ANEXO CENTRO DE PROCESADO DE DATOS

PEDRO RUIZ NÚÑEZ

1 Niveles en un CPD. (TIER)

- Tiene 4 niveles o tiers los cuales son los siguientes:
- Tier 1 → Básico : Sirve para hacer interrupciones planeadas o no planeadas y suele ser la que tiene mas fallos ya que no esta protegida como las demás
- Tier 2 → Componentes redundantes : Son para tener repuestos por si algún equipo falla y se derive a el
- Tier 3 → Mantenimiento concurrente : Es el usado para que todos los equipos o componentes funcionen a pleno rendimiento, suelen estar preparados para ser Tier 4
- Tier $4 \rightarrow$ Tolerancia a fallos: Es el mas sensible de todos ya que es el que esta todo el tiempo activo mas que los demás y por ello es el que mas seguridad y fiabilidad tiene que tener
- 2 ¿En qué consiste la refrigeración por salas, la refrigeración por racks y la refrigeración por filas? Ventajas e inconvenientes.
- Salas → Sirve para nivelar toda la temperatura del CPD aunque no es un beneficio porque no sabemos si alguna esta menos caliente o mas
- Filas → Se usa para nivelar un cantidad de servidores determinada por ello podemos saber cual fila o grupo esta mas fría o mas caliente
- Racks → Es única para cada servidor racks que haya por consiguiente como la tendremos para cada uno sabremos cual no va en optimas condiciones

3 La descarga en sistemas de extinción que usa extintores de tipo

Listado de Agentes Extintores del Tipo Halocarbonados

Denominación del Agente	Nombre Químico	Química	Nombre Comercial	
KF-5-1-12	Dodecafluoro-2-metilpentano-3- uno	CF ₃ CF ₂ C(O)CF(CF ₃) ₂	Novec 1230	
HCFC Mezcla A	Diclorotrifluoroetano HCFC-123 (4,75%) (1,75%) (1,75%) (1,75%) (1,75%) (1,75%) (1,75%) (1,75%) (1,75%)	CHCl ₂ CF ₃ CHClF ₂ CHClFCF ₃	NAF-S-III	
HCFC-124	Clorotetrafluoroetano	CHCIFCF3	FE-24	
HFC-125	Pentafluoroetano	CHF ₂ CF ₃	FE-25	
HFC-227ea	Heptafluoropropano	CF3CHFCF ₃	FM-200	
HFC-23	Trifluorometano	CHF3	FE-23	
HFC-236fa	Hexafluoropropano	CF ₃ CH ₂ CF ₃	FE-36	
FIC-1311	Trifluoroiodometano	CF ₃ I	Triodide	
HFC Mezcla B	Tetrafluoroetano (86%) Pentafluoroetano (9%) Dióxido de Carbono (5%)	CH ₂ ,FCF ₃ CHF ₂ ,CF ₃ CO ₂	Halotron II	

extintores de tipo halocarbonado tiene ciertos riesgos. ¿Cuáles son y cómo se miden?

	7.99667	A STRUCTURE STRUCTURE STRUCTURE	100000000000000000000000000000000000000
Agente	LC50 o ALC (%)	NOAEL (%)	LOAEL (%)
FIC1311	>12,8	0,2	0,4
FK-5-1-12	>10,0	10	>10,0
HCFC Mezcla A	64	10	>10,0
HCFC124	23-29	1	2,5
HFC125	>70	7,5	10
HFC227ca	>80	9	10,5
HFC23	>65	30	>30
HFC236fa	>45,7	10	15
HFC Mezcla B	56,7*	5,0*	7,5*

Tiempos Permitidos de Exposición

Tipo de Agente	Concentración % en volumen	Tiempo promedio de exposición
Halón 1301	Hasta 7 7 – 10 10 – 15 más de 15	15 min 1 min 30 seg Impedir la exposición
Halón 1211	Hasta 4 4 - 5 más de 5	5 min 1 min Impedir la exposición
Halón 2402	0,05 0,1	10 min min

Notas:

NOAEL - Nivel de Efectos Adversos no Observables: Concentración máxima a la cual no se han observado ningún efecto adverso de carácter fisiológico o toxicológico.

LOAEL – Nivel Mínimo de Efectos Adversos Observables: Concentración mínima a la cual se ha observado un efecto adverso de carácter fisiológico o toxicológico.

LC₅₀ es la concentración letal del 50% de una población de ratas durante 4 horas de exposición. El valor ALC es la concentración letal aproximada.

4 Servidores tipo Blade.

- Es un equipo que funciona él solo y muy compacto que en el alberga en un chasis una gran cantidad de placas integradas y modulares, donde sera utilizada para el centro de procesado de datos para ahorrar espacio y reducir consumo

^{*} Estos valores son para los componentes mayores de mezcla (HFCB 1234ª)

5 Averigua qué son los códigos IP que hacen referencia a los grados de protección. ¿Qué tipo de grados existen? ¿Qué significa su cifra?

