Employment Visual

Xiang XU

Contents

1	Intr	°O
	1.1	Read data
	1.2	How to instore data into SQLite
	1.3	View
	1.4	Get, merge and add additional information
		1.4.1 Join data
	1.5	Add geographic information
		1.5.1 view
		1.5.2 capitalize
		1.5.3 county fips & name
		1.5.4 state fips & name
		1.5.5 combine all geographic data
		1.5.6 combine all geographic + employment data and save to .rda
	1.6	Get pay + employment data from county & state level
		1.6.1 state level
		1.6.1.1 focus on averge annual pay $+$ averge annual employment
		1.6.1.2 discretization, create var wage empquatile
		1.6.2 county level
		1.6.2.1 focus on averge annual pay + averge annual employment
		1.6.2.2 discretization, create var wage empquatile
		1.6.2.3 use Discretize function
	1.7	Visualize geographic features
		1.7.1 extract map data
		1.7.2 data transformation to match
		1.7.3 connect map data above with d.state
		1.7.4 connect map data above with d.state
	1.8	Geography from industry level
		1.8.1 filter certain industry data
		1.8.2 visualization
	1.9	Time series map of geospatial
		1.9.1 import data from 2008 to 2018
		1.9.2 Connect all the data together to create a unified discretization interval
		1.9.3 visualization
		104 Caparata an animated CIF was page file

1 Intro

This project will help us explore employment data came from United States Department of Labor. We will use pay and benefits data in 2018.

1.1 Read data

```
ann2018 <- fread('data/2018.annual.singlefile.csv')</pre>
```

1.2 How to instore data into SQLite

```
1.3
     View
dim(ann2018)
## [1] 3573215
                     38
head(ann2018,3)
      area_fips own_code industry_code agglvl_code size_code year qtr
## 1:
          01000
                        0
                                     10
                                                  50
                                                              0 2018
                                                                       Α
## 2:
          01000
                                     10
                                                  51
                                                              0 2018
                                                                       Α
                        1
## 3:
          01000
                                     102
                                                  52
                                                              0 2018
                                                                       Α
                        1
      disclosure_code annual_avg_estabs annual_avg_emplvl total_annual_wages
## 1:
                                   127038
                                                    1961448
                                                                    92911268252
## 2:
                                     1196
                                                      53003
                                                                     4421689834
## 3:
                                                      53003
                                     1196
                                                                     4421689834
##
      taxable_annual_wages annual_contributions annual_avg_wkly_wage
## 1:
               15408152922
                                        205567883
## 2:
                          0
                                                0
                                                                   1604
                          0
                                                0
## 3:
                                                                   1604
##
      avg_annual_pay lq_disclosure_code lq_annual_avg_estabs
## 1:
               47369
## 2:
               83424
                                                            1.6
## 3:
               83424
                                                            1.6
      lq_annual_avg_emplvl lq_total_annual_wages lq_taxable_annual_wages
## 1:
                       1.00
                                              1.00
                                                                           1
## 2:
                       1.41
                                              1.70
                                                                           0
                       1.44
                                              1.73
                                                                           0
##
      lq_annual_contributions lq_annual_avg_wkly_wage lq_avg_annual_pay
## 1:
                             1
                                                    1.0
                                                                      1.00
## 2:
                             0
                                                     1.2
                                                                      1.21
## 3:
                                                     1.2
                                                                      1.21
      oty_disclosure_code oty_annual_avg_estabs_chg
##
## 1:
                                                 2157
## 2:
                                                  -12
## 3:
                                                  -12
      oty_annual_avg_estabs_pct_chg oty_annual_avg_emplvl_chg
## 1:
                                 1.7
                                                           24629
## 2:
                                -1.0
                                                            -128
                                                            -128
## 3:
                                -1.0
      oty_annual_avg_emplvl_pct_chg oty_total_annual_wages_chg
## 1:
                                 1.3
                                                      3822557436
## 2:
                                -0.2
                                                        82651203
## 3:
                                -0.2
                                                        82651203
```

```
##
      oty_total_annual_wages_pct_chg oty_taxable_annual_wages_chg
## 1:
                                  4.3
                                                          475040033
## 2:
                                  1.9
                                                                  0
## 3:
                                                                  0
                                  1.9
##
      oty_taxable_annual_wages_pct_chg oty_annual_contributions_chg
## 1:
                                    3.2
                                                            -13660378
## 2:
                                    0.0
                                                                    0
## 3:
                                    0.0
                                                                    0
##
      oty_annual_contributions_pct_chg oty_annual_avg_wkly_wage_chg
                                   -6.2
## 1:
                                                                   26
## 2:
                                    0.0
                                                                   33
                                    0.0
                                                                   33
## 3:
      oty_annual_avg_wkly_wage_pct_chg oty_avg_annual_pay_chg
##
## 1:
                                    2.9
## 2:
                                    2.1
                                                           1756
## 3:
                                    2.1
                                                           1756
##
      oty_avg_annual_pay_pct_chg
## 1:
## 2:
                              2.2
## 3:
                              2.2
      Get, merge and add additional information
for (u in c('agglevel', 'area', 'industry', 'ownership', 'size')){
  assign(u, fread(paste0('data/',u,'_titles.csv'))
intersect(names(ann2018), names(agglevel))
## [1] "agglvl_code"
intersect(names(ann2018), names(area))
## [1] "area_fips"
intersect(names(ann2018), names(industry))
## [1] "industry_code"
intersect(names(ann2018), names(ownership))
## [1] "own_code"
intersect(names(ann2018), names(size))
## [1] "size_code"
1.4.1 Join data
title <- c('agglevel','industry', 'ownership','size')</pre>
ann2018_full <- ann2018
for (i in 1:length(title)){
  eval(parse(text = paste0('ann2018_full <- left_join(ann2018_full,',title[i],')')))</pre>
```

