2020 V and C with Unemployment

This is the example vignette for function: snw_a4chk_unemp_bisec_vec from the PrjOptiSNW Package.
This function solves for the V(states, check) for individuals working. Dense solution. Bisection, most time for the test here taken to generate the income matrixes. But these can be generated out of the check loops.

Test SNW_A4CHK_UNEMP_BISEC_VEC Defaults

Solve for Value/Policy in non-COVID years, then solve for covid year value/policy given covid shocks. COVID lasts one period.

```
mp_params = snw_mp_param('default_docdense', false, 'tauchen', true);
mp params('beta') = 0.95;
mp_controls = snw_mp_control('default_test');
mp_controls('bl_print_vfi') = false;
mp_controls('bl_timer') = true;
[V_ss,~,cons_ss,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time=503.886
CONTAINER NAME: mp_outcomes ND Array (Matrix etc)
idx
                            ndim
                                    numel
                                               rowN
                                                         colN
                                                                         sum
                                                                                    mean
                                                                                               std
                                                                                                        coefvari
   V_VFI
                     1
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                    -6.6619e+08
                                                                                   -15.245
                                                                                              21.865
                                                                                                        -1.4343
    ap_VFI
               2
                     2
                            6
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                     1.3967e+09
                                                                                    31.962
                                                                                              36.426
                                                                                                         1.1397
    cons_VFI
               3
                     3
                                   4.37e+07
                                                83
                                                       5.265e+05
                                                                     2.3276e+08
                                                                                    5.3263
                                                                                              8.4413
                                                                                                         1.5848
xxx TABLE:V_VFI xxxxxxxxxxxxxxxxxx
            c1
                       c2
                                  c3
                                             с4
                                                        c5
                                                                  c526496
                                                                               c526497
                                                                                            c526498
                                                                                                         c526499
    r1
           -293.96
                     -293.57
                                 -291.09
                                            -285.44
                                                      -276.41
                                                                    -4.3584
                                                                                -4.2643
                                                                                             -4.1713
                                                                                                          -4.0795
    r2
           -284.42
                      -284.03
                                 -281.55
                                            -275.97
                                                      -267.24
                                                                   -4.2519
                                                                                -4.1612
                                                                                             -4.0717
                                                                                                          -3.9832
           -274.87
                     -274.48
    r3
                                 -272.03
                                           -266.62
                                                      -258.33
                                                                   -4.1429
                                                                                -4.0559
                                                                                             -3.9698
                                                                                                          -3.8847
                                                                                -3.9475
                                                                                             -3.8649
    r4
           -265.22
                     -264.86
                                -262.58
                                           -257.53
                                                      -249.74
                                                                   -4.0309
                                                                                                          -3.7833
          -256.51
                     -256.17
                                -254.04
                                                      -241.96
    r5
                                            -249.3
                                                                   -3.9252
                                                                                -3.8452
                                                                                             -3.7659
                                                                                                          -3.6873
    r79
          -13.642
                     -13.628
                                -13.535
                                           -13.298
                                                      -12.896
                                                                  -0.22092
                                                                               -0.21058
                                                                                            -0.20086
                                                                                                         -0.19173
                                           -11.939
    r80
          -12.283
                     -12.269
                                -12.176
                                                      -11.537
                                                                  -0.16979
                                                                               -0.16182
                                                                                             -0.1543
                                                                                                         -0.14722
                                                                               -0.11163
    r81
          -10.605
                     -10.591
                                -10.498
                                           -10.261
                                                      -9.8589
                                                                  -0.11712
                                                                                            -0.10646
                                                                                                         -0.10157
    r82
          -8.3494
                     -8.3358
                                -8.2424
                                           -8.0055
                                                      -7.6035
                                                                 -0.065333
                                                                              -0.062242
                                                                                            -0.05936
                                                                                                        -0.056635
    r83
          -5.0665
                     -5.0529
                                 -4.9595
                                           -4.7226
                                                      -4.3206
                                                                 -0.020968
                                                                              -0.019972
                                                                                           -0.019038
                                                                                                        -0.018161
xxx TABLE:ap_VFI xxxxxxxxxxxxxxxxxx
                                                             c526496
                                                                                              c526499
           c1
                c2
                          c3
                                       c4
                                                    c5
                                                                        c526497
                                                                                   c526498
                                                                                                         c526500
    r1
          0
                0
                      0.00051498
                                    0.0066578
                                                 0.021589
                                                             112.13
                                                                        117.67
                                                                                    123.4
                                                                                              129.31
                                                                                                         135.72
                                                             112.17
                                                                                              129.34
    r2
          0
                0
                      0.00051498
                                    0.0057684
                                                 0.020245
                                                                        117.71
                                                                                   123.43
                                                                                                         135.76
                                                                                              129.37
    r3
          0
                0
                      0.00020768
                                    0.0041456
                                                 0.018539
                                                              112.2
                                                                        117.73
                                                                                   123.45
                                                                                                         135.78
                                                                                              130.03
                                    0.0041199
                                                 0.018307
                                                             112.86
    r4
          0
                0
                      0.00010346
                                                                        118.39
                                                                                   124.11
                                                                                                         136.44
    r5
          0
                0
                       5.2907e-06
                                    0.0041199
                                                 0.018091
                                                             113.53
                                                                        119.07
                                                                                   124.79
                                                                                              130.71
                                                                                                         137.12
    r79
          0
                0
                               0
                                            0
                                                        0
                                                             81.091
                                                                        85.364
                                                                                   89.335
                                                                                              93.258
                                                                                                         97.348
    r80
          0
                0
                               0
                                            0
                                                        0
                                                             76.124
                                                                        79.747
                                                                                   83.431
                                                                                              86.986
                                                                                                         90.578
    r81
          0
                0
                               0
                                            0
                                                        0
                                                             67.945
                                                                        70.639
                                                                                   73.673
                                                                                              76.991
                                                                                                         81.091
    r82
          0
                0
                               0
                                            0
                                                        0
                                                             50.126
                                                                        53.467
                                                                                   56.302
                                                                                              57.884
                                                                                                         60.587
    r83
                0
                               0
                                            0
                                                                             0
                                                                                        0
                                                                                                              0
```

