Medical Diagnosis Aid with Data Science and Machine Learning

Luca Granucci, Paolo Walsh Università di Pisa – A.A. 2024/2025

Introduzione

- Interesse per l'applicazione della data science e del machine learning in un ambito concreto e ad alto impatto, la medicina
- Utilizzo del machine learning per supportare la diagnosi precoce di malattie cardiache
- Ridurre errori soggettivi e ottenere una prima valutazione rapida ed efficace

Obiettivi del progetto

- Sviluppare modelli predittivi a partire da dati clinici
- Confrontare prestazioni dei modelli scelti con
 GPT-4 e un medico in formazione
- Analizzare l'interpretabilità dei modelli
- Integrare i modelli in un'applicazione web

Dataset UCI Heart Disease

- 910 pazienti da 4 centri clinici (Cleveland, Ungheria, Svizzera, Long Beach)
- Feature cliniche: età, sesso, dolore toracico, colesterolo, ECG, ecc.
- Obiettivo: predizione binaria (malato / non malato)

Feature del dataset

Feature	Descrizione				
id	Identificatore univoco del paziente nel dataset.				
age	Età del paziente (in anni).				
sex	Sesso del paziente $(0 = femmina, 1 = maschio)$.				
dataset	Origine del campione all'interno dei diversi sottodataset UCI.				
chest_pain_type	Tipo di dolore toracico (es. tipico anginoso, atipico, non anginoso, asintomatico).				
blood_pressure_resting	Pressione arteriosa a riposo (mm Hg).				
cholesterol	Colesterolo sierico (mg/dl).				
fasting_blood_sugar	Glicemia a digiuno $> 120 \text{ mg/dl } (1 = \text{vero}, 0 = \text{falso}).$				
ecg_resting	Risultati dell'elettrocardiogramma a riposo (0, 1 o 2, che indicano diverse anomalie).				
max_heart_rate	Frequenza cardiaca massima raggiunta durante il test da sforzo.				
exercise_induced_angina	Angina indotta da esercizio.				
st_depression_exercise	Depressione del tratto ST causata dall'esercizio rispetto al riposo.				
st_slope_type	Inclinazione del segmento ST durante l'esercizio (es. ascendente, piatto, discendente).				
major_vessels_colored	Numero di vasi principali visualizzati con fluoroscopia colorata (da 0 a 3).				
thal_defect_type	Tipo di difetto nel test del talio (normale, fisso, reversibile).				
heart_disease_gravity	Grado di gravità della malattia cardiaca ($0 = \text{nessuna}$, fino a $4 = \text{massima}$).				
sick	Etichetta binaria: $1 = presenza$ di malattia cardiaca, $0 = assenza$.				

Analisi Esplorativa dei Dati

- Pulizia: rimossi record con valori anomali/nulli
- Riduzione a 299 campioni validi
- Individuazione di bias all'interno del dataset
- Correlazioni Pearson e visualizzazioni esplorative

Piarplot delle Feature

Correlazione con la malattia

Correlazione con la malattia

- La tabella evidenzia le variabili con correlazione assoluta ≥ 0.3 con la variabile sick
- Alcune feature comunemente ritenute rilevanti come il colesterolo risultano meno correlate rispetto ad altre come il sesso
- Ciò è probabilmente dovuto alla ridotta dimensione del dataset e alla presenza di bias strutturali

Feature	Correlazione con sick
heart disease gravity ^a	0.78
chest pain type	-0.46
thal_defect_type	0.46
exercise induced angina	0.46
major vessels colored	0.46
st slope type	0.44
max_heart_rate	-0.39

^a Questa colonna rappresenta direttamente il grado di malattia diagnosticato, e quindi è naturalmente molto correlata con la variabile sick. Per questo motivo, non viene utilizzata come feature nei modelli predittivi.

Bias presenti nel dataset

- 80% dei campioni sono maschi → forte squilibrio di genere
- Il modello rischia di **sovra-adattarsi alla classe dominante**, penalizzando la diagnosi femminile
- Anche normalizzando per sesso, persiste uno sbilanciamento nella distribuzione della malattia
- I dati provengono da solo 4 centri clinici → bassa diversità geografica e demografica

Bias presenti nel dataset

Modelli di Machine Learning

- Preprocessing: One-Hot Encoding + StandardScaler
- Modelli: K-Nearest Neighbors e Logistic Regression
- Metriche: Accuracy, Recall, Precision, F1, ROC
 AUC
- Fine-tuning con GridSearchCV (cv=5) ottimizzando per Recall

Risultati Fine-Tuning dei Modelli

Modello	Accuracy	Recall	Precision	F1-Score	ROC AUC
K-Nearest Neighbors	0.822	0.762	0.842	0.800	0.881
Logistic Regression	0.822	0.738	0.861	0.795	0.928

Tabella 3.2: Prestazioni iniziali dei modelli sul test set.

Modello	Accuracy	Recall	Precision	F1-Score	ROC AUC
K-Nearest Neighbors	0.833	0.762	0.865	0.810	0.881
Logistic Regression	0.833	0.786	0.846	0.815	0.928

Tabella 3.5: Prestazioni dei modelli sul test set post fine-tuning.

GPT-4 vs Studente di Medicina

 GPT-4 è stato interrogato tramite l'API di OpenAI con un prompt strutturato che includeva i dati clinici del paziente in esame

 Lo studente di medicina è stato interrogato con lo stesso prompt fornito a GPT-4

GPT-4 vs Studente di Medicina

Modello	Accuracy	Recall	Precision	F1-Score
Logistic Regression	0.833	0.786	0.846	0.815
GPT-4	0.645	0.281	0.867	0.424
Studente Medicina	0.699	0.604	0.651	0.795

Tabella 3.7: Performance di Reg Log, GPT-4 e studente di medicina nella diagnosi di malattie cardiache.

Interpretabilità con SHAP

- Utilizzo di SHapley Additive exPlanations (SHAP) per interpretare il modello di regressione logistica ottimizzato.
- SHAP si basa sulla teoria dei giochi.
- Assegna a ogni feature un valore di importanza per ogni singola previsione.
- Spiega come ogni feature contribuisce a modificare la previsione rispetto al valore base (media delle previsioni).

Summary Plot SHAP

Summary Plot SHAP

- Il summary_plot permette di identificare le feature più influenti e la direzione del loro impatto.
- Punti rossi a destra indicano che valori alti della feature aumentano la probabilità della classe positiva (malattia); punti blu a sinistra indicano l'opposto.
- Differenze rilevanti rispetto alle correlazione di Pearson: la feature exercise_induced_angina, molto correlata con sick (ρ=0.46), non risulta tra le più rilevanti nei valori SHAP.
- Il livello di colesterolo è considerato poco importante dai valori SHAP, probabilmente perché è uniforme nel dataset e poco correlato a sick (ρ=0.12).

Web App – Sviluppo

API con Flask:

- /models
- /model_list
- /predict
- Frontend interattivo con Streamlit per inserimento parametri clinici
- Versionamento con Git e repository GitHub
- Containerizzazione completa con Docker

Conclusioni

- Modelli classici di machine learning sono più efficaci nella predizione di malattie cardiache rispetto ad approcci alternativi
- **Bias** e **limiti** del dataset richiedono ulteriori dati e validazione
- Interpretazione del modello con SHAP ha prodotto risultati parzialmente rilevanti dal punto di vista clinico ma condizionati dalla limitata dimensione del dataset.

