ITPA Global H-Mode Confinement Database Version DB5.2.3 variable definitions

Introduction	
List of variables	3
General variables	4
Plasma composition	17
Geometry	
Machine condition	34
Magnetics	37
Plasma composition	49
Impurities	56
Input powers	58
Temperatures	72
Plasma rotation	77
Energies	
Energy confinement times	
Recommended variables	
Standard dataset flags	
References	

Introduction

Usage

The database and its description in this file are protected by the <u>CC BY 4.0</u> license, which roughly means that all material can be copied, redistributed and adapted in any reasonable manner, under condition of citation of [<u>Verdoolaege21</u>].

Time averaging

The majority of the data was obtained by averaging over time windows, defined w.r.t. the variable <u>TIME</u>, as specified in the table below.

MHD analysis

The MHD analysis was either based on a full equilibrium fit, or on a current filament approach. This is specified in more detail for each device in the table below.

Device	Time averaging (ms)	MHD analysis
ASDEX	±2	Current filaments
ASDEX Upgrade	$\pm 50 - 100$	Full equilibrium code fit based on function parameterization
Alcator C-Mod	$\pm 20 - 340 (0.3 - 5 * TAUTH)$	Full equilibrium fit (EFIT)
COMPASS-D	<u>±</u> 1	Full equilibrium fit (EFIT)
DIII-D	±5	Full equilibrium fit (EFIT)
JET	±100	Before 1994: current filaments
		From 1994: full equilibrium fit (EFIT)
JFT-2M	±2.5	Most variables using current filament approach
		• Exceptions for RMAG, Q95, β_i + 0.5 l_i , $\beta_{\rm p}$, $B_{\rm t}$, W : full equilibrium fit
JT-60U	±25	For ELMy H-mode data: full equilibrium code fit based on function parameterization, putting $q(0)=1$
MAST	±2.5	
NSTX	±150	
PBX-M	±3.75	Current filaments
PDX	±5	Full equilibrium MHD fit for representative discharges
START	±1	Full equilibrium fit (EFIT)
T-10	<u>±1</u>	ASTRA equilibrium solver using 3-moment approach [Pereverzev02]
TCV	- 5	Free boundary equilibrium reconstruction code (LIUQE) based on magnetic measurements (no Thomson scattering, no diamagnetic loop)
TdeV		
TEXTOR	±50-100	Simple approach based on a geometry of shifted circles
TFTR		Current filaments
TUMAN-3M	±0.5	Full equilibrium MHD fit for representative discharges

Error estimates

All numerical measurements are accompanied by an uncertainty estimate ("error"). This is usually stated in terms of a percentage error. The interpretation of this uncertainty estimate may differ from one variable or diagnostic to another and it may include both statistical and systematic uncertainties. The abbreviation "Co.", for "Compound', is used for the uncertainty estimate of non-elementary variables, as defined below.

Conventions

A number of conventions used throughout this document deserve further explanation:

- Variables of the type "Alphanumeric" may assume values containing letters, numbers and a limited selection of special characters, but no spaces.
- The statement "no data" refers to cases where a variable assumes a value for which no data is included in the database.
- A variable is referred to as "elementary" when it is not directly calculated from other database variables.
- "n.a." stands for "not applicable" or "not available", depending on the context.
- The unit "Da" is the dalton, the unit of mass currently recommended as unified atomic mass unit.

List of variables

The database variables are listed in alphabetical order in the following table, together with their ID numbers. Use the links in the table and click to return to this index page.

AMIN	39	DELTAL	45	HIPB98Y3	167	LHTIME	22	PLTH	154	TAUMHD	148	WFANI	141
AREA	47	DELTAU	44	HIPB98Y4	168	LIMMAT	54	PNBI	98	TAUTH	156	WFANIIC	146
AUXHEAT	11	DIVMAT	53	HITER92Y	162	MEFF	25	POHM	91	TAUTH1	149	WFFORM	140
BEILI2	66	DIVNAME	3	HITERL96	160	NEO NEO	80	PRAD	90	TAUTH2	150	WFICFORM	144
BEIMHD	67	DNELDT	78	HMWS2003	180	NEOTSC	81	PREMAG	61	TAUTOT	155	WFICRH	142
<u>BEPDIA</u>	70	DWDIA	111	HMWS2005	184	<u>NEL</u>	76	Q95	64	TEO	116	WFICRHP	143
BEPMHD	68	DWDIAPAR	112	HYBRID	13	NELFORM	77	RGEO	37	TE0TSC	117	WFPAR	139
<u>BETMHD</u>	69	<u>DWHC</u>	114	IAE2000N	178	NEV	79	<u>RMAG</u>	38	<u>TEV</u>	115	WFPER	138
<u>BGASA</u>	28	DWMHD	113	IAE2000X	179	<u>OJK2006</u>	185	RHOINV	75	<u>TI0</u>	119	WIKIN	136
BGASA2	30	<u>ECHFREQ</u>	100	<u>IAE2004I</u>	182	<u>OLTIME</u>	21	RHOQ2	74	TICX0	120	WKIN	134
<u>BGASZ</u>	29	<u>ECHLOC</u>	102	<u>IAE2004S</u>	181	OMGAIMP0	121	SELDB1	170	TIME	7	<u>WMHD</u>	133
BGASZ2	31	<u>ECHMODE</u>	101	IAEA92	173	<u>OMGAIMPH</u>	122	SELDB2	171	TIME ID	8	WROT	137
<u>BMHDMDIA</u>	71	ELMDUR	19	ICANTEN	107	OMGAM0	123	SELDB2X	172	TIV	118	<u>WTH</u>	152
<u>BSOURCE</u>	94	<u>ELMFREQ</u>	17	ICFORM	145	<u>OMGAMH</u>	124	SELDB3	186	<u>TOK</u>	1	WTOT	151
BSOURCE2	96	ELMINT	20	ICFREQ	105	<u>PALPHA</u>	110	SELDB3X	187	TOK ID	2	XGASA	34
<u>BT</u>	59	ELMMAX	18	<u>ICSCHEME</u>	106	<u>PECRH</u>	104	SELDB4	189	TORQ	126	<u>XGASZ</u>	35
COCTR	97	ELMTYPE	16	<u>IEML</u>	60	PECRHC	103	SELDB5	191	TORQBM	127	XPLIM	51
CONFIG	36	<u>ENBI</u>	92	IGRADB	58	PELLET	32	SEPLIM	50	TORQIN	128	ZEFF	88
<u>DALFDV</u>	57	EVAP	55	INDENT	46	<u>PFLOSS</u>	99	SHOT	6	<u>TPI</u>	23	ZEFFNEO	89
<u>DALFMP</u>	56	<u>FBS</u>	73	<u>IP</u>	62	<u>PGASA</u>	26	<u>SH95</u>	65	<u>VOL</u>	48		
<u>DATE</u>	5	<u>FUELRATE</u>	33	<u>ISEQ</u>	24	<u>PGASZ</u>	27	<u>SPIN</u>	125	<u>VSURF</u>	63		
<u>DB2P5</u>	174	H89	159	<u>ITB</u>	14	<u>PHASE</u>	12	STANDARD	169	VTOR0	129		
DB2P8	175	<u>H93</u>	161	ITBTYPE	15	<u>PICRH</u>	109	STD3	188	<u>VTORIMP</u>	131		
DB3DONLY	183	HEPS97	163	<u>KAPPA</u>	40	<u>PICRHC</u>	108	STDDB4V5	190	<u>VTORV</u>	130		
DB3IS	176	HIPB98Y	164	KAPPAA	41	<u>PINJ</u>	93	<u>T1</u>	9	WALMAT	52		
DB3V5	177	<u>HIPB98Y1</u>	165	<u>KAREA</u>	42	PINJ2	95	<u>T2</u>	10	<u>WDIA</u>	132		
<u>DELTA</u>	43	HIPB98Y2	166	<u>LCUPDATE</u>	4	<u>PL</u>	153	<u>TAUCR</u>	72	WEKIN	135		

General variables

1. TOK

Description: Short name of the tokamak that supplied the data

Definition: Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

ток	TOK_ID	Full device name	Institute
ASDEX	1	ASDEX	Max Planck Institute for Plasma Physics, Garching, Germany
AUG	2	ASDEX Upgrade	Max Planck Institute for Plasma Physics, Garching, Germany
СМОД	3	Alcator C-Mod	Plasma Science and Fusion Center, MIT, Cambridge, MA, USA
COMPASS	4	COMPASS-D	Culham Centre for Fusion Energy, Abingdon, UK
D3D	5	DIII-D	Multi-Institutional DIII-D Team Led by General Atomics, San Diego, CA, USA
JET	6	JET	Culham Centre for Fusion Energy, Abingdon, UK
JFT2M	7	JFT-2M	Japan Atomic Energy Agency, Naka, Japan
JT60U	8	JT-60U	Japan Atomic Energy Agency, Naka, Japan
РВХМ	9	PBX-M	Princeton Plasma Physics Laboratory, Princeton, NJ, USA
PDX	10	PDX	Princeton Plasma Physics Laboratory, Princeton, NJ, USA
TCV	11	TCV	Swiss Plasma Centre, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
TEXTOR	12	TEXTOR	Institute of Energy and Climate Research (Plasma Physics), Forschungszentrum Jülich, Jülich, Germany
TFTR	13	TFTR	Princeton Plasma Physics Laboratory, Princeton, NJ, USA
TDEV	14	TdeV	Hydro-Québec – Centre Canadien de Fusion Magnétique, Varennes, Canada
START	15	START	Culham Centre for Fusion Energy, Abingdon, UK
T10	16	T-10	<u>Kurchatov Institute</u> , Moscow, Russia
TUMAN3M	17	TUMAN-3M	<u>Ioffe Institute</u> , St. Petersburg, Russia
MAST	18	MAST	Culham Centre for Fusion Energy, Abingdon, UK
NSTX	19	NSTX	Princeton Plasma Physics Laboratory, Princeton, NJ, USA

2. TOK_ID

Description: Tokamak ID number

Definition: Elementary variable: See table under <u>TOK</u>

Data type: Integer **Allowed values:** [1, Inf[

Units: n.a. Error: n.a.

3. DIVNAME

Description: Divertor configuration **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

ток	DIVNAME	Shot range
	DV-IPRE	1 ≤ SHOT ≤ 13583
ASDEX	DV-IPOST	13584 ≤ SHOT ≤ 20282
NODEX	DV-II-O (no data)	$20283 \le SHOT \le 25776$
	DV-II-C	25777 ≤ SHOT
	DIV-I	$4670 \le SHOT \le 8609$
AUG	DIV-II	9825 ≤ SHOT ≤ 13622
	DIV-IIb	15024 ≤ SHOT
CMOD	NONAME	
COMPASS	DIV1	
D3D	OPEN	56348 ≤ SHOT ≤ 69648
	ADP	70678 ≤ SHOT ≤ 90768
	RDP	98889 ≤ SHOT
JET	MARK0	SHOT < 27968
	MARKI	28792 < SHOT < 35779
	MARKIIA	35953 < SHOT < 38912

	MARKIIAP	38983 < SHOT < 45081
	MARKGB	45202 < SHOT ≤ 55125
	MARKGBSR	55125 < SHOT
JFT2M	NONAME	
JT60U	NONAME	
PBXM	NONAME	
PDX	NONAME	
TCV	OPEN	
TEXTOR	NONAME	
TFTR	NONAME	
TDEV	NONAME	
START	OPEN	
T10	NONAME	
TUMAN3M	NONAME	
MAST	RIB (sketch) PLATES1	
NSTX	NONAME	

4. LCUPDATE

Description: Date of the most recent update for any variable listed in the database

Definition: Elementary variable

Data type: Date

Allowed values: YYYYMMDD (Year – Month – Day)

Units: n.a. Error: n.a.

5. DATE

Description: Date where the shot was taken

Definition: Elementary variable

Data type: Date

Allowed values: YYYYMMDD (Year - Month - Day)

Units: n.a. Error: n.a.

6. SHOT

Description: Discharge number (shot) from which the data were taken

Definition: Elementary variable

Data type: Integer **Allowed values:** [1, Inf[

Units: n.a. Error: n.a.

7. TIME

Description: Time during the shot at which the data were taken

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: S

Error: See table with time average data

8. TIME_ID

Description: Integer equivalent of TIME

Definition:

• Default: $TIME_ID = INT(10^3 * ROUND(TIME, 10^{-3}))$, where ROUND rounds TIME to the 3rd decimal position

• Exceptions and comments: See table

Data type: Integer **Allowed values:** [0, Inf[

Units: n.a.

Error: See table with time average data

ток	Definition	
TUMAN3M	$\begin{split} & \text{TIME_ID} = \text{INT}(10^5 * \text{ROUND}(\text{TIME}, 10^{-5})), \\ & \text{TIME to the 5}^{\text{th}} \text{ decimal position} \end{split}$	where INT takes the integer part and ROUND rounds

9. T1

Description: Start of main time average window

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: s Error: n.a.

10. T2

Description: End of main time average window

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: s Error: n.a.

11. AUXHEAT

Description: Type of auxiliary heating **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

AUXHEAT	Definition	
NONE	No auxiliary heating	
NB	Neutral beam injection	
IC	Ion cyclotron resonance heating	
EC	Electron cyclotron resonance heating	
ECOA	Electron cyclotron resonance heating (off-axis)	

ECIC	Combined ECRH + ICRH
NBEC	Combined NBI + ECRH
NBIC	Combined NBI + ICRH
NBECIC	Combined NBI + ECRH + ICRH

12. PHASE

Description: Phase of the discharge at TIME **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

PHASE	Definition	
ОНМ	Ohmic	
L	L-mode	
RI	Radiative-improved mode	
LHLHL	H-mode with frequent LH transitions	
Н	ELM-free H-mode	
HSELM	H-mode with small ELMs	
HSELMH	H-mode with high-frequency small ELMs	
HGELM	H-mode with large ELMs	
HGELMH	H-mode with high-frequency large ELMs	
H???	ELM-free H-mode to be confirmed	
HGELM???	H-mode with large ELMs to be confirmed	

13. HYBRID

Description: Flag indicating whether the data point is in a hybrid

mode

Definition: Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

HYBRID	Definition
NO	Not a hybrid discharge
YES	Hybrid discharge
IH	Improved H-mode (AUG)
HYBRID	Hybrid H-mode (DIII-D)
UNKNOWN	Not checked for HYBRID properties

14. ITB

Description: Flag indicating whether the data point has an internal

transport barrier

Definition: Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

ITB	Definition
NOITB	No ITBs (no data)
PREITB	Before ITB onset (no data)
ITB	ITB present (no data)
UNKNOWN	Not checked for ITB

15. ITBTYPE

Description: Flag describing type of ITB **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

ITBTYPE	Definition
NONE	No ITB (no data)
TI	$T_{ m i}$ ITB (no data)
TE	$T_{ m e}$ ITB (no data)
NE	$n_{ m e}$ ITB (no data)
TITENE	ITBs in $T_{ m e}$, $T_{ m i}$ and $n_{ m e}$ (no data)
NA	Not applicable

16. ELMTYPE

Description: Flag describing type of ELMs **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

ELMTYPE	Definition
NONE	No ELMs
TYPE-I	Type I ELMs
TYPE-II	Type II ELMs (no data)
TYPE-III	Type III ELMs
TYPE-V	Type V ELMs
TYPE-1+2	Mixed type I and type II ELMs
TYPE-1+5	Mixed type I and type V ELMs
TYPE-RF	ICRH ELMs on JET
UNKNOWN	Type has not been determined

17. ELMFREQ

Description: ELM frequency

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: Hz Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
JET	Default	Regular ELMs: 1%Irregular ELMs: 50%
JT60U	Elementary variable, average over $400-500~\mathrm{ms}$	n.a.
TCV	Default	1%

18. ELMMAX

Description: Average ELM amplitude of the $H\alpha$ signal (minus base level)

Definition: Elementary variable **Data type:** Floating point

Allowed values: [0, Inf[

Units: a.u. Error:

Default: n.a.

• Exceptions: See table

19. ELMDUR

Description: Average ELM duration of the $H\alpha$ signal

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf]

Units: s Error:

Default: n.a.

Exceptions: See table

ток	Error
JET	20%

Т	ОК	Error
J	ET	20%

20. ELMINT

Description: Average ELM integral of the $H\alpha$ signal (minus base level)

TOK Error

JET

20%

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: a.u. Error:

• Default: n.a.

• Exceptions: See table

21. OLTIME

Description: Time of the Ohmic to L-mode transition (start of auxiliary heating)

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: s Error: n.a.

22. LHTIME

Description: Time of the L to H transition

Definition: Elementary variable **Data type:** Floating point

Allowed values: [0, Inf[

Units: s Error: n.a.

23. TPI

Description: Time point indicator (ASDEX only) **Definition:** Elementary variable: See table

Data type: Integer **Allowed values:** [0, 9]

Units: n.a. Error: n.a.

24. ISEQ

Description: Parameter scan identifier **Definition:** Elementary variable: See tables

Data type: String

Allowed values: Alphanumeric

	ASDEX
ISEQ	Definition
NONE	No scan
BT1, BT2P4, BT3, BT4, BT5, BT6, BT7	Toroidal magnetic field scans
HBE1, HBE2, HBE3	High eta investigations, $T_{ m i}$ profile measurements
QC1P3	QCYL scan
EF11	Search for long ELM-free periods
NE1	Density variation
SP11	Spectroscopic investigations
P1, P2, QC1P3, BT2P4	Power scans (PNBI)
G1	Comparison shots for helium program
HT1	Search for high confinement times

AUG		
ISEQ	Definition	
NONE	No scan	
AUG_DIIID	Confinement identity AUG-DIII-D	
AUG_JET	Confinement identity AUG-JET	
AUG_CMOD	Confinement identity AUG-CMOD	
IP1	Current scan	
IPBTP1	IP, BT and power scan	
PNE1	Power and density scan nr. 1	
PNE2	Power and density scan nr. 2	
PNE3	Power and density scan nr. 3	
PNE4	Power and density scan nr. 4	
PELLET	Pellet scan	
IHMODE		

CMOD		
ISEQ	Definition	
NONE No scan		

COMPASS	
ISEQ	Definition
NONE	No scan

D3D		
ISEQ	Definition	
NONE	No scan	
КАРРА1, КАРРА2, КАРРА3	Elongation scans	
LRHO1, LRHO2, LRHO3	L-mode $ ho_*$ scans	
HRHO1, HRHO2, HRHO3, RHOSCAN	H-mode $ ho_*$ scans	
LNU1, HNU1	$ u_*$ scans	
LBETA1, HBETA1	eta scans	
QSCAN	q scans	
JET1, JETSIMILAR	$ ho_*$ scaling from DIII-D-JET comparison	
HINE	High density, good confinement with pellets	
HI_GP_REF	Reference shot without gas puff	
HI_GP	High density, good confinement with gas puff	
TETISCALE	Variation of $T_{ m e}/T_{ m i}$ ratio	

JET	
ISEQ	Definition
NONE	No scan
DIIID, D3D1, AUG, CMOD1, CMOD1, JT60U, ITER, ITER/LL, ITER/LU, ITER-LIKE	Tokamak identity scans
LRHO1, LRHO2, LRHO3 (no data)	L-mode $ ho_*$ scans
RHO1, RHO2, RHO3, RHO4, LOW-RHO	H-mode $ ho_*$ scans
NU1	$ u_*$ scans
BETA1, HIGH-BETA	$oldsymbol{eta}$ scans
H/SFE/VLT, H/SFE/LT, H/SFE/HT, H/SFE/VHT, H/SFE/VH, H/SFE/?? H/LFE/HT H/HFE/LT, H/HFE/HT, H/HFE/?? HC/SFE/LT HK/LT/99, HK/HT/99 LK/LT/99 V/SFE/LTS, V/SFE/LT, V/SFE/HT, V/SFE/VHT V/SFE/VH, V/SFE/EH V/HFE/LT, V/HFE/HT V/LFE/LT C/SFE/LT, C/SFE/HT SEPTUM, S/SFE/LT, S/SFE/HT HC, HC/HT, HIGHCL, DNX, HT3	Configuration scans
DOC-U, DOC-L, DOC-LL	

JFT2M		
ISEQ	Definition	
NONE	No scan	
G1		Intense gas puff for comparison with hydrogen pellet H-mode
G2	C	Intense gas puff for comparison with deuterium pellet H-mode
G3IP2	Gas scans	Intense gas puff in hydrogen
G4IP3		Intense gas puff in deuterium
IP1		At BT = 1.25 T
IP2	Current scans	In hydrogen plasma
IP3		In deuterium plasma
P1	D. (DAIDI)	CO or CTR with $IP = 0.25 \text{ MA}$
P2	Power scans (PNBI)	CO + CTR with $IP = 0.24$ MA
P3IP4NE1	Danaitu asana (NEL)	In hydrogen plasma
P4IP5NE2	Density scans (NEL)	In deuterium plasma
BT1	Toroidal field scans	IP = 0.16 MA
вт2		IP = 0.21 MA

JFT2M		
ISEQ	Definition	
PE1		Hydrogen pellet into hydrogen
PE2	Pellet scans	Deuterium pellet into deuterium
EB1	ENBI scans	BSOURCE = 603010
EB2		BSOURCE = 801010
AM1	AMIN scan with IP = 0.22 MA (same Q95)	
BS1	Scan of 801010 (CO or CTR) and 603010 (CO or CTR)	
IE1	IEML and PNBI scan looking for steady state H-mode region	
XP1	XPLIM scan with IP = 0.24 MA	

JT60U	
ISEQ	Definition
NONE	No scan
BETA	$oldsymbol{eta}$ scan

PBXM	
ISEQ	Definition
NONE	No scan

PDX	
ISEQ	Definition
NONE	No scan

TCV	
ISEQ	Definition
NONE	No scan

TEXTOR		
ISEQ	Definition	
NONE	No scan	
HT1 Search for high confinement time		

TFTR	
ISEQ	Definition
NONE	No scan

TDEV	
ISEQ	Definition
NONE	No scan

	START	
ISEQ	Definition	
NONE	No scan	

T10	
ISEQ	Definition
NONE	No scan

TUMAN3M	
ISEQ	Definition
NONE	No scan

MAST	
ISEQ	Definition
NONE	No scan

NSTX	
ISEQ	Definition
NONE	No scan

Plasma composition

25. MEFF

Description: Effective atomic mass

Definition:

• Default:

o If PINJ > 0 and PINJ2 > 0: MEFF = 0.5 * (PGASA + 0.5 * (BGASA + BGASA2))

o If PINJ > 0 and PINJ2 = 0: MEFF = 0.5 * (PGASA + BGASA)

Otherwise: MEFF = PGASA
 Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: Da Error: See table

ток	Definition	Error
ASDEX	Default	10%
AUG	Default	20%
CMOD	Default	3%
COMPASS	Default	10%
D3D	Default	Pure gas: 1%Mixed gas: 20%
JET	 Alternative: concentration measurement Exceptions: for a few Ohmic observations with PNBI ≤ 3 kW: MEFF = PGASA 	20%
JFT2M	Default	n.a.
JT60U	Default	5%
PBXM	Default	25%
PDX	Default	25%
TCV	Default	0%
TEXTOR	Default	n.a.
TFTR	Alternative: concentration measurement	0.2%
TDEV	Default	10%
START	Alternative: concentration measurement	50%
T10	Default	10%
TUMAN3M	Default	5%
MAST	Default	n.a.

ток	Definition	Error
NSTX	Default	n.a.

26. PGASA

Description: Mass of the plasma working gas **Definition:** Elementary variable: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: Da Error: n.a.

27. PGASZ

Description: Charge number of the plasma working gas

Definition: Elementary variable: See table

Data type: Integer **Allowed values:** [1, Inf[

Units: n.a. Error: n.a.

PGASZ	Definition
1	Hydrogen, deuterium or tritium
2	Helium
7	Nitrogen

28. BGASA

Description: Mass of the neutral beam gas **Definition:** Elementary variable: See table

Data type: Floating point **Allowed values:** [0, Inf]

BGASA	Definition
0	When PINJ = 0
1	Hydrogen
2	Deuterium
3	³ He or tritium
4	⁴ He

29. BGASZ

Description: Charge number of the neutral beam gas

Definition: Elementary variable: See table

Data type: Integer **Allowed values:** [1, Inf[

Units: n.a. Error: n.a.

BGASZ	Definition
0	When PINJ = 0
1	Hydrogen, deuterium or tritium
2	Helium

30. BGASA2

Description: Mass of the second neutral beam gas

Definition: Elementary variable: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: Da Error: n.a.

BGASA2	Definition
0	When $PINJ2 = 0$
1	Hydrogen
2	Deuterium
3	³ He or tritium
4	⁴ He

31. BGASZ2

Description: Charge number of the second neutral beam gas

Definition: Elementary variable: See table

Data type: Integer **Allowed values:** [1, Inf[

BGASZ2	Definition
0	When $PINJ2 = 0$
1	Hydrogen, deuterium or tritium
2	Helium

32. PELLET

Description: Pellet material if pellets (1 or more) have been injected

Definition: Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

PELLET	Definition
NONE	No pellets
Н	Hydrogen pellets
D	Deuterium pellets
GP_H	Strong hydrogen gas fueling
GP_D	Strong deuterium gas fueling
GAS-FUEL	Strong gas fueling (JET)

33. FUELRATE

Description: Fueling rate of extra gas **Definition:** Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: e s⁻¹ Error:

Default : n.a.

Exceptions : See table

ток	Error
AUG	20%
JET	20%

34. XGASA

Description: Mass of extra-fueled gas **Definition:** Elementary variable: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: Da Error: n.a.

XGASA	Definition
0	No extra fueled gas
1	Hydrogen
2	Deuterium
3	Tritium or ³ He
4	⁴ He
~ 14	Nitrogen
~ 20.18	Neon
28	Silicon
~ 39.95	Argon
83.8	Krypton

35. XGASZ

Description: Charge number of extra-fueled gas **Definition:** Elementary variable: See table

Data type: Integer **Allowed values:** [1, Inf[

XGASZ	Definition
0	No extra fueled gas
1	Hydrogen
2	Helium
7	Nitrogen
10	Neon
16	Sulfur
18	Argon
36	Krypton

Geometry

36. CONFIG

Description: Plasma configuration

Definition: Elementary variable: See tables

Data type: String

Allowed values: Alphanumeric

CONFIG	Definition
SN	Single null
SN(L)	Single null with the X-point at the bottom of the machine
SN(U)	Single null with the X-point at the top of the machine
DN	Double null
DND	Double null divertor
IW	Inner wall
LIM	Outboard limiter
вот	Limited at bottom of vessel
ТОР	Limited at top of vessel
MAR	Marginally diverted/limited

Overview of configurations												
ток	Comment	SN	SN(L)	SN(U)	DN	DND	IW	LIM	вот	ТОР	MAR	
ASDEX	DN if vertical shift DZ < 5 mm, otherwise SN	х			х							
AUG	n.a.		х									
CMOD	n.a.	x			х			х				
COMPASS	n.a.	х										
D3D	DN if two nulls and the separatrix flux surface are inside the divertor tiles and on the same flux surface within 0.25 cm	x	x	x	х		х		x	x	x	
JET	n.a.	х	х		х		х					
JFT2M	DN if two nulls are inside the limiter	х			х							
JT60U	n.a.	х										

Overview of configurations											
ток	Comment	SN	SN(L)	SN(U)	DN	DND	IW	LIM	вот	ТОР	MAR
РВХМ	n.a.				x						
PDX	n.a.	х									
START	n.a.					х					
T10	n.a.								х		
TCV	n.a.		x	x							
TDEV	n.a.	х									
TEXTOR	n.a.							х			
TFTR	n.a.							х			
TUMAN3M	n.a.							х			
MAST	n.a.				х						
NSTX	n.a.		x								

37. RGEO

Description: Plasma geometrical major radius

Definition: Elementary variable, obtained from an MHD equilibrium fit, defined as the average of the minimum and

the maximum radial extent of the plasma

Data type: Floating point **Allowed values:** [0, Inf[

Units: m

Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	1%	JET	1%	TCV	1%	T10	1%
AUG	0.5%	JFT2M	0.75%	TEXTOR	0.5%	TUMAN3M	2%
CMOD	0.6%	JT60U	0.5%	TFTR	1 cm	MAST	n.a.
COMPASS	1 cm	РВХМ	0.65%	TDEV	0.5 cm	NSTX	n.a.
D3D	0.6%	PDX	0.75%	START	2 cm		

38. RMAG

Description: Major radius of the magnetic axis

Definition:

• Default: Elementary variable, obtained from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m **Error:** See table

ток	Definition	Error
ASDEX	Based on multiple equilibrium fits	1%
AUG	Default	1%
CMOD	Default	1%
COMPASS	Default	n.a.
D3D	Default	1%
JET	Default	2%
JFT2M	Default	2%
JT60U	Default	0.5%
РВХМ	Default	1%
PDX	Default	4%
TCV	Default	1%
TEXTOR	Default	2%
TFTR	Default	4 cm
TDEV	Default	2%
START	Default	n.a.
T10	Default	1%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

39. AMIN

Description: Horizontal plasma minor radius

Definition:

• Default: Elementary variable, obtained from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m

Error: See table

ток	Definition	Error
ASDEX	Based on multiple equilibrium fits	1.5%
AUG	Default	1%
CMOD	Default	2%
COMPASS	Default	1 cm
D3D	Default	0.5%
JET	Default	3%
JFT2M	Default	3%
JT60U	Default	1%
РВХМ	Default	3%
PDX	Default	3%
TCV	Default	2%
TEXTOR	Default	3%
TFTR	Default	1 cm
TDEV	Default	5%
START	Default	2 cm
T10	Default	3%
TUMAN3M	Default	3%
MAST	Default	n.a.
NSTX	Default	n.a.

40. KAPPA

Description: Plasma elongation

Definition:

• Default: Elementary variable, obtained from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: n.a. Error: See table

ток	Definition	Error
ASDEX	Based on multiple equilibrium fits	2%
AUG	Default	1%
CMOD	Default	1%
COMPASS	Default	10%
D3D	Default	1%
JET	Default	5%
JFT2M	Default	10%
JT60U	Default	2%
РВХМ	Default	10%
PDX	KAPPA = 1 for all records	10%
TCV	Default	2%
TEXTOR	Default	4%
TFTR	Default	0.04
TDEV	Default	2%
START	Default	10%
T10	Default	5%
TUMAN3M	Default	5%
MAST	Default	n.a.
NSTX	Default	n.a.

41. KAPPAA

Description: Alternative plasma elongation definition

Definition:

• Default:

KAPPAA =	AREA
KAI I AA —	$\pi * AMIN^2$

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: n.a. Error: Co.

42. KAREA

Description: Alternative plasma elongation definition

Definition:

$$KAREA = \frac{VOL}{2 * \pi^2 * AMIN^2 * RGEO}$$

Data type: Floating point **Allowed values:** [0, Inf[

Units: n.a. Error: Co.

43. DELTA

Description: Triangularity of the plasma boundary

Definition: Elementary variable, obtained from an MHD equilibrium fit

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: n.a. Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	3%	JET	10%	TCV	3%	T10	n.a.
AUG	10%	JFT2M	10%	TEXTOR	n.a.	TUMAN3M	n.a.
CMOD	3%	JT60U	5%	TFTR	n.a.	MAST	n.a.
COMPASS	10%	PBXM	25%	TDEV	10%	NSTX	n.a.
D3D	10%	PDX	n.a.	START	10%		

44. DELTAU

Description: Upper triangularity of the plasma boundary

Definition: Elementary variable, obtained from an MHD equilibrium fit

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: n.a. Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	n.a.	JET	10%	TCV	3%	T10	n.a.
AUG	10%	JFT2M	n.a.	TEXTOR	n.a.	TUMAN3M	n.a.
CMOD	2%	JT60U	n.a.	TFTR	n.a.	MAST	n.a.
COMPASS	10%	PBXM	n.a.	TDEV	10%	NSTX	n.a.
D3D	10%	PDX	n.a.	START	10%		

45. DELTAL

Description: Lower triangularity of the plasma boundary

Definition: Elementary variable, obtained from an MHD equilibrium fit

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: n.a. Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	n.a.	JET	10%	TCV	3%	T10	n.a.
AUG	10%	JFT2M	n.a.	TEXTOR	n.a.	TUMAN3M	n.a.
CMOD	1%	JT60U	n.a.	TFTR	n.a.	MAST	n.a.
COMPASS	10%	PBXM	n.a.	TDEV	10%	NSTX	n.a.
D3D	10%	PDX	n.a.	START	10%		

46. INDENT

Description: Indentation of the plasma

Definition: Elementary variable, obtained from an MHD equilibrium fit

Data type: Floating point **Allowed values:** [0, Inf[

Units: n.a. Error:

Default : n.a.

Exceptions : See table

47. AREA

Description: Area of the plasma cross-section

Definition:

• Default: Elementary variable, obtained from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m²
Error: See table

ток	Definition	Error
ASDEX	Based on multiple equilibrium fits	2%
AUG	Default	3%
CMOD	Default	3%
COMPASS	Default	n.a.
D3D	Default	3%
JET	Default	6%
JFT2M	Default	5%
JT60U	Default	5%
РВХМ	Default	10%
PDX	Default	5%
TCV	Default	1%
TEXTOR	Default	5%

ток	Definition	Error
TFTR	Default	5%
TDEV	Default	5%
START	Default	10%
T10	Default	6%
TUMAN3M	Default	6%
MAST	Default	n.a.
NSTX	Default	n.a.

48. VOL

Description: Plasmas volume

Definition:

• Default: Elementary variable, obtained from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m³
Error: See table

ток	Definition	Error
ASDEX	Based on multiple equilibrium fits	3%
AUG	Default	3%
CMOD	Default	3%
COMPASS	Default	10%
D3D	Default	3%
JET	Default	6%
JFT2M	Default	5%
JT60U	Default	2%
PBXM	Default	10%
PDX	Default	5%
TCV	Default	1%
TEXTOR	Default	5%

ток	Definition	Error
TFTR	Default	6%
TDEV	Default	1%
START	Default	10%
T10	Default	7%
TUMAN3M	Default	8%
MAST	Default	n.a.
NSTX	Default	n.a.

49. SURFFORM

Description: Surface area of the plasma from formula

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: m² Error: n.a.

50. SEPLIM

Description: Minimum distance between the separatrix flux surface and either the vessel wall or limiters **Definition:**

• Default: Elementary variable, obtained from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m
Error: See table

ток	Definition	Error
ASDEX	Based on multiple equilibrium fits	1 cm
AUG	Default	n.a.
CMOD	Default	0.5 cm
COMPASS	Default	n.a.

