Analysis 3

Contents

I Sequence of Functions	1
1 Pointwise convergence	1
2 Uniform convergence	1
II Series of Functions	3
3 Convergence of a Numerical Series	3
4 Finite Expansion	4
III Power Series	5
5 Radius of Convergence	5
IV Integrals Depending on a Parameter	7
6 Improper Integral	7
V Fourier Series	8
7 Trigonometric Coefficients	8
7.1 Even Functions7.2 Odd Functions	8 8
VI Laplace Transforms	9
8 Transforms of some functions	9

8.1 Unit step function	9
8.2 Dirac Delta Function	9
8.3 Usual Elementary functions	9
9 Properties of the Transform	10
10 Translation	11
VII Systems of Differential Equations	12
11 Solving The System of DEs	12
11.1 Change of Basis	13
11.2 Solving Matrix Formula	13
12 Fundamental Solutions	14
12.1 Wronskian of vector functions	14
13 Solving <i>n</i> -th order Homogeneous Linear DE	15
13.1 DE from a Set of Fundamental Solutions	16
13.2 Method of Variation of constants	16
VIII Linear Differential Equations	18
14 Differential Operators	18
14.1 Definition	18
14.2 Differential Operators as DEs	18
14.2.1 Case of known k solutions	19
14.3 Linear Equations with Constant Coefficients	19
15 Particular Forms of $b(t)$	19
16 Euler's Equations	20

I

Sequence of Functions

Section 1

Pointwise convergence

This is a very natural way of proving convergence since all you have to do is fix f_n to a point x then the sequence just becomes an ordinary sequence of numbers, and if they all converge to a number we can define a limit function f and say that they converge to f pointwisely.

Definition 1

We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$, converges pointwise to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall x \in I \ \forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \forall n \ge \mathbb{N} : |f_n(x) - f(x)| < \epsilon.$$

You either prove convergence using the definition or by doing:

- 1. Let x = 0 then find $\lim_{n \to \infty} f_n(0) = \text{some } f(x)$
- 2. Then let $x \neq 0$ and again find $\lim_{n \to \infty} f_n(x) = f(x)$
- 3. If neither of the results are unbounded $\pm \infty$ then we say $f_n(x)$ is convergent to some f(x)

Remark

if the result of step 1 is g(x) and step 2 results in h(x) where $g(x) \neq h(x)$ then we define the limit function:

$$f(x) = \begin{cases} g(x) & x = 0\\ h(x) & x \in]0, 1] \end{cases}.$$

Section 2

Uniform convergence

The idea of uniform convergence is that the sequence always approaches it's limit function as the value of n increases.

Definition 2

We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$, converges uniformly to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n \ge N \; \forall x \in I : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.$$

Remark We can also prove uniform convergence by proving

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0.$$

There is also an easy qay to prove uniform convergence of a function by

- 1. Prove that the sequence of functions $f_n(x)$ is pointwise convergent to a function $f(x)^{-1}$
- 2. Define a function $g(x) = |f_n(x) f(x)|$ and find the maxima of that function at a point x_0 (usually by doing dg/dx = 0)
- 3. If $\lim_{n\to\infty} g(x_0) = 0$ then the sequence converges uniformly to f(x)

¹ if the function f(x) is continuous at a point piecewise then the sequence doesn't uniformly converge

Deries of Partellorie

Let $f_n(x)$ be sequence of functions defined on $I \subset \mathbb{R}$, we define the series S(x) to be

$$S(x) = \sum_{n=0}^{\infty} f_n(x).$$

Section 3

Definition 3

Convergence of a Numerical Series

In order to prove a series of functions converge we have to prove that it converges for all fixed x.

