Problem Set for CSC100

(Spring 2016)

Important Notes

- Exposure to mathematical formulas required for this problem set is assumed to be inherent.
- Students, who find unfamiliar terms or mathematical formulas in a problem's description, should search wiki or Google for better exposure.
- Programs written by students should be tested with all the provided test cases.
- Students should design their own test cases and test their programs using those test cases along with test cases provided.
- New problems will be added to this problem set as need arise to solve those problems. Students should look for an updated version of this problem set periodically.

1. Hello World

Display the text message "Hello World!!!" in the display.

Input:

No input is given to this program.

Output:

Output should be a single line containing the text "!!!Hello World!!!"

2. Echo

Take an integer from standard input device and show that integer on display subsequently.

Input:

Input is an integer N, $-2^{31} \le N \le 2^{31} - 1$.

Output:

Output should be a single line containing the integer given as input to the program.

Sample Input	Sample Output
2	2
0	0
-500000	-500000

3. Integer Calculator

You are given two integers. Display sum, differences, product, quotients and remainders of the two integers.

Input:

Inputs are two positive integer n1, n2.

Output:

For each pair of n1, n2 there will be 8 lines of output. Each line of output should have indication of operation followed by the results of operation as follows. Operations depending upon order of the operands must have results of both orders.

Sample Input	Sample Output
25	Sum: 7
	Difference1: -3
	Difference2: 3
	Product: 10
	Quotient1: 0
	Quotient2: 2
	Remainder1: 2
	Remainder2: 1
15 2	Sum: 17
	Difference1: 13
	Difference2: -13
	Product: 30
	Quotient1: 7
	Quotient2: 0
	Remainder1: 1
	Remainder2: 2

4. Grocery Store Calculator

You are given two numbers. Display results of addition, subtraction, multiplication, and division of given numbers.

Input:

Inputs are two numbers n1, n2.

Output:

For each pair of n1, n2 there will be 4 lines of output. Each line of output should have indication of operation followed by the results of operation as follows.

Sample Input	Sample Output
2.0 5.0	Addition: 7.0
	Subtraction: -3.0
	Multiplication: 10.0
	Division: 0.4
15 2	Addition: 17.0
	Subtraction: 13.0
	Multiplication: 30.0
	Division: 7.5

5. Arithmetic Expression

You are given x and y. Evaluate $x^2 + y^2 + 2xy + 30$.

Input:

Inputs are two numbers x, y.

Output:

Output should be a single line containing a number which is the result of evaluating the expression.

Sample Input	Sample Output
3 5	94
5.3 1.9	81.84

6. Euclidian Distance

You are given two Cartesian coordinates (x1, y1) and (x2, y2). Find distance between the coordinates.

Input:

Inputs are 4 numbers in the order x1, y1, x2, y2.

Output:

Output should be a single line containing a number which is the distance between given two coordinates.

Sample Input	Sample Output
3525	1
0 0 90 100	134.536

7. Compound Interest

You are given present value of an investment p, interest rate r, and number of periods n. Find compound interest F, where $F = p * (1 + r)^n$.

Input:

Inputs are 3 positive numbers n, p, r.

Output:

Output is a number F.

Sample Input	Sample Output
5 30000 0.15	60340.7
3 30000 0.3	65910
3 10000 0.85	63316.3

8. Exponentiation

Given 3 numbers x, y, z. Evaluate the expression $x^{10} + y^{20} + z^{10} + \sqrt{xy} + \sqrt[x]{yz} + \sqrt[3]{z^5}$.

Input:

Inputs are 3 positive numbers x, y, z.

Output:

Output is a number which is the result of evaluating the expression.

Sample Input	Sample Output
2 3 4	1.013e+12
0.2 0.2 0.3	0.500001
1.5 1 0.5	61.0197

9. !!!To Sin or Not To Sin!!!

A tree was broken into two pieces during a hurricane. Lower part of the tree stands still and one side of the upper part hangs upon lower part and creates an angle of d degree with base. Length of the upper part is x meter. Find length of the lower part of the tree.

Input:

Inputs are 2 positive numbers x, and d. Angle d is in degree and $0^0 \le d \le 90^0$.

Output:

Output is a positive number denoting the length of the lower part of the tree.

Sample Input	Sample Output
30 30	15
60 90	60
150 60	129.904

10. !!!Brown or Tan!!!

A ladder is inclined to a wall. Height of the wall is h meter and bottom of the latter is x meter away from the wall. Find the angle of inclination of the ladder with the wall.

Input:

Inputs are 2 positive numbers x, and h.

Output:

Output is a positive number denoting the angle of inclination of the ladder with the wall in degree.

	Sample Input	Sample Output
30 30		45
60 0		90
100 5		87.1316

11. Need Cartesian???

Given a polar coordinate, convert this to a Cartesian coordinate.

Input:

Inputs are 2 positive numbers r and θ .

Output:

Output is the Cartesian version of the given coordinate in (X, Y) form.

	Sample Input	Sample Output
8 0	(8, 0)
5 53.1301	(3, 4	
5 36.8699	(4, 3)

12. 3rd Digit

You are given an integer. Print 3^{rd} digit, from the left, of the given integer.

Input:

Input is an integer n, $n \ge 100$.

Output:

Output is a digit, which lies in 3^{rd} position from left side of n.

	Sample Input	Sample Output
989	9	
12322	3	
1222	2	

13. Fixed Digits

You are given an integer. Print digits of n.

Input:

Input is an integer n, $100000 \le n \le 999999$.

Output:

Outputs are digits of n from left to right, separated by spaces.

	Sample Input	Sample Output
989123	3 2	1989
111223	3 2	2111
576894	4 9	8675

14. Decimal Numbers

You are given 4 digits. Form a number using given digits. Also form reverse of the number.

