TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN **Bộ môn Ứng dụng tin học**

TOÁN RỜI RẠC

Chương 2: PHƯƠNG PHÁP ĐỂM

GV: Lê Thị Tuyết Nhung

Mục lục I

- Tập hợp
 - Khái niêm
 - Các phép toán trên tập hợp
 - Tập các tập con của một tập hợp
 - Tích Descartes

- Ánh xa
 - Định nghĩa ánh xạ
 - Ánh xạ hợp
 - Ånh và ảnh ngược
 - Các loại ánh xạ
 - Ánh xạ ngược

Khái niệm

Tập hợp là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tượng nào đó mà chúng ta quan tâm.

Nếu x là phần tử của tập hợp A, ta kí hiệu $x\in A$, ngược lại ta ký hiệu $x\notin A$. Tập hợp không có phần tử nào là tập hợp rỗng .

Ví dụ.

- R: Tập hợp các số thực
- Tập hợp các số nguyên
- Tập hợp sinh viên ngành Toán

Để minh họa tập hợp thì chúng ta dùng sơ đồ Ven

Lực lượng của tập hợp

Định nghĩa

Số phần tử của tập hợp A (lực lượng của tập hợp A) được kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ là các tập vô hạn.
- $\bullet \ X = \{1, 2, 3, 4, 5, 6, 7\}$ là tập hữu hạn |X| = 7.

Cách xác định tập hợp

Có 2 cách phổ biến

- 1. Liệt kê tất cả các phần tử của tập hợp
- Đưa ra tính chất đặc trưng

Quan hệ giữa các tập hợp

Quan hệ giữa các tập hợp

a). Tập con. Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B, ký hiệu là $A\subseteq B$, nghĩa là

$$A \subseteq B \Leftrightarrow \forall x, x \in A \to x \in B$$

b). Bằng nhau. Hai tập hợp A và B được gọi là bằng nhau nếu $A\subseteq B$ và $B\subseteq A$, ký hiệu A=B. Ta dùng ký hiệu $A\subset B$ khi A là nhóm con thực sự của B, nghĩa là $A\subseteq B$ và $A\notin B$.

Ví dụ. Cho $A = \{1,2,3\}$, $B = \{1,2,3,4,5\}$ và $C = \{x \in \mathbb{Z} \mid 0 < x < 6\}.$ Khi đó

$$A \subset B$$
 và $B = C$

Phép hợp

Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu $A\cup B$, nghĩa là

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Ví dụ. Cho
$$A = \{1, 3, 6, 9\}$$
 và $B = \{2, 3, 4, 5, 6, 7, 8\}$. Khi đó

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Nhận xét.

$$x \in A \cup B \Leftrightarrow \left[\begin{array}{c} x \in A \\ x \in B \end{array} \right. \qquad x \notin A \cup B \Leftrightarrow \left\{ \begin{array}{c} x \notin A \\ x \notin B \end{array} \right.$$

Tính chất.

Cho A,B,C là các tập hợp. Khi đó

- 1. Tính lũy đẳng $A \cup A = A$
- 2. Tính giao hoán $A \cup B = B \cup A$
- 3. Tính kết hợp $(A \cup B) \cup C = A \cup (B \cup C)$
- 4. Hợp với tập rỗng $A \cup \emptyset = A$

Phép giao

Giao của A và B là tập hợp gồm tất cả các phần tử vừa thuộc A vừa thuộc B , ký hiệu $A\cap B$, nghĩa là

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Ví dụ. Cho $A = \{1, 3, 6, 9\}$ và $B = \{2, 3, 4, 5, 6, 7, 8\}$. Khi đó

$$A \cap B = \{3, 6\}$$

Nhận xét.

$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right. \qquad x \not \in A \cap B \Leftrightarrow \left[\begin{array}{l} x \not \in A \\ x \not \in B \end{array} \right.$$

Tính chất.

Cho A,B,C là các tập hợp. Khi đó

- 1. Tính lũy đẳng $A \cap A = A$
- 2. Tính giao hoán $A \cap B = B \cap A$
- 3. Tính kết hợp $(A \cap B) \cap C = A \cap (B \cap C)$
- 4. Hợp với tập rỗng $A \cap \emptyset = \emptyset$
- 5. Tính phân phối của phép giao và hợp
 - a. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - b. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Phép hiệu

Hiệu của A và B là tập hợp tạo bởi tất cả các phần tử thuộc tập A mà không thuộc tập B, ký hiệu $A\backslash B$, nghĩa là

$$A \backslash B = \{ x \mid x \in A \land x \notin B \}$$

Ví dụ. Cho $A = \{1, 3, 6, 9\}$ và $B = \{2, 3, 4, 5, 6, 7, 8\}$. Khi đó

$$A \backslash B = \{1, 9\}$$

Nhận xét.

$$x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \qquad x \notin A \backslash B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \in B \end{array} \right.$$

Tính chất.

