Chapter 4

```
4.1. SOP form: f = \overline{x}_1 x_2 + \overline{x}_2 x_3
           POS form: f = (\overline{x}_1 + \overline{x}_2)(x_2 + x_3)
  4.2. SOP form: f = x_1\overline{x}_2 + x_1x_3 + \overline{x}_2x_3
           POS form: f = (x_1 + x_3)(x_1 + \overline{x}_2)(\overline{x}_2 + x_3)
  4.3. SOP form: f = \overline{x}_1 x_2 x_3 \overline{x}_4 + x_1 x_2 \overline{x}_3 x_4 + \overline{x}_2 x_3 x_4
           POS form: f = (\overline{x}_1 + x_4)(x_2 + x_3)(\overline{x}_2 + \overline{x}_3 + \overline{x}_4)(x_2 + x_4)(x_1 + x_3)
  4.4. SOP form: f = \overline{x}_2 \overline{x}_3 + \overline{x}_2 \overline{x}_4 + x_2 x_3 x_4
           POS form: f = (\overline{x}_2 + x_3)(x_2 + \overline{x}_3 + \overline{x}_4)(\overline{x}_2 + x_4)
  4.5. SOP form: f = \overline{x}_3\overline{x}_5 + \overline{x}_3x_4 + x_2x_4\overline{x}_5 + \overline{x}_1x_3\overline{x}_4x_5 + x_1x_2\overline{x}_4x_5
           POS form: f = (\overline{x}_3 + x_4 + x_5)(\overline{x}_3 + \overline{x}_4 + \overline{x}_5)(x_2 + \overline{x}_3 + \overline{x}_4)(x_1 + x_3 + x_4 + \overline{x}_5)(\overline{x}_1 + x_2 + x_4 + \overline{x}_5)
  4.6. SOP form: f = \overline{x}_2 x_3 + \overline{x}_1 x_5 + \overline{x}_1 x_3 + \overline{x}_3 \overline{x}_4 + \overline{x}_2 x_5
           POS form: f = (\overline{x}_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + \overline{x}_4)(x_3 + \overline{x}_4 + x_5)
  4.7. SOP form: f = x_3 \overline{x_4} \overline{x_5} + \overline{x_3} \overline{x_4} x_5 + x_1 x_4 x_5 + x_1 x_2 x_4 + x_3 x_4 x_5 + \overline{x_2} x_3 x_4 + x_2 \overline{x_3} x_4 \overline{x_5}
           POS form: f = (x_3 + x_4 + x_5)(\overline{x}_3 + x_4 + \overline{x}_5)(x_1 + \overline{x}_2 + \overline{x}_3 + \overline{x}_4 + x_5)
 4.8. f = \sum m(0,7)

f = \sum m(1,6)

f = \sum m(2,5)

f = \sum m(0,1,6)

f = \sum m(0,2,5)
           etc.
  4.9. f = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4
4.10. SOP form: f = x_1x_2\overline{x}_3 + x_1\overline{x}_2x_4 + x_1x_3\overline{x}_4 + \overline{x}_1x_2x_3 + \overline{x}_1x_3x_4 + x_2\overline{x}_3x_4
           POS form: f = (x_1 + x_2 + x_3)(x_1 + x_2 + x_4)(x_1 + x_3 + x_4)(x_2 + x_3 + x_4)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3 + \overline{x}_4)
           The POS form has lower cost.
4.11. The statement is false. As a counter example consider f(x_1, x_2, x_3) = \sum m(0, 5, 7).
```

Then, the minimum-cost SOP form $f = x_1x_3 + \overline{x}_1\overline{x}_2\overline{x}_3$ is unique.

