О возможной связи между соотношениями в группах и алгебрах, связанных с флаговыми полиэдральными произведениями

Федор Вылегжанин

0.1 Группы, связанные с полиэдральными произведениями

Определение 0.1. Пусть G_1, \ldots, G_m – группы, \mathcal{K} – симплициальный комплекс. $\Gamma pa\phi$ -произведением групп называется группа

$$(\underline{G})^{\mathcal{K}} := \underset{i=1}{\overset{m}{\underset{j=1}{\longleftarrow}}} G_i / (g_i g_j = g_j g_i, \ g_i \in G_i, \ g_j \in G_j, \ \{i, j\} \in \mathcal{K}).$$

Ясно, что граф-произведение зависит только от 1-остова \mathcal{K} .

Определение 0.2. Взяв в предыдущем определении $G_i = \mathbb{Z}_2$, получим *прямоугольную группу Кокстера*

$$RC_{\mathcal{K}} := \langle g_1, \dots, g_m \mid g_i^2 = id, i = 1 \dots m; g_i g_j = g_j g_i, \{i, j\} \in \mathcal{K} \rangle.$$

Предложение 0.3 ([?, ?]). Пусть G_1, \ldots, G_m – топологические группы, \mathcal{K} – симплициальный комплекс. Тогда есть каноническое гомотопическое расслоение

$$(E\underline{G},\underline{G})^{\mathcal{K}} \to (B\underline{G})^{\mathcal{K}} \to \prod_{i=1}^m BG_i.$$

Следствие 0.4 ([?], теорема 3.2). Пусть G_1, \ldots, G_m – дискретные группы. Тогда

- 1. $\pi_1((B\underline{G})^{\mathcal{K}}) \simeq (\underline{G})^{\mathcal{K}};$
- 2. $\pi_k((B\underline{G})^{\mathcal{K}}) \simeq \pi_k((E\underline{G},\underline{G})^{\mathcal{K}}), \ k \geq 2;$
- 3. $(E\underline{G},\underline{G})^{\mathcal{K}}$ и $(B\underline{G})^{\mathcal{K}}$ асферичны тогда и только тогда, когда \mathcal{K} флаговый;
- 4. Имеем точную последовательность фундаментальных групп

$$1 \to \pi_1((E\underline{G},\underline{G})^{\mathcal{K}}) \to (\underline{G})^{\mathcal{K}} \xrightarrow{\pi} \prod_{i=1}^m G_i \to 0.$$

Если все G_i абелевы, то в последней точной последовательности π – это абелианизация. Поэтому в этих случаях

$$\pi_1((E\underline{G},\underline{G})^{\mathcal{K}}) \simeq ((\underline{G})^{\mathcal{K}})'.$$

Тем самым с помощью полиэдральных произведений можно изучать коммутанты граф-произведений абелевых групп, или, в общем случае, deкapmoвы nodepynnu $\mathrm{Ker}((\underline{G})^{\mathcal{K}} \to \prod_{i=1}^m G_i)$.

Рассмотрение частного случая $G_i = \mathbb{Z}_2$ даёт

Следствие 0.5. Пусть K – флаговый симплициальный комплекс. Тогда

- 1. $\pi_1((\mathbb{R}P^{\infty})^{\mathcal{K}}) \simeq \mathrm{RC}_{\mathcal{K}};$
- 2. $\mathcal{R}_{\mathcal{K}}$ и $(\mathbb{R}\mathrm{P}^{\infty})^{\mathcal{K}}$ асферичны;
- 3. $\pi_1(\mathcal{R}_{\mathcal{K}}) \simeq \mathrm{RC}_{\mathcal{K}}'$.

Доказательство. Достаточно заметить, что $B\mathbb{Z}_2 = \mathbb{R} P^{\infty}$, а пара (D^1, S^0) гомотопически эквивалентна паре $(S^{\infty}, S^0) = (E\mathbb{Z}_2, \mathbb{Z}_2)$.

