

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004 Contact No.: +91-175-2393201

Email: info@thapar.edu

Close packed structures

Close packed structures have highest density in a unit cell

Hexagonal close packed cubic (HCP)

HCP is a close packed structures

Showing 3 unit cells and the rhombic prism UC

➤ LATTICE → Hexagonal

HCP

 \rightarrow MOTIF \rightarrow Atoms at: O(0,0,0) & T($\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{2}$)

Hexagonal close packed structure (HCP)

Lattice points in a unit cell: 6

No. of atoms in a unit cell: 6

Basis (No. of atoms/lattice point): 1

Co-ordination number: 12

Relation of a and r: a = 2r

Examples

- 1) Cobalt
- 2) Cadmium
- 3) Zinc
- 4) α -titanium
- 5) Magnesium

Co-ordination number(CN)

No. of nearest neighbors (No. of atoms touching)

HCP

Derivations are uploaded on LMS

$$\frac{c}{a} = \sqrt{\frac{8}{3}} = 1.663$$

$$APF = 74\%$$

Planes in Hexagonal close-packed system

Miller-Bravais index notations for planes

- Directions and planes in hexagonal lattices and crystals are designated by the 4-index Miller-Bravais notation.
- o In the four-indexed notation:
 - > The first three indices are a symmetrically related set on the basal plane.
 - The third index is a redundant one and is introduced to make sure that members of a family of directions or planes have a set of identical numbers
 - \triangleright The fourth index represents the 'c' axis (\bot to the basal plane).

- The redundant index can be obtained from the other two.
- This is called a symmetry condition. If this condition gets satisfied, then and only then the plane exists.

$$(h k i l)$$

$$h + k + i = 0$$

$$or$$

$$i = -(h + k)$$

$$(hkl) \rightarrow (hkil)$$

$$(110) \rightarrow (1120)$$

Basal Plane

Intercepts $\rightarrow \infty \infty \infty 1$ Miller \rightarrow (0 0 1)

Miller-Bravais \rightarrow (0 0 0 1)

M-B Indices for planes in HCP

Prism planes

$$(h k i l)$$

 $i = -(h + k)$

Intercepts $\rightarrow 1 \ 1 - \frac{1}{2} \infty$ Miller \rightarrow (1 1 0)

Plane \rightarrow (1 1 $\overline{2}$ 0)

M-B Indices for planes in HCP

Green' and 'blue' planes belong to the same family

M-B Indices for planes in HCP

Pyramidal planes

Intercepts $\rightarrow \infty 1 - 1 \infty$ Miller $\rightarrow (0 \ 1 \ 0)$ Miller-Bravais $\rightarrow (0 \ 1 \ \overline{1} \ 0)$

Intercepts $\rightarrow \infty 1 - 1 \infty$ Miller $\rightarrow (0 \ 1 \ 0)$ Miller-Bravais $\rightarrow (0 \ 1 \ \overline{1} \ 0)$

Inclined planes which have finite intercept along c-axis are called Pyramidal planes

Directions in Hexagonal close-packed system

Symmetry in cubic lattice

Members of the same family have the same magnitude!

Symmetry is not maintained in 3 index system.

Not from the same family of directions.

So, we may need new index system for symmetry

Derivation for the transformation formulas

This gives

$$U = u - t$$
(3)
 $V = v - t$ (4)
 $W = w$

Put the value of t in equations (3) and (4) gives

$$U = 2u + v$$

$$V = 2v + u$$

$$U = \frac{1}{3}(2U - V)$$

$$V = 2v + u$$

$$V = \frac{1}{3}(2V - U)$$

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v)$$

$$w = W$$

Why 4 index system is needed?

Symmetry is maintained due to the extra index.

Belongs to the same family of directions.

In the three-index notation, equivalent directions may not seem equivalent, while in the four-index notation, the equivalence is brought out.

- 1. For simplicity, we will use Miller indices [UVW] for directions. (3 coordinate system)
- We will convert Miller- Bravais notation (<u>uvtw</u>, HCP system) into MI indices (<u>UVW</u>) and vice a versa
- 3. Represent the direction as per MI indices

M-B [uvtw] indices from MI [UVW]	MI [UVW] from M-B indices [uvtw]
$u = \frac{1}{3}(2U - V)$ $v = \frac{1}{3}(2V - U)$ $t = -(u + v)$ $w = W$	U = u - t $V = v - t$ $W = w$

Q: Show $[11\overline{2}0]$ in the HCP unit cell.

Solution:

- 1) Find out the MI of given MB-indices according to the transformation formulas
- 2) Show direction using the transformed MI [UVW]

$$U = u - t$$

$$V = v - t$$

$$W = w$$

Show the following direction in HCP unit cell

 $[11\overline{2}0]$

$$U = u - t$$

$$V = v - t$$

$$W = w$$

Steps		
1	Find out the MI using transformation formulas	[330] or [110]
2	Show direction using the transformed MI [UVW]	

Show the following direction in HCP unit cell

 $[11\overline{2}3]$

U = u - t	
V = v - t	
W = w	

Steps		
1	Find out the MI using transformation formulas	[333] or [111]
2	Show direction using the transformed MI [UVW]	

Show the following direction in HCP unit cell

 $[10\overline{1}3]$

U = u - t
V = v - t
W = w

Steps		
1	Find out the MI using transformation formulas	[213]
2	Show direction using the transformed MI [UVW]	

Show the following direction in HCP unit cell

 $[22\overline{4}3]$

U = u - t	
V = v - t	
W = w	

Steps		
1	Find out the MI using transformation formulas	[663] or [221]
2	Show direction using the transformed MI [UVW]	

When a direction is given

- 1) Find out the MI of the given direction
- 2) Convert it into the MB indices according to the transformation formulas
- 3) Write the MB indices for the direction

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v)$$

$$w = W$$

Steps		
1	Find out the MI of the given direction	[011]
2	Convert it into the MB indices according to the transformation formulas	$[\overline{1}2\overline{1}3]$

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v)$$

$$w = W$$

Steps		
1	Find out the MI of the given direction	[101]
2	Convert it into the MB indices according to the transformation formulas	$[2\overline{1}\overline{1}3]$

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v)$$

$$w = W$$

Steps		
1	Find out the MI of the given direction	[021]
2	Convert it into the MB indices according to the transformation formulas	$[\overline{2}4\overline{2}3]$

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v)$$

$$w = W$$

Steps		
1	Find out the MI of the given direction	$[\overline{1}11]$
2	Convert it into the MB indices according to the transformation formulas	$[\overline{1}\overline{1}23]$

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v)$$

$$w = W$$

Steps		
1	Find out the MI of the given direction	$[20\overline{1}]$
2	Convert it into the MB indices according to the transformation formulas	$[4\overline{2}\overline{2}\overline{3}]$

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v)$$

$$w = W$$

- 1. The HCP system have 4 index system to denote planes called as Miller-Bravais system.
- 2. The planes in HCP can be drawn by three Miller indices only. The third Miller indices is redundant in nature. It is used for symmetry.
- 3. The planes on the top and bottom are called as basal planes.
- 4. The planes parallel to c axis are called as prism planes.
- 5. The planes which have intercept on the c axis are called as pyramidal planes.
- 6. HCP has highest packing density ~ 74%
- 7. Ideal c/a ratio for HCP is 1.63

