Lecture 5.1

数据流分析和代码优化

徐辉 xuh@fudan.edu.cn

大纲

- 一、常量分析和优化
- 二、可达性分析和数值流图
- 三、静态单赋值形式

常量分析问题

分析每一个program point有哪些变量为定值?

```
let a:const int = 5;
let b = a + 1;
                                     a = 5
if(cond) {
                                             [(a,5)]
    b = a + b;
                                  b = a + 1
} else {
                                             [(a,5)(b,6)]
    b = a - b;
                                     cond
let c = a + b;
                                              [(a,5)(b,6)]
                               true
                                            €alse
                           b = a + b
                                          b = a - b
                     [(a,5)(b,11)
                                              [(a,5)(b,-1)]
                                   c = a + b
                                              [(a,5)(b,?)(c,?)]
```

定义Transfer函数

- 对于赋值语句x = lvalue
 - 如果lvalue的形式为常量c,则x的状态为"常量c"
 - 如果lvalue的形式为变量y,则x的状态等同于y的状态
 - 如果lvalue的形式为 "y op z" ,则x的状态为:
 - y op z运算后的值,如果y和z是常量
 - 非常量,如果y或z是非常量
 - 未定义,如果y或z未定义
 - 如果lvalue的形式为函数调用,则x的状态为非常量
 - X以外的其它的变量状态不变

常量分析和优化

- 常量传播(constant propagation)
- 常量折叠(constant folding)

```
let a:const int = 5;
let b = a + 1;
if(cond) {
    b = a + b;
} else {
    b = a - b;
}
let c = a + b;
```

```
let a:const int = 5;
let b = 6;
if(cond) {
    b = 11;
} else {
    b = -1;
}
let c = 5 + b;
```

有循环的情况

Chaotic iteration

let a:const int = 5;

let b = a + 1;

while(cond1){

基于Lattice的方法

- 使用poset(V, A)对变量的状态建模
 - patially ordered set
 - 未定义 ≥ 常量x
 - 常量x ≥ 非常量
 - top element: 未定义
 - bottem element: 非常量
 - Meet运算
 - 未定义 ∧ 常量x = 常量x
 - 常量x ∧ 常量y = 非常量
 - 常量x ∧ 非常量 = 非常量

算法设计思路

```
For (each node n): 1.初始化每个变量的状态为未定义 IN[n] = {<v, undef>: v is a program variable} OUT[n] = Ø Repeat:

For(each node n): 2.遍历控制流图

For(each n's predecessor p) 3.如入度>1,则meet IN[n] = IN[n] n OUT[p]

OUT(n) = TRANSFER(n) 4.分析当前节点的语义
Until IN[n] and OUT[n] stops changing for all n
```

5. 结束条件: fixed point

常量分析小节

- 本质:编译时计算
- 应用:
 - 常量折叠
 - 无效代码删除

大纲

- 一、常量分析和优化
- 二、可达性分析和数值流图
- 三、静态单赋值形式

可达性分析:分析def-use关系

为每一个程序点(program point)分析某一变量的某 个定义/赋值语句是否可达

• x=1可以到达: P1,P2

• y=1可以到达: P1

分析方法

- 为每条语句分配一个编号
 - BB0-1: x=1
 - BB0-2: y=1
 - • •
- 结果存储:
 - IN(n): 节点的入向属性集合
 - OUT(n): 节点的出向属性集合
- 正向遍历控制流图
 - 如遇到指令: x = load a
 - $Gen(n) = \{ < x, n > \}$
 - KILL(n) = $\{ < x, m > : m \neq n \}$
 - ..
 - $OUT(n) = (IN(n) KILL(n)) \cup Gen(n)$

控制流和环的处理


```
For (each node n):
    IN[n] = OUT[n] = Ø
OUT[entry] = {<v, ?>: v is a program variable}
Repeat:
    For(each node n):
        For(each n's predecessor p)
            IN[n] = IN[n] U OUT[p]
            OUT(n)=(IN[n]-KILL(n)) U Gen(n)
Until IN[n] and OUT[n] stops changing for all n
```

