CS310 Automata Theory – 2016-2017

Nutan Limaye

Indian Institute of Technology, Bombay
 nutan@cse.iitb.ac.in

Lecture 4: Finite state automata January 09, 2017

Last class

On power of NFAs

Subset construction.

Discussion related to Tutorial 1

Problems 1, 2, 3, a part of 4a.

Subset construction

From now on we will not distinguish between Σ and $\Sigma_{\varepsilon}.$

Definition

Let $A=(Q,\Sigma,\delta,q_0,F)$ be an NFA. Let $\hat{\delta}:2^Q\times\Sigma^*\to 2^Q$ be defined as follows:

Let
$$S \subseteq Q$$

$$\hat{\delta}(S,\epsilon):=S$$
 If A has epsilon transitions, then $\hat{\delta}(S,\epsilon)$ will be defined accordinly

$$\hat{\delta}(S,xa) := \bigcup_{q \in \hat{\delta}(S,x)} \delta(q,a)$$

Definition

An NFA A is said to accept a word $w \in \Sigma^*$ if $\hat{\delta}(\{q_0\}, w) \cap F \neq \emptyset$.

Subset construction

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$. We will construct a DFA $B = (Q', \Sigma, \delta', q'_0, F')$ such that L(A) = L(B).

Subset construction

$$Q'=2^Q,$$
 $\delta'(S,a)=\hat{\delta}(S,a),$ where $S\subseteq Q$ and $a\in \Sigma,$ $q_0'=q_0,$ $F'=\{S\subseteq Q\mid S\cap F\neq\emptyset\}.$

Correctness

The definition of $\hat{\delta}$ will be useful here.

Correctness of subset construction

We will prove the following first.

Lemma

For any NFA A that has no ϵ transitions, there is an equivalent DFA B such that L(A) = L(B).

Recall the definition of $\hat{\delta}$

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA with no ϵ moves.

Let $\hat{\delta}: 2^{\hat{Q}} \times \Sigma^* \to 2^{\hat{Q}}$ be defined as follows:

Let
$$S \subseteq Q$$

 $\hat{\delta}(S,\epsilon):=S$ If A has epsilon transitions, then $\hat{\delta}(S,\epsilon)$ will be defined accordinly

$$\hat{\delta}(S, xa) := \bigcup_{q \in \hat{\delta}(S, x)} \delta(q, a)$$

Properties of $\hat{\delta}$

Properties of $\hat{\delta}$

- (P_1) For any $a\in \Sigma$, $S\subseteq Q$, $\hat{\delta}(S,a)=igcup_{q\in \hat{\delta}(S,\epsilon)}\delta(q,a).$
- (P_2) For any $x,y\in \Sigma^*$, $S\subseteq Q$, $\hat{\delta}(S,xy)=\hat{\delta}\left(\hat{\delta}(S,x),y\right)$.
- (P_3) For any $S_1, S_2, \ldots, S_k \subseteq Q$, $x \in \Sigma^*$, $\hat{\delta}(\bigcup_i S_i, x) = \bigcup_i \hat{\delta}(S_i, x)$.

Definition (of $\hat{\delta}$)

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA with no ϵ moves.

Let $\hat{\delta}: 2^{\hat{Q}} \times \Sigma^* \to 2^{\hat{Q}}$ be defined as follows:

Let $S \subseteq Q$

 $\hat{\delta}(S,\epsilon) := S$

 $\hat{\delta}(S, xa) := \bigcup_{q \in \hat{\delta}(S, x)} \delta(q, a)$

Lemma

For all $w \in \Sigma^*$ and for all $S \subseteq Q$, $\hat{\delta}'(S, w) = \hat{\delta}(S, w)$.

Proof of correctness

Lemma

For all $w \in \Sigma^*$ and for all $S \subseteq Q$, $\hat{\delta}'(S, w) = \hat{\delta}(S, w)$.

Proof.

Base case: Let $w = \epsilon$.

$$\hat{\delta}'(S,\epsilon) = \hat{\delta}(S,\epsilon)$$

Induction step: Let $w = x \cdot a$

$$\hat{\delta}'(S, w) = \hat{\delta}'\left(\hat{\delta}'(S, x), a\right)$$
 By (P_2)

$$= \hat{\delta}'\left(\hat{\delta}(S, x), a\right)$$
 By Induction hypothesis
$$= \hat{\delta}\left(\hat{\delta}(S, x), a\right)$$
 By def'n of $\hat{\delta}$

$$= \hat{\delta}(S, w)$$
 By (P_2)

Hanlding the ϵ moves

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea

Let $S \subseteq Q$.

Let

$$E(S) = \left\{ q \middle| \begin{array}{l} q \text{ is reachable from some state in } S \\ \text{with zero or more } \epsilon \text{ transitions} \end{array} \right\}$$

Example

Hanlding the ϵ moves

Lemma

For any NFA A with ϵ transitions, there is another NFA, say B, such that B has no ϵ transitions and L(A) = L(B).

Proof Idea

Let $S \subseteq Q$.

Let

$$E(S) = \left\{ q \middle| \begin{array}{l} q \text{ is reachable from some state in } S \\ \text{with zero or more } \epsilon \text{ transitions} \end{array} \right\}$$

Example