Cho A,B,C là các tập hợp. Khi đó

1.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

2.
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

Tập bù

Nếu A là con của B $(A \subseteq B)$ thì $B \backslash A$ được gọi là tập bù của A trong B. Kí hiệu: \overline{A} hay A^{\complement} .

Ví dụ. Cho
$$A=\{2,3,5\}$$
 và $B=\{2,3,5,7,11,13,17,19,23\}.$ Khi đó
$$\overline{A}=\{7,11,13,17,19,23\}$$

Tính chất.

Cho A,B là hai tập hợp nằm trong vũ trụ U.

1. Luật De Morgan

$$\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B}$$

 $\overline{\underline{U}} = \emptyset$ $\overline{\emptyset} = U$

2. Luât bù

$$\bullet \ A \cap \overline{A} = \emptyset$$

$$\bullet \ A \cup \overline{A} = U$$

$$\overline{\overline{A}} = A$$

3. Phần bù kép

$$A \backslash B = A \cap \overline{B}$$

Chứng minh 2 tập hợp bằng nhau

Ta có thể sử dụng 3 cách sau:

- 1. Chứng minh $A \subseteq B$ và $B \subseteq A$.
- 2. Sử dụng bảng thành viên (giống như bảng chân trị).
- 3. Sử dụng các kết quả đã được chứng minh.

 ${\sf V\'i}$ dụ. Cho tập hợp A,B là con của U. Chứng minh rằng

$$\overline{A\cap B}=\overline{A}\cup\overline{B}$$

Cách 1.

$$x \in \overline{A \cap B} \Leftrightarrow x \notin A \cap B \Leftrightarrow \left[\begin{array}{c} x \notin A \\ x \notin B \end{array} \right. \Leftrightarrow \left[\begin{array}{c} x \in \overline{A} \\ x \in \overline{B} \end{array} \right. \Leftrightarrow x \in \overline{A} \cup \overline{B}.$$

Chiều (\Rightarrow) chứng tỏ $\overline{A\cap B}\subseteq \overline{A}\cup \overline{B}$ và chiều (\Leftarrow) chứng tỏ $\overline{A}\cup \overline{B}\subseteq \overline{A\cap B}$. Vậy

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Cách 2. Sử dụng bảng thành viên. Ta quy định 1 nếu x thuộc tập hợp và 0 nếu x không thuộc tập hợp.

A	B	\overline{A}	\overline{B}	$\overline{A} \cup \overline{B}$	$A \cap B$	$\overline{A \cap B}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	0	1	0

Vậy

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Ví dụ. Cho A, B, C là các tập hợp. Chứng minh rằng

$$(B\backslash C)\backslash (B\backslash A)=(A\cap B)\backslash C.$$

Giải.

$$\begin{split} VT &= (B \backslash C) \backslash (B \backslash A) \\ &= (B \cap \overline{C}) \backslash (B \cap \overline{A}) \qquad \qquad \text{(triệt hiệu)} \\ &= (B \cap \overline{C}) \cap \overline{(B \cap \overline{A})} \qquad \qquad \text{(triệt hiệu)} \\ &= (B \cap \overline{C}) \cap \overline{(B \cup A)} \qquad \qquad \text{(De Morgan)} \\ &= \overline{C} \cap \left(B \cap \overline{B} \cup A\right) \qquad \qquad \text{(giao hoán, kết hợp)} \\ &= \overline{C} \cap \left((B \cap \overline{B}) \cup (B \cap A)\right) \qquad \qquad \text{(phân phối)} \\ &= \overline{C} \cap (\emptyset \cup (B \cap A)) \qquad \qquad \text{(bù)} \\ &= \overline{C} \cap (B \cap A) \qquad \qquad \text{(trung hòa)} \\ &= (B \cap A) \cap \overline{C} \qquad \qquad \text{(giao hoán)} \\ &= (A \cap B) \backslash C = VP \qquad \qquad \text{(triệt hiệu)} \end{split}$$

Tập các tập con của một tập hợp

Định nghĩa

Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

 $\mathsf{V}\mathsf{i}\ \mathsf{d}\mathsf{u}$. Cho $X=\{a,b,c\}$. Khi đó

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

Câu hỏi. Nếu tập X có n phần tử thì tập P(X) có bao nhiều phần tử?

