

ResNet在2015年由微软实验室提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。(啥也别说了,就是NB)

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

网络中的亮点:

- 超深的网络结构(突破1000层)
- ▶ 提出residual模块
- ▶ 使用Batch Normalization加速训练(丢弃dropout)

Figure 2. Residual learning: a building block.

$$3 \times 3 \times 256 \times 256 + 3 \times 3 \times 256 \times 256 = 1,179,648$$

 $1 \times 1 \times 256 \times 64 + 3 \times 3 \times 64 \times 64 + 1 \times 1 \times 64 \times 256 = 69,632$

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

注意: 主分支与shortcut的输出特征矩阵shape必须相同

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
conv2_x	56×56	3×3 max pool, stride 2					
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	
	1×1		average pool, 1000-d fc, softmax				
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^9	7.6×10^9	11.3×10^9	

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

residual结构

注意: 主分支与shortcut的输出特征矩阵shape必须相同

residual结构

Option B

注意: 主分支与shortcut的输出特征矩阵shape必须相同

Batch Normalization详解

Batch Normalization

Batch Normalization的目的是使我们的一批(Batch)feature map满足均值为0,方差为1的分布规律。

$$\mu$$
 σ^2 在正向传播过程中统计得到

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

https://blog.csdn.net/qq_37541097/article/details/104434557

迁移学习简介

使用迁移学习的优势:

- 1. 能够快速的训练出一个理想的结果
- 2. 当数据集较小时也能训练出理想的效果

弟弟,我来教你如何 辨别渣男和渣女,姐 我阅人无数

好呀,老姐,快快快 教我

注意: 使用别人预训练模型参数时, 要注意别人的预处理方式。

迁移学习简介

迁移学习简介

常见的迁移学习方式:

- 1. 载入权重后训练所有参数
- 2. 载入权重后只训练最后几层参数
- 3. 载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

