Foundations of Nonparametric Bayesian Methods

Part II

Peter Orbanz

Overview: Today

- 1. Bayesian models
- 2. Construction of stochastic processes
- 3. Extension of conditional probabilities

Conditioning

Direct approach

Conditional probability of $X(\omega) \in A$ given that $X(\omega) \in B$:

$$\mu(A|B) := \frac{\mu(A \cap B)}{\mu(B)}$$

 \rightarrow no use if $\mu(B) = 0$ (think of Bayesian model on \mathbb{R}^d)

Abstract Conditional Probabilities

Measure-theoretic definition of conditionals is beyond scope of this talk.

In The Following

We ignore technical details and write $\mu(X|Y)$ or $\mu(A|Y)$ for the conditional probability of X (RV) or A (event) given Y.

Conditional Densities

If X, Y have joint density, $\mu(X|Y)$ has conditional density $\rho(X|Y)$.

Bayesian Models

Parametric Family

Let $X: (\Lambda, \mathcal{A}) \to (\Omega_X, \mathcal{B}_X)$ and $\Theta: (\Lambda, \mathcal{A}) \to (\Omega_\theta, \mathcal{B}_\theta)$ be two random variables, and $\mu_X = X(\mathbb{P})$. Then the conditional distribution $\mu_X(X|\Theta)$ is called a *parametric family* of distributions (parameterized by $\theta \in \Omega_\theta$).

Bayesian model

If X observed and Θ unobserved, we call:

- $\mu_{\Theta} := \Theta(\mathbb{P})$ the *prior measure*
- ▶ $\mu_{\Theta}(\Theta|X)$ the posterior measure
- The overall model is called a Bayesian model.

Note: Not defined by a Bayes equation!

Bayes' Theorem

Problem:

Given the prior and the data, how can we determine the posterior? (Without exhaustive knowledge of \mathbb{P} , \mathcal{A} etc)

Bayes Theorem

If the sampling model $\mu_X(X|\Theta)$ has density $p_{X|\theta}$, then:

$$\frac{d\mu_{\Theta|X}}{d\mu_{\Theta}}(\theta|X) = \frac{p_{X|\theta}}{\int p_{X|\theta} d\mu_{\theta}(\theta)}$$

for all x with $\int p_{X|\theta} d\mu_{\theta}(\theta) \notin \{0, \infty\}$.

Models With No Bayes Equation

For some models (e.g. DP) posterior \ll prior *not* satisfied \rightarrow

Bayesian model, but no Bayes equation.

Bayesian Nonparametrics

Nonparametric Bayesian model

A Bayesian model with:

- 1. $dim(\Omega_{\theta}) = dim(\Omega_{x}) = +\infty$.
- 2. Model can be evaluated on partial observations.

Partial observation

Random quantity with d dimensions, only m < d are observed.

Example: GP regression

GP draw is function *f*, but only finite number of values of *f* known.

Stochastic Process Models

Intuition

Stochastic process = ∞ -dim probability distribution

Typical GP definition

"A Gaussian process is a probability distribution on an infinite collection of random variables X_t such that the marginal distribution for each finite subset (t_1, \ldots, t_n) of indices is Gaussian."

→ Existence? Uniqueness?

Stochastic Process Construction (1)

Stochastic process measure $\mu^{\rm E}$: Distribution of RV

$$X^{E}:(\Lambda,\mathcal{A})
ightarrow (\Omega^{E},\mathcal{B}^{E})$$

- E: infinite index set (indexes entries of random vector)
- $ightharpoonup \Omega_0$: "one-dimensional" sample space
- $ightharpoonup \Omega^{\mathsf{E}} := \prod_{i \in F} \Omega_0$
- ▶ Interpretation: μ^{E} -draws = mappings $x : E \rightarrow \Omega_0$

Projector

 P_{II} := projection mapping $\Omega^{J} \rightarrow \Omega^{I}$ (for $I \subset J \subset E$)

Marginals

Marginal of μ^{J} on $\Omega^{\mathsf{I}} \subset \Omega^{\mathsf{J}}$:

$$\underbrace{(P_{II}\mu^{J})(A)}_{\text{on }\Omega^{I}} := \underbrace{\mu^{J}(P_{II}^{-1}A)}_{\text{on }\Omega^{J}}$$

marginals = projections of measures

Stochastic Process Construction (2)

Def: Projective family

Family $\{\mu^{l}|I\subset E \text{ finite}\}$ such that for all finite I,J with $I\subset J$:

$$P_{\scriptscriptstyle \rm JI}\mu^{\scriptscriptstyle \sf J}=\mu^{\scriptscriptstyle \sf I}$$

Note: If $\mu^{\rm E}$ given, the finite-dim marginals $\mu^{\rm I}:={\rm P_{EI}}\mu^{\rm E}$ are a projective family.

Kolmogorov's Extension Theorem

If a family $\{\mu^{\rm I}|I\subset E \text{ finite}\}$ of finite-dimensional measures is projective, there exists a unique measure $\mu^{\rm E}$ on $\Omega^{\rm E}$ with $\mu^{\rm I}$ as its marginals.

Jargon: μ^{E} is called the *projective limit* of the μ^{I} .

Example: GP construction

Choice of components

- $ightharpoonup \Omega_0 := \mathbb{R}$ and index set $E = \mathbb{R}$
- ▶ P_{II} : Euclidean projector from $\mathbb{R}^{|J|}$ to $\mathbb{R}^{|J|}$.
- ▶ Marginal family: μ are |I|-dimensional Gaussians

Ensure marginals projective

- ▶ Start with mean function m(.) and covariance k(.,.).
- ▶ Note: $E = \mathbb{R}$, finite $I = \{t_1, \dots, t_{|I|}\} \subset \mathbb{R}$
- ▶ μ ^I = Gaussian, mean $(m(t_1), ..., m(t_{|I|}))$ and $\Sigma_{ij} = k(t_i, t_j)$

Apply Extension Theorem

GP measure $\mu^{\rm E}$ exists and is unique.

