

MOS INTEGRATED CIRCUIT μ PD30700,30700L,30710

VR10000[™], VR12000[™] 64-BIT MICROPROCESSORS

DESCRIPTION

The μ PD30700 and 30700L (V_R10000) and μ PD30710 (V_R12000) are new members of NEC's V_R seriesTM RISC (Reduced Instruction Set Computer) microprocessors. These new high-performance 64-bit microprocessors employ a new RISC architecture developed by MIPSTM, ANDESTM architecture.

The V_R10000 and V_R12000 are designed to be used in high-performance computers and achieve considerably higher processing speed through the employment of a super scalar pipeline.

Remark ANDES: Architecture with Non-sequential Dynamic Execution Scheduling

The functions of these microprocessors are described in detail in the following manuals. Be sure to read these manuals when designing systems.

 V_R10000 , V_R12000 User's Manual : U10278E V_R5000^{TM} , V_R10000 User's Manual - Instruction : U12754E

FEATURES

- MIPS 64-bit RISC architecture
- High-speed operation processing
 Super scalar pipeline executing five instructions in parallel
 VR10000>
 - 14SPECint95, 23SPECfp95
- <VR12000>
 - 17SPECint95, 27SPECfp95
- Instruction set upward-compatible with VR4000TM, VR4200TM, and VR4400TM (conforms to MIPS-I/II/III/IV)
- High-speed translation lookaside buffer (TLB) (64 double entries)
- Address space Physical: 40 bits
 Virtual: 44 bits
- Floating-point unit (FPU)
- Primary cache memory (32K bytes for each of instruction and data, 2-way set associative)
- Secondary cache memory interface
 - 128-bit secondary cache interface
 - SSRAM interface (V_R10000: 250 MHz MAX., V_R12000: 200 MHz MAX.)
 - Supports up to 16M bytes

Operating frequency

<VR10000>

- Internal: 250 MHz MAX.
- External: 250 MHz MAX.
- External/internal multiplication factor selectable from 1 to 4

<VR12000>

- Internal: 300 MHz MAX.
- External: 150 MHz MAX.
- External/internal multiplication factor selectable from 2 to 10
- Multi-processor function
 - Up to four buses of cluster connection can be connected.
- Supply voltage

<VR10000>

 $V_{DD} = 3.3 \text{ V} \pm 0.165 \text{ V} (\mu PD30700)$

 $V_{DD} = 2.6 \text{ V} \pm 0.1 \text{ V} (\mu PD30700L)$

<VR12000>

 $V_{DD} = 2.6 \text{ V} \pm 0.1 \text{ V} (\mu PD30710)$

Unless otherwise specified, the VR10000 is treated as the representative model throughout this document.

The information in this document is subject to change without notice.

APPLICATIONS

- UNIXTM servers
- Windows NTTM servers
- Desktop workstations, etc.

ORDERING INFORMATION

Part Number	Package	Maximum Internal Operating Frequency
μPD30700RS-180	599-pin ceramic LGA	180
μ PD30700RS-200	599-pin ceramic LGA	200
μ PD30700LRS-225 $^{ m Note}$	599-pin ceramic LGA	225
μ PD30700LRS-250 ^{Note}	599-pin ceramic LGA	250
μ PD30710RS-300 ^{Note}	599-pin ceramic LGA	300

Note Under development

Remark LGA: Land Grid Array

PIN CONFIGURATION

• 599-pin ceramic LGA

μPD30700RS-180

 μ PD30700RS-200

 μ PD30700LRS-225

μPD30700LRS-250

μPD30710RS-300

Top View Bottom View AP AR AP AN AM AL AK AJ AH AG AF AE AF AE AD AC AB AΑ W ٧ U Τ R Р Ν Μ L Κ J Н G F Ε D С В 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 Index

(1/4)

No.	Name	No.	Name	No.	Name	No.	Name
A1	_	B9	SCADCS	C17	SysAD41	D25	Vss
A2	V _{DD}	B10	SCAAddr5	C18	V _{DD}	D26	V _{DD}
A3	Vss	B11	Vss	C19	SysAD36	D27	SCData68
A4	VDDQSC	B12	SCData78	C20	SysAD32	D28	SCData64
A5	SCData89	B13	SCClk0	C21	Vss	D29	Vss
A6	SCData85	B14	V _{DD}	C22	Vss	D30	SCAAddr12
A7	Vss	B15	SCData72	C23	SysClkRet	D31	SCAAddr16
A8	SCADWr	B16	SysAD44	C24	Vss	D32	Vss
A9	SCAAddr8	B17	Vss	C25	V _{DD} Pa	D33	SCDataChk0
A10	VDDQSC	B18	SysAD40	C26	SCData71	D34	SCData29
A11	SCAAddr1	B19	Vss	C27	Vss	D35	VDDQSC
A12	SCData76	B20	SysAD33	C28	SCData67	E1	SCClk5
A13	Vss	B21	Vss	C29	SCDataChk2	E2	Vss
A14	SCData74	B22	DCOK	C30	VDDQSC	E3	V _{DD}
A15	SysAD46	B23	SysClkRet	C31	SCAAddr13	E4	SCDataChk6
A16	V _{DD} QSys	B24	VssPa	C32	SCAAddr18	E5	V _{DD}
A17	SysAD42	B25	VssPa	C33	VDDQSC	E6	SCData90
A18	SysAD37	B26	SCClk1	C34	V _{DD}	E7	SCData86
A19	SysAD35	B27	SCDataChk9	C35	Vss	E8	VDDQSC
A20	V _{DD} QSys	B28	V _{DD}	D1	VDDQSC	E9	SCData80
A21	Vss	B29	SCData65	D2	SCTCS	E10	SCADWay
A22	SysClk	B30	SCAAddr9	D3	SCDataChk8	E11	Vss
A23	SysClk	B31	Vss	D4	Vss	E12	SCAAddr4
A24	VssPa	B32	SCAAddr15	D5	SCData92	E13	SCAAddr0
A25	NC	B33	SCAAddr17	D6	SCData88	E14	VDDQSC
A26	SCClk1	B34	Vss	D7	Vss	E15	SCCIk0
A27	Vss	B35	V _{DD}	D8	SCData82	E16	SysAD47
A28	SCData70	C1	Vss	D9	SCADOE	E17	Vss
A29	Vss	C2	V _{DD}	D10	V _{DD}	E18	SysAD39
A30	SCDataChk4	C3	VDDQSC	D11	SCAAddr6	E19	Vss
A31	SCAAddr11	C4	SCData94	D12	SCAAddr2	E20	SysCyc
A32	VDDQSC	C5	SCData91	D13	Vss	E21	Vss
A33	Vss	C6	VDDQSC	D14	SCData77	E22	V _{DD} Pd
A34	V _{DD}	C7	SCData84	D15	SCData73	E23	Vss
A35	Vss	C8	SCData81	D16	V _{DD}	E24	Vss
B1	V _{DD}	C9	Vss	D17	SysAD43	E25	Vss
B2	Vss	C10	SCAAddr7	D18	SysAD38	E26	SCData69
В3	SCData95	C11	SCAAddr3	D19	SysAD34	E27	SCData66
B4	SCData93	C12	VDDQSC	D20	V _{DD}	E28	VDDQSC
B5	Vss	C13	SCData79	D21	Vss	E29	SCAAddr10
B6	SCData87	C14	SCData75	D22	VssPd	E30	SCAAddr14
B7	SCData83	C15	Vss	D23	Vss	E31	V _{DD}
B8	V _{DD}	C16	SysAD45	D24	Vss	E32	SCData31

Note Connect this pin via a100- Ω resistor.

(2/4)

No.	Name	No.	Name	No.	Name	No.	Name
E33	V _{DD}	K1	VDDQSC	P4	SCTag6	V32	SysAD6
E34	Vss	K2	SCTag14	P5	V _{DD} QSC	V33	V _{DD}
E35	SCData27	K3	SCTag17	P31	VDDQSC	V34	SysAD4
F1	V _{DD}	K4	V _{DD}	P32	SCData4	V35	SysAD2
F2	SCTWr	K5	SCTag19	P33	SCData2	W1	SCClk4
F3	VDDQSC	K31	SCData18	P34	V _{DD}	W2	Vss
F4	SCClk5	K32	V _{DD}	P35	SysAD15	W3	SCTagChk1
F5	V _{SS} Note	K33	SCData16	R1	SCTag0	W4	SCCIk4
F31	SCData30	K34	SCData11	R2	VDDQSC	W5	Vss
F32	SCData28	K35	VDDQSC	R3	Vss	W31	Vss
F33	VDDQSC	L1	SCTag12	R4	SCTag1	W32	SysAD1
F34	SCData25	L2	Vss	R5	SCTag3	W33	JTCK
F35	SCData23	L3	V _{DD}	R31	SCData0	W34	Vss
G1	Vss	L4	SCTag15	R32	SysAD13	W35	JTDI
G2	SCTag22	L5	Vss	R33	Vss	Y1	VccQSys
G3	SCTag24	L31	Vss	R34	SysAD14	Y2	SysCmd0
G4	Vss	L32	SCData14	R35	SysAD12	Y3	SysCmd1
G5	SCTOE	L33	SCData9	T1	VDDQSC	Y4	V _{DD}
G31	SCData26	L34	Vss	T2	NC	Y5	SysCmd3
G32	Vss	L35	SCData7	Т3	SCTWay	Y31	JTDO
G33	SCData21	M1	SCTag7	T4	V _{DD}	Y32	V _{DD}
G34	SCData19	M2	SCTag9	T5	SCTagLSBAddr	Y33	VrefSys
G35	Vss	МЗ	VDDQSC	T31	SysAD11	Y34	SysAD0
H1	SCTag20	M4	SCTag11	T32	V _{DD}	Y35	V _{DD} QSys
H2	V _{DD}	M5	SCTag13	T33	SysAD9	AA1	SysCmd2
НЗ	VDDQSC	M31	SCData12	T34	SysAD10	AA2	SysCmd4
H4	SCTag25	M32	SCData10	T35	V _{DD} QSys	AA3	Vss
H5	VDDQSC	M33	VDDQSC	U1	SCTagChk6	AA4	SysCmd5
H31	VDDQSC	M34	SCData5	U2	Vss	AA5	SysCmd7
H32	SCData24	M35	SCData3	U3	SCTagChk5	AA31	SCClk2
H33	VDDQSC	N1	Vss	U4	V _{SS} Note	AA32	SCData32
H34	V _{DD}	N2	SCTag5	U5	Vss	AA33	Vss
H35	SCData17	N3	SCTag8	U31	Vss	AA34	JTMS
J1	SCTag16	N4	Vss	U32	SysAD7	AA35	VrefSC
J2	SCTag18	N5	SCTag10	U33	SysAD5	AB1	SysCmd6
J3	Vss	N31	SCData8	U34	Vss	AB2	VDD
J4	SCTag21	N32	Vss	U35	SysAD8	AB3	SysCmd8
J5	SCTag23	N33	SCData6	V1	SCTagChk4	AB4	SysCmd10
J31	SCData22	N34	SCData1	V2	SCTagChk2	AB5	VDDQSys
J32	SCData20	N35	Vss	V3	V _{DD}	AB31	VDDQSC
J33	Vss	P1	SCTag2	V4	SCTagChk0	AB32	SCData35
J34	SCData15	P2	V _{DD}	V5	SCTagChk3	AB33	SCCIk2
J35	SCData13	P3	SCTag4	V31	SysAD3	AB34	V _{DD}

Note Connect this pin via a 100- Ω resistor.

