SEMICONDUCTOR

TELINK SEMICONDUCTOR

Datasheet for Telink BLE SoC TLSR8266

DS-TLSR8266-E31

Ver 3.2.0

2018/9/11

Keyword:

Features; Package; Pin layout; Working mode;

Memory; MCU; RF Transceiver; Baseband; Clock;

Timers; Interrupt; Interface; PWM; KeyScan; QDEC;

ADC; PGA; Electrical specification; Application

Brief:

This datasheet is dedicated for Telink BLE SoC TLSR8266 (without internal flash) / TLSR8266F512 (with internal 512K flash)/TLSR8266F128 (with internal 128K flash)/TLSR8266F1k (with internal 1024k flash). In this datasheet, key features, working mode, main modules, electrical specification and application of the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K are introduced.

Published by Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor All Right Reserved

Legal Disclaimer

Telink Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Telink Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling Telink Semiconductor products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Telink Semiconductor for any damages arising or resulting from such use or sale.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

DS-TLSR8266-E31 1 Ver3.2.0

Revision History

Version	Major Changes	Date	Author
0.8	Preliminary release	2014/3	Cynthia
1.0	Mainly added section 11~13, and updated section 1, 7, 10, 14. Added TLSR8266ET48 package.	2014/5	Cynthia
1.01	Updated section 14.4	2014/5	Cynthia
1.1	Updated section 15	2014/5	Cynthia
1.2	Mainly updated section 1 and section 15	2014/7	Cynthia
1.3	Updated section 4	2014/7	Cynthia
1.4	Mainly updated section 1, section 6 and section 15	2014/8	Cynthia
1.41	Updated section 14.3	2014/8	Cynthia
1.42	Updated section 1 and section 3	2014/8	Cynthia
1.5	Updated section 8		Cynthia
1.6	Added section 2.5, updated section 7.1 and 7.3	2015/1	S.G.J., Cynthia
1.7	Updated section 2.3	2015/1	S.G.J., Cynthia
1.71	Updated section 14.4	2015/3	Cynthia
1.8	Updated section 2.5, 4.4.2, 5, 7.1.3, 7.4, 12 and 14.4	2015/3	Cynthia
1.9	Updated section 1 and 14.2	2015/3	Cynthia
1.91	Updated section 12.5~12.6 and 12.9	2015/4	Cynthia
2.0	Updated section 1.6 and 7.1	2015/4	S.G.J., Cynthia
2.01	Mainly updated section 1.6, 7.1.1.2 and 12.3 Modified Figure 13-1	2015/5	L.L.J., Cynthia
2.0.2	Updated package dimension figures (Figure 1-2~1-4 in section 1.5)	2015/6	X.S.J., Cynthia
•	Marked ANA_D<4> and ANA_D<5> as input and output pins for 32K crystal;		S.G.J., L.Y.,
2.1.0	Updated connection relationship between GPIO and related modules;	2016/2	Cynthia
	Updated Tx power.		

DS-TLSR8266-E31 2 Ver3.2.0

Version	Major Changes	Date	Author	
2.2.0	Added TLSR8266F64ET24 package information; Added TLSR8266F512/TLSR8266F64 Flash features;	2016/5	X.S.J., W.W.X., T.J.B., L.X.,	
	Added reference design for TLSR8266F512ET32 and TLSR8266F64ET24.		Cynthia	
2.3.0	Updated recommended VDD range, DC characteristics, ordering information and reference design; Replaced TLSR8266F64 by TLSR8266F128; Updated Note (3) for GPIO lookup table.	2016/7	L.X., L.W.H., L.J.R., X.S.J., Cynthia	
2.4.0	Added Unique ID feature for TLSR8266F128 internal 128K Flash encryption protection.	2016/9	H.Z.T., Cynthia	
2.5.0	Added I2C and SPI usage. Added pull-up resistor statement for I2C.	2016/10	Z.X.D., S.G.J., Cynthia	
2.6.0	Modified I2C Master clock.	2016/12	Y.C.Q., Cynthia	
2.7.0	Updated ordering information.	2017/3	X.S.J., Cynthia	
2.8.0	Updated section 7.3.1 Communication protocol.	2017/6	S.G.J., Cynthia	
2.9.0	Updated section 1.6 Pin layout.	2017/6	Cynthia	
3.0.0	Updated section 1.2.2 RF Features and 3.3 Baseband.	2017/8	J.H.P., Cynthia	
3.1.0	Updated the following sections: 4.3 System clock (0x66[4:0]), 7.1.1.3 GPIO lookup table (notes), 13.2 Recommended operating condition (supply rise time), 14 Applications. Removed audio function including DMIC, AMIC and SDM.	2017/12	J.H.P., X.W.W., L.X., Cynthia	
3.2.0	Updated section 1.4 Ordering information, Added TLSR8266F1KET32 package.	2018/9	YHL, Cynthia	

1 Table of contents

1	Overvie	W	8
	1.1 Blo	ock diagram	8
	1.2 Ke	y features	9
	1.2.1	General features	9
	1.2.2	RF Features	10
	1.2.3	Features of power management module	11
	1.2.4	TLSR8266F512/TLSR8266F128/TLSR8266F1K Flash features	11
	1.3 Ty	pical applications	12
	1.4 Or	dering information	12
		ckage	
	1.6 Pi	n layout	18
		link SDK	
2		y and MCU	
	2.1 M	emory	
	2.1.1	SRAM/Register	
	2.1.2	Flash	
	2.1.2	.1 Page program	36
	2.1.2		
	2.1.2		
	2.1.2		
	2.1.2	•	
		CU	
	2.3 W	orking modes	
	2.3.1	Active mode	
	2.3.2	Idle mode	
	2.3.3	Power-saving mode	37
	2.4 Res	et, Wakeup and Power down enabling	38
		keup sources	
	2.5.1	Wakeup source - USB	40
	2.5.2	Wakeup source – 32kHz timer	
	2.5.3	Wakeup source – pad	40
3	2.4G RF	Transceiver	42
		ock diagrams	
	3.2 Fu	nction description	42
	3.2.1	Turn on/off	42
	3.2.2	Air interface data rate and RF channel frequency	
	3.3 Ba	seband	43
	3.3.1	Packet format	
	3.3.2	RSSI	43
4	Clock		44
	4.1 Clo	ock sources	44

	4.2	Register table	44
	4.3	System clock	46
	4.4	Module clock	47
	4.4.1	ADC clock	47
5	Time	rs4	48
	5.1	Timer0~Timer2	48
	5.1.1	Register table	48
	5.1.2	Mode0 (System Clock Mode)	50
	5.1.3	Mode1 (GPIO Trigger Mode)	50
	5.1.4	Mode2 (GPIO Pulse Width Mode)	51
	5.1.5		
	5.1.6	Watchdog	53
	5.2	32kHz LTIMER	54
	5.3	System Timer	54
6	Inter	rupt System	
	6.1	Interrupt structure	55
	6.2	Register configuration	55
	6.2.1	Enable/Mask interrupt sources	56
	6.2.2	Interrupt mode and priority	56
	6.2.3		
7	Inter	face	58
	7.1	GPIO	58
	7.1.1	Basic configuration	58
	7.	1.1.1 Multiplexed functions	.58
	7.	1.1.2 Drive strength	.59
	7.	1.1.3 GPIO lookup table	.59
	7.1.2	Connection relationship between GPIO and related modules	63
	7.1.3	Pull-up/Pull-down resistor	67
	7.2	SWM and SWS	73
	7.3	I2C	73
	7.3.1	Communication protocol	73
	7.3.2	Register table	74
	7.3.3	I2C Slave mode	76
	7.3	3.3.1 DMA mode	.76
	7.3	3.3.2 Mapping mode	.77
	7.3.4		
	7.3	3.4.1 I2C Master Write transfer	.78
	7.3	3.4.2 I2C Master Read transfer	.79
	7.3.5	I2C and SPI Usage	79
	7.4	SPI	80
	7.4.1	Register table	80
	7.4.2	SPI Master mode	81
	7.4.3	SPI Slave mode	82
	7.4.4	I2C and SPI Usage	83

	7.5	UART	84
8	PW	M	87
	8.1	Register table	87
	8.2	Enable PWM	90
	8.3	Set PWM clock	90
	8.4	PWM waveform, polarity and output inversion	90
	8.4.	.1 PWM waveform	90
	8.4.	.2 Invert PWM output	91
	8.4.	.3 Polarity for signal frame	91
	8.5	PWM mode	92
	8.5.	.1 Select PWM mode	92
	8.5.	.2 Continuous mode	92
	8.5.	0	
	8.5.	.4 IR mode	93
	8.6	PWM interrupt	94
9	Key	rscan	
	9.1	Register table	
	9.2	Keyscan enable	
	9.3	Keyscan IO configuration	
	9.4	Keyscan flow and frame	102
	9.5	Keyscan FIFO buffer	
10) Qua	adrature Decoder	
	10.1	Input pin selection	105
	10.2	Common mode and double accuracy mode	
	10.3	QDEC interrupt	
	10.4	QDEC reset	
	10.5	Other configuration	108
	10.6	Register table	109
11		C	
	11.1	ADC clock	
	11.2	Set period	
	11.3	Select ADC input range	
	11.4	Select resolution and sampling time	
		Select input mode and channel	
	11.6	Enable auto mode and output	
		5	
	11.8	ADC status	
	11.9	Register table	
12		Α	
	12.1	Left/Right channel enabling	
	12.2	Input channel selection	
	12.3	Gain setting	
	12.4	PGA output	
	12.5	Register table	118

13 Key	Electrical Specifications	121
13.1	Absolute maximum ratings	121
13.2	Recommended operating condition	121
13.3	DC characteristics	122
13.4	AC characteristics	122
14 App	lications	126
14.1	Application example for the TLSR8266F512ET32	126
14.1	1.1 Schematic	126
14.1	1.2 Layout	128
14.1	1.3 BOM (Bill of Material)	128
14.2	Application example for the TLSR8266F128ET24	129
14.2	2.1 Schematic	129
14.2	2.2 Layout	130
14.2	2.3 BOM (Bill of Material)	131

1 Overview

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K is Telink-developed BLE SoC solution which is fully standard compliant and allows easy connectivity with Bluetooth Smart Ready mobile phones, tablets, laptops. The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K supports BLE slave and master mode operation, including broadcast, encryption, connection updates, and channel map updates. It's completely RoHS-compliant and 100% lead (Pb)-free.

1.1 Block diagram

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K is designed to offer high integration, ultra-low power application capabilities. It integrates strong 32-bit MCU, BLE/2.4GHz Radio, 16kB SRAM, 128/256/512kB external FLASH (TLSR8266) or 512kB internal Flash (TLSR8266F512) or 128kB internal Flash (TLSR8266F128) or 1024kB internal Flash (TLSR8266F1K), 14bit ADC with PGA, 6-channel PWM, three quadrature decoders, a hardware keyboard scanner (Keyscan), abundant GPIO interfaces, multi-stage power management module and nearly all the peripherals needed for Bluetooth Low Energy applications development.

The system's block diagram is as shown in Figure 1-1:

DS-TLSR8266-E31 8 Ver3.2.0

Figure 1-1 Block diagram of the system

With the high integration level of TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K, few external components are needed to satisfy customers' ultra-low cost requirements.

1.2 Key features

1.2.1 General features

General features are as follows:

- 1) Embed 32-bit high performance MCU with clock up to 48MHz.
- 2) Program memory: external 128/256/512kB FLASH (TLSR8266) or internal 512kB Flash (TLSR8266F512) or internal 128kB Flash (TLSR8266F128) or internal 1024kB Flash (TLSR8266F1K).
- 3) Data memory: 16kB on-chip SRAM.
- 4) 12MHz/16MHz & 32.768kHz Crystal and 32kHz/32MHz embedded RC oscillator.

DS-TLSR8266-E31 9 Ver3.2.0

- 5) A rich set of I/Os:
 - → TLSR8266: Up to 41/37/22 GPIOs depending on package option;
 - → TLSR8266F512: Up to 35/20 GPIOs depending on package option;
 - → TLSR8266F128: Up to 12 GPIOs;
 - → TLSR8266F1K: Up to 20 GPIOs;
 - ♦ SPI;

 - → UART;
 - → USB;
 - ♦ Debug Interface.
- 6) Up to 6 channels of PWM.
- 7) Sensor:
 - ♦ 14bit ADC with PGA;
 - ♦ Temperature sensor.
- 8) Three quadrature decoders.
- 9) Embeds hardware AES.
- 10) Compatible with USB2.0 Full speed mode.
- 11) TLSR8266 & TLSR8266F512 operating temperature range:
 - ♦ ET versions: -40° C~+85°C temperature;
 - \diamond AT versions: -40°C~+125°C temperature.
- 12) TLSR8266F128 operating temperature range: -40° C ~+85 $^{\circ}$ C.
- 13) TLSR8266F1K operating temperature range: -40 $^{\circ}$ C ~+85 $^{\circ}$ C.

1.2.2 RF Features

RF features include:

- 1) BLE/2.4GHz RF transceiver embedded, working in worldwide 2.4GHz ISM band.
- 2) Bluetooth 4.2 Compliant, 1Mbps and 2.4GHz 2Mbps Boost Mode.
- 3) Rx Sensitivity: -92dBm @ 1Mbps mode.

DS-TLSR8266-E31 10 Ver3.2.0

- 4) RF link data rate up to 2Mbps.
- 5) Tx output power: +7dBm.
- 6) Single-pin antenna interface.
- 7) RSSI monitoring.

1.2.3 Features of power management module

Features of power management module include:

- 1) Embedded LDO.
- 2) Battery monitor: Supports low battery detection.
- 3) Chip power supply: 1.9V~3.6V (with external flash), 2.7V~3.6V (with internal flash)
- 4) Multiple stage power management to minimize power consumption.
- 5) Low power consumption:
 - ♦ Receiver mode current: 13mA
 - ♦ Transmitter mode current: 13mA @ 0dBm power, 19mA @ max power
 - ♦ Suspend mode current: 20uA (IO wakeup)/22uA (Timer wakeup)
 - ♦ Deep sleep mode current: 0.7uA

1.2.4 TLSR8266F512/TLSR8266F128/TLSR8266F1K Flash features

The TLSR8266F512/TLSR8266F128/ TLSR8266F1K embeds Flash with features below:

- 1) TLSR8266F512 Flash: Total 512kB (4Mbits);
- 2) TLSR8266F128 Flash: Total 128kB (1Mbits);
- 3) TLSR8266F1K Flash: Total 1024kB (8Mbits);
- 4) Flexible architecture: 4kB per Sector, 64kB/32kB per block;
- 5) Up to 256 Bytes per programmable page;
- 6) Write protect all or portions of memory;
- 7) Sector erase (4kB);
- 8) Block erase (32kB/64kB);
- 9) Cycle Endurance: 100,000 program/erases;
- 10) Data Retention: typical 20-year retention;

DS-TLSR8266-E31 11 Ver3.2.0

11) TLSR8266F128 Flash encryption protection: Pre-loaded read-only unique ID for chip identification and traceability.

1.3 Typical applications

Typical applications for the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K are as follows:

- ♦ Smartphone accessories
- ♦ PC and tablet peripherals, including Mouse / Keyboard
- ♦ Remote Control and 3D glasses
- ♦ Wireless Microphone
- ♦ Health monitoring
- ♦ Sports and fitness tracking
- ♦ Wearable devices

1.4 Ordering information

Table 1-1 Ordering information of TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K

Product Series	Package	Temperature Product Pa		Packing	Minimum
Trouble Scried	Туре	Range	No.	Method	Order Quantity
	56-pin 7×7mm	-40°C~+85°C	TLSR8266ET56	TR	3000
	TQFN	-40°C~+125°C	TLSR8266AT56	TR	3000
TLSR8266	48-pin 7×7mm TQFN	-40°C∼+85°C	TLSR8266ET48	TR	3000
TESK8200		-40°C~+125°C	TLSR8266AT48	TR	3000
,	32-pin	-40°C∼+85°C	TLSR8266ET32	TR	3000
	5×5mm TQFN	-40°C~+125°C	TLSR8266AT32	TR	3000

DS-TLSR8266-E31 12 Ver3.2.0

	DataGride for foliative BEE GOO FEGROZOG				
Product Series	Package	Temperature	Temperature Product Part		Minimum
Product Series	Type	Range	No.	Method	Order Quantity
	48-pin	-40°C~+85°C	TLSR8266F512 ET48	TR	3000
TLSR8266F512	7×7mm TQFN	-40°C∼+125°C	TLSR8266F512 AT48	TR	3000
1L3K8200F312	32-pin	-40°C~ +85°C	TLSR8266F512 ET32	TR	3000
	5×5mm TQFN	-40°C~+125°C	TLSR8266F512 AT32	TR	3000
TLSR8266F128	24-pin 4x4mm TQFN	-40°C~+85°C	TLSR8266F128 ET24	TR	3000
TLSR8266F1K	32-pin		TLSR8266F1K ET32	TR	3000

^{*}Note: Packing method "TR" means tape and reel.

1.5 Package

Package dimension for the TLSR8266ET/AT56, TLSR8266ET/AT48/TLSR8266F512ET/AT48, TLSR8266ET/AT32/TLSR8266F512ET/AT32/TLSR8266F1KET32 and TLSR8266F128ET24 are shown as Figure 1- 2, Figure 1- 3, Figure 1- 4 and Figure 1- 5, respectively.

DS-TLSR8266-E31 13 Ver3.2.0

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
	Min	Nor	Max	Min	Nor	Mα×
A	0.70	0.75	0.80	27.6	29.5	31.5
A1	0.00	0.02	0.05	0.0	0.79	1.97
АЗ	0.20REF			7.9REF		
b	0.15	0.20	0.25	5.9	7.9	9.8
D	6.90	7.00	7.10	271.7	275.6	279.5
DS	4.95	5.10	5.25	194.9	200.8	206.7
E	6.90	7.00	7.10	271.7	275.6	279.5
E2	4.95	5.10	5.25	194.9	200.8	206.7
е	0.40TYP			15.7TYP		
L	0.30	0.40	0.50	11.8	15.7	19.7

NOTE:

- 1. DIMENSIONING AND TOLERANCE CONFORM TO MO-220.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. BARE LEADFRAME THICKNESS IS 0.203mm (8 mil)

Figure 1-2 Package dimension for the TLSR8266ET/AT56 (Unit: mm)

DS-TLSR8266-E31 14 Ver3.2.0

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
2 LUDOL	MIN .	NOM .	MAX.	MIN .	NOM .	MAX.
Α	0.70	0.75	0.80	27.6	29.5	31.5
A1	0	0.02	0.05	0	0.79	1.97
А3	0	.20 RE	F	7	.9 REF	
Ь	0.18	0.25	0.30	7.1	9.8	11.8
D	6.90	7.00	7.10	271.7	275.6	279.5
D2	5.60	5.65	5.70	220.5	222.4	224.4
E	6.90	7.00	7.10	271.7	275.6	279.5
E2	5.60	5.65	5.70	220.5	222.4	224.4
е	0.50 BSC			19.7BSC		
K	0.20			7.9		
L	0.35	0.40	0.45	13.8	15.7	17.7

NOTE

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. REFER TO JEDEC STD. MO-220 WKKD-4.
- DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.18 AND 0.30mm FROM TERMINAL TIP.
- 4. LEADFRAME MATERIAL IS 194FH AND THICKNESS IS 0.203MM (8 MIL).
- 5. DIMENSION"D"&"E" WILL INCLUDE ALL SIDE BURR INDUCED DURING ASSEMBLY.

Figure 1-3 Package dimension for the TLSR8266ET/AT48/

TLSR8266F512ET/AT48 (Unit: mm)

DS-TLSR8266-E31 15 Ver3.2.0

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	27.6	29.5	31.5
A1	0	0.02	0.05	0	0.8	2.0
A3		0.20REF	_	_	7.9REF	
b	0.18	0.25	0.30	7.1	9.8	11.8
D	4.90	5.00	5.10	192.9	196.9	200.8
D2	3.40	3.50	3.60	133.9	137.8	141.7
E	4.90	5.00	5.10	192.9	196.9	200.8
E2	3.40	3.50	3.60	133.9	137.8	141.7
e	_	0.50TYP	_	_	19.7TYP	
K	0.20	_		7.9	_	_
L	0.35	0.40	0.45	13.8	15.7	17.7
h	0.30	0.35	0.40	11.8	13.8	15.7

NOTE:

- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
 2. POD REF BASED ON CUSTOMER SPECS.
 3. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS.
 MEASURED BETWEEN 0.18 AND 0.30mm FROM TERMINAL TIP.
 4. LEADFRAME MATERIAL IS 194FH AND THICKNESS IS 0.203MM (8 MIL).
- 5. DIMENSION"D"&"E" WILL INCLUDE ALL SIDE BURR INDUCED DURING ASSEMBLY.

Figure 1-4 Package dimension for the TLSR8266ET/AT32/

TLSR8266F512ET/AT32/ TLSR8266F1KET32 (Unit: mm)

DS-TLSR8266-E31 16 Ver3.2.0

Side View

△ 0.08 C

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	27.6	29.5	31.5
A1	0	0.02	0.05	0	0.8	2.0
A3	1	0.20REF	1		7.9REF	
b	0.18	0.25	0.30	7.1	9.8	11.8
D	3.90	4.00	4.10	153.5	157.5	161.4
D2	2.55	2.65	2.75	100.4	104.3	108.3
Е	3.90	4.00	4.10	153.5	157.5	161.4
E2	2.55	2.65	2.75	100.4	104.3	108.3
e	_	0.50BSC		_	19.7BSC	_
K	0.20	_		7.9	_	_
L	0.35	0.40	0.45	13.8	15.7	17.7
cl	_	0.08			3.1	_
c2	_	0.08			3.1	_

NOTE:

- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. REFER TO JEDEC STD.MO-220 WGGD-6
- DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.18 AND 0.30mm FROM TERMINAL TIP.
- 4. LEADFRAME THICKNESS IS 0.203MM (8 MIL).
- 5. DIMENSION"D"&"E" WILL INCLUDE ALL SIDE BURR INDUCED DURING ASSEMBLY.

