Introduction to Neural Networks and Deep Learning Recurrent Neural Networks

Andres Mendez-Vazquez

May 21, 2025

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Deriving $\frac{\partial L(t)}{\partial V_{0,0}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
- What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Outline

- Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Deriving $\frac{\partial \hat{L}(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

In 1987 Robinson and Fallside [2]

At Cambridge University Engineering Department

 They proposed a new type of neural network based on Linear Control Theory

In 1987 Robinson and Fallside [2]

At Cambridge University Engineering Department

 They proposed a new type of neural network based on Linear Control Theory

They took the work of Jacobs, 1974 on dynamic nets [1]

$$s_{t+1} = As_t + Bx_t$$
$$y_t = Cs_t$$

Example of this unit

Jordan Proposed a simple recurrent network

$$h_t = \sigma_h (W_{sd} x_t + U_{ss} h_{t-1} + b_h)$$

$$y_t = \sigma_s (V_{os} h_t + b_o)$$

Jordan Proposed a simple recurrent network

$$h_t = \sigma_h (W_{sd} x_t + U_{ss} h_{t-1} + b_h)$$

$$y_t = \sigma_s (V_{os} h_t + b_o)$$

Where

1 x_t is an input of dimension d.

Jordan Proposed a simple recurrent network

$$h_t = \sigma_h (W_{sd} x_t + U_{ss} h_{t-1} + b_h)$$

$$y_t = \sigma_s (V_{os} h_t + b_o)$$

- **1** x_t is an input of dimension d.
- **2** h_t is a hidden state layer of dimension h.

Jordan Proposed a simple recurrent network

$$h_t = \sigma_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} + \boldsymbol{b}_h \right)$$

$$\boldsymbol{y}_t = \sigma_s \left(V_{os} \boldsymbol{h}_t + \boldsymbol{b}_o \right)$$

- **1** x_t is an input of dimension d.
- **2** h_t is a hidden state layer of dimension h.
- **3** y_t is the output vector of dimension s.

Jordan Proposed a simple recurrent network

$$h_t = \sigma_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} + \boldsymbol{b}_h \right)$$

$$\boldsymbol{y}_t = \sigma_s \left(V_{os} \boldsymbol{h}_t + \boldsymbol{b}_o \right)$$

- **1** x_t is an input of dimension d.
- **2** h_t is a hidden state layer of dimension h.
- **3** y_t is the output vector of dimension s.
- $oldsymbol{0}$ W, U,V parameter matrices.

Jordan Proposed a simple recurrent network

$$h_t = \sigma_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} + \boldsymbol{b}_h \right)$$

$$\boldsymbol{y}_t = \sigma_s \left(V_{os} \boldsymbol{h}_t + \boldsymbol{b}_o \right)$$

- **1** x_t is an input of dimension d.
- **2** h_t is a hidden state layer of dimension h.
- **3** y_t is the output vector of dimension s.
- $oldsymbol{0}$ W, U,V parameter matrices.
- \mathbf{o} b_h and b_o bias for the linear part.

Jordan Proposed a simple recurrent network

$$h_t = \sigma_h \left(W_{sd} x_t + U_{ss} h_{t-1} + b_h \right)$$

$$y_t = \sigma_s \left(V_{os} h_t + b_o \right)$$

- **1** x_t is an input of dimension d.
- **2** h_t is a hidden state layer of dimension h.
- 3 y_t is the output vector of dimension s.
- $oldsymbol{0}$ W, U, V parameter matrices.
- \bullet b_h and b_o bias for the linear part.
- \bullet σ_h and σ_s are activation functions.

Graphically

What were they used for?

Robinson and Fallside

 As with Hidden Markov Models, they were proposed for Speech Coding

What were they used for?

Robinson and Fallside

 As with Hidden Markov Models, they were proposed for Speech Coding

Outline

- Introduction
 History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

 - Training a Vanilla RNN Mode
 The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Based on the State-Space Model

Basically, a linear system

• Based in a state-determined system model

Based on the State-Space Model

Basically, a linear system

Based in a state-determined system model

Definition

• A mathematical description of the system in terms of a minimum set of variables $x_i(t)$, i=1,...,n, together with knowledge of those variables at an initial time t_0 and the system inputs for time $t \geq t_0$, are sufficient to predict the future system state and outputs for all time $t > t_0$.

Therefore

Therefore

We have a system as a block

This can be expressed as a state equations

$$\dot{s}_1 = f_1(\boldsymbol{x}, \boldsymbol{s}, t)
\dot{s}_2 = f_2(\boldsymbol{x}, \boldsymbol{s}, t)
\dots = \dots
\dot{s}_n = f_n(\boldsymbol{x}, \boldsymbol{s}, t)$$

Using Vector Notation

Assuming that we have a linear system and time invariant

• Time-Invariant $\bowtie x\left(t+\delta\right)$ directly equates $y\left(t+\delta\right)$, for example

$$\alpha x (t + \delta) + \beta = y (t + \delta)$$

Using Vector Notation

Assuming that we have a linear system and time invariant

• Time-Invariant $\bowtie x (t + \delta)$ directly equates $y (t + \delta)$, for example

$$\alpha x (t + \delta) + \beta = y (t + \delta)$$

Therefore, using this idea

$$\dot{s}_{i} = a_{i1}x_{1}(t) + \dots + a_{id}x_{d}(t) + b_{11}s_{1}(t) + \dots + b_{1n}s_{n}(t)$$

Using Vector Notation

Assuming that we have a linear system and time invariant

• Time-Invariant $\bowtie x (t + \delta)$ directly equates $y (t + \delta)$, for example

$$\alpha x (t + \delta) + \beta = y (t + \delta)$$

Therefore, using this idea

$$\dot{s}_i = a_{i1}x_1(t) + ... + a_{id}x_d(t) + b_{11}s_1(t) + ... + b_{1n}s_n(t)$$

Or in Matrix form

$$y(t) = Ax(t) + Bs(t)$$

Then, the discretized version

We introduce an update for the state part

$$\mathbf{y}(t) = A\mathbf{x}(t) + B\mathbf{s}(t)$$

 $\dot{\mathbf{s}}(t) = C\mathbf{s}(t)$

Then, the discretized version

We introduce an update for the state part

$$\mathbf{y}\left(t\right) = A\mathbf{x}\left(t\right) + B\mathbf{s}\left(t\right)$$

 $\dot{\mathbf{s}}\left(t\right) = C\mathbf{s}\left(t\right)$

Or our discrete step equations

$$y(t) = Ax(t) + Bs(t)$$

 $s(t+1) = Cs(t)$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Mo

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Deriving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
 - The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

The Elman Network

In Elman's Equations

$$egin{aligned} oldsymbol{h}_t &= \sigma_h \left(W_{sd} oldsymbol{x}_t + U_{ss} oldsymbol{h}_{t-1} + oldsymbol{b}_h
ight) \ oldsymbol{y}_t &= \sigma_y \left(V_{os} oldsymbol{h}_t + oldsymbol{b}_y
ight) \end{aligned}$$

The Elman Network

In Elman's Equations

$$egin{aligned} oldsymbol{h}_t &= \sigma_h \left(W_{sd} oldsymbol{x}_t + U_{ss} oldsymbol{h}_{t-1} + oldsymbol{b}_h
ight) \ oldsymbol{y}_t &= \sigma_y \left(V_{os} oldsymbol{h}_t + oldsymbol{b}_y
ight) \end{aligned}$$

We noticed something different from the linear recurrent system

 The use of activation functions to introduce the concept of non-linearity

Explanation

We have the following

lacksquare The input $oldsymbol{x}_t$ is coded by W_{sd}

$$W_{sd}\boldsymbol{x}_t$$

② An state is generated by using the codified version of the input plus a previous state $m{h}_{t-1}$

$$\boldsymbol{h}_t = \sigma_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} + \boldsymbol{b}_h \right)$$

③ The output is generated using the new state $m{h}_t$

$$\boldsymbol{y}_t = \sigma_y \left(V_{os} \boldsymbol{h}_t + \boldsymbol{b}_y \right)$$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 Other Cost Functions
 - Training a Vanilla PMN Model
 - The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Deriving $\frac{\partial \hat{L}(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

We need to introduce the concept of cost function

Which as always

• It needs to comply with two properties

We need to introduce the concept of cost function

Which as always

It needs to comply with two properties

The cost function L must be able to be written as an average

$$L = \frac{1}{N} \sum_{x \in \mathcal{X}} C_x$$

over the cost individual cost functions C_x

We need to introduce the concept of cost function

Which as always

It needs to comply with two properties

The cost function L must be able to be written as an average

$$L = \frac{1}{N} \sum_{x \in \mathcal{X}} C_x$$

over the cost individual cost functions C_x

This allow to apply different optimization techniques as

- Minbatch
- Stochastic Gradient Descent
- etc

Non dependency

ullet The cost function L must not be dependent on any activation values of a neural network besides the output values.

Non dependency

ullet The cost function L must not be dependent on any activation values of a neural network besides the output values.

If we cannot assure this

 If not Backpropagation becomes too unstable or too complex to solve. For example

$$L = \frac{1}{N} \sum_{t=0}^{N} [y_t + h_t - z_t]^2$$

▶ This gives two entry points to the network.

A List of Cost Functions

The Average Quadratic Cost

$$L = \frac{1}{N} \sum_{t=0}^{N} [y_t - z_t]^2$$

• Where y_t is the output of the network and z_t is the ground truth of the output.

A List of Cost Functions

The Average Quadratic Cost

$$L = \frac{1}{N} \sum_{t=0}^{N} [y_t - z_t]^2$$

ullet Where y_t is the output of the network and z_t is the ground truth of the output.

Cross-Entropy Cost

First, the Loss Function

$$L = -\sum_{i=1}^{C} z_i \log(y_i)$$

• Where y_i is the output and z_i is the ground truth for the class estimation.

Cross-Entropy Cost

First, the Loss Function

$$L = -\sum_{i=1}^{C} z_i \log(y_i)$$

• Where y_i is the output and z_i is the ground truth for the class estimation.

Why $y_i \log(z_i)$?

• We can imagine a sequence of class probabilities $y_1, y_2, ..., y_m$ and the likelihood of the data and the model

$$P\left[data|model\right] = y_1^{k_1} y_2^{k_2} \cdots y_m^{k_n}$$

Then

Taking the logarithm and multiplying by -1

$$-\log P\left[data|model\right] = -\sum_{i=1}^{C} k_i \log y_i$$

Then

Taking the logarithm and multiplying by -1

$$-\log P\left[data|model\right] = -\sum_{i=1}^{C} k_i \log y_i$$

Then, dividing by the total number of samples

$$-\frac{1}{N}\log P\left[data|model\right] = -\sum_{i=1}^{C} \frac{k_i}{N}\log y_i = -\sum_{i=1}^{C} z_i \log y_i$$

Now, we introduce...

The Kraft-McMillan theorem

Let each source symbol from the alphabet

$$\mathcal{A} = \{a_1, a_2, ..., a_n\}$$

be encoded into a uniquely decodable code over an alphabet of size r with codeword lengths $\ell_1,\ell_2,...,\ell_n$. Then

$$\sum_{i=1}^{n} r^{-\ell_1} \le 1$$

In information theory

The Kraft-McMillan theorem

• It establishes that any directly decodable coding scheme for encoding a message to identify one value $x_i \in \{x_1,x_2,...,x_n\}$

In information theory

The Kraft-McMillan theorem

• It establishes that any directly decodable coding scheme for encoding a message to identify one value $x_i \in \{x_1,x_2,...,x_n\}$

It can be seen as representing an implicit probability distribution over $\{x_1, x_2, ..., x_n\}$

$$q\left(x_{i}\right) = \left(2\right)^{-\ell_{i}}$$

ullet Where ℓ_i is the length of the code for x_i

Now

We have that

• Cross entropy can be interpreted as the expected message-length per datum when a wrong distribution q is assumed while the data actually follows a distribution p.

