# **BUISNESS REPORT FOR CAPSTONE PROJECT:**

### PART 1 – EXCEL:

From the problem statement we are told to help analyse visualize data that will help the company identify the potential customer who have higher probability of purchasing the loan. This will increase the success ratio while at the same time reduce the cost of the campaign.

### TASK/QUESTION:

- 1. . Understanding Data and Missing Value treatment:
  - a.) Basic data statistics: For Numerical Variables:

| balance            |                     | age                |               | duration           |             |
|--------------------|---------------------|--------------------|---------------|--------------------|-------------|
|                    | 1 1 7 7 1 0 0 1 2 0 |                    | 44 24 224 224 |                    | 254 4504502 |
| Mean               | 1477.190428         | Mean               | 41.21021021   | Mean               | 264.1601602 |
| Standard Error     | 88.43752675         | Standard Error     | 0.3312958     | Standard Error     | 8.686910076 |
| Median             | 459                 | Median             | 40            | Median             | 188         |
| Mode               | 0                   | Mode               | 32            | Mode               | 168         |
| Standard Deviation | 2771.356095         | Standard Deviation | 10.47125351   | Standard Deviation | 274.5668302 |
| Sample Variance    | 7680414.607         | Sample Variance    | 109.6471502   | Sample Variance    | 75386.94426 |
| Kurtosis           | 18.60595268         | Kurtosis           | 0.223844898   | Kurtosis           | 18.42784741 |
| Skewness           | 3.666405296         | Skewness           | 0.639932097   | Skewness           | 3.380619048 |
| Range              | 28645               | Range              | 68            | Range              | 3020        |
| Minimum            | -1680               | Minimum            | 15            | Minimum            | 5           |
| Maximum            | 26965               | Maximum            | 83            | Maximum            | 3025        |
| Sum                | 1450601             | Sum                | 41169         | Sum                | 263896      |
| Count              | 982                 | Count              | 999           | Count              | 999         |

- Age: From the above count we see that the mean of the age is 41. The average is age is 40 and the most occurred age group is 32. The maximum age is 83 and minimum age is 15. The skewness observed is positive and almost near zero and almost symmetrical.
- Balance: The average of all the balances in the account is 1477.1904. The minimum of the balance is in negative –1680 /- which means people are in debt and maximum is 26965/- and skewness is positive.
- Duration: The average/ mean is 264.16 seconds of call. The median here is 188 and 168 and the skewness is positive and greater than zero where the range of the duration of one call is 3025 seconds.

| campaign           |             | previous           |             |
|--------------------|-------------|--------------------|-------------|
|                    |             |                    |             |
| Mean               | 2.646646647 | Mean               | 0.556556557 |
| Standard Error     | 0.090203437 | Standard Error     | 0.053150955 |
| Median             | 2           | Median             | 0           |
| Mode               | 1           | Mode               | 0           |
| Standard Deviation | 2.851056526 | Standard Deviation | 1.679940163 |
| Sample Variance    | 8.128523313 | Sample Variance    | 2.822198952 |
| Kurtosis           | 30.62905644 | Kurtosis           | 48.51218781 |
| Skewness           | 4.552791534 | Skewness           | 5.781464521 |
| Range              | 31          | Range              | 20          |
| Minimum            | 1           | Minimum            | 0           |
| Maximum            | 32          | Maximum            | 20          |
| Sum                | 2644        | Sum                | 556         |
| Count              | 999         | Count              | 999         |

- Campaign: The average number of calls performed during this campaign and for this client is 2.64. The minimum number of calls are 1 during that period and maximum goes up to 32 calls. The skewness is positive.
- Previous: The number of calls performed before and for this client is 0.55. The number of calls surprisingly before could be max 0 or min 0 as well. The skewness id greater than 5 for this case.
  - b.) For Categorical values:
    - Job:



From the above graph we can see the categories of the job people can hold. The maximum number of job category are management with 221 job count followed by blue- collar with 206 and there are 5 of them whose job is unidentified.

• Marital status:

As we can see there high number of count for married people 595 and 121 and divorced which is a few count and 283 single.



• Education: 491 people have secondary level of education from the pivot table we achieved. The number of people with tertiary level is 313 and top primary level of education 155.



• Default: The number of people with credit default 978 and only 21 people with no default.



• Housing: 445 people do not have house loans and 554 people have house loans.



• Contact: Customers using telephones is 6% but the ones using cellular 94%.



