Creating a Virtual Reality Meditation Visualisation System

Requirement Specification

Simon Zaragoza-Dorwald, Rosie Bartlett, Lavish Bhojani, Dravin Gupta, Joseph Dunne, Callum Gray

November 10, 2022

Contents

1	Introduction		
	1.1	Overview and Justification	1
	1.2	Project Scope	1
	1.3	System Description	2
		1.3.1 Current systems	3
2	Solı	ution Requirements	3
	2.1	Functional Requirements	3
	2.2	Non-functional Requirements	4
	2.3	Risks and Issues	5
		2.3.1 Risk Matrix	5
3	3 Project Development		
	3.1	Development Approach	5
	3.2	Project Schedule	6

1 Introduction

1.1 Overview and Justification

This document provides the requirement specifications for our virtual reality (VR) meditation application, referred to henceforth as 'the product'; the specific software for the product shall be referred to as 'the software'. This document provides an introduction (section 1) to the project, covering the justification (section 1.1), scope (section 1.2), and systems (section 1.3); the requirements for the system (section 2), both functional (section 2.1) and non-functional (section 2.2), and potential risks and issues (section 2.3); the development of the project (section 3) in terms of the approach (section 3.1) and schedule (section 3.2).

This project is for Professor Alexandra Cristea who shall henceforth be referred to as 'the client'. The client has given us the project of developing a VR meditation application with the possible use as a basis for research into the topic. This project aims to help those who have not done any, or have done very little, meditation before by giving them an immersive VR world to aid concentration and relaxation.

1.2 Project Scope

This project is intended for those who have never done any, or done very little, meditation before. It is aimed primarily at adults. The app is intended to help with mindfulness meditation (MM) practice through the use of gamification concepts and VR. The primary objectives are as follows:

• Personalisation over customisation

The client would prefer for the project to personalise, that is automatic adjustments to suit the user, itself rather than have the user customise the project, that is allowing the user to alter the environment

• Stability

The client would prefer fewer stable features over more less-stable features

Modularity

The client would prefer the software to be modular to allow for ease of reuse in future projects

The client would also like the potential to use the project later on in a research context.

This is not a primary consideration of ours, but we will use this to guide our development.

To ensure that our project can be as seamlessly used in this context with little impact on

the project itself, we will make reference to relevant literature where necessary to ensure our implementations of MM is as concurrent with current literature as we can make it¹.

For some examples of literature we will likely make reference of, see [1, 4, 6]. We will also make significant reference to [3] as a good example of research into a similar topic.

1.3 System Description

The system will be a VR app intended for meditation with aspects of gamification[5] using the Meta Quest². The app is intended to aid with visualisation based meditation and to accelerate the progression through meditation training.

The primary section of the app will be set in an environment designed to have as little possible distraction as possible whilst still allowing the app to be engaging. At present, we intend for the environment to be relatively featureless, with some objects orbiting the user. The objects will themselves have particles around them to obfuscate any highly contrasting areas. Each session will be approximately 10 to 20 minutes in length and various metrics will be measured throughout such as heart rate, EEG data, and eye tracking. This will be analysed and stored externally in accordance with the GDPR.

Evaluation metrics will be applied to the raw data, the results of which will be used to compare sessions and measure improvement. These metrics will be user-specific and will require user-specific baseline data, as well as general data. To gather this baseline data, a short (at most 5 minutes) baseline session will be required before the user can complete any meditation.

The data metrics will be constructed to account for global limits and will be personalised, via user-specific data, to ensure that any change can be measured relatively to the user and not to some global standard. With this we aim to ensure that all users can see a clear progression from session to session.

Each user will have an associated account that will communicate with the server. This account will contain the user's name and personalisation data. The user will be able to access a history of sessions via a request to the server.

the server itself will be run by a <code> script that can be run on any computer. For the purpose of product demonstration, we will ensure the same computer runs both the server and Quest app in lieu of a server with a static IP. The server will store user account data, raw

¹The authors can find little research on MM with VR implementations. There is a significant amounts of research into VR applications and MM separately which we will use to guide our development

²Previously Oculus Quest

session data, and session metric results. Data will be stored in accordance with the GDPR.

