Introdução

Estruturas de Dados Prof. Otávio Alcântara

Sumário

- Tipos de Dados
- Estrutura de Dados
- Tipos Abstratos de Dados
- Análise de Algoritmos
- Taxa de Crescimento
- Notação Assintótica
- Análise de Algoritmos Simples
- Recursividade
- Conclusão

Objetivos

- Entender os conceitos básicos de estruturas de dados e tipos abstratos de dados
- Compreender noções de análise de algoritmos
- Elencar taxas de crescimento comumente usadas
- Entender conceitos básicos de notação assintótica
- Aplicar notação assintótica em algoritmos simples
- Revisar conceitos de recursividade
- Encontrar relações de recorrência de funções simples
- Resolver problemas simples com recursividade

Tipos de Dados

- Conjunto de dados com valores pré-definidos
- Tipos primitivos
 - int, char, string
 - tamanho em bytes
 - intervalo
- Tipos definidos pelo usuário
 - estruturas
 - o classes

Estruturas de Dados

- Formas de armazenar e organizar dados
 - Exemplos
 - Vetores, Arquivos, Listas, Pilhas, Filas, Árvores, Grafos, dentre outros
 - Linear
 - Listas encadeadas, pilhas e filas
 - Não lineares
 - Árvores e Grafos

Tipos Abstratos de Dados

- Especificação de uma estrutura de dados e um conjunto de operações sobre esta estrutura
 - Listas encadeadas, Filas, Filas de Prioridade, Árvores Binárias,
 Dicionários, Conjuntos Disjuntos, Tabelas de Hash, Grafos, dentre outros
- Exemplo
 - Pilha (LIFO)
 - criar pilha
 - inserir/remover elemento
 - determinar o topo da pilha
 - determinar o número de elementos

Análise de Algoritmos

- Algoritmo
 - Sequência de instruções para solução de um problema
 - Corretude
 - Encontrar uma solução em um número finito de passos
 - Eficiência
 - Em termos de memória e tempo
- Análise de Algoritmos
 - o Fornece ferramentas para determinar a eficiência de um algoritmo
 - o Permite comparar diferentes algoritmos para o mesmo problema

- Determinar como o tempo de execução varia de acordo com o tamanho do problema (entrada)
 - Variação da entrada
 - Tamanho do vetor
 - Grau de um polinômio
 - Número de elementos em uma matriz Array
 - Número de bits em uma imagem
 - Vértices e nós de um grafo

- Determinar como o tempo de execução varia de acordo com o tamanho do problema (entrada)
 - Variação da entrada
 - Tamanho do vetor
 - Grau de um polinômio
 - Número de elementos em uma matriz
 - Número de bits em uma imagem
 - Vértices e nós de um grafo

$$y = 3x^4 - 4x^3 + 5x^2 - 6x + 7$$

- Determinar como o tempo de execução varia de acordo com o tamanho do problema (entrada)
 - Variação da entrada
 - Tamanho do vetor
 - Grau de um polinômio
 - Número de elementos em uma matriz
 - Número de bits em uma imagem
 - Vértices e nós de um grafo

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{nm} \end{bmatrix}$$

- Determinar como o tempo de execução varia de acordo com o tamanho do problema (entrada)
 - Variação da entrada
 - Tamanho do vetor
 - Grau de um polinômio
 - Número de elementos em uma matriz
 - Número de bits em uma imagem
 - Vértices e nós de um grafo

- Determinar como o tempo de execução varia de acordo com o tamanho do problema (entrada)
 - Variação da entrada
 - Tamanho do vetor
 - Grau de um polinômio
 - Número de elementos em uma matriz
 - Número de bits em uma imagem
 - Vértices e nós de um grafo

Comparando algoritmos

Tempo de execução medido em um computador	Opção ruim!
Número de sentenças do programa	Opção ruim!
Expressar o tempo de execução como função do tamanho da entrada: f(n)	Boa!

