EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

Dynamic Programming

- Pioneered by Richard Bellman (late 1950s)
 - Extended significantly and is still seeing tremendous development
 - Most recent popular press applications: AlphaZero, AlphaGo, AlphaStar
- A general approach for breaking solutions of large problems into sequence of solutions of smaller problems
 - Originally developed for making decisions over time by decomposing the problem into making such decisions sequentially time by time
 - Dynamic programming: "planning over time"
- We have used dynamic programming already
 - Bellman-Ford, Floyd-Warshall
 - Want to study other applications of dynamic programming to understand technique

Applications of Dynamic Programming

- Partial list of other applications beyond networks
 - Seam carving in images
 - Unix diff for comparing two files.
 - Viterbi for hidden Markov models, for maximum-likelihood decoding
 - Knuth–Plass for word wrapping text in TeX
 - Parsing context-free grammars
 - Needleman–Wunsch/Smith–Waterman for sequence alignment
 - · Railroad, UPS and Amazon delivery scheduling
 - Multi-move Games with perfect information (Chess, Checkers, Go, ...)
 - Multi-move games with incomplete information (Poker, Stratego, ...)

• ...

Weighted Interval Scheduling

- A scheduling problem without greedy optimal solution
- Problem description: Given collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n , choose a maximum weight set of non-overlapping intervals
 - Single machine scheduling of jobs with known start times, end times and values

Weighted Interval Scheduling

- Greedy algorithm: Add jobs by weight, as long as they are compatible with previous schedule
 - Previous algorithm when duration was 1, had deadlines

- Greedy algorithm 2: Add jobs by earliest finish time
 - Previous algorithm when weights were all 1

١

Dynamic Programming Algorithm

- Assume intervals are indexed in increasing order of finishing time
 - Definition: p(j) is largest index of interval < j that can be scheduled with interval j
 - Finishing time of p(j) is before start time of j
- Smaller problem: what is the maximum value that can scheduled using only intervals from 1 to j? Define as Opt(j)
 - If j = 1, Opt(j) = w(1)
 - Recursion: use solution for j-1 to solve for j.
 - Either you schedule interval j in the optimal schedule, in which case you can only schedule intervals that finish before j starts,
 - Or you don't schedule interval j
 - Opt(j) = max(Opt(j-1), w(j) + Opt(p(j))

Dynamic Programming Algorithm

- Algorithm
 - Sort intervals 1, ..., n in order of finishing time
 - For each interval j, compute p(j) by binary search
 - Recursively compute Opt(j) = max(Opt(j-1), w(j) + Opt(p(j)), for j = 1 to n, with initial condition
 Opt(0) = 0
- This can be really slow if you don't use memory (e.g. solve recursively) because you keep computing Opt() for smaller values!
- Solution: store the previous values! Compute Opt(j) and store as a vector (memoization)
- Complexity: O(n log(n)): Sort n, plus n binary searches, plus n steps of O(1) updates

Dynamic Programming Algorithm

- This gives you the optimal value Opt(n)
 - How do we know which intervals were scheduled in optimal solution?
 - Similar problem to finding optimal path in shortest path problem: need extra information
- Can solve using a backward search
 - max = n, intervals = { }
 - While max > 0
 - If Opt(max) > Opt(max-1): this means interval in the optimal schedule
 - intervals = intervals $\cup \{I_n\}$, max = $p(\max)$
 - else: max = max 1;

Example

j	p(j)	Opt(j)
1	0	2
2	0	4
3	1	9
4	2	9
5	1	9
6	4	16
7	3	16

 1						
 4	 7					
	/					
		<u> </u>	6			
				7		
					6	_

• Intervals = {6, 3, 1}

١

Maximum Subarray Sum

- Given array A[1:n], find contiguous subarray A[j:k] with largest sum
- Dynamic Programming:
 - MSE(k): maximum sum of a subarray ending at position k
 - MSE(1) = A[1]
 - MSE(k) = max(A[k], MSE(k-1) + A[k])

•

i	1	2	3	4	5	6	7	8	9
Α	-2	1	-3	4	-1	2	1	-5	4
MSE	-2	1	-2	4	3	5	6	1	5

Rod-Cutting

- A company buys long steel rods (of length n), and cuts them into shorter ones to sell
 - integral length only
 - cutting is free
 - rods of different lengths k sell for different price p_k

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price p_i | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

- Given n, what lengths should the rod be cut to maximize revenue?
 - n= 4, no cut has profit 9; cut into 2 and 2 has profit 10.
 - Brute force: list all integer partitions of n (there are many for large n...)
 - Better approach: Dynamic Programming

