Segundo examen de Matemática Discreta 2 - Curso 2006 - IMERL

Miércoles 27 de diciembre de 2006, 13:00 hs. Duración: 4 horas.

N ^o . Examen	Cédula	Apellido, Nombre	

No se permite el uso de ningún tipo de material salvo calculadoras. Se deberá apagar los celulares.

Ejercicio 1. (24 puntos). Las dos partes de este ejercicio son independientes.

- 1. Enunciar y probar el pequeño teorema de Fermat.
- 2. Hallar los pares $(a,b) \in \mathbb{Z}^2$ tales que $a^2 + b^2 = 14365$ y mcd(a,b) = 13.

Ejercicio 2. (33 puntos). Sea A un anillo commutativo y con unidad. Definimos el conjunto $A[i] = \{a+bi : a,b \in A\}$

- 1. Probar que $(A[i], +, \star)$ es un anillo conmutativo y con unidad siendo (a+bi)+(c+di)=(a+c)+(b+d)i y $(a+bi)\star(c+di)=(ac-bd)+(ad+bc)i$.
- 2. Investigar para $A = \mathbb{Z}_2$ y $A = \mathbb{Z}_3$ cuando A[i] es un cuerpo.
- 3. Considerar $A = \mathbb{Z}$ y $M = \{a + bi : 3 | a \text{ y } 3 | b\} \subset \mathbb{Z}[i]$. Probar que M es un ideal de $\mathbb{Z}[i]$.
- 4. Probar que M es un ideal maximal de $\mathbb{Z}[i]$.

Ejercicio 3. (24 puntos).

Se considera un grupo (G, \star) tal que $|G| = pq \operatorname{con} p, q \operatorname{primos} y p > q$.

- 1. Probar que existe un único subgrupo normal H con p elementos.
- 2. (a) Sea G un grupo con $91 = 7 \times 13$ elementos. Hallar todos los subgrupos de G.
 - (b) ¿Es G abeliano? Justificar con detalles.

Ejercicio 4. (19 puntos).

Sea P un polinomio en $\mathbb{Z}[x]$.

- 1. Probar que si P(0) y P(1) son impares entonces P no tiene raiz en \mathbb{Z} .
- 2. Sea $n \in \mathbb{N}$ tal que ningún entero $P(0), P(1), \dots, P(n-1)$ sea divisible por n. Probar que P no tiene raíz en \mathbb{Z} .

¡Buena Suerte!

PARA USO DOCENTE:

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4
(1)	(1)	(1)	(1)
	(2)	(2) (a)	
(2)	(3)	(2)(b)	(2)
	(4)		
Total:	Total:	Total:	Total:

TOTAL EXAMEN: