1. Main Uncertainties in Projecting Future Greenhouse Gas (GHG) Emissions and Climate Impacts

Projecting future GHG emissions and their impacts on climate change involves several uncertainties, including:

Socioeconomic and Political Uncertainty

- Future policies on fossil fuel use, carbon pricing, and climate mitigation remain unpredictable.
- o Global cooperation on climate action varies across nations.

Technological Uncertainty

- The pace of renewable energy adoption, energy efficiency improvements, and carbon capture innovations is difficult to forecast.
- The development of negative emissions technologies (e.g., direct air capture, bioenergy with carbon capture and storage) is still uncertain.

• Economic and Demographic Changes

- Population growth and urbanization trends influence energy demand.
- o Economic growth or recessions can shift energy consumption patterns.

Climate System Feedbacks

- Non-linear feedback loops (e.g., permafrost thawing, methane release, forest dieback) can amplify warming beyond projected levels.
- Uncertainties in cloud formation, ocean circulation, and ice sheet stability affect climate sensitivity estimates.

Land Use and Agriculture

- Deforestation, land degradation, and shifts in food production impact carbon sinks and emissions.
- The role of plant-based diets in reducing emissions is a key but underexplored factor.

2. Key Factors Driving Differences in GHG Emissions Trajectories Among RCP Scenarios

The **Representative Concentration Pathways (RCPs)** represent different greenhouse gas concentration trajectories based on varying assumptions about future emissions. The main drivers of divergence among these scenarios include:

Fossil Fuel Dependency vs. Renewable Energy Adoption

o RCP 8.5 assumes high fossil fuel use and limited climate policies.

 RCP 2.6 assumes rapid decarbonization and widespread renewable energy adoption.

• Land Use and Deforestation Rates

- o High-deforestation scenarios (RCP 8.5) lead to more CO₂ emissions.
- Reforestation and afforestation efforts (RCP 2.6, RCP 4.5) enhance carbon sequestration.

Energy Efficiency and Technological Innovation

- o Rapid advancements in green technology can significantly lower emissions.
- Slow progress leads to sustained high emissions.

Climate Policies and Carbon Pricing

- Strong international climate agreements and carbon pricing (RCP 2.6, RCP 4.5) drive emissions reduction.
- Weak or absent policies result in high-emission pathways.

Dietary Shifts and Agricultural Practices

- A transition toward plant-based diets significantly reduces methane and nitrous oxide emissions.
- High meat consumption, especially from ruminant livestock, increases emissions in RCP 6.0 and 8.5.

3. Using RCP Scenarios for Climate Planning and Mitigation

Stakeholders can use RCP scenarios to assess risks, plan adaptation strategies, and develop mitigation policies:

Government Agencies

- Policy Development: Use RCP 2.6 and 4.5 as targets for emissions reduction goals.
- Infrastructure Planning: Design resilient cities, water systems, and disaster response plans based on worst-case scenarios (RCP 8.5).
- Carbon Pricing & Regulations: Implement taxes and incentives aligned with lower-emission pathways.

Businesses

 Risk Management: Assess climate risks to supply chains, assets, and operations.

- o **Investment Decisions**: Shift investments toward renewable energy, green technologies, and sustainable supply chains.
- Sustainability Strategies: Commit to science-based targets aligned with RCP
 2.6 or well below 2°C scenarios.

• Communities and Individuals

- Local Adaptation: Build climate-resilient communities by considering extreme weather risks.
- Consumer Choices: Reduce carbon footprints through plant-based diets, secondhand purchases, and fossil-free banking.
- Advocacy & Activism: Push for political action and corporate accountability in achieving low-emission futures.