Now

We have that

• Cross entropy can be interpreted as the expected message-length per datum when a wrong distribution q is assumed while the data actually follows a distribution p.

The expected message-length under the true distribution p is

$$E_p[l] = -E_p \left[\frac{\ln q(x)}{\ln 2} \right]$$

$$= -E_p \left[\log_2 q(x) \right]$$

$$= -\sum_{x_i} p(x_i) \log_2 q(x)$$

$$= H(p, q)$$

Special Case

A special case is the binary class problem, $C=2^{l}$

• Based on the fact that $z_1 + z_2 = 1$ and $y_1 + y_2 = 1$

$$L = -\sum_{i=1}^{2} z_i \log(y_i) = -z_1 \log(y_1) - (1 - z_1) \log(1 - y_1)$$

Special Case

A special case is the binary class problem, C=2

• Based on the fact that $z_1 + z_2 = 1$ and $y_1 + y_2 = 1$

$$L = -\sum_{i=1}^{2} z_i \log(y_i) = -z_1 \log(y_1) - (1 - z_1) \log(1 - y_1)$$

A problem of this

• It could be possible to have a $y_i = 0$

Dealing with this problem

Another Interpretation

The Loss can be expressed as

$$L = \begin{cases} -\log(f(y_1)) & \text{if } z_1 = 1\\ -\log(1 - f(y_1)) & \text{if } z_1 = 0 \end{cases}$$

Another Interpretation

The Loss can be expressed as

$$L = \begin{cases} -\log(f(y_1)) & \text{if } z_1 = 1\\ -\log(1 - f(y_1)) & \text{if } z_1 = 0 \end{cases}$$

Where $z_1 = 1$

• It means that the class $C_i = C_1$ is positive for this sample.

The Gradient of the Binary Cross Entropy

We make a derivative with respect to y_i

$$\frac{\partial L}{\partial y_1} = z_1 (f(y_1) - 1) + (1 - z_1) f(y_1)$$

In the case of the Multiclass Problem

We use two things, a softmax

$$f(y_i) = \frac{\exp\{y_i\}}{\sum_{j=1}^{C} \exp\{y_j\}}$$

In the case of the Multiclass Problem

We use two things, a softmax

$$f(y_i) = \frac{\exp\{y_i\}}{\sum_{j=1}^{C} \exp\{y_j\}}$$

As in the multiclass for the Linear Models

ullet The labels are one-hot, so only the positive class C_p keeps its term in the loss.

In the case of the Multiclass Problem

We use two things, a softmax

$$f(y_i) = \frac{\exp\{y_i\}}{\sum_{j=1}^{C} \exp\{y_j\}}$$

As in the multiclass for the Linear Models

ullet The labels are one-hot, so only the positive class C_p keeps its term in the loss.

Therefore

• There is only one element of the Target vector ${\pmb z}$ that is not zero, $z_i=z_p.$

We can then simplify

The cost function becomes

$$L = -\sum_{i=1}^{C} z_i \log (f(y_i)) = -log \left(\frac{\exp \{y_p\}}{\sum_{j=1}^{C} \exp \{y_p\}} \right)$$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions
 - Training a Vanilla RNN Mo
 The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Exponential Cost with hyper-parameter au

$$L = \tau \exp \left[\frac{1}{\tau} \sum_{i=1}^{N} (y_i - z_i)^2 \right]$$

Exponential Cost with hyper-parameter au

$$L = \tau \exp \left[\frac{1}{\tau} \sum_{i=1}^{N} (y_i - z_i)^2 \right]$$

Hellinger Distance

$$L = \frac{1}{2} \sum_{i=1}^{N} (\sqrt{y_i} - \sqrt{z_i})^2$$

ullet Here the values need to be at the interval [0,1].

Given Kullback-Leibler Divergence

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \ln \frac{P(i)}{Q(i)}$$

Given Kullback-Leibler Divergence

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \ln \frac{P(i)}{Q(i)}$$

The Final Cost function

$$L = \sum_{j} \hat{y}_{j} \log \frac{\hat{y}_{j}}{y_{j}^{pred}}$$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

We have the following

Architecture with Quadratic Error

$$egin{aligned} oldsymbol{h}_t &= \sigma_h \left(W_{sd} oldsymbol{x}_t + U_{ss} oldsymbol{h}_{t-1} + oldsymbol{b}_h
ight) \ oldsymbol{y}_t &= \sigma_y \left(V_{os} oldsymbol{h}_t + oldsymbol{b}_y
ight) \ L &= rac{1}{2} \sum_{t=0}^N \left[y_t - z_t
ight]^2 \end{aligned}$$

We have the following

Architecture with Quadratic Error

$$egin{aligned} m{h}_t &= \sigma_h \left(W_{sd} m{x}_t + U_{ss} m{h}_{t-1} + m{b}_h
ight) \ m{y}_t &= \sigma_y \left(V_{os} m{h}_t + m{b}_y
ight) \ L &= rac{1}{2} \sum_{t=0}^N \left[y_t - z_t
ight]^2 \end{aligned}$$

Something Notable

 How do we train something with a recurrence forcing a dependence over time?

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions
 - Training a Vanilla RNN Model
 - The Final RNN Model
 Back Propagation Through Time (BPTT)
 - Deriving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Now, given the dependency over time

We can use the classic unfolding of the network [3, 4] by assuming

ullet W, U, V, b_h and b_o do not change under the unfolding

Now, given the dependency over time

We can use the classic unfolding of the network [3, 4] by assuming

ullet W, U, V, b_h and b_o do not change under the unfolding

Unfolding?

 \bullet Assume that there are not bias correcting terms, only, $W\!,U$ and $V\!$.

Then

Given an observation sequence $x = \{x_1, x_2, ..., x_T\}$

• where $x_i \in \mathbb{R}$, and their corresponding label $y = \{y_1, y_2, ..., y_T\}$

Then

Given an observation sequence $x = \{x_1, x_2, ..., x_T\}$

ullet where $x_i \in \mathbb{R}$, and their corresponding label $y = \{y_1, y_2, ..., y_T\}$

We remove the bias to simplify our derivations

$$\mathbf{h}_{t} = \phi_{h} (W_{sd}\mathbf{x}_{t} + U_{ss}\mathbf{h}_{t-1})$$

$$y_{t} = \phi_{y} (V_{os}\mathbf{h}_{t})$$

$$L = \frac{1}{2} \sum_{t=0}^{T} [z_{t} - y_{t}]^{2}$$

Unfolding

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Deriving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

General Chain Rule

General Chain Rule

• When $z = f\left(x\left(s,t\right),y\left(s,t\right)\right)$ is the composition of $z = f\left(x,y\right)$ and $x = x\left(s,t\right)$ and $y = y\left(s,t\right)$ then its partial derivatives are given by

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial f\left(x\left(s,t\right),y\left(s,t\right)\right)}{\partial s} = \frac{\partial f}{\partial x} \times \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \times \frac{\partial y}{\partial s} \\ \frac{\partial z}{\partial t} &= \frac{\partial f\left(x\left(s,t\right),y\left(s,t\right)\right)}{\partial t} = \frac{\partial f}{\partial x} \times \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \times \frac{\partial y}{\partial t} \end{split}$$

This allows

To simplify the backpropagation process

$$\frac{\partial L}{\partial V_{os}} = \frac{1}{2} \sum_{t=0}^{T} \frac{\partial L}{\partial y_t} \times \frac{\partial y_t}{\partial V_{os}}$$

$$= \frac{1}{2} \sum_{t=0}^{T} \frac{\partial L}{\partial y_t} \times \frac{\partial y_t}{\partial net_o} \times \frac{\partial net_o}{\partial V_{os}}$$

$$= -\sum_{t=0}^{T} [z_t - y_t] \times \frac{\partial y_t}{\partial net_o} \times \frac{\partial net_o}{\partial V_{os}}$$

• Where $net_o^t = V_{os} \boldsymbol{h}_t$

Now, we have

We have that
$$\frac{\partial y_t}{\partial net_o} = \begin{pmatrix} \frac{\partial y_{t1}}{\partial net_{o1}} & \frac{\partial y_{t1}}{\partial net_{o2}} & \cdots & \frac{\partial y_{t1}}{\partial net_{oo}} \\ \frac{\partial y_{t2}}{\partial net_{o1}} & \frac{\partial y_{t2}}{\partial net_{o2}} & \frac{\partial y_{t2}}{\partial net_{o2}} & \cdots & \frac{\partial y_{t2}}{\partial net_{oo}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{to}}{\partial net_{o1}} & \frac{\partial y_{to}}{\partial net_{o2}} & \cdots & \frac{\partial y_{to}}{\partial net_{oo}} \end{pmatrix}$$

Simplify!!!

Now, we have that if
$$i = j$$

$$\frac{\partial y_{ti}}{\partial net_{oi}} = \phi'_{o} \left(net_{oi} \right)$$

Simplify!!!

Now, we have that if i = j

$$\frac{\partial y_{ti}}{\partial net_{oi}} = \phi_o' \left(net_{oi} \right)$$

And for the rest, we have $i \neq j$

$$\frac{\partial y_{ti}}{\partial net_{oi}} = 0$$

Finally

We have that
$$\frac{\partial y_t}{\partial net_o} = \begin{pmatrix} \phi_o'(net_{o1}) & 0 & \cdots & 0\\ 0 & \phi_o'(net_{o2}) & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \phi_o'(net_{oo}) \end{pmatrix} = A$$

Now, $\frac{\partial net_o}{\partial V_{os}}$

First we have a component i

$$net_{oi} = \sum_{j=1}^{s} V_{ij} h_j$$

Now,
$$\frac{\partial net_o}{\partial V_{os}}$$

First we have a component i

$$net_{oi} = \sum_{j=1}^{s} V_{ij} h_j$$

What happen when we derive with respect to the matrix?

$$\frac{\partial net_o}{\partial V_{os}} = \begin{bmatrix} \frac{\partial net_o}{\partial V_{11}} & \frac{\partial net_o}{\partial V_{12}} & \cdots & \frac{\partial net_o}{\partial V_{1s}} \\ \frac{\partial net_o}{\partial V_{21}} & \frac{\partial net_o}{\partial V_{22}} & \cdots & \frac{\partial net_o}{\partial V_{2s}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial net_o}{\partial V_{o1}} & \frac{\partial net_o}{\partial V_{o2}} & \cdots & \frac{\partial net_o}{\partial V_{os}} \end{bmatrix}$$

Now,
$$\frac{\partial net_o}{\partial V_{os}}$$

First we have a component i

$$net_{oi} = \sum_{j=1}^{s} V_{ij} h_j$$

What happen when we derive with respect to the matrix?

$$\frac{\partial net_o}{\partial V_{os}} = \begin{bmatrix} \frac{\partial net_o}{\partial V_{11}} & \frac{\partial net_o}{\partial V_{12}} & \cdots & \frac{\partial net_o}{\partial V_{1s}} \\ \frac{\partial net_o}{\partial V_{21}} & \frac{\partial net_o}{\partial V_{22}} & \cdots & \frac{\partial net_o}{\partial V_{2s}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial net_o}{\partial V_{o1}} & \frac{\partial net_o}{\partial V_{o2}} & \cdots & \frac{\partial net_o}{\partial V_{os}} \end{bmatrix}$$

Actually

• A Tensor with three dimensions...

