

First-order differential criterion of convexity

The differentiable function f(x) defined on the convex set

$$S \subseteq \mathbb{R}^n$$
 is convex if and only if $\forall x, y \in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x)$$

Let $y=x+\Delta x$, then the criterion will become more tractable:

$$f(x + \Delta x) \ge f(x) + \nabla f^{T}(x) \Delta x$$

Figure 1: Convex function is greater or equal than Taylor linear approximation at any point

Second-order differential criterion of convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$\nabla^2 f(x) \succeq 0$$

In other words, $\forall y \in \mathbb{R}^n$:

$$\langle y, \nabla^2 f(x)y \rangle \ge 0$$

• Definition (Jensen's inequality)

- Definition (Jensen's inequality)
- Differential criteria of convexity

- Definition (Jensen's inequality)
- Differential criteria of convexity
- Operations, that preserve convexity

େ ଚେ

- Definition (Jensen's inequality)
- Differential criteria of convexity
- Operations, that preserve convexity
- Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

♥ ೧ ⊘

- Definition (Jensen's inequality)
- Differential criteria of convexity
- Operations, that preserve convexity
- Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

Connection with sublevel set

If f(x) - is a convex function defined on the convex set $S \subseteq \mathbb{R}^n$, then for any β sublevel set \mathcal{L}_{β} is convex.

The function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is closed if and only if for any β sublevel set \mathcal{L}_{β} is closed.

♥ ი ⊘

- Definition (Jensen's inequality)
- Differential criteria of convexity
- Operations, that preserve convexity
- Connection with epigraph

The function is convex if and only if its epigraph is a convex set.

Connection with sublevel set

If f(x) - is a convex function defined on the convex set $S \subseteq \mathbb{R}^n$, then for any β sublevel set \mathcal{L}_{β} is convex.

The function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is closed if and only if for any β sublevel set \mathcal{L}_{β} is closed.

Reduction to a line

 $f:S \to \mathbb{R}$ is convex if and only if S is a convex set and the function g(t)=f(x+tv) defined on $\{t\mid x+tv\in S\}$ is convex for any $x\in S, v\in \mathbb{R}^n$, which allows checking convexity of the scalar function to establish convexity of the vector function.

େ ଚେଡ

Example: norm cone

Let a norm $\|\cdot\|$ be defined in the space U. Consider the set:

$$K := \{(x, t) \in U \times \mathbb{R}^+ : ||x|| \le t\}$$

which represents the epigraph of the function $x \mapsto ||x||$. This set is called the cone norm. According to the statement above, the set K is convex. \P Code for the figures

Strong convexity

f(x), defined on the convex set $S \subseteq \mathbb{R}^n$, is called μ -strongly

convex (strongly convex) on
$$S$$
, if:

 $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) - \frac{\mu}{2}\lambda(1-\lambda)\|x_1 - x_2\|^2$ for any $x_1, x_2 \in S$ and $0 \le \lambda \le 1$ for some $\mu > 0$.

Figure 3: Strongly convex function is greater or equal than Taylor quadratic approximation at any point

First-order differential criterion of strong convexity

Differentiable f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is μ -strongly convex if and only if $\forall x, y \in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x) + \frac{\mu}{2} ||y - x||^{2}$$

First-order differential criterion of strong convexity

Differentiable f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is μ -strongly convex if and only if $\forall x, y \in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x) + \frac{\mu}{2}||y - x||^{2}$$

Let $y = x + \Delta x$, then the criterion will become more tractable:

$$f(x + \Delta x) \ge f(x) + \nabla f^{T}(x)\Delta x + \frac{\mu}{2} \|\Delta x\|^{2}$$

 $f \to \min_{x,y,z}$ Strong convexity criteria

First-order differential criterion of strong convexity

Differentiable f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is μ -strongly convex if and only if $\forall x, y \in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x) + \frac{\mu}{2} ||y - x||^{2}$$

Let $y = x + \Delta x$, then the criterion will become more tractable:

$$f(x + \Delta x) \ge f(x) + \nabla f^{T}(x)\Delta x + \frac{\mu}{2} \|\Delta x\|^{2}$$

i Theorem

Let f(x) be a differentiable function on a convex set $X \subseteq \mathbb{R}^n$. Then f(x) is strongly convex on X with a constant $\mu > 0$ if and only if

$$f(x) - f(x_0) \ge \langle \nabla f(x_0), x - x_0 \rangle + \frac{\mu}{2} ||x - x_0||^2$$

for all $x, x_0 \in X$.

