PROJECT

2025년 01월 27일 월요일

영화 개봉 계절 예측기

스마트팩토리혁신을 위한 AI 솔루션 개발자 양성과정

목차 LIST

01 서론

주제 선정 및 배경, 목표

사용데이터 출처

일정 및 개발환경

02 데이터 전처리

활용데이터

자료 정제 및 병합

상관분석 및 그룹화, 시각화

O3 Deep Neural Network 분석

DNN

04 예측 시스템 구현

fastAPI

05 결론

연구의 결과 및 시사점

01 주제 선정 및 배경

영화 평점, 개봉월, 장르 데이터 분석하여 계절별, 관객수 예측

- 영화 산업은 관객의 선호와 트렌드 변화에 민감
- 계절과 영화 장르에 따른 관객수 간의 관계 증명
- 영화 제작 및 마케팅 전략 수립에 있어 데이터 필요

O1 吴丑

- 영화 평점, 개봉월, 장르 데이터 분석하여 계절별, 관객수 예측영화 평점, 개봉일, 장르 데이터를 분석하여 트렌드를 시각화
- 딥러닝 모델을 통해 계절별 인기 장르를 예측
- 분석 결과를 통해 영화 제작 및 마케팅 전략 수립에 필요한 인사이트 제공

01 프로젝트 진행과정 WORK FLOW

STEP 01

데이터 수집

STEP 02

데이터 전처리

STEP 03

DNN

STEP 04

모델 사용 및 🕨

STEP 05

웹 구현

1월 13일, 14일 데이터 수집 및 평점 웹 크롤링 15일 ~ 17일 데이터 전처리 및 그래프, 시각화 17일 ~ 22일 계절, 관객수 DNN학습

22일 ~ 23일 모델 예측, 사용 그래프 23일 ~ 24일 웹 구현

01 프로젝트 진행과정 WORK FLOW

01 데이터 사용출처

KOFIC 영화진흥위원회: https://www.kofic.or.kr/kofic/business/main/main.do

01 데이터 사용 출처

naver: https://www.naver.com (영화 평점)

웹 크롤링

```
def naver_crawling_grade(grade_non_list, file_path):
   dv = webdriver.Chrome()
   dv.get('http://www.naver.com')
   time.sleep(3)
   el = dv.find_element(By.CSS_SELECTOR, 'input#query')
   try
       movie = pd.read_csv(file_path)
   except
       movie = pd.DataFrame({'MOVIE_NM': movie_title})
   for title in grade_non_list :
       el.clear()
       el.send_keys('영화 {} 평점'.format(title))
       el.send_keys(Keys.ENTER)
       time.sleep(3)
       try
           grades = dv.find_element(By.CSS_SELECTOR, 'span.area_star_number')
           grade = grades.text
           grade = round(float(grade), 2)
       except :
           grade = np.nan
       movie.loc[movie['MOVIE_NM']==title, '네이버_평점'] = grade
       el = dv.find_element(By.CSS_SELECTOR, 'input#nx_query')
   dv.close()
   movie.to_csv(file_path, index=False, encoding='utf-8')
   print(f"네이버 평점 업데이트 완료! {file_path}에 저장되었습니다.")
```

01 데이터 사용 출처

cine21: http://www.cine21.com (영화 평점)

웹 크롤링

```
dv = webdriver.Chrome()
dv.get('http://www.cine21.com/')
time.sleep(1.5)
el = dv.find_element(By.CSS_SELECTOR, 'input.input_search')
try
    movie = pd.read csv(file path)
except :
    movie = pd.DataFrame({'MOVIE_NM': movie_title})
for title in grade_non_list :
    el.clear()
    el.send_keys('{}',format(title))
    el.send_keys(Keys,ENTER)
   time.sleep(1.5)
   try:
       grades = dv.find_element(By.CSS_SELECTOR, 'span.num')
       grade = grades.text
       grade = round(float(grade), 2)
    except :
       grade = np.nan
    movie.loc[movie['MOVIE_NM']==title, '씨네21_평점'] = grade
    el = dv.find_element(By.CSS_SELECTOR, 'input.input_search')
dv.close()
movie.to_csv(file_path, index=False, encoding='utf-8')
print(f"씨네21 평점 업데이트 완료! {file path}에 저장되었습니다.")
```

01 개발환경

OS

Windows 10 Pro

Language

Python 3.10.9

IDE

Anacomda jyputer notebook(데이터정제 및 병합, 그룹화, ML&DL 분석), PyCharm Community 2024.3.1(ML&이 분석 및 웹 구현)

Open Source

Tensorflow 2.10, Pandas 1.5.3, Numpy 1.24.4, Seaborn 0.12.2, Selenium 4.27.1, Sklearn 1.2.1, Matplotlib 3.7.0,

