RECEIVED CENTRAL FAX CENTER AUG 2 8 2006

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049.20 Response Dated April 28, 2006

<u>REMARKS</u>

Claims 1 to 15 and 17 to 27 are pending.

Election

The Examiner has withdrawn claim 17 from consideration, on the basis that it is drawn to a non-elected species. The Applicants respectfully submit that claim 17 is drawn to an elected species. Specifically, in the previous response the Applicants provisionally elected Species II-A, which as defined by the Examiner in the previous Office Action includes: "[m]ethods as set forth in Group I, II, and III, wherein said set of characteristics comprises non-genetic factors" (Emphasis added). Claim 17 recites "said set of characteristics comprises both genetic and non-genetic factors" (Emphasis added). Thus, Claim 17 is drawn to Species II-A and re-consideration and examination of Claim 17 is respectfully requested.

Information Disclosure Statement

The Examiner stated that the Schafer et al. reference included in the submitted Information Disclosure Statement has not been considered as a legible copy was not available. A legible copy of the relevant portion of Schafer et al. including the cover pages and Chapter 9, pp. 333-377, is enclosed for reconsideration by the Examiner.

Objection

Claims 1, 4, 22 and 23 have been amended to delete the numbers with trailing periods, in response to the Examiner's objections.

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049.20 Response Dated April 28, 2006

Statutory Subject Matter

The Examiner rejected claims 1 to 15 and 18 to 27 under 35 U.S.C. §101 as being directed to non-statutory subject matter. In particular, the Examiner is of the view that claim 1 does not produce an actual, concrete result in a tangible form useful to one skilled in the art. The Applicants respectfully traverse this rejection.

As outlined in the "Interim Guidelines for Examination of Patent Applications for Patent Subject Matter Eligibility" – OG Date, 22 November 2005 ("the Guidelines"):

- "If the claim is directed to a practical application ... producing a result tied to the physical world that does not preempt the judicial exception, then the claim meets the statutory requirement of 35 U.S.C. §101." (Emphasis added)
- "The tangible requirement does not necessarily mean that a claim must either be tied to a particular machine or apparatus or must operate to change articles or materials to a different state or thing. ...the process claim must set forth a practical application ... to produce a real-world result.
- "the opposite meaning of 'tangible' is 'abstract'."
- "the opposite of 'concrete' is unrepeatable or unpredictable."
- "If the record as a whole suggests that it is more likely than not the claimed invention would be considered a practical application of an abstract ideal, natural phenomenon, or law of nature, the Examiner should not reject the claim." (Emphasis added)

Each of Claim 1 and claim 21 recites, among others, determining a plurality of weights associated with collected sets of data, each associated with a member of a population, and optimizing the parameters of a candidate statistical model, taking into account of the weights. The weights and optimized parameters can be repeatedly and predictably produced, to create a statistical model for predicting disease risk for a member

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049.20 Response Dated April 28, 2006

of the population. The results s are thus are not merely "abstract" numbers but are useful, concrete and tangible results that have practical application in the "real world". For example, the weights indicate the statistical significance of data sets, which are useful, for optimizing risk prediction models which can be used for calculating disease risks to members of a specific population (claim 1), as described in the present application.

In addition, Claim 1 has been amended to clarify that the parameters of the chosen risk model are optimized so that a risk calculated using the risk model and a set of data of the first type associated with a particular member of the population is indicative of a disease risk to the particular member, which is a further practical application of the risk model in the real world. Support for the amendment can be found in the description at, e.g., paragraphs [0094] and [00124], and in FIGS. 2 and 7.

Claim 21 has been similarly amended to recite that an optimized risk model is stored for use in calculating disease risks. Support for storing statistical models can be found in the description, such as at paragraph [0039], and in FIG. 1.

Claims 2 to 15, 17 to 20, and 22 to 26 depend from one or other of claims 1 and 21 directly or indirectly.

It is submitted that the record <u>as a whole</u>, including the description, clearly sets forth how the claimed invention involves practical applications of the determined weights or risk model, and the claims on file do not preempt any of the judicial exceptions. Therefore, it is believed that the current claims 1 to 15 and 17 to 26 are directed to statutory subject matter and withdrawal of rejections of these claims on the basis of non-statutory subject matter is respectfully requested.

The Examiner did not articulate why claims 20 and 27 are considered to be directed to non-statutory subject matter. Claim 20 is directed to a computer system not a "method" as asserted by the Examiner. Examiner did not provide reasons for rejecting independent Claim 27 in sufficient detail so that the Applicants can properly respond. As the "Examiner

Appl. No. 10/634,145

Our Docket NAA 0018 PA/41049.20 Response Dated April 28, 2006

bears the initial burden ... of presenting a prima facie case of unpatentability" (see the Guidelines, IV - D.), the Examiner is therefore requested to either withdraw the rejections to claims 20 and 27 or to provide a sufficient basis for rejecting claim 20 or 27 so that the Applicants can better address the rejection.

§112 rejection

The Examiner further rejected Claims 1 to 15 and 22 to 26 under 35 U.S.C. §112, second paragraph.

In particular, the Examiner stated that it is unclear what steps are required to determine the statistical model in claim 1. Claim 1 has been amended to clarify that the candidate statistical model with the parameters optimized as claimed is chosen as the statistical risk model.

The Examiner further notes that the limitation "said data having like data of said second type" lacks a proper antecedent basis. In response, the Applicants note that the complete limitation is "sets of said data having like data of said second type", which is believed to be properly introduced and has proper antecedent basis. The Examiner also stated that the meaning of the word "like" is unclear. It is submitted that it would be clear to a person skilled in the art what "like data" means in the context of claim 1. It would be clear when the claim is read as a whole that "like data" are data that are similar or alike, possess similar characteristics, or have identical or equivalent values. It is thus believed that no further clarification is necessary. Withdrawal of this objection is requested.

Claim 3 has been amended to delete the word "corresponding", thus addressing the Examiner's objection on the basis of lack antecedent.

The Examiner further noted that the sentence "a reference group which contains sets of data having data of said second type like data of said second type obtained from said member of said population" in claim 4 is unclear as written as it is not clear in what way the

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049.20 Response Dated April 28, 2006

"reference group" is further limited. In response, the Applicants note that this sentence has a reasonable interpretation: as far as data of the second type is concerned, the data contained in the reference group and the data obtained from the member are alike, which is a further limitation on the reference group. Thus, it is believed that no further clarification is needed. Withdrawal of this objection is requested.

Claims 7, 13 and 27 have been amended to provide proper antecedents for all recited elements. It is believed that these amendments address the Examiner's objections to claims 7 and 13 under §112, second paragraph. The Applicants note that a common and ordinary meaning of the word "representativeness" is the quality or state of being representative. Read in the context of the claims as amended, a person skilled in the art would understand that this word refers to the extent to which the member is representative in the population.

As the objections to claim 1 under §112 have been addressed as discussed above, withdrawal of the objections to claims 2, 5, 6, 8 to 12, 14, 15, and 23 to 26 as they depend either directly or indirectly on claim 1 is requested.

Prior Art Rejections

The Examiner rejected claims 1, 3, 8 to 11, 13 and 19 to 21 under 35 U.S.C. §102(b) as being anticipated by Schoonjans. The Applicants respectfully traverse the rejection.

Specifically, claim 1 recites, among others, collecting sets of data each set associated with one member of a population, selecting a candidate statistical model dependent on a plurality of parameters, determining weights each associated with one collected set of data, and optimizing the parameters by fitting the model to the collected sets of data, taking into account of the weights. The collected sets of data are not any data. They must include input data to be used in the fitting. Each weight indicates a statistical significance of its associated set of data.

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049,20 Response Dated April 28, 2006

In stark contrast, Schoonjans discloses a hazard model H(t) dependent on a collection of predictor variables (X) and coefficients (b) associated with the variables. The coefficients "b" are estimated by Cox regression. However, Schoonjans does not disclose or suggest determining weights associated with collected data sets used in the estimation of "b" by Cox regression. It apparently could not disclose optimizing the coefficients "b" by taking into account of the weights, as no such weights are determined. The Examiner takes the position that "exp(b)" are the "weights" as recited in claim 1. This position is incorrect. The coefficients "b" are associated with the <u>predictor variables</u> (X), which are covariates or risk factors (see page 1 of Schnoonjans). As any person skilled in the art would understand, these variables are not individually associated with individual members of a population. They are not the <u>sets of data</u> each associated with <u>one member</u> of the population, as defined in claim 1. Further, claim 1 calls for both parameters and weights, which are distinct and separate quantities. The coefficients "b" may be considered either as parameters or weights, but they cannot be both the parameters and the weights as defined in claim 1.

As Schoonjans does not disclose all of the limitations of claim 1, it is submitted that claim 1, and the claims dependent therefrom directly or indirectly, are not anticipated by Schoonjans.

The Examiner further rejected claims 1, 2, 4, and 10 under 35 U.S.C. §102(b) as being anticipated by Lloyd et al. The Applicants respectfully traverse the rejection.

Specifically, the Examiner asserts that Lloyd et al. teaches:

Model includes fixed parameters to be estimated that is a multiplier of time dependent covariates associated with statistical significant [p.149, lines 23-27], which is a teaching for a "candidate statistical model" and "weights associated with statistical significance" as in instant claim 1(c).

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049.20 Response Dated April 28, 2006

This statement is incorrect. As discussed above, any person skilled in the art would understand neither the fixed parameters nor the covariates of a model are collected sets of data each associated with one member of the population as defined in claim 1. A review of Lloyd et al. indicates that they do not disclose or suggest determining weights each associated with a collected set of data where the set of data is associated with one member of a population. Thus, it is respectfully submitted that claim 1, and claims 2, 4 and 10 dependent therefrom directly or indirectly, are not anticipated by Lloyd et al.

Withdrawal of the rejections under 35 U.S.C. §102(b) is therefore respectfully requested.

The Examiner also rejected claims 1 to 3 under 35 U.S.C. §103(a) as obvious having regard to Kirchberg et al. in view of Montomoli et al. The Applicants respectfully traverse this rejection.

First of all, Kirchberg et al. is related to genetic model of optimization for Hausdorff distance-based face localization, which is in an art non-analogous to the art of disease risk predication. It would not have been obvious for a person skilled in the art of disease risk predication to look for references related to the art of face localization or image analysis.

Further, the Examiner relies on Kirchberg et al. for disclosing the limitations of former claim 1, including: "collecting ...sets of data, each...associated with one member of said population, and comprising...an <u>indicator of disease status</u>" [limitation 1(a)]; and "selecting a candidate statistical model <u>for calculating said disease risk..."</u> [limitation 1(b)]. Careful review of Kirchberg et al. reveals that Kirchberg et al. do not disclose or suggest any of these limitations as recited in claim 1.

Specifically, the Examiner stated that Kirchberg et al. teach "[d]evelopment of a "face model" consisting of feature points [p.104, paragraph 4], as in instant claim 1(b)". This statement is incorrect. The "face model" disclosed in Kirchberg et al. is for locating and representing possible faces in an image (see p. 104, paragraphs 1 to 6 of Kirchberg et al.).

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049.20 Response Dated April 28, 2006

Kirchberg et al. do not disclose or suggest using the "face model" for calculating <u>disease</u> <u>risks</u>. Nor does Montomoli et al.

Further, the Examiner stated that Kirchberg teach "a metric..., which correlates to a[n] 'indicator' as in instant claim 1(a)". This is also incorrect. Kirchberg et al. do not disclose or suggest the collection of data sets each comprising "an indicator of disease status", as claimed in Claim 1. As recognized by the Examiner, the "metric" disclosed in Kirchberg is "for determining distance between two data points" in an image, which has nothing to do with the disease status of individual members of a population.

As the Examiner has failed to show the cited references, either alone or in combination, disclose all of the limitations of claim 1, or any of claims 2 and 3 dependent therefrom, the Examiner has failed to establish a *prima facie* case of obviousness.

Appl. No. 10/634,145 Our Docket NAA 0018 PA/41049_20 Response Dated April 28, 2006

Withdrawal of the rejection under §103(a) is therefore respectfully requested.

No new matter has been added by this amendment.

In view of the foregoing, favourable consideration of the application is respectfully requested.

