Transformer Circuits: Mathematical Framework and In-context Learning

Hwai-Liang Tung & Yu Huang

Wharton Statistics & Data Science

March 25, 2025

- Elhage, et al., "A Mathematical Framework for Transformer Circuits", Transformer Circuits Thread, 2021.
- Olsson, et al., "In-context Learning and Induction Heads", Transformer Circuits Thread, 2022.

Outline

Mathematical Framework

Induction head & In-context learning

Outline

Mathematical Framework

Overview

Two-Layer Attention-Only Transformers

Induction head & In-context learning

Overview

Macroscopic co-occurrence

Macroscopic co-perturbation

Direct ablation

Specific examples of induction head generality

Continuity from small to large models

Review of Transformers

The final logits are produced by applying the unembedding.

$$T(t) = W_U x_{-1}$$

An MLP layer, m, is run and added to the residual stream.

$$x_{i+2} = x_{i+1} + m(x_{i+1})$$

Each attention head, h, is run and added to the residual stream.

$$x_{i+1} = x_i + \sum_{h \in H} h(x_i)$$

Token embedding.

$$x_0 = W_E t$$

One residual block

Review of Attention Heads

We can describe applying attention as

$$h(x) = (Id \otimes W_O) \cdot (A \otimes Id) \cdot (Id \otimes W_V) \cdot x$$
$$= (A \otimes W_OW_V) \cdot x$$

- $ightharpoonup W_V$ computes the value vector for each token
- \blacktriangleright W_O projects the result vector for each token
- $ightharpoonup A = \operatorname{softmax}(x^T W_O^T W^K x)$
- Both W_Q, W_K and W_O, W_V always operate together so we may let $W_{OV} = W_O W_V, \ W_{QK} = W_O^T W_K$
- $(A^{h_2} \otimes W_{OV}^{h_2}) \cdot (A^{h_1} \otimes W_{OV}^{h_1}) = (A^{h_2} A^{h_1}) \otimes (W_{OV}^{h_2} W_{OV}^{h_1})$

Zero-Layer Transformers

- A zero-layer transformer embeds an input token and unembeds it to produce logits predicting the next token
- Can represent this as $T = W_U W_E$
 - $ightharpoonup W_E$ is token embedding matrix
 - $ightharpoonup W_U$ is token unembedding matrix
- ullet Optimal behavior of W_UW_E is to approximate bigram log-likelihood

Overview of Composition of Attention Heads

- Attention heads read in a subspace of the residual stream and writes to another subspace
- Once we have two or more layers we have composition of attention heads
- ullet W_Q,W_K,W_V read in subspaces affected by a previous head and perform Q-composition, K-composition, V-composition respectively
- Q-composition and K-composition affect attention pattern
- V-composition affects what information is moved when attending to a certain position

Path Expansion of Logits

QK-Circuits and OV-Circuits

- Recall $A^h = \operatorname{softmax}^*(t^T \cdot W_E^T W_{QK}^h W_E \cdot t)$ where softmax* denoted the softmax with autoregressive maxing
- Two key matrices present in an attention head
- ullet We can call $W_E^TW_{OK}^hW_E$ the query-key or QK-circuit
- The QK-circuit provides the attention score for every query and key token
- We can call $W_U W_{OV}^h W_E$ the output-value or OV-circuit
- The OV-circuit describes how a given token will affect the output logits if attended to and are involved in copying behavior

Path Expansion of Attention Scores QK-Circuit

- $\bullet \ \operatorname{Recall} \ A^h = \operatorname{softmax}^*(t^T \cdot W_E^T W_{OK}^h W_E \cdot t)$
- Can take a closer look at the operations of A^h
- For the first layer QK-circuit we have

