К.В. Герасимов, А.А. Зобова

Движение симметричного экипажа на омни-колесах с

массивными роликами

Рассматривается динамика симметричного экипажа с роликонесущими колесами, движущегося по неподвижной горизонтальной абсолютно шероховатой плоскости в следующих предположениях: масса каждого ролика ненулевая, контакт между роликами и плоскостью точечный, проскальзывания нет. Уравнения движения составлены с помощью системы символьных вычислений Махіта. В уравнениях движения получены дополнительные члены, пропорциональные осевому моменту инерции ролика и зависящие от углов поворота колес. Массивность роликов учитывается в тех фазах движения, когда не происходит смены роликов в контакте. При переходе колес с одного ролика на другой масса роликов считается пренебрежимо малой. Показано, что ряд движений, существующих в безынерционной модели (т.е. не учитывающей массу роликов), пропадает, так же как и линейный первый интеграл. Проведено сравнение основных типов движения симметричного трехколесного экипажа, полученных численным интегрированием уравнений движения, с безынерционной моделью.

1. Введение. Омниколеса (в русской литературе также используется название роликонесущие колеса) — это колеса особой конструкции, позволяющей экипажу двигаться в произвольном направлении, вращая колеса вокруг их собственных осей и не поворачивая их вокруг вертикали. На ободе такого колеса располагаются ролики, которые могут свободно вращаться вокруг своих осей, жестко закрепленных в диске колеса. Существуют два варианта расположения осей роликов: первый (собственно омниколеса) – оси роликов являются касательными к ободу колеса и, следовательно, лежат в его плоскости; второй (меканум-колеса [1]) – оси роликов развернуты вокруг нормали к ободу колеса на постоянный угол, обычно $\pi/4$.

Ранее была рассмотрена динамика омни-экипажей с упрощенными моделями омниколес, в которых не учитывается инерция и форма роликов [2–7]. В этих работах колеса моделируются как жесткие диски (без роликов), которые могут скользить в одном направлении и катиться без проскальзывания в другом. Далее мы будем называть такую модель безынерционной в том смысле, что инерция собственного вращения роликов в ней не учитывается. Другая часть работ по динамике омни-экипажа [8–11] использует некоторые формализмы для построения численных моделей систем тел, при этом явный вид уравнений движения оказывается скрыт. Это делает невозможным непосредственный анализ уравнений и затрудняет оценку влияния разных факторов на динамику системы.

Цель настоящей работы – получение уравнений движения по инерции экипажа с омниколесами с массивными роликами в неголономной постановке с помощью подхода [12] в явном виде, исследование их свойств и сравнение поведения такой системы с поведением системы в безынерционном случае [13].

2. Постановка задачи. Рассмотрим экипаж с омни-колесами, движущийся по инерции по неподвижной абсолютно шероховатой горизонтальной плоскости. Экипаж состоит из платформы и N одинаковых омни-колес, плоскости которых относительно платформы неподвижны. Каждое колесо может свободно вращаться относительно платформы вокруг собственной оси, расположенной горизонтально. Будем считать, что на каждом колесе установлено n массивных роликов, так что оси роликов параллельны касательным к границам дисков колес (см. фиг. 1). Таким образом, система состоит из N(n+1)+1 абсолютно твердых тел.

Введем неподвижную систему отсчета так, что ось OZ направлена вертикально вверх, а плоскость OXY совпадает с опорной плоскостью. Введем также подвижную систему отсчета $S\xi\eta Z$, жестко связанную с платформой экипажа так, что плоскость $S\xi\eta$ горизонтальна и содержит центры всех колес P_i . Будем считать, что оси колес лежат на лучах, соединяющих центр масс платформы S и центры колес (см. фиг. 2), а расстояния от центров колес до S одинаковы и равны R. Геометрию установки колес на платформе зададим углами α_i между осью $S\xi$ и осями колес (см. фиг. 1). Будем считать, что центр масс всей системы совпадает с точкой S (отсюда следует, что $\sum_k \cos \alpha_k = \sum_k \sin \alpha_k = 0$). Введем также три орта, жестко связанных с дисками колес: единичный орт оси i-ого колеса $\mathbf{n}_i = \mathbf{SP}_i/|\mathbf{SP}_i|$ и орты \mathbf{n}_i^\perp и \mathbf{n}_i^z , лежащие в плоскости диска колеса, причем вектор \mathbf{n}_i^z вертикален при нулевом повороте колеса χ_i . Положения центров роликов на колесе определим углами κ_j между ними и направлением, противоположным вектору \mathbf{n}_i^z .

