CBЯТОЙ КПК #BlessRNG

Или как не сдохнуть на 2 семе из-за матана

Разработали

Тимофей Белоусов @IMODRE Никита Варламов @SNITRON Тимофей Цорин @Thefattestowl

Заметки авторов

В данном конспекте названия всех задач имеют ссылку на своего автора в виде верхнего индекса:

- 1. @imodre
- 2. @snitron
- 3. @thefattestowl

По любым вопросам и предложениям/улучшениям обращаться в телеграмм к соответвующему автору, или создать Pull Request в Git-репозиторий конспекта (click).

Содержание

1	Пер	иод П	алеозойский 6
	1.1	Важні	ые определения
		1.1.1	Первообразная, неопределённый интеграл 1
		1.1.2	Таблица первообразных 1
		1.1.3	Определенный интеграл (непрерывной функции) 2 6
		1.1.4	Верхний и нижний пределы ¹
		1.1.5	Риманова сумма ¹
		1.1.6	Несобственный интеграл, сходимость, расходимость ²
	1.2	Опред	еления
		1.2.1	Теорема о существовании первообразной ¹
		1.2.2	Площадь, аддитивность площади, ослабленная аддитивность ² 9
		1.2.3	Положительная и отрицательная срезки 2
		1.2.4	Среднее значение функции на промежутке 1
		1.2.5	Функция промежутка, аддитивная функция промежутка ¹ 10
		1.2.6	Плотность аддитивной функции промежутка 1
		1.2.7	K усочно-непрерывная функция $1 \dots 10$
		1.2.8	Почти первообразная 2
		1.2.9	Гладкий путь, вектор скорости, носитель пути 1
			1.2.9.1 Краткий обзор пути с прошлого сема, чтобы не тупить 10
			1.2.9.2 Гладкий путь
			1.2.9.3 Вектор скорости
			1.2.9.4 Носитель пути
		1.2.10	Длина гладкого пути ¹
			Вариация функции на промежутке ²
			Дробление отрезка, ранг дробления, оснащение ¹
			Частичный предел ¹
			Допустимая функция ²
			Критерий Больцано–Коши сходимости несобственного интеграла ² 12
			Теорема об интегральной сумме центральных прямоугольников ² 12
	1.3		ые теоремы
		1.3.1	Интегрирование неравенств. Теорема о среднем ¹
			1.3.1.1 Интегрирование неравенств
			1.3.1.2 Теорема о среднем
		1.3.2	Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций ¹ 13
		1.3.3	Теорема о вычислении аддитивной функции промежутка по плотности ² 14
		1.3.4	Интеграл как предел интегральных сумм 1
		1.3.5	Φ ормула Стирлинга ³
		1.3.6	Признаки сравнения сходимости несобственного интеграла ² 16
	1.4	Teoper	мы
		1.4.1	Теорема о свойствах неопределённого интеграла ¹
			1.4.1.1 Характеристика множества первообразных функции 18
			1.4.1.2 Правила интегрирования
		1.4.2	Правило Лопиталя ³
			1.4.2.1 Лемма об ускоренной сходимости
			1.4.2.2 Правило Лопиталя
		1 / 3	Tappaya Hirayi ua ¹