0.2 Алгебры, связанные с полиэдральными произведениями

Определение 0.6. Градуированной *алгеброй* Ли будем называть обычную алгебру Ли, обладающую градуировкой (выполняется обычное тождество Якоби и обычная антикоммутативность [y, x] = -[x, y]).

Градуированной *супералгеброй* Ли назовём градуированную абелеву группу с градуированно-антикоммутативной скобкой и градуированным тождеством Якоби:

$$[y,x] = -(-1)^{|x||y|}[x,y]; \quad (-1)^{|x||z|}[x,[y,z]] + (-1)^{|x||y|}[y,[z,x]] + (-1)^{|y||z|}[z,[x,y]] = 0.$$

Например, если X – топологическое пространство, то $\pi_*(\Omega X) \otimes \mathbb{Q}$ – градуированная супералгебра Ли (вместе с произведением Самельсона, т.е. со смещённым произведением Уайтхеда).

Свободная алгебра Ли обозначается как $FL(u_1, \ldots, u_m)$; свободная супералгебра Ли – как $FSL(u_1, \ldots, u_m)$; свободная ассоциативная алгебра (т.е. тензорная алгебра) – как $T(u_1, \ldots, u_m)$.

Определение 0.7. Над любым кольцом с единицей можно определить граф-произведение алгебр и супералгебр Ли:

$$L_{\mathcal{K}} := FL(u_1, \dots, u_m) / ([u_i, u_i] = 0, \ i = 1 \dots m; \ [u_i, u_j] = 0, \ \{i, j\} \in \mathcal{K});$$

 $SL_{\mathcal{K}} := FSL(u_1, \dots, u_m) / ([u_i, u_i] = 0, \ i = 1 \dots m; \ [u_i, u_j] = 0, \ \{i, j\} \in \mathcal{K});$

Предложение 0.8 ([?], Предложение 8.4.1). Имеем точную последовательность градуированных супералгебр $\mathcal{J}u$

$$0 \to \pi_*(\Omega \mathcal{Z}_{\mathcal{K}}) \otimes \mathbb{Q} \to \pi_*((\mathbb{C}\mathrm{P}^{\infty})^{\mathcal{K}}) \otimes \mathbb{Q} \to CL(u_1, \dots, u_m) \to 0$$

и алгебр Понтрягина

$$0 \to H_*(\Omega \mathcal{Z}_{\mathcal{K}}; k) \to H_*((\mathbb{C}\mathrm{P}^{\infty})^{\mathcal{K}}; k) \to \Lambda_k[u_1, \dots, u_m] \to 0;$$

k – произвольное коммутативное кольцо c единицей.

Предложение 0.9 ([?]). Если $\mathcal K$ флаговый, то $\pi_*((\mathbb{C}\mathrm{P}^\infty)^\mathcal K)\otimes\mathbb Q\simeq SL_\mathcal K.$

За счёт теоремы Милнора-Мура из этого предложения вытекает

Следствие 0.10. Если K флаговый, \mathbb{F} – поле характеристики ноль, то

$$H_*((\mathbb{C}P^{\infty})^{\mathcal{K}}; \mathbb{F}) \simeq T(u_1, \dots, u_m) / (u_i^2 = 0, \ i = 1 \dots m; \ u_i u_j + u_j u_i = 0, \ \{i, j\} \in \mathcal{K}).$$

0.3 Образующие и соотношения (флаговый случай)

Предложение 0.11 ([?], теорема 5.2). Пусть $\mathcal K$ флаговый. Тогда $\pi_1((E\underline{G},\underline{G})^{\mathcal K}) = \mathrm{Ker}((\underline{G})^{\mathcal K} \to \prod_{i=1}^m G_i)$ имеет минимальный набор образующих, состоящий из всех вложенных коммутаторов вида

$$(g_{k_1},(g_{k_2},\ldots,(g_{k_{l-2}},(g_j,g_i))\ldots)),$$

где $g_k \in G_k \setminus \{id\}, \ k_1 < \dots < k_{l-2} < j > i, \ k_s \neq i, \ \forall s; \ i$ – наименьшая вершина в некоторой компоненте связности подкомплекса $\mathcal{K}_{\{k_1,\dots,k_{l-2},j,i\}},$ не содержащей j.

