balance_2023_mm_dd See GDrive balance for summary of all derivations

#1: CaseMode := Sensitive

#2: InputMode := Word

transportation parameter

#3: τ :∈ Real (0, ∞)

consumer index

#4: x : ∈ Real [0, 1]

Return profit per dollar of deposits

#5: ρ :∈ Real (0, ∞)

basic utility derived from bank services

#6: μ :∈ Real (0, ∞)

value derived from bank 1 (if pays monthly fee)

#7: $\mu - \tau \cdot x - f1$

value derived from bank 1 (no fee)

#8: μ − **τ**•x

value derived from bank 2 (if pays monthly fee)

#9: $\mu - \tau \cdot (1 - x) - f2$

value derived from bank 2 (no fee)

#10: $\mu - \tau \cdot (1 - x)$

Total number of depositors

#11: η :∈ Real (0, ∞)

fraction of depositors with high balance

#12: $\theta \in \text{Real} [0, 1]$

Dollar amount of low and high balances

#13: β1 :∈ Real (0, ∞)

#14: βh :∈ Real (0, ∞)

fees (if levied) by bank 1 and bank 2

#15: f1 :∈ Real [0, ∞)

#16: f2 : ∈ Real [0, ∞)

*** Section 2.1 in paper: Both banks set min bal b1=b2=βh (high balance)

#17: $\mu - \tau \cdot x - f1 = \mu - \tau \cdot (1 - x) - f2$

#18: SOLVE($\mu - \tau \cdot x - f1 = \mu - \tau \cdot (1 - x) - f2$, x)

eq (2)

#19: $xmm1 = -\frac{f1 - f2 - \tau}{2 \cdot \tau}$

eq (3)

#20: $n11 = xmm1 \cdot (1 - \theta) \cdot \eta$

#21: $n12 = (1 - xmm1) \cdot (1 - \theta) \cdot \eta$

#22: $dl1 = nl1 \cdot \beta l$

#23: $dl1 = (xmml \cdot (1 - \theta) \cdot \eta) \cdot \beta l$

#25: dl2 =
$$((1 - xmml) \cdot (1 - \theta) \cdot \eta) \cdot \beta l$$

Deriving eq (4) (high balance)

#26:
$$\mu - \tau \cdot x = \mu - \tau \cdot (1 - x)$$

#27: SOLVE(
$$\mu - \tau \cdot x = \mu - \tau \cdot (1 - x), x$$
)

#28:
$$xmmh = \frac{1}{2}$$

eq (5)

#29:
$$nh1 = xmmh \cdot \theta \cdot \eta$$

#30:
$$nh2 = (1 - xmmh) \cdot \theta \cdot \eta$$

#31:
$$dh1 = nh1 \cdot \beta h$$

#32:
$$dh1 = (xmmh \cdot \theta \cdot \eta) \cdot \beta h$$

#33:
$$dh2 = nh2 \cdot \beta h$$

#34: dh2 =
$$((1 - xmmh) \cdot \theta \cdot \eta) \cdot \beta h$$

eq (6)

#35: profit1 =
$$\rho \cdot (dl1 + dh1) + f1 \cdot nl1$$

#36: profit2 =
$$\rho \cdot (d12 + dh2) + f2 \cdot n12$$

Deriving (7) and Appendix A

#37: profit1 =
$$\rho \cdot ((xmm) \cdot (1 - \theta) \cdot \eta) \cdot \beta + (xmmh \cdot \theta \cdot \eta) \cdot \beta + f(xmm) \cdot (1 - \theta) \cdot \eta)$$

#38: profit2 =
$$\rho \cdot (((1 - xmm1) \cdot (1 - \theta) \cdot \eta) \cdot \beta 1 + ((1 - xmmh) \cdot \theta \cdot \eta) \cdot \beta h) + f2 \cdot ((1 - xmm1) \cdot (1 - \theta) \cdot \eta)$$

Date: 12/5/2023

$$\#39 \colon \text{ profit1} = \rho \cdot \left(\left(\left(-\frac{\text{f1 - f2 - }\tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta 1 + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \text{f1} \cdot \left(\left(-\frac{\text{f1 - f2 - }\tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) \left(\frac{1}{2} \cdot$$

