5

6

7

8

9

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1 Claim 1 (currently amended): A method for communicating at least two source signals 2 from a first location toward a second location, the method comprising: 3 a) generating a local oscillator signal for each of the at least two source signals; b) selecting one or more signals from among the at least two source signals to define one or more selected source signals; c) separately mixing each of the one or more selected source signals with a corresponding local oscillator signal to generate mixed selected signals; d) combining the mixed selected signals to generate a transmission signal; and e) transmitting the transmission signal towards the second location.
 - Claim 2 (original): The method of claim 1 further comprising:
 - converting the transmission signal to an optical signal before transmitting the transmission signal towards the second location.
- Claim 3 (currently amended): The method of claim 1 wherein the aet step of generating a 1 2 local oscillator signal for each of the at least two source signals includes:
- 3 i) accepting a pilot-carrier;
- 4 ii) generating a first local oscillator signal based on the a pilot carrier; and
- iii) generating an nth local oscillator signal by dividing the first local 5
- oscillator signal by 2ⁿ⁻¹, where n is a whole number greater than one. 6
- 1 Claim 4 (original): The method of claim 3 wherein the pilot carrier has a frequency of
- 2 approximately 120 MHz.
- 1 Claim 5 (currently amended): The method of claim 3 wherein the act of generating a first
- 2 local oscillator signal based on the pilot carrier is performed by dividing the pilot carrier
- 3 by a selected one of two and three whole number greater than one and less than four.

- Claim 6 (original): The method of claim 3 wherein the each of the local oscillator signals 1 has a square waveform. 2
- Claim 7 (original): The method of claim 3 wherein the nth local oscillator signal has less 1
- noise than the (n-1)th local oscillator signal. 2
- Claim 8 (original): The method of claim 3 wherein the one of the at least two source 1
- signals associated with the nth local oscillator signal requires less bandwidth than the one 2
- of the at least two source signals associated with the (n-1)th local oscillator signal. 3
- Claim 9 (currently amended): A method for communicating at least two source signals 1 from a first location to a second location, the method comprising: 2
- a) generating a source local oscillator signal for each of the at least two source signals;
 - b) selecting one or more signals from among the at least two source signals to define one or more selected source signals;
 - c) separately mixing each of the one or more selected source signals with a corresponding source local oscillator signal to generate mixed selected signals;
 - d) combining the mixed selected signals to generate a transmission signal;
- e) transmitting the transmission signal to the second location; 10
- f) receiving the transmitted transmission signal at the second location; 11
- g) splitting the received transmission signal to generate mixed selected signals; 12
- h) generating a destination local oscillator signal for each of the at least two 13 14 source signals;
- i) separately demodulating each of the mixed selected signals using 15 corresponding ones of the destination local oscillator signals, to generate the 16 selected source signals. 17
 - Claim 10 (original): The method of claim 9 further comprising: 1
 - converting the transmission signal to an optical signal before transmitting the 2 transmission signal towards the second location; and 3

7	- converting the received transmission signal to an electrical signal before
5	splitting it.
1	Claim 11 (currently amended): The method of claim 9 wherein the act of generating a
2	source local oscillator signal for each of the at least two source signals includes:
3	i)-accepting a pilot carrier;
4	ii) generating a first source local oscillator signal based on a the pilot
5	carrier; and
6	iii) generating an nth source local oscillator signal by dividing the first
7	source local oscillator signal by 2 ⁿ⁻¹ ,
8	and wherein the act of generating a destination local oscillator signal for each of the at
9	least two source signals includes:
\ 10	i) accepting the pilot carrier;
11	ii) generating a first destination local oscillator signal based on the pilot
X12	carrier; and
) D(13	iii) generating an nth destination local oscillator signal by dividing the first
14	destination local oscillator signal by 2 ⁿ⁻¹ ,
15	where n is a whole number greater than one.
1	Claim 12 (original): The method of claim 11 wherein the pilot carrier has a frequency of
2	approximately 120 MHz.
1	Claim 13 (original): The method of claim 9 wherein the source and destination local
2	oscillator signals are coherent.
1	
1	Claim 14 (currently amended): A method for receiving at least two source signals,
2	transmitted from a first location, by a second location, the method comprising:
. 3	a) receiving a transmitted signal at the second location;
4	b) splitting the received signal to generate mixed selected signals;
5	c) generating a local oscillator signal for each of the at least two source signals;
6	and