(3/4)

No.	Name	No.	Name	No.	Name	No.	Name
AB35	SCData33	AG3	Vss	AL6	SCData124	AM14	SCData110
AC1	Vss	AG4	SysGblPerf	AL7	SCData120	AM15	SCClk3
AC2	SysCmd9	AG5	SysWrRdy	AL8	VDDQSC	AM16	V _{DD}
AC3	SysCmdPar	AG31	SCData53	AL9	SCData114	AM17	SysAD58
AC4	Vss	AG32	SCData51	AL10	SCBDOE	AM18	SysAD54
AC5	SysReq	AG33	Vss	AL11	SCBAddr8	AM19	SysAD52
AC31	SCData39	AG34	SCData48	AL12	SCBAddr4	AM20	V _{DD}
AC32	Vss	AG35	SCData46	AL13	SCBAddr0	AM21	SysADChk4
AC33	SCData37	AH1	SysResp2	AL14	VDDQSC	AM22	SysAD30
AC34	SCData34	AH2	V _{DD}	AL15	SCData106	AM23	Vss
AC35	Vss	AH3	V _{DD} QSys	AL16	SCData104	AM24	SysAD26
AD1	SysCmd11	AH4	SysStatePar	AL17	SysAD60	AM25	SysAD22
AD2	SysVal	AH5	V _{DD} QSys	AL18	SysAD56	AM26	V _{DD}
AD3	V _{DD} QSys	AH31	VDDQSC	AL19	SysAD50	AM27	SCData102
AD4	SysGnt	AH32	SCData55	AL20	SysADChk6	AM28	SCData98
AD5	SysReset	AH33	VDDQSC	AL21	SysADChk2	AM29	Vss
AD31	SCData43	AH34	V _{DD}	AL22	V _{DD} QSys	AM30	SCBAddr11
AD32	SCData41	AH35	SCData50	AL23	SysAD28	AM31	SCBAddr15
AD33	VDDQSC	AJ1	Vss	AL24	SysAD24	AM32	Vss
AD34	SCData38	AJ2	SysResp0	AL25	SysAD20	AM33	SCData63
AD35	SCData36	AJ3	SysRdRdy	AL26	SysAD16	AM34	SCData62
AE1	SysRel	AJ4	Vss	AL27	SCData100	AM35	VDDQSC
AE2	Vss	AJ5	SysState1	AL28	VDDQSC	AN1	Vss
AE3	V _{DD}	AJ31	SCData57	AL29	SCBAddr9	AN2	V _{DD}
AE4	SysRespPar	AJ32	Vss	AL30	SCBAddr13	AN3	VDDQSC
AE5	Vss	AJ33	SCData54	AL31	V _{DD}	AN4	SCDataChk7
AE31	Vss	AJ34	SCData52	AL32	SCDataChk1	AN5	SCData125
AE32	SCData45	AJ35	Vss	AL33	V _{DD}	AN6	VDDQSC
AE33	SCData42	AK1	SysStateVal	AL34	Vss	AN7	SCData118
AE34	Vss	AK2	SysState2	AL35	SCData60	AN8	SCData115
AE35	SCData40	AK3	V _{DD} QSys	AM1	V _{DD} QSys	AN9	Vss
AF1	V _{DD} QSys	AK4	SysCorErr	AM2	SysUncErr	AN10	SCBDCS
AF2	DCOk	AK5	SysNMI	AM3	VSSNote	AN11	SCBAddr5
AF3	SysResp3	AK31	SCData61	AM4	Vss	AN12	VDDQSC
AF4	V _{DD}	AK32	SCData59	AM5	SCData126	AN13	SCData109
AF5	SysResp1	AK33	VDDQSC	AM6	SCData122	AN14	SCData108
AF31	SCData49	AK34	SCData58	AM7	Vss	AN15	Vss
AF32	V _{DD}	AK35	SCData56	AM8	SCData116	AN16	SysAD62
AF33	SCData47	AL1	SysState0	AM9	SCData112	AN17	SysAD59
AF34	SCData44	AL2	Vss	AM10	V _{DD}	AN18	V _{DD}
AF35	VDDQSC	AL3	V _{DD}	AM11	SCBAddr6	AN19	SysAD51
AG1	SysRespVal	AL4	VssNote	AM12	SCBAddr2	AN20	SysAD48
AG2	SysResp4	AL5	V _{DD}	AM13	Vss	AN21	Vss

Note Connect this pin via a $100-\Omega$ resistor.

(4/4)

No.	Name	No.	Name	No.	Name	No.	Name
AN22	SysADChk0	AP8	V _{DD}	AP29	SCData97	AR15	SysAD63
AN23	SysAD29	AP9	SCBDWr	AP30	SCBAddr10	AR16	V _{DD} QSys
AN24	VDDQSys	AP10	SCBAddr7	AP31	Vss	AR17	SysAD57
AN25	SysAD21	AP11	Vss	AP32	SCBAddr16	AR18	SysAD55
AN26	SysAD18	AP12	SCBAddr1	AP33	SCBAddr17	AR19	SysAD49
AN27	Vss	AP13	SCData107	AP34	Vss	AR20	V _{DD} QSys
AN28	SCData99	AP14	V _{DD}	AP35	V _{DD}	AR21	SysADChk5
AN29	SCData96	AP15	SCData105	AR1	Vss	AR22	SysADChk1
AN30	VDDQSC	AP16	SysAD61	AR2	V _{DD}	AR23	Vss
AN31	SCBAddr14	AP17	Vss	AR3	Vss	AR24	SysAD27
AN32	SCBAddr18	AP18	SysAD53	AR4	VssQSC	AR25	SysAD23
AN33	VDDQSC	AP19	Vss	AR5	SCData123	AR26	V _{DD} QSys
AN34	V _{DD}	AP20	SysADChk7	AR6	SCData119	AR27	SysAD17
AN35	Vss	AP21	SysADChk3	AR7	Vss	AR28	SCData101
AP1	V _{DD}	AP22	V _{DD}	AR8	SCData113	AR29	Vss
AP2	Vss	AP23	SysAD31	AR9	SCBDWay	AR30	SCDataChk3
AP3	SCDataChk5	AP24	SysAD25	AR10	VDDQSC	AR31	SCBAddr12
AP4	SCData127	AP25	Vss	AR11	SCBAddr3	AR32	VDDQSC
AP5	Vss	AP26	SysAD19	AR12	SCData111	AR33	Vss
AP6	SCData121	AP27	SCData103	AR13	Vss	AR34	V _{DD}
AP7	SCData117	AP28	V _{DD}	AR14	SCClk3	AR35	Vss

PIN NAMES

DCOK : DC Voltage OK JTCK : JTAG Clock

JTDI : JTAG Serial Data Input

JTDO : JTAG Serial Data Output

JTMS : JTAG Mode Select

SCAAddr (18:0), SCBAddr (18:0) : Secondary Cache Address Bus

SCADCS, SCBDCS : Secondary Cache Data Chip Select

SCADOE, SCBDOE : Secondary Cache Data Output Enable

SCADWay, SCBDWay : Secondary Cache Data Way

SCADWr, SCBDWr : Secondary Cache Data Write Enable

SCClk (5 : 0), SCClk (5 : 0) : Secondary Cache Clock SCData (127 : 0) : Secondary Cache Data Bus

SCDataChk (9:0) : Secondary Cache Data Check Bus

SCTag (25 : 0) : Secondary Cache Tag Bus

SCTagChk (6 : 0) : Secondary Cache Tag Check Bus

SCTagLSBAddr : Secondary Cache Tag LSB Address

SCTCS : Secondary Cache Chip Select

SCTOE : Secondary Cache Tag Output Enable

SCTWay : Secondary Cache Tag Way

SCTWr : Secondary Cache Tag Write Enable

SysAD (63 : 0) : System Address/Data Bus SysADChk (7 : 0) : System Address/Data Check Bus

SysClk, SysClk : System Clock

SysClkRet, SysClkRet : System Clock Return
SysCmd (11:0) : System Command Bus
SysCmdPar : System Command Bus Parity
SysCorErr : System Correctable Error

SysCyc : System Cycle

SysGbPerf : System Globally Performed

SysGnt : System Grant

SysNMI : System Non-maskable Interrupt

SysRdRdy: System Read ReadySysReset: System Reset

SysResp (4:0) : System Response Bus

 SysRespPar
 : System Response Bus Parity

 SysRespVal
 : System Response Bus Valid

 SysUncErr
 : System Uncorrectable Error

SysVal : System Valid

 SysWrRdy
 : System Write Ready

 SysRel
 : System Release

 SysReq
 : System Request

SysState (2 : 0) : System State Bus

SysStatePar : System State Bus Parity
SysStateVal : System State Bus Valid

V_{DD} : Power Supply

VDDPa: VDD for the PLL AnalogVDDPd: VDD for the PLL Digital

VDDQSC: VDD for the Secondary CacheVDDQSys: VDD for the System Interface

VrefSC : Voltage Reference for the Secondary Cache
VrefSys : Voltage Reference for the System Interface

Vss : Ground

VssPa : Vss for the PLL Analog VssPd : Vss for the PLL Digital

NC : No Connection

BLOCK DIAGRAM

TABLE OF CONTENTS

1.	PIN	FUNCTIONS 13
	1.1	Pin Function List
	1.2	Recommended Connection of Unused Pins
2.	CPU	INTERNAL ARCHITECTURE
	2.1	Pipeline
		2.1.1 Configuration
		2.1.2 Operation
	2.2	CPU Registers (virtual registers)
		System Control Coprocessor (CP0)
		2.3.1 CP0 registers
	2.4	Data Format and Addressing
	2.5	Virtual Storage
		2.5.1 Virtual address space
		2.5.2 Address translation
	2.6	Cache
		2.6.1 Primary cache
		2.6.2 Secondary cache
		•
3.	FPU	INTERNAL ARCHITECTURE
	3.1	Internal Function Block
	3.2	FPU Registers
	3.3	Data Format
4.	INTE	RFACE
	4.1	System Interface
		4.1.1 Setting operating frequency of system interface
	4.2	Secondary Cache Interface
	4.3	Clock Interface
		4.3.1 System interface clock and processor clock
		4.3.2 Secondary cache clock
	4.4	System Configuration Example
		4.4.1 Uni-processor system
		4.4.2 Multi-processor system
	4.5	BTMC Interface
	4.6	DSD (Delay Speculative Dirty) Mode (V _R 12000 only)
		4.6.1 DSD mode delay
		4.6.2 Secondary cache status in DSD mode
		4.6.3 Other features 38
5.	INTE	ERNAL/EXTERNAL CONTROL FUNCTIONS
	5.1	Reset Function
		5.1.1 Power-ON reset and cold reset
		5.1.2 Software reset
	5.2	Interrupt Functions
	5.3	JTAG Function

6.	INSTRUCTION SET	41
	6.1 Instruction Formats	41
	6.2 CPU Instruction Set List	41
	6.3 FPU Instruction Set List	46
	6.4 Delay of Instruction	49
7.	ELECTRICAL SPECIFICATIONS	50
8.	PUSH-PULL OUTPUT BUFFER CIRCUIT	64
9.	PACKAGE DRAWING	65

1. PIN FUNCTIONS

1.1 Pin Function List

(1/3)

Pin Name	I/O	Function
SCClk (5:0)	Output	Secondary cache clock signals.
SCCIk (5:0)	Output	Secondary cache clock signals. Inverted SCClk (5:0) signals.
SCAAddr (18 : 0), SCBAddr (18 : 0)	Output	Secondary cache address bus. 19-bit address bus for secondary cache.
SCTagLSBAddr	Output	Secondary cache tag LSB address. Specifies the LSB address of a secondary cache tag.
SCADWay, SCBDWay	Output	Secondary cache data way. Specifies a way of secondary cache data.
SCData (127 : 0)	I/O	Secondary cache data bus. 128-bit bus to read or write data from or to the secondary cache.
SCDataChk (9:0)	I/O	Secondary cache data check bus. 10-bit bus used to read or write ECC and even parity for secondary cache data.
SCADOE, SCBDOE	Output	Secondary cache data output enable. Signals enabling output of secondary cache data.
SCADWr, SCBDWr	Output	Secondary cache data write enable. Signals enabling writing of secondary cache data.
SCADCS, SCBDCS	Output	Secondary cache data chip select. Signals enabling access of secondary cache data.
SCTWay	Output	Secondary cache tag way. Specifies the way of a secondary cache tag.
SCTag (25 : 0)	I/O	Secondary cache tag bus. 26-bit bus to read or write a tag to or from the secondary cache.
SCTagChk (6:0)	I/O	Secondary cache tag check bus. 7-bit bus used to read or write ECC for secondary cache tag.
SCTOE	Output	Secondary cache tag output enable. Signal enabling output of a secondary cache tag.
SCTWr	Output	Secondary cache tag write enable. Signal enabling writing of a secondary cache tag.
SCTCS	Output	Secondary cache tag chip select. Signal enabling access to a secondary cache tag.
SysClk	Input	System clock. System clock input.
SysClk	Input	System clock. System clock input. Inverted SysClk signal.
SysClkRet	Output	System clock. System clock output used for termination of system clock.
SysClkRet	Output	System clock. System clock output used for termination of system clock. Inverted SysClkReset signal
SysReq	Output	System request. Signal requesting enabling issuance of a processor request when the Vk10000 serves as a slave.

