Министерство образования Российской Федерации Московский государственный институт электронной техники (технический университет)

М.Ф. Лисова, А.В. Горбач, Ю.И. Волков, В.И. Самохин

Сборник лабораторных работ по теории электрических цепей

Утверждено редакционно-издательским советом института в качестве методических указаний

Москва 2003

Рецензент канд. техн. наук, доц. П.В. Зубарев

Лисова М.Ф., Горбач А.В., Волков Ю.И., Самохин В.И. Сборник лабораторных работ по теории электрических цепей. - М.: МИЭТ, 2003. - 36 с.: ил.

Сборник лабораторных работ предназначен для использования при подготовке и проведению лабораторных работ по дисциплинам «Электротехника и основы электроники» и «Теория электрических цепей» для студентов всех специальностей дневного и вечернего факультетов.

В сборник включены семь лабораторных работ по теории электрических цепей с методическими рекомендациями по их выполнению. С помощью системы схемотехнического моделирования «Electronics Workbench» все лабораторные работы могут быть исследованы в виртуальной среде и выполнены на реальных лабораторных стендах.

ã МИЭТ, 2003

Лабораторная работа № 1

Исследование электрической цепи постоянного тока

Цель работы: экспериментальная проверка законов и принципов теории электрических цепей.

Оборудование, используемое при выполнении работы:

- персональный компьютер с программой «Electronics Workbench»;
- лабораторный стенд;
- вольтметр;
- магазин сопротивлений.

Исследуемая схема

Puc.1.

Исходные данные исследуемых схем (варианты заданий) приведены в табл.1.

Варианты индивидуальных заданий выдаются преподавателем.

Таблица 1

Номер	<i>R</i> 1, Ом	<i>R</i> 2, Ом	<i>R</i> 3, Ом	<i>E</i> 2, B
варианта				
1	110	110	75	10

2	110	110	75	12
3	110	110	200	10
4	110	110	110	12
5	200	200	75	10
6	200	200	75	12

Окончание

Номер	<i>R</i> 1, Ом	<i>R</i> 2, Ом	<i>R</i> 3, Ом	<i>E</i> 2, B
варианта				
7	200	200	200	10
8	100	200	200	12
9	200	110	75	10
10	200	110	75	12
11	200	110	200	10
12.	200	110	200	12

Теоретические сведения к расчетному заданию с методическими указаниями

1. Рассчитать ток в первой ветви схемы (рис.1) методом наложения. В соответствии с принципом суперпозиции ток I_1 определяется как алгебраическая сумма токов $I_1^{(E1)}$ и $I_1^{(E2)}$, вызываемых в первой ветви каждой из ЭДС в отдельности (рис.2): $I_1 = I_1^{(E1)} + I_1^{(E2)}$.

Puc.2.

- 2. Рассчитать ток во второй ветви I_2 схемы (рис.1) методом эквивалентного генератора напряжения (ЭГН).
- В исходной схеме (рис.1) размыкается вторая ветвь (рис.3,а), а часть цепи, подключенной к этой ветви, заменяется эквивалентным генератором с ЭДС E_{Γ} и внутренним сопротивлением R_{Γ} (рис.3,б). Ток I_2 рассчитывается по закону Ома: $I_2 = (E_{\Gamma} + E_2)/(R_{\Gamma} + R_2)$.
- ЭДС генератора определяется как напряжение на зажимах (а-в) при разомкнутой второй ветви (напряжение холостого хода U_{XX}) (рис.4,а), а R_{Γ} как входное сопротивление пассивной цепи относительно зажимов (а-в) (рис.4,б).

3. Рассчитать ток в третьей ветви I_3 схемы (рис.1), используя принцип взаимности в сочетании методом наложения.

Аналитическое выражение для расчета тока I_3 получается на основании принципов взаимности и суперпозиции с учетом коэффициентов пропорциональности:

 $I_3 = -I_1^{(E_\Phi)}(E_1/E_\Phi) + I_2^{(E_\Phi)}(E_2/E_\Phi)$. Токи $I_1^{(E_\Phi)}$ и $I_2^{(E_\Phi)}$ определяются в расчетной схеме (рис.5), полученной из исходной (рис.1), путем закорачивания источников E_1 и E_2 и введения в третью ветвь фиктивного источника E_Φ произвольной величины.

Puc.5.

- 4. Проверить расчеты по законам Кирхгофа.
- 5. Проверить выполнение баланса мощности. Мощность, развиваемая источниками, должна быть равна мощности, расходуемой в нагрузке.
- 6. Проверить результаты расчетов на персональном компьютере с помощью системы схемотехнического

моделирования «Electronics Workbench». Проверку выполнить по схемам, приведенным на рис.6 - 8. При этом должны быть установлены сопротивления амперметров (A) не более 1 Ом, сопротивления вольтметров не менее 1 мОм, режимы измерения - «DC».

Исходная схема

Схемы по методу наложения

Puc.7.

Схемы по методу эквивалентного генератора

7. Произвести на компьютере моделирование зависимости $U_{R2} = f(R2)$ по схеме, приведенной на рис.9 и построить графическую зависимость P(R2). Определить условие получения максимальной мощности на R2.

Схема моделирования зависимости $U_{R2}(R2)$

Puc.9.

8. Произвести измерения и построить потенциальные диаграммы для контуров E1 R1 R2 E2, E1 R1 R3, E2 R2 R3. Для построения потенциальных диаграмм необходимо выбрать направление обхода контура, выбрать точку начала обхода с потенциалом равным нулю и измерить потенциалы (напряжения) в других точках по направлению обхода (рис.10). На графиках потенциальных диаграмм по оси абсцисс откладываются величины сопротивлений контурное отдельных участков цепи, образующих сопротивление, а по оси ординат - значения потенциалов в соответствующих точках.

