

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 739 881 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 30.10.1996 Bulletin 1996/44

- (51) Int. Cl.⁶: **C07D 211/14**, C07D 211/46, A61K 31/445
- (21) Application number: 96106213.0
- (22) Date of filing: 19.04.1996
- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE
- (30) Priority: 24.04.1995 JP 98797/95
- (71) Applicant: KOWA CO. LTD. Nagoya-shi Aichi-ken 460 (JP)

- (72) Inventors:
 - Timmerman, Henk
 2253 VM Voorschoten (NL)
 - Mingqiang, Zhang
 1183 AM Amstelveen (NL)
- (74) Representative: Wächtershäuser, Günter, Prof. Dr.
 Patentanwalt,
 Tal 29
 80331 München (DE)

- (54) Piperidine derivatives
- (57) A piperidine derivative of formula (1) or salts thereof:

$$\begin{array}{c|c}
 & R^1 & R^3 \\
 & -C & -CHNHR^4 \\
 & R^2
\end{array}$$
(1)

wherein R¹ and R² independently represent H or together represent O, R³ represents H, -R⁵-COOR⁶, or -COOR⁶ (wherein R⁵ is a lower alkylene group, -CONH-, or -CONHCH₂, and R⁶ is H or a lower alkyl group), R⁴ represents H, an aralkyloxy carbonyl group, an aminomethyl carbonyl group, or an aralkyloxy carbonyl aminomethyl carbonyl group, A represents O or a double bond, and the broken line has the meaning that a bonding hand may be present; and preventive and therapeutic agents for allergies, antihistaminic agents, and antileucotriene agents comprising the derivative or salts as their effective component.

The compound of formula (1) has excellent antihistaminic activities and antileukotriene activities, which are well balanced, and is useful as a drug for the prevention and treatment of allergies such as asthma, allergic rhinitis, allergic dermatosis and urticaria.

Description

10

Technical Field:

The present invention relates to a piperidine derivative and salts thereof, which have excellent antihistaminic activity and antileukotriene activity, and are useful as a drug for the prevention and treatment of various allergic diseases.

Technical Background:

Histamine exhibits various physiological activities as a result of interaction with specific receptors in the membranes of cell surfaces. By the mediation of H₁-receptors, histamine stimulates smooth muscles such as those in the bronchi to contract. Contraction of the bronchi leads to limited amounts of air to pass into and out of the lungs as in asthma. Histamine also elevates the permeability of the capillary walls so that increased amounts of the blood constituents escape into the tissue space, causing an increase in the flow of lymph and its protein content to form edema. Anti-histamine drugs have been proved to be successful for the treatment of many allergies, e.g., allergic rhinitis, allergic dermatosis, urticaria, etc. However for the treatment of some severe allergies such as asthma, it has been found that histamine H₁-receptor antagonists are less effective.

Leukotrienes are a group of arachidonic acid metabolites which are collectively long known as slow-reacting substances of anaphylaxis (SRS-A). The physiological action of leukotrienes include bronchoconstriction, mucus hypersecretion and pulmonary edema which all contribute to airway obstruction characteristic of asthma. Leukotrienes also attract leukocytes to sites of cellular injury and thus affect the mechanism of inflammation. In contrast to histamine, leukotrienes induce prolonged bronchoconstriction. Clinical trials of the compounds known to act as antagonists to leukotriene D₄ (LTD₄) receptors have shown that these compounds are effective for the treatment of asthma [Manning, P.J. et al: N. Engl. J. Med. 1990, 323, 1736-1739 and Taylor, I.K. et al: Lancet 1991, 337, 690-694].

Accordingly, compounds having antagonizing activities on both histamine H₁-receptors and leukotriene receptors are potentially useful therapeutics for the prevention and treatment of allergic diseases in general and asthma in particular.

Many tricyclic compounds have been known to possess either histamine H₁-receptor antagonism or leukotriene D₄ receptor antagonism (Japanese Patent Application Laid-open (kokai) No. 5-239,002, Japanese Patent Application Laid-open (kokai) No. 6-116,273, Spanish Patent Publication No. 2,042,421, and PCT patent publication No. 9,419,345).

However, these compounds do not exhibit an equal level of antagonism to histamine H_1 -receptors and leukotriene D_4 receptors. Therefore, they fail to provide satisfactory therapeutic effects for the treatment of severe allergies such as asthma.

It is also known that several new H₁-antagonists, such as terfenadine and astemizole, may cause cardiotoxicity, especially when applied in high doses or concomitantly with other drugs which inhibit their metabolism.

Accordingly, an object of the present invention is to provide a compound which has anti-histaminic activities and anti-leukotriene activities, which provides satisfactory therapeutic effects, which does not migrate to the central nerve system and are therefore devoid of sedating side effects, which also exhibits no or much less other adverse side effects such as those in cardiovascular system, and which is thus useful as a preventive and therapeutic agent for asthma, allergic rhinitis, allergic dermatosis, and urticaria and other types of allergic and inflammatory diseases.

Disclosure of the invention:

Under the above circumstances, the present inventors synthesized numerous piperidine derivatives and investigated their pharmacological activities. As a result, they found that the compounds of the following formula (1) possess excellent antihistaminic activities, antileukotriene activities, and antiallergic activities with suppressed migration to the central nerve system, therefore exhibiting no adverse side effects such as central nerve system depression, and that they are useful as preventive and therapeutic agents for allergies such as asthma, leading to completion of the invention.

55

50

Accordingly, the present invention provides a piperidine derivative of formula (1) or a salt thereof:

$$A \longrightarrow \begin{bmatrix} R^1 & R^3 \\ -C & -CHNHR^4 \end{bmatrix}$$

$$R^2$$
(1)

wherein R^1 and R^2 independently represent a hydrogen atom or they link to represent an oxygen atom together, R^3 represents a hydrogen atom, $-R^5$ -COOR 6 , or -COOR 6 (wherein R^5 is a lower alkylene group, -CONH-, or -CONHCH $_2$, and R^6 is a hydrogen atom or a lower alkyl group), R^4 represents a hydrogen atom, an aralkyloxy carbonyl group, an aminomethyl carbonyl group, or an aralkyloxy carbonyl aminomethyl carbonyl group, A represents an oxygen atom or a double bond, and the broken line has the meaning that a bonding hand may be present.

The present invention also provides antihistaminic agents, antileukotriene agents, and antiallergic agents comprising the piperidine derivative of the above-described formula (1) as their effective component.

