Kapitel 6

Fehlertoleranz

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Motivation

- Bisher: Rechnerarchitektur am Beispiel von ReTI
- Fehler auf verschiedenen Ebenen entdecken und beheben
 - → Fehler durch Fertigungsdefekte, Störungen: Kapitel 6
 - → Konzeptuelle Fehler, Entwurfsfehler: Kapitel 7
- Allgemeine Rechnerarchitektur und Entwurfskonzepte

WS 2016/17 TS/RW – Kapitel 6 2 /

Physikalische Fehler

- Bei der Informationsverarbeitung und -Übermittlung können physikalische Störungen auftreten.
 - Elektrisches Rauschen, Radiation, Defekte.
 - Absichtliche Manipulation durch Angreifer.
- Die Störungen äußern sich darin, dass Wert 0 statt Wert 1 berechnet/übertragen wird und umgekehrt.
 - **"**Kippen" des Werts $0 \rightarrow 1$, $1 \rightarrow 0$.
- Hier konzentrieren wir aus auf Fehler bei der Datenübertragung.
 - Manche Fehler betreffen direkt die Hardware oder andere Systemteile. Ihre Behandlung ist komplexer.

WS 2016/17 TS/RW – Kapitel 6

Wiederholung

Sei $A = \{a_1, ..., a_m\}$ ein endliches Alphabet der Größe m.

- Eine Abbildung $c: A \rightarrow \{0,1\}^n$ heißt Code fester Länge, falls c injektiv ist.
- Die Menge $c(A) := \{ w \in \{0,1\}^n \mid \exists a \in A : c(a) = w \}$ heißt Menge der Codewörter.
- Minimale Codelänge: Für einen Code $c: A \to \{0,1\}^n$ fester Länge gilt: $n \ge \lceil \log_2 m \rceil$.

Fehler bei Datenübertragung (1/2)

Annahme:

- Sei *c* ein Code minimaler fester Länge *n*.
- Ein Datum a (z.B. ein Buchstabe, eine Zahl) wird, durch ein Codewort w = c(a) repräsentiert übertragen.
- Sei $\tilde{w} \in \{0,1\}^n$ das empfangene Wort.
- Bei der Übertragung (z.B. über Internet) können einzelne Bits von c(a) kippen. Dann ist $w \neq \tilde{w}$.

WS 2016/17 TS/RW – Kapitel 6 5 / 2

Fehler bei Datenübertragung (2/2)

Ziel:

- Durch Verändern des Codes *c* in einen Code *C* fester Länge *n*+*r* sollen diese Bits
 - erkannt
 - → Fehlererkennende Codes Bsp. für 1-fehlererkennenden Code: Parity-Code
 - korrigiert
 - → Fehlerkorrigierende Codes Bsp. für 1-fehlerkorrigierenden Code: Hamming-Code

werden.

Fehlererkennende Codes

Idee:

- Wähle Codewörter $w \in c(A)$ so, dass nach Kippen von Bits Wörter $\tilde{w} \in \{0,1\}^n$ entstehen, die keine Codewörter sind, d.h. $\tilde{w} \notin c(A)$.
- Wird ein Nicht-Codewort empfangen, so muss ein Übertragungsfehler aufgetreten sein.

- Benutze Codes mit $n = \lceil log_2 m \rceil + r$ mit r > 0.
- Benutze die r zusätzlichen Bits zum Test auf Übertragungsfehler.
- Beispiel: Parity-Code

Parity-Code

- Eine Bitfolge $w \in \{0,1\}^n$ besteht den Paritätstest (engl. Parity-Check), wenn die Anzahl der auf 1 gesetzten Bitstellen gerade ist.
- Sei $c: A \rightarrow \{0,1\}^n$ ein Code fester Länge von A. Betrachte den Code $C: A \rightarrow \{0,1\}^{n+1}$, der aus Code c entsteht, in dem eine Bitstelle an jedes Codewort c(a) hinten angefügt wird und so gesetzt wird, dass der neue Code C(a) den Paritätstest besteht.

WS 2016/17

Fehlererkennender Code

- Ein Code $c: A \rightarrow \{0,1\}^n$ fester Länge heißt k-fehlererkennend, wenn der Empfänger in jedem Fall entscheiden kann, ob ein gesendetes Codewort durch Kippen von bis zu k Bits verfälscht wurde.
- Der Parity-Code *C* ist 1-fehlererkennend.
 - **Beweis**: Kippt bei der Übertragung von *C*(*a*) genau eine Bitstelle, so kommt eine Bitfolge an, die den Paritätstest nicht besteht und somit kein Codewort von *C* darstellt. Überprüft der Empfänger die Parität der empfangenen Bitfolge, kann er auf einen Fehler schließen.

