Prof. Dr. Adrian Ulges

Empolis Workshop "Machine Learning"

Klassifikation

Hochschule RheinMain Department DCSM (Design, Computer Science, Media)

Überblick

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Klassifikation

- Probabilistische Klassifikation (Naive Bayes)
- Maximum Entropy
- Entscheidungsbäume und Random Forests
- Feature Engineering
- Python-Beispiel: News-Klassifikation

Fachbereich DCSM / Informatik Hochschule RheinMain

- Wir unterscheiden zwei generelle Arten von Klassifikatoren: Generative Methoden und Diskriminative Methoden
- Wir zerlegen P(c|x) mit der Bayes'schen Regel

- Diskriminative Methoden: Berechnen ein "direktes" Modell für P(c|x) (bzw. die Entscheidungsgrenze)
- Generative Methoden: Berechnen P(c|x), indem sie Modelle für P(c) und p(x|c) aufstellen

Hochschule RheinMain

Generative Ansätze

- Im Folgenden: Eine einfache generative Methode (Naive Bayes) (später eine diskriminative (logistische Regression))
- Wir müssen also P(c) und P(x|c) berechnen
- Der Prior P(c) ist "einfach" zu schätzen: Wir messen die Häufigkeit der Klassen in der Trainingsmenge
 - Beispiel: "Jede zehnte Mail ist SPAM"
 → P("SPAM")=0.1, P("NO_SPAM")=0.9
 - **Beispiel**: "relevante Dokumente sind sehr unwahrscheinlich" $\rightarrow P(1) = 10^{-7}$
- Die *class-conditional Density P(x|c)* ist komplizierter zu schätzen.

Naive Bayes

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

 Naive Bayes ist ein generatives Lernverfahren (deshalb "Bayes")

$$P(c|x) = \frac{P(c) \cdot P(x|c)}{P(x)}$$

- Problem: Ist der Merkmalsvektor x hochdimensional, ist die classconditional density P(x|c) immer schwieriger zu lernen
- Beispiel: Sei x ein Boolescher Vektor mit n Merkmalen, (x₁,x₂,...,x_n)
- Dann entspricht P(x|c) einer Wertetabelle
- Die Wertetabelle hat 2ⁿ Einträge

Beispiel: Spamfilter

- Zwei Klassen (SPAM, HAM)
- Zwei Merkmale (n=2)
 - x₁: Absender ist bekannt
 - x₂: Term "viagra" enthalten

Klasse 1 (SPAM) Klasse 2 (HAM)

X ,(Absender)	X ₂ ("Viagra")	$P(x_1, x_2 spam)$	X ₁ (Absender)	X_2 ("Viagra")	P(x ₁ ,x ₂ ham)
0	0	0.77	0	0	0.18
0	1	0.20	0	1	0.02
1	0	0.01	1	0	0.78
1	1	0.02	1	1	0.02
\	7				

"20% aller Spam-Mails kommen von unbekannten Absendern und enthalten den Term "Viagra"

Fachbereich DCSM / Informatik Hochschule RheinMain

- Ist n groß, können wir all diese Einträge nicht mehr zuverlässig lernen ("curse of dimensionality")
- Beispiel: Spam-Filter

x als Bag-of-Words-Vektor (welche Terme kommen in einer E-Mail vor, welche nicht?)

n=1			
"Viagra"	P(x spam)		
0	0.78		
1	0.22		

n=2				

.. n=10,000 ?

Jeden dieser Einträge müssen wir aus einer Trainingsmenge **schätzen** (oder "lernen")!

