1 17.2: Line Integrals

Definition. (Scalar Line Integral in the Plane)

Suppose the scalar-valued function f is defined on a region containing the smooth curve C given by $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$. The **line integral of** f **over** C is

$$\int_{C} f(x(t), y(t)) ds = \lim_{\Delta \to 0} \sum_{k=1}^{n} f(x(t_{k}^{*}), y(t_{k}^{*})) \Delta s_{k},$$

provided this limit exists over all partitions of [a, b]. When the limit exists, f is said to be **integrable** on C.

Theorem 17.1: Evaluating Scalar Line Integrals in \mathbb{R}^2

Let f be continuous on a region containing a smooth curve C: $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \le t \le b$. Then

$$\int_{C} f \, ds = \int_{a}^{b} f(x(t), y(t)) |\mathbf{r}'(t)| \, dt$$
$$= \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt.$$

Procedure: Evaluating the Line Integral $\int_C f ds$

- 1. Find a parametric description of C in the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$.
- 2. Compute $|\mathbf{r}'(t)| = \sqrt{x'(t)^2 + y'(t)^2}$.
- 3. Make substitutions for x and y in the integrand and evaluate an ordinary integral:

$$\int_C f \, ds = \int_a^b f(x(t), y(t)) |\mathbf{r}'(t)| \, dt.$$

Theorem 17.2: Evaluating Scalar Line Integrals in \mathbb{R}^3

Let f be continuous on a region containing a smooth curve $C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \leq t \leq b$. Then

$$\int_C f \, ds = \int_a^b f(x(t), y(t), z(t)) |\mathbf{r}'(t)| \, dt$$

$$= \int_a^b f(x(t), y(t), z(t)) \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, dt.$$

Definition. (Line Integral of a Vector Field)

Let **F** be a vector field that is continuous on a region containing a smooth oriented curve C parameterized by arc length. Let **T** be the unit tangent vector at each point of C consistent with the orientation. The line integral of **F** over C is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$.

Different Forms of Line Integrals of Vector Fields

The line integral $\int_C \mathbf{F} \cdot \mathbf{T} ds$ may be expressed in the following forms, where $\mathbf{F} = \langle f, g, h \rangle$ and C has a parameterization $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \leq t \leq b$:

$$\int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_{a}^{b} (f(t)x'(t) + g(t)y'(t) + h(t)z'(t)) dt$$
$$= \int_{C} f dx + g dy + h dz$$
$$= \int_{C} \mathbf{F} \cdot d\mathbf{r}.$$

For line integrals in the plane, we let $\mathbf{F} = \langle f, g \rangle$ and assume C is parameterized in

the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$. Then

$$\int_a^b \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_a^b (f(t)x'(t) + g(t)y'(t)) dt = \int_C f dx + g dy = \int_C \mathbf{F} \cdot d\mathbf{r}.$$

Definition. (Work Done in a Force Field)

Let **F** be a continuous force field in a region D of \mathbb{R}^3 . Let

$$C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, \text{ for } a \le t \le b,$$

be a smooth curve in D with a unit tangent vector \mathbf{T} consistent with the orientation. The work done in moving an object along C in the positive direction is

$$W = \int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_a^b \mathbf{F} \cdot \mathbf{r}'(t) \, dt.$$

Definition. (Circulation)

Let **F** be a continuous vector field on a region D of \mathbb{R}^3 , and let C be a closed smooth oriented curve in D. The **circulation** of **F** on C is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$, where **T** is the unit vector tangent to C consistent with the orientation.

Definition. (Flux)

Let $\mathbf{F} = \langle f, g \rangle$ be a continuous vector field on a region R of \mathbb{R}^2 . Let $C : \mathbf{r}(t) = \langle x(t), y(t) \rangle$, $a \leq t \leq b$, be a smooth orientated curve in R that does not intersect itself. The flux of the vector field \mathbf{F} across C is

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_a^b \left(f(t) y'(t) - g(t) x'(t) \right) dt,$$

where $\mathbf{n} = \mathbf{T} \times \mathbf{k}$ is the unit normal vector and \mathbf{T} is the unit tangent vector consistent with the orientation. If C is a closed curve with counterclockwise orientation, \mathbf{n} is the outward normal vector, and the flux integral gives the **outward flux** across C.