Module Math 201 : Séries et Intégrales

Feuille d'exercices numéro 2

Convergence des suites; sommes finies

Les exercices soulignés seront à chercher la semaine où vous serez chez vous, et ils feront l'objet d'un corrigé.

Exercice 1 - Pour tout entier $n \ge 1$ on pose

$$u_n = \sum_{k=1}^n \frac{1}{k^3} = 1 + \frac{1}{2^3} + \ldots + \frac{1}{n^3}$$
 et $v_n = u_n + \frac{1}{n^2}$.

Démontrer que les suites (u_n) et (v_n) sont adjacentes. Que peut-on en déduire?

Exercice 2 - Reprendre l'exercice précédent avec les suites suivantes (on rappelle que 0! = 1):

$$u_n = \sum_{k=1}^n \frac{1}{k!} = 1 + \frac{1}{1!} + \ldots + \frac{1}{n!}$$
 et $v_n = u_n + \frac{1}{n!}$.

Exercice 3 - Pour tout entier $n \ge 1$ on pose

$$u_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}.$$

- 1. Démontrer que pour tout $n \ge 1$ on a $0 \le u_n \le 1$.
- 2. Démontrer la suite (u_n) est croissante.
- 3. En déduire que la suite (u_n) converge, et encadrer sa limite.

Exercice 4 - Pour tout entier $n \ge 1$ on pose

$$u_n = \sum_{k=1}^n \frac{k}{k^2 + 1} = \frac{1}{2} + \frac{2}{5} + \dots + \frac{n}{n^2 + 1}.$$

- 1. Démontrer la suite (u_n) est croissante.
- 2. Démontrer que pour tout $n \ge 1$ on a $u_{2n} u_n \ge \frac{1}{4}$.
- 3. En déduire que la suite (u_n) n'est pas de Cauchy. Que peut-on en conclure?
- 4. Démontrer la suite (u_n) tend vers $+\infty$.
- 5. Soit $p \in \mathbf{N}^*$. A-t-on $\lim_{n \to +\infty} (u_{n+p} u_n) = 0$?

Exercice 5 - Démontrer que la suite $(u_n)_{n\geq 1}$ définie par $u_n=e^{in\pi/3}$ pour tout $n\geq 1$ n'est pas de Cauchy. En déduire qu'elle n'a pas de limite.

Exercice 6 -

1. Montrer que pour tous entiers $n, p \ge 1$ on a

$$\sum_{j=n+1}^{n+p} \frac{1}{j^2} \le \int_n^{n+p} \frac{1}{x^2} dx.$$

2. Pour tout entier $n \ge 1$ on pose

$$S_n = \sum_{i=1}^n \frac{1}{j^2}.$$

Démontrer que la suite $(S_n)_{n\geq 1}$ est de Cauchy. Que peut-on en conclure?

3. Donner une autre preuve du fait que la suite $(S_n)_{n\geq 1}$ converge.

Exercice 7 - Etant donné un entier $n \geq 1$, calculer les sommes suivantes :

$$a_n = \sum_{k=3}^{15} \frac{k-1}{3}, \qquad b_n = \sum_{k=1}^n \left(\frac{1}{2^k} + 3k + n - 5\right).$$

Exercice 8 - Même exercice avec :

$$u_n = \sum_{k=3}^{n} (4^k - 2k + 5n - 2).$$

Exercice 9 - Démontrer que pour tout $n \ge 0$ on a

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

et en déduire la valeur de la somme

$$1 \cdot n + 2 \cdot (n-1) + 3 \cdot (n-2) + \ldots + (n-1) \cdot 2 + n \cdot 1$$
.

Exercice 10 - Démontrer que pour tout $n \ge 0$ on a

$$\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1.$$

Exercice 11 - En utilisant si nécessaire la formule pour $\sum_{k=1}^{n} k^2$ démontrée à l'exercice 9, exprimer en fonction de n chacune des sommes suivantes :

$$a_n = \sum_{k=0}^{n} (k+1)^2$$
, $b_n = \sum_{k=0}^{n-1} (n-k+1)^2$, $c_n = \sum_{i=1}^{n} \sum_{j=1}^{n} \max(i,j)$.

Exercice 12 - Etant donné un entier $n \ge 1$, calculer (en utilisant si nécessaire l'exercice 9)

$$\sum_{i=1}^{n} \sum_{j=i}^{n} \frac{i}{j} \quad \text{et} \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \min(i, j).$$

2