Hochschule RheinMain

Naive Bayes

- Ziel: Vereinfache P(x|c)!
- Ansatz: Wir nehmen an, dass die einzelnen Einträge des Merkmalsvektors (gegeben die Klasse c) unabhängig sind (deshalb "naiv")
- Dann folgt:

$$P(\mathbf{x}|c) = P(x_1, x_2, ..., x_n|c)$$

= $P(x_1|c) \cdot P(x_2|c) \cdot ... \cdot P(x_n|c)$

- Im Beispiel: Wir speichern nicht mehr eine große Wertetabelle, sondern für jedes Merkmal eine kleine (2ⁿ Einträge → 2×n Einträge)
- Auch mit einer begrenzten Trainingsmenge können wir die benötigten Wahrscheinlichkeiten nun zuverlässig schätzen!

 Die Entscheidungsregel des Naive Bayes Klassifikators lautet also:

$$c^* = \arg \max_{c} P(c|\mathbf{x})$$

$$= \arg \max_{c} \frac{P(c) \cdot P(\mathbf{x}|c)}{P(\mathbf{x})}$$
 // ignoriere P(\mathbf{x}), weil nicht von \mathbf{c} abhängig
$$= \arg \max_{c} P(c) \cdot P(\mathbf{x}|c)$$

$$= \arg \max_{c} P(c) \cdot P(x_1, x_2, ..., x_n|c)$$

$$= \arg \max_{c} P(c) \cdot \prod_{i=1}^{n} P(x_i|c)$$

 Die Form von P(x_i|c) (z.B. Bernoulli-Verteilung) hängt vom konkreten Problem ab

Naive Bayes: Beispiel

$$c^* = \arg\max_{c} P(c) \cdot \prod_{i=1}^{n} P(x_i|c)$$

- SPAM-Filter: E-Mails werden mittels boolescher Bag-of-Keywords-Merkmale repräsentiert
- Auf einer Trainingsmenge annotierter E-Mails haben wir die Daten rechts gelernt
- Wir wissen außerdem: 25% aller E-Mails sind SPAM
- · Wir klassifizieren folgende Mail:

i need urgently	money	please	help
me i need 777L	JSD moi	ney. i w	ill give
back your mone	∋y.		

if you are able to do my help .then i will give you my bank account no.

term	P(term spam)	P(term ham)
viagra	0.05	0.001
money	0.10	0.01
bank	0.09	0.02
mom	0.02	0.05
exam	0.001	0.01
artificial	0.0001	0.001
intelligence	0.0001	0.002
please	0.08	0.07

Naive Bayes: Diskussion

Prof. Adrian Ulges
Fachbereich DCSM / Informatik
Hochschule RheinMain

- Naive Bayes führt eine starke
 Vereinfachung mittels der
 Unabhängigkeitsannahme durch
- Folgen: siehe rechts
- Diese Annahme ist in der Praxis häufig verletzt (Beispiel: Klassifikation von Münzen: Sind Durchmesser und Gewicht unabhängig?)
- Naive Bayes erzielt bei sehr hochdimensionalen Daten oder sehr kleinen Trainingsmengen dennoch gute Ergebnisse
- Wird häufig als Baseline verwendet

Original

P(x|C=1)

Naive Bayes

Logistische Regression

Entscheidungsbäume

Entscheidungsbäume in Experten-Systemen

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Entscheidungsbäume

Prof. Adrian Ulges Fachbereich DCSM / Informatik

Fachbereich DCSM / Informatik Hochschule RheinMain

- Der populärste
 Klassifikator weltweit¹
 - flexibel (fehlende und nicht-numerische Merkmale, Regression)
 - einfach, schnell, transparent
- Ansatz: Wähle Klasse auf Basis rekursiver einfacher Entscheidungen

Schlüsselfrage:
 Lernen → Konstruiere
 Baumstruktur auf
 Basis gelabelter
 Samples

Lernen im Entscheidungsbaum

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

- Ansatz: Rekursiver
 Aufbau des Baums
- Greedy-Strategie: In jedem Schritt...
 - ... wähle das "beste" Merkmal
 - ... splitte den Datensatz anhand des Merkmals in **Submengen**
- Verfahre rekursiv und breche ab, falls der Datensatz nur noch Samples einer Klasse enthält (wir bezeichnen den zugehörigen Knoten als "rein" oder "pure").

