CLAIMS

1. Benzodiazepine derivative of formula I:

$$(R_1)_n \xrightarrow{R_2} \begin{array}{c} R_3 \\ N - R_4 \\ X - R_5 \end{array}$$

in which

5

30

the dashed lines indicate the possible presence of a double bond;

10 R_1 represents optionally halogenated (C_1-C_{18}) alkyl, optionally halogenated (C_1-C_{18}) alkoxy, halogen, nitro, hydroxyl or (C_6-C_{18}) aryl (optionally substituted with optionally halogenated (C_1-C_{10}) alkyl, optionally halogenated (C_1-C_{12}) alkoxy, halogen, nitro or hydroxyl);

n represents 0, 1, 2, 3 or 4;

 R_2 and R_3 represent, independently of each other, hydrogen; optionally halogenated (C_1-C_{18}) alkyl; (C_1-C_{18}) alkoxy; (C_6-C_{18}) aryl; (C_6-C_{18}) aryl (C_1-C_{12}) alkyl; (C_6-C_{18}) aryl (C_1-C_{12}) alkyl; (C_6-C_{18}) aryl (C_1-C_{12}) alkoxy; (C_6-C_{18}) aryl (C_1-C_{12}) alkoxy; heteroaryloxy; or heteroaryl (C_1-C_{12}) alkoxy; in which the aryl and heteroaryl portions of these radicals are optionally substituted with halogen, optionally halogenated (C_1-C_{12}) alkoxy, optionally halogenated (C_1-C_{12}) alkyl, nitro and hydroxyl;

 R_4 represents hydrogen, $(C_1\text{-}C_{18})\,\text{alkyl}$ or $(C_6\text{-}C_{18})\,\text{aryl}$, the said aryl group optionally being substituted with halogen, optionally halogenated $(C_1\text{-}C_{12})\,\text{alkoxy},$ optionally halogenated $(C_1\text{-}C_{12})\,\text{alkyl},$ nitro or hydroxyl;

X represents S, O or -NT in which T represents a hydrogen atom, (C_1-C_{12}) alkyl, (C_6-C_{18}) aryl, (C_6-C_{18}) aryl (C_1-C_{12}) alkyl or (C_6-C_{18}) arylcarbonyl;

 R_5

represents (C_1-C_{18}) alkyl; hydroxy (C_1-C_{18}) alkyl; (C_6-C_{18}) aryl (C_1-C_{12}) alkyl; (C_3-C_{12}) cycloalkyl (C_1-C_{12}) alkyl; (C_5-C_{12}) cycloalkenyl- (C_1-C_{12}) alkyl; heteroaryl (C_1-C_{12}) alkyl optionally substituted with one or more substituents Su as defined 5 below; (C_3-C_{12}) cycloalkyl optionally substituted with oxo and optionally fused to (C_6-C_{18}) aryl, the assembly optionally being substituted with one substituents Su as defined below; a group $-CH_2-CR_a=CR_bR_c$ (in which $R_{\text{a}},\ R_{\text{b}}$ and R_{c} are chosen, independently, from 10 (C_1-C_{18}) alkyl, (C_2-C_{18}) alkenyl, hydrogen and (C₆-C₁₈)aryl); a group -CHA-CO-Z {in which Z represents optionally halogenated (C_1-C_{18}) alkyl; optionally halogenated (C_1-C_{18}) alkoxy; (C_3-C_{12}) cycloalkyl; 15 (C_3-C_{12}) cycloalkyl optionally substituted with oxo and optionally fused to (C_6-C_{18}) aryl; (C_6-C_{18}) aryl (C_1-C_{18}) alkyl; (C_6-C_{18}) aryl (C_1-C_{12}) alkoxycarbonylamino (C_1-C_{12}) alkyl in which alkyl is optionally substituted with 20 (C_1-C_{12}) alkoxycarbonyl (C_1-C_{12}) alkyl; (C_1-C_{12}) alkoxycarbony1; (C_1-C_{12}) alkoxycarbonyl (C_1-C_{12}) alkyl; (C_6-C_{10}) aryl; (C_6-C_{18}) aryl fused to an unsaturated heterocycle optionally substituted with oxo; or heteroaryl; the aryl, heterocycle, cycloalkyl and 25 heteroaryl portions of these radicals optionally being substituted with halogen; hydroxyl; optionally halogenated (C_1-C_{12}) alkyl; optionally halogenated (C_1-C_{12}) alkoxy; nitro; cyano; (C_1-C_{12}) alkylenedioxy; (C_1-C_{12}) alkylene; 30 carboxy(C_1-C_{12})alkyl; (C_2-C_{12})alkenyloxy; optionally halogenated (C_1-C_{12}) alkylsulphonyloxy; cyano (C_1-C_{12}) alkyl; -Cy-alk-NH-SO₂-Ar in which alk represents (C_1-C_{12}) alkyl, Cy represents (C₃-C₁₂)cycloalkyl optionally substituted with one or more substituents Su 35 defined below and Ar represents (C_6-C_{18}) aryl optionally substituted with one or more substituents Su as defined below; -alk-Cy in which alk and Cy are as defined above; (C_1-C_{12}) alkoxycarbonyl (C_1-C_{12}) alkoxy; (C_1-C_{12}) alkoxycarbonyl (C_1-C_{12}) alkyl; saturated hetero-

