Анализ результатов А/В-теста

Нужна проверить тестирование изменений, связанных с внедрением улучшенной рекомендательной системы. Оцените корректность проведения теста и проанализируйте результаты теста.

- Первый этап изучение общий информации.
- Второй этап предобработка данных.
- Третий этап оценка корректности проведения теста.
- Четвертый этап исследовательский анализ данных теста.
- Пятый этап оценка результатов А/В-тестирования.
- Шестой этап общий вывод.

Среди данных у нас есть идентификаторы пользователя, тип события, дата и время события, дата регистрации, регион пользователя и устройство регистрации, таблица участников тестов и календарь маркетинговых событий на 2020 год. Данные разбиты на две группы А и В.

Изучение общий информации.

```
In [1]: import pandas as pd
  import datetime as dt
  import numpy as np
  import matplotlib.pyplot as plt
  from plotly import graph_objects as go
  from scipy import stats as st
  import math as mth
  import warnings
  import seaborn as sns
```

Загрузим данные действий новых пользователей в период с 7 декабря 2020 по 4 января 2021 года.

Out[2]:

	user_id	event_dt	event_name	details
0	E1BDDCE0DAFA2679	2020-12-07 20:22:03	purchase	99.99
1	7B6452F081F49504	2020-12-07 09:22:53	purchase	9.99
2	9CD9F34546DF254C	2020-12-07 12:59:29	purchase	4.99
3	96F27A054B191457	2020-12-07 04:02:40	purchase	4.99
4	1FD7660FDF94CA1F	2020-12-07 10:15:09	purchase	4.99

Загрузим календарь маркетинговых событий на 2020 год.

```
marketing_events = pd.read_csv('C:\\Users\\User\\Desktop\\fin_pr\\ab_project_marketi
marketing_events.head()
```

Out[3]: name regions start_dt finish_dt 0 Christmas&New Year Promo EU, N.America 2020-12-25 2021-01-03 1 St. Valentine's Day Giveaway EU, CIS, APAC, N.America 2020-02-14 2020-02-16 2 St. Patric's Day Promo EU, N.America 2020-03-17 2020-03-19 3 Easter Promo EU, CIS, APAC, N.America 2020-04-12 2020-04-19 4 4th of July Promo N.America 2020-07-04 2020-07-11

Пользователи, зарегистрировавшиеся с 7 по 21 декабря 2020 года.

Out[4]: user_id first_date region device **0** D72A72121175D8BE 2020-12-07 EU PC F1C668619DFE6E65 2020-12-07 N.America Android 2E1BF1D4C37EA01F 2020-12-07 PC EU 50734A22C0C63768 2020-12-07 iPhone **4** E1BDDCE0DAFA2679 2020-12-07 N.America iPhone

Таблица участников тестов.

```
Out[5]: user_id group ab_test

O D1ABA3E2887B6A73 A recommender_system_test

1 A7A3664BD6242119 A recommender_system_test

2 DABC14FDDFADD29E A recommender_system_test

3 04988C5DF189632E A recommender_system_test

4 482F14783456D21B B recommender_system_test
```

Название столбцов коректны, нужна проверить типы данных, следует изучить наличие пропусков и дубликатов.

Предобработка данных.