Частный случай:

Предложение 0.12 ([?], теорема 4.5). Пусть \mathcal{K} флаговый. Тогда $\pi_1(\mathcal{R}_{\mathcal{K}}) = \mathrm{RC}'_{\mathcal{K}}$ имеет минимальный набор образующих, состоящий из всех вложенных коммутаторов вида

$$(g_{k_1}, (g_{k_2}, \ldots, (g_{k_{l-2}}, (g_j, g_i)) \ldots)),$$

где $g_k - k$ -ая образующая $\mathrm{RC}_{\mathcal{K}}, \, k_1 < \dots < k_{l-2} < j > i, \, k_s \neq i, \, \forall s; \, i$ – наименьшая вершина в некоторой компоненте связности подкомплекса $\mathcal{K}_{\{k_1,\dots,k_{l-2},j,i\}},$ не содержащей j.

Предложение 0.13 ([?], теорема 4.3). Пусть \mathcal{K} флаговый. $\pi_1((E\underline{G},\underline{G})^{\mathcal{K}}) = \mathrm{Ker}((\underline{G})^{\mathcal{K}} \to \prod_{i=1}^m G_i)$ свободна тогда и только тогда, когда \mathcal{K}^1 – хордовый граф.

Предложение 0.14 ([?], теорема 4.3). Пусть \mathcal{K} флаговый, \mathbb{F} – поле. Тогда $H_*(\Omega\mathcal{Z}_{\mathcal{K}};\mathbb{F})$ имеет минимальный набор мультипликативных образующих, состоящий из всех вложенных коммутаторов вида

$$[u_{k_1}, [u_{k_2}, \dots, [u_{k_{l-2}}, [u_j, u_i]] \dots]],$$

где $k_1 < \dots < k_{l-2} < j > i$, $k_s \neq i$, $\forall s;\ i$ – наименьшая вершина в некоторой компоненте связности подкомплекса $\mathcal{K}_{\{k_1,\dots,k_{l-2},j,i\}}$, не содержащей j.

Предложение 0.15 ([?]). Пусть \mathcal{K} флаговий, \mathbb{F} – поле. $H_*(\Omega\mathcal{Z}_{\mathcal{K}};\mathbb{F})$ свободна тогда и только тогда, когда \mathcal{K}^1 – хордовый граф.

0.4 Мультиградуировка; ряды Пуанкаре

Определение 0.16. Пусть X – топологическое пространство. Его числа Бетти и эйлерова характеристика определяются как

$$b_i(X) := \dim H_i(X), \ \chi(X) := \sum_i (-1)^i b_i(X).$$

Определим также приведённые числа Бетти и эйлерову характеристику:

$$\widetilde{b}_i(X) := \dim \widetilde{H}_i(X), \ \widetilde{\chi}(X) := \sum_i (-1)^i \widetilde{b}_i(X).$$

Очевидно, $\widetilde{b}_i(X)=b_i(X)$ при $i\neq\{0,-1\};$ если $X\neq\varnothing,$ то

$$\widetilde{b}_0(X) = b_0(X) - 1, \quad \widetilde{b}_{-1}(X) = b_{-1}(X) = 0.$$

Отдельно рассматривается случай $X=\varnothing$: имеем

$$\widetilde{b}_0(\varnothing) = b_0(\varnothing) = 0, \quad \widetilde{b}_{-1}(\varnothing) = 0, \ b_{-1}(\varnothing) = 1.$$

В любом случае $\widetilde{\chi}(X) = \chi(X) - 1$.

