PCT

国 際 事 務 局 特許協力条約に基づいて公開された国際出願

世界知的所有権機関

(51) 国際特許分類6

C07D 401/04, 401/06, 403/04, 405/04, 405/06, 413/04, 417/04, 417/06, 471/04, 487/04, A61K 31/40, 31/41, 31/42, 31/435, 31/44, 31/495

(11) 国際公開番号 A1 WO99/61436

(43) 国際公開日

1999年12月2日(02.12.99)

(21) 国際出願番号

PCT/JP99/02718

(22) 国際出願日

1999年5月25日(25.05.99)

(30) 優先権データ

特願平10/143957

1998年5月26日(26.05.98)

特願平10/323553

1998年11月13日(13.11.98) ア

(71) 出願人 (米国を除くすべての指定国について) 中外製薬株式会社

(CHUGAI SEIYAKU KABUSHIKI KAISHA)[JP/JP] 〒115-8543 東京都北区浮間5丁目5番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

松岡宏治(MATSUOKA, Hiroharu)[JP/JP]

加藤伸明(KATO, Nobuaki)[JP/JP]

髙橋忠勝(TAKAHASHI, Tadakatsu)[JP/JP]

丸山典昭(MARUYAMA, Noriaki)[JP/JP]

石澤武宣(ISHIZAWA, Takenori)[JP/JP]

鈴木幸夫(SUZUKI, Yukio)[JP/JP]

〒412-8513 静岡県御殿場市駒門1丁目135番地

中外製薬株式会社内 Shizuoka, (JP)

(74) 代理人

弁理士 津国 肇(TSUKUNI, Hajime)

〒105-0001 東京都港区虎ノ門1丁目22番12号

SVAX TSビル Tokyo, (JP)

(81) 指定国 AE, AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO 特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: HETEROCYCLIC INDOLE DERIVATIVES AND MONO- OR DIAZAINDOLE DERIVATIVES

(54)発明の名称 複素環を有するインドール誘導体及びモノ又はジアザインドール誘導体

$$R_2O_2S$$

$$A_1$$

$$A_2$$

$$N$$

$$R_1$$

$$A_3$$

$$R_4$$

$$(1)$$

(57) Abstract

Indole derivatives and mono- or diazaindole derivatives represented by general formula (1), pharmaceutically acceptable acid-additi n salts or base-addition salts thereof or hydrates of the same which have a COX-2 inhibitory activity and are useful as drugs such as anti-inflammatory agents, wherein Het represents an optionally substituted heterocycle; A₁ and A₂ independently represent each -CH=, etc.; A₃ represents -CH₂-, etc.; R₁ represents 4-fluorophenyl, etc.; R₂ represents alkyl; and n is 0, 1 or 2, provided that when A₁ and A₂ are both - CH=, then A₃ is -CH₂- or -SO₂-.

COX-2阻害活性等を有する、抗炎症剤などの医薬として有用なインドール 誘導体及びモノ又はジアザインドール誘導体である、一般式 (1)

$$R_2O_2S$$
 A_1
 $CH_2)_n$
 Het
 R_1
 A_2
 R_1

[式中、Heta、置換されていてもよい複素環式基を表し; A_1 及び A_2 は、それぞれ独立して、-CH=などを表し; A_3 は、 $-CH_2-$ などを表し; R_1 は、4-フルオロフェニル基などを表し; R_2 は、アルキル基を表し; nは、0、1 又は 2 を表す。ただし、 A_1 及び A_2 の両方が-CH=である場合、 A_3 は $-CH_2-$ 又は $-SO_2-$ を表わす〕で示される化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物が提供される。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

A A A A A A A A A A A A A A A A B B B B	DEEFFRGGGGGGGHHILLIJKKKK MESIRABDEHMNWRRUDELNSTPEGPR ルニンラス ダア ア・セチリネラエ ラア ス サニンラス ダア ア・セチリネラエ ラア ス ピアーシンル ン タ ア ア ピ アーシンル ン タ ア ア ピ アーシンル ン タ カニンラス ダア ア・マチリネラエ ラア ス ピアーシンル ン タ ピアーシンル ン タ ア ア ピ アーシンル ン タ ピアーシンル ン タ ア ア ピアーシンル ン タ ア ア ア ピアーシンル ン タ ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア ア	KLULL LL	RSSSSSSTTTTTTTTUUUUVY22 RSSSSSSSSTTTTTTTTTUUUVY22 RSSSSSSSSSSTTTTTTTTTUUUVY22 RSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
---	---	---	---

明細書

複素環を有するインドール誘導体及びモノ又はジアザインドール誘導体

技術分野

本発明は、抗炎症作用等を示し、医薬として有用なインドール誘導体及びモノ 又はジアザインドール誘導体に関する。

背景技術

20

25

現在、抗炎症剤として広く用いられている薬剤の大部分は、プロスタグランジンE2(PGE2)の生合成に関与するシクロオキシゲナーゼ(COX)阻害を作用機序とする非ステロイド抗炎症剤(NSAID)である。しかしながら、PGE2の合成活性は生体のあらゆる組織に存在して生体の恒常性を司っており、そこにNSAIDが投与されると様々な副作用が惹起される。たとえば、胃や腎臓においては、PGE2は、それらの臓器内の血流量を維持する作用を示すが、NSAID投与により局所の血流量の維持が困難となり、胃障害や腎障害が引き起こされる。

このような状況下において、COXのアイソザイムの存在が確認された。従来 認識されていたCOXと区別するために、従来型をCOX-1、新たに発見され たアイソザイムをCOX-2と呼称することとなった。また、このCOX-2は、 炎症時に誘導され、通常はほとんど発現しないことが明らかにされ、従来の NSAIDは、COX-1及びCOX-2の両酵素を非特異的に阻害することも 併せて明らかになった。このことから、COX-2の阻害作用を有する化合物が、 新たな抗炎症剤として有用である可能性が生じた。

現在、COX-1 を阻害せず、COX-2 のみを選択的に阻害するいくつかの 化合物が知られている (炎症と免疫, 3(1), 29-36, 1995、Bioorganic & Med. Chem. Lett. 5(8), 867-872, 1995 等)。しかし、その作用はいずれも満足できるものではなく、また、水溶性あるいは経口吸収性が充分でないものもあり、より優れたCOX-2 阻害作用を示す薬剤が求められている。

また、特開平10-77266号(特願平9-24567号)により、

COX-2を選択的に阻害する下記式で示されるインドール誘導体が知られている。

$$\begin{matrix} R_b & & \\ & & \\ & & \\ R_c \end{matrix} \begin{matrix} R_a \end{matrix}$$

[式中、 R_a は、水素原子、炭素数 $1\sim7$ の直鎖若しくは分岐鎖状のアルキル基、炭素数 $2\sim7$ の直鎖若しくは分岐鎖状のアルケニル基、炭素数 $2\sim7$ の直鎖若しくは分岐鎖状のアルケニル基、アリール基、ヘテロアリール基、アルキル部分が炭素数 $1\sim7$ の直鎖若しくは分岐鎖状のアルキルカルボニル基、アルケニル部分が炭素数 $2\sim7$ の直鎖若しくは分岐鎖状のアルケニル基であるアルキルカルボニル基、アルケニルカルボニル基、アルキニル部分が炭素数 $2\sim7$ の直鎖若しくは分岐鎖状のアルケニル基であるアルケニルカルボニル基、アルキニルカルボニル基、又は一(CH_2) $_m$ $-R_d$ を表す。ここで、mは、 $0\sim3$ の整数を表し、 R_d は、炭素数 $1\sim3$ の直鎖若しくは分岐鎖状のアルキル基で置換されていてもよい炭素数 $3\sim6$ のシクロアルキル基を表す。 R_c は、炭素数 $1\sim3$ の直鎖若しくは分岐鎖状のアルキル基を表す。ここで、 R_e は、炭素数 $1\sim3$ の直鎖若しくは分岐鎖状のアルキル基を表す。

本発明の目的は、COX-2阻害活性等を有する、抗炎症剤等の医薬として有用なインドール誘導体及びモノ又はジアザインドール誘導体を提供することである。

本発明者らは、COX-2を選択的あるいは非選択的に阻害し、インドメタシンをはじめとする既存のNSAIDと同等以上の抗炎症作用を有する化合物の開発を目的として鋭意研究を重ねた結果、一般式(1)で示される化合物が、優れた抗炎症作用を有し、及び/又は水溶性が改善され、医薬として有用であることを見いだし、この知見に基づいて本発明を完成させた。

5

10

15

20

発明の開示

すなわち、本発明は、一般式(1)

$$R_2O_2S$$
 A_1
 A_2
 N
 A_3
 A_3
 A_3
 A_3
 A_3
 A_3
 A_4
 A_3

[式中、Hetは、置換されていてもよい複素環式基を表し; A_1 及び A_2 は、それぞれ独立して、-CH= 又は-N= を表し; A_3 は、 $-CH_2-$ 、-(C=O) - 又は $-SO_2-$ を表し; R_1 は、下記式:

から選択される1つの基を表し(ここで、 A_4 は、-O-、-S-又は-NH-を表す);

 R_2 は、炭素数 $1 \sim 3$ の直鎖若しくは分岐鎖状のアルキル基を表し;

nは、0、1又は2を表す。ただし、 A_1 及び A_2 の両方が-CH=である場合、 A_3 は-CH $_2$ -又は-SO $_2$ -を表わす]

で示される化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物に関する。

15 発明を実施するための最良の形態

一般式(1)で示される化合物の定義において、炭素数1~3の直鎖若しくは 分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、及び i-プロピル基が挙げられる。

Hetで示される置換されていてもよい複素環式基の複素環式基は、同一又は

10

15

20

25

異なって、酸素原子、窒素原子、硫黄原子等のヘテロ原子1、2、3、又は4個 を含む4~10員の、単環式又は縮合環式の脂肪族又は芳香族基である。この複 素環式基の置換基としては、例えば、ハロゲン原子、炭素数1~4の直鎖若しく は分岐鎖状のアルキル基(この基は、ハロゲン原子で更に置換されていてもよい)、 炭素数1~4の直鎖若しくは分岐鎖状のアルコキシ基(この基は、ハロゲン原子 で更に置換されていてもよい)、オキソ基、 $-S(O)_{D}-R_{3}(ここで、pは0~$ 2の整数を表し、 R_3 は、炭素数 $1\sim3$ の直鎖若しくは分岐鎖状のアルキル基を 表す)、アミノ基、ニトロ基、カルボキシル基、-СООR4(ここで、R4は、 炭素数 $1 \sim 3$ の直鎖若しくは分岐鎖状のアルキル基を表す)、 $-CONR_5R_6$ (こ こで、 R_5 及び R_6 は、同一又は異なって、水素原子、又は炭素数 $1 \sim 3$ の直鎖 若しくは分岐鎖状のアルキル基を表す)、シアノ基、及び水酸基などが挙げられ る。なかでも、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、エチ ル基、nープロピル基、iープロピル基、tーブチル基、トリフルオロメチル基、 メトキシ基、エトキシ基、オキソ基、メチルチオ基、メタンスルホニル基、エタ ンスルホニル基、アミノ基、ニトロ基、カルボキシル基、メトキシカルボニル基、 メチルアミノカルボニル基、シアノ基、及び水酸基が好ましく、特にフッ素原子、 カルボキシル基、メチル基、メトキシカルボニル基、及びメチルアミノカルボニ ル基が、好ましい。また上述した複素環式基は、1~3個、好ましくは1個の、 複素環式基で更に置換されていてもよい。この場合の置換基としての複素環式基 としては、一般式 (1) の化合物においてHe t が表す置換されていてもよい複 素環式基として下記に例示する複素環式基が挙げられ、なかでもテトラゾリル(特 に、5-テトラゾリル)、及びトリアゾリル (特に、1,2,3-トリアゾール -4-イル、1, 2, 4-トリアゾール-3-イル) が好ましい。

Hetの定義における複素環式基は、上述した置換基で置換されていることができるが、複素環式基の窒素原子は更に、酸素原子と結合してN-オキシドとなることができる。また複素環式基の窒素原子及び炭素原子は、炭素数1~4の直鎖若しくは分岐鎖状のアルキル基で置換されていてもよい。このようなアルキル基としては、メチル基が挙げられる。

式(I)の化合物の定義において、Hetは、上記の置換基で置換されていて

10

15

20

25

もよい複素環式基、つまり同一又は異なって、酸素原子、窒素原子、硫黄原子などのヘテロ原子1、2、3、又は4個を含む4~10員の、単環式又は縮合環式の脂肪族又は芳香族基であり、好ましくは同一又は異なって、酸素原子、窒素原子、硫黄原子などのヘテロ原子1、2、3、又は4個を含む4~6員の単環式の脂肪族又は芳香族基である。

例えば、このような複素環式基としては、オキセタン、フラン、ジヒドロフラ ン、テトラヒドロフラン、ピラン、ジヒドロピラン、テトラヒドロピラン、ジオ キソール、チオフェン、ジヒドロチオフェン、テトラヒドロチオフェン、チオピ ラン、ジヒドロチオピラン、テトラヒドロチオピラン、ピロール、ジヒドロピロー ル、ピロリジン、ピリジン、ジヒドロピリジン、テトラヒドロピリジン、ピペリ ジン、ピラゾール、2-ビラゾリン、ピラゾリジン、イミダゾール、イミダゾリ ジン、ピリミジン、ピラジン、オキサゾリン、ピペラジン、1,2,3-トリア ゾール、1,2,4-トリアゾール、テトラゾール、イソオキサゾール、1,3-オキサゾール、1,2,3-オキサジアゾール、1,2,4-オキサジアゾール、 1, 2, 5-オキサジアゾール、1, 3, 4-オキサジアゾール、1, 2-チア ゾール、1, 3-4アゾール、1, 2, 3-4アジアゾール、1, 2, 4-4ア ジアゾール、1,2,5-チアジアゾール、1,3,4-チアジアゾール、1,3-ジオキソラン、オキサソリジン及びモルホリンなどの複素環化合物から誘導され る基が挙げられる。なかでも、Hetとしては、上述の基で置換されていてもよ い、同一又は異なって、酸素原子、窒素原子、及び硫黄原子から選択されるヘテ ロ原子1、2、又は3個を含む5~6員の単環式の脂肪族複素環式基又は芳香族 複素環式基が挙げられ、具体的には上述の基で置換されていてもよい、フラン、 1, 3-チアゾール、1, 3-オキサゾール、1, 3, 4-オキサジアゾール、 ピリミジン、テトラヒドロフラン、5.6-ジヒドロピラン、ピリジン、1,2,4-トリアゾール、1、2、4-オキサジアゾール、及びテトラヒドロピランから誘 導される基が挙げられる。

上記で例示した複素環式基を有するHe t のうちなかでも、He t が、上記の基で置換されていてもよい、同一又は異なって、窒素原子及び/又は酸素原子を1、2、又は3個含み、更に硫黄原子を1個含んでいてもよい、5~6員の単環

10

15

20

25

式の不飽和脂肪族複素環式基又は芳香族複素環式基である一般式(1)の化合物が好ましい。そしてHetが、上記の基で置換されていてもよい、フラン、1,3ーチアゾール、1,3ーオキサゾール、1,3・4ーオキサジアゾール、ヒリジン、ヒリミジン、又は5,6ージヒドロピランから誘導される基である一般式(1)の化合物が、活性の面から好ましいものとして挙げられる。また上記の一般式(1)の化合物のうち、Hetの複素環式基が、カルボキシル基で置換されているか、又はHetの窒素原子含有複素環式基の窒素原子がNーオキシドとなっている化合物が、水溶性又は経口吸収性の面から好ましいものとして挙げられる。

また、上記のHet 基と結合している基: $-(CH_2)_n$ - においては、n は、

0、1又は2を表すが、なかでも0又は1であるのが好ましい。

一般式(1)で示される化合物の定義において、 A_1 及び A_2 は、それぞれ独立して、-CH=又は-N=を表すが、 A_1 は、-CH=であるのが好ましい。

また、R₂ は、炭素数 1 ~ 3 の直鎖若しくは分岐鎖状のアルキル基を表すが、 これらの基としては、メチル基、エチル基、n - プロピル基、及び i - フロピル 基が挙げられる。なかでもメチル基が好ましい。

また A_3 は、 $-CH_2-$ 、- (C=O) -又は $-SO_2-$ を表すが、 $-CH_2-$ 及び $-SO_2-$ が好ましく、なかでも $-CH_2-$ が好ましい。また、 A_1 及び A_2 の両方が-CH=である場合、 A_3 は $-CH_2-$ 又は $-SO_2-$ を表わす。

また一般式 (1) の化合物において、基: R_1 $-A_3$ - は、好ましくは 4 - 7 ルオロベンジル基である。

表 $1\sim10$ に本願発明化合物の式(I)におけるー(CH_2) $_n$ ーHetを例示する。

表 5

表8

表 9

表10

好ましいー $(CH_2)_n$ ーHe t としては、1, 3-4アゾールー2ーイル基、1, 3-4キサゾールー2ーイル基、1, 3, 4-4キサジアゾールー2ーイル基、2ーフリル基、2ーピリジル基、2ーピリミジニル基、5-4チルフランー2ーイル基、2ーテトラヒドロフラニル基、5, 6-3ビドロー2Hー4ーピラニル基、5-4チルアミノカルボニルピリジンー2ーイル基、及び5-7ルオロピリミジンー4ーイル基を挙げることができる。

一般式(1)で示される化合物としては、以下の化合物が好ましい。

2-(2-7)ル)-1-(4-7)ルオロベンジル)-5-メタンスルホニル-1 H-ピロロ[2, 3-b] ピリジン;

10 $1 - (4 - 7\nu \pi + 7\nu$

1-(4-7)ルオロベンジル) -2-(3+4) (オキサゾール-2-7ル) -5-1 タンスルホニル-1 H-1 に -1 [2, 3-1] ピリジン;

1-(4-フルオロベンジル)-5-メタンスルホニルー2-([1, 3, 4]

15 オキサジアゾール-2-イル) インドール;

20

5-メタンスルホニル-2-(2-ビリジル)-1-(4-フルオロベンジル)-1H-ヒロロ[2, 3-b] ビリジン;

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-(2-ビリミジニル) -1 H-ビロロ[2, 3-b] ビリジン;

5 1-シクロヘキシルメチル-5-メタンスルホニル-2-(2-ピリミジニル) <math>-1 H-ピロロ「2、3-b] ピリジン:

2-(2-フラニル)-1-(4-フルオロベンジル)-5-メタンスルホニル-インドール;

1-シクロヘキシルメチル-2-(2-フラニル)-5-メタンスルホニルインドール;

2-(2-7)=(

1-(4-7)ルオロベンジル) -5-メタンスルホニルー2-(5-メチルフラン-2-イル) -1 H-ピロロ[2, 3-b] ピリジン;

15 2-(2-フラニル) -1-シクロヘキシルメチル-5-メタンスルホニルー <math>1 H-ピロロ [2, 3-b] ピリジン;

2-(2-r)ラヒドロフラニル) -1-(4-r)ルオロベンジル) -5-xタンスルホニルーインドール;

2-(5,6-ジヒドロ-2H-4-ピラニル)-1-(4-フルオロベンジル)-5-メタンスルホニルーインドール;

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (5-メトキシ カルボニルピリジン-2-イル) インドール;

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (3-ヒリジルメチル) インドール;

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(3-ピリジル)

10

15

25 ·

インドール:

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(1-オキシー3-ヒリジル)インドール:

1-(4-フルオロベンゼンスルホニル)-5-メタンスルホニル-2-(チアゾール-2-イル)インドール;

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(5-メチル-[1.2.4] トリアゾール-3-イル) インドール;

1 - (4 - フルオロベンジル) - 5 - メタンスルホニル - 2 - (5 - メチル - 「1. 2. 4] オキサジアゾール - 3 - イル) インドール;

5-メタンスルホニル-2-(1-オキシ-2-ピリジル)-1-(4-フルオロベンジル)-1 H-ピロロ[2, 3-b] ピリジン;

20 $2-(2-\pi)\pi+2\pi$ $2-(4-\pi)\pi+2\pi$ $2-(4-\pi)\pi+2\pi$

2-(2-カルボキシフラン-5-イルメチル)-1-(4-フルオロベンジル)-5-メタンスルホニルインドール;

1-(4-フルオロベンジル)-5-メタンスルホニルー<math>2-(4-ピリジル)インドール;

1-(4-フルオロベンジル)-5-メタンスルホニルー2-(1-オキシー4-ピリジル) インドール;

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-([1, 3, 4]オキサジアゾール-2-イル) -1 H-ビロロ[2, 3-b] ピリジン:

15

20

25

5-(4-7)ルオロベンジル) -2-3メタンスルホニルー6-(5)アゾールー2-71ル) -5 H -1 ピロロ [2, 3-b] ピラジン;

5-(4-7)ルオロベンジル) -2-4タンスルホニル-6-(3+4) -2-4ル) -5 H-ビロロ[2, 3-b] ビラジン;

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-(5-7)ルオロピリミジン-4-イル) -1 H-ピロロ[2,3-b] ピリジン;及び

1-(2, 4-ジフルオロベンジル)-5-メタンスルホニル-2-([1, 3, 4] オキサジアゾール-2-イル)-1 H-ピロロ [2, 3-b] ピリジン

10 から選択される化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物。

上記の化合物のうち、1-(4-7)ルオロベンジル)-5-メタンスルホニル-2-(7)デール-2-イル)インドール;1-(4-7)ルオロベンジル)-2-(7) サゾール-2-イル)-5-メタンスルホニル-1 H-ピロロ [2,3-b] ピリジン;及び1-(4-7)ルオロベンジル)-5-メタンスルホニル-2-([1,3,4] オキサジアゾール-2-イル)インドール、及びそれらの薬学的に許容しうる酸若しくは塩基との付加塩、並びにその水和物が特に好ましい。

本発明化合物は、以下に記載する反応式1又は2の方法、あるいは製造する目的化合物に応じて適宜一部変更した方法又はそれぞれに適した方法により、公知の化合物から出発して製造することができる。また、本発明の化合物は、実施例に記載される具体的な製造法を適宜応用して得ることもできる。

本発明化合物のうち、 A_3 が $-CH_2-$ であり、nが0 である化合物は、以下に示す反応式1 に基づき、所望の基を有する試薬を用いることによって調製することができる。

15

[式中、 R_3 は、メチル基、フェニル基、又は4-メチルフェニル基を表し; R_4 は、水素原子又はトリメチルシリル基を表し;Hal は、塩素原子、臭素原子及びョウ素原子などのハロゲン原子を表し;その他の記号は、一般式(1)に記載のとおりである]

反応式1において、化合物1(例えばWO98/51667号及び特開平11-29553号公報の実施例 III-1に記載)から化合物2への変換は、化合物1を化合物R3SO2C1(R3は、メチル基、フェニル基、又は4-メチルフェニル基を表す)と、塩基の存在下で反応させた後、塩基処理し加水分解することにより行うことができる。R3SO2C1と共に用いる塩基としてはピリジン、4-ジメチルアミノピリジン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、ジイソプロヒルエチルアミンを用い、好ましくはピリジンを用いる。反応溶媒としては、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、ベンゼン、トルエン、キシレン、テトラヒドロフラン、又は1,4-ジオキサンを使用することができるが、反応は、無溶媒で行うこともでき、好ましくは無溶媒で行う。 反応は、0~100℃で行い、好ましくは、10~80℃で行う。また加水分解に用いる塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどを用いるが、好