Положение экипажа будем задавать следующими координатами: x, y — координаты точки S на плоскости OXY, θ — угол между осями OX и $S\xi$ (угол курса), χ_i ($i=1\dots N$) — углы поворота колес вокруг их осей, отсчитываемые против часовой стрелки, если смотреть с конца вектора \mathbf{n}_i , и ϕ_j — углы поворота роликов вокруг их собственных осей. Таким образом, вектор обобщенных координат имеет вид:

$$\mathbf{q} = (x, y, \theta, \{\chi_i\}|_{i=1}^N, \{\phi_k\}|_{k=1}^N, \{\phi_s\}|_{s=1}^{N(n-1)})^T \in \mathbb{R}^{N(n+1)+3}$$

где сначала указаны углы поворота ϕ_k роликов, находящихся в данный момент в контакте с опорной плоскостью, а затем — остальных, "свободных", роликов.

Введем псевдоскорости

$$\mathbf{v} = (\nu_1, \nu_2, \nu_3, \nu_s), \quad \mathbf{v}_S = R\nu_1 \mathbf{e}_{\xi} + R\nu_2 \mathbf{e}_{\eta}, \quad \nu_3 = \Lambda \dot{\theta}, \quad \nu_s = \dot{\phi}_s$$

Их механический смысл таков: ν_1 , ν_2 — проекции скорости точки S на оси $S\xi\eta$, связанные с платформой, ν_3 — с точностью до множителя угловая скорость платформы, ν_s — угловые скорости свободных роликов. Число независимых псевдоскоростей системы L=N(n-1)+3. Таким образом, имеем

$$\dot{x} = R\nu_1\cos\theta - R\nu_2\sin\theta, \quad \dot{y} = R\nu_1\sin\theta + R\nu_2\cos\theta$$

Будем считать, что проскальзывания между опорной плоскостью и роликами в контакте не происходит, т.е. скорости точек C_i контакта равны нулю:

$$\mathbf{v}_{C_i} = 0, \quad i = 1, \dots, N$$

Выражая скорость точек контакта через введенные псевдоскорости и проектируя на векторы \mathbf{e}_{ξ} и \mathbf{e}_{η} соответственно, получим:

$$\dot{\phi}_k = \frac{R}{\rho_k} (\nu_1 \cos \alpha_k + \nu_2 \sin \alpha_k),$$
где $\rho_k = l \cos \chi_k - r$ (2.1)

$$\dot{\chi}_i = \frac{R}{l} (\nu_1 \sin \alpha_i - \nu_2 \cos \alpha_i - \frac{\nu_3}{\Lambda}) \tag{2.2}$$

Заметим, что знаменатель ρ_k в (2.1) есть расстояние от оси ролика до точки контакта, обращающееся в ноль на стыке роликов (см. фиг. 1). Это обстоятельство приводит к разрывам второго рода функций в правых частях уравнений движения и будет рассмотрено отдельно ниже. Уравнение (2.2) совпадает с уравнением связи в случае безынерционной модели роликов.

Таким образом, выражение обобщенных скоростей через псевдоскорости, учитывающее связи, наложенные на систему, можно записать в матричном виде (явные выражения

компонент матрицы V приведены в приложении):

$$\dot{\mathbf{q}} = V \boldsymbol{\nu}, \quad V = V(\theta, \chi_i) \tag{2.3}$$

3. Уравнения движения. Воспользуемся лаконичным методом получения уравнений движения для систем с дифференциальными связями, предложенным Я.В. Татариновым [12]:

$$\frac{d}{dt}\frac{\partial L^*}{\partial \nu_{\alpha}} + \{P_{\alpha}, L^*\} = \sum_{\mu=1}^{L} \{P_{\alpha}, \nu_{\mu} P_{\mu}\}, \quad \alpha = 1, \dots, L$$
(3.1)

Здесь L – лагранжиан, L^* – он же с учетом связей. P_{α} – линейные комбинации формальных канонических импульсов p_i , определяемые из соотношения

$$\sum_{\mu} \nu_{\mu} P_{\mu} \equiv \sum_{i} \dot{q}_{i} p_{i}$$

в котором \dot{q}_i выражены через псевдоскорости ν_μ из 2.3. Фигурными скобками $\{\cdot,\cdot\}$ обозначена скобка Пуассона по $p_i,\,q_i$. После ее вычисления выполняется подстановка

$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$

Подробно их вывод и применение изложено в [12,13].

Так как потенциальная энергия системы во время движения не меняется, то лагранжиан равен кинетической энергии:

$$2L = 2T = M\mathbf{v}_S^2 + I_S\dot{\theta}^2 + J\sum_i \dot{\chi}_i^2 + B\sum_{i,j} (\dot{\phi}_{ij}^2 + 2\dot{\theta}\sin(\kappa_j + \chi_i)\dot{\phi}_{ij}) = \dot{\mathbf{q}}^{\mathrm{T}}\mathcal{M}\dot{\mathbf{q}}$$
(3.2)

Здесь $M,\ I_S,\ J$ — массово-инерционные характеристики экипажа (см. приложение), B — момент инерции ролика относительно его оси вращения. Лагранжиан с учетом связей имеет вид:

$$2L^* = \boldsymbol{\nu}^{\mathrm{T}} V^{\mathrm{T}} \mathcal{M} V \boldsymbol{\nu} = \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}^* (\chi_i) \boldsymbol{\nu}$$

