

Disks in Transit

M. Kenworthy¹

Leiden Observatory, University of Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: kenworthy@strw.leidenuniv.nl

Received XXXX; accepted XXXX

ABSTRACT

Context. We review the literature on disks that transit stars and understand how they can be analyzed. Aims.

Methods.

Results.

Key words. giant planet formation – κ -mechanism – stability of gas spheres

1. Introduction

Terrestrial planets are thought to be built up by the quasiperiodic accretion of planetary embryos that generate a significant amount of ejected material.

lets test this: (Luger et al. 2021) and Figure 1.

2. Conclusions

- There are many light curves in ASASSN that reveal new phenomena.
- 2. Back once again.

Acknowledgements. Thank matplotlib

References

Luger, R., Bedell, M., Foreman-Mackey, D., et al. 2021, arXiv e-prints, arXiv:2110.06271

Fig. 1. ASASSN-21js light curve. Normalised in both bands g and V.

Fig. 2. ASASSN-21nn light curve. Normalised in both bands g and V.

data from obs_J1706_ASASSN.ecsv

Fig. 3. J1706 light curve. Normalised in both bands g and V.

Fig. 4. ASASSN-21sa light curve. Normalised in both bands g and V.

Fig. 5. J1816 light curve. Normalised in both bands g and V.

Fig. 6. ASASSN-23ao light curve. Normalised in both bands g and V.

