

### Outline

Introduction

- Review of basic concepts
- Linear to Logistic Regression
- Logistic Regression to ANN
- Perceptron Single neuron network
- Multi-Layer Perceptron (MLP)

#### Outline

Introduction

- Review of basic concepts
- Linear to Logistic Regression
- Logistic Regression to ANN
- Perceptron Single neuron network
- Multi-Layer Perceptron (MLP)

### **Historical Trends**

#### **Disease prediction**



#### Game strategy





### Natural Language Processing



2011

2017

Protopapas

#### **Protein folding**



AlphaFold, a DeepMind Al, revolutionized biochemistry by solving the long-standing protein folding problem.

#### **Autonomous cars**



Al Detecting objects to assist with autonomous driving.

2020

# Image Reconstruction from Sparse Frequency Measurements



Katie Bouman's CHIRP produces the first-ever image of a black hole.

#### **Text to Image Generation**





#### **Personalized Customer Assistance**



#### **Computer Code Generation**



**Al Conversational Assistant** 



#### **Disease Prediction**



Google, 2023

#### **Complex Object Detection**



YOLOv5, 2024

### The potential challenges in Data Science

#### **Gender Bias**



Some DS models for evaluating job applications show bias in favor of male candidate

#### **Racial Bias**



Risk models used in US courts have shown to be biased against non-white defendants

#### Outline

Introduction

- Review of basic concepts
- Linear to Logistic Regression
- Logistic Regression to ANN
- Perceptron Single neuron network
- Multi-Layer Perceptron (MLP)

### Supervised v/s Unsupervised Machine Learning





Supervised Learning: Learns with "labeled" data

Unsupervised Learning: Learns by clustering or association





**GET LABELED DATA** 







16

### Outline

Introduction

Review of basic concepts

Linear to Logistic Regression

Logistic Regression to ANN

Perceptron - Single neuron network

Multi-Layer Perceptron (MLP)

### Linear to Logistic Regression



Before we dive into what an ANN looks like, let us review Logistic Regression

Protopapas 18

### Linear to Logistic Regression



Linear Regression is like predicting how many points a Basketball Player will score in a game based on past performance!

Logistic Regression, however, predicts whether the same player will score above or below a certain number of points. Basically, a Yes or No by giving us the probability between 0 and 1

#### What is Classification?

Consider the dataset that contains a binary outcome AHD for 303 patients who presented with chest pain.

*X* predictors

Yes or No response variable

| Age | Sex | ChestPain    | RestBP | Chol | MaxHR | ExAng | Thal       | AHD |
|-----|-----|--------------|--------|------|-------|-------|------------|-----|
| 63  | 1   | typical      | 145    | 233  | 150   | 0     | fixed      | No  |
| 67  | 1   | asymptomatic | 160    | 286  | 108   | 1     | normal     | Yes |
| 67  | 1   | asymptomatic | 120    | 229  | 129   | 1     | reversable | Yes |
| 37  | 1   | nonanginal   | 130    | 250  | 187   | 0     | normal     | No  |

#### What is Classification?

Consider the dataset that contains a binary outcome AHD for 303 patients who presented with chest pain.

*X* predictors

| Age | Sex | ChestPain    | RestBP | Chol | MaxHR | ExAng | Thal       | AHD   |
|-----|-----|--------------|--------|------|-------|-------|------------|-------|
| 63  | 1   | typical      | 145    | 233  | 150   | 0     | fixed      | No    |
| 67  | 1   | asymptomatic | 160    | 286  | 108   | 1     | normal     | Yes * |
| 67  | 1   | asymptomatic | 120    | 229  | 129   | 1     | reversable | Yes   |
| 37  | 1   | nonanginal   | 130    | 250  | 187   | 0     | normal     | No    |

Yes indicates presence of heart disease

#### What is Classification?

Consider the dataset that contains a binary outcome AHD for 303 patients who presented with chest pain.

**X** predictors

No indicates
absence of heart
disease

| Age | Sex | ChestPain    | RestBP | Chol | MaxHR | ExAng | Thal       | AHD |
|-----|-----|--------------|--------|------|-------|-------|------------|-----|
| 63  | 1   | typical      | 145    | 233  | 150   | 0     | fixed      | No  |
| 67  | 1   | asymptomatic | 160    | 286  | 108   | 1     | normal     | Yes |
| 67  | 1   | asymptomatic | 120    | 229  | 129   | 1     | reversable | Yes |
| 37  | 1   | nonanginal   | 130    | 250  | 187   | 0     | normal     | No  |

### Why not Linear Regression?

Here the response variable y has only two categories.

$$y = \begin{cases} 1, & has \ heart \ disease \\ 0, & no \ heart \ disease \end{cases}$$

• Linear regression could be used to predict the probability P(y=1) directly from a set of predictors such as sex, cholesterol levels, etc.

If  $P(y = 1) \ge 0.5$ , we could predict that the patient has heart disease and predict otherwise if P(y = 1) < 0.5.

### Why not Linear Regression?

What could go wrong with this linear regression model?

Since this is modeling P(y=1), values for  $\hat{y}$  below 0 and above 1 would not make sense as a probability.



