Generalized Second Order Value Iteration in Markov Decision Processes

Chandramouli Kamanchi, Raghuram Bharadwaj Diddigi, Shalabh Bhatnagar

Friday Seminar

Li Chen

June 2022

Markov Decision Processes

Recall the infinite-horizon discounted Markov Decision Processes (MDP) is a tuple $(\mathcal{S},\mathcal{A},p,r,\gamma)$

- ▶ state space $S = \{s_1, s_2, ..., s_m\}$
- ightharpoonup action space $\mathcal{A} = \{a_1, a_2, ..., a_n\}$
- lacktriangleright transition kernel: p(j|i,a) is the state transition probability from i to j conditioning on action a
- ightharpoonup reward: r(i,a) obtained taking action a at state i
- ▶ discount factor $\gamma \in [0, 1)$

The goal is to find a stationary (deterministic) policy $\pi:\mathcal{S}\to\mathcal{A}$ to maximize the expected reward

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t))\right]$$

where the expectation is w.r.t. the randomness of the states.

Bellman optimality condition:

$$V^* = TV^*$$

where the operator $T:\mathbb{R}^m \to \mathbb{R}^m$ is defined as

$$(TV)_i \triangleq \max_{a \in \mathcal{A}} \sum_{j \in \mathcal{S}} p(j|i, a) (r(i, a) + \gamma V(j))$$

$$= \max_{a \in \mathcal{A}} r(i, a) + \gamma \sum_{j \in \mathcal{S}} p(j|i, a) V(j)$$

$$\forall i \in \mathcal{S}$$

Bellman optimality condition:

$$V^* = TV^*$$

▶ Value Iteration (VI): fixed point iteration $V_{k+1} \leftarrow TV_k$, which converges linearly since T is γ -contractive

$$||TV - TV'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

Bellman optimality condition:

$$V^* = TV^*$$

▶ Value Iteration (VI): fixed point iteration $V_{k+1} \leftarrow TV_k$, which converges linearly since T is γ -contractive

$$||TV - TV'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

- ▶ Policy Iteration (PI): policy evaluation + policy improvement
 - ▶ Given a policy π_k , solve a linear system

$$T^{\pi_k}V = V$$

to obtain V^{π_k} where $(T^{\pi}V)_i \triangleq r(i,\pi(i)) + \gamma \sum_{i \in \mathcal{S}} p(j|i,\pi(i))V(j)$.

▶ Find an improved policy π_{k+1} by greedy strategy such that

$$T^{\pi_{k+1}}V^{\pi_k} = TV^{\pi_k},$$

i.e.,
$$\pi_{k+1}(i) \in \arg \max_{a \in \mathcal{A}} r(i, a) + \gamma \sum_{j \in \mathcal{S}} p(j|i, a) V^{\pi_k}(j)$$
.

Bellman optimality condition:

$$V^* = TV^*$$

▶ Value Iteration (VI): fixed point iteration $V_{k+1} \leftarrow TV_k$, which converges linearly since T is γ -contractive

$$||TV - TV'||_{\infty} \le \gamma ||V - V'||_{\infty}$$

- ▶ Policy Iteration (PI): policy evaluation + policy improvement
- ▶ Linear Programming (LP): growing interests, e.g., [BSCKN21]

$$\begin{array}{ll} \max & \sum_{i \in \mathcal{S}, a \in \mathcal{A}} r_{ia} u_{ia} \\ \text{s.t.} & \sum_{a \in \mathcal{A}} u_{ia} - \gamma \sum_{s \in \mathcal{S}, a \in \mathcal{A}} p(i|s, a) u_{sa} = 1 \quad \forall i \in \mathcal{S} \\ u_{ia} \geq 0 & \forall i \in \mathcal{S}, a \in \mathcal{A} \end{array} \tag{pri}$$

Q-value functions

Q-value function is the function of state-action pairs

$$Q(i, a) = r(i, a) + \gamma \sum_{j \in \mathcal{S}} p(j|i, a)V(i)$$

▶ The optimality condition (Q-Bellman equation) is

$$Q^*(i, a) = r(i, a) + \gamma \sum_{j \in \mathcal{S}} p(j|i, a) \max_{a \in \mathcal{A}} Q^*(j, a)$$

Then the optimality policy is $\pi^*(i) \in \arg \max_{a \in A} Q^*(i, a)$.

