

A Look at Array Languages

APL vs BQN vs J

https://github.com/codereport/Content

https://github.com/codereport/array-language-comparisons/

Conor Hoekstra

A Look at Array Languages

APL vs BQN vs J (vs Julia vs R vs NumPy)

About Me

Conor Hoekstra / @code_report

2319. Check if Matrix Is X-Matrix

A square matrix is said to be an X-Matrix if both of the following conditions hold:

- 1. All the elements in the diagonals of the matrix are non-zero.
- 1. All other elements are 0.

Given a square matrix, return true if grid is an X-Matrix. Otherwise, return false.

2	0	0	1
0	3	1	0
0	5	2	0
4	0	0	2

5	7	0
0	3	1
0	5	0

2	0	0	1	
0	3	1	0	
0	5	2	0	
4	0	0	2	

5	7	0
0	3	1
0	5	0

2	0	0	1	
0	3	1	0	
0	5	2	0	
4	0	0	2	

5	7	0
0	3	1
0	5	0

mat + 4 4p2 0 0 1 0 3 1 0 0 5 2 0 4 0 0 2

mat + 4 4p2 0 0 1 0 3 1 0 0 5 2 0 4 0 0 2

2 0 0 1

0 3 1 0

0 5 2 0

4 0 0 2

mat

```
2 0 0 1
0 3 1 0
0 5 2 0
4 0 0 2
```


≢mat

4

ı≢mat

1 2 3 4

(ı≠mat) · ., ı≠mat

1							
2	1	2	2	2	3	2	4
3	1	3	2	3	3	3	4
4	1	4	2	4	3	4	4


```
(ı≠mat)•.=ı≠mat
```

```
      1
      0
      0
      0

      0
      1
      0
      0

      0
      0
      1
      0

      0
      0
      0
      1
```


•.=~i≠mat

```
      1
      0
      0
      0

      0
      1
      0
      0

      0
      0
      1
      0

      0
      0
      0
      1
```

φ_•.=~ι≠mat

0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1

```
      1
      0
      0
      1

      0
      1
      1
      0

      0
      1
      1
      0

      1
      0
      0
      1
```

```
      1
      0
      0
      1

      0
      1
      1
      0

      0
      1
      1
      0

      1
      0
      0
      1
```

```
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
```


mat

```
2 0 0 1
0 3 1 0
0 5 2 0
4 0 0 2
```


1 L mat

```
      1
      0
      0
      1

      0
      1
      1
      0

      0
      1
      1
      0

      1
      0
      0
      1
```


1Lmat (φ[⊢)∘.=~ι≢mat

 1
 0
 0
 1
 0
 0
 1

 0
 1
 1
 0
 0
 1
 1
 0

 0
 1
 1
 0
 0
 1
 1
 0
 1

 1
 0
 0
 1
 1
 0
 0
 1

$$(1 \lfloor mat) \equiv (\phi \lceil \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv mat$$

$$(1 \lfloor mat) \equiv (\phi \lceil \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv mat$$

$$\{(1 | \omega) \equiv (\phi | \vdash) \circ \cdot = = \forall i \neq \omega\}$$

checkMatrix $\leftarrow \{(1 | \omega) \equiv (\phi | \vdash) \circ . = \overline{\iota} \neq \omega\}$

CheckMatrix $\leftarrow \{(1 \mid x) \equiv \varphi \neg \Gamma = \Gamma^{\sim} \ddagger x\}$

```
checkMatrix =. \{\{(1<.y)-:(>.|.)=/\sim i.\#y \}\}
```


checkMatrix
$$\leftarrow \{(1 | \omega) \equiv (\phi | \vdash) \circ . = \forall i \neq \omega\}$$

CheckMatrix
$$\leftarrow \{(1 \mid x) \equiv \varphi \neg \lceil = \lceil \uparrow \neq x\}$$

checkMatrix =. $\{\{(1<.y)-:(>.|.)=/\sim i.\#y \}\}$

APL
$$\{(1 \mid \omega) \equiv (\phi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{ (1 \mid x) \equiv \varphi \neg \Gamma = \Gamma^{\sim} \ddagger x \}$$

