

Official Data Set Link: https://www.kaggle.com/uciml/mushroom-classification)

Data Set Columns:

Attribute Information: (classes: edible=e, poisonous=p)

- cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s
- cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s
- cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,red=e,white=w,yellow=y
- · bruises: bruises=t,no=f
- odor: almond=a,anise=l,creosote=c,fishy=y,foul=f,musty=m,none=n,pungent=p,spicy=s
- gill-attachment: attached=a,descending=d,free=f,notched=n
- gill-spacing: close=c,crowded=w,distant=d
- gill-size: broad=b,narrow=n
- gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y
- · stalk-shape: enlarging=e,tapering=t
- stalk-root: bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r,missing=?
- stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s
- stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s
- stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y
- stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y
- · veil-type: partial=p,universal=u
- veil-color: brown=n,orange=o,white=w,yellow=y
- ring-number: none=n,one=o,two=t
- ring-type: cobwebby=c,evanescent=e,flaring=f,large=I,none=n,pendant=p,sheathing=s,zone=z
- spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r,orange=o,purple=u,white=w,yellow=y
- population: abundant=a,clustered=c,numerous=n,scattered=s,several=v,solitary=y
- habitat: grasses=g,leaves=l,meadows=m,paths=p,urban=u,waste=w,woods=d

Context

Although this dataset was originally contributed to the UCI Machine Learning repository nearly 30 years ago, mushroom hunting (otherwise known as "shrooming") is enjoying new peaks in popularity. Learn which features spell certain death and which are most palatable in this dataset of mushroom characteristics

####Resources:

- https://medium.com/@alex.ortner.1982/top-10-binary-classification-algorithms-a-beginners-guide-feeacbd7a3e2)
- https://machinelearningmastery.com/develop-first-xgboost-model-python-scikit-learn/ (https://machinelearningmastery.com/develop-first-xgboost-model-python-scikit-learn/)
- https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598
 (https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598)
- https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html)
- https://medium.com/@dtuk81/confusion-matrix-visualization-fc31e3f30fea (https://medium.com/@dtuk81/confusion-matrix-visualization-fc31e3f30fea)
- https://www.machinecurve.com/index.php/2020/05/05/how-to-create-a-confusion-matrix-with-scikit-learn/) (https://www.machinecurve.com/index.php/2020/05/05/how-to-create-a-confusion-matrix-with-scikit-learn/)
- https://medium.com/python-in-plain-english/how-to-do-eda-with-one-line-of-code-db9a853409d (https://medium.com/python-in-plain-english/how-to-do-eda-with-one-line-of-code-db9a853409d)

In [2]:

```
import pandas as pd
import seaborn as sns
import pandas_profiling
from sklearn.model_selection import train_test_split
```

In [2]:

(8124, 23)

```
# Ignore competability warnings
import warnings
warnings.filterwarnings('ignore')

# Option to show all the DataFrame columns
pd.options.display.max_columns = None

data = pd.read_csv("mushrooms.csv")
print(data.shape)
```

Exploratory Data Analysis

In [3]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8124 entries, 0 to 8123
Data columns (total 23 columns):

#	Column	Non-1	Null Count	Dtype
0	class	8124	non-null	object
1	cap-shape	8124	non-null	object
2	cap-surface	8124	non-null	object
3	cap-color	8124	non-null	object
4	bruises	8124	non-null	object
5	odor	8124	non-null	object
6	gill-attachment	8124	non-null	object
7	gill-spacing	8124	non-null	object
8	gill-size	8124	non-null	object
9	gill-color	8124	non-null	object
10	stalk-shape	8124	non-null	object
11	stalk-root	8124	non-null	object
12	stalk-surface-above-ring	8124	non-null	object
13	stalk-surface-below-ring	8124	non-null	object
14	stalk-color-above-ring	8124	non-null	object
15	stalk-color-below-ring	8124	non-null	object
16	veil-type	8124	non-null	object
17	veil-color	8124	non-null	object
18	ring-number	8124	non-null	object
19	ring-type	8124	non-null	object
20	spore-print-color	8124	non-null	object
21	population	8124	non-null	object
22	habitat	8124	non-null	object
d+ un	es: object (23)			

dtypes: object(23)
memory usage: 1.4+ MB

In [4]:

data.describe()

