Теория чисел (теория)

Владимир Латыпов donrumata03@gmail.com **Vladimir Latypov** donrumata03@gmail.com

Содержание

1]	Базовые определения	. 3
2	Идеалы	. 4
3	Евклидовы кольца	. 6
	3.1 sdafasf	. 9
	3.1.1 dasasd	. 9
4	vdsf	. 9
	4.1 231	. 9
	Поля	
	5.1 Построение циркулем и линейкой	14
	5.2 Split fields (of a polynomial)	

1 Базовые определения

Определение **1.1** (*группа*) $\langle G, \star \rangle$ — группа, если

- 1. $\forall a,b,c \in G \quad a\star(b\star c) = (a\star b)\star c$ (ассоциативность)
- 2. $\exists e \in G \quad \forall x \in G \quad x \star e = e \star x = x$ (существование нейтрального элемента)
- 3. $\forall x \exists y \quad x \star y = y \star x = e$ (существование обратного элемента)

аксиома 1 даёт полугруппу, при добавлении аксиомы 4 — получается абелева группа

Пример 1.2

 \cdot S_n — группа, но не абелева

Определение 1.3 (кольцо)

- 1. $\langle R, + \rangle$ абелева группа
- 2. $\langle R \setminus \{0\}, \cdot \rangle$ полугруппа
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c = (b+c) \cdot a$ (дистрибутивность умножения относительно сложения)

Замечание 1.4 Будем работать с коммутативными кольцами (умножение коммутативно), преимущественно — с областями целостности

Пример 1.5

- $\cdot \mathbb{Z}$ кольцо
- $\cdot R[x]$ кольцо многочленов над R от переменной x.

Определение **1.6** (Гомофморфизм колец) $f:R_1 o R_2$

- 1. f(x+y)=f(x)+f(y) («дистрибутивность» относительно сложения) 2. f(ab)=f(a)f(b) («дистрибутивность» относительно умножения) 3. $f\left(1_{R_1}\right)=1_{R_2}$ (сохранение единицы)

Пример 1.7 (Независимость третей аксиомы)

$$f: \begin{pmatrix} R \to R \times R \\ r \mapsto (r,0) \end{pmatrix}$$

- 1, 2 выполнены, но не 3

Определение 1.8 (поле)

- Коммутативное кольцо с единицей
- $\forall x \neq 0 \exists y \quad x \cdot y = y \cdot x = e$ (существование обратного элемента по умножению) (пишут $y = x^{-1}$)

Замечание **1.9** То есть ещё и $R \setminus \{0\}$ — абелева группа.

Пример 1.10

- ℝ
- \cdot \mathbb{C}
- · F2

Определение 1.11 (область целостности)

- $2. \ \ \forall a,b \in R \quad ab=0 \Rightarrow a=0 \lor b=0$ (отсутствие делителей нуля)
- 2'. $\forall a \neq 0 \quad ab = ac \Rightarrow b = c$ (можно сокращать на всё, кроме нуля)

(2 и 2′ эквивалентны)

Пример **1.12** \mathbb{Z} , любое поле (действительно, сократим через деление на обратный)

2 Идеалы

Определение **2.1** (идеал) $I \leq R$

- \cdot $\forall a,b\in I \quad a-b\in I$ (замкнутость относительно разности) \cdot $\forall r\in R, a\in I \quad r\cdot a\in I$ (замкнутость относительно умножения на элемент кольца)

Замечание 2.2

- \cdot У любого кольца есть идеалы 0, R.
- $\cdot R$ поле \Rightarrow есть только эти идеалы

Замечание 2.3 Идеалы в кольцах и нормальные подгруппы обозначают «меньше или равно с треугольничком»: \leq , остальные подструктуры — обычно просто \leq

Определение 2.4 (Операции над идеалами)

- Сложение
- Пересечение
- определяются поэлементно
- Умножение: натягиваем на произведение множеств по Минковскому

Определение **2.5** Идеал, порождённый подмножеством $S \subset R$:

$$(S) = \bigcap_{S \subset I \leq R} I$$

Он же —

$$\left\{\sum r_i s_i \mid r_i \in R, s_i \in S\right\}$$

Замечание 2.6

$$(a_1,...,a_n) = \left\{ \sum_{i=1}^n = r_i s_i \mid r_i \in R \right\}$$

(линейная комбинация)

$$(a) = aR = Ra = \{ra \mid r \in R\}$$

Определение 2.7 Идеалы, которые можно породить одним элементом — главные.