Посмотрим на наличие дубликатов и пропусков.

```
events.info();
In [6]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 440317 entries, 0 to 440316
         Data columns (total 4 columns):
          # Column Non-Null Count Dtype
         --- ----
                        -----
          0 user_id 440317 non-null object
1 event_dt 440317 non-null object
          2 event name 440317 non-null object
          3 details 62740 non-null float64
         dtypes: float64(1), object(3)
         memory usage: 13.4+ MB
 In [7]: print(events.isna().sum())
         print('Количество дубликатов:', events.duplicated().sum());
         user id
                            0
         event dt
                            0
         event name
         details 377577
         dtype: int64
         Количество дубликатов: 0
         Есть пропуски в details, но они связаны с тем что не все события имеют дополнительные данные. Они
         не помешают нашему анализу оставим их как есть.
In [8]: marketing events.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 14 entries, 0 to 13
         Data columns (total 4 columns):
          # Column Non-Null Count Dtype
         ---
                        -----
         0 name 14 non-null object
1 regions 14 non-null object
2 start_dt 14 non-null object
3 finish_dt 14 non-null object
         dtypes: object(4)
         memory usage: 576.0+ bytes
 In [9]: print(marketing events.isna().sum())
         print('Количество дубликатов:', marketing events.duplicated().sum())
         name
         regions
         start dt
         finish dt 0
         dtype: int64
         Количество дубликатов: 0
In [10]: new_users.info()
         new users['user id'].nunique()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 61733 entries, 0 to 61732
         Data columns (total 4 columns):
         # Column Non-Null Count Dtype
          0 user id 61733 non-null object
          1 first date 61733 non-null object
          2 region 61733 non-null object
3 device 61733 non-null object
```

```
dtypes: object(4)
        memory usage: 1.9+ MB
        61733
Out[10]:
        print(new users.isna().sum())
In [11]:
         print('Количество дубликатов:', new users.duplicated().sum())
         new users['user id'].nunique()
        user id
        first date
                      0
        region
        device
                      0
        dtype: int64
        Количество дубликатов: 0
         61733
Out[11]:
In [12]: participants.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 18268 entries, 0 to 18267
        Data columns (total 3 columns):
         # Column Non-Null Count Dtype
         --- ----- ------ ----
         0 user id 18268 non-null object
         1 group 18268 non-null object
         2 ab test 18268 non-null object
        dtypes: object(3)
        memory usage: 428.3+ KB
In [13]: print(participants.isna().sum())
        print('Количество дубликатов:', participants.duplicated().sum())
        user id
                   0
        group
        ab test
                   0
        dtype: int64
        Количество дубликатов: 0
        Проверим на неявные дубликаты
In [14]: new_users['user_id'].value counts().head()
        BC1E96104DDE433A 1
Out[14]:
        D45554BA350E10C4
        CC311F9ED000F25E
                           1
        CA84538479857DBD
        7F59E027E41EB119
                            1
        Name: user id, dtype: int64
In [15]: participants['user_id'].value counts().head()
        9CBD8387C8A1DDDF
Out[15]:
        4D269D6E438C6D22
        B70E5E2275EEAA7F
                            2
        06C6018D3CB3E903
        87314190D7FC4E12
        Name: user id, dtype: int64
        Есть дубликаты, видимо пользователи пересекаются, отфильтруем их на следующем этапе.
```

Поменяем типы данных.

```
In [17]: events.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 440317 entries, 0 to 440316
        Data columns (total 4 columns):
         # Column Non-Null Count Dtype
        ---
                       _____
         0 user_id 440317 non-null object
1 event_dt 440317 non-null datetime64[ns]
         2 event name 440317 non-null object
         3 details 62740 non-null float64
        dtypes: datetime64[ns](1), float64(1), object(2)
        memory usage: 13.4+ MB
In [18]: | marketing events['start dt'] = marketing events['start dt'].map(
           lambda x: dt.datetime.strptime(x, '%Y-%m-%d')
In [19]: marketing events['finish dt'] = marketing events['finish dt'].map(
         lambda x: dt.datetime.strptime(x, '%Y-%m-%d')
In [20]: marketing events.info();
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 14 entries, 0 to 13
        Data columns (total 4 columns):
         # Column Non-Null Count Dtype
        --- ----
                       -----
         0 name 14 non-null object
1 regions 14 non-null object
2 start_dt 14 non-null datetime64[ns]
3 finish_dt 14 non-null datetime64[ns]
        dtypes: datetime64[ns](2), object(2)
        memory usage: 576.0+ bytes
In [21]: new users['first date'] = new users['first date'].map(
            lambda x: dt.datetime.strptime(x, '%Y-%m-%d')
        new users.info();
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 61733 entries, 0 to 61732
        Data columns (total 4 columns):
         # Column Non-Null Count Dtype
        ---
                        -----
         0 user_id 61733 non-null object
         first date 61733 non-null datetime64[ns]
         2 region 61733 non-null object
         3 device 61733 non-null object
        dtypes: datetime64[ns](1), object(3)
        memory usage: 1.9+ MB
```

У столбцов с датами изменены типы на более подходящие, пропусков нет дубликаты нет.

Оценка корректности проведения теста.

Проревем корректность всех пунктов технического задания.

Название теста: recommender_system_test;

)

У нас есть два теста, среди них есть recommender_system_test и есть группы A — контрольная, B — новая платёжная воронка.

Проверим;

- дата запуска: 2020-12-07;
- дата остановки набора новых пользователей: 2020-12-21;
- дата остановки: 2021-01-04;

```
In [23]: print('Дата запуска:', new_users['first_date'].min())
Дата запуска: 2020-12-07 00:00:00
```

Дата запуска корректна.

```
In [24]: print('Дата остановки набора новых пользователей:', new_users['first_date'].max())

Дата остановки набора новых пользователей: 2020-12-23 00:00:00
```

Дата остановки чуть позже на пару дней, возможно эта связано со вторым тестом который шёл параллельно. У нас есть нужная нам число 2020-12-21.

```
In [25]: print('Дата остановки:', events['event_dt'].max())
Дата остановки: 2020-12-30 23:36:33
```

Тест остановился раньше положеного на пять дней.

