МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет

Голод Е.С. Алгебра

3 семестр, первый поток

1 Линейные представления (действия) групп

1.1 Определения

Зафиксируем поле \mathbb{K} , над которым будем рассматривать векторное пространство $V(+,\cdot,\cdot)$ (умножение на скаляр и на элементы G).

Определение. Задано *линейное действие*, если задано умножение элементов из V слева на элементы из $G, \ \forall \ g \in G, v \in V(g,v) \mapsto gv \in V, \ \mathsf{T}. \ \mathsf{T}. \ \forall \ v, v_1, v_2 \in V \ \forall \ g, h \in G, \ \forall \ \lambda \in \mathbb{K}$

$$\mathbf{1}^{\circ} (gh)v = g(hv)$$

$$\mathbf{2}^{\circ} \ ev = v$$

$$\mathbf{3}^{\circ} \ g(v_1 + v_2) = gv_1 + gv_2$$

$$\mathbf{4}^{\circ} \ g(\lambda v) = \lambda(gv)$$

Линейное представление $\rho: G \to \mathbf{GL}(V), \ \rho(g)(v) = gv$ и обратно $gv = \rho(g)(v)$.

Обозначение. (G, V, ρ) эквивалентно записи $\rho = (G, V)$.

Определение. Подпространство $U \subseteq V$ является *подпредставлением*, если оно инвариантно относительно действий элементов G, т. е. $\forall u \in U \ \forall g \in G \ gu \in U$.

Определение. Пусть V — представление, и его инвариантное подпространство U. Тогда факторпредставление $V/U=\{v+U|v\in V\}$. Зададим операцию g(v+U)=gv+U. Проверим корректность. Возьмём два разных предстваителя: $v_1+U=v_2+U$, т. е. $v_1-v_2\in U$. Достаточно, что бы $gv_1+U=gv_2+U$. Но, так как U инвариантно, $g(v_1-v_2)\in U$.

1.2 Прямая сумма представлений

Определение. Пусть заданы инвариантные подпространства $U_1, \ldots, U_s \subset V$, $V = U_1 \oplus \oplus \ldots \oplus U_s$ — разложение в (внутреннею) прямую сумму инвариантных подпространств (подпредставлений). $\rho_1 = (G, U_1), \; \rho_2 = (G, U_2), \; \ldots, \rho_s = (G, U_s)$

Определение. Внешняя прямая сумма представлений $V = V_1 \oplus \ldots \oplus V_s = \{(v_1,\ldots,v_s) | v_i \in V_i\}, \ g(v_1,\ldots,v_s) = (gv_1,\ldots,gv_s), \$ далее будем **обозначать** $\rho = \rho_1 \oplus \ldots \oplus \rho_s.$

Пусть задан гомоморфизм $H \xrightarrow{f} G \xrightarrow{\rho} \mathbf{GL}(V)$. Тогда композиция f и ρ даст представление H: hv = f(h)v

1.3 Гомоморфизмы представлений

Пусть имеем два представления: $\rho_1 = (G, V_1), \ \rho_2 = (G, V_2).$

Определение. Гомоморфизм представлений $\varphi \colon \rho_1(V_1) \to \rho_2(V_2)$ есть линейное отображение т.ч. $\varphi(gv) = g\varphi(v), \ \forall \ g \in G, v \in V, \ \text{т.e.} \ \forall \ g \in G \$ коммутативна диаграма

$$V_1 \xrightarrow{\varphi} V_2$$

$$\rho_1(g) \downarrow \qquad \qquad \downarrow \rho_2(g)$$

$$V_1 \xrightarrow{\varphi} V_2$$

Определение. Изоморфизм представлений — это гомоморфизм, который является биекцией.

1.4 Матричные представления

 $ho=(G,V),\
ho\colon G o \mathbf{GL}(V).$ **Всегда** будем считать, что V — конечномерное пространство. $V=\langle e_1,\ldots,e_n
angle\Rightarrow \mathbf{GL}(V)\cong \mathbf{GL}(n,\mathbb{K}).$ Рассмотрим сопоставление $ho(g)\mapsto A_g$ — матрица ho(g) относительно e_1 $scoe_n$.

Определение. Гомоморфизм $G \to \mathbf{GL}(n,\mathbb{K})$ будем называть матричным представлением. Так же потребуем:

$$\mathbf{1}^{\circ} A_{qh} = A_q A_h$$

$$\mathbf{2}^{\circ} A_e = E$$

$$\mathbf{3}^{\circ} \ A_{g^{-1}} = (A_g)^{-1}$$

Если задано матричное представление, то можем построить линейный оператор \Rightarrow матричное и линейное представления равносильны (хотя в одном случае неоднозначно).

Пусть $V = \langle e_1, \dots, e_n \rangle = \langle e'_1, \dots, e'_n \rangle$ и C — матрица перехода.

$$g \mapsto A_g \qquad (e_1, \dots, e_n)$$

$$g \mapsto A'_g \qquad (e_1, \dots, e_n)$$

$$A'_g = C^{-1}A_gC \qquad \forall g \in G$$

Определение. Два матричных представления называются эквивалентными, если $\exists \ C \colon A_g' = C^- 1 A_g C \ \forall \ g \in G.$

Утверждение 1.1. Два линейных представления изоморфны \Leftrightarrow соответсвущие матричные представления относительно некоторых базисов эквивалентны.

 $\square \quad \Rightarrow$: Имеем представление $\rho=(G,V).$ Пусть имеется $\rho'=(G,V')$ и $\ \forall \ g\in G$ коммутативна

$$V_{1} \xrightarrow{\varphi} V'$$

$$\rho_{1}(g) \downarrow \qquad \qquad \downarrow \rho'(g)$$

$$V_{1} \xrightarrow{\varphi} V'$$

Выберем базисы в пространствах V и V', $V = \langle e_1, \dots, e_n \rangle$, $V' = \langle e'_1, \dots, e'_n \rangle$, $\rho = \{A_g\}$, $\rho' = \{A'_g\}$.

Пусть C — матрица для φ относительно выбранных базисов. Т. к. изоморфизм, то $\det C \neq 0$.

Композиции линейных отображений соответсвует матрица \Rightarrow $A_g'C=CA_g\Rightarrow$ $A_g'=CA_gC^{-1}$ \Rightarrow эквиваленты.

 \Leftarrow : Пусть матричные представления эквивалентны относительно некотрых базисов \Rightarrow $\exists~C\colon A_q'=CA_gC^{-1}$

Но матрица C относительно базисов $\langle e_1,\dots,e_n\rangle$ и $\langle e'_1,\dots,e'_n\rangle\Rightarrow$ невырождено отображение $A'_gC=CA_g\Rightarrow \rho'(g)\circ \varphi=\varphi\circ \rho(g)\Rightarrow$ линейные представления изоморфны. \blacksquare

1.5 Приводимые, неприводимые и вполне приводимые линейные представления

Определение. Представление ρ — *приводимое*, если оно имеет подпредставление на инвариантном подпространстве, отличном от тривиальных

Определение. Представление ρ — *неприводимое*, если не существует инвариантных подпространств отличных от тривиальных.

