accccaaaag atgccgcgtc agttcgagcc
                                                                       360
acgcatccaa taccagcagc ctgtgggatt tattattttg aagtaaaaat tgtcagtaag
                                                                       420
ggaagagatg gttacatggg aattggtctt tctgctcaag gtgtgaacat gaatagacta
                                                                       480
ccaggttggg ataagcattc atatggttac catggggatg atggacattc gttttgttct
                                                                       540
totggaactg gacaacctta tggaccaact ttcactactg gtgatgtcat tggctgttgt
                                                                       600
gttaatetta teaacaatae etgettttae accaagaatg gacatagttt aggtattget
                                                                       660
ttcactgacc taccgccaaa tttgtatcct actgtggggc ttcaaacacc aggagaagtg
                                                                       720
gtcgatgcca attttgggca acatcettte gtgtttgata tagaagaeta tatgegggag
                                                                       780
tggagaacca aaatccaggc acagatagat cgatttccta tcggagatcg agaaggagaa
                                                                       840
tggcagacca tgatacaaaa aatggtttca tcttatttag tccaccatgg gtactgtgcc
                                                                       900
acagcagagg cctttgccag atctacagac cagaccgttc tagaagaatt agcttccatt
                                                                       960
aagaatagac aaagaattca gaaattggta ttagcaggaa gaatgggaga agccattgaa
                                                                      1020
acaacacaac agttataccc aagtttactt gaaagaaatc ctaatctcct tttcacatta
                                                                      1080
aaagtgcgtc agtttataga aatggtgaat ggtacagata gtgaagtacg atgtttggga
                                                                      1140
ggccgaagtc caaagtctca agacagttat cctgttagtc ctcgaccttt tagtagtcca
                                                                      1200
agtatgagcc ccagccatgg aatgaatatc cacaatttag catcaggcaa aggaagcacc
                                                                      1260
gcacattttt caggttttga aagttgtagt aatggtgtaa tatcaaataa agcacatcaa
                                                                      1320
tcatattgcc atagtaataa acaccagtca tccaacttga atgtaccaga actaaacagt
                                                                      1380
ataaatatgt caagatcaca gcaagttaat aacttcacca gtaatgatgt agacatggaa
                                                                      1440
acagateact actecaatgg agttggagaa actteateea atggttteet aaatggtage
                                                                      1500
tctaaacatg accacgaaat ggaagattgt gacaccgaaa tggaagttga ttcaagtcag
                                                                      1560
ttgagacgcc agttgtgtgg aggaagtcag gccgccatag aaagaatgat ccactttqqa
                                                                      1620
cgagagctgc aagcaatgag tgaacagcta aggagagact gtggcaagaa cactgcaaac
                                                                      1680
aaaaaaatgt tgaaggatgc attcagtcta ctagcatatt cagatccctg gaacagccca
                                                                      1740
gttggaaatc agcttgaccc gattcagaga gaacctgtgt gctcagctct taacagtgca
                                                                      1800
atattagaaa cccacaatct gccaaagcaa cctccacttg ccctagcaat gggacaggcc
                                                                      1860
acacaatgtc taggactgat ggctcgatca ggaattggat cctgcgcatt tgccacagtg
                                                                      1920
gaagactacc tacattagct atgcatttca agagctcaca cttatattgt ggcatatagt
                                                                      1980
caacatggaa gtagaccagc tctgctgatt tgaaatttag atttttaaa ttatgtactg
                                                                      2040
gggacaggtt tttgtcgctt tacattgctt cctagtttac agcatgatgc aaatgatttt
                                                                      2100
ctaacttagt gttaggagaa attattttcc atctttaacc tcttagttgt ctaagagtta
                                                                      2160
aatattactg aatttcagac gttcaaattg atcatcacaa atcctttaaa acaattacct
                                                                      2220
aaaagaaacc aaaaatcctg ccttctttgt gggggagggg ggagagaggg gaaggaaatg
                                                                      2280
gaacaagttg tgtttgtgtt agcatgtggg tgatgtaaac ttcaaattgg gagatgttcc
                                                                      2340
gacccc
                                                                      2346
<210> 81
<211> 2512
<212> DNA
<213> Homo sapiens
<400> 81
caatgcactg acggatatga gtgggatcct gtgagacagc aatgcaaaga tattgatgaa
                                                                        60
tgtgacattg tcccagacgc ttgtaaaggt ggaatgaagt gtgtcaacca ctatqqaqqa
                                                                       120
tacctctgcc ttccgaaaac agcccagatt attgtcaata atgaacagcc tcagcaggaa
                                                                       180
acacaaccag cagaaggaac ctcaggggca accaccgggg ttgtagctgc cagcagcatg
                                                                       240
gcaaccagtg gagtgttgcc cgggggtggt tttgtggcca gtgctgctgc agtcgcaggc
                                                                       300
cetgaaatge agactggeeg aaataacttt gteateegge ggaaceeage tgaceeteag
                                                                       360
cgcattccct ccaaccttc ccaccgtatc cagtgtgcag caggctacga gcaaagtgaa
                                                                       420
cacaacgtgt gccaagacat agacgagtgc actgcaggga cgcacaactg tagagcagac
                                                                       480
caagtgtgca tcaatttacg gggatccttt gcatgtcagt gccctcctgg atatcagaag
                                                                       540
Cgaggggagc agtgcgtaga catagatgaa tgtaccatcc ctccatattg ccaccaaaqa
                                                                       600
tgcgtgaata caccaggete attttattgc cagtgcagtc ctgggtttca attggcagca
                                                                       660
aacaactata cctgcgtaga tataaatgaa tgtgatgcca gcaatcaatg tgctcagcag
                                                                       720
```

tgctacaaca ttcttggttc attcatctgt cagtgcaatc aaggatatga gctaagcagt

gacaggetea actgtgaaga cattgatgaa tgeagaacet caagetaeet gtgteaatat

555			- y - m y m m c c c	oungue acce	gigicaatat	040
caatgtgtca	atgaacctgg	gaaattctca	tgtatgtgcc	cccagggata	ccaagtggtg	900
agaagtagaa	catgtcaaga	tataaatgag	tgtgagacca	caaatgaatg	ccgggaggat	960
gaaatgtgtt	ggaattatca	tggcggcttc	cgttgttatc	cacgaaatcc	ttgtcaagat	1020
ccctacattc	taacaccaga	gaaccgatgt	gtttgcccag	tctcaaatgc	catgtgccga	1080
gaactgcccc	agtcaatagt	ctacaaatac	atgagcatcc	gatctgatag	gtctgtgcca	1140
tcagacatct	tccagataca	ggccacaact	atttatgcca	acaccatcaa	tacttttcgg	1200
attaaatctg	gaaatgaaaa	tggagagttc	tacctacgac	aaacaagtcc	tgtaagtgca	1260
atgcttgtgc	tcgtgaagtc	attatcagga	ccaagagaac	atatcgtgga	cctggagatg	1320
ctgacagtca	gcagtatagg	gaccttccgc	acaagetetg	tgttaagatt	gacaataata	1380
gtggggccat	tttcatttta	gtcttttcta	agagtcaacc	acaggcattt	aagtcagcca	1440
aagaatattg	ttaccttaaa	gcactatttt	atttatagat	atatctagtg	catctacatc	1500
tctatactgt	acactcaccc	ataacaaaca	attacaccat	ggtataaagt	gggcatttaa	1560
tatgtaaaga	ttcaaagttt	gtctttatta	ctatatotaa	attagacatt	aatccactaa	1620
actogtette	ttcaagagag	ctaagtatac	actatctoot	gaaacttgga	ttctttccta	1680
taaaagtggg	accaagcaat	gatgatette	tataatactt	aaggaaactt	actagagete	1740
cactaacagt	ctcataagga	ggcagccatc	ataaccatto	aatagcatgc	äadadtaada	1800
atgagtttt	aactgctttg	taagaaaatg	gaaaaggtca	ataaacatat	atttotttaga	1860
aaaatgggga	tctgccatat	ttatattaat	ttttattttc	atatecage	taaagatagt	1920
totttattat	atagtaataa	atcattacta	tacaacatoo	tagtttctat	aggregge	1920
taattttgtc	agaaattta	gattgtgaat	attttotaaa	aaacactaac	cassattt	2040
cagaattccc	aaaatgaacc	agatacccc	tagaaaatta	tactatteae	222tetates	2100
ggaggatata	agaaaataaa	ttccttctaa	accacattaa	actactgay	adatetatgg	
ctcccaaaat	ataataacat	ccctcaattc	accacattos	aaccyacccy	aagaagcaaa	2160
taaaaggtat	ttcactagaa	agettttaat	ttotacetac	aayatytaya	acaaaatgga	2220
actaatttat	ttcactggag	totostotto	atacttaata	attidatio	Ctaacacttc	2280
tastaatttt	aactaaaatt	atacagasta	gracityary	toocacagagg	aagaaaatga	2340
cgatggttt	tattcctggc	attedayageg	acagugaacu	taagcaaatt	accetectae	2400
	ggaatatttt					2460
gtatcatatt	LLLaadlaaa	aataaatatt	ccccagaag	accactctaa	aa	2512
	tttaaataaa	aataaatatt	cccctayaay	accactctaa	aa	2312
<210> 82	ttladatada	aataaatatt	ccccayaay	accactctaa	aa	2312
<210> 82 <211> 2306	CCCadaCada	aacaaacacc	ccccagaag	accactetaa	aa	2312
<210> 82 <211> 2306 <212> DNA			ccccagaag	accactctaa	aa	2312
<210> 82 <211> 2306		,	ccccagaag	accactctaa	aa	2312
<210> 82 <211> 2306 <212> DNA <213> Homo			ccccagaag	accactctaa	aa	2512
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82	sapiens					
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc	sapiens tgcacgcgcc	gtggctccgg	atctcttcgt	ctttgcagcg	tacgcccgag	60
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg	sapiens tgcacgcgcc ccggaggacc	gtggctccgg tcagcagcca	atctcttcgt tgtcgaagcc	ctttgcagcg ccatagtgaa	tacgcccgag gccgggactg	60 120
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca	sapiens tgcacgcgcc ccggaggacc gacccagcag	gtggctccgg tcagcagcca ctgcacgcag	atctcttcgt tgtcgaagcc ccatggctga	ctttgcagcg ccatagtgaa cacattcctg	tacgcccgag gccgggactg gagcacatgt	60 120 180
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca	gtggctccgg tcagcagcca ctgcacgcag ccacccatca	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa	ctttgcagcg ccatagtgaa cacattcctg cactggcatc	tacgcccgag gccgggactg gagcacatgt atctgtacca	60 120 180 240
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg	60 120 180 240 300
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg	60 120 180 240
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg	60 120 180 240 300 360 420
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag	60 120 180 240 300 360
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa	60 120 180 240 300 360 420
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgg	60 120 180 240 300 360 420 480
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgg	60 120 180 240 300 360 420 480 540
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagaca agctggagct agtgtgacga gcagcaagat	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg ctacgtggat	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgg aaaggtgccg	60 120 180 240 300 360 420 480 540
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga gcagcaagat acttcctggt	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg ctacgtggat gacggaggtg	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gaaaatggtg	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca accctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag cagcaagaag	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgg aaaggtgccg ggtgtgaacc	60 120 180 240 300 360 420 480 540 600 660
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga gcagcaagat acttcctggt ttcctgggg	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg ctacgtggat gacggaggtg tgctgtggac	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gaaaatggtg ttgcctgctg	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg tgtcggagaa	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag cagcaagaag ggacatccag	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgg aaaggtgccg ggtgtgaacc gatctgaagt	60 120 180 240 300 420 480 540 600 660 720
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga gcagcaagat acttcctggt ttcctgggc ttgggtcga	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg ctacgtggat gacggaggtg tgctgtggac gcaggatgtt	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gaaaatggtg ttgcctgctg gatatggtgt	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg tgtcggagaa ttgcgtcatt	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag cagcaagaag ggacatccag catccgcaag	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgg aaaggtgccg ggtgtgaacc gatctgaagt gcatctgaagt	60 120 180 240 300 360 420 480 540 600 660 720 780
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacgt agtgtgacga tccttgggctcagca tcttagacac agctggagct agtgtgacga tcctggt ttcctggggc ttggggtcga tccatgaagt	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg ctacgtggat gctgtggat gctgtggac gcaggatgtt taggaaggtc	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gaaaatggtg ttgcctgctg gatatggtgt ctgggagaga	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca accctacct ctgggctcat aatcacgct acaagaacat ttctctcca gctccttggg tgtcggagaa ttgcgtcatt agggaaagaa	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag cagcaagaag ggacatccag catccgcaag	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgg aaaggtgccg ggtgtgaacc gatctgaagt gcatctgaagt gcatctgaagt	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg cttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgagct agtgtgacga gcagcaagat acttcctggt ttcctggggc ttggggtcga ttcctggagct tccatgaagt tcgagaatca	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gaacatcctg ctacgtggat gctgtggac gcaggatgtt taggaaggtc tgaggaggtt	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggaactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gaaaatggtg ttgcctgctg gatatggtgt ctgggagaga cggaggtttg	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg tgtcggagaa ttgcgtcatt agggaaagaa atgaaatcct	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag cagcaagaag ggacatccag catccgcaag catccgcaag catcaagatt ggaggccagt	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgcg gatgtgaacc ggtgtgaacc gatctgaagt gcatctgaagt gcatctgaagt gcatctgatg atcagcaaaa gatgggatca	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggcgggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtggagct agtgtgacga gcagcaagat acttcctggt ttcctggggc ttggggtcga ttcctgggct ttggggtcga tcgagaatca tcgagaatca tggtggctcg	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaagga gtacctggat gctacgtggat gctgtggac gcaggatgtt taggaaggtc tgaggaggtt ttggtgatcta	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggagactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gaaaatggtg ttgcctgctg gatatggtgt ctgggagaga cggaggtttg ggcattgaga	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg tgtcggagaa ttgcgtcatt agggaaagaa atgaaatcct ttcctgcaga	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag ggtgaagcag cagcaagaag ggacatccag catccgcaag catcaagatt ggaggccagt gaaggtcttc	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgcg ggtgtgaacc gatctgaagt gcatctgaagt gcatctgatg atcagcaaaa gatgggatca cttgctcaga	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 gggggggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga gcagcaagat acttcctggt ttcctggggtcga ttcggggtcga ttggggtcga tcgagaatca tggtggctcg agatgatgat	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaaggga gaacatcctg ctacgtggat gacggaggtg tgctgtggac gcaggatgtt taggaaggtc tgaggaggtt tggtgtgat gacggaggtt taggaaggtc	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggagactc tttgcttctg gagatccgaa gccactctca tggctggact gatagggctta gaaaatggtg ttgcctgctg gatatggtgt ctgggagaga cggaggtttg ggcattgaga aaccgagctg	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg tgtcggagaa ttgcgtcatt agggaaagaa atgaaatcct ttcctgcaga ggaagcctgt	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag ggtgaagcag catccag catccgcaag catcaagatt ggaggccagt gaaggccagt gaaggccagt	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgcg ggtgtgaacc gatctgaagt gcatctgaagt gcatctgatg atcagcaaaa gatgggatca cttgctcaga acttgctcaga acttgctcaga	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 ggggggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga gcagcaagat acttcctggt ttcctggggtcgt ttcctgggctcgt ttcctgggctcgt ttcctgggctcga ttcggggtcga tcgagaatca tggggagctcgagagcagaatca tggagaacat tggagagcat	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaaggga gaacatcctg ctacgtggat gctgtggac gcaggatgtt taggaaggtc tgaggaggtt tggtgatcta tggacggtg	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggagactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gatagggctta gatatggtg tctggagaga cggaggtttg ggcattgaga accgagctg ccccgccca	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg tgtcggagaa ttgcgtcatt agggaaagaa atgaaatcct ttcctgcaga ggaagcctgt ctcgggctga	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag ggtgaagcag catccag catccag catcagatt gaggccagt gaaggccagt gaaggccagt gaaggccagt	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgccg ggtgtgaacc gatctgaagt gcatctgaagt gcatctgatg atcagcaaaa gatgggatca cttgctcaga actcagatgc gtggccaatg	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
<210> 82 <211> 2306 <212> DNA <213> Homo <400> 82 ggggggagc tcggtcagcg ccttcattca gccgcctgga ttggcccagc tggctcgtct tgcgcacagc ctctagacac agctggagct agtgtgacga gcagcaagat acttcctggt ttcctggggct ttggggtcga tcgaggagct agtgtgacga gcagcaagat acttcctggt ttcggggtcga tcgagaatca tcgagaatca tcgagaatca tggagagcat cagtcctgga	sapiens tgcacgcgcc ccggaggacc gacccagcag cattgattca ttcccgatca gaacttctct cacggaaagc taaaggacct gaagaaggga gaacatcctg ctacgtggat gacggaggtg tgctgtggac gcaggatgtt taggaaggtc tgaggaggtt tggtgtgat gacggaggtt taggaaggtc	gtggctccgg tcagcagcca ctgcacgcag ccacccatca gtggagacgt catggagactc tttgcttctg gagatccgaa gccactctca tggctggact gatgggctta gaaaatggtg ttgcctgctg gatatggtgt ctgggagaga cggaggtttg ggcattgaga aaccgagctg ccccgccca tgcatcatgc	atctcttcgt tgtcgaagcc ccatggctga cagcccggaa tgaaggagat atgagtacca acccctacct ctgggctcat aaatcacgct acaagaacat tttctctcca gctccttggg tgtcggagaa ttgcgtcatt agggaaagaa atgaaatcct ttcctgcaga ggaagcctgt ctcgggctga tgcggctga	ctttgcagcg ccatagtgaa cacattcctg cactggcatc gattaagtct tgcggagacc ctaccggccc caagggcagc ggataacgcc ctgcaaggtg ggtgaagcag ggtgaagcag catccag catccag catcaagatt ggaggccagt gaaggtcttc catctgtgct aggcagtgat aacagccaaa	tacgcccgag gccgggactg gagcacatgt atctgtacca ggaatgaatg atcaagaatg gttgctgtgg ggcactgcag tacatggaaa gtggaagtgccg gatgtgaacc gatctgaagt gcatctgatg atcagcaaaa gatgggatca cttgctcaga actcagatgc gtggccaatg ggggactatc	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080

```
acttgcaatt atttgaggaa ctccgccgcc tggcgcccat taccagcgac cccacagaag
                                                                       1320
 ccaccgccgt gggtgccgtg gaggcctcct tcaagtgctg cagtggggcc ataatcgtcc
                                                                       1380
 tcaccaagtc tggcaggtct gctcaccagg tggccagata ccgcccacgt gcccccatca
                                                                       1440
 ttgctgtgac ccggaatccc cagacagctc gtcaggccca cctgtaccgt ggcatcttcc
                                                                       1500
 ctgtgctgtg caaggaccca gtccaggagg cctgggctga ggacgtggac ctccgggtga
                                                                       1560
 actttgccat gaatgttggc aaggcccgag gcttcttcaa gaagggagat gtggtcattg
                                                                       1620
 tgctgaccgg atggcgccct ggctccggct tcaccaacac catgcgtgtt gttcctgtgc
                                                                       1680
 cgtgatggac cccagagccc ctcctccagc ccctgtccca cccccttccc ccagcccatc
                                                                       1740
 cattaggcca gcaacgcttg tagaactcac tctgggctgt aacgtggcac tggtaggttg
                                                                       1800
 ggacaccagg gaagaagatc aacgcctcac tgaaacatgg ctgtgtttgc agcctgctct
                                                                       1860
 agtgggacag cccagagcet ggctgcccat catgtggccc cacccaatca agggaagaag
                                                                       1920
 gaggaatgct ggactggagg cccctggagc cagatggcaa gagggtgaca gcttcctttc
                                                                       1980
 ctgtgtgtac tctgtccagt tcctttagaa aaaatggatg cccagaggac tcccaaccct
                                                                       2040
 ggcttggggt caagaaacag ccagcaagag ttaggggcct tagggcactg ggctgttgtt
                                                                       2100
 ccattgaage egactetgge cetggeeett acttgettet etagetetet aggeetetee
                                                                       2160
 agtttgcacc tgtccccacc ctccactcag ctgtcctgca gcaaacactc caccctccac
                                                                       2220
 cttccatttt cccccactac tgcagcacct ccaggcctgt tgctatagag cctacctgta
                                                                       2280
 tgtcaataaa caacagctga agcacc
                                                                       2306
 <210> 83
 <211> 2656
 <212> DNA
<213> Homo sapiens
 <400> 83
 gaattcgcgg ccgcagagtc cccgggccaa gatggctgcg cggtgctcca cacgctggtt
                                                                         60
 getggtggtt gtggggaccc cgcggctgcc ggctatatcg ggtagagggg cccggccgcc
                                                                        120
 cagggagggc gtggtggggg catggctgag cogcaagctg agcgtccccg cctttgcgtc
                                                                        180
 ttccctgace tettgeggee ecegageget getgacattg agaeetggtg teageettae
                                                                        240
 aggaacaaaa cataaccett teatttgtae tgeeteette cacaegagtg eccetttgge
                                                                        300
 caaagaagat tattatcaga tattaggagt gcctcgaaat gccagccaga aagagatcaa
                                                                        360
 gaaagcctat tatcagcttg ccaagaagta tcaccctgac acaaataagg atgatcccaa
                                                                        420
 agccaaggag aagttctccc agctggcaga agcctatgag gttttgagtg atgaggtgaa
                                                                        480
 gaggaagcag tacgatgcct acggctctgc aggcttcgat cctggggcca gcggctccca
                                                                        540
 gcatagctac tggaagggag gccccactgt ggaccccgag gagctgttca ggaagatctt
                                                                        600
 tggcgagttc tcatcctctt catttggaga tttccagacc gtgtttgatc agcctcagga
                                                                        660
 atacttcatg gagttgacat tcaatcaagc tgcaaagggg gtcaacaagg agttcaccgt
                                                                        720
 gaacatcatg gacacgtgtg agcgctgcaa cggcaagggg aacgagcccg gcaccaaggt
                                                                        780
 gcagcattgc cactactgtg gcggctccgg catggaaacc atcaacacag gcccttttgt
                                                                        840
                                                                        900
 gatgcgttcc acgtgtagga gatgtggtgg ccgcggctcc atcatcatat cgccctgtgt
 ggtctgcagg ggagcaggac aagccaagca gaaaaagcga gtgatgatcc ctqtqcctqc
                                                                        960
 aggagtcgag gatggccaga ccgtgaggat gcctgtggga aaaagggaaa ttttcattac
                                                                       1020
 gttcagggtg cagaaaagcc ctgtgttccg gagggacggc gcagacatcc actccgacct
                                                                       1080
 ctttatttct atagctcagg ctcttcttgg gggaacagcc agagcccagg gcctgtacga
                                                                       1140
 gacgatcaac gtgacgatcc cccctgggac tcagacagac cagaagattc ggatggqtgg
                                                                       1200
 gaaaggcatc ccccggatta acagctacgg ctacggagac cactacatcc acatcaaqat
                                                                       1260
 acgagttcca aagaggctaa cgagccggca gcagagcctg atcctgagct acgccgagga
                                                                       1320
 cgagacagat gtggagggga cggtgaacgg cgtcaccctc accagctctg gtggcagcac
                                                                       1380
 catggatage teegcaggaa geaaggetag gegtgagget ggggaggaeg aggagggatt
                                                                       1440
 cetttecaaa ettaagaaaa tgtttaeete atgatateee ageegaggaa aaagateeae
                                                                       1500
 tggaaactag gccgggaagc agcagcccct ccaagggcca gggcacctgg gagacgggag
                                                                       1560
 gattccagaa cagcagcact gagctcccac ccgcagagcc tctggacggc cttggcaaca
                                                                       1620
 gcaaaatcat gggacaacac ctctctccac ggaaaggtca cagtggacag cccgggcagt
                                                                       1680
 aggatgcagc cccagaggct ggtggcagtt tcctgtccat tggtaggtga cggcccctg
                                                                       1740
 gtcagcagag gagaggttag atcttgcagg ctaaaactct aatttggaat tgaatattgt
                                                                       1800
 ggatatetta gttaaaggee atgettaeag ettagaaatg aageettaag etgeateaag
                                                                       1860
 ttacgaagtg attaatttcc ttctcagcaa acctccggga ggttccagaa tgagttcttc
                                                                       1920
```

