Cryptogiphen Franciscom Public Keyhat.estutyreptography

ECEN 4133

FEB 4, 2021

Shared key limitations

Suppose Alice publishes data to lots of people, and they all want to verify integrity...

Can't share an integrity key with *everybody*, or else *anybody* could forge messages

Suppose Bob wants to receive data from lots of people, confidentially...

Schemes we've discussed would require a separate key shared with each person https://tutorcs.com

[What to do?]

Public-key crypto

So far, encryption key == decryption key "symmetric key crypto"

New idea: Keys are distined, saignament for ojecto Extrant Helelp

Almost always used by splitting key psir//tutorcs.com
Alice keeps one key private ("private key")
Publishes the other key ("public key")
Chat: cstutorcs

Invented in 1976 by Diffie and Hellman (earlier by Clifford Cocks of British intelligence, in secret)

First popular public key algorithm: RSA Rivest, Shamir, and Adleman 1978

Requirements for a public key crypto system to be secure

- Computationally easy for B to generate a key pair: PU_b, PR_b
- Computationally easy for sender A to generate the ciphertext for message M: $C=E(PU_b, M)$ Assignment Project Exam Help Computationally easy for receiver B to decrypt the ciphertext: $M=D(PR_b, C)$
- Computational infeasible to subspace kutorics POOM
- Computational infeasible to recover M from PU, and C.

RSA

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman*

How RSA works

Key generation:

- 1. Pick large (say, 1024 bits) random primes **p** and **q**
- 2. Compute N := pq Assignment Project Exam Help (RSA uses multiplication mod N)
- 3. Pick e to be relatively primettens://testorcs.com
- 4. Find **d** so that **ed** mod (p-1)(q-1) = 1
- 5. Finally: Public key is (e,W)eChat: cstutorcs
 Private key is (d,N)

To encrypt: $E(x) = x^e \mod N$ To decrypt: $D(x) = x^d \mod N$

Why RSA works

"It works" theorem:

```
For all 0 < x < N, can show that D(E(x)) = x Assignment Project Exam Help Proof:

D(E(x)) = (x^e \mod pq)^d \mod p \frac{1}{q} \text{ tutorcs.com}
= x^{ed} \mod pq
= x^{a(p-1)(q-1)+1} \mod pq \text{ for some a } (because ed \mod (p-1)(q-1) = 1)
= (x^{(p-1)(q-1)})^a x \mod pq
= (x^{(p-1)(q-1)} \mod pq)^a x \mod pq
= (x^{(p-1)(q-1)} \mod pq)^a x \mod pq
= 1^a x \mod pq
= 1^a
```

Is RSA secure?

Best known way to compute **d** from **e** is factoring **N** into **p** and **q**.

Best known factoring algorith Assignment Project Exam Help General number field sieve

Takes more than polynomial time, but less than exponential time, to factor **n**-bit number. https://tutorcs.com
(Still takes way too long if **p**,**q** are large enough and random.)

Fingers crossed...

WeChat: cstutorcs

but can't rule out a breakthrough!

Signing with the public key for confidentiality or secrecy:

Does this provide integrity?

Signing with private key for integrity/authentication.

Does this provide confidentiality?

Assignment Project Exam Help

https://tutorcs.com

RSA can be used for either confidentiality or integrity

RSA for confidentiality:

```
Decrypt with public key

Decrypt with private key Assignment Project Exam Help

"your eyes only message"
```

https://tutorcs.com

RSA for integrity:

Encrypt ("sign") with private key

Decrypt ("verify") with public keWeChat: cstutorcs

called a digital signature

[What if we want both confidentiality and integrity on the same message?]

Which of these provides both confidentiality and integrity?

Alice (A) wants to send a secret message M to Bob (B) so that Bob can verify that it comes from Alice.

