RePoseD: Efficient Relative Pose Estimation With Known Depth Information

Yaqing Ding¹, Viktor Kocur², Václav Vávra¹, Zuzana Berger Haladová², Jian Yang³, Torsten Sattler⁴ and Zuzana Kukelova¹

¹ Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical University in Prague

² Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava

³ PCA Lab, VCIP, College of Computer Science, Nankai University, Tianjin, China

⁴ Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague

This supplementary material provides the following information: Sec. 1 provides more details about the proposed solvers, including a general approach that can be used to solve all variants of the depth-aware relative pose problem that require 3 point correspondences, the $3\text{PT}_{suv}(\text{inverse})$ solver for affine-invariant inverse depths, and the variants of the affine-invariant 4PT focal length solvers. Sec. 2 provides more experimental results.

1. More Details About the Solvers

1.1. Solvers Using Three Point Correspondences

For calibrated camera pose estimation with monocular depth, all possible cases can be solved using three point correspondences and a varying number of monocular depth estimates. Similarly, for focal length problems, most cases can be solved using three point correspondences and a varying number of depth estimates. In general, all cases that involve three point correspondences can be solved using a similar approach.

Here we show the solution to the shared unknown focal length scale-invariant case, *i.e.*, the $3PT_{s00}f$ solver. In this case, the shifts in the monocular depths are omitted (considered to be zero) and we only consider the unknown scales. The minimal case is two 3D-3D point correspondence with one 3D-2D point correspondences. We have

$$||s\mathbf{K}^{-1}(\beta_1\mathbf{q}_1 - \beta_2\mathbf{q}_2)|| = ||\mathbf{K}^{-1}(\alpha_1\mathbf{p}_1 - \alpha_2\mathbf{p}_2)||,$$

$$||s\mathbf{K}^{-1}(\beta_1\mathbf{q}_1 - \eta_3\mathbf{q}_3)|| = ||\mathbf{K}^{-1}(\alpha_1\mathbf{p}_1 - \alpha_3\mathbf{p}_3)||,$$

$$||s\mathbf{K}^{-1}(\beta_2\mathbf{q}_2 - \eta_3\mathbf{q}_3)|| = ||\mathbf{K}^{-1}(\alpha_2\mathbf{p}_2 - \alpha_3\mathbf{p}_3)||.$$

where $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ are known depths estimated *e.g.*, using MDE network, and η_3 is the unknown depth. There are three equations in three unknowns $\{s, f, \eta_3\}$, which can be solved similarly as for the $3PT_{suv}$ solver presented in

Sec. 3.1 of the main paper. In general, all the problems using three point correspondences can be converted into solving three equations in three unknowns. They differ in the number of depth parameters for the 2D points, but the structure and the solution strategy in all cases similar.

1.2. $3PT_{suv}$ Inverse Depth Solver

Some MDE networks return affine-invariant inverse depths. In this case, the true depths can be expressed as

$$\eta_i = \frac{s_1}{\alpha_i + u}, \ \lambda_i = \frac{s_2}{\beta_i + v},\tag{1}$$

where α_i, β_i are known values from the inverse monocular depth, and $\{s_1, s_2\}, \{u, v\}$ are the unknown scales and shifts in the inverse depth. In this case, we have

$$\frac{s_2}{\beta_i + v} \mathbf{K}_2^{-1} \mathbf{q}_i = \frac{s_1}{\alpha_i + u} \mathbf{R} \mathbf{K}_1^{-1} \mathbf{p}_i + \mathbf{T}, \tag{2}$$

Dividing (2) by s_1 gives

$$\frac{s}{\beta_i + v} \mathbf{K}_2^{-1} \mathbf{q}_i = \frac{1}{\alpha_i + u} \mathbf{R} \mathbf{K}_1^{-1} \mathbf{p}_i + \mathbf{t},$$
 (3)

In this case, similarly to the affine-invariant depth case, we have 9 DOF for calibrated cameras. However, in contrast to the affine-invariant depths, the constraints (3) for affine-invariant inverse depths are more complicated, since they contain unknown parameters in the denominators. We can use similar tricks to eliminate the rotation and translation from the original equations (3) as the ones used for the affine-invariant depth solvers presented in the main paper. In this case, we obtain

$$\begin{aligned} & \left\| \frac{s\tilde{\mathbf{q}}_{1}}{\beta_{1}+v} - \frac{s\tilde{\mathbf{q}}_{2}}{\beta_{2}+v} \right\| = \left\| \frac{\tilde{\mathbf{p}}_{1}}{\alpha_{1}+u} - \frac{\tilde{\mathbf{p}}_{2}}{\alpha_{2}+u} \right\|, \\ & \left\| \frac{s\tilde{\mathbf{q}}_{1}}{\beta_{1}+v} - \frac{s\tilde{\mathbf{q}}_{3}}{\beta_{3}+v} \right\| = \left\| \frac{\tilde{\mathbf{p}}_{1}}{\alpha_{1}+u} - \frac{\tilde{\mathbf{p}}_{3}}{\alpha_{3}+u} \right\|, \\ & \left\| \frac{s\tilde{\mathbf{q}}_{2}}{\beta_{2}+v} - \frac{s\tilde{\mathbf{q}}_{3}}{\beta_{3}+v} \right\| = \left\| \frac{\tilde{\mathbf{p}}_{2}}{\alpha_{2}+u} - \frac{\tilde{\mathbf{p}}_{3}}{\alpha_{3}+u} \right\|. \end{aligned}$$

¹Note that in this case, for the last (third) correspondence, we assume that we know/use the depth only from one image, *i.e.*, we have 3D-2D correspondence with unknown depth η_3 .

However, these equations have unknowns in the denominators, and simply multiplying the equations with the denominators results in a very complex system of equations that is difficult to solve.

To solve the equations efficiently, we first multiply (4) with $\alpha_1 + u$, and let

$$b_1 = \frac{s(\alpha_1 + u)}{\beta_1 + v}, \ b_2 = \frac{s(\alpha_1 + u)}{\beta_2 + v}, \ b_3 = \frac{s(\alpha_1 + u)}{\beta_3 + v},$$

$$c_2 = \frac{\alpha_1 + u}{\alpha_2 + u}, \ c_3 = \frac{\alpha_1 + u}{\alpha_3 + u}.$$
(5)

Substituting (5) into (4) we have three equations

$$||b_{1}\tilde{\mathbf{q}}_{1} - b_{2}\tilde{\mathbf{q}}_{2}|| = ||\tilde{\mathbf{p}}_{1} - c_{2}\tilde{\mathbf{p}}_{2}||,$$

$$||b_{1}\tilde{\mathbf{q}}_{1} - b_{3}\tilde{\mathbf{q}}_{3}|| = ||\tilde{\mathbf{p}}_{1} - c_{3}\tilde{\mathbf{p}}_{3}||,$$

$$||b_{2}\tilde{\mathbf{q}}_{2} - b_{3}\tilde{\mathbf{q}}_{3}|| = ||c_{2}\tilde{\mathbf{p}}_{2} - c_{3}\tilde{\mathbf{p}}_{3}||,$$
(6)

where b_1, b_2, b_3, c_2, c_3 are new unknowns. However, these unknown are not independent. To find the constraints on b_1, b_2, b_3, c_2, c_3 , we use the elimination ideal technique [4]. In this case, we first create an ideal J generated by five polynomials (5). Then, the unknown parameters s, u, v are eliminated from the generators of J by computing the generators of the elimination ideal $J_1 = J \cap \mathbb{C}[\alpha_1, \alpha_2, ..., c_2, c_3]$. These generators can be computed using the following Macaulay2 [10] code

```
 \begin{array}{l} {\rm R} \; = \; {\rm QQ} \, [\, {\rm s}\,, {\rm u}\,, {\rm v}\,, \alpha_1\,, \alpha_2\,, \alpha_3\,, \beta_1\,, \beta_2\,, \beta_3\,, b_1\,, b_2\,, b_3\,, c_2\,, c_3\,] \, ; \\ {\rm eq} \; = \; \{b_1(\beta_1+v)-s(\alpha_1+u)\,, \;\; b_2(\beta_2+v)-s(\alpha_1+u)\,, \\ \qquad b_3(\beta_3+v)-s(\alpha_1+u)\,, \;\; c_2(\alpha_2+u)-(\alpha_1+u)\,, \\ \qquad c_3(\alpha_3+u)-(\alpha_1+u)\}\,; \\ {\rm J} \; = \; {\rm ideal} \, ({\rm eq})\,; \\ {\rm J} 1 \; = \; {\rm eliminate} \, ({\rm J}, \{{\rm s}\,, {\rm u}\,, {\rm v}\})\,; \\ {\rm g} \; = \; {\rm mingens} \; \; {\rm J} 1\,; \\ {\rm "constraints.txt"} \; << \; {\rm toString} \; {\rm g} \; << \; {\rm close}\,; \\ \end{array}
```

In this case, by eliminating $\{s,u,v\}$ from (5) we obtain the following two equations in $\{b_1,b_2,b_3,c_2,c_3\}$

$$b_1b_2\beta_1 - b_1b_3\beta_1 - b_1b_2\beta_2 + b_2b_3\beta_2 + b_1b_3\beta_3 - b_2b_3\beta_3 = 0,$$

$$c_2c_3\alpha_2 - c_2c_3\alpha_3 + c_2\alpha_1 - c_3\alpha_1 - c_2\alpha_2 + c_3\alpha_3 = 0.$$
(7)

Combining (7) with (6) we have 5 equations in 5 unknowns, which can be solved using the Gröbner basis method [4]. Using the automatic generator of Gröbner basis solvers [16], we obtain a solver with an elimination template of size 54×66 and 12 solutions. Note that there are two trivial solutions $b_2 = b_3 = c_2 = c_3 = 0$, $||b_1\tilde{\mathbf{q}}_1|| = ||\tilde{\mathbf{p}}_1||$. Hence, there are up to 10 feasible solutions.

The $3PT_{suv}$ (inverse) solver is much more complex than the $3PT_{suv}$ solver for affine-invariant depths presented in the main paper. In the next section, we show that the $3PT_{suv}$ (inverse) solver does not give better results than the $3PT_{suv}$ solver inside RANSAC even when used with affine-invariant inverse depths.

1.3. Fast 4PT Solvers

In Sec 3.2 of the main paper, we have mentioned that the focal length problems with affine-invariant depth can be efficiently solved using all the six equations. Here we provide more details on the solutions.

 $4PT_{suv}f(Eigen)$. By using four 3D-3D point correspondences, we can rewrite the six equations for this problem

$$\mathbf{M} [1, c, cv, cv^2, u, u^2, f^2, cf^2]^\top = 0,$$
 (8)

where M is a 6×8 coefficient matrix. Since these equations only contain f^2 , we let $w = f^2$ and consider w as the hidden variable [14]. Then (8) can be written as

$$\mathbf{M}(w) [1, c, cv, cv^2, u, u^2]^{\top} = 0,$$
 (9)

where $\mathbf{M}(w)$ is a 6×6 polynomial matrix in w. In this case

$$\mathbf{M}(w) = \mathbf{M}_0 + w\mathbf{M}_1,\tag{10}$$

where \mathbf{M}_0 and \mathbf{M}_1 are 6×6 coefficient matrices. Thus, in this case, the solutions to 1/w are the eigenvalues of the following matrix

$$\mathbf{A} = -\mathbf{M}_0^{-\top} \mathbf{M}_1^{\top}. \tag{11}$$

Note that there are 4 zero columns in M_1 , which will result in zero eigenvalues. Based on [14], these zero columns can be removed together with the zero rows. Hence, we only need to find the eigenvalues of a 2×2 matrix resulting in 2 solutions to the problem. We denote this solver as $4PT_{sup}f(Eigen)$.

 $4\text{PT}_{suv}f_{1,2}(\text{Eigen})$. For different and unknown focal lengths case, we have the following six equations

$$\mathbf{m}_i \left[1, c, cf_2^2, cf_2^2 v, cf_2^2 v^2, f_1^2, f_1^2 u, f_1^2 u^2 \right]^\top = 0, \quad (12)$$

where i = 1, 2, ..., 6. We consider v as a hidden variable, and (12) can be written as

$$\mathbf{M}(v) [1, c, cf_2^2, f_1^2, f_1^2 u, f_1^2 u^2]^{\top} = 0,$$
 (13)

where $\mathbf{M}(v)$ is a 6×6 polynomial matrix in v. It can be solved similarly to the shared unknown focal length case, and there are only two possible solutions. We denote this solver as $4\text{PT}_{suv} f_{1,2}(\text{Eigen})$.

2. More Experiments

2.1. Results for $3PT_{suv}(Inverse)$

This solver was derived to be used with affine-invariant inverse depths, e.g., obtained via Depth Anything [24]. However, we observed that the $3PT_{suv}$ (inverse) solver does not improve the accuracy even for affine-invariant inverse depths when used inside RANSAC. In addition,

 $3PT_{suv}$ (inverse) is much more time-consuming than the $3PT_{suv}$ solver as shown in Table 1. In this experiment, we use GC-RANSAC [2] without LO to show that $3PT_{suv}$ (inverse) solver is not practical. As such, we did not evaluate the $3PT_{suv}$ (inverse) solver in the main paper.

Donah	Method			Phototouri	sm	
Depth	Method	$\epsilon_{\mathbf{R}}(^{\circ})\downarrow$	$\epsilon_{\mathbf{t}}(^{\circ})\downarrow$	$mAA(\mathbf{R})\!\!\uparrow$	mAA(t)↑	$\tau(ms) \downarrow$
DA V2 [25]	$3PT_{suv}$	1.27	2.94	0.83	0.66	45.37
DA V2 [23]	$3PT_{suv}(inverse)$	1.28	3.02	0.83	0.65	194.77

Table 1. Comparison between $3PT_{suv}$ and $3PT_{suv}$ (inverse) using Depth anything V2 [25] on the Phototourism dataset with GC-RANSAC [2].

2.2. Results for Fast 4PT Solvers

Table 2 shows that the relaxed eigenvalue solvers for the focal length problems are faster but give much worse results. Hence, we didn't use them in the real experiments.

Death	Method				Phototou	rism		
Depth	Method	$\epsilon_{\mathbf{R}}(^{\circ})\downarrow$	$\epsilon_{\mathbf{t}}(^{\circ})\downarrow$	$\epsilon_f \downarrow$	$mAA(\mathbf{R})\!\!\uparrow$	$mAA(\mathbf{t}) \!\!\uparrow$	$mAA(f)\uparrow$	$\tau(ms)\downarrow$
DA V2 [25]	$\begin{array}{c} 4\text{PT}_{suv}f \\ 4\text{PT}_{suv}f(\text{Eigen}) \end{array}$	2.32 5.17	6.58 17.25	0.22 0.30	0.72 0.52	0.44 0.22	0.33 0.21	50.99 8.18
D.1 (2 (23)	$\begin{array}{c} 4\text{PT}_{suv}f_{1,2} \\ 4\text{PT}_{suv}f_{1,2}(\text{Eigen}) \end{array}$	5.78 7.65	17.37 23.42	0.26 0.32	0.48 0.39	0.20 0.15	0.23 0.18	54.27 7.92

Table 2. Comparison between the focal length solvers shown in the main paper and the fast eigenvalue solutions inside GC-RANSAC [2].

2.3. More Results

We provide more results for the three different cases including more datasets, RANSAC configurations, matches, depths estimated using MiDaS [3] and additional solvers. Tables 3-5 show results for the ETH3D dataset for the three evaluated cases. Tables 6-8 show the results on the ScanNet dataset for the three evaluated cases. Tables 9 and 10 show the results for on the Phototourism dataset for the case of calibrated cameras and cameras with two unknown and different focal lengths. We note that Mast3r [17] with its non-linear optimization strategy is not included for the calibrated case, since the authors recommend using the 5PT [20] solver with RANSAC to obtain the poses instead.

Tables 3-10 include multiple configurations of PoseLib [15] in which we use different error functions for scoring and LO. We evaluate the standard Sampson error denoted as S, the reprojection error denoted as R and its version with included shift denoted as R_s . We find that for focal length problems with good depth, optimizing the reprojection error often yields results that are comparable to or better than those obtained using the Sampson error. This may be because the Sampson error can become unstable in certain degenerate configurations [13], whereas the reprojection error remains robust.

We have also evaluated our proposed solvers $3PT_{100}f$ and $3PT_{100}f_{1,2}$ for the shared and different unknown focal cases respectively. These solvers assume zero shifts and known scales or same scales in both images and thus known scale ratio s. On Phototourism and ETH3D they perform worse than alternatives. However, when evaluated on ScanNet these solvers perform on par with solvers considering scale and shift. Additionally, solvers that do not model scale and shift can still produce reasonable results when using Mast3r's depth, as Mast3r inherently corrects depth scales based on multi-view information. This suggests that in some scenarios (such as indoor scenes) MDEs may provide depths for which scale and shift do not need to be considered.

For the case of different focal lengths on the ScanNet dataset (see Table 8) Mast3r [17] with its optimization strategy achieves the best results. However, we show that these results can be surpassed when Mast3r matches are used in conjunction with MoGe [23] for depth estimation. For this combination, the hybrid RANSAC strategy [26] with either of the evaluated solvers yields better accuracy in both pose and focal length than Mast3r. We note that the runtime evaluation is fair, since for Mast3r runtime we do not include the inference time of the network which produces the matches.

