

Logistic regression from a neural networks perspective

Filippo Biscarini Senior Scientist CNR, Milan (Italy) Nelson Nazzicari Research fellow CREA, Lodi (Italy)

- the response variable y is qualitative and takes up one of two values
- binary traits (e.g. cases/controls, resistant/susceptible, true/false, etc.)
- y = label (a.k.a. target/dependent variable)
- X = matrix of features (continuous, categorical)

- the response variable y is qualitative and takes up one of two values
- binary traits (e.g. cases/controls, resistant/susceptible, true/false, etc.)
- y = label (a.k.a. dependent variable)
- X = matrix of features (continuous, categorical)
- we don't model the response directly, rather its probability: P(y=1|x)
- probabilities lie in [0,1] (not +/- infinity)

$$\frac{1}{1+e^{-z}} = \frac{1}{1+\frac{1}{z}} = \frac{e^z}{1+e^z}$$

- the logistic function is the basis for **logistic regression**
- P(y=1|x)
- $Z = \beta_0 + \beta_1 x$

$$P(y=1|x)=\sigma(z)=rac{e^{eta_0+eta_1x}}{1+e^{eta_0+eta_1x}}$$

we see here the familiar **model coefficients** (from linear regression) to
be estimated and then used for
predictions

- a little bit of algebra:

$$\sigma(z)=rac{e^{eta_0+eta_1 x}}{1+e^{eta_0+eta_1 x}}$$
 $lacksquare$ $rac{\sigma(z)}{1-\sigma(z)}=e^{eta_0+eta_1 z}$

odds

a little bit of algebra:

$$\sigma(z)=rac{e^{eta_0+eta_1x}}{1+e^{eta_0+eta_1x}} \longrightarrow rac{\sigma(z)}{1-\sigma(z)}=e^{eta_0+eta_1x}$$

log(odds): logit

$$oxed{log} \log \left(rac{\sigma(z)}{1 - \sigma(z)}
ight) = logit(\sigma(z)) = eta_0 + eta_1 x$$

odds

- the logit function (log(odds)) is the link function between a linear expression of X and the probabilities of Y
- linear X expression $(\beta_0 + \beta_1 x) \rightarrow \text{logit scale (continuous)}$
- logistic function: converts values on the logit scale back to probabilities

$$\left\{egin{array}{ll} logit(\sigma(z))=eta_0+eta_1x & ext{our objective!} \ \sigma(eta_0+eta_1x)=P(y=1|x) \end{array}
ight.$$

- the **logit function** (log(odds)) is the **link function** between a linear expression of X and the probabilities of Y
- linear X expression $(\beta_0 + \beta_1 x) \rightarrow \text{logit scale (continuous)}$
- logistic function: converts values on the logit scale back to probabilities

Estimating the coefficients

how do we obtain the model coefficients β?

- We introduced this question yesterday, when talking of supervised learning
- Did you think of possible answers?

Estimating the coefficients

how do we obtain the model coefficients β?

we need to define a loss function and then minimise it

observations	predictions	
у	$\hat{y} = \sigma(eta_0 + eta_1 x)$	

difference between observed and predicted values

Estimating the coefficients

how do we obtain the model coefficients β ?

- we need to define a loss function and then minimise it
- $\hat{y} = \sigma(z)$

$$J(eta) = \operatorname{loss}(\hat{y}, y) = \ - (y \cdot log(\hat{y}) + (1 - y) \cdot log(1 - \hat{y}))$$

Loss function for logistic regression

$$J(eta) = \operatorname{loss}(\hat{y}, y) = \ - (y \cdot log(\hat{y}) + (1 - y) \cdot log(1 - \hat{y}))$$

if y = 1

- $y_hat \rightarrow 1$, $loss \rightarrow 0$
- $y_hat \rightarrow 0$ (but y = 1!), loss \rightarrow infinity

the opposite holds if y = 0

Cost/loss function for logistic regression

From: https://datascience.stackexchange.com/questions/40982/logistic-regression-cost-function

Minimising the cost function

$$J(eta) = -\left(y \cdot log(\hat{y}) + (1-y) \cdot log(1-\hat{y})
ight)$$
minimize $J(eta)$

How do we minimise the cost function? Any ideas?

