

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	F	ILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/598,713	09/598,713 06/21/2000		Jonathan P. Douglas	2207/8613	7081
23838	7590 07/09/2004			EXAMINER	
KENYON			HUISMAN, DAVID J		
1500 K STREET, N.W., SUITE 700 WASHINGTON, DC 20005				ART UNIT	PAPER NUMBER
				2183	14
				DATE MAILED: 07/09/2004	' !

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action-Summary

Application No.	Applicant(s)		
09/598,713	DOUGLAS, JONATHAN P.		
Examiner	Art Unit		
David J. Huisman	2183		

- The MAILING DATE of this communication appears on the cover sheet with the correspondence address - Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication

 If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).
Status
 Responsive to communication(s) filed on <u>26 April 2004</u>. This action is FINAL. 2b) This action is non-final. Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under <i>Ex parte Quayle</i>, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims
4) ☐ Claim(s) 4-7,9-12,17-20,23,25 and 26 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) ☐ Claim(s) 4-7 and 9 is/are allowed. 6) ☐ Claim(s) 10-12,17-20,23,25 and 26 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or election requirement.
Application Papers 9) ☐ The specification is objected to by the Examiner. 10) ☒ The drawing(s) filed on 15 August 2003 is/are: a) ☒ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) ☐ The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.
Priority under 35 U.S.C. § 119
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date 5) Notice of Informal Patent Application (PTO-152) Paper No(s)/Mail Date 6) Other:

Art Unit: 2183

DETAILED ACTION

1. Claims 4-7, 9-12, 17-20, 23, and 25-26 have been examined.

Papers Submitted

2. It is hereby acknowledged that the following papers have been received and placed of record in the file: #12. RCE as received on 4/26/2004 and #13. Pre-Amendment "D" as received on 4/26/2004.

Claim Objections

- 3. Claim 10 is objected to because of the following informalities: In line 9, replace "state" with --stage--. In addition, for clarity, please use either "pipestage" or "pipe stage" but not both, as used in lines 4 and 6, for instance. Appropriate correction is required.
- 4. Claim 17 is objected to because of the following informalities: After "second plurality of cascaded pipestages" insert --, and--. Appropriate correction is required.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- (e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

Art Unit: 2183

instruction is read.

6. Claim 10 is rejected under 35 U.S.C. 102(b) as being anticipated by Yoshioka et al., U.S. Patent No. 4,394,729 (herein referred to as Yoshioka).

- 7. Referring to claim 10, Yoshioka has taught a method for interfacing an instruction pipe with a return stack buffer having a predetermined round-trip communication latency period associated with a communication path therebetweeen, the method comprising:

 a) reading a return instruction from an instruction pipe stage. See Fig. 11, and note a return
- b) determining, with reference to other instructions read previously from the instruction pipestage, whether a return address is available to the instruction pipe prior to expiration of the round-trip communication latency period with the return stack buffer. See Fig.10 and Fig.11. When a return instruction is encountered, it will be determined whether a previous subroutine jump/call instruction has set BANKV (CNT) = 1 and whether CNT≤8. If BANKV (CNT) = 1 and CNT≤8, then the address is available prior to the expiration of the latency period associated with the return stack.
- c) if the return address is available immediately upon receipt of the return instruction at the instruction pipe stage, forwarding the return address to a next pipe stage during a next clock cycle, and if not, stalling processing of the return instruction until the round-trip communication latency period expires and forwarding a received return address thereafter. Again, see Fig. 11 and column 9, lines 6-30. Note that if the address is immediately available (i.e., BANKV (CNT) = 1 and CNT≤8), the address will be read from the register and supplied for further processing in the instruction pipe. However, if the address is not in the register (BANKV (CNT) ≠ 1 or

Art Unit: 2183

CNT>8), then an access must be made to the stack, which is in memory. This will require stalling since accessing memory is slow.