```
ctgacaggtt gtcttcactg ggagcgtggg gcccccaggc cccaccagca ccgtcctccc
                                                                    1980
ctaatgaggg gccctgccga ggcatcagct gctctgctca gttagttttt attcccgggg
                                                                    2040
taccaagcag ctgcacagtc ggtgcctggg aagcacgtta aaggcccaga gagatcctgg
                                                                    2100
gggttctgct ctgaccgtgt gggtggtgat ccttgtcagg atgtacagtc cttgctccca
                                                                    2160
ccccatccgg gatggccgcc tgtccctgac tattgagtcc tgttgttgta agccaggcat
                                                                    2220
ggagggctcc tgcccttctg ctgagccaca gcccattgca gcactgtgct ggccagactt
                                                                    2280
cagetgeett gggaactgaa geeetgeeac tgttgetagt caggggettg gtteteeac
                                                                    2340
ttacactgtt gacatctatt ttctgaagtg tgtttaaatt attcagtgct aatcattgtt
                                                                    2400
ttttcctttg taaatgttga ttcagaaaag gaaagcacag gctaagcagt tgaaggttcc
                                                                    2460
ccaccattca gtgagagcag aacccccatt ccccagcctc tgctggtagc atgtcgcagt
                                                                    2520
ttccatgtgt ttcaggatct tcgggctgtc gttagacagg ttaatgaaga acacttctca
                                                                    2580
acagtttcct ttttgttttc ctttataatt cactaaaata aagcatctat tagtgtctga
                                                                    2640
aaaaaaaaa aaaaaa
                                                                    2656
<210> 84
<211> 2217
<212> DNA
<213> Homo sapiens
<400> 84
geggaeeegg egeegaggeg geeaeeegag aegeggegeg caegeteegg cetgegeage
                                                                      60
coggeocgge catggogge coccgeocgt ctoccgegat ctocgtttcg gtotcggotc
                                                                     120
cggcttttta cgccccgcag aagaagttcg gccctgtggt ggccccaaag cccaaagtga
                                                                     180
atecetteeg geeeggggae agegageete eeceggeaee eggggeeeag egegeaeaga
                                                                     240
tgggccgggt gggcgagatt cccccgccgc ccccggaaga ctttcccctg cctccacctc
                                                                     300
cccttgctgg ggatggcgac gatgcagagg gtgctctggg aggtgccttc ccgccqcccc
                                                                     360
420
egeogeetee teeggaggag gagggaggge etgaggeece catacegeec ecaccacage
                                                                     480
ccagggagaa ggtgagcagt attgatttgg agatcgactc tctgtcctca ctgctggatg
                                                                     540
acatgaccaa gaatgateet tteaaageee gggtgteate tggatatgtg ceeceaceag
                                                                     600
tggccactcc attcagttcc aagtccagta ccaagcctgc agccgggggc acagcacccc
                                                                     660
tgcctccttg gaagtcccct tccagctccc agcctctgcc ccaggttccg gctccggctc
                                                                     720
agagecagae acagttecat gtteagecee ageceeagee caageeteag gtecaactee
                                                                     780
atgtccagtc ccagacccag cetgtgtett tggetaacae ecageccega gggeecceag
                                                                     840
cctcatctcc ggctccagcc cctaagtttt ctccagtgac tcctaagttt actcctgtqq
                                                                     900
cttccaagtt cagtcctgga gccccaggtg gatctgggtc acaaccaaat caaaaattgg
                                                                     960
ggcaccccga agetetttet getggcacag geteceetea aceteceage tteacetatg
                                                                    1020
eccageagag ggagaageee egagtgeagg agaageagea eecegtgeee eeaceggete
                                                                    1080
agaaccaaaa ccaggtgcgc tcccctgggg ccccagggcc cctgactctg aaggaggtgg
                                                                    1140
aggagetgga geagetgace eageagetaa tgeaggaeat ggageateet eagaggeaga
                                                                    1200
atgtggctgt caacgaacte tgcggccgat gccatcaacc cctggcccgg gcgcagccag
                                                                    1260
eegteegege tetagggeag etgtteeaca tegeetgett cacetgeeac cagtgtgege
                                                                    1320
agcagctcca gggccagcag ttctacagtc tggaggggc gccgtactgc gagggctgtt
                                                                    1380
acactgacac cctggagaag tgtaacacct gcggggagcc catcactgac cgcatgctga
                                                                    1440
gggccacggg caaggcctat caccegeact getteacetg tgtggtetge geeegeeeee
                                                                    1500
tggagggcac ctccttcatc gtggaccagg ccaaccggcc ccactgtgtc cccgactacc
                                                                    1560
acaagcagta egeceegagg tgeteegtet getetgagee cateatgeet gageetggee
                                                                    1620
gagatgagac tgtgcgagtg gtcgccctgg acaagaactt ccacatgaag tgttacaaqt
                                                                    1680
gtgaggactg cgggaagece etgtegattg aggeagatga caatggetge tteeceetqq
                                                                    1740
acggtcacgt gctctgtcgg aagtgccaca ctgctagagc ccagacctga gtgaggacag
                                                                    1800
geoetettea gacegeagte catgeeceat tgtggaceae ceacactgag accacetgee
                                                                    1860
eccaceteag ttattgtttt gatgtetage eccteceatt tecaacecet ecctageate
                                                                    1920
ccaggtgccc tgacccagga cccaacatgg tctagggatg caggatcccc gccctggggt
                                                                    1980
etggtcctcg eccatectge agggattgee cacegtette cagacacece acetgagggq
                                                                    2040
ggcaccaggt ttagtgctgc tgctttcact gctgcacccg cgccctcggc cggccccccq
                                                                    2100
ageageettt gtactetget tgeggaggge tgggagaeee teeaggaeat teecaeeete
                                                                    2160
ecceatgetg ccaagttgta getatageta caaataaaaa aaaacettgt tttecag
                                                                    2217
```

PCT/US02/15982

<210> 85 <211> 8906 <212> DNA <213> Homo sapiens

<400> 85 gaggcggcca aggacctggc cgacatcgcg gccttcttcc gatccgggtt tcgaaaaaac 60 gatgaaatga aagctatgga tgttttacca attttgaagg aaaaagttgc atacctttca 120 ggtgggagag ataaacgtgg aggtcccatt ttaacgtttc cggcccgcag caatcatqac 180 agaatacgac aggaggatct caggagactc atttcctatc tagcctgtat tcccagcgag 240 gaggtctgca agcgtggctt cacggtgatc gtggacatgc gtgggtccaa gtgggactcc 300 atcaagcccc ttctgaagat cctgcaggag tccttcccct gctgcatcca tgtggccctg 360 atcatcaagc cagacaactt ctggcagaaa cagaggacta attttggcag ttctaaattt 420 gaatttgaga caaatatggt ctctttagaa ggccttacca aagtagttga tccttctcag 480 ctaactcctg agtttgatgg ctgcctggaa tacaaccacg aagaatggat tgaaatcaga 540 gttgcttttg aagactacat tagcaatgcc acccacatgc tgtctcggct ggaggaactt 600 caggacatcc tagctaagaa ggagctgcct caggatttag agggggctcg gaatatgatc 660 gaggaacatt ctcagctgaa gaagaaggtg attaaggccc ccatcgagga cctggatttg 720 gagggacaga agctgcttca gaggatacag agcagtgaaa gctttcccaa aaagaactca 780 ggctcaggca atgcggacct gcagaacctc ttgcccaagg tgtccaccat gctggaccgg 840 ctgcactcga cacggcagca tctgcaccag atgtggcatg tgaggaagct gaagctggac 900 cagtgcttcc agctgaggct gtttgaacag gatgctgaga agatgtttga ctggatcaca 960 cacaacaaag gcctgtttct aaacagctac acagagattg ggaccagcca ccctcatgcc 1020 atggagette agacgeagea caateaettt geeatgaact gtatgaaegt gtatgtaaat 1080 ataaaccgca tcatgtcggt ggccaatcgt ctggtggagt ctggccacta tgcctcgcag 1140 cagatcaggc agatcgcgag tcagctggag caggagtgga aggcgtttgc ggcagccctg 1200 gatgagcgga gcaccttgct ggacatgtcc tccattttcc accagaaggc cgaaaagtat 1260 atgagcaacg tggattcatg gtgtaaagct tgcggtgagg tagaccttcc ctcagagctg 1320 caggacctag aagatgccat tcatcaccac cagggaatat atgaacatat cactcttgct 1380 tattctgagg tcagccaaga tgggaagtcg ctccttgaca agctccagcg gcccttgact 1440 cccggcagct ccgattccct gacagcctct gccaactact ccaaggccgt gcaccatgtc 1500 ctggatgtca tccacgaggt gctgcaccac cagcggcacg tgagaacaat ctggcaacac 1560 cgcaaggtcc ggctgcatca gaggctgcag ctgtgtgttt tccagcagga agttcagcag 1620 gtgctagact ggatcgagaa ccacggagaa gcatttctga gcaaacatac aggtgtgggg 1680 aaatctcttc atcgggccag agcattgcag aaacgtcatg aagattttga agaagtggca 1740 cagaacacat acaccaatgc ggataaatta ctggaagcag cagaacagct ggctcagact 1800 ggggaatgtg accccgaaga gatttatcag gctgcccatc agctggaaga ccggattcaa 1860 gatttcgttc ggcgtgttga gcagcgaaag atcctactgg acatgtcagt gtcctttcac 1920 acccatgtga aagagctgtg gacgtggctg gaggagctgc agaaggagct gctggacgac. 1980 gtgtatgccg agtcggtgga ggccgtgcag gacctcatca agcgctttgg ccagcagcag 2040 cagaccaccc tgcaggtgac tgtcaacgtg atcaaggaag gggaggacct catccagcag 2100 ctcagggact ctgccatctc cagtaacaag accccccaca acagctccat caaccacatt 2160 gagacggtgc tgcagcagct ggacgaggcg cagtcgcaga tggaggagct cttccaggag 2220 cgcaagatca agctggagct cttcctgcac gtgcgcatct tcgagaggga cgccatcgac 2280 attatctcag acctcgagtc ttggaatgat gagctttctc agcaaatgaa tgacttcgac 2340 acagaagatc tcacgattgc agagcagcgc ctccagcacc atgcagacaa agccttgacc 2400 atgaacaact tgacttttga cgtcatccac caagggcaag atcttctgca gtatgtcaat 2460 gaggtccagg cctctggtgt ggagctgctg tgtgatagag atgtagacat ggcaactcgg 2520 gtccaggacc tgctggagtt tcttcatgaa aaacagcagg aattggattt agccgcagag 2580 cagcategga aacacetgga geagtgegtg cagetgegee acetgeagge agaagtgaaa 2640 caggtgctgg gttggatccg caacggagag tccatgttaa atgccggact tatcacagcc 2700 agetegttae aagaggeaga geageteeag egagageaeg ageagtteea geatgeeatt 2760 gagaaaacac atcagagcgc gctgcaggtg cagcagaagg cagaagccat gctacaggcc 2820 aaccactacg acatggacat gatccgggac tgcgccgaga aggtggcqtc tcactggcaa 2880 cageteatge teaagatgga agategeete aagetegtea aegeetetgt egetttetae 2940 aaaacctcag agcaggtctg cagcgtcctc gagagcctgg aacaggagta caagagagaa 3000

WO 02/092015 PCT/US02/15982

gaagactggt	gtggcggggc	ggataagctg	ggcccaaact	ctgagacgga	ccacgtgacg	3060
cccatgatca	gcaagcacct	ggagcagaag	gaggcattcc	tgaaggcttg	cacccttgct	3120
cggaggaatg	cagacgtctt	cctgaaatac	ctgcacagga	acagcgtgaa	catgccagga	3180
atggtgacgc	acatcaaagc	tcctgaacag	caagtgaaaa	atatcttgaa	tgaactcttc	3240
caacgggaga	acagggtatt	gcattactgg	accatgagga	agagacggct	ggaccagtgt	3300
cagcagtacg	tggtctttga	gaggagtgcc	aagcaggctt	tggaatggat	ccatgacaat	3360
ggcgagttct	acctttccac	acacacctcc	acgggctcca	gtatacagca	cacccaggag	3420
ctcctgaaag	agcacgagga	gttccagata	actgcaaagc	aaaccaaaga	gagagtgaag	3480
ctattgatac	agctggctga	tggcttttgt	gaaaaagggc	atgcccatgc	ggcagagata	3540
aaaaaatgtg	ttactgctgt	ggataagagg	tacagagatt	tctctctgcg	gatggagaag	3600
tacaggacct	ctttggaaaa	agccctgggg	atttcttcag	attccaacaa	atcgagtaaa	3660
agtctccagc	tagatatcat	tccagccagt	atccctggct	cagaggtgaa	acttcgagat	3720
gctgctcatg	aacttaatga	agagaagcgg	aaatctgccc	gcaggaaaga	gttcataatg	3780
gctgagctca	ttcaaactga	aaaggcttat	gtaagagacc	tccgggaatg	tatggatacg	3840
		tggcgtggaa				3900
ctcatcatct	tcggaaacat	gcaagaaatc	tacgaatttc	ataataacat	attcctaaag	3960
gagctggaaa	aatatgaaca	gttgccagag	gatgttggac	attgttttgt	tacttgggca	4020
gacaagtttc	agatgtatgt	cacatattgc	aaaaataagc	ctgattctac	tcagctgata	4080
		ttttgacgag				4140
		accagttcag				4200
		ggaaggaaag				4260
		caatgacgcc				4320
gaaaacattg	agtctcaggg	agaactcatc	ctacaggaat	ccttccaagt	gtgggaccca	4380
aaaaccttaa	ttcgaaaggg	tcgagaacgg	catctcttcc	tttttgaaat	gtccttagta	4440
tttagtaaag	aagtgaaaga	ttccagtggg	agaagcaagt	acctttataa	aagcaaattg	4500
		cacagaacat				4560
		ttcagataat				4620
		gcatatccgc				4680
aagggagccc	tgaaggagcc	cattcacatc	cctaagaccg	ctcccgccac	aagacagaag	4740
		tctggacagc				4800
		gtctcagaac				4860
		ccatgacttc				4920
		agttctggag				4980
		cccagcggca				5040
		catggaaatg				5100
tccgtctcca	gcaatgacgc	cagtccaccc	gcatccgtgg	cttccctcca	gcccacatg	5160
		gggccccaag				5220
		cagcagcggc				5280
		cgaggtccgc				5340
		cccgcaggac				5400
ggcctgagca	gcggtactct	ctccaaatcc	tcctcctcgg	ggatgcagag	ctqtqqaqaa	5460
		cgacgccgtg				5520
		ctcacaggat				5580
		gagtgcagcc				5640
		ggatcgcccc				5700
		ttcggataat				5760
		cagcicttta				5820
		tgtgcgggac				5880
		tcctgatgac				5940
aacatccatc	agatttacga	ctggcacaga	gactttttt	taggagagtt	agagaagtgc	6000
cttgaagatc	cagaaaaact	aggatccctt	tttqttaaac	acgagagaag	gttgcacatg	6060
tacatagett	attqtcaaaa	taaaccaaag	tetgageaca	ttatataaa	atacattgat	6120
acctttttt	aggacttaaa	gcagcgtctt	ggccacaggt	tacageteae	agatetete	6180
		catgaagtat				6240
tccaaaaaaa	ccagcctgga	tacatcagaa	ttagagagag	ctatagaagt	catotocata	6300
gtaccagge	ggtgcaacga	catgatgaac	ataggacaac	tacaaaaatt	caegegeaea	6360
atcottocco	agggtaaact	gctcttgcag	gacacattor	taatcacaaa	ccaadataca	6420
		u-	3	- yy - cu cu ya	ccaayacyca	0420

```
ggacttctgc ctcgctgcag agagaggcgc atcttcctct ttgagcagat cgtcatattc
                                                                      6480
agcgaaccac ttgataaaaa gaagggcttc tccatgccgg gattcctgtt taagaacagt
                                                                      6540
atcaaggtga gttgcctttg cctggaggaa aatgtggaaa atgatccctg taaatttgct
                                                                      6600
ctgacatcga ggacgggtga cgtggtagag accttcattt tgcattcatc tagtccaagt
                                                                      6660
gtccggcaaa cttggatcca tgaaatcaac caaattttag aaaaccagcg caattttta
                                                                      6720
aatgccttga catcgccaat cgagtaccag aggaaccaca gcgggggggg cggcggc
                                                                      6780
ggcagcgggg cagcggcggg ggtgggggca gcggcggcgg cggggccccc agtggcggca
                                                                      6840
gcggccacag tggcggcccc agcagctgcg gcggcgcccc cagcacgagc aggagccggc
                                                                      6900
ecteceggat ecceeagest greegacase acceeeegt gerggretes tergeagest
                                                                      6960
cgagccaggc agaggcagac aagatgtcag agtgaaagca gcagcagtag caacatctcc
                                                                      7020
accatgttgg tgacacacga ttacacggca gtgaaggagg atgagatcaa cgtctaccaa
                                                                      7080
ggagaggtcg ttcaaattct ggccagcaac cagcagaaca tgtttctggt gttccgagcc
                                                                      7140
gccactgacc agtgccccgc agctgagggc tggattccag gctttgtcct gggccacacc
                                                                      7200
agtgcagtca tcgtggagaa cccggacggg actctcaaga agtcaacatc ttggcacaca
                                                                     7260
gcactccgtt taaggaaaaa atctgagaaa aaagataaag acggcaaaag ggaaggcaag
                                                                      7320
ttagagaacg gttatcggaa gtcacgggaa ggactcagca acaaggtatc tgtgaagctt
                                                                      7380
ctcaatccca actacattta tgacgttccc ccagaattcg tcattccatt gagtgaggtc
                                                                     7440
acgtgtgaga caggggagac cgttgttctt agatgtcgag tctgtggccg ccccaaaqcc
                                                                      7500
tcaattacct ggaagggccc tgaacacaac accttgaaca acgatggtca ctacagcatc
                                                                      7560
tcctacagtg acctgggaga ggccacgctg aagattgtgg gcgtgaccac ggaagatgac
                                                                      7620
ggcatctaca cgtgcatcgc tgtcaatgac atgggttcag cctcatcatc ggccagcctg
                                                                      7680
agggtcctag gtccagggat ggatgggatc atggtgacct ggaaagacaa ctttgactcc
                                                                     7740
ttctacagtg aagtggctga gcttggcagg ggcagattct ctgtcgttaa gaaatgtgat
                                                                     7800
cagaaaggaa ccaagcgagc agtggccact aagtttgtga acaagaagtt gatgaagcgc
                                                                     7860
gaccaggica cccatgaget tggcatectg cagageetee ageacceet gettgtegge
                                                                     7920
ctcctcgaca cctttgagac ccccaccagc tacatcctgg tcttagaaat ggctgaccag
                                                                     7980
ggtcgcctcc tggactgcgt ggtgcgatgg ggaagcctca ctgaagggaa gatcagggcg
                                                                     8040
cacctggggg aggttctgga agctgtccgg tacctgcaca actgcaggat agcacacctg
                                                                     8100
gacctaaagc ctgagaatat cctggtggat gagagtttag ccaagccaac catcaaactg
                                                                     8160
gctgactttg gagatgctgt tcagctcaac acgacctact acatccacca gttactgggg
                                                                     8220
aaccctgaat tcgcagcccc tgaaatcatc ctcgggaacc ctgtctccct gacctcggat
                                                                     8280
acgtggagtg ttggagtgct cacatacgta cttcttagtg gcgtgtcccc cttcctggat
                                                                     8340
gacagtgtgg aagagacctg cctgaacatt tgccgcttag actttagctt cccagatgac
                                                                     8400
tactttaaag gagtgagcca gaaggccaag gagttcgtgt gcttcctcct gcaggaggac
                                                                     8460
cccgccaagc gtccctcggc tgcgctggcc ctccaggagc agtggctgca ggccggcaac
                                                                     8520
ggcagaagca cgggcgtcct cgacacgtcc agactgactt ccttcattga gcggcgcaaa
                                                                     8580
caccagaatg atgttcgacc tatccgtagc attaaaaact ttctgcagag caggcttctg.
                                                                     8640
cctagagttt gacctatcca gaagttcttt ctcattctct ttcacctgcc aatcagctgt
                                                                     8700
taatctgaat tttcaagaga aaacaagcaa acataactga tcagctgccg gtatgttcat
                                                                     8760
cgtgtgaaat tgcattccaa gtgagctgtg ctcagcagtg cttggacaca gagctgcaag
                                                                     8820
ctgcgctggg gtggaggacc gtcacttaca ctctgccaag gacggaggtc gcattgctgt
                                                                     8880
atcacagtat tttttacgga tttctg
                                                                     8906
<210> 86
<211> 1204
<212> DNA
<213> Homo sapiens
<400> 86
tcggcggcgg tggtatcggc ggcagctgtg agggggttcc gggaagatgg tgctgatcaa
                                                                       60
ggaattccgt gtggttttgc catgttctgt tcaggagtat caggttgggc agctttactc
                                                                      120
tgttgcagaa gctagtaaga atgagactgg tggtggagaa ggaattgaag tcttaaagaa
                                                                      180
tgaaccttat gagaaggatg gagaaaaggg acagtatacg cacaaaattt atcacctaaa
                                                                      240
gagcaaagtg cctgcattcg tgaggatgat tgctcccgag ggctccttgg tgtttcatga
                                                                       300
gaaagcctgg aatgcgtacc cctactgtag aacaattgta acgaatgaat atatgaaaga
                                                                      360
```

420

tgatttcttc attaaaatcg aaacatggca caaaccagac ttgggaacat tagaaaatgt

```
acatggttta gatccaaaca catggaaaac tgttgaaatt gtccatatag atattgcaga
                                                                       480
tagaagtcaa gttgaaccag cagactacaa agctgatgaa gacccagcat tattccagtc
                                                                       540
agtcaagacc aagagagcc ctttgggacc caactggaag aaggagctgg caaacagccc
                                                                       600
tgactgtccc cagatgtgtg cctataagct ggtgaccatc aaattcaagt ggtggggact
                                                                       660
gcaaagcaaa gtagaaaact tcattcaaaa gcaagaaaaa cggatattta caaacttcca
                                                                       720
tcgccagctt ttttgttgga ttgacaagtg gatcgatctc acgatggaag acattaggag
                                                                       780
aatggaagac gagactcaga aagaactaga aacaatgcgt aagaggggtt ccgttcgagg
                                                                       840
cacgtcggct gctgatgtct agatgagtcc cctgtagggt cagagacaat gtcaaactgt
                                                                       900
ttacgtaatc aaggtcaagt gaggggaaca agcgcagcca gtgatgagtg aacaacaatc
                                                                       960
tgaccagtat cttgcagtgt tgacgtttcc cagatgtgtg cttgtgatga tacacacaca
                                                                      1020
tgcacaggtt ctcaaccacg tgtgtatata tgtatgtgtg catatgtctg tagctgtata
                                                                      1080
taaagcgcat gtagagctac agatccagat acacacactt gtgtatatat gtacatacag
                                                                      1140
acatactgaa gggattagta caatttctcc aaagtactgt acctatcttc agcaagaatg
                                                                      1200
caaa
                                                                      1204
<210> 87
<211> 892
```

<212> PRT

<213> Homo sapiens

<400> 87

Met Asp His Tyr Asp Ser Gln Gln Thr Asn Asp\Tyr Met Gln Pro Glu Glu Asp Trp Asp Arg Asp Leu Leu Leu Asp Pro Ala Trp Glu Lys Gln Gln Arg Lys Thr Phe Thr Ala Trp Cys Asn Ser His Leu Arg Lys Ala Gly Thr Gln Ile Glu Asn Ile Glu Glu Asp Phe Arg Asp Gly Leu Lys Leu Met Leu Leu Glu Val Ile Ser Gly Glu Arg Leu Ala Lys Pro 70 Glu Arg Gly Lys Met Arg Val His Lys Ile Ser Asn Val Asn Lys Ala Leu Asp Phe Ile Ala Ser Lys Gly Val Lys Leu Val Ser Ile Gly Ala 100 105 Glu Glu Ile Val Asp Gly Asn Val Lys Met Thr Leu Gly Met Ile Trp Thr Ile Ile Leu Arg Phe Ala Ile Gln Asp Ile Ser Val Glu Glu Thr 135 Ser Ala Lys Glu Gly Leu Leu Trp Cys Gln Arg Lys Thr Ala Pro Tyr Lys Asn Val Asn Ile Gln Asn Phe His Ile Ser Trp Lys Asp Gly 165 170 175 Leu Gly Phe Cys Ala Leu Ile His Arg His Arg Pro Glu Leu Ile Asp 180 185 Tyr Gly Lys Leu Arg Lys Asp Asp Pro Leu Thr Asn Leu Asn Thr Ala 200 Phe Asp Val Ala Glu Lys Tyr Leu Asp Ile Pro Lys Met Leu Asp Ala 215 Glu Asp Ile Val Gly Thr Ala Arg Pro Asp Glu Lys Ala Ile Met Thr 230 235 Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly Ala Gln Lys Ala Glu 250 245 Thr Ala Ala Asn Arg Ile Cys Lys Val Leu Ala Val Asn Gln Glu Asn 265 Glu Gln Leu Met Glu Asp Tyr Glu Lys Leu Ala Ser Asp Leu Leu Glu 275 280

Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asn Arg Val Pro Glu Asn 295 Thr Met His Ala Met Gln Gln Lys Leu Glu Asp Phe Arg Asp Tyr Arg 315 Arg Leu His Lys Pro Pro Lys Val Gln Glu Lys Cys Gln Leu Glu Ile 325 330 Asn Phe Asn Thr Leu Gln Thr Lys Leu Arg Leu Ser Asn Arg Pro Ala 345 Phe Met Pro Ser Glu Gly Arg Met Val Ser Asp Ile Asn Asn Ala Trp 360 Gly Cys Leu Glu Gln Val Glu Lys Gly Tyr Glu Glu Trp Leu Leu Asn 375 Glu Ile Arg Arg Leu Glu Arg Leu Asp His Leu Ala Glu Lys Phe Arg 390 395 Gln Lys Ala Ser Ile His Glu Ala Trp Thr Asp Gly Lys Glu Ala Met 405 410 Leu Arg Gln Lys Asp Tyr Glu Thr Ala Thr Leu Ser Glu Ile Lys Ala 420 425 Leu Leu Lys Lys His Glu Ala Phe Glu Ser Asp Leu Ala Ala His Gln 440 Asp Arg Val Glu Gln Ile Ala Ala Ile Ala Gln Glu Leu Asn Glu Leu 455 Asp Tyr Tyr Asp Ser Pro Ser Val Asn Ala Arg Cys Gln Lys Ile Cys 470 475 Asp Gln Trp Asp Asn Leu Gly Ala Leu Thr Gln Lys Arg Arg Glu Ala 485 490 Leu Glu Arg Thr Glu Lys Leu Leu Glu Thr Ile Asp Gln Leu Tyr Leu 505 Glu Tyr Ala Lys Arg Ala Ala Pro Phe Asn Asn Trp Met Glu Gly Ala 520 Met Glu Asp Leu Gln Asp Thr Phe Ile Val His Thr Ile Glu Glu Ile 535 Gln Gly Leu Thr Thr Ala His Glu Gln Phe Lys Ala Thr Leu Pro Asp 550 555 Ala Asp Lys Glu Arg Leu Ala Ile Leu Gly Ile His Asn Glu Val Ser 565 570 Lys Ile Val Gln Thr Tyr His Val Asn Met Ala Gly Thr Asn Pro Tyr 585 Thr Thr Ile Thr Pro Gln Glu Ile Asn Gly Lys Trp Asp His Val Arg 600 Gln Leu Val Pro Arg Arg Asp Gln Ala Leu Thr Glu Glu His Ala Arg 615 620 Gln Gln His Asn Glu Arg Leu Arg Lys Gln Phe Gly Ala Gln Ala Asn 630 • 635 Val Ile Gly Pro Trp Ile Gln Thr Lys Met Glu Glu Ile Gly Arg Ile 645 650 Ser Ile Glu Met His Gly Thr Leu Glu Asp Gln Leu Ser His Leu Arg 665 Gln Tyr Glu Lys Ser Ile Val Asn Tyr Lys Pro Lys Ile Asp Gln Leu 680 Glu Gly Asp His Gln Leu Ile Gln Glu Ala Leu Ile Phe Asp Asn Lys 695 700 His Thr Asn Tyr Thr Met Glu His Ile Arg Val Gly Trp Glu Gln Leu 710 715 Leu Thr Thr Ile Ala Arg Thr Ile Asn Glu Val Glu Asn Gln Ile Leu 730 Thr Arg Asp Ala Lys Gly Ile Ser Gln Glu Gln Met Asn Glu Phe Arg

032796-132.ST25 740 745 Ala Ser Phe Asn His Phe Asp Arg Asp His Ser Gly Thr Leu Gly Pro 760 Glu Glu Phe Lys Ala Cys Leu Ile Ser Leu Gly Tyr Asp Ile Gly Asn 775 780 Asp Pro Gln Gly Glu Ala Glu Phe Ala Arg Ile Met Ser Ile Val Asp 795 Pro Asn Arg Leu Gly Val Val Thr Phe Gln Ala Phe Ile Asp Phe Met 805 810 Ser Arg Glu Thr Ala Asp Thr Asp Thr Ala Asp Gln Val Met Ala Ser 825 Phe Lys Ile Leu Ala Gly Asp Lys Asn Tyr Ile Thr Met Asp Glu Leu 840 Arg Arg Glu Leu Pro Pro Asp Gln Ala Glu Tyr Cys Ile Ala Arg Met 855 Ala Pro Tyr Thr Gly Pro Asp Ser Val Pro Gly Ala Leu Asp Tyr Met 870 875 Ser Phe Ser Thr Ala Leu Tyr Gly Glu Ser Asp Leu 885 <210> 88 <211> 197 <212> PRT <213> Homo sapiens <400> 88 Met Met Phe Pro Gln Ser Arg His Ser Gly Ser Ser His Leu Pro Gln Gln Leu Lys Phe Thr Thr Ser Asp Ser Cys Asp Arg Ile Lys Asp Glu Phe Gln Leu Leu Gln Ala Gln Tyr His Ser Leu Lys Leu Glu Cys Asp 40 Lys Leu Ala Ser Glu Lys Ser Glu Met Gln Arg His Tyr Val Met Tyr Tyr Glu Met Ser Tyr Gly Leu Asn Ile Glu Met His Lys Gln Ala Glu 70 75 Ile Val Lys Arg Leu Asn Gly Ile Cys Ala Gln Val Leu Pro Tyr Leu 90 Ser Gln Glu His Gln Gln Gln Val Leu Gly Ala Ile Glu Arg Ala Lys 105 Gln Val Thr Ala Pro Glu Leu Asn Ser Ile Ile Arg Gln Gln Leu Gln 120

Ala His Gln Leu Ser Gln Leu Gln Ala Leu Ala Leu Pro Leu Thr Pro 135 140 Leu Pro Val Gly Leu Gln Pro Pro Ser Leu Pro Ala Val Ser Ala Gly

150 155 Thr Gly Leu Leu Ser Leu Ser Ala Leu Gly Ser Gln Ala His Leu Ser 170

Lys Glu Asp Lys Asn Gly His Asp Gly Asp Thr His Gln Glu Asp Asp 180 185

Gly Glu Lys Ser Asp 195

<210> 89

<211> 739

<212> PRT

<213> Homo sapiens

<400> 89 Gly Asp Lys Glu Pro Thr Glu Thr Ile Gly Asp Leu Ser Ile Cys Leu Asp Gly Leu Gln Leu Glu Ser Glu Val Val Thr Asn Gly Glu Thr Thr Cys Ser Glu Ser Ala Ser Gln Asn Asp Asp Gly Ser Arg Ser Lys Asp Glu Thr Arg Val Ser Thr Asn Gly Ser Asp Asp Pro Glu Asp Ala Gly Ala Gly Glu Asn Arg Arg Val Ser Gly Asn Asn Ser Pro Ser Leu Ser 75 Asn Gly Gly Phe Lys Pro Ser Arg Pro Pro Arg Pro Ser Arg Pro Pro 85 90 Pro Pro Thr Pro Arg Arg Pro Ala Ser Val Asn Gly Ser Pro Ser Ala 105 Thr Ser Glu Ser Asp Gly Ser Ser Thr Gly Ser Leu Pro Pro Thr Asn 120 Thr Asn Thr Asn Thr Ser Glu Gly Ala Thr Ser Gly Leu Ile Ile Pro 135 Leu Thr Ile Ser Gly Gly Ser Gly Pro Arg Pro Leu Asn Pro Val Thr 150 155 Gln Ala Pro Leu Pro Pro Gly Trp Glu Gln Arg Val Asp Gln His Gly Arg Val Tyr Tyr Val Asp His Val Glu Lys Arg Thr Thr Trp Asp Arg 185 Pro Glu Pro Leu Pro Pro Gly Trp Glu Arg Arg Val Asp Asn Met Gly 200 Arg Ile Tyr Tyr Val Asp His Phe Thr Arg Thr Thr Thr Trp Gln Arg 215 220 Pro Thr Leu Glu Ser Val Arg Asn Tyr Glu Gln Trp Gln Leu Gln Arg 230 235 Ser Gln Leu Gln Gly Ala Met Gln Gln Phe Asn Gln Arg Phe Ile Tyr 250 Gly Asn Gln Asp Leu Phe Ala Thr Ser Gln Ser Lys Glu Phe Asp Pro 265 Leu Gly Pro Leu Pro Pro Gly Trp Glu Lys Arg Thr Asp Ser Asn Gly 280 Arg Val Tyr Phe Val Asn His Asn Thr Arg Ile Thr Gln Trp Glu Asp 295 Pro Arg Ser Gln Gly Gln Leu Asn Glu Lys Pro Leu Pro Glu Gly Trp Glu Met Arg Phe Thr Val Asp Gly Ile Pro Tyr Phe Val Asp His Asn 325 330 Arg Arg Thr Thr Thr Tyr Ile Asp Pro Arg Thr Gly Lys Ser Ala Leu 345 Asp Asn Gly Pro Gln Ile Ala Tyr Val Arg Asp Phe Lys Ala Lys Val 360 Gln Tyr Phe Arg Phe Trp Cys Gln Gln Leu Ala Met Pro Gln His Ile 375 380 Lys Ile Thr Val Thr Arg Lys Thr Leu Phe Glu Asp Ser Phe Gln Gln 390 395 Ile Met Ser Phe Ser Pro Gln Asp Leu Arg Arg Leu Trp Val Ile 405 410 Phe Pro Gly Glu Glu Gly Leu Asp Tyr Gly Gly Val Ala Arg Glu Trp 425 Phe Phe Leu Leu Ser His Glu Val Leu Asn Pro Met Tyr Cys Leu Phe

WO 02/092015 PCT/US02/15982

032796-132.ST25

440 445 Glu Tyr Ala Gly Lys Asp Asn Tyr Cys Leu Gln Ile Asn Pro Ala Ser 450 455 Tyr Ile Asn Pro Asp His Leu Lys Tyr Phe Arg Phe Ile Gly Arg Phe 470 475 Ile Ala Met Ala Leu Phe His Gly Lys Phe Ile Asp Thr Gly Phe Ser 490 Leu Pro Phe Tyr Lys Arg Ile Leu Asn Lys Pro Val Gly Leu Lys Asp 505 Leu Glu Ser Ile Asp Pro Glu Phe Tyr Asn Ser Leu Ile Trp Val Lys 520 Glu Asn Asn Ile Glu Glu Cys Asp Leu Glu Met Tyr Phe Ser Val Asp 535 540 Lys Glu Ile Leu Gly Glu Ile Lys Ser His Asp Leu Lys Pro Asn Gly 555 550 Gly Asn Ile Leu Val Thr Glu Glu Asn Lys Glu Glu Tyr Ile Arg Met 565 570 Val Ala Glu Trp Arg Leu Ser Arg Gly Val Glu Glu Gln Thr Gln Ala 585 Phe Phe Glu Gly Phe Asn Glu Ile Leu Pro Gln Gln Tyr Leu Gln Tyr 600 Phe Asp Ala Lys Glu Leu Glu Val Leu Leu Cys Gly Met Gln Glu Ile 615 620 Asp Leu Asn Asp Trp Gln Arg His Ala Ile Tyr Arg His Tyr Ala Arg 630 635 Thr Ser Lys Gln Ile Met Trp Phe Trp Gln Phe Val Lys Glu Ile Asp 645 650 Asn Glu Lys Arg Met Arg Leu Leu Gln Phe Val Thr Gly Thr Cys Arg 665 Leu Pro Val Gly Gly Phe Ala Asp Leu Met Gly Ser Asn Gly Pro Gln 680 Lys Phe Cys Ile Glu Lys Val Gly Lys Glu Asn Trp Leu Pro Arg Ser 695 700 His Thr Cys Phe Asn Arg Leu Asp Leu Pro Pro Tyr Lys Ser Tyr Glu 710 715 Gln Leu Lys Glu Lys Leu Leu Phe Ala Ile Glu Glu Thr Glu Gly Phe Gly Gln Glu <210> 90 <211> 431

<212> PRT

<213> Homo sapiens

Gly Pro Pro Pro Thr Arg Ala Leu Pro Leu Pro Gln Ser Leu Pro Pro 10 Asp Phe Arg Leu Glu Pro Thr Ala Pro Ala Leu Ser Pro Arg Ser Ser 25 Phe Ala Ser Ser Ser Ala Ser Asp Ala Ser Lys Pro Ser Ser Pro Arg 40 Gly Ser Leu Leu Asp Gly Ala Gly Ala Gly Gly Ala Gly Gly Ser 55 Arg Pro Cys Ser Asn Arg Thr Ser Gly Ile Ser Met Gly Tyr Asp Gln 70 Arg His Gly Ser Pro Leu Pro Ala Gly Pro Cys Leu Phe Gly Pro Pro

WO 02/092015 PCT/US02/15982

032796-132.ST25

