Experiment Name: Implement Linear Regression

- a) from scratch [without tools/library] and
- b) using scikit-learn

Visit the link and study:

https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/

For your program you may use the following dataset:

- 1. https://www.kaggle.com/datasets/ashydv/advertising-dataset
- 2. https://www.kaggle.com/datasets/shree1992/housedata

1. Objective

To predict **employee salary** based on **years of experience** using Linear Regression — implemented both **manually (from scratch)** and **using Scikit-learn**.

2. Dataset

We'll use a simple dataset (Salary Data.csv) containing:

YearsExperience Salary

1.1	39343
1.3	46205
1.5	37731
2.0	43525
2.2	39891
2.9	56642
3.0	60150
3.2	54445
3.2	64445
3.7	57189
3.9	63218
4.0	55794
4.5	56957
4.9	57081
5.3	61111

YearsExperience Salary 5.9 67938 6.0 66029 6.8 83088 7.1 81363 7.9 93940 8.2 91738 8.7 98273 9.0 101302 9.5 113812 9.6 109431 10.3 122391

10.5

3. Implementation (From Scratch)

121872

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Load dataset
data = pd.read csv("Salary Data.csv")
X = data["YearsExperience"].values
y = data["Salary"].values
# Mean
mean x = np.mean(X)
mean y = np.mean(y)
# Calculate slope (m) and intercept (c)
num = np.sum((X - mean x) * (y - mean y))
den = np.sum((X - mean_x)**2)
m = num / den
c = mean_y - m * mean_x
print("Slope (m):", m)
print("Intercept (c):", c)
# Predict
y pred = m * X + c
# Visualization
plt.scatter(X, y, color='blue', label='Actual data')
```

```
plt.plot(X, y_pred, color='red', label='Regression Line')
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Linear Regression from Scratch")
plt.legend()
plt.show()
```

Output: Displays a regression line fitting the salary vs experience data.

Here,

Mathematical Explanation

1. Formula Behind It

We are using the **Least Squares Method** to fit a straight line of the form:

y=mX+c

The goal is to find m (slope) and c (intercept) such that the line minimizes the error between the predicted and actual values.

2. Slope Calculation (m)

Mathematically:

$$m=rac{\sum (X_i-ar{X})(Y_i-ar{Y})}{\sum (X_i-ar{X})^2}$$

```
num = np.sum((X - mean_x) * (y - mean_y))  # Numerator
den = np.sum((X - mean_x) **2)  # Denominator
m = num / den
```

♦ Meaning:

- The numerator measures how **X** and **Y** vary together (covariance).
- The denominator measures how **X varies** by itself (variance of X).
- Their ratio gives the slope how much Y changes for a unit change in X.

Example:

If m = 9360, it means for every extra year of experience, salary increases by 9360 (on average).

3. Intercept Calculation (c)

$$c = \bar{Y} - m\bar{X}$$

In Python:

$$c = mean_y - m * mean_x$$

♦ Meaning:

When X = 0, the expected value of Y is c.

It's the point where the regression line crosses the Y-axis.

Example:

If c = 26780, it means even with 0 years of experience, the model predicts a salary of **26,780** (base pay).

4. Summary of What's Happening

Step	Formula	Description	
Compute Mean	mean_x, mean_y	Average of X and Y	
Compute Slope	$m=rac{\sum (X_i-ar{X})(Y_i-ar{Y})}{\sum (X_i-ar{X})^2}$	Change in Y for each change in X	
Compute Intercept	$c=ar{Y}-mar{X}$	Predicted Y when $X = 0$	

5. Visual Intuition

The line y = mX + c is drawn in such a way that:

- The sum of squared errors between actual and predicted Y values is minimum.
- That's why it's called the "least squares regression line."

4. Implementation (Using Scikit-learn)

```
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error, r2 score
import pandas as pd
import matplotlib.pyplot as plt
# Load dataset
data = pd.read csv("Salary Data.csv")
X = data[['YearsExperience']]
y = data['Salary']
# Split data into training and test sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Create and train model
model = LinearRegression()
model.fit(X train, y train)
# Predict
y pred = model.predict(X test)
# Evaluation
print("Intercept (c):", model.intercept )
print("Slope (m):", model.coef [0])
print("Mean Squared Error:", mean squared_error(y_test, y_pred))
print("R<sup>2</sup> Score:", r2 score(y test, y pred))
# Visualization
plt.scatter(X test, y test, color='blue', label='Actual data')
plt.plot(X test, y pred, color='red', linewidth=2,
label='Predicted line')
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Linear Regression using Scikit-learn")
plt.legend()
plt.show()
```

Output Includes:

- Regression equation (e.g., Salary = 9360.26 * YearsExperience + 26780.09)
- Model performance:
 - o MSE (Mean Squared Error) how far predictions are from actual
 - o **R² Score** goodness of fit (closer to 1 means better fit)

5. Results and Analysis

Metric Value (Example)

Slope (m) 9360.26 Intercept (c) 26780.09 MSE 2.12×10^7 R² Score 0.98

Interpretation:

The high R² score (close to 1) indicates a strong linear relationship between experience and salary — meaning the model can predict salary accurately based on experience.

6. Learning Outcomes

- Understood the mathematical foundation of linear regression.
- Implemented regression manually and using a machine learning library.
- Learned how to evaluate model performance using error metrics.
- Gained practical skills in visualizing regression models.

Explanation:

Split data into training and test sets

X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)

♦ Purpose

In Machine Learning, we **don't train and test a model on the same data** — because that would make it memorize rather than generalize.

So, we **split the dataset** into:

- Training Set (X_train, y_train): Used to train the model (learn patterns).
- Test Set (X_test, y_test): Used to evaluate how well the model performs on unseen data.

This ensures we measure the model's **real-world predictive accuracy**.

◆ Parameters Explained

Parameter Description X Input features (independent variable, e.g., YearsExperience) y Target variable (dependent variable, e.g., Salary) test_size=0.2 20% of the data is used for testing, 80% for training random state=42 Ensures reproducibility — same random split every time

Example

Suppose your dataset has 30 rows:

- test_size=0.2 \rightarrow 20% of 30 = 6 rows used for testing
- Remaining 24 rows → used for training

After Splitting

Variable	Contains	Example Rows
X_train	YearsExperience for training	[1.1, 2.2, 4.5, 5.3, 7.9, 9.6,]
y_train	Salary for training	[39343, 39891, 56957, 61111, 93940, 109431,]
X_test	YearsExperience for testing	[3.2, 6.0, 9.0, 10.3,]
y_test	Actual salary for testing	[54445, 66029, 101302, 122391,]

♦ Why We Use train_test_split()

- ee To **evaluate performance** on unseen data
- √ To prevent overfitting (memorizing training data)
- ✓ To measure generalization ability

Optional Tip for Students

You can also use different split ratios:

```
train_test_split(X, y, test_size=0.3)  # 70% train, 30% test
train_test_split(X, y, test_size=0.1)  # 90% train, 10% test
```