Basic Circuit for sensing

May. 15th, 2024

Importance of circuits around sensor

- •To bring out the performance of sensor
 - High S/N (Signal to Noise ratio)
 - Signal with sufficient amplitude
 - Strong signal which has low output impedance
- •To convert from analog signal to digital data easily, and correctly
 - Voltage output and conditioning its amplitude for ADC (A/D converter)
 - Limitation of output signal's band width
 - * For reduction noise
 - * For conversion under sampling theory

Common composition of Sensor system

Circuit component for sensing and its purpose

- From "Weak signal" to "Strong signal"
 - → Impedance converter
- From "small signal" to "large signal"
 - → Amplifier
- Limitation of band width of signal
 - → Filter
 (Passive Filter, Active Filter)
- Signal converter
 - → Current amplifier, Charge amplifier, f-V converter, etc...

Impedance of signal source and load

 R_S : Output (inert) impedance of sensor

 E_S : Signal source in sensor

 V_S : Measured sensor output

 R_L : Input impedance of amplifier or measurement instrument

- Signal source is expressed by an ideal voltage source E_S and an output impedance R_S .
- R_L is an input impedance of a load connected with signal source.
 - * Load is an amplifier, filter or measurement instrument...
- E_S is generated signal depending on state of sensing target.

But, V_S is amplified or measured.

 E_S should be measured. To realize that, always...

The relation between R_S and R_L is important!!

Impedance conversion for measurement

Amplifire

Types of Amplifier

(a) Single-End input amplifier

(b) Differential input amplifier

Operational Amplifier

Operational amplifier (OP-amp.) is an almost ideal amplifier. It is used for measurement circuit.

Table: Features of Operational amplifier

Feature	Ideal Value	Practical Value		
Differential voltage gain	∞	$10^5 \sim 10^7$		
Common mode voltage gain	0	10-5		
Input impedance	∞	Order of $10^6 \sim 10^9$ [ohm]		
Output impedance	0	Order of $\sim 10^2$ [ohm]		
Frequency band width	∞	Order of $10^6 \sim 10^7 [Hz]$		
Input bias current	0	Order of $\sim 10^2 [\text{nA}]$		
Offset voltage on inputs	0	Order of $\sim 10^1 [\text{mV}]$		

Basic operation of OP-amp.

- OP-amp. has 2 input terminals, "Inverting input", and "Non-inverting input".
- OP-amp. amplifies the voltage difference between those terminals.

K : Open loop gain of OP-amp. itself.

Equivalent expression and Symbol of OP amp.

Voltage-Follower as an impedance converter

- High input impedance
- Low output impedance
- Voltage Gain: $1 \Rightarrow V_{IN} = V_{OUT}$

Basic amplifier using OP-Amp.

- Inverting amplifier
 - Signal inputs to Inverting input terminal "IN-"
 - Output signal has 180° phase difference to input signal.
 - Input impedance is not high (almost R_1).

Inverting amplifier

Non-inverting amplifier

- Non-inverting amplifier
 - Signal inputs non-inverting terminal "IN+"
 - Output signal is co-phase with input signal
 - Input impedance is high. (Important!!!)

Single end input amp. and Differential input amp. by OP amp.

Single-End input amplifier

Differential input amplifier

- Single-End input amplifier
 - A port of sensor and of OP amp. is grounded, directly.
 - * Non-inverting amp. is also a single end input amp..

- Differential input amplifier
 - Both inputs are not grounded, Those are connected to OP amp. directly.

Instrumentation amplifier

★ Instrumentation amplifier is used for sensor with high input Impedance, and for improving S/N in noisy measurement.

Features of instrumentation amplifier

- High input impedance
- Low output impedance
- Differential amplifier

Instrumentation Amplifier

Other amplifier for measurement

- Current amplifier
- Charge amplifier

Current amplifier

Is: Short current of photo diode.

This current is generated depending on inputted photo energy to pn junction.

Charge amplifier

Practical amplifier circuit using OP-amp.

- OP-amp. is almost ideal. But, OP-amp. is not ideal.
- Important point should be considered.
 - off-set voltage
 - bias current
 - off-set current
 - input and output impedance
 - frequency response etc...

It's necessary to select a suitable OP amp. for measurement aim.

Offset voltage and bias current of commercially available OP-Amp

	IC type number	Offset voltage		Bias current	
	IC type number	typ	max	typ	max
Bi-polar (general purpose)	NJM4558	0.5mV	6mV	25n A	500nA
Bi-polar (general purpose)	LM358	2mV	7mV	45n A	250nA
Bi-polar (high precision)	AD8599	0.015mV	0.12mV	40n A	210nA
FET (general purpose) FET (general purpose) FET (high precision)	LF411	0.8mV	2mV	50pA	200pA
	LF412	1mV	3mV	50pA	200pA
	AD8610A	0.085mV	0.2 mV	2pA	10pA
CMOS (general purpose)	LMC6482AI	0.11 mV	1.35mV	0.02pA	4pA
CMOS (general purpose) CMOS (high precision)	LMC6442AI	0.75mV	4 m V	0.005pA	4pA
	LMC6462AI	0.25mV	1.2mV	0.15pA	10pA

Active Filter

Importance of Filter in measurement

- Signal from sensor always includes noise and unwanted signal.
 - Those should be reduced before A/D conversion.
- In the viewpoint of A/D conversion, inputted analog signal to ADC has to be based on Shannon's sampling theorem

Filtering by electrical circuit

Features of active filter

- Active filters are composed by active components and passive components
- Active filters can filter and amplify signal at a time.
- High order filter can be realized by 1st order filter and 2nd order filters.
- Filter for low frequency is realized without inductor.

etc. . . .