(2/3)

Pin Name	I/O	Function
SysGnt	Input	System enable. Signal used by an external agent to request the V _R 10000 for use of the system interface.
SysRel	I/O	System release. The master side of the system interface asserts this signal active for the duration of 1 SysClk cycle when it releases the right to use the system interface in the subsequent SysClk cycle.
SysRdRdy	Input	System read ready. Indicates that the external agent is ready to accept a processor read request and upgrade request.
SysWrRdy	Input	System write ready. Indicates that the external agent is ready to accept a processor write request and processor eliminate request.
SysAD (63:0)	I/O	System address/data bus. 64-bit address/data bus for communication between the V _R 10000 and external agent.
SysADChk (7:0)	I/O	System address/data check bus. 8-bit ECC bus for SysAD bus.
SysCmd (11 : 0)	I/O	System command bus. 12-bit bus for command communication between the V _R 10000 and external agent.
SysCmdPar	I/O	System command bus parity. One odd parity bit for the system command bus.
SysVal	I/O	System valid. Signal indicating that the master side of the system interface drives a valid address/ command/data onto the SysAD bus and SysCmd bus.
SysState (2 : 0)	Output	System state bus. 3-bit bus indicating issuance or addition of a processor coherent status response.
SysStatePar	Output	System state bus parity. One odd parity bit for the system state bus.
SysStateVal	Output	System state bus valid. The V _R 10000 asserts this signal active for the duration of 1 SysClk cycle when it issues a processor coherent response status to the SysState bus.
SysResp (4:0)	Input	System response bus. 5-bit bus used by the external agent to issue an external end response.
SysRespPar	Input	System response bus parity. One odd parity bit for the system response bus.
SysRespVal	Input	System response bus valid. The external agent asserts this signal active for 1 SysClk cycle when it issues an external end response to the SysResp bus.
SysReset	Input	System reset. Signal used by the external agent to reset the V _R 10000.
SysNMI	Input	System non-maskable interrupt. Signal used by the external agent to issue NMI.
SysCorErr	Output	System correctable error. The V _R 10000 asserts this signal active for 1 SysClk cycle when it finds and correct a correctable error.
SysUncErr	Output	System uncorrectable error. The V _R 10000 asserts this signal active for 1 SysClk cycle when it finds an uncorrectable tag error.

(3/3)

Pin Name	I/O	Function
SysGblPerf	Input	System global perfect. An external agent uses this signal to indicate completion of a processor request to all external agents.
SysCyc	Input	System cycle. The external agent uses this signal to define a virtual system interface clock in hardware emulation environment.
JTDI	Input	JTAG data input. Inputs JTAG serial data.
JTDO	Output	JTAG data output. Outputs JTAG serial data.
JTCK	Input	JTAG clock input. Inputs JTAG serial clock. Keep this signal low when the JTAG interface is not used.
JTMS	Input	JTAG mode select. Selects a mode of JTAG.
DCOK	Input	DC voltage enable. The external agent asserts this signal active when the following signals are stable: VDD, VDDQSC, VDDQSys, VrefSC, VrefSys, VDDPa, VDDPd, SysClk
VDD	Input	Power supply pin. Power supply for the CPU core.
V _{DD} QSC	Input	Secondary cache V _{DD} . Power supply for the output driver of the secondary cache interface.
V _{DD} QSys	Input	System interface Vdd. Power supply for the output driver of the system interface.
VrefSC	Input	Secondary cache voltage. Reference voltage for the input pins of the secondary cache interface.
VrefSys	Input	System interface voltage. Reference voltage for the input pins of the system interface.
VddPa	Input	PLL analog V _{DD} . Power supply for the PLL analog circuit.
VDDPd	Input	PLL digital V _{DD} . Power supply for the PLL digital circuit.
Vss	Input	Ground potential pin. Ground for the CPU core and output driver.
VssPa	Input	PLL analog GND. Ground for the PLL analog.
VssPd	Input	PLL digital GND. Ground for PLL digital.
NC	_	No connection. Leave this pin unconnected.

1.2 Recommended Connection of Unused Pins

Table 1-1 shows the recommended connection of unused pins.

Table 1-1. Recommended Connection of Unused Pins

Pin Name	I/O	Recommended Connection
JTDI	Input	Connect each of these pins to VDD via a resistor.
JTCK		
JTMS		
SysNMI		Connect this pin to VDDQSys via resistor of 100 Ω or more.
SysRdRdy		Connect each of these pins to Vss via a resistor of 100 Ω or more.
SysWrRdy		
SysGblPerf		
SysCyc		
SysADChk (7:0)	I/O	Connect each of these pins to Vss or VddQSys via a resistor or 100 Ω or more.

2. CPU INTERNAL ARCHITECTURE

2.1 Pipeline

2.1.1 Configuration

The V_R10000 has a 5-way super scalar pipeline as illustrated below. This pipeline can simultaneously fetch and decode four instructions in 1 Pcycle.

- (1) FP addition pipeline
- (2) FP multiplication pipeline
- (3) Integer ALU1 pipeline
- (4) Integer ALU2 pipeline
- (5) Load/store pipeline

Figure 2-1. Pipeline

2.1.2 Operation

The pipeline of the V_R10000 has seven stages. The operation of each stage is described below:

(1) Stage 1 (fetch)

Four instructions are fetched in 1 cycle and stored to the instruction register.

(2) Stage 2 (decode)

The four instructions fetched in stage 1 are decoded.

(3) Stage 3 (issue)

The decoded instructions are written to a queue. The V_R10000 has an FP queue, integer queue, and address queue. In addition, an operand is read from the register file.

(4) Stage 4 through stage 6 (execute)

The instructions are executed. The execution pipeline and execution cycle differ depending on the type of instruction.

(a) FP addition pipeline

Executes floating-point addition instructions in 3 PCycle.

(b) FP multiplication pipeline

Executes floating-point multiplication, division, and square root instructions in 3 PCycle.

(c) Integer ALU1 pipeline

Executes integer addition, subtraction, shift, and logic instructions in 1 Pcycle.

(d) Integer ALU2 pipeline

Executes integer addition, subtraction, and logic instructions in 1 PCycle.

(e) Load/store pipeline

Generates a memory address used for integer or floating-point load/store instructions.

(5) Stage 7 (store)

The results of executing the instructions are stored to registers.

0

0

0

2.2 CPU Registers (virtual registers)

Figure 2-2 shows the CPU registers of the V_R10000. Physically, sixty-four general-purpose registers are available. Of these, however, only thirty-two can be accessed by software or an external agent. Mapping of the other registers is automatically controlled by the CPU. The bit width of a register is determined by the operation mode of the V_R10000 (32 bits in 32-bit mode, or 64 bits in 64-bit mode).

Of the thirty-two general-purpose registers, the following two have special meanings.

- Register r0: The contents of this register are always 0. Register r0 can be used as the target register of an instruction when the result of an operation is to be discarded. This register can also be used as a source register when the value of 0 is necessary.
- Register r31: This is a link system for the JAL and JALR instructions. Therefore, do not use this register with any other instructions.

Two multiplication/division registers (HI and LO) are used to store the result of integer multiplication, or quotient (LO) and remainder (HI) resulting from integer division.

The load link register is used to synchronize two or more VR10000s in a multi-processor system.

General-purpose registers 63 0 Multiplication/division register r0 = 063 ΗΙ r1 63 r2 LO Program counter 63 r29 PC r30 r31 (link address) Load link register 0 LLbit

Figure 2-2. CPU Registers

There is no program status word (PSW). The function of PSW is substituted by the status register and cause register incorporated into the system control coprocessor (CP0).

2.3 System Control Coprocessor (CP0)

The CP0 registers/CP0 instructions access the TLB and cache. Manipulating a mode in which the Vr10000 is used, exceptions, and interrupts are also controlled by the CP0. In addition, the CP0 also has a test/debug function.

2.3.1 CP0 registers

All the CP0 registers that can be used with the V_R10000 are listed below. Writing or reading an unused register (RFU) is undefined.

Registers used by memory management system Registers used for exception processing Entry Lo0 BadVAddr Index Context Entry Hi 10* 0* 4* 8* Entry Lo1 **3*** Count Compare Random 63 1* 9* 11* Page mask Status Cause 5* 13* 12* TLB **EPC** PRId Wired 14* 15* 6* ("Safe" entry) Config LLAddr Watch Lo 16* 18* 0 127/255 X context Watch Hi Diagnosis 20* 19* 22* Frame mask PC **ECC** Cache error Tag Lo 25* 21* 26* 28* 27* Tag Hi Error EPC 29* 30*

Figure 2-3. CPU0 Registers and TLB

Remark "*" indicates a register number.

Table 2-1. CP0 Register List

No.	Register	Description
0	Index	TLB entry programmable pointer
1	Random	TLB entry random pointer
2	Entry Lo0	Second half of TLB entry for even number VPN
3	Entry Lo1	Second half of TLB entry for odd number VPN
4	Context	Pointer to virtual PTE table of kernel in 32-bit mode
5	Page mask	TLB page mask
6	Wired	Number of wired TLB entries
7	_	RFU (Reserved for Future Use)
8	BadVAddr	Virtual address at which last error has occurred
9	Count	Timer count
10	Entry Hi	First half of TLB entry (including VPN and ASID)
11	Compare	Timer comparison
12	Status	Status register
13	Cause	Cause of last exception
14	EPC	Exception program counter
15	PRId	Processor revision identifier
16	Config	Configuration register
17	LLAddr	Address of LL instruction
18	Watch Lo	Low-order bits of memory reference trap address
19	Watch Hi	High-order bits of memory reference trap address
20	X context	Pointer to virtual PTE table of kernel in 64-bit mode
21	Frame mask	Bit mask of entry Lo register
22	Diagnosis	Branch diagnosis
23, 24	_	RFU
25	PC	Performance counter
26	ECC	ECC of secondary cache and parity of primary cache
27	Cache error	Index of cache error and status field
28	Tag Lo	Cache tag register, low-order
29	Tag Hi	Cache tag register, high-order
30	Error EPC	Error exception program counter
31	_	RFU

2.4 Data Format and Addressing

The V_R10000 has the following four types of data formats:

Double word (64 bits) Word (32 bit) Half word (16 bits) Byte (8 bits)

If the data format is double word, word, or half word, the byte order can be set to bit endian or little endian by using the BE bit of the config register.

Figure 2-4. Byte Address in Word: Big Endian

3	31 24	23 16	15 8	7 (Word address
High-order address	12	13	14	15	12
†	8	9	10	11	8
	4	5	6	7	4
Low-order address	0	1	2	3	0

Remarks 1. The most significant byte is the least significant address.

2. A word is addressed by the address of the most significant byte.

Figure 2-5. Byte Address in Word: Little Endian

3	1 24	23 16	15 8	7 0	Word address
High-order address	15	14	13	12	12
†	11	10	9	8	8
	7	6	5	4	4
Low-order address	3	2	1	0	0

Remarks 1. The least significant byte is the least significant address.

2. A word is addressed by the address of the least significant byte.

Figure 2-6. Byte Address in Double Word: Big Endian

Word Half word Byte Double word 32 31 8 7 16 15 address High-order 16 17 18 19 20 21 22 23 16 address 8 9 10 11 12 13 14 15 8 0 1 2 3 4 5 6 7 0 Low-order address

Remarks 1. The most significant byte is the least significant address.

2. A word is addressed by the address of the most significant byte.

Figure 2-7. Byte Address in Double Word: Little Endian

		Wo	rd		Half	word		Byte	
	63			32	31	16	15 8	7 (Double word address
High-order address	23	22	21	20	19	18	17	16	16
	15	14	13	12	11	10	9	8	8
Low-order address	7	6	5	4	3	2	1	0	0
address									

Remarks 1. The least significant byte is the least significant address.

2. A word is addressed by the address of the least significant byte.

2.5 Virtual Storage

2.5.1 Virtual address space

The V_R10000 has two operation modes, the 32-bit and 64-bit modes. In addition, it has three operating modes: the user mode, supervisor mode, and kernel mode. Figures 2-8 through 2-11 show the virtual address spaces in the respective modes.

Figure 2-8. User Mode Address Space

Note In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63.

Figure 2-9. Supervisor Mode Address Space

Notes 1. In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63.

