Dstl Safe Passage: Detecting and Classifying Vehicles in Aerial Imagery

Vladimir Iglovikov

Physics, PhD

Kaggle Master

Historical overview

December 2016 - March 2017

Kaggle: Dstl Satellite Imagery Feature Detection

Roman Solovyov, Artur Kuzin 2nd place (\$30,000) Vladimir Iglovikov, Sergey Mushinskiy 3rd place (\$20,000)

- blog posts (rus, eng)
- meetup talks (rus, eng)
- paper (next week)

Organizers spent \$465,000 and got state of the art solutions that they can not use.

Historical overview

March 2017

- Press release: Dstl's Kaggle competition has been a great success
- DSTL pays BAE Systems to create their own Kaggle: https://www.datasciencechallenge.org and start two competitions (Computer Vision and Natural Language Processing)
- Problems are pretty good, but rules of the competitions are discriminatory (Everyone can participate, but only limited set of people can claim prize money)
- We got verbal and written promise from organizers that rules will be changed.

Problem Statement

- RGB satelite images
- 2000x2000
- 5cm / pixel
- 600 train
- 600 test
- 9 classes

Problem Statement: class distribution

Figure by Vladislav Kassym

Problem Statement

One quarter of one image

• train: 600 images

• test: 600 images

• 2000x2000

• 5 cm / pixel

Evaluation Metric

$$Jaccard = rac{TP}{TP + FN + FP}$$

Class	Radius
motorcycle	12 pixels (60 cm)
cars	30 pixels (150 cm)
van	40 pixels (200 cm)
bus	45 pixels (225 cm)

Motivation

Why participate?

- Very clean balanced dataset.
- Knowledge in Image Detection.
- Good amount of data. (Not too much, not too little.)
- No data leaks.
- Codebase will be reused in:
 - Kaggle: Cervix
 - Kaggle: Seals
 - ImageNet 2017

Why not participate?

- No way to claim prize money.
- No community.
- Unknown platform. (Hard to sell results.)

Step 1: bounding boxes

Before After

What network architecture to use?

Speed/accuracy trade-offs for modern convolutional object detectors

What network architecture to use?

Faster RCNN

- Slow to train
- Slow to predict
- Accurate in general
- Accurate on small objects

SSD

- Fast to train
- Fast to predict
- Less accurate in general
- Pretty bad with small objects

=>

For this task winner: Faster RCNN

Faster RCNN

What framework to use?

Keras + TensorFlow

- Existing Faster RCNN implementation
- Familiar code base
- Good documentation
- Slow
- Pain to parallelize

MXNet

- Existing Faster RCNN implementation
- Unfamiliar code base
- OK documentation
- Fast
- Zero pain with parallelization

=>

For this task winner: MXNET

Solution

Code - example from MXNet repository

Train

- Faster RCNN + VGG16 base
- random crops 1000x1000
- D4 group augmentation

8 samples/sec

Test

- overlapping tiles
- D4 group augmentation
- Non-Maximum Suppression

20 samples/sec

Sources of mistakes: close- packed objects

Sources of mistakes: trains like buses

Sources of mistakes: debris as cars

Main source of mistakes: misclassification

gray car in the shade <=> black car gray car in the sun <=> white car blue car in the shade <=> black car white hatchback <=> white van hatchback <=> sedan

=>

inconsistent labeling low predictive power

Top 10 entries

RANK	USER	PUBLIC	PRIVATE	DATE	TREND	ENTRIES
1	gbarbadillo	0.8662	0.8713	17 May 2017, 6:55PM BST		84
2	ternaus	0.8581	0.8569	17 May 2017, 4:47PM BST	~~~	31
3	kit1	0.8633	0.8527	16 May 2017, 8:12PM BST		36
4	jane.ostin	0.8490	0.8477	14 May 2017, 8:40PM BST	,	22
5	<u>Xi_Lian</u>	0.8493	0.8455	16 May 2017, 11:33PM BST		8
6	<u>Kyle</u>	0.8320	0.8369	16 May 2017, 4:05PM BST		48
7	<u>vkassym</u>	0.8333	0.8325	14 May 2017, 8:22PM BST		17
8	dirocks	0.8142	0.8189	17 May 2017, 10:46PM BST	\	20
9	cogitae	0.7964	0.8054	17 May 2017, 9:03PM BST	Lamber.	48
10	<u>codewarrior</u>	0.8043	0.8000	04 May 2017, 11:09PM BST		16

Summary

- Centers of cars => bounding boxes (manually)
- Faster RCNN + VGG16, MXnet
- D4 group train and test time augmentation

Hardware

- Intel i7
- 32Gb RAM
- 2 x Titan X (Pascal)

Many thanks to:

- Sergey Mushinskiy
- Vladislav Kassym
- Sergey Belousov