The present invention turther provides pharmaceutical compositions comprising the piperidine derivative as defined above or a salt thereof and a pharmaceutically acceptable carrier.

The present invention further provides use of the piperidine derivative as a medicine.

The present invention further provides a method for treating allergic diseases, comprising administering an effective amount of the peperidine derivative as defined above or a salt thereof.

Best Mode for Carrying Out the invention:

10

50

55

In the present invention, examples of the lower alkylene group includes C1-C5 straight or branched alkylene groups, of which C1-C4 linear or branched alkylene groups are preferred. The alkylene groups are preferably methylene, ethylene, trimethylene, tetramethylene, and propylene. In particular, methylene and ethylene are preferred.

Examples of the lower alkyl groups include C1-C5 linear or branched alkyl groups, of which C1-C4 linear or branched alkyl groups are preferred. The alkyl groups are preferably methyl, ethyl, n-propyl, n-butyl, isopropyl, and tert-butyl. In particular, methyl and ethyl are preferred.

Examples of the aralkyl group include phenyl C_{1-4} alkyl, naphthyl C_{1-4} alkyl, and biphenylmethyl, of which phenyl C_{1-4} alkyl is preferred, and benzyl is particularly preferred.

The compounds of the present invention represented by formula (1) can be present in the form of a solvate typified by a hydrate, and therefore, solvates of the compounds are within the scope of the present invention. Moreover, the present compounds (1) have stereochemical isomers attributed to asymmetric carbon atoms, and these stereochemical isomers either optically pure or as racemic mixtures are also encompassed by the present invention.

No particular limitation is imposed on the salts of the compounds represented by formula (1) as long as they are pharmacologically acceptable. Examples of such salts include acid adducts of mineral acids, such as hydrochlorides, hydroiodides, sulfates and phosphates; acid adducts of organic acids, such as benzoates, methanesulfonates, ethanesulfonates, benzenesulfonates, p-toluenesulfonates, oxalates, maleates, fumarates, tartarates and citrates; and metal salts such as sodium salts, potassium salts, calcium salts, magnesium salts, manganese salts, iron salts and aluminum salts.

The present compounds (1) and their salts are prepared, for example, by the following reaction scheme:

wherein Z is an atom or a group which can be eliminated, such as a halogen atom, a methane sulfonyloxy group, and a paratoluene sulfonyloxy group, and R¹, R², R³, R⁴, A, and the broken line have the same meaning as defined above.

(1)

In other words, the present compound (1) can be obtained by reacting compound (2) with compound (3), and if necessary, hydrolyzing or esterifying the resulting product or converting the resulting product into an amide.

The compound (2) used in this reaction scheme can be prepared, for example, according to the methods described in the following publications: E.L. Engelhardt et al., J. Med. Chem., 1965, 8, 829-835 and C van der Stelt et al., Arzneim. -Forsch., 1966, 16, 1342. Moreover, compound (3) used in the above reaction scheme can be prepared, for example, according to the methods described in the following publications: N. Tamura et al., Tetrahedron, 1988, 44, 3231-3240; R.A. Boissonnas et al., Helv. Chim. Acta, 1955, 38, 1491-1501; M. Goodman et al., J. Am. Chem. Soc. 1962, 84, 1279-1283; and M. Bergman et al., Ber. 1932, 65, 1192-1201.

The reaction of compound (2) and compound (3) is preferably carried out in the presence of a base. Examples of suitable bases include tertiary amines such as triethylamine, tributylamine, pyridine, picoline, lutidine and collidine; metal alkoxides such as sodium methoxide and sodium ethoxide; inorganic bases such as potassium carbonate, sodium carbonate and sodium hydrogencarbonate. Examples of suitable reaction solvents include aromatic hydrocarbons such as benzene and toluene; ethers such as tetrahydrofuran and dioxane; non-polar organic solvents such as acetone and acetonitrile; alcohols such as methanol, ethanol, isopropanol and n-butanol; polar organic solvents such as dimethylsulfoxide and N,N-dimethylformamide. The reaction normally proceeds at room temperature or under heating

After completion of the reaction, a suitable treatment of the obtained compound according to a conventional manner will provide the target compound of the present invention, which may further be purified by an ordinary purification process such as recrystallization, column chromatography, etc., as desired. If necessary, the compound may be converted into the aforementioned salts by a method known <u>per se</u>.

The thus-obtained compounds (1) and their salts of the present invention exhibit excellent antihistaminic activity and excellent antileukotriene D₄ activity as shown in the Examples below, and therefore, they are very useful in the prevention and treatment of various allergies of the human and animals.

Examples of the manner of administration of the present compounds as a drug for preventing or treating allergies include oral administrations by way of tablets, capsules, granules, powders, and syrups and non-oral administrations such as intravenous injections, intramuscular injections, suppositories, inhalations, percutaneous absorptions, eye drops, and nasal drops. In order to prepare a medicine in the above mentioned various physical forms, pharmaceutically acceptable carriers known per se may further be employed in a suitable combination, which include excipients,

bulking agents, binders, disintegrants, surfactants, lubricants, dispersing agents, buffering agents, preservatives, flavors, perfumes, coating agents, etc.

The dosage of the compound of the present invention for the prevention and treatment of allergic diseases varies depending on the age, weight, symptom, manner of administration, frequency of the administration, etc. In general, it is preferred that the compound of the present invention be administered to an adult in an amount of from about 1 to 1,000 mg/day at a time or as divided in several times, orally or non-orally.

Examples:

The present invention will now be explained by way of examples, which however, should not be construed as limiting the invention thereto.

Example 1:

Methyl (S)-2-benzyloxycarbonylamino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl[propionate: A mixture of 4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine (2.73 g, 10 mmol), L-methyl 2-benzyloxycarbonylamino-3-chloropropionate (2.71 g, 10 mmol), Nal(1.50 g, 10 mmol) and Na₂CO₃ (1.06 g, 10 mmol) in 250 ml dry acetone was refluxed overnight. After evaporating acetone, the residue was extracted with CH2Cl2. The CH2Cl2 solution was dried over Na2SO4 and evaporated to dryness. The resulting light brown oil was put on a silica gel column and eluated with ether. The title compound was thus obtained as a slightly yellow solid. Yield: 2.49 g (49%).

mp.116.0-118.8°C

[a]D25-2.1°(c=1, CHCl3).

