Matemática Discreta para Ciência da Computação

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

7 – Cardinalidade de Conjuntos

- 7.1 Introdução
- 7.2 Cardinalidade Finita e Infinita
- 7.3 Conjunto Contável e Não-Contável
- 7.4 Cardinalidade dos Conjuntos Não-Contáveis
- 7.5 Cardinal do Conjunto de Todos os Problemas Solucionáveis
- 7.5 Leitura Complementar: Máquina de Turing

7 Cardinalidade de Conjuntos

7.1 Introdução

Cardinalidade de um conjunto

uma medida de seu tamanho

- ◆ Até o momento, cardinalidade de conjuntos
 - tratada de forma informal ou semi-formal
 - exemplo de expressão usada com frequência

número de elementos de um conjunto

◆ Foi afirmado que

um conjunto pode possuir um número finito ou infinito de elementos

- Finito
 - * pode ser denotado por extensão
 - * listando exaustivamente todos os seus elementos
- Infinito
 - * caso contrário

◆ Estudo formal: resposta a perguntas tipo

- como definir formalmente a cardinalidade de um conjunto?
- quando dois conjuntos possuem o mesmo cardinal?
- o que é um cardinal infinito?
- existe mais de um (diferentes) cardinais infinitos?
- nesse caso, existe uma ordem de cardinais infinitos?

Estudo mais completo ou aprofundado

- foge um pouco do escopo da disciplina
- ênfase nos conceitos, resultados e interpretações usados em CC

◆ Cardinalidade é definida usando funções bijetoras

uso da bijeção é intuitivo

Comum em diferentes civilizações

- cardinalidade de conjuntos: bijeção entre
 - conjunto de objetos em questão (rebanho de ovelhas...)
 - * subconjunto de dedos das mãos
- quando os dedos não eram suficientes
 - * conjunto de pedras, nós em cordas...
- uma bijeção qualquer: basta existir uma bijeção
 - * qualquer dedo (pedra ou nó) corresponde a qualquer animal
 - * se sobra um dedo (pedra ou nó), então falta um animal

7 – Cardinalidade de Conjuntos

- 7.1 Introdução
- 7.2 Cardinalidade Finita e Infinita
- 7.3 Conjunto Contável e Não-Contável
- 7.4 Cardinalidade dos Conjuntos Não-Contáveis
- 7.5 Cardinal do Conjunto de Todos os Problemas Solucionáveis
- 7.5 Leitura Complementar: Máquina de Turing

Def: Cardinalidade Finita, Cardinalidade Infinita

Cardinalidade de um conjunto A

#A

Finita: existe bijeção entre A e { 1, 2, 3, ..., n }

$$\#A = n$$

$$* se n = 0 ?$$

Infinita: existe bijeção entre A e um subconjunto próprio de A

Portanto, um conjunto

- finito (cardinalidade finita): possível representar por extensão
- infinito: possível retirar elementos e ainda assim estabelecer uma bijeção com o próprio

Exp: Cardinalidade Infinita do Conjunto dos Números Inteiros

f: $\mathbb{Z} \rightarrow \mathbb{N}$ tal que

- se a ≥ 0, então f(a) = 2a
- se a < 0, então f(a) = |2a| 1

É bijetora e N⊆Z

Logo, Z é infinito

7 – Cardinalidade de Conjuntos

- 7.1 Introdução
- 7.2 Cardinalidade Finita e Infinita
- 7.3 Conjunto Contável e Não-Contável
- 7.4 Cardinalidade dos Conjuntos Não-Contáveis
- 7.5 Cardinal do Conjunto de Todos os Problemas Solucionáveis
- 7.5 Leitura Complementar: Máquina de Turing

7.2 Conjunto Contável e Não-Contável

- Nem todos conjuntos infinitos possuem mesma cardinalidade
 - contradiz a noção intuitiva

Def: Conjunto Contável, Conjunto Não-Contável, Conjunto Enumerável

A conjunto infinito

Finitamente Contável: finito

Infinitamente Contável ou Enumerável

- existe uma bijeção entre A e um subconjunto infinito de N
- esta bijeção é denominada enumeração de A

Não-Contável

caso contrário

Infinitamente contável

• possível enumerar seus elementos como uma seqüência infinita

$$\langle a_1, a_2, a_3, \ldots \rangle$$

◆ Termo "conjunto contável"

usualmente significa finitamente ou infinitamente contável

Exp: Conjunto Infinitamente Contável

- **Z**
- Q (exercício)
- Prova de que um conjunto é não-contável
 - pode ser realizada usando o método da Diagonalização de Cantor
 - * Georg Cantor (1845-1918)
 - * frequentemente em provas na Computação e Informática.