Respectfully submitted,

DINSMORE & SHOHL, LIP

Timothy W. Hagan

Registration No. 29,001

One Dayton Centre
One South Main Street, Suite 1300

Dayton, Ohio 45402 Tel. (937) 449-6400 Fax (937) 449-6405

August 28, 2006 Enclosures MZ/JJP/jkk 92706-41

Monographs on Statistics and Applied Probability 72

Analysis of Incomplete Multivariate Data

J. L. Schafer

CHAPMAN & HALL

Analysis of Incomplete Multivariate Data

J.L. SCHAFER

Department of Statistics The Pennsylvania State University USA

London · Weinheim · New York · Tokyo · Melbourne · Madras

PAGE 21/45 * RCVD AT 8/28/2006 4:57:45 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/7 * DNIS:2738300 * CSID:9372230724 * DURATION (mm-ss):16-04

PAGE 22/45 * RCVD AT 8/28/2006 4:57:45 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/7 * DNIS:2738300 * CSID:9372230724 * DURATION (mm-ss):16-04

9.1 Introduction

and categorical variables. Such a dataset is shown in Figure 9.1, with missing values denoted by question marks. incomplete multivariate data matrices containing both continuous tain variables of both types. This chapter develops general tools for with continuous predictors, and so on. Sample surveys often conman: analysis of variance, analysis of covariance, logistic regression tical analyses involving variables of both types are extremely comeither all continuous or all categorical. In practice, however, statis-Chapters 5-8 pertained to datasets in which the variables were

phasize models for variables that are all of the same type; relatively The statistical literature on multivariate methods tends to em-

W1 W2 ... Wp categorical Ŋ continuous **3** N

Figure 9.1. Mixed dataset with missing values.

CHAPTER 9

Methods for mixed data

little attention has been paid to models for mixed data. One so-table exception is the model that underlies classical discriminant analysis, which contains a single categorical response and one or more combinuous predictors. We begin with a version of this model called the general location model (Section 9.2) and discuss methods for keeping the number of parameters manageable (Section 9.3). Algorithms for incomplete mixed data are presented in Section 9.3, and Section 9.5 concludes with several data examples.

9.2 The general location model

9.2.1 Definition

As in Figure 9.1, let W_1, W_2, \dots, W_p denote a set of categorical variables and Z_1, Z_2, \dots, Z_q a set of continuous ones. If these variables are recorded for a sample of n units, the result is an $n \times (p+q)$ data matrix Y = (W, Z), where W and Z represent the categorical and continuous parts, respectively.

The categorical data W may be summarized by a contingency table. Let us suppose that W_j takes possible values $1, 2, \dots, d_j$, so that each unit can be classified into a cell of a p-dimensional so that total number of cells equal to $D = \prod_{j=1}^p d_j$. A generic response pattern for the categorical variables will be denoted by $w = \{w_1, w_2, \dots, w_p\}$, and the frequencies in the complete-data contingency table will be

$$x = \{x_{\mathbf{u}} : \mathbf{w} \in \mathcal{W}\}, \tag{9}$$

where x_w is the number of units for which $(W_1, W_2, \dots, W_p) = w_1$ and W is the set of all possible w. We may also arrange the cells of the contingency table in a linear order indexed by $d = 1, 2, \dots, D$, for example, the anti-lexicographical storage order in which w_1 varies the fastest, w_2 varies the next fastest, and so on (Appendix P). Then we can replace the vector subscript in x_w by a single subscript d,

$$= \{x_d: d=1,2,\ldots,D\}.$$
 (9.5)

Depending on the context, we will regard x either as a multidi-

mensional array (9.1) or a vector (9.2). Finally, it will be helpful to introduce one additional characterization of W. Let U be an $n \times D$ matrix with rows u_i^T , $i = 1, 2, \dots, n$, where u_i is a D-vector containing a 1 in position d if unit i falls into where u_i is a D-vector containing a 1 in position d if u contains u where u is a u-vector containing a u-vector u-vector containing a u-vector u-v

THE GENERAL LOCATION MODEL

a single 1, and U^TU is

$$U^{T}U = \operatorname{diag}(x) = \begin{bmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x_D \end{bmatrix}$$
 (9.3)

Because the sample units are assumed to be independent and identically distributed, all relevant statistical information in W is contained in x, U or U^TU . The continuous data are characterized simply by Z.

t Prinse in e

The general location model, so named by Olkin and Tate (1961), is most easily defined in terms of the marginal distribution of W and the conditional distribution of Z given W. The former is described by a multinomial distribution on the cell counts x,

$$x \mid \pi \sim M(\eta, \pi), \tag{9}$$

where $\pi = \{\pi_w : w \in \mathcal{W}\} = \{\pi_d : d = 1, 2, \dots, D\}$ is an array of cell probabilities corresponding to x. Given W, the rows $x_1^T, x_2^T, \dots, x_n^T$ of Z are then modeled as conditionally multivariate normal. Let E_d denote a D-vector containing a 1 in position d and 0s elsewhere. We assume

$$z_t \mid u_t = E_{d_t} \mu_{d_t} \Sigma \sim N(\mu_{d_t} \Sigma)$$

independently for $i=1,2,\ldots,n$, where μ_d is a q-vector of means corresponding to cell d, and Σ is a $q\times q$ covariance matrix. The means of Z_1,Z_2,\ldots,Z_q are allowed to vary freely from cell to cell, but a common covariance structure Σ is assumed for all cells. When D=2, this reduces to the model that underlies classical discriminant analysis (e.g. Anderson, 1984).

The parameters of the general location model will be written

$$\theta = (\pi, \mu, \Sigma),$$

where $\mu=(\mu_1,\mu_2,\dots,\mu_D)^T$ is a $D\times q$ matrix of means. For the moment, we will impose no prior restrictions on θ other than the necessary positive definiteness for Σ and $\sum_{w\in W}\pi_w=1$. The number of free parameters in the unrestricted model is thus

$$(D-1)+Dq+q(q+1)/2$$

Notice that the model for Z given W may also be regarded as a classical multivariate regression,

33

 $Z = \Pi_n + I$

3

<u>.</u>;.

simply by omitting them from the columns of U. A model of the as $U^TU=\operatorname{diag}(x)$, this will be a full-rank regression provided that for each of the cells $d=1,2,\ldots,D$. Because U has the same rank in this model the same matrix of regressors U is used to predict distributed as $N(0, \Sigma)$. The columns of U contain dummy variables each column of the response Z. form (9.6) is sometimes called a standard multivariate regression; there are no random zeroes in x. Structural zeroes may be handled where ϵ is an n imes q matrix of errors whose rows are independently

9.2.2 Complete-data likelihood

hood as the product of multinomial and normal likelihoods. Combining (9.4) with (9.5), we can write the complete data likeli-

$$L(\theta \mid Y) \propto L(\pi \mid W) L(\mu, \Sigma \mid W, Z).$$
 (9.7)

The likelihood factors are $L(\pi \mid W) \propto \prod_{d=1}^D \pi_d^{x_d}$ and

$$L(\mu, \Sigma \mid W, Z) \propto |\Sigma|^{-\frac{\alpha}{2}} \exp\left\{-\frac{1}{2} \sum_{d=1}^{D} \sum_{\ell \in B_d} (z_{\ell} - \mu_d)^T \Sigma^{-1} (z_{\ell} - \mu_d)\right\},\,$$

d. After some algebraic manipulation, the second factor may be where $B_d = \{i : u_i = E_d\}$ is the set of all units belonging to call

$$L(\mu, \Sigma | W, Z) \propto |\Sigma|^{-\frac{\kappa}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} Z^T Z\right\}$$

$$+ \operatorname{tr} \Sigma^{-1} \mu^T U^T Z - \frac{1}{2} \operatorname{tr} \Sigma^{-1} \mu^T U^T U \mu\right\},$$

$$(9.8)$$

ments of the sufficient statistics revealing, that the complete data loglikelihood is linear in the ele-

$$T_1 = Z^T Z$$
, $T_2 = U^T Z$, and $T_3 = U^T U = \text{diag}(x)$. (9.9)

Maximum-likelihood estimates

Because the parameters associated with the two factors in (9.7) are for an unrestricted multinomial model, each factor separately. The result for π is the usual ML estimate distinct, complete-data ML estimates may be found by maximizing

The estimate for μ follows from the least-squares regression of Z

$$\hat{\mu} = (U^T U)^{-1} U^T Z = T_3^{-1} T_2,$$
 (9.10) and the estimate for Σ is

$$\hat{\Sigma} = -i \hat{T}_{\hat{\epsilon}} = \frac{1}{2} (\eta_1 - \eta T \eta - 1 \eta_1)$$

denominator of n rather than n-D. (9.11) differs from the classical unbiased estimate in that it uses a

$$(y^TU)^{-1} = \begin{bmatrix} x_1^{-1} & 0 & \cdots & 0 \\ 0 & x_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 \end{bmatrix}$$

and that U^TZ is a $D \times q$ matrix with $\sum_{i \in B_d} z_i^T$ in the dth row.

$$\hat{\mu}_d^T = x_d^{-1} \sum_{i \in B_d} x_i^T, \quad d = 1, 2, \dots, D,$$

means, so the estimated covariance matrix can be written as matrix ℓ are the deviations of the rows of Z from their cell-specific

$$\hat{\Sigma} = \frac{1}{n} \sum_{d=1}^{D} \sum_{i \in B_d} (z_i - \hat{\mu}_d) (z_i - \hat{\mu}_d)^T.$$

Random zeroes and sparse data

and the ML estimate is no longer unique. inestimable; the likelihood takes the same value regardless of μ_d , If any cell in z is randomly zero, the matrix of regressors U has the empty cell drops out of the likelihood function and becomes defined. When this happens, the mean vector μ_d corresponding to deficient rank and the least-squares estimate (9.10) is no longer

contain fewer free parameters (to be discussed below) will be more When the data are sparse, restricted versions of the model that tions are present in each cell to estimate all the components of $\mu.$ useful only when n is large relative to D_r when enough observa-Clearly, the unrestricted general location model will tend to be

THE GENERAL LOCATION MODEL

337

$$-\hat{\epsilon}^T\hat{\epsilon} = -(T_1 - T^TT^{-1}T_1) \qquad (5.1)$$

$$\hat{\Sigma} = \frac{1}{n} \hat{\epsilon}^T \hat{\epsilon} = \frac{1}{n} (T_1 - T_2^T T_2^{-1} T_2), \qquad (9.11)$$

 $Z-U\hat{\mu}$ is the matrix of estimated residuals. Notice that

the within-call averages of the rows of Z. The rows of the residual

338

METHODS FOR MIXED DATA

by foreign language studied and sex Table 9.1. Classification of subjects

			•
LAN II	male	female	total
French	35	31	6 6
_	\$	ä	3
German	ŝ	52	114
Russian	9	11	20
total 1	51	126	277

9.2.3 Example

SEX are categorical with four and two levels, respectively. The freently complete dataset with four variables and 277 observations. predicting achievement in foreign language study; the raw data quencies for the LAN by SEX classification are shown in Table 9.1. The variables FLAS and AGPA are continuous, whereas LAN and the moment, let us discard those two subjects to obtain an apparand SEX and HGPA were missing for only one subject each. For Table 6.5, the variables LAN and FLAS had no missing values general location model to a portion of this dataset. As shown in are reproduced in Appendix A. We will now apply the unrestricted Foreign Language Attitude Scale (FLAS), a test instrument for Adopting a columnwise storage order, the cell counts are

$$U^TU = \text{diag}(35, 45, 62, 9, 31, 32, 52, 11)$$

and dividing these counts by n=277 yields the ML estimate

= (0.126, 0.162, 0.224, 0.032, 0.112, 0.116, 0.188, 0.040).