Out[4]:

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	stalk- shape
count	8124	8124	8124	8124	8124	8124	8124	8124	8124	8124	8124
unique	2	6	4	10	2	9	2	2	2	12	2
top	е	х	у	n	f	n	f	С	b	b	t
freq	4208	3656	3244	2284	4748	3528	7914	6812	5612	1728	4608
4											>

In [5]:

data.head()

Out[5]:

	class	cap- shape	cap- surface		bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	stalk- shape	stalk- root
0	р	х	s	n	t	р	f	С	n	k	е	е
1	е	х	s	у	t	а	f	С	b	k	е	С
2	е	b	s	w	t	1	f	С	b	n	е	С
3	р	х	у	w	t	р	f	С	n	n	е	е
4	е	Х	s	g	f	n	f	W	b	k	t	е

In [6]:

data.tail()

Out[6]:

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	stalk- shape	st: r
8119	е	k	s	n	f	n	а	С	b	у	е	
8120	е	х	s	n	f	n	а	С	b	у	е	
8121	е	f	s	n	f	n	а	С	b	n	е	
8122	р	k	у	n	f	у	f	С	n	b	t	
8123	е	x	s	n	f	n	а	С	b	У	е	
4												•

In [7]:

```
# Check for missing values in each column
data.isnull().sum()
```

Out[7]:

class	0
cap-shape	0
cap-surface	0
cap-color	0
bruises	0
odor	0
gill-attachment	0
gill-spacing	0
gill-size	0
gill-color	0
stalk-shape	0
stalk-root	0
stalk-surface-above-ring	0
stalk-surface-below-ring	0
stalk-color-above-ring	0
stalk-color-below-ring	0
veil-type	0
veil-color	0
ring-number	0
ring-type	0
spore-print-color	0
population	0
habitat	0
dtype: int64	

In [9]:

```
# performing EDA using pandas-profiling
profile = pandas_profiling.ProfileReport(data)
profile
```

HBox(children=(FloatProgress(value=0.0, description='Summarize datase
t', max=37.0, style=ProgressStyle(descrip...

HBox(children=(FloatProgress(value=0.0, description='Generate report s
tructure', max=1.0, style=ProgressStyle(...

HBox(children=(FloatProgress(value=0.0, description='Render HTML', max
=1.0, style=ProgressStyle(description wi...

```
Out[9]:
In [8]:
# Check the unique target values
data['class'].unique()
Out[8]:
array(['p', 'e'], dtype=object)
```

In [41]:

```
data.columns
```

```
Out[41]:
```

In [45]:

```
# Check sample count per class type
group_class = data.groupby('class')['cap-shape'].count()
print(group_class)
```

```
class
e 4208
p 3916
Name: cap-shape, dtype: int64
```

In [39]:

```
sns.countplot(data["class"])
```

Out[39]:

<AxesSubplot:xlabel='class', ylabel='count'>

In [33]:

```
# Not all relationships are symetrical, please read the following article
# https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-s
# The Predictive Power Score PPS may give us a better understanding
# of the categorical columns and their relationships
# If you dont have the lib - pip install ppscore
import ppscore as pps
# Create a matrix with all the results
pps_matrix = pps.matrix(data)
pps_matrix
```