- Son los que protegen equipos electrónicos y eléctricos frente a elementos externos

NIVEL	Primer Dígito (Entrada de cuerpos sólidos)	Segundo Dígito (Entrada de agua)
0	Sin protección	Sin protección
1	Protegido contra la entrada de elementos sólidos de hasta 50mm.	No debe entrar el agua cuando se la deja caer, desde 200mm de altura respecto del equipo, durante 10 minutos (a razón de 3-5mm³ por minuto).
2	Protegido contra la entrada de elementos sólidos de hasta 12,5mm.	No debe entrar el agua cuando se la deja caer, durante 10 minutos (a razón de 3-5mm³ por minuto). Dicha prueba se realizará 4 veces a razón de una por cada giro de 15º tanto en sentido vertical como horizontal, partiendo cada vez de la posición normal de trabajo.
3	Protegido contra la entrada de elementos sólidos de hasta 2,5mm.	No debe entrar el agua nebulizada en un ángulo de hasta 60º a derecha e izquierda de la vertical a un promedio de 11 litros por minuto y a una presión de 800-100 kN/m² durante un tiempo que no sea menor a 5 minutos.
4	Protegido contra la entrada de elementos sólidos de hasta 1mm.	No debe entrar el agua arrojada desde cualquier ángulo a un promedio de 10 litros por minuto y a una presión de 800-100 kN/m² durante un tiempo que no sea menor a 5 minutos.
5	Protegido contra la entrada de polvo (la cantidad que entra no intefiere con el funcionamiento del dispositivo).	No debe entrar el agua arrojada a chorro (desde cualquier ángulo) por medio de una boquilla de 6,3 mm de diámetro, a un promedio de 12,5 litros por minuto y a una presión 30 kN/m² durante un tiempo que no sea menor a 3 minutos y a una distancia que no sea menor de 3 metros.
6	Totalmente protegido contra la entrada de polvo.	No debe entrar el agua arrojada a chorros (desde cualquier ángulo) por medio de una boquilla de 12,5 mm de diámetro, a un promedio de 100 litros por minuto y a una presión 100 kN/m² durante un tiempo que no sea menor a 3 minutos y a una distancia que no sea menor de 3 metros.
7		El equipo debe soportar sin filtración alguna la inmersión completa a 1 metro durante 30 minutos.
8		El equipo debe soportar sin filtración alguna la inmersión completa y continua a la profundidad y durante el tiempo que especifique el fabricante del producto con el acuerdo del cliente, pero siempre que resulten condiciones más severas que las especificadas para el valor 7.

6 El código IK también se trata de un sistema de codificación para indicar grados de protección. ¿Cuáles son sus posibles valores y qué indican?

Grado IK	IK00	IK01	IK02	IK03	IK04	IK05	IK06	IK07	IK08	IK09	IK10
Altura impacto (cm)	-	7.5	10	17.5	25	35	20	40	29.5	20	40
Peso (gr)	-	200	200	200	200	200	500	500	1700	5000	5000
Energía (J)	-	0.15	0.2	0.35	0.5	0.7	1	2	5	10	20

- Es utilizado para la resistencia mecánica a impactos nocivos

7 Los indicadores WK indican la resistencia antirrobo. ¿cuál es el que más

Clases de resistencia según norma EN 1627					
Criterios de prueba:					
 El delincuente debe tener una abertura de paso clara dentro de un tiempo de resistencia predeterminado. Abertura de paso libre: rectángulo de 400 x 250 mm o elipse de 400 x 200 mm o círculo con un diámetro de 250 mm. 					
Clase de resistencia	Tiempo de resistencia	Tipo de delincuente / procedimiento			
RC 1 N (nueva)	Prueba estática y dinámica solamente	Componentes de la protección básica contra los intentos de robo contra la violencia física (principalmente vandalismo), p. patadas, patadas voladoras, etc.			
RC 2 (antigua WK 2)	3 minutos	El delincuente oportunista intenta abrir el componente bloqueado con herramientas adicionales simples, como destornilladores, alicates, cuñas.			
RC 3 (antigua WK 3)	5 minutos	El delincuente con experiencia también intenta abrir los componentes con un segundo destornillador y una palanca.			
RC 4 (antigua WK 4)	10 minutos	El delincuente con experiencia también utiliza herramientas de corte, herramientas de golpe como hachas, palancas, martillo, cincel y taladro inalámbrico.			
RC 5 (antigua WK 5)	15 minutos	El delincuente con experiencia también utiliza herramientas eléctricas, p. perforadora, sierra de calar o sierra para metales y amoladora angular.			
RC 6 (antiqua	20 minutos	El delincuente con experiencia también utiliza herramientas eléctricas, p. taladradora, sierra de calar o			

Clases de resistencia	Pefil del delincuente	Tipo delincuente	Riesgo
RC1	El ladrón utiliza herramientas pequeñas y sencillas, y violencia física como patadas, elevación o arrancamiento.	Delincuente ocasional	bajo
RC2	El ladrón además intenta entrar con destornilladores, alicates, cuñas y pequeñas sierras manuales	Delincuente ocasional	medi o
RC3	El ladrón trata de entrar con una barra de uña, harremientas manuales o taladro mecánico	Delincuente normal	medi o
RC4	El ladrón tiene práctica, usa martillo pesado, hachas y taladros motorizados con batería.	Delincuente experimentado	alto
RC5	El ladrón además usa herramientas eléctricas, taladros, sierras de espadín, sierras radiales	Delincuente experimentado	alto
RC6	El ladrón usa todo su potencial, piquetas, taladros potentes, sierras radiales de 230mm	Delincuente experimentado	alto

protege, ante qué y cuánto tiempo?

8 ¿En qué consiste el uso de jaulas en un CPD?

- Sirven para que en caso de que ocurran rayos por una tormenta eléctrica los alejen de ellos y no afecte.

Lo que viene a ser una especie de pararrayos pero con la ventaja que desviá los rayos mediante unos campos electromagnéticos impide que lleguen a el cualquier tipo de elemento eléctrico externo.