

АВТОМАТИЧЕСКОЕ ВЫДЕЛЕНИЕ ОБЪЕКТОВ В ДАННЫХ ЛАЗЕРНОГО СКАНИРОВАНИЯ

Роман ШАПОВАЛОВ

Научный руководитель: к.ф.-м.н., н.с. Антон КОНУШИН

00 мая 2010

Применение лазерного сканирования

- Навигация мобильных роботов
- Создание моделей зданий
- Аэросъёмка
- Контроль качества продукции
- Сохранение культурного наследия

Мотивация: выделение объектов в лазерных сканах

Преимущества:

- Присутствует информация о трёхмерной структуре сцены
- Инвариантность
 относительно
 освещения и
 погодных условий

Недостатки:

- Объект может быть загорожен другими объектами или сам собой
- Сканы зашумлены и разрежены
- Часто отсутствует цветовая информация
- Затруднена обработка с помощью стандартных средств ввода-вывода

Цели работы

- Провести обзор методов классификации лазерных сканов
- Разработать алгоритм классификации лазерных сканов на основе машинного обучения
- Реализовать этот алгоритм в системе классификации лазерных сканов

Постановка задачи

- **Вход** набор точек трёхмерного пространства
- **Выход** метки классов, сопоставленные каждой точке

Формальная постановка задачи

- Стадия обучения:
 - **Вход**: множество кортежей (*x, y, z, c*)
 - $(x, y, z) \in \mathbb{R}^3$ точки облака
 - $c \in \{1, ..., K\}$ метки классов
 - **Выход**: алгоритм классификации
- Стадия классификации:
 - **Вход**: вектор кортежей $((x_1, y_1, z_1), (x_2, y_2, z_2), ..., (x_1, y_1, z_1))$
 - **Выход**: вектор $(c_1, c_2, ..., c_n)$

Данные для сегментации

- Данные сцены, снятые вне помещений
 - Аэросъёмка
 - Съёмка с транспорта
 - Стационарная съёмка
- Классы:
 - Поверхность земли
 - Здания
 - Растительность
 - Транспорт
 - и т.д.

Критерий качества

- Количество ошибок на тестовой выборке
 - Отдельно по классам

	Классификатор принял Н _о	Классификатор отверг Н _о
H ₀ верна	TP	FP
H ₀ не верна	TN	FN

$$T$$
очность = $\frac{TP}{TP + FP}$, O тклик = $\frac{TP}{TP + FN}$, F -оценка = $\frac{2\sqrt{T}$ очность · O тклик $}{T}$ очность · O тклик $}$.

Существующий подход

- Ассоциативные Марковские сети [Anguelov, 2005]
- Минимизируется функция энергии

$$-\sum_{i=1}^{\infty} \log(\phi_i(y_i)) - \sum_{(i,j)\in E} \log(\phi_{ij}(y_i,y_j)) + \log Z \to \min_{\mathbf{y}}$$

 Потенциалы – линейная комбинация признаков:

$$\log \phi_i(k) = \mathbf{w}_n^k \cdot \mathbf{x}_i \quad \log \phi_{ij}(k, k) = \mathbf{w}_e^k \cdot \mathbf{x}_{ij}$$

— Ассоциативные парные потенциалы: $\log \varphi(k, l) = 0$ при $k \neq l$

Наш метод: отличия

- Предобработка
 - Построение индекса;
 пересегментация
- Назначение потенциалов
 - Унарные потенциалы Random Forest
 - Неассоциативные парные потенциалы

- Классификация
 - Вывод в Марковской сети: TRW-S[Kolmogorov, 2006]

Унарные потенциалы

Выход мультиклассового классификатора «Рандомизированные деревья»

• Спин-изображения

- Признаки матрицы ковариаций
 - Спектральные признаки
 - Признаки направления
- Цилиндрические признаки

Парные потенциалы

- Линейная комбинация признаков:
 - Угол между нормалями в точках
 - Угол наклона к горизонту отрезка, соединяющего точки, и его абсолютное значение
 - Расстояние между точками
- Рассматриваются также неассоциативные парные потенциалы вида $\varphi(k, l)$ при $k \neq l$

Наш вклад

- Пересегментация
 - Ускоряет классификацию на порядки
 - Признаки рёбер (направление, длина)
 становятся статистически значимыми
- Неассоциативные парные потенциалы
 - Позволяют выразить отношения между объектами разных классов, такие как «дерево находится выше земли»

Пример результата классификации

Верная разметка

Ассоциативная Марковская сеть Предлагаемый метод

Красный – земля, чёрный – крыша,
 зелёный – дерево, синий – автомобиль

Программная реализация

- Реализация на С++
- // диаграмма!

- В рамках системы реализована функция детектирования поверхности земли на данных, снятых с транспортного средства
 - Применяется в НПО «Регион» для паспортизации дорожного покрытия

Результаты

- Проведён обзор методов классификации лазерных сканов
- Разработан алгоритм обучения классификатора лазерных сканов
- Реализована система классификации лазерных сканов с произвольными классами
- Написаны статьи на конференции

Публикации по теме дипломной работы

- А. Велижев, Р. Шаповалов, Д. Потапов, Е. Третьяк,
 А. Конушин, «Автоматическая сегментация облаков точек на основе элементов поверхности», GraphiCon, Moscow: 2009.
- Р. Шаповалов, «Классификация трёхмерных облаков точек с помощью неассоциативных Марковских сетей», Ломносов-2010, Москва
- R. Shapovalov, A. Velizhev, O. Barinova, A. Konushin, «Point Cloud Classification Using Non-Associative Markov Networks», Photogrammetric Computer Vision and Image Analysis, Paris: 2010. On review!