1.5 Add geographic information

1.5.1 view

```
head(area)
##
      area_fips
                                                      area_title
## 1:
          US000
                                                      U.S. TOTAL
## 2:
          USCMS
                    U.S. Combined Statistical Areas (combined)
          USMSA U.S. Metropolitan Statistical Areas (combined)
## 3:
## 4:
          USNMS U.S. Nonmetropolitan Area Counties (combined)
## 5:
          01000
                                           Alabama -- Statewide
## 6:
          01001
                                        Autauga County, Alabama
1.5.2 capitalize
# Capitalize the first letter
simpleCap <- function(x){</pre>
  if(!is.na(x)){
    s <- strsplit(x,' ')[[1]]</pre>
    # print( pasteO("strsplit(x,' '):",strsplit(x,' ')))
    # print( pasteO("strsplit(x,' ')[1]:",strsplit(x,' ')[1]))
    # print(pasteO("s:",s))
    # print(substring(s,1))
    # print(substring(s,1,1))
    # print(toupper(substring(s,1,1)))
    # print(substring(s,2))
    paste(toupper(substring(s,1,1)), substring(s,2),sep= '', collapse = ' ')
```

1.5.3 county fips & name

}else {NA}

```
data("county.fips")
head(county.fips)
                 polyname
     fips
## 1 1001 alabama, autauga
## 2 1003 alabama, baldwin
## 3 1005 alabama, barbour
## 4 1007
             alabama, bibb
## 5 1009 alabama, blount
## 6 1011 alabama, bullock
# to acieve data matching, fill in 'fips'
county.fips$fips <- str_pad(county.fips$fips,width = 5, pad = '0', side = 'left')</pre>
head(county.fips)
      fips
                  polyname
## 1 01001 alabama, autauga
## 2 01003 alabama, baldwin
## 3 01005 alabama, barbour
## 4 01007
              alabama, bibb
## 5 01009 alabama, blount
```

```
## 6 01011 alabama, bullock
# extract city name from polyname
county.fips$county <- sapply(</pre>
  gsub('([a-z\ ]+),([a-z\ ]+)', '\ ), as.character(county.fips$polyname)),
  simpleCap )
county.fips <- unique(county.fips)</pre>
head(county.fips)
##
      fips
                  polyname county
## 1 01001 alabama, autauga Autauga
## 2 01003 alabama, baldwin Baldwin
## 3 01005 alabama, barbour Barbour
## 4 01007
              alabama, bibb
## 5 01009 alabama, blount Blount
## 6 01011 alabama, bullock Bullock
1.5.4 state fips & name
data("state.fips")
head(state.fips)
     fips ssa region division abb
                                     polyname
## 1
       1
           1
                   3
                            6 AL
                                      alabama
## 2
          3
                   4
                            8 AZ
                                      arizona
## 3
       5 4
                   3
                            7 AR.
                                     arkansas
## 4
       6
          5
                   4
                            9 CA california
## 5
       8
           6
                   4
                            8 CO
                                     colorado
## 6
                   1
                            1 CT connecticut
state.fips\fips <- str_pad(state.fips\fips, width = 2, pad = '0', side = 'left')
# extract city name from polyname
state.fips$state <- sapply(</pre>
  gsub('([a-z])+):([a-z])+)', '\l', as.character(state.fips$polyname)),
  simpleCap )
head(state.fips)
     fips ssa region division abb
                                                    state
##
                                     polyname
## 1
       01
                  3
                            6 AL
                                      alabama
                                                  Alabama
## 2
       04 3
                   4
                            8 AZ
                                      arizona
                                                   Arizona
       05
                   3
                            7 AR
## 3
          4
                                     arkansas
                                                  Arkansas
## 4
       06
          5
                   4
                            9 CA california California
## 5
       80
                   4
                            8 CO
                                     colorado
                                                 Colorado
## 6
       09
           7
                   1
                            1 CT connecticut Connecticut
mystate <- unique(state.fips[,c('fips', 'abb', 'state')])</pre>
lower48 <- setdiff(unique(state.fips$state), c('Hawaii', 'Alaska'))</pre>
1.5.5 combine all geographic data
```

1.5.6 combine all geographic + employment data and save to .rda

```
ann2018_full <- left_join(ann2018_full, myarea)
ann2018_full <- filter(ann2018_full, state %in% lower48)
save(ann2018_full, file ='data/ann2018full.rda', compress = T )</pre>
```

1.6 Get pay + employment data from county & state level

1.6.1 state level

1.6.1.1 focus on averge annual pay + averge annual employment

```
d.state <- filter(ann2018_full, agglvl_code == 50) # state summary
d.state <- select(d.state, state, avg_annual_pay, annual_avg_emplvl)</pre>
```

1.6.1.2 discretization, create var wage empquatile

```
x <- quantile(d.state$avg_annual_pay, c(seq(0,.8,by=.2), .9, .95,.99,1) )
xx <- paste0(round(x/1000),'K')
Labs <- paste(xx[-length(xx)],xx[-1],sep='-')
levels(d.state$wage) <- Labs

x <- quantile(d.state$annual_avg_emplvl, c(seq(0,.8,by=.2), .9, .95,.99,1) )
xx <- ifelse(x>1000, paste0(round(x/1000),'K'),round(x))
Labs <- paste(xx[-length(xx)],xx[-1],sep='-')
levels(d.state$empquatile) <- Labs</pre>
```

1.6.2 county level

1.6.2.1 focus on averge annual pay + averge annual employment

```
d.county <- filter(ann2018_full, agglvl_code == 70) # county summary
d.county <- select(d.county, county, avg_annual_pay, annual_avg_emplvl)</pre>
```

1.6.2.2 discretization, create var wage empquatile

```
)
x <- quantile(d.county$avg_annual_pay, c(seq(0,.8,by=.2), .9, .95,.99,1) )
xx <- ifelse(x>1000, paste0(round(x/1000),'K'),round(x))
Labs <- paste(xx[-length(xx)],xx[-1],sep='-')
levels(d.county$wage) <- Labs

x <- quantile(d.county$annual_avg_emplvl, c(seq(0,.8,by=.2), .9, .95,.99,1) )
xx <- ifelse(x>1000, paste0(round(x/1000),'K'),round(x))
Labs <- paste(xx[-length(xx)],xx[-1],sep='-')
levels(d.county$empquatile) <- Labs</pre>
```