The sufficient statistics pertaining to HGPA and FLAS are

$$U^T Z = \begin{bmatrix} 94.45 & 2841 \\ 121.08 & 3397 \\ 170.78 & 4997 \\ 26.35 & 694 \\ 82.63 & 2769 \\ 83.12 & 2719 \\ 153.41 & 4517 \end{bmatrix} \cdot Z^T Z = \begin{bmatrix} 2199.69 & 62894.18 \\ 62894.18 & 1934421 \end{bmatrix}.$$

In Section 5.3 we examined data pertaining to the validity of the

and the ML estimate of the covariance matrix is

$$= n^{-1} (Z^T Z - Z^T U (U^T U)^{-1} U^T Z)$$

=
$$\begin{bmatrix} 0.367 & 0.411 \\ 0.411 & 176.9 \end{bmatrix}.$$

9.8.4 Complete-data Bayesian inference

simplicity, we will apply a Dirichlet prior to the cell probabilities, sets will be independent in the posterior distribution as well. For independent prior distributions to π and (μ, Σ) , these parameter tion is also convenient from a Bayesian point of view: if we apply The factorization (9.7) which simplified the problem of ML estima-

$$t \sim D(\alpha)$$

ray of user-specified hyperparameters; the complete-data posterior distribution of m is then where $\alpha =$ $\{\alpha_{\dot{u}}:w\in\mathcal{W}\}=\{\alpha_{\dot{d}}:\dot{d}=1,2,...,D\}$ is an ar-

$$\sim D(\alpha')$$

parameters, see Section 7.2.5, where $\alpha' = \alpha + z$. For discussion on choosing values for the hyper-

standard noninformative prior to the covariance matrix Σ_i we apply an improper uniform prior to the elements of μ and the With regard to μ and Σ , let us first consider what happens when

P/: コ~ 17: 人性)

THE GENERAL LOCATION MODEL

339

matrix of means, Dividing the rows of U^TZ by the cell counts yields the estimated

$$\hat{\mu} = \begin{bmatrix} 2.70 & 81.2 \\ 2.69 & 75.5 \\ 2.75 & 80.4 \\ 2.93 & 77.1 \\ 2.67 & 89.0 \end{bmatrix}.$$

ij Iİ

$$\sim D(\alpha')$$

Inferences for μ and Σ under a noninformative prior

With a little algebra, the likelihood factor (9.8) for μ and Σ can be written in terms of the least-squares estimates,

$$L(\mu, \Sigma | W, Z) \propto |\Sigma|^{-\frac{\alpha}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} \hat{\epsilon}^{T} \hat{\epsilon} \right\}$$

$$-\frac{1}{2} \operatorname{tr} \Sigma^{-1} (\mu - \hat{\mu})^{T} U^{T} U (\mu - \hat{\mu})$$
(9)

The diagonal form of U^TU then allows us to rewrite (9.13) as

$$L(\mu, \Sigma | Z, W) \propto |\Sigma|^{-\frac{k}{2}} \exp\left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} \hat{\epsilon}^T \hat{\epsilon} - \frac{1}{2} \sum_{d=1}^{D} x_d (\mu_d - \hat{\mu}_d)^T \Sigma^{-1} (\mu_d - \hat{\mu}_d)\right\}.$$

which is equivalent to

$$L(\mu, \Sigma | Z, W) \propto |\Sigma|^{-(\frac{n-\mu}{2})} \exp\left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} \hat{\epsilon}^{T} \hat{\epsilon}\right\}$$
(9.14)
$$\times \cdot \prod_{d=1}^{D} |x_{d}^{-1} \Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mu_{d} - \hat{\mu}_{d})^{T} (x_{d}^{-1} \Sigma)^{-1} (\mu_{d} - \hat{\mu}_{d})\right\}.$$

Combining (9.14) with the prior (9.12) leads to

$$\begin{split} P(\mu, \Sigma | Z, W) &\propto |\Sigma|^{-\left(\frac{n-\Omega_{2}^{+}e^{+1}}{2}\right)} \exp\left\{-\frac{1}{2}\operatorname{tr} \Sigma^{-1} \ell^{T} \ell\right\} \\ &\times \prod_{d=1}^{D} |x_{d}^{-1}\Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mu_{d} - \hat{\mu}_{d})^{T} (x_{d}^{-1}\Sigma)^{-1} (\mu_{d} - \hat{\mu}_{d})\right\}, \end{split}$$

which, by inspection, is the product of independent multivariate normal densities for $\mu_1, \mu_2, \dots, \mu_D$ given Σ and an inverted-Wishart density for Σ ,

$$\mu_d \mid \Sigma, Y \sim \mathcal{N}(\beta_d, x_d^{-1}\Sigma),$$
 (9.15)
 $\Sigma \mid Y \sim W^{-1}(n-D, (\hat{\epsilon}^T \hat{\epsilon})^{-1}).$ (9.16)

For this posterior to be proper, we need $n \ge D + q$ and $x_d > 0$ for all d, structural zeroes excluded; also, the matrix $\hat{\epsilon}^T \hat{\epsilon}$ of residual sums of squares and cross-products should have full rank.

Informative priors

The preceding arguments can easily be extended to incorporate prior knowledge about μ and Σ . The most convenient way to spec-

restricted models

34

multivariate normal distributions for $\mu_1, \mu_2, \dots, \mu_D$ with covariance matrices proportional to Σ ; prior information for Σ could then be expressed through an inverted-Wishart distribution. The resulting complete-data posterior would again be the product of independent normal distributions for $\mu_1, \mu_2, \dots, \mu_D$ given Σ and an inverted-Wishart distribution for Σ , and the updated hyperpain Section 5.2.2.

For typical applications of the general location model, strong prior information about μ or Σ will not be available; in all our examples, we will use the noninformative prior (9.12). The use of an improper prior can lead to difficulties, especially in sparse-data situations. For many datasets, particularly if the number of cells D in the contingency table is large, we may find that portions of be improper. When this happens, we will not attempt to stabilize the inference through informative priors for μ or Σ ; rather, we will specify a more parsimonious regression model for Z given relationships between Z_1, Z_2, \ldots, Z_q and W_1, W_2, \ldots, W_p .

9.3 Restricted models

9.3.1 Reducing the number of parameters

The unrestricted general location model tends to work well when the sample size n is appreciably larger than the total number of cells D. When this is not the case, the data may contain little or no information about certain aspects of π , μ or Σ , and it would be wise to reduce the number of free parameters. As shown by Krzanowski (1980, 1982) and Little and Schluchter (1985), the general location model is amenable to certain types of restrictions on the parameter space. Because we defined the complete-data distribution and tribution of W and the conditional distribution of Z given W, we will impose restrictions on the parameter sets π and (μ, Σ) separately to keep them distinct.

Loghinear models for the cell probabilities

For the cell probabilities π , we may require them to satisfy a log-linear model

34.3

Our fitting procedures will operate directly on the elements of π ; number of free parameters in this loglinear model is rank (M)-1. a normalizing constant that scales π to sum to one. The total the loglinear coefficients are of intrinsic interest. the first element of λ (the intercept) is not a free parameter but this structure, containing 'main effects' for W1, W2, ..., Wp and is a cross-classification by W_1,W_2,\ldots,W_p,M will typically reflect there will be no need to explicitly create M or estimate λ unless 'interactions' among them. If the first column of M is constant, where M is a user-specified matrix. Because the contingency table

Linear models for the within-cell means

bution of Z given W is specified by the multivariate regression In the unrestricted general location model, the conditional distri

$$Z = U\mu + \epsilon_1 \tag{9.3}$$

equivalent to a multivariate analysis of variance (MANOVA) model cell location $1,2,\ldots,D$ of each sample unit. The means of Z_1,Z_2 \dots , Z_q are allowed to vary freely among cells. As a result, (9.18) is where U is an $n \times D$ matrix of dummy indicators recording the may be poorly estimated, and it is advantageous to eliminate them interactions among them. In practice, many of these interactions for (Z_1,Z_2,\ldots,Z_q) with main effects for W_1,W_2,\ldots,W_p and all from the model.

the complete-data sufficient statistics. Instead, let us restrict μ to helpful to retain the present definition of \boldsymbol{U} because of its role in matrix with fewer columns. For notational purposes, however, it is be of the form To simplify the model, we could directly replace U by another

is thus required to lie in the linear subspace of \mathcal{R}^D spanned by the of the q columns of μ , corresponding to the variables Z_1, Z_2, \dots, Z_q , columns of A. The regression model becomes for some $oldsymbol{eta}$, where A is a constant matrix of dimension $oldsymbol{\mathcal{D}} imes oldsymbol{ au}$. Each

 $\mu = A\beta$

$$Z = UA\beta + \epsilon_1$$

(the identity matrix) we obtain the unrestricted model (9.18) as a with a reduced set of regression coefficients in eta. By taking A=I

special case. can annual of free parameters If A has full rank, then each of the $\tau \times q$ elements of β represents

RESTRICTED MODELS

343

that there are no deficiencies in the rank of A or UA, because estimability now depends on the rank of UA rather than U table does contain zeroes, the coefficients may still all be estimable, zeroes, then all of the regression coefficients will be estimable. If the itself. To keep matters simple, let us proceed under the assumption $oldsymbol{eta}$ is $q imes \mathrm{rank}\,(A)$. If the contingency table contains no random

$$\operatorname{rank}(A)=\operatorname{rank}(UA)=r.$$

 A^TU^TUA is invertible. have full rank, and then checking the rank of UA by seeing whether In practice we can ensure that this is satisfied by defining A to

Choosing the design matrix

columns will contain dummy codes or contrasts for the desired of W_1, W_2, \ldots, W_p , and perhaps interactions among them, using effects of W_1, W_2, \ldots, W_p and their interactions. first column of $oldsymbol{A}$ will contain 1s for an intercept and the remaining any coding scheme that is convenient. In most applications, the identify the rows of A. Then we create columns for the main effects storage order that we adopted for our contingency table; these possible combinations of levels of these factors, using the linear of the contingency table to the means of the continuous variables. W_1, W_2, \ldots, W_p as 'factors' of the experiment, we first list all the matrix for a factorial ANOVA. Thinking of the categorical variables This matrix is created in the same way that one creates a design The design matrix A defines the regression that relates the cells

lexicographical storage order that the contingency table has D=6 cells. Let us adopt the anti- W_1 and W_2 , taking $d_1 = 2$ and $d_2 = 3$ levels, respectively, so For example, consider a model with p=2 categorical variables,

$$(W_1, W_2) = (1,1), (2,1), (1,2), (2,2), (1,3), (2,3).$$

One possible design matrix is

for W_1 and two main-effect contrasts for W_2 . We may also add whose columns correspond to the intercept, a main-effect contrast

parameters and give the same fit as the unrestricted version (9.18) were included, the resulting model would have the same number of contrasts for the W_1W_2 interaction by including the products of the second column with the third and fourth. If the interaction

9.9.2 Likelihood inference for restricted models

come from the least-squares hit of the reduced regression model found by conventional IPF (Section 8.3). For μ and Σ , the estimates into two unrelated maximizations. The ML estimate for a may be with each other; the joint parameter space for $\theta = (\pi, \mu, \Sigma)$ is still $Z = UA\beta + \epsilon$, which gives the problem of maximizing the joint likelihood for θ still separates the product of the individual spaces for π and (μ, Σ) . Therefore restrictions on π and the linear restrictions on μ , do not interfere The two sets of restrictions that we have imposed, the loglineau

$$\hat{\beta} = (A^{T}U^{T}UA)^{-1}A^{T}U^{T}Z
= (A^{T}T_{3}A)^{-1}A^{T}T_{2}, (9.20)
n\hat{\Sigma} = (Z - UA\hat{\beta})^{T}(Z - UA\hat{\beta})
= T_{1} - T_{2}^{T}A(A^{T}T_{3}A)^{-1}A^{T}T_{2}. (9.21)$$

12

(9.21)

 $n(n-r)^{-1}\hat{\Sigma}$ rather than $\hat{\Sigma}$. Notice that AT_3A is not diagonal, so matrix, most statisticians would tend to use the unbissed estimate an r x r maurix. in general the estimation of μ and Σ now requires the inversion of The corresponding ML estimate of μ is $\hat{\mu} = A\hat{\beta}$. For the covariance

Example: Foreign Language Attitude Scale

a count in the LAN \times SEX contingency table (Table 9.1) and π_{ij} and FLAS has only main effects for SBX and LAN. Let x_{ij} denote are marginally independent, and (b) the linear model for HGPA model to this four-variable dataset in which (a) SEX and LAN form as $\hat{\pi}_{ij} = x_{i+}x_{+j}/n^2$, which gives probabilities for the independence model are available in closed Returning to the example of Section 9.2.3, let us fit a reduced the corresponding cell probability. The ML estimates of the cell

RESTRICTED MODELS

Using the dummy-coded design matrix

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the least-squares regression of Z on UA yields

$$\hat{\beta} = \begin{bmatrix} 2.825 & 83.435 \\ -0.126 & 5.403 \\ -0.154 & 0.390 \\ 0.036 & 4.024 \\ -0.032 & -7.522 \end{bmatrix}, \hat{\mathbf{L}} = \begin{bmatrix} 0.372 & 0.385 \\ 0.385 & 177.8 \end{bmatrix}$$

The corresponding ML estimate of the cell-means matrix is

$$\hat{\mu} = A\hat{\beta} = \begin{bmatrix}
2.67 & 81.3 \\
2.64 & 76.3 \\
2.83 & 79.9 \\
2.79 & 76.9 \\
2.70 & 88.8 \\
2.87 & 83.8 \\
2.86 & 87.5 \\
2.82 & 83.4
\end{bmatrix}$$

