MA 515 - Analysis I

Homework 1

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

Name: Nutan Nepal

1. Choose either d_1 or d_2 below and show that it is a metric on \mathbb{R}^n .

$$d_1(x,y) = max\{|x_i - y_i|\}$$
 and $d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$ (taxicab metric).

- i. Since d_2 is a finite sum of positive numbers, $0 \le d_2(x, y) < \infty$.
- ii. $d_2(x, y) = d_2(y, x)$ since $|x_i y_i| = |y_i x_i|$ for all *i*.
- iii. $d_2(x,x) = 0$ since it is the sum of zeros.
- iv. Since we have $|x_i z_i| = |(x_i y_i) + (y_i z_i)| \le |x_i y_i| + |y_i z_i|$ (using triangle inequality for each $x_i, y_i, z_i \in \mathbf{R}$), we get

$$d_2(x,z) = \sum_{i=1}^n |x_i - z_i| \le \sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|) = d_2(x,y) + d_2(y,z).$$

Hence, d_2 also satisfies the triangle inequality for $x, y, z \in \mathbb{R}^n$.

Thus, d_2 is a metric in \mathbb{R}^n .

2. Let C[0,1] be the space of continuous functions on [0,1].

Show that $d(f,g) = \int_{0}^{1} |f(x) - g(x)| dx$ is a metric on C[0,1]

- For all $f \in C[0,1]$, f is bounded. Let |f(x)| < M and |g(x)| < N for $x \in [0,1]$. i. Then $0 \le \int_0^1 |f(x) g(x)| dx \le \int_0^1 |f(x)| + |g(x)| dx \le (M+N)(1-0) < \infty$. Hence $0 \le d(f,g) < \infty$.
 - ii. d(f,g) = d(g,f) since |f(x) g(x)| = |g(x) f(x)| for all $x \in [0,1]$.
 - iii. d(f, f) = 0 since it is the integration of zero function.
 - iv. For each $x \in [0,1]$ and $f, g, h \in C[0,1]$, we have |f(x) h(x)| = |(f(x) g(x)) + (g(x) g(x))| $|h(x)| \le |f(x) - g(x)| + |g(x) - h(x)|$ (using triangle inequality for real numbers). Then

$$d(f,h) = \int_0^1 |f(x) - h(x)| dx \le \int_0^1 (|f(x) - g(x)| + |g(x) - h(x)|) dx = d(f,g) + d(g,h).$$

Hence, d satisfies the triangle inequality for $f, g, h \in C[0, 1]$.

Thus, d is a metric on C[0,1].

- 3. Let $x = \{x_n\}_1^{\infty}$ be a sequence.
 - (a) True or False: If $x \in l^p$ for some $1 \le p < \infty$, then $x_n \to 0$ as $n \to \infty$. Justify your answer.

True. If $x \in l^p$ for some $1 \le p < \infty$, then $(\sum_{i=1}^{\infty} |x_i|^p)^{1/p} < \infty$. Hence $\sum_{i=1}^{\infty} |x_i|^p$ is a convergent series and $|x_i|^p \to 0$ as $i \to \infty$ which implies that $x_i \to 0$ as $i \to \infty$.

(b) True or False: If $x_n \to 0$ as $n \to \infty$, then $x_n \in l^p$, for some $1 \le p < \infty$. Justify your answer.

False. The sequence given by $x = \{x_i = \frac{1}{\log(i+1)}\}_1^{\infty} \to 0 \text{ as } i \to \infty \text{ but the sum } \sum_{i=1}^{\infty} |x_i|^p \text{ does not converge for any } 1 \le p < \infty.$

4. Let $a, b \ge 0$, and $p \ge 1$. Prove that

$$(a+b)^p \le 2^{p-1}(a^p + b^p)$$

Use the hints from class.

