題号	-	=	Ξ	P	五			试卷 B 卷	
得分						*	总分	阅卷人	
得分	阅卷人	7 - 10	I NOT THE CO	for min a co					
10:77	MEX		INDIAES (1	每题 2 分	,共10	分)			
. 两个1	indeloff	空间的和	只空间未	必是Lid	eloff 🕏	图 ()		
. 若拓打	卜空间 X 补	海足第一 1	可数性公	理,则)	V的子空	间Y也满	足第一可数	性公理。(,
							的拓扑。()	
4. 含有	不可数多个	点的可要	女补空间	是可分空	间。()			
5.设工表	上一个 Hau:	sdorff 空	间,则	V 中的任	何一个中	收敛序列只	只有一个极阿	是点。 (
得分	阅卷人	1							
10.73	120年人	二、填	空题 (每	题 2 分,	共10分))			
1. 设义	是一个拓扑	空间,如			空的隔离	等子集 A, B	3,使得 4∪	B=X,则称)	是
	={1,2,3}	X 161 25	空间 -		(2.2)	trid on Ald	n.	{1,2} 的内	
为		- 13 311	31 1 =	$\{A, \varphi, \{Z\}\}$,{2,3}} ,	, 则 X E	リナ 集 A=	{1,2} 的区	問
3.设X	={a,b};写t	出X 上的房	听有拓扑						
4 30 4	是一个拓打	Astron and	121						
y 30	是一个紧致。	工門, 如	朱					. 1	川称

得分	阅卷人

三、(15分) 设X是一个非空集合。 $\mathcal{F} = \{U \subset X \mid U' \neq X \text{ 的一个有限子集}\} \cup \{\emptyset\}.$ (1) 证明: $\mathcal{F} \neq X \perp$ 的一个拓扑。

(2) 设 A 是 X 中的一个无限子集, 求 A 的导集 d(A)。

丁一切《天门·张大郎、七月数字報三一個 (2) 份月歷末 中的一个不可数子案,表外的母亲可有能深他点 · (15年) 泰大县 小年7年在。 (1) 延期, 罗 原义大约 小茶匙。 N. W. A. 11/10 1. 设水是一个拓扑空间,如果火中有两个非空的隔离子集小,B,使得 4∪ B= X,则称 X 是 ユボベチ 2022-2023 学年 第一 学期 拓扑学 课程试卷 A卷 0 風祭 愛 X=(1,2,3,4), X 上的拓扑 T= ((1,2), (1,2,4), (4), Ø), 写出拓扑空间 (X, 10年人 设义=(1,2,3), X 上的拓扑T = (X, 4, 4), (3), (1,3)},则拓扑空间(X, T)是几空间。(者拓扑空间 X 懒足第二百数性公理,则 X 的子空间 Y 也满足第二百数性公理。(5. 设 X 是一个 Hausdorff 空间,则 X 中的任何一个收敛序列只有一个极限点。 你的 * - 判断题(每题2分, 共10分) 二、填空题(每题2分,共10分) 含有无限多个点的有限补空间不是紧致空间。(者拓扑空间 x 有一个可数稠密子集,则称 x 是一个 湖 4. 设X={a,b,则X上的离散拓扑和平庸拓扑分别为 两个连通空间的积空间仍是连通空间。(8 於同。 5. 设水是一个拓扑空间, 如果。 1048人 中的所有因子集 X是一个万空间。 的粉人 得分 得分 相邻 mi rš

规论开的交附不互育点的同不个两向丑中 X 果成 .2 3. 11 4. [{a,b}, {a,b}, 0}, ({a,b}, 0) - (1034) 1. V 2. V 3. X 4. X 5. V

。T∋ Ø , 再义宝由代民 ; Ø = 'X 代因 , T ∋ X (B) (1) (代 &1) ,三

腊 B 味 A 或 B 会 T 。 如 果 A 和 B 之 中 有 一 方 中 立 名 所 A 开 B 会 A 、 因 会 A 、 因 会 A 、 因 会 A 、 因 会 A 、 因 会 A 、 因 会 A 、 因 会 A 、 因 会 A 、 因 会 A 、 因 A 、 A

不是空集。这时 $(A \cap B)$ = $A \cup B$ 是 X 的一个可数子集,所以 $A \cap B \in T$ 。

· A∪=A∪計級型。{Ø}-7=17◆。T⊃ 7致(5)

 $T \ni \emptyset = \bigwedge_{z^{T \ni k}} \bigcup M \cdot \emptyset = z^{T} \oplus M$

集,所以 (1) (2) (3), T 是 X 上的一个拓扑。

 $X = V = (A)b \quad (2)$

GI.....

