8 WH

This assignment covers all fundamental concepts required for completing a project

DO NOT ERASE MARKDOWN CELLS AND INSTRUCTIONS IN YOUR HW submission

- Q QUESTION
- A Where to input your answer

Instructions

Keep the following in mind for all notebooks you develop:

- Structure your notebook.
- Use headings with meaningful levels in Markdown cells, and explain the questions each piece of code is to answer or the reason it is there.
- Make sure your notebook can always be rerun from top to bottom.
- Please start working on this assignment as soon as possible. If you are a beginner in
 Python this might take a long time. One of the objectives of this assignment is to help you
 learn python and scikit-learn package.
- See README.md for homework submission instructions

Related Tutorials

Refreshers

- <u>Intro to Machine Learning w scikit-learn (https://scikit-learn.org/stable/tutorial/basic/tutorial.html)</u>
- A tutorial on statistical-learning for scientific data processing (https://scikit-learn.org/stable /tutorial/statistical inference/index.html#stat-learn-tut-index)

Classification Approaches

- <u>Logistic Regression with Sklearn (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)</u>
- KNN with sklearn (https://scikit-learn.org/stable/modules/generated /sklearn.neighbors.KNeighborsClassifier.html)
- <u>Support Vector machine example (https://scikit-learn.org/stable/auto_examples/exercises</u> /plot iris exercise.html#sphx-glr-auto-examples-exercises-plot-iris-exercise-py)
- <u>SVC (https://scikit-learn.org/stable/modules/generated</u>/ <u>/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC)</u>
- <u>Bagging Classifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html)</u>
- <u>Gradient Boosting Classifier (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html)</u>

Modeling

- Cross-validation (https://scikit-learn.org/stable/modules/cross_validation.html)
- Plot Confursion Matrix with Sklearn (https://scikit-learn.org/stable/auto_examples /model_selection/plot_confusion_matrix.html)
- Confusion Matrix Display (https://scikit-learn.org/stable/modules/generated /sklearn.metrics.ConfusionMatrixDisplay.html#sklearn.metrics)

Import all required library

```
In [16]: M import pandas as pd
    from sklearn.model_selection import train_test_split
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler, MaxAbsScaler
    import json
    import lightgbm as lgbm
    from sklearn.decomposition import PCA
    from sklearn.manifold import TSNE
    import seaborn as sns
    from imblearn.over_sampling import RandomOverSampler
```

Data Processing

Q1 Get training data from the dataframe

- 1. Load HW8_data.csv from data folder into data frame
- 2. Print the head of the dataframe
- 3. Print the shape of the dataframe
- 4. Print the description of the dataframe
- Assign Cover_Type values to Y
- 6. Assign rest of the column values to X

A1 Fill the cell blocks below, Create new cell as per your necessary

Out[151]:

	Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrolo
0	3080	137	18	166	
1	2758	19	8	551	
2	2779	86	9	43	-
3	2811	296	0	287	

		Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrolo
	4	2956	314	26	71	
	5	2638	108	11	396	
	6	2956	108	29	291	
	7	2625	264	8	396	
	8	2751	150	25	263	
	9	2947	83	22	662	
In [152]:	H					

Out[152]: (80000, 55)

In [153]: N

Out[153]:

	count	mean	std	min	25%	50°
Elevation	80000.0	2981.434325	287.972764	1813.0	2762.0	2967.
Aspect	80000.0	151.634175	109.945631	-29.0	60.0	122.
Slope	80000.0	15.093913	8.531364	-3.0	9.0	14.
Horizontal_Distance_To_Hydrology	80000.0	271.564212	227.532197	-43.0	111.0	212.
Vertical_Distance_To_Hydrology	80000.0	51.510737	68.091489	-276.0	4.0	31.
Horizontal_Distance_To_Roadways	80000.0	1770.080712	1318.661060	-238.0	821.0	1440.
Hillshade_9am	80000.0	211.781612	30.814815	10.0	198.0	218.
Hillshade_Noon	80000.0	221.069125	22.191030	69.0	210.0	224.
Hillshade_3pm	80000.0	140.711750	43.859689	-48.0	115.0	142.
Horizontal_Distance_To_Fire_Points	80000.0	1577.937550	1126.514346	-218.0	781.0	1361.
Wilderness_Area1	80000.0	0.258813	0.437985	0.0	0.0	0.
Wilderness_Area2	80000.0	0.042425	0.201558	0.0	0.0	0.
Wilderness_Area3	80000.0	0.656800	0.474781	0.0	0.0	1.
Wilderness_Area4	80000.0	0.021462	0.144921	0.0	0.0	0.
Soil_Type1	80000.0	0.016762	0.128381	0.0	0.0	0.
Soil_Type2	80000.0	0.031062	0.173488	0.0	0.0	0.
Soil_Type3	80000.0	0.004213	0.064767	0.0	0.0	0.
Soil_Type4	80000.0	0.037012	0.188794	0.0	0.0	0.
Soil_Type5	80000.0	0.015900	0.125090	0.0	0.0	0.
Soil_Type6	80000.0	0.007363	0.085489	0.0	0.0	0.
Soil_Type7	80000.0	0.000000	0.000000	0.0	0.0	0.
Soil_Type8	80000.0	0.002938	0.054119	0.0	0.0	0.
Soil_Type9	80000.0	0.010663	0.102708	0.0	0.0	0.
Soil_Type10	80000.0	0.054363	0.226733	0.0	0.0	0.

	count	mean	std	min	25%	50°
Soil_Type11	80000.0	0.027787	0.164365	0.0	0.0	0.
Soil_Type12	0.00008	0.018200	0.133675	0.0	0.0	0.
Soil_Type13	0.00008	0.031313	0.174162	0.0	0.0	0.
Soil_Type14	80000.0	0.014788	0.120702	0.0	0.0	0.
Soil_Type15	80000.0	0.000000	0.000000	0.0	0.0	0.
Soil_Type16	80000.0	0.015988	0.125428	0.0	0.0	0.
Soil_Type17	0.00008	0.020737	0.142505	0.0	0.0	0.
Soil_Type18	0.00008	0.013300	0.114557	0.0	0.0	0.
Soil_Type19	0.00008	0.014087	0.117853	0.0	0.0	0.
Soil_Type20	0.00008	0.017487	0.131080	0.0	0.0	0.
Soil_Type21	0.00008	0.012125	0.109445	0.0	0.0	0.
Soil_Type22	0.00008	0.031288	0.174095	0.0	0.0	0.
Soil_Type23	0.00008	0.049875	0.217688	0.0	0.0	0.
Soil_Type24	0.00008	0.024375	0.154211	0.0	0.0	0.
Soil_Type25	0.00008	0.003150	0.056037	0.0	0.0	0.
Soil_Type26	0.00008	0.013225	0.114238	0.0	0.0	0.
Soil_Type27	0.00008	0.011612	0.107134	0.0	0.0	0.
Soil_Type28	0.00008	0.010988	0.104244	0.0	0.0	0.
Soil_Type29	0.00008	0.021862	0.146235	0.0	0.0	0.
Soil_Type30	0.00008	0.028587	0.166645	0.0	0.0	0.
Soil_Type31	0.00008	0.027125	0.162449	0.0	0.0	0.
Soil_Type32	0.00008	0.038150	0.191559	0.0	0.0	0.
Soil_Type33	0.00008	0.037687	0.190441	0.0	0.0	0.
Soil_Type34	0.00008	0.011838	0.108155	0.0	0.0	0.
Soil_Type35	0.00008	0.015425	0.123237	0.0	0.0	0.
Soil_Type36	0.00008	0.010812	0.103420	0.0	0.0	0.
Soil_Type37	0.00008	0.012538	0.111268	0.0	0.0	0.
Soil_Type38	0.00008	0.040325	0.196722	0.0	0.0	0.
Soil_Type39	0.00008	0.039163	0.193983	0.0	0.0	0.
Soil_Type40	80000.0	0.030437	0.171789	0.0	0.0	0.

```
In [154]: Y= df.Cover_Type.values
    df.drop(columns = ['Cover_Type'], inplace = True)
```

Q2: Observe the range of all feature values from the dataframe description above.