cycle optionally substituted with one ormore substituents Su defined as below; (C_1-C_{12}) alkylcarbonyloxy; (C_1-C_{12}) alkylcarbonylamino; optionally halogenated (C_1-C_{12}) alkylthio; (C_1-C_{12}) alkylcarbonyloxy(C_1-C_{12})alkoxy; a group of formula:

-(CH₂)_D St

in which p = 0, 1, 2, 3 or 4 and in which St is (C_6-C_{18}) aryl optionally substituted with one or more 10 substituents Su as defined below; (C_1-C_{12}) alkoxycarbonyl; (C_6-C_{18}) arylthio optionally substituted with one or more substituents Su as defined below; (C_3-C_{12}) cycloalkyl optionally substituted with or more one substituents Su as defined 15 -Cy-CO-O-alk in which alk and Cy are as defined above; -alk-Cy-alk'-NH-CO-alk" in which alk and Cy are as defined above, alk' and alk" represent, independently of each other, (C_1-C_{12}) alkyl; $-NR^{\circ}-CO-alk'-Het$ in which alk' defined above, is as Ro represents Η (C_1-C_{12}) alkyl and Het represents heteroaryl optionally 20 substituted with one or more substituents Su as defined $di(C_1-C_{12})$ alkoxyphosphoryl(C_1-C_{12}) alkyl; (C_6-C_{18}) aryl optionally substituted with one or more substituents Su as defined below; (C_6-C_{18}) aryloxy 25 optionally substituted with one or more substituents Su as defined below; (C_6-C_{18}) aryl fused to an unsaturated heterocycle optionally substituted on the heterocycle portion with oxo, the assembly optionally being substituted with one or more substituents Su as defined below; (C_6-C_{18}) aryl (C_1-C_{12}) alkoxy optionally substituted 30 with one or more substituents Su as defined below; (C_6-C_{18}) ary lsulphonyl optionally substituted with one or substituents Su as defined (C_6-C_{18}) aryl (C_1-C_{12}) alkyl in which aryl is optionally substituted with one or more substituents Su as defined 35 below; (C₆-C₁₈)arylcarbonyl optionally substituted with one or more substituents Su as defined below; and

A represents a hydrogen atom, a (C_6-C_{18}) aryl group optionally substituted with one or more substituents Su or (C_1-C_{12}) alkyl);

or alternatively R_4 and R_5 together form a group 5 -CR₆=CR₇- in which CR₆ is linked to X and in which:

 $R_6 \ \text{represents} \ a \ \text{hydrogen} \ \text{atom}; \ (C_1-C_{18}) \, \text{alkyl}; \\ (C_3-C_{12}) \, \text{cycloalkyl}; \ (C_6-C_{18}) \, \text{aryl}; \ \text{carboxy}(C_1-C_{12}) \, \text{alkyl}; \\ (C_1-C_{12}) \, \text{alkoxycarbonyl}(C_1-C_{12}) \, \text{alkyl}; \ \text{heteroaryl}; \\ (C_6-C_{18}) \, \text{aryl}(C_1-C_{12}) \, \text{alkyl}; \ \text{and heteroaryl}(C_1-C_{12}) \, \text{alkyl}; \ \text{in} \\ \text{which the aryl and heteroaryl portions of these} \\ \text{radicals are optionally substituted with} \ (C_1-C_{12}) \, \text{alkyl}, \\ (C_1-C_{12}) \, \text{alkoxy}, \ \text{hydroxyl}, \ \text{nitro}, \ \text{halogen} \ \text{or} \\ \text{di}(C_1-C_{12}) \, \text{alkoxyphosphoryl}(C_1-C_{12}) \, \text{alkyl}; \\ \end{cases}$

R₇ represents a hydrogen atom; hydroxyl; di(C_1 - C_{12})alkylamino(C_1 - C_{12})alkyl; optionally halogenated (C_1 - C_{18})alkyl; carboxyl; carboxy(C_1 - C_{12})alkyl optionally substituted with amino; (C_1 - C_{12})alkoxycarbonyl; (C_6 - C_{18})aryl; heteroaryl; (C_6 - C_{18})aryl(C_1 - C_{12})alkyl; or heteroaryl(C_1 - C_{12})alkyl; (C_6 - C_{18})aryl fused to an unsaturated heterocycle, optionally substituted on the heterocycle portion with oxo; (C_3 - C_{12})cycloalkyl;

in which the aryl, heterocycle, cycloalkyl and heteroaryl portions of these radicals are optionally substituted with halogen; hydroxyl; hydroxy(C_1-C_{12})alkoxy; 25 optionally halogenated (C_1-C_{12}) alkyl; optionally halogenated (C_1-C_{12}) alkoxy; carboxyl; (C_1-C_{12}) alkoxycarbonyl; nitro; cyano; cyano (C_1-C_{18}) alkyl; (C_1-C_{18}) alkylcarbonyloxy; (C_2-C_{12}) alkylene; (C_1-C_{12}) alkylenedioxy; (C_1-C_{12}) alkyl-30 thio; (C_6-C_{18}) arylthio optionally substituted with one more substituents Su as defined $di(C_1-C_{12})$ alkylamino; a group of formula:

10

in which p=0, 1, 2, 3 or 4 and in which St represents (C_6-C_{18}) aryl; -alk-Cy-NH-SO₂-Ar in which alk

represents (C_1-C_{12}) alkyl, Су represents (C3-C12)cycloalkyl optionally substituted with one or more substituents Su as defined below and Ar represents (C_6-C_{18}) aryl optionally substituted with one or more substituents Su as defined below; -Cy-alk-NH-SO2-Ar in which Cy, alk and Ar are as defined above; -alk-Cy in alk and Су are as defined -alk-Cy-alk'-NH-CO-alk" in which alk and Cy are as defined above and alk' and alk" represent, 10 independently, (C_1-C_{12}) alkyl; $di(C_1-C_{12})$ alkoxyphosphoryl(C_1-C_{12})alkyl; (C_6-C_{18})aryl optionally substituted. with one or more substituents Su as defined below; (C_6-C_{18}) aryloxy optionally substituted with one or more substituents Su as defined below; (C_6-C_{18}) arylcarbonyl 15 optionally substituted with one or more substituents Su defined below; (C₆-C₁₈) arylsulphonyl optionally substituted with one or more substituents Su as defined (C_6-C_{18}) aryl (C_1-C_{12}) alkoxy in which the portion is optionally substituted with one or 20 substituents Su as defined below; saturated heterocycle optionally substituted with one or more substituents Su as defined below; (C_6-C_{18}) ary $1(C_1-C_{12})$ alky 1 optionally substituted with one or more substituents Su as defined below;

