Contract Regulation in Selection Markets

Yehuda John Levy (Glasgow University) Andre Veiga (Imperial College London)

Essex, Feb 2024

Roadmap

- Motivation
- 2 Model
- 3 Equilibrium
- 4 Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

Motivation 1

- ► Selection markets are often tightly regulated
 - mandatory purchase / non-purchase fees (health insurance in US, Germany)
 - minimal coverage (most markets)
 - maximal coverage (US exchanges, "platinum" plans)
- How do these affect equilibrium and welfare?

In this paper

- Tractable model of a competitive selection market
 - continuum of types
 - realistic regulation:
 - minimum and maximum coverage
 - non-purchase fee
 - special cases: Akerlof 70 and Rothschild-Stiglitz 76
- Equilibrium typically exhibits partial pooling
 - depends non-trivially on the type distribution (unlike in RS)
- ▶ Equilibrium is unique if the type distribution is log-concave.
- ▶ Increasing the non-purchase fee increases welfare if the density of cost types is decreasing.
- ► The optimal level of the minimum coverage is positive, below full insurance and induces some pooling at the minimum coverage.
- ► The optimal level of the maximum coverage is full insurance (even in an extension that allows for moral hazard).

Literature

- ► Theory of regulation in markets for lemons
 - ▶ Weyl Veiga 2016, Veiga 2023, Einav Finkelstein Tebaldi 2016, Handel Hendel Whinston 2015, Gemmo Kubitza Rothschild 2020, etc
- Theory of regulation in RS settings
 - Veiga Weyl 2016, Azevedo Gottlieb 2017, Neudeck Podczeck 1996, Encinosa 2001, Noton Olivella 2015, Farinha Luz et al 2022
- ▶ Empirics of regulation in markets for lemons
 - ► Finkelstein 2004, Einav Finkelstein Schrimpf 2010, Saltzman 2021, Landais et al 2021, Geruso et al 2021, Marone Sabety 2022

Roadmap

- Motivation
- Model
- Equilibrium
- 4 Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Conclusion

Types

- ▶ Type $\mu > 0$ captures expected cost
- ▶ Types $\Theta = [\mu, \overline{\mu}]$
- ▶ PDF $f(\mu) > 0$, CDF $F(\mu)$
- ▶ We will assume f log-concave: $\frac{\partial^2}{\partial \mu^2} \ln [f(\mu)] \le 0$

Contracts

- ▶ If an individual buys coverage x, the insurer covers a share x of the loss
- Allowed contracts are

$$x \in X = \{0\} \cup [\underline{x}, \overline{x}] \subseteq [0, 1]$$

- ▶ Not buying: x = 0
- ▶ Minimal coverage: $\underline{x} \ge 0$
- ▶ Maximal coverage: $\overline{x} \le 1$
- Full insurance: x = 1

Cost

► (Endogenous) price of coverage *x* is

$$p(x) \ge 0$$

► A contract is a pair

▶ If type μ buys (x,p), the expected cost to the insurer is

Utility

$$u(\mu, x, p) = x\mu + g(\mu, x) - p - T \cdot \mathbb{I}\left\{x = 0\right\}$$

- \blacktriangleright Even if buyers were risk neutral, they would transfer to the insurer the expected cost $\times\mu$
- ▶ Risk aversion surplus $g(\mu, x)$
- ▶ Non-purchase fee $T \ge 0$
- We assume

$$\frac{\partial g}{\partial x} > 0, \qquad \frac{\partial^2 g}{\partial x^2} < 0, \qquad \frac{\partial g}{\partial \mu} \ge 0.$$

and
$$g(\mu,0) \equiv 0$$
, $\frac{\partial g}{\partial x}(\mu,1) \equiv 0$

- Quasi-linearity in p consistent with CARA
- ▶ If T > 0, assume $\underline{x} > 0$ to preserve continuity

Timing

- 1. Regulator chooses $(\underline{x}, \overline{x}, T)$
- 2. Insurers compete and individuals make choices, with the outcome given by an AG equilibrium (described later)