- Nós precisamos
 - de uma forma sistemática para descrever um algoritmo e das propriedades de suas estruturas de dados associadas
 - o fazer isso de maneira independente do hardware
- Para tal, precisamos
 - O Dos símbolos de Landau e de sua análise assintótica

- É a taxa na qual o tempo de execução cresce em função da entrada
 - Exemplo
 - Após análise de um algoritmo, encontramos uma função que representa o tempo de execução
 - Para valores muito grandes de n, os termos de menor ordem influenciam pouco no valor de T(n)

$$T(n) = n^4 + 2n^2 + 10n + 650 \approx n^4$$
, para n muito grande

- É a taxa na qual o tempo de execução cresce em função da entrada
 - o Exemplo

$$T(n) = n^4 + 2n^2 + 10n + 650 \approx n^4$$
, para n muito grande

Crescimento Quadrático

• Considere as duas funções: $f(n) = n^2 e g(n) = n^2 - 3n + 2$

Crescimento Quadrático

 A diferença absoluta entre as duas funções é grande em n=1000

$$f(1000) = 1000000$$

 $g(1000) = 997002$

 A diferença relativa é pequena

$$\left|\frac{f(1000) - g(1000)}{f(1000)}\right| < 3\%$$

Se os coeficientes dos termos quadráticos fossem diferentes, as funções teriam a mesma taxa de crescimento, mas uma seria proporcionalmente maior!

Crescimento Polinomial

• Um outro exemplo: $f(n) = n^6 e g(n) = n^6 - 25n^5 + 193n^4 - 729n^3 + 120n^2 + 648n^2$

Diferença relativa para n = 1000 é menor que 3%, tende a 0 conforme n aumenta

• Taxas de crescimento comumente usadas

$$2^{2^n} \rightarrow n! \rightarrow 4^n \rightarrow 2^n \rightarrow n^2 \rightarrow nlogn \rightarrow log(n!) \rightarrow n \rightarrow 2^{logn} \rightarrow log^2n \rightarrow \sqrt{logn} \rightarrow log\; logn \rightarrow 1$$

• Taxas de crescimento comumente usadas

Complexidade	Nome	Exemplo
1	Constante	Inserir elemento na frente de uma lista
logn	Logarítmica	Encontrar elemento em vetor ordenado
n	Linear	Encontrar elemento em vetor desordenado
nlogn	Linear Logarítmica	Ordenar n elementos usando Mergesort
n ²	Quadrática	Menor caminho entre dois nós em um grafo
n ³	Cúbica	Multiplicação de matrizes
2 ⁿ	Exponencial	Torres de Hanoi

• Taxas de crescimento comumente usadas

Complexidade	Nome
1	Constante
logn	Logarítmica
n	Linear
nlogn	Linear Logarítmica
n ²	Quadrática
n ³	Cúbica
2 ⁿ	Exponencial

Selection Sort $s(n) = 4n^2 + 8n + 6$ Bubble Sort melhor caso $b_{best} = 4,7n^2 + 0,5n + 5$ pior caso $b_{worst} = 3,8n^2 - 0,5n + 5$

Executar o
Selection Sort em
um computador
mais rápido faria
que s(n) <
b(n)???

```
Selection Sort s(n) = 4n^2 + 8n + 6
Bubble Sort melhor caso b_{best} = 4,7n^2 + 0,5n + 5
pior caso b_{worst} = 3,8n^2 - 0,5n + 5
```


Para valores grandes de n, em um computador mais rápido, Selection Sort sempre será mais rápido do que o Bubble sort.

```
Selection Sort s(n) = 4n^2 + 8n + 6
Bubble Sort melhor caso b_{best} = 4,7n^2 + 0,5n + 5
pior caso b_{worst} = 3,8n^2 - 0,5n + 5
```


Justificativa?

Basta encontrar M tal que s(n) < M b(n)

se
$$f(n) = a_k n^k + ... e g(n) = b_k n^k + ..., para n muito grande,$$

 $f(n) < Mg(n), M = a_k / b_k + 1$

Insertion Sort (vermelho) e Quicksort (azul)

Insertion Sort (vermelho) e Quicksort (azul)

Comprar um computador mais rápido faria o Insertion Sort melhor que o Quicksort para n muito grande?

