Post-quantum secure oblivious transfer

Emmanuela Orsini

imec-COSIC, KU Leuven

Talk outline

- Oblivious transfer: definition, motivation, security
- Efficient, non-PQ secure OT protocols
- Examples of PQ-secure OT

Oblivious transfer – Definition

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive designed to transfer specific data based on the receiver's choice.

No further information should be learned by any party

Why we care?: Complete for secure 2-party and multi-party computation, used as a building block in many cryptographic protocols etc.

1-out-of-2 oblivious transfer

Security for the receiver: The sender should not learn anything about the bit b Security for the sender: The receiver should not learn anything about \mathbf{m}_{1-b}

Many flavours of OT

Standard OT and COT functionality

1-out-of-2 OT and 1-out-of-n OT

Oblivious transfer – General results and security

- First introduced by M. Rabin in 1981 (based on RSA)
- Previously described by Wiesner in 1975 (as multiplexing)

Oblivious transfer - General results and security

- First introduced by M. Rabin in 1981 (based on RSA)
- Previously described by Wiesner in 1975 (as multiplexing)
- * OT cannot achieve *information theoretic security* for both parties over a standard, noiseless communication channel
- * If a noisy channel of certain form is available between the sender and the receiver, OT can be constructed with unconditional security.

Oblivious transfer - General results and security

- First introduced by M. Rabin in 1981 (based on RSA)
- Previously described by Wiesner in 1975 (as multiplexing)
- * OT cannot achieve *information theoretic security* for both parties over a standard, noiseless communication channel
- * If a noisy channel of certain form is available between the sender and the receiver, OT can be constructed with unconditional security.
- Impagliazzo, Rudich [IR98]
 Black-box separation result → OT is impossible without public-key primitives (?)
- We cannot construct OT from PKE in a black box way
 - + Enhanced trapdoor permutation
 - + DDH, RSA, lattices, error-correcting codes, isogenies etc.

Oblivious transfer – Efficiency

- Impagliazzo, Rudich [IR98] Black-box separation result \to OT is impossible without public-key primitives (?)
- Beaver [Beaver96]: OT can be extended

Oblivious transfer – Applications

Private Set Intersection (PSI): Given two parties Alice and Bob with two set of items $A = \{a_1, \ldots, a_k\}$ and $B = \{b_1, \ldots, b_m\}$.

The goal is to design a protocol by which Alice and Bob obtain the intersection $A \cap B$, such that nothing is revealed but the items that are in the intersection .

Oblivious transfer – Applications

- DNA analysis
- Contact discovery
- Remote diagnostic
- Record linkage
- Measuring the effectiveness of online advertising
- and many more

Part II: Building OT from cryptographic assumption

Oblivious transfer - Security

- Semi-honest: adversary running the correct protocol cannot learn anything
- Malicious: adversary running any protocol cannot learn anything
- * The strongest form of security we can hope for is universal composability (UC).
 - Very difficult and expensive to achieve
 - [PVW Crypto 2008] A framework for efficient and composable oblivious transfer

Disclaim: We are going to talk about security in a *very* informal way.

Security definition

Ideal world

Real world

Security definition

Ideal world

Real world

What OT protocols (or PKE) we will use in 100 years?

Oblivious transfer - Security

- Shor's algorithm
 - Integer factorization: RSA broken
 - Discrete logarithm: (EC-)DSA, (EC-)DH,... broken
- Quantum computers
 - Theoretically viable, engineering effort to scale sizes
 - NIST has started a "PQ Standardization Process" which has recently entered the third round
 - Key encapsulation, PK encryption, digital signatures

Families of post-quantum secure algorithms (so far...)

- Code-based
- Isogeny-based
- Hash-based
- Lattice-based
- Multivariate-systems based

NIST PQ candidates 3rd round

Table 2.1: NIST Round 3 candidates

Scheme	Enc/Sig	Family	Hard Problem
Round 3 Finalists			
Classic McEliece	Enc	Code-Based	Decoding random binary Goppa codes
Crytals-Kyber	Enc	Lattice-Based	Cyclotomic Module-LWE
NTRU	Enc	Lattice-Based	Cyclotomic NTRU Problem
Saber	Enc	Lattice-Based	Cyclotomic Module-LWR
Crystals-Dilithium	Sig	Lattice-Based	Cyclotomic Module-LWE and Module-SIS
Falcon	Sig	Lattice-Based	Cyclotomic Ring-SIS
Rainbow	Sig	Multivariate-Based	Oil-and-Vinegar Trapdoor
Round 3 Alternate Candidates			
BIKE	Enc	Code-Based	Decoding quasi-cyclic codes
HQC	Enc	Code-Based	Coding variant of Ring-LWE
Frodo-KEM	Enc	Lattice-Based	LWE
NTRU-Prime	Enc	Lattice-Based	Non-cyclotomic NTRU Problem or Ring-LWE
SIKE	Enc	Isogeny-Based	Isogeny problem with extra points
GeMSS	Sig	Multivariate-Based	'Big-Field' trapdoor
Picnic	Sig	Symmetric Crypto	Preimage resistance of a block cipher
SPHINCS+	Sig	Hash-Based	Preimage resistance of a hash function

Oblivious transfer from DH key exchange – 1

Common input: A group \mathbb{G} of prime order q and a generator g

Security: Computational DH. Fixed $\langle g \rangle = \mathbb{G}$ and given (g,g^a,g^b) , with a,b randomly chosen, it is hard to compute g^{ab} .