Theorem 1 Suppose there exists a sequence a_n such that $\forall x, n \mid f_n \mid \leq a_n$. The Weierstrass test states that if $\sum a_n$ converges then $\sum f_n(x)$ converges uniformly and absolutely

Theorem 2 Let a_n be a sequence of numbers, if $\left|\frac{a_{n+1}}{a_n}\right| = l$ then the sequence is a geometric Series

$$\sum_{n=0}^{\infty} a_n \begin{cases} \text{converges} & \text{if } |l| < 1 \\ \text{diverges} & \text{if } |l| \ge 1 \end{cases}.$$

Theorem 3 A harmonic series is defined to be $a_n = \frac{1}{n^p}$

$$\sum_{n=0}^{\infty} \frac{1}{n^p} \begin{cases} \text{converges} & \text{if } p > 1\\ \text{diverges} & \text{if } p \le 1 \end{cases}.$$

Theorem 4 Let a_n be a sequence of numbers. The 2 series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} 2^n a_n$ are simultaneously convergent/divergent.

Theorem 5 The sequence $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergent if a_n is decreasing and $\lim_{n\to\infty} a_n = 0$.

Theorem 6

Consider the series
$$S = \sum_{n=0}^{\infty} a_n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = l \quad \text{such that} \quad \begin{cases} l<1 & \text{if S converges} \\ l>1 & \text{if S diverges} \\ l=1 & \text{this test cannot help us} \end{cases}.$$

Section 4

Finite Expansion

The general formula for the finite expansion (Taylor-young formula) is

$$f(x) = f(x-a) + \frac{x}{1!}f'(x-a) + \frac{x^2}{2!}f''(x-a) + \dots + \frac{x^n}{n!}f^{(n)}(x-a) + x^n o(1) \quad x \to a.$$

Some important expansions to keep in mind are

a)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

c)
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

e) $\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

e)
$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

g)
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

i)
$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\prod_{k=0}^{n+1} (\alpha - k)}{n!} x^n$$

b)
$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

d)
$$\frac{1}{1-x} = \sum_{n=0}^{n-0} x^n$$

f)
$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

h)
$$\ln(1-x) = \sum_{n=1}^{\infty} -\frac{x^n}{n}$$

Power Series

PART III

A power series is just a series in the following formula

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
$$= \sum_{n=0}^{\infty} U_n.$$

Section 5

Radius of Convergence

For some values of x a power series can either diverge or converge, to determine the interval of convergence we employ the ratio test

Theorem 7 Let r be the radius of convergence and I be the domain of convergence. If we compute the limit

$$\Gamma = \lim_{n \to \infty} \left| \frac{U_{n+1}}{U_n} \right|.$$

The ratio test states that

$$\begin{cases} \text{if } \Gamma = 0 & \text{then } r = \infty \text{ and } I = \mathbb{R} \\ \text{if } \Gamma = \infty & \text{then } r = 0 \text{ and } I = \{0\} \end{cases}.$$

In the case that Γ isn't 0 or ∞ we set $\Gamma < 1$ and then we find |x| < R, finally we can say that r = R and I =]-R, R[. A special case need to be done for the points -R and R to determine if they belong in I.

Remark The power series f(x) is continous and will always uniformly converge in the interval of convergence I

Theorem 8 If $\sum a_n x^n$ and $\sum b_n x^n$ be 2 power series with radii R_1 and R_2 . For the power series $\sum (a_n + b_n)x^n$ the radius of convergence R

$$R = \min\{R_1, R_2\}.$$

Theorem 9 If $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is a power series with radius R then $S'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^n$ as well as $\int_{x_0}^x S(t) \, dt$ both a radius of R

The general term a_k of a power series $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is equal to

$$a_k = \frac{S^{(k)}(x_0)}{k!}.$$

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$y' = a_1 + 2a_2 x + 3a_3 x^2 + \dots + na_n x^{n-1}$$

$$y'' = 2a_2 + 6a_3 x + \dots + n(n-1)a_n x^{n-2} + n(n+1)a_{n+1} x^{n-1}$$

Integrals Depending on a Parameter

PART

We define an integratable function

$$f: I \times U \longrightarrow \mathbb{R} \times \mathbb{R}$$

 $t, x \longmapsto f(t, x).$

where t is a parameter.

