RETI DI CALCOLATORI 8 GENNAIO 2007

Studente:

Numero di matricola e corso:

Parte 1: risposta singola – Ogni domanda ha una sola risposta vera

- Una risposta esatta vale +1 punto
- Una risposta errata viene calcolata: -1
- Una risposta lasciata in bianco viene calcolata: 0

1. In una comunicazione mediante socket:

- 1 La funzione *listen* serve per accettare una nuova connessione
- 2 La funzione client close viene invocata solamente dal client per chiudere la comunicazione
- 3 La funzione *connect* si usa tipicamente a lato client
- 4 La funzione *bind* iene invocata tipicamente per costruire una coda di richieste da associare al socket

1. Un pacchetto UDP:

- 1 Prevede opportuni campi per il controllo di congestione
- 2 Prevede un campo per acknowledgement di quanto spedito in precedenza
- 3 Prevede un campo per la rilevazione di errori basato esclusivamente sui dati di livello trasporto
- Prevede un campo di checksum calcolato, tra le altre cose, sulla base dello pseudo-header UDP

2. Il campo TTL (Time To Live) nell'intestazione

- 1 Indicare la validità temporale (in secondi) delle informazioni contenute nell'header
- 2 Evitare che pacchetti circolino indefinitamente sulla rete a causa di incoerenze nelle tabelle di routing
- 3 Indicare la validità temporale della risoluzione hostname-indirizzo IP del mittente ottenuta tramite DNS
- 4 Indicare la validità temporale dell'indirizzo del mittente quando assegnato tramite DHCP

3. Il trasferimento dei dati su di un canale broadcast prevede che:

- 1 Più stazioni possano trasmettere contemporaneamente senza causare collisioni
- 2 Non siano possibili collisioni se si adotta un approccio di tpo "Listen bifore talk"
- 3 Tutti i nodi collegati a tale canale ricevano il messaggio
- 4 In una comunicazione basata su IPsolo le query ARP siano ricevute da tutti, mentre altri tipi di messaggi sono ricevuti solo dal destinatario legittimo del pacchetto
- 4. Nel caso in cui un client richieda una "risoluzione ricorsiva" al name server, quale sarà il comportamento del name server se non è in grado di risolvere l'hostname richiesto?
- 1 Contatterà un altro name server in grado di risolvere il nome
- 2 Contatterà direttamente il name server autoritativo per quell'indirizzo
- 3 Ritornerà al client l'indirizzo di un altro name server da contattare
- 4 Ritornerà al client un elenco di indirizzi di name server da poter contattare

5. Il corpo di una risposta HTTP:

- 1 Viene sempre codificato secondo lo standard URL-encoding per evitare di usare caratteri speciali
- 2 Segue immediatamente gli header della risposta senza alcuna separazione
- 3 Precede gli header della risposta
- 4 Ha una lunghezza specificata dall'header line Content-Lenght

Parte 2: (possibili) risposte multiple – Ogni domanda può avere <u>una o più</u> risposte corrette

- Ogni risposta esatta viene calcolata: +1
- Una risposta errata viene calcolata: -0.5
- Una risposta lasciata in bianco viene calcolata: 0

6. Un name server:

- 1 Non può avere altre informazioni oltre a quelle sul name server della zona immediatamente superiore ed inferiore
- Autoritativo del dominio **site.org**, può rispondere che all'hostname **sun.site.org** non corrisponde alcun indirizzo IP
- 3 Può servire più zone
- 4 Autoritativo del dominio **site.org**, ha informazioni anche su tutti gli hostname del dominio **.org**

7. Il protocollo RARP:

- 1 Utilizza un formato messaggi analogo a quello del protocollo ARP
- 2 Serve per risalire all'indirizzo MAC di un'interfaccia, noto il suo indirizzo IP
- 3 Prevede che un qualunque host che è a conoscenza della corrispondenza richiesta risponda
- 4 Serve per risalire all'indirizzo IP di un'interfaccia, noto il suo indirizzo MAC

8. Dato un nodo con indirizzo IP 208.10.10.1 con la seguente tabella di instradamento, indicare le scelte di routine corrette:

Destination Network	Mask	Gateway
208.10.10.0	255.255.255.0	-
208.10.11.0	255.255.255.0	208.10.10.254
208.10.12.0	255.255.255.0	208.10.10.253

