$\begin{array}{c} \textbf{Discrete Structures} \\ \text{Set Theory} \end{array}$

Nathan Warner

Computer Science Northern Illinois University August 1, 2023 United States

Contents

1	Set T	Theory
	1.1	Definition of a set
	1.2	Number Sets
	1.3	Set Equality
	1.4	Set-Builder Notation
	1.5	Types of Sets
	1.6	Subsets
	1.7	Power Sets
	1.8	Cartesian Product
	1.9	Cartesian Plane
	1.10	Venn Diagram
	1.11	Set Operations (Union and Intersection)
	1.12	Properties of Union and Intersection
	1.13	Set Operations (Difference and Complement)
	1.14	Properties of Difference and Complement
	1.15	De Morgan's Laws
	1.16	Partition of Sets

1 Set Theory

1.1 Definition of a set

Definition: A **set** is a collection of elements

We denote sets with the following syntax:

$$A = \{1, 2, 3, 4\}.$$

Where in this case A is the identifier and it's elements are delimited by commas and encapsulated among braces

Note: The identifier for sets are commonly represented with capital letters

We can also indicate *infinitely many* elements in a set by use of the **ellipsis**, which would look like:

$$A = \{1, 2, 3, ...\}$$

$$Generally: A = \{A_1, A_2, A_3, ..., A_n\}.$$

More Notation: We can indicate that an object is an **element** of a set with the following syntax:

$$A = \{1, 2, 3, 4\}$$
$$3 \in A.$$

1.2 Number Sets

The set of **Natural Numbers** (whole numbers) is denoted by \mathbb{N} :

$$\mathbb{N}: 1, 2, 3, ...$$

The set of **Integers** is denoted by \mathbb{Z} :

$$\mathbb{Z}: -5, -4, -3-, 2, -1, 0, 1, 2, 3, 4, 5, \dots$$

So you can see the set of all integers is similar to that of the natural numbers, however this set includes negative numbers

The set of **Rational numbers**, (ratio of two integers), is denoted by \mathbb{Q} :

$$\mathbb{Q}:\frac{1}{6},\frac{1}{4},\frac{1}{2},\dots$$

The set of **Irrational numbers**, is denoted by $\overline{\mathbb{Q}}$:

$$\bar{\mathbb{O}}: \pi, e, \sqrt{2}, \ etc.$$

Note:-

for a number to be considered irrational, they cannot be exactly represented as fractions of integers and have non-repeating, non-terminating decimal representations. Thus, the following condition must hold:

$$x \text{ is irrational } \Longleftrightarrow \frac{a}{b}, \quad \text{where } a \wedge b \notin \mathbb{Z} \text{ and } \gcd(a,b) = 1..$$

The set of all **Real numbers** is denoted by \mathbb{R} :

 \mathbb{R} : Both rational and irrational numbers.

The set of all **imaginary numbers** is denoted by \mathbb{I} :

$$\mathbb{I}:\ i^2=-1,\ i=\sqrt{-1}$$

$$Ex:\ \sqrt{-9}=\sqrt{9}\cdot\sqrt{-1}=3i.$$

The set of **Complex numbers**, which describes numbers that are comprised of two components, one real and one imaginary, and is denoted by:

$$\mathbb{C}: 2+3i$$
.

In summary:

- \mathbb{N} : Denotes the set of all **Natural Numbers**
- \mathbb{Z} : Denotes the set of all **Integers**
- \mathbb{Q} : Denotes the set of all **Rational Numbers**
- \mathbb{Q} : Denotes the set of all **Irrational Numbers**
- ullet I: Denotes the set of all **Imaginary Numbers**
- \mathbb{C} : Denotes the set of all **Complex Numbers**

Figure:

1.3 Set Equality

Definition: An **axiom** is a rule or statement that is generally accepted to be true without proof. An **Axiom of Extension** is a set determined by what its elements are - not the order in which they might be listed or the fact that some elements might be listed more than once.

Consider the sets:

$$A = \{1, 3, 5, 1, 5, 5, 3\}$$
$$B = \{1, 3, 5\}.$$

Because of the **Axiom of Extension**, which states that a set is not determined by the order or possible repetitions, we can conclude that A = B.

Furthermore, we can conclude that we only have 3 elements amongst set A, although it may seem like we have 7.

1.4 Set-Builder Notation

Set-Builder is a convention we can use when dealing with sets to imply the elements of a set without listing all of its values.

Suppose we have:

$$x = -5, 4, 3, -10, -5, 2, 0.$$

Then:

$$\{x|x<0\}$$
 Reads: "The set of all x's such that (pipe) x is less than zero" = $\{-10, -5\}$.

So naturally you can infer that this set would be all x's from are defined pool of x values that are negative.