ток	Definition	Error
D3D	Default	0.5 cm
JET	Default	1 cm
JFT2M	Default	1 cm
JT60U	Default	1 cm
РВХМ	Default	0.5 cm
PDX	Default	1 cm
TCV	Default	2%
TEXTOR	Default	0.5 cm
TFTR	Default	n.a.
TDEV	Default	0.5 cm
START	Default	n.a.
T10	Default	n.a.
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

51. XPLIM

Description: Minimum distance between the X-point and either the vessel walls or limiters **Definition:**

• Default: Elementary variable, obtained from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

 $\textbf{Units:}\ m$

Error: See table

ток	Definition	Error
ASDEX	Based on multiple equilibrium fits	n.a.
AUG	Default	n.a.
CMOD	Default	n.a.
COMPASS	Default	n.a.

ток	Definition	Error
D3D	Default	3 cm
JET	Default	5 cm
JFT2M	Default	3 cm
JT60U	Default	2 cm
PBXM	Default	5 cm
PDX	Default	5 cm
TCV	Default	2%
TEXTOR	Default	n.a.
TFTR	Default	n.a.
TDEV	Default	1 cm
START	Default	n.a.
T10	Default	n.a.
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

Machine condition

52. WALMAT

Description: Material of the vessel wall **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

WALMAT	Definition
С	Carbon
SS	Stainless steel
IN	Inconel
IN/C	Inconel with carbon
CSS	(Partly) carbon on stainless steel
AL	Aluminum

53. DIVMAT

Description: Material of the divertor tiles **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

WALMAT	Definition
NONE	No divertor
SS	Stainless steel
c cc	Carbon
TI1 TI2	Titanium
BE	Beryllium
C/BE	Carbon at the top and beryllium at the bottom
w	Tungsten
МО	Molybdenum
IN	Inconel

54. LIMMAT

Description: Material of the limiters **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

LIMMAT Definition		
NONE	No limiters	
С	Carbon	
BE	Beryllium	
МО	Molybdenum	

55. EVAP

Description: Evaporated material used to cover the inside of

the vessel

Definition: Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

EVAP	Definition
NONE	No evaporation
BOR BO	Boron
BOROA	Boron ($B_2H_6 + CH_4 + H_2$)
BOROB	Boron (B ₂ H ₆ + H ₂)
BOROC	Boron
BOROX	Boron
B2D6	Boron
CARB	Carbon
CARBH	Carbon (CH ₄ + D ₂)
CARBORANE	Orto-carborane (C ₂ B ₁₀ H ₁₂) into He glow
DECABORA	Decaborane (B ₁₀ H ₁₄)
TI	Titanium
ВЕ	Beryllium
SILICON	Silicon
SID4	Silicon

56. DALFMP

Description: $D\alpha$ emission on the midplane

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[**Units:** ph s⁻¹ m⁻² sr⁻¹

Error:

Default : n.a.

• Exceptions : See table

ток	Error
AUG	20%
JET	20%
PBXM	5%
PDX	5%

57. DALFDV

Description: $D\alpha$ emission in the divertor

Definition: Elementary variable

Data type: Floating point Allowed values: [0, Inf[Units: $ph s^{-1} m^{-2} sr^{-1}$

Error: See table

ток	Error
JET	20%
PBXM	5%
PDX	5%

Magnetics

58. IGRADB

Description: Indicates the direction of the ion ∇B

drift

Definition: Elementary variable: See table

Data type: Integer Allowed values: -1, 0, 1

Units: n.a. Error: n.a.

IGRADB	Definition
-1	$CONFIG = SN$ and ion ∇B drift away from the X-point
0	Undefined
1	$CONFIG = SN$ and ion ∇B drift toward the X-point

59. BT

Description: Vacuum toroidal magnetic field at RGEO

Definition:

• Default: Elementary variable, determined from the current in the toroidal field coils

• Exceptions and comments: See table

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: T

Error: See table

ток	Definition	Error
ASDEX	Default	1%
AUG	Usually negative values	1%
CMOD	Usually negative values	1%
COMPASS	Default	2%
D3D	Default	1%
JET	Negative values indicate operation with reversed toroidal field	
JFT2M	Default	
JT60U	Default	
РВХМ	Default	
PDX	Default	1%
TCV	Default	1%
TEXTOR	Default	1%
TFTR	Default	2%

ток	Definition	Error
TDEV	Default	1%
START	Default	
T10	Default	
TUMAN3M	Default :	
MAST	Usually negative values	
NSTX	Default	n.a.

60. IEML

Description: Ergodic magnetic field coil current

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: A Error:

• Default : n.a.

Exceptions : See table

TOK Error JFT2M 1%

61. PREMAG

Description: Flag indicating whether start-up was done with or without pre-magnetization current **Definition:**

Default: Elementary variable: See tableExceptions and comments: See table

Data type: String

Allowed values: NO, YES

Units: n.a. Error: n.a.

PREMAG	Definition
NO	Startup without pre-magnetization current
YES	Startup with pre-magnetization current

ток	Definition
JET	If PREMAG = $'NO'$ for shots taken before 1994, then WMHD is missing

62. IP

Description: Plasma current

Definition:

• Default: Elementary variable, determined from an external Rogowski coil with vessel current subtraction

• Exceptions and comments: See table

Data type: Floating point **Allowed values:**] — Inf, Inf[

 $\textbf{Units:}\ A$

Error: See table

ток	Definition	Error
ASDEX	Default	1%
AUG	Default	1%
CMOD	Usually negative values	2%
COMPASS	Default	1%
D3D	Default	1%
JET	Usually negative values. Positive values indicate operation with reversed current.	1%
JFT2M	Default	1%
JT60U	Default	0.5%
РВХМ	Default	1%
PDX	Default	1%
TCV	Default	1%
TEXTOR	Default	1%
TFTR	Default	2%
TDEV	Usually negative values	2%
START	Default	2%
T10	Default	1%
TUMAN3M	Default	3%
MAST	Default	n.a.
NSTX	Default	n.a.

63. VSURF

Description: Loop voltage at the plasma boundary

Definition: Elementary variable **Data type:** Floating point **Allowed values:**] — Inf, Inf[

 $\quad \text{Units: } V$

Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	5%	JET	5%	TCV	3%	T10	20%
AUG	10%	JFT2M	5%	TEXTOR	5%	TUMAN3M	5%
CMOD	5%	JT60U	20%	TFTR	5% + 0.05 V	MAST	n.a.
COMPASS	10%	PBXM	50%	TDEV	0.02 V	NSTX	n.a.
D3D	n.a.	PDX	10%	START	10%		

64. Q95

 $\textbf{Description:} \ \textbf{Plasma safety factor at the 95\% poloidal flux surface}$

Definition:

Default: Elementary variable, obtained from an MHD equilibrium fit

Exceptions and comments: See table

Data type: Floating point **Allowed values:** [1, Inf[

ток	Definition	Error
ASDEX	Q95 = QCYL * $\left(1 + \left(\frac{AMIN}{RGEO}\right)^2 * (1 + 0.5 * BEILI2^2)\right)$, where QCYL = 5 × 10 ⁶ * $\frac{BT}{IP}$ * $\frac{AMIN^2}{RGEO}$ * $\frac{1 + KAPPA^2}{2}$	10%
AUG	Default	5%
CMOD	Default	3%
COMPASS	Default	10%
D3D	Default	3%
JET	Default	10%

ток	Definition	Error
JFT2M	Default	10%
JT60U	Default	5%
PBXM	Default	10%
PDX	Default	10%
TCV	Default	3%
TEXTOR	Default	
TFTR	q at boundary defined by limiter	
TDEV	Default	
START	Default	
T10	Default	10%
TUMAN3M	Default	
MAST	Default	n.a.
NSTX	Default	n.a.

65. SH95

Description: Magnetic shear at the 95% poloidal flux surface

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: n.a. Error: See table

ток	Error
D3D	50%
JET	50%

66. BEILI2

Description: Represents $\beta_i + 0.5l_i$, where β_i is the Shafranov β and l_i the internal inductance **Definition:**

- Default: Elementary variable, determined from an MHD equilibrium fit
- Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: n.a.

Error: See table

ток	Definition	Error
ASDEX	Determined from probe measurements	10%
AUG	Default	3%
CMOD	Default	3%
COMPASS	Default	n.a.
D3D	Default	3%
JET	Default	5%
JFT2M	Default	10%
JT60U	Default	5%
PBXM	Default	10%
PDX	Default	10%
TCV	Default	3%
TEXTOR	Default	20%
TFTR	Default	4%
TDEV	Default	5%
START	Default	n.a.
T10	Default	10%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

67. BEIMHD

Description: β Shafranov

Definition:

• Default: Elementary variable, determined from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

ток	Definition	Error
ASDEX	BEIMHD is BEILI2, minus an estimate of $l_{\rm i}/2$ obtained during the Ohmic phase, assuming a resistive equilibrium.	15%
AUG	Default	n.a.
CMOD	Default	n.a.
COMPASS	Default	n.a.
D3D	Default	$0.05/\beta_{\mathrm{p}}$
JET	Default	12%
JFT2M	Default	15%
JT60U	Default	n.a.
РВХМ	Default	15%
PDX	Default	15%
TCV	Default	10%
TEXTOR	Default	15%
TFTR	$BEIMHD = \frac{2*BEPMHD + BEPDIA}{3}$	0.04 * BEILI2 + 0.1
TDEV	Default	n.a.
START	Default	n.a.
T10	Default	10%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

68. BEPMHD

Description: Poloidal β

Definition:

Default: Elementary variable, determined from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

ток	Definition	Error
ASDEX	BEPMHD = BEIMHD	15%
AUG	Default	10%
CMOD	Default	5%
COMPASS	Default	n.a.
D3D	Default	5%
JET	Default	n.a.
JFT2M	Default	15%
JT60U	Default	7%
РВХМ	Default	20%
PDX	Default	20%
TCV	Default	10%
TEXTOR	Default	15%
TFTR	${ m BEPMHD} = { m BEILI2} - rac{l_{ m i}}{2}$, with l_i from a time evolution model	0.04 * BEILI2 + 0.1
TDEV	Default	n.a.
START	Default	n.a.
T10	Default	10%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

69. BETMHD

Description: Toroidal β

Definition:

• Default: Elementary variable, determined from an MHD equilibrium fit

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

ТОК	Definition	Error
ASDEX	Default	18%
AUG	Default	15%
CMOD	Default	5%
COMPASS	Default	n.a.
D3D	Default	5%
JET	Default	12%
JFT2M	Default	15%
JT60U	Default	7%
РВХМ	Default	20%
PDX	Default	20%
TCV	Default	10%
TEXTOR	Default	15%
TFTR	$ ext{BEPMHD} = ext{BEILI2} - rac{l_{ ext{i}}}{2}$, with l_i from time evolution model	4% + fractional error BEIMHD
TDEV	Default	n.a.
START	Default	15%
T10	Default	10%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

70. BEPDIA

Description: Poloidal diamagnetic β

Definition:

• Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

ток	Definition	Error
ASDEX	Corrected using an average of 3 Ohmic points in the database	15%
AUG	Default	10%
CMOD	Default	n.a.
COMPASS	Default	0.1%
D3D	Default	n.a.
JET	Default	20%
JFT2M	Default	n.a.
JT60U	Default	n.a.
PBXM	Default	n.a.
PDX	Default	n.a.
TCV	Default	n.a.
TEXTOR	Default	n.a.
TFTR	Default	4% + 100 kJ / WDIA
TDEV	Default	25%
START	Default	n.a.
T10	Default	10%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

71. BMHDMDIA

Description: Offset during the Ohmic phase between MHD and diamagnetic quantities **Definition:**

• Default: Not defined

• Exceptions and comments: See table

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units:

• Default: n.a.

Exceptions: See table

Error:

• Default: n.a.

Exceptions: See table

ток	Definition	Units	Error
ASDEX	ASDEX: offset between diamagnetic $oldsymbol{eta}$ poloidal and MHD $oldsymbol{eta}$ poloidal	n.a.	5%
JFT2M	Offset between diamagnetic energy and MHD energy	J	10% – 20%

72. TAUCR

Description: Current relaxation time **Definition:** From [Mikkelsen89]:

 $TAUCR = 2.51 \times 10^{-6} * IP * \frac{RGEO}{VSURF}$

Data type: Floating point **Allowed values:** [0, Inf[

Units: S Error: Co.

73. FBS

Description: Bootstrap current fraction

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: n.a. Error: n.a.

74. RHOQ2

Description: Normalized radius ρ of the q=2 surface

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, 1]

Units: n.a. Error: n.a.

75. RHOINV

Description: Normalized sawtooth inversion radius ρ

Definition: From Eq. (7) in [Weisen02]:

$$RHOINV = 4 \times 10^{-7} * \frac{IP * RGEO}{AMIN^2 * BT * KAPPA * (KAPPA + 1/KAPPA)}$$

Data type: Floating point **Allowed values:** [0, 1]

Units: n.a. Error: Co.

Plasma composition

76. NEL

Description: Central line-averaged electron density

Definition:

• Default: Elementary variable, determined from interferometry

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m⁻³ Error: See table

ток	Definition	Error
ASDEX	Default	3%
AUG	Default	3%
CMOD	Default	5%
COMPASS	Default	5%
D3D	Default	$2 \times 10^{18} \text{ m}^{-3}$
JET	Determined from LIDAR Thomson scattering In case a measurement is not available, NEL is approximated as follows: • Ohmic:	8%
JFT2M	Default	2%
JT60U	Default	10%
РВХМ	Default	5%
PDX	Default	5%
TCV	Default	5%
TEXTOR	Default	2%
TFTR	Default	5%
TDEV	Default	2%
START	Default	5%
T10	Default	3%
TUMAN3M	Default	10%
MAST	Default	n.a.

ток	Definition	Error
NSTX	Default	n.a.

77. NELFORM

Description: Indicates whether <u>NEL</u> is an indirect

measurement

Definition: Elementary variable: See table

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

NELFORM	Definition
0	 NEL at JET based on direct measurement Data point from device other than JET
1	NEL at JET approximated by formula

78. DNELDT

Description: Time rate of change of <u>NEL</u>

Definition: Elementary variable **Data type:** Floating point **Allowed values:**] — Inf, Inf[

Units: m⁻³ s⁻¹ Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	2%	JET	8%	TCV	5%	T10	n.a.
AUG	3%	JFT2M	2%	TEXTOR	5%	TUMAN3M	n.a.
CMOD	5%	JT60U	10%	TFTR	5%	MAST	n.a.
COMPASS	n.a.	PBXM	5%	TDEV	10%	NSTX	n.a.
D3D	$2 \times 10^{18} \mathrm{m}^{-3} \mathrm{s}^{-1}$	PDX	5%	START	n.a.		

79. **NEV**

Description: Volume-averaged electron density

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Allowed values: [0, Inf[

Units: m⁻³
Error: See table

ток	Definition	Error
ASDEX	Determined from 4 HCN laser interferometer channels by fitting the following radial density profile and assuming a circular plasma: $n(x) = n(1) + \left(n(0) - n(1)\right) * (1 - x^a)^b, 0 \le x \le 1$	5%
AUG	Default	10%
CMOD	Default	7%
COMPASS	Default	n.a.
D3D	Determined from CO_2 laser interferometer and Thomson scattering data, using a spline fit of the radial density profile	10%
JET	Determined from a weighted summation over 6 interferometer channels	8%
JFT2M	Determined from an analytic profile fit with a fixed shape to 2 interferometer channels	2%
JT60U	Default	10%
РВХМ	Default	5%
PDX	Default	5%
TCV	Default	5%
TEXTOR	Default	10%
TFTR	Default	10%
TDEV	Default	10%
START	Default	n.a.
T10	Default	10%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

80. NEO

Description: Central electron density at the magnetic axis

Definition: Elementary variable, determined with similar methods as <u>NEV</u>

Data type: Floating point **Allowed values:** [0, Inf[

Units: m⁻³
Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	10%	JET	10%	TCV	10%	T10	10%
AUG	20%	JFT2M	n.a.	TEXTOR	10%	TUMAN3M	n.a.
CMOD	10%	JT60U	20%	TFTR	10%	MAST	n.a.
COMPASS	n.a.	PBXM	n.a.	TDEV	10%	NSTX	n.a.
D3D	15%	PDX	n.a.	START	n.a.		

81. NEOTSC

Description: Central electron density from Thomson scattering

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m⁻³ Error:

• Default: n.a.

Exceptions: See table

ток	Definition	Error
ASDEX	Average of the 3 YAG laser channels closest to the equatorial plane	5%
AUG	Default	30%
D3D	Thomson scattering point that is closest to the magnetic axis (less than 10 cm)	10%
JT60U	Default	10%
TCV	Default	10%

82. NESEP

Description: Electron density at the separatrix

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m⁻³ Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG		
JET		

83. NESOL

Description: Electron density in the scrape-off layer

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: m⁻³ Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG		
JET		

84. PMAIN

Description: Neutral pressure in the main chamber

Definition:

Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: Pa Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG		
JET		

85. PDIV

Description: Neutral pressure in the divertor

Definition:

Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: Pa Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG		
JET		

86. GP_MAIN

Description: Gas puff in the main chamber

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf]

Units: e s⁻¹ Error: Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG		
JET		

87. **GP_DIV**

Description: Gas puff in the divertor

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: e s⁻¹ Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG		
JET		

Impurities

88. **ZEFF**

Description: Line-averaged plasma effective charge determined from visible Bremsstrahlung

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [1, Inf[

Units: n.a. Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	10%	JET	30%	TCV	20%	T10	30%
AUG	n.a.	JFT2M	n.a.	TEXTOR	n.a.	TUMAN3M	n.a.
CMOD	20%	JT60U	15%	TFTR	n.a.	MAST	n.a.
COMPASS	n.a.	PBXM	n.a.	TDEV	25%	NSTX	n.a.
D3D	20%	PDX	n.a.	START	n.a.		

