Lesson Menu

Five-Minute Check (over Lesson 9–2)

Mathematical Practices

Then/Now

Theorem 9.2

Example 1: Real-World Example: Use Congruent Chords to Find Arc Measure

Example 2: Use Congruent Arcs to Find Chord Lengths

Theorems 9.3, 9.4

Example 3: Use a Radius Perpendicular to a Chord

Example 4: Real-World Example: Use a Diameter Perpendicular to a Chord

Theorem 9.5

Example 5: Chords Equidistant from Center

5-Minute Check

Over Lesson 9–2

In \bigcirc O, \overrightarrow{BD} is a diameter and $m\angle AOD = 55$. Find $m\angle COB$.

A. 105

B. 114

C. 118

5-Minute Check

Over Lesson 9–2

2 In \odot O, \overline{BD} is a diameter and $m\angle AOD = 55$. Find $m\angle DOC$.

- A. 35
- **B.** 55

5-Minute Check

Over Lesson 9-2

In \bigcirc O, \overrightarrow{BD} is a diameter and $m\angle AOD = 55$. Find $m\angle AOB$.

B. 130

C. 135

5-Minute Check

Over Lesson 9–2

4 Refer to $\odot P$. Find \widehat{mLM} .

A. 160

C. 140

5-Minute Check

Over Lesson 9–2

5 Refer to $\odot P$. Find \widehat{mMOL}

A. 180

B. 190

C. 200

5-Minute Check

Over Lesson 9–2

- Dianne runs around a circular track that has a radius of 55 feet. After running three quarters of the distance around the track, how far has she run?
 - A. 129.6 ft
 - **B.** 165 ft
- C. 259.2 ft
 - D. 345.6 ft

Mathematical Practices

- 4 Model with mathematics.
- 3 Construct viable arguments and critique the reasoning of others.

Content Standards

- G.C.2 Identify and describe relationships among inscribed angles, radii, and chords.
- G.MG.3 Apply geometric methods to solve problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).
- G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).

Then

You used the relationships between arcs and angles to find measures.

Now

- Recognize and use relationships between arcs and chords.
- Recognize and use relationships between arcs, chords, and diameters.

Theorem 9.2

Words In the same circle or in congruent circles, two minor

arcs are congruent if and only if their corresponding

chords are congruent.

Example $\widehat{FG} \cong \overline{\widehat{HJ}}$ if and only if $\overline{FG} \cong \overline{HJ}$.

Proof Theorem 9.2 (part 1)

Given: $\bigcirc P$; $\widehat{QR} \cong \widehat{ST}$

Prove: $\overline{QR} \cong \overline{ST}$

Proof:

Statements

- **1.** $\bigcirc P$, $\widehat{QR} \cong \widehat{ST}$
- 2. ∠QPR≅ ∠SPT
- 3. $\overline{QP} \cong \overline{PR} \cong \overline{SP} \cong \overline{PT}$
- **4.** $\triangle PQR \cong \triangle PST$
- **5.** $\overline{QR} \cong \overline{ST}$

Reasons

- 1. Given
- 2. If arcs are \cong , their corresponding central & are \cong .
- 3. All radii of a circle are ≅.
- 4. SAS
- 5. CPCTC

Real-World Example 1 Use Congruent Chords to Find Arc Measure

JEWELRY A circular piece of jade is hung from a chain by two wires wrapped around the stone. JM = KL and mKL = 90. Find mJM.

Real-World Example 1 Use Congruent Chords to Find Arc Measure

 \overline{JM} and \overline{KL} are congruent chords, so the corresponding arcs \widehat{JM} and \widehat{KL} are congruent.

Answer: $m\widehat{KL} = m\widehat{JM} = 90$

Real-World Example 1

Guided Practice

 $\odot W$ has congruent chords \overline{RS} and \overline{TV} . If \widehat{mRS} = 85, find \widehat{mTV} .

- A. 42.5
- **B.** 85
- C. 127.5
- D. 170

Example 2

Use Congruent Arcs to Find Chord Lengths

ALGEBRA In the figure, $\odot A \cong \odot B$ and $\widehat{WX} \cong \widehat{YZ}$. Find WX.

 \widehat{WX} and \widehat{YZ} are congruent arcs in congruent circles, so the corresponding chords \overline{WX} and \overline{YZ} are congruent.