$$C_{QK}^{h \in H_1} = x_0^T W_{QK}^h x_0 = W_E^T W_{QK}^h W_E$$

• For the second layer QK-circuit we have

$$C_{QK}^{h \in H_2} = x_1^T W_{QK}^h x_1$$

where x_1 is the residual stream after the first layer attention heads

Path Expansion of Attention Scores QK Circuit

$$C_{QK}^{h \in H_2} = \underbrace{ \left(\operatorname{Id} \otimes \operatorname{Id} \otimes W_E^T + \sum_{h_q \in H_1} A^{h_q} \otimes \operatorname{Id} \otimes (W_{OV}^{h_k} W_E)^T \right) }_{\text{The "query side" residual stream at the start of the second layer contains both the layer 1 direct path and layer 1 attention heads. All terms are of the form_{\operatorname{SId} \otimes ...} because they don't move key information.} \\ \underbrace{ \left(\operatorname{Id} \otimes \operatorname{Id} \otimes W_E + \sum_{h_q \in H_1} \operatorname{Id} \otimes A^{h_k} \otimes W_{OV}^{h_k} W_E \right) }_{\text{Id} \otimes \operatorname{Id} \otimes W_E} \\ \underbrace{ \left(\operatorname{Id} \otimes \operatorname{Id} \otimes W_E + \sum_{h_q \in H_1} \operatorname{Id} \otimes A^{h_k} \otimes W_{OV}^{h_k} W_E \right) }_{\text{Id} \otimes \operatorname{Id} \otimes W_E} \\ \underbrace{ \left(\operatorname{Id} \otimes \operatorname{Id} \otimes W_E + \sum_{h_q \in H_1} \operatorname{Id} \otimes A^{h_k} \otimes W_{OV}^{h_k} W_E \right) }_{\text{Id} \otimes \operatorname{Id} \otimes W_E} \\ \underbrace{ \left(\operatorname{Id} \otimes \operatorname{Id} \otimes W_E + \sum_{h_q \in H_1} \operatorname{Id} \otimes A^{h_k} \otimes W_{OV}^{h_k} W_E \right) }_{\text{Id} \otimes \operatorname{Id} \otimes W_E}$$

sides

These terms correspond to pure

attention head is used to generate part of the key, but the guery side

K-composition. A previous

is the first layer direct path.

These terms are interactions between both

Q-composition and K-composition. A previous

attention head is used to generate the guery and key

Induction Heads

- Starting from two layers a transformer can progress beyond copying: [b]...[a]→[b]
- Induction heads search for previous examples of the present token and allow copying the next token from the previous example: [a][b]...[a]→[b]
- Suggested that induction heads are composed of two parts: a "copying" OV circuit matrix and "same matching" QK circuit matrix

Induction Heads

Term Importance Analysis

Type Example Equation **Marginal Loss Reduction** direct path - 1.8 nats $W_U W_E$ order 0 relative to uniform predictions -1.8 nats/term (-1.8 nats / 1 term) individual $A^h \otimes (W_U W_{OV}^h W_E)$ - 5.2 nats attention head relative to only using direct path order 1 -0.2 nats/term (5.2 nats / 24 terms) - 0.3 nats virtual attention $(A^{h_2}A^{h_1})\otimes (W_UW_{OV}^{h_2}W_{OV}^{h_1}W_E)$ head relative to only using above order 2 -0.002 nats/term (0.3 nats / 144 terms)

Term Importance Analysis

- Virtual attention heads have little impact but this may change with more layers
- This composition of attention heads may be able to implement the attending to the start of a clause or sentence
- The number of virtual attention heads grows faster than the number of individual heads

Outline

Mathematical Framework

Overview

Two-Layer Attention-Only Transformers

Induction head & In-context learning

Overview

Macroscopic co-occurrence

Macroscopic co-perturbation

Direct ablation

Specific examples of induction head generality

Continuity from small to large models

For pre-trained LLMs:

For pre-trained LLMs:

 At inference time, model receives in-contexting examples from certain task

For pre-trained LLMs:

- At inference time, model receives in-contexting examples from certain task
- Given a new query input, model can return corresponding output without further fine-tuning.

For pre-trained LLMs:

- At inference time, model receives in-contexting examples from certain task
- Given a new query input, model can return corresponding output without further fine-tuning.

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

For pre-trained LLMs:

- At inference time, model receives in-contexting examples from certain task.
- Given a new query input, model can return corresponding output without further fine-tuning.

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // ____

General framing: decreasing loss at increasing token indices

For pre-trained LLMs:

- At inference time, model receives in-contexting examples from certain task.
- Given a new query input, model can return corresponding output without further fine-tuning.