But something quite nice

Each of the components of net_o

• It has the previous structure

$$net_{oi} = \sum_{k=1}^{s} V_{ik} h_k$$

But something quite nice

Each of the components of net_o

It has the previous structure

$$net_{oi} = \sum_{k=1}^{s} V_{ik} h_k$$

Then if the V_{jk} does not intervene on it

$$\frac{\partial net_{oi}}{\partial V_{ik}} = 0$$

But something quite nice

Each of the components of net_o

It has the previous structure

$$net_{oi} = \sum_{k=1}^{s} V_{ik} h_k$$

Then if the V_{jk} does not intervene on it

$$\frac{\partial net_{oi}}{\partial V_{ik}} = 0$$

Additionally if it intervenes

$$\frac{\partial net_{oi}}{\partial V_{ik}} = h_k$$

Therefore

It is possible to collapse the tensor into a 2D Matrix

• Given that the other information is redundant, ad we can rewrite the tensor as

$$F_{ijk} = \frac{\partial net_{oi}}{\partial V_{jk}}$$

Therefore

It is possible to collapse the tensor into a 2D Matrix

• Given that the other information is redundant, ad we can rewrite the tensor as

$$F_{ijk} = \frac{\partial net_{oi}}{\partial V_{jk}}$$

Then, we have that

$$F_{ijk} = G_{ij} \Leftarrow \text{Better Storage!!!}$$

Therefore, given that a matrix is a tensor also

We have that two tensors, $net^{o \times o}$ and $F^{o \times s \times o}$ [5]

 We will use the contracted product of two tensors which is a generalization of the tensor-vector and tensor-matrix multiplications

Therefore, given that a matrix is a tensor also

We have that two tensors, $net^{o\times o}$ and $F^{o\times s\times o}$ [5]

 We will use the contracted product of two tensors which is a generalization of the tensor-vector and tensor-matrix multiplications

Definition

• Given two tensors $A^{o \times o}$ and $B^{o \times s \times o}$

$$\langle A, B \rangle (k, j) = \sum_{i=1}^{o} A_{i,k} G_{i,j} = A_{i,i} G_{i,j} = \sigma' (net_{oi}) h_j$$

Now, the term $\frac{\partial L}{\partial U_{ss}}$

Assuming our change in time step $t \rightarrow t+1$ and given

$$\boldsymbol{h}_t = \phi_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} \right)$$

Now, the term $\frac{\partial L}{\partial U_{ss}}$

Assuming our change in time step $t \rightarrow t+1$ and given

$$\boldsymbol{h}_t = \phi_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} \right)$$

Therefore we have

$$\frac{\partial L(t+1)}{\partial U_{ss}} = \frac{\partial L(t+1)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial U_{ss}}$$

Now, the term $\frac{\partial L}{\partial U_{ss}}$

Assuming our change in time step $t \rightarrow t+1$ and given

$$\boldsymbol{h}_t = \phi_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} \right)$$

Therefore we have

$$\frac{\partial L\left(t+1\right)}{\partial U_{ss}} = \frac{\partial L\left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial U_{ss}}$$

Therefore

• We can think on this as a Markovian Backpropagation

What if we go further

$$\frac{Prom \ t-1 \rightarrow t+1}{\partial U_{ss}} = \frac{\partial L\left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_t} \times \frac{\partial h_t}{\partial U_{ss}}$$

What if we go further

From
$$t-1 \rightarrow t+1$$

$$\frac{\partial L\left(t+1\right)}{\partial U_{ss}} = \frac{\partial L\left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{t}} \times \frac{\partial h_{t}}{\partial U_{ss}}$$

Now, we consider all the possible derivatives from 0 to T

• We have:

$$\frac{\partial L\left(t+1\right)}{\partial U_{ss}} = \sum_{t=0}^{T} \frac{\partial L\left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{t}} \times \frac{\partial h_{t}}{\partial U_{ss}}$$

What if we go further

From $t-1 \rightarrow t+1$

$$\frac{\partial L(t+1)}{\partial U_{ss}} = \frac{\partial L(t+1)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_t} \times \frac{\partial h_t}{\partial U_{ss}}$$

Now, we consider all the possible derivatives from 0 to T

• We have:

$$\frac{\partial L\left(t+1\right)}{\partial U_{ss}} = \sum_{t=0}^{T} \frac{\partial L\left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{t}} \times \frac{\partial h_{t}}{\partial U_{ss}}$$

However

• How do we calculate $\frac{\partial h_{t+1}}{\partial h_k}$?

We have a proposal

Given the product of functions

$$\frac{\partial h_{t+1}}{\partial h_k} = \frac{\partial h_{k+1}}{\partial h_k} \times \frac{\partial h_{k+2}}{\partial h_{k+1}} \times \dots \times \frac{\partial h_{t+1}}{\partial h_t}$$

We have a proposal

Given the product of functions

$$\frac{\partial h_{t+1}}{\partial h_k} = \frac{\partial h_{k+1}}{\partial h_k} \times \frac{\partial h_{k+2}}{\partial h_{k+1}} \times \dots \times \frac{\partial h_{t+1}}{\partial h_t}$$

Here, we know that

$$\frac{\partial h_{i+1}}{\partial h_i} = \frac{\partial h_{i+1}}{\partial net_s} \times \frac{\partial net_s}{\partial h_i}$$

We have that

We have given
$$m{h}_{i+1} = \phi_h \left(W_{sd} m{x}_i + U_{ss} m{h}_i \right)$$
 and $net_h = W_{sd} m{x}_i + U_{ss} m{h}_i$
$$\frac{\partial h_{i+1}}{\partial net_s} = \begin{pmatrix} \phi_h' \left(net_{h1} \right) & 0 & \cdots & 0 \\ 0 & \phi_h' \left(net_{h2} \right) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \phi_h' \left(net_{hs} \right) \end{pmatrix} = D_{i+1}$$

We have that

We have given
$$\boldsymbol{h}_{i+1} = \phi_h \left(W_{sd} \boldsymbol{x}_i + U_{ss} \boldsymbol{h}_i \right)$$
 and $net_h = W_{sd} \boldsymbol{x}_i + U_{ss} \boldsymbol{h}_i$

$$\frac{\partial h_{i+1}}{\partial net_s} = \begin{pmatrix} \phi'_h (net_{h1}) & 0 & \cdots & 0\\ 0 & \phi'_h (net_{h2}) & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \phi'_h (net_{hs}) \end{pmatrix} = D_{i+1}$$

Finally, we have that

$$\frac{\partial net_s}{\partial h_i} = U_{ss}$$

Then

We can aggregate over all the time

$$\frac{\partial L}{\partial U_{ss}} = \sum_{t=0}^{T} \sum_{k=1}^{t} \frac{\partial L \left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{k}} \times \frac{\partial h_{t}}{\partial U_{ss}}$$

Then

We can aggregate over all the time

$$\frac{\partial L}{\partial U_{ss}} = \sum_{t=0}^{T} \sum_{k=1}^{t} \frac{\partial L(t+1)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{k}} \times \frac{\partial h_{t}}{\partial U_{ss}}$$

Now, we need to derive the L with respect to W_{sd}

$$\frac{\partial L\left(t+1\right)}{\partial W_{sd}} = \frac{\partial L\left(t+1\right)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial W_{sd}}$$

Now

Because h_t and x_{t+1} , we need to back propagate to h_t

$$\frac{\partial L(t+1)}{\partial W_{sd}} = \frac{\partial L(t+1)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial W_{sd}} + \frac{\partial L(t+1)}{\partial h_t} \times \frac{\partial h_t}{\partial W_{sd}}$$

$$= \frac{\partial L(t+1)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial W_{sd}} + \frac{\partial L(t+1)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_t} \times \frac{\partial h_t}{\partial W_{sd}}$$

Now

Because h_t and x_{t+1} , we need to back propagate to h_t

$$\begin{split} \frac{\partial L\left(t+1\right)}{\partial W_{sd}} &= \frac{\partial L\left(t+1\right)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial W_{sd}} + \frac{\partial L\left(t+1\right)}{\partial h_{t}} \times \frac{\partial h_{t}}{\partial W_{sd}} \\ &= \frac{\partial L\left(t+1\right)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial W_{sd}} + \frac{\partial L\left(t+1\right)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{t}} \times \frac{\partial h_{t}}{\partial W_{sd}} \end{split}$$

Then summing over all the contributions from 0 to T

$$\frac{\partial L\left(t+1\right)}{\partial W_{sd}} = \sum_{t=0}^{T} \sum_{h=1}^{t+1} \frac{\partial L\left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_k} \times \frac{\partial h_t}{\partial W_{sd}}$$

Now

Because h_t and x_{t+1} , we need to back propagate to h_t

$$\begin{split} \frac{\partial L\left(t+1\right)}{\partial W_{sd}} &= \frac{\partial L\left(t+1\right)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial W_{sd}} + \frac{\partial L\left(t+1\right)}{\partial h_{t}} \times \frac{\partial h_{t}}{\partial W_{sd}} \\ &= \frac{\partial L\left(t+1\right)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial W_{sd}} + \frac{\partial L\left(t+1\right)}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{t}} \times \frac{\partial h_{t}}{\partial W_{sd}} \end{split}$$

Then summing over all the contributions from 0 to T

$$\frac{\partial L\left(t+1\right)}{\partial W_{sd}} = \sum_{t=0}^{T} \sum_{k=1}^{t+1} \frac{\partial L\left(t+1\right)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_{k}} \times \frac{\partial h_{t}}{\partial W_{sd}}$$

Finally, summing over all the time

$$\frac{\partial L}{\partial W_{sd}} = \sum_{t=0}^{T} \sum_{t=1}^{t+1} \frac{\partial L(t+1)}{\partial y_{t+1}} \times \frac{\partial y_{t+1}}{\partial h_{t+1}} \times \frac{\partial h_{t+1}}{\partial h_k} \times \frac{\partial h_t}{\partial W_{sd}}$$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model The Final RNN Model

- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Vanishing Gradients

We have a problem

$$\frac{\partial h_{k+1}}{\partial h_k} \times \frac{\partial h_{k+2}}{\partial h_{k+1}} \times \cdots \times \frac{\partial h_{t+1}}{\partial h_t}$$

Vanishing Gradients

We have a problem

$$\frac{\partial h_{k+1}}{\partial h_k} \times \frac{\partial h_{k+2}}{\partial h_{k+1}} \times \dots \times \frac{\partial h_{t+1}}{\partial h_t}$$

You finish with a vanishing gradient using $\sigma = \frac{1}{1 + \exp\{-x\}}$

This is problematic!!!