Figure 1-5 Package dimension for TLSR8266F128ET24

DS-TLSR8266-E31 17 Ver3.2.0

1.6 Pin layout

Pin assignment for the TLSR8266ET/AT56 is as shown in Figure 1-6:

Figure 1-6 Pin assignment for the TLSR8266ET/AT56

Functions of 56pins for the TLSR8266ET/AT56 are described in Table 1-2:

Table 1-2 Pin functions for the TLSR8266ET/AT56

K		QFN56 7	YX7
No.	Pin Name	Туре	Description
1	SWS/ANA_A<0>	Digital I/O	Single wire slave/GPIO/ANA_A<0>
2	PWM3/ANA_A<1>	Digital I/O	PWM3 output/GPIO/ ANA_A<1>
3	MSDI/ANA_A<2>	Digital I/O	Memory SPI data input/GPIO/ANA_A<2>
4	MCLK/ANA_A<3>	Digital I/O	Memory SPI clock/GPIO/ANA_A<3>
5	GP18/PWM3_N/ANA_A<4>	Digital I/O	GPIO18/PWM3 inverting output/ANA_A<4>
6	PWM4/ANA_A<5>	Digital I/O	PWM4 output/GPIO/ANA_A<5>

DS-TLSR8266-E31 18 Ver3.2.0

	QFN56 7X7				
No.	Pin Name	Туре	Description		
7	GP19/PWM4_N/ANA_A<6>	Digital I/O	GPIO19/PWM4 inverting output/ANA_A<6>		
8	SWM/ANA_A<7>	Digital I/O	Single Wire Master/GPIO/ANA_A<7>		
9	PWM5/ANA_B<0>	Digital I/O	PWM5 output/GPIO/ANA_B<0>		
10	GP20/PWM5_N/ANA_B<1>	Digital I/O	GPIO20/PWM5 inverting output/ ANA_B<1>		
11	MSDO/ANA_B<2>	Digital I/O	Memory SPI data output/GPIO/ANA_B<2>		
12	MSCN/ANA_B<3>	Digital I/O	Memory SPI chip-select(Active low)/GPIO/ ANA_B<3>		
13	DM/ANA_B<5>	Digital I/O	USB data Minus/GPIO/ANA_B<5>		
14	DP/ANA_B<6>	Digital I/O	USB data Positive/GPIO/ANA_B<6>		
15	VBUS	PWR	USB 5V supply		
16	VDDO3	PWR	5V-to-3V LDO output		
17	DVDD3	PWR	3.3V IO supply		
18	DVSS	GND	Digital LDO ground		
19	VDDDEC	PWR	Digital LDO 1.8V output		
20	DVSS	GND	Digital LDO ground		
21	GP0/PWM0_N/ANA_B<7>	Digital I/O	GPIO0/ PWM0 inverting output /ANA_B<7>		
22	PWM0/ANA_C<0>	Digital I/O	PWM0 output/GPIO/ANA_C<0>		
23	GP1/PWM1_N/ANA_C<1>	Digital I/O	GPIO1/PWM1 inverting output/ANA_C<1>		
24	PWM1_N/ANA_C<2>	Digital I/O	PWM1 inverting output/GPIO/ANA_C<2>/ ADC input		
25	GP2/PWM1/ANA_C<3>	Digital I/O	GPIO2/PWM1 output/ANA_C<3>/ ADC input		
26	PWM2/ANA_C<4>	Digital I/O	PWM2 output/GPIO/ ANA_C<4>/ ADC input		
27	GP3/PWM2_N/ANA_C<5>	Digital I/O	GPIO3/PWM2 inverting output/ ANA_C<5>/ ADC input		
28	GP4/uart_tx/ANA_C<6>	Digital I/O	GPIO4/UART_TX/ ANA_C<6>/ ADC input		
29	GP5/uart_rx/ANA_C<7>	Digital I/O	GPIO5/UART_RX/ ANA_C<7>/ ADC input		
30	GP6/uart_rts/ANA_D<0>	Digital I/O	GPIO6/UART_RTS / ANA_D<0>/ ADC input		
31	GP7/uart_cts/ANA_D<1>	Digital I/O	GPIO7/UART_CTS / ANA_D<1>/ ADC input		
32	GP8/PWM3/ANA_D<2>	Digital I/O	GPIO8/ PWM3 output/ ANA_D<2>/ ADC input		
33	GP9/PWM4/ANA_D<3>	Digital I/O	GPIO9/ PWM4 output/ ANA_D<3>/ ADC input		
34	GP10/ANA_D<4>	Digital I/O	GPIO10/ ANA_D<4>/(optional) 32kHz crystal input/ ADC input		
35	GP11/ANA_D<5>	Digital I/O	GPIO11/ ANA_D<5>/ (optional) 32kHz crystal output/ ADC input		
36	GP12/ANA_D<6>/Rbias_EXT	Digital I/O	GPIO12/ ANA_D<6>/off-chip bias resistor		
37	AVDD3	PWR	Analog 3.3V supply		
38	XC2	Analog O	12MHz/16MHz crystal output		
39	XC1	Analog I	12MHz/16MHz crystal input		
40	AVDD3	PWR	Analog 3.3V supply		

_	QFN56 7X7				
No.	Pin Name	Туре	Description		
41	NC		Not connected		
42	NC		Not connected		
43	ANT	Analog I/O	RF antenna		
44	AVDD3	PWR	Analog 3.3V supply		
45	GP13/ANA_D<7>	Digital I/O	GPIO13/ ANA_D<7>		
46	GP14/ANA_E<0>	Digital I/O	GPIO14/ ANA_E<0>		
47	RESETB	RESET	Power on reset, active low		
48	ANA_E<1>	Digital I/O	GPIO/ANA_E<1>		
49	ANA_E<2>	Digital I/O	GPIO/ANA_E<2>		
50	GP15/ANA_E<3>	Digital I/O	GPIO15/ ANA_E<3>		
51	GP16/ANA_E<4>	Digital I/O	GPIO16/ ANA_E<4>		
52	GP17/ANA_E<5>	Digital I/O	GPIO17/ ANA_E<5>		
53	CN/uart_rts/ANA_E<6>	Digital I/O	SPI chip select. Active low/ UART_RTS /GPIO/ ANA_E<6>		
54	DI/I2C_SDA/ANA_E<7>	Digital I/O	SPI data input/I2C_SDA/GPIO/ ANA_E<7>		
55	DO/uart_cts/ANA_F<0>	Digital I/O	SPI data output/ UART_CTS /GPIO/ ANA_F<0>		
56	CK/I2C_SCL/ANA_F<1>	Digital I/O	SPI clock/I2C_SCK/GPIO/ ANA_F<1>		

^{*}Note:

- 1) Pins with bold typeface can be used as GPIOS. All GPIOs have configurable pull-up/pull-down resistor.
- 2) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_B<6> and ANA_B<5> support high drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0); ANA_E<5> and ANA_E<4> support high drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to section 7.1 for corresponding "DS" register address and the default setting.
- 3) Selectable ADC input channels: ANA C<2>~ANA C<7>, ANA D<0>~ANA D<5>.

DS-TLSR8266-E31 20 Ver3.2.0

Pin assignment for the TLSR8266ET/AT48 is as shown in Figure 1-7:

Figure 1-7 Pin assignment for the TLSR8266ET/AT48

Functions of 48 pins for the TLSR8266ET/AT48 are described in Table 1-3:

Table 1-3 Pin functions for the TLSR8266ET/AT48

QFN48 7X7				
No.	Pin Name	Туре	Description	
1	SWS/ANA_A<0>	Digital I/O	Single wire slave/GPIO/ANA_A<0>	
2	PWM3/ANA_A<1>	Digital I/O	PWM3 output/GPIO/ ANA_A<1>	
3	MSDI/ANA_A<2>	Digital	Memory SPI data input/GPIO/ANA_A<2>	

DS-TLSR8266-E31 21 Ver3.2.0

QFN48 7X7				
No.	Pin Name	Туре	Description	
		I/O		
4	MCLK/ANA_A<3>	Digital I/O	Memory SPI clock/GPIO/ANA_A<3>	
5	PWM4/ANA_A<5>	Digital I/O	PWM4 output/GPIO/ANA_A<5>	
6	GP19/PWM4_N/ANA_A<6>	Digital I/O	GPIO19/PWM4 inverting output/ANA_A<6>	
7	SWM/ANA_A<7>	Digital I/O	Single Wire Master/GPIO/ANA_A<7>	
8	PWM5/ANA_B<0>	Digital I/O	PWM5 output/GPIO/ANA_B<0>	
9	MSDO/ANA_B<2>	Digital I/O	Memory SPI data output/GPIO/ANA_B<2>	
10	MSCN/ANA_B<3>	Digital I/O	Memory SPI chip-select(Active low)/GPIO/ ANA_B<3>	
11	DM/ANA_B<5>	Digital I/O	USB data Minus/GPIO/ANA_B<5>	
12	DP/ANA_B<6>	Digital I/O	USB data Positive/GPIO/ANA_B<6>	
13	DVDD3	PWR	3.3V IO supply	
14	DVSS	GND	Digital LDO ground	
15	VDDDEC	PWR	Digital LDO 1.8V output	
16	DVSS	GND	Digital LDO ground	
17	GP0/PWM0_N/ANA_B<7>	Digital I/O	GPIO0/PWM0 inverting output/ANA_B<7>	
18	PWM0/ANA_C<0>	Digital I/O	PWM0 output/GPIO/ANA_C<0>	
19	GP1/PWM1_N/ANA_C<1>	Digital I/O	GPIO1/PWM1 inverting output/ANA_C<1>	
20	PWM1_N/ANA_C<2>	Digital I/O	PWM1 inverting output/GPIO/ANA_C<2>/ ADC input	
21	GP2/PWM1/ANA_C<3>	Digital I/O	GPIO2/PWM1 output/ANA_C<3>/ ADC input	
22	PWM2/ANA_C<4>	Digital I/O	PWM2 output/GPIO/ ANA_C<4>/ ADC input	
23	GP3/PWM2_N/ANA_C<5>	Digital I/O	GPIO3/PWM2 inverting output/ ANA_C<5>/ ADC input	
24	GP4/uart_tx/ANA_C<6>	Digital I/O	GPIO4/UART_TX/ ANA_C<6>/ ADC input	
25	GP5/uart_rx/ANA_C<7>	Digital I/O	GPIO5/UART_RX/ ANA_C<7>/ ADC input	
26	GP6/uart_rts/ANA_D<0>	Digital I/O	GPIO6/UART_RTS / ANA_D<0>/ ADC input	
27	GP7/uart_cts/ANA_D<1>	Digital I/O	GPIO7/UART_CTS / ANA_D<1>/ ADC input	
28	GP8/PWM3/ANA_D<2>	Digital I/O	GPIO8/ PWM3 output/ANA_D<2>/ ADC input	

	QFN48 7X7				
No.	Pin Name	Туре	Description		
29	GP9/PWM4/ANA_D<3>	Digital I/O	GPIO9/ PWM4 output/ANA_D<3>/ ADC input		
30	GP10/ANA_D<4>	Digital I/O	GPIO10/ ANA_D<4>/(optional) 32kHz crystal input/ ADC input		
31	GP11/ANA_D<5>	Digital I/O	GPIO11/ ANA_D<5>/ (optional) 32kHz crystal output/ ADC input		
32	GP12/ANA_D<6>/Rbias_EXT	Digital I/O	GPIO12/ ANA_D<6>/off-chip bias resistor		
33	AVDD3	PWR	Analog 3.3V supply		
34	XC2	Analog O	12MHz/16MHz crystal output		
35	XC1	Analog I	12MHz/16MHz crystal input		
36	AVDD3	PWR	Analog 3.3V supply		
37	ANT	Analog O	RF antenna		
38	AVDD3	PWR	Analog 3.3V supply		
39	GP13/ANA_D<7>	Digital I/O	GPIO13/ ANA_D<7>		
40	RESETB	RESET	Power on reset, active low		
41	ANA_E<1>	Digital I/O	GPIO/ANA_E<1>		
42	ANA_E<2>	Digital I/O	GPIO/ ANA_E<2>		
43	GP16/ANA_E<4>	Digital I/O	GPIO16/ ANA_E<4>		
44	GP17/ANA_E<5>	Digital I/O	GPIO17/ ANA_E<5>		
45	CN/uart_rts/ANA_E<6>	Digital I/O	SPI chip select. Active low/ UART_RTS /GPIO/ ANA_E<6>		
46	DI/I2C_SDA/ANA_E<7>	Digital I/O	SPI data input/I2C_SDA/GPIO/ ANA_E<7>		
47	DO/uart_cts/ANA_F<0>	Digital I/O	SPI data output/ UART_CTS /GPIO/ ANA_F<0>		
48	CK/I2C_SCL/ANA_F<1>	Digital I/O	SPI clock/I2C_SCK/GPIO/ ANA_F<1>		

^{*}Note:

- 1) Pins with bold typeface can be used as GPIOS. All GPIOs have configurable pull-up/pull-down resistor.
 - 2) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_B<6> and ANA_B<5> support high drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0); ANA_E<5> and ANA_E<4> support high drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0). "DS" configuration will take effect when the pin is used

DS-TLSR8266-E31 23 Ver3.2.0

as output. Please refer to section 7.1 for corresponding "DS" register address and the default setting.

3) Selectable ADC input channels: ANA C<2>~ANA C<7>, ANA D<0>~ANA D<5>.

Pin assignment for the TLSR8266ET/AT32 is as shown in Figure 1-8:

Figure 1-8 Pin assignment for the TLSR8266ET/AT32

DS-TLSR8266-E31 24 Ver3.2.0

Functions of 32 pins for the TLSR8266ET/AT32 are described in Table 1-4:

Table 1-4 Pin functions for the TLSR8266ET/AT32

QFN32 5X5					
Pin Name	Pin Type	Description			
SWS/ANA_A<0>	Digital I/O	Single wire slave/GPIO/ANA_A<0>			
PWM3/ANA_A<1>	Digital I/O	PWM3 output/GPIO/ ANA_A<1>			
MSDI/ANA_A<2>	Digital I/O	Memory SPI data input/GPIO/ANA_A<2>			
MCLK/ANA_A<3>	Digital I/O	Memory SPI clock/GPIO/ANA_A<3>			
MSDO/ANA_B<2>	Digital I/O	Memory SPI data output/GPIO/ANA_B<2>			
MSCN/ANA_B<3>	Digital I/O	Memory SPI chip-select(Active low)/GPIO/ ANA_B<3>			
DM/ANA_B<5>	Digital I/O	USB data Minus/GPIO/ANA_B<5>			
DP/ANA_B<6>	Digital I/O	USB data Positive/GPIO/ANA_B<6>			
DVDD3	PWR	3.3V IO supply			
DVSS	GND	Digital LDO ground			
VDDDEC	PWR	Digital LDO 1.8V output			
PWM0/ANA_C<0>	Digital I/O	PWM0 output/GPIO/ANA_C<0>			
GP1/PWM1_N/ ANA_C<1>	Digital I/O	GPIO1/PWM1 inverting output/ANA_C<1>			
PWM1_N/ANA_C<2>	Digital I/O	PWM1 inverting output/GPIO/ANA_C<2>/ ADC input			
PWM2/ANA_C<4>	Digital I/O	PWM2 output/GPIO/ ANA_C<4>/ ADC input			
GP4/uart_tx/ANA_C<6>	Digital I/O	GPIO4/UART_TX/ ANA_C<6>/ ADC input			
GP5/uart_rx/ANA_C<7>	Digital I/O	GPIO5/UART_RX/ ANA_C<7>/ ADC input			
GP10/ANA_D<4>	Digital I/O	GPIO10/ ANA_D<4>/(optional) 32kHz crystal input/ ADC input			
GP11/ANA_D<5>	Digital I/O	GPIO11/ ANA_D<5>/ (optional) 32kHz crystal output/ ADC input			
AVDD3	PWR	Analog 3.3V supply			
XC2	Analog O	12MHz/16MHz crystal output			
XC1	Analog I	12MHz/16MHz crystal input			
AVDD3	PWR	Analog 3.3V supply			
ANT	Analog I/O	RF antenna			
AVDD3	PWR	Analog 3.3V supply			
RESETB	RESET	Power on reset, active low			
ANA_E<1>	Digital I/O	GPIO/ANA_E<1>			
ANA_E<2>	Digital I/O	GPIO/ ANA_E<2>			
CN/uart_rts/ANA_E<6>	Digital I/O	SPI chip select. Active low/ UART_RTS /GPIO/ ANA E<6>			
		–			
	SWS/ANA_A<0> PWM3/ANA_A<1> MSDI/ANA_A<2> MCLK/ANA_A<3> MSDO/ANA_B<2> MSCN/ANA_B<3> DM/ANA_B<5> DP/ANA_B<6> DVDD3 DVSS VDDDEC PWM0/ANA_C<0> GP1/PWM1_N/ ANA_C<1> PWM1_N/ANA_C<2> PWM2/ANA_C<4> GP4/uart_tx/ANA_C<6> GP5/uart_rx/ANA_C<7> GP10/ANA_D<4> GP11/ANA_D<5> AVDD3 XC2 XC1 AVDD3 ANT AVDD3 RESETB ANA_E<2> ANA_E<2>	Pin Name SWS/ANA_A<0> Digital I/O PWM3/ANA_A<1> Digital I/O MSDI/ANA_A<2> Digital I/O MCLK/ANA_A<3> Digital I/O MSDO/ANA_B<2> Digital I/O MSCN/ANA_B<3> Digital I/O DM/ANA_B<5> Digital I/O DM/ANA_B<5> Digital I/O DP/ANA_B<6> Digital I/O DVDD3 PWR DVSS GND VDDDEC PWR PWM0/ANA_C<0> Digital I/O GP1/PWM1_N/ ANA_C<1> Digital I/O PWM1_N/ANA_C<2> Digital I/O GP4/uart_tx/ANA_C<2> Digital I/O GP5/uart_rx/ANA_C<5> Digital I/O GP1/ANA_D<4> Digital I/O AVDD3 PWR XC2 Analog O XC1 Analog I AVDD3 PWR ANT Analog I/O AVDD3 PWR RESETB RESET ANA_E<1> Digital I/O Digital I/O ANA_E<2> Digital I/O DIGITAL I/O ANA_E<1> DIGITAL I/O DIGITAL I/O ANA_E<2> DIGITAL I/O DIGITAL I/O ANA_E<2> DIGITAL I/O			

DS-TLSR8266-E31 25 Ver3.2.0

QFN32 5X5				
No.	Pin Name	Pin Type	Description	
31	DO/uart_cts/ANA_F<0>	Digital I/O	SPI data output/ UART_CTS /GPIO/ ANA_F<0>	
32	CK/I2C_SCL/ANA_F<1>	Digital I/O	SPI clock/I2C_SCK/GPIO/ ANA_F<1>	

*Note:

- 1) Pins with bold typeface can be used as GPIOS. All GPIOs have configurable pull-up/pull-down resistor.
- 2) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_B<6> and ANA_B<5> support high drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to section 7.1 for corresponding "DS" register address and the default setting.
- 3) Selectable ADC input channels: ANA_C<2>, ANA_C<4>, ANA_C<6> $^{\sim}$ ANA_C<7>, ANA_D<4> $^{\sim}$ ANA_D<5>.

DS-TLSR8266-E31 26 Ver3.2.0

Pin assignment for the TLSR8266F512ET/AT48 is as shown in Figure 1-9:

Figure 1-9 Pin assignment for the TLSR8266F512ET/AT48

DS-TLSR8266-E31 27 Ver3.2.0

Functions of 48 pins for the TLSR8266F512ET/AT48 are described in Table 1-5:

Table 1-5 Pin functions for the TLSR8266F512ET/AT48

	QFN48 7X7				
No.	Pin Name	Туре	Description		
1	SWS/ANA_A<0>	Digital I/O	Single wire slave/GPIO/ANA_A<0>		
2	PWM3/ANA_A<1>	Digital I/O	PWM3 output/GPIO/ ANA_A<1>		
3	3-12	-	This pin should be connected to Pin #12		
4	GP18/PWM3_N/ANA_A<4>	Digital I/O	GPIO18/PWM3 inverting output/ANA_A<4>		
5	PWM4/ANA_A<5>	Digital I/O	PWM4 output/GPIO/ANA_A<5>		
6	GP19/PWM4_N/ANA_A<6>	Digital I/O	GPIO19/PWM4 inverting output/ANA_A<6>		
7	SWM/ANA_A<7>	Digital I/O	Single Wire Master/GPIO/ANA_A<7>		
8	PWM5/ANA_B<0>	Digital I/O	PWM5 output/GPIO/ANA_B<0>		
9	GP20/PWM5_N/ANA_B<1>	Digital I/O	GPIO20/PWM5 inverting output/ ANA_B<1>		
10	DM/ANA_B<5>	Digital I/O	USB data Minus/GPIO/ANA_B<5>		
11	DP/ANA_B<6>	Digital I/O	USB data Positive/GPIO/ANA_B<6>		
12	12-3		This pin should be connected to Pin #3		
13	DVDD3	PWR	3.3V IO supply		
14	DVSS	GND	Digital LDO ground		
15	VDDDEC	PWR	Digital LDO 1.8V output		
16	DVSS	GND	Digital LDO ground		
17	GP0/PWM0_N/ANA_B<7>	Digital I/O	GPIO0/PWM0 inverting output/ANA_B<7>		
18	PWM0/ANA_C<0>	Digital I/O	PWM0 output/GPIO/ANA_C<0>		
19	GP1/PWM1_N/ ANA_C<1>	Digital I/O	GPIO1/PWM1 inverting output/ANA_C<1>		
20	PWM1_N/ANA_C<2>	Digital I/O	PWM1 inverting output/GPIO/ANA_C<2>/ ADC input		
21	GP2/PWM1/ANA_C<3>	Digital I/O	GPIO2/PWM1 output/ANA_C<3>/ ADC input		
22	PWM2/ANA_C<4>	Digital I/O	PWM2 output/GPIO/ ANA_C<4>/ ADC input		
23	GP3/PWM2_N/ANA_C<5>	Digital I/O	GPIO3/PWM2 inverting output/ ANA_C<5>/ ADC input		
24	GP4/uart_tx/ANA_C<6>	Digital I/O	GPIO4/UART_TX/ ANA_C<6>/ ADC input		

DS-TLSR8266-E31 28 Ver3.2.0

	QFN48 7X7				
No.	Pin Name	Туре	Description		
25	GP5/uart_rx/ANA_C<7>	Digital I/O	GPIO5/UART_RX/ ANA_C<7>/ ADC input		
26	GP6/uart_rts/ANA_D<0>	Digital I/O	GPIO6/UART_RTS / ANA_D<0>/ ADC input		
27	GP7/uart_cts/ANA_D<1>	Digital I/O	GPIO7/UART_CTS / ANA_D<1>/ ADC input		
28	GP8/PWM3/ANA_D<2>	Digital I/O	GPIO8/ PWM3 output/ANA_D<2>/ ADC input		
29	GP9/PWM4/ANA_D<3>	Digital I/O	GPIO9/ PWM4 output/ANA_D<3>/ ADC input		
30	GP10/ANA_D<4>	Digital I/O	GPIO10/ ANA_D<4>/(optional) 32kHz crystal input/ ADC input		
31	GP11/ANA_D<5>	Digital I/O	GPIO11/ ANA_D<5>/ (optional) 32kHz crystal output/ ADC input		
32	GP12/ANA_D<6>/Rbias_EXT	Digital I/O	GPIO12/ ANA_D<6>/off-chip bias resistor		
33	AVDD3	PWR	Analog 3.3V supply		
34	XC2	Analog O	12MHz/16MHz crystal output		
35	XC1	Analog I	12MHz/16MHz crystal input		
36	AVDD3	PWR	Analog 3.3V supply		
37	ANT	Analog O	RF antenna		
38	AVDD3	PWR	Analog 3.3V supply		
39	GP13/ANA_D<7>	Digital I/O	GPIO13/ ANA_D<7>		
40	RESETB	RESET	Power on reset, active low		
41	ANA_E<1>	Digital I/O	GPIO/ANA_E<1>		
42	ANA_E<2>	Digital I/O	GPIO/ ANA_E<2>		
43	GP16/ANA_E<4>	Digital I/O	GPIO16/ ANA_E<4>		
44	GP17/ANA_E<5>	Digital I/O	GPIO17/ ANA_E<5>		
45	CN/uart_rts/ANA_E<6>	Digital I/O	SPI chip select. Active low/ UART_RTS /GPIO/ ANA_E<6>		
46	DI/I2C_SDA/ANA_E<7>	Digital I/O	SPI data input/I2C_SDA/GPIO/ ANA_E<7>		
47	DO/uart_cts/ANA_F<0>	Digital I/O	SPI data output/ UART_CTS /GPIO/ ANA_F<0>		
48	CK/I2C_SCL/ANA_F<1>	Digital I/O	SPI clock/I2C_SCK/GPIO/ ANA_F<1>		

^{*}Note:

1) Pins with bold typeface can be used as GPIOS. All GPIOs have configurable

DS-TLSR8266-E31 29 Ver3.2.0

pull-up/pull-down resistor.

- 2) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_B<6> and ANA_B<5> support high drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0); ANA_E<5> and ANA_E<4> support high drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to section 7.1 for corresponding "DS" register address and the default setting.
- 3) Selectable ADC input channels: ANA C<2>~ANA C<7>, ANA D<0>~ANA D<5>.

