

<u>Lecture 8: Distance measures</u>

课程 □ Unit 3 Methods of Estimation □ between distributions

4. Introduction to Total Variation

□ Distance

4. Introduction to Total Variation Distance Definition of Total Variation Distance

Start of transcript. Skip to the end.

So, arguably, when you're trying to build a statistical method,

you need to understand what your goal is, right?

So if you're trying to understand what it is to learn a distribution, that's what we're trying to do.

We're trying to estimate the distribution, but let's start from the basics and say, what is it we

视频 下载视频文件 字幕

下载 SubRip (.srt) file

下载 Text (.txt) file

Interpreting Total Variation Distance

1/1 point (graded)

Recall from lecture that the **total variation distance** between two probability measures ${f P}_{ heta}$ and ${f P}_{ heta'}$ with sample space E is defined by

$$ext{TV}\left(\mathbf{P}_{ heta},\mathbf{P}_{ heta'}
ight) = \max_{A\subset E}\left|\mathbf{P}_{ heta}\left(A
ight) - \mathbf{P}_{ heta'}\left(A
ight)
ight|$$

Let $X_1, \dots, X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ where $\theta^* \in \mathbb{R}$ is an unknown parameter. You construct a statistical model $(E, \{\mathbf{P}_{\theta}\}_{\theta \in \mathbb{R}})$ for your data. By analyzing your data, you are able to produce an estimator $\hat{\theta}$ such that the distributions $\mathbf{P}_{\hat{\theta}}$ and \mathbf{P}_{θ^*} are close in **total variation distance**. More precisely, you know that

$$\mathrm{TV}\left(\mathbf{P}_{\hat{ heta}},\mathbf{P}_{ heta^*}
ight) \leq \epsilon,$$

where ϵ is a very small positive number.

Which of the following can you conclude about the distributions ${f P}_{\hat{ heta}}$ and ${f P}_{{m heta}^*}$? (Choose all that apply.)

 $^{m{arphi}}$ Let A be an event. Then $|\mathbf{P}_{ heta^*}\left(A
ight)-\mathbf{P}_{\hat{ heta}}\left(A
ight)|\leq\epsilon$. \Box

$$extcolor{black}{ extcolor{black}{$lackbrack}{lackbrack}{}}$$
 Let $X\sim \mathbf{P}_{ heta^*}$, let $Y\sim \mathbf{P}_{\hat{ heta}}$, and suppose $a,b\in\mathbb{R}$ where $a\leq b$. Then $|\mathbf{P}_{ heta^*}\ (a\leq X\leq b)-\mathbf{P}_{\hat{ heta}}\ (a\leq Y\leq b)|\leq\epsilon$. \Box

认证证书是什么?

主题: Unit 3 Methods of Estimation:Lecture 8: Distance measures between distributions / 4.

Introduction to Total Variation Distance

显示讨论

© 保留所有权利