Given

Given the commutativity of the product

• You could put together the derivative of the sigmoid's

$$f(x) = \frac{ds(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2}$$

Given

Given the commutativity of the product

You could put together the derivative of the sigmoid's

$$f(x) = \frac{ds(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2}$$

Therefore, deriving again

$$\frac{df(x)}{dx} = -\frac{e^{-x}}{(1+e^{-x})^2} + \frac{2(e^{-x})^2}{(1+e^{-x})^3}$$

Given

Given the commutativity of the product

• You could put together the derivative of the sigmoid's

$$f(x) = \frac{ds(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2}$$

Therefore, deriving again

$$\frac{df(x)}{dx} = -\frac{e^{-x}}{(1+e^{-x})^2} + \frac{2(e^{-x})^2}{(1+e^{-x})^3}$$

After making $\frac{df(x)}{dx} = 0$

• We have the maximum is at x=0

Therefore

The maximum for the derivative of the sigmoid

• f(0) = 0.25

Therefore

The maximum for the derivative of the sigmoid

• f(0) = 0.25

Therefore, Given a **Deep** Network

We could finish with

$$\lim_{k \to \infty} \left(\frac{ds(x)}{dx} \right)^k = \lim_{k \to \infty} (0.25)^k \to 0$$

Therefore

The maximum for the derivative of the sigmoid

• f(0) = 0.25

Therefore, Given a **Deep** Network

We could finish with

$$\lim_{k \to \infty} \left(\frac{ds(x)}{dx} \right)^k = \lim_{k \to \infty} (0.25)^k \to 0$$

A Vanishing Derivative or Vanishing Gradient

 Making quite difficult to do train a deeper network using this activation function for Deep Learning and even in Shallow Learning

For the case of vanishing gradient, we have that

Rearranging terms in $\frac{\partial h_{k+1}}{\partial h_k} imes \frac{\partial h_{k+2}}{\partial h_{k+1}} imes \cdots imes \frac{\partial h_{t+1}}{\partial h_t}$

We have

$$\left[\prod_{k=0}^{T} \frac{\partial h_{k+1}}{\partial net_s}\right] [U_{ss}]^{T+1}$$

For the case of vanishing gradient, we have that

Rearranging terms in $\frac{\partial h_{k+1}}{\partial h_k} \times \frac{\partial h_{k+2}}{\partial h_{k+1}} \times \cdots \times \frac{\partial h_{t+1}}{\partial h_t}$

We have

$$\left[\prod_{k=0}^{T} \frac{\partial h_{k+1}}{\partial net_s}\right] \left[U_{ss}\right]^{T+1}$$

Then, given the sigmoid

$$\prod_{k=0}^{T} \frac{\partial h_{k+1}}{\partial net_{s}} = \begin{bmatrix}
\prod_{k=0}^{T} \phi'_{h} \left(net_{h1}^{k}\right) & 0 & \cdots & 0 \\
0 & \prod_{k=0}^{T} \phi'_{h} \left(net_{h2}^{k}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \prod_{k=0}^{T} \phi'_{h} \left(net_{hs}^{k}\right)
\end{bmatrix}$$

It is clear

That you have the phenomena of vanishing gradient

• Do we have a way to fixing this?

It is clear

That you have the phenomena of vanishing gradient

• Do we have a way to fixing this?

Yes

• The use of new activation functions.

For example, the ReLu activation function

The need to introduce a new function

$$f\left(x\right) = x^{+} = \max\left(0, x\right)$$

For example, the ReLu activation function

The need to introduce a new function

$$f(x) = x^{+} = \max(0, x)$$

It is called ReLu or Rectifier

With a smooth approximation (Softplus function)

$$f(x) = \frac{\ln\left(1 + e^{kx}\right)}{k}$$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions
- Training a Vanilla RNN Model

 The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal PropagationThe Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

However

Here the gradient can explode

• Thus, the need to control the gradient...

However

Here the gradient can explode

• Thus, the need to control the gradient...

Therefore, we will use the following analysis [6]

• "The Emergence of Spectral Universality in Deep Networks" by Jeffrey Pennington, Samuel S. Schoenholz, Surya Ganguli

We have

The following dynamic

$$\boldsymbol{h}_{t} = \phi_{h}\left(s_{t}\right)$$
, $\boldsymbol{s}_{t} = W_{sd}\boldsymbol{x}_{t} + U_{ss}\boldsymbol{h}_{t-1} + b_{h}$

We have

The following dynamic

$$\boldsymbol{h}_{t}=\phi_{h}\left(s_{t}\right)$$
 , $\boldsymbol{s}_{t}=W_{sd}\boldsymbol{x}_{t}+U_{ss}\boldsymbol{h}_{t-1}+b_{h}$

Then, we have the following Jacobian

$$J = \frac{\partial h_T}{\partial h_0} = \prod_{t=1}^{L} D_t U_{SS}$$

Here, we have

Where as we saw it D_t is a diagonal matrix

- With entries $D_{ij}^{t}=\phi'\left(s_{i}^{l}\right)\delta_{ij}$
 - ▶ Here δ_{ij} is the Kronecker delta function

Here, we have

Where as we saw it D_t is a diagonal matrix

- With entries $D_{ij}^t = \phi'\left(s_i^l\right)\delta_{ij}$
 - Here δ_{ij} is the Kronecker delta function

${\cal J}$ is an input-output Jacobian

• This Jacobian J is a matrix of dimension $s \times s$ therefore,

Here, we have

Where as we saw it D_t is a diagonal matrix

- With entries $D_{ij}^t = \phi'\left(s_i^l\right)\delta_{ij}$
 - ▶ Here δ_{ij} is the Kronecker delta function

J is an input-output Jacobian

ullet This Jacobian J is a matrix of dimension $s \times s$ therefore,

It is closely related to the backpropagation operator

- Mapping output errors to weight matrices at a given layer,
 - ▶ in the sense that if the former is well-conditioned, then the latter tends to be well-conditioned for all weight layers.

Actually

Given this matrix J

• We have that if we can analyze the set of eigenvalues (Spectrum)

Actually

Given this matrix J

• We have that if we can analyze the set of eigenvalues (Spectrum)

We can try to get a way

To stabilize our training

A Trick

Remember the structure of the layer

The following dynamic

$$\boldsymbol{h}_{t}=\phi_{h}\left(s_{t}\right)$$
, $\boldsymbol{s}_{t}=W_{sd}\boldsymbol{x}_{t}+U_{ss}\boldsymbol{h}_{t-1}+b_{h}$

Remember the structure of the layer

The following dynamic

$$\boldsymbol{h}_{t}=\phi_{h}\left(s_{t}\right)$$
, $\boldsymbol{s}_{t}=W_{sd}\boldsymbol{x}_{t}+U_{ss}\boldsymbol{h}_{t-1}+b_{h}$

Therefore, we have that

$$s_{it} = \sum_{j} W_{ij} x_j^t + \sum_{k} U_{ik} h_k^{t-1} + b_i$$

Remember the structure of the layer

The following dynamic

$$\boldsymbol{h}_{t}=\phi_{h}\left(s_{t}\right)$$
, $\boldsymbol{s}_{t}=W_{sd}\boldsymbol{x}_{t}+U_{ss}\boldsymbol{h}_{t-1}+b_{h}$

Therefore, we have that

$$s_{it} = \sum_{j} W_{ij} x_j^t + \sum_{k} U_{ik} h_k^{t-1} + b_i$$

We assume the following about the temporal layer weights

$$[U_{ss}, W_{sd}] \sim N\left(0, \frac{\sigma_w^2}{N}\right), b_h \sim N\left(0, \sigma_b^2\right)$$

• Here N=s the state dimension.

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model The Final RNN Model

- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
- What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Therefore, we have

In [7, 8]

- ullet In these works, it has been shown that the propagation of a distribution through the N multiple layers, when N is large:
 - ▶ It tends to a Gaussian Distribution

Therefore, we have

In [7, 8]

- ullet In these works, it has been shown that the propagation of a distribution through the N multiple layers, when N is large:
 - ▶ It tends to a Gaussian Distribution

With Zero Mean and Variance q^t

$$q^{t} = Var\left[q^{t-1}|\sigma_{w},\sigma_{b}\right] = \sigma_{w}^{2} \frac{1}{\sqrt{2\pi}} \int \phi_{z} \left(\sqrt{q^{t-1}}z\right)^{2} \exp^{-\frac{z^{2}}{2}} dz + \sigma_{b}^{2}$$

- where σ_w and σ_b are standard deviations for $[W_{sd}, U_{ss}]$ and b_h respectively.
- With no correlation between the weights.

How is this possible?

We know the basic feedforward works as with the following propagation

$$x^t = \underset{\mathsf{Act Function}}{\phi} \left(W^l \boldsymbol{x}^{t-1} + \boldsymbol{b}^t \right) \text{ for } t = 1, ..., D$$

How is this possible?

We know the basic feedforward works as with the following propagation

$$\boldsymbol{x}^t = \underset{\text{Act Function}}{\phi} \left(\boldsymbol{W}^l \boldsymbol{x}^{t-1} + \boldsymbol{b}^t \right) \text{ for } t = 1, ..., D$$

Here, once a large number of layers of large size

• Force the network to start to go from random to a more deterministic behavior

How is this possible?

We know the basic feedforward works as with the following propagation

$$x^t = \phi \left(W^l x^{t-1} + b^t \right) \text{ for } t = 1, ..., D$$

Here, once a large number of layers of large size

 Force the network to start to go from random to a more deterministic behavior

For this we assume that the weights $W_{i,j}^l$ come from a Gaussian $N\left(0,\frac{\sigma_w^2}{N_{k-1}}\right)$

• Thus for N_t neurons at layer t in our case the unfolding:

$$d_{NE}^{2}\left(\boldsymbol{h},0\right)=q^{t}\approx\frac{1}{N_{t}}\sum_{i=1}^{N_{t}}\left(h_{i}^{t}-0\right)^{2}\approx Var\left(h^{t}\right)$$

Basically

The second central moment

AKA THE VARIANCE!

Basically

The second central moment

AKA THE VARIANCE!

In a similar way

$$m{b}^t \sim N\left(0, \sigma_b^2 I\right)$$

The Gaussian always the Gaussian!!!

The Gaussian always the Gaussian!!!

Something Notable

ullet We can say q^t converges to a Zero Mean Gaussina since

$$h_i^t = \boldsymbol{w}_i^t \cdot \phi\left(\boldsymbol{h}^{t-1}\right) + b_i^t$$

- It is a weighted sum of a larger number of uncorrelated random variables.
- And Gaussian distributed because of that

How!!?? From Bayesian Casuality

Given a path in G = (V, E)

There are the edges connecting $[X_1, X_2, ..., X_k]$.

How!!?? From Bayesian Casuality

Given a path in G = (V, E)

There are the edges connecting $[X_1, X_2, ..., X_k]$.

Therefore

Given the directed edge $X\to Y$, we say the tail of the edge is at X and the head of the edge is Y.

Basic Classifications of Meetings

Head-to-Tail

A path $X \to Y \to Z$ is a **head-to-tail meeting**, the edges meet head-to-tail at Y, and Y is a head-to-tail node on the path.

Basic Classifications of Meetings

Head-to-Tail

A path $X \to Y \to Z$ is a **head-to-tail meeting**, the edges meet head-to-tail at Y, and Y is a head-to-tail node on the path.

Tail-to-Tail

A path $X \leftarrow Y \rightarrow Z$ is a **tail-to-tail meeting**, the edges meet tail-to-tail at Z, and Z is a tail-to-tail node on the path.

Basic Classifications of Meetings

Head-to-Tail

A path $X \to Y \to Z$ is a **head-to-tail meeting**, the edges meet head-to-tail at Y, and Y is a head-to-tail node on the path.

Tail-to-Tail

A path $X \leftarrow Y \rightarrow Z$ is a **tail-to-tail meeting**, the edges meet tail-to-tail at Z, and Z is a tail-to-tail node on the path.

