## Divisores\_capacitivos\_enunciados

May 11, 2021

## 1 Ejercicio 1

Se desea conectar una carga de  $R=100\Omega$  a un transistor, empleando un divisor capacitivo, como se muestra en la figura.



La resistencia de salida del transistor es  $r_o = 6000\Omega$  a  $f_o = 10MHz$ .

Suponga que la fuente de corriente es de  $i_o = 10uA$ .

Se desea un ancho de banda de BW = 2MHz a  $f_o = 10MHz$ .

Asumir que todas las perdías corresponden a el inductor con un  $Q_o = 100$ .

- 1. C (capacitor de sintonia) y L para máxima transferencia de energía a Qcte a  $F_o = 10\,MHz$ .
- 2.  $C_1$  y  $C_2$  para máxima transferencia de energía a Q<br/>cte a  $F_o=10\,MHz$  realizando el calculo sin emplear simplificaciones.
- 3. Verificar si es posible emplear simplificaciones y comparar resultados.

## 2 Ejercicio 2

Se desea conectar una carga de  $R=100\Omega$  a un transistor, empleando un divisor capacitivo, como se muestra en la figura.



La resistencia de salida del transistor es  $r_o=6000\Omega$  a  $f_o=10MHz.$ 

Suponga que la fuente de corriente es de  $i_o = 10uA$ .

Se desea un ancho de banda de BW = 300KHz a  $f_o = 10MHz$ .

Asumir que todas las perdías corresponden a el inductor con un  $Q_o = 100$ .

- 1. C (capacitor de sintonia) y L para máxima transferencia de energía a Qcte a  $F_o=10\,MHz$ .
- 2.  $C_1$  y  $C_2$  para máxima transferencia de energía a Q<br/>cte a  $F_o=10\,MHz$  realizando el calculo sin emplear simplificaciones.
- 3. Verificar si es posible emplear simplificaciones y comparar resultados.