ML Final Project

B02902015 梁智泓 B02902051 林昀宣 B01902126 劉家銘

I. Fetch Feature From Row Data:

A. What feature do we fetch?

User	ID		Cou	ırse
1. num_of_course	1.	Total_log_num	1.	drop_out 的人數比
	2.	Each_log_num (有九個)		率
	3.	Max_diff_of_log	2.	chapter_count
	4.	所有天的 log 的標準差	3.	sequential_count
	5.	有 login 天數的 log 標準差	4.	video_count
	6.	log_frequency_迴歸線斜率	5.	course_log_num
	7.	log_frequency_迴歸線的截距		
	8.	每兩次上線間時間差的迴歸線		
		斜率		
	9.	login 的時間差		
	10.	average_log(Total_log / 天數)		

1. User:

一個人修課的數量會影響一個人 dropout rate,因為修越多,就表示 loading 越重,越不容易將每堂課都修好

2. Course:

一堂課的好壞與重輕會影響學生的 dropout rate,好的課 log 的次數會相對多,而一堂課的輕重與否跟這堂課的要做的事有關,除此之外,我們還發現,在 test data 中與 train data 中,總共只有 39 堂課,而且 test data 中並沒有 train data 中沒出現的 course,所以我們還可以加入這堂課的 dropout rate

3. ID:

一個 ID 就是某個 user 在一堂課中修課的代號,能直接影響 dropout rate 就是這個 ID 在這堂課的貢獻,也就是他所做的所有事,包含上線、聽課、寫作業、討論,而我們還利用了一些統計(回歸曲線)的方式,為了要表現出一個 ID 的上線狀況,例如:

B. Which feature is useful?

1. Choosing Method:

然而,這麼多的 feature 中,究竟哪個 feature 最能 predict 出正確的結果,我們利用 RandomForest 來做實驗,我們先將 24 個 feature 依序抽掉,再利用 CrossValidation 算出 Performance,然後依照 Performance 做 sort,再將原本 24 個 feature 照著順序 做 remove 前 N 個,再算出 Performance 看哪個會達到最好

2. Experiment:

我們最後發現,當 remove 掉 server_wiki, id_standard_deviation(login), browser_page_close, server_navigate, video_count, fre_slope 時,整體的Performance會達到最好。

在 Eout 也上得到印證,在 track1 的 public score 上拿到了 95.72%,在 track2 的 public score 上拿到了 87.0116,分别都進步了 0.5%左右。

3. What We Find:

在 data mining 的過程中,我們發現一些看起來沒那麼直觀的 feature(ex: server_access),卻能有意想不到的 Performance,而一些原本一些以為直觀的 feature(ex: Max_diff_of_log),反而沒那麼有效。

C. Comparison with Sample Feature

然而,雖然我們增加了某些 feature,這跟原本助教所給的 sample feature 仍互相有好跟壞,由下表可以清楚得知,但大部分來說,我們的 feature 在大部分的時候還是比 sample feature 表現來的好一點

	Track 1		Track 2		
	Public Private P		Public	Private	
Sample Feature	0.956329	0.956695	0.872709	0.878280	
Our Feature	0.957213	0.958243	0.872304	0.879490	

II. GradientBoost

A. Parameter Choosing

GradientBoost 有 n_estimators, max_depth 兩個參數可以調整,我們透過 n_estimators = [10, 1000], max_depth = [1, 6] 來進行實驗,因為怕會有 overfitting 狀況,所以利用 CrossValidation 5 fold 記錄 Performance,並且使用 Performance 最好的 model。

B. Experiment

N_est\dep	1	2	3	4	5	6
10	0.846527	0.847719	0.850861	0.852769	0.853433	0.854076
100	0.855114	0.857063	0.857094	0.857011	0.857384	0.856233
1000	0.855715	0.857312	0.856078	0.854481	0.851806	0.850831

III. AdaBoost

A. Parameter Choosing

GradientBoost 有 n_estimators 這個參數可以調整,我們透過 n_estimators = [10, 10000], 來進行實驗,因為怕會有 overfitting 狀況,所以利用 CrossValidation 5 fold 記錄 Performance,並且使用 Performance 最好的 model。

B. Experiment

N	10	100	1000	10000
Score	0.845626	0.854699	0.855134	0.852386

IV.RandomForest

A. Parameter Choosing

GradientBoost 有 n_estimators, max_depth 兩個參數可以調整,我們透過 n_estimators = [10, 1000], max_depth = [1, 6] 來進行實驗,因為怕會有 overfitting 狀況,所以利用 CrossValidation 5 fold 記錄 Performance,並且使用 Performance 最好的 model。

B. Experiment

n_est\max_d	1	2	3	4	5	6
10	0.843447	0.849327	0.853879	0.854014	0.854865	0.856233
100	0.849317	0.853371	0.853983	0.854564	0.856462	0.857094
1000	0.849524	0.852946	0.854315	0.855373	0.856555	0.857208

V. SVM

A. Parameter Choosing

我們使用的是 SVM 的 RBG kernel,有 C 及 Gamma 兩個參數可以調整,我們透過 gamma = [0.000001, 0.01], C = [1, 100] 的調整來進行實驗,因為怕有 overfittinh 的狀況,所以利用 CrossValidation 5 fold 記錄 Performance,並且使用 Performance 最好的 model