Input:

Inputs are 4 single digit numbers d_1 , d_2 , d_3 , and d_4 . For i=1,...,4, $0 \le d_i \le 9$.

Output:

Outputs are numbers $(d_1d_2d_3d_4)_{10}$ and $(d_4d_3d_2d_1)_{10}$.

	Sample Input	Sample Output
9821		9821 1289
0123		123 3210
4588		4588 8854

15. Reverse Number

You are given a number. Find the number formed by reversing order of the digits of given number.

Input:

Input is an integer n, $100000 \le n \le 999999$.

Output:

Output is the number formed by reversing order of the digits of n.

	Sample Input	Sample Output
98221	1228	9
22235	5322	2
11220	2211	

16. Triangle Area

Given three corner of a triangle in Cartesian coordinate, find area enclosed by the triangle. Use shoelace formula.

Input:

Inputs are 3 pairs of numbers x1, y1, x2, y2, x3, and y3.

Output:

Output is a positive number denoting the area enclosed by the triangle.

S	Sample Input	Sample Output
000880	32	
991854	18	
-100110	1	

17. Polygon Area

Given 8 corner coordinates of a polygon in Cartesian coordinate, find area enclosed by the polygon. Use shoelace formula.

Input:

Inputs are 8 pairs of numbers x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7, y7, x8, and y8.

Output:

Output is a positive number denoting the area enclosed by the given coordinates.

	Sample Input	Sample Output
	$0\ 0\ 2\ 0\ 4\ 0\ 8\ 0\ 8\ 4\ 8\ 2\ 8\ 0\ 8$	64
	-8 0 0 0 0 -4 4 0 8 0 8 8 -8 8 -12 4	152
ſ	-2 0 2 0 2 4 1 4 1 6 -1 6 -1 4 -2 4	20

18. Triangular Number

You are given a positive integers n, find sum of natural numbers from 1 to n.

Input:

Input is a positive integer n.

Output:

Output is sum of natural number from 1 to n.

Sample Input	Sample Output
5	15
20	210

19.
$$1^2 + 2^2 + \cdots + n^2 = ?$$

You are given a positive integers n, find sum of square of natural numbers from 1 to n.

Input:

Input is a positive integer n.

Output:

Output is sum of square of natural numbers from 1 to n.

Sample Input	Sample Output
5	55
20	2870

20.
$$1^3 + 2^3 + \cdots + n^3 = ?$$

You are given a positive integers n, find sum of cube of natural numbers from 1 to n.

Input:

Input is a positive integer n.

Output:

Output is sum of cube of natural numbers from $1\ to\ n.$

	Sample Input	Sample Output
5		225
2	0	44100

21.
$$a + ar + ar^2 ... + ar^{n-1} = ?$$

You are given a positive integers n, initial terms and common ratio of successive terms of a geometric series, find sum of the series.

Input:

Inputs are initial term "a", common ratio of successive terms "r", and a positive integer n.

Output:

Output is sum of the seires.

Sample Inpu	Sample Output
125	31
1 -2 5	11
2 0.5 4	3.75
515	25
15 -1 5	15
15 -1 16	0

22.
$$a + ar + ar^2 ... + \infty = ?$$

You are given initial terms and common ratio of successive terms of an infinite geometric series, find sum of the series.

Input:

Inputs are initial term "a", and common ratio of successive terms "r".

Output:

Output is sum of the series if series is convergent; otherwise "No Sum: Divergent Series".

Sample Input	Sample Output
5 10	10
15	No Sum: Divergent Series
10 -0.25	8
22 -5	No Sum: Divergent Series

23. Binary Modulo

You are given an integer. Print whether it is even or odd.

Input:

Input is an integer n.

Output:

"n is even", or "n is odd" depending on n.

Sample Input	Sample Output
5	5 is odd
88	88 is even
17	17 is odd

24. K Modulo

You are given two integers. Print whether the first integer is divisible by second.

Input:

Inputs are integers n, and k.

Output:

"k divides n", or "k does not divide n" depending on the outcome of divisibility test.

Sample Input	Sample Output
53	3 does not divide 5
918	7 divides 91
55 12	12 does not divide 55

25. Any Factor???

You are given four integers. Print whether the first integer is divisible by any of the later integers.

Input:

Inputs are integers n, k1, k2, and k3.

Output:

"Given integers contain a factor of n" or ""Given integers do not contain a factor of n" depending on the outcome of divisibility test.

Sample Input	Sample Output
89957	Given integers do not contain a factor of 89
91823	Given integers contain a factor of 91
19235	Given integers do not contain a factor of 19

26. All Factors???

You are given four integers. Print whether the first integer is divisible by all of the later integers.

Input:

Inputs are integers n, k1, k2, and k3.

Output:

"k1, k2, k3" are factors of n" or "All factors test failed" depending on the outcome of divisibility test.

Sample Input	Sample Output
24 2 8 3	283 are factors of 24
104 8 13 4	8 13 4 are factors of 104
15 5 3 2	All factors test failed

27. Real Line? Where??

You are given a number. Print whether the number is less than equal or greater than 100.

Input:

Input is a number r.

Output:

"r is less than 100", or "r equals 100", or "r is greater than 100" depending on r's value.

Sample Input	Sample Output
5.5	5.5 is less than 100
165	165 is greater than 100
100	100 equals 100

28. Flexible Real Line

You are given two numbers. Print whether the first number is less than or equal or greater than second number.

Input:

Inputs are numbers r, and k.

Output:

"r is less than k", or "r equals k", or "r is greater than k" depending on values of r and k.

Sample Input	Sample Output
5.5 4	5.5 is greater than 4
165 200	165 is less than 200
10 10	10 equals 10

29. One Weigh More!!??

You are given three numbers. Check whether sum of any two numbers is less than the other number.

Input:

Inputs are 3 numbers r1, r2, and r3.