89. ZEFFNEO

Description: Plasma effective charge as determined by neoclassical resistivity **Definition:**

• Default: Elementary variable

Exceptions and comments: See table

Data type: Floating point **Allowed values:** [1, Inf[

Units: n.a. Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
ASDEX	Determined such that the current profile calculated from ZEFFNEO, $T_{\rm e}(r)$ and $U_{\rm loop}$ is consistent with the total measured $I_{\rm p}$	15%
JET	Determined using volume-averaged quantities	25%

90. PRAD

Description: Total radiated power

Definition: Elementary variable, determined from bolometry

Data type: Floating point **Allowed values:** [0, Inf[

Units: W

Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	20%	JET	10% – 15%	TCV	n.a.	T10	25%
AUG	20%	JFT2M	10% – 20%	TEXTOR	15%	TUMAN3M	n.a.
CMOD	20%	JT60U	20%	TFTR	n.a.	MAST	n.a.
COMPASS	n.a.	PBXM	25%	TDEV	20%	NSTX	n.a.
D3D	15%	PDX	n.a.	START	n.a.		

Input powers

91. POHM

Description: Total Ohmic power

Definition:

Default: POHM = VSURF * IP
 Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

ток	Definition	Error
ASDEX	POHM = max(0, VSURF * IP)	Ohmic: 5%H-mode: 50%
AUG	VSURF is corrected for flux variations between the loop and the plasma surface	15%
CMOD	${ m POHM} = V_{ m res} * { m IP}$, where $V_{ m res}$ is calculated from VSURF, corrected for inductive effects	15%
COMPASS	Default	10%
D3D	$\begin{aligned} & \text{POHM} = C * \frac{B_{10} * I_p^2 * \text{RGEO}^2}{W_{\text{th}} * n_{\text{e}}}, \text{ where } B_{10} \text{ is the central visible Bremsstrahlung signal} \\ & \text{and } W_{\text{th}} \text{ is the thermal plasma stored energy. The constant } \mathcal{C} \text{ is given by} \\ & \bullet \ \mathcal{C} = 1.03 \times 10^{-19}, \text{ if } n_{\text{e}} \text{ is determined from the radial CO}_2 \text{ chord.} \\ & \bullet \ \mathcal{C} = 9.92 \times 10^{-20}, \text{ if } n_{\text{e}} \text{ is determined from the vertical CO}_2 \text{ chord.} \end{aligned}$	15%
JET	POHM = VSURF * IP, corrected for inductance effects	20%
JFT2M	Default	10%
JT60U	• For SHOT $<$ 33635: default • For SHOT \geq 33635: calculated by the transport analysis code TOPICS on the basis of a $T_{\rm e}$ profile, under the following assumptions: • Uniform $Z_{\rm eff}$ profile • Uniform profile of the toroidal electric field • Neoclassical resistivity	20%
РВХМ	Default	50%
PDX	A correction for inductance effects is made	20%
TCV	VSURF is obtained from the equilibrium code LIUQE	10%
TEXTOR	Default	10%
TFTR	POHM = IP * VSURF -3.14×10^{-7} * RGEO * $\frac{d}{dt}$ (IP ² * l_i)	300 kW
TDEV	n.a.	5%
START	A correction for inductance effects is made	10%

ток	Definition	Error
T10	Default	20%
TUMAN3M	Default	6%
MAST	n.a.	n.a.
NSTX	n.a.	n.a.

92. **ENBI**

Description: Neutral beam energy weighted by power **Definition:**

• Elementary variable, defined as

$$ENBI = \frac{\sum_{i} E_{i} * P_{i}}{\sum_{i} P_{i}},$$

 $\mathrm{ENBI} = \frac{\sum_i E_i * P_i}{\sum_i P_i},$ where E_i and P_i are the beam energy and power for source i, respectively.

• Exceptions and comments: See table

Data type: Floating point Allowed values: [0, Inf[

ток	Definition	Error
ASDEX	The primary energy component is given.	0.2 kV
AUG	Default	5%
CMOD	Default	n.a.
COMPASS	Default	n.a.
D3D	Default	10%
JET	Default	12%
JFT2M	Default	5%
JT60U	Default	5%
РВХМ	Default	15%
PDX	Default	15%
TCV	Default	n.a.
TEXTOR	Default	5%
TFTR	Default	5%

ток	Definition	Error
TDEV	Default	n.a.
START	Default	n.a.
T10	Default	n.a.
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

93. PINJ

Description: Power injected by neutral beam 1, using beam species BGASA, BGASZ

Definition: Elementary variable. PINJ = 0 if no beams are on. Note that the total injected neutral beam power is

PINJ + PINJ2.

Data type: Floating point **Allowed values:** [0, Inf[

Units: W

Error: See table

ток	Error	ток	Error	ток	TOK Error		Error
ASDEX	5%	JET	6%	TCV	n.a.	T10	n.a.
AUG	5%	JFT2M	5%	TEXTOR	5%	TUMAN3M	n.a.
CMOD	n.a.	JT60U	5%	TFTR	15% absolute, 2% relative	MAST	n.a.
COMPASS	n.a.	РВХМ	5%	TDEV	n.a.	NSTX	n.a.
D3D	10%	PDX	10%	START	5%		

94. BSOURCE

Description: Power fractions injected by neutral beam 1 **Definition:**

- Default: Elementary variable, given as a sequence $P_1P_2P_3$ of power fractions (in percentage) P_1 , P_2 and P_3 of the 3 components in neutral beam 1
- Exceptions and comments: See table

Data type: Integer **Allowed values:** [0, Inf[

Units: n.a. Error: n.a.

ток	Definition
JET	For data between 1989 – 1990, the possibilities for BSOURCE are • BSOURCE = 781606 for a 80 kV D beam • BSOURCE = 652114 for a 140 kV D beam • BSOURCE = 990000 for ³ He or ⁴ He beams

95. PINJ2

Description: Power injected by neutral beam 2, using beam species BGASA2, BGASZ2

Definition: Elementary variable. PINJ2 = 0 if no second beam is on. Note that the total injected neutral beam power

is PINJ + PINJ2.

Data type: Floating point **Allowed values:** [0, Inf[

Units: W
Error: See table

ток	Error	ток	Error	ток	TOK Error		Error
ASDEX	n.a.	JET	6%	TCV	n.a.	T10	n.a.
AUG	5%	JFT2M	n.a.	TEXTOR	5%	TUMAN3M	n.a.
CMOD	n.a.	JT60U	n.a.	TFTR	15% absolute + 2% relative	MAST	n.a.
COMPASS	n.a.	PBXM	n.a.	TDEV	n.a.	NSTX	n.a.
D3D	n.a.	PDX	n.a.	START	n.a.		

96. BSOURCE2

Description: Power fractions injected by neutral beam 2 **Definition:**

- Default: Elementary variable, given as a sequence $P_1P_2P_3$ of power fractions (in percentage) P_1 , P_2 and P_3 of the 3 components in neutral beam 2.
- Exceptions and comments: See table

Data type: Integer

Allowed values: [0, Inf[

Units: n.a. Error: n.a.

TOI	‹	Definition
		For data from 1989 – 1990, the possibilities for BSOURCE2 are
JET		• BSOURCE2 = 781606 for a 80 kV D beam
		• BSOURCE2 = 652114 for a 140 kV D beam
		• BSOURCE2 = 990000 for ³ He or ⁴ He beams

97. COCTR

Description: Fraction of beam power co-injected as compared to the total beam power injected

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, 1]

Units: n.a. Error: n.a.

98. PNBI

Description: Total injected neutral beam power minus shine-through

 $\label{eq:Definition:PNBI} \textbf{Definition:} \ \ \text{Elementary variable.} \ \ PNBI = 0 \ \ \text{if no beams are on.}$

Data type: Floating point **Allowed values:** [0, Inf[

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	10%	JET	10%	TCV	n.a.	T10	n.a.
AUG	10%	JFT2M	10%	TEXTOR	10%	TUMAN3M	n.a.
CMOD	n.a.	JT60U	10%	TFTR	15% absolute + 5% relative	MAST	n.a.
COMPASS	n.a.	РВХМ	10%	TDEV	n.a.	NSTX	n.a.
D3D	10%	PDX	10%	START	20%		

99. PFLOSS

Description: Neutral beam power lost from the plasma through charge exchange and unconfined orbits **Definition:**

Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

ток	Definition	Error
ASDEX	Obtained from fits to results from the FREYA code	30%
AUG	Default	20%
CMOD	Default	n.a.
COMPASS	Default	n.a.
D3D	$PNBI = 10^{-2} * exp(3.3 - 2.5 * IP * 10^{-6})$	30%
JET	PNBI = $10^{-2} * \exp(3.35 - 0.667 * IP * 10^{-6} - 0.2 * NEL * 10^{-19})$	50%
JFT2M	Obtained from fits to results from a Monte Carlo code	20%
JT60U	Default	20%
РВХМ	Obtained from fits to results from the TRANSP code	20%
PDX	Obtained from fits to results from the TRANSP code	30%
TCV	Default	n.a.
TEXTOR	Default	30%
TFTR	Default	20%
TDEV	Default	n.a.
START	Default	20%
T10	Default	n.a.
TUMAN3M	M Default	
MAST	Default	n.a.
NSTX	Default	n.a.

100. ECHFREQ

Description: ECRH frequency

Definition: Elementary variable. Zero if no ECRH is applied.

Data type: Floating point **Allowed values:** [0, Inf[

Units: Hz Error: See table

ток	Error
COMPASS	0.1%
D3D	0.1%
TDEV	0.1%
T10	0.1%

101. ECHMODE

Description: Mode of ECRH waves

Definition: Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

ECHMODE	Definition
NONE	No ECRH power was applied throughout the discharge
OFF	Used when PECRH $=0$ for the data point, but PECRH >0 at some other time in the discharge
О	Ordinary mode
x	Extraordinary mode
х+о	Both extraordinary and ordinary mode
UNKNOWN	ECRH mode unknown

102. ECHLOC

Description: Location of ECRH launch **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

ECHLOC	Definition
NONE	No ECRH power was applied throughout the discharge
OFF	Used when PECRH $=0$ for the data point, but PECRH >0 at some other time in the discharge
IN	Waves launched from the high-field-side
OUT	Waves launched from the low-field-side
IN+OUT	Waves launched from both the high-field-side and low-field-side
LFS_UP LFS_UPPER	Waves launched from the top low-field-side
UNKNOWN	Location of ECRH launch unknown

103. PECRHC

Description: ECRH power coupled to the plasma

Definition: Elementary variable. Zero if no ECRH is applied.

Data type: Floating point **Allowed values:** [0, Inf[

Units: W Error: See table

ток	Error
COMPASS	5%
D3D	10%
TDEV	10%
T10	10%

104. PECRH

Description: ECRH power absorbed by the plasma

Definition: Elementary variable. Zero if no ECRH is applied.

Data type: Floating point **Allowed values:** [0, Inf[

Units: W

Error: See table

ток	Error
COMPASS	15%
D3D	10%
TDEV	10%
T10	15%

105. ICFREQ

Description: ICRH frequency

Definition: Elementary variable. Zero if no ICRH is applied.

Data type: Floating point **Allowed values:** [0, Inf[

Units: Hz Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	n.a.	JET	1%	TCV	n.a.	T10	n.a.
AUG	1%	JFT2M	n.a.	TEXTOR	0.1%	TUMAN3M	n.a.
CMOD	0.5%	JT60U	n.a.	TFTR	n.a.	MAST	n.a.
COMPASS	n.a.	PBXM	n.a.	TDEV	n.a.	NSTX	n.a.
D3D	0.001%	PDX	n.a.	START	n.a.		

106. ICSCHEME

Description: ICRH heating scheme

Definition: Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

ICSCHEME	Definition
NONE	No ICRH power was applied throughout the discharge
OFF	Used when PICRH $= 0$ for the data point, but PICRH > 0 at some other time in the discharge
HMIN	H minority
HE3MIN	³ He minority
H2NDHARM	2 nd harmonic H heating
HE3MIN-T	³ He minority in tritium
HMIN-T	H minority in tritium
HHFW	
UNKNOWN	Heating scheme not supplied

107. ICANTEN

Description: ICRH antenna phasing **Definition:** Elementary variable: See table

Data type: String

Allowed values: Alphanumeric

Units: n.a. Error: n.a.

ICANTEN	Definition
NONE	No ICRH power was applied throughout the discharge
OFF	Used when PICRH $= 0$ for the data point, but PICRH > 0 at some other time in the discharge
DIPOLE	Dipole phasing
MONOPOLE	Monopole phasing
UNKNOWN	Antenna phasing not supplied

108. PICRHC

Description: ICRH power coupled to the plasma

Definition: Elementary variable. Zero if no ICRH is applied.

Data type: Floating point **Allowed values:** [0, Inf[

Units: W

Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	n.a.	JET	10%	TCV	n.a.	T10	n.a.
AUG	10%	JFT2M	n.a.	TEXTOR	10%	TUMAN3M	n.a.
CMOD	3% – 5%	JT60U	n.a.	TFTR	n.a.	MAST	n.a.
COMPASS	n.a.	PBXM	n.a.	TDEV	n.a.	NSTX	n.a.
D3D	5%	PDX	n.a.	START	n.a.		

109. PICRH

Description: ICRH power absorbed by the plasma

Definition: Elementary variable. Zero if no ICRH is applied.

Data type: Floating point **Allowed values:** [0, Inf[

 $\quad \hbox{Units: } W$

Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	n.a.	JET	10%	TCV	n.a.	T10	n.a.
AUG	10%	JFT2M	n.a.	TEXTOR	10%	TUMAN3M	n.a.
CMOD	10%	JT60U	n.a.	TFTR	n.a.	MAST	n.a.
COMPASS	n.a.	РВХМ	n.a.	TDEV	n.a.	NSTX	n.a.
D3D	10% – 20%	PDX	n.a.	START	n.a.		

110. PALPHA

Description: Estimated α heating power in deuterium-tritium plasmas

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: W Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
JET	Estimated through the correspondence $1.601\times10^{19}~\rm n~s^{-1}~\to~3.5\times10^6~W.$ Set to zero if less than $0.01\times10^6~W.$	10%
TFTR	Default	20%

111. DWDIA

Description: Time rate of change of the total plasma stored energy **Definition:**

• Default: Elementary variable, obtained from diamagnetic loop measurements

• Exceptions and comments: See table

Data type: Floating point **Allowed values:**] — Inf, Inf[

ток	Definition	Error
ASDEX	• If DWHC = 0: obtained from a parabolic fit to the time evolution of the diamagnetic $\beta_{\rm p}$ over $\pm 6~{\rm ms}$ • If DWHC = 1: obtained from the tangent to the WDIA time trace	20%
AUG	Default	30%
CMOD	Default	n.a.
COMPASS	Default	30%
D3D	Default	25%
JET	Moving average over $\pm 100~\mathrm{ms}$	10%
JFT2M	Obtained from a derivative of WDIA over $\pm 5~\mathrm{ms}$	20%
JT60U	Default	20%
PBXM	Default	n.a.
PDX	Default	10%
TCV	Default	n.a.
TEXTOR	Default	20%
TFTR	Default	5% + fractional error on WDIA
TDEV	Default	50%
START	Default	n.a.
T10	Default	15%
TUMAN3M	Default	20%
MAST	Default	n.a.
NSTX	Default	n.a.

