Divisibility of Central Stirling Numbers

GT Undergraduate Research Conference, 1 April 2023

Nicholas Papciak

University of Georgia

Department of Mathematics

$$\{1, 2, 3, 4\}$$

$$\{1,2\}\ \{3,4\}$$

$$\{1,3\}\ \{2,4\}$$

$$\{2\}\ \{1,3,4\}$$

Definition

A stirling number of the second kind S(n,k) counts the number of ways to partition a set of n objects into k non-empty sets.

Definition

A stirling number of the second kind S(n,k) counts the number of ways to partition a set of n objects into k non-empty sets.

$$\begin{Bmatrix} n \\ k \end{Bmatrix}$$

Definition

A stirling number of the second kind S(n,k) counts the number of ways to partition a set of n objects into k non-empty sets.

For example S(4,2) counts the partitions of $\{1,2,3,4\}$ into 2 sets

so
$$S(4,2) = 7$$

They enjoy the following recurrence relation

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

and can be explicitly calculated with the following alternating sum

$$S(n,k)=\frac{1}{k!}\sum_{i=0}^k (-1)^i \binom{k}{i}(k-i)^n$$

What are the Central Stirling Numbers?

The central stirling numbers are numbers of the form S(2n,n)

What are the Central Stirling Numbers?

The central stirling numbers are numbers of the form S(2n,n)

What are the Central Stirling Numbers?

The central stirling numbers are numbers of the form S(2n,n)


```
\label{eq:ln} \textbf{In}[1] = \begin{tabular}{l} \textbf{Table}[ & & \textbf{If} [\mbox{OddQ@StirlingS2}[2n, n], n, \mbox{Nothing}], \\ & & \{n, 1, 50\} \\ & & ] \\ \end{tabular} \begin{tabular}{l} \textbf{Out}[1] := \{1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, \\ & 21, 32, 33, 34, 36, 37, 40, 41, 42\} \\ \end{tabular}
```

Definition (Fibbinary Number)

A number whose binary representation does not contain two consecutive ones

Definition (Fibbinary Number)

A number whose binary representation does not contain two consecutive ones

- **a** 10000101010
- **10010101001**
- **10100000010**
- £ 10001101010

Theorem (Chan & Manna, 2010)

S(2n, n) is odd if and only if n is a Fibbinary number.

Central Stirling Divisibility

```
\begin{aligned} \textbf{In}\,[3] &:= \;\; \textbf{Table}\,[\,\textbf{StirlingS2}\,[2\,\,\,\text{n}\,,\,\,\,\text{n}]/\,\text{n}\,,\,\,\,\{\text{n}\,,\,\,\,1\,,\,\,\,10\,\}\,] \\ \textbf{Out}\,[3] &= \;\; \{1\,,\,\,\,7/2\,,\,\,\,30\,,\,\,\,\,1701/4\,,\,\,\,8505\,,\,\,\,661826/3\,,\,\,\,\,\\ & \;\;7047040\,,\,\,\,\,2141764053/8\,,\,\,\,\,11797266195\,,\,\,\,\,\\ & \;\;1183516992931/2\,\} \end{aligned}
```

Central Stirling Divisibility

```
\label{eq:objective_problem} \begin{array}{lll} \textbf{In}\,[4]\!:=&\textbf{Table}\,[&&&\\ &&\textbf{Mod}\,[\,\textbf{StirlingS2}\,[\,2\,\,\,n\,,\,\,n\,]\,,\,\,n\,]\,,\\ &&&\{n\,,\,\,1\,,\,\,20\}\\ &&]\\ \\ \textbf{Out}\,[4]\!=&\{0\,,\,\,1\,,\,\,0\,,\,\,1\,,\,\,0\,,\,\,4\,,\,\,0\,,\,\,5\,,\,\,0\,,\,\,5\,,\\ &&0\,,\,\,0\,,\,\,0\,,\,\,0\,,\,\,0\,,\,\,5\,,\,\,0\,,\,\,13\,,\,\,0\,,\,\,1\} \end{array}
```

Central Stirling Divisibility

```
In[5] := Table[
   Mod[StirlingS2[2 n, n], n],
   \{n, 1, 1000, 2\}
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ... . 0}
```

Introduction Properties Conjecture Groupings

Divisibility Properties

Conjecture

if n is odd, n divides S(2n,n)

Introduction Properties Conjecture Groupings

Grouping Set Partitions

We can categorize every partition by its shape!

Grouping Set Partitions

In our previous example, S(4,2), groups $\{1,2,3,4\}$ into 2 sets

Grouping Set Partitions

In our previous example, S(4,2), groups $\{1,2,3,4\}$ into 2 sets

The first partitions share the shape $\{_,_\}$ $\{_,_\}$ while the last share $\{_\}$ $\{_,_,_\}$.

Grouping Set Partitions

In our previous example, S(4,2), groups $\{1,2,3,4\}$ into 2 sets

$$\begin{cases}
 \{1,2\} \{3,4\} \\
 \{1,3\} \{2,4\} \\
 \{1,4\} \{2,3\} \\
 \underbrace{\{1,2,4\} \\
 \{4\} \{1,2,3\} \\
 \underbrace{\{1,2,3\} \\
 \{4\} \{1,2,3\} \\
 1;3}$$

We will label these shapes by the number of elements, so 2:2 and 1:3 respectively.