Под мультиградуировкой всегда будем понимать градуировку ассоциативной алгебры элементами полугруппы $\mathbb{N}_{\geq 0}^m$. Базисные векторы обозначим как e_1,\dots,e_m ; степень однородного элемента a — как |a|. Если $J\subset [m]$, вместо степени $\sum_{j\in J}e_j\in\mathbb{N}_{\geq 0}^m$ будем писать просто "степень J". Часто, хотя и не всегда, алгебра будет порождена m образующими, и i-ая образующая имеет степень e_i .

Определение 0.17. Пусть V — мультиградуированное векторное пространство. Его *рядом Пуанкаре* будем называть формальный степенной ряд от m переменных $\lambda = (\lambda_1, \dots, \lambda_m)$

$$F(V;\lambda) := \sum_{\alpha \in \mathbb{N}_{>0}^m} \dim(V_\alpha) \cdot \lambda^\alpha, \quad \lambda^\alpha := \prod_{i=1}^m \lambda_i^{\alpha_i e_i}.$$

Аналогично соглашению выше, если $J \subset [m]$, вместо $\lambda^{\sum_{j \in J} e_j} = \prod_{j \in J} \lambda_j$ будем писать просто λ^J . Следующее почти очевидное предложение несколько раз используется в разделе 6.3.

Предложение 0.18. Ряд Пуанкаре обладает следующими свойствами:

- 1. $F(V_1 \oplus V_2; \lambda) = F(V_1; \lambda) + F(V_2; \lambda);$
- 2. $F(V_1 \otimes V_2; \lambda) = F(V_1; \lambda) \cdot F(V_2; \lambda);$
- 3. Если $0 \to A_1 \to A_2 \to A_3 \to 0$ точная последовательность алгебр Хопфа, то

$$F(A_2; \lambda) = F(A_1; \lambda) \cdot F(A_3; \lambda).$$

Доказательство. Очевидно, если $\{v_i\}_{i\in I}$ – базис векторного пространства V, то $F(V;\lambda) = \sum_{i\in I} \lambda^{|v_i|}$.

- 1. Базис прямой суммы это объединение базисов.
- 2. Базис тензорного произведения это попарные тензорные произведения базисных векторов.
- 3. Как векторное пространство, расширение одной алгебры Хопфа с помощью другой это тензорное произведение.

Напомним, что имеют место следующие точные последовательности (групп и алгебр Ли):

$$1 \to \pi_1(\mathcal{R}_{\mathcal{K}}) \hookrightarrow (\mathbb{Z}_2)^{\mathcal{K}} \xrightarrow{\mathrm{ab}} (\mathbb{Z}_2)^m \to 0,$$
$$0 \to \pi_*(\Omega \mathcal{Z}_{\mathcal{K}}) \otimes \mathbb{F} \hookrightarrow SL^{\mathcal{K}} \xrightarrow{\mathrm{ab}} CL(u_1, \dots, u_m) \to 0,$$

где

$$(\mathbb{Z}_2)^{\mathcal{K}} = F(g_1, \dots, g_m) / (g_i^2 = id, \ i = 1 \dots m; \ (g_i, g_j) = id, \ \{i, j\} \in \mathcal{K}),$$

 $SL^{\mathcal{K}} = FSL(u_1, \dots, u_m) / ([u_i, u_i] = 0, \ i = 1 \dots m; \ [u_i, u_j] = 0, \ \{i, j\} \in \mathcal{K}).$

0.5 Отображение Магнуса и нижний центральный ряд

Пусть G – произвольная группа. Обозначим $(g,h) := g^{-1}h^{-1}gh$ для $g,h \in G$ и $(A,B) := \{(a,b): a \in A, b \in B\}$ для $A,B \subset G$.

