

ВЫСШАЯ ШКОЛА информационных технологий и информационных систем

Библиотеки OpenCL

Библиотеки OpenCL

- Как и для CUDA для OpenCL существует множество специализированных библиотек
 - STL-style: Boost.Compute
 - Линейная алгебра: clBLAS, Eigen, ViennaCL, VexCL
 - FFT: clFFt, VexCL
 - CV и машинное обучение: OpenCV

- Библиотека заголовков для работы с многоядерными CPU и GPU
- Основана на OpenCL
- https://github.com/boostorg/compute
- При компиляции кода необходимо указать
 - -I/путь к папке с boost/
- Требуемая версия Boost ≥ 1.54
- Включен в Boost начиная с версии 1.61

- ▶ Предоставляет C++ обертку над API OpenCL
- Содержит абор стандартных контейнеров, алгоритмов и итераторов
- Дает возможность сочетать высокоуровневые абстракции объектов с пользовательскими ядрами

 Пример: обход всех доступных платформ и устройств

- Идеология применения библиотеки схожа с STL – операции над контейнерами данных
- Boost.Compute позволяет писать C++ код не используя C-синтаксис OpenCL
- Список алгоритмов:
 - http://www.boost.org/doc/libs/1_62_0/libs/compute/doc/html/boost_compute/reference.html#boost_compute.reference.api_overview.algorithms

- Пример: передача данных с хоста на устройство посредством Boost.Compute
- Обработка данных на устройстве через функцию transform()
- Передача обработанных данных с устройства на хост

- Библиотека предоставляет возможность создавать пользовательские функции, для передачи в алгоритмы типа transform() и reduce()
- Boost.Compute поддерживает лямбдавыражения для передачи в соответствующие алгоритмы в качестве параметра

 Пример: использования собственных функций и лямбда-выражений для передачи в transform()

- Шаблонная библиотека векторных выражений
- Предназначена для облегчения разработки кода с использованием GPU
- В качестве бэкенда используются OpenCL/CUDA
- Поддержка вычислений на нескольких устройствах и платформах

- Библиотека предоставляет STL-подобный интерфейс для работы с контейнерами и алгоритмами
- Документация библиотеки

- Поставить boost (версия > 1.61)
- Скачать VexCL
- Сконфигурировать VexCL
 - cd /path_to_vexcl_directory/
 - cmake . -Bbuild

- cd /path_to_code_directory/
- ▶ Создать код с использованием VexCL
- Создать CMakeLists.txt по образцу
- Собрать свой код
 - mkdir build
 - cd build
 - · cmake ..
 - make

 Пример: получение списка GPU поддерживающих вычисления в двойной точностью и включение их в текущий контекст

- Основной фокус библиотеки операции над векторами
 - Векторы должны иметь одинаковый размер
 - Должны размещаться в памяти одного и того же устройства
- Каждая операция над векторами приводит к запуску вычислительного ядра

- Пример сложения векторов
- Пример создания пользовательской функции
- Пример сортировки

Задание на практику

• Редукция с использованием библиотеки VexCL или Boost.Compute