1. Do you think in our dataset normalization is required? -- Give proper justification based on

4/24/2022, 11:54 PM

your opinion.

2. What type of normalization/Scaling technique you whould recommend for our dataset?

A2

Answer 1: In my opinion, I would normalize the dataset due to some of the very numbers we seeing in standard deviation, mean, and min/max. We can see that the values in the variables 'horizontal_distance' has this set of attributes which means we have an abnormal distribution of data and normalizing the data should yield a better output.

Answer 2: To fix this issue I will be using standard scalar from the sklearn librabry. Standard scalar is a scaling method.

Q3:

- 1. Use the above mentioned normalization technique on our HW_8 dataset.
- 2. Transform the X dataframe using choosen normalization technique.

Note: Make sure the scaled X has all column name same as X dataframe

A3 Fill the cell blocks below, Create new cell as per your necessary

Q4:

- 1. Check and show if there is any null values in our dataset.
- 2. Print all unique values/ different class id from the Y data.

A4 Fill the cell blocks below, Create new cell as per your necessary

```
In [157]: ► Out[157]:
```

```
Elevation
                                                       0
               Aspect
                                                       0
               Slope
                                                       0
                                                       0
               Horizontal_Distance_To_Hydrology
                                                       0
               Vertical_Distance_To_Hydrology
               Horizontal_Distance_To_Roadways
                                                       0
               Hillshade_9am
                                                       0
                                                       0
               Hillshade_Noon
               Hillshade_3pm
                                                       0
               Horizontal_Distance_To_Fire_Points
                                                       0
                                                       0
               Wilderness_Area1
               Wilderness_Area2
                                                       0
               Wilderness_Area3
                                                       0
                                                       0
               Wilderness_Area4
               Soil_Type1
                                                       0
                                                       0
               Soil_Type2
               Soil_Type3
                                                       0
                                                       0
               Soil_Type4
                                                       0
               Soil_Type5
                                                       0
               Soil_Type6
               Soil_Type7
                                                       0
                                                       0
               Soil_Type8
                                                       0
               Soil_Type9
               Soil_Type10
                                                       0
               Soil_Type11
                                                       0
                                                       0
               Soil_Type12
               Soil_Type13
                                                       0
                                                       0
               Soil_Type14
               Soil_Type15
                                                       0
                                                       0
               Soil_Type16
                                                       0
               Soil_Type17
               Soil_Type18
                                                       0
                                                       0
               Soil_Type19
                                                       0
               Soil_Type20
               Soil_Type21
                                                       0
               Soil_Type22
                                                       0
               Soil_Type23
                                                       0
               Soil_Type24
                                                       0
                                                       0
               Soil_Type25
                                                       0
               Soil_Type26
                                                       0
               Soil_Type27
               Soil_Type28
                                                       0
                                                       0
               Soil_Type29
In [158]:
```

Out[158]: array([1, 2, 3, 7, 6, 4], dtype=int64)

Part 1: Use a subset of whole data(N=20000) for Data Visualization

Data Subset Creation

First we are Selecting N=20000 random rows from our dataset and create a new subset of data.

Q5:

- 1. Use PCA and reduce the dimension of the data_subset_x into 3.
- 2. Store the PCA reuslt into pca_result variable
- 3. Add the 3 PCA reduced columns into data_subset_x

A5 Fill the below cells. Use extra cells as per your necessary

```
In [170]:  pca = PCA(n_components = 3)
  pca_result = pca.fit_transform(data_subset)

Out[170]:  (20000, 3)

In [171]:  data_subset_x['pca-one'] = pca_result[:,0]
  data_subset_x['pca-two'] = pca_result[:,1]
```

Q6:

- 1. Use TSNE and reduce the dimension of the data_subset_x into 2.
- Store the TSNE reuslt into tsne_results variable
- 3. Add the 2 TSNE reduced columns into data_subset_x

Note:

