565 mid-term

 $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, i = 1, 2, a, j = 1, 2, n, $\sum_{i=1}^{a} \tau_i = 0$ Random effects: $\tau_i \sim iidN(0, \sigma_{\tau}^2), \tau_i$ and ε_{ij} indep

 $y_{ij} = (\mu + \tau_i + \beta_j) + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, i = 1, 2, a, j = 1, 2, bFixed effects: $\sum_{i=1}^a \tau_i = 0$, $\sum_{j=1}^b \beta_j = 0$ Random effects: $\beta_j \sim iidN(0, \sigma_\beta^2)$

least square and normal equation

$$CRD:SSE = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \mu - \tau_{i})^{2}$$

$$\frac{\partial SSE}{\partial \mu} \Big|_{\hat{\mu}, \hat{\tau}_{i}} = 2 \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_{i})(-1) = 0 \ y_{..} = an\hat{\mu} + n \sum_{i=1}^{a} \hat{\tau}_{i}$$

$$\frac{\partial SSE}{\partial \tau_{i}} \Big|_{\hat{\mu}, \hat{\tau}_{i}} = 2 \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_{i})(-1) = 0 \ y_{i.} = n\hat{\mu} + n\hat{\tau}_{i}$$

RCBD:
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \mu - \tau_i - \beta_j)^2$$

RCBD:
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \mu - \tau_i - \beta_j)^2$$

 $\frac{\partial SSE}{\partial \mu}\Big|_{\hat{\mu}, \hat{\tau}_i, \hat{\beta}_j} = 2 \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$

$$\frac{\partial SSE}{\partial \tau_i}\Big|_{\hat{\mu},\hat{\tau}_i,\hat{\beta}_j} = 2\sum_{j=1}^b (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$$

$$\frac{\partial SSE}{\partial \beta_j} \bigg|_{\hat{\mu}, \hat{\tau}_i, \hat{\beta}_j} = 2 \sum_{i=1}^a (y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1) = 0$$

$$y_{..} = ab\hat{\mu} + b\sum_{i=1}^{a} \hat{\tau}_{i} + a\sum_{j=1}^{b} \hat{\beta}_{j}$$

$$y_{i.} = b\hat{\mu} + b\hat{\tau}_{i} + \sum_{j=1}^{b} \hat{\beta}_{j}$$

$$y_{i.} = b\hat{\mu} + b\hat{\tau}_i + \sum_{j=1}^b \hat{\beta}_j$$

$$y_{.j} = a\hat{\mu} + \sum_{i=1}^{a} \hat{\tau}_i + a\hat{\beta}_j$$

hypothesis test

J F		
model	H0	H1
FT-CRD	$\mu_1 = \mu_2 = \dots = \mu_i$	at least two of μ_i are different
RT-CRD	$\sigma_{\tau}^2 = 0$	$\sigma_{\tau}^2 > 0$
FB-RCBD	$\mu_1 = \mu_2 = = \mu_i$	at least two of μ_i are different
-Block	$\mu_1 = \mu_2 = \dots = \mu_i$ $\beta_1 = \beta_2 = \dots = \beta_j = 0$	at least one of $\beta_j \neq 0$
RB-RCBD	$\sigma_{\beta}^2 = 0$	$\sigma_{\beta}^2 > 0$
Contrast	$\Gamma = \sum_{i=1}^{a} c_i \mu_i = 0$	$\Gamma = \sum_{i=1}^{a} c_i \mu_i \neq 0$

ANOVA

	SS	df	MS	F
SS_{Trt}	$n \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{})^2$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_{E}}$
SS_E	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$	a(n-1)	$\frac{SS_E}{N-a}$	
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^{2}$ $\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^{2}$	an-1	,	
$\overline{SS_{Trt}}$	$b \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{})^2$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_{E}}$
SS_{Blk}	$a \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{})^2$	b-1	$\frac{SS_{Blk}}{b-1}$	$\frac{MS_{Blk}}{MS_E}$
SS_E	$SS_T - SS_{Trt} - SS_{Blk}$	(a-1)(b-1)	$\frac{SS_E}{df_E}$	
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{})^2$	ab-1	- 13	

