TRIGONOMETRY

Chapter 05

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES

HELICO - MOTIVACIÓN

ARTIFICIO PARA CALCULAR SENO Y COSENO DE ÁNGULOS NOTABLES

TRIÁNGULOS RECTÁNGULOS NOTABLES Y APROXIMADOS

TRIÁNGULOS NOTABLES

TRIÁNGULO APROXIMADO (PITAGÓRICO)

Luego aplicamos las definiciones de las razones trigonométricas del ángulo agudo.

$$\frac{\mathbf{a}}{\sqrt{\mathbf{b}}} = \frac{\mathbf{a}\sqrt{\mathbf{b}}}{\mathbf{b}}$$

Ejemplo:

$$csc60^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

α RT	sen	cos	tan	cot	sec	CSC
30 °	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
60°	$\frac{\sqrt{3}}{2}$	1 2	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
37°	3 5	4 5	3 4	4 3	5 4	5 3
53 °	4 5	$\frac{3}{5}$	$\frac{4}{3}$	$\frac{3}{4}$	$\frac{5}{3}$	$\frac{5}{4}$

Efectúe $P = \left(5 \text{ sen37}^{\circ} + \sqrt{3} \text{ tan60}^{\circ} + \text{cot}^{2}30^{\circ}\right)^{\cos 60^{\circ}}$

RESOLUCIÓN

$$\mathbf{P} = \left(5\left(\frac{3}{5}\right) + \sqrt{3}\left(\sqrt{3}\right) + \left(\sqrt{3}\right)^2\right)^{1/2}$$

$$P = (3 + 3 + 3)^{1/2}$$

$$P = \sqrt{9}$$

sena	cosa	tana	cota	seca	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

Del gráfico, calcule $\cot \varphi$ si PC = 3 BP.

RESOLUCIÓN

Dato:
$$1 \text{ PC} = 3 \text{ BP} \implies \frac{\text{PC}}{\text{BP}} = \frac{3}{3}$$

En
$$\triangle$$
ABP (Notable de 45°):
AB = BP = 1

En
$$\triangle ABC$$
: $\cot \varphi = \frac{1+3}{1}$

Del gráfico, efectúe:

$$E = \sqrt{10} \operatorname{sen} \alpha + \cot \alpha$$

COT CA CO

RESOLUCIÓN

En \triangle AHB (Notable de 45° – 45°):

$$AB = 5\sqrt{2} \qquad \Rightarrow \qquad AH = HB = 5$$

En ABHC: Teorema de Pitágoras

$$(BC)^2 = (5)^2 + (15)^2$$

$$(BC)^2 = 250$$
 \Rightarrow $BC = 5\sqrt{10}$

Luego: $E = \sqrt{10} \operatorname{sen}\alpha + \cot\alpha$

$$\mathbf{E} = \sqrt{\mathbf{10}} \left(\frac{5}{5\sqrt{\mathbf{10}}} \right) + \frac{15}{5}$$

$$\mathbf{E} = \mathbf{1} + \mathbf{3} \qquad \qquad \mathbf{\dot{E}} = \mathbf{4}$$

Del gráfico, calcule tanθ si AM = MB .

RESOLUCIÓN

En \triangle AHM(Notable de 45° – 45°):

Sea:
$$AM = \sqrt{2}$$
 \Rightarrow $AH = MH = 1$ $MB = AM = \sqrt{2}$

En \triangle AHM(Notable de 45° – 45°):

$$AB = 2\sqrt{2} \qquad \Rightarrow \qquad AC = 2\sqrt{2}\sqrt{2}$$

$$\Rightarrow \qquad AC = 4$$

$$\therefore \tan \theta = \frac{1}{3}$$

Del gráfico, calcule $\cot \theta$, si AB = 2 DC.

Sean:
$$AB = 2$$
; $DC = 1$

Completamos lados en ⊾notables :

$$\cdot \cot \theta = 2$$

Gigi es una corredora de bienes raíces que ante el incremento del precio del dólar decide vender uno de los terrenos que tiene.- Si el m^2 se valora en \$1000.- Calcule el precio de venta del terreno de

mayor área.

RESOLUCIÓN

La Molina =
$$(5 \tan^2 60^\circ)$$
m $(9 \cot 37^\circ)$ m
= $5(\sqrt{3})^2 \cdot 9(\frac{4}{3})$ m² = 180 m^2

Ate Vitarte = $[(20 \cos 37^{\circ}. \tan 37^{\circ}) \text{ m}]^2$

$$= \left[20\left(\frac{4}{5}\right)\left(\frac{3}{4}\right)m\right]^2 = 144 m^2$$

El terreno de mayor área es el de La Molina y cuesta \$180000

Dos barras metálicas se encuentran apoyadas en su parte superior , tal como se muestra en la figura.- Si el ángulo que forman las barras en su punto de apoyo es de 143°, calcule $E = 11 t an\alpha + \frac{1}{2}$.

RESOLUCIÓN

En el $\triangle BHC$ (Notable de 37° y 53°):

$$BC = 5k = 15 \text{ cm}$$
 $k = 3 \text{ cm}$

HC =
$$3k = 3(3 cm) = 9 cm$$

Luego:
HB = $4k = 4(3 cm) = 12 cm$

Luego:
$$E = 11 \left(\frac{9}{27}\right) + \frac{1}{2}$$

$$\frac{\mathbf{CO}}{\mathbf{CA}} = \frac{9}{2} + \frac{9}{2}$$