#40: profit2 =
$$\rho \cdot \left(\left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta 1 + \left(\left(1 - \frac{1}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right)$$

$$\frac{f1 - f2 - \tau}{2 \cdot \tau} \cdot (1 - \theta) \cdot \eta$$

#41:
$$\frac{d}{d \text{ f1}} \left(\text{profit1} = \rho \cdot \left(\left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f1 \cdot \left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \right)$$

#42:
$$0 = \frac{\eta \cdot (\theta - 1) \cdot (2 \cdot f1 - f2 + \beta 1 \cdot \rho - \tau)}{2 \cdot \tau}$$

#43:
$$\frac{d}{d \text{ f1}} \frac{d}{d \text{ f1}} \left(\text{profit1} = \rho \cdot \left(\left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta \right) + \left(\frac{1}{2} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f1 \cdot \left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \right)$$

#44:
$$0 > \frac{\eta \cdot (\theta - 1)}{\tau}$$

#45:
$$\frac{d}{d f2} \left(\text{profit2} = \rho \cdot \left(\left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta 1 + \left(\left(1 - \frac{1}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 - \tau}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right)$$

Date: 12/5/2023 Time: 7:22:26 PM

$$\frac{f1 - f2 - \tau}{2 \cdot \tau} \left[\cdot (1 - \theta) \cdot \eta \right]$$

$$0 = \frac{\eta \cdot (1 - \theta) \cdot (f1 - 2 \cdot f2 - \beta 1 \cdot \rho + \tau)}{2 \cdot \tau}$$

#47:
$$\frac{d}{d f2} \frac{d}{d f2} \left(\operatorname{profit2} = \rho \cdot \left(\left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta \right) + \left(\left(1 - \frac{1}{2} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \right)$$

$$0 > \frac{\eta \cdot (\theta - 1)}{\tau}$$

#49: SOLVE
$$\left[0 = \frac{\eta \cdot (\theta - 1) \cdot (2 \cdot f1 - f2 + \beta 1 \cdot \rho - \tau)}{2 \cdot \tau}, \quad 0 = \frac{\eta \cdot (1 - \theta) \cdot (f1 - 2 \cdot f2 - \beta 1 \cdot \rho + \tau)}{2 \cdot \tau} \right], \quad [f1, f2]$$

eq (7)

[fmm1 =
$$\tau$$
 - β 1· ρ \wedge fmm2 = τ - β 1· ρ]

profitmm1 =
$$\frac{\eta \cdot (\beta h \cdot \theta \cdot \rho - \tau \cdot (\theta - 1))}{2}$$

profitmm2 =
$$\frac{\eta \cdot (\beta h \cdot \theta \cdot \rho - \tau \cdot (\theta - 1))}{2}$$

Result 1a

#53:
$$\frac{d}{d\theta} \left(\text{profitmm1} = \frac{\eta \cdot (\beta h \cdot \theta \cdot \rho - \tau \cdot (\theta - 1))}{2} \right)$$

#54:
$$\frac{\eta \cdot (\beta n \cdot \rho - \tau)}{2}$$

** Section 2.2 no min balance

#55:
$$\mu - \tau \cdot x - f1 = \mu - \tau \cdot (1 - x) - f2$$

#56: SOLVE(
$$\mu - \tau \cdot x - f1 = \mu - \tau \cdot (1 - x) - f2$$
, x)

eq (8)

#57:
$$xff = -\frac{f1 - f2 - \tau}{2 \cdot \tau}$$

eq (9)

#58:
$$n1 = xff \cdot \eta$$

#59:
$$n2 = (1 - xff) \cdot \eta$$

#60:
$$d1 = n1 \cdot ((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h)$$

#61:
$$d2 = n2 \cdot ((1 - \theta) \cdot \beta + \theta \cdot \beta h)$$

#62:
$$d1 = (xff \cdot \eta) \cdot ((1 - \theta) \cdot \beta + \theta \cdot \beta h)$$

#63: d2 =
$$((1 - xff) \cdot \eta) \cdot ((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h)$$

eq (10)

#64: profit1 =
$$\rho \cdot d1 + f1 \cdot n1$$

#65: profit2 =
$$\rho \cdot d2 + f2 \cdot n2$$

Date: 12/5/2023 Time: 7:22:26 PM

Derivation of (11) and Appendix B

#66: profit1 =
$$\rho \cdot ((xff \cdot \eta) \cdot ((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h)) + f1 \cdot (xff \cdot \eta)$$