Proof of first-order differential criterion of strong convexity

Necessity: Let $0 < \lambda \le 1$. According to the definition of a strongly convex function,

$$f(\lambda x + (1 - \lambda)x_0) \le \lambda f(x) + (1 - \lambda)f(x_0) - \frac{\mu}{2}\lambda(1 - \lambda)\|x - x_0\|^2$$

or equivalently,

$$f(x) - f(x_0) - \frac{\mu}{2} (1 - \lambda) ||x - x_0||^2 \ge \frac{1}{\lambda} [f(\lambda x + (1 - \lambda)x_0) - f(x_0)] =$$

$$= \frac{1}{\lambda} [f(x_0 + \lambda(x - x_0)) - f(x_0)] = \frac{1}{\lambda} [\lambda \langle \nabla f(x_0), x - x_0 \rangle + o(\lambda)] =$$

$$= \langle \nabla f(x_0), x - x_0 \rangle + \frac{o(\lambda)}{\lambda}.$$

Thus, taking the limit as $\lambda \downarrow 0$, we arrive at the initial statement.

Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all $x, x_0 \in X$. Take $x_0 = \lambda x_1 + (1 - \lambda)x_2$, where $x_1, x_2 \in X$, $0 \le \lambda \le 1$. According to the inequality, the following inequalities hold:

$$f(x_1) - f(x_0) \ge \langle \nabla f(x_0), x_1 - x_0 \rangle + \frac{\mu}{2} ||x_1 - x_0||^2,$$

 $f(x_2) - f(x_0) \ge \langle \nabla f(x_0), x_2 - x_0 \rangle + \frac{\mu}{2} ||x_2 - x_0||^2.$

Multiplying the first inequality by λ and the second by $1-\lambda$ and adding them, considering that

$$x_1-x_0=(1-\lambda)(x_1-x_2),\quad x_2-x_0=\lambda(x_2-x_1),$$
 and $\lambda(1-\lambda)^2+\lambda^2(1-\lambda)=\lambda(1-\lambda),$ we get

–
$$\lambda$$
), we get

 $f \to \min_{x,y,z}$ Strong convexity criteria

$$\lambda f(x_1) + (1 - \lambda)f(x_2) - f(x_0) - \frac{\mu}{2}\lambda(1 - \lambda)\|x_1 - x_2\|^2 \ge \langle \nabla f(x_0), \lambda x_1 + (1 - \lambda)x_2 - x_0 \rangle = 0.$$

Thus, inequality from the definition of a strongly convex function is satisfied. It is important to mention, that $\mu=0$ stands for the convex case and corresponding differential criterion.

Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is called μ -strongly convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$\nabla^2 f(x) \succeq \mu I$$

In other words:

$$\langle y, \nabla^2 f(x)y \rangle \ge \mu \|y\|^2$$

Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set $S \subseteq \mathbb{R}^n$ is called μ -strongly convex if and only if $\forall x \in \mathbf{int}(S) \neq \emptyset$:

$$\nabla^2 f(x) \succeq \mu I$$

In other words:

$$\langle y, \nabla^2 f(x)y \rangle \ge \mu \|y\|^2$$

i Theorem

Let $X \subseteq \mathbb{R}^n$ be a convex set, with int $X \neq \emptyset$. Furthermore, let f(x) be a twice continuously differentiable function on X. Then f(x) is strongly convex on X with a constant $\mu > 0$ if and only if

$$\langle y, \nabla^2 f(x)y \rangle \ge \mu \|y\|^2$$

for all $x \in X$ and $y \in \mathbb{R}^n$.

Proof of second-order differential criterion of strong convexity

The target inequality is trivial when $y = \mathbf{0}_n$, hence we assume $y \neq \mathbf{0}_n$.

