

$$\Rightarrow 5.4^{2} + 3^{2}.5.4 = 5.4(4 + 3^{2})$$

Suppomiamo 93=2 Allora possiamo affermare che

$$\frac{3}{4} = \frac{21}{5} = 5,25$$
 no intero-prendo 6 $q_3 = x_6$

Consideriamo compione $X_4, ..., X_7$ N=7

L = M 2 = 6 }6!V 7 = 1

Numer	i da 1000 a 3939	
Quanti	num con cifre tutle dispari e diverse tra loro	
5 scate	possibili 3 2 -> 5!	
	dispari	
A.Bc.	P(A) = 1/2 P(B)= 2/3	
Allora s	sicwonerte:	
o Ael	3 inol. DA e B sono disginuti	
OAe	B <u>non</u> sono inali. DA e B <u>non</u> sono disgiluti	
perche	P(A)+P(B) > 1 guindi per essere prob P(ANB)>0	
- · - · - ·	. + . + . +	٠
A,B,C	EA P(A) = 0.5 = 1/2	
	P(B A)=0	
o Si de	we owere P(B)=0 B A e B possouo essere disgiunti	
	B devono essere dis. O A e B devono essere indipendenti	
	$P(B A) := \frac{P(A \cap B)}{P(A)} = 0 \Rightarrow P(A \cap B) = 0$	
	P(A)	
	$A \cap B = \emptyset \implies P(A \cap B) = \emptyset$	
	#	

X~Gous(0,1)