For the two uncalibrated cases we also include ablation results using the hybrid RANSAC proposed in [26] with shift optimization disabled during LO. We denote this strategy as H_{NS} . The results show that optimizing shift is not crucial for accuracy as the differences between the two approaches are minimal and in some cases disabling shift optimization yields increased accuracy. This suggests that the including shift in the hybrid RANSAC scheme is not the reason for its superior performance compared to standard PoseLib [15].

In Tables 3-8 we also include results using SIFT matches [19]. Compared to the learning based matches the resulting accuracy is worse, but the ordering of compared methods remains very similar.

Denth	Solver	Ont	S	SP+LG [6,	18]		RoMA [9)]		SIFT [19]
Depth	SUIVEF	Opt.	$\epsilon(^{\circ})\downarrow$	mAA↑	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	mAA↑	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	mAA ↑	$\tau(ms)$
-	5PT [20]	S	0.91	87.67	48.14	0.56	91.10	184.36	1.82	82.85	29.39
	Rel3PT [1]	S	0.88	88.21	103.18	0.52	91.38	532.02	1.16	85.32	51.50
	P3P [7]	S	0.83	88.88	29.68	0.52	91.33	141.39	1.09	85.64	13.39
	$3PT_{suv}(M)$ [26]	S	0.79	88.55	41.81	0.45	91.39	145.59	1.09	85.57	25.77
	3PT _{suv} (ours)	S	0.80	88.60	29.59	0.47	91.37	127.81	1.00	85.72	16.07
	P3P [7]	R	0.33	92.56	13.27	0.26	93.41	52.53	0.74	86.89	6.57
Real	3PT _{suv} (M) [26]	R	0.32	92.60	25.64	0.25	93.91	57.20	0.70	87.25	19.64
Depth	3PT _{suv} (ours) P3P [7]	R	0.32 0.36	92.57 92.30	13.76 14.47	0.25 0.29	93.90 93.33	42.86 57.28	0.70 0.72	87.28 87.07	8.74 7.28
	3PT _{suv} (M) [26]	R_s R_s	0.36	92.30	26.70	0.29	93.46	62.30	0.72	87.18	19.47
	$3PT_{suv}$ (ours)	R_s	0.36	92.12	15.27	0.29	93.46	45.96	0.69	87.38	9.29
	3PT _{suv} (M) [26]	H [26]	0.52	91.39	549.59	0.39	92.73	1505.19	0.74	87.52	716.51
	$3PT_{suv}$ (ours)	H [26]	0.52	91.42	543.48	0.39	92.72	1490.93	0.73	87.72	724.13
	Rel3PT [1]	S	4.81	71.25	36.34	3.23	82.22	149.63	9.92	58.41	22.71
	P3P [7]	S	0.94	86.16	22.97	0.60	90.80	91.36	3.03	80.98	11.25
	3PT _{suv} (M) [26]	S	0.88	87.34	31.11	0.58	90.77	79.17	2.78	82.47	21.18
	3PT _{suv} (ours)	S	0.88	87.39	20.40	0.59	90.76	67.13	2.91	82.50	12.49
	P3P [7]	R	12.40	28.75	14.86	9.06	37.21	65.21	14.63	29.91	6.94
MiDas	3PT _{suv} (M) [26]	R	12.16	28.56	23.87	9.17	37.19	53.98	16.24	29.42	18.23
[3]	$3PT_{suv}$ (ours)	R	12.24	28.61	13.25	9.30	36.91	42.72	16.00	29.33	9.03
	P3P [7]	R_s	8.05	38.57	14.60	6.00	48.28	57.97	10.47	39.31	7.46
	$3PT_{suv}(M)$ [26]	R_s	5.68	49.47	24.18	3.75	63.57	48.37	8.18	46.00	18.19
	$3PT_{suv}$ (ours)	R_s	5.69	49.64	13.79	3.75	63.54	37.26	7.42	46.18	9.38
	$3PT_{suv}(M)$ [26]	H [26]	1.08	85.38	685.32	0.67	90.49	1605.43	2.31	80.52	768.46
	$3PT_{suv}$ (ours)	H [26]	1.07	85.45	683.39	0.67	90.50	1590.71	2.34	80.55	771.69
	Rel3PT [1]	S	5.57	68.46	35.74	3.90	80.56	145.85	10.99	55.38	22.66
	P3P [7]	S	0.90	86.25	23.26	0.72	90.61	93.99	3.07	81.10	11.56
	$3PT_{suv}(M)$ [26]	S	0.90	87.19	32.50	0.56	90.99	88.60	2.69	82.99	22.08
	$3PT_{suv}$ (ours)	S	0.91	87.07	21.68	0.56	91.01	75.87	2.47	83.08	13.04
D	P3P [7]	R	11.40	30.75	14.88	9.31	37.43	65.83	13.28	34.64	6.97
DA v2	3PT _{suv} (M) [26]	R	11.73	30.08	24.46	9.19	37.18	56.91	14.04	34.10	18.24
[25]	3PT _{suv} (ours) P3P [7]	R	11.71	29.93	13.52	9.20	37.25	45.22	13.02	34.43	8.85
		R_s	6.87	43.36	14.71	5.12	52.28	59.11	7.78	48.49	7.46
	3PT _{suv} (M) [26]	R_s R_s	4.24 4.27	56.53 56.50	24.89 14.13	2.69 2.70	68.58 68.50	53.70 42.35	5.34 4.73	57.61 57.65	18.14 9.38
	$3PT_{suv}$ (ours) $3PT_{suv}$ (M) [26]	H [26]	0.97	85.52	605.63	0.54	90.62	1493.75	2.12	80.89	635.29
	$3PT_{suv}(vi)$ [20]	H [26]	0.98	85.56	593.95	0.54	90.62	1477.73	2.19	80.79	632.61
	Rel3PT [1]	S S	4.74	72.08	42.19	2.74	82.04	170.29	9.77	56.78	25.50
	P3P [7]	S	0.91	87.67	25.72	0.54	91.16	111.74	1.99	83.96	12.09
	$3PT_{suv}(M)$ [26]	S	0.89	87.71	33.45	0.53	91.04	98.20	3.10	84.08	22.36
	$3PT_{suv}$ (ours)	S	0.89	87.67	22.41	0.54	91.05	84.24	2.23	84.32	13.17
	P3P [7]	R	1.89	77.65	15.16	1.48	83.13	66.70	2.68	76.75	6.75
MoGe	3PT _{suv} (M) [26]	R	1.90	77.43	24.49	1.48	83.11	57.53	4.13	75.92	18.19
[23]	$3PT_{suv}$ (ours)	R	1.92	77.31	13.45	1.47	83.13	45.41	3.37	76.15	8.80
. ,	P3P [7]	R_s	1.68	79.07	15.51	1.28	84.99	64.68	2.74	77.19	7.69
	$3PT_{suv}(M)$ [26]	R_s	1.76	78.13	24.93	1.32	84.91	55.70	3.20	77.04	18.31
	$3PT_{suv}$ (ours)	R_s	1.77	78.07	14.12	1.31	84.99	43.77	2.47	77.17	9.09
	$3PT_{suv}(M)$ [26]	H [26]	0.86	88.26	566.16	0.50	91.17	1414.96	2.16	84.85	572.73
	$3PT_{suv}$ (ours)	H [26]	0.85	88.24	554.79	0.49	91.23	1401.61	2.23	84.73	575.19
	Rel3PT [1]	S	1.36	78.82	49.70	0.70	88.25	207.86	4.46	66.94	27.89
	P3P [7]	S	0.88	88.00	25.93	0.56	91.11	112.65	2.40	84.29	12.36
	$3PT_{suv}(M)$ [26]	S	0.94	87.42	33.90	0.55	91.04	97.85	3.14	83.73	22.69
	$3PT_{suv}$ (ours)	S	0.95	87.49	22.58	0.55	91.01	83.72	2.39	83.91	13.31
	P3P [7]	R	2.02	76.60	15.48	1.59	82.49	68.16	2.88	76.38	6.98
UniDepth	3PT _{suv} (M) [26]	R	2.05	76.28	24.68	1.57	82.38	58.47	4.89	75.36	18.25
[21]	3PT _{suv} (ours)	R	2.05	76.17	13.63	1.59	82.30	46.47	3.65	75.63	8.75
	P3P [7]	R_s	1.78	78.26	15.64	1.29	84.85	64.83	3.06	76.79	7.74
	3PT _{suv} (M) [26]	R_s	1.80	77.51	25.03	1.31	84.93	55.43	3.29	76.18	18.45
	3PT _{suv} (ours)	R _s	1.81	77.40	14.18	1.30	84.98	1402.46	2.74	76.43	9.13
	3PT _{suv} (M) [26]	H [26]	0.86	88.03	558.61	0.53	91.33	1402.46	2.41	84.10	618.95
	$3PT_{suv}$ (ours)	H [26]	0.86	88.03	550.74	0.53	91.33	1392.71	2.60	84.17	617.79

Donah	Solver	0-4		Mast3r [1	7]
Depth	Solver	Opt.	$\epsilon(^{\circ})\downarrow$	mAA ↑	$\tau(ms)\downarrow$
-	5PT [20]	S	0.66	90.29	126.77
	Rel3PT [1]	S	0.67	90.30	104.46
	P3P [7]	S	0.67	90.24	56.52
	$3PT_{suv}(M)$ [26]	S	0.67	90.20	42.49
	$3PT_{suv}$ (ours)	S	0.67	90.35	30.90
	P3P [7]	R	29.42	17.49	38.12
Mast3r [17]	$3PT_{suv}(M)$ [26]	R	29.98	16.85	33.80
Mastat [17]	$3PT_{suv}$ (ours)	R	30.00	17.05	22.95
	P3P [7]	R_s	23.13	18.65	36.68
	$3PT_{suv}(M)$ [26]	R_s	23.74	15.23	31.22
	$3PT_{suv}$ (ours)	R_s	24.16	14.97	21.01
	$3PT_{suv}(M)$ [26]	H [26]	0.92	87.96	2647.02
	$3PT_{suv}$ (ours)	H [26]	0.92	87.98	2635.27

Table 3. Results for the calibrated case on the ETH3D dataset [22]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H - hybrid RANSAC from [26].

