Equivalenza logica

Andrea Canale

December 30, 2024

Contents

1 Tautologia					
	1.1	Leggi	di De Morgan	3	
2	Cor	ıseguei	nza logica	3	
3	Der	ivazioı	ne	3	
	3.1	Regole	e di inferenza note	4	
		3.1.1	Modus ponens	4	
		3.1.2	Modus tollens	4	
		3.1.3	Addizione	4	
		3.1.4	Semplificazione	4	
		3.1.5	Congiunzione	5	

		3.1.6	Silogismo ipotetico	5	
		3.1.7	Silogismo disgiuntivo	5	
4	Insi	eme u	niverso	5	
	4.1	Parade	osso di Russell	5	
5	Qua	ntifica	atori universali	6	
	5.1	Quant	ificatore "Per ogni"	6	
		5.1.1	Regole d'inferenza per il qualificatore \forall	6	
	5.2 Quantificatore esiste				
		5.2.1	Controesempio	6	
		5.2.2	Regole d'inferenza per il qualificatore \exists	6	
6 Leggi di De Morgan generalizzate					
7	7 Qualificatori innestati				

1 Tautologia

La tautologia è una formula logicamente valida, cioè è vera per ogni valutazione delle lettere proposizionali.

Ad esempio $A \lor A \iff A$

Questo perchè non esiste un caso dove $A \vee A$ è vera e A è falsa.

Si legge $A \vee A \iff A$ come $A \vee A$ se è solo se A

L'operatore logico che usiamo per la tautologia è ⇔

Una tautologia si può scrivere come $\models A \land B$

1.1 Leggi di De Morgan

Un esempio molto importante di tautologia sono le leggi di De Morgan:

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

2 Conseguenza logica

Una proposizione Q è una conseguenza logica di un insieme di premesse P se e solo se, ogni volta che tutte le premesse in P sono vere, anche q deve essere vera.

La differenza con la tautologia è che la tautologia è sempre vera mentre la conseguenza logica dipende dalle premesse P.

L'operatore logico della conseguenza logica è \rightarrow

Una conseguenza logica si può scrivere come $A \models B$

Esempio: Data la frase: "Se piove, la strada è bagnata", può essere divisa in 2 parti: La premessa e la conseguenza.

La premessa(P) è "Se piove" La conseguenza(Q) è "La strada è bagnata"

Quindi possiamo renderla conseguenza logica scrivendo $P \to Q$

3 Derivazione

Un argomento è una serie proposizioni che concludono una proposizione scritte come:

 p_1 p_2 \vdots p_n

Dove $p_1,p_2,...,p_n$ sono gli argomenti (premesse) mentre q è la conclusione.

Un argomento è valido se la conclusione segue le ipotesi e ciò può essere dimostrato attraverso le regole d'inferenza.

3.1 Regole di inferenza note

3.1.1 Modus ponens

$$p \to q$$
 p

$$\frac{P}{q}$$

3.1.2 Modus tollens

$$p \rightarrow q$$

$$\neg q$$

$$\neg p$$

3.1.3 Addizione

$$p$$
 $p \lor q$

3.1.4 Semplificazione

$$p \wedge q$$

3.1.5 Congiunzione

$$\begin{matrix} p \\ \hline q \\ \vdots & p \wedge q \end{matrix}$$

3.1.6 Silogismo ipotetico

$$p \to q$$

$$q \to r$$

$$p \to r$$

3.1.7 Silogismo disgiuntivo

4 Insieme universo

C'è un insieme universale U(universo) che contiene tutti gli elementi e tutti gli insiemi esistenti. Si assume che ogni insieme possa contenere solo elementi che appartengono anche ad U.

Questo ci porta al paradosso di Russell che denota i limiti della logica classica.

4.1 Paradosso di Russell

L'insieme di tutti gli insiemi che non appartengono a sé stessi appartiene a sé stesso se e solo se non appartiene a sé stesso. Questo perchè un insieme è sempre sottoinsieme di se stesso tuttavia se noi imponiamo che non sia così, è impossibile decidere se $R \in R$.

Definiamo l'insieme $R = def\{X | X \notin X\}$

Abbiamo due casi:

- $R \in R$, allora vuol dire che $R \notin R$ perchè abbiamo la condizione $x \notin x$
- $R \in \mathbb{R}$, allora vuol dire $R \in \mathbb{R}$

Questa è una contraddizione ed è chiamato paradosso di Russell.

5 Quantificatori universali

5.1 Quantificatore "Per ogni"

Il quantificatore "per ogni" \(\forall \), indica che una proposizione \(\cdot \) vera per ogni valore di un insieme

5.1.1 Regole d'inferenza per il qualificatore \forall

Usando la regola d'eliminazione abbiamo:

Usando la regola d'introduzione abbiamo:

$$P(u) \text{per ogni } u \in U$$

$$\therefore \forall x P(x)$$

Dove u è un elemento generico indistinguibile dagli altri dell'insieme universo(e che può essere scambiato con x)

5.2 Quantificatore esiste

Il quantificatore "esiste" \exists , indica che per almeno un elemento di un insieme, la proposizione è vera

5.2.1 Controesempio

Se troviamo un valore del dominio di discorso che rende falso il quantificatore esistenziale, possiamo concludere che quell'elemento è un controesempio.

5.2.2 Regole d'inferenza per il qualificatore \exists

Usando la regola d'eliminazione abbiamo:

$$\exists x P(x)$$

$$\therefore P(u) \text{per qualche } u \in U$$

Usando la regola d'introduzione abbiamo:

$$\frac{P(u)\text{per qualche }\mathbf{u}\in\mathbf{U}}{\exists xP(x)}$$

6 Leggi di De Morgan generalizzate

Esistono anche le leggi di De Morgan che valgono per il qualificatore esistenziale e quello universale e sono:

$$\neg(\forall x P(x)) \equiv \exists x \neg P(x)$$

$$\neg(\exists x P(x)) \equiv \forall x \neg P(x)$$

7 Qualificatori innestati

Possiamo anche innestare i qualificatori universali ed esistenziali, per formare proposizioni del tipo: $\forall x \exists y P(x,y)$

Il dominio del discorso è univoco per entrambi i qualificatori, ad esempio: $\mathbb Z$

Il dominio di discorso non diventa prodotto cartesiano $\mathbb{Z}x\mathbb{Z}$