2. If the UX bit of the status register is 0, 0x0000 0000 8000 0000 through 0x0000 0FFF FFFF FFFF cause an address error.

64 bits

32 bits Note 1

0xFFFF FFFF 0xFFFF FFFF FFFF 0.5G bytes ckseg3 w/TLB mapping 0.5G bytes 0xFFFF FFFF E000 0000 w/TLB mapping kseg3 0xFFFF FFFF DFFF FFFF 0.5G bytes cksseg w/TLB mapping 0xE000 0000 0xFFFF FFFF C000 0000 0xDFFF FFFF 0xFFFF FFFF BFFF FFFF 0.5G bytes w/o TLB mapping ckseg1 Non-cacheable 0.5G bytes 0xFFFF FFFF A000 0000 ksseg w/TLB mapping 0xFFFF FFFF 9FFF FFFF 0.5G bytes w/o TLB mapping ckseg0 Cacheable 0xC000 0000 0xFFFF FFFF 8000 0000 0xBFFF FFFF 0xFFFF FFFF 7FFF FFFF Address error 0.5G bytes 0xC000 0FFF 0000 0000 w/o TLB mapping kseq1 Non-cacheable 0xC000 0FFE FFFF FFFF xkseg w/TLB mapping 0xA000 0000 0xC000 0000 0000 0000 0x9FFF FFFF 0xBFFF FFFF FFFF FFFF w/o TLB mapping (For details, refer xkphys 0.5G bytes to Figure 2-11.) 0x8000 0000 0000 0000 w/o TLB mapping kseg0 0x7FFF FFFF FFFF FFFF cacheable Address error 0x8000 0000 0x4000 1000 0000 0000 0x7FFF FFFF 0x4000 0FFF FFFF FFFF 16T bytes Note 2 xksseg w/TLB mapping 0x4000 0000 0000 0000 0x3FFF FFFF FFFF FFFF 2G bytes Address error w/TLB mapping kuseg 0x0000 1000 0000 0000 0x0000 0FFF FFFF FFFF 16T bytes Note 3 xkuseg w/TLB mapping 0x0000 0000 0x0000 0000 0000 0000

Figure 2-10. Kernel Mode Address Space

Notes 1. In the 32-bit mode, the value of bit 31 is sign-extended to bits 32 through 63.

- 2. If the SX bit of the status register is 0, this area causes an address error.
- 3. If the UX bit of the status register is 0, 0x0000 0000 8000 0000 through 0x0000 0FFF FFFF FFFF cause an address error.

Figure 2-11. Details of xkphys Area

0xBFFF FFFF FFFF FFFF	
. .	Address error
0xB800 0001 0000 0000	
0xB800 0000 FFFF FFFF	4G bytes
. .	w/o TLB mapping Cacheable
0xB800 0000 0000 0000	Cacileable
0xB7FF FFFF FFFF FFFF	Address error
0xB000 0001 0000 0000	Address error
0xB000 0001 0000 0000 0000 0xB000 0000 FFFF FFFF	40 hutas
0,0000 0000 1111 1111	4G bytes w/o TLB mapping
0xB000 0000 0000 0000	Cacheable
0xAFFF FFFF FFFF FFFF	
	Address error
0xA800 0001 0000 0000	
0xA800 0000 FFFF FFFF	4G bytes
	w/o TLB mapping
0xA800 0000 0000 0000	Cacheable
0xA7FF FFFF FFFF FFFF	
	Address error
0xA000 0001 0000 0000	
0xA000 0000 FFFF FFFF	4G bytes
	w/o TLB mapping Cacheable
0xA000 0000 0000 0000	Cacrieable
0x9FFF FFFF FFFF FFFF	Address error
0x9800 0001 0000 0000	Address error
0x9800 0001 0000 0000 0000 0000	4C bytos
0.0000 0000 1111 1111	4G bytes w/o TLB mapping
0x9800 0000 0000 0000	Cacheable
0x97FF FFFF FFFF FFFF	
	Address error
0x9000 0001 0000 0000	
0x9000 0000 FFFF FFFF	4 G bytes
	w/o TLB mapping
0x9000 0000 0000 0000	Non-cacheable
0x8FFF FFFF FFFF FFFF	
	Address error
0x8800 0001 0000 0000	
0x8800 0000 FFFF FFFF	4G bytes
0.8800 0000 0000 0000	w/o TLB mapping Cacheable
0x8800 0000 0000 0000 0x87FF FFFF FFFF FFFF	23.2300.0
UXU/FF FFFF FFFF FFFF	Address error
0x8000 0001 0000 0000	Addiess elloi
0x8000 0000 FFFF FFFF	4G bytes
	w/o TLB mapping
0x8000 0000 0000 0000	Cacheable
0.0000 0000 0000 0000 1	

2.5.2 Address translation

Virtual addresses are translated into physical addresses by the internal TLB (Translation Lookaside Buffer) in page units. The TLB is of full-associative configuration and has 64 entries at the virtual address side and 32 entries at the physical address side. The page size can be changed from 4K bytes to 16M bytes.

If a hit of a TLB entry does not occur, a TLB non-coincidence exception occurs in the 32-bit mode and an XTLB non-coincidence exception occurs in the 64-bit mode. If this happens, replace the contents of the TLB by software.

Figure 2-12 outlines address translation.

 y+8
 y+1
 y
 y+1
 x
 x+1
 x
 x-1
 0

 ASID
 VPN
 Offset
 Virtual address
 <1> A virtual address page number (VPN) is compared with VPN in TLB.

Figure 2-12. Outline of Address Translation

ASID VPN Offset Virtual address

TLB
x = 12, 14, 16, 18, 20, 22, 24
y = 31 (in 32-bit mode)

40

- <2> If the two VPNs coincide, a page frame number (PFN) indicating the high-order bits of a physical address is output to the selector.
- <3> If the least significant bit of VPN is 0, an even page is selected; if it is 1, an odd page is selected. The selected page is output to the high-order bits of the physical address.
- <4> The offset is output to the low-order bits of the physical address without via TLB.

TLB entries are read or written by loading/storing the TLB entry indicated by the index register and the random register from or to the entry Hi, entry Lo1, Entry Lo0, and page mask registers.

<4>

0

<3>

x x-1

Figure 2-13 outlines TLB manipulation.

Physical address

63 (in 64-bit mode)

Figure 2-13. Outline of TLB Manipulation

2.6 Cache

The V_R10000 has a primary instruction cache and primary data cache. In addition, it has a secondary cache interface to connect an external secondary cache.

2.6.1 Primary cache

(1) Primary instruction cache

Here are the features of the primary instruction cache:

- · Internal cache memory
- · Capacity: 32K bytes
- 16-word cache line
- 2-way set associative
- Physical index address
- · Physical tag check

(2) Primary data cache

Here are the features of the primary data cache.

- · Internal cache memory
- · Capacity: 32K bytes
- 8-word cache line
- 2-bank configuration
- · 2-way set associative
- · Non-Blocking method
- · Write back method
- · Physical index address
- Physical tag check

2.6.2 Secondary cache

The VR10000 can use an external secondary cache. The features of the secondary cache are as follows:

- Capacity: 512K to 16M bytes
- 16-/32-word cache line
- · 2-way set associative
- · Way prediction table
- · Write back method
- · Non-Blocking method
- · Physical index address
- · Physical tag check

3. FPU INTERNAL ARCHITECTURE

3.1 Internal Function Block

Figure 3-1 shows the internal block of the FPU.

The FPU can execute all the floating-point instructions defined by MIPS ISA.

Figure 3-1. Internal Block of FPU

3.2 FPU Registers

(1) Floating-point general-purpose registers (FGR)

These are physical general-purpose registers that can be directly accessed. Thirty-two of these registers are available. The bit length of each register differs depending on the content of the FR bit of the status register.

(2) Floating-point registers (FPR)

These are logical 64-bit registers that hold a floating-point value when a floating-point operation is executed. The number of these registers varies depending on the content of the FR bit of the status register.

Figure 3-2. Registers of FPU

(a) When FR bit = 0 (MIPS I, MIPS II) (b) When FR bit = 1 (MIPS III, MIPS IV)

Floating-point registers (FPR)		Floating-point general-purpose registers (FGR)	Floating-point registe (FPR)	s Floating-point general-purpose registers (FGR)	
,		31 0	9	63 0	
FPR0 <	(low-order)	FGR0	FPR0	FGR0	
	(high-order)	FGR1	FPR1	FGR1	
FPR2 <	(low-order)	FGR2	FPR2	FGR2	
	(high-order)	FGR3	FPR3	FGR3	
		:	:	:	
•		:	:	:	
:		:	:	:	
FPR28 <	(low-order)	FGR28	FPR28	FGR28	
	(high-order)	FGR29	FPR29	FGR29	
FPR30 {	(low-order)	FGR30	FPR30	FGR30	
	(high-order)	FGR31	FPR31	FGR31	

3.3 Data Format

(1) Floating-point format

The FPU supports IEEE754 floating-point operations of 32 bits (single precision) and 64 bits (double precision).

(2) Fixed-point format

A fixed-point value is calculated in the form of 2's complement.

4. INTERFACE

4.1 System Interface

The I/O timing of the VR10000 is as follows:

- Output starts changing at the rising edge of SysClk.
- Input is latched at the rising edge of SysClk.

The following two buses are used for system interfacing.

- SysAD (63:0) : This bus transfers addresses and data.
- SysCmd (11:0): This bus transfers command data identifiers.

Both SysAD and SysCmd are bidirectional buses and are driven by the V_R10000 or external agent. Depending on the direction in which they are driven, these buses are in the following two statuses.

- Master status : Driven by the V_R10000 to issue a processor request.
- Slave status : Driven by the external agent to issue an external request.

The following two cycles are used depending on the information included in the SysAD bus.

- Address cycle: A valid address is included in the SysAD bus.
- Data cycle : Valid data is included in the SysAD bus.

Next, the interface control signals are briefly explained.

- SysReq : Signal used by the VR10000 to request the right to use the system interface.
- SysGnt : Signal used by the external agent to grant the VR10000 the right to use the system interface.
- SysRel : Asserted active when the master of the system interface releases the right of use.
- SysRdRdy : Indicates that the external agent is ready to accept a processor read request and upgrade

request.

• SysWrRdy : Indicates that the external agent is ready to accept a processor write request and processor

eliminate request.

• SysVal : Asserted active when the master of the system interface outputs valid data to the SysAD and

SysCmd buses.

- SysState (2:0): Signal used by the VR10000 to issue a coherent status request.
- SysResp (4:0): Signal used by the external agent to issue an external end response.
- SysGblPerf : Signal used by the external agent to indicate that all processor requests have been completed.

4.1.1 Setting operating frequency of system interface

The V_R10000 can select the operating frequency of the system interface.

The clock (PClk) for pipeline operation is generated based on the clock (SysClk) input from an external source. The factor by which SysClk is multiplied to generate PClk is set by using the BTMC interface at reset. For details, refer to SysAD (9:12) in **Table 4-1 Mode Setting in Boot Time Mode**.

4.2 Secondary Cache Interface

The V_R10000 has a secondary cache control circuit, so that an external secondary cache memory can be connected. The V_R10000 can also selects the operating frequency of the secondary cache interface.

SCClk, at which the secondary cache is to operate, is generated based on the operating clock (PClk) of the VR10000. The factor by which SysClk is multiplied to generate PClk is set by using the BTMC interface at reset. For details, refer to SysAD (9:12) in **Table 4-1 Mode Setting in Boot Time Mode**.

4.3 Clock Interface

4.3.1 System interface clock and processor clock

The VR10000 generates a processor clock (PClk), which is the internal operating clock, from the clock (SysClk and SysClk) input to the VR10000, by using the PLL. It always samples the SysClk and SysClk signals during operation, in order to check to see if the following expression is satisfied.

$$PClk = SysClk \times (SysClkDiv + 1)/2$$

Example Where SysClk = 50 MHz and SysClkDiv = 7
$$PClk = 50 \times 8/2 = 200 MHz$$

4.3.2 Secondary cache clock

The V_R10000 supplies clocks for secondary cache (SCClk (5:0) and SCClk (5:0)) to the external secondary cache. SCClk (5:0) are generated from SysClk.

