CSS 422 Hardware and Computer Organization

Computer Arithmetic

Professor: Yang Peng

The slides are re-produced by the courtesy of Dr. Arnie Berger and Dr. Wooyoung Kim

Topic

Computer Arithmetic

- IEEE floating point
- Chapter 2.4, 2.5 (Null)

How to represent a real number in binary?

From Real to Binary Numbers

- Let's convert decimal number 3.8125 to a binary number
 - **Integer** part: the same as the integer binary $11_2 = 3$
 - Fractional part:
 - 1. Multiply the fraction by two
 - 2. Write down the integer part on right
 - 3. Repeat 1 and 2 until there is no fractional part on left
 - 4. Read the integer part on right, from top to bottom

```
0.8125 * 2 = 0.625 + 1

0.625*2 = 0.25 + 1

0.25 *2 = 0.5 + 0

0.5*2 = 0.0 + 1

0.0 STOP HERE
```

 $3.8125_{10} = 0011.1101_2$

From Binary to Real Numbers

Binary
$$I_m I_{m-1} ... I_1 I_0 - F_1 F_2 F_3 ... F_{n-1} F_n =$$

Decimal $I^*2^m + I^*2^{m-1} + ... + I^*2^0 + F^*2^{-1} + F^*2^{-2} + ... + F^*2^{-(n-1)} + F^*2^{-n}$

$$10.101_2 = 1*2^1 + 0*2^0 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3}$$
$$= 2 + 0.5 + 0.125 = 2.625$$

Real Numbers and Errors

Many fractions are repeating infinitely

E.g., convert 0.6 to binary

Integer

$$0.6 * 2 = 0.2 ----1$$

$$0.2 * 2 = 0.4 - - - 0$$

$$0.4 * 2 = 0.8 ----0$$

$$0.8 * 2 = 0.6 ----1$$

$$0.6 * 2 = 0.2 ----1$$

$$0.2 * 2 = 0.4 ----0$$

$$0.4 * 2 = 0.8 ----0$$

$$0.8 * 2 = 0.6 ----1$$

So, $0.6 \rightarrow 0.1001100110011001...$ (will be repeated infinitely)

Rounding and Truncation

- Keep the number of bits finite
 - Truncation: The simplest technique just drop unwanted bits
 E.g., 0.1101101 → 0.1101
 - Rounding: Better technique, but a bit complicated
 If the value of the lost digits is greater than half of the least-significant bit of the retained digits, add 1 to the LSB; otherwise drop.

E.g., 0.1101101: If I want to lose the last three bits, what shall I do?

0.1101101 = 0.1101 + 0.0000101

→ 0.1101 + 0.0001

= 0.11**10**

LSB of retained digits: $0.0001 = 2^{-4}$ Lost digits: $0.0000101 = (2^{-5} + 2^{-7}) > 2^{-4} / 2$

How to represent a real number in a computer system?

Real Numbers in a Computer System

- Two main approaches: Fixed-point vs. Floating-point
- Fixed-point representation (NOT used now)
 - Divide the bits into integer part and fraction part
 - The "Point" is fixed
 - Easier but less flexible
- Floating-point representation (IEEE standard)
 - Divide the bits into sign, exponent and mantissa
 - The "Point" is floating
 - Match with scientific notation
 - Flexible but more complex

Fixed-Point Representation

- Fixed-point representation
 - Divide the bits for integer part and fraction part
 - For example, $3.625_{10} = 11.101_2$

- Not flexible
 - What if you really need to represent 1.984 * 10⁽⁻¹²³⁾ in computer?
 - How many bits will be needed? (more than 372 bits)

Floating-Point Representation

- Floating-point representation
 - Divide the bits into sign, exponent and mantissa
- IEEE floating-point format
 - 1. IEEE short real or single precision: 32 bits

```
Sign (1) Exponent (8) Mantissa(23)
```

