

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

# Spesifikasi: 2 sifat penting

- Mesin Turing adalah pembanding setiap model komputasi lain.
  - Power: jangkauan bahasa-bahas yang dapat dikenali.
    - FSM → bahasa-bahasa reguler
    - PDA (FSM dengan *stack*) → bahasa-bahasa CF
    - Mesin Turing (FSM dengan *tape*) → ???
- Mampu mendeskripsikan segala komputasi.
  - Setingkat komputer tetapi tidak seterbatas FSM/PDA
- Sederhana, agar penjelasan formal dapat dilakukan.
  - Sesederhana FSM/PDA, tapi tidak seperti sekompleks komputer

#### Manfaat dan Masalah Stack

- Adanya stack meningkatkan secara signifikan kemampuan suatu FSM, dari hanya mengenali Bahasa Reguler ke bahasa Context Free.
  - Namun, mekanisme LIFO pada stack masih membatasi kemampuan komputasinya.
- Perlu struktur yang menggantikan stack sehingga
  - memungkinkan mengakses isi storage tersebut secara lebih fleksibel.
  - memungkinkan akses suatu data dalam storage tanpa mengganggu data pada posisi lainnya.

#### Definisi Intuitif: Turing Machines

- Bayangkan suatu FSM yang dilengkapi storage berbentuk tape
  - **Tape** berbentuk **linear**, setiap posisi, atau **square**, terurut dari kiri ke kanan,
  - Setiap posisi dapat menyimpan satu simbol tape atau kosong (□) atau blank,
  - **Kapasitas** (panjang tape) tak berhingga (tidak berujung baik di kiri maupun di kanan).
- **Read/write** dilakukan melalui sebuah **head** 
  - Head bergerak secara sikuensial dari satu posisi ke posisi berikutnya (arah R)/sebelumnya (arah L).
  - Dalam kuliah ditambahkan gerakan S, yaitu tetap berada di tempat (agar sesuai dengan simulator JFlap).

# Mekanisme Komputasi

- Dengan adanya tape, input string bisa diasumsikan sudah langsung ditaruh di dalam tape, sehingga mesin segera bekerja pada tape.
- Di konfigurasi awal dibuat konvensi: head berada di posisi kosong tepat sebelum simbol terkiri string input pada tape.
- Komputasi dilakukan menurut current state, current data tape (pada head), untuk bertransisi ke next-state, meng-update isi tape (pada head), arah pemindahan head.
- Status akhir saat mencapai halting state atau crash (tidak ada transisi yang bisa dilakukan lagi).

#### Definisi Formal: Turing Machines

- Suatu Turing Machine M adalah 6-tuple  $(K, \Sigma, \Gamma, \delta, s, H)$ , dimana:
  - $\checkmark$  K: himpunan terbatas **status**.
  - $\checkmark$   $\Sigma$ : alfabet input yang tidak berisi  $\Box$
  - $\checkmark$  Γ: **alfabet tape**, termasuk  $\Sigma$  dan  $\square$
  - ✓ s: status mulai
  - $\checkmark$  *H*: himpunan **status halting**,  $H \subseteq K$
  - ✓  $\delta$ : **fungsi transisi**, yang memetakan:  $(K H) \times \Gamma \rightarrow K \times \Gamma \times \{R, L, S\}$
- Note: definisi TM deterministik

# Fungsi Transisi δ

$$\delta: (K-H) \times \Gamma \rightarrow K \times \Gamma \times \{R, L, S\}$$
Non-halting Tape- Next Tape- Head states symbol states symbol movement

• Suatu transisi  $((q_i, a), (q_i, b, D)) \in \delta$  menyatakan



- dari current state  $q_i$  bertransisi ke next state  $q_j$ ,
- saat head membaca a pada posisi head, mengubah isi tape (pada posis head) menjadi b,
- **bergerak ke arah** *D*, yaitu satu posisi ke kiri (L) atau ke kanan (R) atau tetap (S).

# Pengertian "simbol "

- Setiap posisi tape "berisi satu simbol tape"  $x \in \Gamma (x \neq \Box)$ , atau "kosong".
  - Jika disebut kosong, maka kenyataan yang sebenarnya, posisi tape tersebut berisi simbol "□" (blank).
  - Jika disebutkan tape hanya berisi string α, maka kenyataan yang sebenarnya, yang lainnya berisi "□".
- Active tape: isi tape dari non-blank terkiri hingga nonblank terkanan, di tambah beberapa blank di luar itu yang terkait beroperasinya mesin tsb.
  - Selama komputasi, bagian tape yang kosong yang lain tidak perlu diperhatikan.

