

Weierstraß Institut für Angewandte Analysis und Stochastik

20. Vorlesung: Hypothesentests: χ^2 - und t-Test

Nikolas Tapia

27. Juni 2024, Stochastik für Informatik(er)

Hypothesentests

Definition 20.1

Ein **Hypothesentest** ist ein statistisches Verfahren, um eine Aussage über einen Parameter einer Grundgesamtheit zu treffen.

- Nullhypothese H₀: Annahme, die widerlegt werden soll.
- Alternativhypothese H₁: Annahme, die bestätigt werden soll.

Definition 20.2

Ein **Signifikanzniveau** α ist die Wahrscheinlichkeit, mit der die Nullhypothese zu Unrecht abgelehnt wird (Fehler 1. Art).

Art von Hypothesentests

- Einseitiger Test: Die Nullhypothese ist entweder
 - Linksseitig: $H_0: \theta \geq \theta_0$ oder
 - Rechtsseitig: $H_0: \theta \leq \theta_0$.
- Beidseitiger Test: Die Nullhypotese ist $H_0: \theta = \theta_0$.

Die zugehörige Ablehnungsbereiche sind

- Einseitig:
 - Linksseitig: $\{T \leq t_{\alpha}\}$
 - Rechtsseitig: $\{T \geq t_{\alpha}\}$
- Beidseitig: $\{T \leq t_{\alpha/2}\} \cup \{T \geq t_{1-\alpha/2}\}$

p-Wert

Definition 20.3

Der *p***-Wert** ist die Wahrscheinlichkeit, unter der Annahme, dass die Nullhypothese wahr ist, ein Ergebnis zu erhalten, das mindestens so extrem ist wie das beobachtete:

$$p = \mathbb{P}(T \geq t \mid H_0)$$
, usw.

- Ist der p-Wert kleiner als das Signifikanzniveau α , wird die Nullhypothese abgelehnt.
- Ist der p-Wert größer als α , wird die Nullhypothese nicht abgelehnt.

Einseitiger t-Test

Theorem 20.1

Sei X_1, \ldots, X_n eine Stichprobe einer normalverteilten Grundgesamtheit mit unbekanntem Erwartungswert und unbekannter Varianz. Dann ist

$$T = \frac{\bar{\mu}(X_1,\ldots,X_n) - \mu_0}{\sqrt{\bar{\sigma}^2(X_1,\ldots,X_n)/n}} \sim t_{n-1}$$

eine t-verteilte Zufallsvariable mit n-1 Freiheitsgraden.

Einseitiger t-Test

Wir testen die Nullhypothese $H_0: \mu \geq \mu_0$ oder $H_0: \mu \leq \mu_0$.

Aussage 20.1

Der Ablehnungsbereich für einen einseitigen Test auf dem Signifikanzniveau α ist

$$\{t \le t_{n-1,\alpha}\}$$
 oder $\{t \ge t_{n-1,1-\alpha}\}$

Beidseitiger t-Test

Wir testen die Nullhypothese H_0 : $\mu = \mu_0$.

Aussage 20.2

Der Ablehnungsbereich für einen beidseitigen Test zum Signifikanzniveau α ist

t-Test für zwei Stichproben

Seien X_1, \ldots, X_n und Y_1, \ldots, Y_m zwei Stichproben von (annähernd) normalverteilte Zufallasvariablen mit unbekannten Erwartungswerten, sodass $\mathbb{V}(X_1) = \mathbb{V}(Y_1)$ gilt. Wir stellen die Nullhypothese

 $H_0: \mu_X = \mu_Y$

wobei

Vorgehen

• Berechnung der Teststatistik

$$T = \sqrt{\frac{nm}{n+m}} \frac{\overline{\mu}(X_1, \dots, X_n) - \overline{\mu}(Y_1, \dots, Y_m)}{S} \sim t_{n+m-2}, \quad \mathbf{z}$$

wobei

$$S = \sqrt{\frac{(n-1)\overline{\sigma}_n^2(X_1, \dots, X_n) + (m-1)\overline{\sigma}_m^2(Y_1, \dots, Y_m)}{n+m-2}}.$$

• Vergl. der Teststatistik: Ablehnungsbereich $\{|T| \ge t_{n+m-2,1-\alpha/2}\}$

 χ^2 -Test auf Verteilung mit bekannten Parameter

Sei x_1, \dots, x_n eine Stichprobe einer Zufallsvariable. Wir aufstellen die Nullhypothese

Vorgehen

$$X_i \sim \mathcal{N}(0, 1), X_i \sim \mathcal{B}_{inom}(n, p)$$
• Berechnung der Teststatisti

(also (ale)Häufigkeiten

$$N_i = \#\{x_j \in A_i\}$$
. empirisches Vergleich der Teststatistik mit dem kritischen Wert: Ablehnungsbereich

ykeiten unter H_0 : Theorefisches $\{T \geq \chi^2_{k-1,1-\alpha}\}.$ $F_i = n \cdot \mathbb{P}(X \in A_i). \quad \text{Histogram} \quad \iff \mathcal{P} \leq \infty.$ Häufigkeiten unter H_0 :

2

 χ^{2} -Anpassungstest mit unbekannten Parameter

Das Vorgehen ist analog zum χ^2 -Test auf Verteilung mit bekannten Parameter, nur dass die Teststatistik

$$T = \sum_{i=1}^{k} \frac{(N_i - F_i)^2}{F_i} \sim \chi^2_{k-m-1}$$

wobei \emph{m} die Anzahl der geschätzten Parameter ist.

χ^2 -Unabhängigkeitstest

Seien (x_1, \ldots, x_n) und (y_1, \ldots, y_n) Stichproben zwei Zufallsvariablen. Wir testen die Nullhypothese H_0 : Die Variablen sind unabhängig.

Vorgehen

Vorgehen

→ Gruppieren der Daten in Klassen, A₁,..., A_r und B₁,..., B_c, und bestimmen der empirischen Häufigkeiten (xe, ye) & AixB;

 $N_{ii} = \#\{x_k \in A_i, y_k \in B_i\}, \quad i = 1, ..., r, j = 1, ..., c.$

Bestimmung der Randhäufigkeiten

 χ^2 -Unabhängigkeitstest

Bestimmung der theoretischen Häufigkeiten unter H_0 : \rightarrow

$$F_{ij}=rac{N_{iullet}N_{ullet j}}{n}.$$

Berechnung der Teststatistik

$$T = \sum_{i,j} \frac{(N_{ij} - F_{ij})^2}{F_{ij}} \sim \chi^2_{(r-1)(c-1)}.$$

• Vergleich der Teststatistik mit dem kritischen Wert: Ablehnungsbereich

$$\{T \geq \chi^2_{(r-1)(c-1),1-\alpha}\}.$$