Su is chosen from hydroxyl, halogen, cyano, nitro, optionally halogenated (C_1-C_{12}) alkyl and optionally halogenated (C_1-C_{12}) alkoxy;

25

30

35

or alternatively R_6 and R_7 together form a C_3-C_{12} alkylene chain optionally interrupted with a nitrogen atom which is optionally substituted with (C_1-C_{12}) alkylor (C_6-C_{18}) arylor (C_6-C_{18}) arylor (C_6-C_{18}) arylor (C_6-C_{18}) arylor arylor optionally being fused to (C_6-C_{18}) arylor (the aryloportions of these radicals optionally being substituted with halogen, nitro, hydroxyl, optionally halogenated (C_1-C_{12}) alkylor optionally halogenated (C_1-C_{12}) alkoxy);

with the exclusion of the compounds of formula I in which X = S; n = 0; R_2 represents methyl and R_3 represents a hydrogen atom; R_4 and R_5 together form a

group $-CR_6=CR_7-$ in which CR_6 is linked to X, R_6 and R_7 together form a $-(CH_2)_3-$ or $-(CH_2)_4-$ chain or alternatively R_6 represents a hydrogen atom or a propyl group and R_7 is a phenyl group optionally substituted with $-OCH_3$ or a hydroxyl group;

and the pharmaceutically acceptable salts thereof with acids or bases.

2. Compound according to Claim 1, characterized in that X represents -NT in which T is as defined in Claim 1 and R_4 and R_5 together form -CR₆=CR₇.

10

15

20

- 3. Compound according to Claim 1 or Claim 2, characterized in that R_3 represents a hydrogen atom.
- 4. Compound according to any one of Claims 1 to 3, characterized in that R_2 represents a hydrogen atom or a (C_6-C_{10}) aryl group optionally substituted with halogen, (C_1-C_6) alkoxy, optionally halogenated (C_1-C_6) alkyl, nitro and hydroxyl.
 - 5. Compound according to any one of Claims 1 to 4, characterized in that n is 0 or 1 and R_1 represents a halogen atom.
 - 6. Compound according to any one of Claims 1 and 3 to 5, characterized in that X represents S;

R₄ represents a hydrogen atom;

 R_5 represents (C_1-C_6) alkyl; hydroxy (C_1-C_6) alkyl; (C_6-C_{10}) aryl (C_1-C_6) alkyl; (C_5-C_8) cycloalkenyl (C_1-C_6) alkyl; 25 or $isoxazolyl(C_1-C_6)alkyl$ optionally substituted with one or more (C₁-C₆)alkyls; -CH₂-CR_a=CR_bR_c in which R_a is a hydrogen atom, (C_1-C_6) alkyl or (C_6-C_{10}) aryl, R_b is (C_1-C_6) alkyl or a hydrogen atom and R_c represents a hydrogen atom or (C_2-C_{10}) alkenyl; a group $-CH_2-CO-Z$ in 30 which Z represents (C_1-C_{10}) alkyl, (C_6-C_{10}) aryl (C_1-C_6) alkyl, 5- or 6-membered heteroaryl or (C_6-C_{10}) aryl optionally fused to a 5- to 7-membered the aryl and aromatic or unsaturated heterocycle; heteroaryl portions of these radicals optionally being 35 substituted with halogen, hydroxyl, (C_1-C_6) alkyl, (C_6-C_{10}) aryl (optionally (C_1-C_6) alkoxy, nitro or substituted with halogen, optionally halogenated (C_1-C_6) alkyl, optionally halogenated (C_1-C_6) alkoxy or nitro);

or alternatively R_4 and R_5 together form a group $-\text{CR}_6\text{--}\text{CR}_7\text{--}$ in which