```
85
                                    90
Leu Ala Gly Ala Pro Ala Gly Tyr Ser Pro Gly Gly Val Pro Ser Ala
                                105
Tyr Pro Glu Leu His Ala Ala Leu Asp Arg Leu Tyr Ala Gln Arg Pro
      . 115
Ala Gly Phe Gly Cys Gln Glu Ser Arg His Ser Tyr Pro Pro Ala Leu
                        135
                                            140
Gly Ser Pro Gly Ala Leu Ala Gly Ala Arg Val Gly Ala Ala Gly Pro
                    150
Leu Glu Arg Arg Gly Ala Gln Pro Gly Arg His Ser Val Thr Gly Tyr
                165
                                    170
Gly Asp Cys Ala Val Gly Ala Arg Tyr Gln Asp Glu Leu Thr Ala Leu
                                185
Leu Arg Leu Thr Val Gly Thr Gly Gly Arg Glu Ala Gly Ala Arg Gly
                            200
                                                205
Glu Pro Ser Gly Ile Glu Pro Ser Gly Leu Glu Glu Pro Pro Gly Pro
                        215
                                            220
Phe Val Pro Glu Ala Ala Arg Ala Arg Met Arg Glu Pro Glu Ala Arg
                    230
                                        235
Glu Asp Tyr Phe Gly Thr Cys Ile Lys Cys Asn Lys Gly Ile Tyr Gly
                245
                                    250
Gln Ser Asn Ala Cys Gln Ala Leu Asp Ser Leu Tyr His Thr Gln Cys
                                265
Phe Val Cys Cys Ser Cys Gly Arg Thr Leu Arg Cys Lys Ala Phe Tyr
        275
                            280
                                                285
Ser Val Asn Gly Ser Val Tyr Cys Glu Glu Asp Tyr Leu Phe Ser Gly
                        295
                                            300
Phe Gln Glu Ala Ala Glu Lys Cys Cys Val Cys Gly His Leu Ile Leu
                    310
                                        315
Glu Lys Ile Leu Gln Ala Met Gly Lys Ser Tyr His Pro Gly Cys Phe
                325
                                    330
Arg Cys Ile Val Cys Asn Lys Cys Leu Asp Gly Ile Pro Phe Thr Val
                                345
Asp Phe Ser Asn Gln Val Tyr Cys Val Thr Asp Tyr His Lys Asn Tyr
                            360
Ala Pro Lys Cys Ala Ala Cys Gly Gln Pro Ile Leu Pro Ser Glu Gly
                        375
Cys Glu Asp Ile Val Arg Val Ile Ser Met Asp Arg Asp Tyr His Phe
                    390
                                        395
Glu Cys Tyr His Cys Glu Asp Cys Arg Met Gln Leu Ser Asp Glu Glu
                                    410
Gly Cys Cys Phe Pro Leu Asp Gly His Leu Leu Cys His Gly
                                425
<210> 91
<211> 900
<212> PRT
<213> Homo sapiens
```

<400> 91

	50					55					60				
65					70					75		Ala			80
Phe	Cys	Ser	Gly	Lys 85	Gly	Val	Gly	Ile	Lys 90	Gly	Glu	Thr	Ser	Thr 95	Ala
Thr	Pro	Arg	Arg 100	Ser	Asp	Leu	Asp	Leu 105	Gly	Tyr	Glu	Pro	Glu 110	Gly	Ser
Ala	Ser	Pro 115	Thr	Pro	Pro	Tyr	Leu 120	Lys	Trp	Ala	Glu	Ser 125	Leu	His	Ser
Leu	Leu 130	Asp	Asp	Gln	Asp	Gly 135	Ile	Ser	Leu	Phe	Arg 140	Thr	Phe	Leu	Lys
145					150					155		Ala	-		160
				165					170			Lys	•	175	-
			180					185			•	Asn	190	-	
		195					200	•				Ile 205	_	_	_
	210	=				215					220	Gln			
225					230					235		Ser			240
	=		_	245		-		_	250	_		Glu		255	-
			260					265	_		_	Lys	270		
	`	275					280	_			_	Lys 285	_	_	
	290			_	_	295					300	Pro	_	_	
305					310					315	_	Val			320
		_		325	_	_			330	_	_	Ser	_	335	
			340					345				Leu	350		
		355		_			360					Ser 365	_		-
	370					375					380	Pro			
385					390					395					Asn 400
_	_			405					410		_	Arg		415	_
			420					425					430		Arg
		435			-		440					445			Glu
	450					455					460	Asp		_	
465		_			470					475					Ala 480
				485					490					495	Gly
Leu	Arg	Asp	Ala 500	His	Glu	Glu	Asn	Pro 505	Glu	Ser	ile	Leu	Asp 510	Glu	His

```
Val Gln Arg Val Leu Arg Thr Thr Gly Arg Gln Ser Pro Gly Pro Gly
                            520
His Arg Ser Pro Asp Ser Gly His Val Ala Lys Met Pro Val Ala Leu
Gly Gly Ala Ala Ser Gly His Gly Lys His Val Pro Lys Ser Gly Ala
                   550
                                        555
Lys Leu Asp Ala Ala Gly Leu His His His Arg His Val His His His
               565
                                    570
Val His His Ser Thr Ala Arg Pro Lys Glu Gln Val Glu Ala Glu Ala
                                585
Thr Arg Arg Ala Gln Ser Ser Phe Ala Trp Gly Leu Glu Pro His Ser
                            600
His Gly Ala Arg Ser Arg Gly Tyr Ser Glu Ser Val Gly Ala Ala Pro
                        615
                                            620
Asn Ala Ser Asp Gly Leu Ala His Ser Gly Lys Val Gly Val Ala Cys
                    630
                                        635
Lys Arg Asn Ala Lys Lys Ala Glu Ser Gly Lys Ser Ala Ser Thr Glu
                645
Val Pro Gly Ala Ser Glu Asp Ala Glu Lys Asn Gln Lys Ile Met Gln
                                665
Trp Ile Ile Glu Gly Glu Lys Glu Ile Ser Arg His Arg Arg Thr Gly
                            680
His Gly Ser Ser Gly Thr Arg Lys Pro Gln Pro His Glu Asn Ser Arg
                        695
                                            700
Pro Leu Ser Leu Glu His Pro Trp Ala Gly Pro Gln Leu Arg Thr Ser
                   710
                                        715
Val Gln Pro Ser His Leu Phe Ile Gln Asp Pro Thr Met Pro Pro His
                725
                                    730
Pro Ala Pro Asn Pro Leu Thr Gln Leu Glu Glu Ala Arg Arg Leu
           740
                               745
Glu Glu Glu Lys Arg Ala Ser Arg Ala Pro Ser Lys Gln Arg Tyr
                            760
Val Gln Glu Val Met Arg Arg Gly Arg Ala Cys Val Arg Pro Ala Cys
                        775
Ala Pro Val Leu His Val Val Pro Ala Val Ser Asp Met Glu Leu Ser
                    790
Glu Thr Glu Thr Arg Ser Gln Arg Lys Val Gly Gly Gly Ser Ala Gln
                805
                                    810
Pro Cys Asp Ser Ile Val Val Ala Tyr Tyr Phe Cys Gly Glu Pro Ile
                                825
Pro Tyr Arg Thr Leu Val Arg Gly Arg Ala Val Thr Leu Gly Gln Phe
                           840
Lys Glu Leu Leu Thr Lys Lys Gly Ser Tyr Arg Tyr Tyr Phe Lys Lys
                       855
Val Ser Asp Glu Phe Asp Cys Gly Val Val Phe Glu Glu Val Arg Glu
                   870
                                        875
Asp Glu Ala Val Leu Pro Val Phe Glu Glu Lys Ile Ile Gly Lys Val
                885
Glu Lys Val Asp
            900
<210> 92
<211> 591
<212> PRT
<213> Homo sapiens
```

<400> 92

Met Val Pro Val Ala Val Thr Ala Ala Val Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu Arg Glu Ile Lys Lys Gln Leu Leu Ile Ala Gly Leu Thr Arg Glu Arg Gly Leu Leu His Ser Ser Lys Trp Ser Ala Glu Leu Ala Phe Ser Leu Pro Ala Leu Pro Leu Ala Glu Leu 55 Gln Pro Pro Pro Pro Ile Thr Glu Glu Asp Ala Gln Asp Met Asp Ala 75 Tyr Thr Leu Ala Lys Ala Tyr Phe Asp Val Lys Glu Tyr Asp Arg Ala 90 Ala His Phe Leu His Gly Cys Asn Ser Lys Lys Ala Tyr Phe Leu Tyr 105 Met Tyr Ser Arg Tyr Leu Ser Gly Glu Lys Lys Lys Asp Asp Glu Thr 120 Val Asp Ser Leu Gly Pro Leu Glu Lys Gly Gln Val Lys Asn Glu Ala 135 Leu Arg Glu Leu Arg Val Glu Leu Ser Lys Lys His Gln Ala Arg Glu 150 155 Leu Asp Gly Phe Gly Leu Tyr Leu Tyr Gly Val Val Leu Arg Lys Leu 170 Asp Leu Val Lys Glu Ala Ile Asp Val Phe Val Glu Ala Thr His Val 185 Leu Pro Leu His Trp Gly Ala Trp Leu Glu Leu Cys Asn Leu Ile Thr 200 Asp Lys Glu Met Leu Lys Phe Leu Ser Leu Pro Asp Thr Trp Met Lys 215 Glu Phe Phe Leu Ala His Ile Tyr Thr Glu Leu Gln Leu Ile Glu Glu 230 235 Ala Leu Gln Lys Tyr Gln Asn Leu Ile Asp Val Gly Phe Ser Lys Ser 245 250 Ser Tyr Ile Val Ser Gln Ile Ala Val Ala Tyr His Asn Ile Arg Asp 265 Ile Asp Lys Ala Leu Ser Ile Phe Asn Glu Leu Arg Lys Gln Asp Pro 280 Tyr Arg Ile Glu Asn Met Asp Thr Phe Ser Asn Leu Leu Tyr Val Arg 295 Ser Met Lys Ser Glu Leu Ser Tyr Leu Ala His Asn Leu Cys Glu Ile 310 Asp Lys Tyr Arg Val Glu Thr Cys Cys Val Ile Gly Asn Tyr Tyr Ser 330 Leu Arg Ser Gln His Glu Lys Ala Ala Leu Tyr Phe Gln Arg Ala Leu 345 Lys Leu Asn Pro Arg Tyr Leu Gly Ala Trp Thr Leu Met Gly His Glu 360 Tyr Met Glu Met Lys Asn Thr Ser Ala Ala Ile Gln Ala Tyr Arg His 375 Ala Ile Glu Val Asn Lys Arg Asp Tyr Arg Ala Trp Tyr Gly Leu Gly 395 Gln Thr Tyr Glu Ile Leu Lys Met Pro Phe Tyr Cys Leu Tyr Tyr 405 410 Arg Arg Ala His Gln Leu Arg Pro Asn Asp Ser Arg Met Leu Val Ala 425 Leu Gly Glu Cys Tyr Glu Lys Leu Asn Gln Leu Val Glu Ala Lys Lys Cys Tyr Trp Arg Ala Tyr Ala Val Gly Asp Val Glu Lys Met. Ala Leu

WO 02/092015 PCT/US02/15982

032796-132.ST25

455 Val Lys Leu Ala Lys Leu His Glu Gln Leu Thr Glu Ser Glu Gln Ala 475 Ala Gln Cys Tyr Ile Lys Tyr Ile Gln Asp Ile Tyr Ser Cys Gly Glu 485 490 Ile Val Glu His Leu Glu Glu Ser Thr Ala Phe Arg Tyr Leu Ala Gln 505 Tyr Tyr Phe Lys Cys Lys Leu Trp Asp Glu Ala Ser Thr Cys Ala Gln 520 Lys Cys Cys Ala Phe Asn Asp Thr Arg Glu Glu Gly Lys Ala Leu Leu 535 Arg Gln Ile Leu Gln Leu Arg Asn Gln Gly Glu Thr Pro Thr Thr Glu 550 555 Val Pro Ala Pro Phe Phe Leu Pro Ala Ser Leu Ser Ala Asn Asn Thr 565 570 Pro Thr Arg Arg Val Ser Pro Leu Asn Leu Ser Ser Val Thr Pro <210> 93 <211> 914 <212> PRT <213> Homó sapiens <400> 93 Val Tyr Gln Val Leu Leu Val Gly Ser Thr Leu Leu Lys Glu Val Pro Ser Gly Leu Gln Leu Glu Gln Leu Pro Ser Gln Ser Leu Leu Thr His 25 Ile Pro Thr Ala Gly Leu Pro Thr Ser Leu Gly Gly Gly Leu Pro Tyr 40 Cys His Gln Ala Trp Leu Asp Phe Arg Arg Arg Leu Glu Ala Leu Leu 55 Gln Asn Cys Gln Ala Ala Cys Ala Leu Leu Gln Gly Ala Ile Glu Ser 70 75 Val Lys Ala Val Pro Gln Pro Met Glu Pro Gly Glu Val Gly Gln Leu 90 Leu Gln Gln Thr Glu Val Leu Met Gln Gln Val Leu Asp Ser Pro Trp 105 Leu Ala Trp Leu Gln Cys Gln Gly Gly Arg Glu Leu Thr Trp Leu Lys 120 Gln Glu Val Pro Glu Val Thr Leu Ser Pro Asp Tyr Arg Thr Ala Met 135 140 Asp Lys Ala Asp Glu Leu Tyr Asp Arg Val Asp Gly Leu Leu His Gln 150 155 Leu Thr Leu Gln Ser Asn Gln Arg Ile Gln Ala Leu Glu Leu Val Gln 165 170

			260					265					270		
		275	Ala				280					285	Arg		
	290		Ala			295					300				
305			Gly		310					315					320
			Leu	325					330					335	
			Gly 340					345				_	350		•
		355	Gln				360					365			
	370		Leu			375					380				
385			Ala		390					395	_	_		-	400
			Asn	405					410				_	415	_
			Ala 420					425					430	_	•
		435	Pro	•			440				•	445	-		
	450		Ser			455					460				
465			Arg		470		•		•	475					480
			Glu His	485		•			490			_		495	_
			500 Phe					505				_	510		
		515	Tyr				520					525			
	530		Ser			535	_		_		540		-		-
545			Thr		550					555					560
			Ala	565					570				_	575	
			580 Leu					585					590	_	_
		595	Ser				600					605	_		
	610		Glÿ			615					620				
625			Leu		630					635				_	640
			Thr	645					650					655	
			660 Leu					665					670		
		675	Ala				680		-		_	685		_	
	690		Cys			695					700	_		_	
705		- 33	~y 3	- - y	710	J-5.			ar y	715	J. u	**6	ייי	riie	720

WO 02/092015 PCT/US02/15982

032796-132.ST25

Arg Arg Lys Ala Arg Asp Thr Phe Val Leu Gln Ala Ser Ser Leu Ala 730 Ile Lys Gln Ala Trp Thr Ala Asp Ile Ser His Leu Leu Trp Arg Gln 745 Ala Val His Asn Lys Glu Val Arg Met Ala Glu Met Val Ser Met Gly 760 Val Gly Asn Lys Ala Phe Arg Asp Ile Ala Pro Ser Glu Glu Ala Ile 775 Asn Asp Arg Thr Val Asn Tyr Val Leu Lys Cys Arg Glu Val Arg Ser 790 795 Arg Ala Ser Ile Ala Val Ala Pro Phe Asp His Asp Ser Leu Tyr Leu 805 810 Gly Ala Ser Asn Ser Leu Pro Gly Asp Pro Ala Ser Cys Ser Val Leu 825 Gly Ser Leu Asn Leu His Leu Tyr Arg Asp Pro Ala Leu Leu Gly Leu 840 Arg Cys Pro Leu Tyr Pro Ser Phe Leu Glu Glu Ala Ala Leu Glu Ala 855 Glu Ala Glu Leu Gly Gly Gln Pro Ser Leu Thr Ala Glu Asp Ser Glu 870 875 Ile Ser Ser Gln Cys Pro Ser Ala Ser Gly Ser Ser Gly Ser Asp Ser 890 Ser Cys Val Ser Gly Gln Ala Leu Gly Arg Gly Leu Glu Asp Leu Pro 905 Cys Val

<210> 94

<211> 277 -

<212> PRT

<213> Homo sapiens

<400> 94

Leu Asn Tyr Leu Leu Glu Ser Arg Leu Glu Ala Ala Ala His Cys Ala Leu Lys Gln Gly Ile Ala Thr Ala Ser Leu Leu Pro Ala Gln Leu Gln Pro Ala Val Leu Thr Val Val Thr Cys His Val Val Val Ser Val His Gly His His Thr Asp Gly Cys Leu Ala Ala Leu Cys Arg Glu Asp Arg 55 Thr Gly Thr Gly Gly Ala Phe Trp Cys Lys Asn Arg Val Ile Val Ser 70 His Ala Val Asp Val Val Leu His Val His Gly Glu Gly Asn Pro Val Gln Ala Leu Ile Ala His Gly Ala Pro Glu Ala Ala Trp Val Val Gly 100 105 Leu Ala Gln Gly Leu Gln Asp His Phe His Asp Glu Met Ser Thr His 120 125 Ala Ala Phe Val Gly Arg Leu Leu Glu Pro Gly Val Gln Glu Val Leu 135 140 Leu Ala Val His Phe Leu Thr His Val Val Glu Arg Leu Pro Thr Glu Ser Ser Pro Thr Arg Val Ala Gly Glu Ala Val Ser Val Ile Lys Thr 170 165 Pro His Cys Leu Ala Arg Leu Leu Gly Ser Val Asp Ala Lys Pro Thr 180 185

WO 02/092015 PCT/US02/15982

032796-132.ST25 Leu Asp Ala Asn Ala Glu Val Val Pro Arg Arg Ala Arg Leu Glu Arg Pro Leu Gln Leu Pro Gly Glu Arg Leu Gln Pro Pro Leu Gly Arg Ala 215 Trp Ala Ala Leu Pro Ala Arg Gly Gln Arg Glu Cys Arg Gln Arg Glu 230 235 Gly Gly Arg Pro Arg Arg Leu Arg Gly Ala Ser Gly Arg Gly Ala Gly 245 250 Ala Gly Arg Glu Glu Val Ser Val Gly Phe Ser Ala Gln Trp Glu Phe 260 265 Gly Ser Gly Arg His 275 <210> 95 <211> 1120 <212> PRT <213> Homo sapiens <400> 95 Met Trp Arg Val Lys Lys Leu Ser Leu Ser Leu Ser Pro Ser Pro Gln 10 Thr Gly Lys Pro Ser Met Arg Thr Pro Leu Arg Glu Leu Thr Leu Gln Pro Gly Ala Leu Thr Thr Ser Gly Lys Arg Ser Pro Ala Cys Ser Ser Leu Thr Pro Ser Leu Cys Lys Leu Gly Leu Gln Glu Gly Ser Asn Asn 55 Ser Ser Pro Val Asp Phe Val Asn Asn Lys Arg Thr Asp Leu Ser Ser 70 Glu His Phe Ser His Ser Ser Lys Trp Leu Glu Thr Cys Gln His Glu 90 Ser Asp Glu Gln Pro Leu Asp Pro Ile Pro Gln Ile Ser Ser Thr Pro 100 105 Lys Thr Ser Glu Glu Ala Val Asp Pro Leu Gly Asn Tyr Met Val Lys 120 125 Thr Ile Val Leu Val Pro Ser Pro Leu Gly Gln Gln Gln Asp Met Ile 135 Phe Glu Ala Arg Leu Asp Thr Met Ala Glu Thr Asn Ser Ile Ser Leu 150 155 Asn Gly Pro Leu Arg Thr Asp Asp Leu Val Arg Glu Glu Val Ala Pro 165 170 Cys Met Gly Asp Arg Phe Ser Glu Val Ala Ala Val Ser Glu Lys Pro 185

Gly Ala Met Glu Glu Arg Glu Met Arg Phe Pro Thr His Pro Lys Glu 275 280 285 Ser Glu Thr Glu Asp Gln Ala Leu Val Ser Ser Val Glu Asp Ile Leu

Ile Phe Gln Glu Ser Pro Ser His Leu Leu Glu Glu Ser Pro Pro Asn 195 200 205 Pro Cys Ser Glu Gln Leu His Cys Ser Lys Glu Ser Leu Ser Ser Arg

Thr Glu Ala Val Arg Glu Asp Leu Val Pro Ser Glu Ser Asn Ala Phe

Leu Pro Ser Ser Val Leu Trp Leu Ser Pro Ser Thr Ala Leu Ala Ala

Asp Phe Arg Val Asn His Val Asp Pro Glu Glu Glu Ile Val Glu His
260 265 270

215

295

230

245

290

220

235

250

305					Pro 310					315					320
				325	Glu				330			_		335	
			340		Pro			345				_	350		
		355			Asn		360					365			
	370				Ile	375					380		-		
385					Pro 390					395					400
	•			405	Val				410	٠				415	
			420		Arg			425					430	_	
		435		•	Leu		440					445			
	450				Asp	455					460				
465					Ser 470					475				_	480
				485	His				490				_	495	
		٠٠.	500		Asn			505					510		_
		515			Leu		520					525			•
	530				Gln	535					540				-
545					Leu 550					555					560
				565	Glu				570					575	-
			580		Glu			585				_	590		
		595			Gln		600					605			
	610				Lys	615					620		-		
625					Leu 630					635					640
				645	Arg				650					655	
			660		Ser			665					670		-
		675			Gln		680					685		-	
	690				Leu	695					700				-
705					Gln 710					715					720
				725	Leu				730	••				735	
			740		Gln			745					750		
Lys	Asp	Glu	Leu	Leu	Cys	Gln	Leu	Thr	Gln	Ser	Asn	Glu	Glu	Gln	Ala