Oblivious transfer from ECDH key exchange – 1

Common input: An elliptic curve E over a finite field K, a subgroup of prime order q of E(K), a generator P

CDH and DDH

Computational Diffie-Hellman (CDH) problem. Fixed E, P as before and given the tuple

$$(P, P_a, P_b) = (P, [a]P, [b]P),$$

with a, b randomly chosen, it is hard to compute

Decision Diffie-Hellman (DDH) problem. Is given the tuple

$$(P, P_a, P_b, P_c) = (P, [a]P, [b]P, [c]P)$$

where c is selected with probability 1/2 to be uniformly random, and with probability 1/2 to be equal to $ab \pmod{q}$. Then determine which case you are in.

OT from key-exchange [T. Chou and C. Orlandi]

Common input: A group \mathbb{G} of prime order q and a generator g

OT from key-exchange - Correctness and security intuition

Security for the sender

• x = 0, $B = g^b$. The sender (Alice) computes

$$K_0 = H(B^a) = H(g^{ba})$$
 $K_1 = H((\frac{B}{A})^a) = H(g^{ba-a^2})$

Bob computes $K = H(g^{ab}) = K_0$

• x = 1, $B = Ag^b$. The sender computes

$$K_0 = H(B^a) = H(g^{a^2 + ab})$$
 $K_1 = H((\frac{B}{A})^a) = H(g^{ba})$

Bob computes $K = H(g^{ab}) = K_1$

Security for the receiver The sender is not able to get any information about x from B

OT from key-exchange - Correctness and security intuition

Security for the sender

• x = 0, $B = g^b$. The sender (Alice) computes

$$K_0 = H(B^a) = H(g^{ba})$$
 $K_1 = H((\frac{B}{A})^a) = H(g^{ba-a^2})$

Bob computes $K = H(g^{ab}) = K_0$

• x = 1, $B = Ag^b$. The sender computes

$$K_0 = H(B^a)) = H(g^{a^2 + ab})$$
 $K_1 = H((\frac{B}{A})^a)) = H(g^{ba})$

Bob computes $K = H(g^{ab}) = K_1$

Security for the receiver The sender is not able to get any information about x from B

* This protocol is NOT UC-secure against malicious adversary

CRS: Lossy encryption scheme and other information

Oblivious transfer via lossy encryption - 2

CRS: Lossy encryption scheme and other information

Oblivious transfer via lossy encryption - 3

- Concrete construction from DDH, QR, LWE
- * LWE-based scheme has weaker security guarantees compared to their group-based or number-theoretic counterparts.
 - 1. Only achieves computational receiver security
 - 2. Each CRS can only be securely used a bounded number of times
 - 3. It allows for essentially single-bit transfers.
- * A brief history of failure: we tried to design a more efficient OT protocol from lossy encryption schemes based on Ring-LWE ... but we failed!

Oblivious transfer via lossy encryption - 3

- Concrete construction from DDH, QR, LWE
- * LWE-based scheme has weaker security guarantees compared to their group-based or number-theoretic counterparts.
 - 1. Only achieves computational receiver security
 - 2. Each CRS can only be securely used a bounded number of times
 - 3. It allows for essentially single-bit transfers.
- * A brief history of failure: we tried to design a more efficient OT protocol from lossy encryption schemes based on Ring-LWE ... but we failed!

Isogeny-based oblivious transfer

- * Semi-Commutative Masking (SCM), a Framework for Isogeny-based Protocols, Delpech de Saint Guilhem, O., Petit, Smart
- $q = p^2$
- Take supersingular elliptic curves E_1, E_2 elliptic curve over a finite field \mathbb{F}_q
- Isogeny: rational map (non-constant) over \mathbb{F}_q

$$\phi: E_1 \to E_2$$
,

that is a group homomorphism from $E_1(\mathbb{F}_q)$ to $E_2(\mathbb{F}_q)$

- ullet For every prime ℓ , there exists $\ell+1$ isogeny class originating from any given supersingular curve
- Given a finite subgroup $K < E(\mathbb{F}_q)$, there is a unique isogeny class ϕ with kernel K, we write

$$\phi: E \to E/K$$

• We work with subgroups of torsion group E[m] for $m \in \mathbb{N}$.

