Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Мишутин Дмитрий Валерьевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2024 г.

Содержание

1	Пос	тановка задачи	2
2	Teo	рия	2
3	Pea	лизация	2
4	Рез	ультаты	3
5	Вын	воды	7
6	Лит	ература	7
7	При	ложения	8
Список иллюстраций			
	1	Исходная интервальная выборка $X,(Y_1)$	3
	2	Точечная линейная регрессия выборки $X,(Y_1)$	4
	3	Информационное множество выборки $X,(Y_1)$	
	4	1 / 1 / 2/	5
	5	Исходная интервальная выборка $X, (Y_2)$	5
	6	/ \ -/	6
	7	Информационное множество выборки $X,(Y_2)$	6
	8	Коридор совместных зависимостей выборки $X,(Y_2)$	7

1 Постановка задачи

Имеется выборка (X, (Y)). X – множество вещественных чисел, Y – множество интервалов. Необходимо восстановить функциональную зависимость.

2 Теория

Для выборки (X,(Y)), $X=\{x_i\}_{i=1}^n, Y=\{y_i\}_{i=1}^n$ $(x_i$ - точеный, y_i - интервальный) линейная регрессионная модель имеет вид:

$$y = \beta_0 + \beta_1 x \tag{1}$$

Для оценки параметров необходимо решить систему вида:

$$\underline{y_i} \le y = \beta_0 + \beta_1 x_i \le \overline{y_i}$$

$$i = 1 \quad n \tag{2}$$

С учетом применения метода вариации неопределенности имеем задачу минимизации:

$$\sum_{i=1}^{n} w_i \to \min$$

$$\operatorname{mid} y_i - w_i \operatorname{rad} y_i \le \beta_0 + \beta_1 x_i \le \operatorname{mid} y_i + w_i \operatorname{rad} y_i$$

$$w_i \ge 0, i = 1..n$$
(3)

Информационным множеством называется множество всех значений параметров β_0 , β_1 , удовлетворяющих 1. Минимальные и максимальные значения параметров в информационном множестве определяют внешнюю оценку параметров модели.

Коридором совместных зависимостей называется множетсво всех модельных функций совместных с исходными данными.

3 Реализация

Из языка Python 3.12.2 были использованы следующие модули:

- "numpy" генерация множества чисел;
- "matplotlib.pyplot" построение и отображение графиков;
- "scipy" для выполнения научных и инженерных расчётов.

4 Результаты

Данные были взяты из файлов -0_25V/-0_25V_13.txt, -0_5V/-0_5V_13.txt, +0_25V/+0_25V_13.txt и +0_5V/+0_5V_13.txt. С коррекцией при помощи вспомогательных данных из файла $ZeroLine/ZeroLine_13.txt$. Набор значений X=[-0.5,-0.25,0.25,0.5]. Набор значений Y_1 определяется как интервальная мода данных из соответсвующих файлов (изначальные данные обыинтерваливаются с $eps=2^{-5}$). Набор значений Y_2 определяется как обынтерваленное среднее из соответсвующих файлов ($eps=2^{-5}$).

Начнем с Y_1 . Итоговая выборка:

Рис. 1: Исходная интервальная выборка $X, (Y_1)$

Точечная линейная регрессия имеет вид:

Рис. 2: Точечная линейная регрессия выборки $X, (Y_1)$

Точечные оценки параметров: $\beta_0=0.0, \beta_1=0.86236.$ Построим информационное множество:

Рис. 3: Информационное множество выборки $X,(Y_1)$

Интервальные оценки параметров: $\beta_0 = [-0.01635, 0.00856], \beta_1 = [0.82965, 0.89135].$

Коридор совместных зависимостей:

Рис. 4: Коридор совместных зависимостей выборки $X,(Y_1)$

Теперь Y_2 . Итоговая выборка:

Рис. 5: Исходная интервальная выборка $X, (Y_2)$

Точечная линейная регрессия имеет вид:

Рис. 6: Точечная линейная регрессия выборки $X, (Y_2)$

Точечные оценки параметров: $\beta_0=0.0003, \beta_1=0.85377.$ Построим информационное множество:

Рис. 7: Информационное множество выборки $X,(Y_2)$

Интервальные оценки параметров: $\beta_0 = [-0.02984, 0.03146], \beta_1 = [0.78907, 0.91407].$

Коридор совместных зависимостей:

Рис. 8: Коридор совместных зависимостей выборки $X, (Y_2)$

5 Выводы

Из полученых результатов можно заметить, что оценки выборки X, (Y_1) имеют примерно вдвое меньшую неопределенность, чем выборки X, (Y_2) . Для обеих выборок точечные оценки параметров модели лежат внутри информационного множества, и как следствие, линия регрессии лежит внутри коридора совместных зависимостей.

6 Литература

- Баженов А.Н. «Интервальный анализ. Основы теории и учебные примеры: учебное пособие»;
- Баженов А.Н. «Естественнонаучные и технические применения интервального анализа: учебное пособие»;
- Баженов А.Н. Репозиторий "Students" на GitHub;

7 Приложения

Исходники лабораторной работы выложены на GitHub.