			1.4.3.1 Лемма о смешной сумме	
		1.4.4	Теорема Барроу ¹	21
			1.4.4.1 Интеграл с переменным верхним пределом	21
		1.4.5	Интегральное неравенство Чебышева. Неравенство для ${\rm сумm}^2$	21
		1.4.6	Свойства определенного интеграла: линейность, интегрирование по частям,	
			замена переменных ²	23
			1.4.6.1 Линейность	
			1.4.6.2 Интегрирование по частям	
			1.4.6.3 Замена переменных	
			1.4.6.4 Доказательство	
		1.4.7	Иррациональность числа пи ²	
		1.4.7	Компактность и конечные эпсилон-сети ²	
		1.4.0	1.4.8.1 Определения	
			1.4.8.2 Свойства	
		1 4 0	1.4.8.3 Теорема	20
		1.4.9	Площадь криволинейного сектора: в полярных координатах и для парамет-	20
			рической кривой ²	
			Изопериметрическое неравенство ²	
			Обобщенная теорема о плотности 1	
			Объём фигур вращения ¹	
			Формула Тейлора с остатком в интегральной форме 1	
			Вычисление длины гладкого пути 1	
			Свойства верхнего и нижнего пределов 1	
			Техническое описание верхнего предела 1	
			Теорема о существовании предела в терминах верхнего и нижнего пределов ¹	
		1.4.18	Теорема о характеризации верхнего предела как частичного 1	34
		1.4.19	Теорема о формуле трапеций, формула Эйлера–Маклорена 2	35
		1.4.20	Асимптотика степенных сумм 2	37
		1.4.21	Асимптотика частичных сумм гармонического ряда 3	38
		1.4.22	Формула Валлиса 1	38
		1.4.23	Простейшие свойства несобственного интеграла 2	39
		1.4.24	Изучение сходимости интеграла $\int_{10}^{\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}^2 \dots$	40
2	Пер	риод М	[езозойский	11
	2.1	Важні	ые определения	41
		2.1.1	1	41
		2.1.2	Абсолютно сходящийся интеграл, ряд 1	41
			2.1.2.1 Интеграл	41
			2.1.2.2 Ряд	
		2.1.3	Числовой ряд, сумма ряда, сходимость, расходимость ¹	42
			2.1.3.1 Числовой ряд	42
			2.1.3.2 Сумма ряда	
			2.1.3.3 Сходимость	
			2.1.3.4 Расходимость	
	2.2	Опрел	еления	
		2.2.1	n -й остаток ряда 1	
		2.2.2	Критерий Больцано-Коши сходимости числового ряда ¹	
		2.2.2	Бесконечное произведение ³	
	2.3		ые теоремы	
	2.0	2.3.1	Гамма функция Эйлера. Простейшие свойства. ¹	
		2.3.1 $2.3.2$	Неравенство Йенсена для сумм ¹	
		2.3.2 $2.3.3$	Неравенство Гельдера для интегралов ³	
		۵.ن.ن	перавенетво гельдера для интегралов	± (

		2.3.4	Признак сравнения сходимости положительных рядов	
			2.3.4.1 Лемма о сходимости положительных рядов	47
			2.3.4.2 Теорема	47
			2.3.4.3 Важные эталонные ряды, с которыми надо всё сравнивать	48
		2.3.5	Признак Коши сходимости положительных рядов ¹	48
	2.4	Teoper	мы	50
		2.4.1	Интеграл Эйлера–Пуассона 1	
		2.4.2		
		2.4.3	Теорема об абсолютно сходящихся интегралах и рядах 1	51
			2.4.3.1 Интегралы	
			2.4.3.2 Ряды	
		2.4.4	Изучение интеграла $\int_1^\infty \frac{\sin x dx}{x^p}$ на сходимость и абсолютную сходимость ²	52
		2.4.5	Признак Абеля–Дирихле сходимости несобственного интеграла 2	53
		2.4.6	Интеграл Дирихле ²	54
		2.4.7	Неравенство Йенсена для интегралов ¹	
		2.4.8	Теорема об условиях сходимости бесконечного произведения ³	
		2.4.9	Лемма о представлении синуса в виде конечного произведения ³	
		_	Разложение синуса в бесконечное произведение ³	
			Неравенство Коши (для сумм и для интегралов) ³	
		2.4.11	2.4.11.1 Неравенство для сумм	
			2.4.11.2 Неравенство для сумм	
		9 4 19	2.4.11.2 Перавенство для интегралов Неравенство Гельдера для сумм³	
			Неравенство Минковского ³	
			•	UU
		2.4.14	Свойства рядов: линейность, свойства остатка, необх. условие сходимости, критерий Больцано–Коши 1	<i>C</i> 1
			2.4.14.1 Линейность	
			2.4.14.2 Свойства остатка	
			2.4.14.3 Необх. условие сходимости	
		0.4.15	2.4.14.4 Критерий Больцано-Коши	
			Признак Коши сходимости положительных рядов (рго) ¹	
		2.4.16	Признак Даламбера сходимости положительных рядов ¹	
			2.4.16.1 Рго версия:	
		2.4.17	Признак Раабе сходимости положительных рядов ¹	
			2.4.17.1 Лемма (улучшенный признак сравнения)	
			2.4.17.2 Теорема	
			2.4.17.3 Pro	
			Интегральный признак Коши сходимости числовых рядов ¹	
			Формула Эйлера для гамма-функции ³	
			Формула Вейерштрасса для гамма-функции ³	
			Вычисление произведений с рациональными сомножителями ³	
		2.4.22	Формула дополнения для Γ —функции 3	70
9	Пот	MOT K	айнозойский 7	7 0
J			ые определения	
	5.1	3.1.1	с определения \mathbb{R}^m , покоординатная сходимость \mathbb{R}^n	
		3.1.1	Сходимость последовательности в \mathbb{R} , покоординатная сходимость	
			Отображение бесконечно малое в точке ²	
		3.1.3		
		3.1.4	Отображение, дифференцируемое в точке ²	
		3.1.5	Производный оператор, матрица Якоби, дифференциал 2	
		3.1.6	Частные производные ²	12 70
	0.0	3.1.7	Формула $\overline{\text{Тейлора}}$ (различные виды записи) 2	
	3.2	Опред	еления	73