- 1. You can use from sklearn.manifold import TSNE for TSNE initialization.
- 2. Give value of n components as per the question.
- Also use other parameters while TSNE initialization as, verbose=1, perplexity=40, n_iter=300

A6 Fill the below cells. Use extra cells as per your necessary

```
tsne = TSNE(n_components = 2, verbose = 1, perplexity = 40, n_iter = 300)
In [172]:
              C:\Users\pedro\anaconda3\lib\site-packages\sklearn\manifold\_t_sne.py:78
              0: FutureWarning: The default initialization in TSNE will change from 'ra
              ndom' to 'pca' in 1.2.
                warnings.warn(
              C:\Users\pedro\anaconda3\lib\site-packages\sklearn\manifold\_t_sne.py:79
              0: FutureWarning: The default learning rate in TSNE will change from 200.
              0 to 'auto' in 1.2.
                warnings.warn(
              [t-SNE] Computing 121 nearest neighbors...
              [t-SNE] Indexed 20000 samples in 0.000s...
              [t-SNE] Computed neighbors for 20000 samples in 10.340s...
              [t-SNE] Computed conditional probabilities for sample 1000 / 20000
              [t-SNE] Computed conditional probabilities for sample 2000 / 20000
              [t-SNE] Computed conditional probabilities for sample 3000 / 20000
              [t-SNE] Computed conditional probabilities for sample 4000 / 20000
              [t-SNE] Computed conditional probabilities for sample 5000 / 20000
              [t-SNE] Computed conditional probabilities for sample 6000 / 20000
              [t-SNE] Computed conditional probabilities for sample 7000 / 20000
              [t-SNE] Computed conditional probabilities for sample 8000 / 20000
              [t-SNE] Computed conditional probabilities for sample 9000 / 20000
              [t-SNE] Computed conditional probabilities for sample 10000 / 20000
              [t-SNE] Computed conditional probabilities for sample 11000 / 20000
              [t-SNE] Computed conditional probabilities for sample 12000 / 20000
              [t-SNE] Computed conditional probabilities for sample 13000 / 20000
              [t-SNE] Computed conditional probabilities for sample 14000 / 20000
              [t-SNE] Computed conditional probabilities for sample 15000 / 20000
              [t-SNE] Computed conditional probabilities for sample 16000 / 20000
              [t-SNE] Computed conditional probabilities for sample 17000 / 20000
              [t-SNE] Computed conditional probabilities for sample 18000 / 20000
              [t-SNE] Computed conditional probabilities for sample 19000 / 20000
              [t-SNE] Computed conditional probabilities for sample 20000 / 20000
              [t-SNE] Mean sigma: 1.247504
              [t-SNE] KL divergence after 250 iterations with early exaggeration: 77.51
              0605
              [t-SNE] KL divergence after 300 iterations: 3.183555
In [173]:
           ▶ data_subset_x['tsne-2d-one'] = tsne_results[:,0]
 In [ ]:
           M
          Q7:
```

- 1. Create a new dataframe with name df_plot
- This dataframe whill merge everything from data_subset_x and data_subset_y
- 3. We need to give a name for the data_subset_y column. Use Cover_Type as the name of the column

A7 Fill the below cells. Use extra cells as per your necessary

Out[179]:

	Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_H
(- 1.678761	-0.933505	0.809499	-0.121145	-
•	- 0.762002	-0.042150	-0.245439	-0.912247	-
2	2 -0.748111	0.749155	-0.011008	-0.903457	-
;	3 -0.400854	-1.233655	-0.362654	-0.547461	-
4	1 -1.595419	-0.033054	0.106207	-0.402426	

5 rows × 55 columns

Q8: Now we will plot all points from our dataframe df_plot Using the result from PCA

- 1. Use pca-one and pca-two column as X and Y axis respectively.
- 2. Use seaborn scatterplot for plotting the points.

Note: Use the notebook from class 4/11 for data plotting. The link is provided below.

Link: https://git.txstate.edu/ML/2022Spring/blob/master/project
/Data_Viz_with_PCA_TSNE.ipynb)

A8 Fill the below cells. Use extra cells as per your necessary

Q9: Now we will plot all points from our dataframe df plot Using result from T-SNE.

