Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/007109

International filing date: 06 April 2005 (06.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-113278

Filing date: 07 April 2004 (07.04.2004)

Date of receipt at the International Bureau: 09 June 2005 (09.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 4月 7日

出 願 番 号 Application Number:

特願2004-113278

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

J P 2 0 0 4 - 1 1 3 2 7 8

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

新日本製鐵株式会社

Applicant(s):

.

2005年

[1]

5 月

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 P04NS0089T 【整理番号】 平成16年 4月 7日 【提出日】 殿 特許庁長官 【あて先】 301 C22C 38/00 【国際特許分類】 【発明者】 新日本製鐵株式会社 技術開発本部内 富津市新富20-1 【住所又は居所】 伊藤 実 【氏名】 【発明者】 富津市新富20-1 新日本製鐵株式会社 技術開発本部内 【住所又は居所】 児島 明彦 【氏名】 【発明者】 大分市大字西ノ洲1番地 新日本製鐵株式会社 大分製鐵所内 【住所又は居所】 皆川 昌紀 【氏名】 【発明者】 新日本製鐵株式会社 技術開発本部内 富津市新富20-1 【住所又は居所】 長谷川 俊永 【氏名】 【発明者】 大分市大字西ノ洲1番地 新日本製鐵株式会社 大分製鐵所内 【住所又は居所】 大谷 潤 【氏名】 【特許出願人】 000006655 【識別番号】 【氏名又は名称】 新日本製鐵株式会社 【代理人】 100062421 【識別番号】 【弁理士】 田村 弘明 【氏名又は名称】 【電話番号】 5687-1051 【選任した代理人】 【識別番号】 100068423 【弁理士】 矢葺 知之 【氏名又は名称】 5687-6054 【電話番号】 【選任した代理人】 【識別番号】 100080171 【弁理士】 津波古 繁夫 【氏名又は名称】 5687-6054 【電話番号】 【手数料の表示】 【予納台帳番号】 008659 16.000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】

【書類名】特許請求の範囲

【請求項1】

質量%で、

C: $0.03 \sim 0.14\%$

 $Si:0.01\sim0.30\%$

 $Mn: 0.8 \sim 2.0\%$

P:0.02%以下、

S:0.005%以下、

Ni: 0.8 \sim 4.0%,

 $Nb:0.003\sim0.010\%$

A1:0.001 \sim 0.040%

を含有し、NiとMnが下式[1]を満たし、残部が鉄および不可避不純物であることを 特徴とする、大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

N i /M n \ge 1 0 \times C e q - 3 (0. 3 6 < C e q < 0. 4 2) [1]

但し、Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15

【請求項2】

さらに質量%で、

 $Ca:0.0005\sim0.0050\%$

 $Mg: 0. 0005 \sim 0. 0050\%$

REM: $0.05 \sim 0.030\%$

のうち1種または2種以上を含有し、かつ、

 $Ti:0.005\sim0.030\%$

 $0:0.0010\sim0.0050\%$

を含有し、円相当径が $0.005\sim0.5\mu$ mの複合酸化物を、 $100\sim3000$ 個/m m^2 含有することを特徴とする、請求項1 に記載の大入熱溶接による溶接熱影響部の低温 靭性に優れた厚手高強度鋼板。

【請求項3】

さらに質量%で、

 $N : 0.0010 \sim 0.0100\%$

B : $0.0005\sim0.0050\%$

を含有することを特徴とする、請求項1または2に記載の大入熱溶接による溶接熱影響部 の低温靭性に優れた厚手高強度鋼板。

【請求項4】

さらに質量%で、

 $Cu: 0. 1 \sim 0. 4\%$

 $Cr: 0. 1 \sim 0. 5\%$

Mo: 0. $0.3 \sim 0.2\%$

 $V : 0.005 \sim 0.050\%$

を1種または2種以上含有することを特徴とする、請求項1~3のいずれか1項に記載の 大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

【書類名】明細書

【発明の名称】大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板 【技術分野】

[0001]

本発明は、船舶、海洋構造物、中高層ビル、橋梁などに使用される溶接熱影響部(Heat Affected Zone. 以後HAZと称す)の低温靭性に優れた厚手高強度鋼板に関するもので、特に、板厚 50mm以上、母材引張強度 $490\sim570m$ Pa級の鋼板で、溶接入熱が $20\sim100k$ J/mmの優れた低温HAZ靭性を有する鋼板に関するものである。

【背景技術】

[0002]

近年、船舶、海洋構造物、中高層ビル、橋梁などの大型構造物に使用される溶接用鋼材の材質特性に対する要望は厳しさを増している。特にこれら構造物の中では、板厚50mを超える厚手で母材の引張強度が570MPa級である鋼板の使用も多くなっている。

また、溶接の効率化を促進するため、このような厚手高強度鋼板の溶接には、エレクトロガス溶接法、エレクトロスラグ溶接法などに代表されるような大入熱溶接法による1パス溶接が検討されており、母材そのものの靭性と同様に、HAZ靭性の要求も厳しさを増している。

[0003]

