Programação com Octave/Matlab Coltec - UFMG Capítulo 11 - Somatórios

Márcio Fantini Miranda

16 de junho de 2021

Sumário

1	Somatórios e Séries							
2	Preliminares							
		2.0.1 Séries Numéricas	4					
	2.1	O que é um Somatório	4					
		2.1.1 Formalismo	5					
	2.2	Séries Numéricas	6					
	2.3	Algumas Somas Conhecidas	6					
	2.4	Somatórios em Programação	6					
	2.5	Exercício de Fixação	7					
3	Son	natório de Variáveis	8					
	3.1	Somatórios Duplos	9					

4	Algumas Propriedades Importantes					
	4.1	Exercício de Fixação	11			
	4.2	Número de Termos do Somatório	12			
	4.3	Somatórios com Restrições	12			
	4.4	Propriedades	13			
		4.4.1 Somatório de uma Constante	13			
		4.4.2 Produto por Constante	13			
		4.4.3 Soma ou Subtração de Variáveis	13			
5	Revisitando os Somatórios Duplos					
	5.1	5.1 Voltando ao Somatório Duplo				
		5.1.1 Exercício de Fixação	15			
6	Exe	ercícios com Somatórios	15			

1 Somatórios e Séries

2 Preliminares

Para definirmos uma **série numérica**, primeiro temos que saber o que é uma **sequência numérica**.

As definições a seguir referem-se a sequência numéricas finitas e infinitas [?].

Definição 2.1 (Sequência Finita [?])

Chama-se sequência finita ou n-upla toda aplicação f do conjunto \mathbb{N}_n^{\star} em \mathbb{R} , ou seja

$$\mathbb{N}_n^{\star} = \{1, 2, 3, \dots, n\} \Rightarrow \mathbb{R}$$

Em toda sequência finita, a cada número natural i, $(1 \le i \le n)$ está associado um número real a_i ,

$$f = \{(1, a_1), (2, a_2), (3, a_3), \dots, (n, a_n)\}.$$

Vide figura 1-(a).

Definição 2.2 (Sequência Infinita [?])

Chama-se sequência infinita toda aplicação f do conjunto \mathbb{N}^* em \mathbb{R}

Em toda sequência infinita, a cada número natural $i \in \mathbb{N}^*$ está associado um número real a_i ,

$$f = \{(1, a_1), (2, a_2), (3, a_3), \dots, (i, a_i), \dots\}.$$

Vide figura 1-(b).

A notação usual indica apenas a imagem de f:

$$f = \{a_1, a_2, a_3, \dots, a_i, \dots\}.$$

Figura 1: Relação de Sequências. (a)- Sequência Finita. (b) - Sequência Infinita. Figura extraída de [?].

2.0.1 Séries Numéricas

Definição 2.3 (Série Numérica [?])

Seja a_n , $n \ge q$ e q um natural fixo, uma sequência numérica. A sequência de termo geral

$$S_n = \sum_{k=q}^n a_k, \ n \ge q, \tag{1}$$

denomina-se **série númerica** associada à sequência a_n . Os números a_n , $n \ge q$, são denominados termos da série; a_n é o termo geral da série.

A equação (1) é denominada soma parcial de ordem n.

O limite da série, quando existe (finito ou infinito), denomina-se soma da série e é indicada por

$$\sum_{k=q}^{+\infty} a_k$$

2.1 O que é um Somatório

Em Matemática usamos o conceito de **Somatório** como sendo uma soma de uma função, definda num intervalo com um valor inicial e um valor final.

Assim, pode-se definir uma soma dos quadrados de números naturais de 1 a 10, por exemplo. Isso poderia ser representado assim:

$$S = 1^2 + 2^2 + 3^3 + \dots + 10^2$$

Na Matemática, usa-se o símbolo Σ (letra grega **sigma** maiúscula) para indicar uma soma desse tipo.

Ou seja, a letra grega Σ indica um SOMATÓRIO.

$$\sum$$
 = somatório

Assim, a soma dada acima pode ser representada como:

$$S = \sum_{n=1}^{n=10} n^2$$

A equação acima pode ser lida da seguinte forma:

Faça a soma de n elevado a 2, com n variando de 1 até 10. Ou ainda, faça a soma do quadrado dos números 1 a 10.

Repare que nessa notação, o que vem embaixo da letra Σ é o valor inicial de n e na parte superior de Σ vem o valor final final de n. E considera-se que n varia de 1 em 1.

Usualmente, como sabemos que a variável que terá seu valor mudado é a variável que está dentro do somatório (Σ) usamos uma notação mais simplificada:

$$S = \sum_{n=1}^{10} n^2$$

ou ainda

$$S = \sum_{n=1}^{10} n^2$$

Nesse caso já sabemos que quem irá variar de 1 a 10 é a variável n.

