STA305/1004-Class 20

March 27, 2017

Today's Class

- Assessing significance in unreplicated factorial designs
 - Normal plotshalf-Normal plots
 - ► Lenth's method
- ▶ Blocking factorial designs
 - ► Effect hierarchy principle
 - ► Generation of orthogonal blocks
 - ► Generators and deining relations

I will announce details by the end of the week.

Example - 2^3 design for studying a chemical reaction

A process development experiment studied four factors in a 2⁴ factorial design.

- amount of catalyst charge 1,
- temperature 2,
- pressure 3,
- concentration of one of the reactants 4.
- ► The response y is the percent conversion at each of the 16 run conditions. The design is shown below.

Example - 2⁴ design for studying a chemical reaction

	x2	x3	×4	conversion
-1	-1	-1	-1	70
1	-1	-1	-1	60
-1	1	-1	-1	89
1	1	-1	-1	81
-1	-1	1	-1	69
1	-1	1	-1	62
-1	1	1	-1	88
1	1	1	-1	81
-1	-1	-1	1	60
1	-1	-1	1	49
-1	1	-1	1	88
1	1	-1	1	82
-1	-1	1	1	60
1	-1	1	1	52
-1	1	1	1	86
1	1	1	1	79

The design is not replicated so it's not possible to estimate the standard errors of the factorial effects.

Example - 2⁴ design for studying a chemical reaction

```
fact1 <- lm(conversion~x1*x2*x3*x4,data=tab0510a)
round(2*fact1$coefficients,2)</pre>
```

(Intercept)	x1	x2	x3	x4	x1:x2
144.50	-8.00	24.00	-0.25	-5.50	1.00
x1:x3	x2:x3	x1:x4	x2:x4	x3:x4	x1:x2:x3
0.75	-1.25	0.00	4.50	-0.25	-0.75
x1:x2:x4	x1:x3:x4	x2:x3:x4	x1:x2:x3:x4		
0.50	-0.25	-0.75	-0.25		

- ▶ A related graphical method is called the half-normal probability plot.
- Let

$$\left|\hat{\theta}\right|_{(1)} < \left|\hat{\theta}\right|_{(2)} < \dots < \left|\hat{\theta}\right|_{(N)}.$$

denote the ordered values of the unsigned factorial effect estimates.

- Plot them against the coordinates based on the half-normal distribution the absolute value of a normal random variable has a half-normal distribution.
- ► The half-normal probability plot consists of the points

$$\left|\hat{\theta}\right|_{(i)}$$
 vs. $\Phi^{-1}(0.5 + 0.5[i - 0.5]/N)$. $i = 1, ..., N$.

- An advantage of this plot is that all the large estimated effects appear in the upper right hand corner and fall above the line.
- ► The half-normal plot for the effects in the process development example can be obtained with DanielPlot() with the option half=TRUE.

Half-Normal plot of effects from process development study

Compare with full Normal plot.

Normal plot of effects from process development study

Lenth's method: testing significance for experiments without variance estimates

- Half-normal and normal plots are informal graphical methods involving visual judgement.
- It's desirable to judge a deviation from a straight line quantitatively based on a formal test of significance.
- ► Lenth (1989) proposed a method that is simple to compute and performs well. (ref. pg. 205, Box, Hunter, and Hunter, 2005)

Lenth's method

Let

$$\hat{\theta}_{(1)},...,\hat{\theta}_{(N)}$$

be estimated factorial effects of $\theta_1, \theta_2, ..., \theta_N$ in a 2^k design $N = 2^k - 1$.

- Assume that all the factorial effects have the same standard deviation.
- ▶ The pseudo standard error (PSE) is defined as

$$\textit{PSE} = 1.5 \cdot \mathsf{median}_{\left|\hat{\theta}_i\right| < 2.5 s_0} \left| \hat{\theta}_i \right|,$$

lacktriangle The median is computed among the $\left|\hat{ heta}_i
ight|$ with $\left|\hat{ heta}_i
ight|<2.5s_0$ and

$$\mathit{s}_0 = 1.5 \cdot \mathsf{median} \left| \hat{\theta}_i \right|$$
 .