Определение. Представление *вполне приводимо*, если оно разлагается в прямую сумму неприводимых.

На матричном языке:

Пусть ρ приводимо $\Rightarrow 0 \neq U \subsetneq V$ — инвариантное подпространство. Выберем базис так: $V = \langle e_1, \dots, e_k, e_{k+1}, \dots, e_n \rangle$,

$$\rho(g) = \begin{pmatrix} B_g & * \\ 0 & C_g \end{pmatrix} = A_g,$$

где $ho(g)(e_i) \in U, \ i=1,\ldots,k; \ \{B_g\}$ соответсвует $ho_{igg|_U}.$

На V/U также имеется индуцированное представление: $V/U = \langle e_{k+1} + U, \dots, e_n + U \rangle$, g(v+U) = gv + U. Тогда $g(e_i + U) = ge_i + U$ достаточно задать на базисных векторах.

Если базис выбран произвольным образом, $C \colon \det C \neq 0$, то $\{C^{-1}A_g'C\}$ будут иметь общий угол нулей (C одна для всех g).

Пусть $\rho=\rho_1\oplus\ldots\oplus\rho_s,\ \rho_i=(G,V_i),\ V=V_1\oplus\ldots\oplus V_s,\ V_i$ — инвариантные подпространства в V.

Выберем базис в V_i и в качестве базиса V берём объединение базисов V_i . Тогда

$$\rho(g) = A_g = \begin{pmatrix} A_g^{(1)} & 0 \\ & \ddots & \\ 0 & & A_g^{(s)} \end{pmatrix}$$

есть прямая сумма диагональных блоков.

Вполне приводимое, если каждая матрица — прямая сумма неприводимых блоков (в блоке нет угла нулей) \Rightarrow при любом выборе базиса будем получать матрицы, эквивалентные неприводимым.

1.6 Конечномерное представление циклической группы над $\mathbb C$

Пусть $G = \langle a \rangle$. Рассмотрим $\rho \colon G \to \mathbf{GL}(n, \mathbb{C})$

 $\mathbf{1}^{\circ}\ G=\langle a \rangle_{\infty}$. Достаточно задать $\rho(a)$. Положим $\rho(a)=A\in\mathbf{GL}(n,\mathbb{C})$ — любая матрица. $\rho'\sim \rho \Rightarrow\ \exists\ C\colon A'=C^{-1}AC\Rightarrow$ если верно для $A,\ |C|\neq 0,$ то верно и для сопряженной.

Теорема 1.2 (из линала). Матрицы сопряженны \Leftrightarrow сопряженны их жордановы формы

Тогда матрица $\rho(a)$ задаётся жордановой формой \Rightarrow размеры клеток определены однозначно.

$$CAC^{-1} = \begin{pmatrix} \lambda'_1 & & & & & & \\ & \ddots & & & & 0 & \\ & & \lambda'_1 & & & & \\ & & & \ddots & & & \\ & & & & \lambda'_s & & \\ & 0 & & & & \ddots & \\ & & & & & \lambda'_s \end{pmatrix}$$

Если есть жорданова клетка размерности $\geqslant 2$, то представление не вполне приводимо. Значит, вполне приводимо \Leftrightarrow матрица A диаганализуема.

 ${f 2}^\circ$ $G=\langle a \rangle_n,\
ho(a)=A,\ a^n=e \Rightarrow A^n=E.$ Тогда t^n-1 — аннулирующий для A. Но над ${\Bbb C}$ этот многочлен не имеет кратных корней \Rightarrow матрица диаганализуема:

$$\lambda_i^n = 1$$

$$C^{-1}AC = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

 \Rightarrow Любое представление конечной циклической группы (вполне) приводимо. Матрицы не эквивалетны \Leftrightarrow имеют разные характеристические многочлены.

1.7 Неприводимые представления абелевых групп над $\mathbb C$

Теорема 1.3. $Had \ \mathbb{C}$ представление абелевой группы неприводимо \Leftrightarrow оно одномерное.

Теорема 1.4. Пусть V — конечномерное пространство, $\dim V = n$. $\{\varphi_i\}$ — некоторое семейство попарно коммутирующих линенйных операторов на V над \mathbb{C} . Тогда они имеют общий собственный вектор.

 \square Индукция по размерности n:

 $\mathbf{1}^{\circ}$ n=1 — все собственные

 $\mathbf{2}^{\circ}$ Пусть n>1. Если все $\varphi_i=\lambda_i\varepsilon$, то доказывать нечего. Пусть φ_1 не скалярный $\Rightarrow \varphi_1$ имеет собственный вектор, т. е. $\varphi_1(e)=\lambda e,\ \lambda\in\mathbb{C}$

Рассмотрим подпространство V_{λ} всех собственных векторов со значением λ . $0 \neq V_{\lambda} = \operatorname{Ker}(\varphi_1 - \lambda \varepsilon) \subsetneq V$, т. к. не φ_1 не скалярный $\Rightarrow 1 \leqslant \dim V_{\lambda} < n$.

Покажем, что V_{λ} — инвариатное подпространство, через перестановочность операторов.

Пусть $v \in V_{\lambda}$, $\varphi_i(v) \in V_{\lambda} \Leftrightarrow \varphi_1(\varphi_i(v)) = \lambda \varphi_i(v)$. Но $\varphi_1 \varphi_i = \varphi_i \varphi_1 \Rightarrow$

$$\varphi_1(\varphi_i(v)) = \varphi_i(\varphi_1(v)) = \varphi_i(\lambda v) = \lambda \varphi_i(v).$$

Рассмотрим $\left\{ \varphi_i \Big|_{V_\lambda} \right\}$, $\dim V_\lambda < n \Rightarrow$ можем применить индуктивное предположение \Rightarrow φ_i имеют общий собственный вектор в $V_\lambda \Rightarrow$ и в V.