大入熱溶接法が適用される鋼材のHAZ靭性に注目した提案は、これまで数多くなされてきた。例えば特許文献 1 等に開示されるように、微細なTi 窒化物を鋼中に確保することによって、HAZのオーステナイト粒を小さくし、靭性を向上させる方法がある。また特許文献 2 では、Ti 窒化物とMnSとの複合析出物をフェライトの変態核として活用し、HAZの靭性を向上させる方法が提案されている。さらに特許文献 3 では、Ti 窒化物とBNとの複合析出物を粒界フェライトの析出核として活用し、HAZ 靭性を向上させる方法が提案されている。

[0004]

しかしながらこのT i 窒化物は、HAZのうち最高到達温度が1400 Cを超える溶接金属との境界(以下、溶接ボンド部とも称する。)近傍では殆ど固溶してしまうので、靭性向上効果が低下してしまうという問題がある。そのため上記のようなT i 窒化物を利用した鋼材では、近年のHAZ 靭性に対する厳しい要求や、超大入熱溶接におけるHAZ 靭性の必要特性を達成することが困難である。

[0005]

この溶接ボンド部近傍の靭性を改善する方法として、Ti酸化物を含有した鋼が厚板、 形鋼などの様々な分野で使用されている。例えば厚板分野では、特許文献 4 や特許文献 5 に例示されているように、Ti酸化物を含有した鋼が大入熱溶接部靭性向上に非常に有効であり、高張力鋼への適用が有望である。この原理は、鋼の融点においても安定なTi酸化物をサイトとして、溶接後の温度低下途中にTi窒化物、MnS等が析出し、さらにそれらをサイトとして微細フェライトが生成し、その結果、靭性に有害な粗大フェライトの生成が抑制されて、靭性の劣化が防止できるというものである。

[0006]

しかしながらこのようなT i 酸化物は、鋼中へ分散される個数をあまり多くすることができないという問題がある。その原因は、T i 酸化物の粗大化や凝集合体であり、T i 酸化物の個数を増加させようとすれば 5 μ m以上の粗大なT i 酸化物、いわゆる介在物が増加してしまうためと考えられる。この 5 μ m以上の介在物は、構造物の破壊の起点となったり、靭性の低下を引き起こしたりして、有害であるため回避すべきものである。そのため、さらなる H A Z 靭性の向上を達成するためには、粗大化や凝集合体が起こりにくく、T i 酸化物よりも微細に分散する酸化物を活用する必要があった。

[0007]

また、このようなTi酸化物の鋼中への分散方法としては、A1等の強脱酸元素を実質的に含まない溶鋼中へのTi添加によるものが多い。しかしながら、単に溶鋼中にTiを

添加するだけでは鋼中のTi酸化物の個数、分散度を制御することは困難であり、さらには、TiN,MnS等の析出物の個数、分散度を制御することも困難である。そのため、Ti脱酸のみによってTi酸化物を分散させた鋼においては、例えばTi酸化物の個数が充分に得られないか、あるいは厚板の板厚方向の靭性が変動するといった問題があった。

[0008]

さらに、上記特許文献 4 などの方法では、T i 酸化物を生成しやすくするために、A l 量の上限を 0 . 0 0 7%という非常に少ない量で制限している。そのため、鋼材中の A l 量が少ない場合、A l N析出物量の不足などの原因により、母材の靭性が低下する場合があった。また、通常使用されている溶接材料を用いて A l 量の少ない鋼板を溶接した場合、溶接金属の靭性が低下する場合があった。

[0009]

このような問題に対して、特許文献 6 や特許文献 7 において、T i 添加直後のA l 添加、あるいはA l,C a 複合添加で、生成する T i -A l 複合酸化物やT i,A l,C a の複合酸化物を活用する技術が提案されている。このような技術により、大入熱溶接 H A Z 靭性を大幅に向上させることが可能となった。

【特許文献1】特公昭55-026164号公報

【特許文献2】特開平03-264614号公報

【特許文献3】特開平04-143246号公報

【特許文献4】特開昭61-079745号公報

【特許文献5】特開昭62-103344号公報

【特許文献6】特開平06-293937号公報

【特許文献7】特開平10-183295号公報

【発明の開示】

【発明が解決しようとする課題】

[0010]

近年、特に造船業界において、板厚 $5.0 \sim 8.0$ mm、母材強度が引張強度で $4.9.0 \sim 5.7.0$ MP a 級の鋼板が適用されている。この厚手高強度鋼板を現行の製造方法で製造する場合、強度確保の点から合金元素を増量して焼入性を向上させる必要がある。この合金元素の増量よる焼入性を、鋼材の溶接性と同時に化学成分的な焼入性を示す炭素当量(Ceq)で示した場合、強度確保にはCeq0.36以上が必要となる。このCeq0値は溶接 HAZの硬さと関係しており、この値が高れば高いほど溶接 HAZも硬くなる。またこのような厚手鋼板の溶接では、作業の効率性から入熱 $2.0 \sim 1.0.0$ k J/mmの大入熱溶接が適用される。

[0011]

従来はCeqがそれほど高くなかったため、上記の特許文献 $5\sim7$ 記載の従来手法を適用することにより HAZ 靭性は改善された。しかし、このようにCeqが 0.36 以上と高い場合では、HAZ 硬さが高くなるため、従来手法の適用では特に溶接ボンド部近傍で十分な HAZ 靭性が得られない。

[0012]

本発明は、Ceqが0.36以上0.42以下、板厚50~80mm、引張強度490~570MPa級の鋼板で、入熱20~100kJ/mmの大入熱溶接において優れたHAZ靭性を有する鋼材を提供することを目的とするものである。

