Analyzing Trends of Covid Outcomes in Five NYC Boroughs

Fitting Richard Curve Model Using Newton-Raphson Algorithm

Tianshu Liu, Jiong Ma, Jiayi Shi, Zhengwei Song, Ziqing Wang

Outline

- COVID Prediction Background
- Richard's Growth Model
- Newton-Raphson algorithm for model fitting
 - Method for choosing starting values
- Result
 - Fitted parameters
 - Predictions
 - Implications of the results
 - Potential vaccine distribution strategy
- Discussion and Conclusion

Background

The COVID-19 pandemic has affected many aspects of our lives and the distribution of COVID-19 vaccines is a critical step to control the pandemic. The public available data at all levels empowered COVID-19 research and helped policymakers make informed decisions.

Objective: Fit pandemic curves for each NYC borough and make a distribution plan for COVID-19 vaccines across the city based on the predicted trends.

Dataset: the citywide and borough-specific daily counts of COVID cases, hospitalizations, and deaths from February 29, 2020 to December 11, 2020 published by the New York Department of Health (NYDOH).

Richard growth function

$$N(t) = rac{a}{\{1 + d \exp\{-k(t - t_0)\}\}^{1/d}}$$

- Widely used for prediction of infectious disease transmission dynamics, including COVID-19
- S-shaped, extension of logistic function, doesn't need to be symmetric around the inflection point
- t: the time since the beginning of the pandemic
- a: carrying capacity, i.e. the maximum size or population that could be potentially infected
- k: the parameter that controls the growth rate at the inflection point
- d: the shape parameter
- t_o: the time at an inflection

A Newton-Raphson algorithm for curve fitting

$$Y_i = N\left(t_i, oldsymbol{ heta}
ight) + \epsilon_i$$

• Minimize $RSS = \sum_{i=1}^{n} (Y_i - N(t_i, \theta))^2$

• Gradient
$$\nabla f(\boldsymbol{\theta}) = \left(\frac{\partial f(\boldsymbol{\theta})}{\partial a}, \frac{\partial f(\boldsymbol{\theta})}{\partial k}, \frac{\partial f(\boldsymbol{\theta})}{\partial d}, \frac{\partial f(\boldsymbol{\theta})}{\partial t_0}\right)'$$

• Hessian $\nabla^2 f(\boldsymbol{\theta})$ with i,j element equal to $\frac{\partial^2 f(\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}$

• ith Iterative step $m{ heta_i} = m{ heta_{i-1}} - \lambda (
abla^2 f(m{ heta_{i-1}}))^{-1}
abla f(m{ heta_{i-1}})$

Newton Raphson Algorithm Steps

- 1. Initialization (i = 0)
 - 1.1. Objective: Find parameters that maximize -RSS
 - 1.2. Pass in initial parameter values to compute initial gradient and Hessian
 - 1.3. Initialize the starting RSS as Inf
- 2. Iteration steps (i = 1, 2, 3.....)
 - 2.1. While $|RSS_{i-1} RSS_i| > tol$
 - 2.1.1. Direction check
 - 2.1.1.1. If current step not in ascent direction, make the Hessian negative definite by subtracting (max eigenvalue + 1) from Hessian diagonal
 - 2.1.2. Update parameter values
 - 2.1.3. Bound check
 - 2.1.3.1. If any of the updated parameter value is negative, set to the value in previous step
 - 2.1.4. While $RSS_{i-1} RSS_i < 0$
 - 2.1.4.1. Reduce the step size by a half and update the parameter values
 - 2.1.4.2. Check parameter bounds
- 3. Convergence criteria: $|RSS_{i-1} RSS_i| \le tol$
 - 3.1. Return the optimal parameter values when the convergence criteria is satisfied

Method for choosing starting values

- Divide into two pandemic waves and choose starting values separately:
 - o 1st pandemic wave (w1): t from 1 to 150
 - o 2nd pandemic wave (w2): t from 151 to 287
- a: chosen based on the maximum cumulative case/hospitalization/death count for each wave
 - # cumulative cases at t=150 for w1;
 - 2 × # cumulative cases at t=287 for w2 (middle point)
- d: a number between 0 and 1. (d=0 Gompertz growth curve [1]; d=1 logistic growth curve [2]). We chose d=0.8 for all scenarios.
- t₀: the time at which the number of daily counts reaches the highest
- k: estimated by fitting a linear regression model