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // ____

Positive

ICL score: the loss of the 500th token in the context minus the average loss of the 50th token in the context

What is an induction head?

Two Key Properties

- Prefix matching: attends back to previous tokens that were followed by the current and/or recent tokens.
- Copying: The head's output increases the logit corresponding to the attended-to token.

What is an induction head?

Two Key Properties

- Prefix matching: attends back to previous tokens that were followed by the current and/or recent tokens.
- Copying: The head's output increases the logit corresponding to the attended-to token.

prefix of attended-to-token
= current token

Attended-to-token is **copied**. The corresponding **logit** is increased for the next token.

Does **induction head** provide the primary mechanism for the majority of ICL for transformers in general?

SUMMARY OF EVIDENCE FOR SUB-CLAIMS (STRONGEST ARGUMENT FOR EACH)

	Small Attention-Only	Small with MLPs	Large Models
Contributes Some	Strong, Causal	Strong, Causal	Medium, Correlational & Mechanistic
Contributes Majority	Strong, Causal	Medium, Causal	Medium, Correlational

Argument 1: Macroscopic co-occurrence

Transformer language models undergo a **"phase change"** early in training, during which i). induction heads form and ii). simultaneously ICL improves dramatically.

STRENGTH OF ARGUMENT FOR SUB-CLAIMS

	Small Attention-Only	Small with MLPs	Large Models
Contributes Some	Medium, Correlational	Medium, Correlational	Medium, Correlational
Contributes Majority	Medium, Correlational	Medium, Correlational	Medium, Correlational

ICL improves dramatically

An **artifact** of the choice to define ICL in terms of the difference between the 500th and 50th tokens?

ICL improves dramatically

DERIVATIVE OF LOSS WITH RESPECT TO LOG TOKEN INDEX

The rate at which loss decreases with increasing token index can be thought of as something like "in-context learning per token". This appears to be most naturally measured with respect to the log number of tokens.

Induction heads form

Suggests some **connection** between induction heads and ICL

The window is a key turning point in training

Behaviors **visible** on the loss curve, unlike subtle ones like emergent arithmetic, signal **broad and significant** changes in model behavior.

The window is a key turning point in training

- Capacity for ICL sharply improves
- Induction heads form
- Loss undergoes a small "bump"

Assessing the Evidence

FULL-SCALE TRANSFORMERS

- Low time resolution on the analysis over training for larger models.
- The observed co-occurrence could stem from other mechanisms rather than a direct causal link

Argument 2: Macroscopic co-perturbation

When we adjust the transformer architecture to influence induction head formation, the ICL improvement shifts accordingly.

STRENGTH OF ARGUMENT FOR SUB-CLAIMS

	Small Attention-Only	Small with MLPs	Large Models
Contributes Some	Medium, Interventional	Medium, Interventional	Weak, Interventional
Contributes Majority	Medium, Interventional	Medium, Interventional	Weak, Interventional

"Smeared key" architecture

- Key observation: the phase change and the corresponding improvement in in-context learning only occurs in transformers with more than one layer.
 - induction heads require a composition of attention heads

- Key observation: the phase change and the corresponding improvement in in-context learning only occurs in transformers with more than one layer.
 - induction heads require a composition of attention heads
- Predictable minimum architectural requirements

- Key observation: the phase change and the corresponding improvement in in-context learning only occurs in transformers with more than one layer.
 - induction heads require a composition of attention heads
- Predictable minimum architectural requirements
- "smeared key" architecture: for each head h, introducing a trainable α^h with $\sigma(\alpha^h) \in [0,1]$

$$k_{j}^{h} = \sigma\left(\alpha^{h}\right)k_{j}^{h} + \left(1 - \sigma\left(\alpha^{h}\right)\right)k_{j-1}^{h}$$

ICL does **indeed form** for one-layer models (when it didn't before), and it forms **earlier** for two-layer and larger models.

induction heads are the **minimal** mechanism for greatly increased ICL, but may **not the whole story** for larger models

Argument 3: Direct ablation

When we directly ablate induction heads in small models at test-time, the ICL score drops dramatically.

