

IIC1253 — Matemáticas Discretas — 1' 2019

${ m TAREA}\,\,4$

Publicación: Viernes 26 de Abril.

Entrega: Viernes 3 de Mayo hasta las 10:15 horas.

Indicaciones

- Debe entregar una solución para cada pregunta (sin importar si esta en blanco).
- Cada solución debe estar escrita en I♣TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Si usa más de una hoja para una misma pregunta corchetelas.
- Debe entregar una copia escrita durante la ayudantía asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Sea $A \neq \emptyset$ y $R \subseteq A \times A$.

- 1. Se define la clausura simétrica R^s de R como una relación **simétrica** $R^s \subseteq A \times A$ tal que $R \subseteq R^s$ y, para toda R' simétrica con $R \subseteq R'$, se cumple que $R^s \subseteq R'$.
 - Para un $R \subseteq A \times A$ cualquiera, ¿es verdad que siempre existe R^s ? Demuestre su respuesta.
- 2. Se define la clausura conexa R^x de R como una relación **conexa** $R^x \subseteq A \times A$ tal que $R \subseteq R^x$ y, para toda R' conexa con $R \subseteq R'$, se cumple que $R^x \subseteq R'$.

Para un $R \subseteq A \times A$ cualquiera, ¿es verdad que siempre existe R^x ? Demuestre su respuesta.

Pregunta 2

Sea \mathcal{S} el conjunto de todas las secuencias infinitas a_0, a_1, a_2, \ldots tal que $a_i \in \mathbb{N}$ para todo $i \geq 0$. Para una secuencia infinita $s = a_0, a_1, a_2, \ldots \in \mathcal{S}$ y una función $f : \mathbb{N} \to \mathbb{N}$ se define $f(s) = f(a_0), f(a_1), f(a_2), \ldots$ En otras palabras, f(s) es la secuencia resultante al aplicar f a cada posición de la secuencia s.

Sea $R \subseteq \mathcal{S} \times \mathcal{S}$ una relación sobre \mathcal{S} tal que $(s,s') \in R$ si, y solo si, existe una función $f : \mathbb{N} \to \mathbb{N}$ tal que f(s) = s'. Por ejemplo, para $s = 0, 1, 2, 3 \dots$ y $s' = 0, 2, 4, 6 \dots$ se cumple que $(s, s') \in R$ dado que con f(x) = 2x se tiene que f(s) = s'. Notar que en la definición de R, f puede ser cualquier función de \mathbb{N} a \mathbb{N} .

- 1. Demuestre que R es refleja y transitiva, pero no es simétrica.
- 2. Sea $R^* = R \cap R^{-1}$. Demuestre que R^* es una relación de equivalencia sobre S. ¿Qué representan las clases de equivalencia de R^* ? Explique su respuesta.
- 3. Sea \mathcal{R} una relación sobre las clases de equivalencia de R^* (esto es, \mathcal{S}/R^*) tal que para dos clases de equivalencia $C_1, C_2 \in \mathcal{S}/R^*$ se tiene que $(C_1, C_2) \in \mathcal{R}$ si, y solo si, existe $s_1 \in C_1$ y $s_2 \in C_2$ tal que $(s_1, s_2) \in R$. Demuestre que \mathcal{R} es un orden parcial sobre las clases de equivalencia \mathcal{S}/R^* .

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.