Documentation for Soybean Weed Detection

1. Project Overview

This project focuses on the detection and classification of soybean weeds using a machine learning model. The system identifies four main classes: **Soybean, Soil, Broadleaf, and Weed**, which are grouped into two broad categories:

- 1. Category 1: Soil, Soybean, and Broadleaf.
- 2. Category 2: Weed.

The model is built using the MobileNetV2 architecture, known for its efficiency in computational and memory requirements, making it suitable for deployment on resource-constrained devices.

2. Objectives

- To accurately detect and classify soybean field components (Soybean, Soil, Broadleaf, and Weed).
- To provide real-time or near real-time classification for agricultural applications.
- To assist farmers in weed management to improve crop yield.

3. Dataset

- **Source:** https://data.mendeley.com/datasets/3fmjm7ncc6/2
- **Information:** The dataset comprises labeled images of soybean fields containing the following classes:
 - Soybean
 - Soil
 - Broadleaf
 - Weed
- Preprocessing:
 - Images were resized to a resolution of 224×224224 \times 224 pixels to match the input requirements of MobileNetV2.
 - Data augmentation techniques (e.g., rotation, flipping, cropping) were applied to enhance the robustness of the model.

4. Methodology

- **Architecture:** MobileNetV2, a lightweight convolutional neural network, was chosen for its balance between performance and efficiency.
- Model Training:
 - o Input Shape: 224×224×3224 \times 224 \times 3 (RGB images).
 - o **Optimizer:** Adam optimizer was used with an initial learning rate of 0.0010.001.
 - Loss Function: Categorical Crossentropy.
 - o Batch Size: 32.
 - o Initial Learning Rate: 0.001
 - Learning Rate Schedule: Cosine decay
 - Optimizer: AdamTraining Epochs: 100
 - Early Stopping Patience: 10 epochs
- **Output Layer:** The final dense layer contains 4 neurons with a softmax activation function for multi-class classification.

5. Results

- Evaluation Metrics:
 - Accuracy:
 - Achieved a classification accuracy of 98% on the train set.
 - Achieved a classification accuracy of 99% on the test set.
 - o Precision, Recall, F1-Score: Detailed metrics provided per class.
- **Inference Speed:** Optimized for real-time detection with an average processing time of 0.03 ms per image.

6. Categories

- 1. Category 1 (Non-Weeds):
 - **Soil:** Bare soil without vegetation.
 - Soybean: Soybean plants at various growth stages.
 - o **Broadleaf:** Broadleaf plants, which are not considered weeds.
- 2. Category 2 (Weeds):
 - **Weed:** Any undesired plant species competing with soybean crops.

7. Deployment

• Frameworks and Tools:

- TensorFlow/Keras for model training and evaluation.
- OpenCV for image preprocessing.
- **Deployment:** The model was converted to TensorFlow Lite for edge device compatibility.

Use Cases:

- Deployed on drones for aerial weed monitoring.
- Used in automated sprayers to target weeds precisely.

8. Challenges and Future Work

Challenges:

- o Difficulty in differentiating visually similar classes (e.g., Soybean vs. Broadleaf).
- Varying lighting and environmental conditions in field images.

• Future Work:

- o Incorporating additional classes for better granularity.
- Exploring other lightweight architectures for improved performance.
- Integrating with GIS systems for spatial analysis.

9. Conclusion

The soybean weed detection model using MobileNetV2 provides an effective and efficient solution for agricultural weed management. By classifying components into soybean, soil, broadleaf, and weed categories, it offers a valuable tool for precision agriculture.

10. References

- MobileNetV2 Paper: https://arxiv.org/abs/1801.04381
- TensorFlow Documentation: https://www.tensorflow.org
- Dataset Augmentation Techniques: https://albumentations.ai/