

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

KOD UCZNIA	Etap:	szkolny				
	Data:	13 listopada 2014 r.				
	Czas pracy:	120 minut				

Informacje dla ucznia

- **1.** Na stronie tytułowej arkusza, w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 9 stron i 14 zadań.
- 3. Czytaj uważnie wszystkie teksty i zadania.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. W zadaniach od 2. do 9. postaw "*" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem ⊗ i zaznacz inną odpowiedź znakiem "*".
- **7.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane (chyba, że wskażesz w nim fragmenty, które należy ocenić).
- 9. Nie wolno Ci korzystać z kalkulatora.

Liczba punktów możliwych do uzyskania: 60 Liczba punktów umożliwiająca kwalifikację do kolejnego etapu: 51

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Razem
Liczba punktów															
możliwych	19	3	3	3	3	3	3	3	3	4	4	3	4	2	60
do zdobycia															
Liczba punktów															
uzyskanych															
przez uczestnika															
konkursu															

Podpisy przewodniczącego i członków komisji:

1.	Przewodniczący
2.	Członek
3.	Członek
4.	Członek -

Zadanie 1. (0-19)

Rozwiąż krzyżówkę. Hasło w zacieniowanych okienkach to przydomek włoskiego matematyka Leonarda z Pizy oraz tytuł książki, w której wprowadził on do matematyki europejskiej cyfry arabskie i pojęcie zera. Hasło nie jest oceniane, ale zweryfikuje Twoje odpowiedzi.

- 1. Każdemu argumentowi przyporządkowuje dokładnie jedną wartość.
- 2. Figura płaska mająca pięć boków.
- 3. Wyrażenie a^3 pozwala obliczyć jej wartość dla sześcianu o krawędzi długości a.
- 4. Kat, którego ramiona zawierają promienie okręgu, to kat...
- 5. Liczba naturalna, która ma więcej niż dwa dzielniki, to liczba...
- 6. Jeden z boków równoległych w trapezie.
- 7. Liczba w ułamku, która może być zerem.
- 8. Prostopadłościan mający wszystkie krawędzie równej długości.
- 9. Milion milionów.
- 10. Katy o wspólnym ramieniu, których pozostałe ramiona dopełniają się do prostej, to katy...
- 11. Jedna milionowa kilometra.
- 12. W trójkatach przystających odpowiednie mają równe długości.
- 13. Najmniejsza dwucyfrowa liczba pierwsza (słownie).
- 14. Jego prawdopodobieństwo dla wyrzucenia reszki w rzucie monetą symetryczną wynosi $\frac{1}{2}$.
- 15. Jedna z 8 w ostrosłupie czworokątnym.
- 16. Wielokat foremny o trzech bokach.
- 17. Wielokat, który jest jednocześnie rombem i prostokatem.
- 18. Najdłuższa cięciwa okręgu.
- 19. System liczbowy o podstawie 10, to system...

	laniach od 2. do 9. oceń, czy podane łszywe. Zaznacz właściwą odpowied	• -	iwe,			
Zadaı	nie 2. (0-3)					
I.	Można wskazać taką liczbę czterocyf	frowa, podzielna pr	zez 3,			
	której wszystkie cyfry są podzielne przez 3.					
		□ PRAWDA	□ FAŁSZ			
II.	Każda liczba pięciocyfrowa podzieln	a przez 3 ma wszys	stkie cyfry			
	podzielne przez 3.					
		\square PRAWDA	□ FAŁSZ			
III.	Istnieje taka liczba sześciocyfrowa po	odzielna przez 3,				
	w której żadna cyfra nie jest podzieln	na przez 3.				
		□ PRAWDA	□ FAŁSZ			
Zadaı	nie 3. (0-3)					
Na po	czątku roku dziewczęta stanowiły 4	$6\frac{2}{3}\%$ wszystkich	uczniów			
klasy.	W ciągu roku z tej klasy odeszło 12,	•	dopców.			
I.	Na początku roku w klasie mogło byc					
		□ PRAWDA	□ FAŁSZ			
II.	Na końcu roku liczba dziewcząt była	·	-			
	_	□ PRAWDA	□ FAŁSZ			
III.	Z klasy odeszło $9\frac{2}{3}$ % wszystkich uc	zniów.				
		□ PRAWDA	□ FAŁSZ			
	nie 4. (0-3)	()				
Liozb	ami Fermata nazywamy liczby posta	$2^{\binom{2^n}{n}}+1$ addiv	o w iost liozba			
natur	ann Fermata nazywamy nczby posta alną. Liczbę wyznaczoną dla <i>n</i> oznac	czamy symbolem l	e n jest nezbą F			
I.	Liczby F_0 , F_1 , F_2 , F_3 są liczbami pierw		- II•			
		□ PRAWDA	□ FAŁSZ			
II.	Liczba 2 ⁶⁴ + 1 jest liczbą Fermata.	□ PRAWDA	□ FAŁSZ			
III.	Liczba 19 jest liczbą Fermata.	□ PRAWDA				
1111	Ziozou 19 jest nozou 1 ormani		_ 111202			
Zadaı	nie 5. (0-3)					
	a, b, c, d są liczbami dodatnimi takii	$\mathbf{mi, \dot{z}e} \ 3a = 5b, 6c =$	= 5d i 2c = 7a,			
	wdziwa jest nierówność:		,			
Ī.	b < a < d	\square PRAWDA	□ FAŁSZ			
II.	c < d < b	\square PRAWDA	□ FAŁSZ			