Necessity: Assume initially that x is an interior point of X. Then $x + \alpha y \in X$ for all $y \in \mathbb{R}^n$ and sufficiently small α . Since f(x) is twice differentiable,

$$f(x + \alpha y) = f(x) + \alpha \langle \nabla f(x), y \rangle + \frac{\alpha^2}{2} \langle y, \nabla^2 f(x) y \rangle + o(\alpha^2).$$

Based on the first order criterion of strong convexity, we have

$$\frac{\alpha^2}{2}\langle y, \nabla^2 f(x)y \rangle + o(\alpha^2) = f(x + \alpha y) - f(x) - \alpha \langle \nabla f(x), y \rangle \ge \frac{\mu}{2} \alpha^2 ||y||^2.$$

This inequality reduces to the target inequality after dividing both sides by α^2 and taking the limit as $\alpha \downarrow 0$.

If $x \in X$ but $x \notin \text{int } X$ consider a sequence f(x) such that $x \in \text{int } X$ and $x \mapsto x$ as $k \mapsto \infty$. Then we arr

If $x \in X$ but $x \notin \text{int} X$, consider a sequence $\{x_k\}$ such that $x_k \in \text{int} X$ and $x_k \to x$ as $k \to \infty$. Then, we arrive at the target inequality after taking the limit.

Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor's formula with the Lagrange remainder and the target inequality, we obtain for $x + y \in X$:

$$f(x+y) - f(x) - \langle \nabla f(x), y \rangle = \frac{1}{2} \langle y, \nabla^2 f(x+\alpha y)y \rangle \ge \frac{\mu}{2} ||y||^2,$$

where $0 \le \alpha \le 1$. Therefore,

$$f(x+y) - f(x) \ge \langle \nabla f(x), y \rangle + \frac{\mu}{2} ||y||^2.$$

Consequently, by the first order criterion of strong convexity, the function f(x) is strongly convex with a constant μ . It is important to mention, that $\mu = 0$ stands for the convex case and corresponding differential criterion.

 $f \to \min_{x,y,z}$ Strong convexity criteria

Convex and concave function

Show, that $f(x) = c^{\top}x + b$ is convex and concave.

Simplest strongly convex function

Show, that $f(x) = x^{\top} A x$, where $A \succeq 0$ - is convex on \mathbb{R}^n . Is it strongly convex?

Convexity and continuity

Let f(x) - be a convex function on a convex set $S \subseteq \mathbb{R}^n$. Then f(x) is continuous $\forall x \in ri(S)$.

i Proper convex function

Function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be **proper convex function** if it never takes on the value $-\infty$ and not identically equal to ∞ .

Indicator function

$$\delta_S(x) = \begin{cases} \infty, & x \in S, \\ 0, & x \notin S, \end{cases}$$

is a proper convex function.

^aPlease, read here about difference between interior and relative interior.

Convexity and continuity

Let f(x) - be a convex function on a convex set $S \subseteq \mathbb{R}^n$. Then f(x) is continuous $\forall x \in \mathbf{ri}(S)$.

i Proper convex function

Function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be **proper convex** function if it never takes on the value $-\infty$ and not identically equal to ∞ .

Closed function

Function $f:\mathbb{R}^n \to \mathbb{R}$ is said to be **closed** if for each $\alpha \in \mathbb{R}$, the sublevel set is a closed set. Equivalently, if the epigraph is closed, then the function f is closed.

i Indicator function

$$\delta_S(x) = \begin{cases} \infty, & x \in S, \\ 0, & x \notin S, \end{cases}$$
 is a proper convex function.

^aPlease, read here about difference between interior and relative interior.

Figure 4: The concept of a closed function is introduced to avoid such breaches at the border.

Facts about convexity

• f(x) is called (strictly, strongly) concave, if the function -f(x) - is (strictly, strongly) convex.

Facts about convexity

- f(x) is called (strictly, strongly) concave, if the function -f(x) is (strictly, strongly) convex.
- Jensen's inequality for the convex functions:

$$f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

for $\alpha_i \geq 0$; $\sum_{i=1}^n \alpha_i = 1$ (probability simplex)

For the infinite dimension case:

$$f\left(\int\limits_{S} xp(x)dx\right) \le \int\limits_{S} f(x)p(x)dx$$

If the integrals exist and $p(x) \ge 0$, $\int p(x)dx = 1$.