Additionally, we can utilize Number Sets:

$${x \in \mathbb{R} | -2 < x < 5}.$$

1.5 Types of Sets

- Universal Set: Denoted U, represents the collection of all possible elements or objects that are under consideration for a particular context or problem.
- Empty Set (Null set): Denoted \emptyset (phi), represents a set that contains no elements
- Singleton Set: Represents a set that only has one element
- Finite Set: Represents a set that has a countable number of elements
- Infinite Set: Represents a set that has an infinite amount of elements
- Subset: A set in which all elements are part of a larger set

Definition: Cardinal Number of a Set: is the number of elements in a set, denoted n(A). Where, in this case, A represents the name of the set.

Consider the set:

$$A = \{1, 2, 3\}$$

Then: $n(A) = 3$.

Where n(A) = 3 represents the cardinal number of the set

Definition: Equivalent Set: Represents sets that have the same *Cardinal Number*. To show that two sets are equivalent, we can use the notation:

$$A \sim B$$
.

Which shows that the cardinality of A equals the cardinality of B

Consider the sets:

$$A = \{1, 4, 5\}$$
$$B = \{6, 8, 10\}.$$

Then we can say:

$$A \sim B$$
.

1.6 Subsets

Definition. If **A** and **B** are sets, then **A** is called a **subset** of **B**, written $A \subseteq B$, if and only if every element of **A** is also an element of **B**

If A is a subset of B, and B has at least one additional element that is not in A, then Aa is called a proper subset of B

1.7 Power Sets

Definition. The **Power set** of A, denoted P(A), is the set of all subsets of A

Consider the set:

$$A = \{1, 2, 3\}.$$

Then by the power set of A, P(A), would be:

$$P(A) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

To calculate how many subsets are possible within a set, we can compute:

 2^n

Where n_a is the number of elements in the set.

1.8 Cartesian Product

Definition: Given sets **A** and **B**, the **Cartesian product** of **A** and **B**, denoted $A \times B$, and read "**A** cross **B**", is the set of all ordered pairs (a, b), where a is in **A**, and b is in **B**.

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}.$$

Consider the sets:

$$A = \{1, 2\}$$

 $B = \{c, d\}.$

Then:

$$A \times B = \{(1, c), (1, d), (2, c), (2, d)\}.$$

Consider the sets:

$$A = \{1, 2\}$$

$$B = \{\$, !\}$$

$$C = \{x, y\}.$$

Then:

$$A\times B=\{(1,\$),(1,!),(2,\$),(2,!)\}$$

$$(A\times B)\times C=\{((1,\$),x),((1,\$),y),...,so\ forth\}.$$

1.9 Cartesian Plane

Figure:

The way in which we denote all the possible points on the Cartesian plane is by denoting a cartesian product

$$\mathbb{R} \times \mathbb{R}$$

$$Or: \{(a,b) \mid a \in \mathbb{R}, \ b \in \mathbb{R}\}$$

$$Or: \{(a,b) \mid (a,b) \in \mathbb{R}^2\}.$$

1.10 Venn Diagram

Definition: We use **Venn Diagram** to show relationships between sets

Consider the sets:

$$A = \{1, 2, 3, 4\}$$
$$B = \{3, 4, 5, 6\}.$$

With these two sets, we can construct the following Venn Diagram:

1.11 Set Operations (Union and Intersection)

We can use **set operations** on sets to create new sets

Set operators:

- U: Denotes Union, to find the union of two sets, we combine the elements of both sets into a new set
- \cap : **Denotes Intersection**, to find the intersection of two sets, we find the elements that are common in both sets.

Union:

Consider the sets:

$$A = \{1, 2, 3\}$$

 $B = \{4, 5, 6\}.$

Then:

$$A \cup B = \{1, 2, 3, 4, 5, 6\}.$$

Intersection:

Consider the sets:

$$A = \{1, 2, 3\}$$

 $B = \{3, 5, 6\}.$

Then:

$$A \cap B = \{3\}.$$

1.12 Properties of Union and Intersection

- $A \cup B = B \cup A$, $A \cap B = B \cap A$ (Commutative Law)
- $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$ (Associative Law)
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive Law)
- $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$
- $A \cup U = U$
- $A \cup A = A$, $A \cap A = A$ (Idempotent Law)

1.13 Set Operations (Difference and Complement)

Difference:

Consider the sets:

$$A = \{1, 2, 3, 4\}$$
$$B = \{4, 5, 5\}.$$

Then A - B, read "A Difference B", would be:

$$A - B = \{1, 2, 3\}.$$

Complement

Consider the sets:

$$U = \{1, 2, 3, 4, 5\}$$
$$A = \{1, 2\}.$$

Then the complement of A would be:

$$A^c = \{3, 4, 5\}.$$

1.14 Properties of Difference and Complement

- $A \cup A^c = U$
- $(A^c)^c = A$
- $U^c = \emptyset$, $\emptyset^c = U$
- $\bullet \quad A-B=A\cap B^c$

1.15 De Morgan's Laws

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

1.16 Partition of Sets

Definition: Two sets are called **disjoint**, if and only if they have no elements in common. A finite or infinite collection of non empty sets $\{A_1, A_2, A_3, ..., \}$ is a Partition of a set A, if and only if

- 1. A is the union of all of the sets
- 2. The sets are mutually disjoint