MOwNiT laboratorium 3. - Sprawozdanie

Michał Szczurek Informatya, WIEiT

Grupa poniedziałek 12:50

- 1 Zadanie 1. Interpolacja funkcji $f(x) = \frac{1}{1+25x^2}$ na przedziale [1, 1] i efekt Rungego.
- 1.1 Obliczenie wybranych pochodnych
- 1.1.1 Wykres f(x)

1.1.2 $f^{(5)}(x)$

$$f^{(5)}(x) = \frac{3750000x \left(-\frac{10000x^4}{(25x^2+1)^2} + \frac{400x^2}{25x^2+1} - 3 \right)}{(25x^2+1)^4}$$

1.1.3 $f^{(10)}(x)$

$$f^{10} = \frac{35437500000000 \left(\frac{10000000000x^{10}}{(25x^2+1)^5} - \frac{900000000x^8}{(25x^2+1)^4} + \frac{28000000x^6}{(25x^2+1)^3} - \frac{350000x^4}{(25x^2+1)^2} + \frac{1500x^2}{25x^2+1} - 1\right)}{(25x^2+1)^6}$$

1.1.4 $f^{(15)}(x)$

$$f^{(15)}(x) = \frac{3192564375 \cdot 10^{15} x \left(-\frac{125 \cdot 10^{11} x^{14}}{(25 x^2 + 1)^7} + \frac{175 \cdot 10^{10} x^{12}}{(25 x^2 + 1)^6} - \frac{97500000000 x^{10}}{(25 x^2 + 1)^5} + \frac{27500000000 x^8}{(25 x^2 + 1)^4} - \frac{41250000 x^6}{(25 x^2 + 1)^3} + \frac{315000 x^4}{(25 x^2 + 1)^2} - \frac{1050 x^2}{25 x^2 + 1} + 1\right)}{(25 x^2 + 1)^9}$$

1.2 Wykonanie interpolacji f(x)

Wszystkich interpolacji dokonano używając funkcji biblioteki Scipy.

$1.2.1\,$ Interpolacja wielomianami Newtona 5-tego i 10-tego stopnia używając węzłów równo-odległych

Interpolację wykonano funkcją Krogh Interpolator.

1.2.2 Interpolacja wielomianami Newtona 5-tego i 10-tego stopnia używając węzłów Czebyszewa

Interpolację wykonano funkcją Krogh Interpolator.

1.2.3 Interpolacja kubicznymi funkcjami sklejanymi z 11 równoodległymi węzłami

Interpolację wykonano funkcją Cubic Spline z parametrem b
c_type=clamped

Wykres błędu dla interpolacji kubicznymi funkcjami sklejanymi z 11 równoodległymi węzłami

