PREMIERE DEMONSTRATION DE LA FOMULE FERMEE DES NOMBRES DE STRILING DE SECONDE ESPECE.

Soit deux opétateurs I et E tels que l'opérateur i dentité I transforme un polynôme ou fonction f(x) en elle-même et l'opérateur t ransforme E transforme celui-ci en f(x+1):

Definition 1. I(f(x)) = f(x)

et

Definition 2. E(f(x)) = f(x+1)

Les n-ièmes puissances de E sont les opérateurs E^n pour lesquels

$$E^n(f(x)) = f(x+n)$$

En écrivant l'opérateur de translation E sous la forme $E=I+\triangle$, ou \triangle est l'opérateur différence, nous avons $E^n=(I+\triangle)^n$ et, d'après le théorème du binôme de Newton,

$$E^{n} = (I + \triangle)^{n} = \sum_{k=0}^{n} \binom{n}{k} \triangle^{k} I^{n-k} = \sum_{k=0}^{n} \binom{n}{k} \triangle^{k}$$

puisque I^{n-k} vaut 1.

Pour chaque polynôme f(x) nous avons

$$f(x+n) = E^n(f(x)) = \sum_{k=0}^n \binom{n}{k} \triangle^k(f(x))$$

qui est la forme générale de la formule de Gregory-Newton. En particulier, pour x=0, on a

$$f(n) = \sum_{k=0}^{n} \binom{n}{k} \triangle^{k} (f(0))$$

pour $f(x) = x^n$

$$x^{n} = \sum_{k=0}^{n} \binom{n}{k} \triangle^{k}(0^{n})$$

et pour $f(n) = n^n$

(1)
$$n^n = \sum_{k=0}^n \binom{n}{k} \triangle^k(0^n)$$

A partir de $E = I + \triangle$, on trouve que $\triangle = E - I$. Considant les puissances \triangle^k , nous pouvons écrire en appliquant le théorème du binôme de Newton

$$\triangle^{k} = (E - I)^{k} = \sum_{r=0}^{k} \binom{k}{r} (-I)^{k-r} E^{r} = \sum_{r=0}^{k} \binom{k}{r} (-1)^{k-r} E^{r}$$

Applicons maintenant $\triangle^k \hat{\mathbf{a}} f(x) = x^n$, on trouve

$$\triangle^k(x^n)=\sum_{r=0}^k\left(\begin{array}{c}k\\r\end{array}\right)(-1)^{k-r}E^r(x^n)=\sum_{r=0}^k\left(\begin{array}{c}k\\r\end{array}\right)(-1)^{k-r}(x+r)^n$$
 pour $x=0,$

(2)
$$\Delta^{k}(0^{n}) = \sum_{r=0}^{k} \binom{k}{r} (-1)^{k-r} r^{n}$$

En outre, nous avons que

$$x^n = \sum_{k=0}^n \left\{ \begin{array}{c} n \\ k \end{array} \right\} (x)_k$$

 $_{
m et}$

(3)
$$n^n = \sum_{k=0}^n \left\{ \begin{array}{c} n \\ k \end{array} \right\} (n)_k$$

avec $(x)_n = x(x-1)(x-2)...(x-n+1)$ étant le polynôme factoriel décroissant et $\left\{ \begin{array}{l} n \\ k \end{array} \right\} = S(n,k)$ étant les nombres de Stirling de seconde espèce.

(4)
$$(n)_k = \frac{n(n-1)(n-2)...(n-k+1)(n-k)(n-k-1)...1}{(n-k)(n-k-1)...1} = \frac{n!}{(n-k)!}$$

En appliquant 1 et 2, on obtien

(5)
$$n^{n} = \sum_{k=0}^{n} \binom{n}{k} \triangle^{k}(0^{n}) = \sum_{k=0}^{n} \binom{n}{k} \sum_{r=0}^{k} \binom{k}{r} (-1)^{k-r} r^{n} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \sum_{r=0}^{k} \binom{k}{r} (-1)^{k-r} r^{n}$$
A partir de 3 et 4, on a que

(6)
$$n^{n} = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (n)_{k} = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} \frac{n!}{(n-k)!}$$

Finalement de 5 et 6, on obtient que

$$\sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\} \frac{n!}{(n-k)!} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \sum_{r=0}^{k} \left(\begin{array}{c} k \\ r \end{array} \right) (-1)^{k-r} r^n$$

et nous retrouvons la formule fermée des nombres de Stirling de seconde espèce:

$$\left\{\begin{array}{c} n \\ k \end{array}\right\} = \frac{1}{k!} \sum_{r=0}^{k} \left(\begin{array}{c} k \\ r \end{array}\right) (-1)^{k-r} r^n$$