2.1.1 Formalismo

A notação acima pode ser expressa genericamente da seguinte forma:

$$S = \sum_{n_i}^{n_f}$$

sendo n_i o limite inicial e n_f o limite final

2.2 Séries Numéricas

Já vimos vários exemplos de somátorios relacionados com a programação de computadores. Quando fizemos os exercícios sobre séries númericas, fizemos somas do tipo:

$$S = \frac{1}{1} + \frac{3}{2} + \frac{5}{3} + \frac{7}{4} + \dots + \frac{99}{50}$$
 (2)

Essa soma pode ser representada como:

$$S = \sum_{i=0}^{49} \frac{2i+1}{i+1}$$

ou como:

$$S = 1 + \sum_{i=1}^{49} \frac{2i+1}{i+1}$$

2.3 Algumas Somas Conhecidas

Algumas somas já tem o resultado conhecido. Veja:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{ (soma de } i, \text{ com } i \text{ variando de 1 até } n\text{)}.$$
 (3)

$$\sum_{i=1}^{n} (2i - 1) = n^2 \tag{4}$$

2.4 Somatórios em Programação

Vimos nos exercícios sobre séries numéricas (em Pascal e em C) que as somas efetuadas sobre uma variável podem ser programadas com laços (loops) for ou while.

Por exemplo, a soma da equação (2) pode ser calculada com o seguinte programa em C.

```
#include<stdio.h>
int main()
{
  float S=0;
  int i;
  for (i=0;i<50;i++)
    S=S+i;
  printf("A soma pedida é igual a %f\n",S);
  return 0;
}</pre>
```

O que esse programa faz é algo muito simples. Ele simplesmente soma o valor de i, que vai mudando de 0 até 49. Ou seja, o comando for faz, o que, em português poderia ser descrito da seguinte forma:

```
defina S = 0;
para i variando de 0 até 49, faça S = S+i;
```

Conclusão: A notação de somatatório facilita na interpretação da soma e na geração do programa de computador.

2.5 Exercício de Fixação

1. Faça o algoritmo para representar as somas indicadas a seguir

$$\sum_{i=1}^{10}$$

(b)
$$\sum_{i=1}^{N} i$$

(N dado pelo usuário)

(c)
$$\sum_{n=-10}^{10} \frac{n^2}{(n+1)}$$

(qual a restrição para o valor de n que o programador deve impor?)

3 Somatório de Variáveis

Em algumas aplicações (Estatistíca, Engenharia) é comum o trabalho com variáveis indexadas e uma das operações usuais é a soma dessas variáveis.

Vejamos um exemplo.

Exemplo 3.1 Considere um experimento onde foram feitas 10 medidas e que os dados foram armazenados em variáveis x_1, x_2, \ldots, x_10 . Nesse caso podemos usar a notação para definir um conjunto X de variáveis x_i :

$$X = \{x_1, x_2, \dots, x_1 0\}$$

ou

$$X = \{x_i\}$$
 com $i = 1, 2, \dots, 10$

Se nesse exemplo for necessário calcular a média, será necessári obter a soma das variáveis, já que o valo médio será dado por:

$$\bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10}}{10}$$

A soma da equação acima pode ser representada como:

$$S = \sum_{i=1}^{i=10} x_i$$

ou

$$S = \sum_{i=1}^{10} x_i$$

Repare no exemplo anterior que o somátorio é feito com a variação do índice da variável. Esse conceito será usado para trabalharmos com vetores e matrizes.

3.1 Somatórios Duplos

É possível representar somátorios de variáveis que contém mais de um índice. Veja o exemplo a seguir.

Exemplo 3.2 Considere uma experimento em que foram feitas 5 diferentes medidas da densidade de 5 produtos químicos diferentes (A, B, C, D, E). Esses dados podem ser armazenados em variáveis com índices duplos: uma para indicar a medida e outro para indicar o produto. Assim, pra o produto A, podemos definir o índice i = 1, para o B o índice i = 2 até i = 5. E para medida de densidade definimos o índice j = 1 para a primeira medida, j = 2 para a segunda e assim sucessivamente. Portanto, $X_{1,1}$ indica a primeira medida no produto A, $X_{1,2}$ a segunda medida do produto A e $X_{2,1}$ a primeira medida do produto B. Teremos então as variáveis:

$$X_{i,j}$$
 com $i = 1, 2, \dots, 5$ e $j = 1, 2, \dots, 5$

Uma vez armazenados os dados na variável $X_{i,j}$ a operação pelos índices é imediata. Para obter a média de todas as medidas do produto

