PROBLEM SET 1

- (1) Let's denote $\mathbb{D} = \{|z| < 1\}$ and $\mathbb{H} = \{\Im z > 0\}$. Show that
- ℍ≅ ⅅ as Riemann surfaces via the map z → z i
 z + i.

 Show that the complex plane ℂ is not isomorphic to ℍ.
 (2) Show that the projective curves X² + Y² = Z² is non singular and
- is isomorphic to the complex projective line \mathbb{P}^1 as Riemann surfaces.
- (3) Let $f: X \to \mathbb{C}$ is a non constant analytic map of Riemann surfaces. Suppose that, for fixed $p \in X$, f has two local expressions of the form $F(z) = z^k$ and $\tilde{F}(\tilde{z}) = z = \tilde{z}^{\tilde{k}}$. Show that $k = \tilde{k}$.
- (4) Let $f: X \to \mathbb{C}$ be a non-constant analytic map of Riemann surfaces and $p \in X$. From the theorem about local form, we could see that the power of the local form is a function depending on p, namely, $F(z) = z^{k(p)}$. We call k(p) the ramification index of f at p. Show that there exists a neighborhood U of p such that the ramification index of any $x \in U \setminus \{p\}$ is 1.