 1 H NMR(CDCl₃)δ(ppm): 2.0-2.7 (m, 10H, piperidine H + piperidine-N<u>CH</u>₂CH), 3.6(s, 3H, OCH₃), 4.35 (m,1H, piperidine-NCH₂CH), 5.1 (s, 2H, OCH₂Ph), 5.8 (d, 1H, J=6Hz, NH), 6.9 (s, 2H, dibenzocyclohepten C_{10.11}-H), 7.15-7.4 (m, 13H, aromatic H).

Example 2:

Methyl (S)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propi-

The title compound, a white crystalline, was prepared in a similar way as described under Example 1 with 4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine (2.75 g, 10 mmol) instead of 4-(5H-dibenzo[a,d]cyclohepten-5-ylidene) piperidine. Yield: 2.55 g (50%).

mp. 131.7-132.3°C (EtOH).

 $[\alpha]D^{25}$ -0.5°(c=1, CHCl₃).

¹H NMR(CDCl₃)δ(ppm):2.3-2.7(m, 10H, piperidine H + piperidine-NCH₂CH), 2.85 and 3.5 (two m, 4H, dibenzocyclohepten C_{10 11}-H), 3.75(s, 3H, OCH₃), 4,4(m, 1H, piperidine-NCH₂CH), 5.15 (s, 2H, OCH₂Ph), 5.75 (d, 1H, J=6Hz, NH), 7.1-7.4 (m, 13H, aromatic H.)

Example 3:

Methyl (R)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propi-

The title compound, a white crystalline, was prepared in a similar way as described under Example 2 using D-methyl 2benzyloxycarbonylamino-3-chloropropionate in the place of L-methyl 2-benzyloxy-carbonylamino-3-chloropropionate. Yield:54%.

mp. 135.7-136.6°C(EtOH).

 $[\alpha]D^{25} + 0.7^{\circ}(c=1, CHCl_3).$

¹H NMR (CDCl₃)δ(ppm): identical to those of the title compound.

Example 4:

Methyl (S)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yloxy)piperidin-1-yl]propion-

The title compound, a light yellow oil, was prepared in a similar way as described under Example 1 with 4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yloxy)piperidine (2.93 g, 10 mmol) instead of 4-(5H-dibenzo[a,d]cyclohepten-5-ylidine)piperidine. Yield: 4.12 g (78%). $[\alpha]D^{25}-1.5^{\circ}(c=1, CHCl_3).$

¹H NMR(CDCl₃)δ(ppm):1.75-2.65(m, 10H, piperidine H + piperidine-N<u>CH</u>₂CH), 3.05 and 3.4 (two m, 4H, dibenzocy-

clohepten $C_{10,11}$ -H), 3.55(m, 1H, piperidine C_4 ,-H), 3.65(s, 3H, OCH₃), 4.25(m, 1H, piperidine-NCH₂CH), 5.05(s, 2H, OCH₂Ph), 5.5(s, 1H, dibenzocyclohepten C_5 -H), 5.6(d, 1H, J=6Hz, NH), 7.1-7.4(m, 13H, aromatic H).

Example 5:

Methyl (R)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yloxy)piperidin-1-yl]propionate

The title compound, a slightly brown oil, was prepared in a similar way as described under Example 4 using D-methyl 2-benzyloxycarbonylamino-3-chloropropionate in the place of L-methyl 2-benzyloxycarbonylamino-3-chloropropionate. Yield:71%.

 $[\alpha]D^{25} + 1.5^{\circ}$ (c=1, CHCl₃).

¹H NMR(CDCl₃)δ(ppm): identical to those of the title compound.

Example 6:

15

30

(S)-2-Benzyloxycarbonylamino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionic acid: To a solution of methyl (S)-2-benzyloxycarbonylamino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionate(2 g, 3.9 mmol) in 30 ml ethanol was added 10 ml of 1 N NaOH aqueous solution. The mixture was then stirred at room temperature for 3 hours. After removing most ethanol under reduced pressure, the remaining mixture was diluted with ice-water and neutralized with acetic acid. The mixture was then extracted with chloroform (2 x 30 ml). The combined chloroform extract was washed with saline and dried over Na₂SO₄. After evaporating to dryness, the solid residue was recrystallized from ethanol to afford the title compound as a white crystalline. Yield:1.77 g (91%) mp. 178.3-179.4°C. [α]D²⁵-26.3°(c=1, DMF).

¹H NMR(CDCl₃)8(ppm):2.1-2.8(m, 10H, piperidine H + piperidine-NCH₂CH), 4.3(m, 1H, piperidine-NCH₂CH), 5.15(s, 2H, OCH₂Ph), 5.25(br s, 1H, NHCOO), 6.45(br s, 1H, piperidine-N⁺H), 6.95(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.2-7.4(m, 13H, aromatic H).

Example 7:

(S)-2-Benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-piperidin-1-yl]propionic acid:

The title compound, a white crystalline, was prepared in a similar way as described under Example 6 from methyl (S)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d] cycrohepten-5-ylidene)piperidin-1-yl]propionate. Yield: 95%.

mp. 149.9-152.3°C(EtOH).

 $[\alpha]D^{25}$ -28.6°(c=1, DMF).

¹H NMR(CDCl₃)S(ppm):2.4-2.85(m, 10H, piperidine H + piperidine-N<u>CH₂CH</u>), 2.9 and 3.4(two m, 4H, dibenzocy-clohepten C_{10,11}-H), 4.15(m, 1H, piperidine-NCH₂CH), 4.9(br s, 1H, NHCOO), 5.05(s, 2H, OCH₂Ph), 6.4(br s, 1H, piperidine-N⁺H), 6.9-7.15(m, 13H, aromatic H).

MS(m/z):496[M]⁺, 387[M-H-PhCH₂OH]⁻.

Example 8:

45 (R)-2-Benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionic

The title compound, a white crystalline, was prepared in a similar way as described under Example 7 starting with methyl (R)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d] cyclo-hepten-5-yl-idene)piperidine-1-yl]propionate. Yield:92%.

mp. 149.9-152.3°C(MeOH).

 $[\alpha]D^{25} + 28.5^{\circ}(c=1, DMF).$

 $^{1}\text{H NMR(CDCl}_{3})\delta(ppm)$:identical to those of the title compound.

