Informe Tarea 2

Ronald Cardona Sebastian Valencia Anderson Grajales
Julian Sanchez

August 8, 2018

1 Series de Taylor para aproximar funciones

Una técnica de aproximación es de poco valor sin alguna idea de su precisión. Para medir la precisión de una aproximación al valor de una función f(x) mediante un polinomio de Taylor $P_n(x)$, puede estar el concepto de residuo, que se define así:

$$f(x) = P_n + R_n(x)$$

Siendo f(x) el valor exacto, $P_n(x)$ el valor aproximado y $R_n(x)$ el resto. El teorema de Taylor es un procedimiento general para estimar el residuo de un polinomio de Taylor. El residuo dado en el teorema se llama fórmula del residuo de Lagrange. Ver figura 1. Los polinomios de Taylor y de Maclaurin pueden usarse para aproximar el valor de una función en un punto específico. Al aplicar el teorema de Taylor no se debe esperar encontrar el valor exacto de z. (Si se pudiera hacer esto no sería necesaria una aproximación) Más bien, se trata de encontrar límite para $f^{(n+1)}(z)$ a partir de los cuales se puede decir que tan grande es el residuo $R_n(x)$.

2 Incidencia del centro en las aproximaciones

2.1 Procedimiento

Se tomo la funcion exponencial como funcion de prueba, para demostrar que entre mas cerca se encuentren el centro y el resultado se necesitaran Si una función f es derivable hasta el orden n+1 en un intervalo I que contiene a c, entonces, para toda x en I, existe z entre x y c tal que

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + R_n(x)$$

donde

$$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}.$$

Figure 1: Teorema de Taylor

menos iteraciones para hallar un valor mas preciso. Como se mostrara a continuacion se tomaron tres centros diferentes a para cada centro se encontro el polinomio de Taylor correspondiente luego de esto se evaluo el resultado con cinco iteraciones de tres valores diferentes cercanos a cada centro y al finalizar se analiza el numero de iteraciones requeridas para encontrar una aproximacion con cierta tolerancia.

Al saber que $\frac{d}{dx}e^x = e^x$ se deduce que el polinomio de Taylor correspondiende a la funcion $f(x) = e^x$ es igual a.

$$f(x) = \sum_{i=0}^{n} \frac{e^{c}(x-c)^{i}}{i!}$$

Donde c equivale al valor del centro, en este ejemplo se toman 3 centros diferentes los cuales son 0, $\frac{\pi}{2}$ y 5 trayendo con sigo las siguientes formulas.

$$f_{c1}(x) = \sum_{i=0}^{n} \frac{e^{0}(x)^{i}}{i!}$$
 (1)

$$f_{c2}(x) = \sum_{i=0}^{n} \frac{e^{\frac{\pi}{2}}(x - \frac{\pi}{2})^{i}}{i!}$$
 (2)

$$f_{c3}(x) = \sum_{i=0}^{n} \frac{e^5(x-5)^i}{i!}$$
 (3)

para mostrar la incidencia del centro se programaron los polinomios en python se pueden encontrar en el archivo punto2.py y se ejecutaron 3 pruebas dando como resultado lo mostrado en la siguiente tabla, con una tolerancia $0.5*10^{-16}$.

centro	X	Valor en 5 iteracion	Iteraciones	Valor real
0	0.01	1.0100501670833335	9	1.0100501670841682
$\frac{\pi}{2}$	0.01	1.3027354117394767	25	1.0100501670841682
5	0.01	2016.2557431208552	42	1.0100501670841682
0	$\frac{\pi}{3}$	2.8370132335604095	22	2.849653908226361
$\frac{\pi}{2}$	$\frac{\pi}{3}$	2.851103508222917	18	2.849653908226361
5	$\frac{\pi}{3}$	703.1910269619758	38	2.849653908226361
0	5.4	82.6534	41	221.40641620418717
$\frac{\pi}{2}$	5.4	146.60724071195668	36	221.40641620418717
5	5.4	221.392856538617	18	221.40641620418717

Se puede concluir que entre mas cercano este el centro del valor real, menos iteraciones van a ser necesarias para alcanzar un buen nivel de tolerancia, que nos permita confiar en la aproximacion.