112. DWDIAPAR

Description: Time derivative for ASDEX of WDIA from a parabolic fit to the 3 available H-mode points

Definition: Elementary variable, only relevant for ASDEX and used in calculating TAUDIA

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: W Error: 20%

113. DWMHD

Description: Time rate of change of the total plasma stored energy

Definition:

Default: Elementary variable, obtained from MHD measurements

• Exceptions and comments: See table

Data type: Floating point **Allowed values:**] — Inf, Inf[

ток	Definition	Error
ASDEX	As for <u>DWDIA</u>	20%
AUG	Default	30%
CMOD	Default	20%
COMPASS	Default	n.a.
D3D	Obtained by differentiating a spline fit to WMHD	25%
JET	As for <u>DWDIA</u>	20%
JFT2M	Obtained from a derivative of WMHD over ± 5 ms, without correcting for the change of $l_{\rm i}$ from a current filament method	20%
JT60U	Default	n.a.
PBXM	Default	10%
PDX	Default	10%
TCV	Default	10%
TEXTOR	Default	20%
TFTR	Default	5% +fractional error on WTOT

ток	Definition	Error
TDEV	Default	25%
START	Default	20%
T10	Default	15%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

114. DWHC

Description: Flag indicating whether DWDIA or DWMHD were manually corrected for ASDEX

Definition: Elementary variable, only relevant for ASDEX: See table

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

DWH	C Definition
0	 No manual correction of DWDIA or DWMHD for ASDEX No ASDEX data
1	DWDIA or DWMHD have been corrected manually for ASDEX

Temperatures

115. TEV

Description: Volume-averaged electron temperature

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: eV Error: See table

ток	Definition	Error
ASDEX	Determined from 16 radial YAG laser measurements by fitting the following radial temperature profile and assuming a circular plasma: $T_{\rm e}(x) = T_{\rm e}(0) * \exp(a * x^2 + b * x^4 + c * x^6)$	5%
AUG	Default	n.a.
CMOD	Default	5%
COMPASS	Default	n.a.
D3D	Determined from a spline fit to a temperature profile obtained from Thomson scattering	10%
JET	Determined from a 51-point temperature profile obtained from ECE	10%
JFT2M	Default	n.a.
JT60U	Default	5%
PBXM	Computed from BETMHD, VOL and NEL, assuming $Z_{ m eff}=1$	30%
PDX	Computed from BETMHD, VOL and NEL, assuming $Z_{ m eff}=1$	30%
TCV	Default	5%
TEXTOR	Default	n.a.
TFTR	Default	15%
TDEV	Default	n.a.
START	Default	n.a.
T10	Default	15%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

116. TEO

 $\textbf{Description:} \ \textbf{Electron temperature on the magnetic axis}$

Definition:

Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: eV Error: See table

ток	Definition	Error
ASDEX	As for <u>TEV</u>	10%
AUG	Default	30%
CMOD	Default	10%
COMPASS	Default	n.a.
D3D	As for <u>TEV</u>	10%
JET	As for <u>TEV</u>	10%
JFT2M	Default	n.a.
JT60U	Default	10%
РВХМ	Default	n.a.
PDX	Default	n.a.
TCV	Default	10%
TEXTOR	Default	15%
TFTR	Default	10%
TDEV	Default	10%
START	Default	n.a.
T10	Default	15%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

117. TEOTSC

Description: Electron temperature on the magnetic axis from Thomson scattering **Definition:**

• Default: Elementary variable, determined from the Thomson scattering point closest to the magnetic axis

Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: eV Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
ASDEX	Average of the 3 YAG laser channels closest to the equatorial plane	5%
D3D	Obtained from the Thomson scattering point closest to the magnetic axis, less than $10\ \mathrm{cm}$	10%
JT60U	Default	10%

118. TIV

Description: Volume-averaged ion temperature

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: eV Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
D3D	Determined by a spline fit to a temperature profile obtained from charge exchange recombination data	10%
JET	$TIV = \frac{TI0*TEV}{TE0}$	30%
JT60U	Default	7%

ток	Definition	Error
РВХМ	Determined by assuming TIV = TEV	30%
PBXM	Determined by assuming TIV = TEV	30%
TFTR	Default	20%

119. TIO

Description: Ion temperature at the magnetic axis **Definition:**

Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: eV Error: See table

ток	Definition	Error
ASDEX	Default	n.a.
AUG	Default	40%
CMOD	Default	15%
COMPASS	Default	n.a.
D3D	As for <u>TIV</u>	10%
JET	From a crystal X-ray diagnostic	10%
JFT2M	Default	n.a.
JT60U	Default	10%
РВХМ	Default	n.a.
PDX	Default	n.a.
TCV	Default	n.a.
TEXTOR	Default	n.a.
TFTR	Default	15%
TDEV	Default	n.a.
START	Default	n.a.
T10	Default	10%

ток	Definition	Error
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

120. TICX0

Description: Ion temperature on the magnetic axis from charge exchange recombination

spectroscopy

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: eV Error:

Default: n.a.

Exceptions: See table

ток	Error
JET	10%
JT60U	10%

Plasma rotation

121. OMGAIMPO

Description: Central rotation frequency of impurities

Definition: Elementary variable, obtained from the corresponding toroidal rotation velocity $V_{
m tor}$ as

OMGAIMP0 =
$$2 * \pi * \frac{V_{\text{tor}}}{L}$$
, where $L = 2 * \pi * R$

Data type: Floating point **Allowed values:** [0, Inf[

Units: rad s⁻¹ Error: n.a.

122. OMGAIMPH

Description: Rotation frequency of impurities at half radius

Definition: Elementary variable, obtained from the corresponding toroidal rotation velocity $V_{
m tor}$ as

OMGAIMPH =
$$2 * \pi * \frac{V_{\text{tor}}}{L}$$
, where $L = 2 * \pi * R$

Data type: Floating point **Allowed values:** [0, Inf[

Units: rad s⁻¹ Error: n.a.

123. OMGAM0

Description: Central rotation frequency of main plasma species

Definition: Elementary variable, obtained from the corresponding toroidal rotation velocity $V_{
m tor}$ as

OMGAM0 =
$$2 * \pi * \frac{V_{\text{tor}}}{L}$$
, where $L = 2 * \pi * R$

Data type: Floating point **Allowed values:** [0, Inf[

Units: rad s⁻¹ Error: n.a.

124. OMGAMH

Description: Rotation frequency of main plasma species at half radius

Definition: Elementary variable, obtained from the corresponding toroidal rotation velocity $V_{
m tor}$ as

OMGAMH = $2 * \pi * \frac{V_{\text{tor}}}{L}$, where $L = 2 * \pi * R$

Data type: Floating point **Allowed values:** [0, Inf[

Units: $rad s^{-1}$ Error: n.a.

125. SPIN

Description: Net fraction of NBI power in parallel direction

Definition: Elementary variable, calculated using the following expression:

SPIN =
$$\frac{1}{P_{\text{inj}}} * \left(\sum_{i} P_{\text{co},i} * \cos \theta_{\text{co},i} - \sum_{i} P_{\text{ctr},i} * \cos \theta_{\text{ctr},i} \right)$$

where $P_{\rm inj}$ is the total injected NBI power, $P_{{\rm co},i}$ ($P_{{\rm ctr},i}$) is the power injected from NBI co-directed (counter-directed) source i and $\theta_{{\rm co},i}$ ($\theta_{{\rm ctr},i}$) is the angle between the source's centerline and the geometric axis of the machine.

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: n.a. Error: n.a.

126. TORQ

Description: Torque on plasma due to neutral beam injection

Definition: Elementary variable, calculated using the following expression:

TORQ = 4.57 *
$$\left(\sum_{j} \sum_{i} \sqrt{\frac{m_{\text{co},j}}{E_{\text{co},ji}}} * P_{\text{co},ji} * R_{\text{co},j} - \sum_{j} \sum_{i} \sqrt{\frac{m_{\text{ctr},j}}{E_{\text{ctr},ji}}} * P_{\text{ctr},ji} * R_{\text{ctr},j}\right)$$

where $E_{\text{co},ji}$ ($E_{\text{ctr},ji}$, in keV) is the energy of component i (full, half and one-third) of co-directed (counter-directed) NBI source j with power $P_{\text{co},ji}$ ($P_{\text{ctr},ji}$, in MW), beam particle mass $m_{\text{co},j}$ ($m_{\text{ctr},j}$, in Da) and radius of tangency $R_{\text{co},j}$ ($R_{\text{ctr},j}$, in m).

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: N m Error: n.a.

127. TORQBM

Description: Volume-integrated torque due to beam

Definition:

Default: Elementary variable, calculated by a transport code (e.g. TRANSP)

TORQBM = TORQ if no calculated result is available

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: N m Error: n.a.

128. TORQIN

Description: Volume-integrated total input torque

Definition:

 Default: Elementary variable, composed of beam torque and possible additional contributions due to applied or intrinsic error fields

TORQIN = TORQBM if no additional torques are to be considered

Data type: Floating point **Allowed values:**] — Inf, Inf[

Units: N m Error: n.a.

129. VTOR0

Description: Central rotation velocity of plasma

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf]

Units: m s⁻¹ Error: n.a.

130. VTORV

Description: Volume-averaged rotation velocity of plasma

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf]

Units: $m s^{-1}$

Error: n.a.

131. VTORIMP

Description: Volume-averaged rotation velocity of impurity species

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: m s⁻¹ Error: n.a.

Energies

132. WDIA

Description: Total plasma energy as determined from the diamagnetic loop

Definition:

Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: J

ток	Definition	Error
ASDEX	WDIA is determined from $W_{\rm dia} = 0.471*{\rm RGEO}*10^{-6}*{\rm IP^2*BEPDIA},$ as follows: • Ohmic: WDIA = $W_{\rm dia}$ • H-mode: WDIA = $W_{\rm dia}$ – DW, where DW = $W_{\rm dia}$ (Ohmic) – WMHD(Ohmic)	10% (20% on $W_{ m dia}$)
AUG	Default	10%
CMOD	Default	n.a.
COMPASS	Default	15%
D3D	Default	0.1 / β _p
JET	Default	5%
JFT2M	WDIA is determined from $W_{\rm dia} = 0.471*{\rm RGEO}*10^{-6}*{\rm IP^2*BEPDIA},$ as follows: • Ohmic: WDIA = $W_{\rm dia}$ • H-mode: WDIA = $W_{\rm dia}$ – DW, where DW = $W_{\rm dia}({\rm Ohmic})$ – WMHD(Ohmic)	15% (1 – 2 kJ on $W_{ m dia}$)
JT60U	Default	5%
PBXM	Default	n.a.
PDX	Default	15%
TCV	Default	n.a.
TEXTOR	Default	10%
TFTR	WDIA = $0.471 * RGEO * 10^{-6} * IP^2 * BEPDIA$	4% + 100 kJ
TDEV	Default	10%
START	Default	n.a.
T10	Default	10%
TUMAN3M	Default	20%

ток	Definition	Error
MAST	Default	n.a.
NSTX	Default	n.a.

133. WMHD

Description: Total plasma energy as determined by MHD equilibrium calculations **Definition:**

Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: J

ток	Definition	Error
ASDEX	Determined by an MHD equilibrium fit or based on probe measurements and an estimate of $l_{\rm i}/2$. Defined by ${\rm WMHD} = 0.471*{\rm RGEO}*10^{-6}*{\rm IP}^2*{\rm BEPMHD}$	Ohmic: 20%H-mode: 10%
AUG	Default	10%
CMOD	Default	10% + 10 kJ
COMPASS	Default	n.a.
D3D	Default	0.05 / $\beta_{\rm p}$
JET	Default	15%
JFT2M	Default	15%
JT60U	Default	5%
РВХМ	Default	15%
PDX	Default	15%
TCV	Default	10%
TEXTOR	Default	20%
TFTR	WMHD = WTOT, to be replaced by WMHD = (3 * WTOT – WDIA) / 2	2% + fractional error BEIMHD
TDEV	Default	10%
START	Default	15%
T10	Default	10%

ток	Definition	Error
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

134. WKIN

Description: Total thermal plasma energy as determined from kinetic measurements

Definition:

• Default: Elementary variable

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: J

ток	Definition	Error
ASDEX	WKIN = WEKIN * $\left(1 + \frac{7 - \text{ZEFF}}{7 - 1}\right)$, where for Ohmic points ZEFFNEO is used instead of ZEFF	25%
AUG	Default	n.a.
CMOD	Default	20%
COMPASS	Default	n.a.
D3D	Default	0.05 / β _p
JET	Obtained from profile fits, assuming a flat $Z_{\rm eff}$ profile and the same profile shape for $T_{\rm i}$ as for $T_{\rm e}$	25%
JFT2M	Default	n.a.
JT60U	Default	15%
PBXM	Default	n.a.
PDX	Default	15%
TCV	Default	n.a.
TEXTOR	$WKIN = WDIA - \frac{3}{2} * WFPER$	15%
TFTR	Default	25%
TDEV	Default	n.a.
START	Default	n.a.

ток	Definition	Error
T10	Default	n.a.
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

135. WEKIN

Description: Total thermal electron plasma energy as determined from kinetic measurements

Definition: Elementary variable **Data type:** Floating point **Allowed values:** [0, Inf[

Units: J

Error: See table

ток	Definition	Error
ASDEX	A circular plasma is assumed.	Default: 10%H-mode: 15%
CMOD	Default	15%
D3D	Default	15%
JET	Default	20%
JT60U	Default	15%
TCV	Default	10%
TFTR	Default	20%
T10	Default	20%

136. WIKIN

Description: Total thermal ion plasma energy as determined from kinetic measurements **Definition:**

• Default: Elementary variable

Exceptions and comments: See table

Data type: Floating point

Allowed values: [0, Inf[

Units: J Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
CMOD	Default	25%
D2D	Default	15%
JET	From the ECE temperature profile shape normalized to $T_{\rm i}(0)$, obtained from a crystal X-ray diagnostic	15%
JT60U	Default	15%
TFTR	Default	25%

137. WROT

Description: Total rotational energy

Definition: Elementary variable, defined as WROT = $\frac{1}{2} * M * V^2$, where M is the mass of the thermal ions and V is the thermal ion toroidal velocity. V is determined indirectly by means of NCLASS from the toroidal rotation velocity of carbon (for NSTX this mainly corrects the edge rotational velocity).

Data type: Floating point

Allowed values: [0, Inf[Units: $m s^{-1}$

Units: m s -Error: n.a.

138. WFPER

Description: Total perpendicular fast ion energy due to NBI as determined from transport calculations **Definition:**

• Default: Elementary variable, zero if no NBI is applied

Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf]

Units: J Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG	Default	30%
JET	Calculated from the PENCIL code	30%
JFT2M	Calculated from a Monte Carlo code	20%
РВХМ	Calculated from the TRANSP code	30%
PDX	Calculated from the TRANSP code	30%
TEXTOR	Calculated from the TRANSP code	25%
TFTR	Default	30%

139. WFPAR

Description: Total parallel fast ion energy due to NBI as determined from transport calculations **Definition:**

Default: Elementary variable, zero if no NBI is applied

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: J Error:

• Default: n.a.

Exceptions: See table

ток	Definition	Error
AUG	Default	30%
JET	Calculated from the PENCIL code	30%
JFT2M	Calculated from a Monte Carlo code	20%
РВХМ	Calculated from the TRANSP code	30%
PDX	Calculated from the TRANSP code	30%
TEXTOR	Calculated from the TRANSP code	25%
TFTR	Default	30%

140. WFFORM

Description: Total fast ion energy due to NBI estimated from approximate formula **Definition:**

• Default: Elementary variable, zero if no NBI is applied

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: J

ток	Definition	Error
ASDEX	Obtained from regression analysis based on 176 FREY runs: • For an H beam: $WFFORM = C_{\rm H} * f_{\rm H} * {\rm NEL^{-1.3}} * {\rm PINJ} * {\rm ENBI^{0.75}} * ({\rm WTOT-WFFORM})^{0.5}$ • For a D beam: $WFFORM = C_{\rm D} * f_{\rm D} * {\rm NEL^{-1.1}} * {\rm PINJ} * {\rm ENBI} * ({\rm WTOT-WFFORM})^{0.8}$ Here, $C_{\rm H}$ and $C_{\rm D}$ are estimated constants depending on the target gas, while $f_{\rm H}$ and $f_{\rm D}$ represent estimated temperature effects. Missing temperature profiles are interpolated by regression of the available YAG laser Thomson scattering profiles in the database against IP, BT, NEL, NEV, EVAP and beam gas.	15%
AUG	Default	30%
CMOD	Default	n.a.
COMPASS	Default	n.a.
D3D	$\text{wFFORM} = 0.55 * P_b * \frac{t_{\text{se}}}{2} \\ * \underbrace{\left(1 + \frac{2}{3} * \left(\frac{v_c}{v_b}\right)^2 * \left(\frac{1}{2} * \ln(f(v_b, v_c)) - \sqrt{3} * \left(\frac{\pi}{6} + \operatorname{atan}(g(v_b, v_c))\right)\right)\right)}_{\text{(A)}},$ where $f(v_b, v_c) = \frac{(v_b + v_c)^2}{\left(v_b^2 - v_b * v_c + v_c^2\right)} \text{and} g(v_b, v_c) = \frac{2 * v_b - v_c}{\sqrt{3} * v_c}$ Here, the velocities v_c and v_b are determined from the critical energy and the beam energy, respectively, while P_b is the injected neutral beam power. Furthermore, t_{se} is the slowing-down time on electrons, defined by Spitzer: $t_{\text{se}} = 6.3 \times 10^8 * \frac{A_b * T_e^{1.5}}{Z_b^2 * n_e * \ln(\Lambda_e)},$ where A_b and Z_b are the atomic mass and charge of the fast ions, T_e is the electron temperature in eV, n_e is the electron density in cm ⁻³ and $\ln(\Lambda_e) \sim 16$ is the Coulomb logarithm. If ion drag were negligible, the factor (A) would be identically 1, but for DIII-D parameters, this factor is a strong function of temperature. Finally, to give better agreement with results from the ONETWO code, the above formula is still multiplied by a factor 0.55.	50%
JET	• For SHOT \leq 18760: WFFORM = $0.16 \times 10^{19} * \frac{\text{PINJ}}{\text{NEV}}$	50%

ток	Definition	Error
	• For SHOT > 18760 : $ WFFORM = 10^{19} * \frac{0.16 * P_{80kV} + 0.3 * P_{140kV} + 0.02 * P_{He}}{NEV} $	
JFT2M	WFFORM = WFPER + WFPAR	Co.
JT60U	Default	20%
PBXM	WFFORM = WFPER + WFPAR	Co.
PDX	WFFORM = WFPER + WFPAR	Co.
TCV	Default	n.a.
TEXTOR	Default	30%
TFTR	Default	n.a.
TDEV	Default	n.a.
START	Default	20%
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

141. WFANI

Description: Estimate of fraction of perpendicular fast ion energy as compared to the total fast ion energy due to NBI **Definition:**

• Default: If WFPER and WFPAR are available, then

$$WFANI = \frac{WFPER}{WFPER + WFPAR}$$

Zero if no NBI is applied.