【課題を解決するための手段】

[0013]

これまで HAZ 靭性の向上手段として、前述のとおり、高温でのオーステナイト粒の成長を抑制することが考えられてきた。その手段として最も有効な方法は、分散粒子によりオーステナイトの粒界をピンニングし、粒界の移動を止める方法である。これは、溶接入熱が $20\sim100$ k J/mmと大入熱である場合においても、HAZの再加熱オーステナイト粒はピンニングにより極めて有効に細粒化する。

[0014]

そこで発明者らは、Ceqが0.36以上0.42以下と高い場合でのHAZ靭性改善に、地鉄そのものの靭性を改善する最適成分系を鋭意検討した。

マトリックスの靭性を高める元素としては従来からNiが有効である。しかし、今回のようにCeqが0.36以上<math>0.42以下と高いHAZの靭性改善に有効かどうか、また有効である場合はどのような成分条件であれば有効かは知られていない。

[0015]

そこで、まずNi添加量の影響を検討した。検討にあたっては、母材強度確保に有効なNbを0.003%以上添加することを前提とした。但しNbは、0.01%より多く添加した場合、HAZ中に3~5 μ m以上の粗大なMA(Martensite-Austenite constituent)を生成し大入熱HAZ靭性を大きく低下させる場合があることから、その上限は0.01%とした。

HAZ靭性の評価には、図1に示すエレクトロガス溶接(入熱45kJ/mm)相当の熱サイクルを付与した時のシャルピー衝撃試験での延性・脆性遷移温度(vTrs)を採用した。

[0016]

Ni添加量の影響を検討した結果、まずNiが0.8%より少ない場合では必要な靭性が得られないことが判明した。また、Niを0.8%以上添加した場合であっても、HAZ靭性が改善されないものと、逆にHAZ靭性が低下するものも見られた。そこで、さらに他の添加元素やCeqとの関係を含め鋭意検討した結果、このようにCeqが0.36以上0.42以下の場合では、図2に示すように、HAZ靭性はCeqとNi/Mnとによって関係付けられることを見出した。

[0017]

図 2 は、検討に用いた鋼材の再現 HAZ 靭性(vTrs)をCeq 毎に層別し、Ni/Mn 比を横軸としてプロットしたものである。図 2 から、Ni/Mn $\ge 10 \times Ceq - 3$ …式 [1] の関係が成立つ鋼材において、vTrs vTrs で vTrs の良好な靭性が得られた。

式 [1] を満たさない鋼材が十分なHAZ 靭性が得られない理由としては、Ni の添加量が十分ではなくマトリックス高靭化効果が小さいため、あるいは、Ni を多く含む場合であってもMn の過剰添加によりHAZ中にMA生成し、Ni の高靭化効果が消失されるためと考えられる。

なお、上記検討で用いた鋼材を入熱100kJ/mm相当の熱サイクルにて同様の検討を行なった結果、入熱100kJ/mmの場合においても、式 [1] の関係にある鋼材においては良好な再現HAZ靭性が得られることを確認している。

[0018]

上述の検討により、HAZ 靭性は、式 [1] を満たす 0.8% 以上のNi 添加により改善されることを見出したが、さらに発明者らは一層のHAZ 靭性改善を検討し、その方法として以下の 3 つを検討した。

第一に、大入熱溶接では高温滞留時間が長期化するためオーステナイト粒が粗大化し、これがHAZ靭性を低下させることから、高温滞留時のオーステナイトの粗大化を抑制させる方法である。第二に、大入熱溶接では溶接後の冷却時間が長いためオーステナイト粒界から生成するフェライトの粗大化し、この粗大な粒界フェライトがHAZ靭性低下の原因になることから、粒界フェライトの粗大化を抑制する方法である。第三に、HAZ組織そのものを微細にさせる方法である。

[0019]

第一のオーステナイト粒の粗大化を抑制する方法に関しては、例えば特許文献 7 に記載 出証特 2 0 0 5 - 3 0 4 0 0 0 2

[0020]

そこで発明者らは、Ceqが0.36以上0.42以下と高い場合で、かつNiを0.8%以上添加した系において、微細酸化物を分散させHAZ靭性を更に向上させる方法を鋭意検討した。

まず、微細酸化物を分散させる方法であるが、このような系においては、脱酸工程で溶鋼の溶存酸素量を $0.0010\sim0.0050\%$ に調整し、その後、まずTi で脱酸し、引き続きA1 で脱酸した後、さらにCa,Mg,REMのうち1種以上を添加することで、円相当径が $0.005\sim0.5$ μ mの微細酸化物を $100\sim3000$ 個 μ mm 分散させることが可能であることを見出した。

[0021]

また、この微細酸化物分散により、溶接での高温滞留時のオーステナイト粒粗大化が抑制されHAZ靭性を更に改善させることできた。一例として、Niを適正添加したのみのHAZ靭性と比較した結果を図3に示す。なお、Ti脱酸の前の溶存酸素量が0.0050%を超える場合や脱酸元素の順番が異なる場合では、酸化物が粗大化し微細酸化物が十分に得られないため、オーステナイト粒の粗大化の抑制効果は殆ど得られない。

[0022]