3 Ejemplos para aproximar valores de diferentes funciones

Para los tres casos cos(x), sen(x), e^x se tomo c=0

$$sen(x) = \sum_{i=0}^{n} \frac{(-1)^n * x^{2n+1}}{(2n+1)!}$$
 (4)

$$cos(x) = \sum_{i=0}^{n} \frac{(-1)^n * x^{2n}}{2n!}$$
 (5)

$$exp(x) = \sum_{i=0}^{n} \frac{(x^i)}{i!} \tag{6}$$

Para cos(x) y x = 1.0471975511965976

n	x_n	$f(x)_n$	Error
0	1.0	0.5403023059	1
1	0.45168864438392464	0.899	0.5483113556160754
2	0.501796201500181	0.877	0.05010755711625637
3	0.4999645653289127	0.8775	0.001831636171268297
4	0.500000433432915	0.8775823701	$3.586810400226993 * 10^{-5}$
5	0.4999999963909432	0.8775825636	$4.370419717525111 * 10^{-7}$
6	0.5000000000217777	0.8775825619	$3.6308344847385137 * 10^{-9}$
7	0.4999999999990047	0.8775825619	$2.1877228333456802 * 10^{-11}$
8	0.500000000000000004	0.8775825619	$9.996277270533428 * 10^{-14}$
9	0.500000000000000001	0.8775825619	$3.582400223085193 * 10^{-16}$
10	0.500000000000000001	0.8775825619	$1.0338266961469332 * 10^{-18}$

Para exp(x) y x = 1.0471975511965976

n	x_n	$f(x)_n$	Error
0	1.0	2.718281828	1
1	2.0471975511965974	7.746162433451034	1.0471975511965976
2	2.5955089068126727	13.403406705167319	0.5483113556160754
3	2.786905676444153	16.23071891479697	0.1913967696314803
4	2.8370132335604095	17.06472100186262	0.05010755711625637
5	2.847507735782127	17.244749758110924	0.010494502221717465
6	2.8493393719533953	17.276364810324853	0.001831636171268297
7	2.8496133840838573	17.28109939248922	0.0002740121304621818
8	2.84964925218786	17.28171924387578	$3.586810400226993 * 10^{-5}$
9	2.8496534256312684	17.28179136830354	$4.173443408582439 * 10^{-6}$
10	2.8496538626732404	17.28179892117337	$4.370419717525111 * 10^{-7}$
11	2.849653904279539	17.281799640205065	$4.160629841721475 * 10^{-8}$
12	2.849653907910373	17.28179970295242	$3.6308344847385137 * 10^{-9}$
13	2.8496539082028502	17.28179970800695	$2.924769985552563 * 10^{-10}$
14	2.8496539082247274	17.281799708385027	$2.1877228333456802 * 10^{-11}$
15	2.8496539082262546	17.28179970841142	$1.5273186625176523 * 10^{-12}$
16	2.8496539082263546	17.281799708413146	$9.996277270533428 * 10^{-14}$
17	2.8496539082263608	17.281799708413253	$6.157692399285184 * 10^{-15}$
18	2.849653908226361	17.28179970841326	$3.582400223085193 * 10^{-16}$
19	2.849653908226361	17.28179970841326	$1.974463547905768 * 10^{-17}$

Para sen(x)y x=1.0471975511965976

n	x_n	$f(x)_n$	Error
0	1.0471975511965976	0.8660254037844386	1.0471975511965976
1	0.8558007815651173	0.7550961618290045	0.1913967696314803
2	0.8662952837868347	0.7619347979542318	0.010494502221717465
3	0.8660212716563725	0.7617573043720042	0.0002740121304621818
4	0.8660254450997811	0.7617600081828193	$4.173443408582439 * 10^{-6}$
5	0.8660254034934827	0.7617599812277907	$4.160629841721475 * 10^{-8}$
6	0.8660254037859597	0.7617599814172746	$2.924769985552563 * 10^{-10}$
7	0.8660254037844324	0.7617599814162852	$1.5273186625176523 * 10^{-12}$
8	0.8660254037844385	0.7617599814162891	$6.157692399285184 * 10^{-15}$
9	0.8660254037844385	0.7617599814162891	$1.974463547905768 * 10^{-17}$

El output especifico de cada funcion puede encontrarse en el directorio en el que se ejecuto este codigo.

4 Aproximaciones para combinaciones aritméticas de las funciones escogidas en el numeral 3

$$cos(x) + sen(x) = \sum_{i=0}^{n} \frac{(-1)^n * x^{2n}}{2n!} + \sum_{i=0}^{n} \frac{(-1)^n * x^{2n+1}}{(2n+1)!}$$
 (7)

$$cos(x) + exp(x) = \sum_{i=0}^{n} \frac{(-1)^n * x^{2n}}{2n!} + \sum_{i=0}^{n} \frac{(x^i)}{i!}$$
 (8)

Funcion cos(x) + sen(x) para x = 0.4

n	x_n
0	1.3093333333333333
1	1.31048533333333333
2	1.3104793193650792
3	1.3104793363414462
4	1.3104793363114995
5	1.3104793363115355
6	1.3104793363115355
7	1.3104793363115355

Funcion cos(x) + exp(x) para x = 0.4

n	x_n
0	2.32
1	2.401066666666666
2	2.4117276444444444
3	2.4127943273650794
4	2.4128796606695166
5	2.4128853495584406
6	2.4128856746378053
7	2.4128856908917737

5 Referencias

• Larson, R. and Edwards, B. (2010). Calculo 1 de una variable. 9th ed. Mexico. DF: McGraw Hill, pp.650-657.

•