5

6

- A method for communicating pulse coded information between 1. low power transceivers which comprises:
- spectrally spreading a carrier; and 3

modulating the spectrally spread carrier with a data pulse code waveform comprising information to be transmitted, to form a modulated spectrally spread (MSS) signal.

- The method of Claim 1 wherein said spectrally spreading a 1 carrier comprises phase shift keying (PSK) the carrier with a 2 3 first direct sequence pseudo-random pulse code waveform,
 - The method of Claim 2 wherein said phase shift keying comprises binary phase shift keying (BPSK).
 - 4. The method of Claim 1 wherein said spectrally spreading a carrier comprises generating a frequency hopping signal.
 - The method of Claim 1 wherein said spectrally spreading a carrier comprises generating a time hopping signal.
- 1 6. The method of Claim 1 wherein said spectrally spreading a 2 carrier comprises/generating a time/frequency hopping signal.
- 1 The method of Claim 1 wherein said spectrally spreading a 7. 2 carrier comprises generating any FM signal where its modulation 3 bandwidth is greater than said data pulse code waveform's

bandwidth. 4

GIMICS:1

1	8. The method of Claim 1 wherein said spectrally	spreading a
2	carrier comprises generating an FM chirping signal.	
	1.0 m months	

- 9. The method of Claim 1 which further comprises modulating said data pulse code waveform with a second direct sequence
- 3 pseudo-random pulse code waveform prior to modulating the
- 4 spectrally spread carrier.

41

3

5

- 10. The method of Claim 1 wherein said modulating comprises pulse amplitude modulating and said MSS signal comprises a pulse amplitude modulated spectrally spread signal.
- 11. The method of Claim 10 which further comprises modulating a second direct sequence pseudo-random pulse code waveform with said MSS waveform.
- 12. The method of Claim 11 which further comprises:

 transmitting said MSS signal,

 receiving said MSS signal,
- extracting said data pulse code waveform from said MSS signal.
- The method of Claim 12 wherein said extracting comprises:

 removing said spectrally spread carrier from said MSS

 signal resulting in a received pulse code waveform comprising:

said data pulse code waveform and

5	said second direct sequence pseudo-random pulse
6	code waveform;
7	generating a third direct sequence pseudo-random pulse
8	code waveform substantially similar to and in synchronization
9	with said second direct sequence waveform;
10	gating said received pulse code waveform with said
11	third direct sequence waveform;
12	filtering the output of said gating step resulting in
13	an average value representing one of two possible logical values
14	for said data pulse code waveform.

	14. The method of Claim 13 wherein said generating a third
	direct sequence psuedo-random pulse code waveform (DSPPCW)
3	comprises:
a	transmitting a preamble portion of said MSS signal
5 6	wherein said data pulse code waveform is non-transitioning,
6	producing a clock waveform in-sync with said second
7	DSPPCW,
6	performing a sequential correlation comparison between
9	said received pulse code waveform and each of a plurality of
10	candidate waveforms,
11	recording the results of each comparison,
12	chosing the candidate with a highest correlation value
13	as said third DSPPCW.
1	75. The method of Claim 14 which comprises:
2 /	uning gold clock

1

1	16. An apparatus for identifying and tracking the whereabouts of
2	moving bodies around a defined area which comprises:
3	an interrogating station including a first transceiver;

said first transceiver comprising:

means for generating a carrier,

means for spectrally spreading said carrier,

means for generating a data pulse code waveform, and

means for modulating said carrier with said data

waveform resulting in a modulated carrier waveform;

said tag including a second transceiver,
said second transceiver comprising:

means for extracting said data pulse code waveform from said modulated carrier waveform.

- 17. The apparatus in Claim 16 wherein said means for spectrally spreading said carrier comprises a means for phase shift keying (PSK) said carrier with a first direct sequence pseudo-random pulse code waveform.
- 1 18. The apparatus of Claim 16 wherein said means for phase shift keying comprises binary phase shift keying (BPSK).
 - 19. The apparatus of Claim 16 wherein said means for spectrally spreading comprises a means for generating a frequency hopping

·3 -signal.

- 1 20. The apparatus of Claim 16 wherein said means for spectrally
- 2 spreading comprises a means for generating a time hopping signal.
- 1 21. The apparatus of Claim 16 wherein said means for spectrally
- 2 spreading comprises a means for generating a time/frequency
- 3 hopping signal.
- 22. The apparatus of Claim 16 wherein said means for spectrally spreading comprises a means for generating any FM signal where its modulation bandwidth is greater than said data waveform's bandwidth.
 - 23. The apparatus of Claim 16 wherein said means for spectrally spreading comprises a means for generating an FM chirping signal.
 - 24. The apparatus of Claim 16 which further comprises means for modulating said data waveform with a second direct sequence pseudo-random pulse code waveform.
 - 1 25. The apparatus of Claim 24 wherein said means for modulating
 - 2 said data waveform comprises a means for multiplying said data
 - 3 waveform with said second direct sequence waveform.
- 1 26. The apparatus of Claim 24 wherein said means for extracting
- 2 comprises:

M

]1

3

J.
4
5
6
7
8
9
10
11
1,7
5

11

12

means for removing said spectrally spread carrier from		
said modulated carrier waveform resulting in a received pulse		
code waveform comprising:		
said data pulse code waveform and		
said second direct sequence pseudo-random pulse		
code waveform;		
means for generating a third direct sequence pseudo-		
random pulse code waveform substantially similar to and in		
synchronization with said second direct sequence waveform;		
means for gating said received pulse code waveform with		
said third direct sequence waveform;		
means for filtering the output of said means for gating		
resulting in an average value representing one of two possible		
logical values for said data pulse code waveform.		
27. The apparatus of Claim 26 wherein said means for generating		
a third direct sequence psuedo-random pulse code waveform		
(DSPPCW) comprises:		

means for transmitting a preamble portion of said MSS signal wherein said data pulse code waveform is non-transitioning,

means for producing a clock waveform in-sync with said second DSPPCW,

means for performing a sequential correlation comparison between said received pulse code waveform and each of a plurality of candidate waveforms,

means for recording the results of each comparison,

means for chosing the candidate with a highest correlation

28. The apparatus of Claim 14 wherein said clock waveform

provides the source of a return carrier frequency.

21