Uma formalização da interpretação modal do sistema intuicionista

Elian Babireski

2024

Axioma	Sentença	Condição
K	$\Box(\varphi \to \psi) \to \Box \varphi \to \Box \psi$	Distributividade
T	$\Box \varphi o \varphi$	Reflexividade
В	$\varphi \to \Box \diamondsuit \varphi$	Simetria
D	$\Box \varphi \to \diamondsuit \varphi$	Serialidade
4	$\Box \varphi \rightarrow \Box \Box \varphi$	Transitividade
5	$\Diamond \varphi \rightarrow \Box \Diamond \varphi$	Euclidianidade

Table 1: Sample Table

Definição 1 (Tradução). Uma sentença φ de um sistema $\mathcal{L}_A = \langle A, \vdash_A, \vdash_A \rangle$ pode ser traduzida a uma sentença $\varphi^{\mathcal{T}}$ em um sistema $\mathcal{L}_B = \langle B, \vdash_B, \vdash_B \rangle$ caso exista uma função $\bullet^{\mathcal{T}} : A \to B$ de forma que $\mathcal{L}_B \vdash \varphi \Leftrightarrow \mathcal{L}_B \vdash \varphi^{\mathcal{T}}$.

Definição 2 (\bullet °). Define-se a tradução \bullet ° indutivamente da seguinte maneira:

$$p^{\circ} := p$$

$$\perp^{\circ} := \perp$$

$$(\varphi \land \psi)^{\circ} := \varphi^{\circ} \land \psi^{\circ}$$

$$(\varphi \lor \psi)^{\circ} := \Box \varphi^{\circ} \lor \Box \psi^{\circ}$$

$$(\varphi \to \psi)^{\circ} := \Box \varphi^{\circ} \to \psi^{\circ}$$

$$(\exists x.\varphi)^{\circ} := \exists x. \Box \varphi^{\circ}$$

$$(\forall x.\varphi)^{\circ} := \forall x.\varphi^{\circ}$$

Definição 3 (\bullet ^{\square}). Define-se a tradução \bullet ^{\square} indutivamente da seguinte maneira:

$$p^{\square} := \square p$$

$$\bot^{\square} := \bot$$

$$(\varphi \land \psi)^{\square} := \varphi^{\square} \land \psi^{\square}$$

$$(\varphi \lor \psi)^{\square} := \varphi^{\square} \lor \psi^{\square}$$

$$(\varphi \to \psi)^{\square} := \square(\varphi^{\square} \to \psi^{\square})$$

$$(\exists x.\varphi)^{\square} := \exists x.\varphi^{\square}$$

$$(\forall x.\varphi)^{\square} := \square \forall x.\varphi^{\square}$$