# 6.867 Machine Learning Fall 2017

## Lecture 21. Matrix Estimation

#### **Announcements**

- Trust Thanks Giving Break Was Good!
- Quiz 2
  - Thursday, November 30 7pm-9pm
    - No Lecture on that day
  - Make up:
    - TODAY: Tuesday, November 28, 4pm-6pm
  - Quiz Review:
    - Posted online with its solutions
    - Tomorrow Wednesday, November 29 during TA OH
- Exercise II will be posted soon: covers PCA and today's lecture

#### **Outline**

- Matrix Estimation
  - An Example Application
  - Formulation
    - Singular Value Thresholding
    - Collaborative Filtering
  - Probabilistic Latent Variable Model
  - Alternative Least Squares and Taylor's Expansion
- More Applications
- BenchMark Data Sets

## Netflix Challenge circa 2008



Matrix factorization techniques for recommender systems by Koren, Bell and Volinsky Computer 42:8, 2009

# Recommendation system



Rating Matrix A

#### Matrix Estimation

Ground Truth Matrix

$$A = [A_{ij}] \in \mathbb{R}^{m \times n}$$

ullet Observation Matrix  $Y = [Y_{ij}] \in \mathbb{R}^{m imes n}$ 

$$Y_{ij} = \begin{cases} \text{noisy } A_{ij} & \text{if observed} \\ \star & \text{otherwise} \end{cases}$$

ullet Goal: produce estimate  $\hat{A} = [\hat{A}_{ij}]$  so that prediction error is small

$$\frac{1}{mn} \sum_{ij} \left( \hat{A}_{ij} - A_{ij} \right)^2$$

#### Structure in a Matrix

ullet  $A \in \mathbb{R}^{m imes n}$  has singular value decomposition: for  $r = \min\{m,n\}$ 

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

where  $\sigma_i \geq 0$ ,  $u_i \in \mathbb{R}^m$ ,  $v_i \in \mathbb{R}^n$ 

Equivalently:

$$A = U\Sigma V^T$$

where 
$$U \in \mathbb{R}^{m \times r}$$
,  $\Sigma \in \mathbb{R}^{r \times r}$ ,  $V \in \mathbb{R}^{n \times r}$ 

That is

$$A = U\tilde{V}^T$$

where 
$$U \in \mathbb{R}^{m \times r}, \tilde{V} \in \mathbb{R}^{n \times r}$$

### Exploiting Structure in a Matrix

A natural estimation algorithm exploiting structure

minimize 
$$\sum_{(i,j)\in\mathcal{O}} \left(Y_{ij} - U_{i\cdot}^T V_{j\cdot}\right)^2$$
 over  $U\in\mathbb{R}^{m imes r}$   $V\in\mathbb{R}^{n imes r}$ 

- ullet In above  $\mathcal{O}\subset [m] imes [n]$  set of entries for which entries are observed
- And number of unknowns is (m+n) r
  - ullet So if  $|\mathcal{O}|$  is small, we can not expect r to be large
- In general, this isn't computationally easy optimization problem

# Singular Value Thresholding

- An extremely simple algorithm
  - Define  $\hat{Y}=[\hat{Y}_{ij}]$  as  $\hat{Y}_{ij}=\begin{cases} Y_{ij} & \text{if } (i,j)\in\mathcal{O}\\ 0 & \text{otherwise} \end{cases}$
  - ullet Compute Singular Value Decomposition of  $\hat{Y}$

$$\hat{Y} = \sum_{i=1}^{T} \hat{\sigma}_i \hat{u}_i \hat{v}_i^T$$

- Estimated matrix  $\hat{A} = \frac{1}{\hat{p}} \sum_{i \in S} \hat{\sigma}_i \hat{u}_i \hat{v}_i^T$
- ullet where  $S=\{j:\sigma_j\geq\mu\},\;\hat{p}=rac{|\mathcal{O}|}{mn}$  for some threshold  $\mu$

# Singular Value Thresholding

- What threshold to choose?
  - ullet Universal threshold:  $\mu=2\sqrt{\max\{m,n\}\hat{p}}$
  - In practice, plot the spectrum and look for knee