Пусть G — абелева, ρ — неприводимое над \mathbb{C} . $\{\rho(g)|g\in G\}$ — семейтсво попарно коммутирующих операторов (т. к. абелева группа) \Rightarrow по теореме (1.4) $\exists \ 0 \neq v \in V \colon \rho(g)(v) = \lambda_g v$, но тогда $V \supset \langle v \rangle$ — инвариантное подпространство в $V \Rightarrow V = \langle v \rangle$

Пусть имеем произвольное поле \mathbb{K} , $\rho=(G,V)$, $\dim V=1$. $\rho\colon G\to \mathbf{GL}(1,\mathbb{K})=\mathbb{K}^*$. Тогда для $\rho'\colon G\to \mathbb{K}^*$ $\{a_g\},\ \{a_g'\}\ \exists\ C\in \mathbb{K}^*\colon a_g=C^{-1}a_gC=a_g\Rightarrow$ в одномерном случае эквивалентность — совпадение гоморфизмов \Rightarrow надо найти все гомоморфизмы $G\to \mathbb{K}^*$.

|G|=n — абелева группа, $\mathbb{K}=\mathbb{C}$. Найдём все комплексные представления конечной абелевой группы

$$G = \langle a_1 \rangle_{n_1} \oplus \ldots \oplus \langle a_s \rangle_{n_s} \xrightarrow{\rho} \mathbb{C}^*$$

Достаточно задать ρ на a_i , но $a_i^{n_i} = e \Rightarrow (\rho(a_i))^{n_i} = 1 \Rightarrow \rho(a_i) = \xi_i \in \sqrt[n_i]{1} \Rightarrow$ имеем гомоморфизм каждого слагаемого в \mathbb{C}^* .

 $G = \langle a_1 \rangle \times \ldots \times \langle a_s \rangle, \ \rho(a_1^{k_1} \cdot \ldots \cdot a_s^{k_s}) = \xi_1^{k_1} \cdot \ldots \cdot \xi_s^{k_s}, \ k_i \in \mathbb{Z}, \ k_i = 0, \ldots, n_i - 1.$ Проверим, что ρ — гомоморфизм прямого произведения:

$$\rho((a_1^{k_1} \cdot \ldots \cdot a_s^{k_s})(a_1^{l_1} \cdot \ldots \cdot a_s^{l_s})) = \rho((a_1^{k_1} a_1^{l_1}) \cdot \ldots \cdot (a_s^{k_s} a_s^{l_s})) =$$

$$= (\xi_1^{k_1} \xi_1^{l_1}) \cdot \ldots \cdot (\xi_s^{k_s} \xi_s^{l_s}) = (\xi_1^{k_1} \cdot \ldots \cdot \xi_s^{k_s})(\xi_1^{l_1} \cdot \ldots \cdot \xi_s^{l_s}) = \rho(a_1^{k_1} \cdot \ldots \cdot a_s^{k_s})\rho(a_1^{l_1} \cdot \ldots \cdot a_s^{l_s})$$

Утверждение 1.5. Если имеется гомоморфизм произведения в абелеву группу, то возможностей выбрать ξ_i -ые $n_1 \cdot \ldots \cdot n_s = n$

Комментарий. Доказывалось ранее в более общем виде.

Так, число различных одномерных С-представлений абелевой группы равно её порядку.

1.8 Одномерные представления конечной группы

 $\rho\colon G o \mathbb{K}^*$. \mathbb{K}^* — коммутативна $\Rightarrow\operatorname{Im}\rho\cong G/\operatorname{Ker}\rho$ — абелева. Факторгруппа абелева \Leftrightarrow $G'\subseteq\operatorname{Ker}\rho\Rightarrow$ нужны только такие гомоморфизмы.

Пусть $N \lhd G$, $\rho \colon G \to H$, $N \subseteq \operatorname{Ker} \rho$. Такие гомоморфизмы находятся в биективном соответсвии с гомоморфизмами $G/N \to H$.

Одномерные представления G над \mathbb{K} находятся в биективном соответсвии с гомоморфизмами $G/G' \xrightarrow{\bar{\rho}} K^*, \ \rho = \bar{\rho} \circ \pi \Rightarrow$ задача сводится к представлению абелевой группы.

Пусть $\mathbb{K}^*=\mathbb{C}^*,\ |G|=n<\infty\Rightarrow G/G'$ — конечная абелева группа. |G/G'| разных гомоморфизмов абелевого фактора \Rightarrow число одномерных представлений конечной группы G есть порядок G/G'

1.9 Пространсва гомоморфизмов линейных представлений групп

Пусть \mathbb{K} — любое поле, $\rho = (G,V)$, $\rho' = (G,V')$. $\varphi \in \mathrm{Hom}\,(\rho,\rho')$ — множество гомоморфизмов $\rho \to \rho'$. $V \xrightarrow{\varphi} V'$ — линейное отображение т. ч. $\forall \ v \in V, g \in G \ \varphi(gv) = g\varphi(v)$. $\mathrm{Hom}\,(\rho,\rho') = \mathrm{Hom}_G\,(V,V') \subseteq \mathbf{L}\,(V,V')$.

Если dim V = n, dim V' = m, то $\mathbf{L}(V, V') \cong \mathrm{Mat}_{m,n}(\mathbb{K})$.

Утверждение 1.6. Hom (ρ, ρ') — подпространство в L(V, V').

 \square Пусть $\varphi_1, \varphi_2 \in \operatorname{Hom}_G(\rho, \rho')$.

$$\left(\varphi_{1}+\varphi_{2}\right)\left(gv\right)=\varphi_{1}(gv)+\varphi_{2}(gv)=g\varphi_{1}(v)+g\varphi_{2}(v)=g\left(\varphi_{1}(v)+\varphi_{2}(v)\right)=g\left(\varphi_{1}+\varphi_{2}\right)\left(v\right)$$

$$\left(\lambda\varphi_{1}\right)\left(gv\right)=g\left(\lambda\varphi_{1}\right)\left(v\right)-\text{ аналогичная проверка}$$

Рассмотрим V'=V. $\mathrm{Hom}_G\left(V,V\right)\subseteq\mathbf{L}\left(V\right)$ — пространство лнейных операторов. Пространство линейных операторов — алгебра $\cong\mathrm{Mat}_n\,\mathbb{K}$.

Утверждение 1.7. $\operatorname{Hom}_G(V, V') - nodance pa \ \mathbf{E}(V)$.

Комментарий. Композиция представлений — представление.

Определение. Эндоморфизм — гомоморфизм на себя.

Автоморфизм — биективный эндоморфизм.

Обозначение. $\operatorname{End}_G(V)$ — алгебра эндоморфизмов представлений в V **Лемма 1.8 (Шур).**

- ${f 1}^{\circ} \ (G,V,
 ho),\ (G,V',
 ho')$ неприводимые представления. Тогда $\ \forall \ \varphi\colon
 ho o
 ho'$ либо нулевой, либо биекция.
- $\mathbf{2}^{\circ} \operatorname{End}_G(V)$ алгебра с делением
- $\mathbf{3}^{\circ}\ \mathbb{K}=\mathbb{C}\Rightarrow\ orall\,arphi\in\mathrm{End}_{G}\left(V
 ight),
 ho\$ неприводимое $\ arphi=\lambdaarepsilon,\lambda\in\mathbb{C}$

1° $\operatorname{Ker} \varphi \subseteq V$, $\operatorname{Im} \varphi \subseteq V'$ — инвариантные подпространства. Но т. к. V и V' — неприводимые, то нет нетривиальных подпредставлений. $\operatorname{Im} \varphi = 0 \Rightarrow \varphi = 0$; $\operatorname{Im} \varphi = V' \Rightarrow \operatorname{Ker} \varphi \neq V \Rightarrow \operatorname{Ker} \varphi \neq 0 \Rightarrow \varphi$ — биективено.