Example 9

55

(S)-2-Benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yloxy)piperidin-1-yl]propionic acid: The title compound, a slightly yellow crystalline, was prepared in a similar way as described under Example 6 from methyl (S)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5-yl-oxy)piperidin-1-yl]propionate. Yield: 83%.

mp. 131.5-133.0°C(EtOH). [α]D²⁵-7.1°(c=1, DMF).

¹H NMR(CDCl₃)δ(ppm): 1.8-2.9(m, 10H, piperidine H + piperidine-NCH₂CH), 3.05 and 3.5(wo m, 5H, dibenzocy-clohepten C_{10,11}-H + piperidine C₄,-H), 4.25(m, 1H, piperidine-NCH₂CH), 4.95(s, 2H, OCH₂Ph), 5.35(br s, 1H, dibenzocyclohepten C₅-H), 5.7 (d,1H,J=5.3Hz,NHCOO), 6.55(br s, 1H, piperidine-N⁺H), 7.05-7.4(m, 13H, aromatic H). MS(m/z):514[M]⁺, 405[M-H-PhCH₂OH]⁻, 208[dibenzosuberone]⁻.

Example 10:

(R)-2-Benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yloxy)piperidin-1-yl]propionic acid: The title compound, a white crystalline, was prepared in a similar way as described under Example 9 starting with methyl (R)-2-benzyloycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yloxy)piperidin-1-yl]propionate. Yield: 85%.

mp. 128.0-129.5°C (MeOH/Et₂O).

 $[\alpha]D^{25} + 7.8^{\circ}(c=1, DMF).$

¹H NMR(CDCl₃)δ(ppm): identical to those of the title compound.

Example 11:

20 Ethyl α-{(S)-2-benzyloxycarbonylamino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine-1-yl]propionylamino)acetate:

A solution of (S)-2-benzyloxycarbonylamino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionic acid (1.0 g,2 mmol) and triethylamine (0.2 g, 2 mmol) in 20 ml dry CH₂Cl₂ was cooled to 0°C on a salt-ice bath. To this solution was added dropwise 0.22 g (2 mmol) of ethyl chloroformate in 5 ml dry CH₂Cl₂. After the mixture was stirred at 0°C for 30 min., a solution of glycine ethyl ester hydrochloride (0.28 g, 2 mmol) and triethylamine (0.2 g, 2 mmol) in 10 ml dry ether was added and the mixture was stirred at 0°C for another 30 min. The mixture was consequently stirred at room temperature for 15 min. and refluxed for 30 min. After cooling, the solution was washed with saline and organic layer was separeted, dried over Na₂SO₄ and evaporated to dryness. The oily residue was put on a silica gel column and eluated with a mixture of petroleum ether (40-60°C)/EtAc 1:1. To the oily residue was added a solution of oxalic acid in ether to afford the title compound as a white crystalline oxalate. Yield: 0.83 g (71%). mp. 95.0-97.6°C.

 $[\alpha]D^{25}$ -7.9° (c=1, DMF).

 1 H NMR(CDCl₃)δ(ppm):1.3(t, 3H, J=6.7 Hz, CH₂CH₃), 2.2-2.9(m, 10H,piperidine H + piperidine-NCH₂CH), 3.95(m, 1H, piperidine-NCH₂CH), 4.15(m, 2H, CONHCH₂), 4.2(q, 2H, J=6.7 Hz, CH₂CH₃), 5.1(s, 2H, OCH₂Ph), 5.95(br s, 1H, NHCOO), 6.9(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.15-7.35(m, 13H, aromatic H), 8.9(br s, 1H, CONHCH₂).

Example 12:

Ethyl α -{(S)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionylamino]acetate:

The title compound, a white crystalline, was prepared in a similar way as described under Example 11 from (S)-2-ben-zyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionic acid. Yield:58%

mp. 125.6-126.4°C.

45 [α]D²⁵-1.0°(c=1, CHCl₃).

 1 H NMR(CDCl₃)δ(ppm):1.25(t, 3H, J=6.7Hz, CH₂CH₃), 2.35(m, 6H, piperidine H + CH₂CHNH), 2.65(m, 4H, piperidine H), 2.8 and 3.35 (two m, each 2H, dibenzocyclohepten C_{10,11}-H), 3.95(d, 2H, J=7Hz, CONHCH₂), 4.15(q, 2H, J=6.7Hz, CH₂CH₃), 4.25 (m, 1H, CH₂CHNH), 5.1(s, 2H, CH₂Ph), 5.7(br s, 1H, CH₂CHNH), 5.85 (br s, 1H, CONHCH₂), 7.05-7.3(m, 13H, aromatic H).

Example 13:

 α -{(S)-2-Amino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionylamino}acetic acid: To a solution of ethyl α -{(S)-2-benzyloxycarbonylamino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidin-1-yl]propionylamino}acetate(1 g, 1.7 mmol) in 20 ml ethanol was added 20 ml of 1N NaOH solution. The mixture was stirred at room temperature for 3 hours and acidified with conc. HCl. The mixture was stirred at room temperature for another hour. After neutrallization with NaHCO₃, the white precipitate was collected by filtration and dried in vacuum. Recrystallization from methanol afforded the title compound as a white crystalline. Yield: 0.5 g (69%). mp. 175.3-176.2°C.

 $[\alpha]D^{25}-8.9^{\circ}(c=1, DMF).$

¹H NMR(DMSO-d6)δ(ppm):2.05-2.8(m, 10H, piperidine H + piperidine-N CH_2 CH), 3.2(s,2H,NH₂), 3.7(d,2H,J=5.5Hz, CONH CH_2), 4.15(m, 1H,piperidine-NCH₂ CH_2), 6.45(d,1H,J=5.5Hz, CONH CH_2), 6.55(br s, 1H,piperidine-N⁺H), 7.0(s,2H, dibenzocyclohepten C_{10.11}-H), 7.2-7.4(m,8H,aromatic H).

Example 14:

α{(S)-2-amino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyd-hepten-5-ylidene)piperidine-1-yl]propionylamino]acetic acid:
The title compound was prepared in a similar way as described under Example 13 from Ethyl α{(S)-2-benzyloxycarbonylamino-3-4-(10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5-ylidene)piperidine-1-yl]propionylamino]acetate.
Yield: 67%.

mp. 163.2-163.4°C.

