Projet 3: Concevez une application au service de la santé publique

Date: 09/12/2019

Version 2

Jury: Walid AYADI

09/12/2019

Sommaire

- 1. Idée d'application
- 2. Nettoyage effectué
- 3. Analyse exploratoire
- 4. Faits pertinents pour l'application
- 5. Synthèse

09/12/2019

1. Idée d'application

 Indicateur de nutriscore pour un utilisateur qui n'aurait que quelques informations élémentaires sur le produit (jeu de données réduit)

2. Nettoyage effectué - fonctions

Découpage du processus de nettoyage

- Contrôle des colonnes
- 9 fonctions de nettoyage particulières
- Une fonction générale appliquant toutes les fonctions de nettoyage
- Capture d'exeptions via try/except
- Sauvegarde d'un fichier nettoyé

09/12/2019

2. Nettoyage effectué - détail

Correction des types / format des dates

o Traitement des colonnes tags : mapping

2. Nettoyage effectué - détail

- Pays d'origine
 - France uniquement
 - Suppression nutriscore-UK
- Suppression des informations en doublon
- o Titres des colonnes

```
for column in columns:
   if column[0] == '-':
        column = column[1:]
```

2. Nettoyage effectué - détail

- o Etude uni/multi-variée des outliers
 - Outliers sur 1 dimension (1% extrême)

 Outliers sur plusieurs dimensions (distance de Minkowski)

```
#outliers éloignés par rapport à leurs voisins
numeric_data = dataframe.select_dtypes(['int32', 'float64']).copy().dropna()
kdt = KDTree(numeric_data, leaf_size = 40, metric='minkowski')

dist, ind = kdt.query(numeric_data, k=3, return_distance=True)
numeric_data['3N_distance'] = np.sum(dist, axis=1)
numeric_data = numeric_data[numeric_data['3N_distance'] < numeric_data['3N_distance'].quantile(0.99)]
index_to_drop = numeric_data.index.tolist()

return dataframe.drop(index_to_drop, axis=0)</pre>
```

3 09/12/2019

2. Nettoyage effectué - détail

o Traitement des NaN

- Suppression de colonne au delà d'un seuil préalablement fixé (ajusté ici à 80 % maximum de taux de NaN)
- o Imputation par la méthodes des K plus proches voisins

2. Nettoyage effectué - détail

o Etude uni/multi-variée des outliers - Exemple

Valeurs comprises dans l'intervale [0 g;100 g]

<u>Inconvénient majeur</u>: nombre d'outliers dépendant de la taille du jeu de données <u>Alternative</u>: outliers via distance à la moyenne supérieure à 2*std

10 09/12/2019

2. Nettoyage effectué - détail

o Traitement des NaN

 Imputation par la méthodes des K plus proches voisins

Calcul d'arbre des distances Calcul des distances (Imputation de la moyenne numérique / ou l'élément le plus fréquent (catégorie)

2. Nettoyage effectué – bilan avant/après

- 1 000 000 lignes réduites à 450 000 lignes
- 176 colonnes réduites à 48 colonnes
- 78 % de NaN réduit à 35 %
- Fichier .csv passé de 2 Go à 600 Mo

3. Analyse exploratoire – Connaissance des données :

 Occurence des mots dans les noms des produits

3. Analyse exploratoire – Connaissance des données

• Répartition des nutriscores

4 09/12/2019

3. Analyse exploratoire – Connaissance des données

Additifs

3. Analyse exploratoire – Connaissance des données

Provenance des URL

Métriques des données numériques

	energy_100g	Tat_100g	fat_100g	carbonydrates_100g
count	328361.000000	325771.000000	326860.000000	325555.000000
mean	1153.429024	14.318785	5.412920	26.680424
std	768.761300	16.787356	6.899078	27.335283
min	0.000000	0.000000	0.000000	0.000000
25%	498.000000	1.100000	0.240000	2.200000
50%	1117.000000	8.800000	2.200000	13.710000
75%	1674.000000	23.000000	8.500000	52.000000
max	3766.000000	100.000000	47.200000	97.300000

