Matematica Discreta

Seconda test di autovalutazione

Esercizio 1.

Sia
$$F: \mathbb{R}^5 \to \mathbb{R}^5$$
 l'applicazione lineare
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 2x_2 + 3x_4 - 6x_5 \\ 2x_1 + 3x_2 + x_3 + 4x_4 - 9x_5 \\ x_1 + x_2 + x_3 + x_4 - 3x_5 \\ 2x_1 + 2x_2 + 2x_3 + 3x_4 - 8x_5 \\ -x_1 - x_2 - x_3 - 3x_4 + 7x_5 \end{pmatrix} \text{ e } \vec{v} = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 5 \\ -7 \end{pmatrix}.$$

- a.) Trovare una base di Ker(F).
- b.) Trovare una base di Im(F).
- c.) E' $\vec{v} \in Im(F)$?

Esercizio 2.

Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare, e la base naturale di \mathbb{R}^3 e $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$, dove F

è dato dalla matrice
$$[F]_e^e = \begin{pmatrix} 2 & 2 & -1 \\ -3 & -1 & 3 \\ 0 & 2 & 1 \end{pmatrix}, \ \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} \ e \ \vec{v}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

- a.) Dimostrare che $b = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ è una base di \mathbb{R}^3 .
- b.) Trovare le matrici di cambiamento di base $[I]_e^b$ e $[I]_b^e$.
- c.) Scrivere la relazione che lega la matrice $[F]_e^b$ con $[F]_b^b$ e calcolare $[F]_b^b$. d.) Sia $\vec{v} = \vec{v}_1 \vec{v}_2 + \vec{v}_3$. Trovare $F^{123456789}(\vec{v})$.

Esercizio 3.

Consideriamo in
$$\mathbb{R}^3$$
 il piano $\pi_1: x+2y-3z=6$, la retta $l=\left\{\begin{array}{ll} x=3+2t\\ y=3-t\\ z=1 \end{array}\right.$, $t\in\mathbb{R}$, e il punto $P=(1,2,1)$.

- a.) Dimostrare che la retta l è contenuta nel piano π_1 .
- b.) Calcolare la distanza tra il punto P e il piano π_1 .
- c.) Trovare l'equazione cartesiana del piano perpendicolare a π_1 che contiene il punto P e interseca π_1 in una retta paralello ad l.

Esercizio 4.

Sia $R: \mathbb{R}^2 \to \mathbb{R}^2$ la rotazione di anglo $\frac{\pi}{2}$ in senso anti-orario e sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ la riflessione rispetto alla retta x - y = 0.

- a.) Trovare la matrice della applicazione lineare $R^{-1} \circ T \circ R$.
- b.) Stabilire se $R^{-1} \circ T \circ R$ è una riflessione, rotazione o nessuno dei due.

Esercizio 5.

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $T^2(\vec{v}) = \vec{0}$ per ogni $\vec{v} \in \mathbb{R}^3$.

Dimostrare che esiste una base b di \mathbb{R}^3 e $a \in \{0,1\}$ tale che $[T]_b^b = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & \alpha \end{pmatrix}$.

Esercizio 6.
6.1. Sia
$$s \in \mathbb{R}$$
 e siano $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 2 \\ 1 \\ s \end{pmatrix}$ e $\vec{v}_3 = \begin{pmatrix} 3 \\ s \\ s \end{pmatrix}$. Allora $\vec{v}_1, \vec{v}_2, \vec{v}_3$ sono linearmente independenti a.) se e solo se $s \notin \{0, 1\}$. b.) se e solo se $s \neq 1$. c.) se e solo se $s \neq 0$. d.) nessune delle risposte date.

- 6.2. In \mathbb{R}^2 la rette 2x + y = 5 e la retta $\begin{cases} x = 3 + 2t \\ y = 5 4t \end{cases}$, $t \in \mathbb{R}$, sono a.) uguali. b.) paralelle e diverse. c.) perpendicolari. d.) nessuna della precedenti.
- 6.3. Stabilire se le affermazioni sono vero o falso

A. L'applicazione
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dato da $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 - 2x_2 \\ 0 \end{pmatrix}$ è lineare.

B. Siano $\vec{u}, \vec{v} \ \vec{w} \in \mathbb{R}^3$. Se $\vec{u}, \vec{v}, \vec{w}$ sono linearmente dipendenti, allora $\vec{u} = k\vec{v} + l\vec{w}$, per certi $k, l \in \mathbb{R}$.

- a.) A e B sono entrambi vero.

c.) A è vero e B è falso.

b.) A e B sono entrambi falso.

d.) A è falso e B è vero.

Per gli esercizi 1, 2, 3, 4, e 5 le risposte devono essere giustificate. Per l'esercizio 6 basta solo rispondere. Ogni scorettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.