Sprawozdanie ćwiczenia 2

Autor: Krzysztof Buczek

1. Zmontować układ różniczkujący, o stałej czasowej τ =RC z przedziału (0.1 - I) ms. Podając na wejście tego układu napięcie sinusoidalne zmierzyć stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w szerokim przedziale częstotliwości (charakterystyka częstotliwościowa). Sporządzić wykres krzywej doświadczalnej k(f) = Uwy(f) / Uwe(f) w funkcji częstotliwości f. Wyznaczyć częstotliwość graniczną. Jej wartość powinna być bliska fd = (2 π RC)-1 . Nanieść krzywą teoretyczną k(f) = (f/fd)[1 + (f/fd) 2] -1/2 . Sporządzić wykres zależności kąta fazowego θ od częstotliwości. Określić θ dla f= fd .

Filtr - fragment obwodu elektycznego, który w określonym zekresie częstotliwości blokuje lub przepuszcza sygnały. Najczęstszym zastosowaniem filtrów jest usunięcie z sygnału zakłóceń lub nieporządanych składowych.

Podział filtrów ze względu na przeznaczenie:

- Dolnoprzepustowe
- Górnoprzepustowe
- Środkowoprzepustowe
- Środkowzaporowe

Wykres częstotliwości 10kHz:

Dla 10kHz filtr górnoprzepustowy przepuszcza wszystko bez większy zmian.

Wykres częstotliwości 1kHz:

Prawie taka sama sytuacja, jak w poprzednim przypadku.

Wykres częstotliwości 100Hz:

Przy 100Hz widać już wyraźną zmianę na wykresie.

Wykres częstotliwości 10Hz:

Częstotliwość graniczna:

```
R = 1k\Omega, C = 1 * 10^(-6) F
fd = 1 / (2 * \pi * R * C) \cong 1 / (2 * 3,14 * 1000 * 1 * 10^(-6)) \cong 1000 / 6,28 \cong 159,236 Hz
```

2. Sprawdzić odpowiedź układu różniczkującego na podawane na wejście impulsy prostokątne o okresie T mniejszym, porównywalnym i większym od stałej czasowej τ . Zaobserwować odpowiedź układu na impuls trójkątny.

Syganł wejściowy (zielony) jest różniczkowany, a wynikiem tej różniczki jest sygnał w przybliżeniu prostokątny. Wysokie częstotliwości są przepuszczane bez zmiany sygnału, im niżej z częstotliwością, to sygnały tym bardziej są tłumione I różniczkowane.

3. Przekonstruować badany układ różniczkujący na układ całkujący. Podając na wejście impulsy prostokątne z generatora o okresach T z przedziału (0.5 - 10)τ i amplitudzie kilku woltów zaobserwować oraz sporządzić rysunki impulsów wyjściowych. Dla T = 5τ wyznaczyć: - czas narastania impulsu. - τ układu całkującego.

T = T

T = 5**T**

T = 10**T**

Układ całkujący jest filtrem dolnoprzepustowym, więc przepuszcza tylko niskie częstotliwości I całkuje funkcję prostokątną.

Gdy mamy krótki okres sygnału, sygnał wyjściowy jest podobny krztałetem do sygnału trójkątnego. W miarę wydłużania okresu sygnału wejściowego, sygnał wyjściowy coraz bardziej zaczyna go przypominać. Dla dłużej trwającego sygnału następuje naładowanie kondensatora.

4. Zbudować układ rezonansowy RLC i wyznaczyć jego funkcję odpowiedzi dla sygnałów sinusoidalnych.

Obwody RLC – obowody elektryczne, które składają się z 3 elementów pasywnych:

- R rezystora
- L cewki
- C kondensatorów

Rezonans elektryczny – zjawisko, które w obwodzie elektrycznym zawierającym, np. rezystor i kondenstor, następuje dla pewnych częstotliwości prądu. Rezystancja opornika równoważy się z pojemnością kondensatora.

Częstotliwość rezonansowa:

W = 1 / (2 *
$$\pi$$
 * sqrt(L C))
W = 1 / (2 * 3,14 * sqrt(1 * 10^(-11)) \cong 50,329 kHz

Otrzymana wartość ze wzoru zgadza się z wartością na wykresie. Układ elektryczny jest filtrem środkowo-przepustowym, który przepuszcza tylko ten zakres częstotliwości.