Appli State Transportation

Appli SIMPLE

Aleaned Shace Practacher Program

SIMPLEX Turbopump Design Application of Overset Technology on

Bruce Vu Lisa Griffin Dan Dorney Presented at the 5th Symposium on Overset Grid & Solution Technology UC Davis, September 18-20, 2000

Objective

- To support the Functional Design Group
- To predict more accurate data using a Chimera technique
- To compare with previous (uncoupled) calculations
- To provide an unsteady environment

Simplex Turbopump

Cutaway of Simplex Nozzle Ring Assy

Simplex Turbine Gas Flow Path to scale dimensions in inches

_

Grid Generation

- Overset grids using Corgrid
- Nozzle grids (O type)
- Blade grids (O and H type)
- Interface (duct) grid (H and O type), O grid is required by Corgrid but not used in flow solver
- Turbine includes 12 nozzles and 95 blades.
- Model includes 1 nozzle and 8 blades; 95/96 factor is compensated in Corgrid
- Total of 1,787,550 grid points, reduced to 1,060,798 to fit in SGI Challenge

Blade Contours

Flow Simulation

- Navier Stokes or Euler equations in time-accurate manner Corsair: based on rotor3.1, solves unsteady, thin-layer Code characteristics:
 - factored, iterative, implicit algorithm
- Roe's upwind difference scheme
- arbitrary blade motion/oscillation
- slipping patch-boundary to facilitate relative motion between blades
- multi-stage, multi-blade capability
- etc...
- MPI: problem can be split by number of rows (3 processors) or passages (10 processors)
- 40,000 iterations per cycle

Mach

0.73

Conclusion

- It took too long to converge 1 cycle
- Large computing resources required to implement MPI more efficiently
- 3 processors on SGI: 1000 iterations/day
- 10 processors on NAS: 2500 iterations in 8 hrs (wall clock)
- The solutions look reasonable and more realistic than the uncoupled simulation
- Consider running on PC clustered Beowulf