四、(45分) 1. 证明: (1): 对于任意 x ∈ d(A), 设 U 是 x 的任何一个邻域, 则

因, $\phi \neq (\{x\} - h) \cap U \subset (\{x\} - B) \cap U$ 而从, $B \supset h$ 干由, $\phi \neq (\{x\} - h) \cap U$ 青

此 $x \in d(B)$, 故 $d(A) \subset d(B)$.

(2)证明: 设 β_i , β_i 分别为 X_i , X_2 的可数基,则 $\beta_i \times \beta_2$ 为 $X_i \times X_2$ 的可数基, \$4 8

\$ 6 。间空楼厄二萬去,太太河涌

2. 证明: 设Y是拓扑空间X中的一个连通子集, 如果X中有隔离子集A和B使

得Y C A U B, 则或者Y C A, 或者Y C B。

, BUA D Y 钙 動 樂 干 為 嗣 的 中 X 县 8 時 A 果 谜 : 閱 董

(AUX) (BUX) U ((BUX) U AUX))

C(ANYAB) U(BNYAA)

 $= Y \cap ((A \cap B) \cup (B \cap A))$

0=

而然。東千萬嗣县出YA8所YAA

 $(A \cap Y) \cup (B \cap Y) = (A \cap B) \cap (A \cap A)$

、公心 = Y∩A果哎。東空县个一斉公中Y∩B⊓Y∩A合集, E. I. 4 野宝器財出因

A⊃Y从问理同, Ø=Y∩8果成, B⊃Y从问明立先上器

设V是紧致全国X中的一个闭子集。如果从是Y的一个覆盖,它由X中的开集构成。 3. 若空间 X 的每个开覆盖都有有限于覆盖,则称 X 是紧致空间。

 $\{Y\} - \mathbf{1}\mathbf{A}$ 则。X盖數且共類干別市个一的 \mathbf{A} 县。数数。。盖數干个一的X县 $\{Y\}$ \cup \mathbf{A}

。果干度深个一的X县Y即亚这。Y盖票且共煮干别首个一的X县更

野型、V製珍开个一份、时,也就够开个一份x 五春姑,间空 引Tobsush 个 4. 证明: 设入是X户一的不紧致了集, 来干球, 个一部X是A 级: 即亚 .4

朋育个一百分,盖暨个一的A的放战集刊的中X由虽然显{A∋V|√V} 類果 $\phi = \sqrt{1 \cup \sqrt{1}}$

除x点县限允仆字, $\sqrt{\bigcup_{i=1}} = \sqrt{i} + \sqrt{\bigcup_{i=1}} = \sqrt\bigcup_{i=1}} = \sqrt\bigcup_{i=1}}$

・φ=V∩U底是且, 製除开始A

5. 证明:设X满足第二可数性公理, B 是它的一个可数基. 由于 f: X→Y

 $\pi U = f(f^{-1}(U)) = \bigcup f(B)$,从而U是B 中某些元素的并,故B 是Y的一 ド前班明日 是下的一个基. 没 U 是 Y 的任意开集, 则 厂 (U) 是 X 中的一个 开集, 因此存在B, CB, 使得了(U)=U_{BeB,} B. 由于 f是一个满射, B-(T(B)|B=B) 是由了中开集构成的一个可数核。 个基,这说明Y也满足第二可数性公理, BeB ,

解:可从所学的基础理论、思想方法、拓扑学的应用、与其他领域的联系选择两个 或多个方面进行论述

(1) 设(X, p)是一个紧度量空间. 由球形领域构成的集族 它有一个有限子覆 {B(x,1)|x∈X} 是 X 的 一 个 开 覆 盖, $\{B(x_1,1),B(x_2,1),...,B(x_n,1)\}.$ 六 (7 分)、证明:

 $M = \max\{p(x_i, x_j) | 1 \le i, j \le n\} + 2$

如果 $x,y \in X$,则存在 $i,j,1 \le i,j \le n$,使得 $x \in B(x_i,1)$ 和 $y \in B(x_j,1)$,于是

$$p(x,y) \le p(x,x_i) + p(x_i,x_j) + p(x_j,y) < M$$

分 2...... (2) 实数空间 R 是一个非紧致的度量空间的例子。

得分	阅卷人
100	

五、(13 分)设 X 是一个拓扑空间,证明 X 是 hausdorff 空间当且仅当积空间 $X \times X$ 的对角线 $\Delta = \{(x,x) \in X \times X \mid x \in X\}$ 是一个闭集.

得分	阅卷人

六、(7分)写出映射连续的3个等价条件,并证明:从拓扑空间到 平庸空间的任何映射都是连续映射。

......

 $3. \times 4. \times 5. \checkmark$ - (10分) 1. √ 2. √ - (10分) 1. 不连通 2. {2}

 $\{X, \emptyset\}, \{X, \{a\}, \emptyset\}, \{X, \{b\}, \emptyset\}, \{X, \{a\}, \{b\}, \emptyset\}\}$

4.X的 每个开覆盖都有有限子覆盖

5. T,空间

三、(15分)(1)(a) $X \in T$, 因为 $X' = \emptyset$; 另外由定义有, $\emptyset \in T$ 。

(b) 设 $A,B \in T$ 。如果A和B之中有一个是空集,则 $A \cap B = \emptyset \in T$ 。假定A和B都

不是空集。这时 $(A \cap B) = A' \cup B'$ 是X的一个有限子集,所以 $A \cap B \in T$ 。 (c) 设 $T_1 \subset T$ 。 $\diamondsuit T_2 = T_1 - \{\varnothing\}$ 。 显然有 $\bigcup_{A \in T_1} A = \bigcup_{A \in T_2} A$ 。

如果 $T_2 = \varnothing$,则 $\bigcup_{A \in T_1} A = \bigcup_{A \in T_2} A = \varnothing \in T$

设 $T_2 \neq \emptyset$ 。任意选取 $A_0 \in T_2$,则 $(\bigcup_{A \in T_3} A) = (\bigcup_{A \in T_3} A) = \bigcap_{A \in T_3} A \subset A_0$ 是X的一个有限子 集,所以∪A∈T。根据上述(1)(2)(3), T是X上的一个拓扑。

 $(2) \ d(A) = X.$

四、(45分, 每题9分)

紧致空间的例子: 闭区间[a, b]

(2) 证明:设X是一个可数紧致空间。为了证明它是一个列紧空间,我们只要证明它的 每一个可数的无限子集都有凝聚点。现在用反证法来证明这一点。假设X有一个可数无限 子集A没有凝聚点。首先这蕴涵A是一个闭集。此外对于每一个a E A,由于a不是A的凝聚点, 所以存在a的一个开邻域 U_a 使得 $U_a \cap A = \{a\}$ 。于是集族 $\{U_a | a \in A\} \cup \{A'\}$ 是X的一个开覆 盖。由于7是可数紫致空间,它有一个有限子覆盖,不妨设为{Ua,,Ua,....,Ua,,A'}。由于A' 所以 (Va, Va, ···, Va,) 必 定 覆 2022-2023-1 拓扑学考试试卷 (B卷)

- (10分) 1. 4 2. 4 3. X 4. X 5. 4 二 (10分) 1. 不连通 2. {2} 3. { X, Ø},{ X, {a},Ø},{ X, {b},Ø},{ X, {b},{ A, X, {b},{

三、(15分)(1)(a) $X \in T$, 因为 $X' = \emptyset$, 另外由定义有, $\emptyset \in T$ 。

(b) 设 $A, B \in T$ 。如果 A 和 B 之中有一个是空集,则 $A \cap B = \emptyset \in T$ 。 假定 A 和 B 都