3. Analyse exploratoire – Analyse univariée: Distributions

16

3. Analyse exploratoire – Analyse univariée: Distributions

3. Analyse exploratoire – Analyse univariée : Exemple

3. Analyse multivariée - corrélations

- additives_n : pas de
 correlation remarquable
- energy_100g: forte corrélation avec:
 - fat_100g
 - saturated-fat_100g
 - carbohydrates_100g
 - nutrition-score-fr_100g
- fat_100g et saturated-fat_100g fortement corrélés
- sugars_100g: forte correlation avec carbohydrates_100g
- sodium_100g correlation très forte avec salt_100g
- nutrition-score-fr_100g : forte corrélation avec:
 - energy_100g
 - saturated_fat_100g

3. Analyse multivariée - corrélations

20

- additives_n: pas de correlation remarquable
- energy_100g: forte corerlation avec:
 - fat_100g
 - saturated-fat_100g
 - carbohydrates_100g
 - nutrition-score-fr_100g
- fat_100g et saturated-fat_100g fortement corrélés
- sugars_100g: forte correlation avec carbohydrates_100g
- sodium_100g correlation très forte avec salt_100g
- **nutrition-score-fr_**100g : forte corrélation avec:
 - energy_100g
 - saturated_fat_100g

3. Analyse multivariée – indépendance des variables

- Test du CHI 2 :
 - Catégorisation des variables discrètes
 - Création de tableaux de contingences

```
packaging tags
                                autre carton conserve plastique verre
ingredients_from_palm_oil_tags
                        E304
                                           6
                                                     1
                                                               38
                                                                       0
                                 101
                                                   2220
                                                            30713 11155
                        autre
                              362811
                                        4310
               huile-de-palme
                                3030
                                         250
                                                    14
                                                             1589
                                                                      25
```

Application du test du KHI2

```
#print('tableau de contingence :\n', pd.crosstab(seriel.array, serie2.array))
tab_contingence = pd.crosstab(seriel.array, serie2.array)
stat_chi2, p, dof, expected_table = chi2_contingency(tab_contingence.values)
print('chi2 : {},\np : {},\ndof : {}\n'.format(stat_chi2, p, dof))
#print('tableau de contingence : \n', tab_contingence)
```

Conclusions

```
test d'indépendance nutriscore / fiber_100g chi2 : 963.2662977794705, p : 2.5328509986476587e-56, dof : 361
```

Variables non indépendantes (HO rejetée) car p = 2.5328509986476587e-56 <= alpha = 0.03

22 09/12/2019

3. Réduction de dimension par Analyse par Composantes Principales

```
scaler = StandardScaler()
data_pca = scaler.fit_transform(data_pca)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
```


Réduction à 7 dimensions possible (initialement 12 features)

4. Faits pertinents pour l'application

3 observations:

- Non indépendance des données
- Corrélation forte de certaines variables avec le nutriscore
- Résultats des premières régressions

4. Faits pertinents pour l'application - suite

25

- Premières régressions
 - Jeu de données réduit à 9 variables
 - Séparation X/y
 - Séparation entrainement / test
 - Standard Scaler ($\mu = 0 / \sigma = 1$)
 - Modèles : linéaire / Ridge / Lasso / Elasticnet
 - Mesure : RMSE
 - Optimisation des paramètres (Ridge / Lasso)
 - R² = 0,63 (Linéaire / Ridge / Lasso / Elasticnet)
 - RMSE ≈ 4,5 (NB : nutriscore compris entre 0 et 26)

Comparaison des nutriscores estimés (y) et réels (x)

4. Faits pertinents pour l'application - suite

 Vérification : comparaison de l'importance des variables avec corrélation de Pearson

NB: La Forte corrélation de fat_100g avec nutrition-score ne se retrouve pas ici

4. Faits pertinents pour l'application - suite

- Application d'un algorithme d'ensemble (forêts aléatoires)
 - $R^2 = 0.94$ sur le jeu de données de test
 - RMSE = 1.85 (progrès d'un facteur 2.5 x)

5. Synthèse

- Forêts aléatoires concluantes sur un jeu de données réduit (NB : Vrai algorithme du nutriscore non linéaire : cohérent)
- Résultats cohérents avec les principes nutritionels (graisses saturées, sucres)
- Possibilité de proposer un algorithme qui donne une indication de nutriscore approché (R² = 0,85) avec 8 variables : faisabilité de l'application

Merci de votre attention