Ordenação Fraca

• Considere as seguintes definições

$$f \sim g \operatorname{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} = c, \ 0 < c < \infty$$

Se f~g, então é
 possível melhorar a
 performance comprando
 um computador melhor

$$f < g \text{ se } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

 Se f<g, então não é possível melhorar a performance comprando um computador melhor

Tipos de Análise

- Pior caso
 - o A entrada que o algoritmo executa mais lento
- Melhor caso
 - A entrada que o algoritmo executa mais rápido
- Caso médio
 - Executa diversas vezes com diferentes entradas aleatórias
 - Calcula a média do tempo de execução

Notação Assintótica

- Tendo as funções do tempo de execução
 - Melhor, pior e caso médio
- É necessário analisar seu comportamento para valores muito grandes da entrada
 - Comportamento assintótico
- Determinar os limites do tempo de execução
 - Diferentes entradas
 - Pior, melhor e caso médio

Notação Big-O

- Big-O determina um limite superior "apertado"
 - \circ Nós queremos encontrar a menor taxa de crescimento tal que g(n) >= f(n)

$$f(n) = O(g(n)) \Longrightarrow f(n) \le cg(n), \forall n \ge n_0,$$

c e n_0 são constantes

$$f(n) = n^4 + 2n^2 + 10n + 650 = O(n^4)$$

A taxa de crescimento de f(n) não é maior do que g(n)

Notação Big-O

• Visualização do Big-O

 $\mathrm{O}(1)$: 100,1000, 200,1,20, etc.

O(nlogn): 5nlogn, 3n - 100, 2n - 1, 100, 100n, etc.

O(n):3n + 100, 100n, 2n - 1, 3, etc.

 $0(n^2)$: n^2 , 5n - 10, 100, $n^2 - 2n + 1$, 5, etc.

Notação Big-O

• Exemplos

```
Encontre o limite superior para as funções abaixo:
i) f_0(n) = 410
ii) f_1(n) = n
iii) f_2(n) = n^2 + 100n + 50
iv) f_3(n) = 2n^3 - 2n^2
f(n) = n^4 + 100n^2 + 50
Solução : n^4 + 100n^2 + 50 \le 2n^4, \forall n \ge 50
n^4 + 100n^2 + 50 = O(n^4) com c = 2e n_0 = 50
```

Notação Ômega

Determina o limite inferior "apertado"

$$f(n) = \Omega(g(n)) \Longrightarrow 0 \le cg(n) \le f(n), \forall n \ge n_o,$$

 $c \in n_0$ são constantes

Exemplo: Se
$$f(n) = 100n^3 + 100n^2 + 50$$
, $g(n) \in \Omega(n^3)$

Notação Ômega

• Exemplos

```
Encontre o limite in ferior para as funções abaixo:

i) f_0(n) = 5n^2

ii) f_1(n) = 100n + 5

iii) f_2(n) = 2n

iv) f_3(n) = n^3

v) f_4(n) = logn
```

Notação Teta

 Determina se o limite inferior e o limite superior de um dado algoritmo é o mesmo

$$f(n) = \Theta(g(n)) \Longrightarrow c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0,$$

 $c_1, c_2 \in n_0 \text{ são constantes}$

$$f(n) = \frac{n^2}{2} - \frac{n}{2} = \Theta(g(n))$$

$$\frac{n^2}{5} \le \frac{n^2}{2} - \frac{n}{2} \le n^2, \text{ para todo } n \ge 2$$

$$\frac{n^2}{2} - \frac{n}{2} = \Theta(n^2) \text{ com } c_1 = \frac{1}{5}, c_2 = 1, n_0 = 2$$

Símbolos de Landau

Símbolo de Landau	Limite	Descrição	Operador Relacional Análogo
$f(n) = \omega(g(n))$	$ \lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty $	f cresce muito mais rápido doque g	>
$f(n) = \Omega(g(n))$	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < c$	f cresce na mesma taxa ou maior que g	≥
$f(n) = \Theta(g(n))$	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$	f cresce na mesma taxa g	=
f(n) = O(g(n))	$ \lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty $	f cresce na mesma taxa ou maior que g	≤
f(n) = o(g(n))	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 $	f cresce bem menos rápido que g	<

f e g são combinações lineares de r^n e r^n ln(n), $n \in \Re$, n > 0.