D 4	0.1	0.			SP+LG	[6, 18]				RoMA	[9]				SIFT [19]	
Depth	Solver	Opt.	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA↑	$mAA_f\uparrow$	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)\downarrow$
-	6PT [16]	S	2.45	0.04	75.57	61.52	80.02	1.15	0.02	85.23	75.03	147.48	6.24	0.11	66.12	53.17	60.59
	3p3d [8] 4PT _{suv} f(M) [26]	S S	2.06 1.83	0.04	78.00 78.86	62.83 63.71	30.70 112.34	0.93	0.02	85.98 86.37	74.98 75.21	113.30 167.49	2.13	0.07	73.42 76.08	57.68 59.23	17.51 80.85
	$4PT_{suv} f(ours)$	S	1.72	0.03	78.90	63.56	51.10	1.03	0.02	86.25	75.04	107.05	2.04	0.06	75.72	58.82	36.68
	$3PT_{s00}f(ours)$	S	1.75	0.03	79.17	63.63	25.11	0.99	0.02	86.68	74.99	79.96	1.73	0.06	76.69	59.92	13.00
	3PT ₁₀₀ f(ours)	S	1.77	0.04	77.56	62.33	18.72	0.99	0.02	86.42	74.77	72.35	1.96	0.07	73.30	56.84	8.11
	$4PT_{suv}f(M)$ [26] $4PT_{suv}f(M)$ [27]	R R	0.41	0.01 0.01	91.57 91.58	87.77 87.92	105.13 44.28	0.29	0.00	93.06 93.14	90.15 90.04	149.04 88.67	0.84	0.01	85.08 85.52	82.52 82.73	81.64 34.27
Real	$4PT_{suv}f(ours)$ $3PT_{s00}f(ours)$	R	0.41	0.01	91.52	87.66	19.48	0.29	0.00	93.33	90.04	66.85	0.83	0.01	85.81	83.78	10.77
Depth	$3PT_{100}f(ours)$	R	0.40	0.01	91.61	88.60	13.49	0.29	0.00	93.59	90.48	61.25	0.79	0.01	86.84	84.31	6.18
	$4PT_{suv}f(M)$ [26]	R_s	0.50	0.01	90.26	84.96	106.97	0.34	0.01	92.30	88.51	154.70	0.98	0.01	83.59	80.29	80.49
	4PT _{suv} f(ours)	R_s	0.50	0.01 0.01	90.33	85.09	46.15	0.34	0.01	92.33	88.63	94.59 67.22	0.97	$0.01 \\ 0.01$	83.84	80.12	34.25 11.23
	$3PT_{s00}f(ours)$ $3PT_{100}f(ours)$	R _s	0.49	0.01	90.52 90.67	85.04 85.66	20.05 14.00	0.32	0.00	92.81	88.95 89.00	61.62	0.91	0.01	84.69 85.97	82.07 82.24	6.61
	4PT _{suv} f(M) [26]	H [26]	1.07	0.02	82.01	75.63	1502.02	2.12	0.02	76.69	72.51	3218.22	12.97	0.30	38.95	30.42	2578.61
	$3PT_{s00}f(ours)$	H [26]	1.07	0.02	82.19	75.76	1411.05	2.28	0.02	76.42	72.43	3067.57	14.53	0.26	37.57	29.82	2286.38
	$3PT_{s00}f(ours)$	H_{NS} [26]	1.04	0.02	81.80	75.69	1333.74	2.25	0.01	76.68	73.00	2721.78	14.61	0.28	37.89	29.74	2129.14
	3p3d [8] 4PT _{suv} f(M) [26]	S S	4.08 2.17	0.07 0.04	61.91 73.99	49.69 59.89	25.35 103.86	1.91 1.14	0.02 0.02	78.71 85.11	68.10 74.93	86.60 142.78	10.75 8.04	0.24	44.34 62.00	33.09 48.25	14.32 77.55
	$4PT_{suv}f(ours)$	S	2.26	0.04	73.53	59.35	45.74	1.19	0.02	84.86	74.80	84.62	7.07	0.11	63.35	49.54	35.24
	$3PT_{s00}f(ours)$	S	2.26	0.04	73.11	60.38	21.36	1.25	0.02	84.66	74.47	65.79	7.18	0.12	63.89	50.42	11.90
	$3PT_{100}f(ours)$	S	9.25	0.16	52.77	41.40	12.76	5.32	0.05	70.75	60.27	48.01	26.46	0.30	31.99	24.88	5.63
	4PT f(ours)	R R	14.47 14.56	0.19	24.45 24.04	25.80 25.42	99.10 41.15	11.06 11.16	0.19	30.87 30.65	26.96 27.07	129.24 71.31	18.87 18.48	0.27	24.75 24.58	26.50 27.52	79.83 33.25
MiDas	$4PT_{suv}f(ours)$ $3PT_{s00}f(ours)$	R	14.58	0.20	24.04	25.42	18.31	10.99	0.19	31.44	27.85	60.52	16.72	0.26	25.44	27.64	10.68
[3]	$3PT_{100}f(ours)$	R	18.29	0.24	22.02	22.85	9.15	12.95	0.21	29.01	25.81	36.22	21.12	0.35	22.43	25.00	4.11
	$4PT_{suv}f(M)$ [26]	R_s	8.46	0.14	36.05	34.35	101.66	6.29	0.11	46.33	38.06	138.43	13.43	0.18	33.90	32.31	77.38
	$4PT_{suv}f(ours)$ $3PT_{s00}f(ours)$	R_s R_s	8.60 8.56	0.14	36.05 35.48	34.09 34.10	43.58 19.15	6.36 6.47	0.11	46.47 45.22	38.10 38.08	80.46 62.22	12.56 13.36	0.18	34.39 33.83	32.71 32.57	33.41 10.89
	3PT ₁₀₀ f(ours)	R _s	13.22	0.14	31.71	29.83	9.48	9.26	0.12	41.05	33.72	36.18	18.30	0.19	27.57	26.81	4.39
	4PT _{suv} f(M) [26]	H [26]	2.58	0.05	68.70	56.01	1303.38	1.48	0.03	81.10	67.25	2301.37	7.55	0.10	62.20	49.75	1261.37
	$3PT_{s00}f(ours)$	H [26]	2.47	0.05	69.04	56.45	1316.09	1.48	0.03	81.44	67.03	2410.90	6.00	0.09	63.10	51.24	1350.34
	3PT _{s00} f(ours)	H _{NS} [26]	2.57	0.05	68.54	56.38	1238.87	1.41	0.03	81.26	67.31	2213.96	5.41	0.09	63.72	51.01	1328.62
	3p3d [8] 4PT _{suv} f(M) [26]	S S	2.10	0.08 0.04	61.60 74.60	48.76 60.77	27.01 104.75	2.07 1.21	0.02 0.02	78.86 85.33	68.29 75.09	91.39 146.35	10.31 7.39	0.19 0.09	46.33 66.11	36.95 53.64	15.09 78.44
	4PT _{suv} f(ours)	S	2.02	0.04	74.67	60.41	46.62	1.20	0.02	85.61	75.43	88.03	5.80	0.09	66.77	52.75	36.03
	$3PT_{s00}f(ours)$	S	2.20	0.04	73.66	60.93	21.62	1.23	0.02	84.89	75.00	67.61	6.40	0.11	64.30	51.31	12.21
	3PT ₁₀₀ f(ours)	S R	12.16 13.22	0.20	49.70 26.18	39.23 28.41	12.56 100.09	6.20 10.98	0.06	67.86 32.52	57.93 30.93	46.57 134.01	24.77 15.48	0.33	32.32 28.99	26.61 27.56	5.81 79.64
	$4PT_{suv}f(M)$ [26] $4PT_{suv}f(ours)$	R	13.16	0.18	26.12	28.05	42.01	10.98	0.18	32.71	31.17	75.68	15.48	0.23	29.98	29.16	33.52
DA v2	$3PT_{s00}f(ours)$	R	13.44	0.19	26.23	28.12	18.64	11.16	0.17	32.68	31.01	63.33	14.21	0.26	30.04	29.73	10.84
[25]	$3PT_{100}f(ours)$	R	17.08	0.26	24.19	25.57	8.92	11.90	0.21	31.29	28.65	35.25	20.84	0.32	25.83	25.66	4.05
	4PT _{suv} f(M) [26]	R_s	6.31	0.10	44.42	39.84	102.76	4.75	0.08	53.63	44.53	145.36	9.96	0.14	43.88	38.47	77.80
	$4PT_{suv}f(ours)$ $3PT_{s00}f(ours)$	R _s R.	6.32 7.45	0.10	43.88 41.38	39.12 38.13	44.51 19.63	4.72 5.55	0.08	53.87 50.94	45.24 44.24	87.17 65.92	9.09 9.79	0.13	43.94 42.48	39.14 38.22	34.58 11.08
	3PT ₁₀₀ f(ours)	R _s	13.04	0.12	35.07	30.57	9.36	8.41	0.13	45.70	38.04	35.85	17.45	0.23	35.22	32.10	4.50
	$4PT_{suv}f(M)$ [26]	H [26]	2.34	0.05	70.07	58.00	1190.89	1.28	0.03	81.56	68.72	2161.36	6.98	0.09	65.52	52.56	1143.14
	$3PT_{s00}f(ours)$	H [26]	2.33	0.05	70.16	58.31	1216.89	1.30	0.03	81.57	68.68	2245.95	5.47	0.09	65.81	52.53	1213.12
	3PT _{s00} f(ours) 3p3d [8]	H _{NS} [26]	2.36 3.18	0.04	70.00 68.24	58.56 54.64	1132.10 27.70	1.31	0.03	81.36 80.98	68.50 70.19	2109.71 98.44	5.72 7.02	0.08	64.57 54.64	51.74 42.53	1171.09 15.70
	4PT _{suv} f(M) [26]	S	2.10	0.04	76.06	61.81	107.30	1.02	0.02	85.91	75.61	151.65	6.28	0.09	70.32	54.94	80.88
	$4PT_{suv}f(ours)$	S	2.15	0.04	75.59	60.88	57.91	1.10	0.02	85.85	75.80	92.92	6.24	0.09	67.78	53.36	42.11
	$3PT_{s00}f(ours)$	S	1.99	0.04	76.94	62.66	24.72	1.05	0.02	86.04	75.83	75.12	3.44	0.08	71.69	56.15	13.17
	$3PT_{100}f(ours)$ $4PT_{suv}f(M)$ [26]	S R	9.42 2.59	0.16 0.04	52.38 69.92	41.58 62.11	14.47 102.45	5.54 1.91	0.06 0.03	70.95 76.56	61.14 65.93	54.72 138.82	25.66 7.72	0.46	32.52 64.95	24.16 57.21	6.61 80.37
	$4PT_{suv}f(M)[20]$ $4PT_{suv}f(ours)$	R	2.68	0.04	69.37	62.11	52.91	1.96	0.03	76.55	65.80	79.71	6.94	0.08	65.45	58.29	38.82
MoGe	$3PT_{s00}f(ours)$	R	2.56	0.04	70.86	63.26	21.40	1.95	0.04	76.77	66.04	72.94	3.87	0.07	68.64	60.78	11.90
[23]	3PT ₁₀₀ f(ours)	R	5.74	0.06	61.30	54.62	10.30	3.15	0.04	71.39	61.14	41.74	9.63	0.13	55.50	51.13	4.56
	$4PT_{suv}f(M)$ [26] $4PT_{suv}f(ours)$	R_s R_s	2.53 2.63	0.05	69.12 68.87	57.39 57.18	104.99 55.04	1.92 1.87	0.04	77.16 77.10	63.83 63.82	148.77 89.96	5.97 5.43	0.08	66.77 66.22	54.42 54.96	79.95 39.57
	$3PT_{s00}f(ours)$	R_s	2.49	0.05	70.04	58.86	22.20	1.95	0.04	77.46	64.31	74.67	4.54	0.07	68.06	56.60	11.99
	$3PT_{100}f(ours)$	R_s	6.30	0.07	60.26	50.42	10.64	3.16	0.04	71.44	58.33	41.99	10.35	0.17	54.08	44.17	4.94
	4PT _{suv} f(M) [26]	H [26]	1.50	0.03	79.23	66.34	956.33	0.89	0.02	86.99	76.66	1923.31	5.99	0.06	73.86	60.64	905.27
	$3PT_{s00}f(ours)$ $3PT_{s00}f(ours)$	H [26] H _{NS} [26]	1.41 1.43	0.03	80.24 80.32	67.42 67.46	967.52 939.37	0.91 0.90	0.02	87.20 86.82	76.50 76.10	2043.91 1947.06	2.68 3.04	0.05 0.05	76.45 75.51	63.05 62.86	970.49 949.56
	3p3d [8]	S S	3.49	0.03	69.47	55.57	27.57	1.89	0.02	82.50	71.89	97.99	6.04	0.12	59.35	45.23	15.84
	$4PT_{suv}f(M)$ [26]	S	2.21	0.04	75.61	61.37	106.73	1.12	0.02	85.63	75.66	151.31	6.59	0.08	69.78	54.68	82.44
	$4PT_{suv}f(ours)$	S	1.92	0.04	76.18	62.00	46.97	1.12	0.02	85.59	75.64	91.92	5.85	0.09	69.01	54.12	35.07
	$3PT_{s00}f(ours)$ $3PT_{100}f(ours)$	S S	2.04 3.98	0.04	76.89 63.26	62.42 51.81	23.47 15.52	1.04	0.02	85.78 79.68	75.69 69.89	75.62 59.07	4.93 14.63	0.08	70.49 40.83	55.91 32.62	12.87 6.91
	4PT _{suv} f(M) [26]	R	2.70	0.07	69.55	59.49	101.94	2.20	0.02	76.35	63.30	139.31	8.16	0.28	65.71	56.75	79.06
	$4PT_{suv}f(ours)$	R	2.69	0.04	69.50	59.62	42.12	2.11	0.04	76.21	63.44	79.50	6.81	0.08	66.14	57.13	33.34
UniDepth	$3PT_{s00}f(ours)$	R	2.68	0.05	69.61	59.84	20.48	2.07	0.04	76.25	63.64	75.00	4.31	0.07	67.61	57.65	11.21
[21]	3PT ₁₀₀ f(ours)	R R.	2.78	0.05	68.11	58.88	11.64	2.10	0.04	75.89	63.05 64.83	48.44	4.52 5.77	0.08	64.80	56.29 54.13	5.08
	$4PT_{suv}f(M)$ [26] $4PT_{suv}f(ours)$	R _s	2.67 2.65	0.05	69.03 68.79	58.06 58.11	104.79 44.72	1.89	0.03	77.33 77.14	64.83	149.96 90.69	4.51	0.08	66.92 68.09	54.13 55.20	78.80 33.84
	$3PT_{s00}f(ours)$	R_s	2.51	0.05	69.22	59.00	21.45	1.94	0.03	77.02	64.61	77.26	4.44	0.08	67.90	55.58	11.89
	$3PT_{100}f(ours)$	R_s	2.74	0.05	67.70	57.35	12.22	1.90	0.03	76.91	64.55	49.48	4.47	0.09	65.45	54.25	5.68
	4PT _{suv} f(M) [26]	H [26]	1.27	0.03	81.68	69.64	1107.04	0.83	0.02	87.30	77.34	1997.88	5.60	0.06	75.43	62.37	1127.82
	$3PT_{s00}f(ours)$	H [26] H _{NS} [26]	1.28 1.33	0.03	81.99 81.89	69.28 69.64	1149.25 1093.90	0.82 0.81	0.02	87.53 87.27	77.79 77.75	2133.46 2029.72	3.25 3.04	0.06	76.47 76.60	63.73 64.10	1203.16 1243.91
	$3PT_{s00}f(ours)$																

Depth	Solver	Opt.			Mast3r	[17]	
Берш	Solvei	Opt.	<i>ϵ</i> (°) ↓	$\epsilon_f \downarrow$	mAA ↑	$mAA_f \uparrow$	$\tau(ms)\downarrow$
-	6PT [16]	S	1.23	0.03	82.99	69.00	85.89
	3p3d [8]	S	1.37	0.03	81.30	67.31	38.96
	$4PT_{suv}f(M)$ [26]	S	1.58	0.03	79.68	66.05	95.89
	$4PT_{suv}f(ours)$	S	1.36	0.03	80.86	67.16	48.36
	$3PT_{s00}f(ours)$	S	1.34	0.03	82.09	68.26	34.54
	$3PT_{100}f(ours)$	S	1.64	0.03	79.97	66.16	25.08
	$4PT_{suv}f(M)$ [26]	R	40.71	0.34	8.29	14.31	88.61
	$4PT_{suv}f(ours)$	R	41.52	0.33	8.25	14.73	41.03
	$3PT_{s00}f(ours)$	R	42.35	0.33	8.70	14.66	30.71
Mast3r [17]	$3PT_{100}f(ours)$	R	40.13	0.33	9.04	15.08	19.67
	$4PT_{suv}f(M)$ [26]	R_s	37.48	0.46	6.84	11.96	96.18
	$4PT_{suv} f(ours)$	R_s	37.81	0.46	6.51	12.16	48.75
	$3PT_{s00}f(ours)$	R_s	36.34	0.39	7.36	13.39	35.78
	$3PT_{100}f(ours)$	R_s	34.88	0.40	7.85	13.53	23.95
	$4PT_{suv}f(M)$ [26]	H [26]	2.43	0.05	72.28	58.32	3825.11
	$3PT_{s00}f(ours)$	H [26]	2.39	0.04	72.45	58.61	4079.21
	$3PT_{s00}f(ours)$	H_{NS} [26]	2.36	0.04	72.48	58.92	3431.39
	-	M [17]	1.32	0.01	85.64	82.95	4800.37

Table 4. Results for the case of two cameras with shared unknown focal length on the ETH3D dataset [22]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H - hybrid RANSAC from [26], H_{NS} - hybrid RANSAC [26] without optimizing for shift in LO, M - non-linear optimization used in [17].