Fehlererkennender Code

- Ein Code $c: A \rightarrow \{0,1\}^n$ fester Länge heißt k-fehlererkennend, wenn der Empfänger in jedem Fall entscheiden kann, ob ein gesendetes Codewort durch Kippen von bis zu k Bits verfälscht wurde.
- Der Parity-Code *C* ist 1-fehlererkennend.
 - **Beweis**: Kippt bei der Übertragung von *C*(*a*) genau eine Bitstelle, so kommt eine Bitfolge an, die den Paritätstest nicht besteht und somit kein Codewort von *C* darstellt. Überprüft der Empfänger die Parität der empfangenen Bitfolge, kann er auf einen Fehler schließen.

Hamming-Abstand (1/2)

Definition

Der Hamming-Abstand dist(v, w) zweier n-Bitfolgen v und w ist die Anzahl der Stellen, an denen v und w sich unterscheiden.

- dist(00001101, 10001100) = 2
- dist(00001101,00001101) = 0
- Ist v das übertragene und w das empfangene Codewort, so liegt ein Übertragungsfehler genau dann vor, wenn $dist(v, w) \neq 0$.
 - Ein Übertragungsfehler heißt einfach, wenn dist(v, w) = 1.
- Der Hamming-Abstand eines Codes $c: A \rightarrow \{0,1\}^n$ ist der kleinste Abstand zweier Codewörter von c:

$$dist(c) := min\{dist(c(a_i), c(a_j)); a_i, a_j \in A \text{ mit } a_i \neq a_j\}.$$

Hamming-Abstand (2/2)

Lemma

Ein Code c fester Länge ist genau dann k-fehlererkennend, wenn $dist(c) \ge k + 1$ gilt.

■ **Beweisidee:** Durch das Kippen von bis zu $I \le k$ Bits kann aus Codewort $a \in c(A)$ kein anderes Codewort $a^* \in c(A)$ entstehen, denn sonst wäre $dist(c(a), c(a^*)) = I$, was kleiner als der Hamming-Abstand des Codes wäre.

Fehlerkorrigierende Codes

Idee:

Benutze r zusätzliche Bits, so dass das gesendete Codewort aus dem empfangenen Wort rekonstruiert werden kann.

■ Beispiel: Hamming-Code

WS 2016/17 TS/RW – Kapitel 6 12

Hamming-Code

- Benutze die Bitstellen 2⁰, 2¹, ..., 2^{r-1} als Überprüfungsbits, wobei die Bitstelle 2^j die Bitstellen überprüft, deren Binärdarstellungen an der *j*-ten Stelle eine 1 haben.
- Die Bitstelle 2^j wird so belegt, dass gerade viele Bitstellen, deren Binärdarstellungen an der j-ten Stelle eine 1 haben, gesetzt sind. (vgl. Paritätstest)

WS 2016/17 TS/RW – Kapitel 6

Hamming-Code an einem Beispiel

Uncodiertes Wort: 0111 0101 0000 1111.

```
\rightarrow m = 16.
```

- Konstruktion des Hamming-codierten Codeworts:
 - Das Wort wird unter Auslassung der "Zweierpotenz"-Bitstellen aufgeschrieben:

```
01110 _ 1010000 _ 111 _ 1 _ _ .
```

- Dies ergibt insgesamt 21 Bitstellen (r = 5).
- Die "Zweierpotenz"-Bitstellen werden als Überprüfungsbits benutzt (Nummerierung beginnt rechts mit der Stelle 1).
- Zur Erinnerung: Die Bitstelle 2^j wird so belegt, dass gerade viele Bitstellen, deren Binärdarstellungen an der j-ten Stelle eine 1 haben, gesetzt sind.

REIBURG

Hamming-Code-Beispiel (1/4)

	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	zu codierende Bitfolge
3						1
5						1
6						1
7						1
9						0
10						0
11						0
12						0
13						1
14						0
15						1
17						0
18						1
19						1
20						1
21						0

Das Überprüfungsbit 2^j überprüft die Bitstellen, die in ihrer Binärdarstellung an der *j*-ten Stelle eine 1 haben.