Trend of daily case count (top) and cumulative case count (bottom) in Brooklyn

Choosing starting k using linear regression

$$m = N(t) = \frac{a}{(1+de^{-k(t-t_0)})}$$

$$\frac{a}{m} = 1 + de^{-k(t-t_0)}$$

$$\log(\frac{a}{m}) - 1 = \frac{1}{d}\log(de^{-k(t-t_0)})$$

$$\log((\frac{a}{m} - 1)^d) = \log(d) - k(t - t_0)$$

$$\log(\frac{(\frac{a}{m} - 1)^d}{d}) = -k(t - t_0)$$

- Manipulate the Richard's curve into a linear relationship
- Plug in the starting values for a, d, t₀
- Plug in the cumulative case/hospitalization/death count data for m
- Perform linear regression to obtain the starting value for k

Results: 1st Wave Cumulative Cases in Brooklyn

Starting value:

а	k	d	t_0
65	0.0432	0.8	40

Fitted value:

а	k	d	t _o
59.1925	0.0560	4.1822e -11	35.0033

Results: 1st Wave Cumulative Cases by Borough

	Starting	value			Result			
	а	k	d	t _o	а	k	d	t _o
BK	65	0.0432	0.8	40	59.1925	0.0560	4.1822e-11	35.0033
вх	70	0.0483	0.8	40	65.3846	0.0617	1.5317e-08	34.8640
MN	30	0.0450	0.8	40	27.0454	0.0511	1.5387e-12	33.7299
QN	70	0.0483	0.8	40	65.3846	0.0617	1.5317e-08	34.8640
SI	15	0.0444	0.8	40	13.9874	0.0723	1.9554e-11	32.9436

Rank of growth rate: Staten Island > Bronx ≈ Queens > Brooklyn > Manhattan

Results: 1st Wave Cumulative Hospitalizations

	Starting	value			Result				
	а	k	d	t _o	а	k	d	t _o	
BK	17	0.0407	0.8	40	15.7101	0.0618	1.5020e-11	33.5572	
вх	15	0.0364	0.8	40	11.882	0.0665	3.201e-11	33.835	
MN	10	0.0306	0.8	40	7.6964	0.0667	1.8989e-11	32.5439	
QN	20	0.0349	0.8	40	16.3018	0.0882	2.1557e-11	31.8764	
SI	5	0.0249	0.8	40	2.4750	0.0574	1.4090e-12	34.5511	

Rank of growth rate: Queens > Manhattan > Bronx > Brooklyn > Staten Island

Results: 1st Wave Cumulative Deaths

	Starting	value			Result				
	а	k	d	t _o	а	k	d	t _o	
BK	6	0.0414	0.8	40	5.6007	0.0752	1.2862e-11	40.8587	
вх	5	0.0317	0.8	40	3.911	0.069	2.232e-11	41.267	
MN	4	0.0271	0.8	40	2.4564	0.0655	7.5658e-12	41.5707	
QN	7	0.0395	0.8	40	5.7782	0.0767	2.2050e-11	41.0972	
SI	2	0.0192	0.8	40	0.8855	0.0639	2.5125e-10	40.8286	

Rank of growth rate: Queens > Brooklyn > Bronx > Manhattan > Staten Island

Results: 2nd Wave Cumulative Cases in Brooklyn

Starting value:

а	k	d	t _o
80	0.2660	0.8	137

Fitted value:

а	k	d	t _o
85.5067	0.3379	14.6456	169.4569

Results: 2nd Wave Cumulative Cases by Borough

	Starting	value			Result			d t _o		
	а	k	d	t _o	а	k	d	t _o		
вк	80	0.0266	0.8	137	85.5067	0.3379	14.6456	169.4569		
вх	42	0.0235	0.8	137	49.789	0.365	14.574	169.813		
MN	42	0.0253	0.8	137	41.9403	0.4047	15.8552	163.5019		
QN	65	0.0263	0.8	137	59.5907	0.5719	21.3935	159.2813		
SI	30	0.0292	0.8	137	34.2817	0.381	11.0869	162.7768		