But, there are two minimum-cost POS forms: $f = (x_1 + \overline{x}_3)(\overline{x}_1 + x_3)(x_1 + \overline{x}_2)$ and $f = (x_1 + \overline{x}_3)(\overline{x}_1 + x_3)(\overline{x}_2 + x_3)$

4.12. If each circuit is implemented separately:

$$\begin{split} f &= \overline{x}_1 \overline{x}_4 + \overline{x}_1 x_2 x_3 + x_1 \overline{x}_2 x_4 & \text{Cost} = 15 \\ g &= \overline{x}_1 \overline{x}_3 \overline{x}_4 + \overline{x}_2 x_3 \overline{x}_4 + x_1 \overline{x}_3 x_4 + x_1 x_2 x_4 & \text{Cost} = 21 \end{split}$$

In a combined circuit:

$$f = \overline{x}_2 x_3 \overline{x}_4 + \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_1 \overline{x}_2 \overline{x}_3 x_4 + \overline{x}_1 x_2 x_3$$

$$g = \overline{x}_2 x_3 \overline{x}_4 + \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_1 \overline{x}_2 \overline{x}_3 x_4 + x_1 x_2 x_4$$

The first 3 product terms are shared, hence the total cost is 31.

4.13. If each circuit is implemented separately:

$$f = \overline{x}_1 x_2 x_4 + x_2 x_4 x_5 + x_3 \overline{x}_4 \overline{x}_5 + \overline{x}_1 \overline{x}_2 \overline{x}_4 x_5 \qquad \text{Cost} = 22$$

$$g = \overline{x}_3 \overline{x}_5 + \overline{x}_4 \overline{x}_5 + \overline{x}_1 \overline{x}_2 \overline{x}_4 + \overline{x}_1 x_2 x_4 + x_2 x_4 x_5 \qquad \text{Cost} = 24$$

In a combined circuit:

$$f = \overline{x}_1 x_2 x_4 + x_2 x_4 x_5 + x_3 \overline{x}_4 \overline{x}_5 + \overline{x}_1 \overline{x}_2 \overline{x}_4 x_5$$

$$g = \overline{x}_1 x_2 x_4 + x_2 x_4 x_5 + x_3 \overline{x}_4 \overline{x}_5 + \overline{x}_1 \overline{x}_2 \overline{x}_4 x_5 + \overline{x}_3 \overline{x}_5$$

The first 4 product terms are shared, hence the total cost is 31. Note that in this implementation $f \subseteq g$, thus g can be realized as $g = f + \overline{x}_3 \overline{x}_5$, in which case the total cost is lowered to 28.

4.14.
$$f = (x_3 \uparrow g) \uparrow ((g \uparrow g) \uparrow x_4)$$
 where $g = (x_1 \uparrow (x_2 \uparrow x_2)) \uparrow ((x_1 \uparrow x_1) \uparrow x_2)$

4.15.
$$\overline{f} = (((x_3 \downarrow x_3) \downarrow g) \downarrow ((g \downarrow g) \downarrow (x_4 \downarrow x_4)), \text{ where } g = ((x_1 \downarrow x_1) \downarrow x_2) \downarrow (x_1 \downarrow (x_2 \downarrow x_2)). \text{ Then, } f = \overline{f} \downarrow \overline{f}.$$

4.16.
$$f = (g \uparrow k) \uparrow ((g \uparrow g) \uparrow (k \uparrow k))$$
, where $g = (x_1 \uparrow x_1) \uparrow (x_2 \uparrow x_2) \uparrow (x_5 \uparrow x_5)$ and $k = (x_3 \uparrow (x_4 \uparrow x_4)) \uparrow ((x_3 \uparrow x_3) \uparrow x_4)$

4.17.
$$\overline{f} = (g \downarrow k) \downarrow ((g \downarrow g) \downarrow (k \downarrow k))$$
, where $g = x_1 \downarrow x_2 \downarrow x_5$ and $k = ((x_3 \downarrow x_3) \downarrow x_4) \downarrow (x_3 \downarrow (x_4 \downarrow x_4))$. Then, $f = \overline{f} \downarrow \overline{f}$.