 $\{\{(1<.y)-:(>.|.)=/\sim i.\#y\}\}$

APL
$$\{(1 \mid \omega) \equiv (\varphi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{ (1 \mid x) \equiv \varphi \neg \lceil = \rceil \uparrow \neq x \}$$

{{(1<.y)-:(>.|.)=/~i.#y}}

$$\{(1 \mid \omega) \equiv (\phi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{(1 \mid x) \equiv \phi \neg [= \neg x]$$

(Modifiers | Adverbs / Conjunctions)

(Modifiers | Adverbs / Conjunctions)

$$\{(1 \mid \omega) \equiv (\phi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{(1 \mid x) \equiv \phi \neg [= \neg x]$$


```
Scalar (R0) Matrix (R2)
  \{(1 \cup \omega) \equiv (\phi \cap \omega) = (\phi \cap \omega) = \omega \}
   { { ( 1 < . y ) - : ( > . | . ) = /~ i . #y } }
          Matrix (R2) Matrix (R2)
```


1 L X

map (map (min 1)) x

(Modifiers | Adverbs / Conjunctions)

(Modifiers | Adverbs / Conjunctions)

$$\{(1 \mid \omega) \equiv (\phi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{(1 \mid x) \equiv \phi \neg [= \neg x]$$

$$\{(1 \cup \omega) \equiv (\phi \cap \omega) = (\phi \cap \omega) = \omega \}$$

$$\{(1 \mid x) \equiv \phi \neg [= \neg \Rightarrow x]$$

{ { (1 < . y) - : (> . | .) = /~ i . #y } }

 1
 2
 3
 4
 5
 6

 1
 2
 3
 4
 5
 6

1 2 3 4 5 6

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

	Name		Reduce		Scan		Outer Product
APL	Operators Adverbs	•	<pre>/ (reduce) / (reduce first)</pre>	•	\ (scan) \(\frac{1}{2}\)(scan first)	•	•. (outer product)
J	Adverbs & Conjunctions	•	/ (insert)	•	\ (prefix)	•	/ (table)
BQN	Modifiers	•	<pre>(fold) (insert)</pre>	•	` (scan)	•	「 (table)
Q	Iterators	•	over	•	scan	•	/:\:
Julia	Functions	•	reduce	•	accumulate	•	broadcast
NumPy	Functions	•	reduce()	•	accumulate()	•	outer()
R	Functions	•	Reduce	•	Reduce(accumulate=TRUE)	•	outer
Nial	Transformers	•	REDUCE	•	ACCUMULATE	•	OUTER
Futhark	Functions SOAC	•	<pre>foldl/r reduce(_comm)</pre>	•	scan	•	outer_product
SaC		•	-	•	-	•	-

(Modifiers | Adverbs / Conjunctions)

(Modifiers | Adverbs / Conjunctions)

$$\{(1 \mid \omega) \equiv (\phi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{(1 \mid x) \equiv \phi \neg [= \neg x]$$

$$\{(1 \mid \omega) \equiv (\phi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \neq \omega\}$$

$$\{(1 \mid x) \equiv \phi \neg [= \uparrow \neq x]\}$$

{{(1<.y)-:(>.|.)=/~ i.#y}}

$$\{(1 \cup \omega) \equiv (\phi \cap \omega) = (\phi \cap \omega) = \omega \} \quad \phi$$

{{(1<.y)-:(>.|.)=/~ i.#y}} S

APL
$$\{(1 \mid \omega) \equiv \phi \circ \upharpoonright \sim \cdot = \sim \imath \neq \omega\} D+W$$

APL $\{(1 \mid \omega) \equiv (\phi \upharpoonright \vdash) \circ \cdot = \sim \imath \neq \omega\} \phi$
 $\{(1 \mid x) \equiv \phi \multimap \upharpoonright = \sim \Rightarrow \neq x\} \Sigma$
 $\{(1 \mid x) \equiv \neg \Leftrightarrow = \sim \Rightarrow \neq x\} S$
 $\{(1 \mid x) \equiv \neg \Leftrightarrow = \sim \Rightarrow \Rightarrow x\} S$

Figure 4.2: D_2 combinator hierarchy with Δ , Σ and H_2 .

Figure 4.3: D_2 combinator hierarchy vs BQN spellings.

