Homework 2

Mitar Milutinovic (24090156)*

February 19, 2013

1.

1.(a)

Path routing from s_1 to t_1 has congestion equal to 1 (two possible paths are mirrored).

Fractional path routing from s_1^\prime to t_1^\prime has congestion equal to 0.5.

 $^{^*\}mbox{Worked}$ together with Daniel Aranki, Shiry Ginosar, Valkyrie Savage, Orianna De-Masi.

1.(b)

 p_i is a set of all paths p_{i_j} that connect s_i and t_i . Length of path p_{i_j} is $d(p_{i_j})$. Each path p_{i_j} routes a fraction $f(p_{i_j})$ of common $f(p_i) = 1$, unit flow. c(e) is congestion on edge e under routing, which is in our case sum of all fractional flows of all paths across edge e.

$$\begin{split} \max_{e} c(e) &\geqslant \sum_{e} d(e) c(e) \\ &= \sum_{e} d(e) \sum_{i} \sum_{j: p_{i_{j}} \ni e} f(p_{i_{j}}) \\ &= \sum_{e} \sum_{i} \sum_{j: p_{i_{j}} \ni e} f(p_{i_{j}}) d(e) \\ &= \sum_{i} \sum_{j} \sum_{e \in p_{i_{j}}} f(p_{i_{j}}) d(e) \\ &= \sum_{i} \sum_{j} f(p_{i_{j}}) \sum_{e \in p_{i_{j}}} d(e) \\ &= \sum_{i} \sum_{j} f(p_{i_{j}}) d(p_{i_{j}}) \\ &\geqslant \sum_{i} 1 \cdot \min_{j} d(p_{i_{j}}) \\ &= \sum_{i} d(s_{i}, t_{i}) \end{split}$$

3.

3.(a)

If after increasing the weight for δ on edge $(\mathfrak{u}, \mathfrak{v})$ cover is still feasible, we do not have to do anything. Otherwise, we start to repeatedly adjust the p. We maintain the priority queue Q of edges with the most infeasible edge at the front. We set $p(\mathfrak{v}) \leftarrow p(\mathfrak{v}) + \delta$ and add all other edges connected to \mathfrak{v} to Q. From Q we pop one edge $(\mathfrak{u}',\mathfrak{v}')$ (the currently most infeasible edge) and compute new $\delta \leftarrow w(\mathfrak{u}',\mathfrak{v}') - p(\mathfrak{u}') - p(\mathfrak{v}')$. We set $p(\mathfrak{u}') \leftarrow p(\mathfrak{u}') - \delta$ and repeat the process of adjusting on \mathfrak{u}' . We repeat until δ becomes 0.

3.(b)

Algorithm si $O(m\log n)$, processing m edges in the graph in the priority queue order.