The relation between SCClk (5:0) and SysClk can be expressed by the following expression.

```
SCClk = SysClk \times (SysClkDiv + 1)/(SCClkDiv + 1)
```

Example Where SysClk = 50 MHz, SysClkDiv = 7, and SCClkDiv = 2 SCClk =
$$50 \times 8/3 = 133$$
 MHz

4.4 System Configuration Example

Because the V_R10000 employs a cluster bus, it can also support a multi-processor system. Examples of configuration of a uni-processor system and a multi-processor system are shown below.

4.4.1 Uni-processor system

This system uses only one V_R10000, as shown in Figure 4-1.

Secondary cache tag External agent V_R10000 SCTWr SCTCS SCTOE SysReq SysGnt SysRel SysReq SysGnt SysRel CS OE SCTag(25:0) Data SysRdRdy SysWrRdy SysRdRdy SysWrRdy SCTagChk(6:0) SCTWay SCTagLSBAddr SysCmd (11:0) SysCmdPar Addr SysCmd (11:0) SysCmdPar SC(A, B)Addr(18:0) Main memory, SysAD (63:0) SysAD (63:0) SysADChk (7 : 0) SysVal I/O SysADChk (7:0) SysVal Addr SysState(2 : 0) SysStatePar SysStateVal SysState (2 : 0) SysStatePar SysStateVal SC(A, B)DWay SCData (127:0) Data SCDataChk (9:0) SC(A, B)DWr SC(A, B)DCS SysResp (4 : 0) SysRespPar SysRespVal SysResp (4 : 0) SysRespPar SysRespVal Wr SC(A, B)DOE Secondary cache data

Figure 4-1. Example of Configuration of Uni-Processor System

4.4.2 Multi-processor system

Up to four V_R10000s can be connected to the cluster bus. While a V_R10000 stands by for a response after it has issued a request, it can receive up to four processings. Figure 4-2 shows an example of multi-processor system configuration.

SysRel SysRdRdy SysWrRdy SysCmd (11:0) SysCmdPar SysAD (63:0) SysADChk (7:0) SysVal SysResp (4:0) SysRespPar SysRespVal Secondary cache tag V_R10000 SCTWr SCTCS SCTOE SysReq0 SysGnt0 Wr SysReq ĊS OE SysGnt SysRel Data SCTag (25:0) SysRdRdy SCTagChk (6:0) SysWrRdv **SCTWay** Addr SCTagLSBAddr Cluster controller SysCmd (11:0) Secondary cache data SysCmdPar SC (A, B) Addr (18:0) SysAD (63:0) SysADChk (7:0) SysVal sng Main memory, Addr SysState (2 : 0) SysStatePar SysStateVal SysState0 (2:0) I/O Cluster SC (A, B) DWay SysStatePar0 SysStateVal0 SCData (127:0 Data SCDataChk (9:0) SC (A, B) DWr SC (A, B) DCS SysResp (4:0) Wr SysRespPar ĊS OE **SysRespVal** SC (A, B) DOE Secondary cache tag V_R10000 SCTWr SCTCS SCTOE SysReq1 SysGnt1 SysReq Wr ČS OE SysGnt SysRel SCTag (25:0) Data SysRdRdy SCTagChk (6:0) SysWrRdy **SCTWay** Addr SCTagLSBAddr SysCmd (11:0) SysCmdPar Secondary cache data SC (A, B) Addr (18:0) SysAD (63:0) SysADChk (7:0) SysVal Addr SysState (2 : 0) SysStatePar SysState1 (2:0) SC (A, B) DWay SysStatePar1 SysStateVal SysStateVal1 SCData (127:0 Data SCDataChk (9:0) SysResp (4:0) SC (A, B) DWr SC (A, B) DCS Wr SysRespPar SysRespVal ČS OE SC (A, B) DOE

Figure 4-2. Example of Configuration of Multi-Processor System

4.5 BTMC Interface

The operation of the V_R10000 is set by the mode bit. The content of the mode bit is stored to the processor via SysAD (63:0) at power-ON reset or by cold reset sequence while $\overline{\text{SysGnt}}$ is active. The content of the mode bit that is set via SysAD (24:0) is stored to bits 24 through 0 of the config register.

Table 4-1 shows the correspondence between the SysAD bus and mode setting in the boot time mode.

Table 4-1. Mode Setting in Boot Time Mode (1/2)

SysAD	Mode Setting					
	V _R 10000 V _R 12000					
0:2	Kseg0CA: Kseg0 cache status 0, 1: RFU 2: Non-cacheable 3: Cacheable, non-coherent 4: Cacheable, coherent exclusive 5: Cacheable, coherent exclusive on write 6: RFU 7: Non-cacheable, accelerate					
3, 4	DevNum: Processor number					
5	CohPrcReqTar: Issuance destination of processor coherent request 0: External agent 1: All					
6	PrcElmReq: Enables processor eliminate request 0: Disabled 1: Enabled					
7, 8	PrcReqMax: Number of processor requests that can b 0: 1 1: 2 2: 3 3: 4	e kept pending on system bus				
9:12	2 SysClkDiv: Multiple of PClk in respect to SysClk 0: RFU 0: RFU 1: × 1 1: RFU 2: × 1.5 2: RFU 3: × 2 4: × 2.5 5: × 3 5: × 3 6: × 3.5 5: × 3 7: × 4 8: × 4.5 9: × 5 A: × 5.5 B: × 6 C: × 7 D: × 8 E: × 9 F: × 10					
13	SCBlkSize: Line size of secondary cache 0: 16 words 1: 32 words					

Table 4-1. Mode Setting in Boot Time Mode (2/2)

SysAD	Modes	Setting
	V _R 10000	V _R 12000
14	SCCorEn: ECC error correction of secondary cache data 0: Re-access 1: Always access	
15	MemEnd: Endian 0: Little endian 1: Big endian	
16 : 18	SCSize: Secondary cache size 0: 512K 1: 1M bytes 2: 2M bytes 3: 4M bytes 4: 8M bytes 5: 16M bytes 6 and 7: RFU	
19:21	SCCIkDiv: Multiple of PCIk in respect to SCCIk 0: RFU 1: ×1 2: ×1.5 3: ×2 4: ×2.5 5: ×3 6 and 7: RFU	SCCIkDiv: Multiple of PCIk in respect to SCCIk 0: RFU 1: × 1 2: × 1.5 3: × 2 4: × 2.5 5: × 3 6: RFU 7: × 4
22 : 24	RFU	DSD ^{Note 1} : DSD (Delay Speculative Dirty) mode 0 to 3: RFU 4: DSD 5 to 7: RFU
25 : 28	SCCIkTap: Internal secondary cache: Phase comparison 0: Same phase 1: SCCIk leads 1/12PCIk cycle 2: SCCIk leads 2/12PCIk cycle 3: SCCIk leads 3/12PCIk cycle 4: SCCIk leads 4/12PCIk cycle 5: SCCIk leads 5/12PCIk cycle 6 and 7: Undefined 8: SCCIk leads 6/12PCIk cycle 9: SCCIk leads 7/12PCIk cycle 9: SCCIk leads 8/12PCIk cycle A: SCCIk leads 8/12PCIk cycle B: SCCIk leads 1/12PCIk cycle C: SCCIk leads 10/12PCIk cycle D: SCCIk leads 11/12PCIk cycle E and F: Undefined	of clock and SysClk (5:0), SysClk (5:0)
29	RFU	
30	ODrainSys: Processing of system interface signal ^{Note 2}	
31 : 63	RFU	

Notes 1. Refer to 4.6 DSD (Delay Speculative Dirty) mode.

2. SysReq, SysRel, SysCmd (11:0), SysCmdPar, SysAD (63: 0), SysADChk (7:0), SysVal, SysState (2:0), SysStatePar, SysStateVal, SysCorErr, SysUncErr

4.6 DSD (Delay Speculative Dirty) Mode (VR12000 only)

The DSD (Delay Speculative Dirty) mode prevents a dirty bit from being set by speculative storing.

Bit 24 in the boot mode coincides with bit 24 of the config register and sets the DSD mode in the kernel mode and supervisor mode. However, the DSD mode can be also executed in the user mode by setting bit 24 of the status register. Bit 24 of the config register is read-only and can be set only during boot time.

When the DSD mode has been set, the dirty bit of the secondary cache block of the V_R12000 are not set until the store instruction has become the oldest instruction in the active list and ready to be executed (the dirty bit may be set by an interrupt (and the store instruction is no longer in the speculative status), but the store instruction is not immediately completed).

4.6.1 DSD mode delay

The DSD mode delays setting of a dirty bit but slightly slows down the processing speed. This slowdown occurs each time a block is refilled from the main memory if it is necessary to set the dirty bit. It takes 10 cycles to set the dirty bit. During this time, the processor executes the other instructions in parallel.

Once a block becomes dirty in the secondary cache, this mode does not affect the performance.

4.6.2 Secondary cache status in DSD mode

The secondary cache in the DSD mode enters the Clean Exclusive status if a miss hit occurs when the store instruction is no longer the oldest instruction in the pipeline.

Because the cache is upgraded to the Clean Exclusive status immediately after a hit occurs in a line in the Shared status, bus manipulation is started in the speculative status (the processing speed relatively slows down).

4.6.3 Other features

The V_R12000 delays loading of the non-coherent cache until this instruction becomes the oldest, regardless of the DSD mode. This is because speculative loading that accesses an address of the xkphys area not mapped as a non-coherent cache may send data to the secondary cache without appropriate coherency check.

5. INTERNAL/EXTERNAL CONTROL FUNCTIONS

5.1 Reset Function

The following three types of reset functions are available:

- · Power-ON reset
- · Cold reset
- · Software reset

Cold reset and software reset are executed with the power turned on.

As a result of reset, the internal status is initialized. However, software reset does not affect the internal clock and secondary cache clock.

5.1.1 Power-ON reset and cold reset

Power-ON reset and cold reset are executed when the SysGnt and SysRespVal signals are deasserted inactive and the SysReset signal is asserted active. During reset, 64-bit data is received from the mode bit, and the internal status of the processor is initialized (for further information, refer to **4.5 BTMC Interface**).

5.1.2 Software reset

Software reset is executed when the SysRespVal signals are deasserted inactive and the SysReset signal is asserted active. As a result, all the statuses of the external interface are initialized, but the internal clock and secondary cache clock continues operating. Like the primary and secondary cache, the contents of the CP0 and FPU registers are retained.

5.2 Interrupt Functions

There are two major types of interrupt requests:

- · Maskable interrupt request
- · Non-maskable interrupt (NMI) request

(1) Maskable interrupt requests

These interrupts can be masked by using the status register (each interrupt can be serviced independently, or all interrupts can be serviced in batch).

There is no priority assigned to the interrupts.

(a) Hardware interrupt requests (five sources)

These interrupts are acknowledged when the corresponding external interrupt request is issued.

(b) Software interrupt requests (two sources)

These interrupts are acknowledged when the IP0 and IP1 bits of the cause register are set.

(c) Timer interrupt request (1 source)

This interrupt is acknowledged when the IP7 bit of the cause register is set because the value of the count register has become equal to the value of the compare register, or when one of the two performance counters has overflown.

(2) NMI request (1 source)

This is an interrupt request that cannot be masked and is acknowledged when the SysNMI signal is asserted active.

5.3 JTAG Function

The JTAG boundary scan function is a mechanism to test mutual connections among the V_R10000 and other components, and not to test the processor itself.

As the minimum functions of JTAG, the following functions are provided to the V_R10000 . Functionally, however, the V_R10000 only has the external test function of the JTAG boundary scan register.

- TAP controller
- JTAG instruction register
- JTAG bypass register
- JTAG boundary scan register

6. INSTRUCTION SET

The instructions of the V_R10000 consists of 1 word (32 bits) located at a word boundary, and come in three formats as shown in Figure 6-1. Because only three types of instructions are provided, decoding instructions is simplified. Complicated operations and addressing modes that are not so often used are implemented by a compiler.

6.1 Instruction Formats

The instruction formats of the V_R10000 are shown below.

Figure 6-1. CPU Instruction Format

I - type (immediate format)

J - type (jump format)

R - type (register format)

ор	6-bit instruction code			
rs	5-bit source register specifier			
rt	5-bit target (source/destination) register, or branch condition			
immediate	16-bit immediate value, branch displacement, or address displacement			
target	26-bit unconditional branch target address			
rd	5-bit destination register specifier			
sa	5-bit shift amount			
funct	6-bit function field			

6.2 CPU Instruction Set List

The CPU instructions of the V_R10000 can be classified into an instruction set common to all the V_R series processors (ISA: Instruction Set Architecture), instruction set that is executed by the V_R4000 series and V_R10000 series (expanded ISA), and system control coprocessor instruction set. Tables 6-1 through 6-4 list each instruction set.