Plugging $\hat{\pi}$, $\hat{\mu}$ and $\hat{\Sigma}$ into the formula for the complete-data logthe unrestricted alternative by means of a likelihood-ratio test. We can check the plausibility of this restricted model against

$$i(\pi, \mu, \Sigma \mid Y) = \sum_{d=1}^{D} x_d \log_{\pi d} - \frac{n}{2} \log_{\pi} |\Sigma| - \frac{1}{2} \operatorname{tr} \Sigma^{-1} T_1$$

$$+ \operatorname{tr} \Sigma^{-1} \mu^T T_2 - \frac{1}{2} \operatorname{tr} \Sigma^{-1} \mu^T T_3 \mu, \qquad (9.22)$$

 $P(\chi_0^2 > 5.94) = 0.75$. The radiired model this second restricted model (Section 9.2.3) give a slightly higher logilicalihood of -1391.86. The two models are separated by $(4-1) \times (2-1) = 3$ plus 3 imes2=6 coefficients for the LANimesSEX interaction in the persmeters for the marginal association between SEX and LAN, linear model for HGPA and FLAS. The deviance statistic is 2 imesyields a value of -1394.83. The parameter estimates from the un--1391.86 + 1394.83) = 5.94, and the corresponding p-value is

쓸

LAN and SEX (3 degrees of freedom), another for the conditional model for HGPA and FLAS (6 degrees of freedom), and the two goodness-of-fit test into two tests, one for the marginal model for deviance statistics will add up to the overall deviance tors into distinct pieces for π and (μ, Σ) , we can also separate this data quite adequately. Because the complete-data likelihood fao

9.3.3 Bayesian inference

posterior distribution. In kesping with the methods developed in and (μ, Σ) , so that they remain independent in the complete-data we apply independent prior distributions to the parameter sets n Bayesian inference for the restricted model proceeds most easily if elements of π , with prior density the last chapter, let us apply a constrained Dirichlet prior to the

$$(\pi) \propto \prod_{d=1}^{\pi} \pi_d^{\alpha_d-1}$$

Bayesian IPF (Section 8.4). strained Dirichlet with updated hyperparameters $\alpha_d' = \alpha_d + x_d$. elsewhere. The complete-data posterior density will then be con-Lion 8.3), and simulated posterior draws of π can be obtained with Posterior modes can be calculated using conventional IPF (Secfor values of π that satisfy the loglinear constraints and $P(\pi)=0$

Bayesian inference for eta and Σ under a noninformative prior

۱۳. و Press (1982). The likelihood function for Σ and the free coefficients is covered in many texts on multivariate analysis; a good source is Bayesian inference for the standard multivariate regression model

$$L(\beta,\Sigma|Y) \propto |\Sigma|^{-\frac{\alpha}{2}} \exp\left\{-\frac{1}{2}\operatorname{tr}\Sigma^{-1}(Z-UA\beta)^T(Z-UA\beta)\right\}.$$

be rewritten in terms of the least-squares estimates as Following some algebraic manipulation, this likelthood function can

$$|\Sigma|^{-\frac{1}{4}} \exp\left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} \hat{\epsilon}^T \hat{\epsilon} - \frac{1}{2} (\beta - \hat{\beta})^T [\Sigma \otimes V]^{-1} (\beta - \hat{\beta})\right\}, \quad (9.23)$$

where $\hat{\beta}$ is the matrix of estimated coefficients, $\hat{\epsilon} = Z - UA\hat{\beta}$ is the

 $P(\pi) \propto \prod_{i} \pi_{d}^{\alpha_{d}-1}$

$$P(\beta, \Sigma|Y) \propto |\Sigma|^{-(\frac{\alpha-\frac{1}{2}a+1}{2})} ex$$

for β given Σ and an inverted-Wishart density for Σ ,

$$\beta | \Sigma, Y \sim N(\hat{\beta}, \Sigma \otimes V),$$

$$\Sigma | Y \sim W^{-1}(n-r, (\ell^T \ell)^{-1}).$$

of eta have multivariate t-distributions with n-r degrees of freedom. Notice that for (9.25) to be a proper posterior density, with covariance matrix proportional to V. Marginally, the columns tivariate normal, centered at the corresponding column of $oldsymbol{eta}$ and Given Σ , the posterior distribution of each column of β is mul-(9.27)

Informative priors for eta and Σ

One may extend the above arguments to incorporate more substantial prior information about B and T The their and the substantial prior information about B and T The their and the substantial prior information about B and T The their and the substantial prior information about B and T The their and the substantial prior information about B and T The their and the substantial prior information about B and T The their and T The t

RESTRICTED MODELS

Ø denotes the Kronecker product,

$$V = \begin{bmatrix} \sigma_{11}V & \sigma_{12}V & \cdots & \sigma_{1q}V \\ \sigma_{12}V & \sigma_{22}V & \cdots & \sigma_{2q}V \\ \vdots & \vdots & \ddots & \vdots \\ 0 & q_1V & 0 & q_2V & \cdots & 0 & q_qV \end{bmatrix}$$

see Mardia, Kent and Bibby (1979). meaningful. For some elementary properties of Kronecker products, to form vectors of length rq, so that $(\beta - \hat{\beta})^T [\Sigma \otimes V]^{-1} (\beta - \hat{\beta})$ is In (9.23), the columns of eta and \hat{eta} have been implicitly stacked

uniform prior to $oldsymbol{eta}$ and the standard Jeffreys prior to Σ_i Let us first consider what happens when we apply an improper

$$P(\beta, \Sigma) \propto |\Sigma|^{-(\frac{\alpha+1}{2})}$$

(9.24) with the likelihood function (9.23), and using the fact that tive prior (9.12) that we used in the unrestricted model. Combining When A=I, we have $eta=\mu$, and this reduces to the noninforms.

we obtain the posterior density

$$P(\beta, \Sigma|Y) \propto |\Sigma|^{-\left(\frac{\alpha-\frac{\alpha}{2}+\delta+1}{2}\right)} \exp\left\{-\frac{1}{2}\operatorname{tr}\Sigma^{-1}\tilde{\epsilon}^{T}\tilde{\epsilon}\right\}$$
(9.25)
$$\times |\Sigma\otimes V|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\beta-\hat{\beta})^{T}|\Sigma\otimes V|^{-1}(\beta-\hat{\beta})\right\}$$

By inspection, this is the product of a multivariate normal density $\times \left| \Sigma \otimes V \right|^{-\frac{1}{4}} \exp \left\{ -\frac{1}{2} (\beta - \mathring{\beta})^T [\Sigma \otimes V]^{-1} (\beta - \mathring{\beta}) \right\}.$

nsed $n \ge q + r$, and $\epsilon^T \ell$ must have full rank.

terior distribution for (β, Σ) within the normal inverted-Wishart family, however, the prior distribution must have a particular form: Σ must be inverted-Wishart, and β given Σ must be multivariate normal with a patterned covariance matrix similar to that of (9.26). The limitations of this family of priors are discussed by Press (1982). In most practical applications of the general location model, it will be difficult to quantify prior knowledge about β and Σ ; all our examples will use the noninformative prior (9.24). If the posterior distribution under this prior is not proper, then we may interpret it as a sign that the model is too complex to be supported by the data, and the model should be simplified by choosing a design matrix A with fewer columns.

9.4 Algorithms for incomplete mixed data

Thus far we have reviewed the basic methods of likelihood and Bayesian inference for the parameters of the unrestricted (Section 9.2) and restricted (Section 9.3) general location models. Now we extend these methods to handle mixed datasets with arbitrary patterns of missing values. These algorithms are built from portions of the code for normal and categorical data given in Chapters 5-8. The reader who is less interested in computational details than in applications may wish to lightly skim this section to see what algorithms are available, and then proceed directly to the data examples in Section 9.5.

9.4.1 Predictive distributions

A row of the data matrix may have missing values for any or all of the variables $W_1, \ldots, W_p, Z_1, \ldots, Z_q$. Before we can derive estimation and simulation algorithms for the general location model, we must be able to characterize the joint distribution of any subset of these variables given the rest, so that we can obtain the predictive distribution of the missing data in any row of the data matrix given the observed data.

Caleyorical variables completely missing

Let us first consider the conditional distribution of the categorical variables given the continuous ones, which is needed when Z_1, \ldots, Z_q are observed but W_1, \ldots, W_p are missing. We can represent the complete data for row i by $\{u_i, z_i\}$, where z_i^T is the real-

ALGORITHMS FOR INCOMPLETE MIXED DATA

a single 1 in the cell position corresponding to the realized values of W_1, \ldots, W_p and 0s elsewhere. Let E_d be the *D*-vector with 1 in position d and 0s elsewhere. By definition, the joint density of $\{u_i, x_i\}$ under the general location model is

$$P(u_{l}=E_{d},z_{l}\mid\theta)\propto\pi_{d}\mid\Sigma\mid^{-\frac{1}{2}}\exp\left\{-\frac{1}{2}(z_{l}-\mu_{d})^{T}\Sigma^{-1}(z_{l}-\mu_{d})\right\}.$$

The conditional distribution of u, given z, is thus

$$P(u_i = E_d \mid z_i, \theta) = \frac{\pi_d \exp\left\{-\frac{1}{2}(z_i - \mu_d)^T \Sigma^{-1}(z_i - \mu_d)\right\}}{\sum_{d'=1}^{D} \pi_{d'} \exp\left\{-\frac{1}{2}(z_i - \mu_{d'})^T \Sigma^{-1}(z_i - \mu_{d'})\right\}}$$

The portions of the numerator and denominator involving the quadratic term $z_1^T \Sigma^{-1} z_j$ cancel out, leading to a well-known result from classical multivariate analysis: the conditional probability that unit i belongs to cell d is

$$P(u_i=E_d \mid x_i, \theta) \propto \exp(\delta_{d,i}),$$

where $\delta_{d,t}$ denotes the value of the linear discriminant function of z_i with respect to $\mu_{d,i}$

$$\delta_{d,t} = \mu_d^T \Sigma^{-1} z_i - \frac{1}{2} \mu_d^T \Sigma^{-1} \mu_d + \log \pi_d. \tag{9.28}$$

When Z_1, \ldots, Z_q are observed but W_1, \ldots, W_p are missing, the predictive distribution of W_1, \ldots, W_p is obtained by calculating the terms $\pi_d \exp(\delta_{d,l})$ for cells $d=1,2,\ldots,D$ and normalizing them to sum to one.

Continuous variables partially missing

Now consider what happens if W_1, \ldots, W_p and an arbitrary subset of Z_1, \ldots, Z_q are missing. Denote the observed components of z_1 by $z_{(q,b_p)}$ and the missing components by $z_{(mb_p)}$. The conditional distribution of u_i given $z_{(q,b_p)}$ and θ is obtained by integrating both the numerator and denominator of

$$P(u_i = E_d \mid z_i, \theta) = \frac{P(u_i = E_d, z_i \mid \theta)}{P(z_i \mid \theta)}$$

over all possible values of $z_{(mis)}$. The result is

METHODS FOR MIXED DATA

in $z_{i(abs)}$ rather than z_i . This new discriminant is where $\delta_{d,i}^*$ is a linear discriminant based on the reduced information

$$\delta_{d,l}^* = \mu_{d,l}^* T \Sigma_l^{*-1} z_{\{(obs)} - \frac{1}{2} \mu_{d,l}^* T \Sigma_l^{*-1} \mu_{d,s}^* + \log \pi_d, \quad (9.30)$$

so that (9.29) reduces to π_d .) Moreover, because z_i . (When all continuous variables are missing, define $\delta_{d,i} = \log \pi_d$ $\mu_{\rm d}$ and Σ , respectively, corresponding to the observed elements of where $\mu_{\underline{d},i}$ and Σ_i^* denote the subvector and square submatrix of

$$z_i \mid v_i = E_{d_i} \theta \sim N(\mu_{d_i}, \Sigma),$$

elements of Z_1, \ldots, Z_q . normal distribution, along with the probabilities (9.29), charactering the sweep operator to μ_d and Σ (Section 5.2). This conditional mal; the parameters of this distribution can be obtained by apply $u_i = E_d$ and the observed elements of z_i is also multivariate norize the joint predictive distribution of W_1,\ldots,W_p and the missing the conditional distribution of the missing elements of z given

Continuous and categorical variables partially missing

!

