Similar matrices

The discussion on similar matrices covers non-symmetric or symmetric matrices.

 A_{nxn} and B_{nxn} are similar matrices if for some matrix M:

$$B = M^{-1}AM$$

Example: $S^{-1}AS = \Lambda$ so A is similar to Λ because the relation $S^{-1}AS = \Lambda$ holds. So, I can find B (a family of matrices) which are similar to A if $B = M^{-1}AM$. This means that Λ is a special member of that family (the best one). Because if $B = M^{-1}AM$ then I still can write $A = MBM^{-1}$ which looks exactly as the $S\Lambda S^{-1}$ diagonalization of the matrix A.

In other words, if B is Λ then M is S (the eigenvectors matrix).

Example:
$$A = 2$$
 1
1 2
we can find $\Lambda = 3$ 0
0 1

A and Λ are similar.

Also,
$$\begin{bmatrix}
1 & -4 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 4 \\
0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & -4 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 9 \\
1 & 6
\end{bmatrix}
=
\begin{bmatrix}
-2 & -15 \\
1 & 6
\end{bmatrix}$$

$$M^{-1} \qquad A \qquad M$$

$$\lambda = 3, 1$$

So, there is something that connects all matrices with $\lambda = 3$, 1. Similar matrices have same eigenvalues but possibly different eigenvectors. How can we find the connection between the eigenvectors of A and the eigenvectors of B?

A x =
$$\lambda x$$

A I x = λx
A MM⁻¹x = λx
M⁻¹AMM⁻¹x = $\lambda M^{-1}x$
(M⁻¹AM)M⁻¹x = $\lambda M^{-1}x$
B M⁻¹x = $\lambda M^{-1}x$
B vector = λ vector

vector is obviously represents the eigenvectors of B. Therefore, If B and A are similar matrices (i.e. have the same eigenvalues) then eigenvectors of $B = M^{-1}$ *(eigenvectors of A).

That is why Λ is a special member in a family of similar matrices – because its eigenvectors matrix is I = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Example: is the matrix
$$B_1 = \begin{bmatrix} 3 & 7 \\ 0 & 1 \end{bmatrix}$$
 similar to the matrix A used above? What about the matrix $B_2 = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix}$?

All we have to do is to find out the eigenvalues of B_1 and B_2 .

Both A and B have $\lambda_1 = \lambda_2 = 4$ but A is not diagonalizable, then we can't say that A and B are similar matrices. Therefore, B is alone in its own family (B is similar to itself. In other words, B belongs to a small family). If A was diagonalizable then it would have been in the same family as B.

Singular value decomposition (Motivation)

We have seen what seemed to be defects in matrices.

- **1.** When an nxn matrix, A, doesn't have a full rank (i.e. has free columns which also means: $1 \le \dim (\text{null}(A)) \le n$).
- **2.** When a matrix is not diagonalizable in the form SAS^{-1} .

In fact the second defect is more problematic because inability to diagonalize a matrix will devote the matrix to very poor computational properties. While rank deficiency won't. Remember that the two defects stated above are independent. Meaning, you may be able to diagonalize a rank deficient matrix (think of a projection matrix). On the other hand, you may not be able to diagonalize a full rank matrix (think of this matrix $\begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$).

It is therefore crucial for efficient computation to be able to diagonalize any matrix. Diagonalization in the form $S\Lambda S^{-1}$ is conditioned (A must be square, and must have n independent eigenvectors). Singular value decomposition solves this limitations; we can diagonalize any matrix using SVD.

0	
1	We would like to diagonalize any matrix
2	A = U 5 VT 1 Taiag. Torthanormal.
3	1 Liag. Orthonormal.
4	orthonormal
5	Let's remember the picture of linear transformation
6	for Amen: NOW(A) COR(A)
7	spring rank - rank r
8	De la
9	n Alle good
10	L basis Pm
1	
2	
3	N(A) $N(AT)$
4	rank n-r
5	
6	if V, is in rowspace (A) then AV, = U,
7	where U, is going to be in Col(A)
8	
9	Now if we choose V, V2 as I basis in
20	row(A), then how can we find a way to take
1	them to U, Ue (L basis in col (A)).
2	A V, = 6, U,
3	A V2 = 62 U2
4	A[V, V2 Vr] = [U, 42 47] []
5	702.67
6	orthogonal orthogonal
7	Dario for bario for
8	row(A) Col(A)
	usu.

0	
1	Let's Study the Case when Amxn and rank(A)=r=m
2	TOW(A) <02 (A)
3	
4	pn \ R"
5	
6	N(AT)
7	
0	N(A)
9	A[V ··· Vr Vr+1 ··· Vn] = [U ··· Ur] O · En
100	X II To IT
10	MKR MXM MXN NXN
2	Y V => basis row(A) 4 up => basis col(A)
	V V . basis A)/A)
3	Vr+1Vn => basis N(A) 5, 5, are
Y	Singular Values.
5	leto study the case when A has rank = = m = n
6	(A is invortible).
7	(colin)
8	Dr.
9	
20	MIA) MIAT) (NO NULL Spaces)
1	A[V, V-] = [U, 4] []
2	
3	We can see that the SVD diagonalization
4	works for any matrix A. SVD factorizes
5	A to two 1 mattices (i.e. USV) and a diagonal
6	natrix (i.e. 2).
7	

Now, find eigenvectors of ATA: V= [-1/2 /2] (note :+'s to be [1/2] [18 0] [-1/2 1/2]
[1/2] [1/2] [1/2] > Find eigenvectors of AAT complex eigenvalues Complex eigenectors. Using SVI 8 trice and a diagonal matrix orthonormal ma 9 20 Example. A= [43] find SVD of 2 3 - basis of will come from basis of row (A) T 125 07 eig(ATA) = 0, 125 = (ZTZ)= 8