1.

a. Base case: i = 1 $4^i = 4$ and $4 \in S$ Inductive step: Assume $4^k \in S$ for $k \in Z^+$ Prove $4^{k+1} \in S$

$$4^{k+1} = 4 \times 4^k$$

4 and 4^k both are $\in S$, therefore, $4^{k+1} \in S$ and $A \subseteq S$

b. Base case: $4 \in S$ is proven by inductive definition(1). $4 = 4^1$ and 1 is $\in Z^+$ Therefore, $4 \in A$ is true too. Inductive Step:

Assume $x \in S$ and $y \in S$, and x and y are $\in A$ Prove $xy \in A$

$$x = 4a, y = 4b$$
$$xy = (4a)(4b)$$
$$= 4a+b$$

So $xy \in A$. Therefore $S \subseteq A$

2. (I1) if $x \in BP$ then $\{x\} \in BP$, and (I2) if $x \in BP$ and $y \in BP$ then $xy \in BP$. $X = \{x\}$

If $x \in BP$, which means $\{x\} \in BP$, By (I1).

{x} has same amount of { and } which is one for each.

Therefore, we can say that if $x \in BP$, then x has the same number of $\{$ and $\}$.

3. |l(T)| = |i(T)| + 1

Base case: T has only a single vertex. So, there's only 1 root and no vertex.

Therefore, it satisfies |l(T)| = |i(T)| + 1

Recursive step:

Let T₁ and T₂ be left root and right root.

So
$$|l(T_1)| = |i(T_1)| + 1$$
 and $|l(T_2)| = |i(T_2)| + 1$

Vertex $|i(T)| = |i(T_1)| + |i(T_2)| + 1$

Leaves $|l(T)| = |l(T_1)| + |l(T_2)|$

$$|l(T)| = |i(T_1)| + 1 \, + |i(T_2)| + 1$$

$$|l(T)| = (|i(T_1)| + |i(T_2)| + 1) + 1$$

$$|l(T)| = |l(T)| + 1$$

- a. Base case: $(0, 0) \in L'$ Inductive definition: if $(a, b) \in L'$, then $(a + 1, b + 1) \in L'$, $(a - 1, b - 1) \in L'$, $(a, b + 4) \in L'$ and $(a, b - 4) \in L'$
- b. Base case: (a, b) = (0, 0) a b = 0 0 = 0 which $\in L$ if $(a, b) \in L'$, then $(a + 1, b + 1) \in L'$, $(a 1, b 1) \in L'$, $(a, b + 4) \in L'$ and $(a, b 4) \in L'$ Since $(a, b) \in L$ and a b is multiple of 4. So, (a + 1) (b + 1) = a + 1 b 1 = a b = multiple of 4 (a 1) (b 1) = a 1 b + 1 = a b = multiple of 4 (a) (b + 4) = a b 4 = a b 4 = multiple of 4 (a) (b 4) = a b + 4 = a b + 4 = multiple of 4All sets we added to L' will always be in L, therefore, $L' \subseteq L$
- c. Let (s, t) be an arbitrary element of L, which means $(s, t) \in L$ where x y is multiple of 4. t can be written as s 4k for k any positive integer. (s, s 4k)

Case 1: s and k are positive. If move (a + 1, b + 1) for s times and (a, b - 4) for k times, then we will get (s, s - 4k).

Case 2: s and k are negative. If move (a - 1, b - 1) for -s times and (a, b + 4) for -k times, then we will get (s, s - 4k).

Case 3: s is positive, and k is negative. If move (a + 1, b + 1) for s times and (a, b + 4) for -k times, then we will get (s, s - 4k).

Case 4: s is negative, and k is positive If move (a - 1, b - 1) for -s times and (a, b - 4) for k times, then we will get (s, s - 4k).

Therefore, we can say that $L \subseteq L'$

d. No, I think my inductive definition is not unambiguous. There is other unique way to produce x using my rules.