Pin assignment for the TLSR8266F512ET/AT32/ TLSR8266F1KET32 is as shown in Figure 1- 10:

Figure 1-10Pin assignment for the TLSR8266F512ET/AT32/ TLSR8266F1KET32

DS-TLSR8266-E31 30 Ver3.2.0

Functions of 32 pins for the TLSR8266F512ET/AT32/TLSR8266F1KET32 are described in Table 1-6:

Table 1-6 Pin functions for the TLSR8266F512ET/AT32/ TLSR8266F1KET32

	QFN32 5X5				
No.	Pin Name	Туре	Description		
1	SWS/ANA_A<0>	Digital I/O	Single wire slave/GPIO/ANA_A<0>		
2	PWM3/ANA_A<1>	Digital I/O	PWM3 output/GPIO/ ANA_A<1>		
3	3-8	-	This pin should be connected to Pin #8		
4	PWM4/ANA_A<5>	Digital I/O	PWM4 output/GPIO/ANA_A<5>		
5	PWM5/ANA_B<0>	Digital I/O	PWM5 output/GPIO/ANA_B<0>		
6	DM/ANA_B<5>	Digital I/O	USB data Minus/GPIO/ANA_B<5>		
7	DP/ANA_B<6>	Digital I/O	USB data Positive/GPIO/ANA_B<6>		
8	8-3	-	This pin should be connected to Pin #3		
9	DVDD3	PWR	3.3V IO supply		
10	DVSS	GND	Digital LDO ground		
11	VDDDEC	PWR	Digital LDO 1.8V output		
12	PWM0/ANA_C<0>	Digital I/O	PWM0 output/GPIO/ANA_C<0>		
13	GP1/PWM1_N/ANA_C<1>	Digital I/O	GPIO1/PWM1 inverting output/ANA_C<1>		
14	PWM1_N/ANA_C<2>	Digital I/O	PWM1 inverting output/GPIO/ANA_C<2>/ ADC input		
15	PWM2/ANA_C<4>	Digital I/O	PWM2 output/GPIO/ ANA_C<4>/ ADC input		
16	GP4/uart_tx/ANA_C<6>	Digital I/O	GPIO4/UART_TX/ ANA_C<6>/ ADC input		
17	GP5/uart_rx/ANA_C<7>	Digital I/O	GPIO5/UART_RX/ ANA_C<7>/ ADC input		
18	GP10/ANA_D<4>	Digital I/O	GPIO10/ ANA_D<4>/(optional) 32kHz crystal input/ ADC input		
19	GP11/ANA_D<5>	Digital I/O	GPIO11/ ANA_D<5>/ (optional) 32kHz crystal output/ ADC input		
20	AVDD3	PWR	Analog 3.3V supply		
21	XC2	Analog O	12MHz/16MHz crystal output		
22	XC1	Analog I	12MHz/16MHz crystal input		
23	AVDD3	PWR	Analog 3.3V supply		
24	ANT	Analog I/O	RF antenna		
25	AVDD3	PWR	Analog 3.3V supply		
26	RESETB	RESET	Power on reset, active low		
27	GP16/ANA_E<4>	Digital I/O	GPIO16/ ANA_E<4>		
28	GP17/ANA_E<5>	Digital I/O	GPIO17/ ANA_E<5>		
29	CN/uart_rts/ANA_E<6>	Digital I/O	SPI chip select. Active low/ UART_RTS /GPIO/ ANA_E<6>		
30	DI/I2C_SDA/ANA_E<7>	Digital I/O	SPI data input/I2C_SDA/GPIO/ ANA_E<7>		
31	DO/uart_cts/ANA_F<0>	Digital I/O	SPI data output/ UART_CTS /GPIO/		

DS-TLSR8266-E31 31 Ver3.2.0

	QFN32 5X5				
No.	Pin Name	Туре	Description		
			ANA_F<0>		
32	CK/I2C_SCL/ANA_F<1>	Digital I/O	SPI clock/I2C_SCK/GPIO/ ANA_F<1>		

*Note:

- 1) Pins with bold typeface can be used as GPIOS. All GPIOs have configurable pull-up/pull-down resistor.
- 2) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_B<6> and ANA_B<5> support high drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0); ANA_E<5> and ANA_E<4> support high drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to section 7.1 for corresponding "DS" register address and the default setting.
- 3) Selectable ADC input channels: ANA_C<2>, ANA_C<4>, ANA_C<6> $^{\sim}$ ANA_C<7>, ANA_D<4> $^{\sim}$ ANA_D<5>.

DS-TLSR8266-E31 32 Ver3.2.0

Pin assignment for the TLSR8266F128ET24 is as shown in Figure 1-11:

Figure 1-11Pin assignment for the TLSR8266F128ET24

Functions of 24 pins for the TLSR8266F128ET24 are described in Table 1-7:

Table 1-7 Pin functions for the TLSR8266F128ET24

QFN24 4x4				
No.	Pin Name	Туре	Description	
1	CK/I2C_SCL/ANA_F<1>	Digital I/O	SPI clock/I2C_SCK/GPIO/ ANA_F<1>	
2	SWS/ANA_A<0>	Digital I/O	Single wire slave/GPIO/ANA_A<0>	
3	DM/ANA_B<5>	Digital I/O	USB data Minus/GPIO/ANA_B<5>	
4	DP/ANA_B<6>	Digital I/O	USB data Positive/GPIO/ANA_B<6>	
5	VBUS	PWR	USB 5V supply	
6	VDD03	PWR	5V-to-3V LDO output	

DS-TLSR8266-E31 33 Ver3.2.0

QFN24 4x4				
No.	Pin Name	Туре	Description	
7	DVDD3	PWR	3.3V IO supply	
8	DVSS	GND	Digital LDO ground	
9	VDDDEC	PWR	Digital LDO 1.8V output	
10	PWM0/ANA_C<0>	Digital I/O	PWM0 output/GPIO/ANA_C<0>	
11	GP1/PWM1_N/ANA_C<1>	Digital I/O	GPIO1/PWM1 inverting output/ANA_C<1>	
12	PWM2/ANA_C<4>	Digital I/O	PWM2 output/GPIO/ ANA_C<4>/ ADC input	
13	GP4/uart_tx/ANA_C<6>	Digital I/O	GPIO4/UART_TX/ ANA_C<6>/ ADC input	
14	GP5/uart_rx/ANA_C<7>	Digital I/O	GPIO5/UART_RX/ ANA_C<7>/ ADC input	
15	AVDD3	PWR	Analog 3.3V supply	
16	XC2	Analog O	12MHz/16MHz crystal output	
17	XC1	Analog I	12MHz/16MHz crystal input	
18	AVDD3	PWR	Analog 3.3V supply	
19	ANT	Analog I/O	RF antenna	
20	AVDD3	PWR	Analog 3.3V supply	
21	RESETB	RESET	Power on reset, active low	
22	GP16/ANA_E<4>	Digital I/O	GPIO16/ANA_E<4>	
23	GP17/ANA_E<5>	Digital I/O	GPIO17/ANA_E<5>	
24	DI/I2C_SDA/ANA_E<7>	Digital I/O	SPI data input/I2C_SDA/GPIO/ ANA_E<7>	

^{*}Note:

- 1) Pins with bold typeface can be used as GPIOS. All GPIOs have configurable pull-up/pull-down resistor.
- 2) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_B<6> and ANA_B<5> support high drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0); ANA_E<5> and ANA_E<4> support high drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to section 7.1 for corresponding "DS" register address and the default setting.
- 3) Selectable ADC input channels: ANA_C<4>, ANA_C<6>~ANA_C<7>.

1.7 Telink SDK

A full featured SDK is provided with the chip for Bluetooth Low Energy applications. The customers can easily develop rich BLE applications by employing the firmware, along with the system configuration data composed according to the specific hardware design.

DS-TLSR8266-E31 34 Ver3.2.0

2 Memory and MCU

2.1 Memory

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K embeds 16kB data memory (SRAM), 128/256/512kB external FLASH (TLSR8266) or 512kB internal FLASH (TLSR8266F512) or 128kB internal FLASH (TLSR8266F128) or 1024kB internal FLASH (TLSR8266F1K).

2.1.1 SRAM/Register

SRAM/Register memory map is shown as follows:

Figure 2-1 Physical memory map

Register address: from 0x800000 to 0x807FFF;

16kB SRAM address: from 0x808000 to 0x80C000.

Both register and 16kB SRAM address can be accessed via debugging interface (SPI/I2C/USB, SWS/SWM interface).

2.1.2 Flash

External Flash address can be accessed via MSPI interface.

The internal Flash mainly supports page program, sector/block/chip erase operations, and deep power down operation.

DS-TLSR8266-E31 35 Ver3.2.0

2.1.2.1 Page program

The page program mode allows up to 256 bytes data to be programmed at memory locations that have been erased.

2.1.2.2 Sector erase

The sector erase operation serves to erase all the data of the specified sector (4kB) to all 1s.

2.1.2.3 Block erase

The block erase operation serves to erase all the data of the specified block (32kB or 64kB) to all 1s.

2.1.2.4 Chip erase

The chip erase operation serves to erase data at all memory locations to all 1s.

2.1.2.5 Unique ID

For chip identification and traceability, the 128kB Flash of TLSR8266F128 is preloaded with 8-byte hexadecimal Unique ID (UID). User is not allowed to modify this preloaded UID with write protection, but can read the UID via corresponding API interface.

2.2 MCU

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K integrates a powerful 32-bit MCU developed by Telink. The digital core is based on 32-bit RISC, and the length of instructions is 16 bits; four hardware breakpoints are supported.

2.3 Working modes

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K has four working modes: Active, Idle, Suspend and Deep Sleep. This section mainly gives the description of every working mode and mode transition.

DS-TLSR8266-E31 36 Ver3.2.0

Figure 2-2 Transition chart of working modes

2.3.1 Active mode

In active mode, the MCU block is at working state, and the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K can transmit or receive data via its embedded RF transceiver. The RF transceiver can also be powered down if no data transfer is needed.

2.3.2 Idle mode

In Idle mode, the MCU block stalls, and the RF transceiver can be at working state or be powered down. The time needed for the transition from Idle mode to Active mode is negligible.

2.3.3 Power-saving mode

For the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K, there are two kinds of power-saving modes: suspend mode and deep sleep mode. The two modes have similar transition sequences but different register settings. For 1.8V digital core, it's still provided with the working power by 1.8V LDO in suspend mode; while in deep sleep mode, the 1.8V LDO will be turned off, and the digital core is powered down.

In suspend mode, the RF transceiver is powered down, and the clock of the MCU block is stopped. It only takes about 400us for the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K to enter the active mode from DS-TLSR8266-E31 37 Ver3.2.0

suspend mode.

While in deep sleep mode, both the RF transceiver and the MCU block are powered down with only power management block being active. The transition time needed from deep sleep mode to active mode is 1ms, almost the same as power-up time.

2.4 Reset, Wakeup and Power down enabling

Table 2-1 Register configuration for reset, wakeup and power down enabling

Address	Mnemonic	Туре	Description	Reset		
				Value		
			Reset control, 1 for reset, 0 for clear			
			[0] : SPI			
			[1]: I2C			
			[2]: USB			
0x60	RST0	R/W	[3]: rsvd	00		
			[4]: MCU			
			[5]: mac			
			[6]: AIF			
			[7]: zb			
			[0] system_timer			
			[1]algm			
		R/W	[2]dma			
0x61	RST1		[3]rs232	df		
0.01	1311	11,7 00	[4]pwm0	ui		
			[5]aes			
			[6]bbpll48m			
	<u> </u>		[7]swires			
			[0]sbc			
			[1]rsvd			
			[2]dfifo			
0x62	RST2	R/W	[3]adc	00		
0,02	1312	11, 11	[4]mcic	00		
			[5]soft reset to reset mcic enable			
			[6]mspi			
			[7] algs			
0x6e	WAKEUPEN	R/W	Wakeup enable	00		
O/OC	777 INCO. EIV	1,7 **	[0]: enable wakeup from I2C host	00		

Address	Mnemonic	Туре	Description	Reset Value
			[1]: enable wakeup from SPI host [2]: enable wakeup from USB [3]: enable wakeup from gpio [4]: enable wakeup from I2C synchronous interface System resume control [5]: enable GPIO remote wakeup [6]: if set to1, system will issue USB resume signal on USB bus [7]: sleep wakeup reset system enable	
0x6f	PWDNEN	w	[0]: suspend enable [5]:rst all (act as power on reset) [6]:mcu low power mode [7]: stall mcu trig If bit[0] set 1, then system will go to suspend. Or only stall mcu	

Except for power on reset, it is also feasible to carry out software reset for the whole chip or some modules. Setting address 0x6f[5] to 1b'1 is to reset the whole chip. Addresses 0x60~0x62 serve to reset individual modules: if some bit is set to logic "1", the corresponding module is reset. Address 0x6e serves to enable various wakeup sources from power-saving mode.

DS-TLSR8266-E31 39 Ver3.2.0

2.5 Wakeup sources

Figure 2-3 Wakeup sources

2.5.1 Wakeup source - USB

This wakeup source can only wake up the system from suspend mode.

First, set the digital core address 0x6e bit [2] to 1.

To activate this mode, 3V_reg38 bit[5] should also be set to 1.

Once USB host sends out resuming signal, the system will be wake up.

2.5.2 Wakeup source – 32kHz timer

This wakeup source is able to wake up the system from suspend mode or deep sleep mode.

Address 3V_reg38 bit[6] is the enabling bit for wakeup source from 32kHz timer.

2.5.3 Wakeup source – pad

This wakeup source is able to wake up the system from suspend mode or deep

DS-TLSR8266-E31 40 Ver3.2.0

sleep mode. And Pad wakeup supports high level or low level wakeup which is configurable via polarity control registers.

Enabling control registers: Pad PA[7:0] enabling control register is 3V_reg39[7:0], Pad PB[7:0] enabling control register is 3V_reg40[7:0], Pad PC[7:0] enabling control register is 3V_reg41[7:0], Pad PD[7:0] enabling control register is 3V_reg42[7:0], Pad PE[7:0] enabling control register is 3V_reg43[7:0], Pad PF[1:0] enabling control register is 3V_reg38[3:2]. Total wakeup pin can be up to 42.

Polarity control registers: Pad PA[7:0] polarity control register is 3V_reg33[7:0], Pad PB[7:0] polarity control register is 3V_reg34[7:0], Pad PC[7:0] polarity control register is 3V_reg35[7:0], Pad PD[7:0] polarity control register is 3V_reg36[7:0], Pad PE[7:0] polarity control register is 3V_reg37[7:0], and Pad PF[1:0] polarity control register is 3V_reg38[1:0].

Table 2-2 Analog registers for Wakeup

ADDR Dec	ADDR Hex	Description	Default
r33	0x21	pa_pol	0x00
r34	0x22	pb_pol	0x00
r35	0x23	pc_pol	0x00
r36	0x24	pd_pol	0x00
r37	0x25	pe_pol	0x00
r38[1:0]	0x26[1:0]	pf_pol[1:0]	0x00
r38[3:2]	0x26[3:2]	wkup_pf_en[1:0]	0x00
r38[5]	0x26[5]	wkup dig (usb)	0x00
r38[6]	0x26[6]	wkup 32kHz timer	0x00
r38[7]	0x26[7]	rsvd (wkup comparator)	0x00
r39	0x27	wkup_pa_en	0x00
r40	0x28	wkup_pb_en	0x00
r41	0x29	wkup_pc_en	0x00
r42	0x2a	wkup_pd_en	0x00
r43	0x2b	wkup_pe_en	0x00

DS-TLSR8266-E31 41 Ver3.2.0

3 2.4G RF Transceiver

3.1 Block diagrams

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K integrates an advanced 2.4GHz RF transceiver. The RF transceiver works in the worldwide 2.4GHz ISM (Industrial Scientific Medical) band and contains an integrated balun with a single-ended RF Tx/Rx port pin. No matching components are needed.

The transceiver consists of a fully integrated frequency synthesizer, a power amplifier, a modulator and a receiver. The transceiver can be configured to work in standard-compliant BLE mode and can also be configured to work in proprietary 2Mbps mode. All modes support FSK/GFSK modulations.

Figure 3-1 Block diagram of RF transceiver

The internal PA can deliver a typical 7dBm output power, avoiding the needs for an external RF PA.

3.2 Function description

3.2.1 Turn on/off

For the sake of saving power, the transceiver can be turned on/off via the software. Setting the address 0x7c bit[6] to 1 enables the RF transceiver, while clearing the bit totally disables the RF transceiver.

3.2.2 Air interface data rate and RF channel frequency

Air interface data rate, the modulated signaling rate for RF transceiver when

DS-TLSR8266-E31 42 Ver3.2.0

transmitting and receiving data, is configurable via related register setting: 1Mbps, 2Mbps are available for the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K.

For the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K, RF transceiver can operate with frequency ranging from 2.400GHz to 2.4835GHz. The RF channel frequency setting determines the center of the channel.

3.3 Baseband

The baseband contains dedicated hardware logic to perform fast AGC control, access code correlation, CRC checking, data whitening, encryption/decryption and frequency hopping logic.

The baseband supports all features required by Bluetooth v4.2 specification.

3.3.1 Packet format

Packet format is shown as Table 3-1:

Table 3-1 Packet Format

LSB			MSB	_
Preamble	Access Address	PDU	CRC	
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)	

Packet length 80bit ~ 376bit (80~376us @ 1Mbps).

3.3.2 RSSI

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K provides accurate RSSI (Receiver Signal Strength Indicator) indication which can be read on per packet basis.

DS-TLSR8266-E31 43 Ver3.2.0

4 Clock

4.1 Clock sources

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K embeds a 32MHz RC oscillator which can be used as clock source for system and ADC. A 32kHz RC oscillator is also embedded to provide clock source for sleep state.

Other than the RC clock source, PLL generates a 192MHz clock source and a 48MHz clock source, which can be used as clock sources for system and ADC.

External 12M/16M crystal is available via pin XC1, which provide a 12MHz/16MHz clock source for system and ADC. External 32kHz crystal is available via pin ANA_D<4>, which can provide a 32kHz clock source for system.

4.2 Register table

Table 4-1 Register table for clock

Address	Mnemonic	Туре	Description	Reset Value
0x63	CLKENO	R/W	Clock enable control: 1 for enable; 0 for disable [0]: SPI [1]: I2C [2]: USB [3]: USB PHY [4]: MCU [5]: mac [6]: AIF [7]: zb	8c
0x64	CLKEN1	R/W	[0]system timer [1]algm [2]dma [3]rs232 [4]pwm0 [5]aes [6]clk32k for system timer [7]swires	00
0x65	CLKEN2	R/W	[0]32k for qdec	00

DS-TLSR8266-E31 44 Ver3.2.0

Address	Mnemonic	Туре	Description	Reset
7144.000		.,,,,		Value
			[1]rsvd [2]dfifo [3]key scan [4]mcic	
			[5]qdec [6]32k for pwm [7]32k for keyscan	
0x66	CLKSEL	R/W	System clock select [4:0]: system clock divider: fhs/(CLKSEL[4:0]). Fhs refer to {0x70, 0x66[7]} FHS_sel [6:5] 2'b00:32m clock from rc 2'b01:hs divider clk 2'b10:16M clock from pad 2'b11:32k clk from pad {0x70[0], 0x66[7]}: FHS sel	ff
0x67	I2S step	R/W	Reserved	33
0x68	I2S Mod	R/W	Reserved	2
0x69	Adc step[7:0]	R/W	ADC clock step[7:0]	00
0x6a	Adc mod[7:0]	R/W	Adc clock mod[7:0]	2
0x6b	adcmodstep	R/W	[7]: adc clock enable [6:4]: adc step[10:8] [3:0]: adc mod[11:8] Adc clock = fhs * step[10:0]/mod[11:0] Mod need be larger than or equal to 2*step Fhs refer to {0x70, 0x66[7]} FHS_sel	00
0x6c	DMIC_step	R/W	rsvd	1
0x6d	DMIC_mod	R/W	rsvd	2
0x70	FHS_sel	R/W	{0x70[0], 0x66[7]}: fhs select 2'b00: 192M clock from pll 2'b01:48M pll 2'b10:32M clock from osc 2'b11:16M clock from pad	00
0x71	DC/DC clk mod	R/W	Reserved	
0x73	Clk mux sel		[0]: clk32k select;0:sel 32k osc 1: 32k pad [1] rsvd [2] usb phy clock select,1 : 192M divider 0:48M pll [7:4] r_lpr_div, decide system clock speed in low power mode	0x10

4.3 System clock

Figure 4-1 Block diagram of system clock

There are four selectable clock sources for MCU system clock: 32MHz RC clock, HS divider clock (divided from a High speed clock), and Pad clock (12MHz/16MHz, 32.768kHz).

The high speed clock (FHS) is selectable via address {0x70[0], 0x66[7]} from the following sources: 192MHz clock from PLL, 48MHz clock from PLL, 32MHz RC clock, and 12MHz/16MHz Pad clock.

DS-TLSR8266-E31 46 Ver3.2.0

Register CLKSEL (address 0x66) serves to set system clock. System clock source is selectable via bit[6:5]. If address 0x66[6:5] is set to 2b'01 to select the HS divider clock, system clock frequency is adjustable via address 0x66[4:0]. $F_{System\ clock} = F_{FHS}$ / (system clock divider value in address 0x66[4:0]).

4.4 Module clock

Registers CLKEN0~CLKEN2 (address 0x63~0x65) are used to enable or disable clock for various modules. By disable the clocks of unused modules, current consumption could be reduced.

4.4.1 ADC clock

ADC clock derives from FHS. ADC clock is enabled via setting address 0x6b[7] to 1b'1.

ADC clock frequency dividing factor contains step and mod. Address 0x6b[6:4] and 0x69 serve to set ADC clock step[10:0]. Address 0x6b[3:0] and 0x6a serve to set ADC clock mod[11:0].

ADC clock frequency, F_{ADC clock}, equals to F_{FHS}* step[10:0] / mod[11:0].

DS-TLSR8266-E31 47 Ver3.2.0

5 Timers

5.1 Timer0~Timer2

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K supports three timers: Timer0~ Timer2. The three timers all support four modes: Mode 0 (System Clock Mode), Mode 1 (GPIO Trigger Mode), Mode 2 (GPIO Pulse Width Mode) and Mode 3 (Tick Mode).

Timer 2 can also be configured as "watchdog" to monitor firmware running.

5.1.1 Register table

Table 5-1 Register configuration for Timer0~Timer2

Address	Mnemonic	Туре	Description	Reset Value
0x620	TMR_CTRL0	RW	[0]Timer0 enable [2:1] Timer0 mode. 0 using sclk, 1, using gpio, 2 count widht of gpi, 3 tick [3]Timer1 enable [5:4] Timer1 mode. [6]Timer2 enable [7]Bit of timer2 mode	00
0x621	TMR_CTRL1	RW	[0]Bit of timer2 mode [7:1]Low bits of watch dog capture	00
0x622	TMR_CTRL2	RW	[6:0]High bits of watch dog capture. It is compared with [31:18] of timer2 ticker [7]watch dog capture	00
0x623	TMR_STATUS	RW	[0] timer0 status, write 1 to clear [1] timer1 status, write 1 to clear [2] timer2 status, write 1 to clear	

DS-TLSR8266-E31 48 Ver3.2.0

Address	Mnemonic	Туре	Description	Reset Value
			[3] watch dog status, write 1 to clear	
0x624	TMR_CAPT0_0	RW	Byte 0 of timer0 capture	00
0x625	TMR_CAPT0_1	RW	Byte 1 of timer0 capture	00
0x626	TMR_CAPT0_2	RW	Byte 2 of timer0 capture	00
0x627	TMR_CAPT0_3	RW	Byte 3 of timer0 capture	00
0x628	TMR_CAPT1_0	RW	Byte 0 of timer1 capture	00
0x629	TMR_CAPT1_1	RW	Byte 1 of timer1 capture	00
0x62a	TMR_CAPT1_2	RW	Byte 2 of timer1 capture	00
0x62b	TMR_CAPT1_3	RW	Byte 3 of timer1 capture	00
0x62c	TMR_CAPT2_0	RW	Byte 0 of timer2 capture	00
0x62d	TMR_CAPT2_1	RW	Byte 1 of timer2 capture	00
0x62e	TMR_CAPT2_2	RW	Byte 2 of timer2 capture	00
0x62f	TMR_CAPT2_3	RW	Byte 3 of timer2 capture	00
0x630	TMR_TICK0_0	RW	Byte 0 of timer0 ticker	
0x631	TMR_TICK0_1	RW	Byte 1 of timer0 ticker	
0x632	TMR_TICK0_2	RW	Byte 2 of timer0 ticker	
0x633	TMR_TICK0_3	RW	Byte 3 of timer0 ticker	
0x634	TMR_TICK1_0	RW	Byte 0 of timer1 ticker	
0x635	TMR_TICK1_1	RW	Byte 1 of timer1 ticker	
0x636	TMR_TICK1_2	RW	Byte 2 of timer1 ticker	
0x637	TMR_TICK1_3	RW	Byte 3 of timer1 ticker	
0x638	TMR_TICK2_0	RW	Byte 0 of timer2 ticker	
0x639	TMR_TICK2_1	RW	Byte 1 of timer2 ticker	
0x63a	TMR_TICK2_2	RW	Byte 2 of timer2 ticker	
0x63b	TMR_TICK2_3	RW	Byte 3 of timer2 ticker	

5.1.2 Mode0 (System Clock Mode)

In Mode 0, system clock is employed as clock source.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated, Timer stops counting and Timer status is updated.