Head-to-Head

A path $X \to Y \leftarrow Z$ is a **head-to-head meeting**, the edges meet head-to-head at Y, and Y is a head-to-head node on the path.

Examples

Blocking Information pprox Conditional Independence

Definition 2.2

Let G=(V,E) be a DAG, $A\subseteq V$, X and Y be distinct nodes in V-A, and ρ be a path between X and Y .

Blocking Information pprox Conditional Independence

Definition 2.2

Let G=(V,E) be a DAG, $A\subseteq V$, X and Y be distinct nodes in V-A, and ρ be a path between X and Y .

Then ρ is **blocked** by A if one of the following holds:

Blocking Information ≈ Conditional Independence

Definition 2.2

Let G=(V,E) be a DAG, $A\subseteq V$, X and Y be distinct nodes in V-A, and ρ be a path between X and Y .

Then ρ is **blocked** by A if one of the following holds:

Blocking Information ≈ Conditional Independence

Definition 2.2

Let G=(V,E) be a DAG, $A\subseteq V$, X and Y be distinct nodes in V-A, and ρ be a path between X and Y .

Then ρ is **blocked** by A if one of the following holds:

- ① There is a node $Z \in A$ on the path ρ , and the edges incident to Z on ρ meet head-to-tail at Z.
- ② There is a node $Z \in A$ on the path ρ , and the edges incident to Z on ρ , meet tail-to-tail at Z.

Blocking Information ≈ Conditional Independence

Definition 2.2

Let G=(V,E) be a DAG, $A\subseteq V$, X and Y be distinct nodes in V-A, and ρ be a path between X and Y .

Then ρ is **blocked** by A if one of the following holds:

- There is a node $Z \in A$ on the path ρ , and the edges incident to Z on ρ meet head-to-tail at Z.
- ② There is a node $Z \in A$ on the path ρ , and the edges incident to Z on ρ , meet tail-to-tail at Z.
- ① There is a node Z, such that Z and all of Z's descendent's are not in A, on the chain ρ , and the edges incident to Z on ρ meet head-to-head at Z.

Thus

We can use the following idea

$$\begin{split} q^t &= \frac{1}{N_t} \sum_{i=1}^{N_t} \left[\boldsymbol{w}_i^t \phi \left(h^{t-1} \right) + b_i^t \right]^2 \\ &= \frac{1}{N_t} \sum_{i=1}^{N_l} \left[\left(\boldsymbol{w}_i^t \phi \left(h^{t-1} \right) \right)^2 + b_i^t \boldsymbol{w}_i^t \phi \left(h^{t-1} \right) + \left(b_i^t \right)^2 \right] \\ &= \frac{1}{N_t} \sum_{i=1}^{N_l} \left[\left(\boldsymbol{w}_i^t \phi \left(h^{t-1} \right) \right)^2 + \left(b_i^t \right)^2 \right] + b_i^t \left[\underbrace{\frac{1}{N_t} \sum_{i=1}^{N_l} \boldsymbol{w}_i^t \phi \left(h^{t-1} \right)}_{0} \right] \end{split}$$

Something Notable

$$q^t = \frac{1}{N_t} \sum_{i=1}^{N_t} \left[\left(\boldsymbol{w}_i^l \phi \left(h^{t-1} \right) \right)^2 + \left(b_i^t \right)^2 \right]$$

Something Notable

$$q^{t} = \frac{1}{N_{t}} \sum_{i=1}^{N_{t}} \left[\left(\boldsymbol{w}_{i}^{l} \phi \left(h^{t-1} \right) \right)^{2} + \left(b_{i}^{t} \right)^{2} \right]$$

Thus, we have that

$$q^{t} = \frac{1}{N_{t}} \sum_{i=1}^{N_{t}} \left[\left(\sum_{j=1}^{N_{t-1}} \boldsymbol{w}_{ij}^{l} \phi\left(\boldsymbol{h}_{j}^{t-1}\right) \right)^{2} + \left(\boldsymbol{b}_{i}^{t}\right)^{2} \right]$$

Thus, we have that

Something Notable

$$\left(\sum_{j=1}^{N_{t-1}} \boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right)\right)^{2} = \sum_{j=1}^{N_{t-1}} \left[\boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right)\right]^{2} + \sum_{j,k=1,k\neq j}^{N_{t-1}} \boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right) \boldsymbol{w}_{ik}^{l} \phi\left(h_{k}^{t-1}\right)$$

Thus, we have that

Something Notable

$$\left(\sum_{j=1}^{N_{t-1}} \boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right)\right)^{2} = \sum_{j=1}^{N_{t-1}} \left[\boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right)\right]^{2} + \sum_{j,k=1,k\neq j}^{N_{t-1}} \boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right) \boldsymbol{w}_{ik}^{l} \phi\left(h_{k}^{t-1}\right)$$

But given the Gaussian $N\left(0, rac{\sigma_w^2}{N_{t-1}} ight)$ and no correlation at weights

$$\bullet$$
 $\frac{1}{N_t} \sum_{i=1}^{N_t} \boldsymbol{w}_{ii}^l \boldsymbol{w}_{ik}^l = 0$

Thus, we have that

Something Notable

$$\left(\sum_{j=1}^{N_{t-1}} \boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right)\right)^{2} = \sum_{j=1}^{N_{t-1}} \left[\boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right)\right]^{2} + \sum_{j,k=1,k\neq j}^{N_{t-1}} \boldsymbol{w}_{ij}^{l} \phi\left(h_{j}^{t-1}\right) \boldsymbol{w}_{ik}^{l} \phi\left(h_{k}^{t-1}\right)$$

But given the Gaussian $N\left(0, rac{\sigma_w^2}{N_{t-1}}\right)$ and no correlation at weights

$$\bullet \ \frac{1}{N_t} \sum_{i=1}^{N_t} w_{ii}^l w_{ik}^l = 0$$

Therefore

$$\frac{1}{N_{t}} \sum_{i=1}^{N_{t}} \sum_{j=1}^{N_{t-1}} \left[\boldsymbol{w}_{ij}^{l} \phi \left(h_{j}^{t-1} \right) \right]^{2} = \sigma_{w}^{2} \frac{1}{N_{t-1}} \sum_{j=1}^{N_{t-1}} \left[\phi \left(h_{j}^{t-1} \right) \right]^{2}$$

Here, we can say that
$$h_i^{t-1} \approx \sqrt{q^{t-1}}$$

$$q^t \approx \rho_w^2 \frac{1}{\sqrt{2\pi}} \int \phi_z \left(\sqrt{q^{t-1}}z\right)^2 \exp^{-\frac{z^2}{2}} dz + \rho_b^2$$

We have an initial condition

$$q^1 = \frac{\sigma_w^2}{N} \sum_{i=1}^N \left(x_i^0\right)^2 + \sigma_b^2$$

We have two conditions

We have that if $q^1 = q^*$

ullet Then, the dynamics start at the fixed point and the distribution of D_t is independent of t.

We have two conditions

We have that if $q^1 = q^*$

ullet Then, the dynamics start at the fixed point and the distribution of D_t is independent of t.

Even, when $q^1 \neq q^*$

 A few layers is often sufficient to approximately converge to the fixed point

We have two conditions

We have that if $q^1 = q^*$

ullet Then, the dynamics start at the fixed point and the distribution of D_t is independent of t.

Even, when $q^1 \neq q^*$

 A few layers is often sufficient to approximately converge to the fixed point

Therefore

• As such, when L is large, it is often a good approximation to assume that $q^1=q^*$ for all t when computing the spectrum of J

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model

- The Final RNN Model
 Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Now, assume that

Now, consider the evolution of a single input through the network $oldsymbol{x}_{it}$

• Since the weights and biases are independent with zero mean

$$E\left[s_{it}\right] = 0$$

Now, assume that

Now, consider the evolution of a single input through the network $oldsymbol{x}_{it}$

• Since the weights and biases are independent with zero mean

$$E\left[s_{it}\right] = 0$$

The second moment of the Gaussian random variable (Actually the Covariance)

$$E\left[s_{it}s_{jt}\right] = q^t \delta_{ij}$$

Where the second moment

Of a Gaussian Distribution is

$$\int_{-\infty}^{\infty} s^2 \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(s-\mu)}{2\sigma^2}\right\} ds$$

Here we have

Here q^t is the variance of the pre-activations in the t^{th} layer due to an input ${m x}_t$

$$q^{t} = \frac{\sigma_w^2}{\sqrt{2\pi}} \int \phi_h^2 \left(\sqrt{q^{t-1}} s_{it-1} \right) \exp\left\{ -\frac{1}{2} s_{it}^2 \right\} ds_{it} + \sigma_b^2$$

Here we have

Here q^t is the variance of the pre-activations in the t^{th} layer due to an input $oldsymbol{x}_t$

$$q^{t} = \frac{\sigma_w^2}{\sqrt{2\pi}} \int \phi_h^2 \left(\sqrt{q^{t-1}} \boldsymbol{s}_{it-1} \right) \exp\left\{ -\frac{1}{2} \boldsymbol{s}_{it}^2 \right\} d\boldsymbol{s}_{it} + \sigma_b^2$$

They describe the pass through the recursion of the RNN

• For any choice of σ_w^2 and σ_b^2 and a bounded ϕ_h the previous equation converges to a specific fix point.

Here we have

Here q^t is the variance of the pre-activations in the t^{th} layer due to an input $oldsymbol{x}_t$

$$q^t = \frac{\sigma_w^2}{\sqrt{2\pi}} \int \phi_h^2 \left(\sqrt{q^{t-1}} \boldsymbol{s}_{it-1} \right) \exp\left\{ -\frac{1}{2} \boldsymbol{s}_{it}^2 \right\} d\boldsymbol{s}_{it} + \sigma_b^2$$

They describe the pass through the recursion of the RNN

• For any choice of σ_w^2 and σ_b^2 and a bounded ϕ_h the previous equation converges to a specific fix point.

This recursion has a fixed point

$$q^* = \frac{\sigma_w^2}{\sqrt{2\pi}} \int \phi_h^2 \left(\sqrt{q^*} \boldsymbol{s}_{it-1} \right) \exp\left\{ -\frac{1}{2} \boldsymbol{s}_{it}^2 \right\} d\boldsymbol{s}_{it} + \sigma_b^2$$

A Fixed Point

Definition

• In mathematics, a fixed point of a function is an element of the function's domain that is mapped to itself by the function.

A Fixed Point

Definition

• In mathematics, a fixed point of a function is an element of the function's domain that is mapped to itself by the function.

Example

We have that

• It the input x_0 is chosen so that $q^1 = q^*$ the dynamics start at the fixed point and the distribution of D_t is independent of t.

We have that

• It the input x_0 is chosen so that $q^1 = q^*$ the dynamics start at the fixed point and the distribution of D_t is independent of t.

Not only that

• $q^1 \neq q^*$ a few layers is often sufficient to approximately converge to a fixed point.

We have that

• It the input x_0 is chosen so that $q^1 = q^*$ the dynamics start at the fixed point and the distribution of D_t is independent of t.

Not only that

• $q^1 \neq q^*$ a few layers is often sufficient to approximately converge to a fixed point.

So when t is large

• So it is a good approximation to assume $q^t = q^*$.