Out[33]:

	class	cap-shape	cap-surface	cap-color	bruises	
class	1.000000e+00	0.000000e+00	1.160554e-01	1.611613e-01	4.791250e-01	9.70762
cap-shape	0.000000e+00	1.000000e+00	0.000000e+00	5.509413e-02	0.000000e+00	3.47662
cap- surface	0.000000e+00	1.811773e-03	1.000000e+00	2.051615e-01	0.000000e+00	1.55230
cap-color	0.000000e+00	3.411803e-02	3.382085e-02	1.000000e+00	0.000000e+00	2.09631
bruises	4.840616e-01	0.000000e+00	0.000000e+00	9.532663e-02	1.000000e+00	5.38717
odor	4.075156e-01	0.000000e+00	0.000000e+00	1.663641e-01	1.590353e-01	1.000000
gill- attachment	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	5.74460
gill- spacing			6.290731e-03	2.254455e-03	2.232028e-07	3.09824
gill-size	gill-size 4.441454e-01 2.7242		0.000000e+00	3.035336e-01	0.000000e+00	7.16691
gill-color	4.082435e-02	4.445877e-02	2.051044e-02	1.378161e-01	4.756018e-02	9.50485
stalk- shape	0.000000e+00	6.041573e-02	0.000000e+00	4.608734e-01	0.000000e+00	4.92750
stalk-root	0.000000e+00	2.866848e-01	2.331680e-01	3.374081e-01	2.283180e-01	4.87527
stalk- surface- above-ring	4.092593e-01	0.000000e+00	0.000000e+00	2.083670e-01	3.606962e-01	5.02312
stalk- surface- below-ring	3.559794e-01	0.000000e+00	1.069402e-07	2.374917e-01	3.053013e-01	4.72292
stalk-color- above-ring	1.057122e-07	1.057122e-07	1.057122e-07	1.057122e-07	1.057122e-07	2.03596
stalk-color- below-ring	0.000000e+00	0.000000e+00	0.000000e+00	5.372200e-03	0.000000e+00	1.67612
veil-type	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000
veil-color	7.749480e-07	7.749480e-07	7.749480e-07	7.749480e-07	7.749480e-07	7.74948
ring- number	0.000000e+00	0.000000e+00	0.000000e+00	8.250109e-02	0.000000e+00	6.87380
ring-type 2.960125e-01 1.384185e		1.384185e-01	1.207734e-01	3.192065e-01	4.378510e-01	5.74256

```
bruises
                class
                        cap-shape
                                  cap-surface
                                               cap-color
In [34]:
# Slice the data frame as we are interested only in the class column:
df class ppx = pps matrix['class']
df class ppx
Out[34]:
class
                             1.000000e+00
                             0.000000e+00
cap-shape
cap-surface
                             0.000000e+00
                             0.000000e+00
cap-color
bruises
                             4.840616e-01
                             4.075156e-01
odor
gill-attachment
                             0.000000e+00
gill-spacing
                             2.232028e-07
gill-size
                             4.441454e-01
                             4.082435e-02
gill-color
                             0.000000e+00
stalk-shape
stalk-root
                             0.000000e+00
stalk-surface-above-ring
                             4.092593e-01
stalk-surface-below-ring
                             3.559794e-01
                             1.057122e-07
stalk-color-above-ring
stalk-color-below-ring
                             0.000000e+00
veil-type
                             1.000000e+00
veil-color
                             7.749480e-07
                             0.000000e+00
ring-number
                             2.960125e-01
ring-type
spore-print-color
                             8.515901e-02
                             0.000000e+00
population
habitat
                             0.000000e+00
Name: class, dtype: float64
In [36]:
# We are interested in only one column - class: pps.score(df, "feature column", "ta
pps.score(data, 'odor', 'class')
Out[36]:
{ 'x': 'odor',
 'y': 'class',
 'task': 'classification',
 'ppscore': 0.9707622818773931,
```

```
localhost:8888/notebooks/Desktop/ADS Mushroom IPython Notebook 2020/Mushroom Dataset.ipynb
```

