යියලු ම හිමිකම් ඇවිටිනි / (மුඟුට පුනිට්පුණිකාපාත යනු / All Rights Reserved] ම් ලංකා විභාග දෙපාර්තමේත්තුව ම් ලංකා විභාග දෙපාර්තමේක්ති මිනා දින ලෙසුම් ජීප්තමේක්තුව විභාග දෙපාර්තමේත්තුව ම් ලංකා විභාග දෙපාර්තමේක්තුව විභාග දෙපාර්තමේත්තුව මේ ලංකා විභාග දෙපාර්තමේත්තුව මේක්තුව ප්රතික්තිය ප්රධාරණ විභාග දෙපාර්තමේත්තුව මේක්තුව ප්රතික්තිය ප්රධාරණ විභාග දෙපාර්තමේත්තුව මේක්තුව ප්රතික්තිය ප්රධාරණ විභාග දෙපාර්තමේත්තුව මේක්තුව ප්රතික්තිය ප

අධානයන පොදු සහතික පහු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரிப்சை, 2017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

රසායන විදනව I இரசாயனவியல் I Chemistry I

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- * ආවර්තිතා වගුවක් සපයා ඇත.
- 🗱 මෙම පුශ්න පතුය පිටු 08 කින් යුක්ත වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- 🗱 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🔻 උක්කර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට 50 තෙක් එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ** පිළිතුර තෝරා ගෙන, එය **උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න**.

සාර්වතු වායු නියතය $R=8.314\,\mathrm{J~K^{-1}~mol^{-1}}$ ඇවගාඩ්රෝ නියතය $N_A=6.022\times10^{23}\,\mathrm{mol^{-1}}$ ප්ලෑන්ක්ගේ නියතය $h=6.626\times10^{-34}\,\mathrm{J~s}$ ආලෝකයේ පුවේගය $c=3\times10^8\,\mathrm{m~s^{-1}}$

- 1. පරමාණුවක වසුහය පිළිබඳ ව තොම්සන්ගේ 'ප්ලම් පුඩිං' ආකෘතිය වැරදි බව ඔප්පු කළ විදහාඥයා වනුයේ,
 - (1) අර්නස්ට් රදර්ෆඩ්.

- (2) රොබට් මිලිකන්.
- (3) නීල්ස් බෝර්.

- (4) ඉයුජින් ගෝල්ඩ්ස්ටයින්.
- (5) හෙන්රි මෝස්ලි.
- 2. පහත අණු සම්බන්ධයෙන් මින් කුමන වගන්තිය **අසතා** වන්නේ ද?

- (1) සියලු ම අණුවලට ධුැවීය සහසංයුජ බන්ධන ඇත.
- (2) සියලු ම අණුවලට වෙනස් හැඩයන් ඇත.
- (3) සියලු ම අණු අෂ්ටක නීතිය අනුගමනය නොකරයි.
- (4) සියලු ම අණු නිර්ධැවීය වේ.
- (5) අණු දෙකක පමණක් ඒවායෙහි මධා පරමාණු සතුව එකසර ඉලෙක්ටුෝන යුගල් පවතී.
- 3. පහත දැක්වෙන සංයෝගයේ IUPAC නාමය කුමක් ද?

- (1) 4-formylhex-1-yn-3-ol
- (2) 4-formyl-3-hydroxyhex-1-yne
- (3) 2-ethyl-3-hydroxy-4-ynepentanal
- (4) 3-hydroxy-4-ethyl-1-ynepentanal
- (5) 2-ethyl-3-hydroxypent-4-ynal
- 4. නයිට්රජන්හි ඔක්සිකරණ අවස්ථාව –l වන්නේ,
 - (1) N_2O_4
- (2) N_2O
- (3) NO₂F
- (4) NH₂
- (5) NH₂OH
- 5. මධාා පරමාණුව වටා නිුයානති ද්විපිරමිඩාකාර ඉලෙක්ටුෝන යුගල් ජාාමිතිය පදනම් කර ගනිමින් ජනනය වී ඇති අණුවල හැඩයන් කිහිපයක් ඇත. ඒවා නම්,
 - (1) රේඛීය, කෝණික, සී-සෝ.
- (2) රේබීය, T හැඩය, සී-සෝ.
- (3) රේඛීය, තිුයානති පිරමිඩාකාර, T හැඩය.
 - (4) තලීය තිුකෝණාකාර, කෝණික, T හැඩය.
- (5) රේඛීය, තලීය නිකෝණාකාර, සී-සෝ.
- 6. ඇමෝනියම් නයිට්රේට් ඉහළ උෂ්ණත්වයේ දී, නයිට්රජන් වායුව, ඔක්සිජන් වායුව හා ජල වාෂ්ප සාදමින් ස්ඵෝටික ලෙස වියෝජනය වේ. සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී ඇමෝනියම් නයිට්රේට් 240 g වියෝජනය වීමෙන් සැදෙන මුළු වායු ලීටර සංඛ්‍යාව වනුයේ,

(H=1,N=14,O=16, සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී වායූ මවූල එකක පරිමාව ලීටර 22.4 වේ.)

- (1) 33.6
- (2) 67.2
- (3) 100.8
- (4) 134.4
- (5) 235.2

- 7. $\mathbf{A}\mathbf{X}$ සහ $\mathbf{B}\mathbf{X}_{\gamma}$ යනු ජලයෙහි අල්ප වශයෙන් දාවා ලවණ දෙකකි. කාමර උෂ්ණත්වයේ දී ඒවායෙහි දාවානා ගුණිත පිළිවෙළින් K_{sp_1} සහ K_{sp_2} වේ. $\mathbf{A}\mathbf{X}$ හි දුාවානාව p වන අතර $\mathbf{B}\mathbf{X}_2$ හි එම අගය q වේ. එක් එක් ලවණය එහි සංතෘප්ත දුාවණය සමග සමතුලිකතාවයෙහි ඇති විට $\dfrac{K_{
 m sp}_1}{\left[{f A}_{
 m (aq)}^+
 ight]}=\dfrac{K_{
 m sp}_2}{\left[{f B}_{
 m (aq)}^{2+}
 ight]}$ වේ නම්, පහත සඳහන් ඒවායින් කුමක් නිවැරදි වේ ද?
 - $(1) \quad p = q^2$
- $(2) p^2 = q$
- $(4) \quad p = 4q^2$
- $(5) \quad p = 2q^2$
- 8. ක්ෂාර හා ක්ෂාරීය පාංශු ලෝහ සම්බන්ධයෙන් මින් කුමන වගන්තිය **අසත**ෂ වේ ද?

 - (2) ක්ෂාරීය පාංශු ලෝහවල දුවාංක එම ආවර්තයේම ඇති ක්ෂාර ලෝහවල දුවාංකවලට වඩා වැඩි ය.
 - (3) ක්ෂාර ලෝහවල දෙවන අයනීකරණ ශක්තීන් එම ආචර්තයේම ඇති ක්ෂාරීය පාංශු ලෝහවල එම අගයයන්ට වඩා බොහෝ වැඩි ය.
 - (4) ක්ෂාරීය පාංශු ලෝහ සාදන සියලු ම හයිඩොක්සයිඩ පුබල භස්ම වේ.
 - (5) ක්ෂාර ලෝහ හයිඩුොක්සයිඩවල දුාවානාව කාණ්ඩයේ පහළට වැඩි වේ.
- 9. ලිතියම්හි (Li) සංයුජතා ඉලෙක්ටෝනයට දැනෙන සඵල නාෂ්ටික ආරෝපණය,

(Li, Z = 3 හා සාපේක්ෂ පරමාණුක ස්කන්ධය = 7)

(1) +3 ට සමාන ය.

- (2) +3 ට වඩා අඩු ය.
- (3) +3 ට වඩා වැඩි ය.

(4) +7 ට සමාන ය.

- (5) +7 ට වඩා අඩු ය.
- 10. දී ඇති උෂ්ණත්වයක දී සංවෘත දෘඪ භාජනයක් තුළ පහත සමතුලිකතාවය පවතී.

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

- එම උෂ්ණත්වයේ දී භාජනය තුළට අමතර $O_{\mathbf{y}}(\mathbf{g})$ පුමාණයක් එකතු කරන ලදී. සමතුලිතතාවයට නැවත එළඹුණු පසු මුල් සමතුලිතතාවයෙහි තිබූ අගයට සන්සන්දනාත්මකව වඩා අඩු අගයයක් ති<mark>බෙන්</mark>නේ මින් කුමක ද?
- (1) පුතිකිුියාවේ සමතුලිතතා නියතය
- (2) පද්ධතියේ මුළු පීඩනය
- (3) පද්ධතියේ ඇති $\mathrm{SO}_{2}(\mathbf{g})$ පුමාණය
- (4) පද්ධතියේ ඇති SO (g) පුමාණය
- (5) පද්ධතියේ ඇති $\mathrm{O}_{j}(\mathrm{g})$ පුමාණය
- 11. නයිට්රජන් විශේෂයන්හි O-N-O කෝණය සම්බන්ධයෙන් පුහන් සඳහන් කුමක් **සත**ෂ වේ ද?
 - (1) $NO_2^+ > NO_2^- > NO_2^- > NO_4^{3-}$
- (2) $NO_4^{3-} > NO_2^+ > NO_2 > NO_2^-$
- (3) $NO_2^{\frac{1}{2}} > NO_2^{\frac{1}{2}} > NO_2^{\frac{3}{2}} > NO_4^{\frac{3}{4}}$ (4) $NO_4^{\frac{3}{4}} > NO_2^{\frac{1}{2}} > NO_2^{\frac{1}{2}} > NO_2^{\frac{1}{2}}$
- (5) $NO_{3}^{+} > NO_{3}^{-} > NO_{3}^{3-} > NO_{3}^{3-}$
- 12. ලාම්පුවක් දෘශා ආලෝකයේ නිල් කලාප<mark>යෙහි (470 nm)</mark> තත්පරයට $6.0~\mathrm{J}$ ශක්තියක් නිපදවයි. ෆෝටෝන $1.0 imes 10^{20}$ ජනනය කිරීම සඳහා ලාම්පුව කොපමණ කාලයක් දැල්විය යුතු ද?
 - (1) 2.4 s
- (2) 7.1 s
- (4) 9.2s
- (5) 10.5 s
- 13. පුතිකිුයාවක් 298 K හා 100 kPa <mark>පීඩනයේ දී</mark> ස්වයංසිද්ධ වන අතර එය ඉහළ උෂ්ණත්වයේ දී හා එම පීඩනයේ දී ස්වයංසිද්ධ නොවේ. මෙම පුති<mark>ති</mark>යාව සඳහා $298~\mathrm{K}$ හි දී හා $100~\mathrm{kPa}$ පීඩනයේ දී පහත සඳහන් කුමක් **සත**z වේ ද?
 - ΔG ΔΗ ධන ධන ධන සු න (2)සෘණ සෞණ ධන (3)සෘණ 239 Em (4)ධන කැණෙ දයා ණ සා ණ ධන
- 14. නොදන්<mark>නා X නමැති වායුවක මවුලික ස්කන්</mark>ධය සෙවීම සඳහා පහත සඳහන් කුමය භාවිත කරන ලදී. පළමුව, වියළි වාතය අඩංගු පරිමාව V වන දෘඪ භාජනයක ස්කන්ධය $m_{_1}$ ලෙස මනින ලදී. ඉන්පසු, වියළි වාතය ඉවත් කොට භාජනය උෂ්ණත්වයේ (T) හා පීඩනයේ (P) පැවතුණි. වියළි වාතයෙහි ඝනත්වය d වේ. පහත සඳහන් කුමන පුකාශනය මගින් නොදන්නා වායුවෙහි මවුලික ස්කන්ධය ලබා දෙයි ද?
 - (1) $\frac{dRT}{P}$

