Course	Thing	Explanation	Date	Important	Index
CS1231S	Division Theorem	\forall n \in \mathbb{Z} and d \in \mathbb{Z}^* , \exists q,r \in \mathbb{Z} such that n = dq + r, 0 \leq r $<$ d	13/09/2021	Important	185
CS1231S	Definition of quotient (A/~)	A/~ = {[x]~: x ∈ A}; Quotients are the underlying set, when partitioned based on an equivalence relation	16/09/2021	Important	194
0012010	Definition of quotient (7 v)	Z/~n or Z□ means integers partitioned based on their	10/00/2021	Important	101
	Definition 7.1.4 (Congruence-mod	congruence-mod n; $[x] = \{nk + x: k \in \mathbb{Z}\};$ Can use $[x] + [y] = [x+y]$ and $[x] \times [y] = [x \times y]$, when $[x], [y] \in$			
CS1231S	relation)	ℤ□ (can check whether well-defined or not)	16/09/2021	Important	196
CS1231S	Total order	All pairs x and y are connected by exactly 1 arrow	16/09/2021	Important	200
CS1231S	Well-ordering principle	Every nonempty finite subset has a smallest element	30/09/2021	Important	214
CS1231S	Theorem 5.3.13 (Inclusion-exclusion)	A ∪ B = A + B - A ∩ B	05/10/2021	· ·	256
CS1231S	Definition 6.1.5 (Relation)	Relation from A to B is a subset of A × B	05/10/2021	Important	258
		Let A be a set and ≤ be a partial order on A; A linearization of ≤ is a total order ≤* on A such that			
CS1231S	Definition 7.4.8 (Linearization)	∀x,y∈A(x≤y⇒x≤*y)	06/10/2021		272
CS1231S	Definition 7.3.1 (Antisymmetry)	$xRy \land yRx \Rightarrow x = y$	07/10/2021		273
CS1231S	Definition 7.3.1 (Partial Order)	R is reflexive, antisymmetric, transitive	07/10/2021		274
CS1231S	Definition 7.3.1 (Total Order)	xRy V yRx ∀x,y	07/10/2021	· ·	275
CS1231S	Set of all strings (A*)	If $A = \{s,u\}$, then A^* is all the strings possible	13/10/2021	Important	336
0040040	5.5 55.4 (5)	For $g \circ f$ to be defined, the codomain of f must equal the	404404004		
CS1231S	Definition 9.2.1 (Composite function)	domain of g	13/10/2021	Important	338
CS1231S	Definition 9.3.14 (Invertible)	Let $f : A \rightarrow B$. Then $g : B \rightarrow A$ is an inverse of f if $\forall x \in A \ \forall y \in B \ y = f(x) \Leftrightarrow x = g(y)$	13/10/2021	Important	340
CS1231S	Definition 9.3.6 (Surjective)	$\forall y \in B \exists x \in A (y = f(x))$ Nobody in B is alone	13/10/2021	Important	341
CS1231S	Definition 9.3.6 (Injective)	$\forall x_1, x_2 \in A (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$ Nobody in B is F-boy	13/10/2021	Important	342
	,	$\forall y \in B \exists ! x \in A (y = f(x))$			
CS1231S	Definition 9.3.6 (Bijective)	Everyone in B has one partner	13/10/2021	Important	343
CS1231S	Definition 9.1.6 (Function equality)	f = g iff domains and codomains are the same and $f(x) = g(x)$	13/10/2021	Important	344
CS1231S	Theorem 10.1.2 (Dual Pigeonhole	If f : A . D is surjective, then IAI > IDI	14/10/2021	Important	350
0312313	Principle)	If $f : A \rightarrow B$ is surjective, then $ A \ge B $ Infinite set B is countable iff there is a sequence b_0, b_1, b_2, \in	14/10/2021	important	350
CS1231S	Note 10.3.4 (Countably infinite)	B where every element of B appears exactly once A countable infinite $\Rightarrow \mathfrak{p}(A)$ uncountable (use the \mathbb{R} proof of	14/10/2021	Important	354
CS1231S	Theorem 10.4.3 (Uncountable ℘)	uncountability)	15/10/2021	Important	369
		Ordered choose with repetition: nk Ordered choose wout repetition: P(n, k) Unordered choose w repetition: C(k + n - 1, k)			
CS1231S	Choose formulas	Unordered choose wort repetition C(n, k)	22/10/2021	Important	429
		Matrix that contains all the connections between vertices; Can be squared to find all connections of degree 2 (path length			
CS1231S	Adjacency matrix	2)	29/10/2021	Important	446
CS1231S	Uniqueness of complement	$X_1, X_2 \subseteq A \land Y_1, Y_2 \subseteq (U \land A) \Rightarrow X_1 \cup Y_1 = X_2 \cup Y_2 \rightarrow (X_1, Y_1) = (X_2, Y_2)$	19/11/2021	Important	506
CS1231S	Theorem 10.6.1 (Full Binary Tree)	If T is a full binary tree with k internal vertices, then T has a total of 2k + 1 vertices	19/11/2021	Important	509
	Theorem 10.6.2 (Terminal Vertices of	Maximum number of terminal vertices of a binary tree of height			
CS1231S	Binary Tree)	h is 2 ^ h Pre-order > Root, Left, Right	19/11/2021	Important	510
		In-order > Left, Root, Right			
		Post-order			
CS1231S	Depth-first traversal	> Left, Right, Root	19/11/2021	Simportant	511
		Show every $x \in A$ is in at least one $S \in \mathscr{C}$			
		> Let S ∈ <i>C</i> > Prove x ∈ S > x ∈ S ∈ <i>C</i>			
		Show every $x \in A$ is in at most one $S \in \mathscr{C}$			
		> Let $x \in S_1$ and $x \in S_2$ > Prove $S_1 \subseteq S_2$			
		$> Prove S_1 \subseteq S_2$ > $Prove S_2 \subseteq S_1$			
CS1231S	Prove partition	$> S_1 = S_2$	19/11/2021	Important	513
	Prove same cardinality (Cantor's	Prove $ A = B $ > Let $f: A \rightarrow B$			
CS1231S	definition of same-cardinality)	> Prove <i>f</i> is well-defined & bijective	19/11/2021	Simportant	514
		Prove $\exists f$			
		> Define $f: A \rightarrow B$ > Prove f is well-defined			
CS1231S	Prove there exists function	> Prove that it satisfies all criteria	19/11/2021	Important	515
CS1231S	Multiplicative inverse modulo	ab ≡ 1 mod n ⇔ a and b are multiplicative inverse modulo	19/11/2021		516
		Minimum spanning tree > Choose the lightest edge from current point			
CS1231S	Kruskal Algorithm	> If edge doesn't end up in circuit, add the edge Minimum spanning tree	21/11/2021	Important	517
CS1231S	Prim Algorithm	> Choose the lightest edge from any point in the current tree	21/11/2021	Important	518