universidade do minho miei

introdução aos sistemas dinâmicos

resolução dos exercícios caos

1.

Consideremos o sistema dinâmico discreto $\mathcal{S}:[0,1] \rightarrow [0,1]$ definido por

$$S(x) = \begin{cases} 2x & 0 \le x < 1/2 \\ 2x - 1 & 1/2 \le x \le 1 \end{cases}$$

Como sabemos, ver um exercício anterior, dado um qualquer ponto $x \in [0,1]$, temos que a representação binária de $\mathcal{S}(x)$ corresponde ao deslocamento para a esquerda da representação binária de x, ou seja, se $x = (0.d_1d_2d_3...)_2$, então $\mathcal{S}(x) = (0.d_2d_3...)_2$.

Pela sua definição, facilmente se percebe que \mathcal{S} não é diferenciável (não é contínua) num ponto, a saber $(0.1)_2$. Assim sendo, podemos retirar que \mathcal{S} só não é diferenciável num ponto cuja imagem por \mathcal{S}^2 é um ponto fixo. Por outro lado, como a imagem por \mathcal{S} dos intervalos (0,1/2) e (1/2,1) é o intervalo (0,1), podemos concluir que a aplicação \mathcal{S}^2 não é diferenciável em três pontos, a saber $(0.d_1d_2)_2$, com d_1,d_2 quaisquer, excepto ambos nulos. Deste modo, podemos dizer que \mathcal{S}^2 só não é diferenciável em pontos cuja imagem por \mathcal{S}^3 é um ponto fixo. O mesmo tipo de argumentos permite-nos afirmar que a aplicação \mathcal{S}^n não é diferenciável em pontos com representação binária $(0.d_1 \dots d_n)_2$, com d_1, \dots, d_n quaisquer, excepto todos nulos. Assim sendo, podemos dizer que \mathcal{S}^n só não é diferenciável em pontos cuja imagem por \mathcal{S}^{n+1} é um ponto fixo e concluir que \mathcal{S}^n é diferenciável nos pontos periódicos de período n de \mathcal{S} . Seja \bar{x} um ponto periódico, de período n de \mathcal{S} . Então, temos que

$$|(\mathcal{S}^n)'(\bar{x})| = |\mathcal{S}'(\bar{x}) \times \mathcal{S}'(\mathcal{S}(\bar{x})) \times \cdots \times \mathcal{S}'(\mathcal{S}^{n-1}(\bar{x}))| = 2^n > 1,$$

pelo que \bar{x} é um ponto periódico repulsivo. Pela arbitrariedade de \bar{x} , podemos concluir que todos os pontos periódicos de \mathcal{S} são repulsivos.

Mostrar que $\operatorname{Per}(\mathcal{S})$ é um conjunto denso no intervalo [0,1] corresponde a verificar que tão perto quanto queiramos de um ponto de [0,1] existe sempre um elemento de $\operatorname{Per}(\mathcal{S})$. Seja $\varepsilon=2^{-n}$, com $n\in\mathbb{N}$, um qualquer número positivo, tão pequeno quanto queiramos. Então, para qualquer $x=(0.d_1d_2d_3\dots)_2\in[0,1]$, consideremos o ponto $\bar{x}=(0.\overline{d_1\dots d_{n+1}})_2\in\operatorname{Per}(\mathcal{S})$. Vamos mostrar que a distância entre estes pontos é inferior a ε :

$$|x - \bar{x}| = |(d_1 - d_1) \times \frac{1}{2} + \dots + (d_{n+1} - d_{n+1}) \times \frac{1}{2^{n+1}} + (d_{n+2} - d_1) \times \frac{1}{2^{n+2}} + \dots |$$

$$= |(d_{n+2} - d_1) \times \frac{1}{2^{n+2}} + \dots | \leq \frac{1}{2^{n+1}} < \frac{1}{2^n} = \varepsilon.$$

Assim sendo, podemos concluir que Per(S) é um conjunto denso em [0,1].

Sabendo já que o conjunto dos pontos periódicos repulsivos de \mathcal{S} é denso em [0,1], basta mostrar que \mathcal{S} tem sensibilidade às condições iniciais em [0,1].