- Note Q-Bellman equation is linear in probability transition, which makes it popular for model-free settings (reinforcement learning).
- ightharpoonup Preserve γ -contraction

Generalized Q-Bellman equation

▶ This paper mainly focus on a generalized Q-Bellman equation

$$Q_w(i, a) = w \left(r(i, a) + \gamma \sum_{j \in \mathcal{S}} p(j|i, a) \max_{a \in \mathcal{A}} Q_w(j, a) \right) + (1 - w) \max_{a \in \mathcal{A}} Q_w(i, a)$$

where $w \in (0, w^*]$ and $w^* = \frac{1}{1 - \gamma \min_{i \in \mathcal{S}, a \in \mathcal{A}} p(i|i, a)}$ based on the idea of successive over-relaxation (SOR).

▶ The optimal Q_w^* may be different from Q^* , but the optimal value functions are the same, i.e.,

$$\max_{a \in \mathcal{A}} Q_w^*(i, a) = \max_{a \in \mathcal{A}} Q^*(i, a), \quad \forall i \in \mathcal{S}$$

► The goal of this paper is to apply Newton's method to solve the generalized Q-Bellman equation with smoothing.

Smoothing

Basic idea: Approximate $\max_{i \in [m]} \{x_i\}$ by $\frac{1}{N} \log \sum_{i=1}^m \exp(Nx_i)$ with N>0

> can be understood as entropy regularization for the dual

Lemma 1

Let
$$f(x)=\max_{i\in[m]}\{x_i\}$$
 and $g_N(x)=\frac{1}{N}\log\sum_{i=1}^m\exp(Nx_i)$, then
$$\sup_{x\in\mathbb{R}^m}|f(x)-g_N(x)|\to 0 \text{ as }N\to\infty$$

- ▶ Indeed, $\sup_{x \in \mathbb{R}^m} |f(x) g_N(x)| \le \left| \frac{\log m}{N} \right|$
- $\qquad \text{Note that } \frac{\partial g_N}{\partial x_i} = \frac{\exp(Nx_i)}{\sum_{\ell=1}^m \exp(Nx_\ell)} \text{, so } \|\nabla g_N(x)\|_1 \leq 1 \text{ and } g_N \text{ is non-expansive w.r.t. } \|\cdot\|_{\infty}$

Contractive properties

Given $w \in (0, w^*]$ and N > 0, define the modified Successive Q-Bellman (SQB) operator $U: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ as

$$(UQ)(i,a) = w\left(r(i,a) + \gamma \sum_{j \in \mathcal{S}} p(j|i,a)g_N(Q(j,:))\right) + (1-w)g_N(Q(i,:)), \ \forall i,a$$
 where $Q(i,:) = [Q(i,a)]_{a \in \mathcal{A}} \in \mathbb{R}^n.$

Lemma 2

The operator U is a $(1-w+w\gamma)$ -contraction under $\|\cdot\|_{\infty}$ -norm.

Contractive properties

Given $w \in (0, w^*]$ and N > 0, define the modified Successive Q-Bellman (SQB) operator $U: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ as

$$(UQ)(i,a) = w\left(r(i,a) + \gamma \sum_{j \in \mathcal{S}} p(j|i,a)g_N(Q(j,:))\right) + (1-w)g_N(Q(i,:)), \ \forall i,a$$
 where $Q(i,:) = [Q(i,a)]_{a \in \mathcal{A}} \in \mathbb{R}^n.$

Lemma 2

The operator U is a $(1-w+w\gamma)$ -contraction under $\|\cdot\|_{\infty}$ -norm.

Proof. For any P, Q, calculate

$$\begin{aligned} &|UP(i,a) - UQ(i,a)| \\ &= & \left| w\gamma \sum_{j \in \mathcal{S}} p(j|i,a) [g_N(Q(j,:)) - g_N(P(j,:))] + (1-w)[g_N(Q(i,:)) - g_N(P(i,:))] \right| \\ &= & (1-w+w\gamma) \left| \mathbb{E}_{\mathbb{Q}} \left[g_N(Q(\tilde{j},:)) - g_N(P(\tilde{j},:)) \right] \right| \\ &\leq & (1-w+w\gamma) \mathbb{E}_{\mathbb{Q}} \left[|g_N(Q(\tilde{j},:)) - g_N(P(\tilde{j},:))| \right] \\ &\leq & (1-w+w\gamma) \mathbb{E}_{\mathbb{Q}} \left[\max_{a \in \mathcal{A}} \left| (Q(\tilde{j},a)) - P(\tilde{j},a) \right| \right] \\ &\leq & (1-w+w\gamma) \max_{j \in \mathcal{S}} \sum_{a \in \mathcal{A}} \left| (Q(j,a)) - P(j,a) \right| \end{aligned}$$

