

|          |  |  |  | Sub | ject | Cod | le: k | <b>COF</b> | <u> 1049</u> |
|----------|--|--|--|-----|------|-----|-------|------------|--------------|
| Roll No: |  |  |  |     |      |     |       |            |              |

## BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

### **SECTION A**

| Attem | pt <i>all</i> questions in brief.                    | 2x10=20 |
|-------|------------------------------------------------------|---------|
| Qno   | Questions                                            | СО      |
| (a)   | Define the term binary codes with an example.        | 1       |
| (b)   | Differentiate between SOP & POS form.                | 1       |
| (c)   | Define the term combinational logic with an example. | 2       |
| (d)   | Discuss universal gates.                             | 2       |
| (e)   | Explain the term Latch.                              | 3       |
| (f)   | Explain the term registers.                          | 3       |
| (g)   | Define Asynchronous circuits.                        | 4       |
| (h)   | Discuss hazards.                                     | 4       |
| (i)   | Discuss logic family and its use.                    | 5       |
| (i)   | What do you mean by a memory?                        | 5       |

#### **SECTION B**

| 2. Att | empt any | three ( | of the | following: |
|--------|----------|---------|--------|------------|
|--------|----------|---------|--------|------------|

| 10x3 | =30 |
|------|-----|
|------|-----|

Printed Page: 1 of 2

| Qno | Questions                                                                              |   |  |  |  |
|-----|----------------------------------------------------------------------------------------|---|--|--|--|
| (a) | Explain the implementation of an X-OR gate with NAND implementation.                   |   |  |  |  |
| (b) | Illustrate the working of Serial and parallel adders and differentiate the operations. | 2 |  |  |  |
| (c) | Explain the working of J-K Flip-Flop.                                                  | 3 |  |  |  |
| (d) | Define the state reduction steps for a machine.                                        | 4 |  |  |  |
| (e) | Discuss different types of RAM memory cell.                                            | 5 |  |  |  |

### **SECTION C**

# 3. Attempt any *one* part of the following:

|      | ()      |
|------|---------|
|      |         |
|      |         |
| Ox 1 | 0x1 = 1 |

| Qno | Questions                                                     | CO |
|-----|---------------------------------------------------------------|----|
| (a) | Minimize the following Boolean function using K Map           | 1  |
|     | $f(A, B, C, D) = \sum m(0, 1, 4, 8, 9, 10) + \sum d(2, 11)$   |    |
| (b) | Explain different steps associated to Quine Mc Culsy (Tabular | 1  |
|     | Method) of minimizing Boolean Functions.                      |    |

# 4. Attempt any *one* part of the following:

| 1 | Λ√1  | _ | 1 | 0 |
|---|------|---|---|---|
| 1 | UX I | = |   | u |

| Qno | Questions                                                      | CO |
|-----|----------------------------------------------------------------|----|
| (a) | Design a 4-bit magnitude comparator.                           | 2  |
| (b) | Design a full adder and full subtractor using NAND gates only. | 2  |

### 5. Attempt any *one* part of the following:

| 10x1 = 10 |  |
|-----------|--|
|-----------|--|

| Qno | Questions                                                            | CO |
|-----|----------------------------------------------------------------------|----|
| (a) | Describe the Design of J-K FF using T FF.                            | 3  |
| (b) | Describe the operations and applications of a Serial-in Parallel-out | 3  |



Roll No: Subject Code: KOE049

Printed Page: 2 of 2

### BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

6. Attempt any *one* part of the following: 10x1 = 10

| Qno | Questions                                                                  | CO |  |  |  |  |
|-----|----------------------------------------------------------------------------|----|--|--|--|--|
| (a) | Design a sequential circuit with two flip flops A & B and one input x.     |    |  |  |  |  |
|     | when $x = 0$ , the state of the circuit remains the same and when $x = 1$  |    |  |  |  |  |
|     | the circuit passes through the state transitions from 00 to 01 to 11 to 10 |    |  |  |  |  |
|     | back to 00 and repeat.                                                     |    |  |  |  |  |
| (b) | A sequential circuit has two J K flip flops A & B, two inputs X & Y,       | 4  |  |  |  |  |
|     | and one output Z. The equations defining this system are as following:     |    |  |  |  |  |
|     | $J_A = BX + B'Y'$ $K_A = B'XY'$ $J_B = A'X$ $K_B = A + XY'$                |    |  |  |  |  |
|     | Z = AXY + BX'Y'                                                            |    |  |  |  |  |
|     | Design the circuit.                                                        |    |  |  |  |  |

7. Attempt any *one* part of the following: 10x1 = 10

| ittem |                                                                                                                                        | )XI — IU |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|----------|
| Qno   | Questions                                                                                                                              | CO       |
| (a)   | Explain the working and structure of EEPROM cell.                                                                                      | 5        |
| (b)   | Describe the difference between PAL & PLA using neat diagram and                                                                       | 1 5      |
|       | suitable examples.                                                                                                                     |          |
|       |                                                                                                                                        |          |
|       |                                                                                                                                        | ,5       |
|       |                                                                                                                                        | 0.       |
|       | O'V                                                                                                                                    | OK       |
|       |                                                                                                                                        |          |
|       | \(\frac{1}{2}\)                                                                                                                        | *        |
|       | 0,1,3                                                                                                                                  |          |
|       | $G_{\lambda}$                                                                                                                          |          |
|       |                                                                                                                                        |          |
|       |                                                                                                                                        |          |
|       | , DK                                                                                                                                   |          |
|       |                                                                                                                                        |          |
|       | 5                                                                                                                                      |          |
|       | Explain the working and structure of EEPROM cell.  Describe the difference between PAL & PLA using neat diagram and suitable examples. |          |
|       |                                                                                                                                        |          |
|       |                                                                                                                                        |          |
|       | 00                                                                                                                                     |          |
|       |                                                                                                                                        |          |
|       | 00                                                                                                                                     |          |
|       | N. P.                                                                                                                                  |          |
|       | · Or                                                                                                                                   |          |
|       |                                                                                                                                        |          |
|       |                                                                                                                                        |          |
|       |                                                                                                                                        |          |
|       |                                                                                                                                        |          |
|       |                                                                                                                                        |          |