Shape as an Integer Partition

For a central stirling number, its shape is an integer partition of 2n of length n.

Previous example:

$$2 + 2 = 4$$

$$1 + 3 = 4$$

2 elements

Shape as an Integer Partition

For a central stirling number, its shape is an integer partition of 2n of length n.

$$1 + 1 + 1 + 1 + 6 = 10$$

$$1 + 1 + 1 + 2 + 5 = 10$$

$$1 + 1 + 1 + 3 + 4 = 10$$

$$1 + 1 + 2 + 2 + 4 = 10$$

$$1 + 1 + 2 + 3 + 3 = 10$$

$$1 + 2 + 2 + 2 + 3 = 10$$

$$2+2+2+2+2=10$$

Shape as an Integer Partition

For a central stirling number, its shape is an integer partition of 2n of length n.

$$1+1+1+1+6=10$$

$$1+1+1+2+5=10$$

$$1+1+1+3+4=10$$

$$1+1+2+2+4=10$$

$$1+1+2+3+3=10$$

$$1+2+2+2+3=10$$

$$2+2+2+2+2=10$$

if
$$\lambda=(1:2:2:2:3)$$
, then $\lambda\vdash 10$ note that $\operatorname{len}(\lambda)=5$

Divisibility of Groups

```
[1]: sn2_central_group_counts(5)

210 partitions in 1:1:1:1:6
2520 partitions in 1:1:1:2:5
4200 partitions in 1:1:1:3:4
9450 partitions in 1:1:2:2:4
12600 partitions in 1:1:2:3:3
12600 partitions in 1:2:2:2:3
945 partitions in 2:2:2:2:2
```

Divisibility of Groups

Divisibility of Groups

```
[2]: sn2_central_group_counts(4)
```

```
56 partitions in 1:1:1:5 \mod 4 = 0

420 partitions in 1:1:2:4 \mod 4 = 0

280 partitions in 1:1:3:3 \mod 4 = 0

840 partitions in 1:2:2:3 \mod 4 = 0

105 partitions in 2:2:2:2 \mod 4 = 1
```

Denote the # of partitions of S(2n,n) w.r.t a shape λ as $S_{\lambda}(2n,n)$

Denote the # of partitions of S(2n,n) w.r.t a shape λ as $S_{\lambda}(2n,n)$

How can we count $S_{\lambda}(2n,n)$?

Denote the # of partitions of S(2n,n) w.r.t a shape λ as $S_{\lambda}(2n,n)$

The number of partitions in a grouping can be counted combinatorially with multinomial coefficients

Denote the # of partitions of S(2n,n) w.r.t a shape λ as $S_{\lambda}(2n,n)$

The number of partitions in a grouping can be counted combinatorially with multinomial coefficients

$$\binom{n}{\lambda_1, \dots, \lambda_n} = \frac{n!}{\lambda_1! \cdot \dots \cdot \lambda_n!}$$

For example, consider the $\lambda = 1:2:2:2:3$ group when n = 5.

$$S_{\lambda}(10,5) = \begin{pmatrix} 10 \\ 1,2,2,2,3 \end{pmatrix} = \frac{10!}{1! \cdot 2! \cdot 2! \cdot 2! \cdot 3!}$$

For example, consider the $\lambda = 1:2:2:2:3$ group when n = 5.

$$S_{\lambda}(10,5) = \binom{10}{1,2,2,2,3} = \frac{10!}{1! \cdot 2! \cdot 2! \cdot 2! \cdot 3!}$$

... almost

For example, consider the $\lambda = 1:2:2:2:3$ group when n = 5.

$$S_{\lambda}(10,5) = \binom{10}{1,2,2,2,3} = \frac{10!}{1! \cdot 2! \cdot 2! \cdot 2! \cdot 3!}$$

We need to account for the fact that there are 3 sets of length 2, so we divide by 3!

For example, consider the $\lambda = 1:2:2:2:3$ group when n = 5.

$$S_{\lambda}(10,5) = \begin{pmatrix} 10 \\ 1,2,2,2,3 \end{pmatrix} \cdot \frac{1}{3!} = \frac{10!}{1! \cdot 2! \cdot 2! \cdot 2! \cdot 3!} \cdot \frac{1}{3!} = 12600$$

For example, consider the $\lambda=1:2:2:2:3$ group when n=5.

$$S_{\lambda}(10,5) = \binom{10}{1,2,2,2,3} \cdot \frac{1}{3!} = \frac{10!}{1! \cdot 2! \cdot 2! \cdot 2! \cdot 3!} \cdot \frac{1}{3!} = 12600$$

12600 partitions in 1:2:2:2:3

A Sum Over Groups of Shapes

$$S(2n,n) = \sum_{\substack{\lambda \vdash 2n \\ \operatorname{len}(\lambda) = n}} S_{\lambda}(2n,n)$$

A Sum Over Groups of Shapes

$$S(2n,n) = \sum_{\substack{\lambda \vdash 2n \\ \operatorname{len}(\lambda) = n}} \binom{2n}{\lambda_1, \lambda_2, ..., \lambda_n} \prod_{\operatorname{unique} \, \lambda_i} \frac{1}{\operatorname{count}(\lambda_i)!}$$

Introduction Properties Conjecture Groupings

Questions?!