1.2.4 Wykresy porównujące interpolacje dla 11 węzłów

 $Linia\ czarna\ praktycznie\ pokrywa\ się\ z\ niebieską\ na\ wykresie.$

1.3 Porównanie wyników interpolacji dla 25 losowo wybranych punktów

X	f(x)	Newton	Czebyszew	spline	Błąd	Błąd	Błąd
		$P_{10}^{N}(x)$	$P_{10}^C(x)$	s(x)	$ f(x) - P_{10}^N(x) $	$ f(x) - P_{10}^{C}(x) $	f(x)-s(X)
0.0574	0.9240	0.9458	0.9596	0.9333	0.0219	0.0356	0.0093
0.2807	0.3367	0.2696	0.3379	0.3258	0.0671	0.0012	0.0109
0.8708	0.0501	1.0767	0.0099	0.0485	1.0266	0.0402	0.0016
-0.1795	0.5538	0.5726	0.6574	0.5612	0.0189	0.1036	0.0074
0.8086	0.0577	0.1461	0.0150	0.0575	0.0884	0.0427	0.0001
0.0945	0.8174	0.8589	0.8933	0.8369	0.0416	0.0759	0.0196
0.2679	0.3579	0.2975	0.3752	0.3471	0.0604	0.0172	0.0108
-0.7346	0.0690	-0.2548	0.0887	0.0692	0.3238	0.0197	0.0002
0.1940	0.5153	0.5211	0.6107	0.5173	0.0058	0.0954	0.0020
0.0365	0.9678	0.9778	0.9835	0.9715	0.0100	0.0157	0.0037
-0.1350	0.6869	0.7314	0.7921	0.7075	0.0445	0.1053	0.0207
-0.2185	0.4559	0.4374	0.5305	0.4509	0.0184	0.0746	0.0050
-0.7058	0.0743	-0.2373	0.1174	0.0743	0.3116	0.0431	0.0000
-0.6014	0.0996	0.0956	0.1492	0.0996	0.0039	0.0496	0.0000
0.5349	0.1226	0.2349	0.1171	0.1239	0.1123	0.0056	0.0012
0.0066	0.9989	0.9993	0.9995	0.9990	0.0004	0.0005	0.0001
0.4705	0.1531	0.2471	0.0891	0.1553	0.0941	0.0640	0.0023
-0.0054	0.9993	0.9995	0.9996	0.9993	0.0002	0.0004	0.0001
0.7379	0.0684	-0.2520	0.0852	0.0686	0.3204	0.0167	0.0002
0.2999	0.3079	0.2355	0.2861	0.2976	0.0723	0.0218	0.0103
-0.9815	0.0399	1.1647	0.0631	0.0387	1.1248	0.0232	0.0012
-0.0039	0.9996	0.9997	0.9998	0.9996	0.0001	0.0002	0.0000
-0.5488	0.1172	0.2174	0.1251	0.1182	0.1002	0.0078	0.0009
-0.1972	0.5070	0.5097	0.6001	0.5079	0.0027	0.0931	0.0009
-0.3954	0.2037	0.1975	0.1146	0.2033	0.0062	0.0891	0.0004

1.4 Porównanie błędów interpolacji z teoretycznymi oszacowaniami

1.4.1 Interpolacja wielomianami Newtona z węzłami równoodległymi

Błąd interpolacji można oszacować wzorem

$$|f(x) - p(x)| \le \max_{x_0 \le t \le x_n} |f^{(n+1)}(t)| \frac{1}{4(n+1)} h^{n+1}$$

W przypadku badanej funkcji $f(x) = \frac{1}{1+25x^2}$ człon $\max_{x_0 \le t \le x_n} |f^{(n+1)}(t)| \approx 1.8 \cdot 10^{15}$ jako, że n=10 (Dokładna wartość użyta w dalszych obliczeniach znajduje się w załączonym notebooku). Po podstawieniu do wzoru n=10 i h=0.2 Błąd można oszacować jako:

$$|f(x) - p(x)| \le 824874.35$$

Powyższe oszacowanie jest bardzo niedokładne - największy zaobserwowany błąd to 1.1248, co jest liczbą znacznie mniejszą, lecz wciąż stosunkowo dużą na tle błędów pozostałych wariantów interpolacji.

1.4.2 Interpolacja wielomianami Newtona z węzłami Czebyszewa

Błąd interpolacji można oszacować wzorem

$$|f(x) - p(x)| \le \frac{2}{(n+1)!} \max_{x_0 \le t \le x_n} |f^{(n+1)}(t)| \left(\frac{x_n - x_0}{4}\right)^4$$

W przypadku badanej funkcji człon $\max_{x_0 \le t \le x_n} |f^{(n+1)}(t)|$ oraz n jest takie jak w poprzednim punkcie, a $x_n - x_0 = 2$. Wobec tego błąd można oszacować jako

$$|f(x) - p(x)| \le 5549640.05$$

Ponownie oszacowanie jest bardzo niedokładne - największy zaobserwowany błąd to 0.1053, co jest liczbą dużo mniejszą od oszacowania, jak i zauważalnie mniejszą od maksymalnego błędu zaobserwowanego dla węzłów równoodległych.

1.4.3 Interpolacja przy pomocy funkcji sklejanych

Bład interpolacji można oszacować wzorem

$$|f(x) - s(x)| \le \frac{5}{384} \max_{x_0 \le t \le x_n} |f^{(4)}(t)| \cdot \max_{x_0 \le i \le n-1} (x_{i+1} - x_i)^4$$

W przypadku badanej funkcji człon $\max_{x_0 \le t \le x_n} |f^{(4)}(t)| = 15000$. $\max_{x_0 \le i \le n-1} (x_{i+1} - x_i)^4$ można obliczyć korzystając z tego, że węzły są równoodległe, wobec czego $x_{i+1} - x_i = 0.2$ dla dowolnego $0 \le i \le 9$. Wobec tego bład można oszacować jako

$$|f(x) - s(x)| < 0.32$$

Oszacowanie, również jak w poprzednich przypadkach jest większe od zaobserwowanego maksymalnego błędu wynoszącego 0.0207, jednak w znacznie mniejszym stopniu (jest około 15 razy większe). Ponad to jest zdecydowanie mniejsze od tych w poprzednich punktach.

