Day1

Set

subset(子集)

proper subset (真子集) ⊂⊊

superset (超集)

proper superset (真超集)

Universal Set (全集) ---U

cardinality (基数)

一个集合中元素的个数

Union and Intersection

Union (并集)

Intersection (交集)

Complement and Difference

Complement (补集)

 $\complement A$

Difference (差集) A\B或A-B

Symmetric difference (对称差)

$$A \oplus B = A \triangle B$$

Cartesian Products (笛卡尔积)

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

$$\prod_{i=1}^n A_i = \{(a_1,a_2,\ldots,a_n) \mid a_1 \in A_1 ext{ and } a_2 \in A_2 ext{ and } \ldots ext{ and } a_n \in A_n \}$$

Relations

On a set A, the relation A × A is called the universal relation

ATTENTION!!!

注意一下,对于一个含有pair的集合来说,整个集合叫做关系,而不是pair

Day2

Composite relation (复合关系) and Inverse relation(逆关系)

Composite relation

 $S \circ R \subseteq A \times C$

Q1:如果没有相互对应的怎么办

Inverse relation

$$R = A imes B = \{(a,b) \mid a \in A ext{ and } b \in B\}$$

$$R^{-1} = B \times A = \{(a,b) \mid a \in B \text{ and } b \in A\}$$

在这里R与R-1互为逆关系

Logic: Propositions (逻辑命题)

Propositions

命题就是一类满足特定条件的陈述句

compound proposition (复合命题)

logical connectives--Compound propositions (复合命题)

合取 (Conjunction) (and)

 $P \wedge Q$

析取 (Disjunction) (or)

 $P \lor Q$

否定 (Negation) (not)

 $\neg P$

蕴含 (Implication)

P o Q

等价 (Biconditional)

 $P \leftrightarrow Q$

条件和 (Conditional And)(implies / if-then-)

 $P o Q \quad (ext{also }
eg P ee Q)$

条件或 (Conditional Or)

 $P \leftarrow Q \quad (\text{also } \neg Q \lor P)$

双条件或 (Biconditional Or) (iff / – if and only if –).

$$P \leftrightarrow Q \quad (\mathrm{also}\ (P o Q) \wedge (Q o P))$$

Syntax tree (语法树)

便于表达判断正确错误

Truth Tables

Implies (→)

р	q	$p \to q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

一个假的前提不能证明任何结论为假

If and only if (\leftrightarrow)

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

And (^)

р	q	p ^ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Or (\(\cdot \)

р	q	p v q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Not (¬)

р	¬р
Т	F
F	Т

优先级

Operator	7	^	V	\rightarrow	\leftrightarrow
Precedence	1	2	3	4	5

Day3

Tautology(永真式:) and Contraduction(矛盾)

永真式: 一个命题不管组成是对是错总是保证整体是对的

矛盾:一个命题不管组成是对是错总是保证整体是错的

Contingency (偶然命题) and Satisfiability (不是偶然的命题)

可满足性 (Satisfiability) :

• 如果至少存在一种赋值(变量的真值分配),使得一个逻辑公式或一组逻辑公式全部为真,那么我们就说这个公式或这组公式是可满足的。

Logical Equivalence (逻辑等价)

 $\alpha \equiv \beta$

逻辑等价和等价的区别 (≡与→的区别)

1,α=β 不是命题逻辑公式。它是关于两个公式的陈述。

这个陈述意味着 α=β 不是一个可以在命题逻辑中直接评估为真或假的公式。相反,它是一个元逻辑陈述,表明 α 和 β 在所有可能的解释下具有相同的真值。换句话说,α 和 β 是逻辑等价的。

2,α↔β 是一个命题逻辑公式.

这是一个标准的命题逻辑公式,表示 α 和 β 具有相同的真值。如果 $\alpha\alpha$ 和 $\beta\beta$ 都为真或都为假,那么 $\alpha\leftrightarrow\beta$ 为真; 如果 α 和 β 的真值不同,那么 $\alpha\leftrightarrow\beta$ 为假

Turnstiles()

 α logically implies β iff $\alpha \leftrightarrow \beta$ is a tautology.

其实与逻辑相等同理

Proving Equivalences!!!

