仮想計算機を用いた グリッド上でのMPI実行環境

立薗 真樹† 中田 秀基††,† 松岡 聡†,†††

†: 東京工業大学

††: 産業技術総合研究所

+++: 国立情報学研究所

- 1. はじめに
- 2. 提案と設計
- 3. 実装
- 4. 評価
- 5. 考察
- 6. おわりに

背景

- ●遊休計算機利用とは
 - ○オフィスやキャンパスの遊休計算資源を有効活用
 - ○計算機所有者の使用していない時間帯にジョブを実行
 - ●所有者の復帰時には、その使用を妨げてはならない
 - 実行していたジョブは、中止もしくは他の資源上へマイグレーション
 - ○高いスループットを容易に実現可能
- ●遊休計算機利用の一般化
 - ○スーパーコンピュータやクラスタコンピュータに比べて低コストで実現可能
 - ○e.g. SETI@HOME

背景

- ■MPIを遊休計算機上で実行できれば、大幅な 計算効率の向上が実現可能
 - ○MPIにおける学術計算は、非常に多くの計算資源 を必要とする場合が多い
- Condor[Livny et al. '88]
 - ○遊休資源の利用が可能なジョブスケジューラ
 - ●チェックポイントによるマイグレーションの実現
 - ○MPIの実行時にはマイグレーションに非対応

MPIを遊休計算機上で実行する際の問題点

- MPIのマイグレーションは難しい
 - ○通信タイミングとの整合性
 - ○ロールバックにより他のプロセスにも影響
- ●多数の遊休資源を扱う場合、複数のネット ワークが混在
 - ○一般的なMPI実装では、実行マシンのIPアドレスの変更を許さない
 - ○WANを経由する場合、高遅延低バンド幅なリンクを通過

目的と成果

●目的

○容易なMPIマイグレーションを実現し、それを利用 した遊休計算機利用の実現

●成果

- ○仮想計算機XenとVPNを用い、グリッド環境でMPI のマイグレーションを実現
- ○遊休資源利用システムのプロトタイプ実装
- ○仮想計算機でのMPI実行性能の評価と考察

目次

- 1. はじめに
- 2. 提案と設計
- 3. 実装
- 4. 評価
- 5. 考察
- 6. おわりに

提案 - 遊休計算機上でMPI実行を行える環境

- 仮想計算機を用いた低コストなMPIマイグレーション
 - 仮想計算機により、MPIの動作するゲストOSごとマイグレーション
- 計算資源の監視を行い、遊休計算機利用におけるジョブ実 行を実現するシステム
 - マイグレーションはユーザーに対して透過に行われる
- グリッドなどの広域に分散する資源を効率的に使用
 - ネットワークの違いをVPNの使用により吸収
 - ネットワークトポロジーを意識したマイグレーションの実行

→グリッド上の遊休資源上で既存のMPI実装 利用したMPIの実行が可能に

仮想計算機を用いたMPIのマイグレーション

- ●MPIは仮想計算機のゲストOS上で実行
- 必要に応じてゲストOSごとマイグレーション
 - ○仮想計算機のマイグレーション機能を使用

OSごとマイグレーション

プロセス・マイグレーションとの比較

- ネットワーク接続
 - OSマイグレーション
 - ネットワークに関する変更が無い
 - ●コネクションを維持したまま実行を継続
 - プロセス・マイグレーション
 - ネットワーク接続の張りなおしが必要
 - OSマイグレーションは既存のMPI実装で実現可能
- 転送するイメージサイズ
 - プロセス・マイグレーション
 - メモリのフットプリントサイズ
 - OSマイグレーション
 - ゲストOSのメモリサイズ
 - フットプリント≦ゲストOSのメモリ
- その他
 - OSマイグレーションにはVM依存のオーバーヘッドが存在

2005/5/24

VPNを用いた複数サイト間でのMPI実行環境

- MPIの実行には固定されたIPアドレスが必要
 - ○他のネットワーク上にマイグレーション不可
- VPNを用いてホストOS上に仮想ネットワークを構築
- そのネットワーク上でMPIを実行
 - どこへマイグレーションしてもホスト名(IPアドレス)は不変
 - ○ゲストOSは仮想ネットワークにブリッジ接続

目次

- 1. はじめに
- 2. 提案と設計
- 3. 実装
- 4. 評価
- 5. 考察
- 6. おわりに

プロトタイプ実装の概要

- 提案環境の実現に向けて、その要件について次のように実装
 - MPIのマイグレーション
 - →仮想計算機Xen[Pratt et al. '03]の機能により実現
 - ○遊休計算機利用におけるジョブ実行システム
 - →資源モニタリング、マイグレーション実行決定をおこなう資源 管理システムをJavaで実装
 - ○複数サイトへのマイグレーション
 - ネットワークが異なるサイト
 - →OpenVPNを用いたネットワークの仮想化により実現
 - ○広域での実行への適応
 - →今後の課題

XenとOSマイグレーション機能

- Xen:複数のOSを同時に動作可能なVMM
- 動作中のゲストOSを停止することなく、ネットワーク経由で他のXenホストへマイグレーション
 - ○ホストOSからコマンドによって実行
 - ○転送する内容はメモリ内容、レジスタ等の内部状態
 - ○ディスクイメージは転送しない
 - ●ネットワークファイルシステム等で対応