Аудитория: 15% новых пользователей из региона EU;

```
In [26]: users_data = new_users.pivot_table(index='region', values='user_id', aggfunc='nunique')
    count = new_users['user_id'].nunique()
    users_data['user_%'] = (users_data['user_id'] / count) * 100
    users_data.reset_index()
```

```
Out[26]: region user_id user_%

0 APAC 3153 5.107479

1 CIS 3155 5.110719

2 EU 46270 74.951809

3 N.America 9155 14.829994
```


75% пользователей из региона EU;

```
new users = new users.loc[(new users['first date'] <= '2020-12-21')]</pre>
In [28]:
         new_eu_users = new_users.query('region == "EU"')
         new eu users
         new eu users.head()
         new eu users['user id'].nunique()
         42340
Out[28]:
         user all = new users.query('user id in @participants.user id')
In [29]:
         print(user all.nunique())
         #new eu users = new eu users.query('user id in @test group eu.user id')
         #new eu users.count()
         #print(participants.groupby(['ab test', 'group']).count())
         user id
                       15664
         first date
                          15
         region
                           4
         device
                           4
         dtype: int64
```

Оставим нужных нам пользователей.

```
In [30]: #yu = new_users.query('user_id in @participants.user_id')
    new_eu_users.nunique()
    print(5532/42340*100)
```

13.065658951346245

Фактически 13% новых пользователей из региона EU.

Удалим пересекающихся пользователей которые попали в два теста одновременно.

Оставляем пользователей только из eu региона.

```
In [33]: test_group_eu = test_group.query('user_id in @new_eu_users.user_id')
    test_group_eu['user_id'].nunique()
Out[33]: 5532
```

Ожидаемое количество участников теста 6000 после удаления пересикающихся пользователей 5532.

```
In [34]: events s = events.query('user id in @new eu users.user id')
         events s = events.query('user id in @test group eu.user id')
         print(events s.head())
                                 event dt event name details
                      user id
        5 831887FE7F2D6CBA 2020-12-07 06:50:29 purchase 4.99
        17 3C5DD0288AC4FE23 2020-12-07 19:42:40 purchase
                                                                 4.99
        58 49EA242586C87836 2020-12-07 06:31:24 purchase 99.99
        74 A640F31CAC7823A6 2020-12-07 18:48:26 purchase 93 2F46396B6766CFDB 2020-12-07 13:29:30 purchase
                                                                4.99
                                                                4.99
In [35]: print(events s.count())
        print(events s['user id'].nunique())
        user_id 20382
event_dt 20382
        event_name 20382
        details 2740
        dtype: int64
        3025
```

Ожидаемый эффект: за 14 дней с момента регистрации пользователи покажут улучшение каждой метрики не менее, чем на 10%:

- конверсии в просмотр карточек товаров событие product_page,
- просмотры корзины product_cart ,
- покупки purchase .

Для ожидаемого эффект нам нужно оставить клиентов прожившие лайфтайм 14 дней. Удалим события которые находятся за пределами 2020-12-16.

```
In [36]: ad_costs = test_group_eu.merge(new_eu_users, on=['user_id'], how='left')
    ad_data = events_s.merge(ad_costs, on=['user_id'], how='left')
    ad_data['event_day'] = pd.to_datetime(ad_data['event_dt']).dt.normalize();
    ad_data.head()
    #ad_data = ad_data.loc[(ad_data['first_date'] <= '2020-12-16')]</pre>
```

Out[36]:		user_id	event_dt	event_name	details	group	ab_test	first_date	region	device
	0	831887FE7F2D6CBA	2020-12- 07 06:50:29	purchase	4.99	А	recommender_system_test	2020-12- 07	EU	Android
	1	3C5DD0288AC4FE23	2020-12- 07 19:42:40	purchase	4.99	А	recommender_system_test	2020-12- 07	EU	РС
	2	49EA242586C87836	2020-12- 07 06:31:24	purchase	99.99	В	recommender_system_test	2020-12- 07	EU	iPhone
	3	A640F31CAC7823A6	2020-12- 07 18:48:26	purchase	4.99	В	recommender_system_test	2020-12- 07	EU	PC
	4	2F46396B6766CFDB	2020-12- 07 13:29:30	purchase	4.99	А	recommender_system_test	2020-12- 07	EU	РС
In [37]:	<pre>ad_data['lifetime'] = (ad_data['event_day'] - ad_data['first_date']).dt.days #ad_data = ad_data.loc[(ad_data['lifetime'] == 14)] ad_data = ad_data.query('lifetime < 14 ') ad_data</pre>									

