Discrete Maths HS24 / cs.shivi.io

1 Propositional Logic

1.1 Basics

1.1.1 Basic Equivalences (Lemma 2.1)

- 1. **Idempotence:** $A \wedge A \equiv A$ and $A \vee A \equiv A$
- 2. Commutativity: $A \wedge B \equiv B \wedge A$ and $A \vee B \equiv B \vee A$
- 3. Associativity: $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$ and $(A \vee B) \wedge C = A \wedge (B \wedge C)$ $(B) \lor C \equiv A \lor (B \lor C)$
- 4. **Absorption:** $A \wedge (A \vee B) \equiv A$ and $A \vee (A \wedge B) \equiv A$
- 5. 1st Distr. Law: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
- 6. 2nd Distr. Law: $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$
- 7. Double Neg.: $\neg \neg A \equiv A$
- 8. **De Morgan:** $\neg(A \land B) \equiv \neg A \lor \neg B$ and $\neg(A \lor B) \equiv \neg A \lor \neg B$ $\neg A \land \neg B$

1.1.2 Logical Consequence

 $F \models G$ is a **statement**. This statement is true if for all truth assignments $F \Rightarrow G$.

1.2 Tautologies and Satisfiability

Tautology: A formula F (denoted \top or $\models F$) is a "tautology" (or valid) or valid if it's underlying formula resolves to true for any and all interpretations.

Satisfiable: A formula F is "satisfiable" if it's underlying formula can be made true for some arbitrary interpretation.

- **L2.2** F is tautology iff $\neg F$ is unsat.
- L2.3 $F \to G$ is tautology iff $F \models G$.
- (\Rightarrow): Assume $F \to G \equiv \top$. Then when F is true G MUST be true, hence $F \vDash G$
- (\Leftarrow): Assume $F \vDash G$. Then F is true but G is false can't exist, hence $F \to G \equiv \top$.

2 Predicate Logic

Definition: A "k-ary" predicate P on a universe U is a function: $U^k \to \{0,1\}$.

2.1 Quantifiers

- $\forall P(x)$ means P(x) is true for all $x \in U$.
- $\exists P(x)$ means P(x) is true for at least one $x \in U$. Example: $\forall x ((P(x) \land Q(x) \rightarrow (P(x) \lor Q(x))) \equiv \top$

2.2 Useful Rules

- $... \forall x \forall y ... \equiv ... \forall y, \forall x ...$
- $\exists x (P(x) \land Q(x)) \models$ • $...\exists x\exists y... \equiv ...\exists y, \exists x...$ $\exists x P(x) \land \exists x Q(x)$
- $\forall x P(x) \land \forall x Q(x) \equiv$ • $\neg \exists x P(x) \equiv \forall x \neg P(x)$
- $\forall x (P(x) \land Q(x))$ • $\exists y \forall x P(x,y) \models$ • $\neg \forall x P(x) \equiv \exists x \neg P(x)$ $\forall x \exists y P(x,y)$

3 Proof Patterns

3.1 Proof of Implications

3.1.1 Composition of Implications

L2.5: $(A \Rightarrow B) \land (B \Rightarrow C) \vDash A \Rightarrow C$

3.1.2 Direct Proof of an Implication

Assume S and show $S \Rightarrow T$.

3.1.3 Indirect Proof of an Implication

Show the contrapositive implication, i.e. $\neg B \Rightarrow \neg A \models A \Rightarrow B$. (L2.6)

3.2 Proof of Statements

3.2.1 Modus Ponens

Prove S by: 1. Find and prove R 2. Prove $R \Rightarrow S$

L2.7: $A \wedge (A \Rightarrow B) \models B$

3.2.2 Case Distinction

Prove S by: 1. Finding finite list of "cases" $A_1, A_2, ..., A_k$ 2. Showing at least one of the A_i is true: $A_1 \vee A_2 \vee ... \vee A_k$ and

3. Showing $A_i \Rightarrow S$ for i = 1, ..., k. Note that for k = 1 we are doing Modus Ponens...

L2.8: $(A_1 \vee ... \vee A_k) \wedge (A_1 \Rightarrow B) \wedge ... \wedge (A_k \Rightarrow B) \models B$

3.2.3 Proofs by Contradiction

Prove S by: 1. Find T and show $\neg T$ 2. Show that $\neg S \Rightarrow T$ (if S were false we get a wrong/contradictory result).

L2.9: $(\neg A \Rightarrow B) \land \neg B \models A$

3.3 Existence Proofs

Effectively show that there exists an assignment of parameters from a parameter space $x \in \mathcal{X}$ such that the statement with that assignment becomes true, i.e $\exists x \in \mathcal{X}(S_x)$.

Constructive proof provides a concrete example. Non-**Constructive** proof shows existence by proving otherwise.

3.3.1 Pigeonhole Principle

If a set of n objects is partitioned into k < n sets, the at least one of those sets contains $\lceil \frac{n}{k} \rceil$ objects.

3.3.2 Proof by Conterexample

Obvious but... $\exists x \in \mathcal{X}(\neg S_x)$.

3.4 Proof by Induction

Meant to show $\forall n P(n)$. Proof by 1. Prove basis step P(0)then 2. Show $P(n) \Rightarrow P(n+1)$.

Thm2.11: $P(0) \land \forall n(P(n) \rightarrow P(n+1)) \Rightarrow \forall nP(n)$.

4 Set Theory

A set is a new mathematical object which is defined by a single operation: the membership predicate $(x \in S \text{ or } x \notin S)$.

Equality: $A = B \Leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$.

4.1 Meta Operations

- $A \subseteq B \Leftrightarrow \forall x (x \in A \to x \in B)$
- $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$
- $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$ (transitivity)
- $A \cup B = \{x \mid x \in A \lor x \in B\}$
- $A \cap B = \{x \mid x \in A \land x \in B\}$
- $B \setminus A = \{x \in B \mid x \notin A\}$

4.2 Laws (Theorem 3.4)

- Idempotence, Commutativity, Associativity, Absorption, Distribution
- Consistency: $A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B$

4.3 Empty Set

 $A = \emptyset \Leftrightarrow \forall x \neg (x \in A)$

• L3.5: Uniqueness of emptyset

- Let \emptyset and \emptyset' be arbitrary emptysets. Now show using definition of equality that $\emptyset \subseteq \emptyset'$ and vice versa (both are vacuously true)...
- L3.6: Emptyset is subset of all sets, i.e $\forall A (\emptyset \subseteq A)$.
- By contradiction: $\neg(\emptyset \subseteq A) \Leftrightarrow \neg \forall x (x \in \emptyset \to x \in A) \Leftrightarrow$ $\exists x \neg (\neg (x \in \emptyset) \lor x \in A) \Leftrightarrow \exists x (x \in \emptyset) \land \exists x \neg (x \in A) \Rightarrow$ $\exists x (x \in \emptyset)$

4.4 Meta Sets

- Powerset: $\mathcal{P}(A) = \{S \mid S \subseteq A\}$
- $|\mathcal{P}(A)| = 2^{|A|'}$
- Cartesian product: $A \times B = \{(a, b) \mid a \in A \land b \in B\}$ $|A \times B| = |A| \cdot |B|$

5 Relations

A (binary) relation is a subset of $A \times B$: $\rho \subset A \times B$. ρ is called a relation "on A" is A = B. We often write $a\rho b$ instead of $(a,b) \in \rho$.