	c1	c2	с3	c4	c5	c526496	c526497	c526498	c526499
r1	0.036717	0.037251	0.040477	0.044486	0.049324	12.265	12.55	12.844	13.145
r2	0.036717	0.037251	0.040477	0.045375	0.050668	12.501	12.787	13.082	13.383
r3	0.036717	0.037251	0.040784	0.046998	0.052374	12.755	13.042	13.337	13.638
r4	0.038144	0.038678	0.042314	0.048449	0.054031	13	13.289	13.584	13.883
r5	0.039534	0.040068	0.043802	0.049839	0.055635	13.236	13.525	13.821	14.116
r79	0.19737	0.19791	0.20163	0.21175	0.23145	35.811	37.362	39.409	41.7
r80	0.19737	0.19791	0.20163	0.21175	0.23145	40.752	42.953	45.286	47.946
r81	0.19737	0.19791	0.20163	0.21175	0.23145	48.909	52.039	55.022	57.919
r82	0.19737	0.19791	0.20163	0.21175	0.23145	66.71	69.193	72.375	77.007
r83	0.19737	0.19791	0.20163	0.21175	0.23145	116.82	122.65	128.66	134.88

```
welf_checks = 2; % 2 checks is $200 dollar of welfare checks
xi=0.5; % xi=0 full income loss from covid shock, xi=1, no covid income losses
b=0; % b=0 means no UI benefits compensating COVID, b=1 if full income replacement
TR = 100/58056;
mp_params('TR') = TR;
mp_params('xi') = xi;
mp_params('b') = b;
mp_params('a2_covidyr') = mp_params('a2_covidyr_manna_heaven');
% mp_params('a2_covidyr') = mp_params('a2_covidyr_tax_fully_pay');
[V_unemp_2020,~,cons_unemp_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

r3 r4

r5

r79

			i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
			_									
V	VFI		1	1	6	4.37e+07	83	5.265e+05	-6.8822e+	08 -15.749	22.879	-1.4527
a	_ p_VFI		2	2	6	4.37e+07	83	5.265e+05	1.3605e+	09 31.134	36.294	1.1657
	ons_\		3	3	6	4.37e+07	83	5.265e+05	2.2887e+	08 5.2375	8.4438	1.6122
xxx T/	ABLE:	V VFI	xxx	xxxxxx	xxxxxx	xx						
		_ c1		c2		с3	c4	c 5	c526496	c526497	c526498	c526499
	_			24.0		240.20				4.2400		
r:		-320		-318			-296.97	-284.58	-4.4406	-4.3429	-4.2464	-4.1513
r		-310		-309			-287.43	-275.14	-4.3331	-4.239	-4.1461	-4.0543
r:		-301		-299			-277.88	-265.85	-4.2231	-4.1327	-4.0433	-3.955
r	4	-290	68	-289	. 29	-281.32	-268.6	-257.1	-4.1145	-4.0276	-3.9417	-3.8567
r!	5	-281	05	-279	.76	-272.29	-260.2	-249.16	-4.0121	-3.9284	-3.8457	-3.7638
r	79	-13.	642	-13.	628	-13.535	-13.298	-12.896	-0.22291	-0.21238	-0.20247	-0.19317
r	80	-12.	283	-12.	269	-12.176	-11.939	-11.537	-0.17128	-0.16316	-0.15551	-0.1483
r	81	-10.	605	-10.	591	-10.498	-10.261	-9.8589	-0.11815	-0.11254	-0.10726	-0.10231
r	82	-8.3	3494	-8.3	358	-8.2424	-8.0055	-7.6035	-0.065887	-0.062757	-0.059823	-0.057044
r	83	-5.0	665	-5.0	529	-4.9595	-4.7226	-4.3206	-0.021146	-0.020134	-0.019185	-0.018294
xxx T/	ABLE:	ap_VF	I xx	xxxxxx	xxxxx	xxx						
		c1	c2	с3	c4	c 5	c52649	6 c526497	c526498	c526499	c526500	
				_	_							
r:	1	0	0	0	0	0.0083625	107.54	113.09	118.82	124.74	130.86	