Out[37]:	user_id		event_dt	event_name	details	group	ab_test	first_date	region	•
	0	831887FE7F2D6CBA	2020-12- 07 06:50:29	purchase	4.99	А	recommender_system_test	2020-12- 07	EU	Aı
	1	3C5DD0288AC4FE23	2020-12- 07 19:42:40	purchase	4.99	А	recommender_system_test	2020-12- 07	EU	
	2	49EA242586C87836	2020-12- 07 06:31:24	purchase	99.99	В	recommender_system_test	2020-12- 07	EU	i
	3	A640F31CAC7823A6	2020-12- 07 18:48:26	purchase	4.99	В	recommender_system_test	2020-12- 07	EU	
	4	2F46396B6766CFDB	2020-12- 07 13:29:30	purchase	4.99	А	recommender_system_test	2020-12- 07	EU	
	20376	930EACAE048DFF45	2020-12- 29 06:56:00	login	NaN	А	recommender_system_test	2020-12- 20	EU	
	20377	E5589EAE02ACD150	2020-12- 29 22:17:08	login	NaN	А	recommender_system_test	2020-12-	EU	
	20378	D21F0D4FDCD82DB2	2020-12-	login	NaN	А	recommender_system_test	2020-12-	EU	i

19689 rows × 11 columns

За 14 дней с момента регистрации улучшение каждой метрики более 10%. В конце воронки покупок больше чем в пред идущем событии эта скорее всего из за покупок в один клик.

Итог соответствия данных техническому заданию:

- Название теста: recommender_system_test;
- группы: А контрольная, В новая платёжная воронка;
- дата запуска: 2020-12-07;
- дата остановки набора новых пользователей: 2020-12-23;
- дата остановки: 2020-12-30;
- аудитория: 13% новых пользователей из региона EU;
- фактическое количество участников теста: 5532.
- ожидаемый эффект: за 14 дней с момента регистрации пользователи покажут улучшение каждой метрики не менее, чем на 10%:
 - конверсии в просмотр карточек товаров событие product_page равняется 64%,
 - просмотры корзины product_cart равняется 47%,
 - покупки purchase равняется 101%.

Убедимся, что время проведения теста не совпадает с маркетинговыми и другими активностями.

In [41]: marketing events

Out[41]:

	name	regions	start_dt	finish_dt
0	Christmas&New Year Promo	EU, N.America	2020-12-25	2021-01-03
1	St. Valentine's Day Giveaway	EU, CIS, APAC, N.America	2020-02-14	2020-02-16
2	St. Patric's Day Promo	EU, N.America	2020-03-17	2020-03-19
3	Easter Promo	EU, CIS, APAC, N.America	2020-04-12	2020-04-19
4	4th of July Promo	N.America	2020-07-04	2020-07-11
5	Black Friday Ads Campaign	EU, CIS, APAC, N.America	2020-11-26	2020-12-01
6	Chinese New Year Promo	APAC	2020-01-25	2020-02-07
7	Labor day (May 1st) Ads Campaign	EU, CIS, APAC	2020-05-01	2020-05-03
8	International Women's Day Promo	EU, CIS, APAC	2020-03-08	2020-03-10

```
      9
      Victory Day CIS (May 9th) Event
      CIS
      2020-05-09
      2020-05-11

      10
      CIS New Year Gift Lottery
      CIS
      2020-12-30
      2021-01-07

      11
      Dragon Boat Festival Giveaway
      APAC
      2020-06-25
      2020-07-01

      12
      Single's Day Gift Promo
      APAC
      2020-11-11
      2020-11-12

      13
      Chinese Moon Festival
      APAC
      2020-10-01
      2020-10-07
```

Тест совпадает с маркетинговыми и другими активностям: 2

```
In [42]: A = events['event_dt'].max() # начало теста

B = events['event_dt'].min() # конец теста

print(marketing_events.query("start_dt <= @A" and "finish_dt >= @B"))

print('')

print('Tect совпадает с маркетинговыми и другими активностям:',

marketing_events.query("start_dt <= @A" and "finish_dt >= @B")['name'].nunique());

name regions start_dt finish_dt

O Christmas&New Year Promo EU, N.America 2020-12-25 2021-01-03

10 CIS New Year Gift Lottery CIS 2020-12-30 2021-01-07
```

Тест совпадает с Christmas&New Year Promo которое начинается с 2020-12-25, также очень близко проходит New Year Gift Lottery (2020-12-30 по 2021-01-07), но он коснется только региона CIS. За неделю до исследование в европейском регионе заканчивается Black Friday Ads Campaign.