Let

$$F(x) = \int_a^b f(t, x) dt.$$

Theorem 10

If f is of class C^p then F is also of class C^n and

$$\frac{\partial^p F}{\partial x^p} = \int_a^b \frac{\partial^p f}{\partial x^p} \, \mathrm{d}t \,.$$

Remark F is differentiable if $\frac{\partial f}{\partial x}$ is convergent.

Section 6

Improper Integral

Theorem 11

If
$$\int_a^b |f(t)| dt$$
 is convergent then $\int_a^b f(t) dt$ is also convergent and $\left| \int_a^b f(t) dt \right| \leq \int_a^b |f(t)| dt$

Theorem 12

The Weierstrass test states that $\int_a^b f(t,x) dt$ is convergent if there exists a function g(t) such that $|f(t,x)| \leq g(t)$ and $\int_a^b g(t) dt$

Fourier Series

PART

 \mathbf{V}

Definition 4

A Fourier series is a series of functions of general term

$$u_n(x) = a_0 + a_n \cos(nx) + b_n \sin(nx).$$

Section 7

Trigonometric Coefficients

The Fourier coefficients of a function defined on an interval $F\subset\mathbb{R}$ of period $T=\frac{2\pi}{\omega}\implies \omega=\frac{2\pi}{T}$ are

$$a_0 = \frac{1}{T} \int_F f(x) \, dx$$

$$a_n = \frac{2}{T} \int_F f(x) \cos \omega nx \, dx$$

$$b_n = \frac{2}{T} \int_F f(x) \sin \omega nx \, dx$$

 $1. \sin n \, \pi = 0$

2. $\sin n \pi/2 = (-1)^n$

3. $\cos n \, \pi = (-1)^n$

 $4. \cos n \, \pi/2 = 0$

Subsection 7.1

Even Functions

If a function has a domain $F = [-\ell; \ell]$ and $f(x) = f(-x) \ \forall x \in \mathbb{R}$ the Fourier coefficients (T = |F|) become

$$a_0 = \frac{1}{\ell} \int_0^{\ell} f(x) dx$$

$$a_n = \frac{2}{\ell} \int_0^{\ell} f(x) \cos nx dx$$

$$b_n = 0$$

Subsection 7.2

Odd Functions

If a function has a domain $F = [-\ell; \ell]$ and $-f(x) = f(-x) \ \forall x \in \mathbb{R}$ the Fourier coefficients (T = |F|) become

$$a_0 = 0$$

$$a_n = 0$$

$$b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin nx \, dx$$

Laplace Transforms

PART

The Laplace transform of a function is defined as

$$F(p) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-pt} f(t) \, \mathrm{d}t.$$

It only exists if the integral above converges.

SECTION 8

Transforms of some functions

Subsection 8.1

Unit step function

Also known as Heaviside's unit step function, it is defined as

$$u(t) = \begin{cases} 1 & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases}.$$

$$\mathcal{L}\left\{u(t)\right\} = \frac{1}{p} \quad \text{for} \quad \text{Re}(p) > 0.$$

Subsection 8.2

Dirac Delta Function

The Dirac Delta function

$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}.$$

$$\mathcal{L}\left\{\delta(t)\right\} = 1.$$

Subsection 8.3

Usual Elementary functions

$$a) \mathcal{L}\{1\} = \frac{1}{p}$$

b)
$$\mathcal{L}\left\{t\right\} = \frac{1}{p^2}$$

a)
$$\mathcal{L}\left\{1\right\} = \frac{1}{p}$$

c) $\mathcal{L}\left\{t^n\right\} = \frac{n!}{p^{n+1}}$

d)
$$\mathcal{L}\left\{\sin \omega t\right\} = \frac{\omega}{p^2 + \omega^2}$$

e)
$$\mathcal{L}\left\{\cos\omega t\right\} = \frac{p}{p^2 + \omega^2}$$

f)
$$\mathcal{L}\left\{\sinh \omega t\right\} = \frac{\omega}{p^2 - \omega^2}$$

g)
$$\mathcal{L}\left\{\cosh \omega t\right\} = \frac{p}{p^2 - \omega^2}$$

h)
$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{p-a}$$

Section 9

Properties of the Transform

1. Linearity:

$$\mathcal{L}\left\{\lambda f + \mu g\right\} = \lambda \mathcal{L}\left\{f\right\} + \mu \mathcal{L}\left\{g\right\}.$$

