1ª) Questão: (4,0 pontos) No circuito da figura a sua ua esquerda abaixo, todos os transistores NPN possuem β =200 e V_A=100 V, todos os transistores PNP possuem β =100 e V_A=50 V . a) (2,0 pontos)Calcule resistência de saída do amplificador da figura abaixo. b) (2,0 pontos) Calcule o ganho de tensão $A_v = v_o / v_s$ em aberto do amplificador da figura abaixo.

 $\underline{2}^{a}$) Questão(3,0 pontos). No circuito abaixo, β=676, C_{μ} =5,21 pF, C_{π} =7,05 pF, Rs=20 [k Ω], RB1=700 [k Ω], RB2=61[k Ω], RB3=182 [k Ω], RC=5,6 [k Ω], RL=5,6 [k Ω], RE=2 [k Ω], Cc1=10

$$\mu F$$
, Cc2=47 μF , C_B=47 μF , C_E=220 μF e I_C=1 mA. $A(s) = \frac{V_o(s)}{V_s(s)}$. Qual a expressão

A(s) aproximada do circuito abaixo? OBS: Para o cálculo da frequência de corte inferior use apenas o capacitor de maior influência.

 3^a) Questão(2,0 pontos) Calcule a resistência R_E para que Io seja 20 μA. Considere que a tensão V_{BE} =0,7 V para IC=1mA e β→∞ nos transistores do espelho.

 $4^{\rm a}$)(1,0 pontos) Com o sinal de entrada da figura a esquerda, desenhe a forma da saída do circuito abaixo da figura a direita. A tensão no capacitor vale 0 V em t=0.