[f.]
$$SS_{Trt} = \frac{1}{n} \sum_{i=1}^{a} y_{i.}^{2} - \frac{y_{i.}^{2}}{N_{i.}^{2}}$$

$$\begin{aligned} &[\text{f.}]SS_{Trt} = \frac{1}{n} \sum_{i=1}^{a} y_{i.}^{2} - \frac{y_{..}^{2}}{N} \\ &[\text{r.}]SS_{Trt} = \frac{1}{b} \sum_{i=1}^{a} y_{i.}^{2} - \frac{y_{..}^{2}}{N} SS_{Blk} = \frac{1}{a} \sum_{j=1}^{b} y_{.j}^{2} - \frac{y_{..}^{2}}{N} \\ &SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2} \end{aligned}$$

$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2$$

$$SS_T = \sum_{i=1}^a \sum_{j=1}^b y_{ij}^2 - \frac{y_{...}^2}{N}, S_i^2 = \frac{\sum_{j=1}^n (y_{ij} - \bar{y}_{i..})^2}{n-1}$$

distribution

contrast

$$\Gamma = \sum_{i=1}^{a} c_{i} \mu_{i}, C = \sum_{i=1}^{a} c_{i} \bar{y}_{i}; \sum_{i=1}^{a} c_{i} = 0; \text{Orthogonal } \sum_{i=1}^{a} c_{i} d_{i} = 0$$

$$SS_{C} = \frac{\left(\sum_{i=1}^{a} c_{i} \bar{y}_{i}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{a} c_{i}^{2}}, \sum_{i=1}^{a-1} SS_{C} = SS_{Trt}$$

$$Cov[\varepsilon_{ij}, \varepsilon_{ij}] = Cov[\sum_{i=1}^{a} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}] = \sigma^{2}, Cov[\tau_{i}, \tau_{i}] = \frac{2}{\tau}, Cov[\beta_{j}, \beta_{j}] = \frac{2}{\beta}$$

 $Cov[\varepsilon_{ij}, \tau_{i}] = Cov[\varepsilon_{ij}, \beta_{j}] = Cov[\varepsilon_{ij}, \beta_{j}] = Cov[\varepsilon_{ij}, \varepsilon_{ik}] = 0, k \neq j$ $Cov[\varepsilon_{ij}, \tau_{i}] = Cov[\varepsilon_{ij}, \beta_{j}] = Cov[\varepsilon_{ij}, \varepsilon_{ik}] = 0, k \neq j$ $Cov[\varepsilon_{ij}, \Sigma_{j=1}^{n} \varepsilon_{ij}] = Cov[\varepsilon_{ij}, (\varepsilon_{i1} + \ldots + \varepsilon_{ij} \ldots + \varepsilon_{in})] = Cov[\varepsilon_{ij}, \varepsilon_{i1}] + \ldots + Cov[\varepsilon_{ij}, \varepsilon_{ij}] + Cov[\varepsilon_{ij}, \varepsilon_{in}] = \sigma^{2}$ $Cov[\sum_{j=1}^{n} \varepsilon_{ij}, \sum_{i=1}^{a} \sum_{j=1}^{n} \varepsilon_{ij}] = Cov[(\varepsilon_{i1} + \varepsilon_{i2} \ldots + \varepsilon_{in}), (\varepsilon_{i1} + \varepsilon_{i2} \ldots + \varepsilon_{in})] = Cov[\varepsilon_{i1}, \varepsilon_{i1}] + Cov[\varepsilon_{i2}, \varepsilon_{i2}] + Cov[\varepsilon_{in}, \varepsilon_{in}] = n\sigma^{2}$

 $Var[y_{ij} - \bar{y}_{i.}] =$ FT-CRD;RT-CRD

CI

CIbalanced unbalanced $\bar{y}_{i.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n}}$ $\bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{MS_E(\frac{1}{n_i} + \frac{1}{n_j})}$ $\bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{2MS_E}{n}}$ $\sum_{i=1}^{a} c_i \bar{y}_i \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_E}{n}} \sum_{i=1}^{a} c_i^2$

