23/10/24, 14:56 bounded minimization

bounded minimization

One useful way of generating more <u>primitive recursive functions</u> from existing ones is through what is known as <u>bounded</u> summation and bounded product. Given a primitive recursive function $f: \mathbb{N}^{m+1} \to \mathbb{N}$, define two <u>functions</u> $f_s, f_p: \mathbb{N}^{m+1} \to \mathbb{N}$ as follows: for $\boldsymbol{x} \in \mathbb{N}^m$ and $y \in \mathbb{N}$:

$$f_{s}\left(oldsymbol{x},y
ight) := \sum_{i=0}^{y} f\left(oldsymbol{x},i
ight)$$

$$f_{p}\left(oldsymbol{x},y
ight):=\prod_{i=0}^{y}f\left(oldsymbol{x},i
ight)$$

These are easily seen to be primitive recursive, because they are defined by <u>primitive recursion</u>. For example,

$$f_{s}\left(oldsymbol{x},0
ight)=f\left(oldsymbol{x},0
ight),\quad ext{and}\quad f_{s}\left(oldsymbol{x},n+1
ight)=g\left(oldsymbol{x},n,f_{s}\left(oldsymbol{x},n
ight)
ight),$$

where $g(\mathbf{x}, n, y) = \text{add}(f(\mathbf{x}, n), y)$, which is primitive recursive by <u>functional composition</u>.

<u>Definition</u>. We call f_s and f_p functions obtained from f by bounded sum and bounded product respectively.

Using bounded summation and bounded product, another useful class of primitive recursive functions can be generated:

Definition. Let $f: \mathbb{N}^{m+1} \to \mathbb{N}$ be a function. For each $y \in \mathbb{N}$, set

$$A_{f}\left(oldsymbol{x},y
ight):=\left\{ z\in\mathbb{N}\mid z\leq y ext{ and }f\left(oldsymbol{x},z
ight)=0
ight\} .$$

Define

$$f_{bmin}\left(oldsymbol{x},y
ight) := \left\{egin{array}{ll} \min A_f\left(oldsymbol{x},y
ight) & ext{if } A_f\left(oldsymbol{x},y
ight)
eq \emptyset, \ s\left(y
ight) & ext{otherwise}. \end{array}
ight.$$

 f_{bmin} is called the function obtained from f by bounded minimization, and is usually denoted

$$\mu z \leq y \left(f\left(\boldsymbol{x},z\right) =0\right) .$$

Proposition 1. If $f: \mathbb{N}^{m+1} \to \mathbb{N}$ is primitive recursive, so is f_{bmin} .

Proof. Define $g := \operatorname{sgn} \circ f$. Then

$$g\left(oldsymbol{x},y
ight) := \left\{egin{array}{l} 0 & ext{if } f\left(oldsymbol{x},y
ight) = 0, \ 1 & ext{otherwise.} \end{array}
ight.$$

As f is primitive recursive, so is g, since the sign function sgn is primitive recursive (see this entry (http://planetmath.org/ExamplesOfPrimitiveRecursiveFunctions)).

Next, the function g_p obtained from g by bounded product has the following <u>properties</u>:

- if $g_{p}\left(\boldsymbol{x},y\right)=1$, then $g_{p}\left(\boldsymbol{x},z\right)=1$ for all z < y,
- if $g_p(\boldsymbol{x},y)=0$, then $g_p(\boldsymbol{x},z)=0$ for all $z\geq y$.

Finally, the function $(g_p)_s$ obtained from g_p by bounded sum has the property that, when applied to (\boldsymbol{x},y) , counts the number of $z \leq y$ such that $g_p(\boldsymbol{x},z) = 1$. Based on the property of g_p , this count is then exactly the least $z \leq y$ such that $g_p(\boldsymbol{x},z) = 1$. This means that $(g_p)_s = f_{bmin}$ for all $(\boldsymbol{x},y) \in \mathbb{N}^{m+1}$. Since g_p is primitive recursive, so is $(g_p)_s$, or that f_{bmin} is primitive recursive.