15

20

25

ましくは水酸化カリウムを用いる。加水分解の反応溶媒としては、水、メタノール、エタノール、イソプロパノール、テトラヒドロフラン、1,4ージオキサン、アセトニトリルなどを単独又は混合溶媒として用いるが、好ましくは水、メタノール、及び1.4ージオキサンの混合溶媒を用いる。反応は0~100℃で行い、好ましくは、10~80℃で行う。

化合物2から化合物3への変換は、化合物2に、所望の基Hetを有するアセチレン化合物R₁-C≡C-Het(R₁は、水素原子又はトリメチルシリル基を表す)を、パラジウム触媒、銅試薬及び塩基の存在下で作用させることにより行うことができる。パラジウム触媒としてはビス(トリフェニルホスフィン)塩(ルパラジウム、ビス(トリフェニルホスフィン)酢酸パラジウム、ビス(アセトニトリル)塩化パラジウム、ビス(ベンゾニトリル)塩化パラジウムなどを用い、好ましくはビス(トリフェニルホスフィン)塩化パラジウムを用いる。銅試薬と

しては銅(0)、酢酸銅(II)、臭化銅(I)、臭化銅(II)、塩化銅(I)、塩化銅(II)、ョウ化銅(I)、ョウ化銅(I)、酸化銅(I)、酸化銅(II)、硫酸 銅(II)などを用いるが、好ましくはョウ化銅(I)を用いる。塩基としてはトリエチルアミン、トリプロピルアミン、トリプチルアミン、ジイソプロピルエチルアミン、トリイソプチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウムなどを用い、好ましくはトリエチルアミンを用いる。反応溶媒としては 1、4ージオキサン、N、Nージメチルホルムアミド、アセトニトリル、N、Nージメチルアセトアミド、テトラヒドロフラン、ジメトキシエタン、ベンゼン、トルエン、ジメチルスルホキシドなどを用いるか、又は反応は無溶媒で行うこともできる。好ましくは反応は、1、4ージオキサン、又はN、Nージメチルホルムアミドを用いて行なうか、あるいは無溶媒で行う。反応は15~150℃で行うが、好ましくは40~120℃で行う。

化合物3から化合物4への変換は、化合物3を酸化することにより行うことができる。酸化剤としてはオキソン(登録商標OXONE)、mークロロ過安息香酸、マグネシウムモノパーオキシフタレートなどを用いる。反応溶媒としてはテトラヒドロフラン、エーテル、ジメトキシエタン、1,4-ジオキサン、ジクロ

10

15

20

25

ロメタン、クロロホルム、メタノール、エタノール、水などを単独又は混合溶媒として用いるが、好ましくはオキソン使用時にはテトラヒドロフラン及び水の混合溶媒、又はテトラヒドロフラン、メタノール及び水の混合溶媒を用い、m-クロロ過安息香酸使用時にはジクロロメタンを用い、マグネシウムモノバーオキシフタレート使用時にはジクロロメタン及びメタノールの混合溶媒を用いる。反応は-10 $^{\circ}$ $^{\circ}$

この酸化反応は、後述する化合物4から化合物5への変換における塩基処理の工程(相当する工程を含む)より前に行うという条件を満たせば、反応式1中、任意の工程で行うことができる。

化合物4から化合物5への変換は、化合物4を塩基処理し、基一SO2R3を除去することにより行うことができる。塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどを用いるが、好ましくは水酸化カリウムを用いる。反応溶媒としては、水、メタノール、エタノール、イソプロパノール、テトラヒドロフラン、1,4ージオキサン、アセトニトリルなどを単独又は混合溶媒として用いるが、好ましくはメタノールのみ;水及びメタノールの混合溶媒;水、1,4ージオキサン、及びテトラヒドロフランの混合溶媒;又は水、メタノール、及びテトラヒドロフランの混合溶媒;又は水、メタノール、及びテトラヒドロフランの混合溶媒を用いる。反応は0~100℃で行い、好ましくは、15~100℃で行う。

この基 $-SO_2R_3$ の除去反応は、前述した化合物 3 から化合物 4 への変換における酸化の工程(相当する工程を含む)より後、かつ後述する化合物 5 から化合物 6 への変換における基 R_1CH_2 -の導入の工程(相当する工程を含む)より前に行うという条件を満たせば、反応式 1 中、任意の工程で行うことができる。また、インドール環の 5 位に相当する位置の置換基が R_2O_2S - である場合には、この除去反応が他の反応に付随して起こることもあり得る。

化合物 5 から化合物 6 への変換は、化合物 5 を塩基処理した後に、所望の基 R_1 を有する化合物 R_1 CH₂Hal (Halは、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子を表す)で処理して基 R_1 CH₂-を導入することにより行うことができる。塩基としては、水素化ナトリウム、水素化カリウム、ナトリウ

ムメトキシド、ナトリウムエトキシド、カリウムー t-プトキシド、リチウムジイソプロヒルアミド、リチウムビス(トリメチルシリル)アミドなどを用いるが、好ましくは水素化ナトリウム又はリチウムジイソプロピルアミドを用いる。反応溶媒としては、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、テトラヒドロフラン、ジメトキシエタン、ジメチルスルホキシド、エーテルなどを用いるが、好ましくはN, N-ジメチルホルムアミド又はテトラヒドロフランを用いる。反応は-78 \sim 50 \sim で行い、好ましくは-78 \sim 30 \sim で行う。

本発明化合物のうち、 A_3 が $-CH_2$ -であり、nが1 である化合物は、以下に示す反応式2に基づき、所望の基を有する試薬を用いることによって調製することができる。

15

5

10

[式中、R₃ は、メチル基、フェニル基、又は4ーメチルフェニル基を表し; Halは、塩素原子、臭素原子及びヨウ素原子などのハロゲン原子を表し;その

10

15

20

25

他の記号は、一般式(1)に記載のとおりである]

反応式 2 において、化合物 7(例えばWO98/51667号及び特開平 11-29553号公報の実施例 J-1に記載)から化合物 8への変換は、化合物 7を塩基処理した後、所望の基Hetを有するアルデヒドCHO-Hetと反応させ、化合物 7と基Hetとをメチレン基を介して結合させることにより行うことができる。塩基としてはリチウムジイソプロビルアミド、リチウムビス(トリメチルシリル)アミド、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウムなどを用いるが、好ましくはリチウムジイソプロビルアミド、n-ブチルリチウムを用いる。反応溶媒としては、テトラヒドロフラン、エーテルなどを用いるが、好ましくはテトラヒドロフランを用いる。反応は-78~50℃で行い、好ましくは-78~30℃で行う。

また、インドール環の2位に相当する位置にホルミル基を有する化合物と、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換された化合物HetーHalとを用いて、化合物7から化合物8への変換反応と同様の工程に付すことによっても、化合物8を得ることができる。

さらに、化合物CHO-Hetの代わりに、化合物 $CHO-CH_2-Het$ を用いることによって、nが2である一般式 (1) の化合物を得ることができる。

さらに、化合物CHO-He tの代わりに、- (C=O) -部分構造を有する He tを用いることによって、nがOである一般式(1)の化合物を得ることが できる。

化合物8から化合物9への変換は、化合物8を酸化し、ケトン化した後ヒドラジンで還元するか、又は化合物8を接触還元することにより行うことができる。化合物8をケトンとする酸化に用いる酸化剤としては、デスマーチン試薬(1,1,1-トリス(アセチロキシ)-1,1-ジヒドロ-1,2-ベンズヨードキソール-3(1H)-オン)、二酸化マンガン、クロム酸、ヒリジニウムジクロメート、ピリジニウムクロロクロメート、又はジメチルスルホキシド、塩化オキサリル、トリエチルアミンの組み合わせなどを用いるが、好ましくはデスマーチン試薬(1,1,1-トリス(アセチロキシ)-1,1-ジヒドロ-1,2-ベンズョードキソール-3(1H)-オン)、二酸化マンガンを用いる。反応溶

10

15

20

25

媒としては、ジクロロメタン、クロロホルム、1,2ージクロロエタン、アセトンなどを用いるが、好ましくはジクロロメタンを用いる。反応は-78~50℃で行う。ヒドラジンによる還元は、塩基存在下で行うことができる。塩基としては水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどを用いるが、好ましくは水酸化カリウムを用いる。反応溶媒としてはエチレングリコール、エタノール、メタノール、イソプロパノールなどを用いるが、好ましくはエチレングリコールを用いる。反応は15~150℃で行うが、好ましくは40~120℃で行う。接触還元に用いる触媒としては、パラジウム炭素、水酸化パラジウム、パラジウム黒などを用いるが、好ましくはパラジウム炭素を用いる。反応溶媒としては、エタノール、酢酸エチルなどを、酢酸存在下又は非存在下で用いるが、好ましくは15~60℃で行う。圧力は1~5気圧で行うが、好ましくは1気圧で行う。

化合物 9 から化合物 1 0 への変換は、化合物 9 を酸化することにより行うことができる。酸化剤としてはオキソン(登録商標 O X O N E)、m − クロロ過安息香酸、マグネシウムモノハーオキシフタレートなどを用いる。反応溶媒としてはテトラヒドロフラン、エーテル、ジメトキシエタン、1、4 − ジオキサン、ジクロロメタン、クロロホルム、メタノール、エタノール、水などを単独又は混合溶媒として用いるが、好ましくはオキソン使用時にはテトラヒドロフラン及び水の混合溶媒、又はテトラヒドロフラン、メタノール及び水の混合溶媒を用い、m − クロロ過安息香酸使用時にはジクロロメタンを用い、マグネシウムモノパーオキシフタレート使用時にはジクロロメタン及びメタノールの混合溶媒を用いる。反応は − 10℃~60℃で行い、好ましくは0~40℃で行う。

また、化合物 8 から化合物 9 への変換工程と化合物 9 から化合物 1 0 への変換 工程は、入れ替えることも可能である。

化合物10から化合物11への変換は、化合物10を塩基処理することにより行うことができる。塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化 リチウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどを用いるが、好ま しくは水酸化カリウムを用いる。反応溶媒としては、水、メタノール、エタノー

10

15

20

25

ル、イソフロハノール、テトラヒドロフラン、1, 4-iジオキサン、アセトニトリルなどを単独又は混合溶媒として用いるが、好ましくはメタノールのみ:水及びメタノールの混合溶媒;水、1, 4-iジオキサン及びテトラヒドロフランの混合溶媒:又は水、メタノール及びテトラヒドロフランの混合溶媒を用いる 反応は $0\sim100$ Cで行い、好ましくは、 $15\sim100$ Cで行う。

化合物11から化合物12への変換は、化合物11を塩基処理した後に、所望の基R」を有する化合物R₁ C H₂Hal(Halは、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を表す)で処理することにより行うことができる。塩基としては、水素化ナトリウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、カリウムー t ーブトキシド、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミドなどを用いるが、好ましくは水素化ナトリウム又はリチウムジイソプロピルアミドを用いる。反応溶媒としては、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、テトラヒドロフラン、ジメトキシエタン、ジメチルスルホキシド、エーテルなどを用いるが、好ましくはN,Nージメチルホルムアミド又はテトラヒドロフランを用いる。反応は ー78~50℃で行い、好ましくは一78~30℃で行う。

また、化合物 R_1 C H_2 H_a 1 O H_a 1 O H 1 O

また反応式1又は2で得られた一般式(1)の化合物である化合物6又は化合物12におけるHetが表す複素環式基は、以下の方法により変換することが可能である。

Hetにおける二重結合の単結合への変換は、二重結合を有する化合物を接触 還元することによって行うことができる。接触還元に用いる触媒としては、パラ ジウム炭素、水酸化パラジウム、パラジウム黒などを用いるが、好ましくはパラ ジウム炭素を用いる。反応溶媒としては、エタノール、メタノール、酢酸エチル、 酢酸などを単独又は混合溶媒として用いるが、好ましくはエタノールを用いる。 反応は0~80℃で行うが、好ましくは15~60℃で行う。

10

15

20

25

Hetが置換基 $-COOR_4$ (ここで、 R_4 は、炭素数 $1\sim3$ の直鎖若しくは分岐鎖状のアルキル基を表す)を有する場合におけるアルキルエステルの他のアルキルエステルへの変換は、アルキルエステルを、所望のアルキル基を有するアルコール中、塩基を作用させることにより行うことができる。塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどを用いるが、好ましくは水酸化カリウムを用いる。反応溶媒としては、メタノール、エタノール、イソプロハノール、テトラヒドロフラン、1, 4-ジオキサン、アセトニトリルなどを単独又は混合溶媒として用いるが、好ましくはメタノールを用いる。反応は $0\sim1$ 00℃で行り。

Hetが置換基-COOR」を有する場合におけるアルキルエステルのカルボン酸への変換は、アルキルエステルに塩基を作用させることにより行うことができる。塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどを用いるが、好ましくは水酸化カリウム、水酸化リチウムを用いる。反応溶媒としては、水、メタノール、エタノール、イソプロパノール、テトラヒドロフラン、1,4-ジオキサン、アセトニトリルなどを単独又は混合溶媒として用いるが、好ましくはメタノールを用いる。反応は0~100℃で行い、好ましくは、15~100℃で行う。

Hetが置換基カルボキシル基を有する場合におけるカルボキシル基の基一CONR5R6(ここで、R5及びR6は、同一又は異なって、水素原子、又は炭素数1~3の直鎖若しくは分岐鎖状のアルキル基を表す)への変換は、カルボキシル基を酸クロリドとした後に、所望の基を有するアミンHNR5R6と、塩基の存在下又は非存在下で反応させることにより行うことができる。酸クロリドとする際の試薬としては、塩化チオニル、塩化オキサリル、オキシ塩化リン、五塩化リンなどを用いるが、好ましくは塩化チオニルを用いる。反応は0~120℃で行うが好ましくは、20~100℃で行う。アミンとの反応に用いる塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、ヒリジンなどを用いるが、好ましくはトリエチルアミンを用いる。アミンとの反応に用いる反応溶媒としては、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ジメトキ

10

15

20

25

シエタン、ジクロロメタン、クロロホルムなどを単独又は混合溶媒として用いるが、好ましくはテトラヒドロフランを用いる。反応は-10~50℃で行うが、好ましくは、0~30℃で行う。

また、Hetが置換基カルボキシル基を有する場合におけるカルボキシル基の基一CONR5R6への変換は、カルボキシル基を縮合剤で処理した後に、所望の基を有するアミンHNR5R6で処理することによっても行うことができる。縮合剤としては、1、1′ーカルボニルジイミダゾール、ベンゾトリアゾールー1ーイルオキシートリス(ジメチルアミノ)ホスホニウムへキサフルオロホスフェート、ジシクロヘキシルカルボジイミド、ジエチルリン酸シアニドなどを用いるが、好ましくは1、1′ーカルボニルジイミダゾール又はベンゾトリアゾールー1ーイルオキシートリス(ジメチルアミノ)ホスホニウムへキサフルオロホスフェートを用いる。反応溶媒としてはメタノール、エタノール、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジクロロメタン、クロロホルムなどを単独又は混合溶媒として用いるが、好ましくはテトラヒドロフラン又はジクロロメタンを用いる。反応は、一10~50℃で行うが、好ましくは0~30℃で行う。

また、Hetが置換基カルボキシル基を有する場合におけるカルボキシル基の基-CONR5R6への変換は、カルボキシル基をクロロ炭酸エステルおよび塩基と処理した後に、所望の基を有するアミンHNR5R6で処理することによっても行うことができる。クロロ炭酸エステルとしては、クロロ炭酸メチル、クロロ炭酸エチルなどを用いるが、好ましくはクロロ炭酸エチルを用いる。塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、ピリジンなどを用いるが、好ましくはトリエチルアミンを用いる。反応溶媒としてはテトラヒドロフラン、ジオキサン、ジメトキシエタン、ジクロロメタン、クロロホルムなどを単独又は混合溶媒として用いるが、好ましくはテトラヒドロフランを用いる。反応は-10~50℃で行うが好ましくは、0~30℃で行う。

Hetがピリジンから誘導される基である場合のピリジンN-オキシドへの変換は、ピリジン誘導体を酸化することにより行うことができる。酸化剤としてはm-クロロ過安息香酸、マグネシウムモノハーオキシフタレートなどを用いる。

10

15

20

反応溶媒としてはジクロロメタン、クロロホルム、1, 2 – ジクロロエタン、メタノール、エタノールなどを単独又は混合溶媒として用いるが、好ましくはm – クロロ過安息香酸使用時にはジクロロメタンを用い、マグネシウムモノハーオキシフタレート使用時にはジクロロメタン及びメタノールの混合溶媒を用いる。反応は-10 $^{\circ}$ $^{\circ$

上記の反応式1及び2で用いられる試薬は、公知であるか、公知の方法又はその方法から当業者が容易に想到し得る方法に従って合成することができる。また、本願実施例記載の方法を参照して合成することもできる。

本発明の化合物は、シクロオキシゲナーゼー2(COX-2)阻害作用を有し、 抗炎症剤として有用である。本発明の化合物は、経口あるいは非経口で投与する ことができる。その場合の投与量は、1日当たり、経口では、3~150mg/kg、 非経口では、1~50mg/kgである。

これらの化合物を医薬として投与する場合には、通常の製剤化技術を用いて製剤化することができ、錠剤、カプセル剤、粉剤、顆粒剤、座剤、液剤、懸濁剤又は乳化剤等の固体又は液体の形態として使用することができる。

更に、この場合、製剤化において通常使用される添加成分である、賦形剤、崩壊剤、滑沢剤、結合剤、保存剤、安定剤、浸透圧調節剤等を使用することができる。

これらの添加成分の例としては、グルコース、ラクトース、デンプン、カルボキシメチルセルロース、ステアリン酸マグネシウム、タルク、流動パラフィン、ボリビニルアルコール、植物油、ポリアルキレングリコールなどをあげることができる。また、その他の医薬成分を含むこともできる。

以下に、本発明の化合物の製造について実施例に基づき、更に詳細に説明する。

25 実施例 1

2-(2-7 リル) -1-(4-7 ルオロベンジル) -5-メタンスルホニルー <math>1 H- 1 H- 1

10

15

(1) 2 - ベンゼンスルホニルアミノ-3-ヨード-5-メチルチオヒリジンの調製

窒素雰囲気下、2-アミノー3-ヨード-5-メチルチオヒリジン(7.63g)のピリジン溶液(30ml)に15~30℃でベンゼンスルホニルクロリド(7.9ml)を加え、60℃にて15時間撹拌した。次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた粗製のビス(ベンゼンスルホニル)体のメタノールージオキサン混合溶液(1:1、200ml)に、15~30℃で1規定水酸化カリウム水溶液(64ml)を加え、60℃にて1時間撹拌した。次いで反応液を飽和炭酸水素ナトリウム水溶液にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール:クロロホルム=1:50)を用いて分離し、白色粉末の目的物6.4g(56%)を得た。

1H—NMR (CDC1₃) δ値: 2.41 (3H, s), 7.47-7.69 (3H, m), 7.90 (1H, brs), 8.13 (4H, m).

(2) 2- (2-フリル) - 5-メチルチオ-1-ベンゼンスルホニル-1H-ピロロ [2, 3-b] ビリジンの調製

2ーベンゼンスルホニルアミノー3ーヨードー5ーメチルチオピリジン (1.60g)のジオキサン溶液(40ml)に、2ーエチニルフラン(725mg)、 ビス(トリフェニルホスフィン)塩化パラジウム(138mg)、ヨウ化銅(1) (75mg)、トリエチルアミン(598mg)を順次加え、封管中、60℃にて1時間撹拌した。冷却後、反応液を水にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)を用いて分離し、褐色油

10

15

20

25

状の目的物1.24g(85%)を得た。

 $^{1}\text{H}-\text{NMR}$ (CDC13) δ 值: 2.50 (3H, s), 6.56-6.58 (1H, m), 6.65 (1H, s), 6.79 (1H, d, J=3.3 Hz), 7.43-7.59 (3H, m), 7.62 (1H, s), 7.74 (1H, d, J=2.3Hz), 8.13 (2H, d, J=7.6Hz), 8.44 (1H, d, J=2.0Hz).

(3) 2-(2-フリル) -5-メタンスルホニル-1-ベンゼンスルホニルー 1H-ヒロロ「2、3-b] ピリジンの調製

実施例1(2)の工程で得た化合物(1.24g)のジクロロメタンーメタノール混合溶液(5:1、120ml)に0℃にて、マグネシウムモノハーオキシフタレート6水和物(5.17g、純度80%)を加え、0℃にて30分間、15~30℃で1時間撹拌した。次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、褐色油状の目的物0.89g(66%)を得た。1H−NMR(CDC13) δ値:3.12(3H,s),6.60-6.62(1H,m),6.84(1H,s),6.86(1H,d,J=3.3Hz),7.51-7.68(4H,m),8.26(2H,d,J=7.26Hz),8.40(1H,d,J=2.3Hz)、8.99(1H,d,J=2.0Hz).

(4) 2-(2-フリル)-5-メタンスルホニル-1H-ピロロ[2,3-b]ピリジンの調製

実施例1 (3) の工程で得た化合物(6 7 5 mg)のテトラヒドロフランージオキサン混合溶液(5:1、120ml)に1規定水酸化カリウム水溶液(5 ml)を加え、60℃にて15時間撹拌した。次いで、反応液を水にあけ、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮し、褐色粉末の目的物431 mg (98%)を得た。

 1 H—NMR (CDC1₃) δ 値: 3.17 (3H, s), 6.61-6.62 (1H, m), 6.83 (1H, d, J=1.7Hz), 6.87 (1H, d, J=3.3Hz), 7.65 (1H, d, J=1.3Hz), 8.46 (1H, d, J=2.0Hz), 8.93 (1H, d, J=1.7Hz), 11.23 (1H, brs).

(5) 2-(2-7)ル) -5-メタンスルホニル-1-(4-7)ルプログンジル) -1 H-ピロロ [2, 3-b] ピリジンの調製

窒素雰囲気下、0℃にて実施例1(4)の工程で得た化合物(200mg)のジ

10

20

メチルホルムアミド溶液(20ml)中に、水素化ナトリウム(45.8mg、純度60%)を加え、30分撹拌した後に、4ーフルオロベンジルブロミド(288mg)を加え、1時間撹拌した。次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出し、有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル薄層クロマトグラフィー(メタノール:クロロホルム=1:50)を用いて分離し、白色粉末の目的物239mg(85%)を得た。

 1 H—NMR(CDC1₃) δ 値: 3. 15(3H, s), 5. 82(2H, s), 6. 49-6. 51(1H, m), 6. 59(1H, d, J=3. 3Hz), 6. 93-7. 07(5H, m), 7. 57(1H, d, J=1. 3Hz), 8. 47(1H, d, J=2. 3Hz), 8. 85(1H, d, J=2. 0Hz).