Tích Descartes

Dịnh nghĩa

Tích Descartes của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

Ví dụ. Cho
$$A=\{1,2,3\}$$
 và $B=\{x,y\}$. Khi đó

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Câu hỏi. Nếu |A|=n và |B|=m thì $|A\times B|=?$

Mục lục I

- Tập hợp
 - Khái niệm
 - Các phép toán trên tập hợp
 - Tập các tập con của một tập hợp
 - Tích Descartes

- Ánh xa
 - Định nghĩa ánh xạ
 - Ánh xạ hợp
 - Ånh và ảnh ngược
 - Các loại ánh xạ
 - Ánh xạ ngược

Định nghĩa ánh xạ

Định nghĩa

Một ${\it anh} \ {\it xa} \ f$ từ tập X vào tập Y là một phép liên kết từ X vào Y sao cho mỗi phần tử x của X được liên kết duy nhất với một phần tử y của Y, ký hiệu: y=f(x).

$$\begin{array}{cccc} f & : & X & \longrightarrow & Y \\ & x & \longmapsto & y = f(x) \end{array}$$

Khi đó X được gọi là tập nguồn, Y được gọi là tập đích.

Định nghĩa ánh xạ

Nhận xét. Nếu X,Y là tập hợp các số thì $f:X\to Y$ còn được gọi là hàm số. Như vây, hàm số chính là một trường hợp riêng của ánh xạ.

Dinh nghĩa

Hai ánh xạ f,g được gọi là $\mbox{bằng nhau}$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Nhận xét. Vậy $f \neq g \Leftrightarrow \exists x \in X, \ f(x) \neq g(x)$.

22 / 34

Ánh xạ hợp

Định nghĩa

Cho $f:X \to Y$ và $g:Y \to Z$, lúc đó $g \circ f:X \to Z$ là ánh xạ hợp của g và f, được xác định bởi

$$g \circ f(x) = g(f(x)).$$

Ví dụ. Cho $f,g:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=1-3x và $g(x)=5x^2+3x+2$. Xác định $g\circ f$ và $f\circ g$.

Ánh xạ hợp

Giải. i). Với mọi $x \in \mathbb{R}$, ta có

$$g \circ f = g(f(x)) = g(1 - 3x) = 5(1 - 3x)^{2} + 3(1 - 3x) + 2$$
$$= 5\left(1 - 6x + 9x^{2}\right) + 3 - 9x + 2 = 45x^{2} - 39x + 10$$

Vậy ánh xạ $g\circ f:\mathbb{R}\to\mathbb{R}$ được xác định bởi $g\circ f(x)=45x^2-39x+10.$ ii). Với mọi $x\in\mathbb{R}$, ta có

$$f \circ g = f(g(x)) = f\left(5x^2 + 3x + 2\right) = 1 - 3\left(5x^2 + 3x + 2\right)$$
$$= -15x^2 - 9x - 5$$

Vậy ánh xạ $f\circ g:\mathbb{R}\to\mathbb{R}$ được xác định bởi $f\circ g(x)=-15x^2-9x-5$.

Ví dụ. (tự làm) Cho $f,g:\mathbb{R} \to \mathbb{R}$. Xác định $g\circ f$ và $f\circ g$.

- a). $f(x) = x^3 + 2$ và $g(x) = 2 x^2$.
- b). $f(x) = \sin x \text{ và } g(x) = 1 + 3x x^2$.

24 / 34

Ảnh và ảnh ngược

Dịnh nghĩa

Cho $f: X \to Y$, $A \subseteq X$ và $B \subseteq Y$

a). $\stackrel{\textstyle A}{\it nh}$ của A bởi f là tập $f(A)=\{f(x)\mid x\in A\}\subseteq Y$

b). Ẩnh ngược của B bởi f là tập $f^{-1}(B) = \{x \in A \mid f(x) \in B\} \subseteq X$

Ẩnh và ảnh ngược

Ví dụ. Cho $f:\mathbb{R} \to \mathbb{R}$ xác định bởi $f(x)=x^2+1$. Hãy tìm

- a). f([1,3]); f([-2,-1]); f([-1,3]); f((1,5));
- b). $f^{-1}(1)$; $f^{-1}(2)$; $f^{-1}(-5)$; $f^{-1}([2,5])$?

Ví dụ. (tự làm) Cho $f:\mathbb{R} \to \mathbb{R}$ xác định bởi $f(x)=x^2-2x+3$. Hãy tìm

- a). f([1,5]); f([-5,-2]); f([-3,3]); f((0,5));
- b). $f^{-1}(1)$; $f^{-1}(3)$; $f^{-1}(-5)$; $f^{-1}([3,11])$?

