Introduction to Bayesian Statistics

Part 4
Linear Models

Benjamin Rosenbaum

iDiv 2025

In this lecture

- What is a linear model?
- Continuous predictors (Regression)
- Categorical predictors (ANOVA)
- Categorical & continuous predictors (ANCOVA)

In-between:

- Model selection
- Post-hoc analysis

What is a linear model?

Linear functions

Linear in *x* (predictor)

$$f(x) = a + b \cdot x$$

Additive with constant a (intercept)

Multiplication only with constant b (slope)

Some **nonlinear** functions:

Linear functions

Extend to **multiple predictors** $x_1, x_2, ...$

$$f(x) = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2$$

x2

Linear statistical models

Linear in *b* **(parameters)** and

Gaussian random errors ε (normally distributed)

$$y(x) = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot x + \boldsymbol{\varepsilon}$$

$$y(x) = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot x_1 + \boldsymbol{b_2} \cdot x_2 + \boldsymbol{\varepsilon}$$

Nonlinear in b, for example:

$$y(x) = \boldsymbol{b_0} + x^{\boldsymbol{b_1}} + \boldsymbol{\varepsilon}$$

$$y(x) = \boldsymbol{b_0} + \exp(\boldsymbol{b_1} \cdot x) + \boldsymbol{\varepsilon}$$

Linear statistical models in the frequentist world:

Analytical solution (formula) for parameter estimates

Easy computation with lm()

Nonlinear models in the frequentist world:

Maximum likelihood estimation (iterative algorithm)

Linear statistical models

Quadratic (polynomial) relationships

$$y = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot \boldsymbol{x} + \boldsymbol{b_2} \cdot \boldsymbol{x^2} + \boldsymbol{\varepsilon}$$

$$= \boldsymbol{b_0} + \boldsymbol{b_1} \cdot \boldsymbol{x_1} + \boldsymbol{b_2} \cdot \boldsymbol{x_2} + \boldsymbol{\varepsilon}$$
define
$$\boldsymbol{x_1} = \boldsymbol{x}$$

$$\boldsymbol{x_2} = \boldsymbol{x^2}$$

Interaction effects

$$y = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_1 \cdot x_2 + \varepsilon$$

$$= b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_3 + \varepsilon$$
define $x_3 = x_1 x_2$

→ Some nonlinear relationships can be described with linear statistical models (linear in the parameters)

Linear statistical models

Transformation of response variable

$$\log(y) = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot \boldsymbol{x} + \boldsymbol{\varepsilon}$$

Attention: model becomes multiplicative When back transforming to y-scale

$$y = \exp(b_0 + b_1 \cdot x + \varepsilon)$$

= $\exp(b_0) \cdot \exp(b_1 x) \cdot \exp(\varepsilon)$
= $\tilde{b}_0 \cdot \exp(b_1 x) \cdot \tilde{\varepsilon}$

→ Sometimes statistical models can be "linearized" by transformation

Common statistical tests are linear models

Last updated: 28 June, 2019.Also check out the Python version!

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
(x +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	***
: Im(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$Im(y_2 - y_1 \sim 1)$ $Im(signed_rank(y_2 - y_1) \sim 1)$	√ f <u>or N >14</u>	One intercept predicts the pairwise y ₂ -y ₁ differences (Same, but it predicts the <i>signed rank</i> of y ₂ -y ₁ .)	Z +
regression:	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	√ for N >10	One intercept plus x multiplied by a number (slope) predicts y (Same, but with <i>ranked</i> x and y)	نبىلېمىر
Simple r	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y \sim 1 + G_2)^A$ $gls(y \sim 1 + G_2, weights=^B)^A$ $Im(signed_rank(y) \sim 1 + G_2)^A$	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	*
x ₂ +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{aligned} & Im(y\sim 1+G_2+G_3++G_N)^A \\ & Im(rank(y)\sim 1+G_2+G_3++G_N)^A \end{aligned}$	√ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	
-1+x1+	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	√	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	THE STATE OF THE S
sion: Im(y -	P: Two-way ANOVA	aov(y ~ group * sex)	$\begin{split} &\text{Im}(y \sim 1 + G_2 + G_3 + \ldots + G_N + \\ &S_2 + S_3 + \ldots + S_K + \\ &G_2^*S_2 + G_3^*S_3 + \ldots + G_N^*S_K) \end{split}$	*	Interaction term: changing sex changes the $\mathbf{y} \sim \mathbf{group}$ parameters. Note: $G_{2\mathrm{to}N}$ is an indicator (0 or 1) for each non-intercept levels of the \mathbf{group} variable. Similarly for $S_{2\mathrm{to}N}$ for sex. The first line (with G_2) is main effect of group, the second (with S_3) for sex and the third is the $\mathbf{group} \times \mathbf{sex}$ interaction. For two levels (e.g. male/female), line 2 would just be "S ₂ " and line 3 would be S_2 multiplied with each G_3 .	[Coming]
Multiple regression:	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model $glm(y \sim 1 + G_2 + G_3 + + G_N + G_2 + G_3 + + G_N + G_2 + G_3 + + G_N * G_K + G_N * S_2 + G_3 * S_3 + + G_N * S_K, family =)^A$	1	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $glm(model, family=poisson())$ As linear-model, the Chi-square test is $log(y) = log(N) + log(a) + log(a\beta) + log(a\beta)$ where a_i and β_i are proportions. See more info in the accompanying notebook.	Same as Two-way ANOVA
M	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	✓	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

Bayesian stats & linearity

Linearity actually not that important

MCMC does not care if deterministic model part is

linear
$$\mu(x) = a + b \cdot x$$

or nonlinear
$$\mu(x) = \frac{a \cdot x}{b + x}$$

However, nonlinear (and also polynomial) models should only be considered when there is a good reason, not just because they would fit the data better.

