4EB00 Special Topic Thermodynamics and Combustion

Cycle analysis of a jet-engine Lecture 1

Bart Somers (Combustion Technology)

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Why bother about combustion

Quadrillion= 10^{15} . 10^{15} J = Peta Joule

1000 BTU~1MJ

Technische Universiteit **Eindhoven** University of Technology

What do we need

Technische Universiteit **Eindhoven** University of Technology

Where does it come from

Technische Universiteit **Eindhoven** University of Technology

What annual growth is needed

The JetEngine

The combustor drives the application!

How is combustion related/incorporated to/in thermodynamics

Contents

- Ideal Gas mixtures
 - Thermodynamic Properties of a mixture (2.9)
 - Where hides combustion
 - Adiabatic flame temperature, an application of Nasa thermodynamic tables.
- Cycle analysis of a jet engine using thermodynamic tables
 - Combustor
 - Diffusor
 - Etc...

- How to define/characterize a mixture
 - Mole fractions

$$X_i = \frac{N_i}{\sum_{i=1}^{J} N_i} = \frac{N_i}{N_{tot}}$$

Mass fractions

$$Y_i = \frac{M_i}{\sum_{i=1}^J M_i} = \frac{M_i}{M_{tot}}$$

- Equation of state (double ideality)
 - Each species ideal gas (ideal solution)

$$P_iV = N_iR_uT$$

Sum it over all constituents

Standardized properties

- Remember eqs 2.33c calorific state
- For reactive mixtures it is important to use the socalled 'Standardized Enthalpy'

$$\overline{h_i}(T) = \overline{h_{f,i}^0}(T) + \int_{T_{ref}}^T \overline{c_p}(T') dT'$$

nb $\overline{\text{overbar}}$ means units per mole here [J/mole] for \overline{h} and [J/mole/K] for $\overline{c_p}$

• Definition of $\overline{h_{f,i}^0}(T)$ is important now. It will explain why combustion creates high temperatures.

Standardized properties: Nasa polynomials

 Sometimes/many times it is more convenient to work in a mass based (wo overbar) framework

$$h_i(T) = h_{f,i}^0(T) + \int_{T_{ref}}^T c_p(T') dT'$$
 for each component i in the mix

 For determining conditions during re-entry of the Apollo return pod Nasa has determined these standardized properties for many components

Makes life easy for us. Let's use them. Practice at home with exercises script. Answers will be on oase for reference

Standardized properties: Nasa polynomials

At home exercise 1: Compute h of O₂ and O.

- 1. determine $h_{O_2} \left(T_{ref} \right)$ 2. determine $h_O \left(T_{ref} \right)$, see also book page 130
- 3. Determine enthalpy of formation $h_{f,O}^0, h_{f,N}^0, h_{f,H}^0$
- 4. Determine enthalpy of formation $\bar{h}_{fO}^0, \bar{h}_{fN}^0, \bar{h}_{fH}^0$

Standardized properties: Nasa polynomials

Answers exercise 1:

- **1. determine** $h_{O_2}(T_{ref}) = 5.11 \text{ e-} 04 [\text{J/kg/K}]$
- 2. determine $h_O(T_{ref})=1.56e+07$ [J/kg/K] see also book **page 130**

3. Enthalpy of formation
$$h_{f,O}^0 = 1.56\text{e} + 07 \text{ [J/kg/K]}$$
 $h_{f,N}^0 = 3.37\text{e} + 07 \text{ [J/kg/K]}$ $h_{f,H}^0 = 2.16\text{e} + 08 \text{ [J/kg/K]}$

4. Enthalpy of formation

$$ar{h}_{f,O}^{\,0} = 2.49\mathrm{e} + 05 \; [\mathrm{kJ/kmol/K}] \ ar{h}_{f,N}^{\,0} = 4.73\mathrm{e} + 05 \; [\mathrm{kJ/kmol/K}] \ ar{h}_{f,H}^{\,0} = 2.18\mathrm{e} + 05 \; [\mathrm{kJ/kmol/K}] \ ar{h}_{ty \, \text{of Technology}}^{\,\text{the Universite it entry of Technology}}$$

Calorific relations for a mixture

Per unit mass

$$u_{mix}(T) = \sum_{i} Y_{i} u_{i}(T)$$

$$c_{V,mix}(T) = \sum_{i} Y_{i} c_{V,i}(T)$$

$$etc...$$

Per unit mole

$$\overline{u}_{mix}(T) = \sum_{i} X_{i} \overline{u}_{i}(T)$$

$$\overline{c}_{V,mix}(T) = \sum_{i} X_{i} \overline{c}_{V,i}(T)$$

$$etc...$$

Ideal gas mixtures

- · How to define/characterize a mixture
 - · Mole fractions

$$X_{i} = \frac{N_{i}}{\sum\limits_{i=1}^{J}N_{i}} = \frac{N_{i}}{N_{tot}}$$
 • Mass fractions

$$Y_i = \frac{M_i}{\sum_{i=1}^{J} M_i} = \frac{M_i}{M_{tot}}$$

TUe Technische Universiteit
Eindhoven
University of Technology

Q1 2013 PAGE 3

TU/e Technische Universiteit Eindhoven University of Technology

At home exercise 2: Compute properties of air.

