Thermodynamics Tutorials

Christopher Shen

Winter 2023

Contents

1	Set 6	3
2	Set 7	4

1 Set 6

- 1. ?!
- 2.

2 Set 7

1. Indexed as number 51 in tutorial sheet 7.

Consider the entropy change for an ideal gas:

$$\begin{split} \Delta S(V,T) &= S(V,T) - S(V_0,T_0) \\ &= C_V \ln \frac{T}{T_0} + nR \ln \frac{V}{V_0}. \end{split}$$

For part (a)(1) write this expression as:

$$\Delta S(P,T) = C_P \ln \frac{T}{T_0} - nR \ln \frac{P}{P_0}.$$

It is important for us to recall the difference in heat capacity:

$$C_P - C_V = nR$$
.

Using this and the ideal state equation PV = nRT:

$$\Delta S = (C_P - nR) \ln \frac{T}{T_0} + nR \ln \frac{V}{V_0}$$
$$= C_P \ln \frac{T}{T_0} + nR \ln \left(\frac{V}{V_0} \cdot \frac{T_0}{T}\right)$$
$$= C_P \ln \frac{T}{T_0} - nR \ln \frac{P}{P_0}$$

since the ideal gas equation holds for fixed physical quantities:

$$P_0V_0 = nRT_0$$
.

For part (a)(2) write this expression as:

$$\Delta S(P, V) = C_P \ln \frac{V}{V_0} + C_V \ln \frac{P}{P_0}.$$

Now we start again with our original equation and use $C_P - C_V = nR$.

$$\therefore \Delta S = C_V \ln \frac{T}{T_0} + nR \ln \frac{V}{V_0}$$

$$= C_V \ln \frac{T}{T_0} + (C_P - C_V) \ln \frac{V}{V_0}$$

$$= C_P \ln \frac{V}{V_0} + C_V \ln \frac{P}{P_0}$$

The last step we used the ideal gas equation.

For part (b) we want to verify:

$$-\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P$$

given the following assumptions:

•
$$\Delta S(P,T) = C_P \ln \frac{T}{T_0} - nR \ln \frac{P}{P_0}$$

•
$$PV = nRT$$
.

The right hand side of our equation is:

$$\left(\frac{\partial V}{\partial T}\right)_P = \frac{nR}{P}.$$

Now for the left hand side. Firstly we need to come up with an expression for entropy, and then take its partial derivatives to show equality.

$$\therefore \Delta S(P,T) = S(P,T) - S_0$$

$$\therefore S(P,T) = C_P \ln \frac{T}{T_0} - nR \ln \frac{P}{P_0} + S_0$$

$$\therefore \frac{\partial}{\partial P} S(P,T) = -\frac{nR}{P}$$

And clearly we have equality of both sides.

For part (c) show that a reversible adiabatic process implies an isentropic process:

$$PV^{\gamma} = \text{constant} \implies \Delta S = 0$$

where
$$\gamma = \frac{C_P}{C_V}$$
.

Beginning with our derived expression $\Delta S(P, V)$:

$$\Delta S(P, V) = C_P \ln \frac{V}{V_0} + C_V \ln \frac{P}{P_0}$$
$$= C_P \left(\ln \frac{V}{V_0} + \frac{1}{\gamma} \ln \frac{P}{P_0} \right).$$

Now since we have that:

$$\frac{P}{P_0} = \left(\frac{V_0}{V}\right)^{\gamma}$$

it is clear that $\Delta S = 0$.

2. Indexed as number 52 in tutorial sheet 7.

For part (a) show that:

$$\mathrm{d}S = \frac{C_P}{T} \mathrm{d}T - V\beta \mathrm{d}P.$$

We take total differentials of the previously derived S(P,T):

$$dS = \left(\frac{\partial S}{\partial T}\right)_P dT + \left(\frac{\partial S}{\partial P}\right)_T dP.$$

Since we have that:

$$S(P,T) = C_P \ln \frac{T}{T_0} - nR \ln \frac{P}{P_0} + S_0$$

therefore:

$$\left(\frac{\partial S}{\partial T}\right)_P = \frac{C_P}{T}.$$

The second partial derivative we recognise as a Maxwell relation:

$$\begin{split} \left(\frac{\partial S}{\partial P}\right)_T &= -\left(\frac{\partial V}{\partial T}\right)_P \\ &= -V\beta \end{split}$$

where β is the isobaric expansivity. Therefore we have that:

$$\mathrm{d}S = \frac{C_P}{T} \mathrm{d}T - V\beta \mathrm{d}P.$$

For part (b), consider metal box subject to <u>adiabatic</u> and <u>reversible</u> increase in pressure. $(P_1 \rightarrow P_2)$

Show that its temperature change $(T_1 \to T_2)$ satisfies the following:

$$\ln \frac{T_2}{T_1} = \frac{V\beta(P_2 - P_1)}{C_P}.$$

Since $\Delta Q = 0$ and our process is reversible the overall entropy change is <u>zero</u>. Integrate result in previous part to obtain answer.

Integrating from initial state to final state:

$$\Delta S = \int_{(1)}^{(2)} dS$$
$$= \int_{(1)}^{(2)} \left(\frac{C_P}{T} dT - V \beta dP \right)$$
$$= 0.$$

We then have that:

$$\int_{T_1}^{T_2} \frac{C_P}{T} \mathrm{d}T - \int_{P_1}^{P_2} V\beta \mathrm{d}P = 0$$

which gives:

$$\ln \frac{T_2}{T_1} = \frac{V\beta(P_2 - P_1)}{C_P}.$$

3. Indexed as number 53 in tutorial sheet 7.