expectation and variance

$$\begin{split} y_{\cdot\cdot\cdot} &= \sum_{i=1}^{a} (y_{i\cdot\cdot} = \sum_{j=1}^{n} y_{ij}), \mu = \frac{\sum_{i=1}^{a} \mu_{i}}{a} \\ \bar{y}_{\cdot\cdot\cdot} &= \frac{1}{N} \left[y_{\cdot\cdot\cdot} = \sum_{i=1}^{a} (y_{i\cdot\cdot} = \sum_{j=1}^{n} y_{ij}) \right] = \frac{1}{a} \sum_{i=1}^{a} \left[\bar{y}_{i\cdot\cdot} = \frac{1}{n} (y_{i\cdot\cdot} = \sum_{j=1}^{n} y_{ij}) \right] \\ & \left[\begin{array}{c} y_{ij} \\ y_{ij} \\ \hline \\ E[f.] \end{array} \right] \begin{array}{c} \bar{y}_{\cdot\cdot\cdot} \\ \frac{\sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}}{N} \end{array} \right] \begin{array}{c} \bar{y}_{i\cdot\cdot} \\ \frac{\bar{y}_{\cdot\cdot}}{n} \\ \hline \\ \sum_{j=1}^{a} y_{ij} \\ \mu + \tau_{i} \\ \mu + \beta_{j} \\ \hline \\ \frac{\sum_{i=1}^{a} y_{ij}}{a} \end{array} \right] \begin{array}{c} C \\ \sum_{i=1}^{a} c_{i} \bar{y}_{i\cdot\cdot} \\ \sum_{i=1}^{a} c_{i} \bar{y}_{i\cdot\cdot} \\ \frac{V[f.]}{C} \\ \hline \\ E[r.] \end{array} \right] \begin{array}{c} V[f.] \\ \sigma^{2} \\ \hline \\ V[f.] \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma_{n}^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \left[\begin{array}{c} \sigma^{2} \\ \sigma^{2} \end{array} \right] \begin{array}{c} \sigma^{2} \\ \sigma^{$$

	· ·			t		J
$\hat{\sigma}^2$	$\hat{\sigma}_{Trt}^2$	$\hat{\sigma}_{Blk}^2$		$V\widehat{ar(\bar{y}_{i.})}$ MS_E	$\widehat{Var(i)}_{MS_E}$	$\widehat{ar{j}}_{.j})$
f. MS. r. MS.	$E = \frac{MS_{Trt} - MS_E}{MS_{Trt}}$	MS _{Blk}	$-MS_{\underline{E}}$	$\frac{\overline{MS_{Trt}}}{n}$	$\frac{\overline{MS_{Tr}}}{a}$	<u>·t</u>
$\hat{\mu}$	$\stackrel{n}{ig }\hat{\mu}_i$	$\hat{ au}_i$	\hat{eta}_j	$ar{y}_{}egin{array}{c c} \hat{y}_{ij} \ ar{y}_{i.}+ar{y}_{.j} \end{array}$		$\hat{arepsilon}_{ij}$
$\frac{\bar{y}_{}}{\frac{1}{an}y_{}-\frac{1}{a}}$	$\sum_{i=1}^a \hat{\tau}_i \bar{y}_i$	$\begin{array}{l} \bar{y}_{i.} - \bar{y}_{} \\ \frac{1}{a} y_{i.} - \hat{\mu} \end{array}$	$\bar{y}_{.j} - \bar{y}_{.j}$	$ar{y}_{\cdot \cdot \cdot} \mid ar{y}_{i \cdot \cdot} + ar{y}_{\cdot \cdot \cdot}$	$j-\bar{y}_{}$	$ \bar{y}_{ij} - \bar{y}_{} $
FT-	CRD				E	Var[]
$y_{ij} - \bar{y}_{i}$.	$\varepsilon_{ij} - \frac{\sum_{j=1}^{n} \varepsilon_{ij}}{n}$	-	3 n		0	$\frac{n-1}{n}\sigma^2$