# **Logistic Regression**

Now we know that linear regression yields values for probability that are larger than 1 or smaller than 0. So, what can we do to fix this?



### **Logistic Regression**

We can use the sigmoid function:



### **Logistic Regression**

- Logistic Regression addresses the problem of estimating a probability, P(y=1), to be outside the range of [0,1].
- The Logistic Regression model uses a function, called the **logistic** function, to model P(y=1):

$$P(Y=1) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}} = rac{1}{1 + e^{-(eta_0 + eta_1 X)}}$$

This is the same to the sigmoid function

### Using Logistic Regression for Classification

How can we use a logistic regression model to perform classification?

That is, how can we predict when Y = 1 vs. when Y = 0?

We can classify all observations for which:

- Classify all observations with  $\widehat{P}(Y=1) \geq 0.5$  to be in the group associated with Y=1.
- Classify all observations with  $\hat{P}(Y=1) < 0.5$  to be in the group associated with Y=0.

### **Loss Function**

How do we find out if our predictions are any good?

We use a Loss Function!

A Loss Function compares the predicted output and the actual target values.

In the Linear Regression, we use a Mean Squared Error

#### **Loss Function**

What do we use in Logistic Regression?



Actual Label Predicted Probability

$$L_{BCE} = \sum_{i} -y_{i} \log p_{i} - (1 - y_{i}) \log(1 - p_{i})$$

We subtract, as the goal is to minimize the loss

### Outline

Introduction

Review of basic concepts

Linear to Logistic Regression

Logistic Regression to ANN

Perceptron - Single neuron network

Multi-Layer Perceptron (MLP)









$$x_1 \longrightarrow \text{Affine} \longrightarrow h_1 = \beta_0 + \beta_1 x_1 \longrightarrow \text{Activation} \longrightarrow p_1 = \frac{1}{1 + e^{-h_1}} \longrightarrow \text{Loss Func} \longrightarrow \mathcal{L}_1(\beta) = -y_1 \ln(p_1) - (1 - y_1) \ln(1 - p_1)$$

$$x_2 \longrightarrow \text{Affine} \longrightarrow h_2 = \beta_0 + \beta_1 x_2 \longrightarrow \text{Activation} \longrightarrow p_2 = \frac{1}{1 + e^{-h_2}} \longrightarrow \text{Loss Func} \longrightarrow \mathcal{L}_2(\beta) = -y_2 \ln(p_1) - (1 - y_2) \ln(1 - p_2)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_n \longrightarrow \text{Affine} \longrightarrow h_n = \beta_0 + \beta_1 x_n \longrightarrow \text{Activation} \longrightarrow p_n = \frac{1}{1 + e^{-h_n}} \longrightarrow \text{Loss Func} \longrightarrow \mathcal{L}_n(\beta) = -y_n \ln(p_n) - (1 - y_n) \ln(1 - p_{1n})$$

$$\mathcal{L}(\beta) = \sum_{i}^{n} \mathcal{L}_{i}(\beta)$$

### Outline

Introduction

Review of basic concepts

Linear to Logistic Regression

Logistic Regression to ANN

Perceptron - Single neuron network

Multi-Layer Perceptron (MLP)

 $n_p$  :number of predictors

 $n_o$ : number of observations





$$X \longrightarrow \text{Affine} \longrightarrow h = \beta_0 I + X \beta_1 \longrightarrow \text{Activation} \longrightarrow p = \frac{1}{1 + e^{-h}} \longrightarrow \text{Loss Fun} \longrightarrow \mathcal{L}(\beta) = \sum_i^n \mathcal{L}_i(\beta)$$

$$X \longrightarrow \text{Affine} \longrightarrow h = XW + b \longrightarrow \text{Activation} \longrightarrow \hat{y} = \frac{1}{1 + e^{-h}} \longrightarrow \text{Loss Fun} \longrightarrow \mathcal{L}(\beta) = \sum_i^n \mathcal{L}_i(\beta)$$

$$X \longrightarrow \text{Affine} \longrightarrow h = XW \longrightarrow \text{Activation} \longrightarrow \hat{y} = \frac{1}{1 + e^{-h}} \longrightarrow \text{Loss Fun} \longrightarrow \mathcal{L}(\beta) = \sum_{i}^{n} \mathcal{L}_{i}(\beta)$$

$$X = \begin{bmatrix} 1 & X_{11} & \dots & X_{1p} \\ 1 & \vdots & \dots & \vdots \\ 1 & X_{o1} & \dots & X_{op} \end{bmatrix} \quad W = \begin{bmatrix} b \\ W_{1} \\ \vdots \\ W_{p} \end{bmatrix}$$
PROTOPAPAS

40







A neuron essentially applies an affine transformation on the input, followed by an activation function









Single Neuron Neural "Network"

### A single neuron

Up to this point we just re-branded logistic regression to look like a neuron.





Where I is the identity function

### Summary

#### So far:

- A single neuron is simply an affine transformation followed by an activation function.
- A single neuron with sigmoid activation is equivalent to the logistic regression and a single neuron with no activation is equivalent to linear regression.