r	2	0	0	0	0	0.0074731	107.45	112.99	118.72	124.64	130.75	
	_	_	_	_	_							

124.73 130.85

124.95 131.07

92.234 96.324

130.64

124.52

113.3 119.03

84.34 88.311

107.76

80.462

0 0 0 0.0058503 107.33 112.88 118.61

0 0 0 0.0049981 107.54 113.08 118.81

0 0 0 0 0.004174

r80	0	0	0	0	0	75.113	78.736	82.42	85.975	90.439	
r81	0	0	0	0	0	66.945	69.639	72.673	76.669	81.091	
r82	0	0	0	0	0	50.126	53.467	55.311	56.953	60.587	
r83	0	0	0	0	0	0	0	0	0	0	
xx TABLE	::cons_'	VFI x>	xxxxxx	.xxxxxxx	(XXXX						
	c1	1	(c2	c3	c4	c 5	c526496	c526497	c526498	c526499
1	2 01		0.0		0.000001	0.022062	0.044496	44 000	42.265	42.55	12 044
r1	0.018			19158	0.022901	0.033062	0.044486	11.989	12.265	12.55	12.844
r2	0.018			19158	0.022901	0.033062	0.045375	12.223	12.501	12.787	13.082
r3	0.018			19158	0.022901	0.033062	0.046998	12.476	12.755	13.042	13.337
r4		.9354		19888	0.023632	0.033792	0.048579	12.72	13	13.289	13.584
r5	0.020			20601	0.024344	0.034504	0.050114	12.955	13.236	13.525	13.821
r79		.9737		19791	0.20163	0.21175	0.23145	35.417	37.362	39.409	41.7
r80		.9737		19791	0.20163	0.21175	0.23145	40.752	42.953	45.286	47.946
r81		.9737		19791	0.20163	0.21175	0.23145	48.909	52.039	55.022	57.241
r82		.9737		19791	0.20163	0.21175	0.23145	65.719	68.202	72.375	76.948
r83	0.19	.9737	0.1	19791	0.20163	0.21175	0.23145	115.84	121.66	127.68	133.89
/_U_20	20, C	_U_20	20]	= snw_	_a4chkuner	mp_bisec_ve	ec(welf_ch	necks, V_u	unemp_2026	∂, cons_un	emp_2020
1 o+o(- CNIL A	ACUV I	INCMD	DICEC \	"Count char	-L2.TP-0 0(017225.vi_0	r.b-a.cnu N	AD DADAM-dof	E-::1+ docdon	- a · CNI. I MD
Whierer		4CHK_0	/NEMF_:	DIDEC_A	EC;Weil_chec	cks=2;TR=0.00	/1/225,X1-0.	ייי_אווכ,ט=ט,כ	P_PANAM-ue	aurt_uocuens	SINM_ITIF_
xxxxxx	<xxxxxx< td=""><td>.xxxxx</td><td>xxxxxx</td><td>.xxxxxxx</td><td>«xxxxxx</td><td></td><td></td><td></td><td></td><td></td><td></td></xxxxxx<>	.xxxxx	xxxxxx	.xxxxxxx	«xxxxxx						
		. –			ND Array (Ma «xxxxxxx	ıtrix etc)					
		***************************************	i			numel	rowN co	colN	sum	mean	S
			_								

V_U_minus_V_unemp 4 4 4.37e+07 83 5.265e+05 9.9746e+05 0.022825 mn_MPC_unemp 4.37e+07 83 5.265e+05 9.0737e+06 0.20764 mn_V_U_gain_check = V_U_2020 - V_unemp_2020; mn_MPC_U_gain_share_check = (C_U_2020 - cons_unemp_2020)./(welf_checks*mp_params('TR'));

83

83

83

5.265e+05

5.265e+05

5.265e+05

4.37e+07

4.37e+07

4.37e+07

2.2891e+08

-6.8723e+08

5.2382

-15.726

31259 0.00071531

8.443

22.76

0.1989

0.0009613

Dense Param Results Define Frames

3

1

2

3

6

6

C U

V U

C_U_minus_C_unemp

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
```

```
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(relative tb_az_v = ff_summ_nd_array(st_title, mn_v_U_gain_check, true, ["mean"], 4, 1, cl_mp_datasetdesc
```

