

Quadern de treball:

Cerca en cost uniforme Algorisme de Dijkstra¹

Albert Sanchis

Departament de Sistemes Informàtics i Computació

¹Per a una correcta visualització, es requereix l'Acrobat Reader v. 7.0 o superior

Objectius formatius

- Caracteritzar la cerca convencional en un graf d'estats.
- Descriure cerca en cost uniforme (o algorisme de Dijkstra).
- Construir l'arbre de cerca en cost uniforme.
- Aplicar cerca en cost uniforme a un problema clàssic.
- Analitzar la qualitat de cerca en cost uniforme.

Problema: La ruta més curta entre dos punts

Cerca d'una ruta més curta des d'Arad a Bucarest [1]:

Accions(Arad) = {Anar(Sibiu), Anar(Timisoara), Anar(Zerind)}.

Cost uniforme o algorisme de Dijkstra [1, 2, 3]

```
UCS(G, s')
                  //Uniform-cost search; G graf ponderat, s' start
O = IniCua(s', g_{s'} \triangleq 0)
                                         // Open: cua de prioritat g
C = \emptyset
                                          // Closed: nodes explorats
mentre no CuaBuida(O):
                                     // 1r el millor: s = \arg\min_{n \in O} g_n
                                     // desempats a favor d'objectius
  s = Desencua(O)
                                                    // solució trobada!
  si Objectiu(s) retorna s
  C = C \cup \{s\}
                                                           //s explorat
                                         // generació: n fill d's
  per a tota (s,n) \in Adjacents(G,s):
   x = g_s + w(s, n) // cost del camí d's' a n passant per s
                  n \notin C \cup O: Encua(O, n, g_n \triangleq x)
   Si
   si no si n \in O i x < g_n: Modcua(O, n, g_n \triangleq x)
retorna NULL
                                                // cap solució trobada
```

Qüestió 1: Fes una traça de l'algorisme Cost Uniforme aplicat al problema de cerca d'una ruta més curta des d'Arad a Bucarest.

O	C	S
{Arad (c=0)}	{}	_
{Zerind (c=75), Timisoara (c=118), Sibiu	{Arad (c=0)}	Arad (c=0)
(c=140)}		
{Timisoara (c=118), Sibiu (c=140), Ora-	{Arad (c=0), Zerind (c=75)}	Zerind (c=75)
dea (c=146)}		
{Sibiu (c=140), Oradea (c=146), Lugoj	{Arad (c=0), Zerind (c=75), Timisoara	Timisoara (c=118)
(c=229)}	(c=118)}	
{Oradea (c=146), Rimnicu (c=220), Lugoj	{Arad (c=0), Zerind (c=75), Timisoara	Sibiu (c=140)
(c=229), Fagaras (c=239)}	(c=118), Sibiu (c=140)}	
{Rimnicu (c=220), Lugoj (c=229), Fagaras	{Arad (c=0), Zerind (c=75), Timisoara	Oradea (c=146)
(c=239)}	(c=118), Sibiu (c=140), Oradea (c=146)}	
{Lugoj (c=229), Fagaras (c=239), Pitesti	{Arad (c=0), Zerind (c=75), Timisoara	Rimnicu (c=220)
(c=317), Craiova (c=366)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220)}	
{Fagaras (c=239), Mehadia (c=299), Pi-	{Arad (c=0), Zerind (c=75), Timisoara	Lugoj (c=229)
testi (c=317), Craiova (c=366)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229)}	
{Mehadia (c=299), Pitesti (c=317), Craio-	{Arad (c=0), Zerind (c=75), Timisoara	Fagaras (c=239)
va (c=366), Bucharest (c=450)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239)}	

O	C	S
{Pitesti (c=317), Craiova (c=366), Dobreta	{Arad (c=0), Zerind (c=75), Timisoara	Mehadia (c=299)
(c=374), Bucharest (c=450)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299)}	
{Craiova (c=366), Dobreta (c=374), Buc-	{Arad (c=0), Zerind (c=75), Timisoara	Pitesti (c=317)
harest (c=418)}	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pitesti	
	(c=317)}	
{Dobreta (c=374), Bucharest (c=418)}	{Arad (c=0), Zerind (c=75), Timisoara	Craiova (c=366)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pitesti	
	(c=317), Craiova (c=366)}	
{Bucharest (c=418)}	{Arad (c=0), Zerind (c=75), Timisoara	Dobreta (c=374)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pites-	
	ti (c=317), Craiova (c=366), Dobreta	
	(c=374)}	
{}	{Arad (c=0), Zerind (c=75), Timisoara	Bucharest (c=418)
	(c=118), Sibiu (c=140), Oradea (c=146),	
	Rimnicu (c=220), Lugoj (c=229), Faga-	
	ras (c=239), Mehadia (c=299), Pites-	
	ti (c=317), Craiova (c=366), Dobreta	
	(c=374)	

Qüestió 2: Construeix l'arbre de cerca resultant d'aplicar l'algorisme Cost Uniforme al problema de cerca d'una ruta més curta des d'Arad a Bucarest.

- Qüestió 3: L'algorisme troba solució? Sí
- Qüestió 4: Si la resposta es "Sí":
 - Quina ha sigut la solució trobada? El camí solució trobat ha sigut: Arad, Sibiu, Rimnicu, Pitesti, Bucharest
 - De Quin és el cost d'aquesta solució? 418
 - ▷ Es tracta de la solució óptima? Sí
 - Quin tipus de solució troba l'algorisme cost uniforme? Solucions òptimes si els costos de les accions són positius

Referències

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. *Numerische Mathematik*, 1959.
- [3] Bernhard Korte and Jens Vygen. *Combinatorial Optimization: Theory and Algorithms*. Springer, 2018.

