

區塊圖形編輯設計

Outline

- 基本概念複習
- 區塊圖形編輯設計
- Quartus Prime補充
- 課堂練習

基本概念複習

Logic Gate Symbols and Behavior

Logic gates symbols:

Timing diagram(waveform)
$$X = \begin{bmatrix} 0 & 0 & 1 & 1 \\ Y & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$(AND) \quad X \cdot Y = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$(OR) \quad X \cdot Y = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$(NOT) \quad \overline{X} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$$

Logic Gates

Name	Graphic symbol	Algebraic function	Truth table		
			x y 1		
AND	<i>x</i>	$F = x \cdot y$	0 0 0		
			0 1 (
			1 0 (
			1 1 1		
o.p.	x y F	F = x + y	x y 1		
			0 0 0		
OR			$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$		
			1 0 1		
			1 1 1		
Inverter	xF	F = x'	$x \mid F$		
			0 1		
			$\begin{array}{c c} 0 & 1 \\ 1 & 0 \end{array}$		
			20, 1,1 0000		
Buffer	<i>x</i> —— <i>F</i>	F = x	x F		
			0 0		
			$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$		

			х	y	F
NAND	x	F = (xy)'	0	0	1
	y	$\Gamma - (xy)$	0	1	1
	•		1	0	1
			1	1	0
			х	y	F
NOR	x y F	F = (x + y)'	0	0	1
			0	1	0
			1	0	0
			1	1	0
Exclusive-OR (XOR)	x y F	$F = xy' + x'y$ $= x \oplus y$	х	у	F
			0	0	0
			0	1	1
			1	0	1
			1	1	0
Exclusive-NOR or equivalence		$F = xy + x'y'$ $= (x \oplus y)'$	х	у	F
	$x \longrightarrow F$		0	0	1
			0	1	0
		10 (\$15)	1	0	0
			1	1	1

Expressions of Logic Function

Truth Table

Truth Tubic				
XYZ	$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \times \mathbf{Z}$			
000	0			
001	1			
010	0			
011	0			
100	1			
101	1			
110	1			
111	1			

Equation

$$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \mathbf{Z}$$

Logic Diagram

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not.

Boolean Algebra

• An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and) that satisfies the following basic identities:

$$1. X + 0 = X$$

3.
$$X + 1 = 1$$

5.
$$X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{X} = X$$

$$2. X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

10.
$$X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

14.
$$X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$(XY)Z = X(YZ)$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

K-Map

A	В	C	D	X
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

CD AB	00	01	11	10
00	To the second se	1	3	1
01	4	1 5	7	6
11	12	13 1	15	14
10	8	9	11	10

$$F(w, x, y, z) = C' + A'D' + BD'$$

 $F(A, B, C, D) = \sum (0,1,2,4,5,6,8,9,12,13,14)$

F(A, B, C, D) = A'B'C'D'+A'B'C'D+A'B'CD'+A'BC'D'+A'BC'D+A'BCD'+AB'C'D'+AB'C'D+ABC'D'+ABC'D'+ABCD'

區塊圖形編輯設計

• 開啟專案(1/3)

New...

Open...

Close

New Project Wizard...

Ctrl+N

Ctrl+O

Ctrl+F4

• 開啟專案(2/3)

• 開啟專案(3/3)

Quartus Prime 電路功能模擬

New New

Quartus Prime

Insert Node or Bus

Name:

Use Node Finder to insert

X

OK

• Insert Node(2/2)

Name Graphic symbol Algebraic Truth table

AND $x - F = x \cdot y$ $F = x \cdot y$ F

×

Clock

• 設定所有 Input 訊號 (1/3)

Name Graphic symbol Algebraic Truth table

AND $x = F = x \cdot y$ x = y = FAND $x = F = x \cdot y$ x = y = F

X

Clock

• 設定所有 Input 訊號 (1/3)

• 設定所有 Input 訊號 (3/3)

• 開始模擬

• 模擬結果

Quartus Prime 補充

Quartus Prime 補充(一)

• 建立電路符號檔和轉檔(1/2)

Quartus Prime 補充(一)

• 建立電路符號檔和轉檔(2/2)

Quartus Prime 補充(二)

Quartus Prime 補充(二)

• 轉檔(HDL)(2/2)

課堂練習

實驗一:Quartus操作練習

- 請完成下列邏輯表示式之:
 - a) 真值表
 - b) 最簡SOP
 - c) 電路設計並下載至DE10-Lite
 - d) 模擬波形圖

 $Y(A, B, C, D) = \sum (0, 1, 4, 5, 6, 8, 9, 10, 12, 13, 14)$

- Pin Definition : $A(C12) \cdot B(D12) \cdot C(C11) \cdot D(C10) \cdot Y(A8)$
- 本次實驗需助教確認正確,並將專案跟文件資料(真值表、最簡SOP···)壓縮上傳EE-Class。
- Lecture4_組別XX. ZIP