Lenth's method

- ▶ 1.5 · s_0 is a consistent estimator of the standard deviation of $\hat{\theta}$ when $\theta_i = 0$ and the underlying distribution is normal.
- ▶ The $P(|Z| > 2.57) = 0.01, Z \sim N(0, 1)$.
- $ig| \left| \hat{ heta}_i \right| < 2.5 s_0$ trims approximately 1% of the $\hat{ heta}_i$ if $heta_i = 0$.
- ▶ The trimming attempts to remove the $\hat{\theta}_i$ associated with non-zero (active) effects.
- ▶ By using the median in combination with the trimming means that PSE is not sensitive to the $\hat{\theta}_i$ associated with active effects.

Lenth's method

- ▶ To obtain a margin of error Lenth suggested multiplying the PSE by the $100*(1-\alpha)$ quantile of the t_d distribution, $t_{d,\alpha/2}$.
- ▶ The degrees of freedom is d = N/3. For example, the margin of error for a 95% confidence interval for θ_i is

$$ME = t_{d..025} \times PSE$$
.

- All estimates greater than the ME may be viewed as "significant", but with so many estimates being considered simultaneously, some will be falsely identified.
- A simultaneous margin of error that accounts for multiple testing can also be calculated,

$$SME = t_{d,\gamma} \times PSE$$
,

where
$$\gamma = (1 + (1 - \alpha)^{1/N})/2$$
.

▶ The details of how to calculate *MSE* and *PSE* are given in the class notes.

Lenth's method - Lenth Plot for process development example

LenthPlot(fact1,cex.fac = 0.8)

- ▶ In a trial conducted using a 2³ design it might be desirable to use the same batch of raw material to make all 8 runs.
- Suppose that batches of raw material were only large enough to make 4 runs. Then the concept of blocking could be used.

Consider the 2^3 design.

Run	1	2	3	12	13	23	123
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

ı
Ш

How are the runs assigned to the blocks?

Run	1	2	3	12	13	23	123
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Runs	Block	sign of 123
1, 4, 6, 7	I	_
2, 3, 5, 8	II	+

- Any systematic differences between the two blocks of four runs will be eliminated from all the main effects and two factor interactions.
- ▶ What you gain is the elimination of systematic differences between blocks.
- But now the three factor interaction is confounded with any batch (block) difference.
- The ability to estimate the three factor interaction separately from the block effect is lost.

Effect hierarchy principle

- 1. Lower-order effects are more likely to be important than higher-order effects.
- 2. Effects of the same order are equally likely to be important.
- One reason that many accept this principle is that higher order interactions are more difficult to interpret or justify physically.
- Investigators are less interested in estimating the magnitudes of these effects even when they are statistically significant.

Generation of Orthogonal Blocks

In the 2^3 example suppose that the block variable is given the identifying number 4.

Run	1	2	3	4=123
1	-1	-1	-1	-1
2	1	-1	-1	1
3	-1	1	-1	1
4	1	1	-1	-1
5	-1	-1	1	1
6	1	-1	1	-1
7	-1	1	1	-1
8	1	1	1	1

- ▶ Think of your experiment as containing four factors.
- The fourth factor will have the special property that it does not interact with other factors.
- ▶ If this new factor is introduced by having its levels coincide exactly with the plus and minus signs attributed to 123 then the blocking is said to be **generated** by the relationship 4=123.
- ▶ This idea can be used to derive more sophisticated blocking arrangements.

Suppose we would like to arrange the 2^3 design into four blocks.