- Drei populäre Entscheidungsbaum-Modelle
 - ID3
 - C4.5
 - CART

Beispiel

- Je "reiner" ("purer")
 die Verteilung der
 Klassen in den
 Submengen, desto
 besser das Merkmal
- Wir wollen in den Kindknoten eine niedrige Entropie erreichen! Das resultierende Maß heißt "Information Gain"

Objekt	Farbe	PS	Klasse
	rot	viele	teuer
F	blau	viele	teuer
***	rot	wenig	günstig
	blau	wenig	günstig
	blau	wenig	günstig

Information und Entropie

Prof. Adrian UlgesFachbereich DCSM / Informatik
Hochschule RheinMain

- Wahrscheinlichkeitstheoretischer *Informationsbegriff*: Gegeben sei eine diskrete Verteilung mit *Wahrscheinlichkeiten* p₁,...,p_m
- Idee: Die Verteilung $\mathbf{p} = (\mathbf{p_1}, ..., \mathbf{p_m})$ enthält mehr Information, je mehr "Unsicherheit" in ihr steckt
- Informationsmaß: Die Entropie H(p₁,...,p_m)

Claude Shannon

Entropie

$$H(p_1, ..., p_m) = -\sum_{i=1}^m p_i \cdot \log_2(p_i)$$
 (mit $0 \cdot \log_2(0) := 0$)

Wir berechnen die Entropie für

- a) $(p_1, p_2, p_3, p_4) = (0, 0.5, 0.25, 0.25)$
- b) $(p_1, p_2, p_3, p_4) = (0, 1, 0, 0)$

Fachbereich DCSM / Informatik Hochschule RheinMain

- Sei F ein Merkmal (z.B. "Farbe") mit Werten f₁, …, f_K
 (z.B. "rot", "blau", "silber")
- Sei $X = \{(x_1, y_1), ..., (x_n, y_n)\}$ die Menge von Samples $(x_i \text{ bezeichnet einen } Merkmalsvektor, y_i \text{ ein } Label)$
- Das Merkmal **F** zerlegt **X** in Teilmengen $X_1, ..., X_K$ mit

$$X_k := \{(x, y) \in X | F(x) = f_k \}$$

- Ziel: Finde das Merkmal, das zu den "puresten" Klassenlabels in X₁,...,X_K führt!
- Gegeben eine Menge von Samples X', definieren wir die Häufigkeitsverteilung der Klassen in X'

$$(p_1, ..., p_C)$$
 mit $p_c := \frac{\#\{(x,y) \in X' | y = c\}}{\#X'}$

Formalisierung: Information Gain

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

 Wir definieren die Entropie einer Menge X' als die Entropie der zugehörigen Klassenverteilung

$$H(X') := H(p_1, ..., p_C)$$

Dann lautet der Information Gain

$$Gain(X, F) := H(X) - \sum_{k=1}^{K} \frac{\#X_k}{\#X} \cdot H(X_k)$$

- Wir wählen für den Split das Merkmal F*, welches Gain(X,F) maximiert
- F* entspricht dem Merkmal, das die Entropie der entstehenden Submengen (gewichtet nach ihrer Mächtigkeit) minimiert

20

Lernen (ID3): Pseudo-Code

Prof. Adrian UlgesFachbereich DCSM / Informatik

Hochschule RheinMain

Gegeben: X (Menge von Samples) und M (Menge von Merkmalen)

```
function build tree(X, M):
   Wenn alle Samples in X dasselbe Label L haben:
       return (L,-,\emptyset)
                        // Blattknoten: Label L. kein Merkmal, keine Kinder
   Wenn \mathbf{M} = \emptyset:
                              // keine Merkmale mehr zum Splitten
       Bestimme das häufigste Label L in X
       return (L,-,\varnothing)
   Finde das beste Merkmal F^* = \operatorname{argmax}_{F \in M} \operatorname{Gain}(X,F)
   Splitte X gemäß F* in Submengen X,,...,X,
   return (-, F*, { build_tree(X,,M\{F*}),
                       build_tree(X2, M\{F*}),
                      build_tree(X<sub>k</sub>, M\{F*}) } )
```

