GBI Crashkurs WS 2016/17

Miguel Santos Correa 24. Februar 2017

miguel-correa@web.de

https://github.com/misaco93/GBI-Crashkurs-16-17

Gliederung

1 Hoare-Kalkül

- 2 Prädikatenlogik
- 3 MIMA

Hoare-Kalkül

Ein Hoare-Tripel $\{P\}S\{Q\}$ besteht aus einer Vorbedingung P, einem Programmstück S und einer Nachbedingung Q. Beispiel:

$$\begin{cases}
 x = a \\
 y \leftarrow x \\
 \{y = a \}
 \end{cases}$$

- HT-A: Das Hoare-Tripel $\{\sigma_{x/E}(Q)\}x \leftarrow E\{Q\}$ ist gültig.
- Beispiel:

$$\{?\}$$

$$x \leftarrow E$$

$$\{y = x\}$$

- HT-A: Das Hoare-Tripel $\{\sigma_{x/E}(Q)\}x \leftarrow E\{Q\}$ ist gültig.
- Beispiel:

$$\{y = E\}$$
$$x \leftarrow E$$
$$\{y = x\}$$

- HT-S: Sind die Hoare-Tripel $\{P\}S_1\{Q\}$ und $\{Q\}S_2\{R\}$ gültig, dann auch das Tripel $\{P\}S_1; S_2\{R\}$.
- Beispiel:

$$\{a \le x\}
 y \leftarrow x
 \{a \le y\}
 \{a \le y\}
 z \leftarrow y
 \{a \le z\}$$

- HT-S: Sind die Hoare-Tripel $\{P\}S_1\{Q\}$ und $\{Q\}S_2\{R\}$ gültig, dann auch das Tripel $\{P\}S_1; S_2\{R\}$.
- Beispiel:

$$\begin{cases}
 a \leq x \\
 y \leftarrow x \\
 z \leftarrow y \\
 \{a \leq z \}
 \end{cases}$$

- HT-E: Ist ein Hoare-Tripel $\{P\}S\{Q\}$ gültig und sind die Aussagen $P' \Rightarrow P$ und $Q \Rightarrow Q'$ wahr, dann ist auch das Hoare-Tripel $\{P'\}S\{Q'\}$ gültig.
- Beispiel:

$$\{a \le x\} \\
 y \leftarrow x \\
 \{a \le y\}$$

- HT-E: Ist ein Hoare-Tripel $\{P\}S\{Q\}$ gültig und sind die Aussagen $P' \Rightarrow P$ und $Q \Rightarrow Q'$ wahr, dann ist auch das Hoare-Tripel $\{P'\}S\{Q'\}$ gültig.
- Beispiel:

$$\{a = x\}
 \{a \le x\}
 y \leftarrow x
 \{a \le y\}
 \{a \le y + 1\}$$

- HT-E: Ist ein Hoare-Tripel $\{P\}S\{Q\}$ gültig und sind die Aussagen $P' \Rightarrow P$ und $Q \Rightarrow Q'$ wahr, dann ist auch das Hoare-Tripel $\{P'\}S\{Q'\}$ gültig.
- Beispiel:

$$\begin{cases}
 a = x \\
 y \leftarrow x \\
 \{a \le y + 1 \}
 \end{cases}$$

HT-I:

Wenn die Hoare-Tripel $\{P \land B\}S_1\{Q\}$ und $\{P \land \neg B\}S_2\{Q\}$ gültig sind, so ist auch das Hoare-Tripel $\{P\}$ if B then S_1 else S_2 fi $\{Q\}$ gültig.

```
{P}
if B
then
        \{P \wedge B\}
         \{Q\}
else

\begin{cases}
P \land \neg B
\end{cases}

S_2

         \{Q\}
fi
{Q}
```

```
\{|x| = 15\}
if x \ge 0
then
      \{|x|=15 \land x \geqslant 0\}
      x \leftarrow x
      {x = 15}
else
      \{|x|=15 \land \neg(x\geqslant 0)\}
      X \leftarrow -X
      {x = 15}
fi
{x = 15}
```