Результаты расчетов занести в формы табл.2 и 3, в графу расчет.

Лабораторное задание и методика выполнения задания на лабораторном стенде

Установить соответствие «рабочего места» варианту задания и схеме измерения (рис.9).

При проведении экспериментов фиксировать полярность напряжений.

Результаты измерений и дополнительных расчетов заносить по ходу эксперимента в формы табл.2 и 3 в графу «эксперимент».

- 1. Экспериментальная поверка законов Кирхгофа.
- Измерить напряжения источников E1, E2 и напряжения на резисторах R1, R2, R3. Проверить выполнение законов Кирхгофа.
- 2. Экспериментальная проверка обобщенного закона Ома. В схеме (рис.10) измерить потенциал (напряжение) точки «В» относительно точки «А» и рассчитать токи ветвей *I*1, *I*2, *I*3, используя обобщенный закон Ома.
- 3. Экспериментальная проверка напряжения «холостого хода» по методу эквивалентного генератора напряжения для ветви, содержащей резистор R2.

Выполняется по схеме рис.9. Установить на «магазине сопротивлений» максимальную величину сопротивления (не менее $10~{\rm kOm})$ и измерить напряжение $U_{\rm XX}$ между точками ${\rm A}$ - ${\rm B}$ (рис.10).

Экспериментальная проверка зависимости мощности на резисторе R2 («магазин сопротивлений») от величины этого сопротивления выполняется по схеме рис.9. Установить сопротивление R2 равное сопротивлению R_{Γ} (см. расчет тока I2 по методу эквивалентного генератора) и измерить напряжение на нем. Установить несколько других соизмеримых значений сопротивления R2 и измерить напряжения на них. Рассчитать мощности, выделяемые на выбранных сопротивлениях R2. Построить графическую зависимость P = f(R2) и определить условие получение максимальной мощности.

- 4. Экспериментальная проверка потенциальных диаграмм выполняется по схеме рис. 10. Например, принимается потенциал точки «A» = 0 и измеряются напряжения в точках «B, B, C» относительно точки «A». Результаты измерений наносятся на потенциальные диаграммы, полученные расчётным путем.
- 5. Сравнить результаты расчета и эксперимента. Оценить и объяснить расхождения.

Форма табл.2

Данные	<i>E</i> 1,	E2,	U_{R1} ,	U_{R2} ,	U_{R3} ,	<i>I</i> 1,	<i>I</i> 2,	<i>I</i> 3,	P_E ,	P_R ,
	В	В	В	В	В	Α	Α	Α	Вт	Вт
Расчет										
Экспери-										
мент										

Форма табл.3

Параметр	Значение параметра <i>R</i> 2, Ом							
<i>R</i> 2, Ом	10						200	
U_{R2} , B								
P_{R2} , BT								

Контрольные вопросы

- 1. Понятие электрической цепи. Составные части электрической цепи. Отличие электрической цепи от электрической схемы.
- 2. Элементы электрической цепи и компонентные уравнения.
- 3. Сформулировать законы Кирхгофа, принципы суперпозиции и взаимности.
- 4. Преобразовать источник напряжения в источник тока.
- 5. Записать закон Ома для участка цепи, содержащего ЭДС.
- 6. Что такое делители напряжения и тока? Примеры расчета.
- 7. Понятия резистивного, индуктивного и емкостного элементов.
- 8. Вывести условие передачи максимальной мощности от генератора нагрузке. Выразить P_{\max} через параметры E_{Γ} и R_{Γ} .

- 9. Пояснить принцип построения потенциальной диаграммы.
- 10. Привести пример преобразования соединений «треугольником» в «звезду» и наоборот.
- 11. Как выбрать оптимальный метод составления систем уравнений для расчета цепи?

Лабораторная работа № 2

Исследование электрической цепи синусоидального тока

Цель *работы:* экспериментальное определение амплитудно-фазовых соотношений в цепи синусоидального тока.

Оборудование, используемое в работе:

- персональный компьютер с программой «Electronics Workbench»;
- лабораторный стенд;
- генератор напряжения синусоидальной формы;
- вольтметр;

варианта

• фазометр (осциллограф).

Исходные данные исследуемых схем (варианты заданий) приведены в табл.1.

Ом

Ом

мΓ

Ом

Γц

Γц

мкФ

Ом

1	180	2	75	75	10	12	500	1000
2	220	2	120	130	20	18	300	600
3	330	1	180	75	40	30	400	800
4	300	1	75	110	25	20	500	1000
5	330	2	110	82	100	70	200	400
6	330	2	110	110	50	30	300	600

Окончание

Номер	<i>R</i> 1,	C1,	R2,	R3,	L3,	R_{L3} ,	f_1 ,	f_2 ,
варианта	Ом	мкФ	Ом	Ом	мΓ	Ом	Гц	Гц
7	360	1	180	130	60	50	400	800
8	220	1	110	75	55	40	400	800
9	360	1	110	82	40	30	400	800
10	270	1	180	110	50	35	500	1000
11	220	1	110	75	25	20	400	800
12	180	2	75	75	10	10	400	800
13	220	2	120	130	20	20	400	800
14	330	1	180	75	40	30	500	1000
15	300	1	75	110	25	20	400	800

Теоретические сведения к расчетному заданию

- 1. Рассчитать электрическую цепь (рис.1), определив последовательно:
- а) комплексные сопротивления ветвей Z_1, Z_2, Z_3 :

$$Z_{K} = R_{K} + jX_{K} = (R_{K}^{2} + X_{K}^{2})^{-1/2} \exp(j \operatorname{arctg} X_{K} / R_{K});$$

б) комплексное входное сопротивление Z:

$$Z = Z_1 + (Z_2Z_3)/(Z_2 + Z_3);$$

- в) комплексные и мгновенные значения токов в ветвях $I_{\rm K}, i_{\rm K}(t);$
- г) комплексные и мгновенные значения напряжений на ветвях и элементах $U_{\rm K},\,u_{\rm K}(t).$

Комплексные значения сопротивлений, токов и напряжений привести в показательной и алгебраической формах. Действующие значения токов и напряжений, а также их начальные фазы занести в форму табл.2, в графу «расчет».