Определение 0.19. Нижний центральный ряд группы определяется индуктивно:

$$\gamma_1(G) := G; \ \gamma_{n+1}(G) := (G, \gamma_n(G)).$$

Предложение 0.20 ([?]). Градуированная группа

$$L(G) := \bigoplus_{k=1}^{\infty} \gamma_k(G) / \gamma_{k+1}(G)$$

обладает естественной структурой алгебры Ли относительно группового коммутатора. $E\ddot{e}$ называют присоединённой алгеброй Ли группы G.

Определим теперь вложение Магнуса. Пусть X – фиксированное множество, F(X) – свободная группа с базисом X. Рассмотрим кольцо $A = \mathbb{Z}\langle\!\langle X \rangle\!\rangle$ некоммутативных ассоциативных формальных степенных рядов от переменных α_x , $\forall x \in X$ со стандартной $\mathbb{N}_{\geq 0}$ -градуировкой. Это свободная ассоциативная алгебра с базисом X; в частности, это универсальная обёртывающая свободной алгебры Ли FL(X). Элементы FL(X) в A называются лиевыми элементами.

Группу обратимых элементов A будем обозначать как $A^{\times}.$

Определение 0.21. Вложение Магнуса – это гомоморфизм $\mu : F(X) \to A^{\times}$, заданный на образующих как $x \mapsto 1 + \alpha_x$.

Каждому степенному ряду $\sigma \in A^{\times} \setminus \{1\}$ сопоставим его *девиацию* – первое нетривиальное однородное слагаемое, отличное от 1. Запишем формулой:

$$\delta(\sigma) := \sigma_i$$
, где $i = \min\{j \in \mathbb{N} : \ \sigma_j \neq 0\}$.

По определению также положим $\delta(1) := 0$.

Предложение 0.22 ([?]). 1. μ интективно;

- 2. Если $w \in F(X)$, $w \neq id$, то $\delta(\mu(w))$ лиев элемент;
- 3. Сопоставление $w \mapsto \delta(\mu(w))$ индуцирует изоморфизм алгебр $\mathcal{I}u\ L(F(X)) \to FL(X)$.

Вложение Магнуса можно использовать на практике для поиска соотношений в присоединённых алгебрах Ли. А именно: пусть $G = \langle x_1, \dots, x_N \mid r_1, \dots, r_M \rangle$ – любое копредставление. Ясно, что сюръекция $\pi : F(X) \to G$ индукцирует $L(\pi) : FL(X) \to L(G)$, то есть некоторое копредставление алгебры Ли L(G).

Каждому соотношению $r_i \in F(X)$ соответствует однородный элемент в $[r_i] \in FL(X)$ (более точно: если $r_i \in \gamma_k(F(X)) \setminus \gamma_{k+1}(F(X))$, то $[r_i] \in FL_k(X)$). Этот элемент лежит в ядре $L(\pi)$, то есть является соотношением в L(G); его можно вычислить с помощью вложения Магнуса. В общем случае могут быть и другие соотношения.

0.6 Взвешенное отображение Магнуса

Рассмотрим обобщение классической конструкции, описанной выше. Пусть $G = \langle x_1, \dots, x_N \mid r_1, \dots, r_M \rangle$ – фиксированное копредставление, и выбраны элементы $d_1, \dots, d_N \in \mathbb{N}_{>0}^m$ – "степени образующих".

Градуируем алгебру $A = \mathbb{Z}\langle\langle a_1, \dots, a_N \rangle\rangle$ как $|a_i| := d_i$ и рассмотрим вложение Магнуса $F(X) \xrightarrow{\mu} A^{\times}$. Для слова $w \in F(X)$ формальный степенной ряд $\mu(w) \in A^{\times}$ теперь может иметь сильно больше однородных компонент, являющихся лиевыми элементами; возможно, есть способ формализовать это в форме некого гомоморфизма алгебр Ли, но пока это неясно.

