

# SIT742 Modern Data Science Assignment 1

Student name: Mirnalini Arivalagan

Student ID: 220142881

Date: 17<sup>th</sup> April 2021

# **Table of Contents**

| Part I - Tul | ip Hotel Web Logs Exploratory Data Analysis | 3  |
|--------------|---------------------------------------------|----|
| 1. Da        | ta ETL                                      | 3  |
| 1.1.         | Data Loading                                | 3  |
| 1.1.1.       | Dataset Description                         | 3  |
| 1.1.2        | Attribute Dictionary                        | 3  |
| 1.2.         | Data Cleaning                               | 4  |
| 2. Da        | ta Statistics Description                   | 5  |
| 2.1.         | Traffic Analysis                            | 5  |
| 2.2.         | Server Analysis                             | 6  |
| 2.3.         | Geographics Analysis                        | 8  |
| Part II - Sc | hool of IT Professor Citation Information   | 10 |
| 3. Pro       | ofessor List Generation                     | 10 |
| 3.1.         | Import Web Crawling Library                 | 10 |
| 3.2.         | Find all professors in School of IT         | 11 |

## Part I - Tulip Hotel Web Logs Exploratory Data Analysis

Hotel TULIP a five-star hotel located at Deakin University, and its CIO Dr Bear Guts has asked the Team-SIT742 team to analyse the weblogs files. As an employee for Hotel Tulip, working in the Information Technology Division, it is required to prepare a set of documentation for Team-SIT742 to allow them to understand the data being dealt with. Throughout this report, some source codes are to explore the weblog, which afterwards the information is presented to Dr Bear Guts in the format of a report.

#### 1. Data ETL

#### 1.1. Data Loading

Fill the DataDictionary.xlsx with discovery from the result of 1.1 Data Loading from your notebook.

#### 1.1.1. Dataset Description

Please add a screenshot of Dataset Description from your DataDictionary.xlsx.



#### 1.1.2. Attribute Dictionary

#### Please add a screenshot of Attribute Dictionary from your DataDictionary.xlsx.

| Attribute Name  | Data Type              | Data Subtype              | Description                                                                     | Examples                                                          | Additional Notes                                  |
|-----------------|------------------------|---------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|
| Date            | Metric Continous       | DATE - Date/time          | Request Date                                                                    | 1/11/2006                                                         | Converted from object to datetime64[ns] in python |
| time            | Metric Continous       | DATE - Date/time          | Request Time                                                                    | 12:00:08 AM                                                       | Converted from object to datetime64[ns] in python |
| s-sitename      | Categorical<br>Nominal | ID-Identification         | Internet Service and instance number accessed                                   | W3SVC1                                                            | Python type = object                              |
| s-ip            | Categorical<br>Nominal | ADDR-Address              | Server IP Address                                                               | 127.0.0.1                                                         | Python type = object                              |
| cs-method       | Categorical<br>Nominal | ID-Identification         | Action client was trying to perform at request                                  | GET                                                               | Python type = object                              |
| cs-uri-stem     | Categorical<br>Nominal | URL-links such as<br>URLs | Target of the client action                                                     | /Tulip/common/en-<br>us/images/top_logo.gif                       | Python type = object                              |
| cs-uri-query    | Categorical<br>Nominal | URL-links such as<br>URLs | The query the client tried to perform                                           | jobPageId=97⟨=zh-hk                                               | Python type = object                              |
| s-port          | Metric Discrete        | ID - Identification       | Server port number configured to the<br>service                                 | 80                                                                | Python type = int64                               |
| cs-username     | Categorical<br>Nominal |                           | Name of user who accessed sever.<br>Anonymous users is coded as a hyphen<br>(-) | - (Anonymous)                                                     | Python type = object                              |
| c-ip            | Categorical<br>Nominal | ADDR-Address              | Client IP Address that accessed server                                          | 70.80.84.76                                                       | Python type = object                              |
| cs(User-Agent)  | Categorical<br>Nominal | STR-Free String           | Browser type used by client                                                     | Mozilla/4.0+(compatible;+MSIE+6.0;+<br>Windows+NT+5.0)            | Python type = object                              |
| cs(Referer)     |                        | URL-links such as<br>URLs | Previous site visited by client. This site provides a link to current site      | http://www.hotelTulip.com.hk/Tulip<br>/home/en-us/home_index.aspx | Python type = object                              |
| sc-status       | Categorical<br>Ordinal | ID-Identification         | The HTTP status code                                                            | 200                                                               | Python type = float64                             |
| sc-substatus    | Categorical<br>Ordinal | ID-Identification         | The sub status error code                                                       | 14                                                                | Python type = float64                             |
| sc-win32-status | Categorical<br>Ordinal | ID-Identification         | The Windows status code                                                         | 64                                                                | Python type = float64                             |

## 1.2. Data Cleaning

Please add description of the following contents by yourself.

## A. The number NAs for each column

| Column Name     | Number of Missing Values | % of Missing Values |
|-----------------|--------------------------|---------------------|
| cs-username     | 8,438,928                | 100%                |
| cs-uri-query    | 7,886,532                | 93.45%              |
| cs(Referer)     | 1,309,659                | 15.51%              |
| cs(User-Agent)  | 3527                     | 0.04%               |
| sc-status       | 756                      | 0.01%               |
| sc-substatus    | 756                      | 0.01%               |
| Sc-win32-status | 756                      | 0.01%               |

B. The number of rows before removal NAs

• The number of rows before removing NAs is: **8438928** 

C. The number of rows after removal NAs

• The number of rows after removing NAs is: **8434645** 

#### 2. Data Statistics Description

### 2.1. Traffic Analysis

Please add description of the following contents by yourself.