Beispiel: Minimum

```
{x = a \land y = b}
if x > y
then
     {...}
      z \leftarrow y
      {...}
else
     {...}
      z \leftarrow x
     {...}
{z = min(a, b)}
```

```
{x = a \land y = b}
if x > y
then
      \{x = a \land y = b \land x > y\}
      {...}
      z \leftarrow y
      {...}
else
      {...}
      z \leftarrow x
      {...}
fi
\{z = \min(a, b)\}
```

```
\{x = a \land y = b\}
if x > y
then
      \{x = a \land y = b \land x > y\}
      {...}
      z \leftarrow y
      {...}
else
      \{x = a \land y = b \land \neg(x > y)\}\
      {...}
      z \leftarrow x
      {...}
\{z = \min(a, b)\}
```

```
\{x = a \land y = b\}
if x > y
then
      \{x = a \land y = b \land x > y\}
      {...}
      z \leftarrow y
      \{z = \min(a, b)\}
else
      \{x = a \land y = b \land \neg(x > y)\}\
      {...}
      z \leftarrow x
      \{z = \min(a, b)\}
\{z = \min(a, b)\}
```

```
\{x = a \land y = b\}
if x > y
then
      \{x = a \land y = b \land x > y\}
      {y = \min(a, b)}
      z \leftarrow y
      \{z = \min(a, b)\}
else
      \{x = a \land y = b \land \neg(x > y)\}\
      \{x = \min(a, b)\}
      z \leftarrow x
      \{z = \min(a, b)\}
\{z = \min(a, b)\}
```

HT-W:

Wenn das Hoare-Tripel $\{I \land B\}S\{I\}$ gültig ist, so ist auch das Tripel $\{I\}$ while B do S od $\{I \land \neg B\}$ gültig.

Beispiel: While-Schleife

```
\{I\}
while B
do
\{I \wedge B\}
S
\{I\}
od
\{I \wedge \neg B\}
```

Beispiel: While-Schleife

```
\{x \ge 0\}
while x \le 10
do
\{x \ge 0 \land x \le 10\}
x \leftarrow x + 1
\{x \ge 0\}
od
\{x \ge 0 \land \neg (x \le 10)\}
```

Beispiel: While-Schleife

```
\{x = a \land y = b\}
while y \neq 0
do
      {...}
     y \leftarrow y - 1
     {...}
      x \leftarrow x + 1
      {...}
od
{...}
\{x = a + b\}
```

```
\{x = a \land y = b\}
\{x + y = a + b\}
while y \neq 0
do
     {...}
      y \leftarrow y - 1
     {...}
      x \leftarrow x + 1
     {...}
od
{...}
\{x = a + b\}
```

```
\{x = a \land y = b\}
\{x + y = a + b\}
while y \neq 0
do
      \{x + y = a + b \wedge y \neq 0\}
      {...}
      y \leftarrow y - 1
      {...}
      x \leftarrow x + 1
      {...}
od
{...}
\{x = a + b\}
```

```
\{x = a \land y = b\}
\{x + y = a + b\}
while y \neq 0
do
      \{x + y = a + b \wedge y \neq 0\}
     {...}
     y \leftarrow y - 1
     {...}
     x \leftarrow x + 1
     \{x + y = a + b\}
od
{...}
{x = a + b}
```

```
\{x = a \land y = b\}
\{x + y = a + b\}
while y \neq 0
do
      \{x + y = a + b \wedge y \neq 0\}
     {...}
      y \leftarrow y - 1
      {x + 1 + y = a + b}
      x \leftarrow x + 1
      \{x + y = a + b\}
od
{...}
{x = a + b}
```

$$\{x = a \land y = b\}$$

$$\{x + y = a + b\}$$
while $y \neq 0$
do

$$\{x + y = a + b \land y \neq 0\}$$

$$\{x + 1 + y - 1 = a + b\}$$

$$y \leftarrow y - 1$$

$$\{x + 1 + y = a + b\}$$

$$x \leftarrow x + 1$$

$$\{x + y = a + b\}$$
od

$$\{...\}$$

$$\{x = a + b\}$$

$$\{x = a \land y = b\}$$

$$\{x + y = a + b\}$$
while $y \neq 0$
do

$$\{x + y = a + b \land y \neq 0\}$$

$$\{x + 1 + y - 1 = a + b\}$$

$$y \leftarrow y - 1$$

$$\{x + 1 + y = a + b\}$$

$$x \leftarrow x + 1$$

$$\{x + y = a + b\}$$
od

$$\{x + y = a + b \land \neg (y \neq 0)\}$$

$$\{x = a + b\}$$

Aufgabenblatt: WS 2015/16 A8.2

Beweisen Sie anhand des Hoare-Kalküls, dass das Hoare-Tripel

$$\{x = a \land y = b\}$$
if $x \geqslant y$
then

$$z \leftarrow x$$

$$x \leftarrow y$$

$$y \leftarrow z$$
else

$$x \leftarrow x$$
fi

$$\{x = min(a, b) \land y = max(a, b)\}$$

gültig ist.

