Performance Analysis of Parallel Programs

Lecture 9
Introduction to High Performance Computing
IN4049 TUDelft
2021/2022

About Performance

- Performance metrics
- Performance analysis, estimation, and prediction
 - theoretical performance analysis
 - speed-up
 - efficiency
 - practical performance analysis
 - hardware
 - software

Lecture 9

Performance metrics

A pragmatic classification:

- Users:
 - How fast is my application?
 - execution time
- Developers:
 - How close to the absolute best can I be?
 - estimate absolute best
 - compute performance gain (speed-up)
- Budget-holders:
 - How much of my infrastructure am I using?
 - efficiency
 - utilization

Lecture 9

Performance "actions"

- Performance measurement
 - measure execution time
 - derive metrics such as speed-up, throughput, bandwidth
 - platform and application implementation are available
 - data-sets are available
- Performance analysis
 - estimate performance bounds
 - performance bounds are typically worst-case, best-case, average-case scenarios
 - platform and application are available/models
 - data-sets are available/models
- Performance prediction
 - estimate application behavior
 - platform and application are models
 - data-sets are real.

Theoretical performance analysis

Performance Metrics

- Serial execution time: T_S
- Parallel execution time: T_P

- Total overhead relevant for dedicated parallel processing
- Overhead (p is # compute units) $T_O = p \cdot T_P T_S$
 - ideal case: $T_o = 0$ (perfect linear speed-up)
- Speedup $S = \frac{T_{serial_best}}{T_P}$

Overhead may **depend** on p!

Relative versus true speedup: using $T_P(P=1)$ instead of T_{serial_best}

Superlinear speed-up is sometimes possible: cache effects / memory sizes

Sub-/Super-/linear Speedup

$$S_{linear} = p$$
 Linear Speedup

$$S_{sublinear} < p$$
 Sublinear speedup

 $S_{\text{superlinear}} > p$ Superlinear speedup

E.g., a small partion of data can yield a higher cache hit rate

Efficiency

$$E = \frac{S}{p}$$

$$E = \frac{S}{p} = \frac{T_S}{p \cdot T_p}$$

$$T_O = p \cdot T_P - T_S$$

$$E = \frac{1}{1 + \frac{T_o}{T_S}}$$

Sources of overhead in parallel programs

- Inter-process interaction
 - communication => idling
 - synchronization => serialization
- Load imbalance
 - un-even workloads => idling
- Additional computations, such as
 - memory allocation
 - data partitioning
 - managing the parallelism
 - •

What is problem size?

- Intuitively: size of the input ... but
 - multiple inputs are a problem
 - does not characterize the dependency on the computation
 - <u>example:</u> MVP: A(m,n) * y(n)
- Better definition:
 - the problem size (W) is equal to the number of basic computation steps in the best sequential algorithm
 - example: $MVP: W = \Theta(m*n)$
- We assume further that problem size W = Ts

Recap: Amdahl's law – fixed problem size

- Every application has an intrinsically sequential part
- Amdahl's law:
 - let s be the fraction of work that is sequential, then
 (1-s) is the fraction that is parallelizable
 - *p* = number of processors
 - S = Speedup

$$S = T_{seq}/T_{par}$$

$$= 1/(s + (1 - s)/p)$$

$$\leq 1/s$$

Speedup is bounded by the sequential fraction.

Amdhal's Law: max speedup < 1/s

Isoefficiency function

What is a 'good' efficiency of a parallel program? → No simple answer

Emphasis on scalablity of a parallel algorithm: can a program retain its efficiency when #processors and problem size increase?

$$T_o = p \cdot T_P - W$$
 (definition of overhead)
and
$$S = \frac{W}{T_P} \longrightarrow S = \frac{W \cdot p}{W + T_o} \longrightarrow E = \frac{1}{1 + T_o/W}$$

Conclusions:

- 1. E=1 when there is no overhead
- 2. E is fixed iff T_o/W is fixed

Simple performance modeling

- Model computation
 - count <u>number of operations</u>
 - assume flat memory model
- Model communication
 - typically simple model, linear with the number of data items communicated for large volumes of data
 - only model explicit the distant communication
- Assume:
 - $T_s = number_ops * t_{op}$
 - $T_p = (number_ops/p) * t_{op} + T_{comm}$
 - $T_{comm} = number_comm * t_{comm} + t_{setup}$ (large setup time as will be seen later, we ignore it for simplicity now)