```
755
                            760
Ala Gln Cys Val Lys Glu Glu Met Ala Leu Lys His Met Gln Ala Glu
                        775
Leu Gln Gln Gln Ala Val Leu Ala Lys Glu Val Arg Asp Leu Lys
                    790
                                        795
Glu Thr Leu Glu Phe Ala Asp Gln Glu Asn Gln Val Ala His Leu Glu
                805
                                    810
Leu Gly Gln Val Glu Cys Gln Leu Lys Thr Thr Leu Glu Val Leu Arg
                                825
Glu Arg Ser Leu Gln Cys Glu Asn Leu Lys Asp Thr Val Glu Asn Leu
                            840
Thr Ala Lys Leu Ala Ser Thr Ile Ala Asp Asn Gln Glu Gln Asp Leu
                        855
Glu Lys Thr Arg Gln Tyr Ser Gln Lys Leu Gly Leu Leu Thr Glu Gln
                   870
                                        875
Leu Gln Ser Leu Thr Leu Phe Leu Gln Thr Lys Leu Lys Glu Lys Thr
                885
                                   890
Glu Gln Glu Thr Leu Leu Leu Ser Thr Ala Cys Pro Pro Thr Gln Glu
            900
                                905
                                                    910
His Pro Leu Pro Asn Asp Arg Thr Phe Leu Gly Ser Ile Leu Thr Ala
                            920
Val Ala Asp Glu Glu Pro Glu Ser Thr Pro Val Pro Leu Leu Gly Ser
                        935
                                            940
Asp Lys Ser Ala Phe Thr Arg Val Ala Ser Met Val Ser Leu Gln Pro
                    950
                                        955
Ala Glu Thr Pro Gly Met Glu Glu Ser Leu Ala Glu Met Ser Ile Met
                965
                                    970
Thr Thr Glu Leu Gln Ser Leu Cys Ser Leu Leu Gln Glu Ser Lys Glu
                                985
                                                    990
Glu Ala Ile Arg Thr Leu Gln Arg Lys Ile Cys Glu Leu Gln Ala Arg
                            1000
                                                1005
Leu Gln Ala Gln Glu Gln His Gln Glu Val Gln Lys Ala Lys Glu
                        1015
                                           1020
Ala Asp Ile Glu Lys Leu Asn Gln Ala Leu Cys Leu Arg Tyr Lys Asn
                   1030
                                       1035
Glu Lys Glu Leu Gln Glu Val Ile Gln Gln Asn Glu Lys Ile Leu Glu
                1045
                                    1050
Gln Ile Asp Lys Ser Gly Glu Leu Ile Ser Leu Arg Glu Glu Val Thr
            1060
                                1065
His Leu Thr Arg Ser Leu Arg Arg Ala Glu Thr Glu Thr Lys Val Leu
        1075
                            1080
                                                1085
Gln Glu Ala Trp Gln Ala Ser Trp Thr Pro Thr Ala Ser Leu Trp Pro
                        1095
                                            1100
Pro Ile Gly Ser Arg Arg Lys Cys Gly Ser Leu Arg Arg Trp Thr Asn
                    1110
                                                            1120
<210> 96
<211> 540
<212> PRT
<213> Homo sapiens
<400> 96
Met Gly Thr Thr Ala Arg Ala Ala Leu Val Leu Thr Tyr Leu Ala Val
```

Met Gly Thr Thr Ala Arg Ala Ala Leu Val Leu Thr Tyr Leu Ala Val

1 5 10 15

Ala Ser Ala Ala Ser Glu Gly Gly Phe Thr Ala Thr Gly Gln Arg Gln
20 25 30

Leu Arg Pro Glu His Phe Gln Glu Val Gly Tyr Ala Ala Pro Pro Ser

		35					40					45			
	50					55					Pro 60				
65					70					75	Gln				80
				85					90		Leu			95	
			100					105			Gln		110		
		115					120				Asn	125		_	
	130	•				135					Pro 140				
145					150					155	Ser				160
				165					170		Pro			175	
			180					185			Val		190	_	
		195					200				Thr	205		_	
	210					215					Cys 220				_
225					230		•			235	Val				240
				245					250		Lys		_	255	
			260					265			Ser Cys		270		
		275					280				Pro	285		•	
	290					295					300 Arg		_		
305					310					315	Gln	_		_	320
				325					330		Cys			335	
			340					345			Asp		350		_
		355					360				His	365			
	370					375					380 Phe			_	-
385					390					395	Ile			_	400
				405					410		Asn			415	_
			420					425			Asn		430		
		435					440				Cys	445			_
	450					455					460 Arg				
465					470					475	Gly				480
7		•	-	485	-,5	-,5	- 1 -		490		O L Y	nap	GIU	495	val

032796-132.ST25

Asn Cys Phe Asn Ile Asn Tyr Leu Arg Asn Val Ala Leu Val Ser Gly 500 505 Asp Thr Glu Asn Ala Lys Gly Gln Gly Glu Gln Gly Ser Thr Gly Gly 520 Thr Asn Ile Ser Ser Thr Ser Glu Pro Lys Glu Glu 535 <210> 97 <211> 462 <212> PRT <213> Homo sapiens <400> 97 Met Gly Lys Glu Lys Thr His Ile Asn Ile Val Val Ile Gly His Val Asp Ser Gly Lys Ser Thr Thr Thr Gly His Leu Ile Tyr Lys Cys Gly 25 Gly Ile Asp Lys Arg Thr Ile Glu Lys Phe Glu Lys Glu Ala Ala Glu 40 Met Gly Lys Gly Ser Phe Lys Tyr Ala Trp Val Leu Asp Lys Leu Lys 55 Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ser Leu Trp Lys Phe Glu Thr Ser Lys Tyr Tyr Val Thr Ile Ile Asp Ala Pro Gly His Arg 90 Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser Gln Ala Asp Cys Ala 105 Val Leu Ile Val Ala Ala Gly Val Gly Glu Phe Glu Ala Gly Ile Ser 120 Lys Asn Gly Gln Thr Arg Glu His Ala Leu Leu Ala Tyr Thr Leu Gly 135 Val Lys Gln Leu Ile Val Gly Val Asn Lys Met Asp Ser Thr Glu Pro 150 155 Pro Tyr Ser Gln Lys Arg Tyr Glu Glu Ile Val Lys Glu Val Ser Thr 165 170 Tyr Ile Lys Lys Ile Gly Tyr Asn Pro Asp Thr Val Ala Phe Val Pro 180 185 Ile Ser Gly Trp Asn Gly Asp Asn Met Leu Glu Pro Ser Ala Asn Met 200 Pro Trp Phe Lys Gly Trp Lys Val Thr Arg Lys Asp Gly Asn Ala Ser 215 Gly Thr Thr Leu Leu Glu Ala Val Asp Cys Ile Leu Pro Pro Thr Arg 235 Pro Thr Asp Lys Pro Leu Arg Leu Pro Leu Gln Asp Val Tyr Lys Ile 245 250 Gly Gly Ile Gly Thr Val Pro Val Gly Arg Val Glu Thr Gly Val Leu 265 Lys Pro Gly Met Val Val Thr Phe Ala Pro Val Asn Val Thr Thr Glu 280 Val Lys Ser Val Glu Met His His Glu Ala Leu Ser Glu Ala Leu Pro 295 300 Gly Asp Asn Val Gly Phe Asn Val Lys Asn Val Ser Val Lys Asp Val 310 315 Arg Arg Gly Asn Val Ala Gly Asp Ser Lys Asn Asp Pro Pro Met Glu 330 Ala Ala Gly Phe Thr Ala Gln Val Ile Ile Leu Asn His Pro Gly Gln 340 345

Ile Ser Ala Gly Tyr Ala Pro Val Leu Asp Cys His Thr Ala His Ile 360 Ala Cys Lys Phe Ala Glu Leu Lys Glu Lys Ile Asp Arg Arg Ser Gly 375 Lys Lys Leu Glu Asp Gly Pro Lys Phe Leu Lys Ser Gly Asp Ala Ala 390 395 Ile Val Asp Met Val Pro Gly Lys Pro Met Cys Val Glu Ser Phe Ser 410 Asp Tyr Pro Pro Leu Gly Arg Phe Ala Val Arg Asp Met Arg Gln Thr 425 Val Ala Val Gly Val Ile Lys Ala Val Asp Lys Lys Ala Ala Gly Ala 440 Gly Lys Val Thr Lys Ser Ala Gln Lys Ala Gln Lys Ala Lys 455 <210> 98 <211> 2328 <212> PRT

<400> 98

<213> Homo sapiens

Lys Ser Lys Arg Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser Gln Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys Tyr Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro 55 Glu Ala Glu Glu Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg 75 Val Gly Asp Thr Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys 90 Thr Cys Ile Gly Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg Cys His Glu Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg 120 Arg Pro His Glu Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly 135 Asn Gly Lys Gly Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe 155 Asp His Ala Ala Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro Tyr Gln Gly Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly 185 Ser Gly Arg Ile Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp 200 Thr Arg Thr Ser Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn 215 220 Arg Gly Asn Leu Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu 230 235 Trp Lys Cys Glu Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser 245 250 Gly Pro Phe Thr Asp Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His 265 Pro Gln Pro Pro Pro Tyr Gly His Cys Val Thr Asp Ser Gly Val Val 280

285

Tyr	Ser 290	Val	Gly	Met	Gln	Trp 295	Leu	Lys	Thr	Gln	Gly 300	Asn	Lys	Gln	Met
Leu 305	Cys	Thr	Cys	Leu	Gly 310	Asn	Gly	Val	Ser	Cys 315	Gln	Glu	Thr	Ala	Val 320
Thr	Gln	Thr	Tyr	Gly 325	Gly	Asn	Leu	Asn	Gly 330	Glu	Pro	Cys	Val	Leu [.] 335	Pro
Phe	Thr	Tyr	Asn 340	Gly	Arg	Thr	Phe	Tyr 345	Ser	Cys	Thr	Thr	Glu 350	Gly	Arg
Gln	Asp	Gly 355	His	Leu	Trp	Cys	Ser 360	Thr	Thr	Ser	Asn	Tyr 365	Glu	Gln	Asp
	370				Cys	375					380				
385					Gly 390					395				_	400
				405	Asp				410				_	415	Met
			420		Thr			425					430		
		435			Ala		440					445			-
	450				Gly	455					460		_		-
465					Thr 470					475		_		-	480
				485	Gln				490					495	
			500		Asp			505					510	_	
		515			Cys		520					525	_	_	-
	530				Cys	535					540			•	
545					Glu 550					555			_		560
				565	Gly				570		_			575	
			580		Ser			585					590		
		595			Ser		600			_		605			
	610				Tyr	615					620				
625					Ala 630					635				_	640
				645	Pro				650					655	
			660		His			665				_	670		
		675			Pro		680					685	_		
	690				Leu	695					700				
705					Val 710					715			_		720
				725	Glu				730			-	_	735	
Gln	Tyr	Leu	Asp	Leu	Pro	Ser	Thr	Ala	Thr	Ser	Val	Asn	Ile	Pro	Asp

			740					745					750		
		755				Tyr	760					765	Ile		
	770					Ile 775					780				
785					790	Thr				795		-			800
				805		Pro			810					815	
			820			Glu		825					830		
		835				Thr	840					845	_		
	850					Ala 855					860				
865					870	Thr				875			_		880
				885		Gln			890			_		895	
			900			Pro		905				_	910	_	
		915		•		Leu	920					925			
	930					Ala 935					940				
945					950	Phe				955		_			960
				965		Thr			970					975	
			980			Asp		985				_	990		
		995				Gly	1000)				1005	5		•
	1010)				Tyr 1015	5				1020)			_
1025	5				1030					1035	5				1040
				1045	5	Glu			1050)				1055	5
			1060)		Ser		1065	5	_			1070)	
		1075	5			Thr	1080)				1085	5	_	
	1090)				Ser 1095	5				1100)	-		
Thr 1105		Asp	Ser	Gly	Ser 1110	Ile	Val	Val	Ser	Gly 1115		Thr	Pro	Gly	Val 1120
Glu	Tyr	Val		Thr 1125		Gln	Val	Leu	Arg 1130		Gly	Gln	Glu	Arg 1135	-
			1140)		Val		1145	5				1150)	
		1155	5			Pro	1160)				1169	5		
	1170)				Asp 1175	5				1180)			
Pro 1185		Asn	Gly	Gln	Gln 1190	Gly	Asn	Ser	Leu	Glu 1195		Val	Val	His	Ala 1200

				120	5				121	0				121	Tyr 5
			122	0				122	5				123	0	Ile
		123	5				124	0				124	5		Phe
	125	0				125	5				126	0			Pro
126	5				127	0				127	5			_	Asn 1280
				128	5		Ser		1290)				129	Val 5
			1300)			Gly	1305	5				1310)	
		131	5				Ser 1320)				1325	5		_
	1330)				1335					1340)			
134	5				1350)				1355	5				Gly 1360
				1369	5				1370)				1379	Glu 5
			1380)			Asn	1385	,				1390)	
		1399	5 ·				Ser 1400)	٠.			1405	·	_	
	1410)				1415					1420)			
142	5				1430)	Ala			1435	,				1440
				1445	5		Val		1450)				1455	, .
			1460)			Val	1465	,				1470)	
		1475	5				Gly 1480	}				1485			
	1490)				1495					1500)			
1505	5				1510)	Arg			1515	,				1520
				1525	5	•	Asp		1530)			_	1535	,
			1540)			Gly	1545					1550)	_
		1555	5				Thr 1560	1				1565			
	1570)				1575					1580)			
1585	5				1590)	Gly			1595	ı				1600
				1605	•		Pro		1610	1				1615	i
			1620)			Ala	1625					1630	Gln	Val
		1635	5				Ser 1640					1645			
Leu	D1 -														

	165					165	5				166	0			
100	5				10/	U				167	Val 5	Ala			Asp 1680
				168	5				169	Gln 0	Ser	Thr		169	Pro
			170	0				170	5			Thr	171	Leu 0	Ser
Ala	Gln	Trp 171	Thr 5	Pro	Pro	Asn	Val 172	Gln O	Leu	Thr	Gly	Tyr 172	Arg	Val	Arg
	173	0				173	5				174	Ile O	Asn		
174	5				1750)				175	Met 5	Val			1760
				176	5				1770	Thr	Leu	Thr		177	Pro
			178)				178	5			Pro	1790	Arg	Arg
		179	5				180)				Ile 1805	5	•	-
	1810	כ				1815	5				1820	Ala O			•
1825	5				1830)				1835	5	Asp		-	1840
				1845	5				1850)		Lys		1855	5
•			1860)				1865	5			Val	1870)	
		1875	•				1880)				Leu 1885	,		
	1890)				1895	,				1900		_		
1905	•				1910)				1915	5	Pro	_		1920
				1925	•				1930)		Ile		1935	,
			1940)				1945	5			Leu	1950)	
		1955	i				1960)				Asp 1965			
	1970)				1975	i				1980				
1985	i				1990)				1995	5	Thr			2000
				2005	•				2010)		Ser	-	2015	,
			2020)				2025	5			Gly	2030)	
		2035	1				2040)				Arg 2045		_	
	2050	1				2055)				2060	Thr			
2065					2070)				2075	•	Ser			2080
				2085	,				2090	١		Pro		2095	
rnr	ser	Ala	Thr 2100	Leu	Thr	Gly	Leu	Thr 2105	Arg	Gly	Ala	Thr	Tyr 2110		Ile

Ile Val Glu Ala Leu Lys Asp Gln Gln Arg His Lys Val Arg Glu Glu 2115 2120 Val Val Thr Val Gly Asn Ser Val Asn Glu Gly Leu Asn Gln Pro Thr 2135 Asp Asp Ser Cys Phe Asp Pro Tyr Thr Val Ser His Tyr Ala Val Gly 2150 2155 Asp Glu Trp Glu Arg Met Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln 2165 2170 Cys Leu Gly Phe Gly Ser Gly His Phe Arg Cys Asp Ser Ser Arg Trp 2180 2185 Cys His Asp Asn Gly Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg 2200 2205 Gln Gly Glu Asn Gly Gln Met Met Ser Cys Thr Cys Leu Gly Asn Gly 2210 2215 Lys Gly Glu Phe Lys Cys Asp Pro His Glu Ala Thr Cys Tyr Asp Asp 2230 2235 Gly Lys Thr Tyr His Val Gly Glu Gln Trp Gln Lys Glu Tyr Leu Gly 2245 2250 Ala Ile Cys Ser Cys Thr Cys Phe Gly Gly Gln Arg Gly Trp Arg Cys 2260 2265 2270 Asp Asn Cys Arg Arg Pro Gly Gly Glu Pro Ser Pro Glu Gly Thr Thr 2280 2275 Gly Gln Ser Tyr Asn Gln Tyr Ser Gln Arg Tyr His Gln Arg Thr Asn 2295 Thr Asn Val Asn Cys Pro Ile Glu Cys Phe Met Pro Leu Asp Val Gln 2310 2315 Ala Asp Arg Glu Asp Ser Arg Glu 2325

<210> 99

<211> 188

<212> PRT

<213> Homo sapiens

<400> 99

His Gln Thr His Lys Glu Gly Gly Ser Thr His Ala Ser Ala Asp Ala 10 Trp Glu Ile Ile Glu Leu Glu Thr Glu Ile Glu Lys Phe Lys Ala Glu 25 Asn Ala Ser Leu Ala Lys Leu Arg Ile Glu Arg Glu Ser Ala Leu Glu 40 Lys Leu Arg Lys Glu Ile Ala Asp Phe Glu Gln Gln Lys Ala Lys Glu Leu Ala Arg Ile Glu Glu Phe Lys Lys Glu Glu Met Arg Lys Leu Gln Lys Glu Arg Lys Val Phe Glu Lys Tyr Thr Thr Ala Ala Arg Thr Phe Pro Asp Lys Lys Glu Arg Glu Glu Ile Gln Thr Leu Lys Gln Gln Ile 105 Ala Asp Leu Arg Glu Asp Leu Lys Arg Lys Glu Thr Lys Trp Ser Ser 120 Thr His Ser Arg Leu Arg Ser Gln Ile Gln Met Leu Val Arg Glu Asn 135 140 Thr Asp Leu Arg Glu Glu Ile Lys Val Met Glu Arg Phe Arg Leu Asp 150 155

Ala Trp Lys Arg Ala Glu Ala Ile Glu Ser Ser Leu Glu Val Glu Lys

165

170