2. Homothety:

$$\mathcal{L}\left\{f(kt)\right\} = \frac{1}{k}F(\frac{p}{k}).$$

3. Derivation:

$$\mathcal{L} \{f'(t)\} = p\mathcal{L} \{f(t)\} - f(0^{+})$$

$$\mathcal{L} \{f''(t)\} = p^{2}\mathcal{L} \{f(t)\} - pf(0^{+}) - f'(0^{+})$$

$$\mathcal{L} \{f^{(n)}(t)\} = p^{n}\mathcal{L} \{f(t)\} - \sum_{k=1}^{n} p^{n-k} f^{(k-1)}(0^{+})$$

4. Integration:

$$\mathcal{L}\left\{\int_0^t f(u) \, \mathrm{d}u\right\} = \frac{F(p)}{p}.$$

5. Initial value theorem:

$$f(0^{+}) = \lim_{p \to \infty} p\mathcal{L} \left\{ f(t) \right\}.$$

6. Final value theorem:

$$f(\infty) = \lim_{p \to 0} p\mathcal{L} \left\{ f(t) \right\}.$$

Remark

$$\mathcal{L}\left\{tf(t)\right\} = -\frac{\mathrm{d}}{\mathrm{d}p}F(p)$$

$$\mathcal{L}\left\{t^2f(t)\right\} = \frac{\mathrm{d}^2}{\mathrm{d}p^2}F(p)$$

$$\mathcal{L}\left\{t^nf(t)\right\} = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}p^n}F(p)$$

Remark Convolution over a domain $I \subset \mathbb{R}$ is defined as

$$f(t) * g(t) = \int_{I} f(\tau)g(t-\tau) d\tau = \int_{I} f(t-\tau)g(\tau) d\tau.$$

and it's trasform is

$$\mathcal{L}\left\{f(t) * g(t)\right\} = F(p) \cdot G(p).$$

Section 10

Translation

In the time domain:

$$\mathcal{L}\left\{f(t-a)\right\} = e^{-ap}F(p).$$

In the p-domain:

$$\mathcal{L}\left\{e^{at}f(t)\right\} = F(p+a).$$

Systems of Differential Equations

PART
VII

Consider a system of first order differential equations (S)

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t) \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + b_n(t) \end{cases}$$

in matrix form the equation can be written as

$$\frac{\mathrm{d}\vec{\mathbf{x}}}{\mathrm{d}t} = A\vec{\mathbf{x}} + \vec{\mathbf{b}}.$$

and the initial condition can be written as

$$\vec{\mathbf{x}}_0(t_0) = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}.$$

SECTION 11

Solving The System of DEs

There 3 main ways of solving systems of DEs:

- 1. Laplace Transform
- 2. Change of Basis
- 3. Solving Matrix Formula

Remark Let A be a diagonalizable matrix

$$A = PDP^{-1}.$$

so we define that

$$e^{At} = Pe^{Dt}P^{-1}.$$

or in other words

$$e^{At} = P \begin{pmatrix} e^{\lambda_1 t} & 0 & 0 & 0 \\ 0 & e^{\lambda_2 t} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & e^{\lambda_n t} \end{pmatrix} P^{-1}.$$

Subsection 11.1

Change of Basis

We consider a new system of DEs to be

$$\frac{\mathrm{d}\vec{\mathbf{y}}}{\mathrm{d}t} = P^{-1}AP\vec{\mathbf{y}} + P^{-1}\vec{\mathbf{b}}.$$

which simplifies to

$$\frac{\mathrm{d}\vec{\mathbf{y}}}{\mathrm{d}t} = D\vec{\mathbf{y}} + \vec{\mathbf{B}}.$$

in this new system we can solve for $\vec{\mathbf{y}}$

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}t} = \lambda_1 y_1 + B_1 \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} = \lambda_2 y_2 + B_2 \\ \vdots \\ \frac{\mathrm{d}y_n}{\mathrm{d}t} = \lambda_n y_n + B_n \end{cases}$$