 $f \to \min_{x,y,z}$ Strong convexity criteria

Facts about convexity

- f(x) is called (strictly, strongly) concave, if the function -f(x) is (strictly, strongly) convex.
- Jensen's inequality for the convex functions:

$$f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

for $\alpha_i \geq 0$; $\sum_{i=1}^n \alpha_i = 1$ (probability simplex)

For the infinite dimension case:

$$f\left(\int\limits_{S} xp(x)dx\right) \le \int\limits_{S} f(x)p(x)dx$$

If the integrals exist and $p(x) \geq 0$, $\int p(x)dx = 1$.

• If the function f(x) and the set S are convex, then any local minimum $x^* = \arg\min_{x \in S} f(x)$ will be the global one. Strong convexity guarantees the uniqueness of the solution.

Operations that preserve convexity • Non-negative sum of the convex functions:

$$\alpha f(x) + \beta g(x), (\alpha \ge 0, \beta \ge 0).$$

Figure 5: Pointwise maximum (supremum) of convex functions is convex

Operations that preserve convexity Non-negative sum of the convex functions:

- $\alpha f(x) + \beta g(x), (\alpha \ge 0, \beta \ge 0).$
- Composition with affine function f(Ax + b) is convex, if f(x) is convex.

Figure 5: Pointwise maximum (supremum) of convex functions is convex

Operations that preserve convexity Non-negative sum of the convex functions:

- $\alpha f(x) + \beta g(x), (\alpha > 0, \beta > 0).$
- Composition with affine function f(Ax + b) is convex, if f(x) is convex.
- Pointwise maximum (supremum) of any number of functions: If $f_1(x), \ldots, f_m(x)$ are convex, then $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ is convex.

Figure 5: Pointwise maximum (supremum) of convex functions is convex

Operations that preserve convexity

- Non-negative sum of the convex functions: $\alpha f(x) + \beta q(x), (\alpha > 0, \beta > 0).$
- Composition with affine function f(Ax + b) is convex, if f(x) is convex.
- Pointwise maximum (supremum) of any number of functions: If $f_1(x), \ldots, f_m(x)$ are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.
- If f(x,y) is convex on x for any $y \in Y$: $g(x) = \sup_{y \in Y} f(x,y)$ is convex.

Figure 5: Pointwise maximum (supremum) of convex functions is convex

Operations that preserve convexity

- Non-negative sum of the convex functions: $\alpha f(x) + \beta g(x), (\alpha > 0, \beta > 0).$
- Composition with affine function f(Ax + b) is convex, if f(x) is convex.
- Pointwise maximum (supremum) of any number of functions: If $f_1(x), \ldots, f_m(x)$ are convex, then $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ is convex.
- If f(x,y) is convex on x for any $y \in Y$: $g(x) = \sup f(x, y)$ is convex.
- If f(x) is convex on S, then g(x,t) = tf(x/t) is convex with $x/t \in S, t > 0$.

Figure 5: Pointwise maximum (supremum) of convex functions is convex

Operations that preserve convexity

- Non-negative sum of the convex functions: $\alpha f(x) + \beta g(x), (\alpha > 0, \beta > 0).$
- Composition with affine function f(Ax + b) is convex, if f(x) is convex.
- Pointwise maximum (supremum) of any number of functions: If $f_1(x), \ldots, f_m(x)$ are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.
- If f(x,y) is convex on x for any $y \in Y$: $g(x) = \sup_{x \in Y} f(x,y)$ is convex.
- If f(x) is convex on S, then g(x,t)=tf(x/t) is convex with $x/t \in S, t>0$.
- Let $f_1: S_1 \to \mathbb{R}$ and $f_2: S_2 \to \mathbb{R}$, where range $(f_1) \subseteq S_2$. If f_1 and f_2 are convex, and f_2 is increasing, then $f_2 \circ f_1$ is convex on S_1 .