2. Рассчитать мощности источника (E) и нагрузки (Z) и проверить выполнение баланса активной, реактивной и полной мощностей:

$$(P_E + jQ_E) = (P_Z + jQ_Z).$$

- 3. Заменить нагрузку (Z) эквивалентным двухполюсником с эквивалентными параметрами R_{\ni} , C_{\ni} или L_{\ni} .
- Проверить результаты расчетов на персональном компьютере с помощью системы схемотехнического моделирования «Electronics Workbench». Измерение модулей действующих значений токов и напряжений выполнить по схеме, приведенной на рис.2. При этом напряжение генератора должно быть E = 10 B c начальной фазой F = 0, сопротивления амперметров должно быть не более 1 Ом, вольтметров не менее 1 мОм в режиме «AC». измерения Исходные данные должны соответствовать вариантам заданий.

5. По схеме рис.3 измерить действующие значения напряжений $U_{\rm AE}$, $U_{\rm AB}$, $U_{\rm A\Gamma}$, $U_{\rm AL}$, $U_{\rm AE}$ и их начальные фазы

 $F_{\rm AB},\,F_{\rm AB},\,F_{\rm A\Gamma},\,F_{\rm AД},\,F_{\rm AE}.$ Результаты занести в форму табл.3, в графу «расчет». По результатам измерений на компьютере построить векторную диаграмму напряжений. Используя законы Кирхгофа достроить эту диаграмму до векторной топографической диаграммы. Полученные из векторной топографической диаграммы значения напряжений и начальных фаз должны совпадать с результатами расчетов, занесенные в форму табл.2.

Лабораторное задание и методика выполнения работы на лабораторном стенде

1. Убедиться в соответствии состава рабочего места схеме рис.3.

Значения элементов схемы, величина напряжения и частота генератора (Е) должны соответствовать варианту задания.

- 2. Измерить напряжения на элементах электрической схемы, определить токи ветвей и занести результаты в форму табл.2.
- 3. Измерить напряжения в точках электрической схемы (Б, В, Г, Д, Е) относительно точки (А). Измерить фазометром (или осциллографом по указанию преподавателя) начальные фазы напряжений в точках (Б, В, Г, Д, Е) относительно точки (А). Результаты измерений занести в форму табл.3 в графу «эксперимент».
- 4. По результатам измерений построить векторную и топографические диаграммы. Полученные значения напряжений и фаз сравнить с результатами расчетов.
- 5. Используя результаты эксперимента, рассчитать полную, активную и реактивную мощности. Проверить выполнение баланса мощностей.

Форма табл.2

Данные	I_1 ,	I_2 ,	I_3 ,	F,	U_{R1} ,	U_{C1} ,	U_{R2} ,	U_{C2} ,	U_{R3} ,	U_{L3} ,
	мА	мА	мА	град	В	В	В	В	В	В
Расчет										
Экспе-										
римент										

Форма табл.3

Данные	U_{AB} ,	F_{AB} ,	U_{AB} ,	F_{AB} ,	$U_{\mathrm{A}\Gamma}$,	$F_{\mathrm{A}\Gamma}$,	$U_{\mathrm{AД}}$,	$F_{\mathrm{A}\mathrm{J}}$,	U_{AE} ,	F_{AE} ,
	В	град	В	град	В	град	В	град	В	град
Расчет										
Экспе-										
римент										

Контрольные вопросы

- 1. Какими основными соотношениями определяются напряжения и токи в последовательных *RL* и *RC* цепях и как эти напряжения и токи могут быть представлены на векторной диаграмме?
- 2. Как для последовательных *RL* и *RC* цепей строятся треугольники сопротивлений, проводимостей и мощностей?
- 3. Как в разветвленных RL и RC цепях определяются напряжения и токи и как строятся векторные диаграмма для таких цепей ?
- 4. Что такое фазовый сдвиг тока и напряжения?
- 5. Какие виды мощности присущи электрической цепи, содержащей R, L, C элементы? Что они характеризуют? В каких единицах измеряются?
- 6. Что такое векторная и топографическая диаграммы?
- 7. В чем заключаются преимущества расчета электрической цепи в комплексных числах?

Лабораторная работа № 3

Резонанс напряжений в последовательной RLC цепи

Цель работы: экспериментальное исследование частотных свойств последовательной RLC цепи.

Оборудование, используемое в работе:

- персональный компьютер с программой «Electronics Workbench»;
- RLC устройство;
- генератор напряжения синусоидальной формы;
- вольтметр;
- фазометр.

Исследуемая схема и исходные данные

Исходные данные (рис.1) по вариантам заданий приведены в табл.1.