Identity Relation: $id_A = \{(a, a) \mid a \in A\}.$

Possible relations: There are 2^{n^2} relations on a set, since $n^2 = |A^2|$ and each of these pairs can be in/excluded.

Inverse Relation: $\hat{\rho} = \{(b, a) \mid (a, b) \in \rho\}$. Alternatively: $b\hat{\rho}a \Leftrightarrow a\rho b$

Composition of relations: $\rho \circ \sigma = \{(a,c) \mid \exists b(a\rho b \land b\sigma c)\}\$

5.1 Types of Relations

- **Reflexive (D3.13):** $\forall a \in A(a\rho a)$, i.e. $id \subseteq \rho$. *Examples:* \leq \geq , (| on $\mathbb{Z} \setminus \{0\}$), Non Examples: \leq , \geq
 - In a graph, we have self loops for all nodes.
- Irreflxive (D3.14): $\rho \cap id = \emptyset$
- Symmetric (D3.15): $a\rho b \Leftrightarrow b\rho a \text{ or } \rho = \hat{\rho}$ • Antisymmetric (D3.16): $a\rho b \wedge b\rho a \Rightarrow a = b \text{ or } \rho \cap \hat{\rho} \subseteq$
- id. *Examples:* \leq , \geq , (| on \mathbb{N} but not on \mathbb{Z})
- In a graph: no cycle of length 2.
- **L3.9**: ρ is transitive iff $\rho^2 \subseteq \rho$.
- "if (\Leftarrow):" Assume $\rho^2 \subseteq \rho$ i.e $a\rho^2 b \Rightarrow a\rho b$. If $a\rho b \wedge$ $b\rho c \Rightarrow a\rho^2 c$ but by assumption $\Rightarrow a\rho c$ which exactly is
- "only if (\Rightarrow) :" Assume ρ is transitive. Then $a\rho^2b\Rightarrow$ $\exists c(a\rho c \land c\rho b)$. By transitivity: $a\rho b$. Hence $\rho^2 \subseteq \rho$.
- Transitive Closure (D3.18): $\rho^* = \bigcup_{n \in \mathbb{N} \setminus \{0\}} p^n$. i.e reachability with arbitrary finite steps.
 - $p^n \subseteq p$. Proof by induction:
 - Base Case: $p^1 \subseteq p$
- Induction Step: $(a\rho^{k+1}c \Rightarrow a\rho^kb \wedge b\rho c \Rightarrow a\rho b \wedge$ $b\rho c \text{ (By I.H)} \Rightarrow a\rho c \Rightarrow \rho^{k+1} \subseteq \rho$

5.1.1 Equivalence Relation

- Equivalence Relationship (D3.19): Relation that's 1) reflexive 2) symmetric and 3) transitive.
- **Equivalence Class (D3.20):** Let θ be an equivalence relation on A. The equivalence class of a is defined as: $[a]_{\theta} = \{b \in A \mid a\theta b\}$. Trivial Examples: $[a]_{\theta} = A$ if $\theta = A \times A$ $A, [a]_{\theta} = \{a\} \text{ if } \theta = \text{id.}$
- L3.10: $\theta = \theta_1 \cap \theta_2$ and θ is an equivalence relation. Trivial, since each pair in theta inherits reflexivity, symmetry and transitivity from $\theta_{1\vee 2}$.
- Partition (D3.21): Partition on a set $A: \{S_i \mid i \in \mathcal{I}\} ((S_i \cap \mathcal{I}))$ $S_j = \emptyset$ for $i \neq j$) $\land \bigcup_{i \in \mathcal{I}} S_i = A$
- Quotient Set (D3.22): Set of equivalence classes denoted by: $A/\theta = \{[a]_{\theta} \mid a \in A\}$. Also called $A \mod \theta$.
 - Thm3.11: A/θ is a partition of A.

5.1.2 Posets

- Partial Order Relation (D3.23): Relation that's 1) reflexive 2) antisymmetric and 3) transitive. Denoted by \leq i.e (A, \leq) *Examples:* \leq , \geq . *Non Examples:* <, > (since not reflexive)
- $a \prec b \Leftrightarrow a \leq b \land a \neq b$
- ▶ **D3.24:** a, b are "comparable" if $a \leq b \lor b \leq a$, else "incomparable".
- Totally ordered (D3.25): If any two elements are comparable then A is totally ordered.

5.1.2.1 Hasse Diagrams

- Cover (D3.26): a covers b if $a \prec b$ and $\neg (\exists c (a \prec c \land c \prec a))$
- Hasse Diagram (D3.27): A digraph of a finite poset where Thm 3.17: A is countable iff A is finite or $A \sim \mathbb{N}$. $a \rightarrow b$ iff b covers a

5.1.2.2 Lexicographic Order

Let $(A; \preceq)$, $(B; \sqsubseteq)$. Now we define $(a_1, b_1) \leq (a_2, b_2) \Leftrightarrow a_1 \preceq$ $a_2 \wedge b_1 \sqsubseteq b_2$.

- Thm3.12: $(A; \preceq) \times (B; \sqsubseteq)$ is a poset.
- Lexicographic Order (Thm 3.13): $(a_1,b_1) \leq (a_2,b_2) \Leftrightarrow$ $a_1 \prec a_2 \lor (a_1 = a_2 \land b_1 \sqsubseteq b_2)$ is also a poset.

5.1.2.3 Special Elements

Let $(A; \preceq)$ be a poset and $S \subseteq A$, let $a \in A$ then: (D3.29)

- 1. a is minimal maximal of A if $\neg (\exists b \in A(b \prec a[b \succ a]))$ tldr: no element of A is strictly smaller/larger than a. Comparability with all elements is not required. There can be many minimal/maximal elements.
- 2. a is least [greatest] element of A if $\forall b \in A(a \leq b[a \geq b])$ tldr: comparable to all elements of A and smallest/largest. The element is unique if it exists.
- 3. a is lower [upper] element of S if $\forall b \in S(a \prec b[a \succ b])$ tldr: comparable to all elements of S and below/above them. There can be many or no lower/upper elements.
- 4. a is greatest lower bound [least upper bound] of S if a is the greatest [least] element of the set of all lower [upper] bounds of S. tldr: the largest/smallest element that bounds S from below/above.

Well Ordered (D3.30): A poset is well-ordered if it is totally ordered and every non-empty subset of A has a least element. 5.1.2.4 Meet, Join, Lattices

- **Meet:** If the set {a, b} has a glb, it's called the meet. Denoted by $a \wedge b$. • **Join:** If the set $\{a, b\}$ has lub, it's called the join. Denoted by
- Lattice: A poset where each pair of elements has a meet and lattice is called lattice.

6 Functions

A function $f: A \to B$ from domain to codomain is a relation with properties:

- 1. Totally defined: $\forall a \in A \exists b \in B(b = f(a))$, i.e each element maps to atleast one element.
- 2. Well defined: $\forall a \in A \forall b, b' \in B(b = f(a) \land b' = f(a) \Rightarrow$ b = b'), i.e each element maps to maximally one element. If only the 2nd condition holds, we call the function a partial function.

