BANK CUSTOMER CHURN PREDICTION MODEL

Harnessing Machine Learning to Enhance Customer Retention Strategies

http://3.99.190.226:8501/

by Suha Islaih and Osear Okinga S

INTRODUCTION

- Digital Transformation in Banking
- The Challenge of Customer Loyalty
- Leveraging Data Science

PROBLEM STATEMENT

- Evolving Customer Expectations
- Advanced Analytics for Prediction
- From Insights to Action

OBJECTIVES

- Age Impact: Who's more likely to leave, younger or older customers?
- Gender Difference: Is there a churn gap between men and women?
- Credit Score's Role: How does a customer's credit score affect their likelihood of churning?

OBJECTIVES

- Geographical Trends: From which countries are customers more likely to churn?
- Data Insights: Exploring the best ways to visualize our data for clearer insights.
- Finding the Best Model: Identifying the top machine learning model to predict churn effectively.

BRIEF OVERVIEW OF THE APPROACH

DATA COLLECTION AND PREPROCESSING

DATA SOURCES

Kaggle

SOFTWARE TOOLS & HARDWARE REQUIREMENTS

DATA DESCRIPTION AND EXPLORATION

- Overview of dataset features (e.g., Age, Geography, Gender).
- Initial analysis to identify patterns.
- Importance of understanding customer demographics and behaviours.

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42.0	2	0.00	1	1.0	1.0	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41.0	1	83807.86	1	0.0	1.0	112542.58	0
2	3	15619304	Onio	502	France	Female	42.0	8	159660.80	3	1.0	0.0	113931.57	1
3	4	15701354	Boni	699	France	Female	39.0	1	0.00	2	0.0	0.0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43.0	2	125510.82	1	NaN	1.0	79084.10	0

DATA CLEANING, TRANSFORMATION & FEATURE SELECTION

- Cleaning irrelevant data (e.g., removing unnecessary columns).
- Transforming data for analysis.
- Selecting features critical for predicting customer churn.

df.info()			df.dtypes		df.isnull().	sum(
<class 'pandas.core.f<="" td=""><td>rame.DataFrame'></td><td></td><td>RowNumber</td><td>int64</td><td>RowNumber</td><td>0</td></class>	rame.DataFrame'>		RowNumber	int64	RowNumber	0
RangeIndex: 10002 ent	ries, 0 to 10001		CustomerId	int64	CustomerId	0
Data columns (total 1	4 columns):		Surname	object	Surname	0
# Column	Non-Null Count	Dtype	CreditScore	int64	CreditScore	0
			Geography	object	Geography	1
0 RowNumber	10002 non-null	int64	Gender	object	Gender	0
1 CustomerId	10002 non-null	int64	Age	float64	Age	1
2 Surname	10002 non-null	object	Tenure	int64	Tenure	0
3 CreditScore	10002 non-null	int64	Balance	float64	Balance	0
4 Geography	10001 non-null	object	NumOfProducts	int64	NumOfProducts	0
5 Gender	10002 non-null	object	HasCrCard	float64	HasCrCard	1
6 Age	10001 non-null	float64	IsActiveMember	float64	IsActiveMember	1
7 Tenure	10002 non-null	int64	EstimatedSalary	float64	EstimatedSalary	0
8 Balance	10002 non-null	float64	Exited	int64	Exited	0
9 NumOfProducts	10002 non-null	int64	dtype: object		dtype: int64	
10 HasCrCard	10001 non-null	float64				
11 IsActiveMember	10001 non-null	float64				
12 EstimatedSalary	10002 non-null	float64				
13 Exited	10002 non-null	int64				
dtypes: float64(5), i	nt64(6), object(3)				
memory usage: 1.1+ MB						

DATA CLEANING, TRANSFORMATION & FEATURE SELECTION

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10002.000000	1.000200e+04	10002.000000	10001.000000	10002.000000	10002.000000	10002.000000	10001.000000	10001.000000	10002.000000	10002.000000
mean	5001.499600	1.569093e+07	650.555089	38.922311	5.012498	76491.112875	1.530194	0.705529	0.514949	100083.331145	0.203759
std	2887.472338	7.193177e+04	96.661615	10.487200	2.891973	62393.474144	0.581639	0.455827	0.499801	57508.117802	0.402812
min	1.000000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.000000	0.000000	11.580000	0.000000
25%	2501.250000	1.562852e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.000000	0.000000	50983.750000	0.000000
50%	5001.500000	1.569073e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.000000	1.000000	100185.240000	0.000000
75%	7501.750000	1.575323e+07	718.000000	44.000000	7.000000	127647.840000	2.000000	1.000000	1.000000	149383.652500	0.000000
max	10000.000000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.000000	1.000000	199992.480000	1.000000

Figure 3: Statistical Description of the Dataset

PAIRPLOT/ SCATTERPLOT MATRIX

CUSTOMER DEMOGRAPHICS

AGE AND CHURN

UNDERSTANDING - CREDIT ANALYSIS

COUNT PLOTS TO MAP THE DEPENDENCE OF 'EXITED' COLUMN ON CATEGORICAL FEATURES.