Let $f(x) = x^p$, $f:[0,\infty) \to \mathbf{R}$ and $p \ge 1$. Since f is a convex function, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \quad \text{for } \alpha \in [0, 1].$$

Taking $\alpha = 1/2$, we get

$$f\left(\frac{a}{2} + \frac{b}{2}\right) \le \frac{f(a)}{2} + \frac{f(b)}{2}$$
or,
$$\frac{1}{2^p} f(a+b) \le \frac{1}{2} (f(a) + f(b))$$
or,
$$(a+b)^p \le 2^{p-1} (a^p + b^p).$$

5. For p > 1, let q be its conjugate, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. Prove the following inequality:

$$u \cdot v \le \frac{1}{p}u^p + \frac{1}{q}v^q, \quad \forall u, v \ge 0$$

Use the hints from class.

If either u or v equals 0, then the inequality follows immediately. Suppose u > 0, v > 0 and let $f(x) = e^x$. Since f is a *convex* function,

$$u \cdot v = \exp(\log u + \log v)$$

$$= f\left(\frac{1}{p}\log u^p + \frac{1}{q}\log v^q\right)$$

$$\leq \frac{1}{p}f(\log u^p) + \frac{1}{q}f(\log v^q)$$

$$= \frac{u^p}{p} + \frac{v^q}{q}.$$

6. Prove Holder's Inequality for Sums. Use the hints from class.

Holder's inequality: Let $p,q\geq 1$ be conjugate exponents. Let $x=\{x_i\}_1^\infty\in l^p$ and y=1 $\{y_i\}_1^\infty \in l^q$. Then

a.
$$xy = \{x_i y_i\}_{1}^{\infty} \in l^1$$
 and

b.
$$\sum_{1}^{\infty} |x_i y_i| \le (\sum_{1}^{\infty} |x_i|^p)^{\frac{1}{p}} \cdot (\sum_{1}^{\infty} |y_i|^q)^{\frac{1}{q}}$$
.

b. $\sum_{1}^{\infty} |x_i y_i| \leq (\sum_{1}^{\infty} |x_i|^p)^{\frac{1}{p}} \cdot (\sum_{1}^{\infty} |y_i|^q)^{\frac{1}{q}}$. Let $u_i = \frac{x_i}{(\sum_{1}^{\infty} |x_i|^p)^{1/p}}$ and $v_i = \frac{y_i}{(\sum_{1}^{\infty} |y_i|^q)^{1/q}}$. Then by Young's inequality,

$$u_i \cdot v_i = \frac{x_i}{\left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p}} \cdot \frac{y_i}{\left(\sum_{1}^{\infty} |y_i|^q\right)^{1/q}}$$

$$\leq \frac{x_i^p}{p \sum_{1}^{\infty} |x_i|^p} + \frac{y_i^q}{q \sum_{1}^{\infty} |y_i|^q}$$

Let $m = (\sum_{1}^{\infty} |x_i|^p)^{1/p}$ and $n = (\sum_{1}^{\infty} |y_i|^q)^{1/q}$. Then from above we have

$$\sum_{1}^{\infty} |x_{i}y_{i}| = mn \sum_{1}^{\infty} |u_{i}v_{i}| \le mn \sum_{1}^{\infty} \left| \frac{1}{pm^{p}} x_{i}^{p} + \frac{1}{qn^{q}} \cdot y_{i}^{q} \right| \le mn \left(\frac{1}{pm^{p}} \cdot \sum_{1}^{\infty} |x_{i}^{p}| + \frac{1}{qn^{q}} \sum_{1}^{\infty} |y_{i}^{q}| \right)$$

$$= mn \left(\frac{1}{pm^{p}} \cdot m^{p} + \frac{1}{qn^{q}} \cdot n^{q} \right) = mn$$

Hence $\sum_{1}^{\infty} |x_i y_i| \le mn = (\sum_{1}^{\infty} |x_i|^p)^{1/p} \cdot (\sum_{1}^{\infty} |y_i|^q)^{1/q}$ which proves (b). Since $0 \le \sum_{1}^{\infty} |x_i y_i| < 1$ ∞ , we also have (a) by definition.