Entscheidungsbäume: Varianten

Prof. Adrian Ulges
Fachbereich DCSM / Informatik
Hochschule RheinMain

- Spätere Varianten von Entscheidungsbäumen (namentlich, C4.5 und CART) führen Verbesserungen und Erweiterungen ein
 - Behandlung **fehlender** Merkmale
 - Behandlung kontinuierlicher Merkmale
 - Bessere Generalisierung mittels **Pruning**
 - Anwendung für **Regressionsprobleme**

Fehlende Merkmale

Prof. Adrian UlgesFachbereich DCSM / Informatik

Hochschule RheinMain

- Wir können mit Entscheidungsbäumen auch dann klassifizieren, wenn das Testsample fehlende Merkmale aufweist!
- Ansatz: Traversiere in alle Kindknoten, sammle die Ergebnis-Labels ein, und führe ein Voting durch!
- Beispiel: Klassifiziere

```
x = ( Farbe: ?,
PS: wenige,
Klimaanlage: ja )
```


- Wir besuchen (da Farbe unbekannt) die Blätter
 A, B und C
- 2 Stimmen für teuer,
 1 Stimme für günstig
 - → klassifiziere x als teuer

Hochschule RheinMain

Fehlende Merkmale

- Wir können Samples mit fehlenden Merkmalen auch zum Training verwenden!
- Fehlende Merkmale werden bei der Berechnung des Information Gain ignoriert
- Samples mit fehlenden Merkmalen werden aber auf Kindknoten verteilt. Das heißt: Das fehlende Merkmal wird "geschätzt"!

Heuristiken:

- Schätzung = häufigster Wert in der Klasse
- Schätzung = häufigster Wert im aktuellen Knoten
- Verteile das Trainingssample anteilsmäßig auf alle Kindknoten (gemäß der Anzahl der Samples in den Kindknoten)

Fachbereich DCSM / Informatil Hochschule RheinMain

- **ID3** unterstützt nur Merkmale mit **endlich vielen Ausprägungen**. In der Praxis sind viele Merkmale aber **kontinuierlich** (d.h., **reellwertig**).
- Ansatz: Gegeben Merkmal F, wähle Schwelle T und führe einen binären Split durch: F(x)≥T vs. F(x)<T

 Lernen wird teurer: Prüfe für jedes kontinuierliche Merkmal alle möglichen Schwellwerte T, die zwischen je zwei Merkmalswerten liegen

Reellwertige Merkmale (Beispiel)

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

 Wir können innerhalb desselben Asts mehrere Splits für dasselbe reellwertige Merkmal durchführen (nämlich mit unterschiedlichen Schwellwerten T)

Beispiel: rechts

Prof. Adrian UlgesFachbereich DCSM / Informatik

Hochschule RheinMain

- Ein voller Aufbau des Baums führt zu Overfitting!
- Ziel: reduziere die Größe/Tiefe des Baums mittels
 Pruning → vereinfache die Entscheidungsgrenze!
- Entferne Blätter → es entstehen "Mischknoten", in denen der Klassifikator die häufigste Klasse wählt.

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

- Ansatz: Pruning mit Validierungsmenge
 - Teile die Samples in eine **Trainingsmenge** und eine Validierungsmenge
 - Trainiere einen vollen Baum auf der Trainingsmenge
 - Entferne sukzessive Blattknoten, solange der
 Fehler auf der Validierungsmenge reduziert wird

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

- Ansatz 2: Statistische Tests
 - Wir wollen entscheiden, ob ein Split "nützlich" ist. Schlüsselfrage: Ist das zugehörige Merkmal mit den Klassen-Labels korreliert?
 - Diesen Sachverhalt können wir z.B. mit dem
 Chi-Quadrat-Unabhängigkeits-Test prüfen