$$\{x = a \land y = b\}$$
if $x \geqslant y$
then
$$z \leftarrow x$$

$$x \leftarrow y$$

$$y \leftarrow z$$

$$\{x = min(a, b) \land y = max(a, b)\}$$
else
$$x \leftarrow x$$

$$\{x = min(a, b) \land y = max(a, b)\}$$
fi
$$\{x = min(a, b) \land y = max(a, b)\}$$

$$\{x = a \land y = b\}$$
if $x \geqslant y$
then

$$\{y = min(a, b) \land x = max(a, b)\}$$

$$z \leftarrow x$$

$$x \leftarrow y$$

$$y \leftarrow z$$

$$\{x = min(a, b) \land y = max(a, b)\}$$
else

$$\{x = min(a, b) \land y = max(a, b)\}$$

$$x \leftarrow x$$

$$\{x = min(a, b) \land y = max(a, b)\}$$
fi

$$\{x = min(a, b) \land y = max(a, b)\}$$

$$\{x = a \land y = b \land x \geqslant y\}$$

$$\{y = min(a, b) \land x = max(a, b)\}$$

$$\{x = a \land y = b \land x < y\}$$

$$\{x = min(a, b) \land y = max(a, b)\}$$

Prädikatenlogik

Prädikatenlogik

Drei Schritte:

- Definiert Terme, die aus Konstanten, Variablen und Funktionssymbolen zusammengesetzt sind.
- Mit Hilfe von Relationssymbolen und Termen konstruiert man dann atomare Formeln.
- Mit Hilfe von zwei Quantoren werden allgemeine prädikatenlogische Formeln konstruiert.

Beispiel für Terme

- C
- y
- *g*(*x*)
- f(x,g(z))
- f(c, g(g(z)))

Atomare Formeln

- Relationssymbole mit Alphabet Rel_{PL}
- kurz R,S,..
- = Relation immer dabei

Atomare Formeln

korrekte Formeln:

- R(y, c, g(x))
- $f(x, y) \doteq g(z)$
- *S*(*c*)

syntaktisch falsche Formeln:

- $S(x) \doteq S(x)$
 - f(R(x,c))
 - R(S(x), c, y)
 - $x \doteq y \doteq z$

Quantoren

- Allquantor ∀
- Existenzquantor ∃
- Klammerregel: Quantoren binden am stärksten
- $(\exists xF)$ statt $(\neg(\forall x(\neg F)))$
- $\bullet \ A_{For} = A_{Rel} \cup \{\neg, \land, \lor, \rightarrow, \forall, \exists\}$
- z.B. $\forall x R(x, y) \land S(x)$

Interpretation

Es seien Alphabete $Const_{PL}$, Fun_{PL} und Rel_{PL} gegeben. Sind eine Interpretation (D,I) und eine Variablenbelegung β festgelegt, so kann man

- jedem Term einen Wert aus D und
- jeder Formel einen Wahrheitswert zuordnen.

Interpretation von Termen

$$\mathit{val}_{D,I,\beta}(t) = \begin{cases} \beta(x_i), \text{ falls } t = x_i \in \mathit{Var}_{PL} \\ I(c_i), \text{ falls } t = c_i \in \mathit{Const}_{PL} \\ I(f_i)(\mathit{val}_{D,I,\beta}(t_1),..,\mathit{val}_{D,I,\beta}(t_k)), \text{ falls } t = f_i(t_1,...,t_k) \end{cases}$$