Depth	Solver	Opt.			SP+LG					RoMA					SIFT	[19]	
pui		•	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA↑	$mAA_f\uparrow$	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)$
-	7PT [11] 4p4d [8]	S	4.55 3.80	0.11	54.17 57.55	36.19 37.99	18.41 17.95	2.46	0.05	71.94	56.85 56.65	61.02	15.24 4.36	0.20	43.24 57.78	27.99 35.64	12.1
	4PT _{suv} f _{1,2} (M) [26]	S	3.73	0.10	60.21	39.12	97.08	1.96	0.03	75.42	57.35	157.06	4.53	0.14	58.78	36.95	82.4
	$4PT_{suv}f_{1,2}(ours)$	S	3.55	0.10	60.40	38.75	29.35	2.05	0.04	75.24	57.09	89.33	4.43	0.13	58.68	36.46	21.6
	$3PT_{s00}f_{1,2}(ours)$	S	3.39	0.09	61.56	39.71	18.18	2.02	0.04	75.96	57.99	73.89	3.51	0.10	61.88	37.86	10.0
	3PT ₁₀₀ f _{1,2} (ours)	S R	3.63 0.67	0.09	61.46 88.65	39.60 86.27	21.81 88.59	1.92 0.43	0.04	75.96 91.34	57.67 89.35	84.35 122.85	3.61 1.29	0.11	61.35 80.17	38.74 80.05	11.3 80.6
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R	0.68	0.01	88.60	86.20	20.93	0.43	0.00	91.34	89.50	54.34	1.24	0.01	80.36	79.96	17.5
Real	$3PT_{s00}f_{1,2}(ours)$	R	0.64	0.01	89.18	86.84	8.98	0.42	0.00	91.84	89.82	40.03	1.22	0.01	80.40	80.84	5.5
Depth	3PT ₁₀₀ f _{1,2} (ours)	R R,	0.66	$0.01 \\ 0.01$	88.79 86.06	86.33 83.08	13.42 90.19	0.42	0.00	91.59 89.92	89.60 87.29	53.83 128.38	1.21 1.59	0.01	80.95 76.88	80.85 78.23	7.24 80.1
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R.	0.93	0.01	86.03	83.08	22.50	0.58	0.01	89.92	87.29	58.50	1.59	0.02	76.78	78.40	18.1
	$3PT_{s00}f_{1,2}(ours)$	R _s	0.88	0.01	86.69	83.73	10.03	0.54	0.01	90.56	87.84	41.63	1.49	0.02	77.61	79.54	6.0
	$3PT_{100}f_{1,2}(ours)$	R_s	0.92	0.01	86.32	83.40	13.66	0.54	0.01	90.36	87.66	55.06	1.48	0.02	78.06	79.47	7.5
	$4PT_{suv}f_{1,2}(M)$ [26] $3PT_{s00}f_{1,2}(ours)$	H [26] H [26]	2.11 2.15	0.02	77.88 78.23	72.52 72.93	1838.11 1741.36	1.99 1.96	0.02	76.18 76.23	70.63 70.70	4016.40 3874.62	18.31 17.68	0.31	35.45 36.79	25.22 25.05	3476 3363
	$3PT_{s00}f_{1,2}(ours)$	H _{NS} [26]	2.24	0.02	77.73	73.02	1632.86	2.12	0.02	77.05	71.95	3361.76	18.52	0.27	36.11	25.38	3337
	4p4d [8]	H [26]	2.31	0.02	77.22	71.78	1788.15	2.01	0.02	76.23	70.55	3866.99	17.72	0.29	36.48	24.81	3351
	4p4d [8]	S S	7.13 5.14	0.15	46.45 53.00	30.84 36.05	14.83 88.47	2.64	0.05	67.34 71.64	52.94 56.16	51.51 129.33	18.99 13.32	0.29	28.58 42.46	19.47 28.16	9.9 79.0
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	S	4.87	0.10	52.76	35.88	24.01	2.44	0.03	71.73	56.25	62.74	14.75	0.21	40.53	28.24	19.0
	$3PT_{s00}f_{1,2}(ours)$	S	5.15	0.12	52.89	34.57	13.60	2.78	0.05	70.19	55.15	54.98	14.01	0.25	38.48	25.06	7.4
	$3PT_{100}f_{1,2}(ours)$	S	6.37	0.13	50.18	32.46	17.33	3.46	0.06	68.97	53.08	65.10	14.46	0.24	37.24	23.22	9.5
	4PT _{suv} f _{1,2} (M) [26]	R R	18.78 19.31	0.21	23.23	23.43	83.69 18.56	14.14 14.44	0.20	31.98 31.60	26.12 25.65	105.79 39.00	22.96 23.63	0.23	27.27 26.84	27.77 28.18	76.9 15.7
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R	19.65	0.21	23.90	23.74	8.00	14.60	0.20	31.51	25.90	34.57	21.05	0.27	28.27	27.75	4.1
MiDas [3]	$3PT_{100}f_{1,2}(ours)$	R	19.76	0.21	24.10	23.94	12.33	14.80	0.21	31.87	26.17	46.89	22.02	0.25	27.81	26.80	6.5
121	$4PT_{suv}f_{1,2}(M)$ [26]	R_s R_s	15.40 17.81	0.19	28.40 27.49	27.58 26.78	84.90	11.02 11.41	0.15	38.04	31.91 32.02	112.86	19.90 19.17	0.20	28.93	29.04 29.37	76.1 16.5
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R _s	17.81	0.19	28.36	26.78	20.11 9.05	11.41	0.15	37.79 37.55	32.02	45.86 36.96	18.04	0.19	29.17 30.77	30.12	4.7
	$3PT_{100}f_{1,2}(ours)$	R_s	16.50	0.18	27.40	26.57	12.41	11.91	0.17	36.42	30.24	48.33	18.91	0.21	28.30	28.67	6.9
	4PT _{suv} f _{1,2} (M) [26]	H [26]	3.87	0.08	61.51 61.69	44.99 45.15	2095.26	2.24	0.06	73.42 73.51	54.05 54.31	3348.48 3356.13	9.87	0.15	53.94 54.23	39.48 42.16	2694 2525
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	H [26] H _{NS} [26]	3.70	0.08	62.08	45.15 45.99	1912.59	2.32	0.06	72.93	54.14	3079.09	9.29 9.17	0.13	54.23	42.16 40.28	2525
	4p4d [8]	H [26]	4.24	0.08	61.48	44.64	1958.88	2.25	0.06	73.30	53.99	3136.35	9.45	0.16	51.25	37.75	2619
	4p4d [8]	S	6.82	0.13	47.06	31.27	15.28	2.74	0.05	69.66	54.57	52.90	16.62	0.26	31.38	21.24	9.7
	4PT f. (ours)	S S	4.41 4.14	0.10	55.03 55.65	36.66 37.45	89.93 24.63	2.23	0.04	73.11 72.84	57.15 57.12	132.70	10.78	0.17	46.89 47.11	31.72 30.85	79.2 19.6
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	S	4.76	0.10	53.09	35.21	14.07	2.45	0.03	71.54	56.14	55.95	13.00	0.17	41.55	27.17	7.6
	$3PT_{100}f_{1,2}(ours)$	S	6.41	0.14	49.68	33.50	17.75	4.10	0.06	67.76	52.32	67.40	14.52	0.25	37.03	22.58	9.7
	$4PT_{suv}f_{1,2}(M)$ [26]	R	14.80	0.17	29.09	27.35	84.32	11.17	0.16	36.37	30.37	109.49	17.65	0.20	33.37	30.18	76.9
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R R	14.79 14.82	0.17	29.14 28.92	27.35 27.71	18.93 8.24	11.36 12.04	0.16	36.19 36.40	30.59 30.58	42.60 37.01	18.42 15.34	0.20	33.12 35.46	30.10 31.60	15.7 4.3 :
DA v2 [25]	$3PT_{100}f_{1,2}(ours)$	R	15.11	0.18	28.82	27.42	12.45	12.46	0.17	35.71	30.24	47.30	15.49	0.21	34.34	31.68	6.3
[23]	$4PT_{suv}f_{1,2}(M)$ [26]	R_s	9.54	0.12	36.11	34.23	85.43	6.79	0.10	45.45	39.65	118.26	13.58	0.15	38.45	34.58	77.3
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R_s R_s	9.62 10.18	0.12	36.03 35.65	34.10 33.16	20.74 9.60	6.88 7.54	0.10	44.99 43.69	39.57 37.85	51.19 39.63	13.31 13.28	0.17	38.48 38.41	34.20 35.06	16.9 4.90
	$3PT_{100}f_{1,2}(ours)$	R,	11.24	0.15	34.35	31.61	12.62	8.12	0.13	42.68	36.90	48.98	14.06	0.18	37.55	34.73	6.8
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	3.60	0.08	61.64	45.60	1896.45	2.18	0.06	73.14	54.95	3128.59	9.40	0.13	54.85	41.01	2514.
	3PT _{s00} f _{1,2} (ours)	H [26]	3.50 3.63	0.08	61.86 61.28	46.25 45.78	1894.68 1736.37	2.23	0.06	73.31 73.45	55.02 55.26	3097.87 2924.53	8.36	0.12	57.27	42.92 41.10	2385. 2500.
	3PT _{s00} f _{1,2} (ours) 4p4d [8]	H _{NS} [26] H [26]	3.73	0.08	61.30	44.67	1842.68	2.23	0.06	73.45	54.71	2924.53	8.65 9.37	0.15	56.11 53.53	39.48	2354.
	4p4d [8]	S	4.98	0.11	52.91	36.19	16.30	2.40	0.05	71.59	56.53	59.06	9.77	0.18	44.96	29.55	10.3
	$4PT_{suv}f_{1,2}(M)$ [26]	S	4.07	0.09	57.28	38.04	90.86	2.22	0.04	73.47	57.08	138.85	10.07	0.17	50.40	33.44	81.5
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	S S	3.91 4.12	0.10	57.16 57.27	37.69 38.71	26.93 15.50	2.21 2.26	0.04	73.21 73.80	57.23 57.69	71.54 65.36	9.81 7.06	0.16	50.25 53.46	32.82 36.03	20.6
	$3PT_{100}f_{1,2}(ours)$	S	6.30	0.11	53.05	35.28	19.86	3.18	0.05	70.99	55.15	78.18	11.20	0.18	43.40	28.07	10.6
	$4PT_{suv}f_{1,2}(M)$ [26]	R	5.57	0.06	55.69	57.08	84.59	3.40	0.04	67.12	63.83	113.97	9.46	0.08	53.53	57.12	77.1
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R R	5.41 5.24	0.06	54.89 57.27	56.85 57.41	20.70 9.02	3.42 3.41	0.04	67.06 67.99	63.69 64.18	45.55 43.41	10.39 6.64	0.08	52.46 56.04	55.44 58.55	16.8 4.3
MoGe	3PT ₁₀₀ f _{1,2} (ours)	R	5.55	0.06	54.49	56.14	13.65	3.57	0.04	65.89	63.49	57.74	7.62	0.07	52.91	56.54	6.9
[23]	$4PT_{suv}f_{1,2}(M)$ [26]	R_s	4.98	0.06	57.02	52.29	85.88	2.93	0.04	69.22	60.95	121.27	8.99	0.09	53.69	51.21	77.8
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R_s	4.69 4.97	0.06	57.37 57.55	52.07 52.91	22.37 10.63	2.89	0.04	69.19 69.40	61.04	53.39 46.70	9.21 7.08	0.09	53.22 56.14	51.17 53.00	17.8 5.0
	$3PT_{100}f_{1,2}(ours)$ $3PT_{100}f_{1,2}(ours)$	R_s	5.26	0.06	54.77	51.03	14.16	3.10	0.04	67.11	60.10	59.65	8.09	0.08	52.27	50.24	7.5
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	2.15	0.03	74.71	62.05	1531.76	1.30	0.02	83.81	73.09	2765.01	7.73	0.07	66.29	57.82	2218
	$3PT_{s00}f_{1,2}(ours)$	H [26]	2.06	0.03	75.05	62.82	1499.79	1.27	0.02	84.10	73.59	2823.21	6.01	0.06	67.20	58.33	2194
	3PT _{s00} f _{1,2} (ours) 4p4d [8]	H _{NS} [26] H [26]	2.05 2.32	0.03	75.18 73.61	63.09 61.97	1492.10 1548.72	1.29	0.02	84.09 83.82	73.46 72.85	2705.98 2712.66	6.66	0.06	66.93 62.60	57.73 53.43	2268 2187
	4p4d [8]	S S	5.26	0.11	52.71	35.74	16.46	2.51	0.05	71.03	56.20	58.78	10.94	0.19	42.18	28.27	10.4
	4PT _{suv} f _{1,2} (M) [26]	S	3.78	0.10	57.41	37.66	91.97	2.30	0.05	73.06	57.01	138.56	9.96	0.17	50.60	33.67	82.8
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	S S	4.22 4.23	0.10	57.07 56.07	37.57 37.90	25.63 15.68	2.34 2.26	0.04	73.14 72.87	57.16 57.34	70.39 65.32	10.13 7.24	0.17	50.57 53.27	32.50 34.44	19.5 8.2
	$3PT_{100}f_{1,2}(ours)$	S	3.95	0.09	57.21	38.46	20.27	2.27	0.04	73.53	57.24	78.21	9.24	0.15	49.16	32.60	10.6
	$4PT_{suv}f_{1,2}(M)$ [26]	R	5.50	0.06	54.93	53.88	86.41	3.47	0.05	66.81	61.28	114.91	10.28	0.10	53.65	52.82	77.5
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{suv}f_{1,2}(ours)$	R R	5.68 5.62	0.07	54.90 55.44	54.33 54.45	19.34 9.84	3.39 3.47	0.05	66.96 66.65	61.62 61.61	46.08 44.65	10.08 7.00	0.09	53.56 55.22	53.28 54.32	16.0 4.7
niDepth	$3PT_{s00}f_{1,2}(ours)$ $3PT_{100}f_{1,2}(ours)$	R R	5.62	0.07	56.00	54.45	9.84 14.05	3.47	0.05	67.15	61.79	60.78	6.80	0.08	55.52	54.32 55.48	7.1
[21]	$4PT_{suv}f_{1,2}(M)$ [26]	R_s	5.10	0.06	56.33	51.74	87.25	3.01	0.04	68.89	61.84	122.40	8.22	0.09	56.68	52.10	77.8
	$4PT_{suv}f_{1,2}(ours)$	R_s	4.94	0.06	56.38	52.09	21.43	3.03	0.04	68.78	61.81	54.77	8.10	0.09	56.61	52.15	17.0
	3PT _{s00} f _{1,2} (ours)	R _s	5.16 4.86	0.07	56.55	52.50 52.51	11.27	3.03	0.04	68.97	61.99	48.73	6.78	0.09	57.60	52.94	5.5 8.0
	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R _s H [26]	2.24	0.06	56.83 74.88	63.63	15.01 1670.30	2.95 1.22	0.04	69.26 84.26	61.80 73.36	64.21 2836.79	6.76 7.98	0.08	57.21 65.71	53.24 57.32	2327
	$3PT_{s00}f_{1,2}(ours)$	H [26]	2.04	0.03	74.81	64.25	1651.51	1.17	0.02	84.62	73.94	2885.64	6.43	0.08	67.18	57.84	2496
	$3PT_{s00}f_{1,2}(ours)$	H _{NS} [26]	2.09	0.03	74.88	64.33	1541.87	1.27	0.02	84.13	73.46	2696.57	6.69	0.08	66.21	57.43	2372
	4p4d [8]	H [26]	2.46	0.04	73.96	63.04	1597.52	1.26	0.02	84.10	72.81	2722.93	6.83	0.09	62.72	54.06	2471
										Mast3	r [17]		-				
			Dept	th S	Solver		Opt.	-ε(°) ↓	$\epsilon_f \downarrow$	mAA ↑	$mAA_f \uparrow$	$\tau(ms) \downarrow$	-				
					7PT [11]		S	2.71	0.07	68.00	47.29	36.46	-				
			-		[11]			4.71	0.07	00.00							

Donah	C-1	0-4			Mast3r	[17]	
Depth	Solver	Opt.	<i>ϵ</i> (°) ↓	$\epsilon_f \downarrow$	mAA ↑	$mAA_f \uparrow$	$\tau(ms)\downarrow$
-	7PT [11]	S	2.71	0.07	68.00	47.29	36.46
	4p4d [8]	S	3.35	0.08	63.11	43.94	29.51
	$4PT_{suv} f_{1,2}(M)$ [26]	S	5.10	0.11	57.94	41.15	102.97
	$4PT_{suv} f_{1,2}(ours)$	S	4.97	0.12	57.92	41.43	39.07
	$3PT_{s00}f_{1,2}(ours)$	S	4.13	0.10	60.24	42.47	32.49
	$3PT_{100}f_{1,2}(ours)$	S	2.85	0.07	66.70	46.54	39.40
	$4PT_{suv} f_{1,2}(M)$ [26]	R	49.82	0.36	2.65	10.16	87.74
	$4PT_{suv} f_{1,2}(ours)$	R	49.68	0.36	2.55	10.28	23.55
	$3PT_{s00}f_{1,2}(ours)$	R	50.05	0.34	2.59	10.76	17.18
Mast3r [17]	$3PT_{100}f_{1,2}(ours)$	R	49.34	0.35	2.55	10.73	26.95
Masta [17]	$4PT_{suv} f_{1,2}(M)$ [26]	R_s	50.42	0.42	3.11	7.67	94.04
	$4PT_{suv} f_{1,2}(ours)$	R_s	50.58	0.42	2.91	7.49	30.17
	$3PT_{s00}f_{1,2}(ours)$	R_s	46.77	0.39	3.66	8.96	21.25
	$3PT_{100}f_{1,2}(ours)$	R_s	46.21	0.37	3.71	8.45	31.11
	$4PT_{suv} f_{1,2}(M)$ [26]	H [26]	5.29	0.13	52.43	32.37	5273.77
	$3PT_{s00}f_{1,2}(ours)$	H [26]	5.34	0.13	52.41	32.33	5338.04
	$3PT_{s00}f_{1,2}(ours)$	H_{NS} [26]	5.19	0.13	52.46	32.44	4657.79
	4p4d [8]	H [26]	5.14	0.13	52.46	32.32	5107.02

Table 5. Results for the case of two cameras with different unknown focal lengths on the ETH3D dataset [22]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H - hybrid RANSAC from [26], H_{NS} - hybrid RANSAC [26] without optimizing for shift in LO.

Depth	Solver	Opt.		SP+LG [6,	18]		RoMA [9)]		SIFT [19)]
Берш	Solvei	Орг.	$\epsilon(^{\circ})\downarrow$	mAA↑	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	$mAA\uparrow$	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	mAA ↑	$\tau(ms)$
-	5PT [20]	S	6.98	37.95	50.27	3.64	56.18	209.19	31.35	17.37	20.61
	Rel3PT [1]	S	6.90	38.28	74.72	3.61	56.63	381.28	14.18	26.67	26.17
	P3P [7]	S	6.60	39.58	24.48	3.60	56.67	107.58	15.44	25.73	11.66
	$3PT_{suv}(M)$ [26]	S	6.70	39.09	34.27	3.62	56.58	92.19	15.13	24.38	17.43
	3PT _{suv} (ours)	S	6.72	38.98	21.39	3.61	56.65	85.04	15.51	24.22	10.02
ъ.	P3P [7]	R	5.54	43.78	13.27	3.42	59.36	52.49	7.85	35.64	7.43
Real	3PT _{suv} (M) [26]	R R	5.51	43.89	24.24 11.99	3.43	59.37 59.39	41.09 33.88	9.02	33.31	15.65
Depth	3PT _{suv} (ours) P3P [7]	R_s	5.52 6.07	43.85 40.90	14.42	3.43 3.51	58.95	55.93	8.99 9.70	33.41 32.53	7.45 8.90
	3PT _{suv} (M) [26]	R_s	7.33	36.49	26.67	3.58	56.63	42.97	13.95	28.21	15.45
	$3PT_{suv}$ (ours)	R_s	7.29	36.53	14.84	3.59	56.50	34.86	14.27	28.11	8.25
	3PT _{suv} (M) [26]	H [26]	5.82	41.90	1756.20	3.42	59.05	4206.15	18.95	23.87	882.9
	3PT _{suv} (ours)	H [26]	5.80	41.97	1737.82	3.43	59.05	4064.46	19.02	23.76	869.1
	Rel3PT [1]	S	8.34	34.07	43.34	3.93	53.43	207.44	44.37	11.17	25.64
	P3P [7]	S	6.85	38.39	24.73	3.70	55.91	103.26	20.36	19.50	11.25
	$3PT_{suv}(M)$ [26]	S	6.84	38.53	32.39	3.64	56.44	78.69	21.13	19.49	17.11
	$3PT_{suv}$ (ours)	S	6.86	38.48	19.90	3.64	56.41	74.16	21.31	19.16	9.86
	P3P [7]	R	17.89	12.30	13.89	13.34	17.42	58.59	21.55	11.11	7.32
MiDas	$3PT_{suv}(M)$ [26]	R	17.83	12.34	23.98	13.33	17.47	41.70	26.72	9.15	15.36
[3]	$3PT_{suv}$ (ours)	R	17.81	12.36	11.96	13.31	17.55	34.56	26.44	9.37	7.55
	P3P [7]	R_s	14.19	17.94	14.67	10.20	24.59	56.72	19.74	14.51	8.48
	3PT _{suv} (M) [26]	R_s	13.24	19.86	26.03	8.78	29.77	40.27	21.04	14.55	15.12
	3PT _{suv} (ours)	R_s	13.26	19.51	14.37	8.80	29.73	32.78	20.84	14.44	8.13
	$3PT_{suv}(M)$ [26] $3PT_{suv}$ (ours)	H [26] H [26]	7.03 7.03	37.56 37.49	998.68 983.36	3.84 3.84	54.97 54.93	1780.84 1755.98	16.93 17.02	22.29 22.40	610.1 604.4
	Rel3PT [1]	S S	8.33	33.95	42.50	3.96	53.30	203.95	43.72	10.21	24.6
	P3P [7]	S	6.99	37.79	23.98	3.70	55.68	98.12	24.36	16.97	11.06
	$3PT_{suv}(M)$ [26]	S	6.89	38.50	34.61	3.63	56.43	91.84	16.81	20.99	17.63
	$3PT_{suv}$ (ours)	S	6.91	38.52	21.90	3.63	56.43	86.06	16.73	21.09	10.09
	P3P [7]	R	23.12	5.87	13.26	19.47	7.45	56.69	26.22	5.66	7.06
DA v2	3PT _{suv} (M) [26]	R	23.35	5.70	25.05	19.35	7.40	45.12	30.83	4.85	15.79
[25]	$3PT_{suv}$ (ours)	R	23.36	5.66	12.27	19.35	7.39	37.25	30.84	4.81	7.57
	P3P [7]	R_s	16.59	12.99	14.08	12.23	18.64	53.23	21.82	10.69	8.37
	$3PT_{suv}(M)$ [26]	R_s	13.02	18.83	27.50	8.27	30.91	45.52	18.32	15.37	15.59
	$3PT_{suv}$ (ours)	R_s	13.02	18.69	15.28	8.22	31.06	37.90	17.90	15.79	8.33
	$3PT_{suv}(M)$ [26]	H [26]	7.21	36.70	931.97	3.92	54.51	1764.65	14.62	22.73	577.8
	$3PT_{suv}$ (ours)	H [26]	7.20	36.68	916.70	3.93	54.52	1744.47	14.74	22.43	576.6
	Rel3PT [1]	S	8.68	33.50	48.65	4.01	52.56	229.08	45.83	10.37	26.50
	P3P [7]	S	6.71	39.23	26.36	3.60	56.57	116.72	14.18	26.34	11.60
	3PT _{suv} (M) [26]	S S	6.71 6.72	39.28 39.19	35.99	3.62	56.53 56.49	97.38	14.30	25.18 24.94	17.68 9.99
	3PT _{suv} (ours) P3P [7]	R	6.37	39.19	22.58 14.25	3.63 4.32	53.40	93.10 58.35	14.62 8.22	33.61	7.51
MoGe	3PT _{suv} (M) [26]	R	6.31	39.41	25.45	4.32	53.40	45.60	9.92	30.26	15.39
[23]	$3PT_{suv}$ (ours)	R	6.31	39.63	12.53	4.32	53.45	37.86	9.81	30.56	7.31
()	P3P [7]	R_s	6.73	37.99	15.09	4.07	54.91	59.33	8.90	31.81	8.82
	3PT _{suv} (M) [26]	R_s	6.80	37.07	27.37	4.03	54.59	44.53	10.16	29.71	15.02
	3PT _{suv} (ours)	R_s	6.82	37.16	14.54	4.03	54.62	36.34	10.19	29.76	7.93
	3PT _{suv} (M) [26]	H [26]	5.95	41.78	838.82	3.52	58.09	1586.27	11.20	28.01	542.1
	$3PT_{suv}$ (ours)	H [26]	5.95	41.79	825.19	3.50	58.15	1546.92	11.67	27.61	544.2
	Rel3PT [1]	S	7.07	37.74	74.11	3.65	55.95	363.97	21.13	20.51	29.39
	P3P [7]	S	6.73	39.23	26.49	3.60	56.80	118.75	14.59	25.76	11.65
	3PT _{suv} (M) [26]	S	6.76	39.09	36.22	3.64	56.48	98.97	13.64	24.99	17.83
	3PT _{suv} (ours)	S	6.75	39.13	22.85	3.64	56.48	94.58	13.82	24.90	9.99
TailDane!	P3P [7]	R	5.83	41.42	14.23	4.10	54.54	58.73	7.80	34.55	7.56
JniDepth	3PT _{suv} (M) [26]	R	5.82	41.51	25.53	4.10	54.54	46.19	9.15	31.60	15.22
[21]	3PT _{suv} (ours)	R	5.82	41.50	12.53	4.10	54.55	37.79 50.76	8.93	31.93	7.36
	P3P [7]	R_s	6.38 6.57	39.05 38.10	14.96 27.21	3.94 4.00	56.00 55.77	59.76 45.63	8.92 10.02	32.06 30.18	8.98
	$3PT_{suv}(M)$ [26] $3PT_{suv}$ (ours)	R_s R_s	6.56	38.25	14.49	4.00	55.75	36.46	9.76	30.18	15.18 8.05
	$3PT_{suv}$ (ours) $3PT_{suv}$ (M) [26]	К _s Н [26]	5.93	38.23 41.86	828.68	3.49	58.35	1590.70	11.12	28.56	515.9
	$3PT_{suv}(NI)$ [20] $3PT_{suv}$ (ours)	H [26]	5.95	41.78	821.55	3.49	58.32	1557.50	11.12	28.61	520.7
	Ji I suv (Ours)	11[20]	3.73	41.70	021.33	3.49	20.22	1331.30	11.10	20.01	320.7