- Ansatz 2: Statistische Tests
- •
- Der p-Wert des Tests gibt die Wahrscheinlichkeit an, die gegebene Verteilung zu beobachten, falls Merkmal und Klassenlabels unabhängig wären.
- Strategie: Entferne einen Split, falls p>p_T
- Der Parameter p_T wird manuell eingestellt (oder kann seinerseits wieder auf einer Validierungsmenge gelernt werden)

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Ansatz 3: Regelbasiertes Post-Pruning (C4.5)

- Transformiere den Baum in eine Menge von if-else-Regeln (jeder Pfad von der Wurzel zu einem Blatt- knoten wird eine Regel)
- Entferne Teile der if-Bedingung und prüfe ob sich die Genauigkeit der Regel (Validierungsmenge!) verbessert
- Sortiere die Regeln nach ihrer Genauigkeit und wende sie der Reihe nach an

Evaluiere Regel (3) gegen:

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Alternativer Ansatz zu Pruning

- Verwende voll ausgebaute Bäume ... aber nicht nur einen, sondern viele (deshalb "random forest")!
- Der Aufbau der einzelnen Bäume ist dabei randomisiert (deshalb "random forests")
- Samples werden mit jedem Baum klassifiziert, und ein Voting über alle Bäume wird durchgeführt.
- Random Forests sind eine *Ensemble-Methode*. Das heißt, viele einfache Klassifikatoren (=Bäume) werden mit dem Ziel einer genaueren globalen Entscheidung kombiniert.

- Ziel: Die einzelnen Bäume sollten möglichst genau klassifizieren und möglichst unabhängig voneinander sein
- Ansätze zur Randomisierung
 - Wähle jedes Split-Merkmal zufällig aus (random split)
 - Zufällige Auswahl der Trainingssamples (bagging)
 - Wähle in jedem Knoten eine Submenge von Merkmalen aus denen das Beste für den Split gewählt wird (random input selection)

Random Forests: Evaluation

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Fehlerraten auf diversen Datensätzen

Data set	Adaboost	Selection	Forest-RI single input	One tree
Glass	22.0	20.6	21.2	36.9
Breast cancer	3.2	2.9	2.7	6.3
Diabetes	26.6	24.2	24.3	33.1
Sonar	15.6	15.9	18.0	31.7
Vowel	4.1	3.4	3.3	30.4
Ionosphere	6.4	7.1	7.5	12.7
Vehicle	23.2	25.8	26.4	33.1
German credit	23.5	24.4	26.2	33.3
Image	1.6	2.1	2.7	6.4
Ecoli	14.8	12.8	13.0	24.5
Votes	4.8	4.1	4.6	7.4
Liver	30.7	25.1	24.7	40.6
Letters	3.4	3.5	4.7	19.8
Sat-images	8.8	8.6	10.5	17.2
Zip-code	6.2	6.3	7.8	20.6
Waveform	17.8	17.2	17.3	34.0
Twonorm	4.9	3.9	3.9	24.7
Threenorm	18.8	17.5	17.5	38.4
Ringnorm	6.9	4.9	4.9	25.7

Fachbereich DCSM / Informatik Hochschule RheinMain

 Anwendungsbeispiel: Body Part Recognition in der Kinekt-Konsole

Entscheidungsbäume: Regression

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

- Wir können Bäume auch zur Regression verwenden (CART:,,Classification and Regression Trees")
- Gegeben: Samples (x,y) mit Merkmalsvektor x (wie vorher) und y (jetzt kein Klassen-Label mehr, sondern ein numerischer Wert)
- Berechnung des Rückgabewertes
 - Klassifikation: Ein Klassenlabel pro Blatt (per Voting)
 - Regression: Ein numerischer Wert pro Blatt (berechnet durch Mittlung aller Werte im Blatt)
- Wahl des besten Merkmals für einen Split
 - Klassifikation: maximaler Information Gain
 - Regression: Minimaler Sum-of-Squares-Error

$$F^* := \arg\min_{F} \sum_{k=1}^{K} \sum_{(x,y)\in X_k} (y - \bar{y}_k)^2$$

Fachbereich DCSM / Informatik Hochschule RheinMain

- Pruning: (wieder) per Validierungsmenge
- Beispiel: Ein Regressionsbaum, der den Preis von Autos vorhersagt