A basta calcular $S = X_{11} + X_{12} + X_{13} + X_{14} + X_{15}$, e dividir por 5, ou seja:

média da densidade do produto
$$A = \frac{\sum_{j=1}^{5} X_{1j}}{5}$$

Obviamente, para calcularmos a soma de todos valores devemos fazer:

$$S_{total} = \sum_{i=1}^{5} \sum_{j=1}^{5} X_{i,j}$$

A soma acima pode ser simplificada:

$$S_{total} = \sum_{i=1,j=1}^{i=5,j=5} X_{i,j}$$

Portanto a soma com somatórios duplos deve ser efetuada em variáveis de dois índices e é operacionalizada pela variação de ambos.

No exemplo acima, temos a soma para i=1 e j variando de 1 a 5. Depois i=2 e j novamente variando de 1 a 5. E assim para todos os valores de i.

4 Algumas Propriedades Importantes

Em relação aos somatórios de variáveis, é importante conhecermos algumas propriedades que auxiliam cálculos e entendimentos. Antes de apresentar algumas delas, vamos ver algumas somas comuns usadas em Engenharia, Matemática, Estatistíca e disciplinas afins.

• soma simples:

$$\sum_{i=1}^{n} X_i = X_1 + X_2 + \dots + X_n$$

• soma de quadrados:

$$\sum_{i=1}^{n} X_i^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

• quadrado da soma:

$$\left(\sum_{i=1}^{n} X_i\right)^2 = (X_1 + X_2 + \dots + X_n)^2$$

• soma de produtos:

$$\sum_{i=1}^{n} X_i Y_i = X_1 Y_1 + X_2 Y_2 + \dots + X_n Y_n$$

• produto das somas:

$$\sum_{i=1}^{n} X_i \sum_{j=1}^{m} Y_j = (X_1 + X_2 + \dots + X_n) (Y_1 + Y_2 + \dots + Y_m)$$

4.1 Exercício de Fixação

Considere as variáveis X e Y contendo notas de duas disciplinas para um grupo de 6 alunos.

$$X = \{90, 95, 97, 98, 100, 60\}$$
$$Y = \{60, 70, 80, 60, 90, 75\}$$

Calcule os somatórios pedidos, com $i_0 = 1$, n = 6 e m = 6.

- 1. $\sum_{i=1}^{n} X_i$
- 2. $\sum_{i_0}^n X_i^2$

3.
$$(\sum_{i=1}^{n} X_i)^2$$

4.
$$\sum_{i=0}^{n} X_i Y_i$$

5.
$$(\sum_{i_0}^n X_i)(\sum_{i_0}^n Y_i)$$

4.2 Número de Termos do Somatório

Dado um somatório com os limites n_i e n_f ("n inicial" e "n final"):

$$\sum_{n=n_i}^{n_f}$$

calculamos o número de termos (NT) fazendo:

$$NT = n_f - n_i + 1$$

4.3 Somatórios com Restrições

Em alguns casos, ao analisar um conjunto de dados, é comum termos que eliminar alguns (por estarem muito fora da média, por exemplo). Assim sendo, definem-se somatórios com que eliminam alguns elementos. Por exemplo, o somatório dado a seguir não considera os elementos 9 e 10 do conjunto de dados:

$$\sum_{n=n_i}^{n_f}$$

$$n \neq 9; 10$$

No caso de somátorios com restrições, o número de termos será dado por

$$NT = n_f - n_i + 1 - r,$$

sendo r o número de restrições.

4.4 Propriedades

4.4.1 Somatório de uma Constante

O somatório de uma constante é igual ao produto do número de termos pela constante.

$$\sum_{i=1}^{n} k = k + k + \dots + k = (n-1+1)k = nk$$

4.4.2 Produto por Constante

O somatatório do produto de uma constante por variável é igual ao produto da constante pelo somatório da variável.

$$\sum_{i=1}^{n} kX_{i} = kX_{1} + kX_{2} + \dots + kX_{n} = k\sum_{i=1}^{n} X_{i}$$

4.4.3 Soma ou Subtração de Variáveis

O somatório da soma ou subtração das variáveis é igual à soma ou subtração dos somatórios delas.

$$\sum_{i=1}^{n} (X_i + Y_i - W_i) = \sum_{i=1}^{n} X_i + \sum_{i=1}^{n} Y_i - \sum_{i=1}^{n} W_i$$

5 Revisitando os Somatórios Duplos

Vimos que em algumas situações as variáveis que contém informações da nossa "massa de dados" podem ser indexadas em uma tabela com linhas e colunas, fazendo com que utilizemos dois índices para indexar o valor. Por exemplo, X_{ij} para indicar a posição do valor na linha i e coluna j. Nessa seção vamos explorar essa possibilidade um pouco melhor.