Active filter using OP-amp.

- Active filter by using OP-amp. is based on following circuits.
 - -Integrator circuit (material for LPF)
 - —Differentiating circuit (material for HPF)

Integrator circuit and Differentiating circuit by OP-amp.

Transfer function and Amplitude characteristic of integrator circuit

● I/O function of integrator circuit

$$V_{out}(t) = -\frac{1}{CR} \int V_{in}(t) dt$$
 (1)

Transfer function

$$H(j\omega) = -\frac{1}{j\omega CR} \tag{2}$$

Amplitude characteristic

$$|H(j\omega)| = \frac{1}{\omega CR} \tag{3}$$

Amplitude characteristic

Filter circuits based on integrator and differentiation circuit

Basic 1st order active filter

Transfer function

$$H(j\omega) = -\frac{R_2}{R_1} \frac{1}{1 + j\omega C R_2}$$
 (1)

Amplitude characteristic

$$|H(j\omega)| = \frac{R_2}{R_1} \frac{1}{\sqrt{1 + (\omega C R_2)^2}}$$

$$= \frac{R_2}{R_1} \frac{1}{\sqrt{1 + (\omega / (1/C R_2))^2}}$$

- Horizontal axis expresses normalized frequency by the cut-off frequency.
- Vertical axis expresses normalized value by maximum gain.

Attenuation gradient (slope)

☆What is "attenuation gradient"?

It means attenuation property of filter over the cut-off frequency. This property is determined by the property of measuring signal.

Usually, following units are used for attenuation gradient.

dB/dec: "dec" means "decade". Attenuation ratio defined as follows;

Attenuation gradient [dB/dec] = 20 log ($|H(j\omega_2)|/|H(j\omega_1)|$)

*
$$\omega_2 = 10 \cdot \omega_1$$

dB/oct: "oct" means "octave".

Attenuation gradient [dB/oct] = 20 log ($|H(j\omega_2)|/|H(j\omega_1)|$)

*
$$\omega_2 = 2 \cdot \omega_1$$

Design of high order filter

- High order filter
 - \rightarrow Transfer function is expressed by the equation of high order " $j\omega$ ".

- Amplitude characteristics is defined.
- Transfer function from the characteristics.

The amplitude characteristics

- Butterworth filter
 - → Pass band and stop band have flat frequency response.
- Chebyshev filter
 - → Pass band or stop band have ripple feature.
- Elliptic filter
 - → Pass band and stop band have ripple feature.

...etc.

^{*} From Wikipedia

Design of Butterworth filter

• Amplitude characteristic of Butterworth filter

$$|G(jx)| = \frac{1}{\sqrt{1+x^{2n}}}$$

 $|G(jx)| = \frac{1}{\sqrt{1 + x^{2n}}}$ $\stackrel{\text{**}n : The order of transfer function}}{= \frac{\omega}{\sqrt{1 + x^{2n}}}}$ $\frac{x = \omega}{\omega_c}$: Normalized frequency by cut-off frequency.

Transfer function of prototype filter G(jx)

X Prototype filter: Filter designed under using normalized frequency.

Amplitude characteristics of Butterworth filter

Butterworth filter's transfer function

Transfer function G(jx) from |G(jx)| of Butterworth filter.

$$G(jx) = \frac{1}{(jx - jx_0)(jx - jx_1)\cdots(jx - jx_{n-1})}$$

$$x_m = e^{j\frac{2m+1}{2n}\pi}$$

$$\{m = 0, 1, \dots, n-1\}$$

n : The order of transfer function

$$|G(jx)| = \frac{1}{\sqrt{1+x^{2n}}}$$

$$|G(jx)|^2 = G(jx) \cdot G(jx) \cdot G(jx)$$

$$|G(jx)|^2 = G(jx) \cdot G(-jx)$$

$$=\frac{1}{1+x^{2n}}$$

To get G(jx), the denominator is factorized.