Определение **2.8** (*PID/OГИ*) Когда все идеалы — главные.

Определение **2.9** (Φ акторкольцо по идеалу) Введём отношение эквивалентности $a-b\in I$ и факторизуем по нему. Получим R/I — кольцо с элементами $x+I, \quad x\in R.$

Замечание **2.10** Понятие идеала пошло из обобщения концепции делимости, «идеальные делители». Простой идеал — обобщение простого числа.

Определение **2.11** (Простой идеал) $p \le R$ — простой $\stackrel{\text{def}}{\Longleftrightarrow} ab \in p \Rightarrow a \in p \lor b \in p$. Эквивалентно: $ab \equiv 0 \Rightarrow a \equiv 0 \lor b \equiv 0$

Теорема 2.13 (Эквивалентные определения нётеровости)

- 1. Все идеалы конечно порождены
- 2. Вложенная расширяющаяся последовательность идеалов стабилизируется
- 3. У множества идеалов существует максимальный по включению (но не обязательно — наибольший)

Доказательство

- (1) o (2): Пусть $I=\bigcup I_k=(a_1,...a_n)$. Каждое a_i лежит в каком-то I_{k_i} . Тогда стабилизция происходит уже при $I_{\max\{k_i\}}$.
- (2) o (3): Итеративно будем выбирать идеал, содержащий предыдцщий, пока таковой имеется.
- Если кончились, мы нашли максимальный
- Если нет, построили последовательность вложенных идеалов. Так как она стабилизирутеся, стабильное значение — наш ответ.

$$(3) \rightarrow (1)$$
: $I = \max\{J \mid J \subset I, J$ — конечно порождён $\}$.

Теорема 2.14 (Гильберта о нётеровости кольца многочленов над нётеровым кольцом) Пусть для $I ext{ riangle} R[x] \quad a(i) = \{r \in R \mid rx^i + *\cdot x^{< i - 1} \in I\}$, то есть коэфициенты при x^i , когда это старшая степень.

Тогда $a(1) \subset a(2) \subset \dots$ вложенная цепочка идеалов $\unlhd R$. Пусть стабилизируется на a(k).

! TODO!

З Евклидовы кольца

Определение **3.1** (*Евклидово кольцо*) $d: R \setminus \{0\} \to \mathbb{N}_0$, тч

- 1. $d(ab) \ge d(a)$ 2. $\forall a,b,b \ne 0 \exists q,r: a=bq+r, r=0 \lor d(r) < d(b)$

Пример **3.2** $\mathbb{Z}, F[x]$

Теорема 3.3 Евклидово → ОГИ

Доказательство Находим a — минимальный по d, если нашёлся не кратный, делим с остатком на а, получаем меньший, противоречие Определение **3.4** (Φ акториальное кольцо (UFD — Unique factorization domain)) Область целостности

- Существует разложение на неприводимые множители
- Единственно с точностью до R^* : если $x=u\cdot a_1\cdot\ldots\cdot a_n=u\cdot b_1\cdot\ldots\cdot b_m\Rightarrow m=n\wedge a_i=b_{\sigma_i}\cdot w_i, w_i\in R^*$

Определение **3.5** (Неприводимый элемент) $a \neq 0, a \notin R^*$ $a = bc \Rightarrow b \in R^* \lor c \in R^*$

Property **3.6** Неприводимость сохраняется при домножении на обратимые ($r \in R^*$)

Определение **3.7** (Простой элемент) $a \mid bc \Rightarrow a \mid b \lor a \mid c \Leftrightarrow aR -$ простой идеал)

Теорема 3.8 Простой ⇒ неприводимый

Доказательство

! TODO!

Теорема 3.9 В факториальном кольце: Неприводимый ⇒ простой

Доказательство

! TODO!

Следствие **3.10** В факториальном кольце простые идеалы высоты **1** (то есть $0 \le q \le p \Rightarrow q = 0 \lor q = p$) являются главными

Доказательство Элемент идеала раскладывается на множители, а по простоте какой-то $-\in p$, тогда $0\le \underbrace{(a_i)}_{\text{moort.}}\le p \to (a_i)=p$

! TODO !