Output:

"r1+r2<r3", or "r2+r3<r1", or "r3+r1<r2", or "One does not weigh more" depending on the outcomes of checking on r1, r2, and r3.

Sample Input	Sample Output
312	One does not weigh more
421	2+1<4
4 9 17	4+9<17
6.5 8.5 1	1+6.5<8.5
221	One does not weigh more

30. Triangle or Not

Given three sides of a triangle, check whether this is a valid triangle or not. If valid then find the area of the triangle.

Input:

Inputs are 3 numbers a, b, and c.

Output:

A single line, containing the area of the triangle if given a, b, c form a valid triangle or "Invalid sides for triangle", if a, b, c are invalid to form a triangle.

Sample Input	Sample Output
312	Invalid sides for triangle
435	6

4917	Invalid sides for triangle
565	12
8 5.5 4.5	11.9059

31. Straight Line

You are given two Cartesian coordinates. You need to find equation of the line passing through these coordinates.

Input:

Inputs are 4 numbers x1, y1, x2, and y2.

Output:

A single line, containing equation of the line in Y=mX+c format. In the case of lines being parallel to Y-axis the format should be X=b.

Sample Input	Sample Output
0028	Y=4X
2 4 2 8	X=2
2002	Y=-X+2
4282	Y=2
0228	Y=3X+2
2 -2 4 6	Y=4X-10

32. Lines' Intersection

Given equation of two lines: $Y=m_1X+c_1$ and $Y=m_2X+c_2$. Find intersection point of the lines. If intersection does not exist, you need to state whether the lines are parallel or same.

Input:

Inputs are 4 numbers m1, c1, m2, and c2.

Output:

A single line, containing intersection (X, Y) of given lines if exist; or "Parallel" in the case of lines being parallel; or "Same" in the case of lines being same.

Sample Input	Sample Output
2022	Parallel
-5 0 -5 0	Same
3 2 4 0	(2, 8)
0232	(0, 2)

33. Polynomial Roots

You are given coefficients of a quadratic equation $ax^2 + bx + c = 0$. Find root(s) of the equation.

Input:

Inputs are 3 numbers a, b, and c, $a \neq 0$.

Output:

Root(s) of the equation separated by a comma and a space.

Sample Input	Sample Output
123	-1+1.41421i, -1-1.41421i
121	-1
1-65	1, 5
2 4 4	-1+i, -1-i
165	-1, -5
1-6 10	3+i, 3-i

34. Circle's Equation

You are given center of circle and a coordinate on the circle. Print equation of the circle.

Input:

Inputs are 4 numbers h, k, a, and b. Here (h, k) is the center of the circle and (a, b) is a point on the circle.

Output

Equation of the circle in $(x - h)^2 + (y - k)^2 = r^2$ form.

Sample Input	Sample Output
0 0 4 0	X^2+Y^2=4^2
0408	X^2+(Y-4)^2=4^2
1 -2 5 -2	$(X-1)^2+(Y+2)^2=4^2$
4020	$(X-4)^2+Y^2=2^2$

35. !!!Circle, circle Dot, dot!!!

You are given center and radius of circle and a coordinate. Print where the coordinate lies inside the circle, on the circle or outside of the circle.

Input:

Inputs are 5 numbers h, k, r, a, and b. Here (h, k) is the center and r is the radius of the circle and (a, b) is a coordinate.

Output:

"Inside Circle", "On Circle" or "Outside Circle" depending on (a, b)'s position relative to the given circle.

Sample Input	Sample Output
0 0 4 2 0	Inside Circle
0 0 4 0 4	On Circle
00488	Outside Circle
44500	Outside Circle

36. Ascending

You are given two numbers. Print those in ascending order.

Input:

Inputs are 2 numbers n1, and n2.

Output:

A single line, containing n1 and n2 in ascending order.

Sample Input	Sample Output
5 20	5 20
20 5	5 20
6.5 2.5	2.5 6.5
38.5 55.6	38.5 55.6

37. Extremities

You are given 6 numbers. Print maximum and minimum of those numbers.

Input:

Inputs are 6 numbers n1, n2, n3, n4, n5, and n6.

Output:

A single line, containing maximum and minimum of given numbers separated by space.

Sample Input	Sample Output
5 6 2 18 7 12	12 2
5.5 5.6 2.1 1.2 1.3 5.4	5.6 1.2

38. Total Ordering

You are given three numbers. Print those numbers in descending order.

Input:

Inputs are 3 numbers n1, n2, and n3.

Output:

A single line, containing n1, n2, and n3 in descending order.

Sample Input	Sample Output
123	321
132	321
213	321
231	321
312	321
321	321
3.9 5.9 2.1	5.9 3.9 2.1

39. Count in a Range

You are given 4 positive integers, b1, b2, b3, and n. If n lies in the range 0 (inclusive) to b1 (exclusive) print number of integers in that range 0 (inclusive) to b1 (exclusive). If n lies in the range b1 (inclusive) to b2 (exclusive), print number of integers in the range b1 (inclusive) to b2 (exclusive). If n lies in the range b2 (inclusive) to b3 (inclusive), print number of integers in the range b2 (inclusive) to b2 (inclusive). Else print "Greater than first C numbers", where C is the number of integers lies between 0 (inclusive) and b3 (inclusive).

Input:

Inputs are 4 positive integer b1, b2, b3, and n, b1 < b2 < b3.

Output:

A single line, containing the number of integers in the range where n lies.

Sample Input	Sample Output
6 10 20 5	6
6 10 20 7	4
6 10 20 15	11
6 10 20 22	Greater than first 21 numbers

40. Anomaly in Calendar

You are given a positive integer, denoting a year in the Gregorian calendar. Determine whether the given year is a leap year or not.

Input:

Input is a positive integer Y.

Output:

A single line, describing whether Y is a leap year or not.

