

Investigation of Bio-ethanol Steam Reforming over Cobalt-based Catalysts

Umit S. Ozkan (P.I.) Hua Song Lingzhi Zhang

Department of Chemical and Biomolecular Engineering Heterogeneous Catalysis Research Group The Ohio State University

May 15, 2007

Project ID#: DE-FC36-05GO15033

PDP-6

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- ❖ Start Date May 1, 2005
- End Date April 31,2009
- 40% Complete

Budget

- Total project funding
 - >\$1,145,625 (DOE)
 - >\$299,715 (OSU cost share)
- Funding received in FY05
 - >\$100,000(DOE)
 - >\$10,458 (OSU Cost share)
- Funding received in FY06
 - >\$185,000 (DOE)
 - >\$147,987 (OSU cost share)
- Funding received in FY07 (to date)
 - >290,473 (DOE)
 - >\$25,037 (OSU)

Barriers

- A. Fuel Processor Capital Costs
- C. Operation and Maintenance
- D. Feedstock Issues

Partners

- NexTech Materials, Ltd. -Catalyst manufacturing scaleup
- PNNL Economic analysis and feasibility considerations, deactivation studies

Objectives and Prior Work Summary

- Overall: To acquire a fundamental understanding of the reaction networks and active sites in bio-ethanol steam reforming over Co-based catalysts that would lead to
 - Development of a precious metal-free catalytic system which would enable
 - Low operation temperature (350-550°C)
 - High EtOH conversion
 - High selectivity and yield of hydrogen
 - Minimal byproducts such as acetaldehyde, methane, ethylene, and acetone
 - Understanding of the catalyst deactivation and regeneration mechanisms
 - Low cost for commercialization.

❖ June 2005-Sep 2006

- Launching the project, setting up the experimental systems and establishing the experimental protocols
- Investigating the effect of synthesis parameters on catalyst performance
- Testing activity of the initial catalyst system.

***** FY06:

- Understanding the competing reaction networks
- Identifying active sites during reaction
- Optimizing catalyst pretreatment parameters

Approach

Supported Co-catalysts

Preparation

- ≽IWI, SG
- > Precursor
- Precursor solution
- > Promoter
- **>** Support
- ▶ Cobalt loading

Calcination

➤ Temperature

Reduction

- ➤ Temperature
- **≻**Time

Reaction

- >GHSV
- ➤ EtOH:Water ratio
- ➤ Temperature
- ➤ Oxygen addition
- ➤ Deactivation
- ❖ Deactivation/Regeneration

Technical Accomplishments/Progress/Results from Year 2

Catalyst evolution: From precursor to active phase

The decomposition of the crystalline cobalt precursor and formation of Co₃O₄ during calcination process have been observed.

Two step reduction, i.e., $Co_3O_4 \rightarrow CoO$, and $CoO \rightarrow Co$, has been confirmed.

Further Characterization of the Calcination step

LABRAM HR-800 High Resolution Raman Microscope

OLYMPUS BX41 microscope

In the current study:

- Sample is placed in Operando Cell;
- 50X magnification;
- Argon ion green laser (514.5nm);
- ❖ 3mW.

CoO is an intermediate in calcination of the catalyst precursor before the Co_3O_4 phase forms.

Further Characterization of the Reduction step

❖Sample:

>10%Co/ZrO₂

***Calcination:**

>400°C for 3h;

❖Reduction:

20

>350°C for 2h under 5%H₂/N₂;

 ZrO₂ (monoclinic) Co₃O₄ (cubic) CoO (cubic) Co (cubic) Intensity (a.u.) Temperature 350°C for 2h Reduction 350°C

36

2 Theta (°)

40

44

48

Most of the cobalt oxide has been reduced to metal Co after described activation treatment

In-Situ DRIFTS - CO Chemisorption

Carbonate formation on the surface correlates well with the metallic surface area.