1.6.2.3 use Discretize function

```
# create `Discretize` function
Discretize <- function(x, breaks = NULL){</pre>
  if(is.null(breaks)){
    breaks \leftarrow quantile(x, c(seq(0,.8,by=.2), .9, .95,.99,1))
    if(sum(breaks==0) >1){
      tmp <- which(breaks ==0, arr.ind = TRUE)</pre>
      breaks <- breaks[max(tmp):length(breaks)]</pre>
    }
  }
  x.discrete <- cut(x, breaks, include.lowest = T)</pre>
  breaks.eng <- ifelse( breaks>1000, paste0(round(breaks/1000),'K'),round(breaks))
  Labs <- paste(breaks.eng[-length(breaks.eng)],breaks.eng[-1],sep='-')
  levels(x.discrete) <- Labs</pre>
  return(x.discrete)
}
# apply
d.county <- ann2018_full %>%
  filter(agglvl_code == 70)%>%
  select(state, county , abb, avg_annual_pay, annual_avg_emplvl) %>%
  mutate( wage = Discretize(avg_annual_pay),
          empquatile = Discretize(annual_avg_emplvl))
```

Now data all prepared.

1.7 Visualize geographic features

1.7.1 extract map data

```
state_df <- map_data('state')
cty_df <- map_data('county')
head(state_df)</pre>
```

long lat group order region subregion

```
## 1 -87.46201 30.38968
                                 1 alabama
                                                <NA>
## 2 -87.48493 30.37249
                                 2 alabama
                                                <NA>
                           1
                                3 alabama
## 3 -87.52503 30.37249
                                                <NA>
## 4 -87.53076 30.33239
                               4 alabama
                                                <NA>
                           1
## 5 -87.57087 30.32665
                           1
                               5 alabama
                                                <NA>
## 6 -87.58806 30.32665
                                 6 alabama
                                                <NA>
head(cty_df)
##
                   lat group order region subregion
         long
## 1 -86.50517 32.34920
                        1
                              1 alabama
                                             autauga
## 2 -86.53382 32.35493
                           1
                                2 alabama
                                             autauga
## 3 -86.54527 32.36639
                          1
                               3 alabama
                                            autauga
## 4 -86.55673 32.37785
                          1
                               4 alabama
                                             autauga
## 5 -86.57966 32.38357
                           1
                                 5 alabama
                                             autauga
## 6 -86.59111 32.37785
                           1
                                 6 alabama
                                             autauga
1.7.2 data transformation to match
transform_mapdata <- function(x){</pre>
 names(x)[5:6] <- c('state', 'county')</pre>
 for( u in c('state', 'county')){
   x[,u] <- sapply(x[,u], simpleCap)</pre>
 }
 return(x)
}
state_df <- transform_mapdata(state_df)</pre>
cty_df <- transform_mapdata(cty_df)</pre>
head(state_df)
##
                   lat group order
          long
                                     state county
## 1 -87.46201 30.38968
                          1
                                1 Alabama
                                             <NA>
## 2 -87.48493 30.37249
                           1
                                2 Alabama
                                             <NA>
                               3 Alabama
## 3 -87.52503 30.37249
                          1
                                             <NA>
## 4 -87.53076 30.33239
                         1 4 Alabama
                                             <NA>
## 5 -87.57087 30.32665
                          1
                               5 Alabama
                                             <NA>
## 6 -87.58806 30.32665
                        1
                                 6 Alabama
                                             <NA>
head(cty_df)
##
                   lat group order
                                     state county
         long
## 1 -86.50517 32.34920 1 1 Alabama Autauga
                          1
                                2 Alabama Autauga
## 2 -86.53382 32.35493
## 3 -86.54527 32.36639
                          1
                                3 Alabama Autauga
## 4 -86.55673 32.37785
                                4 Alabama Autauga
                          1
## 5 -86.57966 32.38357
                           1
                                 5 Alabama Autauga
## 6 -86.59111 32.37785
                           1
                                 6 Alabama Autauga
1.7.3 connect map data above with d.state
chor_state <- left_join(state_df, d.state, by ='state')</pre>
ggplot(chor_state, aes(long, lat, group = group)) +
geom_polygon(aes(fill =wage))+
```