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: W Error: See table

ток	Definition	Error
	Obtained from regression analysis based on 176 FREY runs: • For an H beam:	
ASDEX	WFFORM = $C_{\rm H} * \frac{{\rm NEL^{0.04} * \left({\rm NE0 * (ZEFF - 1)} \right)^{0.045}}}{{\rm ENBI^{0.14}}}$	7%
	• For a D beam:	

ток	Definition	Error
	$WFFORM = \mathcal{C}_D * \frac{\text{NEL}^{0.12} * \left(\text{NEO} * (\text{ZEFF}-1)\right)^{0.020}}{\text{ENBI}^{0.14}}$ Here, \mathcal{C}_H and \mathcal{C}_D are estimated constants depending on the target gas. Missing central densities are interpolated by regression of the available central densities in the database against IP, BT, NEL, NEV, EVAP and PINJ. If not measured, ZEFF is assumed to be 3 when EVAP = 'NONE', 2.5 for carbonized shots and 1.5 for boronised shots.	
AUG	Default	40%
CMOD	Default	n.a.
COMPASS	Default	n.a.
D3D	The fast ion anisotropy is calculated only from geometry; the angles of the beam center line are known relative to the geometric axis of the tokamak and from this the perpendicular and parallel components can be determined.	50%
JET	WFANI = $1.16 \times 10^{-2} * \frac{\text{NEL}^{0.11}}{\text{ENBI}^{0.07}}$	50%
JFT2M	Default	Co.
JT60U	Default	n.a.
РВХМ	Default	Co.
PDX	Default	Co.
TCV	Default	n.a.
TEXTOR	Default	30%
TFTR	Default	20%
TDEV	Default	n.a.
START	Default	n.a.
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

142. WFICRH

Description: Estimate of the perpendicular fast ion energy content during ICRH heating **Definition:**

• Default: Obtained from

WFICRH =
$$\frac{4}{3}$$
 * (DWDIA – DWMHD)

 $WFICRH = \frac{4}{3}*(DWDIA-DWMHD),$ where DWDIA and DWMHD are estimates of the increase of the plasma stored energy due to ICRH, from

diamagnetic measurements and MHD, respectively. Zero if no ICRH is applied.

Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf]

Units: J Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
CMOD	Default	50%
JET	Estimated with the PION code	50%

143. WFICRHP

Description: Estimate of the parallel fast ion energy content due to ICRH heating **Definition:**

Default: Elementary variable, zero if no ICRH is applied

Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: J Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
JET	Estimated with the PION code	50%

144. WFICFORM

Description: Total fast ion energy due to ICRH estimated from approximate formula **Definition:**

• Default: Elementary variable, zero if no ICRH is applied

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: J Error:

• Default: n.a.

Exceptions: See table

ток	Definition	Error
JET	Obtained using the following expression: $WFICFORM = \frac{0.3}{17} * (TE0 * 10^{-3})^{1.5} * \frac{PICRH}{NE0 * 10^{-19}}$	50%

145. ICFORM

Description: Flag indicating whether <u>WFICFORM</u> was used in confinement calculations

Definition: Elementary variable: See table

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

ICFORM	Definition
0	WFICFORM not used in confinement calculations
1	WFICFORM used in confinement calculations

146. WFANIIC

Description: Estimate of fraction of perpendicular fast ion energy compared to total fast ion

energy due to ICRH heating

Definition: Elementary variable, zero if no ICRH is applied

Data type: Floating point **Allowed values:** [0, Inf[

Units: J Error:

Default: n.a.

• Exceptions: See table

ток	Error
JET	50%

Energy confinement times

147. TAUDIA

Description: Total diamagnetic energy confinement time

Definition: Calculated as

 $TAUDIA = \frac{WDIA}{POHM + PNBI + PICRH + PECRH - DWDIA}$

Data type: Floating point **Allowed values:** [0, Inf[

Units: s

Error: See table

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	Ohmic: 25%H-mode: 15%	JET	Ohmic: 25%H-mode: 15%	TCV	n.a.	T10	25%
AUG	15%	JFT2M	20%	TEXTOR	15%	TUMAN3M	21%
CMOD	n.a.	JT60U	15%	TFTR	20% for DWDIA = 0	MAST	n.a.
COMPASS	15%	РВХМ	n.a.	TDEV	30%	NSTX	n.a.
D3D	15%	PDX	20%	START	n.a.		

148. TAUMHD

Description: Total MHD energy confinement time

Definition: Calculated as

 $TAUMHD = \frac{WMHD}{POHM + PNBI + PICRH + PECRH - DWMHD}$

Data type: Floating point **Allowed values:** [0, Inf[

Units: S

ток	Error	ток	Error	ток	Error	ток	Error
ASDEX	15%	JET	35%	TCV	10%	T10	25%
AUG	15%	JFT2M	20%	TEXTOR	20%	TUMAN3M	n.a.
CMOD	15%	JT60U	n.a.	TFTR	20% for DWMHD = 0	MAST	n.a.
COMPASS	n.a.	РВХМ	20%	TDEV	30%	NSTX	n.a.
D3D	15%	PDX	20%	START	15%		

149. TAUTH1

Description: Thermal energy confinement time

Definition:

• Default: Calculated as

$$TAUTH1 = \frac{WKIN}{POHM + PNBI + PICRH + PECRH - DWMHD - PFLOSS}$$

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: S

ток	Definition	Error
ASDEX	$TAUTH1 = \frac{WKIN}{POHM + PNBI + PICRH + PECRH - DWTOT - PFLOSS},$ where $DWTOT = \frac{2}{3}*DWMHD + \frac{1}{3}*DWDIA$	Co.
AUG	Default	n.a.
CMOD	Default	Co.
COMPASS	Default	n.a.
D3D	Default	Co.
JET	Default	Co.
JFT2M	Default	n.a.
JT60U	Default	Co.
РВХМ	Default	Co.
PDX	Default	Co.
TCV	Default	n.a.
TEXTOR	Default	Co.
TFTR	Default	Co.
TDEV	Default	Co.
START	Default	n.a.
TUMAN3M	Default	n.a.
MAST	Default	n.a.

ток	Definition	Error
NSTX	Default	n.a.

150. TAUTH2

Description: Thermal energy confinement time

Definition:

• Default: Calculated as

$$TAUTH2 = \frac{WMHD - WFFORM - \frac{3}{4} * WFICRH}{POHM + PNBI + PICRH + PECRH - DWMHD - PFLOSS}$$

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: s

ток	Definition	Error
ASDEX	$TAUTH2 = \frac{WMHD - \frac{3}{2}*WFANI*WFFORM - \frac{3}{4}*WFICRH}{POHM + PNBI + PICRH + PECRH - DWTOT - PFLOSS}$ where $DWTOT = \frac{2}{3}*DWMHD + \frac{1}{3}*DWDIA$	Co.
AUG	Default	Co.
CMOD	Default	Co.
COMPASS	Default	n.a.
D3D	Default	Co.
JET	Default	Co.
JFT2M	Default	Co.
JT60U	Default	n.a.
РВХМ	$TAUTH2 = \frac{WMHD - \frac{3}{4} * WFPER - \frac{3}{2} * WFPAR - \frac{3}{4} * WFICRH}{POHM + PNBI + PICRH + PECRH - DWMHD - PFLOSS}$	Co.
PDX	$TAUTH2 = \frac{WMHD - \frac{3}{4} * WFPER - \frac{3}{2} * WFPAR - \frac{3}{4} * WFICRH}{POHM + PNBI + PICRH + PECRH - DWMHD - PFLOSS}$	Co.
TCV	Default	n.a.
TEXTOR	Default	Co.
TFTR	Default	Co.

ток	Definition	Error
TDEV	Default	n.a.
START	Default	n.a.
TUMAN3M	Default	n.a.
MAST	Default	n.a.
NSTX	Default	n.a.

Recommended variables

151. WTOT

Description: Estimated total plasma energy content

Definition: See table **Data type:** Floating point **Allowed values:** [0, Inf[

Units: J

ток	Definition	Error
ASDEX	WTOT = WTH + WFORM	Co.
AUG	WTOT = WMHD	Co.
CMOD	WTOT = WMHD	Co.
COMPASS	WTOT = WDIA	Co.
D3D	WTOT = WMHD	Co.
JET	 WTOT = WTH + WFPER + WFPAR + WFICRH WTOT = WTH + WFFORM + WFICRH, if WFPER and WFPAR are missing 	Co.
JFT2M	WTOT = WTH + WFORM	Co.
JT60U	WTOT = WDIA	Co.
РВХМ	WTOT = WTH + WFPER + WFPAR	Co.
PDX	WTOT = WTH + WFPER + WFPAR	Co.
TCV	WTOT = WMHD	Co.
TEXTOR	WTOT = WTH + WFPER + WFPAR	Co.
TFTR	WTOT = $3.14 \times 10^{-7} * RGEO * IP^2 * (BEPMHD + BEPDIA/2)$	6% + 100 kJ
TDEV	WTOT = WKIN	Co.
START	WTOT = WMHD	Co.
T10	WTOT = WDIA	Co.
TUMAN3M	WTOT = WDIA	Co.
MAST	WTOT = WMHD	Co.
NSTX	WTOT = WTH	Co.

152. WTH

Description: Estimated thermal plasma energy content

Definition: See table **Data type:** Floating point **Allowed values:** [0, Inf[

Units: J Error: Co.

ток	Definition
ASDEX	$WTH = WDIA - \frac{3}{2} * WFANI * WFORM$
AUG	WTH = WMHD $-\frac{3}{4}$ * WFPER $-\frac{3}{2}$ * WFPAR
CMOD	WTH = WTOT - WFICRH
COMPASS	WTH = WDIA
D3D	WTH = WMHD - WFFORM
JET	• WTH = WDIA $-\frac{3}{2}$ * (WFPER + WFICRH) • WTH = WDIA $-\frac{3}{2}$ * (WFANI * WFFORM + WFICRH), if WFPER is missing
JFT2M	$WTH = \frac{1}{3} * WDIA + \frac{2}{3} * WMHD - WFFORM$
JT60U	WTH = WKIN
PBXM	WTH = WMHD $-\frac{3}{4}$ * WFPER $-\frac{3}{2}$ * WFPAR
PDX	WTH = WMHD $-\frac{3}{4}$ * WFPER $-\frac{3}{2}$ * WFPAR
TCV	WTH = WMHD
TEXTOR	$WTH = WDIA - \frac{3}{2} * WFPER$
TFTR	$WTH = WDIA - \frac{3}{2} * WFPER$
TDEV	WTH = WKIN
START	WTH = WMHD - WFFORM
T10	WTH = WDIA
TUMAN3M	WTH = WDIA
MAST	WTH = WMHD - WFFORM
NSTX	WTH = WKIN

153. PL

Description: Estimated loss power not corrected for charge exchange and unconfined orbit losses

Definition: See table **Data type:** Floating point **Allowed values:** [0, Inf]

Units: W Error: Co.

ток	Definition
ASDEX	$PL = POHM + PNBI - \frac{1}{3} * DWDIA - \frac{2}{3} * DWMHD$
AUG	PL = POHM + PNBI + PICRH + PECRH - DWMHD
CMOD	PL = POHM + PICRH - DWMHD
COMPASS	PL = POHM + PECRH - DWDIA
D3D	PL = POHM + PNBI + PECRH - DWMHD
JET	PL = POHM + PNBI + PICRH - DWDIA
JFT2M	PL = POHM + PNBI - DWDIA
JT60U	PL = POHM + PNBI - DWDIA
РВХМ	PL = POHM + PNBI - DWMHD
PDX	PL = POHM + PNBI - DWMHD
TCV	PL = POHM - DWMHD
TEXTOR	PL = POHM + PNBI + PICRH - DWDIA
TFTR	PL = POHM + PNBI - DWDIA
TDEV	PL = POHM + PECRH - DWDIA
START	PL = POHM + PNBI - DWMHD
T10	PL = POHM + PECRH - DWDIA
TUMAN3M	PL = POHM - DWDIA
MAST	PL = POHM + PNBI - DWMHD
NSTX	PL = POHM + PNBI + PICRH - DWMHD

154. PLTH

Description: Estimated loss power corrected for charge exchange and unconfined orbit losses

Definition: Calculated as PLTH = PL - PFLOSS

Data type: Floating point **Allowed values:** [0, Inf[

Units: W Error: Co.

155. TAUTOT

Description: Estimated total energy confinement time **Definition:** Calculated as TAUTOT = WTOT/PL

Data type: Floating point **Allowed values:** [0, Inf[

Units: s Error: Co.

156. TAUTH

Description: Estimated thermal energy confinement time

Definition: Calculated as TAUTH = WTH/PLTH

Data type: Floating point **Allowed values:** [0, Inf[

Units: s Error: Co.

157. TAUC92

Description: Correction factor for thermal confinement time TAUTH

Definition: See [Kardaun92]Default: TAUC92 = 1

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error:

Default: n.a.

Exceptions: See table

ток	Definition	Error
ASDEX	• TAUC92 = $(1.5 - 0.1 * bo - 0.15 * ca)^{-1}$, for ELMy plasmas • TAUC92 = $(1.2 - 0.1 * bo - 0.15 * ca)^{-1}$, for ELM-free plasmas Here: • $bo = 1$, if EVAP = BOROA or EVAP = BOROB • $bo = 0$, otherwise and • $ca = 1$, if EVAP = CARBH • $ca = 0$, otherwise	10%
JET	$TAUC92 = \frac{1}{0.85} \text{if } 870101 \le DATE \le 871231$	30%
PDX	$TAUC92 = \left(\frac{1}{3} * \frac{DALFDV}{DALFMP}\right)^{-0.4}, \text{ for ELMy plasmas}$	10%

158. TAUC93

Description: Correction factor for thermal confinement time TAUTH

• Definition: See [Schissel93]
• Default: TAUC93 = 1

• Exceptions and comments: See table

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error:

Default: n.a.

• Exceptions: See table

ток	Definition	Error
ASDEX	• TAUC93 = $(1.5 - 0.1 * bo - 0.15 * ca)^{-1}$, for ELMy plasmas • TAUC93 = $(1.2 - 0.1 * bo - 0.15 * ca)^{-1}$, for ELM-free plasmas Here: • $bo = 1$, if EVAP = BOROA or EVAP = BOROB • $bo = 0$, otherwise and • $ca = 1$, if EVAP = CARBH • $ca = 0$, otherwise	10%
PDX	TAUC93 = $\left(\frac{1}{2} * \frac{\text{DALFDV}}{\text{DALFMP}}\right)^{-0.4}$, for ELMy plasmas	10%

159. H89

Description: Confinement enhancement factor w.r.t. ITER89-P

Definition: Calculated as

$$H89 = \frac{TAUTOT * TAUC92}{ITER89-P},$$

where ITER89-P is the prediction by the ITER-89P scaling law [Yushmanov90]

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error: Co.

160. HITERL96

Description: Confinement enhancement factor w.r.t. ITERL96-P

Definition: Calculated as

$$HITERL96 = \frac{TAUTH * TAUC92}{ITERL96-P},$$

where ITERL96-P is the prediction by the ITERL96-P scaling law [Kaye97]

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error: Co.

161. H93

Description: Confinement enhancement factor w.r.t. ITERH93-P

Definition: Calculated as

$$H93 = \frac{TAUTH * TAUC92}{ITERH93-P},$$

where ITERH93-P is the prediction by the ITERH93-P scaling law [Schissel93]

Data type: Floating point **Allowed values:** [0, Inf[

162. HITER92Y

Description: Confinement enhancement factor w.r.t. ITERH92Y

Definition: Calculated as

$$HITER92Y = \frac{TAUTH * TAUC92}{ITERH92Y},$$

where ITERH92Y is the prediction by the ITERH92Y scaling law [Kardaun92]

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error: Co.

163. HEPS97

Description: Confinement enhancement factor w.r.t. HEPS97

Definition: Calculated as

$$HEPS97 = \frac{TAUTH * TAUC93}{EPS97(ELMy)},$$

where EPS97(ELMy) is the prediction by the EPS97(ELMy) scaling law [Cordey97]

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error: Co.

164. HIPB98Y

Description: Confinement enhancement factor w.r.t. IPB98(y)

Definition: Calculated as

$$HIPB98Y = \frac{TAUTH * TAUC92}{IPB98(y)},$$

where IPB98(y) is the prediction by the IPB98(y) scaling law [IPB99]

Data type: Floating point Allowed values: [0, Inf]

165. HIPB98Y1

Description: Confinement enhancement factor w.r.t. IPB98(y,1)

Definition: Calculated as

$$HIPB98Y1 = \frac{TAUTH * TAUC92}{IPB98(y,1)},$$

where IPB98(y,1) is the prediction by the IPB98(y,1) scaling law [IPB99]

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error: Co.

166. HIPB98Y2

Description: Confinement enhancement factor w.r.t. IPB98(y,2)

Definition: Calculated as

$$HIPB98Y2 = \frac{TAUTH * TAUC92}{IPB98(y,2)},$$

where IPB98(y,2) is the prediction by the IPB98(y,2) scaling law [IPB99]

Data type: Floating point **Allowed values:** [0, Inf[

Units: n. a. Error: Co.