Проверим аудиторию теста.

- Удостоверемся, что нет пересечений с конкурирующим тестом и нет пользователей, участвующих в двух группах теста одновременно.
- Проверем равномерность распределения по тестовым группам и правильность их формирования.

Если хотитим увеличить показатель на 10% с помощью изменения, понадобится выборка минимум из 659 человек.

Проверим на пересечения в тестах.

In [46]: test p['user id'].duplicated().sum()

Out[46]:

```
In [43]:
         #participants['user id'].value counts().head()
         participants['user id'].duplicated().sum()
        1602
Out[43]:
         test p = participants.query('ab test != "recommender system test"')
In [44]:
         #test p
        old = [test p['user id']]
In [45]:
         for new in ad costs['user id']:
             if new == old:
                 print('Пересечений с конкурирующим тестом есть')
             else:
                 end = 'Пересечений с конкурирующим тестом нет'
         print(end)
        Пересечений с конкурирующим тестом нет
```

```
In [47]: test_group_eu['user_id'].value_counts().head()
         CB3289BB00E5E465
Out[47]:
         9C2A5E3BF66CBB97
         6070727198404A40
         6BAD4743388F4545
         EB3589638ED1D779
                              1
         Name: user id, dtype: int64
         Пользователей одновременно участвующих в двух группах теста нет.
         a data = ad data.query('group == "A"')
In [48]:
         b_data = ad_data.query('group == "B"')
In [49]: a_cr = (a_data.groupby('event_name')
                           .agg({'user_id': 'nunique'})
                           .sort values(by='user id', ascending=False)
                           .reset index()
         #a_cr
         b cr = (b data.groupby('event_name')
In [50]:
                          .agg({'user id': 'nunique'})
                           .sort values(by='user id', ascending=False)
                           .reset index()
         #b_cr
In [51]:
         old a = (a data.groupby('first date')
                           .agg({'event name': 'count', 'user id': 'nunique'})
                           .sort values(by='first date', ascending=False)
                           .reset index()
         old a
Out[51]:
              first_date event_name user_id
          0 2020-12-21
                             2257
                                     339
          1 2020-12-20
                             1470
                                     228
          2 2020-12-19
                                     204
                             1342
          3 2020-12-18
                                     184
                             1441
          4 2020-12-17
                             1269
                                     172
          5 2020-12-16
                             1046
                                     143
          6 2020-12-15
                             1346
                                     170
          7 2020-12-14
                             2414
                                     316
          8 2020-12-13
                              212
                                      47
          9 2020-12-12
                              250
                                      51
         10 2020-12-11
                              443
                                      79
         11 2020-12-10
                              263
                                      54
         12 2020-12-09
                                      68
                              414
         13 2020-12-08
                              504
                                      74
```

14 2020-12-07

812

135

ut[52]:		first_date	event_name	user_id
	0	2020-12-21	328	68
	1	2020-12-20	274	53
	2	2020-12-19	196	39
	3	2020-12-18	223	44
	4	2020-12-17	163	33
	5	2020-12-16	627	85
	6	2020-12-15	123	27
	7	2020-12-14	290	60
	8	2020-12-13	34	12
	9	2020-12-12	222	45
	10	2020-12-11	48	15
	11	2020-12-10	129	29
	12	2020-12-09	379	66
	13	2020-12-08	194	37
	14	2020-12-07	976	148

Проверем равномерность распределения по тестовым группам и правильность их формирования.

Сформулируем гипотезы:

- Нулевая: различий в количестве распределения клиентов между группами нет.
- Альтернативная: различия в количестве распределения клиентов между группами есть.

р-значение: 0.9998581436703973 Не получилось отвергнуть нулевую гипотезу, вывод о различии сделать нельзя

```
In [54]: sns.set_style('whitegrid')
# назначаем размер графика
plt.figure(figsize=(10, 4))
# строим линейный график средствами seaborn
sns.lineplot(x='first_date', y='event_name', data=old_a, marker='D', label = 'group A')
sns.lineplot(x='first_date', y='event_name', data=new_b, marker='D', label = 'group B')
# формируем заголовок графика и подписи осей средствами matplotlib
plt.title('График распределения по тестовым группам ')
plt.xlabel('Дата')
plt.ylabel('Количество')# отображаем график на экране

plt.show()
```


Большой скачек с 13 числа в группе А возможна эта из за маркетинговых событий, однако у группы В таково скачка нет.