应用:第1轮

<x, n>: 表示变量x在第n个节点被赋值

n	IN(n)	OUT(n)
BB0-1	-	{ <x, 0-1="">}</x,>
BB0-2	{ <x, 0-1="">}</x,>	{ <x, 0-1=""><<u>y</u>,0-1>}</x,>
BB0-3	{ <x,0-1><y,0-1>}</y,0-1></x,0-1>	{ <x, 0-1=""><y,0-1><<u>z,0-3></u>}</y,0-1></x,>
BB1-1	{ <x,0-1><y,0-1><z,0-3>}</z,0-3></y,0-1></x,0-1>	{ < x,1-1> <y,0-1><z,0-3>}</z,0-3></y,0-1>
BB4-1	{ <x,1-1><y,0-1><z,0-3>}</z,0-3></y,0-1></x,1-1>	{ <x,1-1><y,4-1><z,0-3>}</z,0-3></y,4-1></x,1-1>
BB4-2	{ <x,1-1><y,4-1><z,0-3>}</z,0-3></y,4-1></x,1-1>	{ <x,1-1><y,4-1><<mark>z,4-2></mark>}</y,4-1></x,1-1>
BB5-1	{ <x,1-1><y,4-1><z,4-2>}</z,4-2></y,4-1></x,1-1>	{ < x, 5 -1> <y,4-1><z,4-2>}</z,4-2></y,4-1>
BB7-1	{ <x,5-1><y,4-1><z,4-2>}</z,4-2></y,4-1></x,5-1>	{ <x,5-1><y,7-1><z,4-2>}</z,4-2></y,7-1></x,5-1>
BB8-1	{ <x,5-1><y,7-1><z,4-2>}</z,4-2></y,7-1></x,5-1>	-
BB4-1	{ <x,1-1><y,0-1><z,0-3>} {<x,5-1><y,7-1><z,4-2>}</z,4-2></y,7-1></x,5-1></z,0-3></y,0-1></x,1-1>	
BB5-1	{ <x,1-1><y,4-1><z,4-2>} {<x,5-1><y,7-1><z,4-2>}</z,4-2></y,7-1></x,5-1></z,4-2></y,4-1></x,1-1>	
BB6-1	{ <x,1-1><y,4-1><z,4-2>}</z,4-2></y,4-1></x,1-1>	{ < x,6-1> <y,4-1><z,4-2>}</z,4-2></y,4-1>
BB7-1	{ <x,5-1><y,4-1><z,4-2>} {<x,6-1><y,4-1><z,4-2>}</z,4-2></y,4-1></x,6-1></z,4-2></y,4-1></x,5-1>	
BB2-1	{ <x, 0-1=""><y,0-1><z,0-3>}</z,0-3></y,0-1></x,>	{ <x, 0-1=""><y,0-1><z,0-3>}</z,0-3></y,0-1></x,>
BB4-1	{ <x,1-1><y,0-1><z,0-3>} {<x,5-1><y,7-1><z,4-2>} {<x,0-1><y,0-1><z,0-3>}</z,0-3></y,0-1></x,0-1></z,4-2></y,7-1></x,5-1></z,0-3></y,0-1></x,1-1>	
BB3-1	{ <x, 0-1=""><y,0-1><z,0-3>}</z,0-3></y,0-1></x,>	{ <x, 3-1=""><y,0-1><z,0-3>}</z,0-3></y,0-1></x,>
BB4-1	{ <x,1-1><y,0-1><z,0-3>} {<x,5-1><y,7-1><z,4-2>} {<x,0-1><y,0-1><z,0-3>} {<x,3-1><y,0-1><z,0-3>}</z,0-3></y,0-1></x,3-1></z,0-3></y,0-1></x,0-1></z,4-2></y,7-1></x,5-1></z,0-3></y,0-1></x,1-1>	