1.5 Wnioski

- Odgórne oszacowania błędów w przypadku interpolacji wielomianami Newtona, zarówno przy użyciu węzłów równoodległych jak i węzłów Czebyszwa, było w tym przypadku zdecydowanie za duże, przez co nie praktyczne.
- Dla węzłów równoodległych przy interpolacji wielomianami Newtona zauważalny był efekt Rungrgo bład na końcach przedziału drastycznie wzrósł.
- Efekt ten nie był widoczny, gdy zamiast węzłów równoodległych użyto węzłów Czebyszewa mimo to błąd był zauważalny.
- Interpolacja kubicznymi funkcjami sklejanymi była najdokładniejsza zarówno teoretycznie jak i praktycznie. Wykres przedstawiający wynik interpolacji praktycznie pokrywał się z wykresem funkcji interpolowanej.

2 Zadanie 2.

Udowodnij, że w przypadku węzłów równoodległych jeśli $|f^{(n+1)}| \leq M$ dla $x \in [x_0, x_n]$ błąd interpolacji jest ograniczony w następujący sposób:

$$|f(x) - p(x)| \le \frac{M}{4(n+1)} h^{n+1}$$

Pierwszym krokiem jest przywołanie ogólniejszego wzoru.

$$|f(x) - p(x)| \le \frac{1}{(n+1)!} \max_{x_0 \le t \le x_n} |f^{(n+1)}(t)| |\prod_{i=0}^n (x - x_i)|$$

Następnie korzystając z ograniczenia na pochodną:

$$|f(x) - p(x)| \le \frac{M}{(n+1)!} \prod_{i=0}^{n} |(x - x_i)|$$

Kolejnym krokiem dowodu jest ograniczenie członu $|\prod_{i=0}^n (x-x_i)| = \prod_{i=0}^n |x-x_i|$. W tym celu należy wybrać x, taki, że $x_j \le x \le x_{j+1}$.

Wówczas prawdziwy jest wzór $|x-x_j||x-x_{j+1}| \leq \frac{h^2}{4}$. Aby dowieść jego prawdziwości można przenieść oba człony do jednej wartości bezwzględnej. Wykresem funkcji dla $x \in [x_j, x_{j+1}]$ będzie parabola. Wierzchołkiem paraboli będzie punkt znajdujący się w równej odległości od x_j i x_{j+1} , czyli $x_j + \frac{h}{2}$. Dla tego punktu funkcja przyjmuje wartość $\frac{h^2}{4}$.

Następnie można użyć oszacowania $\prod_{i=0}^n |x-x_i| \leq \frac{h^2}{4} \prod_{i=0}^{j-1} (x-x_i) \prod_{i=j+2}^n (x_i-x)$ Kolejnym krokiem jest skorzystanie z faktu, że dla każdego $x_k, k \leq j-1$ $|x_k-x| \leq x_{j+1}-x_k$ jako, że x_{j+1} znajduje się na prawo od x, a wszystkie x_k na lewo. Analogicznie prawdą jest, że dla każdego $x_m, m \geq j+2$ $|x_m-x| \leq x_m-x_j$. Wobec tego:

$$\prod_{i=0}^{n} |x - x_i| \le \frac{h^2}{4} \prod_{i=0}^{j-1} (x_{j+1} - x_i) \prod_{i=j+2}^{n} (x_i - x_j)$$

Następnie korzystając z faktu, że $x_i = a + ih$ można zauważyć, że $x_{j+1} - x_i = (j-i+1)h$, a $x_i - x_j = (i-j)h$. Pozwala to dalej przekształcić nierówność:

$$\prod_{i=0}^{n} |x - x_i| \le \frac{h^2}{4} h^j \prod_{i=0}^{j-1} (j - i + 1) h^{n-(j+2)+1} \prod_{i=j+2}^{n} (x_i - x_j)$$

