1. Develop 5 different visuals using GGPLOT with descriptions of the insights they convey. ANS)

url<-"https://github.com/SavioSal/datasets/raw/master/Bank%20Churn\_Modelling.csv" data<-read.csv(url)

View(data)

library(ggplot2)

## #The plot shows total no of male and female customers

ggplot(data,aes(Gender)) + geom\_bar()



## #The plot shows count of male and female in different countries

ggplot(data,aes(Geography, fill = `Gender`)) + geom\_bar()



## #The plot represents the frequencies of ages of the customers in different countries

ggplot(data,aes(Age)) + geom\_freqpoly()+facet\_wrap(~`Geography`)



## #The plot shows the count of customers having different credit scores across different countries

ggplot(data,aes(CreditScore, fill = `Geography`)) + geom\_histogram()



#This shows blalance as per gender in different countries
ggplot(data=data,aes(Balance, fill = `Gender`)) +
geom\_histogram()+facet\_wrap(~`Geography`)



2)

#a)What is the average credit score of females and males in France?
data%>% select(CreditScore, Gender, Geography) %>% filter(Geography == "France") %>%
dplyr::group\_by(Gender) %>%
dplyr::summarise(Gender\_Average = mean(CreditScore))

#b)What is the average credit score of people in the age brackets 20-30,31-40,41-50? data %>% select(CreditScore, Age) %>% mutate(agegroup = case\_when(Age >= 41 & Age <=  $50 \sim '3'$ , Age >= 31 & Age <=  $40 \sim '2'$ , Age >= 20 & Age <=  $30 \sim '1'$ )) %>% filter(agegroup == "1" | agegroup == '2' | agegroup == '3') %>% dplyr::group\_by(agegroup) %>% dplyr::summarise(Age\_Average = mean(CreditScore))

#c)What is the correlation between credit score and estimated salary?
data %>% select(CreditScore, EstimatedSalary) %>% cor()
model <- Im(CreditScore ~Gender+Age+EstimatedSalary, data = data)</pre>

#d)printing the model
print(model)
summary(model)