Steps of setting Timer0 for Mode 0 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via registers TMR_TICKO_0~TMR_TICKO_3 (address 0x630~0x633). Address 0x630 is lowest byte and 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer0

Set registers TMR_CAPTO_0~TMR_CAPTO_3 (address 0x624~0x627). Address 0x624 is lowest byte and 0x627 is highest byte.

3rd: Set Timer0 to Mode 0 and enable Timer0

Set register TMR_CTRL0 (address 0x620) [2:1] to 2b'00 to select Mode 0; Meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 starts counting upward, and Tick value is increased by 1 on each positive edge of system clock until it reaches Timer0 Capture value.

5.1.3 Mode1 (GPIO Trigger Mode)

In Mode 1, GPIO is employed as clock source. The "m0"/"m1"/"m2" register specifies the GPIO which generates counting signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive/negative (configurable) edge of GPIO from preset initial Tick value. Generally the initial Tick value is set to 0. The "Polarity" register specifies the GPIO edge when Timer Tick counting increases.

Note: Refer to Section 7.1.2 for corresponding "m0", "m1", "m2" and "Polarity"

DS-TLSR8266-E31 50 Ver3.2.0

register address.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated and timer stops counting.

Steps of setting Timer1 for Mode 1 is taken as an example.

1st: Set initial Tick value of Timer1

Set Initial value of Tick via registers TMR_TICK1_0~TMR_TICK1_3 (address 0x634~0x637). Address 0x634 is lowest byte and 0x637 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer1

Set registers TMR_CAPT1_0~TMR_CAPT1_3 (address 0x628~0x62b). Address 0x628 is lowest byte and 0x62b is highest byte.

3rd: Select GPIO source and edge for Timer1

Select certain GPIO to be the clock source via setting "m1" register.

Select positive edge or negative edge of GPIO input to trigger Timer1 Tick increment via setting "Polarity" register.

4th: Set Timer1 to Mode 1 and enable Timer1

Set address 0x620[5:4] to 2b'01 to select Mode 1; Meanwhile set address 0x620[3] to 1b'1 to enable Timer1. Timer1 starts counting upward, and Timer1 Tick value is increased by 1 on each positive/negative (specified during the 3rd step) edge of GPIO until it reaches Timer1 Capture value.

5.1.4 Mode2 (GPIO Pulse Width Mode)

In Mode 2, system clock is employed as the unit to measure the width of GPIO pulse. The "m0"/"m1"/"m2" register specifies the GPIO which generates control signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick is triggered by a positive/negative (configurable) edge of GPIO pulse. Then Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0. The "Polarity" register specifies the GPIO edge when Timer Tick starts counting.

DS-TLSR8266-E31 51 Ver3.2.0

Note: Refer to **Section 7.1.2** for corresponding "m0", "m1", "m2" and "Polarity" register address.

While a negative/positive edge of GPIO pulse is detected, an interrupt is generated and timer stops counting. The GPIO pulse width could be calculated in terms of tick count and period of system clock.

Steps of setting Timer2 for Mode 2 is taken as an example.

1st: Set initial Timer2 Tick value

Set Initial value of Tick via registers TMR_TICK2_0~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Select GPIO source and edge for Timer2

Select certain GPIO to be the clock source via setting "m2" register.

Select positive edge or negative edge of GPIO input to trigger Timer2 counting start via setting "Polarity" register.

3rd: Set Timer2 to Mode 2 and enable Timer2

Set address 0x620[7:6] to 2b'01 and address 0x621 [0] to 1b'1.

Timer2 Tick is triggered by a positive/negative (specified during the 2nd step) edge of GPIO pulse. Timer2 starts counting upward and Timer2 Tick value is increased by 1 on each positive edge of system clock.

While a negative/positive edge of GPIO pulse is detected, an interrupt is generated and Timer2 tick stops.

4th: Read current Timer2 Tick value to calculate GPIO pulse width

Read current Timer2 Tick value from address 0x638~0x63b.

Then GPIO pulse width is calculated as follows:

GPIO pulse width

= System clock period * (current Timer2 Tick – intial Timer2 Tick)

For initial Timer2 Tick value set to the recommended value of 0, then:

GPIO pulse width = System clock period * current Timer2 Tick.

DS-TLSR8266-E31 52 Ver3.2.0

5.1.5 Mode3 (Tick Mode)

In Mode 3, system clock is employed.

After Timer is enabled, Timer Tick starts counting upward, and Timer Tick value is increased by 1 on each positive edge of system clock.

This mode could be used as time indicator. There will be no interrupt generated. Timer Tick keeps rolling from 0 to 0xffffffff. When Timer tick overflows, it returns to 0 and starts counting upward again.

Steps of setting Timer0 for Mode 3 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via address 0x630~0x633. Address 0x630 is lowest byte and address 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Timer0 to Mode 3 and enable Timer0

Set address 0x620[2:1] to 2b'11 to select Mode 3, meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 Tick starts to roll.

3rd: Read current Timer0 Tick value

Current Timer0 Tick value can be read from address 0x630~0x633.

5.1.6 Watchdog

Programmable watchdog could reset chip from unexpected hang up or malfunction.

Only Timer2 supports Watchdog.

Timer2 Tick has 32bits. Watchdog Capture has only 14bits, which consists of TMR_CTRL2 (address 0x622) [6:0] as higher bits and TMR_CTRL1 (address 0x621) [7:1] as lower bits. Chip will be reset when the Timer2 Tick[31:18] matches Watch dog capture.

1st: Clear Timer2 Tick value

Clear registers TMR_TICK2_0 ~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte.

DS-TLSR8266-E31 53 Ver3.2.0

2nd: Enable Timer2

Set register TMR_CTRL0 (address 0x620) [6] to 1b'1 to enable Timer2.

3rd: Set 14-bit Watchdog Capture value and enable Watchdog

Set address 0x622[6:0] as higher bits of watchdog capture and 0x621[7:1] as lower bits. Meanwhile set address 0x622[7] to 1b'1 to enable Watchdog.

Then Timer2 Tick starts counting upwards from 0.

If bits[31:18] of Timer2 Tick value read from address 0x638~0x63b reaches watchdog capture, the chip will be reset.

5.2 32kHz LTIMER

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K supports a low frequency (32kHz) LTIMER in suspend mode or deep sleep mode.

This timer can be used as one kind of wakeup source. Please refer to **Section 2.5.2** for details.

5.3 System Timer

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K also supports a System Timer.

In suspend mode, both System Timer and Timer0~Timer2 stop counting, and 32kHz Timer starts counting. When the chip restores to active mode, Timer0~Timer2 will continue counting from the number when they stops; In contrast, System Timer will continue counting from an adjusted number which is a sum of the number when it stops and an offset calculated from the counting value of 32kHz Timer during suspend mode.

DS-TLSR8266-E31 54 Ver3.2.0

6 Interrupt System

6.1 Interrupt structure

The interrupting function is applied to manage dynamic program sequencing based on real-time events triggered by timers, pins and etc.

For the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K, there are 24 interrupt sources in all: 16 types are level-triggered interrupt sources (listed in address 0x640~0x641) and 8 types are edge-triggered interrupt sources (listed in address 0x642).

When CPU receives an interrupt request (IRQ) from some interrupt source, it will decide whether to respond to the IRQ. If CPU decides to respond, it pauses current routine and starts to execute interrupt service subroutine. Program will jump to certain code address and execute IRQ commands. After finishing interrupt service subroutine, CPU returns to the breakpoint and continues to execute main function.

6.2 Register configuration

Table 6-1 Register table for Interrupt system

Address	Mnemonic	Туре	Description	Reset Value
0x640	MASK_0	RW	Byte 0 interrupt mask, level-triggered type {irq_host_cmd irq_qdec,irq_uart,irq_ks, irq_dma,usb_pwdn,time2,time1,time0} [7] irq_host_cmd irq_qdec [6] irq_uart [5] irq_ks [4] irq_dma [3] usb_pwdn [2] time2 [1] time1 [0] time0	00
0x641	MASK_1	RW	Byte 1 interrupt mask, level-triggered type {an_irq,irq_software irq_pwm,irq_zb_rt,irq _udc[4:0]} [7] an_irq	00

DS-TLSR8266-E31 55 Ver3.2.0

Address	Mnemonic	Tymo	Description	Reset				
Address	Willemonic	Type	Description	Value				
			[6] irq_software irq_pwm					
			[5] irq_zb_rt					
			[4] irq_udc[4]					
			[3] irq_udc[3]					
			[2] irq_udc[2]					
			[1] irq_udc[1]					
			[0] irq_udc[0]					
			Byte 2 interrupt mask, edge-triggered type					
			{gpio2risc[2:0],irq_stimer,pm_irq,irq_gpio,u					
			sb_reset,usb_250us}					
			[7] gpio2risc[2]					
			[6] gpio2risc[1]					
0x642	MASK_2	RW	[5] gpio2risc[0]	00				
			[4] irq_stimer					
			[3] pm_irq					
			[2] irq_gpio					
			[1] usb_reset					
			[0] usb_250us					
0x643	IRQMODE	RW	[0] interrupt enable	00				
OXO 13	MQMODE	11,00	[1] reserved (Multi-Address enable)	00				
			Byte 0 of priority					
0x644	PRIO_0	RW	1: High priority;	00				
			0: Low priority					
0x645	PRIO_1	RW	Byte 1 of priority	00				
0x646	PRIO_2	RW	Byte 2 of priority	00				
0x648	IRQSRC_0	R	Byte 0 of interrupt source					
0x649	IRQSRC_1	R	Byte 1 of interrupt source					
0x64a	IRQSRC_2	R	Byte 2 of interrupt source					

6.2.1 Enable/Mask interrupt sources

Various interrupt sources could be enabled or masked by registers MASK_0~MASK_2 (address 0x640~0x642).

6.2.2 Interrupt mode and priority

Interrupt mode is typically-used mode. Register IRQMODE (address 0x643)[0] should be set to 1b'1 to enable interrupt function.

DS-TLSR8266-E31 56 Ver3.2.0

IRQ tasks could be set as High or Low priority via registers PRIO_0~PRIO_2 (address 0x644~0x646). When more than one interrupt sources assert interrupt requests at the same time, CPU will respond depending on respective interrupt priority levels. It's recommended not to modify priority setting.

6.2.3 Interrupt source flag

Three bytes in registers IRQSRC_0~IRQSRC_2 (address 0x648~0x64a) serve to indicate IRQ sources. Once IRQ occurs from certain source, the corresponding IRQ source flag will be raised to "High". User could identify IRQ source by reading address 0x648~0x64a.

When handling edge-triggered type interrupt, the corresponding IRQ source flag needs to be cleared via address 0x64a. Take the interrupt source usb_250us for example: First enable the interrupt source by setting address 0x642 bit[0] to 1; then set address 0x643 bit[0] to 1 to enable the interrupt. In interrupt handling function, 24-bit data is read from address 0x648~0x64a to determine which IRQ source is valid; if data bit[16] is 1, it means the usb_250us interrupt is valid. Clear this interrupt source by setting address 0x64a bit[0] to 1.

As for level-type interrupt, IRQ interrupt source status needs to be cleared via setting corresponding module status register. Take Timer0 IRQ interrupt source for example, register TMR_STATUS (address 0x623) [0] should be written with 1b'1 to clear Timer0 status (refer to section 5.1.1).

DS-TLSR8266-E31 57 Ver3.2.0

7 Interface

7.1 GPIO

The TLSR8266ET/AT56, TLSR8266ET/AT48, TLSR8266ET/AT32, TLSR8266F512ET/AT48, TLSR8266F512ET/AT32/TLSR8266F1KET32 and TLSR8266F128ET24 support up to 41, 37, 22, 35, 20 and 12 GPIOs respectively. Except for dedicated GPIOs, all digital IOs can be used as general purpose IOs. All GPIOs have configurable pull-up/pull-down resistor. Note: For GPIO function, the USB interface (DM, DP) can only be used as GPI.

7.1.1 Basic configuration

Please refer to Table 7-1 in section 7.1.1.3 for various GPIO interface configuration.

7.1.1.1 Multiplexed functions

For a pin listed in Table 7-1, it acts as the function in the "Default Function" column by default. It's noted that functions of higher priority should be disabled (by clearing corresponding bit) before enabling function of lower priority (by setting corresponding bit to 1b'1).

If a pin with multiplexed functions does not act as GPIO function by default, to use it as GPIO function, first set the bit in "Act as GPIO" column to 1b'1. After GPIO function is enabled, if the pin is used as output, both the bits in "IE" and "OEN" columns should be cleared, then set the register value in the "Output" column; if the pin is used as input, both the bits in "IE" and "OEN" columns set to 1b'1, and the input data can be read from the register in the "Input" column.

Take the PWM3/ANA A<1> pin for example.

- (1) The pin acts as GPIO function by default. If the pin is used as general output, both address 0x581[1] and 0x582[1] should be cleared, then configure address 0x583[1]. If the pin is used as general input, both address 0x581[1] and 0x582[1] should be set to 1b'1, and the input data can be read from address 0x580[1].
- (2) To use the pin as Keyscan function, address 0x586[1] should be cleared and DS-TLSR8266-E31 58 Ver3.2.0

0x5b0[1] should be set to 1b'1.

(3) Addresses {0x586[1], 0x5b0[1], 0x5b6[4]} should be all cleared to use the pin as PWM3 function.

Take the SWS/ANA_A<0> pin as another example. The pin acts as SWS function by default. To use it as GPIO function, first set address 0x586[0] to 1b'1. If the pin is used as general output, both address 0x581[0] and 0x582[0] should be cleared, then configure address 0x583[0]. If the pin is used as general input, both address 0x581[0] and 0x582[0] should be set to 1b'1, and the input data can be read from address 0x580[0].

7.1.1.2 Drive strength

The registers in the "**DS**" column are used to configure corresponding pin's driving strength: "1" indicates maximum drive level, while "0" indicates minimal drive level. The "DS" configuration will take effect when the pin is used as output. It's set as the strongest driving level by default. In actual applications, driving strength can be decreased to lower level if necessary.

All the pins support maximum drive level of 4mA ("DS"=1) and minimal drive level of 0.7mA ("DS"=0) with the following exceptions:

- ♦ ANA B<6> and ANA B<5>: maximum=8mA ("DS"=1), minimum=4mA ("DS"=0)
- ♦ ANA_E<5> and ANA_E<4>: maximum=16mA ("DS"=1), minimum=12mA ("DS"=0)

7.1.1.3 GPIO lookup table

Table 7-1 GPIO lookup table

									GPIO s	etting		
Pin	Default Function	Prio_0	Prio_1	Prio_2	Prio_3	Prio_4	Input (R)	IE (High active)	OEN (Low active)	Output	DS	Act as
SWS/ ANA_A<0>	SWS						0x580[0]	0x581[0]	0x582[0]	0x583[0]	0x585[0]	0x586[0]
PWM3/	GPIO	5b0[1]		5b6[4]			0x580[1]	0x581[1]	0x582[1]	0x583[1]	0x585[1]	0x586[1]

DS-TLSR8266-E31 59 Ver3.2.0

							GPIO setting					
Pin	Default Function	Prio_0	Prio_1	Prio_2	Prio_3	Prio_4	Input (R)	IE (High active)	OEN (Low active)	Output	DS	Act as
ANA_A<1>		ks		bb_dbg[0]								
MSDI/ ANA_A<2>	MSDI						0x580[2]	0x581[2]	0x582[2]	0x583[2]	0x585[2]	0x586[2]
MCLK/ ANA_A<3>	MCLK						0x580[3]	0x581[3]	0x582[3]	0x583[3]	0x585[3]	0x586[3]
GP18/ PWM3_N/ ANA_A<4>	GPIO	5b0[4] ks		5b6[4] bb_dbg[1]			0x580[4]	0x581[4]	0x582[4]	0x583[4]	0x585[4]	0x586[4]
PWM4/ ANA_A<5>	GPIO	5b0[5] ks		5b6[4] bb_dbg[2]			0x580[5]	0x581[5]	0x582[5]	0x583[5]	0x585[5]	0x586[5]
GP19/ PWM4_N/ ANA_A<6>	GPIO	5b0[6] ks		5b6[4] bb_dbg[3]			0x580[6]	0x581[6]	0x582[6]	0x583[6]	0x585[6]	0x586[6]
SWM/ ANA_A<7>	GPIO	5b0[7] ks					0x580[7]	0x581[7]	0x582[7]	0x583[7]	0x585[7]	0x586[7]
PWM5/ ANA_B<0>	GPIO				5b6[0] rxadc_clk_i	5b6[8] rxadc_clk_o	0x588[0]	0x589[0]	0x58a[0]	0x58b[0]	0x58d[0]	0x58e[0]
GP20/ PWM5_N/ ANA_B<1>	GPIO				5b6[0] rxadc_dat_i	5b6[8] rxadc_dat_ o	0x588[1]	0x589[1]	0x58a[1]	0x58b[1]	0x58d[1]	0x58e[1]
MSDO/ ANA_B<2>	MSDO						0x588[2]	0x589[2]	0x58a[2]	0x58b[2]	0x58d[2]	0x58e[2]
MSCN/ ANA_B<3>	MSCN						0x588[3]	0x589[3]	0x58a[3]	0x58b[3]	0x58d[3]	0x58e[3]
DM/ ANA_B<5>	DM						0x588[5]	0x589[5]	N/A	N/A	0x58d[5]	N/A
DP/ ANA_B<6>	DP						0x588[6]	0x589[6]	N/A	N/A	0x58d[6]	N/A
GP0/ PWM0_N/ ANA_B<7>	GPIO						0x588[7]	0x589[7]	0x58a[7]	0x58b[7]	0x58d[7]	0x58e[7]
PWM0/ ANA_C<0>	GPIO	5b2[0] ks			5b6[6] tx_en_i	5b6[7] tx_en_o	0x590[0]	0x591[0]	0x592[0]	0x593[0]	0x595[0]	0x596[0]
GP1/ PWM1_N/ ANA_C<1>	GPIO	5b2[1] ks			5b6[6] tx_cyc1_i	5b6[7] tx_cyc1_o	0x590[1]	0x591[1]	0x592[1]	0x593[1]	0x595[1]	0x596[1]
PWM1_N/	GPIO	5b2[2]					0x590[2]	0x591[2]	0x592[2]	0x593[2]	0x595[2]	0x596[2]

								t for folling	GPIO s	etting		
Pin	Default Function	Prio_0	Prio_1	Prio_2	Prio_3	Prio_4	Input (R)	IE (High active)	OEN (Low active)	Output	DS	Act as GPIO
ANA_C<2>		ks										
GP2/ PMW1/ ANA_C<3>	GPIO	5b2[3] ks			5b6[6] tx_sd_i	5b6[7] tx_sd_o	0x590[3]	0x591[3]	0x592[3]	0x593[3]	0x595[3]	0x596[3]
PWM2/ ANA_C<4>	GPIO	5b2[4] ks			5b6[6] tx_clkbb_i	5b6[7] tx_clkbb_o	0x590[4]	0x591[4]	0x592[4]	0x593[4]	0x595[4]	0x596[4]
GP3/ PWM2_N/ ANA_C<5>	GPIO	5b2[5] ks		5b6[4] bb_dbg[4]			0x590[5]	0x591[5]	0x592[5]	0x593[5]	0x595[5]	0x596[5]
GP4/ uart_tx/ ANA_C<6>	GPIO	5b2[6] ks					0x590[6]	0x591[6]	0x592[6]	0x593[6]	0x595[6]	0x596[6]
GP5/ uart_rx/ ANA_C<7>	GPIO	5b2[7] ks					0x590[7]	0x591[7]	0x592[7]	0x593[7]	0x595[7]	0x596[7]
GP6/ uart_rts/ ANA_D<0>	GPIO	5b3[0] ks	uart_rts				0x598[0]	0x599[0]	0x59a[0]	0x59b[0]	0x59d[0]	0x59e[0]
GP7/ uart_cts/ ANA_D<1>	GPIO	5b3[1] ks	5b6[1] uart_cts				0x598[1]	0x599[1]	0x59a[1]	0x59b[1]	0x59d[1]	0x59e[1]
GP8/ PWM3/ ANA_D<2>	GPIO	5b3[2] ks		5b6[4] bb_dbg[5]			0x598[2]	0x599[2]	0x59a[2]	0x59b[2]	0x59d[2]	0x59e[2]
GP9/ PWM4/ ANA_D<3>	GPIO	5b3[3] ks		5b6[4] bb_dbg[6]			0x598[3]	0x599[3]	0x59a[3]	0x59b[3]	0x59d[3]	0x59e[3]
GP10/ ANA_D<4>	GPIO	5b3[4] ks		5b6[4] bb_dbg[7]			0x598[4]	0x599[4]	0x59a[4]	0x59b[4]	0x59d[4]	0x59e[4]
GP11/ ANA_D<5>	GPIO	5b3[5] ks		5b6[4] bb_dbg[8]			0x598[5]	0x599[5]	0x59a[5]	0x59b[5]	0x59d[5]	0x59e[5]
GP12/ ANA_D<6>/ Rbias_EXT	GPIO	5b3[6] ks					0x598[6]	0x599[6]	0x59a[6]	0x59b[6]	0x59d[6]	0x59e[6]
GP13/ ANA_D<7>	GPIO	5b3[7] ks		5b6[4] bb_dbg[9]			0x598[7]	0x599[7]	0x59a[7]	0x59b[7]	0x59d[7]	0x59e[7]
GP14/	GPIO	5b4[0]		5b6[4]			0x5a0[0]	0x5a1[0]	0x5a2[0]	0x5a3[0]	0x5a5[0]	0x5a6[0]

									GPIO s	etting		
Pin	Default Function	Prio_0	Prio_1	Prio_2	Prio_3	Prio_4	Input (R)	IE (High active)	OEN (Low active)	Output	DS	Act as
ANA_E<0>		ks		bb_dbg[10]								
ANA_E<1>	GPIO	5b4[1] ks					0x5a0[1]	0x5a1[1]	0x5a2[1]	0x5a3[1]	0x5a5[1]	0x5a6[1]
ANA_E<2>	GPIO	5b4[2] ks					0x5a0[2]	0x5a1[2]	0x5a2[2]	0x5a3[2]	0x5a5[2]	0x5a6[2]
GP15/ ANA_E<3>	GPIO	5b4[3] ks		5b6[4] bb_dbg[11]			0x5a0[3]	0x5a1[3]	0x5a2[3]	0x5a3[3]	0x5a5[3]	0x5a6[3]
GP16/ ANA_E<4>	GPIO	5b4[4] ks		5b6[4] bb_dbg[12]			0x5a0[4]	0x5a1[4]	0x5a2[4]	0x5a3[4]	0x5a5[4]	0x5a6[4]
GP17/ ANA_E<5>	GPIO	5b4[5] ks		5b6[4] bb_dbg[13]			0x5a0[5]	0x5a1[5]	0x5a2[5]	0x5a3[5]	0x5a5[5]	0x5a6[5]
CN/ uart_rts/ ANA_E<6>	CN	5b4[6] ks			5b6[5] uart_rts		0x5a0[6]	0x5a1[6]	0x5a2[6]	0x5a3[6]	0x5a5[6]	0x5a6[6]
DI/ I2C_SDA/ ANA_E<7>	DI	5b4[7] ks					0x5a0[7]	0x5a1[7]	0x5a2[7]	0x5a3[7]	0x5a5[7]	0x5a6[7]
DO/ uart_cts/ ANA_F<0>	DO				5b6[5] uart_cts		0x5a8[0]	0x5a9[0]	0x5aa[0]	0x5ab[0]	0x5ad[0]	0x5ae[0]
CK/ I2C_SCL/ ANA_F<1>	СК						0x5a8[1]	0x5a9[1]	0x5aa[1]	0x5ab[1]	0x5ad[1]	0x5ae[1]

*Notes:

- (1) ks: key_scan.
- (2) IE: Input enable (1), high active.
- (3) OEN: Output enable (0), low active.
- (4) Priority: acting as GPIO is the highest priority and prio0 > prio1 > prio2 > prio4.
- (5) GPIO acts as input by default except ANA_B<0> and ANA_D<5:4>: ANA_B<0> and ANA_D<4> output 1, while ANA_D<5> outputs 0.
- (6) For all unused GPIOs, corresponding "IE" must be set as 0.
- (7) When SWS/ANA_A<0> "IE" is set as 1, this pin must be fixed as pull-up/pull-down DS-TLSR8266-E31 62 Ver3.2.0

state (float state is not allowed).

