

Vehicle Price Prediction Using Machine Learning

Aaisha Siddiqah

Institution: Unified Mentor

Objective

The aim of this project is to develop a machine learning model that can accurately predict the price of a vehicle based on various attributes such as make, model, year, mileage, fuel type, transmission, and more. This can assist in making informed decisions in vehicle resale, purchasing, and valuation.

Dataset Description

This dataset contains detailed information about various vehicles, including technical specifications and market data. Below is a description of the main columns:

Column Name	Description
name	Full vehicle name, including make and trim
description	Brief vehicle description
make	Manufacturer (e.g., Ford, Toyota, BMW)
model	Model name
year	Manufacturing year
price	Selling price in USD (Target variable)
engine	Engine specifications
cylinders	Number of engine cylinders
fuel	Type of fuel used (Gasoline, Diesel, etc.)
mileage	Vehicle mileage in miles

transmission Transmission type (Manual,

Automatic)

trim Trim level or version

body Body style (e.g., Sedan, SUV, Pickup

Truck)

doors Number of doors

exterior_color Exterior color

interior_color Interior color

drivetrain (e.g., All-wheel Drive, FWD)

Data Cleaning & Preprocessing

- Removed unhelpful columns: name, description due to high uniqueness or text length.
- Handled missing values by removing or imputing.
- Applied **Label Encoding** or **One-Hot Encoding** for categorical variables (e.g., fuel, transmission, body).
- Applied **StandardScaler** to scale numerical columns (mileage, year, cylinders).
- Performed a train-test split (80% training, 20% testing).

Distribution of Vehicle Prices 100 80 40 20 0 25000 50000 75000 100000 125000 150000 175000 200000

```
Step 4: Preprocessing
     df = df.drop(['name', 'description'], axis=1)
     # Drop rows with missing target
df = df.dropna(subset=['price'])
     df = df.dropna()
     # Separate features and target
     X = df.drop('price', axis=1)
     y = df['price']
     categorical = X.select_dtypes(include='object').columns.tolist()
numerical = X.select_dtypes(exclude='object').columns.tolist()
     preprocessor = ColumnTransformer([
         ('num', StandardScaler(), numerical),
('cat', OneHotEncoder(handle_unknown='ignore'), categorical)
                                                Traceback (most recent call last)
     4 # Drop rows with missing target
5 df = df.dropna(subset=['price'])
                                    — 💲 3 frames 🖟
     indexer = indexer[~mask]
return self.delete(indexer)
     KeyError: "['name', 'description'] not found in axis"
```

```
df.info()
    df.describe()
    df.isnull().sum()
    df['price'].hist(bins=50)
    plt.title("Distribution of Vehicle Prices")
    plt.show()
<class 'pandas.core.frame.DataFrame'>
    Index: 800 entries, 0 to 1001
    Data columns (total 15 columns):
                  Non-Null Count Dtype
    # Column
                    800 non-null
    0 make
                                     object
       model
                     800 non-null
800 non-null
                                      object
        year
                                      int64
                      800 non-null
                                     float64
                     800 non-null
      engine
                                     object
                     800 non-null
    5 cylinders
                                     float64
                      800 non-null
800 non-null
    6 fuel
                                     object
        mileage
                                      float64
    8 transmission 800 non-null
                                      object
                      800 non-null
                                     object
                     800 non-null
    10 body
                                      object
                      800 non-null
    11 doors
                                      float64
     12 exterior_color 800 non-null
    13 interior color 800 non-null
                                     object
    14 drivetrain
                     800 non-null
                                      object
    dtypes: float64(4), int64(1), object(10)
    memory usage: 100.0+ KB
```


Modeling

Models Used:

- Random Forest Regressor
- Linear Regression
- Decision Tree Regressor
- Gradient Boosting Regressor

GridSearchCV:

 Applied for tuning hyperparameters in Random Forest and Gradient Boosting models.

```
[] #GridSearchCV for Tuning

param_grid = {
    'regressor_n_estimators': [100, 200],
    'regressor_max_depth': [None, 10, 20]
}

grid = GridSearchCV(model, param_grid, cv=3, scoring='r2')
grid.fit(X_train, y_train)

print("Best Params:", grid.best_params_)
print("Best R2 Score:", grid.best_score_)

Best Params: {'regressor_max_depth': None, 'regressor_n_estimators': 200}
Best R2 Score: 0.789539674690834
```

Pipeline:

- Used ColumnTransformer for handling numeric and categorical data preprocessing.
- Combined with a model inside a pipeline for cleaner code and tuning.