	3.2.1	Скалярное произведение, евклидова норма и метрика в \mathbb{R}^{m_1}	
		3.2.1.1 Скалярное произведение	73
		3.2.1.2 Евклидова норма	73
		3.2.1.3 Метрика в \mathbb{R}^{m}	73
	3.2.2	Окрестность точки в \mathbb{R}^m , открытое множество ¹	73
	3.2.3	Компактность, секвенциальная компактность, принцип выбора Больцано-	
		Вейерштрасса 1	73
	3.2.4	Координатная функция ¹	
	3.2.5	Двойной предел, повторный предел 1	
		3.2.5.1 Двойной предел	
		3.2.5.2 Повторный предел	
	3.2.6	Предел по направлению, предел вдоль пути ¹	
		3.2.6.1 Предел по направлению	
		3.2.6.2 Предел вдоль пути	
	3.2.7	Линейный оператор 1	
	3.2.8	$o(h)$ при $h o 0^2$	
	3.2.9	Теорема о двойном и повторном пределах ¹	
		Производная по направлению ²	
		Γ радиен $ ext{r}^2$	
		Мультииндекс и обозначения с ним ²	
		n -й дифференциал 2	
3.3		ые теоремы	
	3.3.1	Признак Лейбница ¹	
	3.3.2	Достаточное условие дифференцируемости ²	
	3.3.3	Дифференцирование композиции ²	
		3.3.3.1 Лемма об оценке нормы линейного оператора	
		3.3.3.2 Теорема о дифференцировании композиции	
	3.3.4	Теорема Лагранжа для векторнозначных функций ³	
	3.3.5	Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано) ³	
3.4	Teoper	иы	
	3.4.1	Признаки Дирихле и Абеля сходимости числового ряда ¹	
		3.4.1.1 Преобразование Абеля (суммирование по частям)	
		3.4.1.2 Дирихле	
		3.4.1.3 Абель	
	3.4.2	Теорема о группировке слагаемых 3	
	3.4.3	Теорема о перестановке слагаемых 3	
	3.4.4	Теорема о произведении рядов ³	
	3.4.5	\mathbf{E} динственность производной 2	
	3.4.6	Лемма о дифференцируемости отображения и его координатных функций ² .	
	3.4.7	Необходимое условие дифференцируемости ²	
	3.4.8	Дифференцирование 'произведений' 2	88
	3.4.9	Экстремальное свойство градиента ³	89
	3.4.10	Независимость частных производных от порядка дифференцирования ³	90
		Полиномиальная формула ³	91
		Лемма о дифференцировании "сдвига" ³	

1 Период Палеозойский

1.1 Важные определения

1.1.1 Первообразная, неопределённый интеграл 1

 $F,f:\langle a,b
angle
ightarrow\mathbb{R}$, где $orall x\in\langle a,b
angle$ F(x)'=f(x). F — первообразная f

Неопределённый интеграл — это множество всех первообразных f. Ну а точнее, поскольку всё множество первообразных отличается на константу, то мы просто берём какую-то первообразную и дописываем +C.

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

1.1.2 Таблица первообразных 1

1.
$$\int 0 \, \mathrm{d}x = C$$

2.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2\pm 1}} = \ln|x+\sqrt{x^2\pm 1}| + C$$
— длинный логарифм

$$3. \int \frac{\mathrm{d}x}{1-x^2} = \frac{1}{2} \ln |\frac{1+x}{1-x}| + C$$
— высокий логарифм

4.
$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin x + C = -\arccos x + C$$

5.
$$\int \frac{\mathrm{d}x}{1+x^2} = \operatorname{arctg} x + C = -\operatorname{arcctg} x + C$$