4.18.
$$f = \overline{x}_1(x_2 + x_3)(x_4 + x_5) + x_1(\overline{x}_2 + x_3)(\overline{x}_4 + x_5)$$

4.19.
$$f = x_1 \overline{x}_3 \overline{x}_4 + x_2 \overline{x}_3 \overline{x}_4 + x_1 x_3 x_4 + x_2 x_3 x_4 = (x_1 + x_2) \overline{x}_3 \overline{x}_4 + (x_1 + x_2) x_3 x_4$$

This requires 2 OR and 2 AND gates.

4.20.
$$f = x_1 \cdot q + \overline{x}_1 \cdot \overline{q}$$
, where $q = \overline{x}_3 x_4 + x_3 \overline{x}_4$

4.21
$$f = g \cdot h + \overline{g} \cdot \overline{h}$$
, where $g = x_1 x_2$ and $h = x_3 + x_4$

4.22. Let D(0, 20) be 0 and D(15, 26) be 1. Then decomposition yields:

$$g = x_5(\overline{x}_1 + x_2)$$

$$f = (\overline{x}_3\overline{x}_4 + x_3x_4)g + \overline{x}_3x_4\overline{g} = x_3x_4g + \overline{x}_3\overline{x}_4g + \overline{x}_3x_4\overline{g}$$

$$Cost = 9 + 18 = 27$$

The optimal SOP form is:

$$f=\overline{x}_3x_4\overline{x}_5+\overline{x}_1x_3x_4x_5+x_1\overline{x}_2\overline{x}_3x_4+\overline{x}_1\overline{x}_3\overline{x}_4x_5+x_2\overline{x}_3\overline{x}_4x_5+x_2x_3x_4x_5$$
 Cost = 7 + 29 = 36

4.23. The prime implicants are generated as follows:

]	List 1	
0	0 0 0 0	✓
2 4 8	0 0 1 0 0 1 0 0 1 0 0 0	✓ ✓ ✓
5 9	0 1 0 1 1 0 0 1	\ \ \ \
7	0 1 1 1	✓
15	1 1 1 1	\

The initial prime implicant table is

Prime				Min	term			
implicant	0	2	4	5	7	8	9	15
$p_1 = 0 \ 0 \ x \ 0$	~	✓						
$p_2 = 0 \times 0 0$	√		✓					
$p_3 = x \ 0 \ 0 \ 0$	√					✓		
$p_4 = 0 \ 1 \ 0 \ x$			✓	✓				
$p_5 = 1 \ 0 \ 0 \ x$						✓	✓	
$p_6 = 0 \ 1 \ x \ 1$				✓	✓			
$p_7 = x \ 1 \ 1 \ 1$					✓			✓

List 2

0,2 0,4

0,8 4,5

8,9 5,7

7,15

 $0 \ 0 \ x \ 0$

 $0 \ 1 \ x \ 1$

x 1 1 1

The prime implicants p_1 , p_5 and p_7 are essential. Removing these prime implicants gives

Prime	Minterm
implicant	4 5
p_2	√
p_3	
p_4	✓ ✓
p_6	✓

Since p_4 covers both minterms, the final cover is

$$C = \{p_1, p_4, p_5, p_7\}$$

= \{00x0, 010x, 100x, x111\}

and the function is implemented as

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_4 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_2 x_3 x_4$$

4.24. The prime implicants are generated as follows:

]	List 1	
0	0 0 0 0	\ V
4 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ \ \
3 6 9	0 0 1 1 0 1 1 0 1 0 0 1	\
7 11 13	0 1 1 1 1 0 1 1 1 1 0 1	\ \ \
15	1 1 1 1	V

0,4 0,8	0 x	x 0	0	0	
4,6 8,9	0 1	1	x 0	0 x	
3,7	0	х	1	1	
3,11	X	0	1	1	
6,7	0	1	1	X	
9,11	1	0	X	1	
9,13	1	X	0	1	
7,15	Х	1	1	1	
11,15	1	X	1	1	
13,15	1	1	X	1	