 1 HNMR(CDCl₃)δ(ppm):2.2(m,6H,piperidine H + <u>CH</u>₂CHNH), 2.5 (m, 4H, piperidine H), 2.75 and 3.30 (two m, each 2H, dibenzocyclohepten C_{10,11}-H), 3.72(m,2H,CONH<u>CH</u>₂), 4.15(m, 1H, CH₂CHNH), 5.05(s,2H,Ph<u>CH</u>₂), 6.1 and 6.3 (br, each 1H, NH), 6.8-7.15(m, 13 H, aromatic H).

Example 15:

Methyl (S)-4-benzyloxycarbonylamino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]butyrate:

To a solution of γ-methyl-N-benzyloxycarbonyl-L-glutamate (3.25 g, 11 mmol) and triethylamine (1.11 g, 11 mmol) in 25 ml dry CHCl₃ at 0°C was added 1.19 g (11 mmol) of ethyl chloroformate with stirring. After addition, the mixture was stirred at 0°C for another 30 min. The obtained suspension was then added slowly to a solution of 4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(3 g, 11 mmol) and triethylamine (1.11 g, 11 mmol) in 25 ml dry CHCl₃. After addition, the solution was stirred at room temperature for 30 min. and then refluxed for 20 min. After cooling, the mixture was washed with H₂O, 0.5 M NaHCO₃ and H₂O again. The CHCl₃ solution was dried over Na₂SO₄ and evaporated to dryness. Further purification on a silica gel column, eluated with a mixture of diethyl ether/petroleum ether (40-60°C) 4:1.5, afforded the title compound as a white crystalline. Yield: 3.63 g (60%). mp. 67.6-68.6°C.

¹H NMR(CDCl₃)δ(ppm):1.54(m, 2H, CH<u>CH₂CH₂), 2.25(m, 4H, piperidine C_{3',5'}-H), 3.0 and 3.6(two m, each 2H, piperidine C_{2',6'}-H), 3.55(s, 3H, OCH₃), 3.85(t, 2H, J=6.7 Hz, CHCH₂CH₂), 4.65(m, 1H, CHCH₂CH₂), 5.02(s, 2H, PhCH₂), 5.7(br s, 1H, NH), 6.85(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.15-7.3(m, 13H, aromatic H).</u>

Example 16:

(S)-4-Benzyloxycarbonylamino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]butanoic acid:
A solution of methyl (S)-4-benzyloxycarbonylamino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]butyrate(1 g, 1.8 mmol) in a mixture of 20 ml methanol and 5 ml 1 N NaOH aquaous solution was stirred at room temperature for 2 hours. After evaporating methanol in vacuum, the solution was neutralized with 1 N HCl and etracted with CHCl₃. After evaporating CHCl₃, the residue was co-evaporated twice with 50 ml toluene. The title compound was obtained as a white solid after cooling. Yield: 100% mp. 101.3-104.1°C.

 1 H NMR(CDCl₃δ(ppm):2.23-2.33(m, 6H, piperidine $C_{3',5}$ -H + CH<u>CH₂CH₂</u>), 3.0 and 3.6 (two m, each 2H, piperidine $C_{2',6}$ -H), 3.95(m, 2H, CHCH₂CH₂), 4.7(m, 1H, <u>CH</u>CH₂CH₂), 5.05 (s, 2H, PhCH₂), 6.09(br s, 1H, NH), 6.89(s, 2H, dibenzocyclohepten $C_{10,11}$ -H), 7.13-7.29(m, 13H, aromatic H).

Example 17:

Methyl (S)-4-amino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]butyrate hydrobromide: To a solution of methyl (S)-4-Benzyloxycarbonylamino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]butyrate (2.5 g, 4.5 mmol) in 25 ml of 4:1 mixture of methanol/acetic acid was added 0.5 g Pd-C(5%). The mixture was stirred at room temperature while a steady stream of N₂ was bubbled through. After 10 min, H₂ was inletted and the mixture was stirred at room temperature for another 2 hours. After filtration, the filtrate was evaporated in vacuum to remove methanol. To the residue was added an ether solution HBr and the white precipitate was collected by filtration. Recrystallization from methanol aforded the title compound as a white crystalline. Yield: 1.25 g (56%) mp. 138.6-140.6°C.

¹H NMR(DMSO-d6)δ(ppm):1.91(m, 2H, CH<u>CH</u>₂CH₂), 2.0 and 2.35 (two m, each 4H, piperidine H), 3.54 (t, 2H, J=6.7

Hz, CHCH₂CH₂), 3.56(s, 3H, OCH₃), 4.35(m, 1H, CHCH₂CH₂), 6.99(s, 2H, dibenzocyclohepten $C_{10,11}$ -H), 7.1-7.4(m, 8H, aromatic H), 8.45(br s, 3H, N $^+$ H₃).

Example 18:

5

(\$)-2-Amino-3-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine-1-yl]propionic acid: The title compound was prepared from (\$)-2-benzyloxycarbonylamino-3-[4-(10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5-ylidene)piperidine-1-yl]propionic acid in a similar way as described under Example 17. Yield: 83%.

10 mp. 150.4-151.2°C.

 1 H-NMR(CDCl₃)δ(ppm): 2.85(m, 8H, piperidine 4H + <u>CH₂CHNH₂ + 2H from C_{10,11} of dibenzocyclohepten ring), 3.40(m, 6H, piperidine 4H + 2H from C_{10,11} of dibenozcyclohepten ring), 4.4(m, 1H, CH₂<u>CH</u>NH₂), 5.05(br d, J=13.5 Hz, 2H, NH₂), 7.1-7.3(m, 8H, aromatic H).</u>

15 Example 19:

Methyl (S)-4-(2-benzyloxycarbonylaminoacetamido)-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyllbutyrate:

To a solution of methyl (S)-4-amino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]butyrate hydro-bromide(1 g, 2 mmol) and triethylamine(0.75 g, 7.4 mmol) in 10 ml dry CHCl₃ was added a solution of N-benzyloxycarbonylglycine chloride (1.68 g, 7.4 mmol) in 10 ml dry ether. After addition, the mixture was stirred at room temperature for 2 hours. The mixture was then washed with H₂O, 0.5 M NaHCO₃ aqueous solution and dried over Na₂SO₄. After evaporating to dryness, the residue was put on a silica gel column and eluated with a mixture of ether/ethyl acetate 1:1 to afford the title compound as a white solid. Yield: 0.6 g (52%).

mp. 73.2-74.4°C.