Principle of parsimony, Occam's razor (14th century): "Entities must not be multiplied beyond necessity"

The Bayesian 3D printer

Continuous predictors (Linear regression)

Example: Latitudinal gradient of plant size

Global database with:

- log10 of plant height as response
- latitude as predictor

Later: include precipitation as environmental predictor

Example: Latitudinal gradient of plant size

Stochastic part:

$$\log(height) \sim Normal(\mu, \sigma)$$

Deterministic part:

$$\mu = b_0 + b_1 \cdot lat$$

> brm(log(height)~lat, data=globalPlants)

```
Family: gaussian
  Links: mu = identity; sigma = identity
Formula: log(height) ~ lat
  Data: globalPlants (Number of observations: 131)
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
  total post-warmup draws = 4000
```

Regression Coefficients:

```
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS Intercept 2.65 0.28 2.09 3.20 1.00 3634 2805 lat -0.04 0.01 -0.06 -0.03 1.00 4126 2981
```

Further Distributional Parameters:

```
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 1.50 0.09 1.33 1.70 1.00 3419 2835
```


Example: Latitudinal gradient of plant size

Stochastic part:

 $\log(height) \sim Normal(\mu, \sigma)$

Deterministic part:

 $\mu = b_0 + b_1 \cdot lat$

> brm(log(height)~lat, data=globalPlants)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: log(height) ~ lat

Data: globalPlants (Number of observations: 131)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS Intercept 2.65 0.28 2.09 3.20 1.00 3634 2805 lat -0.04 0.01 -0.06 -0.03 1.00 4126 2981

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 1.50 0.09 1.33 1.70 1.00 3419 2835

Example: Latitudinal gradient of plant size

scale predictor (
$$\rightarrow$$
 mean = 0, sdev = 1)

$$z.lat = \frac{lat-mean(lat)}{sdev(lat)}$$
 "z-score"

Deterministic part: $\mu = b_0 + b_1 \cdot z. \, lat$

> brm(log(height)~z.lat)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.19	0.13	0.94	1.44	1.00	3799	2873
z.lat	-0.75	0.13	-1.00	-0.49	1.00	4196	2815

Example: Latitudinal gradient of plant size

scale predictor (
$$\rightarrow$$
 mean = 0, sdev = 1)

$$z. lat = \frac{lat - mean(lat)}{sdev(lat)}$$
 "z-score"

Deterministic part: $\mu = b_0 + b_1 \cdot z. lat$

> brm(log(height)~z.lat)

Regression Coefficients:

í		Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
	Intercept	1.19	0.13	0.94	1.44	1.00	3799	2873
	Intercept z.lat	-0.75	0.13	-1.00	-0.49	1.00	4196	2815

Now intercept is predicted log(height) when predictor lat is at its average and slope is effect for 1 sdev increment of lat

Example: Latitudinal gradient of plant size

Stochastic part: $\log(height) \sim Normal(\mu, \sigma)$

Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

> brm(log(height)~z.lat+z.rain)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: log(height) ~ z.lat + z.rain
Data: globalPlants (Number of observations: 131)
Draws: 4 chains each with iter = 2000: warmun = 1000: thin

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
 total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS Intercept 1.20 0.13 0.95 1,44 1,00 3186 2563 z.lat -0.48 0.16 -0.78 -0.19 1.00 3490 3236 z.rain 0.46 0.15 0.16 0.76 1.00 3518 3088

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 1.45 0.09 1.29 1.65 1.00 3605 2835

Example: Latitudinal gradient of plant size

Stochastic part:

 $\log(height) \sim Normal(\mu, \sigma)$

Deterministic part: μ =

$$\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$$

> brm(log(height)~z.lat+z.rain)

```
Family: gaussian
```

Links: mu = identity; sigma = identity

Formula: log(height) ~ z.lat + z.rain

Data: globalPlants (Number of observations: 131)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS Intercept 1,20 0.13 0.95 1.44 1.00 3186 2563 -0.19 1.00 z.lat -0.48 0.16 -0.78 3490 3236 z.rain 0.46 0.15 0.16 0.76 1.00 3518 3088

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 1.45 0.09 1.29 1.65 1.00 3605 2835

Example: Latitudinal gradient of plant size

Stochastic part:

$$\log(height) \sim Normal(\mu, \sigma)$$

Deterministic part:

$$\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$$

> brm(log(height)~z.lat+z.rain)

```
Family: gaussian
```

Links: mu = identity; sigma = identity

Formula: log(height) ~ z.lat + z.rain

Data: globalPlants (Number of observations: 131)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; total post-warmup draws = 4000