Table 6-1. CPU Instruction Set: MIPS I (1/2)

Instruction		Descriptio	n				Format		
Load/store instruction	1	ор	base	rt		offset			
LB	Load Byte					LB	rt, offset (base)		
LBU	Load Byte Unsigned	Load Byte Unsigned							
LH	Load Halfword					LH	rt, offset (base)		
LHU	Load Halfword Unsigned	Load Halfword Unsigned							
LW	Load Word					LW	rt, offset (base)		
LWL	Load Word Left					LWL	rt, offset (base)		
LWR	Load Word Right					LWR	rt, offset (base)		
SB	Store Byte					SB	rt, offset (base)		
SH	Store Halfword					SH	rt, offset (base)		
SW	Store Word					SW	rt, offset (base)		
SWL	Store Word Left					SWL	rt, offset (base)		
SWR	Store Word Right					SWR	rt, offset (base)		
ALU immediate instru	uction	ор	rs	rt		offset			
ADDI	Add Immediate					ADDI	rt, rs, immediate		
ADDIU	Add Immediate Unsigned					ADDIU	rt, rs, immediate		
SLTI	Set On Less Than Immedia	ite				SLTI	rt, rs, immediate		
SLTIU	Set On Less Than Immedia	Set On Less Than Immediate Unsigned							
ANDI	And Immediate					ANDI	rt, rs, immediate		
ORI	Or Immediate					ORI	rt, rs, immediate		
XORI	Exclusive Or Immediate					XORI	rt, rs, immediate		
LUI	Load Upper Immediate					LUI	rt, immediate		
3-operand type instru	ction	ор	rs	rt	rd	sa	funct		
ADD	Add					ADD	rd, rs, rt		
ADDU	Add Unsigned					ADDU	rd, rs, rt		
SUB	Subtract					SUB	rd, rs, rt		
SUBU	Subtract Unsigned					SUBU	rd, rs, rt		
SLT	Set On Less Than					SLT	rd, rs, rt		
SLTU	Set On Less Than Unsigne	d				SLTU	rd, rs, rt		
AND	And					AND	rd, rs, rt		
OR	Or					OR	rd, rs, rt		
XOR	Exclusive Or					XOR	rd, rs, rt		
NOR	Nor					NOR	rd, rs, rt		
Shift instruction		ор	rs	rt	rd	sa	funct		
SLL	Shift Left Logical					SLL	rd, rt, sa		
SRL	Shift Right Logical						rd, rt, sa		
SRA	Shift Right Arithmetic		SRA	rd, rt, sa					
SLLV	Shift Left Logical Variable	SLLV	rd, rt, rs						
SRLV	Shift Right Logical Variable SRLV rd, rt, rs								
SRAV	Shift Right Arithmetic Varial	ble				SRAV	rd, rt, rs		

Table 6-1. CPU Instruction Set: MIPS I (2/2)

Instruction		Description	1			Format		
Multiplication/division	instruction	ор	rs	rt	rd	sa	funct	
MULT	Multiply					MULT	rs, rt	
MULTU	Multiply Unsigned					MULTU	rs, rt	
DIV	Divide					DIV	rs, rt	
DIVU	Divide Unsigned					DIVU	rs, rt	
MFHI	Move From HI					MFHI	rd	
MFLO	Move From LO					MFLO	rd	
MTHI	Move To HI					MTHI	rs	
MTLO	Move To LO					MTLO	rs	
Jump instruction (1)		ор			target			
J	Jump					J	target	
JAL	Jump And Link					JAL	target	
Jump instruction (2)		ор	rs	rt	rd	sa	funct	
JR	Jump Register					JR	rs	
JALR	Jump And Link Register					JALR	rs	
						JALR	rs, rd	
Branch instruction (1)		ор	rs	rt		offset		
BEQ	Branch On Equal					BEQ	rs, rt, offset	
BNE	Branch On Not Equal					BNE	rs, rt, offset	
BLEZ	Branch On Less Than Or E	qual To Ze	ro			BLEZ	rs, offset	
BGTZ	Branch On Greater Than Z	ero				BGTZ	rs, offset	
Branch instruction (2)		REGIMM	rs	sub		offset		
BLTZ	Branch On Less Than Zero)				BLTZ	rs, offset	
BGEZ	Branch On Greater Than O	r Equal to	Zero			BGEZ	rs, offset	
BLTZAL	Branch On Less Than Zero	And Link				BLTZAL	rs, offset	
BGEZAL	Branch On Greater Than O	r Equal To	Zero And	Link		BGEZAL	rs, offset	
Special instruction		SPECIAL	rs	rt	rd	sa	funct	
SYSCALL	System Call					SYSCAL	L	
BREAK	Breakpoint					BREAK		
Coprocessor instructi	on (1)	ор	base	rt		offset		
LWCz	Load Word To Coprocessor	r z				LWCz	rt, offset (base)	
SWCz	Store Word From Coprocessor z SWCz rt, offset (base)							
Coprocessor instructi	on (2)	COPz	СО		cofur	1		
COPz	Coprocessor z Operation					COPz	cofun	

Table 6-2. CPU Instruction Set: MIPS II

Instruction		Description	1			Format	
Load/store instruction	1	ор	base	rt		offset	
LL	Load Linked					LL rt, offset (bas	e)
sc	Store Conditional					SC rt, offset (bas	se)
Branch instruction (1)		ор	rs	rt		offset	
BEQL	Branch On Equal Likely					BEQL rs, rt, offset	
BNEL	Branch On Not Equal Likely	/				BNEL rs, rt, offset	
BLEZL	Branch On Less Than Or E	qual To Ze	ro Likely			BLEZL rs, offset	
BGTZL	Branch On Greater Than Z	ero Likely				BGTZL rs, offset	
Branch instruction (2)		REGIMM	rs	sub		offset	
BLTZL	Branch On Less Than Zero	Likely				BLTZL rs, offset	
BGEZL	Branch On Greater Than O	r Equal To	Zero Like	ly		BGEZL rs, offset	
BLTZALL	Branch On Less Than Zero	And Link I	_ikely			BLTZALL rs, offset	
BGEZALL	Branch On Greater Than O	r Equal To	Zero And	Link Like	ly	BGEZALL rs, offset	
Exception instruction		SPECIAL rs rt rd					
TGE	Trap If Greater Than Or Eq	TGE rs, rt					
TGEU	Trap If Greater Than Or Eq		TGEU rs, rt				
TLT	Trap If Less Than	Trap If Less Than					
TLTU	Trap If Less Than Unsigned	t				TLTU rs, rt	
TEQ	Trap If Equal					TEQ rs, rt	
TNE	Trap If Not Equal					TNE rs, rt	
Exception immediate	instruction	REGIMM	rs	sub		immediate	
TGEI	Trap If Greater Than Or Eq	ual Immed	iate			TGEI rs, immediate)
TGEIU	Trap If Greater Than Or Eq	ual Immed	iate Unsig	ıned		TGEIU rs, immediate)
TLTI	Trap If Less Than Immedia	te				TLTI rs, immediate)
TLTIU	Trap If Less Than Immedia	te Unsigne	d			TLTIU rs, immediate)
TEQI	Trap If Equal Immediate					TEQI rs, immediate)
TNEI	Trap If Not Equal Immediate TNEI rs, immediate						
Special instruction		SPECIAL	rs	rt	rd	sa funct	
SYNC	Synchronize					SYNC	
Coprocessor instructi	on	ор	base	rt		offset	
LDCz	Load Doubleword To Copro	cessor z				LDCz rt, offset (bas	se)
SDCz	Store Doubleword From Co	processor	Z			SDCz rt, offset (bas	se)

Table 6-3. CPU Instruction Set: MIPS III

Instruction	I	Description	า			Format		
Load/store instruction	1	ор	base	rt		offset		
LD	Load Doubleword					LD rt, offset (base)		
LDL	Load Doubleword Left					LDL rt, offset (base)		
LDR	Load Doubleword Right					LDR rt, offset (base)		
LLD	Load Linked Doubleword					LLD rt, offset (base)		
LWU	Load Word Unsigned					LWU rt, offset (base)		
SCD	Store Conditional Doublewo	ord				SCD rt, offset (base)		
SD	Store Doubleword					SD rt, offset (base)		
SDL	Store Doubleword Left					SDL rt, offset (base)		
SDR	Store Doubleword Right					SDR rt, offset (base)		
ALU immediate instru	ıction	ор	rs	rt		immediate		
DADDI	Doubleword Add Immediate					DADDI rt, rs, immediate		
DADDIU	Doubleword Add Immediate	Unsigned	I			DADDIU rt, rs, immediate		
3-operand type instru	ction	sa funct						
DADD	Doubleword Add	DADD rd, rs, rt						
DADDU	Doubleword Add Unsigned	DADDU rd, rs, rt						
DSUB	Doubleword Subtract	Doubleword Subtract						
DSUBU	Doubleword Subtract Unsig	ned				DSUBU rd, rs, rt		
Shift instruction		ор	rs	rt	rd	sa funct		
DSLL	Doubleword Shift Left Logic	al				DSLL rd, rt, sa		
DSRL	Doubleword Shfit Right Log	ical				DSRL rd, rt, sa		
DSRA	Doubleword Shift Right Aritl	nmetic				DSRA rd, rt, sa		
DSLLV	Doubleword Shift Left Logic	al Variable	€			DSLLV rd, rt, rs		
DSRLV	Doubleword Shift Right Log	ical Variat	ole			DSRLV rd, rt, rs		
DSRAV	Doubleword Shift Right Arith	nmetic Vai	riable			DSRAV rd, rt, rs		
DSLL32	Doubleword Shift Left Logic	al + 32				DSLL32 rd, rt, sa		
DSRL32	Doubleword Shift Right Log	ical + 32				DSRL32 rd, rt, sa		
DSRA32	Doubleword Shift Right Arithmetic +32 DSRA32 rd, rt, sa							
Multiplication/division	instruction	ор	rs	rt	rd	sa funct		
DMULT	Doubleword Multiply					DMULT rs, rt		
DMULTU	Doubleword Multiply Unsigr		DMULTU rs, rt					
DDIV	Doubleword Divide	Doubleword Divide DDIV rs, rt						
DDIVU	Doubleword Divide Unsigne	ed				DDIVU rs, rt		

Table 6-4. CPU Instruction Set: MIPS IV

Instruction	1	Description						
3-operand type instruction			rs	rt	rd	sa	funct	
MOVN	Move Conditional On Not Zero						rd, rs, rt	
MOVZ	Move Conditional On Zero					MOVZ	rd, rs, rt	
Prefetch instruction	ор	base	hint		offset			
PREF Prefetch						PREF	hint, offset (base)	

6.3 FPU Instruction Set List

All the FPU instructions are 32 bits long and located at a word boundary. Tables 6-5 through 6-8 list the FPU instruction set.

