

planetmath.org

Math for the people, by the people.

proof of conformal Möbius circle map theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfConformal Mobius Circle Map Theorem}$

 Date of creation
 2013-03-22 13:36:45

 Last modified on
 2013-03-22 13:36:45

 Owner
 brianbirgen (2180)

 Last modified by
 brianbirgen (2180)

Numerical id 5

Author brianbirgen (2180)

Entry type Proof
Classification msc 30E20
Related topic SchwarzLemma

Related topic MobiusTransformation Related topic AutomorphismsOfUnitDisk Let f be a conformal map from the unit disk Δ onto itself. Let a = f(0).

Let $g_a(z) = \frac{z-a}{1-\overline{a}z}$. Then $g_a \circ f$ is a conformal map from Δ onto itself, with $g_a \circ f(0) = 0$. Therefore, by Schwarz's Lemma for all $z \in \Delta |g_a \circ f(z)| \leq |z|$. Because f is a conformal map onto Δ , f^{-1} is also a conformal map of Δ onto itself. $(g_a \circ f)^{-1}(0) = 0$ so that by Schwarz's Lemma $|(g_a \circ f)^{-1}(w)| \leq |w|$ for all $w \in \Delta$. Writing $w = g_a \circ f(z)$ this becomes $|z| \leq |g_a \circ f(z)|$.

Therefore, for all $z \in \Delta$ $|g_a \circ f(z)| = |z|$. By Schwarz's Lemma, $g_a \circ f$ is a rotation. Write $g_a \circ f(z) = e^{i\theta}z$, or $f(z) = e^{i\theta}g_a^{-1}$.

Therefore, f is a Möbius Transformation.