Regression Coefficients:

				3 0 50/ 0 5	0.50/ 0.5	-1 .		
١		Estimate	Est.Error	L-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
ı	Intercept	1.20	0.13	0.95	1.44	1.00	3186	2563
ı	z.lat	-0.48	0.16	-0.78	-0.19	1.00	3490	3236
ı	z.rain	0.46	0.15	0.16	0.76	1.00	3518	3088

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 1.45 0.09 1.29 1.65 1.00 3605 2835

Example: Latitudinal gradient of plant size

Stochastic part: $\log(height) \sim \operatorname{Normal}(\mu, \sigma)$ Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

$$\mu = (b_0 + b_2 \cdot rain) + b_1 \cdot lat$$
Intercept depends Slope constant

 2^{nd} variable shifts intercept by b_2

Simpler interpretation when using scaled variables *z*. *lat* and *z*. *rain*

Now let's look at it from the perspective the 2^{nd} predictor rain

$$\mu = (b_0 + b_1 \cdot lat) + b_2 \cdot rain$$
Intercept depends slope constant

 $1^{\rm st}$ variable shifts intercept by b_1

Multiple predictors: multicollinearity

Example: Latitudinal gradient of plant size

Stochastic part: $\log(height) \sim Normal(\mu, \sigma)$

Deterministic part: $\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain$

What if predictor variables are correlated? Here lat influences rain!

- A bit of multicollinearity is OK.
- But be aware of interpretation of effects!
- b_1 is effect $x_1 \rightarrow y$, while x_2 held constant!
- Slopes describe direct (isolated) effects only, not total effect
- Often the problem when dealing with observational data instead controlled experiments.

→ Cinelli, Forney & Pearl (2024). A crash course in good and bad controls

Example: Latitudinal gradient of plant size

```
\begin{split} \log(height) \sim & \text{Normal}(\mu, \sigma) \\ \mu = b_0 + b_1 \cdot lat + b_2 \cdot rain + \textbf{b_3} \cdot \textbf{lat} \cdot \textbf{rain} \end{split}
```

> brm(log(height)~z.lat*z.rain)

```
Family: gaussian
Links: mu = identity; sigma = identity
Formula: log(height) ~ z.lat * z.rain
   Data: globalPlants (Number of observations: 131)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
   total post-warmup draws = 4000
```

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	1.30	0.15	1.00	1.59	1.00	4804	2827
z.lat	-0.43	0.16	-0.74	-0.11	1.00	3606	3169
z.rain	0.58	0.18	0.23	0.95	1.00	3153	3169
z.lat:z.rain	0.19	0.14	-0.09	0.47	1.00	4010	2982

Further Distributional Parameters:

	Estimate	Est.Error	l-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sigma	1.45	0.09	1.28	1.64	1.00	4778	2801

Example: Latitudinal gradient of plant size

$$\begin{split} \log(height) \sim & \text{Normal}(\mu, \sigma) \\ \mu = b_0 + b_1 \cdot lat + b_2 \cdot rain + \textbf{b_3} \cdot \textbf{lat} \cdot \textbf{rain} \end{split}$$

$$\mu = (b_0 + b_2 \cdot rain) + (b_1 + b_3 \cdot rain) \cdot lat$$
Intercept depends on $rain$ on $rain$

 2^{nd} variable shifts intercept by b_2 shifts slope by b_3

Now let's look at it from the perspective the 2^{nd} predictor rain

$$\mu = (b_0 + b_1 \cdot lat) + (b_2 + b_3 \cdot lat) \cdot rain$$
Intercept depends Slope also depends on lat on lat

 $2^{\rm nd}$ variable shifts intercept by b_2 shifts slope by b_3

$$\log(height) \sim Normal(\mu, \sigma)$$

$$\mu = b_0 + b_1 \cdot lat + b_2 \cdot rain + b_3 \cdot lat \cdot rain$$

Regression Coefficients:

	Estimate	EST.EFFOF	L-95% CI	U-95% CI	Knat	ROTK_F22	Tatt_ESS
Intercept	1.30	0.15	1.00	1.59	1.00	4804	2827
z.lat	-0.43	0.16	-0.74	-0.11	1.00	3606	3169
z.rain	0.58	0.18	0.23	0.95	1.00	3153	3169
z.lat:z.rai	n 0.19	0.14	-0.09	0.47	1.00	4010	2982

"Main effects" describe slope of a predictor, when other predictors = 0!

