Maestría en Inteligencia Artificial Aplicada

Evaluación del modelo mediante métricas de desempeño

Dr. Luis Eduardo Falcón Morales ITESM Campus Guadalajara

Estadísticos

Existen una gran variedad de métricas para medir el desempeño de un clasificador.

Las siguientes son algunas de las principales usadas en el área de aprendizaje automático:

- Exactitud
- Coeficiente o estadístico kappa
- Sensibilidad
- Especificidad
- Precisión
- Exhaustividad
- valor-*F*
- curva ROC
- ...

En este curso empezaremos a estudiar algunas de ellas.

Falsos Positivos – Falsos Negativos

A la clase de interés le llamaremos la clase positiva. A la otra clase la llamaremos clase negativa.

¿qué error cuesta más? ¿el Tipo I o el II?

Tabla de Contingencia o Matriz de Confusión

La tabla o matriz de contingencia nos proporciona mayor información sobre la manera en que se relacionan los datos de una matriz de confusión, con respecto a sus renglones y columnas.

		Clases reales				
		A clase positiva		f B clase negativa		Totales:
Predicciones	A	VP	$\frac{VP}{n_{r1}}$	FP	$\frac{FP}{n_{r1}}$	$n_{r1} = VP + FP$
	clase positiva	$\frac{VP}{n_{c1}}$	$\frac{VP}{n_T}$	$\frac{FP}{n_{c2}}$	$rac{FP}{n_T}$	$rac{n_{r1}}{n_T}$
	В	FN	$\frac{FN}{n_{r2}}$	VN	$rac{VN}{n_{r2}}$	$n_{r2} = FN + VN$
	clase negativa	$\frac{FN}{n_{c1}}$	$rac{FN}{n_T}$	$\frac{VN}{n_{c2}}$	$rac{VN}{n_T}$	$rac{n_{r2}}{n_T}$
Totales:		$n_{c1} = VP + FN$ $\frac{n_{c1}}{n_T}$		$n_{c2} = FP + VN$ $\frac{n_{c2}}{n_T}$		$n_T = n_{r1} + n_{r2}$ = $n_{c1} + n_{c2}$

Exactitud (accuracy)

falsas alarmas

Exactitud o tasa de éxito:

$$exactitud = \frac{VP + VN}{VP + VN + FP + FN}$$

Tasa de error, es decir, tasa de clases mal clasificadas:

 $\frac{tasa\ de}{error} = 1 - exactitud$

Precisión y Exhaustividad

Son medidas sobre qué tan relevante son los resultados dados por un modelo.

Predicción No(0) Sí(1) | No(0) VN | FP | | Sí(1) | FN | VP | | Predicción | No(0) Sí(1) | FP | | Predicción | Predicción | No(0) Sí(1) | FP | | Predicción | Predicci

Precisión (precision)

$$precision = \frac{VP}{VP + FP}$$

O tasa de predicciones positivas.

Cuando un modelo predice una clase positiva, ¿qué porcentaje de acierto hay en ello?

Y definimos la tasa de falsas alarmas:

$$1 - precisión$$

Exhaustividad / Sensibilidad (recall / sensitivity)

$$sensibilidad = \frac{VP}{VP + FN}$$

Es decir, ¿qué porcentaje de los elementos de la clase positiva son pronosticados correctamente?

valor_F (f1_score)

La media armónica H de dos números a y b, se define como $\frac{1}{H} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$

En particular la media armónica de la precisión y la exhaustividad se llama f 1_score:

$$f1 \text{-score} = \frac{2VP}{2VP + FP + FN}$$

Valores entre 0 (menor exactitud) y 1 (mayor exactitud).

También se le llama valor $_F$, medida $_F$, F_value, F_measure, F_score.

Clases No-Balanceadas Igualmente Importantes: (métrica G-mean)

Si las clases son no balanceadas, al menos un 80%-20% aproximadamente, conviene usar la métrica *G-mean* en lugar de la exactitud (*accuracy*). Esta métrica es independiente de la distribución de los casos entre clases.

Sensibilidad (recall)

$$sensibilidad = \frac{VP}{VP + FN}$$

Tasa de verdaderos positivos

Especificidad (specificity)

$$especificidad = \frac{VN}{VN + FP}$$

Tasa de verdaderos negativos

$$G$$
-mean = $\sqrt{Sensitivity \times Specificity}$

Media geométrica de sensibilidad y especificidad: un valor bajo en cualquier de los dos, implica un valor bajo para G-mean.

$$0 \le G$$
-mean ≤ 1

Métricas de Desempeño

Exactitud o tasa de éxito:

$$exactitud = \frac{VP + VN}{VP + VN + FP + FN}$$

Precisión (precision)

$$precision = \frac{VP}{VP + FP}$$

Métrica G-mean

$$G$$
-mean = $\sqrt{Sensitivity \times Specificity}$

Especificidad (specificity)

$$especificidad = \frac{VN}{VN + FP}$$

Valor F

$$f1$$
 -score = $\frac{2VP}{2VP + FP + FN}$

Exhaustividad / Sensibilidad (recall / sensitivity)

$$\frac{exhaustividad}{(recall)} = \frac{VP}{VP + FN}$$