XXX	MEAN(MN	_V_U_GAIN_CHE	CK(A,Z)), welf	_checks=2,TR=	0.0017225 xxx	XXXXXXXXXXXXXX	XXXXXXXXX		
	group	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean _.
	1	0	3.2784	2.9257	2.61	2.3278	2.0757	1.8506	:
	2	0.00051498	3.2041	2.8634	2.5579	2.2842	2.0392	1.8201	:
	3	0.0041199	2.1902	1.9954	1.8159	1.6508	1.4992	1.3604	:
	4	0.013905	1.1932	1.1135	1.0371	0.96452	0.89587	0.83112	0
	5	0.032959	0.63789	0.60403	0.56908	0.53453	0.50132	0.46985	0
	6	0.064373	0.39	0.37239	0.35301	0.33291	0.313	0.2939	0

```
% Consumption
st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_data
```

MEAN(MN	_MPC_U_GAIN_C'	.HECK(A,Z)), we	.lf_checks=2,	TR=0.0017225	XXXXXXXXXXXXXXXX	XXXXXXXXXXXX		
group	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean_
1	0	0.99949	0.99949	0.99949	0.99949	0.99948	0.99948	0.99
2	0.00051498	0.99938	0.99938	0.99938	0.99938	0.99938	0.99938	0.99
3	0.0041199	0.98911	0.98911	0.9891	0.9891	0.9891	0.9891	0.9
4	0.013905	0.93195	0.93379	0.93628	0.93882	0.94099	0.94265	0.94
5	0.032959	0.76077	0.76569	0.77526	0.78753	0.79755	0.80608	0.82
6	0.064373	0.66432	0.66455	0.66497	0.66658	0.67161	0.67687	0.67
	1 2 3 4 5	1 0 2 0.00051498 3 0.0041199 4 0.013905 5 0.032959	group savings mean_eta_1 1 0 0.99949 2 0.00051498 0.99938 3 0.0041199 0.98911 4 0.013905 0.93195 5 0.032959 0.76077	group savings mean_eta_1 mean_eta_2 1 0 0.99949 0.99949 2 0.00051498 0.99938 0.99938 3 0.0041199 0.98911 0.98911 4 0.013905 0.93195 0.93379 5 0.032959 0.76077 0.76569	group savings mean_eta_1 mean_eta_2 mean_eta_3 1 0 0.99949 0.99949 0.99949 2 0.00051498 0.99938 0.99938 0.99938 3 0.0041199 0.98911 0.9891 0.9891 4 0.013905 0.93195 0.93379 0.93628 5 0.032959 0.76077 0.76569 0.77526	group savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 1 0 0.99949 0.99949 0.99949 0.99949 2 0.00051498 0.99938 0.99938 0.99938 3 0.0041199 0.98911 0.98911 0.9891 0.9891 4 0.013905 0.93195 0.93379 0.93628 0.93882 5 0.032959 0.76077 0.76569 0.77526 0.78753	group savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 1 0 0.99949 0.99949 0.99949 0.99949 0.99949 0.99949 2 0.00051498 0.99938 0.99938 0.99938 0.99938 0.99938 3 0.0041199 0.98911 0.9891 0.9891 0.9891 4 0.013905 0.93195 0.93379 0.93628 0.93882 0.94099 5 0.032959 0.76077 0.76569 0.77526 0.78753 0.79755	group savings mean_eta_1 mean_eta_2 mean_eta_3 mean_eta_4 mean_eta_5 mean_eta_6 1 0 0.99949 0.99949 0.99949 0.99949 0.99948 0.99938

