Design and Analysis of Algorithms II: Flow Network Lecture 5

Varun Aravapalli

October 5th, 2023

Contents

Dire	ected Acyclic Graph (DAG)
1.1	Recap:
1.2	Representation
Flov	w Network
2.1	Definition
	2.1.1 Assume Strongly Connected
	2.1.2 Assume No Cycles
	2.1.3 Capacity Law
2.2	Flow Diagram
	2.2.1 Flow Laws
Pro	oblem Max Flow
3.1	Ford-Fulkerson (FF) Method
	3.1.1 Example Residual Network
	3.1.2 Solving Ford-Fulkersons
	3.1.3 Solving Ford-Fulkersons Part 2
	3.1.4 New Residual Network:
3.2	Proof of FF
	3.2.1 s-t cut in G:
	3.2.2 Flow Across cut (A,B) : $f(A,B)$
	3.2.3 Capacity Across cut (A,B) : $c(A,B)$
3.3	Max-Flow, Min-Cut Theorem:
	Claim: If FF stops you can find a cut (A,B) such that $c(A,B)$
J. 1	$= \max \text{ flow } \dots $
	1.1 1.2 Flow 2.1

3.4.2	Backward Edge												9
3.4.3	Example of Cut												10

1 Directed Acyclic Graph (DAG)

1.1 Recap:

A Directed Graph G=(V,E) where V=|V| number of vertices (finite), E=|E| number of edges (finite)

Example:

- $\bullet \ V = \{A,B,C,D\}$
- $E = \{AB, AC, AD, BC, BD\}$

1.2 Representation

We can represent a DAG in two ways

1. Adjacency Matrix:

2. Adjacency List:

2 Flow Network

2.1 Definition

Given a Directed Graph (G) (V,E), such that $\mathbf{s},\mathbf{t} \in V$

- $\mathbf{s} = \text{source node (No Incoming Edges)}$
- t = sink node (No Outgoing Edges)

2.1.1 Assume Strongly Connected

Assume $\forall v \in V$ is reachable from S and can reach t.

- $\forall v \in V : s \leadsto v \leadsto t$.
- $v \leadsto w$: \exists a directed path from v to w in G.

2.1.2 Assume No Cycles

Assume between any two vertices there exists at most one edge, such that there are no cycles

2.1.3 Capacity Law

The capacity $\forall e \in E$: is a positive real number greater than 0

$$c: E \to \mathbb{R}^+ \quad [c(e) > 0, \, \forall e \in E]$$

2.2 Flow Diagram

BOLD = CapacityNORMAL = Flow

2.2.1 Flow Laws

Flow: $f: E \to \mathbb{R}^+$

Value of Flow: $\sum f(s,v) = Sum \text{ of Flow of Each Edge [} (s,v) \exists E]$

1. For any edge, the flow has to be ≥ 0 and less than capacity

$$0 \le f(e) \le c(e) \tag{1}$$

2. For any $V \neq s, t$ all incoming flow = outgoing flow

$$\sum f(u,v) = \sum f(v,u) \tag{2}$$

3. Flow = 0 is always valid, so we are never working with an empty set

3 Problem Max Flow

Given G (Graph), C (capacity), find flow f that maximizes |f|

3.1 Ford-Fulkerson (FF) Method

Note: This is not considered an "Algorithm" because if it doesn't work, it may never stop and an "Algorithm" must terminate on all inputs

3.1.1 Example Residual Network

Given a **G** (graph), **s**, **t**, **c** and a **Valid Flow** $G_f \Rightarrow$ "Residual Network".

For each capacity that isn't at max, we write down the remainder in G_f $c_f(u,v) = c(u,v) - f(u,v)$ if f(u,v) < c(u,v)

3.1.2 Solving Ford-Fulkersons

- 1. Start f = 0
- 2. Build G_f (residual network)
- 3. Find augmenting path (We stop if we don't find an augmenting path)
- 4. Update f, options:
 - (a) Fat Pipe: "Max Improvement"
 - (b) Short Pipe: "Minimum Edges"
- 5. Repeat

3.1.3 Solving Ford-Fulkersons Part 2.

In this example, there are **no more augmented paths**, but the max flow isn't achieved

Flow Network:

Residual Network:

1.
$$c_f = c(u,v)$$
 - $f(u,v)$ if $f(u,v) < c(u,v)$

2.
$$c_f = f(u,v) \text{ if } f(u,v) > 0$$

Reverse Edges

3.1.4 New Residual Network:

GOAL: If FF terminates, the flow is Maximum

3.2 Proof of FF

3.2.1 s-t cut in G:

Let $A, B \in \mathcal{P}(V)$ such that,

- 1. $A \cup B = V$
- $2. \ A \cap B = \emptyset$
- 3. $s \in A$, $t \in B$

3.2.2 Flow Across cut (A,B): f(A,B)

Flow across $\operatorname{cut}(A,B): f(A,B) = \operatorname{Net}$ flow, aggregate of positive and negative flow

$$\sum f(u, v) - \sum f(u, v)$$

$$u \in A \ u \in B$$

$$v \in B \ v \in A$$

$$(u, v) \in E$$

3.2.3 Capacity Across cut (A,B) : c(A,B)

All positive, no negative and backwards measured

$$\sum c(A, B) = \sum c(u, v)$$

$$u \in A$$

$$v \in B$$

$$(u, v) \in E$$

Fact: For any f, c, s - t cut (A, B):

1.
$$f(A, B) = |f|$$

$$2. \ f(A,B) \le c(A,B)$$

3.3 Max-Flow, Min-Cut Theorem:

For any flow f, the following hold:

$$|f| = f(A, B) \le c(A, B)$$

$$\max |f| \le \min c(A, B)$$

$$f = (A, B).$$

Basically, if you find the min cut, you have the max flow.

3.4 Claim: If FF stops you can find a cut (A,B) such that $c(A,B) = \max$ flow

- 1. Build G_f
- 2. Let A = All vertices reachable from S in G_f
- 3. B = V A

There is no way to reach t from s (Augmented Path) because we claimed FF stopped

3.4.1 Full forward capacity

Case 1:
$$(u,v) \in E(G)$$

3.4.2 Backward Edge

Case 2:
$$(v,u) \in E(G)$$

3.4.3 Example of Cut

Maximum Capacity Cut because $1/1,\,2/2,\,10/10$ exist so no more flow can go through the network