Seja $x=(0.d_1d_2\dots)_2$ um qualquer ponto do intervalo [0,1] cuja representação binária não seja finita e seja $\delta=2^{-n}$, com $n\in\mathbb{N}$, um número positivo arbitrariamente pequeno. Então, $\bar{x}=(0.d_1\dots d_{n+1})_2$ é um ponto do intervalo [0,1] cuja distância a x é inferior a δ e tal que $\mathcal{S}^k(\bar{x})=0$, para todo k>n+1. Deste modo, uma vez que, por hipótese, existe m>n+1, tal que $d_m=1$, podemos imediatamente concluir que $|\mathcal{S}^m(x)-\mathcal{S}^m(\bar{x})|=|\mathcal{S}^m(x)|\geq 1/2>1/4$. Caso a representação binária de $x\in[0,1]$ seja finita, por outras palavras, se $x=(0.d_1\dots d_k)_2$, para algum $k\in\mathbb{N}$, então vamos escolher o ponto $\bar{x}=(0.d_1\dots d_{n+1}\bar{1})_2$. De facto, facilmente se mostra que, não só a distância entre estes pontos é inferior a $\delta=2^{-n}$, como também que, para m>k+1, se tem $|\mathcal{S}^m(x)-\mathcal{S}^m(\bar{x})|=|\mathcal{S}^m(\bar{x})|=1/2>1/4$. Fica assim provado que \mathcal{S} tem sensibilidade às condições iniciais em [0,1], pelo que podemos concluir que \mathcal{S} tem caos no intervalo [0,1].

_ 2.

Consideremos o sistema dinâmico discreto $\mathcal{T}:[0,1]\to[0,1]$ definido por

$$\mathcal{T}(x) = \begin{cases} 2x & \text{se } 0 \le x < 1/2; \\ 2 - 2x & \text{se } 1/2 \le x \le 1. \end{cases}$$

Por definição, facilmente se reconhece que \mathcal{T} não é diferenciável em x=1/2. Por outras palavras, a aplicação \mathcal{T} é diferenciável em todo o intervalo [0,1], excepto num ponto eventualmente fixo de \mathcal{T} . Por outro lado, como a imagem por \mathcal{T} dos intervalos (0,1/2) e (1/2,1) é o intervalo (0,1), podemos concluir que a aplicação \mathcal{T}^2 é diferenciável em todo o intervalo [0,1] excepto em três pontos eventualmente fixos de \mathcal{T} . O mesmo tipo de argumentos permite-nos afirmar que \mathcal{T}^n é uma aplicação diferenciável em todo o intervalo [0,1], excepto em 2^n-1 pontos eventualmente fixos de \mathcal{T} , pelo que podemos concluir que, para todo $n \in \mathbb{N}$, a aplicação \mathcal{T}^n é diferenciável nos pontos periódicos de período n de \mathcal{T} . Deste modo, uma vez que $|\mathcal{T}'(x)| = 2$, em todos os pontos onde essa derivada existe, se \bar{x} é um ponto periódico, de período n de \mathcal{T} , temos que

$$|(\mathcal{T}^n)'(\bar{x})| = |\mathcal{T}'(\bar{x}) \times \mathcal{T}'(\mathcal{T}(\bar{x})) \times \cdots \times \mathcal{T}'(\mathcal{T}^{n-1}(\bar{x}))| = 2^n > 1,$$

pelo que \bar{x} é um ponto periódico repulsivo. Pela arbitrariedade de \bar{x} , podemos concluir que todos os pontos periódicos de \mathcal{T} são repulsivos.

Seja $\operatorname{Per}(\mathcal{T})$ o conjunto dos pontos periódicos de \mathcal{T} . Mostrar que $\operatorname{Per}(\mathcal{T})$ é um conjunto denso no intervalo [0,1] corresponde a verificar que tão perto quanto queiramos de um ponto de [0,1] existe um elemento de $\operatorname{Per}(\mathcal{T})$. Para todo $n \in \mathbb{N}$, consideremos os 2^n subintervalos

$$I_{k,n} = \left\lceil \frac{k}{2^n}, \, \frac{k+1}{2^n} \right\rceil \subset [0, \, 1], \qquad k = 0, \dots, 2^n - 1.$$

Pela definição de \mathcal{T} , temos que $\mathcal{T}^n(I_{k,n})=[0,\,1]$, pelo que podemos afirmar que, em cada um desses intervalos, existe pelo menos um ponto \bar{x} tal que $\mathcal{T}^n(\bar{x})=\bar{x}$, ou seja, todo o intervalo $I_{k,n}$ contém, pelo menos, um ponto periódico de \mathcal{T} . Vejamos então agora como provar que $\text{Per}(\mathcal{T})$ é um conjunto denso no intervalo [0,1].