• Day: The last contact week is maximum on Monday with a count of 229 and minimum for Saturday and Tuesday.



• Month: The last contact month of the year is with maximum calls is may with 281 as the record and minimum is in the month of march.



• Loan Deposit: Only 115 have applied to loan deposit and 884 have not applied to loan deposit.



• Pout comes: The result of previous campaign is maximum unknown and has only 3% success and 12% failure results.



- b.) When we check for missing values, we see that balance has missing values hence we find out the median for the balance and replace the missing values with 459. The number of missing values are 17.
- c.) We see that Contact and Balance has missing values and has been replaced with Categorical: contact- most occurring contact medium is cellular.

  Numerical: Balance Median of the balance is 459 and hence been replaced.

- 2.)
- a.) From the Pivot tables and descriptive statistics we observe that the mean age of customer is 41
- b.) The number of people less than the age of 45 is 649 and the percentage is 65%(rounding).

c.) The minimum and maximum from descriptive statistics: min = -1680 max = 26965

3.)

a.) We find the pivot table of loan deposit where the maximum customer of 88.49% have denied loan and minimum customer 11.15% accepted loan.

| Subscribed         | Count of Loan deposit |  |
|--------------------|-----------------------|--|
| no                 | 88.49%                |  |
| yes                | 11.51%                |  |
| <b>Grand Total</b> | 100.00%               |  |



b.) The categories for loan deposit:

| Job Type           | Count of Loan deposit |     |
|--------------------|-----------------------|-----|
| admin.             |                       | 97  |
| blue-collar        |                       | 206 |
| entrepreneur       |                       | 93  |
| management         |                       | 221 |
| Others             |                       | 69  |
| retired            |                       | 52  |
| services           |                       | 75  |
| technician         |                       | 181 |
| unknown            |                       | 5   |
| <b>Grand Total</b> |                       | 999 |

c.)From the above table it is highlighted that the management-based employees have the maximum number employees take loan deposit of 221.

4.)

- a.) Y- axis is the Percent loan deposit after referring the chart since default is given as x-axis the only possible outcome is loan deposit.
- b.)To plot the graph after getting the pivot table.

given below: We find the pivot table and convert the basic numbers to percent of grand total to get the values. 98.26% people did not take the loan

| Loan taken         |         | Grand<br>Total |
|--------------------|---------|----------------|
| no                 | 98.26%  | 98.26%         |
| yes                | 1.74%   | 1.74%          |
| <b>Grand Total</b> | 100.00% | 100.00%        |



c.)The Category of people have taken loan deposit but 98.26% have no defaults while 1.74% have loan deposits.

5.)

a.) It looks like the people who use the telephonic mode of contact have taken more loan deposit than the people who have used cellular mode of contact. We see that 16.67% of people who use telephone take more loan deposits than cellular.

| Count of Loan |               |
|---------------|---------------|
| deposit       | Column Labels |
|               |               |

| Mode of contact    | no |        | yes    | Grand<br>Total |
|--------------------|----|--------|--------|----------------|
| cellular           |    | 88.82% | 11.18% | 100.00%        |
| telephone          |    | 83.33% | 16.67% | 100.00%        |
| <b>Grand Total</b> |    | 88.49% | 11.51% | 100.00%        |
|                    |    |        |        |                |

- b.) So from the given table below we can see that what category of people have accepted the loan deposits at that particular age. We have filtered out the people who haven't taken loan and found column percent of the required people. The highest number of loan deposit is 35.65% in the age group of 25-34
- c.) We see that the management people have the greatest loan deposits of 11.30% from the age of 25-34 from the given table highlighted.

| type of job        | 15-24 |       | 25-34  | 35-44  | 45-54  | 55-64  | 65-74 | 75-84 |
|--------------------|-------|-------|--------|--------|--------|--------|-------|-------|
| admin.             |       | 0.00% | 3.48%  | 1.74%  | 4.35%  | 3.48%  | 0.00% | 0.00% |
| blue-collar        |       | 0.87% | 8.70%  | 2.61%  | 3.48%  | 0.00%  | 0.00% | 0.00% |
| entrepreneur       |       | 0.00% | 1.74%  | 4.35%  | 2.61%  | 2.61%  | 0.00% | 0.00% |
| management         |       | 0.00% | 11.30% | 7.83%  | 4.35%  | 0.87%  | 0.00% | 0.00% |
| Others             |       | 2.61% | 3.48%  | 0.87%  | 0.00%  | 1.74%  | 0.00% | 0.00% |
| retired            |       | 0.00% | 0.00%  | 0.00%  | 0.00%  | 3.48%  | 0.87% | 4.35% |
| services           |       | 0.00% | 4.35%  | 0.87%  | 0.87%  | 0.00%  | 0.00% | 0.00% |
| technician         |       | 0.00% | 2.61%  | 6.09%  | 1.74%  | 1.74%  | 0.00% | 0.00% |
| <b>Grand Total</b> |       | 3.48% | 35.65% | 24.35% | 17.39% | 13.91% | 0.87% | 4.35% |