Much simpler interpretation when using **scaled** variables *z.lat* and *z.rain*

Bayesian stats & linear regression

- Simple solutions for violation of model assumptions
 - Outliers → student-t distribution for residuals (heavier tails)
 - Non-constant residual sdev? \rightarrow distributional models $\sigma(x) = \sigma_0 + \sigma_1 x$
 - Spatially / temporally autocorrelated residuals
- Simple comparison of intercepts & slopes ("post-hoc analysis")
- Regularization of effect sizes with priors
- Unbiased estimates even for small datasets
- Multivariate extensions (fit multiple responses at once)

Model selection

Frequentist F-tests

F-tests for (nested) linear models

Compare sums-of-squares of residuals

→ Connected to R² values (amount of explained variation)

R² always increases when adding predictors

H0: Both models perform equally

F-test checks if increase is "significant" or just random

 $P<0.05 \rightarrow reject H0$ and accept more complex model

Frequentist F-tests

```
lm( log(height) ~ z.lat*z.rain )
 > summary( lm1 )
Call:
lm(formula = log(height) \sim z.lat * z.rain, data = globalPlants)
Residuals:
   Min
            10 Median
                                Max
-3.2619 -0.9048 0.0017 1.0176 3.0977
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             1.3031
                       0.1490
                               8.745 1.14e-14 ***
                                                    Don't use p-values of main effects
z.lat
            -0.4298
                     0.1581 -2.719 0.00746
                                                   when there are higher-order effects
z.rain 0.5855
                     0.1790
                               3.272 0.00138
                                                   (here interaction) → Use anova-table
z.lat:z.rain 0.1898
                       0.1411 1.345 0.18107
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.435 on 127 degrees of freedom
Multiple R-squared: 0.2653, Adjusted R-squared: 0.2479
F-statistic: 15.29 on 3 and 127 DF, p-value: 1.5e-08
 ~ z.lat*z.rain versus ~ 1
```

→ Always tests full model against intercept-only

Frequentist F-tests

```
lm( log(height) ~ z.lat*z.rain )
                                                               > anova( lm1 )
> summary( lm1 )
Call:
lm(formula = log(height) \sim z.lat * z.rain, data = globalPlants)
Residuals:
   Min
           10 Median
-3.2619 -0.9048 0.0017 1.0176 3.0977
                                                             2: z.rain
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3031
                      0.1490
                              8.745 1.14e-14 ***
                    0.1581 -2.719 0.00746
z.lat -0.4298
z.rain 0.5855
                      0.1790
                              3.272 0.00138
z.lat:z.rain 0.1898
                      0.1411 1.345 0.18107
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.435 on 127 degrees of freedom
Multiple R-squared: 0.2653, Adjusted R-squared: 0.2479
F-statistic: 15.29 on 3 and 127 DF, p-value: 1.5e-08
~ z.lat*z.rain versus ~ 1
```

```
→ Always tests full model against intercept-only
```

```
Analysis of Variance Table
  Response: log(height)
             Df Sum Sq Mean Sq F value Pr(>F)
1: z.lat 1 72.083 72.083 35.0077 2.86e-08 ***
             1 18.612 18.612 9.0388 0.003186 **
3: z.lat:z.rain 1 3.724 3.724 1.8086 0.181073
  Residuals 127 261.502 2.059
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 1: ~ z.lat versus
                                 ~ 1
 2: ~ z.lat+z.rain versus
                                 ~ z.lat
 3: ~ z.lat*z.rain versus
                                 ~ z.lat+z.rain
```

→ Incremently tests more complex models

Frequentist AIC

"Akaike information criterion" more flexible than F-tests

$$AIC = -2 \cdot \log(L) + 2 \cdot k$$

- ullet Computed from likelihood L (remember: maximum likelihood) Model with higher likelihood-value fits the data better
- Adds a penalty term for model complexity k (number of parameters)
 - → Model with lower AIC is better

"Principle of parsimony"

Bayesian LOO

"Leave-one-out cross-validation"

elpd = expected log predictive density

- Computed from likelihood & posterior
- Includes parameter uncertainty & penalizes model complexity
- Estimates for how well the model would predict for a new dataset
 - → Model with higher elpd = better

 $LOOIC = -2 \cdot elpd$ (lower values = better) just for convenience for people used to AIC

Bayesian LOO

```
fit2 = brm(log(height)~z.lat+z.rain)
fit3 = brm(log(height)~z.lat*z.rain)
> L00(fit3)
                                                             > L00(fit2, fit3)
Computed from 4000 by 131 log-likelihood matrix.
                                                             Model comparisons:
                                                                   elpd diff se diff
        Estimate SE
                                                                                      Best elpd shown on top
                                                             fit3 0.0
                                                                               0.0
elpd loo -235.9 6.9 elpd: larger values are better
                                                             fit2 -3.5
                                                                               2.4
            3.5 0.4 p: effective number of parameters
p loo
          471.8 13.9 looic=-2*elpd
looic
                                                              Difference in elpd is associated with uncertainty
MCSE of elpd loo is 0.0.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.7, 1.2]).
                                                              When elpd diff>2*se diff (approximately),
                                                              you can be sure the model is better.
All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.
                                                              Here, both models perform equally under uncertainty,
                  Estimates come with standard error
                                                              so we would choose the less complex one (fit2)
```

→ Use model comparison with LOO (similar to AIC) in the Bayesian framework

1 Categorical predictor

1 predictor with 2 levels

Example: bird species richness vs. landscape type

Observed bird species richness in different habitats

Each habitat categorized by landscape type:

- Agriculture
- Urban
- Bauxite
- Forest

Start with subset Agriculture / Urban first

Later, we also include area as a predictor

1 predictor with 2 levels

Example: bird species richness vs. landscape type

Stochastic part:

 $S \sim \text{Normal}(\mu, \sigma)$

Deterministic part:

 $\mu = \mu(landscape)$

Each datapoint is a landscape patch

Categorical predictor: *landscape* (2 levels)

3 parameters:

 $\mu_{Agriculture}$, μ_{Urban} , σ

Estimate and compare group-level means

Frequentist method: t-test

Does not compare distributions (overlap).