#67: profit2 =
$$\rho \cdot (((1 - xff) \cdot \eta) \cdot ((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h)) + f2 \cdot ((1 - xff) \cdot \eta)$$

#68: profit1 =
$$\rho \cdot \left(\left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \cdot ((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h) \right) + f1 \cdot \left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right)$$

#69: profit2 =
$$\rho \cdot \left(\left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \cdot \left((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h \right) \right) + f2 \cdot \left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right)$$

$$\#70: \quad \frac{d}{d \text{ f1}} \left(\text{profit1} = \rho \cdot \left(\left(\left(-\frac{\text{f1} - \text{f2} - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \cdot \left((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h \right) \right) + \text{ f1} \cdot \left(\left(-\frac{\text{f1} - \text{f2} - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \right)$$

#71:
$$0 = -\frac{\eta \cdot (2 \cdot f1 - f2 + \beta h \cdot \theta \cdot \rho + \beta 1 \cdot \rho \cdot (1 - \theta) - \tau)}{2 \cdot \tau}$$

#72:
$$\frac{d}{d \text{ f1}} \frac{d}{d \text{ f1}} \left(\text{profit1} = \rho \cdot \left(\left(\left(-\frac{\text{f1} - \text{f2} - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \cdot \left((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h \right) \right) + \text{f1} \cdot \left(\left(-\frac{\text{f1} - \text{f2} - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \right)$$

#73:
$$0 > -\frac{\eta}{T}$$

#74:
$$\frac{d}{d f2} \left(\text{profit2} = \rho \cdot \left(\left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \cdot \left((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h \right) \right) + f2 \cdot \left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \right)$$

#75:
$$0 = \frac{\eta \cdot (f1 - 2 \cdot f2 - \beta h \cdot \theta \cdot \rho + \beta 1 \cdot \rho \cdot (\theta - 1) + \tau)}{2 \cdot \tau}$$

#76:
$$\frac{d}{d f2} \frac{d}{d f2} \left(\text{profit2} = \rho \cdot \left(\left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \cdot \left((1 - \theta) \cdot \beta 1 + \theta \cdot \beta h \right) \right) + f2 \cdot \left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot \eta \right) \right)$$

#77:
$$0 > -\frac{\eta}{T}$$

#78: SOLVE
$$\left[0 = -\frac{\eta \cdot (2 \cdot f1 - f2 + \beta h \cdot \theta \cdot \rho + \beta l \cdot \rho \cdot (1 - \theta) - \tau)}{2 \cdot \tau}, \quad 0 = \frac{\eta \cdot (f1 - 2 \cdot f2 - \beta h \cdot \theta \cdot \rho + \beta l \cdot \rho \cdot (\theta - 1) + \tau)}{2 \cdot \tau} \right], \quad [f1, f2]$$

eq (11)

#79:
$$[fff1 = -\beta h \cdot \theta \cdot \rho + \beta l \cdot \rho \cdot (\theta - 1) + \tau \wedge fff2 = -\beta h \cdot \theta \cdot \rho + \beta l \cdot \rho \cdot (\theta - 1) + \tau]$$

#80:
$$\operatorname{profitff1} = \frac{\eta \cdot \tau}{2}$$

Result 2a

#81:
$$\frac{d}{d\theta} (f1 = -\beta h \cdot \theta \cdot \rho + \beta l \cdot \rho \cdot (\theta - 1) + \tau)$$

#82:
$$0 > \rho \cdot (\beta 1 - \beta h)$$

*** Section 3: Do banks benefit from imposing minimum balance?

Recall equilibrium fees and profits under min bal (line 50 above)

#83: $fmm1 = \tau - \beta 1 \cdot \rho$

#84: profitmm1 =
$$\frac{\eta \cdot (\beta h \cdot \theta \cdot \rho - \tau \cdot (\theta - 1))}{2}$$

Recall equilibrium fees and profits with NO min bal (line 79 above)

#85: fff1 =
$$-\beta h \cdot \theta \cdot \rho + \beta l \cdot \rho \cdot (\theta - 1) + \tau$$

#86: profitff1 =
$$\frac{\eta \cdot \tau}{2}$$

comparing fees: (m,m) minus (f,f), eq (12): fmm1 - fff1

#87:
$$\tau - \beta l \cdot \rho - (-\beta h \cdot \theta \cdot \rho + \beta l \cdot \rho \cdot (\theta - 1) + \tau)$$