1.3.1 Current systems

As previously mentioned, there is little research into MM and VR, so we will instead refer to [3]. Lan et al. demonstrated a feasible study for multimodal feedback meditation in VR. They used g-tummo meditation which has some well researched benefits [2] but is a fairly advanced technique. As such the multimodal feedback system allows less experienced meditators to feel a more immediate feedback from meditation and thus attempt to help motivate people to continue meditation.

This research showed that the multimodal feedback correlated with a decrease in breathing rate and helped maintain user attention, measured via tiredness.

2 Solution Requirements

2.1 Functional Requirements

Figure 2.1: Functional dependency graph

ID - Name	FR-S-1 Stability	
Description	Description Over multiple lines	
MuShCo - Priority	Priority - Must haveShould haveCould have	
Dependencies	No dependencies	
Expected Results	Results	
Exception handling	let it all crash	

Figure 2.2: Non-functional dependency graph

2.2 Non-functional Requirements

ID - Name	NFR-O-1 Modularity		
Description	Description Over multiple lines		
Dependencies	No dependencies		
Priority	Priority		
Metrics	Metrics		
Constraints	Constraints		
ID - Name	NFR-S-1 Modularity		
	Description		

ID - Name	NFR-S-1 Modularity	
Description	Description Over multiple lines	
Dependencies	No dependencies	
Priority	Priority	
Metrics	Metrics	
Constraints	Constraints	
Security	Security	

2.3 Risks and Issues

2.3.1 Risk Matrix

		Impact			
		Low	Medium	High	
lity	Unlikely	r1 test	r2	r3	
Proabability	Possible	m r4	r5 test	r6	
	Likely	r7	r8	r9 test	

3 Project Development

3.1 Development Approach

3.2 Project Schedule

References

- [1] Ilkka Kosunen et al. "RelaWorld: Neuroadaptive and Immersive Virtual Reality Meditation System". In: Proceedings of the 21st International Conference on Intelligent User Interfaces. IUI'16: 21st International Conference on Intelligent User Interfaces. Sonoma California USA: ACM, 2016-03-07, pp. 208-217. ISBN: 978-1-4503-4137-0. DOI: 10.1145/2856767.2856796. URL: https://dl.acm.org/doi/10.1145/2856767.2856796 (visited on 2022-10-20).
- [2] Maria Kozhevnikov et al. "Neurocognitive and Somatic Components of Temperature Increases during g-Tummo Meditation: Legend and Reality". In: *PLoS ONE* 8.3 (2013-03-29). Ed. by Andrej A. Romanovsky, e58244. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0058244. URL: https://dx.plos.org/10.1371/journal.pone.0058244 (visited on 2022-10-20).
- [3] Kun-Chan Lan, Che-Wei Li, and Yushing Cheung. "Slow Breathing Exercise with Multimodal Virtual Reality: A Feasibility Study". In: Sensors 21.16 (2021-08-13), p. 5462. ISSN: 1424-8220. DOI: 10.3390/s21165462. URL: https://www.mdpi.com/1424-8220/21/16/5462 (visited on 2022-10-20).
- [4] Yi-Yuan Tang, Britta K. Hölzel, and Michael I. Posner. "The neuroscience of mindfulness meditation". In: *Nature Reviews Neuroscience* 16.4 (2015-04), pp. 213-225. ISSN: 1471-003X, 1471-0048. DOI: 10.1038/nrn3916. URL: http://www.nature.com/articles/nrn3916 (visited on 2022-11-08).
- [5] Armando M. Toda et al. "A Taxonomy of Game Elements for Gamification in Educational Contexts: Proposal and Evaluation". In: 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT). 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT). Maceió, Brazil: IEEE, 2019-07, pp. 84–88. ISBN: 978-1-72813-485-7. DOI: 10.1109/ICALT.2019.00028. URL: https://ieeexplore.ieee.org/document/8820847/ (visited on 2022-11-08).
- [6] Xian Wang et al. Reducing Stress and Anxiety in the Metaverse: A Systematic Review of Meditation, Mindfulness and Virtual Reality. 2022-09-29. arXiv: 2209.14645[cs]. URL: http://arxiv.org/abs/2209.14645 (visited on 2022-11-08).