```
Lys Asp Lys Leu Ala Asn Thr Ser Val Arg Phe Gln
            180
<210> 100
<211> 284
<212> PRT
<213> Homo sapiens
<400> 100
Met Glu Pro Gly Asn Tyr Ala Thr Leu Asp Gly Ala Lys Asp Ile Glu
Gly Leu Leu Gly Ala Gly Gly Gly Arg Asn Leu Val Ala His Ser Pro
                                 25
Leu Thr Ser His Pro Ala Ala Pro Thr Leu Met Pro Ala Val Asn Tyr
Ala Pro Leu Asp Leu Pro Gly Ser Ala Glu Pro Pro Lys Gln Cys His
Pro Cys Pro Gly Val Pro Gln Gly Thr Ser Pro Ala Pro Val Pro Tyr
Gly Tyr Phe Gly Gly Gly Tyr Tyr Ser Cys Arg Val Ser Arg Ser Ser
                                     90
Leu Lys Pro Cys Ala Gln Ala Ala Thr Leu Ala Ala Tyr Pro Ala Glu
            100
                                105
Thr Pro Thr Ala Gly Glu Glu Tyr Pro Ser Arg Pro Thr Glu Phe Ala
                         . 120
Phe Tyr Pro Gly Tyr Pro Gly Thr Tyr His Ala Met Ala Ser Tyr Leu
                        135
                                             140
Asp Val Ser Val Val Gln Thr Leu Gly Ala Pro Gly Glu Pro Arg His
                                         155
Asp Ser Leu Leu Pro Val Asp Ser Tyr Gln Ser Trp Ala Leu Ala Gly
                165
                                    170
Gly Trp Asn Ser Gln Met Cys Cys Gln Gly Glu Gln Asn Pro Pro Gly
                                185
Pro Phe Trp Lys Ala Ala Phe Ala Asp Ser Ser Gly Gln His Pro Pro
                            200
Asp Ala Cys Ala Phe Arg Arg Gly Arg Lys Lys Arg Ile Pro Tyr Ser
                        215
Lys Gly Gln Leu Arg Glu Leu Glu Arg Glu Tyr Ala Ala Asn Lys Phe
                    230
                                        235
Ile Thr Lys Asp Lys Arg Arg Lys Ile Ser Ala Ala Thr Ser Leu Ser
                245
                                    250
Glu Arg Gln Ile Thr Ile Trp Phe Gln Asn Arg Arg Val Lys Glu Lys
                                265
                                                     270
Lys Val Leu Ala Lys Val Lys Asn Ser Ala Thr Pro
<210> 101
·<211> 676
<212> PRT
<213> Homo sapiens
<400> 101
Met Asp Lys Tyr Asp Asp Leu Gly Leu Glu Ala Ser Lys Phe Ile Glu
                                    10
Asp Leu Asn Met Tyr Glu Ala Ser Lys Asp Gly Leu Phe Arg Val Asp
Lys Gly Ala Gly Asn Asn Pro Glu Phe Glu Glu Thr Arg Arg Val Phe
```

		35					40					4.5			
Ala	Thr		Met	Ala	Lvs	Ile		T.e.11	Gln	Gln	Gla	45 Gla	Cl n	Cl-	7
	50					55					60				
65			Glu		70					75					80
			Leu	85					90					95	
Leu	Thr	Val	Asp	Gly	Ala	Ala	Lys	Pro 105	Pro	Leu	Ala	Ala	Ser 110	Thr	Gly
Ala	Pro	Gly 115	Ala	Val	Thr	Thr	Leu 120		Ala	Gly	Gln	Pro 125	Pro	Tyr	Pro
Pro	Gln 130	Glu	Gln	Arg	Ser	Arg 135	Pro	Tyr	Leu	His	Gly 140		Arg	His	Gly
Ser 145	Gln	Asp	Cys	Gly	Ser 150	Arg	Glu	Ser	Leu	Ala 155		Ser	Glu	Met	Ser 160
Ala	Phe	His	Gln	Pro 165	Gly	Pro	Cys	Glu	Asp 170		Ser	Cys	Leu	Thr 175	His
Gly	Asp	Tyr	Tyr 180	Asp	Asn	Leu	Ser	Leu 185		Ser	Pro	Lys	Trp 190	Gly	Asp
Lys	Pro	Gly 195	Val	Ser	Pro	Ser	Ile 200		Leu	Ser	Val	Gly 205	Ser	Gly	Trp
Pro	Ser 210	Ser	Pro	Gly	Ser	Asp 215	Pro	Pro	Leu	Pro	Lys 220		Суѕ	Gly	Asp
His 225	Pro	Leu	Asn	His	Arg 230	Gln	Leu	Ser	Leu	Ser 235		Ser	Arg	Ser	Ser 240
Glu	Gly	Ser	Leu	Gly 245	Gly	Gln	Asn	Ser	Gly 250	Ile	Gly	Gly	Arg	Ser 255	Ser
Glu	Lys	Pro	Thr 260	Gly	Leu	Trp	Ser	Thr 265		Ser	Ser	Gln	Arg 270	Val	Ser
Pro	Gly	Leu 275	Pro	Ser	Pro	Asn	Leu 280	Glu	Asn	Gly	Ala	Pro 285	Ala	Val	Gly
Pro	Val 290	Gln	Pro	Arg	Thr	Pro 295	Ser	Val	Ser	Ala	Pro 300	Leu	Ala	Leu	Ser
305			Gln		310					315					320
			Gly	325					330					335	_
			Gly 340					345					350		
		355	Gly				360					365		_	
Gly	370		Pro			375					380				
Pro 385	Thr	Ser	Leu	Val	His 390	Pro	Val	Met	Ser	Thr 395	Leu	Pro	Glu	Leu	Ser 400
Cys	Lys	Glu	Gly	Pro 405	Leu	Gly	Trp	Ser	Ser 410	Asp	Gly	Ser	Leu	Gly 415	Ser
Val	Leu	Leu	Asp 420	Ser	Pro	Ser	Ser	Pro 425	Arg	Val	Arg	Leu	Pro 430	Суз	Gln
Pro	Leu	Val 435	Pro	Gly	Pro	Glu	Leu 440	Arg	Pro	Ser	Ala	Ala 445	Glu	Leu	Lys
	450		Leu			455					460				
465			Tyr		470					475			_		480
Gly	Ala	Gly	Gln	Ala 485	Cys	Gln	Ala	Met	Gly 490	Asn	Leu	Tyr	His	Asp 495	Thr

032796-132.ST25

Cys Phe Thr Cys Ala Ala Cys Ser Arg Lys Leu Arg Gly Lys Ala Phe 505 Tyr Phe Val Asn Gly Lys Val Phe Cys Glu Glu Asp Phe Leu Tyr Ser 520 525 Gly Phe Gln Gln Ser Ala Asp Arg Cys Phe Leu Cys Gly His Leu Ile 535 Met Asp Met Ile Leu Gln Ala Leu Gly Lys Ser Tyr His Pro Gly Cys 555 550 Phe Arg Cys Val Ile Cys Asn Glu Cys Leu Asp Gly Val Pro Phe Thr 570 565 Val Asp Ser Glu Asn Lys Ile Tyr Cys Val Arg Asp Tyr His Lys Val 585 Leu Ala Pro Lys Cys Ala Ala Cys Gly Leu Pro Ile Leu Pro Pro Glu 600 Gly Ser Asp Glu Thr Ile Arg Val Val Ser Met Asp Arg Asp Tyr His 615 Val Glu Cys Tyr His Cys Glu Asp Cys Gly Leu Glu Leu Asn Asp Glu 635 630 Asp Gly His Arg Cys Tyr Pro Leu Glu Asp His Leu Phe Cys His Ser 650 Cys His Val Lys Arg Leu Glu Lys Arg Pro Ser Ser Thr Ala Leu His 665 Gln His His Phe 675

<210> 102

<211> 296

<212> PRT

<213> Homo sapiens

<400> 102

Ser Thr Gly Ser Glu Phe Pro Leu Cys Thr Lys Ala Ser Pro Cys Ser Ala Ala Arg Ala Gly Gly Arg Ala Leu Gly Trp Arg Leu Gln Gln Gln Arg Glu Thr Arg Gly Asn Pro Gly Asn Pro Gly Leu Gly Val Ala Ala Thr Met Thr Gly Ser Asn Met Ser Asp Ala Leu Ala Asn Ala Val Cys Gln Arg Cys Gln Ala Arg Phe Ser Pro Ala Glu Arg Ile Val Asn Ser Asn Gly Glu Leu Tyr His Glu His Cys Phe Val Cys Ala Gln Cys Phe 90 Arg Pro Phe Pro Glu Gly Leu Phe Tyr Glu Phe Glu Gly Arg Lys Tyr 105 100 Cys Glu His Asp Phe Gln Met Leu Phe Ala Pro Cys Cys Gly Ser Cys 120 Gly Glu Phe Ile Ile Gly Arg Val Ile Lys Ala Met Asn Asn Asn Trp 135 140 His Pro Gly Cys Phe Arg Cys Glu Leu Cys Asp Val Glu Leu Ala Asp 150 Leu Gly Phe Val Lys Asn Ala Gly Arg His Leu Cys Arg Pro Cys His 165 170 Asn Arg Glu Lys Ala Lys Gly Leu Gly Lys Tyr Ile Cys Gln Arg Cys 185 His Leu Val Ile Asp Glu Gln Pro Leu Met Phe Arg Ser Asp Ala Tyr 200 195

032796-132.ST25 His Pro Asp His Phe Asn Cys Thr His Cys Gly Lys Glu Leu Thr Ala 215 Glu Ala Arg Glu Leu Lys Gly Glu Leu Tyr Cys Leu Pro Cys His Asp 230 235 Lys Met Gly Val Pro Ile Cys Gly Ala Cys Arg Arg Pro Ile Glu Gly 250 Arg Val Val Asn Ala Leu Gly Lys Gln Trp His Val Glu His Phe Val 265 Cys Ala Lys Cys Glu Lys Pro Phe Leu Gly His Arg His Tyr Glu Lys Lys Gly Leu Ala Tyr Cys Glu Leu <210> 103 <211> 500 <212> PRT <213> Homo sapiens <400> 103 Met Gly Ile Gly Leu Ser Ala Gln Gly Val Asn Met Asn Arg Leu Pro 10 Gly Trp Asp Lys His Ser Tyr Gly Tyr His Gly Asp Asp Gly His Ser 25 Phe Cys Ser Ser Gly Thr Gly Gln Pro Tyr Gly Pro Thr Phe Thr Thr 40 Gly Asp Val Ile Gly Cys Cys Val Asn Leu Ile Asn Asn Thr Cys Phe Tyr Thr Lys Asn Gly His Ser Leu Gly Ile Ala Phe Thr Asp Leu Pro 75 Pro Asn Leu Tyr Pro Thr Val Gly Leu Gln Thr Pro Gly Glu Val Val 85 90 Asp Ala Asn Phe Gly Gln His Pro Phe Val Phe Asp Ile Glu Asp Tyr 105 Met Arg Glu Trp Arg Thr Lys Ile Gln Ala Gln Ile Asp Arg Phe Pro 120 Ile Gly Asp Arg Glu Gly Glu Trp Gln Thr Met Ile Gln Lys Met Val Ser Ser Tyr Leu Val His His Gly Tyr Cys Ala Thr Ala Glu Ala Phe 150 155 Ala Arg Ser Thr Asp Gln Thr Val Leu Glu Glu Leu Ala Ser Ile Lys 170 Asn Arg Gln Arg Ile Gln Lys Leu Val Leu Ala Gly Arg Met Gly Glu 185 Ala Ile Glu Thr Thr Gln Gln Leu Tyr Pro Ser Leu Leu Glu Arg Asn

Ala Arg Ser Thr Asp Gln Thr Val Leu Glu Glu Leu Ala Ser Ile Lys
165 170 175

Asn Arg Gln Arg Ile Gln Lys Leu Val Leu Ala Gly Arg Met Gly Glu
180 185 190

Ala Ile Glu Thr Thr Gln Gln Leu Tyr Pro Ser Leu Leu Glu Arg Asn
195 200 205

Pro Asn Leu Leu Phe Thr Leu Lys Val Arg Gln Phe Ile Glu Met Val
210 215

Asn Gly Thr Asp Ser Glu Val Arg Cys Leu Gly Gly Arg Ser Pro Lys
225 230 235 240

Ser Gln Asp Ser Tyr Pro Val Ser Pro Arg Pro Phe Ser Ser Pro Ser
245 250 250

Met Ser Pro Ser His Gly Met Asn Ile His Asn Leu Ala Ser Gly Lys
260 265

Gly Ser Thr Ala His Phe Ser Gly Phe Glu Ser Cys Ser Asn Gly Val
275

Ile Ser Asn Lys Ala His Gln Ser Tyr Cys His Ser Asn Lys His Gln
290 295

Ser Ser Asn Leu Asn Val Pro Glu Leu Asn Ser Ile Asn Met Ser Arq 315 Ser Gln Gln Val Asn Asn Phe Thr Ser Asn Asp Val Asp Met Glu Thr 330 325 Asp His Tyr Ser Asn Gly Val Gly Glu Thr Ser Ser Asn Gly Phe Leu 345 Asn Gly Ser Ser Lys His Asp His Glu Met Glu Asp Cys Asp Thr Glu 360 Met Glu Val Asp Ser Ser Gln Leu Arg Arg Gln Leu Cys Gly Gly Ser 380 375 Gln Ala Ala Ile Glu Arg Met Ile His Phe Gly Arg Glu Leu Gln Ala 395 390 Met Ser Glu Gln Leu Arg Arg Asp Cys Gly Lys Asn Thr Ala Asn Lys 410 405 Lys Met Leu Lys Asp Ala Phe Ser Leu Leu Ala Tyr Ser Asp Pro Trp 425 Asn Ser Pro Val Gly Asn Gln Leu Asp Pro Ile Gln Arg Glu Pro Val 440 445 435 Cys Ser Ala Leu Asn Ser Ala Ile Leu Glu Thr His Asn Leu Pro Lys 455 Gln Pro Pro Leu Ala Leu Ala Met Gly Gln Ala Thr Gln Cys Leu Gly 470. 475 Leu Met Ala Arg Ser Gly Ile Gly Ser Cys Ala Phe Ala Thr Val Glu 485 490 Asp Tyr Leu His 500

<210> 104

<211> 387

<212> PRT

<213> Homo sapiens

<400> 104

Met Ala Thr Ser Gly Val Leu Pro Gly Gly Gly Phe Val Ala Ser Ala Ala Ala Val Ala Gly Pro Glu Met Gln Thr Gly Arg Asn Asn Phe Val 25 Ile Arg Arg Asn Pro Ala Asp Pro Gln Arg Ile Pro Ser Asn Pro Ser His Arg Ile Gln Cys Ala Ala Gly Tyr Glu Gln Ser Glu His Asn Val Cys Gln Asp Ile Asp Glu Cys Thr Ala Gly Thr His Asn Cys Arg Ala Asp Gln Val Cys Ile Asn Leu Arg Gly Ser Phe Ala Cys Gln Cys Pro 90 85 Pro Gly Tyr Gln Lys Arg Gly Glu Gln Cys Val Asp Ile Asp Glu Cys 105 Thr Ile Pro Pro Tyr Cys His Gln Arg Cys Val Asn Thr Pro Gly Ser 120 Phe Tyr Cys Gln Cys Ser Pro Gly Phe Gln Leu Ala Ala Asn Asn Tyr 135 Thr Cys Val Asp Ile Asn Glu Cys Asp Ala Ser Asn Gln Cys Ala Gln 155 150 Gin Cys Tyr Asn Ile Leu Gly Ser Phe Ile Cys Gln Cys Asn Gln Gly 170 165 Tyr Glu Leu Ser Ser Asp Arg Leu Asn Cys Glu Asp Ile Asp Glu Cys 185 180

032796-132.ST25

Arg Thr Ser Ser Tyr Leu Cys Gln Tyr Gln Cys Val Asn Glu Pro Gly 200 Lys Phe Ser Cys Met Cys Pro Gln Gly Tyr Gln Val Val Arg Ser Arg 215 Thr Cys Gln Asp Ile Asn Glu Cys Glu Thr Thr Asn Glu Cys Arg Glu 235 230 Asp Glu Met Cys Trp Asn Tyr His Gly Gly Phe Arg Cys Tyr Pro Arg 245 250 Asn Pro Cys Gln Asp Pro Tyr Ile Leu Thr Pro Glu Asn Arg Cys Val 265 260 Cys Pro Val Ser Asn Ala Met Cys Arg Glu Leu Pro Gln Ser Ile Val 280 Tyr Lys Tyr Met Ser Ile Arg Ser Asp Arg Ser Val Pro Ser Asp Ile 295 Phe Gln Ile Gln Ala Thr Thr Ile Tyr Ala Asn Thr Ile Asn Thr Phe 310 315 Arg Ile Lys Ser Gly Asn Glu Asn Gly Glu Phe Tyr Leu Arg Gln Thr 330 Ser Pro Val Ser Ala Met Leu Val Leu Val Lys Ser Leu Ser Gly Pro 340 345 Arg Glu His Ile Val Asp Leu Glu Met Leu Thr Val Ser Ser Ile Gly 360 Thr Phe Arg Thr Ser Ser Val Leu Arg Leu Thr Ile Ile Val Gly Pro 375 Phe Ser Phe 385 <210> 105 <211> 531 <212> PRT <213> Homo sapiens <400> 105 Met Ser Lys Pro His Ser Glu Ala Gly Thr Ala Phe Ile Gln Thr Gln Gln Leu His Ala Ala Met Ala Asp Thr Phe Leu Glu His Met Cys Arg Leu Asp Ile Asp Ser Pro Pro Ile Thr Ala Arg Asn Thr Gly Ile Ile Cys Thr Ile Gly Pro Ala Ser Arg Ser Val Glu Thr Leu Lys Glu Met 55 Ile Lys Ser Gly Met Asn Val Ala Arg Leu Asn Phe Ser His Gly Thr His Glu Tyr His Ala Glu Thr Ile Lys Asn Val Arg Thr Ala Thr Glu 90 85 Ser Phe Ala Ser Asp Pro Tyr Leu Tyr Arg Pro Val Ala Val Ala Leu 105 Asp Thr Lys Gly Pro Glu Ile Arg Thr Gly Leu Ile Lys Gly Ser Gly Thr Ala Glu Leu Glu Leu Lys Lys Gly Ala Thr Leu Lys Ile Thr Leu Asp Asn Ala Tyr Met Glu Lys Cys Asp Glu Asn Ile Leu Trp Leu Asp 155 150 Tyr Lys Asn Ile Cys Lys Val Val Glu Val Gly Ser Lys Ile Tyr Val 165 170 Asp Asp Gly Leu Ile Ser Leu Gln Val Lys Gln Lys Gly Ala Asp Phe 180

032796-132.ST25

Leu Val Thr Glu Val Glu Asn Gly Gly Ser Leu Gly Ser Lys Lys Gly 200 Val Asn Leu Pro Gly Ala Ala Val Asp Leu Pro Ala Val Ser Glu Lys 215 Asp Ile Gln Asp Leu Lys Phe Gly Val Glu Gln Asp Val Asp Met Val 230 235 Phe Ala Ser Phe Ile Arg Lys Ala Ser Asp Val His Glu Val Arg Lys 250 245 Val Leu Gly Glu Lys Gly Lys Asn Ile Lys Ile Ile Ser Lys Ile Glu 265 Asn His Glu Gly Val Arg Arg Phe Asp Glu Ile Leu Glu Ala Ser Asp 280 Gly Ile Met Val Ala Arg Gly Asp Leu Gly Ile Giu Ile Pro Ala Glu 295 300 Lys Val Phe Leu Ala Gln Lys Met Met Ile Gly Arg Cys Asn Arg Ala 310 315 Gly Lys Pro Val Ile Cys Ala Thr Gln Met Leu Glu Ser Met Ile Lys 325 330 Lys Pro Arg Pro Thr Arg Ala Glu Gly Ser Asp Val Ala Asn Ala Val 345 Leu Asp Gly Ala Asp Cys Ile Met Leu Ser Gly Glu Thr Ala Lys Gly 360 Asp Tyr Pro Leu Glu Ala Val Arg Met Gln His Leu Ile Ala Arg Glu 375 380 Ala Glu Ala Ala Ile Tyr His Leu Gln Leu Phe Glu Glu Leu Arg Arg 390 395 Leu Ala Pro Ile Thr Ser Asp Pro Thr Glu Ala Thr Ala Val Gly Ala 410 405 Val Glu Ala Ser Phe Lys Cys Cys Ser Gly Ala Ile Ile Val Leu Thr 425 Lys Ser Gly Arg Ser Ala His Gln Val Ala Arg Tyr Arg Pro Arg Ala 435 440 Pro Ile Ile Ala Val Thr Arg Asn Pro Gln Thr Ala Arg Gln Ala His 455 Leu Tyr Arg Gly Ile Phe Pro Val Leu Cys Lys Asp Pro Val Gln Glu 470 475 Ala Trp Ala Glu Asp Val Asp Leu Arg Val Asn Phe Ala Met Asn Val 490 Gly Lys Ala Arg Gly Phe Phe Lys Lys Gly Asp Val Val Ile Val Leu 505 Thr Gly Trp Arg Pro Gly Ser Gly Phe Thr Asn Thr Met Arg Val Val 515 520 Pro Val Pro 530 <210> 106 <211> 480 <212> PRT <213> Homo sapiens <400> 106 Met Ala Ala Arg Cys Ser Thr Arg Trp Leu Leu Val Val Val Gly Thr Pro Arg Leu Pro Ala Ile Ser Gly Arg Gly Ala Arg Pro Pro Arg Glu Gly Val Val Gly Ala Trp Leu Ser Arg Lys Leu Ser Val Pro Ala Phe

Ala	Ser 50	Ser	Leu	Thr	Ser	Cys 55	Gly	Pro	Arg	Ala	Leu 60	Leu	Thr	Leu	Arg
Pro 65	Gly	Val	Ser	Leu	Thr 70	Gly	Thr	Lys	His	Asn 75	Pro	Phe	Ile	Cys	Thr 80
				85					Ala 90	_		_	-	95	
		-	100			_		105	Gln				110		
_		115					120		Pro			125			
	130		_			135			Leu		140				
Leu 145	Ser	Asp	Glu	Val	Lys 150	Arg	Lys	Gln	Tyr	155	Ala	Tyr	Gly	Ser	Ala 160
_		_		165					Gln 170					175	_
•			180	-				185	Phe	_	_		190	_	
		195				_	200		Glņ			205			
	210	_				215			Asn		220				
225	_				230	•			Asp	235					240
_	•	_		245		_	•		Val 250			•	٠٠.	255	
_	_		260				•	265	Thr				270		
Ser	Thr	Cys 275	Arg	Arg	Cys	Gly	Gly 280	Arg	Gly	Ser	Ile	11e 285	Ile	Ser	Pro
-	290		_	_	_	295	_		Ala		300				
305					310				Asp	315					320
		_	_	325					Thr 330					335	
			340					345	Ile				350		
		355					360		Thr			365			
-	370					375			Pro		380				
385		_		_	390	-	_		Pro	395					400
_	_	_		405	•				Ile 410					415	
		_	420					425	Ser				430		
-		435	-				440		Thr			445			
	450		_			455			Lys		460				
Glu 465	Asp	Glu	Glu	Gly	Phe 470		Ser	Lys	Leu	Lys 475	Lys	Met	Phe	Thr	Ser 480

<210> 107 <211> 572

<212> PRT <213> Homo sapiens

<400> 107 Met Ala Ala Pro Arg Pro Ser Pro Ala Ile Ser Val Ser Val Ser Ala 10 Pro Ala Phe Tyr Ala Pro Gln Lys Lys Phe Gly Pro Val Val Ala Pro Lys Pro Lys Val Asn Pro Phe Arg Pro Gly Asp Ser Glu Pro Pro Pro 40 Ala Pro Gly Ala Gln Arg Ala Gln Met Gly Arg Val Gly Glu Ile Pro 55 Pro Pro Pro Glu Asp Phe Pro Leu Pro Pro Pro Leu Ala Gly Asp Gly Asp Asp Ala Glu Gly Ala Leu Gly Gly Ala Phe Pro Pro Pro 90 Pro Pro Pro Ile Glu Glu Ser Phe Pro Pro Ala Pro Leu Glu Glu Glu 105 Ile Phe Pro Ser Pro Pro Pro Pro Glu Glu Glu Gly Gly Pro Glu 115 120 Ala Pro Ile Pro Pro Pro Gln Pro Arg Glu Lys Val Ser Ser Ile 135 Asp Leu Glu Ile Asp Ser Leu Ser Ser Leu Leu Asp Asp Met Thr Lys 150 155 Asn Asp Pro Phe Lys Ala Arg Val Ser Ser Gly Tyr Val Pro Pro Pro 170 165 Val Ala Thr Pro Phe Ser Ser Lys Ser Ser Thr Lys Pro Ala Ala Gly 180 185 Gly Thr Ala Pro Leu Pro Pro Trp Lys Ser Pro Ser Ser Ser Gln Pro 200 Leu Pro Gln Val Pro Ala Pro Ala Gln Ser Gln Thr Gln Phe His Val 215 Gln Pro Gln Pro Gln Pro Lys Pro Gln Val Gln Leu His Val Gln Ser 235 230 Gln Thr Gln Pro Val Ser Leu Ala Asn Thr Gln Pro Arg Gly Pro Pro 250 245 Ala Ser Ser Pro Ala Pro Ala Pro Lys Phe Ser Pro Val Thr Pro Lys 265 Phe Thr Pro Val Ala Ser Lys Phe Ser Pro Gly Ala Pro Gly Gly Ser 280 Gly Ser Gln Pro Asn Gln Lys Leu Gly His Pro Glu Ala Leu Ser Ala 300 295 Gly Thr Gly Ser Pro Gln Pro Pro Ser Phe Thr Tyr Ala Gln Gln Arg 310 315 Glu Lys Pro Arg Val Gln Glu Lys Gln His Pro Val Pro Pro Pro Ala 330 325 Gln Asn Gln Asn Gln Val Arg Ser Pro Gly Ala Pro Gly Pro Leu Thr 345 Leu Lys Glu Val Glu Glu Leu Glu Gln Leu Thr Gln Gln Leu Met Gln 360 Asp Met Glu His Pro Gln Arg Gln Asn Val Ala Val Asn Glu Leu Cys 375 Gly Arg Cys His Gln Pro Leu Ala Arg Ala Gln Pro Ala Val Arg Ala 390 395 Leu Gly Gln Leu Phe His Ile Ala Cys Phe Thr Cys His Gln Cys Ala Gln Gln Leu Gln Gly Gln Gln Phe Tyr Ser Leu Glu Gly Ala Pro Tyr

420 425 Cys Glu Gly Cys Tyr Thr Asp Thr Leu Glu Lys Cys Asn Thr Cys Gly 440 Glu Pro Ile Thr Asp Arg Met Leu Arg Ala Thr Gly Lys Ala Tyr His 455 Pro His Cys Phe Thr Cys Val Val Cys Ala Arg Pro Leu Glu Gly Thr 470 475 Ser Phe Ile Val Asp Gln Ala Asn Arg Pro His Cys Val Pro Asp Tyr 485 490 His Lys Gln Tyr Ala Pro Arg Cys Ser Val Cys Ser Glu Pro Ile Met 505 Pro Glu Pro Gly Arg Asp Glu Thr Val Arg Val Val Ala Leu Asp Lys 520 Asn Phe His Met Lys Cys Tyr Lys Cys Glu Asp Cys Gly Lys Pro Leu 535 540 Ser Ile Glu Ala Asp Asp Asn Gly Cys Phe Pro Leu Asp Gly His Val 550 555 Leu Cys Arg Lys Cys His Thr Ala Arg Ala Gln Thr 565 <210> 108

<211> 2861

<212> PRT

<213> Homo sapiens

<400> 108

Met Lys Ala Met Asp Val Leu Pro Ile Leu Lys Glu Lys Val Ala Tyr 10 Leu Ser Gly Gly Arg Asp Lys Arg Gly Gly Pro Ile Leu Thr Phe Pro 25 Ala Arg Ser Asn His Asp Arg Ile Arg Gln Glu Asp Leu Arg Arg Leu 40 Ile Ser Tyr Leu Ala Cys Ile Pro Ser Glu Glu Val Cys Lys Arg Gly 55 Phe Thr Val Ile Val Asp Met Arg Gly Ser Lys Trp Asp Ser Ile Lys 70 75 Pro Leu Leu Lys Ile Leu Gln Glu Ser Phe Pro Cys Cys Ile His Val Ala Leu Ile Ile Lys Pro Asp Asn Phe Trp Gln Lys Gln Arg Thr Asn 105 Phe Gly Ser Ser Lys Phe Glu Phe Glu Thr Asn Met Val Ser Leu Glu 120 Gly Leu Thr Lys Val Val Asp Pro Ser Gln Leu Thr Pro Glu Phe Asp 135 140 Gly Cys Leu Glu Tyr Asn His Glu Glu Trp Ile Glu Ile Arg Val Ala 150 155 Phe Glu Asp Tyr Ile Ser Asn Ala Thr His Met Leu Ser Arg Leu Glu 165 170 Glu Leu Gln Asp Ile Leu Ala Lys Lys Glu Leu Pro Gln Asp Leu Glu 185 Gly Ala Arg Asn Met Ile Glu Glu His Ser Gln Leu Lys Lys Lys Val 195 200 Ile Lys Ala Pro Ile Glu Asp Leu Asp Leu Glu Gly Gln Lys Leu Leu 215 220 Gln Arg Ile Gln Ser Ser Glu Ser Phe Pro Lys Lys Asn Ser Gly Ser 230 235 Gly Asn Ala Asp Leu Gln Asn Leu Leu Pro Lys Val Ser Thr Met Leu

				245					250					255	
			His 260					265					270		
-	_	275	Lys		_		280				_	285			
Asp	Ala 290	Glu	Lys	Met	Phe	Asp 295	Trp	Ile	Thr	His	Asn 300	Lys	Gly	Leu	Phe
305			Tyr		310					315					320
			Gln	325					330		-			335	_
			Asn 340	_				345					350		
_		355	Ala				360	_				365			
	370	-	Lys			375				_	380	_			
385			Ser		390					395		-	-		400
		_	Ser	405	_	_			410			_		415	
			Asp 420			_		425					430		-
		435	Thr			_	440					445	_	_	
	450	-	Lys			455					460			_	
465			Ser		470	-		_		475					480
			Glu	485					490					495	•
		_	Lys 500		. •			505	_				510		
		515	Val				520	_	_			525		-	
	530		Ser			535					540				
545			Gln	-	550			_		555					560
			Asn	565		•			570					575	
		_	580	_	_			585					590		Gln
		595	Arg			=	600					605			
	610		Asp			615					620				
625		_			630			_		635					Tyr 640
				645				-	650		_	_		655	Gln
			660					665					670		Gly
	=	675	Ile				680					685			_
Thr	Pro 690	His	Asn	Ser	Ser	Ile 695	Asn	His	Ile	Glu	Thr 700	Val	Leu	Gln	Gln

Leu Asp Glu Ala Gln Ser Gln Met Glu Glu Leu Phe Gln Glu Arg Lys To To To To To To To T																
Tile Lys Leu Glu Leu Phe Leu His Val Arg Ile Phe Glu Arg Asp Ala 725 Tile Asp Ile Ile Ser Asp Leu Glu Ser Trp Asn Asp Glu Leu Ser Gln 740 745 745 755 Tol 740 756 Tol 750 765 Tol 750 765 Tol 755 Tol		Asp	Glu	Ala	Gln		Gln	Met	Glu	Glu		Phe	Gln	Glu	Arg	_
The Asp The The Ser Asp Leu Glu Ser Trp Asn Asp Glu Leu Ser Gln 745 755 76		Lys	Leu	Glu			Leu	His	Val			Phe	Glu	Arg		
T440																
Test	Ile	Asp	Ile		Ser	Asp	Leu	Glu		Trp	Asn	Asp	Glu		Ser	Gln
Leu Gln His His Ala Asp Lys Ala Leu Thr Met Asn Asn Leu Thr Phe	Gln	Met		Asp	Phe	Asp	Thr		Asp	Leu	Thr	Ile		Glu	Gln	Arg
770 780 785 780 785 780 785 780 780 785 780 785 780 785 780 785 780 785 780 785 780 785 780 785 780 785 780 785 780 785 800 61n Ala Ser Gly Val Glu Glu Leu Leu Cyx Asp Arg Asp Val Asp Met Ala 805 810 810 810 810 817 810 810 810 810 810 810 810 810 810 810	T 0	Cla		uic	712	Non.	Tue		Tan	Thr	Mot	Acn		Len	Th∽	Dho
790		770					775					780				
## 10		Val	Ile	His	Gln		Gln	Asp	Leu	Leu		Tyr	Val	Asn	Glu	
Thr Arg Val Gln Asp Leu Leu Glu Phe Leu His Glu Lys Gln Gln Glu 820 Leu Asp Leu Ala Ala Glu Gln His Arg Lys His Leu Glu Gln Cys Val 835 Gln Leu Arg His Leu Gln Ala Glu Val Lys Gln Val Leu Gly Trp Ile 850 Arg Asn Gly Glu Ser Met Leu Asn Ala Gly Leu Ile Thr Ala Ser Ser 870 Leu Gln Gln Glu Gln Leu Gln Arg Glu His 875 Leu Gln Glu Lys Thr His Gln Ser Ala Leu Gln Val Gln Gln Lys Ala 900 Glu Ala Met Leu Gln Ala Asn His Tyr Asp Met Asp Met Ile Arg Asp 915 Cys Ala Glu Lys Val Ala Ser His Trp Gln Gln Leu Met Leu Lys Met 930 Glu Asp Arg Leu Lys Leu Val Asn Ala Ser Val Ala Phe Tyr Lys Thr 945 Ser Glu Gln Asp Trp Cys Gly Gly Ala Asp Lys Leu Glp Gln Gln Lys Asn Ser 995 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 1000 Flu Ala Phe Leu Lys Ala Pro Glu Gln Gln Lys Asn Ala Asp Val 1015 Cys Ala Glu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val 1015 Glu Ala Phe Leu Lys Ala Pro Glu Gln Gln Lys Thr 995 Glu Ala Phe Leu Lys Ala Pro Glu Gln Gln Lys Thr 1010 Thr His Ile Lys Ala Pro Glu Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1025 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1065 Lys Glu Ala Leu Glu Trp Ile His Asp Asp Gly Phe Cys Gln Thr Lys Glu Arg 1075 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1135	Gln	Ala	Ser	Gly		Glu	Leu	Leu	Cys		Arg	Asp	Val	Asp		Ala
Leu Asp Leu Ala Ala Glu Glu Glu His Arg Lys His Leu Glu Glu Cys Val 845	Thr	Arg	Val			Leu	Leu	Glu			His	Glu	Lys			Glu
Gln Leu Arg His Leu Gln Ala Glu Val Lys Gln Val Leu Gly Trp Ile 850 Arg Asn Gly Glu Ser Met Leu Asn Ala Gly Leu Ile Thr Ala Ser Ser 865 Leu Gln Glu Ala Glu Gln Leu Gln Arg Glu His Glu Gln Fhe Gln His 885 Asn Gly Glu Lys Thr His Gln Ser Ala Leu Gln Val Gln Gln Phe Gln His 885 Ala Ile Glu Lys Thr His Gln Ser Ala Leu Gln Val Gln Gln Lys Ala 900 Glu Ala Met Leu Gln Ala Asn His Tyr Asp Met Asp Met Ile Arg Asp 915 Cys Ala Glu Lys Val Ala Ser His Trp Gln Gln Leu Met Leu Lys Met 930 Glu Asp Arg Leu Lys Leu Val Asn Ala Ser Val Ala Phe Tyr Lys Thr 945 Ser Glu Gln Val Cys Ser Val Leu Glu Ser Leu Glu Gln Gln Glu Tyr Lys 966 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 980 Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010 Thr His Tle Lys Ala Pro Glu Gln Gln Val Lys Asn Ile Leu Asn Glu 1025 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Tyr Lys Phe 1090 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Arg 1125 Val Lys Glu His Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 Val Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Gly His 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1150			_						-	_		_			_	
## S50 S55 S60 S65 S67 S67 S68 S65 S67 S67 S68 S65 S67 S67 S67 S68 S65 S67 S68 S67 S68 S65 S67 S68 S67 S68 S68 S68 S68 S68 S68 S68 S69 S69	Leu	Asp	•	Ala	Ala	Glu	Gln		Arg	Lys	His	Leu		GIn	Cys	Val
## S50 S55 S60 S65 S67 S67 S68 S65 S67 S67 S68 S65 S67 S67 S67 S68 S65 S67 S68 S67 S68 S65 S67 S68 S67 S68 S68 S68 S68 S68 S68 S68 S69 S69	Gln	Leu	Arq	His	Leu	Gln	Ala	Glu	Val	Lys	Gln	Val	Leu	Gly	Trp	Ile
Arg Asn Gly Glu Ser Met Leu Asn Ala Gly Leu Ile Thr Ala Ser Ser 865			•							-				-	-	
Secondaria Sec	Ara		Glv	Glu	Ser	Met		Asn	Ala	Glv	Leu	Ile	Thr	Ala	Ser	Ser
Leu Gln Glu Ala Glu Gln Leu Gln Arg Glu His Glu Gln Phe Gln His 885			0-7	O_u	001					,					001	
Record R		C1-	Ċ1.	71-	C1.,		Ton	Gla) ra	Glu		Gl 11	Gln	Dho	Gla	
Ala Ile Glu Lys Thr His Gln Ser Ala Leu Gln Val Gln Gln Lys Ala 900 Glu Ala Met Leu Gln Ala Asn His Tyr Asp Met Asp Met Ile Arg Asp 915 Cys Ala Glu Lys Val Ala Ser His Trp Gln Gln Leu Met Leu Lys Met 930 Glu Asp Arg Leu Lys Leu Val Asn Ala Ser Val Ala Phe Tyr Lys Thr 945 Ser Glu Gln Val Cys Ser Val Leu Glu Ser Leu Glu Gln Gln Tyr Lys 965 Arg Glu Glu Asp Trp Cys Gly Gly Ala Asp Lys Leu Gly Pro Asn Ser 980 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 995 Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010 Thr His Ile Lys Ala Pro Glu Gln Gln Val Lys Asn Ala Asp Val 1025 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 Arg Arg Leu Asp Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1075 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Hys Gly His 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1150	rea	GIN	GIU	ATA		GIII	Dea	GIII	ALG		птэ	GIU	GIII	FILE		птэ