III. a < c < d

□ PRAWDA □ FAŁSZ

Zadanie 6. (0-3)

Jeżeli w pięciokącie wypukłym narysujemy wszystkie przekątne, to zawsze otrzymamy

I. mniej niż 20 trójkątów.
II. dokładnie 5 trapezów.
III. dokładnie 20 czworokątów.
III. PRAWDA □ FAŁSZ
III. PRAWDA □ FAŁSZ

Zadanie 7. (0-3)

W okręgu podzielonym na 8 równych części poprowadzono cięciwy i otrzymano kąty α , β , γ (jak pokazano na rysunku).

Zadanie 8. (0-3)

Każdy z boków kwadratu podzielono na 3 równe części i utworzono

figurę ${\cal F}$ zacieniowaną na rysunku.

- I. Figura F jest równoległobokiem. \square PRAWDA \square FAŁSZ
- □ PRAWDA □ FA
- II Figura F jest rombem.
 - □ PRAWDA □ FAŁSZ
- III. Figura F <u>nie</u> jest kwadratem.
 - □ PRAWDA □ FAŁSZ

Zadanie 9. (0-3)

Prawidłowo sformułowana cecha podzielności przez 4, to zdanie:

I. Liczba jest podzielna przez 4, jeżeli jej dwie ostatnie cyfry są podzielne przez 4.

 \square PRAWDA \square FAŁSZ

II. Liczba jest podzielna przez 4, jeżeli jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

□ PRAWDA □ FAŁSZ

III. Liczba jest podzielna przez 4, jeżeli liczba jej setek jest podzielna przez 4.

□ PRAWDA □ FAŁSZ

BRUDNOPIS

Zadanie 10. (0-4)

Miejscowości X i Y są oddalone od siebie o 80 km. Statek wycieczkowy, płynąc z prądem rzeki z X do Y, pokonuje tę trasę w czasie 4 godzin, a płynąc z powrotem – w czasie 5 godzin. Oblicz prędkość statku oraz prędkość nurtu rzeki, zakładając, że statek płynie ze stałą prędkością oraz prędkość prądu rzeki też jest stała.

Zadanie 11. (0-4)

Iloczyn cyfr pewnej liczby trzycyfrowej wynosi 36, a suma jej cyfr jest równa 13. Podaj wszystkie takie liczby trzycyfrowe, które spełniają te warunki. Uzasadnij, że są to wszystkie takie liczby.

BRUDNOPIS

BRUDNOPIS

Zadanie 12. (0-3)

Na rysunku przedstawiono kwadrat ABCD i trójkąt CEO. Punkt O jest środkiem symetrii tego kwadratu. Pole trójkąta CEO stanowi $\frac{1}{20}$ pola kwadratu. Oblicz, jaką część długości boku kwadratu ABCD stanowi długość boku CE trójkąta.

Zadanie 13. (0-4)

Objętość prostopadłościanu wynosi 405 cm³. Stosunek długości krawędzi wychodzących z jednego wierzchołka wynosi 1 : 3 : 5. Oblicz pole powierzchni tego prostopadłościanu.

BRUDNOPIS

Zadanie 14. (0-2)

BRUDNOPIS

Losując bez zwracania dwie liczby spośród następujących: 0, 1, 2, 3, 4, 5, 6, 7, 8, możemy otrzymać 36 różnych wyników (wynik losowania {a, b} i {b, a} jest tym samym wynikiem). Oblicz prawdopodobieństwo, że różnica między większą a mniejszą z wylosowanych liczb jest większa od 4.