3,7,11,15	x x 1 1
9,11,13,15	1 x x 1

List 3

The initial prime implicant table is

Prime			Mint	erm		
implicant	0	4	6	8	9	15
$p_1 = 0 \times 0 0$	✓	✓				
$p_2 = x \ 0 \ 0 \ 0$	✓			\checkmark		
$p_3 = 0 \ 1 \ x \ 0$		\checkmark	\checkmark			
$p_4 = 1 \ 0 \ 0 \ x$				\checkmark	\checkmark	
$p_5 = 0 \ 1 \ 1 \ x$			\checkmark			
$p_6 = x x 1 1$						\checkmark
$p_7 = 1 \times \times 1$					✓	√

There are no essential prime implicants. Prime implicant p_3 dominates p_5 and their costs are the same, so remove p_5 . Similarly, p_7 dominates p_6 , so remove p_6 . This gives

Prime			Min	term		
implicant	0	4	6	8	9	15
p_1	✓	✓				
p_2	✓			✓		
p_3		✓	✓			
p_4				✓	✓	
p_7					✓	✓

Now, p_3 and p_7 are essential, which leaves

Prime implicant	Minterm 0 8
p_1	✓
p_2	✓ ✓
p_4	✓

Choosing p_2 results in the minimum cost cover

$$C = \{p_2, p_3, p_7\}$$

= \{x000, 01x0, 1xx1\}

and the function is implemented as

$$f = \overline{x}_2 \overline{x}_3 \overline{x}_4 + \overline{x}_1 x_2 \overline{x}_4 + x_1 x_4$$

4.25. The prime implicants are generated as follows:

]	List 1	
0	0 0 0 0	√
4 8	0 1 0 0 1 0 0 0	✓
3 5 9 12	0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0	<
7 11 13 14	0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0	

	List 2	
0,4	0 x 0 0	V
0,8	x 0 0 0	
4,5	0 1 0 x	√
4,12	x 1 0 0	✓
8,9	1 0 0 x	✓
8,12	1 x 0 0	V
3,7	0 x 1 1	
3,11	x 0 1 1	
5,7	0 1 x 1	
5,13	x 1 0 1	✓
9,11	1 0 x 1	
9,13	1 x 0 1	✓
12,13	1 1 0 x	✓
12,14	1 1 x 0	

0,4,8,12 x x 0 0
1.7.12.12
4,5,12,13 x 1 0 x
8,9,12,13 1 x 0 x

The initial prime implicant table is

Prime			M	linter	m		
implicant	0	3	4	5	7	9	11
$p_1 = 0 \times 1 1$		√			✓		
$p_2 = x \ 0 \ 1 \ 1$		\checkmark					✓
$p_3 = 0 \ 1 \ x \ 1$				\checkmark	\checkmark		
$p_4 = 1 \ 0 \ x \ 1$						\checkmark	✓
$p_5 = \mathbf{x} \ \mathbf{x} \ 0 \ 0$	✓		\checkmark				
$p_6 = x \cdot 1 \cdot 0 \cdot x$			\checkmark	\checkmark			
$p_7 = 1 \times 0 \times$						✓	
$p_8 = 1 \ 1 \ x \ 0$							

Prime implicant p_5 is essential, so remove columns 0 and 4 to get

Prime	Minterm				
implicant	3	5	7	9	11
p_1	✓		✓		
p_2	✓				\checkmark
p_3		\checkmark	\checkmark		
p_4				\checkmark	\checkmark
p_6		\checkmark			
p_7				\checkmark	

Here, p_3 dominates p_6 , and p_4 dominates p_7 ; but costs of p_3 and p_4 are greater than the costs of p_6 and p_7 , respectively. So, use branching. First choose p_3 to be in the final cover, which leads to

Prime implicant	Minterm 3 9 11				
p_1	\				
p_2	√		\checkmark		
p_4		\checkmark	✓		
p_6					
p_7		√			