Additionally

The independence of the weights and biases implies

• The covariance between different pre-activations in the same layer will be given by

$$E\left[z_{it;a}z_{jt;b}\right] = q_{ab}^t \delta_{ij}$$

Additionally

The independence of the weights and biases implies

• The covariance between different pre-activations in the same layer will be given by

$$E\left[z_{it;a}z_{jt;b}\right] = q_{ab}^t \delta_{ij}$$

Therefore

$$q_{ab}^{t} = \sigma_{w}^{2} \int \phi_{h}(u_{1}) \sigma_{h}(u_{2}) Dz_{1}Dz_{2} + \rho_{b}^{2}$$

- Where $Dz = \frac{1}{\sqrt{2\pi}} \int \exp\left\{-\frac{1}{2}s^2\right\} ds$
- $\bullet \ u_1 = \sqrt{q_{aa}^{t-1}}$
- $u_2 = \sqrt{q_{bb}^{t-1}} \left[c_{ab}^{t-1} s_1 + \sqrt{1 \left(c_{ab}^{t-1}\right)^2} z_2 \right]$
- $c_{ab}^t = \frac{q_{ab}^t}{\sqrt{q_{aa}^t q_{bb}^t}}$

Therefore, we can look at the variance of the Jacobian Matrix elements

$$\chi = \frac{1}{N} \left\langle Tr \left[\left(D_t U_{SS} \right)^T D_t U_{SS} \right] \right\rangle = \sigma_w^2 \int \left[\sigma_h' \left(\sqrt{q^*} \boldsymbol{s}_{it} \right) \right]^2 \exp \left\{ -\frac{1}{2} \boldsymbol{s}_{it}^2 \right\} d\boldsymbol{s}_{it}$$

Then

$\chi\left(ho_{w}, ho_{b} ight)$

• It separates (ρ_w, ρ_b) plane into two regions.

Then

$\chi\left(\rho_w,\rho_b\right)$

• It separates (ρ_w, ρ_b) plane into two regions.

When $\chi > 1$

 Forward signal propagation expands and folds space in a chaotic manner and gradients explode

Then

$\chi\left(\rho_{w},\rho_{b}\right)$

• It separates (ρ_w, ρ_b) plane into two regions.

When $\chi > 1$

 Forward signal propagation expands and folds space in a chaotic manner and gradients explode

When $\chi < 1$

 Forward signal propagation contracts in an ordered manner and gradients exponentially vanishes

This Regions establish the stability of the network

It is clear that

 \bullet When we choose same $\rho_b=\rho_w$ we have a convergence of the network

It is clear that

 \bullet When we choose same $\rho_b=\rho_w$ we have a convergence of the network

Having other values

• It requires a careful choosing of the values

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions
 - Training a Vanilla RNN Model
 - The Final RNN ModelBack Propagation Through Time (BPTT)
 - Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 Initialization
 - Hidden State

 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Another Problem

Although, the Vanishing and Exploding Gradients

• They are a problem for the RNN's

Another Problem

Although, the Vanishing and Exploding Gradients

• They are a problem for the RNN's

If we use the full BPTT

• We confront limitations on the amount of Memory and Hardware available

Another Problem

Although, the Vanishing and Exploding Gradients

• They are a problem for the RNN's

If we use the full BPTT

 We confront limitations on the amount of Memory and Hardware available

Thus a popular strategy

• It is the Truncated BPTT [9, 10]

They proposed using a truncation on the BPTT

• To solve the problem with the Vanishing and Exploding Gradient

They proposed using a truncation on the BPTT

• To solve the problem with the Vanishing and Exploding Gradient

What is Truncated BPTT?

- In general, this should be regarded as a heuristic technique for simplifying the computation.
 - ▶ Which it is a good approximation true gradient

The Algorithm

Truncated BPTT

- for t = 1 to T do:
- 2 Run the RNN for one step, computing h_t and y_t
- \bullet if t divides k_1 then
- Run BPTT from t to $t k_2$

The Algorithm

Truncated BPTT

- for t = 1 to T do:
- 2 Run the RNN for one step, computing h_t and y_t
- \bullet if t divides k_1 then
- Nun BPTT from t to $t k_2$

Something Notable

- 1 It was first used by Elman [11]
- ② Also Mikolov et al. [12] used the TBPTT to train RNN on word-level language modeling.

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model The Final RNN Model

- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
 - Hidden State
 - Modern Posurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions
 - Training a Vanilla RNN Model

 The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Deriving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Initialization of the Hidden State

This is the classic problem in RNN

• How to initialize the h_s hidden state?

Initialization of the Hidden State

This is the classic problem in RNN

• How to initialize the h_s hidden state?

There are two main mehtods

- **1** Initialize h_s to the zero vector.
- ② Adaptive noisy initialization of h_s
- Find the steady state

The Simplest One

We can simply initialize h_s

To a zero state

The Simplest One

We can simply initialize h_s

To a zero state

Quite simple and easy to apply

• However do we have something better?

Adaptive noisy initialization

It is proposed by Zimmermann et al. [13]

ullet They proposed to use the residual error once the back-propagation was done for $oldsymbol{h}_0$

Adaptive noisy initialization

It is proposed by Zimmermann et al. [13]

ullet They proposed to use the residual error once the back-propagation was done for $oldsymbol{h}_0$

This is done

• By disturbing h_0 with a noise term Θ which follows the distribution of the residual error.

Adaptive Noise

Example of this initializations

Step number

What about the Weight Parameters?

We could simply initialize them to zero

Denger Will Robinson!!!

What about the Weight Parameters?

We could simply initialize them to zero

Denger Will Robinson!!!

A simple example with the following feed-forward architecture

$$egin{aligned} oldsymbol{w} &= \sigma_1 \left(W_{hi} oldsymbol{x}
ight) \ oldsymbol{y} &= \sigma_2 \left(W_{oh} oldsymbol{w}
ight) \ L &= rac{1}{2} \left[oldsymbol{y} - oldsymbol{z}
ight]^2 \end{aligned}$$

We have by back-propagation

$$\Delta W_{ho} = \left[\sigma_2'\left(W_{oh}\sigma_1\left(W_{hi}\boldsymbol{x}_1\right)\right) - \boldsymbol{z}\right]\sigma_2'\left(W_{oh}\sigma_1\left(W_{hi}\boldsymbol{x}\right)\right)W_{oh}\sigma_1'\left(W_{hi}\boldsymbol{x}\right)\boldsymbol{x}$$

We have by back-propagation

$$\Delta W_{ho} = \left[\sigma_{2}^{\prime}\left(W_{oh}\sigma_{1}\left(W_{hi}\boldsymbol{x}_{1}\right)\right) - \boldsymbol{z}\right]\sigma_{2}^{\prime}\left(W_{oh}\sigma_{1}\left(W_{hi}\boldsymbol{x}\right)\right)W_{oh}\sigma_{1}^{\prime}\left(W_{hi}\boldsymbol{x}\right)\boldsymbol{x}$$

Therefore

$$\Delta W_{ho} = 0$$

Not a good idea

• What else we can do?

Not a good idea

• What else we can do?

We have heuristics as the Gaussian initialization

$$w_{ij} \sim N\left(0, \sigma^2\right)$$

Do you remember?

Furthermore

We have heuristics

 \bullet For Relu — We multiply the randomly generated values of W by:

$$\sqrt{\frac{2}{size^{l-1}}}$$

Furthermore

We have heuristics

 \bullet For Relu — We multiply the randomly generated values of W by:

$$\sqrt{\frac{2}{size^{l-1}}}$$

For tanh — The heuristic is called Xavier initialization

$$\sqrt{\frac{2}{size^{l-1}}}$$

Furthermore

We have heuristics

 \bullet For Relu — We multiply the randomly generated values of W by:

$$\sqrt{\frac{2}{size^{l-1}}}$$

For tanh — The heuristic is called Xavier initialization

$$\sqrt{\frac{2}{size^{l-1}}}$$

Other common one

$$\sqrt{\frac{2}{size^{l-1} + size^l}}$$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Mode

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
 - The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
- What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

History of LSTM

They were introduced by

• LSTM was proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber [14]

History of LSTM

They were introduced by

• LSTM was proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber [14]

An attempt to deal with the vanishing and exploding gradient

• By introducing Constant Error Carousel (CEC) units

History of LSTM

They were introduced by

 LSTM was proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber [14]

An attempt to deal with the vanishing and exploding gradient

• By introducing Constant Error Carousel (CEC) units

Properties

- In 1999, Felix Gers and his advisor Jürgen Schmidhuber and Fred Cummins introduced the forget gate (also called "keep gate") into LSTM architecture.
 - ▶ It enables the LSTM to reset its own state

Long Short Term Memory (LSTM)

We have the following Architecture (Component wise product ⊙)

$$\begin{split} & \boldsymbol{f}_t = \mathrm{sig}\left[W_f \boldsymbol{x}_t + U_f \boldsymbol{h}_{t-1} + \boldsymbol{b}_f\right] \text{ (Forget Gate)} \\ & \boldsymbol{i}_t = \mathrm{sig}\left[W_i \boldsymbol{x}_t + U_i \boldsymbol{h}_{t-1} + \boldsymbol{b}_i\right] \text{ (Input/Update Gate)} \\ & \boldsymbol{o}_t = \mathrm{sig}\left[W_o \boldsymbol{x}_t + U_o \boldsymbol{h}_{t-1} + \boldsymbol{b}_o\right] \text{ (Output Gate)} \\ & \hat{\boldsymbol{c}}_t = \tanh\left[W_c \boldsymbol{x}_t + U_c \boldsymbol{h}_{t-1} + \boldsymbol{b}_c\right] \text{ (Intermediate Cell Gate)} \\ & \boldsymbol{c}_t = \boldsymbol{f}_t \odot \boldsymbol{c}_{t-1} + \boldsymbol{i}_t \odot \hat{\boldsymbol{c}}_t \text{ (Cell State Gate)} \\ & \boldsymbol{h}_t = \boldsymbol{o}_t \odot \tanh\left(\boldsymbol{c}_t\right) \text{ (Hidden State)} \end{split}$$

• Where σ is a sigmoid function.

Graphically

Here, Sepp Hochreiter and Jürgen Schmidhuber [14, 15] say

In the RNN

$$\boldsymbol{h}_t = \sigma_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} \right)$$

Here, Sepp Hochreiter and Jürgen Schmidhuber [14, 15] say

In the RNN

$$\boldsymbol{h}_t = \sigma_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} \right)$$

But Here

$$oldsymbol{c}_t = oldsymbol{f}_t \odot oldsymbol{c}_{t-1} + oldsymbol{i}_t \odot \hat{oldsymbol{c}}_t$$
 (Cell State Gate) $oldsymbol{h}_t = oldsymbol{o}_t \odot anh(oldsymbol{c}_t)$

Here, Sepp Hochreiter and Jürgen Schmidhuber [14, 15] say

In the RNN

$$\boldsymbol{h}_t = \sigma_h \left(W_{sd} \boldsymbol{x}_t + U_{ss} \boldsymbol{h}_{t-1} \right)$$

But Here

$$m{c}_t = m{f}_t \odot m{c}_{t-1} + m{i}_t \odot \hat{m{c}}_t$$
 (Cell State Gate)
 $m{h}_t = m{o}_t \odot anh(m{c}_t)$

You need the forget term, the input term ant the intermediate cell

• To update the state

You can see

Something Notable

• The cell keeps track of the dependencies between the elements in the input sequence and the state

You can see

Something Notable

• The cell keeps track of the dependencies between the elements in the input sequence and the state

The input gate

• It is in charge of how much of the input flows into the cell gate

$$\mathbf{i}_t = \sigma \left[W_i \mathbf{x}_t + U_i \mathbf{h}_{t-1} + \mathbf{b}_i \right]$$

What is the meaning?

