

面向目标机器的代码优化 一指令并行与调度

李诚

国家高性能计算中心(合肥)、信息与计算机国家级实验教学示范中心 计算机科学与技术学院 2023年11月29日

前情回顾

□编译器的基本步骤

前情回顾

□编译器的基本步骤与实验安排

前情回顾

面向目标机器的代码优化 – almost final

- □目标:优化生成的机器代码,与机器无关的优化不同,这一层级的信息是IR层无法获取的。
- □面向目标机器的代码优化十分重要,但往往很难实现:
 - ■难以跨机器架构复用
 - ■难以跨语言复用

面向目标机器的代码优化 - 种类

□减少操作数量

执行时间的计算公式:

Execution time = Operation count * Machine cycles per operation

- ■算术操作、内存访问等
- □用代价小的操作替换代价高的操作
 - ■例如: replace 4-cycle multiplication with 1-cycle shift
- □降低缓存缺失 (Cache miss)
 - ■覆盖数据和指令的访问
- □并行计算
 - ■单线程内部的指令调度
 - ■跨线程的并行执行

冯诺依曼体系结构

本节提纲

- □现代处理器架构
- □流水线并行的例子
- □指令调度与数据依赖分析
- □数据依赖指导下的指令调度
- □科技前沿——大模型的流水并行训练

现代处理器架构

□指令控制单元(ICU)

■Fetch control

▶包含分支预测的功能

■Instruction decode

- 》从icache中读取指令,然后翻译 为一组微操作
- ►例如, addq %rax, %rdx转换为 单个微操作
- >例如,addq%rax,8(%rdx)转换 为内存读取、加法和内存写入三 个微操作。

现代处理器架构

现代处理器架构

□执行单元(EU, Execution Unit)

■接收来自ICU的微操作,分发到各个功能单元执行。

■Load和Store单元

▶ 包含一个加法器计算地址,和dcache交互

■Branch单元

▶ 预测结果会保存在EU内的队列中,若预测错误,则会丢弃保存的执行结果,并通知 Fetch Control单元,之后才能获取正确的 指令

■其它各种功能单元

▶ 整数运算、浮点乘、整数乘、分支等等

现代处理器架构

现代处理器架构: 乱序 + 超标量

- □现代处理器一般是乱序且 是超标量的。
 - ■超标量: 通过实现多个硬件单元, 可以在每个时钟周期执行多个操作
 - ■乱序: 指令执行的顺序和二进 制代码中的顺序不一定相同

现代处理器架构

本节提纲

- □现代处理器架构
- □流水线并行的例子
- □指令调度与数据依赖分析
- □数据依赖指导下的指令调度
- □科技前沿——大模型的流水并行训练


```
add $t2, $t0, $t1  # $t2 = $t0 + $t1
add $t5, $t3, $t4  # $t5 = $t3 + $t4
add $t8, $t6, $t7  # $t8 = $t6 + $t7
```



```
add $t2, $t0, $t1  # $t2 = $t0 + $t1
add $t5, $t3, $t4  # $t5 = $t3 + $t4
add $t8, $t6, $t7  # $t8 = $t6 + $t7
```


add \$t2, \$t0, \$t1	# \$t2 = \$t0 + \$t1
add \$t5, \$t3, \$t4	# \$t5 = \$t3 + \$t4
add \$t8, \$t6, \$t7	# \$t8 = \$t6 + \$t7

ID	RR	ALU	RW

add \$t2, \$t0, \$t1	# \$t2 = \$t0 + \$t1
add \$t5, \$t3, \$t4	# \$t5 = \$t3 + \$t4
add \$t8, \$t6, \$t7	# \$t8 = \$t6 + \$t7

ID	RR	ALU	RW

add \$t2, \$t0, \$t1	# \$t2 = \$t0 + \$t1
add \$t5, \$t3, \$t4	# \$t5 = \$t3 + \$t4
add \$t8, \$t6, \$t7	# \$t8 = \$t6 + \$t7

ID	RR	ALU	RW

add \$t2, \$t0, \$t1	# \$t2 = \$t0 + \$t1
add \$t5, \$t3, \$t4	# \$t5 = \$t3 + \$t4
add \$t8, \$t6, \$t7	# \$t8 = \$t6 + \$t7