Contractive properties

Given $w\in(0,w^*]$ and N>0, define the modified Successive Q-Bellman (SQB) operator $U:\mathbb{R}^{m\times n}\to\mathbb{R}^{m\times n}$ as

$$(UQ)(i,a) = w \left(r(i,a) + \gamma \sum_{j \in \mathcal{S}} p(j|i,a) g_N(Q(j,:)) \right) + (1-w) g_N(Q(i,:)), \ \forall i,a$$

where
$$Q(i,:) = [Q(i,a)]_{a \in \mathcal{A}} \in \mathbb{R}^n$$
.

Lemma 2

The operator U is a $(1-w+w\gamma)$ -contraction under $\|\cdot\|_{\infty}$ -norm.

- ▶ Benefit of SOR: $1 w + w\gamma < \gamma$ whenever w > 1.
- ▶ U has a unique fixed point

Error from smoothing

Lemma 3

Let Q_w^* be the solution of the generalized Q-Bellman equation, Q' be the fixed point of U , then

$$||Q_w^* - Q'||_{\infty} \le \frac{1 - w + w\gamma}{Nw(1 - \gamma)} \log n.$$

Note
$$\frac{1-w+w\gamma}{w} < \gamma$$
 whenever $w > 1$.

Error from smoothing

Lemma 3

Let Q_w^* be the solution of the generalized Q-Bellman equation, Q' be the fixed point of U, then

$$||Q_w^* - Q'||_{\infty} \le \frac{1 - w + w\gamma}{Nw(1 - \gamma)} \log n.$$

Proof. By def we have

$$Q'(i,a) = wr(i,a) + (1 - w + w\gamma)\mathbb{E}_{\mathbb{Q}}\left[g_N(Q'(\tilde{j},:))\right], \ \forall i, a$$

$$Q_w^*(i,a) = wr(i,a) + (1 - w + w\gamma)\mathbb{E}_{\mathbb{Q}}\left[\max_{b \in A}\left\{Q_w^*(\tilde{j},b)\right\}\right], \ \forall i, a$$

Let $Q'(Z,c) = \max_{z \in A} Q'(Z,b)$ where $Z \sim \mathbb{Q}$, then

$$|Q_{w}(i,a) - Q'(i,a)|$$

$$= (1 - w + w\gamma) \left| \mathbb{E}_{\mathbb{Q}} \left[\max_{b \in \mathcal{A}} \left\{ Q_{w}^{*}(\tilde{j},b) \right\} - g_{N}(Q'(\tilde{j},:)) \right] \right|$$

$$(1 - w + w\gamma) \left| \mathbb{E}_{\mathbb{Q}} \left[\max_{b \in \mathcal{A}} \left\{ Q_{w}^{*}(\tilde{j},b) \right\} - g_{N}(Q'(\tilde{j},:)) \right] \right|$$

$$|Q_{w}(i, a) - Q(i, a)|$$

$$= (1 - w + w\gamma) \left| \mathbb{E}_{\mathbb{Q}} \left[\max_{b \in \mathcal{A}} \left\{ Q_{w}^{*}(\tilde{j}, b) \right\} - g_{N}(Q'(\tilde{j}, :)) \right] \right|$$

$$= (1 - w + w\gamma) \left| \mathbb{E}_{\mathbb{Q}} \left[\max_{b \in \mathcal{A}} \left\{ Q_{w}^{*}(\tilde{j}, b) \right\} - \max_{b \in \mathcal{A}} \left\{ Q'(\tilde{j}, b) \right\} - g_{N}(Q'(\tilde{j}, :) - Q'(\tilde{j}, c)) \right] \right|$$

$$\leq (1 - w + w\gamma) \mathbb{E}_{\mathbb{Q}} \left[\left[\max_{b \in \mathcal{A}} \left\{ Q_{w}^{*}(\tilde{j}, b) \right\} - \max_{b \in \mathcal{A}} \left\{ Q'(\tilde{j}, b) \right\} \right] + \left| g_{N}(Q'(\tilde{j}, :) - Q'(\tilde{j}, c)) \right|$$