Seja $\varepsilon=2^{-n}$, com $n\in\mathbb{N}$, um qualquer número positivo, tão pequeno quanto queiramos, e seja x um qualquer ponto do intervalo [0,1]. Ora, uma vez que

$$\bigcup_{k=0}^{2^{n+1}-1} I_{k,n+1} = [0, 1], \tag{1}$$

temos que o ponto x pertence a um dos intervalos $I_{k,n+1}$. Assim sendo, uma vez que a largura dos subintervalos $I_{k,n+1}$ é

$$\left| \frac{k+1}{2^{n+1}} - \frac{k}{2^{n+1}} \right| = 2^{-(n+1)},$$

podemos concluir que a distância entre quaisquer dois pontos de $I_{k,n+1}$ é inferior ou igual a $2^{-(n+1)}$. Consequentemente, a distância do ponto x a um ponto periódico de \mathcal{T} é seguramente inferior a ε e assim temos que $Per(\mathcal{T})$ é um conjunto denso em [0,1].

Pela alínea anterior, sabemos que o conjunto dos pontos periódicos repulsivos de \mathcal{T} é denso em [0,1], bastando então mostrar que \mathcal{T} tem sensibilidade às condições iniciais no intervalo [0,1]. Seja x um qualquer ponto do intervalo [0,1] e seja $\delta=2^{-n}$, com $n\in\mathbb{N}$, um número arbitrariamente pequeno. Como sabemos, por (1), o ponto x pertence a um dos subintervalos $I_{k,n+1}$. Recordemos que \mathcal{T}^{n+1} é uma aplicação tal que $\mathcal{T}^{n+1}(I_{k,n+1})=[0,1]$, sendo 0 e 1 nos extremos do subintervalo. Dado $x\in I_{k,n+1}$, vamos escolher um ponto x', um dos extremos do subintervalo $I_{k,n+1}$, da seguinte forma: se $\mathcal{T}^{n+1}(x)\leq 1/2$, então vamos escolher para x' o extremo de $I_{k,n+1}$ cuja imagem por \mathcal{T}^{n+1} é igual a 1. Desse modo, temos que os pontos x e x' satisfazem:

$$|x - x'| < \delta$$
 e $|\mathcal{T}^{n+1}(x) - \mathcal{T}^{n+1}(x')| \ge 1/2 > 1/4$.

Em alternativa, isto é, se $\mathcal{T}^{n+1}(x) > 1/2$, vamos escolher para x' o extremo do subintervalo $I_{k,n+1}$ tal que $\mathcal{T}^{n+1}(x') = 0$. Desse modo, fica assegurado que

$$|x - x'| < \delta$$
 e $|\mathcal{T}^{n+1}(x) - \mathcal{T}^{n+1}(x')| > 1/2 > 1/4.$

Fica assim provado que \mathcal{T} tem sensibilidade às condições iniciais em [0,1], pelo que podemos concluir que \mathcal{T} tem caos no intervalo [0,1].

3.

Consideremos o sistema dinâmico discreto $f:\mathbb{R}
ightarrow \mathbb{R}$ definido por

$$f(x) = \begin{cases} 3x & \text{se } x < 1/2; \\ 3 - 3x & \text{se } x \ge 1/2 \end{cases}$$

e denotemos por $\mathcal C$ o conjunto dos pontos cuja órbita por f permanece no intervalo [0,1].

3.1 Como facilmente se percebe, se desenharmos o gráfico de f, o conjunto dos pontos cuja imagem por f pertence ao intervalo [0,1] é agora a união de dois subintervalos

$$C_1 = I_{0.1} \cup I_{1.1} = [0, 1/3] \cup [2/3, 1].$$

Uma vez que $f(I_{0,1}) = f(I_{1,1}) = [0,1]$, temos que o conjunto dos pontos cuja imagem por f^2 pertence ao intervalo [0,1] é a união de quatro subintervalos

$$C_2 = I_{0,2} \cup I_{1,2} \cup I_{2,2} \cup I_{3,2} = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1].$$

Generalizando, vamos poder afirmar que o conjunto dos pontos cuja imagem por f^n pertence ao intervalo [0,1] é a união dos 2^n subintervalos

$$\mathsf{C}_n = \bigcup_{k=0}^{2^n-1} I_{k,n}$$

Deste modo, uma vez que $C_n \subset C_{n+1}$, temos que o conjunto dos pontos cujas órbitas permanecem no intervalo [0,1] pode ser dado por

$$\mathcal{C} = \bigcap_{n=1}^{\infty} \mathsf{C}_n.$$

nota: $\mathcal C$ chama-se conjunto de Cantor, para recordar o matemático Georg Cantor (1845–1918) que o concebeu; pelas suas características muito estranhas, trata-se de um conjunto de pontos cuja dimensão é superior ao valor zero, atribuído aos vulgares conjuntos de pontos; por isso, diz-se que $\mathcal C$ é um conjunto fractal.