Помечать разделение не лекции красивыми заголовками (как ornament header в latex)

Теорема **3.11** Евклидово \Rightarrow ОГИ \Rightarrow Факториальное

Определение **3.12** R^* — мультипликативная группа кольца (все, для которых есть обратный, с умножением)

 \Box

Доказательство (*ОГИ* \rightarrow факториальное) Схема: следует из двух свойств, докажем оба для ОГИ.

Лемма **3.13** В ОГИ: неприводимый → простой

Обобщение ОТА на произвольную ОГА с целых чисел.

Переформулируем: ...

Пусть есть такие элементы, возьмём цепочку максимальной длины, последний — приводим, представим как необратимые, тогда они сами представляются как ..., тогда и он тоже.

! TODO!

Определение 3.14 нснм — начиная с некоторого места

Замечание **3.15** Нётеровость: не можем бесконечно делить, так как при переходе к множителям идеалы расширяются, но в какой-то момент стабилизируются.

Теорема **3.16** R факториально $\Rightarrow R[x]$ — тоже

Пример **3.17** F - поле.

 $f \in F[x]$ — неприводим.

 $\frac{F[x]}{(f)}$ — область целостности, но докажем, что поле.

 $\cdot \overline{g} \operatorname{deg} g < \operatorname{deg} f$

$$m{\cdot}\,\,(f,g)=1$$
, то есть $1=fp_1+gp_2$, $\overline{1}=\overline{f}\overline{p_1}+\overline{gp_2}$

 $\dim_F K = \deg f$

Можем построить все конечные поля.

$$\mathbb{F}_{p[x]} \ni f, \deg f = m$$

$$\mathbb{F}_{p^m}[x] \ll \gg \frac{\mathbb{F}_{p[m]}}{(f)}$$

Теорема **3.18** Над конечным полем существуют неприводимые многочлены любой степени

Пример **3.19** $\mathbb{F}_2 \frac{[x]}{(x^2+x+1)}$

Таблица сложения:

	0	1	α	β
0	0	1	3	4

Теорема 3.20 Группа простого порядка — циклическая

- 3.1 sdafasf
- 3.1.1 dasasd
- 3.1.1.1 asdf
- 4 vdsf
- 4.1 231

Теорема 4.1 sdfs

! TODO!

Why isn't the theorem counter reset?

OMG, I'm lecture 1

Ahh, im lecture-2!

Could not find theory/lecture-3.typ

Could not find theory/lecture-4.typ

Could not find theory/lecture-5.typ

Could not find theory/lecture-6.typ
Could not find theory/lecture-7.typ
Could not find theory/lecture-8.typ
Could not find theory/lecture-9.typ
Could not find theory/lecture-10.typ
Could not find theory/lecture-11.typ
Could not find theory/lecture-12.typ
Could not find theory/lecture-13.typ
Could not find theory/lecture-14.typ

Лекция 3

5 Поля

Определение 5.1 (Подполе)

Property **5.2** R— поле \Leftrightarrow вR ровно 2 идеала

Property 5.3 Гомоморфизмы полей инъективны, так как ядро — идеал

Определение **5.4** (F-аглебра (алгебра над F)) кольцо R, тч $F \leq R$

Замечание 5.5 Тогда это заодно и векторное пространство

Определение 5.6 (Гомофморфизм F-алгебр)

- $m{\cdot}\ f:R o R'$ гомоморфизм колец $m{\cdot}\ f(lpha)=lpha orall lpha\in F$ (сохраняет элементы поля)

Замечание 5.7 Получается, это автоматически гомоморфизм векторных пространств

$$\mathbb{Z} \xrightarrow{f} F$$

$$n \mapsto \underbrace{1_F + 1_F + \dots 1_F}_{n \text{ pas}}.$$

Определение 5.8 (Характеристика)

1. $\ker f = 0$

1. $\ker f = (p)$

Итого: минимальное количество раз, которое нужно сложить единицу с собой, чтобы стала нулём.

Теорема **5.9** (Количество элементов конечного поля) $|F| = \operatorname{char} F^n = p^n, p$ — prime

Теорема **5.10** (*Единственность конечного поля*) Конечные поля равного размера изоморфны.