Таблица 1

Номер	L , м Γ	R_L , Om	C , мк Φ
варианта			
1	11	12	0,013
2	53	31	0,013
3	39	32	0,013
4	23	18	0,0075
5	48	30	0,015
6	43	33	0,013
7	62	35	0,013

Окончание

Номер	L , м Γ	R_L , Om	C , мк Φ
варианта			
8	50	32	0,012
9	45	29	0,013
10	53	70	0,013
11	7	10	0,013

Сведения к расчетному заданию

- 1. Рассчитать и построить амплитудно-частотные характеристики (AЧX) I(F), $U_R(F)$, $U_C(F)$, $U_L(F)$ и фазочастотную характеристику (ФЧX):
 - рассчитать резонансную частоту (F_O) ; частоту (F_L) , на которой напряжение U_L достигает максимума; частоту (F_C) , на которой напряжение U_C достигает максимума;
 - привести расчетные формулы для вычисления действующих значений тока (I), напряжений (U_R , U_L , U_C) и угла сдвига фаз между током и напряжением, приложенным к цепи;

• задав не менее девяти значений частоты (включая F_O , F_L , F_C) в диапазоне от 1 до 30 к Γ ц, рассчитать значения сопротивлений (X_L , X_C , X, Z), тока (I), напряжений (U_R , U_L , U_C) и сдвига фаз между током и напряжением генератора. Результаты расчетов занести в форму табл.2. По результатам расчетов построить АЧХ и ФЧХ.

Форма табл.2

Параметр		Значение параметра на частоте F , к Γ ц							
F , к Γ ц	1	$F_C =$			$F_O =$			$F_L =$	30
X_{L} , Ом									
X_C , Om									
<i>X</i> , Ом									
Z, Om									
I, A									
U_R , B									
U_L , B									
U_C , B									
Угол,									
град.									

- 2. Рассчитать волновое сопротивление и добротность резонансного контура.
- 3. Построить векторную диаграмму тока и напряжений при резонансе.
- 4. Проверить результаты расчетов на персональном компьютере с помощью системы схемотехнического моделирования «Electronics Workbench». Проверку выполнить по схеме рис.2:
 - ввести в виртуальную схему значения элементов варианта задания;

• установить «активный режим» и произвести измерения AЧX и ФЧX.

Puc.2.

Сравнить результаты измерений на компьютере с графическими построениями расчетного задания.

5. Произвести моделирование (изменение) величин R, L, C и исследовать характер изменения добротности и значений резонансных частот.

Лабораторное задание и методика выполнения работы на лабораторном стенде

Проверить соответствие состава рабочего места компьютерной схеме и варианту задания. Снять экспериментально АЧХ и ФЧХ. Результаты измерений по

ходу выполнения задания наносить на расчетные графические построения АЧХ и ФЧХ (форма табл.2). Сравнить результаты расчетов и измерений.

Контрольные вопросы

- 1. Что такое резонанс напряжений? В какой цепи он наблюдается?
- 2. Какой вид имеет векторная диаграмма токов и напряжений при резонансе?
- 3. Что такое основная резонансная частота и частные резонансные частоты и на каких элементах они имеют место?
- 4. Что такое волновое сопротивление и добротность резонансного контура? Какими соотношениями они выражаются?
- 5. Как изменится вид АЧХ тока при изменении активного сопротивления?
- 6. Что нужно сделать, чтобы изменить полосу пропускания контура?
- 7. По каким показаниям вольтметра и фазометра определяется состояние резонанса? Какое из этих измерений является более точным и почему?

Лабораторная работа № 4

Определение постоянных коэффициентов

четырехполюсника

Цель работы: изучение методов определения коэффициентов уравнений четырехполюсника.

Оборудование, используемое в работе:

- персональный компьютер с программами «Electronics Workbench» и «Analysis Center»;
- генератор напряжения синусоидальной формы;
- вольтметр;
- фазометр.

Исследуемая схема и исходные данные

Недостающие исходные данные приведены в таблице вариантов заданий (табл.1). В схеме рис.1: $Z1 = R1 - jX_{C1}$, $Z2 = R2 - jX_{C2}$, Z3 = R3.

Таблица 1

№	<i>F</i> 1, Гц	<i>F</i> 2, Гц	<i>R</i> 1, Ом	<i>C</i> 1,	<i>R</i> 2, Ом	<i>R</i> 3, Ом
				мкФ		
1	500	1000	180	2	75	75

2	300	600	220	2	120	130
3	400	800	330	1	180	75
4	500	1000	300	1	75	110
5	200	1000	330	2	110	82
6	300	600	330	2	110	110
7	400	800	360	1	180	130
8	400	800	220	1	110	75

Окончание

№	<i>F</i> 1, Гц	<i>F</i> 2, Гц	<i>R</i> 1, Ом	<i>C</i> 1,	<i>R</i> 2, Ом	<i>R</i> 3, Ом
				мкФ		
9	400	800	360	1	110	82
10	500	1000	270	1	180	110
11	400	800	220	1	110	75
12	400	800	180	2	75	75
13	400	800	220	2	120	130
14	500	1000	330	1	180	75
15	500	1000	300	1	75	110
			C2 = 1 мк Q	Þ		

Теоретические сведения к расчетному заданию

По заданным значениям сопротивлений Z1, Z2, Z3 рассчитать параметры холостого хода (XX) и короткого замыкания (К3), а также соответствующие этим режимам токи и напряжения при питании со стороны первичных (1–1) и вторичных (2–2) выводов электрической цепи (рис.1). Расчеты выполняются с применением комплексных чисел. Источник (генератор напряжения) подключен к первичным выводам (прямое включение):

- режим XX (рис.2);
- режим КЗ (рис.3).

Входное сопротивление в режиме $I_2 = 0$ (XX) $Z_{1X} = Z_1 + Z_2$.

Входной ток в режиме «XX» $I_{1X} = U1/Z_{1X}$.

Выходное напряжение в режиме «XX» $U_{2X} = I_{1X} Z2$.

Входное сопротивление в режиме «КЗ»

 $Z_{1K} = Z1 + (Z2 Z3)/(Z2 + Z3).$

Входной ток в режиме «КЗ» $I_{1K} = U1/Z_{1K}$.