The Algorithm: G-SOVI

The algorithm applies Newton's method to solve the smooth equation

$$F(Q) = 0$$
 with $F \triangleq I - U$

by

$$Q_{k+1} \leftarrow Q_k - (I - J_U(Q_k))^{-1}(Q_k - UQ_k)$$

where the Jacobian of U is

$$J_U(Q)_{ia,jc} = (w\gamma p(j|i,a) + (1-w)\delta_{i,j}) \frac{\exp(NQ(j,c))}{\sum_{b\in\mathcal{A}} \exp(NQ(j,b))}$$
$$= (1-w+w\gamma)q(j|i,a) \frac{\exp(NQ(j,c))}{\sum_{b\in\mathcal{A}} \exp(NQ(j,b))}$$

where
$$q(j|i,a) = \frac{w\gamma p(j|i,a) + (1-w)\delta_{i,j}}{1-w+w\gamma}$$

The Algorithm: G-SOVI

The algorithm applies Newton's method to solve the smooth equation

$$F(Q) = 0$$
 with $F \triangleq I - U$

by

$$Q_{k+1} \leftarrow Q_k - (I - J_U(Q_k))^{-1}(Q_k - UQ_k)$$

where the Jacobian of U is

$$J_U(Q)_{ia,jc} = (w\gamma p(j|i,a) + (1-w)\delta_{i,j}) \frac{\exp(NQ(j,c))}{\sum_{b\in\mathcal{A}} \exp(NQ(j,b))}$$
$$= (1-w+w\gamma)q(j|i,a) \frac{\exp(NQ(j,c))}{\sum_{b\in\mathcal{A}} \exp(NQ(j,b))}$$

where
$$q(j|i,a) = \frac{w\gamma p(j|i,a) + (1-w)\delta_{i,j}}{1-w+w\gamma}$$

- ► Pure Newton step
- ▶ Stopping condition: maximal iteration
- ▶ Inverting $I J_U(Q_k)$ is related to the policy evaluation step in policy iteration since $J_U(Q_k)$ is a (row) stochastic matrix scaled by $w\gamma + 1 w \in (0,1)$. (Newton's method is equivalent to policy iteration [PB79]).

Global convergence

Theorem 1 (Global Newton Theorem [OR00])

Suppose

- $ightharpoonup F: \mathbb{R}^d
 ightarrow \mathbb{R}^d$ is continuous differentiable, component-wise concave on \mathbb{R}^d ,
- ightharpoonup F'(x) is non-singular and $F'(x)^{-1} \geq 0$ (non-negative) for all $x \in \mathbb{R}^d$,
- ightharpoonup F(x) = 0 has a unique solution x^* .

Then for any $x_0 \in \mathbb{R}^d$ the Newtons iterates converges to x^* .

Global convergence

Theorem 1 (Global Newton Theorem [OR00])

Suppose

- $igwdown F: \mathbb{R}^d o \mathbb{R}^d$ is continuous differentiable, component-wise concave on \mathbb{R}^d ,
- ightharpoonup F'(x) is non-singular and $F'(x)^{-1} \geq 0$ (non-negative) for all $x \in \mathbb{R}^d$,
- ightharpoonup F(x) = 0 has a unique solution x^* .

Then for any $x_0 \in \mathbb{R}^d$ the Newtons iterates converges to x^* .

Theorem 2

Let Q' be the unique fixed point of U, then the G-SOVI algorithm converges to Q' for any choice of initial point Q_0 .

Proof of Theorem 2

We need to verify the conditions of Theorem 1 for F=I-U. Recall

$$(UQ)(i,a) = wr(i,a) + (1 - w + w\gamma)\mathbb{E}_{\mathbb{Q}}\left[g_N(Q(\tilde{j},:))\right], \ \forall i,a$$
$$J_U(Q)_{ia,jc} = (1 - w + w\gamma)q(j|i,a)\frac{\exp(NQ(j,c))}{\sum_{b \in \mathcal{A}}\exp(NQ(j,b))} \ \forall i,a,j,c.$$

- ightharpoonup I-U is continuous differentiable, component-wise concave
- Note $J_U(Q) \in \mathbb{R}^{mn \times mn}$ is $(1 w + w\gamma)\Phi$ with Φ as a row stochastic matrix and $1 w + w\gamma \in (0,1)$. Then $(I J_U(Q))^{-1}$ exists (Proof later) and

$$(I - J_U(Q))^{-1} = \sum_{\ell=0}^{\infty} (1 - w + w\gamma)^{\ell} \Phi^{\ell}$$

so that $(I - J_U(Q))^{-1} \ge 0$.