Структура симметрической матрицы \mathcal{M}^* следующая:

Явные формулы для коэффициентов m_{ij}^* главного минора 3×3 выписаны в приложении; отметим, что они зависят только от координат χ_i , которые входят в дроби вида B/ρ_i^2 и $B \sin \chi_i/\rho_i$, имеющие разрывы второго рода при смене роликов (см. (2.1)). Этот минор соответствует псевдоскоростям ν_1 , ν_2 , ν_3 . Остальные элементы матрицы \mathcal{M}^* соответствуют скоростям свободных роликов ν_s , для которых $\chi_{kl} = \chi_k + \kappa_l$ — угол между вертикалью и осью ролика. Индекс $k = 1, \ldots, N$ означает номер колеса, индекс $l = 2, \ldots, n$ — номер свободного ролика на колесе (l = 1 — ролик, находящийся в контакте).

Первое слагаемое (3.1) получается дифференцированием лагранжиана и подстановкой связей:

$$\frac{d}{dt}\frac{\partial L^*}{\partial \nu_{\alpha}} = \frac{d}{dt}(\mathcal{M}^*(\chi)\boldsymbol{\nu}_{\alpha}) = \mathcal{M}^*(\chi_i)\dot{\boldsymbol{\nu}}_{\alpha} + \left(\frac{d}{dt}(\mathcal{M}^*(\chi))\boldsymbol{\nu}\right)_{\alpha} = \mathcal{M}^*(\chi_i)\dot{\boldsymbol{\nu}}_{\alpha} + \left(\sum_{i=1}^{N}\mathcal{M}_i^*(V\nu)_{3+i}\boldsymbol{\nu}\right)_{\alpha},$$
(3.3)

где $\mathcal{M}_i^* = \frac{\partial \mathcal{M}^*}{\partial \chi_i}$. Обратим внимание, что вторая группа слагаемых, соответствующих свободным роликам ($\alpha = 4, \dots, L$), имеет вид:

$$\frac{\cos \chi_{ij}\nu_3 B \left(-\frac{\nu_3 R}{l\Lambda} - \frac{\cos \alpha_i \nu_2 R}{l} + \frac{\sin \alpha_i \nu_1 R}{l}\right)}{\Lambda} = \frac{B}{\Lambda} \cos \chi_{ij} (\dot{\chi}_i)^* \nu_3. \tag{3.4}$$

Выпишем выражения для P_{α} :

$$P_{1} = R\left(p_{x}\cos\theta + p_{y}\sin\theta + \sum_{i}\left(\frac{\sin\alpha_{i}p_{\chi_{i}}}{l} + \frac{\cos\alpha_{i}p_{\phi_{i1}}}{\rho_{i}}\right)\right),$$

$$P_{2} = R\left(-p_{x}\sin\theta + p_{y}\cos\theta + \sum_{i}\left(-\frac{\cos\alpha_{i}p_{\chi_{i}}}{l} + \frac{\sin\alpha_{i}p_{\phi_{i1}}}{\rho_{i}}\right)\right),$$

$$P_{3} = \frac{1}{\Lambda}\left(p_{\theta} - \sum_{i}\frac{R}{l}p_{\chi_{i}}\right),$$

$$P_{s} = p_{\phi_{s}},$$

$$(3.5)$$

Поскольку коэффициенты лагранжиана L^* зависят только от координаты χ_i , то его скобки Пуассона с P_1 , P_2 , P_3 — квадратичные формы псевдоскоростей, пропорциональные моменту инерции ролика B с коэффициентами, зависящими от χ_i :

$$\{P_1, L^*\} = -\frac{\partial P_1}{\partial p_{\chi_i}} \frac{\partial L^*}{\partial \chi_i} = -\frac{R}{2l} \boldsymbol{\nu}^{\mathrm{T}} \sin \alpha_i \mathcal{M}_i^* \boldsymbol{\nu},$$

$$\{P_2, L^*\} = \frac{R}{2l} \boldsymbol{\nu}^{\mathrm{T}} \cos \alpha_i \mathcal{M}_i^* \boldsymbol{\nu}, \ \{P_3, L^*\} = \frac{R}{2l\Lambda} \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}_i^* \boldsymbol{\nu}, \quad \{P_s, L^*\} = 0, s > 3$$

Суммы $\{P_{\alpha}, \nu_{\mu}P_{\mu}\}$ в правой части отличны от нуля лишь для первых трех уравнений (см. приложение).

