Deep Learning

Lecture 5

Recap

- RNN
 - Backward
 - Vanishing gradients
 - Exploding gradients
- LSTM
- GRU
- Applications
- Dropout and BN

Problem: copy of sequence

Attention mechanism

$$s_{t} \quad h_{i}$$

$$sim(s_{t}, h_{i}) \in \mathbb{R}$$

$$\alpha_{t,j} = \frac{\exp(sim(s_{t-1}, h_{j}))}{\sum_{i=1}^{T_{x}} \exp(sim(s_{t-1}, h_{i}))}$$

$$c_{t} = \sum_{i=1}^{T_{x}} \alpha_{t,i} h_{i}$$

Attention mechanism

$$\alpha_{t,j} = \frac{\exp(sim(s_{t-1}, h_j))}{\sum_{i=1}^{T_x} \exp(sim(s_{t-1}, h_i))}$$
$$c_t = \sum_{i=1}^{T_x} \alpha_{t,i} h_i$$

Similarity function

$$sim(h_1, h_2) - ?$$

1)
$$h_1^T h_2$$
 $dim(h_1) = dim(h_2)$

2)
$$\frac{h_1^T h_2}{\sqrt{dim(h_1)}}$$
 $dim(h_1) = dim(h_2)$

Similarity function

$$sim(h_1, h_2) - ?$$

$$h_{1i} \sim \mathcal{N}(0,1)$$
 $\mathbb{E}[h_1^T h_2] = 0$
 $h_{2i} \sim \mathcal{N}(0,1)$ $\mathbb{D}[h_1^T h_2] = dim(h_1)$

Similarity function

$$sim(h_1, h_2) - ?$$

1)
$$h_1^T h_2$$
 $dim(h_1) = dim(h_2)$

2)
$$\frac{h_1^T h_2}{\sqrt{dim(h_1)}}$$
 $dim(h_1) = dim(h_2)$

3)
$$w_3 \tanh(w_1 h_1 + w_2 h_2)$$
 $dim(h_1) \neq dim(h_2)$

Attention

$$c = \text{Attention}(k : \text{"keys"}, q : \text{"query"}, v : \text{"values"})$$

$$\alpha_t = \frac{\exp(sim(q, k_t))}{\sum_{i=1}^{T} \exp(sim(q, k_i))}$$

$$c = \sum_{i=1}^{T} \alpha_i v_i$$

Handwriting generation:

handwriting -> handwriting

<u>Next pen position</u> (we predict parameters):

x1,x2 - mixture of bivariate Gaussians

x3 - Bernoulli distribution

Current pen position:

x1,x2 – pen offset

x3 – is it end of the stroke

Handwriting generation:

example

Mun org under Gon coage Have . - il Jegy med an whe. 1 bepertures H. The Anaime Cenente of hy Wooditro pune in visastaceu sco linred bypes of earld Prince for wine comes heiot. I Coeshs the gargher m . skyle salet Jonep In Doing Te a

Handwriting synthesis:

text -> handwriting

Next pen position

Current pen position

Which letter we write now

Attention for image captioning

Xu et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention" ICML 2015

Attention types

```
The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
The
     FBI is
The
              chasing a criminal on the run.
     FBI is
              chasing a criminal on the run.
The
     FBI is chasing a criminal on the run.
The
     FBI is
              chasing a criminal on the run.
The
                          criminal on
              chasing a
                                        the run.
The
     FBI is
              chasing a
                          criminal
The
                                    on
                                        the run.
```

The current word is in red and the size of the blue shade indicates the activation level.

Soft vs Hard Attention

Soft Attention

Hard Attention

Global vs Local Attention

What's next?

Attention is all you need

Figure 1: The Transformer - model architecture.

Input layer

Positional encoding

$$PE_{\text{pos},2i} = \sin(\frac{\text{pos}}{10000^{\frac{2i}{d_{model}}}})$$

$$PE_{\text{pos},2i+1} = \cos(\frac{\text{pos}}{10000^{\frac{2i}{d_{model}}}})$$

$$PE_{\text{pos}+k,2i} = \sin(\frac{\text{pos}+k}{10000^{\frac{2i}{d_{model}}}}) = \sin(\frac{\text{pos}}{10000^{\frac{2i}{d_{model}}}} + \frac{k}{10000^{\frac{2i}{d_{model}}}}) =$$

$$= \sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$PE_{\text{pos}+k,2i+1} = \cos(x)\cos(y) + \sin(x)\sin(y)$$

Positional encoding

Attention is all you need

Encoder

Encoder

$$\operatorname{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{dim}})\mathbf{V}$$

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	Ma
Keys	k ₁	k ₂	Wĸ
Values	V1	V ₂	W ^v

Multi-Head Attention

 $MultiHead(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = [head_1; \dots; head_h] \mathbf{W}^O$ $head_i = Attention(\mathbf{Q}\mathbf{W}_i^Q, \mathbf{K}\mathbf{W}_i^K, \mathbf{V}\mathbf{W}_i^V)$

Multi-Head Attention

https://jalammar.github.io/illustrated-transformer/

Encoder

Encoder\decoder

Decoder

Decoder

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS PREVIOUS** suis étudiant INPUT **OUTPUTS**

Last layer

Attention is all you need

Figure 1: The Transformer - model architecture.

- no time loops
- can learn really long dependencies
- too many parameters

BERT - Bidirectional Encoding Representation from Transformers

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP)

- 80% of the time the words were replaced with the masked token [MASK]
- 10% of the time the words were replaced with random words
- 10% of the time the words were left unchanged
- 50% of the time the second sentence comes after the first one.
- 50% of the time it is a random sentence from the full corpus.

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP)

Recap

- Attention
- Applications
- Types of attention
- Transformer
 - Positional encoding
 - Self-attention
 - Multi-head attention
- BERT model (MLM)