- (2) $\frac{\left[m_2 \left(m_1 dV\right)\right]RT}{PV}$
- $(3) \quad \frac{\left(m_1 m_2\right)RT}{PV}$

 $(4) \quad \frac{\left(m_2 - m_1\right)RT}{PV}$

(5) $\frac{\left[m_1 - \left(m_2 - dV\right)\right]RT}{RV}$

- ඒකභාස්මික දුබල අම්ලයකින් $V_{_1}$ පරිමාවක්, ඒකආම්ලික පුබල භස්මයකින් $V_{_2}$ පරිමාවක් සමග මිශු කිරීමෙන් ස්වාරක්ෂක දුාවණයක් සාදන ලදී. දුබල අම්ල්යෙහි හා පුබල භස්මයෙහි ආරම්භක සාන්දුණ් පිළිවෙළින් C_1 හා C_2 වේ. දුබල අම්ලයෙහි අම්ල විසටන නියතය $K_{
 m a}$ වේ. ස්වාරක්ෂක දාවණයෙහි pH අගය p $K_{
 m a}$ -1 හා p $K_{
 m a}$ +1 අතර පවත්වා ගැනීමට නම් පහත සඳහන් කුමන පුකාශනය මගින් $C_1^{}, C_2^{}, V_1^{}$ සහ $V_2^{}$ සඳහා නිවැරදි සම්බන්ධතාව ලබාදේ ද?
 - (1) $\frac{1}{10} < \frac{C_2 V_2}{C_1 V_1 C_2 V_2} < 10$
- (2) $\frac{1}{10} < \frac{C_1 V_1}{C_1 V_1 C_2 V_2} < 10$ (3) $\frac{1}{10} < \frac{C_2 V_2}{C_1 V_1} < 10$
- - (4) $\frac{1}{10} < \frac{C_1 V_1 C_2 V_2}{C_2 V_2} < 10$ (5) $1 < \frac{C_1 V_1}{C_2 V_2} < 10$
- 16. ඇනිලින් හි සම්පුයුක්ත වුහුහයක් නොවන්නේ පහත දැක්වෙන ඒවායින් කුමක් ද?

- 17. ශුනා පෙළ පුතිකියාවක ආරම්භක ශීඝුතාව R_0 හා වේග නියතය k වේ. ආරම්භක සාත්දුණය 50% කින් අඩු වූ විට පුතිකියාවේ ශීඝුතාව වනුයේ,
 - (1) k
- (2) $\frac{1}{k}$

- $18.~~{
 m Ni}^{2+}({
 m aq},1.0~{
 m M})/{
 m Ni}({
 m s})$ හා ${
 m Cu}^{2+}({
 m aq},1.0~{
 m M})/{
 m Cu}({
 m s})$ අර්ධ කෝෂ, චෝල්ට්මීටරයක් මගින් හා ලවණ සේතුවකින් සම්බන්ධ කිරීමෙන් විදු**ාු**ත් රසායනික කෝෂයක් ගොඩනගන ලදී. සම්පූර්ණ කෝෂ පුතිකිුයා<mark>ව හ</mark>ී මෙම අර්ධ කෝෂ දෙක සම්බන්ධ කළ විට චෝල්ට්මීටරයෙහි ආරම්භක පාඨාංකය වනුයේ,

$$\left(E_{\text{Ni}^{2+}/\text{Ni}}^{\circ} = -0.24\text{V} \text{ the } E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = +0.34\text{V}\right)$$

- (1) $\operatorname{Ni}^{2+}(\operatorname{aq}) + \operatorname{Cu}(\operatorname{s}) \longrightarrow \operatorname{Ni}(\operatorname{s}) + \operatorname{Cu}^{2+}(\operatorname{aq})$
- ; 0.00 V
- (2) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$
- ; +0.58 V
- (3) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$
- ; -0.58 V
- (4) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$

- (5) $Cu(s) + Ni(s) \longrightarrow Cu^{2+}(aq) + Ni^{2+}(aq) + 4e$; +0.58 V
- $oxed{19.}$ කාමර උෂ්ණත්වයේ දී ඝන ඩයිඅයඩීන් <mark>පෙන්</mark>ටොක්සයිඩ් ($oxed{I_2O_5}$) කාබන් මොනොක්සයිඩ් සමග පුතිකිුයා කර කාබන් ඩ**ෙයාක්සයිඩ් හා අයඩීන් සාදයි. වා**යු ස<mark>ාම්ප</mark>ලයක ඇති කාබින් මොනොක්සයිඞ් පුමාණය මැනීම සඳහා මෙය භාවිත කළ හැක. $5.0\,\mathrm{dm}^3$ වායු සාම්පලයක් $1_2\mathrm{O}_5$ අඩංගු නළයක් තුළින් යවා, මුදාහැරෙන අයඩීන් ජලීය KI දාවණයකට (වැඩිපුර m KI ඇත.) එකතු කරන ලදී. ලැබෙන දුාවණය පිෂ්වය දර්ශකය ලෙස යොදා $0.005~
 m mol~dm^{-3}~Na_2S_2O_3$ දුාවණයක් සමග අනුමාපනය කරන ලදී. අවශා වූ $\mathrm{Na_2S_2O_3}$ පරිමාව $10.00\,\mathrm{cm}^3$ වේ. වායු සාම්පලයේ කාබන් මොනොක්සයිඩ් සාන්දුණය (ppm වලින්) වනුයේ, (C=12, O=16, වායු සාම්පලයේ ඝනත්වය = $1.40 \times 10^{-3} \, \mathrm{g \ cm^{-3}}$)
 - (1) 100
- (2) 250
- (3) 500
- (5) 1000
- 20. සල්ෆර් සහ එහි සංයෝග සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය අසතන වන්නේ ද?
 - (1) S යනු ඔක්සිකරණ අවස්ථා –2 සිට +6 පරාසයක් ඇති අලෝහයකි.
 - (2) එක් ඵලයක් ලෙස SO_3 ලබා දෙමින් සාන්දු $\mathrm{H_2SO_4}$ සමග S පුතිකිුයා කරයි.
 - (3) ඔක්සිකාරකයක් සහ ඔක්සිහාරකයක් යන දෙද්ගකාරයටම SO ූ ව කිුිියා කළ හැක.
 - (4) විශාල පුමාණයන්ගෙන් S දහනය කිරීම අම්ල වැසිවලට දායක් වේ.
 - (5) සාන්දු $H_{\gamma}SO_{\gamma}$ ට පුබල අම්ලයක්, ඔක්සිකාරකයක් සහ විජලකාරකයක් ලෙස කිුිිිියා කළ හැක.
- **21.** 298 K හි දී, $N_2(g) + 3 F_2(g) \longrightarrow 2 N F_3(g)$ පුතිකියාව සඳහා $\Delta H^\circ = -263 \text{ kJ mol}^{-1}$ වේ. N≡N හා N—F බන්ධන විඝටන එන්තැල්පි අග්යයන් පිළිවෙළින් 946 kJ mol⁻¹ හා 272 kJ mol⁻¹ වේ. F—F බන්ධනයේ බන්ධන විඝටන එන්තැල්පි අගය $(kJ \text{ mol}^{-1} වලින්) වනුයේ,$
 - (1) -423
- (2) -393
- (3) -141
- (4) 141
- (5) 423

- $22. \quad 3d$ ගොනුවේ මූලදුවාෳ සම්බන්ධයෙන් පහත කුමන වගන්තිය **අසතෳ** වේ ද?
 - (1) Sc, Ti සහ Zn විචලා සංයුජතා පුදර්ශනය නොකරයි.
 - (2) 3d ගොනුවේ මූලදුවා හොඳ කාර්මික උත්පේුරක වේ.
 - (3) Mn, ආම්ලික, උභයගුණි සහ භාස්මික ඔක්සයිඩ සාදයි.
 - (4) 3d ගොනුවේ සියලු ම මූලදුවා අතුරෙන් අඩුම දුවාංකය ඇත්තේ ${\bf Zn}$ ට ය.
 - (5) V හි ධන ඔක්සිකරණ අවස්ථා +2 සිට +5 පරාසයක ඇත.
- **23.** $3{
 m NO}({
 m g})
 ightleftharpoons {
 m NO}_{
 m g}({
 m g}) + {
 m N}_{
 m g}{
 m O}({
 m g})$ පුතිකිුයාව සඳහා පහත තාප රසායනික දත්ත දී ඇත.

$$\Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 35 \text{ kJ mol}^{-1}, \ \Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 80 \text{ kJ mol}^{-1}, \ \Delta H_{f_{\text{NO}(g)}}^{\circ} = 90 \text{ kJ mol}^{-1}$$

ඉහත පුතිකිුියාව සඳහා පහත සඳහන් කුමන පුකාශය **සත**ෂ වේ ද?

- (1) $\Delta H^{\circ} = -155 \text{ kJ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුිිියාවේ සමතුලිතතා නියතයේ අගය අඩු වේ.
- (2) $\Delta H^{\circ} = 155 \text{ kJ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුියාවේ සමතුලිතතා නියතයේ අ<mark>ගය</mark> අඩු වේ.
- (3) $\Delta H^{\circ} = -25 \text{ kJ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකියාවේ සමතුලිතතා නියතයේ අගය අඩු වේ.
- (4) $\Delta H^{\circ} = 25 \text{ kJ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුයාවේ සමතුලිතතා නිය<mark>තයේ අ</mark>ගය අඩු වේ.
- (5) $\Delta H^{\circ} = -155 \; \mathrm{kJ} \; \mathrm{mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග සමතුලිතතා නියතයේ අගය වැඩි වේ.
- 24. පහත දැක්වෙන පුතිකිුයාව සලකන්න.

D හි වනුහය වීමට වඩාත් ම ඉඩ ඇක්තේ,

(4)
$$\bigcirc C$$
-C-CH₂-O- $\bigcirc Br$

25. A සංයෝගය $LiAlH_4$ සමග පුතිකියා කර B ලබා දෙයි. Aට වඩා B භාස්මික ය. B, 0-5 °C දී $NaNO_2/HCl$ සමග පිරියම් කළ විට N_2 මුක්ත කරයි. A සහ B දෙකම ඇමෝනීය $AgNO_3$ සමග පුතිකියා කර අවක්ෂේප ලබා දේ. A හි වාහුතය විය හැක්කේ,

(2)
$$C \equiv C - CH_3$$

(3)
$$CH_2$$
 CH_2
 CH_3

- **26.** ඕසෝන් ස්ථරයේ ක්ෂය වීම පිළිබඳ ව මින් කුමන වගන්තිය **සත** වේ ද?
 - (1) ඕසෝන් සමග ක්ලෝරොෆ්ලුවොරොකාබන් (CFCs) සෘජූව ම පුතිකිුිිිිිිිිිිිිිිිි කර ඕසෝන් ස්ථරය ක්ෂය කරයි.
 - (2) පෘථිවි පෘෂ්ඨය මනට IR කිරණ පතිත වීම ඕසෝත් ස්ථරයෙහි ක්ෂය වීම මගින් දිරිගැන්වේ.
 - (3) ඕසෝත් ස්ථරයේ ක්ෂය වීම සඳහා හයිඩුොෆ්ලුවොරොකාබන් (HFCs) දායක වේ.
 - (4) පාරජම්බුල කිරණ ඇති විට ඕසෝන් ස්ථරයේ පවතින ඕසෝන් ස්වාභාවිකව වියෝජනයට භාජනය වේ.
 - (5) CIO' මුක්ත ඛණ්ඩ මගින් පමණක් ඕසෝන් ස්ථරයේ ක්ෂය වීම සිදු වේ.