5.1 Voltando ao Somatório Duplo

Veja a tabela organizada com as variáveis X_{ij} . Nessa tabela, são

	1	2		j		s	ı
1	X_{11}	X_{12}		X_{1j}		X_{1s}	$\sum_{j=1}^{s} X_{1j}$
2	X_{21}	X_{22}		X_{2j}		X_{2s}	$\sum_{j=1}^{s} X_{2j}$
	• • •	• • •		• • •	• • •	• • •	'
i	X_{i1}	X_{i2}	• • •	X_{ij}	• • •	X_{is}	$\sum_{j=1}^{s} X_{ij}$
		• • •					 !
r	X_{r1}	X_{r2}		X_{rj}		X_{rs}	$\sum_{j=1}^{s} X_{rj}$
	$\sum_{i=1}^{r} X_{i1}$	$\sum_{i=1}^{r} X_{i2}$		$\sum_{i=1}^{r} X_{ij}$		$\sum_{i=1}^{r} X_{is}$	T

apresentadas as somas das linhas e da coluna, e a soma total, dada por T. Repare que

$$X_{ij} \rightarrow \text{com } i = 1, 2, \dots, r \text{ \'e o índice da linha}$$

e

$$X_{ij} \rightarrow \text{ com } j=1,2,\ldots,s$$
 é o índice da coluna

A soma total T é calculada fazendo-se:

$$T = \sum_{i=1}^{r} X_{i1} + \sum_{i=1}^{r} X_{i2} + \dots + \sum_{i=1}^{r} X_{ij} + \dots + \sum_{i=1}^{r} X_{is}$$
 (5)

$$= \sum_{i=1}^{r} (X_{i1} + X_{i2} + \dots + X_{ij} + \dots + X_{is})$$
 (6)

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} X_{ij} = \sum_{i=1,j=1}^{r,s} X_{ij}$$
 (7)

5.1.1 Exercício de Fixação

Considere a matriz de dados M, com seus elementos $m_i j$ dados na equação 8.

$$M = \begin{bmatrix} 3 & 4 & -1 \\ 2 & 10 & 11 \\ -5 & 0 & 5 \end{bmatrix} \tag{8}$$

- 1. $\sum_{1}^{3} X_{i2}$
- 2. $\sum_{1}^{3} X_{2j}$
- 3. $\sum_{i=1,j=1}^{3,3} X_{ij}$

6 Exercícios com Somatórios

1. Escreva sobre forma de somatório as somas abaixo:

(a)
$$S = \frac{1}{1} + \frac{3}{2} + \frac{5}{3} + \frac{7}{4} + \dots + \frac{99}{50}$$
 (b)
$$S = \frac{2^1}{50} + \frac{2^2}{49} + \frac{2^3}{48} + \dots + \frac{2^{50}}{1}$$

(c)
$$S = \frac{37 \times 38}{1} + \frac{36 \times 37}{2} + \frac{35 \times 36}{3} + \dots + \frac{1 \times 2}{37}$$
 (d)
$$\frac{1000}{1} - \frac{997}{2} + \frac{994}{3} - \frac{991}{4} + \dots$$

- 2. Faça programas em C para efetuar os somatórios acima
- 3. Mostre, usando programas em C que as somas abaixo equivalem ao valor indicado no lado direito das desigualdades (9) e (10), para qualquer valor de n. (O programa deve pedir no início, o valor de n).

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{9}$$

$$\sum_{i=1}^{n} (2i - 1) = n^2 \tag{10}$$

4. Considerando os valores para y_i dados por:

$$y_1 = 2$$
; $y_2 = 4$; $y_3 = 10$; $y_4 = -5$; $y_5 = -1$

Calcule:

- (a) $\sum_{i=1}^{3} y_i$
- (b) $\sum_{i=1}^{5} y_i$
- (c) $\sum_{i=1}^{5} y_i^2$
- (d) $\sum_{i=1}^{5} y_i + 5$
- 5. Considere os seguintes valores para a variável $Z_{i,j}$:

$$Z_{1,1} = 2$$
 $Z_{1,2} = 3$ $Z_{2,1} = -2$ $Z_{2,2} = -3$

Pede-se:

- (a) $\sum_{i=1}^{2} \sum_{j=1}^{2} Z_{i,j}$ (b) $\sum_{i=1}^{2} Z_{i,1}$
- (c) $\sum_{j=1}^{2} Z_{2,j}$