7.1.2 Connection relationship between GPIO and related modules

GPIO can be used to generate GPIO interrupt signal for interrupt system, counting or control signal for Timer/Counter module, or GPIO2RISC interrupt signal for interrupt system.

For the "Exclusive Or (XOR)" operation result for input signal from any GPIO pin and respective "polarity" value, on one hand, it takes "And" operation with "irq" and generates GPIO interrupt request signal; on the other hand, it takes "And" operation with "m0/m1/m2", and generates counting signal in Mode 1 or control signal in Mode 2 for Timer0/Timer1/Timer2, or generates GPIO2RISC interrupt request signal.

GPIO interrupt request signal = | ((input ^ polarity) & irq);

Counting (Mode 1) or control (Mode 2) signal for Timer0 = | ((input ^ polarity) & m0);

Counting (Mode 1) or control (Mode 2) signal for Timer1 = | ((input ^ polarity) & m1);

Counting (Mode 1) or control (Mode 2) signal for Timer2 = | ((input ^ polarity) & m2);

GPIO2RISC[0] interrupt request signal = | ((input ^ polarity) & m0);

GPIO2RISC[1] interrupt request signal = | ((input ^ polarity) & m1);

GPIO2RISC[2] interrupt request signal = | ((input ^ polarity) & m2);

DS-TLSR8266-E31 63 Ver3.2.0

Figure 7-1 Logic relationship between GPIO and related modules

Please refer to Table 7-2 and Table 6- 1 to learn how to configure GPIO for interrupt system or Timer/Counter (Mode 1 or Mode 2).

- (1) First enable GPIO function, IE and disable OEN.
- (2) GPIO IRQ signal: Select GPIO interrupt trigger edge (positive edge or negative edge) via configuring "Polarity", and set corresponding GPIO interrupt enabling bit "Irq". Then set address 0x5b5[3] to enable GPIO IRQ. Finally enable GPIO interrupt (irq_gpio at address 0x642[2]).

 User can read addresses 0x5e0 ~ 0x5e5 to see which GPIO asserts GPIO interrupt request signal. Note: 0x5e0[7:0] --> ANA_A<7>~ANA_A<0>, 0x5e1[7:0] --> ANA_B<7>~ANA_B<0>, 0x5e2[7:0] --> ANA_C<7>~ANA_C<0>, 0x5e3[7:0] --> ANA_D<7>~ANA_D<0>, 0x5e4[7:0] --> ANA_E<7>~ANA_E<0>, 0x5e5[1:0] --> ANA_F<1>~ANA_F<0>.
- (3) Timer/Counter counting or control signal: Configure "Polarity" (In Mode 1, it determines GPIO edge when Timer Tick counting increases; in Mode 2, it determines GPIO edge when Timer Tick starts counting) and set "m0/m1/m2". User can read addresses 0x5e8~0x5ed/0x5f0~0x5f5/0x5f8~0x5fd to see which GPIO asserts counting signal (in Mode 1) or control signal (in Mode 2) for Timer0/Timer1/Timer2. Note: Timer0: 0x5e8[7:0] ANA A<7>~ANA A<0>, 0x5e9[7:0] --> ANA B<7>~ANA B<0>, 0x5ea[7:0] --> ANA C<7>~ANA C<0>, 0x5eb[7:0] --> ANA D<7>~ANA D<0>, 0x5ec[7:0] --> ANA E<7>~ANA E<0>, 0x5ed[1:0] --> ANA F<1>~ANA F<0>; **Timer1**: 0x5f0[7:0] --> ANA_A<7>~ANA_A<0>, 0x5f1[7:0] --> ANA_B<7>~ANA_B<0>, 0x5f2[7:0] --> ANA C<7>~ANA C<0>, 0x5f3[7:0] --> ANA D<7>~ANA D<0>, 0x5f4[7:0] --> ANA E<7>~ANA E<0>, 0x5f5[1:0] --> ANA F<1>~ANA F<0>; Timer2: 0x5f8[7:0] --> ANA A<7>~ANA A<0>, 0x5f9[7:0] ANA B<7>~ANA B<0>, 0x5fa[7:0] --> ANA C<7>~ANA C<0>, 0x5fb[7:0] --> ANA D<7>~ANA D<0>, 0x5fc[7:0] --> ANA E<7>~ANA E<0>, 0x5fd[1:0] --> ANA F<1>~ANA F<0>.

DS-TLSR8266-E31 64 Ver3.2.0

(4) GPIO2RISC IRQ signal: Select GPIO2RISC interrupt trigger edge (positive edge or negative edge) via configuring "Polarity", and set corresponding GPIO enabling bit "m0"/"m1"/"m2". Enable GPIO2RISC[0]/GPIO2RISC[1]/GPIO2RISC[2] interrupt, i.e. "gpio2risc[0]" (address 0x642[5]) / "gpio2risc[1]" (address 0x642[6]) / "gpio2risc[2]" (address 0x642[7]).

User can read addresses 0x5e8~0x5ed/0x5f0~0x5f5/0x5f8~0x5fd to see which GPIO asserts GPIO2RISC[0]/GPIO2RISC[1]/GPIO2RISC[2] interrupt request signal. Note: GPIO2RISC[0]: 0x5e8[7:0] --> ANA_A<7>~ANA_A<0>, 0x5e9[7:0] --> ANA_B<7>~ANA_B<0>, 0x5ea[7:0] --> ANA_C<7>~ANA_C<0>, 0x5eb[7:0] --> ANA_D<7>~ANA_D<0>, 0x5ec[7:0] --> ANA_E<7>~ANA_E<0>, 0x5ed[1:0] --> ANA_F<1>~ANA_F<0>; GPIO2RISC[1]: 0x5f0[7:0] --> ANA_C<7>~ANA_B<0>, 0x5f1[7:0] --> ANA_B<7>~ANA_B<0>, 0x5f2[7:0] --> ANA_C<7>~ANA_B<0>, 0x5f3[7:0] --> ANA_D<7>~ANA_D<0>, 0x5f4[7:0] --> ANA_D<7>~ANA_D<0>, 0x5f4[7:0] --> ANA_B<7>~ANA_B<0>, 0x5f4[7:0] --> ANA_B<7>~ANA_B<0>, 0x5f4[7:0] --> ANA_B<7>~ANA_B<0>, 0x5f3[7:0] --> ANA_B

Table 7-2 GPIO lookup table2

Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1	m2
SWS/ANA_A<0>	0x580[0]	0x584[0]	0x587[0]	0x5b8[0]	0x5c0[0]	0x5c8[0]
PWM3/ANA_A<1>	0x580[1]	0x584[1]	0x587[1]	0x5b8[1]	0x5c0[1]	0x5c8[1]
MSDI/ANA_A<2>	0x580[2]	0x584[2]	0x587[2]	0x5b8[2]	0x5c0[2]	0x5c8[2]
MCLK/ANA_A<3>	0x580[3]	0x584[3]	0x587[3]	0x5b8[3]	0x5c0[3]	0x5c8[3]
GP18/PWM3_N/ANA_A<4>	0x580[4]	0x584[4]	0x587[4]	0x5b8[4]	0x5c0[4]	0x5c8[4]
PWM4/ANA_A<5>	0x580[5]	0x584[5]	0x587[5]	0x5b8[5]	0x5c0[5]	0x5c8[5]
GP19/PWM4_N/ANA_A<6>	0x580[6]	0x584[6]	0x587[6]	0x5b8[6]	0x5c0[6]	0x5c8[6]

DS-TLSR8266-E31 65 Ver3.2.0

Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1	m2
SWM/ANA_A<7>	0x580[7]	0x584[7]	0x587[7]	0x5b8[7]	0x5c0[7]	0x5c8[7]
PWM5/ANA_B<0>	0x588[0]	0x58c[0]	0x58f[0]	0x5b9[0]	0x5c1[0]	0x5c9[0]
GP20/PWM5_N/ANA_B<1>	0x588[1]	0x58c[1]	0x58f[1]	0x5b9[1]	0x5c1[1]	0x5c9[1]
MSDO/ANA_B<2>	0x588[2]	0x58c[2]	0x58f[2]	0x5b9[2]	0x5c1[2]	0x5c9[2]
MSCN/ANA_B<3>	0x588[3]	0x58c[3]	0x58f[3]	0x5b9[3]	0x5c1[3]	0x5c9[3]
DM/ANA_B<5>	0x588[5]	0x58c[5]	0x58f[5]	0x5b9[5]	0x5c1[5]	0x5c9[5]
DP/ANA_B<6>	0x588[6]	0x58c[6]	0x58f[6]	0x5b9[6]	0x5c1[6]	0x5c9[6]
GP0/PWM0_N/ANA_B<7>	0x588[7]	0x58c[7]	0x58f[7]	0x5b9[7]	0x5c1[7]	0x5c9[7]
PWM0/ANA_C<0>	0x590[0]	0x594[0]	0x597[0]	0x5ba[0]	0x5c2[0]	0x5ca[0]
GP1/PWM1_N/ANA_C<1>	0x590[1]	0x594[1]	0x597[1]	0x5ba[1]	0x5c2[1]	0x5ca[1]
PWM1_N/ANA_C<2>	0x590[2]	0x594[2]	0x597[2]	0x5ba[2]	0x5c2[2]	0x5ca[2]
GP2/PMW1/ANA_C<3>	0x590[3]	0x594[3]	0x597[3]	0x5ba[3]	0x5c2[3]	0x5ca[3]
PWM2/ANA_C<4>	0x590[4]	0x594[4]	0x597[4]	0x5ba[4]	0x5c2[4]	0x5ca[4]
GP3/PWM2_N/ANA_C<5>	0x590[5]	0x594[5]	0x597[5]	0x5ba[5]	0x5c2[5]	0x5ca[5]
GP4/uart_tx/ANA_C<6>	0x590[6]	0x594[6]	0x597[6]	0x5ba[6]	0x5c2[6]	0x5ca[6]
GP5/uart_rx/ANA_C<7>	0x590[7]	0x594[7]	0x597[7]	0x5ba[7]	0x5c2[7]	0x5ca[7]
GP6/uart_rts/ANA_D<0>	0x598[0]	0x59c[0]	0x59f[0]	0x5bb[0]	0x5c3[0]	0x5cb[0]
GP7/uart_cts/ANA_D<1>	0x598[1]	0x59c[1]	0x59f[1]	0x5bb[1]	0x5c3[1]	0x5cb[1]
GP8/PWM3/ANA_D<2>	0x598[2]	0x59c[2]	0x59f[2]	0x5bb[2]	0x5c3[2]	0x5cb[2]
GP9/PWM4/ANA_D<3>	0x598[3]	0x59c[3]	0x59f[3]	0x5bb[3]	0x5c3[3]	0x5cb[3]
GP10/ANA_D<4>	0x598[4]	0x59c[4]	0x59f[4]	0x5bb[4]	0x5c3[4]	0x5cb[4]
GP11/ANA_D<5>	0x598[5]	0x59c[5]	0x59f[5]	0x5bb[5]	0x5c3[5]	0x5cb[5]
GP12/ANA_D<6>/Rbias_EXT	0x598[6]	0x59c[6]	0x59f[6]	0x5bb[6]	0x5c3[6]	0x5cb[6]
GP13/ANA_D<7>	0x598[7]	0x59c[7]	0x59f[7]	0x5bb[7]	0x5c3[7]	0x5cb[7]
GP14/ANA_E<0>	0x5a0[0]	0x5a4[0]	0x5a7[0]	0x5bc[0]	0x5c4[0]	x5cc[0]
ANA_E<1>	0x5a0[1]	0x5a4[1]	0x5a7[1]	0x5bc[1]	0x5c4[1]	0x5cc[1]

Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1	m2
ANA_E<2>	0x5a0[2]	0x5a4[2]	0x5a7[2]	0x5bc[2]	0x5c4[2]	0x5cc[2]
GP15/ANA_E<3>	0x5a0[3]	0x5a4[3]	0x5a7[3]	0x5bc[3]	0x5c4[3]	0x5cc[3]
GP16/ANA_E<4>	0x5a0[4]	0x5a4[4]	0x5a7[4]	0x5bc[4]	0x5c4[4]	0x5cc[4]
GP17/ANA_E<5>	0x5a0[5]	0x5a4[5]	0x5a7[5]	0x5bc[5]	0x5c4[5]	0x5cc[5]
CN/uart_rts/ANA_E<6>	0x5a0[6]	0x5a4[6]	0x5a7[6]	0x5bc[6]	0x5c4[6]	0x5cc[6]
DI/I2C_SDA/ANA_E<7>	0x5a0[7]	0x5a4[7]	0x5a7[7]	0x5bc[7]	0x5c4[7]	0x5cc[7]
DO/uart_cts/ANA_F<0>	0x5a8[0]	0x5ac[0]	0x5af[0]	0x5bd[0]	0x5c5[0]	0x5cd[0]
CK/I2C_SCL/ANA_F<1>	0x5a8[1]	0x5ac[1]	0x5af[1]	0x5bd[1]	0x5c5[1]	0x5cd[1]

7.1.3 Pull-up/Pull-down resistor

All GPIOs support configurable $1M\Omega/10K\Omega$ pull-up resistor or $100K\Omega$ pull-down resistor which are all disabled by default. Analog registers afe3V_reg10<4:7>~afe3V_reg20 serve to control the pull-up/pull-down resistor for each GPIO. Please refer to Table 7-3 for details.

Take the ANA_A<0> for example: Setting analog register afe3V_reg10<5:4> to 2b'01/2b'10/2b'11 is to enable $1M\Omega$ pull-up resistor/ $10K\Omega$ pull-up resistor/ $10K\Omega$ pull-down resistor respectively for ANA_A<0>; Clearing the two bits disables pull-up and pull-down resistor for ANA_A<0>.

Table 7-3 Analog registers for pull-up/pull-down resistor control

Address	Mnemonic	Default Value	Description
afe3V_reg10 <5:4>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_A<0> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor

DS-TLSR8266-E31 67 Ver3.2.0

Address	Mnemonic	Default Value	Description Description
			Wake up mux ANA_A<1> pull up/down controls
afe3V_reg10	pullupdown_ctrl		00 No pull up/down resistor
<7:6>	<1:0>	00	01 1MOhm pull-up resistor
			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_A<2>pull up/down controls
afe3V_reg11	pullupdown_ctrl		00 No pull up/down resistor
<1:0>	<1:0>	00	01 1MOhm pull-up resistor
11.07	11.0		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_A<3> pull up/down controls
2fo2\/ rog11	pullupdown_ctrl		00 No pull up/down resistor
afe3V_reg11	–	00	01 1MOhm pull-up resistor
<3:2>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
	pullupdown_ctrl <1:0>		Wake up mux ANA_A<4> pull up/down controls
		00	00 No pull up/down resistor
afe3V_reg11			01 1MOhm pull-up resistor
<5:4>			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_A<5> pull up/down controls
			00 No pull up/down resistor
afe3V_reg11	pullupdown_ctrl <1:0>	00	01 1MOhm pull-up resistor
<7:6>			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_A<6> pull up/down controls
6.00			00 No pull up/down resistor
afe3V_reg12	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<1:0>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA A<7> pull up/down controls
			00 No pull up/down resistor
afe3V_reg12	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<3:2>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_B<0> pull up/down controls
			00 No pull up/down resistor
afe3V_reg12	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<5:4>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			TT TOOKOTIIII PUII UOWITTESISLOI

		I	Datasneet for Telink BLE SOC TLSR8266			
Address	Mnemonic	Default Value	Description			
afe3V_reg12 <7:6>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_B<1> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor			
afe3V_reg13 <1:0>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_B<2> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor			
afe3V_reg13 <3:2>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_B<3> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor			
afe3V_reg13 <5:4>	pullupdown_ctrl <1:0>	00	rsvd			
afe3V_reg13 <7:6>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_B<5> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor			
afe3V_reg14 <1:0>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_B<6> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor			
afe3V_reg14 <3:2>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_B<7> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor			
afe3V_reg14 <5:4>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_C<0> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor			

Address	Mnemonic	Default Value	Description Description
			Wake up mux ANA_C<1> pull up/down controls
afe3V_reg14	pullupdown_ctrl		00 No pull up/down resistor
<7:6>	<1:0>	00	01 1MOhm pull-up resistor
17.07	11.07		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_C<2> pull up/down controls
afe3V_reg15	pullupdown_ctrl		00 No pull up/down resistor
<1:0>	<1:0>	00	01 1MOhm pull-up resistor
<1.0>	<1.0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_C<3> pull up/down controls
ofo2\/ rog1E	pullupdown ctrl		00 No pull up/down resistor
afe3V_reg15	=	00	01 1MOhm pull-up resistor
<3:2>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_C<4> pull up/down controls
6.204 4.5	pullupdown_ctrl <1:0>	00	00 No pull up/down resistor
afe3V_reg15			01 1MOhm pull-up resistor
<5:4>			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_C<5> pull up/down controls
6.01.			00 No pull up/down resistor
afe3V_reg15	pullupdown_ctrl <1:0>	00	01 1MOhm pull-up resistor
<7:6>			10 – 10kOhm pull-up resistor
		_	11 – 100kOhm pull-down resistor
			Wake up mux ANA_C<6> pull up/down controls
			00 No pull up/down resistor
afe3V_reg16	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<1:0>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_C<7> pull up/down controls
			00 No pull up/down resistor
afe3V_reg16	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<3:2>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_D<0> pull up/down controls
			00 No pull up/down resistor
afe3V_reg16	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<5:4>	<1:0>	UU	10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			TT TOOKOTHII PUII-UUWII 16313101

			Datasheet for Telink BLE Soc TLSR8266			
Address	Mnemonic	Default Value	Description			
			Wake up mux ANA_D<1> pull up/down controls			
			00 No pull up/down resistor			
afe3V_reg16	pullupdown_ctrl	00	01 1MOhm pull-up resistor			
<7:6>	<1:0>		10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			
			Wake up mux ANA_D<2> pull up/down controls			
			00 No pull up/down resistor			
afe3V_reg17	pullupdown_ctrl	00	01 1MOhm pull-up resistor			
<1:0>	<1:0>		10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			
			Wake up mux ANA_D<3> pull up/down controls			
			00 No pull up/down resistor			
afe3V_reg17	pullupdown_ctrl	00	01 1MOhm pull-up resistor			
<3:2>	<1:0>	00	10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			
			Wake up mux ANA D<4> pull up/down controls			
		00	00 No pull up/down resistor			
afe3V_reg17	pullupdown_ctrl <1:0>		01 1MOhm pull-up resistor			
<5:4>			10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			
			Wake up mux ANA_D<5> pull up/down controls			
			00 No pull up/down resistor			
afe3V_reg17	pullupdown_ctrl <1:0>	00	01 1MOhm pull-up resistor			
<7:6>			10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			
			Wake up mux ANA_D<6> pull up/down controls			
afe3V_reg18	pullupdown_ctrl	00	00 No pull up/down resistor			
<1:0>	<1:0>	00	01 1MOhm pull-up resistor			
			10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			
			Wake up mux ANA_D<7> pull up/down controls			
afe3V_reg18	pullupdown_ctrl <1:0>		00 No pull up/down resistor			
<3:2>		00	01 1MOhm pull-up resistor			
			10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			
			Wake up mux ANA_E<0> pull up/down controls			
afe3V_reg18	pullupdown_ctrl		00 No pull up/down resistor			
<5:4>	<1:0>	00	01 1MOhm pull-up resistor			
			10 – 10kOhm pull-up resistor			
			11 – 100kOhm pull-down resistor			

		1	Datasneet for Tellink BLE SoC TLSR8266
Address	Mnemonic	Default Value	Description
			Wake up mux ANA_E<1> pull up/down controls
			00 No pull up/down resistor
afe3V_reg18	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<7:6>	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA E<2> pull up/down controls
			00 No pull up/down resistor
afe3V_reg19	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<1:0>	<1:0>	00	10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_E<3> pull up/down controls
			00 No pull up/down resistor
afe3V_reg19	pullupdown_ctrl	00	01 1MOhm pull-up resistor
<3:2>	<1:0>	00	10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
	pullupdown_ctrl <1:0>	00	Wake up mux ANA_E<4> pull up/down controls
afe3V_reg19			00 No pull up/down resistor
<5:4>			01 1MOhm pull-up resistor
			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_E<5> pull up/down controls
afe3V_reg19	pullupdown_ctrl		00 No pull up/down resistor
<7:6>	<1:0>	00	01 1MOhm pull-up resistor
			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_E<6> pull up/down controls
afe3V reg20	pullupdown_ctrl		00 No pull up/down resistor
<1:0>	<1:0>	00	01 1MOhm pull-up resistor
			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_E<7> pull up/down controls
afe3V_reg20	pullupdown_ctrl		00 No pull up/down resistor
<3:2>	<1:0>	00	01 1MOhm pull-up resistor
3.2	<1:0>		10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor
			Wake up mux ANA_F<0> pull up/down controls
afe3V_reg20	nullundown ctrl		00 No pull up/down resistor
<5:4>	pullupdown_ctrl <1:0>	00	01 1MOhm pull-up resistor
\3.7/			10 – 10kOhm pull-up resistor
			11 – 100kOhm pull-down resistor

Address	Mnemonic	Default Value	Description
afe3V_reg20 <7:6>	pullupdown_ctrl <1:0>	00	Wake up mux ANA_F<1> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor

7.2 SWM and SWS

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K supports Single Wire interface. SWM (Single Wire Master) and SWS (Single Wire Slave) represent the master and slave device of the single wire communication system developed by Telink. The maximum data rate can be up to 2Mbps.

7.3 I2C

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K embeds I2C hardware module, which could act as Master mode or Slave mode. I2C is a popular inter-IC interface requiring only 2 bus lines, a serial data line (SDA) and a serial clock line (SCL).

7.3.1 Communication protocol

Telink I2C module supports standard mode (100kbps), Fast-mode (400kbps) and Fast-mode plus (1Mbps) with restriction that system clock must be by at least 10x of data rate.

Two wires, SDA and SCL carry information between Master device and Slave device connected to the bus. Each device is recognized by unique address (ID). Master device is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. Slave device is the device addressed by a master.

Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resister. It's recommended to use the internal 10K pull-up resistor first. In

DS-TLSR8266-E31 73 Ver3.2.0

order to speed up the pull-up process, user can use external pull-up resistor with smaller resistance value (e.g. 3.3K or 4.7K) instead.

