Department of Mathematics, Bennett University Quiz-1 Examination, Fall Semester 2018-19

Name of student: Enrolment No:

Course Code : EMAT101L Max. Time : 50 Minutes

Course Name: Engineering Calculus Max. Marks: 10

1) Examine whether $\lim_{x\to 0} \sin(\frac{1}{x})$ exists. [2]

2) If 0 < a < 1, then show that $\lim_{n \to \infty} a^n = 0$. [2]

3) Examine whether the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$ is convergent or divergent. [2]

4) Find the values of $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges or diverges. [2]

5) Check the convergence of the following sequences: [1+1=2]

(a) $\left\{\frac{n^3}{2^n}\right\}$ (b) $\left\{\frac{3^n}{n^4}\right\}$

Space for Answers

Solution 1: Consider the sequences $\{x_n\} = \{\frac{1}{n\pi}\}$, $\{y_n\} = \{\frac{1}{2n\pi}\}$.

Then $x_n \rightarrow 0$, $y_n \rightarrow 0$ as $n \rightarrow \infty$, and

$$\sin\left(\frac{1}{\chi_n}\right) = \sin(\eta \pi) \rightarrow 0 \text{ as } \eta \rightarrow \infty$$

$$\sin\left(\frac{1}{y_n}\right) = \sin\left(2n\pi + \frac{\pi}{2}\right) \rightarrow 1 \text{ as } n \rightarrow \infty.$$

Therefore, $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

Solution 2! Since 0 < a < 1, we can write $a = \frac{1}{1+b}$ for some b > 0.

Also, we have (1+6) > 1+n6.

$$1. \quad 0 < a^{M} = \frac{1}{(1+b)^{M}} \leq \frac{1}{1+Mb} \leq \frac{1}{Mb}$$

So, by Sandwich Theorem, we conclude that $\lim_{n\to\infty} \alpha^n = 0$.

Since
$$\frac{1}{\sqrt{n(n-1)}} > \frac{1}{n} > 0 \quad \forall n > 2$$

and
$$\underset{n=1}{\overset{\infty}{\sum}} \frac{1}{n}$$
 is divergent.

So, by comparison test,
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$$
 is divergent.

Solution 4!

Let
$$a_n = \frac{x^n}{n}$$
, Then

$$\lim_{N\to\infty} |\alpha_N|^{\frac{1}{N}} = \lim_{N\to\infty} \left| \frac{\chi^N}{N} \right|^{\frac{1}{N}} = \lim_{N\to\infty} \frac{|\chi|}{n!^N} = |\chi|.$$

Thus, the series converges for |x|<1 and diverges for |x|>1.

Solution 5 (a):

Let
$$a_n = \frac{n^3}{2^n}$$
. Then $\lim_{n \to \infty} a_n^m = \lim_{n \to \infty} \left(\frac{n^3}{2^n}\right)^{1/n}$

$$= \lim_{n\to\infty} \frac{n^3/n}{2} = \frac{1}{2} < 1.$$

$$\left\{\frac{m^3}{a^m}\right\}$$
 converges to 0.

(b) Let
$$a_n = \frac{3^n}{n^4}$$
,

Then,
$$\lim_{n\to\infty} a_n / n = \lim_{n\to\infty} \left(\frac{3^n}{n^4}\right) / n = \lim_{n\to\infty} \frac{3}{n^4 / n} = 3 > 1$$
.

$$\left\{\frac{3^{1/2}}{\eta^4}\right\}$$
 is divergent.