- Il pacchetto con indirizzo di destinazione 208.10.11.53 non verrà instradato, ma si genererà un errore di routing perché la destinazione non è presente nella tabella di instradamento
- 2 Il pacchetto con indirizzo di destinazione 208.10.11.53 verrà instradato attraverso il gateway 208.10.10.254
- Il pacchetto con indirizzo di destinazione 208.10.10.10 verràinstradato direttamente sulla rete locale cui è connesso il nodo
- Il pacchetto con indirizzo di destinazione 208.10.10.10 verràinstradato attraverso il gateway 208.10.10.254

10. Contrassegnare le affermazioni corrette con riferimento ai possibili indirizzi di un host:

- 1 Un host (es., un computer) non può essere dotato di multipli indirizzi IP
- 2 Un host (es., un computer) può essere dotato di più interfacce di rete ed avere multipli MAC address
- Un host è univocamente identificato da un indirizzo IP (con l'eccezione degli indirizzi riservati alle LAN), cioè dato un indirizzo IP nel mondo vi è un solo host con quell'indirizzo IP
- 4 Il MAC address può essere assegnato dinamicamente ad un host al momento del boot

11. Confrontando gli algoritmi di routing Link State e Distance Vector, si può affermare che:

- Gli algoritmi Link State richiedono maggiore spazio di memorizzazione nei router
- 2 Gli algoritmi Link State offrono maggiore robustezza contro eventuali guasti ai router
- Gli algoritmi Distance Vector sono caratterizzati da una velocità di convergenza solitamente inferiore
- 4 Gli algoritmi Distance Vector producono un overhead di traffico di servizio maggiore

12. Il protocollo TCP:

- 1. Non fornisce servizi di bufferizzazione dei dati in fase di trasmissione
- 2. Non consente di effettuare trasferimenti contemporanei di dati in entrambe le direzioni della connessione nell'ambito della stessa sessione
- 3. Introduce un ritardo in fasedi instaurazione della connessione
- 4. Utilizza un meccanismo di acknowledgement con ritrasmissione per garantire l'affidabilità

13. Un link ipertestuale (tag ancora del linguaggio HTML):

- 1. Può essere utilizzato solo in congiunzione con HTTP/1.1
- 2. Può far riferimento ad una risorsa multimediale presente su un host remoto
- 3. Non può far riferimento ad una sezione della stessa pagina in cui si trova
- 4. Può far riferimento ad eseguibili presenti su host remoti

14. La classe A degli indirizzi IP:

- 1. Prevede che il NetID sia indicato dal primo byte, mentre i successivi 3 sono l'host ID
- 2. Ha nel primo byte un valore compreso tra 00000000 e 01111111
- 3. Contiene indirizzi usati per il multicasting
- 4. Prevede che il NetID sia indicato dai primi 2 byte, mentre i successivi 2 sono l'host ID

15. Contrassegnare le affermazioni corrette relative alle azioni svolte da un browser Web

- 1. Durante la fase di lookup, analizza se vi sono oggetti allegati alla pagina richiesta (embedded URL)
- 2. Inizia il download delle risorse primadi ricevere la risoluzione del DNS per accelerare le prestazioni
- 3. Nella fase iniziale della richiesta, controlla se la risorsa è contenuta nella cache disco del browser
- 4. Ha il compito di decodificare e interpretare, secondo le specifiche HTML, le caratteristiche grafiche e di formato dei vari oggetti contenuti nella risorsa

16. Nell'header TCP:

- 1. Il campo sequence number viene inizializzato durante il three-way handshake
- 2. Il campo acknowledgement numberindica il numero dell'ultimo segmento ricevuto
- 3. Il campo sequence number è uguale per entrambi i capi della connessione
- 4. Il campo acknowledgement numberindica il numero del segmento atteso dal ricevente

Parte 3: risposte aperte – Ogni domanda può avere <u>una o più</u> risposte corrette

- Una risposta esatta fa acquisire il punteggio indicato accanto alla domanda
- Una risposta parziale comporta una penalità rispetto al punteggio della domanda
- Una risposta con errori comporta un voto negativo (-1 o -2) che dipende dalla gravità
- Una risposta lasciata in bianco vale 0
- Bisogna rispondere in maniera <u>concisa e schematica</u>, facendo uso di tabelle, figure ed elenchi al posto di frasi lunghe ed articolate.

17. [3 pt] Descrivere schematicamente la tecnica di slow-start usata da TCP nel controllo di congestione

18. [3 pt] Spiegare brevemente in cosa consiste la tecnica di Byte Stuffing utilizzata nel protocollo Point to Point (PPP)