6.
$$\int \frac{\mathrm{d}x}{x} = \ln|x| + C$$

7.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$$

8.
$$\int a^x dx = \frac{a^x}{\ln a} + C, a > 0, a \neq 1$$

$$9. \int \sin x \, \mathrm{d}x = -\cos x + C$$

$$10. \int \cos x \, \mathrm{d}x = \sin x + C$$

11.
$$\int \frac{\mathrm{d}x}{\cos^2 x} = \operatorname{tg} x + C$$

12.
$$\int \frac{\mathrm{d}x}{\sin^2 x} = -\operatorname{ctg} x + C$$

1.1.3 Определенный интеграл (непрерывной функции) 2

$$\int_a^b f = \int_a^b f(x) dx := \sigma(\Pi\Gamma(f^+, [a, b])) - \sigma(\Pi\Gamma(f^-, [a, b]))$$

Замечания:

1.

$$f \ge 0 \Rightarrow \int_a^b f \ge 0$$

2.

$$f \equiv c \Rightarrow \int_{a}^{b} f = c(b-a)$$

3.

$$\int_{a}^{b} (-f) = -\int_{a}^{b} f$$

4.

$$\int_{a}^{a} f = 0$$

Свойства:

1. Аддитивность по промежутку:

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

2. Монотонность:

$$f,g \in C[a,b], f \leq g, \int_a^b f \leq \int_a^b g$$

Следствия:

(a)

$$\min f(b-a) \le \int_a^b f \le \max f(b-a)$$

(b)

$$\left| \int_{a}^{b} f(x) dx \right| \ge \int_{a}^{b} f(x) dx$$

(c)

$$-|f| \le f \le |f|$$
 по $[a,b]$

(d)

$$f \in C[a,b] \Rightarrow \exists c \in [a,b] : \int_a^b f(x) \, \mathrm{d}x = f(c)(b-a)$$

1.1.4 Верхний и нижний пределы 1

Рассмотрим верхний. Он определяется как предел последовательности супремумов сужений функции по левой границе:

$$\exists y_m = \sup_{n \ge m} x_n = \sup(x_n, x_{n+1}, x_{n+2} \dots)$$

Ну а сам верхний предел выглядит как

$$\overline{\lim} x_n = \lim y_m$$

Разумеется, нижний определяется аналогично, только с инфемумами (пусть последовательность инфемумов будет z_n .

Простейшие свойства:

- 1. z_n возрастает, y_n убывает.
- 2. $\forall n \in \mathbb{N} \quad z_n \leq x_n \leq y_n$
- 3. Если изменить конечное число x_n , то изменится не более, чем конечное число z_n , либо y_n (очевидно, после последнего изменённого x_n мы уже не будем их учитывать).

1.1.5 Риманова сумма¹

Пусть у нас определен отрезок [a,b], дробление $x_0 \dots x_n$, оснащение и $f:[a,b] \to \mathbb{R}$. Тогда следующее выражение мы называем интегральной (Римановой) суммой.

$$\sum_{k=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1})$$

Где ξ_i — точка оснащения на отрезке i

1.1.6 Несобственный интеграл, сходимость, расходимость²

$$\Phi(A) = \int_{a}^{A} f$$

- 1. Если существует $\lim_{A\to b-0}\Phi(A)-\int_a^{\to b}fdx$ несобственный интеграл
- 2. Если он ещё и конечный, то несобственный интеграл cxodumcs
- 3. А если он бесконечный или вовсе не существует, то несобственный интеграл расходится

1.2 Определения

1.2.1 Теорема о существовании первообразной 1

Формулировка

$$\forall f \in C\langle a, b\rangle \exists F : \forall x \in \langle a, b\rangle F'(x) = f(x)$$

Доказательство

BASED (Теорема Барроу)

1.2.2 Площадь, аддитивность площади, ослабленная аддитивность²

E — множество ограниченных подмножеств в \mathbb{R}^2

$$\sigma: E \to [0,\infty)$$
 — площадь в \mathbb{R}^2

 $\Box \cup$ — дизъюнктивное объединение. Вообще мы тут требуем, чтобы наши фигуры не пересекались и мы их просто объединяли Свойства:

- 1. Аддитивность: $\sigma(A_1 \cup A_2) = \sigma(A_1) + \sigma(A_2)$
- 2. Нормировка: $\sigma([a,b] \times [c,d]) = (d-c)(b-a)$

Замечания:

- 1. Монотонность: $A \subset B \ \sigma(A) \leq \sigma(B)$
- 2. $\sigma(вертикального отрезка) = 0$

Ослабленная площадь:

$$\sigma: E \to [0, \infty)$$

Свойства:

- 1. Монотонность: $A \subset B \ \sigma(A) \leq \sigma(B)$
- 2. Нормировка: $\sigma([a,b] \times [c,d]) = (d-c)(b-a)$
- 3. Ослабленная аддитивность: $E=E_1\cup E_2, E_1\cap E_2$ содержится не более чем в некотором вертикальном отрезке (то есть мы допускаем, что они могут пересекаться, но чуть-чуть), $\sigma(E)=\sigma(E_1)+\sigma(E_2)$

1.2.3 Положительная и отрицательная срезки 2

Literally this:

$$f:\langle a,b\rangle\to\mathbb{R}$$

$$f_{+} = \max(f, 0) - nonoнcumeльная срезка$$

$$f_{-}=\max{(-f,0)}-$$
 отрицательная срезка

1.2.4 Среднее значение функции на промежутке¹

$$f \in C[a,b]$$

$$\frac{\int\limits_{a}^{b}f(x)\,\mathrm{d}x}{b-a}\ -\text{ cp. арифметическое значение функции}$$

1.2.5 Функция промежутка, аддитивная функция промежутка¹

$$\exists\operatorname{Segm}\langle a,b\rangle=\{[p,q]:[p,q]\subset\langle a,b\rangle\}$$

 $f: \operatorname{Segm}\langle a,b \rangle \to \mathbb{R}$ — функция промежутка (принимает любой отрезок внутри $\langle a,b \rangle$)

Если $\forall x \in (p,q) \subset [p,q] \subset \langle a,b \rangle$ f(p,x)+f(x,q)=f(p,q), то f — аддитивная функция промежутка

1.2.6 Плотность аддитивной функции промежутка¹

$$\phi: \langle a,b\rangle \to \mathbb{R} -$$
 плотность аддитивной функции промежутка $f \Leftrightarrow \forall [p,q] \in \mathrm{Segm}\langle a,b\rangle \quad \inf_{x \in [p,q]} \phi(x) \cdot (q-p) \leq f([p,q]) \leq \sup_{x \in [p,q]} \phi(x) \cdot (q-p)$

1.2.7 Кусочно-непрерывная функция¹

 $f:\langle a,b \rangle \to \mathbb{R}$ называют кусочно–непрерывной, когда у неё на всей области определения существует конечное число разрывов 1 рода (Напоминалка: это когда в точке функция имеет конечные односторонние пределы, но они не совпадают). Также требуется, чтобы $\exists \lim_{x \to b-0} f(x)$ и $\exists \lim_{x \to a+0} f(x)$ и они были конечными.

Замечание: такая функция ограничена (вроде очевидно достаточно, все пределы же конечные. А если где-то между точками разрыва функция улетает в бесконечность, там будет точка разрыва, нарушается непрерывность).

1.2.8 Почти первообразная 2

 $F(x):[a,b]\to\mathbb{R}$ — *почти первообразная* кусочно-непрерывной функции f, если F — непрерывна и $\exists F'(x)=f(x)$, кроме конечного числа точек

Пример:
$$f = \text{sign } x, F = |x|, x \in [-1, 1]$$

1.2.9 Гладкий путь, вектор скорости, носитель пути 1

1.2.9.1 Краткий обзор пути с прошлого сема, чтобы не тупить

Обычно мы определяем путь как непрерывное отображение в R^m на каком-то промежутке [a,b], в котором f(a)=A, а f(b)=B. Больше никаких требований на него не наложено, из-за чего он может иметь всякие ужасные изломы, описывая m-мерные фигуры, при этом имея 1-мерный аргумент. Проблема здесь в том, что невозможно измерить какую-либо конечную скорость в некоторых точках такого пути, либо посчитать его длину (типо в квадрате бесконечно много 1-мерных линий, а такой путь может пройти весь квадрат целиком)

1.2.9.2 Гладкий путь

$$\gamma[a,b] o \mathbb{R}^m$$
, причём $\forall i \in [1,m] \quad \gamma_i \in C^1$

Здесь $\gamma_i(t)$ — отображение отдельной координаты в R^m , в котором действует путь $\gamma(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_m(t))$

1.2.9.3 Вектор скорости

Это просто производная функция пути. По принципу покоординатной сходимости мы можем рассматривать каждую координату γ_i отдельно, если предстваим наш путь как покоординатный вектор функций в \mathbb{R} .

$$\gamma'(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h} = \left(\lim_{h \to 0} \frac{\gamma_1(t+h) - \gamma_1(t)}{h}, \lim_{h \to 0} \frac{\gamma_2(t+h) - \gamma_2(t)}{h}, \dots, \lim_{h \to 0} \frac{\gamma_m(t+h) - \gamma_m(t)}{h}\right)$$