- 27. විද*සු*ත් විච්ඡේදා කෝෂයක් තුළ සිදු වන ${
 m AlF}_6^{3-}({
 m aq}) + 3{
 m e}
 ightarrow {
 m Al}({
 m s}) + 6~{
 m F}^-({
 m aq})$ අර්ධ පුතිකිුයාව සම්බන්ධයෙන් පහත සඳහන් කුමක් **සතා**ෂ වේ ද?
 - (1) Al ඔක්සිකරණය වේ.
 - (2) AlF_6^{3-} ඔක්සිහරණය වේ.
 - (3) Al හි ඔක්සිකරණ අවස්ථාව -3 සිට 0 දක්වා වෙනස් වේ.
 - (4) F^- ඔක්සිහාරකයක් ලෙස කිුයා කරයි.
 - (5) F ි ඔක්සිහරණය වේ.
- 28. $CH_3CHO \xrightarrow{OH^-} P \xrightarrow{H^+} Q \xrightarrow{(1) CH_3MgBr} R$

ඉහත දැක්වෙන පුතිකිුයා අනුකුමයෙහි P, Q සහ R හි වනුහ පිළිවෙළින් වනුයේ,

- OH CH₃ CHCH₂CHO , CH₂=CHCH₂CHO , CH₂=CH—CH₂—CHOH
- OH
 (4) CH₃CHCH₂CHO , CH₃CH=CHCHO , CH₃CH=CH—CHOH
- OH CH₃
 (5) CH₃CH₂CHCHO , CH₃CH=CHCHO , CH₃CH=CH—CHOH
- **29.** ස්වාභාවික රබර් හි පුනරාවර්තන ඒකකය <mark>වන්</mark>නේ,

- 30. මූලදුවායෙක කලාප සටහන රූපයෙහි දක්වා ඇත. මෙම මූලදුවායෙහි කලාප සටහන සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය **අසභා** වේ ද?
 - (1) S_1, S_2 හා G කලාප සමතුලිතතාවයේ පවතින \mathbf{T}, \mathbf{P} තත්ත්ව එකක් ඇත.
 - (2) S_1 , S_2 හා L කලාප සමතුලිතතාවයේ පවතින T, P තත්ත්ව එකක් ඇත.
 - (3) S_2^1, L^2 හා G කලාප සමතුලිතතාවයේ පවතින T, P තත්ත්ව එකක් ඇත.
 - (4) S_1 , L හා G කලාප සමතුලිතතාවයේ පවතින T, P තත්ත්ව එකක් ඇත.
 - (5) කලාප දෙකකට වැඩි ගණනක් සමතුලිකතාවයේ පවතින T, P තත්ත්ව තුනක් කලාප සටහනෙහි දැක්වේ.

- අංක 31 සිට 40 තෙක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිවාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මක ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

	(1)	(2)	(2)	(4)	(5)
	(1)	(2)	(3)	(4)	(3)
	(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(<i>d</i>) සහ (<i>a</i>)	වෙනත් පුතිචාර
	පමණක්	පමණක්	පමණක්	පමණක්	සංඛාාවක් හෝ
i	<i>නි</i> වැරදියි	නිවැරදියි	නිවැ <i>ර</i> දියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදියි

- ${f 31.} \ \ {f T_1}, {f T_2} \ ({f T_2} > {f T_1})$ යන උෂ්ණත්වයන් දෙකෙහි දී සහ නියත පීඩනයේ දී A(g)
 ightleftharpoons B(g) හි පුතිකිුයා පුමාණය (extent of reaction) සමග සම්මත ගිබ්ස් ශක්තියෙහි විචලනය රූප සටහනෙහි දක්වා ඇත. පහත දී ඇති කුමන වගන්තිය/ වගන්ති මෙම පුතිකිුයාව සඳහා **නිවැරදී** වේ ද?
 - (a) T_2 හි දී සමතුලිතතා නියතය T_1 හි දී ට වඩා විශාල වේ.
 - (b) පුතිකියාව තාපාවශෝෂක වේ.
 - (c) පුතිකිුයාව සඳහා ධන ΔS° අගයක් ඇත.
 - (d) පුතිකියාව තාපදායක වේ.

32. $CH_3CH_2CH = CH_2 \xrightarrow{HBr} CH_3CH_2CH CH_3 + CH_3CH_2CH_2CH_2Br$

ඉහත දක්වා ඇති පුතිකිුයාව සඳහා පහත දී ඇති ව<mark>ගන්තිව</mark>ලින් **නිවැරදී** වන්නේ කුමක් ද?/කුමන ඒවා ද?

- (a) මෙම පුතිකිුිිිියාව නියුක්ලියෝෆිලික ආකලන ප<mark>ුති</mark>කිුිියාවකි.
- (b) P පුධාන එලය වේ.
- (c) පුතිකිුියාවේ පළමු පියවරේ දී කාබොක<mark>ැටා</mark>යනයක් සෑදේ.
- (d) \mathbf{Q} පුධාන ඵලය වේ.
- 33. පහත සඳහන් වගන්ති කාර්මික කියාවලි සමහරක් සම්බන්ධයෙන් වේ. මින් කුමන වගන්තිය / වගන්ති **නිවැරදි** වේ ද?
 - (a) KOH භාවිත කර ළදරු සබන් නිපදවයි.
 - (b) ස්පර්ශ කියාවලියේ දී SO_3 ලබා ගැනීමට SO_3 හා O_3 අතර පුතිකිුයාව සඳහා අඩු පීඩන තත්ත්ව අනුගුහය දක්වයි.
 - (c) සොල්වේ කුමයෙන් K_,CO₂ සංශ්ලේෂණය කළ හැක.
 - (d) ඩවූන්ස් කෝ<mark>යෙ භාවිතයෙන් Na නිෂ්පාදනයේ දී Na හා ක්ලෝරීන් වායුව පුතිකිුයා කිරීම වැළැක්වීමට කැතෝඩ</mark> හා ඇනෝඩ කුටීර පුාචීරයකින් වෙන්කර ඇත.
- **34.** බහු-පියවර පු<mark>තිකි</mark>යාවක වඩාත් ම සෙමින් සිදු වන පියවර සඳහා පහත කුමන වගන්තිය / වගන්ති සැම විට ම **නිවැරදි** වේ ද?
 - (a) එහි අණුකතාවය පූර්ණ සංඛ්යාවක් වේ.
 - (b) එහි අණුකතාවය පුතිකිුයාවේ සමස්ත පෙළට වඩා වැඩි වේ.
 - (c) එහි ශීඝුතාව මත සමස්ත පුතිකියාවෙහි ශීඝුතාව රඳා පවතී.
 - (d) එහි අණුකතාවය පුතිකිුිිියාවෙහි පියවර සංඛ්‍යාවට සමාන වේ.
- 35. ආලෝකය හමුවේ දී $\mathrm{CH_4}$ සමග $\mathrm{Cl_2}$ පුතිකිුයා කිරීමේ දී සිදු නොවීමට වඩාත් ම ඉඩ ඇති පුතිකිුයා පියවර පහත දැක්වෙන ඒවායින් කුමක් ද?/ කුමන ඒවා ද?ි
- **36.** NH₄ හා NF₄ සම්බන්ධයෙන් මින් කුමන වගන්තිය/වගන්ති **නිවැරදී** වේ ද?
 - (a) NHූ ට වඩා NFූ හි බන්ධන යුගල් විකර්ෂණය දුර්වල වේ.
 - (b) NH_3^2 ට වඩා වැඩි ද්විධුව සූර්ණයක් NF_3 ට ඇත.
 - (c) NH ූ ට වඩා NF ූ පුබල ලුවිස් හස්මයක් වේ.
 - (d) NH_3^2 හි N හා H^2 අතර විද*ු*තුත් සෘණතා වෙනසත් NF_3 හි N හා F අතර එම අගයත් බොහෝ දුරට සමාන වේ.

- 37. 1000 K දී $2 \text{ NO(g)} + \text{Br}_2(g) \rightleftharpoons 2 \text{ NOBr}(g)$ පුතිකිුයාව සඳහා සමතුලිකතා නියකය $1.25 \times 10^{-2} \text{ mol}^{-1} \text{ dm}^3$ වේ. මෙම උෂ්ණත්වයේ දී පහත සඳහන් කුමන පුකාශය/පුකාශ **නිවැරදි** වේ ද?
 - (a) සමතුලිත මිශුණයෙහි NO(g) හා $Br_2(g)$ පුමුබව ඇති අතර ආපසු පුතිකිුයාව සඳහා සමතුලිතතා නියතය $80 \ mol \ dm^{-3}$ වේ.
 - (b) සමතුලිත මිශුණයෙහි NOBr(g) පුමුබව ඇති අතර ආපසු පුතිකිුිිිියාව සඳහා සමතුලිතතා තියකය $80 \ mol \ dm^{-3}$ වේ.
 - (c) සමතුලිත මිශුණයෙහි NO(g) හා $Br_2(g)$ පුමුබව ඇති අතර ආපසු පුතිකුියාව සඳහා සමතුලිතතා තියතය $1.25 \times 10^{-2}~{
 m mol}^{-1}~{
 m dm}^3$ වේ.
 - (d) සමතුලිත මිශුණයෙහි NOBr(g) පුමුඛව ඇති අතර ආපසු පුතිකිුයාව සඳහා සමතුලිතතා නියතය $1.25 \times 10^{-2} \, \mathrm{mol}^{-1} \, \mathrm{dm}^3$ වේ.
- **38.** වායු කලාපයේ සිදුවන ද්විඅණුක මූලික පුතිකිුයාවක් සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති **නිවැරදී** වේ ද?
 - (a) පුතිකියාවෙහි පරීක්ෂණාත්මකව නිර්ණය කරන ලද පෙළ දෙක වන්නේ පුතිකියකයන්හි සාන්දුණ සමාන වූ විට පමණි.
 - (b) පුතිකියකවල සාන්දුණ අනුපාත 1 : 3 වන විට පුතිකියාවෙහි පරීක්ෂණාත්මකව නිර්ණය කරන ලද පෙළ තුන වේ.
 - (c) එක් පුතිකියකයක සාන්දුණය අනිකට වඩා සන්සන්දනාත්මකව විශාල වශයෙන් වැඩි වන විට පු<mark>ති</mark>කියාවෙහි ශීසුතාව එම පුතිකියකයෙහි සාන්දුණයෙන් ස්වායත්ත වේ.
 - (d) නියත උෂ්ණත්වයක දී පුතිකියක අඩංගු බඳුනෙහි පරිමාව අඩු කළ විට පුතිකියක අතර ගැටුම් ඇති වීමේ ශීඝුතාව වැඩි වේ.
- 39. පහත සඳහන් කුමන වගන්තිය/වගන්ති මෙතිල් බෙන්සීන් (ටොලුවීන්) සඳහා නිවැරදි වේ ද?