Example: stencil-type computations (1/3)

(n+2)x(n+2) grid given boundary values

column-wise data distribution

$$a[i,j]=0.25*(a[i,j-1]+a[i-1,j]+a[i,j+1]+a[i+1,j]);$$

$$T_{S} = 4t_{op} \cdot n^{2}$$
 $T_{comm} = 2n \cdot t_{data}$ $T_{calc} = 4t_{op} \cdot (n \cdot n/p) = 4t_{op}n^{2}/p$ $T_{P} = 4t_{op} \cdot n^{2}/p + 2n \cdot t_{data}$

Example: stencil-type computations (2/3)

$$S = \frac{t_{op}n^2 \cdot p}{t_{op}n^2 + p \cdot n \cdot t_{data}/2}$$

$$E = \frac{S}{p} = \frac{1}{1 + (p/n)(t_{data}/2t_{op})}$$

- So p must be small relative to n for efficiency
- Efficiency stays constant as long as p/n is constant

Example: stencil-type computations (3/3)

Suppose $t_{data}=20*t_{op}$, n=1000

Typical Performance Curve

$$E = 90\%$$

For stencil example (n=1000): $p \approx 22$

Performance evaluation: practical examples

Hardware Performance metrics

- Clock frequency [GHz] = absolute hardware speed
 - memories, CPUs, interconnects
- Operational speed [GFLOPs]
 - how many operations per cycle a machine can do
- Memory bandwidth (BW) [GB/s]
 - differs a lot between different memories on chip
 - remember? Slow memory is large, fast memory is small ...
- Power [Watt]
- Derived metrics
 - normalized for comparison purposes ...
 - FLOPs/Byte, FLOPs/Watt, ...

Theoretical peak performance

```
Peak = chips * cores * vectorWidth *

FLOPs/cycle * clockFrequency

cores = real cores, hardware threads, or ALUs, depending on the architecture
```

Examples from DAS-4:

Intel Core i7 CPU

```
2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs
```

NVIDIA GTX 580 GPU

```
1 chip * 16 SMs * 32 cores * 2 FLOPs/cycle * 1.544 GHz = 1581 GFLOPs
```

ATI AMD Radeon HD 6970 GPU

```
1 chip * 24 SIMD engines * 16 cores * 4-way vectors * 2 FLOPs/cycle * 0.880 GHz = 2703 GFLOPs
```

DRAM Memory bandwidth (off-chip)

Throughput = memory bus frequency * bits per cycle * bus width

- memory clock is not the CPU clock (typically lower)
- divide by 8 to get B/s

Examples:

• Intel Core i7 DDR3: 1.333 GHz * 2 * 64 = 21 GB/s

• NVIDIA GTX 580 GDDR5: 1.002 GHz * 4 * 384 = 192 GB/s

• ATI HD 6970 GDDR5: 1.375 GHz * 4 * 256 = **176 GB/s**

Memory bandwidths

On-chip memory can be orders of magnitude faster

- Registers, shared memory, caches, ...
 - e.g., AMD HD 7970 L1 cache achieves 2 TB/s

Other memories: depends on the interconnect

• Intel's QPI (Quick Path Interconnect): 25.6 GB/s

• AMD's HT3 (Hyper Transport 3): 19.2 GB/s

Accelerators: PCI-e 2.0:8.0 GB/s

Power

- Chip manufacturers specify Thermal Design Power (TDP)
 - some definition of maximum power consumption ...
- We can measure dissipated power
 - whole system
 - typically (much) lower than TDP
- Power efficiency: FLOPs / Watt
- Examples (with theoretical peak and TDP)

```
• Intel Core i7: 154 / 160 = 1.0 GFLOPs/W
```

• ATI HD 6970: 2703 / 250 = **10.8 GFLOPs/W**

Summary

	Cores	Threads/ ALUs	GFLOPS	Bandwidth	FLOPs/ Byte
Sun Niagara 2	8	64	11.2	76	0.1
IBM BG/P	4	8	13.6	13.6	1.0
IBM Power 7	8	32	265	68	3.9
Intel Core i7	4	16	85	25.6	3.3
AMD Barcelona	4	8	37	21.4	1.7
AMD Istanbul	6	6	62.4	25.6	2.4
AMD Magny- Cours	12	12	125	25.6	4.9
Cell/B.E.	8	8	205	25.6	8.0
NVIDIA GTX 580	16	512	1581	192	8.2
NVIDIA GTX 680	8	1536	3090	192	16.1
AMD HD 6970	384	1536	2703	176	15.4
AMD HD 7970	32	2048	3789	264	14.4