Sample Input	Sample Output
2004	2004 is a leap year
1900	1900 is a not leap year
2400	2400 is a leap year
1800	1800 is not a leap year

41. Grade

You are given a number; convert this number into letter grade.

Input:

Input is a number X, $0 \le X \le 100$.

Output:

"A" if $X \ge 80$, "B" if $70 \le X < 80$, "C" if $60 \le X < 70$, "D" if $50 \le X < 60$, "F" if X < 50.

Sample Input	Sample Output
55	D
95	A
65	С
49	F

42. !!!Fake Casio fx-series!!!

Make a scientific calculator with limited functionalities.

Input:

First input is a character C, to choose an operator. C follows a single operand A or two operands A, and B depending on the type of operators. Characters and their mapping to operations are as follows:

Characters	Operations
+	A+B
-	A-B
*	A*B
/	A/B
%	A%B
۸	A^B
S	sin(A)
С	cos(A)
T	tan(A)
G	log(A)
L	ln(A)
R	\sqrt{A}
Q	$\sqrt[B]{A}$
I	A^{-1}
A	sin ^{−1} A
В	cos ^{−1} A
N	tan ⁻¹ A
E	e^A
X	A^2
Y	A^3
D	10^A

Output:

Result of the operations depending on C, and A or C, A, and B. Special instruction need to be provided to the user of the program in the case of given operands being illegal for the chosen operator.

43. Un-Intersect-ion

You are given 2 sets of 4 integers, print union and intersection of the sets.

Input:

Inputs are 8 integers first 4 integers belong to a set and last 4 integers belong to other set.

Output:

Output is result of union followed by result of intersection, separated by a new line.

Sample Input	Sample Output
12562345	125634
	2 5
10 20 30 40 -10 10 50 60	10 20 30 40 -10 50 60
	10

44. Balls in Jars

You are given 3 jars of tennis balls, each having at least one ball. Can you pick unique number of balls from each jar?

For example if jars have 5, 6 and 8 balls then we can pick 1 ball from 1^{st} jar, 2 balls from 2^{nd} jar, and 5 balls from 3^{rd} jar or 5 balls from 1^{st} jar, 6 balls from 2^{nd} jar, and 7 balls from 3^{rd} jar. But we cannot pick 5 balls from each jar or 4 balls from 1^{st} jar and 6 balls from 2^{nd} and 3^{rd} jar.

Input:

Inputs are 3 positive integer n1, n2, and n3, denoting numbers of balls in 3 jars.

Output:

Output is "Yes", if unique numbers of balls can be chosen from the jars having n1, n2, n3 numbers of balls; otherwise "No".

Sample Input	Sample Output
568	Yes
222	No
441	Yes
212	No

45. Increment

You are given a positive integer; print the sequence 1...n.

Input:

Input is an integer n, n > 1.

Output:

The sequence 1 to n separated by spaces.

Sample Input	Sample Output
2	12
10	12345678910

46. Decrement

You are given a positive integer; print the sequence n...1.

Input:

Input is an integer n, n > 1.

Output:

The sequence n to 1 separated by spaces.

Sample Input	Sample Output
2	21
10	10987654321

47. Increment with Starter

You are given integers n1, n2 and n1<n2; print the sequence n1, n1+1, n1+2, ... n2-2, n2-1, n2.

Input:

Inputs are integers n1,n2, n1 < n2.

Output:

The sequence n1 to n2 separated by spaces.

Sample Input	Sample Output
28	2345678
-5 5	-5 -4 -3 -4 -2 -1 0 1 2 3 4 5

48. Bounded Decrement

You are given integers n1, n2 and n1>n2; print the sequence n1, n1-1, n1-2, ... n2+2, n2+1, n2.

Input:

Inputs are integers n1,n2, n1 > n2.

Output:

The sequence n1 to n2 separated by spaces.

Sample Input	Sample Output
82	8765432
5-5	5 4 3 2 1 0 -1 -2 -3 -4 -5

49. MINMAX

You are given integer n and n pairs of integers follows. Each pair consists of an id and a score. Find pairs with minimum and maximum score.

Input:

First line of inputs contains an integer n and n pairs of id, score follows each in a separate line.

Output:

2 pairs of id and score separate a new line, where 1^{st} pair has minimum score and 2^{nd} pair has maximum score. Id and score are separated by space.

Sample Input	Sample Output
5	102 45
101 50	109 85
110 75	
109 85	
102 45	
105 55	
3	2222 200
2222 200	9999 800
5555 600	
9999 800	

50. Counting in Static Range

You are given integer n and n numbers. Count how many numbers are negative, zero and positive among n integers.

Input:

Inputs are integers n and n numbers follows.

Output:

3 integers separated by spaces and indicating count of negative numbers, zeros and positive numbers.

Sample Input	Sample Output
62-23-356	2 0 4
10 5 6 7 8 0 -1 2 0 67 1.5	127

51. Counting in Dynamic Range

You are given integers n, r1, r2, r3 and n numbers. Count how many numbers are less than r1(exclusive), between r1(inclusive) and r2(exclusive), between r2(inclusive) and r3(inclusive), and greater than r3.

Input:

Inputs are integer n, r1, r2, r3 and n numbers follows. Here r1 < r2 < r3.

Output:

4 integers separated by spaces and indicating count of numbers less than r1(exclusive), between r1(inclusive) and r2(exclusive), between r2(inclusive) and r3(inclusive), and greater than r3.

Sample Input	Sample Output
10 5 8 20 90 -5 6 2 3 10 25 34 7 20 8	3 2 3 2
10 -2 10 70 5 6 7 8 0 -1 2 0 67 1.5	0910

52. ABC's of Counting

You are given integers n, n characters. Characters are only 'A', 'B' or 'C'. Count how many 'A's, 'B's, and 'C's belong to n character.

Input:

Inputs are integers n, and n characters. Each character is either an 'A' or a 'B' or a 'C'.