Compares their **means**!

Dummy coding

Deterministic part: $\mu = b_0 + b_1 \cdot x_{Urban}$

landscape = Agriculture is reference level

$$x_{Urban} = \begin{cases} 1 & landscape = Urban \\ 0 & otherwise \end{cases}$$

$$\mu_{Agriculture} = b_0 + b_1 \cdot 0 = b_0$$

$$\mu_{Urban} = b_0 + b_1 \cdot 1 = b_0 + b_1$$

 \rightarrow Linear model with "intercept" b_0 & "effect" b_1

Model fitting

Brms uses **dummy-coding** (effect-coding) as default > brm(S ~ landscape) Regression Coefficients: 30 -Estimate Est.Error 1-95% CI u-95% CI Intercept 28.37 0.88 26.65 30.07 landscapeUrban -8.77 1.31 -11.28 -6.14 S 20 -**Q:** Is there a difference in means? → Look at posterior distribution of effect > hypothesis(fit_a1, "landscapeUrban<0")</pre> Hypothesis Tests for class b: Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star 1 (landscapeUrban) < 0 -8.77 1.31 -10.89 Agriculture Urban $P(\mu_{Urban} < \mu_{Agriculture}) = 1$ landscape

Model fitting

But we could enforce **mean-coding**

> brm(S ~ landscape-1)

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI landscapeAgriculture 28.38 0.88 26.60 30.14 landscapeUrban 19.61 0.90 17.86 21.42

Q: Is there a difference in means?

→ Look at posterior distribution of difference

$$P(\mu_{Urban} < \mu_{Agriculture}) = 1$$

dummy-coding and mean-coding are the same model!

40 -

30 -

20 -

S

1 predictor with K levels

Example: bird species richness vs. landscape type

Stochastic part:

 $S \sim \text{Normal}(\mu, \sigma)$

Deterministic part:

 $\mu = \mu(landscape)$

Each datapoint is a landscape patch

Categorical predictor: landscape (4 levels)

K+1 parameters: μ_{Aaa}

 $\mu_{Agriculture}, \mu_{Bauxite},$

 $\mu_{Forest}, \mu_{Urban}, \sigma$

Estimate and compare group-level means

Frequentist method: F-test (ANOVA)
Test model against intercept-only model

Dummy coding with *K* **levels**

$$\mu = b_0 + b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} \ b_3 \cdot x_{Urban}$$

landscape = Agriculture is reference level

K-1 dummy variables:

$$x_{Bauxite} = \begin{cases} 1 & landscape = Bauxite \\ 0 & otherwise \end{cases}$$

$$x_{Forest} = \begin{cases} 1 \ landscape = Forest \\ 0 \ otherwise \end{cases}$$

$$x_{Urban} = \begin{cases} 1 \ landscape = Urban \\ 0 \ otherwise \end{cases}$$

$$\mu_{Agriculture} = b_0 + b_1 \cdot 0 + b_2 \cdot 0 + b_3 \cdot 0 = b_0$$

$$\mu_{Bauxite} = b_0 + b_1 \cdot 1 + b_2 \cdot 0 + b_3 \cdot 0 = b_0 + b_1$$

etc ...

Model fitting with *K* levels

> brm(S ~ landscape)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	28.38	0.88	26.58	30.05
land scape Baux ite	-8.33	1.22	-10.63	-5.84
landscapeForest	-3.35	1.21	-5.67	-0.97
landscapeUrban	-8.78	1.29	-11.31	-6.25

Q: Is there a difference in means?

- → Individual effects don't give an overall answer
- → Compare against intercept-only model (similar to frequentist F-test)

> L00(fit_landscape, fit_intercept)

Model comparisons:

```
elpd_diff se_diff
fit_landscape 0.0 0.0 Yes, S~landscape is a
fit_intercept -27.1 7.4 better model than S~1
```


2 Categorical predictors

2 predictors with *K* & *L* levels

Example: S vs. landscape type & area size

Additive model S ~ landscape + area

Factorial model S ~ landscape * area

Area effect changes over landscape levels

Each landscape:size combination is fitted with own mean

 $K \cdot L$ parameters (+1 for sdev)

$$\mu = b_0 + b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} \ b_3 \cdot x_{Urban} + b_4 \cdot x_{large}$$

landscape = Agriculture, area = small is reference level

- 1 intercept
- *K*-1 dummy variables for landscape
- L-1 dummy variables for area
- =K+L-1 variables less than K*L level combinations
- → Will not fit independent group-level means

> brm(S ~ landscape + area)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	26.14	0.89	24.39	27.88
$\\label{landscape} Bauxite$	-7.13	1.15	-9.36	-4.84
landscapeForest	-2.07	1.14	-4.25	0.16
landscapeUrban	-7.75	1.20	-10.10	-5.46
arealarge	7.82	1.10	5.62	9.98

Q: Is there an additional effect of patch size?

