

N-CHANNEL ENHANCEMENT-MODE POWER MOSFET

Dynamic dv/dt rating
Repetitive-avalanche rated
Fast switching
Simple drive requirement

 BV_{DSS} 600V $R_{DS(ON)}$ 8Ω 1.6A

Description

The SSM01N60H is supplied in the industry-standard TO-252 package, which is widely preferred for commercial and industrial surface mount applications, and is well suited for AC/DC converters. The through-hole version (SSM01N60J) is available for low-footprint applications.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	600	V
V_{GS}	Gate-Source Voltage	± 30	٧
I _D @ T _C =25°C	Continuous Drain Current, V _{GS} @ 10V	1.6	А
I _D @ T _C =100°C	Continuous Drain Current, V _{GS} @ 10V	1	А
I _{DM}	Pulsed Drain Current ¹	6	Α
P _D @ T _C =25°C	Total Power Dissipation	39	W
	Linear Derating Factor	0.31	W/°C
E _{AS}	Single Pulse Avalanche Energy ²	13	mJ
I _{AR}	Avalanche Current	1.6	А
E _{AR}	Repetitive Avalanche Energy	0.5	mJ
T _{STG}	Storage Temperature Range	-55 to 150	°C
T_J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter		Value	Unit
Rthj-c	Thermal Resistance Junction-case	Max.	3.2	°C/W
Rthj-a	Thermal Resistance Junction-ambient	Max.	110	°C/W

Electrical Characteristics @ T_j=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V, I_D =250uA	600	-	-	V
Δ BV _{DSS} / Δ T _j	Breakdown Voltage Temperature Coefficient	Reference to 25°C, ID=1mA	-	0.6	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =0.8A	-	7.2	8	Ω
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	2	-	4	٧
9 _{fs}	Forward Transconductance	V_{DS} =10V, I_{D} =0.8A	-	0.8	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V _{DS} =600V, V _{GS} =0V	-	-	10	uA
	Drain-Source Leakage Current (T _j =150°C)	V _{DS} =480V, V _{GS} =0V	-	-	100	uA
I _{GSS}	Gate-Source Leakage	$V_{GS} = \pm 30V$	-	-	±100	nA
Q_g	Total Gate Charge ³	I _D =1.6A	-	7.7	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =480V	-	1.5	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =10V	-	2.6	-	nC
t _{d(on)}	Turn-on Delay Time ³	V _{DD} =300V	-	8	-	ns
t _r	Rise Time	I _D =1.6A	-	5	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=10\Omega, V_{GS}=10V$	-	14	-	ns
t _f	Fall Time	$R_D=187.5\Omega$	-	7	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	286	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V	-	25	_	рF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	6	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I _S	Continuous Source Current (Body Diode)	$V_D = V_G = 0V$, $V_S = 1.5V$	ı	1	1.6	Α
I _{SM}	Pulsed Source Current (Body Diode) ¹		-	-	6	Α
V_{SD}	Forward On Voltage ³	T _j =25°C, I _S =1.6A, V _{GS} =0V	-	-	1.5	V

Notes:

- 1. Pulse width limited by safe operating area.
- 2.Starting $\rm T_{j}\!\!=\!\!25^{o}C$, $\rm V_{DD}\!\!=\!\!50V$, $\rm L\!\!=\!\!10mH$, $\rm R_{G}\!\!=\!\!25\Omega$, $\rm I_{AS}\!\!=\!\!1.6A.$
- 3. Pulse width <300us, duty cycle <2%.

Fig 2. Typical Output Characteristics

Fig 3. Normalized $\mathrm{BV}_{\mathrm{DSS}}\,$ vs. Junction Temperature

Fig 4. Normalized On-Resistance vs. Junction Temperature

Fig 5. Maximum Drain Current vs.

Case Temperature

Fig 6. Typical Power Dissipation

Fig 7. Maximum Safe Operating Area

Fig 8. Effective Transient Thermal Impedance

Fig 9. Gate Charge Characteristics

Fig 10. Typical Capacitance Characteristics

Fig 12. Gate Threshold Voltage vs. Junction Temperature

Fig 13. Switching Time Circuit

Fig 14. Switching Time Waveform

Fig 15. Gate Charge Circuit

Fig 16. Gate Charge Waveform

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.