Wed: talk about quiz, Chart Notes 6 Off foday 11:20-12:20, wed 2:30-9 the 9 day on wed sight

05: CONSISTENCY AND INVARIANCE

Larsen & Marx 5.7 Prof Amanda Luby

1 Fisher Information Follow Up

2 Consistent Estimators

When we've considered bias and efficiency, we've mostly assumed that our data has a fixed sample size. This makes sense in the context of historical statistics: data was time-consuming and expensive to gather, and so experiments were very rigorously designed with a lot of consideration for sample sizes. For any given dataset, we're generally working with a fixed sample size. As data has become easier and cheaper to gather, the *asymptotic* behavior of estimators has also become an important consideration. We may find, for example, that an estimator has a desired behavior *in the limit* that it fails to have for any fixed sample size.

Example: Recall the MLE for a $\mathrm{Unif}(0,\theta)$ distribution is $\hat{\theta}=X_{\mathrm{max}}$. In Notes02, we showed that $E(X_{\mathrm{max}})=\frac{n}{n+1}\theta$.

$$N=3 \implies E(X_{max}) = \frac{3}{4}\theta$$

$$V=100$$

$$= \frac{100}{10}\theta$$

$$= \frac{10000}{10,000}\theta$$

$$= \frac{10000}{10,000}\theta$$

$$= \frac{10000}{10,000}\theta$$

$$= \frac{10000}{10,000}\theta$$

$$= \frac{10000}{10,000}\theta$$

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| < \epsilon) = 1$$

Note: To solve certain kinds of problems, it can be helpful to think of this definition in an epsilon/delta way: $\hat{\theta}_n$ is consistent if for all $\epsilon>0$ and $\delta>0$, there exists $n(\epsilon,\delta)$ such that:

$$P(|\hat{\theta}_n - \theta| < t) > 1 - 8$$
 for some $n(\xi, \delta)$
If we set ξ, δ to be constant, can voe find an

n that makes this true?

Example: Is the MLE for a Unif $(0, \theta)$ distribution consistent? $\theta = \chi_{max}$

$$P(|\hat{\theta}_{n}-\theta| < \epsilon) = P(-\epsilon < \hat{\theta}_{n}-\theta < \epsilon)$$

$$= P(|\theta-\epsilon| < \hat{\theta}_{n} < \theta + \epsilon)$$

$$= P(|\theta-\epsilon| < \hat{\theta}_{n} < \theta)$$

Since
$$\frac{\theta-t}{\theta} < 1$$
, $\lim_{n\to\infty} \left[-\left(\frac{\theta-\theta}{\theta}\right)^{k}\right] = ($

NOTE 1: "CDF approach" is uglier if

G is in both limits of integration

Note: Consistent \Rightarrow asymptotically unbraced but the reverse is not always the $\pm Z\lambda; \neg \Theta$ $\pm (\pm Z\lambda) \neg \Theta$

There are a number of useful *inequalities* in probability theory that make proving consistency easier. I'm going to give a quick overview of some of these inequalities here, but they can also be found in Blitzstein & Hwang Ch 10.1. The proofs are extremely short and sweet, and I highly recommend reading this subsection of the book if you didn't cover it in Stat51.

Cauchy-Schwarz inequality

For any random variables X and Y with finite variances,

Example: Let X = X Y = 1 $|E(X \cdot I)| \leq \int E(X^2) E(I)$ $|E(X)| \leq \int E(X^2)$ $|E(X)|^2 \leq |E(X^2)|$

Jensen's Inequality

Let W be a random variable, and let g be a convex function and h be a concave function:

$$E(g(x)) \geq g(E(x))$$

$$E(h(x)) \leq h(E(x))$$

Example:
$$\chi^2$$
 convex $\Rightarrow E(\chi^2) \ge E(\chi)^2$

$$||x|| ||a|| ||x|| = ||a|| |$$

Markov's Inequality

For any random variable W and any constant a.

$$P(|W|>a) \leq \frac{F(|W|)}{a}$$

Chebyshev's inequality

Let W be any random variable with mean μ and variance σ^2 . For any $\epsilon>0$,

$$P(|W-\mu| \ge 6) \le \frac{\sigma^2}{6^2}$$

Chernoff's inequality

Let W be any random variable and constants a and t,

$$P(W \ge A) \ge \frac{E(e^{\pm w})}{e^{\pm a}}$$

Most useful if
we know Mot of W
minimore WRT t
to get a tighter bound

Example: Let $X_1,...,X_n$ be a random sample from a discrete pdf $p_x(k;\mu)$, where $E(X)=\mu$ and $V(X)=\sigma^2<\infty$. Let $\hat{\mu}_n=\frac{1}{n}\sum X_i$. Is $\hat{\mu}$ a consistent estimator for μ ?

By Chebysher's inequality,

Let
$$W = \widehat{N}_{n}$$
 $\Rightarrow E(W) = N$
 $\Rightarrow V(W) = \frac{1}{n^{2}} \sum V(X_{i})$
 $= \frac{1}{n^{2}} \cdot n \cdot \sigma^{2}$
 $= \frac{\sigma^{2}}{N}$

$$P(|\hat{\mu}_{n} - \mu| \ge 6) \le \frac{O^{2}/n}{6^{2}}$$

$$= \frac{O^{-2}}{n \cdot 6^{2}}$$

$$\lim_{n\to\infty} \frac{\sigma^2}{n\epsilon^2} = 0 \implies \hat{\mu}_n = \frac{1}{n} \frac{1}{2}X;$$
is consistent for

in regardless of

distributions of

 X^{-1}

Note: This is the weak law of large Numbers (WILN) and it was first proved by chebysher in 1866

3 Invariant Estimators

We're not going to go as in-depth with this property right now, but we'll come back to it over the next few weeks. Hopefully it is intuitive why it is desirable.

Invariance Property of consistent estimators

Any continuous function of a consistent estimator is consistent.

$$\lim_{N\to\infty} P(|\hat{\theta}_N - \theta| < \epsilon) = 1 \implies \lim_{N\to\infty} P(|g(\hat{\theta}) - g(\hat{\theta})| < \epsilon) = 1$$

Invariance Property of MLE's

Let $W_1,...,W_n$ be a random sample from some distribution $f_w(\theta)$, and let $\hat{\theta}=h(W_1,...,W_n)$ be the maximum likelihood estimator for θ . Suppose we want to find the estimator for $g(\theta)$, where g is any function.