Now, choose p_2 and p_7 (lower cost than p_4) to cover the remaining minterms. The resulting cover is

$$C = \{p_2, p_3, p_5, p_7\}$$

= \{x011, 01x1, xx00, 1x0x\}

Next, assume that p_3 is not included in the final cover, which leads to

Prime	Minterm					
implicant	3	5	7	9	11	
p_1	✓		\checkmark			
p_2	✓				\checkmark	
p_4				\checkmark	\checkmark	
p_6		\checkmark				
p_7				\checkmark		

Then p_6 is essential. Also, column 3 dominates 7, hence remove 3 giving

Prime	Minterm			
implicant	7	9	11	
p_1	✓			
p_2			\checkmark	
p_4		\checkmark	\checkmark	
p_7		\checkmark		

Choose p_1 and p_4 , which results in the cover

$$C = \{p_1, p_4, p_5, p_6\}$$

= \{0x11, 10x1, xx00, x10x\}

Both covers have the same cost, so choosing the first cover the function can be implemented as

$$f = \overline{x}_2 x_3 x_4 + \overline{x}_1 x_2 x_4 + \overline{x}_3 \overline{x}_4 + x_1 \overline{x}_3$$

Observe that if we had not taken the cost of prime implicants (rows) into account and pursued the dominance of p_3 over p_6 and p_4 over p_7 , then we would have removed p_6 and p_7 giving the following table

Prime	Minterm				
implicant	3	5	7	9	11
p_1	✓		✓		
p_2	✓				\checkmark
p_3		\checkmark	✓		
p_4				√	✓

Now p_3 and p_4 are essential. Also choose p_1 , so that

$$C = \{p_1, p_3, p_4, p_5\}$$

= \{0x11, 01x1, 10x1, xx00\}

The cost of this cover is greater by one literal compared to both covers derived above.

4.26. Note that $X \# Y = X \cdot \overline{Y}$. Therefore,

$$\begin{array}{rcl} (A \cdot B) \# C & = & A \cdot B \cdot \overline{c} \\ (A \# C) \cdot (B \# C) & = & A \cdot \overline{C} \cdot B \cdot \overline{C} \\ & = & A \cdot B \cdot \overline{C} \end{array}$$

Similarly,

$$\begin{array}{rcl} (A+B)\#C & = & (A+B)\cdot \overline{C} \\ & = & A\cdot \overline{C} + B\cdot \overline{C} \\ (A\#C) + (B\#C) & = & A\cdot \overline{C} + B\cdot \overline{C} \end{array}$$

4.27. The initial cover is $C^0 = \{0000, 0011, 0100, 0101, 0111, 1000, 1001, 1111\}.$

Using the *-product get the prime implicants

 $P = \{00x0, 0x00, x000, 010x, 01x1, 100x, x111\}.$

The minimum cover is $C_{minimum} = \{00x0, 010x, 100x, x111\}$, which corresponds to $f = \overline{x}_1\overline{x}_2\overline{x}_4 + \overline{x}_1x_2\overline{x}_3 + x_1\overline{x}_2\overline{x}_3 + x_2x_3x_4$.

4.28. The initial cover is $C^0 = \{0x0x0, 110xx, x1101, 1001x, 11110, 01x10, 0x011\}$.

Using the *-product get the prime implicants

 $P = \{0x0x0, xx01x, x1x10, 110xx, x10x0, 11x01, x1101\}.$

The minimum cover is $C_{minimum} = \{0x0x0, xx01x, x1x10, 110xx, x1101\}$, which corresponds to $f = \overline{x}_1\overline{x}_3\overline{x}_5 + \overline{x}_3x_4 + x_2x_4\overline{x}_5 + x_1x_2\overline{x}_3 + x_2x_3\overline{x}_4x_5$.

4.29. The initial cover is $C^0 = \{00x0, 100x, x010, 1111, 00x1, 011x\}$.

Using the *-product get the prime implicants $P = \{00xx, 0x1x, x00x, x0x0, x111\}$.