# Contoh (Deskripsi Masalah)

- TM M yang dapat memproses input string dari  $\{a^ib^j: 0 \le j \le i\}$  dengan menambahkan sejumlah b di belakang string agar menjadi  $a^ib^i$ .
- Saat mulai, isi tape sebagai berikut:



• Saat halt isi tape menjadi:



- Tanda panah menunjukkan posisi head
- Untuk contoh ini string input <u>diasumsikan selalu benar</u>  $\{a^ib^j: 0 \le j \le i\}$

# Contoh (Operasi pada M)

- Pindahkan head ke kanan satu posisi, jika simbol di bawah head adalah □, maka halt
- Dalam loop:
  - Tandai (sebenarnya ganti) setiap a dengan \$.
  - Scan ke kanan menemukan b atau
    - Jika b, tandai (sebenarnya ganti) dengan #, kemudian siap balik ke kiri.
    - Jika □, berarti b habis, tetapi masih ada a tersisa, maka tuliskan # dan siap balik ke kiri.
    - Balik ke kiri untuk menemukan a atau □,
      - jika a kembali ke awal loop,
      - jika □, semua a sudah ditangani, maka halt.
- Lakukan pass terakhir untuk mengganti \$ ke a, dan # ke b.

#### Contoh (Mesin *M*)

•  $M = (\{1,2,3,4,5,6\}, \{a,b\}, \{a,b, \square, \$, \#\}, \delta, 1, \{6\}),$  dengan  $\delta = \{$   $((1, \square), (2, \square, \rightarrow)), ((1, a), (2, q, \rightarrow)), ((1, b), (2, q, \rightarrow)),$   $((1, \$), (2, \$, \rightarrow)), ((1, \#), (2, \#, \rightarrow)), ((2, \square), (6, \$, \rightarrow)),$   $((2, a), (3, \$, \rightarrow)), ((2, b), (3, \$, \rightarrow)), ((2, \$), (3, \$, \rightarrow)),$   $((2, \#), (3, \$, \rightarrow)), ((3, \square), (4, \#, \leftarrow)), ((3, a), (3, a, \rightarrow)),$   $((3, b), (4, \#, \leftarrow)), ((3, \$), (3, \$, \rightarrow)), ((4, \#), (5, \square, \rightarrow)), ((4, a), (3, \$, \rightarrow)), ((4, \$), (4, \$, \leftarrow)),$   $((4, \#), (4, \#, \rightarrow)), ((5, \square), (6, \square, \rightarrow)), ((4, a), (3, \$, \rightarrow)),$   $((5, \$), (5, a, \leftarrow)), ((5, \#), (5, b, \rightarrow))$ 

• Note: 6 merupakan halting state maka transisi untuk 6 tidak perlu didefinisikan.

# Contoh (Diagram mesin M)



# Konfigurasi

- Setiap saat komputasi **konfigurasi** mesin dinyatakan sebagai  $(q, \alpha \underline{x}\beta)$ .
  - Current state q.
  - Isi *active tape* string  $\alpha \underline{x}\beta$ :
    - $\underline{x} \rightarrow$  simbol tape pada posisi *head*.
    - $\alpha \rightarrow$  string isi tape di kiri (*prefix*) posisi *head*.
    - $\beta \rightarrow$  string isi tape di kanan (*suffix*) posisi *head*.
- **Konfigurasi awal**:  $(s, \underline{\square}\gamma)$ , start state s, dan head berada pada kotak kosong tepat disamping kiri string.
- Halting configuration: jika q merupakan status halting.

# Yields dan Komputasi

- **Yield in one step**: untuk mesin TM M, relasi antara konfigurasi  $C_1$  dan  $C_2$  dimana  $C_2$  dicapai dari  $C_1$  setelah satu kali transisi, ditulis  $C_1 \vdash_M C_2$ .
- **Yields**: untuk mesin TM M, reflexive, transitive closure dari  $\vdash_M$ , ditulis  $\vdash^*_M$
- **Path**: dari mesin TM M, adalah suatu sikuens  $C_0, C_1, C_2, \ldots$  dengan  $C_0$  adalah **konfigurasi awal**, apabila terjadi  $C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M \ldots$
- **Komputasi**: dari mesin TM M, adalah suatu path  $C_0$ ,  $C_1$ , ...,  $C_n$ , untuk  $n \ge 0$ , dengan Cn adalah **halting** configuration.
  - Disebut komputasi halt dalam n langkah,  $C_1 \vdash_M^n C_n$