Bidentate carbonate [1,2]

1631, 1591,

Reaction Network and Intermediates: In-Situ DRIFTS-Ethanol TPD

- >Ethanol molecules are adsorbed onto the surface at room temp
- ➤ Interaction with OH groups
- >Ethoxy, acetate and carbonate intermediates
- ➤CO (characteristic peaks: 2200~2000cm⁻¹) is not observed

- M-OH 3650~3150cm⁻¹, O-H stretching
- CH₃- or CH₃CH₂ 2970, 2928, 2867cm⁻¹:C-H stretching
- Monodentate and bidentate ethoxy species [1]

 1161, 1110, 1066cm-1

 CCO stretching

 M M M
- Acetates ^[2]
 CH₃COO
 1552, 1441, 1346cm⁻¹
- Adsorbed CO₂
 2361, 2338cm⁻¹
 O=C=O stretching
- Molecularly adsorbed ethanol [3] 1383cm⁻¹: C-H bending 1294cm⁻¹: OH bending
- [1] Erdöhelyi, A., et al. Catal. Today, 116 (2006) 367.
- [2] Guil, J.M., et al. J. Phys. Chem. B, 109 (2005) 10813
- [3] Raskó, J., et al. Appl. Catal. A: Gen., 299 (2006) 202

Reaction Network and Intermediates: In-Situ DRIFTS - EtOH+H₂O Reaction

M-OH

3650~3150cm⁻¹, O-H stretching

CH₃- or CH₃CH₂-

2962, 2927, 2865 cm⁻¹:C-H stretching 1385cm⁻¹: CH₃- bending

Monodentate and bidentate ethoxide

1169, 1106, 1063cm⁻¹ CCO stretching

CH₂ CH₃
O CH₂ O CH₂
M M M

Acetates

CH₃COO 1569, 1429, 1348cm⁻¹

Adsorbed CO₂

2361, 2336cm⁻¹: O=C=O stretching

- Molecularly adsorbed H₂O 1654cm⁻¹
- >Water and ethanol molecules are adsorbed onto the surface at room temp
- ➤Interaction with OH groups
- ➤ Water facilitates formation of ethoxy and acetate surface intermediates at lower temp.,
- ➤CO (characteristic peaks: 2200~2000cm⁻¹) is not observed

Reaction Network and Intermediates:

Reaction Network and Intermediates: In-Situ DRIFTS-Acetone TPD

M-OH

3650~3150cm⁻¹, O-H stretching

- CH₃ 2963, 2927, 2865cm⁻¹:C-H stretching
 1456, 1371cm⁻¹: CH₃- bending
- Adsorbed CO₂
 2361, 2336cm⁻¹
 O=C=O stretching
- Acetates
 1580, 1440, 1310cm⁻¹
- Monodentate and bidentate acetoxide

1170cm-1: C-C stretching 1107, 1066cm⁻¹: C-O stretching

- O=C- carbonyl group: 1745cm⁻¹
- C-C-C group stretching: 1232cm⁻¹
- ➤ Acetone molecules are adsorbed onto the surface at room temp.
- ► Evidence of C-C-C and C=O
- The cracking of acetone at lower temperatures
- ➤ Acetate species form at higher temperatures compared to ethanol TPD

Reaction Network and Intermediates:

Acetone TPD (MS-TGA-DSC)

100 150 200 250 300 350 400 450 500 550 600 650 700 Temperature (°C)

❖Sample: 10%Co/ZrO₂

❖Pretreatment:

400°C for 30min.;

Reduced at 350°C for 2h under 5%H₂/He; 400°C for 1h under He to remove moisture

*****Adsorption:

Acetone vapor was generated by flowing He at room temperature;

Desorption:

Under He at ramping rate of 5°C/min

Reaction Network and Intermediates: In-Situ DRIFTS-Acetaldehyde TPD

- Acetaldehyde molecules are adsorbed onto the surface room temp.;
- ➤ Part of the adsorbed acetaldehyde is reduced to ethoxide
- Part of the acetaldehyde is oxidized to acetate at room temperature;
- >Acetaldehyde is the surface intermediate during ethanol TPD