When the bus is free, both lines are HIGH. It's noted that data in SDA line must keep stable when clock signal in SCL line is at high level, and level state in SDA line is only allowed to change when clock signal in SCL line is at low level.

Figure 7-2 I2C timing chart

7.3.2 Register table

Table 7-4 Register configuration for I2C

Address	Name	R/W	Description	Reset Value
0x00	I2CSP	RW	12C master clock speed	0x13
0x01	I2CID	RW	[7:1] I2C ID	0x5c
0x02	12CMST	RW	[0]: master busy [1]: master packet busy [2]: master received status: 0 for ACK; 1 for NAK	
0x03	I2CSCT	RW	[0]: address auto increase enable[1]: I2C master enable[2] enable Mapping Mode	0x01
0x04	I2CAD	RW	[7:0] data buffer in master mode	0x5a
0x05	I2CDW	RW	[7:0] Data buffer in master mode	0xf1
0x06	I2CDR	RW	[7:0] Data buffer for Read or Write in master mode	0x00

DS-TLSR8266-E31 74 Ver3.2.0

				Reset
Address	Name	R/W	Description	Value
			[0]: launch ID cycle	
			[1]: launch address cycle	
			[2]: launch data write cycle	
0.07	IZCOLT	DVA	[3]: launch data read cycle	0,,00
0x07	12CCLT	RW	[4]: launch start cycle	0x00
			[5]: launch stop cycle	
			[6]: enable read ID	
			[7]: enable ACK in read command	
			[0]:host_rd_clear_en	
			[1]:host_cmd_irq_o:i2c host operation	
0x21	i2c status		have happened	0x01
UXZI	i2c_status		[2]:host_rd_tag_stat:i2c host	0.01
			operation have happened and is read	
			operation	
	X		[0]:write 1 clear software_irq	
			[1]:write 1 clear host_cmd_irq	
0x22	clear_stats		[2]:write 1 clear host_rd_tag_stat	
			[4]:write 1 set software_irq	
•			[5]write 1 clear ana_irq	
0x3e	Reg_host_map_adrl	R/W	Lower byte of Mapping mode buffer	0x80
UNDE	neg_nost_map_aun	11, 44	address	0,00
0x3f	Reg_host_map_adrh	R/W	Higher byte of Mapping mode buffer	0xd7
0,31	cg_nost_map_aum	17 77	address	OAU/
0x20	Reg_host_map_status	R	[6:0] I2C read address	0x00

7.3.3 I2C Slave mode

I2C module of the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K acts as Slave mode by default. I2C slave address can be configured via register I2CID (address 0x01) [7:1].

Figure 7-3 Byte consisted of slave address and R/W flag bit I2C slave mode supports two sub modes including Direct Memory Access (DMA) mode and Mapping mode, which is selectable via address 0x03[2].

In I2C Slave mode, Master could initiate transaction anytime. I2C slave module will reply with ACK automatically. To monitor the start of I2C transaction, user could set interrupt from GPIO for SCA or SCL.

7.3.3.1 DMA mode

In DMA mode, other devices (Master) could access (read/write) designated address in Register and/or SRAM of the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K according to I2C protocol. I2C module of the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K will execute the read/write command from I2C master automatically. But user needs to notice that the system clock shall be at least 10x faster than I2C bit rate.

The access address designated by Master is offset by 0x800000. In the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K, Register address starts from 0x800000 and SRAM address starts from 0x808000. For example, if Addr High(AddrH) is 0xaa and Addr Low (AddrL) is 0xcc, the real address of accessed data is 0x80aacc.

In DMA mode, Master could read/write data byte by byte. The designated access address is initial address and it supports auto increment by setting address 0x03[0] to 1b'1.

DS-TLSR8266-E31 76 Ver3.2.0

Read Format in DMA mode

Figure 7-4 Read format in DMA mode

Write Format in DMA mode

Figure 7-5 Write format in DMA mode

7.3.3.2 Mapping mode

Mapping mode could be enabled via setting register I2CSCT (address 0x03)[2] to 1b'1.

In Mapping mode, data written and read by I2C master will be redirected to specified 128-byte buffer in SRAM. User could specify the initial address of the buffer by configuring registers reg_host_map_adrl (address 0x3e, lower byte) and reg_host_map_adrh (address 0x3f, higher byte). The first 64-byte buffer is for written data and following 64-byte buffer is for read data. Every time the data access will start from the beginning of the Write-buffer/Read-buffer after I2C stop condition occurs. The last accessed data address could be checked in register reg_host_map_status (address 0x20) [6:0] which is only updated after I2C STOP occurs.

Read Format in mapping mode

Figure 7-6 Read format in Mapping mode

DS-TLSR8266-E31 77 Ver3.2.0

Write Format in mapping mode

Figure 7-7 Write format in Mapping mode

7.3.4 I2C Master mode

Address 0x03[1] should be set to 1b'1 to enable I2C master mode for the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K.

Address 0x00 serves to set I2C Master clock: F_{I2C} = (System Clock/(address 0x73[7:4]+1)) / (4 *clock speed configured in address 0x00). Since address 0x73[7:4] is set as 1 by default, the default F_{I2C} equals System Clock / (8 * address 0x00). If 0x73[7:4] is set as 0, F_{I2C} will change to System Clock / (4 * address 0x00).

A complete I2C protocol contains START, Slave Address, R/W bit, data, ACK and STOP. Slave address could be configured via address 0x01[7:1].

I2C Master could send START, Slave Address, R/W bit, data and STOP by configuring address 0x07. I2C master will send enabled cycles with correct sequence.

Address 0x02 serves to indicate whether Master/Master packet is busy, as well as Master received status. Bit[0] will be set to 1 when one byte is being sent, and the bit can be automatically cleared after a start signal/ address byte/acknowledge signal/data /stop signal is sent. Bit[1] is set to 1 when the start signal is sent, and the bit will be automatically cleared after the stop signal is sent. Bit[2] indicates whether to succeed in sending acknowledgement signal.

7.3.4.1 I2C Master Write transfer

I2C Master has 3 byte buffer for write data, which are I2CAD (0x04), I2CDW (0x05) and I2CDR (0x06). Write transfer will be completed by I2C master module.

For example, to implement an I2C write transfer with 3 byte data, which contains START, Slave Address, Write bit, ack from Slave, 1st byte, ack from slave, 2nd byte, ack from slave, 3rd byte, ack from slave and STOP, user needs to configure I2C slave

DS-TLSR8266-E31 78 Ver3.2.0

address to I2CID (0x01) [7:1], 1st byte data to I2CAD, 2nd byte data to I2CDW and 3rd byte to I2CDR. To start I2C write transfer, I2CCLT (0x07) is configured to 0x3f. I2C Master will launch START, Slave address, Write bit, load ACK to I2CMST (0x02) [2], send I2CAD data, load ACK to I2CMST[2], send I2CDW data, load ACK to I2CMST[2], send I2CDR data, load ACK to I2CMST[2] and then STOP sequentially.

For I2C write transfer whose data is more than 3 bytes, user could split the cycles according to I2C protocol.

7.3.4.2 I2C Master Read transfer

I2C Master has one byte buffer for read data, which is I2CDR (0x06). Read transfer will be completed by I2C Master.

For example, to implement an I2C read transfer with 1 byte data, which contains START, Slave Address, Read bit, Ack from Slave, 1st byte from Slave, Ack by master and STOP, user needs to configure I2C slave address to I2CID (0x01) [7:1]. To start I2C read transfer, I2CCLT (0x07) is configured to 0xf9. I2C Master will launch START, Slave address, Read bit, load ACK to I2CMST (0x02) [2], load data to I2CDR, reply ACK and then STOP sequentially.

For I2C read transfer whose data is more than 1 bytes, user could split the cycles according to I2C protocol.

7.3.5 I2C and SPI Usage

I2C hardware and SPI hardware modules in the chip share part of the hardware, as a result, when both hardware interfaces are used, the restrictions listed within this section need to be taken into consideration.

I2C and SPI hardware cannot be used as Slave at the same time. I2C Slave mode and SPI Master mode cannot be used at the same time. I2C Master mode and SPI Slave mode cannot be used at the same time.

I2C and SPI can be used as Master at the same time only when specific GPIO pins are configured as I2C and SPI pins, respectively. Please refer to corresponding SDK instructions for details.

DS-TLSR8266-E31 79 Ver3.2.0

7.4 SPI

The TLSR8266/TLSR8266F512/TLSR8266F1K embeds SPI (Serial Peripheral interface), which could act as Master mode or Slave mode. SPI is a high-speed, full-duplex and synchronous communication bus requiring 4 bus lines including a chip select (CS) line, a data input (DI) line, a data output (DO) line and a clock (CK) line.

7.4.1 Register table

Table 7-5 Register configuration for SPI

Address	Name	R/W	Description	Reset Value
0x08	SPIDAT	RW	SPI data access	
0x09	SPICT	RW	[0]: p_csn [1]: enable master mode [2]: spi data output disable [3]: 1 for read command; 0 for write command [4]: address auto increase [5]: share_mode [6]: busy status	11
0x0a	SPISP	RW	[6:0]: SPI clock speed [7]: SPI function mode, p_csn, p_scl, p_sda and p_sdo function as SPI if 1	05
0x0b	SPIMODE	RW	[0]: inverse SPI clock output [1]: dat delay half clk	0
0x0c	MSPIDAT	RW	Memory SPI data access	
0x0d	MSPICT	RW	[0]: p_mcsn [1]: rsvd [2]: continuous mode	11

DS-TLSR8266-E31 80 Ver3.2.0

Address	Name	R/W	Description	Reset Value
			[3]: 1 for read command; 0 for write	
			command	
			[4]: address auto increase	
0x0e	MSPIRA	RW	Memory SPI read command ID	0b
0x0f	MSPIMODE	RW	[0]: dual data mode	0
			[1]: dual address mode	
			[7:2]: MSPI clock speed	

7.4.2 SPI Master mode

SPI for the TLSR8266/TLSR8266F512/TLSR8266F1K supports both master mode and slave mode and acts as slave mode by default. Address 0x09 bit[1] should be set to 1b'1 to enable SPI Master mode.

Register SPISP is to configure SPI pin and clock: setting address 0x0a bit[7] to 1 is to enable SPI function mode, and corresponding pins can be used as SPI pins; SPI clock = system clock/((clock speed configured in address 0x0a bit[6:0] +1)*2).Address 0x08 serves as the data register. One reading/writing operation of 0x08 enables the SPI_CK pin to generate 8 SPI clock cycles.

Telink SPI supports four standard working modes: Mode 0~Mode 3. Register SPIMODE (address 0x0b) serves to select one of the four SPI modes:

Table 7-6 SPI mode

SPI mode CPOL/CPHA		SPIMODE register (Address 0x0b)
Mode 0	CPOL=0, CPHA=0	bit[0]=0, bit[1]=0
Mode 1	CPOL=0, CPHA=1	bit[0]=0, bit[1]=1
Mode 2	CPOL=1, CPHA=0	bit[0]=1, bit[1]=0
Mode 3	CPOL=1, CPHA=1	bit[0]=1, bit[1]=1

CPOL: Clock Polarity

When CPOL=0, SPI_CLK keeps low level in idle state;

When CPOL=1, SPI_CLK keeps high level in idle state.

SPI mode	CPOL/CPHA	SPIMODE register (Address 0x0b)				
CPHA: Clock Phase						
When CPHA=0, data is sampled at the first edge of clock period						
When CPHA=1,	data is sampled at the latter	edge of clock period				

Address 0x09 bit[0] is to control the CS line: when the bit is set to 1, the CS level is high; when the bit is cleared, the CS level is low. Address 0x09 bit[2] is the disabling bit for SPI Master output. When the bit is cleared, MCU writes data into address 0x08, then the SPI_DO pin outputs the data bit by bit during the 8 clock cycles generated by the SPI_CK pin. When the bit is set to 1b'1, SPI_DO output is disabled.

Address 0x09 bit[3] is the enabling bit for SPI Master reading data function. When the bit is set to 1b'1, MCU reads the data from address 0x08, then the input data from the SPI_DI pin is shifted into address 0x08 during the 8 clock cycles generated by the SPI_CK pin. When the bit is cleared, SPI Master reading function is disabled. Address 0x09[5] is the enabling bit for share mode, i.e. whether SPI_DI and SPI_DO share one common line.

Users can read address 0x09 bit[6] to get SPI busy status, i.e. whether the 8 clock pulses have been sent.

7.4.3 SPI Slave mode

SPI for the TLSR8266/TLSR8266F512/TLSR8266F1K acts as slave mode by default. SPI Slave mode support DMA. User could access registers of the TLSR8266/TLSR8266F512/TLSR8266F1K by SPI interface. It's noted that system clock of TLSR8266/TLSR8266F512/TLSR8266F1K shall be at least 5x faster than SPI clock for reliable connection. Address 0x0a should be written with data 0xa5 by the SPI host to activate SPI slave mode.

Address 0x09[4] is dedicated for SPI Slave mode and indicates address auto increment. SPI write command format and read command format are illustrated in Figure 7-8:

DS-TLSR8266-E31 82 Ver3.2.0

Figure 7-8 SPI write/read command format

7.4.4 I2C and SPI Usage

I2C hardware and SPI hardware modules in the chip share part of the hardware, as a result, when both hardware interfaces are used, certain restrictions apply. See

Section 7.3.5 I2C and SPI Usage for detailed instructions.

DS-TLSR8266-E31 83 Ver3.2.0

7.5 UART

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K embeds UART (Universal Asynchronous Receiver/Transmitter) to implement full-duplex transmission and reception. Both TX and RX interface are 4-layer FIFO (First In First Out) interface. Hardware flow control is also supported by the TLSR8266/TLSR8266F512/TLSR8266F1K via RTS and CTS (Note: TLSR8266F128 UART does not support hardware flow control since the RTS and CTS interface are not available).

Figure 7-9 UART communication

As shown in Figure 7-9, data to be sent is first written into TX buffer by MCU or DMA, then UART module transmits the data from TX buffer to other device via pin TX. Data to be read from other device is first received via pin RX and sent to RX buffer, then the data is read by MCU or DMA.

If RX buffer of the TLSR8266/TLSR8266F512/TLSR8266F512/TLSR8266F1K UART is close to full, the TLSR8266/TLSR8266F512/TLSR8266F1K will send a signal (configurable high or low level) via pin RTS to inform other device that it should stop sending data. Similarly, if the TLSR8266/TLSR8266F512/TLSR8266F1K receives a signal from pin CTS, it indicates that RX buffer of other device is close to full and the TLSR8266/TLSR8266F512/TLSR8266F1K should stop sending data.

DS-TLSR8266-E31 84 Ver3.2.0

Table 7-7 Register configuration for UART

Address	Name	R/W	Description	Reset Value
0x90	uart data buf0	R/W	write/read buffer[7:0]	
0x91	Uart_data_buf1	R/W	Write/read buffer[15:8]	
0x92	Uart data buf2	RW	Write/read buffer[23:16]	
0x93	Uart_data_buf3	R/W	Write/read buffer[31:24]	
0x94	uart_clk_div[7:0]	RW	uart clk div register:	0xff
0x95	Uart_clk_div[15:8]	R/W	uart_sclk = sclk/(uart_clk_div[14:0]+1) uart_clk_div[15]: 1:enable clock divider,0: disable.	0x0f
0x96	Uart ctrl0	R/W	[3:0] bwpc, bit width, should be larger than 2 Baudrate = uart_sclk/(bwpc+1) [4] rx dma enable [5] tx dma enable [6] rx interrupt enable [7]tx interrupt enable	0x0f
0x97	Uart_ctrl1	R/W	[0] cts select, 0: cts_i, 1: cts_i inverter [1]:cts enable, 1: enable, 0, disable [2]:Parity, 1: enable, 0 :disable [3]: even Parity or odd [5:4]: stop bit 00: 1 bit, 01, 1.5bit 1x: 2bits [6]: ttl [7] uart tx, rx loopback	0x0e
0x98	Uart_ctrl2	R/W	[3:0] rts trig level [4] rts Parity [5] rts manual value [6] rts manual enable [7] rts enable	0xa5
0x99	Uart_ctrl3	R/W	[3:0]: rx_irq_trig level [7:4] tx_irq_trig level	0x44
0x9a	R_rxtimeout_o[7:0]	R/W	The setting is transfer one bytes need cycles base on uart_clk. For example, if transfer one bytes (1start bit+8bits data+1 priority bit+2stop bits) total 12 bits, this register setting should be (bwpc+1)*12.	0x0f
0x9b	R_rxtimeout_o[9:8]	R/W	2'b00:rx timeout time is r_rxtimeout[7:0] 2'b01:rx timeout time is r_rxtimeout[7:0]*2 2'b10:rx timeout time is r_rxtimeout[7:0]*3 3'b11: rx timeout time is r_rxtimeout[7:0]*4 R_rxtimeout is for rx dma to decide the end of each transaction. Supposed the	0x00

DS-TLSR8266-E31 85 Ver3.2.0

Address	Name	D /\A/	Description	Reset
Address	Name	R/W	Description	Value
			interval between each byte in one	
			transaction is very short.	
0x9c	Buf_cnt	R	[3:0]: r_buf_cnt	
UX9C	Bui_ciit	I N	[7:4]:t_buf_cnt	
			[2:0] rbcnt	
			[3] irq	
0x9d	Uart_sts	R	[6:4]wbcnt	
			[6] write 1 clear rx	
			[7] rx_err, write 1 clear tx	

Addresses 0x90~0x93 serve to write data into TX buffer or read data from RX buffer.

Addresses 0x94~0x95 serve to configure UART clock.

Address 0x96 serves to set baud rate (bit[3:0]), enable RX/TX DMA mode (bit[4:5]), and enable RX/TX interrupt (bit[6:7]).

Address 0x97 mainly serves to configure CTS. Bit[1] should be set to 1b'1 to enable CTS. Bit[0] serves to configure CTS signal level. Bit[2:3] serve to enable parity bit and select even/odd parity. Bit[5:4] serve to select 1/1.5/2 bits for stop bit. Bit[6] serves to configure whether RX/TX level should be inverted.

Address 0x98 serves to configure RTS. Bit[7] and Bit[3:0] serve to enable RTS and configure RTS signal level.

Address 0x99 serves to configure the number of bytes in RX/TX buffer to trigger interrupt.

The number of bytes in RX/TX buffer can be read from address 0x9c.

DS-TLSR8266-E31 86 Ver3.2.0

8 PWM

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K supports up to 6-channel PWM (Pulse-Width-Modulation) output depending on package option. Each PWM#n has its corresponding inverted output at PWM#n_Npin.

8.1 Register table

Table 8-1 Register table for PWM

Address	Mnemonic	Туре	Description	Reset Value
			[0]: 0disable PWM0, 1enable PWM0	
			[1]: 0disable PWM1, 1enable PWM1	
			[2]: 0disable PWM2, 1enable PWM2	
0x780	x780 PWM_EN	R/W	[3]: 0disable PWM3, 1enable PWM3	0x00
			[4]: 0disable PWM4, 1enable PWM4	
			[5]: 0disable PWM5, 1enable PWM5	
0x781	PWM CLK	R/W	(PWM_CLK+1)*sys_clk	0x00
		-	[1:0]: 00-pwm0 normal mode	
			[1:0]: 01-pwm0 count mode	
0.700		DAM	[1:0]: 11-pwm0 IR mode	0.00
0x782	PWM_MODE	R/W	[3:2]: 00-pwm1 normal mode	0x00
			[3:2]: 01-pwm1 count mode	
			[3:2]: 11-pwm1 IR mode	
0x783	PWM_CC0	R/W	[5:0]:1 'b1 invert PWM output	0x00
0x784	PWM_CC1	R/W	[5:0]:1'b1 invert PWM_INV output	0x00
0x785	PWM_CC2	R/W	[5:0]:1'b1 PWM' pola,low level first	0x00
\rightarrow				
0x788	PWM_PHASE0	R/W	[7:0] bits 7-0 of PWM0's phase time	0x00
0x789	PWM_PHASE0	R/W	[15:8] bits 15-8 of PWM0's phase time	0x00
0x78a	PWM_PHASE1	R/W	[7:0] bits 7-0 of PWM1's phase time	0x00
0x78b	PWM_PHASE1	R/W	[7:8] bits 15-8 of PWM1's phase time	0x00
0x78c	PWM_PHASE2	R/W	[7:0] bits 7-0 of PWM2's phase time	0x00
0x78d	PWM_PHASE2	R/W	[15:8] bits 15-8 of PWM2's phase time	0x00
0x78e	PWM_PHASE3	R/W	[7:0] bits 7-0 of PWM3's phase time	0x00
0x78f	PWM_PHASE3	R/W	[15:8] bits 15-8 of PWM3's phase time	0x00
0x790	PWM_PHASE4	R/W	[7:0] bits 7-0 of PWM4's phase time	0x00
0x791	PWM_PHASE4	R/W	[15:8] bits 15-8 of PWM4's phase time	0x00
0x792	PWM_PHASE5	R/W	[7:0] bits 7-0 of PWM5's phase time	0x00
0x793	PWM_PHASE5	R/W	[15:8] bits 15-8 of PWM5's phase time	0x00

DS-TLSR8266-E31 87 Ver3.2.0

Address	Mnemonic	Туре	Description	Reset Value
0x794	PWM_TCMP0	R/W	[7:0] bits 7-0 of PWM0's high time or low time(if pola[0]=1)	0x00
0x795	PWM_TCMP0	R/W	[15:8] bits 15-8 of PWM0's high time or low time	0x00
0x796	PWM_TMAX0	R/W	[7:0] bits 7-0 of PWM0's cycle time	0x00
0x797	PWM_TMAX0	R/W	[15:8] bits 15-8 of PWM0's cycle time	0x00
0x798	PWM_TCMP1	R/W	[7:0] bits 7-0 of PWM1's high time or low time(if pola[1]=1)	0x00
0x799	PWM_TCMP1	R/W	[15:8] bits 15-8 of PWM1's high time or low time	0x00
0x79a	PWM_TMAX1	R/W	[7:0] bits 7-0 of PWM1's cycle time	0x00
0x79b	PWM_TMAX1	R/W	[15:8] bits 15-8 of PWM1's cycle time	0x00
0x79c	PWM_TCMP2	R/W	[7:0] bits 7-0 of PWM2's high time or low time(if pola[2]=1)	0x00
0x79d	PWM_TCMP2	R/W	[15:8] bits 15-8 of PWM2's high time or low time	0x00
0x79e	PWM_TMAX2	R/W	[7:0] bits 7-0 of PWM2's cycle time	0x00
0x79f	PWM_TMAX2	R/W	[15:8] bits 15-8 of PWM2's cycle time	0x00
0x7a0	PWM_TCMP3	R/W	[7:0] bits 7-0 of PWM3's high time or low time(if pola[3]=1)	0x00
0x7a1	PWM_TCMP3	R/W	[15:8] bits 15-8 of PWM3's high time or low time	0x00
0x7a2	PWM_TMAX3	R/W	[7:0] bits 7-0 of PWM3's cycle time	0x00
0x7a3	PWM_TMAX3	R/W	[15:8] bits 15-8 of PWM3's cycle time	0x00
0x7a4	PWM_TCMP4	R/W	[7:0] bits 7-0 of PWM4's high time or low time(if pola[4]=1)	0x00
0x7a5	PWM_TCMP4	R/W	[15:8] bits 15-8 of PWM4's high time or low time	0x00
0x7a6	PWM_TMAX4	R/W	[7:0] bits 7-0 of PWM4's cycle time	0x00
0x7a7	PWM_TMAX4		[15:8] bits 15-8 of PWM4's cycle time	0x00
0x7a8	PWM_TCMP5	R/W	[7:0] bits 7-0 of PWM5's high time or low time(if pola[5]=1)	0x00
0x7a9	PWM_TCMP5	R/W	[15:8] bits 15-8 of PWM5's high time or low time	0x00
0x7aa	PWM_TMAX5	R/W	[7:0] bits 7-0 of PWM5's cycle time	0x00
0x7ab	PWM_TMAX5	R/W	[15:8] bits 15-8 of PWM5's cycle time	0x00

