Overland Move Planning for Intermodal Logistics with Order Uncertainty

Z. Melis Teksan¹, Tianyi Pan¹, Ernesto Garcia², Joseph Geunes¹, Joseph Hartman¹

¹Department of Industrial and Systems Engineering University of Florida, Gainesville, FL, USA

²Crowley Maritime Corporation

ISERC 2013, Puerto Rico

Outline

- Introduction
- Problem Definition
- Overview of Solution Procedure
- 4 Loop Creation Model
 - MII P Formulation
 - Column Generation
- Conclusion

Crowley Maritime Corporation

- US owned, Jacksonville, FL based marine solutions, transportation and logistics company.
- \$1.6 billion annual revenues and approximately 5,300 employees.
- A fleet of 200 vessels.
- Over 230,000 revenue loads per year.

CROWLEY

Problem Definition

- Overland operations: Point-to-point moves
 - Ships coming northbound: Full truckloads need to be delivered to their final destinations.
 - Ships going southbound: Containers filled at any point in North America need to be picked up and moved to one of the ports.
- Empty container accumulation at some places due to demand imbalance throughout the transportation network.
- Carriers have to be assigned to a set of point-to-point moves.
 - Some carriers work home-based. Some can perform one direction routes.
 - There are regulations on working hours.

Solution Method

Problem decomposed into three sub-problems:

- Empty container repositioning. (Jula et al. (2006), Imai et al. (2009), Song and Dong (2011), Di Francesco et al. (2012))
- 2 Loop creation. (Desrosiers et al. (1988), Agarwal et al. (1989), Arunapuram et al. (2003), Imai et al. (2007))
- Carrier assignment.

Loop Creation Model

Problem: A variant of full truckload vehicle routing problem with time windows

Assumptions:

- Every location in the network can act as a depot.
- All routes have to be loops.
- Necessary equipment is ready at pick-up locations.

Objective: Minimize total number of "empty" miles.

 $\rightarrow \text{NP-Hard!} \ \ \text{\tiny (Arunapuram \it et al., 2003)}$

MILP Formulation

Parameters:

- Orders, J, consisting of
 - Real orders, J_r ,
 - Equipment repositioning orders, J_e ,
 - Probabilistic orders, J_p .
 - Dummy orders, J_d .
- Locations, L.
- Vehicles, V.
- Time periods (days), T.

MILP Formulation

```
Parameters: (cont.)
```

- For each order $j \in J$,
 - o(j): origin of order j,
 - d(j): destination of order j,
 - pd(j): pick-up date of order j,
 - dd(j): delivery date of order j,
 - c_i : cost of transferring order j.
- $\tau(k, l)$: standard traveling time in days from location k to location l.
- α : maximum allowable length in days of any loop.

MILP Formulation

Decision variables:

- x_{jvt} : 1, if order j is moved by vehicle v at time t, 0 otherwise.
- y_{lv} : 1, if location l is first location visited by vehicle v, 0 otherwise.
- z_v : 1, if vehicle v is used, 0 otherwise.

$$\min \sum_{j \in J} c_j \sum_{v \in V} \sum_{t \in T} x_{jvt} \tag{1}$$

s.t.
$$\sum_{v \in V} \sum_{t > pd(j)} x_{jvt} = 1, \qquad \forall j \in J_r \cup J_e$$
 (2)

$$\sum_{j \in J} x_{jvt} \le z_v, \qquad \forall v \in V \text{ and } t \in T$$
 (3)

$$t \sum_{v \in V} x_{jvt} + \tau(o(j), d(j)) \le dd(j), \qquad \forall t \in T, \forall j \in J$$
 (4)

$$x_{jvt} \le \sum_{j' \in \sigma(j)} \sum_{t' \in \gamma(j,t)} x_{j'vt'} + y_{d(j)v}, \qquad \forall j \in J, \ v \in V \text{ and } t \in T$$
 (5)

$$\sum_{I \in L} y_{Iv} = z_v, \qquad \forall v \in V$$
 (6)

$$\sum_{j \in J'(I)} \sum_{t \in T} x_{jvt} = \sum_{j \in J''(I)} \sum_{t \in T} x_{jvt}, \qquad \forall v \in V \text{ and } \forall I \in L$$
 (7)

