Fault Simulation

- Introduction
- Fault simulation techniques
 - Serial fault simulation
 - Parallel fault simulation (1965)
 - PPSFP (1985)
 - Deductive fault simulation (1972)
 - Concurrent fault simulation (1974) *
 - Differential fault simulation (1989)
- Alternatives to fault simulation
- Issues of fault simulation
- Concluding remarks

* Based on textbook
"VLSI Test Principles and Architectures"
by Wang, Wu, and Wen

Concurrent Fault Simulation [Ulrich 74]

- Observation
 - Fault activity is often sparse both in time and space
 - Example: g sa0 fault only affects lower part of circuit
- Idea: can we just simulate parts of faulty circuit that differs from good circuit?

Concurrent fault sim. Is event-driven sim. with good/bad events together

Bad Gate

- Every good gate has a list of bad gates
- Bad-gate
 - Represents fault effect of a fault
 - At least one gate input or output differs from its corresponding good-gate if the fault is present
 - A bad gate is denoted by
 - Fault: a stuck-at 0, b stuck-at 0
 - Faulty input value, faulty output value

Example (P_1)

- Fault-free simulation, Pattern P₁ = 010
- Event-driven simulation
 - Good events are events occur in a good circuit

Example (P_1)

- Consider only three faults: A/1, J/0, C/0 (WWW Fig 3.30)
 - Good gates in white: G₁ ~ G₄
 - Bad gates in gray: A/1, J/0, C/0
- A bad gate is invisible if its faulty output same as good values
 - C/0 J/0 are invisible
- A bad gate is visible if its faulty output different from good values
 - ◆ A/1 is visible

Bad Events

- Bad events: Events in faulty circuit, and different from good events
- Good events activate both good-gates and bad-gates for evaluation
- Bad events only activate bad-gates of same fault for evaluation
- Only events of visible bad gates will be propagated
 - Invisible bad gates will not trigger any bad event
- Example:
 - Good events in white: A u→0, H u→0 , ...
 - Bad events in gray
 - * G₂ A/1: u→1

Example (P_1)

- Bad gate diverges from its good gate if its faulty I/O values are different from good values
- Example:
 - Bad gate $(G_4 A/1)$ diverges from its good gate
 - A/1 is detected by P₁

Example (P_2)

- $P_1 \rightarrow P_2$ 010 \rightarrow 001; Note: no other good event inside circuit
- C/0 becomes newly visible
- A/1, C/0 detected by P₂

Example (P_3)

- $P_2 \rightarrow P_3 \quad 001 \rightarrow 100$
- Bad gate converges (disappear) to its good gate if its faulty I/O values become same as good values
- Example : Bad gates A/1 C/0 converged

Concurrent Fault Sim. Flow

• WWW Fig 3.33

Concurrent Fault Simulation Summary

- Advantages
 - Even faster than deductive fault simulation
 - Delay fault can be supported
 - Sequential fault simulation can be supported
- Disadvantage
 - Difficulty in memory management
 - Memory requirement not predictable

FFT

- Q1: In P2, why no bad events there?
- Q2: Why delay fault is supported?
- Q3: Why sequential circuit ok?