- (a) සියලු ම කාබන් පරමාණු එකම තලයක පිහිටයි.
- (b) සියලු ම කාබන් කාබන් බන්ධනවල දිග එකිනෙකට සමාන වේ.
- (c) සියලු ම කාබන් හයිඩ්රජන් බන්ධනවල දිග එකිනෙකට සමාන <mark>වේ.</mark>
- (d) ඕනෑම C-C-C බන්ධන කෝණයක් 120° ක් වේ.
- 40. වායු දූෂණය සම්බන්ධයෙන් පහත දී ඇති කුමන වගන්තිය / වගන්ති **නිවැරදි** වේ ද?
 - (a) ජල ස්කන්ධවල ඇති සල්ෆේට වායුගෝලීය $\mathbf{H}_{\mathbf{y}}\mathbf{S}$ හි පුභවයකි.
 - (b) NO(g) මගින් $SO_{s}(g), SO_{s}(g)$ බවට පරිවර්තනය වීම ශීසු කරයි.
 - (c) පොසිල ඉන්ධන දහනයේ දී පිටවන $\mathrm{NO}(\mathbf{g})$ වායු දූෂකයක් ලෙස නොසැලකේ.
 - (d) වායුගෝලයේ ඇති $\mathrm{SO}_2(\mathrm{g})$ අකුණු කෙටීම මගින් ඉවත් වේ.
- අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය ස<mark>ඳහා</mark> පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට **හොඳින් ම** ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.
(2)	සතා වේ.	සකා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි .
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා වේ.
(5)	අසතා වේ.	අසතා වේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය		
41.	බයිකාබනේට් අයනයෙහි C—O බන්ධන සර්වසම වේ.	බයිකාබතේට් අයනය ස්ථායි සම්පුයුක්ත වයුහ තුනක සම්පුයුක්ත මුහුමක් ඓ.		
42.	HOCH CH Br වියළි ඊතර මාධායේ දී Mg සමග පුතිකියා කිරීමෙන් ශීනාඩ් පුතිකාරකයක් පිළියෙල කළ නොහැකි ය.	හයිඩොක්සිල් කාණ්ඩයක් අඩංගු සංයෝග සමග ගුීනාඩ් පුතිකාරකය පුතිකියා නොකරයි.		
43.	නියත උෂ්ණත්වයේ දී $2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$ සමතුලිත මිශුණයෙහි පීඩනය වැඩි කිරීමෙන් සමතුලින ස්ථානය දකුණට නැඹුරු වේ.	නියත උෂ්ණත්වයේ දී රසායනික සමතුලිකතාවයේ ඇති වායුමය මිශුණයක පීඩනය වැඩි කිරීමේ දී මවුල සංඛානව අඩු වන පරිදි පුතිකිුිිිියාව සිදු වේ.		

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
44.	II කාණ්ඩයේ සල්ෆේට හා කාබනේටවල දාවාාතාව කාණ්ඩයේ පහළට යන විට අඩුවන අතර හයිඩුොක්සයිඩ සඳහා එයට විරුද්ධ නිරීක්ෂණයක් ලැබේ.	, ·
45.	ඉලෙක්ටුෝෆයිල කෙරෙහි ඇල්කේනවල පුතිකිුියාකාරීත්වය ඇල්කීනවලට වඩා අඩු ය.	කාබන් හා හයිඩ්රජන් පරමාණු අතර විදාුුත් සෘණතාවයෙහි වෙනස කුඩා නිසා හයිඩුොකාබනවල C—H බන්ධනවල ධුැවීයතාවය අඩු ය.
46.	සංවෘත භාජනයක් තුළ ඇති ජල වාෂ්ප ඝනීභවනය වන විට අවට පරිසරයෙහි එන්ටුොපිය වැඩි වේ.	සංවෘත පද්ධතියක් මගින් අවශෝෂණය කළ තාපය අවට පරිසරයෙහි තාපමය චලනය වැඩි කරයි.
47.	NaOH නිෂ්පාදනයේ දී භාවිත වන පටල කෝෂයේ කැතෝඩ කුටීරය හා ඇනෝඩ කුටීරය අයන වරණීය පටලයකින් වෙන් කර ඇත.	පටල කෝෂයේ භාවිත වන අයන වරණීය පටලය කැටායන හුවමාරු වීමට ඉඩ නොදෙයි.
48.	2-butene පාරතිමාන සමාවයවිකතාව පෙන්වයි.	එකිනෙකෙහි දර්පණ පුතිබිම්බ නොවන ව <u>පු</u> හ දෙකක් 2-butene සඳහා තිබිය හැක.
49.	කාමර උෂ්ණත්වයේ දී MnS(s) හි ජලයේ දුාවානාව pH අගය මත රඳා නොපවතී.	$S^{2-}(aq)$ දුර්වල අම්ලයක සංයුග්මක හස්මය වේ.
50.	d-ගොනුවේ මූලදවාවල දවාංක s -ගොනුවේ මූලදවාවල දවාංකවලට වඩා වැඩි ය.	d-ගොනුවේ මූලදුවාවල <mark>ලෝහක</mark> බන්ධන සෑදීමේ දී විස්ථානගත වීම සඳහා, d සහ s ඉලෙක්ටුෝන ඇත.

* * *

ආවර්තිතා වගුව

								15										
	1																	2
1	H						X											He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tì	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
												_						
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71]
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

සියලු ම හිමිකම් ඇවිරිණි /ගුඟුට பதிப்புநிமையுடையது / $All\ Rights\ Reserved$]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්ර**ල්** වෙනුදුක් ලෙසුදුක් කළ දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව මුහාසිකත්ව පාර්යකදේ නිකාශක්සනමාර මුහාසිකත්ව පාර්යකද්ද නිකාශක්ෂයට පාර්යක්ෂේ විභාගක්සනමාර මුහාසිකත්ව පාර්යක්ෂේ විභාගක්සනමාර විභාගක්සනමාර විභාගක්සනමාර විභාගක්සනමාර විභාගක්සනමාර විභාගක්ෂයට පාර්යක්ෂේ විභාගක්ෂයට පාර්යක්ෂයට විභාගක්ෂයට පාර්යක්ෂයට පා

			/		***		
- ausus	ලපාද සහ	CO 100	المعمد هر ا	(A)	$\alpha \alpha \alpha \alpha = 201$		<u> </u>
			((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		20000, 201	, cession	47
							_
			n/	•		~4=	_
<u>கல்விப் செ</u>	-111-45-146	5111 US6	NII 199 II	RE CENT	பர்ட்சை. 2	\mathbf{m} α α	ш_
COULT WILL						VII WWWII	11
	<u> </u>						_
		77 1					
Leanard La	etificate of	Editertion	A ATT	0770 1 197	1-44-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-	1 11 ATT ATT ATT	_
CICITOTH CC	AUTICALC OF	TAIRCHION	17311Y	4.VI.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*************************************	_,

රසායන විදුනව II இரசாயனவியல் II Chemistry II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

විභාග අංකය :

- 🛠 ආවර්තිතා වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වනු වායු නියතය, $R = 8.314 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$
- * ඇවගාඩ්රෝ නියතය, $N_A = 6.022 \times 10^{23} \ \mathrm{mol}^{-1}$
- 🔻 මෙම පුශ්න පතුගට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ග.

- A කොටස වපුහගත රචනා (පිටු 2 8)
- * **සියලු ම** පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවීය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්<mark>න.</mark>
 - B කොටස සහ C කොටස රචනා (පිටු 9 14)
- * එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ග<mark>නි</mark>මින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවස<mark>න් වූ</mark> පසු A, B සහ C කොටස්වලට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යා හැකි ය.

්ප්රීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොවස	පුශ්න අංකය	ලැබූ ලකුණු
	1	
A	2	
	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
එකතුව		
පිතුලු තය		

අවසාන ලකුණ

ඉලක්කමෙන්	
අකුරින්	•

සංකේත අංක

උත්තර පනු පරීක්ෂක 1	
උත්තර පනු පරීක්ෂක 2	
පරික්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - චපුහගත රචනා

පුශ්න **හතරට ම** මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය **10** කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

- I.~(a)~(i)~I.~ ලුවිස් වනුහයක ඇති පරමාණුවක ආරෝපණය $(\mathbf{Q})~$ නිර්ණය කිරීමට පහත දක්වා ඇති පුකාශනය $\mathbf{N}_{\mathrm{A}},\mathbf{N}_{\mathrm{LP}}$ සහ \mathbf{N}_{BP} යන පද සුදුසු කොටුවල ඇතුළත් කිරීමෙන් සම්පූර්ණ කරන්න. මෙහි,
 - \mathbf{N}_{A} = පරමාණුවේ ඇති සංයුජතා ඉලෙක්ටුෝන සංඛ්‍ාව
 - \mathbf{N}_{LP} = එකසර ඉලෙක්ටුෝන යුගලවල ඇති ඉලෙක්ටුෝන සංඛාාව
 - N_{BP} = පරමාණුව වටා බන්ධන යුගලවල ඇති ඉලෙක්ටුෝන සංඛාාව
 - $\mathbf{Q} = \boxed{ \frac{1}{2}}$
 - II. N_A , N_{LP} සහ N_{BP} සඳහා අගයයන් සුදුසු කොටුවල ඇතුළත් කිරීමෙන් පහත දී ඇති SOF_2 වාුහයෙහි S මත ආරෝපණය, \mathbf{Q} (සල්ෆර්), ගණනය කරන්න.

 \mathbf{Q} (සල්ෆර්)= \mathbf{Q} = \mathbf{Q}

- (ii) $ClO_2F_2^+$ අයනය සඳහා **වඩාත් ම** පිළිගත හැකි ලූවිස් වාූහය අඳින්න.
- (iii) CH₂SO (සල්ෆින්) අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් වුහුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් වුපුහ (සම්පුයුක්ත වුහුහ) **දෙකක්** අඳින්න.