- 1. 幂等律:
 - \circ A \vee A \equiv A (Identity Law for \vee)
 - \circ A \wedge A \equiv A (Identity Law for \wedge)
- 2. 交换律:
 - \circ A \vee B \equiv B \vee A (Commutative Law)
 - \circ A \wedge B \equiv B \wedge A (Commutative Law)
- 3. 结合律:
 - \circ (A \vee B) \vee C \equiv A \vee (B \vee C) (Associative Law)
 - \circ (A \wedge B) \wedge C \equiv A \wedge (B \wedge C) (Associative Law)
- 4. 分配律:
 - \circ A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C) (Distributive Law)
 - \circ A \land (B \lor C) \equiv (A \land B) \lor (A \land C) (Distributive Law)
- 5. 德摩根律:
 - $\circ \neg (A \lor B) \equiv \neg A \land \neg B$ (De Morgan's Law)
 - $\circ \neg (A \land B) \equiv \neg A \lor \neg B$ (De Morgan's Law)
- 6. 吸收律:
 - \circ A \vee (A \wedge B) \equiv A (Absorption Law)
 - \circ A \land (A \lor B) \equiv A (Absorption Law)
- 7. 零律:
 - \circ A \vee 1 \equiv 1 (Identity Law for \vee)
 - \circ A \land 0 \equiv 0 (Identity Law for \land)
- 8. 同一律:
 - \circ A \vee 0 \equiv A (Identity Law for \vee)
 - \circ A \land 1 \equiv A (Identity Law for \land)
- 9. 排中律:
 - \circ A $\vee \neg$ A \equiv 1 (Law of Excluded Middle)
- 10. 矛盾律:
 - \circ A $\land \neg$ A \equiv 0 (Law of Non-Contradiction)
- 11. 双重否定律:
 - $\circ \neg \neg A \equiv A$ (Double Negation Law)
- 12. 蕴涵等值式: (important!!!!)

- \circ A \rightarrow B $\equiv \neg$ A \vee B (Material Implication)
- 13. 等价等值式:
 - \circ A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A) (Equivalence Law)
- 14. 等价否定等值式:
 - \circ A \leftrightarrow B $\equiv \neg$ A $\leftrightarrow \neg$ B (Contrapositive Law)
- 15. 假言易位:
 - \circ A \rightarrow B $\equiv \neg$ B $\rightarrow \neg$ A (Contrapositive Law)
- 16. 归谬论:????
 - \circ (A → B) \land (A → \neg B) \equiv \neg A (Proof by Contradiction)

Day4Day5

Predicate Logic (谓词逻辑)

Domain(定义域)

Predicate (谓词)

谓词:谓词是一个函数,它接受一个或多个参数,并返回一个真值。例如,"P(x)"表示谓词P应用于个体x。

Universal and Existential Quantifiers (全称量词和存在量词)

符号:∀

符号: 3

negation with quantifiers(带量词的否定)

$$\neg \forall x \varphi \equiv \exists x \neg \varphi$$

$$\neg \exists x \varphi \equiv \forall x \neg \varphi$$

Interaction of quanitifiers with v and A (Conjunction与 Distunction的交互)

 $\exists x (\phi \lor \psi) \equiv (\exists x \phi) \lor (\exists x \psi)$

 $\forall x (\phi \land \psi) \equiv (\forall x \phi) \land (\forall x \psi)$

Day6

Mathematical Statements(数学陈述)

- 1, theorem (定理)
- 2, lemma (引理)

.....

Types of Proof

direct proof(直接证明)

prove $\alpha \to \beta$

indirect proof (间接证明)

proof by contraposition(反证法)

```
prove \alpha \to \beta by:
prove \neg \beta \to \neg \alpha
```

tip: Converse 是逆命题

proof by contradiction (矛盾证明)

prove α by: assume $\neg \alpha$

show this is impossible(证明反命题是不可能成立的)

proof by cases (案例证明--proof by exhaustion.)

splitting a proof down into two or more parts where each part has some extra condition

Day-7

Reflexivity

∀a(a R a)

Reflexivity

 $\forall a \forall b (a R b \rightarrow b R a)$

Transitivity

 $\forall a \forall b \forall c ((a R b \land b R c) \rightarrow a R c)$

推理

提到了推理的方法

Equivalence Relations (等价关系)