Rod-Cutting: Dynamic Programming

- Simple problem: solve for n = 1
- Define: Opt(j) = max profit for prod of length j
- Boundary value: Opt(0) = 0
- Recursion:

$$Opt(j+1) = max\{p_{j+1}, p_1 + Opt(j), p_2 + Opt(j-1), \cdots, p_j + Opt(1)\}$$

Complexity: O(j) operations for step j

$$\sum_{j=1}^{n} j \in \Theta(n^2)$$

Example

- Opt(1) = 1; $Opt(2) = \max\{p_2, p_1 + Opt(1)\} = 5$
- $Opt(3) = \max\{p_3, p_2 + Opt(1), p_1 + Opt(2)\} = 8$
- $Opt(4) = \max\{9,9,10,9\} = 10$; $Opt(5) = \max\{10,11,13,13,11\} = 13$
- $Opt(6) = max\{17,14,15,16,14,11\} = 17$
- $Opt(7) = \max\{17,18,18,18,17,15,18\} = 18$
- $Opt(8) = \max\{20,18,22,21,19,18,22,18\} = 22$
- $Opt(9) = \max\{24,23,22,25,22,20,25,22,23\} = 25$
- $Opt(10) = max\{30,26,27,26,26,23,27,25,25,25\} = 30$

Knapsack Problem

- Given n items
 - Item j has value V(j) > 0, size c(j) > 0 (assume integer c(j))
- Given a box of size C > 0 (integer-valued)
- Select items that fit together in the box, and maximize the total value

$$\max_{x_i \in \{0,1\}} \sum_{i=1}^{n} V(i) \ x_i$$

Subject to the constraint
$$\sum_{i=1}^{n} c(i) x_i \leq C$$

 x_i are indicator variables: 1 means item goes in the box, 0 item stays out Select items that fit together in the box, and maximize the total value

Fractional Knapsack Problem

- Given n items
 - Item j has value V(j) > 0, size c(j) > 0
- Given a box of size C
- Select fractions items that fit together in the box, and maximize the total value

$$\max_{x_i \in [0,1]} \sum_{i=1}^{n} V(i) \ x_i$$

Subject to the constraint
$$\sum_{i=1}^{n} c(i) x_i \leq C$$

 x_i are fraction of item i that goes in the box

Fractional Knapsack Problem

Greedy solution

Rank items by diminishing value per unit size: $\frac{V(j)}{c(j)}$

Insert items in order; assume j is the last full item that fits in the box

$$x_1, x_2, ..., x_j = 1; \ x_{j+1} = \left(C - \sum_{i=1}^{j} c(j)\right) / c(j+1)$$

- Easy proof by contradiction; any solution that does not satisfy this can be replaced by a solution that satisfies this with at least as much value
- Requires "partial credit"

Integer Knapsack Problem

- No partial credit for item scheduled partially
- Greedy algorithm no longer optimal

Item	V(j)	w(j)	V(j)/w(j)
1	1	1	1
2	6	2	3
3	18	5	3.6
4	22	6	3.67
5	28	7	4

• C = 11: Greedy {7,2,1} for value 35; {5,6} has value 40

Integer Knapsack: Dynamic Programming

 Value function: Opt(j,k) is best value considering items 1, ..., j only, for capacity C = k

Easy initialization:
$$Opt(1,k) = \begin{cases} 0, & k < c(1); \\ V(1), & k \ge c(1) \end{cases}$$

- If we consider an additional item j+1, for a capacity C = k, if we fit that item, then other items have to fit in remaining capacity C = k c(j+1)
 - Recursion

$$Opt(j+1,k) = \begin{cases} Opt(j,k), & k < c(j+1) \\ \max\{Opt(j,k), V(k) + Opt(j,k-c(j+1))\} & \text{otherwise} \end{cases}$$

Example

ltem	V(j)	w(j)	V(j)/w(j)
1	1	1	1
2	6	2	3
3	18	5	3.6
4	22	6	3.67
5	28	7	4

j\k	0	1	2	3	4	5	6	7	8	9	10	11
1	0	1	1	1	1	1	1	1	1	1	1	1
2	0	1	6	7	7	7	7	7	7	7	7	7
3	0	1	6	7	7	18	19	24	25	25	25	25
4	0	1	6	7	7	7	22	23	28	29	29	40
5	0	1	6	7	7	7	22	28	29	34	35	40

Example: What is in the Bag?