We have that

• The sigmoid layer decides what values to update

What is the meaning?

We have that

• The sigmoid layer decides what values to update

They impact the term $m{i}_t\odot\hat{m{c}}_t$

• Making possible to decide how to control the cell intermediate values

Now

The forget gate

 \bullet How much of the previous cell gate time value remains in the cell at time t

$$\boldsymbol{f}_t = \sigma \left[W_f \boldsymbol{x}_t + U_f \boldsymbol{h}_{t-1} + \boldsymbol{b}_f \right]$$

Now

The forget gate

 \bullet How much of the previous cell gate time value remains in the cell at time t

$$\boldsymbol{f}_t = \sigma \left[W_f \boldsymbol{x}_t + U_f \boldsymbol{h}_{t-1} + \boldsymbol{b}_f \right]$$

Actually

It uses previous state and input

Now

The forget gate

 \bullet How much of the previous cell gate time value remains in the cell at time t

$$\boldsymbol{f}_t = \sigma \left[W_f \boldsymbol{x}_t + U_f \boldsymbol{h}_{t-1} + \boldsymbol{b}_f \right]$$

Actually

It uses previous state and input

Then the sigmoid actually can be interpreted as

• Sigmoid: value 0 and 1 – "completely forget" vs. "completely keep"

Furthermore

The output gate

 It controls the extent to which the value in the cell is used to compute the actual state

Furthermore

The output gate

 It controls the extent to which the value in the cell is used to compute the actual state

Which impacts the term $oldsymbol{f}_t\odotoldsymbol{c}_{t-1}$

• Based on the previous cell state

Furthermore

The output gate

• It controls the extent to which the value in the cell is used to compute the actual state

Which impacts the term $oldsymbol{f}_t\odotoldsymbol{c}_{t-1}$

• Based on the previous cell state

Thus a type of control

• Between the previous cell state and the new cell state

Finally

We have the update of the cell as

$$oldsymbol{c}_t = oldsymbol{f}_t \odot oldsymbol{c}_{t-1} + oldsymbol{i}_t \odot \hat{oldsymbol{c}}_t$$

Finally

We have the update of the cell as

$$oldsymbol{c}_t = oldsymbol{f}_t \odot oldsymbol{c}_{t-1} + oldsymbol{i}_t \odot \hat{oldsymbol{c}}_t$$

Basically

- Apply forget operation to previous internal cell state.
- Add new candidate values, scaled by how much we decided to update

Finally

We have the update of the cell as

$$c_t = f_t \odot c_{t-1} + i_t \odot \hat{c}_t$$

Basically

- Apply forget operation to previous internal cell state.
- Add new candidate values, scaled by how much we decided to update

We can see as

• Drop old information and add new information about subject's gender.

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Mode

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
 - The Stability Frontier
- Truncated BPTT
- Initialization
 - Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Thus at the output layer and update state

We have

$$m{o}_t = \sigma \left[W_o m{x}_t + U_o m{h}_{t-1} + m{b}_o
ight]$$
 (Output Gate) $m{h}_t = m{o}_t \odot anh \left(m{c}_t
ight)$ (Hidden State)

Thus at the output layer and update state

We have

$$m{o}_t = \sigma \left[W_o m{x}_t + U_o m{h}_{t-1} + m{b}_o
ight]$$
 (Output Gate) $m{h}_t = m{o}_t \odot anh \left(m{c}_t
ight)$ (Hidden State)

Therefore, we have that

 Sigmoid layer: decide what linear combination of state/input to output

Thus at the output layer and update state

We have

$$m{o}_t = \sigma \left[W_o m{x}_t + U_o m{h}_{t-1} + m{b}_o
ight]$$
 (Output Gate) $m{h}_t = m{o}_t \odot anh \left(m{c}_t
ight)$ (Hidden State)

Therefore, we have that

 Sigmoid layer: decide what linear combination of state/input to output

Additionally, we have that the tanh squashes the values between -1 and $1\,$

• The output is used to filter a version of cell state!!!

Something nice about LSTM

Quite nice • Backpropagation from c_t to c_{t-1} requires only elementwise multiplication!

LSTM Remarks

First

• It maintains a separate cell state from what is outputted

LSTM Remarks

First

• It maintains a separate cell state from what is outputted

Second

- Use gates to control the flow of information
 - Forget gate tries to get rid of irrelevant information
 - Selectively update cell state
 - ► Output gate returns a filtered version of the cell state

LSTM Remarks

First

It maintains a separate cell state from what is outputted

Second

- Use gates to control the flow of information
 - Forget gate tries to get rid of irrelevant information
 - Selectively update cell state
 - ► Output gate returns a filtered version of the cell state

Third

• Backpropagation from c_t to c_{t-1} requires only elementwise multiplication!

Achievements

LSTM achieved record results in natural language text compression

• http://www.mattmahoney.net/dc/text.html#1218

Achievements

LSTM achieved record results in natural language text compression

http://www.mattmahoney.net/dc/text.html#1218

Unsegmented connected handwriting recognition

 Graves, A., Liwicki, M., Fernández, S., Bertolami, R.; Bunke, H., Schmidhuber, J. (May 2009). "A Novel Connectionist System for Unconstrained Handwriting Recognition". IEEE Transactions on Pattern Analysis and Machine Intelligence. 31 (5): 855–868

Achievements

LSTM achieved record results in natural language text compression

http://www.mattmahoney.net/dc/text.html#1218

Unsegmented connected handwriting recognition

 Graves, A., Liwicki, M., Fernández, S., Bertolami, R.; Bunke, H., Schmidhuber, J. (May 2009). "A Novel Connectionist System for Unconstrained Handwriting Recognition". IEEE Transactions on Pattern Analysis and Machine Intelligence. 31 (5): 855–868

Finally

• Won the ICDAR handwriting competition (2009)

Right now

Something Notable

 As of 2016, major technology companies including Google, Apple, and Microsoft were using LSTM as fundamental components in new products.

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions
 - Training a Vanilla RNN Model
 - The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

History

They were proposed as a simplification of the LSTM

• In 2014, Kyunghyun Cho et al. put forward a simplified variant called Gated recurrent unit (GRU)

History

They were proposed as a simplification of the LSTM

• In 2014, Kyunghyun Cho et al. put forward a simplified variant called Gated recurrent unit (GRU)

Something Notable

- The GRU is like a long short-term memory (LSTM) with forget gate...
 - but has fewer parameters than LSTM, as it lacks an output gate

Gated Recurrent Units

Architecture

$$egin{aligned} oldsymbol{z}_t &= \sigma \left[W_z oldsymbol{x}_t + U_z oldsymbol{h}_{t-1} + oldsymbol{b}_z
ight] ext{ (Update Gate)} \ oldsymbol{r}_t &= \sigma \left[W_r oldsymbol{x}_t + U_t oldsymbol{h}_{t-1} + oldsymbol{b}_r
ight] ext{ (Reset Gate)} \ oldsymbol{h}_t &= ext{tanh} \left[W_h oldsymbol{x}_t + U_h oldsymbol{r}_t \odot oldsymbol{h}_{t-1} + oldsymbol{b}_h
ight] \ oldsymbol{h}_t &= (1 - oldsymbol{z}_t) \odot oldsymbol{h}_{t-1} + oldsymbol{z}_t \odot oldsymbol{\hat{h}}_t \end{aligned}$$

Graphically, we have the architecture

Main Observations

There is a gate used to combine the state h_{t-1} ,

ullet The z_t gate that basically uses the information of the input and the previous state to decide how to update

$$\boldsymbol{h}_t = (1 - \boldsymbol{z}_t) \odot \boldsymbol{h}_{t-1} + \boldsymbol{z}_t \odot \hat{\boldsymbol{h}}_t$$

Main Observations

There is a gate used to combine the state h_{t-1} ,

ullet The z_t gate that basically uses the information of the input and the previous state to decide how to update

$$\boldsymbol{h}_t = (1 - \boldsymbol{z}_t) \odot \boldsymbol{h}_{t-1} + \boldsymbol{z}_t \odot \hat{\boldsymbol{h}}_t$$

The intermediate step $\hat{m{h}}_t$

ullet A bounded version of the possible state $oldsymbol{h}_t$

Next

We have that a reset gate

$$\boldsymbol{r}_t = \sigma \left[W_r \boldsymbol{x}_t + U_r \boldsymbol{h}_{t-1} + \boldsymbol{b}_r \right]$$

To update

$$\hat{\boldsymbol{h}}_t = \tanh \left[W_h \boldsymbol{x}_t + U_h \boldsymbol{r}_t \odot \boldsymbol{h}_{t-1} + \boldsymbol{b}_h \right]$$

It has been shown that

 As shown by Gail Weiss, Yoav Goldberg, Eran Yahav, the LSTM is "strictly stronger" than the GRU

It has been shown that

 As shown by Gail Weiss, Yoav Goldberg, Eran Yahav, the LSTM is "strictly stronger" than the GRU

LSTM can perform unbounded counting[16]

- The GRU cannot.
 - ▶ It simulates a counting machine used for theoretical CS

It has been shown that

 As shown by Gail Weiss, Yoav Goldberg, Eran Yahav, the LSTM is "strictly stronger" than the GRU

LSTM can perform unbounded counting[16]

- The GRU cannot.
 - It simulates a counting machine used for theoretical CS

Denny Britz, Anna Goldie, Minh-Thang Luong, Quoc Le of Google Brain

• LSTM cells consistently outperform GRU cells in "the first large-scale analysis of architecture variations for Neural Machine Translation."

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Given that we want to do sequence modeling

Given that we want to do sequence modeling

Predict next phrase

- Question: If I am a man?
 - ▶ Prediction: you are homo sapiens

What do we have in this sequences of data?

Furthermore

Not only that

Maintain information about order

• "We have a mother living in Yucatan, Mexico"

Not only that

Maintain information about order

• "We have a mother living in Yucatan, Mexico"

Share parameters across the sequence

• Do you remember the state h_t ?

There is a need to increase their power

• Given the amounts of data we have right know

There is a need to increase their power

• Given the amounts of data we have right know

Then there is a tendency to start using the Recurrent Neural Networks

• As cells to be stacked for bigger systems [17, 18]

There is a need to increase their power

• Given the amounts of data we have right know

Then there is a tendency to start using the Recurrent Neural Networks

As cells to be stacked for bigger systems [17, 18]

This is based in the following idea [19]

 Hypothesis, hierarchical model can be exponentially more efficient at representing some functions than a shallow one.

In the case of RNN's

Certain Transitions are not Deep

• They are only results of a **linear projection** followed by an element-wise nonlinearity.

In the case of RNN's

Certain Transitions are not Deep

 They are only results of a linear projection followed by an element-wise nonlinearity.

They are

- ullet Hidden-to-hidden $oldsymbol{h}_{t-1} o oldsymbol{h}_t$
- ullet Hidden-to-output $oldsymbol{h}_t o oldsymbol{y}_t$
- ullet Input-to-hidden $oldsymbol{x}_{t-1}
 ightarrow oldsymbol{h}_t$

In the case of RNN's

Certain Transitions are not Deep

 They are only results of a linear projection followed by an element-wise nonlinearity.

They are

- ullet Hidden-to-hidden $oldsymbol{h}_{t-1} o oldsymbol{h}_t$
- ullet Hidden-to-output $oldsymbol{h}_t o oldsymbol{y}_t$
- ullet Input-to-hidden $oldsymbol{x}_{t-1}
 ightarrow oldsymbol{h}_t$

Meaning

• They are all shallow in the sense that there exists no intermediate, nonlinear hidden layer.