ID	RR	ALU	RW
ID	IXIX	ALO	IXVV

add \$t2, \$t0, \$t1	# \$t2 = \$t0 + \$t1
add \$t5, \$t3, \$t4	# \$t5 = \$t3 + \$t4
add \$t8, \$t6, \$t7	# \$t8 = \$t6 + \$t7

10	DD.	0111	RW
ID	RR	ALU	RW

add \$t2, \$t0, \$t1	# \$t2 = \$t0 + \$t1
add \$t5, \$t3, \$t4	# \$t5 = \$t3 + \$t4
add \$t8, \$t6, \$t7	# \$t8 = \$t6 + \$t7

			RW
ID	RR	ALU	RW

add \$t0, \$t0, \$t7

ID	RR	ALU	RW

数据未准备好

Read Port Write Port

add \$t2, \$t0, \$t1 # \$t2 = \$t0 + \$t1

add \$t4, \$t3, \$t2 # \$t4 = \$t3 + \$t2

add \$t7, \$t5, \$t6 # \$t7 = \$t5 + \$t6

add \$t0, \$t0, \$t7 # \$t0 = \$t0 + \$t7

			THE
ID	RR	ALU	RW

add \$t0, \$t0, \$t7

ID	DD	ALLI	RW
ID	RR	ALU	RW

流水线 阻塞

Write Port

ALU

add \$t2, \$t0, \$t1 # \$t2 = \$t0 + \$t1

Read Port

add \$t4, \$t3, \$t2 # \$t4 = \$t3 + \$t2

add \$t7, \$t5, \$t6 # \$t7 = \$t5 + \$t6

add \$t0, \$t0, \$t7 # \$t0 = \$t0 + \$t7

ID	RR	ALU	RW

add \$t0, \$t0, \$t7

ID	RR	ALU	RW
ID	KK	ALU	KVV

ID	RR	ALU	RW
	IXIX	ALO	IXVV

ALU

Read Port Write Port

add \$t2, \$t0, \$t1 # \$t2 = \$t0 + \$t1

add \$t4, \$t3, \$t2 # \$t4 = \$t3 + \$t2

add \$t7, \$t5, \$t6 # \$t7 = \$t5 + \$t6

add \$t0, \$t0, \$t7 # \$t0 = \$t0 + \$t7

ID	RR	ALU	RW

ALU

Read Port Write Port

add \$t2, \$t0, \$t1 # \$t2 = \$t0 + \$t1

add \$t7, \$t5, \$t6 # \$t7 = \$t5 + \$t6

add \$t4, \$t3, \$t2 # \$t4 = \$t3 + \$t2

add \$t0, \$t0, \$t7 # \$t0 = \$t0 + \$t7

ID	RR	ALU	RW

add \$t4, \$t3, \$t2

add \$t0, \$t0, \$t7

\$t4 = \$t3 + \$t2

ID	RR	ALU	RW

add \$t0, \$t0, \$t7

ID	RR	ALU	RW
טו	KK	ALU	KVV

add \$t0, \$t0, \$t7

ID	DD	ALLI	RW
ID	RR	ALU	RW

add \$t4, \$t3, \$t2

add \$t0, \$t0, \$t7

\$t4 = \$t3 + \$t2

			RW
ID	RR	ALU	RW

本节提纲

- □现代处理器架构
- □流水线并行的例子
- □指令调度与数据依赖分析
- □数据依赖指导下的指令调度
- □科技前沿——大模型的流水并行训练

指令调度(Instruction scheduling)

□优化的起源

■由于处理器流水线并行机制,指令的执行顺序对性能有较大影响。

□指令调度

- ■重排机器代码指令,旨在最小化执行特定指令序列所需的时钟周期数。
- ■任意编译器均支持指令调度。

□理论和技术挑战

■然而,在处理器流水线上执行的顺序代码内含着一些指令之间的依赖关系,在指令调度期间执行的任何转换都必须保留这些依赖关系,以维护被调度代码的逻辑。

三种数据依赖关系

read-after-write, RAW

■当一条指令读取另一条指令写入的结果时,会产生写后读相关性,读指令必须在写指令一定时钟周期后再读取而不会产生阻塞。

X = = X

□write-after-read, WAR

■当一条指令写在另一条指令的操作数上时,会产生反向依赖或称读后写依赖。读指令必须在写指令之前经过适当的周期数才能安全读取,而不阻塞写指令。

$$x = x$$

write-after-write, WAW

■如果两条指令写入同一个目标,就会产生单个输出或写后 写依赖关系

X = ...