(Modifiers | Adverbs / Conjunctions)

(Modifiers | Adverbs / Conjunctions)

$$\{(1 \mid \omega) \equiv (\phi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{(1 \mid x) \equiv \phi \neg [= \neg x]$$

$$\{(1 \mid \omega) \equiv (\varphi \mid \vdash) \circ . = = \forall \iota \neq \omega\}$$

$$\{(1 \mid x) \equiv \Phi \neg [= \neg x \neq x]$$

ф 1 2 3

J. 1 2 3

J 1. 1 2 3 4 5 6

 $\Phi \quad 1 \quad 2 \quad 3 \quad \rightarrow \quad 3 \quad 2 \quad 1$ 4 5 6

1. 1 2 34 5 6

4 5 6

1 2 3

Leading Axis

	Reverse Columns	Reverse Rows
APL	θ	ф ⊖ ° 1
	ф	φ Φ Θ 1
J	•	."1

(Modifiers | Adverbs / Conjunctions)

APL
$$\{(1 \mid \omega) \equiv (\varphi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{ (1 \mid x) \equiv \varphi \neg \lceil = \lceil \uparrow x \rceil \}$$

{{(1<.y)-:(>.|.)=/~i.#y}}


```
checkMatrix: { a: til count x; i: a =/:\: a; m: i | reverse i; m ~ x <> 0 }
```



```
checkMatrix: {
    a: til count x;
    i: a =/:\: a;
    m: i | reverse i;
    m ~ x <> 0
}
```



```
function checkmatrix(grid)
  i = size(grid, 1) |> I |> Matrix
  min.(grid, 1) == max.(i, reverse(i, dims=1))
end
```



```
function checkmatrix(grid)
  n = size(grid, 1)
  i = 1:n .== 1:n |> transpose
  min.(grid, 1) == max.(i, reverse(i, dims=1))
end
```



```
check_matrix <- function(grid) {
   i = diag(nrow(grid))
   all(pmin(grid, 1) == pmax(i, apply(i, 2, rev)))
}</pre>
```



```
check_matrix <- function(grid) {
    n = nrow(grid)
    i = outer(1:n, 1:n, "==")
    all(pmin(grid, 1) == pmax(i, apply(i, 2, rev)))
}</pre>
```


Rank Polymorphism Operators

(Modifiers | Adverbs / Conjunctions)

Combinators Leading Axis Theory

Rank Polymorphism Operators / / / /

(Modifiers | Adverbs / Conjunctions)

Combinators Leading Axis Theory

Arrays


```
auto check_matrix(auto grid) -> bool {
    for (int i = 0; i <= grid.size(); ++i) {</pre>
        for (int j = 0; j <= grid.size(); ++j) {</pre>
            if (i == j or (grid.size() - i == j)) {
                if (grid[i][j] == 0) {
                     return false;
            } else if (grid[i][j] != 0) {
                return false;
    return true;
```



```
auto check_matrix(auto grid) -> bool {
    for (int i = 0; i < grid.size(); ++i) {</pre>
        for (int j = 0; j < grid.size(); ++j) {</pre>
            if (i == j or (grid.size() - i == j)) {
                if (grid[i][j] == 0) {
                     return false;
            } else if (grid[i][j] != 0) {
                return false;
    return true;
```



```
auto check_matrix(auto grid) -> bool {
    for (int i = 0; i < grid.size(); ++i) {</pre>
        for (int j = 0; j < grid.size(); ++j) {</pre>
            if (i == j or (grid.size() - i == j + 1)) {
                if (grid[i][j] == 0) {
                     return false;
            } else if (grid[i][j] != 0) {
                return false;
    return true;
```

APL
$$\{(1 \mid \omega) \equiv (\varphi \mid \vdash) \circ . = \stackrel{\sim}{\sim} \iota \not\equiv \omega\}$$

$$\{ (1 \mid x) \equiv \varphi \neg \lceil = \lceil \uparrow x \rceil \}$$

{{(1<.y)-:(>.|.)=/~i.#y}}

Thank you!

https://github.com/codereport/Content

https://github.com/codereport/array-language-comparisons/

Conor Hoekstra

codereport

Questions?

https://github.com/codereport/Content

https://github.com/codereport/array-language-comparisons/

Conor Hoekstra

codereport