- **Determine composition of air(N2/O2)**
- **Determine** $h_{air}(T_{ref})$. And plot $h_{air}(T = [250 2000])$
- Determine specific heat capacity $c_{p,air}\left(T_{ref}\right), c_{p,air}\left(T = [250 2000]\right)$

$$c_{p,air}(T_{ref}), c_{p,air}(T = [250 - 2000])$$

At home exercise 2: Compute properties of air.

- 1. Determine composition of air(N2/O2) X_i, Y_i
- **2.** Determine $h_{air}(T_{ref}), h_{air}(T = [300 2000])$
- 3. Determine specific heat capacity

$$c_{p,air}(T_{ref}), c_{p,air}(T = [300 - 2000])$$

Ans1

Name	1	Xi	Yi
02	T	0.210000	0.232918
N2	1	0.790000	0.767082

Ans2/3

Name	ī	href	cpref
02	Ī	0.00051	918.104
N2	ī	51.04356	1037.755
Air	ī	39.15474	1009.886

Ans2/3

Contents

- Ideal Gas mixtures
 - Thermodynamic Properties of a mixture (2.9)
 - Where hides combustion?
 - Exercises: Constant volume explosion (ex3), Adiabatic flame temperature (ex4) (application of Nasa thermodynamic tables).
- Cycle analysis of a jet engine using thermodynamic tables
 - Combustor
 - Diffusor
 - Etc...

Ex3 Constant Volume Explosion

Model System

- Adiabatic
- Constant volume
- Closed
- Constant mass

$$E_2 - E_1 = + \sum_{boundaries} h_b$$

$$E_2 - E_1 = 0$$

$$u_{mix,2} - u_{mix,1} = 0$$

TU/e Technische Universiteit Eindhoven University of Technolog

Ex3 Constant Volume Explosion a mixture

Apparently

$$u_{mix,2} - u_{mix,1} = 0$$

- Given initial state
 - 0.15 moles of acetylene (C_2H_2) and 2 moles of air. Volume of vessel is 50 liter. Due to fire T=800K. Fire is out. Mixture is going to ignite.

Ex3 Constant Volume Explosion

Exercise 3, Constant Volume

of vessel is 50 liter. T=800K.

Initial State

given molar fraction of O_2 in air is 0.21 and N_2 in air 1-0.21=0.79.

- Determine $X_{i,1}$ of initial mixture
- Determine $Y_{i,1}$ of initial mixture
- Determine $u_{mix,1}$ using the polynomials!

Final State

- Determine $X_{i,2}$ of final mixture (after combustion!)
- Determine $Y_{i,2}$ of final mixture
- Determine $u_{mix,2}$ (T) for a range of T and plot it. Compare to $u_{mix,1}$
- Determine T_2 and p_2 .

Ex3 Constant Volume Explosion

Exercise 3

- Determine X_i of mix
- Determine Y_i of mix
- Determine $u_{mix,1}$ using the polynomials!
- Determine X_{i,2} of mix (nb after combustion)
- Determine $Y_{i,2}$ of mix
- Determine $u_{mix,2}$ (T) for a range of T. Compare to $u_{mix,1}$
- Determine T_2 and p_2 .

	_ X _i	_ Y _i	X _i _	_ Y _i	
	Initial	1		Final	
C2H2	0.069767	0.063398	0.000000	0.000000	Ш
02	0.195349	0.218151	0.021687	0.023373	Ш
N2	0.734884	0.718451	0.761446	0.718451	ш
CO2	0.000000	0.000000	0.144578	0.214312	Ш
H2O	0.000000	0.000000	0.072289	0.043864	Ш
	Initial	1		Final	
T [K]	800.00	1	3631.62	1	П
P [bar]	2.860178	1	12.530943	ı	П

Ex3 Constant Pressure Explosion

Exercise 4

• For the fuels CH₄,C₂H₆,C₃H₈ and CO determine the adiabatic flame temperature for stoichiometric conditions.

nb now $h_{mix,1} = h_{mix,2} !!$

Due to definition of adiabatic flame Temperature

Ex4 ConstantPressure Explosion

Exercise 4

For the fuels CH₄,C₂H₆,C₃H₈ and CO determine the adiabatic flame temperature for stoichiometric conditions.