$$\prod_{i=0}^{n} |x - x_i| \le \frac{h^{n+1}}{4} (j+1)! (n-j)!$$

Można również zauważyć, że $(j+1)!(n-j)! \le n!$ dla $0 \le j \le n-1$. Dla j=0 jest to po prostu n!. Zwiększenie j o 1 spowoduje zdublowanie liczby (j+1) w iloczynie kosztem (n-j), co będzie powodowało zmniejszenie wartości wyrażenia, aż do momentu kiedy $j=\frac{n}{2}$. Wtedy wyrażenie w lewym nawiasie stanie się większe od tego w prawym i będzie rosnąć, aż do momentu, gdy j=n-1 Wtedy całość znowu będzie równa n!. Wobec tego:

$$\prod_{i=0}^{n} |x - x_i| \le \frac{h^{n+1}}{4} n!$$

Podstawiając to wyrażenie do wzoru na oszacowanie błędu otrzymujemy

$$|f(x) - p(x)| \le \frac{M}{(n+1)!} \frac{h^{n+1}}{4} n! = \frac{M}{4(n+1)} h^{n+1}$$

3 Zadanie 3.

Zadanie polegało na zinterpolowaniu funkcji f(x) = |sin(x)| na przedziale (-4,4) przy pomocy węzłów równoodległych. Poniżej znajdują się kod zaimplementowanej funkcji.

```
def lagrange_interpolation(expr, deg, xlim):
 n = deg + 1
 nodes = np.linspace(xlim[0],xlim[1],n)
  values = [expr.subs(x,el) for el in nodes]
 L = []
  for i in range(n):
      m = 1
      d = 1
      for j in range(n):
          if j == i:
              continue
          d *= (x - nodes[j])
          m *= (nodes[i] - nodes[j])
      L.append(d/m)
  res = 0
  for i in range(n):
      res += values[i] * L[i]
  return (res, nodes)
```

Funkcja przyjmuje jako argumenty wzór funkcji interpolowanej, stopień wielomianu interpolacyjnego i przedział, na którym funkcja ma być interpolowana, zwraca wynik i węzły interpolacji. Interpolację wykonano dla wielomianów stopnia 2,5 i 10. Zaimplementowano również funkcję, która może być użyta bez użycia biblioteki Sympy. Główna różnica polega na tym druga funkcja, że oblicza wartość interpolacji dla pojedynczego punktu i nie zwraca wzoru funkcji, a wartość w tym punkcie, dzięki czemu nie zachodzi konieczność używania wspomnianej biblioteki i nie występuje konieczność zapamiętywania długiego wzoru dla większych n, która skutkowała błędem przekroczenia pamięci. Z racji, że różnica w implementacji nie wpływa na wyniki w sprawozdaniu opisywana jest tylko 1. funkcja. W notebooku znajduje się kod obu funkcji.

Interpolacja Lagrange'a $f(x) = |\sin(x)|$ wielomianem 5-ego stopnia

Interpolacja Lagrange'a $f(x) = |\sin(x)|$ wielomianem 10-ego stopnia

Wykresy dla wyniku uzyskanego poprzez użycie wielomianów stopnia 2 i 5 nie są zbyt zbliżone do funkcji |sin(x)| - węzłów interpolacji jest zdecydowanie za mało, przez co funkcja została "uproszczona". Interpolacja uzyskana dla wielomianu stopnia 10 jest już dokładniejsza na przedziale (-3,3) (chociaż wciąż nie jestem dobrym przybliżeniem). Można natomiast zaobserwować efekt Rungego na przedziałach (-4,-3) i (3,4) wynikający ze zwiększenia liczby węzłów.

Jeśli $|f^{(n+1)}(x)| \leq M$ dla $x \in [x_0, x_n]$ to błąd interpolacji przy użyciu węzłów równoodległych można ograniczyć w następujący sposób:

$$|f(x) - p(x)| \le \frac{M}{4(n+1)} h^{n+1}$$

Wzoru jednak nie można zastosować dla wspomnianej funkcji - nie posiada ona pierwszej pochodnej w 0: $f' = \frac{\cos(x)\sin(x)}{|\sin(x)|}$. Gdyby jednak kontynuować nie zważając na to założenie to: $f'' = -|\sin(x)|$

$$f^{(3)} = -\frac{\cos(x)\sin(x)}{|\sin(x)|}$$

$$f^{(4)} = \left| \sin \left(x \right) \right|$$

Jak widać od tego momentu pochodne będą się cyklicznie powtarzać, wobec czego dowolna pochodna funkcji istnieje (poza 0 - brak spełnienia założenia). Ponadto wszystkie pochodne składają się z funkcji sinus