167. HIPB98Y3

Description: Confinement enhancement factor w.r.t. IPB98(y,3)

Definition: Calculated as

$$HIPB98Y3 = \frac{TAUTH * TAUC92}{IPB98(y,3)},$$

where IPB98(y,3) is the prediction by the IPB98(y,3) scaling law [IPB99]

Data type: Floating point **Allowed values:** [0, Inf]

168. HIPB98Y4

Description: Confinement enhancement factor w.r.t. IPB98(y,4)

Definition: Calculated as

$$HIPB98Y4 = \frac{TAUTH * TAUC92}{IPB98(y,4)},$$

where IPB98(y,4) is the prediction by the IPB98(y,4) scaling law [$\underline{IPB99}$]

Data type: Floating point **Allowed values:** [0, Inf[

Standard dataset flags

169. STANDARD

Description: Standard dataset flag for DB1

Definition: Elementary variable: See table. Note: STANDARD can only be different from zero for observations that

are in DB.1.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

STANDARD	Definition
1	For observations belonging to the standard dataset of ITERH.DB1
0	For all other observations

170. SELDB1

Description: Selection variable related to DB1 **Definition:** Elementary variable, calculated as

SELDB1 =
$$\sum_{i=1}^{3} a(I.i) \times 10^{i-1}$$
,

with criteria variables a(I.i) defined in the table. Note: SELDB1 can only be different from zero for observations that are in DB2.

Data type: Integer
Allowed values: Binary

Units: n.a. Error: n.a.

Criterion Variable Definition		
<i>I</i> . 1	a(I.1)	a(I.1) = 0 IF (observation also in DB1) $a(I.1) = 1$
I. 2	a(I.2)	a(I.2)=0 IF (observation in DB1 and also satisfies the old DB1 standard selection criteria) $a(I.2)=1$
<i>I</i> .3	a(I.3)	a(I.3)=0 IF (observation satisfies the updated DB1 standard selection criteria, including PHASE = 'H1') $a(I.3)=1$

171. SELDB2

Description: Selection variable related to DB2 **Definition:** Elementary variable, calculated as

SELDB2 =
$$\sum_{i=1}^{10} a(II.i) \times 10^{i-1}$$
,

with criteria variables a(II.i) defined in the table.

PABST is defined as

PABST = POHM + PNBI + PECRH + PICRH.

Note: SELDB2 can only be different from zero for observations that are in DB2.

Data type: Integer **Allowed values:** Binary

Units: n.a. Error: n.a.

Criterion	Variable	Definition
II. 1	a(II. 1)	H-mode criterion: $a(II.\ 1) = 0$ IF (PHASE = 'H') OR (PHASE = 'HSELM') OR (PHASE = 'HGELM') OR (PHASE = 'H1') $a(II.\ 1) = 1$
II. 2	a(II.2)	NBI only with H ⁰ or D ⁰ injection: $a(II.2) = 0$ IF (AUXHEAT = 'NB') $a(II.2) = 1$ IF (PINJ > 0) AND (BGASA \neq 1) AND (BGASA \neq 2) $a(II.2) = 0$ IF (PINJ2 > 0) AND (BGASA2 \neq 1) AND (BGASA2 \neq 2) $a(II.2) = 0$
II. 3	a(II.3)	Test for missing confinement data: $a(II.3) = 1$ // TAUMHD check IF (TOK = 'AUG') OR (TOK = 'CMOD') OR (TOK = 'D3D') OR (TOK = 'PBXM') OR (TOK = 'PDX') IF (TAUMHD missing) $a(II.3) = 0$ // TAUDIA check IF (TOK = 'ASDEX') OR (TOK = 'COMPASS') OR (TOK = 'JET') OR (TOK = 'JFT2M') OR (TOK = 'JT60U') OR (TOK = 'TEXTOR') IF (TAUDIA missing) $a(II.3) = 0$
II.4	a(II.4)	No pellet discharges: $a(II.4) = 1$ IF (PELLET = $'$ H $'$) OR (PELLET = $'$ D $'$)

Criterion	Variable	Definition
		a(II.4)=0
II. 5	a(II.5)	Weak dW/dt : $a(II.5) = 1$ IF $(TOK = 'AUG')$ OR $(TOK = 'CMOD')$ OR $(TOK = 'D3D')$ OR $(TOK = 'PBXM')$ OR $(TOK = 'PDX')$ IF NOT(DWMHD missing) AND NOT($-0.05 \le DWMHD/PABST \le 0.35$) $a(II.5) = 0$ IF $(TOK = 'ASDEX')$ OR $(TOK = 'COMPASS')$ OR $(TOK = 'JET')$ OR $(TOK = 'JFT2M')$ OR $(TOK = 'JT60U')$ OR $(TOK = 'TEXTOR')$ IF NOT(DWDIA missing) AND NOT($-0.05 \le DWDIA/PABST \le 0.35$) $a(II.5) = 0$ IF $(TOK = 'JET')$ AND $(PREMAG = 'NO')$ IF NOT(DWDIA missing) AND NOT($-0.05 \le DWDIA/PABST \le 0.35$) $a(II.5) = 1$
II. 6	a(II.6)	Radiation criterion: $a(II. 6) = 1$ IF PRAD/PABST > 0.6 $a(II. 6) = 0$ IF (TOK = 'D3D') IF (SHOT = 62950) AND (TIME = 3.10) OR (SHOT = 64446) AND (TIME = 3.45) OR (SHOT = 64514) AND (TIME = 3.15) OR (SHOT = 64514) AND (TIME = 2.05) OR (SHOT = 64519) AND (TIME = 2.06) OR (SHOT = 64523) AND (TIME = 2.02) OR (SHOT = 64523) AND (TIME = 2.02) OR (SHOT = 62879) AND (TIME = 2.49) OR (SHOT = 67801) AND (TIME = 2.50) OR (SHOT = 62881) AND (TIME = 2.44) $a(II. 6) = 0$ IF (TOK = 'JET') IF (SHOT ≠ 17010) AND (SHOT ≠ 22332) AND (SHOT ≠ 23201) AND (SHOT ≠ 23206) $a(II. 6) = 0$ IF (TOK = 'JFT2M') AND (PRAD missing) $a(II. 6) = 0$ IF (TOK = 'PBXM') AND (PRAD missing) $a(II. 6) = 0$
II.7	a(II.7)	$\begin{array}{l} \textit{q_{95} or $I_{\rm p}/B_{\rm t}$ limit:} \\ & \textit{$a(II.7)=1$} \\ \text{IF (TOK = 'JET') AND (Q95 missing)} \\ & \textit{$Q95=\frac{5*{\rm AMIN}^2* {\rm BT} }{{\rm RGEO}* {\rm IP} *10^{-6}}\frac{1+{\rm KAPPA}^2}{2}\left(1+\frac{3*{\rm AMIN}^2}{2*{\rm RGEO}^2}\right)} \\ \text{IF (TOK = 'ASDEX') OR (TOK = 'AUG') OR (TOK = 'COMPASS') OR (TOK = 'CMOD')} \\ \text{OR (TOK = 'JET') OR (TOK = 'JT60U') OR (TOK = 'TEXTOR')} \\ & \textit{IF (Q95 < 3.1)} \\ & \textit{$a(II.7)=0$} \\ \text{IF (TOK = 'D3D') AND (IP/BT > 10^6 A/T)} \\ & \textit{$a(II.7)=0$} \\ \text{IF (TOK = 'JFT2M') AND (Q95 < 2.7)} \\ & \textit{$a(II.7)=0$} \\ \end{array}$

Criterion	Variable	Definition
II. 8	a(II.8)	Fast ion energy limit: $a(II.8) = 1$ IF $((\text{WFFORM} + \text{WFICRH})/\text{WMHD} > 0.4)$ $a(II.8) = 0$ IF $(\text{TOK} = '\text{D3D'})$ AND (WFFORM missing) IF $((\text{WMHD} - \text{WKIN})/\text{WMHD} > 0.4)$ $a(II.8) = 0$ IF $(\text{TOK} = '\text{JET'})$ AND $(\text{PREMAG} = \text{NO})$ IF $((\text{WFFORM} + \text{WFICRH})/\text{WDIA} > 0.4)$ $a(II.8) = 0$
II. 9	a(II.9)	$β$ limit, no hot ion modes: $a(II.9) = 1$ BCR = $10^{-8} * \frac{ IP }{AMIN* BT }$ IF (TOK = 'PBXM') AND (BETMHD ≥ 4 * BCR) $a(II.9) = 0$ IF (TOK = 'PDX') AND (BETMHD ≥ 2.8 * BCR) $a(II.9) = 0$ IF (TOK = 'D3D') AND (TI0 ≥ 8 keV) $a(II.9) = 0$ IF (TOK = 'JET') IF (TI0 > 11 keV) AND (TI0 > TE0 + 4 keV) $a(II.9) = 0$ IF (TICX0 > 11 keV) AND (TICX0 > TE0 + 4 keV) $a(II.9) = 0$
II. 10	a(II. 10)	No JET 1987 data: $a(II.10) = 1$ IF (TOK = 'JET') AND (870101 \leq DATE \leq 871231) $a(II.10) = 0$

172. SELDB2X

Description: Selection variable with extra criteria related to DB2

Definition: Elementary variable, calculated as

SELDB2X =
$$\sum_{i=11}^{20} a(II.i) \times 10^{i-11}$$
,

with criteria variables a(II.i) defined in the table.

PABST is defined as

PABST = POHM + PNBI + PECRH + PICRH.

Note: SELDB2X can only be different from zero for observations that are in DB.2.

Data type: Integer **Allowed values:** Binary

Units: n.a. Error: n.a.

Criterion	Variable	Definition
II. 11	a(II.11)	High compression ratio (applies only to PDX): $a(II.11)=1$ IF (TOK = 'PDX') AND (DALFDV/DALFMP ≤ 4) $a(II.11)=0$
II. 12	a(II. 12)	No hot ion H-modes: $a(II. 12) = 1$ IF (TOK = 'D3D') AND (TI0 \geq 8 keV) $a(II. 12) = 0$ IF (TOK = 'JET') IF (TI0 $>$ 11 keV) AND (TI0 $>$ TE0 $+$ 4 keV) $a(II. 12) = 0$ IF (TICX0 $>$ 11 keV) AND (TICX0 $>$ TE0 $+$ 4 keV) $a(II. 12) = 0$
II. 13	a(II.13)	ELMs (any kind): $a(II.13) = 0$ IF (PHASE = 'HGELM') OR (PHASE = 'HSELM') OR (PHASE = 'HGELMH') $a(II.13) = 1$
II. 14	a(II. 14)	Strong auxiliary heating [Riedel92]: $a(II.14) = 1$ IF $(1 \text{ V} \times \text{IP} /\text{PABST} \ge 0.4)$ $a(II.14) = 0$
II. 15	a(II. 15)	Stationary density [Riedel92]: $a(II.15) = 1$ IF (TOK = 'AUG') OR (TOK = 'CMOD') OR (TOK = 'D3D') OR (TOK = 'PBXM') OR (TOK = 'PDX') IF (DNELDT * TAUMHD/NEL ≥ 0.4) $a(II.15) = 0$ IF (TOK = 'ASDEX') OR (TOK = 'COMPASS') OR (TOK = 'JET') OR (TOK = 'JFT2M') OR (TOK = 'JT60U') OR (TOK = 'TEXTOR') IF (DNELDT * TAUDIA/NEL ≥ 0.4) $a(II.15) = 0$
II. 16	a(II.16)	Strong dW/dt: $a(II.16) = 1$ IF (TOK = 'AUG') OR (TOK = 'CMOD') OR (TOK = 'D3D') OR (TOK = 'PBXM') OR (TOK = 'PDX') IF NOT ($-0.05 \le DWMHD/PABST \le 0.2$) $a(II.16) = 0$ IF (TOK = 'ASDEX') OR (TOK = 'COMPASS') OR (TOK = 'JET') OR (TOK = 'JFT2M') OR (TOK = 'JT60U') OR (TOK = 'TEXTOR') IF NOT ($-0.05 \le DWDIA/PABST \le 0.2$) $a(II.16) = 0$
II. 17	a(II. 17)	Old low q_{95} limit (used in DB1 [Christiansen92]): $a(II.17) = 1$

Criterion	Variable	Definition
		IF (TOK = 'JFT2M') IF (Q95 < 2.7) $a(II. 17) = 0$
II. 18	a(II. 18)	No beryllization: $a(II. 18) = 1$ IF (EVAP = 'BE') $a(II. 18) = 0$
II. 19	a(II.19)	No boronization: $a(II.19) = 1$ IF (EVAP = 'BO') OR (EVAP = 'BORO') OR (EVAP = 'BOROA') OR (EVAP = 'BOROB') OR (EVAP = 'BOROC') OR (EVAP = 'B2D6') OR (EVAP = 'DECABORA') $a(II.19) = 0$
II. 20	a(II.20)	No carbonization: $a(II.20) = 1$ IF (EVAP = 'CARB') OR (EVAP = 'CARBH') $a(II.20) = 0$

173. IAEA92

Description: Standard dataset flag for DB2

Definition: Elementary variable: See table. Note: can only be different from zero for observations that are in DB2.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

IAEA92	IAEA92 Definition	
1	For ELMy observations included in the subset of upon which ITERH92-P(y) is based [Kardaun92]	
0	For all other observations	

174. DB2P5

Description: Standard dataset flag for DB2

Definition: Elementary variable: See table. Note: can only be different from zero for observations that are in DB3v5.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a.

Error: n.a.

DB2P5	Definition
1	For ELMy observations included in the subset DB2.5 as defined in [IPB99]
0	For all other observations

175. DB2P8

Description: Standard dataset flag for DB2

Definition: Elementary variable: See table. Note: can only be different from zero for observations that are in DB3v5.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

DB2P8	Definition		
1	For ELMy observations included in the subset DB2.8 as defined in [IPB99]		
0	For all other observations		

176. DB3IS

Description: Standard dataset flag for DB2

Definition: Elementary variable: See table. Note: can only be different from zero for observations that are in DB.3v5.

Data type: Boolean **Allowed values:** 0, 1

DB3IS	Definition
1	For ELMy observations included in the subset DB3r(IS) as defined [IPB99]
0	For all other observations

177. DB3V5

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. Note: can only be different from zero for observations that are in DB3v5.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

DB3V5	Definition
1	Standard dataset selection for DB3v5 as defined in [IPB99]
0	For all other observations

178. IAE2000N

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. See SELDB3X for selection details.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

IAEA2000N	Definition
1	Small IAEA2000 standard dataset as defined in [Kardaun00]
0	For all other observations

179. IAE2000X

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. See SELDB3X for selection details.

Data type: Boolean **Allowed values:** 0, 1

IAEA2000X	Definition
1	Large IAEA2000 standard dataset as defined in [Kardaun00]
0	For all other observations

180. HMWS2003

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. See SELDB3X for selection details.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

HMWS2003	Definition
1	Deuterium only standard dataset as defined in [Kardaun03]
0	For all other observations

181. IAE2004S

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. See SELDB3X for selection details.

Data type: Boolean **Allowed values:** 0, 1

IAE2004S	Definition
1	IAEA2004 standard dataset as defined in [Cordey04]
0	For all other observations

182. IAE2004I

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. See SELDB3X for selection details.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

IAE2004I	Definition
1	ITER-like standard dataset as defined in [Cordey04]
0	For all other observations

183. DB3DONLY

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. See SELDB3X for selection details.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

DB3DONLY Definition	
1	Deuterium-only standard dataset as defined in [McDonald, D.C. et.al. NF]
0	For all other observations

184. HMWS2005

Description: Standard dataset flag for DB3

Definition: Elementary variable: See table. See SELDB3X for selection details. Selection procedure:

```
\begin{array}{l} {\rm HMWS2005} = 0 \\ {\rm IF} \ (a(\it{III}.\,15) = 1) \\ {\rm IF} \ (1.599999 \le \rm KAPPA \le 2.43) \ \rm AND \ (1.6 \le \rm MEFF \le 2.4) \\ {\rm HMWS2005} = 1 \\ {\rm IF} \ (\rm TOK = 'TCV') \ \rm OR \ (\rm TOK = 'JT60U') \\ {\rm HMWS2005} = 0 \end{array}
```

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

HMWS2005	Definition
1	Standard dataset as defined in [Kaye05], including 36 PBXM points.
0	For all other observations

185. OJK2006

Description: Standard dataset flag for DB3 **Definition:** Elementary variable: See table

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

IAEA2000X	Definition
1	Standard dataset as defined in [Kardaun e.a.]
0	For all other observations

186. SELDB3

Description: Selection variable related to DB3 **Definition:** Elementary variable, calculated as

SELDB3 =
$$\sum_{i=1}^{10} a(III.i) \times 10^{i-1}$$
,

with criteria variables a(III.i) defined in the table.

PABST is defined as

PABST = POHM + PNBI + PECRH + PICRH.