¹H NMR(CDCl₃)δ(ppm): 1.7(m, 2H, CH<u>CH₂CH₂</u>), 2.31(m, 8H, piperidine H), 3.34(m, 2H, CHCH₂CH₂), 3.61(s, 3H, OCH₃), 3.88(m, 2H, CO<u>CO₂NH</u>), 4.97(m, 1H, <u>CH</u>CH₂CH₂), 5.1(s, 2H, PhCH₂), 5.44(br s, 1H, COCH₂<u>NH</u>), 6.89(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.02-7.32(m, 14H, aromatic H + CH<u>NH</u>CO).

so Example 20:

(S)-4-Amino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbony[]butanoic acid hydrobromide: The title compound, a white crystalline, was prepared from (S)-4-benzyloxycarbonylamino-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbony[]butanoic acid in a similar way as described under Example 17. Yield: 36%.

mp. 165.4-167.3°C. 1 H NMR(DMSO-d6)δ(ppm): 1.89(m, 2H, CH<u>CH</u>₂CH₂), 2.28(m, 4H, piperidine C_{3',5}-H), 2.78 and 3.31(two m, each 2H, piperidine C_{2',6'}-H), 3.78(m, 2H, CHCH₂CH₂), 4.12(m, 1H, <u>CH</u>CH₂CH₂), 5.7(br s, 3H, N⁺H₃), 7.06(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.15(m, 8H, aromatic H).

Example 21:

40

(S)-4-(2-Benzyloxycarbonylaminoacetamido)-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]buta-noic acid:

The title compound, a white crystalline, was prepared from methyl (S)-4-(2-benzyloxycarbonylaminoacetamido)-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinoarbonyl]butyrate in a similar way as described under Example 16. Yield: 90%.

¹H NMR(CDCl₃)8(ppm):1.9(m, 2H, CH<u>CH₂CH₂), 2.33(m, 4H, piperidine C3',5'-H), 3.0 and 3.35(two m, each 2H, piperidine C2',6'-H), 3.85(m, 5H, <u>CH</u>CH₂<u>CH₂</u> + CO<u>CH₂NH), 5.08(s, 2H, PhCH₂), 5.85(br s, 1H, COCH₂<u>NH</u>), 6.88(s, 2H, dibenzocyclohepten C_{10.11}-H), 7.01-7.3 (m, 14H, aromatic H + CH<u>NHCO</u>).
</u></u>

Example 22:

mp. 92.2-93.0°C

1-(2-Benzyloxycarbonylaminoacetyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine: The title compound, a white crystalline, was prepared by acylation of 4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine with N-benzyloxycarbonylglycine chloride in a similar way as described under Example 19. Yield: 61% mp. 142.5-143.6°C.

¹H NMR(CDCl₃)8(ppm): 2.25(m, 4H, piperidine C_{3',5}-H), 3.0 and 3.4(two m, each 2H, piperidine C_{2',6'}-H), 3.95(m, 2H,

 $CO_{\underline{CH}_2NH}$), 5.1(s, 2H, PhCH₂), 5.85(br s, 1H, COCH₂NH), 6.9(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.15-7.3(m, 13H, aromatic H).

Example 23:

(S)-3-Benzyloxycarbonylamino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]propanoic acid: To a solution of 4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(1 g, 3.66 mmol) in 10 ml dry pyridine was added 0.92 g (3.66 mmol) of N-benzyloxycarbonylaspartic anhydride. The mixture was stirred at room temperature for 2 hours. To the mixture was then added 25 ml cold water and acidified with cold 5N HCl. The white precipitate was collected by filtration and washed well with water. Recrystllization from ethanol afforded the title compound as a white crystalline. Yield: 1.87 g (98%)

mp. 149.0-150.7°C.

¹H NMR(CDCl₃) δ (ppm): 2.23(m, 4H, piperidine C_{3',5'}-H), 2.65 and 3.07(two m, each 2H piperidine C_{2',5'}-H), 3.75(m, 2H, CH<u>C</u>H₂), 4.5(m, 1H, <u>C</u>HCH₂), 5.06(s, 2H, PhCH₂), 6.03(br s, 1H, NH), 6.89(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.15-7.3(m, 13H, aromatic H).

Example 24:

(S)-3-Amino-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]propanoic acid hydrobromide:

The title compound, a white crystalline, was prepared from (S)-3-benzyloxycarbonylamino-3-[4-(5H-dibnezo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]propanoic acid in a similar way as described under Example 17. Yield: 75%.

mp. 175.0-176.1°C.

¹H NMR(DMSO-d6)8(ppm):2.29(m, 4H, piperidine C_{3',5'}-H), 2.76 and 3.32(two m, each 2H, piperidine C_{2',6'}-H), 3.7(m,
 ²⁵ 2H, CHCH₂), 4.25(m, 1H, CHCH₂), 7.05(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.16(m, 8H, aromatic H).

Example 25:

(S)-3-(2-Benzyloxycarbonylaminoacetamido)-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]propanoic acid:

The title compound, a white crystalline, was prepared from (S)-3-amino-3[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]propanoic acid hydrobromide in a similar way as described under Example 19. Yield: 45%.

mp. 121.0-123.1°C.

¹H NMR(CDCl₃)δ(ppm):2.29(m, 4H, piperidine C_{3,5}-H), 2.74(m, 4H,piperidine C_{2,6}-H), 3.31(m, 2H, CH<u>CH</u>₂), 3.84(m, 2H, CO<u>CH</u>₂NH), 4.69(m, 1H, <u>CH</u>CH₂), 5.0(s, 2H, PhCH₂), 5.2(br s, 1H, NH), 5.75(br s, 1H, COCH₂NH), 6.96(s, 2H, dibenzocyclohepten C_{10,11}-H), 7.06-7.23(m, 13H, aromatic H).

Example 26:

(S)-3-(2-aminoacetamide)-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]propionic acid: The title compound was prepared in a similar way as described under Example 17 with (S)-3-(2-benzyloxycarbonylaminoacetamide)-3-[4-(5H)-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinocarbonyl]propionic acid.

45 Example 27:

40

(S)-4-(2-aminoacetamide)-4-[4-(5H-dibenzo[a,d]cycloheptene-5-ylidene)-1-piperidinocarbonyl)butanoic acid: The title compound was prepared in a similar way as described under Example 17 with (S)-4-(2-benzyloxycarbonylaminoacetamide)-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinecarbonyl]butanoic acid.

Test Example 1:

(1) Inhibition of histamine-or LTD₄-induced contraction.

