1. Die nachfolgende Tabelle gibt eine Übersicht über die Anzahl der verkauften Bücher zu unterschiedlichen Preisen in einer Buchhandlung im Laufe eines Tages:

Buchpreis (in €)	Anzahl der verkauften Bücher				
[0; 10)	5				
[10; 30)	15				
[30; 50)	20				
[50; 80)	12				
[80; 120)	8				

(a) Berechnen Sie die jeweiligen absoluten und relativen Klassenhäufigkeiten

Lösung:						
Es gilt:						
	I_i	n_i	h_i	H_i	$h_i/ I_i $	
	[0;10)	1	1/12	1/12	$1/120 \approx 0.0083$	
	[10;30)	4	1/4	1/3	1/80 = 0.0125	
	[30; 50)	7	1/3	2/3	$1/60 \approx 0.0167$	
	[50; 80)	5	1/5	13/15	$1/150 \approx 0.0067$	
	[80; 120)	5	2/15	1	$1/300 \approx 0.0033$	
		•				

(b) Zeichnen Sie das zugehörige Histogramm.

- (c) Bestimmen Sie
 - i. das arithmetische Mittel,

Lösung:

Es gilt:

$$\bar{x} \approx \frac{1}{n} \cdot \sum_{i=1}^{k} n_i \cdot \alpha_i = \sum_{i=1}^{k} h_i \cdot \alpha_i = \frac{5}{12} + 5 + \frac{40}{3} + 15 + \frac{40}{3} = \frac{565}{12} \approx 47.083$$

ii. den Median sowie

Lösung:

Offensichtlich ist die Einfallsklasse gegeben mit

$$I_3 = [30; 50) = [a_3; b_3)$$

Es gilt damit:

$$\tilde{x} = a_3 + \frac{1/2 - H_2}{h_3} \cdot (b_3 - a_3) = 30 + \frac{1/2 - 1/3}{1/3} \cdot (50 - 30) = 40$$

iii. das obere und untere Quartil.

Lösung:

Offensichtlich ist die Einfallsklasse für das untere Quantil gegeben mit

$$I_2 = [10; 30) = [a_2; b_2)$$

und die für das obere Quartil mit

$$I_4 = [50; 80) = [a_4; b_4)$$

Es gilt damit:

$$x_{1/4} = a_2 + \frac{1/4 - H_1}{h_2} \cdot (b_2 - a_2) = 10 + \frac{1/4 - 1/12}{1/4} \cdot (30 - 10) = 20$$

und

$$x_{3/4} = a_4 + \frac{3/4 - H_3}{h_4} \cdot (b_4 - a_4) = 50 + \frac{3/4 - 2/3}{1/5} \cdot (80 - 50) = \frac{130}{2} = 62.5$$