Table 6-5. FPU Instruction Set: MIPS I

Instruction		Description	า			Format		
Load/store instruction	1	ор	base	ft		offset		
LWC1	Load Word To FPU					LWC1	ft, offset (base)	
SWC1	Store Word From FPU					SWC1	ft, offset (base)	
Transfer instruction		COP1	sub	rt	fs	0		
MTC1	Move Word To FPU					MTC1	rt, fs	
MFC1	Move Word From FPU					MFC1	rt, fs	
CTC1	Move Control Word To FPL	J				CTC1	rt, fs	
CFC1	Move Control Word From F	PU				CFC1	rt, fs	
Conversion instruction	n	COP1	fmt	0	fs	fd	funct	
CVT.S.fmt	Floating-point Convert To S	Floating-point Convert To Single Floating-point Format						
CVT.D.fmt	Floating-point Convert To [CVT.D.fmt	fd, fs				
CVT.W.fmt	Floating-point Convert To S	Single Fixed	d-point Fo	rmat		CVT.W.fm	t fd, fs	
Operation instruction		COP1	fmt	ft	fs	fd	funct	
ADD.fmt	Floating-point Add					ADD.fmt	fd, fs, ft	
SUB.fmt	Floating-point Subtract					SUB.fmt	fd, fs, ft	
MUL.fmt	Floating-point Multiply					MUL.fmt	fd, fs, ft	
DIV.fmt	Floating-point Divide					DIV.fmt	fd, fs, ft	
ABS.fmt	Floating-point Absolute Val	ue				ABS.fmt	fd, fs	
MOV.fmt	Floating-point Move					MOV.fmt	fd, fs	
NEG.fmt	Floating-point Negate					NEG.fmt	fd, fs	
Compare instruction		COP1	fmt	ft	fs	cc 0	funct	
C.cond.fmt	Floating-point Compare					C.cond.fm	t cc, fs, ft	
FPU branch instruction	on	COP1	ВС	cc 0		offset		
BC1T	Branch On FPU True					BC1T	cc, offset	
BC1F	Branch On FPU False					BC1F	cc, offset	

Table 6-6. FPU Instruction Set: MIPS II

Instruction]	Description	า			Format		
Load/store instruction	1	ор	base	ft		offset		
LDC1	Load Doubleword To FPU	oad Doubleword To FPU						ft, offset (base)
SDC1	Store Doubleword From FP	Store Doubleword From FPU						
Conversion instructio	n	COP1	fmt	0	fs	fd	funct	
ROUND.W.fmt	Floating-point Round To Sin	gle Fixed-	point For	mat		ROUND	.W.fmt	fd, fs
TRUNC.W.fmt	Floating-point Truncate To S	Floating-point Truncate To Single Fixed-point Format						
CEIL.W.fmt	Floating-point Ceiling To Sir	ngle Fixed	-point For	mat		CEIL.W.fmt		fd, fs
FLOOR.W.fmt	Floating-point Floor To Sing	le Fixed-p	oint Form	at		FLOOR.W.fmt		fd, fs
Operation instruction		COP1	fmt	ft	fs	fd	funct	
SQRT.fmt	Floating-point Square Root					SQRT.fr	nt	fd, fs
FPU branch instruction	FPU branch instruction					offset		
BC1TL	Branch On FPU True Likely					BC1TL		cc, offset
BC1FL	Branch On FPU False Likely	У				BC1FL		cc, offset

Table 6-7. FPU Instruction Set: MIPS III

Instruction		Description						Format		
Transfer instruction COP1 sub rt fs					fs	0)			
DMTC1	Doubleword Move To FPU				DMTC1		rt, fs			
DMFC1	Doubleword Move From FF		DMFC1		rt, fs					
Conversion instruction COP1 fmt 0 fs				fs	fd	funct				
CVT.S.fmt	Floating-point Convert To S	Floating-point Convert To Single Floating-point Format						fd, fs		
CVT.D.fmt	Floating-point Convert To D	ouble Floa	ting-point	Format		CVT.D.fn	nt	fd, fs		
CVT.L.fmt	Floating-point Convert To L	ong Fixed-	point Forr	nat		CVT.L.fm	nt	fd, fs		
ROUND.L.fmt	Floating-point Round To Lo	ng Fixed-p	oint Form	at		ROUND.	L.fmt	fd, fs		
TRUNC.L.fmt	Floating-point Truncate To Long Fixed-point Format						L.fmt	fd, fs		
CEIL.L.fmt	Floating-point Ceiling To Long Fixed-point Format					CEIL.L.fr	mt	fd, fs		
FLOOR.L.fmt	Floating-point Floor To Lon	g Fixed-po	int Forma	t		FLOOR.	L.fmt	fd, fs		

Table 6-8. FPU Instruction Set: MIPS IV

Instruction		Description	n				Forr	nat
Load index instruction	1	ор	base	index	0	fd	funct	
LWXC1	Load Word Indexed To Floa	ating-point				LWXC1	f	d, index (base)
LDXC1	Load Doubleword Indexed	To Floating	g-point			LDXC1	f	d, index (base)
Store index instruction	n	ор	base	index	fs	0	funct	
SWXC1	Store Word Indexed From F	fore Word Indexed From Floating-point SWXC1 fs, index (bar						s, index (base)
SDXC1	Store Doubleword Indexed	tore Doubleword Indexed From Floating-point SDXC1 fs, index (ba						s, index (base)
Conversion instruction	n	COP1	fmt	0	fs	fd	funct	
RECIP.fmt	Reciprocal Approximation					RECIP.f	mt f	d, fs
RSQRT.fmt	Reciprocal Square Root Ap	proximatio	n			RSQRT.	.fmt f	d, fs
Multiplication instructi	on (1)	COP1	fmt	ft	fs	fd	funct	
MSUB.fmt	Floating-point Multiply Subt	ract				MSUB.f	mt f	d, fr, fs, ft
NMSUB.fmt	Floating-point Negative Mu	Itiply Subtr	act			NMSUB	s.fmt f	d, fr, fs, ft
MADD.fmt	Floating-point Multiply Add	Floating-point Multiply Add MADD.fmt fd, fr, fs, ft						
NMADD.fmt	Floating-point Negative Multiply Add NMADD.fmt fd, fr, fs, ft							d, fr, fs, ft
MOVN.fmt	Floating-point Move Condit	ional On N	lot Zero			MOVN.f	fmt f	d, fs, ft
MOVZ.fmt	Floating-point Move Condit	ional On Z	ero			MOVZ.f	mt f	d, fs, ft
Operation instruction	(2)	COP1	fmt	cc 0	fs	fd	funct	
MOVF.fmt	Floating-point Move Condit	ional On F	PU False			MOVF.fr	mt f	d, fs, cc
MOVT.fmt	Floating-point Move Condit	ional On F	PU True			MOVT.fr	mt f	d, fs, cc
Compare instruction		COP1	fmt	ft	fs	cc 0	funct	
C.cond.fmt	Floating-point Compare					C.cond.	fmt d	cc, fs, ft
FPU branch instruction	on	COP1	ВС	cc 0		offset		
BC1T	Branch On FPU True					BC1T	(cc, offset
BC1F	Branch On FPU False					BC1F	(cc, offset
BC1TL	Branch On FPU True Likely	,				BC1TL	(cc, offset
BC1FL	Branch On FPU False Like	y				BC1FL	(cc, offset
Conditional transfer in	nstruction	ор	rs	cc tf	rd	fu	nct	
MOVF	Move Conditional On FPU	False				MOVF	1	d, rs, cc
MOVT	Move Conditional On FPU True MOVT rd, rs, cc						d, rs, cc	
Prefetch instruction		ор	base	index	hint	0	funct	
PREFX	Prefetch Indexed					PREFX	ŀ	nint, index (base)

6.4 Delay of Instruction

(1) Delay of integer instructions

Table 6-9 shows execution delay of the integer instructions.

For details of each instruction, refer to VR5000, VR10000 User's Manual - Instruction.

Table 6-9. Integer Operation Instruction Delay Time

Instruction Type	Execution Unit	PClk	Repeat Rate	Remark
ADD, SET, SUB, Logical	ALU1, ALU2	1	1	
MFHI, MTHI, MFLO, MTLO		1	1	
Shift, LUI	ALU1	1	1	
Conditional Branch		1	1	
Conditional Move		1	1	
MULT	ALU2	5/6	6	Delay of LO/HI
MULTU		6/7	7	Delay of LO/HI
DMULT		9/10	10	Delay of LO/HI
DMULTU		10/11	11	Delay of LO/HI
DIV, DIVU		34/35	35	Delay of LO/HI
DDIV, DDIVU		66/67	67	Delay of LO/HI
Load (except for CP1 instruction)	Load/store	2	1	In the case of cache hit
Store		_	1	In the case of cache hit

(2) Delay of floating-point instructions

Table 6-10 shows the execution delay of the floating-point instruction.

For details of each instruction, refer to Vr5000, Vr10000 User's Manual – Instruction.

Table 6-10. Floating-Point Instruction Delay Time

Instruction Type	Execution Unit	PClk	Repeat Rate	Remark
MTC1, DMTC1	ALU1	3	1	
ADD, SUB, ABS, NEG, ROUND, TRUNC, CEIL, FLOOR, C.cond	Fp adder	2	1	
CVT.S.W, CVT.S.L		4	2	Average value of repeat rate
CVT (other than above)		2	1	
MUL	Fp multiplier	2	1	
MFC1, DMFC1		2	1	
Conditional MOVE/CVT.S.L		2	1	
DIV.S, RECIP.S		12	14	
DIV.D, RECIP.D		19	21	
SQRT.S		18	20	
SQRT.D		33	35	
RSQRT.S		30	20	
RSQRT.D		52	35	
MADD	Fp adder + Fp multiplier	2/4	1	"2" if other MADD instruction uses operation result
LWC1, LDC1, LWXC1, LDXC1	Load/store	3	1	In the case of cache hit

7. ELECTRICAL SPECIFICATIONS

(1) μ PD30700RS-180 and 30700RS-200

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +3.8	V
Input voltage	Vı		-0.5 to V _{DD} + 0.3	V
		Pulse of less than 10 ns	-1.5 to V _{DD} + 0.3	V
Storage temperature	T _{stg}		-40 to +125	°C

Cautions 1. Do not short-circuit two or more outputs at the same time.

2. If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Use the product(s) with these rated values never exceeded. The specifications and conditions shown in DC Characteristics and AC Characteristics below are the range in which the product(s) operate normally and the quality of the product is guaranteed.

Operating Case Temperature ($VDD = 3.3 \text{ V} \pm 0.165 \text{ V}$)

Parameter	Symbol	Condition	Rating	Unit
Operating case temperature	Tc		0 to 70	°C

DC Characteristics (Tc = 0 to 70 °C, VDD = 3.3 V \pm 0.165 V)

(a) Common to CMOS/TTL and HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Input capacitance	Cin			5	pF
Output capacitance	Cout			7	pF
Power consumption	PD	200 MHz (V _{DD} = 3.3 V)		30	W
		180 MHz (V _{DD} = 3.3 V)		27	W
Input leakage power	ILI			±10	μΑ
I/O leakage current	Ilio			±10	μΑ

(b) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Output supply voltageNote 1	VDDQ	VDDQ = VDD	3.135	3.465	V
Input supply voltageNote 2	VREF		1.2	1.6	V
High-level output voltage	Vон	V _{DD} = MIN., I _{OH} = -4 mA	2.4		V
Low-level output voltage	Vol	V _{DD} = MAX., I _{OL} = 4 mA		0.4	V
High-level input voltage	VIH		2.0	V _{DD} + 0.3	V
Low-level input voltage	VIL		-0.5	+0.8	V

Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins.

2. V_{REF} is applied to the $V_{ref}SC$ and $V_{ref}Sys$ pins.

(c) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Output supply voltage ^{Note 1}	VDDQ		1.4	1.6	V
Input supply voltageNote 2	VREF		0.65	0.75	V
High-level output threshold voltageNote 3	Vон	Iон = −4 mA	VDDQ/2 + 0.3		V
Low-level output threshold voltageNote 3	Vol	IoL = 4 mA		V _{DDQ} /2 - 0.3	V
High-level differential input threshold voltage 1Note 4	ViH		Vref + 0.1	V _{DD} + 0.3	V
Low-level differential input threshold voltage 1Note 4	VIL		-0.3	V _{DD} - 0.1	V
High-level differential input threshold voltage 2 ^{Note 5}	VDIH		V _{DIL} + 0.8	V _{DD} + 0.3	V
Low-level differential input threshold voltage 2 ^{Note 5}	VDIL		-0.3	Vын — 0.8	V

Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins.

- 2. VREF is applied to the VrefSC and VrefSys pins.
- 3. The VR10000 supports 1a and 1b of the HSTL specifications of SGI.
- **4.** Applied to the input pins other than SysClk and SysClk.
- **5.** Applied to the SysClk and SysClk pins.

AC Characteristics (Tc = 0 to 70 °C, VdD = 3.3 V \pm 0.165 V)

Clock parameter

Parameter	Symbol	Condition	MIN.	MAX.	Unit
System clock high-level width	tсн	tcr, tcr ≤ 2.0 ns	0.5		ns
System clock low-level width	tcL	tcr, tcr ≤ 2.0 ns	0.5		ns
System clock frequencyNotes 1,2		200-MHz model	50	200	MHz
		180-MHz model	45	180	MHz
System clock cycle ^{Notes 1,2}	tcp	200-MHz model	5	20	ns
		180-MHz model	5.56	22.2	ns
Input system clock jitter	tji			±125	ps
Output system clock jitter ^{Note 3}	tjo			±500	ps
System clock rise time	tcr			2.0	ns
System clock fall time	tcf			2.0	ns

Notes 1. The operation of the V_R10000 is guaranteed only when PLL operates.

