

Deep Learning

Manuel Pérez Carrasco Unidad de Data Science, Facultad de Ingeniería Universidad de Concepción

Fecha: 06/01/2023

Machine Learning

For an input x and some output y, it is possible to find a mapping from the input space to the output space using a function:

$$y = f(x) + \epsilon$$

In machine learning or statistical learning we try to find an approximated function $\hat{f}(x)$ using data. Neural networks are a machine learning models.

Machine Learning

For an input x and some output y, it is possible to find a mapping from the input space to the output space using a function:

$$y = f(x) + \epsilon$$

In machine learning or statistical learning we try to find an approximated function $\hat{f}(x)$ using data. Neural networks are a machine learning models.

Machine Learning / Deep Learning

Machine Learning

Deep Learning

Neural Networks

Cost Function

Cost Function

Optimization

Optimization

Optimization

$$w^{t+1} = w^t + \Delta w^t$$

$$\Delta w^t \propto -rac{d\mathcal{L}}{dw}$$

$$w^{t+1} = w^t - \eta \frac{d\mathcal{L}}{dw} \Big|_{w^t}$$

learning rate

Backpropagation

Backpropagation

Overfitting

UNIDAD DE DATA SCIENCE

UNIVERSIDAD DE CONCEPCIÓN