# 6.) PART-1

a.) The hypothesis statement: "customers who are married are a better target audience for a loan deposit when compared to customers who are not married."

From the excel we get the pivot table where we can infer which category has accepted the loan deposits.

| <b>Marital Status</b> | no |        | yes    |
|-----------------------|----|--------|--------|
| divorced              |    | 85.95% | 14.05% |
| married               |    | 90.42% | 9.58%  |
| single                |    | 85.51% | 14.49% |
| <b>Grand Total</b>    |    | 88.49% | 11.51% |

b.) Visualize that both divorce and single people combine take more home loans than married people that is 28% in total.



d.) The hypothesis in the given statement as seen is false since we see that 28.5% both single and divorced people combined take more loan deposits than the married people that is 9%.

### PART-2

a.) The hypothesis statement: "Blue collar customers with secondary level of education are more likely to make a loan deposit when compared to other category of jobs."
 Creating the pivot table of Job and who took the most deposits. From the table we see the blue-collar people who take most loans.

| job type    | ~  | <b>Count of Loan deposit</b> |
|-------------|----|------------------------------|
| admin.      |    | 22.45%                       |
| blue-collar |    | 24.49%                       |
| entrepreneu | ır | 8.16%                        |
| managemen   | t  | 4.08%                        |
| Others      |    | 8.16%                        |
| retired     |    | 6.12%                        |
| services    |    | 12.24%                       |
| technician  |    | 14.29%                       |

b.) Visualization to infer which category took most loans



c.) Now we can say that the hypothesis is true since the blue-collar people with secondary level of education have the highest level of loan deposit percent, after filtering the pivot table. The blue collar has 24.49% and the lowest is management.

## PART 2- SQL

This capstone project is us writing queries given to us in this database and the given domain is Sports.

# TASK/QUESTION:

1.) This question asks us to query the list of people who have ever been seeded regardless of them being in singles or doubles. Also, these players have different registration number for both doubles and singles.

### CODE:

```
-- question 1
select distinct p.name, p.pid from player p
join registration r using(pid)
join playedin pi using(RegistrNum)
where pi.seed is not NULL;
```

From the above code we see that initially we added the database to my SQL to carry out our code. We tend to use distinct to remove any repetition. We take the names from player p and PID and join with registration using PID and join with played in . Where we mention that we must seed in played in is not null.

### **RESULT:**

| name               | PID |
|--------------------|-----|
| Roger Federer      | 0   |
| Nicolas Almagro    | 31  |
| Lleyton Hewitt     | 18  |
| Fernando Gonzalez  | 9   |
| Andy Murray        | 14  |
| Jarkko Nieminen    | 16  |
| Stanislas Wawrinka | 30  |
| Rafael Nadal       | 1   |
| Novak Djokovic     | 13  |
| Marcos Baghdatis   | 10  |
| Richard Gasquet    | 17  |
| Jose Acasuso       | 26  |
| Tommy Robredo      | 6   |
| Ivan Ljubicic      | 3   |
| Agustin Calleri    | 29  |
| Radek Stepanek     | 19  |
| David Ferrer       | 15  |
| Mario Ancic        | 8   |
| Dominik Hrbaty     | 21  |
| Marat Safin        | 25  |
| Mikhail Youzhny    | 24  |
| Andy Roddick       | 5   |
| ,                  | 1   |

| David Nalbandian       | 7   |
|------------------------|-----|
| Sebastien Grosjean     | 27  |
| Robin Soderling        | 22  |
| Tommy Haas             | 11  |
| Juan Carlos Ferrero    | 23  |
| Tomas Berdych          | 12  |
| <b>Dmitry Tursunov</b> | 20  |
| Xavier Malisse         | 28  |
| Nikolay Davydenko      | 2   |
| James Blake            | 4   |
| Mike Bryan             | 129 |
| Bob Bryan              | 128 |
| Todd Perry             | 148 |
| Wesley Moodie          | 147 |
| Jaroslav Levinsky      | 146 |
| Frantisek Cermak       | 145 |
| Marcin Matkowski       | 140 |
| Mariusz                | 139 |
| Furstenberg            |     |
| Daniel Nestor          | 131 |
| Mark Knowles           | 130 |
| Tripp Phillips         | 152 |
| Ashley Fisher          | 151 |

From the above we find the result of all people that are seeded for the matches where have 95 rows returned along with their PID.