lub cosinus z odpowiednim znakiem na przedziałach (w pochodnych nieparzystych funkcja w mianowniku skróci się z licznikiem wpływając tylko na znak). Wobec tego za M można przyjąć 1. Z racji, że przedział, na którym dokonywana jest interpolacja jest znany i wynosi [-4,4] to $h=\frac{8}{n}$. Wobec tego górna granica błędu wynosi:

$$|f(x) - p(x)| \le \frac{8^{n+1}}{4(n+1)n^{n+1}}$$

Można zauważyć, że dla $n \geq 8$ funkcja będzie maleć: $8^{n+1} \leq n^{n+1}$, a 4(n+1) > 1. Wobec tego powinno istnieć n, dla którego błąd nie przekracza wartości 10^{-10} . Przy pomocy prostej funkcji, wyznaczyłem, że wspomniane n wynosi 20. Poniżej znajduje się wykres interpolacji dla n = 20.

Jak widać oszacowanie ewidentnie jest błędne. Co więcej na skutek efektu Rungego błąd nie spadnie poniżej 10^{-10} dla większych n, a wręcz wzrośnie. Dla mniejszych n (w tym tych dla których efekt Rungego nie jest widoczny) z kolei oszacowanie jest zbyt niedokładne, więc błąd również przekracza 10^{-10} . Warto zaznaczyć, że oszacowanie to byłoby prawdziwe dla funkcji sin(x), jako że ta ma cykliczne pochodne ograniczone na moduł przez 1.

4 Zadanie 4.

4.1 Oblicz wielomian interpolacyjny dla danych (0.5,5.5), (1,14.5), (1.5,32.5), (2,62.5) przy pomocy jednomianów.

Dane są 4 punkty, wobec tego szukany wielomian ma postać $w(x) = ax^3 + bx^2 + cx + d$. Wykorzystując dane można wyprowadzić następujący układ równań

$$\begin{cases} w(0.5) = 5.5 \\ w(1) = 14.5 \\ w(1.5) = 32.5 \\ w(2) = 62.5 \end{cases}$$

$$\left\{ \begin{array}{l} \frac{1}{8}a + \frac{1}{4}b + \frac{1}{2}c + d = \frac{11}{2} \\ a + b + c + d = \frac{29}{2} \\ \frac{27}{8}a + \frac{9}{4}b + \frac{3}{2}c + d = \frac{65}{2} \\ 8a + 4b + 2c + d = \frac{125}{2} \end{array} \right.$$

$$\begin{cases} a = 4 \\ b = 6 \\ c = 2 \\ d = 2.5 \end{cases}$$

Wobec tego $w(x) = 4x^3 + 6x^2 + 2x + 2.5$

4.2 Oblicz wielomian interpolacyjny Lagrange'a dla tych samych danych i pokaż, że wielomian będzie ten sam co w 1.

Wielomian interpolacyjny ma postać

$$w(x) = \sum_{i=0}^{n} y_k \cdot L_k(x)$$

gdzie y_k to wartość wielomianu w k-tym węźle, a

$$L_k(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$

Poszczególne wartości L są następujące:

•
$$L_0(x) = \frac{x-1}{0.5-1} \cdot \frac{x-1.5}{0.5-1.5} \cdot \frac{x-2}{0.5-2} = -\frac{4}{3}x^3 + 6x^2 - \frac{26}{3}x + 4$$

•
$$L_2(x) = \frac{x-0.5}{1-0.5} \cdot \frac{x-1.5}{1-1.5} \cdot \frac{x-2}{1-2} = 4x^3 - 16x^2 + 19x - 6$$

•
$$L_3(x) = \frac{x-0.5}{1.5-0.5} \cdot \frac{x-1}{1.5-1} \cdot \frac{x-2}{1.5-2} = -4x^3 + 14x^2 - 14x + 4$$

•
$$L_4(x) = \frac{x-0.5}{2-0.5} \cdot \frac{x-1}{2-1} \cdot \frac{x-1.5}{2-1.5} = \frac{4}{3}x^3 - 4x^2 + \frac{11}{3}x - 1$$

Podstawiając wartości y i L otrzymujemy

$$w(x) = -\frac{22}{3}x^3 + 33x^2 - \frac{143}{3}x + 22 - 87 + 275.5x - 232x^2 + 58x^3 + 130 - 455x + 455x^2 - 130x^3 + \frac{250}{3}x^3 - 250x^2 + \frac{1375}{6}x - 62.5x^2 + 25x^3 + 250x^2 + 25x^2 + 25x^2$$

Wynik jest zgodny z tym otrzymanym w poprzednim punkcie.