0.7 Формулировка гипотезы

Вспомним, что образующие $\mathrm{RC}_\mathcal{K}'$ имеют вид

$$\Gamma_{i \in J} = (g_{k_1}, (g_{k_2}, \dots, (g_{k_{s-2}}, (g_j, g_i)) \dots))$$

для некоторых наборов $J=\{g_{k_1},\ldots,g_{k_{s-2}},g_j,g_i\}\subset [m]$. Припишем образующей $\Gamma_{i\in J}$ степень $d_{i\in J}:=\sum_{j\in J}e_j\in\mathbb{N}^m_{\geq 0}$. Это даст $\mathbb{N}^m_{\geq 0}$ -градуировку на $\mathbb{Z}\langle\!\langle a_1,\ldots,a_N\rangle\!\rangle$.

Также мы можем рассмотреть коммутаторную подалгебру $[L^{\mathcal{K}}, L^{\mathcal{K}}]$ в граф-алгебре Ли $L_{\mathcal{K}}$; "с точностью до знаков", она аналогична коммутаторной подалгебре Ли $[SL^{\mathcal{K}}, SL^{\mathcal{K}}] = \pi_*(\Omega \mathcal{Z}_{\mathcal{K}}) \otimes \mathbb{F}$. Поэтому $[L^{\mathcal{K}}, L^{\mathcal{K}}]$ имеет базис такого же вида, что и $[SL^{\mathcal{K}}, SL^{\mathcal{K}}]$: доказательство проходит по той же схеме. Этот базис имеет ту же мощность, что и набор образующих $RC'_{\mathcal{K}}$; градуируем его тем же образом. Свободная ассоциативная алгебра $A = \mathbb{Z}\langle\!\langle a_1, \ldots, a_n \rangle\!\rangle$ — это универсальная обёртывающая свободной алгебры Ли $FL(a_1, \ldots, a_N)$, которую можно отобразить в $L^{\mathcal{K}}$, задав тем самым $L^{\mathcal{K}}$ образующими и соотношениями. Это значит, что у лиевых элементов алгебры A корректно определены образы в $L^{\mathcal{K}}$.

Из доказательства теоремы 3.6 ясно, что можно выбрать соотношения между образующими $RC'_{\mathcal{K}}$ так, что каждое соотношение "относится" к какому-то из полных подкомплексов \mathcal{K}_J , $J \subset [m]$.

Гипотеза 0.23. Пусть соотношение $R \in F(X)$ в группе $RC'_{\mathcal{K}}$ относится к полному подкомплексу \mathcal{K}_J . Тогда градуированная компонента степенного ряда $\mu(R) \in A^{\times}$, имеющая степень $\sum_{j \in J} e_j$, – лиев элемент, который является соотношением в $L^{\mathcal{K}}$.

0.8 Примеры

0.8.1 Граница квадрата

У коммутанта группы

$$RC_{\mathcal{K}} = \langle g_1, g_2, g_3, g_4 \mid g_i^2 = id; \ (g_1, g_2) = (g_2, g_3) = (g_3, g_4) = (g_4, g_1) = id \rangle$$

две образующие

$$x_1 = (g_3, g_1), \ x_2 = (g_4, g_2)$$

и единственное соотношение

$$R_{1234} = x_1^{-1} x_2^{-1} x_1 x_2 \in F(x_1, x_2).$$

Имеем

$$\deg x_1 = e_3 + e_1 = (1, 0, 1, 0), \ \deg x_2 = e_4 + e_2 = (0, 1, 0, 1).$$

Слову R_{1234} соответствует формальный степенной ряд

$$r_{1234} = (1+a_1)^{-1}(1+a_2)^{-1}(1+a_1)(1+a_2) = 1 + \underbrace{(a_1a_2 - a_2a_1)}_{\deg = (1,1,1,1)} + \underbrace{(a_1a_2a_1 - a_1a_1a_2)}_{\deg = (2,1,2,1)} + \underbrace{(a_2a_2a_1 - a_2a_1a_2)}_{\deg = (1,2,1,2)} + \cdots \in A^{\times}.$$