- $R_6 \ \ \text{represents} \ \ \text{a} \ \ \text{hydrogen} \ \ \text{atom,} \ \ (C_1-C_6) \, \text{alkyl,}$ $(C_6-C_{10}) \, \text{aryl} \ \ (\text{optionally substituted with halogen,}$ $\text{hydroxyl, nitro,} \ \ \ (C_1-C_6) \, \text{alkyl} \ \ \text{or} \ \ \ \ (C_1-C_6) \, \text{alkoxy),}$ $\text{carboxy}(C_1-C_6) \, \text{alkyl,} \qquad \text{or} \qquad (C_1-C_6) \, \text{alkoxy-carbonyl}(C_1-C_6) \, \text{alkyl; and}$
- 10 represents a hydrogen atom; hydroxvl: $di(C_1-C_6)$ alkylamino (C_1-C_6) alkyl; (C_1-C_{10}) alkyl; (C_1-C_6) alkoxycarbonyl; (C_6-C_{10}) aryl; heteroaryl; (C_6-C_{10}) aryl (C_1-C_6) alkyl; the aryl and heteroaryl portions of these radicals optionally being substituted 15 with (C_1-C_6) alkoxycarbonyl, halogen, hydroxyl, (C_1-C_6) alky1, (C_6-C_{10}) aryl, (this radical optionally being substituted with halogen, optionally halogenated (C_1-C_6) alkyl, (C_1-C_6) alkoxy or nitro) or (C_6-C_{10}) arylfused to a 5- to 7-membered aromatic or unsaturated 20 heterocycle comprising one, two or three endocyclic hetero atoms chosen from O, N and S; or alternatively R_6 and R_7 together form an alkylene chain interrupted with a nitrogen atom optionally substituted with (C_6-C_{10}) aryl (C_1-C_6) alkyl in which the aryl portion is optionally substituted with 25 halogen, optionally
- 7. Compound according to any one of Claims 1 to 5, characterized in that X represents -NT; and R_4 and R_5 30 together form a group -CR₆=CR₇- in which R₆ represents a hydrogen atom and R₇ represents hydroxyl or (C₆-C₁₀)aryl optionally substituted with halogen, nitro, hydroxyl, optionally halogenated (C₁-C₆)alkyl or (C₁-C₆)alkoxy.

halogenated (C_1-C_6) alkyl, (C_1-C_6) alkoxy, hydroxyl

nitro.

- 8. Compound according to Claim 1, chosen from:
- 3- (biphenyl-4-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;
 - 3-(2-furyl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;

3-[4-(ethoxycarbonyl)phenyl]-5,6-dihydrothiazolo-[2,3-b]-1,3-benzodiazepine;

1-(2-furyl)-2-(4,5-dihydro-3H-1,3-

benzodiazepine-2-ylsulphamyl)ethanone;

5 1-(biphenyl-4-yl)-2-(4,5-dihydro-3*H*-1,3-benzo-diazepine-2-ylsulphamyl)ethanone;

3-(biphenyl-3-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;

1-(3,4-dihydroxyphenyl)-2-(4,5-dihydro-3H-1,3-

10 benzodiazepine-2-ylsulphamyl)ethanone;

3-(3,4-dihydroxyphenyl)-5,6-dihydro-

thiazolo[2,3-b]-1,3-benzodiazepine; and

3-(biphenyl-4-yl)-7-chloro-5,6-dihydro-

thiazolo[2,3-b]-1,3-benzodiazepine.