M-OH

3650~3150cm⁻¹: O-H stretching

- CH₃- or CH₃CH₂ 2980, 2940, 2889cm⁻¹:
 C-H stretching
- Adsorbed CO₂
 2366, 2355cm⁻¹:
 O=C=O stretching
- Acetates
 1556, 1442, 1360cm⁻¹
- Adsorbed acetaldehyde [1,2]
 2736, 1267, 1025cm⁻¹
- Monodentate acetoxide
 1180,1161, 1100cm⁻¹
 CCO stretching
- Molecularly adsorbed acetaldehyde 1745cm⁻¹:O=C- stretching
- [1] Carlo Resini, et al. React. Kinet. Catal. Lett., 90 (2007) 117-126
- [2] J. Llorca, et al. J. Catal., 227(2004) 556-560

Reaction Network and Intermediates: Acetaldehyde TPD (MS-TGA-DSC)

10 wt% Co/ZrO₂

CH₂CHO+O[s] →CH₂COOH CH₃COOH → CH₄+CO₂ 2CH₃CHO → CH₃COCH₃+CO+H₂ CO+O[s] →CO,

Use He as the carrier gas to generate CH₃CHO vapor at room temperature for 1h; Flow He to purge the line;

Desorption:

Under He (10°C/min.)

Reaction Network and Intermediates: In–Situ DRIFTS-Acetic Acid TPD

The assignment of surface acetate species is confirmed

M-OH

3650~3150cm⁻¹, O-H stretching

- OCH₃-, -CH₂-3050~2800cm⁻¹:C-H stretching
- Adsorbed CO₂

2366, 2345cm⁻¹ O=C=O stretching

- Surface Acetates
 1558, 1465, 1446, 1350cm⁻¹
- Monodentate and bidentate ethoxide

1091, 1053, 1026cm⁻¹ CCO stretching

- Molecularly adsorbed acetic acid 1728cm^{-1:} O=C- stretching 1297cm⁻¹: OH bending
- >Acetic acid molecules are adsorbed onto the surface at room temp.
- Surface acetates are observed even at room temp.
- Molecularly adsorbed acetic acid disappears along with increase of temp.
- ► Linearly adsorbed CO₂ present without experiencing carbonate intermediate.

In-Situ DRIFTS-Ethanol TPD on Bare Support

- CH₃-, -CH₂ 3050~2800cm⁻¹:C-H stretching
 1429, 1383cm⁻¹: C-H bending
- Adsorbed CO₂
 2368, 2352cm⁻¹
 O=C=O stretching
- Surface Acetates
 1552, 1446, 1348cm⁻¹
- Ethoxide 1126, 1074cm⁻¹: C-O stretching 1182cm⁻¹: C-C stretching
- Molecularly adsorbed ethanol
 1330cm⁻¹: C-H bending
 1292cm⁻¹: OH bending
- ▶ C-H bonding is observed at higher temp., compared with Co impregnated sample.
- >C-C bonding is seen at higher temp., compared with Co impregnated sample.
- Ethoxide species disappear at higher temp., compared with Co impregnated sample.

Effect of T on Reaction Network: TPRxn - Acetone +H₂O

❖Sample:

10%Co/ZrO₂

***Pretreatment:**

400°C for 30 min; Reduced at 350°C for 2h under 5%H₂/He; Degassing at 400°C for 1h under He

❖Reaction:

CH₃COCH₃:H₂O=1:10 (molar ratio) Total flow=55ml/min. Ramp rate:10°C/min.

❖Experiment:

Monitoring product stream with MS

- I. $CH_3COCH_3+3H_2O \Omega 2CO+CO_2+6H_2$
- II. $CH_3COCH_3+H_2 \cap C_3H_6+H_2O$; $CH_3COCH_3+H_2O \cap CO_2+2CH_4$ $CH_3COCH_3+H_2O \cap CO_2+C_2H_4+2H_2$
- III. $CO_2+H_2 \cap CO+H_2O$; $CH_4+2H_2O \cap CO_2+3H_2$

Effect of T on Reaction Network: TPRxn - Water Gas Shift

❖Sample:

10%Co/ZrO₂

❖Pretreatment:

400°C for 3h; Reduced at 350°C for 2h under 5%H₂/He; 400°C for 1h under He to remove moisture

❖Reaction:

CO:H₂O=1:8 (molar ratio) Total flow=51ml/min. Ramp rate:10°C/min.