→ Strong effect of area 7.82 more species in large patches (on avg.)

> brm(S ~ landscape + area)

```
Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI

Intercept
landscapeBauxite
-7

Summary table not
-84

landscapeForest
-2

helpful for predictors
.16
```

landscapeUrban -7 with >2 levels .46 arealarge 7.82 1.10 5.62 9.98

Q: Is there an additional effect of patch size?

→ Model comparison

> LOO(fit_additive, fit_landscape)

Model comparisons:

```
elpd_diff se_diff Yes, S~landscape+area fit_additive 0.0 0.0 is a better model than fit_landscape -23.7 6.9 S~landscape
```


> brm(S ~ landscape + area)

Regression Coefficients:

```
Intercept 26 Summary table not 84 landscapeBauxite landscapeUrban arealarge Estimate Est.Error 1-95% CI u-95% C
```

Q: Are there differences between landscapes, when controlling for area size?

> L00(fit_additive, fit_area)

Model comparisons:

```
elpd_diff se_diff Yes, S~landscape+area fit_additive 0.0 0.0 is a better model than fit_area -26.9 7.1 S~area
```


Factorial model

$$\mu = b_0 + \\ b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} \ b_3 \cdot x_{Urban} + \\ b_4 \cdot x_{large} + \\ b_5 \cdot x_{Bauxite,large} + b_6 \cdot x_{Forest,large} + b_7 \cdot x_{Urban,large}$$

landscape = Agriculture, area = small is reference level

1 intercept

K-1 dummy variables for landscape

L-1 dummy variables for area

(K-1)*(L-1) dummy variables for landscape:area

- $= K^*L$ variables in total
- → Fitting independent means to all level combinations

 $\mu = \mu(landscape, area)$

Factorial model

> brm(S ~ landscape * area)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	25.56	0.97	23.63	27.51
landscapeBauxite	-6.93	1.27	-9.43	-4.47
landscapeForest	-1.06	1.24	-3.50	1.37
landscapeUrban	-6.78	1.35	-9.44	-4.08
arealarge	9.89	1.81	6.32	13.47
landscapeBauxite:arealarge	0.87	2.87	-4.56	6.46
landscapeForest:arealarge	-5.76	2.91	-11.69	-0.29
landscapeUrban:arealarge	-4.81	2.91	-10.52	0.97

Q: Does area effect change between landscape levels?

> L00(fit_factorial, fit_additive)

Model comparisons:

elpd_diff se_diff No strong evidence for fit_factorial 0.0 0.0 S~landscape*area against fit_additive -0.7 2.5 S~landscape+area

Factorial vs additive

No strong evidence for interaction found \rightarrow select additive as the best model

Post-hoc analysis

What is post-hoc analysis?

Model comparison (LOO)

tells you **IF** there is a difference between group-levels.

Post-hoc analysis (**after** selecting an appropriate model) tells you **WHAT** the difference is.

Analysis is **model-based**.

Do not just compute empirical means from the data.

What is post-hoc analysis?

Answer questions like:

- What is the mean species richness in small areas?
 - → Average over landscapes.
- What is the mean species richness in urban landscapes?
 - → Average over area sizes.
- What is the mean difference between urban and agricultural landscapes?
- And what are all their associated uncertainties?

Bayesian post-hoc analysis

Make predictions & compute their average or difference etc depending on the question.

Remember: everything is a distribution!

- For each sample ${\pmb k}$ of the posterior ($k=1 \dots 1000$) use it's predictions, compute what's required, e.g. ${\pmb a}_{\pmb k} {\pmb b}_{\pmb k}$
- That is a sample of posterior distribution for $oldsymbol{a}-oldsymbol{b}$
- Compute mean, standard deviation, quantiles, etc
- → The **emmeans** package can automate these steps!
- → Alternative: marginaleffects package. Powerful but a bit more complex

The Bayesian 3D printer

Post-hoc analysis: 1 predictor

> brm(S ~ landscape)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	28.38	0.88	26.58	30.05
land scape Baux ite	-8.33	1.22	-10.63	-5.84
landscapeForest	-3.35	1.21	-5.67	-0.97
landscapeUrban	-8.78	1.29	-11.31	-6.25

Q: What are the predicted means (and their uncertainties)?

> emmeans(fit_landscape, "landscape")

landscape	emmean	lower.HPD	upper.HPD
Agriculture	28.4	26.6	30.0
Bauxite	20.0	18.5	21.8
Forest	25.0	23.4	26.6
Urban	19.6	17.8	21.4

Post-hoc analysis: 1 predictor

> brm(S ~ landscape)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	28.38	0.88	26.58	30.05
land scape Baux ite	-8.33	1.22	-10.63	-5.84
landscapeForest	-3.35	1.21	-5.67	-0.97
landscapeUrban	-8.78	1.29	-11.31	-6.25

Q: What is the difference between forest & urban?