nb now $h_{mix,1} = h_{mix,2} !!$

Due to definition of adiabatic flame Temperature

		Initial		ï		Final
		Xi	Yi	i.	Xi	Yi
CH4	11	0.095023	0.055167	T.	0.000000	0.000000
02	11	0.190045	0.220068	T.	0.000000	0.000000
CO2	11	0.000000	0.000000	1	0.095023	0.151337
H20	11	0.000000	0.000000	T.	0.190045	0.123898
N2	П	0.714932	0.724765	1	0.714932	0.724765
T	П	298.15	[K]	1	2324.97	[K]
h	11	-256.49	[kJ/kg]	L	-256.56	[kJ/kg]
		Initial		П		Final
		Xi	Yi	П	Xi	Yi
C2H6	Ш	0.056604	0.058856	I	0.000000	0.000000
02	Ш	0.198113	0.219209	I	0.000000	0.000000
CO2	П	0.000000	0.000000	1	0.110092	0.172281
H20	П	0.000000	0.000000	1	0.165138	0.105784
N2	Ш	0.745283	0.721935	1	0.724771	0.721935
T	Ш	298.15	[K]	1	2379.20	[K]
h	П	-164.08	[kJ/kg]	I	-164.14	[kJ/kg]
		Initial				Final
		Xi	17.2	ŀ	W-2	rinai Yi
COUG			Yi O OGO224	ŀ	Xi	
C3H8	11	0.040307	0.060324	ŀ	0.000000	0.000000
02	11	0.201536	0.218867	ŀ	0.000000	0.000000
CO2	11	0.000000	0.000000	ŀ	0.116236	0.180613
H20	11	0.000000	0.000000	!	0.154982	0.098578
N2	11	0.758157	0.720809	ŀ	0.728782	0.720809
T	11	298.15	[K]	ŀ	2391.46	[K]
h	Ш	-142.03	[kJ/kg]	ı	-142.06	[kJ/kg]
		Initial		ï		Final
		Xi	Yi	i.	Xi	Yi
co	11	0.295775	0.289659	i.	0.000000	0.000000
02	H	0.147887	0.165451	i.	0.000000	0.000000
CO2	H	0.000000	0.000000	i.	0.347107	0.455110
N2	ii.	0.556338	0.544890	i.	0.652893	0.544890
т						::
_	11	298.15	[K]		2663.09	[K]
h	11	298.15 -1142.96	[K] [kJ/kg]	1	2663.09 -1143.00	[K] [kJ/kg]

Contents

- Ideal Gas mixtures
 - Thermodynamic Properties of a mixture (2.9)
 - Where hides combustion
 - Adiabatic flame temperature, an application of Nasa thermodynamic tables.
- Cycle analysis of a jet engine using thermodynamic tables
 - Combustor
 - Diffusor
 - Etc...

Contents

- Ideal Gas mixtures
 - Thermodynamic Properties of a mixture (2.9)
 - Where hides combustion?
 - Adiabatic flame temperature, an application of Nasa thermodynamic tables.
- Cycle analysis of a jet engine using thermodynamic tables
 - Combustor
 - Diffusor
 - Etc...

Where hides combustion

 $E_1 = \sum_{i} m_{i,1} u_i \left(T_1 \right)$

 $E_2 = \sum_{i} m_{i,2} u_i \left(T_2 \right) = E_1$

Mainly the difference in 'enthalpy of formation' between reactants and products

 $u_{i}\left(T\right) = \left(u_{f,i}^{0}\left(T\right)\right) + \int_{T_{ref}}^{T} c_{V}\left(T'\right) dT'$

 $E_2' = \sum_{i} m_{i,2} u_i \left(T_1 \right)$

Compensated by 'sensible enthalpy'

HOT

Reaction Progress

/ Mechanical Engineering

Energy

Q1 2015

PAGE 25

Where hides combustion

 $E_{1} = \sum_{i} m_{i,1} u_{i} (T_{1}) \qquad E_{2} = \sum_{i} m_{i,2} u_{i} (T_{2}) = E_{1}$ $\Delta E = E_{1} - E'_{2}$ $\approx m \sum_{i} (Y_{i,1} u_{i}^{0} - Y_{i,2} u_{i}^{0})$ $E'_{2} = \sum_{i} m_{i,2} u_{i} (T_{1})$

 $\Delta E = m \int_{T_1}^{T_2} c_{V,2} (T') dT'$

Reaction Progress

Tule Technische Universiteit Eindhoven University of Technolog

Cycle analysis of a jet engine using thermodynamic tables

Assignment 1

Compute adiabatic flame temperature of gasoline for equivalence ratios (φ) ranging from 0.2-1.

Contents

- Ideal Gas mixtures
 - Thermodynamic Properties of a mixture (2.9)
 - Where hides combustion
 - Adiabatic flame temperature, an application of Nasa thermodynamic tables.
- Cycle analysis of a jet engine using thermodynamic tables
 - Diffusor
 - Compressor
 - Combustor etc...

Cycle Analysis