❖Experiment: Monitoring product stream with MS

l: no reaction; ll: CO + $3H_2 \cap CH_4 + H_2O$; CO + $H_2O \cap CO_2 + H_2$

III: same reactions as step II; IV: $CH_4 + H_2O \cap CO + 3H_2$; $CO_2 + H_2 \cap CO + H_2O$

Effect of T on Reaction Network: TPRxn - Reverse Water Gas Shift

I: no reaction; II: $CO_2 + 4H_2 \cap CH_4 + 2H_2O$; $CO_2 + H_2 \cap CO + H_2O$ III: $CH_4 + 2H_2O \cap CO_2 + 4H_2$ IV: $CH_4 + H_2O \cap CO + 3H_2$; $CO_2 + H_2 \cap CO + H_2O$

Effect of T on Reaction Network: TPRxn-Methane Steam Reforming

❖Sample:

10%Co/ZrO₂

❖Pretreatment:

400°C for 3h; Reduced at 350°C for 2h under 5%H₂/He; 400°C for 1h under He to remove moisture

❖Reaction:

CH₄:H₂O=1:8 (molar ratio)
Total flow=51ml/min.
Ramping rate:10°C/min.

Experiment:

Monitoring product stream with MS

l: No Reaction II: CH_4+2H_2O Ω CO_2+4H_2 ; CH_4+H_2O Ω $3H_2+CO$; $2CH_4+CO_2$ Ω $CH_3COCH_3+H_2O$

III: CO_2+2H_2 Ω CH_4+2H_2O IV: CH_4 Ω $C+2H_2$; $CH_3COCH_3+H_2$ Ω $C_3H_6+H_2O$

Modification of the Initial Catalyst Formulation

300 C

350 C

400 C

24

Modification of the Initial Catalyst Formulation:

In-Situ DRIFTS - EtOH+H₂O Reaction

Monodentate and bidentate ethoxide

2968, 2935, 2871cm⁻¹: C-H stretching 1155cm⁻¹: C-C stretching;

1139cm⁻¹: C-O stretching (mono)

1061cm⁻¹: C-O stretching (bi)

Acetates

CH₃COO

1562, 1440cm⁻¹: COO stretching

1348cm⁻¹: CH₃ bending

- Molecularly adsorbed ethanol 1380, 1340cm⁻¹
- Adsorbed CO₂ 2370, 2347cm⁻¹
- OH group: 1267cm⁻¹ bending

The addition of CeO₂ facilitates the conversion of ethanol, leading to the appearance and disappearance of surface reaction intermediate at much lower reaction temperature

ĊH₂

Investigation on alternative methods for Co-based catalyst synthesis

Motivation of research on sol-gel synthesis of Co-ZrO₂ catalysts

- ❖ For IWI preparation, all active metals are dispersed on the surface, which may cause aggregation of metal particles or sintering at high temperatures--phenomena closely related to catalyst stability and selectivity,
- Sol-gel technique provides a way to uniformly distribute active metal particles in the sample. Particle size is easy to control by varying synthesis parameters

So-gel CoZrO₂ catalyst preparation

- Zirconium propoxide and cobalt nitrate as precursor
- ❖Mixing of zirconium propoxide and cobalt nitrate aqueous solution at 65°C and stirring for 1hr
- ❖Oven dry at 110°C overnight
- Calcination in air before use

Temperature programmed reduction for Co-ZrO₂ sol-gel catalysts with different Co loadings

- ❖With sol-gel preparation, there is better interaction between cobalt and the zirconia support. When Co wt% is less than 10%, there is hardly any reduction features till 500°C.
- With increasing Co loadings, there is more cobalt on the surface and is easier to reduce

