Alignment and Preprocessing for Data Analysis

\bigcirc

- Preprocessing tools for chromatography
- Basics of alignment
- GC-FID (1D) data and issues
 - PCA
 - F-Ratios
- GC-MS (2D) data and issues
 - PCA
 - F-Ratios
 - PARAFAC
- Piecewise Alignment GUI (available online)
 - synoveclab.chem.washington.edu/Downloads.htm
 - Email for username/password

Tools for Analysis: Classification

Principal Component Analysis (PCA)

Degree of Class Separation (DCS)

$$DCS = \frac{D_{A,B}}{\sqrt{s_A^2 + s_B^2}}$$

$$D_{A,B} = \sqrt{(X_A - X_B)^2 + (Y_A - Y_B)^2}$$
Score PC1

Why Align?

- Reduction in classification
 - PCA
- Increase in uncertainty for quantification
 - PARAFAC
- Misalignment occurs frequently
 - Daily instrument variation causes misalignment
 - Correction is necessary to apply these methods

Retention Time Precision & PCA

Basics of Alignment

- Types of alignment algorithms
 - Cross correlation coefficient
 - Correlation Optimized Warping (COW)
 - *Piecewise alignment
- Alignment Parameters
 - Window Size
 - Shift
- Target Selection
 - PCA
 - Correlation Coefficient
 - Windowed Target

Alignment Algorithms

- Cross correlation coefficient
 - Move the entire chromatogram to maximize correlation
- Correlation Optimized Warping (COW)
 - Separate the chromatogram into windows
 - Warp and move the windows to optimize the correlation
 - Find the best alignment path to correct the data
- *Piecewise alignment
 - Separate the chromatogram into windows
 - Shift the windows to optimize the correlation
 - Find the best alignment path to correct the data

Alignment Parameters

Parameter	Description	Effect Too Small	Effect Too Large	Determining correct values
Window Size, W	Window Size ~1 pk width	Relative movement high, difficult to determine quality of alignment	Insufficient flexibility to correct peak to peak shifting	Alignment Metric
Shift, L	0 <shift<=maximum shift<="" td=""><td>Insufficient movement of segments</td><td>Increases time</td><td>Alignment Metric</td></shift<=maximum>	Insufficient movement of segments	Increases time	Alignment Metric

Target Selection

- *Global Approach
 - All chromatograms are initially collected
 - *User chosen target
 - PCA optimized target
 - Scores are produced for every sample
 - The sample with the minimum distance from the center is the target
 - *Maximum correlation target
 - Calculate the product of each chromatograms correlation to the others
 - The maximum correlation is the target

Online Approach

- An initial target is set
- Chromatograms are aligned as they are collected
- The target changes as new chromatograms are collected

Target Selection (Maximum Correlation)

Alignment of GC-FID (1D) Data and Issues

- Removal of artifacts and solvent peaks
- Baseline correction and normalization
- Alignment
- Improving PCA
 - F-Ratio

Preprocessing Tools for Chromatography

- Noise filtering
 - Median filter
- Baseline correction
- Normalization
- Alignment

Experimental

- GC-FID Separation
- 4 diesel sample types
- 9 minute separation
- 17 replicate injections over 5 days

Experimental

- GC Separation
- 3 gasoline sample types
- 15 minute separation
- 6 replicate injections over 2 days
- Misalignment is due to day to day instrument variation

Load from workspace

Load from file

Load & View Data Sizes

PCA Classification of Gasoline

Fisher Ratio Method (F-Ratio)

For each mass channel calculate Fisher Ratio at each point in 2D space,

- Works well for samples that have large amounts of within class variance
- Works best when comparing a small number of sample classes

Fisher Ratio Method (F-Ratio)

Fisher Ratio Method (F-Ratio)

Summary

- Removal of solvents or artifacts is essential
- Baseline correction is an important step
- Alignment is essential for improving classification
- The F-Ratio algorithm can further improve classification

Alignment of GC-MS (2D) Data and Issues

- Removal of artifacts and solvent peaks
- Baseline correction and normalization
- Alignment
- Improving PCA
 - F-Ratio
- PARAFAC

Experimental

- GC-MS Separation
- 3 gasoline sample types
- 15 minute separation
- 6 replicate injections over 2 days
- Misalignment is due to day to day instrument variation

Load from workspace

Load from file

Load & View Data Sizes

Alignment

Alignment

Total Ion Current Shift Function (TIC-SF)

Retention Time

Alignment

Classification of Full MS Data

Fisher Ratio Method

For each mass channel calculate Fisher Ratio at each point in 2D space,

Fisher Ratio =
$$\frac{\sigma_{btwclass}^{2}}{\sigma_{withinclass}^{2}}$$

- Works well for samples that have large amounts of within class variance
- Works best when comparing a small number of sample classes

Simulated Example Using F-Ratios for PCA

Procedure

- Select masses using mass spectral information
- Select time regions using F-Ratios
- Combine to reduce the data set
- Improve results of PCA

Classification of Full MS Data

Scores Plot of Nearest Samples

Retention Time, min

Quantification of GC-MS Data

- Use aligned, baseline corrected and normalized data
- Use PARAFAC of small regions for analysis
 - Match values to mass spectra
 - Peak Sums
 - Peak Profiles

Quantification

 Target analyte Parallel Factor Analysis (PARAFAC) isolates the pure component peak and mass spectral information from overlapping peaks and background for both *identification* and *quantification*.

PARAFAC for GC-MS Data

Experimental

- GC-MS Separation
- 3 gasoline sample types
- 15 minute separation
- 6 replicate injections over 2 days
- Misalignment is due to day to day instrument variation
- Looking for isobutyl benzene in the gasoline

Isobutyl Benzene Spectrum

PARAFAC Results for GC-MS Data

PARAFAC Results for GC-MS Data

Summary

- Mass spectral chromatographic data should be aligned
- An available alignment algorithm is able to align 1-D and 2-D data
- F-Ratio methods can be used to improve classification
- PARAFAC can be effectively used to separate overlapped analytes