> emmeans(fit_landscape, "landscape") |> pairs()

chineans(i cc_canascape	.,	-abc / 1/ k	70 (1 2 ()
contrast	estimate	lower.HPD	upper.HPD
Agriculture - Bauxite	8.35	5.857	10.56
Agriculture - Forest	3.30	0.966	5.63
Agriculture - Urban	8.73	6.290	11.24
Bauxite - Forest	-5.00	-7.217	-2.60
Bauxite - Urban	0.45	-2.232	2.86
Forest - Urban	5.45	2.940	7.83

> brm(S ~ landscape + area)

Q: What are group-level means?

> emmeans(fit_additive, ~area*landscape)

area	landscape	emmean	lower.HPD	upper.HPD
small	Agriculture	26.2	24.4	27.9
large	Agriculture	33.9	31.7	36.1
small	Bauxite	19.0	17.6	20.6
large	Bauxite	26.8	24.6	29.2
small	Forest	24.1	22.6	25.6
large	Forest	31.9	29.5	34.3
small	Urban	18.4	16.8	20.2
large	Urban	26.2	23.8	28.5


```
> brm( S ~ landscape + area )
```

Q: What is the mean species richness in small areas?

> emmeans(fit_additive, ~area)
area emmean lower.HPD upper.HPD
small 21.9 21.0 22.7
large 29.7 27.8 31.6

Results are averaged over the levels of: landscape Point estimate displayed: median

HPD interval probability: 0.95

> brm(S ~ landscape + area)

Q: What is the mean species richness in urban landscapes?

> emmeans(fit_additive, ~landscape)

landscape	emmean	lower.HPD	upper.HPD
Agriculture	30.0	28.4	31.7
Bauxite	22.9	21.3	24.6
Forest	28.0	26.3	29.7
Urban	22.3	20.5	24.2

Results are averaged over the levels of: area


```
> brm( S ~ landscape + area )
```

Q: What is the mean difference between urban and forest landscapes?

```
> emmeans(fit_additive, ~landscape) |> pairs()
contrast
                     estimate lower.HPD upper.HPD
Agriculture - Bauxite
                        7.128
                                4.9378
                                            9.35
Agriculture - Forest
                      2.073 -0.0856
                                         4.36
Agriculture - Urban
                      7.779 5.4187
                                         10.13
Bauxite - Forest
                       -5.064
                               -7.1364
                                           -2.98
Bauxite - Urban
                        0.653
                               -1.6066
                                            2.70
 Forest - Urban
                        5.721
                                 3.4428
                                            7.91
```

Results are averaged over the levels of: area

Categorial & continuous predictors (ANCOVA)

Categorical & continuous predictor

Example: bird species richness

A lot of unexplained variation in S ~ landscape

Last section: added predictor area (levels: small, large)³⁰ S ~ landscape + area

S

If we have better resolved data for area (in km²)

→ Use continuous predictor log. area

Q: Is species richness *S* different over *landscape* types, while controlling for *log.area*?

Q: How strong is the average species-area relationship, while controlling (acknowledging) different *landscapes*?

Categorical & continuous predictor

Example: S vs. landscape type & log.area

Fit a regression line to each landscape level

Additive model S ~ landscape + log.area

Slope (log.area) independent of landscape → identical slope

Individual intercepts for each landscape level

Factorial model S ~ landscape * log.area

Slope (log.area) depends on landscape

Individual intercepts & slopes for each landscape level

S ~ landscape + log.area

$$\mu = \alpha(landscape) + \beta \cdot log.area$$

4 intercepts: $\alpha_{Agriculture}$, $\alpha_{Bauxite}$, α_{Forest} , α_{Urban}

1 slope: β

1 sdev: σ

Dummy-coding of intercepts:

$$\mu = a_0 + a_1 \cdot x_{Bauxite} + a_2 \cdot x_{Forest} + a_3 \cdot x_{Urban} + \beta \cdot log.area$$

> brm(S ~ landscape + log.area)

Regression Coefficients:

	Estimate	Est.Error	l-95% CI	u-95% CI
Intercept	20.96	0.79	19.42	22.48
landscapeBauxite	-6.06	0.90	-7.77	-4.23
landscapeForest	-2.34	0.90	-4.08	-0.56
landscapeUrban	-7.16	0.93	-9.00	-5.41
log.area.	12.71	0.81	11.09	14.29

Q: Is there a difference between landscape types, while accounting for area size?

LOO(fit_additive, fit_logarea)

Model comparisons:					
	elpd_diff	se_diff	Y		
<pre>fit_additive</pre>	0.0	0.0	i		
fit_logarea	-31.8	7.7	5		

Yes, 1
S~landscape+logarea
is a better model than
S~logarea

Post-hoc analysis

> brm(S ~ landscape + log.area)

Q: What are mean intercepts and pairwise differences between landscape types?

