STÆRÐFRÆÐIGREINING IIB

1. Ferlar.

- **1.1 Skilgreining.** Vörpun $\mathbf{r}:[a,b]\to\mathbf{R}^n$ þannig að $\mathbf{r}(t)=(r_1(t),\ldots,r_n(t))$ kallst vigurgild vörpun. Slík vörpun er sögð samfelld ef föllin r_1, \ldots, r_n eru öll samfelld. Samfelld vörpun $\mathbf{r}:[a,b]\to\mathbf{R}^n$ er oft kölluð stikaferill.
 - **1.2 Ritháttur.** Þegar fjallað er um stikaferil $\mathbf{r}:[a,b]\to\mathbf{R}^2$ þá er oft ritað

$$\mathbf{r} = \mathbf{r}(t) = (x(t), y(t)) = x(t)\mathbf{i} + y(t)\mathbf{j},$$

og þegar fjallað er um stikaferil $\mathbf{r}:[a,b]\to\mathbf{R}^3$ þá er oft ritað

$$\mathbf{r} = \mathbf{r}(t) = (x(t), y(t), z(t)) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}.$$

- 1.3 Skilgreining. Látum \mathcal{C} vera feril í plani (þ.e.a.s. \mathcal{C} er mengi punkta í planinu sem er ferill í venjulegum skilningi orðsins ferill). Stikun á \mathcal{C} er stikaferill $\mathbf{r}:[a,b]\to$ ${f R}^2$ þannig að ${f r}$ tekur hvern punkt í ${\cal C}$ sem gildi. Ferill í rúmi er skilgreindur á sambærilegan hátt.
 - **1.4 Skilgreining.** Stikaferill $\mathbf{r}:[a,b]\to\mathbf{R}^n$ er diffranlegur í punkti t ef markgildið

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

er til. Stikaferillinn ${\bf r}$ er sagður diffranlegur ef hann er diffranlegur í öllum punktum á bilinu [a,b]. (Í endapunktum bilsins [a,b] er þess krafist að einhliða afleiður séu skilgreindar.)

1.5 Setning. Stikaferill $\mathbf{r}:[a,b]\to\mathbf{R}^n$ er diffranlegur í punkti t ef og aðeins ef föllin r_1, \ldots, r_n eru öll diffranleg í t. Þá gildir að

$$\mathbf{r}'(t) = (r_1'(t), \dots, r_n'(t)).$$

- **1.6 Setning.** Látum $\mathbf{u}, \mathbf{v} : [a, b] \to \mathbf{R}^n$ vera diffranlega stikaferla og λ diffranlegt fall. Þá eru stikaferlarnir $\mathbf{u}(t) + \mathbf{v}(t), \lambda(t)\mathbf{u}(t)$ og $\mathbf{u}(\lambda(t))$ diffranlegir, og ef n=3þá er stikaferillinn $\mathbf{u}(t) \times \mathbf{v}(t)$ líka diffranlegur. Fallið $\mathbf{u}(t) \cdot \mathbf{v}(t)$ er líka diffranlegt. Eftirfarandi listi sýnir formúlur fyrir afleiðunum:
- Extractandar lists symm formular lynn alterounding (a) $\frac{d}{dt}(\mathbf{u}(t) + \mathbf{v}(t)) = \mathbf{u}'(t) + \mathbf{v}'(t),$ (b) $\frac{d}{dt}(\lambda(t)\mathbf{u}(t)) = \lambda'(t)\mathbf{u}(t) + \lambda(t)\mathbf{u}'(t),$ (c) $\frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t),$ (d) $\frac{d}{dt}(\mathbf{u}(t) \times \mathbf{v}(t)) = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t),$ (e) $\frac{d}{dt}(\mathbf{u}(\lambda(t))) = \mathbf{u}'(\lambda(t))\lambda'(t).$ Ef $\mathbf{u}(t) \neq \mathbf{0}$ þá er (f) $\frac{d}{dt}|\mathbf{u}(t)| = \frac{\mathbf{u}(t)\cdot\mathbf{u}'(t)}{|\mathbf{u}(t)|}.$

- 1.7 Ritháttur. Látum $\mathbf{r}:[a,b]\to\mathbf{R}^n$ vera diffranlegan stikaferil. Venja er að rita $\mathbf{v}(t) = \mathbf{r}'(t)$ og tala um $\mathbf{v}(t)$ sem hraða eða hraðavigur. Talan $|\mathbf{v}(t)|$ er kölluð ferð. Einnig er ritað $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$ og talað um $\mathbf{a}(t)$ sem hröðun eða hröðunarvigur.

1.8 Skilgreining. Látum $\mathbf{r}:[a,b]\to\mathbf{R}^n;\mathbf{r}(t)=(r_1(t),\ldots,r_n(t))$ vera stikaferil. Stikaferillinn er sagður samfellt diffranlegur ef föllin $r_1(t),\ldots,r_n(t)$ eru öll diffranleg og afleiður þeirra eru samfelldar. Samfellt diffranlegur stikaferill er sagður *þjáll* (e. smooth) ef $\mathbf{r}'(t)\neq\mathbf{0}$ fyrir öll t.

Stikaferillinn er sagður samfellt diffranlegur á köflum ef til eru tölur b_0, \ldots, b_k þannig að $a = b_0 < b_1 < \cdots < b_k = b$ og stikaferillinn er samfellt diffranlegur á hverju bili $[b_{i-1}, b_i]$. Það að stikaferill sé þjáll á köflum (e. piecewise smooth curve) er skilgreint á sambærilegan hátt.

1.9 Regla. Látum $\mathbf{r}:[a,b]\to\mathbf{R}^n$ vera samfellt diffranlegan stikaferil. Lengd eða bogalengd stikaferilisins er skilgreind með formúlunni

$$s = \int_{a}^{b} |\mathbf{v}(t)| \, dt.$$

1.10 Skilgreining og umræða. Látum $\mathbf{r} : [a, b] \to \mathbf{R}^n$ vera samfellt diffranlegan stikaferil. Sagt er að stikaferillinn sé stikaður með bogalengd ef fyrir allar tölur t_1, t_2 þannig að $a \le t_1 < t_2 \le b$ þá gildir

$$t_2 - t_1 = \int_{t_1}^{t_2} |\mathbf{v}(t)| dt.$$

(Skilyrðið segir að lengd stikaferilsins á milli punkta $\mathbf{r}(t_1)$ og $\mathbf{r}(t_2)$ sé jöfn muninum á t_2 og t_1 .) Stikun með bogalengd má líka þekkja á þeim eiginleika að $|\mathbf{v}(t)| = 1$ fyrir öll gildi á t.