Rank of growth rate: Queens > Manhattan > Staten Island > Bronx > Brooklyn

Results: 2nd Wave Cumulative Hospitalizations

	Starting	value			Result				
	а	k	d	t _o	а	k	d	t _o	
вк	10	0.0221	0.8	137	9.4513	0.0185	0.6664	169.543	
вх	5	0.0205	0.8	137	6.736	0.166	8.615	198.097	
MN	4	0.0216	0.8	137	2.5723	0.3801	17.2515	169.7831	
QN	5	0.0242	0.8	137	9.1255	0.1956	8.7343	186.8791	
SI	2	0.0247	0.8	137	1.9815	0.5729	16.915	156.6111	

Rank of growth rate: Staten Island > Manhattan > Queens > Bronx > Brooklyn

Results: 2nd Wave Cumulative Deaths

	Starting	value			Result				
	а	k	d	t _o	а	k	d	t _o	
BK	1.2	0.0232	0.8	137	2.6286	0.0089	0.1412	238.2228	
вх	0.5	0.0180	0.8	137	0.524	0.0081	2.695e-09	154.253	
MN	0.4	0.0177	0.8	137	0.3741	0.2022	11.1460	189.5283	
QN	0.6	0.0199	0.8	137	0.5203	0.3125	17.1367	173.8689	
SI	0.3	0.0271	0.8	137	0.3938	0.4208	9.7594	160.3436	

Rank of growth rate: Staten Island > Queens > Manhattan > Brooklyn > Bronx

Results: 1st Wave vs 2nd Wave growth rate

	Cases		Hospitalizati	ons	Deaths	
	Wave 1	Wave 2	Wave 1	Wave 2	Wave 1	Wave 2
ВК	0.0560	0.3379 1	0.0618	0.0185	0.0752	0.0089
BX	0.0617	0.365	0.0665	0.166	0.069	0.0081
MN	0.0511	0.4047	0.0667	0.3801	0.0655	0.2022
QN	0.0617	0.5719 1	0.0882	0.1956	0.0767	0.3125
SI	0.0723	0.381	0.0574	0.5729	0.0639	0.4208

 Predict the number of cumulative cases, hospitalizations and deaths on December 18th, 2020 based on the fitted richard growth functions.

For each borough:

- Populations
- Prevalence: # cumulative cases / # populations
- Hospitalization rate: # cumulative hospitalizations / # cumulative cases
- Death rate: # cumulative deaths / # cumulative cases

Suggestions for vaccination roll-out plan based on different purposes:

- 1. Prioritize boroughs with highest prevalence: population * prevalence
- 2. Prioritize boroughs with highest hospitalization rate: population * hospitalization rate
- 3. Prioritize boroughs with highest death rate: population * death rate

borough

Standardized statistics for distribution of vaccines

boro	prevalence	k rank	hospitalization	k rank	death	k rank
ВК	30%	5	31%	5	33%	4
ВХ	16%	4	18%	4	17%	5
MN	16%	2	12%	2	12%	3
QN	26%	1	27%	3	24%	2
SI	11%	3	11%	1	14%	1

Discussion and Conclusion

Conclusion:

- Newton-Raphson algorithm helps to fit Richard's curve for COVID data.
- The selection of starting value is crucial in fitting Richard's curves. When data for all time point is available, the fitting result will be more accurate and the curve is more likely to be S-shaped.
- The 2nd wave shows a greater growth rate in case than the 1st wave among all 5 boroughs, implying the 2nd wave is more severe than the 1st one. Our fitting result for the 2nd wave can be used to predict the future count.
- The vaccine roll-out plan can be decided on both census data and the measure of interest. A combination of multiple rates is also a good choice to calculate the proportion of vaccine allocated to boroughs.

Discussion and Conclusion

Discussion:

- Model application
- Selection of starting value
 - Trying different starting d, or selecting d based on theory, may improve the model fit.
- The fitting result of 2nd wave is sensitive to the starting value
 - \circ t_0 = 137, the count will be decreasing after that day
 - o a is almost 2 times the count in Day 137
- Vaccine roll-out plan
 - A combination of measures of interest can be used
 - Socioeconomic factors: Old population (proportion, growth rate), Race, Income...

Reference

[1] Gompertz B. XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London. 1825;(115):513–583.

[2] Tsoularis A, Wallace J. Analysis of logistic growth models. Mathematical biosciences. 2002; 179(1):21–55. https://doi.org/10.1016/S0025-5564(02)00096-2 PMID: 12047920

Q&A