Overview of Single-Cell Platforms

Susan Kloet
Leiden Genome Technology Center (LGTC)
MGC Course on Single-Cell Analysis
18 October 2021

Why single-cell?

Bulk sample analysis is just like putting a fruit salad into a blender - the taste is an average of all ingredients. Analyzing single cells is like tasting each individual piece of fruit to gain a much more nuanced understanding of the composition of the fruit salad

Tissues are heterogeneous

Cell identity is more than histopathology

Biology is messy – computational methods help to clean this up

We will cover

- Description of single-cell assays/platforms/protocols
- Sample prep and experimental design concerns
- Gene and cell filtering
- Normalization
- Dimensionality reduction
- Data integration
- Trajectory inference
- Differential gene expression

Exponential scaling of single-cell throughput

Picowells

a

Manual

scRNA-seq

MANY different assays

- Some commercial, some DIY
- Full transcriptome vs 3' vs 5'
- Automation varies
- Throughput varies
- Cost varies
- Plate-based
- Droplet-based
- Microwell-based

ICELL8 cx

- Available at ErasmusMC (Biomics facility)
- Uses 5184 nanowell chip, ~1800 cells loaded
- Compatible with immunofluorescence
- Protocols for single-cell
 - SMART-Seq full-length transcriptome analysis
 - Differential expression by 3' end counting
 - TCR profiling and 5' end differential expression
 - ATAC-seq

BD Rhapsody

- Works with targeted panels to reduce sequencing costs
 - Immune response human/mouse
 - T-cell
 - Oncology breast cancer
 - Custom panel add-ons
- Up to 400 amplicons / sample
- Includes UMIs to reduce PCR amplification bias
- Increased flexibility
 - Archiving up to 3 months
 - Sub-sampling

Celsee Genesis platform

Copy number variation – Droplet based

- Mission Bio Tapestri
 - Uses proteases to break down chromatin
 - Panel-based PCR (up to 400 targets)
 - Can call both CNVs and SNVs in target regions
 - Up to 10k cells
 - Rare subclone detection, down to ~0.1%

10x Genomics Chromium Controller

Commercial launch early 2016

Microfluidics system for reaction compartmentalization

High throughput, up to 80k cells/run High capture rate, ~50%

Single-use microfluidics chip

10x Genomics products

Gel beads up close

4M Discrete Reagents in One Tube

10x Barcode (16bp): unique for each GemBead

+UMI (12bp): correct for PCR duplicates

Gel bead in Emulsion (GEM) technology

GEMs up close

Assay scheme for 3' mRNA sequencing

Assay scheme for 3' mRNA sequencing

Final library structure

Chromium Single Cell 3' Gene Expression Library

Single cell 3' end-to-end workflow

Reagents and Consumables in 10X Kit

1 Cell preparation

- 2 Partition and RT inside each GEM
- 3 Pool and cDNA amplification
- 4 Fragmentation
- 5 Adapter ligation and sample index PCR
- 6 Sequencing and analysis

Total Turn-around Time: ~12 Hrs

Total Hands-on Time: ~4 Hrs

Single cell 3' feature barcoding

DNA from cell surface protein Feature Barcode

Structure of T and B cell receptors

Figure 3.1 The Immune System, 3ed. (© Garland Science 2009)

General workflow 5' + V(D)J single cell sequencing

Gel bead oligos

Figure 1. Schematic of a Single Cell 5' Gel Bead oligo primer.

- i. Partial Illumina Read 1 Sequence (22 nucleotides (nt))
- ii. 16 nt 10x™ Barcode
- iii. 10 nt Unique Molecular Identifier (UMI)
- iv. 13 nt Switch Oligo

Assay scheme for 5' scRNA-seq

Assay scheme for 5' scRNA-seq

Assay scheme for 5' scRNA-seq

Assay scheme for 5' VDJ libraries

Final library structure

V(D)J Enriched Library Structure:

Exploring data using Cell Ranger tools

Exploring data continued...

Visualize ALL clonotypes

Combine clonotypes w/gene expression

Cost estimates

Library prep

- With 10,000 cells/reaction: 0.25 EUR/cell
- With 1000 cells/reaction: 2.50 EUR/cell

Sequencing 5' expression @ 25,000 reads/cell:

0.20 EUR/cell

Sequencing BCR @ 2500 reads/cell:

0.02 EUR/cell

Total cost 5' GEX + BCR sequencing

10,000 cells:

0.47 EUR/cell

1,000 cells:

2.72 EUR/cell

NEW! Chromium X

Single-cell ATAC-seq

Single-cell multiome

Visium for spatial transcriptomics