Donah	Solver	04		Mast3r [1	7]
Depth	Solver	Opt.	$\epsilon(^{\circ})\downarrow$	mAA ↑	$\tau(ms)\downarrow$
-	5PT [20]	S	3.21	62.88	163.73
	Rel3PT [1]	S	3.21	62.91	174.26
	P3P [7]	S	3.21	62.90	78.05
	$3PT_{suv}(M)$ [26]	S	3.22	62.89	52.88
	$3PT_{suv}$ (ours)	S	3.21	62.91	39.21
	P3P [7]	R	6.49	38.15	43.99
Mast3r [17]	$3PT_{suv}(M)$ [26]	R	6.70	37.36	35.16
Mastat [17]	$3PT_{suv}$ (ours)	R	6.70	37.31	23.24
	P3P [7]	R_s	6.17	40.59	44.95
	$3PT_{suv}(M)$ [26]	R_s	7.71	33.83	33.22
	$3PT_{suv}$ (ours)	R_s	7.80	33.55	22.85
	$3PT_{suv}(M)$ [26]	H [26]	3.17	62.99	2459.38
	$3PT_{suv}$ (ours)	H [26]	3.17	62.97	2439.66

Table 6. Results for the calibrated case on the ScanNet dataset [5]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H - hybrid RANSAC from [26].

Donet	Solver	0			SP+LG	6, 18]				RoMA	[9]				SIFT [19]	
Depth	Solver	Opt.	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA↑	$mAA_f\uparrow$	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)$
-	6PT [16]	S	10.54	0.14	28.39	25.51	71.04	4.78	0.05	48.67	47.45	139.19	52.70	0.36	9.36	14.31	53.69
	3p3d [8]	S S	10.01 9.12	0.14	28.80 30.12	26.17 27.82	19.87 93.60	4.76 4.77	0.05	48.91	47.42 48.20	82.15	27.88 35.81	0.26	17.09	19.65 17.21	12.20 77.02
	$4PT_{suv}f(M)$ [26] $4PT_{suv}f(ours)$	S	9.12	0.13	29.77	26.95	47.06	4.77	0.05	49.16 49.17	48.20	114.10 87.56	32.53	0.33	13.15 14.23	18.17	35.2
	$3PT_{s00}f(ours)$	S	9.25	0.13	30.29	27.20	25.93	4.77	0.05	49.39	48.12	72.31	21.04	0.30	20.62	24.50	17.2
	3PT ₁₀₀ f(ours)	S	9.76	0.13	29.35	26.52	14.38	4.78	0.05	48.76	47.37	52.18	29.93	0.16	14.34	19.20	7.22
	$4PT_{suv}f(M)$ [26]	R	7.01	0.07	37.06	40.35	86.73	3.86	0.03	55.40	58.97	92.86	23.76	0.16	24.03	30.81	76.8
	$4PT_{suv}f(ours)$	R	7.06	0.07	37.02	40.29	42.48	3.86	0.03	55.51	59.15	61.14	19.64	0.12	24.79	32.14	33.5
Real	$3PT_{s00}f(ours)$	R	6.90	0.07	37.42	40.30	22.33	3.81	0.03	56.01	59.54	56.73	9.76	0.08	31.37	36.80	15.4
Depth	3PT ₁₀₀ f(ours)	R	6.86	0.07	37.71	40.42	10.29	3.82	0.03	55.99	59.53	37.32	8.61	0.08	33.22	37.71	4.8
	4PT _{suv} f(M) [26]	R_s	10.88 10.95	0.15	28.79 28.74	25.87	89.48 45.41	4.20 4.20	0.05	50.79 50.91	48.54 48.57	104.83 70.86	25.31	0.23	20.85 21.65	24.57 24.39	76.4 34.6
	$4PT_{suv}f(ours)$ $3PT_{s00}f(ours)$	R _s R _s	8.50	0.15	32.67	26.37 30.58	23.78	4.20	0.05	53.16	48.57 52.51	70.86 59.27	12.13	0.21	28.31	31.93	15.8
	$3PT_{100}f(ours)$	R.	8.05	0.10	33.28	31.32	11.36	4.04	0.04	53.24	53.19	40.06	10.30	0.11	29.76	34.24	5.4
	$4PT_{suv}f(M)$ [26]	H [26]	6.81	0.09	37.17	33.24	2382.94	3.88	0.04	55.30	56.74	5177.04	40.86	0.28	14.33	20.25	1250
	$3PT_{s00}f(ours)$	H [26]	7.07	0.09	36.25	32.88	2039.93	3.83	0.04	54.98	56.07	4685.72	58.64	0.36	10.11	16.93	956.
	$3PT_{s00}f(ours)$	H_{NS} [26]	7.09	0.09	36.20	32.72	1708.54	3.94	0.04	54.39	55.64	3848.05	59.62	0.34	10.19	17.12	873.
	3p3d [8]	S	12.24	0.16	25.92	24.47	20.80	5.31	0.06	44.96	43.56	82.37	47.37	0.47	6.11	10.46	14.0
	$4PT_{suv}f(M)$ [26]	S	9.93	0.14	28.80	26.18	91.75	4.84	0.05	48.45	47.24	110.59	45.44	0.50	7.30	12.29	76.4
	$4PT_{suv}f(ours)$	S	10.03	0.14	28.67	25.93	40.86	4.76	0.05	48.97	48.01	78.83	42.66	0.44	8.39	13.10	30.5
	$3PT_{s00}f(ours)$ $3PT_{100}f(ours)$	S S	9.68 16.01	0.12	29.61 23.55	27.88 22.77	20.31 12.27	4.79 5.50	0.05	49.03 42.99	48.04 41.73	61.08 43.73	35.87 62.79	0.30	10.61 3.67	15.47 8.51	12.2
	4PT _{suv} f(M) [26]	R	20.80	0.19	10.07	17.73	86.00	14.43	0.00	15.57	22.87	90.87	38.38	0.43	6.89	13.94	76.4
	$4PT_{suv}f(\mathbf{vir})[20]$	R	20.80	0.21	9.95	17.20	36.65	14.65	0.15	15.21	22.94	56.73	33.59	0.32	7.27	14.81	29.0
MiDas	$3PT_{s00}f(ours)$	R	21.07	0.20	9.90	17.79	17.87	14.55	0.15	15.67	22.96	50.92	25.38	0.25	8.86	16.49	10.3
[3]	$3PT_{100}f(ours)$	R	21.02	0.20	10.02	17.52	8.82	14.52	0.15	15.47	22.69	30.86	30.19	0.27	7.53	16.31	4.5
	$4PT_{suv}f(M)$ [26]	R_s	17.44	0.20	13.83	17.93	87.83	11.47	0.13	21.50	26.04	99.87	31.50	0.35	10.05	14.93	75.1
	$4PT_{suv}f(ours)$	R_s	17.70	0.21	13.89	18.34	38.70	11.52	0.13	21.48	26.15	62.98	28.44	0.33	10.37	15.53	29.5
	$3PT_{s00}f(ours)$	R_s	17.49	0.18	14.20	19.24	18.60	11.64	0.12	21.45	26.42	53.08	24.02	0.24	11.90	18.05	10.5
	3PT ₁₀₀ f(ours)	R_s	17.95	0.21	13.87	18.09	9.28	11.55	0.13	20.92	25.29	31.60	33.23	0.30	8.66	15.27	4.8
	4PT _{suv} f(M) [26]	H [26]	9.07	0.11 0.11	30.07	28.92 29.19	1630.59 1679.00	5.11 5.10	0.05	47.35 47.30	46.92	2387.02 2475.56	36.67 26.03	0.28	12.25	18.91	1013
	$3PT_{s00}f(ours)$ $3PT_{s00}f(ours)$	H [26] H _{NS} [26]	9.11	0.11	29.97 29.91	28.41	1387.32	5.10	0.05	47.24	46.86 46.94	2378.65	27.08	0.22 0.20	14.56 14.05	20.26 20.85	1214 1174
	3p3d [8]	S S	13.72	0.17	25.53	23.51	22.29	5.12	0.06	45.59	44.35	86.67	51.13	0.49	5.71	9.48	14.0
	$4PT_{suv}f(M)$ [26]	S	9.67	0.17	29.20	27.21	92.72	4.71	0.05	49.39	48.11	115.50	39.02	0.38	10.30	15.93	77.3
	$4PT_{suv}f(ours)$	S	9.46	0.13	29.60	27.74	41.87	4.71	0.05	49.32	48.29	85.64	34.58	0.36	11.58	15.23	30.8
	$3PT_{s00}f(ours)$	S	9.78	0.13	29.04	26.54	20.16	4.83	0.05	48.47	47.49	61.50	36.43	0.33	9.08	14.69	11.7
	$3PT_{100}f(ours)$	S	15.74	0.19	24.18	22.26	12.28	5.57	0.06	43.27	43.31	43.29	60.62	0.47	3.52	8.12	6.20
	$4PT_{suv}f(M)$ [26]	R	24.47	0.30	5.78	12.25	87.57	19.52	0.25	8.53	14.69	97.54	37.11	0.39	4.31	11.68	76.5
	$4PT_{suv}f(ours)$	R	24.25	0.30	5.71	12.07	37.49	19.28	0.25	8.46	14.55	62.13	36.76	0.37	4.32	11.78	29.2
DA v2	$3PT_{s00}f(ours)$	R R	25.01 24.97	0.30	5.50 5.48	12.49 12.54	17.04	19.69 19.59	0.25	8.53	14.43	49.23 30.23	29.40	0.32	5.34 4.97	13.09	10.0 4.3
[25]	$3PT_{100}f(ours)$ $4PT_{suv}f(M)$ [26]	R,	16.35	0.29	14.37	18.57	8.60 88.97	10.59	0.23	8.53 23.23	14.62 26.71	107.49	33.71 25.33	0.35	11.21	11.89 17.33	75.5
	$4PT_{suv}f(\mathbf{vir})[20]$	R.	16.31	0.19	14.40	18.84	40.08	10.59	0.12	23.25	26.61	70.44	24.24	0.25	11.31	18.01	29.8
	$3PT_{s00}f(ours)$	R.	17.21	0.18	14.07	19.75	18.29	11.13	0.13	22.05	26.32	51.76	24.07	0.21	11.21	17.86	10.3
	$3PT_{100}f(ours)$	R_s	16.87	0.19	14.45	19.09	9.28	11.17	0.13	22.27	26.05	31.65	30.06	0.27	9.89	16.71	4.8
	$4PT_{suv}f(M)$ [26]	H [26]	9.15	0.11	29.16	28.36	1530.35	5.27	0.05	46.09	46.31	2437.10	32.47	0.25	12.56	19.56	1013
	$3PT_{s00}f(ours)$	H [26]	9.49	0.11	28.52	27.81	1447.28	5.25	0.06	46.07	46.05	2436.98	30.57	0.25	12.33	19.87	1108
	$3PT_{s00}f(ours)$	H_{NS} [26]	9.31	0.11	28.82	28.01	1254.83	5.30	0.05	46.08	46.27	2297.62	30.18	0.24	11.93	18.95	1053
	3p3d [8]	S	11.98	0.15	26.23	24.58	24.05	5.03	0.06	46.15	44.79	90.61	41.21	0.43	8.62	12.01	14.9
	4PT _{suv} f(M) [26]	S	9.45	0.13	29.69	27.13	93.81	4.69	0.05	49.40	48.49	118.19	35.11	0.31	13.75	19.30	78.2
	$4PT_{suv}f(ours)$ $3PT_{s00}f(ours)$	S S	9.48 9.25	0.13	29.59 30.14	26.44 27.51	42.41 22.36	4.75 4.71	0.05	49.24 49.48	48.21 48.45	88.21 71.14	29.46 20.45	0.32	13.48 19.45	17.85 22.68	31.0 12.7
	3PT ₁₀₀ f(ours)	S	16.64	0.12	22.79	21.06	13.36	6.11	0.03	41.01	39.30	47.81	59.03	0.19	4.25	8.09	7.5
	$4PT_{suv}f(M)$ [26]	R	7.70	0.08	33.60	37.02	88.43	4.67	0.04	50.32	53.92	98.15	18.70	0.14	23.23	29.59	76.9
	$4PT_{suv}f(ours)$	R	7.71	0.08	33.47	36.96	37.72	4.64	0.04	50.34	53.90	62.43	17.50	0.13	23.21	29.27	29.0
MoGe	$3PT_{s00}f(ours)$	R	7.75	0.08	33.59	37.16	18.83	4.63	0.04	50.35	54.04	57.80	9.57	0.09	30.01	35.07	10.7
[23]	$3PT_{100}f(ours)$	R	8.05	0.08	32.86	36.68	9.52	4.81	0.04	49.31	52.83	33.99	13.47	0.11	25.23	31.06	5.2
	4PT _{suv} f(M) [26]	R_s	9.14	0.11	29.94	29.95	91.50	4.92	0.05	48.57	48.60	109.77	17.36	0.15	22.96	28.01	76.3
	$4PT_{suv}f(ours)$	R_s	9.02	0.11	30.09	30.03	40.37	4.92	0.05	48.51	48.31	71.22	15.36	0.16	23.29	27.20	29.8
	$3PT_{s00}f(ours)$ $3PT_{100}f(ours)$	R_s R_s	8.94 9.19	0.10	30.70 29.69	31.10 30.19	20.18 10.34	4.82 5.02	0.05	48.79 47.14	49.13 47.75	61.16 35.84	11.35 16.55	0.12	27.18 22.05	29.66 26.66	11.3 5.9
	4PT _{suv} f(M) [26]	К _s Н [26]	7.08	0.11	36.42	33.81	1397.78	3.92	0.03	54.47	55.43	2128.23	31.25	0.15	17.00	23.34	927.
	$3PT_{s00}f(ours)$	H [26]	6.93	0.09	36.89	34.19	1397.78	3.93	0.04	54.49	55.66	2247.51	15.89	0.21	22.92	27.57	1107
	$3PT_{s00}f(ours)$	H_{NS} [26]	6.85	0.09	36.91	34.39	1227.36	3.94	0.04	54.63	56.09	2196.60	13.98	0.13	24.08	27.99	1043
	3p3d [8]	S	10.48	0.14	28.27	25.34	24.92	4.83	0.05	48.27	46.77	96.78	31.00	0.32	13.49	15.44	15.9
	$4PT_{suv}f(M)$ [26]	S	9.35	0.13	30.12	27.06	94.09	4.74	0.05	49.37	48.43	120.53	30.00	0.30	15.01	18.81	78.7
	$4PT_{suv}f(ours)$	S	9.51	0.13	29.69	27.00	42.53	4.61	0.05	49.69	48.44	88.36	27.01	0.30	14.56	18.18	30.9
	$3PT_{s00}f(ours)$	S	9.08	0.12	30.39	27.78	22.63	4.64	0.05	49.47	48.03	71.48	19.61	0.18	19.87	24.17	12.5
	3PT ₁₀₀ f(ours)	S	10.88	0.14	28.03	26.19	14.63	4.85	0.06	47.85	45.81	53.38	37.70	0.37	10.51	13.52	7.6
	4PT _{suv} f(M) [26]	R	7.02	0.08	35.82	36.84	88.78	4.39	0.05	51.37	51.16	100.03	17.93	0.15	23.88	29.25	76.2 29.0
ni Donth	$4PT_{suv}f(ours)$	R R	7.00 7.00	0.08 0.08	35.89	36.43	37.75 18.99	4.36	0.05	51.55	51.45	62.24	16.23 9.04	0.14	24.45	30.11 35.66	29.0 10.7
niDepth	$3PT_{s00}f(ours)$ $3PT_{res}f(ours)$	R R	7.00	0.08	36.05 36.00	36.49 36.81	18.99 10.66	4.36	0.05	51.63 51.61	51.20 51.37	58.03 40.68	9.04	0.09	31.09 30.51	35.66 35.05	5.2
[21]	$3PT_{100}f(ours)$ $4PT_{suv}f(M)$ [26]	R.	8.55	0.08	31.61	30.32	92.41	4.50	0.05	50.55	48.76	109.69	15.31	0.09	23.82	27.45	76.3
	$4PT_{suv}f(ours)$	R.	8.55	0.11	31.61	30.32	40.77	4.52	0.05	50.55	48.38	70.86	14.28	0.15	24.86	28.61	29.9
	$3PT_{s00}f(ours)$	R _s	8.34	0.10	32.26	31.17	20.20	4.51	0.05	50.63	48.44	61.07	10.78	0.11	27.91	30.84	11.5
	3PT ₁₀₀ f(ours)	R _s	8.41	0.10	32.23	31.32	11.56	4.52	0.05	50.68	48.39	42.95	11.09	0.11	27.01	30.77	6.1
	$4PT_{suv}f(M)$ [26]	H [26]	6.90	0.09	36.87	33.71	1384.13	3.93	0.04	54.76	56.47	2081.34	28.47	0.22	17.76	23.56	930.
	$3PT_{s00}f(ours)$	H [26]	6.72	0.09	37.14	34.13	1436.90	3.93	0.04	54.89	56.78	2163.29	14.01	0.12	23.88	30.37	1116
			6.80	0.09	37.32		1222.71	3.96	0.04	54.94	56.73	2178.86			23.75		

