Quasicrystals and the cut and project method

Ingmar Lowack, Noah Koopmann

Heidelberg Experimental Geometry Lab

February 23, 2023

Crystals

- periodic structure
- tiling: set of geometric shapes that fill a plane
- simplest crystals are constructed using regular polygons

Crystals examples 1

Figure: from regular polygons only triangles, squares and hexagons make a crystal

Crystals examples 2

Figure: periodic tilings made of unregular pentagons. Source [2] http://community.wolfram.com/groups/-/m/t/550169

Quasicrystals

- quasi-periodic structure
- ► also appear in nature
- examples are fibonacci & penrose tilings (coming up)

Cut and project method

- most versatile method to generate quasicrystals
- ▶ general working:
 - 1. starting with an $n \geq 2$ dimensional lattice $\Lambda \in \mathbb{R}^n$
 - 2. take a affin-linear subspace E of dimension m < n and $\operatorname{\mathbf{cut}} \mathbb{R}^n$
 - 3. **project** all points of Λ onto E^{\perp} and check if they fall into a certain cut window
 - 4. take the accepted points and project them onto *E*

...see example in next slide

Example 1: Fibonacci Tiling

- start with 2D grid (periodic tiling)
- ightharpoonup E is a slope with angle Θ
- all points in the cutwindow are projected orthogonal down
- we get a 1D Quasicrystal if Θ is irrational:
- If we choose $\Theta = \tan^{-1}(\frac{1}{\tau})$ we obtain the Fibonacci tiling (τ) is the golden ratio

Figure: fibonacci cut&project with $\Theta = \tan^{-1}(\frac{1}{\tau})$ and $\Delta = \sin(\Theta) + \cos(\Theta)$

Example 2: Penrose Tiling

- most famous Quasicrystal
- ▶ produced by choosing $\Lambda = \mathbb{Z}^5$ and E as a certain 2 dimensional subspace of \mathbb{R}^5

figureA figure

figureAnother figure

Our work progress

- ► Done:
 - implemented Fibonacci tiling and Penrose tiling
 - website with interactive tools and informative text
- Next steps:
 - add more interactive tools
 - optimize penrose generation using digital geometry techniques
 - implement further tilings such as Wang tilings

Sources

Content and Figures from

- ▶ [1] 2021_Daniel_Gouldsbrough_BSc_Thesis.pdf
- ► [2] http://community.wolfram.com/groups/-/m/t/550169