Here is the corrected version with the proper formula for vector projection:

Linear Algebra Formula Guide

- **1. Vectors**
- **Definition**: A vector is an ordered set of numbers representing magnitude and direction in space.

$$\vec{v} = (v)_1 v_2 \vdots v_n$$

- **Scalars**: A scalar is a single number that can scale a vector (e.g., k).
- **Vector Addition**: The sum of two vectors is done element-wise.

$$\vec{v} + \vec{u} = (v)_1 + u_1 v_2 + u_2 : v_n + u_n$$

- **Scalar Multiplication**: Multiply each component of the vector by a scalar k.

$$k\vec{v} = (k) v_1 k v_2 \dot{:} k v_n$$

- **Dot Product (Inner Product)**: The dot product of two vectors \vec{v} and \vec{u} is:

$$\vec{v} \cdot \vec{u} = v_1 u_1 + v_2 u_2 + \ldots + v_n u_n$$

This yields a scalar.

- **Vector Projection**: The projection of vector \vec{v} onto vector \vec{u} is:

$$Proj_{\vec{u}}\vec{v} = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2}\vec{u}$$

- **Cosine Similarity**: The cosine of the angle between two vectors is given by:

$$\cos(\theta) = \frac{\vec{v} \cdot \vec{u}}{\|\vec{v}\| \|\vec{u}\|}$$

where $\|\vec{v}\|$ is the norm (magnitude) of the vector.

- **Orthogonal Vectors**: Two vectors are orthogonal if their dot product is zero:

$$\vec{v} \cdot \vec{u} = 0$$

- **Normal and Ortho-normal Vectors**: - A **normal vector** has a magnitude (norm) of 1.

$$\|\vec{v}\| = 1$$

- **Ortho-normal vectors** are orthogonal and have a unit norm.
- **Vector Norm**: The length (or magnitude) of a vector is:

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

- **Vector Space**: A set of vectors that satisfies closure under addition and scalar multiplication.
- **Linear Combination**: A vector \vec{v} is a linear combination of vectors $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_k$ if:

$$\vec{v} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \ldots + c_k \vec{u}_k$$

where c_1, c_2, \ldots, c_k are scalars.

- **Linear Span**: The set of all linear combinations of a set of vectors is called the span of those vectors.
- **Linear Independence**: A set of vectors is linearly independent if none of the vectors can be expressed as a linear combination of the others.

^{**2.} Matrices**

- **Matrix Definition**: A matrix is a rectangular array of numbers arranged in rows and columns.

$$A = (a)_{11} a_{12} \dots a_{1n} a_{21} a_{22} \dots a_{2n} \vdots \cdots \vdots a_{m1} a_{m2} \dots a_{mn}$$

- **Matrix Addition**: Add corresponding elements of two matrices.

$$A + B = (a)_{11} + b_{11}a_{12} + b_{12} \dots a_{1n} + b_{1n} \dots$$

- **Transpose of a Matrix**: Flip a matrix over its diagonal.

$$A^T = (a)_{11} a_{21} \dots a_{12} a_{22} \dots \vdots$$
.

- **Scalar Multiplication**: Multiply every element by a scalar k.

$$kA = (k) a_{11}ka_{12} \dots ka_{21}ka_{22} \dots$$

- **Matrix Multiplication**: Multiply two matrices by summing the product of rows and columns.

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

- **Matrix Multiplication Properties**: 1. **Associativity**: A(BC)=(AB)C 2. **Distributivity**: A(B+C)=AB+AC 3. **Non-Commutativity**: $AB\neq BA$ in general.
- **Hadamard Product**: Element-wise multiplication of two matrices.

$$(A \circ B)_{ij} = a_{ij}b_{ij}$$

- **Determinant**: For a 2×2 matrix A, the determinant is:

$$det(A) = a_{11}a_{22} - a_{12}a_{21}$$

For larger matrices, use cofactor expansion.

- **Identity Matrix**: A matrix with ones on the diagonal and zeros elsewhere.

$$I = (1)0...01...$$

- **Invertible Matrix and Inverse**: A matrix A is invertible if there exists a matrix A^{-1} such that:

$$AA^{-1} = A^{-1}A = I$$

- **Rank**: The rank of a matrix is the number of linearly independent rows or columns.
- **Trace**: The trace of a matrix is the sum of its diagonal elements.

$$tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$$

- **Symmetric Matrix**: A matrix is symmetric if $A = A^T$.
- **Diagonal Matrix**: A matrix is diagonal if all off-diagonal elements are zero.
- **Orthogonal Matrix**: A matrix is orthogonal if $A^T A = I$.
- **Ortho-Normal Matrix**: A matrix whose rows and columns are orthogonal unit vectors.

3. Eigenvalues and Eigenvectors

- **Eigenvalue Equation**: For a matrix A, a scalar λ is an eigenvalue if there exists a non-zero vector \vec{v} such that:

$$A\vec{v} = \lambda \vec{v}$$

 \vec{v} is the eigenvector corresponding to λ .

- **Characteristic Equation**: To find eigenvalues, solve the characteristic equation:

$$det(A - \lambda I) = 0$$

_

4. Principal Components Analysis (PCA)

- **Principal Components**: In PCA, the principal components are the eigenvectors of the covariance matrix of the data, and the eigenvalues represent the variance along those components.

_

5. Singular Value Decomposition (SVD)

- **Definition**: For an $m \times n$ matrix A, the singular value decomposition is:

$$A = U \Sigma V^T$$

where: - U is an $m \times m$ orthogonal matrix. - Σ is an $m \times n$ diagonal matrix with singular values. - V^T is the transpose of an $n \times n$ orthogonal matrix V.