CLASE SABADO 17 DE FEBRERO 2024

DISEÑO DIGITAL

DISEÑO DIGITAL MODERNO

b) Implementación de funciones booleanas

Cualquier función booleana puede ser implementada con circuitos lógicos.

i. Implementación con interruptores

Ejemplo

Implementar una AND, OR y XOR con interruptores

Х	Υ	F
0	0	0
0	1	0
1	0	0
1	1	1

X	X Y F	
0	0	0
0	1	1
1	0	1
1	1	1

Para XOR

Χ	Υ	F
0	0	0
0	1	1
1	0	1
1	1	0

ii. Implementación con COMPUERTAS

Ejemplo 1

Implementar la siguiente función booleana utilizando compuertas

Implementar la siguiente función booleana utilizando exclusivamente compuertas NAND

Implementar la siguiente función booleana utilizando exclusivamente compuertas NOR

$$F = (A+B) (C+D')$$

$$= [(A+B) (C+D')]''$$

$$= [(A+B)' + (C+D')']'$$

TEMA 4. MINIMIZACIÓN

1. Definición

Minimizar es reducir una función booleana a su mínima expresión con el fin de optimizar la implementación. Existen 3 métodos de minimización:

A. Álgebra de Boole

Es un método 100% algebráico que me sirve para minimizar funciones booleanas con cualquier número de variables.

B. Mapas de Karnaugh

Método gráfico para minimizar funciones booleanas con un pequeño número e variables (máx. 5 ó 6)

Ej.
$$f(x)= 2x$$
 Mundo euclidiano

х	f(x)	
0	0	
1	2	
2	4	
3	6	

C. Quine McCluskey

Método tabular e iterativo, y por lo tanto susceptible de ser programado por computadora, y nos sirve para minimizar funciones booleanas con un gran número de variables.

2. Mapas de Karnaugh

a) Introducción

Un mapa de Karnaugh es una representación gráfica de un espacio booleano que puede contener una o varias funciones booleanas y equivale a una tabla de verdad.

b) Construcción de un mapa de Karnaugh

- 1.-Puesto que el mapa de Karnaugh representa un espacio booleano de **n** número de variables, al definir la región de cada variable (dominio) se generan cuadritos de forma tal que cualquier par de cuadritos inmediatos deben de corresponder a condiciones de combinaciones de variables lógicamente adyacentes, es decir, **QUE DIFIERAN EN UN SOLO BIT.**
- 2.-El mapa de Karnaugh debe ser lo más cuadrado posible
- 3.-Si deseamos representar un espacio booleano de **n** variables, el mapa de Karnaugh tendrá 2ⁿ cuadritos.

PROF: ING. ROBERTO MANDUJANO WILD

PENSAR TODO TODO EN POTENCIA DE 2

Ejemplo

Construir un mapa de Karnaugh de tres variables X, Y, Z.

PROF: ING. ROBERTO MANDUJANO WILD

PENSAR TODO TODO EN POTENCIA DE 2

Una vez que tenemos un mapa de Karnaugh podemos representar una función booleana.

Ejemplo

Representar la siguiente función booleana en un mapa de Karnaugh

X	Υ	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

z XY	00	01	11	10
0	0	0	1	1
1	1	1	0	0

PROF: ING. ROBERTO MANDUJANO WILD

PENSAR TODO TODO EN POTENCIA DE 2

I. Minimización en suma de productos utilizando mapas de Karnaugh Los pasos a seguir son:

- 1. Llenar el mapa de Karnaugh correspondiente con el valor de la función booleana, para ello es conveniente que la función booleana esté expresada en forma canónica o en una tabla de verdad.
- 2. Considerar las condiciones Don't care como *.
- 3. Agrupar los 1's adyacentes en grupos de números de unos potencia de 2 (1, 2, 4, 8, ...)
- 4. Si ayuda tomar los * como 1's se toman. Con el fin de hacer grupos MÁS GRANDES se vale tomar más de 1 vez los 1's siempre y cuando no existan conjuntos redundantes.
- 5. Identificar la mínima cantidad de grupos que agrupen a todos los 1's.
- 6. La función minimizada será igual a la suma de los dominios de esos grupos.
- 7. La minimización NO es única, pero SÍ mínima.

Una vez que tenemos una función booleana representada en un mapa de Karnaugh podemos minimizarla.

Ejemplo

Minimizar la siguiente función booleana utilizando un mapa de Karnaugh

X	Υ	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

f(X,Y,Z)sp=XZ'+X'Z

PENSAR TODO TODO EN POTENCIA DE 2

Dada la siguiente función booleana representada en un mapa de Karnaugh, minimizarla.

SI MEDIO ESTÁ, NO LO TOMO EN CUENTA

CD AB	00	01	11	10
00	0	0	*	0
01	0	0	*	1
11	1	0	*	*
10	0	1	*	*

Son adyacentes Debe ser lo más cuadrado posible

Hay 3 grupos:

- 1. Su dominio está en A y D ∴ AD
- 2. Su dominio está en BCD'
- 3. Su dominio está en B'CD

$$f(A,B,C,D) = AD + BCD' + B'CD$$

PROF: ING. ROBERTO MANDUJANO WILD

GRUPO GRANDE = DOMINIO PEQUEÑO

Minimizar la siguiente función booleana F(A, B, C, D, E) = \sum m (0, 2, 8, 11, 15, 18, 20, 21, 27, 28, 29, 31)

CONJUNTO REDUNDANTE

Es aquel conjunto donde todos sus elementos ya están agrupados en otro grupo.

F(A,B,C,D,E) = A'C'D'E' + B'C'DE' + BDE + ACD'