実施例2

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(チアゾール-2-イル) インドール

(1) 1-ベンゼンスルホニル-5-メチルチオインドール-2-カルボキサミ15 ドの調製

窒素雰囲気下、1-ベンゼンスルホニル-5-メチルチオインドール(2g)のテトラヒドロフラン溶液(70ml)に-78℃で、n-ブチルリチウム(<math>5ml、1.59M)を滴下し、同温度で30分間撹拌した後、へキサメチルリン酸トリアミド(<math>2.3ml)を滴下し、同温度で10分間撹拌した。撹拌した反応混合物に同温度で二酸化炭素ガスを吹き込みながら30分間かけて $15\sim30$ ℃まで昇温した。反応混合物に1規定塩酸を加え、酢酸エチルで抽出した。有機層を水洗、乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール:酢酸=100:5:1)を用いて分離し、粗生成物(4g)を得た。得られた粗製の1-ベンゼンスルホニル-5-メチル

10

15

20

25

チオインドールー2ーカルボン酸(4g)のテトラヒドロフラン溶液(70ml)に、氷冷下トリエチルアミン(1.84ml)及びクロロ炭酸エチル(1ml)を加え、同温度で30分間撹拌した後、アンモニア水(2ml)を同温度で加え、15分間撹拌した。酢酸エチルで希釈後、水洗、乾燥後、溶媒を減圧留去して得られた残渣を再結晶(ヘキサンー酢酸エチル)し、白色粉末の目的物1.08gを得た。1H-NMR(CDC13)δ値:2.50(3H,s),5.7-5.9(1H,m),6.2-6.4(1H,m),7.03(1H,s),7.3-7.5(4H,m),7.55(1H,t,J=7.3Hz),7.93(2H,d,J=7.3Hz),8.05(1H,d,J=8.6Hz).

(2) 1 ーベンゼンスルホニルー5ーメチルチオインドールー2ーカルボチオアミドの調製

実施例 2 (1) の工程で得られた化合物(1.08g)のテトラヒドロフラン 溶液(30ml)にローソン(Lawesson)試薬(0.9g)を加え、2時間加熱還流した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン)を用いて分離し、黄色粉末の目的物(<math>1.1g)を得た。

 1_{H-NMR} (CDC13) δ 値: 2.48 (3H, s), 7.2-7.4 (5H, m), 7.4-7.6 (2H, m), 7.71 (2H, d, J=7.6Hz), 7.8-7.9 (1H, m), 8.08 (1H, d, J=8.6Hz).

(3) 1 - ベンゼンスルホニル - 5 - メチルチオ - 2 - (チアゾール - 2 - イル) インドールの調製

実施例2 (2) の工程で得られた化合物 (50mg)、ブロモアセトアルデヒドジメチルアセタール (0.04ml)、pートルエンスルホン酸 (1mg) 及び酢酸 (0.5ml) の混合物を100℃で1時間撹拌した。減圧下濃縮後、酢酸エチルで希釈し、水洗、乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:1) を用いて分離し、褐色油状の目的物 (42mg) を得た。

 1_{H-NMR} (CDC1₃) δ 値: 2.50 (3H, s), 6.87 (1H, s), 7.30-7.42 (4H, m), 7.51 (1H, t, J=7.3Hz), 7.59 (1H, d, J=3.0Hz), 7.82 (2H, d, J=7.6Hz), 7.97 (1H, d, J=3.0Hz), 8.11 (1H, d, J=8.6Hz).

(4)1-ベンゼンスルホニル-5-メタンスルホニル-2-(チアゾール-2-

10

15

20

25

イル) インドールの調製

実施例 2 (3) の工程で得られた化合物 (42 mg)、テトラヒドロフラン (1 ml) 及び水 (0.5 ml) の混合物に氷冷下オキソン (OXONE、150 mg) を加え、30 分間撹拌し、 $15 \text{ <math>\sim} 30 \text{ <math>\sim} \text{ Color}$ 1. 5 時間撹拌した。飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を水洗、乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー ($\text{ <math>\sim} \text{ ~\sim} \text{ <math>\sim} \text{ <math>$

 1 H—NMR (CDC1 $_{3}$) δ 値: 3.09 (3H, s), 7.03 (1H, s), 7.47 (2H, t, J=7.3Hz), 7.59 (1H, t, J=7.3Hz), 7.63 (1H, d, J=3.3Hz), 7.9-8.0 (3H, m), 8.01 (1H, d, J=3.3Hz), 8.19 (1H, d, J=1.7Hz), 8.39 (1H, d, J=8.9Hz).

(5) 5-メタンスルホニル-2-(チアゾール-2-イル) インドールの調製 実施例2(4)の工程で得られた化合物(39mg)のメタノール溶液(1ml)に15~30℃で1規定水酸化カリウム水溶液(0.2ml)を加え、60℃で1時間撹拌した。2規定塩酸を加え、酢酸エチルで抽出した。有機層を水洗、乾燥後、溶媒を減圧留去し、目的物(27mg)を得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 3.10 (3H, s), 7.16 (1H, s), 7.43 (1H, d, J=3.3Hz), 7.56 (1H, d, J=8.6Hz), 7.78 (1H, dd, J=1.3, 8.6Hz), 7.85 (1H, d, J=3.3Hz), 8.29 (1H, s), 10.57 (1H, brs).

(6) 1-(4-フルオロベンジル)-5-メタンスルホニルー2-(チアゾールー2-イル)インドールの調製

実施例2 (5) の工程で得られた化合物 (27 mg) のジメチルホルムアミド溶液 (1 ml) に氷冷下、水素化ナトリウム (10 mg、純度60%) 及び4ーフルオロベンジルブロミド (0.025 ml) を加え、同温度で30分間撹拌した。飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を水洗、乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸エチル=1:1) を用いて分離し、白色粉末の目的物 (23 mg) を得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 3.09 (3H, s), 6.05 (2H, s), 6.93 (2H, m), 7.06 (2H, m), 7.20 (1H, s), 7.39 (1H, d, J=3.3Hz), 7.43 (1H, d, J=8.9Hz), 7.75 (1H,

10

15

20

dd, J=2.0, 8.9Hz), 7.88 (1H, d, J=3.3Hz), 8.31 (1H, d, J=2.0Hz). 実施例3

(1) 1-ベンゼンスルホニル-2-(オキサゾール-2-イル)-5-メチルチオ-1H-ピロロ[2, 3-b]ピリジンの調製

窒素雰囲気下、オキサゾール (7.6g)及びテトラヒドロフラン (130ml) の混合物に1.61M のnーブチルリチウムヘキサン溶液(65ml)を-78℃ にて加えて40分間撹拌した。更に反応混合物に臭化トリエチルスズ (28.9g) 及びテトラヒドロフラン (50ml) の混合物を-78℃にて加え、 そのまま-78℃にて1時間、0℃にて3時間、15~30℃で2時間撹拌した。 反応混合物を減圧下濃縮し、残渣にヘキサン(200ml)を加え、析出した不溶 物をセライトで濾別し、濾液を減圧下濃縮し、残渣を減圧蒸留に付し、6 mmHg にて105-112℃の留分19.45gを得た。得られた留分にジクロロメタ ンを加え、臭素 (3. 7ml) 及びジクロロメタン (230ml) の混合物を0℃に て加え、そのまま0℃で30分間、15~30℃で30分間撹拌した。反応混合 物を常圧にて濃縮し、残渣として2-ブロモオキサゾールを含む混合物を 37. 71g得た。窒素雰囲気下、ジエチルエーテル (400ml) にアセチレン ガスを10リットル溶解し、1.53Mのn-ブチルリチウムへキサン溶液 (100ml) を-78℃にて加え、20分間撹拌した。その後に2-ブロモオキ サゾールを含む混合物 (37.71g) 及びジエチルエーテル (80ml) の混合 物を-78℃にて加え、そのまま-78℃にて30分間、-20℃にて90分間 撹拌した。不溶物をセライトで濾別し、濾液を常圧にて濃縮し、得られた残渣に ジオキサン (100ml)、2-ベンゼンスルホニルアミノー3-ヨード-5-メ

10

15

20

25

チルチオヒリジン (6 g)、トリエチルアミン (2 ml)、ヨウ化第一銅 (0.1 g) 及びビス (トリフェニルホスフィン) 塩化パラジウム (0.35 g) を加え、60℃にて9時間撹拌した。反応混合物にジクロロメタン及び飽和炭酸水素ナトリウム水溶液を加え、セライト濾過し、濾液をジクロロメタンにて抽出、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、減圧下濃縮した後得られた残渣を、シリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:1) に付し、目的物 0.70 g を得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 2.51 (3H, s), 6.94 (1H, s), 7.37 (1H, d, J=0.7Hz), 7.46 -7.62 (3H, m), 7.81 (1H, d, J=2.3Hz), 7.91 (1H, d, J=0.7Hz), 8.22-8.27 (2H, m), 8.49 (1H, d, J=2.3Hz).

(2) 1-ベンゼンスルホニルー2-(オキサゾールー2-イル)-5-メタン スルホニルー1H-ピロロ[2, 3-b]ピリジンの調製

1-ベンゼンスルホニルー2-(オキサゾールー2-イル)-5-メチルチオー1H-ピロロ [2, 3-b] ピリジン(28mg)、マグネシウムモノパーオキシフタレート6水和物(116mg、純度80%)、ジクロロメタン(1.2ml)及びメタノール(0.5ml)の混合物を0 ∞ にて30 分間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加え、ジクロロメタンにて抽出、飽和食塩水で洗浄、硫酸ナトリウムで乾燥、減圧下濃縮した後得られた残渣をシリカゲルカラムクロマトグラフィー(∞ +サン:酢酸エチル=1:3)に付し、目的物14mgを得た。

 $^{1}\text{H-NMR}$ (CDC13) δ 値: 3.14 (3H, s), 7.13 (1H, s), 7.42 (1H, s), 7.54-7.70 (3H, m), 7.95 (1H, s), 8.35-8.40 (2H, m), 8.50 (1H, d, J=2.3Hz), 9.06 (1H, d, J=2.3Hz).

(3) 2-(オキサゾール-2-イル)-5-メタンスルホニル-1H-ピロロ「2、3-b] ピリジンの調製

1-ベンゼンスルホニルー2-(オキサゾールー2-イル)-5-メタンスル ホニルー1H-ピロロ[2, 3-b]ピリジン(0.35g)、水酸化カリウム (0.34g)及びメタノール(30ml)の混合物を15~30℃で30分間撹 拌した。反応混合物に水を加え、ジクロロメタンにて抽出、飽和食塩水で洗浄、

10

硫酸ナトリウムで乾燥、減圧下濃縮した後得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)に付し、目的物 0.19 gを得た。

 $1_{\text{H-NMR}}$ (DMSO-d₆) δ 值: 3.30 (3H, s), 7.31 (1H, d, J=2.0Hz), 7.51 (1H, s), 8.35 (1H, s), 8.63 (1H, d, J=2.3Hz), 8.81 (1H, d, J=2.3Hz), 13.30 (1H, s).

(4) 1-(4-7)ルオロベンジル) -2-(3+4) (オキサゾールー2ーイル) -5-4 メタンスルホニルー1 Hーピロロ [2, 3-b] ピリジンの調製

2-(オキサゾールー2-イル)-5-メタンスルホニルー<math>1Hーピロロ [2,3-b]ピリジン(0.19g)、4-フルオロベンジルブロミド<math>(0.16g)、水素化ナトリウム(32mg、純度60%)及びジメチルホルムアミド(10ml)

の混合物を15~30℃で30分間撹拌した。反応混合物に水を加え、析出した 結晶を濾取し、酢酸エチルに溶解した。硫酸ナトリウムで乾燥、減圧下濃縮した 後得られた残渣(0.14g)を再結晶(酢酸エチルーへキサン)に付し、目的 物92mgを得た。

15 mp: 200−201°C

 $MS: 371(M^{+})$

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 3. 16 (3H, s), 6. 18 (2H, s), 6. 91 (2H, t, J=8.6Hz), 7. 28 -7.35 (3H, m), 7. 77 (1H, d, J=0.6Hz), 8. 55 (1H, d, J=2.3Hz), 8. 95 (1H, d, J=2.3Hz).

20 実施例 4

(1) 1-ベンゼンスルホニル-5-メチルチオー2-([1, 3, 4] オキサジアゾール-2-イル) <math>-1 H-インドールの調製

10

15

1-ベンゼンスルホニルー5-メチルチオー1 H-インドールー2-カルボン酸メチルエステル(370 mg)のエタノール溶液(12 ml)に15 ~ 30 $^{\circ}$ ににてヒドラジン1 水和物(0.55 ml)を加え、13 時間加熱還流し、更にヒドラジン1 水和物(0.55 ml)を加え、5 時間加熱還流した。反応液を減圧下濃縮し、得られた残渣に水を加え、不溶物を濾取し、水及びエーテルで洗浄した。濾取した粗生成物にギ酸(9 ml)を加え、1 時間加熱還流した。反応液を減圧下濃縮し、得られた残渣に酢酸エチルを加え、不溶物を濾別し、酢酸エチルで洗浄した。濾液を減圧下濃縮し、1-ベンゼンスルホニルー5-メチルチオー1 H-インドールー2-カルボン酸-N'-ホルミルヒドラジドの粗生成物 330 mg を得た。

ここで得られた粗生成物 5 0 9 mg とオキシ塩化リン (1 5 ml) の混合液を 1 5 ~ 3 0 ℃にて 6 時間半撹拌した。反応液を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル: ヘキサン=1:2) を用いて分離し、目的物 2 6 5 mg を得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 2.51 (3H, s), 7.14 (1H, s), 7.3-7.6 (5H, m), 7.76-7.80 (2H, m), 8.08 (1H, d, J = 8.57Hz), 8.66 (1H, s);

MS (M+): 371.

(2) 1-ベンゼンスルホニル-5-メタンスルホニル-2-([1, 3, 4] オキサジアゾール-2-イル) インドールの調製

実施例4 (1) で得た化合物 (265mg) のテトラヒドロフラン溶液 (7ml) 20 に0℃にて、オキソン (登録商標) (970mg) の水溶液 (3.5ml) を滴下し、 0℃にて4時間半撹拌した。反応液に水を加え、酢酸エチルで抽出し、無水硫酸 マグネシウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラ ムクロマトグラフィー (ヘキサン:酢酸エチル=1:1) を用いて分離し、目的 物262mg を得た。

- 25 1_{H-NMR} (CDCl₃) δ値: 3.09 (3H, s), 7.31 (1H, s), 7.4-8.0 (5H, m), 8.02 (1H, dd, J=1.65, 8.91Hz), 8.26 (1H, d, J=1.32Hz), 8.36 (1H, d, J=8.91Hz), 8.69 (1H, s).
 - (3) 1-(4-フルオロベンジル)-5-メタンスルホニルー2-([1,3,4] オキサジアゾールー2-イル) インドールの調製

10

15

実施例4(2)で得た化合物(262mg)のメタノール溶液(10ml)に15~30℃にて1規定水酸化カリウム水溶液(2ml)を加え、15~30℃にて1時間撹拌した。反応液を減圧下濃縮し、得られた残渣に水及び酢酸エチルを加え、不溶物を濾去した。濾液を酢酸エチルで抽出し、有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥、濾過し、5-メタンスルホニルー2ー([1,3,4]オキサジアゾールー2ーイル)-1 Hーインドールの粗生成物(200mg)を得た。

窒素雰囲気下、0 $^{\circ}$ $^$

2) を用いて分離し、白色粉末の目的物 6 7 mg を得た。
1H-NMR (CDC13) δ値: 3.11 (3H, s), 6.08 (2H, s), 6.8-7.2 (4H, m), 7.47 (1H, s), 7.54 (1H, d, J=8.91Hz), 7.85 (1H, dd, J=8.91, 1.65Hz), 8.41 (1H, d,

MS (M+): 371.

J=1.65Hz), 8.50 (1H, s);

20 実施例 5

5-メタンスルホニルー2- (2-ピリジル)-1- (4-フルオロベンジル)-1H-ピロロ[2, 3-b] ピリジン

(1) 2 - ベンゼンスルホニルアミノ-5-メチルチオ-3-ヨードーピリジン の調製

10

15

20

25

 $2-アミノ-5-メチルチオ-3-ヨードーピリジン(2.95g)とベンゼンスルホニルクロリド(2.35g)をピリジン(11.1ml)に溶かし、<math>60^{\circ}$ にて15時間撹拌した。反応液を水にあけ、クロロホルムにて抽出し、飽和食塩水洗浄、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)で分離し、淡黄色結晶の目的物 2.55 gを得た。

 $1_{\text{H-NMR}}$ (CDC1 $_3$) δ 値: 2.41(1H, s), 7.4-7.7(4H, m), 7.91(1H, s), 8.07(1H, s), 8.13(2H, d, J=7.3Hz).

(2) 1ーベンゼンスルホニルー5ーメチルチオー2ー(2ーピリジル)-1Hーピロロ[2, 3-b] ピリジンの調製

実施例 5 (1) で得た化合物 (100 mg)、2-x チェルピリジン (30.4 mg)、ビス (トリフェニルホスフィン) パラジウム (II) ジクロリド (17.3 mg)、ヨウ化第一銅 (4.7 mg) のトリエチルアミン懸濁液 (2.5 ml) を封管中、 100° で1時間撹拌した。反応終了後、反応液を水にあけ、塩化メチレンにて抽出し、

飽和食塩水洗浄、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた 残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1) を用いて分離し、無色油状の目的物71.9 mg を得た。

 1_{H-NMR} (CDC1₃) δ 値: 2.50(3H, s), 6.69(1H, s), 7.3-7.7(4H, m), 7.68(1H, d, J=7.8Hz), 7.76(1H, d, J=1.9Hz), 7.83(1H, m), 8.16(2H, d, J=7.3Hz), 8.44(1H, d, J=1.9Hz), 8.72(1H, d, J=4.3Hz).

(3) 1-ベンゼンスルホニル-5-メタンスルホニルー2- (2-ピリジル) -1 H-ピロロ [2, 3-b] ピリジンの調製

実施例 5 (2) で得た化合物 (1.00g) のクロロホルム溶液 (7ml) 中に、0 ℃にてm-クロロ過安息香酸 (1.36g) を加え、同温度で、1時間撹拌した。反応終了後、反応液を飽和炭酸水素ナトリウム水溶液中にあけ、クロロホルムにて抽出し、飽和食塩水洗浄、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1) を用いて分離し白色結晶の目的物 1.00gを得た。 1_{H-NMR} (CDC13) δ 値: 3.13(3H, s), 6.82(1H, s), 7.3-7.8(5H, m), 7.87(1H, m),

8. 34(2H, d, J=7.3Hz), 8. 42(1H, d, J=1.9Hz), 8. 76(1H, d, J=4.6Hz), 9. 01(1H, d, J=1.9Hz).

- (4) 5-メタンスルホニル-2- (2-ピリジル) -1H-ヒロロ[2, 3-b] ピリジン
- 実施例 5 (3)で得た化合物(3.8 mg)のメタノール溶液(0.5 ml)に1規定水酸化カリウム水溶液(2 ml)を加え、2 時間加熱還流した。反応終了後、反応液を水にあけ、クロロホルムにて抽出し、飽和食塩水洗浄、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。リン酸緩衝液(pH7.0)にあけジクロロメタンで抽出し、食塩水で洗浄し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(クロロホルム:メタノール=50:1)を用いて分離し、白色粉末の目的物2.4 mgを得た。1H-NMR(CDC13) δ値:3.16(3H,s),7.10(1H,s),7.2-7.4(1H,m),7.7-8.9(2H,m),8.52(1H,d,J=1.8Hz),8.71(1H,d,J=4.6Hz),8.97(1H,d,J=1.8Hz),10.95(1H,bs).
- (5) 5-メタンスルホニルー2-(2-ピリジル)-1-(4-フルオロベンジル)-1H-ピロロ[2, 3-b] ピリジンの調製

実施例 5 (4) で得た化合物(2.3 mg)のN, Nージメチルホルムアミド溶液(0.5 ml)に、0℃にて60%水素化ナトリウム(0.5 mg)を加え、同温度で15分間撹拌した。次に、p-フルオロベンジルブロミド(2.4 mg)を0℃にて加え、15~30℃で1時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶液中にあけ、トルエンで抽出し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(クロロホルム:メタノール=100:1)を用いて分離し、白色粉末の目的物1.7 mgを得た。 1 H-NMR(CDC13)δ値: 3 16(3H, s), 3 6.17(2H, s), 3 6.81(2H, m), 3 6.9-7.1(3H, m), 3 7.2-7.4(1H, m), 3 7.5-7.9(2H, m), 3 8.51(1H, d, 3 9-2.0Hz);

Fab-Ms: 382(M+1).

実施例6

20

25

1- (4-フルオロベンジル) -5-メタンスルホニルー2- (2-ピリミジニ

10

15

20

ル) -1H-ピロロ[2, 3-b] ピリジン

(1) 1ーベンゼンスルホニルー5ーメチルチオー2ー(2ーピリミジニル)ー1Hーピロロ[2, 3-b] ピリジンの調製

2ーベンゼンスルホニルアミノー5ーメチルチオー3ーヨードーピリジン (1.53g)、2ーエチニルピリミジン(768mg)、ビストリフェニルホスフィンパラジウムジクロリド (259mg)、ヨウ化第一銅(70.3mg)のトリエチルアミン懸濁液(37ml)を封管中100℃にて1.5時間撹拌した。冷却後、反応液を水にあけ、クロロホルムで抽出し、無水硫酸ナトリウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、白色結晶の目的物1.21gを得た。

 $1_{\rm H-NMR}$ (CDC1₃) δ 値: 2.52 (3H, s), 6.95 (1H, s), 7.33 (1H, t, J=4.8Hz), 7.5-7.7 (3H, m), 7.83 (1H, d, J=2.6Hz), 8.39 (2H, d, J=6.9Hz), 8.48 (1H, d, J=2.6), 8.87 (2H, d, J=4.8Hz).

(2) 1ーベンゼンスルホニルー5ーメタンスルホニルー2ー(2ーピリミジニル) -1H-ピロロ[2, 3-b] ピリジンの調製

実施例 6 (1) で得た化合物(1.10g)のクロロホルム溶液(30 ml)に 0 ℃にて、m ークロロ過安息香酸(1.56g)を加え、0 ℃にて 1 .5 時間撹拌した。次に、反応液を飽和炭酸水素ナトリウム水溶液にあけ、クロロホルムで抽出し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)を用いて分離し、白色粉末状の目的物 1 .10gを得た。

 1 H—NMR (CDCl $_{3}$) δ 値: 3.14 (3H, s), 7.11 (1H, s), 7.40 (1H, t, J=4.9Hz), 7.5-7.8 (3H, m), 8.4-8.6 (3H, m), 8.92 (2H, d, J=4.9Hz), 9.05 (1H, d,

J=1.1Hz).

