

Инновации материалов «Русграфен»

Откройте завесу перед чудесами наноматериалов вместе с Русграфен. Наша уникальная линейка оборудования призвана быть полезной всем:

- Жкольникам и студентамШколам и университетам
- Исследователям и учёным Университетам и НИИ
- ПредпринимателямЗаводам и фабрикам

OBPA30BAHME

HAYKA

ПРОМЫШЛЕННОСТЬ

Новые перспективы

Мы приглашаем вас в увлекательный мир инноваций, в котором компания «Русграфен» является экспертом в проектировании, изготовлении и настройке сложного оборудования для синтеза двумерных наноматериалов.

Наши передовые установки, созданные с использованием технологии химического газофазного осаждения, открывают новые перспективы в области нанотехнологий.

Производительность

Наше оборудование обеспечивает высокую производительность и эффективность при синтезе двумерных наноматериалов. Это делает наши установки идеальными для научных лабораторий, промышленных предприятий и инновационных стартапов.

Качество

Наши продукты отличаются превосходным качеством, мы придаем большое значение индивидуальному подходу к каждому проекту. Наша опытная команда внимательно изучает потребности клиентов, чтобы предложить уникальные решения, способствующие достижению выдающихся результатов.

Поддержка

Мы не останавливаемся на предоставлении надёжного оборудования. Мы также предлагаем полный спектр услуг, включая обучение, техническую поддержку и постпродажное обслуживание, чтобы гарантировать оптимальную производительность и удовлетворение потребностей клиентов.

Линейка оборудования

Образовательное

Позволяет синтезировать двумерные наноматериалы, включая графен, без использования взрывоопасных углеродсодержащих газов, делая процесс доступным для обучения студентов и школьников.

Научное

Универсальное оборудование, предназначенное для исследований с применением метода химического газофазного осаждения. Это позволяет синтезировать разнообразные двумерные материалы, включая графен, гексагональный нитрид бора, дисульфид молибдена, дисульфид вольфрама и многие другие.

Промышленное

Разработано для стабильного и масштабируемого производства двумерных наноматериалов, обеспечивая повторяемое качество на промышленном уровне.

Автоматизация

Искусство научных открытий становится проще с Русграфен. Мы предлагаем инновационное оборудование, которое превзойдет ваши ожидания — полностью автоматизированное и настроенное на синтез двумерных материалов.

Забудьте о сложных настройках и трудоемких этапах — мы предоставляем вам готовое решение. Просто подключите оборудование, запустите процесс нажатием всего одной кнопки, и наслаждайтесь результатами. Мы делаем науку и инновации доступными для всех.

Технология

Технология химического газофазного осаждения (CVD) — инновационный метод с несколькими ключевыми этапами. В вакуумной камере с каталитической подложкой создается вакуум и подаются газы. Подложку нагревают до 1000 градусов Цельсия. Газ разлагается вблизи подложки.

Отличительной особенностью является нагревательный элемент, который может быть внутри или снаружи камеры. Мы предлагаем два метода нагрева:

- → Внешние нагревательные спирали в трубчатом реакторе с переменным током.
- → Внутренние нагревательные элементы с постоянным электрическим током.

Оборудование CVD, предлагаемое нами, позволяет успешно осуществлять химическое газофазное осаждение. Например, для синтеза графена метан разлагается на углерод и водород при нагреве каталитической подложки, создавая графеновую пленку. Аналогично, другие двумерные материалы могут быть получены путем оптимизации газов и параметров синтеза.

Технические характеристики

\rightarrow

Установка с рекатором с холодными стенками

Способы нагрева каталитической подложки	Прямой нагрев фольги током или через нагрев. столик
Материал фольг для роста	Медь, никель
Материал подложек для роста	На выбор пользователя
Размер синтезируемого графена	До 100 см²
Максимальная температура фольги	До плавления фольги
Максимальная температура нагревательного столика 1300 °C	
Минимальный набор газов для синтеза	Метан, аргон, водород (CH4, Ar, H2)
Возможность подключить дополнительную газовую линейку Есть	
Степень вакуума	До 5·10 ⁻³ Торр
Объём вакуумной камеры	От 2 до 10 л
Точный контроль скорости нагрева каталитичес	ской подложки От 500 градусов в секунду
Точный контроль скорости охлаждения каталит	гической подложки От 100 градусов в секунду
Возможность синтеза без метана и водорода	Есть (технология на основе парафина)
Полное время синтеза (включая откачку камеры, нагрев, синтез, охлаждение) От 15 минут	

\rightarrow

Установка с рекатором на основе трубчатой печи

Способы нагрева каталитической подложки	Внешние нагревательные элементы
Размер кварцевой трубы	Диаметр от 3 до 15 см
Материал фольг для роста	На выбор пользователя
Размер синтезируемого графена на одной подложке	до 1000 см²
Возможность загрузки нескольких подложек в один синтез	Есть, до 10 подложек
Максимальная температура печи	1100 °C
Минимальный набор газов для синтеза	Метан, аргон, водород (CH4, Ar, H2)
Возможность подключить дополнительную газовую линейку	Есть
Степень вакуума	До 5·10 ⁻³ Торр
Объём вакуумной камеры	От 1 до 30 л
Полное время синтеза (включая откачку камеры, нагрев, синтез, о	хлаждение) От 3 часов

О компании

Первая российская компания, запустившая производство CVD-графена — высококачественной графеновой пленки толщиной в один атом углерода.

- Исследование, производство и продажа графеновых и других 2D-материалов, а также продукции на их основе.
- Разработка и реализация компактного, энергоэффективного и безопасного оборудования для синтеза графена, проведение целевых НИОКР.

Контактная информация:

+7-939-111-05-32

info@rusgraphene.ru

https://rusgraphene.ru