Output:

3 integers, 1^{st} is the count of no. of 'A's, 2^{nd} is the count of no. of 'B's and, 3^{rd} is the count of no. of 'C's.

Sample Input	Sample Output
10 A B C A B C A B C A	4 3 3
10 B B B B A A C C C B	253

53. Permutation

You are given a positive integer n, print factorial of n.

Input:

Input is an integer n, n > 0.

Output:

Factorial of n.

Sample Input	Sample Output
5	125
3	5
12	479001600

54. Combination

You are given positive integers n and r, print ${}_{r}^{n}C$.

Input:

Input is an integer n, r, n, r > 0.

Output:

Value of ${}^{n}_{r}C$.

Sample Input	Sample Output
15 2	105
53	10
15 9	5005

55. Number from Digits

You are given integers n, n digits d_1, d_2, \dots, d_n . Find $(d_1, d_2, \dots, d_n)_{10}$ and $(d_n, d_{n-1}, \dots, d_1)_{10}$.

Input:

Inputs are positive integers n, and n digits d_1, d_2, \dots, d_n , where $0 \le d_i \le 9$ for $i = 1 \dots n$.

Output:

The numbers $(d_1, d_2, ..., d_n)_{10}$ and $(d_n, d_{n-1}, ..., d_1)_{10}$ separated by comma and a space.

Sample Input	Sample Output
45623	5623, 3265
9145623780	145623780, 87326541
2056	56, 650

56. Digits from Number

You are given an integer, print digits of the integer.

Input:

Input is an integer n of the form $(d_1d_2\ ...\ d_n)_{10}$, $n\geq 0$

Output:

The digits of n separated by spaces in the order d_1 , d_2 , ..., d_n as well as in the order d_n , d_{n-1} , ..., d_1 . Two ordering of the digits should be separated by a comma.

Sample Input	Sample Output
5678	5 6 7 8, 8 7 6 5
143520	1 4 3 5 2 0, 0 2 5 3 4 1

57. Factors

You are given a positive integer, n. Print factors of n.

Input:

Input is an integer n, n > 1.

Output:

Factors of n, separated by spaces.

Sample Input	Sample Output
15	3 5
24	2 3 4 6 8 12
89	

58. Odd Factors

You are given a positive integer, n. Print odd factors of n.

Input:

Input is an integer n, n > 1.

Output:

Odd factors of n, separated by spaces.

Sample Input	Sample Output
37	
24	3
30	3 5 15

59. Even Factors

You are given a positive integer, n. Print even factors of n.

Input:

Input is an integer n, n > 1.

Output:

Even factors of n, separated by spaces.

Sample Input	Sample Output
24	2 4 6 8 14
29	
20	2 4 10

60. Sum of Factors

You are given 3 positive integers m, n, and p where m<n. Find sum of the multiples of p between m (exclusive), and n (inclusive).

Input:

Inputs are 3 positive integer m, n, and p; m<n.

Output:

Output is single line containing sum of the multiples of p between m (exclusive) and n (inclusive).

Sample Input	Sample Output
2 10 2	28
1 100 81	81
5 25 35	0
3 17 4	40

61. !!!isPrime!!!

Given a positive integer check whether the given integer is prime or not.

Input:

Input is an integer n, n > 1.

Output:

A single line, containing the text "n is a prime number", if n is prime or the text "n is a composite number", if n is not prime.

Sample Input	Sample Output
91	91 is a composite number
89	89 is a prime number
5039	5039 is a prime number

62. !!!isPerfect!!!

Given a positive integer check whether the given integer is perfect or not. To be perfect a number has to be equal to sum of its proper positive divisors.

Input:

Input is an integer n, n > 1.

Output:

A single line, containing the text "n is a perfect number", if n is perfect or the text "n is not a perfect number", if n is not perfect.

Sample Input	Sample Output
28	28 is a perfect number
10	10 is not a perfect number
496	496 is a perfect number

63. Digits' Sum

You are given a positive integer, print sum of the digits of the integer.

Input:

Input is an integer n, $n \ge 0$.

Output:

A single line, containing the sum of the digits of given integer.

Sample Input	Sample Output
28	10
121121	8
996	24

64. !!!isPalindrome!!!

Given a positive integer check whether the given integer is palindrome or not. If the digits of the given number are reversed and this digits reversed number is equal to the given number then it is a palindrome otherwise not.

Input:

Input is an integer n, $n \ge 0$.

Output:

A single line, containing the text "n is a palindrome number", if n is palindrome or the text "n is not a palindrome number", if n is not palindrome.

Sample Input	Sample Output
28	28 is a perfect number
10	10 is not a perfect number
496	496 is a perfect number

65. !!!isUgly!!!

Given a positive integer check whether the given integer is ugly or not. Ugly numbers are numbers whose prime factors are only 2, 3, and 5.

Input:

Input is an integer n, n > 0.

Output:

A single line, containing the text "n is an ugly number", if n is ugly or the text "n is not a ugly number", if n is not an ugly number.

Sample Input	Sample Output
2	2 is an ugly number
28	28 is not an ugly number
15	15 is an ugly number

66. Prime Factorization

You are given a positive integer check whether the given integer can be factorized using only 2, 3, 5, and 7.

Input:

Input is an integer n, n > 0.

Output:

" $n=(2^p)*(3^q)*(5^r)*(7^s)$ " if n can be factorized using only 2, 3, 5, and 7; otherwise "n cannot be factorized by primes 2, 3, 5, and 7 only".

Sample Input	Sample Output
2	2=(2^1)*(3^0)*(5^0)*(7^0)
5	5=(2^0)*(3^0)*(5^1)*(7^0)
420	420=(2^2)*(3^1)*(5^1)*(7^1)
121	121 cannot be factorized by primes 2, 3, 5, and 7
	only

67. Fibonacci

You are given a positive integer n, print first n numbers from Fibonacci sequence.