5

10

15

20

25

(3) 5-メタンスルホニルー2-(2-ヒリミジニル)-1H-ピロロ[2,3-b] ヒリジンの調製

実施例6 (2) で得た化合物 (1.10g) のメタノール懸濁液 (24ml) に 1 規定水酸化カリウム水溶液 (4.8ml) を加え、15~30℃で1時間撹拌し、更に、15分間加熱還流した。反応終了後、反応液を水にあけ、クロロホルムに て抽出し、飽和食塩水洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。 得られた、残渣をメタノール/水で洗浄後、濾取し、更に、抽出時の水層中の不要物を濾取し、合わせて加熱乾燥し、白色粉末状の目的物 4 1 7 mg を得た。 1H−NMR (DMSO-d6) δ値: 3.31 (3H, s), 7.50 (1H, t, J=4.9 Hz), 7.54 (1H, s), 8.65 (1H, d, J=2.2Hz), 8.81 (1H, d, J=2.2Hz), 8.95 (2H, d, J=4.9Hz), 13.0 (1H, brs).

(4) 1-(4-7)ルオロベンジル) -2-(2-1) リミジニル) -5-1 タンスルホニル-1 H-1 ピロロ「2、3-b] ビリジンの調製

窒素雰囲気下、0 ℃にて、実施例 6 (3) で得た化合物(3.0 mg)のN, N - ジメチルホルムアミド溶液(0.5 ml)中に、6.0 %水素化ナトリウム(0.7 mg)を加え、同温度で 1.5 分間撹拌した。次に、0 ℃にて 4 - フルオロベンジルブロミド (3.1 mg)を加え、1.5 - 3.0 ℃で 1 時間撹拌した。反応終了後、反応液を飽和炭酸水素ナトリウム水溶液にあけ、トルエンで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(メタノール:クロロホルム= 1 : 2.0)を用いて分離し、白色結晶の目的物 2.4 mg を得た。

 $1_{\rm H-NMR}$ (CDC1₃) δ 値: 3.17 (3H, s), 6.33 (2H, s), 6.86 (2H, t, J=8.6Hz), 7.0-7.2 (2H, m), 7.22 (1H, t, J=5.4Hz), 7.67 (1H, s), 8.59 (1H, d, J=2.1Hz), 8.79 (2H, d, J=5.4Hz), 8.95 (1H, d, J=2.1Hz).

実施例 7

1-シクロへキシルメチル-5-メタンスルホニルー2-(2-ピリミジニル)-1H-ヒロロ[2, 3-b] ピリジン

10

15

20

室素雰囲気下、0 \mathbb{C} にて、5- \mathbb{Z} \mathbb

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 0.8-1.2 (4H, m), 1.2-1.9 (7H, m), 3.17 (3H, s), 4.97 (2H, d, J=7.3), 7.1-7.4 (1H, m), 7.58 (1H, s), 8.54 (1H, d, J=2.4Hz), 8.85 (2H, d, J=4.5Hz), 8.91 (1H, d, J=2.4Hz).

実施例8

(1) 2, 2-ジメチル-N-(2-ヨード-4-メチルチオフェニル) プロピオンアミドの調製

10

15

20

25

4ーメチルチオアニリン(25g)のピリジン溶液(250ml)に15~30℃にてピバロイルクロリド(26.2ml)を加え、15時間撹拌した。次いで反応液を減圧下濃縮後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣(20g)のテトラヒドロフラン溶液(400ml)に窒素雰囲気下-78℃にて、t ーブチルリチウム(175ml、1.64M)を加え、-78℃にて15分間撹拌し、次いで0℃まで昇温した。反応混合物を再度-78℃に冷却し、ヨウ素(27.3g)のテトラヒドロフラン溶液(100ml)を加え、30分間撹拌後、15~30℃まで昇温した。次いで反応液を飽和塩化アンモニウム水溶液にあけ、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)を用いて分離し、白色粉末の目的物19gを得た。

1_H—NMR (CDCl₃) δ値: 1.36 (9H, s), 2.46 (3H, s), 7.25 (1H, dd, J=8.9, 2.0Hz), 7.66 (1H, d, J=2.0Hz), 7.72 (1H, brs), 8.18 (1H, d, J=8.9Hz).

(2) 2, 2ージメチルーNー(2ーヨードー4ーメタンスルホニルフェニル) プロピオンアミドの調製

アミドのテトラヒドロフラン/水混合溶液(2:1、210ml)にオキソン(登録商標)(22.0mg)を加え、15~30℃で2時間撹拌した。反応終了後、反応液を飽和炭酸水素ナトリウム水溶液中にあけ、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣を再結晶(酢酸エチルーn-ヘキサン)して白色結晶の目的物5.22gを得た。

2、2-ジメチル-N-(2-ヨード-4-メチルチオフェニル)プロピオン

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 1.39 (9H, s), 3.05 (3H, s), 7.90 (1H, dd, J=2.1Hz, 8.6Hz), 8.08 (1H, brs), 8.33 (1H, d, J=2.1Hz), 8.59 (1H, d, J=8.6Hz).

(3) 2-ヨードー4-メタンスルホニルアニリンの調製

実施例8(2)で得た化合物(100mg)のメタノール溶液(2.6ml)中に、1規定水酸化カリウム水溶液(0.55ml)を加え、1時間加熱還流した。次に、反応液を減圧下濃縮し、得られた残渣をクロロホルムに溶かし、水と飽和食塩水

10

15

20

25

で順次洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮、減圧乾燥して、 白色結晶の目的物74.6mgを得た。

1H—NMR (CDC1₃) δ値: 3.02 (3H, s), 4.68 (2H, brs), 6.77 (1H, d, J=8.6Hz), 7.67 (1H, dd, J=2.0Hz, 8.6Hz), 8.18 (1H, d, J=2.0Hz).

(4) 1-ビスベンゼンスルホニルアミノ-2-ヨード-4-メタンスルホニルベンゼンの調製

実施例8 (3) で得た化合物 (2.20g) のピリジン溶液 (7.4ml) にベンゼンスルホニルクロリド (1.57g) を加え、15~30℃で1時間、60℃で1時間撹拌した。更にベンゼンスルホニルクロリド (1.57g) を加え、60℃で15時間撹拌後、飽和塩化アンモニウム水溶液中にあけ、析出物を濾取し、水とエーテルで順次洗浄、減圧乾燥して白色結晶の目的物4.22gを得た。 1H-NMR (CDC13) δ値: 3.13 (3H, s), 7.1-7.4 (4H, t, J=7.7Hz), 7.74 (2H, t, J=7.6Hz), 7.90 (1H, d, J=8.1Hz), 8.00 (4H, d, J=8.1Hz), 8.43 (1H, s).

(5) 1 -ベンゼンスルホニルアミノ-2-ヨード-4-メタンスルホニルベン ゼンの調製

実施例8(4)で得た化合物(4.90g)の1,4ージオキサン懸濁液(85ml)中に、1規定水酸化カリウム水溶液(21.2ml)を加え、100℃で1時間撹拌した。反応終了後、反応液を減圧下濃縮し、飽和食塩水中にあけ、テトラヒドロフランにて抽出し、無水硫酸ナトリウム乾燥後、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)を用いて分離し、無色アモルファス状の目的物3.47gを得た。
¹H−NMR(CDC1₃)δ値:3.03(3H,s),7.51(2H,t,J=7.6Hz),7.22(1H,brs),7.62(1H,t,J=7.0Hz),7.76(1H,d,J=8.6Hz),7.8-8.0(3H,m),8.23(1H,d,J=1.9Hz).

(6) 2-(2-フラニル)-5-メタンスルホニルインドールの調製

窒素雰囲気下、実施例 8 (5) で得た化合物 (2.00g)、ビストリフェニルホスフィンパラジウムジクロリド (321mg)、ヨウ化第一銅 (87.0mg)、トリエチルアミン (1.38g) のN, Nージメチルホルムアミド懸濁液 (46ml)中に、2-エチニルフラン (842mg) のN, Nージメチルホルムアミド溶液

10

15

20

(46ml)をゆっくりと滴下後、60℃にて3時間撹拌した。次に、反応液を水にあけ、クロロホルムで抽出、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール:クロロホルム=1:100)を用いて分離した。得られた無色アモルファス状の化合物(1.10g)のメタノール溶液(28ml)に、1規定水酸化カリウム水溶液(5.52ml)を加え、60℃にて1時間撹拌した。反応終了後、反応液を減圧下濃縮し、得られた残渣を水にあけ、クロロホルムにて抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウム乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(メタノール:クロロホルム=1:20)を用いて分離し、褐色結晶の目的物350mgを得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 值: 3.09 (3H, s), 6.5-6.6 (1H, m), 6.75 (1H, d, J=3.2Hz), 6.85 (1H, s), 7.4-7.6 (2H, m), 7.72 (1h, dd, J=1.8Hz, 8.5Hz), 8.23 (1H, s), 8.85 (1H, brs).

(7) 2 - (2-フラニル) - 1- (4-フルオロベンジル) - 5-メタンスル ホニルインドールの調製

窒素雰囲気下、0℃にて実施例8(6)で得た化合物(150mg)のN, N-ジメチルホルムアミド溶液(6ml)中に、60%水素化ナトリウム(34.4mg)を加え、15分間撹拌後、4ーフルオロベンジルブロミド(160mg)を加え、2時間撹拌した。反応終了後、反応液を飽和塩化アンモニウム水溶液にあけ、トルエンで抽出し、飽和食塩水洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール:クロロホルム=1:100)及び、シリカゲル分取薄層クロマトグラフィー(メタノール:クリール:クロロホルム=1:100)を用いて分離し、淡褐色油状物質の目的物130mgを得た。

実施例9

1-シクロヘキシルメチル-2-(2-フラニル)-5-メタンスルホニルイン

ドール

5

20

窒素雰囲気下、0℃にて2-(2-フラニル)-5-メタンスルホニルインドール (150mg) のN, N-ジメチルホルムアミド溶液 (6ml) 中に、60%水素化ナトリウム (34.4mg) を加え、15分間撹拌後、シクロヘキシルメチルブロミド (205mg) を加え、3時間撹拌した。反応終了後、反応液を飽和塩化アンモニウム水溶液にあけ、トルエンで抽出し、飽和食塩水洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (メタノール:クロロホルム=1:100) を用いて分離し、淡黄色油状物質の目的物164mgを得た。

実施例10

15 2- (2-フラニル) -5-メタンスルホニル-1- (2-ピリジルメチル) - 1H-ピロロ[2, 3-b] ピリジン

窒素雰囲気下、2-(2-フラニル)-5-メタンスルホニル-1H-ピロロ [2,3-b]ピリジン(140mg)のN,N-ジメチルホルムアミド溶液(5ml)中に、0℃にて60%水素化ナトリウム(53.6mg)を加え、30分間撹拌後、2-ピコリルクロリド・塩酸塩(105mg)を加え、15~30℃で15時間撹拌した。次に、反応液を飽和炭酸水素ナトリウム水溶液にあけ、トルエンで抽出

し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。 得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: n ーヘキサン=1:1)で分離し、得られた結晶を更に、メタノールから再結晶して、淡黄色針状結晶の目的物 69.3mg (37%)を得た。

 1_{H-NMR} (CDCl₃) δ 値: 3.16 (3H, s), 5.96 (2H, s), 6.4-6.6 (1H, m), 6.70 (1H, d, J=3.8Hz), 6.77 (1H, d, J=8.1Hz), 6.99 (1H, s), 7.16 (1H, t, J=7.6Hz), 7.50 (1H, s), 7.54 (1H, t, J=7.3Hz), 8.49 (1H, d, J=2.0Hz), 8.59 (1H, d, J=4.9Hz), 8.84 (1H, d, J=2.0Hz).

実施例11

5

15

20

(1) 1-ベンゼンスルホニルー2-(5-メチルフラン-2-イル)-5-メチルチオー1H-ピロロ[2,3-b] ピリジンの調製

2 - ベンゼンスルホニルアミノ-5 - メチルチオ-3 - ヨードピリジン (203mg) の1, 4 - ジオキサン溶液 (5ml) に、2 - エチニル-5 - メチル フラン (160mg)、ビストリフェニルホスフィンパラジウムジクロリド (18mg)、ヨウ化第一銅 (10mg)、トリエチルアミン (75mg) を順次加え、封管中60℃にて1時間撹拌した。冷却後、反応液を水にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー (ヘキサン:酢酸エチル=5:1) を用いて分離し、褐色油状の目的物169mgを得た。

 1_{H-NMR} (CDC1 $_3$) δ 値: 2.41 (3H, s), 2.50 (3H, s), 6.15 (1H, d, J=2.3Hz), 6.61 (1H, s), 6.69 (1H, d, J=3.3Hz), 7.41-7.64 (3H, m), 7.72 (1H, d, J=2.0Hz), 8.10-8.19 (2H, m), 8.42 (1H, d, J=2.3Hz).

(2) 1-ベンゼンスルホニルー <math>5-メタンスルホニルー 2- (5-メチルフラン-2-イル) -1 H-ピロロ [2, 3-b] ピリジンの調製

実施例11 (1) で得られた化合物(169mg)のジクロロメタン-メタノール混合溶液(5:1,16ml)に、0℃にてマグネシウムモノハーオキシフタレート(679mg、純度80%)を加え、同温度にて30分間、15~30℃で1時間撹拌した。次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:クロロホルム:アセトン=6:3:1)を用いて分離し、黄色油状の目的物121mgを得た。

- 10 1H—NMR (CDC1₃) δ値: 2.44 (3H, s), 3.13 (3H, s), 6.18(1H, d, J=3.0Hz), 6.76(1H, d, J=3.3Hz), 6.79 (1H, s), 7.50-7.66 (3H, m), 8.20-8.28 (2H, m), 8.37 (1H, d, J=2.0Hz), 8.97 (1H, d, J=2.0Hz).
 - (3) 5-メタンスルホニルー2-(5-メチルフランー2-イル)-1H-ピロロ[2,3-b]ピリジンの調製
- 15 実施例11(2)で得られた化合物(421mg)のメタノール混合溶液(60ml)に1規定水酸化カリウム水溶液(3ml)を加え、60℃にて1時間撹拌した。次いで、反応液を減圧下濃縮した後、残渣を水、エーテルで洗浄、乾燥し、黄色粉末の目的物252mgを得た。
- 1 H—NMR (DMSO-d₆) δ 值: 2.39 (3H, s), 3.28 (3H, s), 6.31 (1H, d, J=2.6Hz), 6.82 (1H, s), 7.01 (1H, d, J=3.0Hz), 8.43 (1H, d, J=2.0Hz), 8.66 (1H, d, J=2.0Hz), 12.75 (1H, brs).
 - (4) 1-(4-フルオロベンジル)-5-メタンスルホニルー2-(5-メチルフラン-2-イル)-1H-ピロロ[2,3-b]ピリジンの調製

実施例11 (3) で得られた化合物 (20mg) のN, Nージメチルホルムアミド溶液 (2ml) 中に、窒素雰囲気下、0℃にて60%水素化ナトリウム (4.4mg)を加え、30分間撹拌した後に、4ーフルオロベンジルブロミド (26mg)を加え、更に30分間撹拌した。次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、トルエンで抽出し、有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロ

マトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、黄色粉末の目的物18mgを得た。

 $1_{\text{H-NMR}}$ (CDCl₃) δ 値: 2.38 (3H, s), 3.15 (3H, s), 5.79 (2H, s), 6.08 (1H, d, J=3.3Hz), 6.46 (1H, d, J=3.3Hz), 6.86 (1H, s), 6.92-7.18 (4H, m), 8.43 (1H, d, J=2.0Hz), 8.82 (1H, d, J=2.3Hz).

実施例12

5

10

15

20

2-(2-7)=2-(2-7)=2-2 -2-(2-7)=2-2 -2-(2-7)=2-2 -2-(2-7)=2 -2

窒素雰囲気下、0℃にて2-(2-フラニル)-5-メタンスルホニル-1H-ピロロ[2,3-b]ピリジン(5.5mg)のN,N-ジメチルホルムアミド溶液(0.5ml)中に、60%水素化ナトリウム(1.3mg)を加え、30分間撹拌した後に、ブロモメチルシクロヘキサン(7.4mg)を加え、15~30℃で5時間、60℃で1時間撹拌した。次いで、反応液を飽和塩化アンモニウム水溶液にあけ、酢酸エチルで抽出し、有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、白色粉末の目的物4.5mgを得た。

1H—NMR (CDC1₃) δ値: 1.00-1.20 (4H, m), 1.42-1.51 (2H, m), 1.57-1.75 (4H, m), 1.78-1.93 (1H, m), 3.15 (3H, s), 4.48 (2H, d, J=7.4Hz), 6.58-6.60 (1H, m), 6.76 (1H, d, J=3.6Hz), 6.86 (1H, s), 7.60 (1H, d, J=1.6Hz), 8.41 (1H, d, J=2.2Hz), 8.82 (1H, d, J=2.2Hz).

実施例13

2- (2-テトラヒドロフラニル) -1- (4-フルオロベンジル) -5-メタンスルホニル-インドール

10

15

20

(1) 2-(2-テトラヒドロフラニル)-5-メタンスルホニル-1-ベンゼンスルホニルインドールの調製

1ーベンゼンスルホニルアミノー2ーヨードー4ーメタンスルホニルベンゼン (256mg) の1, 4ージオキサン溶液 (6ml) に2ーエチニルテトラヒドロフラン (169mg)、ビストリフェニルホスフィンパラジウムジクロリド (21mg)、ヨウ化第一銅 (11mg)、トリエチルアミン (89mg) を順次加え、封管中60℃にて3時間撹拌した。冷却後、反応液を水にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー (ヘキサン:酢酸エチル=1:1) を用いて分離し、白色アモルファス状の目的物218mgを得た。

 $1_{\rm H-NMR}$ (CDC1₃) δ 値: 1.90-2.20 (3H, m), 2.50-2.65 (1H, m), 3.06 (3H, s), 3.90-4.00 (1H, m), 4.08-4.18 (1H, m), 5.58 (1H, m), 6.78 (1H, s), 7.42-7.57 (3H, m), 7.78-7.83 (3H, m), 8.07 (1H, d, J=1.3Hz), 8.28 (1H, d, 8.9Hz).

(2) 2- (2-テトラヒドロフラニル) - 5-メタンスルホニル-1H-インドールの調製

実施例13(1)で得た化合物(210mg)のテトラヒドロフランーメタノール混合溶液(2:1、15ml)に1規定水酸化カリウム水溶液(1.6ml)を加え、100℃にて2時間撹拌した。次いで、反応液を水にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、白色粉末の目的物113mgを得た。

 $1_{\text{H-NMR}}$ (CDCl₃) δ 値: 2.00-2.15 (3H, m), 2.32-2.48 (1H, m), 3.07 (3H, s), 3.90-4.16 (2H, m), 5.11-5.20 (1H, m), 6.45 (1H, s), 7.45 (1H, d, J=8.6Hz), 7.68 (1H, d, J=8.3Hz), 8.19 (1H, s), 8.92 (1H, brs).

10

(3) 2-(2-テトラヒドロフラニル)-5-メタンスルホニル-1-(4-フルオロベンジル)-1H-インドールの調製

窒素雰囲気下、0℃にて実施例13(2)で得た化合物(113mg)のN,Nージメチルホルムアミド溶液(5ml)中に、60%水素化ナトリウム(25.6mg)を加え、30分間撹拌した後に、4ーフルオロベンジルブロミド(121mg)を加え、1時間撹拌した。次いで、反応液を飽和塩化アンモニウム水溶液にあけ、酢酸エチルで抽出し、有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、白色粉末の目的物139mgを得た。

1H-NMR (CDC1₃) δ値: 1.35-1.95 (4H, m), 3.06 (3H, s), 3.82-4.02 (2H, m), 4.97 (1H, t, J=6.6Hz), 5.43-5.60 (2H, m), 6.66 (1H, s), 6.95-6.98 (4H, m), 7.29 (1H, d, J=8.6Hz), 7.66 (1H, dd, J=8.6, 1.7Hz), 8.24 (1H, d, J=1.3Hz). 実施例 1 4

15 2-(5,6-ジヒドロ-2H-4-ピラニル)-1-(4-フルオロベンジル) -5-メタンスルホニル-インドール

(1) 2-(4-ヒドロキシーテトラヒドロー4H-4-ピラニル) -5-メチルチオー1-ベンゼンスルホニルインドールの調製

5-メチルチオー1-ベンゼンスルホニルインドール(200 mg)のテトラヒ 1 ドロフラン溶液(5 ml)に窒素雰囲気下-78 1 にで、1 の分間撹拌し、次いでへキ 1 のの 1 の 1 のの 1 の

水溶液にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、 減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(へキ サン:酢酸エチル=1:1)及び(メタノール:クロロホルム=1:20)を用 いて分離し、無色油状の目的物 3 9 mg を得た。

- 5 l_H—NMR (CDCl₃) δ値: 2.10-2.22 (2H, m), 2.37-2.55 (5H, m), 3.79-4.10 (4H, m), 4.80 (1H, s), 6.66 (1H, s), 7.16 (1H, dd, J=8.6, 1.7Hz), 7.30-7.49 (4H, m), 7.77-7.89 (3H, m).
 - (2) 2-(5,6-ジヒドロ-2H-4-ピラニル)-1-ベンゼンスルホニル-5-メチルチオインドールの調製
- 10 実施例14(1)で得た化合物(39mg)のベンゼン溶液(10ml)にpートルエンスルホン酸・1水和物(3.7mg)を加え、1時間加熱還流した。次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮し、無色油状の目的物33.7mgを得た。
- 15 1H—NMR (CDCl₃) δ値: 2.49 (3H, s), 2.55-2.65 (2H, m), 3.97 (2H, t, J=5.3Hz), 4.35 (2H, m), 5.79 (1H, s), 6.37 (1H, s), 7.22-7.36 (4H, m), 7.45-7.50 (1H, m), 7.61 (2H, d, J=7.3Hz), 8.09 (1H, d, J=8.6Hz).
 - (3) 2-(5,6-ジヒドロ-2H-4-ピラニル)-1-ベンゼンスルホニル-5-メタンスルホニルインドールの調製
- 実施例14(2)で得た化合物(33.7mg)のテトラヒドロフランー水混合溶液(3:1、4ml)に15~30℃にて、オキソン(登録商標)(134mg)を加え、15時間撹拌した。次いで、反応液を水にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、白色粉末の目的物28.8mgを得た。
 - $1_{\rm H-NMR}$ (CDC1₃) δ 値: 2.56 (2H, m), 3.07 (3H, s), 3.98 (2H, t, J=5.3Hz), 4.35 (2H, d, J=2.3Hz), 5.80 (1H, s), 6.54 (1H, s), 7.39 (2H, t, J=7.6Hz), 7.54 (1H, t, J=7.3Hz), 7.65 (2H, d, J=7.3Hz), 7.86 (1H, dd, J=8.6, 1.7Hz), 8.05 (1H, d, J=1.3Hz), 8.37 (1H, d, J=8.6Hz).

10

15

20

25

(4) 2-(5,6-ジヒドロ-2H-4-ピラニル)-5-メタンスルホニル インドールの調製

実施例14(3)で得た化合物(28.8mg)のメタノール溶液(3ml)に1規定水酸化カリウム水溶液(0.69ml)を加え、100℃にて1時間撹拌した。 次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮し、白色粉末の目的物16.5mgを得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 3.97 (2H, t, J=5.6Hz), 4.38 (2H, d, J=2.6Hz), 6.17 (1H, s), 6.60 (1H, s), 7.45 (1H, d, J=8.6Hz), 7.72 (1H, dd, J=8.6, 1.7Hz), 8.20 (1H, s), 8.48 (1H brs).