また、円相当径が $0.005\sim0.5\,\mu$ mの酸化物の個数は、母材となる鋼板から抽出レプリカを作製し、それを電子顕微鏡にて10006で1000 μ m²以上)を観察し、観察された $0.005\sim0.5\,\mu$ m径の各粒子において元素分析を行い、酸化物であるものカウントした。

[0023]

次に発明者らは、HAZ靭性向上方法として、上述の第二の方法、および第三の方法と して記した、粒界フェライトの粗大化抑制、及びHAZ組織の微細化を鋭意検討した。

その結果、Ceqfi0.36以上0.42以下と高い場合で、かつNiを0.8%以上添加した系で、特に今回のような20~100kJ/mm相当の大入熱溶接をする場合においては、Bの添加が有効であることが判明した。その理由は、粒界フェライトの粗大化抑制の点では、再加熱オーステナイト粒界に固溶Bが偏析することにより粒界フェライトの生成が抑制されるためである。

また、HAZ組織の微細化の点では、今回のような大入熱溶接で冷却速度が遅い場合では、B添加によりオーステナイト粒界に偏析する固溶Bの一部、およびオーステナイト粒内の介在物にB窒化物が析出し、それを核とする数μmの微細なフェライトがオーステナイト粒界および粒内に多数することによりHAZ組織が微細化されるためである。

[0024]

B添加によるHAZ靭性の改善を、Niを適正添加したのみのHAZ靭性と比較した結果を図3に示す。B添加によりHAZ靭性がさらに向上していることが判る。さらに図3には、上述の微細酸化物を分散させる方法に加えB添加させた場合でのHAZ靭性を示しているが、微細酸化物分散とB添加によりHAZ靭性が一層向上している。

[0025]

また、強度確保や耐食性の向上の観点から、上記条件に加え、Cu, Cr, Mo, Ve 添加した場合でのHAZ 靭性も検討した。その結果、それぞれ $0.1\sim0.4\%$ 、 $0.1\sim0.5\%$ 、 $0.03\sim0.2\%$ 、 $0.005\sim0.050\%$ の範囲での添加であれば、HAZ 靭性を大きく低下しないことが判明した。

[0026]

なお、本発明の鋼板の製造方法は特に制限されることはなく、公知の方法に従って製造すれば良い。例えば上記の好適成分組成に調整した溶鋼を連続鋳造法でスラブとしたのち

、1000~1250℃に加熱してから、熱間圧延を施せばよい。

[0027]

本発明は、上記した知見に基づき完成されたものである。すなわち、本発明は下記の構 成を要旨とする。

(1) 質量%で、

C : 0. 03 \sim 0. 14%, S i : 0. 01 \sim 0. 30%,

 $Mn: 0. 8 \sim 2. 0\%$

P : 0. 02%以下、

S:0.005%以下、

Ni: 0.8 \sim 4.0%,

Nb: 0. 003 \sim 0. 010%, A1: 0. 001 \sim 0. 040%

を含有し、さらに、NiとMnが下式[1]を満たし、残部が鉄および不可避不純物であ ることを特徴とする大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

N i /M n \ge 1 0 \times C e q - 3 \cdots [1]

但し、C e q = C + M n / 6 + (C r + M o + V) / 5 + (N i + C u) / 15

[0028]

(2) さらに質量%で、

Ca: 0. 0005 \sim 0. 0050%, Mg: 0. 0005 \sim 0. 0050%,

REM: 0. $005 \sim 0$. 030%

のうち1種または2種以上を含有し、かつ、

Ti: 0. 005 \sim 0. 030%, O: 0. 0010 \sim 0. 0050% を含有し、円相当径が 0.005~0.5μmの複合酸化物を、100~3000個/m m² 含有することを特徴とする、上記(1)に記載の大入熱溶接による溶接熱影響部の低 温靭性に優れた厚手高強度鋼板。

(3) さらに質量%で、

N : 0. 0010 \sim 0. 0100%, B : 0. 0005 \sim 0. 0050% を含有することを特徴とする、上記(1)または(2)に記載の大入熱溶接による溶接熱 影響部の低温靭性に優れた厚手高強度鋼板。

(4) さらに質量%で、

 $Cu: 0. 1 \sim 0. 4\%$

 $Cr: 0. 1 \sim 0. 5\%$

 $Mo: 0. 03 \sim 0.2\%$, $V: 0. 010 \sim 0.050\%$

を1種または2種以上含有することを特徴とする、上記(1)~(3)のいずれか1項に 記載の大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

【発明の効果】

[0029]

本発明は、船舶、海洋構造物、中高層ビルなどの破壊に対する厳しい靭性要求を満足す る鋼板を供給するものであり、この種の産業分野にもたらす効果は極めて大きく、さらに 構造物の安全性の意味から社会に対する貢献も非常に大きい。

【発明を実施するための最良の形態】

[0030]

本発明で使用する鋼素材の組成限定理由について説明する。以下、組成における質量% は単に%で記す。

Cは、鋼の強度を向上させる有効な成分として下限を 0.03%とし、また過剰の添加 は、炭化物やMAを多量に生成しHAZ靭性を著しく低下させるので、上限を0.14% とした。

[0031]

Siは、母材の強度確保、脱酸などに必要な成分であり0.01%以上添加するが、H A Zの硬化により靭性が低下するのを防止するため、上限を 0.30%とした。

[0032]

