ESMA 5015: Examen 2

Due on Abril 10, 2025

 $Damaris\ Santana$

Alejandro Ouslan

Contents

1	\mathbf{Acc}	cept-Reject
	1.1	Por que es necesario que $a < \alpha$ y $b > \beta$
	1.2	Para $a = \lfloor \alpha \rfloor$, demuestre que M ocurre en $x = \frac{\alpha - \lfloor \alpha \rfloor}{\frac{1}{\beta} - \frac{1}{b}}$
	1.3	Para $a = \lfloor \alpha \rfloor$, encuentre el valor optimo de b
2	Imp	plementacion del algoritmo
	2.1	Describa un algoritmo Accept-Reject para generar una variable aleatoria con distribucion
		Gamma(3/2,1)
	2.2	Algoritmo en Python
	2.3	Grafique el histograma de la distribucion obtenida sobreponiendo la distribucion deseada
	2.4	Estime $E[X^2]$ y construya la grafica de la convergencia de los running means
3	-	portance Sampling
	3.1	Estimador importance Sampling
		$3.1.1 Cauchy(0,1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		3.1.2 $Normal(0, \frac{v}{v-2})$
		3.1.3 $Exponencial(\lambda = 1)$
	3.2	Estimador Monte Carlo
		$3.2.1 Cauchy(0,1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		3.2.2 $Normal(0, \frac{v}{v-2})$
		3.2.3 $Exponencial(\lambda = 1)$
	3.3	Implementacion
	3.4	Graficas

1 Accept-Reject

Suponga que desea general variables aleatorias de una distribucion $Gamma(\alpha, \beta)$ donde α no es necesariamente un entero. Decide usar el algoritmo **Accept-Reject** con la funcion candidata Gamma(a, b).

- 1.1 Por que es necesario que $a < \alpha$ y $b > \beta$
- 1.2 Para $a = \lfloor \alpha \rfloor$, demuestre que M ocurre en $x = \frac{\alpha \lfloor \alpha \rfloor}{\frac{1}{\beta} \frac{1}{b}}$
- 1.3 Para $a = \lfloor \alpha \rfloor$, encuentre el valor optimo de b

2 Implementacion del algoritmo

- 2.1 Describa un algoritmo Accept-Reject para generar una variable aleatoria con distribucion Gamma(3/2, 1)
- 2.2 Algoritmo en Python
- 2.3 Grafique el histograma de la distribucion obtenida sobreponiendo la distribucion deseada
- 2.4 Estime $E[X^2]$ y construya la grafica de la convergencia de los running means.

3 Importance Sampling

Usando Importance Sampling estime $E_f\left[\frac{X^5}{1+(X-3)^2}I[X\geq 0]\right]$, donde f es la distribucion t con v=12 Utilice las siguientes g:

- 1. Cauchy(0,1)
- 2. $Normal(0, \frac{v}{v-2})$
- 3. $Exponencial(\lambda = 1)$

3.1 Estimador importance Sampling

Para cada una de estas distribuciones presente el estimador que corresponde a la summatoria definida por el metodo de **Importance Sampling** y que converge al valor esperado de interes

- **3.1.1** Cauchy(0,1)
- **3.1.2** $Normal(0, \frac{v}{v-2})$
- **3.1.3** Exponencial $(\lambda = 1)$

3.2 Estimador Monte Carlo

Para cada uno presente el estimador que corresponde a la sumatoria definida por el metodo de Integracion Monte Carlos y que converge al valor esperado de interes.

- **3.2.1** Cauchy(0,1)
- **3.2.2** $Normal(0, \frac{v}{v-2})$
- **3.2.3** $Exponencial(\lambda = 1)$

3.3 Implementation

3.4 Graficas

Construya un asola graica y presente la convergencia de los running menas para los cuatro estimadores. Compare la varianza empirica de los cuatro estimadores