The minimum-cost cover is $C_{minimum} = \{x00x, x0x0, x111\}$, which corresponds to $f = \overline{x}_2\overline{x}_3 + \overline{x}_2\overline{x}_4 + x_2x_3x_4$.

4.30. Expansion of $\overline{x}_1 \overline{x}_2 \overline{x}_3$ gives \overline{x}_1 .

Expansion of $\overline{x}_1 \overline{x}_2 x_3$ gives \overline{x}_1 .

Expansion of $\overline{x}_1 x_2 \overline{x}_3$ gives \overline{x}_1 .

Expansion of $x_1x_2x_3$ gives x_2x_3 .

The set of prime implicants comprises \overline{x}_1 and x_2x_3 .

4.31. Expansion of $\overline{x}_1x_2\overline{x}_3x_4$ gives $x_2\overline{x}_3x_4$ and $\overline{x}_1x_2x_4$.

Expansion of $x_1x_2\overline{x}_3x_4$ gives $x_2\overline{x}_3x_4$.

Expansion of $x_1x_2x_3\overline{x}_4$ gives $x_3\overline{x}_4$.

Expansion of $\overline{x}_1x_2x_3$ gives \overline{x}_1x_3 .

Expansion of \overline{x}_2x_3 gives \overline{x}_2x_3 .

The set of prime implicants comprises $x_2\overline{x}_3x_4$, $\overline{x}_1x_2x_4$, $x_3\overline{x}_4$, \overline{x}_1x_3 , and \overline{x}_2x_3 .

4.32. Representing both functions in the form of Karnaugh map, it is easy to show that f=g. The minimum cost SOP expression is

$$f = g = \overline{x}_2 \overline{x}_3 \overline{x}_5 + \overline{x}_2 x_3 \overline{x}_4 + x_1 x_3 x_4 + x_1 x_2 x_4 x_5.$$

4.33. The cost of the circuit in Figure P4.2 is 11 gates and 30 inputs, for a total of 41. The functions implemented by the circuit can also be realized as

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_4 + x_2 \overline{x}_3 \overline{x}_4 + \overline{x}_1 x_3 x_4 + x_1 x_4$$

$$g = \overline{x}_1 \overline{x}_2 \overline{x}_4 + x_2 \overline{x}_3 \overline{x}_4 + \overline{x}_1 x_3 x_4 + \overline{x}_2 x_4 + x_3 \overline{x}_4$$

The first three product terms in f and g are the same; therefore, they can be shared. Then, the cost of implementing f and g is 8 gates and 24 inputs, for a total of 32.

4.34. The cost of the circuit in Figure P4.3 is 11 gates and 26 inputs, for a total of 37. The functions implemented by the circuit can also be realized as

```
f = (\overline{x}_2 \uparrow x_4) \uparrow (\overline{x}_1 \uparrow x_2 \uparrow x_3) \uparrow (x_1 \uparrow \overline{x}_2 \uparrow x_3) \uparrow (\overline{x}_2 \uparrow \overline{x}_3)
g = (\overline{x}_2 \uparrow x_4) \uparrow (\overline{x}_1 \uparrow x_2 \uparrow x_3) \uparrow (x_1 \uparrow \overline{x}_2 \uparrow x_3) \uparrow (\overline{x}_1 \uparrow \overline{x}_1)
```

The first three NAND terms in f and g are the same; therefore, they can be shared. Then, the cost of implementing f and g is 7 gates and 20 inputs, for a total of 27.

