多媒體技術概論 AS4

105060016 謝承儒

Prob1. Bézier curve

實作功能

- 1. Bézier curve
 - (1) 按照投影片給予的公式來作計算,如下:

$$P(t) = T * M * G$$

其中

$$\mathbf{T} = [t^3 \ t^2 \ t^1 \ 1], M = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, G = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

- (2) 將 point[1]~ point[4]~ point[4]~ point[7]~ point[7]~ point[10]、...、point[34]~point[37] 這樣 4 點一組依序放入 G 的 p₀~p₃
- (3) 每放入一組 point 到 G,就按照 detail 所給的 t 值,放進步驟(1)的式子,即可得到這 4 點所組成的 Bézier curve

<u>結果圖片</u>

圖 1 Input Image

1-(a) detail = 0.002

圖 2 Low detail v.s. High detail

圖 3 1b.png

分析以及討論

1. Low Detail v.s. High Detail

由上表可以明顯看出,當 detail 越低,那麼畫出來的 Curve 就會有稜有角(如圖 4);反之,當 detail 越高, Curve 就會越圓滑(如圖 5)。

2. Discuss the results in (1b)

可以很明顯看出若是直接放大畫好線的圖(圖 6),那麼 Bézier curve 也會隨之變成一般 pixel 的樣子,失去它原有的特性。

而若是放大圖後,並跟著放大 point 的位置再畫線(圖 7),就可以得到跟圖片放大前一樣的 Bézier curve。

Prob2. 3D Models

結果圖片

圖 8 center 在(0,0)的川普

圖 10 Position Light v.s. Directional Light
Positional Light 用 light('Position',[0 0 1],'Style','local')

Directional Light 用 light('Position',[0 0 1], 'Style','infinite')

圖 11 不同的 coefficients (光源採用 light('Position',[-100],'Style','local'))

分析以及討論

1. Discuss different lightning in (2c)

為了更好作比較,都將 Position 都設置成(0,0,1)。

可以看出在左邊的圖裡,離中心越遠時,cone 的顏色就越有自己的顏色,這是因為越外圍的光 反射角度就越大,就不會因為光直接反射回去的原因,導致看起來是白色的。

而在右邊的圖裡,因為光源在無窮遠處,所以光打在 cone 上面時,反射角幾乎是 0,也是就是 說光會反射回去,導致發生 Specular 讓整體看起來是白色的。

2. Discuss different strength in (2d)

ka是控制環境光的反射程度、ka是控制光源的反射程度、ks是控制 Specular。

因為環境光是照射整個物體,所以當 ka 越高,整個物體的顏色就越能被明顯的看見。因此,圖 11 中左上的圖才能夠顯現出整個物體的顏色(ka=1)。

而將 k_d=1 的後果就是靠近光源的部分會被照亮,也就是靠近[-100]的部分,就如同圖 11 中左上的圖右上的圖。

同樣的,在圖 11 中下方的兩張圖,左下是 k_d =0.1、右下是 k_d =0.5,也能很明顯看出靠近[-100]的 部分變亮。

至於 ks 我們可以由上面兩張圖和下面兩張圖做比較,上方的 ks=0、下方的 ks=1,就可以看出下方的物體上多出了些光澤,這就是 Specular。