- 2° Простое следствие пункта 1° .
- **3**° Докажем двумя способами:

(a) Пусть $\mathbb{K} = \mathbb{C}$. Тогда $\operatorname{End}_G(V) - \mathbb{C}$ -алгебра с делением, $\dim_{\mathbb{C}} \operatorname{End}_G(V) < \infty$ (т. к. подалгебра в алгебре матриц) $\Rightarrow \operatorname{End}_G(V) = \mathbb{C}$.

(b) $\varphi \colon V \to V$ — эндоморфизм \Rightarrow линейный оператор над $\mathbb{C} \Rightarrow$ обладает хотя бы одним собственным вектором:

$$\exists x \in V, x \neq 0, \lambda \in \mathbb{C} \colon \varphi(x) = \lambda x \Rightarrow (\varphi - \lambda \varepsilon)(x) = 0.$$

Но любой эндоморфизм либо нулевой, либо биективен. Значит имеет тривиальное ядро $\Rightarrow \varphi - \lambda \varepsilon = 0 \Rightarrow \varphi = \lambda \varepsilon$.

1.10 Гомоморфизмы прямой суммы представлений

Пусть $\rho = \rho_1 \oplus \ldots \oplus \rho_s$, $V = V_1 \oplus \ldots \oplus V_s$, $\rho_i = (G, V_i)$, $\rho' = (G, V')$ — любое.

Рассмотрим $\operatorname{Hom}_G(V_1\oplus\ldots\oplus V_s,V')$. Гомоморфизм прямой суммы определяет гомоморфизм каждого слагаемого $\varphi\in\operatorname{Hom}_G(V_1\oplus\ldots\oplus V_s,V'),\ \varphi_i\colon V_i\to V',$

$$\varphi(v) = \varphi(v_1, \dots, v_s) = \sum_{i=1}^s \varphi_i(v_i),$$

 $\forall v_i \in V_i \quad \varphi_i(v_i) = \varphi(v_i).$

Но если $\forall i$ задано φ_i : $V_i \rightarrow V'$, то

$$\varphi(v) := \varphi(v_1 + \ldots + v_s) = \sum_{i=1}^{s} \varphi_i(v_i)$$

 $\Rightarrow \varphi \in \operatorname{Hom}(\bigoplus V_i, V') \Rightarrow \operatorname{Hom}_G(V_1 \oplus \ldots \oplus V_s, V') \cong \operatorname{Hom}_G(V_1, V') \oplus \ldots \oplus \operatorname{Hom}_G(V_s, V').$ Применим это к гомоморфизму прямого произведения.

Следствие 1.1 (из Л.Шура). Пусть V, V' — неприводимые, тогда

$$\dim \operatorname{Hom}_{G}(V, V') = \begin{cases} 0, & V \ncong V' \\ \dim & V \cong V' \end{cases}$$

 $\rho(G,V)$ — вполне приводимо.

$$V = V_1 \oplus \ldots \oplus V_s = V_1 \oplus \ldots \oplus V_k \oplus V_{k+1} \oplus \ldots \oplus V_s$$

 $V_i, \ \rho' = (G, V')$ — неприводимы, $V_i \cong V', \ 1 \leqslant i \leqslant k, \ V_i \ncong V', \ k+1 \leqslant i \leqslant s. \ k$ — кратность вхождения V' в данное разложение вполне приводимого.

Утверждение 1.9. $\dim_{\mathbb{K}} \operatorname{Hom}_{G}(V, V') = k \dim_{\mathbb{K}} \operatorname{End}_{G}(V')$

□ Из предыдущего

$$\operatorname{Hom}_{G}(V, V') = \operatorname{Hom}_{G}(V_{1} \oplus \ldots \oplus V_{s}, V') = \underbrace{\operatorname{Hom}_{G}(V_{1}, V')}_{\cong \operatorname{End}_{G}(V')} \oplus \underbrace{\operatorname{Hom}_{G}(V_{k}, V')}_{=0} \oplus \underbrace{\operatorname{Hom}_{G}(V_{k+1}, V')}_{=0} \oplus \ldots \oplus \underbrace{\operatorname{Hom}_{G}(V_{k+1}, V')}_{=0}$$

 $\Rightarrow \dim \operatorname{Hom}_G(V, V') = k \operatorname{End}_G(V') \blacksquare$

Теорема 1.10. Кратность вхождения данного неприводимого представления в разложение вполне приводимого представления в прямую сумму не приводимых не зависит от выбора этого разложения

$$k = \frac{\dim \operatorname{Hom}_{G}(V, V')}{\dim \operatorname{End}_{G}(V')}$$

Легко видеть, что правая часть не зависит от выбора разложения, значит и левая. \blacksquare

Определение. *Кратностью* $\nu(V',V)$ неприводимого V' в вполне приводимом V называется кратность вхождения V' в любое разложение V в прямую сумму неприводимых.

Следствие 1.2.
$$\mathbb{K} = \mathbb{C}$$
, $\operatorname{End}_G(V) = \mathbb{C} \Rightarrow \nu(V',V) = \dim \operatorname{Hom}_G(V,V')$.

1.11 Ортоганальные и унитарные представления

 $\mathbb{K}=\mathbb{R},\mathbb{C},\ V$ — линейное пространство, $\dim V<\infty$. Зададаим на V евклидово (в случае $\mathbb{K}=\mathbb{C},$ эрмитово) скалярное произведение.

Определение. V — евклидово пространство. Тогда $\rho = (G,V)$ называется *ортоганальным*, если $\forall \ g \in G \rho(g)$ — ортоганален.

V — эрмитово пространство. Тогда $\rho = (G,V)$ называется g g называется g g если $\forall g \in G \rho(g)$ — унитарен.

Матричное представление называется ортоганальным (унитарным), если все A_g — ортоганальны (унитарны).

Если зададим ортогональные (унитарные) матрицы и ортонормированный (унитарный) базис, то получим отогональное (унитарное) представление и наоборот.

Теорема 1.11. Любое \mathbb{R} -представление конечной группы изоморфно ортогональному, а над \mathbb{C} — унитраному.

 \square Докажем для $\mathbb C$ (для $\mathbb R$ аналогично). Достаточно доказать, что любое матричное представление эквивалентно унитарному матричному.