Взяв градуированную компоненту степени $e_1+e_2+e_3+e_4$, получаем соотношение $a_1a_2-a_2a_1$, то есть $[a_1,a_2]=0$. Это действительно соотношение между $a_1=[u_3,u_1]$ и $a_2=[u_4,u_2]$ – образующими коммутаторной подалгебры в алгебре Ли

$$L^{\mathcal{K}} = \langle u_1, u_2, u_3, u_4 \mid [u_i, u_i] = \mathrm{id}; \ [u_1, u_2] = [u_2, u_3] = [u_3, u_4] = [u_4, u_1] = 0 \rangle.$$

To же соотношение верно в $SL^{\mathcal{K}}$.

0.8.2 Комплекс K_3

Это третий из десяти минимальных симплициальных комплексов, таких что в $H^*(\mathcal{Z}_{\mathcal{K}})$ есть нетривиальные произведения Масси.

Образующие в $\mathrm{RC}'_{\mathcal{K}}$ (для наглядности вместо некоторых x_i пишем y_i и z_i):

$$x_1 = (g_5, g_1), \ \deg x_1 = (1, 0, 0, 0, 1, 0);$$
 $y_1 = (g_2, (g_6, g_1)), \ \deg y_1 = (1, 1, 0, 0, 0, 1);$

$$x_2 = (g_6, g_1), \ \deg x_2 = (1, 0, 0, 0, 0, 1);$$
 $y_2 = (g_3, (g_5, g_1)), \ \deg y_2 = (1, 0, 1, 0, 1, 0);$

$$x_3 = (g_4, g_2), \ \deg x_3 = (0, 1, 0, 1, 0, 0);$$
 $y_3 = (g_3, (g_6, g_1)), \ \deg y_3 = (1, 0, 1, 0, 0, 1);$

$$x_4 = (g_6, g_2), \ \deg x_4 = (0, 1, 0, 0, 0, 1); \qquad y_4 = (g_4, (g_5, g_1)), \ \deg y_4 = (1, 0, 0, 1, 1, 0);$$

$$x_5 = (g_5, g_3), \ \deg x_5 = (0, 0, 1, 0, 1, 0); \qquad y_5 = (g_5, (g_6, g_1)), \ \deg y_5 = (1, 0, 0, 0, 1, 1);$$

$$x_6 = (g_6, g_3), \ \deg x_6 = (0, 0, 1, 0, 0, 1); \qquad y_6 = (g_3, (g_6, g_2)), \ \deg y_6 = (0, 1, 1, 0, 0, 1);$$

$$x_7 = (g_5, g_4), \ \deg x_7 = (0, 0, 0, 1, 1, 0); \qquad y_7 = (g_2, (g_5, g_4)), \ \deg y_7 = (0, 1, 0, 1, 1, 0);$$

$$x_1 = (g_2, (g_3, (g_6, g_1))), \ \deg x_1 = (1, 1, 1, 0, 0, 1); \qquad y_8 = (g_4, (g_6, g_2)), \ \deg y_8 = (0, 1, 0, 1, 0, 1);$$

$$x_2 = (g_3, (g_4, (g_5, g_1))), \ \deg x_2 = (1, 0, 1, 1, 1, 0); \qquad y_9 = (g_4, (g_5, g_3)), \ \deg y_9 = (0, 0, 1, 1, 1, 0);$$

$$x_3 = (g_3, (g_5, (g_6, g_1))), \ \deg x_3 = (1, 0, 1, 0, 1, 1); \qquad y_{10} = (g_5, (g_6, g_3)), \ \deg y_{10} = (0, 0, 1, 0, 1, 1, 1);$$

Им соответствуют образующие в $L^{\mathcal{K}}$: a_1,\ldots,c_3 , которые получаются заменой g_i на u_i , круглых скобок на квадратные.

