```
In [1]: import pandas as pd
    pd.plotting.register_matplotlib_converters()
    import numpy as np
    import seaborn as sns
    import matplotlib.pylab as plt
    %matplotlib inline

In [5]: df1 = pd.read_csv('AirQualityodisha.csv')
    df2 = pd.read_csv('Heart2.csv')
    df3 = pd.read_csv('forestfires.csv')
In [6]: df1
```

Out[6]:

	Stn Sampling Code Date		State City Monitoring Agency				Type of Location	SO2	NO2	RSPM/PM10				
	0	68	02-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	11	24	143	1		
	1	68	06-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	23	133			
	2	68	09-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	8	25	125	1		
	3	68	13-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	25	137	1		
	4	68	16-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	9	26	186	1		
	•••													
	2387	819	15-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	92			
	2388	819	17-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	99			
	2389	819	22-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	90			
	2390	819	26-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	97			
	2391	819	29-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution	Industrial Area	2	10	98			

> **Location of** Stn Sampling Type of City Monitoring SO2 NO2 RSPM/PM10 State **Agency** Code Date Location Station Control Board

2292 rowe v 11 columne

df2

Out[7]:

•	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slo
	0 1	63	1	typical	145	233	1	2	150	0	2.3	
	1 2	67	1	asymptomatic	160	286	0	2	108	1	1.5	
	2 3	67	1	asymptomatic	120	229	0	2	129	1	2.6	
	3 4	37	1	nonanginal	130	250	0	0	187	0	3.5	
	4 5	41	0	nontypical	130	204	0	2	172	0	1.4	
												
29	8 299	45	1	typical	110	264	0	0	132	0	1.2	
29	9 300	68	1	asymptomatic	144	193	1	0	141	0	3.4	
30	0 301	57	1	asymptomatic	130	131	0	0	115	1	1.2	
30	1 302	57	0	nontypical	130	236	0	2	174	0	0.0	
30	2 303	38	1	nonanginal	138	175	0	0	173	0	0.0	

303 rows × 15 columns

In [8]: df3

Out

[8]:		X	Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
	0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00
	1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00
	2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00
	3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00
	4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00
	•••													
	512	4	3	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44
	513	2	4	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29
	514	7	4	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16
	515	1	4	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00
	516	6	3	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00

517 rows × 13 columns

In [10]:	df1.shape
Out[10]:	(2392, 11)
In [11]:	df2.shape
Out[11]:	(303, 15)
In [12]:	df3.shape
Out[12]:	(517, 13)

---LINEPLOT----

In [13]: df1.head()

Out[13]:

	Stn Code	Sampling Date	State	City	Location of Monitoring Station	Agency	Type of Location	SO2	NO2	RSPM/PM10	PM 2.5
0	68	02-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	11	24	143	102.C
1	68	06-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	23	133	96.0
2	68	09-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	8	25	125	116.C
3	68	13-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	25	137	107.C
4	68	16-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	9	26	186	118.C

In [14]: sns.lineplot(data=df1)

Out[14]: <AxesSubplot:>

In [15]: df2.head()

Out[15]:		Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope
	0	1	63	1	typical	145	233	1	2	150	0	2.3	3
	1 2 67 1		asymptomatic	160	286	0	2	108	1	1.5	2		
	2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2
	3	3 4 37 1		nonanginal	130	250	0	0	187	0	3.5	3	
	4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1

In [16]: sns.lineplot(data=df2)

Out[16]: <AxesSubplot:>

4

In [19]: df3.head()

Out[19]:		X	Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
	0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.0
	1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.0
	2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.0
	3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.0
	4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.0

In [20]: sns.lineplot(data=df3)

Out[20]: <AxesSubplot:>

--- BARPLOT----

```
In [23]: x = df1['N02']
y = df1['S02']
sns.barplot(x=df1['N02'], y=df1['S02'])
```

Out[23]: <AxesSubplot:xlabel='NO2', ylabel='SO2'>


```
In [25]: x = df2['Age']
y = df2['Sex']
sns.barplot(x=df2['Age'], y=df2['Sex'])
```

Out[25]: <AxesSubplot:xlabel='Age', ylabel='Sex'>


```
In [26]: x = df3['month']
y = df3['temp']
sns.barplot(x=df3['month'], y=df3['temp'])
```

Out[26]: <AxesSubplot:xlabel='month', ylabel='temp'>

--- SCATTERPLOT----

```
In [28]: sns.scatterplot(x=df1['N02'],y=df1['S02'])
Out[28]: <AxesSubplot:xlabel='N02', ylabel='S02'>
```


In [30]: sns.scatterplot(x=df2['Age'],y=df2['Sex'])

Out[30]: <AxesSubplot:xlabel='Age', ylabel='Sex'>

In [34]: sns.scatterplot(x=df3['month'],y=df3['temp'])

Out[34]: <AxesSubplot:xlabel='month', ylabel='temp'>

-----BARPLOT-----

```
plt.hist(df1['RSPM/PM10'])
In [35]:
         (array([8.500e+02, 1.265e+03, 2.460e+02, 2.000e+01, 3.000e+00, 4.000e+00,
Out[35]:
                  1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00]),
          array([ 15. , 72.5, 130. , 187.5, 245. , 302.5, 360. , 417.5, 475. ,
                  532.5, 590. ]),
          <BarContainer object of 10 artists>)
          1200
          1000
           800
           600
           400
           200
            0
                                             400
                      100
                             200
                                     300
                                                    500
                                                            600
         plt.hist(df2['MaxHR'])
In [36]:
         (array([ 1., 6., 11., 26., 35., 53., 78., 62., 26., 5.]),
Out[36]:
          array([ 71. , 84.1, 97.2, 110.3, 123.4, 136.5, 149.6, 162.7, 175.8,
                  188.9, 202. ]),
          <BarContainer object of 10 artists>)
          80
          70
          60
          50
          40
          30
          20
          10
                                     140
                                           160
                 80
                       100
                              120
                                                  180
                                                         200
         plt.hist(df3['temp'])
In [38]:
         (array([ 18., 11., 31., 47., 92., 127., 99., 55., 24., 13.]),
Out[38]:
          array([ 2.2 , 5.31, 8.42, 11.53, 14.64, 17.75, 20.86, 23.97, 27.08,
                  30.19, 33.3]),
          <BarContainer object of 10 artists>)
```


In []: