Sistemas Distribuidos y Paralelos

Ingeniería en Computación

Clasificación de arquitecturas paralelas

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación
- III. Clasificación por su organización física
 - i. Espacio de direcciones
 - ii. Redes de interconexión
 - Tipos de redes estáticas
 - Tipos de redes dinámicas
 - iii. Granularidad

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación
- III. Clasificación por su organización física
 - i. Espacio de direcciones
 - ii. Redes de interconexión
 - Tipos de redes estáticas
 - ii. Tipos de redes dinámicas
 - iii. Granularidad

Arquitecturas paralelas - Clasificación

- Las arquitecturas paralelas se pueden clasificar de distintas formas:
 - Organización lógica: desde el punto de vista del programador.
 - Mecanismos de control: formas de expresar las tareas paralelas.
 - Modelos de comunicación: mecanismos para especificar la interacción entre tareas.
 - Organización física: desde el punto de vista del hardware.
 - Espacio de direcciones: relacionado con el modelo de comunicación.
 - Red de interconexión: cómo se interconectan los procesadores/memoria.
 - Granularidad: relacionado al número y la potencia de los procesadores.

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación
- III. Clasificación por su organización física
 - i. Espacio de direcciones
 - ii. Redes de interconexión
 - Tipos de redes estáticas
 - ii. Tipos de redes dinámicas
 - iii. Granularidad

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación
- III. Clasificación por su organización física
 - i. Espacio de direcciones
 - ii. Redes de interconexión
 - Tipos de redes estáticas
 - ii. Tipos de redes dinámicas
 - iii. Granularidad

Taxonomía de Flynn

- En 1972, Michael J. Flynn propone una clasificación de arquitecturas de cómputo*, conocida como Taxonomía de Flynn, basada en dos aspectos:
 - El flujo de instrucciones concurrentes (control): secuencia de instrucciones que la unidad de control despacha durante un ciclo de instrucciones. El flujo de instrucciones puede ser simple o múltiple.
 - El flujo de datos: flujo de datos sobre el que operan las instrucciones. Los flujos de instrucciones pueden ser simples o múltiples.
- Según el número de instrucciones y datos que se pueden procesar simultáneamente podemos clasificarlas:

	Una Instrucción	Múltiples instrucciones
Un dato	SISD	MISD
Multiples datos	SIMD	MIMD

^{* &}quot;Some computer organizations and their effectiveness" https://ieeexplore.ieee.org/document/5009071

Taxonomía de Flynn SISD

- Single Instruction Single Data (SISD): Un único flujo de instrucciones y un único flujo de datos.
 - Una única unidad de procesamiento ejecuta un único flujo de instrucciones (decodificadas por la unidad de control) sobre datos alojados en una única memoria.
 - Instrucciones ejecutadas en secuencia, una por ciclo.
 - Ejecución determinística.
 - Ejemplo: Monoprocesadores (la mayoría de las PCs del siglo XX)

Taxonomía de Flynn SIMD

- Single Instruction Multiple Data (SIMD): Un único flujo de instrucciones y múltiples flujos de datos.
 - Conjunto de unidades de procesamiento idénticas que ejecutan la misma instrucción, sincrónicamente, sobre distintos datos.
 - La unidad de control hace broadcast de la instrucción a todas las unidades de procesamiento.
 - Adecuados para aplicaciones regulares.

• Ejemplos: GPU, SSE, AVX

Taxonomía de Flynn MISD

- Multiple Instruction Single Data (MISD): Múltiples flujos de instrucciones y un único flujo de datos.
 - Conjunto de unidades de procesamiento que ejecutan distintas instrucciones (cada instrucción despachada por una unidad de control diferente), sincrónicamente, sobre el mismo flujo de datos.
 - Ejemplos:
 - Sistemas redundantes tolerantes a fallos (misma instrucción sobre mismo flujo de datos).
 - Hacking de un mensaje codificado.

Taxonomía de Flynn MIMD

 Multiple Instruction Multiple Data (MIMD): Múltiples flujos de instrucciones y múltiples flujos de datos.

Conjunto de unidades de procesamiento que ejecutan, asincrónicamente, diferentes

instrucciones sobre diferentes flujos de datos.

Ejemplos: Multicores, Clusters.

Pueden ser de memoria compartida o distribuida.

Fluio de instrucciones

Taxonomía de Flynn Extensiones

- Existen extensiones a la taxonomía:
 - **SPMD** (Single Program Multiple Data Un programa, múltiples datos): Conjunto de unidades de procesamiento que trabajan simultáneamente sobre el mismo conjunto de instrucciones del mismo programa (aunque en puntos independientes) y operan sobre datos diferentes.
 - MPMD (Multiple Program Multiple Data Múltiples programas, múltiples datos): Conjunto de unidades de procesamiento que trabajan simultáneamente sobre al menos dos programas independientes.
 - Paralelismo funcional o Paradigmas Pipelines y Master-worker

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación
- III. Clasificación por su organización física
 - i. Espacio de direcciones
 - ii. Redes de interconexión
 - Tipos de redes estáticas
 - ii. Tipos de redes dinámicas
 - iii. Granularidad

Modelos de comunicación

- De acuerdo al modelo de comunicación, las arquitecturas paralelas se pueden clasificar en dos grandes grupos:
 - Multiprocesadores de memoria compartida:
 - UMA (Uniform Memory Access)
 - NUMA (Non-Uniform Memory Access)
 - Multiprocesadores de memoria distribuida

Es posible tener ambos modelos (modelo híbrido).

Modelos de comunicación Multiprocesadores de memoria compartida

UMA (Uniform Memory Access)

- La memoria física se comparte de manera uniforme por todos los procesadores.
- El costo de acceso a memoria es el mismo para todos los procesadores.
- La interconexión es a través de un bus o crossbar switch.

NUMA (Non-Uniform Memory Access)

- La memoria física se distribuye entre todos los procesadores. Cada procesador tiene su propia memoria local.
- Entre todas las memorias locales forman un espacio único de direcciones globales accesible por todos los procesadores.
- El costo de acceso a una memoria remota es mayor que el acceso a memoria local (overhead de red de interconexión).

- Expansión limitada
- Un fallo en un procesador afecta a todo el sistema
- Aumentar los procesadores tiende a aumentar la contención de memoria

Modelos de comunicación Multiprocesadores de memoria distribuida

- Procesadores conectados por una red de interconexión.
- Cada procesador tiene su propia memoria local.
- Los procesadores tienen acceso directo sólo a su memoria local.
- Los procesadores no tienen acceso a la memoria remota. La interacción entre procesadores es sólo por pasaje de mensajes.

- Expansible a bajo costo
- Fallos en una CPU pueden no afectar a todo el sistema

Modelos de comunicación Multiprocesadores híbridos

Podemos componer el hardware paralelo en sistemas híbridos:

Modelos de comunicación Grados de acoplamiento de los procesadores

Procesadores fuertemente acoplados

- Procesadores y red físicamente cerca.
- Mas costosos.
- Baja latencia.
- Tasas de transferencia alta.
- Mas eficientes energéticamente.
- Ejemplos: Multicores, Manycores.

Procesadores débilmente acoplados

- Procesadores y red físicamente lejos.
- Menos costosos.
- Alta latencia. (Variables)
- Tasas de transferencia baja. (Variables)
- Menos eficiente energéticamente.
- Ejemplos: Cluster, Grids.

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación
- III. Clasificación por su organización física
 - Espacio de direcciones
 - ii. Redes de interconexión
 - Tipos de redes estáticas
 - Tipos de redes dinámicas
 - iii. Granularidad

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación

III. Clasificación por su organización física

- i. Espacio de direcciones
- ii. Redes de interconexión
 - Tipos de redes estáticas
 - ii. Tipos de redes dinámicas
- iii. Granularidad

Espacio de direcciones

Multiprocesadores de memoria compartida

Espacio de direcciones compartido por todos los procesadores.

Multiprocesadores de memoria distribuida

Espacio de direcciones local a cada procesador.

Espacio de direcciones Multiprocesadores híbridos

Podemos componer el hardware paralelo en sistemas híbridos:

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación

III. Clasificación por su organización física

- i. Espacio de direcciones
- ii. Redes de interconexión
 - Tipos de redes estáticas
 - Tipos de redes dinámicas
- iii. Granularidad

Redes de interconexión

- En cualquier modelo, los procesadores y memorias pueden conectarse usando diversas redes de interconexión.
- Denominamos nodo a cualquier dispositivo que quiera conectarse a la red de interconexión:
 - Unidades de procesamiento (Procesadores/Cores)
 - Módulos/Bancos de memoria
 - Procesadores de entrada/salida
- El diseño de la red de interconexión depende de una serie de factores:
 - Ancho de banda
 - Tiempo de inicialización (startup)
 - Rutas estáticas o dinámicas
 - Topología
 - Etc...

Redes de interconexión

- Las redes de interconexión se pueden clasificar en:
 - Redes estáticas: su topología queda establecida en forma definitiva y estable cuando se instala el sistema.
 - Redes dinámicas: su topología puede variar durante la ejecución de los procesos.

Redes estáticas	Redes dinámicas
Enlaces directos fijos entre nodos. Una vez fabricado el sistema no puede cambiarse. Baja escalabilidad. Se usan cuando puede predecirse el tipo de tráfico.	Enlaces reconfigurables. Útiles en redes de propósito general. Mejor escalabilidad. Necesitan de elementos de interconexión específicos (buses, switches).

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación

III. Clasificación por su organización física

- i. Espacio de direcciones
- ii. Redes de interconexión
 - Tipos de redes estáticas
 - ii. Tipos de redes dinámicas
- iii. Granularidad

Tipos de redes estáticas

Lineal: Cada nodo se conecta con el siguiente (sólo son eficientes si tienen pocos nodos).

Malla: k-dimensional con l^k nodos. les la cantidad de nodos por lado.

bi- dimensional lado 3:

Anillo: red lineal con extremos conectados.

Toro: malla con extremos conectados en anillo.

Estrella: un nodo central supervisa. Ej: un sólo procesador hace E/S.

Tipos de redes estáticas

Hipercubos: malla k-dimensional donde se suprimen los nodos interiores. (Poco escalable).

Jerárquicas: generalmente árboles binarios Problemas de cuello de botella.

Jerárquicas Fat-Tree: los elementos internos son conmutadores. Varios mensajes a la vez.

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación

III. Clasificación por su organización física

- i. Espacio de direcciones
- ii. Redes de interconexión
 - Tipos de redes estáticas
 - Tipos de redes dinámicas
- iii. Granularidad

Tipos de redes dinámicas

Buses

Todos los procesadores acceden al bus para intercambiar datos.

Topologías simples de implementar.

Sólo se permite una transferencia a la vez.

Debe haber un "árbitro de bus" para gestionar los requerimientos.

Crossbars

Conecta P procesadores con M bancos de memoria a través de PxM switches.

La posición del switch cambia dinámicamente.

Tipos de redes dinámicas Ventajas y desventajas

Buses

Ventajas:

- Distancia entre nodos O(1)
- Broadcasting simple
- El costo escala linealmente con el número de nodos

Desventajas:

- Ancho de banda limitado → Limita la cantidad de nodos
- Alta latencia
- Bloqueante

Crossbars

Ventajas:

- No bloqueante
- Acceso rápido y constante
- Fácilmente escalables

Desventajas:

- Costo crece en orden PxM
- Escalabilidad costosa

Tipos de redes dinámicas Híbridos Multistage

- Multistages: trata de encontrar el mejor compromiso entre los buses y los crossbars:
 - Buses:
 - Mejor escalabilidad por costo
 - Más procesadores menor rendimiento
 - Crossbars:
 - Baja escalabilidad por costo.
 - Mejor rendimiento.

Tipos de Multistage

- Omega
- Línea base (recursivas)
- Mariposa
- Delta
- Closs
- Benes

- I. Clasificación de arquitecturas paralelas: Introducción
- II. Clasificación por su organización lógica
 - i. Mecanismos de control (Taxonomía de Flynn)
 - ii. Modelos de comunicación

III. Clasificación por su organización física

- i. Espacio de direcciones
- ii. Redes de interconexión
 - Tipos de redes estáticas
 - ii. Tipos de redes dinámicas
- iii. Granularidad

Granularidad

- Granularidad (Hardware): se refiere al número y la potencia de las unidades de procesamiento
- Las arquitecturas pueden ser:

Grano fino (fine-grained)

Muchas unidades de procesamiento poco potentes.

Grano grueso (coarse-grained)

Pocas unidades de procesamiento muy potentes.

Grano medio (medium-grained)

Equilibrio entre los anteriores.

Granularidad

Es necesario ver al sistema paralelo como un todo y analizar cada aplicación en función de la **granularidad (software) de la aplicación** (volumen de la carga de trabajo - relación cómputo/comunicación) para determinar la arquitectura adecuada.

		Interacción/Comunicación entre Procesos/Hilos	
		Poco	Mucho
Volumen de cómputo	Poco	(Ej: Pattern Matching) Grado Fino	(Ej: grafos, TSP, Puzzle15) Grano fino Si la comunicación es excesiva puede elegirse un grado medio
	Mucho	(Ej: Álgebra Lineal) Grano grueso Grano fino con gran número de unidades de procesamiento	(Ej: Bag of Task – CPU Bound) Grano grueso

Granularidad (Hardware o de la arquitectura): número y potencia de las unidades de procesamiento

Granularidad (Software o de la aplicación): volumen de carga de trabajo por tarea – relación cómputo/comunicación (Teoría de Diseño)