Depth	Solver	Opt.			Mast3r	[17]	
Берш	Solvei	Opt.	<i>ϵ</i> (°) ↓	$\epsilon_f \downarrow$	mAA ↑	$mAA_f \uparrow$	$\tau(ms)\downarrow$
-	6PT [16]	S	3.38	0.03	61.09	63.59	97.82
	3p3d [8]	S	3.40	0.03	60.29	62.71	49.14
	$4PT_{suv}f(M)$ [26]	S	3.41	0.03	60.53	63.25	97.91
	$4PT_{suv}f(ours)$	S	3.38	0.03	61.02	63.43	52.40
	$3PT_{s00}f(ours)$	S	3.38	0.03	61.11	63.73	41.71
	$3PT_{100}f(ours)$	S	3.43	0.03	59.79	61.75	33.09
	$4PT_{suv}f(M)$ [26]	R	8.79	0.08	30.17	36.35	87.99
	$4PT_{suv}f(ours)$	R	8.74	0.08	30.43	36.71	42.88
	$3PT_{s00}f(ours)$	R	7.65	0.07	33.52	38.84	37.79
Mast3r [17]	$3PT_{100}f(ours)$	R	7.86	0.07	32.94	38.45	26.16
	$4PT_{suv}f(M)$ [26]	R_s	13.60	0.13	23.51	26.42	96.92
	$4PT_{suv} f(ours)$	R_s	14.07	0.13	23.83	26.65	50.78
	$3PT_{s00}f(ours)$	R_s	9.97	0.10	28.45	31.35	43.01
	$3PT_{100}f(ours)$	R_s	9.97	0.10	28.53	30.60	30.23
	$4PT_{suv}f(M)$ [26]	H [26]	3.42	0.03	59.78	61.92	3348.40
	$3PT_{s00}f(ours)$	H [26]	3.42	0.03	59.97	62.19	3592.91
	$3PT_{s00}f(ours)$	H_{NS} [26]	3.38	0.03	60.11	62.00	3223.20
	-	M [17]	3.45	0.06	59.49	52.90	5080.77

Table 7. Results for the case of two cameras with shared unknown focal length on the ScanNet dataset [5]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H - hybrid RANSAC from [26], H_{NS} - hybrid RANSAC [26] without optimizing for shift in LO.

					SP+LG	[6, 18]				RoMA	. [9]				SIFT	[19]							Mast3r	[17]	
Depth	Solver	Opt.	(°) ↓	$\epsilon_f \downarrow$	mAA↑	$mAA_f\uparrow$	$\tau(ms) \downarrow$	(°) ↓	$\epsilon_f \downarrow$	mAA ↑	$mAA_f \uparrow$	$\tau(ms)\downarrow$	(°) ↓	$\epsilon_f \downarrow$	mAA↑	$mAA_f \uparrow$	$\tau(ms) \downarrow$	Depth	Solver	Opt.	(°) ↓	$\epsilon_f \downarrow$	mAA ↑	$mAA_f \uparrow$	$\tau(ms) \downarrow$
-	7PT [11]	S	17.38		17.90	18.87	16.87	6.75	0.08	37.74	35.25	60.31	68.26	0.69	2.75	5.97	9.17		7PT [11]	S	4.01	0.04	54.25	52.79	37.99
	4p4d [8]	S S	16.37 15.84	0.19	18.01 18.42	19.69 19.19	14.09 88.28	6.61 6.54	0.08	38.11 38.67	35.43 35.87	55.64 115.22	50.55 50.98	0.37	6.41 6.80	11.34 9.79	7.92 79.68		4p4d [8]	S S	4.01 4.05	0.05	54.10 54.33	52.25 52.82	41.40 119.79
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	S	15.04	0.20	17.80	18.37	25.67	6.49	0.08	38.67	35.96	74.31	52.16	0.43	6.98	9.19	17.15		$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	S	4.03	0.04	54.34	52.71	53.46
	$3PT_{s00}f_{1,2}(ours)$	S	14.97	0.19	18.79	19.08	16.32	6.44	0.08	39.03	36.21	64.50	30.18	0.28	13.25	16.30	7.94		$3PT_{s00}f_{1,2}(ours)$	S	4.01	0.04	54.51	52.55	45.87
	3PT ₁₀₀ f _{1,2} (ours)	S R	14.23	0.18	19.22 25.82	19.70 34.78	18.99 80.53	6.46 5.12	0.08	38.83 45.93	36.05 55.91	73.44 85.85	22.38 41.48	0.24	16.69 15.79	18.69 25.85	11.07 77.84		$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	S R	4.00 6.48	0.04	54.75 38.35	52.67 49.81	59.35 104.27
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R	11.09	0.09	25.82	34.59	19.98	5.11	0.04	45.95	55.98	38.51	40.51	0.22	16.12	25.45	14.56		$4PT_{suv}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(ours)$	R	6.49	0.05	38.24	49.82	36.16
Real	$3PT_{s00}f_{1,2}(ours)$	R	11.76		26.07	35.06	9.77	5.02	0.04	46.45	56.41	34.33	17.43	0.10	22.23	33.05	3.97	MoGe [23]	$3PT_{s00}f_{1,2}(ours)$	R	6.48	0.05	38.35	49.78	30.58
Depth	3PT ₁₀₀ f _{1,2} (ours)	R R.	11.71 17.00	0.08	26.16 19.78	34.74 23.15	13.36 82.22	5.04 5.83	0.04	46.43 41.17	56.57 43.85	48.19 96.03	16.45 39.88	0.10	21.95 13.57	33.79 20.51	7.62 78.16		$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R R.	6.48	0.05	38.35 39.71	49.75 47.46	43.52 111.89
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R,	16.93	0.16	19.85	22.90	22.86	5.88	0.06	40.95	43.59	48.61	38.88	0.25	13.89	20.99	15.72		$4PT_{suv}f_{1,2}(ours)$	R _s	6.25	0.05	39.63	47.57	44.83
	$3PT_{s00}f_{1,2}(ours)$	R_s	13.07	0.12	23.11	27.49	11.30	5.51	0.05	43.24	47.74	38.84	19.56	0.13	20.00	28.28	4.61		$3PT_{s00}f_{1,2}(ours)$	R_s	6.17	0.05	40.09	47.73	36.30
	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R _s H [26]	12.86	0.12	23.12 27.01	27.43	14.36 3187.44	5.57 4.64	0.05	42.97 48.82	47.58 53.28	52.55 6680.16	18.60 55.59	0.13	19.55 8.22	28.13	8.26 2375.56		$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R _s H [26]	6.27 3.60	0.05	39.86 58.16	47.52 62.02	48.82 2472.09
	$3PT_{s00}f_{1,2}(ours)$	H [26]	12.20	0.11	24.98	28.98	3006.32	4.96	0.04	47.13	51.78	6266.57	62.95	0.56	5.57	11.57	2141.07		$3PT_{s00}f_{1,2}(ours)$	H [26]	3.60	0.03	58.19	61.95	2523.10
	3PT _{s00} f _{1,2} (ours) 4p4d [8]	H _{NS} [26] H [26]	11.58 63.44	0.11	25.39	30.12	2712.46 16442.64	4.97 64.67	1.00	46.64	52.05	5845.02 19101.36	63.97 67.07	0.57	5.11	11.49	2204.79 17765.79		4p4d [8]	S S	4.07	0.05	53.41 50.91	50.67 49.03	33.18 105.79
	4p4d [8]	H [26]	18.98		17.13	18.58	14.44	6.90	0.09	37.07	34.38	57.05	56.12	0.46	2.94	7.36	8.87		$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	S	4.47	0.05	50.50	48.49	42.35
	$4PT_{suv}f_{1,2}(M)$ [26]	S	17.76	0.24	16.48	17.60	85.78	6.89	0.08	37.45	35.47	109.98	59.76	0.52	4.03	5.11	78.73		$3PT_{s00}f_{1,2}(ours)$	S	4.11	0.05	53.43	51.44	35.55
	$4PT_{suv}f_{1,2}(ours)$	S	17.54 17.00	0.25	16.39 17.34	17.54 18.50	24.68	6.84	0.09	37.37 38.20	34.52	67.68 56.94	59.17 49.17	0.53	3.96	5.19 8.89	16.95 7.92		3PT ₁₀₀ f _{1,2} (ours)	S R	4.02 17.23	0.04	54.36 17.76	52.61	46.32 89.75
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{100}f_{1,2}(ours)$	S	16.12	0.21	17.34	18.50	14.93 17.28	6.65	0.08	37.99	35.21 35.30	64.37	52.31	0.41	5.03 4.58	8.69	10.40		$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R	16.81	0.10	18.23	30.11 30.78	25.78
	$4PT_{suv}f_{1,2}(M)$ [26]	R	26.43	0.19	9.97	16.85	79.24	16.20	0.13	15.42	24.33	83.72	55.83	0.37	6.54	12.87	76.52		$3PT_{s00}f_{1,2}(ours)$	R	13.80	0.08	21.80	33.07	21.61
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R R	26.35 25.74		10.04	16.72 16.74	19.69 9.85	15.87 15.83	0.13	15.82 15.79	23.71 23.94	36.21 34.03	55.30 35.28	0.35	6.54 8.62	12.68 15.64	14.23 3.97	Mast3r [17]	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R R.	13.58	0.08	21.88	33.20 20.84	35.34 97.55
MiDas	$3PT_{100}f_{1,2}(ours)$	R	25.67	0.19	10.09	17.19	12.96	15.98	0.13	15.82	23.77	44.85	37.26	0.25	8.41	16.39	6.72		$4PT_{suv}f_{1,2}(ours)$	R _s	22.47	0.17	14.49	19.84	33.13
[3]	$4PT_{suv}f_{1,2}(M)$ [26]	R_s	25.95		10.03	13.87	81.39	15.45	0.15	15.51	21.74	92.21	50.19	0.38	6.85	11.03	77.18		$3PT_{s00}f_{1,2}(ours)$	R_s	16.72	0.13	18.21	24.13	27.01
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R, R.	25.64 24.92	0.24	9.66 10.01	14.31 15.05	21.88 10.99	15.23 14.78	0.15	15.79 15.95	21.87 23.01	43.73 37.36	52.18 37.82	0.39	6.63 8.39	10.71 13.68	15.17 4.50		3PT ₁₀₀ f _{1,2} (ours) 4PT _{sup} f _{1,2} (M) [26]	R _s H [26]	16.11 4.21	0.12	18.48 52.41	25.07 50.25	41.22 4445.31
	$3PT_{100}f_{1,2}(ours)$	R _s	24.75	0.21	9.89	15.46	13.48	14.47	0.14	16.09	22.71	48.16	37.62	0.28	8.80	14.53	7.33		$3PT_{s00}f_{1,2}(ours)$	H [26]	4.20	0.05	52.74	50.55	4517.18
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	13.80		19.91	23.38	2238.95	6.45	0.08	38.55	36.73	3600.11	56.15	0.45	6.87	12.64	2220.51		$3PT_{s00}f_{1,2}(ours)$	H _{NS} [26]	4.15	0.05	52.77	50.55	4123.90
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	H [26] H _{NS} [26]	13.66 13.76		20.03	23.26	2206.62	6.50	0.08	38.31 38.53	36.74 36.79	3648.22 3739.98	43.21	0.26	8.94 8.70	15.49 14.96	2245.79		4p4d [8]	H [26] M [17]	4.21 3.80	0.05	52.39 56.37	50.10 53.87	4520.03 5080.77
	4p4d [8]	H [26]	14.14	0.14	19.78	22.80	2451.92	6.79	0.08	37.45	36.37	3935.23	58.33	0.51	5.27	10.89	2280.19			[]					
	4p4d [8]	S S	19.91 16.70	0.22	16.53 17.90	17.73 18.49	14.79 87.23	6.88	0.09	37.06 38.19	35.05 36.24	58.49 116.51	57.00 54.32	0.54	2.77 5.29	5.33 7.69	8.59 79.72								
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	S	16.62	0.21	17.17	18.08	25.66	6.65	0.09	37.83	35.46	73.90	54.23	0.48	4.65	7.92	17.17								
	$3PT_{s00}f_{1,2}(ours)$	S	16.69		18.21	18.73	15.39	6.60	0.08	38.19	35.50	58.31	50.78	0.40	4.59	7.07	7.78								
	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	S R	16.85 21.58	0.20	17.42 10.70	18.87 15.24	16.93 80.39	6.80 14.37	0.08	37.76 15.53	35.77 18.47	63.67 88.48	55.21 45.65	0.45	4.72 8.67	7.33 12.72	10.34 77.04								
	$4PT_{suv}f_{1,2}(ours)$	R	21.91	0.20	10.79	14.88	20.48	14.32	0.17	15.52	18.45	40.65	45.70	0.32	8.66	13.08	14.41								
DA v2	$3PT_{s00}f_{1,2}(ours)$	R	21.78		10.81	15.39	9.92	14.23	0.17	15.47	18.72	34.91	31.59	0.24	10.37	14.79	4.08								
[25]	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R R _s	21.73	0.20	10.87 11.58	15.02 14.89	11.76 82.53	14.41 12.07	0.17	15.23 19.41	18.42 20.37	41.82 97.58	40.16	0.26	9.79 9.67	14.83 13.85	6.42 77.56								
	$4PT_{suv}f_{1,2}(ours)$	R _s	20.56		11.68	15.05	22.72	12.12	0.15	19.28	20.04	50.27	39.58	0.29	9.15	14.04	15.34								
	$3PT_{s00}f_{1,2}(ours)$	R _s	20.19		11.93	16.09 15.88	11.18	12.54	0.14	18.88	20.67	38.91 45.27	29.56	0.24	11.00	15.72	4.58 6.94								
	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R _s H [26]	14.26	0.19	11.92 18.67	20.82	12.77 2075.73	12.38 6.89	0.14	18.75 36.13	20.65 32.05	3673.36	31.32 50.57	0.25	10.51 8.27	15.35 11.70	2259.69								
	$3PT_{s00}f_{1,2}(ours)$	H [26]	14.34	0.15	18.68	20.63	2044.96	6.99	0.09	35.60	31.74	3665.44	45.24	0.33	8.40	12.71	2251.86								
	3PT _{s00} f _{1,2} (ours) 4p4d [8]	H _{NS} [26] H [26]	14.53 17.54	0.15	18.35 16.41	20.82 18.59	1906.46 3654.94	7.05 8.77	0.09	35.49 29.80	31.88 27.27	3813.10 5970.94	45.70 56.77	0.31	8.48 5.21	12.75 9.41	2254.04 4615.33								
	4p4d [8]	S	16.82		18.12	18.76	16.94	6.54	0.08	38.23	35.95	66.19	47.57	0.34	6.80	11.77	9.43								
	4PT _{suv} f _{1,2} (M) [26]	S S	15.30 15.50	0.21	18.04 18.33	18.39 18.63	87.92 26.63	6.48	0.08	38.62 38.63	36.23 36.26	121.68 78.42	48.81 50.51	0.45	7.42 7.28	10.23 10.25	80.87 17.25								
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	S	15.05	0.20	18.55	18.63	17.27	6.44	0.08	38.99	35.98	69.50	28.82	0.45	12.03	15.01	8.39								
	$3PT_{100}f_{1,2}(ours)$	S	15.65	0.19	17.80	19.15	19.76	6.47	0.08	38.71	35.76	77.13	41.69	0.35	7.45	11.70	11.40								
	4PT _{suv} f _{1,2} (M) [26] 4PT _{suv} f _{1,2} (ours)	R R	13.72 13.84	0.10	22.34 22.16	31.46 31.33	81.79 20.89	6.16	0.05	39.75 39.68	50.07 49.92	91.97 43.28	37.27 37.02	0.20	14.78 15.02	24.81 24.59	77.61 14.42								
MoGe	$3PT_{s00}f_{1,2}(ours)$	R	13.50	0.10	22.57	31.56	10.81	6.13	0.05	40.11	50.24	40.11	17.76	0.11	19.11	30.83	4.26								
MoGe [23]	$3PT_{100}f_{1,2}(ours)$	R	13.82		22.39	31.81	14.04	6.12	0.05	40.13	49.87	53.29	18.39	0.11	18.43	30.25	7.36								
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R.	15.27	0.13	20.54	25.11	84.46 23.30	6.58	0.06	37.47 37.59	43.04	102.27 53.65	31.77	0.21	14.85	22.62	78.69 15.52								
	$3PT_{s00}f_{1,2}(ours)$	R_s	14.62	0.13	20.91	25.67	12.65	6.49	0.06	37.79	43.63	45.60	20.35	0.15	17.39	25.63	5.10								
	$3PT_{100}f_{1,2}(ours)$	R _s	15.27 10.49	0.13	20.82	25.85 31.47	15.40 1763.41	6.44 4.82	0.06	37.83 47.52	43.36 51.02	58.28 3001.08	19.97 50.14	0.15	16.90 10.21	25.30 17.47	8.10 2121.61								
	$4PT_{suv}f_{1,2}(M)$ [26] $3PT_{s00}f_{1,2}(ours)$	H [26] H [26]	10.49	0.10	26.54 26.82	31.47	1763.41	4.82	0.05	47.52 48.11	51.02 51.68	3001.08 2967.25	25.60	0.39	15.58	22.31	2121.61								
	$3PT_{s00}f_{1,2}(ours)$	H_{NS} [26]	10.53	0.09	26.52	31.67	1674.71	4.75	0.05	48.26	52.06	3015.70	24.71	0.15	15.76	24.58	1949.16								
	4p4d [8]	H [26]	10.97	0.10	26.36 17.86	31.41 19.06	1887.22 17.09	4.92	0.05	47.34 38.43	50.80	2947.58 65.59	47.69 47.08	0.33	8.62	15.23	2031.49								
	4p4d [8] 4PT _{suv} f _{1,2} (M) [26]	S	16.66 15.21	0.19	17.86	18.90	88.32	6.52	0.08	38.43	36.12 36.25	65.59 121.35	47.73	0.34	6.45 7.69	11.99 9.93	9.42 81.08								
	$4PT_{suv}f_{1,2}(ours)$	S	15.48	0.21	18.30	18.54	26.45	6.53	0.08	38.52	36.27	78.39	49.25	0.42	6.95	9.65	17.31								
	$3PT_{s00}f_{1,2}(ours)$	S	14.79 14.66	0.19	18.79 18.72	18.98 19.42	17.47 19.94	6.47	0.08	39.05 39.47	36.41 36.61	68.83 77.66	28.80 27.04	0.32	11.76 13.75	14.05 16.07	8.44 11.33								
	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R	13.12		23.32	31.32	80.63	6.13	0.08	40.14	50.29	91.51	34.65	0.19	15.52	25.50	77.69								
	$4PT_{suv}f_{1,2}(ours)$	R	13.15	0.10	23.38	31.48	20.94	6.11	0.05	40.29	50.30	43.34	36.48	0.20	15.85	25.23	14.52								
UniDepth	$3PT_{s00}f_{1,2}(ours)$ $3PT_{100}f_{1,2}(ours)$	R R	12.78	0.09	23.57 23.66	31.94 32.02	11.01 14.00	6.09	0.05	40.40 40.45	50.47 50.49	40.35 53.93	16.38 15.93	0.11	21.03 20.85	30.98 31.06	4.25 7.29								
[21]	$4PT_{suv}f_{1,2}(M)$ [26]	R _s	14.13	0.13	21.19	24.75	85.47	6.28	0.06	38.89	43.01	102.34	28.63	0.21	16.22	22.70	78.49								
	$4PT_{suv}f_{1,2}(ours)$	R _s	14.16		20.99	24.92	23.13	6.31	0.06	38.81	43.08	53.91	27.93	0.20	16.12	22.31	15.81								
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{100}f_{1,2}(ours)$	R, R.	13.89	0.13	21.29	25.19 24.99	12.66 15.44	6.28	0.06	38.83	43.37 43.56	46.52 59.57	16.96 17.36	0.14	19.42 19.39	25.87 25.55	5.09 8.14								
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	10.76	0.10	27.20	31.21	1765.25	4.77	0.04	47.81	52.12	2906.99	49.16	0.34	10.66	17.82	2030.51								
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	H [26] H _{NS} [26]	10.29 10.06	0.09	27.82 27.84	31.78 32.63	1710.72 1644.48	4.71	0.04	48.26 48.17	52.41 52.78	2847.16 3074.51	23.15 24.82	0.16	16.73 16.65	23.83 23.70	1903.55 1949.20								
	3P1 _{s00} J _{1,2} (ours) 4p4d [8]	H _{NS} [26] H [26]	10.06		26.70	31.11	1856.57	4.76 4.80	0.04	47.55	51.37	2944.89	48.04	0.16	8.65	15.93	1949.20								