USEMICONDOCTOR -		Datasheet for Telink BLE SoC		LONOZOO
Address	Mnemonic	Туре	Description	Reset Value
0x7ac	PWM_PNUM0	R/W	[7:0]PWM0 Pulse num in count mode and IR mode	0x00
0x7ad	PWM PNUM0	R/W	[15:8]	0x00
0x7ae	PWM_PNUM1	R/W	[7:0]PWM1 Pulse num in count mode	0x00
0.7.	DIAMA DAULAM	D 44/	and IR mode	0.00
0x7af	PWM_PNUM1	R/W	[15:8]	0x00
0x7b0	PWM_MASK	R/W	INT mask [0] PWM0 Pnum int 0: disable 1: Enable [1] PWM1 Pnum int 0: disable 1: Enable [2] PWM0 frame int 0: disable 1: Enable [3] PWM1 frame int 0: disable 1: Enable [4] PWM2 frame int 0: disable 1: Enable [5] PWM3 frame int 0: disable 1: Enable [6] PWM4 frame int 0: disable 1: Enable [7] PWM5 frame int 0: disable 1: Enable	0x00
0x7b1	PWM_INT	R/W	INT status ,write 1 to clear [0]:PWM0 pnum int(have sent PNUM pulse,PWM_NCNT==PWM_PNUM) [1]:PWM1 pnum int [2]:PWM0 cycle done int(PWM_CNT==PWM_TMAX) [3]:PWM1 cycle done int(PWM_CNT==PWM_TMAX) [4]:PWM2 cycle done int(PWM_CNT==PWM_TMAX) [5]:PWM3 cycle done int(PWM_CNT==PWM_TMAX) [6]:PWM4 cycle done int(PWM_CNT==PWM_TMAX) [7]:PWM5 cycle done int(PWM_CNT==PWM_TMAX)	0x00
			,	
0x7b4	PWM_CNT0	R	[7:0]PWM 0 cnt value	

Address	Mnemonic	Туре	Description	Reset
71441000		.,,,,	Dood.ip.io.i	Value
0x7b5	PWM_CNT0		[15:8]PWM 0 cnt value	
0x7b6	PWM_CNT1	R	[7:0]PWM 1 cnt value	
0x7b7	PWM_CNT1		[15:8]PWM 1 cnt value	
0x7b8	PWM_CNT2	R	[7:0]PWM 2 cnt value	
0x7b9	PWM_CNT2		[15:8]PWM 2 cnt value	
0x7ba	PWM_CNT3	R	[7:0]PWM 3 cnt value	
0x7bb	PWM_CNT3		[15:8]PWM 3 cnt value	
0x7bc	PWM_CNT4	R	[7:0]PWM 4 cnt value	
0x7bd	PWM_CNT4		[15:8]PWM 4 cnt value	
0x7be	PWM_CNT5	R	[7:0]PWM 5 cnt value	
0x7bf	PWM_CNT5		[15:8]PWM 5 cnt value	
0x7c0	PWM_NCNT0	R	[7:0]PWM0 pluse_cnt value	
0x7c1	PWM_NCNT0		[15:8]PWM0 pluse_cnt value	
0x7c2	PWM_NCNT1	R	[7:0]PWM1 pluse_cnt value	
0x7c3	PWM_NCNT1		[15:8]PWM1 pluse_cnt value	

8.2 Enable PWM

Register PWM_EN (address 0x780)[5:0] serves to enable PWM5~PWM0 respectively via writing "1" for the corresponding bits.

8.3 Set PWM clock

PWM clock derives from system clock. Register PWM_CLK (address 0x781) serves to set the frequency dividing factor for PWM clock. Formula below applies:

8.4 PWM waveform, polarity and output inversion

Each PWM channel has independent counter and 3 status including "Delay", "Count" and "Remaining". Count and Remaining status form a signal frame.

8.4.1 PWM waveform

When PWM#n is enabled, PWM#n enters Delay status. By default PWM#n outputs Low level at Delay status. The Delay status duration, i.e. Phase time, is

DS-TLSR8266-E31 90 Ver3.2.0

configured in register PWM_PHASE#n (address 0x788~0x793). Phase difference between PWM channels is allowed by different phase time configuration.

After Phase time expires, PWM#n exits Delay status and starts to send signal frames. First PWM#n is at Count status and outputs High level signal by default. When PWM#n counter reaches cycles set in register PWM_TCMP#n (address 0x794~0x795, 0x798~0x799, 0x79c~0x79d, 0x7a0~0x7a1, 0x7a4~0x7a5, 0x7a8~0x7a9), PWM#n enters Remaining status and outputs Low level till PWM#n cycle time configured in register PWM_TMAX#n (address 0x796~0x797, 0x79a~0x79b, 0x79e~0x79f, 0x7a2~0x7a3, 0x7a6~0x7a7, 0x7aa~0x7ab) expires.

An interruption will be generated at the end of each signal frame if enabled via register PWM_MASK (address 0x7b0[2:7]).

8.4.2 Invert PWM output

PWM#n and PWM#n_N output could be inverted independently via register PWM_CCO (address 0x783) and PWM_CC1 (address 0x784). When the inversion bit is enabled, the corresponding PWM channel waveform will be inverted completely.

8.4.3 Polarity for signal frame

By default, PWM#n outputs High level at Count status and Low level at Remaining status. When the corresponding polarity bit is enabled via register PWM_CC2 (address 0x785), PWM#n will output Low level at Count status and High level at Remaining status.

DS-TLSR8266-E31 91 Ver3.2.0

Figure 8-1 PWM output waveform chart

8.5 PWM mode

8.5.1 Select PWM mode

PWM0 and PWM1 support 3 modes, including Continuous (normal) mode, Counting mode, and IR mode. PWM2~PWM5 only support Continuous mode.

Register PWM_MODE (address 0x782) serves to select PWM0/PWM1 mode.

8.5.2 Continuous mode

PWM0~PWM5 all support Continuous mode. In this mode, PWM#n continuously sends out signal frames. PWM#n should be disabled via address 0x780 to stop it; when stopped, the PWM output will turn low immediately.

During Continuous mode, waveform could be changed freely. New configuration for PWM_TCMP#n and PWM_TMAX#n will take effect in the next signal frame.

A frame interruption will be generated (if enabled) after each signal frame is finished.

Figure 8-2 Continuous mode

DS-TLSR8266-E31 92 Ver3.2.0

8.5.3 Counting mode

Only PWM0 and PWM1 support Counting mode. In this mode, PWM#n (n=0,1) sends out specified number of signal frames which is defined as a pulse group. The number is configured via register PWM_PNUM0 (address 0x7ac~0x7ad) and PWM_PNUM1 (address 0x7ae~0x7af). After a pulse group is finished, PWM#n will be disabled automatically, and a Pnum interruption will be generated if enabled via register PWM_MASK (address 0x7b0[0:1]).

Figure 8-3 Counting mode

Counting mode also serves to stop IR mode gracefully. Refer to **section 8.5.4** for details.

8.5.4 IR mode

Only PWM0 and PWM1 support IR mode. In this mode, specified number of frames is defined as one pulse group. In contrast to Counting mode where PWM#n (n=0,1) stops after first pulse group finishes, PWM#n will constantly send pulse groups in IR mode.

During IR mode, waveform could also be changed freely. New configuration for PWM_TCMP#n and PWM_TMAX#n will take effect in the next pulse group.

To stop IR mode and complete current pulse group, user can switch PWM#n from IR mode to Counting mode so that PWM#n will stop after current pulse group is finished. If PWM#n is disabled directly via PWM_EN (0x780[0:1]), PWM#n output will turn Low immediately despite of current pulse group.

DS-TLSR8266-E31 93 Ver3.2.0

A frame interruption/Pnum interruption will be generated (if enabled) after each signal frame/pulse group is finished.

Figure 8-4 IR mode

8.6 PWM interrupt

There are 8 interrupt sources from PWM function. After each signal frame, PWM#n will generate a frame-done IRQ (Interrupt Request) signal. In Counting mode and IR mode, PWM0/PWM1 will generate a Pnum IRQ signal after completing a pulse group. Interrupt status can be cleared via register PWM_INT (address 0x7b1).

DS-TLSR8266-E31 94 Ver3.2.0

9 Keyscan

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K supports hardware Keyscan for power saving and relieves MCU power to handle other tasks instead of keeping scanning IO.

9.1 Register table

Table 9-1 Register table for Keyscan

Address	Mnemonic	Туре	Description	Reset Value
0x800	KS_COL_MSK0	RW	Keyscan column mask for pe[7:0]	00
			[7]: DI/I2C_SDA/ANA_E<7> (pe7)	
			[6]: CN/uart_rts/ANA_E<6> (pe6)	
			[5]: GP17/ANA_E<5> (pe5)	
			[4]: GP16/ANA_E<4> (pe4)	
			[3]: GP15/ANA_E<3> (pe3)	
			[2]: ANA_E<2> (pe2)	
		8	[1]: ANA_E<1> (pe1)	
			[0]: GP14/ANA_E<0> (pe0)	
0x801	KS_COL_MSK1	RW	Keyscan column mask for pd[7:0]	00
			[7]: GP13/ANA_D<7> (pd7)	
\			[6]: GP12/ANA_D<6>/Rbias_EXT (pd6)	
			[5]: GP11/ANA_D<5> (pd5)	
	Y		[4]: GP10/ANA_D<4> (pd4)	
2			[3]: GP9/PWM4/ANA_D<3> (pd3)	
			[2]: GP8/PWM3/ANA_D<2> (pd2)	
>			[1]: GP7/uart_cts/ANA_D<1> (pd1)	
			[0]: GP6/uart_rts/ANA_D<0> (pd0)	
0x802	KS_COL_MSK2	RW	Keyscan column mask for pc[7:0]	00
			[7]: GP5/uart_rx/ANA_C<7> (pc7)	

DS-TLSR8266-E31 95 Ver3.2.0

Address Mnemonic Type Description [6]: GP4/uart_tx/ANA_C<6> (pc6) [5]: GP3/PWM2_N/ANA_C<5> (pc5) [4]: PWM2/ANA_C<4> (pc4) [3]: GP2/PWM1/ANA_C<3> (pc3) [2]: PWM1_N/ANA_C<2> (pc2) [1]: GP1/PWM1_N/ANA_C<1> (pc1) [0]: PWM0/ANA_C<0> (pc0)	Reset Value
[5]: GP3/PWM2_N/ANA_C<5> (pc5) [4]: PWM2/ANA_C<4> (pc4) [3]: GP2/PWM1/ANA_C<3> (pc3) [2]: PWM1_N/ANA_C<2> (pc2) [1]: GP1/PWM1_N/ANA_C<1> (pc1) [0]: PWM0/ANA_C<0> (pc0)	
[4]: PWM2/ANA_C<4> (pc4) [3]: GP2/PWM1/ANA_C<3> (pc3) [2]: PWM1_N/ANA_C<2> (pc2) [1]: GP1/PWM1_N/ANA_C<1> (pc1) [0]: PWM0/ANA_C<0> (pc0)	
[3]: GP2/PWM1/ANA_C<3> (pc3) [2]: PWM1_N/ANA_C<2> (pc2) [1]: GP1/PWM1_N/ANA_C<1> (pc1) [0]: PWM0/ANA_C<0> (pc0)	
[2]: PWM1_N/ANA_C<2> (pc2) [1]: GP1/PWM1_N/ANA_C<1> (pc1) [0]: PWM0/ANA_C<0> (pc0)	
[1]: GP1/PWM1_N/ANA_C<1> (pc1) [0]: PWM0/ANA_C<0> (pc0)	
[0]: PWM0/ANA_C<0> (pc0)	
0x803 KS_COL_MSK3 RW Keyscan column mask for pa[7:0]	00
[7]: SWM/ANA_A<7> (pa7)	
[6]: GP19/PWM4_N/ANA_A<6> (pa6)	
[5]: PWM4/ANA_A<5> (pa5)	
[4]: GP18/PWM3_N/ANA_A<4> (pa4)	
[3]: reserved	
[2]: reserved	
[1]: PWM3/ANA_A<1> (pa1)	
[0]: reserved	
0x804 KS_ROW_SEL0 RW [4:0]: keyscan row select for row0	00
[7:5]: keyscan row select for row1[2:0]	
0x805 KS_ROW_SEL1 RW [1:0]: keyscan row select for row1[4:3]	00
[6:2]: keyscan row select for row2	
[7]: keyscan row select for row3[0]	
0x806 KS_ROW_SEL2 RW [3:0]: keyscan row select for row3[4:1]	00
[7:4]: keyscan row select for row4[3:0]	
0x807 KS_ROW_SEL3 RW [0]: keyscan row select for row4[4]	00
[5:1]: keyscan row select for row5	
[7:6]: keyscan row select for row6[1:0]	
0x808 KS_ROW_SEL4 RW [2:0]: keyscan row select for row6[4:2]	00

Address	Mnemonic	Туре	Description	Reset
				Value
			[7:3]: keyscan row select for row7	
0x809	KS_END_FLG	RW	Keyscan frame end flag	ff
0x80a	KS_EN	RW	[0]: Keyscan enable	07
			0: Disable, 1: Enable	
			[1]: Keyscan 32kHz clock enable	
			0: Disable, 1: Enable	
			[2]: Keyscan interrupt enable	
			0: Disable interrupt signal to IRQ	
			1: Enable interrupt signal to IRQ	
			[3]: Keyscan (column) input invert	
			0: positive edge trigger	
			1: Inverted as the negative edge trigger [4]: Keyscan output invert	
			0: Scan line IO (Row) output "High"	
			1: Scan line IO (Row) output "Low"	
			[5]: Keyscan scan mode select,	
			1'b0 for mode 0, 1'b1 for mode 1	
			Mode 0: Normal mode. Enter idle after scan is done	
			Mode 1: Debug mode. Scan all the time	
			[6]: Keyscan manually reset 1: Reset	
•			[7]: Reserved	
0x80b	KS_FRM_NUM	RW	[4:0]: Keyscan empty frame counter number	01
			Keyscan module will enter idle mode after	
	>		"KS_FRM_NUM" frames with no key input	
			counted	
			[7:5]: Reserved	
0x80c	KS_IRQ	RW	[0]: Keyscan interrupt Interrupt indicator:. Read as "1" indicates interrupt occurs Write "1" to clear this interrupt indicator	

			Datasneet for Tellrik BLE 300	
Address	Mnemonic	Туре	Description	Reset Value
			[7:6]: Reserved	
0x80d	KS_RPTR	R	[3:0]: Keyscan latched write pointer when	
			frame end	
			Latched write pointer with last frame end flag	
			[7:4]: Keyscan read pointer for key buffer	
0x80e	KS_WPTR	R	[3:0]: Keyscan write pointer for key buffer	
			Write pointer keeps going while keys are	
			scanned	
			[4]: Keyscan no key detect when in SCAN state	
			(Reserved, Internal status machine control only)	
			Indicator of no key detected after a scan ends	
			[5]: Keyscan key detect when in IDLE state	
			(Reserved, Internal status machine control	
			only)	
			[6]: Keyscan internal counter128 count enable (Reserved, Internal status machine control only)	
			[7]: Keyscan state, 1'b0 for IDLE, 1'b1 for SCAN	
0x80f	KS_GATED	R	[2:0]: Keyscan counter128[6:4]	
•			(Reserved, Internal status machine control	
			only)	
			[3]: Reserved	
			[4]: Keyscan 32kHz clock gated clear	
			(Reserved, Internal status machine control	
			only)	
			[5]: Keyscan 32kHz clock gated	
			(Reserved, Internal status machine control	
			only)	

			Datasheet for Tellrik BLE 30C	120110200
Address	Mnemonic	Туре	Description	Reset Value
			[6]: Keyscan internal counter16 count enable	
			(Reserved, Internal status machine control	
			only)	
			[7]: Reserved	
0x810	KS_KEY		Keyscan key value	
			This is a 16Byte FIFO buffer	
0x811	KS_LPTR		[4:0]: Keyscan loop pointer	
			(Reserved, Internal status machine control	
			only)	
			Internal Column scanning loop indicator	
			[7:5]: Reserved	
0x812	KS_CNT128		[6:0]: Keyscan counter128 count value	
			Internal counter (Reserved)	
			[7]: Reserved	
0x813	KS_CNT16	X	[3:0]: Keyscan counter16 count value	
			Internal counter (Reserved)	
			[6:4]: Keyscan latched row number	
			(Reserved, Internal status machine control	
♦			only)	
			[7]: Reserved	

9.2 Keyscan enable

Address 0x80a[0] should be set to 1b'1 to enable Keyscan module.

Keyscan module is using 32kHz clock, which could be enabled by setting address 0x80a[1] to 1b'1.

To enable Keyscan interrupt, both 0x80a[2] and corresponding keyscan interrupt mask bit should be set to 1b'1.

9.3 Keyscan IO configuration

Users must assign IOs for Rows and Columns to use Keyscan Module. There are up to 29 pins which can be configured as either Keyscan Column IOs or Row IOs. Refer to Table 9-1 to find out available pins. Other multiplexing functions with higher priority of these pins must be disabled.

Registers KS_COL_MSK0~KS_COL_MSK3 (address 0x800~0x803) serve to configure IOs for Columns. Mask bits corresponding to IOs needed for Columns should be enabled, while other mask bits should be disabled.

Table 9-2 IO configuration for Columns

Pin	Column IO configuration	Scanned Column number in FIFO
GP14/ANA_E<0>	KS_COL_MSK0 (0x800)[0]	0
ANA_E<1>	KS_COL_MSK0 (0x800) [1]	1
ANA_E<2>	KS_COL_MSK0 (0x800) [2]	2
GP15/ANA_E<3>	KS_COL_MSK0 (0x800) [3]	3
GP16/ANA_E<4>	KS_COL_MSK0 (0x800) [4]	4
GP17/ANA_E<5>	KS_COL_MSK0 (0x800) [5]	5
CN/uart_rts/ANA_E<6>	KS_COL_MSK0 (0x800) [6]	6
DI/I2C_SDA/ANA_E<7>	KS_COL_MSK0 (0x800) [7]	7
GP6/uart_rts/ANA_D<0>	KS_COL_MSK1 (0x801) [0]	8
GP7/uart_cts/ANA_D<1>	KS_COL_MSK1 (0x801) [1]	9
GP8/PWM3/ANA_D<2>	KS_COL_MSK1 (0x801) [2]	10
GP9/PWM4/ANA_D<3>	KS_COL_MSK1 (0x801) [3]	11
GP10/ANA_D<4>	KS_COL_MSK1 (0x801) [4]	12
GP11/ANA_D<5>	KS_COL_MSK1 (0x801) [5]	13
GP12/ANA_D<6>/Rbias_EXT	KS_COL_MSK1 (0x801) [6]	14
GP13/ANA_D<7>	KS_COL_MSK1 (0x801) [7]	15
PWM0/ANA_C<0>	KS_COL_MSK2 (0x802) [0]	16

DS-TLSR8266-E31 100 Ver3.2.0

Pin	Column IO configuration	Scanned Column
PIII	Columnio Comiguration	number in FIFO
GP1/PWM1_N/ANA_C<1>	KS_COL_MSK2 (0x802) [1]	17
PWM1_N/ANA_C<2>	KS_COL_MSK2 (0x802) [2]	18
GP2/PWM1/ANA_C<3>	KS_COL_MSK2 (0x802) [3]	19
PWM2/ANA_C<4>	KS_COL_MSK2 (0x802) [4]	20
GP3/PWM2_N/ANA_C<5>	KS_COL_MSK2 (0x802) [5]	21
GP4/uart_tx/ANA_C<6>	KS_COL_MSK2 (0x802) [6]	22
GP5/uart_rx/ANA_C<7>	KS_COL_MSK2 (0x802) [7]	23
	KS_COL_MSK3 (0x803) [0]	24
PWM3/ANA_A<1>	KS_COL_MSK3 (0x803) [1]	25
	KS_COL_MSK3 (0x803) [2]	26
	KS_COL_MSK3 (0x803) [3]	27
GP18/PWM3_N/ANA_A<4>	KS_COL_MSK3 (0x803) [4]	28
PWM4/ANA_A<5>	KS_COL_MSK3 (0x803) [5]	29
GP19/PWM4_N/ANA_A<6>	KS_COL_MSK3 (0x803) [6]	30
SWM/ANA_A<7>	KS_COL_MSK3 (0x803) [7]	31

Registers KS_ROW_SEL0~KS_ROW_SEL4 (address 0x804~0x808) serve to configure IOs for 8 Keyscan rows.

Table 9-3 IO configuration for Rows

Row number	Keyscan Module configuration	IO Ports assignment
0	KS_ROW_SEL0 (0x804)[4:0]	0: GP14/ANA_E<0>
1	KS_ROW_SEL1 (0x805) [1:0]	
	KS_ROW_SEL0 (0x804) [7:5]	7: DI/I2C_SDA/ANA_E<7>
2	KS_ROW_SEL1 (0x805) [6:2]	8: GP6/uart_rts/ANA_D<0>
3	KS_ROW_SEL2 (0x806) [3:0]	
3	KS_ROW_SEL1 (0x805) [7]	15: GP13/ANA_D<7>
4	KS_ROW_SEL3 (0x807) [0]	16: PWM0/ANA_C<0>
4	KS_ROW_SEL2 (0x806) [7:4]	
5	KS_ROW_SEL3 (0x807) [5:1]	23: GP5/uart_rx/ANA_C<7>
6	KS_ROW_SEL4 (0x808) [2:0]	24: rsvd
0	KS_ROW_SEL3 (0x807) [7:6]	25: PWM3/ANA_A<1>
7	KS_ROW_SEL4 (0x808) [7:3]	 31: SWM/ANA_A<7>

DS-TLSR8266-E31 101 Ver3.2.0

9.4 Keyscan flow and frame

By default Keyscan module is in idle status with clock gated to save power. Once Keyscan module is triggered by positive/negative edges, which could be configured by address 0x80a[3], Keyscan module enters scan mode and clock is ungated. Keyscan module starts to scan Rows and Columns frame by frame. After completion of each non-empty (with key press scanned) and empty frame (with no key press scanned) in scan mode, interrupt request signal is asserted and address 0x80c[0] will be raised to high.

Keyscan module will enter idle mode from scan mode after specified number of empty frames. The number can be set in KS_FRM_NUM (address 0x80b) and it is recommended to be larger than 2. Keyscan module will enter scan mode if triggered again. Keyscan module keeps working until enabling bit (address 0x80a[0]) is disabled, which could only be cleared manually.

Figure 9-1 Keyscan flow and frame

In each frame, Keyscan module scans row-by-row. Each Row scan takes 16 cycles. Each frame takes 128 (8*16) cycles. With 32kHz clock, each frame takes around 4ms. Scanned key matrix is stored in KS KEY FIFO buffer.

DS-TLSR8266-E31 102 Ver3.2.0

Figure 9-2 Keyscan Module Scaning sequence in a frame

DS-TLSR8266-E31 103 Ver3.2.0

9.5 Keyscan FIFO buffer

KS_KEY (address 0x810) is a 16bytes FIFO ring buffer. The higher 3 bits of each byte indicate Row number and lower 5 bits indicates Column number. End flag, which could be assigned in KS_END_FLG (address 0x809), will be inserted into buffer once each frame completes even if there is no key scanned. KS_WPTR (address 0x80e) keeps rolling while scanning is ongoing. To fetch stored key matrix, user could read data between read pointer (KS_RPTR 0x80d[7:4]) and latched write pointer (KS_RPTR 0x80d [3:0]). Latched writer pointer updates after each frame completes.