CORRELATION ANALYSIS

MODEL SELECTION AND TRAINING

	Description	Value
0	Session id	123
1	Target	Exited
2	Target type	Binary
3	Original data shape	(8002, 14)
4	Transformed data shape	(8002, 14)
5	Transformed train set shape	(5601, 14)
6	Transformed test set shape	(2401, 14)
7	Ignore features	2
8	Ordinal features	1
9	Numeric features	9
10	Categorical features	2
11	Rows with missing values	0.0%
12	Preprocess	True
13	Imputation type	simple
14	Numeric imputation	mean
15	Categorical imputation	mode
16	Maximum one-hot encoding	25
17	Encoding method	None
18	Fold Generator	${\tt StratifiedKFold}$
19	Fold Number	10
20	CPU Jobs	-1
21	Use GPU	False
22	Log Experiment	False
23	Experiment Name	clf-default-name
24	USI	2878

COMPARE DIFFERENT MODEL

compare_models()

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
rf	Random Forest Classifier	0.8565	0.8481	0.4405	0.7657	0.5577	0.4793	0.5063	0.1380
gbc	Gradient Boosting Classifier	0.8557	0.8609	0.4553	0.7450	0.5638	0.4836	0.5053	0.2140
lightgbm	Light Gradient Boosting Machine	0.8536	0.8563	0.4874	0.7118	0.5773	0.4926	0.5063	0.1010
ada	Ada Boost Classifier	0.8495	0.8376	0.4553	0.7100	0.5540	0.4687	0.4859	0.0750
et	Extra Trees Classifier	0.8493	0.8475	0.4101	0.7418	0.5265	0.4460	0.4745	0.0990
ridge	Ridge Classifier	0.8070	0.0000	0.1294	0.6568	0.2151	0.1585	0.2281	0.0190
lda	Linear Discriminant Analysis	0.8038	0.7653	0.2329	0.5563	0.3270	0.2344	0.2655	0.0190
dummy	Dummy Classifier	0.7945	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0190
lr	Logistic Regression	0.7858	0.6733	0.0504	0.3418	0.0874	0.0383	0.0607	0.0240
dt	Decision Tree Classifier	0.7858	0.6832	0.5091	0.4805	0.4940	0.3583	0.3588	0.0230
nb	Naive Bayes	0.7822	0.7427	0.0634	0.3431	0.1065	0.0451	0.0668	0.0180
knn	K Neighbors Classifier	0.7606	0.5242	0.0826	0.2495	0.1236	0.0245	0.0295	0.0270
svm	SVM - Linear Kernel	0.6428	0.0000	0.2914	0.1390	0.1310	0.0198	0.0356	0.0260
qda	Quadratic Discriminant Analysis	0.5860	0.5048	0.3597	0.1930	0.2007	0.0011	0.0022	0.0190

MODELLING

compare_models()

best_m	odel = cre	eate_mod	del('rf'	')			
	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС
Fold							
0	0.8717	0.8574	0.4655	0.8438	0.6000	0.5310	0.5644
1	0.8482	0.8547	0.4696	0.6923	0.5596	0.4719	0.4849
2	0.8732	0.8576	0.4348	0.8929	0.5848	0.5203	0.5673
3	0.8625	0.8276	0.4522	0.7879	0.5746	0.4997	0.5271
4	0.8571	0.8720	0.4522	0.7536	0.5652	0.4861	0.5088
5	0.8482	0.8510	0.4522	0.7027	0.5503	0.4641	0.4804
6	0.8625	0.8468	0.4174	0.8276	0.5549	0.4838	0.5236
7	0.8589	0.8774	0.4870	0.7368	0.5864	0.5056	0.5214
8	0.8500	0.8264	0.3913	0.7627	0.5172	0.4391	0.4735
9	0.8321	0.8103	0.3826	0.6567	0.4835	0.3915	0.4119
Mean	0.8565	0.8481	0.4405	0.7657	0.5577	0.4793	0.5063
Std	0.0117	0.0200	0.0322	0.0699	0.0330	0.0389	0.0438