Mnは、母材の強度、靭性の確保に有効な成分として 0.8%以上の添加が必要である が、溶接部の靭性、割れ性などの許容できる範囲で上限を2.0%とした。さらにMnの 上限に関しては、Ceq、Mn量、およびNi量との関係を示す下式 [1] を満たす必要 がある。これは、今回の検討で新たに見出した、Ceqが高い場合でMnの増加がHAZ 組織中にMAを多量に生成させる原因となり、NiによるHAZ靭性の向上効果を消失さ せるということに基づく。

N i /M n \ge 1 0 \times C e q - 3 \cdots [1]

[0033]

Pは、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコス トがかかることから、含有範囲を0.02%以下とした。

[0034]

Sは、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコス トがかかることから、含有範囲を0.005%以下とした。

[0035]

Niは、本発明で重要な元素であり、少なくとも0.8%の添加が必要である。さらに N i の下限に関しては、C e q 、M n 量、およびN i 量との関係を示す下式 [1] を満た す必要がある。上限に関しては、製造コストの観点から4.0%とした。

N i /M n \ge 1 0 \times C e q - 3 \cdots [1]

[0036]

N b は、焼き入れ性を向上させることにより母材の強度を向上させるために有効な元素 であることから、0.003%以上添加する。但し、Nb添加によりMAが生成しやすく なることから、上限を0.01%とした。

[0037]

A1は、重要な脱酸元素であり、下限値を0.001%とした。また、A1が多量に存 在すると鋳片の表面品位が劣化するため、上限を0.040%とした。

[0038]

Caは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となるC a 系酸化物を生成させるために、必要に応じて 0.005%以上添加する。しかし、過 剰の添加は粗大介在物を生成させることから、0.0050%を上限とした。

[0039]

Mgは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となるM g系酸化物を生成させるために、必要に応じて 0.005%以上添加する。しかし、過 剰な添加は粗大介在物を生成させることから、0.0050%を上限とした。

[0040]

REMは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となる REM系酸化物を生成させるために、必要に応じて0.005%以上添加する。しかし、 過剰な添加は粗大介在物を生成させることから、0.030%を上限とした。また、ここ で述べるREMとはCeおよびTaであり、添加量は両者の総量である。

[0041]

Tiは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となるT i 含有複合酸化物を生成させるため、必要に応じて0.005%以上添加する。しかし、 過剰な添加は固溶Ti量を増加させHAZ靭性の低下を招くことから、0.030%を上 限とした。

[0042]

〇は、鋼中に微細酸化物を生成させるために 0.050%以下に抑える必要があるが 、0.0010%未満では十分な酸化物が得られないため、その範囲を0.0010%以 上0.0050%以下とした。

[0043]

Nは、溶接後の冷却中にオーステナイト粒界および粒内にBNを生成させるために、必 要に応じて添加量を調整する。Bと結合してB窒化物を形成させるためには0.0010 %以上添加が必要であるが、過剰な添加は固溶N量を増大させHAZ靭性の低下を招くこ とから、0.0100%を上限とした。

[0044]

Bは、固溶Bとして溶接後の冷却中にオーステナイト粒界に偏析させ粒界フェライトの 生成を抑制するため、またオーステナイト粒界や粒内でBNを生成させるために、必要に 応じて0.0005%以上添加する。しかし、過剰な添加は固溶B量を増大させ、HAZ 硬さを大きく上昇させてHAZ靭性の低下を招くことから、0.050%を上限とした

[0045]

Cuは、鋼材の強度および耐食性を向上させるために、必要に応じて 0. 1%以上添加 するが、0.4%を超えるとMAが生成しやすくなりHAZ靭性が低下することから、0 . 4%を上限とした。

[0046]

Crは、鋼材の耐食性を向上させるために、必要に応じて0.1%以上添加するが、過 剰な添加はMA生成によるHAZ靭性の低下を招くことから、0.5%を上限とした。

[0047]

Moは、母材の強度および耐食性を向上させるために有効な元素であり、必要に応じて 0. 03%添加するが、過剰な添加はMA生成によるHAZ靭性の低下を招くことから、 0.2%を上限とした。

[0048]

Vは、母材の強度を向上させるために有効な元素であり、必要に応じて0.005%添 加するが、過剰な添加はMA生成によるHAZ靭性の低下を招くことから、0.050% を上限とした。

【実施例】

[0049]

表1に示す化学成分の溶鋼を連続鋳造して鋼片を作製した。D23~D31に関しては Ti投入前に溶鋼の溶存酸素をSiで0.0010~0.0050%に調整し、その後、 まずTiで脱酸し、引き続きAlで脱酸した後、Ca, Mg, REMのいずれかを添加し 脱酸した。これらを1100~1250℃で再加熱したあと、以下の2種類の圧延方法に より板厚50~80mmの鋼板を製造した。

一つは、表面温度が750~900℃の温度範囲で圧延したあと、水冷後の板表面の温 度が200~400℃の温度範囲内で復熱するまで水冷する方法(表2ではTMCPと記 載)であり、もう1つは、熱間圧延したのち室温まで水冷し、500~600℃の範囲で 焼戻す製造方法(表2ではDQ-Tと記載)である。

[0050]

表2に鋼板の製造条件、板厚、機械的性質を示す。またD23~D31に関しては、鋼 板の任意の箇所において測定した、円相当径 0.05~0.5 μmの微細酸化物の個数 を併記した。