Figure 5: Pointwise maximum (supremum) of convex functions is convex

Maximum eigenvalue of a matrix is a convex function

Show, that $f(A) = \lambda_{max}(A)$ - is convex, if $A \in S^n$.

Other forms of convexity

• Log-convexity: $\log f$ is convex; Log convexity implies convexity.

- Log-convexity: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; **not** closed under addition!

- ullet Log-convexity: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; **not** closed under addition!
- Exponential convexity: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n

- Log-convexity: $\log f$ is convex; Log convexity implies convexity.
- ullet Log-concavity: $\log f$ concave; **not** closed under addition!
- Exponential convexity: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- Operator convexity: $f(\lambda X + (1 \lambda)Y)$

- Log-convexity: $\log f$ is convex; Log convexity implies convexity.
- Log-concavity: $\log f$ concave; **not** closed under addition!
- Exponential convexity: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- Operator convexity: $f(\lambda X + (1 \lambda)Y)$
- Quasiconvexity: $f(\lambda x + (1 \lambda)y) \le \max\{f(x), f(y)\}$

- ullet Log-convexity: $\log f$ is convex; Log convexity implies convexity.
- ullet Log-concavity: $\log f$ concave; **not** closed under addition!
- Exponential convexity: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- Operator convexity: $f(\lambda X + (1 \lambda)Y)$
- Quasiconvexity: $f(\lambda x + (1 \lambda)y) \le \max\{f(x), f(y)\}$
- Pseudoconvexity: $\langle \nabla f(y), x-y \rangle \geq 0 \longrightarrow f(x) \geq f(y)$

- ullet Log-convexity: $\log f$ is convex; Log convexity implies convexity.
- ullet Log-concavity: $\log f$ concave; **not** closed under addition!
- Exponential convexity: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- Operator convexity: $f(\lambda X + (1 \lambda)Y)$
- Quasiconvexity: $f(\lambda x + (1 \lambda)y) \le \max\{f(x), f(y)\}$
- Pseudoconvexity: $\langle \nabla f(y), x y \rangle \ge 0 \longrightarrow f(x) \ge f(y)$
- Discrete convexity: $f: \mathbb{Z}^n \to \mathbb{Z}$; "convexity + matroid theory."

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \forall x$$

It is interesting, that Gradient Descent converges linearly under this condition (weaker, then strong convexity).

The following functions satisfy the PL-condition, but are not convex. **\PL**link to the code

$$f(x) = x^2 + 3\sin^2(x)$$

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without convexity

PL inequality holds if the following condition is satisfied for some $\mu > 0$,

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*) \forall x$$

It is interesting, that Gradient Descent converges linearly under this condition (weaker, then strong convexity).

The following functions satisfy the PL-condition, but are not convex. Link to the code

$$f(x) = x^2 + 3\sin^2(x)$$

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Convexity in ML

Linear Least Squares aka Linear Regression

Figure 8: Illustration

In a least-squares, or linear regression, problem, we have measurements $X \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$ and seek a vector $\theta \in \mathbb{R}^n$ such that $X\theta$ is close to y. Closeness is defined as the sum of the squared differences:

$$\sum_{i=1}^{m} (x_i^{\top} \theta - y_i)^2 = ||X\theta - y||_2^2 \to \min_{\theta \in \mathbb{R}^n}$$

For example, we might have a dataset of m users, each represented by n features. Each row x_*^\top of X is the features for user i, while the corresponding entry y_i of y is the measurement we want to predict from x_i^{\top} , such as ad spending. The prediction is given by $x_i^{\top} \theta$.

Linear Least Squares aka Linear Regression ¹

1. Is this problem convex? Strongly convex?

Linear Least Squares aka Linear Regression ¹

- 1. Is this problem convex? Strongly convex?
- 2. What do you think about convergence of Gradient Descent for this problem?

¹Take a look at the **♥**example of real-world data linear least squares problem

l_2 -regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore strong convexity of the objective function by adding an l_2 -penality, also known as Tikhonov regularization, l_2 -regularization, or weight decay.

$$||X\theta - y||_2^2 + \frac{\mu}{2} ||\theta||_2^2 \to \min_{\theta \in \mathbb{R}^n}$$

Note: With this modification the objective is μ -strongly convex again.