There are $|B|^{|A|}$ possible functions $A \to B$.

6.1 Image/Preimage

- Image/Range: Let $f: A \to B, S \subseteq A$ then f(S) = $\{f(a) \mid a \in S\}. Y = f(A), Y \subseteq B, Y = \operatorname{Im}(f).$
- Preimage: $T \subseteq T$, $f^{-1}(T) = \{a \in A \mid f(a) \in T\}$

6.2 Function Types

- Injective (1to1): $a \neq b \Rightarrow f(a) \neq f(b)$, i.e unique mapping. • Surjective (onto): Im(f) = B, i.e. each element in B can
- be reached. • Bijective: If both injective and surjective, i.e an invertible function defined for all elements of B.

7 Un/Countability

- 1. $A \sim B$ if there exists a bijection $A \rightarrow B$
- 2. $A \leq B$ if 1) $A \sim C \wedge C \subseteq B$ or 2) there exists an injection $A \rightarrow B$
- 3. If $A \leq \mathbb{N}$ then A is countable. Otherwise uncountable. L3.15:
- 1. \sim is an equivalence relation
- 2. \prec is transitive
- 3. $A \subseteq B \Rightarrow A \prec B$

7.1 Countable Sets

- Finite bit sequences: $\{0,1\}^* \mapsto \operatorname{decimal}('1' + \operatorname{seq})$
- Pairs of \mathbb{N} : 1) $f: \mathbb{N} \to \mathbb{N}^2$, $f(n) = (k, m), k + m = t 1 \wedge 1$ $m = n - {t \choose 2}$ or 2) $(a, b) \mapsto 0^{|a|} \| 1 \| a \| b$
- Rational numbers: $\mathbb{Q} \leq \mathbb{Z} \times \mathbb{N} \wedge \mathbb{Z} \sim \mathbb{N} \Rightarrow \mathbb{Q} \sim \mathbb{N}$. Thm 3.22:
- 1. A countable $\Rightarrow A^n$ countable.
- 2. $\bigcup_{i\in\mathbb{N}} A_i$ is countable if A_i is countable.

3. A^* is countable if A is countable.

7.2 Uncountable Sets

• Infinite bit sequences or set of functions $\mathbb{N} \to \{0,1\}$: By cantor's diagonalization...

7.3 How to Approach

Intuition: Understand what the set represents. Determine wether it's countable/uncountable. Let A be the set which is uncountable.

Proof (Uncountable):

- 1. Find an injection: $f: \{0,1\}^{\infty} \to A$ (we'll prove injectivity
- 2. Show f is a function, i.e 1) each elements gets mapped to at least one element 2) each element gets mapped to maximally one element. 3) Do you actually map to A and not somewhere else?
- 3. Proving injectivity: 1) $a, b \in \{0, 1\}^{\infty}, a \neq b \Rightarrow ... \Rightarrow$ $f(a) \neq f(b)$ or 2) $f(a) = f(b) \Rightarrow ... \Rightarrow a = b$
- 4. We have $\{0,1\}^{\infty} \leq A$ but we need to add "for formality" that $A \not \leq \mathbb{N}$. We can argue this via transitivity since $\{0,1\}^{\infty} \not \leq \mathbb{N}.$

- **Complement Trick:** To show A is uncountable find B also uncountable such that $A \subseteq B$. Now show that $B \setminus A$ is countable. Sound since by contradiction if A were countable, $A \cup (B \setminus A) = B$ LHS would be countable but
- **Prime Factorization:** e.g. $f: \mathbb{N}^2 \to N, f: (a,b) \mapsto 2^a 3^b$. fis injective since each number can be uniquely factored into primes by the FTA...

8 Number Theory

- $a \mid b$ if $\exists c(ac = b)$. Every non-zero int divides 0. 1, -1divide all integers.
- Thm 4.1 (Euclid): $\forall a \in \mathbb{Z} \land d \neq 0 \exists q \exists r (a = dq + r \land 0 \leq q)$ r < |d|)

8.1 GCD, LCM

GCD (D4.2): gcd(a, b) = d if d divides both $a \wedge b$ and is the greatest in terms of the divisibility relation.

Relative Prime (D4.3): Two numbers are rel. prime if gcd(a, b) = 1.

- **L4.2:** gcd(a, b xa) = gcd(a, b). Proof by expanding into definition of | and showing $d_{LHS} = d_{RHS}$.
- $gcd(a,b) = gcd(m,R_m(n))$

Ideal (D4.4): $(a,b) = \{ua + vb \mid u, a \in \mathbb{Z}\}$

- L4.3: ∃d : (a, b) = (d).
- Show $(d) \subseteq (a, b)$: Trivially holds since d is smallest in (a,b) then $(d) \subseteq (a,b)$
- Show $(a,b)\subseteq (d)$: Let $c\in (a,b)\Rightarrow c=qd+r\Rightarrow r=$ c - qd but $0 \le r < d$ and d is smallest in $(a, b) \Rightarrow r =$ $0 \Rightarrow c = ad \Rightarrow c \in (d)$.
- **L4.4**: $(a, b) = (d) \Rightarrow d = \gcd(a, b)$
- $d \in (a, b) \Leftrightarrow d = ua + vb$. Any common divisor c of a and b must | d. Since $a, b \in (d)$ and transitivity of $| \Rightarrow$ $c \mid d, d$ is the gcd.

LCM (**D4.5**): $lcm(\bar{a}, b) = l$ if both $a \wedge b$ divide l and it is the least in terms of the divisibility relation.

8.2 Fundamental Theorem of Arithmetic (FTA)

Prime (D4.6): A positive integer p > 1 is prime if it's only positive divisors are $1 \land p$. ¬ prime = composite.

FTA (Thm 4.6): TLDR: Every number can be uniquely factored intro a product of primes.

- Alternate GCD and LCM definition: • Let $a = \prod_i p_i^{e^i}$ and $b = \prod_i p_i^{f^i}$
- $\gcd(a,b) = \prod_i p_i^{\min(e^i,f_i)}$ and $\operatorname{lcm}(a,b) = \prod_i p_i^{\max(e^i,f_i)}$
- $\Rightarrow \gcd(a,b) \cdot \operatorname{lcm}(a,b) = ab$

8.3 Modular Arithmetic

 $a \equiv {}_{m}b \Leftrightarrow m \mid (a-b)$

L4.14: Compatibility with Arithmetic Operations

If $a \equiv {}_{m}b \wedge c \equiv {}_{m}d$, then:

- 1. $a + c \equiv {}_{m}b + d$
- $m \mid (a-b) \land m \mid (c-d) \Rightarrow m \mid ((a-b)+(c-d)) \Rightarrow$ $m \mid ((a+c)-(b+d)) \Rightarrow a+c \equiv {}_{m}b+d$
- ac = (b + km)(d + lm) = bd + b(lm) + k(dm) + $klm^2 = bd + m(bl + kd + klm) \Rightarrow m \mid (ac - bd) \Rightarrow$ $ac \equiv {}_{m}bd$
- C4.15: $a_i \equiv {}_m b_i \Rightarrow f(a_1, ..., a_k) \equiv {}_m f(b_1, ..., b_k)$ if f is a multivariate polynomial with integer coeffcients.