第2轮

n	IN(n)	OUT(n)
BB4-1	{ <x,0-1,1-1,3-1,5-1> <y,0-1,7-1> <z,0-3,4-2>}</z,0-3,4-2></y,0-1,7-1></x,0-1,1-1,3-1,5-1>	<x,0-1,1-1,3-1,5-1> <y,4-1> <z,0-3,4-2>}</z,0-3,4-2></y,4-1></x,0-1,1-1,3-1,5-1>
BB4-2	{ <x,0-1,1-1,3-1,5-1> <y,4-1> <z,0-3,4-2>}</z,0-3,4-2></y,4-1></x,0-1,1-1,3-1,5-1>	{ <x,0-1,1-1,3-1,5-1> <y,4-1> <z,4-2>}</z,4-2></y,4-1></x,0-1,1-1,3-1,5-1>
BB5-1	{ <x,0-1,1-1,3-1,5-1> <y,4-1> <z,4-2>} {<x,5-1><y,7-1><z,4-2>}</z,4-2></y,7-1></x,5-1></z,4-2></y,4-1></x,0-1,1-1,3-1,5-1>	{ <x,5-1> <y,4-1,7-1> <z,4-2>}</z,4-2></y,4-1,7-1></x,5-1>
BB7-1	{ <x,5-1> <y,4-1,7-1> <z,4-2>} {<x,6-1><y,4-1><z,4-2>}</z,4-2></y,4-1></x,6-1></z,4-2></y,4-1,7-1></x,5-1>	{ <x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1>
BB8-1	{ <x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1>	-
BB4-1	{ <x,0-1,1-1,3-1,5-1> <y,0-1,7-1> <z,0-3,4-2>} {<x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1></z,0-3,4-2></y,0-1,7-1></x,0-1,1-1,3-1,5-1>	
BB5-1	{ <x,0-1,1-1,3-1,5-1> <y,4-1, 7-1=""> <z,4-2>} {<x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1></z,4-2></y,4-1,></x,0-1,1-1,3-1,5-1>	
BB6-1	{ <x,0-1,1-1,3-1,5-1> <y,4-1> <z,4-2>}</z,4-2></y,4-1></x,0-1,1-1,3-1,5-1>	{ <x,6-1> <y,4-1> <z,4-2>}</z,4-2></y,4-1></x,6-1>
BB7-1		

第3轮

n	IN(n)	OUT(n)
BB4-1	{ <x,0-1,1-1,3-1,5-1,6-1> <y,0-1,7-1> <z,0-3,4-2>}</z,0-3,4-2></y,0-1,7-1></x,0-1,1-1,3-1,5-1,6-1>	{ <x,0-1,1-1,3-1,5-1,6-1> <y,4-1> <z,0-3,4-2>}</z,0-3,4-2></y,4-1></x,0-1,1-1,3-1,5-1,6-1>
BB4-2	{ <x,0-1,1-1,3-1,5-1,6-1> <y,4-1> <z,0-3,4-2>}</z,0-3,4-2></y,4-1></x,0-1,1-1,3-1,5-1,6-1>	{ <x,0-1,1-1,3-1,5-1,6-1> <y,4-1> <z,4-2>}</z,4-2></y,4-1></x,0-1,1-1,3-1,5-1,6-1>
BB5-1	{ <x,0-1,1-1,3-1,5-1,6-1> <y,4-1> <z,4-2>} {<x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1></z,4-2></y,4-1></x,0-1,1-1,3-1,5-1,6-1>	{ <x,5-1> <y,4-1,7-1> <z,4-2>}</z,4-2></y,4-1,7-1></x,5-1>
BB7-1	{ <x,5-1> <y,4-1,7-1></y,4-1,7-1></x,5-1>	{ <x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1>
BB8-1	{ <x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1>	-
BB4-1	{ <x,0-1,1-1,3-1,5-1,6-1> <y,0-1,7-1> <z,0-3,4-2>} {<x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1></z,0-3,4-2></y,0-1,7-1></x,0-1,1-1,3-1,5-1,6-1>	
BB5-1	{ <x,0-1,1-1,3-1,5-1,6-1> <y,0-1,7-1> <z,0-3,4-2>} {<x,5-1,6-1> <y, 7-1=""> <z,4-2>}</z,4-2></y,></x,5-1,6-1></z,0-3,4-2></y,0-1,7-1></x,0-1,1-1,3-1,5-1,6-1>	
BB6-1	{ <x,0-1,1-1,3-1,5-1,6-1> <y,4-1> <z,4-2>}</z,4-2></y,4-1></x,0-1,1-1,3-1,5-1,6-1>	{ <x,6-1> <y,4-1> <z,4-2>}</z,4-2></y,4-1></x,6-1>
BB7-1		