Пусть $\rho = (G, V)$ дано. На V есть эрмитово скалярное произведение, относительно которого ρ — унитарно, т. е. все $\rho(g)$ — унитарные операторы.

Пусть $V=\langle e_1,\dots,e_n\rangle$ — базис, $F(x,y)=\sum_{i=1}^n\overline{x_i}y_i$ — скалярное произведение. Введём новое:

$$(x,y) \coloneqq \sum_{g \in G} F(gx, gy)$$

Покажем, что

 ${f 1}^{\circ}$ получилось эрмитово скалярное произведение: $\forall \ g \ F(gx,gy)$ — положительно определённая полуторолинейная форма.

 $\mathbf{2}^{\circ}$ относительно (x,y) все операторы $\rho(g)$ унитарны, т. е. $\forall \ h \in G \ \rho(h)$ — унитарный. Но

$$(hx,hy)=\sum_{g\in G}F(ghx,ghy)$$
 так же сумма по всей группе

$$\Rightarrow (hx, hy) = (x, y) \Rightarrow h$$
 — унитарен.

Следствие 1.3. Любое представление конечной группы над $\mathbb R$ или $\mathbb C$ — вполне приводимы.

□ Индукция по размерности представления:

 1° Любое одномерное представление всегда неприводимо.

2° Пусть $\dim V = n$ и для меньших размерностей доказано. Это представление изоморфно унитарному \Rightarrow можем считать, что представление — унитарно. Если неприводимо, то доказывать нечего. Если же существует инвариантное подпространство $0 \neq U \subsetneq V$, то U, U^{\perp} — инвариантны относительно унитарных $\rho(g)$.

 $V=U\oplus U^\perp$, $\dim U$, $\dim U^\perp< n$, тогда по индуктивному предположению U и $U^\perp-$ прямая сумма неприводимых $\Rightarrow V$ разлагается в прямую сумму неприводимых.

1.12 Критерий полной приводимости линейного представления над произвольным полем

Определение. Представление ρ на V обладает свойтсвом *отщепимости*, если $\forall U' \subset V$ — инвариантного $\exists U'' \subset V : V$ — инвариантное и $V = U' \oplus U''$

Утверждение 1.12. Следующие свойства эквиваленты:

 $\mathbf{1}^{\circ} \ (G,V)$ — вполне приводимо

 $\mathbf{2}^{\circ}$ (G,V) обладает свойством отщепимости

 $\mathbf{3}^{\circ} \quad \forall \ U \subset V \$ инвариантное $\exists \ \varphi \in \operatorname{End}_G(V) \ - \$ проекция на U

 \square Эквивалентность 2° и 3° известна из линейной алгебры.

Проекция φ — гомоморфизм представлений \Rightarrow $U'' = \operatorname{Ker} \varphi$ — инвариантно.

Если U'' — инвариантно, то проекция φ на U' паралельно U'' — гомоморфизм представлений: $\forall v=v'+v'',\ v'\in U',\ v''\in U''\ \varphi(v)=v'.$

Докажем эквивалентность $\mathbf{1}^{\circ}$ и $\mathbf{2}^{\circ}$.

 $\mathbf{1}^{\circ} \Rightarrow \mathbf{2}^{\circ}$: Пусть $U' \subset V$ — инвариантное, $V = \underbrace{V_1 \oplus \ldots \oplus V_s}$.

Возьмём в качестве U'' максимальную сумму $U'' = V_{i_1} \oplus \ldots \oplus V_{i_k}$, т. ч. $U'' \cap U' = 0$.

Т. к. пересечение нулевое, то $U' \oplus U'' -$ прямая сумма. Покажем, что $V = U' \oplus U''$.

Пусть $U'\oplus U''\subsetneq V\Rightarrow\exists V_j\colon V_j\not\subset U'\oplus U''$ Но V_j — неприводимо $\Rightarrow (U'\oplus U'')\cap V_j=0\Rightarrow U'\oplus U''\oplus V_j$ — прямая сумма, что противоречит максимальности $U''\Rightarrow U'\oplus U''=V$. $\mathbf{2}^\circ\Rightarrow\mathbf{1}^\circ$:

Лемма 1.13. Если V обладает свойством отщепимости, то любое его подредставление обладает этим свойством.

 \square $U \subset V, U' \subset U$ — инвариантные, $V = U' \oplus U''$ — инвариантное, тогда $U = U' \oplus (U'' \cap U)$

$$U'\cap (U''\cap U)=0$$
, т. к. $U'\cap U''=0$

 $\forall u \in U \ u = v' + v'', v' \in U', v'' \in U'' v'' = u - v' \in U \Rightarrow v'' \in U \cap U''$

Индукция по размерности $\dim V = n$

 $\mathbf{1}^{\circ}$ n=1 очевидно.

 ${f 2}^\circ$ если V — неприводимо, то доказывать нечего. Пусть $\exists \ 0
eq U' \subsetneq V \Rightarrow V = U' \oplus U''$ — инвариантные и имеют меньшую размерность. По лемме они обладают свойтсвом отщепимости \Rightarrow к ним применимо индуктивное предположение $\Rightarrow V$ — вполне приводимо.

Следствие 1.4. Подпредставление и факторпредставление вполне приводимого — вполне приводимы.

□ Для подпредставления свойство наследуется по Лемме (1.13).

Рассмотрим V/U. $V=U\oplus U'\Rightarrow V/U\cong U'$, но U' — подпредставление \Rightarrow вполне приводимо. \blacksquare

Теорема 1.14 (Машке). Пусть G — конечная группа и поле \mathbb{K} . \mathbb{K} -представление G вполне приводимо \Leftrightarrow char $\mathbb{K} \nmid |G|$

Определение. Представление модулярно, если $\operatorname{char} \mathbb{K} \mid |G|$.

□ ←: Докажем с помощью условия (3) из критерия.