· L4.16

- $a \equiv {}_{m}R_{m}(a)$
- $a \equiv {}_{m}b \Leftrightarrow R_{m}(a) = R_{m}(b)$
- C4.17: $R_m(f(a_1,...,a_k)) = R_m(f(R_m(f_1),...,R_m(f_k)))$

L4.18: Multiplicative Inverse

- $ax \equiv {}_{m}1$ has a solution iff gcd(a, m) = 1. The solution is
- **Calculating Inverse using Extended GCD:**
- Find x, y such that $ax + my = \gcd(a, m)$. If $\gcd(a, m) =$ 1, then $ax \equiv {}_{m}1$, so x is the inverse.
- Example: Inverse of 5 modulo 11:
- 1. $5x + 11y = 1 \Leftrightarrow R_{11}(5x + 11y) = R_{11}(1) \Leftrightarrow$
- 2. Using Extended GCD: $x = -2 \equiv {}_{11}9$, y = 1.
- 3. -2 + 11 = 9. Therefore, $5^{-1} \equiv {}_{11}9$.

Fermats little theorem and Eulers Theorem:

$$\gcd(m,a) = 1 \Rightarrow R_m\big(a^b\big) = R_m\big(a^{R_{\varphi(m)}(b)}\big)$$

Thm 4.19: CRT

- Given: $x \equiv_{\text{ml}} a_1, ..., x \equiv_{\text{mr}} a_r$.
- For relatively prime $m_1,...,m_r$, let $M=m_1\cdot ...\cdot m_r$.
- Let $M_i = \frac{M}{m_i} \Rightarrow M_i N_i \equiv_{\text{mi}} 1$. Find N_i , the multiplicative inverse using extended Euclidian algorithm. • Solution: $x=R_M\left(\sum_{i=1}^r a_i M_i N_i\right)$

8.4 Diffie Hellman

DH is a key-exchange protocol leveraging the discrete logarithm problem for constructing one-way functions.

Alice select x_A at random from $\{0, \dots, p-2\}$	insecure channel	Bob select x_B at random from $\{0, \dots, p-2\}$
$y_A := R_p(g^{x_A})$	$\xrightarrow{y_A}$	$y_B := R_p(g^{x_B})$
$k_{AB} := R_p(y_B^{x_A})$	₹ 98	$k_{BA} := R_p(y_A^{x_B})$

$$k_{AB} \; \equiv_p \; y_B^{x_A} \; \equiv_p \; (g^{x_B})^{x_A} \; \equiv_p \; g^{x_A x_B} \; \equiv_p \; k_{BA}$$

Note that this protocol requires the group \mathbb{Z}_n^*

• Operation on set S is a function $S^n \to S$

Discrete Maths HS24 / cs.shivi.io

- An **algebra** is a pair $\langle S; \Omega \rangle$ where S is the set and Ω is the list of operations of S.
- 9.1 Overview of Algebraic Structures

9.1.1 Properties

- Addition: A1: Closure, A2: Associative, A3: Identity, A4: Inverse, A5: Commutative
- Multiplication: M1: Closure, M2: Associative, M3: Distributive, M4: Commutative, M5: Identity, M6: No Zero Divisors, M7: Inverse

9.1.2 Structures

- Monoid: A: 1, 2, 3
- Group: A: 1, 2, 3, 4
- Abelian Group (Commutative Group): A: 1, 2, 3, 4, 5
- Ring: A: 1, 2, 3, 4, 5, M: 1, 2, 3
- Commutative Ring: A: 1, 2, 3, 4, 5, M: 1, 2, 3, 4
- Integral Domain: A: 1, 2, 3, 4, 5, M: 1, 2, 3, 4, 5, 6
- Field: A: 1, 2, 3, 4, 5, M: 1, 2, 3, 4, 5, 6, 7

9.2 Monoids and Groups

- A monoid has 1) closure 2) associativity and 3) an identity.
- · A group is a monoid with an 4) inverse.

9.2.1 Neutral Elements

D5.3: A left [right] neutral/identity element ($e \in S$): e * a =a[a * e = a]. If e * a = a * e = a then e is the neutral element.

• L5.1: If LN and RN then LN = RN. Since $e * e' = e' \land e *$ $e' = e \Rightarrow e = e'$

9.2.2 Associativity

D5.4: Associative means a * (b * c) = (a * b) * c.

9.2.3 Inverse Elements

D5.6: A left [right] inverse of a called b is such that b * a =e[a*e=e]. If a*b=b*a=e we simply call it inverse.

- L5.2: If LI and RI then LI = RI. Proof: Let b be LI and c be RI. Then b = b * e = b * (a * c) = (b * a) * c = e * c = c.
- Uniqueness of Inverse: $a * b = a * b' = e \Rightarrow b * a * b = e$ $b*a*b' = b*e \Rightarrow b = b' = b$

9.2.4 Group Axioms

Group: $\langle G; *, \hat{}, e \rangle$.

- · L5.3: For any group we have:
- 1. $(\hat{a}) = a$
- $2. \ \widehat{a * b} = \widehat{b} * \widehat{a}$
- 3. Left cancellation: $a * b = a * c \Rightarrow b = c$, Right cancellation: $b * a = c * a \Rightarrow b = c$
- 4. $a * x = b \land x * a = b$ have both a unique solution for any x, a, b.

Minimal axioms:

- G1: associative, G2': RN, G3': RI
- First prove G3 before proving G2!!!
- **G3**: $\hat{a} * a = (\hat{a} * a) * \hat{e} = (\hat{a} * a) * (\hat{a} * \hat{a}) = \hat{a} * (a * (\hat{a} * \hat{a})) = \hat{a}$ $(\hat{a}) = \hat{a} * ((a * \hat{a}) * \hat{a}) = \hat{a} * (e * \hat{a}) = (\hat{a} * e) * \hat{a}) \hat{a} * \hat{a} = (\hat{a} * e) * \hat{a} * \hat{a}) \hat{a} * \hat{a} = (\hat{a} * e) * \hat{a}) \hat{a} * \hat{a} = (\hat{a} * e) \hat{a} * \hat{a} = (\hat{a$
- **G2:** $a * e = a * (\hat{a} * a) = (a * \hat{a}) * a = e * a$

9.2.5 Group Structures

• **Direct Product (D5.9):** $\langle G_1 \times ... \times G_n; * \rangle$. * is component

9.2.6 Homomorphisms

D5.10: Let G, H be two groups. Let $\varphi : G \to H$. If we can have $\varphi(a *_G b) = \varphi(a) *_H \varphi(b)$ we have a group homomorphism. If φ is a bijection then we have a isomorphism.

L5.5: 1)
$$\varphi(e_G) = e_H$$
 and 2) $\varphi(\hat{a}) = \widehat{\varphi(a)}$

Note that φ need not be an injection, if the kernel of φ (= $\{a \in G \mid \varphi(a) = 1\}$) is nonzero, since then φ can't be injective.

