Množiny bodů dané vlastnosti

MNOŽINOU BODŮ DANÉ VLASTNOSTI rozumíme souhrn všech bodů X roviny ρ , pro které platí:

- Každý bod této roviny má danou vlastnost.
- Každý bod, který má danou vlastnost, patří do této množiny.

KRUŽNICE

- a) Množinou bodů v rovině ρ , které mají od daného bodu S danou vzdálenost r, je **kružnice** k(S;r).
- b) Množina středů všech kružnic, které prochází daným bodem S a mají poloměr r, je **kružnice** k(S;r).

$$M=\{X\in\rho;|XS|=r\}$$

OSA ÚSEČKY

- a) Množinou bodů v rovině ρ , které mají stejnou vzdálenost od daných bodů A a B, je osa úsečky AB.
- b) Množinou středů všech kružnic, které prochází danými body A, B, je **osa úsečky** AB $M = \{X \in \rho; |AX| = |BX|\}$

ROVNOBĚŽKY

- a) Množinou bodů v rovině ρ , které mají od dané přímky p danou vzdálenost v, je **sjednocení dvou rovnoběžek** ve vzdálenosti v od přímky p.
- b) Množinou středů všech kružnic, které mají daný poloměr r a dotýkají se dané přímky p, je **sjednocení dvou rovnoběžek** s přímkou p ve vzdálenosti r.

$$M = \{X \in \rho; |Xp| = v\}$$

OSA PÁSU

- a) Množina bodů v rovině ρ , které mají od daných rovnoběžek p, q stejnou vzdálenost, je **osa rovinného pásu** o.
- b) Množina středů rovnic, které se dotýkají zadaných rovnoběžek p, q, je **osa rovinného pásu** o.

$$M = \{X \in \rho; |Xp| = |Xq|\}$$

RŮZNOBĚŽKY

Množinou bodů v rovině ρ , které mají od daných různoběžek p, q stejnou vzdálenost, je dvojice kolmých přímek, na kterých leží **osy všech čtyř úhlů** určených různoběžkami p, q.

$$M=\{X\in\rho;|Xp|=|Xq|\}$$

OSA ÚHLU

- a) Množinou bodů v rovině ρ , které mají od ramen daného úhlu stejnou vzdálenost, je **osa úhlu**.
- b) Množinou středů všech kružnic, které se dotýkají obou ramen daného úhlu, je **osa** tohoto **úhlu**.

SOUSTŘEDNÉ KRUŽNICE

Množinou středů všech kružnic, které mají daný poloměr r a dotýkají se dané kružnice l(S;R), je sjednocení dvou **soustředných kružnic** $k_1(S;R+r)$ a $k_2(S;|R-r|)$.

EKVIGONÁLA ÚSEČKY

a) Množina bodů v rovině ρ , ze kterých je danou úsečku AB vidět pod úhlem α , se nazývá **ekvigonála úsečky**. Jde o sjednocení dvou kružnicových oblouků odpovídajících obvodovému úhlu α bez bodů A, B: $M = \{X \in \rho; |AXB| = \alpha\}$. Pro takovou množinu zavádíme označení $M = \varepsilon(AB; \alpha)$

Pokud $\alpha=90^\circ$, dostaneme **Thaletovu kružnici** nad úsečkou *AB*. $\varepsilon(AB;90^\circ)= au_{AB}$

b) **Ekvigonála úsečky** AB je tedy množina vrcholů všech úhlů velikosti α , jejichž ramena procházejí danými body A, B.