REIBURG

Hamming-Code-Beispiel (2/4)

	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	zu codierende Bitfolge
3				_	_	1
5			_		_	1
6			_	_		1
7			_	_	_	1
9		_			_	0
10		_		_		0
11		_		_	_	0
12		_	_			0
13		_	_		_	1
14		_	_	_		0
15		_	_	_	_	1
17	_				_	0
18	_			_		1
19	_			_	_	1
20	_		_			1
21	_		_		_	0

Das Überprüfungsbit 2^j überprüft die Bitstellen, die in ihrer Binärdarstellung an der *j*-ten Stelle eine 1 haben.

REIBURG

Hamming-Code-Beispiel (3/4)

	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	zu codierende Bitfolge
3				<u>1</u>	<u>1</u>	1
5			<u>1</u>		<u>1</u>	1
6			1 1 1	<u>1</u>		1
7			<u>1</u>	<u>1</u>	<u>1</u>	1
9		<u>0</u>			<u>0</u>	0
10		0		0		0
11		0		<u>0</u> <u>0</u>	0	0
12		0 0 0 0 1 0 1	0			0
13		<u>1</u>	0 1 0 1		<u>1</u>	1
14		<u>0</u>	0	0		0
15		<u>1</u>	<u>1</u>	<u>0</u> <u>1</u>	<u>1</u>	1
17	0				<u>1</u> <u>0</u>	0
18	<u>0</u> <u>1</u>			<u>1</u>		1
19	<u>1</u> <u>1</u>			<u>1</u>	<u>1</u>	1
20	<u>1</u>		<u>1</u>			1
21	<u>0</u>		<u>0</u>		<u>0</u>	0

Der Prüfbitwert ergibt sich aus der Summe modulo 2 der jeweiligen Spalte.

Das Überprüfungsbit 2^j überprüft die Bitstellen, die in ihrer Binärdarstellung an der *j*-ten Stelle eine 1 haben.

1 0 0 0 0

REIBURG

WS 2016/17 TS/RW – Kapitel 6 17 / 25

Hamming-Code Beispiel (4/4)

■ Die Bitfolge 0111 0101 0000 1111

wird mit dem Hamming-Code zum Codewort 0 1110 1101 0000 0111 0100.

WS 2016/17 TS/RW – Kapitel 6 18 /

Und wie findet man einen Fehler? (1/2)

Nehme einen Übertragungsfehler an Position 13 des Codeworts an.

Fehlerhaft empfangenes Wort: 0 1110 1100 0000 0111 0100.

WS 2016/17 TS/RW – Kapitel 6 19

Und wie findet man einen Fehler? (2/2)

	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	empfangene Bitfolge
3				<u>1</u>	<u>1</u>	1
5			<u>1</u>		<u>1</u> <u>1</u>	1
6			<u>1</u> <u>1</u>	<u>1</u>		1
7			<u>1</u>	<u>1</u>	<u>1</u>	1
9		<u>0</u>			<u>0</u>	0
10		0 0 0 0 0 0 0		0		0
11		0		<u>0</u> <u>0</u>	0	0
12		0	<u>0</u>			0
13		0	0 0 0 1		0	0
14		<u>0</u>	<u>0</u>	0		0
15		<u>1</u>	<u>1</u>	<u>0</u> <u>1</u>	<u>1</u>	1
17	<u>0</u>				0	0
18	<u>0</u> <u>1</u>			<u>1</u>		1
19	<u>1</u>			<u>1</u> <u>1</u>	<u>1</u>	1
20	<u>1</u>		<u>1</u>			1
21	<u>0</u>		<u>0</u>		<u>0</u>	0

⇒ Fehler muss sich in Zeile 8 + 4 + 1 = 13 befinden!

1 0 0 0 0

Die Spalten 8,4 und 1 bestehen den Paritätstest nicht!

EIBURG

Fehlerkorrigierende Codes

Definition

Ein Code $c: A \to \{0,1\}^n$ fester Länge heißt k-fehlerkorrigierend, wenn der Empfänger in jedem Fall entscheiden kann, ob ein gesendetes Codewort w durch Kippen von bis zu k Bits verfälscht wurde und daraufhin w aus dem empfangenen Wort \tilde{w} rekonstruiert werden kann.

■ Der Hamming-Code ist 1-fehlerkorrigierend. Die Anzahl der Zusatzbits $r = 1 + \lfloor log_2 m \rfloor$ ist minimal (Korrektheit folgt aus noch folgendem Satz).