Собирая все вместе и пользуясь обозначениями из приложения, окончательно получим следующую структуру уравнений:

$$\mathcal{M}^*\dot{\boldsymbol{\nu}} = \frac{MR^2}{\Lambda} \begin{pmatrix} \nu_2 \nu_3 \\ -\nu_1 \nu_3 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \boldsymbol{\nu}^{\mathrm{T}} \begin{pmatrix} R \\ \frac{R}{2l} \begin{pmatrix} -\sin \alpha_i \mathcal{M}_i^* \\ \cos \alpha_i \mathcal{M}_i^* \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} - BR^2 \begin{pmatrix} \mathcal{P}_1 \\ \mathcal{P}_2 \\ \mathcal{P}_3 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \boldsymbol{\nu} - B \begin{pmatrix} * \\ * \\ \cos \chi_{12} \frac{\nu_3}{\Lambda} \dot{\chi}_1^* \\ \vdots \\ \cos \chi_{Nn} \frac{\nu_3}{\Lambda} \dot{\chi}_N^* \end{pmatrix} (3.6)$$

Здесь матрицы \mathcal{P}_{α} размера $L \times L$ составлены из строк $\mathbf{p}_{\alpha\beta}$, определенных явно в прило-

жении и зависящих от геометрии экипажа и углов поворота колес χ_i :

$$\mathcal{P}_1 = egin{pmatrix} \mathbf{0} \ \mathbf{p}_{12} \ \mathbf{p}_{13} \ \mathbf{0} \ \cdots \ \mathbf{0} \end{pmatrix}, \quad \mathcal{P}_2 = egin{pmatrix} -\mathbf{p}_{12} \ \mathbf{0} \ \mathbf{p}_{23} \ \mathbf{0} \ \cdots \ \mathbf{0} \end{pmatrix}, \mathcal{P}_3 = egin{pmatrix} -\mathbf{p}_{23} \ \mathbf{0} \ \mathbf{0} \ \cdots \ \mathbf{0} \end{pmatrix}$$

Поскольку матрицы \mathcal{M}_i^* и \mathcal{P}_{α} зависят от углов поворота колес χ_i , то для замыкания системы к этим уравнениям надо добавить уравнения (2.2).

Структура уравнений позволяет выявить следующие свойства:

- 1. Система допускает интеграл энергии $\frac{1}{2} \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}^*(\chi_i) \boldsymbol{\nu} = h = \mathrm{const}$ в силу общей теоремы об изменении полной механической энергии: так как система стеснена автономными идеальными связями, а силы консервативны, то полная энергия (в нашем случае она равна кинетической энергии) сохраняется.
- 2. В случае, если платформа экипажа не двигается $\nu_1 = \nu_2 = \nu_3 = 0$, свободные ролики сохраняют свою начальную угловую скорость: $\nu_s = {\rm const}$, что соответствует здравому смыслу.
- 3. При B=0 все слагаемые в правой части, кроме первого, обращаются в ноль, как и все члены, соответствующие свободным роликам, в левой части (см. (6.1)). В этом случае существенными остаются первые три уравнения системы на $\nu_1, \ \nu_2, \ \nu_3$. Эти уравнения описывают динамику безынерционной модели экипажа [2].
- 4. Существовавший в безынерционной модели линейный первый интеграл разрушается для модели с массивными роликами. При B=0 этот интеграл имеет вид

 $m_{33}^*\nu_3={
m const}$ (причем $m_{33}={
m const}$) и следует непосредственно из третьего уравнения системы. При $B\neq 0$ скорость изменения ν_3 пропорциональна моменту инерции ролика B.

 Поскольку скобки Пуассона в уравнениях для свободных роликов равны нулю, система допускает первые интегралы:

$$\nu_s + \frac{1}{\Lambda} \sin \chi_{ij} \nu_3 = \text{const} \tag{3.7}$$

Скорость вращения платформы ν_3 связана со скоростями собственного вращения свободных роликов. В частности, вращение экипажа вокруг вертикальной оси, проходящей через его центр ($\nu_1(0) = 0, \nu_2(0) = 0, \nu_3(0) \neq 0$), неравномерно, в отличие от безынерционной модели.

- 6. Одновременное изменение начальных значений всех псевдоскоростей $\nu \to \lambda \nu, \lambda \neq 0$ умножением на число, отличное от нуля, эквивалентно замене времени $t \to \lambda t$.
- **4.** Переход между роликами. Уравнения (3.6) описывают динамику системы на промежутках времени, в течение которых не происходит смены роликов. При переходе любого колеса с одного ролика на другой коэффициенты уравнений терпят разрыв второго рода из-за выражений $\rho_i = l \cos \chi_i r$ в знаменателе.

Заметим, что в технических реализациях омни-колес ситуация $\rho_i = 0$ никогда не имеет места, т.к. концы роликов усекаются (в частности, потому что оси роликов в реальных системах имеют ненулевую толщину и должны быть закреплены в колесах). Для того, чтобы в каждый момент в контакте между колесом и плоскостью был ролик, их располагают в два или больше рядов.