the form (9.29), but must be normalized to sum to one over this are observed, the unit is known to lie within a particular subset of members of W_1, \ldots, W_p . When some of these categorical variables now take into account any additional information in the observed case we have just examined in that the predictive distribution must sets of W_1, \ldots, W_p and Z_1, \ldots, Z_q are missing. This differs from the Finally, let us now consider the general case in which arbitrary subreduced set. the cells of the contingency table; the cell probabilities are still of

observed and missing parts, respectively, of the categorical data for observed data is now unit i. The predictive probability of falling into cell w $\mathcal{O}_i(w)$ and $\mathcal{M}_i(w)$ denote the subvectors of w corresponding to the ing response patterns $w = (w_1, w_2, \dots, w_p), w_j = 1, 2, \dots, d_j$. tions $d=1,2,\ldots,D$, let us now identify them by their correspondthan indexing the cells of the contingency table by their linear posimissing parts, respectively, of the categorical data for unit i. Rather More specifically, let $w_{i(\phi b r)}$ and $w_{i(\pi i \mu)}$ denote the observed and given the

$$P(u_i = E_w \mid w_{i(abs)}, x_{i(abs)}, \theta) = \frac{\exp(\delta_{w_i}^*)}{\sum_{e} \exp(\delta_{w_i}^*)}$$
(9.31)
$$\mathcal{M}_i(w)$$

Can minimize computation and memory receivement, he established they needed to reverse-sweep $heta^*$ back to its original form. Thus we it. The off-diagonal elements of P* are not really of interest, nor are practice we do not actually need $(g+D)^2$ memory locations to store

Algorithms for incomplete mixed data

83

sponding to zi(obs). can be obtained by sweeping μ_{w} and Σ on the positions corre $z_{i(mi)}$ given $a_i = E_{m b}$ is a multivariate normal whose parameters other cells. Once again, the conditional predictive distribution of over the cells w for which $O_i(w)$ agrees with $w_{i(\sigma\delta\sigma)}$, and zero for all

Predictive distributions and sweep

model into a matrix, ator. Suppose we arrange the parameters of the general location can be neatly obtained by a single application of the sweep openand the parameters of the conditional normal distribution of $x_{\ell(mk)}$ As shown by Little and Schluchter (1985), the discriminants $\delta_{w_r}^*$

$$= \begin{bmatrix} x & \mu^T \\ q & d \end{bmatrix}, \qquad (9.3)$$

where P is a $D \times D$ matrix with elements

$$p_w = 2 \log \pi_w$$

version of the parameter, the positions in Σ corresponding to $x_i(\omega_i)$, we obtain a transformed on the diagonal and zeroes elsewhere. If we sweep this heta-matrix on

$$\theta^{\circ} = \begin{bmatrix} \Sigma^{\circ} & \mu^{\circ}T \\ \mu^{\circ} & P^{\circ} \end{bmatrix}. \tag{9.33}$$

The diagonal element of P^* corresponding to cell w

$$p_{w}^{*} = -\mu_{w,l}^{*} \sum_{\ell=1}^{T} \mu_{w,l}^{*} + 2 \log \pi_{w,l}$$

assumed to be equal for all cells, are found in Σ^* . cell, are found in μ^* ; the slopes and residual covariances, which are on $z_{i(abs)}$ for all cells w. The intercepts, which vary from cell to Σ^* contain the parameters of the multivariate regression of $z_{(mi)}$ next function (9.30). The coefficients of $z_{\{(\phi_{i})}$ in this discriminant, ing to the variables in $z_{i(\circ b_s)}$. The remaining elements of μ^* and μ. ΤΣ!-1 which is twice the sum of the final two terms in the linear discrimi-Although we have depicted θ as a $(q+D)\times (q+D)$ matrix, in , are found in row w of μ^* , in the columns correspond-

of Σ in packed storage. only μ , the diagonal elements of P and the upper-triangular portion

9.4.2 EM for the unrestricted model

estimates for the unrestricted general location model (Little and loglikelihood is a linear function of the sufficient statistics Schluchter, 1985). In Section 9.2.2, we saw that the complete-data We are now ready to describe an EM algorithm for obtaining MI

$$T_1 = Z^T Z$$
, $T_2 = U^T Z$, and $T_3 := U^T U = \operatorname{diag}(x)$.

The ML estimates for the unrestricted model were shown to be

$$= n^{-1}x,$$
 (9.34)

$$= n^{-1} \left(T_1 - T_2^T T_3^{-1} T_2 \right). \tag{9.3}$$

۲'n

 $=T_3^{-1}T_{21}$

(9.35)

$$= n^{-1} \left(T_1 - T_2^T T_3^{-1} T_2 \right). \tag{9.36}$$

observed parts of the data matrix and an assumed value of θ . must find the conditional expectations of T_1 , T_2 and T_3 given the statistics themselves. The complicated part is the E-step, where we the expected versions of T_1 , T_2 and T_3 , rather than the sufficient The M-step is a simple matter of calculating (9.34)-(9.36) using

The E-step

calculate the discriminants for all cells w for which $O_i(w)$ agrees with $w_{i(abs)}$. The discriminant for cell w is be found by the following steps. (a) Sweep the 8-matrix on positive probabilities given by (9.31). Thus, the expectation of u, can $u_{\ell} = E_{\omega}$ for all cells w_{ℓ} so their expectations are just the predicas $x = \sum_{i=1}^n u_i$. The elements of u_i are Bernoulli indicators of Notice that the complete-data contingency table can be written First, consider the expectation of the diagonal elements of T3 tions corresponding to $x_{i(abs)}$ to obtain θ^* . (b) From $x_{i(abs)}$ and θ^*

$$\delta_{\mathbf{w},i}^* = \frac{1}{2} p_{\mathbf{w}}^* + \sum_{j \in \mathcal{O}_i} \mu_{\mathbf{w},j}^* x_{ij},$$

we will continue to do so; the dual usage should not create any conand missing components of $w = (w_1, \dots, w_p)$, and for convenience ready been using O_i and M_i as operators that extract the observed where $\mu_{\omega,j}$ is the (w,j)th element of μ^* , and O_i is the subset of fusion.) (c) Normalize the terms $\exp(\delta_{m,l}^*)$ for these cells to obtain $\{1,2,\ldots,q\}$ corresponding to the variables in $z_{i(q,k_f)}$. (We have al-

ALGORITHMS FOR INCOMPLETE MIXED DATA

33

the predictive probabilities

$$\pi_{\mathbf{w},t}^{\bullet} = \frac{\exp(\delta_{\mathbf{w},t}^{\bullet})}{\sum_{l} \exp(\delta_{\mathbf{w},t}^{\bullet})}.$$

$$\mathcal{M}_{i}(\mathbf{w})$$
(9.37)

If unit is falls into cell we and $u_{x,i} = 0$ otherwise. If the observed expectation of T_2 . Row w of T_2 is $\sum_{i=1}^n u_{w,i} x_i^T$, where $u_{w,i} =$ data in $w_{i(\phi i,j)}$ indicate that unit i cannot possibly belong to cell These predictive probabilities also play an important role in the

$$E(u_{\omega,i}z_i \mid Y_{\sigma b a}, \theta) = 0,$$

On the other hand, if $w_{(l_0k_0)}$ agrees with $O_i(w)$, then

$$E(u_{w,\ell}z_i \mid Y_{obs}, \theta) = \pi_{w,\ell}^* z_{w,\ell}^*, \qquad (9.3)$$

variate regression of $z_{i(mis)}$ on $z_{i(nis)}$ within cell w_i corresponding to $x_{i(mis)}$ are the predicted values from the multicorresponding to zerote) are identical to zerote), whereas the parts in $x_{(nb+)}$, and given that unit i falls into cell w. The parts of $z_{a_n}^*$. where $s_{u,i}^*$ is the predicted mean of z_i given the observed values

$$ij = \begin{cases} z_{ij} & \text{if } j \in O_i, \\ \mu_{u,j} + \sum_{k \in O_i} \sigma_{jk}^* z_{ik} & \text{if } j \in \mathcal{M}_i, \end{cases}$$

where σ_{jk} is the (j, k)th element of Σ^{-} .

cross-products matrix, Finally, consider the expectation of the sums of squares and

$$T_1 = Z^T Z = \sum_{i=1}^n z_i z_i^T.$$

a single element of this sum can be written as The (j,k)th element of this matrix is $\sum_{i=1}^n z_{ij} z_{ik}$. But notice that

$$z_{ij}z_{ik}=\sum_{m}u_{m,i}z_{ij}z_{ik},$$

so the expectation of this element is

$$E(z_{ij} \, z_{ik} \mid Y_{obs}, \theta) = \sum_{\mathcal{M}_{i(w)}} \pi_{ix,i}^{\circ} \, \mathcal{E}(z_{ij} \, z_{ik} \mid Y_{obs}, \theta, \alpha_{ix,i} = 1),$$

 z_{ij} and z_{it} are observed. If both are observed, this expectation is $w_{i(abs)}$ The form of $E(z_{ij} z_{ik} \mid Y_{abs}, \theta, \mathbf{u}_{o,i} = 1)$ depends on whether where the sum is taken over all cells w for which $O_i(w)$ agrees with

ğ

simply $z_{ij} z_{ik}$. If z_{ij} is observed but z_{ik} is missing, the expectation is $z_{ij} z_{m,ik}^*$. Finally, if both are missing, the expectation becomes $z_{m,ik}^* + \sigma_{jk}^*$.

Organizing the computation

To carry out the E-step, we must cycle through the units i = 1, 2, ..., n in the dataset, sweeping θ on the positions corresponding to $z_{i(0,b)}$ and summing the contributions (9.37), (9.38) and (9.39) of unit i to the expectations of the sufficient statistics. The number of forward and reverse-sweeps can be reduced by grouping together rows of the data matrix having the same pattern of missingness for $z_1, ..., z_q$, because the same version of θ^* can then be used for all units in the pattern. The expected sufficient statistics can be accumulated into a workspace of the same size and shape as θ ,

$$T = \begin{bmatrix} T_1 & T_2^T \\ T_2 & T_3 \end{bmatrix}$$

Once the E-step is complete, the M-step proceeds by applying (9.34)-(9.36) to T, which gives the updated estimate of θ .

Evaluating the observed-data loglikelihood

One can show that the contribution of observation i to the observed data loglikelihood is

$$\frac{1}{2}\log|\Sigma_i^e| + \log\left\{\sum_w \exp\left(\delta_{m,i}^* - \frac{1}{2}z_{i(obs)}^T \Sigma_i^{s-1} z_{i(obs)}\right)\right\},$$

where the sum is taken over all cells w for which $\mathcal{O}_{I}(w)$ agrees with $w_{I(abs)}$. The procedure for evaluating the observed-data logilikelihood at any particular value of θ is very similar to the E-step. In addition to the linear discriminant $\delta_{w,f}$, we need to evaluate the quadratic term

$$z_{i(abs)}^T \Sigma_i^{a-1} z_{i(abs)}$$

and the determinant of Σ_1^{*-1} . The latter can be obtained along with θ^* as an immediate byproduct of sweep (Section 5.2.4). To calculate the former, note that $-\Sigma_1^{*-1}$ is contained in the rows and columns of Σ^* corresponding to the variables in $x_{\{(\phi b_7)^*}$.

ALGORITHMS FOR INCOMPLETE MIXED DATA

9.4.9 Data augmentation

With fairly minor modifications, the EM algorithm described above can be converted to data augmentation, enabling us to zimulate posterior draws of θ or multiple imputations of Y_{mis} . For the I-step, distribution given the observed data and an assumed value for θ . Itst as in the E-step, we cycle through the units $i=1,2,\ldots,n$, of the missing variables given the observed variables; we then draw accumulate the resulting complete-data sufficient statistics into T_1 and T_2 . Once the I-step is complete, the P-step proceeds by Details of these steps are given below.

The I-step

It is convenient to draw the missing data for unit i in two stages: first by drawing u_i , which indicates the cell to which unit i belongs, of u_i is that of a single multinomial trial over the cells w for which A single with $u_{i(e^{-k})}$; the cell probabilities are given by (9.37). A simple way to simulate this multinomial trial is by table sampling: cycle through the cells, summing up their probabilities, and assign the unit to the first cell for which the cumulative probability exceeds the value of a U(0,1) random variate. Pseudocode for a unit is assigned to cell u_i , its contribution to T_3 is reflected by adding 1 to the wth diagonal element.