Ток «КЗ» $I_{2K} = I_{1K} Z2/(Z2 + Z3)$.

Результаты расчетов занести в форму табл.2, в графу «расчет».

Источник (генератор напряжения) подключен к вторичным выводам электрической цепи (обратное включение):

- режим «XX» (рис.4);
- режим «КЗ» (рис.5).

Puc.4. Puc.5.

Передаточное сопротивление обратной передачи от выхода к входу в режиме $I_1 = 0$ (XX) $Z_{2X} = Z3 + Z2$.

Входной обратный ток в режиме «XX» $I_{2X} = U_1/Z_{2X}$.

Выходное обратное напряжения в режиме «XX» $U_{1X} = I_{2X}Z2$.

Входное обратное сопротивление в режиме «КЗ»

$$Z_{2K} = Z3 + (Z1 Z2)/(Z1 + Z2).$$

Входной обратный ток в режиме «КЗ» $I_{2K} = U_1/Z_{2K}$.

Выходной обратный ток в режиме «К3» $I_{1K} = I_{2K}Z2/(Z1 + Z2)$.

Результаты расчетов занести в форму табл.3, в графу «расчет».

По результатам расчетов, занесенных в формы табл.2 и 3, вычислить «A, Y, H» - параметры:

А) уравнения в «А» параметрах

$$U_1 = A_{11}U_2 + A_{12}I_2,$$
 $A_{11} = U_1/U_{2X}; (I_2 = 0);$

$$A_{12} = U1/I_{2K}; \quad (U_2 = 0);$$

$$I_1 = A_{21}U_2 + A_{22}I_2;$$
 $A_{21} = I_{1X}/U_{2X}; (I_2 = 0);$

$$A_{22} = I_{1K}/I_{2K}; \quad (U_2 = 0).$$

Б) уравнения в «Y» параметрах:

$$I_1 = Y_{11}U_1 + Y_{12}U_2;$$
 $Y_{11} = I_{1K}/U_1;$ $(U_2 = 0);$ $Y_{12} = I_{1K}/U_1;$ $(U_1 = U_2; U_1 = 0);$ $I_2 = Y_{21}U_1 + Y_{22}U_2;$ $Y_{21} = I_{2K}/U_1;$ $(U_2 = 0);$ $Y_{22} = I_{2X}/U_1;$ $(U_1 = 0);$

В) уравнения в «Н» параметрах:

$$U_1 = H_{11}I_1 + H_{12}U_2;$$
 $H_{11} = 1/Y_{11};$
 $H_{12} = U_{1X}/U_1;$ $(U_1 = U_2, I_1 = 0);$
 $I_2 = H_{21}I_1 + H_{22}U_2;$ $H_{21} = I_{2K}/I_{1K};$ $(U_2 = 0);$
 $H_{22} = 1/Z_{2K}$

Принимая во внимание, что $A_{11}A_{22} - A_{12}A_{21} = 1$, $Y_{12} = Y_{21}$, $H_{12} = H_{21}$, проверить правильность расчетов.

Лабораторное задание и методика выполнения работы

Проверка результатов расчета производится на компьютере с применением программы «Electronics Workbench», измерение параметров - на лабораторном стенде с применением (или без) программы «Analysis Center» (по указанию преподавателя).

- 1. Определение тока I_{1X} и напряжения U_{2X} из опыта «XX» при питании со стороны первичных выводов:
- А) собрать схему рис.6;
- Б) установить заданные значения частоты и напряжения генератора на выводах «1-1» (выводы «2-2» разомкнуты);
- В) измерить напряжение на резисторе R1 и напряжение на выводах
- «2-2» (U_{2X}), вычислить модуль тока I_{1X} ;
- Γ) измерить фазометром фазы F_{1X} (рис.6) и F_{2X} (рис.7).

- 2. Определение токов I_{1K} и I_{2K} из опыта «КЗ» при питании со стороны первичных выводов:
- A) замкнуть выводы «2-2» (рис.8, 9);
- Б) установить напряжение и частоту генератора;
- В) измерить напряжения на резисторах R1 и R3, вычислить модули токов I_{1K} и I_{2K} ;
- Γ) измерить фазометром фазы F_{1K} (рис.8) и F_{2K} (рис.9).
- 3. Определение напряжения U_{1X} и тока I_{2X} из опыта «XX» при питании со стороны вторичных выводов:
- А) собрать схему рис.10, установить заданные значения частоты и напряжения генератора;
- Б) измерить напряжение на резисторе R3 и напряжение на выводах 1-1 (U_{1X}); рассчитать модуль тока I_{2X} ;
- В) измерить фазометром фазы F_{2X} (рис.10) и F_{1X} (рис.11).
- 4. Определение токов I_{1K} и I_{2K} при питании со стороны вторичных выводов:
- А) замкнуть выводы 1-1 (рис.12) и установить заданные значения частоты и напряжения генератора;
- Б) измерить напряжение на резисторах R1 и R3, рассчитать модули токов I_{1K} и I_{2K} ;
- В) измерить фазометром фазы F_{2K} (рис.12) и F_{1K} (рис.13).
- 5. Рассчитать параметры четырехполюсника (A, Y, H) по результатам измерений. Все расчетные и экспериментальные данные по ходу выполнения заносить в формы табл.2 4.