Teorema: Conjunto Não-Contável

O seguinte conjunto é não-contável:

$$S = \{ x \in \mathbb{R} \mid 0 < x < 1 \}$$

Prova:

(por absurdo – Diagonalização de Cantor)

Suponha S contável

existe uma enumeração de S

Qualquer número s∈S: seqüência contável de decimais

•
$$s = 0, d_1 d_2 d_2 ... d_n ...$$
 (exemplo: $\pi / 10 = 0,31415...$)

Portanto, a enumeração (s₁, s₂, s₃,...) pode ser representada por

- $s_1 = 0, d_{11} d_{12} d_{13}...d_{1n}...$ • $s_2 = 0, d_{21} d_{22} d_{23}...d_{2n}...$
- \bullet S2 = 0,u2₁ u2₂ u2₃...u2_n...
- $s_3 = 0, d_{31} d_{32} d_{33}...d_{3n}...$
- •
- $s_n = 0, d_{n_1} d_{n_2} d_{n_3} ... d_{n_n} ...$
- •

Seja r o número real construído a partir da diagonal

$$r = 0,e_1 e_2 e_3...e_n...$$
 $i \in \{1, 2, 3,...\}$

- $e_i = 1$, caso $d_{ii} \neq 1$
- e_i = 2, caso d_{ii} = 1

Claramente, $r \in S$

- r é diferente de qualquer número da enumeração (s₁, s₂, s₃,...)
- difere pelo menos no dígito destacado na diagonal

Portanto, r ∉ S: contradição!

Logo, é uma absurdo supor que S é contável

Portanto, S é não-contável

◆ Prova de que R é não-contável é simples

• antes, a seguinte definição

Def: Conjuntos Equipotentes

A e B conjuntos Equipotentes

- existe uma função bijetora entre A e B
- ◆ Logo, conjuntos equipotentes: mesma cardinalidade
 - todos conjuntos enumeráveis são equipotentes
 - todo conjunto indexado é equipotente ao seu conjunto de índices

Teorema: R é um Conjunto Não-Contável

O conjuntos dos números reais R é não-contável.

Prova: (direta)

Basta provar que \mathbb{R} é equipotente a $S = \{x \in \mathbb{R} \mid 0 < x < 1\}$

Seja $f: S \rightarrow \mathbb{R}$

- se $0 < s \le 1/2$, então f(s) = (1/2s) 1
- se $1/2 \le s < 1$, então f(s) = (1/(2s-2)) + 1

a qual é uma bijeção

(exercício)

Exp: Conjunto Não-Contável

• I (conjuntos dos números irracionais)

• C (conjunto dos números complexos)

• **R**²

7 – Cardinalidade de Conjuntos

- 7.1 Introdução
- 7.2 Cardinalidade Finita e Infinita
- 7.3 Conjunto Contável e Não-Contável
- 7.4 Cardinalidade dos Conjuntos Não-Contáveis
- 7.5 Cardinal do Conjunto de Todos os Problemas Solucionáveis
- 7.5 Leitura Complementar: Máquina de Turing

7.3 Cardinalidade dos Conjuntos Não-Contáveis

- ◆ Conjuntos não-contáveis: mesma cardinalidade?

 nem todos os conjuntos não-contáveis tem a mesma cardinalidade
- ◆ A tem pelo menos tantos elementos quanto B

- existe função injetora f: A → B
- ◆ Relação ≤ entre cardinais é de ordem parcial?

◆ Relação ≤ entre cardinais: ordem parcial

- reflexiva: #A ≤ #A
 - * função identidade id_A: A → A é injetora
- transitiva: se #A ≤ #B e #B ≤ #C, então #A ≤ #C
 - composição de injetoras é injetora
- anti-simétrica: se #A ≤ #B e #B ≤ #A, então #A = #B
 - Teorema de Schröder-Bernstein
 - * não será demonstrado

Teorema: Schröder-Bernstein

A e B conjuntos tq existem funções injetoras $f_1: A \rightarrow B$ e $f_2: B \rightarrow A$ Então existe uma função bijetora

◆ Existem infinitos cardinais não-contáveis

- conjunto das partes de um conjunto tem sempre cardinalidade maior que este
- fato conhecido como Teorema de Cantor
- na demonstração, observe que

$$n < m \Leftrightarrow n \leq m \land n \neq m$$

(por quê?)