orj or.			n
$\bar{y}_{i.} - \bar{y}_{}$	$ au_i + rac{\sum_{j=1}^n arepsilon_{ij}}{n} - rac{\sum_{i=1}^a \sum_{j=1}^n arepsilon_{ij}}{an}$	τ_i	$\frac{(a-1)\sigma^2}{an}$
RT-	CRD	E	Var[]
$y_{ij} - \bar{y}_{i}$.	$\varepsilon_{ij} - \frac{\sum_{j=1}^{n} \varepsilon_{ij}}{\sum_{j=1}^{n} \varepsilon_{ij}}$	0	$\frac{n-1}{n}\sigma^2$
$\bar{y}_{i.} - \bar{y}_{}$	$\tau_i - \frac{\sum_{i=1}^a \tau_i}{a} + \frac{\sum_{j=1}^n \varepsilon_{ij}}{n} - \frac{\sum_{i=1}^a \sum_{j=1}^n \varepsilon_{ij}}{an}$	0	$\frac{(a-1)(n\sigma_{\tau}^2)}{an}$
F-	RCBD	E	Var[]
$y_{ij} - \bar{y}_{i}$	$\beta_j + \varepsilon_{ij} - \frac{\sum_{j=1}^b \varepsilon_{ij}}{\frac{b}{b}} \sum_{a} \sum_{b}^b$	β_j	$\frac{(b-1)\sigma^2}{b}$
$ar{y}_{i.} - ar{y}_{}$	$\tau_i + \frac{\sum_{j=1}^b \varepsilon_{ij}}{\sum_{a=1}^b \sum_{a=1}^b \varepsilon_{ij}} - \frac{\sum_{i=1}^a \sum_{j=1}^b \varepsilon_{ij}}{\sum_{a=1}^b \varepsilon_{ij}}$	τ_i	$\frac{a-1)\sigma^2}{ab}$
$y_{ij} - \bar{y}_{.j}$	$\tau_i + \varepsilon_{ij} - \frac{\sum_{i=1}^a \varepsilon_{ij}}{a}$	$ \tau_i $	$\frac{ab}{(a-1)\sigma^2}$
$\bar{y}_{.j} - \bar{y}_{}$	$\beta_j + \frac{\sum_{i=1}^a \varepsilon_{ij}}{a} - \frac{\sum_{i=1}^a \sum_{j=1}^b \varepsilon_{ij}}{ab}$	β_j	$\frac{(b-1)\sigma^2}{ab}$
R-	RCBD	E	Var[]
	$\sum_{i=1}^{b} \beta_{i} \qquad \sum_{i=1}^{b} \varepsilon_{ij}$	_	$(b-1)(\sigma_{\beta}^{2}+$

 $\beta_{j} - \frac{\sum_{j=1}^{b} \beta_{j}}{\sum_{k}^{b}} + \frac{\sum_{i=1}^{a} \varepsilon_{ij}}{\sum_{j=1}^{a} \varepsilon_{ij}} - \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}}{\sum_{j=1}^{b} \varepsilon_{ij}}$ $y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..} = \varepsilon_{ij} - \sum_{\substack{i=1 \ a}}^{a} \varepsilon_{ij} - \sum_{\substack{j=1 \ b}}^{b} \varepsilon_{ij} + \sum_{\substack{i=1 \ b}}^{a} \varepsilon_{ij}$

$E[] = 0, Var = \frac{(a-1)(b-1)\sigma^2}{r}$

covariance

R-CRD: $Cov(y_{ij}, y_{kl}) = \{0, i \neq k; \sigma_{\tau}^2, i = k, j \neq l; \sigma^2 + \sigma_{\tau}^2, i = k, j = l\}$

$\sum_{ij}^{\varepsilon_{ij}}a$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sum_{\substack{\sigma^2\\a\sigma^2}}^a \varepsilon_{ij}$	$\sum_{\sigma^2}^{b}_{j=1} \varepsilon_{ij}$	$\begin{vmatrix} \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij} \\ a\sigma^2 \end{vmatrix}$
$\sum_{i=1}^{\varepsilon_{ij}} \sum_{j=1}^{a} \varepsilon_{ij}$ $\sum_{j=1}^{b} \varepsilon_{ij}$ $\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}$		$a\sigma^2$	σ^2 $b\sigma^2$	$b\sigma^2$
$\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}$				$ab\sigma^2$

$$\begin{split} & \frac{Var(z_{ij} - \sum_{j=1}^{n} z_{ij}}{v_{i}} = _{ij} Var(z_{ij}) + \frac{\sum_{j=1}^{n} Var(z_{ij})}{v_{i}} - \frac{2Con(z_{ij} - \sum_{j=1}^{n} z_{ij})}{v_{i}} - \frac{1}{2} a^{2} = \frac{n-1}{n} a^{3} \\ & Var(z_{i}) + z_{ij} - \frac{1}{2} Var(z_{ij}) + Var(z_{ij}) + \frac{\sum_{j=1}^{n} Var(z_{ij})}{v_{i}} - \frac{2Con(z_{ij} - \sum_{k=1}^{n} z_{ij})}{v_{i}} - \frac{2Con(z_{ij} - \sum_{k=1}^{n} z_{ij})}{v_{i}} - \frac{1}{2} - \frac{$$