In-situ XRD during Reduction

Reduction: 5%H₂/N₂

SG-30%CoZrO₂

From 100°C to 900°C with 100°C/step

- **❖**Cool to 100C Monoclinic ZrO₂ with Co
- **❖900C** Tetragonal ZrO₂ with a small amount of Monoclinic ZrO₂ and Metallic Co
- **❖800C** Tetragonal ZrO₂ with a small amount of Monoclinic ZrO₂ and Metallic Co
- **❖700C** Tetragonal ZrO₂ with a small amount of Monoclinic ZrO₂ and Metallic Co
- **❖600C** Cubic ZrO₂ with Co phase
- **❖**500C Cubic ZrO₂, CoO and Co coexist
- **❖**400C CoO and Co coexists together with Cubic ZrO₂
- *300C Cubic ZrO₂ with CoO
- **❖200 C Co₃O₄ phase with cubic ZrO₂**
- **❖100C** Co₃O₄ phase with cubic ZrO₂

10%CoZrO₂ catalysts prepared by two different methods result in different product distributions

- (1) Pretreat: 400°C He for 30 min (2) Reduction:600°C (350C for IWI) 5% H₂/He 2 hrs
- (3) Purge 400°C He for 1 hr (4) TPRxn with EtOH:H₂O=1:10 using Cirrus MS

It may be possible to affect the product distribution and stability by using new synthesis techniques based on organometallic chemistry.

Publications and Presentations

- Song, H. Zhang, L. Watson, R.B., Braden, D., Ozkan, U.S., "Investigation of Bioethanol Steam Reforming over Cobalt-based Catalysts" Catalysis Today (in press);
- Song, H., Zhang, L., Ozkan, U.S., "Effect of Synthesis Parameters on the Catalytic Activity of Co/ZrO₂ for Bio-ethanol Steam Reforming" *Journal of Green Chemistry* (in press);
- Song, H. and Ozkan, U.S., "Fuel Cell Grade Hydrogen Production from the Bio-Ethanol Steam Reforming over Co-based Catalysts: An Investigation of Reaction Networks and Active Sites" Ohio Fuel Cell Symposium, Canton, Ohio, May 2006;
- Song H., Zhang, L., Ozkan, U.S., "Investigation of bio-ethanol system reforming over cobalt-based catalysts", 232nd ACS National meeting & exposition, San Francisco, CA, September 2006;
- Song H., Zhang, L., Ozkan, U.S., "Investigation of bio-ethanol steam reforming over cobalt-based catalysts", U.S. Department of Energy Bio-derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting, Baltimore, MD, October 2006;
- Song, H. Zhang, L., and Ozkan, U.S., "Catalytic Hydrogen Production from Renewable Sources" OSU-Honda Research Forum, Columbus, Ohio, February 2007;
- Song, H., Zhang, L., Ozkan, U.S., "Investigation of Reaction Networks and Active Sites in Steam Reforming of Bio-ethanol over Cobalt based Catalysts" 233rd ACS National Meeting, Chicago, IL, March 2007.

Future Work

- Kinetic and mechanistic investigations coupled with in-situ characterization
- Performing economic analysis based on updated catalyst system knowledge database
- Performance optimization
- Investigation of catalyst deactivation and regeneration characteristics
- Catalyst scale-up through industrial partnerships

Project Summary

- **❖ Target**: development of a catalytic system that does not rely on precious metals and that can be active and selective in the 350°C-550°C temperature range.
- Relevance: help to develop small-scale distributed hydrogen production technologies from renewable liquid energy sources.
- Approach: develop a systematic optimization strategy for evaluating the catalytic performance of different catalyst systems.
- Accomplishments:
 - Understanding the competing reaction networks
 - Identifying active sites during reaction
 - Optimizing catalyst system based on modification to the IWI sample and SG prepared catalyst
- Future Work: Mechanistic investigations coupled with in-situ characterization; economic analysis; deactivation/regeneration studies.

Umit S. Ozkan 614-292-6623