7. Prove Minkowski's Inequality for Sums. Use the hints from class.

Minkowski's inequality: Let $p \ge 1$ and $x = \{x_i\}_1^\infty \in l^p$ and $y = \{y_i\}_1^\infty \in l^p$. Then

a.
$$x + y = \{x_i + y_i\}_1^{\infty} \in l^p \text{ and } l^p$$

b.
$$(\sum_{1}^{\infty} |x_i + y_i|^p)^{\frac{1}{p}} \leq (\sum_{1}^{\infty} |x_i|^p)^{\frac{1}{p}} + (\sum_{1}^{\infty} |y_i|^p)^{\frac{1}{p}}$$
. First we show that $x + y \in l^p$ by showing that

$$\left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/p} < \infty$$

We have,

$$\sum_{1}^{\infty} |x_i + y_i|^p \le \sum_{i}^{\infty} (|x_i| + |y_i|)^p \le 2^{p-1} \left(\sum_{i}^{\infty} |x_i|^p + \sum_{i}^{\infty} |y_i|^p \right) < \infty.$$

Now, since $x, y \in l^p$, $d_p(x, y) < \infty$. If p = 1 then the Minkowski inequality follows from the triangle inequality of real numbers. Let p > 1 then

$$\sum_{1}^{\infty} |x_i + y_i|^p = \sum_{1}^{\infty} |x_i + y_1| |x_i + y_i|^{p-1} \le \sum_{1}^{\infty} (|x_i| |x_i + y_i|^{p-1} + |y_i| |x_i + y_i|^{p-1})$$
 (1)

$$= \sum_{1}^{\infty} (|x_i||x_i + y_i|^{p-1}) + \sum_{1}^{\infty} (|y_i||x_i + y_i|^{p-1})$$
 (2)

Now let q be the conjugate exponent of p, then we have $\frac{1}{p} + \frac{1}{q} = 1 \iff p + q = pq \iff p = p(q-1)$. Then, at line 2

$$\left(\sum_{1}^{\infty} |x_i + y_i|^{(p-1)q}\right)^{1/q} = \left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/q} < \infty$$

which shows that $\{|x_i+y_i|^{p-1}\}_i^{\infty} \in l^q$. Then by Holder's inequality,

$$\sum_{1}^{\infty} |x_i| |x_i + y_i|^{p-1} \le \left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p} \cdot \left(\sum_{1}^{\infty} |x_i + y_i|^{(p-1)q}\right)^{1/q} \tag{3}$$

$$= \left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p} \cdot \left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/q}$$
 (4)

Using the results from line 2 and line 4 on line 1,

$$\sum_{1}^{\infty} |x_i + y_i|^p \le \sum_{1}^{\infty} (|x_i||x_i + y_i|^{p-1}) + \sum_{1}^{\infty} (|y_i||x_i + y_i|^{p-1})$$
 (5)

or,
$$\sum_{1}^{\infty} |x_i + y_i|^p \le \left(\sum_{1}^{\infty} |x_i + y_i|^p\right)^{1/q} \cdot \left(\left(\sum_{1}^{\infty} |x_i|^p\right)^{1/p} + \left(\sum_{1}^{\infty} |y_i|^p\right)^{1/p}\right)$$
 (6)

Dividing both sides by $\left(\sum_{1}^{\infty}|x_i+y_i|^p\right)^{1/q}$, we get the Minkowski's inequality (since $1-\frac{1}{q}=\frac{1}{p}$).

8. For $1 \le p < \infty$, let $l^p = \{x = \{x_i\}_1^\infty \mid \sum_{1=1}^\infty |x_i|^p < \infty\}$. For any $x, y \in l^p$, define

$$d_p(x,y) = \left(\sum_{1}^{\infty} |x_i - y_i|^p\right)^{1/p}$$

Prove that (l^p, d_p) is a metric space.

