Econometrics with Python

Olivér Nagy

John von Neumann University - MNB Institute Central Bank of Hungary

2023. szeptember 28.

Limit

Határérték

Legyen x_n valós számokból álló nem sztochasztikus sorozat. Ha bármely ϵ pozitív valós számhoz tartozik olyan N természetes szám (index), hogy minden n>N esetén $|x_n-x|<\epsilon$, akkor x értéket az x_n sorozat **határértékének** nevezzük. Jelölése: $x_n\to x$.

A határérték tehát egy olyan pont amelyet a sorozat (x_m) megközelít, és idővel, mindig a közelőben is marad. Lehet hogy a sorozat, soha se éri el a határértékét, de ha a sorozat elemszáma kellően nagy (n > N), onnantól fogva mindig ϵ távolságon belül marad x határtértékhez képest.

A véletlen számok határértékét / határait, több formában is tudjuk értelmezni, ezeket nézzük meg a következők során.

Konvergencia - Eloszlás 1.

Legyen X_n véletlen számokból álló sorozat, és X egy véletlen változó. F_n jelölje az X_n -hez tartozó kumulált eloszláls függvényt F pedig X eloszlás függvényét.

Convergence in Distribution

 X_n véletlen változók sorozata **eloszlásában konvergál** X-hez, ha

$$\lim_{n \to \infty} F_n(t) = F(t)$$

Jelölése: $X_n \xrightarrow{d} X$

A eloszlás konvergencia azt jelenti, hogy a sorozat határoló eloszlása megegyezik egy (convergent) véletlen változó eloszlásával.

Continuous Mapping Theorem

Ha $X_n \xrightarrow{d} X$ és g(x) függvény egy nulla valószínűségű halmazon kívül folytonos, akkor $g(X_n) \xrightarrow{d} g(X)$.

Konvergencia - Eloszlás 2.

Az 1. ábrán az Fi kumulatív eloszlás függvények sorozata látható, amint konvergálnak a standard normális kumulatív eloszláshoz, az elemszám növekedése során.

Konvergencia - Valószínűség, Kvadratikus átlag

Convergence in Probability

 X_n véletlen változók sorozata **valószínűségében konvergál** X-hez akkor és csak akkor, ha:

$$\lim_{n \to \infty} Pr(|X_n - X| < \epsilon) = 1 \,\forall \epsilon > 0$$

Jelölése: $X_n \xrightarrow{p} X$, illetve plim $X_n = X$

Convergence in Mean Square / Quadratic Mean / L_2

 X_n véletlen változók sorozata **kvadratikus átlagban konvergál** X-hez akkor és csak akkor, ha:

$$\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0$$

Jelölése: $X_n \xrightarrow{m.s.} X$, illetve $X_n \xrightarrow{qm} X$

A kvadratikus átlagban értelmezett konvergencia elég erős ahhoz, igaz legyen: $\lim_{n\to\infty}\mathbb{E}[X_n]=\mathbb{E}[X]$ és $\lim_{n\to\infty}\mathbb{V}[X_n]=\mathbb{V}[X]$

Konvergencia - Szinte biztos

Almost sure convergence

 X_n véletlen változók sorozata **szinte biztos konvergál** X-hez akkor és csak akkor, ha:

$$\lim_{n \to \infty} \Pr(X_n - X = 0) = 1$$

Jelölése: $X_n \xrightarrow{a.s.} X$

Konvergenciák közti implikációk

- $X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{m.s.} X$
- $X_n \xrightarrow{m.s.} X \implies X_n \xrightarrow{p} X$
- $X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X$
- Akkor és csak akkor, ha Pr(X=c)=1: $X_n \stackrel{d}{\to} X \implies X_n \stackrel{p}{\to} X$

Konvergencia - Kapcsolatok

Konvergens véletlen változók kezelése

Legyenek X_n, Y_n véletlen változók sorozatai, legyenek X, Y véletlen változók, c skalár, és legyen g folytonos függvény.

A 3. és 5. részeket Slutsky tételnek nevezük.

Konzisztencia és torzítatlanság

Legyen $\hat{\theta}_n$ egy θ -ra vonatkozó becsült paraméterek sorozata n pedig a becsült minta nagysága. Ebben az esetben $\hat{\theta}_n$ véletlen változók sorozataként értelmezhető.

Consistency

$$\hat{\theta}_n$$
 konzisztens becslője θ -nak akkor ha: $\hat{\theta}_n \stackrel{p}{\longrightarrow} \theta$

Bias

Torzításának nevezzük a becsült paraméter várható értéke és a tényleges (nem megfigyelhető) paraméter közti különbséget:

$$B[\hat{\theta}_n] = \mathbb{E}[\hat{\theta}_n] - \theta$$

Ha $B[\hat{\theta}_n] = 0$, akkor a becslő torzítatlan.