> emmeans(fit additive, ~landscape) landscape emmean lower.HPD upper.HPD Agriculture 27.1 25.8 28.4 Bauxite 21.1 19.9 22.4 Forest 24.8 23.6 25.9 20.0 18.7 21.3 Urban

Point estimate displayed: median HPD interval probability: 0.95

contrast estimate lower.HPD upper.HPD Agriculture - Bauxite 6.05 4.301 7.80 Agriculture - Forest 2.35 0.648 4.13 Agriculture - Urban 7.14 5.426 9.02 Bauxite - Forest -3.71 -5.312 -1.99 Bauxite - Urban 3.01 1.10 -0.557 Forest - Urban 4.78 3.104 6.62

> emmeans(fit additive, ~landscape) |> pairs()

S ~ landscape * log.area

$$\mu = \alpha(landscape) + \beta(landscape) \cdot log. area$$

4 intercepts: $\alpha_{Agriculture}$, $\alpha_{Bauxite}$, α_{Forest} , α_{Urban}

4 slopes: $\beta_{Agriculture}$, $\beta_{Bauxite}$, β_{Forest} , β_{Urban}

1 sdev: σ

Dummy-coding of intercepts & slopes:

$$\mu = a_0 + a_1 \cdot x_{Bauxite} + a_2 \cdot x_{Forest} + a_3 \cdot x_{Urban} + (b_0 + b_1 \cdot x_{Bauxite} + b_2 \cdot x_{Forest} + b_3 \cdot x_{Urban}) \cdot log. area$$

> brm(S ~ landscape * log.area)

Regression Coefficients: Estimate Est. Frror 1-95% CT u-95% CT Intercept 21.74

landscapeBauxite landscapeForest landscapeUrban log.area.

landscapeBauxite:log.area. landscapeForest:log.area. landscapeUrban:log.area.

Summary table not helpful for predictors with >2 levels 5.10 2.08 1.01 -0.23 2.10 -4.42 1.86 2.60 -3.27

0.92

19.96

23.54

-5.74

0.47

-5.11

13.64

9.21

3.93

7.08

Q: Is the species-area relationship different between landscape types?

LOO(fit factorial, fit additive)

Model comparisons:

elpd diff se diff fit factorial 0.0 0.0fit_additive -0.4 2.4

No strong evidence for S~landscape*logarea against S~landscape+logarea

> brm(S ~ landscape * log.area)

Regression Coefficients:

Intercept

log.area.

landscapeBauxite

landscapeForest

landscapeUrban

Estimate Est. Frror 1-95% CT u-95% CT 21.74 0.92 19.96 23.54 Summary table not -5.74 0.47 helpful for predictors -5.11 with >2 levels 13.64 landscapeBauxite:log.area. 5.10 2.08 1.01 9.21 landscapeForest:log.area. -0.23 2.10 -4.42 3.93 landscapeUrban:log.area. 1.86 2.60 -3.27 7.08

Q: Is the species-area relationship different between landscape types?

LOO(fit factorial, fit additive)

Model comparisons:

elpd diff se diff fit factorial 0.0 0.0fit_additive -0.4 2.4

No strong evidence for S~landscape*logarea against S~landscape+logarea

Post-hoc analysis (If there was support for this model)

> brm(S ~ landscape * log.area)

Q: What are the predicted slopes?

```
> emtrends(fit factorial, ~landscape, var="log.area.")
landscape
           log.area..trend lower.HPD upper.HPD
Agriculture
                       11.4
                                 9.12
                                          13.8
Bauxite
                       16.5
                               13.26
                                          19.9
Forest
                       11.1
                             7.81
                                         14.7
Urban
                       13.2
                                8.77
                                          18.1
```

Point estimate displayed: median HPD interval probability: 0.95

> emtrends(fit_factorial, ~landscape, var="log.area.") |> pairs() contrast estimate lower.HPD upper.HPD Agriculture - Bauxite -5.066 -9,224 -1.04 Agriculture - Forest 0.224 -3.914 4.42 Agriculture - Urban -1.867 -7.125 3.19 Bauxite - Forest 5,325 0.292 10.10 Bauxite - Urban 3.206 -2.198 9.12 Forest - Urban -2.070 -8.073 3.42

Summary

Summary

- Regression, ANOVA, ANCOVA are just linear models
- Categorical variables can often be expressed by "dummy-coding" or by "effects-coding", brms uses dummy-coding as default
- In Bayesian stats, linearity is not that important
- But always check your model assumptions (e.g. PPC, check_model)
- Research question should guide you which model to fit and which "tests" to perform
- "Test" just means a statement about a research question,
 quantified through posterior distribution of effect sizes, model comparisons, or post-hoc analysis
- brms flexible and "all-in-one" package

Further reading

Bürkner, P. (2024). The brms Book [in progress]. https://paulbuerkner.com/software/brms-book/

Cinelli, C., Forney, A., & Pearl, J. (2024). A crash course in good and bad controls. *Sociological Methods & Research*, 53(3), 1071–1104. https://doi.org/10.1177/00491241221099552

Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R., & Hooten, M. B. (2018). A guide to Bayesian model checking for ecologists. *Ecological Monographs*, 88(4), 526–542. https://doi.org/10.1002/ecm.1314

Fieberg, J. (2024). Statistics 4 Ecologists. https://statistics4ecologists-v2.netlify.app/ [Chapters 1,3]

Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories. *Cambridge University Press*. https://doi.org/10.1017/9781139161879 [Chapters 6-12]