SECTION C

- 5. (a) A drug company is interested in assessing the research question: is the proportion of patients who are cured with drug A different from the natural recovery rate of 50%? The regulatory requirement is for a 95% confidence interval width for the estimate of population proportion to be no more than 4%. The company takes a sample of 1000 individuals treated with drug A, and records that 475 of them were cured. They also record a number of other characteristics of the patients for use in future hypothesis tests. They then perform a one-tailed t-test for the null hypothesis that the population proportion is less than or equal to 0.50. They use a significance level alpha = 0.05.
 - (i) Following the approach of the drug company as described above, calculate the test statistic for this hypothesis test.
 - (ii) Critically evaluate the drug companies approach to answering their research question.
 - (b) A number of graphical methods exist for the assessment of a simple linear model. Choose THREE (3) of these and for each one
 - (i) describe the method's purpose and draw an example of a graph that would not indicate issues with the model.
 - (ii) draw an example of a graph that would indicate possible issues with the model.
 - (iii) For each of your graphs in (b)(ii) explain why a simple linear model might produce a graph with such an appearance.

[33 marks]

- 6. (a) Suppose we model the time until the next phone call as an exponential random variable. If the chance of my getting a call during the next hour is 0.5. What is the probability that I will get a call during the next two hours?
 - (b) Mike and Tom are playing a game. Suppose the score is tied and a player wins the game when they get two points ahead of the other. Suppose the probability that Mike wins a point is *p*, and each point is assumed to be independent. What is the probability that Mike wins the game?
 - (c) Consider two events A and B with $0 < \mathbb{P}(A) < 1$ and $0 < \mathbb{P}(B) < 1$.
 - (i) Suppose A and B are disjoint events. Can they be independent? Justify your answer.
 - (ii) Suppose $A \subset B$. Can they be independent?
 - (d) At Trinity College Dublin, 4% of men are over 200 pounds in weight and 1% of women are over 200 pounds. Women account for 60% of the total student population, and men account for 40%. If a randomly selected student is over 200 pounds in weight, what is the probability that the student is a woman?
 - (e) Suppose a random integer N is picked from 1 to 3 with the three possibilities being equally likely. Another integer M is then randomly picked from N to 3 with the 4-N possibilities being equally likely. What is the probability that M will be 3?

[33 marks]

Linear Algebra

• The cross product of two vectors in \mathbb{R}^3 is defined by

$$\mathbf{x} \times \mathbf{y} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}.$$

where \mathbf{x} and \mathbf{y} are elements in \mathbb{R}^3 .

• Given a point P (with coordinates (p_1, p_2, p_3)) in a plane and a vector \mathbf{n} in \mathbb{R}^3 that is normal to the plane, the implicit equation of the plane is

$$n_1(x - p_1) + n_2(y - p_2) + n_3(z - p_3) = 0.$$

• Given a point P with coordinates (p_1, p_2, p_3) in a plane and two vectors \mathbf{u} and \mathbf{v} that lie in the plane, the parametric equation of the plane is

$$x = p_1 + u_1 s + v_1 t$$

$$y = p_2 + u_2 s + v_2 t$$

$$z = p_3 + u_3 s + v_3 t$$

where $-\infty < s < \infty$ and $-\infty < t < \infty$.

• Given a point P with coordinates (p_1, p_2, p_3) on a line and a vector \mathbf{u} that is parallel to the line, the implicit equation of the line is given by the symmetric equations

$$\frac{x - p_1}{u_1} = \frac{y - p_2}{u_2} = \frac{z - p_3}{u_3}$$

• Given a point P with coordinates (p_1, p_2, p_3) on a line and a vector \mathbf{u} that is parallel to the line, the parametric equation of the line is

$$x = p_1 + u_1 t$$

$$y = p_2 + u_2 t$$

$$z = p_3 + u_3 t$$

where $-\infty < t < \infty$.

