Please note that this is a practice exam. The actual midterm questions will be different.

- [1] Figure 1 displays the time series plot, the ACF and the qq plot of a series of residuals that has been obtained after detrending and deseasonalizing a data set of size n = 100.
 - (a) Based on the ACF alone would you suggest that the residuals are dependent?
 - (b) Based on the time series plot, would you trust your answer in (a)? Why or why not?
 - (c) Do the time series plot and the qq plot support the claim of normally distributed residuals?

Give precise arguments for each of your choices.

Figure 1: Time series plot, ACF and qq plot of a residual series.

[2] Figure 2 on the next page shows the time series plot and the sample ACF of an AR(1) process $X_t =$ $\phi X_{t-1} + Z_t$. Which parameter ϕ has been used to generate these observations?

(a) $\phi = -0.9$

- (b) $\phi = -0.3$ (c) $\phi = -0.1$
- (d) $\phi = 0.3$
- (e) $\phi = 0.9$

Circle the correct answer.

[3] Give the conditions that make the ARMA(1,1) process

$$X_t = \phi X_{t-1} + Z_t + \theta Z_{t-1}$$

both causal and invertible.

[4] Let $(X_t : t \in \mathbb{Z})$ be stationary and represented by the model

$$X_t = \phi X_{t-2} + Z_t,$$

where $(Z_t: t \in \mathbb{Z}) \sim WN(0, \sigma^2)$. Find the variance of X_t .

Figure 2: Time series plot and ACF of an AR(1) process.

[5] The process $(X_t : t \in \mathbb{Z})$ is expressed as

$$X_t = \beta_1 \sin\left(\frac{2\pi}{n}t\right) + \beta_2 \cos\left(\frac{2\pi}{n}t\right) + Z_t,$$

where $(Y_t \colon t \in \mathbb{Z}) \sim WN(0, \sigma^2)$. Find the autocovariance function of X_t . Is the process stationary?

[6] Show that for AR(1) model

$$X_t = \phi X_{t-1} + Z_t,$$

where $(Z_t : t \in \mathbb{Z}) \sim WN(0, \sigma^2)$ and $|\phi| > 1$, can be represented as

$$X_t = -\sum_{j=1}^{\infty} \phi^{-j} Z_{t+j}$$

and find the autocovariance function of $(X_t : t \in \mathbb{Z})$.

[7] Suppose the roots of the AR polynomial

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2$$

from some ARMA process are $z_1 = 0.5 + i0.5$ and $z_2 = 0.5 + i0.5$. Is this process causal?

[8] Determine if the following ARMA process is invertible:

$$X_t + 0.2X_{t-1} - 0.48X_{t-2} = Z_t - 0.04Z_{t-1} - 0.4Z_{t-2}$$
.

[9] Consider the linear process

$$Y_t = \sum_{j=-\infty}^{\infty} a_j Z_{t-j}$$

where $(Z_t : t \in \mathbb{Z}) \sim WN(0,4)$, with $a_0 = 1$, $a_2 = -1$ and $a_j = 0$ for all $j \neq 0, 2$. What is the variance of of the output series?

[10] Suppose

$$X_t = \mu + Z_t + \theta Z_{t-1}$$

where $(Z_t : t \in \mathbb{Z}) \sim WN(0, \sigma^2)$.

- (a) Find the mean function $\mathbb{E}[X_t]$;
- (b) Show that the autocovariance function of $(X_t : t \in \mathbb{Z})$ is given by $\gamma(0) = \sigma^2(1+\theta^2)$, $\gamma(\pm 1) = \sigma^2\theta$, and $\gamma(h) = 0$ otherwise;
- (c) Show that $(X_t : t \in \mathbb{Z})$ is stationary for all values of $\theta \in \mathbb{R}$;
- (d) Calculate $Var(\bar{X})$ for estimating μ when (i) $\theta = 1$, (ii) $\theta = 0$, and (iii) $\theta = -1$.