Remark The solution to a differential equation of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \alpha y + \beta.$$

is

$$y = c_1 e^{\alpha t} - \frac{\beta}{\alpha}.$$

after we find the solution to the new system, we can simply obtain the solution to the original system by

$$\vec{\mathbf{x}} = P\vec{\mathbf{y}}$$
.

and by substituting t_0 in $\vec{\mathbf{x}}$ we can solve for the constant terms (c_1, c_2, \dots, c_n) using $\vec{\mathbf{x}}_0$.

Subsection 11.2

Solving Matrix Formula

The formula for a system of first order equations is

$$\vec{\mathbf{x}} = \vec{\mathbf{x}}_h + \vec{\mathbf{x}}_p.$$

$$-13 -$$

Where

$$\vec{\mathbf{x}}_h = V(t, t_0) \vec{\mathbf{x}}_0$$
$$\vec{\mathbf{x}}_p = \int_{t_0}^t V(t, u) \vec{\mathbf{b}}(u) \, \mathrm{d}u$$

where

$$V(t, t_0) = X(t)X^{-1}(t_0).$$

if t = 0 then the formula becomes

$$\vec{\mathbf{x}} = e^{At}\vec{\mathbf{x}}_0 + \int_0^t e^{A(t-u)}\vec{\mathbf{b}}(u) \,\mathrm{d}u.$$

Section 12

Fundamental Solutions

For any given system of homogeneous linear DEs there exists a set of n functions such they for a linearly independent basis for a general solution of said DEs, in other words for a given DE there exists a set of vector functions $(\vec{\zeta}_1, \vec{\zeta}_2, \dots, \vec{\zeta}_n)$ such that

$$\vec{\mathbf{x}}(t) = c_1 \vec{\boldsymbol{\zeta}}_1(t) + c_2 \vec{\boldsymbol{\zeta}}_2(t) + \dots + c_n \vec{\boldsymbol{\zeta}}_n(t)$$
 where $c_{1,2,\dots,n} \in \mathbb{R}$.

We define the fundamental matrix of the system

$$X = (\vec{\zeta}_1 \ \vec{\zeta}_2 \dots \vec{\zeta}_n) = \begin{pmatrix} \zeta_{11} \ \zeta_{12} \dots \zeta_{1n} \\ \zeta_{21} \ \zeta_{22} \dots \zeta_{2n} \\ \vdots & \ddots \\ \zeta_{n1} \ \zeta_{n2} \dots \zeta_{nn} \end{pmatrix}.$$

The system can be written in terms of X as

$$\frac{\mathrm{d}X}{\mathrm{d}t} = AX.$$

Remark The fundamental solutions are linearly independent $\implies \det(X) \neq 0$

Subsection 12.1

Wronskian of vector functions

Consider the vector functions:

$$\vec{\phi}_1(t) = \begin{pmatrix} \phi_{11}(t) \\ \phi_{21}(t) \\ \vdots \\ \phi_{n1}(t) \end{pmatrix} \qquad \cdots \qquad \vec{\phi}_n(t) = \begin{pmatrix} \phi_{1n}(t) \\ \phi_{2n}(t) \\ \vdots \\ \phi_{nn}(t) \end{pmatrix}.$$

The Wronskian is defined to the determinant:

$$W(\vec{\phi}_{1}, \vec{\phi}_{2}, \cdots, \vec{\phi}_{n}) = \begin{vmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1n} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2n} \\ \vdots & & \ddots & \\ \phi_{n1} & \phi_{n2} & \cdots & \phi_{nn} \end{vmatrix}.$$

If the Wronskian = 0 then the functions $(\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n)$ are said to be linearly independent.