酸化物の個数は、鋼板の任意の箇所から抽出レプリカを作製し、それを電子顕微鏡にて 10000倍で100視野以上(観察面積にして10000μm²以上)を観察し、観察 される 0.0 5 ~ 0.5 µ m径の各粒子において元素分析を行い、酸化物であるものを カウントすることにより求めた。D23~D31のどの鋼材も、円相当径で0.01~0. 5 μ mの微細酸化物が本発明範囲の100~3000個/mm² 分散させている。

[0051]

これら鋼板に、溶接入熱量が20~100kJ/mmであるエレクトロガス溶接(EG W) あるいはエレクトロスラグ溶接(ESW)を用いて、鋼板を突き合せて立て向き1パ ス溶接を行った。そして、板厚中央部 (t/2)に位置するHAZにおいて、FLから1 mm離れたHAZとFLの2箇所にノッチを入れ、-40℃でシャルピー衝撃試験を行っ

$[0\ 0\ 5\ 2]$

表 2 に溶接条件とHAZ靭性を併せて示す。ここでのシャルピー衝撃試験では、JIS 4号の2mmVノッチのフルサイズ試験片を用いた。また表2には、FL~HAZ1mm 間の旧オーステナイト粒径を併記した。ここで記載しているFL~HAZ1mm間の旧オ ーステナイト粒径は、板厚中央部(2/t)を中心とした板厚方向2mmと、 $FL\sim HAZ1$ mmを含む面に含まれる旧オーステナイト粒の粒径を断面法により測定した平均粒径である。なお、ここではネット状につながっている塊状フェライトを旧オーステナイト粒の粒界として測定を行なった。

[0053]

 $D1\sim D31$ は本発明鋼である。鋼の化学成分が適正に制御されているために、所定の母材性能を満たしつつ、-40 ℃での大入熱 HAZ 靭性が良好である。また、微細酸化物を分散させた $D23\sim D31$ は、 $FL\sim HAZ1$ mm間の旧オーステナイト粒径が 200 μ m以下と他のものより細粒になっており、-40 ℃での大入熱 HAZ 靭性が一層高くなっている。また、Bを添加しHAZ 組織の微細化を図った D23、D25 の -40 ℃での大入熱 HAZ 靭性も高い値を示している。

一方、比較鋼の $C1\sim14$ は、上式 [1] を満たすための十分なNiが含まれていないか、もしくは鋼の化学成分が適正に制御されているために、大入熱HAZ 靭性が不充分である。

[0054]