9.2.6.1 How to prove isomorphism

- 1. Define mapping function which you suspect is an isomorphism φ .
- 2. Check if map is well defined, i.e maps to max one element
- 3. Check if map is totally defined, i.e maps to at least one
- 4. Verify $\varphi(g) \in H \forall g \in G$. i.e image of φ is $\subseteq H$.
- 5. Check homomorphism: $\varphi(g_1 *_G g_2) = \varphi(g_1) *_H \varphi(g_2)$
- 6. Check injectivity: $\varphi(g_1) = \varphi(g_2) \Rightarrow g_1 = g_2$ or it's contrapositive.
- 7. Check surjectivity: Show that $\forall h \in H \exists g \in G(\varphi(g) = h)$
- 8. Conclude isomorphism

9.2.7 Subgroups

If $H \subseteq G$ and H itself satisfies all group properties then H is a subgroup of G. For any group $\{e\}$ and G are trivital

9.2.7.1 Order

The order of a group is the number of elements. The order of an **element** $ord(a) = m \land m \ge 1 \Leftrightarrow a^m = e$. If $\neg(\exists \operatorname{ord}(a)) \Rightarrow \operatorname{ord}(a) = \infty$. Naturally $\operatorname{ord}(e) = 1$, $\operatorname{ord}(a) = 1$ $2 \Rightarrow a^2 = e \Rightarrow a = a^{-1}$

L5.6: Each element of a finite group must have finite order.

- Since G is finite we must at some point have $a^r = a^s = b \wedge a^s = a^s = a^s = b \wedge a^s = a^s = a^s = b \wedge a^s = a^s = a^s = a^s = b \wedge a^s = a^s$ r < s by pigeon hole $\Rightarrow a^{s-r} = a^s * a^{-r} = b * b^{-1} = e \Rightarrow$ $\exists x(x=s-r \wedge a^x=e).$
- It follows that $a^m = a^{R_{\operatorname{ord}(a)}(m)}$

9.2.8 Cyclic Groups

D5.14: $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}. \langle a \rangle$ is the smallest subgroup of Gwhich contains a. Notice how $\langle a \rangle = \{e, a, a^2, ..., a^{\operatorname{ord}(a)-1}\}.$

D5.15: If a group can be generated by an element, it's called cyclic. If g is a generator, so is g^{-1} .

• $\langle \mathbb{Z}_n; + \rangle$ is cycle for every n where 1 is a generator. The generators of the group are all $q \in \mathbb{Z}_n$ where $\gcd(q, n) = 1$.

Thm 5.7: A cyclic group of order n is alway isomorphic to $\langle \mathbb{Z}_n; + \rangle$ and hence commutative too.

9.2.9 Order of Subgroups

Thm 5.8, Lagrange Thm (!!!): $H \subseteq G \Rightarrow |H|$ divides |G|. • C5.9: For every finite group, the order of its element divides

the group order. i.e ord(a) divides $|G| \ \forall a \in G$.

• C5.10: $a^{|G|} = e \forall a \in G$ (for finite groups). Proof: $a^{|G|} =$ $a^{k \cdot \operatorname{ord}(a)} = (a^{(\operatorname{ord}(a))^k} = e^k = e.$

• C5.11: Every group of prime order is cycle and every element except e is a generator. Proof: Every subgroup divides $p \Rightarrow \operatorname{ord}(q) = 1 \lor p$. $\operatorname{ord}(q) = 1 \Rightarrow q = e$ otherwise any other element works.

9.2.10 Euler's Function and \mathbb{Z}_m^*

D5.16: $\mathbb{Z}_m^* = \{a \in \mathbb{Z}_m \mid \gcd(a, m) = 1\}$, i.e a set of all coprime to m numbers in \mathbb{Z}_m .

D5.17: The Euler function is defined as $\varphi(m) = |\mathbb{Z}_m^*|$. Can be calculated by: $m=p_1^{e_1}\cdot\ldots\cdot p_k^{e_k}\Rightarrow \varphi(m)=(p_1^{e_1}-p_1(e_1-1))\ldots(p_k^{e_k}-p_k^{e_k-1})$. E.g. $\varphi(60)=(2^2-2^1)(3-1)(5-1)=$

Discrete Maths HS24 / cs.shivi.io

Thm 5.13: $\langle \mathbb{Z}_m^*; \odot, ^{-1}, 1 \rangle$ is a group.

C5.14 (Fermat, Euler): 1) $\forall m \geq 2 \land \gcd(a, m) = 1$ we have $a^{\varphi(m)} \equiv {}_{m}1.$ 2) For every prime p we have $a^{p-1} \equiv {}_{p}1 \Leftrightarrow a^{p} \equiv$

Thm 5.15: The group \mathbb{Z}_m^* is cyclic iff m=2, m=4, m=4 $p^e, m = 2p^e$, where $p \neq 2$ and is prime $\land e \geq 1$.

For RSA we need to know the following theorem following from Lagrange's theorem:

Thm 5.16:

- Let G be a finite group.
- Let $e \in \mathbb{Z}$ be relatively prime to |G|.
- The function $x \mapsto x^e$ is a bijection.
- The unique e-th root of y such that $x^e = y \Leftrightarrow x = y^d$ where $a \mid (b+c)$ d is the multiplicative inverse of e modulo |G|, i.e $ed \equiv |G| 1$.
- Proof: 1) $ed = k \cdot |G| + 1$ 2) $(x^e)^d = x^{ed} = x^{k \cdot |G| + 1} = 1$ $\left(x^{(|G|)^k}\right) \cdot x = x.$
- This means that $y \mapsto y^d$ is the inverse function of $x \mapsto x^e$. Protocol:

Alice insecure channel

Bob

ciphertext

 $c = R_n(m^e)$

Generate primes p and q

 $n = p \cdot q$

f = (p-1)(q-1)

select e $d \equiv_f e^{-1}$

plaintext $m \in \{1, \dots, n-1\}$

 $m = R_n(c^d)$

The idea is as follows:

1. Let $n = p \cdot q$.

2. Let $f = |\mathbb{Z}_{p}^{*}| = (p-1)(q-1)$ 3. Choose some e and calculate $d \equiv {}_{f}e^{-1}$ using Ext. Eucl. algorithm.

- 4. Make n, e public.
- 5. The message m can be encrypted by $m \mapsto c = R_n(m^e)$. 6. The decryption can be done by $c \mapsto m = R_n(c^d)$

9.4 Rings and Fields

- A ring is an additive abelian group with 1) multiplicative closure 2) multiplicative associativity 3) distributivity
- · A commutative ring is a ring with 4) commutativity
- An **integral domain** is a commutative ring with 5) a multiplicative identity and 6) no zero divisors
- A field is an integral domain with 7) multiplicative inverses

L5.17: For any ring $\langle R; +, -, 0, \cdot, 1 \rangle$

- 1. 0a = a0 = 0. Proof: 0 = -(a0) + a0 = -(a0) + a(0 + a0) = -($(a_0) = (-(a_0) + a_0) + a_0 = 0 + a_0 = a_0$. 0a gets proven in a similar manner.
- 2. (-a)b = -(ab). Proof: (-a)b + ab = (-a + a)b = 0b = 0 $0 \Rightarrow (-a)b = -(ab)$
- 3. (-a)(-b) = ab. Proof: (-a)(-b) = -(a(-b)) =-(-(ab)) = ab
- 4. If $|R| > 1 \Rightarrow 1 \neq 0$. Proof by contradiction: Let a, b be distinct elements. Then $a = a * 1 = a * 0 = 0 \land b = \dots =$ $0 \Rightarrow a = b$ which contradicts our precondition.