When dealing with DEs the concept of a Wronskian can be applied to non-vector functions as follows

$$W(\phi_1, \phi_2, \cdots, \phi_n) = \begin{vmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \\ \phi'_1 & \phi'_2 & \cdots & \phi'_n \\ \vdots & & \ddots & \\ \phi_1^{(n-1)} & \phi_2^{(n-1)} & \cdots & \phi_n^{(n-1)} \end{vmatrix}.$$

Section 13

Solving *n*-th order Homogeneous Linear DE

We define the notation $D^n x = \frac{d^n x}{dt^n}$.

An *n*-the order linear DE is any equation of the form:

$$D^{n} x + a_{1}(t)D^{n-1} x + \dots + a_{n-1}(t)D x + a_{n}(t)x = 0.$$

We can then write the equation in vector form

$$x = x_1$$

$$D x = x_2$$

$$D^2 x = x_3$$

$$\vdots$$

$$D^{n-1} x = x_n$$

$$D^n x = -a_n x_1 - a_{n-1} x_2 - \dots - a_1 x_n$$

and we take

$$\vec{\mathbf{x}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x \\ D x \\ \vdots \\ D^{n-1} x \end{pmatrix}.$$

then we can write the system as

$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}} \quad \text{where} \quad A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & \cdots & \cdots & -a_1 \end{pmatrix}.$$

Subsection 13.1

DE from a Set of Fundamental Solutions

Given a set of fundamental solutions $(\zeta_1, \zeta_2, \dots, \zeta_n)$, due to the uniqueness theorem those solutions only satisfy one DE. To find that DE we simply compute

$$W(x,\zeta_1,\zeta_2,\ldots,\zeta_n) = \begin{vmatrix} x & \zeta_1 & \cdots & \zeta_n \\ D & x & D & \zeta_1 & \cdots & D & \zeta_n \\ \vdots & & \ddots & & \\ D^n & x & D^n & \zeta_1 & \cdots & D^n & \zeta_n \end{vmatrix} = 0.$$

Example | Given the fundamental set of solutions $(e^{\omega t}, e^{-\omega t})$, find the second order homogeneous equation for that set of solutions:

$$W(x, e^{\omega t}, e^{-\omega t}) = 0$$

$$\implies \begin{vmatrix} x & e^{\omega t} & e^{-\omega t} \\ x' & \omega e^{\omega t} & -\omega e^{-\omega t} \\ x'' & \omega^2 e^{\omega t} & \omega^2 e^{-\omega t} \end{vmatrix} = 0$$

$$\implies x'' - \omega^2 x = 0.$$

Subsection 13.2

Method of Variation of constants

Consider a non-homogeneous linear DE

$$x^{(n)}(t) + \sum_{i=0}^{n-1} a_i(t)x^{(i)}(t) = b(t).$$

and let (x_1, x_2, \ldots, x_n) be a solution to the corresponding homogeneous differential equation. Then the particular solution to the equation is given by

$$x_p = \sum_{i=0}^n z_i(t) x_i(t).$$

such that $z_i(t)$ satisfies the condition

$$\sum_{i=1}^{n} z_i'(t)x^{(j)}(t) = 0 \quad \text{for} \quad j = 0, 1, \dots, n-2.$$

$$-16-$$

We substitute x_p in to the original DE, and along with the previous condition, we obtain a linear system of equations dependent on z'_i . Then we simply find z'_i and integrate to get back z_i then finally obtain a general solution to the non-homogeneous DE.

The formula for z_1 and z_2 are given for 2nd order DEs of the form

$$x'' + P(t)x' + Q(t)x = g(x).$$

$$z_1 = -\int \frac{x_2 g}{W(x_1, x_2)} dt$$
$$z_2 = -\int \frac{x_1 g}{W(x_1, x_2)} dt$$

Example

Solve:

$$x'' + x = \sec(t) = \frac{1}{\cos(x)}.$$

We know the solution to the homogeneous equation is $x_h = c_1 \cos(t) + c_2 \sin(t)$ (refer to the next chapter for a method for solving the homogeneous equation)