Input:

Input is an integer n, n > 0.

Output:

First n numbers of Fibonacci sequence.

Sample Input	Sample Output
5	01123
8	011235813
12	0 1 1 2 3 5 8 13 21 34 55 89 144

68. Binomial Theorem 1

You are given a number x, |x| < 1 and positive integer t. Find sum of the following series summing only first t terms:

$$1 + x + x^2 + x^3 + \dots + \infty$$

Input:

Inputs are number x and integer t, |x| < 1, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
0.5 5	1.9375
0.5 18	1.99999
0.5 100	2

69. Binomial Theorem 2

You are given a number x, |x| < 1 and positive integer t. Find sum of the following series summing only first t terms:

$$1 - x + x^2 - x^3 + \dots + \infty$$

Input:

Inputs are number x and integer t, |x| < 1, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
0.5 5	0.6875
0.5 20	0.66666
0.5 100	0.66667

70. Binomial Theorem 3

You are given a number x, |x| < 1 and positive integer t. Find sum of the following series summing only first t terms:

$$1 + 2x + 3x^2 + 4x^3 + \cdots + \infty$$

Input:

Inputs are number x and integer t, |x| < 1, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
0.5 5	3.5625
0.5 23	3.99999
0.5 100	4

71. Binomial Theorem 4

You are given a number x, |x| < 1 and positive integer t. Find sum of the following series summing only first t terms:

$$1 - 2x + 3x^2 - 4x^3 + \cdots + \infty$$

Input:

Inputs are number x and integer t, |x| < 1, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
0.5 5	0.5625
0.5 27	0.44445
0.5 100	0.44444

72. Binomial Theorem 5

You are given a number x, |x| < 1 and positive integer t. Find sum of the following series summing only first t terms:

$$1 + 3x + 6x^2 + 10x^3 + \cdots + \infty$$

Input:

Inputs are number x and integer t, |x| < 1, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
0.5 5	6.1875
0.5 27	7.99999
0.5 100	8

73. Binomial Theorem 6

You are given a number x, |x| < 1 and positive integer t. Find sum of the following series summing only first t terms:

$$1-3x+6x^2-10x^3+\cdots+\infty$$

Input:

Inputs are number x and integer t, |x| < 1, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
0.5 5	0.6875
0.5 29	0.296297
0.5 100	0.296296

74. Exponential Expansion 1

You are given a number x, and positive integer t. Find sum of the following series summing only first t terms:

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \infty$$

Input:

Inputs are number x and integer t, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
15	2.70833
1 100	2.71828
2 100	7.38906

75. Exponential Expansion 2

You are given a number x, and positive integer t. Find sum of the following series summing only first t terms:

$$1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}-\cdots+\infty$$

Input:

Inputs are number x and integer t, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
15	0.375
1 100	0.367879
2 100	0.135335

76. Trigonometric Expansion 1

You are given a number x, and positive integer t. Find sum of the following series summing only first t terms:

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots + \infty$$

Input:

Inputs are number x and integer t, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
3.1416 7	-0.9999
3.14168	-1
12.5664 100	1

77. Trigonometric Expansion 2

You are given a number x, and positive integer t. Find sum of the following series summing only first t terms:

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots + \infty$$

Input:

Inputs are number x and integer t, t > 0.

Output:

Sum of 1st t terms of the series.

Sample Input	Sample Output
1.57 4	0.999843
1.57 5	1
4.71 10	-1

78. Arithmetic Progression 1

You are given initial terms and common difference of successive terms of an arithmetic series and a positive integer n. Print the series up to n^{th} term.

Input:

Inputs are initial terms a, common difference d, and number of terms n.

Output:

Series defined by "a" and "d" with sum as follows:

a+(a+d)+(a+2d)+...+(a+(n-1)d) = Sum, where "Sum" is the sum of n terms of the series.

Sample Input	Sample Output
5 4 10	5+9+13+17+21+25+29+33+37+41 = 230
2.3 3.5 8	2.3+5.8+9.3+12.8+16.3+19.8+23.3+26.8 = 116.4
-50 10 11	-50-40-30-20-10+0+10+20+30+40+50 = 0

79. Arithmetic Progression 2

You are given positive integer m, n, m^{th} term, and common difference of successive terms of an arithmetic series. Print the series starting at m^{th} term and ending at n^{th} term.

Input:

Inputs are positive integers m, m^{th} term a_m , common difference d, and n.

Output:

Series defined by "m", "d", and " a_m " with sum as follows:

a+(a+d)+(a+2d)+...+(a+md)+....+(a+(n-1)d) = Sum, where "a" is initial term and "Sum" is the sum of n terms of the series.

Sample Input	Sample Output
3 13 4 10	5+9+13+17+21+25+29+33+37+41 = 230
9 30.3 3.5 8	2.3+5.8+9.3+12.8+16.3+19.8+23.3+26.8 = 116.4
4 -20 10 11	-50-40-30-20-10+0+10+20+30+40+50 = 0

80. Geometric Series

You are given an integer n, initial term, and ratio of successive terms of a geometric series. Print the series up to nth term. In the cases when n is not positive, assume the series has infinite terms.

Input:

Inputs are initial terms a, ratio of successive terms r, and an integer n.

Output:

In the cases when series has finite terms print the series defined by "a", "r", with sum as follows:

 $a+(ar)+(ar^2)+...+(ar^n-1)=$ Sum, where "Sum" is the sum of n terms of the series.

In the cases when series has infinite terms but convergent print 1^{st} 5 terms of the series defined by "a", "r", with sum as follows:

 $a+(ar)+(ar^2)+(ar^3)+(ar^4)+...=$ Sum, where "Sum" is the sum of infinite terms of the series.

