Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

13 de enero del 2021

Cáculo de Valores y Vectores Propios de $A \in \mathbb{K}(n, n)$

Recordar que una matriz es diagonalizable si es semejante a una matriz diagonal. Una transformación lineal $T:V\longrightarrow V$ es diagonalizable si existe una base de V en donde su matriz asociada es diagonal, es decir, V posee una base formada por vectores propios correspondientes a la transformación lineal.

Sean V un espacio vectorial, con dim(V)=n, y una transformación lineal $T:V\longrightarrow V$. Si $\lambda_1,\cdots,\lambda_r$ son los valores propios diferentes de T, entonces los subespacios

$$V_j = \{v \in V/T(v) = \lambda_j v\}, \quad j = 1, 2, \cdots, r,$$

tienen la propiedad

$$V_j \cap [V_1 + \cdots + V_{j-1} + V_{j+1} + \cdots + V_r] = \{\mathbf{0}\}, \ j+1,\cdots,r$$

por tanto $V_1 + \cdots + V_r$ es suma directa, y se denota

Proposición (Primer criterio de diagonalización)

Sea V un espacio vectorial, una transformación lineal $T:V\longrightarrow V$ es diagonalizable si y solo si las multiplicidades algebraica y geométrica, de cada uno de sus valores propios, son iguales.

Prueba:

 \Rightarrow) Supongamos que T es diagonalizable, y consideremos $\lambda_1,\lambda_2,\cdots,\lambda_r$ valores propios diferentes y definamos para cada $j=1,2,\cdots,r$ los subespacios

$$V_j = \{ v \in V/T(v) = \lambda_j v \},\$$

Una vez elegida una base para cada subespacio V_j , la unión de estas bases es una base para V_0 , dado que T es diagonalizable tenemos que $V_0 = V$.

La matriz asociada T en esta base es diagonal y en su diagonal posee cada valor propio λ_j , repetidos $d_j = dim(V_j)$ veces. Entonces

$$p_{\tau}(\lambda) = (\lambda - \lambda_1)^{d_1} \cdots (\lambda - \lambda_r)^{d_r}.$$

Debido a la factorización única d_j debe ser igual a la multiplicidad algebraica de λ_j ; y así tenemos que las multiplicidades algebraica y geométrica de cada valor propio λ_j son iguales.

 \Leftarrow) Supongamos que $m_j = dim(V_j)$ es la multiplicidad algebraica de λ_i , entonces

$$din(V) = n = m_1 + \dots + m_r$$

$$= dim(V_1) + \dots + dim(V_r)$$

$$= dim(V_1 \oplus \dots \oplus V_r),$$

de donde $V = V_1 \oplus \cdots \oplus V_r$. Por tanto T es diagonalizable.

Ejemplo

Sea la matriz
$$A = \begin{bmatrix} -1 & -3 & 4 \\ -4 & 0 & 4 \\ 3 & -4 & 0 \end{bmatrix}$$
 ¿ Es diagonalizable?

El polinomio característico de A es

$$p_{A}(\lambda) = (\lambda - 3)(\lambda + 2)^{2},$$

en este caso es suficiente determinar la multiplicidad algebraica de $\lambda=-2$, es decir,

$$V_{\lambda=-2} = \{ v \in \mathbb{K}(3,1)/Av = -2v \} = \{ (2x,2x,x)/x \in \mathbb{K} \},$$

notamos que $dim(V_{\lambda=-2})=1$, por tanto la multiplicidad algebraica es igual a 2 mientras que la multiplicad geométrica es igual a 1 y de esta manera A no es diagonalizable.

Proposición (Segundo criterio de diagonalización)

sea V un espacio vectorial, una transformación lineal $T:V\longrightarrow V$ es diagonalizable si, y solo si su polinomio minimal posee solamente raíces simples.

Prueba

 \Rightarrow) Como T es diagonalizable, entonces $V=V_0=V_1\oplus\cdots\oplus V_r$. Veamos que $\varphi_{\tau}(\lambda)=(\lambda-\lambda_1)\cdots(\lambda-\lambda_r)$: Para cada $v\in V$ puede ser expresado de la forma

$$v = v^1 + \cdots + v^r$$

donde $\{v^1, v^2, \cdots, v^r\} \subset V_j$. Como $(T - \lambda_j I)v^j = 0$ para $j = 1, \cdots, r$, entonces

$$(T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_r I)v = 0,$$

por tanto

$$\varphi_{\tau}(T) = (T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_r I) = 0,$$

 \Leftarrow) supongamos que $\varphi_{\tau}(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_r)$. Veamos que T es diagonalizable, lo que es equivalente $V = V_0$: Los polinomios

$$\varphi_j(\lambda) = \frac{\varphi_\tau(\lambda)}{\lambda - \lambda_j}, \quad j = 1, \cdots, r.$$

son coprimos (es decir, no tienen factor común), por tanto existen polinomios h_j tales que

$$\sum_{j=1}^{r} \varphi_{j}(\lambda) h_{j}(\lambda) = 1,$$

entonces

$$\sum_{j=1}^{r} \varphi_j(T) h_j(T) = I,$$

luego para todo $v \in V$ se tiene

$$v = \sum_{j=1}^{r} \varphi_{j}(T)h_{j}(T)(v),$$

denotemos por $w^j = \varphi_i(T)h_i(T)(v)$, entonces tenemos que

$$(T - \lambda_j I)(w^j) = [(T - \lambda_j I)\varphi_j(T)]h_j(T)(v)$$

= $\varphi_{\tau}(T)h_j(T)(v)$
= $0h_j(T)(v) = 0$.

Luego para w^j , y para cada $j = 1, \dots, r$ se tiene

$$v = w^1 + \cdots + w^r \in V_1 \oplus \cdots \oplus V_r$$

de donde $V \subset V_0$, y por tanto $V = V_0$. Por tanto T es diagonalizable.

