21-849: Algebraic Geometry I

Rohan Jain

January 13, 2025

I don't know what a sheave or a category is. 💙

Table of Contents

1.	1
1.0.1. Administrivia	1
1.1. Features of algebraic geometry	1
2. Chapter 2	2
2.1. Section 2	2

1.

1.0.1. Administrivia

- Grade consists of two takehomes and one presentation/paper.
- Exercise List/Notes: Canvas
- Prerequisites: basic algebra, topology, and "multivariable calculus".
- Textbooks: [G] Gathmann, [H1] Hartshorne, [H2] Harris
- OH: 2-4pm Wednesday, Wean 8113

1.1. Features of algebraic geometry

Consider the two functions e^z and $z^2 - 3z + 2$.

- Both are continuous in \mathbb{R} or \mathbb{C} .
- Both are holomorphic in \mathbb{C} .
- Both are analytic (power series expansion at every point).
- Both are C^{∞} .

There are differences as well.

- f(z) = a has no solution or infinitely many solutions for e^z , but for almost all a, 2 solutions for $z^2 3z + 2$.
- e^z is not definable from $\mathbb{Z} \to \mathbb{Z}$ but $z^2 3z + 2$ is.
- $\left(\frac{d}{dz}\right)^{\ell} \neq 0$ for all $\ell > 0$ for e^z but not for $z^2 3z + 2$.
- For nontrivial polynomials, as $z \to \infty$, p(z) goes to infinity. So, it can be defined as a function from $\hat{C} \to \hat{C}$. But e^z can be periodic as the imaginary part tends to infinity.

This motivates the following result:

Theorem 1.1 (GAGA Theorems): Compact (projective) C-manifolds are algebraic.

Here are more cool things about algebraic geometry:

1) Enumeration:

- How many solutions to p(z)?
- How many points in $\{f(x,y) = g(x,y) = 0\}$?
- How many lines meet a given set of 4 general lines in \mathbb{C}^3 ? The answer is 2.
- How many conics $(\{f(x,y)=0\},\deg f=2)$ are tangent to given 5 conics (in 2-space)? Obviously it's 3264...
- Now for any question of the previous flavor, the answer is coefficients of chromatic polynomials of graphs.

2) Birationality:

• Open sets are *huge*. That is, if we have X,Y and $U\subseteq X,V\subseteq Y$ such that $U\cong V$, then X and Y are closely related.

3) Arithmetic Geometry:

- Over $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p$, etc.
- Weil conjectures: X carved by polynomials with \mathbb{Z} -coefficients. $H^2(X_{\mathbb{C}},\mathbb{Q})$ related to integer solutions.

- 2. Chapter 2
- **2.1. Section 2**