9. Process for preparing a compound of formula I according to Claim 1, in which X represents S; and R_4 and R_5 do not together form $-CR_6=CR_7-$, comprising the reaction of a thione of formula II:

$$(R_1)_n$$
 R_2
 R_3
 NR_4
 R_4
 R_4
 R_4
 R_4
 R_4

20

in which:

 $\mbox{R}_1, \ \mbox{n}, \ \mbox{R}_2, \ \mbox{R}_3$ and \mbox{R}_4 are as defined in Claim 1, with a halo derivative of formula III:

25

in which R_5 is as defined in Claim 1 and Hal^1 is a halogen atom, optionally halogenated (C_1-C_6) alkylsulphonyl or (C_6-C_{10}) arylsulphonyl optionally substituted in the aryl portion with (C_1-C_6) alkyl.

10. Process according to Claim 9, characterized in that the thione of formula II is reacted with an α -halo ketone of formula IVa:

30

in which Z is as defined in Claim 1 and Hal² is a halogen atom, so as to obtain the corresponding compounds of formula I in which R₅ represents -CH₂-CO-Z.

11. Process according to Claim 9 or Claim 10, also comprising the alkylation of a compound of formula I obtained according to the process of Claim 9 or Claim 10 in which R₄ represents a hydrogen atom, using a suitable alkylating agent, so as to obtain the corresponding compound of formula I in which R₄ represents (C₁-C₁₈)alkyl.

12. Process for preparing compounds of formula I according to Claim 1, in which X represents S and R_4 and R_5 together form a group $-CR_6=CR_7-$, comprising the reaction of a thione of formula IIa:

15

30

20 in which n, R_1 , R_2 and R_3 are as defined in Claim 1, with an α -halo ketone of formula IVb:

$$R_7$$
-CO-CH R_6 -Hal³ IVb

25 in which R_6 and R_7 are as defined in Claim 1, and Hal³ represents a halogen atom, in a C_2 - C_6 aliphatic carboxylic acid, at a temperature of between 90 and $130\,^{\circ}\text{C}$.

- 13. Process according to Claim 12, characterized in that the aliphatic carboxylic acid is acetic acid.
 - 14. Process according to either of Claims 12 and 13, characterized in that the temperature is maintained at between 100 and 125°C.

15. Process for preparing compounds of formula I according to Claim 1, in which X represents -NH, R_4 and R_5 together form a group -CR₆=CR₇- and R_7 is not hydroxyl, comprising the reaction of a sulphide of formula V:

$$(R_1)_n$$
 R_2
 $N-H$
 $S-alk$

in which n, R_1 , R_2 and R_3 are as defined in Claim 1, R_4 10 and R_5 together form a -CR₆=CR₇- group and alk represents (C_1 - C_6)alkyl, with a protected derivative of the ketone of formula VI:

VI

15

in which the carbonyl group is protected with a protecting group that is labile in acidic medium, R_6 and R_7 being as defined in Claim 1, followed by treatment of the resulting compound with an acid.

20 16. Process for preparing compounds of formula I according to Claim 1, in which X represents -NT in which T is not a hydrogen atom, R_4 and R_5 together form a group -CR₆=CR₇, and R₇ represents hydroxyl, comprising the reaction of a sulphide of formula V:

25

$$(R_1)_n$$
 R_2
 $N-H$
 $N-H$
 $N-H$
 $N-H$
 $N-H$
 $N-H$

in which n, R_1 , R_2 and R_3 are as defined in Claim 1, and alk represents (C_1-C_6) alkyl,

30 with a derivative of formula VIII:

in which T and R_6 are as defined in Claim 1 and Y is a leaving group, at a temperature of between 50 and 150°C and preferably at a temperature of between 60 and 100°C.