Interpretation von atomaren Formeln

$$\textit{val}_{D,I,\beta}(\textit{R}_{\textit{i}}(t_{1},...,t_{k})) = \begin{cases} w, \text{ falls } (\textit{val}_{D,I,\beta}(t_{1}),...,\textit{val}_{D,I,\beta}(t_{k})) \in \textit{I}(\textit{R}_{\textit{i}})) \\ f, \text{ falls } (\textit{val}_{D,I,\beta}(t_{1}),...,\textit{val}_{D,I,\beta}(t_{k})) \notin \textit{I}(\textit{R}_{\textit{i}})) \end{cases}$$

$$val_{D,I,\beta}(t_1 \doteq t_2) = \begin{cases} w, \text{ falls } val_{D,I,\beta}(t_1) = val_{D,I,\beta}(t_2) \\ f, \text{ falls } val_{D,I,\beta}(t_1) \neq val_{D,I,\beta}(t_2) \end{cases}$$

Quantoren

$$\beta_{x_i}^d: Var_{PL} \to D: x_j \to \begin{cases} \beta(x_j), \text{ falls } i \neq j \\ d, \text{ falls } i = j \end{cases}$$

$$val_{D,I,\beta}(\forall x_i F) = \begin{cases} w, \text{ falls für jedes } d \in D \text{ und } \beta' = \beta_{x_i}^d : val_{D,I,\beta'}(F) = w \\ f, \text{ sonst} \end{cases}$$

$$val_{D,I,\beta}(\exists x_i F) = \begin{cases} w, \text{ falls für mind. } d \in D \text{ und } \beta' = \beta_{x_i}^d : val_{D,I,\beta'}(F) = w \\ f, \text{ sonst} \end{cases}$$

- $D = \mathbb{N}_0$, I(c) = 0, I(f) Addition, I(R) kleiner oder gleich
- $\beta(x) = 3, \ \beta(y) = 42$
- $val_{D,I,\beta}(R(y,c)) = ?$

- $D = \mathbb{N}_0$, I(c) = 0, I(f) Addition, I(R) kleiner oder gleich
- $\beta(x) = 3, \beta(y) = 42$
- $extbf{val}_{D,I,\beta}(R(y,c)) = f$
- weil $\beta(y) > I(c)$

- $D = \{a, b\}^+$, I(c) = bb, I(f) Konkatenation
- *I*(*R*) hat gleich viele a's
- $\beta(x) = a, \ \beta(y) = abba$
- $val_{D,I,\beta}(f(f(x,c),y) = ?$
- $val_{D,I,\beta}(R(f(y,x),c)) = ?$

- $D = \{a, b\}^+$, I(c) = bb, I(f) Konkatenation
- *I*(*R*) hat gleich viele a's
- $\beta(x) = a, \ \beta(y) = abba$
- $val_{D,I,\beta}(f(f(x,c),y) = abbabba$
- $val_{D,I,\beta}(R(f(y,x),c)) = f$

Allgemeingültigkeit

Eine prädikatenlogische Formel heißt allgemeingültig, wenn (D, I) und jede passende Variablenbelegung β gilt: $val_{D,I,\beta}(F)=w$. Bsp.

$$(\forall x_i(G \to H)) \to ((\forall x_iG) \to (\forall x_iH))$$

freie und gebundene Vorkommen

Wenn in einer prädikatenlogischen Formel G in einem Term eine Variable \times steht, dann spricht man auch von einem Vorkommen der Variablen \times in G. (Die Anwesenheit einer Variablen unmittelbar hinter einem Quantor zählt nicht als Vorkommen.)

freie und gebundene Vorkommen

- Für jede Formel G, die atomar ist, sind alle Vorkommen von Variablen frei
- Für jede Formel G der Form $(\forall x_i H)$ oder $(\exists x_i H)$ ist ist jedes Vorkommen von x in H gebunden
- Beispiel: $\forall x (R(x, y) \land \exists y R(x, y))$

Substitutionen

Es ist möglich Variablen einer prädikatenlogischen Formel durch Terme zu ersetzen. Eine Substitution ist eine Abbildung $\sigma: Var_{PL} \to L_{Ter}$ $\sigma_{\{x/c,y/f(x)\}}$:

$$\sigma(x) = c$$

$$\sigma(y) = f(x)$$

$$\sigma(z) = z, z \notin \{x, y\}$$

Kollisionsfrei

Eine Substitution σ heiße kollisionsfrei für eine Formel G, wenn für jede Variable x_i , die durch σ verändert wird (also $\sigma(x_i) \neq x_i$) und jede Stelle eines freien Vorkommens von x_i in G gilt: Diese Stelle liegt nicht im Wirkungsbereich eines Quantors $\forall x_j$ oder $\exists x_j$, wenn x_j eine Variable ist, die in $\sigma(x_i)$ vorkommt.

