Lecture 5, Deep Unfolding

Change of notation:

Let $m \in M$ be a model choice $p(\theta, m) = p(\theta)p(m)$

Do we have any prior preferences for the model choice?

$$p(\theta, m|D) = \frac{p(D|\theta, m)}{p(D)} p(\theta) \overline{p(m)}$$

What are the best model parameters? And what is the best model choice?

Architectural priors

(Group) convolutional neural networks

Recurrent neural networks

Deep unfolding

Convolutional networks

1D convolutional (kernel 3)

Convolutional networks

Convolutional networks

Residual networks

Much more efficient training with faster convergence

Residual networks

ResNet-56
Without residual connections

ResNet-56
With residual connections

Priors matter! Some neural architectures are easier to minimize than others

Source: Goldstein et al., NeurIPS 2018

Architectural priors

(Group) convolutional neural networks

Recurrent neural networks

Deep unfolding

An unrolled recurrent neural network

Architectural priors

(Group) convolutional neural networks

Recurrent neural networks

Deep unfolding

Deep unfolding/unrolling

Explicit embedding of structural signal priors in deep networks

Iterative model-based algorithm with input y and output x that leverages some signal structure

unfolded model-based algorithm with input y and output x that leverages some signal structure

Explicit embedding of structural signal priors in deep networks

Iterative model-based algorithm with input y and output x that leverages some signal structure

unfolded model-based algorithm with learned parameters that leverages some signal structure

Example: sparse coding

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Iterative model-based algorithm with input y and output x that leverages signal sparsity

Sparse coding problem

y = Ax + n with x being sparse

Find x:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\text{minimize}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

Some intuition:

Example: sparse coding

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Iterative model-based algorithm with input y and output x that leverages signal sparsity

Sparse coding problem

$$y = Ax + n$$
 with x being sparse

Find x:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\text{minimize}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

Proximal gradient methods

Iterative shrinkage and thresholding

- 1. Take a gradient step towards $||\mathbf{A}\mathbf{x} \mathbf{y}||_2^2 = 0$
- 2. Move it in the proximity of $\lambda ||\mathbf{x}||_1 = 0$

Some intuition:

Example: sparse coding

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Iterative model-based algorithm with input y and output x that leverages signal sparsity

Sparse coding problem

$$y = Ax + n$$
 with x being sparse

Find x:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\text{minimize}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

Iterative shrinkage and thresholding

Proximity operator *Soft thresholding*

Example: sparse coding

Many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Deep learning with a model-based signal prior

- Robust, intuitive, interpretable
- Fast learning
- Data efficient
- Low complexity and memory footprint

DL for super resolution microscopy

DL for super resolution microscopy

500µm

Deep unfolded sparse coding Learned convolutional ISTA

$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\text{minimize}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$

A: Known measurement (PSF) matrix

y: Measurement

x: Sparse target location vector

Iterative shrinkage and thresholding (ISTA)

Deep unfolded ISTA

van Sloun *et al. IUS,* 2019 van Sloun *et al. Proc. IEEE,* 2019

Only 10 unfolded iterations

Deep unfolded sparse coding for ultrasound microscopy Learned convolutional ISTA

Deep unfolded low-rank + sparse coding for clutter removal Learned convolutional ISTA for RPCA

Update steps:

$$egin{aligned} \mathbf{L}^{k+1} &= \mathcal{SVT}_{\lambda_1/2} \left(rac{1}{2} \mathbf{L}^k - \mathbf{S}^k + \mathbf{D}
ight) \ \mathbf{S}^{k+1} &= \mathcal{T}_{\lambda_2/2} \left(rac{1}{2} \mathbf{S}^k - \mathbf{L}^k + \mathbf{D}
ight) \end{aligned}$$

Recall sparse coding:

$$\widehat{\mathbf{S}} = \min_{\mathbf{S}} \|\mathbf{A}\mathbf{S} - \mathbf{D}\|_{2}^{2} + \lambda \|\mathbf{S}\|_{1}$$

Deep unfolded low-rank + sparse coding for clutter removal Learned convolutional ISTA for RPCA

ISTA for RPCA

Cohen et al. ICASSP, 2018

Cohen et al. IEEE TMI, 2019

van Sloun et al. Proc. IEEE, 2019

Deep convolutional Robust PCA

Deep unfolded low-rank + sparse coding for clutter removal Learned convolutional ISTA for RPCA

Neural proximal gradient descent

What if you know the model (e.g. y = Ax) but not the signal prior?

Again, many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Recall unfolded ISTA for sparse coding (known prior, sparsity):

Remember the iterative update rule:

- 1. Take a gradient step towards $||\mathbf{A}\mathbf{x} \mathbf{y}||_2^2 = 0$
- 2. Move it in the proximity of $\lambda ||\mathbf{x}||_1 = 0$ = proximal operator/mapping

= the prior/regularizer

(here: sparsity of x)

Neural proximal gradient descent

What if you know the model (e.g. y = Ax) but not the signal prior?

Again, many applications: denoising, compressed sensing, image reconstruction, super-resolution, ...

Recall unfolded ISTA for sparse coding (known prior, sparsity):

Neural proximal gradient descent (known model, learned prior)

Neural proximal gradient descent

Neural proximal gradient descent (known model, learned prior)

Example: fast MRI reconstruction from known undersampled/compressed acquisitions

Architectural priors

(Group) convolutional neural networks

Recurrent neural networks

Deep unfolding

Lecture 5, Deep Unfolding

Change of notation:

Let $m \in M$ be a model choice $p(\theta, m) = p(\theta)p(m)$

Do we have any prior preferences for the model choice?

$$p(\theta, m|D) = \frac{p(D|\theta, m)}{p(D)} p(\theta) \overline{p(m)}$$

What are the best model parameters? And what is the best model choice?