2.) In this we must query of how to get the list of tournaments with more than 5 rounds as well as print the name of the tournament, the tournament type, the start and end dates, and the number of rounds.

### CODE:

```
-- question 2
select name, TType, StartDate, EndDate, NumRounds from tournament
where NumRounds > 5;
```

From the above code we see that we select the required fields to be printed in the table from the tournament and where we use the function > so that we can filter out the number of rounds greater than 5.

#### **RESULT:**

| name            | TType   | StartDate  | EndDate    | NumRounds |
|-----------------|---------|------------|------------|-----------|
| Australian Open | Singles | 15-01-2007 | 28-01-2007 | 7         |
| Australian Open | Doubles | 15-01-2007 | 28-01-2007 | 6         |
| French Open     | Singles | 26-05-2007 | 10-06-2007 | 7         |
| French Open     | Doubles | 26-05-2007 | 10-06-2007 | 6         |
| US Open         | Singles | 27-08-2007 | 09-09-2007 | 7         |
| US Open         | Doubles | 27-08-2007 | 09-09-2007 | 6         |
| Wimbledon       | Singles | 25-06-2007 | 08-07-2007 | 7         |
| Wimbledon       | Doubles | 25-06-2007 | 08-07-2007 | 6         |

From the above the result where 8 rows are returned, we see that we get all the names of tournament and their type along with the mentioned dates and which all matches have more than 5 tournaments.

3.) This task has 2 parts to it where we must list out name, tournament type, surface type, and the number of rounds it has and sort the results in descending order by the number of rounds.

### CODE:

```
-- question3
select name, TType, NumRounds, Surface
from tournament
order by NumRounds desc;
```

From the above code we can see that all we need to do is use the **order by** function so that we can order the number of rounds by descending order. Also print out the type of match, surface from tournament table.

| name                | TType   | NumRounds | Surface |
|---------------------|---------|-----------|---------|
| Australian Open     | Singles |           | 7 Hard  |
| French Open         | Singles | -         | 7 Clay  |
| US Open             | Singles | -         | 7 Hard  |
| Wimbledon           | Singles | -         | 7 Grass |
| Australian Open     | Doubles | (         | 6 Hard  |
| French Open         | Doubles | (         | 6 Clay  |
| US Open             | Doubles | (         | 6 Hard  |
| Wimbledon           | Doubles |           | 6 Grass |
| Brasil Open 2007    | Singles | Į.        | 5 Clay  |
| Countrywide Classic | Singles | !         | 5 Hard  |
| BMW Open            | Singles | !         | 5 Clay  |
| Heineken Open       | Singles | !         | 5 Hard  |
| Brasil Open 2007    | Doubles | 4         | 4 Clay  |
| Countrywide Classic | Doubles | 4         | 4 Hard  |
| BMW Open            | Doubles |           | 4 Clay  |
| Heineken Open       | Doubles | 4         | 4 Hard  |

From the above result we receive 16 rows with the number of rounds in descending order of all the games singles and doubles.

4.) In this task we must list the names, tournament types, and lengths (in days) of all tournaments that were longer than one week.

### CODE:

```
-- question 4
select name, ttype, datediff(enddate,startdate) as length_in_days
from tournament
having length_in_days > 7;
```

From the above code we see how we managed to get the difference between the 2 dates that by using **datediff** and name it as length\_in\_days which we can take from the tournaments and mention that the number of days should be greater than 7.(LENGTH\_IN\_DAYS)

### **RESULT:**

| name            | ttype   | length_in_days |
|-----------------|---------|----------------|
| Australian Open | Singles | 13             |
| Australian Open | Doubles | 13             |
| French Open     | Singles | 15             |
| French Open     | Doubles | 15             |
| US Open         | Singles | 13             |
| US Open         | Doubles | 13             |
| Wimbledon       | Singles | 13             |
| Wimbledon       | Doubles | 13             |

We get the above table after executing the code and in return we get 8 rows that have the length of days for both double and single matches.