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
```


AN(MN_V_U_GAIN_CHECK(A,Z)), welf_checks=2, TR=0.0017225

Savings States, a

Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' nump_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Savings States, a

Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
```

st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc

xxx MEAN(M	IN_V_U_GA	IN_CHECK(KM,J)), welf_ch	ecks=2, TR=0.00	17225 xxxxxxxx	XXXXXXXXXXXXXXXX	XXXX	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_2
1	1	0	0.05653	0.055715	0.054794	0.04982	0.045679	0.042203
2	2	0	0.078925	0.077839	0.076575	0.069564	0.063719	0.058807
3	3	0	0.094952	0.093819	0.09245	0.084005	0.076969	0.071057
4	4	0	0.10891	0.1077	0.1062	0.09651	0.088441	0.081662
5	5	0	0.12087	0.11965	0.11809	0.10735	0.098413	0.090907
6	1	1	0.020237	0.019467	0.018733	0.016911	0.015385	0.014097
7	2	1	0.026775	0.025778	0.024831	0.02242	0.020395	0.018688
8	3	1	0.032414	0.031263	0.030161	0.027239	0.024791	0.022728
9	4	1	0.038629	0.037309	0.036028	0.032548	0.029638	0.027181
10	5	1	0.047127	0.045665	0.044235	0.039997	0.03645	0.033474

% Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MI	EAN(MN_	_MPC_U_	GAIN_CHEC	K(KM,J)), welf_	checks=2, TR=0.	0017225 xxxxxx	xxxxxxxxxxxxxx	(XXXXXX	
gr	oup	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
									
	1	1	0	0.16534	0.16905	0.17306	0.17381	0.17437	0.17474
	2	2	0	0.1737	0.17744	0.18164	0.18288	0.18395	0.18489
	3	3	0	0.18114	0.18464	0.18867	0.18992	0.19103	0.192
4	4	4	0	0.18485	0.18821	0.19215	0.19339	0.19447	0.19543
!	5	5	0	0.18839	0.19152	0.19526	0.19638	0.19735	0.19819
(6	1	1	0.16189	0.16482	0.1704	0.16811	0.17036	0.17027
	7	2	1	0.16399	0.1672	0.1718	0.17073	0.17219	0.17292
1	8	3	1	0.16993	0.17298	0.17649	0.17652	0.17818	0.17822
!	9	4	1	0.17337	0.17752	0.17974	0.17989	0.18201	0.18061
10	0	5	1	0.18363	0.18473	0.18799	0.18953	0.18894	0.18789

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

marry

mean_age_18

Tabulate value and policies:

group

mean_age_20

mean age 21

mean_age_23

mean_age_22

mean_age_19

1	0	0	0.0932	0.092347	0.091343	0.086009	0.081278	0.077067
2	1	0	0.090875	0.089539	0.087898	0.076892	0.068011	0.060788
3	0	1	0.034609	0.033465	0.032367	0.030037	0.027999	0.026213
4	1	1	0.031464	0.030328	0.029228	0.025609	0.022664	0.020254

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx M	xxx MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=2, TR=0.0017225 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx												
gr	oup	edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23				
_													
	1	0	0	0.17201	0.17468	0.17758	0.17848	0.17931	0.18009				
	2	1	0	0.18536	0.18966	0.19474	0.19608	0.19716	0.19801				
	3	0	1	0.16432	0.16694	0.16991	0.16969	0.17077	0.17046				
	4	1	1	0.1768	0.17996	0.18466	0.18422	0.1859	0.1855				

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