Kollisionsfrei:

•
$$G = S(x) \wedge \forall x (R(x, y))$$

nicht Kollisionsfrei:

•
$$G = \exists y (R(y,c) \land R(x,c))$$

$$\sigma_{\{x/f(y),y/c\}}(G) = \exists y (R(y,c) \land R(f(y),c))$$

Beantworten Sie für jede der folgenden prädikatenlogischen Formeln die Frage: "Ist die Formel allgemeingültig?"

- (i) $(\neg \exists x : P(x)) \leftrightarrow (\forall x : \neg P(x))$
- (ii) $(\forall x \exists y \exists z : Q(x, y, z)) \rightarrow (\exists y \forall x \exists z : Q(x, y, z))$
- (iii) $(\exists z \exists y \forall x : Q(x, y, z)) \rightarrow (\forall x \exists y \exists z : Q(x, y, z))$

Dabei ist P ein einstelliges Relationssymbol und Q ein dreistelliges Relationssymbol.

Beantworten Sie für jede der folgenden prädikatenlogischen Formeln die Frage: "Ist die Formel allgemeingültig?"

- (i) $(\neg \exists x : P(x)) \leftrightarrow (\forall x : \neg P(x))$
- (ii) $(\forall x \exists y \exists z : Q(x, y, z)) \rightarrow (\exists y \forall x \exists z : Q(x, y, z))$
- (iii) $(\exists z \exists y \forall x : Q(x, y, z)) \rightarrow (\forall x \exists y \exists z : Q(x, y, z))$

Dabei ist P ein einstelliges Relationssymbol und Q ein dreistelliges Relationssymbol.

(i) Ja

Beantworten Sie für jede der folgenden prädikatenlogischen Formeln die Frage: "Ist die Formel allgemeingültig?"

- (i) $(\neg \exists x : P(x)) \leftrightarrow (\forall x : \neg P(x))$
- (ii) $(\forall x \exists y \exists z : Q(x, y, z)) \rightarrow (\exists y \forall x \exists z : Q(x, y, z))$
- (iii) $(\exists z \exists y \forall x : Q(x, y, z)) \rightarrow (\forall x \exists y \exists z : Q(x, y, z))$

Dabei ist P ein einstelliges Relationssymbol und Q ein dreistelliges Relationssymbol.

- (i) Ja
- (ii) Nein

Beantworten Sie für jede der folgenden prädikatenlogischen Formeln die Frage: "Ist die Formel allgemeingültig?"

- (i) $(\neg \exists x : P(x)) \leftrightarrow (\forall x : \neg P(x))$
- (ii) $(\forall x \exists y \exists z : Q(x, y, z)) \rightarrow (\exists y \forall x \exists z : Q(x, y, z))$
- (iii) $(\exists z \exists y \forall x : Q(x, y, z)) \rightarrow (\forall x \exists y \exists z : Q(x, y, z))$

Dabei ist P ein einstelliges Relationssymbol und Q ein dreistelliges Relationssymbol.

- (i) Ja
- (ii) Nein
- (iii) Ja

Formulieren Sie die folgenden Aussagen als prädikatenlogische Formeln über dem Universum aller Menschen:

- (i) Jeder Student außer Tom lächelt.
- (ii) Jeder mag jeden, der sich nicht selbst mag.

Formulieren Sie die folgenden Aussagen als prädikatenlogische Formeln über dem Universum aller Menschen:

- (i) Jeder Student außer Tom lächelt.
- (ii) Jeder mag jeden, der sich nicht selbst mag.
- (i) $\forall x (student(x) \rightarrow (\neg Tom(x) \leftrightarrow l\ddot{a}chelt(x)))$

Formulieren Sie die folgenden Aussagen als prädikatenlogische Formeln über dem Universum aller Menschen:

- (i) Jeder Student außer Tom lächelt.
- (ii) Jeder mag jeden, der sich nicht selbst mag.
- (i) $\forall x (student(x) \rightarrow (\neg Tom(x) \leftrightarrow l\ddot{a}chelt(x)))$
- (ii) $\forall x \forall y (\neg mag(y, y) \rightarrow mag(x, y))$

Gegeben sei die prädikatenlogische Formel

$$\forall x \forall y (R(x,y) \rightarrow R(f(x), f(y)))$$

und eine Interpretation (D,I) dafür, wobei das Universum D die Menge $\{a,b\}$ sei und die Interpretationsabbildung I gegeben sei durch I(f)(a)=b, I(f)(b)=a und $I(R)=\{(a,a),(a,b)\}$.