1.2.9.4 Носитель пути

Это кривая, являющаяся образом γ на всей области определения: $\gamma([a,b])$

1.2.10 Длина гладкого пути 1

Это функция l, заданная на множестве всех возможных гладких путей. Обладает (аксиоматически) следующими свойствами:

- 1. $l \ge 0$
- 2. Аддитивность $(\forall c \in [a, b] \ l(\gamma) = l(\gamma|_{[a, c]}) + l(\gamma|_{[c, b]})$
- 3. Если носитель пути является образом сжатия какого-то другого, то длина такого пути \leq длины пути прообраза:

$$\gamma, \overline{\gamma}$$
— гл. путь

$$C_{\gamma}, C_{\overline{\gamma}}$$
— носители

$$\exists f: C_{\gamma} \xrightarrow[\text{сюръекция}]{} C_{\overline{\gamma}}(: \forall x, y \in [a, b] \quad \rho(x, y) \geq \rho(f(x), f(y))) \implies l(\gamma) \geq l(\overline{\gamma})$$

4. Нормировка

$$\exists \gamma : [0,1] \to R^m, \ \gamma(c) = (1-c) \cdot A + c \cdot B.$$

Человеческими словами, тут мы определили прямолинейный путь. А утверждение в том, что $\rho(A,B)=l(\gamma)$

1.2.11 Вариация функции на промежутке²

$$\gamma : [a, b] \to \mathbb{R}^m$$
, выберем $t_0 = a < t_1 < \ldots < t_n = b$

Тогда
$$\tau = \{t_0, t_1, \dots, t_n\} - \partial poбление$$
 отрезка.

Bариация функции на отрезке [a,b] l

$$l = \sup_{\tau} \left\{ \sum_{i=0}^{n} \rho(\gamma(t_{i-1}), \gamma(t_i))) \right\}$$

1.2.12 Дробление отрезка, ранг дробления, оснащение 1

Определён отрезок [a,b]

Дробление отрезка — это некий возрастающий конечный набор $x_n \in [a,b]$. Тут $a=x_0 \le x_1 \le x_2 \le \ldots \le x_n = b$. То есть по ним мы можем получить кучу соприкасающихся подотрезков.

Ранг дробления — это наибольшая длина такого подотрезка (ранзица между двумя соседними точками дробления): $\max x_i - x_{i-1}$

Оснащение — это некоторый произвольный набор точек на нашем отрезке, в котором каждая точка находится на своём уникальном подотрезке дробления. Они покрывают все подотрезки: $\xi_i \in [x_{i-1}, x_i]$

1.2.13 Частичный предел¹

 $\exists x_n$ — вещественная последовательность.

Выберем в ней подпоследовательность x_{n_k} , где n_k — строго возрастающая последовательность натуральных чисел.

 $\lim x_{n_k} \in \overline{\mathbb{R}}$ — это и есть тот самый частичный предел.

1.2.14 Допустимая функция²

$$f: [a,b) \to \mathbb{R}, -\infty < a < b \le +\infty$$

 $f-\partial$ опустима, если $\forall A\in(a,b): f$ на $[a,A]-\kappa$ усочно непрерывна

1.2.15 Критерий Больцано–Коши сходимости несобственного интеграла 2

 $-\infty < a < b \le +\infty, f$ — допустимая (?), тогда сходимость несобственного интеграла равносильна

$$\forall \varepsilon > 0 \ \exists \delta \in (a,b) : \forall A,B \in (\delta,b) \left| \int_A^B f \right| < \varepsilon$$

1.2.16 Теорема об интегральной сумме центральных прямоугольников²

$$f \in C^2[a,b], \ a = x_0 < x_1 < \ldots < x_n = b$$
 $\xi_k := \frac{x_k - x_{k-1}}{2}$ (серединка отрезочка) $\delta = \max_{1 \ge k \ge n} x_k - x_{k-1}$

Тогда:

$$\left| \int_{a}^{b} f(x)dx - \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) \right| \le \frac{\delta^{2}}{8} \int_{a}^{b} |f''(x)| dx$$

1.3 Важные теоремы

1.3.1 Интегрирование неравенств. Теорема о среднем¹

1.3.1.1 Интегрирование неравенств

Формулировка

 $f,g\in C[a,b]$

$$f \leq g \implies \int_{a}^{b} f \leq \int_{a}^{b} g$$

Доказательство

Вполне очевидно: $\Pi\Gamma(f^+,[a,b])\subset\Pi\Gamma(g^+,[a,b])$. Соответственно, для положительной срезки всё слишком очевидно. В отрицательной всё наоборот. Но там и интеграл её вычитает (то есть знак неравенства переворачивается), так что ничего не ломается.