4.35. Using gate level primitives, the circuit in Figure 4.25b can be implemented using the code

```
module prob4_35 (x1, x2, x3, x4, x5, f);
input x1, x2, x3, x4, x5;
output f;

or (g, x1, x2, x5);
not (notx3, x3);
not (notx4, x4);
and (a, x3, notx4);
and (b, notx3, x4);
or (k, a, b);
and (c, g, k);
not (notg, g);
not (notk, k);
and (d, notg, notk);
or (f, c, d);
```

4.36. Using continuous assignment, the circuit in Figure 4.25b can be implemented using the code

```
\label{eq:module_prob4_36} \begin{split} & \textbf{module} \  \, \text{prob4\_36} \, (x1,\, x2,\, x3,\, x4,\, x5,\, f); \\ & \textbf{input} \  \, x1,\, x2,\, x3,\, x4,\, x5; \\ & \textbf{output} \  \, f; \\ & \textbf{wire} \, g,\, k; \\ & \textbf{assign} \, g = (x1 \mid x2 \mid x5); \\ & \textbf{assign} \, k = (x3 \,\&\, \sim\! x4) \mid (\sim\! x3 \,\&\, x4); \\ & \textbf{assign} \, f = (g \,\&\, k) \mid (\sim\! g \,\&\, \sim\! k); \end{split}
```

endmodule

4.37. Using gate level primitives, the circuit in Figure 4.27c can be implemented using the code

```
module prob4_37 (x1, x2, x3, x4, x5, x6, x7, f);
input x1, x2, x3, x4, x5, x6, x7;
output f;

nand (a, x1, x1);
nand (b, x2, x3);
nand (c, a, b);
nand (d, x5, x5);
nand (e, x6, x6);
nand (g, d, e);
nand (h, x4, g);
nand (j, x7, x7);
nand (k, h, j);
nand (m, c, k);
nand (f, m, m);
```

end module

4.38. Using continuous assignment, the circuit in Figure 4.27c can be implemented using the code

4.39. Using gate level primitives, the circuit in Figure 4.28b can be implemented using the code

```
module prob4_39 (x1, x2, x3, x4, x5, x6, x7, f);
input x1, x2, x3, x4, x5, x6, x7;
output f;

nor (a, x2, x2);
nor (b, x3, x3);
nor (c, a, b);
nor (d, x1, c);
nor (e, x4, x4);
nor (g, x5, x6);
nor (h, e, g);
nor (k, h, x7);
nor (f, d, k);
```

endmodule

4.40. Using continuous assignment, the circuit in Figure 4.27c can be implemented using the code

```
\label{eq:module_prob4_40} \begin{split} & \textbf{module} \  \, \text{prob4\_40} \, (x1,\, x2,\, x3,\, x4,\, x5,\, x6,\, x7,\, f); \\ & \textbf{input} \  \, x1,\, x2,\, x3,\, x4,\, x5,\, x6,\, x7; \\ & \textbf{output} \  \, f; \\ & \textbf{wire} \, a,\, b; \\ \\ & \textbf{assign} \, \, a = \sim & (x1 \mid \sim (\sim & x2 \mid \sim & x3)); \\ & \textbf{assign} \, \, b = \sim & (\sim (\sim & x4 \mid \sim & (x5 \mid x6)) \mid x7); \\ & \textbf{assign} \, \, f = \sim & (a \mid b); \end{split}
```

endmodule

4.41. Using the POS expression

$$f = (x_1 + x_2 + \overline{x}_3 + \overline{x}_4)(x_1 + \overline{x}_2 + \overline{x}_3 + x_4)(\overline{x}_1 + x_2 + \overline{x}_3 + x_4)(\overline{x}_1 + \overline{x}_2 + x_3 + \overline{x}_4)$$

the function can be implemented using the code

```
module prob4_41 (x1, x2, x3, x4, f);
input x1, x2, x3, x4;
output f;

not (notx1, x1);
not (notx2, x2);
not (notx3, x3);
not (notx4, x4);
or (a, x1, x2, notx3, notx4);
or (b, x1, notx2, notx3, x4);
or (c, notx1, x2, notx3, x4);
or (d, notx1, notx2, x3, notx4);
and (f, a, b, c, d);
```

endmodule

4.42. Using the POS expression

```
f = (x_1 + x_2 + \overline{x}_3 + \overline{x}_4)(x_1 + \overline{x}_2 + \overline{x}_3 + x_4)(\overline{x}_1 + x_2 + \overline{x}_3 + x_4)(\overline{x}_1 + \overline{x}_2 + x_3 + \overline{x}_4)
```