Example 2

Use Congruent Arcs to Find Chord Lengths

WX = YZ Definition of congruent segments

7x - 2 = 5x + 6 Substitution

7x = 5x + 8 Add 2 to each side.

2x = 8 Subtract 5x from each side.

x = 4 Divide each side by 2.

So, WX = 7x - 2 = 7(4) - 2 or 26.

Answer: WX = 26

Example 2

Guided Practice

ALGEBRA In the figure, $\odot G \cong \odot H$ and $\widehat{RT} \cong \widehat{LM}$.

Find LM.

A. 6

B. 8

C. 9

13

Theorems

9.3 If a diameter (or radius) of a circle is perpendicular to a chord, then it bisects the chord and its arc.

Example If diameter \overline{AB} is perpendicular to chord \overline{XY} , then $\overline{XZ} \cong \overline{ZY}$ and $\widehat{XB} \cong \widehat{BY}$.

9.4 The perpendicular bisector of a chord is a diameter (or radius) of the circle.

Example If \overline{AB} is a perpendicular bisector of chord \overline{XY} , then \overline{AB} is a diameter of $\odot C$.

Example 3

Use a Radius Perpendicular to a Chord

In
$$\bigcirc G$$
, $\widehat{mDEF} = 150$. Find \widehat{mDE} .

Radius \overline{EG} is perpendicular to chord \overline{DF} . So by

Theorem 10.3, \overline{EG} bisects \widehat{DEF} . Therefore,

$$\widehat{mDE} = \widehat{mEF}$$
. By substitution, $\widehat{mDE} = \frac{150}{2}$ or 75.

Answer: $\widehat{mDE} = 75$

Example 3

Guided Practice

In $\odot Z$, $\widehat{mWUX} = 160$. Find \widehat{mUX} .

- A. 14
- **B**. 80
- **C.** 160
- D. 180

Real-World Example 4 Use a Diameter Perpendicular to a Chord

CERAMIC TILE In the ceramic stepping stone below, diameter \overline{AB} is 18 inches long and chord \overline{EF} is 8 inches long. Find \overline{CD} .

Real-World Example 4 Use a Diameter Perpendicular to a Chord

Step 1 Draw radius CE.

This forms right $\triangle CDE$.

Real-World Example 4 Use a Diameter Perpendicular to a Chord

Step 2 Find *CE* and *DE*.

Since AB = 18 inches, CB = 9 inches. All radii of a circle are congruent, so CE = 9 inches.

Since diameter \overline{AB} is perpendicular to \overline{EF} , \overline{AB} bisects chord \overline{EF} by Theorem 10.3. So, $DE = \frac{1}{2}(8)$ or 4 inches.

Real-World Example 4 Use a Diameter Perpendicular to a Chord

Step 3 Use the Pythagorean Theorem to find *CD*.

$$CD^2 + DE^2 = CE^2$$
 Pythagorean
Theorem

$$CD^2 + 4^2 = 9^2$$
 Substitution

$$CD^2 + 16 = 81$$
 Simplify.

$$CD^2 = 65$$
 Subtract 16 from each

$$CD = \sqrt{65}$$
 Take the positive square root.

Answer: $CD = \sqrt{65}$ or about 8.06 inches.

Real-World Example 4

Guided Practice

In the circle below, diameter \overline{QS} is 14 inches long and chord \overline{RT} is 10 inches long. Find VU.

- A. 3.87
- **B.** 4.25
- 4.90
- D. 5.32

Theorem 9.5

Words In the same circle or in congruent circles, two

chords are congruent if and only if they are

equidistant from the center.

Example $\overline{FG} \cong \overline{JH}$ if and only if LX = LY.

Example 5

Chords Equidistant from Center

ALGEBRA In $\odot P$, EF = GH = 24. Find PQ.

Since chords \overline{EF} and \overline{GH} are congruent, they are equidistant from P. So, PQ = PR.

Example 5

Chords Equidistant from Center

$$PQ = PR$$

$$4x - 3 = 2x + 3$$
 Substitution

$$x = 3$$
Simplify.

So,
$$PQ = 4(3) - 3$$
 or 9

Answer: PQ = 9

Example 5

Guided Practice

ALGEBRA In $\odot R$, MN = PO = 29. Find RS.

- **A**. 7
- **B.** 10
- **C.** 13
- 15