- $({
 m i} {
 m v})$ පහත සඳහන් උපකල්පිත ලුවිස් වාුහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති ${
 m C,N}$ සහ ${
 m O}$ පරමාණුවල
 - I. පරමාණුව <mark>වටා VSEPR</mark> යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

$$\begin{array}{cccc} :O\colon & H\\ \oplus & \# & .. & |\\ C \equiv N - C - O - N - H \end{array}$$

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

0	⁷ H ⁶	
	_	
C ¹ —N ² —C	3-04-N5-	$-H^6$

		N ²	C_3	O^4	N ⁵
I.	VSEPR යුගල්				
II.	ඉලෙක්ටෝන යුගල් ජාාාමිතිය				
Ш·	හැඩය				
IV.	මුහුම්කරණය				

	i	
	á	
	9	
	1	
	Ì	
	i	
	i	
	:	
	÷	
	-	
	(A)	
	i	
	3	

	മറത	,ණිත, පිවිමතා	කෂක	හඳුනාගන්න. (පරමාණුවල	අංකනය (iv) කොටසෙස්	ධන සෑදීමට සහභාගි වන හි ආකාරයට වේ.)						
	I.	N^2 — C^3			C ³	·						
	II.	O ⁴ —N ⁵	O ⁴ .	***************************************	N ⁵							
	III.	N ⁵ —-H ⁶	N ⁵ .		H ⁶							
	IV.	C³—O7	C^3 .	************************	O ⁷							
				·	_	(ලකුණු 5.5 යි)						
) (i)	m 180	ක්කික හැටලක	nd an	ood*28 × oo.c × − 2 0.c ×	⊶්ට බේඛව							
) (i)	ඒවාල	යේ උද්දිගංශ ස	ත් මෙවා න		ක ක්වොන්ටම් අංකය/අං	කවච (පරමාණුක කාක්ෂික) කෙ (m_l) සමග හඳුනාගන්න.						
	ඔබල	න් පිළිතුරු පහ	ත දී අ	ැති වගුවේ ලියන්න.	·							
		උපකවචය		උද්දිගංශ ක්වොත්ටම් අංකය (<i>l</i>)	චුම්බක ක්වොන්ටම් අංකය/අංක (m_l)	එක් එක් උපකව <mark>චයේ</mark> පවතින උප <mark>රිම</mark> ඉලෙක්ටුෝන <mark> සං</mark> ඛාාව						
	••••	• • • • • • • • • • • • • • • • • • • •	•••••									
		•••••	••••									
	II. I	 NO වායුව	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••								
	11. 1	10 0.00										
	•				***************************************							
	III.	KCl කුඩා පුමා	ණයක්	දුවණය වී ඇති ජල සාම්ද	ා ලයක							
		•••••				••••						
(iii)				ාපාංකය පොපේන් (C ₃ H ₈) හ ව <mark>ග</mark> හේතු සහිත ව සඳහ		; ය." මෙම පුකාශනය සත						
					••••••••••••							
				•••••••	• • • • • • • • • • • • • • • • • • • •							
	වරහන් තුළ දී ඇති ගුණය අඩු වන පිළිවෙළට පහත සඳහන් දෑ සකසන්න. (හේතු අවශා නොවේ .)											
(iv)	වරහෘ			•	ගත් දෑ සකසන්න. (හේතු අ	අවශාෘ නොවේ.)						
(iv)		ත් තුළ දී ඇති අ	ිණය අ	•	ගත් දැ සකසන්න. (හේතු අ	අවශා නොවේ .)						
(iv)	I. I	ත් කුළ දී ඇති අ Li ₂ CO ₃ , Na ₂ C	ුණය අ O ₃ , K ₂	· <mark>ඩු වන</mark> පිළිවෙළට පහත සඳඃ		අවශා නොවේ .)						
(iv)	I. I H. 1	ත් කුළ දී ඇති අ Li ₂ CO ₃ , Na ₂ C NF ₃ , NH ₃ , NO	වුණය අ CO ₃ , K ₂ . > DCI, N	වු වන පිළිවෙළට පහත සඳව දුCO ₃ (ජලයෙහි දුාවානතාව) >								
(iv)	I. I H. 1	ත් කුළ දී ඇති අ Li ₂ CO ₃ , Na ₂ C NF ₃ , NH ₃ , NO	වුණය අ CO ₃ , K ₂ . > DCI, N	වු වන පිළිවෙළට පහත සඳව 2CO ₃ (ජලයෙහි දාවානතාව) >								
(iv)	I. I	ත් කුළ දී ඇති අ Li ₂ CO ₃ , Na ₂ C NF ₃ , NH ₃ , NO	ලණය අ O ₃ , K ₂ . > OCI, N . >	වු වන පිළිවෙළට පහත සඳව දුCO ₃ (ජලයෙහි දුාවානතාව) >	>							

(ලකුණු 4.5 යි)

[ඉතරවැනි පිටුව බලන්න.

	මී ආවර්ත තුනක පෑ				ර්ණවත් දු	වයක් ලෙස 8	පවතී.	
(i) X	, Y සහ Z හඳුනා	ාන්න. (පරමා	ණුක සංකේත	දෙන්න.)				
	X =		Y =	•••••		Z =		
(ii) X	, \mathbf{Y} සහ \mathbf{Z} සම්බන්ධ	යෙන් පහත දැස්	හි සාපේක්ෂ වි	ශාලත්ව දක්	වන්න.			
I	. පරමාණුක විශා	_{ලි} ත්වය	>		>			
II	. ඉලෙක්ටුෝන බ	න්ධතාවය			,]	
	-]	
111	. පළමු අයනීකරෑ	ශකතය						
	Y සහ Z හි ඇතාය: අතාගැනීම සඳහා භ						ඇත. මෙම ඇතා	విడ
	ැ. යු: එක් එක් ඇත:		-			· · · · · · · · · · · · · · · · · · ·	3,	
	පුතිකාරකය:	_		•		🔥		
	නිරීක්ෂණය: (ඇනායන සඳහා)		• • • • • • • • • • • • • • • • • • • •					
							••••••	
				•				
	ාත දෑ සමග $\mathbf{X}_2(\mathbf{g})$. $\mathrm{NH}_3(\mathbf{g})$		හා තුලිත රසා 			්න, 		
I	. තනුක NaOH	·	••••					
	යි ගී ඔක්සො අම්ල ඉ							
(,,		, - 22 440	10					
		*						
		SU						
vi) X é	ි එක් ස්වා <mark>භාවික</mark> පු	ගවයක් නම් කර	රන්න .			• • • • • • • • • • • • • • • • • • • •		
	X අඩංගු ඒකඅවය							525
-, -,	සාදයි. ඒකඅවයවක			<u> </u>		and dimit		
П.	එම බහුඅවයවකයෙ	් සම්පූර්ණ නම	ලියන්න		• • • • • • • • • • • • • • • • • • • •			

3.

6	J— 8	දුාවණලෙයහි ඇනායන තුනක් අඩංගු වේ. මෙම අ	ැනායන හඳුනාගැනීම සඳහා පහත පරීක්ෂා සිදු කරන
IJ ŧ	3ට ($oldsymbol{ar{9}}$ දක්වා එක් එක් පරීක්ෂාව සඳහා $oldsymbol{Q}$ දුාවණයෙ	න් අලුත් කොටසක් භාවිත කරන ලදී,)
	·:	පරීක්ෂාව	නිරීක්ෂණය
0	I	තනුක HCl එකතු කරන ලදී.	අවර්ණ වායුවක් පිට විය. පැහැදිලි දුාවණයක් ලැබුණි.
	II	පිටවූ වායුව ලෙඩි ඇසිටේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් මගින් පරීක්ෂා කරන ලදී.	වර්ණ විපර්යාසයක් නොමැත.
@	I	BaCl ₂ දුාවණයක් එකතු කරන ලදී.	සුදු අවක්ෂේපයක් ලැබුණි.
	II	සුදු අවක්ෂේපය පෙරා වෙන් කර එයට තනුක HCl එක් කරන ලදී.	වායුවක් පිට වෙමින් සුදු අවක්ෂේපය දුවණය වුණි.
	Ш	පිටවුණු වායුව ආම්ලිකෘත පොටැසියම් ඩයිකෝමේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් මගින් පරීක්ෂා කරන ලදී.	තැඹිලි පැහැයේ සිට කොළ පැහැයට වර්ණය වෙනස් වුණි.
	දුාව∢	්දු HNO ₃ හා ඇමෝනියම් මොලිබ්ඩේට් ණයකින් වැඩිපුර පුමාණයක් එක් කර මිශුණය සුම් කරන ලදී.	කහ පැහැති අවක්ෂේපයක් නොසෑදුණි.
		වර්ඩා මිශු ලෝහය සහ NaOH දුාවණයක් එක් මිශුණය රත් කරන ලදී.	නෙස්ලර් පුතිකාරකය දුඹුරු පැහැ ගන්වන වායුවක් පිටවුණි.
3	FeCl	${ m l}_3$ දාවණයක් එකතු කරන ලදී.	ලේ රතු පැහැති දුාවණයක් ලැබුණි.
(i)	Q 5:	ාවණයේ ඇති ඇතායන තුන හඳුනාගන්න.	සහ
ii)	පරීක	ත්ෂණ අංක 🕏 III හි සිදු වන පුතිකියාව සඳහා ෭	තුලිත රසායනික සමීකරණය ලියන්න.
			(ලකුණු 5.0 යි.)
මති(^{નું} વર ^{હે}		ත් හි ජලීය දුාවණයක පහත සමතුලිතතාවය පවතී.
G)	രത ട	$\mathrm{CH_3NH_2(aq)} + \mathrm{H_2O(l)} \implies \mathrm{CH_3NH_3^+(aq)}$ ගිල්ඇම්න් හි K_b සඳහා පුකාශනය ලියන්න.) + OH (aq)
(1)			

	l	
	Ì	
7	ŀ	
		7
		Ī
		<
		5
		٥
	1	
7		7)
	Ċ	
		٥
	i	

(iii)	ඉහත (ii) හි දුාවණයෙන් $25.00~{ m cm}^3$ පරිමාවක් $0.20~{ m mol~dm}^{-3}$ HCl සමග $25~{ m ^{\circ}C}$ දී අනුමාපනය කරන ලදී. සමකතා ලක්ෂායේ දී දුාවණයේ pH අගය ගණනය කරන්න. ($25~{ m ^{\circ}C}$ දී $K_{ m w}=1.0\times10^{-14}~{ m mol}^2~{ m dm}^{-6}$)	මෙම නිරයේ කිසිවක් නො ලියන්න
(<i>b</i>) පරි සම	(ලකුණු 5.0 යි) ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීම්ත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තලිනතාවයට එළඹීමට ඩෙ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දාවණයක් ලබා	
සම දූනි	ක්ෂණයක දී $MX(s)$ නම් අවක්ෂේපයකට $1.00\mathrm{moldm^{-3}HNO_3}$ සීම්ත පරිමාවක් එකතු කර $25^\circ\mathrm{C}$ දී පද්ධතිය තුලිකතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු $HX(aq)$ දුබල අම්ලයක් ලෙස කිුයා කරයි.	
සම දූනි	ක්ෂණයක දී $\mathbf{MX}(\mathbf{S})$ නම් අවක්ෂේපයකට $1.00\mathrm{mol}\mathrm{dm}^{-3}\mathrm{HNO}_3$ සීම්ත පරිමාවක් එකතු කර $25^\circ\mathrm{C}$ දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අව <mark>ක්ෂේප</mark> ය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා	
සම දූනි	ක්ෂණයක දී $MX(s)$ නම් අවක්ෂේපයකට $1.00\mathrm{moldm^{-3}HNO_3}$ සීම්ත පරිමාවක් එකතු කර $25^\circ\mathrm{C}$ දී පද්ධතිය තුලිකතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු $HX(aq)$ දුබල අම්ලයක් ලෙස කිුයා කරයි.	
සම දූනි	ක්ෂණයක දී $MX(s)$ නම් අවක්ෂේපයකට $1.00\mathrm{moldm^{-3}HNO_3}$ සීම්ත පරිමාවක් එකතු කර $25^\circ\mathrm{C}$ දී පද්ධතිය තුලිකතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු $HX(aq)$ දුබල අම්ලයක් ලෙස කිුයා කරයි.	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීම්ත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න.	
සම දූති (i)	ක්ෂණයක දී $MX(s)$ නම් අවක්ෂේපයකට $1.00\mathrm{moldm^{-3}HNO_3}$ සීම්ත පරිමාවක් එකතු කර $25^\circ\mathrm{C}$ දී පද්ධතිය තුලිකතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු $HX(aq)$ දුබල අම්ලයක් ලෙස කිුයා කරයි.	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	
සම දූති (i)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුිිියා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුිිිිිියා ලියන්න. HX(aq) හි විඝටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය	