Orientações para Notação Assintótica

- A notação pode ser usada para o pior, melhor ou caso médio
- Normalmente, estamos interessados em encontrar o limite superior do pior caso usando Big-0
- Nas situações nas quais os limites inferior e superior forem iguais, podemos usar a notação Teta

- Sentenças simples
 - \circ Executam em $\Theta(1)$

```
arr = ['manga', 'maçã', 'graviola']
n=100
i = n + 2
print(arr[0])
```

- Laços
 - O tempo de execução é o produto do número de iterações pelo tempo de execução das instruções do laço

```
#execute n times
for i in range(0,n):
  print("Hello %d"%i)
```

$$T(n) = cn = \Theta(n)$$
, c é uma constante

- Laços aninhados
 - Tempo de execução é o total do produto dos tempos dos laços

$$T(n) = c*n*n = cn^2 = \Theta(n^2)$$
, $c \in uma\ constante$.

- Laços logarítmicos
 - \circ Considere que n=2^m, Nesse caso i seria 2^m, 2^{m-1}, 2^{m-2}, ..., 2, 1, 0
 - Tempo de execução logarítmico
 - Dobre a entrada do problema, o tempo de execução aumenta por uma constante

```
i = n
while (i>0):
    i/=2
    print("Valor de i %d"%i)
```

```
m = lg(n), portanto \Theta(lg(n))
Lembre – se que os logaritmos são múltiples escalares uns dos outros, logo lg(n) = \Theta(ln(n)).
```

- Laços logarítmicos
 - Um algoritmo é O(logn) quando leva um tempo constante para dividir um problema por uma fração (normalmente 2)

```
def func(n):
    i=1
    while i <= n:
        i = i*2
        print(i)
    func(40)</pre>
```

```
i = 2, 2^2, 2^3, 2^4, ..., 2^k

São realizadas k iterações

Na última iteração, n \ge 2^k

Aplicando log na base 2

logn \ge k

T(n) = O(logn)
```

Laços iterativos

- Determinar se um valor está armazenado em um arranjo de inteiros ordenado
- o 0 laço pode executar em $\Theta(1)$ no melhor caso, como pode executar n vezes no pior
- Como o laço não executa sempre n vezes, dizemos que é O(n)
- Pode rodar em n, mas se tivermos sorte roda em menos

```
def linear_search(value, arr, n):
    for i in range(0,n):
        if arr[i]==value:
            return True
```

 \bullet $\Theta(n) \times O(n)$

```
def find_max(arr):
    max = arr[0]
    for e in arr:
       if e > max:
          max = e
    return max
```

```
def linear_search(value, arr, n):
   for i in range(0,n):
     if arr[i]==value:
        return True
```

- Laços dependentes de variáveis
 - \circ 0 laço interno executa $\Theta(i)$, mas i muda a cada iteração!
 - Logo, temos que calcular quantas operações são feitas

```
for i in range(0,n):
   for j in range(0,i):
    print("Valor de i%d e valor de j %d"%(i,j))
```

Valor de I	1	2	3	 n	Total
Número de Operações	1	2	3	 n	1+2++n

$$\Theta\left[\sum_{i=1}^{n} i\right] = \Theta\left(\frac{n(n+1)}{2}\right) = \Theta(n^2)$$

