Lecture slides

Philip Murray

Lecture 1

- Introduction to MA42002
- Conservation equations
- Examples of spatially homogeneous models

Conservation equations

$$\begin{pmatrix} \text{rate of change} \\ \text{in the population density} \end{pmatrix} = \left(\text{spatial movement} \right)$$

$$+ \begin{pmatrix} \text{birth, growth, death,} \\ \text{production or degradation} \\ \text{due to chemical reactions} \end{pmatrix}$$

Spatially homogeneous models (MA32009

revision)

Example problem - bacteria in a dish

$$N(t + \Delta t) = N(t) + KN(t)\Delta t.$$

A model for cell growth under nutrient depletion

$$\begin{split} \frac{dN}{dt} &= K(c)N = \kappa c N, \\ \frac{dc}{dt} &= -\alpha \frac{dN}{dt} = -\alpha \kappa c N, \end{split} \tag{1}$$

Leading to the logistic growth equation

The last equation can be rewritten as

$$\frac{dN}{dt} = \rho N \left(1 - \frac{N}{B}\right) \qquad N(0) = N_0, \tag{2}$$

Exercise

Consider a well mixed bio reactor.

A biologist cultures an initial cell population of size ${\cal N}_0$ in the bioreactor for 72 h.

Cells undergo division with a period of 14 h.

Each cell produces a non-degradable waste product, W, at rate k_1 .

When total waste levels exceed a threshold, W^{st} , cell division stops. Otherwise the cell population grows exponentially.

How many cells are there at the end of the experiment?

Model development

Model checklist

- 1. Variables (dependent, indepedent ?)
- 2. Schematic diagram what processes are being modelled?
- 3. Governing equations?
- 4. Define model parameters?
- 5. Initial conditions?

Exercise solution

Recap

- ls course layout clear
- Introduction to conservation equation
- Deriving spatially homogeneous models

Lecture 2

The SIR model

Consider the SIR model equations:

$$\begin{split} \frac{dS}{dt} &= -rIS, \\ \frac{dI}{dt} &= rIS - aI, \\ \frac{dR}{dt} &= aI. \end{split}$$

What are the variables? What are the parameters?

Identify an expression for the reproduction number, $R_{\rm 0}.$

Hence explain why the condition $R_0 < 1$ is necessary to avoid an epidemic?

An activator inhibitor model

Consider the reaction schematic

$$2A + B \rightarrow A$$
.

Assume that species A is produced at constant rate k_1 and degrades at rate $k_2.$

Assume that A is linearly degraded.

Hence obtain the ODEs

$$\begin{split} \frac{dA}{dt} &= k_1 - k_2 A + k_3 A^2 B, \\ \frac{dB}{dt} &= k_4 - k_3 A^2 B, \end{split}$$

Identify the steady state of the ODEs.

Spatiotemporal models - derivation

Deriving a conservation equation

Spatiotemporal models - fluxes