2

′	d) separately demodulating each of the mixed selected signals using
8	corresponding ones of the second local oscillator signals, to generate the selected
9	source signals.
1	Claim 15 (currently amended): The method of claim 14, wherein the received
2	transmitted signal is an optical signal, the method further comprising:
3	- converting the received transmitted signal to an electrical signal before it is
4	split.
1	Claim 16 (currently amended): The method of claim 14 wherein the act of generating a
2	local oscillator signal for each of the at least two source signals includes:
3	i) accepting a pilot carrier;
4	ii) generating a first local oscillator signal based on the a pilot carrier; and
5	iii) generating an nth local oscillator signal by dividing the first local
6	oscillator signal by 2 ⁿ⁻¹ ,
7	where n is a whole number greater than one.
1	Claim 17 (original): The method of claim 16 wherein the pilot carrier has a frequency of
2	approximately 120 MHz.
1	Claim 18 (currently amended): The method of claim 16 wherein the act of generating a
2	first local oscillator signal based on the pilot carrier is performed by dividing the pilot
3	carrier by selected one of two and three whole number greater than one and less than
4	four.
1	Claim 19 (original): The method of claim 16 wherein the each of the local oscillator
2	signals has a square waveform.

Claim 20 (original): The method of claim 16 wherein the nth local oscillator signal has

less noise than the (n-1)th local oscillator signal.

3

1	Claim 21 (original): The method of claim 16 wherein the one of the at least two source
2	signals associated with the nth local oscillator signal requires less bandwidth than the one
3	of the at least two source signals associated with the (n-1) th local oscillator signal.
1	Claim 22 (currently amended): A transmitter for transmitting selected ones of at least
2	two source signals, the transmitter comprising:
3	a) an n-stage ripple counter for generating a local oscillator signal for each of the
4	at least two source signals;
5	b) a selector for selecting one or more signals from among the at least two source
6	signals to define one or more selected source signals;
7	c) a plurality of mixers, the plurality of mixers
8	i) having a first set of inputs coupled with the selector for accepting the
9	one or more selected source signals,
10	ii) having a second set of inputs coupled with the n-stage ripple counter
11	for accepting the local oscillator signals,
12	iii) being adapted to separately mix each of the selected source signals
13	with a corresponding one of the local oscillator signals to generate mixed
14	selected signals, and
15	iv) having a set of outputs for providing the mixed selected signals; and
16	d) an n-way combiner, the n-way combiner having a set of inputs coupled with
17	the set of outputs of the mixer, and being adapted to combine the mixed selected
18	signals to generate a transmission signal.
1	Claim 23 (original): The transmitter of claim 22 further comprising:
2	e) an electrical to optical converter, coupled with the n-way combiner and being
3	adapted to convert the transmission signal to an optical signal.
1	Claim 24 (currently amended): The transmitter of claim 22 wherein the ripple counter:
2	i) generates a first local oscillator signal based on a pilot carrier; and

ii) generates an nth local oscillator signal by dividing the first local

oscillator signal by 2ⁿ⁻¹,

5	where n is a whole number greater than one.
1	Claim 25 (original): The transmitter of claim 24 wherein the pilot carrier has a frequency
2	of approximately 120 MHz.
1	Claim 26 (original): The transmitter of claim 24 wherein the ripple counter generates the
2	n th local oscillator signal with less noise than the (n-1) th local oscillator signal.
1	Claim 27 (original): The transmitter of claim 24 wherein the one of the at least two
2	source signals associated with the nth local oscillator signal requires less bandwidth than
3	the one of the at least two source signals associated with the (n-1) th local oscillator signal.
1	
1	Claim 28 (currently amended): A receiver for receiving at least two source signals,
2	transmitted from a first location, the receiver comprising:
3	a) an n-way splitter, the n-way splitter
4	i) having an input for accepting a signal,
5	ii) being adapted to split the received signal to generate mixed selected
6	signals, and
7	iii) having a set of outputs for providing the mixed selected signals;
8	b) an n-stage ripple counter, the n-stage ripple counter
9	i) adapted to generate a local oscillator signal for each of the at least two
10	source signals, and
11	ii) having a set of outputs for providing the local oscillator signals; and
12	d) a plurality of mixers, the plurality of mixers
13	i) having a first set of inputs coupled with the set of outputs of the n-way
14	splitter,
15	ii) having a second set of inputs coupled with the set of outputs of the
16	n-stage ripple counter, and
17	iii) adapted to separately demodulate each of the mixed selected signals at