Teorema: Cantor

$$\#C < \#2^{C}$$

Prova:

Dividida em duas partes

- #C ≤ #2^C: apresentar uma função injetora f: #C → #2^C
- #C ≠ #2^C: mostrar que *não* existe função bijetora entre #C e 2^C

Parte 1: (direta) função injetora f: #C → #2^C

Seja f: #C → #2^C uma função tal que, para todo s∈C

$$f(s) = \{ s \}$$

- f é injetora (por quê?)
- portanto, #C≤#2^C

Parte 2. (por absurdo) Suponha que existe função bijetora g: #C ↔ #2^C Seja A ⊆ C tq

$$A = \{ a \in C \mid a \notin g(a) \}$$

g é bijetora \Rightarrow g é sobrejetora \Rightarrow existe $c \in C$ tal que g(c) = A

Duas possibilidades

```
• c \in A \Rightarrow

* c \in g(c) \Rightarrow

* c \notin A

• c \notin A \Rightarrow

* c \notin g(c) \Rightarrow

* c \notin g(c) \Rightarrow

* c \notin g(c) \Rightarrow

pela definição de A

* c \notin A \Rightarrow

pela definição de A

* c \notin A \Rightarrow
```

Contradição! É absurdo supor que existe tal função bijetora

logo, não existe função bijetora entre C e 2^C. Portanto, #C ≠ #2^C

◆ Este resultado permite pensar em

• classe infinita de números cardinais

Def: Cardinal

Cardinal: classe de equivalência de conjuntos equipotentes

Classe dos cardinais

- classe de todas as classes de equivalência dos conjuntos equipotentes
- se a classe de todos os cardinais for um cardinal
 - * semelhança com o Paradoxo de Russell
 - * não é um conjunto

Cardinais infinitos conhecidos

- X
 - * ("alef"): primeira letra do alfabeto hebraico
 - * com índices
- cardinal de N
 - $* \#N = \aleph_0$
 - menor cardinal dos conjuntos infinitos
 - * especial interesse para Computação e Informática
- X₀
 - * cardinal de qualquer conjunto contável (infinito)
- ℵ_{i+1}: menor cardinal maior que ℵ_I

Cardinalidade do continuum

- Prova-se queP(N) é equipotente ao R
- Para #X = k, prova-se que $\#P(X) = 2^k$
- Portanto, $\#P(\mathbf{R}) = 2^{\aleph_0}$
- ♦ $\aleph_{i+1} = 2^{\aleph_i}$???
 - Hipótese do Continuum
 - * formulada como hipótese por Cantor
 - * não conseguiu provar
 - Gödel (década de 30) e Cohen (década de 50)
 - fato independente da Teoria dos Conjuntos
 - * Hipótese do *Continuum* e sua negação
 - * consistentes com o restante da Teoria dos Conjuntos

7 – Cardinalidade de Conjuntos

- 7.1 Introdução
- 7.2 Cardinalidade Finita e Infinita
- 7.3 Conjunto Contável e Não-Contável
- 7.4 Cardinalidade dos Conjuntos Não-Contáveis
- 7.5 Cardinal do Conjunto de Todos os Problemas Solucionáveis
- 7.5 Leitura Complementar: Máquina de Turing

7.4 Cardinal do Conjunto de Todos os Problemas Solucionáveis

Estudo dos cardinais

- fundamental importância em Ciência da Computação
- destaque: estudos dos problemas solucionáveis (computador)

Prova-se que

existem \aleph_0 programas que podem ser definidos em qualquer linguagem de programação de propósitos gerais

◆ Existem 2^{ℵ₀} funções de N para N

- portanto, existem infinitas funções
 - * não podem ser representadas algoritmicamente
 - * não são computáveis

◆ Conclusão

- existem infinitos mas contáveis problemas solucionáveis
 - existe algoritmo (Maquina de Turing)
- existem infinitos e não-contáveis problemas não-solucionáveis
 - * não existem algoritmos (Maquinas de Turing)
- como #N < #R
 - * cardinal dos não-solucionáveis maior que o dos solucionáveis

7 – Cardinalidade de Conjuntos

- 7.1 Introdução
- 7.2 Cardinalidade Finita e Infinita
- 7.3 Conjunto Contável e Não-Contável
- 7.4 Cardinalidade dos Conjuntos Não-Contáveis
- 7.5 Cardinal do Conjunto de Todos os Problemas Solucionáveis
- 7.5 Leitura Complementar: Máquina de Turing

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