Определение 5.11 (Простые поля) Не содержат подполя

Замечание **5.12** (Бином Ньютона) В полях характеристики p/в \mathbb{F}_p алгебрах $p\cdot (a=0) \Rightarrow \ (a+b)^p = a^p + b^p.$

Определение **5.13** (*эндоморфизм* Φ *робениуса*) $f: {R o R \choose a \mapsto a^p}.$

- \cdot Если поле, то инъективен ($\ker f=0$) и $\mathrm{Im}\ f-$ подполе
- $oldsymbol{\cdot}\ R = \mathbb{F}_p$ конечное поле \Rightarrow назвают «автоморфизм Фробениуса»

$$\mathbb{F}_{p(x)} \xrightarrow{f} \mathbb{F}_{p(x)} \quad \Im f = \mathbb{F}_{p(X^p)} = \left\{ \frac{g(x^p)}{h(x^p)} \mid g, h \in \mathbb{F}_{p[x]}, h \neq 0 \right\}$$

Определение 5.14 (Унитарный многочлен) Старший коэфициент = 1

Теорема 5.15 (Лемма Гаусса)

Теорема 5.16 (Критерий Эйзенштейна)

$$h=a_nx^n+\ldots+a_1x+a_0,\quad a_i\in\mathbb{Z},\quad p$$
 — простой

- 1. $p \nmid a_n$
- 2. $p \mid a_{n-1}, ...a_0$
- 3. $p^2 \nmid a_0$

 $\overline{\text{Тогда}\ h}$ — неприводим

Доказательство

Определение **5.17** (*Расширение поля*) E — расширение F, если $F \leq E$. «E/F» — E расширяет F.

E/F называется конечным, если $\infty > \dim_F E \coloneqq [E::F]$ — степень E над F.

$$E \stackrel{f}{ o} E'$$

Пример 5.18

- $\cdot \mathbb{C}/\mathbb{R}$
- · R/O
- $\cdot \mathbb{Q}[i]/\mathbb{Q}$
- $\cdot F(x)/F$

Теорема **5.19**] $F \leq E \leq L$ $L/F < \infty \Longleftrightarrow E/F < \infty$, при этом

$$[L:F] = [L:E] \cdot [E:F]$$

Доказательство

 $\stackrel{\smile}{\cdot} E$ — подпространство $F\Rightarrow \dim_F E < \infty$

· $\left\{e\right\}_1^n$ — базис L над $F\Rightarrow \left\{e\right\}_1^n$ порождает L над E

Определение 5.20 (Подалгебра, порождённая ?)

$$E/F \quad S \leq E \quad F[S] = \left\{ \sum a_I \alpha^I \ | \ a_I \in F, \alpha_I \in S \right\}$$

Лемма **5.21** R — конечная F-алг. R — область целостности $\Rightarrow R$ — поле

Доказательство $a \neq 0$ $f: R \rightarrow R$ f(r) = ar

- $f \in \text{F-Lin}$
- $f \in \text{Inj}$

 $\Rightarrow f \in \mathrm{Surj}$, а тогда $\exists b$, тч ab=1, значит любой $a \neq 0$ обратим, значит, это поле.

Следствие **5.22** E/F — конечное R — подалгебра $E\Rightarrow R$ — поле

Определение **5.23** (Простое расширение) E/F — простое $E=F(\alpha), \alpha \in E$

Определение **5.24** (Композит двух полей) $F,F'\leq E$ $F(F')=F\cdot F'=F'(F)$

Замечание 5.25 Поля разных характеристик не могут содержаться в одном поле, так как единица должна лежать и там, и там

 $F[x] \ni f$ — непрерывны, унитарны.

5.1 Построение циркулем и линейкой

5.2 Split fields (of a polynomial)

aka Поле разложения

Teopema 5.26 For any polynomial there exists its splitting field with degree $\leq (\deg f)!$ over F.

Доказательство ...

Замечание **5.27** Многочлены от конечного количества переменных — область целостности, как и от бесконечного, так как для многочлена рассмотрим подкольцо используемых переменных.

Теорема **5.28** lk

Теорема **5.29** lk

Теорема 5.30 Корни многочлена переводятся автоморфизмом в корни многочлена

Существуют поле p^n (поле разложения $x^pn - x$) Показываем, что оно размера p^n, показываем, что оно единственно Множественных корней нет по критерию gcd(f, f') = 1