Geometría, cosmología y nucleosíntesis primordial Trabajo de Fin de Grado - Doble Grado en Física y Matemáticas

David Jesús Árbol Guerrero

Facultad de Ciencias Universidad de Granada

3 de julio de 2023

Contenidos

Geometría del universo

- 2 Parámetros cosmológicos. El universo en el que vivimos
- 3 Cosmología. Evolución del universo hasta la recombinación
- 4 La nucleosíntesis primordial
- Conclusiones

Objetivos

Geometría de nuestro universo.

2 Termodinámica en la época dominada por la radiación.

4 Hitos más relevantes en la historia térmica del universo.

Análisis teórico y computacional de la nucleosíntesis con PRIMAT.

Sección 1

Geometría del universo

1.1 Hipótesis y argumentos observacionales

Principio Cosmológico "En cualquier instante, el universo es homogéneo e isótropo a escalas suficientemente grandes."

Postulado de Weyl "A escalas cosmológicas, la materia se comporta como un fluido perfecto."

Figura: Inhomogeneidades de la CMBR. Medido por Planck (2013) [ESA Multimedia].

Definición (Fluido perfecto)

Fluido completamente caracterizado por su densidad de masa ρ y su presión isotrópica P. Caracterizado por su tensor energía-impulso:

$$T^{\mu\nu} = (\rho + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$

Definición (Observador comóvil)

Único observador que percibirá el universo como homogéneo e isótropo.

Definición (Unidades naturales)

$$c = \hbar = \kappa_B = 1$$

1.2 Fundamentos matemáticos

Espacio-tiempo (\mathbb{R}^4): variedad pseudo-riemanniana.

Definición (Métrica. Símbolos de Christoffel. Tensores de curvatura)

$$\mathsf{g}_{\mu
u}$$

$$\Gamma^{\sigma}_{\mu
u}$$

$$\Gamma^{\sigma}_{\mu
u} \qquad R_{\mu
u
ho}{}^{\lambda}$$

$$R_{\mu
u}$$

$$R=g^{\mu
u}R_{\mu
u}$$

- $g_{\mu\nu}$: Igual signatura en todos los espacios tangentes.
- Localmente plano y con la métrica de Minkowski:

$$\eta_{\mu\nu} = {
m diag}(1, -1, -1, -1)$$

Ecuaciones de Einstein:

$$R_{\mu\nu} - rac{1}{2}g_{\mu\nu}R = -8\pi G \mathcal{T}_{\mu\nu}$$

1.3 Métrica de Friedmann-Lemaître-Robertson-Walker

Proposición

Los espacios homogéneos e isótropos tienen curvatura constante (R) y:

$$R_{\mu
u
ho\lambda} = K(g_{\mu\lambda}g_{
u
ho} - g_{\mu
ho}g_{
u\lambda})$$

$$R_{\mu\nu}=-(N-1)Kg_{\mu\nu}.$$

Métrica de FLRW:

 $k \in \{0, \pm 1\}$ $ds^2 = dt^2 - a^2(t) \left[\frac{1}{1 - kr^2} dr^2 + r^2 (d\theta^2 + \sin^2\theta d\varphi^2) \right]$

$$k = 1$$

$$k = -1$$

1.4 Ecuaciones de Friedmann

Por el Postulado de Weyl:

$$\mathcal{T}_{00} = \rho$$
 $\mathcal{T}_{ij} = a^2(t)\tilde{g}_{ij}P$

Ecuaciones de Friedmann $(\kappa = 8\pi G)$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{\kappa}{3}\rho - \frac{k}{a^2}$$
$$\frac{\ddot{a}}{a} + \frac{1}{2}\left(\frac{\dot{a}}{a}\right)^2 = -\frac{\kappa}{2}P - \frac{k}{2a^2}$$
$$\frac{\ddot{a}}{a} = -\frac{\kappa}{6}(\rho + 3P)$$

Definición (Constante de Hubble. Ley de Hubble)

$$H(t) = \frac{\dot{a}(t)}{a(t)}$$

$$v(t) = H(t)D(t)$$

Definición (Redshift cosmológico)

$$z = \frac{\lambda_d - \lambda_e}{\lambda_e} = \frac{\nu_e - \nu_d}{\nu_d}$$

$$1+z=rac{\lambda_d}{\lambda_e}=rac{
u_e}{
u_d}=rac{\mathsf{a}(t_d)}{\mathsf{a}(t_e)}$$

Sección 2

Parámetros cosmológicos. El universo en el que vivimos

2.1 Relación entre ρ y a. Tipos de materia/energía

$$abla_{\mu}\mathcal{T}^{\mu\nu}=0 \qquad P=w
ho \qquad \dot{
ho}+3rac{\dot{a}}{a}(
ho+P)=0$$
 $ho_{lpha}(t)=
ho_0\left(rac{a(t)}{a_0}
ight)^{-3(w_{lpha}+1)}$

Definición (Tipos de materia/energía)

- Materia fría $(w_m = 0)$:
- $ho \sim a^{-3}$ $ho \sim a^{-4}$ • Materia relativista ($w_r = 1/3$):
- Energía oscura ($w_{\Lambda} = -1$): $\rho \sim cte$

Introducimos $\rho(a)$ en la *Ec. de Friedmann*, $\left(\frac{\dot{a}}{a}\right)^2 = \frac{\kappa}{3}\rho - \frac{k}{a^2}$.