B. Experiment

C \ gamma	0.00001	0.0001	0.01
1	0.794214	0.854306	0.861306
100	0.853788	0.859646	0.861720

VI. Model Comparison

A. Efficiency: 在實驗的過程中,我們也漸漸發現了四個 model 之間的差異,我們發現RandomForest 及 Adaboost 比其他兩個 model 都來的有效率,可以在很短的時間之內就能讓 Ein 收斂,而最沒效率的就是 GradientBoost 及 SVM,也就是他需要話相當大的運算量才能讓 Ein 降到一定程度,尤其是當 complexity 相當大時,就會讓跑的時間變得非常的長,所以需要做相當多次的實驗時,就比較適合用 RandomForest 及 Adaboost。但相對的 GradientBoost 在 complexity 越大時,Performance 會越好,所以可以在下面的表中看到在大部分的時候,GradientBoost 都會比其他的 model 來的好,或是差不多。

B. Scalability:

我們稍微做了一些實驗,我們使用不同大小的 train_data 進行 training,再透過 CrossValidation 進行 test,透過這樣的實驗可以輕易的看出 model 的 Scalability。

	1/5	2/5	3/5	4/5	1
Adaboost	0.864591	0.867754	0.868459	0.869351	0.869953
Gradient	0.866458	0.868117	0.868418	0.868843	0.868884
RF	0.865576	0.865825	0.865888	0.866168	0.857094

可以看到在 Scalability 上 AdaBoost < GradientForest < RandomForest 也就是說,RandomForest 可以用相對少數的資料量就能達到一定程度的好,而 AdaBoost 則需要較為多的 Data 才能表現得較好。

C. Interpretability:

在進行 feature selection 時,我們有利用了各個 model 的對各個 feature 的 importance 進行 refine,然而我們也發現了,SVM 在每個 feature 的詮釋上,也就是透過 support vector,會比其他的 model 來得好,而最差的則是 RandomForest,因為他會不斷的做 Random Selection,這也讓 feature 本身在 random 的過程中變得難以預測其重要性。

VII. Blending

我們利用 Uniform Blending 的方式來將四個 model 的結果做 voting 或 mean,希望能將三個 model 的 overfitting 跟 underfitting 互相補齊,找到一個最為適中的 prediction,但事實上, Blending 的結果卻比 GradientBoost 的來的不好,這很可能是因為被較為不好的 model 所影響的關係,由下表可以看到結果

此表都是使用 private score 來做比較,因為 private 比較接近 CrossValidation 的結果

VIII. What Method We Suggest

首先,我們用個以上實驗的結果,所選出的最好的 model 及 feature 去做測試,下表是整理

完後的測試結果

	Track1		Track2		
	Sample Feature	Our Feature	Sample Feature	Our Feature	
AdaBoost	0.953229	0.954319	0.874958	0.878877	
GradientBoost	0.956316	0.952182	0.878909	0.879854	
RandomForest	0.955648	0.957065	0.872503	0.876218	
SVM	x	x	0.856103	0.861720	
Blending	0.956362	0.954076	0.876519	0.879086	

綜合以上所有的因素得考慮之下,我們認為

track1 比較嫡合使用 RandomForest

優點:因為透過不斷的 Random,讓 Data 可以變得比原本更加隨機,更能 predict 出較為適中的 probability,類似做了一個大型的 Blending,使 model 相對 robust,在預測 Probability 上會有較好的表現,而且 RandomForest 在 efficiency 及 scalability 上相較於其他 model 都有較好的表現。

缺點:但在要預測確切值時,就會相對差,這可以在 track2 中清楚的看到。

track2 比較適合使用 GradientBoost

優點:因為 track2 比較需要的是 Label Prediction,也就是比較需要對資料做 fitting,對於模糊地帶的確認則是關鍵,而 GradientBoost 可以讓模糊的地帶,透過 Gradient boost,讓其 Ein 不斷下降,最後趨近到 0,所以在某種程度上來說,是一種透過接近 Overfitting 的方式,使其能在 track2 能有較好的表現

缺點:容易 overfitting,而這也在 track1 上得到了印證, Performance 是最後一名。

IX. Conclusion

我們發現,對同一組 feature,不管用何種 model 去做 train,其實不會差很多,甚至到最後幾乎都是看 random 的好或壞,誤差大概都在 1%以內,真正造成%大幅前進的主要是因為feature 的差異,好的 feature 就可以讓結果差很多,不過可惜的是我們在一開始並沒有特別在意這個差異,直到後來才漸漸開始發現 feature 的重要,也漸漸意識到每個 feature 的得來不易,從 Human Learning 出可能的 feature,再從 data 中抽取出來,最後還要做 feature selection,並不像是平常作業那樣是給好的 feature,只需要 implement model 就好。雖然我們最後的 Performance 並沒有非常高,但我們卻在過程中,漸漸理解到 Machine Learning 在真實的應用層面會遇到的問題,也在過程中漸漸地進步,track1 從89%到 95.82%,track2 從81%到 87.98%,可以真實地感覺到我們的確在一點點的進步,雖然最後還是沒有取出關鍵的 feature,做了相當多的嘗試,而這個過程讓我們很享受。