2. IEEE long real or double precision: 64 bits

Sign (1) Exponent (11) Mantissa(52)

Floating-Point Representation - Single Precision

Steps to convert a real number to IEEE **Single Precision** floating-point representation

- 1. Convert decimal to binary
- 2. Normalize: moving the point left or right
- 3. Add 127 to the exponent
- 4. Mantissa is the one after the floating point in the normalized form
 - If the mantissa part is less than 23 bits, add zeros at the end
- 5. Put the corresponding numbers into each field

IEEE Floating point converter:

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

Sign (1)

Floating-Point Representation - Single Precision

32-bit (single precision) format

Exponent (8)

```
    Let's represent a real number to floating-point format
    E.g., -3.8125<sub>10</sub>
    = -11.1101<sub>2</sub> (note that the integer part is not 2's complement)
    = -1.11101*2<sup>1</sup> (normalize: scientific notation)
```

Mantissa(23)

- **Sign** bit = 1, because this is a negative number
- **Exponent** bits = 1 + 127 (biased) = $128 = 10000000_2$

Floating-Point Representation - Single Precision

Normalization

- "1" shall always appear as an integer part
- No need to represent this bit in the format -> save one bit

Biased exponent

- The exponent has 8 bits, meaning it can range from -127 to 127 (Here we assume that -128 will never appear).
- Therefore, if we add 127 to the exponent, it will always be a non-negative number.
- Assuming such a representation, 0~254 is then available for the exponent filed. How about 255?

Floating-Point Representation - Double Precision

Steps to convert a real number to IEEE **Double Precision** floating-point representation

- 1. Convert decimal to binary
- 2. Normalize: moving the point left or right
- 3. Add **1023** to the exponent
- 4. Mantissa is the one after the floating point in the normalized form
 - If the mantissa part is less than 52 bits, add zeros at the end
- 5. Put the corresponding numbers into each field

IEEE Floating point converter:

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

Floating-Point Representation - Double Precision

64-bit (double precision) format

Sign (1) Exponent (11) Mantissa(52)	
-------------------------------------	--

- Let's represent a real number to floating-point format
 - E.g., **-3.8125**₁₀
 - = -11.1101₂ (note that the integer part is **not** 2's complement)
 - = -1.11101*2¹ (normalize: scientific notation)
- **Sign** bit = 1, since negative
- **Exponent** = 1 + 1023 (biased) = $1024 = 100 0000 0000_2$
- - Therefore in floating-point representation,

 - = \$C00E800000000000

More about real numbers

- Why using biased exponent?
 - Effect: changing negative exponent value to positive value
 - Motivation: for quick comparison (bit-by-bit) of two real numbers
- Why adding 127 for single-precision floating numbers?
 - Effect: positive numbers in the rage of 0 to 254
 - Motivation: reserve 255 for special number usage

Sign	Exponent (e)	Fraction (f)	Value
0	0000	00…00	+0
0	00…00	00···01 : 11···11	Positive Denormalized Real $0.f \times 2^{(-b+1)}$
0	00···01 : 11···10	XXXX	Positive Normalized Real 1.f × 2 ^(e-b)
0	11…11	00…00	+∞
0	1111	00···01 : 01···11	SNaN
0	11…11	1X···XX	QNaN
1	0000	00…00	-0
1	0000	00···01 : 11···11	Negative Denormalized Real $-0.f \times 2^{(-b+1)}$
1	00···01 : 11···10	XXXX	Negative Normalized Real −1.f × 2 ^(e-b)
1	11…11	00…00	-∞
1	1111	00···01 : 01···11	SNaN
1	11…11	1X···XX	QNaN

NaN: Not A Number

QNaN: Quiet NaN

- generated from an operation when the result is not mathematically defined
- denote *indeterminate* operations

SNaN: Signaling NaN

- used to signal an exception when used in operations
- can be to assign to uninitialized variables to trap premature usage
- denote *invalid* operations