Introducimos $P = w\rho$ en la *Ec. de aceleración* $\frac{\ddot{a}}{a} = -\frac{\kappa}{6}(\rho + 3P)$.

$$\frac{\ddot{a}}{a} = -\frac{\kappa}{6}(1+3w)\rho$$

ロ ト 4回 ト 4 星 ト 4 星 ト 星 幻 Q (~ _{12/31}

t

2.2 Parámetros cosmológicos

Definición (Densidad crítica ρ_c . Parámetros de densidad Ω_α)

$$\rho_c = \frac{3}{\kappa} H^2$$

$$\Omega_{\alpha} = \frac{\rho_{\alpha}}{\rho_{c}}.$$

Ec. de Friedmann
$$H^2 = \frac{\kappa}{3}\rho - \frac{k}{a^2}$$

Constante de Hubble	$H_0 = 67.66 \pm 0.42 \; \mathrm{km \; s^{-1} Mpc^{-1}}$
Materia	$\Omega_m = 0.3111 \pm 0.0056$
Radiación	$\Omega_r = 9.13871 \cdot 10^{-5}$
Energía oscura	$\Omega_{\Lambda}=0.6889\pm0.0056$
Energía total	$\Omega_{tot}=1.0007\pm0.0019$
Edad del universo	$t_0 = 13.787 \pm 0.020$ Ga

Sección 3

Cosmología. Evolución del universo hasta la recombinación

3.1 Termodinámica y física estadística de la cosmología

Variables termodinámicas: n, ρ , P, s (Plasma primigenio)

$$\rho = \sum_{i} \rho_{i} = g_{*\epsilon}(T) \frac{\pi^{2}}{30} T^{4}$$

Relaciones H(T) **y** T(t): Ec. Friedmann $H^2 = \frac{\kappa}{3}\rho - \frac{\kappa}{3^2}$

$$H = \frac{\pi}{3} \left(\frac{g_{*\epsilon}}{10} \right)^{1/2} \frac{T^2}{M_{Pl}}$$
 $\frac{T}{1 \text{ MeV}} = 1.549 \, g_{*\epsilon}^{-1/4} \left(\frac{1 \text{ s}}{t} \right)^{1/2}$

Aniquilación y desacoplamiento de partículas:

Definición (Tasa de colisión)

$$\Gamma = n\sigma v$$

Propiedad

 $\Gamma \gg H \Rightarrow$ equilibrio térmico local

3.2 Hitos más relevantes

3.2 Desacoplamiento de neutrinos y aniquilación e^+e^-

$$sa^3 = cte$$
 $Ta = cte$
$$T_{\nu} = \left(\frac{g_{*s,1}}{g_{*s,2}}\right)^{1/3} T_{\gamma} \qquad T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} = 1.945 \text{ K}$$

Sección 4

La nucleosíntesis primordial

4.1 Proceso de la nucleosíntesis

Definición

$$X_n^{eq}(T) = \frac{n_n}{n_b}$$
 $Y_i = \frac{n_i}{n_b}$ $X_i = A_i Y_i$ $Y_P = \frac{4n_{^4\mathrm{He}}}{n_b}$ $i/\mathrm{H} \equiv \frac{n_i}{n_p}$

Definición (Fracción barión-fotón)

$$\eta = \frac{n_b}{n_\gamma} \Leftrightarrow \Omega_b h^2$$

-Paso 0: Abundancias en equilibrio

$$n(T) = g\left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

$$n + \nu_e \longleftrightarrow p^+ + e^ n + e^+ \longleftrightarrow p^+ + \bar{\nu}_e$$
 $X_n^{eq} = \frac{n_n}{n_n + n_p} = \frac{n_n/n_p}{1 + n_n/n_p} \approx \frac{e^{-Q/T}}{1 + e^{-Q/T}}$ $(Q = m_n - m_p = 1.29 \text{ MeV})$

-Paso 1: Neutron Freeze-Out

$$T_{fo} \approx 0.86 - 0.28 \text{ MeV}$$

¡Casualidad!
$$T_{fo} \sim Q$$

Si $T_{fo} \ll Q \Rightarrow$ Sin neutrones para formar núcleos

-Paso 2: Desintegración de los neutrones

$$X_n(t) = \frac{n_n}{n_n + n_p} \approx X_n^{\infty} e^{-t/\tau_n}$$

-Paso 3: Fusión del ⁴He

 η debe ser suficientemente alta

$$\left(\frac{n_{\rm D}}{n_n}\right)_{\rm eq} = \frac{3}{4} \eta n_{\gamma} \left(\frac{4\pi}{m_p T}\right)^{3/2} {\rm e}^{B_{\rm D}/T} \sim 1$$

Resultados:

$$T_{nuc} pprox 70$$
 keV, $t_{nuc} pprox 200$ s $Y_{
m P} = 23.43\,\%, \quad X_{
m H} = 76.57\,\%$ (No es la proporción final)

4.2 Evolución temporal de las abundancias

4.3 Abundancias relativas finales

Núcleo	Observaciones	Resultados
$\overline{Y_{\mathrm{P}}}$	0.2449 ± 0.0040	0.24709 ± 0.00017
$D/H\;(imes 10^5)$	2.527 ± 0.030	2.459 ± 0.036
$^{3}\text{He/H}(\times 10^{5})$	$<1.1\pm0.2$	$\boldsymbol{1.074 \pm 0.026}$
$^{7}\text{Li/H} (\times 10^{10})$	$1.58^{+0.35}_{-0.28}$	5.623 ± 0.247

 $^4{\rm He}$

-Parámetros libres: η , N_{ν}

- η compatible para $^4{\rm He}$ y D

- η coincide con datos $\Omega_b h^2$

 $^7{
m Li}$

-Problema del Litio

Sección 5

Conclusiones

Conclusions

√ Geometry of our universe.

✓ Thermodynamics in the radiation-dominated era.

✓ The most relevant milestones of the thermal history of the universe.

✓ Theoretical and computational analysis of nucleosynthesis with PRIMAT.

Muchas gracias