(5) 2-(5,6-ジヒドロ-2H-4-ピラニル)-1-(4-フルオロベンジル) -5-メタンスルホニルーインドールの調製

窒素雰囲気下、0 \mathbb{C} にて実施例 1 4 (4) で得た化合物(1 6 . 5 \mathbb{m} \mathbb{D} の \mathbb{N} \mathbb{N}

 1 H—NMR (CDCl $_{3}$) δ 值: 2.42-2.44 (2H, m), 3.07 (3H, s), 3.90 (2H, t, J=5.3Hz), 4.26 (2H, d, J=2.6Hz), 5.42 (2H, s), 5.84 (1H, s), 6.64 (1H, s), 6.93-7.04 (4H, m), 7.24 (1H, d, J=9.2Hz), 7.67 (1H, dd, J=8.9, 1.7Hz), 8.25 (1H, d, J=1.3Hz).

実施例15

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (5-メトキシカルボニルピリジン-2-イル) インドール

- (1) 5-エトキシカルボニル-2-トリメチルシリルエチニルビリジンの調製 6-クロロニコチン酸エチルエステル (1.92g) のN, N-ジメチルホルムアミド溶液 (1ml) に、トリメチルシリルアセチレン (2.0g)、ビストリフェニルホスフィンパラジウムジクロリド (210mg)、ヨウ化第一銅 (60mg)、トリエチルアミン (1.2g) を順次加え、封管中100℃にて2時間撹拌した。冷却後、反応液を飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した後、無水硫酸マグネシウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=10:1) を用いて分離し、褐色油状の目的物2.38gを得た。
- 10 l_H-NMR (CDC1₃) δ値: 0.29 (9H, s), 1.41 (3H, t, J=7.3Hz), 4.42 (2H, q, J=7.3Hz), 7.52 (1H, d, J=7.9Hz), 8.25 (1H, dd, J=2.0, 7.9Hz), 9.15 (1H, d, J=1.7Hz).
 - (2) 1ーベンゼンスルホニルー2ー(5ーエトキシカルボニルピリジンー2ーイル) -5-メタンスルホニルインドールの調製
- 28 室素雰囲気下、5-エトキシカルボニル-2-トリメチルシリルエチニルピリジン (3.80g)、2-ベンゼンスルホニルアミノ-3-ヨード-5-メタンスルホニルベンゼン (3.50g)、酢酸カリウム (6.00g)、ヨウ化第一銅(75mg)、ジクロロビス (トリフェニルホスフィン) パラジウム (0.27g)及びN, N-ジメチルホルムアミド (10ml) の混合物を100℃にて8時間撹拌した。次いで、反応液に水及び酢酸エチルを加え、不溶物を濾別し、濾液を酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (メタノール:ジクロロメタン=1:100) に付し、目的物を1.22g得た。

 1_{H-NMR} (CDC13) δ 値: 1.46 (3H, t, J=7.2Hz), 3.09 (3H, s), 4.48 (2H, q, J=7.2Hz)

10

15

25

Hz), 7.01 (1H, s), 7.40-7.47 (2H, m), 7.53-7.59 (1H, m), 7.76-7.80 (3H, m), 7.93 (1H, dd, J=1.7, 8.9Hz), 8.16 (1H, d, J=1.7Hz), 8.37 (1H, d, J=8.9Hz), 8.32 (1H, dd, J=2.0, 8.2Hz), 9.28 (1H, d, J=1.7Hz).

(3) 2-(5-エトキシカルボニルピリジン-2-イル)-1-(4-フルオロベンジル)-5-メタンスルホニルインドールの調製

窒素雰囲気下、1ーベンゼンスルホニルー2ー(5ーエトキシカルボニルピリジンー2ーイル)-5ーメタンスルホニルインドール(1.22g)、水酸化カリウム(0.33g)及びエタノール(120ml)の混合物を15~30℃にて3時間撹拌した。反応液に水を加え、塩酸で中和した後に析出した結晶を濾取した。得られた粗結晶に60%水素化ナトリウム(90mg)、4ーフルオロベンジルブロミド(0.51g)及びN,Nージメチルホルムアミド(20ml)を加え、15~30℃にて30分間撹拌した。次いで、反応液に水を加え不溶物を濾別し、濾液を酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)に付し、目的物を0.68g得た。

 $1_{\rm H-NMR}$ (CDC1₃) δ 値: 1.42 (3H, t, J=7.3Hz), 3.10 (3H, s), 4.43 (2H, q, J=7.3Hz), 6.03 (2H, s), 6.87-7.02 (4H, m), 7.20 (1H, s), 7.46 (1H, d, J=8.9Hz), 7.76 (1H, dd, J= 2.0, 8.9Hz), 7.84 (1H, d, J=8.3Hz), 8.33-8.36 (2H, m), 9.22 (1H, d, J=2.0Hz).

20 (4) 1-(4-フルオロベンジル)-5-メタンスルホニルー2-(5-メトキシカルボニルピリジン-2-イル)インドールの調製

窒素雰囲気下、2-(5-x)キシカルボニルピリジン-2-(1)-1-(4-7ルオロベンジル)-5-メタンスルホニルインドール(0.68g)、水酸化カリウム(0.24g)及びメタノール(45m1)の混合物を $15\sim30$ Cにて30分間撹拌した。反応液に水を加え、塩酸で中和した後に析出した結晶を濾取した。得られた粗結晶を再結晶(メタノール)に付し、目的物を0.44g得た。1H-NMR (DMSO-d6) δ 値: 3.21 (3H,s), 3.90 (3H,s), 6.15 (2H,s), 7.02 (4H,d, J=8.2Hz), 7.54 (1H,s), 7.74 (1H,dd, J=1.7Hz), 8.36 (1H,dd, J=2.0,8.3Hz), 8.13 (1H,d, J=8.3Hz), 8.29 (1H,d, J=1.7Hz), 8.36 (1H,dd, J=2.0,8.3Hz),

9. 14 (1H, d, J=2. 0Hz).

実施例16

1 - (4 - フルオロベンジル) - 2 - (5 - カルボキシピリジン - 2 - イル) - 5 - メタンスルホニルインドール

5 窒素雰囲気下、1-(4-フルオロベンジル)-5-メタンスルホニルー2-(5-メトキシカルボニルピリジン-2-イル)インドール(0.37g)、水酸化カリウム(0.12g)及びメタノール(40ml)の混合物を3時間加熱還流した。反応液に水を加え、塩酸で中和した後に析出した結晶を濾取した。得られた粗結晶を再結晶(エタノール)に付し、目的物を0.35g得た。

実施例17

15 1- (4-フルオロベンジル) - 5-メタンスルホニル-2- (5-メチルアミ ノカルボニルピリジン-2-イル) インドール

窒素雰囲気下、1-(4-7)ルオロベンジル) -2-(5-7)ルボキシピリジン-2-7ル) -5-メタンスルホニルインドール $(20\,\mathrm{mg})$ 、N, N'-7ルボニルジイミダゾール $(10\,\mathrm{mg})$ 及びテトラヒドロフラン $(1\,\mathrm{ml})$ の混合物を15~

30℃にて10分間撹拌した後、40%メチルアミンーメタノール溶液 (0.1 ml)を加え、更に15~30℃にて10分間撹拌した。次いで、反応液を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:5)に付し、目的物を13 mg 得た。

 1_{H-NMR} (DMSO-d₆) δ 値: 2.82 (3H, d, J=4.6Hz), 3.20 (3H, s), 6.13 (2H, s), 7.03 (4H, d, J=7.9Hz), 7.47 (1H, s), 7.73 (1H, dd, J=1.7, 8.9Hz), 7.80 (1H, d, J=8.9Hz), 8.07 (1H, d, J=8.3Hz), 8.25-8.28 (2H, m), 8.65-8.75 (1H, m), 9.04 (1H, d, J=1.7Hz).

実施例18

5

15

20

10 1- (4-フルオロベンジル) -5-メタンスルホニル-2- (3-ピリジルメチル) インドール

(1) 1-ベンゼンスルホニル-5-メチルチオ-2-(3-ピリジニルヒドロ キシメチル) インドールの調製

窒素雰囲気下、1ーベンゼンスルホニルー5ーメチルチオインドール (0.91g)及びテトラヒドロフラン (8ml)の混合物にリチウムジイソプロピルアミド溶液 (3.22mol)を一78℃にて滴下した後30分間、更に0℃に昇温させ30分間撹拌した。次いで、ニコチンアルデヒド (0.42g)及びテトラヒドロフラン (2ml)の混合物を一78℃にて滴下した後、徐々に15~30℃まで昇温させながら18時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3)に付し、目的物を0.70g得た。

 1 H-NMR (CDC1₃) δ 値: 2.46 (3H, s), 3.95-4.08 (1H, brs), 6.14 (1H, s), 6.40 (1H, s), 7.23-7.33 (3H, m), 7.39-7.46 (2H, m), 7.53-7.59 (1H, m), 7.72-7.81

10

15

20

25

(3H, m), 8.00 (1H, d, J=8.6Hz), 8.54-8.57 (2H, m).

(2) 1-(4-フルオロベンジル)-5-メタンスルホニル-2-ニコチノイルインドールの調製

窒素雰囲気下、1-ベンゼンスルホニル-5-メチルチオ-2-(3-ピリジ ニルヒドロキシメチル) インドール (0.38g)、デスマーチン試薬 (1,1,1-1)トリス (アセチロキシ) - 1、1 - ジヒドロ-1、2 - ベンズヨードキソールー 3 (1 H) - オン) (0.60g) 及びジクロロメタン (4 0 ml) の混合物を 1 5 ~ 30℃にて10分間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、 ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。 得られた残渣にm-クロロ過安息香酸(0.50g)及びジクロロメタン(20ml) を加え、15~30℃にて20分間撹拌した。反応液に飽和炭酸水素ナトリウム 水溶液を加え、ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥、濾過、減 圧下濃縮した。得られた残渣に水酸化カリウム (0.14g)及びエタノール (20ml)を加え、70℃にて20分間撹拌した。反応液に氷水を加え、析出し た結晶を濾取した。得られた粗結晶に60%水素化ナトリウム(44mg)、4-フルオロベンジルブロミド (O. 19g) 及びN, N-ジメチルホルムアミド (5ml)を加え、15~30℃にて12時間撹拌した。次いで、反応液に水を加 え不溶物を濾別し、濾液を酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸 ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムク ロマトグラフィー (ヘキサン:酢酸エチル=1:3) に付し、目的物を0.10g 得た。

 1 H—NMR (CDC1₃) δ 值: 3.10 (3H, s), 5.86 (2H, s), 6.94-7.16 (4H, m), 7.24 (1H, s), 7.49 (1H, dd, J=5.0, 7.9Hz), 7.58 (1H, d, J=8.9Hz), 7.91 (1H, dd, J=1.7, 8.9Hz), 8.17 (1H, dt, J=2.0, 7.9Hz), 8.41 (1H, d, J=1.7Hz), 8.86 (1H, dd, J=2.0, 5.0Hz), 9.09 (1H, d, J=2.0Hz).

(3) 1-(4-フルオロベンジル)-5-メタンスルホニルー2-(3-ピリジルメチル)インドールの調製

窒素雰囲気下、1-(4-7)ルオロベンジル)-5-メタンスルホニル-2-ニコチノイルインドール(0.14g)、ヒドラジン一水和物(0.17g)、水

酸化カリウム (0.05g) 及びエチレングリコール (3ml) を加え、110℃にて8時間撹拌した。反応液に水を加え、ジクロロメタンで抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:3)に付し、目的物を13mg得た。

 $1_{\rm H-NMR}$ (CDC1₃) δ 値: 3.08 (3H, s), 4.05 (2H, s), 5.25 (2H, s), 6.46 (1H, s), 6.79-6.98 (4H, m), 7.21 (1H, dd, J=4.6, 7.9Hz), 7.32 (1H, d, J=8.6Hz), 7.43 (1H, dt, J=2.0, 7.9Hz), 7.69 (1H, dd, J=1.7, 8.6Hz), 8.22 (1H, d, J=1.7Hz), 8.45 (1H, d, J=1.7Hz), 8.45-8.50 (2H, m).

10 実施例19

5

15

20

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (3-ピリジル) インドール

(1) 1ーベンゼンスルホニルー5ーメタンスルホニルー2ー(3ーピリジル) インドールの調製

窒素雰囲気下、3ートリメチルシリルエチニルピリジン(1.07g)、2ーベンゼンスルホニルアミノー3ーヨードー5ーメタンスルホニルベンゼン(1.75g)、酢酸カリウム(1.60g)、ヨウ化第一銅(60mg)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.20g)及び1,4ージオキサン(4ml)の混合物を100℃にて12時間撹拌した。次いで、反応液に水及び酢酸エチルを加え、不溶物を濾別し、濾液を酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3)に付し、目的物を1.04g

 1 H-NMR (CDC1₃) δ 值: 3.11 (3H, s), 6.73 (1H, s), 7.33-7.71 (6H, m), 7.90

20

(1H, dt, J=2.0, 7.6Hz), 7.96 (1H, dd, J=1.7, 8.9Hz), 8.15 (1H, d, J=2.0Hz), 8.52-8.55 (2H, m), 8.71-8.73 (1H, m).

(2) 1-(4-フルオロベンジル)-5-メタンスルホニルー2-(3-ピリジル) インドールの調製

2 室素雰囲気下、1ーベンゼンスルホニルー5ーメタンスルホニルー2ー(3ーピリジル)インドール(1.00g)、水酸化カリウム(0.32g)、1,4ージオキサン(20ml)及びエタノール(20ml)の混合物を15~30℃にて3時間撹拌した。反応液に水を加え、塩酸で中和した後に、析出した結晶を濾取した。得られた粗結晶に60%水素化ナトリウム(80mg)、4ーフルオロベンジルブロミド(0.34g)及びN,Nージメチルホルムアミド(8ml)を加え、15~30℃にて1時間撹拌した。次いで、反応液に水を加え、酢酸エチルで抽出し、飽和炭酸水素ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3)に付し、目的物を0.42g得た。

1_H—NMR (CDC1₃) δ値: 3.11 (3H, s), 5.38 (2H, s), 6.85 (1H, s), 6.87-7.01 (5H, m), 7.34-7.38 (2H, m), 7.68 (1H, dt, J=2.0, 7.9Hz), 7.74 (1H, dd, J=1.7, 8.9Hz), 8.34 (1H, d, J=1.7Hz), 8.60-8.85 (2H, m). 実施例 2 0

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(1-オキシ-3-ピリジル) インドール

窒素雰囲気下、1-(4-7)ルオロベンジル)-5-メタンスルホニルー2-(3-ピリジル)インドール (0.28g)、m-クロロ過安息香酸 (0.34g) 及びジクロロメタン (20ml)を加え、15-30 $^{\circ}$ にて26時間撹拌した。反応液にチオ硫酸ナトリウム及び炭酸カリウムを加え、濾過、減圧下濃縮した。得

られた残渣をシリカゲルカラムクロマトグラフィー (ジクロロメタン:メタノール=20:1) に付し、目的物を46mg 得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 3.10 (3H, s), 5.41 (2H, s), 6.86-7.03 (5H, m), 7.24 (1H, dt, J= 1.3, 7.9Hz), 7.27-7.39 (2H, m), 7.77 (1H, dd, J=1.7, 8.9Hz), 8.22-8.35 (3H, m).

実施例21

5

10

15

20

1- (4-フルオロベンゼンスルホニル)-5-メタンスルホニル-2- (チア・ゾール-2-イル) インドール

5-メタンスルホニルー2-(チアゾールー2-イル)インドール(50 mg)及びN,N-ジメチルホルムアミド(1.8 ml)の混合物に、0 $\mathbb C$ にて60 % 水素化ナトリウム(10 mg)を加え、同温度で15 分間撹拌した。反応混合物に0 $\mathbb C$ にて、4-フルオロベンゼンスルホニルクロリド(52 mg)を加え、15 ~ 30 $\mathbb C$ ∞ で 1 時間撹拌した。反応混合物を酢酸エチルで希釈した後、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、硫酸ナトリウムで乾燥、減圧下濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(∞ + サン:酢酸エチル=1:1)に付し、白色アモルファス状の目的物を77 mg 得た。

 1 H—NMR (CDC1₃) δ 値: 3.09 (3H, s), 7.04 (1H, s), 7.15 (2H, t, J=8.2Hz), 7.63 (1H, d, J=3.3Hz), 7.96 (1H, dd, J=1.7, 8.6Hz), 8.0-8.1 (3H, m), 8.20 (1H, d, J=1.7Hz), 8.36 (1H, d, J=8.6Hz).

実施例22

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-(5-メチル-[1, 2, 4] トリアゾール-3-イル) インドール

10

15

20

(1) 1-ベンゼンスルホニルー5-メチルチオインドールー2-カルボン酸メチルエステルの調製

1ーベンゼンスルホニルー5ーメチルチオインドールー2ーカルボン酸(3.5g)、硫酸(10ml)及びメタノール(10ml)の混合物を12時間加熱環流した。反応混合物を氷水中に注ぎ、ジクロロメタンで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮した後得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン)に付し、白色結晶の目的物3.4gを得た。

1H-NMR (CDC1₃) δ 値: 2.51 (3H, s), 3.93 (3H, s), 7.10 (1H, s), 7.37 (1H, dd, J=2.0, 8.9Hz), 7.44 (1H, d, J=2.0Hz), 7.48 (2H, t, J=7.9Hz), 7.58 (1H, t, J=7.9Hz), 8.01 (2H, d, J=7.9Hz), 8.05 (1H, d, J=8.9Hz).

(2) 5-メタンスルホニルインドールー2ーカルボン酸メチルエステルの調製実施例22(1)で得られた化合物(3.4g)、テトラヒドロフラン(90ml)及び水(45ml)の混合物に0℃にてオキソン(登録商標)(8.7g)を加え、20分間撹拌し、15~30℃で1時間撹拌した。酢酸エチルで希釈し、有機層を水洗、硫酸ナトリウムで乾燥、溶媒を減圧留去して、白色アモルファス状の1ーベンゼンスルホニルー5ーメタンスルホニルインドールー2ーカルボン酸メチルエステル3.5gを粗生成物として得、これ以上精製することなく次の反応に用いた。

得られた1-ベンゼンスルホニル-5-メタンスルホニルインドール-2-カルボン酸メチルエステル (3.5g)、テトラヒドロフラン (45ml) 及びメタノール (12ml) の混合物にに0℃にて水酸化カリウム (0.79g) を加え、同温度で3時間撹拌した。2規定塩酸を加え、ジクロロメタンで抽出した。有機層を水洗、硫酸ナトリウムで乾燥、溶媒を減圧留去し、白色アモルファス状の5-

10

15

25

メタンスルホニルインドール-2-カルボン酸メチルエステル2.2gを粗生成物として得た。

 1 H-NMR (CDC1 $_{3}$) δ 値: 3.10 (3H, s), 3.99 (3H, s), 7.35 (1H, d, J=1.7Hz), 7.58 (1H, d, J=8.6Hz), 7.86 (1H, dd, J=1.7, 8.6Hz), 8.38 (1H, s), 9.24 (1H, brs).

(3) 1-(4-フルオロベンジル)-5-メタンスルホニルインドール-2-カルボン酸メチルエステルの調製

実施例22(2)で得られた化合物(1.2g)及びN、Nージメチルホルムアミド(23ml)の混合物に、0 \mathbb{C} にて60%水素化ナトリウム(204mg)を加え、同温度で20分間撹拌した。反応混合物に0 \mathbb{C} にて4-7ルオロベンジルブロミド(0.65ml)を加え、15 \mathbb{C} 30 \mathbb{C} で2時間撹拌した。2 規定塩酸を加え、酢酸エチルで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮した後得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン)に付し白色アモルファス状の目的物1gを得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 值: 3.09 (3H, s), 3.92 (3H, s), 5.86 (2H, s), 6.9-7.1 (4H, m), 7.50 (1H, s), 7.50 (1H, d, J=8.6Hz), 7.83 (1H, dd, J=2.0, 8.6Hz), 8.38 (1H, d, J=2.0Hz).

(4) 1- (4-フルオロベンジル) -5-メタンスルホニルインドール-2-カルボン酸の調製

実施例22(3)で得た化合物(0.26g)、テトラヒドロフラン(5ml) 20 及びメタノール(10ml)の混合物に15~30℃で1規定水酸化ナトリウム水 溶液(5ml)を加え、2時間撹拌した。1規定塩酸を加え、ジクロロメタンで抽 出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮し、白色結晶の目 的物0.25gを得た。

1H-NMR (CDC1₃) δ値: 3.10 (3H, s), 5.86 (2H, s), 6.9-7.1 (4H, m), 7.52 (1H, d, J=8.9Hz), 7.64 (1H, s), 7.86 (1H, dd, J=1.6, 8.9Hz), 8.41 (1H, d, J=1.6Hz). (5) 1 - (4-フルオロベンジル) - 5-メタンスルホニルインドールー 2 - カルボキサミドの調製

実施例22(4)で得た化合物(0.23g)及びテトラヒドロフラン(7ml)の混合物に0℃にて、トリエチルアミン(0.19ml)及びクロロ炭酸エチル

10

15

(0.1ml)を加え、同温度にて20分間撹拌し、0℃にてアンモニアガスを混合物中に吹き込み、同温度にて、30分間撹拌した。水を加え酢酸エチルで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮し、得られた残渣を再結晶(酢酸エチル)することにより、白色結晶の目的物0.06gを得た。

 $1_{\text{H-NMR}}$ (CDC13) δ 値: 3.09 (3H, s), 5.4-6.2 (2H, m), 5.86 (2H, s), 6.9-7.0 (2H, m), 7.0-7.2 (3H, m), 7.50 (1H, d, J=8.9Hz), 7.79 (1H, dd, J=1.7, 8.9Hz), 8.35 (1H, d, J=1.7Hz).

(6) 1-(4-7)ルオロベンジル) -5-メタンスルホニルー2-(5-メチルー[1, 2, 4]トリアゾールー3-イル) インドールの調製

実施例22(5)で得た化合物(55mg)及びジメチルアセトアミドジメチルアセタール(1ml)の混合物を110℃にて1時間撹拌した。反応混合物を減圧下濃縮して得た残渣、ヒドラジン1水和物(0.05ml)及び酢酸(0.5ml)の混合物を90℃にて2時間撹拌した。水を加え、酢酸エチルで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:2)に付し、白色粉状の目的物25mgを得た。

 $1_{\rm H-NMR}$ (CDC1₃) δ 値: 2.56 (3H, s), 3.09 (3H, s), 6.00 (2H, s), 6.92 (2H, t, J=8.6Hz), 7.00 (2H, m), 7.37 (1H, s), 7.39 (1H, d, J=8.9Hz), 7.71 (1H, dd, J=1.7, 8.9Hz), 8.32 (1H, d, J=1.7Hz).