Characteristic of a Ring (D5.19): Order of 1 in the additive group if finite, 0 otherwise. Hence the characteristic in the ring \mathbb{Z}_m is 1 and in \mathbb{Z} 0.

9.4.1 Units and Multiplicative Group

D5.20: An element of a ring $u \in R$ is called **unit if it's invertible**, i.e $\exists v \in R(uv = vu = 1), v = u^{-1}$. The set of units is R^* .

- Examples: $\mathbb{Z}^* = \{1, -1\}, \mathbb{R}^* = \mathbb{R} \setminus$ $\{0\}$, Gaussian Integers* = $\{1, -1, i, -i\}$
- **L5.18:** For a ring R, R^* is a multiplicative group.
- Proof: We need to show that $\forall u, v \exists y (y = (uv)^{-1}) \Rightarrow y =$ $v^{-1}u^{-1}$. $1 \in \mathbb{R}^*$ since $1 = 1^{-1}$. Associativity is inherited

9.4.2 Divisors

D5.21: $\exists c \in R(b = ac) \Rightarrow a \mid b$. Where R is a commutative

L5.19: 1) | is transitive. 2) $a \mid b \Rightarrow a \mid (bc)$ 3) $a \mid b \land a \mid c \Rightarrow$

D5.22: The GCD definition is identical as in number theory, just using the divides definition from above (L5.19).

9.4.3 Zero Divisors and Integral Domains

is called a zerodivisor of that commutative ring. **Integral Domain (D5.24):** An integral domain D is a non-

trivial (|D| > 1) commutative ring without zerodivisors. Examples: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, Non Examples: \mathbb{Z}_m if m isn't prime, any element not relatively prime to m is a zerodivisor.

L5.20: In an ID $a \mid b \Rightarrow \exists c(b = ac)$ then that $c = \frac{b}{c}$ is unique. Proof: $0 = ac - ac' = a(c + -c') \Rightarrow c + -c' = 0 \Rightarrow c = c'$.

9.4.4 Polynomial Rings

Thm 5.21: For any commutative ring R, R[x] is a commutative ring too.

L5.22: Let D be an ID, then:

- 1. D[x] is an ID. Proof: If there were zerodivisors then for p(x)q(x) = 0 the polynomial coefficients would need to be zerodivisors, cause otherwise we'd never get = 0.
- 2. deg(ab) = deg(a) + deg(b). Proof: Similar to (1), since we don't have zerodivisors the highest degree can't simply disappear and hence must be present.
- 3. Units of D[x] are constants that are units of D. i.e $D[x]^* =$ D^* . Proof: We need to get a polynomial where only the constant coefficient is = 1, the others must = 0. Now since we don't have zerodivisors we can only have units by inheriting them from D.

9.4.5 Fields

D5.26: A **field** is a non-trivial commutative ring F where every non-zero element is a unit, i.e is invertible. Examples: \mathbb{Q} , \mathbb{R} , \mathbb{C} . Non Examples: \mathbb{Z} , R[x] (for any arbitrary rings).

Thm 5.23: \mathbb{Z}_p is a field iff p is prime.

Thm 5.24: A field is an integral domain. Proof: It suffices to show that a unit is not a zerodivisor. Assume $uv = 0 \Rightarrow v =$ 0 since $v = 1v = u^{-1}uv = u^{-1}0 = 0$. Hence u is not a zerodivisor.

9.4.6 Polynomials over a Field

D5.27: A polynomial is called a **monic** if the leading coefficient is 1.

D5.28: A polynomial with degree > 1 is **irreducible** if it is only divisible by constants or constant multiples of itself. Similar to primality.

D5.29: The monic polynomial of largest degree such that $g(x) \mid a(x) \land g(x) \mid b(x) \Rightarrow g(x) = \gcd(a(x), b(x)).$ 9.4.7 Division in Fields

Thm 5.25: $a(x) = b(x) \cdot q(x) + r(x)$.

9.4.8 Roots

D5.33: Let $a(x) \in R[x]$. An element $\alpha \in R$ s.t. $a(\alpha) = 0$ is

called a root of a(x). **L5.29:** For $\alpha \in F(a(\alpha) = 0 \Leftrightarrow (x - \alpha) \mid a(x))$

- \Rightarrow : Assume $a(\alpha) = 0$. Then $a(x) = (x \alpha)q(x) + r(x)$ where $\deg(r(x)) < \deg(x - \alpha) = 1 \Rightarrow$ r(x) is a constant $\Rightarrow r = a(x) - (x - \alpha)q(x)$. Now if x = $\alpha \Rightarrow r = 0 - 0 \cdot q(\alpha) = 0$. Since r = 0 we know that $a(x) = (x - \alpha)q(x) \Rightarrow (x - \alpha) \mid a(x)$
- \Leftarrow : Assume $(x \alpha) \mid a(x) \Rightarrow a(\alpha) = (\alpha \alpha)q(\alpha) = 0 \Rightarrow$
- Note that this implies that an irreducible polynomial of degree > 2 has no roots.

C5. $\bar{30}$: A polynomial of degree 2 or 3 over a field is irreducible iff it has no root. Proof: A reducible polynomial has a factor of degree 1 and hence a root. **Zero Divisor (D5.23):** $a \neq 0 \land \exists b (b \neq 0 \land ab = 0) \Rightarrow a \mid 0. \ a$

> **Thm 5.31:** A non-zero polynomial $a(x) \in F[x]$ of degree dhas atmost *d* roots.

• Proof: To show contradiction assume a(x) has degree d but e>d roots, then $\prod_{i=1}^e \mid a(x)$ by Lemma 5.29, but then becomes a polynomial of degree e instead.

9.4.9 Polynomial Interpolation

L5.32: A polynomial $a(x) \in F[x]$ of degree d can be uniquely determined by any d+1 values (!!!) of $a(x_i)$ s.t. x_i are

- $\begin{array}{l} \text{ * Proof by construction: Assume } \beta_i = a(\alpha_i) \text{ for } i \in [1,d+1] \\ \bullet \ \ a(x) = \sum_{\substack{i=1 \\ x-\alpha_{i-1}}}^{d+1} \beta_i u_i(x) \text{ where } u_i(x) = \frac{x-\alpha_1}{\alpha_i-\alpha_1} \cdot \dots \\ \frac{x-\alpha_{i-1}}{\alpha_i-\alpha_{i-1}} \frac{x-\alpha_{i+1}}{\alpha_i-\alpha_{i+1}} \cdot \dots \cdot \frac{x-\alpha_{d+1}}{\alpha_i-\alpha_{d+1}} \\ \bullet \ \ u_i(x) \text{ is well defined since } a_i a_j \neq 0 \text{ iff } i \neq j \text{ and hence} \end{array}$
- is invertible. We also naturally agree with the given values. a(x) has degree of at most d.
- Uniqueness: Assume $a \neq a' \land \in O(x^n)$ are interpolated by the same d+1 points. To show contradiction let b=a' $a \neq 0$. b must be $\in O(x^n)$ by Thm 5.31, however all d+1points are valid roots of b (contradiction), hence $b = 0 \Rightarrow$ a=a'.