【表1】

{	#近 *	0					0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	10 ^ Ceq -3	9,0	9.0	85	9 6	9,5	9.0	8:0	0.8	8.0	0.8	9.0	1.0	1.0	1.0	0.1	1.1	1.1	0:	1.2	2:	0.1	1.0	1.0	1.0	0.1	1.0	0:-	0:	0:-	1.0	1.1	9.6	9.0	9.6	9.6	9.6	9.6	8.6	8.6	0.8	8.0	1.0	1.0	<u>e</u>	0.
77,74		252	0.50	5 5	3 5	3 5	3 5	0.93	=	1.17	1.40	17.	4	8	88	0	33	0	9		4	2	4	8	4									-												
100				┸	ㅗ		_L			1			1		!	1.60	_		0 1.36	2 2.11	0 1.14	Ш	0 1.64		0 1.14						1.42			0.20					1			•			_ 1	0.50
'	┰) c	5 0	3 C	9 0	5 6	3	ö	0.38	0.38	0.38	0.40	0.40	0.40	9.49	0.41	0.41	0.40	0.45	0.40	0.40	9. 9.	0.40	0.40	0.40	0.4	_	_	0.40	-+	_	0.36	0.3	0.3	0.36	0.36	0.36	0.38	0.38	0.38	0.38	0.40	9	0.40	0.40
- 5	╬	+	+	+	+	+	+	+	+	+	-	\dashv	\dashv	-	+	\dashv	+	\dashv	\dashv			_	4	4	\downarrow	4	_	4	0.017	_		0.037	_	4	4	_	_			_	4	_	\downarrow	\downarrow	1	V V V V V V V V V V
<u>ء</u>	╢	+	+	+	╁	+	+	+	\dashv	+	+	\dashv	+	+	\dashv	+	-	+	-	-	-	-	0.2	\downarrow	\dashv	4	\downarrow	-	2		0.05	4	4	4	\downarrow	1				•	\downarrow	\downarrow	_	\downarrow		
ō		†	\dagger	t	T	T	\dagger	\dagger	+	+	1	1	1	+	+	+	+	+	1	1	\dashv	0.4		+	+	\dashv	+	6.3	0.2	0.3	70	75	+	+	+	+	+	\dashv	\dashv	+	+	+	+	+	+	- 6
m		T	T					Ī	1		1			1	1	1	1	1	1		0.0012	_1	0.0023		0.0008	0.0009	1000	1				0.0009	1	1	+	+	\dagger	+	+	+	+	\dagger	+	+	+	- 2
z	╟	T	T	-			\dagger	\dagger	\dagger	+	\dagger	+	+	+	+	+	+	+	+	_	0.0041 0.		0.000.0										+	+	+	+	+	+	+	+	+	+	+	+	+	1
	H	┞	\vdash	-	-	_	-	+	+	+	+	+	+	+	\downarrow	+	+	+	+	-	0.0	- 3			_		0.0036				0.0035		1	\downarrow	1	1	1	\downarrow	-		\downarrow	\downarrow	\downarrow	1		×
L		L	L	L		L	L		\perp	1	1	_	1	1	1											7.000				_	0.0028															
<u> </u>	L	L	_	L		_	L																000	0.000	0.000	00.0	900		0.00	0000	0.000	0.00	T				1	1			T	T	T	T	T	1
REM																										00000	7.06.60			Ī		T	T	1		T			1	1	†	†	1	\dagger		
Mg											T			T				T	1	1	\dagger	1	T	\dagger	9100			\dagger	1	\dagger	\dagger	\dagger	\dagger	t	t	\dagger	+	\dagger	\dagger	+	+	\dagger	\dagger	+	\vdash	
Ca								-	T			\dagger	\mid	\dagger		T	\dagger	\dagger	\dagger	$\frac{1}{1}$	\dagger	\dagger	0000	0.000		}	0.000	0000	9000	0000	0.000	-	\dagger	1	+	+	1	+	\dagger	+	+	+	+	\vdash	-	
A	0.015	0.015	0.015	0.014	0.015	0.014	0.012	0.014	0.015	0.014	0 0 15	0.014	0 0 1 4	0.014	0.014	0015	0.014	0.014	7100	0017	0015	0.014				0014					0015 0		10	12	1 15	14	12	<u>ہ</u> ا	2 7	1 4	ıc	2 2	2	2	4	
		_						0.005 0											0.005																				_							
	_	_	_			- - - - -		2.1 0.		140	1.5 0	1.6	24 00	4.	9.			.5	0	9	2 6		8			6 0.005				7 0 006	900	-	8 0 009	2	0	1	+-	+	+	+	+	-	+	_	_	
S	000	0.002	0.002	0.002	0.002	0.003	0.002	0.003	0.003	0.002	2000	0.002	2007	0.002	0.002	003	0.002	005	0003	0000	0 00 0	0.002	0.004	0.004	0.002	0.002	0.002	0.002	0004	0.002	0.002	0.002 0				0.002 0		0.002 0.1						0.003 0.2	0.002 0.	
						_		_	0.007	0.007	0.006		0.007		0.007	0.007	0.006	0.008	0.008				1—				-		_			0.007			0.008	0.008	_				-	_			_	
Ma	<u>س</u> (89	4.	χ. Ο	- 6	3	4:	Ξ	1.2	0.	0.9	1.4	=	1.3	1.0	0.9 0	1.0	1.1	0.9			+	1.3	1.4	1.2 0.	1.0	1.2 0.					1.9 0.0		1.7 0.0	1.6 0.0	1.3 0.0	1.2 0.007	1.9 0.007	1.6 0.0	1.4 0.0	1.3 0.007	20 0.0	1.6 0.007		1.4 0.007	
		-	-	-	_	-	_	_	0.16	_	0.15	0.15	0.23	-	_	0.23	0.18	0.16	0.12	0.15	0.11	0.23	0.17	0.17	0.12	0.15	0.12	0.23	0.17	_	0.12	0.15	0.10	0.10	0.12	0.15	0.23	0.12 1	0.15	0.18	0.24	0.17			0.15	
	0.0	0.04	0.0	3 5	2 5	2 6	9	0.0	0.09	0.12	0.13	90.0	90.0	0.09	0.13	0.12	0.13	0.12	0.14	90.0	90.0	90.0	90'0	0.00	90'0	0.06	90.0	90.0	90.0	90.0	90.0	0.04	-	90.0	0.09	0.10	0.13	90.0	90.0	0.09	_	_			0.12	
- 4	5 2	2 6	3 2	<u>ל</u> בל	3 6	3 2	3	8	60	010	D11	D12	D13	D14	_		017	018	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	030	D31	٥ د	22	ငဒ	04	ટ		_	Н	60		\vdash	-	-	C14	
区分																郑五整																						工物器工			1	-1	<u> </u>	=13		

[0055]