Vorteile

- (sehr) schnelle Klassifikation
- Transparenz der Ergebnisse
- Behandlung fehlender Merkmale möglich
- Behandlung *nicht-numerischer* Merkmale möglich

Nachteile

- Potenzielles Overfitting
 (Beispiel: Nicht-lineare Entscheidungsgrenzen)
- Decision Trees sind nur dann brauchbar, wenn wenige entscheidende Merkmale eine gute Entscheidungsgrenze liefern.

Fachbereich DCSM / Informatik Hochschule RheinMain

Feature Engineering

- Merkmalsextraktion ist der wichtigste Teil vieler ML-Anwendungen ("garbage-in-garbage-out")
- Herausforderungen: Gute Features sind (1)
 anwendungsabhängig und (2) abhängig vom
 Klassifikator
- Im Folgenden:
 - Einige Eigenschaften guter Features
 - Anmerkungen zur Merkmals-Selektion
 - Merkmale für Text

Der "Curse of Dimensionality"

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Was "gute" Merkmale sind hängt vom Klassifikator ab

Prof. Adrian Ulges

Fachbereich DCSM / Informatik Hochschule RheinMain

Beispiel 1: Kauft ein Kunde auf ebay?

Beispiel 2

- Hochschule RheinMain
- Kompaktheit: Die Anzahl der Merkmale sollte gering sein
 - Grund 1: Effizienz
 - Grund 2: Overfitting
- Diskriminativität: Die Merkmale sollten uns erlauben, Klassen voneinander zu trennen
- Invarianz: Die Merkmale sollten robust gegenüber
 Transformationen der Eingabedaten sein: f(T(x)) = f(x)

Merkmalsreduktion und Merkmalsselektion

Prof. Adrian Ulges
Fachbereich DCSM / Informatik
Hochschule RheinMain

- Es existieren zahlreiche Techniken zur Reduktion von Merkmalen ("dimensionality reduction")
 - PCA, LDA, PLSA, MDS, Auto-Encoder-Networks...
 - Einige sind überwacht, die meisten unüberwacht
 - Ziel: Projektion hochdimensionaler Eingabedaten auf niedrigdimensionalen Raum
- Klassifikatoren bieten oft eine intrinsische Merkmalsselektion
- Beispiel 1 Logistische Regression
 - Durch die Regularisierung werden die Gewichte vieler Variablen 0
 - Das bedeutet: Die zugehörigen Variable spielen keine Rolle für die Entscheidung des Klassifikators

Merkmalsreduktion und Merkmalsselektion

Prof. Adrian Ulges
Fachbereich DCSM / Informatik
Hochschule RheinMain

Beispiel 2: Entscheidungsbäume

- Entscheidungsbäume verwenden nicht jedes Feature zum Split!
- Auch die verwendeten Features k\u00f6nnen wir nach ihrer Bedeutung ("feature importance") bewerten

Ansatz 1: permutation importance

- Idee: Um die Bedeutung eines Features F zu messen, lasse es wegfallen
- Vertausche zufällig die Werte von F zwischen den Samples der Testmenge
- Messe wie stark der Klassifikationsfehler ansteigt

Ansatz 2: Gini importance

- Jeder **Split** im Baum **erhöht die Purity** um einen Wert Δ
- Für jedes Merkmal summieren wir sämtliche Δ-Werte aller Splits in allen Bäumen eines Forests auf
- Je höher dieser Wert, desto besser das Merkmal

Merkmale zur Beschreibung von Text