Social Welfare and Stable Matching

Industrial Engineering and Operations Research

October 9, 2023

- Utility Functions and Average Ranks
 - TTC Algorithm
 - GS Algorithm
- Pareto Optimality and The GS Algorithm
 - 100 Simulations
 - 10 Simulations
 - 1 Simulation
 - 90 student 100 schools

Sensible Utility Functions

(a)
$$u(M) = (\prod_{i \in S} u(i, \mu(i)))^{\frac{1}{n}}$$

 $u(i, \mu(i))) = n + 2 - rank_i$

(b)
$$u(M) = min(u(i, \mu(i))))$$

 $u(i, \mu(i))) = 1/rank_i$

(a)
$$u(M) = \sum_{i \in ranks} x_i^{(n+1-rank_i)/n+1} - x_{n+1}$$

(b)
$$u(M) = \sum_{i \in ranks} x_i^2 - x_{n+1}$$

(a)
$$\prod_{i \in \mathit{ranks}} \frac{x_i^{(n+1-\mathit{rank}_i)/n+1}}{x_{i+1}^{(n+1-\mathit{rank}_{i+1})/n+1}}$$

(b)
$$\prod_{i \in S} \frac{1}{4} - \frac{1}{2(n+1-rank_i)^2}$$

(a)
$$\sum_{i \in students} 1 - e^{-(n+1-rank_i-(n+1)/2)}$$

(b)
$$\sum_{i \in students_{>.5}} 1 - e^{-(n+1-rank_i-(n+1)/2)} - \sum_{i \in students_{<.5}} 2 * e^{(n+1-rank_i-(n+1)/2)}$$

For a Match μ between students $\mathcal S$ and schools $\mathcal H$, the average rank (corresponding to original full list) for students is:

$$R(\mu) = \frac{1}{n} \left(|\bar{S}(\mu)| (|H|+1) + \sum_{s \in S \setminus \bar{S}(\mu)} Rank_s(\mu(s)) \right)$$

where $\bar{s}(\mu)$ are the unmatched students. Average Rank for schools are computed with the equivalent function.

Figure: Average rank of match for the market

- Utility Functions and Average Ranks
 - TTC Algorithm
 - GS Algorithm
- Pareto Optimality and The GS Algorithm
 - 100 Simulations
 - 10 Simulations
 - 1 Simulation
 - 90 student 100 schools

Sensible Utility Functions

(a)
$$u(M) = (\prod_{i \in S} u(i, \mu(i)))^{\frac{1}{n}}$$

 $u(i, \mu(i))) = n + 2 - rank_i$

(b)
$$u(M) = min(u(i, \mu(i)))$$

 $u(i, \mu(i))) = 1/rank_i$

(a)
$$u(M) = \sum_{i \in ranks} x_i^{(n+1-rank_i)/n+1} - x_{n+1}$$

(b)
$$u(M) = \sum_{i \in ranks} x_i^2 - x_{n+1}$$

(a)
$$\prod_{i \in \mathit{ranks}} \frac{x_i^{(n+1-\mathit{rank}_i)/n+1}}{x_{i+1}^{(n+1-\mathit{rank}_{i+1})/n+1}}$$

(b)
$$\prod_{i \in S} \frac{1}{4} - \frac{1}{2(n+1-rank_i)^2}$$

(a)
$$\sum_{i \in students} 1 - e^{-(n+1-rank_i-(n+1)/2))}$$

(b)
$$\sum_{i \in students_{>.5}} 1 - e^{-(n+1-rank_i-(n+1)/2)} - \sum_{i \in students_{<.5}} 2 * e^{(n+1-rank_i-(n+1)/2)}$$

Figure: Average rank of match for the market

- Utility Functions and Average Ranks
 - TTC Algorithm
 - GS Algorithm
- Pareto Optimality and The GS Algorithm
 - 100 Simulations
 - 10 Simulations
 - 1 Simulation
 - 90 student 100 schools

The GS output and Pareto Optimality

(a) Proportion of experiments with a Pareto Optimal matching

(b) Proportion of students that weren't Pareto Optimal

Welfare in GS Output vs Pareto Optimality

(b) Leontief Utilities
$$u(M) = min(u(i, \mu(i)))$$
 $u(i, \mu(i))) = 1/rank_i$

Figure: Average rank of match

- Utility Functions and Average Ranks
 - TTC Algorithm
 - GS Algorithm
- Pareto Optimality and The GS Algorithm
 - 100 Simulations
 - 10 Simulations
 - 1 Simulation
 - 90 student 100 schools

The GS output and Pareto Optimality

(a) Proportion of experiments with a Pareto Optimal matching

(b) Proportion of students that weren't Pareto Optimal

Welfare in GS Output vs Pareto Optimality

(b) Leontief Utilities
$$u(M) = min(u(i, \mu(i)))$$
 $u(i, \mu(i))) = 1/rank_i$

Figure: Average rank of match

- Utility Functions and Average Ranks
 - TTC Algorithm
 - GS Algorithm
- Pareto Optimality and The GS Algorithm
 - 100 Simulations
 - 10 Simulations
 - 1 Simulation
 - 90 student 100 schools

The GS output and Pareto Optimality

(a) Proportion of experiments with a Pareto Optimal matching

(b) Proportion of students that weren't Pareto Optimal

Welfare in GS Output vs Pareto Optimality

(a) Nash Welfare $u(M) = (\prod_{i \in S} u(i, \mu(i)))^{\frac{1}{n}}$ $u(i, \mu(i)) = n + 2 - rank_i$

(b) Leontief Utilities
$$u(M) = min(u(i, \mu(i)))$$
 $u(i, \mu(i))) = 1/rank_i$

Figure: Average rank of match

- Utility Functions and Average Ranks
 - TTC Algorithm
 - GS Algorithm
- Pareto Optimality and The GS Algorithm
 - 100 Simulations
 - 10 Simulations
 - 1 Simulation
 - 90 student 100 schools

The GS output and Pareto Optimality

(a) Proportion of experiments with a Pareto Optimal matching

(b) Proportion of students that weren't Pareto Optimal

Welfare in GS Output vs Pareto Optimality

(b) Leontief Utilities
$$u(M) = min(u(i, \mu(i)))$$
 $u(i, \mu(i))) = 1/rank_i$

Figure: Average rank of match