- 2. The operation is guaranteed when the internal operating frequency is 100 MHz or higher.
- **3.** Changes between clock edges are undefined.

System Interface Parameter

(a) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	too			2.0	ns
Data input setup time	tos		1.0		ns
Data input hold time	tон		1.0		ns

(b) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	too			1.5	ns
Data input setup time	tos		1.0		ns
Data input hold time	tон		1.0		ns

Secondary Cache Tag Interface Parameter

Applied to SCTag (25:0) and SCTagChk (6:0)

(a) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	tspo			2.0	ns
Data input setup time	tsps		1.5		ns
Data input hold time	tsdH		0.5		ns

(b) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	tspo			1.5	ns
Data input setup time	tsps		1.5		ns
Data input hold time	tspн		0.5		ns

(2) μ PD30700LRS-225 and 30700LRS-250 (preliminary)

Absolute Maximum Ratings ($T_A = 25$ °C)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +3.3	V
Input voltage	Vı		-0.5 to V _{DD} + 0.3	V
		Pulse of less than 10 ns	-1.5 to V _{DD} + 0.3	V
Storage temperature	T _{stg}		-40 to +125	°C

- Cautions 1. Do not short-circuit two or more outputs at the same time.
 - 2. If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Use the product(s) with these rated values never exceeded. The specifications and conditions shown in DC Characteristics and AC Characteristics below are the range in which the product(s) operate normally and the quality of the product is guaranteed.

Operating Case Temperature ($V_{DD} = 2.6 \text{ V} \pm 0.1 \text{ V}$)

Parameter	Symbol	Condition	Rating	Unit
Operating case temperature	Tc		0 to 70	°C

DC Characteristics (Tc = 0 to 70 $^{\circ}$ C, V_{DD} = 2.6 V \pm 0.1 V)

(a) Common to CMOS/TTL and HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Input capacitance	Cin			5	pF
Output capacitance	Cout			7	pF
Power consumption	PD	250 MHz (V _{DD} = 2.6 V)		20	W
		225 MHz (V _{DD} = 2.6 V)		17	W
Input leakage power	lu			±10	μΑ
I/O leakage current	Ilio			±10	μΑ

(b) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Output supply voltageNote 1	VDDQ	VDDQ = VDD	2.5	2.7	V
Input supply voltageNote 2	VREF		1.2	1.6	V
High-level output voltage	Vон	V _{DD} = MIN., I _{OH} = -4 mA	2.4		V
Low-level output voltage	Vol	V _{DD} = MAX., I _{OL} = 4 mA		0.4	V
High-level input voltage	VIH		2.0	V _{DD} + 0.3	V
Low-level input voltage	VIL		-0.5	+0.8	V

Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins.

2. V_{REF} is applied to the $V_{ref}SC$ and $V_{ref}Sys$ pins.

(c) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Output supply voltage ^{Note 1}	VDDQ		1.4	1.6	V
Input supply voltageNote 2	VREF		0.65	0.75	V
High-level output threshold voltageNote 3	Vон	Iон = −4 mA	VDDQ/2 + 0.3		V
Low-level output threshold voltageNote 3	VoL	IoL = 4 mA		V _{DDQ} /2 - 0.3	V
High-level differential input threshold voltage 1 Note 4	Vıн		VREF + 1	V _{DD} + 0.3	V
Low-level differential input threshold voltage 1Note 4	VIL		-0.3	V _{DD} - 0.1	V
High-level differential input threshold voltage 2Note 5	VdiH		V _{DIL} + 0.8	V _{DD} + 0.3	V
Low-level differential input threshold voltage 2Note 5	VDIL		-0.3	Vын — 0.8	V

Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins.

- 2. VREF is applied to the VrefSC and VrefSys pins.
- 3. The VR10000 supports 1a and 1b of the HSTL specifications of SGI.
- **4.** Applied to the input pins other than SysClk and $\overline{\text{SysClk}}$.
- **5.** Applied to the SysClk and $\overline{\text{SysClk}}$ pins.

AC Characteristics (Tc = 0 to 70 °C, Vdd = 2.6 V \pm 0.1 V)

Clock parameter

Parameter	Symbol	Condition	MIN.	MAX.	Unit
System clock high-level width	tсн	tcr, tcr ≤ 2.0 ns	0.5		ns
System clock low-level width	tcL	tcr, tcr ≤ 2.0 ns	0.5		ns
System clock frequencyNotes 1, 2		250-MHz model	62.5	250	MHz
		225-MHz model	56.3	225	MHz
System clock cycle ^{Notes 1, 2}	tcp	250-MHz model	4	16	ns
		225-MHz model	4.44	17.8	ns
Input system clock jitter	tji			±125	ps
Output system clock jitter ^{Note 3}	tjo			±500	ps
System clock rise time	tcr			2.0	ns
System clock fall time	tcf			2.0	ns

Notes 1. The operation of the V_R10000 is guaranteed only when PLL operates.

- 2. The operation is guaranteed when the internal operating frequency is 100 MHz or higher.
- **3.** Changes between clock edges are undefined.

System Interface Parameter

(a) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	too			2.0	ns
Data input setup time	tos		1.0		ns
Data input hold time	tон		1.0		ns

(b) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	too			1.5	ns
Data input setup time	tos		1.0		ns
Data input hold time	tон		1.0		ns

Secondary Cache Tag Interface Parameter

Applied to SCTag (25:0) and SCTagChk (6:0)

(a) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	tspo			2.0	ns
Data input setup time	tsps		1.5		ns
Data input hold time	tsdh		0.5		ns

(b) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	tspo			1.5	ns
Data input setup time	tsps		1.5		ns
Data input hold time	tspн		0.5		ns

(3) μ PD30710RS-300 (preliminary)

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +3.3	V
Input voltage	Vı		-0.5 to V _{DD} + 0.3	V
		Pulse of less than 10 ns	-1.5 to V _{DD} + 0.3	V
Storage temperature	T _{stg}		-40 to +125	°C

- Cautions 1. Do not short-circuit two or more outputs at the same time.
 - 2. If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Use the product(s) with these rated values never exceeded. The specifications and conditions shown in DC Characteristics and AC Characteristics below are the range in which the product(s) operate normally and the quality of the product is guaranteed.

Operating Case Temperature ($V_{DD} = 2.6 \text{ V} \pm 0.1 \text{ V}$)

Parameter	Symbol	Condition	Rating	Unit
Operating case temperature	Tc		25 to 70	°C

DC Characteristics (Tc = 25 to 70 °C, VDD = 2.6 V \pm 0.1 V)

(a) Common to CMOS/TTL and HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Input capacitance	Cin			5	pF
Output capacitance	Cout			7	pF
Power consumption	PD	300 MHz (V _{DD} = 2.6 V)		30	W
Input leakage power	lu			±10	μΑ
I/O leakage current	Іно			±10	μΑ

(b) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Output supply voltageNote 1	VDDQ	VDDQ = VDD	2.5	2.7	V
Input supply voltageNote 2	VREF		1.2	1.6	V
High-level output voltage	Vон	V _{DD} = MIN., I _{OH} = -4 mA	2.4		V
Low-level output voltage	VoL	V _{DD} = MAX., I _{OL} = 4 mA		0.4	V
High-level input voltage	ViH		2.0	V _{DD} + 0.3	V
Low-level input voltage	VIL		-0.5	+0.8	V

Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins.

2. V_{REF} is applied to the $V_{ref}SC$ and $V_{ref}Sys$ pins.

(c) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Output supply voltage ^{Note 1}	VDDQ		1.4	1.6	V
Input supply voltageNote 2	VREF		0.65	0.75	V
High-level output threshold voltageNote 3	Vон	Iон = −4 mA	VDDQ/2 + 0.3		V
Low-level output threshold voltageNote 3	Vol	IoL = 4 mA		VDDQ/2 - 0.3	V
High-level differential input threshold voltage 1 Note 4	ViH		Vref + 0.1	V _{DD} + 0.3	V
Low-level differential input threshold voltage 1Note 4	VIL		-0.3	V _{DD} - 0.1	V
High-level differential input threshold voltage 2 ^{Note 5}	Vdih		V _{DIL} + 0.8	V _{DD} + 0.3	V
Low-level differential input threshold voltage 2 ^{Note 5}	VDIL		-0.3	Vын — 0.8	V

Notes 1. VDDQ is applied to the VDDQSC and VDDQSys pins.

- 2. VREF is applied to the VrefSC and VrefSys pins
- 3. The VR12000 supports 1a and 1b of the HSTL specifications of SGI.
- **4.** Applied to the input pins other than SysClk and $\overline{\text{SysClk}}$.
- **5.** Applied to the SysClk and $\overline{\text{SysClk}}$ pins.

AC Characteristics (Tc = 25 to 70 °C, VdD = 2.6 V \pm 0.1 V)

Clock parameter

Parameter	Symbol	Condition	MIN.	MAX.	Unit
System clock high-level width	tсн	tcr, tcr ≤ 2.0 ns	0.5		ns
System clock low-level width	tcL	tcr, tcr ≤ 2.0 ns	0.5		ns
System clock frequencyNotes 1, 2		300-MHz model	30	300	MHz
System clock cycle ^{Notes 1, 2}	tcp	300-MHz model	3.33	33.3	ns
Input system clock jitter	tji			±125	ps
Output system clock jitterNote 3	tjo			±500	ps
System clock rise time	tcr			2.0	ns
System clock fall time	tcf			2.0	ns

Notes 1. The operation of the V_R12000 is guaranteed only when PLL operates.

- 2. The operation is guaranteed when the internal operating frequency is 100 MHz or higher.
- **3.** Changes between clock edges are undefined.

System Interface Parameter

(a) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	too			2.0	ns
Data input setup time	tos		1.0		ns
Data input hold time	tон		1.0		ns

(b) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	too			1.5	ns
Data input setup time	tos		1.0		ns
Data input hold time	tон		1.0		ns

Secondary Cache Tag Interface Parameter

Applied to SCTag (25:0) and SCTagChk (6:0)

(a) CMOS/TTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	tspo			2.0	ns
Data input setup time	tsps		1.5		ns
Data input hold time	tspн		0.5		ns

(b) HSTL

Parameter	Symbol	Condition	MIN.	MAX.	Unit
Data output delay time	tspo			1.5	ns
Data input setup time	tsps		1.5		ns
Data input hold time	tspн		0.5		ns

Timing Chart

Secondary Cache Interface Timing

Secondary cache clock jitter

System Interface Timing

System Clock

SysClk tcp tch VDIH

System Clock Jitter

8. PUSH-PULL OUTPUT BUFFER CIRCUIT

The configuration of the push-pull output buffer circuit is shown below.

Push-pull output buffer circuit (without load of termination)

Push-pull output buffer circuit (with load of termination)

9. PACKAGE DRAWING

599 PIN CERAMIC LGA

NOTE

- *1 Each land centerline is located within 0.30 mm (0.012 inch) of its true position (T.P.) at least material condition.
- *2 Each land centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	47.50±0.25	1.870±0.010
В	29.00	1.142
С	47.50±0.25	1.870±0.010
D	29.00	1.142
Е	2.16	0.085
F	1.27 (T.P.)	0.050 (T.P.)
G	1.27 (T.P.)	0.050 (T.P.)
Н	0.70 MAX.	0.028 MAX.
I	2.54±0.25	0.100±0.010
J	3.81±0.38	0.150±0.015
L	□0.76±0.13	□0.030 ^{+0.005} −0.006
N	0.20	0.008
Q	0.30	0.012
R	2.16	0.085
S	43.18	1.700
Т	43.18	1.700
U	32.54	1.281
V	32.54	1.281
W ₁	37.00	1.457
W2	37.00	1.457
X	30.00	1.181
Υ	30.00	1.181

X599RS-50A

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil

Tel: 011-6465-6810 Fax: 011-6465-6829

J98. 2

Related Documents: VR10000, VR12000 User's Manual (U10278E)

VR5000, VR10000 User's Manual - Instruction (U12754E)

The related documents referred to in this publication may include preliminary versions. However, preliminary versions are not marked as such.

VR4000, VR4200, VR4400, VR5000, VR10000, VR12000, and VR series are trademarks of NEC Corporation. MIPS and ANDES are trademarks of MIPS Technologies, Inc.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries. Windows NT is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

This product employs technology which is restricted by the export control regulations of the United States of America. Permission of the United States government might be required in case of exporting this product or products in which this product is installed.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.