▶ F(Q) = 0 has unique solution as U is $(1 - w + w\gamma)$ -contractive.

Lemma 4

The inverse Jacobian is bounded: $||(I - J_U(Q))^{-1}|| \le \frac{1}{w(1 - \gamma)}$.

Lemma 4

The inverse Jacobian is bounded: $||(I - J_U(Q))^{-1}|| \le \frac{1}{w(1 - \gamma)}$.

Proof. Note that $I - J_U(Q) = I - (1 - w + \gamma w)\Phi$ where Φ is a row stochastic matrix ($\Phi e = e$). So its eigenvalue λ is bounded by

$$0 < 1 - (1 - w + \gamma w) \le |\lambda|.$$

Hence,
$$(I - J_U(Q))^{-1}$$
 exists and $||(I - J_U(Q))^{-1}|| \le \frac{1}{1 - (1 - w + \gamma w)}$.

Lemma 4

The inverse Jacobian is bounded: $||(I - J_U(Q))^{-1}|| \le \frac{1}{w(1 - \gamma)}$.

Theorem 3

The G-SOVI algorithm converges quadratically.

Lemma 4

The inverse Jacobian is bounded: $||(I - J_U(Q))^{-1}|| \le \frac{1}{w(1 - \gamma)}$.

Theorem 3

The G-SOVI algorithm converges quadratically.

Proof. Let Q^* be the fixed point of $F(Q^*) = 0$, then

$$\begin{aligned} \|Q_{k+1} - Q^*\| &= \|Q_k - F'(Q_k)^{-1} F(Q_k) - Q^*\| \\ &= \|Q_k - Q^* - F'(Q_k)^{-1} (F(Q_k) - F(Q^*))\| \\ &= \|F'(Q_k)^{-1} [F'(Q_k) (Q_k - Q^*) + F(Q^*) - F(Q_k)]\| \\ &\leq \|F'(Q_k)^{-1}\| \cdot \|F(Q^*) - F(Q_k) - F'(Q_k) (Q^* - Q_k)\| \\ &\leq \frac{1}{w(1 - \gamma)} \cdot \frac{L}{2} \|Q^* - Q_k\|^2 \end{aligned}$$

where L is the Lipschitz constant of the mapping $F'(\cdot)$.

ightharpoonup L may depend on N

Compare G-SOVI, SOVI (w = 1), and standard VI.

- ▶ The result is averaged over 100 instances, $\gamma = 0.9$.
- ▶ The error at iteration k is $E(k) = \max_{i \in \mathcal{S}} |V^*(i) \max_{a \in \mathcal{A}} Q_k(i, a)|$

Value of N	Standard Value	Standard	G-SOVI
	Iteration	SOVI	
N=20	0.1009 ± 0.0026	0.1205 ± 0.0372	0.1093 ± 0.0818
N=25		0.0822 ± 0.0273	0.0648 ± 0.0217
N=30		0.0611 ± 0.0211	0.0494 ± 0.017
N=35		0.0484 ± 0.0168	0.0397 ± 0.0136

Table I: Comparison of Average Error for different values of N on 10 states and 5 actions setting at the end of 50 iterations. For the G-SOVI algorithm, the relaxation parameter is chosen to be the optimal relaxation parameter w^* , i.e., $w=w^*$.

Compare G-SOVI, SOVI (w = 1), and standard VI.

- ▶ The result is averaged over 100 instances, $\gamma = 0.9$.
- ▶ The error at iteration k is $E(k) = \max_{i \in \mathcal{S}} |V^*(i) \max_{a \in \mathcal{A}} Q_k(i, a)|$

Value of w	G-SOVI	
w = 1	0.04838 ± 0.017	
(Standard SOVI)	0.04030 ± 0.017	
w = 1.00001	0.04838 ± 0.017	
w = 1.0001	0.04837 ± 0.017	
w = 1.001	0.04830 ± 0.017	
w = 1.01	0.0476 ± 0.017	
w = 1.05	0.0448 ± 0.016	
w = 1.1	0.0417 ± 0.014	
$w = w^*$	0.0397 ± 0.014	

Table II: Comparison of Average Error in G-SOVI for different values of w on 10 states and 5 actions setting at the end of 50 iterations. The value of N is 35.

Compare G-SOVI, SOVI (w = 1), and standard VI.