Proposición

Sean V un espacio vectorial, $T,L:V\longrightarrow V$ transformaciones lineales diagonalizables tales que $T\circ L=L\circ T$. Entonces existe una base de V que diagonaliza T y L simultáneamente. En particular $L\circ T$ es diagonalizable.

Prueba Ejercicio.

Proposición

Sean V un espacio vectorial $T_j: V \longrightarrow V$, $j=1,\cdots,m$ una familia de transformaciones lineales diagonalizables que conmutan dos a dos. Entonces existe una base de V que las diagonaliza simultáneamente.

Prueba Ejercicio.

Ejemplo

Consideremos las matrices

$$A = \begin{bmatrix} -3 & 2 \\ -4 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & -2 \\ 4 & 1 \end{bmatrix}.$$

Se verifica fácilmente que AB = BA, además A y B son diagonalizable, es decir

$$p_{A}(\lambda) = (\lambda + 1)(\lambda - 1)$$
 y $p_{B}(\lambda) = (\lambda - 5)(\lambda - 3)$

poseen raíces distintas.

Los valores propios asociados a $\lambda_1=-1$ y $\lambda_2=1$ de A son $v^1=(1;1)^t$ y $v^2=(1;2)^t$, respectivamente.

Entonces la matriz

$$P = \left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right]$$

diagonaliza a la matriz A así como a la matriz B. En efecto

$$P^{-1}AP = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad y \quad P^{-1}BP = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$

Proposición

Sean V un espacio vectorial, $v \in V$ un vector fijo tal que $T^{q-1}(v) \neq \mathbf{0}$. Entonces

- 1. Los vectores $v, T(v), \dots, T^{q-1}(v)$ son l. i.
- 2. El subespacio $S = \mathcal{L}(\{v, T(v), \dots, T^{q-1}(v)\})$ es invariante bajo T.
- 3. Existe un subespacio $W \subset V$ invariante bajo T tal que

$$V = S \oplus W$$

Prueba:

1. Supongamos que

$$\alpha_1 \mathbf{v} + \alpha_2 T(\mathbf{v}) + \cdots + \alpha_q T^{q-1}(\mathbf{v}) = \mathbf{0}$$

Aplicamos T^{q-1} a la última igualdad, entonces tenemos

$$\alpha_1 T^{q-1}(v) = \mathbf{0},$$

y como $T^{q-1} \neq \mathbf{0}$, entonces $\alpha_1 = \mathbf{0}$.

Ahora aplicamos T^{q-2} a la última igualdad, obtenmos $\alpha_2 = 0$. Repetimos este proceso obetniéndose

$$\alpha_1 = \alpha_2 = \cdots = \alpha_q = 0.$$

Entonces $v, T(v), \dots, T^{q-1}(v)$ son l.i.

- 2. Ejercicio.
- 3. Ejercicio.

Proposición (Unicidad)

Con las notaciones de la proposición anterior, sea $w \in V$ otro vector $(w \neq v)$ tal que $T^{q-1}(w) \neq \mathbf{0}$.

Sea $S' = \mathcal{L}(\{w, T(w), \cdots, T^{q-1}(w)\})$ y $W' \subset V$ el subespacio invariante bajo T tal que $V = S' \oplus W'$, que por la proposición anterior existen índices de nilpotencia de $T: W \longrightarrow W$ y $T: W' \longrightarrow W'$ son iguales

Prueba: Ejercicio.

Proposición (Teorema de Estructura)

Sean V un espacio vectorial y T : V \longrightarrow V una transformación lineal nilpotente de índice q, entonces existen enteros positivos r, q_1, q_2, \cdots, q_r unívocamente determinados por T, y vectores no nulos $\{v^1, \cdots, v^r\} \subset V$, tales que

- 1. $q_1 \geq q_2 \geq \cdots \geq q_r$. El conjunto de enteros r, q_1, q_2, \cdots, q_r se llaman conjunto completo de invariantes de T.
- 2. La colección de vectores

$$T^{q_1-1}(v^1), \cdots, T(v^1)$$
 \vdots
 $T^{q_1-1}(v^r), \cdots, T(v^r)$

constituyen una base de V.

3.
$$T^{q_1}(v^1) = \mathbf{0}, T^{q_2}(v^2) = \mathbf{0}, \cdots, T^{q_r}(v^r) = \mathbf{0}.$$

4. El conjunto completo de invariantes caracteriza T. Es decir, dos transformaciones lineales nilpotentes son semejantes si y sólo si tienen el mismo conjunto completo de invariantes.

Prueba: Ejercicio.

Nota

El número de elementos de la base de V dada en la proposición anterior, (2) nos dice que

$$q_1+q_2+\cdots+q_r=n=\dim(V)$$

Ahora veamos la forma matricial de una transformación lineal nilpotente. La matriz asociada a la transformación lineal nilpotente $T:V\longrightarrow V$, en la base dada en (2) de la proposición anterior, está formada por bloques

Así, en el subespacio invariante $\mathcal{L}(\{T^{q_i-1}(v^i), \cdots, T(v^i), v^i\})$ la matriz asociada es

$$J_i(T) = \left[egin{array}{ccccccc} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \ dots & dots & \ddots & \ddots & \cdots & & \ & & & & & 0 \ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \end{array}
ight]$$

de orden $q_i \times q_i$. Luego la matriz asociada a T en la base dada por (2) es

$$J(T) = egin{bmatrix} J_1(T) & 0 \ & \ddots & \ 0 & J_r(T) \end{bmatrix}$$

Esta matriz es llamada la **forma canónica de Jordan** de la transformación lineal nilpotente T.