Présentation APP Physique Energie solaire

Groupe 12.64

27/09/2015

Recherches documentaires

Quantité d'énergie solaire

- Puissance moyenne=340 W/m²
- ullet Saisons \propto orientation de la Terre par rapport au Soleil

Ondes électromagnétiques uniquement MAIS λ différentes

Temps Soleil-Terre

•
$$c = 3 \times 10^8 \, \mathrm{m \, s^{-1}}$$
 $d = 1.496 \times 10^8 \, \mathrm{km}$

•
$$t = \frac{d}{c} = 500 \,\mathrm{s} = 8'20''$$

Groupe 12.64 Présentation 27/09/2015

Equations de Maxwell

$$\begin{cases} \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \times \vec{H} &= \frac{\partial \vec{D}}{\partial t} \end{cases}$$

En utilisant $B = \mu_0 H$ et $D = \epsilon_0 E$:

$$\begin{cases} \vec{\nabla} \times \vec{E} &= -\mu_0 \frac{\partial \vec{H}}{\partial t} \\ \vec{\nabla} \times \vec{H} &= \epsilon_0 \frac{\partial \vec{E}}{\partial t} \end{cases}$$

 μ_0 et ϵ_0 ayant des valeurs différentes de 0, les équations de Maxwell sont vérifiées et les ondes magnétiques peuvent donc se propager dans le vide.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなぐ

Groupe 12.64 Présentation 27/09/2015 3

Equations de Maxwell 2.0

Considérons:

$$\epsilon_0 \mu_0 c^2 = 1$$

Si l'espace était composé de verre ($\mu_r = \pm 1$ et $\epsilon_r = \pm 6$) :

$$c = \sqrt{\frac{1}{\epsilon_0 \mu_0}} = 1.22 \times 10^8 \, \mathrm{m \, s^{-1}}$$

 $2.45 \times \text{ plus lent que dans le vide}$

Les champs électrique et magnétique sont dépendants : le champ H_0 créé le champ E_0 qui créé le champ H_1 , etc.

Groupe 12.64 Présentation 27/09/2015 4

Pour synthétiser

Fonction vitesse v et direction x

$$\begin{cases} f(x,t) &= f(x-vt) \\ f(x,t) &= \sin(x-vt) \end{cases}$$

Figure – Orientations vectorielles des champs

Groupe 12.64 Présentation 27/09/2015 5 / 5