Programmazione I Lezione 14

Mini-test

https://forms.gle/W5Wrex2jtgyKmopB9

Torniamo alla rappresentazione dei dati

Overview:

- Codifica tipi int; l'idea della rappresentazione in complemento a 2
- Tipi float e memoria; lo standard IEEE 754
- Tipi rune; ASCII, UNICODE e UTF8
- Tipi string

Approfondimento: base 16 (esadecimale)

Base 10	Base 2	Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Torniamo alla rappresentazione dei dati:

- Esercizio preparatorio:
 contare le cifre di un numero intero, e stamparne la somma
- Esercizio preparatorio:
 dalla base 10 alla base 2
 dalla base 2 alla base 10
 dalla base 2 alla base 16
- Stampa formattata in go e "format verbs":

```
%b base 2
%d base 10
%x base 16, with lower-case letters for a-f
%X base 16, with upper-case letters for A-F
```

Rappresentazione complemento a 2

valore di partenza
(Puro flip di ogni bit)

complemento a 2
(flip + 0000 0001)

```
Bit di segno

0100 1100 76 1011 0100 -76

(1011 0011) (0100 1011)

1011 0100 -76 0100 1100 76
```

```
0100 1100 +
1011 0100 =
0000 0000
```

Recap: il sistema dei tipi

- Tipi "base" in GO
 - bool
 - string
 - int int8 int16 int32 int64
 - uint uint8 uint16 uint32 uint64 uintptr
 - byte // alias for uint8
 - rune // alias for int32, represents a Unicode code point
 - float32 float64
 - complex64 complex128
- int e uint sono "implementation dependent" (32 o 64 bit)
- Bit, byte, word, allineamento dei dati in memoria (libreoffice)