1.7.4 connect map data above with d.state

```
chor_cty <- left_join(cty_df, d.county,by = c("state", "county"))

ggplot(chor_cty, aes(long, lat, group = group)) +
   geom_polygon(aes(fill =wage))+
   geom_path(color = 'white', size =.2, alpha = .5)+
   geom_polygon(data = state_df, color = "black", fill = NA)+

scale_fill_brewer(palette = "GnBu")+
   labs(x= '', y='',fill = 'Avg Annual PAy by County')</pre>
```



```
theme(axis.text.x = element_blank(),
    axis.text.y = element_blank(),
    axis.ticks.x = element_blank(),
    axis.ticks.y = element_blank())
```

```
## List of 4
  $ axis.text.x : list()
##
    ..- attr(*, "class")= chr [1:2] "element_blank" "element"
  $ axis.text.y : list()
##
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
##
   $ axis.ticks.x: list()
##
    ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
  $ axis.ticks.y: list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##
   - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi FALSE
  - attr(*, "validate")= logi TRUE
```

1.8 Geography from industry level

According to North American Industry Classification System, we chose to focus on and visualize the geographical distribution of employment in the private sector across the 4 industries:

- * (NIACS 11) Agriculture, forestry, fisheries, hunting;
- * (NIACS 21) Mining, quarrying, oil, and natural gas extraction;
- * (NIACS 52) Finance and insurance;
- * (NIACS 54) Professional technical service.

1.8.1 filter certain industry data

1.8.2 visualization

```
chor_ind_cty <- left_join(cty_df, d.sectors)
chor_ind_cty <- filter(chor_ind_cty, !is.na(industry_code))
ggplot(chor_ind_cty, aes(long, lat, group = group))+
    geom_polygon( aes(fill= emplevel)) +
    geom_polygon(data = state_df, color = 'black', fill =NA)+
    scale_fill_brewer(palette = 'GnBu')+
    facet_wrap(~industry_title, ncol =2, as.table = T)+
    labs(fill = 'Avg Employment Level', x= '', y= '')+
    theme(axis.text.x = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.x = element_blank())</pre>
```


1.9 Time series map of geospatial

1.9.1 import data from 2008 to 2018

```
library(dplyr)
getdata <- function(zipfile){</pre>
  unzip(file.path('data/',zipfile), exdir = 'data')
  csvfile <- gsub('zip', 'csv',zipfile)</pre>
  csvfile <- gsub('_', '.',csvfile)</pre>
  dat <- fread(file.path('data/',csvfile))</pre>
  dat <- left join(dat, myarea)</pre>
  dat %<>% filter(agglvl_code == 70) %>% # county level
    select(state , county , avg_annual_pay)
  return(dat)
# store 11 yrs data in list
files <- dir('data', pattern = 'annual_singlefile.zip') # find pattern
n = length(files)
dat_list <- vector('list',n)</pre>
for (i in 1:n){
dat_list[[i]] <- getdata(files[i])</pre>
names(dat_list)[i] <- substr(files[i],1,4)</pre>
}
```

1.9.2 Connect all the data together to create a unified discretization interval

1.9.3 visualization

```
mychor time <- function(d, fill label = ''){</pre>
  # the dataset d will have a column named 'outcome'
  chor <- left_join(cty_df,d)</pre>
  plt <- ggplot(chor, aes(long, lat, group = group))+</pre>
  geom_polygon( aes(fill= outcome)) +
  geom_path(color = 'white', alpha = .5, size =.2)+
  geom_polygon(data = state_df, color = 'black', fill =NA)+
  scale_fill_brewer(palette = 'GnBu')+
  labs(fill = fill_label, x= '', y= '')+
  theme(axis.text.x = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks.x = element blank(),
        axis.ticks.y = element_blank())
 return(plt)
# Create a corresponding plot object for 2008-2018 data with a loop
plt_list <- vector('list',n)</pre>
for(i in 1:n){
 dat_list[[i]] <- mutate(dat_list[[i]],</pre>
```

```
outcome = Discretize(avg_annual_pay, breaks = breaks))
plt_list[[i]] <- mychor_time(dat_list[[i]]) + ggtitle(names(dat_list)[i])
}</pre>
```

1.9.4 Generate an animated GIF web page file

```
library(choroplethr)
choroplethr_animate(plt_list)
```

According to the gif, we can see area Employment and wealth in North Dakota, Nevada, Wyoming and Northeastern coastal are growing obviously rapidly in last decade.