		В	C	D	
		e Partin			
	(iii)	ලබා දුනි. ${f G}$ පාරතිුමාන සමාවය	වික <mark>තාව</mark> ය පෙන්වයි. E, F සහ G ය වියා කළ විට එකම H නමැති එලය	න් අතර C හා D , එකම . G නමැති ඵලය තු සංයෝග තුනටම C ₅ H ₁₀ අණුක සූතුය සෑදුණි.	5 5
	(ii)	A හි වාපුහය කුමක් ද?	- Kalmin		
	(ii)	NaBH ₄ සමග පුතිකිුයා කිරීමේද	මෙග පුතිකිුයා කළ විට පිළිවෙළින්) ග් පිළිවෙළින් B, C සහ D බවට නැ	X, Y සහ Z සැදේ. X, Y සහ Z යන එල වත පරිවර්තනය කළ හැක.	
	℃ ී පු	කාශ සමාවයවිකතාවය පෙන්වයි A, B සහ C සඳහා තිබිය හැකි	3.		
4 . (a) C₌H	O අණක සතය සහිත A , B. C	•••••••••••••••••••••••••••••••••••••••	(ලකුණු 5.0 යි) කෙති වාූූූහ සමාවයවික වේ. A, B සුදු	

(iv) ${f G}$ හි පාරතුිමාන සමාවයවිකවල වාුුහ අඳින්න.

(ලකුණු 4.8 යි)

කිසිවක් නො ලියා

(b) පහත දී ඇති පුතිකිුයා අනුකුම දෙක සලකන්න.

(i) \mathbf{J},\mathbf{K} සහ \mathbf{L} හි වනුහ පහත දී ඇති කොටු තුළ අඳින්න.

(ii) V සහ W පුතිකාරක පහත දී ඇති කොටු තුළ ලියන්න.

(iii) ${\bf A_E}, {\bf A_N}, {\bf S_E}, {\bf S_N}$ හෝ ${\bf E}$ ලෙස අදාළ කොටුවෙහි ලියා ${\bf 1, 2}$ සහ ${\bf 3}$ යන එක් එක් පුතිකියාව ඉලෙක්ටෝෆිලික ආකලන $({\bf A_N})$, ඉලෙක්ටෝෆිලික ආදේශ $({\bf S_E})$, නියුක්ලියෝෆිලික ආදේශ $({\bf S_N})$ හෝ ඉවත් වීම $({\bf E})$ ලෙස වර්ගීකරණය කරන්න.

(ලකුණු 4.0 යි)

- (c) (i) CH₃CH=CH₂ සහ HBr අතර සිදුවන පුතිකිුයාවෙහි **පුධාන** එලයෙහි ව**ූ**හය කුමක් ද?
 - (ii) ඉහත සඳහන් කළ පුතිකිුියාවෙහි යන්තුණය ලියන්න.

(ලකුණු 1.2 යි)

100

සියලු ම හිමිකම් ඇවිරිනී / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්**ලේ අපුවැනි. වේ අත්වාන දෙපාල් නාම්ලේ මු**ලාක දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இහங்கைப் பரீட்சைத் නිශාශக்களம் இலங்கைப் ப**ர**ීත්වේ නිශාශக்களும் இலங்கைப் பரீட்சைத் නිශාශக்களும் இலங்கைப் பரீட்சைத் නිශාශக்களும் වෙත්තෙන් වේ වේ සහස්තිය වේ සහස්ත

අධායන පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්කු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஒகஸ்ற General Certificate of Education (Adv. Level) Examination, August 2017

රසායන විදපාව II இரசாயனவியல் II Chemistry II

* සාර්වනු වායු නියනය $R=8.314~{
m J~K^{-1}~mol^{-1}}$ * ඇවගාඩ්රෝ නියනය $N_A=6.022~{
m \times}~10^{23}~{
m mol}^{-1}$

B කොටස — රවනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

5. (a) NaHCO $_3$ (s), 100 °C ට ඉහළ උෂ්ණත්වයකට රත් කළ විට පහත පුතිකිුයාව සිදු වේ.

2 NaHCO₃(s)
$$\rightleftharpoons$$
 Na₂CO₃(s) + CO₂(g) + H₂O(g)

 $m NaHCO_3(s)$ නියැදියක් පරිමාව $5.00~{
m dm}^3$ වන රේචනය කළ සංවෘත දෘඪ භාජනයක් තුළ තබා $328~{
m ^{\circ}C}$ ට රක් කරන ලදී. සමතුලිතතාවයට එළඹුණු පසු $m NaHCO_3(s)$ කුඩා පුමාණයක් තවදුරටත් භාජනයෙහි ඉතිරිව තිබුණි. භාජනයේ පීඩනය $1.0 \times 10^6 \, Pa$ බව සොයා ගන්නා ලදී. භාජනයේ ඉතිරිව ඇති ඝන දුවායන්හි පරිමාව නොසලකා හැරිය හැකි බව උපකල්පනය කරන්න. $328~{
m ^{\circ}C}$ දී $m RT = 5000 \, J \, mol^{-1}$ වේ.

- (i) 328 °C දී සමතුලිකතාවයට එළඹුණු විට භාජනයේ ඇති H₂O(g) මවුල පුමාණය ගණනය කරන්න.
- (ii) $328~^\circ\mathrm{C}$ දී ඉහත සමතුලිතතාවය සඳහා K_{p} ගණනය කර **එන**යින් K_{c} ගණනය කරන්න.
- (iii) ඉහත විස්තර කරන ලද භාජනයට $328\,^{\circ}$ C දී $CO_2(g)$ අමතර පුමාණයක් එකතු කරන ලදී. සමතුලිතතාවයට නැවත එළඹුණු විට $CO_2(g)$ හි අාංශික පීඩනය $H_2O(g)$ හි අාංශික පීඩනය මෙන් සිව් (4) ගුණයක් විය. මෙම තත්ත්වය යටතේ දී $CO_2(g)$ හා $H_2O(g)$ හි අාංශික පීඩන ගණනය කරන්න.

(ලකුණු 7.5 යි.)

- (b) $2 \text{ NaHCO}_3(s) \to \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(l) + \text{CO}_2(g)$ පුතිකිුයාවේ සම්මත එන්නැල්පි විපර්යාසය (ΔH°) නිර්ණය කිරීම සඳහා පියවර දෙකකින් (I හා II) සමන්විත පහත සඳහන් පරීක්ෂණය කාමර උෂ්ණත්වයේ දී සිදු කරන ලදී.
 - පියවර I: බීකරයක ඇති 1.0 mol dm^3 HCl අම්ල දාවණ 100.00 cm^3 ට $NaHCO_3(s)$ 0.08 mol එකතු කරන ලදී. උෂ්ණත්වයෙහි උපරිම **පහත වැටීම** $5.0 \, ^{\circ}$ C බව සොයා ගන්නා ලදී.

[සිදු වන පුතිකියාව: NaHCO
$$_3$$
(s) + HCl(aq) \longrightarrow Na+(aq) + Cl^-(aq) + H $_2$ O(l) + CO $_2$ (g)]

පියවර II: බීකරයක ඇති 1.0 mol dm $^{-3}$ HCl අම්ල දාවණ $100.00~{
m cm}^3$ ව $Na_2CO_3(s)~0.04$ mol එකතු කරන ලදී. උෂ්ණත්වයෙහි උපරිම **ඉහළ යාම** $3.5~{
m ^{\circ}C}$ බව සොයා ගන්නා ලදී.

[සිදු වන පුතිකියාව: Na₂CO₃(s) + 2 HCl(aq) → 2 Na⁺(aq) + 2 Cl⁻(aq) + H₂O(l) + CO₂(g)]

m HCl අම්ල දුාවණයෙහි නියත පීඩනයේ දී විශිෂ්ට තාප ධාරිතාව හා ඝනත්වය පිළිවෙළින් $m 4.0~J~g^{-1}~K^{-1}$ හා $m 1.0~g~cm^{-3}$ වේ. ඉහත පියවර දෙකෙහි දී ඝනයන් එකතු කළ පසු දුාවණයන්හි පරිමා සහ ඝනත්ව වෙනස නොසැලකිය හැකි බව උපකල්පනය කරන්න.

- (i) ඉහත I හා II පියවරවල දී ඇති පුතිකිුයාවන්හි එන්තැල්පි විපර්යාසයන් (kJ mol⁻¹ වලින්) ගණනය කරන්න.
- (ii) ඉහත (i) හි ලබා ගත් අගයයන් හා **තාප රසායනික චකුයක්** භාවිතයෙන්,
 - 2 NaHCO $_3$ (s) → Na $_2$ CO $_3$ (s) + H $_2$ O(l) + CO $_2$ (g) පුතිකිුයාවේ ΔH^o ගණනය කරන්න.
- (iii) පුතිකිුයාවක තාප විපර්යාසය, කුමන තත්ත්වය යටතේ දී එහි එන්තැල්පි වෙනසට සමාන වේ දැයි සඳහන් කරන්න.
- (iv) ඉහත පරීක්ෂණාත්මක කිුයාපිළිවෙළෙහි දෝෂ පුභව **දෙකක්** හඳුනාගන්න.

(ලකුණු 7.5 යි.)

- 6. (a) (i) ප්‍රතික්‍රියකයන්හි සාන්දුණ වැඩි කළ විට ප්‍රතික්‍රියාවක ශීස්‍රතාව වැඩි වන්නේ මන් දැයි පැහැදිලි කරන්න.
 - (ii) සාමානාශයන් පුතිකිුියාවක ශීසුතාව උෂ්ණත්වය වැඩි වීමත් සමග වැඩි වන්නේ මන් දැයි පැහැදිලි කිරීමට හේතු **දෙකක්** දක්වන්න.
 - (iii) මූලික පුතිකිුයාවක පෙළ හා අණුකතාවය අතර සම්බන්ධය කුමක් ද?
 - (iv) NO + $O_2 o NO_2$ + O යන මූලික පුතිකිුිිියාවෙහි සකිුිය සංකීර්ණයෙහි වවුහයෙහි දළ සටහනක් අඳින්න. සැදෙමින් පවතින බන්ධන '**සැදෙන**' හා කැඩෙමින් පවතින බන්ධන '**කැඩෙන**' ලෙස නම් කරන්න.
 - (v) ශීසුතා නියතය k, හා ස්ටොයිකියෝමිතික සංගුණක x,y,z වන $x\mathbf{A}+y\mathbf{B}$ \longrightarrow $z\mathbf{C}$ යන මූලික පුතිකියාව සඳහා ශීසුතා පුකාශනය ලියන්න.

(ලකුණු 5.0 යි.)