构建数值流图Value-Flow Graph

基于value-flow进行常量分析

Sparse value-flow analysis

VFG的应用

- 代码优化:
 - 代码移动(如公共表达式提取)
 - 延迟计算
 - . . .
- 缺陷检测:
 - 为初始化的变量、指针
 - 除数是否可能为0

大纲

- 一、常量分析和优化
- 二、可达性分析和数值流图
- 三、静态单赋值形式

静态单赋值形式

- 传统数据流分析需要考虑所有指令,效率低
- VFG需要另外构建图
- 将def-use关系融入到中间代码中?
 - SSA (Static Single Assignment)
 - 1988年Barry K. Rosen等人提出SSA
- 提取变量的def-use关系, 简化数据流分析过程
 - 每个变量仅被赋值1次
 - 使用phi函数解决控制流带来的(def₁,def₂)-use问题
 - 如%3 = phi(%1,%2)
 - 分析数据流关系无需再考虑CFG

VFG=>单赋值形式

SSA简化def-use关系

- 原始程序的def-use关系数量是 $O(n^2)$;
- SSA的def-use数量减少为O(n)。

```
match v1:
    0 => { x = 0; }
    1 => { x = 1; }
    _ => { x = -1; }
...
match v2:
    0 => { x = x + x; }
    1 => { x = x * x; }
    _ => { x = -x; }
```


IR=>SSA

- 解决局部变量load-store的问题,跨代码块使用临时变量
- 关键问题:
 - 分析def-use关系
 - 插入phi函数

```
fn foo(a:int, b:int)->int {
    if(a==0)
        a = a + b;
    let r:int = a + b;
    return r;
}
```

```
define fn i32 foo(i32 %a, i32 %b){
%BB0:
    %a = stackalloc i32;
    %b = stackalloc i32;
    %r = stackalloc i32;
    store %-1, %a;
    store %-2, %b;
    %1 = load i32, %a;
    %2 = icmp eq i32 %1, 0;
    cjmp i1 %2, %BB1, %BB2;
%BB1:
    %3 = load i32, %a;
    %4 = load i32, %b;
    %5 = add i32 %3, %4;
    store i32 %5, %a;
    jmp %BB2;
%BB2:
    \%6 = load i32, \%a;
    %7 = load i32, %b;
    \%8 = add i32 \%6, \frac{\%7}{3};
    store i32 %8, %r;
    %9 = load i32, %r;
    ret %9;
```

举例

- 数据流分析确定def-use
- phi函数放置思路:
 - 思路一:
 - 该代码块use(x)
 - 多个def(x)可到达该代码块
 - 思路二:入度>1的节点
 - 根据支配边界优化

```
%BB0:
                  %a = stackalloc i32;
                   %b = stackalloc i32;
                   %r = stackalloc i32;
                   store %-1, %a;
                   store %-2, %b;
                   %1 = load i32, %a;
                   \sqrt{82} = icmp eq i32 %1, 0;
                   cjmp i1 %2, %BB1, %BB2;
%BB1:
%4 = load i32, %b;
 <mark>%5</mark> = add i32 <mark>%1</mark>, <mark>%4</mark>;
store i32 %5, %a;
jmp %BB2;
          %BB2:
                   %6 = phi(%1:%BB0,%5:%BB1)
                   %7 = load i32, %b;
                   \%8 = add i32 \%6, \%7;
                   store i32 %8, %r;
                   %9 = load i32, %r;
                   ret %9;
```

案例对比1

• 哪个方案更优?

