CSCD 327: RELATIONAL DATABASE SYSTEMS

RELATIONAL ALGEBRA

Instructor: Dr. Dan Li

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - <u>Relational Algebra</u>: procedural, tells you <u>how</u> to process a query, very useful for representing execution plans.
 - <u>Relational Calculus</u>: Lets users describe <u>what</u> they want, rather than how to compute it. (Non-procedural, <u>declarative</u>.)

Relational Algebra • Six basic operators • select: σ • project: Π • union: ∪ • set difference: – • Cartesian product: x • rename: ρ • The operators take one or two relations as inputs and produce a new relation as a result.

$\underbrace{ \text{Select Operation} }_{\text{Notation: } \sigma_p(r)}$

- p is called the **selection predicate**
- Defined as:

$$\sigma_p(\mathbf{r}) = \{ t \mid t \in r \text{ and } p(t) \}$$

Where p is a formula in propositional calculus consisting of terms connected by : \land (and), \lor (or), \neg (not) Each term is one of:

<attribute> op <attribute> or <constant> where op is one of: =, \neq , >, \geq . <. \leq

• Example of selection: Find all instructors who work in Physics dept.

5

Select Operation – Example

A	В	C	D
α	а	1	7
α	β	5	7
ß	ß	12	3
β	ß	23	10

 $\bullet \sigma_{A=B^{\wedge}D>5}(r)$

Λ	В	C	D
α	α	1	7
β	β	23	10

Project Operation

• Notation:

$$\prod_{A_1,A_2,\dots,A_k}(r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the dept_name attribute of instructor

Project Operation – Example

٦	•	• •	_
	Α	В	C
	(X	10	1
	α	20	1
	β	30	1
	β	40	2

 \Box $\prod_{A,C} (r)$

A	C		A	C
ίX	1		iX	1
α	1	=	β	1
β	1		β	2
Q.	5			

Union Operation \cdot Notation: $r \cup s$

- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For $r \cup s$ to be valid.
 - 1. r, s must have the same degree.
 - 2. The attribute domains must be compatible
- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

Set Difference Operation

- Notation r s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between **compatible** relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

Cartesian-Product Operation

- Notation r x s
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \emptyset$).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

13

Cartesian-Product Operation – Example

☐ Relations *r, s*:

A B
α 1
β 2

C D E α 10 a β 10 a β 20 b γ 10 b

 \Box rxs:

Composition of Operations • Can build expressions using multiple operations

- Example: $\sigma_{A=C}(r x s)$

• r x s

_	_	_	D	_
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	Ъ
β	2	α	10	a
β	2	β	10	a
β	2	β	20	ь
β	2	γ	10	b

• $\sigma_{A=C}(r x s)$

Α	В	C	D	Ε
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

15

Rename Operation

- Allows us to refer to a relation by more than one name.
- Example:

$$\rho_x(E)$$

returns the expression E under the name X

• If a relational-algebra expression E has degree n, then

$$\rho_{x(A_1,A_2,\dots,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to $A_1, A_2,, A_n$.

Example Query

- Find the largest salary in the university
- Step 1: find instructor salaries that are less than some other instructor salary (i.e. not maximum)
- Step 2: Find the largest salary

17

Example Queries

- Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught
 - □ Solution 1
 - □ Solution 2

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

19

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s = \{t \mid t \in r \text{ and } t \in s\}$
- Assume:
 - r, s have the same arity
 - attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

• Relation r, s:

A	В
α	1
α	2
β	1
	į.

A	В
α	2
β	3

• r ∩ s

21

Natural-Join Operation

- □ Notation: r ⋈ s
- Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in R \cap S, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_{ς} on s
- Example:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

- Result schema = (A, B, C, D, E)
- r⋈ s is defined as:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s))$$

Another Natural Join Example

- Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach
- Natural join is associative
- Natural join is commutative

Division Operation

- Notation: $r \div s$
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where
 - $R = (A_1, ..., A_m, B_1, ..., B_n)$
 - $S = (B_1, ..., B_n)$

The result of $r \div s$ is a relation on schema

$$R - S = (A_1, ..., A_m)$$

A tuple t is in $r \div s$ if and only if both of two conditions hold:

- 1. $t ext{ is in } \prod_{R-S} (r)$
- 2. For every tuple t_s in S, there is a tuple t_r in R satisfying both of the following:
 - 1. $t_r[S] = t_s[S]$
 - 2. $t_r[R-S] = t$

25

Division Operation – Example

☐ Relations *r*, *s*:

Α	В
α	1
α	2
α	3
β	1
γ	1
δ	1
δ	3
δ	4
€	6
ϵ	1
β	2

B 1

2

 \Box $r \div s$:

α

Another Division Example

☐ Relations *r*, *s*:

Α	В	С	D	Ε
α	а	α	а	1
α	а	α γ	а	1
α	а	γ	b	1
β	а	γ	а	1
β	а	γ	b	3
γ	а	γ	а	1
$\begin{bmatrix} \alpha \\ \alpha \\ \alpha \\ \beta \\ \beta \\ \gamma \\ \gamma \end{bmatrix}$	а	γ	b	1
γ	а	β	b	1
r				

D E a 1 b 1 s

 \Box $r \div s$:

Α	В	С
α	а	γ
γ	а	γ

27

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.
- Example: Write $r \cap s$ as

$$temp \leftarrow r - s$$
 $result \leftarrow r - temp$

 The result to the right of the ← is assigned to the relation variable on the left of the ←.