STRENGTH OF ARGUMENT FOR SUB-CLAIMS

	Small Attention-Only	Small with MLPs	Large Models
Contributes Some	Strong, Causal	Strong, Causal	
Contributes Majority	Strong, Causal	Medium, Causal	

Ablations: knocking out induction heads

strongest evidence: almost all the ICL in small attention-only models appears to come from these induction heads

No ablations for full-scale models

Can we further infer that induction heads are the primary mechanism?

- In attention-only models, ICL arises solely from attention heads, making their contribution clearer.
- In MLP models, interactions between MLP and attention layers could also drive ICL.
- Ablations only measure marginal effects, may obscure individual head contributions

Argument 4: induction head generality

Despite being defined narrowly as copying random sequences, induction heads can implement surprisingly abstract types of ICL.

STRENGTH OF ARGUMENT FOR SUB-CLAIMS Small Attention-Only Small with MLPs Large Models Contributes Some Plausibility Contributes Majority Plausibility

- **Induction heads:** empirically copy arbitrary token sequences using a "prefix matching" attention pattern.
- Goal: find heads that meet this definition but also perform more interesting and sophisticated behaviors

Head	Layer Depth	Copying score (?)	Prefix matching score (?)
Literal copying head	21 / 40	0.89	0.75
Translation head	7 / 40	0.20	0.85
Pattern-matching head	8 / 40	0.69	0.94

Recap: attention & logit effect

Behavior 2: Translation

Induction head from Layer 7 of our 40-layer model, showcasing translation between English, French, and German

where the head is attending to predict the *next* token.

<EOT>EN: This is the largest temple that I've ever seen.

FR: C'est le plus grand temple que j'ai jamais vu.

DE: Das ist der größte Tempel, den ich je gesehen habe.

the earlier tokens that contributed to the prediction of the *current* token.

<EOT>EN: This is the largest temple that I've ever seen.

FR: C'est le plus grand temple que j'ai jamais vu.

DE: Das ist der größte Tempel, den ich je gesehen habe.

Behavior 3: Pattern matching

Induction head found at layer 26 of 40-layer model does more complex pattern matching:

(month) (animal): 0; (month) (fruit): 1; (color) (animal): 2; (color) (fruit): 3

Why do the same heads that inductively copy random text also exhibit these other behaviors?

Copying: $[A][B] \dots [A] \rightarrow [B]$

Spiritually similar: [A*] [B*] ... [A] → [B]

Why do the same heads that inductively copy random text also exhibit these other behaviors?

```
Copying: [A][B] \dots [A] \rightarrow [B]
```

Spiritually similar:
$$[A^*][B^*]$$
 ... $[A] \rightarrow [B]$

• the first behavior is a special case of the second

Why do the same heads that inductively copy random text also exhibit these other behaviors?

```
Copying: [A][B] \dots [A] \rightarrow [B]
```

```
Spiritually similar: [A^*][B^*] ... [A] \rightarrow [B]
```

- the first behavior is a special case of the second
- induction heads copy literally when **isolated** in the residual stream but perform abstract tasks when processing earlier layers' outputs.

Argument 6: Continuity from small to large models

Extrapolation from small models suggests induction heads are responsible for the majority of in-context learning in large models.

STRENGTH OF ARGUMENT FOR SUB-CLAIMS

	Small Attention-Only	Small with MLPs	Large Models
Contributes Some			Analogy
Contributes Majority			Analogy

• Same phase change across models.

- Same phase change across models.
- Larger models may develop other composition mechanisms during phase change, enhancing ICL.

Concluding remarks

- Argument 1: Macroscopic co-occurence
- Argument 2: Macroscopic co-perturbation
- Argument 3: Direct ablation
- Argument 4: Specific examples of induction head generality
- Argument 5: Mechanistic plausibility of induction head generality (not included)
- Argument 6: Continuity from small to large models

Concluding remarks

- Argument 1: Macroscopic co-occurence
- Argument 2: Macroscopic co-perturbation
- Argument 3: Direct ablation
- Argument 4: Specific examples of induction head generality
- Argument 5: Mechanistic plausibility of induction head generality (not included)
- Argument 6: Continuity from small to large models

Strong mechanistic evidence that induction heads drive ICL in small models; Correlational evidence for larger models with MLPs

Thanks for your attention!