【表2】

017E	128	194	100	90	221;	124	671	DO	114	128	103) 	114	132	109	9 3	124	120	/100	150	302	130	200	105	203	187	180	195	88	196	188	25	40	32	40	40	32	96	3 5	8 6	40	62	240	5 5	3/					
HAZANTE		125	25	013	123	121	133	9 3	124	140	119	128	124	144	119	116	851	131	97	100	21.	100	131	/07	214	177	202	213	205	214	205	98	57	46	57	57	45	25/	35	101	76	36	3/	5	55	œ				
FL~HAZ1mm0 4)	十四十四位(JEE)	480	076	0//	999	505	020	0//	640	480	715	009	640	440	715	770	520	560	O) j	090	980	0//	090	300	60	701	200	180	/01	35	Val	27.	480	009	480	480	605	480	480	480	480	770	480	090	520	1)板厚中心位置、YSとTSは試験片2本の平均値、-40°Cでのシャルピー吸収エネルギー(vE-40)は試験片3本の平均値。 2)磐抜の任章の第所より抽出レブリカネ作。電子毀微鏡にて10000倍で100視野以上(観察面積にして10000μm ²⁾ 以上)を観発	リガスのは1000回返いの10mmが10mmが10mmが10mmが10mmが10mmが10mmが10mm	BO治报及群众使用。 计名特成	十马和岳。	
5	È	38	4.5	8	73	67	42	82	51	39	79	48	51	35	79	85	42	45	48	45	88	82	45	6/	39	43	10	45	8,13	8	745	35	39	48	39	39	67	39	39	39	39	85	39	45	42	1)板厚中心位置、YSとTSは試験片2本の平均値、40°Cでのシャルピー吸収エネルギー(vE-40)は試験片3本の平均値。 2)磐拓の任章の第所より抽出レデリカを作。電子路機器にて10000倍で100視野以上(観察面積にして10000μm² 1	こりの個数に換算	、各沿接法で共通十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	オースナイイトのき	ษ์
	が振力は	EGW	EGW	ESW	ESW	ESW	Eg	ESW	EGW	EGW	ESW	EGW	EGW	EGW	ESW	ESW	EGW	EGW	EGW	EGW	ESW	ESW	ES	ESW	EG	EGW	A S	EGW	ESW	E C	N I	E CONTRACTOR	AC L	EGW.	EGW	EGW	ESW	EGW	EGW	EGW	EGW	ESW	EGW	EGW	EGW	ルギー(vE-) 野以上(観察	して1mm ² あす	での中均値	におれてもは、	帝国法により避免。ネット状にしながったいるしょう人をロイーストナイト哲の哲学として憲氏。
MKII	(個/mm_)																							006	1200	8	1100	86	1800	2100	2400	200														2-吸収エネ 活で100視	のをカウント	はお被金を	mを知ら は は	アナイト暦の3
	VE 40 CJ	232	229	225	232	238	229	220	213	226	223	217	209	224	218	213	215	212	211	210	509	214	213	218	221	214	509	214	218	221	2/3	725	223	324	234	232	236	226	227	226	227	214	221	215	218	10000	を含むも	按人熱質	MZ1m	オースプ
母材(七2部) !!	(Mpa)	476	465	456	476	484	465	460	441	481	470	450	445	496	475	466	478	468	456	469	445	465	466	474	485	465	445	465	475	485	474	486	450 776	47.5	474	476	486	481	480	481	480	465	485	464	475	z均値、-40°Cでの、電子顕微鏡にて	元素分析で酸化さ	コスラグ溶接、溶	12mm2, FL~+	、、るフェライトを旧
苗	引張強度(MPa)	576	565	576	576	604	565	560	541	601	570	550	545	596	595	566	578	588	556	569	545	585	566	574	605	565	545	565	575	585	594	586	220	282	574	576	586	601	280	581	580	585	585	564	575	は試験 12本の平田にプラカケ佐	ゴーの哲子した	E, ESW: ILON	いとした板厚方向	状にしながった
	板厚(mm)	8	65	70	9	55	65	70	8	8	92	75	8	55	65	۶	65	70	75	70	80	70	07	65	90	۶	8	2	92	99	65	8	2 2	8 4	2 6	8	55	9	9	99	09	70	9	70	65	、YSとTSI 知所上U#	05~0.5	コガス溶技	ノンを中	症, 4少
	製造方法	TIMOP	TMCP	1-00	TMCP	DQ-T	TMCP	TMCP	E C	<u>7</u> -00	- dop	- DATE	TMCP	TWCP	1-00	TMCP	TMCP	DQ-T	TMCP	TMCP	TMCP	D0-T	TIMOP	TMCP	D0-T	TMCP	TMCP	TIMOP	TMCP	TMCP	1-80	MCP	J S			TMCP	TMCP	T-00	TMCP	TMCP	TIMOP	D0-1	TMCP	TMCP	TMCP	中心位置の任意の	3当径0.0	W: エレクト!	草中央部(2	無いより来
	記号 多		02	23	┝	D5	De	10	18	2	95		012	013	014	015	D16	110	D18	D19	020	120	D22	023	D24	D25	D26	D27	D28	029	88	D31	5 8	3 8	3 2	5 5	8 5			8	69	5	C12	013	014	1)板周2)4数数	が出	3)EGV	4) 板周	开
	区分																発明器																					24 4 4 7 1	五技											

【図面の簡単な説明】

[0056]

- 【図1】45kJ/mm相当の溶接熱サイクルを示す図である。
- 【図2】Ni/MnとCeqと再現HAZ靭性との関係を示す図である。
- 【図3】微細酸化物分散またはB活用による再現HAZ靭性向上効果を示す図である

0

【書類名】図面【図1】

【図2】

【書類名】要約書

【要約】

【課題】 溶接熱影響部のHAZ靭性に優れた厚手高強度鋼板、特に板厚50mm以上、母材引張強度490~570MPa級で、溶接入熱20~100KJ/mmの低温HAZ靭性を有する鋼板を得る。

【解決手段】 質量%で、 $C:0.03\sim0.14\%$ 、 $Si:0.01\sim0.30\%$ 、 $Mn:0.8\sim2.0\%$ 、P:0.02%以下、S:0.005%以下、 $Ni:0.8\sim4.0\%$ 、 $Nb:0.003\sim0.010\%$ 、 $Al:0.001\sim0.040\%$ を含有し、 $Niemodrate{Mnが下式[1]を満たし、残部が鉄および不可避不純物であることを特徴とする大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。$

特願2004-113278

出願人履歴情報

識別番号

[000006655]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

東京都千代田区大手町2丁目6番3号

氏 名

新日本製鐵株式会社