#### Collaborative filtering [Goldberg et al 92]



user-user collaborative filtering

#### Collaborative filtering [Goldberg et al 92]



item-item collaborative filtering

#### Collaborative filtering (CF)

extensively utilized in practice

scalable, incremental, robust and interpretable

[Melville et al 02], [Wang et al 06], [Bell-Koren 07], [Koren et al 09]

conceptual relationship to nearest neighbors

mixture distribution model for preferences across users/movies

[Kleinberg-Sandler 04], [Dabeer 13] [Xu et al 13] [Bresler et al 14, 16]

- Collaborative Filtering Algorithm and It's Variations
  - Extensively used in practice
  - Scalable
    - Using "approximate nearest neighbor" data structure
  - Incremental
    - New data can be easily incorporated incrementally
  - Interpretable
    - Watch Godfather because you liked Goodfellas
  - Relationship to nearest-neighbor or Kernel based algorithm

#### Probabilistic Model

Latent Variable Model



#### Probabilistic Model

- Latent Variable Model
  - ullet Latent variable of Row i,  $U_i$  is drawn i.i.d. from distribution  ${\cal U}$
  - ullet Latent variable for column j,  $V_j$  is drawn i.i.d. from distribution  ${\mathcal V}$
  - ullet Ground truth entry  $A_{ij}=f(U_i,V_j)$  for all i, j
    - for some latent function **f**
  - ullet If observed,  $Y_{ij}$  is independent random variable such that

$$\mathbb{E}[Y_{ij}|U_i,V_j] = A_{ij} = f(U_i,V_j)$$

- This is closely related to canonical representation for
  - "Row-Column Exchangeable" random variables [Hoover 79, 82], [Aldous 81, 82, 85]

# Alternative Least Squares (ALS)

- ullet Let the latent function be bilinear  $\ f(U_i,V_j)=U_i^TV_j$
- An EM-like or Alternative Minimization Algorithm for solving

minimize 
$$\sum_{(i,j)\in\mathcal{O}} \left(Y_{ij} - U_{i\cdot}^T V_{j\cdot}\right)^2$$
 over  $U\in\mathbb{R}^{m imes r}$   $V\in\mathbb{R}^{n imes r}$ 

Assuming Vs fixed, solving for Us decomposes per row: for row i

minimize 
$$\sum_{j:(i,j)\in\mathcal{O}} (Y_{ij} - U_{i\cdot}^T V_{j\cdot})^2$$
 over  $U_{i\cdot} \in \mathbb{R}^m$ 

This is classical Regression or Ordinary Least Squares problem!

# Alternative Least Squares (ALS)

- In summary
  - Initialize  $U^0 \in \mathbb{R}^{m \times r}, \ V^0 \in \mathbb{R}^{n \times r}$  appropriately
  - Iteratively:
    - ullet set  $U^{t+1}$  assuming  $V^t$  fixed
      - This is requires solving m different least squares problems
    - ullet set  $V^{t+1}$  assuming  $U^{t+1}$  fixed
      - This requires solving *n* different least squares problems
  - Stop upon "convergence"





For simplicity, assume  $x_1' = \mathbf{0}, \ x_2' = \mathbf{0}$ 

$$f(x_1, x_2) = f(\mathbf{0}, \mathbf{0}) + x_1 \frac{\partial f(\mathbf{0}, \mathbf{0})}{\partial x_1} + x_2 \frac{\partial f(\mathbf{0}, \mathbf{0})}{\partial x_2}$$

$$f(x_1, \mathbf{0}) = f(\mathbf{0}, \mathbf{0}) + x_1 \frac{\partial f(\mathbf{0}, \mathbf{0})}{\partial x_1}$$

$$f(\mathbf{0}, x_2) = f(\mathbf{0}, \mathbf{0}) + x_2 \frac{\partial f(\mathbf{0}, \mathbf{0})}{\partial x_2}$$

$$f(x_1, x_2) = f(x_1, \mathbf{0}) + f(\mathbf{0}, x_2) - f(\mathbf{0}, \mathbf{0})$$

For simplicity, assume  $x_1' = \mathbf{0}, \ x_2' = \mathbf{0}$ 

$$f(x_1, x_2) = f(x_1, \mathbf{0}) + f(\mathbf{0}, x_2) - f(\mathbf{0}, \mathbf{0})$$

$$A_{ij} = A_{i1} + A_{nj} - A_{n1}$$

$$A_{ij} = A_{n1} + (A_{i1} - A_{n1}) + (A_{nj} - A_{n1})$$



$$A_{ij} = A_{n1} + (A_{i1} - A_{n1}) + (A_{nj} - A_{n1})$$

$$A_{ij} = A_{n1} + (A_{i1} - A_{n1}) + (A_{nj} - A_{n1})$$

or

$$f(x_1, x_2) = f(x_1, \mathbf{0}) + f(\mathbf{0}, x_2) - f(\mathbf{0}, \mathbf{0})$$

