CS4025: Syntax and Parts of Speech

- Why syntax?
- Grammars
- Parts of Speech
- Part of speech tagging and the Viterbi algorithm

See J&M chapter 8 in 1st ed, 5.1 to 5.5 in 2nd, Mellish and Ritchie notes

Why syntax?

- Natural language sentences have structure beyond simple word adjacency and this is relevant for meaning:
 - James Thomason, my wife's oldest friend, kindly donated the flowers.
 - subject(donated, Thomason)
 - object(donated, flowers)
- Different possible meanings can often be explained in terms of different structures
 - The explosives were found by (a security man in a plastic bag)
 - The explosives were (found by a security man) in a plastic bag

Why syntax?

- Knowledge of legal structures narrows down the alternatives for possible meanings
 - He saw the rope under the boxes, which was just what he needed (Relative Clause Attachment)
 - Ross looked at him in the mirror (Pronoun Binding)
- Any general account of how to extract meaning from a sentence (which can handle previously unseen sentences) must have some kind of structure to refer to

Grammar: Definition

The surface structure (syntax) of sentences is usually described by some kind of *grammar*.

- A grammar defines <u>syntactically legal</u> sentences.
 - John ate an apple (syn legal)
 - John ate apple (not syn legal)
 - John ate a building (syn legal)
- More importantly, a grammar provides a description of the structure of a legal sentence (whether or not it makes sense)

A very simple grammar

S = NP VP
VP = Verb NP
NP = Det Noun
NP = Name
Det: a, the
Noun: dog, cat
Name: Fido, Misty
Verb: chases, sees

Fido chases the cat A cat sees Misty

Ex: The cat sees the dog

Parts of Speech

- The preterminals (lexical categories) of a natural language grammar are called parts of speech
- Main parts of speech for English are:
 - Noun
 - Verb
 - Adjective
 - Adverbs
 - Prepositions
 - Determiners

Part of Speech Tagging

- POS tagging is the task of labelling every word with its part of speech, from a specified tagset
- It assumes a dictionary that specifies for each word which tags it could have
- POS tagging is a very simple type of syntactic analysis, and is useful, for instance, for:
 - Text to speech systems
 - Simple information extraction systems

How ambiguous are words?

Words in the Brown corpus:

Unambiguous (1 tag)	35,340	
Ambiguous (2–7 tags)	4,100	
2 tags	3,760	
3 tags	264	
4 tags	61	
5 tags	12	
6 tags	2	
7 tags	1	("still")

- Unfortunately, often the most common words are ambiguous
- play $(v) \rightarrow perform a play (n)$
- catch $(v) \rightarrow$ Take a catch (n)
- hit $(v) \rightarrow$ make a hit (n)

Examples of light verb constructions

Statistical POS Tagging

We adapt the noisy channel model for spelling correction:

For POS Tagging, source is the sequence of tags and what is observed is the sequence of words

The model precisely

```
I can can the can (noisy words ...)P MD VB DT NN (guess at original tags)P VB NN DT VB (guess at original tags)
```

... (many other possible sequences)

- Assume we have received the words W
- We seek to choose the sequence of tags T which maximises P(T|W)
- P(T|W) is the probability that T was intended, given that W was received
- By Bayes' rule, this is equivalent to

$$P(T|W) = \frac{P(W|T) \cdot P(T)}{P(W)}$$

The model precisely

	can	can	the	can
P	MD	VB	DT	NN
P	VB	NN	DT	VB

We know W, and need to find the value of T that maximises:

$$P(T \mid W) = P(W \mid T) \cdot P(T) / P(W)$$

• Since P(W) is the same for all T, we just need to maximise:

$$P(W|T) \cdot P(T)$$

- For a sentence, we estimate P(W|T) as the product of the $P(w_i|t_i)$ for each word/tag in the sentence.
- We can estimate P(T) using unigram, bigram or trigram models of tags.