Table 8. Results for the case of two cameras with different unknown focal lengths on the ScanNet dataset [5]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H - hybrid RANSAC from [26], H_{NS} - hybrid RANSAC [26] without optimizing for shift in LO, M - non-linear optimization used in [17].

D 4	6.1	0.	S	P+LG [6,	18]	RoMA [9]			
Depth	Solver	Opt.	$\epsilon(^{\circ})\downarrow$	mAA↑	$\tau(ms)\downarrow$	$\epsilon(^{\circ})\downarrow$	mAA ↑	$\tau(ms)\downarrow$	
-	5PT [20]	S	1.42	76.56	63.79	0.78	86.18	264.61	
	Rel3PT [1]	S	1.40	77.23	146.21	0.78	86.24	726.88	
	P3P [7]	S	1.39	77.61	34.92	0.78	86.48	158.59	
	3PT _{suv} (M) [26]	S	1.39	77.47	41.69	0.78	86.37	133.69	
	3PT _{suv} (ours) P3P [7]	S R	1.39 0.46	77.47 90.65	29.45 14.73	0.78 0.29	86.38 94.32	118.89 59.42	
Real	3PT _{suv} (M) [26]	R	0.46	90.68	24.98	0.29	94.32	50.49	
Depth	$3PT_{suv}$ (ours)	R	0.46	90.70	13.04	0.29	94.32	37.90	
· · · ·	P3P [7]	R_s	0.75	87.28	16.01	0.48	92.27	64.69	
	3PT _{suv} (M) [26]	R_s	0.77	86.78	25.58	0.49	91.91	51.34	
	$3PT_{suv}$ (ours)	R_s	0.77	86.78	14.63	0.49	91.92	39.78	
	$3PT_{suv}(M)$ [26]	H [26]	0.98	84.04	714.12	0.62	89.51	1701.35	
	$3PT_{suv}$ (ours)	H [26]	0.98	84.03	705.92	0.62	89.52	1681.53	
	Rel3PT [1]	S	9.22	55.52	44.63	1.65	70.53	177.33	
	P3P [7]	S	1.58	72.18	27.33	0.83	84.09	111.49	
	3PT _{suv} (M) [26]	S	1.43	76.66	34.35	0.78	86.10	88.11	
	3PT _{suv} (ours)	S	1.44	76.48	22.98	0.78	85.82	73.67	
MiDas	P3P [7]	R R	24.24 24.22	4.97 4.98	15.65 24.05	22.29 22.44	6.37	70.82 49.42	
MiDas [3]	$3PT_{suv}(M)$ [26] $3PT_{suv}$ (ours)	R R	24.22	4.98 4.96	24.05 12.99	22.53	6.38 6.28	37.34	
[5]	P3P [7]	R_s	18.71	13.20	16.09	16.79	16.19	64.14	
	$3PT_{suv}(M)$ [26]	R_s	14.55	18.78	25.52	11.75	24.35	48.92	
	$3PT_{suv}$ (ours)	R_s	14.71	18.65	15.31	11.83	24.23	37.41	
	3PT _{suv} (M) [26]	H [26]	2.03	69.17	934.38	1.08	81.45	2078.11	
	$3PT_{suv}$ (ours)	H [26]	2.03	69.17	922.74	1.08	81.44	2051.80	
	Rel3PT [1]	S	5.35	53.60	44.38	1.52	66.28	177.96	
	P3P [7]	S	1.44	75.57	29.79	0.78	86.09	127.26	
	$3PT_{suv}(M)$ [26]	S	1.41	76.93	35.16	0.78	86.23	95.37	
	3PT _{suv} (ours)	S	1.41	76.92	23.80	0.78	86.21	81.93	
DA v2	P3P [7] 3PT _{suv} (M) [26]	R R	14.28 14.27	23.17 23.12	16.09 24.17	12.67 12.59	26.26 26.30	72.41 49.82	
[25]	$3PT_{suv}(NI)$ [20] $3PT_{suv}$ (ours)	R	14.26	23.12	12.99	12.59	26.29	38.09	
[23]	P3P [7]	R_s	10.79	31.81	16.71	8.85	36.99	69.50	
	3PT _{suv} (M) [26]	R_s	10.15	33.06	25.21	7.38	40.20	49.51	
	$3PT_{suv}$ (ours)	R_s	10.19	33.03	14.96	7.40	40.13	38.66	
	3PT _{suv} (M) [26]	H [26]	1.91	72.85	878.70	1.14	83.37	1864.97	
	$3PT_{suv}$ (ours)	H [26]	1.90	72.82	867.00	<u>1.14</u>	83.36	1845.20	
	Rel3PT [1]	S	8.12	53.40	55.85	1.69	67.22	221.06	
	P3P [7]	S	1.40	77.37	32.95	0.78	86.42	148.76	
	3PT _{suv} (M) [26]	S	1.40	77.24	38.42	0.78	86.38	116.49	
	3PT _{suv} (ours)	S R	1.40 2.53	77.24	26.66	0.78	86.40	102.31	
MoGe	P3P [7] 3PT _{suv} (M) [26]	R	2.52	72.05 72.10	15.39 24.58	2.17 2.18	76.15 76.16	66.88 50.25	
[23]	$3PT_{suv}(NI)$ [20] $3PT_{suv}$ (ours)	R	2.53	72.10	12.90	2.18	76.14	38.02	
[20]	P3P [7]	R_s	2.34	72.52	16.53	1.82	78.46	69.56	
	3PT _{suv} (M) [26]	R_s	2.65	68.71	25.40	1.89	76.93	51.40	
	$3PT_{suv}$ (ours)	R_s	2.66	68.67	14.74	1.89	76.95	40.08	
	$3PT_{suv}(M)$ [26]	H [26]	1.27	80.28	788.18	0.87	86.85	1753.49	
	$3PT_{suv}$ (ours)	H [26]	1.27	80.28	780.57	0.87	86.85	1737.27	
	Rel3PT [1]	S	4.07	51.60	52.49	1.33	67.56	214.73	
	P3P [7]	S	1.40	77.47	34.30	0.78	86.43	150.95	
	3PT _{suv} (M) [26]	S S	1.40 1.40	77.33 77.33	40.31 28.19	0.78 0.78	86.37 86.38	119.66 105.03	
	3PT _{suv} (ours) P3P [7]	S R	1.73	79.31	28.19 15.44	1.61	81.24	67.38	
UniDepth	3PT _{suv} (M) [26]	R	1.73	79.31	25.03	1.61	81.19	51.46	
[21]	$3PT_{suv}(NI)$ [20]	R	1.73	79.30	13.21	1.62	81.18	39.11	
[21]	P3P [7]	R_s	1.63	78.65	16.46	1.42	82.22	69.20	
	3PT _{suv} (M) [26]	R_s	1.69	77.72	25.56	1.49	81.06	51.66	
	$3PT_{suv}$ (ours)	R_s	1.69	77.71	14.72	1.49	81.07	40.20	
		H [26]	1.15	82.09	720.34	0.78	87.60	1695.57	
	$3PT_{suv}(M)$ [26]	H [26]	1.15	82.08	713.58	0.78	87.60	1678.83	

Depth	Solver	Opt.		Mast3r [1	7]
Берш	Solvei	Орг.	$\epsilon(^{\circ})\downarrow$	$mAA \uparrow$	$\tau(ms)\downarrow$
-	5PT [20]	S	1.14	81.66	137.75
	Rel3PT [1]	S	1.13	80.83	149.86
	P3P [7]	S	1.13	81.50	66.06
	$3PT_{suv}(M)$ [26]	S	1.12	81.40	45.03
	$3PT_{suv}$ (ours)	S	1.12	81.39	33.73
	P3P [7]	R	22.69	15.88	36.56
Mast3r [17]	$3PT_{suv}(M)$ [26]	R	22.81	15.86	30.03
Mastat [17]	$3PT_{suv}$ (ours)	R	22.83	15.83	19.87
	P3P [7]	R_s	21.28	18.01	36.74
	$3PT_{suv}(M)$ [26]	R_s	28.49	14.10	27.77
	$3PT_{suv}$ (ours)	R_s	28.63	14.11	18.63
	$3PT_{suv}(M)$ [26]	H [26]	2.10	72.14	2154.89
	3PT_{suv} (ours)	H [26]	2.10	72.16	2136.39

Table 9. Results for the calibrated case on the Phototourism dataset [12]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H - hybrid RANSAC from [26].

