Lecture Summary: Jan. 13, 2023

- The fitted (or predicted) value for Y: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$. It is a fitted value if Y is observed, and predicted value if Y is unobserved.
 - Properties of LS estimates:
- 1. $E(\hat{\beta}_0) = \beta_0$, $E(\hat{\beta}_1) = \beta_1$; in other words, the LS estimators are unbiased.
- 2. The fitted (or predicted) value for Y_i , $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, satisfies $E(\hat{Y}_i) = \beta_0 + \beta_1 x_i = E(Y_i)$. Thus, \hat{Y}_i is an unbiased estimator of $E(Y_i)$.
- Estimation of σ^2 , the variance of the regression errors, ϵ_i , (which is the same as the variance of Y_i):

$$s^{2} = \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{n-2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}, \tag{1}$$

where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, and $\hat{\epsilon}_i$ is the residual.

- Interpretation of the denominator n-2:
- (i) As the degree of freedom (d.f.): \hat{Y}_i is an estimator of $E(Y_i) = \beta_0 + \beta_1 x_i$, in which two parameters (β_0 and β_1 , are estimated). Therefore, two degrees of freedom are subtracted from n.
- (ii) Theoretically, it can be shown that, with formula (1), one has $E(s^2) = \sigma^2$; in other words, s^2 is an unbiased estimator of σ^2 .
- Regression with normal errors: Under the normality assumption, the distribution of Y_i is normal; the mean is $E(Y_i) = \beta_0 + \beta_1 x_i$; the variance is $var(Y_i) = \sigma^2$.
 - Maximum likelihood estimation:

<u>Idea</u>: Find the parameter, θ , that makes what happens (that is, what is observed—your data) most likely to happen (that is, the probability to happen is highest).