5.) This is a very interesting task where we are told to find out the players in both single and double tournament who have played against Tommy Haas from the country.

#### CODE:

```
-- question 5
create view th_registr as
select registrnum from registration where pid = (select pid from player where name = 'Tommy Haas');

select * from th_registr;|
create view against_haas as
select registrnum1 from matches where registrnum1 not in(select * from th_registr) and registrnum2 in(select * from th_registr) union
select registrnum2 from matches where registrnum2 not in(select* from th_registr) and registrnum1 in(select *from th_registr);

select * from against_haas;

select distinct name, pid from player
join registration using(pid)
where registrnum in (select * from against_haas) and ccode in('RUS','CHI','USA');
```

In this question we tend to use method of creating separate tables like registr where we get registration number of tommy Haas and every game he played from registration table.

We create another table against\_haas to find the people who played against Tommy Haas. In this we check for both the register number 1 and 2 with the table we created that is registr whether either of the registered number is of tommy Haas. So first we select registered number 1 from matches where this is not in the table registr (which has all registered number of Tommy Haas) and select the registered number 2 from registr; this will give us all registernum2 of Tommy Haas and his opponent which is registered number1 vice versa. We union both the table to get all the players

If the registered number of Tommy Haas is available, we can extract that making sure that the other registered number is not of Tommy Haas, but the opponent player and we do vice versa. From this we can get registered number of the opponent player.

Once both the tables are created, we can code the part where we want the names of these players. We use distinct so that no player is repeated. Join with registration using PID. Now we extract the registered number of opponent player from against Haas and making sure that these players belong from Russia, Chile, USA. This helps us extract the names of these player and give us the required result.

| name              | pid |
|-------------------|-----|
| Fernando Gonzalez | 9   |
| Nikolay Davydenko | 2   |
| James Blake       | 4   |
| Dmitry Tursunov   | 20  |
| Zack Fleishman    | 61  |

This is the result that we achieve that shows the PID and name of the player who played against Tommy Haas. Creating tables becomes easier since we don't have to complicate the solution by adding subquery since it makes the code more efficient and understandable.

6.) Again, this question has two parts where we must get the name of all players who have lost again Roger Federer and the tournament name that they lost in. In this question we must find out all the final rounds of the tournament in which Roger Federer has won.

### CODE:

```
-- question 6
create view match_ids as
select mid from matchresults mr
where winner in (select registrnum from registration where pid =(select pid from player where name = "Roger Federer")) union
select mid from tiebreaker
where winnertb = 0;
select * from match_ids;
create view mt_federer as
select mid, registrnum1, registrnum2, tid from matches join match_ids using(mid);
select * from mt_federer;
create view type_single as
select name, numrounds, ttype, m.*
from matches m join tournament t using (tid)
where m.round=t.numrounds and ttype='Singles';
select * from type_single;
create view finals as
select s.* from type_single s join tournament t using(tid)
join mt_federer using(mid);
select * from finals;
select p.name, f.name from player p
join registration r using(PID)
join finals f where f.registrnum2 = r.registrnum;
```

We create 4 different tables to get our result here. Create match id table where we select the mid from match result where we mention that the matchresult must be the winning match of Roger Federer. Hence we mention to take registration number and mention whose pid we want and we also take the mid from the tiebreaker where we get all the tiebreaking winning match of Roger Federer. Hence get all the winning matches of Roger Federer.

We create a second table mt\_federer where we get all the mid, registration number of Federer and his opponent and tournament id of all the matches winning matches.

From the question it has also been mentioned that the winning games must be of type singles. Upon this condition we create another table. This table is type single where we take the name, number of round type and entire match field and join with the tournament where we must satisfy the condition that the match type is single, and we extract the last round of the single matches.

We create one last table which will give us the name of the winning tournament and its type being single, final rounds (total rounds) as well as the registration number of Federer and opponent. We join the type single with mt\_Federer. We give this name as finals.

Lastly, we extract the name from player to get player names and finals table to get the tournament names we join it with registration using PID and join finals where we put the condition that all the names should be for these registration number.

Hence, we get the result:

#### **RESULT:**

| Column1           | Column2         |  |
|-------------------|-----------------|--|
| name              | name            |  |
| Fernando Gonzalez | Australian Open |  |
| Novak Djokovic    | US Open         |  |
| Rafael Nadal      | Wimbledon       |  |

From the above result we how we got all the three opponents for a type of single match and all the tournament names. Creating tables is a better method to reduce the usage of subquery.