This assumes that

$$x_1 \approx \mathbf{0}$$
  $x_2 \approx \mathbf{0}$ 

Hard to verify this condition

since we do not observe features

A proxy: use rows and columns that minimize prediction error

error due to row selection

$$\mathbb{E}\left[\mathsf{error}^2 \,|\, x_1, x_1'\right] = \mathsf{Var}_{\mathbf{x}}[f(x_1, \mathbf{x}) - f(x_1', \mathbf{x})]$$

error due to column selection

$$\mathbb{E}\left[\mathsf{error}^2 \,|\, x_2, x_2'\right] = \mathsf{Var}_{\mathbf{x}}[f(\mathbf{x}, x_2) - f(\mathbf{x}, x_2')]$$

#### Predict rating of entry (i,j):

$$\hat{A}_{ij} = A_{kl} + (A_{il} - A_{kl}) + (A_{kj} - A_{kl})$$

where

dist(i, k) and dist(j,l) are small

all necessary entries are revealed

multiple such predictions are combined by

weighing each of them as per Gaussian Kernel using dist

# Taylor's Expansion vs Collaborative Filtering

Predict rating of entry (i,j):

$$\hat{A}_{ij} = A_{kl} + (A_{il} - A_{kl}) + (A_{kj} - A_{kl})$$

user-user CF:

$$\hat{A}_{ij} = A_{kl} + (A_{il} - A_{kl}) + (A_{kj} - A_{kl})$$

item-item CF:

$$\hat{A}_{ij} = A_{kl} + (A_{il} - A_{kl}) + (A_{kj} - A_{kl})$$



Computing similarity requires overlap

Birthday paradox leads to sample complexity  $\tilde{\Omega}(n^{3/2})$ 

Does not work for Sparser setting

+ limited to additive noise model

# Thy Friend is Mine



# Thy Friend is Mine



Use product of ratings along path

## Thy Friend is Mine



$$\mathbb{E}[Y] = U\Sigma V^{T}$$

$$Y \quad \bullet \quad Y^{T} \quad \bullet \quad Y \quad \approx U\Sigma^{3}V^{T}$$

Compare direct neighbors

Compare r boundary neighbors  $\sim \|(u - u) \Sigma^r\|_2^2$ 

$$\sim \|(u_{\mathbb{R}} - u_{\mathbb{R}})\Sigma\|_2^2$$

$$\sim \|(u - u)\Sigma^r\|_2^2$$

## Community detection, Graphon



Adjacency Matrix

# Low-Cost Crowd-Sourcing (Generalized Dawid-Skene Model)



# Censored Demand Prediction (Hidden Markov Process with Censoring)



e.g. what rate umbrellas are being sold?

Censored Demand

#### Discussion: With Sample Data

#### Dataset: MovieLens.

number of movies (m): I 1000+ number of users (n): 30000+ average ratings per user: 3.6 around 3% of matrix is filled



## Discussion: With Sample Data



#### Image Data Set

3-order Tensor: rows x columns x RGB





actual







completion



50% removed



70% removed



90% removed

actual







completion







50% removed

70% removed

90% removed

#### Image Data Set





ours RSE 0.086 0.1091

best-in-lit RSE 0.092 0.110

### Readings

- D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, "Using collaborative filtering to weave an information tapestry," Commun. ACM, 1992
- Linden, G., Smith, B. and York, J. Amazon. Com Recommendations: Item-to Item Collaborative Filtering. IEEE Internet Computing, 2003.
- N. Srebro, N. Alon, and T. S. Jaakkola, "Generalization error bounds for collaborative prediction with low-rank matrices," in NIPS, 2004.
- Koren, Y. and Bell, R.. Advances in Collaborative Filtering. In Recommender Systems Handbook 145-186. Springer US, 2011.
- S. Chatterjee, "Matrix estimation by universal singular value thresholding," The Annals of Statistics, vol. 43, no. 1, pp. 177–214, 2015.
- Lee, C. E., Li, Y., Shah, D. and Song, D. Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering. In NIPS 2016.
- Borgs, C., Chayes, J., Lee, C. E. and Shah, D. Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation. In NIPS 2017.