9.5 Finite Fields

 $GF(p) \equiv \mathbb{Z}_p$ is a basic finite field. Recall F[x] (coefficients are field elements) is analogous to \mathbb{Z} . Now we can define

D5.34: $F[x]_{m(x)} = \{a(x) \in F[x] \mid \deg(a(x)) < d\}$

- L5.33: Congruence mod m(x) is an equivalence relation on F[x] where each equivalence class has a unique rep of deg $< \deg(m(x)).$
- L5.34: $|F[x]_{m(x)} = |F|^{\deg(m)}$
- L5.35: $F[x]_{m(x)}$ is a ring with respect to addition and multiplication $\operatorname{mod} m(x)$.
- L3.36: $a(x)b(x) \equiv 1$ iff gcd(a,b) = 1
- Thm 5.37: A ring $\widetilde{F}[x]_{m(x)}$ is a field iff m(x) is irreducible.

9.6 Error Correcting Codes

Idea:

- Let \mathcal{A} represent our alphabet. A msg of length k is $M \in$ $\mathcal{A}^k, (a_0, ..., a_{k-1}) = M.$
- Now we create a polynomial a(x) with coefficients parameterized using these values. We now evaluate n > kpoints in a(x).

• Now to reconstruct a(x) we can only need k+1 points, which means n - k + 1 can be "lost" and we should still know how to recover the msg.

Definitions:

- **D5.35:** Let's define encoding function $E: \mathcal{A}^k \to \mathcal{A}^n$: $(a_0,...,a_{k-1})\mapsto E((a_0,...,a_{k-1}))=(c_0,...,c_{n-1}).$ E is an injection because n > k and the output is called "codeword"
- **D5.36:** C = Im(E) since we have an injection think of C as the reachable space $\in \mathcal{A}^n$. This is called the set of codewords aka an error correcting code. $|C| = |\mathcal{A}|^k$
- · Hamming Distance (D5.37): Basically char diff between two equal length strings.
- D5.38: The minimum distance of an error-correcting code C denoted $d_{\min}(C)$ is the minimum Hamming distance between any two codewords. Now suppose Alice sends Bob the codeword C. The error

correcting capability can be characterized by the number of errors t which can be corrected. • **D5.40**: A decoding function *D* is t-error correcting for *E* for ANY $M \in \mathcal{A}^k$. $D((r_0, ..., r_{n-1})) = (a_0, ..., a_{k-1})$ for any input with at most t Hamming distance from E. A code C is

- t-error correcting if there $\exists E, D : C = \text{Im}(E) \land$ D is t-error correcting • Thm 5.41: A code C with $d_{\min}(C) = d$ is t-error correcting iff $d \geq 2t + 1$.
- \Leftarrow : Take any two codewords with Hamming dist of 2t +1. Now corrupt both words t times each. Now you still have a distance of 1 with which you can identify the nearest source and hence reconstruct the information completely.
- \rightarrow : If two codewords differ in $\leq 2t$ positions then there exists a word in the middle, i.e. with equal distance to both codewords, hence it's possible that t errors cannot be uniquely corrected. Hence they need to differ by 2t + 1

We call these: (n, k)-error-correcting code.

10 Proof Systems

- Syntactic objects are finite strings over some alphabet: Σ* Objects such as statements and proofs can be syntactically represented using such a string.
- Statement: $S \subseteq \Sigma^*$, Proof: $P \subseteq \Sigma^*$.
- We define a truth function $\tau: S \to \{0,1\}$ which gives us the (god given) truth of a statement. For a $s \in S$, $\tau(s)$ defines the meaning, called **semantics** of the object in S.
- An element $p \in P$ either is a valid proof for a statement $s \in$ S or not. This can be defined by the **verification function** $\varphi: S \times P \to \{0,1\}$ where $\varphi(s,p) = 1$ means p is a valid proof for s. φ needs to be efficiently computable.
- **Proof System:** A proof system is a quadruple $\Pi =$ (S, P, τ, φ)
- Soundness: $\forall s \in S \exists p \in P(\varphi(s, p) = 1 \Rightarrow \tau(s) = 1)$. Meaning if we say a statement is true using a provided proof, it actually is true.
- Completeness: $\forall s \in S(\tau(s) = 1 \Rightarrow \exists p \in P(\varphi(s, p) = 1))$. Meaning for all true statements, we can provide a proof showing such.

The goal of logic is to provide a specific proof system $\Pi =$ $(S, \bar{P}, \tau, \varphi)$ for which a very large class of mathematical statements can be expressed as an element of S.

Such a proof system can never capture all possible statements, in particular about the proof system itself (paradoxical).

In logic $s \in S$ consists of a formula and/or a set of formulas. A proof consists of syntactic derivation steps. Such steps

consist of applying syntactic rules. The set of allowed rules is called calculus

- The **syntax** of logic defines an alphabet Λ and specifies which strings in Λ^* are formulas (syntactically correct).
- The **semantics** of logic defines:
- A function **free** which takes a formula and returns a set of indices of free symbols (variables).
- An **interpretation** consists of $Z \subseteq \Lambda$, a set of possible values (domain) for each symbol in Z, and a function assigning each symbol in Z a value in its associated domain. Often (not in propositional logic) the domain is defined by a universe U.
- An interpretation is suitable for a formula F if each free variable is assigned a value.
- A function σ assigning each formula F and each interpretation A suitable for F a truth value $\sigma(F, A) \in$ $\{0,1\}$. We often write A(F) instead and call this the truth value of F under interpretation A.
- A suitable interpretatin \bar{A} for which $\sigma(F, A) =$ 1 or A(F) = 1 is called a model for F, one writes A
 multiple F. The same can be done for a set of formulas.

11.1 Satisfiability, Tautology, Consequence, Equivalence

- A formula F or a set of formulas M is **satisfiable** if there exists a model for F(or M). Unsatisfiable otherwise (denoted \perp).
- A formula F is a **tautology** or **valid** if it is true for every suitable interpretation (denoted \top).
- A formula G is a **logical consequence** of F if every interpretation suitable for both \bar{F}, G which model \acute{F} also model G, denoted $F \models G$.
- F, G are **equivalent** $(F \equiv G)$ if for every interpretation suitable for both F, G they yield the same truth value for $F, G, F \equiv G \Leftrightarrow F \models G \text{ and } G \models F.$
- A set *M* of formulas can be interpreted as the conjunction (AND) of all formulas.

11.1.1 Logical Consequence vs Unsatisfiability

- **L6.2**: F is tautology iff $\neg F$ is unsat.
- **L6.3**: The following are equivalent:
- 1. $\{F_1, ..., F_k\} \models G$
- 2. $(F_1 \wedge ... \wedge F_k) \to G$ is a tautology
- 3. $\{F_1, ..., F_k, \neg G\}$ is unsat.