A piece of ileum (about 2 cm length) isolated from guinea-pigs is trimmed, tied at both ends and mounted in a 20 ml organ bath containing KREBS-buffer (37°C, constantly bubbled with 95% O₂-5% CO₂). The first three dose-response experiments are performed by adding histamine or leukotriene D₄ cumulatively to the organ bath. After adequate washing, the ileal strip is incubated with the testing compound for 30 min. The dose-response experiment is then

conducted again. The dissociation constant (Kb) of the receptor-antagonist complex is used as the parameter to indicate the potency of the testing compound and is calculated according to the Cheng-Prusoff equation.

(2) Inhibition of [³H]mepyramine binding to guinea-pig cerebellum membranes. The method is based on that described previously. Briefly, a mixture of total volume of 1.0 ml containing 0.5 nM[³H]mepyramine(specific activity 21 Ci/mmol), guinea-pig cerebellum membrane proteins(±370 µg/ml) and the testing compound in 50 mM Na-K phosphate buffer (pH 7.5) was incubated at 37°C for 30 min. The reaction was stopped by the addition of 5 ml ice-cold phosphate buffer and followed by immediate filtration through Whatman GF/C filters. The filters were washed twice with about 20 ml cold buffer. The retained radioactivity was determined by a liquid scintillation counter after addition of 5 ml scintillation liquid.

In the saturation experiment, 10⁻⁴MR(-)dimethindene was used to define the non-specific binding. A single, saturable binding site with Bmax=278±24 fmol/mg protein was found from the saturation experiment. The K_D of [³H]mepyramine was found to be 3.30±0.26x10⁻⁹ M and no cooperativity was detected when the data were analyzed by Hill plots(slope=1.005).

(3) Inhibition of [3H]LTD₄ binding to guinea-pig lung membranes.

10

15

30

35

45

55

The method is a modification of that described in the literature*. Briefly, a mixture of total volume of 0.3 ml containing 0.2 nM[3 H]-LTD $_4$, guinea-pig lung membrane proteins ($\pm 170~\mu$ g/ml) and the testing compound in a 10 mM piperazine-N,N'-bis(2-ethanesulfonic) acid buffer (pH 7.5) was incubated at 22°C for 30 min. The piperazine-N,N'-bis(2-ethanesulfonic)acid buffer contains 10 mM CaCl $_2$, 10 mM MgCl $_2$, 50 mM NaCl, 2 mM cysteine and 2 mM glycine. The reaction was terminated by the addition of 5 ml ice-cold tris-HCl/NaCl buffer (10 mM/, pH 7.5). The mixture was immediately filtered under vacuum (Whatman GF/C filters) and the filters was washed once with 20 ml ice-cold buffer. The retained radioactivity was determined by a liquid scintillation counter.

In the saturation experiment, 2 μ M LTD₄ was used to define the non-specific binding. A single, saturable binding site with Bmax=988 fmol/mg protein was found from the saturation experiment. The Kd of [3 H]-LTD₄ was found to be 2.16 x 10⁻¹⁰ M and no cooperativity was detected when the data were analyzed by Hill plots (slope=0.99).

Table 1

drugs	activity on histamine H ₁ receptors		activity on leukotriene D ₄ receptors	
	pA ₂ (functional)	K _D (mol/L,binding)	pA ₂ (functional)	K _D (mol/L,binding)
example 6	7.37	1.47 x 10 ⁻⁷		28% inhib*1
example 7	7.48	8.71 x 10 ⁻⁷	5.95	6.80 x 10 ⁻⁶
example 8	8.00	4.12 x 10 ⁻⁷	6.85	1.55 x 10 ⁻⁶
terfenadine	7,45	3.54 x 10 ⁻⁷	not active	not active
FPL55712*2	not active	not active	6.92	1.12 x 10 ⁻⁶

^{*1} Inhibition of [³H]LTD₄ binding in guinea-pig receptor preparations by the drug at the concentration of 10⁻⁶M.

As shown above, the compound (1) of the present invention has excellent antihistamine activity and antileukotriene activity, which are well balanced, and thus, they are useful for the prevention and treatment of asthma or other allergic diseases such as allergic rhinitis, dermatosis and urticaria.

*D. Aharony et al: J. Pharmacol. Exp. Ther. 1987, 243, 921-926.

^{*2} J.Med.Chem., Vol.20, No.3, 371-379 (1977)

Claims

10

15

20

30

40

45

50

55

1. A piperidine derivative of formula (1) or a salt thereof:

$$\begin{array}{c|c} & & & \\ &$$

wherein R^1 and R^2 independently represent a hydrogen atom or they link to represent an oxygen atom together, R^3 represents a hydrogen atom, $-R^5$ -COOR 6 , or $-COOR^6$ (wherein R^5 is a lower alkylene group, -CONH, or $-CONHCH_2$, and R^6 is a hydrogen atom or a lower alkyl group), R^4 represents a hydrogen atom, an aralkyloxy carbonyl group, an aminomethyl carbonyl group, or an aralkyloxy carbonyl aminomethyl carbonyl group, A represents an oxygen atom or a double bond, and the broken line has the meaning that a bonding hand may be present.

- 2. A drug for the prevention and treatment of allergic diseases which comprises, as an effective component, the piperidine derivative as defined in Claim 1 or a salt thereof.
- 25 3. An antihistamine drug which comprises, as an effective component, the piperidine derivative as defined in Claim 1 or a salt thereof.
 - An antileukotriene drug which comprises, as an effective component, the piperidine derivative as defined in Claim 1 or a salt thereof.
 - 5. A pharmaceutical composition which comprises the piperidine derivative as defined in Claim 1 or a salt thereof and a pharmaceutically acceptable carrier.
- 6. The pharmaceutical composition according to Claim 5, which is a composition for the prevention and treatment of allergic diseases.
 - 7. Use, as a medicine, of the piperidine derivative as defined in Claim 1 and a salt thereof.
 - 8. The use according to Claim 7, wherein a medicine is for the prevention and treatment of allergic diseases.
 - 9. A method for treating allergic diseases, which comprises administering an effective amount of the piperidine derivative as defined in Claim 1 or a salt thereof.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 739 881 A3

(51) Int. Ci.6: C07D 211/46, C07D 211/14,

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 03.02.1999 Bulletin 1999/05
 - 1999 Bulletin 1999/05 C07D 211/70, A61K 31/445
- (43) Date of publication A2: 30.10.1996 Bulletin 1996/44
- (21) Application number: 96106213.0
- (22) Date of filing: 19.04.1996
- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE

 Designated Extension States:

 AL LT LV SI
- (30) Priority: 24.04.1995 JP 98797/95
- (71) Applicant: KOWA CO. LTD. Nagoya-shi Aichi-ken 460 (JP)

- (72) Inventors:
 - Timmerman, Henk
 2253 VM Voorschoten (NL)
 - Mingqiang, Zhang
 1183 AM Amstelveen (NL)
- (74) Representative:

 Wächtershäuser, Günter, Prof. Dr.
 Patentanwalt,
 Tai 29

 80331 München (DE)

- (54) Piperidine derivatives
- (57) A piperidine derivative of formula (1) or salts thereof:

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$$

wherein R¹ and R² independently represent H or together represent O, R³ represents H, -R⁵-COOR⁶, or -COOR⁶ (wherein R⁵ is a lower alkylene group, -CONH-, or -CONHCH₂, and R⁶ is H or a lower alkyl group), R⁴ represents H, an aralkyloxy carbonyl group, an aminomethyl carbonyl group, or an aralkyloxy carbonyl aminomethyl carbonyl group, A represents O or a double bond, and the broken line has the meaning that a bonding hand may be present; and preventive and therapeutic agents for allergies, antihistaminic agents, and antileucotriene agents comprising the derivative or salts as their effective component.

The compound of formula (1) has excellent antihistaminic activities and antileukotriene activities, which are well balanced, and is useful as a drug for the prevention and treatment of allergies such as asthma, allergic rhinitis, allergic dermatosis and urticaria.

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent ConventionEP 96 10 6213 shall be considered, for the purposes of subsequent proceedings, as the European search report

	DOCUMENTS CONSID	ERED TO BE RELEVANT				
Category		indication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)		
P,X	EP 0 682 015 A (AJ: 15 November 1995 * page 5, compound	1	C07D211/46 C07D211/14 C07D211/70 A61K31/445			
Υ	20 May 1992 * page 3, line 11 -	- page 32, line 31 *	1-6	A01K31/ 443		
Y	EP 0 399 414 A (HOP CO., LTD.) 28 Novem * claims 1,12,13; 6		1-6			
Υ	EP 0 613 897 A (KO) 7 September 1994 * claims *	IA CO. LTD.)	1-6			
Y	WO 95 01350 A (SUM) LTD.) 12 January 19 * examples 1-4,12,2 * claims 1,2 *	TOMO METAL INDUSTRIES, 195 16,27,29,20 *	1-3,5,6	TECHNICAL FIELDS SEARCHED (Int.Cl.6)		
		-/	ļ. 1			
The Search of complete carried Claims se Claims se Claims no Reason for	WPLETE SEARCH ch Division considers that the present y with the EPC to such an extent that out, or can only be carried out partial arched completely: arched incompletely: It searched: or the limitation of the search: Sheet C	application, or one or more of its claims, doe a meaningful search into the state of the art fly, for these claims.	es/do cannot			
	Place of search	Date of completion of the search	· ·	Examinar		
	BERLIN	12 November 1998	Has	s, C		
X : parti Y : parti docu A : techi O : non-	CATEGORY OF CITED DOCUMENTS T: theory or principle underlying the Invention E: earlier patent document, but published on, or after the filling date D: document of the application Cocument of the same category technological background Inch-motited disclosure Intermediate document S: member of the same patent family, corresponding document document					

EPO FORM 1503 (3) (R04C07)

DOCUMENTS CONSIDERED TO BE RELEVANT

PARTIAL EUROPEAN SEARCH REPORT

Application Number EP 96 10 6213

CLASSIFICATION OF THE APPLICATION (Int.CI.6)

Citation of document with indication, where appropriate, Relevant Category of relevant passages Υ A. B. H. FUNCKE ET AL.: ARCHIVES 1,3 INTERNATIONALES DE PHARMACODYNAMIE ET DE THERAPIE, vol. 167, no. 2, 1967, pages 334-68. XP000196691 * page 334, abstract; page 335, formulae * EP 0 307 303 A (SYNTHELABO) 15 March 1989 * page 4, line 13 - line 21 * X,Y 1,3,5 * page 8, line 12 * * pages 6, 7, table * * claims 1,3,4 * US 5 231 105 A (M. SHOJI ET AL.) 1,5 TECHNICAL FIELDS SEARCHED (Int. 27 July 1993 (Int.CL6) * claims 1,10-12,18 * EP 0 577 957 A (J. URIACH & CIA. S.A.) A,D 1-3,5,612 January 1994 * claims 1,3-5 * & ES 2 042 421 B D A,D PATENT ABSTRACTS OF JAPAN 1-3,5,6vol. 18, no. 400 (C-1230), 26 July 1994 & JP 06 116273 A (HOKURIKU SEIYAKU CO LTD), 24 April 1994 A.D PATENT ABSTRACTS OF JAPAN 1-3,5,6vol. 17, no. 704 (C-1146), 22 December 1993 & JP 05 239002 A (HOKURIKU SEIYAKU CO LTD), 17 September 1993 A.P EP 0 685 478 A (UBE INDUSTRIES, LTD.) 1,2,4-6 6 December 1995 * page 71, line 21 - line 29; claim 1 * & WO 94 19345 A

A,D

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 96 10 6213

	Citation of document with indication, where appropriate,	APPLICATION (Int.CI.6)	
Category	of relevant passages	Retevant to claim	
Å	US 4 783 465 A (A. SUNSHINE ET AL.) 8 November 1988 * column 9 - column 10 *	1,3	
A,D	R. A. APPLETON ET AL.: JOURNAL OF MEDICINAL CHEMISTRY, vol. 20, no. 3, 1977, pages 371-9, XP000612119 * page 372, left-hand column, lines 12 to 22; formula 40 *	2	
			·
		!	
	•		TECHNICAL FIELDS SEARCHED (Int.CL6)
		!	
	·		
	•		
	•		
	•		
	·		
į			

A

INCOMPLETE SEARCH SHEET C

Application Number EP 96 10 6213

Although claims 7-9 are directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

Claim(s) searched completely: 1-6

Claim(s) searched incompletely: 7-9

Reason for the limitation of the search (non-patentable invention(s)):

Article 52 (4) EPC - Method for treatment of the human or animal body by therapy