$$t0 = t1 + t2$$

$$t1 = t0 + t1$$

$$t3 = t2 + t4$$

$$t0 = t1 + t2$$

$$t5 = t3 + t4$$

$$t6 = t2 + t7$$

$$t0 = t1 + t2$$

$$t1 = t0 + t1$$

$$t3 = t2 + t4$$

$$t0 = t1 + t2$$

$$t5 = t3 + t4$$

$$t6 = t2 + t7$$

$$t0 = t1 + t2$$

$$t1 = t0 + t1$$

$$t3 = t2 + t4$$

$$t0 = t1 + t2$$

$$t5 = t3 + t4$$

$$t6 = t2 + t7$$

$$t6 = t2 + t7$$

指令数据依赖图[HennessyGross, 1983]

□一个基本块的指令数据依赖图:

- ■每个节点表示单个机器指令
- ■每一条边代表了两条指令间存在数据依赖, 否则就没有依赖
- □依赖图是一个有向无环图,directed acyclic graph (DAG)
 - ■Directed: 代表了计算的顺序
 - ■Acyclic: 不能存在环状依赖(why?)
- □合法的指令调度
 - ■条件: 一条指令不能先于他的祖先节点执行
- □实现方法
 - ■对依赖图进行拓扑排序(topological sort)

延伸阅读

□John L. Hennessy and Thomas Gross. 1983. Postpass Code Optimization of Pipeline Constraints. ACM Trans. Program. Lang. Syst. 5, 3 (July 1983), 422–448. https://doi.org/10.1145/2166.357217

John L. Hennessy

David Patterson

□2017年,Hennessy和Patterson共同获得图灵奖。

□获奖演说:

■ A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, and Agile Chip Development

本节提纲

- □现代处理器架构
- □流水线并行的例子
- □指令调度与数据依赖分析
- □数据依赖指导下的指令调度
- □科技前沿——大模型的流水并行训练

$$t6 = t2 + t7$$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

 $t5 = t3 + t4$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

 $t5 = t3 + t4$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

 $t5 = t3 + t4$
 $t0 = t1 + t2$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

 $t5 = t3 + t4$
 $t0 = t1 + t2$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

 $t5 = t3 + t4$
 $t0 = t1 + t2$
 $t1 = t0 + t1$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$

$$t5 = t3 + t4$$

$$t0 = t1 + t2$$

$$t1 = t0 + t1$$

$$t0 = t1 + t2$$

$$t6 = t2 + t7$$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$
 $t5 = t3 + t4$
 $t0 = t1 + t2$
 $t1 = t0 + t1$
 $t0 = t1 + t2$
 $t6 = t2 + t7$

$$t6 = t2 + t7$$

$$t3 = t2 + t4$$
 $t5 = t3 + t4$
 $t0 = t1 + t2$
 $t1 = t0 + t1$
 $t0 = t1 + t2$
 $t6 = t2 + t7$

$$t0 = t1 + t2$$
 $t3 = t2 + t4$
 $t6 = t2 + t7$
 $t1 = t0 + t1$
 $t5 = t3 + t4$
 $t0 = t1 + t2$

指令调度的空间

- □数据依赖图可能有许多有效的拓扑排序。
 - ■该如何选择一种能与流水线完美配合的排序方式呢?
- □寻找最快的指令时间表是众所周知的 NP 难题。
 - ■不要指望很快就能找到多项式时间算法!
- □在实践中使用启发式方法
 - 1. 将可以不受干扰地运行完成的指令安排在会造成干扰的指令之前。
 - 2. 将依赖关系较多的指令安排在依赖关系较少的指令之前。
 - 3. 对 DAG 进行加权调整! (边的权重为指令等待时间)