Из линейной алгебры: $\exists \psi \colon V \to V, \psi$ — проекция на U. Хотим получить проекцию φ , т. ч. $\varphi(hv) = h\varphi(v) \ \forall \ v \in V, \ h \in G$. Пусть $|G| = n, \ 0 \neq n \cdot 1 \in \mathbb{K} \Rightarrow \frac{1}{n} = (n \cdot 1)^{-1}$. Определим φ :

$$\varphi(v) = \frac{1}{n} \sum_{g \in G} g^{-1} \psi(gv)$$

Докажем, что φ — эндоморфизм.

$$\varphi(hv) = \frac{1}{n} \sum_{g} g^{-1} \psi(ghv) = \frac{1}{n} \sum_{g} h(gh)^{-1} \psi((gh)v) = h \cdot \frac{1}{n} \sum_{gh=x \in G} x^{-1} \psi(xv) = h\varphi(v)$$

Проверим, что φ — проекция на U.

$$\psi(gv) \in U \Rightarrow \varphi(v) = \frac{1}{n} \sum_{v} g^{-1} \psi(gv) \Rightarrow \operatorname{Im} \varphi \subseteq U$$

 $v \in U \Rightarrow gv \in U$ (инвариантность) $\Rightarrow \psi(gv) = gv \Rightarrow g^{-1}\psi(gv) = gv \Rightarrow \psi(v) = \frac{1}{r} \cdot n \cdot v = v$

1.13 Продолжение линейного действия группы на пространстве её представления вдоль действия её групповой алгебры

Пусть G — группа, \mathbb{K} — поле, |G|=n. Рассмотрим n-мерное векторное пространство, отождествив элементы G с базисом. $\mathbb{K}G = \left\{\sum_{g \in G} a_g g\right\}, \ a_g \in \mathbb{K},$

$$\left(\sum_{g \in G} a_g g\right) \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} \left(\sum_{h,k \colon hk = g} a_h b_k\right) g$$

Пусть имеем представление V над \mathbb{K} $\rho=(G,V)\Rightarrow$ задано $gv,g\in G,v\in V,\rho\colon G\to \mathbf{GL}(V)$ — невырожденные линейные операторы. Но $G\subset \mathbb{K} G\Rightarrow \ \forall\ \tau=\sum a_g g,\ g\in G,$

$$\tau v = \left(\sum_{q} a_{q} g\right)(v) := \sum_{q} a_{q}(gv)$$

Свойства этой операции:

$$\mathbf{1}^{\circ} \ \tau(v_1 + v_2) = \tau v_1 + \tau v_2 \qquad \forall \ \tau \in \mathbb{K}G, \ \forall \ v_1, v_2 \in V$$
$$\mathbf{2}^{\circ} \ \tau(\lambda v) = \lambda(\tau v) \qquad \forall \ \lambda \in \mathbb{K}$$

$$\mathbf{2}^{\circ} \ \tau(\lambda v) = \lambda(\tau v) \qquad \forall \ \lambda \in \mathbb{K}$$

$$3^{\circ} (\tau_1 + \tau_2) v = \tau_1 v + \tau_2 v$$

$$\mathbf{4}^{\circ} \ (\tau_1 \tau_2) \, v = \tau_1 \, (\tau_2 v)$$

$$\mathbf{5}^{\circ} \ (\lambda e) \, v = \lambda v \qquad e -$$
единица в $\mathbb{K} G$, т. е. в $G, \ \lambda \in \mathbb{K}$

Свойства $\mathbf{1}^{\circ}$, $\mathbf{2}^{\circ}$ задают линейный оператор. Раньше имели $\varphi(g)v=gv$. А теперь $\varphi\colon \mathbb{K}G\to$ $\mathbf{L}(V)$ — алгебра всех линейных операторв.

Свойства ${\bf 3}^{\circ}$, ${\bf 4}^{\circ}$ и ${\bf 5}^{\circ}$ задают гомоморфизм алгебр (линейное представление задаёт гомоорфизм алгебр $\mathbb{K}G \to \mathbf{L}(V)$).

Заметим, что имеют место свойства:

- $U \subset V$ инвариантно относительно $G \Rightarrow \tau v \in U, \ \forall \ v \in U, \tau \in \mathbb{K}G$.
- $\varphi \colon V \to V$ гомомморфизм представлений $\Rightarrow \varphi(\tau v) = \tau \varphi(v), \ \forall \, v \in V, \tau \in \mathbb{K}G.$

Определение. \mathbb{K} -представление группы G в $\mathbb{K} G$ и с действием, задаваемым умножением в групповой алгебре:

$$g\left(\sum a_h h\right) = \sum a_g g h$$

называется регулярным.

1.14 Размерность пространства гомоморфизмов регулярного представления

Пусть $\rho = (G, V)$ — любое представление.

Утверждение 1.15. $\dim \operatorname{Hom}_G(\mathbb{K}G, V) = \dim_{\mathbb{K}} V$

 \square $\forall \ \varphi \colon \mathbb{K} G \to V$ задаётся значением $\varphi(e) \in V$, т. к. $\varphi(\tau) = \varphi(\tau e) = \tau \varphi(e)$.

В обратную сторону: задано $\varphi(e) \Rightarrow \ \forall \ \tau \in \mathbb{K} G \ \varphi(\tau) = \varphi(\tau e) \coloneqq \tau \varphi(e).$

Покажем, что эта биекция $V \leftrightarrow \operatorname{Hom}_G(\mathbb{K}G,V)$ — гомоморфизм векторных пространств.

Пусть $v_0 = \varphi(e), \ v_o \leftrightarrow \varphi \in \operatorname{Hom}_G(\mathbb{K} G, V). \ \varphi(\tau) = \tau v_0.$ Возьмём v_0' и $v_0'', \ v_0 = v_0' + v_0'', \ \varphi'(\tau) = \tau v_0'', \ \varphi''(\tau) = \tau v_0''.$

$$\varphi(\tau) = \tau \left(v_0' + v_0''\right) = \tau v_0' + \tau v_0'' = \varphi'(\tau) + \varphi''(\tau) = \left(\varphi' + \varphi''\right)(\tau)$$
$$\varphi_{\lambda v_0'}(\tau) = \tau \left(\lambda v_0'\right) = \lambda \varphi'(\tau) = \left(\lambda \varphi'\right)(\tau)$$

Значит имеем изоморфизм векторных пространств $\Rightarrow \dim \mathrm{Hom}_G\left(\mathbb{K}G,V\right) = \dim_\mathbb{K}V$. lacksquare

1.15 Кратность вхождения неприводимого представления в немодулярном случае

В немодулрном случае любое представление G вполне приводимо \Rightarrow регулярное представление вполне приводимо \Rightarrow можно говорить о кратности вхождения неприводимого представления в регулярное. $\rho = (G,V)$ — неприводимое, $k = \nu(V,\mathbb{K}G)$. Применим формулу:

$$k = \frac{\dim_{\mathbb{K}} \operatorname{Hom}_{G}(\mathbb{K}G, V)}{\dim_{\mathbb{K}} \operatorname{End}_{G}(V)} = \frac{\dim_{\mathbb{K}} V}{\dim_{\mathbb{K}} \operatorname{End}_{G}(V)}$$

 \Rightarrow \forall V — неприводимого, кратность его вхождения в $\mathbb{K}G$ ненулевая \Rightarrow любое неприврдимое встречается в разложении регулярного.

T. к. слагаемых в разложении конечное число, то с точностью до изоморфизма имеется конечное число представлений группы G.

Если $\mathbb{K} = \mathbb{C}$, то $\dim_{\mathbb{C}} \operatorname{End}_{G}(V) = 1$.