Item	V(j)	w(j)	V(j)/w(j)
1	1	1	1
2	6	2	3
3	18	5	3.6
4	22	6	3.67
5	28	7	4

j\k	0	1	2	3	4	5	6	7	8	9	10	11
1	0	1	1	1	1	1	1	1	1	1	1	1
2	0	1	6	7	7	7	7	7	7	7	7	7
3	0	1	6	7	7	18	19	24	25	25	25	25
4	0	1	6	7	7	7	22	23	28	29	29	40
5	0	1	6	7	7	7	22	28	29	34	35	35

Integer Knapsack Complexity

- Complexity: $\Theta(nC)$
 - Number of rows: n
 - Number of columns: C
 - Computation per entry: O(1)
- Complexity is not polynomial (depends on C, so pseudo-polynomial)
- Space required is also $\Theta(nC)$
- Note algorithm depends critically on the fact that sizes c(j) are integers
 - Can handle non-integer c(j) with a lot more notation

Sequence Alignment

- How similar are two sequences of symbols?
 - Example: ocurrance and occurrence

• Applications: Bioinformatics, spell correction, machine translation, speech recognition, information extraction

Comparing Two DNA sequences

• Given two strings, what is the best match?

Why Do We Care?

Example Problem

- Given two strings $x=x_1x_2\cdots x_m,\ y=y_1y_2\cdots y_n$ AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC
- an alignment is an assignment of gaps to positions 0,..., m in x, and 0,..., n in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence and there are no crossings
 - No crossings —> if j matched with k, and j' > j matched with k', then k' > k
 - -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

What is a Good Alignment?

AGGCTAGTT AGCGAAGTTT

• Alignment 1: 6 matches, 3 mismatches, 1 gap

AGGCTAGTT AGCGAAGTTT

• Alignment 2: 7 matches, 1 mismatch, 3 gaps

AGGCTA-GTT-AG-CGAAGTTT

• Alignment 3: 7 matches, 0 mismatches, 5 gaps

AGGC-TA-GTT-AG-CG-AAGTTT

Edit Distance

- Concept due to Levenshtein 1966, Needleman–Wunsch 1970
- Scoring function
 - Cost of mutation (mismatch)
 - s(x,y) is cost of matching $x \neq y$
 - Cost of insertion/deletion
 - δ is cost of matching x to a gap, or matching y to a gap
 - Reward of correct match
 - s(x, y) is value of correctly matching when x = y
- Complex search problem
 - For sequences of length 100, number of possible matches is $9 \cdot 10^{58}$

Match and Mismatch Rewards

- BLOcks SUbstitution Matrix (BLOSUM): A 20x20 table amino-acid scoring table based on observation of protein mutation rates
 - Gives the score of aligning amino-acid X with amino-acid Y (-s(x,y)

Cost of Alignment

Cost of M is

$$Cost(M) = \sum_{i,j \text{ matched}} s(x_i, y_j) + \sum_{i:x_i \text{ unmatched}} \delta + \sum_{j:y_j \text{ unmatched}} \delta$$

- Useful structure: score is additive —>
 similar structure to path length as additive
 over edge lengths
 - For a given split (i,j), we have score of best alignment x[1:n] and y[1:n] is sum of scores of best alignment x[1:i], y[1:j] + best alignment x[i+1:m], y[j+1:n]
 - This will allow us to use dynamic programming

Spokesperson confirms senior government adviser was found Spokesperson said the senior adviser was found

Dynamic Programming (Needleman-Wunsch)

- Let OPT(i, j) = minimum cost of aligning prefix strings $x_1x_2\cdots x_i, y_1y_2\cdots y_i$
- Goal. Is to compute OPT(m,n)
- Idea: Assume we know OPT(i-1, j-1), OPT(i,j-1), and OPT(i-1,j-1):
 - Case 1. OPT(i, j) matches $x_i \rightarrow y_j$: $Opt(i, j) = s(x_i, y_j) + OPT(i 1, j 1)$
 - Case 2a. OPT(i, j) leaves x_i unmatched: $Opt(i,j) = \delta + OPT(i-1,j)$
 - Case 2b. OPT(i, j) leaves y_i unmatched: $Opt(i,j) = \delta + OPT(i,j-1)$
- Initially, $Opt(i,0) = i\delta$; $Opt(0,j) = j\delta$
- Iteration:

$$Opt(i, j) = \min \{ s(x_i, y_j) + OPT(i - 1, j - 1), \delta + OPT(i - 1, j), \delta + OPT(i, j - 1) \}$$

