Kinematic Equations as Quadratic Analogies

Mr. Gullo

September 2024

- Standard Form
- 2 Vertex Form
- Factored Form
- 4 Conclusion

Standard Form of Quadratic Equation

Standard form of a quadratic equation:

$$ax^2 + bx + c = 0$$

Analogous kinematic equation:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

- Where:
 - x is the position (analogous to y in the quadratic)
 - t is time (analogous to x in the quadratic)
 - x_0 is the initial position (analogous to c)
 - v₀ is the initial velocity (analogous to b)
 - $\frac{1}{2}a$ is half the acceleration (analogous to a)

Standard Form - Interpretation

- This equation describes the position of an object at any given time
- It considers:
 - Initial position
 - Initial velocity
 - Acceleration
- Useful for analyzing motion in one dimension

- 1 Standard Form
- 2 Vertex Form
- Factored Form
- 4 Conclusion

Vertex Form of Quadratic Equation

• Vertex form of a quadratic equation:

$$y = a(x - h)^2 + k$$

• Analogous kinematic equation:

$$x = x_0 + v_0 t + \frac{1}{2} a (t - t_p)^2$$

- Where:
 - t_p is the time at which the position reaches its peak (analogous to h)
 - $x_0 + v_0 t$ represents the position at the peak (analogous to k)

Vertex Form - Applications

- Particularly useful for describing projectile motion
- ullet t_p represents the time at which the projectile reaches its highest point
- Helps in analyzing:
 - Maximum height
 - Time of flight
 - Range of the projectile

- Standard Form
- 2 Vertex Form
- Factored Form
- 4 Conclusion

Factored Form of Quadratic Equation

• Factored form of a quadratic equation:

$$y = a(x - r_1)(x - r_2)$$

Analogous kinematic equation:

$$x - x_0 = v_0(t - t_1)(t - t_2)$$

- Where:
 - t_1 and t_2 are the times when the object is at its initial position x_0 (analogous to roots r_1 and r_2)
 - v_0 is a scaling factor (analogous to a)

Factored Form - Applications

- Less common in kinematics
- Useful in specific scenarios:
 - Describing an object that returns to its starting position twice
 - Example: A ball thrown vertically upward
- Helps in analyzing:
 - Time of flight
 - Return times to initial position

- Standard Form
- 2 Vertex Form
- Factored Form
- 4 Conclusion

Conclusion

- These analogies illustrate mathematical similarities between:
 - Quadratic equations
 - Motion in one dimension
- Provides a different perspective on both topics
- Helps in understanding:
 - The mathematical nature of motion
 - The physical interpretation of quadratic equations
- Encourages interdisciplinary thinking in mathematics and physics