25 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2072 Chaitra

Exam.	R	egular 💮 💮	
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, BAME, BIE, B.Agri.	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Basic Electrical Engineering (EE401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- a) A 60 W, 240 V incandescent filament lamp is switched on at 20°C. The operating temperature of the filament is 2000°C. Determine the current taken by the lamp at the instant of switching ON. the temperature coefficient of resistance of the filament material is 0.0045/K.
 - b) A battery of unknown emf is connected across resistances, as shown in figure below. The voltage drops across the 8Ω resistor is 20 V. What will be the current reading in the ammeter? What is the emf of the battery?

- c) What do you mean by ideal and practical voltage and current sources?
- 2. a) Find the power dissipation in 15 Ω resistor shown in figure below using mesh analysis.

b) Find current on load resistor R_L , if its resistance is 2 Ω , using superposition theorem. [6]

c) State and explain Norton's theorem with an appropriate example.

[6]

[5]

[5]

[6]

3. a) Find the value of R_L for which the maximum power is transferred in the load resistance R_L. Also find the maximum power that can be transferred to the load resistance R_L.

[8]

b) Derive the expression for the inductance of inductor in terms of its physical dimensions.

[4]

c) Calculate the average and rms value of full-wave rectified sine wave as shown below.

[4]

- Em $\pi/4$ π $5\pi/4$ π θ
- 4. a) A circuit consisting of a resistance of 30 Ω in series with an inductance of 75 mH is connected in parallel with a circuit consisting of a resistance of 20 Ω in series with a capacitance of 100 μ F. If the parallel combination is connected to a 240 V, 50 Hz single phase supply, calculate (i) The current in each branch (ii) The total current and power factor and (iii) Power consumed. Also draw a neat phasor diagram.

[8]

b) For a series path with a resistance of 8 Ω , capacitor of $120\mu F$ and an inductance of 0.1 H, a capacitor $180\mu F$ is kept in parallel. Then the combination is fed by 240V, 50Hz, 1- φ supply. Calculate branch currents, total current from supply, power factor of whole circuit, active power and reactive power consumed by the circuit. Also show phasor diagram.

[8]

5. a) Develop relation between phase voltage and line voltage in 3-φ star connected system.

[4]

b) For the circuit shown in figure below, calculate the current through the neutral and the total power consumed in the load.

[8]

c) Explain with connection diagram the measurement of 3-φ power using two wattmeters.

[4]