the function can be implemented using the code

```
\begin{tabular}{lll} \textbf{module} & prob4.42 & (x1, x2, x3, x4, f); \\ & \textbf{input} & x1, x2, x3, x4; \\ & \textbf{output} & f; \\ \\ \textbf{assign} & f = (x1 \mid x2 \mid \sim\!x3 \mid \sim\!x4) & (x1 \mid \sim\!x2 \mid \sim\!x3 \mid x4) & \\ & (\sim\!x1 \mid x2 \mid \sim\!x3 \mid x4) & (\sim\!x1 \mid \sim\!x2 \mid x3 \mid \sim\!x4); \\ \end{tabular}
```

endmodule

4.43. The simplest expression is

$$f = \overline{x}_1 \overline{x}_3 + x_2 x_3 (x_1 + x_4)$$

which can be implemented using the code

```
module prob4_43 (x1, x2, x3, x4, f);
input x1, x2, x3, x4;
output f;

not (notx1, x1);
not (notx3, x3);
and (a, notx1, notx3);
or (b, x1, x4);
and (c, x2, x3, b);
or (f, a, c);
```

4.44. The simplest expression is

$$f = \overline{x}_1 \overline{x}_3 + x_2 x_3 (x_1 + x_4)$$

which can be implemented using the code

```
\label{eq:module_prob4_4} \begin{split} & \textbf{module} \  \  prob4\_44 \  \, (x1,\,x2,\,x3,\,x4,\,f); \\ & \textbf{input} \  \, x1,\,x2,\,x3,\,x4; \\ & \textbf{output} \  \, f; \\ & \textbf{assign} \  \, f = (\sim\!x1 \ \& \sim\!x3) \mid (x2 \ \& \ x3 \ \& \ (x1 \mid x4)); \\ & \textbf{endmodule} \end{split}
```

4.45. The simplest expression is

$$f = (\overline{x}_1 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3 + x_4)$$

which can be implemented using the code

```
module prob4_45 (x1, x2, x3, x4, f);
input x1, x2, x3, x4;
output f;

not (notx1, x1);
not (notx2, x2);
not (notx3, x3);
or (a, notx1, x3);
or (b, x1, notx2, notx3, x4);
and (f, a, b);
```

endmodule

4.46. The simplest expression is

$$f = (\overline{x}_1 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3 + x_4)$$

which can be implemented using the code

```
\label{eq:module_prob4_46} \begin{split} & \textbf{module} \  \  \, \text{prob4\_46} \  \, (x1,\,x2,\,x3,\,x4,\,f); \\ & \textbf{input} \  \  \, x1,\,x2,\,x3,\,x4; \\ & \textbf{output} \  \  \, f; \\ & \textbf{assign} \  \, f = (\sim\!x1\mid x3) \  \, \& \  \, (x1\mid \sim\!x2\mid \sim\!x3\mid x4); \end{split}
```

4.47. The simplest expression is

$$f = (x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_3 + x_4)$$

which can be implemented using the code

```
module prob4_47 (x1, x2, x3, x4, f);
input x1, x2, x3, x4;
output f;

not (notx1, x1);
not (notx3, x3);
or (a, x2, notx3);
or (b, notx1, notx3, x4);
and (f, a, b);
```

endmodule

4.48. The simplest expression is

$$f = (x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_3 + x_4)$$

which can be implemented using the code

```
\label{eq:continuous} \begin{split} & \text{module} \  \  \text{prob4\_47} \  \, (x1,\, x2,\, x3,\, x4,\, f); \\ & \text{input} \  \  \, x1,\, x2,\, x3,\, x4; \\ & \text{output} \  \  \, f; \\ & \text{assign} \  \, f = (x2\mid \sim\! x3) \  \& \  \, (\sim\! x1\mid \sim\! x3\mid x4); \\ & \text{endmodule} \end{split}
```