不是空集。这时 $(A \cap B) = A' \cup B'$ 是X的一个有限子集,所以 $A \cap B \in T$ 。

(c) 设
$$T_1 \subset T$$
。 $\diamondsuit T_2 = T_1 - \{\varnothing\}$ 。 显然有 $\bigcup_{A \in T_1} A = \bigcup_{A \in T_2} A$ 。

如果 $T_2 = \varnothing$,则 $\bigcup_{A \in T_1} A = \bigcup_{A \in T_2} A = \varnothing \in T$

设 $T_2 \neq \emptyset$ 。任意选取 $A_0 \in T_2$,则 $(\bigcup_{A \in T_2} A) = (\bigcup_{A \in T_2} A) = \bigcap_{A \in T_2} A \subset A_0$,是X的一个有限子 集,所以∪A∈T。根据上述(1)(2)(3), T是X上的一个拓扑。

(2) d(A) = X.

四、(45分, 每题9分)

1. 紧致空间的例子; 闭区间[a, b]

(2) 证明:设X是一个可数紧致空间。为了证明它是一个列紧空间,我们只要证明它的 每一个可数的无限子集都有凝聚点。现在用反证法来证明这一点。假设X有一个可数无限 子集A没有凝聚点。首先这蕴涵A是一个闭集。此外对于每一个a E A,由于a不是A的凝聚点, 所以存在a的一个开邻域 U_a 使得 $U_a \cap A = \{a\}$ 。于是集族 $\{U_a | a \in A\} \cup \{A'\}$ 是X的一个开覆 盖。由于X是可数紧致空间,它有一个有限子覆盖,不妨设为{Ua,.Uaz,.....Uam.A']。由于A' 心定 所 以 (Ua, Uaz, ···· , Ua,) $A=(U_{a_1}\cup U_{a_2}\cup \cdots \cup U_{a_n})\cap A=\{a_1,a_2,\cdots,a_n\}$ 是 - 个有限

2. 证明:如果 f(X)是Y的一个不连通子集,则存在Y的非空隔离子集 A,B 使得 f(X) = A U B。

于是 $f^{-1}(A), f^{-1}(B)$ 是X的非空子集,并且:

$$(f^{-1}(A) \cap \overline{f^{-1}(B)}) \cup (f^{-1}(B) \cap \overline{f^{-1}(A)})$$

$$\subset (f^{-1}(A) \cap f^{-1}(\overline{B})) \cup (f^{-1}(B) \cap f^{-1}(\overline{A}))$$

$$= f^{-1}((A \cap \overline{B}) \cup (\overline{A} \cap B)) = \emptyset$$

 $f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(f(X)) = X$, 这说明X不连通, 矛盾.从 所以 f-1(A), f-1(B) 是 X 的 非空隔离子集 而 f(X)是Y的一个连通子集.

设X是一个拓扑空间。如果X的每一个开覆盖都有一个可数子覆盖,则称拓扑空间X是 一个Lindeloff空间。

则对于每一个 $A \in X$ 存在X中的一个开集 U_{\bullet} 使得 U_{\bullet} $\cap Y = A$ 。于是 $\{U_{\bullet} | A \in N\} \cup \{Y'\}$ 是X的一个开覆盖,它 有一个可数子覆盖,设为{U₄1, U₄2, …}∪{Y′3。(即使可以找到一个子覆盖不包含Y',但添 上一个元素也无何不可。)这时易见 $\{A_1,A_2,\cdots\}$,其中 $A_i=U_{A_i}$ $\cap Y$, $i\in Z_+$,便是N的一个(关 证明:设Y是 Lindeloff 空间X的一个闭子空间, N是子空间Y的一个开覆盖。 于子空间Y的)可数子覆盖 证明: 设X是一个满足第二可数性公理的空间, 8是它的一个可数基。在8中的每 由于X中的每一个非空开集都能够表示为β中若干个元素(其中当然至少会有一个不是 空集)之井,因此这个非空开集一定与D有非空的交,所以可数集D是X的-个稠密子 一个非空元素B中任意取定一个点 $x_B \in B$ 。令 $D = \{x_B | B \in \beta, B \neq 0\}$,这是一个可数集。