NetIDs: Adeniyi Fagbewesa (amf349), Zuoming Fu (zf242), Johnny Wang (yw2245),

Project Title: Cloth Deformation Upgrade using Deformation Models

Base Assignment: Programming Assignment 1 (PA1)

Motivation

The mass–spring cloth finished in Assignment 1 is easy to code but difficult to tune:

- Stretch, shear, and bend stiffnesses interact unpredictably.
- Large deformations look rubbery or tear when springs are stiff.
- Numerical damping must be cranked up to hide artifacts.

Triangle-based energy models (co-rotated linear, St. Venant–Kirchhoff, Neo-Hookean) offer a cleaner alternative using the same mathematics already implemented for the 2-D gingerbread simulator. Porting those models to the cloth will give realistic stretching and crisp folding while letting us remove most hand-tuned spring constants.

Goals and Scope

Priority	Goal	High-level Method
Core	Replace spring forces with	Each frame: compute deformation gradient F
	per-triangle energy forces for	for every triangle \rightarrow evaluate stress P(F) with
	three models: 1) co-rotated linear,	the chosen model → convert to vertex forces
	2) StVK, 3) Neo-Hookean.	using the lecture 06's five steps.

Core	Keep the existing	No integrator changes; simply sum the new
	symplectic-Euler integrator,	forces with gravity and damping.
	gravity, damping, and obstacle	
	collisions from Assignment 1.	
UI	Add GUI sliders for model ID,	Sliders write directly into the global material
	Young's modulus E, and Poisson	parameters.
	ratio v.	
Stretch	Add triangle-hinge bending	For each interior edge, calculate the hinge
goal	energy (Baraff & Witkin, 1998)	angle and apply its simple energy gradient.

Validation

Aspect	Test & Success Criterion
Physical plausibility	When the cloth hangs under gravity, the co-rotated linear model should exhibit a small but noticeable stretch, the St. Venant–Kirchhoff model should appear stiffer, and the Neo-Hookean model should resist volume change.
Stability	128 × 128 cloth, 1 ms timestep, runs 20 s with no exploding velocities.
Collision quality	Sphere-drop scene from Assignment 1: maximum penetration < 1 % cloth thickness.

User control	Changing sliders during runtime updates stiffness smoothly with no reset required.
Stretch goal	With hinge bending enabled, a folded cloth shows similar (maybe sharper) creases.

Performance target: \geq 60 FPS on GPU Taichi for the 128 \times 128 grid.

Timeline

Week	Milestone
1	Convert cloth quads to triangles; pre-compute rest matrices D_0^{-1} and areas.
2	Implement deformation gradient F and energy forces for the co-rotated model; verify on single triangle unit tests.
3	Add StVK and Neo-Hookean options; connect GUI sliders; regression tests on sphere and table scenes.
4	Optimize kernel loops; record validation results; polish demo.
5 (stretch)	Implement hinge bending energy; compare folds; finalize report and video.