$$t6 = t2 + t7$$

$$t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

$$0 | t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

$$0 \mid t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

ID	RR	ALU	RW

0
$$t3 = t2 + t4$$

$$t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

ID	RR	ALU	RW

t0	=	†1	+	t2
ιU	_	LI	\mathbf{T}	ι <u> </u>

0
$$t3 = t2 + t4$$

$$t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

0	טו	KIX	ALU	IXVV
3 +3				
3				
= t1 + t2				
- (1 + (2				
_				

t0	_	†1	+	t2
ιυ	_	ιı	T	lΖ

0
$$t3 = t2 + t4$$

$$t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

t()	=	†1	+	t2
ιU	_	LI		ι <u> </u>

ID	RR	ALU	RW
טו	KK	ALU	RW

0
$$t3 = t2 + t4$$

$$t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

t0	=	t1	+	t2
	_	CI	•	L

ID	RR	ALU	RW

$$t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

t0	=	t1	+	t2
† 3	_	t2	+	+ Δ

ID	RR	ALU	RW

$$| t5 = t3 + t4 |$$

$$0 | t6 = t2 + t7$$

t0	=	t1	+	t2
t3	=	t2	+	t4

ID	RR	ALU	RW

$$0 | t6 = t2 + t7$$

t0 = t	1 + 1	t2			
t1 = t0) + 1	t1	3		
+3					
	3	tC) = 1	:1 + t2	/

t0 =	= t1	+ t2
------	------	------

$$t3 = t2 + t4$$

ID	RR	ALU	RW

$$4 t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

t0 = t1	+ 1	t2		
t1 = t0) + 1	t1	3	
+3				/
1	3	t0) = t	:1 + t2

t0	=	t1	+	t2

$$t3 = t2 + t4$$

RR	ALU	RW

$$t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

t0 =	= t1	+	t2
------	------	---	----

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

ID	RR	ALU	RW

$$4 t5 = t3 + t4$$

$$0 | t6 = t2 + t7$$

t0 = t1	+ 1	t2			
t1 = t0) + 1	t1	3		
+3		1			۱/
1	3	tC) = t	1 + t2	

t0	= t1	+	t2

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

ID	RR	ALU	RW

$$4 t5 = t3 + t4$$

$$t6 = t2 + t7$$

t0 = t	1 + 1	t2			
t1 = t0) + 1	t1	3		
+3	3	tC) = 1	t1 +	t2

t0 = t1	+	
---------	---	--

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

$$t1 = t0 + t1$$

ID	RR	ALU	RW

$$t5 = t3 + t4$$

$$t6 = t2 + t7$$

t0	=	t1	+	t2

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

$$t1 = t0 + t1$$

ID	RR	ALU	RW

$$t5 = t3 + t4$$

$$t6 = t2 + t7$$

t0 = t1 + t2

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

$$t1 = t0 + t1$$

ID	RR	ALU	RW

$$4 t5 = t3 + t4$$

$$t6 = t2 + t7$$

ID	RR	ALU	RW

$$t0 = t1 + t2$$

$$t3 = t2 + t4$$

$$t6 = t2 + t7$$

$$t1 = t0 + t1$$

$$t5 = t3 + t4$$

$$t6 = t2 + t7$$

t0	=	t1	+	t2
t3	=	t2	+	t4
t6	=	t2	+	t7
<u>†1</u>	=	t0	+	<u>†1</u>
†1 †5	=	t3	+	t4

$$t6 = t2 + t7$$

t0 = t1 + t2
t3 = t2 + t4
t6 = t2 + t7
t1 = t0 + t1
t5 = t3 + t4

t0 = t1 + t2

			liver
ID	RR	ALU	RW

$$t6 = t2 + t7$$

t0	= 1	t1_	+	t2
t3	= 1	t2	+	t4
t6	= 1	t2	+	t7
†1 ·	= -	<u>t0</u>	<u>+</u>	<u>†1</u>
t5				

不同调度之间的性能差距

t0	=	t1	+	t2
t3	=	t2	+	t4
t6	=	t2	+	t7
t1	=	t0	+	t1
t5	=	t3	+	t4
t0	=	t1	+	t2

ID	RR	ALU	RW

t0	=	t1	+	t2
t1	=	t0	+	t1
t3	=	t2	+	t4
t0	=	t1	+	t2
t5	=	t3	+	t4
t6	=	t2	+	t7

			with o
ID	RR	ALU	RW

更多高级的调度

- □现代优化编译器可以进行更积极的调度,从而获得惊人的性能提 升。
- □一种强大的技术:循环展开(loop unrolling)
 - ■一次展开多个循环迭代。
 - ■使用前面介绍的调度算法更智能地调度指令。
 - ■可以在循环迭代中找到流水线级并行性。

软件流水线(Software pipeline)