- 17. Process according to Claim 15, also comprising the reaction of the compound obtained by carrying out the process of Claim 15, with a halogenated reagent of formula Hal-T in which T represents (C₁-C₆)alkyl, (C₆-C₁₀)aryl or (C₆-C₁₀)aryl(C₁-C₆)alkyl and Hal is a halogen atom, in the presence of a base, so as to synthesize the corresponding compound of formula I in the temperature of the corresponding compound corresponding compound corresponding cor
 - 18. Pharmaceutical composition containing an effective amount of at least one compound of formula (I) according to any one of Claims 1 to 8, in combination with at least one pharmaceutically acceptable vehicle.
 - 19. Use of a compound of formula I according to any one of Claims 1 to 8, for the preparation of a medicinal product for preventing or treating dyslipidaemia, atherosclerosis and diabetes and its complications.
 - 20. Benzodiazepine derivative of formula I:

$$R_2$$
 R_3
 $N-R_4$
 $X-R_5$

30

20

25

in which

the dashed lines indicate the possible presence of a double bond;

 R_1 represents optionally halogenated 35 (C_1 - C_{18})alkyl, optionally halogenated (C_1 - C_{18})alkoxy,

halogen, nitro, hydroxyl or (C_6-C_{10}) aryl (optionally substituted with optionally halogenated (C_1-C_6) alkyl, optionally halogenated (C_1-C_6) alkoxy, halogen, nitro or hydroxyl);

5 n represents 0, 1, 2, 3 or 4;

10

15

20

25

 R_2 and R_3 represent, independently of each other, hydrogen; optionally halogenated (C_1-C_{18}) alkyl; (C_1-C_{18}) alkoxy; (C_6-C_{10}) aryl; (C_6-C_{10}) aryl (C_1-C_6) alkyl; heteroaryl; heteroaryl(C_1 - C_6)alkyl; (C_6-C_{10}) aryloxy; (C_6-C_{10}) aryl (C_1-C_6) alkoxy; heteroaryloxy; heteroaryl(C_1 - C_6)alkoxy; in which heteroaryl represents a 5- to 7-membered aromatic heterocycle containing one, two or three endocyclic hetero atoms chosen from O, N and S, and in which the aryl and heteroaryl portions of these radicals are optionally substituted with halogen, halogenated (C_1-C_6) alkoxy, optionally optionally halogenated (C_1-C_6) alkyl, nitro and hydroxyl;

 R_4 represents hydrogen, (C_1-C_{18}) alkyl or (C_6-C_{10}) aryl, the said aryl group optionally being substituted with halogen, optionally halogenated (C_1-C_6) alkoxy, optionally halogenated (C_1-C_6) alkyl, nitro or hydroxyl;

X represents S, O or -NT in which T represents a hydrogen atom, (C_1-C_6) alkyl, (C_6-C_{10}) aryl (C_1-C_6) alkyl or (C_6-C_{10}) arylcarbonyl;

represents (C_1-C_{18}) alkyl; hydroxy(C_1-C_{18})alkyl; (C_6-C_{10}) aryl (C_1-C_6) alkyl; (C_3-C_8) cycloalkyl (C_1-C_6) alkyl; (C_5-C_8) cycloalkenyl- (C_1-C_6) alkyl; isoxazolyl(C_1-C_6)alkyl optionally 30 substituted with (C_1-C_6) alkyl; a group $-CH_2-CR_a=CR_bR_c$ in which R_a , R_b and R_c are chosen independently from (C_1-C_{18}) alkyl, (C_2-C_{18}) alkenyl, hydrogen and (C_6-C_{10}) aryl; a group $-CH_2-CO-Z$ in which Z represents (C_1-C_{18}) alkyl, (C_1-C_6) alkoxycarbonyl, (C_6-C_{10}) aryl (C_1-C_6) alkyl, (C_6-C_{10}) aryl optionally fused to a 5- to 7-membered

35 (C₆-C₁₀)aryl optionally fused to a 5- to 7-membered aromatic or unsaturated heterocycle comprising one, two or three endocyclic hetero atoms chosen from O, N and S; or 5- to 7-membered heteroaryl containing one, two or three endocyclic hetero atoms chosen from O, N and

