Decision Tree Learning

- 1. The next attribute chosen by ID3 will be the Est attribute, the estimated wait time quoted.
- 2. The expected information gain associated with the Est attribute came out to 0.4286 (the next highest was 0.3207)
- 3. I calculated the expected information gain as B(T/(T+F)) Remainder(Est), where Remainder(Est) = $\Sigma(Tk+Fk)/(T+F)*B(Tk/(Tk+Fk))$, Tk and Fk being the number of T and F for each possible value of Est, and summed over all possible values of Est, and $B(q) = -(q\log_2 q + (1-q)\log_2 (1-q))$. For Est, the Tk and Fk breakdown was 3:0 for 0-10min, and 1:1 for 10-30min and 30-60min, and we had no examples with Est=>60 and Hun=T

Trace Backpropagation

1.

- a. $in_i = \sum w_{h,i}a_h$ over all connected inputs a
- b. $a_i = g(in_i)$ or after a substitution with the previous equation, $a_i = g(\sum w_{h,i}a_h)$
- c. $\Delta[i] = g^{l}(in_{i}) \Sigma w_{i,i} \Delta[j]$ for all nodes j in the next layer in the network
- d. $W_{i,j} = w_{i,j} + \alpha \times a_i \times \Delta[j]$

2

2.										
	Iteration	a _c	Δ[c]	a_d	Δ[d]	W _{0c}	W _{ac}	W _{bc}	W _{cd}	W _{0d}
	x1	0.5987	0.0049	0.5793	0.1025	0.3	0.2015	0.2000	0.2184	0.3
	x2	0.5987	-0.0074	0.5819	-0.1416	0.3	0.2015	0.1978	0.1930	0.3