#88:
$$\beta h \cdot \theta \cdot \rho - \beta 1 \cdot \theta \cdot \rho > 0$$

comparing profits: (m,m) minus (f,f), eq (13): profitmm1 - profitff1

#89:
$$\frac{\eta \cdot (\beta h \cdot \theta \cdot \rho - \tau \cdot (\theta - 1))}{2} - \frac{\eta \cdot \tau}{2}$$

*** Section 4: Asymmetric strategies

** Subsection 4a: Eql fees

Deriving eq (14): xmfl (low-balance, both charge fees)

#91:
$$\mu - \tau \cdot x - f1 = \mu - \tau \cdot (1 - x) - f2$$

#92: SOLVE(
$$\mu - \tau \cdot x - f1 = \mu - \tau \cdot (1 - x) - f2, x$$
)

#93:

$$xmfl = - \frac{f1 - f2 - \tau}{2 \cdot \tau}$$

Also in eq (14): xmfh (high-balance, only bank 2 charges a fee f2)

#94: $\mu - \tau \cdot x = \mu - \tau \cdot (1 - x) - f2$

#95: SOLVE($\mu - \tau \cdot x = \mu - \tau \cdot (1 - x) - f2$, x)

#96:

$$xmfh = \frac{f2 + \tau}{2 \cdot \tau}$$

eq (15) num low-balance depositors

#97: $nl1 = xmfl \cdot (1 - \theta) \cdot \eta$

#98: $n12 = (1 - xmf1) \cdot (1 - \theta) \cdot \eta$

#99: $dl1 = nl1 \cdot \beta l$

#100: d12 = $n12 \cdot \beta1$

#101: dl1 = $(xmfl \cdot (1 - \theta) \cdot \eta) \cdot \beta l$

#102: dl2 = $((1 - xmfl) \cdot (1 - \theta) \cdot \eta) \cdot \beta l$

eq (16) num high-balance depositors

#103: $nh1 = xmfh \cdot \theta \cdot \eta$

#104: $nh2 = (1 - xmfh) \cdot \theta \cdot \eta$

#105: $dh1 = nh1 \cdot \beta h$

#106: $dh2 = nh2 \cdot \beta h$

#107: dh1 = $(xmfh \cdot \theta \cdot \eta) \cdot \beta h$

Time: 7:22:26 PM Date: 12/5/2023

#108: dh2 = $((1 - xmfh) \cdot \theta \cdot \eta) \cdot \beta h$

eq (17): Profit functions

#109: profitmf1 = $\rho \cdot (d11 + dh1) + f1 \cdot n11$

#110: profitmf2 = $\rho \cdot (d12 + dh2) + f2 \cdot (n12 + nh2)$

#111: profitmf1 = $\rho \cdot ((xmfl \cdot (1 - \theta) \cdot \eta) \cdot \beta l + (xmfh \cdot \theta \cdot \eta) \cdot \beta h) + fl \cdot (xmfl \cdot (1 - \theta) \cdot \eta)$

#112: profitmf2 = $\rho \cdot (((1 - xmf)) \cdot (1 - \theta) \cdot \eta) \cdot \beta + ((1 - xmf)) \cdot \theta \cdot \eta) \cdot \beta + f2 \cdot ((1 - xmf)) \cdot (1 - \theta) \cdot \eta + (1 - xmf) \cdot (1 - xmf$ $xmfh) \cdot \theta \cdot \eta$

Deriving eq (18) and Appendix C

#113: profitmf1 =
$$\rho \cdot \left(\left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta 1 + \left(\frac{f2 + \tau}{2 \cdot \tau} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f1 \cdot \left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta h$$

#114: profitmf2 =
$$\rho \cdot \left(\left(\left(1 - -\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta 1 + \left(\left(1 - \frac{f2 + \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - -\frac{f2 - \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - -\frac{f2 - \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right)$$

#115: $\frac{d}{d + f_1} \left(\text{profitmf1} = \rho \cdot \left(\left(\left(-\frac{f_1 - f_2 - \tau}{2 - \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta \right) + \left(\frac{f_2 + \tau}{2 - \tau} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f_1 \cdot \left(\left(-\frac{f_2 - \tau}{2 - \tau} \right) \cdot \beta \right) + f_2 \cdot \left(\left(-\frac{f_2 - \tau}{2 - \tau} \right) \cdot \beta \right) + f_3 \cdot \left(-\frac{f_3 - \tau}{2 - \tau} \right) \cdot \beta \right)$