Run	1	2	3	4=123	5=23	45=1
1	-1	-1	-1	-1	1	-1
2	1	-1	-1	1	1	1
3	-1	1	-1	1	-1	-1
4	1	1	-1	-1	-1	1
5	-1	-1	1	1	-1	-1
6	1	-1	1	-1	-1	1
7	-1	1	1	-1	1	-1
8	1	1	1	1	1	1

- Runs are placed in different blocks depending on the signs of the block variables in columns 4 and 5.
- Consider two block factors called 4 and 5.
- ▶ 4 is associated with ?
- ▶ 5 is associated ?

An example of how not to block

Run	1	2	3	4=123	5=23	45=1
1	-1	-1	-1	-1	1	-1
2	1	-1	-1	1	1	1
3	-1	1	-1	1	-1	-1
4	1	1	-1	-1	-1	1
5	-1	-1	1	1	-1	-1
6	1	-1	1	-1	-1	1
7	-1	1	1	-1	1	-1
8	1	1	1	1	1	1

Block	Run
I	
II	
Ш	
IV	

- ▶ 45 is confounded with the main effect of 1.
- ▶ Therefore, if we use 4 and 5 as blocking variables we will not be able to separately estimate the main effect 1.
- ▶ Main effects should not be confounded with block effects.

- ▶ Any blocking scheme that confounds main effects with blocks should not be used.
- ▶ This is based on the assumption:

The block-by-treatment interactions are negligible.

- ▶ This assumption states that treatment effects do not vary from block to block.
- Without this assumption estimability of the factorial effects will be very complicated.

▶ For example, if $B_1 = 12$ then this implies two other relations:

$$1B_1 = 112 = 2$$
 and $B_12 = 122 = 122 = 1$.

- ▶ If there is a significant interaction between the block effect B_1 and the main effect 1 then the main effect 2 is confounded with $1B_1$.
- If there is a significant interaction between the block effect B₁ and the main effect 2 then the main effect 1 is confounded with B₁2.

How to do it

Run	1	2	3	4=12	5=13
1	-1	-1	-1	1	1
2	1	-1	-1	-1	-1
3	-1	1	-1	-1	1
4	1	1	-1	1	-1
5	-1	-1	1	1	-1
6	1	-1	1	-1	1
7	-1	1	1	-1	-1
8	1	1	1	1	1

- ▶ Set 4=12, 5=13.
- ▶ Then I = 124 = 135 = 2345.
- ► Estimated block effects 4, 5, 45 are assoicated with the estimated two-factor interaction effects 12, 13, 23 and not any main effects.
- ▶ Which runs are assigned to which blocks?

Generators and Defining Relations

- ► A simple calculus is available to show the consequences of any proposed blocking arrangement.
- ▶ If any column in a 2^k design are multiplied by themselves a column of plus signs is obtained. This is denoted by the symbol I.

$$I = 11 = 22 = 33 = 44 = 55,$$

where, for example, 22 means the product of the elements of column 2 with itself.

▶ Any column multiplied by *I* leaves the elements unchanged. So, I3 = 3.

Generators and Defining Relations

- ▶ A general approach for arranging a 2^k design in 2^q blocks of size 2^{k-q} is as follows.
- ▶ Let $B_1, B_2, ..., B_q$ be the block variables and the factorial effect v_i is confounded with B_i ,

$$B_1 = v_1, B_2 = v_2, ..., B_q = v_q.$$

▶ The block effects are obtained by multiplying the B_i 's:

$$B_1B_2 = v_1v_2, B_1B_3 = v_1v_3, ..., B_1B_2 \cdots B_q = v_1v_2 \cdots v_q$$

▶ There are $2^q - 1$ possible products of the B_i 's and the I (whose components are +).

Generators and Defining Relations

Example: A 2^5 design can be arranged in 8 blocks of size $2^{5-3}=4$. Consider two blocking schemes.

1. Define the blocks as

$$B_1 = 135, B_2 = 235, B_3 = 1234.$$

The remaining blocks are confounded with the following interactions:

2. Define the blocks as:

$$B_1 = 12, B_2 = 13, B_3 = 45.$$

Which is a better blocking scheme?