$$\sum_{j \in J''(l)} \sum_{t \in T} x_{jvt} \le 1, \qquad \forall v \in V \text{ and } \forall l \in L$$
 (8)

$$\sum_{j \in J} \sum_{t \in T} \tau(o(j), d(j)) \times_{j \vee t} \leq \alpha, \qquad \forall v \in V$$
 (9)

$$y_{lv} \in \{0,1\},$$
 $\forall l \in L \text{ and } v \in V$ (10)

$$x_{jvt} \in \{0,1\}, \qquad \forall j \in J, \ v \in V \text{ and } t \in T$$
 (11)

$$z_{\nu} \in \{0,1\}, \hspace{1cm} \forall \nu \in V \hspace{1cm} (12)$$

Results for MILP

- Computer specs.: Intel(R) Core(TM)2 Quad CPU Q9500 @2.83GHz 4.00 GB RAM 64-bit.
- CPLEX version: 12.1. Time limit: 3600 sec.
- Below table shows the averages of 10 replicates.

#Regions	#Orders/day	#Days	ys Avg. run time (sec.)	
5	5	7	51.3934	
5	10	7	1729.217 ^(*)	
5	15	7	Time limit reached	
10	10	7	Memory limit reached	
10	15	7	Memory limit reached	

^(*) Average of 4 instances. For remaining no solution within an hour.

A typical real instance size: over 600 regions, over 7500 orders in a week.

Column Generation

Set-partitioning formulation:

Parameter aji:

$$a_{ji} = \left\{ egin{array}{ll} 1 & ext{if order } j ext{ is in loop } i \\ 0 & ext{otherwise} \end{array}
ight.$$

Decision variable x_i :

$$x_i = \begin{cases} 1 & \text{if loop } i \text{ is selected} \\ 0 & \text{otherwise} \end{cases}$$

Column Generation

Set-partitioning formulation:

$$\min \sum_{i \in I} f_i \ x_i \tag{13}$$

s.t.
$$\sum_{i \in I} a_{ji} \ x_i = 1, \qquad \forall j \in J$$
 (14)

$$x_i \in \{0, 1\}, \qquad \forall i \in I \tag{15}$$

where

- 1: Set of all possible loops.
- f_i : Cost of performing loop i.

Column Generation Scheme

Column Generation

Pricing problem:

$$\min_{i\in I}\left\{f_i-\sum_{j\in J}u_j\ a_{ji}\right\},\,$$

where

$$f_i = \sum_{j \in J} c_j \ a_{ji}.$$

We have

$$\min_{i \in I} \left\{ \sum_{j \in J} (c_j - u_j) \ a_{ji} \right\}$$

Column Generation

Solving pricing problem:

- Using an heuristic approach.
 - **1** Choose order j with lowest $(c_j u_j)$ value and let k be o(j).
 - 2 Populate eligible orders originating from d(j).
 - **3** Choose order j with lowest $(c_i u_i)$ value.
 - If d(j) = k or loop length exceeds α , STOP. Else go to step 2.
- Solving a smaller version of the "big" MILP formulation.
 - Generating only one loop with negative reduced cost.

Preliminary Results

- Same computer and CPLEX as before.
- Below table shows the averages of 10 replicates.

#Regions	#Orders/day	#Days	Avg. run time (sec.)	Opt. gap
5	5	7	15.9429	0.0544(*)
5	10	7	35.6537	0.1417
5	15	7	92.882	0.2468
10	10	7	69.1036	0.0237
10	15	7	155.3416	0.0484

^(*) Objective function obtained by the algorithm is compared to real optimum. In other cases, gap from LP relaxation bound investigated.

Summary

- We study a practical logistics planning problem faced by Crowley: optimizing overland operations.
- We decomposed problem into three subproblems: Equipment repositioning, loop creation, and carrier assignment.
- In this talk, we focus on loop creation problem which is a variant of full truckload vehicle routing problem with time windows.
- We developed a full MILP formulation and a column generation based algorithm.

Future Work

- We work on improvements in column generation algorithm.
 - Generating initial set of columns.
 - Better heuristic to solve pricing problem.
 - Development of a branch-and-price algorithm.
- We will test our algorithm with real instances.

Introduction
Problem Definition
Overview of Solution Procedure
Loop Creation Model
Conclusion

Thank you!