Assumptions

- ► Quasi-linearity in *p* (no wealth effects)
- ► No insurance loads
- ► Exclusive contracts
- ► No moral hazard
 - but included in an extension

Roadmap

- Motivation
- 2 Model
- Equilibrium
- Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

AG Equilibrium, intuition

- ► Equilibrium concept from Azevedo Gottlieb 2017 (AG)
- ► Intuitively: in equilibrium
 - individuals optimize
 - each contract breaks even
 - the price of non-traded contracts is robust to small perturbations in the economy

AG Equilibrium, more formally

- An allocation α is a distribution on $\Theta \times X$
 - e.g, $\alpha(\{\mu,x\})$ is mass of types μ purchasing contract x
- ▶ A weak equilibrium is a price p(x) and an allocation α such that
 - ▶ individuals choose x to maximize utility
 - each contract breaks even: $p(x) = x \cdot \mathbb{E}_{\alpha}[\mu \mid x]$
- ► Typically, there exist many weak equilibria
- ▶ An economy is a triple $[\Theta, X, f]$
- ► An equilibrium is the limit of a sequence of weak equilibria of perturbed economies, where there is a vanishing mass of "behavioral" zero-cost individuals who purchase every contract.

Theorem (AG)

Every economy has an equilibrium. In equilibrium, p(x) is continuous and almost everywhere differentiable. Equilibrium need not be unique

Roadmap

- Motivation
- 2 Model
- Equilibrium
- Possible Equilibrium Regimes
- 5 Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

Equilibrium Regimes

► An equilibrium "regime" is defined by whether or not there a positive mass of individuals choosing *x* in...

$$x > \underline{x}, \qquad \qquad x = \underline{x}, \qquad \qquad x = 0$$

▶ EG, all equilibria where individuals buy $x \in \{0,\underline{x}\}$ have the same structure, uniqueness properties, etc

Some regimes are not possible

Lemma

In any equilibrium, if there is a mass of individuals choosing x = 0, then there is also a mass of individuals choosing $x = \underline{x}$.

Equilibrium regimes

Some choose	Some choose	Some choose	Regime
$x > \underline{x}$	$x = \underline{x}$	x = 0	
Y	Y	Y	Dispersive
Y	-	-	RS
-	Y	-	boring
-	-	Y	not possible
			Perfect Purchase,
Y	Y	-	Partial Pooling
			(PPPP)
-	Y	Y	Lemons
Υ	-	Υ	not possible

When does each regime happen?

- Some sufficient conditions:
 - If \underline{x} is sufficiently low $\rightarrow \mathsf{RS}$
 - ▶ If $\overline{x} \underline{x}$ is sufficiently small \rightarrow Lemons
- More conditions in the paper

Roadmap

- Motivation
- 2 Model
- Equilibrium
- 4 Possible Equilibrium Regime
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting <u>x</u>, Lemons Regime
- Moral Hazard
- Onclusion

Roadmap

- Motivation
- 2 Model
- Equilibrium
- Possible Equilibrium Regime
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

Dispersive Equilibrium

some buy some buy some buy
$$x > x$$
 $x = x$ $x = 0$

- ► Requires $\overline{x} > \underline{x} > 0$
- Let $\sigma(\mu)$ be the contract that type μ chooses (almost surely) in equilibrium.

Dispersive Equilibrium: graphically

Equilibrium characterization

Proposition (Dispersive Equilibrium)

1. There is an $x^* \in [\underline{x}, \overline{x}]$ and a $\mu^* < \overline{\mu}$ such that types $\mu \in [\mu^*, \overline{\mu}]$ buy $x \in [x^*, \overline{x}]$. For these types, let $\tau = \sigma^{-1}$. Then, for these types, σ satisfies

$$\overline{\mu} - \mu = \int_{\sigma(\mu)}^{\overline{x}} \frac{1}{x} \frac{\partial g}{\partial x} (\tau(x), x) dx, \qquad \forall \mu \in [\mu^*, \overline{\mu}]$$
 (1)