Absolute hardware performance

Only achieved in the optimal conditions:

- processing units 100% used
- all parallelism 100% exploited
- all data transfers at maximum bandwidth
- but
 - no application can achieve all of this
 - even difficult to write micro-benchmarks
- hardware catalogue values are not realistic estimates of performance upper bounds

We need realistic estimates of what a platform can do when given a realistic workload => Roofline model

Software metrics (3 P's)

Performance metrics

- Execution time
 - Derive speed-up vs. best available sequential performance
- Achieved GFLOPs:
 - Count (FL)OPs, divide by execution time => FLOPS/s
 - Derive computational efficiency (i.e., utilization) = $\frac{Achieved FLOPs}{Peak FLOPs}$
- Achieved GB/s:
 - Count memory OPs, divide by execution time => B/s
 - Derive memory efficiency (i.e., utilization) = $\frac{Achieved GB/s}{Peak GB/s}$

Productivity and **P**ortability metrics

- Programmability
- Production costs
- Maintenance costs

Arithmetic intensity

- The (average) number of arithmetic (floating point)
 operations executed by a kernel per byte of
 memory accessed
- Ignore "overheads"
 - loop counters
 - array index calculations
 - •

Convert color into grayscale

Arithmetic intensity:

- What is the arithmetic intensity of the RGB-gray kernel?
- Is this a compute-intensive or a memory-intensive kernel?
- Is the kernel type (memory- or computeintensive) dependent on the application, machine, or both?

Compute or memory intensive?

Arithmetic intensity for several actual many-

Al for classes of applications

Operational intensity

- An extension (i.e., refinement) of arithmetic intensity:
 The number of operations per byte of memory accessed
- Difference with Arithmetic Intensity
 - operations, not just arithmetic
 - caches are "skipped"
 - count operations only
 - transfers not between processor and cache
 - but between cache and DRAM memory

Attainable performance

- Attainable GFlops/sec
- = min (Peak Floating-Point Performance, Peak Memory Bandwidth * Operational Intensity)
- To translate:
 - if an application is compute-bound =>performance is limited by peak performance
 - if an application is memory-bound =>
 performance is limited by the load it puts on the memory system

The Roofline model

AMD Opteron X2 (two cores): 17.6 gflops, 15 GB/s, ops/byte = 1.17

Attainable performance (cont'd)

- It is a measure of the performance an application can achieve
 - more realistic because of the Al
- Typical case: application A runs on platform X in T_{exec_A}:

```
\label{eq:peakCompute} \begin{array}{lll} \text{PeakCompute}(\textbf{X}) &= \text{maxFLOP GLOPS/s} & (\text{catalogue}) \\ \text{PeakBW}(\textbf{X}) &= \text{maxBW GB/s} & (\text{catalogue}) \\ \text{RooflineCompute}(\textbf{A}, \textbf{X}) &= \text{min}(\textbf{AI}(\textbf{A}) * \text{maxBW}, \text{maxFLOP}) & (\text{model}) \\ \text{AchievedCompute}(\textbf{A}, \textbf{X}) &= \text{FLOPs}(\textbf{A}) / \textbf{T}_{\text{exec\_A}} & (\text{real execution}) \\ \text{AchievedBW}(\textbf{A}, \textbf{X}) &= \text{MemOPs}(\textbf{A}) / \textbf{T}_{\text{exec\_A}} & (\text{real execution}) \\ \text{UtilizationCompute} &= \text{AchievedCompute}(\textbf{A}, \textbf{X}) / \text{PeakCompute}(\textbf{X}) &< 1 \\ \text{UtilizationBW=AchievedBW}(\textbf{A}, \textbf{X}) / \text{PeakBW}(\textbf{X}) &< 1 \\ \end{array}
```

Peakcompute >= Roofline > Achievedcompute
Peakbw ? Achievedbw

Note: AchievedBW > PeakBW <=> faster memories on the chip play a role.

Roofline: comparing architectures

Use the Roofline model

Determine what to do first to gain performance

- increase memory streaming rate (fights memboundness)
 - GPU: memory coalescing
 - CPUs: better caching
- apply in-core optimizations (fights compute-boundness)
 - vectorization
- increase arithmetic intensity (fights mem-boundness)
 - change your algorithm
 - think of new ways to reuse the data