best_m	odel2 = cr	reate_mo	odel('gb	oc')			
	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс
Fold							
0	0.8610	0.8624	0.4483	0.7879	0.5714	0.4958	0.5239
1	0.8375	0.8641	0.4348	0.6579	0.5236	0.4305	0.4439
2	0.8750	0.8599	0.4870	0.8358	0.6154	0.5469	0.5754
3	0.8607	0.8488	0.4696	0.7606	0.5806	0.5027	0.5237
4	0.8696	0.8942	0.5217	0.7692	0.6218	0.5465	0.5615
5	0.8500	0.8539	0.4783	0.6962	0.5670	0.4800	0.4924
6	0.8625	0.8558	0.4174	0.8276	0.5549	0.4838	0.5236
7	0.8804	0.8995	0.5478	0.8077	0.6528	0.5838	0.5998
8	0.8393	0.8402	0.3826	0.6984	0.4944	0.4084	0.4346
9	0.8214	0.8298	0.3652	0.6087	0.4565	0.3576	0.3743
Mean	0.8557	0.8609	0.4553	0.7450	0.5638	0.4836	0.5053
Std	0.0176	0.0206	0.0548	0.0724	0.0569	0.0655	0.0664

best_m	<pre>best_model3 = create_model('lightgbm')</pre>													
	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС							
Fold														
0	0.8556	0.8480	0.5000	0.7160	0.5888	0.5046	0.5166							
1	0.8429	0.8640	0.4696	0.6667	0.5510	0.4592	0.4696							
2	0.8679	0.8652	0.4609	0.8154	0.5889	0.5173	0.5472							
3	0.8625	0.8393	0.5217	0.7317	0.6091	0.5285	0.5397							
4	0.8500	0.8657	0.4870	0.6914	0.5714	0.4838	0.4947							
5	0.8536	0.8722	0.5043	0.6988	0.5859	0.4997	0.5095							
6	0.8643	0.8576	0.4870	0.7671	0.5957	0.5190	0.5384							
7	0.8571	0.8909	0.5652	0.6842	0.6190	0.5321	0.5358							
8	0.8446	0.8425	0.4435	0.6892	0.5397	0.4515	0.4674							
9	0.8375	0.8175	0.4348	0.6579	0.5236	0.4305	0.4439							
Mean	0.8536	0.8563	0.4874	0.7118	0.5773	0.4926	0.5063							
Std	0.0094	0.0193	0.0366	0.0458	0.0291	0.0333	0.0342							

PERFORMANCE METRICS (AUC-ROC, ACCURACY, PRECISION, ETC,...)

```
predictions = predict model(best model, data=testData)
print(predictions.columns)
predictions2 = predict model(best model2, data=testData)
print(predictions2.columns)
predictions3 = predict_model(best_model3, data=testData)
print(predictions3.columns)
                 Model Accuracy AUC Recall Prec.
                                                          F1 Kappa
                                                                      MCC
0 Random Forest Classifier
                          0.9350 0.9505 0.7315 0.9196 0.8148 0.7760 0.7835
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
       'IsActiveMember', 'EstimatedSalary', 'Exited', 'prediction label',
       'prediction score'],
      dtype='object')
                   Model Accuracy AUC Recall Prec.
                                                             F1 Kappa MCC

    Gradient Boosting Classifier

                             0.8660 0.8759 0.4322 0.7860 0.5578 0.4865 0.5168
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
       'IsActiveMember', 'EstimatedSalary', 'Exited', 'prediction_label',
       'prediction score'],
      dtype='object')
                        Model Accuracy
                                          AUC Recall Prec.
                                                                 F1 Kappa
                                                                             MCC
0 Light Gradient Boosting Machine
                                 0.9105 0.9250 0.6394 0.8681 0.7364 0.6840 0.6956
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
       'IsActiveMember', 'EstimatedSalary', 'Exited', 'prediction label',
       'prediction score'],
      dtype='object')
```