目次

- 1. はじめに
- 2. 提案と設計
- 3. 実装
- 4. 評価
- 5. 考察
- 6. おわりに

評価環境

- ●松岡研究室 PrestoⅢクラスタ
 - OCPU: Opteron242 * 2
 - OMemory: 2GB
 - Network : GigabitEther (Broadcom NetXtremeBCM5702X)
 - ○ノード数:256台

評価環境

- 仮想計算機環境
 - Xen3.0.0
 - Kernel 2.6.12
 - Memory : 256MB
 - ●rootイメージはNFS共有
 - OpenVPN2.0
- MPI : mpich-1.2.7
- ベンチマーク:
 - Nas Parallel Benchmark3.1

評価項目

- ●Xenのネットワーク性能のマイクロベンチ
 - ○NetPIPEによるメッセージサイズと遅延の関係
- マイグレーションによるアプリケーション実行 性能への影響
- ●MPIアプリケーション性能
 - ONPB3.1およびqn24b(N-Queen)
- ●実装システム上での遊休計算機利用による MPI実行

NetPIPE [Turner et al. '02]による NativeなカーネルとXenカーネルの遅延の比較

MPIによるメッセージピンポン での遅延測定

NativeとXenゲストOSでは約 2倍の差 Xenのネットワーク構造に起因 する

メモリサイズとマイグレーションコストの関係

NPB2.4 EP CLASS=B 8CPUで実行

実行時にマイグレーションを行い、実 行時間の増加を計測

8回行った場合の1回あたりのコスト

- 256MB時 約1秒
- 128MB時 約0.5秒

いずれも長時間の実行を前提とした場合、軽微なオーバーヘッド

遊休計算機利用による計算効率向上

node1~4でMPIを実行 途中、node1,2で所有者のジョブ再開 →監視システムが検知

node1,2のMPIをnode5,6へ マイグレーション

(単位:秒)

ジョブ名	Xen +	Native +
	プロトタイプ実装	マイグレーション無し
Host(LU,A,4)	171. 34	230. 88
MPI (LU,A,2)	339. 89	380. 38

NPB3.1&qn24bでのスケーラビリティの測定 Nativeカーネル4CPU時に対する相対性能

NPB3.1でのスケーラビリティの測定 Nativeカーネル4CPU時に対する相対性能

目次

- 1. はじめに
- 2. 提案と設計
- 3. 実装
- 4. 評価
- 5. 考察
- 6. おわりに

考察 - NPBの性能低下の原因

- 評価の結果、XenのゲストOS上でCG,LUの 性能が低下
- ●推測される原因としてネットワークの性能低下
 - ○CG,LUともに頻繁な通信を伴い、EP,qn24bは通信が少ない
 - ○Xenのネットワーク遅延はNative環境の約2倍

→これだけではCGの性能低下を説明できない

MPI実行関数&通信のログ

NPB3.1 CG クラスWを 2ノードで実行

mpichで実行関数ログを取得

本来通信が断続的に行われるはず

→Xenでの実行では無通信 の部分が存在

目次

- 1. はじめに
- 2. 提案と設計
- 3. 実装
- 4. 評価
- 5. 考察
- 6. おわりに

まとめ

VPNとの組み合わせにより、既存のMPI実装を用いて広域へのマイグレーションの実現

実現した低コストなマイグレーションを用いた遊休計 算機利用のプロトタイプを構築

■Xen上でのMPI性能の評価と考察

今後の課題

- 性能低下原因の調査と対応
 - ○ログの解析を進め、無通信部分の原因を解明
- ●グリッドへの対応強化
 - ○WAN、LANの違い、ヘテロな環境を考慮したマイグレーショ ンポリシー
 - ○耐故障性の実現
 - ○プロトタイプ実装ではゲストOSのイメージ共有にNFSを使用
 - グリッド対応のファイルシステムとしてGfarm[Tatebe et al, '02]等の使用
- 実環境下での評価
 - ○資源提供者から視点
 - ○大規模なグリッド環境

ご静聴ありがとうございました

本研究の一部は科学技術振興事業団・戦略 的創造研究「低電力化とモデリング技術によるメガスケールコンピューティング」による

スイッチングハブへの対応

- マイグレーションを行うとアドレステーブルのポート情報と異なるポートにゲストが移動
- ●通信がwait状態にあると、テーブルが更新されない
 - ○マイグレーションを行ったノードへのパケットの送信が 不可能

→プロトタイプ実装では、pingによるICMPパケット 送出によりポートテーブルを強制的に更新

XenのOSマイグレーション時のダウンタイム短縮

- メモリイメージの送信はゲストOSの実行と並 行に行われる
 - ホストAからホストBへマイグレーションする場合
 - 1 AでゲストOSを動作させたまま、メモリ内容をBへ転送
 - 2. 転送中に変更されたメモリ内容を再び転送
 - 3. 2を一定回数繰り返す
 - 4. 差分が一定量を下回ったらAでゲストOSをサスペンド
 - 5. 未転送の部分を全てBへ転送
 - 6. BでゲストOSをレジューム