Date: 12/5/2023 Time: 7:22:26 PM

$$\frac{f1 - f2 - \tau}{2 \cdot \tau} \left[\cdot (1 - \theta) \cdot \eta \right]$$

$$0 = \frac{\eta \cdot (\theta - 1) \cdot (2 \cdot f1 - f2 + \beta 1 \cdot \rho - \tau)}{2 \cdot \tau}$$

$$\#117: \frac{d}{d \ f1} \frac{d}{d \ f1} \left(\text{profitmf1} = \rho \cdot \left(\left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta \right) + \left(\frac{f2 + \tau}{2 \cdot \tau} \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f1 \cdot \left(\left(-\frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \right)$$

$$0 > \frac{\eta \cdot (\theta - 1)}{T}$$

#119:
$$\frac{d}{d f2} \left(\text{profitmf2} = \rho \cdot \left(\left(\left(1 - - \frac{f1 - f2 - \tau}{2 \cdot \tau} \right) \cdot (1 - \theta) \cdot \eta \right) \cdot \beta 1 + \left(\left(1 - \frac{f2 + \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) + f2 \cdot \left(\left(1 - - \frac{f2 + \tau}{2 \cdot \tau} \right) \cdot \beta \right) \right)$$

$$\frac{\mathsf{f1} - \mathsf{f2} - \mathsf{\tau}}{2 \cdot \mathsf{\tau}} \bigg) \cdot (1 - \theta) \cdot \mathsf{\eta} + \left(1 - \frac{\mathsf{f2} + \mathsf{\tau}}{2 \cdot \mathsf{\tau}}\right) \cdot \theta \cdot \mathsf{\eta} \bigg) \bigg)$$

$$0 = -\frac{\eta \cdot (\mathsf{f1} \cdot (\theta - 1) + 2 \cdot \mathsf{f2} + \beta \mathsf{h} \cdot \theta \cdot \rho + \beta \mathsf{l} \cdot \rho \cdot (1 - \theta) - \tau)}{2 \cdot \tau}$$

$$\#121: \ \frac{d}{d\ f2} \ \frac{d}{d\ f2} \left(\text{profitmf2} = \rho \cdot \left(\left(\left(1 \ - \ - \ \frac{f1 \ - \ f2 \ - \ \tau}{2 \cdot \tau} \right) \cdot (1 \ - \ \theta) \cdot \eta \right) \cdot \beta 1 \ + \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(\left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \beta h \right) \ + \ f2 \cdot \left(1 \ - \ \frac{f2 \ + \ \tau}{2 \cdot \tau} \right) \cdot \theta \cdot \eta \right) \cdot \theta \cdot \eta \right)$$

$$--\frac{\mathsf{f1}-\mathsf{f2}-\mathsf{\tau}}{2\!\cdot\!\mathsf{\tau}}\bigg)\!\cdot\!(1-\theta)\!\cdot\!\mathsf{\eta}\,+\left(1-\frac{\mathsf{f2}+\mathsf{\tau}}{2\!\cdot\!\mathsf{\tau}}\right)\!\cdot\!\theta\!\cdot\!\mathsf{\eta}\bigg)\bigg)$$

#122:

$$0 > -\frac{\eta}{T}$$

#123: SOLVE
$$\left[0 = \frac{\eta \cdot (\theta - 1) \cdot (2 \cdot f1 - f2 + \beta 1 \cdot \rho - \tau)}{2 \cdot \tau}, 0 = -\frac{\eta \cdot (f1 \cdot (\theta - 1) + 2 \cdot f2 + \beta h \cdot \theta \cdot \rho + \beta 1 \cdot \rho \cdot (1 - \theta) - \tau)}{2 \cdot \tau} \right], [f1, f2]$$

eq (18)

#124:
$$\left[f1 = -\frac{\beta h \cdot \theta \cdot \rho + \beta 1 \cdot \rho \cdot (3 - \theta) - 3 \cdot \tau}{\theta + 3} \wedge f2 = -\frac{2 \cdot \beta h \cdot \theta \cdot \rho + 3 \cdot \beta 1 \cdot \rho \cdot (1 - \theta) + \tau \cdot (\theta - 3)}{\theta + 3}\right]$$