• Orthogonal projection of **u** on **a**:

$$\operatorname{proj}_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u}.\mathbf{a}}{||\mathbf{a}||^2} \ \mathbf{a}$$

Vector component of **u** orthogonal to **a**:

$$\mathbf{u} - \mathrm{proj}_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u}.\mathbf{a}}{||\mathbf{a}||^2} \ \mathbf{a}$$

Calculus

Differentiation

f(x)	f'(x)
x^n	nx^{n-1}
$\ln x$	$\frac{1}{x}$
e^x	e^x
e^{ax}	ae^{ax}
a^x	$a^x \ln a$
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
$\tan x$	$\sec^2 x$
$\cos^{-1}\frac{x}{a}$	$-\frac{1}{\sqrt{a^2-x^2}}$
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$

Product Rule for Differentiation

$$y = uv$$
, $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient Rule for Differentiation

$$y = \frac{u}{v}, \quad \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Chain Rule for Differentiation

$$y = u(v(x)), \quad \frac{dy}{dx} = \frac{du}{dv}\frac{dv}{dx}$$

Integration

Constants of integration omitted.

Constants of integration omitted.	
f(x)	$\int f'(x)$
x^n , $(n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln x$
e^x	e^x
e^{ax}	$\frac{1}{a}e^{ax}$
$a^x \ (a > 0)$	$\frac{a^x}{\ln a}$
$\cos x$	$\sin x$
$\sin x$	$-\cos x$
$\tan x$	$\ln \sec x $
$\cos^2 x$	$\frac{1}{2}\left(x + \frac{1}{2}\sin 2x\right)$
$\sin^2 x$	$\frac{1}{2}\left(x - \frac{1}{2}\sin 2x\right)$
$\frac{1}{\sqrt{a^2 - x^2}} \left(a > 0 \right)$	$\sin^{-1}\frac{x}{a}$
$\frac{1}{x^2 + a^2} \left(a > 0 \right)$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$
$\frac{1}{x\sqrt{x^2 - a^2}}$	$\frac{1}{a}\sec^{-1}\frac{x}{a}$
$\frac{1}{\sqrt{x^2 + a^2}}$	$ \ln \left \frac{x + \sqrt{x^2 + a^2}}{a} \right $
$\frac{1}{a^2 - x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $
$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln\left \frac{x+\sqrt{x^2-a^2}}{a}\right $

Integration by parts

$$\int u \, dv = uv - \int v \, du$$

Page 8 of 11

Tautologies

- 1. $P \vee \neg P$ Law of the excluded middle
- 2. $\neg (P \land \neg P)$ Law of non-contradiction
- 3. $\neg \neg P \leftrightarrow P$ Law of double negation
- 4. $(P \land Q) \rightarrow P$ Basis for simplification
- 5. $(P \land Q) \rightarrow Q$ Basis for simplification
- 6. $P \to P \lor Q$ Basis for addition
- 7. $Q \to P \lor Q$ Basis for addition
- 8. $Q \rightarrow (P \rightarrow Q)$
- 9. $\neg P \rightarrow (P \rightarrow Q)$
- 10. $[P \land (P \rightarrow Q)] \rightarrow Q$ Modus ponens
- 11. $[\neg Q \land (P \to Q)] \to \neg P$ Modus tollens
- 12. $\neg P \land (P \lor Q) \rightarrow Q$
- 13. $P \rightarrow [Q \rightarrow (P \land Q)]$
- 14. $[(P \to Q) \land (Q \to R)] \to (P \to R)$ Transitivity of implications
- 15. $(P \to Q) \to [(P \lor R) \to (Q \lor R)]$
- 16. $(P \to Q) \to [(P \land R) \to (Q \land R)]$
- 17. $[(P \leftrightarrow Q) \land (Q \leftrightarrow R)] \rightarrow (P \leftrightarrow R)$ Transitivity of equivalences
- 18. $\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$ De Morgan's law
- 19. $\neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$ De Morgan's law
- 20. $\neg (P \rightarrow Q) \leftrightarrow P \land \neg Q$
- 21. $(P \to Q) \leftrightarrow (\neg P \lor Q)$
- 22. $(P \leftrightarrow Q) \leftrightarrow [(P \to Q) \land (Q \to P)]$
- 23. $(P \leftrightarrow Q) \leftrightarrow [(P \land Q) \lor (\neg Q \land \neg P)]$
- 24. $(P \to Q) \leftrightarrow (\neg Q \to \neg P)$ Law of contraposition (The contrapositive)
- 25. $[(P \to Q) \land (P \to R)] \leftrightarrow [P \to (Q \land R)]$
- 26. $[(P \to R) \land (Q \to R)] \leftrightarrow [(P \lor Q) \to R]$ Basis for proof by cases
- 27. $[P \to (Q \to R)] \leftrightarrow [(P \land Q) \to R]$
- 28. $(P \to Q \land \neg Q) \leftrightarrow \neg P$ Basis for indirect proofs
- 29. $[(P \land (Q \lor R)] \leftrightarrow [(P \land Q) \lor (P \land R)]$ Law of distributivity
- 30. $[(P \lor (Q \land R))] \leftrightarrow [(P \lor Q) \land (P \lor R)]$ Law of distributivity
- 31. $(P \land Q) \leftrightarrow (Q \land P)$ Law of commutativity
- 32. $(P \lor Q) \leftrightarrow (Q \lor P)$ Law of commutativity
- 33. $[(P \lor (Q \lor R)] \leftrightarrow [(P \lor Q) \lor R]$ Law of associativity
- 34. $[(P \land (Q \land R)] \leftrightarrow [(P \land Q) \land R]$ Law of associativity

