15: Smoothing

Smoothing Surfaces

- Many techniques lead to rough surfaces
- We want the equivalent of image filters
 - Blur
- Or surfaces that are too smooth already
 - Sharpen
 - Or add detail (bump maps, &c.)
- So what does it mean to smooth a surface?

Meaning of Smoothing

- To reduce high-frequency information
 - I.e. rapid changes in surface
 - Reduce the curvature (aha!)
 - Related to simplification
 - But retains the triangle count

Example

- Laser scan has measurement noise
- We want to get rid of it
- Colour-coding is mean curvature

A Warning

- Sometimes you want sharp edges
- Eg machined surfaces
- There are many techniques for retaining them
 - NURBS in particular
 - Some variants of subdivision surfaces
 - But we will ignore this

Image Filtering

- We introduced Fourier analysis for filtering
- Breaks a function into sums of sines / cosines
 - High frequency sharp detail
 - Low frequency blurring, large features
- We did it for 1D & 2D
- Of course it works for 3D (volumetric)
- But we now have a 2-manifold surface

Spherical Harmonics

- Define a set of radial patterns on a sphere
- Different frequencies & amplitudes
- Break the surface function into them
- Works best for roughly spherical shapes
- Less well for arbitrary manifolds

Manifold Harmonics

- Based on observation about Fourier analysis
- Sines / cosines are eigenfunctions
 - Of the Laplace operator of the function
- So we use the Laplace-Beltrami of the position
 - It's a symmetric positive semi-definite matrix
 - Find it's eigenvectors
 - Use these to decompose the function

Manifold Harmonics

Basis functions emphasise different regions

UNIVERSITY OF LEEDS

Laplace-Beltrami Matrix

• Given a mesh *M*

• And a vector
$$f = \begin{bmatrix} f(v_1) \\ \cdots \\ f(v_n) \end{bmatrix}$$
 on it's vertices

• Find the Laplace(-Beltrami) matrix \boldsymbol{L} such that $\Delta f = \boldsymbol{L} f$

L-B Development

$$\Delta f(v_i) = \sum_{v_j \in N_1(v_i)} w_{ij} \left(f(v_j) - f(v_i) \right)$$

Vertex value (position)

Sum on 1-ring

Weight

Value difference (edge vector)

Notice that we subtract $-w_{ij}f(v_i)$ per neighbour

And add $w_{ij}f(v_j)$ for each neighbor

So we collect them together as coefficients in a matrix

L-B Development

$$\Delta f(v_i) = \sum_{v_j \in N_1(v_i)} w_{ij} \left(f(v_j) - f(v_i) \right)$$

$$= \left(\sum_{v_j \in N_1(v_j)} L_{ij} \right) f$$

$$L_{ij} = \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ 0 & -w_{ij} & 0 & w_{ij} & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ col \ i & col \ j \end{bmatrix} row i$$

L-B Development

$$\Delta f(v_i) = L \quad f$$
 where
$$l_{ij} = \begin{cases} -w_i \sum_{v_k \in N_1(v_i)} w_{ik} & i = j \\ w_{ij} & v_j \in N_1(v_i) \\ 0 & otherwise \end{cases}$$

And l_{ii} will often work out to -1 (or $-\delta(v_i)$, the degree)

Constraints

- L needs to be symmetric positive semi-definite
 - Symmetric: $w_{ij} = w_{ji}$
 - Can't use area- or angle- weighting
 - Either $w_{ij} = 1$ (simple 1-ring)
 - Or $w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$
 - AND don't divide through by 1-ring size

Processing

- Once we've done this, find eigenvectors
- Often referred to as "natural vibrations"
- Sorted by size of eigenvalue
- Low pass filter:
 - Use the first m eigenvectors
 - And apply to position function f = x
- But this is expensive

First M Harmonics

- First harmonics define shape
- Later harmonics define details
- But you can have a *lot* of them

Results

Pass

- General filters weight all harmonics
- Preserving at least some detail from each

Pass

Diffusion Flow

- Also known as heat maps
- Many processes such as heat mix over time
 - i.e. gradually diffuse outwards
 - So we use the term "heat equation"
 - - $^{\bullet}$ λ is the spatial diffusion coefficient (speed)
 - $\Delta f(x,t)$ is the spatial Laplacian

Discretisation & Integration

• Discretise this into a vector:

- Then apply explicit Euler integration
 - $f(t+h) = f(t) + h \frac{\partial f(t)}{\partial t}$
 - $= f(t) + h\lambda Lf(t)$
 - For a small time step h

Spatial Position

- This has assumed a general function f
 - $f(t + h) = f(t) + h\lambda Lf(t)$
- Substitute in our usual f = x, and we get:
 - $x_i \leftarrow x_i + h\lambda \Delta x_i$
- The last term is just h times mean curvature!
- So we are smoothing out rough patches

Curvature Flow Smoothing

After 0, 10 and 100 iterations

Variations

- If you weight the 1-ring uniformly
 - Vertex moves towards neighbours' centroid
 - And it tends to regularize the triangles
- Cotangent weights preserve triangle shapes