1.3.1.2 Теорема о среднем

Формулировка

$$\min(f) \cdot (b-a) \le \int_{a}^{b} f \le \max(f) \cdot (b-a)$$

Доказательство

 \triangleright

$$\min(f) \le f \le \max(f)$$

$$\int_{a}^{b} (\min(f)) \underset{\min(f) \text{ const}}{=} \min(f) \cdot (b - a)$$

$$\min(f) \cdot (b - a) \le \int_{a}^{b} f \le \max(f) \cdot (b - a)$$

 \triangleleft

1.3.2 Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций 1

Формулировка

 $f \in C[a,b], F$ — первообразная f.

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x)|_{x=a}^{x=b}$$

 \triangleright Введём интеграл с переменным верхним пределом ϕ .

Заметим, что $\phi = F + c$.

$$\int_{a}^{b} f(x) dx = \phi(b) = \phi(b) - \phi(a) = F(b) - c - F(a) + c = F(b) - F(a)$$

 \triangleleft

1.3.3 Теорема о вычислении аддитивной функции промежутка по плотности²

Формулировка

 $f:\langle a,b
angle o\mathbb{R},\Phi:Segm\langle a,b
angle o\mathbb{R},\,f$ — плотность Φ Тогда $\Phi\left([p,q]\right)=\int_p^q f,\quad \forall [p,q]\in Segm\langle a,b
angle$

Доказательство

>

Давайте введём супер-функцию $F(x)= egin{cases} 0, & x=a \\ \Phi([a,x]), & x \neq a \end{cases}$ — это первообразная плотности f.

Докажем это:

$$\lim_{h\to 0}\frac{F(x+h)-F(x)}{h}=\frac{\Phi([a,x+h])-\Phi([a,x])}{h}=$$

 $\frac{\Phi([x,x+h])}{h} = f(x+\Theta h) \text{ (где } \Theta \in [0,1], \text{ это работает по определению плотности inf } f \leq \frac{f}{|\delta|} \leq \sup f) \underset{h \to 0}{=} f(x)$

Ну а теперь:

$$\Phi([p,q]) = \Phi([a,q]) - \Phi([a,p]) = F(q) - F(p) = \int_{p}^{q} f(a,p] da$$

 \triangleleft

1.3.4 Интеграл как предел интегральных сумм¹

Формулировка

$$\exists f \in C[a,b]$$

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall \tau : a = x_0 < \ldots < x_n = b : \lambda_\tau := \max_{i=1\ldots n} (x_i - x_{i-1}) < \delta \forall \xi_i \\ \left| \sum_{i=1}^n (f(\xi_i) \cdot (x_i - x_{i-1})) - \int_a^b f(x) \, \mathrm{d}x \right| < \varepsilon$$

Выглядит как атомный пиздец от Евгения Владимировича ©, но на самом деле тут тупо написано, что мы можем разбить область интегрирования на отрезочки и в каждом выбрать точку, значение функции в которой умножить на длину отрезка, а сумма таких площадей прямоугольничка будет на самом деле стремиться к опр. интегралу функции при уменьшении ранга дробления. ©

Доказательство

 \triangleright

Воспользуемся аддитивностью опр. интеграла и разобъём на интегралы отрезков дробления:

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x) dx$$

Вместо умножения на длину отрезка, запишем эту операцию как интеграл константы (по факту же то же самое):

$$\sum_{i=1}^{n} (f(\xi_i) \cdot (x_i - x_{i-1})) = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(\xi_i) \, \mathrm{d}x$$

Теперь у нас имеются 2 выражения, в обоих стоит сумма интегралов на одинаковых промежутках интегрирования. Давайте же закинем эту всю радость в 1 кучу:

$$\left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(\xi_i) \, \mathrm{d}x - \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x) \, \mathrm{d}x \right| = \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(\xi_i) - f(x) \, \mathrm{d}x \right| \le \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |f(\xi_i) - f(x)| \, \mathrm{d}x$$