Glu Ala Met Leu Gln Ala Asn His Tyr Asp Met Asp Met Ile Arg Asp 925 Cys Ala Glu Lys Val Ala Ser His Trp Gln Gln Leu Met Leu Lys Met 930 935 940 Glu Asp Arg Leu Lys Leu Val Asn Ala Ser Val Ala Phe Tyr Lys Thr 945 Ser Glu Gln Val Cys Ser Val Leu Glu Ser Leu Glu Gln Glu Tyr Lys 965 Arg Glu Glu Asp Trp Cys Gly Gly Ala Asp Lys Leu Gly Pro Asn Ser 980 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 1005 Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010 1015 1020 Phe Leu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val 1025 1030 1035 1040 Thr His Ile Lys Ala Pro Glu Gln Gln Val Lys Asn Ile Leu Asn Glu 1045 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser Ala 1090 1095 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1145				_		•										
915	Ala	Ile	Glu			His	Gln	Ser		Leu	Gln	Val	Gin		Lys	Ala
Cys Ala Glu Lys Val Ala Ser His Trp Gln Gln Leu Met Leu Lys Met 930 935 940 940 940 940 940 940 940 940 940 940	Glu	Ala		Leu	Gln	Ala	Asn		Tyr	Asp	Met	Asp		Ile	Arg	Asp
Glu Asp Arg Leu Lys Leu Val Asn Ala Ser Val Ala Phe Tyr Lys Thr 945	Cvs	Ala		Lvs	Val	Ala	Ser	His	Tro	Gln	Gln	Leu	Met	Leu	Lvs	Met
Glu Asp Arg Leu Lys Leu Val Asn Ala Ser Val Ala Phe Tyr Lys Thr 945 950 950 955 955 960 960 Ser Glu Gln Val Cys Ser Val Leu Glu Ser Leu Glu Glu Gln Glu Tyr Lys 975 975 Arg Glu Glu Asp Trp Cys Gly Gly Ala Asp Lys Leu Gly Pro Asn Ser 980 985 985 990 990 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Glu Gln Lys 995 1000 1005 1005 1005 1005 1005 1005	Cys		014	_,,											-1-	
945 950 955 960 Ser Glu Gln Val Cys Ser Val Leu Glu Ser Leu Glu Gln Glu Tyr Lys 965 970 Arg Glu Glu Asp Trp Cys Gly Gly Ala Asp Lys Leu Gly Pro Asn Ser 980 985 990 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 995 1000 1005 Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010 1015 1020 Phe Leu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val 1025 1030 1035 1040 Thr His Ile Lys Ala Pro Glu Gln Gln Val Lys Asn Ile Leu Asn Glu 1045 1050 1055 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1135 Val Lys Leu Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1145 1150	C1		N	T	T	T 011		700	712	80=	17 - 1		Dho	Ψ~	T	ሞኤ∽
Ser Glu Gln Val Cys Ser Val Leu Glu Ser Leu Glu Gln Glu Tyr Lys 965 970 975 Arg Glu Glu Asp Trp Cys Gly Gly Ala Asp Lys Leu Gly Pro Asn Ser 980 985 985 990 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 995 1000 1005 Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010 1015 1020 Phe Leu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val 1025 1030 1035 1040 Thr His Ile Lys Ala Pro Glu Gln Gln Gln Val Lys Asn Ile Leu Asn Glu 1045 1050 1055 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150		Asp	Arg	Leu	гÀг		Val	ASII	Ala	Ser		ATa	FILE	LAT	гÃ2	
Arg Glu Glu Asp Trp Cys Gly Gly Ala Asp Lys Leu Gly Pro Asn Ser 980 985 995 990 Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 995 1000 1005 1005 Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010 1015 1020 Phe Leu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val 1025 1030 1035 1040 Thr His Ile Lys Ala Pro Glu Gln Gln Gln Val Lys Asn Ile Leu Asp Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1045 1055 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Arg Ser Ala 1075 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg Lys 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150					_			_		_					_	
Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 995	Ser	Glu	Gln	Val		Ser	Val	Leu	Glu		Leu	Glu	Gln	Glu	_	Lys
Glu Thr Asp His Val Thr Pro Met Ile Ser Lys His Leu Glu Gln Lys 995	Arg	Glu	Glu	Asp	Trp	Cys	Gly	Gly	Ala	Asp	Lys	Leu	Gly	Pro	Asn	Ser
Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010	-			980	•	-	-	_	985	_	•		_	990		
Glu Ala Phe Leu Lys Ala Cys Thr Leu Ala Arg Arg Asn Ala Asp Val 1010 1015 1020 Phe Leu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val 1025 1030 1035 1040 Thr His Ile Lys Ala Pro Glu Gln Gln Val Lys Asn Ile Leu Asn Glu 1045 1050 1055 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	Glu	Thr	_	His	Val	Thr	Pro			Ser	Lys	His			Gln	Lys
Phe Leu Lys Tyr Leu His Arg Asn Ser Val Asn Met Pro Gly Met Val 1025 1030 1035 1040 Thr His Ile Lys Ala Pro Glu Gln Gln Val Lys Asn Ile Leu Asn Glu 1045 1055 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	C1	21-		T 011	T	71-	C			712	λ ~ ~	7-~		-	N c m	17 a 1
1025		1010)		_		1015	5				1020)			
Thr His Ile Lys Ala Pro Glu Gln Gln Val Lys Asn Ile Leu Asn Glu 1045 1050 1055 Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	Phe	Leu	Lys	Tyr	Leu	His	Arg	Asn	Ser	Val			Pro	Gly	Met	Val
Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	1025	5				1030)				103	5				1040
Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	Thr	His	Ile	Lys	Ala	Pro	Glu	Gln	Gln	Val	Lys	Asn	Ile	Leu	Asn	Glu
Leu Phe Gln Arg Glu Asn Arg Val Leu His Tyr Trp Thr Met Arg Lys 1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150				-												
1060 1065 1070 Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 1080 1085 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 1095 1100 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	T.AII	Phe	Gln	Ara			Ara	Val	T.e.ii			Tro	Thr	Met		
Arg Arg Leu Asp Gln Cys Gln Gln Tyr Val Val Phe Glu Arg Ser Ala 1075 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1085	ncu.	1110	·			11011	9				- , -					-10
1075 Lys Gln Ala Leu Glu Trp Ile His Asp Asn Gly Glu Phe Tyr Leu Ser 1090 Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1085 1085 1100 1100 1110 1110 1110 1110 1110 11110 11110 11110 11110 11110 11110	3	3	T			C	C1 =	C1-			17-1	Dho	C1.,			7.1.
1090 1095 1100 1100 1100 1100 1105 1100 1105 1100 1105 1110 1115 1120 1120	_	-	107	5		-		1080	0				108	5		
Thr His Thr Ser Thr Gly Ser Ser Ile Gln His Thr Gln Glu Leu Leu 1105 1110 1115 1120 Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	Lys			Leu	Glu	Trp			Asp	Asn	Gly			Tyr	Leu	Ser
1105	Th >			Sar	Thr	Gly			Tla	Gln	Hic			Glu	T.e.ii	T.A11
Lys Glu His Glu Glu Phe Gln Ile Thr Ala Lys Gln Thr Lys Glu Arg 1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150			1111	OCT	TIIT	_		261	116	0111			O111	CIU	⊥-cu	
1125 1130 1135 Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150			,,,	~ 1	~ 1			71 -	⊕	n 1 -			መኔ	T	C1 ·	
Val Lys Leu Leu Ile Gln Leu Ala Asp Gly Phe Cys Glu Lys Gly His 1140 1145 1150	гла	Glu	Hls	GIU			GIN	тте	Inr			GIU	ınr	rλ2		
1140 1145 1150												_		_	_	-
	Val	Lys	Leu			Gln	Leu	Ala			Phe	Cys	Glu			His
	Ala	His	Ala			Ile	Lys	Lys			Thr	Ala	Val	Asp	Lys	Arg

		1160)		1165	
1155 Tyr Arg Asp Phe 1170				Tyr Arg 1180	Thr Ser	Leu Gļu
Lys Ala Leu Gly 1185	1190			1195	_	1200
Gln Leu Asp Ile	1205		1210)		1215
Arg Asp Ala Ala 1220)		1225	-	1230)
Arg Lys Glu Phe 1235		1240)		1245	_
Val Arg Asp Leu 1250		1255		1260)	
Ser Gly Val Glu 1265	1270			1275		1280
Ile Phe Gly Asn	1285		1290)		1295
Leu Lys Glu Leu 1300 Cys Phe Val Thr			1305		1310)
1315		1320) .	•	1325	
Lys Asn Lys Pro 1330	•	1335		1340)	
Tyr Phe Asp Glu 1345	1350	•		1355		1360 [.]
Ser Tyr Leu Ile	1365		1370)	_	1375
Leu Lys Glu Leu 1380)		1385		1390)
Asp Gly Leu Glu 1395		1400)		1405	
Met His Leu Ser 1410	:	1415	_	1420)	
Clar Clar Ton Tla	Leu Gla	Glu Ser	Phe Gln	Val Trp	Asp Pro	Lys Thr
Gly Glu Leu Ile 1425	1430			1435		1440
1425 Leu Ile Arg Lys	1430 Gly Arg (1445	Glu Arg	His Leu 1450	1435 Phe Leu		Met Ser 1455
1425 Leu Ile Arg Lys Leu Val Phe Ser 146	1430 Gly Arg 1445 Lys Glu	Glu Arg Val Lys	His Leu 1450 Asp Ser 1465	1435 Phe Leu) Ser Gly	Arg Ser	Met Ser 1455 Lys Tyr
Leu Ile Arg Lys Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475	1430 Gly Arg 1445 Lys Glu) Lys Leu	Glu Arg Val Lys Phe Thr 1480	His Leu 1450 Asp Ser 1465 Ser Glu	1435 Phe Leu Ser Gly Leu Gly	Arg Ser 1470 Val Thr 1485	Met Ser 1455 Lys Tyr) Glu His
Leu Ile Arg Lys Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475 Val Glu Gly Asp 1490	1430 Gly Arg 1445 Lys Glu) Lys Leu Pro Cys	Glu Arg Val Lys Phe Thr 1480 Lys Phe 1495	His Leu 1450 Asp Ser 1465 Ser Glu) Ala Leu	1435 Phe Leu Ser Gly Leu Gly Trp Val	Arg Ser 1470 Val Thr 1485 Gly Arg	Met Ser 1455 Lys Tyr) Glu His
Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475 Val Glu Gly Asp 1490 Thr Ser Asp Asn	1430 Gly Arg 1445 Lys Glu D Lys Leu Pro Cys Lys Ile 1510	Glu Arg Val Lys Phe Thr 1480 Lys Phe 1495 Val Leu	His Leu 1450 Asp Ser 1465 Ser Glu) Ala Leu Lys Ala	1435 Phe Leu Ser Gly Leu Gly Trp Val 1500 Ser Ser 1515	Arg Ser 1470 Val Thr 1485 Gly Arg O Ile Glu	Met Ser 1455 Lys Tyr O Glu His Thr Pro Asn Lys 1520
Leu Ile Arg Lys Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475 Val Glu Gly Asp 1490 Thr Ser Asp Asn 1505 Gln Asp Trp Ile	1430 Gly Arg (1445 Lys Glu (145) Lys Leu Pro Cys Lys Ile 1510 Lys His 1525	Glu Arg Val Lys Phe Thr 1480 Lys Phe 1495 Val Leu Ile Arg	His Leu 1450 Asp Ser 1465 Ser Glu) Ala Leu Lys Ala Glu Val 1530	1435 Phe Leu Ser Gly Leu Gly Trp Val 1500 Ser Ser 1515 Ile Gln	Arg Ser 1470 Val Thr 1485 Gly Arg O Ile Glu Glu Arg	Met Ser 1455 Lys Tyr Clu His Thr Pro Asn Lys 1520 Thr Ile 1535
Leu Ile Arg Lys Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475 Val Glu Gly Asp 1490 Thr Ser Asp Asn 1505 Gln Asp Trp Ile His Leu Lys Gly 154	1430 Gly Arg 1445 Lys Glu Cys Leu Pro Cys Lys Ile 1510 Lys His 1525 Ala Leu 0	Glu Arg Val Lys Phe Thr 1480 Lys Phe 1495 Val Leu Ile Arg Lys Glu	His Leu 1450 Asp Ser 1465 Ser Glu Ala Leu Lys Ala Glu Val 1530 Pro Ile 1545	1435 Phe Leu Ser Gly Leu Gly Trp Val 1500 Ser Ser 1515 Ile Gln His Ile	Arg Ser 1470 Val Thr 1485 Gly Arg O Ile Glu Glu Arg Pro Lys 155	Met Ser 1455 Lys Tyr Clu His Thr Pro Asn Lys 1520 Thr Ile 1535 Thr Ala
Leu Ile Arg Lys Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475 Val Glu Gly Asp 1490 Thr Ser Asp Asn 1505 Gln Asp Trp Ile His Leu Lys Gly 154 Pro Ala Thr Arg	1430 Gly Arg 1445 Lys Glu Cys Leu Pro Cys Lys Ile 1510 Lys His 1525 Ala Leu Gln Lys	Glu Arg Val Lys Phe Thr 1480 Lys Phe 1495 Val Leu Ile Arg Lys Glu Gly Arg	His Leu 1450 Asp Ser 1465 Ser Glu Ala Leu Lys Ala Glu Val 1530 Pro Ile 1545 Arg Asp	1435 Phe Leu Ser Gly Leu Gly Trp Val 1500 Ser Ser 1515 Ile Gln His Ile Gly Glu	Arg Ser 1476 Val Thr 1485 Gly Arg Ile Glu Glu Arg Pro Lys 155 Asp Leu 1565	Met Ser 1455 Lys Tyr Clu His Thr Pro Asn Lys 1520 Thr Ile 1535 Thr Ala O Asp Ser
Leu Ile Arg Lys Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475 Val Glu Gly Asp 1490 Thr Ser Asp Asn 1505 Gln Asp Trp Ile His Leu Lys Gly 154 Pro Ala Thr Arg 1555 Gln Gly Asp Gly 1570	1430 Gly Arg 1445 Lys Glu Cys Leu Pro Cys Lys Ile 1510 Lys His 1525 Ala Leu Gln Lys Ser Ser	Glu Arg Val Lys Phe Thr 1480 Lys Phe 1495 Val Leu Ile Arg Lys Glu Gly Arg 1560 Gln Pro 1575	His Leu 1450 Asp Ser 1465 Ser Glu Ala Leu Lys Ala Glu Val 1530 Pro Ile 1545 Arg Asp O Asp Thr	1435 Phe Leu Ser Gly Leu Gly Trp Val 1500 Ser Ser 1515 Ile Gln His Ile Gly Glu Ile Ser 158	Arg Ser 1470 Val Thr 1485 Gly Arg Ile Glu Glu Arg Pro Lys 155 Asp Leu 1565 Ile Ala	Met Ser 1455 Lys Tyr Clu His Thr Pro Asn Lys 1520 Thr Ile 1535 Thr Ala O Asp Ser Ser Arg
Leu Ile Arg Lys Leu Val Phe Ser 146 Leu Tyr Lys Ser 1475 Val Glu Gly Asp 1490 Thr Ser Asp Asn 1505 Gln Asp Trp Ile His Leu Lys Gly 154 Pro Ala Thr Arg 1555 Gln Gly Asp Gly	1430 Gly Arg 1445 Lys Glu Cys Leu Pro Cys Lys Ile 1510 Lys His 1525 Ala Leu Gln Lys Ser Ser Thr Leu 1590	Glu Arg Val Lys Phe Thr 1480 Lys Phe 1495 Val Leu Ile Arg Lys Glu Gly Arg 1560 Gln Pro 1575 Asp Ser	His Leu 1450 Asp Ser 1465 Ser Glu Ala Leu Lys Ala Glu Val 1530 Pro Ile 1545 Arg Asp O Asp Thr	1435 Phe Leu Ser Gly Leu Gly Trp Val 1500 Ser Ser 1515 Ile Gln His Ile Gly Glu Ile Ser 158 Leu Ser 1595	Arg Ser 1470 Val Thr 1485 Gly Arg Ile Glu Glu Arg Pro Lys 1555 Asp Leu 1565 Ile Ala O	Met Ser 1455 Lys Tyr Clu His Thr Pro Asn Lys 1520 Thr Ile 1535 Thr Ala Asp Ser Ser Arg Cys Glu 1600

			1620)	Gln			1625	5			_	1630)	•
Lys	Pro	Asp 1635	-	Суѕ	Leu	Val	Arg 1640		Thr	Asp	Arg	Ser 1645		Ala	Ala
Glu	Gly 1650		Val	Pro	Cys	Gly 1655		Leu	Cys	Ile	Ala 1660		Ser	Arg	Ser
Ser 1669		Glu	Met	Glu	Gly 1670		Phe	Asn	His	Lys 1675	_	Ser	Leu	Ser	Val 1680
Ser	Ser	Asn	Asp	Ala 1685	Ser	Pro	Pro	Ala	Ser 1690		Ala	Ser	Leu	Gln 1695	
His	Met	Ile	Gly 1700		Gln	Ser	Ser	Pro 1705	_	Pro	Lys	Arg	Pro 1710	_	Asn
Thr	Leu	Arg 1715		Trp	Leu	Thr	Ser 1720		Val	Arg	Arg	Leu 1725		Ser	Gly
Lys	Ala 1730	-	Gly	His	Val	Lys 1735		Leu	Ala	His	Lys 1740		Lys	Lys	Ser
1745	5 .		=	_	Ser 1750)	_		_	1755	i	-	_		1760
_				1765			-		1770)			•	1775	,
		_	1780)	Ser	_		1785	j	_			1790)	
		1795	5	_	Glu		1800)			_	1805	, -		
	1810)			Met	1815	5		•		1820)			
1825	5		-	-	Lys 1830)			_	1835	,		-		1840
				1845					1850)				1855	5
		-	1860)	Met			1865	,				1870)	
Val	Asp	Gln 1875		Asp	Ser	Ser	Ser 1880		Ser	Phe	Asn	1885		Asp	
	1890	Leu)	Ser		Ser	1895	5				1900)		_	_
Ser 1905	1890 Ser	Leu) Ser	Ser	Lys	Arg 1910	1895 Arg	His	Tyr	Val	Leu 1915	1900 Gln) Glu	Leu	Val	Glu 1920
Ser 1905 Thr	1890 Ser Glu	Leu) Ser Arg	Ser Leu Asp	Lys Tyr 1925	Arg 1910 Val	1895 Arg) Arg	His Asp	Tyr Leu	Val Gly 1930	Leu 1915 Tyr	1900 Gln Val	Glu Val	Leu Glu	Val Gly 1935	Glu 1920 Tyr
Ser 1905 Thr Met	1890 Ser Glu Ala	Leu) Ser Arg Leu	Ser Leu Asp Met 1940	Lys Tyr 1925 Lys)	Arg 1910 Val Glu	1895 Arg Arg Asp	His Asp Gly	Tyr Leu Val 1945	Val Gly 1930 Pro	Leu 1915 Tyr) Asp	1900 Gln Val Asp	Glu Val Met	Leu Glu Lys 1950	Val Gly 1935 Gly	Glu 1920 Tyr Lys
Ser 1905 Thr Met Asp	1890 Ser Glu Ala Lys	Leu Ser Arg Leu Ile 1955	Leu Asp Met 1940 Val	Lys Tyr 1925 Lys) Phe	Arg 1910 Val Glu Gly	Arg Arg Arg Asp Asp	His Asp Gly Ile 1960	Tyr Leu Val 1945 His	Val Gly 1930 Pro Gln	Leu 1915 Tyr) Asp	1900 Gln Val Asp	Glu Val Met Asp 1965	Leu Glu Lys 1950 Trp	Val Gly 1935 Gly) His	Glu 1920 Tyr S Lys
Ser 1909 Thr Met Asp	1890 Ser Glu Ala Lys Phe 1970	Leu) Ser Arg Leu Ile 1955 Phe	Leu Asp Met 1940 Val	Lys Tyr 1925 Lys) Phe	Arg 1910 Val Glu Gly Glu	Arg Arg Asp Asn Leu 1975	His Asp Gly Ile 1960 Glu	Tyr Leu Val 1945 His) Lys	Gly 1930 Pro Gln Cys	Leu 1915 Tyr) Asp Ile Leu	1900 Gln Val Asp Tyr Glu 1980	Glu Val Met Asp 1965 Asp	Leu Glu Lys 1950 Trp Pro	Val Gly 1935 Gly His	Glu 1920 Tyr Dys Arg
Ser 1909 Thr Met Asp	1890 Ser Glu Ala Lys Phe 1970 Gly	Leu) Ser Arg Leu Ile 1955 Phe	Leu Asp Met 1940 Val	Lys Tyr 1925 Lys) Phe	Arg 1910 Val Glu Gly	Arg Arg Asp Asn Leu 1975	His Asp Gly Ile 1960 Glu	Tyr Leu Val 1945 His) Lys	Gly 1930 Pro Gln Cys	Leu 1915 Tyr) Asp Ile Leu	1900 Gln Val Asp Tyr Glu 1980 Leu	Glu Val Met Asp 1965 Asp	Leu Glu Lys 1950 Trp Pro	Val Gly 1935 Gly His	Glu 1920 Tyr Dys Arg
Ser 1905 Thr Met Asp Asp Leu 1985 Ala	1890 Ser Glu Ala Lys Phe 1970 Gly	Leu Ser Arg Leu Ile 1955 Phe Ser Cys	Leu Asp Met 1940 Val Leu Leu Gln	Tyr 1925 Lys Phe Gly Phe Asn 2005	Arg 1910 Val Glu Gly Glu Val 1990 Lys	Arg Arg Asp Asn Leu 1975 Lys Pro	His Asp Gly Ile 1960 Glu His	Tyr Leu Val 1945 His Lys Glu Ser	Val Gly 1930 Pro Gln Cys Arg Glu 2010	Leu 1915 Tyr) Asp Ile Leu Arg 1995 His	1900 Gln Val Asp Tyr Glu 1980 Leu	OGlu Val Met Asp 1965 Asp His	Leu Glu Lys 1950 Trp Pro Met	Val Gly 1935 Gly His Glu Tyr	Glu 1920 Tyr Elys Arg Lys Lys Ile 2000 Tyr
Ser 1905 Thr Met Asp Asp Leu 1985 Ala	1890 Ser Glu Ala Lys Phe 1970 Gly Tyr	Leu Ser Arg Leu Ile 1955 Phe Ser Cys	Leu Asp Met 1940 Val Leu Leu Gln Phe 2020	Tyr 1925 Lys Phe Gly Phe Asn 2009 Phe	Arg 1910 Val Glu Glu Val 1990 Lys Glu	Arg Arg Asp Asn Leu 1975 Lys Pro	His Asp Gly Ile 1960 Glu His Lys Leu	Tyr Leu Val 1945 His Lys Glu Ser Lys 2025	Val Gly 1930 Pro Gln Cys Arg Glu 2010 Gln	Leu 1915 Tyr Asp Ile Leu Arg 1995 His	1900 Gln Val Asp Tyr Glu 1980 Leu Ile	Olu Val Met Asp 1965 Asp His Val	Leu Glu Lys 1950 Trp Pro Met Ser His 2030	Val Gly 1935 Gly His Glu Tyr Glu 2019 Arg	Glu 1920 Tyr Lys Arg Lys Ile 2000 Tyr
Ser 1905 Thr Met Asp Asp Leu 1985 Ala Ile Gln	1890 Ser Glu Ala Lys Phe 1970 Gly Tyr Asp	Leu Ser Arg Leu Ile 1955 Phe Cys Thr Thr 2035	Leu Asp Met 1940 Val Leu Gln Phe 2020 Asp	Lys Tyr 1925 Lys Phe Gly Phe Asn 2005 Phe Leu	Arg 1910 Val Glu Glu Val 1990 Lys Glu Leu	Arg Arg Asp Asn Leu 1975 Lys Pro Asp	His Asp Gly Ile 1960 Glu His Lys Leu Lys 2040	Lys Glu Ser Lys 2025	Val Gly 1930 Pro Gln Cys Arg Glu 2010 Gln Val	Leu 1915 Tyr Asp Ile Leu Arg 1995 His Arg	1900 Gln Val Asp Tyr Glu 1980 Leu Ile Leu	Glu Val Met Asp 1965 Asp His Val Gly Ile 2045	Leu Glu Lys 1950 Trp Pro Met Ser His 2030 Met	Val Gly 1935 Gly His Glu Tyr Glu 2015 Arg	Glu 1920 Tyr Lys Lys Lys Ile 2000 Tyr Leu
Ser 1905 Thr Met Asp Asp Leu 1985 Ala Ile Gln	1890 Ser Glu Ala Lys Phe 1970 Gly Tyr Asp	Leu Ser Arg Leu Ile 1955 Phe Ser Cys Thr Thr 2033 Leu	Leu Asp Met 1940 Val Leu Gln Phe 2020 Asp	Lys Tyr 1925 Lys Phe Gly Phe Asn 2005 Phe Leu	Arg 1910 Val Glu Glu Val 1990 Lys Glu	Arg Arg Asp Asn Leu 1975 Lys Pro Asp	His Asp Gly Ile 1960 Glu His Lys Leu Lys 2040 Leu	Lys Glu Ser Lys 2025	Val Gly 1930 Pro Gln Cys Arg Glu 2010 Gln Val	Leu 1915 Tyr Asp Ile Leu Arg 1995 His Arg	1900 Gln Val Asp Tyr Glu 1980 Leu Ile Leu	Glu Val Met Asp 1965 Asp His Val Gly Ile 2045 Lys	Leu Glu Lys 1950 Trp Pro Met Ser His 2030 Met	Val Gly 1935 Gly His Glu Tyr Glu 2015 Arg	Glu 1920 Tyr Lys Lys Lys Ile 2000 Tyr Leu

2065	2070		2075	2080
Arg Arg Cys Asr	Asp Met Met 2085	Asn Val Gly 209		Gly Phe Asp 2095
Gly Lys Ile Val		Lys Leu Leu 2105	Leu Gln Asp	Thr Phe Leu 2110
Val Thr Asp Glr 2115	Asp Ala Gly	Leu Leu Pro 2120	Arg Cys Arg 2125	
Ile Phe Leu Phe 2130	e Glu Gln Ile 213		Ser Glu Pro 2140	Leu Asp Lys
Lys Lys Gly Phe 2145	Ser Met Pro 2150	Gly Phe Leu	Phe Lys Asn 2155	Ser Ile Lys 2160
Val Ser Cys Leu	Cys Leu Glu 2165	Glu Asn Val 217		Pro Cys Lys 2175
Phe Ala Leu Thr 218	-	Gly Asp Val 2185	Val Glu Thr	Phe Ile Leu 2190
His Ser Ser Ser 2195	Pro Ser Val	Arg Gln Thr 2200	Trp Ile His 2205	
Gln Ile Leu Glu 2210	221	.5	2220	
Ile Glu Tyr Glr 2225	2230		2235	2240
Gly Ala Ala Ala	Gly Val Gly 2245	Ala Ala Ala 225		Pro Pro Val 2255
Ala Ala Ala Ala 226	50	2265		2270 .
Ala Arg Ala Gly 2275	Ala Gly Pro	Pro Gly Ser 2280	Pro Ser Leu 2285	
Thr Pro Pro Cys 2290	229	5	2300	•
Thr Arg Cys Glr 2305	2310		2315	2320
Leu Val Thr His	2325	233	0	2335
Tyr Gln Gly Glu 234	10	2345		2350
Phe Leu Val Phe 2355		2360	2365	5
Trp Ile Pro Gly 2370	237	75	2380	
Asn Pro Asp Gly 2385	2390		2395	2400
Arg Leu Arg Lys	2405	241	0	2415
Gly Lys Leu Gla	20	2425		2430
Lys Val Ser Val 2435	_	2440	244	5
Pro Glu Phe Val 2450	245	55	2460	
Thr Val Val Let 2465	2470		2475	2480
Thr Trp Lys Gl	2485	249	00	2495
Ser Ile Ser Ty:	00	2505		2510
Val Thr Thr Gla 2515	u Asp Asp Gly	y Ile Tyr Thr 2520	Cys Ile Ala 252	

032796-132.ST25

Met Gly Ser Ala Ser Ser Ser Ala Ser Leu Arg Val Leu Gly Pro Gly 2535 Met Asp Gly Ile Met Val Thr Trp Lys Asp Asn Phe Asp Ser Phe Tyr 2550 2555 Ser Glu Val Ala Glu Leu Gly Arg Gly Arg Phe Ser Val Val Lys Lys 2570 2565 Cys Asp Gln Lys Gly Thr Lys Arg Ala Val Ala Thr Lys Phe Val Asn 2585 2590 2580 Lys Lys Leu Met Lys Arg Asp Gln Val Thr His Glu Leu Gly Ile Leu 2600 2605 Gln Ser Leu Gln His Pro Leu Leu Val Gly Leu Leu Asp Thr Phe Glu 2615 Thr Pro Thr Ser Tyr Ile Leu Val Leu Glu Met Ala Asp Gln Gly Arg 2630 2635 Leu Leu Asp Cys Val Val Arg Trp Gly Ser Leu Thr Glu Gly Lys Ile 2650 2645 Arg Ala His Leu Gly Glu Val Leu Glu Ala Val Arg Tyr Leu His Asn 2660 2665 Cys Arg Ile Ala His Leu Asp Leu Lys Pro Glu Asn Ile Leu Val Asp 2680 Glu Ser Leu Ala Lys Pro Thr Ile Lys Leu Ala Asp Phe Gly Asp Ala 2695 2700 Val Gln Leu Asn Thr Thr Tyr Tyr Ile His Gln Leu Leu Gly Asn Pro 2710 2715 2720 Glu Phe Ala Ala Pro Glu Ile Ile Leu Gly Asn Pro Val Ser Leu Thr 2730 2725 Ser Asp Thr Trp Ser Val Gly Val Leu Thr Tyr Val Leu Leu Ser Gly 2740 2745 2750 Val Ser Pro Phe Leu Asp Asp Ser Val Glu Glu Thr Cys Leu Asn Ile 2760 2765 Cys Arg Leu Asp Phe Ser Phe Pro Asp Asp Tyr Phe Lys Gly Val Ser 2775 2780 Gln Lys Ala Lys Glu Phe Val Cys Phe Leu Leu Gln Glu Asp Pro Ala 2790 2795 Lys Arg Pro Ser Ala Ala Leu Ala Leu Gln Glu Gln Trp Leu Gln Ala 2805 2810 Gly Asn Gly Arg Ser Thr Gly Val Leu Asp Thr Ser Arg Leu Thr Ser 2825 2830 Phe Ile Glu Arg Arg Lys His Gln Asn Asp Val Arg Pro Ile Arg Ser 2840 Ile Lys Asn Phe Leu Gln Ser Arg Leu Leu Pro Arg Val 2850 2855 <210> 109 <211> 271 <212> PRT <213> Homo sapiens <400> 109 Met Val Leu Ile Lys Glu Phe Arg Val Val Leu Pro Cys Ser Val Gln Glu Tyr Gln Val Gly Gln Leu Tyr Ser Val Ala Glu Ala Ser Lys Asn 25 Glu Thr Gly Gly Glu Gly Ile Glu Val Leu Lys Asn Glu Pro Tyr 40 Glu Lys Asp Gly Glu Lys Gly Gln Tyr Thr His Lys Ile Tyr His Leu

50

032796-132.ST25

Lys Ser Lys Val Pro Ala Phe Val Arg Met Ile Ala Pro Glu Gly Ser Leu Val Phe His Glu Lys Ala Trp Asn Ala Tyr Pro Tyr Cys Arg Thr Ile Val Thr Asn Glu Tyr Met Lys Asp Asp Phe Phe Ile Lys Ile Glu 105 Thr Trp His Lys Pro Asp Leu Gly Thr Leu Glu Asn Val His Gly Leu 120 Asp Pro Asn Thr Trp Lys Thr Val Glu Ile Val His Ile Asp Ile Ala 135 140 Asp Arg Ser Gln Val Glu Pro Ala Asp Tyr Lys Ala Asp Glu Asp Pro 150 155 Ala Leu Phe Gln Ser Val Lys Thr Lys Arg Gly Pro Leu Gly Pro Asn 170 165 Trp Lys Lys Glu Leu Ala Asn Ser Pro Asp Cys Pro Gln Met Cys Ala 185 Tyr Lys Leu Val Thr Ile Lys Phe Lys Trp Trp Gly Leu Gln Ser Lys 195 Val Glu Asn Phe Ile Gln Lys Gln Glu Lys Arg Ile Phe Thr Asn Phe 215 His Arg Gln Leu Phe Cys Trp Ile Asp Lys Trp Ile Asp Leu Thr Met 235 230 Glu Asp Ile Arg Arg Met Glu Asp Glu Thr Gln Lys Glu Leu Glu Thr 250 245 Met Arg Lys Arg Gly Ser Val Arg Gly Thr Ser Ala Ala Asp Val 265 <210> 110 <211> 233

<212> PRT

<213> Homo sapiens

<400> 110

Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly 25 Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys 55 Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala 75 Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro 90 85 Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His 105 Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp 120 115 His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser 155 150 Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile 170 Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg 180

032796-132.ST25

Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu 200 Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser 215 Ser Arg Leu His Thr Cys Gln Arg His 230 <210> 111 <211> 212 <212> PRT <213> Homo sapiens <400> 111 Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro 90 Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His 105 Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp 120 115 125 His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys 135 Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser 150 155 Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile 170 Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg 185 Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu 200 195 Gly Leu Ser Cys 210 <210> 112 <211> 149 <212> PRT <213> Homo sapiens <400> 112 Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln

Page 166

35 40 45
Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr Cys

032796-132.ST25

<210> 113 <211> 170 <212> PRT

<213> Homo sapiens

<400> 113

Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn 40 His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser 75 Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys 105 Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg 115 120. Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly 135 140 Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn 155 150 Ser Ser Arg Leu His Thr Cys Gln Arg His 165

<210> 114 <211> 128 <212> PRT

<213> Homo sapiens

<400> 114

Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile 1 5 10 15 15 Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg 20 25 30 Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly 35 40 45

032796-132.ST25

Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp 100 105 His His Gln Ala Ser Asn Ser Ser Arg Leu His Thr Cys Gln Arg His 120

<210> 115 <211> 84 <212> PRT <213> Homo sapiens

145

<400> 115 Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly 10 Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg Leu His Thr Cys Gln Arg His

<210> 116 <211> 149 <212> PRT <213> Homo sapiens <400> 116 Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn 55 60 Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser 70 75 Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser 90 Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg 120 Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly 135 Glu Gly Leu Ser Cys

Page 168