(b) $x\mathbf{A} + y\mathbf{B} \to z\mathbf{C}$ යන පුතිකියාව කාබනික දාවකයකින් හා ජලයෙන් සමන්විත ද්විකලාපීය පද්ධතියක් තුළ අධායයනය කරන ලදී. \mathbf{A} සංයෝගය කලාප දෙකෙහිම දාවා වන අතර \mathbf{B} සහ \mathbf{C} සංයෝග ජලීය කලාපයෙහි පමණක් දාවා වේ.

කලාප අතර
$${f A}$$
 හි වාහප්තිය සඳහා විභාග සංගුණකය, ${f K}_{
m D}=rac{{f A}_{
m (org)}}{{f A}_{
m (aq)}}=4.0$ වේ.

 ${f A}$ සංයෝගය ද්විකලාපීය පද්ධතියට එකතු කර සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. ජලීය කලාපයට ${f B}$ සංයෝගය නික්ෂේපණය (injecting) කිරීමෙන් පුතිකියාව ආරම්භ කරන ලදී. පද්ධතියෙහි උෂ්ණත්වය නියත අගයක පවත්වා ගන්නා ලදී. සිදු කරන ලද පරීක්ෂණවල පුතිඵල පහත දක්වා ඇත.

පරීක්ෂණ අංකය	කාබනික කලාපයෙහි පරිමාව (cm³)	ජලීය කලාපයෙහි පරිමාව (cm³)	පද්ධතියට එකතු කළ A පුමාණය (mol)	නික්ෂේපින B පුමාණ <mark>ය (m</mark> ol)	ආරම්භක ශීසුතාව, $\left(rac{-\Delta C_{f A}}{\Delta t} ight)$ (mol dm $^{-3}$ s $^{-1}$)
I	_	100.00	1.00×10^{-2}	1.00×10^{-2}	1.20×10^{-5}
II	100.00	100.00	1.25×10^{-1}	1.00×10^{-2}	7.50×10^{-5}
III	50.00	50.00	6.25×10^{-2}	1.00×10^{-2}	1.50×10^{-3}

සටහන: I වන පරීක්ෂණය කාබනික කලාපය නොමැතිව සිදු කරන ලදී.

- (i) ඉහත I, II හා III පරීක්ෂණවල ජලීය කලාපයෙහි ආරම්භක A සාන්දුණය ගණනය කරන්න.
- (ii) A අනුබද්ධයෙන් පුතිකියාවෙහි පෙළ සොයන්න.
- (iii) **B** අනුබද්ධයෙන් පුතිකියාවෙහි පෙළ සොයන්න.
- (iv) පුතිකියාවෙහි ශීඝුතා නියත<mark>ය ග</mark>ණනය කරන්න.
- (v) ඉහත III පරීක්ෂණයෙහි A එකතු කර සමතුලිතතාවයට එළඹීමට ඉඩ හැරීමෙන් පසු කාබනික කලාපයෙන් $10.00~{
 m cm}^3$ පරිමාවක් ඉවත් කළේ නම්, පුතිකියාවේ ආරම්භක ශීඝුතාව ගැන කුමක් පුකාශ කළ හැකි ද? ඔබගේ පිළිතුරට හේතුව/හේතු දක්වන්න.

(ලකුණු 5.0 යි.)

(c) \mathbf{X} හා \mathbf{Y} දුව<mark>යන්හි</mark> මිශුණයක් පරිපූර්ණ ලෙස හැසිරේ. නියත උෂ්ණත්වයක ඇති දෘඪ සංවෘත භාජනයක් තුළ වාෂ්ප කලාපය සමග සමතුලිකව ඇති දුව කලාපයෙහි \mathbf{X} මවුල 1.2 හා \mathbf{Y} මවුල 2.8 ඇති විට, මුළු වාෂ්ප පීඩනය 3.4×10^4 Pa වේ. මෙම උෂ්ණත්වයේ දීම වාෂ්ප කලාපය සමග සමතුලිතව ඇති දුව කලාපයෙහි සංයුතිය \mathbf{X} මවුල 1.2 හා \mathbf{Y} මවුල 4.8 වන විට, මුළු වාෂ්ප පීඩනය 3.6×10^4 Pa වේ. මෙම උෂ්ණත්වයේ දී \mathbf{X} හා \mathbf{Y} හි සංතෘප්ත වාෂ්ප පීඩන ගණනය කරන්න.

(ලකුණු 5.0 යි.)

7. (a) පහත සඳහන් පරිවර්තනය පියවර **පහකට (5) නොවැඩි පියවර සංඛනවකින්** ඔබ සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න.

$$\bigcirc \longrightarrow \bigcirc_{\mathrm{NO}_2}^{\mathrm{CO}_2\mathrm{F}}$$

(ලකුණු 3.0 යි.)

(b) ${f A}$ සහ ${f B}$ සංයෝග දෙක රසායනාගාරයේ දී පිළියෙල කිරීමට අවශාව ඇත.

- (i) අවශා පරිදි X සහ Y යොදා ගනිමින් A සහ B එකිනෙකක් පියවර **පහකට** (5) **නොවැඩි පියවර සංඛනාවකින්** ඔබ පිළියෙල කරන්නේ කෙසේ දැයි පෙන්වන්න.
- (ii) ඉහත දී ඇති A සහ B භාවිත කර පියවර **පහකට** (5) **නොවැඩ් පියවර සංඛනාවකින් C** සංයෝගය ඔබ පිළියෙල කරන්නේ කෙසේ දැයි පෙන්වන්න.

(ලකුණු 9.0 යි.)

(c) ඇසටයිල් ක්ලෝරයිඩ් හා NaOH අතර පුතිකිුයාවේ යන්තුණය පිළිබඳ ඔබගේ දැනුම භාවිත කරමින්

සහ NaOH අතර පුතිකිුයාව සඳහා යන්තුණයක් යෝජනා කරන්න.

(ලකුණු 3.0 යි.)

C කොටස — රචනා

පුශ්න **දෙකකට** ප<mark>මණක්</mark> පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

8. (a) Y දාවණයෙහි කැටායන තුනක් අඩංගු වේ.

මමම කැටායන හඳුනාගැනීම සඳහා පහත පරීක්ෂා සිදු කරන ලදී.

	පරීක්ෂාව	නිරීක්ෂණය
0	Y හි කුඩා කොටසකට තනුක HCl එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් ($\mathbf{P}_{\mathbf{l}}$)
0	$\mathbf{P_1}$ පෙරා වෙන් කර දාවණය තුළින් $\mathrm{H_2S}$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක් ($\mathbf{P_2}$)
3	$\mathbf{P_2}$ පෙරා වෙන් කරන ලදී. $\mathbf{H_2S}$ ඉවත් කිරීම සඳහා පෙරනය නටවා, සිසිල් කර, $\mathrm{NH_4OH/NH_4Cl}$ එක් කරන ලදී.	අවක්ෂේපයක් නොමැත.
4	දුාවණය තුළින් $\mathrm{H_2S}$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක් ($\mathbf{P_3}$)

f B $f P_1, f P_2$ සහ $f P_3$ අවක්ෂේප සඳහා පහත පරීක්ෂා සිදු කරන ලදී.

අවක්ෂේපය	පරීක්ෂාච	නිරික්ෂණය
P ₁	$I.{f P}_{I}$ ට ජලය එක් කර මිශුණය නටවන ලදී.	P ₁ හි කොටසක් දුවණය වුණි.
	II. ඉහත I හි මිශුණය උණුසුම්ව තිබිය දී පෙරා, පෙරනය $(\mathbf{F_1})$ හා ශේෂය $(\mathbf{R_1})$ මත පහත පරීක්ෂා සිදු කරන ලදී.	
	පෙරනය (F ₁)	
	$ullet$ උණුසුම් \mathbf{F}_1 ට තනුක $\mathrm{H_2SO_4}$ එක් කරන ලදී.	සුදු අවක්ෂේපයක්
	dෙනය (R _I)	
	• උණුසුම් ජලයෙන් R 1 හොඳින් සෝදා කනුක NH4OH එක් කරන ලදී.	R 1 දුවණය වුණි.
	• ඉන්පසු, KI දාවණයක් එක් කරන ලදී.	තද කහ පැහැති අවක්ෂේ <mark>පයක්</mark>
P ₂	උණුසුම් තනුක HNO_3 හි $\mathbf{P_2}$ දුවණය කර පොටෑසියම් කෝමේට් දුාවණයක් එක් කරන ලදී.	කහ පැහැති අවක් <mark>ෂේප</mark> යක්
P ₃	I . උණුසුම් සාන්දු $\mathrm{HNO_3}$ හි $\mathbf{P_3}$ දුවණය කරන ලදී.	රෝස පැහැති දාවණයක් (1 දාව ණය)
	II. ඉහත I දුාවණයට පහත දෑ එකතු කරන ලදී. • සාන්දු HCl	නිල් පැහැති දාවණයක් (<mark>2 දාවණ</mark> ය)
	• තනුක NH₄OH	කහ-දුඹුරු පැහැති දුාවණයක් (3 දාවණය)

- (i) කැටායන **තුන** හඳුනාගන්න. (හේතු අවශා **නැත**.)
- (ii) I. $oldsymbol{P_1}, \, oldsymbol{P_2}$ හා $oldsymbol{P_3}$ අවක්ෂේප
 - II. 1,2 හා 3 දාවණවල වර්ණයන්ට හේතුවන විශේෂයන් හඳුනාගන්න.

(**සැ.යු:** රසායනික සූතු **පමණක්** ලියන්නු,)

(iii) ඉහත 🛕 🛈 හි අවක්ෂේප වන කැ<mark>ටාය</mark>නයි/කැටායන ආම්ලික මාධායේ දී අවක්ෂේප නොවන්නේ මන් දැයි **කෙට්යෙන්** පැහැදිලි කරන්න.

(ලකුණු 7.5 යි.)

(b) සන සාම්පලයක $({
m NH_4})_2{
m SO_4}$, ${
m NH_4}{
m NO_3}$ සහ පුතිකියාශීලි නොවන දවා අඩංගු බව සොයා ගන්නා ලදී. මෙම සාම්පලයේ ඇමෝනියම් ලවණ පුමාණය නිර්ණය කිරීම සඳහා පහත දක්වා ඇති කියාපිළිවෙළ යොදා ගන්නා ලදී. සන සාම්පලයෙන් $1.00\,{
m g}$ කොටසක් ජලයේ දුවණය කර $250.00\,{
m cm}^3$ දක්වා පරිමාමිතික ප්ලාස්කුවක් තුළ තනුක කරන ලදී. (මින් පසු ${
m S}$ දාවණය ලෙස හැඳින්වේ.)

තුියාපිළිවෙළ 1

S දාවණයෙන් 50.00 cm³ කොටසක් පුබල ක්ෂාරයක (NaOH) වැඩිපුර පුමාණයක් සමග පිරියම් කර නිදහස් වූ වායුව 0.10 mol dm⁻³ HCl 30.00 cm³ තුළට යවන ලදී. ඉතිරිව ඇති HCl උදාසීන කිරීමට (ෆිනොල්ප්කලීන් දර්ශකය ලෙස යොදා ගනිමින්) අවශා වූ 0.10 mol dm⁻³ NaOH පරිමාව 10.20 cm³ විය.