After assigning unit i to cell w, we may then draw the missing continuous variables in $z_{i(mi)}$ according to their multivariate regression on $z_{i(ni)}$. The regression prediction for an element of $z_{i(mi)}$ is

$$z_{w,ij} = \mu_{w,j}^* + \sum_{k \in O_i} \sigma_{jk}^* z_{ik}.$$

358

METEODS FOR MIXED DATA

row of T_2 , and adding $x_i x_i^T$ into the matrix T_1 . the sufficient statistics is then reflected by adding z_i into the wth draw of $z_{(mis)}$. The contribution of the completed version of z_i to

In Section 9.2.4, we showed that under the improper prior distri-

$$P(\pi,\mu,\Sigma) \propto \left(\prod_{\pi} \pi_{\pi}^{O_{\pi^{-1}}} \right) |\Sigma|^{-\left(\frac{\sigma_{\pi^{+}}}{2}\right)}$$

the complete-data posterior is

$$\pi \mid Y \sim D(\alpha + x), \tag{9.40}$$

$$\mu_{\omega} \mid \pi, \Sigma, Y \sim N(\hat{\mu}_{\omega}, z_{\omega}^{-1} \Sigma),$$
 (9.42)

\[\frac{\pi}{\pi}, \forall \]

 $\sim W^{-1}(n-D,(\hat{\epsilon}^T\hat{\epsilon})^{-1}),$

(9.41)

P-step is simply a matter of drawing from these distributions in turn, given the simulated values of T_1 , T_2 and T_3 from the I-step. where $\alpha = \{\alpha_w\}$ is an array of user-specified hyperparameters. The This can be done as follows.

For each cell w, draw the probability π_w from a standard gamma diagonal element of T_B , and normalize the π_w to sum to one. distribution with shape parameter $x_{w} + \alpha_{w}$, where x_{w} is the wth

2. Draw an upper-triangular matrix B whose elements are independently distributed as

$$b_{jj} \sim \sqrt{\chi_{n-D-j+1}^2}, \quad j=1,\dots,q,$$
 $b_{jk} \sim N(0,1), \quad j < k,$
 $= M^T M$, where $M = (B^T)^{-1} C$ and C i holesky factor of

triangular Cholesky factor of and take $\Sigma = M^T M$, where $M = (B^T)^{-1} C$ and C is the upper

$$\hat{\epsilon}^T\hat{\epsilon} = T_1 - T_2^T T_3^{-1} T_2$$

ဃ Calculate $\hat{\mu} = T_3^{-1}T_2$ and take $\mu = \hat{\mu} + T_3^{-1/2}HM$, where is a $D \times q$ matrix of independent N(0,1) random variates, and zeroes elsewhere. $T_3^{-1/2}$ is the matrix with elements $x_w^{-1/2}$ on the diagonal and

ALGORITHMS FOR INCOMPLETE MIXED DATA

9.4.4 Algorithms for restricted models

An ECM algorithm

maxima for π and μ may be found by conventional IPF and least strained maximization subject to loglinear restrictions on π and linear restrictions on μ . As discussed in Section 9.3, the constrained model, because the expectations of $T_1,\,T_2$ and T_3 have the same The only difference is found in the M-step, which is now a con-The E-step is identical to that described above for the unrestricted estimation under restricted versions of the general location model. form regardless of where $\theta = (\pi, \mu, \Sigma)$ lies in the parameter space. Little and Schluchter (1985) discussed an EM algorithm for MI

general location model proceeds as follows. ther details and references. A single cycle of ECM for the restricted convergence properties as EM; see Sections 3.2.5 and 8.5.1 for furalgorithm is a special case of ECM, exhibiting the same reliable non-decreasing. Their conjecture turned out to be correct. This essential property that the observed-data logithelihood would be algorithm would no longer be EM, but it would have the same cycle, thus avoiding undesirable nested iterations. The resulting may require many IPF cycles, could be replaced by a single IPF the full maximization of the likelihood for π in each M-step, which In the same article, Little and Schluchter also conjectured that

1. E-step: Given the current estimate $\theta^{(t)} = (\pi^{(t)}, \mu^{(t)}, \Sigma^{(t)})$, calculate the expectations of T_1, T_2 and T_3 as described in Section

in (9.20)–(9.21) using the expected values of T_1 , T_2 and T_3 , and take $\mu^{(\ell+1)} = A\beta^{(\ell+1)}$. T_3), perform a single cycle of conventional IPF from the starting $\mathit{CH} ext{-step:}$ Using the expected value of x (the diagonal elements of value $\pi^{(l)}$ to obtain $\pi^{(l+1)}$. Then calculate $\beta^{(l+1)}$ and $\Sigma^{(l+1)}$

Dala augmentation-Bayesian IPF

In a similar fashion, the data augmentation algorithm for the unrestricted model can be adapted to restricted models. The I-step date the restrictions on the parameter space. remains the same; only the P-step must be changed to accommo-

the complete-data posterior distribution for -in ----Under the family of prior distributions discussed in Section 9.3.3,

쳞

let, and the complete-data posterior for (β, Σ) is

$$\Sigma \mid Y \sim W^{-1}(n-r, (\hat{e}^T \hat{\theta})^{-1}),$$
 (9.43)
 $\beta \mid \Sigma, Y \sim N(\hat{\beta}, \Sigma \otimes V),$ (9.44)

where $V = (A^T U^T U A)^{-1}$. Random draws from the constrained Dirichlet can be simulated by Bayesian IPF (Section 8.4), and drawing from (9.43) is straightforward. In many applications the dimension of β can be quite large, but simulating draws from (9.44) is not difficult if we exploit the patterned covariance structure. Let G and H denote the upper-triangular Cholesky factors of Σ and V, respectively, so that $\Sigma = G^T G$ and $V = H^T H$. Using elementary properties of Kronecker products,

$$\Sigma \otimes V = (G^T G) \otimes (H^T H)$$

$$= (G^T \otimes H^T) (G \otimes H)$$

$$= (G \otimes H)^T (G \otimes H),$$

and thus $G \otimes H$ is an upper-triangular square root for $\Sigma \otimes V$. Therefore, to simulate a multivariate normal random vector with covariance matrix $\Sigma \otimes V$, we may simply premultiply a vector of standard normal variates by $(G \otimes H)^T$.

A data augmentation-Bayesian IPF (DABIPF) algorithm for the restricted general location model proceeds as follows.

1. I-step: Given the current values of the parameters $\pi^{(i)}$, $\mu^{(i)} = A\beta^{(i)}$ and $\Sigma^{(i)}$, draw the missing data from their predictive distribution as described in Section 9.4.3, and accumulate the simulated values of the sufficient statistics T_1 , T_2 and T_3 .

Bayesian IPF: Using the simulated value of x (the diagonal elements of T_3), perform a single cycle of Bayesian IPF from the starting value $\pi^{(t)}$ to obtain $\pi^{(t+1)}$.

. P-step for Σ : Draw an upper-triangular matrix B whose elements are independently distributed as

$$b_{jj} \sim \sqrt{\chi_{n-r-j+1}^2}, \quad j=1,\dots,q,$$

$$b_{jk} \sim N(0,1), \quad j < k,$$
 and take $\Sigma^{(i+1)} = M^T M$, where $M = (B^T)^{-1} C$ and C is the upper-triangular Choicesky factor of
$$\dot{\epsilon}^T \dot{\epsilon} = T_1 - T_2^T A (A^T T_3 A)^{-1} A^T T_3.$$

. P-step for β : Draw $\beta^{(t+1)}$ from a multivariate normal distri-

TA DATA EXAMPLES

359

trix $\Sigma^{(t+1)} \otimes V$, where $V = (A^TT_3A)^{-1}$. This can be done in the following manner. Let β_f and $\hat{\beta}_f$ denote the jth columns of $\beta^{(t+1)}$ and $\hat{\beta}_f$ respectively. Calculate $G = \text{Chol}(\Sigma^{(t+1)})$ and H = Chol(V), and take

$$\beta_1 = \hat{\beta}_1 + g_{11}H^T \kappa_1,$$

$$\beta_2 = \hat{\beta}_2 + g_{21}H^T \kappa_1 + g_{22}H^T \kappa_2,$$

 $\hat{\theta}_{q} = \hat{\beta}_{q} + g_{q1}H^{T}\kappa_{1} + g_{q2}H^{T}\kappa_{2} + \cdots + g_{qq}H^{T}\kappa_{q},$

where g_{ij} is the $\{i,j\}$ th element of G, and where $\kappa_1, \kappa_2, \dots, \kappa_q$ are vectors of independent N(0,1) random variates of length r. This DABIPF algorithm is not true data augmentation, but a hybrid that substitutes a single cycle of Bayesian IPF for the full simulation of π in the P-step.

9.5 Data examples

9.5.1 St. Louis Risk Research Project

Little and Schluchter (1986) presented data from the St. Louis Risk Research Project, an observational study to assess the effects of parental psychological disorders on various aspects of child development. In a preliminary cross-sectional study, data were collected on 69 families having two children each. The families were classified into three risk groups for parental psychological disorders. The children were classified into two groups according to the number of adverse psychiatric symptoms they exhibited. Standardized reading and verbal comprehension scores were also collected for the children. Each family is thus described by three continuous and four categorical variables:

peating this process, we were quickly able to identify ten distinct modes, and would have undoubtedly found more had we continued further. The unusual shape of the observed-data loglikelihood

tions. Time-series plots of some parameters across the iterations of

very poorly estimated. This is not surprising, given that we are

observed-data likelihood. Starting at a mode, we ran several hundred iterations of data augmentation, and used the final simulated

value of the parameter as a new starting value for EM. By re-

augmentation algorithm of Section 9.4.3, when used in conjunc-

loglikelihood values at these estimates are not identical. The data

ferent parameter estimates from different starting values, and the

Schluchter (1985) discovered that the observed-data likelihood for

this example is multimodal. They found that EM converges to dif-

tion with EM, provides an additional tool to help us explore the

METHODS FOR MIXED DATA

Data from this preliminary study are displayed in Table 9.3. Missing values occur on all variables except G. Only twelve families have values recorded for all seven variables.

The unrestricted model

equivalent to sample sizes of less than one. spect to the means of these cells, the observed-data likelihood observations' of the continuous variables to certain cells. With reto this cell. These partially classified families contribute 'fractional cell, however, and two of these families have all their continuous other partially classified families that can possibly belong to this pointed out by Little and Schluchter (1985), all of the parameters of this model are technically estimable. There are no zero counts not flat, but some of the means may be estimated with precision partially classified families for whom R_1 is known who may belong $D_1=2,\,D_2=2$ has a missing value for R_1 , but there are two other variables recorded. Similarly, the only family known to have G=1in the table for the 29 families that can be fully classified on G, D_1 $D_2 = 1$ cell has missing values for V_1 , R_2 and V_2 ; there are three and D_2 . The only family known to belong to the G=2, $D_1=2$, classifies families by G, D_1 and D_2 , 48 for the within-cell means of R_1, V_1, R_2 and V_2 , and 10 for the within-cell covariance matrix. As free parameters: 11 for the $3 \times 2 \times 2$ contingency table that cross-Using the EM algorithm described in Section 9.4.2, Little and

Table 9.2. Data from the 5t. Louis Risk Research Project

	Lo	w ris	k (G :	= 1)			Mode			G=2		earch l					
R_1	ν _i	D ₁	R ₂	V2	D ₂	R ₁	$\overline{\nu_{i}}$	D ₁		V ₂	D ₂	R_1	V ₁	D ₁	k (G	<u> </u>	
110 118 116 126 120 115 112 113 118 119 110 118 110 118 119 119 119 119 119 119 119 119 119	165 146 140 120 163 145 160 133 158 115 160 180 138 108 1158	2 1 1 1 2 1 1 1 1 1 1 1 1 1	114 126 128 105 90 130 130 139 98 115 93 116 116 110 101	150 130 125 123 138 113 1140 185 1133 150 108 140 135 140 158 140 1158 140 110 120 140 110 120 120 120 120 120 120 120 120 12	1 2 2 1 - 2 1 1 - 2 2 1 1	88 108 113 118 92 95 98 119 102 89 90 75 93 123 114 113 117 122 103	85 98 103 65 123 110 118 80 63 150 150 150 150 150 150 150 150 150 150		766 1144 90 95 97	78 133 100 115 68 88 115 120 120 123 123 123 123 123 123 123 123 123 123	1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1	98 127 113 107 114 56 96 128 128 105 88	110 138 93 	1 2 2 1 2 1 1	R ₂ 112 92 92 101 87	103 118 76 98 105 100 138 195 53 1140 75 103	D2 21 2 22 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 1 2 1 2

Source: Little and Schluchter (1985)

Figure 9.2. Time-series plots of the conditional means of R_1 , V_1 , R_2 and V_3 given $\{G=2,D_1=2,D_2=1\}$ for 1000 Herations of data augmentation under the unrestricted general location model.

data augmentation show erratic behavior. Plots of the simulated means of the four continuous variables within the G=2, $D_1=2$, $D_2=1$ cell are shown in Figure 9.2. The means for V_1 , R_2 and V_2 are highly unstable, wandering well outside the plausible range of reading and verbal scores. The use of the unrestricted model is not recommended for this dataset, as it is clearly overparameterized.