Для исследования движений, на которых происходят смены контактных роликов, примем следующие предположения. Усечем ролики (см. фиг. 3), но оставим их оси в одной плоскости, допуская пересечение тел роликов в пространстве и пренебрегая им. Переход между роликами одного колеса будет происходить при значении угла $\chi_i=\frac{2\pi}{n}$. Колесо с усеченными роликами определим, располагая ось ролика на расстоянии $r=l\cos\frac{\pi}{n-1}$ от центра колеса , а его поверхность задавая как фигуру вращения дуги окружности радиуса l с углом раствора $\frac{2\pi}{n}$ вокруг этой оси, замкнутую соответствующими дисками.

Кроме этого, при смене контакта происходит мгновенное наложение связи на вновь вошедший в контакт ролик и снятие её с освободившегося, после чего последний может свободно вращаться вокруг своей оси. В этот момент в реальной системе происходят вза-имодействия типа ударных, в том числе проскальзывание роликов относительно плоскости, при котором происходит уменьшение полной энергии системы. Однако моделирование этих эффектов не рассматривается в настоящей работе. Будем считать, что скорости ν_1 , ν_2 , ν_3 при переходе с ролика на ролик не изменяются, как и в безынерционной модели в отсутствии роликов (B=0). Таким образом, масса роликов влияет на динамику системы только на гладких участках движения и не учитывается при смене роликов. Из уравнений (2.1, 2.2) получим, что ролик, входящий в контакт, мгновенно приобретает ту же угловую скорость, что и освобождающийся ролик.

Таким образом, при переходе ($\chi_i = \chi_i^+$) сохраним значения ν_1 , ν_2 , ν_3 , заменим χ_i с χ_i^+ на χ_i^- (см. фиг. 4), и выполним с псевдоскоростями ν_s следующее преобразование. Пусть $\boldsymbol{\nu}_i^{\mathbf{s}} = (\nu_{i2}, \dots, \nu_{in})$ – псевдоскорости свободных роликов на колесе i. Тогда если при смене контакта $\dot{\chi}_i > 0$ (т.е. колесо поворачивается против часовой стрелки, см. фиг. 1), то отбросим ν_{in} , остальные компоненты $\boldsymbol{\nu}_i^{\mathbf{s}}$ перенумеруем, сдвигая их вперед: $\nu_{ij} \to \nu_{ij+1}$, а ν_{i2} положим равной значению правой части в уравнении связи (2.1). При вращении колеса в другую сторону, выполним аналогичные преобразования, сдвиг номеров роликов при этом происходит назад.

- **5. Примеры движений** Численные решения получим для симметричного трехколесного экипажа ($\alpha_i = \frac{2\pi}{N}(i-1), N=3$), с n=5 роликами на колесе и следующих движений:
 - 1. вращение вокруг своей оси $(\nu_1(0) = \nu_2(0) = 0, \nu_3(0) = 1)$ (фиг. 5),
 - 2. движение по прямой в направлении оси первого колеса $(\nu_1(0) = 1, \nu_2(0) = \nu_3(0) = 0)$ (фиг. 6)
 - 3. движение с ненулевой скоростью центра масс и, одновременно, с ненулевой угловой скоростью платформы $(\nu_1(0)=1,\nu_2(0)=0,\nu_3(0)=1)$ (фиг. 7).

Расчеты выполнены в безразмерных величинах, так что радиус платформы и колеса $R=0.15,\,r=0.05,\,$ масса платформы, колеса и ролика $M_{\rm пл}=1,\,M_{\rm k}=0.15,\,m_{\rm pon}=0.05.$ При этом момент инерции ролика $B\approx 1.6\cdot 10^{-5}.\,$ Для безынерционной модели массово-инерционные характеристики колес положим соответствующими экипажу с 5 заблокированными роликами.

Во всех трех случаях наблюдаются отличия между двумя постановками: свободные ролики приходят в движение, из-за чего меняется угловая скорость платформы экипажа и скорость центра масс экипажа. Кроме этого, становится заметно влияние введенных предположений о смене контакта: график кинетической энергии приобретает ступенчатый вид в силу изменений в слагаемых (3.2), зависящих от χ и $\dot{\phi}_{i,j}$:

$$B\sum_{i,j} (\dot{\phi}_{ij}^2 + 2\dot{\theta}\sin(\kappa_j + \chi_i)\dot{\phi}_{ij}), \tag{5.1}$$

происходящих при мгновенном наложении связей. В промежутки времени между сменами роликов энергия остается постоянной.

В случаях 1 и 2 траектории центра экипажа S на плоскости OXY и характер вращения вокруг вертикальной оси SZ $(\theta(t))$ отличаются между моделью с роликами и безынерцион-

ной несущественно, однако заметны переходные процессы во вращении роликов в начале движения.