$$1 + x^{2n} = 0$$

$$x^{2n} = -1$$

$$x^n = \pm j = e^{\pm j \frac{(2m+1)}{2}\pi}$$

$$x_m = e^{\pm j \frac{(2m+1)}{2n}\pi}$$

$$m = 0, 1, 2, \dots, n-1$$

Denominator of transfer function of Butterworth filter

Order n	Denominator of transfer function
1	jx+1
2	(jx)^2+1.4142(jx)+1
3	(jx+1) {(jx)^2+(jx)+1}
4	${(jx)^2+0.7654(jx)+1} {(jx)^2+1.8478(jx)+1}$
5	$(jx+1) \{(jx)^2+0.6180(jx)+1\} \{(jx)^2+1.6180(jx)+1\}$
6	$\{(jx)^2+0.5176(jx)+1\}$ $\{(jx)^2+1.4142(jx)+1\}$ $\{(jx)^2+1.9319(jx)+1\}$
7	$(jx+1) \{(jx)^2+0.4450(jx)+1\} \{(jx)^2+1.2470(jx)+1\} \{(jx)^2+1.8019(jx)+1\}$
8	$ \{(jx)^2 + 0.3902(jx) + 1\} \ \ \{(jx)^2 + 1.1111(jx) + 1\} \ \ \{(jx)^2 + 1.6629(jx) + 1\} \ \ \{(jx)^2 + 1.9616(jx) + 1\} $

Design example

★ 1st order filter:

$$n=1$$
, and $m=0$
 $x_0 = e^{j\frac{\pi}{2}} = j$

1st order transfer function

$$G(jx) = \frac{1}{1+jx}$$

 \bigstar 2nd order filter:

n=2, and m=0, 1

$$x_0 = e^{j\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}, x_1 = e^{j\frac{3\pi}{4}} = -\frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2}$$

2nd order transfer function

$$G(jx) = \frac{1}{\left(jx + \sqrt{2}/_2 - j\sqrt{2}/_2\right)\left(jx + \sqrt{2}/_2 + j\sqrt{2}/_2\right)} = \frac{1}{(jx)^2 + \sqrt{2}(jx) + 1}$$

Design example (2)

 \bigstar 3rd order filter:

n=3, and m=0, 1, 2

$$x_0 = \frac{\sqrt{3}}{2} + j\frac{1}{2}, x_1 = j, x_2 = -\frac{\sqrt{3}}{2} + j\frac{1}{2}$$

3rd order transfer function

$$G(jx) = \frac{1}{(jx+1)\{(jx)^2 + (jx) + 1\}} = \frac{1}{(jx+1)} \cdot \frac{1}{(jx)^2 + (jx) + 1}$$
1st order 2nd order

* 3rd order filter is composed by 1st order and 2nd order filter.

Design rule ...

Design rule of Butterworth filter

1 Pairs of conjugate complex exist in the transfer function above 2nd order.

n : odd number \Rightarrow (n-1)/2 pairs even number \Rightarrow n/2 pairs

From these, 2nd order filter is composed.

② In the case of odd number's order, 1st order filter exists in the transfer function.
 → Odd number's filter is composed by 1st order filter and some 2nd order filter,
 and cascade connection of those.

3 In the case of even number's order, the filter is composed by some 2nd order filter, and cascade connection of those.

1st order filter circuit, and 2nd order filter circuit

1st order filter circuit

☆ 1st order filter's transfer function (Prototype filter)

$$G(jx) = \frac{1}{1+jx}$$

1st order filter is always realized by passive filter.

Passive RC circuit's transfer function

$$H(j\omega) = \frac{1}{1 + j\omega CR}$$

$$\omega_{c} = 1/CR$$

$$\omega_{c} = 1/CR$$

$$G(jx) = \frac{1}{1 + jx}, x = \omega/\omega_{c}$$

$$V_{\text{in}}$$
 C
 V_{out}

Passive RC filter circuit

About 2nd order filter

 \bigstar General expression of 2nd order filter's transfer function

$$G(jx) = \frac{1}{(jx)^2 + \frac{1}{a} \cdot (jx) + 1}$$

- * "a" is determined by pair of conjugate complex number.
- @ cut-off frequency (x=1)

$$|G(j1)| = a$$

"a" means the gain at cut-off frequency.

2nd order filter circuit which have same transfer function.

Circuit for 2nd order filter

- VCVS(Voltage-Controlled Voltage Source) circuit (Sallen-Key circuit)
- MFB(Multi Feed Back) circuit ...etc.

VCVS circuit

VCVS : <u>V</u>oltage <u>C</u>ontrolled <u>V</u>oltage <u>S</u>ource

2nd order filter using VCVS circuit

2nd order LPF using VCVS circuit

Transfer function of VCVS circuit

$$H(j\omega) = \frac{A}{(j\omega)^2 R_1 C_1 R_2 C_2 + (j\omega) \{ (1-A)R_1 C_2 + R_2 C_1 + R_1 C_1 \} + 1}$$

$$*A = 1 + R_a / R_b$$

$$H(j\omega) = \frac{A}{(j\omega)^2 (RC)^2 + (j\omega)(3 - A)RC + 1}$$

$$\omega_c = 1/RC$$

$$H(jx) = \frac{A}{(jx)^2 + (jx)(3 - A) + 1}$$

Comparison between transfer functions

Prototype Butterworth filter's: $G(jx) = \frac{1}{(jx)^2 + \frac{1}{a} \cdot (jx) + 1}$

VCVS circuit's transfer function :
$$H(jx) = A \cdot \frac{1}{(jx)^2 + (jx)(3-A) + 1}$$

3rd order LPF

4th order LPF

MFB circuit

MFB : <u>Multiple Feed Back</u>