Соотношения в фундаментальной группе (подкомплексов с нетривиальными Π_1 три: две границы пятиугольника и весь комплекс целиком):

$$\begin{split} R_{12456} &= x_4 x_2 y_1^{-1} x_1^{-1} x_7 y_7^{-1} x_3^{-1} x_1 y_4^{-1} x_3 y_1 x_2^{-1} x_3^{-1} y_8 x_4^{-1} x_2 y_4 x_1^{-1} x_7^{-1} y_5 x_2^{-1} x_7 x_4 y_8^{-1} x_3 y_7 x_7^{-1} x_4 x_2 y_5^{-1} x_1 x_2^{-1}, \\ R_{23456} &= x_4 y_6^{-1} x_5^{-1} x_7 y_7^{-1} x_3 x_5^{-1} y_9^{-1} x_3 y_6 x_4^{-1} x_6^{-1} x_4 x_3^{-1} y_8 x_4^{-1} x_6 y_9 x_5^{-1} x_7^{-1} y_{10} x_6^{-1} x_7 x_4 y_8^{-1} x_3 y_7 x_7^{-1} x_4^{-1} x_6 y_{10}^{-1} x_5, \\ R_{123456} &= x_4 y_6^{-1} x_2 y_1^{-1} z_1 y_3^{-1} y_2 x_1^{-1} x_5 - 1 x_7 y_7^{-1} x_3^{-1} x_5 y_9^{-1} x_1 y_2^{-1} z_2 y_4^{-1} x_3 y_3 z_1^{-1} y_1 \cdot \\ & \cdot x_2^{-1} y_6 x_4^{-1} x_6^{-1} x_4 x_3^{-1} y_8 x_4^{-1} x_6 x_2 y_3^{-1} y_4 z_2^{-1} y_2 x_1^{-1} y_9 x_5^{-1} x_7^{-1} x_5 y_5 z_3^{-1} y_3 x_2^{-1} x_5^{-1} \cdot \\ & \cdot y_{10} x_6^{-1} x_7 x_4 y_8^{-1} x_3 y_7 x_7^{-1} x_4^{-1} x_6 y_{10}^{-1} x_5 x_2 y_3^{-1} z_3 y_5^{-1} x_1 y_2^{-1} y_3 x_2^{-1}. \end{split}$$

Надо вычислить градуированные компоненты соответствующих степенных рядов:

$$r_{12456} = 1 + \underbrace{([a_1,b_8] - [a_2,b_7] - [a_3,b_5] - [a_4,b_4] + [a_7,b_1])}_{\text{deg}=(1,1,0,1,1,1)} + \dots,$$

$$r_{23456} = 1 + \underbrace{([a_3,b_{10}] + [a_4,b_9] - [a_5,b_8] + [a_6,b_7] - [a_7,b_6])}_{\text{deg}=(0,1,1,1,1,1)} + \dots,$$

$$r_{123456} = 1 + \dots + \underbrace{(-[a_1,[a_3,a_6]] - [a_2,[a_3,a_5]] + [a_3,c_3] + [a_4,c_2] - [a_7,c_1] - [b_2,b_8] + [b_3,b_7] + [b_1,b_9] - [b_4,b_6])}_{\text{deg}=(1,1,1,1,1,1)} + \dots$$

Вычисления (с помощью пакета SuperLie для Wolfram Mathematica) показывают, что выражения в скобках действительно являются соотношениями в $L^{\mathcal{K}}$.

В $SL^{\mathcal{K}}$ верны похожие тождества, где у некоторых слагаемых другие знаки:

$$[a_1,b_8] + [a_2,b_7] + [a_3,b_5] + [a_4,b_4] - [a_7,b_1] = 0,$$

$$[a_3,b_{10}] + [a_4,b_9] - [a_5,b_8] + [a_6,b_7] + [a_7,b_6] = 0,$$

$$-[a_1,[a_3,a_6]] + [a_2,[a_3,a_5]] + [a_3,c_3] + [a_4,c_2] + [a_7,c_1] - [b_2,b_8] + [b_3,b_7] + [b_1,b_9] + [b_4,b_6] = 0.$$