```
<210> 117
 <211> 107
 <212> PRT
 <213> Homo sapiens
 <400> 117
 Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr Ile
                  5
                                      10 .
 Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser Arg
 Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu Gly
 Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala
 Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln
                                         75
                     70
 Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile Phe
                                      90
 Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys
             100
. <210> 118
 <211> 15
 <212> PRT
 <213> Homo sapiens
 <400> 118
 Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys
                                      10
                  5 .
 <210> 119
 <211> 22
 <212> PRT
 <213> Homo sapiens
 <400> 119
 Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His
                   5
 Thr Lys Gly Gln Glu Gly
              20
  <210> 120
  <211> 21
  <212> PRT
  <213> Homo sapiens
  <400> 120
  Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg Leu His
                                      10
  Thr Cys Gln Arg His
              20
```

```
<210> 121
<211> 15
<212> PRT
<213> Homo sapiens
<400> 121
Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp
<210> 122
<211> 19
<212> PRT
<213> Homo sapiens
<400> 122
Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys Arg Ile
                                     10
Gln Lys Asp
<210> 123
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
<400> 123
Met Tyr Trp Thr Asp Trp Val Glu Thr Pro Arg Ile Glu
                                     10
<210> 124
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
<400> 124
Met Tyr Trp Thr Asp Trp Gly Glu Thr Pro Arg Ile Glu
<210> 125
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
```

```
<400> 125
Lys Arg Thr Gly Gly Lys Arg Lys Glu Ile Leu Ser Ala
                 5
<210> 126
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
<400> 126
Glu Arg Val Glu Lys Thr Thr Gly Asp Lys Arg Thr Arg Ile Gln Gly
1
                 5
<210> 127
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> LRP5/HBM amino acid sequence
<400> 127
Lys Gln Gln Cys Asp Ser Phe Pro Asp Cys Ile Asp Gly Ser Asp Glu
                 5
<210> 128
<211> 266
<212> PRT
<213> Homo sapiens
<400> 128
Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala Met
                                    10
Val Ala Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser Ala Thr
                                25
Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu Pro Pro Pro
Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val Ser Ala Ala Pro
Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln Thr Ile Asp Asn Tyr
Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu Cys Gly Thr Asp Glu Tyr
                85
                                     90
Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu
                                105
Ala Cys Arg Lys Arg Lys Arg Cys Met Arg His Ala Met Cys Cys
                            120
Pro Gly Asn Tyr Cys Lys Asn Gly Ile Cys Val Ser Ser Asp Gln Asn
    130
                        135
```

032796-132.ST25

His Phe Arg Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn 150 155 Asp His Ser Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser 165 170 Lys Met Tyr His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser 185 190 Ser Asp Cys Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys 195 200 205 Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg 215 Arg Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly 230 225 235 240 Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn 250 Ser Ser Arg Leu His Thr Cys Gln Arg His 260 <210> 129 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> complementary synthetic oligonucleotide <400> 129 tggtcagcgg cctggaggat gtggccgcag tggacttcc 39 <210> 130 <211> 39 <212> DNA <213> Artificial Sequence <223> complementary synthetic oligonucleotide <400> 130 ggaagtccac tgcggccaca tcctccaggc cgctgacca 39 <210> 131 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> complementary synthetic oligonucleotide <400> 131 aagctgtact ggacggactc agtgaccaac cgcatcgagg 40 <210> 132 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> complementary synthetic oligonucleotide

<400> cctcga	Annual Carlotte Carlo	40
<210> <211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	133	
atgtac	tgga cagactggaa ggagacgccc cggattgagc g	41
<210>		
<211>		
<212> < < 213> /	DNA Artificial Sequence	
<220>		
	complementary synthetic oligonucleotide	
1220	oompromonedly of nemociae original contract	
<400>	134	
cgctca	atcc ggggcgtctc cttccagtct gtccagtaca t	41
<210>	135	
<211>	41	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	135	
atgtac	tgga cagactggtt tgagacgccc cggattgagc g	41
<210>	136	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	complementary synthetic oligonucleotide	
<400>	136	
		41
-		
<210>		
<211>		
<212>		
\213>	Artificial Sequence	
<220>	·	
<223>	complementary synthetic oligonucleotide	
- 400>	127	

atgractyga cagactygat tyagacyccc cygattyayc g	41
2010: 120	
<210> 138	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 138	
cgctcaatcc ggggcgtctc aatccagtct gtccagtaca t	41
<210> 139	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 139	
atgtactgga cagactggca ggagacgccc cggattgagc g	41
<210> 140	
<211> 41	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 140	
cgctcaatcc ggggcgtctc ctgccagtct gtccagtaca t	41
agottoured gaggageote degecageot geologicaea e	41
<210> 141	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> complementary synthetic oligonucleotide	
delay complementary synthetic originationiae	
4400 141	
<400> 141	
cggacattta ctggcccaat gtactgacca tcgacctgga gg	42
<210> 142	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
-eros imprinted acducine	
2220 \	
<220>	
<223> complementary synthetic oligonucleotide	
<400> 142	
cctccaggtc gatggtcagt acattgggcc agtaaatgtc cg	42
77 - 7 - 77	
<210> 143	
\410\/ 143	

<211> <212> <213>		
<220>		
	complementary synthetic eligenyelectide	
\223 /	complementary synthetic oligonucleotide	
<400>	143	
agctct	actg ggctgacgtc aagctcagct tcatccaccg	40
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>		
cdatad	atga agotgagott gaogtoagoo cagtagagot	40
<210>	145	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	1.45	
		41
gagege	social tactoaccog tygacaroca gytycryago t	41
<210>	146	
<211>	41	
<212>	DNA	
<213>	Artificial Sequence	
<220>	complementary synthetic oligonucleotide	
\2237	complementary synthetic origonacteotide	
<400>	146	
	gcac ctggatgtcc acgggtgagt agagggcact c	41
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	complementary symthetic eligenyelectide	
12237	complementary synthetic oligonucleotide	
<400>	147	
	147 actgg acagactggg tagagaaccc taaaatcgag tgtgc	45
		45
<210>	nctgg acagactggg tagagaaccc taaaatcgag tgtgc	45
<210><211>	etgg acagactggg tagagaacce taaaatcgag tgtgc 148 45	45
<210><211><212>	etgg acagactggg tagagaacce taaaatcgag tgtgc 148 45	45

<220> <223>	complementary synthetic oligonucleotide	
<400>	148	
gcacac	toga ttttagggtt ctctacccag tctgtccagt acatg	45
<210>	149	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	149	
catcta	ctgg accgagtggg tcggcaagcc gaggatcgtg cg	42
<210>	·	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	150	
cgcacg	atcc toggottgoo gaccoactog gtocagtaga tg	42
<210>	151	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	151	
gtactt	cacc aacatggtgg accgggcagc caagatcgaa cg	42
<210>	152	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	complementary synthetic oligonucleotide	
<400>	152	
cgttcg	atct tggctgcccg gtccaccatg ttggtgaagt ac	42
<210>	153	
<211>		
<212>		
	Artificial Sequence	
<220>		

<223> complementary synthetic oligonucleotide	
<400> 153	
gtactggaca gactgggtag aagtgccaaa gatagaacgt gc	42
<210> 154	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> complementary synthetic oligonucleotide	
•	
<400> 154	
gcacgttcta tctttggcac ttctacccag tctgtccagt ac	42
<210> 155	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 155	
ttttttgtcg accaattcca acgctatcaa g	31
•	
<210> 156	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 156	
ttttttgtcg acctgcgcta gtcccacccg c	31
assessed acceptageon generally o	71
<210> 157	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 157	
ttttttgtcg accgtgtctt ctgatcaaaa tc	32
	۷۷
<210> 158	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	

<400> 158 ttttttgtcg accggacaag aaggttctgt ttg	33
<210> 159	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 159	
ttttttgcgg ccgcttattt ggtgtgatac atttttg	37
	•
<210> 160	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
1220 PIIMCI	
<400> 160	
ttttttgcgg ccgcttagca agacagacct tctcc	35
······································	
<210> 161	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 161	
ttttttgcgg ccgcttagtg tctctgacaa gtgtg	35
<210> 162	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
vers interretar bequeite	
<220>	
<223> primer	
<400> 162	
Cagtgaattc accatgcaaa acaccacttt gttc	34
Caytyaatto accatycaaa acaccacttt ytto	34
<210> 163	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400 163	
<400> 163 Cagttgcggc cgctcatctc cggtggcctc tg	32
CAULLULUUL LULLLALLL LUULUULLU LU	3/

```
<210> 164
<211> 39
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 164
caatagtcga cgaattcacc atggctctgg gcgcagcgg
                                                                   39
<210> 165
<211> 42
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 165
gtattgcggc cgctctagat tagtgtctct gacaagtgtg aa
                                                                   42
<210> 166
<211> 32
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 166
ctaacggatc caccatggcc gcgttgatgc gg
                                                                   32
<210> 167
<211> 33
<212> DNA
<213> Homo sapiens
<220>
<223> primer
<400> 167
gattcgaatt ctcaaatttt ctgacacaca tgg
                                                                   33
<210> 168
<211> 690
<212> DNA
<213> Homo sapiens
<400> 168
aattccaacg ctatcaagaa cctgccccca ccgctgggcg gcgctgcggg gcacccaggc 60
totgoagtoa gogoogogoo gggaatootg taccogggog ggaataagta ccagaccatt 120
gacaactacc agccgtaccc gtgcgcagag gacgaggagt gcggcactga tgagtactgc 180
gctagtccca cccgcggagg ggacgcgggc gtgcaaatct gtctcgcctg caggaagcgc 240
cgaaaacgct gcatgcgtca cgctatgtgc tgccccggga attactgcaa aaatggaata 300
tgtgtgtctt ctgatcaaaa tcatttccga ggagaaattg aggaaaccat cactgaaagc 360
tttggtaatg atcatagcac cttggatggg tattccagaa gaaccacctt gtcttcaaaa 420
```

```
atgtatcaca ccaaaggaca agaaggttct gtttgtctcc ggtcatcaga ctgtgcctca 480
ggattgtgtt gtgctagaca cttctggtcc aagatctgta aacctgtcct gaaagaaggt 540
caagtgtgta ccaagcatag gagaaaaggc tctcatggac tagaaatatt ccagcgttgt 600
tactgtggag aaggtctgtc ttgccggata cagaaagatc accatcaagc cagtaattct 660
tctaggcttc acacttgtca gagacactaa
<210> 169
<211> 1226
<212> DNA
<213> Homo sapiens
<400> 169
ctcatcctgc ccctgcatgg actgaggaac gtcaaagcca tcgactatga cccactggac 60
aagttcatct actgggtgga tgggcgccag aacatcaagc gagccaagga cgacgggacc 120
cagccctttg ttttgacctc tctgagccaa ggccaaaacc cagacaggca gcccacgac 180
ctcagcatcg acatctacag ccggacactg ttctggacgt gcgaggccac caataccatc 240
aacgtccaca ggctgagcgg ggaagccatg ggggtggtgc tgcgtgggga ccqcqacaag 300
cccagggcca tcgtcgtcaa cgcggagcga gggtacctgt acttcaccaa catgcaggac 360
cgggcagcca agatcgaacg cgcagccctg gacggcaccg agcgcgaggt cctcttcacc 420
accggcctca tecgccetgt ggccetggtg gtagacaaca caetgggcaa getgttetgg 480
gtggacgcgg acctgaagcg cattgagagc tgtgacctgt caggggccaa ccgcctgacc 540
ctggaggacg ccaacatcgt gcagcctctg ggcctgacca tccttggcaa gcatctctac 600
tggatcgacc gccagcagca gatgatcgag cgtgtggaga agaccaccgg ggacaagcgg 660
actogoatco agggoogtgt ogcocacoto actggoatco atgcagtgga ggaagtcago 720
ctggaggagt teteageeca eccatgtgee egtgacaatg gtggetgete ecacatetgt 780
attgccaagg gtgatgggac accacggtgc tcatgcccag tccacctcgt gctcctgcag 840
aacctgctga cctgtggaga gccgcccacc tgctccccgg accagtttgc atgtgccaca 900
ggggagatcg actgtatccc cggggcctgg cgctgtgacg gctttcccga gtgcgatgac 960
cagagegacg aggagggetg eccegtgtge teegeegeec agtteecetg egegeggggt 1020
cagtgtggtg gacctgcgcc tgcgctgcga cggcgaggca gactgtcagg accgctcaga 1080
cgaggcggac tgtgacgcca tctgcctgcc caaccagttc cggtgtgcga gcggccagtg 1140
tgtcctcatc aaacagccag tgcgactcct tccccgactg tatcgacggc tccgacgagc 1200
tcatgtgtga aatcaccaag ccgccc
                                                                  1226
<210> 170
<211> 934
<212> DNA
<213> Homo sapiens
<400> 170
agggccatcg tcgtcaacgc ggagcgaggg tacctgtact tcaccaacat gcaggaccgg 60
gcagccaaga tegaacgege agecetggae ggeacegage gegaggteet etteaceace 120
ggcctcatcc gccctgtggc cctggtggta gacaacacac tgggcaagct gttctgggtg 180
gacgcggacc tgaagcgcat tgagagctgt gacctgtcag gggccaaccg cctgaccctg 240
gaggacgcca acatcgtgca gcctctgggc ctgaccatcc ttggcaagca tctctactgg 300
atcgaccgcc agcagcagat gatcgagcgt gtggagaaga ccaccgggga caagcggact 360
egeatecagg geogtgtege ceaecteact ggeatecatg cagtggagga agteageetg 420
gaggagttet cageceacee atgtgeeegt gaeaatggtg getgeteeea catetgtatt 480
gccaagggtg atgggacacc acggtgctca tgcccagtcc acctcgtgct cctgcagaac 540
ctgctgacct gtggagagcc gcccacctgc tccccggacc agtttgcatg tgccacaggg 600
gagategaet gtateeeegg ggeetggege tgtgaegget tteeegagtg egatgaeeag 660
agcgacgagg agggctgccc cgtgtgcctc cgccgcccag ttcccctgcg cgcggggtca 720
gtgtgtggac ctgcgcctgc gctgcgacgg cgaggcagac tgtcaggacc qctcagacga 780
ggcggactgt gacgccatct ggcctgccca accagttccg gtgtgcgagc ggccagtgtg 840
tecteateaa acageagtge gaeteettee eegaetgtat egaeggetee gaegagetea 900
tgtgtgaaat caccaagccg ccctaagcgg ccgc
                                                                   934
```

```
<210> 171
<211> 16
<212> PRT.
<213> Homo sapiens
<400> 171
Ser Val Gly Cys Leu Cys Ala Gly Leu Gly Val Trp Ser Leu Ser
<210> 172
<211> 19
<212> PRT
<213> Homo sapiens
<400> 172
Trp Cys Cys Cys Gly Leu Phe Arg Gly Val Cys Val Trp Ser Cys Gly
1
                 5
                                     10
Ala Asp Asp
<210> 173
<211> 16
<212> PRT
<213> Homo sapiens
<400> 173
Gly Trp Arg Arg Cys Asp Trp Cys Gly Cys Val Ser Trp Cys Trp Val
<210> 174
<211> 32
<212> PRT
<213> Homo sapiens
<400> 174
Met Pro Gly Ser Val Ser His Cys Trp Gly Gly Ile Cys Glu Ala Leu
                                     10
Ser Cys Cys Ala Val Asp Val Cys Leu Arg Cys Gly Gly Trp Phe Arg
            20
<210> 175
<211> 16
<212> PRT
<213> Homo sapiens
<400> 175
Ser Cys Cys Ala Val Asp Val Cys Leu Arg Cys Gly Gly Trp Phe Arg
                 5
                                     10
                                                         15
<210> 176
<211> 16
<212> PRT
```

```
<213> Homo sapiens
<400> 176
Ser Val Leu Gly Thr Cys Cys Cys Cys Gly Gly Trp Ile Leu Cys Glu
<210> 177
<211> 16
<212> PRT
<213> Homo sapiens
<400> 177
Val Leu Ser Val Cys Glu Val Cys Gly Gly Val Phe Val Arg Arg Cys
<210> 178
<211> 15
<212> PRT
<213> Homo sapiens
<400> 178
Gly Met Trp Tyr Trp Ser Gly Arg Asp Cys Ala Leu Cys Trp Leu
                 5
                                    10
<210> 179
<211> 16
<212> PRT
<213> Homo sapiens
<400> 179
Cys Thr Ala Val Met Trp Gly Val Gly Ser Val Ala Tyr Leu Gly Glu
1
                 5
                                     10
<210> 180
<211> 13
<212> PRT
<213> Homo sapiens
<400> 180
Val Val Cys Trp Trp Cys Gly Cys Arg Gly Trp Trp Arg
<210> 181
<211> 16
<212> PRT
<213> Homo sapiens
<400> 181
Cys Val Cys Ala Ser Phe Cys Cys Cys Val Cys Gly Leu Arg Leu Leu
                 5
```

```
<210> 182
<211> 16
<212> PRT
<213> Homo sapiens
<400> 182
Thr Tyr Glu Val Cys Glu Glu Cys Gly Gly Arg Val Arg Met Trp Val
<210> 183
<211> 16
<212> PRT
<213> Homo sapiens
<400> 183
Val Val Cys Ala Ser Cys Gly Gln Val Trp His Gly Ser Gly Ala
<210> 184
<211> 16
<212> PRT
<213> Homo sapiens
<400> 184
Cys Cys Arg Cys Cys His Cys Trp Asp Cys Glu Trp His Met Cys Val
<210> 185
<211> 16
<212> PRT
<213> Homo sapiens
<400> 185
Phe Cys Ala Ser Cys Cys Trp Cys Gly Cys Asp Cys Phe Gly Trp Val
<210> 186
<211> 16
<212> PRT
<213> Homo sapiens
<400> 186
Cys Asp Tyr Cys Trp Ser Cys Gly Val Trp Cys Pro Ser Ser Trp Leu
                 5
<210> 187
<211> 16
<212> PRT
<213> Homo sapiens
<400> 187
Val Tyr Leu Cys Val Trp Cys Gly Ala Ala Arg Phe Gly Cys Tyr Gly
```

```
1
                                      10
                                                           15
 <210> 188
 <211> 16
 <212> PRT
 <213> Homo sapiens
 <400> 188
 Phe Cys Val Cys Gly Cys Cys Trp Cys Trp Cys Ala Ala Cys Trp Cys
                                      10
 <210> 189
 <211> 16
 <212> PRT
 <213> Homo sapiens
 <400> 189
 Val Val Leu Cys Ser Arg Cys Gly Arg Leu Trp Arg Trp Ser Cys Gly
                  5
                                      10
 <210> 190
 <211> 16
 <212> PRT
 <213> Homo sapiens
 Glu Val Arg Gln Val Thr Cys Ile Arg Cys Arg Arg Gly Phe Leu Leu
                                      10
<210> 191
 <211> 15
 <212> PRT
 <213> Homo sapiens
 <400> 191
 Gly Gly Gly Met Trp Glu Ala Trp Ser Cys Tyr Ala Cys Gly
 <210> 192
 <211> 16
 <212> PRT
 <213> Homo sapiens
 <400> 192
 Gly Trp Arg Trp Cys Gly Arg Cys Gly Ala Leu Trp Trp Arg Arg Val
                                      10
                                                          15
 <210> 193
 <211> 485
 <212> DNA
 <213> Homo sapiens
```