- (i) Geben Sie den Wahrheitswert der Formel in der Interpretation an.
- (ii) Erläutern sie kurz Ihre Antwort aus Teil (i):

Gegeben sei die prädikatenlogische Formel

$$\forall x \forall y (R(x,y) \rightarrow R(f(x), f(y)))$$

und eine Interpretation (D,I) dafür, wobei das Universum D die Menge $\{a,b\}$ sei und die Interpretationsabbildung I gegeben sei durch I(f)(a)=b, I(f)(b)=a und $I(R)=\{(a,a),(a,b)\}$.

- (i) Geben Sie den Wahrheitswert der Formel in der Interpretation an.
- (ii) Erläutern sie kurz Ihre Antwort aus Teil (i):

Wahrheitswert: Falsch.

MIMA

MIMA

- Adressen: 20 bit
- Speicherwerte: 24 bit
- (die meisten) Befehle: 4 bit + 20 bit
- z.B. LDC 10

Beispiel: Multiplikation

LDC 0

STV prod

start : LDC 0

NOT

ADD b

STV b

JMN end

LDV prod

ADD a

STV prod

JMP start

end: HALT

■ LDC const Lädt eine 20 bit Zahl in den Akkumulator.

- LDC const Lädt eine 20 bit Zahl in den Akkumulator.
- **LDV** adr Lädt den Speicherwert von adr in den Akkumulator.

- LDC const Lädt eine 20 bit Zahl in den Akkumulator.
- **LDV adr** Lädt den Speicherwert von adr in den Akkumulator.
- **STV** adr Speichert den Wert vom Akkumulator in adr.

- LDC const Lädt eine 20 bit Zahl in den Akkumulator.
- LDV adr Lädt den Speicherwert von adr in den Akkumulator.
- **STV** adr Speichert den Wert vom Akkumulator in adr.
- **LDIV** adr Lädt den Speicherwert vom Speicherwert von adr M(M(adr)) in den Akkumulator.

- LDC const Lädt eine 20 bit Zahl in den Akkumulator.
- LDV adr Lädt den Speicherwert von adr in den Akkumulator.
- **STV** adr Speichert den Wert vom Akkumulator in adr.
- LDIV adr Lädt den Speicherwert vom Speicherwert von adr M(M(adr)) in den Akkumulator.
- **STIV** adr Speichert den Wert vom Akkumulator in M(M(adr)).

- LDC const Lädt eine 20 bit Zahl in den Akkumulator.
- LDV adr Lädt den Speicherwert von adr in den Akkumulator.
- **STV** adr Speichert den Wert vom Akkumulator in adr.
- LDIV adr Lädt den Speicherwert vom Speicherwert von adr M(M(adr)) in den Akkumulator.
- **STIV** adr Speichert den Wert vom Akkumulator in M(M(adr)).
- ADD adr Addiert den Speicherwert von adr auf den Akkumulator und speichert das Ergebnis im Akkumulator.

■ **AND** adr Bitweise AND vom Speicherwert von adr mit dem Akkumulator. Ergebnis wird im Akkumulator gespeichert.

- **AND** adr Bitweise AND vom Speicherwert von adr mit dem Akkumulator. Ergebnis wird im Akkumulator gespeichert.
- OR adr Bitweise OR.

- **AND** adr Bitweise AND vom Speicherwert von adr mit dem Akkumulator. Ergebnis wird im Akkumulator gespeichert.
- OR adr Bitweise OR.
- XOR adr Bitweise XOR.

- **AND** adr Bitweise AND vom Speicherwert von adr mit dem Akkumulator. Ergebnis wird im Akkumulator gespeichert.
- OR adr Bitweise OR.
- XOR adr Bitweise XOR.
- NOT Invertiert die Bits des Akkumulators.

