Friday, February 10, 2017 09:12

Find the maximum/minimum values of $f(x,y,z) = 2x^3 + 2y^2 + 3z^2$ on vn't > phene $g(x,y,z) = x^2 + y^2 + z^2 = 0$ compact set.

Layrengian:
$$L_{f,g}(\chi, y, z, \lambda) = f(\chi, y, z) - \lambda g(\chi, y, z).$$

= $2\chi^3 + 2y^2 + 3z^2 - \lambda (\chi^2 + y^2 + z^2 - 1)$

find critical points of layrangin:

1)
$$0 = \frac{31}{31} = \chi^2 + y^2 + z^2 - 1$$

2)
$$0 = \frac{\partial L}{\partial x} = 6x^2 - 2\lambda x = 2x(3x - \lambda)$$

3)
$$0 = \frac{3L}{3y} = 4y - 2\lambda y = 2y(2-\lambda)$$

4)
$$0 = \frac{2L}{22} = 62 - 2\lambda Z = 27(3-\lambda)$$

Casel: x=0. then at least one of y & z is nonzero.

Casela: $y \neq 0$. Then $2-\lambda=0 \Rightarrow \lambda=2$. So $3-\lambda\neq 0$ So Z=0. also $y^2=1\Rightarrow y=\pm 1$ So we get $(0,\pm 1,0,2)$ are arr pts.

(0,0,±1,3) crit pt

(ax 2: x = 0 = 3x-x=0 so x=3x.

$$50 \quad 0 = 2y(2-3x)$$

$$0 = 27(3-3x)$$

Case 2=:
$$y = 0$$
, $Z = 0$. So $x = 1$ So $\lambda = 13$ $\pm (1, 0, 0, 3)$ Crit pts

(a)(2b): $y \neq 0$ so $x = \frac{2}{3} \Rightarrow Z = 0 \Rightarrow (\frac{2}{3})^2 + y^2 = 0 \Rightarrow y = \pm \frac{15}{3}$ So (rit pts: $(\frac{2}{3}, \pm \frac{15}{3}, 0, 2)$

(ard 20: 2+0 so x=1 ⇒ 1+(2) 9 > 1 so no points.

Critical pts (X,4,7)	f(x, y, 7) = 2x3 + 2y2+322
$(0,0,\pm 1)$	3
(0,±1,0)	2
(1,0,0)	2
(-1, 0, 0)	- 2
$\left(\frac{2}{3},\frac{\pm\sqrt{5}}{3},0\right)$	$\frac{16}{27} + \frac{10}{9} = \frac{46}{27} + 22$

50 the function is maxed to 3 nt (6,0,±1). Wined to -2 at (-1,90).

We derived layrough multiplier wethod by noting that at a local max or only $\vec{\alpha}$ satisfying the constraint we have that both $\nabla f(\vec{\alpha})$ and $\nabla g(\vec{\alpha})$ perpendicular to tangent plane to $g(\vec{\alpha}) = 0$ at $\vec{\alpha}$. $\Rightarrow \nabla f(\vec{\alpha})$ and $\nabla g(\vec{\alpha})$ must be parallel. This only works if $\nabla g(\vec{\alpha}) \neq \vec{0}$ at if the are Points $g(\vec{\alpha}) = 0$ and $\nabla g(\vec{\alpha}) = \vec{0}$, three may be a local max/min there.

· La grange nu Hiplier method can be extended to more than one constraint: Optimize f(x) subject to k constraints gital=0 i=1,..., k

Then
$$L(\vec{x}, \lambda_1, ..., \lambda_k) = f(\vec{x}) - \sum_{j=1}^{k} \lambda_j g_j(\vec{x})$$

Critical points of L are candidates for max/min of f subject constraints.

Ly all of $\nabla f(\vec{a})$, $\nabla g_{i}(\vec{a})$, ..., $\nabla g_{i}(\vec{a})$ are perpendicular to any transport vector

to curve $S = \frac{\pi}{2}\vec{x}$: $g_{i}(\vec{x}) = 0$ $\forall i=1,...,k$ \vec{g} which passes through \vec{a} .

N-K dimensional assumm ${\{\nabla g_j(\vec{a})\}}$ are lihearly independent, it follows that $\nabla f(\vec{a}) = \sum_{j=1}^{k} \lambda_j g_j(\vec{a})$

Page	3
------	---