In the cases of infinite divergent series print "Divergent infinite series"

Sample Input	Sample Output
125	1+2+4+8+16 = 31
20 -2 5	20-40+80-160+320 = 220
10 0.5 5	10+5+2.5+1.25+0.625 = 19.375
15 0.5 -9	15+7.5+3.75+1.875+0.9375+ = 30
20 -0.5 0	20-10+5-2.5+1.25 = 13.3333
25 2 0	Divergent infinite series

81. Central Tendency

You are given a positive integers n followed by n numbers. Find mean of given numbers.

Input:

Inputs are a positive integer n, followed by n numbers, $x_1 x_2 \dots x_n$ and n > 0.

Output:

Mean value of given n numbers.

Sample Input	Sample Output
512345	3
10 -2 3 5 6 -10 7.5 3 9 0 1	2.25

82. n-Polygon Area

You are given coordinates of a polygon. Find area enclosed by the polygon.

Input:

Inputs are a positive integer n, followed by n pairs of number, x_1 y_1 x_2 y_2 ... x_n y_n and n > 2.

Output:

Area enclosed by the given coordinates.

Sample Input	Sample Output
80020408088482808	64
440808448	24
8-80000-4408088-88-124	152
4-40808808	80
8-2020241416-16-14-24	20

83. Primes

You are given a positive integer n. Print primes numbers up to n.

Input:

Input is a positive integer n.

Output:

Primes numbers up to n, separated by spaces.

Sample Input	Sample Output
5	2 3 5
10	2 3 5 7
20	2 3 5 7 11 13 17 19

84. n-Primes

You are given a positive integer n. Print 1^{st} n prime numbers.

Input:

Input is a positive integer n.

Output:

1st n primes, separated by spaces.

Sample Input	Sample Output
3	2 3 5
4	2 3 5 7
8	2 3 5 7 11 13 17 19

85. n-Palindromes

You are given a positive integer n. Print 1st n palindrome numbers.

Input:

Input is a positive integer n.

Output:

1st n palindromes, separated by spaces.

Sample Input	Sample Output
3	123
10	12345678911
20	1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101
	111

86. Palindromes

You are given a positive integer n. Print palindrome numbers up to n.

Input:

Input is a positive integer n.

Output:

Palindrome numbers up to n, separated by spaces.

Sample Input	Sample Output
2	12
13	12345678911
125	1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101
	111 121

87. n-Ugly

You are given a positive integer n. Print 1st n ugly numbers.

Input:

Input is a positive integer n.

Output:

1st n Ugly numbers, separated by spaces.

Sample Input	Sample Output	
Salliple lliput	Salliple Output	

2	12
10	123456891012
20	1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36

88. Humble Numbers

You are given a positive integer n. Print 1^{st} n humble numbers. Humble numbers are numbers whose prime factors are only 2, 3, 5, and 7.

Input:

Input is a positive integer n.

Output:

1st n humble numbers, separated by spaces.

Sample Input	Sample Output
3	123
10	12345678910
20	1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21 24 25 27

89. Greatest Common Divisor

You are given a positive integers m, and n. Find greatest common divisor (GCD) of m, n.

Input:

Inputs are a positive integer m, n.

Output:

GCD of m, n.

Sample Input	Sample Output
5 13	1
30 18	6
12 24	12

90. GCD Euclid

You are given a positive integers m, and n. Find greatest common divisor (GCD) of m, n using Euclid's algorithm.

Input:

Inputs are a positive integer m, n.

Output:

GCD of m, n.

Sample Input	Sample Output
5 13	1
30 18	6
12 24	12

91. Least Common Multiple

You are given a positive integers m, and n. Find least common multiple (LCM) of m, n.

Input:

Inputs are a positive integer m, n.

Output:

LCM of m, n.

Sample Input	Sample Output
5 13	65
30 18	90
12 24	24

92. LCM from GCD

You are given a positive integers m, and n. Find least common multiple (LCM) of m, n from GCD of m, n. For finding GCD use Euclid's algorithm.

Input:

Inputs are a positive integer m, n.

Output:

LCM of m, n.

Sample Input	Sample Output
5 13	65
30 18	90
12 24	24

93. 3-LCM

You are given 3 positive integers. Find least common multiple (LCM) of 3 integers.

Input:

Inputs are 3 positive integers.

Output:

LCM of given 3 integers.

Sample Input	Sample Output
2 30 18	90
5 3 2	30

94. Cartesian product

You are given two positive integer n1, and n2. Now assume sets $A=\{1, 2, ..., n1\}$ and $B=\{1, 2, ..., n2\}$. Print Cartesian product of sets A and B.

Input:

Inputs are positive integer n1, and n2.

Output:

$$\{1,2,...,n1\} \\ x\{1,2,...,n2\} = \{(1,1),(1,2),...,(1,n2),(2,1),...,(2,n2),...,(n1,1),...,(n1,n2)\}.$$

Sample Input	Sample Output
24	$\{1,2\}$ x $\{1,2,3,4\}$ = $\{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)\}$
4 3	$\{1,2,3,4\}$ x $\{1,2,3\}$ = $\{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3)\}$
	3], (4,1), (4,2), (4,3)}

95. 3-Tuples

You are given three positive integers n1, and n2, n3. Now assume sets $A=\{1, 2, ..., n1\}$, $B=\{1, 2, ..., n2\}$, $C=\{1, 2, ..., n3\}$. Print Cartesian product of sets A, B, and C.

Input:

Inputs are positive integer n1, n2, and n3.