Форма табл.2

	Параметры прямого включения							
Данные	режим «XX»				режим «КЗ»			
Aumini	I_{1X}	F_{1X}	U_{2X}	F_{2X}	I_{1K}	F_{1K}	I_{2K}	F_{2K}
Расчет								
Эксперимент								

Форма табл.3

Данные	Параметры обратного включения									
	1	эежи	и «XX»	»	режим «КЗ»					
	I_{2X}	F_{2X}	U_{1X}	F_{1X}	I_{2K}	F_{2K}	I_{1K}	F_{1K}		
Расчет										
Эксперимент										

Форма табл.4

Ie	Параметры											
Данные	A ₁₁	A ₁₂	A ₂₁	A ₂₂	Y ₁₁	Y ₁₂	Y ₂₁	Y ₂₂	H ₁₁	H ₁₂	H ₂₁	H ₂₂
Расчет												
Эксперимент												

Контрольные вопросы

- 1. Что такое схема замещения четырехполюсника?
- 2. Перечислить виды схем четырехполюсника.
- 3. Что понимается под параметрами холостого хода и короткого замыкания?
- 4. Какие опыты надо проделать для определения постоянных коэффициентов в «A, H, Y, Z» параметрах?
- 5. Как экспериментально определить фазу тока на входе и выходе четырехполюсника?
- 6. Как экспериментально определить фазу напряжения на выходе четырехполюсника?
- 7. Перечислить схемы соединения сложных четырехполюсников.

Лабораторная работа № 5

Исследование линейной электрической цепи при несинусоидальных периодических воздействиях

Цель работы: экспериментальное получение осциллограмм несинусоидальных сигналов и изучение особенностей измерения несинусоидальных напряжений.

Используемое оборудование:

- персональный компьютер с программами «Electronics Workbench» и «Analysis Center»;
- генератор;
- осциллограф;
- вольтметр.

Исследуемая схема и исходные данные

Воздействующие сигналы - однополярные прямоугольные импульсы с периодом T=20 мкс $(f=50\ \mbox{к}\Gamma\mbox{ц})$ и максимальным напряжением E_m =15 B.

Внутреннее сопротивление генератора сигналов $R=100~{\rm Om}.$ Значения R1, R2 и C в табл.1.

Таблица 1

							,
$N_{\underline{0}}$	<i>R</i> 1,	R2,	С,	№	<i>R</i> 1,	R2,	С,
	Ом	Ом	мкФ		Ом	Ом	мкФ
1	51	-	0,03	12	120	160	0,015
2	51	120	0,03	13	160	-	0,015

3	120	-	0,03	14	160	240	0,015
4	120	160	0,03	15	240	ı	0,015
5	160	ı	0,03	16	240	300	0,015
6	160	240	0,03	17	51	-	0,01
7	240	-	0,03	18	51	120	0,01
8	240	300	0,03	19	120	-	0,01
9	51	-	0,015	20	120	160	0,01
10	51	120	0,015	21	160	-	0,01
11	120	-	0,015	22	160	240	0,01

Окончание

No	<i>R</i> 1, Ом	<i>R</i> 2, Ом	C , мк Φ	No	<i>R</i> 1, Ом	<i>R</i> 2, Ом	C , мк Φ
23	240	-	0,01	26	160	160	0,03
24	240	300	0,01	27	240	-	0,03
25	160	-	0,03	28	240	240	0,03

Теоретические сведения к расчетному заданию

1. Рассчитать напряжения $u_{\rm C}(t)$ для схем рис.1.

Записать воздействующий сигнал несинусоидального процесса в виде ряда Фурье:

$$E(t)=(E_m/2)+(E_m/2)[\sin(\omega t)+(1/3)\sin(3\omega t)+(1/5)\sin(5\omega t)+$$

 $+(1/7)\sin(7\omega t)].$

Рассчитать последовательно для каждой из гармоник (k) сопротивления: $R(\omega) = {\rm const}, \qquad X_{Ck} = 1/k\omega C, \ Z_k$

Рассчитать комплексные амплитуды тока: $I_{mk} = U_{mk}/Z_k$

Рассчитать комплексную амплитуду напряжения на конденсаторе.

Рассчитать активную мощность электрической схемы (P_k) . Результаты расчетов занести в форму табл.2.

Форма табл.2

					-				
Гармо-	Параметры								
ника	U_{mk}, B	Z_{R2Ck} , Om	Z_k , Om	I_{mk} , A	$U_{mCk}, \ \mathrm{B}$	P_k , BT			
K = 0									

K=1			
K=3			
K=5			
K = 7			

- 2. Записать $u_C(t)$ в виде ряда Фурье и построить осциллограммы гармонических составляющих входного напряжения и напряжения на конденсаторе.
- 3. Рассчитать коэффициенты амплитуды (K_A) , формы (K_{Φ}) и искажений $(K_{\mathsf{U}}),$ используя среднее и действующее напряжения на конденсаторе:

$$K_A = U_{\text{mC}}/U_C$$
; $K_{\Phi} = U_C/U_{Ccp}$; $K_{\text{H}} = U_{C(3)}/U_C$.

Лабораторное задание и методика выполнения работы

проверку Произвести расчетного задания персональном компьютере помошью системы схемотехнического моделирования «Electronics Workbench». Проверка воздействующего сигнала соответствие разложению в ряд Фурье выполняется по схеме рис.2. Проверка гармонических составляющих $u_C(t)$ выполняется по схеме рис.3.

Puc.2.

2. Экспериментальные измерения (в том числе с применением компьютера) выполняется ПО схеме, приведенной на рис.4.

На виртуальном генераторе устанавливаются заданные значения частоты и напряжения прямоугольной формы. помощью виртуального осциллографа снимаются осциллограммы процессов сравниваются с графическими построениями расчетного задания. Вольтметром измеряются среднее

и действующее значения напряжений. Результаты измерений сравниваются с расчетными данными.