Data type: Integer **Allowed values:** Binary

Criterion	Variable	Definition
III. 1	a(III.1)	H-mode criterion: $a(III.\ 1) = 0$ IF (PHASE = 'H') OR (PHASE = 'HSELM') OR (PHASE = 'HSELMH') OR (PHASE = 'H1') OR (PHASE = 'HGELM') OR (PHASE = 'HGELM') OR (PHASE = 'HYGELM') OR (PHASE = 'HYGELM') $a(III.\ 1) = 1$ IF (TOK = 'COMPASS') IF (SHOT = 24787) $a(III.\ 1) = 0$ IF (AUXHEAT = 'ECOA') $a(III.\ 1) = 0$ IF (TOK = 'AUG') IF (SHOT = 8175) AND (1.49 < TIME < 1.51) $a(III.\ 1) = 0$ IF (SHOT = 8255) AND (1.64 < TIME < 1.66) $a(III.\ 1) = 0$
III. 2	a(III.2)	Test for missing confinement data: $a(III.2)=1$ IF (TAUTH * $ IP * BT *NEL*PLTH*KAPPA*RGEO*AMIN*MEFF$ not defined) $a(III.2)=0$
III.3	a(III.3)	No pellet discharges: $a(III.3) = 1$ IF (PELLET = 'H') OR (PELLET = 'D') OR (PELLET \neq 'NONE') $a(III.3) = 0$
III.4	a(III.4)	$\begin{aligned} &a(III.4)=1\\ &\text{IF (TOK}='\text{AUG') OR (TOK}='\text{CMOD') OR (TOK}='\text{D3D') OR (TOK}='\text{PBXM')}\\ &\text{OR (TOK}='\text{PDX') OR (TOK}='\text{TCV') OR (TOK}='\text{TDEV') OR (TOK}='\text{TFTR')}\\ &\text{OR (TOK}='\text{T10') OR (TOK}='\text{START') OR (TOK}='\text{MAST')}\\ &\text{IF NOT(DWMHD missing) AND NOT(}-0.05 \leq \text{DWMHD/PABST} \leq 0.35)\\ &a(III.4)=0\\ &\text{IF (TOK}='\text{ASDEX') OR (TOK}='\text{COMPASS') OR (TOK}='\text{JFT2M'}) \text{ OR (TOK}='\text{JT60U')}\\ &\text{OR (TOK}='\text{TEXTOR') OR (TOK}='\text{TFTR') OR (TOK}='\text{TUMAN3M'})}\\ &\text{IF NOT(DWDIA missing) AND NOT(}-0.05 \leq \text{DWDIA/PABST} \leq 0.35)\\ &a(III.4)=0\\ &\text{IF (SHOT} \leq 27968) \text{ AND (PREMAG}\neq'\text{NO'})}\\ &\text{IF NOT(DWMHD missing) AND NOT(}-0.05 \leq \text{DWMHD/PABST} \leq 0.35)\\ &a(III.4)=0\\ &\text{IF (SHOT} > 27968) \text{ OR (PREMAG}='\text{NO'})}\\ &\text{IF NOT(DWDIA missing) AND NOT(}-0.05 \leq \text{DWDIA/PABST} \leq 0.35)\\ &a(III.4)=0\\ &\text{IF (SHOT} > 27968) \text{ OR (PREMAG}='\text{NO'})}\\ &\text{IF NOT(DWDIA missing) AND NOT(}-0.05 \leq \text{DWDIA/PABST} \leq 0.35)\\ &a(III.4)=0\\ &\text{IF (III.}4)=0\\ &\text{IF (SHOT} > 27968) \text{ OR (PREMAG}='\text{NO'})}\\ &\text{IF NOT(DWDIA missing) AND NOT(}-0.05 \leq \text{DWDIA/PABST} \leq 0.35)\\ &a(III.4)=0\\ &\text{IF (III.}4)=0\\ &\text{III.}4)=0\\ &\text{III.}4)=0$
<i>III</i> .5	a(III.5)	Radiation criterion: $a(III.5) = 1$ IF $PRAD/PABST > 0.6$ $a(III.5) = 0$ IF (TOK = 'CMOD') IF (SHOT = 960116029) AND (0.85 \leq TIME \leq 0.95) $a(III.5) = 0$

```
Criterion Variable
                     Definition
                     IF (TOK = 'D3D')
                             IF ((SHOT = 62950) AND (3.09 \le TIME \le 3.11))
                               OR ((SHOT = 64446) AND (3.44 \leq TIME \leq 3.46))
                               OR ((SHOT = 64514) AND (3.14 \leq TIME \leq 3.16))
                               OR ((SHOT = 64514) AND (2.04 \leq TIME \leq 2.06))
                               OR ((SHOT = 64519) AND (2.05 \le TIME \le 2.07))
                               OR ((SHOT = 64523) AND (2.01 \le TIME \le 2.03))
                               OR ((SHOT = 62879) AND (2.48 \leq TIME \leq 2.51))
                               OR ((SHOT = 67801) AND (2.49 \le TIME \le 2.51))
                               OR ((SHOT = 62881) AND (2.43 \leq TIME \leq 2.45))
                                     a(III.5) = 0
                     IF (TOK = 'JET')
                             IF (PRAD missing)
                                     IF (SHOT \neq 17010) AND (SHOT \neq 22332) AND (SHOT \neq 23201)
                                       AND (SHOT \neq 23206)
                                             a(III.5) = 0
                     IF (TOK = 'JFT2M') AND (PRAD missing)
                             a(III.5) = 0
                     IF (TOK = 'PBXM') AND (PRAD missing)
                             a(III.5) = 0
                     IF (TOK = 'START') AND (PRAD missing)
                             a(III.5) = 0
                     IF (TOK = 'TUMAN3M') AND (PRAD missing)
                             a(III.5) = 0
                     q_{95} or I_p/B_t limit:
                     a(III.6) = 1
                     IF (TOK = 'JET') OR (TOK = 'TUMAN3M')
                             IF (Q95 missing)
                                     Q95 = \frac{{{5*AMI{N^2*}|BT|}}}{{RGE0*}|IP|*{10^{ - 6}}}\frac{{1 + KAPP{A^2}}}{2}{{\left( {1 + \frac{{3*AMI{N^2}}}{{2*RGE0^2}}} \right)}}
                     IF (TOK = 'ASDEX') OR (TOK = 'TCV') OR (TOK = 'TFTR') OR (TOK = 'TDEV')
                       OR (TOK = 'T10') OR (TOK = 'TUMAN3M')
                             IF (Q95 < 2.2)
                                     a(III.6) = 0
III. 6
         a(III. 6)
                     IF (TOK = 'AUG') OR (TOK = 'CMOD') OR (TOK = 'COMPASS') OR (TOK = 'JET')
                       OR (TOK = 'JT60U') OR (TOK = 'TEXTOR') OR (TOK = 'START') OR (TOK = 'MAST')
                             IF (Q95 < 2.5)
                                     a(III.6) = 0
                     IF (TOK = 'COMPASS') AND (SHOT = 11768)
                             a(III.6) = 0
                     IF (TOK = 'D3D') AND (| IP/BT | > 10^6 A/T)
                             a(III.6) = 0
                     IF (TOK = 'JFT2M') AND (Q95 < 2.7)
                             a(III.6) = 0
                     Fast ion energy limit:
                     a(III.7) = 1
                     IF(TOK = 'ASDEX') OR(TOK = 'AUG') OR(TOK = 'CMOD') OR(TOK = 'D3D')
                       OR (TOK = 'JFT2M') OR (TOK = 'PBXM') OR (TOK = 'PDX') OR (TOK = 'TCV')
III. 7
         a(III. 7)
                       OR (TOK = 'MAST')
                             IF ((WFFORM + WFICRH)/WMHD > 0.40)
                                     a(III.7) = 0
                     IF (TOK = 'COMPASS') OR (TOK = 'JT60U') OR (TOK = 'TEXTOR')
```

Criterion	Variable	Definition
		IF ((WFFORM + WFICRH)/WDIA > 0.40) $a(III.7) = 0$ IF (TOK = 'JT60U') AND ((WFFORM + WFICRH)/WDIA < 0.50) $a(III.7) = 1$ IF (TOK = 'D3D') AND (WFFORM missing) $IF ((WMHD - WKIN)/WMHD > 0.40)$ $a(III.7) = 0$ IF (TOK = 'JET') $IF (SHOT \le 27968) \text{ AND (PREMAG} \ne 'NO')$ $AND ((WFFORM + WFICRH)/WMHD > 0.40)$ $a(III.7) = 0$ $IF ((SHOT > 27968) \text{ OR (PREMAG} = 'NO'))$ $AND ((WFFORM + WFICRH)/WDIA > 0.40)$ $a(III.7) = 0$
III.8	a(III.8)	β limit: $a(III.8) = 1$ $BCR = 10^{-8} * \frac{ IP }{AMIN* BT }$ IF (TOK = 'PBXM') AND (BETMHD $\geq 4 * BCR$) $a(III.8) = 0$ IF (TOK = 'PDX') AND (BETMHD $\geq 2.8 * BCR$) $a(III.8) = 0$
III.9	a(III.9)	No hot ion H-modes: $a(III. 9) = 1$ IF (TOK = 'D3D') AND (TI0 \geq 8 keV) $a(III. 9) = 0$ IF (TOK = 'JET') IF (TI0 $>$ 11 keV) AND (TI0 $>$ TE0 $+$ 4 keV) $a(III. 9) = 0$ IF (TICX0 $>$ 11 keV) AND (TICX0 $>$ TE0 $+$ 4 keV) $a(III. 9) = 0$ IF (TOK = 'TFTR') IF (TI0 $>$ 11 keV) AND (TI0 $>$ TE0 $+$ 4 keV) $a(III. 9) = 0$
III. 10	a(III.10)	No JET 1987 data: $a(III.10)=1$ IF (TOK = 'JET') AND (870101 \leq DATE \leq 871231) $a(III.10)=0$

187. SELDB3X

Description: Selection variable with extra criteria related to DB3

Definition: Elementary variable, calculated as

SELDB3X =
$$\sum_{i=11}^{16} a(III.i) \times 10^{i-11}$$
,

with criteria variables $a(\mathit{III}.i)$ defined in the table.

Data type: Integer
Allowed values: Binary

Criterion	Variable	Definition
III. 11	a(III.11)	Data withdrawn from current version (SELDB3 $a(III.1) = 0$) $a(III.11) = 0$ IF (TOK = 'AUG') IF (SHOT = 8175) AND (1.49 \leq TIME \leq 1.51) $a(III.11) = 1$ IF (SHOT = 8255) AND (1.64 \leq TIME \leq 1.66) $a(III.11) = 1$ IF (TOK = 'COMPASS') IF (SHOT = 24787) OR (AUXHEAT = 'ECOA') $a(III.11) = 1$
III. 12	a(III. 12)	Strong gas puff data: $a(III. 12) = 0$ IF (PELLET \neq 'NONE') $a(III. 12) = 1$ IF (PELLET = 'H') OR (PELLET = 'D') $a(III. 12) = 0$
III. 13	a(III. 13)	Limited temperature ratio TI0/TE0 $a(III. 13) = 0$ IF (TI0 missing) OR (TE0 missing) $a(III. 13) = 1$ ELSEIF $(0.4 \le TI0/TE0 \le 2.5)$ $a(III. 13) = 1$
III. 14	a(III.14)	Limited internal inductance: $a(III.\ 14) = 0$ IF (BEILI2 missing) OR (BEIMHD missing) $a(III.\ 14) = 1$ ELSEIF $(2*(BEILI2 - BEIMHD) \le 2)$ $a(III.\ 14) = 1$
III. 15	a(III. 15)	Large IAEA2000 standard dataset equivalent [Kardaun00] $a(III.15) = 0$ IF (SELDB3 = 1111111111)

Criterion	Variable	Definition
		IF (PHASE = 'H') $a(III. 15) = 0$ IF (TOK = 'JET') $// \text{ Exclude JET museums shots}$ $IF (SHOT = 19971) \text{ OR (SHOT} = 43014)$ $a(III. 15) = 0$ $// \text{ Limit temperature ratio}$ $a(III. 15) = a(III. 15) * a(III. 13)$ $// \text{ Exclude shots with high internal inductance}$ $a(III. 15) = a(III. 15) * a(III. 14)$
III. 16	a(III. 16)	Small IAEA2000 standard dataset equivalent [Kardaun00] $a(III. 16) = 0$ IF (SELDB3 = 1111111111)
III. 17	a(III.17)	Deuterium-only HMWS2003 standard dataset $a(III.17)=0$ IF $(a(III.15)=1)$ // Select equivalent of large IAEA2000 standard dataset $a(III.17)=1$ IF $(TOK='JET')$ IF $(SHOT<30000)$ // Exclude old ELMy JET shots $a(III.17)=0$ IF $(SHOT=37854)$ OR $(SHOT=37859)$ // Exclude JET rogue shots $a(III.17)=0$ IF NOT($(1.833 < MEFF < 2.167)$ AND $(PGASA=2)$) // Limit range in MEFF and PGASA $a(III.17)=0$
III. 18	a(III. 18)	Deuterium-only Ohmic HMWS2003 standard dataset $a(III.18)=0$ IF $(a(III.17)=1)$ // Select deuterium-only standard set $a(III.18)=1$ IF $(AUXHEAT='NONE')$

Criterion	Variable	Definition
		// Exclude Ohmic data $a(III. 18) = 0$
III. 19	a(III. 19)	ITER-like IAEA 2004 equivalent standard dataset $a(III. 19) = 0$ // Select from large IAEA2000 standard dataset equivalent ($a(III. 15) = 1$) SM = 0 SQ = 0 SK = 0 IF $a(III. 15) = 1$ IF (TOK = 'COMPASS') AREA = $\frac{\text{VOL}}{2*\pi*\text{RGEO}}$ IF (KAPPAA = '.') $k2 = \frac{\text{AREA}}{\pi*\text{AMIN}^2}$ ELSE $k2 = \text{KAPPAA}$ QCYL = $5*\frac{k2*AMIN^2* \text{BT} }{\text{RGEO}* \text{IP} *10^{-6}}$ IF (1.833 < MEFF < 2.167) SM = 1 IF (1.6 < QCYL < 2.8) SQ = 1 IF (1.4 < k2 < 1.93) SK = 1 $a(III. 19) = \text{SM}*\text{SQ}*\text{SK}$
III. 20	a(III. 20)	HMWS2005 equivalent standard dataset $a(III.20) = 0$ // Select from large IAEA2000 standard dataset equivalent ($a(III.15) = 1$) IF ($a(III.15) = 1$) IF ($1.599999 \le \text{KAPPA} \le 2.43$) AND ($1.6 \le \text{MEFF} \le 2.4$) $a(III.20) = 1$ IF (TOK = 'TCV') OR (TOK = 'JT60U') $a(III.20) = 0$

188. STD3

Description: Standard dataset flag for DB3 **Definition:** Elementary variable: See table.

Data type: Boolean **Allowed values:** 0, 1

DB3V5	Definition
1	Standard dataset selection for DB3 as defined in [IPB99]

189. SELDB4

Description: Selection variable related to DB4 **Definition:** Elementary variable, calculated as

SELDB4 =
$$\sum_{i=1}^{10} a(IV.i) \times 10^{i-1}$$
,

with criteria variables a(IV.i) defined in the table.

Criterion	Variable	Definition
		Hybrid H-mode criterion:
<i>IV</i> . 1	a(IV.1)	a(IV.1) = 0 IF (HYBRID = 'YES') OR (HYBRID = 'HYBRID') OR (HYBRID = 'IH') $a(IV.1) = 1$

190. STDDB4V5

Description: Standard dataset flag for DB4

Definition: Elementary variable: See table. Note: can only be different from zero for observations that are in DB4v5.

Data type: Boolean **Allowed values:** 0, 1

Units: n.a. Error: n.a.

DB3V5	Definition
1	Standard dataset selection for DB4v5 as defined in
0	For all other observations

191. SELDB5

Description: Standard dataset flag for DB5

Definition: Elementary variable: See table. Note: can only be different from zero for observations that are in DB5.

Data type: Boolean **Allowed values:** 0, 1

DB3V5 Definition	
1	Standard dataset selection for DB5 as defined in [Verdoolaege21]
O For all other observations	

References

[Christiansen92] J.P. Christiansen et al., Nucl. Fusion 32, 291, 1992.

[Cordey97] J.G. Cordey et. al., Plasma Phys. Control. Fus. 39, B115, 1997.

[Cordey04] J.G. Cordey et. al., Proc. 20th IAEA Conf., Vilamoura, Portugal, 2004.

[IPB99] ITER Physics Basis Expert Groups on Confinement and Transport and Confinement Modelling and Database, ITER Physics Basis Editors, Nucl. Fusion **39**, 2175, 1999.

[Kardaun92] O.J.W.F. Kardaun, Proc. 14th IAEA Conf., Würzburg, Germany, 1992.

[Kardaun00] O.J.W.F. Kardaun et. al., Proc. 18th IAEA Conf., Sorrento, Italy, 2000.

[Kardaun03] O.J.W.F. Kardaun et. al., 9th International H-mode Workshop, San Diego, CA, USA, 2003.

[Kaye97] S.M. Kaye et. al., Nucl. Fusion 37, 1303, 1997.

[Kaye05] S.M. Kaye et al., 10th International H-mode Workshop, St. Petersburg, 2005.

[McDonald07] D. McDonald D et al., Nucl. Fusion 47, 147, 2007.

[Mikkelsen89] D.R. Mikkelsen, Phys. Fluids **B1**, 333, 1989.

[Pereverzev02] G. Pereverzev and P.N. Yushmanov, "ASTRA Automated System for Transport Analysis in a Tokamak," IPP 5/98, 2002.

[Riedel92] K. Riedel, Nucl. Fusion 32, 1270, 1992.

[Schissel93] D.P. Schissel et al., Proc. EPS Conference on Plasma Physics, ECA 17C, Part I, 103, 1993.

[Verdoolaege21] G. Verdoolaege et al., Nucl. Fusion, 2021.

[Weisen02] H. Weisen et al., Nucl. Fusion 42, 136, 2002.

[Yushmanov90] P.N. Yushmanov et al., Nucl. Fusion 30, 1999, 1990.

Last updated April 6, 2021.

This page is maintained by <u>Geert Verdoolaege</u>, Ghent University and <u>Knud Tomson</u>, IPP Garching.