These contracts break even:

$$p(\sigma(\mu)) = \sigma(\mu)\mu, \quad \forall \mu \in [\mu^*, \overline{\mu}]$$

- 2. For $x \in [\underline{x}, x^*)$, price p(x) makes type μ^* indifferent between $(x^*, p(x^*))$ and any (x, p(x))
- 3. There is a $\mu_* \in \left(\underline{\mu}, \mu^*\right)$ such $\mu \in [\mu_*, \mu^*)$ buys $x = \underline{x}$. This contracts breaks even:

$$\rho(\underline{x}) = \underline{x} \cdot \mathbb{E} \left[\mu \mid \mu \in [\mu_*, \mu^*) \right].$$

- **4**. Type μ_* is indifferent between $(\underline{x}, p(\underline{x}))$ and (0,0)
- 5. Types $\mu \in [\mu, \mu_*)$ purchase x = 0 and it breaks even: p(0) = 0.

Intuition 1: shape of σ in the region of full separation

- ▶ Type $\overline{\mu}$ buys $x = \overline{x}$:
 - $p'(x) \leq \overline{\mu}$
 - For $x < \overline{x}$, for type $\overline{\mu}$, $\frac{\partial u}{\partial x} = \overline{\mu} + g'(\overline{\mu}, x) p'(x) > 0$
- ► For types in the region of full separation, utility satisfies the FOC

$$\mu + \frac{\partial g}{\partial x}(\mu, x) - p'(x) = 0$$

Price is differentiable (from AG), so

$$p'(x) = \tau(x) + x \cdot \tau'(x)$$

• Use $\mu = \tau(x)$. Combine these to get

$$\mu + \frac{\partial g}{\partial x}(\mu, x) - \left[\tau(x) + x \cdot \tau'(x)\right] = 0 \Leftrightarrow \tau'(x) = \frac{1}{x} \frac{\partial g}{\partial x}(\tau(x), x)$$

▶ Boundary condition $\overline{x} = \sigma(\overline{\mu})$. Integrating $\int_{\sigma}^{\overline{x}}$ yields the result

Corollary

Corollary

In the region of full separation, the allocation $\sigma(\mu)$ is independent of f, x, T.

- (\underline{x}, T) affect μ^* , but not $\sigma(\mu)$
- $ightharpoonup \overline{x}$ does directly affect $\sigma(\mu)$
- ▶ In this region, things behave as in RS76

Intuition 2: Why is $x \in (\underline{x}, x^*)$ not purchased?

- ▶ Suppose the set of non-purchased contracts is small $(x^* \approx \underline{x})$
- ▶ If indeed this was a dispersive equilibrium
 - type μ^* chooses x^* at a price $p = \mu^* x^*$
 - ▶ The price of \underline{x} is determined by all the types who choose \underline{x} , who are all less costly than μ^* .
- ▶ If μ^* switches to purchasing the minimum coverage, she obtains approximately the same level of coverage but a discretely lower price \rightarrow a contradiction.

Roadmap

- Motivation
- 2 Model
- Equilibrium
- 4 Possible Equilibrium Regime
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

RS

- ▶ All individuals choose x > x
- ► Everyone is in the region of full separation
- ▶ This is the equilibrium structure in RS76
- ► Sufficient condition: <u>x</u> sufficiently small (indeed, in RS76, there is no minimum coverage)

RS, graphically

Figure 1: An illustration of an RS equilibrium (with $\underline{x} = 0$).

RS

Proposition

If the equilibrium regime is RS, it is described by Proposition 1, with

$$\mu^* = \mu_* = \underline{\mu}$$

However, nobody buys the minimum coverage, so its price is not determined by the break-even condition (but by the indifference curve of type $\underline{\mu}$). Also, type $\underline{\mu}$ strictly prefers x^* to x=0

PPPP equilibrium

- ▶ All individuals choose $x > \underline{x}$ or $x = \underline{x}$
- ▶ Some individuals pool at the minimum coverage
- ightharpoonup Tends to occur if T is large

PPPP, graphically

Figure 2: Illustration of a "PPPP" equilibrium.

