SVD + HMM for Face Recognition

文献名称:

- Face recognition using Singular Value Decomposition and Hidden Markov Models
- A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients

Face Recogniction

通常,人脸识别的过程是:给定一些训练集,通过学习训练集的特征,从而预测测试集的人脸类别。通常人脸图片由一个二维的像素矩阵构成,每个像素点都是一个位于[0,255]之间的实数。常见的机器学习模型是将图片矩阵作为输入,学习数据之间的表征,最后预测新的人脸类别。

Hidden Markov Models (HMM)

隐马尔科夫模型(HMM)是一个统计模型,可将系统建模为一个含有隐藏状态的马尔科夫过程。 马尔科夫模型主要由两个部分组成:

- 观测状态: 观测状态是我们可以观测到的系统状态, 比如: 今天晴天, 下雨, 多云等状态
- 隐状态: 隐状态是我们不一定可以观测到的状态, 隐状态决定了观测状态的发生, 同时隐状态之间 具有一定的关系

基于两个重要的假设:

- 假设1:
- 假设2:

基于上述两个假设, 马尔科夫模型由三个重要的参数决定:

- π:隐状态的概率分布
- A: 隐状态之间的状态转移概率矩阵
- b: 由隐状态产生观测状态的发射概率矩阵
- 一个常见的马尔科夫模型如下图所示:

Singular Value Decomposition (SVD)

奇异值分解(SVD)是一种很常用的降维方法,通过将一个矩阵分解为三个矩阵,从而提取数据的主要特征,同时降低了数据的维度,通常来讲,SVD可以表示为如下的过程:

$$M = U\Sigma V^T$$

其中 Σ 是一个对角矩阵,对角线上的值为矩阵的奇异值,其值得大小说明了该维度对矩阵的"贡献"程度。

Question

通常,SVD用于降维,隐马尔科夫模型用于**离散**序列模型,如何将二者结合起来应用在人脸识别任务上?

Methodology

为了构建一个离散的隐马尔科夫模型,需要将图片"序列化"。

Resize

对于一张输入的图片,需要进行一定的预处理,比如将图片缩放。例如,原图片大小为112X92,原作者将其缩放为原来大小的一半,即56X46。这样做的目的是一方面减少数据规模大小,另一方面可以达到一定的去噪处理(图片太大的话会含有很多无用信息影响模型训练)

Filter

噪声是图像干扰的重要原因。一幅图像在实际应用中可能存在各种各样的噪声,这些噪声可能在传输中产生,也可能在量化等处理中产生。因此,将图片缩放完成后,接下来还要将其通过一个最小值滤波器做进一步的降噪处理,最小值滤波器的作用原理如图所示:

190	191	188	187	184	180
193	194	189	188	185	179
194	194	189	188	185	179
188	188	187	184	183	178
179	180	181	178	178	176
182	175	176	181	178	179

a)Before filtering

0	0	0	0	0	0
0	188	187	184	179	0
0	187	184	183	178	0
0	179	178	178	176	0
0	175	175	176	176	0
0	0	0	0	0	0

b) After filtering

现在看看将一个最小值滤波器作用到图像上的效果:

可以看到经过滤波器后,图像虽然看起来模糊了些,但主要信息仍然存在,同时更加"平滑"了。

Block Extraction

将图片经过上述处理完成后,我们还需要将其转化成一个个block,用于后面构造序列。 作者对于block的提取方法是,取每个block的宽W为图像的原宽,然后设定每个block的高度为L,有重叠的提取block。那么,一张图片可以提取出多少块呢?假设图像的高为H,宽为W,每个block的高度

为L,block之间重叠的部分高度为P,如下图所示:

那么,每张图片可以提取的block的数目T是:

$$T = \frac{H - L}{L - P} + 1$$

代入图片数据H=56, W=46,同时作者取L=5, P=4,则可求得L=52。这样一来,每张图片可以转化成52个有重叠的块(block)。

SVD Extraction

每个块是一个 $L \times W$ 的矩阵,如何从每个块中提取信息呢?这种时候作者想到了SVD,将每个block矩阵作奇异值分解:

$$H = U \Sigma V^T$$

得到三个矩阵。观察奇异值矩阵 Σ 中各个奇异值的大小,如下图所示:

发现所有奇异值的和几乎约等于前两个奇异值之和,也就是,可以利用前两个奇异值来代表整个矩阵的奇异值。

口说无凭,作者通过利用分解后的矩阵和奇异值对图像进行复原,做了如下实验:

可以发现,最后一张图(f)的复原效果最接近原图,并且只利用了前三个最大的奇异值和对应的三个U矩阵和V矩阵的向量。

接下来的问题是,如何从中挑选出图片的特征表示?直观上讲,既然前三个奇异值已经包含了大部分的图像信息,那么利用前三个奇异值作为图像的表示不行吗?但是,这样做的话,就会忽略了U矩阵和V矩阵的信息。关于这一点,作者做了进一步实验,即只利用某个成分来表示图片,进行分类。实验结果是:只使用U矩阵的第一个元素,使用最大的奇异值,使用第二大的奇异值,三种情况下的分类效果是最好的。因此,作者将每个block表示为SVD分解后的如下组分:

$$C = (U(1,1), \Sigma(1,1), \Sigma(2,2))$$

其中,U(1,1)代表U矩阵的第一行第一列的元素, $\Sigma(1,1)$ 和 $\Sigma(2,2)$ 代表奇异值矩阵的两个最大的奇异值。

这样一来,每个block可以由三个实数表示而成。

Quantization

但是,马尔科夫模型的输入需要的是一个整数序列,因此还需要将输入的三维向量C做进一步的"Quantization"处理,也就是将每个实数值映射为一个整数表示。

Quantization 的步骤如下:

- 假设 $C = (coeff_1, coeff_2, coeff_3)$, 每个实数映射的整数范围为 D_i
- 首先算出每个系数维度最大值和最小值之间的差值相对于 D_i 的大小:

$$\Delta_i = rac{\max(coeff_i) - \min(coeff_i)}{D_i}$$

• 然后,将每个实数 $coeff_i$ 映射为一个整数 qt_i :

$$qt_i = [rac{coeff_i - \min(coeff_i)}{\Delta_i}]$$

其中, $[\cdot]$ 是向下取整的操作。从而,三个实数就变成了各自对应范围 $[0,D_i)$ 内的整数。

• 接着,将这三个整数看作一个三位数,那么这三个整数又可以表示为一个整数,其范围为 $[0, D_1 \times D_2 \times D_3)$,因此转化成一个整数 label 的公式为:

$$label = qt_1 \times D_2 \times D_3 + qt_2 \times D_3 + qt_3$$

对于 D_i 的取值,作者取其为[18,10,7],这是经过实验选取的最优结果。因此,label的公式具体为:

$$label = qt_1 \times 10 \times 7 + qt_2 \times 7 + qt_3$$

当 qt_i 取最小值都为0时,label=0,当其取最大值分别为 17, 9, 6时(因为三个数范围为 $[0,D_i)$ 最大取不到 D_i 的值),label=1259最大值,一共有1260种情况。

HMM Model

既然已经将每张图片转化为一个长度为52的观测序列,那么还需要定义隐马尔科夫的隐状态,以及相关参数。作者定义了该模型的七个隐状态,其物理意义为:

也就是将一张图片分为人脸的七个部分,每个部分表示为一个隐状态,每个隐状态可以产生一个由block表示的观测状态。

接着,定义七个隐藏状态的转移概率矩阵初始值。直观上理解,每个隐状态(人脸部位)只有两种转移可能性,即保持不变,或者转移到相邻的下一部位(从上往下看),同时,转移到其他部位的可能性为 $\mathbf{0}$,例如不可能出现头发的下一部分是嘴巴。隐状态的转移概率如下图所示:

因此,状态转移概率矩阵A的初始值为:

$$A = egin{bmatrix} 0.5 & 0.5 & & & & & & & & \\ & 0.5 & 0.5 & & & & & & \\ & & 0.5 & 0.5 & & & & \\ & & & 0.5 & 0.5 & & \\ & & & & 0.5 & 0.5 & \\ & & & & & 1.0 \end{bmatrix}$$

注:源代码中,作者的初始化为0.6和0.4。

同时一开始时,我们无法确定隐状态生成观测状态的概率分布,因此将其简单初始化为同一概率,即:

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & 1 & 1 & \cdots & \cdots & 1 \end{bmatrix} / M$$

其中M为观测状态的可能个数,即1260。

最后,定义初始概率分布:

$$\pi = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

从而构建好了一个初始化了的隐马尔科夫模型,其参数为 λ :

$$\lambda = (\pi, A, B)$$

然后对于数据集中的人脸类别有多少个,就训练多少个对应的隐马尔科夫模型,并取对应的人脸训练模型参数。

例如,该ORL数据集中有40个人(类别),因此需要训练40个对应的隐马尔科夫模型,每个人对应一个模型,然后对每个模型输入该人对应的训练集图片(转化为序列后)优化模型参数 λ 。

最后,预测阶段则是,给定一张图片,将其转化为长度**52**的序列,计算每个模型产生该序列的概率值,取输出最大值的模型所对应的人,即为该图片的类别。

总结一下整个框架的流程:

Q & A

人脸识别分割7个区域,设计7个状态内涵,为什么?

7 只是一个超参数(hyperparameter),由于隐马尔科夫模型定义需要**隐状态**,**观测状态**两个部分,作者取隐状态的个数为7,并赋予了其物理意义(人脸7个部分),然后根据屋里意义构造**初始概率分布,状态转移矩阵**,**发射矩阵**三个参数的初始值。当然,隐状态个数可以不为7(例如之前的相关文献设为5),甚至可以取10,100,1000,只要模型能够取得较好的表现,同时模型复杂度合理(100,1000就相对太大了),7可以是任何其它数。

SVD特征值特征提取的内涵?

SVD是将一个给定的矩阵分解成三个矩阵 U, Σ, V ,通过SVD对数据的处理,我们可以使用小得多的数据集来表示原始数据集,这样做实际上是去除了噪声和冗余信息,以此达到了优化数据、提高结果的目的。 Σ 对角线上的元素为矩阵的奇异值(特征值),奇异值可以被看作成一个矩阵的代表值,或者说,奇异值能够代表这个矩阵的信息。当奇异值越大时,它代表的信息越多。同时,奇异值下降是非常快的,因此可以只取前面几个奇异值,便可基本表达出原矩阵的信息。因此,在该论文中,作者只去了前两个最大的特征值即代表了矩阵的大部分信息。

为何将每张图片分成52个块?

将图像分成**52**个块的目的是为了将其作为一个序列表示,从而学习隐马尔科夫模型的参数。**52**和图片原式大小有关,同时也和选取的重叠部分长度有关。

将原式图片缩放及通过最小值滤波器的目的?

由于原式图片相对较大,图片中无用的信息较多,如果将其直接作为原始数据输入的话,会造成计算复杂度高,同时噪音也较多,是的模型学习效果较差。将图片进行缩放的原理是使用插值算法,这样可以是的图片中的像素更好地表示图像特征。同时,将其经过一个最小值滤波器,也减少了一定的噪声干扰,使得模型更加专注于图像中的"有用"信息。

模型的弊端?

• 复杂度

虽然每个人只需要5张图片作为训练即可达到相当高的准确率,但是也有一个缺点就是,数据集中有多少个类别(人)就需要训练多少个马尔科夫模型(该数据集中训练了40个模型)。当数据集较大的时候,训练的复杂度较高,因此需要做出改进。此外,SVD分解的复杂度也较高,虽然每个块的尺寸较小,但是当数据集较多时,数据预处理也会消耗大量时间。