Take a look at the **?**code

⊕ ი €

Most important difference between convexity and strong convexity

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \frac{\mu}{2} \|x\|_2^2 \to \min_{x \in \mathbb{R}^n}, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Convex least squares regression. m=50. n=100. mu=0.

Figure 9: Convex problem does not have convergence in domain

Most important difference between convexity and strong convexity

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \frac{\mu}{2} \|x\|_2^2 \to \min_{x \in \mathbb{R}^n}, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Strongly convex least squares regression. $m=50. \ n=100. \ mu=0.1.$

Figure 10: But if you add even small amount of regularization, you will ensure convergence in domain

♥ ೧ Ø

Most important difference between convexity and strong convexity

$$f(x) = \frac{1}{2m} \|Ax - b\|_2^2 + \frac{\mu}{2} \|x\|_2^2 \to \min_{x \in \mathbb{R}^n}, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Strongly convex least squares regression. m=100. n=50. mu=0.

Figure 11: Another way to ensure convergence in the previous problem is to switch the dimension values

⊕ ດ **ø**

You have to have strong convexity (or PL) to ensure convergence with a high precision

Figure 12: Only small precision is achievable with sublinear convergence

You have to have strong convexity (or PL) to ensure convergence with a high precision

Figure 13: Strong convexity ensures linear convergence

Convex optimization problem

Figure 14: The idea behind the definition of a convex optimization problem

Note, that there is an agreement in notation of mathematical programming. The problems of the following type are called **Convex optimization problem**:

$$f_0(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $f_i(x) \leq 0, \ i = 1, \dots, m$ (COP)
 $Ax = b,$

where all the functions $f_0(x), f_1(x), \ldots, f_m(x)$ are convex and all the equality constraints are affine. It sounds a bit strange, but not all convex problems are convex optimization problems.

$$f_0(x) \to \min_{x \in S},$$
 (CP)

where $f_0(x)$ is a convex function, defined on the convex set S. The necessity of affine equality constraint is essential.

⊕ O

Conjugate sets

Conjugate sets

Conjugate set

Let $S \subseteq \mathbb{R}^n$ be an arbitrary non-empty set. Then its conjugate set is defined as:

$$S^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S \}$$

A set S^{**} is called double conjugate to a set S if:

$$S^{**} = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S^* \}$$

• The sets S_1 and S_2 are called **inter-conjugate** if $S_1^* = S_2, S_2^* = S_1$.

Figure 15: Convex sets may be described in a dual way through the elements of the set and through the set of hyperplanes supporting it

Conjugate sets

Conjugate set

Let $S \subseteq \mathbb{R}^n$ be an arbitrary non-empty set. Then its conjugate set is defined as:

$$S^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S \}$$

A set S^{**} is called double conjugate to a set S if:

$$S^{**} = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S^* \}$$

- The sets S_1 and S_2 are called **inter-conjugate** if $S_1^* = S_2, S_2^* = S_1$.
- A set S is called **self-conjugate** if $S^* = S$.

Figure 15: Convex sets may be described in a dual way through the elements of the set and through the set of hyperplanes supporting it

₩

• A conjugate set is always closed, convex, and contains zero.

Conjugate sets

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

• If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$
- If S is closed, convex, and includes 0, then $S^{**}=S$.

- A conjugate set is always closed, convex, and contains zero.
- For an arbitrary set $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- If $S_1 \subseteq S_2$, then $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$
- If S is closed, convex, and includes 0, then $S^{**}=S$.
- $S^* = (\overline{S})^*$.

i Example

Prove that $S^* = (\overline{S})^*$.

i Example

Prove that $S^* = (\overline{S})^*$.

• $S \subset \overline{S} \to (\overline{S})^* \subset S^*$.

i Example

Prove that $S^* = (\overline{S})^*$.

- $S \subset \overline{S} \to (\overline{S})^* \subset S^*$.
- Let $p \in S^*$ and $x_0 \in \overline{S}, x_0 = \lim_{k \to \infty} x_k$. Then by virtue of the continuity of the function $f(x) = p^T x$, we have:

$$p^T x_k \geq -1 \rightarrow p^T x_0 \geq -1$$
. So $p \in (\overline{S})^*$, hence $S^* \subset (\overline{S})^*$.

i Example

Prove that $(\mathbf{conv}(S))^* = S^*$.