- i. Since $d_p(x, y)$ is the *pth* root of a sum of positive numbers, $d_p \ge 0$. Also from Minkowski inequality (a.), we have $d_p < \infty$.
- ii. $d_p(x,y) = d_p(y,x)$ since $|x_i y_i| = |y_i x_i|$ for all i.
- iii. $d_p(x,x) = 0$ since $|x_i x_i| = 0$ for all i.
- iv. The triangle inequality for d_p follows from the Minkowski inequality (b.)

$$\left(\sum_{1}^{\infty} |x_i - z_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{1}^{\infty} |x_i - y_i|^p\right)^{\frac{1}{p}} + \left(\sum_{1}^{\infty} |y_i - z_i|^p\right)^{\frac{1}{p}}$$
or, $d_p(x, z) \le d_p(x, y) + d_p(y, z)$

9. Prove Jensen's Inequality for Sums. Use the hints from class.

$$\left(\sum_{i=1}^{\infty} |x_i|^{p_2}\right)^{1/p_2} \le \left(\sum_{i=1}^{\infty} |x_i|^{p_1}\right)^{1/p_1} \qquad \forall 1 \le p_1 < p_2 < \infty$$

Let $|y_i| = |x_i|^{p_1}$. Then we need to show that $\left(\sum_{i=1}^{\infty} |y_i|^{p_2/p_1}\right)^{p_1/p_2} \leq \sum_{i=1}^{\infty} |y_i|$. First we show that this is true for a finite sequence $\{x_i\}_1^n$ using induction on n. Then we take the limit as $n \to \infty$ to prove Jensen's inequality.

When n = 1, $(|y_1|^{p_2/p_1})^{p_1/p_2} = y_1$. (True)

Let $H(k): \left(\sum_{i=1}^{k} |y_i|^{p_2/p_1}\right)^{p_1/p_2} \leq \sum_{i=1}^{k} |y_i|$ be true for some integer k > 1. Then

$$\left(\sum_{i=1}^{k+1} |y_i|^{p_2/p_1}\right)^{p_1/p_2} = \left(\sum_{i=1}^{k} |y_i|^{p_2/p_1} + |y_{k+1}|^{p_2/p_1}\right)^{p_1/p_2}$$

$$\leq \left(\sum_{i=1}^{k} |y_i|^{p_2/p_1}\right)^{p_1/p_2} + \left(|y_{k+1}|^{p_2/p_1}\right)^{p_1/p_2} \quad \text{[by Minkowski inequality]}$$

$$\leq \sum_{i=1}^{k} |y_i| + |y_{k+1}| \quad \text{[by induction hypothesis]}$$

$$= \sum_{i=1}^{k+1} |y_i|$$

Hence $H(k) \implies H(k+1)$ which proves that H(n) is true for all $n \in \mathbb{Z}$. Taking the limit as $n \to \infty$ we get the required Jensen's inequality.

10. Show that $l^1 \subset l^2$ without using Jensen's inequality. Then show that inclusion is strict, i.e., find an element in l^2 that is not in l^1 .

Let $x \in l^1$ then $0 \le \sum_{1}^{\infty} |x_1| < \infty$ which implies that the sequence x converges to 0. Let $N \in \mathbb{Z}$ such that $x_i < 1$ for all i > N. Then for i > N, we have $|x_i|^2 < |x_i|$. Hence,

$$0 \le \sum_{i=1}^{\infty} |x_i|^2 \le \sum_{i=1}^{N} |x_i|^2 + \sum_{i=N+1}^{\infty} |x_i|^2 < \sum_{i=1}^{N} |x_i|^2 + \sum_{i=N+1}^{\infty} |x_i| < \infty.$$

So, $l^1 \subset l^2$.

The harmonic series given by the sequence $x = \{x_i = \frac{1}{i}\}_{1}^{\infty}$ does not converge. However

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} < \infty.$$

Here we see that $x \notin l^1$ but $x \in l^2$. Hence, the inclusion is strict.