Figure 9-3 Keyscan FIFO buffer

DS-TLSR8266-E31 104 Ver3.2.0

10 Quadrature Decoder

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K supports three quadrature decoders (QDEC) which are designed mainly for applications such as wheel. Each QDEC implements debounce function to filter out jitter on the two phase inputs, and generates smooth square waves for the two phase.

QDEC0~ QDEC2 correspond to channels 0~2 respectively. In this section, QDEC0 corresponding to channel 0 is introduced in detail as an example.

10.1 Input pin selection

The QDECO supports two phase input; each input is selectable from the 32 pins of PortE, PortD, PortC and PortA via setting address 0xd4[4:0] (for channel a)/0xd5[4:0] (for channel b).

Table 10-1 Input pin selection

Address 0xd4[4:0]	Pin
0	ANA_E<0>
1	ANA_E<1>
2	ANA_E<2>
3	ANA_E<3>
4	ANA_E<4>
5	ANA_E<5>
6	ANA_E<6>
7	ANA_E<7>
8	ANA_D<0>
9	ANA_D<1>
10	ANA_D<2>
11	ANA_D<3>
12	ANA_D<4>
13	ANA_D<5>
14	ANA_D<6>
15	ANA_D<7>
16	ANA_C<0>
17	ANA_C<1>
18	ANA_C<2>
19	ANA_C<3>
20	ANA_C<4>

DS-TLSR8266-E31 105 Ver3.2.0

Address 0xd4[4:0]	Pin
21	ANA_C<5>
22	ANA_C<6>
23	ANA_C<7>
24	ANA_A<0>
25	ANA_A<1>
26	ANA_A<2>
27	ANA_A<3>
28	ANA_A<4>
29	ANA_A<5>
30	ANA_A<6>
31	ANA_A<7>

10.2 Common mode and double accuracy mode

Address 0xdd serves to select common mode or double accuracy mode.

For each wheel rolling step, two pulse edges (rising edge or falling edge) are generated.

If address 0xdd[0] is cleared to select common mode, the COUNTO (i.e. counter of QDECO) value is increased/decreased by 1 only when the same rising/falling edges are detected from the two phase signals. COUNTO value is cleared once read from address 0xd0.

Figure 10-1 Common mode

If address 0xdd[0] is set to 1b'1 to select double accuracy mode, the COUNTO (i.e. counter of QDECO) value is increased/decreased by 1 on each rising/falling edge of the two phase signals; the COUNTO will be increased/decreased by 2 for one wheel rolling.

DS-TLSR8266-E31 107 Ver3.2.0

Figure 10-2 Double accuracy mode

10.3 QDEC interrupt

Address 0xda[0] serves to enable or mask QDEC interrupt.

If address 0xda[0] is set to 1b'1 to enable QDEC interrupt, whenever counter value changes, an QDEC IRQ is asserted and address 0xdb[0] is set to 1b'1 automatically. Writing 1b'1 to address 0xdb[0] can clear the interrupt flag bit.

10.4 QDEC reset

Address 0xdc[0] serves to reset the QDECs. All counter values are cleared to zero.

10.5 Other configuration

The QDEC supports hardware debouncing. Address 0xd3[3:0] serves to set filtering window duration. All jitter with period less than the value will be filtered out and thus does not trigger count change.

Address 0xd3[4] serves to set input signal initial polarity.

DS-TLSR8266-E31 108 Ver3.2.0

Address 0xd3[7:5] serves to enable shuttle mode. Shuttle mode allows non-overlapping two phase signals as shown in the following figure.

Figure 10-3 Shuttle mode

10.6 Register table

Table 10-2 Register table for QDEC

Address	Mnemonic	Туре	Description	Reset value	
0xd0	QDEC_COUNTO	R	QDEC0 Counter value (read to clear):		
UXUU	QDEC_COONTO	IV.	Channel 0 Pulse edge number		
0xd1	QDEC COUNT1	R	QDEC1 Counter value (read to clear):		
OXUI	QDEC_COONTI	11	Channel 1 Pulse edge number		
0xd2	QDEC COUNT2	R	QDEC2 Counter value (read to clear):		
UNUZ	QDEC_COON12	•	Channel 2 Pulse edge number		
			[3:0]:		
			filter time (can filter 2^n *sclk*2 width		
			de glitch)		
0xd3	QDEC_CC	R/W	[4]: pola, input signal pola		
		7	0: no signal is low, 1: no signal is high		
			[7:5]:shuttle mode		
			1 to enable shuttle mode		
0xd4	QDEC_CHNA0	R/W	[4:0] QDEC0 input pin select for channel a	0x00	
UXU4	QDEC_CITIVAO	11,7 00	choose 1 of 32 pins for input channel a	0,00	
0xd5	QDEC_CHNB0	R/W	[4:0] QDEC0 input pin select for channel b	0x01	
OXUS	QDEC_CITIVDO	11,7 00	choose 1 of 32 pins for input channel b	0.01	
0xd6	QDEC CHNA1	R/W	[4:0] QDEC1 input pin select for channel a	0x00	
UAUU	QDEC_CHIVAL	11,7 00	choose 1 of 32 pins for input channel a	0,00	
0xd7	QDEC_CHNB1	R/W	[4:0] QDEC1 input pin select for channel b	0x01	
UXU7	QDEC_CHINDI	11/ VV	choose 1 of 32 pins for input channel b	0,01	
0xd8 QDEC CHNA2		R/W	[4:0] QDEC2 input pin select for channel a	0x00	
UXUO	QDLC_CITIVAZ	11/ 11/	choose 1 of 32 pins for input channel a	UXUU	
0xd9	QDEC CHNB2	R/W	[4:0] QDEC2 input pin select for channel b	0x01	
UAUJ	QDLC_CITIOD2	11/ 00	choose 1 of 32 pins for input channel b	0,01	

DS-TLSR8266-E31 109 Ver3.2.0

Address	Mnemonic	Туре	Description	Reset value
			[0]Interrupt mask	
0xda	0xda QDEC_MASK		1: enable	0x00
			0: mask	
Ovedb	ODEC INT	R	[0]Interrupt flag	
UXUD	0xdb QDEC_INT		Write 1 to clear	
Oxdc	QDEC_RST	R/W	[0]Write 1 to reset QDEC	0x0
0xdd	QDEC_DOUBLE	R/W	Enable double accuracy mode	0x0

DS-TLSR8266-E31 110 Ver3.2.0

11 ADC

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K integrates one ADC module, which can be used to sample battery voltage, temperature sensor and external analog input.

11.1 ADC clock

ADC clock derives from FHS. Please refer to **section 4.4.1** for ADC clock configuration.

Note: ADC clock must be lower than 5M when ADC reference voltage is selected as AVDD and must be lower than 4M when ADC reference voltage is selected as 1.4V.

11.2 Set period

In general, the ADC Control Module in Telink MCU divides the whole sampling and conversion process into three parts via time-division: Misc corresponding to auto channel 0, L (Left) corresponding to auto channel 1, and R (Right) corresponding to auto channel 2.

Figure 11-1 Sampling and analog-to-digital conversion process

In TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K, only Misc channel is supported.

DS-TLSR8266-E31 111 Ver3.2.0

Addresses 0x30 and 0x31 serve to set lower byte and higher byte of the period (Sampling time plus converting time) for Misc:

Period of Misc = {ADCMAXMH, ADCMAXML} * system clock period.

Since the TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K doesn't support audio input, address 0x33[5:4] shall always be set as 2b'00 to skip the period for L (Left) and R (Right) channel, i.e., Auto channel 1&2.

11.3 Select ADC input range

Address 0x2b[1:0] serves to set reference voltage for Misc: 1.4V or AVDD. ADC maximum input range is the same as the ADC reference voltage.

11.4 Select resolution and sampling time

Address 0x3c[5:3] serves to set resolution for Misc: 7, 9, 10, 11, 12, 13, 14bits. ADC data format is always 14bit no matter the conversion bit is set. For example, 12 bits resolution indicates higher 12 bits are valid bits and the lower 2 bits are invalid bits.

Address 0x3c[2:0] serves to set sampling time for Misc: 3, 6, 9, 12, 18, 24, 48 or 144 * ADC clock period. The lower sampling cycle, the shorter ADC convert time.

11.5 Select input mode and channel

The ADC supports two input modes and up to 12 input channels.

Address 0x2c serves to select input mode and channel for Misc.

Address 0x2c[6:5] serves to select differential mode or single-end input mode for Misc.

When address 0x2c[6:5] is set as 2b'00 to select single-end mode, 0x2c[4:0] serves to select input channel.

When address 0x2c[6:5] is set as 2b'01/10/11, differential input mode is selected, the corresponding channel identified by address 0x2c[6:5] is selected as negative

DS-TLSR8266-E31 112 Ver3.2.0

input, and the positive input is selectable via address 0x2c[4:0]. For example, if address 0x2c is set as 0x21 (i.e. 8b'00100001), $ANA_D<0>$ and $ANA_D<5>$ are selected as positive-end and negative-end input of differential mode; actual input signal for ADC is the difference of $V_{ANA}_{D<0>}$ and $V_{ANA}_{D<5>}$ (i.e. $V_{ANA}_{D<0>}$ minus $V_{ANA}_{D<5>}$).

11.6 Enable auto mode and output

Address 0x33[3] serves to enable Misc auto sampling and conversion mode. If address 0x33 is set as "0x10" (i.e. 8b'00010000) to select manual mode, one operation of writing address 0x35 with data "0x80" manually starts a sampling and conversion process.

Address 0x33[2] should be set as 1b'0 to disable ADC audio output, and 0x33[5:4] should be set as 2b'00 to select "no audio".

Address 0x2c[7] serves to set data format during Misc period. Real time output data can be read from addresses 0x38~0x39.

11.7 ADC done signal

ADC done signal is selectable via address 0x33[7:6]. Generally 0x33[7:6] is set to "2b'01" (or 2b'11) to select "rising" method, which means a rising edge of "ADC Valid" signal indicates one analog-to-digital conversion process is done.

11.8 ADC status

ADC busy flag bit, i.e. address 0x3a[0], indicates whether ADC is busy.

DS-TLSR8266-E31 113 Ver3.2.0

11.9 Register table

Table 11-1 Register table related to SAR ADC

Address	Mnemonic	R/W	Description	Default value
0x2b	ADCREF	RW	SAR ADC reference voltage selection [1:0]: Misc [3:2]: L 00: 1.4V 01: AVDD	0x0b
0x2c	ADCMUXM	RW	[4:0]: Analog input selection bit for Misc 00000: no input 00001: D[0] 00010: D[1] 00011: D[2] 00100: D[3] 00101: D[4] 00110: D[5] 00111: C[2] 01000: C[3] 01001: C[4] 01010: C[5] 01011: C[6] 01100: C[7] 01101: PGA right channel 01110: PGA left channel 01111: temp sensor positive 10000: temp sensor negative 10001: VBUS detect 10010: ground others: reserved [6:5]: Differential analog input selection bits for Misc 00: single-end 01: D[5] as inverting input 10: C[3] as inverting input 11: PGA left channel as inverting input 17: data format setting during Misc period 0: unsigned 1: bit<14> is inverted	0x02
0x2d	ADCMUXL	RW	[4:0]: Analog input selection bit for L [6:5]: Differential analog input selection	0x00

DS-TLSR8266-E31 114 Ver3.2.0

Address	Mnemonic	R/W	Description	Default value
			bits for L [7]: data format setting during L period Refer to 0x2c	
0x2e	ADCMUXR	RW	Reserved	0x01
0x2f	ADCRES	RW	[2:0]: SAR ADC resolution selection for L	0x01
0x30	ADCMAXML	RW	ADC auto channel 0 (Misc) period low byte	0xe0
0x31	ADCMAXMH	RW	ADC auto channel 0 (Misc) period high byte Period = { ADCMAXMH, ADCMAXML} system clocks	0x00
0x32	ADCMAXLR	RW	ADC auto channel 1 (L)& 2 period Period = ADCMAXLR * 16 system clocks	0x06
0x33	ADCCTRL	RW	[0]: enable auto channel 1 (L) [2]: enable audio ADC output [3]: enable auto channel 0 (Misc) [5:4]: audio ADC mode 00: no audio; 01: mono; others: reserved [7:6]: ADC done signal select 01,11: rising; 10: falling	0x27
0x38	ADCOUTPUT0	R	ADC data lower bits	
0x39	ADCOUTPUT1	R	ADC data higher bits	
0x3a	ADCBUSY	R	ADC status [0]: ADC busy flag	
0x3c	ADCMRESSAMP	RW	[5:3]: SAR ADC resolution selection for Misc 000: 7 001: 9 010: 10 011: 11 100: 12 101: 13 110: 14 111: 14 [2:0]: Select number of clock cycles for ADC Misc sampling time 000: 3 cycles 001: 6 cycles 010: 9 cycles 011: 12 cycles	0x00

Address	Mnemonic	R/W	Description	Default value
			100: 18 cycles	
			101: 24 cycles	
			110: 48 cycles	
			111: 144 cycles	
0x3d	ADCLSAMP	RW	[2:0]: Select number of clock cycles for	0x00
OX30 ADCLSAIVIP		KVV	ADC L sampling time	UXUU

12 PGA

The TLSR8266/TLSR8266F512/TLSR8266F128/TLSR8266F1K integrates a PGA (Programmable Gain Amplifier) module.

The PGA serves to amplify the input signals from specified pins before ADC sampling.

Figure 12- 1PGA block diagram

12.1 Left/Right channel enabling

The PGA supports two channels including left channel and right channel.

Analog register 1P8V_reg06<1> serves to enable/disable left and right channel of PGA at the same time.

12.2 Input channel selection

Input channel for PGA left channel is selectable via digital register 0x28[7:4]: ANA_C<3>, ANA_C<1>.

Input channel for PGA right channel is selectable via digital register 0x28[3:0]: ANA_C<2>, ANA_C<0>.

DS-TLSR8266-E31 117 Ver3.2.0

12.3 Gain setting

The PGA left/right channel consists of two stages of amplifiers. Each stage has configurable gain. For pre-amplifier, there are two gain options: 0dB, 20dB. For post-amplifier, gain is configurable from 0dB to 22.5dB with step of 2.5dB.

Analog register 1P8V_reg06<7:6> serves to set the gain of pre-amplifier for PGA left channel.

Analog register 1P8V_reg07<7:4> serves to set the gain of post-amplifier for PGA left channel.

Analog register 1P8V_reg06<5:4> serves to set the gain of pre-amplifier for PGA right channel.

Analog register 1P8V_reg07<3:0> serves to set the gain of post-amplifier for PGA right channel.

12.4 PGA output

Analog register 1P8V_reg06<3, 2> serve to enable/disable PGA left/right channel output respectively.

12.5 Register table

Table 12-1 Analog register table related to PGA

Address	Mnemonic	Default Value	Description
			Power down right and left channel
			PGA
1P8V_reg06<1>	pga_PD_R&L	1	1: Power down
			0: Enable
			Default: 1
			Mute right channel PGA
1001/ rog06/2>	nga MutaP		1: Mute
1P8V_reg06<2>	pga_MuteR	1	0: Unmute
			Default: 1
1D01/ rog06<2>	nga Mutal	1	Mute left channel PGA
1P8V_reg06<3>	pga_MuteL	1	1: Mute

DS-TLSR8266-E31 118 Ver3.2.0

Address	Mnemonic	Default Value	Description
			0: Unmute
			Default: 1
			PGA right channel pre-amp gain setting
			Setting Gain (dB)
1001/	pga_gain_pre_R	01	11 N/A
1P8V_reg06<5:4>	<1:0>	01	10 20
			01 20
			00 0
			Default: 01
			PGA left channel pre-amp gain
			setting
			Setting Gain (dB)
1P8V_reg06<7:6>	pga_gain_pre_L	01	11 N/A
1F8V_Teg00<7.0>	<1:0>		10 20
			01 20
			00 0
			Default: 01
			PGA right channel post-amp gain
			setting
			Setting Gain
	pga_gain_post_R		1010 - 1111 N/A
1P8V_reg07<3:0>	<3:0>	0000	1001 22.5dB
	13.07		1000 20dB
			0000 OdB
			Default: 0000
			PGA left channel post-amp gain
* *			setting
			Setting Gain
	pga_gain_post_L		1010 - 1111 N/A
1P8V_reg07<7:4>	<3:0>	0000	1001 22.5dB
	3.07		1000 20dB
			0000 OdB
			Default: 0000

Table 12- 2 Digital register related to PGA

		[7,4] DCA [
		Setting 0 1	eft channel vin select Gain (dB) close all C[3]	
PGASELI	RW	2 others [3:0] PGA r	C[1] N/A ight channel vin select	0
		Setting 0 1 2	Gain (dB) close all C[2] C[0]	
	PGASELI	PGASELI RW	PGASELI RW [3:0] PGA r Setting 0 1	PGASELI RW [3:0] PGA right channel vin select Setting Gain (dB) 0 close all 1 C[2] 2 C[0]

13 Key Electrical Specifications

13.1 Absolute maximum ratings

Table 13-1 Absolute Maximum Ratings

Characteristics	Sym.	Min.	Max	Unit	Test Condition
Supply Voltage	V_{Bus}	-0.5	6.5	V	Only VBUS pin is tested, and all VDD pins leave open
Supply Voltage	VDD	-0.3	3.9	٧	All AVDD and DVDD pin must have the same voltage
Voltage on Input Pin	V _{In}	-0.3	VDD+ 0.3	V	* O,
Output Voltage	V_{Out}	0	VDD	V	.6
Storage temperature Range	T _{Str}	-65	150	°C	
Soldering Temperature	T_{SId}		260	°C	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

13.2 Recommended operating condition

Table 13-2 Recommended operation condition

Item	Sym.	Min	Тур.	Max	Unit	Condition
	VDD	1.9	3.3	3.6	٧	With external flash
Chip Power-supply Voltage	טטע	2.7	3.3	3.6	٧	With internal flash
	V_{Bus}	4.5	5.0	5.5	٧	
Supply rise time (from 1.6V to 2.8V)	t _R			0.5	ms	
Operating Temperature Pange	T _{Opr}	-40		85	°C	ET versions
Operating Temperature Range		-40		125	°C	AT versions

DS-TLSR8266-E31 121 Ver3.2.0

13.3 DC characteristics

Table 13-3 DC characteristics

Item	Sym.	Min	Тур.	Max	Unit	Condition
			12	-	m A	Continuous Tx transmission,
To assume at		-	13		mA	OdBm output power
Tx current	l _{Tx}	10			Continuous Tx transmission,	
		-	19	-	mA	maximum output power
Rx current	I _{Rx}	-	13	-	mA	Continuous Rx reception
Cusp and Cumpart	I _{Susp}	-	20	-	uA	IO wakeup
Suspend Current	I _{Susp}	-	22	-	uA	Timer wakeup
Deep sleep current	I _{Deep}	-	0.7	-	uA	

^{*}Note: All tests above are done at room temperature (T=25°C).

13.4 AC characteristics

Table 13-4 AC Characteristics

Item	Sym.	Min	Тур.	Max	Unit	Condition				
Digital inputs/outputs										
Input high voltage	VIH	0.7VDD		VDD	V					
Input law voltage	VIL	VSS		0.3VD	V					
Input low voltage	VIL	V33		D	V					
Output high voltage	VOH	VDD-0.3		VDD	V					
Output low voltage	VOL	VSS		0.3	V					
USB characteristics										
USB Output Signal		1.3		2.0	V					
Cross-over Voltage	V_{Crs}	1.3	-	2.0	V					

DS-TLSR8266-E31 122 Ver3.2.0

SEMICONDUCTOR 2			Datasheet for Telink BLE SoC TLSR8266			
Item	Sym.	Min	Тур.	Max	Unit	Condition
RF performance						
Item		Min	Тур	Max	Unit	
	RF_Rx performance					
Sensitivity	1Mbps	-93	-92	-90	dBm	
Frequency Offset Tolerance		-300		+300	kHz	
Co-channel rejection			-7		dB	
	±1 MHz offset		12		dB	
	-2 MHz offset		47		dB	
In-band blocking	+2 MHz offset		40		dB	
rejection	-3 MHz offset		48		dB	
	+3 MHz offset		50		dB	
	>4MHz offset		52		dB	
Image rejection			44		dB	
RF_Tx performance						
Output power		3.8	7	-	dBm	
Modulation 20dB bandwidth			1000		kHz	

Item	Sym.	Min	Тур.	Max	Unit	Condition
		12MHz/16N	1Hz crysta	nl	1	,
Nominal frequency (parallel resonant)	f _{NOM}		12		MHz	
Frequency tolerance	f_{TOL}			±20	Ppm	
Load capacitance	C _L	5	12	18	рF	Programmable on chip load cap
Equivalent series resistance	ESR		50	100	ohm	(O)
		32.768kH	z crystal			
Nominal frequency (parallel resonant)	f _{NOM}		32.768		kHz	
Frequency tolerance	f_{TOL}		À	±100	Ppm	
Load capacitance	C _L	6		12.5	pF	Programmable on chip load cap
Equivalent series resistance	ESR		50	80	koh m	
32MHz RC oscillator						
Nominal frequency	f _{NOM}		32		MHz	
Frequency tolerance	f _{TOL}		1		%	On chip calibration
32kHz RC oscillator						
Nominal frequency	f _{NOM}		32		kHz	
Frequency tolerance	f _{TOL}		0.03		%	On chip calibration
Calibration time			3		ms	

Item	Sym.	Min	Тур.	Max	Unit	Condition
	ADC					
Differential nonlinearity	DNL		3.3		LSB	
Integral nonlinearity	INL		6.7		LSB	
Signal-to-noise and distortion ratio (fin=1kHz, fS=16kHz)	SINAD		56		dB	
Spurious free dynamic range (fin=1kHz, fS=16kHz)	SFDR		63		dB	M
Effective Number of Bits	ENOB		10.5		bits	
Sampling frequency	Fs			250 200	kHz kHz	AVDD reference 1.4V reference

14 Applications

14.1 Application example for the TLSR8266F512ET32

14.1.1 Schematic

Figure 14- 1Schematic for the TLSR8266F512ET32

DS-TLSR8266-E31 127 Ver3.2.0

14.1.2 Layout

Figure 14-2 Layout for the TLSR8266F512ET32

(Left: Top view; Right: Bottom view)

14.1.3 BOM (Bill of Material)

Table 14-1 BOM table for the TLSR8266F512ET32

Quantity	Reference	Value		
2	C6	1.5pF		
2	C7	1.5pF		
	C26	1uF		
	C27	1uF		
5	C28	1uF		
	C30	1uF		
	C31	1uF		
1	C29	10uF		
1	J1	RF_Shielding		
1	L1	2.2nH		
1	L7	3.9nH		
1	U4	TLSR8266F512ET32		
1	Y1	12MHZ - 12pF - +/-20ppm		

DS-TLSR8266-E31 128 Ver3.2.0

14.2 Application example for the TLSR8266F128ET24

14.2.1 Schematic

Figure 14-3 Schematic for the TLSR8266F128ET24

DS-TLSR8266-E31 129 Ver3.2.0

14.2.2 Layout

Figure 14-4 Layout for the TLSR8266F128ET24

(Up: Top view; Down: Bottom view)

DS-TLSR8266-E31 130 Ver3.2.0

14.2.3 BOM (Bill of Material)

Table 14-2 BOM table for the TLSR8266F128ET24

Quantity	Reference	Value		
1	C2	1uF		
	C3	0.1uF		
3	C5	0.1uF		
	C6	0.1uF		
	C4	1uF		
3	C7	1uF		
	C8	1uF		
1	D1	Green		
1	D2	Blue		
1	D3	Red		
1	D4	White		
1	J2	USB_SMT_4PIN		
1	J3	MM8130		
1	L8	1.5nH		
1	L9	2.2nH		
2	R2	33		
	R3	33		
1	R4	10		
	R5	750R		
3	R7	750R		
	R8	750R		
1	R6	3.3K		
1	SW1	But1		
1	SW2	But2		
1	U3	TLSR8266F128ET24		
1	Y3	12MHZ - 12pF - +/-20ppm		

DS-TLSR8266-E31 131 Ver3.2.0