- 8. Referring to claim 12, Yoshioka has taught a method as described in claim 10. Furthermore, it is the inherent nature of a stall to stall the instruction pipestage and all other instruction pipestages before it in the instruction pipe. For instance, see Figure 3.13 on page 154 and note that if the SUB instruction is stalled before its 3rd stage (as shown), then the next two subsequent instructions are stalled before their 2nd and 1st stages respectively.
- 9. Claim 17 is rejected under 35 U.S.C. 102(e) as being anticipated by Pickett, U.S. Patent No. 5,968,169 (as applied in the previous Office Action).
- 10. Referring to claim 17, Pickett has taught execution logic for a processor, comprising:

 a) a first instruction pipe, comprising a first plurality of cascaded pipestages. See Fig.15 and note the cascaded stages of the pipeline (a new stage per clock cycle). The first pipe would include one of the multiple decode units and multiple functional units, shown in Fig.1, in order to operate on one many instructions fetched per clock cycle. See column 18, lines 31-38. Note that up to 6 instructions can be passed to 6 pipelines (Fig.1, components 208, 210, 212).
- b) a second instruction pipe, comprising a second plurality of cascaded pipestages. Note that a second pipeline would include a second set among the decode units, functional units, etc, shown in Fig. 1. This pipeline would also have pipestages as shown in Fig. 15.
- c) a return stack buffer coupled to the first instruction pipe and the second instruction pipe by communication paths of differing communication latencies. Note that each pipeline decoder is coupled to the return stack buffer. See Fig.2. Furthermore, from Fig.1, it can be seen that the

Art Unit: 2183

multiple decoders would all be located on different portions of the chip. By doing so, the length of the wires (communication paths) from each decoder to the return stack buffer will differ in length, and consequently, cause the communication latency to be different for the pipelines. Clearly, if the wires are a different length, then the latency will be of different length. On the other hand, even if the designers had tried to achieve the same length wires from each pipeline to the return stack buffer, there will still be some minor difference in the wire length (even if the difference is minute). Even the most minute difference in wire length will result in some latency difference. Therefore, based on the layout of the component on the chip and the imperfections in wire, the data in the wires will not travel the same distance in the same amount of time.

- 11. Claim 23 is rejected under 35 U.S.C. 102(b) as being anticipated by IBM Technical Disclosure Bulletin NN9204269 (as applied in the previous Office Action and herein referred to as IBM).
- 12. Referring to claim 23, IBM has taught an instruction control method, comprising, responsive to a return instruction in a first pipestage of an instruction pipe:
- a) determining whether the pipestage processed a prior return instruction faster than a latency period for round trip communication between the pipestage and the return stack buffer, and if so, stalling the downstream pipestages until the period for processing a prior return instruction equals the round trip communication latency period. See page 2, and note the 5 steps. Also, see page 3, and note the description regarding a return instruction followed by another return instruction. In this situation, if the prior return instruction has not yet popped the stack (processed faster than a latency for communication with the RSB), then the subsequent return

Art Unit: 2183

instruction must be stalled. Otherwise, the subsequent return instruction will retrieve an incorrect address from the stack, i.e., the address that should be popped off by the prior return instruction. As discussed on page 3 of IBM, the stalling will take place until the prior return instruction completes by popping the address off of the stack. At this time, the latency period for communicating with the stack will expire.

- 13. Claim 25 is rejected under 35 U.S.C. 102(b) as being anticipated by Armstrong, U.S. Patent No. 4,394,729.
- 14. Referring to claim 25, Armstrong has taught an instruction pipe, comprising:
- a) a plurality of pipestages connected in cascade. See Fig.1, and note that fetch, decode (interpret), and execute stages are shown.
- b) a pair of registers provided between first and second pipestages of the plurality. See Fig.4A, for instance, and note the one register is the counter register and another register would be the register at the top of the register file stack (return stack buffer). This would be a pair of registers. c) a first of the registers to store a return address received from the pipestage during receipt of a call instruction. See Fig.4B-C and column 3, line 55, to column 4, line 33. Note that when a call instruction is encountered, a corresponding return address is pushed into the top-of-stack register. d) a second of the registers to store a return address received form a return stack buffer. See Fig.4B-D and note the counter register. This counter register receives the next most recent return
- e) a selector coupling the first and second registers to the second pipestage. See Fig.1, component 36, for instance. This selector (multiplexer) is coupled to component 30, which as

address from the return stack buffer. See column 4, lines 34-45.

