

AHAB: Data-Driven Virtual Cluster Hunting

Johannes Zerwas* Patrick Kalmbach* Carlo Fuerst° Arne Ludwig° Andreas Blenk* Wolfgang Kellerer* Stefan Schmid^

*Technical University of Munich, Germany

*Technical University of Berlin, Germany

*University of Vienna, Austria

IFIP Networking 2018, Zurich, Switzerland

Context

- Increased use data-intensive applications in shared data centers
- Many provider-tenant interfaces neglect network as a resource
- Problems:
 - Unpredictable application performance
 - Limited applicability of cloud
 - Inefficiencies in production data centers
- Solution: Network-aware abstraction Virtual Cluster (ACM SIGCOMM 2011)

Background: Virtual Cluster Abstraction

Physical Cluster

- Compute Units (CUs)
- Bandwidth Units (BUs)
- Tree-like topology (abstracted from Fat-Tree)

Virtual Cluster (VC)

- Number of VMs (N)
- Size of VMs (S)
- Bandwidth (B)
- Lifetime given resource fulfillment

Background: Virtual Cluster Abstraction

Physical Cluster

- Compute Units (CUs)
- Bandwidth Units (BUs)
- Tree-like topology (abstracted from Fat-Tree)

Virtual Cluster (VC)

- Number of VMs (N)
- Size of VMs (S)
- Bandwidth (B)
- Lifetime given resource fulfillment

Problem: Resource Fragmentation

Existing allocation algorithms focus on single request:

- Oktopus (ACM SIGCOMM 2011)
- Kraken (IEEE/ACM TON 2018)

TETRIS: Sacrifice Footprint for Fragmentation

Choose hosts with max. ratio of residual resources

TETRIS: Sacrifice Footprint for Fragmentation

Choose hosts with max. ratio of residual resources

Algorithm Evaluation

- Baseline: OKTOPUS (ACM SIGCOMM 2011), KRAKEN (IEEE/ACM TON 2018)
- Physical Cluster: Fat-Tree with k=12, 8CUs and 8BUs
- Performance metrics: CU Utilization, avg. VC Footprint
- Virtual Cluster Requests:
 - 1000 / run with varying arrival rates
 - Num. VMs, size VMs, BW similar to traces from Google & Microsoft

TETRIS Evaluation

TETRIS Evaluation

Leverage Knowledge Monte Carlo Tree Search Data-Driven Decision

AHAB improves utilization

Why is AHAB better?

Small VMs Large BW Large VMs Small BW

Why is AHAB better?

Optimization Opportunities

18

Summary

- TETRIS sacrifices footprint increase utilization
- AHAB employs a data-driven approach for Admission Control
- AHAB evaluates the impact of a single request on future requests
- AHAB's approach applies also to other use-cases
- Future Work: Use ML to predict AHAB's decisions

Thank you! Questions?