当一个关系具有Reflexivity, Reflexivity, Transitivity即为等价关系

Equivalence Classes (等价类)

就是我现在有一个等价关系'~',那么元素a的等价类就是[α]={b∈A| α ~b}

Function

函数的相关内容

重要的概念

- Domain:可以理解为定义域
- Codomain:值域(具有潜在性)
- Source:定义域
- Target:值域
- Range:f(a)
- **Image:**f(a)

单射 (Injective Functions)

- **定义**: 如果一个函数 $f:A \to B$ 是单射的,那么对于 AA 中的任意两个不同的元素 a1a1 和 a2a2,它们在 BB 中的像也不同,即 $f(a1) \neq f(a2)$
- **直观理解**: 单射函数保证了定义域中的**每个元素**都映射到值域中的**唯一元素**, 没有两个不同的元素 映射到同一个元素。
- **例子**: 函数 f(x)=2x 是单射的,因为不同的 x 值总是得到不同的 f(x) 值。

满射 (Surjective Functions)

- 定义: 如果一个函数 $f:A \to B$ 是满射的,那么值域 BB 中的每一个元素至少有一个在定义域 AA 中的元素映射到它,即对于 BB 中的每一个 bb,都存在一个 $a \in A$ 使得 f(a) = b。
- **直观理解**:满射函数保证了值域中的每个元素都被定义域中的某个元素映射到,没有被遗漏的元素。
- **例子**: 函数 f(x)=[x] 是满射的,因为对于任何整数 n,都可以找到一个实数 xx 使得 f(x)=n。

双射 (Bijective Functions)

- 定义: 如果一个函数既是单射的又是满射的, 那么它是双射的。
- **直观理解**:双射函数保证了定义域和值域之间的——对应关系,即定义域中的每个元素都唯一地映射到值域中的一个元素,且值域中的每个元素都被唯一地映射到。
- **例子**: 函数 f(x)=x+1 f(x)=x+1 是双射的,因为它是单射的(不同的 xx 值得到不同的 f(x)f(x) 值),同时也是满射的(对于任何 yy,都可以找到一个 xx 使得 f(x)=yf(x)=y).

Day-9

Composing Functions (函数的复合)

Identity functions (恒等函数)

 $1A:A\rightarrow A$

Inverses of functions (逆函数)

存在性: f 有逆函数当且仅当 f 是双射 (即 f 既是单射又是满射)

Partial Orders (偏序)

- 反对称性和非对称性
 - 反对称性 (Antisymmetric): 集合 A 上的关系 R 是反对称的,如果对于所有 a 和 b, (a, b)
 ∈ R 且 (b, a) ∈ R 意味着 a = b
 - 当你永远找不到两个不同的元素a和B,并且a与B相关,B与a相关时,关系就是反对称的。
 - 没有任何两个不同的元素对称
 - **非对称性**: (Asymmetric) 集合 A 上的关系 R 是非对称的,如果对于所有 a 和 b,(a, b) \in R 意味着 (b, a) 不 \in R.非对称性不意味着非对称性.
- 非自反性 (irreflexive)
 - 。 就是没有任何元素自反

A partial order on a set A is a relation R on A which is:

- reflexive, and
- antisymmetric, and
- transitive

Total Orders (全序)

就是全部可比

Day-10

证明方法

Proof by Induction

这种推理的步骤要求比较严格

- 1. **Base Case (基本情况)**: 在数学归纳法中,基本情况是证明的第一步,通常涉及验证某个命题在最小的自然数(通常是0或1)上成立
- 2. Inductive Step (归纳步骤):
 - 1. 首先假设: Inductive Hypothesis (即假设对于任意的k,该式子的格式都为.....)
 - 2. 接着推导对于任意的k+1, 该式子的格式为......
 - 3. 最后发现该k+1式子确实是可以通过k的式子推导出来

推理完成

Strong Induction

其余的步骤都是一样的,区别在于:

- 1. 假设定位对于所有的基于base case到k的式子都成立
- 2. 最后一步: k+1式子可以通过之前的1到k中任意的式子推导出来