Контрольные вопросы

- 1. В чем состоит физический смысл разложения сигнала в ряд Фурье?
- 2. Существуют ли гармоники реально?
- 3. Как изменяется сопротивление конденсатора с переходом от k-й к (k+1)-й гармонике?
- 4. Как изменяется сопротивление катушки индуктивности с переходом от k-й к (k-1)-й гармонике?
- 5. Каков порядок расчета цепей при несинусоидальных периодических воздействиях?
- 6. Можно ли использовать векторные диаграммы для расчета цепей с несинусоидальными процессами?
- 7. Как рассчитывается действующее значение несинусоидального тока?
- 8. Как рассчитывается активная и полная мощности при несинусоидальных процессах?
- 9. Могут ли высшие гармоники превосходить по амплитуде низшие?

Лабораторная работа № 6

Исследование переходных процессов в RC и RL пепях

Цель работы: экспериментально исследовать влияние параметров цепи на характер переходного процесса при подаче на RC и RL цепи прямоугольного импульса напряжения.

Используемое оборудование:

- персональный компьютер с программой «Electronics Workbench»;
- генератор прямоугольных импульсов;
- осциллограф.

Теоретические сведения к расчетному заданию

Рассчитать классическим методом переходные процессы в RC цепи (рис.1), на входе которой действует напряжение прямоугольной формы E=15 В и длительностью $t_{\rm H}=10$ мкс. Величины элементов R1, R2 и C должны соответствовать вариантам заданий, выдаваемых преподавателем (см. таблицу вариантов). Для всех вариантов внутреннее сопротивление условного генератора принимается равным R=100 Ом, индуктивность L=1 м Γ н.

- 1. Рассчитать $u_C(t)$ на интервале действия импульса:
 - составить дифференциальное уравнение цепи после коммутации относительно переменной $u_C(t)$;
 - записать однородное дифференциальное уравнение;
 - записать характеристическое уравнение и найти его корни;
 - найти частное решение неоднородного дифференциального уравнения (принужденное напряжение U_C);
 - записать общее решение однородного дифференциального уравнения (свободное напряжение) и найти постоянную интегрирования;
 - записать полное решение неоднородного дифференциального уравнения (переходное напряжение);
 - задавая значения длительности импульса (t) равными 0; 5; 10 мкс, рассчитать значения $u_C(t)$ и занести расчетные данные в форму табл.1;
 - построить график изменения напряжения $u_C(t)$ на интервале действия импульса.
- 2. Рассчитать $u_C(t)$ и построить график изменения $u_C(t)$ на интервале действия паузы по методике п.1. Начало отсчета

паузы t_{Π} соответствует моменту окончания действия импульса.

3. Используя выражения переходного напряжения $u_C(t)$ на интервалах действия импульса и паузы, записать выражения и построить графики переходных напряжений $u_{AB}(t)$ и $u_{AC}(t)$.

Форма табл.1

Наименова- ние параметра	Значение параметра, B, во время действия (t)							
	ИМ	ипульс	а, мкс,	паузы, мкс,				
	0	5	10	0	5	10		
$u_C(t)$								
$u_{AB}(t)$								
$u_{AC}(t)$								

Рассчитать операторным методом переходные процессы в RL цепи (рис.2)

- 1. Рассчитать $u_L(t)$ на интервале действия импульса:
 - изобразить операторную схему замещения цепи, определив предварительно начальные условия;
 - составить систему уравнений в операторной форме;
 - определить операторное напряжение $U_L(p)$;
 - найти оригинал $u_L(t)$ по формулам разложения или по таблицам Лапласа;
 - задавая значения времени (t) равными 0; 5; 10 мкс, рассчитать значения $u_L(t)$; расчетные данные занести в форму табл.2;
 - построить график изменения $u_L(t)$ на интервале действия импульса.
- 2. Рассчитать и построить график изменения $u_L(t)$ на интервале паузы по методике п.1.

3. Используя выражения $u_L(t)$ на интервалах действия импульса и паузы, записать выражения и построить графики переходных напряжений $u_{AB}(t)$ и $u_{AC}(t)$.

Форма табл.2

Наименова-	Значение параметра, В, во время действия							
ние	(t)							
параметра	импульса, мкс,			П	паузы, мкс,			
	0	5	10	0	5	10		
$u_L(t)$								
$u_{AB}(t)$								
$u_{AC}(t)$								

Лабораторное задание и методика выполнения работы

1. Исследовать на персональном компьютере с помощью системы схемотехнического моделирования «Electronics Workbench» переходные процессы в RC и RL цепях по схеме, приведенной на рис.3. Сравнить результаты исследований с графиками расчетного задания.

2. Исследовать переходные процессы в RC и RL цепях на лабораторном стенде по схеме, приведенной на рис.4.

Осциллографом, в режиме синхронизации с генератором импульсов, производятся измерения осциллограмм переходных процессов на конденсаторе и на катушке индуктивности. Результаты измерений в точках 0, 5 и 10 мкс наносятся на графики переходных процессов расчетного задания.