PPPP equilibrium

Proposition

If the equilibrium regime is PPPP, it is described by Proposition 1, with

$$\mu_* = \underline{\mu}$$

Moreover, type μ strictly prefers \underline{x} to zero.

Lemons equilibrium

- ▶ All individuals buy $x \in \{0, \underline{x}\}$
- No mass in the region of full separation
- ► As in Akerlof 1970 and EFC 2010
- ▶ Occurs if $\overline{x},\underline{x}$ sufficiently similar
- ► AG equilibria are Nash equilibria

Proposition

If the equilibrium regime is Lemons, it is described by Proposition 1, with

$$\mu^* = \overline{\mu}$$
.

Since there is no one in the region of full separation, (1) is vacuous.

- Motivation
- Model
- 3 Equilibrium
- 4 Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- O Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting <u>x</u>, Lemons Regime
- Moral Hazard
- Onclusion

Uniqueness

- ▶ If the regime is RS, it is unique
- ▶ If the regime is PPPP, it is the unique PPPP equilibrium

Proposition

If f is log-concave, equilibrium is unique.

- Motivation
- 2 Model
- Equilibrium
- Possible Equilibrium Regimes
- 5 Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
- Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting <u>x</u>, Lemons Regime
- Moral Hazard
- Onclusion

Comparative Statics

- ▶ Consider small changes in $(\underline{x}, \overline{x}, T)$
- ▶ Assume *f* log-concave. This will be used in two ways:
 - uniqueness
 - sign some effects

▶ For tractability, henceforth assume $g(\mu, x) = g(x), \forall \mu$

Welfare

Welfare is

$$W = [F(\mu^*) - F(\mu_*)]g(\underline{x}) + \int_{\mu^*}^{\overline{\mu}} g(\sigma(\mu))f(\mu)d\mu.$$

First Best

- ▶ First best: everyone buys full insurance
- ▶ Achievable with $T = \infty$ and $\underline{x} = \overline{x} = 1$
- Two potential problems:
 - politically difficult
 - ▶ suppose that instead of a tax on non-buyers there is a subsidy to buyers. Government must subsidize all individuals to buy. If there is a shadow cost of public funds, "full insurance for all" is not socially optimal (because g'(1) = 0)

- Motivation
- 2 Model
- Equilibrium
- 4 Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
- Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting \underline{x} , Lemons Regime
- Moral Hazard
- Onclusion

- ightharpoonup RS, PPPP: nobody choosing x = 0, so changes in T have no effect
- $lackbox{Lemons: increasing T shifts some non-buyers into buying \rightarrow increases $W$$

Lemma

If the regime is dispersive, and f log-concave,

$$\frac{\partial \mu_*}{\partial T} < 0, \qquad \frac{\partial \mu^*}{\partial T} > 0.$$

- 1. T increases \rightarrow type μ_* shifts from x = 0 to $x = \underline{x}$
- 2. This lowers $p(\underline{x})$
- 3. Type μ^* shifts from $x = x^*$ to $x = \underline{x}$
- 4. This raises $p(\underline{x})$. f log-concave signs the overall effect
 - Welfare:
 - ▶ rises proportionately to $f(\mu_*)(g(\underline{x})-0)$
 - ▶ falls proportionately to $f(\mu^*)(g(x^*) g(\underline{x}))$

Proposition

If the regime is dispersive with thresholds μ_*, μ^* then

$$f(\mu_*) \ge f(\mu^*) \Rightarrow \frac{\partial W}{\partial T} > 0.$$

If f is weakly decreasing for all μ , then

$$\frac{\partial W}{\partial T} > 0, \forall T.$$

► Condition is sufficient but not necessary:

- Motivation
- Model
- Equilibrium
- Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
- Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting \underline{x} , PPPP Regime
 - Adjusting <u>x</u>, Lemons Regime
- 8 Moral Hazard
- Onclusion