Ptr(i,j) = {diag, up, left} corresponding to which term is minimized

Proof of Correctness

- Create a grid graph with vertices (i,j), i= 0, ..., m, j = 0, ..., n
 - ullet Edges from vertices (i-1,j) to (i,j) with weight δ
 - Edges from vertices (i,j-1) to (i,j) with weight δ
 - Edges from vertices (i-1,j-1) to (i,j) with weight $s(x_i, y_i)$
- Note: Graph is acyclic
- The problem is to find a shortest path from (0,0) to (m,n) in this graph!
 - OPT(i,j) is shortest distance from (0,0) to (i,j)
 - Needleman-Wunsch is Bellman-Ford!
- Bellman-Ford finds shortest path in acyclic graphs with negative weights

Matrix Representation of Alignment

Small Example

PTR =

OPT(i,j) with
$$\delta = 2$$
; $s(x_i, y_j) = \begin{cases} 2, & x_i \neq y_j \\ -1, & x_i = y_j \end{cases}$

		-	Α	G	С
	-	0	2	4	6
OPT =	Α	2	-1	1	3
	Α	4	1	1	3
	Α	6	3	3	3
	С	8	5	5	2

	-	Α	G	С
-	0	Left	Left	Left
Α	Up	Diag	Left	Left
Α	Up	Diag	Diag	Diag
Α	Up	Diag	Diag	Diag
С	Up	Up	Up	Diag

Mismatch =
$$-1$$

Match = 2

Example

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	a	-1	,					
2	С	-2		C	Sc			
3	b	-3						
4	С	-4						
5	d	-5						
6	b	-6						

\$

Mismatch = -1Match = 2

Example

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	-1	-2	-3	-4	-5	
1	а	-1	-1	1	0	-1	-2	
2	С	-2	1	0	0	-1	-2	
3	b	-3	0	0	-1	2	1	
4	О	-4	-1	-1	-1	1	1	
5	р	-5	-2	-2	1	0	3	
6	b	-6	-3	-3	0	3	2	

↑ S

Optimal Match: Backtrack Pointers

	j	0	1	2	3	4	5	
<u>i</u>			С	a	d	b	d	←T
0		0	—	-2	-3	-4	-5	
1	a	<u>-1</u>	-1	1	0	-1	-2	
2	О	-2		0	0	-1	-2	
3	р	-3	0	0	-1	2	1	
4	С	-4	-1	-1	-1	1,	1	
5	d	-5	-2	-2	1,	0	3	
6	b	-6	-3	-3	0	3	_2	
	Ŝ							•

A Larger Example

$$\delta = 2$$
;

$$s(x_i, y_j) = \begin{cases} 2, & x_i \neq y_j \\ -1, & x_i = y_j \end{cases}$$

		S	I	М	ı	L	Α	R	I	Т	Υ
	0 🕳	_ 2	4	6	8	10	12	14	16	18	20
1	2	4	1 🗲	— 3 ←	— 2	4	6	8	7	9	11
D	4	6	3	3	4	4	6	8	9	9	11
E	6	8	5	5	6	6	6	8	10	11	11
N	8	10	7	7	8	8	8	8	10	12	13
Т	10	12	9	9	9	10	10	10	10	9	11
1	12	14	8	10	8	10	12	12	9	11	11
Т	14	16	10	10	10	10	12	14	11	8	11
Y	16	18	12	12	12	12	12	14	13	10	7

Another Example

$$\delta = 1;$$

$$\delta = 1;$$

$$s(x_i, y_j) = \begin{cases} 1, & x_i \neq y_j \\ 0, & x_i = y_j \end{cases}$$

		P	О	L	Y	N	О	M	Ι	A	L
	0	1	2	3	4	5	6	7	8	9	10
E	1	1	2	3	4	5	6	7	8	9	10
X	2	2	2	3	4	5	6	7	8	9	10
P	3	2	3	3	4	5	6	7	8	9	10
O	4	3	2	3	4	5	5	6	7	8	9
N	5	4	3	3	4	4	5	6	7	8	9
E	6	5	4	4	4	5	5	6	7	8	9
N	7	6	5	5	5	4	5	6	7	8	9
T	8	7	6	6	6	5	5	6	7	8	9
I	9	8	7	7	7	6	6	6	6	7	8
A	10	9	8	8	8	7	7	7	7	6	7
L	11	10	9	8	9	8	8	8	8	7	6

Sequence Matching Complexity

- Need to complete table of m by n
 - Length of x: m, length of y: n
- Computational complexity O(mn)
 - O(1) operations to compute new element
 - Polynomial!
- Still, may be too slow for long DNA sequences
 - 50,000 genes...
- Search for faster approximate algorithms