Исследовательский анализ результатов теста.

```
ax data = ad data.guery('group == "A"')
In [55]:
         bx data = ad data.query('group == "B"')
         ax data['user id'].nunique()
In [56]:
         2264
Out[56]:
         bx data['user id'].nunique()
In [57]:
         761
Out[57]:
         id event = (
In [58]:
             ax data.groupby('user id')
             .agg({'event name' : 'count'})
             .sort values(by='event name', ascending=False)
         fig, ax = plt.subplots()
         id event['event name'].hist(figsize=(8, 5), bins=(25))
         ax.set title('Количество событий на пользователя группа A')
         ax.set xlabel('Количество событий')
         ax.set ylabel('Количество пользователей')
         plt.show();
```

```
display(id_event.reset_index().head(10))
print('Медиана событий на пользователя групп A:',id_event['event_name'].median())
```


user_id event_name

0	CED71698585A2E46	24
1	B8EF6F0325A9979F	21
2	A25712EE46AD443A	20
3	97AD409895906A32	20
4	7347C03E6A300EFD	20
5	2F0639CBF0C3C249	20
6	109FE65EE47113C9	20
7	19F5032292917412	20
8	77FC0E20AEAC1506	20
9	1BFEE479308EFF44	20

Медиана событий на пользователя групп А: 6.0

user_id event_name

0	1198061F6AF34B7B	24
1	115EBC1CA027854A	21
2	89545C7F903DBA34	21
3	7E8720DB6A21CF66	20
4	2C2BE85372033F77	20
5	C8460FF8BEF553A4	18
6	4EFB5E89AC11AC6D	16
7	A9908F62C41613A8	16
8	37094134968B2013	16
9	FE76759FE6BF8C68	16

Медиана событий на пользователя групп В: 4.0

У групп разброс разный, у группы В разброс сильнее смещен в лево на меньшие количество событий чем у группы А.

```
In [60]: day_a = ax_data.groupby('event_day').agg({'event_name': 'count'})
    day_b = bx_data.groupby('event_day').agg({'event_name': 'count'})
    day_a
```

Out[60]:

event_name

event_day	
2020-12-07	276
2020-12-08	269
2020-12-09	322
2020-12-10	283
2020-12-11	311
2020-12-12	300

2020-12-13	268
2020-12-14	890
2020-12-15	895
2020-12-16	885
2020-12-17	1029
2020-12-18	1067
2020-12-19	1272
2020-12-20	1235
2020-12-21	1640
2020-12-22	1056
2020-12-23	824
2020-12-24	693
2020-12-25	518
2020-12-26	458
2020-12-27	450
2020-12-28	303
2020-12-29	239

In [61]: day_b

Out[61]: event_name

event_day

event_day	
2020-12-07	309
2020-12-08	200
2020-12-09	299
2020-12-10	213
2020-12-11	139
2020-12-12	180
2020-12-13	145
2020-12-14	214
2020-12-15	199
2020-12-16	322
2020-12-17	245
2020-12-18	235
2020-12-19	265
2020-12-20	274
2020-12-21	331
2020-12-22	147
2020-12-23	130

2020-12-24	105
2020-12-25	58
2020-12-26	55
2020-12-27	56
2020-12-28	50
2020-12-29	35

```
In [62]: sns.set_style('whitegrid')
# назначаем размер графика
plt.figure(figsize=(10, 4))
# строим линейный график средствами seaborn
sns.lineplot(x='event_day', y='event_name', data=day_a, marker='D', label = 'group A')
sns.lineplot(x='event_day', y='event_name', data=day_b, marker='D', label = 'group B')
# формируем заголовок графика и подписи осей средствами matplotlib
plt.title('График распределения событий по дням')
plt.xlabel('Дата')
plt.ylabel('Количество') # отображаем график на экране

plt.show()
```


По какой то причини в группе А очень большой скачек клиентов и совершаемыми ими события с 13.12 по 21.12 число, возможно это влияние приближающегося рождества, в группе В такого аномального скачка не наблюдается.