Adjusting \overline{x}

▶ Increasing \overline{x} (weakly) increases welfare if f log-concave

- ► Lemons: no effect
- ▶ RS / PPPP: welfare obviously increases (for any *f*)

Adjusting \bar{x}

Proposition

For dispersive equilibria, if f is log-concave,

$$\frac{\partial W}{\partial \overline{x}} > 0.$$

- ▶ Type $\overline{\mu}$ purchases greater coverage
- ▶ In the region of full separation, types $\mu > \mu^*$ purchase greater coverage
- ▶ Some individuals switch from \underline{x} to $x > \underline{x}$, which lowers $p(\underline{x})$
- ▶ Some individuals switch from 0 to \underline{x} , which also lowers $p(\underline{x})$
- Log-concavity: the fall in $p(\underline{x})$ does not cause too many of those who switched up from x to x > x to "fall back down"

- Motivation
- Model
- Equilibrium
- Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
- Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

Ambiguity

- Positive effects
 - \blacktriangleright When \underline{x} rises, those purchasing it become better off
 - \blacktriangleright This can induce some to raise their chosen coverage from 0 to \underline{x}
- ► Negative effects
 - ▶ Possibly some buyers of $x > \underline{x}$ now lower their choice to \underline{x}
 - ► This would increase $p(\underline{x})$, so it can also result in some individuals lowering their choice from \underline{x} to 0.

Optimal \underline{x} is > 0

- ▶ There is always a (small) level of \underline{x} which strictly increases welfare.
- ▶ Suppose $\underline{x} = 0$, so regime is RS
- ▶ Now consider a gradual increase in \underline{x}
- ▶ For some level of the minimum coverage (denoted \underline{x}_0), the equilibrium regime shifts from RS to PPPP.
 - why to PPPP? individuals cannot pool at x = 0 without pooling at $x = \underline{x}$
 - \underline{x}_0 solves $\overline{\mu} \underline{\mu} = \int_{\underline{x}_0}^{\overline{x}} \frac{g(x)}{x} dx$.
- ▶ When $\underline{x} \approx \underline{x}_0$, then $x^* \approx \underline{x}_0$ and $\mu^* \approx \underline{\mu}$

Proposition

We have $\lim_{\underline{x} \to \underline{x}_0} \frac{\partial W}{\partial \underline{x}} = 0$ and $\lim_{\underline{x} \to \underline{x}_0} \frac{\partial^2 W}{\partial \underline{x}^2} = 0$. However, in a right-neighborhood of \underline{x}_0 ,

$$\frac{\partial^3 W}{\partial x^3} > 0$$

and hence, in a right neighborhood of \underline{x}_0 , W is strictly increasing in \underline{x} .

- Motivation
- Model
- Equilibrium
- Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
- Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Conclusion

Adjusting <u>x</u>

Lemma

If the equilibrium regime is Lemons, and f is log-concave, then

$$\frac{\partial \mu_*}{\partial x} > 0, \forall \underline{x} < 1.$$

▶ Higher coverage \underline{x} (and the corresponding adjustment in price) shrinks the set of buyers due to adverse selection: the cost of infra-marginal types (i.e., $p(\underline{x})$) increases faster than the willingness to pay of marginal types

social planner's welfare maximizing choice of quantity

monopolists's \approx profit maximizing choice of quantity

- ▶ Let quantity be $q(x) = 1 F(\mu_*(x))$
- Then

$$\frac{\partial \underline{x}}{\partial q} = -\left(f(\mu_*)\frac{\partial \mu_*}{\partial \underline{x}}\right)^{-1} \leq 0.$$

Welfare

Welfare is

$$W = q \cdot g\left(\underline{x}(q)\right)$$

- ▶ Surplus $g(\underline{x}(q))$ behaves like an inverse demand function.
- ► FOC:

$$\frac{\partial W}{\partial q} = g(\underline{x}(q)) + q \cdot g'(\underline{x}(q)) \frac{d\underline{x}}{dq} = 0$$
 (2)