В случае вращения вокруг вертикали (движение 1) угловая скорость платформы ν_3 меняется не монотонно, но в среднем медленно убывает: за первые 1000 секунд угловая скорость уменьшается на 2%. Скорость центра масс остается равной нулю. Кинетическая энергия системы также медленно убывает. На фиг. 5 представлены угловые скорости роликов на первом колесе $\dot{\phi}_{1j}$ (номер кривой, указанной на рисунке, совпадает с номером ролика на колесе, поведение роликов на других двух колесах полностью аналогично). Заметим, что при нулевой скорости центра экипажа опорный ролик не вращается (2.2): угловая скорость первого ролика в течение первой секунды движения нулевая. После выхода из контакта ролик начинает раскручиваться в соответствии с первым интегралом (3.7). Раскрученный ролик при входе в контакт с опорной плоскостью мгновенно теряет угловую скорость — на графике угловой скорости первого ролика это происходит при t=9.6 с — что приводит к убыванию кинетической энергии.

При движении по прямой (движение 2) угловая скорость остается нулевой. На фиг. 6 слева показаны графики относительного изменения скорости центра масс $\nu_1(t)/\nu_1(0)-1$ (кривая 1) и кинетической энергии T/T(0)-1 (кривая 2). Видно, что на начальном этапе движения при смене контакта кинетическая энергия возрастает, что обусловлено принятой в данной работе моделью наложения связи, но при этом возрастание энергии остается в пределах 4%. Скорость центра масс (кривая 2, слева) в среднем убывает. Скорость вращения переднего колеса равна нулю, колесо катится, опираясь на один и тот же ролик, остальные ролики не раскручиваются. Угловые скорости роликов на одном из задних колес показаны на фиг. 6 справа. Свободные ролики двигаются с постоянной угловой скоростью, ролик в контакте изменяет свою скорость за счет скорости центра масс. После

того, как все ролики побывают в контакте, их движение становится квазипериодичным, а энергия убывает с каждой сменой контакта.

При движении 3, сочетающем поступательное и вращательное движение, угловая скорость экипажа ν_3 растет и выходит на постоянное значение (кривая 1 на фиг. 7 слева вверху), скорость центра экипажа $v = \sqrt{\nu_1^2 + \nu_2^2}$ уменьшается до нуля (кривая 2 там же), а кинетическая энергия после короткого начального участка, где происходят маленькие по величине скачки вверх аналогично движению 2, убывает. Угловые скорости роликов представляют собой квазипериодические функции времени (характерный участок представлен на фиг. 7 справа вверху, обозначения те же что и на фиг. 5). Центр платформы описывает спираль, фиг. 7 внизу. Заметим, что если не учитывать массу роликов на колесе, то при этих начальных условиях скорость центра масс и угловая скорость платформы сохраняется, а центр платформы описывает окружность. Таким образом, даже малая масса роликов приводит к качественным изменениям в движении экипажа.

Заключение.

Результаты проведенной работы следующие:

- получены уравнения движения экипажа с полным набором роликов в неголономной постановке,
- 2. показано, что при учете массы роликов возникают дополнительные члены, пропорциональные моменту инерции ролика относительно его оси,
- 3. предложена модель перехода с ролика на ролик,
- 4. получены численные решения с учетом движения свободных роликов для симметричного экипажа и обнаружены качественные отличия от безынерционной модели.

Список литературы

- Gfrerrer A. Geometry and kinematics of the Mecanum wheel // Computer Aided Geometric Design. 2008. T. 25. C. 784–791.
- Зобова А. А., Татаринов Я. В. Динамика экипажа с роликонесущими колесами // Прикладная математика и механика. 2009. Т. 73, № 1. С. 13–22.
- Мартыненко Ю. Г., Формальский А. М. О движении мобильного робота с роликонесущими колесами // Известия российской академии наук. Теория и системы управления. 2007. № 6. С. 142–149.
- Борисов А. В., Килин А. А., Мамаев И. С. Тележка с омниколесами на плоскости и сфере // Нелинейная динамика. 2011. Т. 7, № 4 (Мобильные роботы). С. 785–801.
- Зобова А. А., Татаринов Я. В. Математические аспекты динамики движения экипажа с тремя окольцованными колесами // Мобильные роботы и мехатронные системы. М., 2006. С. 61–67.
- Зобова А. А., Татаринов Я. В. Свободные и управляемые движения некоторой модели экипажа с роликонесущими колесами // Вестник Московского университета. Серия 1: Математика. Механика. М., 2008. № 6. С. 62–65.
- Мартыненко Ю. Г. Устойчивость стационарных движений мобильного робота с роликонесущими колесами и смещенным центром масс // Прикладная математика и механика. 2010. Т. 74, № 4. С. 610–619.
- 8. Косенко И. И., Герасимов К. В. Физически-ориентированное моделирование динамики омнитележки // Нелинейная динамика. 2016. Т. 12, № 2. С. 251–262.