■ RAR Rotation der Akku-Bits nach rechts. Beispiel: $101100 \rightarrow 010110$

- RAR Rotation der Akku-Bits nach rechts. Beispiel: 101100 → 010110
- **EQL** adr Vergleicht den Speicherwert von adr mit dem Akkumulator. Wenn die Zahlen gleich sind wird die Zweierkomplementdarstellung von -1 im Akkumulator gespeichert, wenn nicht dann wird die Zahl 0 im Akkumulator gespeichert.

- RAR Rotation der Akku-Bits nach rechts. Beispiel: 101100 → 010110
- **EQL** adr Vergleicht den Speicherwert von adr mit dem Akkumulator. Wenn die Zahlen gleich sind wird die Zweierkomplementdarstellung von -1 im Akkumulator gespeichert, wenn nicht dann wird die Zahl 0 im Akkumulator gespeichert.
- JMP adr Programm springt an die Adresse adr und setzt mit dem Befehl in adr fort.

- RAR Rotation der Akku-Bits nach rechts. Beispiel: 101100 → 010110
- **EQL** adr Vergleicht den Speicherwert von adr mit dem Akkumulator. Wenn die Zahlen gleich sind wird die Zweierkomplementdarstellung von -1 im Akkumulator gespeichert, wenn nicht dann wird die Zahl 0 im Akkumulator gespeichert.
- JMP adr Programm springt an die Adresse adr und setzt mit dem Befehl in adr fort.
- JMN adr Programm springt an die Adresse adr, falls der Akkumulator negativ ist.

Lade -1:

LDC 0 NOT

Addiere Konstante c:

LDC c ADD a STV a

Addiere negative Konstante -c:

LDC c - 1 NOT ADD a STV a

Addiere negative Konstante -5:

LDC 4 NOT ADD a STV a

Verwandle $a \rightarrow -a$:

LDV a

NOT

STV a

LDC 1

ADD a

STV a

n Schleifendurchläufe:

```
start :LDC 0

NOT

ADD n

STV n

JMN end

Block

JMP start
```

Beispiel: Division

start: I DV a LDC₀ ADD b STV div STV a IDV b JMN end NOT LDC 1 STV b ADD div LDC 1 STV div ADD b JMP start STV b end: HALT

Es seien a_1 und a_2 zwei verschiedene 20bit Adressen. Im Speicher stehe in Adresse a_1 die Zweierkomplementdarstellung einer nicht-negativen ganzen Zahl x, für die 2^x mit 24bit in Zweierkomplementdarstellung darstellbar ist. Ergänzen Sie die fehlenden Konstanten und Adressen im unvollständigen Minimalmaschinenprogramm derart, dass nach dessen Ausführung 2^x in Zweierkomplementdarstellung im Speicher bei Adresse a_2 steht. Beachten Sie, dass alle arithmetischen Ausdrücke, in denen x vorkommt, keine Konstanten sind, und, dass $2^0 = 1$ gilt.

LDC

STV

while :LDC

NOT

ADD

STV

JMN end

LDV

ADD

STV

JMP while

end: HALT

LDC 1 STV a2 while:LDC NOT ADD STVJMN end IDV ADD STV JMP while end: HALT

LDC 1 STV a2 while:LDC 0 NOT ADD a₁ STV a₁ JMN end IDV ADD STV JMP while end: HALT

```
LDC 1
      STV a2
while:LDC 0
      NOT
      ADD a<sub>1</sub>
      STV a<sub>1</sub>
      JMN end
      LDV a2
      ADD a2
      STV a2
      JMP while
 end: HALT
```

Es seien a_1 und a_2 zwei verschiedene Adressen. Welche Zahlen in Zweierkomplementdarstellung stehen nach Ausführung des Programms in den Adressen a_1 und a_2 im Speicher?

LDV a₁ XOR as STV a₁ LDV a2 XOR a₁ STV a2 LDV a₁ XOR as STV a1

Beispiel mit zwei 8 bit Zahlen:

a_1	a_2
11101001	00100111
11001110	00100111
11001110	11101001
00100111	11101001

Beispiel mit zwei 8 bit Zahlen:

a_1	a ₂
11101001	00100111
11001110	00100111
11001110	11101001
00100111	11101001

Die Speicherwerte der Adressen a_1 und a_2 werden vertauscht.