#### Contoh

- Untuk contoh menambahkan b sebelumnya, jika input string aaab, TM ybs menghasilkan komputasi:
- $(1, \square aaab \square \square) \vdash (2, \square \underline{a}aab \square \square) \vdash (3, \square \underline{a}\underline{a}\underline{b}\square \square)$  $\vdash$  (3,  $\Box$ \$aab $\Box$ D)  $\vdash$  (3,  $\Box$ \$aab $\Box$ D)  $\vdash$  (4,  $\Box$ \$aa# $\Box$ D)  $\vdash$  (3,  $\Box$ \$a\$# $\Box$  $\Box$ )  $\vdash$  (3,  $\Box$ \$a\$# $\underline{\Box}$  $\Box$ )  $\vdash$  (4,  $\Box$ \$a\$## $\Box$ )  $\vdash$  (4,  $\Box$ \$a\$## $\Box$ )  $\vdash$  (4,  $\Box$ \$a\$## $\Box$ )  $\vdash$  (3,  $\Box$ \$\$\$## $\Box$ )  $\vdash$  (4,  $\Box$ \$\$\$###)  $\vdash$  (4,  $\Box$ \$\$\$###)  $\vdash$  (4,  $\Box$ \$\$\$###)  $\vdash$  (4,  $\Box$ \$\$\$###)  $\vdash$  (5,  $\Box$ \$\$\$###)  $\vdash$  (5,  $\Box$ a\$\$###)  $\vdash$  (5,  $\Box$ aaabb#)  $\vdash$  (6,  $\Box$ aaabbb $\Box$ )

# Fungsi Mesin Turing

- Reconizer: untuk menerima atau menolak.
- Sebagai pengkomputasi fungsi.
  - Mesin harus selalu halt karena output pada tape akan digunakan oleh mesin turing lain.
- Sebagai recognizer suatu bahasa.
  - Mesin harus halt untuk menerima string input dan crash untuk menolak string input.
  - Masin harus selalu halt, dengan halt-yes atau halt-no, bila output yes/no ini akan dilanjutkan oleh mesin turing lain.

# Contoh: Recognizer WcW

- Recognizing WcW =  $\{wcw : w \in \{a,b\}^*\}$ , accepting dengan halt, rejecting dengan crash.
- Ide algoritma: dalam iterasi
  - Dalam pencabangan, membaca suatu simbol di ruas kiri, lalu memeriksa di ruas kanan juga harus simbol yang sama.
  - Ruas kanan diketahui setelah melalui c saat scanning
  - Simbol yang sudah diperiksa diubah ke simbol lain agar tidak diperiksa dua kali
    - a menjadi A, b menjadi B
    - perpindahan head ke kiri sampai ketemu A atau B.
  - Iterasi berakhir jika terjadi mismatching atau seluruh simbol string sudah diperiksa (berubah menjadi simbol lain)
- Kasus yang perlu diperhatikan, jika panjang kedua ruas berbeda.

# Contoh: Recognizer WcW



# Contoh: Replikator String w

- input w dan dan output ww,  $w \in \{a,b\}^*$ .
- Konfigurasi awal  $(1,\underline{\square}w)$  dan konfigurasi halt  $(h,\underline{\square}ww)$ .
- **Ide algoritma**: dalam iterasi
  - Jika c adalah a atau b, baca dan tandai tandai
    - a menjadi A, atau b menjadi B
  - lalu ke kanan mencari blank menuliskan symbol c',
    - Jika c=a maka c'=X
    - Jika c=b maka c'=Y
  - o lalu ke kiri hinga ketemu symbol A atau B, ke kanan satu posisi
  - Jika sudah tidak ada lagi a atau b, ke kanan mencari blank
  - Lalu mundur ke kiri dalam iterasi ubah
    - setiap A menjadi a, B menjadi b, X, menjadi a, Y menjadi b,
  - hingga mencapai blank, lalu halt.

# Contoh: Replikator String w



#### Halting, Crash atau Forever Loop

- Mesin **berhenti** jika:
  - Mencapai status halt (status khusus untuk menyatakan mesin berhenti).
  - Terpaksa berhenti (crash) karena transisi untuk konfigurasi saat ini (status dan isi tape pada head) tidak terdefinisi.
- Mesin bisa **tidak pernah berhenti** (karena *forever-loop*)
  - Tidak dapat mencapai halt maupun crash.
  - Karena **kesalahan logika** dalam pendefinisian transisi atau karena *nature of its related problem* sendiri (tidak ada mesin ekivalen yang bisa halt/crash).