Report

Task 1

Step 2(c): Compute weighted error rate

 $Error_rate = 0.334$

Step 2(d): Compute coefficient ### Coefficient =0.3450743387818443

Step 2(e): Updated weights

Updated weights = [0.05098807 0.05098807 0.05098807 0.05098807 0.05098807 0.05098807 0.11826401 0.23581985 0.23581985 0.05098807]

Step 2(f): Normalize weights to sum to 1

Normalized updated weights = [0.05385191 0.05385191 0.05385191 0.05385191 0.05385191 0.05385191 0.05385191 0.05385191 0.05385191 0.05385191

Index	X	y	weights	\widehat{y}	Updated weights
1	1.0	1	0.072	1	0.05385191
2	2.0	1	0.072	1	0.05385191
3	3.0	1	0.072	1	0.05385191
4	4.0	-1	0.072	-1	0.05385191
5	5.0	-1	0.072	-1	0.05385191
6	6.0	-1	0.072	-1	0.12490651
7	7.0	1	0.167	1	0.24906507
8	8.0	1	0.167	-1	0.24906507
9	9.0	1	0.167	-1	0.05385191
10	10.0	-1	0.072	-1	0.05385191

Detailed procedure is shown in Task 1.py.

Task 4.1. Comparison of ensemble methods with baseline method

Classifiers	Train accuracy	Test accuracy	
Perceptron	0.979	0.933	
Bagging	1	0.946	
Random_forest	1	0.959	
Adaboost	0.905	0.894	

The selected dataset is digits provided in the sklearn library, the baseline classifier (Perceptron) is utilized to compare the accuracy with three ensemble methods (Bagging, Random_forest, and Adaboost). The train and test accuracies of Perceptron classifier are 0.979 and 0.933, respectively. Due to the ensemble methods, the Bagging and Random_forest classifiers achieve a higher accuracy than the Perceptron. However, the accuracy of Adaboost is lower than that of Perceptron. Another difference can be easily observed between train and test accuracies. For the Perceptron, the train accuracy is about 4% higher than the test accuracy, which is termed as overfitting. In contrast, the difference between train and test accuracies in the ensemble methods of three classifiers can be ignored. This improvement is achieved by the implementation of ensemble methods.

Task 4.2. Comparison of ensemble methods train accuracy with different values

Based on the parameter tuning processes for each classifier, the corresponding parameters are optimized through the comparison among three selected values. The tuned parameters are shown in the last column in each table. The train accuracies are listed in the Train accuracy column accordingly.

Table 1. Parameter tuning of Bagging (Train accuracy)

No.		Param	Train	Tuned		
NO.	n_estimators	min_samples	max_features	bootstrap	accuracy	parameter
1	10	10	10	True	1	
2	<mark>50</mark>	10	10	True	1	10
3	100	10	10	True	1	
4	10	1	10	True	1	
5	10	<mark>10</mark>	10	True	1	1
6	10	<mark>20</mark>	10	True	1	
7	10	1	<mark>1</mark>	True	1	
8	10	1	<mark>5</mark>	True	1	1
9	10	1	10	True	1	
10	10	1	1	True	1	True
11	10	1	1	False	1	True

Table 2. Parameter tuning of Random forest (Train accuracy)

No.				Train	Tuned		
INO.	n_estimators	criterion	Max_depth	Min_samples_split	Min_samples_leaf	accuracy	parameter
1	10	gini	2	2	2	0.715	
2	50	gini	2	2	2	0.822	50
3	100	gini	2	2	2	0.832	
4	50	gini	2	2	2	0.822	om two max x
5	50	<mark>entropy</mark>	2	2	2	0.846	entropy
6	50	entropy	2	2	2	0.846	
7	50	entropy	<mark>10</mark>	2	2	0.997	10
8	50	entropy	<mark>20</mark>	2	2	0.998	
9	50	entropy	10	2	2	0.997	
10	50	entropy	10	5	2	1	5
11	50	entropy	10	10	2	0.963	
12	50	entropy	10	5	2	1	
13	50	entropy	10	5	<mark>5</mark>	0.996	2
14	50	entropy	10	5	10	0.982	

Table 3. Parameter tuning of Adaboost (Train accuracy)

No.	Para	meters	Train accountant	Tuned
	n_estimators	Learning_rate	Train accuracy	parameter
1	10	0.1	0.686	
2	<mark>50</mark>	0.1	0.637	100
3	100	0.1	0.747	
4	100	<mark>0.001</mark>	0.460	
5	100	<mark>0.01</mark>	0.733	0.5
6	100	0.5	0.859	

Task 4.3. Comparison of ensemble methods test accuracy with different values

With the same procedure in problem 2, the test accuracies are also provided in the Test accuracy column, which are all slight less than the train accuracy. The overall accuracy is reasonable based on the tuning process.

Table 4. Parameter tuning of Bagging (Test accuracy)

			0 00	8 (J)	
No.		Param	Test	Tuned		
NO.	n_estimators	min_samples	max_features	bootstrap	accuracy	parameter
1	<mark>10</mark>	10	10	True	0.946	
2	<mark>50</mark>	10	10	True	0.957	10
3	100	10	10	True	0.959	
4	10	<mark>1</mark>	10	True	0.946	
5	10	10	10	True	0.946	1
6	10	<mark>20</mark>	10	True	0.946	
7	10	1	1	True	0.946	
8	10	1	<mark>5</mark>	True	0.946	1
9	10	1	10	True	0.946	
10	10	1	1	True	0.946	Tenno
11	10	1	1	False	0.946	True

Table 5. Parameter tuning of Random forest (Test accuracy)

No.			(Test	Tuned		
NO.	n_estimators	criterion	Max_depth	Min_samples_split	Min_samples_leaf	accuracy	parameter
1	10	gini	2	2	2	0.704	
2	50	gini	2	2	2	0.809	50
3	100	gini	2	2	2	0.819	
4	50	gini	2	2	2	0.809	om two max
5	50	<mark>entropy</mark>	2	2	2	0.831	entropy
6	50	entropy	2	2	2	0.831	
7	50	entropy	<mark>10</mark>	2	2	0.941	10
8	50	entropy	<mark>20</mark>	2	2	0.948	
9	50	entropy	10	2	2	0.941	
10	50	entropy	10	<u>5</u>	2	0.959	5
11	50	entropy	10	10	2	0.963	
12	50	entropy	10	5	2	0.959	
13	50	entropy	10	5	5	0.957	2
14	50	entropy	10	5	10	0.950	

Table 6. Parameter tuning of Adaboost (Test accuracy)

No.	Para	meters	Toot accuracy.	Tuned
	n_estimators	Learning_rate	Test accuracy	parameter
1	10	0.1	0.685	
2	<mark>50</mark>	0.1	0.622	100
3	<mark>100</mark>	0.1	0.730	
4	10	1	0.452	
5	10	<mark>10</mark>	0.704	0.5
6	10	<mark>20</mark>	0.831	