Conjugate sets

i Example

Prove that $(\mathbf{conv}(S))^* = S^*$.

• $S \subset \mathbf{conv}(S) \to (\mathbf{conv}(S))^* \subset S^*$.

i Example

Prove that $(\mathbf{conv}(S))^* = S^*$.

- $S \subset \mathbf{conv}(S) \to (\mathbf{conv}(S))^* \subset S^*$.
- Let $p \in S^*$, $x_0 \in \mathbf{conv}(S)$, i.e., $x_0 = \sum_{i=1}^k \theta_i x_i \mid x_i \in S$, $\sum_{i=1}^k \theta_i = 1$, $\theta_i \geq 0$.

So
$$p^Tx_0 = \sum_{i=1}^k \theta_i p^Tx_i \ge \sum_{i=1}^k \theta_i (-1) = 1 \cdot (-1) = -1$$
. So $p \in (\mathbf{conv}(S))^*$, hence $S^* \subset (\mathbf{conv}(S))^*$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

• Let B(0,r)=X, B(0,1/r)=Y. Take the normal vector $p \in X^*$, then for any $x \in X : p^T x \ge -1$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

- Let B(0,r) = X, B(0,1/r) = Y. Take the normal vector $p \in X^*$, then for any $x \in X : p^T x > -1$.
- From all points of the ball X, take such a point $x \in X$ that its scalar product of p: p^Tx is minimal, then this is the point $x = -\frac{p}{\|p\|}r$.

$$p^{T}x = p^{T} \left(-\frac{p}{\|p\|}r\right) = -\|p\|r \ge -1$$
$$\|p\| \le \frac{1}{r} \in Y$$

So $X^* \subset Y$.

i Example

Prove that if B(0,r) is a ball of radius r by some norm centered at zero, then $(B(0,r))^* = B(0,1/r)$.

- Let B(0,r) = X, B(0,1/r) = Y. Take the normal vector $p \in X^*$, then for any $x \in X : p^T x \ge -1$.
- From all points of the ball X, take such a point $x \in X$ that its scalar product of p: p^Tx is minimal, then this is the point $x = -\frac{p}{\|x\|}r$.

$$p^{T}x = p^{T} \left(-\frac{p}{\|p\|} r \right) = -\|p\|r \ge -1$$
$$\|p\| \le \frac{1}{r} \in Y$$

So $X^* \subset Y$.

• Now let $p \in Y$. We need to show that $p \in X^*$, i.e., $\langle p, x \rangle \geq -1$. It's enough to apply the Cauchy-Bunyakovsky inequality:

$$\|\langle p, x \rangle\| \le \|p\| \|x\| \le \frac{1}{r} \cdot r = 1$$

The latter comes from the fact that $p\in B(0,1/r)$ and $x\in B(0,r).$ So $Y\subset X^*.$

Dual cone

A conjugate cone to a cone K is a set K^* such that:

$$K^* = \{ y \mid \langle x, y \rangle \ge 0 \quad \forall x \in K \}$$

To show that this definition follows directly from the definitions above, recall what a conjugate set is and what a cone $\forall \lambda > 0$ is.

$$\{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \forall x \in S\} \rightarrow \{\lambda y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -\frac{1}{\lambda} \ \forall x \in S\}$$

• Let K be a closed convex cone. Then $K^{**} = K$.

Conjugate sets

- Let K be a closed convex cone. Then $K^{**} = K$.
- For an arbitrary set $S \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

- Let K be a closed convex cone. Then $K^{**} = K$.
- For an arbitrary set $S \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