Утверждение 1.16. Кратность вхождения неприводимого представления в регулярное над \mathbb{C} равно размерности пространства представления.

Следствие 1.5. Сумма квадратов размерностей неприводимых представлений конечной группы G над \mathbb{C} равна |G|.

 \square $(G, V_1), \ldots, (G, V_s)$ — список всех неприводимых представлений (с точночтью до изоморфизма) группы G над \mathbb{C} , $\dim_{\mathbb{K}} V_i = k_i$,

$$\mathbb{K}G = \underbrace{V_{1,1} \oplus \ldots \oplus V_{1,k_1}}_{V_{1,j} \cong V_1} \oplus \ldots \oplus \underbrace{V_{s,1} \oplus \ldots \oplus V_{s,k_s}}_{V_{s,j} \cong V_s}$$

⇒ число слагаемых в каждой группе равно размерности представления

$$|G| = \dim_{\mathbb{K}} \mathbb{K}G = \sum_{i=1}^{s} k_i^2$$

1.16 Разложение немодулярной групповой алгебры конечной группы в прямую сумму простых алгебр

 $\operatorname{char} \mathbb{K} \nmid |G|$. Тогда $(G,V_1),\ldots,(G,V_s)$ — все неприводимые, k_i — кратность вхождения V_i в $\mathbb{K} G$

$$k_i = \frac{\dim_{\mathbb{K}} \operatorname{Hom}_G(\mathbb{K}G, V_i)}{\dim_{\mathbb{K}} \operatorname{End}_G(V_i)}$$

Задача 1.1. Показать, что если $\operatorname{char} K \mid |G|$, то регулярное представление не является вполне приводимым.

Указание. Показать, что имеется подпредставление и на него нет проекции.

$$\mathbb{K}G = \underbrace{V_{1,1} \oplus \ldots \oplus V_{1,k_1}}_{V_{1,j} \cong V_1} \oplus \ldots \oplus \underbrace{V_{s,1} \oplus \ldots \oplus V_{s,k_s}}_{V_{s,j} \cong V_s} \tag{1}$$

Подпредставление в регулярном представлении — подпространство, инвариантное относительно умножения слева на элементы из $G \Rightarrow$ на любые элементы из алгебры (т. е. это левые идеалы в $\mathbb{K}G$).

 $I \subset \mathbb{K}G, \ I$ — неприводим $\Leftrightarrow I \neq 0$ и нет строго меньших ненулевых левых идеалов (минимальный левый идеал).

Теорема 1.17. Немодулярная групповая алгебра является прямой суммой простых алгебр.

 \square Имеем разложение $\mathbb{K}G=V_{1,1}\oplus\ldots\oplus V_{1,k_1}\oplus\ldots\oplus V_{s,1}\oplus\ldots\oplus V_{s,k_s}$. Докажем, что блоки (R_i из (5.1))— двустороние идеалы. Заметим, что блоки определены однозначно. Докажем, что первый (значит и любой) блок содержит неприводимоё подредстовление $I\cong V_1$.

Пусть
$$\exists \tau_0 \in I, \ \tau_0 \notin R_i, \ \tau_0 = \sum \tau_{i,j}, \ \tau_{i,j} \in V_{i,j}, \ \exists \ \tau_{i,j} \neq 0 \ i \neq 1.$$

Рассмотрим проекцию на $V_{i,j}$: $\varphi\colon I\to V_{i,j}$, $\varphi(\tau)=\tau_{i,j}$, $\tau\in I$. Но т. к. было разложение в прямую сумму, то получили гомоморфизм представлений. Этот гомоморфизм не нулевой, т. к.

 $\varphi(\tau_0) \neq 0$. Значит по Л.Шура $V_{i,j} \cong V_1$, что противоречит $i \neq 1 \Rightarrow I \subseteq R_1 \Rightarrow$ блоки не зависят от разложения.

Докажем, что R_1 — двустороний идеал. Осталось показать, что правый.

Пусть $\tau \in \mathbb{K}G$, $R_1\tau \subseteq R_1$

$$\mathbf{1}^{\circ} V_{1,j} \cdot \tau = 0$$

 ${f 2}^\circ\ V_{1,j}\cdot au
eq 0.$ Рассмотрим отображение ${f arphi}\colon V_{1,j} o V_{1,j}\cdot au\colon x\in V_{1,j},\ {f arphi}(x)=x au.$ Заметим, что ${f arphi}$ — сюръективен.

Покажем, что φ — гомоморфизм представлений:

$$\varphi(gx) = (gx)\tau = g\varphi(x)$$

Но $V_{i,j}$ было неприводимо, однако $\operatorname{Ker} \varphi \subsetneq V_{i,j} \Rightarrow \operatorname{Ker} \varphi = 0 \Rightarrow \varphi$ — изоморфизм представлений. $V_{1,j} \cdot \tau \cong V_{1,j} \cong V_1 \Rightarrow V_{1,j} \cdot \tau \subseteq R_1 \Rightarrow R_i$ — двустороний идеалы.

Докажем, что R_i — простые. $\mathbb{K}G = R_1 \oplus \ldots \oplus R_s$, $e = e_1 \oplus \ldots \oplus e_s$, $e_i \in R_i$ — единица в R_i Т. к. R_i — двустороние идеалы, то произведение элементов из разных подалгебр равно нулю.

$$\tau \in R_i \Rightarrow \tau = \tau e = \underbrace{\tau e_1}_{=0} \oplus \ldots \oplus \underbrace{\tau e_i}_{=\tau} \oplus \ldots \oplus \underbrace{\tau e_s}_{=0}$$

Пусть $0 \neq J \subsetneq R_1$ — двустороний идеал.

$$R_1 = J \oplus J'$$

 $R_1 = \underbrace{I_1 \oplus \ldots \oplus I_k}_{I} \oplus I_{k+1} \oplus \ldots \oplus I_{k_1}, \quad k \neq k_1$

 $\forall \ \tau \in J \ \tau I_{k+1} \subseteq I_{k+1}$, т. к. I_{k+1} — подпредставление, $\tau I_{k+1} \subseteq J$, т. к. $\tau \in J$, J — двустороний идеал. $J \cap I_{k+1} = 0 \Rightarrow \tau I_{k+1} = 0$. $I_{k+1} \cong V_1 \cong V_{1,j}, \ j = 1, \ldots, k_1$. Оператор действует одинаковым образом на изоморфных представлениях $\Rightarrow \tau V_{1,j} = 0 \ \forall \ j \Rightarrow \tau R_1 = 0 \Rightarrow \tau = \tau e_1 = 0$. Противоречие. \blacksquare

Рассмотрим $\mathbb{K} = \mathbb{C}$, $\mathbb{C}G = R_1 \oplus \ldots \oplus R_s$.

Теорема 1.18. Групповая алгебра конечной группы над $\mathbb C$ разлагется в прямую сумму полных матричных алгебр.

