1. Calculate the derivative (slope of the tangent line) using the definition.

Distribute/FOIL: $f'(3) = \lim_{h \to 0} \frac{9 + 6h + h^2 + 15 + 5h - 24}{h}$	Step:
Collect like terms: $f'(3) = \lim_{h \to 0} \frac{h^2 + 11h}{h}$	Step:
Evaluate the limit: $f'(3) = 11$	Step:
Definition of the derivative at $x = 3$: $f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$	Step:
Factor: $f'(3) = \lim_{h \to 0} = \frac{h(h+11)}{h}$	Step:
Begin Simplifying: $f'(3) = \lim_{h \to 0} \frac{(3+h)(3+h) + 5(3+h) - 24}{h}$	Step:
Cancel: $f'(3) = \lim_{h \to 0} h + 11$	Step:
Use $f(x) = x^2 + 5x$ $f'(3) = \lim_{h \to 0} \frac{(3+h)^2 + 5(3+h) - 24}{h}$	Step:

2. $f(x) = 3x^2 - x$. Find f'(-2) by circling the correct next step from each row. In the third column, explain why this is the correct step and what caused the error in the incorrect step.

Step 1.	$\lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h}$	$\lim_{h \to -2} \frac{f(-2+h) - f(-2)}{h}$	
Step 2.	$\lim_{h \to 0} \frac{3(-2+h)^2 + 2 + h + 14}{h}$	$\lim_{h \to 0} \frac{3(-2+h)^2 + 2 - h - 14}{h}$	
Step 3.	$\lim_{h \to 0} \frac{3(4 - 4h + h^2) + 2 - h - 14}{h}$	$\lim_{h \to 0} \frac{3(4+h^2) - 2 - h - 14}{h}$	
Step 4.	$\lim_{h \to 0} \frac{12 - 4h + h^2 + 2 - h - 14}{h}$	$\lim_{h \to 0} \frac{12 - 12h + 3h^2 + 2 - h - 14}{h}$	
Step 5.	$\lim_{h \to 0} \frac{-12h + 3h^2 - h}{h}$	$\lim_{h \to 0} \frac{3h^2 - 13h + 12}{h}$	
Step 6.	$\lim_{h\to 0} \frac{-12\mathcal{N} + 3h^2 - h}{\mathcal{N}}$	$\lim_{h \to 0} \frac{3h^2 - 13h}{h}$	
Step 7.	$\frac{3h^2 - 13h}{h}$	$\lim_{h \to 0} \frac{h(3h - 13)}{h}$	
Step 8.	$\lim_{h \to 0} 3h - 13$	3h-13h	
Step 9.	-10h	-13	

3. $f(x) = \sqrt{x}$. Find f'(4) by filling in the boxes with the correct mathematical expressions.

$$f'(4) = \lim_{h \to 0} \frac{f(\boxed{}) - f(\boxed{})}{h}$$

$$=\lim_{h o 0}$$

$$= \lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h} \cdot \frac{\sqrt{4+h} + 2}{\sqrt{4+h} + 2}$$

$$=\lim_{h\to 0}$$

$$= \lim_{h \to 0} \frac{4+h+ \boxed{}}{h\left(\sqrt{4+h}+2\right)}$$

$$=\lim_{h\to 0}\frac{\boxed{}}{h\left(\sqrt{4+h}+2\right)}$$

$$=\lim_{h\to 0}\frac{1}{\sqrt{4+h}+2}$$

$$=\frac{1}{\sqrt{4+\square}+2}$$

- 4. Now you're on your own! Use the definition of the derivative to calculate the following derivatives.
 - (a) $f(x) = 7x^2 + 5x$. Find f'(2).

(b) $f(x) = \frac{1}{x}$. Find f'(3).

(c) $f(x) = \frac{2}{\sqrt{x}}$. Find f'(4).