案例对比2

多个变量的情况

遍历控制流图构建SSA

- DFS遍历控制流图构建SSA, 顺序: BB0->BB1->BB2->BB1->BB3
 - BB0: x0=1, y0=100
 - BB1: $x1=\phi(x0)$, $y1=\phi(y0)$
 - BB2: y2=y1/2
 - BB1: $x1=\phi(x0)$, $y1=\phi(y0,y2)$
 - BB3: z0=x1+y1
- 开销:
 - 每个节点需要更新次数为其入度
 - $\forall bb_i \rightarrow bb_i \in CFG$, Update (bb_i)

练习:遍历控制流图构建SSA

DFS顺序: BB0->BB1->BB4->BB5->BB7->BB8->BB6->BB2->BB3

• BB0: x0=1, y0=1, z0=1

• BB1: ...

结果

- DFS顺序: BB0->BB1->BB4->BB5->BB7->BB8->BB6->BB2->BB3
 - BB0: x0=1, y0=1, z0=1
 - BB1: x1=x0+1
 - BB4: $x2=\phi(x1)$, $y1=\phi(y0)$, $z1=\phi(z0)$, y2=y1+1, z2=z1+1
 - BB5: $x3=\phi(x2)$, $y3=\phi(y2)$, $z3=\phi(z2)$, x4=x3+1
 - BB7: $x5=\phi(x4)$, $y4=\phi(y3)$, $z4=\phi(z3)$, y5=y4+1
 - BB8:
 - BB4:x2= ϕ (x1,x5), y1= ϕ (y0,y5), z1= ϕ (z0,z4)
 - BB5:x3= ϕ (x2,x5), y3= ϕ (y2,y5), z3= ϕ (z2,z4),
 - BB6: x6 = x2-1
 - BB7: $x5=\phi(x4,x6)$, $y4=\phi(y2,y3)$, $z4=\phi(z2,z3)$
 - BB2:
 - BB4: $x2=\phi(x0,x1,x5)$
 - BB3: x7=x0-1
 - BB4: $x2 = \phi(x0,x1,x5,x7)$

冗余Phi指令

phi函数放置思路

- phi函数放置思路:
 - 思路一:该代码块use(x),且多个def(x)可到达该代码块
 - 和VFG类似,不能简化def-use关系数量
 - 不是最优方案
 - 思路二:入度>1的节点
 - 缺点:引入冗余的Phi指令
 - 根据支配边界优化

基于支配边界优化phi函数的设置

- BBO支配BB2, BB1和BB2的支配边界都是BB3
- 如果BB1和BB2中都没有def(x), BB3不需要phi(x), 可直接使用BB0中的def(x)。
- 如果BB1中有def(y),BB3中很可能需要phi(y),
 - 有可能是false positive。

支配的基本概念

- 给定有向图G(V,E)与起点 v_0 ,如果从 v_0 到某个点 v_j 均需要经过点 v_i ,则称 v_i 支配 v_j 或 v_i 是 v_j 的一个支配点。
 - $v_i \in Dom(v_j)$
- 如果 $v_i \neq v_i$,则称 v_i 严格支配 v_i 。

支配树的基本概念

- 所有v_i的严格支配点中与v_i最接近的点成为v_i的最近支配点。
 - $Idom(v_j) = v_i$, v_j 的其它严格支配点均严格支配 v_i 。
- 连接接所有的最近支配关系,形成一棵支配树。
 - 根节点外的每一点均存在唯一的最近支配点。

支配边界Dominance Frontier

- v_i 的支配边界是所有满足条件的 v_i 的集合
 - v_i 支配 v_i 的一个前序节点
 - v_i 并不严格支配 v_i

$$DF(bb_0) = \{\}$$

 $DF(bb_1) = \{bb_4\}$
 $DF(bb_2) = \{bb_4\}$
 $DF(bb_3) = \{bb_4\}$
 $DF(bb_4) = \{bb_4\}$
 $DF(bb_5) = \{bb_7\}$
 $DF(bb_6) = \{bb_7\}$
 $DF(bb_7) = \{bb_4, bb_5\}$
 $DF(bb_8) = \{\}$