11.2 Logical Operators

- $A((F \land G)) = 1 \text{ iff } A(F) = 1 \text{ and } A(G) = 1$
- $A((F \vee G)) = 1$ iff A(F) = 1 or A(G) = 1
- $A(\neg F) = 1 \text{ iff } A(F) = 0$

11.3 Hilbert-Style Calculi

- **D6.17:** A derivation rule or inference rule $\{F_1, ..., F_k\} \vdash$ G is a syntactic step.
- **D6.19:** A **logical calculus** *K* is a finite set of dervation rules $K = \{R_1, ..., R_m\}$.
- **6.20:** A **derivation** of a formula G from a set M in calculus K is finite sequence of derivation rules applied on Mleading to G. We write $M \vdash_{\kappa} G$ if there is such a derivation.

11.4 Soundness and Completeness of a Calculus

D6.22: A calculus K is **sound** if for every set M and every $F: M \vdash F \Rightarrow M \models F$. Meaning if F is derived from M then F is a $\log C$ is complete if $M \models F \stackrel{\smile}{\Rightarrow} M \vdash_{\mathcal{K}} F.$

11.5 Normal Forms

11.5.1 Prenex Normal Form

All quantifiers are at the beginning. Every formula in predicate logic can be converted into PNF form. Build a tree and let the quantifiers "bubble up".

11.5.2 Skolem Normal Form

The SNF **doesn't** preserve logical equivalence but preservers satisfiability. We want to eliminate existance quantifiers. Process:

- 1. First convert to PNF.
- 2. Eliminate existance quantifiers. If we have $\forall a, b, c \exists y$ then we replace y by f(a, b, c).

11.5.3 Conjunctive Normal Form

The CNF of a formula is the conjunction (AND) of disjunctions (OR) of literals (= x or $\neg x$). $F = (a \lor b \lor c) \land$ $(a \lor \neg b \lor \neg c) \land \dots$ Construct by making truth table. For each row evaluating to 0, take the disjunct **negation** of that row $(A = 0, B = 1 \equiv 0 \Rightarrow (\neg A \lor B)).$

11.5.4 Disjunctive Normal Form

The DNF of a formula is the disjunction (OR) of conjunctions (AND) of literals. Construct by looking at rows evaluating to 1 and take those $(A = 0, B = 1 \equiv 1 \Rightarrow (\neg A \land B))$.

11.6 Resolution Calculus

- D6.28: A clause is a set of literals.
- **D6.29:** The set of clauses for a formula in CNF $F = ((a \lor a))$ $\dots \vee f) \wedge \dots \wedge (x \vee \dots z)$ is K(F) = $\{\{a,...f\},...,\{x,...,z\}\}$. For sets M we unionize the clauses of the individual formulas.
- A clause K is **resolvent** of K_1, K_2 if there is a literal L s.t. $L \in K_1 \land \neg L \in K_2 \Rightarrow K = (K_1 \setminus \{L\}) \cup (K_2 \setminus \{\neg L\})$
- Unsat: If we can derive the empty clause denoted {} from a clause set using the resolution rule, then the original clause set is unsatisfiable.
- Empty clause set: An empty set of clauses is always satisfiable and hence a tautology and also always false and unsatisfiable (both vacuously)

11.7 Predicate Logic (First-order Logic)

11.7.1 Syntax

- Variable symbol x_i Function symbol $f_i^{(k)}$
- Predicate symbols $P_i^{(k)}$
- Term, defined recursively: 1) Variable is a term 2) If $t_1, ..., t_k$ are terms then $f(t_1,...,t_k)$ is a term.
- Formula, defined recursively: 1) $P(t_1,...,t_k)$ is a formula. 2) F and G are formulas then $\neg F$, $(F \land G)$, $(F \lor G)$ are each formulas. 3) If F is a formula, then $\forall x_i F, \exists x_i F$ are formulas.

11.7.2 Semantics

The interpretation is a tuple $A = (U, \varphi, \psi, \xi)$.

- U is a universe. φ assigns each function symbol a semantic function. ψ assigns each predicate symbol a predicate function. ξ assigns each variable symbol a value.
- We write U^A or f^A or P^A or x^A instead.
- D6.36:
- The value A(t) of term t is defined as follows:
- If t is a variable = x_i , then $A(t) = x_i^A$ If t is of the form $f(t_1, ...t_k)$, then $A(t) = f^A(A(t_1), ..., A(t_k))$.
- The truth value of a formula F is defined recursively by
- If F is of the form $P(t_1,...,t_k)$ then A(f)= $P^{A}(A(t_1),...,A(t_k))$

Discrete Maths HS24 / cs.shivi.io

- If F is of the form $\forall xG$ or $\exists xG$ then let $A_{[x\to u]}$ for $u\in$ U be the same structure as A except x^A is overwritten
- $\bullet \ A(\forall xG) = \begin{cases} 1 \text{ if } A_{[x \to u]}(G) = 1 \text{ for all } u \in U \\ 0 \text{ else} \end{cases}$ $\bullet \ A(\exists xG) = \begin{cases} 1 \text{ if } A_{[x \to u]}(G) = 1 \text{ for some } u \in U \\ 0 \text{ else} \end{cases}$

L6.7: For any formulas F. G and H where x doesn't occur free in H we have:

- 1. $\neg(\forall xF) \equiv \exists x \neg F$
- 2. $\neg(\exists xF) \equiv \forall x\neg F$
- 3. $(\forall xF) \land (\forall xG) \equiv \forall x(F \land G)$
- 4. $(\exists xF) \lor (\exists xG) \equiv \exists x(F \lor G)$
- 5. $\forall x \forall y F \equiv \forall y \forall x F$
- 6. $\exists x \exists y F \equiv \exists y \exists x F$
- 7. $(\forall x F) \land H \equiv \forall x (F \land H)$
- 8. $(\forall xF) \lor H \equiv \forall x(F \lor H)$
- 9. $(\exists x F) \land H \equiv \exists x (F \land H)$
- 10. $(\exists x F) \lor H \equiv \exists x (F \lor H)$

L6.8: If one replaces a subformula G of a formula F by an equivalent to G formula H, then the resulting formula is equivalent to F.

11.7.2.1 Substitution of Bound Variables

L6.9: For a formula G in which y doesn't occur:

- $\forall xG \equiv \forall yG[x/y]$
- $\exists xG \equiv \exists yG[x/y]$

12 Helpful Stuff

$\varphi(n)$ for $1 \le n \le 100$										
+	1	2	3	4	5	6	7	8	9	10
0	1	1	2	2	4	2	6	4	6	4
10	10	4	12	6	8	8	16	6	18	8
20	12	10	22	8	20	12	18	12	28	8
30	30	16	20	16	24	12	36	18	24	16
40	40	12	42	20	24	22	46	16	42	20
50	32	24	52	18	40	24	36	28	58	16
60	60	30	36	32	48	20	66	32	44	24
70	70	24	72	36	40	36	60	24	78	32
80	54	40	82	24	64	42	56	40	88	24
90	72	44	60	46	72	32	96	42	60	40

For $\mathbb{Z}_a \times \mathbb{Z}_b$ is cyclic iff gcd(a, b) = 1.