Usage Estimate and Computer Time Proposals

Yan-Fei Jiang (姜燕飞)

Center for Computational Astrophysics, Flatiron Institute

Rusty and Popeye

#Nodes	CPU type	#Cores	Memory	GPU	Fabric	SLURM
216	icelake	64	1TB	no	n/a	-C icelake
640	rome	128	1TB	no	InfiniBand	-C rome,ib
300	skylake	40	768GB	no	OmniPath	-C skylake,opa
18	icelake	64	1TB	8x Nvidia H100-80GB	InfiniBand	-C h100,ib
36	icelake	64	1TB	4x Nvidia A100-80GB	InfiniBand	-C a100-80gb,ib
36	icelake	64	1TB	4x Nvidia A100-40GB	InfiniBand	-C a100,ib
22	skylake	36	768GB	4x Nvidia V100-32GB	n/a	-C v100
5	skylake	36	384GB	2x Nvidia V100-16GB	n/a	-C v100
4	cascadelake, coopperlake	96-192	3-6TB	no	n/a	-p mem

#Nodes	CPU type	#Cores	Memory	GPU	Fabric	SLURM
144	skylake	48	768GB	no	InfiniBand	-C skylake,ib
432	cascadelake	48	768GB	no	InfiniBand	-C cascadelake,ib
216	icelake	64	1TB	no	InfiniBand	-C icelake,ib
1	cooperlake	96	3ТВ	no	n/a	-p mem
32	skylake	40	768GB	4x NVidia V100-32GB	InfiniBand	-C v100,ib

Rusty

~100K CPUs:

900M core hours per

year

~500 GPUs:

4.38M hours per year

Popeye

~41K CPUs:

360M core hours per

year

~128 GPUs:

1.12M hours per year

Statistics of CCA Usage

Popeye

Statistics of CCA Usage

Rusty

Popeye

Statistics of CCA Usage

Popeye

- ACCESS
 - https://allocations.access-ci.org/
 - NSF supported, but no NSF grant is needed to apply
 - Can apply anytime

Allocation	Credit Threshold
Explore ACCESS	400,000
<u>Discover ACCESS</u>	1,500,000
Accelerate ACCESS	3,000,000
Maximize ACCESS	Not awarded in credits.

- NASA
 - https://www.nas.nasa.gov/hecc/resources/environment.html
 - Need NASA supported grant to get the computer time

Vital Stats

3,200-node HPE E-Cell/Apollo 9000 system

308,224 cores total

13.1 petaflops theoretical peak

9.1 petaflops sustained performance (April 2022)

1.27 petabytes total memory

Vital Stats

10,410-node SGI/HPE ICE supercluster

228,572 cores total

7.09 petaflops theoretical peak

5.95 petaflops sustained performance (June 2021)

921 terabytes total memory

Vital Stats

3,456-node SGI/HPE ICE X/HPE E-Cell system

124,416 cores total

8.32 petaflops theoretical peak

5.44 petaflops sustained performance (June 2021)

589 terabytes total memory

• INCITE

- https://www.alcf.anl.gov/science/incite-allocation-program
- DOE supported, anyone can apply.
- Application deadline is typically in July every year

Polaris Compute Nodes

560 such nodes in total

POLARIS COMPUTE	DESCRIPTION	PER NODE	AGGREGATE
Processor (Note 1)	2.8 GHz 7543P	1	560
Cores/Threads	AMD Zen 3 (Milan)	32/64	17,920/35,840
RAM (Note 2)	DDR4	512 GiB	280 TiB
GPUS	NVIDIA A100	4	2240
Local SSD	1.6 TB	2/3.2 TB	1120/1.8PB

• INCITE

- https://www.alcf.anl.gov/science/incite-allocation-program
- DOE supported, anyone can apply.
- Application deadline is typically in July every year

Frontier:

The system has 9408 AMD compute nodes. Each node has 1 AMD "Optimized 3rd Gen EPYC" CPU and 4x AMD MI250X, each with 2 GPUs (so total 8 GPUs per node).

Scaling Tests

Strong scaling:

For a fixed simulation you try to run, how the wall clock time changes as a function of number of cores you use

Weak scaling:

For a fixed problem size per core, how the simulation efficiency varies as a function of total number of cores.

 You can typically request a small amount of allocation to perform these tests in the system you want to use with your code.

Examples of Scaling Tests

Examples of Scaling Tests

https://allocations.access-ci.org/example-proposals/ AstronomicSciences.pdf

Estimate the Resource You need

- Total number of calculations per cycle: N
- Total number of cycles you need to do: T
- Number of calculations your code can perform per second per core: S

Total core time: N*T/S