- Sentenças consecutivas
 - Tempo de execução é a soma de cada sentença

```
#laço executa n vezes
for k in range(0,n):
    print("H %d"%k)

#laço externo executa n vezes
for i in range(0,n):
    for j in range(0,n):#laço interno executa n vezes
        print("Valor de i: %d, valor de j:%d"%(i,j))
```

$$T(n) = c_0 n + c_1 n^2 = \Theta(n^2)$$

- Sentenças de controle
 - Tempo de execução é o tempo do teste mais o tempo da condição mais lenta (análise de pior caso)

$$T(n) = c_0 + c_1 n^2 = \Theta(n^2)$$

- Sentenças de controle
 - O Suponha que a condição do if tem 50% de chances de ser verdadeira
 - Metade das vezes o segundo laço executa
 - Metade das vezes o segundo laço não executa

```
for i in range(0,n):
   if (condicao_logica):
     for j in range(0,i):
        print("Valor de i %d e valor de j %d"%(i,j))
```

$$\Theta\left(\frac{n}{2}n + \frac{n}{2}.1\right) = \Theta\left(\frac{n^2}{2} + \frac{n}{2}\right) = \Theta(n^2)$$

```
def func(n):
    i=s=1
    while s <= n:
        print(i)
        print(s)
        i = i + 1
        s = s + i
```

- Encontre a taxa de crescimento de i e s
- Determine a relação entre o número de iterações e n

```
def func(n):
    i=s=1
    while s <= n:
        print(i)
        print(s)
       i = i + 1
        s = s + i
```

$$i = 1, 2, 3, 4, 5, 6, 7,..., k$$

 $s = 1, 3, 6, 10, 15, 21, 28,..., \frac{k(k+1)}{2}$
 s_i é a soma dos primeiros j inteiros

$$\frac{k^2}{2} + \frac{k}{2} > n, \ k \approx \sqrt{n} \Longrightarrow k = O(\sqrt{n})$$

```
def func(n):
    i=1
    count = 0
    while i*i <= n:
        print(i)
        print(count)
        i = i + 1
        count = count + 1
```

```
def func(n):
    i=1
    count = 0
    while i*i <= n:
        print(i)
        print(count)
        i = i + 1
        count = count + 1
func(40)
```

$$i = 1, 2, 3, 4, 5, 6, 7, ..., k$$

 $s = 1, 4, 9, 16, 25, 36, 49, ..., k^2$
 $k^2 > n \Longrightarrow T(n) = \sqrt{n}$

Qual é o tempo de execução da função abaixo?

```
def func(n):
    count=0
    for i in range(n/2,n):
        j=1
        while j+n/2 <= n:
             k=1
             while k<=n:
                 count=count+1
                 k=k*2
             j=j+1
             print(count)
```

 Determine o número de iterações de cada laço em relação a n

```
def func(n):
    count=0
    for i in range(n/2,n):
        j=1
        while j+n/2 <= n:
             k=1
             while k<=n:
                 count=count+1
                 k=k*2
             j=j+1
             print(count)
```

```
Primeiro laço faz n/2 iterações

Segundo laço faz n/2 iterações

Terceiro laço

k=1,2,4,8,...,2^{M}

n\geq 2^{M}, logo o número de iterações é logn

na base 2

Então, T(n)=\frac{n}{2}*\frac{n}{2}*logn=O(n^{2}logn)
```

```
def func(n):
    count=0
    for i in range(n/2,n):
        j=1
        while j+n/2<=n:
        break
        j=j*2
        print(count)</pre>
```

```
def func(n):
    count=0
    for i in range(n/2,n):
        j=1
        while j+n/2<=n:
            break
        j=j*2
        print(count)</pre>
```

- 0 laço exterior executa n/2
- O laço interior possui um break e só executa uma vez
- 0(n)

- 0 que é recursividade?
- Exemplo de algoritmos recursivos

```
def fatorial(n):
    if n==0: return 1
    return n*fatorial(n-1)
print(fatorial(10))
```

Recursividade	Iteratividade		
Termina no caso base	Termina na condição falsa		
Usa mais pilha	Não requer memória extra		
Pode ocasionar estouro de pilha se mal escrita	Laço infinito se mal escrita		
Mais fácil de resolver alguns problemas	Nem sempre tem uma solução óbvia		

• É uma forma elegante de realizar tarefas repetitivas

```
def fatorial(n):
    if n==0: return 1
    return n*fatorial(n-1)
print(fatorial(10))
```