The model precisely - 3

```
the
can
        can
                        can
MD
     VB DT
                        NN
    NN DT
                        VB
VB
= \operatorname{argmax} P(t_1^n | w_1^n)
     \operatorname{argmax} P(w_1^n|t_1^n)P(t_1^n) denominator does not change
                                     Prior (does not depend on
   Conditional likelihood
                                     words in the sentence)
```

The model precisely - 3

```
the
           can
can
                               can
      VB DT NN
MD
VB NN DT
                               VB
= \operatorname{argmax}_{t_1^n} P(t_1^n | w_1^n)
= \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n|t_1^n)P(t_1^n)}{P(w_1^n)} \text{ using Bayes' rule}
      \operatorname{argmax} P(w_1^n|t_1^n)P(t_1^n) denominator does not change
                                               Transition Probability
    Emission Probability
```

Estimating the Probabilities as bigrams

• For words w_1 , w_2 , ... w_n and tags t_1 , t_2 , ... t_n , we calculate

$$P(W|T) = P(w_1|t_1) \cdot P(w_2|t_2) \cdot \cdots \cdot P(w_n|t_n)$$

$$P(T) = P(t_1|start) \cdot P(t_2|t_1) \cdot \cdots \cdot P(end|t_n)$$

• Emission Probabilities: $P(w_i|t_i)$ is estimated from a tagged corpus (remember n-gram lecture?):

$$\frac{Number\ of\ times\ w_i\ appears\ with\ t_i}{Number\ of\ times\ t_i\ appears}$$

• Transition Probabilities: $P(t_i|t_j)$ is estimated from a tagged corpus:

 $\frac{Number\ of\ times\ w_i\ appears\ with\ t_j}{Number\ of\ times\ t_i\ appears}$

Modelling Transitions: Markov Models

- A finite state machine with probabilistic state transitions.
- Makes Markov assumption that next state only depends on the current state and independent of previous history.

Sample Markov Model for POS (Credit Raymond J. Mooney)

Sample Markov Model for POS (Credit Raymond J. Mooney)

Hidden Markov Model

- Probabilistic generative model for sequences.
- Assume an underlying set of *hidden* (unobserved) states in which the model can be (e.g. parts of speech).
- Assume probabilistic transitions between states over time (e.g. transition from POS to another POS as sequence is generated).
- Assume a *probabilistic* generation of tokens from states (e.g. words generated for each POS).

Sample HMM for POS (Credit Raymond J. Mooney)

Optimisation of search

- With a HMM, we can calculate probability of any sequence
- But how to efficiently find the sequence with maximum probability?
 - Important question, because there are exponentially many paths through an HMM.

Visualising the process

<start></start>	fire	that	man	<end></end>
<start></start>	Noun	Adverb	Noun 1	<end></end>
	Verb	Pronoun	Verb	
		Determiner		
		Complement iser		

Optimisation

- We are looking for the best path through a sequence of tags that are possible for the words of the sentence
- For each path, take the product of the tag transition probabilities and the p(word | tag) emission probabilities
- In principle, we could compute the probability of each path, then choose the path with the highest probability
- This would require a lot of computation, particularly for long sentences

Optimisation

- Standard solution is a kind of dynamic programming: the Viterbi algorithm
 - A recursive approach that doesn't compute the same thing many times
 - Because we use a bigram model, the best path through t_i for w_j only needs to consider the best paths to tags for w_i-1 (and t_i and w_j themselves)

Example (N = Noun, etc.)

	1			1
<start></start>	fire	that	man	<end></end>
<start></start>	Noun	Adverb	Noun	<end></end>
	0.1	0.1	0.1	
	Verb	Pronoun	Verb	
	0.1	0.1	0.2	
		Determi		
		ner		
		0.2		
		Complem		
		entiser		
Computing Scie	nce, Univers	0.6 ity of Aberdeen		

Assume these bigram prob's:

P(N|start)=0.4, P(V|start)=0.2,

P(A|N)=0.2, P(P|N)=0, P(D|N)=0, P(C|N)=0.3,

P(A|V)=0.1, P(P|V)=0.2, P(D|V)=0.5, P(C|V)=0.1,

P(N|A)=0.1, P(V|A)=0.6,

P(N|P)=0, P(V|P)=0.4,

P(N|D)=0.8, P(V|D)=0,

P(N|C)=0.2, P(V|C)=0.3,

P(end|N)=0.7, P(end|V)=0.3

P(word|tag) given in table. Real values would generally be much smaller.

