- 1) Sliding Window
- 2) Few problems
- 3) TLE ??

$$\uparrow \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad 8 \qquad 9 \qquad 10 \qquad 11 \\
A[12] = 3, 4, 2, -1, 6, 7, 8, 9, 3, 2, -1, 4$$

$$K = 3$$

$$S, C \Rightarrow Q (e-S+1)$$

$$S, e$$

$$S, Leryth (l+S-1)$$

$$1 \quad 3$$

$$2 \quad 4$$

$$N-1$$

3 5
$$(i=0; i< N; i++)$$

9 11 $(2-3)$
 $(N-1)-3+1$

Code

$$K = 3 \text{ give}^{-1}$$
 $F'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $j = i+K-1$;

 $F'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; $i \in N-K$; $i++1 \neq 1$
 $f'(i=0)$; f'

Solvi

Brute force

$$\stackrel{\sim}{\longrightarrow} 0 \underbrace{(2N-K)}_{N} \Rightarrow 0 \underbrace{(N)}_{N}$$

S.C. =
$$0(N)$$

Not allowed

A = 3 , 4 , -2 , 5 , 3 , -2 , 8 , 2 , -1 , 4

$$\Rightarrow S[0-4] = 7$$

$$S[1-5] = 7 - A[0] + A[5]$$

$$= 7 - (-3) + (-2) = 8$$

$$S(2-6) = 8-A[1]+A[6] = 8-4+8=12$$

$$S[i] = S$$

$$S(i+i)$$
, $j+i) = S-A(i)+A(j+i)$

Sliding Window.

$$S = 1$$
; $C = K (g+k-r)$

while $(S \leq N-K)d$
 $Sum = Sum - A[s-]+ A[e]$;

 $ans = ma_{n} (ans, Sum);$
 $S+t'$;
 $E+t'$;

7

$$T \cdot C = O(L)$$

$$S \cdot C = O(L)$$

Print
4, 1,3,6,9,7,6,12,24,22,65,22...


```
Code
  \dot{v} = 0, \dot{j} = 0
   while (N > 1)
         count = 0;
          while (count < N-1) d

print M[i][j];

count ++;
       count = 0;
       while (court < N-1) L
            print (M (i));
2
              i++',
      court = 0;
      while (cont < N-1) of
             Print (M[i](j));
3
             count ++1;
      Z
     comt = Di
      while (count < H-1) {
             Doint (M(i)(i));
4
```

//
$$i = 0$$
, $j = 0$

$$N = N-2;$$

$$i + +;$$

$$j + +;$$

$$M (N = = 1) d$$

$$Point M[i][j];$$

$$8 \rightarrow 6 \rightarrow 4 \rightarrow 2 \rightarrow 0$$

$$10 \rightarrow 8$$

$$N=3 \Rightarrow N=3 (0,0)$$
 $(0,1)$
 $N=3 \Rightarrow N=1 (1,1)$
 $(2,2)$

2.2

$$T \cdot C = O((x n^2) = O(n^2)$$

$$4(n-1) + 4(n-3) + 4(n-s)$$
 $+(n-1) + (n-3) + (n-s)$
 $+(n-1) + (n-3) + (n-s)$
 $+(n-1) + (n-3) + (n-s)$
 $+(n-1) + (n-3) + (n-s)$