Note: μ^{E} has mean m and covariance function k, but that is *not* an immediate consequence of theorem!

Extensions Theorem: Caveat

Problem

If dimension E is uncountable, the projective limit measure $\mu^{\rm E}$ is basically useless.

Explanation

- ▶ Domain of μ^{E} : \mathcal{B}^{E} (generated by product topology)
- Sets in B^E: "axes-parallel" in all but countably many dimensions
- ▶ E uncountable $\rightarrow \mathcal{B}^{E}$ too coarse for meaningful modeling

A Note of Caution:

Problem is often neglected in literature.

Example: Original paper on the DP (Ferguson, 1973).

Uncountable Dimensions

Intuition:

Objects of interest *effectively* have countably many degrees of freedom.

Examples

- ► Continuous functions: Completely defined by values on dense subset (e.g. \mathbb{Q} in \mathbb{R})
- Probability measures: Completely defined by values on countable system of sets.

Strategies

- 1. Modify theorem to directly define measure on "interesting" space (eg space of continuous functions).
- 2. Use Kolmogorov theorem, than restrict $\mu^{\rm E}$ to interesting subspace.

Extension of Conditional Probabilities

Motivation

Bayesian estimation deals with conditional probabilities or parametric families, rather than individual distributions.

Extension Result

Assumptions:

- E countable
- Conditionals on subspaces Ωⁱ satsify

$$\mu^{\mathsf{J}}(\mathrm{P}_{\scriptscriptstyle \Pi}^{\mathsf{-1}}\,.\,|\Theta^{\mathsf{J}}) = \mu^{\mathsf{I}}(\,.\,|\Theta^{\mathsf{I}}) \qquad \text{ for } \mathit{I} \subset \mathit{J}$$

Then there is a conditional distribution $\mu^{\text{E}}(X^{\text{E}}|\Theta^{\text{E}})$ on Ω^{E} with marginals $\mu^{\text{I}}(.|\Theta^{\text{I}})$.

Disclaimer

Result statement above neglects some technical details.

Conjugate Models

Definition 1

A likelihood and a family of priors are *conjugate* if all possible posteriors are elements of the prior family. ("Closure under sampling")

Definition 2

Likelihood and prior family are conjugate if there exists a measurable mapping of the form

Prior parameters \times Data \rightarrow Posterior parameters

In Exponential Family Models

Mapping *T* to posterior parameters:

$$(\lambda, y) \stackrel{T}{\mapsto} (\lambda + n, y + \sum_{i=1}^{n} S(x_i))$$

Conjugate Projective Limits

Extension Result: In Short

If mappings to posterior parameters satisfy projection relation, they define corresponding mapping for projective limit model.

In Detail

- $ightharpoonup T^{1}(x^{1}, y^{1})$ mappings to posterior parameters
- Fix y^{E} and write $T_{y}^{\text{I}} = T^{\text{I}}(., P_{\text{EI}}y^{\text{E}})$

If some mapping T^E satisfies

$$P_{\scriptscriptstyle E\!I}^{\text{--}1} \circ \textit{T}_{\textit{y}}^{\scriptscriptstyle \text{I},-1} = \textit{T}_{\textit{y}}^{\scriptscriptstyle \text{E},-1} \circ P_{\scriptscriptstyle E\!I}^{\scriptscriptstyle \text{--}1}$$

then T^{E} defines functional conjugacy for limit model.

For Exponential Family Marginals

If S^E sufficient for extension:

$$(\lambda, y^{\mathsf{E}}) \stackrel{T^{\mathsf{E}}}{\mapsto} (\lambda + n, y^{\mathsf{E}} + \sum_{i} S^{\mathsf{E}}(x_{i}^{\mathsf{E}}))$$

Projective Limits of Bayes Equations

$$\mu^{\mathsf{E}}(\Theta^{\mathsf{E}}|X^{\mathsf{E}}, Y^{\mathsf{E}}) \quad \stackrel{x_1^{\mathsf{E}}, \dots, x_n^{\mathsf{E}}}{T^{\mathsf{E}}} \quad \mu^{\mathsf{E}}(\Theta^{\mathsf{E}}|Y^{\mathsf{E}})$$

$$P_{\mathsf{E}\mathsf{I}} \downarrow \uparrow \varprojlim \qquad \qquad \varprojlim \uparrow \qquad P_{\mathsf{E}\mathsf{I}}$$

$$\mu^{\mathsf{I}}(\Theta^{\mathsf{I}}|X^{\mathsf{I}}, Y^{\mathsf{I}}) \quad \stackrel{x_1^{\mathsf{I}}, \dots, x_n^{\mathsf{I}}}{T^{\mathsf{I}}} \quad \mu^{\mathsf{I}}(\Theta^{\mathsf{I}}|Y^{\mathsf{I}})$$

Model Constructions

Example Models

Marginals	Proj Limit	Observations
Bernoulli/beta	IBP/beta process	Binary arrays
Multin./Dirichlet	CRP/DP	Discrete dist.
Gauss/Gauss	GP/GP	cont. functions
Mallows/conj.	(exists)	Bijections of $\mathbb N$

Construction Recipe

- Choose finite-dimensional observation (eg permutations)
- Choose exponential family model on observations
- Choose canonical conjugate prior
- Check: Model and sufficient statistic projective

Warning: More difficult in uncountable dimensions.