කුියාපිළිවෙළ 2

S දාවණයෙන් $25.00\,\mathrm{cm}^3$ කොටසකට Al කුඩු ද ඉන්පසු පුබල ක්ෂාරයක වැඩිපුර පුමාණයක් ද එකතු කර මිශුණය රත් කරන ලදී. නිදහස් වූ **වායුව** $0.10\,\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{HCl}~30.00\,\mathrm{cm}^3$ තුළට යවන ලදී. ඉතිරිව ඇති HCl උදාසීන කිරීමට (ෆිනොල්ප්තලීන් දර්ශකය ලෙස යොදා ගනිමින්) අවශා වූ $0.10\,\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{NaOH}$ පරිමාව $15.00\,\mathrm{cm}^3$ විය.

(සැ.යු: ලිට්මස් කඩදාසි භාවිත කරමින් 1 සහ 2 කිුයාපිළිවෙළහි වායු පිටවීම සම්පූර්ණ දැයි පරීක්ෂා කරන ලදී.)

- (i) කිුයාපිළිවෙළ 1 හි නිදහස් වූ **වායුව** හඳුනාගන්න.
- (ii) කියාපිළිවෙළ 2 හි නිදහස් වූ වායුව හඳුනාගන්න.
- (iii) කියාපිළිවෙළ 1 සහ 2 හි දී සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (iv) ඝන සාම්පලයේ ඇති (NH $_4$) $_2$ SO $_4$ සහ NH $_4$ NO $_3$ යන එක් එක් සංයෝගයෙහි ස්කන්ධ පුතිශනය ගණනය කරන්න. (H = 1, N = 14, O = 16, S = 32)

(ලකුණු 7*5* යි.)

- 9. (a) පහත දක්වා ඇති කාර්මික කිුියාවලි සලකන්න.
 - I. විරංජන කුඩු නිෂ්පාදනය
 - II. කැල්සියම් කාබයිඩ් නිෂ්පාදනය
 - III. යුරියා නිෂ්පාදනය
 - IV. සල්ෆියුරික් අම්ල නිෂ්පාදනය (ස්පර්ශ කුමය)
 - (i) එක් එක් කුියාවලියෙහි දී භාවිත කරන ආරම්භක දුවා සඳහන් කරන්න.
 - (ii) අවශා තැන්වල දී සුදුසු තත්ත්ව සඳහන් කරමින් එක් එක් කියාවලියේ සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
 - (iii) පහත එක් එක් දෑ සඳහා පුයෝජන **දෙක** බැගින් සඳහන් කරන්න:

විරංජන කුඩු, කැල්සියම් කාබයිඩ්, යූරියා හා සල්ෆියුරික් අම්ලය

(ලකුණු 7.5 යි.)

- (b) ඕසෝන් වියන හායනය (OLD), ගෝලීය උණුසුම (GW) හා අම්ල වැසි (AR) වර්තමානයේ දී අප මුහුණ <mark>දෙන</mark> පුධාන පාරිසරික ගැටලු වේ. පහත දැක්වෙන පුශ්න පරිසරය සහ ඉහත දැක්වෙන ගැටලු හා සම්බන්ධ ය.
 - (i) කාබන් සහ නයිටුජන් චකු පරිසරයේ කිුයාත්මක වන වැදගත් රසායනික චකු දෙකක් වේ.
 - I. කාබන් චකුය සම්බන්ධයෙන් පහත එක් එක් දැහි කාබන් පවතින පුධාන ආක<mark>ාර එක</mark> බැගින් සඳහන් කරන්න:
 - වායුගෝලයේ, ශාකවල, ජලයෙහි, පෘථිවි කබොලේ.
 - II. නයිටුජන් චකුයෙහි වායුගෝලයේ ඇති N_2 වායුව ඉවත් වීම සහ පුතිපූර්ණ වීම සිදු වන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.
 - III. කාබන් චකුයෙහි ක්ෂුදු ජීවීන් සහභාගි වන ආකාර **දෙකක්** සඳහන් කරන්න.
 - (ii) අම්ල වැසි ඇති වීමට දායක වන වායුගෝලයේ පවතින නයිටුජ<mark>න් අ</mark>ඩංගු පුධාන සංයෝග **දෙක** හඳුනාගන්න. තුලින රසායනික සමීකරණ ආධාරයෙන් මෙම සංයෝග වැසි <mark>ජලය ආම</mark>ලික කරන්නේ කෙසේ දැයි පෙන්වන්න.
 - (iii) ඉහත සඳහන් **එක් එක්** පාරිසරික ගැටලුවට (OLD, GW, AR) දායක වන කාර්මික කිුියාවලි **දෙක බැගින්** හඳුනාගන්න. මෙම **එක් එක්** කාර්මික කිුිියාවලිය මගින් වායුගෝලයට මුදාහැරෙන **එක්** රසායනික සංයෝගයක් බැගින් හඳුනාගන්න.
 - (iv) ජලයට සහ පසට නයිටුජන් සංයෝග එකතු වී<mark>මට සැ</mark>ලකිය යුතු අන්දමින් දායක වන පුධාන කාර්මික කිුිිියාවලිය හඳුනාගන්න. මෙම සංයෝග ජලයට හා පසට ඇතුල් වන මාර්ග සම්බන්ධව අදහස් දක්වන්න.
 - (v) මීතොටමුල්ල සිද්ධිය වැනි අකුමවත්ව නාගරික ඝන අපදුවා බැහැර කිරීම ඉහත සඳහන් පාරිසරික පුශ්න තුනෙන් එකකට සැලකිය යුතු දායකත්වයක් දක්වයි. එම පාරිසරික පුශ්නය හඳුනාගෙන අකුමවත් ලෙස නාගරික ඝන අපදුවා බැහැර කිරීම අදාළ පාරිසරික පුශ්නයට දායක වන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(ලකුණු 7.5 යි.)

10. (a) (i) $\mathrm{TiCl_3}$ යනු ලා දම් පැහැති ඝනයකි. ජලයෙහි දී \mathbf{A} හා \mathbf{B} නම් $\mathrm{TiCl_3}$ හි සජලනය වූ විශේෂ දෙකක් සෑදෙයි. \mathbf{A} සහ \mathbf{B} යනු $\mathbf{H_2O}$ හා Cl^- ලිගන අඩංගු අෂ්ටතලීය ජාගම්තියක් සහිත ටයිටේනියම්හි සංගත සංයෝග වේ. \mathbf{A} හා \mathbf{B} වෙන් කර ඒවායෙහි පරමාණුක සංයුති නිර්ණය කරන ලදී. පහත සඳහන් කිුිිියාපිළිවෙළ භාවිත කර සංයෝග තවදුරටත් විශ්ලේෂණය කරන ලදී.

A හි විශ්ලේෂණය

f A හි $0.20~{
m mol~dm^{-3}}$ දුංවණයකින් $50.00~{
m cm^3}$ ට වැඩිපුර $AgNO_3(aq)$ එක් කළ විට තනුක ඇමෝනියා හි දුංවා සුදු පැහැති අවක්ෂේපයක් ලැබුණි. අවක්ෂේපය සෝදා, උදුනක වේලූ විට (නියත ස්කන්ධයක් ලැබෙන තුරු) ස්කන්ධය $4.305~{
m g}$ විය.

B හි චිශ්ලේෂණය

 ${f B}$ හි $0.30~{
m mol~dm^{-3}}$ දාවණයකින් $50.00~{
m cm^3}$ ට වැඩිපුර ${
m AgNO_3(aq)}$ එක් කළ විට ${f A}$ හි විශ්ලේෂණයේ දී ලැබුණු සුදු අවක්ෂේපය ම ලැබුණි. අවක්ෂේපය සෝදා, උදුනක වේලූ විට (නියත ස්කන්ධයක් ලැබෙන තුරු) ලැබුණු ස්කන්ධය ද $4.305~{
m g}$ විය.

(H = 1, O = 16, Cl = 35.5, Ti = 48, Ag = 108)

- $I. \ \mathbf{A}$ හා \mathbf{B} හි දී ටයිටේනියම්හි ඉලෙක්ටොනික විනාහසය ලියන්න.
- II. A හා B හි වනුහ අපෝහනය කරන්න.
- III. A හා B හි IUPAC නම් දෙන්න.

(ii) X,Y හා Z යනු M(II) ලෝහ අයනයෙහි සංගත සංයෝග වේ. ඒවාට තලීය සමවතුරසුාකාර ජාාමිතියක් ඇත. X උදාසීන සංයෝගයකි. Y හි ජලීය දුාවණයකට $BaCl_2(aq)$ එක් කළ විට තනුක අම්ලවල අදුාවා සුදු පැහැති අවක්ෂේපයක් ලැබේ. ජලීය දුාවණයේ දී Z අයන තුනක් ලබා දෙයි.

පහත දී ඇති ලැයිස්තුවෙන් සුදුසු විශේෂ තෝරා ගනිමින් \mathbf{X},\mathbf{Y} හා \mathbf{Z} හි වනුහ සූතු ලියන්න.

$$K^+$$
, NH_3 , CN^- , SO_4^{2-}

(ලකුණු 7.5 යි.)

(b)

ඉහත රූප සටහනේ පෙන්වා ඇති පරිදි විදාුුත් රසායනික කෝෂයක් සාදා ඇත. පහත දත්ත සපයා ඇත.

$$E^{\circ} = 0.22 V$$

$$E^{\circ} = 0.27V$$

- (i) ඉහත කෝෂයෙහි ඔක්සිහරණ අර්ධ පුතිකිුයාව ලියන්න.
- (ii) ඉහත කෝෂයෙහි ඔක්සිකරණ අර්ධ පුතිකි<mark>යාව ලි</mark>යන්න.
- (iii) කෝෂ පුතිකිුයාව ගොඩනගන්න.
- (iv) දී ඇති \mathbf{E}^{o} අගයයන් භාවිතයෙන් කෝෂයෙහි විදයුත් ගාමක බලය ගණනය කරන්න.
- (v) ඉහත විදාූත් රසායනික කෝෂයේ සම්මත ලිඛිත නිරූපණය දෙන්න.
- (vi) ඉහත විදාුත් රසායනික කෝෂයෙහි විදාුත් ගාමක බලය ක්ලෝරයිඩ අයන සාන්දුණය මත රඳාපවතී ද? ඔබගේ පිළිතුර සඳහා හේතුව/හේතු දක්වන්න.
- (vii) කෝෂයෙන් $0.10 \, \mathrm{A}$ වූ ධාරාවක් විනාඩි $60 \, \mathrm{m}$ කාලයක් තුළ දී ලබා ගත් විට $\mathrm{Ag}(\mathrm{s}) + \mathrm{AgCl}(\mathrm{s})$ ස්කන්ධයෙහි සිදු වූ වෙනස ගණනය කරන්න.
- (viii) ඉහත (vii) හි ධාරාව ලබා ගත් පසු දුාවණයෙහි ක්ලෝරයිඩ අයන සාන්දුණය කුමක් විය හැකි ද? $(m_1 cold)$ නියතය, $F = 96,500 \, C \, mol^{-1}, \, Cl = 35.5, \, Ag = 108)$

(ලකුණු 7.5 යි.)

ආවර්තිතා වගුව

		_																
	1																	2
1	H		,															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cď	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

												,			
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu
	89						L	ļ							
	l	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Qe	363						+3								

artment of Examinations, still anka