A caracterização dos pontos do conjunto de Cantor $\mathcal C$ fica mais simples se considerarmos a representação de base 3 dos pontos do intervalo [0,1]. De facto, se, dado $x \in [0,1]$, escrevermos

$$x = (0.d_1d_2...)_3$$

verifica-se facilmente que $x \in C_1$ se é possível escrever a sua representação de base 3 com o primeiro dígito diferente de um, isto é, com $d_1 \neq 1$. De igual modo, teremos $x \in C_2$ se é possível escrever a sua representação de base 3 com $d_2 \neq 1$. Deste modo, a caracterização dos pontos do conjunto de Cantor fica estabelecida como aqueles pontos do intervalo [0,1] cuja representação de base 3 é possível apenas com os dígitos 0 e 2.

3.2 Uma vez que f^n , com $n \in \mathbb{N}$, é diferenciável em todos os pontos do intervalo, excepto em pontos cuja imagem por f^n está fora do intervalo [0,1], podemos concluir que f é diferenciável nos pontos fixos e que f^n é diferenciável nos pontos periódicos, de período n, de f. Desse modo, se \bar{x} é um ponto fixo de f, temos que

$$|f'(\bar{x})| = 3 > 1,$$

donde podermos afirmar que \bar{x} é um ponto fixo repulsivo de f. De igual modo, se \bar{x} é um ponto periódico, de período n, de f, temos que

$$|(f^n)'(\bar{x})| = |f'(\bar{x}) \times f'(f(\bar{x})) \times \dots \times f'(f^{n-1}(\bar{x}))| = 3^n > 1,$$

donde podermos afirmar que \bar{x} é um ponto periódico repulsivo de f.

3.3 Seja x um qualquer ponto do conjunto de Cantor $\mathcal C$ e seja $\varepsilon=2^{-n}$, com $n\in\mathbb N$, um número arbitrariamente pequeno. Ora, pela definição, podemos dizer que $x\in\mathsf C_{n+1}$, e ainda, que x pertence a um dos subintervalos $I_{k,n+1}$. Significa isso que, para todo $x'\in I_{k,n+1}$, se tem

$$|x - x'| < 2^{n+1} < 2^n = \varepsilon.$$

Deste modo, uma vez que $f(I_{k,n+1}) = [0,1]$, sabemos que existe uma solução de $f^{n+1}(x') = x'$ nesse intervalo e assim podemos concluir imediatamente que existe um ponto periódico de f cuja distância a x é inferior a ε . Por outras palavras, que o conjunto Per(f) dos pontos periódicos de f é um conjunto denso em \mathcal{C} .

Pela alínea anterior, sabemos que o conjunto dos pontos periódicos repulsivos de f é denso em \mathcal{C} , pelo que nos falta mostrar que f tem sensibilidade às condições iniciais em \mathcal{C} . Seja x um qualquer ponto de \mathcal{C} e seja $\delta=2^{-n}$, com $n\in\mathbb{N}$, um número arbitrariamente pequeno. Ora, pela definição, podemos dizer que $x\in C_{n+1}$, ou seja, que $x\in I_{k,n+1}$, para algum k. Mas, sendo f^{n+1} uma função invertível em $I_{k,n+1}$ tal que $f^{n+1}(I_{k,n+1})=[0,1]$, sabemos de antemão que f^{n+1} toma os valores 0 e 1 nos extremos do subintervalo. Assim sendo, vamos escolher um ponto x', um dos extremos do subintervalo $I_{k,n+1}$, da seguinte forma: se $f^{n+1}(x)\leq 1/2$, então vamos escolher para x' o extremo de $I_{k,n+1}$ cuja imagem por f^{n+1} é igual a 1. Desse modo, podemos concluir que os pontos x e x' satisfazem simultaneamente ambas as seguintes condições:

$$|x - x'| < \delta$$
 e $|f^{n+1}(x) - f^{n+1}(x')| \ge 1/2 > 1/4$.

Em alternativa, isto é, se $f^{n+1}(x) > 1/2$, vamos escolher para x' o extremo do subintervalo $I_{k,n+1}$ tal que $f^{n+1}(x') = 0$. Desse modo, temos que

$$|x - x'| < \delta$$
 e $|f^{n+1}(x) - f^{n+1}(x')| > 1/2 > 1/4$.

Fica assim provado que f tem sensibilidade às condições iniciais em C, pelo que podemos concluir que f tem caos em C.