 Π Покажем, что R_i изморфен полной матричной алгебре.

$$\mathbb{C}G = V_{1,1} \oplus \ldots \oplus V_{1,r_1} \oplus \ldots \oplus V_{s,1} \oplus \ldots \oplus V_{s,r_s}$$

 $r_i=\dim V_i$, т. к. над $\mathbb C$ кратность вхождения в регулярное совпадает с размерностью. $\dim R_i=r_i^2$, покажем, что $R_1\cong \operatorname{Mat}_{r_1}(\mathbb C)$

Теорема 1.19. Число неприводимых \mathbb{C} -представлений конечной группы G, c точностью до изоморфизма, равно числу её классов сопряжянных элементов.

 $\mathbb{C}G = \operatorname{Mat}_{r_1}(\mathbb{C}) \oplus \ldots \oplus \operatorname{Mat}_{r_s}(\mathbb{C}), \quad s$ — число неприводимых представлений.

Посчитаем размерность центра групповой алгебры.

$$Z(\mathbb{C}G) = Z(\operatorname{Mat}_{r_1}(\mathbb{C})) \oplus \ldots \oplus Z(\operatorname{Mat}_{r_s}(\mathbb{C}))$$

Но центры — скалярные матрицы \Rightarrow все слагаемые имеют размерность один \Rightarrow $\dim Z(\mathbb{C}G) = s$. С другой стороны, $a \in \mathbb{C}G$, $a = \sum a_g g$, $a \in Z(\mathbb{C}G) \Leftrightarrow ha = ah \ \forall \ h \in G$.

$$hah^{-1} = a \ \forall \ h \in G$$
$$a = \sum_{g} a_g g \Rightarrow hah^{-1} = \sum_{g \in G} a_g hgh^{-1} \Rightarrow$$
$$a_g = a_{hgh^{-1}} \Leftrightarrow a \in Z(\mathbb{C}G)$$

t — число классов сопряженности в G, g_1, \ldots, g_t — представители классов, $\mathrm{Cl}(g_i)$ — класс сопряженности с g_i .

$$a \in Z(\mathbb{C}G) \Leftrightarrow a = \sum_{g_i} a_{g_i} \sum_{g \in \mathrm{Cl}(g_i)} g$$

Значит, базис $Z(\mathbb{C}G)$ есть $\left\{\sum\limits_{g\in \mathrm{Cl}(g_i)}g|i=1,\ldots,t\right\}\Rightarrow$

$$t = \dim Z(\mathbb{C}G) = s$$

1.17 Примеры построения всех неприводимых С-представлений

1.18 Неприводимые \mathbb{C} -представления группы кватернионов Тут могла бы быть Ваша реклама.

- 1.19 Примеры неприводимых $\mathbb C$ -представлений групп A_n и S_n ($n\geqslant 4$)
 - **1.20** Все неприводимые \mathbb{C} -представления групп A_4 и S_4
 - 1.21 Характеры С-представлений конечных групп

Пусть имеем группу G, $|G|<\infty.$ Пусть имеем $\rho\colon G\to \mathbf{GL}(V),$ $g\mapsto \rho(g)\in \mathbf{GL}(V),$ $g\mapsto A_g,$ A_g — матрица $\rho(g)$ в фиксированном базисе.

Определение. Характером ρ называется функция $\chi_{\rho} \colon G \to \mathbb{C}, \ \chi_{\rho}(g) = \operatorname{tr} \rho(g) = \operatorname{tr} A_g$. Заметим, что след совпадает с коэффициентом при λ^{n-1} в характеристическом многочлене, \Rightarrow определение не зависит от базиса.

Свойтва характера:

 ${f 1}^\circ$ $ho'\cong
ho\Rightarrow\chi_{
ho'}=\chi_
ho$, т. к. соответствующие матрицы сопряжены и следы совпадают.

 2° g и h сопряжены в G, то $\chi_{\rho}(g) = \chi_{\rho}(h)$, т. к. соответствующие матрицы сопряжены \Rightarrow χ_{ρ} постоянна на классах сопряжённых элементов.

$$\mathbf{3}^{\circ} \ \chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$$

 $g^n=e,\,t^n-1$ — аннулирующий для $A_g\Rightarrow$ все собственные значения матрицы A_g — корни из 1.

Характеристический многочлен, $m = \dim V$,

$$f_{A_g}(\lambda) = \prod_{i=1}^m (\lambda - \lambda_i),$$

 $\chi_{\rho}(g)=\sum_{i=1}^m\lambda_i,\ A_{g^{-1}}=A_g^{-1}.\ \lambda_1,\dots,\lambda_m$ — корни с учётом кратности. Т. к. λ_i — корни n-й степени из 1, то $\lambda_i^{-1}=\overline{\lambda_i}$ \Rightarrow

$$\chi_{\rho}(g^{-1}) = \sum_{i=1}^{m} \lambda_i^{-1} = \sum_{i=1}^{m} \overline{\lambda_i} = \overline{\chi_{\rho}(g)}.$$

 4°

$$\rho = \bigoplus_{j=1}^{k} \rho_j \Rightarrow A_g = \begin{pmatrix} A_g^{(1)} & & \\ & \ddots & \\ & & A_g^{(k)} \end{pmatrix}$$
$$\chi_{\rho} = \sum_{j=1}^{k} \chi_{\rho_j}$$

1.22 Характеры как линейные функции на групповой алгебре

1.23 Характер регулярного представления группы ${\it G}$

 $\rho_{reg} \colon G \to \mathbf{GL}(\mathbb{C}G), |G| = n,$

$$\rho_{reg}(g)\left(\sum_{h\in G}a_hh\right) = \sum_{h\in G}a_hgh$$

$$A_g = \begin{cases} E, & g = e \\ \sum_{i,j \neq i} E_{i,j}, & g \neq e, \text{ т. к.} & \forall \ hgh \neq h \end{cases}$$

$$\chi_{reg}(g) = \begin{cases} n, & g = e \\ 0, & g \neq e \end{cases}$$

Пусть
$$a=\sum_{h\in G}a_hh,\ ag^{-1}=\sum_{h\in G}a_hhg^{-1}$$

$$\chi_{reg}(ag^{-1}) = \sum_{h \in G} a_h \chi_{reg}(hg^{-1}) = na_g, \quad$$
 т. к. все слагаемые равны, кроме случая, когда $h = g$ $\Rightarrow a_g = \frac{1}{n} \chi(ag^{-1}) \Rightarrow a = \frac{1}{n} \sum_{a \in G} \chi_{reg}(ag^{-1})g$

Последнее равенство — формула разложения групповой алгебры по базису в терминах характера регулярного представления.

1.24 Характерs неприводимого С-представлений конечной группы