EAS6792/CEE6792 Air Pollution Meteorology

Instructor: Professor Yuhang Wang, ES&T 3254, phone: (404) 894-3995, email: ywang@eas.gatech.edu

References: Air pollution meteorology and dispersion, by S. Pal Arya, Oxford University Press, 1999.

Atmospheric chemistry and physics, by J. H. Seinfeld and S. N. Pandis, John Wiley & Sons, 1998.

An introduction to boundary layer meteorology, Roland B. Stull, Kluwer Academic Publishers, 1988.

Web: http://apollo.eas.gatech.edu/EAS6792

Class: ES&T L1116, Tues/Thursday 4:30-6:00 pm

Office hours: T/Th 3-4:30 pm

Homework:

	Assignment date	Due date
<u>#1</u>	January 15	January 29
<u>#2</u>	January 29	February 12
<u>#3</u>	February 12	February 26
<u>#4</u>	February 26	March 7
<u>#5</u>	March 12	April 2

Syllabus:

Date	Topics	Chapters (Arya)
	Part I: Air pollution and boundary layer	
Jan 8, 10	Introduction to air pollution	1
Jan 15, 17	Key parameters affecting urban air quality	2
Jan 22, 24	Heat balance, vertical stability and boundary layer characteristics	2, Stull (Chap 1)
Jan 29, 31	Turbulence and its statistics, surface energy budget	4, Stull (Chap 2)
Feb 5, 7	Similarity theory and Monon-Obukov surface layer	4, 8, Stull (Chap 5)
Feb 12, 14	1 st order and non-local closures,	6, 8, Stull (Chap 6)
	large-eddy simulation, vertical transport by diffusion	
Feb 19, 21	Turbulent dispersion and Gaussian plumes	9
Feb 26, 28	Plume rise and settling; Deposition	10, 11
Mar 5, 7	Dispersion and air quality modeling (group assignment due)	11
Mar 12, 14	Air quality modeling; Mid-term exam	12
Mar 19, 21	Spring recess	
	Part II: Air pollution and climate change	
Mar 26, 28	Impacts of climate change on air pollution	
	(term paper topics due)	
Apr 2, 4	Impacts of megacities on air pollution	
Apr 9, 11	Climate extreme events and air pollution	
Apr 16, 18	Biomass burning and its impacts	
Jan 8, 10	Term paper presentation	

Grade:

Homework	25%
Midterm exam	20%
Group project	15%
Term paper	40%

Term papers:

	Topics	
Colin Boswell	Calculation of Background PM 2.5 Values	
Kim Brady	Alternative Fuels and Air Pollution	
Kate Cerully	The Effect of Aerosols on Precipitation - Suppression or	
	<u>Enhancement</u>	
Sunny Choi	Effect of BrO Mixing Height to Ozone Depletion Events	
Radihka	Wind Speed and Sulfur Dioxide during the 1996 Atlanta	
Dhingra	<u>Olympics</u>	
Ana Garcia	Analysis of meteorological conditions enhancing high particulate	
	matter episodes in Monterrey, Mexico	
David Gray	Mechanisms contributing to the Spring ozone maximum in the	
	Northern Hemisphere	
Dasa Gu	Vertical distribution of HOx and O ₃ in the tropical marine	
	boundary layer during PASE	
Ja-Ho Koo	Properties of observed Arctic ozone and bromine compound	
	based on the back trajectory analysis	
Zhen Liu	Characteristics of Urban Ozone Formation During	
	CAREBEIJING-2007 Experiment	
Sean Ryan	PM2.5 Transport From Wildfires	
Wenxian Zhang	Gas and Aerosol Partitioning Over the Equatorial Pacific	

	Topics
Sivaihm	Impact of air pollution on the
Balachandra	South Asian monsoon
Chandra	Inferring CALIPSO
Sherhar	backscattering data over
	Antarctica during spring
Xueyuan Deng	Convection over China ISCCP
	DX data analysis results
Bo Yao	Plume rise from free burning
	<u>fires</u>
Chun Zhao	Does uncertainty of soil NOx
	emission explain the bias of
	modeling tropospheric NO ₂
	columns?

	Topics
Burton	Tracking DMS in Antarctica
Gray	
Burçak	Diurnal vertical concentration profile
Kaynak	of CO in an urban environment
Khara	A Sensitivity Analysis of Fluxes
Lombardi	Between the Atmosphere-Ocean
	<u>Interface Using the Kantha – Clayson</u>
	Ocean Model
Dana	Changes in Concentration of
Lowes	Chemical Species using Back-
	<u>Trajectory Analysis: Atlanta's</u>
	Emissions Affecting its surroundings
Grant	Source Apportionment of PM2.5 With
Michalski	CMB8

	Topics
Mohammad	Effect of Wind Speed and Direction
Arhami	on Atlanta PM2.5
Paola	Turbulence, Intermittency and Chaos
Augelo	in High-Resolution Data, Collected
	At The Amazon Forest
Farhan	Ozone trends over the Fourth of July
Auhtar	
Jaemeem	The Change of Meteorological
Baek	Parameters with Land Use in MM5
Rosa Chi	NONROAD Model Sensitivity to
	<u>Temperature</u>
Chris	Measurement of inorganic aerosol
Henningan	<u>species – results from DICE</u>
Carlos	Air-Sea fluxes over the bay of Bengal
Hoyos	during summer 1999
Monique	The Vieques Problem
Latalladi	
Sangil Lee	Source Apportionment of VOCs in
	Pensacola, FL 2003
Rick Peltier	PERCH: Implications of A Spatial
	Assessment of PM Variability
Benton	Convective Roll Effects on Sea

Whilesides	Breeze Fronts
Bo Yan	Calculation of wildfire Plume Rise
Seungju	A Heavy-Duty Vehicle Visual
Yoon	Classification Scheme: Heavy-Duty
	Vehicle Reclassification Method for
	Mobile Source Emissions Inventory
	<u>Development</u>

Group projects:

2004

- Reformulated Gasoline in Metro-Atlanta
- Pollutants and Their Effect on the Water and Radiation Budgets

2003

- Backtrajectory analysis
- Urban meteorology
- Transportation and air quality: Mobile source emissions regulations
- FACIMILE dispersion-chemistry package
- CFD street canyon modeling