S; the aryl and heteroaryl portions of these radicals optionally being substituted with halogen, hydroxyl, optionally halogenated (C_1-C_6) alkyl, optionally halogenated (C_1-C_6) alkoxy, $di(C_1-C_6)alkoxy$ nitro, phosphoryl(C₁-C₆)alkyl (C_6-C_{10}) aryl or (optionally optionally halogenated substituted with halogen, (C_1-C_6) alkyl, optionally halogenated (C₁-C₆)alkoxy, nitro or hydroxyl);

or alternatively R_4 and R_5 together form a group $-CR_6=CR_7-$ in which CR_6 is linked to X and in which:

 R_6 represents a hydrogen atom; (C_1-C_{18}) alkyl; (C_6-C_{10}) aryl; carboxy (C_1-C_6) alkyl; (C_3-C_8) cycloalkyl; (C_1-C_6) alkoxycarbonyl (C_1-C_6) alkyl; heteroaryl; (C_1-C_6) aryl (C_1-C_6) alkyl; and heteroaryl (C_1-C_6) alkyl; in which heteroaryl represents a 5- to 7-membered aromatic heterocycle containing one, two or three endocyclic hetero atoms chosen from O, N and S and in which the aryl and heteroaryl portions of these radicals are optionally substituted with (C_1-C_6) alkyl, (C_1-C_6) alkoxy, hydroxyl, nitro, halogen or $di(C_1-C_6)$ alkoxyphosphoryl (C_1-C_6) alkyl;

15

20

represents a hydrogen atom; hydroxyl; $di(C_1-C_6)$ alkylamino (C_1-C_6) alkyl; (C_1-C_{18}) alkyl; carboxyl; (C_1-C_6) alkoxycarbonyl; (C_6-C_{10}) aryl; heteroaryl; 25 (C_6-C_{10}) aryl (C_1-C_6) alkyl; or heteroaryl (C_1-C_6) alkyl; which heteroaryl represents a 5- to 7-membered aromatic heterocycle containing one, two or three endocyclic hetero atoms chosen from O, N and S and in which the aryl and heteroaryl portions of these radicals are substituted 30 optionally with halogen, hydroxyl, optionally halogenated (C_1-C_6) alkyl, optionally halogenated (C_1-C_6) alkoxy, carboxyl, (C_1-C_6) alkoxycarbonyl, nitro, $di(C_1-C_6)alkoxyphosphoryl(C_1-C_6)alkyl$, (C_6-C_{10}) aryl (this radical optionally being · 35 substituted with hydroxyl, nitro, optionally optionally halogenated (C_1-C_6) alkyl, halogenated (C_1-C_6) alkoxy or halogen) or (C_6-C_{10}) aryl fused to a 5-7-membered aromatic or unsaturated heterocycle

comprising one, two or three endocyclic hetero atoms chosen from O, N and S;

or alternatively R_6 and R_7 together form a C_3 - C_6 alkylene chain optionally interrupted with a nitrogen atom which is optionally substituted with $(C_1$ - $C_6)$ alkyl, or $(C_6$ - $C_{10})$ aryl or $(C_6$ - $C_{10})$ aryl $(C_1$ - $C_6)$ alkyl, (the aryl portions of these radicals optionally being substituted with halogen, nitro, hydroxyl, optionally halogenated $(C_1$ - $C_6)$ alkyl or optionally halogenated $(C_1$ - $C_6)$ alkyl or optionally halogenated $(C_1$ - $C_6)$ alkoxy);

with the exclusion of the compounds of formula I in which X = S; n = 0; R₂ represents methyl and R₃ represents a hydrogen atom; R₄ and R₅ together form a group -CR₆=CR₇- in which CR₆ is linked to X, R₆ and R₇ together form a -(CH₂)₃- or -(CH₂)₄- chain or alternatively R₆ represents a hydrogen atom or a propyl group and R₇ is a phenyl group optionally substituted with -OCH₃ or a hydroxyl group;

and the pharmaceutically acceptable salts thereof with acids or bases.