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions
 - Training a Vanilla RNN Mode
 - The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - Initialization
 - Hidden State
 - Modern Recurrent Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Bengio et al. [20]

Gave the following Hypothesis

- In sampling algorithms (Markov Chains and MCMC techniques) suffer from a fundamental problem
 - Given unconnected or weakly connected regions of distributions

Bengio et al. [20]

Gave the following Hypothesis

- In sampling algorithms (Markov Chains and MCMC techniques) suffer from a fundamental problem
 - ► Given unconnected or weakly connected regions of distributions

We have that

 it is difficult for the Markov chain to jump from one mode of the distribution to another, when these are separated by large low-density regions

Bengio et al. [20]

Gave the following Hypothesis

- In sampling algorithms (Markov Chains and MCMC techniques) suffer from a fundamental problem
 - Given unconnected or weakly connected regions of distributions

We have that

 it is difficult for the Markov chain to jump from one mode of the distribution to another, when these are separated by large low-density regions

This means that we have a slow mixing of samples

• In order to represent distributions

Example

The Main Problem

We have that

- Slow mixing means that many consecutive samples tend to be correlated
 - ▶ They belong to the same mode of the mixture

The Main Problem

We have that

- Slow mixing means that many consecutive samples tend to be correlated
 - ▶ They belong to the same mode of the mixture

Why?

• Jumping around in the MCMC method is quite slow and scarce

Implications in Learning Algorithms

Given that some form of sampling is at the core of many learning algorithms

• For example, to estimate the log-likelihood gradient

Implications in Learning Algorithms

Given that some form of sampling is at the core of many learning algorithms

• For example, to estimate the log-likelihood gradient

Therefore, at the beginning of learning

Mixing is therefore initially easy

Implications in Learning Algorithms

Given that some form of sampling is at the core of many learning algorithms

• For example, to estimate the log-likelihood gradient

Therefore, at the beginning of learning

Mixing is therefore initially easy

However as the model improves

• its corresponding distribution sharpens and mixing becomes slower

Basically

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

 - The Final RNN Model
 - Back Propagation Through Time (BPTT)
 - Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
 - Vanishing and Exploding Gradients
 - The Analysis of the Exploding and Vanishing Gradient
 - Signal Propagation
 - The Stability Frontier
 - Truncated BPTT
 - InitializationHidden State
 - Madara Pagurrant Architectures
 - Now, Long Short Term Memory (LSTM)
 - What about the Output?
 - What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Therefore

We need to build deeper structures to reach more capabilities

• For example the vector representation of documents

Therefore

We need to build deeper structures to reach more capabilities

For example the vector representation of documents

Here a extra layer of representation can be used for doing representation

• For Example, Mikolov et al. [21]

Basically a shallow network before the main architecture

The equations

They will look like

$$egin{aligned} w^{encoded}_{t'} &= \sigma \left[A w_t + b_{w_t}
ight] \ x_t &= \sigma \left[B w^{encoded}_{t'} + b_{x_t}
ight] \ oldsymbol{z}_t &= \sigma \left[W_z oldsymbol{x}_t + U_z oldsymbol{h}_{t-1} + oldsymbol{b}_z
ight] \; ext{(Update Gate)} \ oldsymbol{r}_t &= \sigma \left[W_z oldsymbol{x}_t + U_z oldsymbol{h}_{t-1} + oldsymbol{b}_z
ight] \; ext{(Reset Gate)} \ oldsymbol{\hat{h}}_t &= ext{tanh} \left[W_h oldsymbol{x}_t + U_h oldsymbol{r}_t \odot oldsymbol{h}_{t-1} + oldsymbol{b}_h
ight] \ oldsymbol{h}_t &= (1 - oldsymbol{z}_t) \odot oldsymbol{h}_{t-1} + oldsymbol{z}_t \odot oldsymbol{\hat{h}}_t \end{aligned}$$

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Mode

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- InitializationHidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
 - What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

Deep Transition Architectures

In a deep transition RNN (DT-RNN)

 At each time step the next state is computed by the sequential application of multiple transition layers.

Deep Transition Architectures

In a deep transition RNN (DT-RNN)

 At each time step the next state is computed by the sequential application of multiple transition layers.

For example in Nematus system [22]

They use GRU transitions blocks under independent trainable parameters

Deep Transition Architectures

In a deep transition RNN (DT-RNN)

 At each time step the next state is computed by the sequential application of multiple transition layers.

For example in Nematus system [22]

They use GRU transitions blocks under independent trainable parameters

With a Caveat

• The hidden state output is used as the input state on the next one

For example, at the encoder phase

For the i^{th} source word in the forward direction, we have $m{h}_i = m{h}_{i,L_s}$

$$\begin{aligned} & \boldsymbol{h}_{i,1} = GRU_1\left(\boldsymbol{x}_1, \boldsymbol{h}_{i-1, L_s}\right) \\ & \boldsymbol{h}_{i,k} = GRU_k\left(0, \boldsymbol{h}_{i,k-1}\right) \text{ for } 1 < k \leq L_s \end{aligned}$$

For example, at the encoder phase

For the i^{th} source word in the forward direction, we have $m{h}_i = m{h}_{i,L_s}$

$$\begin{split} \boldsymbol{h}_{i,1} &= GRU_1\left(\boldsymbol{x}_1, \boldsymbol{h}_{i-1,L_s}\right) \\ \boldsymbol{h}_{i,k} &= GRU_k\left(0, \boldsymbol{h}_{i,k-1}\right) \text{ for } 1 < k \leq L_s \end{split}$$

The sequence word is reversed and you have a backward state then

$$C \equiv \left[\overrightarrow{\boldsymbol{h}}_{i,L_s}, \overleftarrow{\boldsymbol{h}}_{i,L_s}\right]$$

Then

Decoder phase uses the outputs from the previous GRU and something called attention (We will look at this latter)

$$egin{aligned} oldsymbol{s}_{j,1} &= GRU_1\left(oldsymbol{y}_{j-1}, oldsymbol{s}_{j-1}, L_t
ight) \ oldsymbol{s}_{j,2} &= GRU_2\left(ATT, oldsymbol{s}_{j-1}, L_t
ight) \ oldsymbol{s}_{j,k} &= GRU_k\left(0, L_t
ight) \ ext{for } 2 < k \leq L_t \end{aligned}$$

Then

Decoder phase uses the outputs from the previous GRU and something called attention (We will look at this latter)

$$\begin{aligned} & \boldsymbol{s}_{j,1} = GRU_1\left(\boldsymbol{y}_{j-1}, \boldsymbol{s}_{j-1}, L_t\right) \\ & \boldsymbol{s}_{j,2} = GRU_2\left(ATT, \boldsymbol{s}_{j-1}, L_t\right) \\ & \boldsymbol{s}_{j,k} = GRU_k\left(0, L_t\right) \text{ for } 2 < k \le L_t \end{aligned}$$

Then, the target word state $s_j \equiv s_{j,L_t}$

 It is used by a feed-forward neural network to predict the current target network

Deep Transition Decoder

Outline

- 1 Introduction
 - History
 - State-Space Model
 - Back to the RNN Equations
 - Introducing the Cost Function
 - Other Cost Functions

Training a Vanilla RNN Model

- The Final RNN Model
- Back Propagation Through Time (BPTT)
- Operiving $\frac{\partial L(t)}{\partial V_{OS}}$
- Vanishing and Exploding Gradients
- The Analysis of the Exploding and Vanishing Gradient
- Signal Propagation
- The Stability Frontier
- Truncated BPTT
- Initialization
- Hidden State
- Modern Recurrent Architectures
- Now, Long Short Term Memory (LSTM)
- What about the Output?
- What about Gated Recurrent Units (GRU) units?
- 4 Deeper Architectures with RNN's
 - Introduction
 - Deep Architectures for Better Learning
 - Deep Input-to-Hidden Function
 - Deep Transition Architectures
 - Conclusions

There are many other examples

Basically

- We are far from the classic methods as
 - Autoregressive integrated moving average (ARMA)
 - 2 Auto Regressive Integrated Moving Average (ARIMA)
 - etc

There are many other examples

Basically

- We are far from the classic methods as
 - Autoregressive integrated moving average (ARMA)
 - 2 Auto Regressive Integrated Moving Average (ARIMA)
 - etc

These RNN architectures are taking the prediction of time series

To another level!!!

- [1] O. L. R. Jacobs, "Introduction to control theory," 1974.
- [2] A. Robinson and F. Fallside, The utility driven dynamic error propagation network.
 University of Cambridge Department of Engineering, 1987.
- [3] P. J. Werbos *et al.*, "Backpropagation through time: what it does and how to do it," *Proceedings of the IEEE*, vol. 78, no. 10, pp. 1550–1560, 1990.
- [4] G. Chen, "A gentle tutorial of recurrent neural network with error backpropagation," arXiv preprint arXiv:1610.02583, 2016.
- [5] B. W. Bader and T. G. Kolda, "Algorithm 862: Matlab tensor classes for fast algorithm prototyping," ACM Trans. Math. Softw., vol. 32, Dec. 2006.
- [6] J. Pennington, S. S. Schoenholz, and S. Ganguli, "The emergence of spectral universality in deep networks," arXiv preprint arXiv:1802.09979, 2018.

- [7] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli, "Exponential expressivity in deep neural networks through transient chaos," arXiv preprint arXiv:1606.05340, 2016.
- [8] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein, "Deep information propagation," *arXiv preprint arXiv:1611.01232*, 2016.
- [9] R. J. Williams and D. Zipser, "Gradient-based learning algorithms for recurrent," *Backpropagation: Theory, architectures, and applications*, vol. 433, 1995.
- [10] R. J. Williams and J. Peng, "An efficient gradient-based algorithm for on-line training of recurrent network trajectories," *Neural* computation, vol. 2, no. 4, pp. 490–501, 1990.
- [11] J. L. Elman, "Finding structure in time," *Cognitive science*, vol. 14, no. 2, pp. 179–211, 1990.

- [12] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, "Recurrent neural network based language model," in *Eleventh annual conference of the international speech communication association*, 2010.
- [13] H.-G. Zimmermann, C. Tietz, and R. Grothmann, "Forecasting with recurrent neural networks: 12 tricks," in *Neural Networks: Tricks of* the *Trade*, pp. 687–707, Springer, 2012.
- [14] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
- [15] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with lstm," 1999.
- [16] G. Weiss, Y. Goldberg, and E. Yahav, "On the practical computational power of finite precision rnns for language recognition," *CoRR*, vol. abs/1805.04908, 2018.

- [17] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, "How to construct deep recurrent neural networks," *arXiv preprint arXiv:1312.6026*, 2013.
- [18] A. V. M. Barone, J. Helcl, R. Sennrich, B. Haddow, and A. Birch, "Deep architectures for neural machine translation," *arXiv preprint arXiv:1707.07631*, 2017.
- [19] Y. Bengio *et al.*, "Learning deep architectures for ai," *Foundations* and trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.
- [20] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, "Better mixing via deep representations," in *International conference on machine learning*, pp. 552–560, 2013.
- [21] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space," *arXiv preprint arXiv:1301.3781*, 2013.

[22] R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler, M. Junczys-Dowmunt, S. Läubli, A. V. M. Barone, J. Mokry, et al., "Nematus: a toolkit for neural machine translation," arXiv preprint arXiv:1703.04357, 2017.