Example (cont) (f = "fire")

<start></start>	fire	that	man	<end></end>
<start></start>	Noun P(N s)*P(f N) = 0.04	Adverb	Noun	<end></end>
	Verb P(V s)*P(f V) = 0.02	Pronoun	Verb	
		Determi ner		
		Complem entiser		

Example (cont) (t = "that")

	<start></start>	fire	that	man	<end></end>
	<start></start>	Noun	Adverb	Noun	<end></end>
		0.04	Max(0.04*P(A N)*P(t A),		
			0.02*P(A V)*P(+ A)) = 0.0008 (from N)		
		Verb	Pronoun	Verb	
		0.02	Max(0.04*P(P N)*P(+ P),		
			0.02*P(P V)*P(† P)) = 0.0004 (from V)		
			Determiner		
			= 0.002 (from V)		
			Complementiser		
Computing Sci	ence, Universit	y of Aberdee	= 0.0072 (from N)		

Example (cont) (m = "man")

<start></start>	fire	that	man	<end></end>
<start></start>	Noun	Adverb	Noun	<end></end>
	0.04	0.0008 (from N)	Max(0.0008*P(N A)*P(m N),	
			0.0004*P(N P)*P(m N),	
			0.0002*P(N D)*P(m N),	
			0.0072*P(N C)*P(m N))	
			= 0.00016 (from D)	
	Verb	Pronoun	Verb	
	0.02	0.0004 (from V)	= 0.00022 (from C)	
		Determiner		
		0.002 (from V)		
		Complementiser		
Computing Scie	ence. Unive	0.0072 (from N) sity of Aberdeen		

29

Example (concl)

< \$>	fire	that	man	<end></end>
< \$>	Noun	Adverb	Noun	<end></end>
	0.04	0.0008 (from N)	0.00016	Ma×(0.00016*P(e N),
			(from D)	0.00022*P(e V))
				= 0.00012 (from N)
	Verb	Pronoun	Verb	
	0.02	0.0004 (from V)	= 0.00022	P(end N)=0.7,
			(from C)	P(end V)=0.3
		Determiner		
		0.002 (from V)		
		Complementiser		
		0.0072 (from N)		

Reading off the solution

< \$>	fire	that	man	<end></end>
< \$>	Noun	Adverb	Noun	<end></end>
	0.04	0.0008 (from N)	0.00016	Max(0.00016*P(e N),
			(from D)	0.00022*P(e V))
				= 0.00012 (from N)
	Verb	Pronoun	Verb	
	0.02	0.0004 (from V)	= 0.00022	
			(from C)	
		Determiner		
		0.002 (from V)		
		Complementiser		
		0.0072 (from N)		

Algorithm

```
// Best(word, tag) records the probability of the
// best left-right path to a given word and tag
Best(<start>,<start>) = 1.0
For each word win turn,
  For each possible tag t<sub>i</sub> for w<sub>i</sub>,
    Find the tag t_k for w_{i-1} which maximises:
       Best(w_{i-1},t_k) * P(t_i|t_k) * P(w_i|t_i)
    Assign this value to Best(w<sub>i</sub>,t<sub>i</sub>)
```

Relevance to HMMs

 Finding the best POS tagging of a sentence is the same as finding the best way through an HMM that produces the words of the sentence, such as:

The above algorithm (for HMMs) is known as the Viterbi algorithm

Evaluation of POS tagging

- Most current tagging algorithms get 96% to 97% of tags correct
- Human annotators typically agree on about 96% to 97% of tags
- If one just selects the most likely tag for each word, one gets an accuracy of around 90% to 91%

Machine Learning: Sequence Modelling

- POS tagging is an example of classifying sequences.
- Many other problems use similar solutions
 - Speech recognition (Speech2Text)
 - Speech Generation (Text2Speech)
 - Named Entity Recognition
 - Gene Analysis
 - Activity Recognition from sensors

-

Optional: more explanation on the Viterbi algorithm:

http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html