Metody numeryczne - praca domowa #3

28 października 2020

Energia ultracienkiej warstwy magnetycznej z anizotropią jednoosiową dana jest równaniem:

$$E = \frac{H_1}{2}\sin^2\theta + \frac{H_2}{2}\sin^4\theta - H_{\text{ext}}\cos\theta,$$

gdzie θ jest kątem między wektorem namagnesowania a prostą prostopadłą do warstwy, H_1 , H_2 to stałe, a $H_{\rm ext}$ to zewnętrzne pole magnetyczne, przykładane w kierunku prostopadłym do warstwy. Konfiguracja przedstawiona jest na rysunku poniżej. W celu wyznaczenia preferowanej orientacji namagnesowania w próbce, wyznaczamy wartość θ , dla której spełnione jest równianie

$$\frac{\mathrm{d}E}{\mathrm{d}\theta} = 0.$$

Rozwiąż to równanie numerycznie, dla wartości parametrów $H_1=-1,\,H_2=0.2,\,$ i $H_{\rm ext}$ zmieniającego się w zakresie od 0 do 1.5. Narysuj wykres zależności prostopadłej składowej namagnesowania (proporcjonalnej do $\cos\theta$) od $H_{\rm ext}$.

