

FACULTAD DE INGENIERIA

LABORATORIO DE COMPUTACION SALA B

PROFESOR: ALEJANDRO PIMENTEL
ASIGNATURA: FUNDAMENTOS DE PROGRAMACION
GRUPO:135
No DE PRACTICA: 3
INTEGRANTE: _MERAZ DIONICIO ISRAEL
N₀ DE EQUIPO EMPLEADO <u>: 2</u>
No DE LISTA O BIRGADA: <u>8875</u>
SEMESTRE:1
FECHA DE ENTREGA: 2 de Septiembre de 2019
OBSERVACIONES: Muy bien, sin embargo en el segundo abusas un poco de algoritmos escritos para personas, ya trabajaremos más con instrucciones que pueda interpretar una computadora,
tu solución de la recta numérica es correcta pero la máquina
no la entenderá, necesitas usar operadores básicos como sumas, restas, o mayor y menor que.
CALIFICACION: 10

OBJETIVO:

Elaborar algoritmos correctos y eficientes en la solución de problemas siguiendo la etapa de análisis y diseño pertenecientes al ciclo de vida del software.

INTRODUCCION: Los algoritmos son instrucciones inequívocas y ordenadas que tienen un fin.

Explicar las precondiciones y el conjunto de salidas de los algoritmos para:

- 1. Pescar
- Tener una caña de pescar
- Tener ropa adecuada para pescar, como unas botas, un chaleco, etc.
- Tener un bote
- Conseguir alimento para los peces.
- Llevar consigo un contenedor para llevar los pescados.
- Estar en lago, en un rio o en el mar.

Salida(s): Pescados, basura, Experiencia para pescar.

- 2. Lavarse las manos:
- Tener sucia las manos
- Estar al frente de un lavabo
- Tener jabón a la mano
- Tener una toalla para secarse las manos

Salida(s): Las manos limpias.

- 3. Cambiar una llanta:
- Tener una llanta de repuesto.
- Tener un gato hidráulico.
- Tener una caja de herramientas.

_

Salida(s): Tener una llanta nueva funcionado en el coche

- 4. Convertir un número binario a decimal.
- Tener conocimiento de los números binarios.
- Conocimientos de los números decimales.
- Conocer a los exponentes

Salida(s): La conversión de un binario a decimal

Desarrollar los algoritmos para:

1. Determinar si un número es positivo o negativo.

Precondiciones: Solo se aceptan números reales y el cero es neutro es decir no tiene un signo positivo o negativo.

- Escribir el número que deseas saber si es positivo o negativo.
- Si un número es negativo tiene que ser menor que cero, identificar el signo menos.
- Si un número es positivo tiene que ser mayor que cero, identificar que no tenga un signo al lado del número. .
- Mostrar el resultado.
- 2. Obtener el mayor de dos números deferentes:

Precondición: Solo números reales, y no variables.

- Ubicarnos en la recta numérica.
- Localizar los números en la línea recta que deseas comprobar.
- Conocer que los negativos son menores que los positivos y el cero.
- Escoge el primer valor, si el segundo valor está a la izquierda, el primero es el mayor.
- Si el segundo valor está a la derecha del primero, el segundo valor es el mayor.
- Mostrar el resultado.
- 3. Obtener el factorial de un número

Precondición: Solo números enteros. (Positivos y negativos)

- Tomar el número que deseas obtener el factorial.
- Agregar el símbolo factorial (!) al lado del número y el igual.
- Ordenar los números empezando del 1 al número que escogiste para sacar el factorial.
- Empezar a multiplicar
- Escribir el resultado.

Verificar sus algoritmos anteriores, al "ejecutarlos" paso a paso con los siguientes valores.

1. Determinar si un número es positivo o negativo.

$$(54, -9, -14, 8, 0)$$

- 54, Este número es positivo, porque no lleva consigo un signo.
- -9, Es negativo, porque tiene el signo negativo.
- -14 Es negativo.
- 8 Es positivo.
- 0, En el cuarto punto menciona que el cero es neutro.
- 2. Obtener el mayor de dos números.

- Los conjuntos (127, 8+4i) y (7.m), no se permiten ya que desde la precondición solo aceptan números reales y no complejos, tampoco variables.
- (4,5)

El 5 es mayor ya que en el cuarto paso nos menciona: para que un número es positivo es de derecha a izquierda.

- (-9,16), El 16 el mayor. En el algoritmo menciona que los números negativos siempre son menores del positivo y del cero.

Desarrollar algoritmos propios de un procesador (asignando registros genéricos) para:

- 1. Cambiar el signo de un número binario.
- Tomar un valor de la memoria y pasarlo al "número binario"
- Activar la instrucción cambio de signo sobre el "número binario".
- Guardar el resultado en "numero cambiado de signo".
- Pasar el contenido de "numero cambiado de signo" a la memoria.
- Parar proceso.
- 2. Hacer una suma larga binaria.
- Tomar un valor de la memoria y pasarlo al "binario sumando 1".
- Tomar un valor de la memoria y pasarlo al "binario sumando 2".
- Activar la instrucción de suma sobre el "binario sumando 1" y el "binario sumando 2".
- Guardar el registro en "Resultado de la suma".
- Pasar el contenido de "Resultado de la suma" en la memoria.
- Parar el proceso.

CONCLUSIONES: Observamos que los algoritmos no son ajenos a la vida cotidiana de una persona, los algoritmos nos ayudan en sistematizar mejor la realización de una acción y ser más claro. Un algoritmo lleva precondiciones que son como los ingredientes pretendemos que ya lo tenemos, los pasos a seguir y la salida que el resultado que se espera obtener.