- * Simplex Method:
 - Note: ① If problem is of maximisation type

 Then make All $C_j Z_j \le 0$
 - 2 If probem is of Minimisation type then make All $C_j - Z_j > 0$
- Example (1) solve the following LPP using simplex method

Maximize $Z = 3x_1 + 2x_2$ subject to $3x_1 + 2x_2 \le 18$ $x_1 \le 4$ $x_2 \le 6$ $x_1, x_2 \ge 0$

solution: first we convert given LPP into standard

we introduce the slack variables si, se, so

Maximize $Z = 3x_1 + 2x_2 + os_1 + os_2 + os_3$ Subject to $3x_1 + 2x_2 + s_1 + os_2 + os_3 = 18$ $x_1 + ox_2 + os_1 + s_2 + os_3 = 4$ $ox_1 + x_2 + os_1 + os_2 + s_3 = 6$ All $x_1, x_2, s_1, s_2, s_3 > 0$

Cj	3	2	0	0	0	K)	ren F
CB Basic	e Zi	72	S ₁	Sz	S_2	solution	Ratio
0 5,	3,7	2	1	O	0	18	18 = 6
0 52	1 *	0		.1	0	4	4 = 4 <
6 S ₃	0	j	O	O	, J	6	-
Zj=ZCB	. Bj 0	0	0	0	1 0	,*g	478
C, -Z;	3	2	0	O	0		

Max.

(key column)

here, 1 is pivot element

* first steration: (s2-outgoing, 2,-incoming)

		c;	3	, 2	0	. 0	* o			
	Cg	Basic Vanable	74	- 2/2_	Sı	S ₂	કુ	solutim	Ratio	
R1-3R	- 0	Sı	6	2	· 1	-3	0	6	6 - 3	← Min (Keyrou)
	3	χ,	1	• • •	0	· .	0	4	~	
	0	33	0	, J .	, 6	0	1	6	6 = 6	
		z _j	3	0	O	3	, 0		ge by it	
		cj - Zj	6	2.	0	-3	O .			

Max (key column

: 2 is pirot element

* Second Iteration:

<u>ئ</u> ون ب		2 -		(51 - 0	utgoing	f, 22	T in	comin	9)
		c;	3	2_	0	O	0		
	Cg	Basic Vaniable	24	χ	Sı	S2	53	soluti	, Ratio
	2	χ_2	0		1 2	-3	0	3	() principal of the second
	3	χ,	1	Ō	0	\$ £	Ø	4	
$R_3 - \frac{1}{2}R_1$	0	S3	Ö	0	- 1/2	3/2	1	3	
2 4	18 E. J.	zj	3	2	1	± 1 0 1 ≥	0		
		cj -zj	0	Ō	-1	0	0	. 1	,

here we can observe that $Z_j - Z_j \le 0$

-therefore,

$$24 = 4$$
, $22 = 3$ is solution

and
$$z = 3 \times 1 + 2 \times 2$$

= 3 (4) + 2(3)
= 18

$$x_1 = 4$$
, $x_2 = 3$ and $z_{max} = 18$

is Required solution of LPP

solve the following L.P.P. using simplex method.

Maximise
$$Z = 6x_1 - 2x_2 + 3x_3$$

Subject to
$$2x_1 - x_2 + 2x_3 \le 2$$

$$x_1 + 4x_3 \le 4$$

$$x_1, x_2, x_3 \ge 0$$

solution: first we convert given LPP into standard from

we introduce the two slack variable 5, 52

: Standard form of LPP is

Subject to
$$2x_1 - x_2 + 2x_3 + s_1 + 0s_2 = 2$$

 $x_1 + 0x_2 + 4x_3 + 0s_1 + s_2 = 4$

Initial iteration!

*

T	, —	C;	6	-2	3	0	0			
	CB	Basic vaniable	21	X 2_	x ₃	S ₁	5,	Solution	Ratio	
	0	Sı	2	- 1	2	j.	0	2_	2=1 4	-min
	0	S2	1.	0	4	6	1	4	4 = 4	
		Zj	6	0	Ø	0	Ö			
	-	Cj - Zj	6,	-2	3	0	0			
ki ji		C	Mexi key colu	mn)		<i>?</i> .	2	's pivo:	+ elem	eut

*	firs.	+ Iter	ation	; (s	s ₁ - ou	tgol ng	, %	- incomi	ng)	4.
		c;	6	-2	3,	O	0	,		
	CB	Basic Vaniable	24	72	73	ری	\$2	solution	Ratio	
<u>R1</u>	6	Z ₁	1	-12	1	1/2	O	1	上立こな	
R2-1R1	0	52	•	1/2	2	-12)	3	3 = 6 4	_mi
		zj	6	-3	6	3	0			
		9-3	0	(-3	-3	0			
		Ca _m	((Key colu	umn)	· ·		2 1)	pinot ele	
*	Sec	cond ite	ration		- owlgo	oing,	X ₂	– i n comi	~g)	
*	Sec	с ₎ '	ration		- outgo	oling,	×2	–incomin	ng)	<i>/</i>
*	Sec		6	(52	3		0	-incomin Solution	ng) Ratio	<i>,</i>
** R ₁ -R ₂	CB	cj' Basi c	6 X1	(52	3 7 ₃	ه د	0			<i>y</i>
	С _В	cj' Basie Vaniable	6 X1	(S ₂ -2 -2 -2 0	3 7 ₃	ه د	0	solution		<i>y</i>
R1-R2	С _В	Cj' Basie Vaniable	6 24 1	(S ₂) -2 -2 -2 0	3 23 4	o S ₁	0 5 ₂	Solution 4		,/
R1-R2	С _В	Cj' Basie Vaniable 74 72	6 24 1 0	(S ₂ -2 -2 0 1 -2	3 73 4	0 51 0 -1	0 52 1 2	Solution 4		
R ₁ -R ₂	С _В	Cj' Basie Vaniable 74 72 Zj	6 24 1 0 6	(S ₂ -2 x ₂ 0 1 -2 0	3 23 4 6	0 51 0 -1	0 52 1 2	Solution 4		

: optimal solution is $x_1=4$, $x_2=6$, $x_3=0$, $x_4=12$ Scanned by CamScanner

Z = 624 - 272 + 373

= 12

= 6(4)-2(6)+3(6)