20 実施例23

1-(4-7)ルオロベンジル)-5-メタンスルホニルインドール-2-カルボキサミド (6 3 mg) 及びジメチルアセトアミドジメチルアセタール (1 ml) の

10

20

混合物を110℃にて1時間撹拌した。反応混合物を減圧下濃縮して得た残渣、ヒドロキシルアミン塩酸塩(25mg)、2規定水酸化ナトリウム水溶液(0.18ml)、1,4-ジオキサン(0.4ml)及び酢酸(0.4ml)の混合物を90℃にて2時間撹拌した。水を加え、酢酸エチルで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)に付し、白色結晶の目的物50mgを得た。

 $1_{\rm H-NMR}$ (CDC1₃) δ 値: 2.47 (3H, s), 3.10 (3H, s), 6.02 (2H, s), 6.9-7.1 (4H, m), 7.50 (1H, d, J=8.9Hz), 7.64 (1H, s), 7.84 (1H, dd, J=1.7, 8.9Hz), 8.41 (1H, d, J=1.7Hz).

実施例24

1-(4-7)ルオロベンジル)-5-メタンスルホニル-2-(5-メチル-10 [1, 2, 4] オキサジアゾール-3-イル)インドール

(1) 2-シアノ-1-(4-フルオロベンジル)-5-メタンスルホニルイン15 ドールの調製

1- (4-フルオロベンジル) -5-メタンスルホニルインドール-2-カルボキサミド (100mg) 及びジクロロメタン (2ml) の混合物に15~30℃にて、トリエチルアミン (0.09ml)、及び無水トリフルオロ酢酸 (0.09ml)を加え、同温度にて2時間撹拌した。水を加え、ジクロロメタンで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=2:1) に付し、白色結晶の目的物68mgを得た。

 $1_{\text{H-NMR}}$ (CDC13) δ 值: 3.08 (3H, s), 5.51 (2H, s), 6.9-7.1 (2H, m), 7.1-7.2 (2H, m), 7.39 (1H, s), 7.49 (1H, d, J=8.9Hz), 7.88 (1H, dd, J=1.6, 8.9Hz),

10

20

8.37 (1H, d, J=1.6Hz).

(2) 1-(4-7)ルカロベンジル) -5-メタンスルホニルー 2-(5-メチルー [1, 2, 4] オキサジアゾールー 3-イル) インドールの調製

実施例24(1)で得た化合物(68mg)、ヒドロキシルアミン塩酸塩(22mg)、水酸化カリウム(18mg)及びエタノール(1ml)の混合物を2時間加熱還流した。不溶物を濾過した後、減圧下濃縮して得た残渣及びジメチルアセトアミドジメチルアセタール(1ml)の混合物を100℃にて1時間撹拌した。水を加え酢酸エチルで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)に付し、白色結晶の目的物50mgを得た。

 $1_{\text{H-NMR}}$ (CDC1₃) δ 値: 2.66 (3H, s), 3.10 (3H, s), 5.92 (2H, s), 6.9-7.1 (4H, m), 7.46 (1H, d, J=8.9Hz), 7.52 (1H, s), 7.80 (1H, dd, J=1.7, 8.9Hz), 8.37 (1H, d, 1.7Hz).

実施例25

15 1- (4-フルオロベンジル) -5-メタンスルホニルー2- (テトラヒドロピラン-4-イル) インドール

2- (5, 6-ジヒドロ-2H-4-ピラニル) -1- (4-フルオロベンジル) -5-メタンスルホニルーインドール (8 3 mg)、1 0%パラジウム炭素 (15 mg)及びエタノール(5 ml)の混合物を水素雰囲気下、15~30℃で24時間撹拌した。混合物を濾過後、母液を減圧下濃縮して得た残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=2:1) に付し、白色結晶の目的物40 mg を得た。

1H—NMR (CDC1₃) δ値: 1.7-2.0 (4H, m), 2.88 (1H, m), 3.07 (3H, s), 3.47 (2H, m), 4.05 (2H, m), 5.39 (2H, s), 6.54 (1H, s), 6.84-6.91 (2H, m), 6.99 (2H,

t, J=8.6Hz), 7.26 (1H, d, J=8.6Hz), 7.65 (1H, dd, J=1.7, 8.6Hz), 8.22 (1H, d, J=1.7Hz).

実施例26

5

10

15

5ーメタンスルホニルー2ー(1ーオキシー2ーピリジル)ー1ー(4ーフルオロベンジル)ー1Hーピロロ[2,3-b]ピリジン

5-メタンスルホニルー2-(2-ピリジル)-1-(4-フルオロベンジル)-1H-ピロロ[2,3-b]ピリジン(10mg)及びジクロロエタン(0.3ml)の混合物に、0℃にてm-クロロ過安息香酸(10mg)を加え、15~30℃にて3時間撹拌した。反応混合物をジクロロメタンで希釈し、1規定水酸化ナトリウム水溶液で洗浄後、硫酸ナトリウムで乾燥、減圧下濃縮し、得られた残渣をシリカゲル分取薄層クロマトグラフィー(ジクロロメタン:メタノール=95:5)に付し、黄白色粉状の目的物2mgを得た。

 1 H—NMR (CDC1 $_{3}$) δ 値: 3.16 (3H, s), 5.76 (2H, s), 6.7-6.9 (5H, m), 7.08-7.21 (2H, m), 7.35 (1H, m), 8.35 (1H, d, J=6.6Hz), 8.56 (1H, d, J=2.3Hz), 8.97 (1H, d, J=2.3Hz).

実施例27

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (2-チアゾリルメチル) インドール

10

15

20

(1) 1-ベンゼンスルホニルー5-メチルチオインドールー2-カルボン酸メチルエステルの調製

1ーベンゼンスルホニルー5ーメチルチオインドールー2ーカルボン酸 (3.5g)、硫酸 (10ml) およびメタノール (10ml) の混合物を12時間 加熱還流した。反応混合物を氷水中に注ぎ、ジクロロメタンで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮した後得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン)に付して、白色結晶の目的物3.4g を得た。

 1 H—NMR (CDCl₃) δ 値:2.51 (3H, s), 3.93 (3H, s), 7.10 (1H, s), 7.37 (1H, dd, J=2.0, 8.9 Hz), 7.44 (1H, d, J=2.0 Hz), 7.48 (2H, t, J=7.9 Hz), 7.58 (1H, t, J=7.9 Hz), 8.01 (2H, d, J=7.9 Hz), 8.05 (1H, d, J=8.9 Hz).

(2) 5-メタンスルホニルインドール-2-カルボン酸メチルエステルの調製実施例27(1)で得られた化合物(3.4g)、テトラヒドロフラン(90ml)及び水(45ml)の混合物に0℃にてオキソン(8.7g)を加え、20分間撹拌し、15~30℃で1時間撹拌した。酢酸エチルで希釈し、有機層を水洗、硫酸ナトリウムで乾燥、溶媒を減圧留去して、白色アモルファス状の1-ベンゼンスルホニル-5-メタンスルホニルインドール-2-カルボン酸メチルエステル3.5gを粗生成物として得た。

得られた1-ベンゼンスルホニル-5-メタンスルホニルインドール-2-カルボン酸メチルエステル (3.5g)、テトラヒドロフラン (45ml) およびメタノール (12ml) の混合物に、0℃にて水酸化カリウム (0.79g) を加え、同温度で3時間撹拌した。2規定塩酸を加え、ジクロロメタンで抽出した。有機層を水洗、硫酸ナトリウムで乾燥、溶媒を減圧留去し、白色アモルファス状の5-メタンスルホニルインドール-2-カルボン酸メチルエステル2.2gを粗生成

10

15

20

25

物として得た。

¹H-NMR (CDCl₃) δ値:3.10 (3H, s), 3.99 (3H, s), 7.35 (1H, d, J=1.7 Hz), 7.58 (1H, d, J=8.6 Hz), 7.86 (1H, dd, J=1.7, 8.6 Hz), 8.38 (1H, s), 9.24 (1H, brs). (3) 1- (4-フルオロベンジル) -5-メタンスルホニルインドールー2-カルボン酸メチルエステルの調製

実施例27(2)で得られた化合物(1.2g)およびN,N-ジメチルホルムアミド(23ml)の混合物に0℃にて60%水素化ナトリウム(204mg)を加え、同温度で20分間撹拌した。反応混合物に0℃にて4-フルオロベンジルブロミド(0.65ml)を加え、15~30℃で2時間撹拌した。2規定塩酸を加え、酢酸エチルで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥、減圧下濃縮した後得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン)に付して、白色アモルファス状の目的物 1g を得た。

 1 H—NMR (CDC1₃) δ 值:3.09 (3H, s), 3.92 (3H, s), 5.86 (2H, s), 6.9-7.1 (4H, m), 7.50 (1H, s), 7.50 (1H, d, J=8.6 Hz), 7.83 (1H, dd, J=2.0, 8.6 Hz), 8.38 (1H, d, J=2.0 Hz).

(4) 1-(4-フルオロベンジル)-5-メタンスルホニルインドール-2-カルバルデヒドの調製

窒素雰囲気下、水素化リチウムアルミニウム(366mg)のテトラヒドロフラン溶液(20ml)に、0℃で実施例27(3)で得られた1-(4-7)ルオロベンジル)-5-メタンスルホニルインドール-2-カルボン酸メチルエステル(1.86g)のテトラヒドロフラン溶液(20ml)を滴下し、同温度で30分間撹拌した。反応溶液を水にあけ、セライト濾過した後、クロロホルムで抽出した。有機層を水洗、乾燥後、溶媒を減圧留去して(1-(4-7)ルオロベンジル)-5-メタンスルホニルーインドール-2-イル)-メタノール(1.8g)を得た。得られたアルコール体(1.8g)のジクロロメタン溶液(100m)に、 $15\sim30$ ℃にて二酸化マンガン(15.3g)を加え、同温度で30分間撹拌した。反応溶液をセライト濾過した後、溶媒を減圧留去し、黄色粉末の目的物 1.5g(88.4%)を得た。

 $^{1}\text{H}-\text{NMR}$ (CDC13) δ 値:3.09 (3H, s), 5.83 (2H, s), 6.94 (2H, t, J=8.3Hz),

25

7. 03-7. 15 (2H, m), 7. 50 (1H, s), 7. 55 (1H, d, J=8.9 Hz), 7. 89 (1H, dd, J=1.7, 8.9 Hz), 8. 44 (1H, s), 9. 97 (1H, s).

(5) (1-(4-フルオロベンジル)-5-メタンスルホニルインドール-2-イル) (チアゾール-2-イル)-メタノールの調製

5 2 - ブロモチアゾール(1 2 3 mg)及びテトラヒドロフラン(3.5 ml)の混合物に1.6 1 M の n - ブチルリチウムへキサン溶液(0.5 1 ml)を - 7 8 ℃にて加え、3 0 分間撹拌した後、実施例2 7 (4) で得られた1 - (4 - フルオロベンジル)- 5 - メタンスルホニルインドール - 2 - カルバルデヒド(5 0 mg)のテトラヒドロフラン(3.5 ml)溶液を同温度にて加え、そのまま3 0 分間撹拌した。反応混合物を飽和塩化アンモニウム水溶液にあけ、クロロホルムで抽出した後、水にて洗浄、無水硫酸マグネシウムで乾燥、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて黄色油状の目的物 1 8 mg を得た。

¹H-NMR (CDCl₃) δ値: 3.09 (3H, s), 5.56 (1H, d, J=17.5Hz), 5.67 (1H, d, J=16.2Hz), 6.27 (1H, s), 6.63 (1H, s), 6.90-7.02 (4H, m), 7.41 (1H, d, J=8.9Hz), 7.54 (1H, d, J=3.3Hz), 7.62-7.70 (2H, m), 8.20 (1H, d, J=1.3Hz). (6) 1- (4-フルオロベンジル) -5-メタンスルホニルー2- (2-チアゾリルカルボニル) インドールの調製

実施例27(5)で得られた化合物(110mg)のジクロロメタン(20ml) 20 溶液に、二酸化マンガン(900mg)を15~30℃にて加え、30分間撹拌した。次いで反応溶液をセライト濾過した後、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて黄色粉末の目的物50mgを得た。

 1 H—NMR(CDC1₃) δ 値: 3.10(3H, s), 5.91(2H, s), 6.96(2H, t, J=8.6Hz), 7.07-7.13(2H, m), 7.55(1H, d, J=8.9Hz), 7.75(1H, d, J=3.0Hz), 7.89(1H, dd, J=1.7, 8.9Hz), 8.13(1H, d, J=3.0Hz), 8.49(1H, s), 8.61(1H, s).

(7) 1-(4-フルオロベンジル)-5-メタンスルホニルー2-(2-チア ゾリルメチル)インドールの調製

実施例27 (6) で得られた化合物 (88mg) と水酸化カリウム (25mg) 及

びエチレングリコール (2.5 ml) の混合物に、ヒドラジン (65 mg) を加え、 120℃にて3時間撹拌した。反応混合物を水にあけ、クロロホルムで抽出した 後、無水硫酸マグネシウムで乾燥、減圧下濃縮した。得られた残渣をシリカゲル 分取薄層クロマトグラフィー (ヘキサン:酢酸エチル=1:1) と (クロロホル ム:メタノール=15:1) を用いて2度分離精製し、黄色油状の目的物39 mg を得た。

 $^{1}\text{H}-\text{NMR}$ (CDCl $_{3}$) δ 值: 3.08 (3H, s), 4.48 (2H, s), 5.39 (2H, s), 6.70 (1H, s), 6.81-6.96 (4H, m), 7.23 (1H, d, J=3.3Hz), 7.32 (1H, d, J=8.6Hz), 7.65 (1H, d, J=3.3Hz), 7.69 (1H, dd, J=1.7, 8.6Hz), 8.23 (1H, d, J=1.7Hz).

10 実施例28

5

15

20

6-(1-(4-7)(4-7)(3-6)) -5-3(4-7)(3-6) -5-3(4-7)

(1) 6 - (1 - ベンゼンスルホニルー <math>5 -メチルチオー 1 H -ピロロ [2, 3 -b] ピリジン- 2 -イル) ニコチン酸エチルエステルの調製

2 - ベンゼンスルホニルアミノー 5 - メチルチオー 3 - ヨードーピリジン (100 mg) の1, 4 - ジオキサン溶液 (2.5 ml) に、5 - エトキシカルボニルー 2 - トリメチルシリルエチニルピリジン (185 mg)、ビストリフェニルホスフィンパラジウムジクロリド (9 mg)、ヨウ化第一銅 (5 mg)、酢酸カリウム (37 mg) を順次加え、封管中100℃にて15時間撹拌した。冷却後、反応液を水にあけ、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー (ヘキサン:酢酸エチル=2:1)を用いて分離し、橙色油状の目的物110mgを得た。1H-NMR (CDC13) δ値:1.45 (3H, t, J=7.3Hz), 2.49 (3H, s), 4.46 (2H, q, J=7.3Hz), 6.76 (1H, s), 7.43-7.63 (3H, m), 7.73-7.79 (2H, m), 8.17-8.21 (2H,

10

15

20

25

- m), 8.40 (1H, d, J=8.3Hz), 8.44 (1H, s), 9.30 (1H, s).
 - (2) 6-(1-ベンゼンスルホニル-5-メタンスルホニル-1H-ヒロロ [2, 3-b] ピリジン-2-イル) ニコチン酸エチルエステルの調製

実施例28(1)で得られた化合物(110mg)のジクロロメタンーメタノール混合溶液(5:1、9ml)に、0℃にてマグネシウムモノハーオキシフタレート(314mg、純度80%)を加え、同温度にて30分間、15~30℃で1時間撹拌した。次いで、反応液を飽和炭酸水素ナトリウム水溶液にあけ、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:クロロホルム:アセトン=6:3:1)を用いて分離し、黄色油状の目的物50mgを得た。

 $1_{\rm H-NMR}$ (CDCl3) δ 値: 1.47 (3H, t, J=7.3Hz), 3.13 (3H, s), 4.49 (2H, q, J=7.3Hz), 6.88 (1H, s), 7.54-7.70 (3H, m), 7.77 (1H, d, J=7.9Hz), 8.35-8.43 (2H, m), 8.45-8.50 (2H, m), 9.04 (1H, s), 9.34 (1H, s).

(3) (1-(4-7) + (1-4) + (1-

実施例28(2)で得られた化合物(50mg)のメタノール溶液(6ml)に1規定水酸化カリウム水溶液(0.3ml)を加え、60℃にて1時間撹拌した。次いで、反応液を水にあけ、pHを7.0とした後に濾取し、残渣を水、エーテルで洗浄、乾燥し、白色粉末の化合物11mgを得た。この得られた化合物(11mg)をN,Nージメチルホルムアミド(1.0ml)に溶解し、0℃にて60%水素化ナトリウム(1.8mg)を加え、30分間撹拌した後に、4ーフルオロベンジルブロミド(11mg)を加え、反応液を15~30℃にて1時間撹拌した。反応溶液を飽和塩化アンモニウム水溶液にあけ、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残査をシリカゲル薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、白色粉末の化合物3mgを得た。更にこの化合物(3mg)に、メチルアミンの40%メタノール溶液(1.0ml)を加えて、15~30℃にて30分間撹拌した。反応液を減圧下濃縮し、得られた残渣をエーテルで洗浄し、白色粉末の目的物3mgを得た。1H-NMR(CDC13) δ値:3.08(3H,d,J=4.6Hz),3.17(3H,s),6.21(2H,s),

6.79-7.04(4H, m), 7.08 (1H, s), 7.65 (1H, s), 7.78 (1H, d, J=8.3Hz), 8.15 (1H, dd, J=2.0, 7.9Hz), 8.54 (1H, d, J=2.3Hz), 8.94 (1H, d, J=2.3Hz), 9.04 (1H, d, J=2.0Hz).

実施例29

10

20

5 2-(2-カルボキシフラン-5-イル)-1-(4-フルオロベンジル)-5-メタンスルホニル-インドール

(1) 2-ブロモー5-エトキシカルボニルーフランの調製

2ーブロモー5ーカルボキシルフラン(10g)のジメチルスルホキシド溶液(100ml)に15~30℃にて、炭酸カリウム(7.96g)を加え、ヨウ化エチル(16.8ml)を滴下し、15時間撹拌した。次いで、反応液を水にあけ、クロロホルムで抽出し、有機層を水、飽和炭酸水素ナトリウム水溶液及び、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)を用いて分離し、油状の目的物11.34gを得た。

(2) 2-エトキシカルボニルー5-トリメチルシリルエチニルーフランの調製 実施例29(1)で得た化合物(0.5g)のN, Nージメチルホルムアミド 溶液(5ml)にトリメチルシリルアセチレン(0.65ml)、ビストリフェニル ホスフィンパラジウムジクロリド(0.16g)、ヨウ化第一銅(0.04g)、トリエチルアミン(0.64ml)を順次加え、封管中100℃にて2時間撹拌した。冷却後、反応液を水にあけ、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)を用いて分離し、

褐色油状の目的物 0. 3782 gを得た。

 $1_{\text{H}-\text{NMR}}$ (CDC1₃) δ 值: 0.25 (9H, s), 1.37 (3H, t, J=7.2Hz), 4.36 (4H, q, J=7.2Hz), 6.35 (1H, d, J=3.6Hz), 7.26 (1H, d, J=3.6Hz).

(3) 2-(2-エトキシカルボニルフラン-5-イル)-5-メタンスルホニルーインドールの調製

実施例29(2)で得た化合物(0.1g)のN, Nージメチルホルムアミド溶液(1ml)に2ーベンゼンスルホニルアミノー3ーヨードー5ーメタンスルホニルベンゼン(0.0925g)、ビストリフェニルホスフィンパラジウムジクロリド(0.015g)、ヨウ化第一銅(0.004g)、酢酸カリウム(0.04g)を順次加え、封管中100℃にて2時間撹拌した。冷却後、反応液を水にあけ、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、褐色固体の目的物0.0462gを得た。

- $_{15}$ $_{1H-NMR}$ (CDCl $_{3}$) $_{\delta}$ 値: 1.41 (3H, t, J=6.9Hz), 3.09 (3H, s), 4.17 (2H, q, J=6.9Hz), 6.8 (1H, d, J=3.6Hz), 7.00 (1H, s), 7.28 (1H, d, J=3.6Hz), 7.54 (1H, d, J=8.9Hz), 7.77 (1H, d, J=8.9Hz), 9.15 (1H, brs).
 - (4) 2- (2-エトキシカルボニルフラン-5-イル)-1- (4-フルオロベンジル)-5-メタンスルホニルーインドールの調製
- 20 窒素雰囲気下、0℃にて実施例29(3)で得た化合物(0.0457g)のN,N-ジメチルホルムアミド溶液(1.4ml)中に、60%水素化ナトリウム(0.006g)を加え、15分間撹拌した後に、4-フルオロベンジルブロミド(0.02ml)を加え、1時間撹拌した。次いで、反応液を水にあけ、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾る、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、白色固体の目的物0.0403gを得た。

 1_{H-NMR} (CDC13) δ 値: 1.37 (3H, t, J=7.2Hz), 3.09 (3H, s), 4.36 (2H, q, J=7.2Hz), 5.66 (2H, s), 6.45 (1H, d, J=3.6Hz), 6.91-7.06 (4H, m), 7.11 (1H,

15

20

s), 7.20 (1H, d, J=3.6Hz), 7.46 (1H, d, J=8.9Hz), 7.76 (1H, d, J=8.9Hz), 8.29 (1H, s).

(5) 2-(2-カルボキシフラン-5-イル)-1-(4-フルオロベンジル)-5-メタンスルホニルーインドールの調製

アルゴン雰囲気下、-5℃にて実施例29(4)で得た化合物(0.0306g) の1,4-ジオキサン溶液(0.5ml)中に、10%水酸化リチウム水溶液 (0.5ml)を加え、2時間撹拌した。次いで、反応液に10%塩酸を加え、クロロホルムで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮し、白色粉末の目的物0.0285gを得た。

 1 H—NMR (CDCl₃) δ値: 3.11 (3H, s), 5.69 (2H, s), 6.67 (1H, d, J=3.6Hz), 6.91-7.06 (4H, m), 7.16 (1H, s), 7.34 (1H, d, J=3.6Hz), 7.49 (1H, d, J=8.9Hz), 7.78 (1H, d, J=8.9Hz), 8.32 (1H, s).

実施例30

2-(2-カルボキシフラン-5-イルメチル)-1-(4-フルオロベンジル) -5-メタンスルホニルインドール

(1) 5-ホルミル-2-フランカルボン酸エチルの調製

5-ホルミルー2ーフランカルボン酸(0.5g)のエタノール溶液(35ml)に0℃にて、硫酸(3.5ml)を加え、5時間加熱還流した。冷却後、反応液を水にあけ、酢酸エチルで抽出し、有機層を飽和炭酸水素ナトリウム水溶液、水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、目的物0.5316gを得た。

 1 H—NMR(DMSO-d₆) δ 值: 1.31(3H, t, J=7.2Hz), 4.34(2H, q, J=7.2Hz), 7.47(1H, d, J=3.6Hz), 7.61(1H, d, J=3.6Hz), 9.74(1H, s).