- ▶ Selling insurance to another marginal individual entails:
 - ▶ marginal gains: surplus of the marginal individual, $g(\underline{x}(q))$
 - infra-marginal losses: increasing q requires lowering the \underline{x} enjoyed by all q infra-marginal individuals: surplus falls proportionally to $q \cdot g'(\underline{x}(q))$

Optimal \underline{x} is < 1

- We've seen that it is optimal to choose $\overline{x} = 1$
- ▶ What is the optimal level of \underline{x} ? We know it is $> \underline{x}_0$
 - ▶ Is $\underline{x} = 1$ optimal?
 - ▶ Yes, if everyone buying full insurance is an equilibrium.
 - ► Suppose it is not (e.g., T cannot be set high enough)
 - ▶ Then, if $x = \overline{x} = 1$, the equilibrium regime is Lemons.
 - We show that this is not optimal

Optimal \underline{x} is < 1

Proposition

If $\overline{x} = 1$, then

$$\frac{dW}{dq}\mid_{\underline{x}=1}>0$$
 and $\frac{dW}{dx}\mid_{\underline{x}=1}<0$

if and only if all individuals buying $\underline{x} = 1$ is not an equilibrium.

- At full insurance
 - marginal surplus from additional insurance vanishes, since g'(1) = 0
 - marginal lowering of q due to adverse selection does not
 - ▶ Optimal minimum coverage is greater than \underline{x}_0 but below full insurance

- Motivation
- Model
- Equilibrium
- Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

Moral Hazard (MH)

- ightharpoonup MH = insurer cost increases disproportionately with coverage x
 - ► Eg, individuals use more healthcare when they receive better insurance, especially high-cost individuals
- Key question: in the presence of MH, can there be OVER-insurance in equilibrium?
 - if so, this would be a reason to impose $\overline{x} < 1$

Modeling MH

Utility and cost are now

$$u(\mu, x, p) = \mu x + g(x) + w(\mu, x) - p,$$
 $c(\mu, x) = \mu x + k(\mu, x).$

Assumption

 $w(\cdot), k(\cdot)$ are twice continuously differentiable, increasing in μ and strictly increasing in x, with $k(0) \equiv w(0) \equiv 0$.

We assume $\frac{\partial k}{\partial x}(\mu, x) > \frac{\partial w}{\partial x}(\mu, x) > 0$, $\forall x > 0$ and $\forall \mu$.

Moreover,

$$\frac{\partial^2 k}{\partial x^2}(\mu, x) \ge \frac{\partial^2 w}{\partial x^2}(\mu, x), \qquad \frac{\partial^2 k}{\partial \mu \partial x}(\mu, x) \ge \frac{\partial^2 w}{\partial \mu \partial x}(\mu, x).$$

► The wedge $k(\mu,x) - w(\mu,x)$ is increasing concave in x and increases more quickly in x for higher μ

Social Surplus

► Social surplus is

$$s(\mu, x) = g(x) + w(\mu, x) - k(\mu, x).$$

Equilibrium

Proposition

Suppose $X = [0, \overline{x}]$ and MH is present. There is a unique equilibrium. Either no individual purchases, or all purchase positive coverage as follows:

- 1. There is a cut-off coverage $x^* \in (0, \overline{x})$ and a maximal purchased coverage $\tilde{x} \in (x^*, \overline{x}]$, s.t. all types purchase contracts $x \in [x^*, \tilde{x}]$ and all such contracts are purchased.
- 2. Type $\overline{\mu}$ buys the maximal purchased coverage \tilde{x}
- 3. The allocation rule σ is strictly increasing and $\sigma \leq \tilde{x}$. Let $\tau = \sigma^{-1}$ be defined on $x \in [x^*, \tilde{x}]$. Then,

$$\tau'(x) = \frac{1}{x + \frac{\partial k}{\partial u}(\tau(x), x)} \frac{\partial s}{\partial x}(\tau(x), x), \qquad \forall x \in (x^*, \tilde{x})$$
(3)

4. Each contract breaks even: $p(x) = c(\tau(x), x), \forall x \in [x^*, \tilde{x}].$

What is the maximal purchased coverage \tilde{x} ?

