

Leveraging Locality Inductive Bias for Automated Medical Imaging Diagnosis

MedAC

Jungmin Ha¹, Jinkyu Kim², Jaekoo Lee¹

¹College of Computer Science, Kookmin University

²Department of Computer Science and Engineering, Korea University

Contact: jinkyukim@korea.ac.kr, jaekoo@kookmin.ac.kr

Introduction

1) Importance of diagnosis skin cancer

Recently, the incidence of skin cancer has been increasing globally

2) Insufficient medical data

- Until recently, CNN has been overwhelmingly prevalent
- Vision Transformer necessitates extensive amounts of data for training
- 3) Vision Transformer with a lack of inductive bias
- Slowing training convergence speed

Model Overview

- Vision Transformer based model
- To address locality, we added SWA blocks and DA blocks.
- To enhance clarity, CBAM separates object characteristics and location information.

CBAM

Channel Attention [3]

- Extracts vital channel information.
- Spatial Attention [3]

• Extracts vital Spatial information.

Experiments

Classification performance comparison on HAM10000 dataset [1]

Networks	Resolution	Params(M)	MACs(G)	$\operatorname{Accuracy}(\uparrow)$
ResNet50	$224{\times}224$	25.6	4.1	97.34 (97.71)
$\operatorname{GoogLeNet}$	$224{ imes}224$	13.0	1.5	93.96 (96.38)
Inception V3	299×299	27.2	2.9	97.34 (95.17)
MobileNet V3	$224{\times}224$	5.5	0.2	97.10 (97.34)
FixCaps	299×299	0.8	1.4	96.14 (96.62)
ViT-B/32	$224{\times}224$	88.2	4.4	96.01 (95.53)
Swin-B	$224{\times}224$	87.8	10.2	95.41 (93.60)
Ours	$224{\times}224$	59.7	15.8	98.19 (97.83)

- Scores in parenthesis represent results with the preprocessing
- Applying black hat transform to preprocessing method

Example of preprocessing image

Conclusion & Discussion

- Achieved the highest performance on HAM10000
- Limited to simple classification task based on images
- Further research is needed to validate in diverse dense prediction tasks

References

1. schandl, Philipp and Rosendahl, Cliff and Kittler, Harald: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data 5(1), pp. 1-9 (2018)

2. Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining: Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012-10022. (2021).

3. Woo, Sanghyun and Park, Jongchan and Lee, Joon-Young and Kweon, In So: Cbam: Convolutional block attention module, Proceedings of the European conference on computer vision (ECCV), pp. 3-19. (2018).

Transformer Blocks

SWA Block [2]

DA Block

Extracts critical information within the window.

SW-MSA Extracts important information between windows.

DA Extracts important information from the overall feature map.