its first second of inputs using corresponding ones of the second local

19	oscillator signals at its second set of inputs, to generate the selected source
20	signals.
1	Claim 29 (currently amended): The receiver of claim 28 wherein the n-stage ripple
2	counter is adapted to:
3	i) generate a first local oscillator signal based on a pilot carrier; and
4	ii) generate an n th local oscillator signal by dividing the first local
5	oscillator signal by 2 ⁿ⁻¹ ,
6	where n is a whole number greater than one.
1	Claim 30 (original): The receiver of claim 29 wherein the pilot carrier has a frequency of
2	approximately 120 MHz.
ì	Claim 31 (original): The receiver of claim 29 wherein the each of the local oscillator
/2	signals generated by the n-stage ripple counter has a square waveform.
1	Claim 32 (original): The receiver of claim 29 wherein n-stage ripple counter generates
2	the n th local oscillator signal with less noise than the (n-1) th local oscillator signal.
1	Claim 33 (original): The receiver of claim 29 wherein the one of the at least two source
2	signals associated with the n th local oscillator signal requires less bandwidth than the one
3	of the at least two source signals associated with the (n-1) th local oscillator signal.
1	Claim 34 (currently amended): A method for communicating at least two downstream
2	signals from a first location to a second location and for communicating at least two
3	upstream signals from the second location to the first location, the method comprising:
4	a) generating a downstream source local oscillator signal for each of the at least
5	two downstream signals;
6	b) selecting one or more signals from among the at least two downstream signals

to define one or more selected downstream signals;

Con

8 .	c) separately mixing each of the one or more selected downstream signals with a
9	corresponding downstream source local oscillator signal to generate mixed
10	selected downstream signals;
11	d) combining the mixed selected downstream signals to generate a downstream
12	transmission signal;
13	e) transmitting the downstream transmission signal to the second location;
14	f) receiving the transmitted downstream transmission signal at the second
15	location;
16	g) splitting the received downstream transmission signal to generate mixed
17	selected downstream signals;
18	h) generating a downstream destination local oscillator signal for each of the at
19	least two downstream signals;
20	i) separately demodulating each of the mixed selected downstream signals using
21	corresponding ones of the downstream destination local oscillator signals, to
/ 22	generate the selected downstream signals;
23	j) generating an upstream source local oscillator signal for each of the at least two
24	upstream signals;
25	k) separately mixing each of the upstream signals with a corresponding source
26	upstream local oscillator signal to generate mixed upstream signals;
27	l) combining the mixed upstream signals to generate an upstream transmission
28	signal;
29	m) transmitting the upstream transmission signal to the first location;
30	n) receiving the transmitted upstream transmission signal at the first location;
31	o) splitting the received upstream transmission signal to generate mixed upstream
32	signals;
33	p) generating a upstream destination local oscillator signal for each of the at least
34	two upstream signals; and
35	q) separately demodulating each of the mixed upstream signals using
36	corresponding ones of the upstream destination local oscillator signals, to
37	generate the upstream signals.

SUX XX

1	Claim 35 (original): The method of claim 34 further comprising:
2	- converting the downstream transmission signal to a first optical signal before
3	transmitting the transmission signal towards the second location; and
4	- converting the upstream transmission signal to a second optical signal before
5	transmitting the transmission signal towards the first location,
6	wherein the first and second optical signals have different wavelengths.
1	Claim 36 (currently amended): The method of claim 34 wherein the act of generating a
2	downstream source local oscillator signal for each of the at least two downstream signals
3	includes:
4	i) accepting a pilot carrier;
5	ii) -generating a first downstream source local oscillator signal by dividing
6	the a pilot carrier by a first number; and
7	iii) -generating an nth downstream source local oscillator signal by dividing
8	the first downstream source local oscillator signal by 2 ⁿ⁻¹ ,
9	wherein the act of generating a downstream destination local oscillator signal for
0	each of the at least two source signals includes:
1	i) accepting the pilot carrier;
2	ii) generating a first downstream destination local oscillator signal by
13	dividing the pilot carrier by the first number; and
4	iii) generating an nth downstream destination local oscillator signal by
15	dividing the first downstream destination local oscillator signal by 2 ⁿ⁻¹ ,
6	wherein the act of generating an upstream source local oscillator signal for each
17	of the at least two upstream signals includes:
8	i) accepting the pilot carrier;
19	ii)-generating a first upstream source local oscillator signal by dividing
20	the pilot carrier by a second number, the second number being different
21	from the first number; and
22	iii) generating an nth upstream source local oscillator signal by dividing
23	the first upstream source local oscillator signal by 2 ⁿ⁻¹ , and

	24	wherein the act of generating an upstream destination local oscillator signal for
	25	each of the at least two upstream signals includes:
	26	i) accepting the pilot carrier;
, λ	27	ii) generating a first upstream destination local oscillator signal by
$X \setminus X$	28	dividing the pilot carrier by the second number; and
(ن د ا	29	iii) generating an nth upstream destination local oscillator signal by
$(j^{\mathcal{S}} l_{\mathcal{X}})$	30	dividing the first upstream destination local oscillator signal by 2 ⁿ⁻¹ ,
O	31	where n is a whole number greater than one.
	_	
	1	Claim 37 (original): The method of claim 36 wherein the pilot carrier has a frequency of
	2	approximately 120 MHz.