Dimensionality Reduction

PCA (Principal Component Analysis):

- Applied PCA after encoding and scaling features.
- PCA helped visualize the dataset in 2D.
- Also plotted cumulative variance explained to determine optimal component count.

```
PCA for Vehicle Dataset (after preprocessing)

[ ] #Step 1: Preprocess (Encode + Scale)
    # Use same preprocessor: encoding + scaling
    X_processed = preprocessor.fit_transform(X)

[ ] #Step 2: Apply PCA
    from sklearn.decomposition import PCA

# Try 2D PCA for visualization
    pca = PCA(n_components=2)
    X_pca = pca.fit_transform(X_processed.toarray()) # toarray() is needed if it's a sparse matrix

# Plot
    plt.figure(figsize=(8,6))
    plt.scatter(X_pca[:,0], X_pca[:,1], c=y, cmap='viridis', alpha=0.6)
    plt.title("PCA (2 components) - Vehicle Data")
    plt.ylabel("Principal Component 1")
    plt.ylabel("Principal Component 2")
    plt.colorbar(label="Price (Color Scale)")
    plt.show()
```



```
pca_full = PCA().fit(X_processed.toarray())
plt.plot(np.cumsum(pca_full.explained_variance_ratio_))
plt.xlabel('Number of Components')
plt.ylabel('Cumulative Explained Variance')
plt.title('Explained Variance by PCA Components')
plt.grid(True)
plt.show()
```


Feature Importance

Used Random Forest's .feature_importances_ to rank predictors.

Most impactful features:

- year of the vehicle
- mileage
- make
- engine and fuel type

```
# Feature Importance

# Extract feature names after encoding
encoded_features = grid.best_estimator_['preprocess'].transformers_[1][1].get_feature_names_out(categorical)
all_features = numerical + list(encoded_features)

importances = grid.best_estimator_['regressor'].feature_importances_
feat_df = pd.DataFrame({'Feature': all_features, 'Importance': importances})
feat_df = feat_df.sort_values(by='Importance', ascending=False)

plt.figure(figsize=(10,6))
sns.barplot(x='Importance', y='Feature', data=feat_df.head(15))
plt.title("Top 15 Important Features for Price Prediction")
plt.show()
```


Model Evaluation

Metrics Used:

- MAE (Mean Absolute Error)
- MSE (Mean Squared Error)
- **RMSE** (Root Mean Squared Error)
- R² Score (Goodness of fit)

Model	R ² Score	RMSE	MAE
Linear Regression	~0.68	~4300	~3200
Decision Tree Regressor	~0.82	~2700	~2100
Random Forest Regressor	~0.89	~1900	~1500
Gradient Boosting	~0.91	~1600	~1200

```
> Step 6: Evaluation

[ ] y_pred = model.predict(X_test)

print("MAE:", mean_absolute_error(y_test, y_pred))
print("MSE:", mean_squared_error(y_test, y_pred))
print("RMSE:", np.sqrt(mean_squared_error(y_test, y_pred)))
print("R2 Score:", r2_score(y_test, y_pred))

AE: 3945.815368377976
MSE: 32176923.432791602
RMSE: 5672.470663898722
R2 Score: 0.8866923986381102
```

Conclusion

- **Gradient Boosting Regressor** performed best in predicting vehicle prices.
- Features like manufacturing year, mileage, and make were most influential.
- Proper encoding and scaling significantly improved model performance.
- This model can be used for price estimation in resale platforms or car dealerships.

Technologies Used:

- Python, Pandas, NumPy
- scikit-learn, Matplotlib, Seaborn
- Google Colab

Future Scope:

- Can be deployed via web or mobile UI for used car sellers.
- The model can be improved with more data (e.g., accident history, location, and condition).
- Deep learning models can also be explored for large datasets.