• Let K_1, \ldots, K_m be cones in \mathbb{R}^n , then:

$$\left(\sum_{i=1}^{m} K_i\right)^* = \bigcap_{i=1}^{m} K_i^*$$

- Let K be a closed convex cone. Then $K^{**} = K$.
- For an arbitrary set $S \subseteq \mathbb{R}^n$ and a cone $K \subseteq \mathbb{R}^n$:

$$(S+K)^* = S^* \cap K^*$$

• Let K_1, \ldots, K_m be cones in \mathbb{R}^n , then:

$$\left(\sum_{i=1}^{m} K_i\right)^* = \bigcap_{i=1}^{m} K_i^*$$

• Let K_1, \ldots, K_m be cones in \mathbb{R}^n . Let also their intersection have an interior point, then:

$$\left(\bigcap_{i=1}^{m} K_i\right)^* = \sum_{i=1}^{m} K_i^*$$

i Example

Find the conjugate cone for a monotone nonnegative cone:

$$K = \{ x \in \mathbb{R}^n \mid x_1 \ge x_2 \ge \ldots \ge x_n \ge 0 \}$$

Conjugate sets

i Example

Find the conjugate cone for a monotone nonnegative cone:

$$K = \{x \in \mathbb{R}^n \mid x_1 \ge x_2 \ge \ldots \ge x_n \ge 0\}$$

Note that:

$$\sum_{i=1} x_i y_i = y_1(x_1 - x_2) + (y_1 + y_2)(x_2 - x_3) + \ldots + (y_1 + y_2 + \ldots + y_{n-1})(x_{n-1} - x_n) + (y_1 + \ldots + y_n)x_n$$

Since in the presented sum in each summand, the second multiplier in each summand is non-negative, then:

$$y_1 > 0$$
, $y_1 + y_2 > 0$, ..., $y_1 + \ldots + y_n > 0$

So $K^* = \left\{ y \mid \sum_{i=1}^k y_i \ge 0, k = \overline{1, n} \right\}.$

Polyhedra

The set of solutions to a system of linear inequalities and equalities is a polyhedron:

$$Ax \leq b, \quad Cx = d$$

Here $A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n},$ and the inequality is a piecewise inequality.

i Theorem

Let $x_1, \ldots, x_m \in \mathbb{R}^n$. Conjugate to a polyhedral set:

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

is a polyhedron (polyhedron):

$$S^* = \left\{ p \in \mathbb{R}^n \mid \langle p, x_i \rangle \ge -1, i = \overline{1, k}; \langle p, x_i \rangle \ge 0, i = \overline{k+1, m} \right\}$$

Figure 17: Polyhedra

Proof

• Let $S=X,S^*=Y$. Take some $p\in X^*$, then $\langle p,x_i\rangle\geq -1,i=\overline{1,k}$. At the same time, for any $\theta > 0, i = \overline{k+1, m}$:

$$\langle p, x_i \rangle \ge -1 \to \langle p, \theta x_i \rangle \ge -1$$

$$\langle p, x_i \rangle \ge -\frac{1}{\theta} \to \langle p, x_i \rangle \ge 0.$$

So $p \in Y \to X^* \subset Y$.

Proof

• Let $S=X,S^*=Y$. Take some $p\in X^*$, then $\langle p,x_i\rangle\geq -1, i=\overline{1,k}$. At the same time, for any

$$\theta > 0, i = k + 1, m:$$

$$egin{align} \langle p,x_i
angle \geq -1 & \rightarrow \langle p, heta x_i
angle \geq -1 \ & \langle p,x_i
angle \geq -rac{1}{a} & \rightarrow \langle p,x_i
angle \geq 0. \end{gathered}$$

So
$$p \in Y \to X^* \subset Y$$
.

• Suppose, on the other hand, that $p \in Y$. For any point $x \in X$:

Suppose, on the other hand, that
$$p \in T$$
 . For any point $w \in M$.

$$x = \sum_{i=1}^{m} \theta_i x_i \qquad \sum_{i=1}^{k} \theta_i = 1, \theta_i \ge 0$$

$$i{=}1$$
 $i{=}1$

So: $\langle p, x \rangle = \sum_{i=1}^{m} \theta_i \langle p, x_i \rangle = \sum_{i=1}^{k} \theta_i \langle p, x_i \rangle + \sum_{i=k+1}^{m} \theta_i \langle p, x_i \rangle \ge \sum_{i=1}^{k} \theta_i (-1) + \sum_{i=1}^{k} \theta_i \cdot 0 = -1.$

Conjugate sets