Restricted models

Because the ultimate purpose of the St. Louis Risk study was to examine the relationship of parents psychological disorders on child development, we now examine two restricted models that focus attention on the effects of greatest interest, namely, the associations between parental risk G and the child development variables D₁, and W

 R_1 , V_1 , D_2 , R_2 and V_2 .

The first model, which will be called the 'null model', allows the six development variables to be interrelated, but assumes that they are collectively independent of G. The logimear model for the categorical variables is (G, D_1D_2) . The design matrix specifying the regression of the four continuous variables on the categorical ones is shown in Table 9.3 (a); it includes an intercept, main effects for D_1 , and D_2 and the D_1D_2 interaction. This model fits 5 free

Table 9.3. Design matrix for the null model, and the linear contrast

DATA EXAMPLES

parameters to the contingency table, 16 regression coefficients and 10 covariances for a total of 31 free parameters.

The second model, which we call the 'alternative model', adds simple associations between G and each of the six development variables. The loglinear model is now (GD_1, GD_2, D_1D_2) , and the association between G and the continuous variables is specified by adding columns to the design matrix for G. To conserve parameters, we add only a single column for a linear contrast, as shown in Table 9.3 (b). The alternative model has 9 parameters for the contingency table, 20 regression coefficients and 10 covariances for a total of 39 parameters.

ML estimates under these two models were computed using the ECM algorithm of Section 9.4.4. As with the unrestricted model, the observed-data loglification functions are not unimodal; we found two modes under the null model and two modes under the alternative. The likelihood-ratio test statistic based on the two major modes is 21.9 with 8 degrees of freedom. It appears that the alternative model may fit the data substantially better than the null model, but we cannot assign an accurate p-value to this difference due to the unusual shape of the likelihood function.

Adopting a Bayesian spproach, however, we can demonstrate rather conclusively that G is indeed related to each of the six development variables. Using the DABIPF algorithm, we simulated

Figure 9.3. Time-series plots of the conditional means of R1, V1, R2 and the alternative model. V_2 given $(G=2,D_1=2,D_2=1)$ for 1000 iterations of DABIPF under

associations between G and the other variables, we may proceed to amining the simulated values of the parameters pertaining to the appealing to large-sample approximations. make Bayesian inferences about these parameters directly without model, so the algorithm appears to be converging reliably. By exnot exhibit the same instability found in plots for the unrestricted est. Time-series plots of the parameters, shown in Figure 9.3, did alternative model and stored the values of parameters of inter-5000 correlated draws from the observed-data posterior under the

Risk and adverse psychological symptoms

 $j,\,D_2=k.$ The association between G and D_1 can be described by Let π_{ijk} denote the marginal probability of the event $G = i, D_1$ two odds ratios, say

$$\omega_1 = \frac{\pi_{11k}\pi_{22k}}{\pi_{21k}\pi_{12k}}, \quad \omega_2 = \frac{\pi_{21k}\pi_{32k}}{\pi_{31k}\pi_{22k}}$$

child as we move from low to moderate risk, and from moderate depend on k; they are identical for k = 1 and k = 2 because the to high risk, respectively. Notice that these odds ratios do not These express the increase in odds of adverse symptoms in the first Infligence model amits the three-way association GD_1D_2 . Similarly

DABIPF under the alternative model. Figure 9.4. Bespiete of simulated log-odds ratios from 5000 iterations of

2 **2 2 3** values for adds ratios Table 9.4. Simulated parterior percentiles and p-0.97 1.09 <u>ئ</u> 0.29 2.66 2.79 25 Dercentule 0.494.50 4.68 8 7.90 1.35 20.02 걺 22.97 23.67 97.5 2.27 0.37 20.0

the association between G and D_2 can be described by

$$=\frac{\pi_{1j1}\pi_{2j2}}{\pi_{2j1}\pi_{1j2}}, \quad \omega_4=\frac{\pi_{2j1}\pi_{2j2}}{\pi_{3j1}\pi_{2j2}}$$

Ş

to high risk. second child as we move from low to moderate and from moderate which express the increase in odds of adverse symptoms in the

42 and 44, however, lie on both sides of zero; there is no evidence (G=2) and high-risk (G=3) families. Simulated percentiles of that the adverse-symptom rales differ for children in moderatesymptoms that children in low-risk families (G=1). The logs of in moderate-risk families (G=2) have higher rates of adverse us are nearly all positive, providing strong evidence that children cycles of DABIPF are shown in Figure 9.4. The legs of wa and Boxplots of the logarithms of the four odds ratios from 5000

365

DATA EXAMPLES

ations of DABIPF under the atternative model. Figure 9.5. Bosplots of simulated regression coefficients from 5000 iter

Table 9.5. Simulated posterior percentiles and p-values for regression coefficients

	0.17	-6.42	-10.02		-20.37	35
0.01	-1.65	-5.12	-6.92	-8.64	-11.94	<u>ب</u>
	-1.29	-8.85	-12.62		-23.49	55,
	0.10	-4.21	-6.38		-12.75	₽
۵.	97.78	귏	. 50	25	2.5	
			ercentile	-		

about 4.5 times as likely (on the odds scale) to display adverse against the two-sided alternative $\omega_i \neq 1$. Based on the posterior with Bayesian p-values for testing each null hypothesis $\omega_i =$ symptoms then children in low-risk families. medians, we estimate that children in moderate-risk families are the posterior distributions of the ω_i are shown in Table 9.4, along

Risk and comprehension scores

from DABIPF are displayed in Figure 9.5. For each coefficient, the the coefficients of the linear term for G in the regression model for majority of the simulated values lie well below zero, providing evi- $R_1,\ V_1,R_2$ and $V_2.$ Boxplots of the simulated regression coefficients The association between risk and comprehension is summarized by dance that increasing risk is associated with decreasing reading and

....

moderate to high) is associated with a drop of 6-7 points in read, estimate that increasing risk by one category (low to moderate or coefficients are given in Table 9.5, along with a two-tailed Bayesian each child. ing comprehension and 10-13 points in verbal comprehension for All four effects are 'statistically significant.' From the medians, we p-value for testing the null hypothesis that each coefficient is zero. verbal comprehension. Simulated posterior percentiles for the four

9.5.2 Foreign Language Attitude Scale

without altering any of the categorical variables. able GRD was collapsed from five categories to only two. Now, uspotentially useful detail was lost. For example, the final grade variing the general location model, we will re-impute the missing data appear more reasonable. In the process of recoding, however, some coded some of the categorical variables to make the normal model ables in the dataset, five are categorical and seven are continuous under a multivariate normal model. Prior to imputation, we re-The analyses in Chapter 6 relied on multiple imputations created achievement in the study of foreign languages. Of the twelve variguage Attitude Scale (FLAS), an instrument designed to predict In Section 6.3, we examined data pertaining to the Foreign Lan-

The imputation model

metrix is shown in Table 9.6. trasts for AGE, PRI and GRD. The coding scheme for the design columns, included a constant term for the intercept, three dummy then described by a regression with main effects for each categorand two-variable associations. The seven continuous variables were indicators for LAN, a dummy indicator for SEX and linear conical variable. The design matrix, which had 1000 rows and eight This table was described by a loglinear model with all main effects dimensional contingency table with $4 \times 5 \times 5 \times 2 \times 5 = 1000$ cells categorical variables LAN, AGE, PRI, SEX and GRD define a five eral location model to the twelve variables listed in Table 6.5. The For imputation purposes, we fitted a restricted version of the gen-

sociations, but higher-order effects such as interactions will not be under the model will preserve simple marginal and conditional asple associations between any two variables. Imputations generated Like the multivariate normal distribution, this model allows sim-

DATA EXAMPLES

왕

METRODS FOR MIXED DATA

Table 9.6. Columns of design matrix in imputation model, foreign language achievement study data

2=A)	
linear contrast for grade $(-2=F, -1=D, 0=C, 1=B,$	GRUL
female indicator (1=female, 0=male)	SEX,
0=2, 1=3, 2=4+)	ŧ
linear contrast for prior courses {-2=none,-1=1,	PPL.
0=22-23, $1=24-25$, $2=26+$)	
linear contrast for age $(-2=less than 20, -1=20-21,$	AGBL
Russian indicator (1=Russian, 0=other language)	LAN,
German indicator (1=German, 0=other language)	LAN
Spanish indicator (1=Spanish, 3=other language)	LAN ₂
constant term for intercept (1)	TNI
Description	Variable

reflected in the imputed values. If the post-imputation analyses involve only simple associations (e.g. regressions with main effects but no interactions) then this imputation model may be expected to perform well. More elaborate analyses involving interactions, however, would require a more elaborate imputation model.

Prior distribution

Recall from Section 6:3 that certain parameters of the normal model were inestimable, because values of GRD were missing for all students enrolled in Russian (LAN=4). In the new imputation model, some aspects of the association between GRD and LAN are again inestimable for the same reason. Furthermore, the sparseness of the contingency table (recall that there are 1000 cells but only n=279 observations) results in ML estimates on the boundary of the parameter space. These difficulties can be addressed by specifying a proper prior distribution for the cell probabilities.

In previous examples involving sparse tables, we applied flattening priors, Dirichlet or constrained Dirichlet distributions with hyperparameters set to a small positive constant. Flattening priors smooth the estimated cell probabilities toward a uniform table. This type of smoothing may be undesirable in this application, because some of the categorical variables (AGE and GRD, in particular) have categories that are quite rare; flattening priors

DATA EXAMPLES

could distort the marginal distributions for these variables, leading to an over-representation of rare categories in the imputed values. Another possibility is a data-dependent prior that smooths the estimates toward a table of mutual independence among the variables, but leaves the marginal distribution of each variable unchanged (Section 7.25). To generate multiple imputations, we ran this type, with hyperparameters scaled to add to 50; and (b) the Jeffrey's prior with all hyperparameters equal to 1/2. The latter may arguably result in oversmoothing; we include it primarily to assess the sensitivity of our results to the choice of prior.

Generating the imputations

Under each prior, we generated m=10 imputations by running a single chain of DABIPF, allowing 250 cycles between imputations. Setting hyperparameters to 1.05 to ensure a mode in the interior and imputed on their original scales without transformation. The natural ranges for these variables hardly ever strayed outside their CGPA imputed in the first DABIPF run fell above the maximum we simply allowed them to remain in the imputed date rather than editing or re-drawing them.

A proportional-odds model

In keeping with the purpose of this study, a model was fitted to predict final grade GRD from the other eleven variables. Because GRD is an ordinal scale (0=F, 1=D, 2=C, 3=B, 4=A), we used a logistic model for ordinal responses known as the proportional-let π_{ij} denote the probability of the event GRD $\geq j$, and let x_i be a vector of covariates. The proportional-odds model is

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = \alpha_j + x_i^T \beta, \quad j = 1, 2, 3, 4.$$
In the line and

In other words, the log-odds of falling above each of the four GRD cut-points are simultaneously modeled as parallel linear functions with common slopes β and intercepts $\alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \alpha_4$. Routines for maximum-likelihood estimation in the proportional value

PLE8

S S

DATA EXAMPLES

Table 9.7. Estimates, standard errors, p-values and percent missing information for coefficients in the proportional odds model, from m=10 multiple imputations under (a) data-dependent and (b) Jeffreys priors

	(a)	Data-di	ta-depende	#		3) Jeb	fregu	1
variable	Ę.	SB	70	ELIS.	1	SE	B	빝.
N. T.	6.62	2.07	8	ಜ್ಞ	-8.38	1.86	Ë	N
	-9.Q	2. 13	\$	ជ	-10.2	1.87	Ë	22
	-11.3	2.19	9	ß	-12.3	1.93	ë	=
	-13.7	2.23 23	ģ	82	-14.6	2	8	5
LAN	203	.399	6	16	113	8	7	=
LAN	6	27	\$	15	708	3	8	-
LAN	-,857	1.08	2	5	2.70	3	20	~
AGE	.361	201	2	얆	213	.266	63	0
PRI,	14	.109	ë	ន	37	.116	8	_
SEX	.338	.362	ģ	22	.318	.368	섫	止
FLAS × 10	.462	128	ë	¥	26.	.132	3	بي
MLAT	Ē	.04S	8	60	.130	2	8	چ
SATV × 100	<u>29</u> 0	8	<u>;</u> 2	31	223	200	35	ح.
SATM × 100	.029	23		17	.165	.197	8	٠.
ENG × 10	027	.195	89	44	139	.185	6	ڊن
HGPA	2.21	<u>4</u>	ë	29	2,23	.317	ë	_
CGPA	.912	3	Ź	<u>91</u>	.752	.422	80.	63

model are available in several popular statistical software packages including SAS (SAS Institute Inc., 1990) and BMDP (BMDP Statistical Software, Inc., 1992).