- 1. Use tsne-2d-one and tsne-2d-one column as X and Y axis respectively.
- 2. Use seaborn scatterplot for plotting the points.

Note: Use the notebook from class 4/11 for data plotting. The link is provided below.

Link: https://git.txstate.edu/ML/2022Spring/blob/master/project
/Data Viz with PCA TSNE.ipynb (https://git.txstate.edu/ML/2022Spring/blob/master/project
/Data Viz with PCA TSNE.ipynb)

A9 Fill the below cells. Use extra cells as per your necessary

```
In []:  plt.figure(figsize=(16,10))
sns.scatterplot(
```

Part 2: Data Analysis and Classification Using Entire Dataset

Q10: Observe the data plotting and find the realtion between datapoints and their characteristics.

- 1. Reduce the dimension of our Scaled_X dataframe to 3 using PCA algorithm.
- 2. Store the result into a variable named pca result
- 3. Create Train data and Test data using the pca_result and Y.

Note:

- 1. Consider pca_result as X values, and Y as y values.
- 2. You can use sklearn train test split
- 3. Keep Train and Test ratio as: 75%:25%

A10 Fill the below cells. Use extra cells as per your necessary

```
In []: M pca =

In []: M
```

Now, Select Three best model for our dataset. You have to decide three models which might work well with our dataset.

Q11

Model Number 1

- 1. Reason behind choosing the model.
- 2. Create the model using sklearn or any proper library
- 3. Fit the model with the train data
- 4. Get the score from the model using test data

A11 Fill the below cells. Use extra cells as per your necessary

Answer for Q.No:1 goes here

	[
In []:		

Q12

Model Number 2

- 1. Reason behind choosing the model.
- 2. Create the model using sklearn or any proper library
- 3. Fit the model with the train data

4. Get the score from the model using test data

A12 Fill the below cells. Use extra cells as per your necessaryReplace ??? with code in the code cell below

Answer for Q.No:1 goes here

In []: N

Q13

Model Number 3

- 1. Reason behind choosing the model.
- 2. Create the model using sklearn or any proper library
- 3. Fit the model with the train data
- 4. Get the score from the model using test data

A13 Fill the below cells. Use extra cells as per your necessary

Answer for Q.No:1 goes here

In []: ▶

Q14

- 1. Plot a histogram using Y dataframe and display the per-class data distribution(number of rows per class).
- 2. Also print the number of rows per class as numeric value.

A14 Fill the below cells. Use extra cells as per your necessary

In []: N

Q15

- 1. From the histogram we can see that the dataset is highly imbalanced.
- 2. Use a proper dataset balancing technique to make the dataset balanced.
- 3. Plot a histogram using new y values and display the per-class data distribution(number of rows per class).

Note: Use can use the imblearn.over_sampling library for this task. But use appropriate strategy for the method.

Follow the documentation for details: https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html)
/generated/imblearn.over sampling.SMOTE.html)

A15 Fill the below cells	. Use extra c	ells as per yo	ur necessary
--------------------------	---------------	----------------	--------------

In []:	H
In []:) I
	Q16
	 Create new Train and Test data from the balaned X and Y value. Keep Train and Test ratio as: 75%:25%
	A16 Fill the below cells. Use extra cells as per your necessary
In []:	M · · · · · · · · · · · · · · · · · · ·
	Q17
	Now, Use the previously initialized three models and calculate the score from our new balanced dataset.
	Model Number 1
	 Fit the model with the new train data(Use the previous Model 1) Get the score from the model using new test data
	A17 Fill the below cells. Use extra cells as per your necessary
In []:	N
	Model Number 2
	 Fit the model with the new train data(Use the previous Model 2) Get the score from the model using new test data
	Fill the below cells. Use extra cells as per your necessary
In []:	N
	Model Number 3
	 Fit the model with the new train data(Use the previous Model 3) Get the score from the model using new test data
	Fill the below cells. Use extra cells as per your necessary
In []:	H

After making the dataset balanced we can see a significant improve in the performence for all three models.