10

15

20

25

(2) 1ーベンゼンスルホニルー2ー(2ーエトキシカルボニルフランー5ーイルーヒドロキシメチル) - 5ーメチルチオインドールの調製

1-ベンゼンスルホニルー5-メチルチオインドール(0.5178g)のテトラヒドロフラン溶液(17ml)に<math>-78℃に τ 0.5178g)のテ1.59M)を滴下し、30分間撹拌した。次いで、実施例30(1)で得た化合物(0.3444g)を加え、-50℃に τ 40分間撹拌した。反応液を飽和塩化アンモニウム水溶液にあけ、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、目的物0.593gを得た。

 1 H—NMR (CDCl₃) δ 値: 1.36 (3H, t, J=6.9Hz), 2.46 (3H, s), 3.68 (1H, brs), 4.35 (2H, q, J=6.9Hz), 6.44 (1H, s), 6.52 (1H, d, J=3.6Hz), 7.14-7.56 (6H, m), 7.80 (2H, d, J=7.5Hz), 7.96 (1H, d, J=8.9Hz).

(3) 1 - ベンゼンスルホニル - 2 - (2 - エトキシカルボニルフラン - 5 - イルーメチル) - 5 - メチルチオインドールの調製

水素雰囲気下、実施例30(2)で得た化合物(0.3586g)のエタノール溶液(8ml)に、酢酸(1ml)、10%パラジウム炭素(0.3586g)を加え、50℃にて15時間撹拌した。反応液を濾過し、濾液を減圧下濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:

1)を用いて分離し、目的物0.183gを得た。

ルーメチル) - 5 - メタンスルホニルインドールの調製

 1 H-NMR (CDC1 $_{3}$) δ 値: 1.36 (2H, t, J=7.2Hz), 2.48 (3H, s), 4.35 (2H, q, J=7.2Hz), 4.47 (2H, s), 6.24 (1H, d, J=3.3Hz), 6.30 (1H, s), 7.09 (1H, d, J=3.3Hz), 7.16-7.54 (5H, m), 7.69 (2H, d, J=8.5Hz), 8.04 (1H, d, J=8.5Hz). (4) 1-ベンゼンスルホニル-2- (2-エトキシカルボニルフラン-5-イ

実施例30(3)で得られた化合物(0.183g)のテトラヒドロフラン(2ml) 及び水(2ml)の混合溶液に氷冷下オキソン(登録商標)(0.4939g)を 加え、30分間撹拌し,15~30℃で1.5時間撹拌した。飽和炭酸水素ナト リウム水溶液を加え、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥、濾過、

10

15

20

25

減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 1:1)を用いて分離し、目的物 0.1722 gを得た。 1 H-NMR(CDC13) δ 値: 1.37(3H, t, J=6.9Hz),3.06(3H, s),4.36(2H, q, J=6.9Hz),4.52(2H, s),6.28(1H, d,J=3.6Hz),6.46(1H, s),7.10(1H, d,J=3.6Hz),7.46(2H, t,J=7.9Hz),7.60(1H, t,J=7.5Hz),7.75(2H, d,J=7.2Hz),7.83(1H, d,J=8.9Hz),8.04(1H, s),8.32(1H, d,J=8.9Hz).

(5) 2-(2-エトキシカルボニルフラン-5-イルーメチル)-5-メタン スルホニルインドールの調製

実施例30(4)で得られた化合物(0.1722g)のエタノール溶液(14ml)に水酸化カリウム(0.047g)を加え、15~30℃で、30分間撹拌した。10%塩酸水溶液を加え、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、目的物0.0748gを得た。

1_H-NMR (CDC1₃) δ値: 1.37 (3H, t, J=7.2Hz), 3.06 (3H, s), 4.24 (2H, s), 4.36 (2H, q, J=7.2Hz), 6.27 (1H, d, J=3.3Hz), 6.51 (1H, s), 7.11 (1H, d, J=3.3Hz), 7.45 (1H, d, J=8.5Hz), 7.69 (1H, d, J=8.5Hz), 8.18 (1H, s), 8.65 (1H, brs). (6) 2- (2-エトキシカルボニルフラン-5-イルーメチル) -1- (4-フルオロベンジル) -5-メタンスルホニルインドールの調製

実施例30(5)で得られた化合物(0.0592g)のテトラヒドロフラン溶液(2ml)に-78℃にて2.0Mリチウムジイソプロピルアミド溶液(0.0852ml)を滴下し、30分間撹拌した。次いで、4-フルオロベンジルブロミド(0.02ml)を加え、同温にて30分間撹拌した。反応液を飽和塩化アンモニウム水溶液にあけ、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、目的物0.005gを得た。

 1 H—NMR (CDCl₃) δ 値: 1.36 (3H, t, J=6.9Hz), 3.08 (3H, s), 4.15 (2H, s), 4.35 (2H, q, J=6.9Hz), 5.34 (2H, s), 6.08 (1H, d, J=3.3Hz), 6.60 (1H, s), 6.82-6.98

10

15

(4H, m), 7.03 (1H, d, J=3.3Hz), 7.32 (1H, d, J=8.9Hz), 7.70 (1H, d, J=8.5Hz), 8.22 (1H, s).

(7) 2-(2-カルボキシフラン-5-イルーメチル)-1-(4-フルオロベンジル)-5-メタンスルホニルインドールの調製

アルゴン雰囲気下、-5℃にて実施例30(6)で得た化合物(0.003g)の1,4-ジオキサン溶液(0.5ml)中に、10%水酸化リチウム水溶液(0.5ml)を加え、2時間撹拌した。次いで、反応液に10%塩酸水溶液を加え、クロロホルムで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(クロロホルム:メタノール=9:1)を用いて分離し、目的物0.001gを得た。

¹H—NMR (CDCl₃) δ値: 1.36 (3H, t, J=6.9Hz), 3.08 (3H, s), 4.15 (2H, s), 4.35 (2H, q, J=6.9Hz), 5.34 (2H, s), 6.16 (1H, d, J=3.3Hz), 6.60 (1H, s), 6.82-6.98 (4H, m), 7.16 (1H, d, J=3.3Hz), 7.32 (1H, d, J=8.9Hz), 7.70 (1H, d, J=8.5Hz), 8.22 (1H, s).

実施例31

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (4-ピリジル) インドール

(1) 5-メタンスルホニル-2-(4-ピリジル)-インドールの調製

20 1-(4-メタンスルホニルーフェニル)-ヒドラジン塩酸塩(1.0g)とポリリン酸(15g)の混合物に、4-アセチルピリジン(0.47ml)を加え、150℃にて、1時間撹拌した。反応液を飽和炭酸水素ナトリウム水溶液にあけ、クロロホルムで抽出し、有機層を減圧下濃縮し、得られた残渣をn-ヘキサンで洗浄し、白色固体の目的物0.9591gを得た。

10

15

 $1_{\text{H-NMR}}$ (DMSO-d₆) δ 值: 3. 19 (3H, s), 7. 43 (1H, s), 7. 65 (1H, d, J=5. 9Hz), 7. 70 (1H, d, J=5. 9Hz), 7. 87 (2H, d, J=5. 6Hz), 8. 21 (1H, s), 8. 67 (2H, d, J=5. 6Hz).

(2) 1-(4-フルオロベンジル)-5-メタンスルホニル-2-(4-ピリジル) インドールの調製

室素雰囲気下、0 \mathbb{C} にて実施例 3 1 (1) で得た化合物 (0.4g) 0 N N - ジメチルホルムアミド溶液(<math>160 1 0 1

 1 H—NMR (CDC1₃) δ 值: 3. 10 (3H, s), 5. 42 (2H, s), 6. 88-7. 05 (5H, m), 7. 30-7. 38 (3H, m), 7. 74 (1H, d, J=10.5Hz), 8. 34 (1H, s), 8. 66 (2H, d, J=5.9Hz).

実施例32

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(1-オキシ-4-ピリジル) インドール

1-(4-フルオロベンジル) - 5-メタンスルホニル-2-(4-ビリジル)

20 インドール (0. 1975g) のクロロホルム溶液 (20ml) にm-クロロ過安息香酸 (0. 1688g、純度80%) を加え、15~30℃にて3日間撹拌した。反応液を水にあけ、クロロホルム抽出し、有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥、濾過、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム:メタノール=

15

20

9:1) を用いて分離し、目的物 0.150 g を得た。

¹H—NMR (CDCl₃) δ値: 3.10 (3H, s), 5.40 (2H, s), 6.90-7.06 (5H, m), 7.27-7.38 (3H, m), 7.78 (1H, d, J=8.5Hz), 8.21 (2H, d, J=7.2Hz), 8.33 (1H, s). 実施例 3 3

5 1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-([1, 3, 4] オキサジアゾール-2-イル) -1 H-ピロロ [2, 3-b] ピリジン

(1) 1 - ベンゼンスルホニルー2 - トリメチルシリルー5 - メチルチオー1H - ピロロ[2, 3-b] ピリジンの調製

窒素雰囲気下、トリメチルシリルアセチレン(0.41g)、2ーベンゼンスルホニルアミノー3ーヨードー5ーメチルチオピリジン(0.82g)、トリエチルアミン(0.42g)、ヨウ化第一銅(30mg)、ジクロロビス(トリフェニルホスフィン)パラジウム(75mg)及びジオキサン(2ml)の混合物を70℃にて16時間撹拌した。次いで、反応液に水及び酢酸エチルを加え、不溶物を濾別し、濾液に飽和炭酸水素ナトリウム水溶液を加えた後、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)に付し、目的物を0.61g得た。

 1 H-NMR (CDCl₃) δ 値:0.51 (9H, s)、2.46 (3H, s)、6.78 (1H, s)、7.42-7.58 (3H, m)、7.75 (1H, d, J=2.0Hz)、8.10-8.14 (2H, m)、8.33 (1H, d, J=2.0Hz).

(2) 1ーベンゼンスルホニルー5ーメチルチオー1Hーヒロロ[2, 3-b]ピリジンの調製

室素雰囲気下、実施例33(1)で得られた1-ベンゼンスルホニル-2-トリメチルシリル-5-メチルチオ-1H-ピロロ[2,3-b]ピリジン

15

20

25

(0.60g)、テトラブチルアンモニウムフルオリドーテトラヒドロフラン溶液(1.0M、0.8ml)及びテトラヒドロフラン(100ml)の混合物を-25℃にて30分間撹拌した。反応液に飽和塩化アンモニウム水を加え、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1)に付し、目的物を0.40g得た。

 1 H—NMR(CDC1₃) δ 値:2.49(3H, s)、6.54(1H, d, J=4.0Hz)、7.45-7.62(3H, m)、7.71(1H, d, J=4.0Hz)、7.80(1H, d, J=2.0Hz)、8.15-8.20(2H, m)、8.39(1H, d, J=2.0Hz).

(3) 1 -ベンゼンスルホニル-5-メチルチオ-1H-ピロロ[2, 3-b]ピリジン-2-カルボン酸メチルエステルの調製

窒素雰囲気下、実施例33(2)で得られた1-ベンゼンスルホニルー5-メチルチオー1Hーピロロ[2,3-b]ピリジン(0.80g)及びテトラヒドロフラン(30ml)の混合物に、リチウムジイソプロピルアミドテトラヒドロフラン溶液(5.81mmol)を-78℃にて滴下した後、-30℃に昇温させ、20分間撹拌した。次いで、炭酸ジメチル(0.91g)及びテトラヒドロフラン(2ml)の混合物を-78℃にて滴下し、-78℃にて6時間撹拌した。反応液に飽和塩化アンモニウム水を加え、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)に付し、目的物を0.54g得た。

 1 H-NMR(CDCl $_{3}$) δ 値: 2.51(3H, s)、3.99(3H, s)、6.98(1H, s)、7.52-7.68(3H, m)、7.83(1H, d, J=2.3Hz)、8.37-8.42(2H, m)、8.53(1H, d, J=2.3Hz).(4) $_{1}$ ーベンゼンスルホニルー $_{5}$ ーメタンスルホニルー $_{1}$ H ーピロロ[2,3 ー b] ピリジンー $_{2}$ ーカルボン酸メチルエステルの調製

窒素雰囲気下、実施例33(3)で得られた1ーベンゼンスルホニルー5ーメ チルチオー1Hーピロロ[2,3-b]ピリジン-2ーカルボン酸メチルエス テル(0.18g)、m-クロロ過安息香酸(0.24g)及びジクロロメタン (10ml)の混合物を15~30℃にて1時間撹拌した。反応液に飽和炭酸水素 ナトリウム水溶液を加え、ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥、

10

15

20

25

濾過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:1) に付し、目的物を0.19g得た。

 1_{H-NMR} (CDC13) δ 値: 3.13 (3H, s)、4.04 (3H, s)、7.12 (1H, s)、7.57-7.73 (3H, m)、8.44-8.51 (3H, m)、9.09 (1H, d, J=2.3Hz).

(5) 1-(4-フルオロベンジル)-5-メタンスルホニルー1H-ピロロ[2、3-b] ピリジン-2-カルボン酸メチルエステルの調製

 $1_{\rm H-NMR}$ (CDC13) δ 値: 3.17 (3H, s)、3.93 (3H, s)、5.99 (2H, s)、6.90-6.98 (2H, m)、7.24-7.30 (2H, m)、7.41 (1H, s)、8.62 (1H, d, J=2.0Hz)、9.02 (1H, d, J=2.0Hz).

(6) 1 - (4 - フルオロベンジル) - 5 - メタンスルホニルー2 - ([1,3,4] オキサジアゾールー2 - イル) - 1 H - ピロロ [2,3-b] ピリジンの調製 実施例33(5)で得られた1 - (4 - フルオロベンジル) - 5 - メタンスルホニルー1 H - ピロロ [2,3-b] ピリジンー2 - カルボン酸メチルエステル(0.3g)のエタノール溶液(9ml)に、15~30℃にてヒドラジン1 水和物(0.22g)を加え、6時間加熱還流し、さらにヒドラジン1 水和物(0.11g)を加え、4時間加熱還流した。さらにヒドラジン1 水和物(0.11g)を加え、16時間加熱還流した。反応液を減圧下濃縮し、得られた粗生成物にオルトギ酸トリエチルエステル(25ml)を加え、18時間加熱還流した。反応液をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン=1:1)を用いて分離し、目的物220mgを得た。

 1 H—NMR (DMSO-d₆) δ 值: 3.35 (3H, s), 6.07 (2H, s), 7.09 (2H, t, J=8.9 Hz), 7.22 (2H, dd, J=5.6, 8.9 Hz), 7.65 (1H, s), 8.80 (1H, d, J=2.3 Hz), 8.97 (1H, d, J=2.3 Hz), 9.47 (1H, s).

実施例34

10

15

(1) 2-アミノ-5-メチルチオピラジンの調製

2-アミノ-5-ブロモピラジン(100mg)、95%メタンチオールナトリウム塩(84.8mg)、テトラキストリフェニルホスフィンパラジウム(66.4mg)のN,N-ジメチルホルムアミド懸濁液(2.9ml)を60℃にて15時間撹拌した。反応終了後、反応液を飽和炭酸水素ナトリウム水溶液にあけ、トルエンで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濾過し、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2)を用いて分離し、白色粉末の目的物67.8mg(84%)を得た。

H-NMR (CDCl₃) δ 値: 2.52 (3H, s), 4.42 (2H, brs), 7.91 (1H, d, J=1.2 Hz), 7.98 (1H, d, J=1.2 Hz).

(2) 2-アミノ-3-ブロモ-5-メチルチオピラジンの調製

20 実施例34(1)で得られた化合物(100mg)のクロロホルム溶液中(18ml)に、ビリジン(56.0mg)を加え、次に、臭素(113mg)のクロロホルム溶液(18ml)を遮光、15~30℃にて1時間かけて滴下し、さらに、同温度にて30分間撹拌した。反応終了後、反応液を水洗し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢

15

20

25

酸エチル: ヘキサン=1:4) を用いて分離し、白色粉末の目的物112g (72%) を得た。

H-NMR (CDC1₃) δ値: 2.52 (3H, s), 4.90 (2H, brs), 7.91 (1H, s).

(3) 3-(2-アミノ-5-メチルチオピラジン-3-イル)-2-プロピン-1-オールの調製

実施例34(2)で得られた化合物(440mg)のジオキサン溶液(10ml)に2-プロピン-1-オール(168mg)、ビストリフェニルホスフィンパラジウムジクロリド(72mg)、ヨウ化銅(1)(38mg)、トリエチルアミン(304mg)を順次加え、封管中70℃にて2時間撹拌した。冷却後、反応液を水にあけ、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥し、濾過、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)を用いて分離し、褐色油状の目的物347mg(88.9%)を得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ 値: 2.53 (3H, s), 4.57 (2H, s), 4.90 (2H, brs), 7.95 (1H, s).

(4)(2-メチルチオー5H-ピロロ[2,3-b]ピラジンー6-イル)メタノールの調製

実施例 34 (3) で得られた化合物 ($381 \,\mathrm{mg}$) のN, N - ジメチルホルムアミド ($10 \,\mathrm{ml}$) 溶液に、ヨウ化銅 (I) ($111 \,\mathrm{mg}$) を加えて、 $150 \,\mathrm{C}$ にて 2 時間撹拌した。反応液を水にあけ、クロロホルムで抽出、水で洗浄した後、硫酸マグネシウムで乾燥、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー (クロロホルム:メタノール=20:1) を用いて分離し、黄色粉末の目的物 $155 \,\mathrm{mg}$ (40.7%) を得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ 値: 2.65 (3H, s), 4.93 (2H, s), 6.48 (1H, s), 8.12 (1H, s).

(5) 2ーメチルチオー5Hーピロロ[2, 3-b] ピラジンー6ーカルバルデ ヒドの調製

実施例34(4)で得られた化合物(123mg)のアセトン(40ml)溶液に、 二酸化マンガン(1.86g)を加えて、15~30℃にて1時間撹拌した。反

10

15

20

応液をセライト濾過した後、減圧下濃縮し、黄色粉末の目的物 6 0 mg (4 9.3%)を得た。

 $1_{\text{H-NMR}}$ (CDC13) δ 値: 2.67 (3H, s), 7.31 (1H, s), 8.37 (1H, s), 9.96 (1H, s).

(6) 5-(4-フルオロベンジル)-2-メチルチオ-5H-ピロロ[2,3-b] ピラジン-6-カルバルデヒドの調製

実施例34(5)で得られた化合物(10mg)のN, Nージメチルホルムアミド(0.5ml)溶液に、60%水素化ナトリウム(3mg)を0℃にて加えて、20分間撹拌した後、次いで4ーフルオロベンジルブロミド(15mg)を滴下し、15~30℃にて30分間撹拌した。反応液を飽和塩化アンモニウム水溶液にあけ、クロロホルムで抽出、水で洗浄した後、硫酸マグネシウムで乾燥、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(ヘキサン:酢酸エチル=5:1)を用いて分離し、橙色粉末の目的物15mg(99.6%)を得た。1H-NMR (CDC1a) & 値:266(3H, s), 5.84(2H, s), 6.93(2H, t, J=8.6Hz),

 1_{H-NMR} (CDC1₃) δ 値: 2.66 (3H, s), 5.84 (2H, s), 6.93 (2H, t, J=8.6Hz), 7.27-7.33 (3H, m), 8.36 (1H, s), 9.96 (1H, s).

(7) 5 - (4-フルオロベンジル) - 2-メチルチオー <math>5 H-ピロロ[2, 3-b]ピラジン-6 -カルボン酸メチルエステルの調製

実施例 34 (6) で得られた化合物(15 mg)に、メタノール(2.8 ml)、二酸化マンガン(22 mg)、シアン化ナトリウム(13 mg)を 0 $^{\circ}$ にて加えた後、 $15 \sim 30$ $^{\circ}$ にて15 時間撹拌した。次いで反応液をセライト濾過し、クロロホルムで抽出、水で洗浄した後、硫酸マグネシウムで乾燥、減圧下濃縮した。得られた残渣をシリカゲル分取薄層クロマトグラフィー(クロロホルム:メタノール=100:1)を用いて分離し、白色粉末の目的物 11 mg(66.4%)を得た。

- 25 l_H—NMR (CDCl₃) δ値: 2.66 (3H, s), 3.91 (3H, s), 5.88 (2H, s), 6.93 (2H, t, J=8.9Hz), 7.20-7.25 (2H, m), 7.32 (1H, s), 8.30 (1H, s)
 - (8) 5-(4-フルオロベンジル) -2-メタンスルホニルー<math>5H-ピロロ [2, 3-b] ピラジンー6-カルボン酸メチルエステルの調製

実施例34(7)で得られた化合物(1.06g)のテトラヒドロフラン

15

20

25

(40ml)、メタノール(40ml)及び水(20ml)の懸濁液中に、0 Cにてオキソン(2.16g)を加え、 $15\sim30$ Cで4時間撹拌した。さらに、オキソン(1.08g)を加え、 $15\sim30$ Cで1時間撹拌した。反応終了後、反応液を濃縮し、飽和炭酸水素ナトリウム中にあけ、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウム乾燥、濾過、濃縮した。次に、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2、2:1)を用いて分離し、淡黄色の結晶として目的物852mg(73%)を得た。H-NMR(CDC13) δ 値: 3.32 (3H, s), 3.98 (3H, s), 5.98 (2H, s), 6.96 (2H, t, J=8.5Hz), 7.2-7.4 (2H, m), 7.52 (1H, s), 9.19 (1H, s)

10 (9) 5-(4-7)ルオロベンジル) -2-メタンスルホニル-5 H-ビロロ [2, 3-b] ビラジン-6-チオアミドの調製

実施例 34 (8) で得られた 5-(4-7)ルオロベンジル) -2-3タンスルホニル -5 H -1 ピロロ [2, 3-b] ピラジン -6 -1 ルボン酸メチルエステル (0.31g) のジオキサン溶液 (7ml) に 30%水酸化カリウム水溶液 (7ml) を 15 -30 \mathbb{C} で加え、 80 \mathbb{C} で 30 分間撹拌した。氷水及び塩酸を加え、得られた結晶を濾取した。得られた結晶(0.11g)及び塩化チオニル(1ml)の、混合物を 70 \mathbb{C} で 5 時間撹拌した。トルエンを加え、反応液を濃縮した。得られた残渣のテトラヒドロフラン溶液(30ml)に、 15 -30 \mathbb{C} でアンモニアガスを吹き込んだ。反応液を濃縮後、酢酸エチルで希釈後、水洗し、乾燥後、溶媒を減圧留去した。得られた残渣(0.15g)、ベンゼン(3ml)及びテトラヒドロフラン(2ml)の混合物に、 15 -30 \mathbb{C} でローソン試薬を加え、 70 \mathbb{C} で 3 時間撹拌した。反応液をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)を用いて分離し、目的物(90mg)を得た。

 1 H-NMR (CDC1₃) δ 値:3.26 (3H, s), 6.09 (2H, s), 6.93 (2H, t, J=8.9Hz), 7.00 (1H, s), 7.20 (2H, dd, J=5.3, 8.9Hz), 7.40 (1H, brs), 7.70 (1H, brs), 9.08 (1H, s).