Посмотрим на распределения по девайсам в группах.

```
In [63]: dev_a = ax_data.groupby('device').agg({'event_name': 'count', 'user_id': 'nunique'})
    sum_a = dev_a['event_name'].sum()
    dev_a['event_%'] = (dev_a['event_name'] / sum_a) * 100
    dev_b = bx_data.groupby('device').agg({'event_name': 'count', 'user_id': 'nunique'})
    sum_b = dev_b['event_name'].sum()
    dev_b['event_%'] = (dev_b['event_name'] / sum_b) * 100
In [64]: sum_a = dev_a['user_id'].sum()
    dev_a['user_%'] = (dev_a['user_id'] / sum_a) * 100
sum_b = dev_b['user_id'].sum()
    dev_b['user %'] = (dev_b['user_id'] / sum_b) * 100
```

```
In [65]: dev_a.plot(kind='pie', x='device', y='event_%',
```

```
figsize=(15, 10),
autopct='%1.1f%%',
shadow=True)
plt.legend(loc=8, fontsize=10)
plt.title('Аудитория новых пользователей по девайсам A')
plt.show()

dev_a.reset_index()
```

Аудитория новых пользователей по девайсам А

Out[65]:		device	event_name	user_id	event_%	user_%
	0	Android	6707	994	43.318478	43.904594
	1	Mac	1558	221	10.062649	9.761484
	2	PC	4076	600	26.325647	26.501767
	3	iPhone	3142	449	20.293225	19.832155

Out[66]: device		event_name	user_id	event_%	user_%	
	0	Android	1959	354	46.576320	46.517740
	1	Mac	340	65	8.083690	8.541393
	2	PC	984	185	23.395150	24.310118
	3	iPhone	923	157	21.944841	20.630749

В группе В пользователей на мобильных устройствах больше примерно на 3%.

x=[2264, 1474, 685, 712],
)
fig.show()

	event_name	user_id
0	login	2264
1	product_page	1474
3	product_cart	685
2	purchase	712

Наибольший отток в группе A приходится между переходом от просмотра карточек товаров к просмотру корзины, переходя на этапе покупок идет прирост. От авторизация до просмотра карточек теряется 36,6%. От авторизации до покупки дошли 31%.

	event_name	user_id
0	login	760
1	product_page	431
3	product_cart	214
2	purchase	221

В группе В конверсия не такая большая от авторизации до просмотра теряется около 43.7% клиентов на следующем этапе от карточек до корзины 50%, но на последней этапе идет прирост на 3% видимо рекомендации группы В показывают хорошие показатели на быстрых покупках в один клик. От авторизации до покупки у группы В дошли 29% эти показатели немного ниже чем у группы А.

In [69]:	ac	l_data.head(1)								
Out[69]:		user_id	event_dt	event_name	details	group	ab_test	first_date	region	device
	0	831887FE7F2D6CBA	2020-12- 07	purchase	4.99	А	recommender_system_test	2020-12- 07	EU	Android

```
details_a = ax_data.groupby('event_day').agg({'details': 'mean'})
In [70]:
          details b = bx data.groupby('event day').agg({'details': 'mean'})
          #ax data['details'].value counts()
          #bx data['details'].value counts()
          details a
                       details
Out[70]:
           event_day
          2020-12-07 24.434444
          2020-12-08 24.490000
          2020-12-09 17.199302
          2020-12-10 18.147895
          2020-12-11 27.704286
          2020-12-12 24.490000
          2020-12-13 9.990000
          2020-12-14 26.373929
          2020-12-15 21.455517
          2020-12-16 21.697317
          2020-12-17 16.874058
          2020-12-18 18.133939
          2020-12-19 22.392235
          2020-12-20 27.630449
          2020-12-21 26.400788
          2020-12-22 29.450432
          2020-12-23 12.665439
          2020-12-24 28.626364
          2020-12-25 32.284118
          2020-12-26 22.760270
          2020-12-27 18.990000
          2020-12-28 12.431860
          2020-12-29 8.538387
          details b
In [71]:
Out[71]:
                        details
           event_day
          2020-12-07
                     12.778462
          2020-12-08
                     12.748621
          2020-12-09
                     11.460588
```

```
2020-12-10 26.240000
2020-12-11
           5.990000
2020-12-12 12.990000
2020-12-13 58.948333
2020-12-14 8.955517
2020-12-15 53.138148
2020-12-16 22.063171
2020-12-17 31.823333
2020-12-18
           9.097143
2020-12-19 12.409355
2020-12-20 23.777879
2020-12-21 47.924783
2020-12-22
           9.390000
2020-12-23 11.101111
2020-12-24
           5.823333
2020-12-25 19.275714
2020-12-26 18.561429
2020-12-27 126.101111
2020-12-28
           6.656667
2020-12-29 4.990000
```

```
In [72]: sns.set_style('whitegrid')
# назначаем размер графика
plt.figure(figsize=(12, 6))
# строим линейный график средствами seaborn
sns.lineplot(x='event_day', y='details', data=details_a, marker='D', label = 'group A')
sns.lineplot(x='event_day', y='details', data=details_b, marker='D', label = 'group B')
# формируем заголовок графика и подписи осей средствами matplotlib
plt.title('График распределения стоимость покупки по дням')
plt.xlabel('Дата')
plt.ylabel('Количество') # отображаем график на экране

plt.show()
```



```
In [73]: details_a['details'].mean()
Out[73]: 21.441783882419678

In [74]: details_b['details'].mean()
Out[74]: 24.01063901839584
```

В группе В можно видеть сильные скачки по суммам покупок, однака общая средняя у нее меньше чем у группы В, возможна новые рекомендации влияют больше на покупки нежили на привлечение новых клиентов, однако они по какой-та причине не стабильны.