Framework

fastAPI 0.115.7, Jinja2 3.1.5, Python-multipart 0.0.20, uvicorn 0.34.0,

02 자료 정제 및 통합

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6043 entries, 0 to 6042
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	NO	6043 non-null	int 64
. 1	MOVIE_NM	6043 non-null	object
2	DRCTR_NM	5173 non-null	object
3	MAKR_NM	2364 non-null	object
4	INCME_CMPNY_NM	3197 non-null	object
5	DISTB_CMPNY_NM	6043 non-null	object
6	OPN_DE	6041 non-null	object
7	MOVIE_TY_NM	6043 non-null	object
8	MOVIE_STLE_NM	6043 non-null	object
9	NLTY_NM	6043 non-null	object
10	TOT_SCRN_CO	5638 non-null	object
11	SALES_PRICE	2053 non-null	object
12	VIEWNG_NMPR_CO	4188 non-null	object
13	SEOUL_SALES_PRICE	2612 non-null	object
14	SEOUL_VIEWNG_NMPR_CO	4548 non-null	object
15	GENRE_NM	6029 non-null	object
16	GRAD_NM	6043 non-null	object
17	MOVIE_SDIV_NM	6043 non-null	object

dtypes: int64(1), object(17) memory usage: 849.9+ KB

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5999 entries, 0 to 6042
Data columns (total 10 columns):
    Column Non-Null Count Dtype
    영화제목
               5999 non-null
                              object
               5999 non-null object
               5999 non-nul I
                              object
               5999 non-null
                             object
    총스크린수
               5999 non-null float64
    관람객수
               5999 non-null
                             float64
    장르
              5999 non-null object
              5999 non-null object
    네이버_평점 5999 non-null
                              float64
    씨네21_평점 5999 non-null
                             float64
dtypes: float64(4), object(6)
memory usage: 515.5+ KB
```

데이터 전처리 전 6043 rows

데이터 전처리 후 5999 rows

데이터 증강(SMOTE) 전

데이터 증강

smote = SMOTE(random_state=38, k_neighbors=2)
X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)

데이터 증강(SMOTE) 후

관객수 등급 예측 DNN

Model	÷	"sequent	ial	1_1	1"
-------	---	----------	-----	-----	----

Layer (type)	Output S	hape	Param #
dense_55 (Dense)	(None, 1	28)	640
dropout_22 (Dropout)	(None, 1	28)	0
dense_56 (Dense)	(None, 2	56)	33024
dense_57 (Dense)	(None, 6	4)	16448
dropout_23 (Dropout)	(None, 6	4)	0
dense_58 (Dense)	(None, 6	4)	4160
dense_59 (Dense)	(None, 4)	260

Total params: 54,532 Trainable params: 54,532 Non-trainable params: 0

관객수 3등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] V =관객수_등급

3등급 데이터로 학습 시 정확도: 56.33%

f1 score 결과 값	f1 score: 0.5578330983980071
분류분석 성능 지표	낮은 관객 수 그룹 중간 그룹 높은 관객 수 그룹 낮은 관객 수 그룹 175 95 101
	중간 그룹 84 203 140 높은 관객 수 그룹 23 81 303

관객수 3등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] V =관객수_등급

3등급 데이터로 학습 시 정확도: 56.33%

관객수 5등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] Y =관객수_등급

5등급 데이터로 학습 시 정확도: 41.50%

accuracy : 41.50 %

f1 score 결과 값	f1 sc	ore: (). 395	7703	3588	58291
분류분석 성능 지표	낮은 관객 수 그룹 중간 하위 그룹 중간 그룹 중간 상위 그룹 높은 관객 수 그룹	낮은 관객 수 그룹 93 65 29 11 7	중간 하위 그룹 15 33 23 10 9	35 37 73 33	중간 상위 그룹 49 53 72 153 35	높은 관객 수 그룹 29 53 54 65 155

04 fastAPI

① 독립변수

장르 : select option으로 20개의 장르가 나열

오픈 스크린 수 : 영화 개봉전 스크린수 (예상)

예측 관람객 수: 손익분기점 기준으로 (예상)

관람 등급: select option으로 4개의 등급이 나열

② 종속변수

예측된 계절: 독립변수 입력 기준으로 영화 개봉 계절 예측

05 결론

연구 결과

교객 소이 사그리 소이 교계	스크린 수와 관객 수 사이의 상관계수 0.4 양의 상관관계
관객 수와 스크린 수의 관계	스크린 수가 증가할수록 관객 수가 증가
트건 가구 비서	드라마와 애니메이션은 개봉작 수가 가장 많아 대중적인 장르로 보임
특정 장르 분석	사극 장르는 개봉작 수는 적지만 평균 관객 수가 높음
	여름 (7~8월) 시즌에는 관객 수 증가 경향이 보임
개봉 시기 트렌드	11월과 연말에 개봉작이 집중

05 결론

시사점 및 개선방안

데이터 기반 전략 수립	계절별 트렌드와 장르 선호도를 분석하여 맞춤형 영화 제작 및 마케팅 전략 마련
	관객 집중도가 높은 장르 (사극)와 시기(11월, 연말)를 활용한 배급 전략 최적화
디기니 경기 하유	딥러닝 예측 결과를 기반으로 개봉 시기와 장르 선정에 대한 의사 결정 강화
딥러닝 결과 활용 -	데이터 증폭을 통해 모델의 정확도와 신뢰도 개선
	데이터 양 확대 및 새로운 변수 생성으로 예측 정확도를 높이는 연구 필요
추가 연구 및 개선 방안	트렌드 영화 ,지역별 영화 관람 패턴 등 외부 데이터를 결합하여 보다 풍부한 인사이트 도출 가능

THANK YOU

감사합니다