Tempo de Execução

```
def fatorial(n):
    if n==0: return 1
    return n*fatorial(n-1)
print(fatorial(10))
```

$$T(n) = \begin{cases} \Theta(1) & n \le 1 \\ T(n-1) + \Theta(1) & n > 1 \end{cases}$$

A função recursiva reduz o trabalho em 1 e faz um trabalho constante

Tempo de Execução

```
def fatorial(n):
    if n==0: return 1
    return n*fatorial(n-1)
print(fatorial(10))
```

```
T(n) = \begin{cases} \Theta(1) & n \leq 1 \\ T(n-1) + \Theta(1) & n > 1 \end{cases}
T(n) = T(n-1) + \Theta(1)
T(n-1) = T(n-2) + \Theta(1)
\vdots
T(1) = T(0) + \Theta(1)
Somando\ todas\ as\ parcelas\ e\ cancelando\ os\ termos\ temos\ :
T(n) = \Theta(1) + ... + \Theta(1) = \Theta(n)
```

• Tempo de Execução

```
def fib(n):
   if n<= 1:
     return n
   else:
     return fib(n-1)+fib(n-2)</pre>
```

A cada chamada recursiva o problema é dividido em dois subproblemas que não se sobrepõem

$$T(n) = \begin{cases} \Theta(1) & n \le 1 \\ T(n-1) + T(n-2) + \Theta(1) & n > 1 \end{cases}$$

$$T(n) = \Theta(2^n)$$

• Tempo de Execução

```
def selection_sort(arr,n,i):
    if n < 1: return
    min = i
    for k in range(i+1,len(arr)):
        if arr[k] < arr[min]:
            min = k
        arr[i], arr[min] = arr[min], arr[i]
        selection_sort(arr,n-1,i+1)</pre>
```

Em cada chamada a função faz uma busca linear n-1 pelo menor valor

$$T(n) = T(n) + T(n-1) + T(n-2) + \dots + 1$$

$$T(n) = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$$

$$T(n) = \Theta(n^2)$$

 Escreva um programa para resolver o problema das Torres de Hanoi

- Mover os discos da torre 1 para torre 3
 - Apenas um disco pode ser movido por vez
 - Nenhum disco pode ser posto sobre um disco menor

- Mova n-1 discos da torre fonte para torre auxiliar
- Mova o n-ésimo disco da fonte para o destino
- Mova n-1 discos da torre auxiliar para torre destino

 Escreva um programa para resolver o problema das Torres de Hanoi

```
def towersOfHanoi( numberOfDisks, startPeg=1, endPeg=3):
    if numberOfDisks :
        towersOfHanoi( numberOfDisks-1, startPeg, 6-startPeg-endPeg)
        print("Mova disco %d da torre %d para torre %d" %(numberOfDisks, startPeg, endPeg))
        towersOfHanoi( numberOfDisks-1, 6-startPeg-endPeg, endPeg )

towersOfHanoi(numberOfDisks=4)
```

- Imprima todas as strings binárias com n bits. Considere
 A[0...n-1] é um vetor de tamanho n.
 - Exemplo
 - n=2
 - 00,01,10,11
 - n=3
 - 000,001,010,011,100,101,110,111

- Imprima todas as strings binárias com n bits. Considere
 A[0...n-1] é um vetor de tamanho n.
 - Algoritmo
 - if n == 0: return []
 - if n == 1: return ["0","1"]
 - else: return insereBit("0", bitstring(n-1))+insereBit("1",bitstring(n-1))

Imprima todas as strings binárias com n bits. Considere
 A[0...n-1] é um vetor de tamanho n.

```
def appendAtFront(x,L):
    return [x + element for element in L]

def bitStrings(n):
    if n == 0 : return []
    if n == 1 : return ["0", "1"]
    else:
        return (appendAtFront("0",bitStrings(n-1))+appendAtFront("1",bitStrings(n-1)))

print(bitStrings(2))
```

Encontre a relação de recorrência da função abaixo

```
def f(n):
    count = 0
    if n <= 0:
        return
    for i in range(0,n):
        for j in range(0,n):
            count = count + 1
    f(n-3)
    print(count)</pre>
```

