Tutorial 1 (with solution)

Sets

Question 1: Inclusion & Exclusion

 \square What is the formula for $|A \cup B \cup C|$?

- a) $|A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- b) $|A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + 3|A \cap B \cap C|$
- c) $|A| + |B| + |C| 2|A \cap B| 2|A \cap C| 2|B \cap C| + 3|A \cap B \cap C|$
- d) $|A| + |B| + |C| 3|A \cap B| 3|A \cap C| 3|B \cap C| + 3|A \cap B \cap C|$

Q.1 Solution

$$|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

Question 2: Subset Relationship

Let $A = \{n \in \mathbb{Z} \mid n = 5r \text{ for some integer } r\}$ and $B = \{m \in \mathbb{Z} \mid m = 20s \text{ for some integer } s\}$.

- i. Is $A \subseteq B$?
- ii. Is $B \subseteq A$?

- a) Both are true.
- b) Both are false.
- c) (i) is true while (ii) is false
- d) (i) is false while (ii) is true

Q.2 Solution

- a) No.
 - This can be proved by a counter-example.
 - For example, $5 \in A$ (since 5 = 5r, where r = 1).
 - O But 5 cannot be written as 20s, where s is an integer.
 - So, 5 is not an element of *B*.
 - \bigcirc Therefore, $A \nsubseteq B$.
- b) Yes.
 - Let $n \in B$, so n = 20s, where s is an integer.
 - Since n = 20s = 5(4s), where 4s is an integer, $n \in A$.
 - \bigcirc Therefore, $B \subseteq A$.

Question 3: Power Set

"If A and B are two sets with the same power set, then A = B."

Is the above statement true?

- a) Yes
- b) No
- c) Cannot be determined

Justify your answer.

Q.3 Solution

☐ The statement is true.

Proof: We prove it by contraposition.

Suppose $A \neq B$. Then there exists an element x which belongs to one set but not the other.

Without loss of generality, assume $x \in A$ but $x \notin B$.

• (Otherwise, reverse the role of *A* and *B*.)

Then $\{x\} \in \mathcal{P}(A)$ but $\{x\} \notin \mathcal{P}(B)$.

Hence, $\mathcal{P}(A) \neq \mathcal{P}(B)$.

Q.4 Cartesian Product

- \square Consider two nonempty sets A and B.
- \square Is it true that $A \times B \neq B \times A$?

- a) Yes
- b) No
- c) Cannot be determined

Justify your answer.

Q.4 Solution

☐ It cannot be determined.

 \square If A = B, then $A \times B = B \times A$.

- \square If $A \neq B$, then $A \times B \neq B \times A$.
 - \circ For example, $A = \{a\}$ and $B = \{1, 2\}$.
 - \circ $A \times B = \{(a, 1), (a, 2)\}.$
 - \circ $B \times A = \{(1, a), (2, a)\}.$

Question 5: Set Equality

Is it true that B = C, where

$$B = \{y \in \mathbf{Z} \mid y = 18b - 2 \text{ for some integer } b\},$$
 and

$$C = \{z \in \mathbb{Z} | z = 18c + 16 \text{ for some integer } c\}$$
?

- a) Yes
- b) No
- c) Cannot be determined

Justify your answer.

Q.5 Solution

Yes, it is true. The proof consists of two parts.

Part 1, Prove that $B \subseteq C$:

- □ Let y be an element of B, so y = 18b 2 for some integer b.
- We can re-write it as y = 18b 2 = 18(b 1) + 16.
- □ Since b 1 is an integer, $y \in C$.
- \square Therefore, $B \subseteq C$.

Q.5 Solution

Part 2, Prove that $C \subseteq B$:

- □ Let *z* be an element of *C*, so z = 18c + 16, for some integer *c*.
- We can re-write it as

$$z = 18c + 16 = 18(c + 1) - 2$$
.

- \square Since c + 1 is an integer, $z \in B$.
- \square Therefore, $C \subseteq B$.

Combining the two parts, we conclude that B = C. *Q.E.D.*