Art Unit: 2183

shown in Fig.2, comprises the return stack buffer 303 and the counter register. Therefore, the selector is coupled to both of these components.

Claim Rejections - 35 USC § 103

- 15. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 16. Claim 11 is rejected under 35 U.S.C. 103(a) as being unpatentable over Yoshioka, as applied above, in view of IBM, as applied above.
- Referring to claim 11, Yoshioka has taught a method as described in claim 10. Yoshioka has not taught the specifics of claim 11. However, IBM has taught determining whether the return instruction requires access to the return stack buffer in excess of an access allocation for the instruction piper, and if so, stalling the return instruction. Looking at page 3 of IBM, it is explained that if two return instructions are close to each other, then the second will have to be stalled since only one should access the stack at a time. More specifically, the first return must be able to pop the stack before the second return reads from the stack. Otherwise, the second return will retrieve the wrong address. This is applicable to Yoshioka because if two a second return instruction is close to a first return instruction and it turns out that both need to retrieve addresses from the stack (external resource), then the second return address must be stalled until the first one pops the stack, thereby allowing the second return to read the correct address. As a result, to prevent corruption, it would have been obvious to one of ordinary skill in the art at he

Art Unit: 2183

time of the invention to modify Yoshioka in view of IBM such that a return instruction is stalled if exceeds the access allocation for the instruction pipe.

- 18. Claims 18 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Pickett, as applied above, in view of Sproch et al., U.S. Patent No. 6,247,134 (as applied in the previous Office Action and herein referred to as Sproch).
- 19. Referring to claim 18, Pickett has taught logic as described in claim 17. Pickett has not taught the specifics of claim 18. However, Sproch has further taught clock throttling logic which comprises:
- a) a state machine coupled to an output of the at least one pipestage from the second plurality of pipestages. See Fig.5 and note that state machine 210 is coupled to the first stage of a pipeline. It determines whether to stall a pipeline or not (2-state state machine).
- b) a clock control circuit having an input for a system clock signal and having an output for a modified clock signal, the output coupled to the at least one pipestage, the clock control circuit controlled by the state machine. See Fig.5 and see components 351, 352, 353, 355, 362, 363, and 365. These components represent the innards of component 230, shown in Fig.3. This circuitry takes in a clock signal and modifies the output clock signals based on the state machine circuit 210. Also, see column 8, lines 50-61.

This throttling circuitry takes in a clock signal and modifies the output clock signals based on the need for a stall. Also, see column 8, lines 50-61. The abstract of Sproch shows that such a concept allows for power saving within the pipeline. Therefore, in order to save power, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify Pickett

Art Unit: 2183

to include clock throttling logic as taught by Sproch. It should also be noted from Fig.5 that this logic is coupled to at least one pipestage of a pipeline.

- 20. Referring to claim 19, Pickett has taught logic as described in claim 17. Furthermore, claim 19 is the same as claim 18 except that the state machine is coupled to at least one of the first plurality of pipestages in claim 19 as opposed to the at least one of the second plurality of pipestages in claim 18. However, one of ordinary skill in the art would have recognized that if each pipeline were to include the ideas taught by Sproch, then each pipeline would be able to save power, resulting in more overall system power being saved. As a result, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify Pickett to have a state machine coupled to the first plurality.
- 21. Referring to claim 20, Pickett has taught logic as described in claim 17. Pickett has further taught that additional instruction pipestages from either the first or the second instruction pipe are provided in communication with the return stack buffer, the additional instruction pipestages also provided with additional clock throttling logic. Recall from above that the decode units (which operate in decode stages of pipelines) communicate with the RSB via selector 258 as shown in Fig.2. In addition, as shown in Fig.2 and Fig.4, when a return address is selected from the stack it is applied to the instruction cache as a fetch address. Therefore, the RSB is also in communication with the fetch stage of the pipelines since a return address is a fetch address. In addition, it should be noted from Sproch that the clock throttling logic, which is used to save power, is coupled to each of the pipeline stages. Consequently, in order to save power, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify Pickett to include clock throttling logic as taught by Sproch.