Dịnh nghĩa

Cho ánh xạ $f:X \to Y$. Ta nói f đơn ánh nếu

$$\forall x_1, x_2 \in X, \text{ n\'eu } x_1 \neq x_2 \longrightarrow f(x_1) \neq f(x_2).$$

nghĩa là hai phần tử khác nhau trong X thì có hai ảnh khác nhau trong Y .

Mệnh đề

Cho ánh xạ $f: X \rightarrow Y$. Khi đó

- a). f đơn ánh \Leftrightarrow " $\forall x_1, x_2 \in X$, $f(x_1) = f(x_2) \longrightarrow x_1 = x_2$ ".
- b). f không đơn ánh \Leftrightarrow " $\exists x_1, x_2 \in X, \ x_1 \neq x_2 \ \land \ f(x_1) = f(x_2)$ ".

Ví dụ. Cho ánh xạ $f:\mathbb{R} o \mathbb{R}$ xác định bởi $f(x)=x^3+x$. Xét tính đơn ánh của f.

Ví dụ. Cho ánh xạ $f:\mathbb{R}\to\mathbb{R}$ xác định bởi $f(x)=x^2+2x+3$. Xét tính đơn ánh của f.

Ví dụ. Cho ánh xạ $f:(0,+\infty)\to\mathbb{R}$ xác định bởi $f(x)=x^2+2x+3$. Xét tính đơn ánh của f.

Dịnh nghĩa

Cho ánh xạ $f:X \to Y$. Ta nói f toàn ánh nếu

$$\forall y \in Y, \exists x \in X \text{ sao cho } y = f(x).$$

nghĩa là mọi phần tử thuộc Y đều là ảnh của ít nhất một phần tử thuộc X.

Mệnh đề

Cho ánh xa $f: X \to Y$. Khi đó

- a). f toàn ánh \Leftrightarrow với mọi $y \in Y$, phương trình y = f(x) có nghiệm.
- b). f không toàn ánh \Leftrightarrow tồn tại $y_0 \in Y$ sao cho phương trình $y_0 = f(x)$ vô nghiệm.

29 / 34

Ví dụ. Cho ánh xạ $f:\mathbb{R}\to\mathbb{R}$ xác định bởi $f(x)=x^2-3x+5.$ Hỏi f có toàn ánh không?

Ví dụ. Cho ánh xạ $f:\mathbb{R}\to\mathbb{R}$ xác định bởi $f(x)=x^2+2x+3$. Xét tính toàn ánh của f.

Ví dụ. Cho ánh xạ $f:(0,+\infty)\to\mathbb{R}$ xác định bởi $f(x)=x^2+2x+3$. Xét tính toàn ánh của f.

Dịnh nghĩa

Cho ánh xạ $f:X\to Y$. Ta nói f là một song ánh nếu f vừa đơn ánh vừa toàn ánh. Nghĩa là

$$\forall y \in Y, \exists! \, x \in X : f(x) = y$$

Ví dụ. Cho ánh xạ $f:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=x+5. Hỏi f có song ánh không?

Ví dụ. Cho ánh xạ $f:(0,+\infty)\to\mathbb{R}$ xác định bởi $f(x)=x^2+2x+3.$ Hỏi f có song ánh không?

Tính chất.

Cho ánh xạ $f:X \to Y$ và $g:Y \to Z$. Khi đó

- i). f,g đơn ánh $\Rightarrow g \circ f$ đơn ánh $\Rightarrow f$ đơn ánh;
- ii). f, g toàn ánh $\Rightarrow g \circ f$ toàn ánh $\Rightarrow g$ toàn ánh;
- iii). f, g song ánh $\Rightarrow g \circ f$ song ánh $\Rightarrow f$ đơn ánh, g toàn ánh.

Ánh xạ ngược

Định nghĩa

Cho ánh xạ $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y. Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X. Ta gọi đây là ánh xạ ngược của f và ký hiệu f^{-1} . Như vậy:

$$\begin{array}{ccccc} f^{-1} & : & Y & \longrightarrow & X \\ & & y & \longmapsto & x \text{ v\'oi } f(x) = y. \end{array}$$

Ví dụ. Cho ánh xạ $f:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=x-2. Chứng minh f song ánh và tìm f^{-1} ?

Ánh xạ ngược

Định lý.

Cho ánh xạ $f:X\to Y$. Khi đó, nếu $\forall y\in Y$, phương trình f(x)=y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y)=x_0$.

Ví dụ. Cho ánh xạ $f:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=5x+3. Hỏi f có song ánh không? Nếu có, tìm ảnh ngược của f.