Diffie-Hellman instantiations

	DH	ECDH	SIDH
elements	integers $g \mod a$ prime	points P in curve group	curve ${\cal E}$ in isogeny class
secrets	exponent x	scalar k	isogenies ϕ
computations	$g, x \mapsto g^x$	$k,P\mapsto [k]P$	$\phi, E \mapsto \phi(E)$
hard problems	given g, g^x , find x	given $P,[k]P$, find k	given $E,\phi(E)$, find ϕ

SIDH - Supersingular isogenies key-exchange (1)

Setup and communication

- Fix starting curve E/\mathbb{F}_{p^2} .
- Prime $p = \ell_A^{e_A} \cdot \ell_B^{e_B} \cdot f \pm 1$ for small primes ℓ_A, ℓ_B and small f.
- Let $\{P_A,Q_A\}$ be a basis of $E[\ell_A^{e_A}]$; similarly for $\{P_B,Q_B\}$.

$$E_{A}, \{\phi_{A}(P_{B}), \phi_{A}(Q_{B})\}$$

$$E_{B}, \{\phi_{B}(P_{A}), \phi_{B}(Q_{A})\}$$

SIDH - Supersingular isogenies key-exchange (1)

Common key

- Alice compute $K_{AB} = [\alpha_A]\phi_B(P_A) + [\beta_A]\phi_B(Q_A)$
- Bob compute $K_{BA} = [\alpha_B]\phi_A(P_B) + [\beta_B]\phi_A(Q_B)$

$$j(E_{AB}) = j(E_{BA}) \implies \text{equal keys}$$

A 2-round oblivious transfer protocol

Constraint: exponentiation-only mechanism

$$(g_0, g_1; a) \qquad (g_0, g_1; x; b)$$

$$E = g_x^b \qquad (g_x)^b$$

$$m_0 = (g_0)^a \qquad B^a = g_x^{ab} \qquad (g_x^{ab})^{1/b} = g_x^a$$

Security proof against *passive* adversary in the UC framework.

2 round OT from SI

Setup and receiver's message

- Fix starting two curves E_0/\mathbb{F}_{p^2} and E_1/\mathbb{F}_{p^2} .
- Prime $p=\ell_A^{e_A}\cdot\ell_B^{e_B}\cdot f\pm 1$ for small primes ℓ_A,ℓ_B and small f.
- Let $\{P_A^b,Q_A^b\}_{b\in\{0,1\}}$ be a basis of $E_b[\ell_A^{e_A}]$; similarly for $\{P_B^b,Q_B^b\}_{b\in\{0,1\}}.$

$$E_c^{B,1}, (\phi_B(P_A^c), \phi_B(Q_A^c)), (P_{B,1}^c, Q_{B,1}^c)$$

 $(P_{B,1},Q_{B,1})$ is a random basis of $E_c^{B,1}[\ell_B^{e_B}]$

2 round OT from SI

Sender's message

$$E_{c}^{B,1}, (\phi_{A}(P_{A}^{c}), \phi_{B}(Q_{A}^{c})), (P_{B,1}, Q_{B,1})\}$$

$$E_{c}^{A,2}, (\phi_{A}'(P_{B,1}), \phi_{A}'(Q_{B,1})), (c_{0}, c_{1})$$

$$E_{1-c} \xrightarrow{\phi_{A}^{1-c}} E_{1-c}^{A}$$

• Sender:

Sender:
$$c_{1-c} = \text{Enc}(m_{1-c}, j(E_{1-c}^A)), \quad c_c = \text{Enc}(m_c, j(E_c^A))$$

$$E_c^A = E_c/K_A^c$$

$$E_c^A = E_c/K_A^c$$
 Receiver: Can compute the dual isogeny $\widehat{\phi}_B'$, reaching a curve
$$\phi_B = E_c/K_B$$

$$\phi_A' = E_c/K_B$$

• Receiver: Can compute the dual isogeny $\widehat{\phi'_B}$, reaching a curve that is isomorphic to E_c^A . Compute $j(E_c^A)$ and retrieve m_c

2 round OT from SI

Sender's message

$$E_{c}^{B,1}, (\phi_{A}(P_{A}^{c}), \phi_{B}(Q_{A}^{c})), (P_{B,1}, Q_{B,1})\} \\ E_{c}^{A,2}, (\phi_{A}'(P_{B,1}), \phi_{A}'(Q_{B,1})), (c_{0}, c_{1})$$

$$E_{1-c} \xrightarrow{\phi_{A}^{1-c}} E_{1-c}^{A}$$

Sender:

$$c_{1-c} = \operatorname{Enc}(m_{1-c}, j(E_{1-c}^A)), \quad c_c = \operatorname{Enc}(m_c, j(E_c^A)),$$

• Receiver: Can compute the dual isogeny $\hat{\phi}'_{B}$, reaching a curve that is isomorphic to E_c^A . Compute $j(E_c^A)$ and retrieve m_c

A 2-round OT from SI

- 3-round OT extension protocol
- 2-round OT with UC security in the semi-honest setting
- Compiling with [DGHMW20] 2-round OT with UC security in the malicious setting
- Post-quantum assumption

Thank you!