Art Unit: 2183

22. Claim 26 is rejected under 35 U.S.C. 103(a) as being unpatentable over Armstrong, as applied above, in view Sproch, as applied above.

Referring to claim 26, Armstrong has taught an instruction pipe as described in claim 25. 23. Armstrong has not explicitly taught a clock stopping circuit to control the second pipestage and pipestages downstream therefrom. However, Official Notice is taken that instruction dependencies and the stalls that result therefrom, are well known and accepted in the art. It is well known that throughout an executing program, instructions are dependent on prior instructions. If a given prior instruction has not finished in time to satisfy the dependency of a subsequent dependent instruction, then the dependent instruction must be stalled until the dependency can be satisfied. And, it is well known that to stall an instruction from progressing through the pipeline, the appropriate pipeline stages should not be pulsed with a clock signal. This scheme is shown in Sproch. See Fig.3, for instance, and note that each pipeline stage receives a clock signal, whereby when the clock is received the data from each stage is passed to the next. However, if a stall condition is encountered, a clock signal will not be applied to the appropriate stage, thereby preventing data from that stage from moving to the next stage. Furthermore, it is well known in the art of stalling that when one stage is stalled, all stages prior to that stage are also stalled (downstream stages). Without a scheme similar to that of Sproch to effect stalls within the pipeline, data can be corrupted due to dependent instruction executing when their dependencies have not been satisfied. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to control the second pipestage and pipestages downstream via clock stopping circuit, as shown in Sproch.

Art Unit: 2183

Response to Arguments

- 24. Applicant's arguments, see pages 6-7, filed April 26, 2004, with respect to claims 4-7 and 9 have been fully considered and are persuasive. The rejections of these claims have therefore been withdrawn.
- 25. Applicant's arguments with respect to claims 10-12 have been considered but are moot in view of the new ground(s) of rejection.
- 26. Applicant's arguments with respect to claims 23 and 25-26 have been considered but are moot in view of the new ground(s) of rejection.
- 27. Applicant argues the novelty/rejection of claim 17 on page 8 of the remarks, in substance that:
 - "Pickett's decoder units appear to communicate with its stack via communication paths that have common communication latencies."
- 28. This argument are not found persuasive for the following reasons:
- a) It cannot be concluded that Pickett's communication paths all have exactly equal latencies from Pickett's figures alone. From Fig. 1, it can be seen that the multiple decoders would be located on different portions of the chip. Consequently, the lengths of the wires (communication paths) from each decoder to the return stack buffer will differ in length, and consequently, cause the communication latency to be different for the pipelines. Clearly, if the wires are a different length, then the latency will be of different length. On the other hand, even if the designers had tried to achieve the same length wires from each pipeline to the return stack buffer, there will still be some minor difference in the wire length (even if the difference is minute). Even the

Art Unit: 2183

the layout of the component on the chip and wire imperfections, the data in the wires will not travel the same distance in the same amount of time.

Allowable Subject Matter

29. Claims 4-7 and 9 are allowed.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to David J. Huisman whose telephone number is (703) 305-7811. The examiner can normally be reached on Monday-Friday (8:00-4:30).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Eddie Chan can be reached on (703) 305-9712. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

DJH David J. Huisman June 7, 2004 EDDIE CHAN
EDVISORY PATENT EXAMINER
2100

JPERVISORY PATENT EXTENDED TECHNOLOGY CENTER 2100