'metric': 'weighted F1', 'baseline score': 0.514,

'model_score': 0.9857904689924131,
'model': DecisionTreeClassifier()}

```
In [37]:

pps.score(data, 'habitat', 'class')

Out[37]:

{'x': 'habitat',
   'y': 'class',
   'task': 'classification',
   'ppscore': 0.3499142505367472,
   'metric': 'weighted F1',
   'baseline_score': 0.4972,
   'model_score': 0.6731368851698765,
   'model': DecisionTreeClassifier()}
```

Data Encoding and Preparation

```
In [56]:
data.columns
Out [56]:
Index(['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'o
dor',
       'qill-attachment', 'qill-spacing', 'qill-size', 'qill-color',
       'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
       'stalk-surface-below-ring', 'stalk-color-above-ring',
       'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-numb
er',
       'ring-type', 'spore-print-color', 'population', 'habitat'],
      dtype='object')
In [59]:
data.shape
Out[59]:
(8124, 23)
In [58]:
# Encode all the categorical columns without the target class
df encoded = pd.get dummies(data=data, columns=['cap-shape', 'cap-surface', 'cap-co
       'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
       'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
       'stalk-surface-below-ring', 'stalk-color-above-ring',
       'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number',
       'ring-type', 'spore-print-color', 'population', 'habitat'])
In [60]:
df encoded.shape
Out[60]:
```

(8124, 118)

```
In [61]:
```

```
df_encoded.head()
```

Out[61]:

	class	cap- shape_b	cap- shape_c	cap- shape_f	cap- shape_k		cap- shape_x	cap- surface_f	cap- surface_g	surfa
0	р	0	0	0	0	0	1	0	0	
1	е	0	0	0	0	0	1	0	0	
2	е	1	0	0	0	0	0	0	0	
3	р	0	0	0	0	0	1	0	0	
4	е	0	0	0	0	0	1	0	0	
4										•

In [62]:

```
# Split the data into train and test data frames
X = df_encoded.drop(columns=['class']).copy()
y = df_encoded['class'].copy()
print(X.shape)
print(y.shape)
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.15)
```

(8124, 117) (8124,)

```
In [63]:
```

```
X train
```

Out[63]:

	cap- shape_b	cap- shape_c	cap- shape_f	cap- shape_k	cap- shape_s	cap- shape_x	cap- surface_f	cap- surface_g	cap. surface_s
6105	0	0	1	0	0	0	0	0	С
7073	0	0	1	0	0	0	0	0	1
1439	0	0	0	0	0	1	0	0	1
4749	0	0	0	0	0	1	1	0	C
2434	0	0	0	0	0	1	1	0	С
2581	0	0	0	0	0	1	0	0	С
7045	0	0	1	0	0	0	0	0	С
7257	0	0	0	1	0	0	0	0	С
3737	0	0	0	0	0	1	1	0	C
2878	0	0	1	0	0	0	1	0	С

6905 rows × 117 columns

In [64]:

```
len(y_train)
```

Out[64]:

6905

Machine Learning and Evaluation

In [114]:

```
import numpy as np
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
```

Naive Bayes

In [115]:

```
mnb = MultinomialNB().fit(X_train, y_train)
print("score on test: " + str(mnb.score(X_test, y_test)))
print("score on train: "+ str(mnb.score(X_train, y_train)))
```

score on test: 0.9433962264150944
score on train: 0.9546705286024619

In [116]:

```
#Get the confusion matrix
y_pred = mnb.predict(X_test)
cf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(cf_matrix, annot=True)
```

Out[116]:

<AxesSubplot:>

In [117]:

Support Vector Machine SVM

In [118]:

```
svm=LinearSVC(C=0.0001)
svm.fit(X_train, y_train)

print("score on test: " + str(svm.score(X_test, y_test)))
print("score on train: "+ str(svm.score(X_train, y_train)))
```

score on test: 0.9220672682526662 score on train: 0.9267197682838523

In [119]:

```
#Get the confusion matrix
y_pred = svm.predict(X_test)
cf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(cf_matrix, annot=True)
```

Out[119]:

<AxesSubplot:>

Bagging Decision Tree

In [121]:

```
# max_samples: maximum size 0.5=50% of each sample taken from the full dataset
# max_features: maximum of features 1=100% taken here all 10K
# n_estimators: number of decision trees
bg=BaggingClassifier(DecisionTreeClassifier(), max_samples=0.5, max_features=1.0, n_estimators
bg.fit(X_train, y_train)
print("score on test: " + str(bg.score(X_test, y_test)))
print("score on train: "+ str(bg.score(X_train, y_train)))
```

score on test: 0.9991796554552912 score on train: 0.9998551774076756

In [122]:

```
#Get the confusion matrix
y_pred = bg.predict(X_test)
cf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(cf_matrix, annot=True)
```

Out[122]:

<AxesSubplot:>

ML Tests - Algorithms overfitting the data

Logistic Regression = OVERFITTING!

```
In [123]:
```

```
from sklearn.linear_model import LogisticRegression

lr=LogisticRegression(max_iter=1000)
lr.fit(X_train, y_train)

print("score on test: " + str(lr.score(X_test, y_test)))
print("score on train: "+ str(lr.score(X_train, y_train)))

score on test: 1.0
```

score on train: 1.0

Decision Tree = OVERFITTING!

```
In [124]:
```

```
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
print("score on test: " + str(clf.score(X_test, y_test)))
print("score on train: " + str(clf.score(X_train, y_train)))
score on test: 1.0
```

```
score on test: 1.0 score on train: 1.0
```

XGBoost = OVERFITTING!

```
In [125]:
from xgboost import XGBClassifier
from sklearn.metrics import accuracy score
In [126]:
# fit model to training data
model = XGBClassifier()
model.fit(X train, y train)
Out[126]:
XGBClassifier()
In [127]:
# make predictions for test data
y pred = model.predict(X test)
In [128]:
# evaluate predictions
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
```

Accuracy: 100.00%

AdaBoost = OVERFITTING!

```
In [129]:
```

```
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

adb = AdaBoostClassifier(DecisionTreeClassifier(min_samples_split=10, max_depth=4), n
   adb.fit(X_train, y_train)

print("score on test: " + str(adb.score(X_test, y_test)))
print("score on train: "+ str(adb.score(X_train, y_train)))

score on test: 1.0
```

score on train: 1.0

Random Forest = OVERFITTING!

In [130]:

```
from sklearn.ensemble import RandomForestClassifier
# n_estimators = number of decision trees
rf = RandomForestClassifier(n_estimators=30, max_depth=9)
rf.fit(X_train, y_train)
print("score on test: " + str(rf.score(X_test, y_test)))
print("score on train: "+ str(rf.score(X_train, y_train)))
```

score on test: 1.0 score on train: 1.0

Final ML choice

In [110]:

```
from sklearn.ensemble import VotingClassifier
# 1) naive bias = mnb
# 2) logistic regression =lr
# 3) random forest =rf
# 4) support vector machine = svm
evc=VotingClassifier(estimators=[('mnb',mnb),('lr',lr),('rf',rf),('svm',svm)],votine
evc.fit(X_train, y_train)
print("score on test: " + str(evc.score(X_test, y_test)))
print("score on train: "+ str(evc.score(X_train, y_train)))
```

score on test: 0.9491386382280558
score on train: 0.9590152063721941

In [111]:

```
#Get the confusion matrix
y_pred = evc.predict(X_test)
cf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(cf_matrix, annot=True)
```

Out[111]:

<AxesSubplot:>

In [112]:

NOTE: Possible descrease of the False Negative predictions with NN

Test Env

```
In [3]:
```

```
# Naive Bayes
# Bagging Decision Tree
# Voting Classifier

# Fill in the mushroom data
test_data = {
        'cap-shape': ['b']
    }
df_test = pd.DataFrame(test_data)
print(df_test)
```

cap-shape

In []:

In []:

```
y_pred = svm.predict(df_test_encodedt)
print(y_pred)
```