- A. Please add a figure of Hourly Requests Bar Chart from your Notebook and elaborate the findings from the figure.
  - The number of hourly requests is at its peak in the early hours of the morning, between 3am to 9am. And it drops off quite significantly from 10am onwards and runs through at a lower number of requests during the day, this can be attributed to the fact that most users are either at work or school during these hours, hence leisure web browsing activities will drop off. The lowest number of requests are between 7pm and 12am, this can be attributed perhaps that most people are either spending some quality with their loved ones winding down from the day working or schooling and getting to bed.



B. Please add a table of filter result (hourly\_request\_amount >= 400000 & hourly\_request\_amount <= 490000)</p>

```
Table of hours with number of requests >=400,000 and <= 490,000 hour

2    432289

5    487306

10    443413

13    442414

15    472843

Name: hour, dtype: int64
```



#### 2.2. Server Analysis

Please add description of the following contents by yourself.

- A. Please elaborate how many types of reported server status.
  - There are 12 types of server status, the top 3 server status were 200, 304 & 404 with a total of request of 6,071,931, 2,136,775 & 142,578. The server status that received the least amount of requests were 501, 406 & 416 with a request of 113, 54 & 3.
- B. Please add a figure of Server Error Pie Chart from your Notebook, and elaborate the findings from the figure.

• The majority of the requests has the sc-status of 200 (72%) which means most of the requests received were successful. The 2<sup>nd</sup> most common status is 304 (25%), which means the website the user is trying to access has not been updated since the last time the user accessed it. The third most common status is 404(1.69%), this status means that the request is valid, but the page being requested cannot be found on the server, these could be dead links that do not have a URL redirection set up. Looking at these numbers, we can confidently say that a vast majority of web browsing requests is successful.



## 2.3. Geographics Analysis

Please add description of the following contents by yourself.

- A. Please add a figure of Country distribution and list top 3 with the number of requests.
  - The top 3 countries with the most requests were Hong Kong (79%), followed by China (12%) and United States (7%).

```
Top 3 Countries

HK 169
CN 25
US 16
Name: country, dtype: int64
```



- B. Please add a figure of City distribution and list top 3 with the number of requests.
  - The top 3 cities with the most number of requests were Ha Kwai Chung (77%), Beijing (7%) and New York City (6.5%)

Top 3 Cities Ha Kwai Chung 166 . Beijing 15 New York 14 Name: city, dtype: int6



## Part II - School of IT Professor Citation Information

To better introduce all the professors including the emeritus professor, the professor and also associate professor in Deakin University School of IT, faculty will need to know all the citation information on all professors. Google Scholar is a web search engine that freely indexes the metadata of articles on many authors. Majority of the professors choose to use google scholar to track their publications and research works. Therefore, the web crawling on google scholar will be able to have the citation information obtained across all the professors (who have the google scholar profile).

#### 3. Professor List Generation

## 3.1. Import Web Crawling Library

Please fill this part with the screenshot of your code for import your own web crawling library.

!pip install beautifulsoup4 from bs4 import BeautifulSoup import requests

## 3.2. Find all professors in School of IT

Please fill this part with the screenshot of your code for generating the professor name list csv. The screen shot will also include the results of the running on the code.





# 3.2.1. Professor Name List CSV

Please fill this part with the screenshot of your csv.

|    | А                   | В                    | С                 |
|----|---------------------|----------------------|-------------------|
| 1  | Title               | Name                 | University        |
| 2  | Emeritus Professor  | Lynn Batten          | Deakin University |
| 3  | Emeritus Professor  | Andrzej Goscinski    | Deakin University |
| 4  | Professor           | Jemal Abawajy        | Deakin University |
| 5  | Professor           | Maia Angelova        | Deakin University |
| 6  | Professor           | Gleb Beliakov        | Deakin University |
| 7  | Professor           | Terry Caelli         | Deakin University |
| 8  | Professor           | Jinho Choi           | Deakin University |
| 9  | Professor           | Chang-Tsun Li        | Deakin University |
| 10 | Professor           | Robin Doss           | Deakin University |
| 11 | Professor           | Peter Eklund         | Deakin University |
| 12 | Professor           | Seng Loke            | Deakin University |
| 13 | Professor           | Antonio Robles-Kelly | Deakin University |
| 14 | Professor           | Jean-Guy Schneider   | Deakin University |
| 15 | Professor           | Yong Xiang           | Deakin University |
| 16 | Professor           | John Yearwood        | Deakin University |
| 17 | Professor           | Arkady Zaslavsky     | Deakin University |
| 18 | Associate Professor | Mohamed Abdelrazek   | Deakin University |
| 19 | Associate Professor | Andrew Cain          | Deakin University |
| 20 | Associate Professor | Richard Dazeley      | Deakin University |
| 21 | Associate Professor | Guangyan Huang       | Deakin University |
| 22 | Associate Professor | Gang Li              | Deakin University |
| 23 | Associate Professor | Jianxin Li           | Deakin University |
| 24 | Associate Professor | Xiao Liu             | Deakin University |
| 25 | Associate Professor | Vicky Mak            | Deakin University |
| 26 | Associate Professor | Tim Wilkin           | Deakin University |
| 27 | Professor           | Abbas Kudrati        | Deakin University |
| 28 |                     |                      |                   |