Inference Rules

1 Rules of inference involving no quantifiers

- 1) **Propositional Consequence (PC):** In a proof, any statement that is a propositional consequence of previous steps in the proof can be asserted.
- 2) Modus Ponens: In a proof containing both P and $P \to Q$, the statement Q can be asserted.

$$\begin{array}{c} P \\ P \to Q \\ \hline \vdots Q \end{array}$$

3) Conditional Proof/Direct Proof: Assume P. If Q can be proven from the assumption P, then the implication $P \to Q$ can be asserted.

Assume
$$P$$
Intermediate steps
$$\frac{Q}{\therefore P \to Q}$$

4) Indirect Proof/Proof by Contradiction/Reductio ad Absurdum: Assume $\neg P$ and prove ANY contradiction, then P holds.

Assume
$$\neg P$$
Intermediate steps
Any contradiction
 $\therefore P$

5) **Proof by Cases:** $Q \vee R$ is one of the steps of the proof. $Q \to P$ and $R \to P$ are also steps in the proof. Then P can be asserted.

$$Q \lor R$$

Assume Q
Intermediate steps P (end of case 1)
Assume R
Intermediate steps P (end of case 2)
 $\therefore P$

6) **Biconditional Rule:** If the implications $P \to Q$ and $Q \to P$ appear in the course of the proof, then $P \leftrightarrow Q$ can be asserted.

$$P \to Q$$

$$Q \to P$$

$$\therefore P \leftrightarrow Q$$

7) **Substitution:** Let S(P) be a statement containing P as a sub-statement. Let S(P/Q) denote a statement that results from S(P) by replacing one or more occurrences of the statement P by the statement Q. From $P \to Q$ and S(P), S(P/Q) can be asserted provided no free variables of P or Q become quantified in S(P) or S(P/Q).

$$P \leftrightarrow Q$$

$$S(P)$$

$$\therefore S(P/Q)$$

8) Conjunction: If statements P and Q appear as steps in the proof, the compound statement $P \wedge Q$ can be asserted.

$$\frac{P}{Q}$$

$$\therefore P \wedge Q$$

9) Modus Tollens: If $P \to Q$ and $\neg Q$ are both steps in the proof, then $\neg P$ can be asserted.

$$\begin{array}{c} P \to Q \\ \neg Q \\ \hline \cdot \neg P \end{array}$$

10) Contrapositive Conditional Proof: If the assumption $\neg Q$ leads to the conclusion $\neg P$, then the implication $P \rightarrow Q$ can be asserted.

Assume
$$\neg Q$$

Intermediate steps $\neg P$
 $P \rightarrow Q$

2 Rules of inference involving quantifiers

11) De Morgan's Laws for Quantifiers (Axioms):

- (a) $\neg(\forall x P(x)) \leftrightarrow \exists x \neg P(x);$
- (b) $\neg(\exists x P(x)) \leftrightarrow \forall x \neg P(x);$
- 12) Universal Specification Axiom (US): If the domain of the variable is not empty, $\forall x P(x) \rightarrow P(t)$ can be asserted, where t is an object in the domain and P is a statement depending upon one free variable.
- 13) Universal Generalization Rule of Inference (UG): If P(x) can be proven, where x is a free variable representing an arbitrary element of a certain domain, $\forall x P(x)$ can be asserted.
- 14) Existential Specification Rule of Inference (ES): If a step of the form $\exists x P(x)$ appears in the proof, P(c) can be asserted, where c is a constant symbol.
- 15) Existential Generalization Axiom (EG): $P(t) \to \exists x P(x)$ can be asserted, if t is an object in the domain of x (assumed not empty).