We substitute the constants with our parameters

$$x = z_1 \cos(t) + z_2 \sin(t).$$

Our condition for the parameters becomes

$$z_1'\cos(t) + z_2'\sin(t) = 0.$$

and substituting x in the original DE we obtain

$$-z_1'\sin(t) + z_2'\cos(t) = \sec(t).$$

Solving the system

$$\begin{cases} z_1' = -\tan(t) & \Rightarrow z_1 = \ln|\cos(t)| + c_1 \\ z_2' = 1 & \Rightarrow z_2 = t + c_2 \end{cases}$$

Finally

$$x = (\ln|\cos(t)| + c_1)\cos(t) + (t + c_2)\sin(t).$$

Not sure why we're solving systems of DEs before we solve DEs in general, besides half the course is basically redundant

Linear Differential Equations

PART
VIII

Let the notation denote

$$D^n x = \frac{\mathrm{d}^n x}{\mathrm{d}t^n}.$$

Section 14

Differential Operators

Subsection 14.1

Definition

Let's call the set of differential operators \mathbb{L} , a differential operator $A \in \mathbb{L}$ is defined to be

$$A = a_0 D^0 + a_1 D^1 + a_2 D^2 + \dots + a_n D^n$$
.

The order of a linear operator is the highest power of D denoted

$$\gamma(A) = \max(\text{Power of D}).$$

Differential operators form a ring $(\mathbb{L}, +, \cdot)$.

Subsection 14.2

Differential Operators as DEs

We can use differential operators to write DEs in the form

$$Ax = b(t)$$
.

Let $A, B \in \mathbb{L}$ and $\gamma(B) \leq \gamma(A)$ we can prove that $\exists Q, R \in \mathbb{L}$ A = QB + R (Q: quotient, R: remainder)

When dealing with differential operators, treat D as a variable. Thus differential operators can be though of as polynomials of D.

If the operators A and B each correspond to a homogeneous DE then we can compute gcd(A, B)

- gcd(A, B) = 1 then the differential equations do not have a common solution between them.
- $gcd(A, B) \neq 1$ then the differential equations have a common solution, which is the solution to the DE corresponding to R = gcd(A, B)

They behave just like normal polynomials with the exception of $A \cdot B \neq B \cdot A$ which also has the exception of being equal if $a_k =$ cnst and $b_k =$ cnst

Algebra 1 long division, yum

14.2.1 Case of known k solutions

If we have a homogeneous DE, whose corresponding operator is A of order n, that we know k solutions of we can construct an operator B of order k whose solutions is said k solutions. Then the remaining n-k solutions are the solutions are the solutions for gcd(A, B). We can construct B using

$$W(x, x_1, x_2, \dots, x_k) = 0.$$

Subsection 14.3

Linear Equations with Constant Coefficients

The characteristic polynomial of a homogeneous DE is the polynomial where D is substituted with r, it is denoted as P(r) and its solutions can help find the solutions to the DE.

If P(r) has a solution in the reals (\mathbb{R}) then the solution of the associated DE is

$$P(r) = (r - \alpha)^{-1} = 0 \Rightarrow x = C_{-1}e^{\alpha t}.$$

On the other hand if the solutions to P(r) were complex then the solutions become

is the order of the root of the polynomial

$$P(r) = \left((r - \omega)(r - \bar{\omega}) \right)^{\mathbf{A}} = 0 \Rightarrow x = e^{\operatorname{Re}(\omega)t} \left(U_{\mathbf{A}-1} \cos(\operatorname{Im}(\omega)t) + i V_{\mathbf{A}-1} \sin(\operatorname{Im}(\omega)t) \right).$$

where C_n , U_n , and V_n are polynomials with constant coefficients (c_1, c_2, \ldots, c_n) and degree n. $\left(\sum_{i=0}^{n} c_i t^i\right)$

Remark

The principle of super position states that for a linear differential equation of the form

$$Ax = \underbrace{b(t)}_{b_1(t)+b_2(t)}.$$

the particular solutions of the equations with b_1 and b_2 , being x_1 and x_2 respectively, add up to form the particular solution of the original equation

Generally, we find the solutions to the homogeneous equations then use variation of parameters/constants to find the particular solution.