Прежде чем приступать к А/В-тестированию нужно учесть некоторые особенности данных:

- Не все данные соответствуют требованиям технического задания. Дата остановки теста не корректна, заявлена дата 2021-01-04, фактическая 2020-12-30, скорей всего эта связана с начавшейся рождественскими признаками. В тесте 13% новых пользователей из региона EU, а не 15% как заявлено в ТЗ. Фактическое количество участников теста 5532 вместо 6000.
- В группе А очень большой скачек клиентов и совершаемыми ими события с 13.12 числа.
- Нужна учитывать что есть быстрые покупки в один клик из-за чего некоторые события можно игнорировать сразу переходя к оплате.
- Тест совпадает с маркетинговыми событиями Christmas&New Year Promo которое начинается с 2020-12-25 эта может влиять на поведения пользователей.

Оценка результатов А/В-тестирования.

По результаты А/В-тестирования можно подвести итоги:

• Количество событий на пользователя не одинаково распределены в выборках у группы В разброс сильнее смещен в лева на меньшие количество событий, у группы А он более равномерный и ближе к нормальному распределению. У групп медианное количество событий на пользователя разное.

- События по дням со временем падает в обоих группах, но с 13 числа у группы А очень большой скачке событий который выбивается из общего тренда.
- На этапе просмотра карточек товаров у группы A(63%) конверсия лучше чем у группы B (57%), на этап просмотра корзин переходят 46% у группы A и 49% у группы B, на этапе покупки конверсия от прошлого этапа 103% у обеих групп. Группа B конвертируется не лучше чем группа A на всех этапах кроме этапа просмотра корзин.
- В группе В пользователей на мобильных устройствах больше, так же в этой группе можно видеть сильные скачки по суммам покупок, однако общая средняя у нее меньше чем у группы В, по какой-та причине они не стабильны.

Сформулируем гипотезы:

- Н_0: Между долями есть значимая разница
- Н_1: Между долями нет значимой разницы

alpha = 0.05

р-значение: 3.3566961849640364e-05 Отвергаем нулевую гипотезу: между долями есть значимая разница

```
In [76]: purchases = np.array([214, 685])
leads = np.array([760, 2264])

p1 = purchases[0] / leads[0]
p2= purchases[1] / leads[1]
p_combined = (purchases[0] + purchases[1]) / (leads[0] + leads[1])
difference = p1 - p2

z_value = difference / mth.sqrt(p_combined * (1 - p_combined) * (1/leads[0] + 1/leads[1])
distr = st.norm(0, 1)

p_value = (1-distr.cdf(abs(z_value))) * 2

print('p-значение: ', p_value)

if p_value < alpha:
    print('Отвергаем нулевую гипотезу: между долями есть значимая разница')
```

р-значение: 0.27348595720377333 Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

р-значение: 0.06571034551803678 Не получилось отвергнуть нулевую гипотезу, нет оснований считать доли разными

Разница между конверсиями оказалось значимой только на первом этапе, дальше разницы между конверсиями нет.

Общие вывод.

Общие результаты исследования такие:

- Не смотря на одинаковые медианы цифры в группе В участники теста в основном сосредоточены от одного до четырех событий, когда в группе А они распределены более равномерно.
- События по дням со временем падает в обоих группах, с 13 числа у группы А очень большой скачке событий, у В такого скачка нет.
- Конверсия В на всех этапах хуже А корми первого, если посмотреть конверсию от первого события авторизации до последнего покупок то разницы между группами нет. Проверка z-критерием статистическую разность долей показала что между долями нет значимой разницы корми первого этапа.

Хоть по аудитории и есть не большие отклонения в целом участников достаточна для проведения теста, но тест прерывается не дав возможности отследить лайфтайм всех участников. Также тест проходит во время маркетингово события Christmas&New Year Promo перед рождественскими праздниками что сильно могло повлиять на поведения людей в группах, поэтому тест сложна считать корректным. Тесты нужна проводить с полным лайфтаймом и выбрать окно так чтобы не до, не вовремя теста не было не каких маркетинговых событий и акций.