- 9. Tobolar J., Herrmann F., Bunte T. Object-oriented modelling and control of vehicles with omni-directional wheels // Computational Mechanics. Hrad Nectiny, Czech Republic: 2009. November 9–11.
- 10. Dynamic model with slip for wheeled omnidirectional robots / R.L. Williams, B.E. Carter, P. Gallina [и др.] // IEEE Transactions on Robotics and Automation. 2002. jun. Т. 18, № 3. С. 285–293. URL: https://doi.org/10.1109/tra.2002.1019459.
- 11. Ashmore Mark, Barnes Nick. Omni-drive Robot Motion on Curved Paths: The Fastest Path between Two Points Is Not a Straight-Line // Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002. C. 225–236. URL: https://doi.org/10.1007/3-540-36187-1_20.
- 12. Татаринов Я. В. Уравнения классической механики в новой форме // Вестн. Моск. ун-та. Матем. Механ. 2003. № 3. С. 67–76.
- Zobova A. A. Application of laconic forms of the equations of motion in the dynamics of nonholonomic mobile robots // Nelineinaya Dinamika. 2011. C. 771–783. URL: https://doi.org/10.20537

6. Приложение. Матрица кинетической энергии:

где в третьей строке сначала указаны элементы, соответствующие роликам, находящимся в контакте, а затем соответствующие "свободным" роликам, упорядоченные по возрастанию индексов так, что ролики одного колеса соседствуют. Матрица \mathcal{M} — симметрическая, звездочкой обозначены элементы, получающиеся транспонированием верхнего треугольника матрицы.

Матрица связей:

$$V = \begin{bmatrix} R\cos\theta & -R\sin\theta & 0 \\ R\sin\theta & R\cos\theta & 0 \\ 0 & 0 & \frac{1}{\Lambda} & 0 \\ \frac{R\sin\alpha_i}{l} & -\frac{R\cos\alpha_i}{l} & -\frac{R}{\Lambda l} \\ \frac{R\cos\alpha_k}{\rho_k} & \frac{R\sin\alpha_k}{\rho_k} & 0 \\ 0 & E_{N(n-1)} \end{bmatrix}.$$

Элементы матрицы кинетической энергии с учетом связей:

$$m_{11}^{*} = MR^{2} + \sum_{i} \left(J \frac{R^{2}}{l^{2}} \sin^{2} \alpha_{i} + B \frac{R^{2}}{\rho_{i}^{2}} \cos^{2} \alpha_{i} \right),$$

$$m_{22}^{*} = MR^{2} + \sum_{i} \left(J \frac{R^{2}}{l^{2}} \cos^{2} \alpha_{i} + B \frac{R^{2}}{\rho_{i}^{2}} \sin^{2} \alpha_{i} \right),$$

$$m_{33}^{*} = \frac{1}{\Lambda} (I_{S} + \sum_{i} J \frac{R^{2}}{l^{2}}),$$

$$m_{12}^{*} = \sum_{i} \left(-J \frac{R^{2}}{l^{2}} + B \frac{R^{2}}{\rho_{i}^{2}} \right) \sin \alpha_{i} \cos \alpha_{i},$$

$$m_{13}^{*} = \frac{1}{\Lambda} \sum_{i} B \frac{R \sin \chi_{i}}{\rho_{i}} \cos \alpha_{i},$$

$$m_{23}^{*} = \frac{1}{\Lambda} \sum_{i} B \frac{R \sin \chi_{i}}{\rho_{i}} \sin \alpha_{i}.$$
(6.1)

Формальные импульсы $\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{q}}}$:

$$p_{x} = MR(\nu_{1}\cos\theta - \nu_{2}\sin\theta),$$

$$p_{y} = MR(\nu_{1}\sin\theta + \nu_{2}\cos\theta),$$

$$p_{\theta} = BR\sum_{i} \frac{\sin(\chi_{i} + \kappa_{1})}{\rho_{i}} (\nu_{1}\cos\alpha_{i} + \nu_{2}\sin\alpha_{i}) + \frac{I_{S}}{\Lambda}\nu_{3} + B\sum_{s}\sin(\chi_{s})\nu_{s},$$

$$p_{\chi_{i}} = J\frac{R}{l}(\nu_{1}\sin\alpha_{i} - \nu_{2}\cos\alpha_{i} - \frac{1}{\Lambda}\nu_{3}),$$

$$p_{\phi_{k1}} = \frac{BR}{\rho_{k}}(\nu_{1}\cos\alpha_{k} + \nu_{2}\sin\alpha_{k}) + \frac{B}{\Lambda}\nu_{3}\sin(\chi_{k} + \kappa_{1}),$$

$$p_{\phi_{s}} = \frac{B}{\Lambda}\nu_{3}\sin\chi_{s} + B\nu_{s}.$$

$$(6.2)$$

Линейные комбинации P_{α} :

$$P_{1} = R\left(p_{x}\cos\theta + p_{y}\sin\theta + \sum_{i}\left(\frac{\sin\alpha_{i}p_{\chi_{i}}}{l} + \frac{\cos\alpha_{i}p_{\phi_{i1}}}{\rho_{i}}\right)\right),$$

