In [26]: df.head()

Out[26]:

	Postal Code	Borough	Neighbourhood	Latitude	Longitude
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494
9	M5B	Downtown Toronto	Garden District, Ryerson	43.657162	-79.378937
15	M5C	Downtown Toronto	St. James Town	43.651494	-79.375418
20	M5E	Downtown Toronto	Berczy Park	43.644771	-79.373306

```
In [27]: latitude = 43.654260
longitude = -79.360636
```

```
In [28]: venues_map = folium.Map(location=[latitude, longitude], zoom_start=13) # ge
         # add a red circle marker to represent the Downtown Toronto
         folium.CircleMarker(
             [latitude, longitude],
             radius=10,
             color='red',
             popup='Downtown Toronto',
             fill = True,
             fill_color = 'green',
             fill_opacity = 0.5
         ).add_to(venues_map)
         # add the Borough as blue circle markers
         for lat, lng, label in zip(df['Latitude'], df['Longitude'], df['Borough']):
             folium.CircleMarker(
                  [lat, lng],
                 radius=5,
                 color='blue',
                 popup=label,
                 fill = True,
                 fill_color='blue',
                 fill_opacity=0.6
             ).add_to(venues_map)
         # # display map
         venues map
```

Out[28]:

Clustering the Neighborhood

```
In [29]: # df.head()
```