Zadanie 1. (1 pkt)

...../1

Po wykonaniu wszystkich działań w wyrażeniu $(7 \cdot 4^8 \cdot 10^8 \cdot 5^{16})^2$ uzyskamy liczbę:

A. 68 cyfrowa

B. 66 cyfrowa C. 64 cyfrowa

D. 50 cyfrowa

Zadanie 2. (1 pkt)

...../1

Dwa prostopadłościany P_1 i P_2 o podstawach będących kwadratami mają jednakowe objętości. Wysokość prostopadłościanu P₁ jest 9 razy mniejsza od wysokości prostopadłościanu P_2 . Krawędź podstawy prostopadłościanu P_1 jest większa od krawędzi podstawy prostopadłościanu P_2 :

A. 9 razy

B. 4 razy

C. 3 razy

D. 2 razy

...../1

Zadanie 3. (1 pkt)

Sklep obuwniczy obniżał cenę zimowych butów w kolejnych tygodniach o 10%, 15% i 20%. Cena tych butów po wszystkich obniżkach zmalała o:

A. 38,8 %

B. 45%

C. 61,2%

D. 82%

Zadanie 4. (1 pkt)

...../1

Wartość wyrażenia $\frac{\sqrt{3} - \frac{1}{\sqrt{16}} : \frac{1}{4} \cdot \sqrt{\frac{36}{49} \cdot \left(1\frac{1}{6}\right)}}{\sqrt{3} + \sqrt{1\frac{7}{9}} \cdot \sqrt[3]{27} \cdot 4^0 : 4}$ jest równa:

A.
$$\frac{\sqrt{3}}{\sqrt{3}-1}$$

B. $\frac{\sqrt{3}+1}{\sqrt{2}}$

C. $\frac{\sqrt{3}+1}{3}$

D. $\frac{\sqrt{3}-1}{\sqrt{2}+1}$

Zadanie 5. (2 pkt)/2

Na boku AB trójkąta równobocznego ABE zbudowano prostokąt ABCD o bokach |AB|=2 i |AD|=1 tak, że obydwie figury częściowo się pokrywają. Oblicz, jakie jest pole tej części trójkąta, którą zakrywa prostokąt.

Zadanie 6. (2 pkt)

...../2

Wykaż, że prostokąt o wymiarach 16×36 można podzielić na dwa wielokąty, z których da się złożyć kwadrat.

Zadanie 7. (2 pkt)

...../2

Suma pewnych dwóch liczb wynosi $\sqrt{20}$, a ich różnica $\sqrt{12}$. Wykaż, że iloczyn tych liczb jest równy 2.

Zadanie 8. (2 pkt)

...../2

Dwa samochodziki *A* i *B*, ustawione na linii START ruszyły jednocześnie w kierunku METY. Samochodzik *A* pokonał początkowe 25 cm w czasie 4 sekund. Samochodzik *B* pokonał początkowe 30 cm w czasie 5 sekund. Na całej trasie samochodziki nie zmieniały prędkości. Na metę jeden z nich przyjechał dwie sekundy przed drugim.

Jak długa była trasa wyścigu?

Zadanie 9. (2 pkt)

...../2

Mamy prostopadłościenne klocki o wymiarach 1 x 2 x 4. Jaka jest najmniejsza liczba takich klocków, aby można było z nich zbudować sześcian o krawędzi wyrażającej się liczbą naturalną? Jak zmieni się liczba klocków, gdy będziemy budować sześcian z klocków o wymiarach 2 x 4 x 8? Odpowiedź uzasadnij.

Zadanie 10. (2 pkt)

...../2

Bok *kwadratu nr I* ma długość 12. Bok *kwadratu nr II* ma długość równą długości przekątnej *kwadratu nr I*. Ogólnie: bok *kwadratu nr n* ma długość równą długości przekątnej *kwadratu nr (n-1)*. Jaki numer będzie miał kwadrat, którego bok ma długość większą od 100 i mniejszą od 200? Odpowiedź uzasadnij.

Zadanie 11. (2 pkt)

...../2

W trapezie równoramiennym przekątna jest prostopadła do ramienia i dzieli kąt ostry trapezu na dwa kąty o równej mierze. Uzasadnij, że długość jednej podstawy trapezu jest dwa razy większa od długości drugiej podstawy.

Zadanie 12. (2pkt)/2

Miesięczny dochód pana Piotra stanowi $\frac{5}{8}$ łącznego miesięcznego dochodu pana Piotra i pana Jana. Natomiast suma miesięcznych wydatków obu panów stanowi $\frac{7}{8}$ ich łącznych miesięcznych dochodów. Każdy z panów oszczędza miesięcznie 600 zł. Oblicz roczny dochód pana Jana.