Minimising the cost function

- the defined cost function is convex.
- can be minimised by gradient descent
- machine learning perspective: gradient descent is a general algorithm to solve models
- alternatively:
 - maximum likelihood
 - non-linear least squares

Minimise the cost function

Simple logistic regression (1 parameter):

$$z=eta\cdot x$$

Minimise the cost function

- 1. loss function
- 2. model parameters
- 3. minimum

Simple logistic regression (1 parameter):

$$z = \beta \cdot x$$

Minimise the cost function

Multiple logistic regression (e.g. 2 parameters):

$$y=eta_0+eta_1\cdot x$$

Multiple logistic regression (> 2 parameters):

→ m-dimensional hyperspace

Cost function: finding the minimum?

Gradient Descent:

minimize
$$J(\beta)$$

- 1. Start with initial values for β
- 2. Change β in the direction of reducing $J(\beta)$
- 3. Stop when the minimum is reached

: (initialisation)

: (descent)

: (minimisation)

starting point (initialisation)

find the steepest direction around the starting point take one step in this

take one step in this direction

repeat until convergence (local minimum)

How do we find the steepest direction?

starting point (initial value for β) calculate the (partial) derivative in that point

→ positive slope

update the value for β

repeat

$$eta_j := eta_j - lpha rac{\partial}{\partial eta_j} J(eta)$$

- positive slope \rightarrow reducing the value of β (and the other way around)

- α controls the size of the updating step
- large $\alpha \rightarrow$ overshooting: failure to converge

$$eta_j := eta_j - lpha rac{\partial}{\partial eta_j} J(eta)$$

Gradient descent - recap

- general method to solve machine learning models (e.g. multiple linear regression)
- optimise (minimise) the cost function → optimiser
- importance of the **learning rate**
- local minimum → momentum
- initialization values

1)
$$z=w\cdot x+b$$

introduce **w** (weight) as parameter (+ b): NN notation

2)
$$\hat{y} = \sigma(z)$$

3)
$$J(w) = -(y \cdot log(\hat{y}) + (1-y) \cdot log(1-\hat{y}))$$

1)
$$z=w\cdot x+b$$

2)
$$\hat{y} = \sigma(z)$$

3)
$$J(w)$$

backward forward propagation propagation $(y \cdot \log(\hat{y}) + (1-y) \cdot \log(1-\hat{y}))$

backward propagation

Take away message

- back propagation is a way (algorithm) to calculate partial derivatives (of the cost function with respect to the parameters) easily and efficiently
- partial derivatives are then used to **update** the values of the **parameters**
- in this way gradient descent can work to minimise the cost function and estimate the best values for the parameters
- this is very important to efficiently learn the weights (parameters) of deep neural networks

Binary classification metrics

Binary classification: measuring performance

- the most common metric to measure the performance of a binary classifier is the **error rate**:

$$\frac{1}{n}\sum_{i=1}^n I(y \neq \hat{y})$$

Confusion matrix

		True observation	
		1	0
Prediction	1	TP	FP
	0	FN	TN

- **FPR** = FP/(FP+TN)
- **FNR** = FN/(FN+TP)
- TER = (FN+FP)/(FN+FP+TN+TP)

Confusion matrix

		True observation	
		1	0
Prediction	1	TP	FP
	0	FN	TN

Not only total error rate!

- **FPR** = FP/(FP+TN)
- **FNR** = FN/(FN+TP)
- TER = (FN+FP)/(FN+FP+TN+TP)

- lab 4

→ day2_code01 logistic regression iris.ipynb