Encontre a relação de recorrência da função abaixo

```
def f(n):
    count = 0
    if n <= 0:
        return
    for i in range(0,n):
        for j in range(0,n):
            count = count + 1
    f(n-3)
    print(count)</pre>
```

- 1° laçon vezes
- 2° laçon vezes
- Chamada recursiva

$$T(n) = cn^2 + T(n-3)$$

Encontre a relação de recorrência do programa abaixo

```
def f(n):
    if n==0:return 0
    elif n==1: return 1
    else: return f(n-1) + f(n-2)
print(f(3))
```

Encontre a relação de recorrência do programa abaixo

```
def f(n):
    if n==0:return 0
    elif n==1: return 1
    else: return f(n-1) + f(n-2)
print(f(3))
```

$$T(n) = T(n-1) + T(n-2)$$

- O código faz duas chamadas recursivas
- Desenhe a árvore de recursão para essa função
 - Determine o número de níveis
 - Determine o número de folhas por nível
 - Qual é a complexidade?

Escreva as funções recursivas listadas a seguir, todas recebem um inteiro e devolvem um inteiro

- maiorDigito
 - o retorna o maior dígito do inteiro
- menorDigito
 - retorna o menor dígito do inteiro
- contaDigito
 - o retorna a quantidade de dígitos do inteiro
- somaDigito
 - retorna a soma dos dígitos do inteiro

Escreva as funções recursivas listadas a seguir, todas recebem um inteiro e devolvem um inteiro

- zeraPares
 - o retorna um inteiro com os dígitos pares em zero
- zeraImpares
 - o retorna um inteiro com os dígitos ímpares em zero
- removePares
 - remove os dígitos pares do inteiro
- removeImpares
 - remove os dígitos ímpares do inteiro

Escreva uma função recursiva que inverte os dígitos de um número inteiro

• inverte(n,inverso)

Busca binária

• Localizar o elemento 22 em uma lista ordenada

Busca binária

• Localizar um elemento em uma lista ordenada

- Para qualquer indice j
 - o todos os valores
 armazenados <j tem
 valores <= data[j]</pre>
 - todos os valores
 armazenados >j tem
 valores >= data[j]

Busca binária

• Localizar um elemento em uma lista ordenada

binary_search(data, target, low, high)

- \circ mid = (low + high)/2
- o if target < data[mid]</pre>
 - binary_search(data, target, low, mid-1)
- else
 - binary_search(data, target, mid-1,high)

Exercícios de Recursividade

- Crie uma função recursiva que determina se uma string s tem mais vogais do que consoantes
- Dado um array S não ordenado de inteiros e um inteiro k, crie um algoritmo recursivo para reorganizar os elementos de S tal que todos os elementos menores ou iguais a K apareçam antes do que os elementos maiores.

Exercícios de Recursividade

 Dados um vetor de inteiros distintos e ordenados de maneira crescente e um inteiro target, crie um algoritmo recursivo que determine se existem dois inteiros no vetor que a soma seja igual a target.

- Teorema Mestre
 - Ferramenta para análise de recorrências, que surgem em algoritmos de divisão e conquista

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

 $a - n$ úmero de subproblemas
 $b - f$ ator de redução do problema
 $f(n) - c$ usto de dividir e recombinar as soluções dos subproblemas

- Teorema Mestre
 - Ferramenta para análise de recorrências, que surgem em algoritmos de divisão e conquista

Casos do Teorema Mestre

Caso 1: se
$$f(n) = O(n^c)$$
 onde $c < \log_b a$, então $T(n) = O(n^{\log_b a})$.
Caso 2: se $f(n) = \Theta(n^{\log_b a} \log^k n)$, então $T(n) = O(n^{\log_b a} \log^{k+1} n)$.
Caso 3: se $f(n) = \Omega(n^c)$ onde $c > \log_b a$ e af $\left(\frac{n}{b}\right) \le kf(n)$ para $k < 1$ e n su ficientemente grande, então $T(n) = O(f(n))$.