4.3 Oblicz wielomian interpolacyjny Newtona dla tych samych danych korzystając z metody trójkąta różnic dzielonych

Różnicę dzieloną funkcji f opartą na różnych węzłach t_0, t_1, \dots, t_s gdzie $s \ge 1$, definiuje się indukcyjnie jako

$$f(t_0, t_1, \dots, t_s) = \frac{f(t_1, t_2, \dots, t_s) - f(t_0, t_1, \dots, t_{s-1})}{t_s - t_0}$$

Różnice dzielone można obliczyć budując tabelkę:

$$x_i$$
 $f(x_i)$ $f(x_i; x_{i+1})$ $f(x_i; x_{i+1}; x_{i+2})$ $f(x_i; x_{i+1}; x_{i+2}; x_{i+3})$
0.5 5.5
1 14.5 18
1.5 32.5 36 18
2 62.5 60 24 4

Korzystając z wartości na przekątnych można obliczyć wielomian interpolacyjny Newtona:

$$w(x) = 5.5 + 18(x - 0.5) + 18(x - 0.5)(x - 1) + 4(x - 0.5)(x - 1)(x - 1.5) = 4x^3 + 6x^2 + 2x + 2.5$$

Wielomiany otrzymane we wszystkich trzech punktach są takie same.

5 Zadanie 5.

5.1 Wyraź następujący wielomian metodą Hornera: $p(t) = 3t^3 - 7t^2 + 5t - 4$

$$p(t) = 3t^3 - 7t^2 + 5t - 4 = (3t^2 - 7t + 5)t - 4 = ((3t - 7)t + 5)t - 4 = (((3)t - 7)t + 5)t - 4 = (((3)t - 7)t + 5)t - 4 = ((3)t - 7)t + 5)t - 5 = ((3)t - 7)t + 5$$

6 Zadanie 6.

6.1 Ilość mnożeń potrzebna do ewaluacji wielomianu n-1 stopnia dla reprezentacji jednomianami

wielomian stopnia n-1 ma następującą postać:

$$w(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

Do obliczenia i-tego członu wielomianu potrzeba i mnożeń - i-1 na podniesienie x do odpowiedniej potęgi i 1 na przemnożenie przez współczynnik. Wobec tego potrzebna jest następująca liczba mnożeń $\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$. Wartość wielomiany można również obliczyć wykorzystując schemat Hornera, co wymaga n-1 mnożeń.

6.2 Ilość mnożeń potrzebna do ewaluacji wielomianu n-1 stopnia dla reprezentacji wielomianem Lagrage'a

Wielomian interpolacyjny ma postać

$$w(x) = \sum_{i=0}^{n-1} y_k \cdot \mathcal{L}_k(x)$$

gdzie y_k to wartość wielomianu w k-tym węźle, a

$$\mathcal{L}_k(x) = \prod_{i=0, i \neq k}^{n-1} \frac{x - x_i}{x_k - x_i}$$

Wobec tego, aby obliczyć wartości współczynnika \mathcal{L}_k należy wykonać 2(n-1) mnożeń (n-1) na wyliczenie licznika i n-1 na wyliczenie mianownika). Współczynników takich jest n. Konieczne jest jeszcze przemnożenie każdego współczynnika \mathcal{L}_k przez y_k , co wymaga n mnożeń. W sumie potrzeba więc $2(n-1)(n)+n=2n^2-n$ mnożeń.

6.3 Ilość mnożeń potrzebna do ewaluacji wielomianu n-1 stopnia dla reprezentacji wielomianem Newton'a

Wielomian n-1 stopnia w postaci Newton'a ma postać:

$$w(x) = \sum_{i=0}^{n-1} a_i \prod_{j=0}^{i-1} (x - x_j)$$

Konieczne jest więc wykonanie n przemnożeń przez współczynnik a_i i $\sum_{i=0}^{n-1} i$ mnożeń wynikających z konieczności obliczenia iloczynów wyrazów zawierających x. Wobec tego należy wykonać $\frac{n(n-1)}{2} + n = \frac{n^2 + n}{2}$ mnożeń.