Research and Me

Computer Science, Maths and Physics.

Divyam Samarwal

Contents

1	N Image Formula																2								
	1.1	Introduction	n.																						2
	1.2	Explanatio	n.																						2
	1.3	Examples																							3

1 N Image Formula

1.1 Introduction

This formula is used to calculate the number of images formed by two mirrors when kept at some angle α .

1.2 Explanation

Let the angle between mirrors M and M' be α . Angle between mirror M and object O be β' . Angle between mirror M' and object O be β'' . Then the number of images formed will be

$$n = \lfloor \pi \frac{\sin \alpha}{\beta} \rfloor$$

where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x and all angles are taken in radians.

Conditions for β

- If $\beta' > \beta''$ then β' will be taken as β in the formula.
- If $\beta'' > \beta'$ then β'' will be taken as β in the formula.
- If $\beta' = \beta''$ then any can be taken as β in the formula.

1.3 Examples

[1]

1. Find the total number of images formed if two plane mirrors are inclined at an angle $\pi/2$ and object is situated at an angle of $\pi/6$ from one of them. Solution:

As angle between mirror M and O is greater than angle between M' and O. Then $\alpha=\pi/2$ and $\beta=\pi/3$.

$$n = \lfloor \pi \frac{\sin \alpha}{\beta} \rfloor = \lfloor \pi \frac{\sin(\pi/2)}{\pi/3} \rfloor = 3$$

Number of images formed will be 3.

2. Find the total number of images formed if two plane mirrors are inclined at an angle $\pi/3$ and object is situated at an angle of $\pi/6$ from one of them. Solution:

As angle between mirror M and O is equal to M' and O. Then $\alpha=\pi/3$ and $\beta=\pi/6$.

$$n = \lfloor \pi \frac{\sin \alpha}{\beta} \rfloor = \lfloor \pi \frac{\sin(\pi/3)}{\pi/6} \rfloor = \lfloor 5.1961 \rfloor = 5$$

Number of images formed will be 5.

References

[1] Megacosm (2022) Physics Geometrical Optics[XI-XII].