AMENDMENTS TO THE CLAIMS

Docket No.: 13111-00037-US1

The following Listing of Claims replaces all previous listings of claims in this application.

Listing of Claims:

(Previously presented) A process for producing a catalyst for gas-phase oxidations, 1. which comprises

weighing a particulate inert support having a total mass of M_{support} into a fluidized-bed apparatus,

providing an aqueous suspension of a catalytically active material or sources thereof and a binder having a binder content of B_{susp},

fluidizing the inert support by introduction of a gas stream heated to a temperature of T_{gas} at a flow rate of Qgas, and

spraying the suspension at a rate of Q_{susp} onto the fluidized inert support,

wherein:

 Q_{gas} is from 3,000 m³/h to 9,000 m³/h,

Q_{susp} is from 1,000 g/min to 3,500 g/min,

B_{susp} is from 2% by weight to 18% by weight of the total suspension,

M_{support} is from 60 kg to 240 kg, and

T_{gas} is from 75° C to 120° C

so that a paramenter K defined as

$$K = 0.020 \ Q_{gas} - 0.055 \ Q_{susp} + 7.500 \ B_{susp} - 0.667 \ M_{support} + 2.069 \ T_{gas} - 7.500 \ D_{gas} - 0.067 \ M_{support} + 2.069 \ T_{gas} - 7.500 \ D_{gas} - 0.0687 \ M_{support} + 0.069 \ D_{gas} - 0.0687 \ M_{support} + 0.0687 \ M_{support} + 0.0697 \ M_{su$$

satisfies the relationship $127.5 \le K \le 202$.

Application No. 10/573,480 Amendment dated April 28, 2009 Reply to Office Action of October 31, 2008

Docket No.: 13111-00037-US1

2. (Previously presented) The process according to claim 1, wherein the parameter K is in a range $136.0 \le K \le 193.5$ and

 Q_{gas} is from 4,500 m³/h to 7,500 m³/h,

Q_{susp} is from 1,500 g/min to 3,000 g/min,

B_{susp} is from 5% by weight to 15% by weight of the total suspension,

M_{support} is from 100 kg to 200 kg, and

 T_{gas} is from 80° C to 115° C.

3. (Previously presented) The process according to claim 2, wherein the parameter K is in a range $143 \le K \le 184.5$ and

 Q_{gas} is from 5,500 m³/h to 6,500 m³/h,

Q_{susp} is from 2,000 g/min to 2,500 g/min,

B_{susp} is from 6% by weight to 11% by weight of the total suspension,

M_{support} is from 120 kg to 180 kg, and

 T_{gas} is from 90° C to 115° C.

- 4. (Previously presented) The process according to claim 1, wherein the gas which is introduced is air.
- 5. (Previously presented) The process according to claim 1, wherein a second aqueous suspension of catalytically active material and binder is provided and is sprayed onto the fluidized support which has been coated with the first suspension.
- 6. (Original) The process according to claim 5, wherein the support which has been coated with the first suspension is dried before the second suspension is sprayed onto it.
- (Previously presented) The process according to claim 1, wherein the particulate inert 7. support is provided in the form of spheres, cylinders, rings or columns.

Application No. 10/573,480 Docket No.: 13111-00037-US1 Amendment dated April 28, 2009

Reply to Office Action of October 31, 2008

8. (Previously presented) The process according to claim 1, wherein the fluidized-bed apparatus is a container for accommodating the particulate support in whose lower region a dish-like depression is provided and which comprises a central tube for introducing the gas which extends essentially axially downward in the container and opens into the depression, an essentially annular deflection shield which is fixed to the central tube in the upper region of the container and a guide ring which is located in the lower region of the container and surrounds the central tube essentially concentrically over part of its length and means for spraying-in the first and, if applicable, second suspension.

- 9. (Original) The process according to claim 8, wherein the first or second suspension comprises TiO_2 and V_2O_5 particles, where at least 90% by volume of the V_2O_5 particles have a diameter of 20 μ m or less and at least 95% by volume of the V_2O_5 particles have a diameter of 30 μ m or less.
- 10. (Previously presented) The process according to claim 1, wherein V_2O_5 particles or dissolved vanadium is used for the first or second suspension.
- 11. (Withdrawn Currently amended) The use of the A method of preparing phthalic anhydride from o-xylene, naphthalane, or mixtures thereof, comprising catalyzing a gas-phase oxidation utilizing a catalyst prepared according to elaim 1 for preparing phthalic anhydride from o-xylene, naphthalane, or mixtures thereof claim 1.
- 12. (Previously presented) The process according to claim 2, wherein the gas which is introduced is air.
- 13. (Previously presented) The process according to claim 3, wherein the gas which is introduced is air.

Application No. 10/573,480 Docket No.: 13111-00037-US1

Amendment dated April 28, 2009 Reply to Office Action of October 31, 2008

14. (Previously presented) The process according to claim 2, wherein a second aqueous

suspension of catalytically active material and binder is provided and is sprayed onto the

fluidized support which has been coated with the first suspension.

15. (Previously presented) The process according to claim 3, wherein a second aqueous

suspension of catalytically active material and binder is provided and is sprayed onto the

fluidized support which has been coated with the first suspension.

16. (Previously presented) The process according to claim 4, wherein a second aqueous

suspension of catalytically active material and binder is provided and is sprayed onto the

fluidized support which has been coated with the first suspension.

17. (Previously presented) The process according to claim 1, wherein the particulate inert

support is provided in the form of spheres, cylinders, rings or columns, with dimensions of from

5 to 15 mm.

18. (Previously presented) The process according to claim 2, wherein the particulate inert

support is provided in the form of spheres, cylinders, rings or columns.

19. (Previously presented) The process according to claim 2, wherein the particulate inert

support is provided in the form of spheres, cylinders, rings or columns, with dimensions of from

5 to 15 mm.

20. (Previously presented) The process according to claim 3, wherein the particulate inert

support is provided in the form of spheres, cylinders, rings or columns.

5