USING TESTDATA TO TEST THE MODEL

++	estData.head(20)														
test															
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	Predicted Exited
0	8003	15753895	Blue	590	Spain	Male	37.0	1	0.00	2	0.0	0.0	133535.99	0	C
1	8004	15595426	Madukwe	603	Spain	Male	57.0	6	105000.85	2	1.0	1.0	87412.24	1	0
2	8005	15645815	Mills	615	France	Male	45.0	5	0.00	2	1.0	1.0	164886.64	0	C
3	8006	15632848	Ferrari	634	France	Female	36.0	1	69518.95	1	1.0	0.0	116238.39	0	(
4	8007	15703068	Nixon	716	Germany	Male	41.0	8	126145.54	2	1.0	1.0	138051.19	0	(
5	8008	15791513	Manfrin	647	France	Male	41.0	4	138937.35	1	1.0	1.0	101617.64	1	(
6	8009	15587210	McCartney	591	Germany	Female	44.0	10	113581.98	1	1.0	0.0	1985.41	0	(
7	8010	15793803	Robinson	574	France	Male	34.0	1	112572.39	1	0.0	0.0	165626.60	0	(
8	8011	15787756	Nkemdirim	467	Germany	Male	51.0	10	114514.71	2	1.0	0.0	177784.68	1	
9	8012	15723437	Sal	701	France	Female	35.0	2	0.00	2	1.0	1.0	65765.22	0	(
10	8013	15702715	Kao	747	France	Female	34.0	10	0.00	2	1.0	1.0	50759.80	0	(
11	8014	15809872	Ikechukwu	650	France	Male	32.0	2	84906.45	1	1.0	0.0	163216.48	0	(
12	8015	15644295	Hargreaves	731	Spain	Female	39.0	2	126816.18	1	1.0	1.0	74850.93	0	(
13	8016	15778694	Sievier	638	Germany	Female	26.0	1	105249.76	2	1.0	1.0	23491.09	0	(
14	8017	15759555	Murphy	569	Spain	Male	41.0	2	0.00	2	1.0	0.0	134272.57	0	(
15	8018	15631406	Munro	459	Germany	Male	50.0	5	109387.90	1	1.0	0.0	155721.15	0	(
16	8019	15616676	Donnelly	632	Germany	Male	23.0	3	122478.51	1	1.0	0.0	147230.77	1	
17	8020	15771154	North	683	France	Female	73.0	8	137732.23	2	1.0	1.0	133210.44	0	(
18	8021	15669491	Cruz	850	France	Female	46.0	2	157866.77	1	1.0	1.0	18986.12	0	(
19	8022	15697691	Sinclair	512	France	Female	41.0	6	0.00	1	1.0	1.0	100507.81	0	

CONFUSION MATRIX

ROC (RECEIVER OPERATING CHARACTERISTIC) - CURVE

SAVE THE MODEL

```
save_model(best_model, 'churn_modelling_pipeline')
Transformation Pipeline and Model Successfully Saved
(Pipeline(memory=Memory(location=None),
          steps=[('numerical_imputer',
                  TransformerWrapper(exclude=None,
                                     include=['RowNumber', 'CreditScore', 'Age',
                                              'Tenure', 'Balance',
                                              'NumOfProducts', 'HasCrCard',
                                              'IsActiveMember',
                                              'EstimatedSalary'],
                                     transformer=SimpleImputer(add_indicator=False,
                                                               copy=True,
                                                               fill_value=None,
                                                               keep_empty_features=False,
                                                               missing_values=nan,
                                                               strategy='m...
                  RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                         class_weight=None, criterion='gini',
                                         max_depth=None, max_features='sqrt',
                                         max_leaf_nodes=None, max_samples=None,
                                         min_impurity_decrease=0.0,
                                         min_samples_leaf=1, min_samples_split=2,
                                         min_weight_fraction_leaf=0.0,
                                         n_estimators=100, n_jobs=-1,
                                         oob_score=False, random_state=123,
                                         verbose=0, warm_start=False))],
 'churn_modelling_pipeline.pkl')
```

LOAD THE PIPELINE

```
# load pipeline
loaded_best_pipeline = load_model('churn_modelling_pipeline_v3')
loaded_best_pipeline
```


Navigation

Choose an Activity

- Exploratory Data Analysis
- Prediction

Customer Churn Prediction Tool

Exploratory Data Analysis (EDA)

Explore the dataset to understand the distribution of various features and their relation to customer churn.

PREDICTION

Navigation

Choose an Activity

- Exploratory Data Analysis
- Prediction

Customer Churn Prediction Tool

Prediction Section

Predict the likelihood of a customer leaving the bank using their profile information. Fill out the customer details below and press "Predict" to see the outcome.

Presentation by Osear Okinga and Suha Islaih