Таблииа вариантов

					1 aostat	τα σαραί	mmoo
Номер	<i>R</i> 1,	R2,	С,	Номер	<i>R</i> 1,	R2,	С,
вариан	Ом	Ом	мкФ	вариан	Ом	Ом	мкФ
та				та			
1	51	-	0,03	15	240	-	0,015
2	51	120	0,03	16	240	300	0,015
3	120	-	0,03	17	51	-	0,01
4	120	160	0,03	18	51	120	0,01
5	160	-	0,03	19	120	-	0,01
6	160	240	0,03	20	120	160	0,01
7	240	-	0,03	21	160	-	0,01
8	240	300	0,03	22	160	240	0,01
9	51	-	0,015	23	240	-	0,03
10	51	120	0,015	24	240	300	0,03
11	120	-	0,015	25	160	-	0,03
12	120	160	0,015	26	160	160	0,03
13	160	-	0,015	27	240	-	0,03
14	160	240	0,015	28	240	240	0,03
L=1 мГ для всех вариантов							

Контрольные вопросы

- 1. Как определить постоянные времени RC и RL цепей?
- 2. Изобразить семейство зависимостей u(t) для RC и RL цепей при различных величинах сопротивлений резисторов.
- 3. Изобразить семейство зависимостей u(t) при наличии ненулевых начальных условий на емкостном и на индуктивном элементах.
- 4. Записать аналитические выражения токов через R1, R2 и C элементы.
- 5. Записать аналитические выражения напряжений на R1, R2 и L элементах.
- 6. Объяснить влияние сопротивлений R1 и R2 на переходные процессы.
- 7. Объяснить влияние внутреннего сопротивления генератора импульсов на переходный процесс.

Лабораторная работа № 7

Исследование переходных процессов в

RLC пепях

Цель работы: экспериментально исследовать влияние параметров цепи на характер переходного процесса при подаче на RLC цепь прямоугольного импульса напряжения. **Используемое оборудование**:

- персональный компьютер с программой «Electronics Workbench»;
- генератор прямоугольных импульсов;
- осциллограф.

Теоретические сведения к расчетному заданию

Рассчитать классическим и операторным методами переходные процессы в RLC цепи (рис.1), на входе которой действует напряжение прямоугольной формы E=15 В, длительностью 10мкс. Величины элементов должны соответствовать вариантам заданий (см. таблицу вариантов к лабораторной работе № 6). Условное внутреннее сопротивление генератора для всех вариантов R=100 Ом.

- 1. Рассчитать классическим методом переходные процессы $u_C(t)$ и $i_L(t)$ на интервале действия импульса:
 - составить характеристическое уравнение Z(p) = 0 или Y(p) = 0, найти корни и по их значениям определить характер переходного процесса (апериодический, критический или колебательный);
 - записать общее решение $u_C(t)$, $i_L(t)$ для определенного характера переходного процесса;
 - найти принужденную составляющую переходного процесса;
 - найти постоянные интегрирования, используя начальные условия $u_C(0)$, $i_C(0)$, $i_L(0)$, $u_L(0)$, соответственно;
 - записать решения переходных процессов $u_C(t)$ и $i_L(t)$ во время действия импульса;
 - задавая значения t = 0, 5, 10 мкс, рассчитать значения $u_C(t)$ и $i_L(t)$; расчетные данные занести в форму табл.1;
 - построить графики изменения $u_C(t)$ и $i_L(t)$ на интервале действия импульса.

Форма табл.1

Наименование параметра	Значение параметра во время действия (t)							
	ИМП	іульса,	мкс	паузы, мкс				
	0	5	10	0	5	10		
$u_C(t)$, B								
$i_L(t)$, A								

2. Рассчитать операторным методом переходные процессы $u_C(t)$ и $i_L(t)$ на интервале действия паузы:

- составить схему замещения (начальные условия соответствуют значениям в момент окончания действия импульса);
- найти изображения $U_C(p)$ и $I_L(p)$;
- в зависимости от характера переходного процесса выбрать соответствующую формулу разложения и произвести переход к оригиналам $u_C(t)$ и $i_L(t)$;
- задавая значения t = 0, 5, 10 мкс рассчитать значения $u_C(t)$ и $i_L(t)$, расчетные данные занести в форму табл.1:
- построить графики изменений $u_C(t)$ и $i_L(t)$ на интервале действия паузы.

Лабораторное задание и методика выполнения работы

1. Исследовать на персональном компьютере с помощью системы схемотехнического моделирования «Electronics Workbench» переходные процессы $u_{LC}(t)$ по схеме, приведенной на рис.2. Сравнить результаты исследований с графиками расчетного задания.

2. Исследовать переходные процессы $u_{LC}(t)$ на лабораторном стенде по схеме, приведенной на рис.3. Произвести измерения в точках 0, 5, 10 мкс. Результаты измерений нанести на графики расчетного задания.

Контрольные вопросы

- 1. Как определить постоянные времени в RLC цепях?
- 2. Физические и математические понятия постоянных времени.
- 3. Как определить физическую постоянную времени?
- 4. Объяснить влияние сопротивлений резисторов на характер переходных процессов.
- 5. Изобразить семейство характеристик переходных процессов для различных значений сопротивлений резисторов.
- 6. Как влияют величины L и C на характер переходных процессов?

Оглавление

Лабораторная работа № 1 . Исследование электрической цепи постоянного тока	.3
Лабораторная работа № 2 . Исследование электрической цепи синусоидального тока1	10
Лабораторная работа № 3. Резонанс напряжений в последовательной RLC цепи1	14
Лабораторная работа № 4. Определение постоянных коэффициентов четырехполюсника1	8
Лабораторная работа № 5. Исследование линейной электрической цепи при несинусоидальных периодических воздействиях	
Лабораторная работа № 6. Исследование переходных процессов в RC и RL цепях	29
Лабораторная работа № 7. Исследование переходных процессов в RLC цепях	33

Лисова Марина Филипповна **Горбач** Александр Васильевич **Волков** Юрий Иванович **Самохин** Виктор Иванович

Сборник лабораторных работ по теории электрических цепей

Текст печатается в авторской редакции

Подписано в печать с оригинала-макета 10.12.03. Формат 60×84 1/16. Печать офсетная. Бумага офсетная. Гарнитура Times New Roman. Усл. печ. л. 2,09. Уч.-изд. л. 1,8. Тираж 600 экз. Заказ 303.

Отпечатано в типографии ИПК МИЭТ. 124498, Москва, МИЭТ.