Which one(s) is/are sed signment Project Exam Help

- 1. $E(E(M, PR_A), PU_B)$
- 2. $E(E(M, PU_R), PR_{\Delta})$
- 3. $C=E(M, PR_A) t=E(H(C), PU_B)$
 - Send C||t
- 4. $C=E(M, PU_B) t=E(H(C), PR_A)$
 - Send C||t

https://tutorcs.com

Review: Public-key Crypto

```
So far, encryption key == decryption key "symmetric key crypto"
```

New idea: Keys are distinct.

```
RSA:
        N := pq
```

Assignment Project Exam Help

Public key is (e,N)

Private key is (d,N)

https://tutorcs.com

To encrypt: $= x^e \mod N$

E(x)D(x) $= x^d \mod N$ To decrypt:

WeChat: cstutorcs

RSA for confidentiality:

Encrypt with public key Decrypt with private key

RSA for integrity (digital signatures):

Encrypt ("sign") with private key Decrypt ("verify") with public key

[Cautions?!]

RSA drawback: Performance

```
Factor of 1000 or more slower than AES.
 Dominated by exponentiation – cost
 goes up (roughly) as cube of key size. ASSIGNMENT Project Exam Help Message must be shorter than N.
 [How big should the RSA keys be?] https://tutorcs.com
Use in practice:
   We Chat: cstutorcs

Use RSA to encrypt a random \mathbf{x} < \mathbf{N}, compute \mathbf{k} := PRF(\mathbf{x}), encrypt message using a symmetric
 Encryption:
   cipher and key k
 Signing:
   Compute \mathbf{v} := PRF(\mathbf{m}), use RSA to sign a carefully padded version of \mathbf{v}
   (many gotchas!)
 Almost always should use crypto libraries to get the details right
```

True or False?

Public-key encryption is a general-purpose technique that has made symmetric encryption obsolete

Assignment Project Exam Help

https://tutorcs.com

True or False?

Key distribution is trivial when using public-key encryption, compared to the cumbersome handshaking involved with key distribution centers for symmetric encryption.

Assignment Project Exam Help

https://tutorcs.com

Attacks against RSA

- Brute force: trying all possible private keys
- Mathematical attacks: factoring Assignment Project Exam Help Timing attacks: using the running time of decryption
- Hardware-based fault attack: https://fatultsongs.rewine to generate digital signatures
- Chosen plaintext attack on unpadded RSA cstutorcs

Exercise

Suppose Bob uses RSA crypto with a very large modulus **n** for which the factorization cannot be found in a reasonable amount of time.

Suppose Alice sends a measignment represent fresh letter as an integer between 0 and 25 (A->0, ..., Z->25) and then encrypting each number separately using RSA with large **e** and large **n**. https://tutorcs.com

Is this method secure?

WeChat: cstutorcs

If yes, why?

If not, how to efficiently attack this encryption method?

Solution

For a set of message block values SM = $\{0, 1, 2, ..., 25\}$. The set of corresponding ciphertext block values SC = $\{0^e \mod N, 1^e \mod N, ..., 25^e \mod N\}$, and can be computed by everybody with the knowledge of the public key of Bob ment Project Exam Help

The most efficient attack is to compute M^e mod N for all possible values of M, then create a look-up table with a ciphertext $\frac{1}{2}$ $\frac{$

Two subtle "textbook" RSA problems:

 For small e and m: m^e mod N == m^e Trivial to decrypt!

Assignment Project Exam Help

2. If m is chosen from a small set, easy to confirm a ciphertext is a given message (anyone can encrypt!)

Chosen plaintext attack

https://tutorcs.com

Solution: RSA Padding

Need to make sure m is as *large enough* to wrap around N (so can't take e-th root of ciphertext)

Need to randomize before encryption (so low-entropy plaintext can't be decrypted)
Assignment Project Exam Help

Other public key cryptography systems

RSA is popular, but not the only one:

- DSA Digital Signature Algorithm
- ECDSA Elliptic Curve Digital Signature App Project Exam Help
 - Very small public keys: e.g. curve25519: 256-bits (32 bytes)
- Post-Quantum Cryptography: https://tutorcs.com
 - Ring-LWE, NTRU, hash-based

So Far:

The Security Mindset

Message Integrity Assignment Project Exam Help

Confidentiality

Key Exchange https://tutorcs.com

Building a Secure Channel WeChat: cstutorcs

Public Key Crypto

Next Week:

Begin Web Security Unit

HTTPS: Secure channels for the web