```
<400> 193
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccgtggttct gtgttcgcgt tgtgggcgtt tgtggcggtg gtcgtgtggg 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
<210> 194
<211> 485
<212> DNA
<213> Homo sapiens
<400> 194
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atectcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccgggtggcg gtggtgtggt cggtgtgggg ctttgtggtg gcggcgtgtt 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
<210> 195
<211> 485
<212> DNA
<213> Homo sapiens
<400> 195
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccgaggtgcg gcaggttacg tgtattaggt gtcgtcgggg ttttctgttg 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
<210> 196
<211> 485
<212> DNA
<213> Homo sapiens
<400> 196
aagettgeea eeatggagae agaeaeaete etgetatggg taetgetget etgggtteea 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccggtggtgg ggggatgatt tgggaggctt ggagttgtta tgcgtgtgg 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
```

```
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
                                                                   485
<210> 197
<211> 485
<212> DNA
<213> Homo sapiens
<400> 197
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc catgagcgat aaaattattc acctgactga cgacagtttt 120
gacacggatg tactcaaagc ggacggggcg atcctcgtcg atttctgggc agagtggtgc 180
ggtccgaatt ccttgtggat tgggccgggt gatcagggtc tgtttcggcg ttttgtttt 240
actagtggtc cgtgcaaaat gatcgccccg attctggatg aaatcgctga cgaatatcag 300
ggcaaactga ccgttgcaaa actgaacatc gatcaaaacc ctggcactgc gccgaaatat 360
ggcatccgtg gtatcccgac tctgctgctg ttcaaaaacg gtgaagtggc ggcaaccaaa 420
gtgggtgcac tgtctaaagg tcagttgaaa gagttcctcg acgctaacct ggcgtaagcg 480
gccgc
                                                                   485
<210> 198
<211> 476
<212> DNA
<213> Homo sapiens
<400> 198
aagcttgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
ggttccactg gtgacggatc cgtgtcttct gatcaaaatc atttccgagg agaaattgag 120
gaaaccatca ctgaaagctt tggtaatgat catagcacct tggatgggta ttccagaaga 180
accaccttgt cttcaaaaat gtatcacacc aaaggacaag aaggttctgt ttgtctccqq 240
tcatcagact gtgcctcagg attgtgttgt gctagacact tctggtccaa gatctgtaaa 300
cctgtcctga aagaaggtca agtgtgtacc aagcatagga gaaaaggctc tcatggacta 360
gaaatattcc agcgttgtta ctgtggagaa ggtctgtctt gccggataca gaaagatcac 420
catcaagcca gtaattette taggetteae aettgteaga gacaetaage ggeege
<210> 199
<211> 539
<212> DNA
<213> Homo sapiens
<400> 199
aagettgeca ccatggagae agacacacte etgetatggg taetgetget etgggtteca 60
ggttccactg gtgacggatc ctgcgctagt cccacccgcg gaggggacgc gggcgtgcaa 120
atctgtctcg cctgcaggaa gcgccgaaaa cgctgcatgc gtcacgctat gtgctgcccc 180
gggaattact gcaaaaatgg aatatgtgtg tettetgate aaaateattt eegaggagaa 240
attgaggaaa ccatcactga aagctttggt aatgatcata gcaccttgga tgggtattcc 300
agaagaacca ccttgtcttc aaaaatgtat cacaccaaag gacaagaagg ttctgtttgt 360
ctccggtcat cagactgtgc ctcaggattg tgttgtgcta gacacttctg gtccaagatc 420
tgtaaacctg tcctgaaaga aggtcaagtg tgtaccaagc ataggagaaa aggctctcat 480
ggactagaaa tattccagcg ttgttactgt ggagaaggtc tgtcttgcta agcggccgc 539
<210> 200
<211> 416
<212> DNA
<213> Homo sapiens
<400> 200
aagettgeea ceatgggega taaaattatt cacetgaetg acgaeagttt tgaeacggat 60
```

```
gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tectatgegt ggttgtttte ttgtagtagg tgtaggtggt ggttgeettg gactagtggt 180
ccgtgcaaaa tgatcgccc gattctggat gaaatcgctg acgaatatca gggcaaactg 240
accepttecaa aacteaacat ceatcaaaac cctegecacte cecegaaata tegecatceet 300
ggtatcccga ctctgctgct gttcaaaaac ggtgaagtgg cggcaaccaa agtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc
<210> 201
<211> 416
<212> DNA
<213> Homo sapiens
<400> 201
aagcttgcca ccatgggcga taaaattatt cacctgactg acgacagttt tgacacggat 60
gtactcaaac gccacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tecattigtg aggitgigag gitgiggagi eggiateett ggietigggi qaetagiggi 180
ccgtgcaaaa tgatcgccc gattctggat gaaatcgctg acgaatatca gggcaaactg 240
acceptigcaa aactgaacat cgatcaaaac cctggcactg cgccgaaata tggcatccgt 300
ggtatcccga ctctgctgct gttcaaaaac ggtgaagtgg cggcaaccaa agtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc
<210> 202
<211> 422
<212> DNA
<213> Homo sapiens
<400> 202
aagcttgcca ccatgggcga taaaattatt cacctgactg acgacagttt tgacacggat 60
gtactcaaag cggacgggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
tccggttgta ctagtgcggt gtgtggtgct tgggctgagg cgggtaggtt ttattgtact 180
agtggtccgt gcaaaatgat cgccccgatt ctggatgaaa tcgctgacga atatcagggc 240
aaactgaccg ttgcaaaact gaacatcgat caaaaccctg gcactgcgcc gaaatatggc 300
atccgtggta tcccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 360
ggtgcactgt ctaaaggtca gttgaaagag ttcctcgacg ctaacctggc gtaagcggcc 420
qc
                                                                422
<210> 203
<211> 416
<212> DNA
<213> Homo sapiens
<400> 203
aagcttgcca ccatgggcga taaaattatt cacctgactg acgacagttt tgacacggat 60
gtactcaaag cggacggggc gatcctcgtc gatttctggg cagagtggtg cggtccgaat 120
ccgtgcaaaa tgatcgccc gattctggat gaaatcgctg acgaatatca gggcaaactg 240
accettecaa aacteaacat ceatcaaaac cetegecacte cecegaaata tegecatecet 300
ggtatcccga ctctgctgct gttcaaaaac ggtgaagtgg cggcaaccaa aqtgggtgca 360
ctgtctaaag gtcagttgaa agagttcctc gacgctaacc tggcgtaagc ggccgc
<210> 204
<211> 154
<212> PRT
<213> Homo sapiens
<400> 204
```

032796-132.ST25

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr 25 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Val Val Leu Cys 55 Ser Arg Cys Gly Arg Leu Trp Arg Trp Ser Cys Gly Thr Ser Gly Pro 70 75 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 105 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys 120 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 135 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala <210> 205 <211> 154 <212> PRT <213> Homo sapiens <400> 205 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Gly Trp Arg Trp Cys Gly Arg Cys Gly Ala Leu Trp Trp Arg Arg Val Thr Ser Gly Pro 70 75 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 90 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 105 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Phe Lys 120 125 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 135 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala 145 <210> 206 <211> 154 <212> PRT <213> Homo sapiens

<400> 206

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro

032796-132.ST25

Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr 25 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Glu Val Arg Gln Val Thr Cys Ile Arg Cys Arg Arg Gly Phe Leu Leu Thr Ser Gly Pro 75 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 90 85 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 105 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys 120 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 135 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala

<210> 207

<211> 154

<212> PRT

<213> Homo sapiens

<400> 207

 Met
 Glu
 Thr
 Asp
 Thr
 Leu
 Leu
 Leu
 Trp
 Val
 Leu
 Leu
 Leu
 Leu
 Trp
 Val
 Pro

 Gly
 Ser
 Thr
 Gly
 Ser
 Met
 Ser
 Asp
 Lys
 Ile
 Ile
 His
 Leu
 Thr

 Asp
 Asp
 Ser
 Phe
 Asp
 Thr
 Asp
 Val
 Leu
 Lys
 Ala
 Asp
 Gly
 Ala
 Ile
 Leu
 Leu
 Thr
 Asp
 Gly
 Fro
 Asp
 Gly
 Gly

Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr
100 105 110

Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Phe Lys
115 120 125

Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 130 135 140

Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala

145 150

<210> 208

<211> 154

<212> PRT

<213> Homo sapiens

<400> 208

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15 Gly Ser Thr Gly Asp Gly Ser Met Ser Asp Lys Ile Ile His Leu Thr

032796-132.ST25

25 Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Leu Trp Ile Gly Pro Gly Asp Gln Gly Leu Phe Arg Arg Phe Val Phe Thr Ser Gly Pro 70 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 90 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 105 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys 120 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 135 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala <210> 209 <211> 151 <212> PRT <213> Homo sapiens <400> 209 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro 10 Gly Ser Thr Gly Asp Gly Ser Val Ser Ser Asp Gln Asn His Phe Arg 25 Gly Glu Ile Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser 40 Thr Leu Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr 55 60 His Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys 70 75 Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg Lys Gly 105 Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu 120 Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser Asn Ser Ser Arg Leu His Thr Cys Gln Arg His 145

<210> 210 <211> 172 <212> PRT <213> Homo sapiens

<400> 210

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro Gly Ser Thr Gly Asp Gly Ser Cys Ala Ser Pro Thr Arg Gly Gly Asp Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Lys Arg Cys

032796-132.ST25

```
Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn Gly Ile
                        55
Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile Glu Glu Thr
                                        75
Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu Asp Gly Tyr Ser
                                    90
Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His Thr Lys Gly Gln Glu
                                105
Gly Ser Val Cys Leu Arg Ser Ser Asp Cys Ala Ser Gly Leu Cys Cys
                            120
Ala Arg His Phe Trp Ser Lys Ile Cys Lys Pro Val Leu Lys Glu Gly
                        135
Gln Val Cys Thr Lys His Arg Arg Lys Gly Ser His Gly Leu Glu Ile
                    150
                                        155
Phe Gln Arg Cys Tyr Cys Gly Glu Gly Leu Ser Cys
                165
<210> 211
<211> 131
<212> PRT
<213> Homo sapiens
<400> 211 ·
Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp
Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp
                                25
Cys Gly Pro Asn Ser Tyr Ala Trp Leu Phe Ser Cys Ser Arg Cys Arg
                                                                        35
Trp Trp Leu Pro Trp Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile
                        55
Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys
                    70
                                        75
Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg
Gly Ile Pro Thr Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr
                                105
Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala
        115
Asn Leu Ala
    130
<210> 212
<211> 131
<212> PRT
<213> Homo sapiens
<400> 212
```

Met Gly Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Arg His Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Asn Ser Ile Cys Glu Val Val Arg Leu Trp Ser Arg Tyr Pro Trp Ser Trp Val Thr Ser Gly Pro Cys Lys Met Ile Ala Pro Ile

032796-132.ST25

<210> 213 <211> 133 <212> PRT <213> Homo sapiens

<400> 213

 Met
 Gly
 Asp
 Lys
 Ile
 Ile
 His
 Leu
 Thr
 Asp
 Asp
 Ser
 Phe
 Asp
 Thr
 Asp

 Val
 Leu
 Lys
 Ala
 Asp
 Gly
 Ala
 Ile
 Leu
 Val
 Asp
 Phe
 Trp
 Ala
 Glu
 Trp

 Cys
 Gly
 Pro
 Asn
 Ser
 Gly
 Cys
 Thr
 Ser
 Ala
 Val
 Cys
 Gly
 Ala
 Ala
 Trp
 Ala

 Glu
 Ala
 Gly
 Arg
 Phe
 Tyr
 Cys
 Thr
 Ser
 Gly
 Pro
 Cys
 Lys
 Met
 Ile
 Ala

 Bo
 Ala
 Ala
 Asp
 Glu
 Tyr
 Gly
 Pro
 Cys
 Lys
 Leu
 Thr
 Val

 Ala
 Lys
 Leu
 Asp
 Glu
 Tyr
 Gly
 Tyr
 Gly
 Tyr
 Gly
 Tyr
 Gly
 Tyr
 Gly
 Tyr
 Asp
 Asp
 Gly
 Tyr
 Gly
 Asp
 Gly
 As

<210> 214 <211> 131 <212> PRT <213> Homo sapiens

<400> 214

130

 Met
 Gly
 Asp
 Lys
 Ile
 Ile
 His
 Leu
 Thr
 Asp
 Asp
 Ser
 Phe
 Asp
 Thr
 Asp

 Val
 Leu
 Lys
 Ala
 Asp
 Gly
 Ala
 Ile
 Leu
 Val
 Asp
 Phe
 Trp
 Ala
 Gly
 Pro
 Gly
 Asp
 Gln
 Gly
 Leu
 Phe
 Phe
 Asp
 Ile
 Asp

032796-132.ST25

Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala Ala Thr

100

105

110

Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala

115

Asn Leu Ala

130

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 November 2002 (21.11.2002)

PCT

(10) International Publication Number WO 02/092015 A3

(51) International Patent Classification⁷: A61K 39/395, 39/00, 39/38

(21) International Application Number: PCT/US02/15982

(22) International Filing Date: 17 May 2002 (17.05.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 60/291,311
 17 May 2001 (17.05.2001)
 US

 60/353,058
 1 February 2002 (01.02.2002)
 US

 60/361,293
 4 March 2002 (04.03.2002)
 US

- (71) Applicants (for all designated States except US):

 GENOME THERAPEUTICS CORPORATION

 [US/US]; 100 Beaver Street, Waltham, MA 02453 (US).

 WYETH [US/US]; Five Giralda Farms, Madison, NJ 07928 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ALLEN, Kristina [US/US]; 11 Oliver Lane, Hopkinton, MA 01748-3108 (US). ANISOWICZ, Anthony [US/US]; 50 Upham Street, West Newton, MA 02465 (US). BHAT, Bheem, M. [IN/US]; 1214 Mayapple Lane, West Chester, PA 19380 (US). DAMAGNEZ, Veronique [FR/US]; 125 Water Street, Framingham, MA 01701 (US). ROBINSON, John, Allen [US/US]; 23 Webb Road, Downingtown, PA

19335 (US). YAWORSKY, Paul, J. [US/US]; 13 Hobart Lane, Rockland, MA 02370 (US).

- (74) Agents: REA, Teresa, Stanek et al.; Burns, Doane, Swecker & Mathis L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 23 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: REAGENTS AND METHODS FOR MODULATING DKK-MEDIATED INTERACTIONS

(57) Abstract: The present invention provides reagents, compounds, compositions, and methods relating to novel interactions of the extracellular domain of LRP5, HBM (a variant of LRP5), and/or LRP6 with Dkk, including Dkk-1. The various nucleic acids, polypeptides, antibodies, assay methods, diagnostic methods, and methods of treatment of the present invention are related to and impact on Dkk, LRP5, LRP6, HBM, and Wnt signaling. Dkk, LRP5, LRP6, HBM, and Wnt are implicated in bone and lipid cellular signaling. Thus, the present invention provides reagents and methods for modulating lipid levels and/or bone mass and is useful in the treatment and diagnosis of abnormal lipid levels and bone mass disorders, such as osteoporosis.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/15982

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : A61K 39/395, 00, 38 US CL : 424/130.1, 184.1 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S.: 424/130.1, 184.1					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category * Citation of document, with indication, where a	opropriate, of the relevant passages Relevant to cla	im No.			
A GONG, Y et al. LDL RECEPTOR-RELATED PRO		-23			
ACCRUAL AND EYE DEVELOPMENT, CELL, ZORN A. WNT SIGNALLING: ANTABONISTIC	DICKKOPFS, CURRENT 1-11 and 13	-23			
BIOLOGY, 2001, VOL.11, No.15, PAGES R592-1 A WO 9846743 A1 (THE WELL-COME TRUST LI (22.10.98) see entire document.		-23			
(22.10.155) 555 Chaire George					
·					
Further documents are listed in the continuation of Box C.	See patent family annex.				
Special categories of cited documents:	"T" later document published after the international filing date or date and not in conflict with the application but cited to under				
"A" document defining the general state of the art which is not considered to be of particular relevance	principle or theory underlying the invention "X" document of particular relevance; the claimed invention can	not be			
"E" earlier application or patent published on or after the international filing date	considered novel or cannot be considered to involve an inver when the document is taken alone	itive step			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention can considered to involve an inventive step when the document is				
"O" document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such documents, such combeing obvious to a person skilled in the art	bination			
"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed					
Date of the actual completion of the international search	Date of mailing of the international search report 0.8 AUG 2003				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Atthrized fficer Witchail A Belyavskyl					
Washington, D.C. 20231 Facsimile No. (703)305-3230	Telephone No. 703/308-0196				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/15982

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1.		Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:		
2.		Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:		
3.	6.4(a).	Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule		
Box	п Ор	servations where unity of invention is lacking (Continuation of Item 2 of first sheet)		
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet				
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.		
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:		
4.	\boxtimes	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-11 and 13-23		
Rem	ark on	Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.		

INTERNATIONAL SEARCH REPORT

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

- I. Claims 1-11 and 13-23, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to LRP5.
- II. Claims 1-11 and 13-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to LRP6.
- III. Claims 1-11 and 13-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to HBM.
- IV. Claims 1-10, 12-14 and 16-23 drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to LRP5.
- V. Claims 1-10, 12-14 and 16-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to LRP6.
- VI. Claims 1-10, 12-14 and 16-20, drawn to a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to HBM.
- VII. Claims 2 4, 7-11, 13-20, 21-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.
- VIII. Claims 2 4, 7-11, 13-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.
- IX. Claims 2 4, 7-11, 13-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.
- X. Claims 2 4, 7-10, 12-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with RP5, wherein said composition enhances Dkk binding to LRP5.
- XI. Claims 2 4, 7-10, 12-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.
- XII. Claims 2 4, 7-10, 12-20, 24-27, drawn to a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition enhances Dkk binding to HBM.
- XIII. Claims 2 4, 7-11, 13-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.
- XIV. Claims 2 4, 7-11, 13-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.
- XV. Claims 2 4, 7-11, 13-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM

INTERNATIONAL SEARCH REPORT

- XVI. Claims 2 4, 7-10, 12-23, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.
- XIV. Claims 2 4, 7-10, 12-20, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.
- XV. Claims 2 4, 7-10, 12-20, 28-32 drawn to a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.
- XVI. Claims 2 4, 7-11, 13-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.
- XVII. XVI. Claims 2 4, 7-11, 13-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.
- XVIII. Claims 2 4, 7-11, 13-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.
- XIX. Claims 2 4, 7-10, 12-23, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.
- XX. Claims 2 4, 7-10, 12-20, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.
- XXI. Claims 2 4, 7-10, 12-20, 33-35 drawn to a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.
- XXII. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of Dkk.
- XXIII. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP5.
- XXIV. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP6.
- XXV. Claims 2, 35 and 36 drawn to a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of HBM.
- XXVI. Claims 2, 37-43, 44-47, drawn to a method of screening for a compound which modulates the interaction of DKK with LRP5.
- XXVII. Claims 2, 37-43, 47, drawn to a method of screening for a compound which modulates the interaction of DKK with LRP6.
- XXVIII. Claims 2, 37-43, 47, drawn to a method of screening for a compound which modulates the interaction of DKK with HBM.
- XXIX. Claims 2,41-43, 48-49, drawn to a method of screening for a compound which modulates the interaction of Dkk with a Dkk interacting proteins.

INTERNATIONAL SEARCH REPORT

XXX. Claims 50-63 drawn to a composition comprising a LRP5 and a pharmaceutical acceptable carrier thereof.

XXXI. Claims 50- 59, 63 drawn to a composition comprising a LRP6 and a pharmaceutical acceptable carrier thereof.

XXXII. Claims 50- 59, 63 drawn to a composition comprising a HBM and a pharmaceutical acceptable carrier thereof.

XXXIII. Claims 2 and 64 drawn to a method for identifying compound which modulate Dkk and LRP5 interaction.

XXXIV. Claims 2 and 64 drawn to a method for identifying compound which modulate Dkk and LRP6 interaction.

XXXV. Claims 2 and 64 drawn to a method for identifying compound which modulate Dkk and HBM interaction.

XXXVI. Claims 2 and 65 drawn to a method of identifying binding partners for a Dkk protein.

XXXVII. Claims 66-68 drawn to a nucleic acid and a vector encoding a Dkk interacting protein.

XXXVIII. Claims 69-90, drawn to a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP5.

XXXIX. Claims 69-87, drawn to a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP6.

XL. Claims 69-87, drawn to a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a HBM.

XLI. Claims 91-92 drawn to a transgenic animal.

XLII. Claims 2 and 93 drawn to a method for identifying potential compound which modulate Dkk activity.

XLIII - LXII. Claim 94, drawn to one specific peptide aptamer of one specific SEQ ID NOs: 171-88; 189-192.

LXIII- LXXIX. Claims 95-97, drawn to an antibody which specifically recognizes and binds to specific peptides of SEQ ID NOs: 110-127.

LXXX. Claims 2, 98-100, drawn to a method of identifying Dkk interacting protein which modulate the interaction of Dkk with Wnt signaling pathway.

LXXXI. Claims 2, 25 and 101-104, drawn to a method for identifying Dkk interacting proteins.

LXXXII. Claims 2, 105-106, drawn to a method for identifying compounds which modulate Dkk and LRPS interaction.

LXXXIII. Claims 2, 105-106, drawn to a method for identifying compounds which modulate Dkk and LRP6 interaction.

LXXXIV. Claims 2, 105-106, drawn to a method for identifying compounds which modulate Dkk and HBM interaction.

LXXXV. Claims 2, 25, 107-110, drawn to a method for identifying compound which modulate the interaction of Dkk with Wnt signaling pathway.

LXXXVI. Claims 2, 111, drawn to a method of testing compounds that modulate Dkk-mediated activity in a mammal.

LXXXVII. Claims 2, 112, 113, drawn to method of screening for compound or composition which modulate the interaction of Dkk and Dkk interacting protein.

LXXXVIII-CIX. Claim 114 drawn to antibody which recognizes and binds to one specific SEQ ID NOs: 171-192.

INTERNATIONAL SEARCH REPORT					
The inventions listed as Groups 1-109 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT					
Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The invention listed as groups 1-109 do not related to a single general inventive concept under PCT Rule 13.1 because, under PCT					
Rule 13.2, hey lack the same or corresponding special technical features for the following reasons:					
The special technical features of Group I is considered a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to LRP5.					
The special technical features of Group II is considered a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to LRP6.					
The special technical features of Group III is considered a method of regulating LRP5 activity in a subject, comprising administering a composition which inhibits Dkk binding to HBM.					
The special technical features of Group IV is considered a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to LRP5. The special technical features of Group V is considered a method of regulating LRP5 activity in a subject, comprising administering a					
The special technical features of Group V is considered a method of regulating LRP5 activity in a subject, comprising administering a composition which enhances Dkk binding to LRP6. The special technical features of Group VI is considered a method of regulating LRP5 activity in a subject, comprising administering					
a composition which enhances Dkk binding to HBM. Form PCT/ISA/210 (second sheet) (July 1998)					

INTERNATIONAL SEARCH REPORT

The special technical features of Group VII is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.

The special technical features of Group VIII is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.

The special technical features of Group IX is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.

The special technical features of Group X is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with RP5, wherein said composition enhances Dkk binding to LRP5.

The special technical features of Group XI is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.

The special technical features of Group XII is considered a method of regulating Dkk-Wnt pathway activity, comprising administering a composition which modulates Dkk activity, or interaction with HBM, wherein said composition enhances Dkk binding to HBM.

The special technical features of Group XIII is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.

The special technical features of Group XIV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.

The special technical features of Group XV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.

The special technical features of Group XVI is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.

The special technical features of Group XIV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.

The special technical features of Group XV is considered a method of modulating bone mass in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.

The special technical features of Group XVI is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition inhibits Dkk binding to LRP5.

The special technical features of Group XVII is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition inhibits Dkk binding to LRP6.

The special technical features of Group XVIII is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition inhibits Dkk binding to HBM.

The special technical features of Group XIX is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP5, wherein said composition enhances Dkk binding to LRP5.

INTERNATIONAL SEARCH REPORT

The special technical features of Group XX is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with LRP6, wherein said composition enhances Dkk binding to LRP6.

The special technical features of Group XXI is considered a method of modulating lipid levels in a subject comprising administering to the subject a composition which modulates DKK activity or interaction with HBM, wherein said composition enhances Dkk binding to HBM.

The special technical features of Group XXII is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of Dkk.

The special technical features of Group XXIII is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP5.

The special technical features of Group XXIV is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of LRP6.

The special technical features of Group XXV is considered a method of diagnosing low or high bone mass and /or high or low lipid levels in a subject comprising examining expression of HBM.

The special technical features of Group XXVI is considered a method of screening for a compound which modulates the interaction of DKK with LRP5.

The special technical features of Group XXVII is considered a method of screening for a compound which modulates the interaction of DKK with LRP6.

The special technical features of Group XXVIII is considered a method of screening for a compound which modulates the interaction of DKK with HBM.

The special technical features of Group XXIX is considered a method of screening for a compound which modulates the interaction of Dkk with a Dkk interacting proteins.

The special technical features of Group XXX is considered a composition comprising a LRP5 and a pharmaceutical acceptable carrier thereof.

The special technical features of Group XXXI is considered a composition comprising a LRP6 and a pharmaceutical acceptable carrier thereof.

The special technical features of Group XXXII is considered a composition comprising a HBM and a pharmaceutical acceptable carrier thereof.

The special technical features of Group XXXIII is considered a method for identifying compound which modulate Dkk and LRP5 interaction.

The special technical features of Group XXXIV is considered a method for identifying compound which modulate Dkk and LRP6 interaction.

The special technical features of Group XXXV is considered a method for identifying compound which modulate Dkk and HBM interaction.

The special technical features of Group XXXVI is considered a method of identifying binding partners for a Dkk protein.

The special technical features of Group XXXVII is considered a nucleic acid and a vector encoding a Dkk interacting protein.

The special technical features of Group XXXVIII is considered a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP5.

INTERNATIONAL SEARCH REPORT

PCT/US02/15982

The special technical features of Group XXXIX is considered a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a LRP6.

The special technical features of Group XL is considered a method of detecting a modulatory activity of a compound, wherein the first peptide is a Dkk peptide and the second peptide is a HBM.

The special technical features of Group XLI is considered a transgenic animal.

The special technical features of Group XLII is considered a method for identifying potential compound which modulate Dkk activity.

The special technical features of Group XLIII - LXII is considered one specific peptide aptamer of one specific SEQ ID NOs: 171-88; 189-192.

The special technical features of Group LXIII- LXXIX is considered an antibody which specifically recognizes and binds to specific peptides of SEQ ID NOs: 110-127.

The special technical features of Group LXXX is considered a method of identifying Dkk interacting protein which modulate the interaction of Dkk with Wnt signaling pathway.

The special technical features of Group LXXXI is considered a method for identifying Dkk interacting proteins.

The special technical features of Group LXXXII is considered a method for identifying compounds which modulate Dkk and LRP5 interaction.

The special technical features of Group LXXXIII is considered a method for identifying compounds which modulate Dkk and LRP6 interaction.

The special technical features of Group LXXXIV is considered a method for identifying compounds which modulate Dkk and HBM interaction.

The special technical features of Group LXXXV is considered a method for identifying compound which modulate the interaction of Dkk with Wnt signaling pathway.

The special technical features of Group LXXXVI is considered a method of testing compounds that modulate Dkk-mediated activity in a mammal.

The special technical features of Group LXXXVII is considered a method of screening for compound or composition which modulate the interaction of Dkk and Dkk interacting protein.

The special technical features of Group LXXXVIII-CIX. is considered an antibody which recognizes and binds to one specific SEQ ID NOs: 171-192.

Accordingly, Groups I-CIX are not so linked by the same or corresponding special technical feature within meaning of PCT Rule 13.2 so as to form a single general inventive concept.

Continuation of B. FIELDS SEARCHED Item 3:

PCT/US02/15982 INTERNATIONAL SEARCH REPORT Biosis, CAPLUS, SciSearch, Medline, EMBASE, WEST, USPATFULL, PCTFULL search terms; Allen K; Anisowicz, A; Bhat, B; Damagnez, V, Robinson, J; Yaworsky, P; DKK, Dkk1, LRP5, SEQ ID NO:28, protein OST262; osteoporosis.