Expanse normal means
$$y_i = M_i + E_i$$
 $E_i \sim N(0,1)$ and $MSE = \frac{1}{N} \sum_{i=1}^{N} (\frac{1}{N} + \frac{1}{N})^2$

(to translate to previous setting let new observation be journit (1,...,n? and $y = M_i + E$)

Hard thresholding: $\widehat{M}_i = y_i \mathbb{I}\{|y_i| > 2\}$
 $EMSE = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} (y_i - M_i)^2 \mathbb{I}\{|y_i| > 2\}$
 $EMSE = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} (y_i - M_i)^2 \mathbb{I}\{|y_i| > 2\}$

if $|M_i|$ is small then for T large enough $P\{|y_i| < T\}$

is large yet $M_i^2 P\{|y_i| < T\} \approx 0$

if $|M_i|$ is large then T large $P\{|y_i| > T\} \approx 0$

and lyequise $P\{|y_i| > T\} \approx 0$

Spansity: suppose for $i \in S$, $|M_i| > M$ and $i \notin S$, $M_i = 0$,

Set $T = \int 2 \log M_i$

fact: $P\{|E_i| > U \} \leq 2 e^{-U^2/2}$ for $N(0,1)$

so $P\{|E_i| > U$ for any $i = 1,..., n$? $\leq 2 N e^{-U^2/2} = \infty$