Definition 1. With $\frac{dy}{dx} + Py = Q$ as 1st differential equation, if Pdx + Qdy = 0 is not exact and F(Pdx + Qdy) = 0 is exact, the integrating factor F w.r.t. x defined as

$$F_x = \exp\left(\int \frac{\frac{\partial}{\partial y} P - \frac{\partial}{\partial x} Q}{Q} dx\right) = \exp\left(\int \frac{P_y - Q_x}{Q} dx\right). \tag{1}$$

And, the integrating factor F w.r.t. y defined as

$$F_y = \exp\left(\int \frac{\frac{\partial}{\partial x}Q - \frac{\partial}{\partial y}P}{P}dx\right) = \exp\left(\int \frac{Q_x - P_y}{P}dy\right). \tag{2}$$

Problem 1. Determine a solution of y' + ay = b $(a, b \in \mathbb{R})$.

Proof. From $y' + ay = \frac{dy}{dx} + ay = b \Leftrightarrow (ay - b)dx + dy = 0$, $P_y = \frac{\partial}{\partial y}(ay - b) = a$, $Q_x = \frac{\partial}{\partial x}1 = 0$. Because $P_y \neq Q_x$, Pdx + Qdy = 0 is not exact. Let ay - b as P and 1 as Q. From equation (1),

$$F_x = \exp\left(\int \frac{P_y - Q_x}{Q} dx\right) = \exp\left(\int \frac{a - 0}{1} dx\right) = e^{ax}.$$
 (3)

and from equation (2),

$$F_y = \exp\left(\int \frac{Q_x - P_y}{P} dy\right) = \exp\left(\int \frac{0 - a}{ay - b} dy\right) = e^{-\frac{1}{y^2}(ay - b + b\ln(|ay - b|))}.$$
 (4)