

# Rapport du TP:

## observateur

Master 1 Semestre 8

Parcours IAHM

Réalisé par :

Shubo ZHANG

Encadré par:

Mohamed Djemai

Année universitaire 2019-2020

# System

```
On a les fonction de transform
```

$$x \cdot 1 = x2$$
  
 $x \cdot 2 = x3$   
 $x \cdot 3 = -2x1 - 5x2 - 4x3 + u$   
 $y = x1$ 

Nous pouvons donc calculer

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

avec

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

$$C = [0 \ 1 \ 0]$$

$$D=[0]$$

```
1 - clc;
2 - clear;
3
4 - A=[0 1 0;0 0 1;-2 -5 -4];
5 - B=[0;0;1];
6 - C=[1 0 0];
7 - D=[0];
8 - P=[-2 -3 -5];
9 - N=obsv(A,C)
0 - r=rank(N)
1
2 - L=[place(A',C',P)]'
```

### CALCULER LE OBSERVABILITE DE SYSTERM.

Le rank de N = 3 > 0.

Donc le systerm est observable.

N =

1 0 0
0 1 0
0 0 1
r =

3
L =

6.0000
2.0000
-10.0000

Calculer avec matlab , on trove les valeur de L.

Entree le syeterm dans simulink:





# Observateur

Avec le matrice L, on peut ajouter un observateur :



Donner un signal a entre u



U=5\*sin(10t)



Le observateur est bien suivre le signal.

## Observateur ordre 1

Pour M.G.d' ordre1 On a les fonction de transformé

```
\frac{\dot{x}1}{\hat{x}2} = \widetilde{x}2 + \lambda 1 sign(e1)

\frac{\dot{x}2}{\hat{x}2} = \widetilde{x}3 + E1 * \lambda 2 * sign(e2)

\frac{\dot{x}3}{\hat{x}3} = -2 * x1 - 5 * \widetilde{x}2 - 4 * \widetilde{x}3 + u + E2 * \lambda 3 * sign(e3)

Avec
```

$$e2 = \widetilde{x2} - \widehat{x2}$$

$$e3 = \widetilde{x3} - \widehat{x3}$$
Et
$$\widetilde{x2} = \widehat{x2} + \lambda 1 * sign(e1)$$

$$\widetilde{x3} = \widehat{x3} + E1 * \lambda 1 * sign(e2)$$

 $e1 = x1 - \widehat{x1}$ 

Et

$$E1 = \begin{cases} 1 & si \mid e1 \mid < \epsilon \\ 0 & si \mid non \end{cases}$$

 $\Lambda$  est donner dans matlab.

```
11=25;
a1=10;
12=20;
a2=20;
13=35;
a3=40;
```

Pour mieux E1et sign(e) permettre de s'exprimer dans le système On donner e1=>E1 et sign(e) comme un matrice.

```
% [-500 -0.011 -0.01 0.01 0.011 500];
% [-1 -1 -1 1 1 1 ];
% [-500 -0.011 -0.01 0.01 0.011 500];
% [0 0 1 1 0 0 ],
```



Entree les fonction de transform dans simulink:





Le observateur est bien suivre le signal.

## Observateur ordre 2

Pour M.G.d' ordre2 On a les fonction de transformé

$$\dot{\widehat{x1}} = \widetilde{x2} + E0 * |e1|^{\frac{1}{2}} * \lambda 1 * sign(e1)$$

$$\dot{\widetilde{x2}} = a1 * sign(e1)$$

$$\dot{\widehat{x2}} = \widetilde{x3} + E1 * |e1|^{\frac{1}{2}} * \lambda 2 * sign(e2)$$

$$\dot{\widetilde{x3}} = E1 * a2 * sign(e2)$$

$$\hat{x3} = \tilde{\theta} + E2 * |e1|^{\frac{1}{2}} * \lambda3 * sign(e3)$$

$$\dot{\tilde{\theta}} = E2*a3*sign(e3)$$

$$\widetilde{\theta} = -x\mathbf{1} + 3\widetilde{x2} - \widetilde{x3} + u + \widetilde{w}$$

Avec

E0=1

E1comme dans ordre1

$$E1 = \begin{cases} 1 & si \; |e1| < \epsilon \\ 0 & si \; non \end{cases}$$

 $\lambda$  et a sont donner dans matlab.

11=25; a1=10; 12=20; a2=20; 13=35; a3=40;

$$e1 = x1 - \widehat{x1}$$

$$e2 = \widetilde{x2} - \widehat{x2}$$

$$e3 = \widetilde{x3} - \widehat{x3}$$
Et
$$\widetilde{w} = \widetilde{\theta} + x1 - 3\widetilde{x2} + \widetilde{x3} - u$$

Entree les fonction de transform dans simulink:





Le observateur est bien suivre le signal.

## Observateur ordre inconnues

Pour Observateur ordre inconnues On a les fonction de transformé

$$\dot{\widehat{x1}} = \widetilde{x2} + E0 * |e1|^{\frac{1}{2}} * \lambda 1 * sign(e1)$$

$$\dot{\widetilde{x2}} = E0 * a1 * sign(e1)$$

Avec

E0=1

E1comme dans ordre1

$$E1 = \begin{cases} 1 & si \; |e1| < \epsilon \\ 0 & si \; non \end{cases}$$

 $\lambda$  et a sont donner dans matlab.

11=25; a1=10; 12=20; a2=20; 13=35; a3=40;

$$e1 = x1 - \widehat{x1}$$

$$e2 = \widetilde{x2} - \widehat{x2}$$

$$e3 = \widetilde{x3} - \widehat{x3}$$

Comme on a pas savoir l'ordre de observateur,il faut le calcule un par un. Entree les fonction de transform dans simulink :







### Lancer la simulation



Le observateur est bien suivre le signal.

### Filtre de Kalman

Filtre de Kalman est un estimateur qui permet de reconstituer les états d'un système perturbé en utilisant des mesures.

Pour le systerm

$$\begin{cases} \dot{x} = Ax + B(u+v) \\ y = Cx + w \end{cases}$$

En temp discret

$$x_{k+1} = Fx_k + G(u_k + v_k)$$
$$y_k = Hx_k + w_k$$

Pour F.G.H

On peut calcule dans matlab avec command c2dm:

```
% kalman
H=C;
T=0.01;
E=exp(1)^A*T;
[F,G,H,D]=c2dm(A,B,C,D,T,'zoh')
```

Donc on obtenir les valeur de F,G,H

```
a2=20:
13=35:
a3=40;
                                        1.0000
                                                 0.0100
                                                            0.0000
                                        -0.0001 0.9998
                                                            0.0098
                                       -0.0196 -0.0491
                                                            0.9605
% [-500 -0.011 -0.01 0.01 0
% [-1 -1 -1 1 1 1 ];
% [-500 -0.011 -0.01 0.01 0
% [0 0 1 1 0 0 ],
                                        0.0000
% kalman
                                        0.0000
H=C;
                                         0.0098
T=0.01;
F=exp(1) A*T;
[F, G, H, D] = c2dm (A, B, C, D, T, 'z
```

### Entre le fonction de transform dans simulink



Pour w et v, on mettre Random Source comme entre.



