Topics of the week

- 1. Characteristic polynomial, algebraic multiplicity, finding eigenvalues and eigenvectors, properties of eigenvalues and eigenvectors;
- 2. Linear independence of eigenvectors corresponding to distinct eigenvalues;
- 3. Determinant, trace, and connection to eigenvalues;
- 4. Eigenvalues and eigenvectors of rotations and other linear transformations;
- 5. Eigenvalues and eigenvectors of orthogonal matrices;
- 6. Eigenvalues and eigenvectors of diagonal matrices;
- 7. Eigenvalues and eigenvectors of projection matrices;
- 8. Repeated eigenvalues and geometric multiplicity;
- 9. Linear independence of eigenvectors, complete sets of real eigenvectors;
- 10. Change of basis, diagonalization, diagonalizable matrices;
- 11. Similar matrices, eigenvalues of similar matrices.

Change of basis What happens to a matrix when we switch from e_1, \ldots, e_n to b_1, \ldots, b_n ? Consider v = x on the basis $E = (e_1, \ldots, e_n)$. We want to find y such that v = By, i.e. $y = B^{-1}x$. Then Ax becomes $B(B^{-1}ABy)$, that is, $A \mapsto B^{-1}AB$.

Similar matrices are matrices A and B s.t. $A = P^{-1}BP$.

Eigenbasis Some basis changes turn A into a nice form, e.g. $A \mapsto \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. A basis, in which A is diagonal is called an eigenbasis of A.

Eigenvector Any $v \neq 0$ s.t. $Av = \lambda v$ for some λ , called **eigenvalue**.

Correspondingly, eigenbasis is any basis formed by eigenvectors.

Criterion: λ is an eigenvalue \iff $(A - \lambda I)v = 0 \iff \det(A - \lambda I) = 0$.

Characteristic polynomial of the matrix A is $p(\lambda) = \det(\lambda I - A)$.

Characteristic polynomial doesn't change when the basis is changed! Each coefficient stays invariant under the change of the basis, in particular:

- 1. $[\lambda^0]p(\lambda) = (-1)^n \lambda_1 \dots \lambda_n = (-1)^n \det A$, the **determinant** of A;
- 2. $[\lambda^{n-1}]p(\lambda) = -(\lambda_1 + \dots + \lambda_n) = -(A_{11} + \dots + A_{nn}) = -\operatorname{tr} A$, the **trace** of A.

Every matrix has at least one (complex) eigenvalue and eigenvector.

Linear independence Eigenvector is not a linear combination of eigenvectors with other eigenvalues.

$$v_{n+1} = \alpha_1 v_1 + \dots + \alpha_n v_n \implies \lambda v_{n+1} = \alpha_1 \lambda_1 v_1 + \dots + \alpha_n \lambda_n v_n$$
$$\implies \alpha_1 (\lambda_1 - \lambda) v_1 + \dots + \alpha_n (\lambda_n - \lambda) v_n = 0$$

Corollary: All eigenvalues distinct \implies there is an eigenbasis.

Eigenvalues of rotations Q is orthogonal $\Longrightarrow |\lambda| = 1$.

Because $||v|| = ||Qv|| = ||\lambda v|| = |\lambda| \cdot ||v||$.

Eigenvalues of projections Let $P^2 = P$, then $\lambda \in \{0, 1\}$.

The basis of im P has eigenvalues 1, and the basis of ker P^{\top} has eigenvalues 0.

Note: Also true in oblique projections because eigenvalues of P^k are λ^k .

Algebraic multiplicity is the multiplicity of $\lambda - \lambda_i$ in $p(\lambda)$.

Geometric multiplicity is dim $ker(A - \lambda I)$.

There is an egeinbasis \iff algebraic and geometric multiplicities are the same for all eigenvalues.

Diagonalization With an eigenbasis, we can factorize $A = P\Lambda P^{-1}$, where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$. **Note**: Columns of P are the eigenvectors.

In-class exercises Let $A, B \in \mathbb{R}^{n \times n}$.

- 1. Let M be such that $M \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$, find all eigenvalues and eigenvectors of M;
- 2. Construct a matrix with eigenvalues 0, 1, 2;
- 3. Construct a non-diagonal matrix with eigenvalues 0, 1, 2;
- 4. Prove that AB and BA have the same eigenvalues;
- 5. Assume that B is invertible and AB has an eigenbasis, prove that BA has an eigenbasis;
- 6. Assume that both A and B are invertible, prove that AB has an eigenbasis \iff BA has an eigenbasis;
- 7. Find A and B such that BA has an eigenbasis, but AB doesn't.