Section 15

Particular Forms of b(t)

- $Ax = ke^{\beta t}$: Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be the roots of the associated P(r)and $\mathbb{A}_1, \mathbb{A}_2, \dots, \mathbb{A}_n$ be the respective order of those roots.
 - If $\beta \neq \alpha_i$, then we look for a particular solution of the form $x_n = ce^{\beta t}$ where c is a constant to be determined.
 - If $\beta = \alpha_i$, then we look for a particular solution of the form $x_p = ct^{A_i}e^{\beta t}$ where c is a constant to be determined.

- $a_0x'' + a_1x' + a_2x = k$: We look for a particular solution of the form
 - If $a_2 = 0$ we look for a particular solution of the form $x_p = ct$
 - If $a_1 = a_2 = 0 \implies x_p = ct^2$
- $a_0x'' + a_1x' + a_2x = I_n$ (Polynomial of degree n): We look for a particular solution of the form $x_p = Q_n$ (another polynomial of degree n)
 - If $a_2 = 0$ we look for a particular solution of the form $x_p =$
 - If $a_1 = a_2 = 0 \implies x_p = Q_{n+2}$
- $a_0x'' + a_1x' + a_2x = I_ne^{\beta t}$:
 - If $P(\beta) \neq 0$ we look for a particular solution of the form $x_p = Q_n e^{\beta t}$
 - If $P(\beta) = 0$ and the order of $\beta = 1$ we look for a particular solution of the form $x_p = Q_{n+1}e^{\beta t}$
 - If $P(\beta) = 0$ and the order of $\beta = 2$ we look for a particular solution of the form $x_p = Q_{n+2}e^{\beta t}$
- $a_0x'' + a_1x' + a_2x = k\sin(\beta t) + h\cos(\beta t)$:
 - If $P(\pm i\beta) \neq 0$ we look for $x_p = c_1 \sin(\beta t) + c_2 \cos(\beta t)$
 - If $P(\pm i\beta) = 0$ we look for $x_p = t [c_1 \sin(\beta t) + h \cos(\beta t)]$
- $a_0 x'' + a_1 x' + a_2 x = e^{\lambda t} [k \sin(\beta t) + h \cos(\beta t)]$:
 - If $P(\lambda \pm i\beta) \neq 0$ we look for $x_p = e^{\lambda t} [c_1 \sin(\beta t) + h \cos(\beta t)]$ If $P(\lambda \pm i\beta) = 0$ we look for $x_p = te^{\lambda t} [k \sin(\beta t) + h \cos(\beta t)]$
- $a_0x'' + a_1x' + a_2x = I_n\sin(\beta t) + Q_n\cos(\beta t)$:
 - If $P(\pm i\beta) \neq 0$ we look for $x_p = R_n \sin(\beta t) + S_n \cos(\beta t)$
 - If $P(\pm i\beta) = 0$ we look for $x_p = R_{n+1}\sin(\beta t) + S_{n+1}\cos(\beta t)$

Section 16

Euler's Equations

Euler's DE is a DE of the form

 $a_i \in \mathbb{R}$

$$a_0 t^n D^n x + a_1 t^{n-1} D^{n-1} x + \dots + a_n x = 0.$$

Method One:

We assume that $x = t^r$, by substituting x in the equation we get a new equation of the form $I(r)t^r=0$ where I(r) is a polynomial of degree n. The solutions to I(r) are q real solutions r_1, r_2, \ldots, r_n , thus $x = c_1 t^{r_1} + c_2 t^{r_2} + \dots + c_n t^{r_n}$.

• Method Two:

We let $t = e^u$ and $\Delta = \frac{\mathrm{d}}{\mathrm{d}u}$. We can prove that

$$D^{p} x = e^{-pu} \Delta(\Delta - 1) \cdots (\Delta - (p+1)).$$

After doing this substitution, the equation is transformed in to linear equation with constant coefficients.