Proposition

In equilibrium, $\tilde{x} = \overline{x}$ if

$$\frac{\partial s}{\partial x}(\overline{\mu}, \overline{x}) \geq 0.$$

If $\tilde{x} < \overline{x}$, then \tilde{x} satisfies

$$\frac{\partial s}{\partial x}(\overline{\mu}, \tilde{x}) = 0.$$

- ▶ If information was symmetric, each type would obtain coverage such that $\frac{\partial s}{\partial x} = 0$
- ► Asymmetric information: coverage chosen by low risks distorted downwards but "no distortion at the top"

MH reduces equilibrium coverage

Corollary

Suppose $X = [0, \overline{x}]$. All else equal, for each type μ , equilibrium coverage is (weakly) higher if $w(\cdot) \equiv k(\cdot) \equiv 0$ than in a model with MH.

▶ But, under MH, the optimal amount of coverage is also lower

Excessive insurance?

lackbox Let $x^{\star\star}(\mu)$ be the coverage that maximizes surplus for type μ

Lemma

If $x^{\star\star}(\mu) > 0$, it is the unique value that satisfies

$$\frac{\partial s}{\partial x}(\mu, x^{\star\star}(\mu)) = 0. \tag{4}$$

Moreover, $x^{\star\star}(\mu) < 1$, and $x^{\star\star}(\cdot)$ it is weakly decreasing in μ .

- ▶ Full insurance is not optimal for any individual
- The optimal coverage is lower for higher cost types

Excessive insurance?

Proposition

In equilibrium, every type $\mu < \overline{\mu}$ obtains coverage that is strictly lower than what is socially optimal. Full insurance $\overline{x}=1$ is not purchased even if it is offered.

- ightharpoonup At most, type $\overline{\mu}$ buys \tilde{x} which is optimal for that type
- ► Equilibrium coverage is increasing in type
- Socially optimal coverage is decreasing in type
- MH leads to UNDER-insurance in equilibrium for every type (except perhaps $\overline{\mu}$)

Welfare

Proposition

Suppose that $X=[0,\overline{x}]$, and MH is present. Suppose that, in equilibrium, positive coverage is purchased by all. If $\overline{x}>\widetilde{x}$, then $\frac{\partial W}{\partial \overline{x}}=0$. If $\widetilde{x}=\overline{x}$, then $\frac{\partial W}{\partial \overline{x}}>0$.

- ▶ The presence of MH does not provide a rational for $\overline{x} < 1$
 - best case scenario $(\overline{x} > \tilde{x})$: does not affect welfare.
 - if $\tilde{x} \geq \overline{x}$, then it reduces welfare.

- Motivation
- Model
- Equilibrium
- 4 Possible Equilibrium Regimes
- Equilibrium Characterization
 - Dispersive Equilibrium
 - Other Regimes
- 6 Uniqueness
 - Comparative Statics
 - Adjusting T
 - Adjusting \overline{x}
 - Adjusting x, PPPP Regime
 - Adjusting x, Lemons Regime
- Moral Hazard
- Onclusion

- ► Tractable model of a competitive selection market
 - includes common contract restrictions
 - nests, as special cases, Akerlof 1970 and RS76
- ► Equilibrium typically exhibits partial pooling
 - depends non-trivially on the type distribution (unlike in RS)
- ▶ Equilibrium is unique if the type distribution is log-concave.
- Increasing the non-purchase fee increases welfare if the density of types is decreasing.
- ► The optimal level of the minimum coverage is positive, below full insurance and induces some pooling at the minimum coverage contract.
- ► The optimal level of the maximum coverage is full insurance (even in an extension that allows for moral hazard).

THANK YOU!

a.veiga@imperial.ac.uk