Zusammenhang Hamming-Abstand und Fehlerkorrektur

Lemma

Ein Code c fester Länge ist genau dann k-fehlerkorrigierend, wenn $dist(c) \ge 2k + 1$ gilt.

Beweis:

- Sei $M(c(a_i), k) := \{w \in \{0, 1\}^n \mid dist(c(a_i), w) \le k\}$ die Kugel um $c(a_i)$ mit Radius k.
- Dann gilt: c ist k-fehlerkorrigierend $\Leftrightarrow \forall a_i, a_i i \neq j$ gilt: $M(c(a_i), k) \cap M(c(a_i), k) = \varnothing$.
- Für den Beweis ist also zu zeigen: $[\forall a_i, a_i \ i \neq j : M(c(a_i), k) \cap M(c(a_i), k) = \varnothing] \Leftrightarrow dist(c) \ge 2k + 1.$

Beweis der Hilfs-Behauptung

- Beweis "⇒":
 - Annahme: dist(c) < 2k + 1
 - D.h. $\exists a_i, a_i \text{ mit } dist(c(a_i), c(a_i)) = l \text{ und } l < 2k + 1;$
 - also gibt es eine Folge: $c(a_i) = b_0, b_1, \dots, b_{k-1}, b_k, b_{k+1}, \dots, b_{2k} = c(a_j)$ mit $dist(b_i, b_{i+1}) = 0$ oder $dist(b_i, b_{i+1}) = 1$ (für alle $i = 0, \dots, 2k 1$),
 - also $b_k \in M(c(a_i),k) \cap M(c(a_i),k)$.
- Beweis "←":
 - Annahme: $M(c(a_i),k) \cap M(c(a_j),k) \neq \emptyset$.
 - Es gibt also b im Durchschnitt mit: $dist(c) \leq dist(c(a_i), c(a_j)) \leq dist(c(a_i), b) + dist(b, c(a_j)) \leq k + k.$

Anzahl Zusatzbits für Fehlerkorrigierende Codes

Satz

Für einen 1-fehlerkorrigierenden Code $c: A \to \{0,1\}^{m+r}$ fester Länge über A mit $|A| = 2^m$ gilt: $r \ge 1 + \lfloor log_2 m \rfloor$.

Beweis:

- $M_1(a) := \{b \in \{0,1\}^{m+r} : b \text{ entsteht aus } c(a) \text{ durch Kippen von bis zu 1 Bit}\}.$
- Nach Lemma muss gelten: $M_1(a_1) \cap M_1(a_2) = \emptyset$ für alle $a_1, a_2 \in A$,
- \blacksquare es gilt $|M_1(a)| = m + r + 1$ für alle $a \in A$.
- Also müssen 2^m überschneidungsfreie Kugeln, jede mit (m+r+1) Elementen, im Raum \mathbb{B}^{m+r} enthalten sein: $2^m(m+r+1) \le 2^{m+r}$.
- Behauptung: Aus $2^m(m+r+1) \le 2^{m+r}$ folgt $r \ge 1 + \lfloor log_2 m \rfloor$.
- Sei hierzu $k := \lfloor log_2 m \rfloor \Rightarrow 2^k \leq m$.
- $2^m(m+r+1) \le 2^{m+r} \Leftrightarrow m+r+1 \le 2^r \Rightarrow 2^k+r+1 \le 2^r \Rightarrow 2^k+1 \le 2^r \Rightarrow k < r \Leftrightarrow k+1 \le r \Leftrightarrow |\log_2 m|+1 \le r.$

Ausblick

- Wir haben bisher angenommen, dass Fehler auf Kommunikationskanälen auftreten.
- Es gibt auch Fehler in der Hardware selbst.
 - Permanente Fehler (Fertigungsdefekte)
 - → Testmethoden (Rechnerarchitektur, Spezialvorlesung "Testen")
 - Latente Fehler ("Beinahe-Defekte")
 - → Stresstest (Spezialvorlesung "Testen")
 - Transiente Fehler (Störungen während des Betriebs)
 - → Fehlertoleranz, Redundanz (Spezialvorlesung "Testen")
 - Absichtlich herbeigeführte Fehler (Angriffe)
 - Aus Vergleich des Systemverhaltens mit und ohne Fehler auf geschützte Daten schließen (Fault-Based Cryptanalysis). (Seminar)
- Vor allem bei sicherheitskritischen Systemen in neuesten Fertigungstechnologien sind Fehler problematisch.

NI REIBURG