- □通过并行执行来自不同循 环体的指令来加快循环程 序的执行速度;
- □在前一个循环体未结束前 启动下一个新的循环体, 来达成循环体时间上的并 行性;
- □相比于简单的展开循环,软件流水线在优化资源使用的同时保持代码的简洁。

本节提纲

- □现代处理器架构
- □流水线并行的例子
- □指令调度与数据依赖分析
- □数据依赖指导下的指令调度
- □科技前沿——大模型的流水并行训练

科技前沿——大模型并行训练

持续增长的算力

在后摩尔时代, GPU依然保持每年50%的算力增长幅度

爆发式增长的数据

自然语言处理领域的训练数据集,从200MB增长到40TB

爆发式变大的模型

自然语言处理领域的模型, 大小以每年20倍的速度增长

训练过程中"四大"内存占用

- **参数**
- 梯度
- 一 中间数据
- 优化器状态

用于计算Loss的输出层

重复堆叠的Transformer层

训练1750亿参数的GPT-3的配置

参数	缩写	参考值
hidden size	h	12288
sequence length	S	2048
number of layers	L	96
number of attention heads	а	96
mini-batch size	b	128
vocabulary size	V	50000

→ Embedding层

用于计算Loss的输出层

重复堆叠的Transformer层

训练1750亿参数的GPT-3的配置

参数	缩写	参考值
hidden size	h	12288
sequence length	S	2048
number of layers	L	96
number of attention heads	а	96
mini-batch size	b	128
vocabulary size	V	50000

训练1750亿参数的GPT-3的内存占用

内存占用类型	占用大小	参考值
参数 + 梯度	$(L(12h^2 + 13h) + hv + h(s+1)) \times 4$	650 GB
优化器状态量	$(L(12h^2 + 13h) + hv + h(s+1)) \times 12$	1950 GB
中间数据	$(L(5as^2 + 34hs) + 5hs + 4sv) \times 4b$	32895 GB

→ Embedding层

显卡型号	发售年份	显存容量	参考价格
H100	2023	80GB	\$36550
A100	2020	40/80GB	\$9745 (40GB)
V100	2017	16/32 GB	\$4392 (16GB)
P100	2016	16GB	\$557

➡ 需要至少440/880张A100才能满足GPT-3训练过程中的内存占用

训练1750亿参数的GPT-3的内存占用

内存占用类型	占用大小	参考值
参数 + 梯度	$(L(12h^2 + 13h) + hv + h(s+1)) \times 4$	650 GB
优化器状态量	$(L(12h^2 + 13h) + hv + h(s+1)) \times 12$	1950 GB
中间数据	$(L(5as^2 + 34hs) + 5hs + 4sv) \times 4b$	32895 GB

国外各大机构的A100卡数

In a gold rush for compute, companies build bigger than national supercomputers

*We think the most benefits will go to whoever has the biggest computer" - Greg Brockman, OpenAI CTO

如何用更少的硬件资源训练大模型成为关键问题之一?

流水线并行: pipeline parallelism

Intuitive strategy: devices are mostly idle

Gpipe, NIPS 2019, Google: 将mini-batch进一步拆分为若干micro-batch, 但仍有大量bubble

PipeDream, SOSP 2019, MicroSoft: 允许后续micro-batch异步提前执行, 但使用的参数比较陈旧

流水线并行: pipeline parallelism

Intuitive strategy: devices are mostly idle

DAPPLE, PPoPP 2021, Alibaba: 修改执行序, 交叉执行不同micro-batch的前向和反向计算, 减少bubble, 减少保存的activation数量

Device	1
Device	2
Davica	3

Device 4

1	2	3	4							1	ı	5	2		5	3	7	4	4	8	į	5		6	,		7	7	8
	1	2	3	4				1			2	2	5	3	•	6	4	7	Ę	5	8	6	5		7	7		8	
		1	2	3	4	1			2	2		3	3	5	4	6	5 (5	7	6	5	8	7	7		8	3		
			1	1	1	2	2	2	3	3	3	4	4	!	5	5	6	(5	7	-	7	8	8	3				

面向AI训练的内存腾挪技术

一起努力 打造国产基础软硬件体系!

李诚

国家高性能计算中心(合肥)、信息与计算机国家级实验教学示范中心 计算机科学与技术学院 2023年11月29日