 $(1\ 0)\ 5-(4-フルオロベンジル)-2-メタンスルホニルー<math>6-(チアゾー N-2-1)$ (10) -5 H-ピロロ [2, 3-b] ピラジンの調製

実施例34 (9) で得られた5- (4-フルオロベンジル) -2-メタンスル

15

20

ホニルー5 Hービロロ [2, 3-b] ピラジンー6 ーチオアミド (90 ng)、ブロモアセトアルデヒドジメチルアセタール (0.06 ml)、p ートルエンスルホン酸 (4 ng) 及び酢酸 (1 ml) の混合物を、 $100 ^{\circ}$ で1.5 時間撹拌した。反応液をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)を用いて分離し、目的物 (30 ng) を得た。

 1 H—NMR (CDC1₃) δ 値:3.30 (3H, s), 6.19 (2H, s), 6.89 (2H, t, J=8.9Hz), 7.23 (2H, dd. J=5.3, 8.9Hz), 7.25 (1H, s), 7.55 (1H, d, J=3.0 Hz), 8.04 (1H, d, J=3.0 Hz), 9.08 (1H, s).

実施例35

10 5-(4-フルオロベンジル) -2-メタンスルホニル-6-(オキサゾールー <math>2-イル)-5 H-ピロロ [2, 3-b] ピラジン

(2H, dd, J=5.3, 8.9Hz), 7.41 (1H, d, J=0.7Hz), 7.44 (1H, s), 7.85 (1H, d,

J=0.7Hz), 9.10 (1H, s).

実施例36

5

10

(1) (1-(4-7)ルオロベンジル) -5-メタンスルホニル-1 H-ピロロ [2, 3-b] ピリジン-2-イル) メタノールの調製

1-(4-フルオロベンジル)-5-メタンスルホニル-1H-ピロロ[2,3-b] ピリジン-2-カルボン酸メチルエステル (0.49g) 及びテトラヒドロフラン (14ml) の混合物に、0℃にて水素化リチウムアルミニウム (77mg) を加え、同温度で15分間撹拌した。酢酸エチルで希釈し、飽和食塩水を加えた。混合物を硫酸ナトリウムで乾燥、減圧下濃縮し、得た残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=1:1) を用いて分離し、目的物(0.39g)を白色粉末として得た。

(2) (1-(4-7) + (1-6) + (1-

実施例36(1)で得られた(1-(4-フルオロベンジル)-5-メタンスルホニル-1H-ピロロ[2,3-b]ピリジン-2-イル)メタノール(0.39g)及びアセトン(11ml)の混合物に、15~30℃で、二酸化マンガン(816mg)を加え、15~30℃で2時間撹拌した。二酸化マンガンをセライトで濾過し、得られた濾液を減圧下濃縮し、目的物(0.37g)を黄白

10

15

20

25

色粉末として得た。

 $1_{\text{H-NMR}}$ (Acetone-d₆) δ 值: 3.27 (3H, s), 5.97 (2H, s), 7.04 (2H, t, J=6.9Hz), 7.34-7.40 (2H, m), 7.76 (1H, s), 8.83 (1H, d, J=2.3Hz), 9.05 (1H, d, J=2.3Hz), 10.08 (1H, s).

実施例36(2)で得られた(1-(4-フルオロベンジル)-5-メタンス ルホニル-1H-ピロロ[2, 3-b] ピリジン-2-イル) カルバルデヒド (100mg)、ブロモフルオロ酢酸エチル (0.05ml)、亜鉛末 (28mg) 及び テトラヒドロフラン (3ml) の混合物を、15分間加熱還流した。酢酸エチルで 希釈し、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、乾燥、 減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサ ン:酢酸エチル=1:2)を用いて分離し、2-フルオロ-3-(1-(4-フ ルオロベンジル) -5-メタンスルホニル-1H-ピロロ[2,3-b]ピリジ ン-2-イル) -3-ヒドロキシプロピオン酸エチルエステル (100mg) を黄 色アモルファスとして得た。得られた2-フルオロ-3-(1-(4-フルオロ ベンジル) -5-メタンスルホニル-1H-ピロロ[2,3-b]ピリジン-2-イル) -3-ヒドロキシプロピオン酸エチルエステル (90mg) 及びジクロロメ タン (2 ml) の混合物に、15~30℃でデスマーチン試薬 (190 mg) を加え、 同温度で30分間撹拌した。酢酸エチルで希釈し、5%チオ硫酸ナトリウム水溶 液、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、乾燥、減圧 下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン: 酢酸エチル=1:1) を用いて分離し、目的物(80mg)を白色アモルファスとし て得た。

 1_{H-NMR} (CDC13) δ 値: 1.20 (3H, t, J=7.3 Hz), 3.17 (3H, s), 4.18-4.32 (2H, m), 5.71 (1H, d, J=48.8Hz), 5.98 (2H, dd, 14.8, 17.8Hz), 6.93 (2H, t, J=8.9Hz), 7.22-7.27 (2H, m), 8.70 (1H, d, J=2.0Hz), 9.10 (1H, d, J=2.0Hz).

(4) 5-フルオロー6- (1- (4-フルオロベンジル) -5-メタンスルホ

10

15

20

 $- \mu - 1 H - \mu \mu = [2, 3 - b] \mu = 2 - 4 - 4 - 3 \mu = [2, 3 - b] \mu = 2 - 4 - 3 \mu = 2 \mu =$

実施例36 (3) で得られた $2-フルオロ-3-(1-(4-フルオロベンジル)-5-メタンスルホニル-1H-ピロロ[2,3-b]ピリジン-2-イル)-3-オキソプロピオン酸エチルエステル (88 mg)、ホルムアミジンアセテート (42 mg) 及びメタノール (1.2 ml) の混合物に、<math>15\sim30$ でナトリウムメトキシド (0.6 ml、1 mol/1 メタノール溶液)を加え、同温度で1 8時間撹拌した。酢酸で中和し、酢酸エチルで希釈した。有機層を水洗、乾燥後、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール:ジクロロメタン=5:95)を用いて分離し、目的物(23 mg)を白色アモルファスとして得た。

 $1_{\text{H-NMR}}$ (Acetone-d₆) δ 值: 2.60-3.05 (1H, brs), 3.25 (3H, s), 6.09 (2H, s), 6.97 (2H, t, J=8.9Hz), 7.14-7.20 (2H, m), 7.32 (1H, d, J=2.6Hz), 8.28 (1H, s), 8.68 (1H, d, J=2.0Hz), 8.91 (1H, d, J=2.0Hz).

(5) 1-(4-フルオロベンジル) -5-メタンスルホニルー2-(6-クロロ-5-フルオロビリミジン-4-イル) -1H-ビロロ[2, 3-b] ピリジンの調製

実施例36(4)で得られた5-フルオロ-6-(1-(4-フルオロベンジル)-5-メタンスルホニル-1H-ピロロ[2,3-b]ピリジン-2-イル)-3H-ピリミジン-4-オン(20mg)及びオキシ塩化リン(1ml)の混合物を、3時間加熱還流した。混合物を減圧下濃縮後、ジクロロメタンで希釈し、水洗、乾燥した後に減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール:ジクロロメタン=1:99)を用いて分離し、目的物(13mg)を白色粉末として得た。

- 1H-NMR (CDCl₃) δ値: 3.18 (3H, s), 6.24 (2H, s), 6.87 (2H, t, J=8.6Hz), 6.96-7.03 (2H, m), 8.64 (1H, d, J=2.0Hz), 8.82 (1H, s), 9.02 (1H, d, J=2.0Hz). (6) 1- (4-フルオロベンジル) -5-メタンスルホニルー2- (5-フルオロピリミジン-4-イル) -1H-ピロロ[2, 3-b] ピリジンの調製
 - 実施例36(5)で得られた1-(4-フルオロベンジル)-5-メタンスル

 1_{H-NMR} (CDCl $_3$) δ 値: 3.18 (3H, s), 6.27 (2H, s), 6.85 (2H, t, J=8.6Hz), 6.98-7.04 (2H, m), 7.49 (1H, d, J=3.0Hz), 8.62 (1H, d, J=2.3Hz), 8.68 (1H, d, J=3.0Hz), 9.01 (1H, d, J=2.3Hz), 9.08 (1H, d, J=3.0Hz).

10 実施例37

5

15

20

1-(2,4-ジフルオロベンジル)-5-メタンスルホニル-2-([1,3,4] オキサジアゾール-2-イル) -1 H-ビロロ [2,3-b] ピリジン

(1) 1-(2, 4-ジフルオロベンジル)-5-メタンスルホニルー<math>1H-ピロロ「2, 3-b] ピリジン-2-カルボン酸メチルエステルの調製

実施例33(5)と同様な方法で4-フルオロベンジルブロミドを2,4-ジフルオロベンジルブロミドに替えて、目的物を黄色結晶として得た。

 $1_{\rm H-NMR}$ (CDC1 $_3$) δ 値: 3.16 (3H, s), 3.91 (3H, s), 6.04 (2H, s), 6.65-6.70 (2H, m), 6.78-6.86 (1H, m), 7.45 (1H, s), 8.64 (1H, d, J=2.3Hz), 9.00 (1H, d, J=2.3Hz).

(2) 1-(2, 4-ジフルオロベンジル)-5-メタンスルホニルー2-([1, 3, 4] オキサジアゾールー2-イル)-1H-ピロロ[2, 3-b] ピリジンの調製

実施例33 (6) と同様な方法で1- (4-フルオロベンジル) -5-メタン

20

スルホニルー1 Hービロロ [2, 3-b] ピリジンー2 ーカルボン酸メチルエステルを1-(2, 4-ジフルオロベンジル) ー5 ーメタンスルホニルー1 Hーピロロ [2, 3-b] ピリジンー2 ーカルボン酸メチルエステルに替えて、目的物を白色結晶として得た。

5 ¹H-NMR (CDC1₃) δ値: 3.17 (3H, s), 6.23 (2H, s), 6.60-6.83 (3H, m), 7.44 (1H, s), 8.52 (1H, s), 8.64 (1H, d, J=2.0Hz), 8.99 (1H, d, J=2.0Hz). 試験例1 末梢血を用いたヒトCOX-1及びCOX-2に対する阻害活性測定法

健常人より採取した末梢血 500μ 1 に対して、本発明化合物のDMSO溶液を 1μ 1 添加した。

COX-1活性を測定する場合は、37Cで4. 5時間インキュベーションした後に、カルシウムイオノフォアA 23187を、最終濃度が 500μ M となるように加え、37Cで30分間インキュベーションし、氷上に移して、反応を停止させた。

COX-2活性を測定する場合は、化合物を添加した血液にLPS (E. coli 026: B6) を10 µg/ml となるように加え、37℃で5時間インキュベーションした後に、氷上に移して、反応を停止させた。

遠心操作(150G×10分間)後、上清に含まれるトロンボキサンB2量を、トロンボキサンB2 EIAキット(Cayman 社製)にて測定し、溶媒コントロール(上記と同様の操作にて、化合物を加えずに調製したもの)の値を100%として、50%阻害活性を示す濃度をIC50として以下に表示した。

実施例化合物	I C ₅₀		
	COX-2	COX-1	
1	0.15 μΜ	> 2 0 μ M	
2	0.5 μΜ	> 2 0 μ M	
3	0.3 μΜ	> 2 0 μ M	
4	4 μ M	> 2 0 μ M	
5	0.4 μΜ	> 2 0 μ M	
7	1. 5 μΜ	> 2 0 μ M	
8	0.8 μΜ	> 2 0 μ M	
9	2 μΜ	> 2 0 μ M	
1 0	1.5 μΜ	> 2 0 μ M	
1 1	0.2 μΜ	> 2 0 μ M	
1 2	0.15 μΜ	> 2 0 μ M	
1 3	4 μ M	> 1 0 μ M	
1 4	0.1 μΜ	> 2 0 μ M	
1 7	0.8 μΜ	> 2 0 μ M	
3.3	0.2 μΜ	> 2 0 μ M	

産業上の利用可能性

5

本発明は、COX-2阻害作用等を有し、抗炎症薬等の医薬として有用である 化合物を提供する。

請求の範囲

1. 一般式(1)

$$\begin{array}{c|c}
R_2O_2S & A_1 & CH_2)_{\overline{n}} - \text{Het} \\
\hline
A_2 & N & CH_2)_{\overline{n}} - \text{Het} \\
\hline
R_1 & A_3
\end{array}$$

[式中、Heta、置換されていてもよい複素環式基を表し; A_1 及び A_2 は、それぞれ独立して、-CH= 又は-N= を表し; A_3 は、 $-CH_2$ -、-(C=O) - 又は $-SO_2$ -を表し;

R1は、下記式:

5

15

から選択される1つの基を表し(ここで、 A_4 は、-O-、-S-又は-NH-を表す);

 R_2 は、炭素数 $1 \sim 3$ の直鎖若しくは分岐鎖状のアルキル基を表し;

nは、0、1又は2を表す。ただし、 A_1 及び A_2 の両方が-CH=である場合、 A_3 は-CH $_2$ -又は-SO $_2$ -を表わす〕

で示される化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物。

- 2. 一般式(1)において、Hetが、置換されていてもよい、同一又は異なって、酸素原子、窒素原子、及び硫黄原子から選択されるヘテロ原子1、2、又は3個を含む5~6員の単環式の脂肪族複素環式基又は芳香族複素環式基である、請求の範囲第1項記載の化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物。
- 3. 一般式 (1) において、He t が、置換されていてもよい、同一又は異なって、窒素原子及び/又は酸素原子を1、2、又は3個含み、更に硫黄原子を1個

15

含んでいてもよい、5~6員の単環式の不飽和脂肪族複素環式基又は芳香族複素 環式基である、請求の範囲第1項又は第2項記載の化合物又はその薬学的に許容 しうる酸若しくは塩基との付加塩、あるいはその水和物。

- 4. 一般式(1)において、Hetが、置換されていてもよい、フラン、1,3-チアゾール、1,3-オキサゾール、1,3,4-オキサジアゾール、ピリジン、 ピリミジン、又は5,6-ジヒドロピランから誘導される基である、請求の範囲 第3項記載の化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あ るいはその水和物。
- 5. 一般式(1)において、Hetの複素環式基が、カルボキシル基で置換されているか、又はHetの窒素原子含有複素環式基の窒素原子がNーオキシドとなっている、請求の範囲第1~4項のいずれか1項記載の化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物。
 - 6. 一般式(1)において、nが、0又は1である、請求の範囲第1~5項のいずれか1項記載の化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物。
 - 7. 一般式 (1) において、 A_1 が、-CH=である、請求の範囲第 $1\sim6$ 項のいずれか1 項記載の化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、あるいはその水和物。
- 8. 一般式(1)において、基:R₁-A₃-が、4-フルオロベンジル基である、
 20 請求の範囲第1~7項のいずれか1項記載の化合物又はその薬学的に許容しうる
 酸若しくは塩基との付加塩、あるいはその水和物。
 - 9. 2-(2-7リル) -1-(4-7ルオロベンジル) -5-メタンスルホニル-1H-ピロロ <math>[2, 3-b] ピリジン;
- 1-(4-フルオロベンジル)-5-メタンスルホニルー2-(チアゾールー25 2-イル)インドール;

 - 1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-([1, 3, 4]オキサジアゾール-2-イル) インドール;

20

5-メタンスルホニル-2-(2-ピリジル)-1-(4-フルオロベンジル)-1H-ピロロ[2,3-b]ピリジン;

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-(2-ピリミジニル) -1 H-ピロロ [2, 3-b] ピリジン :

5 1-シクロヘキシルメチル-5-メタンスルホニル-2-(2-ビリミジニル)-1H-ピロロ「2、3-b〕ピリジン:

1-シクロヘキシルメチル-2-(2-フラニル)-5-メタンスルホニルインドール:

2-(2-フラニル) -5-メタンスルホニル-1-(2-ピリジルメチル) -1H-ピロロ [2, 3-b] ピリジン;

15 2-(2-フラニル) -1-シクロヘキシルメチル-5-メタンスルホニルー 1H-ピロロ[2, 3-b] ピリジン;

2-(2-F) トラヒドロフラニル) -1-(4-T) ルオロベンジル) -5- メタンスルホニルーインドール;

2-(5, 6-i)ヒドロー2H-4-iピラニル)-1-(4-i)ル)-5-iタンスルホニルーインドール;

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-(5-メトキシカルボニルピリジン-2-イル) インドール;

1-(4-フルオロベンジル)-2-(5-カルボキシピリジン-2-イル) -5-メタンスルホニルインドール;

1-(4-フルオロベンジル)-5-メタンスルホニルー2-(3-ピリジル)

15

25

インドール:

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-(1-オキシー3-ピリジル) インドール:

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(5-メチルー

[1, 2, 4] トリアゾールー3ーイル) インドール;

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (3-メチル-

[1, 2, 4] オキサジアゾールー5ーイル) インドール;

1- (4-フルオロベンジル) -5-メタンスルホニル-2- (テトラヒドロピラン-4-イル) インドール;

5-メタンスルホニル-2-(1-オキシ-2-ピリジル)-1-(4-フルオロベンジル)-1 H-ピロロ「2. 3-b] ピリジン;

6-(1-(4-フルオロベンジル)-5-メタンスルホニルー<math>1H-ピロロ [2, 3-b] ピリジン-2-イル) ニコチン酸メチルアミド;

2-(2-カルボキシフラン-5-イルメチル)-1-(4-フルオロベンジル)-5-メタンスルホニルインドール;

1-(4-フルオロベンジル)-5-メタンスルホニル-2-(4-ピリジル) インドール:

1- (4-フルオロベンジル) -5-メタンスルホニルー2- (1-オキシー 4-ピリジル) インドール;

1-(4-7)ルオロベンジル) -5-メタンスルホニル-2-([1, 3, 4]オキサジアゾール-2-イル) -1 H-ピロロ[2, 3-b] ピリジン;

- 5-(4-7)ルオロベンジル) -2-メタンスルホニル-6-(チアゾール-2-イル) -5 H-ピロロ [2, 3-b] ピラジン;
- 5-(4-7)ルオロベンジル) -2-メタンスルホニル-6-(オキサゾール-2-イル) -5 H-ピロロ [2, 3-b] ピラジン;
- 1 (4-フルオロベンジル) 5-メタンスルホニルー2-(5-フルオロピリミジン-4-イル) 1 H-ピロロ <math>[2, 3-b] ピリジン:及び
 - 1-(2, 4-ジフルオロベンジル)-5-メタンスルホニル-2-([1, 3, 4] オキサジアゾール-2-イル)-1H-ピロロ[2, 3-b] ピリジン
- 10 から選択される化合物又はその薬学的に許容しうる酸若しくは塩基との付加塩、 あるいはその水和物。
 - 10. 請求の範囲第1~9項のいずれか1項記載の化合物を主成分として、添加成分と共に含有する医薬組成物。
 - 11. 請求の範囲第1~9項のいずれか1項記載の化合物を含有するシクロオキ シゲナーゼ阻害剤。
 - 12. 請求の範囲第1~9項のいずれか1項記載の化合物を含有する抗炎症剤。
 - 13. 請求の範囲第1項記載の式(1)の化合物の、医薬組成物を製造するための使用。
- 14. 請求の範囲第1項記載の式(1)の化合物の、抗炎症剤を製造するための 20 使用。
 - 15. 炎症性疾患を有する患者を治療するための方法であって、該患者に、請求 の範囲第1項記載の式(1)の化合物を主成分として、添加成分と共に含有する 医薬組成物を投与することによる方法。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP99/02718

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D401/04, 06, 403/04, 405/04, 06, 413/04, 417/04, 06, 471/04, 487/04, A61K31/40, 41, 42, 435, 44, 495				
According to International Patent Classification (IPC) or to both national classification and IPC				
	S SEARCHED			
Minimum d Int.	ocumentation searched (classification system followed Cl ⁶ C07D401/04, 06, 403/04, 40 487/04, A61K31/40, 41, 42	5/04, 06, 413/04, 417/0	4, 06, 471/04,	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA, REGISTRY (STN)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
A	JP, 7-215966, A (Merck Fross 15 August, 1995 (15. 08. 95) Claims & EP, 535925, Al &	,	1-14	
A	WO, 96/06840, A1 (Merck Frosst Canada Inc.), 7 March, 1996 (07. 03. 96), Claims & JP, 10-504829, A & AU, 9532492, A		1-14	
	& US, 5521213, A & EP, 778		v.	
P, A	JP, 10-168066, A (Pfizer Pha 23 June, 1998 (23. 06. 98),		1-14	
	Claims & EP, 846689, A1 &	CA, 2223551, A	, · · · ·	
		,	, ,	
,			·	
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be			tion but cited to understand evention laimed invention cannot be led to involve an inventive step laimed invention cannot be when the document is documents, such combination art smily	
9 Jun , 1999 (09. 06. 99) 22 June, 1999 (22. 06. 99)		06. 99)		
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer				
1	Formiraile No.			

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP99/02718

	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	emational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 15
	because they relate to subject matter not required to be searched by this Authority, namely: Invention as set forth in claim 15 falls under the category of methods treatment of the human body by therapy.
_ =	
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	ernational Searching Authority found multiple inventions in this international application, as follows:
	*
ı. 🗆	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers
· ·	only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is
	restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
!	
D	k on Protest The additional search fees were accompanied by the applicant's protest.
vemat	No protest accompanied the payment of additional search fees.

国際調査報告

A. 発明の風する分野の分類(国際特許分類(IPC)) Int. Cl ^e C07D401/04, 06 403/04, 405/04, 06, 413/04, 417/04, 06, 471/04, 487/04, A61K31/40, 41, 42, 435, 44, 495				
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ^a C07D401/04, 06 403/04, 405/04, 06, 413/04, 417/04, 06, 471/04, 487/04, A61K31/40, 41, 42, 435, 44, 495				
最小限資料以外の資料で調査を行った分野に含まれるもの				
国際調査で使用した電子データベース(データベースの名称、 CA, REGISTRY (STN)	調査に使用した用語)			
C. 関連すると認められる文献				
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連すると	関連する きは、その関連する箇所の表示			
A JP, 7-215966, A (メルクーポレーテッド), 15. 8月. 19 請求の範囲&EP, 535925, A CA, 2079376, A	95 (15.08.95),			
A WO, 96/06840, A1 (メハコーポレーテッド), 7. 3月. 19 請求の範囲&JP, 10-50482 AU, 9532492, A&US, 5 EP, 778834, A1	996 (07. 03. 96) ,			
x C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に含及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献				
国際調査を完了した日 09.06.99 国際調査報告の発送日 22.06.99				
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 4 P 9159			

C(続き).	関連すると認められる文献	
引用文献の		関連する 請求の範囲の番号
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	1-14
P, A	JP, 10-168066, A (ファイザー製薬株式会社), 2 3. 6月. 1998 (23. 06. 98), 請求の範囲& EP, 846689, A1&CA, 2223551, A	
i	EP, 846689, A1&CA, 2223551, A	
		·
{		
*		
		*
,		*
		-
1		
*		

国際調査報告

第I欄	請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)	
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。		
1. x	請求の範囲 15 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、	
	請求の範囲15に記載された発明は、人体の治療による処置方法に該当する。	
	·	
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい ない国際出願の部分に係るものである。つまり、	
3. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。	
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)	
次に対	★べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
	9	
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。	
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。	
з. 🗆	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納 付のあった次の請求の範囲のみについて作成した。	
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載	
	されている発明に係る次の請求の範囲について作成した。	
追加調	<u> 在</u> 手数料の異識の申立てに関する注意	
	□ 追加調査手数料の納付と共に出願人から異議申立てがあった。 □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。	
1	世が勝島・丁級打でかけ、モストロロのスペーンスのは、このでは、	