Depth	Solver	Opt.			SP+LG					RoMA		
Бери			$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA↑	$mAA_f\uparrow$	$\tau(ms) \downarrow$	$\epsilon(^{\circ})\downarrow$	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)$
-	7PT [11]	S	8.03	0.17	38.14	23.78	24.80	4.30	0.10	53.16	34.73	75.10
	4p4d [8] 4PT _{suv} f _{1,2} (M) [26]	S	7.58	0.16	39.34 39.56	24.65 24.08	23.69	4.24	0.10	53.51 54.07	35.01 34.83	77.49 190.34
	$4PT_{suv}f_{1,2}(\mathbf{ours})$	S	7.40	0.17	39.55	24.13	36.71	4.24	0.10	53.97	34.84	107.46
	$3PT_{s00}f_{1,2}(ours)$	S	6.74	0.15	41.25	24.60	25.27	4.08	0.10	55.22	35.05	100.87
	$3PT_{100}f_{1,2}(ours)$	S	6.47	0.14	42.12	25.15	29.80	4.00	0.10	55.70	35.28	120.13
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R R	2.27	0.03	69.17 69.14	63.33	106.32 24.35	1.25	0.02	79.75 79.68	73.91 73.84	136.12 54.16
ъ.	$3PT_{s00}f_{1,2}(ours)$	R	2.23	0.03	69.50	63.66	12.05	1.21	0.02	80.37	74.49	48.02
Real Depth	$3PT_{100}f_{1,2}(ours)$	R	2.22	0.03	69.63	63.80	16.99	1.21	0.02	80.51	74.66	71.87
Берш	$4PT_{suv}f_{1,2}(M)$ [26]	R_s	2.58	0.04	66.75	57.64	109.16	1.40	0.02	78.39	70.01	149.05
	$4PT_{suv} f_{1,2}(ours)$ $3PT_{s00} f_{1,2}(ours)$	R_s R_s	2.59 2.55	0.04	66.73 66.90	57.63 57.81	27.16 13.41	1.40	0.02	78.42 78.50	70.07 70.19	67.11 52.89
	3PT ₁₀₀ f _{1,2} (ours)	R _s	2.53	0.04	67.07	58.01	18.43	1.39	0.02	78.64	70.24	76.01
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	2.86	0.04	63.88	53.46	1922.12	1.60	0.03	75.10	64.07	3518.89
	$3PT_{s00}f_{1,2}(ours)$	H [26]	2.82	0.04	64.19	53.73	1901.23	1.58	0.03	75.41 75.49	64.37	3531.2
	3PT _{s00} f _{1,2} (ours) 4p4d [8]	H _{NS} [26] H [26]	2.83	0.04	64.14	53.74 52.87	1830.03	1.58	0.03	74.63	64.47 63.62	3291.30
	4p4d [8]	S	12.50	0.24	30.95	18.92	20.67	5.58	0.13	46.41	29.53	67.95
	$4PT_{suv}f_{1,2}(M)$ [26]	S	8.75	0.19	36.60	22.37	112.19	4.96	0.12	51.13	33.29	164.23
	$4PT_{suv}f_{1,2}(ours)$	S	8.91	0.19	36.25	22.18	32.32	4.91	0.12	51.09	33.08	84.29
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{100}f_{1,2}(ours)$	S S	8.60 10.43	0.19	36.62 33.43	21.94 19.60	18.17 21.76	4.70 5.40	0.11	51.39 48.28	32.56 29.98	71.37 87.11
	4PT _{suv} f _{1,2} (M) [26]	R	24.05	0.43	8.74	6.69	102.85	22.64	0.13	9.81	7.32	124.83
	$4PT_{suv}f_{1,2}(ours)$	R	24.19	0.43	8.73	6.68	23.01	22.84	0.42	9.78	7.30	44.95
MiDas	$3PT_{s00}f_{1,2}(ours)$	R	24.14	0.44	8.58	6.66	10.24	22.20	0.42	9.69	7.32	38.35
[3]	3PT ₁₀₀ f _{1,2} (ours) 4PT f _{1,2} (M) [26]	R R.	25.18	0.45	8.38	6.44	13.90	23.65	0.44	9.52	7.15 7.53	54.35
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R _s	25.85	0.39	8.41	6.68	25.59	23.33	0.37	9.73	7.59	56.36
	$3PT_{s00}f_{1,2}(ours)$	R_s	23.44	0.40	9.08	7.13	11.16	21.48	0.38	10.34	7.99	42.06
	$3PT_{100}f_{1,2}(ours)$	R_s	24.87	0.41	8.60	6.89	14.84	23.15	0.39	9.85	7.72 19.20	57.47
	$4PT_{suv}f_{1,2}(M)$ [26] $3PT_{s00}f_{1,2}(ours)$	H [26] H [26]	13.29 13.40	0.27	21.68	13.55	2599.72 2574.24	9.10 9.11	0.21	32.05 32.04	19.20	4662.3 4680.0
	$3PT_{s00}f_{1,2}(ours)$	H _{NS} [26]	13.51	0.28	21.30	13.33	2473.64	9.24	0.21	31.53	19.00	4284.7
	4p4d [8]	H [26]	13.45	0.28	21.28	13.31	2477.52	9.16	0.21	31.94	19.18	4255.1
	4p4d [8]	S	10.40	0.20	34.72	22.08	22.02	4.61	0.11	51.24	33.30	73.93
	4PT f _{1,2} (M) [26]	S S	8.17 8.19	0.18	37.62 37.62	23.32 23.27	113.20 33.14	4.43 4.42	0.10	52.90 52.83	34.36 34.35	170.68
	$4PT_{suv} f_{1,2}(ours)$ $3PT_{s00} f_{1,2}(ours)$	S	7.66	0.16	38.90	23.57	20.44	4.20	0.10	53.95	34.56	81.59
	$3PT_{100}f_{1,2}(ours)$	S	9.63	0.19	34.81	20.83	24.07	5.22	0.12	49.29	30.86	99.79
	$4PT_{suv}f_{1,2}(M)$ [26]	R	20.29	0.31	15.82	11.26	103.77	15.56	0.27	19.53	13.92	130.30
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R R	20.17 20.10	0.31	15.77 15.81	11.30 11.40	23.77 12.14	15.62 15.41	0.27	19.53 19.61	13.86 13.99	50.34 50.56
DA v2	3PT ₁₀₀ f _{1,2} (ours)	R	20.10	0.31	15.67	11.29	16.02	15.83	0.28	19.17	13.70	68.33
[25]	4PT _{suv} f _{1,2} (M) [26]	R_s	21.69	0.30	15.50	10.96	106.75	15.42	0.25	19.67	14.54	143.06
	$4PT_{suv}f_{1,2}(ours)$	R_s	21.68	0.30	15.39	11.02	26.52	15.45	0.25	19.67	14.46	63.06
	3PT _{s00} f _{1,2} (ours)	R.	19.78 20.13	0.29	16.08 15.43	11.53 11.21	13.51 17.28	14.90 15.62	0.24	20.07 19.14	14.94 14.41	55.30 72.22
	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	H [26]	9.55	0.23	32.88	20.88	2490.39	6.53	0.16	43.25	27.71	4026.7
	$3PT_{s00}f_{1,2}(ours)$	H [26]	9.48	0.21	32.49	20.65	2494.66	6.52	0.16	43.30	27.79	4113.6
	$3PT_{s00}f_{1,2}(ours)$	H_{NS} [26]	9.50	0.21	32.41	20.61	2387.10	6.55	0.16	42.97	27.61	3760.4
	4p4d [8] 4p4d [8]	H [26]	9.89 7.71	0.22	32.14	20.41	2402.27	6.56 4.22	0.16	43.21 53.61	27.74	3676.0 77.14
	4PT _{suv} f _{1,2} (M) [26]	S	7.54	0.17	39.01	23.83	110.08	4.33	0.10	53.44	34.72	180.8
	$4PT_{suv}f_{1,2}(ours)$	S	7.65	0.17	38.89	23.85	44.03	4.34	0.10	53.42	34.71	100.1
	$3PT_{s00}f_{1,2}(ours)$	S	7.03	0.16	40.42	24.43	23.41	4.18	0.10	54.49	34.98	95.72
	3PT ₁₀₀ f _{1,2} (ours)	S R	8.14 6.60	0.17	38.40 47.16	23.22 39.06	28.33 98.69	4.53 4.87	0.11	52.62 54.21	33.61 43.35	116.3 128.8
	$4PT_{suv}f_{1,2}(M)$ [26] $4PT_{suv}f_{1,2}(ours)$	R	6.71	0.08	46.98	38.96	31.64	4.87	0.07	54.21	43.34	48.16
MoGe	$3PT_{s00}f_{1,2}(ours)$	R	5.73	0.07	48.59	40.41	10.22	4.40	0.06	55.38	44.33	46.38
[23]	$3PT_{100}f_{1,2}(ours)$	R	7.32	0.09	43.79	36.79	16.37	5.38	0.07	51.71	41.53	70.36
	4PT f. (ours)	R _s	6.36	0.10	46.43 46.34	34.85	100.79 33.59	4.81	0.07	53.48	40.42	140.7: 60.11
	$4PT_{suv}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	R _s	5.97	0.10	47.32	36.09	11.16	4.78	0.07	54.49	40.55	50.55
	$3PT_{100}f_{1,2}(ours)$	R_s	7.46	0.10	42.45	32.62	17.18	5.29	0.08	51.27	38.68	73.28
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	3.88	0.07	57.21	42.80	1953.23	2.41	0.05	69.08	52.39	3663.4
	3PT = f = (ours)	H [26]	3.83 3.81	0.07	57.62 57.63	43.25	2031.28 1981.97	2.39 2.40	0.05	69.29 69.31	52.57 52.57	3803.6 3490.2
	3PT _{s00} f _{1,2} (ours) 4p4d [8]	H _{NS} [26] H [26]	4.19	0.07	55.76	43.22 41.76	1881.29	2.44	0.05	68.75	52.57	3330.6
	4p4d [8]	S	7.67	0.16	39.18	24.61	23.63	4.20	0.10	53.84	35.24	77.78
	$4PT_{suv}f_{1,2}(M)$ [26]	S	7.53	0.17	39.25	23.98	118.02	4.30	0.10	53.60	34.85	182.1
	4PT _{suv} f _{1,2} (ours)	S S	7.55 7.01	0.17	39.18 40.51	23.99 24.48	36.04 24.61	4.29 4.18	0.10	53.53 54.39	34.71 34.91	99.76
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{100}f_{1,2}(ours)$	S	8.61	0.15	35.74	24.48	28.02	4.18	0.10	49.44	31.67	117.0
	$4PT_{suv}f_{1,2}(M)$ [26]	R	4.90	0.07	52.64	43.12	106.30	4.20	0.06	56.76	47.14	135.1
	$4PT_{suv}f_{1,2}(ours)$	R	4.89	0.07	52.59	43.12	24.46	4.20	0.06	56.72	47.10	53.40
UniDepth	$3PT_{s00}f_{1,2}(ours)$	R	4.82	0.07	52.85	43.28	12.89	4.06	0.06	57.16	47.32	54.73
[21]	$3PT_{100}f_{1,2}(ours)$ $4PT_{suv}f_{1,2}(M)$ [26]	R R _s	4.93 5.27	0.07	52.32 51.34	42.95 38.73	17.72 109.68	4.20 4.30	0.06	56.18 56.25	46.85 43.10	78.06 151.1
	$4PT_{suv}f_{1,2}(NI)$ [26] $4PT_{suv}f_{1,2}(ours)$	R _s	5.25	0.08	51.39	38.82	27.63	4.30	0.07	56.27	43.10	69.30
	$3PT_{s00}f_{1,2}(ours)$	R_s	5.16	0.08	51.62	39.05	14.60	4.16	0.07	56.77	43.54	61.95
	$3PT_{100}f_{1,2}(ours)$	R_s	5.32	0.08	50.72	38.58	19.24	4.40	0.07	55.58	43.18	83.57
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	3.38 3.35	0.06	60.15	47.02 47.24	1945.50	2.30 2.29	0.04	69.95	53.90 54.09	3440.9
										70.18		3533.2
	$3PT_{s00}f_{1,2}(ours)$ $3PT_{s00}f_{1,2}(ours)$	H [26] H _{NS} [26]	3.36	0.06	60.28	47.16	1884.36	2.28	0.04	70.22	54.11	3305.8

Depth	Solver	Opt.	Mast3r [17]						
Берш	Solvei	Opt.	ϵ(°) ↓	$\epsilon_f \downarrow$	mAA ↑	$mAA_f\uparrow$	$\tau(ms)$.		
-	7PT [11]	S	4.39	0.09	54.01	35.02	39.53		
	4p4d [8]	S	5.20	0.11	49.69	31.64	36.90		
	$4PT_{suv}f_{1,2}(M)$ [26]	S	7.02	0.14	43.95	27.62	108.64		
	$4PT_{suv}f_{1,2}(ours)$	S	7.03	0.14	44.10	27.81	44.88		
	$3PT_{s00}f_{1,2}(ours)$	S	5.40	0.12	49.25	30.88	37.40		
	$3PT_{100}f_{1,2}(ours)$	S	4.62	0.10	53.12	33.99	47.05		
	4PT _{suv} f _{1,2} (M) [26]	R	38.38	0.47	6.28	5.91	89.42		
	$4PT_{suv}f_{1,2}(ours)$	R	38.64	0.47	6.17	5.88	25.45		
	$3PT_{s00} f_{1,2}(ours)$	R	36.01	0.44	7.06	6.27	20.10		
Mast3r [17]	$3PT_{100}f_{1,2}(ours)$	R	36.02	0.45	7.00	6.24	31.46		
Mastar [17]	4PT _{suv} f _{1,2} (M) [26]	R_s	50.46	0.60	3.35	3.04	96.19		
	$4PT_{suv}f_{1,2}(ours)$	R_s	50.77	0.59	3.38	3.09	32.15		
	$3PT_{s00} f_{1,2}(ours)$	R_s	46.79	0.53	4.77	4.10	24.23		
	$3PT_{100}f_{1,2}(ours)$	R_s	46.23	0.51	4.91	4.32	35.48		
	$4PT_{suv}f_{1,2}(M)$ [26]	H [26]	10.11	0.24	35.16	20.56	4871.2		
	$3PT_{s00} f_{1,2}(ours)$	H [26]	10.13	0.25	35.17	20.51	4980.43		
	$3PT_{s00}f_{1,2}(ours)$	H_{NS} [26]	32.04	0.76	1.33	2.48	6117.2		
	4p4d [8]	H [26]	32.03	0.76	1.33	2.49	6492.2		
		M [17]	2.71	0.04	66.54	56.43	4903.1		

Table 10. Results for the case of two cameras with different unknown focal lengths on the Phototourism dataset [12]. Opt.: S, R, R_s - PoseLib [15] implementation using Sampson error (S), reprojection error (R) or reprojection error with shift considered (R_s), H_{NS} - hybrid RANSAC [26] without optimizing for shift in LO, H - hybrid RANSAC from [26], M - non-linear optimization used in [17].

References

- [1] Jonathan Astermark, Yaqing Ding, Viktor Larsson, and Anders Heyden. Fast relative pose estimation using relative depth. In *International Conference on 3D Vision (3DV)*, 2024. 4, 7, 10
- [2] Daniel Barath and Jiří Matas. Graph-cut RANSAC. In Computer Vision and Pattern Recognition (CVPR), 2018. 3
- [3] Reiner Birkl, Diana Wofk, and Matthias Müller. Midas v3. 1–a model zoo for robust monocular relative depth estimation. *arXiv preprint arXiv:2307.14460*, 2023. 3, 4, 5, 6, 7, 8, 9, 10
- [4] David A Cox, John Little, and Donal O'shea. *Using alge-braic geometry*. Springer Science & Business Media, 2006.
- [5] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. 7, 8, 9
- [6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest point detection and description. In *Proceedings of the IEEE conference on* computer vision and pattern recognition workshops, 2018. 4, 5, 6, 7, 8, 9, 10
- [7] Yaqing Ding, Jian Yang, Viktor Larsson, Carl Olsson, and Kalle Åström. Revisiting the p3p problem. In *Computer Vision and Pattern Recognition (CVPR)*, 2023. 4, 7, 10
- [8] Yaqing Ding, Václav Vávra, Snehal Bhayani, Qianliang Wu, Jian Yang, and Zuzana Kukelova. Fundamental matrix estimation using relative depths. In European Conference on Computer Vision (ECCV), 2024. 5, 6, 8, 9, 10
- [9] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. Roma: Robust dense feature matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024. 4, 5, 6, 7, 8, 9, 10
- [10] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www2.macaulay2.com, 1992. 2
- [11] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge university press, 2003. 6, 9, 10
- [12] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image Matching across Wide Baselines: From Paper to Practice. International Journal of Computer Vision, 2020. 10
- [13] Fredrik Kahl and Bill Triggs. Critical motions in euclidean structure from motion. In Computer Vision and Pattern Recognition (CVPR), 1999. 3
- [14] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Polynomial eigenvalue solutions to minimal problems in computer vision. *Trans. Pattern Analysis and Machine Intelli*gence (PAMI), 2012. 2
- [15] Viktor Larsson and contributors. PoseLib Minimal Solvers for Camera Pose Estimation, 2020. 3, 4, 5, 6, 7, 8, 9, 10
- [16] Viktor Larsson, Kalle Åström, and Magnus Oskarsson. Efficient solvers for minimal problems by syzygy-based reduc-

- tion. In Computer Vision and Pattern Recognition (CVPR), 2017. 2, 5, 8
- [17] Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r. In *European Conference on Computer Vision*. Springer, 2024. 3, 4, 5, 6, 7, 8, 9, 10
- [18] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Pollefeys. Lightglue: Local feature matching at light speed. In *International Conference on Computer Vision (ICCV)*, 2023. 4, 5, 6, 7, 8, 9, 10
- [19] D. G. Lowe. Object recognition from local scale-invariant features. In *International Conference on Computer Vision* (ICCV), 1999. 3, 4, 5, 6, 7, 8, 9
- [20] David Nistér. An efficient solution to the five-point relative pose problem. *Trans. Pattern Analysis and Machine Intelligence (PAMI)*, 2004. 3, 4, 7, 10
- [21] Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, and Fisher Yu. Unidepth: Universal monocular metric depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10106–10116, 2024. 4, 5, 6, 7, 8, 9, 10
- [22] Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and multi-camera videos. In Computer Vision and Pattern Recognition (CVPR), 2017. 4, 5, 6
- [23] Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang, Yu Deng, Xin Tong, and Jiaolong Yang. Moge: Unlocking accurate monocular geometry estimation for open-domain images with optimal training supervision, 2024. 3, 4, 5, 6, 7, 8, 9, 10
- [24] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. In *Computer Vision* and Pattern Recognition (CVPR), 2024.
- [25] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything v2. arXiv preprint arXiv:2406.09414, 2024. 3, 4, 5, 6, 7, 8, 9, 10
- [26] Yifan Yu, Shaohui Liu, Rémi Pautrat, Marc Pollefeys, and Viktor Larsson. Relative pose estimation through affine corrections of monocular depth priors. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 16706–16716, 2025. 3, 4, 5, 6, 7, 8, 9, 10