PRL: Paralelní a distribuované algoritmy 2

Petr Hanáček

Cor 2005

Upr 2007

Cor 2008

Synchronizace

- Nepřenáší se data
 - "Zajištění požadovaných časových vztahů mezi událostmi"
- Prostředky
 - » zasílání zpráv (nejlépe synchronní)
 - » randevous (RPC remote procedure call)
 - » semafor
 - » monitor
 - » bariéra
- Typické synchronizační úlohy
 - soupeření
 - » vzájemné vyloučení
 - » čtenáři x písaři
 - kooperace
 - » dohoda
 - » producent konzument
- Jiné druhy synchronizace
 - synchronizace asynchronní sítě
 - synchronizace logického času
 - » časová razítka

Komunikace

- Přenáší data
 - » "Předávání informací mezi procesy (procesory, vlákny, ...)"
- Prostředky pro komunikaci
 - Sdílená paměť
 - » skutečná x simulovaná
 - » boj o sběrnici, cache, lokalita odkazů (busy waiting!)
 - » řešení konfliktů při zápisu
 - » obtížně použitelná pro synchronizaci
 - Zasílání zpráv
 - » kanály
 - synchronní x asynchronní (kapacita)
 - jednosměrný x obousměrný (ACK)
 - » volání vzdálených procedur (RPC)
 - » všesměrové vysílání (broadcasting)
 - úmyslné posílání zpráv všem
 - vysílání každému procesu
 - záplava na jednu zprávu odpoví procesy jinou b. zprávou

SDÍLENÁ PAMĚŤ A PŘEDÁVÁNÍ ZPRÁV U MIMD

multitasking

- 1 cpu

- Předávání zpráv
- Sdílená paměť

- přepínání kontextu
- virtuální procesory

- simulováno SW
- Ano

sdílená paměť

- cache
- těsně vázané
- boj o sběrnici

simulováno SW, HW Ano

virtuální sdílená paměť

- all cache

- simulováno SW, HW
 - simul. HW

- spojení caches komunikačními kanály
- navenek se tváří jako společný (jediný) adresový prostor

předávání zpráv

- volně vázaná architektura
- počítačové sítě
- propojeny pouze procesory

Ano simul. SW

Vlastnosti sdílené paměti

Sdílená paměť

- všechny procesy mají přístup do společného paměťového prostoru
- řešení současného přístupu k jedné buňce paměti
 - » Exclusive-read, Exclusive-Write (EREW)
 - » Concurrent-Read, Exclusive-Write (CREW)
 - » Exclusive-Read, Concurrent-Write (ERCW)
 - » Concurrent-Read, Concurrent-Write (CRCW)

Vs. Předávání zpráv

- každý procesor má svůj adresový prostor
- procesory mají vlastní paměť komunikace pomocí zpráv

Propojovací sítě

- Použití propojovacích sítí
 - Propojit procesory se sdílenou pamětí
 - Propojit procesory spolu
- Typy propojovacích médií
 - Statické
 - Dynamické
 - » Sdílené (sběrnice)
 - » Přepínané
- Vlastnosti propojovací sítě ovlivňují vhodnost jednotlivých typů algoritmů a ovlivňují efektivnost toku dat

Statické sítě

- Všechny uzly jsou procesory
- Kanály jsou spojnice mezi uzly (procesory)
- Používají se pro architektury bez sdílené paměti
- Vlastnosti
 - Průměr (Diameter): Délka nejdelší z nejkratších cest mezi všemi dvojicemi uzlů
 - Konektivita (Arc connectivity): Minimální počet hran, které je nutné odstranit pro rozdělení sítě na více částí
 - Šířka bisekce (Bisection width): Minimální počet hran, které spojují dvě přibližně stejně velké poloviny sítě

Úplné propojení

- Diameter = 1
- Arc connectivity = p-1
- Bisection width = $p^2/4$

Hvězda

- Diameter = 2
- Arc connectivity = 1
- Bisection width = (p-1)/2

Lineární pole

- Diameter = p-1
- Arc connectivity = 1
- Bisection width = 1

- d-rozměrná mřížka (mesh)
 - Kartézský součin d lineárních polí, z nichž každé má p^{1/d} uzlů
 - Diameter = $dp^{1/d}$
 - Arc connectivity = d
 - Bisection width = $2p^{(1-1/d)}$
 - Obvykle d=2

k-ární d-rozměrná kostka

- $|N| = k^{d}$
- Diameter = d[k/2]
- Arc connectivity = 2d
 (d pro hyperkostku)
- Bisection width = $2k^{d-1}$
- Hyperkostka (Hypercube):
 2-ární d-rozměrná kostka
- Např.: Hyperkostka, kružnice, torus,...

d-ární strom

- Diameter = $2 \log_d ((p+1)/2)$
- Arc connectivity = 1
- Bisection width = 1
- Obvykle binární

Dynamické sítě

- Uzly jsou procesory, paměťové moduly nebo přepínače
- Často se používají pro implementaci architektur se sdílenou pamětí
- Příklad: křížový přepínač (crossbar)
 - Cena $\Omega(p^2)$, propustnost O(p), neblokující

- Diameter = 1
- Arc connectivity

 1
- Bisection width = p

- Příklad: sběrnice (bus)
 - Cena $\Theta(p)$, propustnost $\Theta(1)$

Víceúrovňové propojovací sítě

- Mnoho různých sítí: Omega, butterfly, Benes, ...
 - Spojují p procesorů s p paměťovými moduly pomocí Θ(p lg p)
 přepínačů
 - $-\Theta(\lg p)$ úrovní, každá obsahuje $\Theta(p)$ přepínačů
- Blokující sítě
 - I pokud procesory přistupují k různým paměťovým modulům, může dojít k souboji o přepínací prvky
- Příklad: síť Omega (p = 8), p/2 * log p přepínačů

PRL