The covariates in our proportional-odds model included all seven of the continuous variables in the dataset. In addition, we included three dummy indicators for LAN, a dummy indicator for SEX and linear contrasts for AGE and PRI, coded as shown in Table 9.6. For each imputed dataset, we calculated ML estimates using software developed by Harrell (1990) for the statistical system S (Becker, Chambers and Wilks, 1988). The estimates, along with standard errors based on score statistics, were then combined using Rubin's rules for scalar estimands (Section 4.3.2). Estimated coefficients and standard errors are displayed in Table 9.7, along with percent missing information and two-tailed p-values for testing the null hypothesis that each coefficient is zero.

Results using a data-dependent prior, shown in Table 9.7 (a), are fairly consistent with our findings in Section 6.3 where we fitted a

nd percent missing inmodel, from m = 10
substantial dil

any inferences regarding grades for the LAN =4 group. prior, should alert us to use extreme caution when trying to make mation for this coefficient, along with its sensitivity to the choice of smooths the data quite heavily. The high fraction of missing inforrelationship appears to be a figment of the Jeffreys prior, which on GRD given the other variables. This 'statistically significant' second, the coefficient of the dummy indicator LAN $_d$ is now highly data provide essentially no information about the effect of LAN $_4$ significant. The latter is rather curious, because we know that the exceptions: first, the linear effect of AGE is no longer significant; lar to those from the data-dependent prior, with the following two Results under the Jeffneys prior, shown in Table 9.7 (b), are simidichotomous model, SEX had a significant effect but PRI did not. PRI has a significant effect on GRD but SEX does not; under the substantial difference is that under the proportional-odds model simple logit model to the dichotomized version of GRD. The only

Partial correlation coefficients

Apart from determining which predictors are significantly related to GRD, it is also useful to consider the practical importance of the estimated effects. In many areas of social science, associations icon coefficients. In linear regression, a partial correlation measures the expected change in the response variable (expressed in standard units) when all other predictors are held constant. A squared partial correlation measures the proportion of variance in the response variable by the predictor, after accounting for the measureable effects of all other predictors. Even if the classical regression model does not hold, e.g. when the response is ordinal, the partial correlation still serves as a beuristically useful A partial correlation can be accounted.

A partial correlation can be calculated from the usual t-statistic used for testing the significance of a regression coefficient. Let T denote a t-statistic (the estimated coefficient divided by its standard error) and ν its degrees of freedom. The estimated partial correlation is

$$=\pm\sqrt{\frac{T^2}{T^2+\nu}},$$

where the sign is chosen to be consistent with that of T. Under an assumption of multivariate normality, r is anomarimately and

percent missing information from m=10 multiple imputations under (s) data-dependent and (b) Jeffreys priors Table 9.8. Estimated partial correlation coefficients, 86% intervals and

	(a)	Data	depende	2		છે ક	Graye	
variable	est.	low	high	DZ 158.	Ê]O#F	high	mis.
LAN ₂	80.	- <u>21</u>	2	=		20	8	=
LAN,	.07	<u>5</u>	<u>,,</u>	12	.27	 06	얼	=
NY.	<u>- 10</u>	Į. Ž	.16	7	33	- <u>54</u>	07	ಪ
ACEL	Ξ	2 !	ż	24	22	16	ż	2
PRIL	:24	.11	.37	20	.26	<u>:</u>	<u>.</u>	8
SEX,	P	10	.17	<u>2</u> 2	.03	12	. 18	뜷
FLAS	22	14	\$	28	8	.14	Ġ.	\$
MLAT	.18	<u>.</u> <u>21</u>	.36	3	22	.06	.36	8
VTAR	<u>8</u>	- 21	8	æ	20	1.22	<u>د</u> ز	51
SATM	23	-1	.15	15	3 0.	07	.19	5
DVE		- 18	.12	37	8	23	.07	36
HGPA	45	34	5	20	46	. <u>3</u> 5	.56	5
CGPA	.16	23	胺	33	Ä	00	.27	21

about $\tan^{-1}(\rho)$ with variance $1/(\nu-1)$ (Anderson, 1984). ter approximation is provided by Fisher's (1921) transformation $tan^{-1}(r)$, which in large samples is essentially normally distributed mally distributed about the population coefficient ho. An even bet

sumptions underlying the classical regression model and the normal GRD, higher even than the well established instrument MLAT. Except for HGPA, FLAS has the highest partial correlation with that FLAS, the predictor of primary interest, has substantial vaapproximation to $tanh^{-1}(r)$ clearly do not hold. Yet it is apparent sulting point and interval estimates are shown in Table 9.8. These then transformed the results back to the correlation scale. The rerules, we calculated estimates and 95% intervals for $\tan^{-1}(\rho)$, and of predictors used in the proportional-odds model. Using Rubin's lidity for predicting achievement in the study of foreign languages figures should be interpreted somewhat loosely, because the as-For each imputed dataset, we regressed GRD on the same set

9.5.3 National Health and Mutrition Examination Survey

has been to the Third National Health and Nutrition Examination The largest and most notable application of these methods to date

DATA EXAMPLES

Survey (NHANES III). This survey, conducted by the National

variables had missingness rates of 30% or more. the examination phase were understandably high; many key survey going to a MEC and completing the exam, nonresponse rates at (b) detailed physical examinations of subjects in Mobile Examina-tion Centers (MECs). Because of the inconvenience associated with in two stages: (a) personal interviews with subjects at home, and Ezzati et al (1992). Data were collected over six years (1988-94) with a total sample size of 39695. The data collection occurred icans and African Americans. Details of the design are given by with oversampling of young children, the elderly, Mexican Amerpopulation. NHANES III is a complex, multistage area sample and putritional status for the civilian noninstitutionalized U.S. Center for Health Statistics, provides basic information on health

of the method. Complete details are given by Schafer et al. (1996) and their references. results of an extensive simulation study to assess the performance ables. Here we briefly summarize the imputation model and the The dataset will contain five imputations of more than 60 varimultiply-imputed research dataset, currently scheduled for 1997. tive missing-data procedures for NHANES III, including multiple imputation. This project will cuminate in the public release of a In 1992, NCHS initiated a research project to investigate alterna-

The imputation model

or logistic regression models to NHANES data to investigate remany health-related fields. For example, researchers might fit linear the data are also subjected to secondary analyais by researchers in this reason, the imputation model needed to account lationships among health outcomes and potential risk factors. For be sensitive to major features of the sample design. Outside NGHS, To be compatible with these procedures, an imputation model must niques appropriate for data from complex samples (Wolter, 1985) dard errors are calculated using special variance-estimation techimately unbiased over repetitions of the sampling procedure. Stanof survey inference (Cochran, 1977) and are designed to be approxproduced and reported by NCHS, are based on classical methods tional level, e.g. rates of obesity by age and sex. These estimates, used to estimate important health-related quantities at the napropriate for a wide variety of analyses. Data from NHANES are The imputation model was designed to produce imputations ap-

B.

374

DATA EXAMPLES

marginal and conditional associations among variables.

duced into many important estimators, both nationally and within across the levels of these three; otherwise, blases could be introof selection varied by age group, gender and race/ethnicity, the could be impaired. the standard errors calculated from the resulting imputed datasets dures for variance estimation; without these effects, the quality of pling units (PSUs), the clusters that enter into the NCHS proceto reflect potential variation in characteristics across primary samdemographic subclasses. The imputation model was also designed distributions of other survey variables had to be allowed to vary that included over 30 variables. Because individuals' probabilities We created multiple imputations under a general location mode

way classification by age, gender, race/ethnicity and PSU. The rem=5 imputations would be sufficient to obtain accurate and efanalyses of the imputed data suggested that for most purposes plus main effects for PSUs. Most of the response variables in this with full three-way interactions for age, gender and race/ethnicity, maining variables were modeled by a multivariate linear regression ficient interences variables were rounded off to the nearest category. Preliminary regression were continuous, but a few were binary or ordinal. Mul-Section 9.4.4, and the imputed values for the binary and ordinal tiple imputations were generated using the DABIPF algorithm of The categorical part of the general location model used a four-

simulation study

cedure from a purely frequentist perspective, without reference to artificial population of 31847 persons by pooling data from four sampling and imputation procedure. To this end, we constructed an cover the quantity of interest 95% of the time over repetitions of the whether 95% interval estimates in typical applications would really any particular probability model. For example, we wanted to learn simulation was to evaluate the performance of the imputation procarried out an extensive simulation experiment. The goal of this probability model that was, at best, only approximately true, we Recognizing that this imputation procedure was based upon in the year 2000 in terms of race/ethnicity and geography. From population was weighted to resemble the projected U.S. population NCHS examination surveys conducted since 1971. This artificial

vals by average percent missing information for 148 means Figure 9.6. Simulated coverage of 95% multiple-imputation (MI) inter-

peated 1000 times. The entire sampling, imputation and estimation procedure was reratios) using methods appropriate for stratified random samples. proportions, subdomain means, quantiles, and conditional log-odds val estimates were calculated for a variety of estimands (means and a general location model, and multiple-imputation point and interanism to mimic the rates and patterns of nonresponse observed in ues were imposed on each sample using a random, ignorable mech-NHANES III. The missing data were then imputed five times under using a sampling plan resembling that of NHANES III. Missing val-

actual coverage to increase or decrease with the fraction of missing WATV MOTE AR the rate of mining infini information. There is, however, some tendency for the coverage to tal line through 950 (solid); there is no overall tendency for the squares At (dashed line) is nearly indistinguishable from a horizoninformation for the respective estimands. In this plot, the least-Figure 9.6, plotted against the average estimated percent missing coverages of the multiple-imputation (MI) intervals are shown in 95% intervals over 1000 repetitions was 949.3, not significantly difhad coverage significantly different from 950 at the 0.05 level. The ferent from 950. Individually, however, 81 of the 448 means (18%) demographic categories defined by age, race/ethnicity and gender. Among these 448 means, the average simulated coverage of the means for ten exam variables for the entire population and within Here we briefly summarize our results for means. We examined

Figure 9.7. Simulated coverage of 95% multiple-imputation (MI) intervals versus complete data (CD) intervals, with points (507, 884), (608, 799) and (179, 876) not shown.

other hand, there were no estimands for which CD did well but MI ence without missing data. In Figure 9.7, the simulated coverage of erage departed substantially from 95%, the departures could be are given by Schafer et al. (1996) difficulties were observed in the corresponding CD intervals. Furdid posrly. Results for other types of estimands revealed similar cases that fell outside the plotting region) the MI intervals perhibited gross undercoverage (and especially the three pathological for the estimands for which the complete-data (CD) interval exstandard errors) that one would have used if no data were missing. ing normal-based interval (the point estimate plus or minus 1.96 each MI interval is plotted against the coverage of the correspondlargely traced to failure in the normal approximation for the infertrends: the MI intervals tended to perform very well, except where formed substantially better than their CD counterparts. On the The two coverages are strongly correlated. Somewhat surprisingly, ther discussion of this simulation study, including its limitations Further analysis revealed that, among the intervals whose cov-

Parther remarks

In this application, it was feasible to add PSU to the general location model because there were relatively few PSUs and a large number of subjects within each PSU; we were able to include dummy or of subjects within each PSU; we were able to include dummy probe.

DATA EXAMPLES

377

lems of inestimability. In other surveys, the number of clusters may be too large to adopt such an approach. In those settings, it may be possible to produce multiple imputations under hierarchical or random-effects models that impose probability distributions on the cluster-specific parameters. Estimation and imputation algorithms for random-effects models can be developed by extending the techniques of this chapter, but they are beyond the scope of this book. For an example of imputation under a random-effects model for multivariate categorical data, see Schafer (1995).

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.