Calculus and Probability Theory

Assignment 4, February 23, 2017

Handing in your answers:

- submission via Blackboard (http://blackboard.ru.nl);
- one single pdf file (make sure that if you scan/photo your handwritten assignment, the result is clearly readable);
- all of your solutions are clearly and convincingly explained;
- make sure to write your name, your student number.

Deadline: Friday, March 3, 14:30 sharp!

Goals: After completing these exercises successfully you should be able to:

- analyse and sketch real functions;
- apply differentiation rules to determine higher-order partial derivatives;
- find primitives of well-known functions;
- compute definite integrals when the primitive function is known;
- compute improper integrals.

Marks: You can score a total of 100 points (and 16 bonus points) There are three bonus exercises.

- 1. (20 points) Investigate the function $f(x) = \frac{x}{\ln(x)}$ as follows. (Do not start with drawing a graph by means of a device or some web resource. Of course you may check your result when you're done.)
 - (a) Determine the domain of the function f.
 - (b) What are the roots of f?
 - (c) Determine the limits at 1 and ∞ . (Hint: there are 3 cases, use l'Hôpital!)
 - (d) Find f' and f''.
 - (e) Find the zeros of f' and f''.
 - (f) What are the critical points (determine their x and y coordinates)?
 - (g) Find the local minimums and maximums.
 - (h) Which parts of the function are convex and concave? Does function f have points of inflection? (Hint: Use the sign of the second derivative for answering both questions.)
 - (i) Draw the graph of function f. (If you collect all intervals and special points in a table, it helps a lot in drawing the graph. Moreover, you get some extra points!)
- 2. (6 points) Show that the derivative of an odd function is even and that the derivative of an even function is odd.
- 3. (14 points) Optimization problem
 - (a) Find the point on the parabola $y^2 = 2x$ that is closest to A = (1,4).
 - (b) A steel rod is carried down a hallway of 9 meter wide. At the end there is corner to the right into a narrower hallway of 6 meter wide. What is the maximum length of the steel rod that can be carried horizontally around the corner?

(Hint: What happens at $\theta \to 0$ and $\theta \to \frac{1}{4}\pi$? Show that the angle at which the minimum is obtained is at $\theta = \arctan\left(\sqrt[3]{\frac{3}{2}}\right) \approx 0,853$.)

- 4. (20 points) Given function f, find the partial derivatives. If it is necessary, simplify the result.
 - (a) $f(x,y) = \cos(4y xy)$; $\frac{\partial}{\partial x} f(x,y) = ?$ and $\frac{\partial}{\partial y} f(x,y) = ?$
 - (b) Show that $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x, y) \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x, y) \right)$.
- 5. (20 points) Evaluate the following definite integrals.
 - (a) $\int_{-1}^{1} (x^3 + x 1) dx$;
 - (b) $\int_1^2 (3\sqrt{x} + \frac{3}{x^2}) dx$;
 - (c) $\int_0^{\pi} (\sin(x) + \cos(x)) dx$;
 - (d) $\int_{1}^{e} \frac{1-\ln x}{x^2} dx$
- 6. (20 points) Evaluate the following improper integrals.
 - (a) $\int_{-1}^{1} \frac{1}{x^n} dx$, n an integer such that $n \ge 2$; (Hint: distinguish two cases)
 - (b) $\int_{-\infty}^{-\pi/2} \frac{x \cos(x) \sin(x)}{x^2} dx$; (Hint: use the quotient rule for derivation to find the primitive)
 - (c) $\int_2^\infty \frac{-1}{x \ln^2(x)} dx$. (Hint: use a fraction of well known functions to find the primitive)
- 7. (bonus, +6 points) Find primitives of the following functions f. That is, find F such that F'(x) = f(x).
 - (a) $f(x) = \frac{1}{2\sqrt{x}} \frac{1}{x^2}$;
 - (b) $f(x) = 2\sin(x)\cos(x);$
 - (c) $f(x) = \frac{2}{1+4x^2}$;
- 8. (bonus, 10 points) If $f(x,y) = \frac{xy}{x+y}$, show that

$$x^{2} \cdot \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f(x, y) \right) + 2xy \cdot \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x, y) \right) + y^{2} \cdot \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} f(x, y) \right) = 0.$$

(Hint: First compute all the second partial derivatives of f, then substitute the results in the expression on the left-hand side.)