$$P_{2} = R\left(-p_{x}\sin\theta + p_{y}\cos\theta + \sum_{i}\left(-\frac{\cos\alpha_{i}p_{\chi_{i}}}{l} + \frac{\sin\alpha_{i}p_{\phi_{i1}}}{\rho_{i}}\right)\right),$$

$$P_{3} = \frac{1}{\Lambda}\left(p_{\theta} + \sum_{i}\frac{R}{l}p_{\chi_{i}}\right),$$

$$P_{s} = p_{\phi_{s}},$$

$$(6.3)$$

Для упрощения записи правой части уравнений введем обозначение для операции дискретной свертки произвольной функции f:

$$\sigma[f(\alpha, \chi)] = \sum_{k=1}^{N} f(\alpha_k, \chi_k) \frac{\sin \chi_k}{\rho_k^3}$$

Тогда скобки Пуассона в правой части имеют вид (звездочкой обозначена подстановка канонических формальных импульсов p_i):

$$(\{P_1, P_2\})^* = \left(-\sum_{k=1}^N R^2 \tau_k p_{\phi_k}\right)^* = -BR^2 (R\nu_1 \sigma[\cos \alpha] + R\nu_2 \sigma[\sin \alpha] + \Lambda^{-1}\nu_3 \sigma[\rho \sin \chi]) =$$

$$= -BR^2 \mathbf{p}_{12} \boldsymbol{\nu}, \quad \text{rge } \mathbf{p}_{12} = (\sigma[\cos \alpha], R\sigma[\sin \alpha], \Lambda^{-1}\sigma[\rho \sin \chi], 0, \dots, 0)$$

$$(\{P_1, P_3\})^* = R\Lambda^{-1} \left(-\sin \theta p_x + \cos \theta p_y - \sum_{k=1}^N R\cos \alpha_k \tau_k p_{\phi_k}\right)^* = MR^2 \Lambda^{-1}\nu_2 -$$

$$- BR^2 \Lambda^{-1} (R\nu_1 \sigma[\cos^2 \alpha] + R\nu_2 \sigma[\sin \alpha \cos \alpha] + \Lambda^{-1}\nu_3 \sigma[\rho \cos \alpha \sin \chi]) =$$

$$= MR^2 \Lambda^{-1}\nu_2 - BR^2 \mathbf{p}_{13} \boldsymbol{\nu},$$

$$\text{rge } \mathbf{p}_{13} = \Lambda^{-1} (R\sigma[\cos^2 \alpha], R\sigma[\sin \alpha \cos \alpha], \Lambda^{-1}\sigma[\rho \cos \alpha \sin \chi], 0, \dots, 0)$$

$$(\{P_2, P_3\})^* = R\Lambda^{-1} \left(-\cos \theta p_x - \sin \theta p_y - \sum_{k=1}^N R\sin \alpha_k \tau_k p_{\phi_k}\right)^* = -MR^2 \Lambda^{-1}\nu_1 -$$

$$- BR^2 \Lambda^{-1} (R\nu_1 \sigma[\sin \alpha \cos \alpha] + R\nu_2 \sigma[\sin^2 \alpha] + \Lambda^{-1}\nu_3 \sigma[\rho \sin \alpha \sin \chi] =$$

$$= -MR^2 \Lambda^{-1} (R\nu_1 \sigma[\sin \alpha \cos \alpha] + R\nu_2 \sigma[\sin^2 \alpha] + \Lambda^{-1}\nu_3 \sigma[\rho \sin \alpha \sin \chi] =$$

$$= -MR^2 \Lambda^{-1} \nu_1 - BR^2 \mathbf{p}_{23} \boldsymbol{\nu},$$

$$\text{rge } \mathbf{p}_{23} = \Lambda^{-1} (R\sigma[\sin \alpha \cos \alpha], R\sigma[\sin^2 \alpha], \Lambda^{-1}\sigma[\rho \sin \alpha \sin \chi], 0, \dots, 0),$$

Фигуры.

Фиг. 1.

Фиг. 2.

Фиг. 3.

Фиг. 4.

Фиг. 5.

Фиг. 6.

Фиг. 7.

Авторы.

- Герасимов Кирилл Вячеславович (Kirill Gerasimov); 119234, Москва, Ленинские горы, 1Б, 1725; 8 (925) 033-60-79; kiriger@gmail.com;
- Зобова Александра Александровна (Alexandra Zobova); Москва, Дмитровское шоссе, 165E, корп. 1, кв. 28; 8 (916) 333-19-78; azobova@mech.math.msu.su.

Кафедра теоретической механики и мехатроники механико-математического факультета МГУ им. М.В. Ломоносова, Москва, Тел.: (495) 939-36-81

On the motion of a symmetrical vehicle with omniwheels with massive rollers