Output:

$$\{1,2,...,n1\} \\ x\{1,2,...,n2\} \\ x\{1,2,...,n3\} \\ = \{(1,1,1),(1,1,2),...,(1,1,n1),(1,2,1),...,(n1,n2,1),...,(n1,n2,n3)\}.$$

Sample Input	Sample Output
223	$\{1,2\}$ x $\{1,2\}$ x $\{1,2,3\}$ = $\{(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (2,3), (2,3), (3,3)\}$

	1,1), (2,1,2), (2,1,3), (2,2,1), (2,2,2), (2,2,3)}
432	$\{1,2,3,4\}$ x $\{1,2,3\}$ x $\{1,2\}$ = $\{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (1,3,1), (1,3,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2), (2,3,1), (2,3,2), (3,1,1), (3,1,2), (3,2,1), (3,2,2), (3,3,1), (3,3,2), (4,1,1), (4,1,2), (4,2,1), (4,2,2), (4,3,1), (4,3,2), (4,3,2), (4,2,2), (4,2,2), (4,2,2), (4,2,2), (4,2,2), (4,2,2), (4,2$

96. Binary Relation

You are given two positive integer n1, and n2. Now assume sets A={1, 2, ..., n1} and B={1, 2, ..., n2}. Print relation $R \sqsubseteq A \times B$ such that $for x \in A$ and $y \in B$ x < y.

Input:

Inputs are positive integer n1, and n2.

Output:

$$R = \{(1,2), (1,3), ..., (1,n2), (2,3), ..., (2,n2), ..., (n1,n1+1), ..., (n1,n2)\}.$$

Sample Input	Sample Output
2 4	$R = \{(1,2), (1,3), (1,4), (2,3), (2,4)\}$
4 3	$R = \{(1,2), (1,3), (2,3)\}$
3 5	$R = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (2,5), (3,4), (2,5), (3,4), (2,5), (3,4), (2,5), (3,4), (2,5), (3,4), (2,5), (3,4), (2,5), (3,4), (2,5), (3,4), (2,5), (2$
	3,5)}

97. Trace

You are given a square matrix, find trace of the matrix.

The trace is sum of the diagonal elements of a square matrix. Assume following matrix A:

$$\begin{array}{cccc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array}$$

Then trace of *A* is $A_{11} + A_{22} + A_{33}$.

Input:

Inputs are dimension of matrix followed by the matrix.

Output:

Output is the value of trace.

Sample Input	Sample Output
3	15

123				
456				
789				
2	0			
11				
1 -1				
4	8			
2222				
2222				
2222				
2222				

98. Pyramid

You are given positive integer n. Print a pyramid of n rows where each row is made of asterisk.

Input:

Input is a positive integer n.

Output:

Pyramid of n rows.

Sample Input	Sample Output
1	*
3	*

6	*

99. Upside down Pyramid

You are given positive integer n. Print an upside down pyramid of n rows where each row is made of asterisk.

Input:

Input is a positive integer n.

Output:

Upside down pyramid of n rows.

2	***
	*
4	*****

	*
7	******

	*

100. Diamond

You are given positive integer n. Print a diamond of 2*n-1 rows where each row is made of asterisk.

Input:

Input is a positive integer n.

Output:

A diamond of 2*n-1 rows of asterisk.

Sample Input	mple Input Sample Output		
5	*		

	*		
8	*		

	*		

101. Right Arrow

You are given positive integer n. Print a right arrow of 2*n-1 rows where each row is made of asterisk.

Input:

Input is a positive integer n.

Output:

A right arrow of 2*n-1 rows of asterisk.

Sample Input	Sample Output
5	*

	*
8	*

	*

102. Left Arrow

You are given positive integer n. Print a left arrow of 2*n-1 rows where each row is made of asterisk.

Input:

Input is a positive integer n.

Output:

A left arrow of 2*n-1 rows of asterisk.

Sample Input

103. Numbers' Pyramid

You are given positive integer n. Print a pyramid of n rows where each row is made of numbers as shown in samples.

Input:

Input is a positive integer n.

Output:

A numbers' pyramid of n rows.

Sample Input	Sample Output	
5	1	
	121	
	12321	
	1 2 3 4 3 2 1	
	1 2 3 4 5 4 3 2 1	
8	1	
	121	
	1 2 3 2 1	
	1 2 3 4 3 2 1	
	1 2 3 4 5 4 3 2 1	
	1 2 3 4 5 6 5 4 3 2 1	
	1234567654321	
	123456787654321	

104. Hollow Pyramid

You are given positive integer n. Print a pyramid of n rows where each row is made of numbers as shown in samples.

Input:

Input is a positive integer n.

Output:

A numbers' pyramid of n rows.

Sample Input	Sample Output
5	1
	1 1
	1 1
	1 1
	123454321
8	1
	1 1
	1 1
	1 1
	1 1
	1 1
	1 1
	123456787654321

105. Butterfly

You are given positive integer n. Print a butterfly of 2n rows where each row is made of asterisk as shown in samples.

Input:

Input is a positive integer n.

Output:

A butterfly of n rows.

Sample Input	Sample Output
5	* *
	* *
	* *
	* *
	**
	**
	* *
	* *
	* *
	* *

106. Pascal's Triangle

You are given positive integer n. Print n rows of Pascal's triangle.

Input:

Input is a positive integer n.

Output:

n rows of Pascal's triangle.

Sample Input	Sample Output
5	1
	11
	121
	1331
	14641
8	1
	11
	121
	1331
	14641
	15101051
	1 6 15 20 15 6 1
	172135352171

107. "Z"

You are given positive integer n. Print a shape similar to letter "Z" of n rows of asterisk.

Input:

Input is a positive integer n.

Output:

n rows of asterisk to shape letter "Z".

Sample Input	Sample Output
5	****
	*
	*
	*
	*
	*

8	*****
	*
	*
	*
	*
	*
	*
	*
	*

108. "Y"

You are given positive integer n. Print a shape similar to letter "Y" of 2n rows of asterisk.

Input:

Input is a positive integer n.

Output:

2n rows of asterisk to shape letter "Y".

Sample Input	Sample Output	
5	* *	
	* *	
	* *	
	* *	
	**	
	*	
	*	
	*	
	*	