- ▶ The result is averaged over 100 instances, $\gamma = 0.9$.
- ▶ The error at iteration k is $E(k) = \max_{i \in \mathcal{S}} |V^*(i) \max_{a \in \mathcal{A}} Q_k(i, a)|$

Setting	Standard Value Iteration	Standard SOVI	G-SOVI
States = 30, Actions= 10	6.471 ± 0.07	0.087 ± 0.01	0.079 ± 0.01
States = 50, Actions = 10	6.587 ± 0.07	0.114 ± 0.01	0.108 ± 0.01
States = 80, Actions = 10	6.754 ± 0.03	0.141 ± 0.01	0.136 ± 0.01
States = 100, Actions = 10	6.772 ± 0.03	0.152 ± 0.01	0.148 ± 0.01

Table III: Comparison of Average Error across four settings at the end of 10 iterations with N=35. For the G-SOVI alg the relaxation parameter is chosen to be the optimal relaxation parameter w^* , i.e., $w=w^*$.

Compare G-SOVI, SOVI (w = 1), and standard VI.

- ▶ The result is averaged over 100 instances, $\gamma = 0.9$.
- ▶ The error at iteration k is $E(k) = \max_{i \in \mathcal{S}} |V^*(i) \max_{a \in \mathcal{A}} Q_k(i, a)|$

Figure 1: Error vs Number of iterations on setting with 100 states and 10 actions with $w=w^*$ for Generalized SOVI (G-SOVI).

Compare G-SOVI, SOVI (w = 1), and standard VI.

- ▶ The result is averaged over 100 instances, $\gamma = 0.9$.
- ▶ The error at iteration k is $E(k) = \max_{i \in \mathcal{S}} |V^*(i) \max_{a \in \mathcal{A}} Q_k(i, a)|$

Setting	Standard Value Iteration	Standard SOVI	G-SOVI
States = 30, Actions= 10	0.0008 ± 0.00	0.0154 ± 0.01	0.0267 ± 0.01
States = 50, Actions = 10	0.0009 ± 0.00	0.0242 ± 0.00	0.0488 ± 0.00
States = 80, Actions = 10	0.0011 ± 0.00	0.0532 ± 0.00	0.0988 ± 0.01
States = 100, Actions = 10	0.0026 ± 0.00	0.1202 ± 0.01	0.1343 ± 0.01

Table IV: Per-iteration Execution time of algorithms across four settings in seconds, with the relaxation parameter in chosen as $w=w^*$.

▶ Inverting Hessian seems expensive

Compare G-SOVI, SOVI (w=1), and standard VI.

- ▶ The result is averaged over 100 instances, $\gamma = 0.9$.
- ▶ The error at iteration k is $E(k) = \max_{i \in \mathcal{S}} |V^*(i) \max_{a \in \mathcal{A}} Q_k(i, a)|$

Configuration	Computational Time (in seconds)	Standard Value Iteration	Standard SOVI	G-SOVI
10 States, 5 Actions	0.01	25.485 ± 2.21	3.930± 0.92	3.885 ± 0.94
20 States, 5 Actions	0.02	18.291 ± 0.77	5.444 ± 0.51	5.473 ± 0.50
30 States, 5 Actions	0.03	7.327 ± 0.20	7.111 ± 0.32	7.118 ± 0.33

Table V: Average Error vs Computational Time (rounded off to the nearest millisecond). Initial Q-values for algorit assigned random integers between 60 and 70. The discount factor is set to 0.99. G-SOVI is run with w=1.00001.

▶ This comparison is chosen to make SOVI better (only 3 iterations)

Conclusion

- ▶ Smoothing + Newton's method works and has fast convergence
- ▶ Smoothing does not solve the original MDP
- ▶ Inverting the Jacobian $(mn \times mn)$ directly seems expensive, working on value function might be better
- ► The (Generalized) Bellman operator is piecewise linear, smoothing may not be necessary
- ► Growing research in accelerating value iteration, see also [GC21, GGC22]

References I

- Vineet Goyal and Julien Grand-Clement, A first-order approach to accelerated value iteration, Operations Research (2022).
- James M Ortega and Werner C Rheinboldt, *Iterative solution of nonlinear equations in several variables*, SIAM, 2000.
- Martin L Puterman and Shelby L Brumelle, On the convergence of policy iteration in stationary dynamic programming, Mathematics of Operations Research 4 (1979), no. 1, 60–69.