利用支配边界计算def

- 初始化: 枚举所有变量的def-sites
 - def-sites(x) =
 {BB0,BB1,BB3,BB5,BB6}
 - def-sites(y) = {BB0,BB4,BB7}
 - def-sites(z) = {BB0,BB4}
- 为每个变量在BB_i增加phi节点:
 - $BB_i \in def\text{-sites}(x)$
 - $BB_j \in DF(BB_i)$
- 以变量z为例:
 - def-sites(z) = {BB0,BB4}
 - DF(BB $_{\Theta}$) = {}
 - DF(BB₄) = {BB₄}
 - 在BB₄增加phi函数的phi(z)

为变量y的插入phi指令

- def-sites(y) = {BB0,BB4,BB7}
 - DF(BB $_{\theta}$) = {}
 - $\bullet DF(BB_4) = \{BB_4\}$
 - 在BB₄增加phi函数的phi(y)
 - DF(BB₇) = {BB₄,BB₅}
 - 在BB₅增加phi函数的phi(y)
 - 将BB5到def-sites(y)
 - $\bullet DF(BB_5) = \{BB_7\}$
 - 在BB7增加phi函数的phi(y)

为变量x的插入phi指令

- def-sites(x) =
 {BB0,BB1,BB3,BB5,BB6}
 - $DF(BB_0) = \{\}$
 - $\bullet DF(BB_4) = \{BB_4\}$
 - 在BB₄增加phi函数的phi(x)
 - DF(BB₃) = $\{BB_4\}$
 - $\bullet DF(BB_5) = \{BB_7\}$
 - 在BB4增加phi函数的phi(x)
 - $\bullet DF(BB_6) = \{BB_7\}$

遍历控制流图构建SSA

• DFS顺序: BB0->BB1->BB4->BB5->BB7->BB8->BB6->BB2->BB3

• BB0: x0=1, y0=1, z0=1

• BB1: ...

如何构建支配树: 主要思路

$$Dom(v) = \begin{cases} \{v\}, & if \ v = v_0 \\ \{v\} \cup \left(\bigcap_{p \in pred(v)} Dom(p)\right), if \ v \neq v_0 \end{cases}$$

$$Dom(bb_0) = \{bb_0\} \\ Dom(bb_1) = \{bb_0, bb_1\} \\ Dom(bb_2) = \{bb_1, bb_2\} \\ Dom(bb_3) = \{bb_0, bb_3\} \\ Dom(bb_4) = \{bb_0, bb_4\} \\ Dom(bb_5) = \{bb_0, bb_4, bb_5\} \\ Dom(bb_6) = \{bb_0, bb_4, bb_6\} \\ Dom(bb_7) = \{bb_0, bb_4\} \\ Dom(bb_8) = \{bb_0, bb_7\}$$

支配树

如何求支配边界: 主要思路

- 什么节点会成为支配边界?
 - 入度>1
- 节点v是谁的支配边界?
 - v的所有前序节点, 非支配节点: Pred(v) IDom(v)
 - 所有前序节点的直接支配节点 $\bigcup_{v_p \in Pred(v) IDom(v)} IDom(v_p)$
 - 迭代下去直到遇到v的直接支配节点IDom(v)

$$IDF(bb_4) = \{bb_1, bb_2, bb_3, bb_7, bb_4\}$$

 $IDF(bb_5) = \{bb_7\}$
 $IDF(bb_7) = \{bb_5, bb_6\}$

SSA的应用

- 作用和VFG类似
 - 代码优化: 常量传播、代码移动...
 - 缺陷检测: 为初始化的变量或指针、除数为0、...
- 在中间代码层获得广泛应用
 - 是很多编译器优化算法的基础

思考: SSA是否可能出错?

```
fn foo(int x) -> int{
    let a:int = 0;
    let c = &a;
    c= x + 1;
    let r = a+1;
    return r;
}
```