Воспользуемся тем, что в подынтегральной функции расстояние от x до ξ_i никогда не превысит δ (по условию) и применим теорему Кантора о равномерной непрерывности, подставив вместо ε , $\frac{\varepsilon}{b-a}$ (а там как раз нас просят проконтролировать, что это расстояние $<\delta$):

$$|\xi_i - x| < \delta \Rightarrow |f(\xi_i) - f(x)| < \frac{\varepsilon}{b - a} \Rightarrow$$

$$\sum_{i=1}^n \int_{x_{i-1}}^{x_i} |f(\xi_i) - f(x)| \, \mathrm{d}x < \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \frac{\varepsilon}{b - a} \, \mathrm{d}x = \sum_{i=1}^n (x_i - x_{i-1}) \cdot \frac{\varepsilon}{b - a} = (b - a) \cdot \frac{\varepsilon}{b - a} = \varepsilon$$

1.3.5 Формула Стирлинга³

Формулировка:

$$n! \underset{n \to \infty}{\sim} n^n e^{-n} \sqrt{n} \sqrt{2\pi}$$

$$\ln 1 + \ln 2 + \ldots + \ln n = \frac{\ln 1}{2} + \frac{\ln n}{2} + \int_{1}^{k} \ln n \, dn - \frac{1}{2} \int_{2}^{n} \frac{\{x\}(1 - \{x\})}{x^{2}} \, dx$$

Проинтегрируем $\int \ln n \, dn$ по частям:

$$\int \ln n \, \mathrm{d}n = [u = \ln n \Rightarrow u' = \frac{1}{n}; v' = 1 \Rightarrow v = n] = n \ln n - \int \frac{1}{n} n \, \mathrm{d}n = n \ln n - n + C$$

$$\frac{\ln 1}{2} + \frac{\ln n}{2} + \int_{1}^{k} \ln n \, dn - \frac{1}{2} \int_{2}^{n} \frac{\{x\}(1 - \{x\})}{x^{2}} \, dx = 0 + \frac{\ln n}{2} + (n \ln n - n)|_{1}^{n} + C_{1} + o(1) = \frac{\ln n}{2} + n \ln n - n + C_{1} + o(1) = \sum_{i=1}^{n} \ln i = \ln n!$$

Здесь $\frac{\{x\}(1-\{x\})}{x^2}=C_1$, т.к. возрастает и ограничена. Под o(1) мы спрятали константы.

$$\ln n! = \frac{\ln n}{2} + n \ln n - n + C_1 + o(1)$$

$$n! = e^{\frac{\ln n}{2} + n \ln n - n + C_1 + o(1)}$$

$$n! = \sqrt{n} n^n e^{-n} e^{C_1 + o(1)} \underset{n \to \infty}{\sim} C \sqrt{n} n^n e^{-n}$$

Осталось выяснить, что такое $C_1 + o(1)$. Для этого рассмотрим $\sqrt{\pi}$ по Валлису:

$$\sqrt{\pi} = \lim_{k \to \infty} \frac{(2k)!!}{(2k-2)!!} \frac{1}{\sqrt{k}} = \lim_{k \to \infty} \frac{2^2 4^2 \dots (2k)^2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot (2k)} \frac{1}{\sqrt{k}} = \lim_{k \to \infty} \frac{2^k (k!)^2}{2k!} \frac{1}{\sqrt{k}}.$$

Теперь заменяем на эквивалентные, которые мы вывели выше:

$$\sqrt{\pi} = \lim_{k \to \infty} \frac{(2^k \sqrt{k} k^k e^{-k} C)^2}{\sqrt{2k} (2k)^{(2k)} e^{-2k} C} \frac{1}{\sqrt{k}} = \lim_{k \to \infty} \frac{C}{\sqrt{2}} = \frac{C}{\sqrt{2}}$$

 $\sqrt{\pi} = \frac{C}{\sqrt{2}} \Rightarrow C = \sqrt{2\pi},$ что и доказывает требуемое равенство

1.3.6 Признаки сравнения сходимости несобственного интеграла²

Лемма:

Пусть:

$$\Phi(A) = \int_{a}^{A} f(x)dx, \qquad A \in [a, b)$$

Тогда:

$$\int_a^b f(x) dx$$
 - сходится $\Leftrightarrow \Phi(A)$ - ограничен

Доказательство:

$$\int_{a}^{A} f(x)dx \Leftrightarrow \exists \lim_{A \to b-0} \Phi(A)$$

И $\Phi(A)$ очевидно возрастает.

Формулировка:

f,g — допустимы на [a,b)

Если:

1. $f \le g$ на [a, b)

То:

- (а) $\int_a^b g \operatorname{cxoдитcs} \Rightarrow \int_a^b f \operatorname{cxoдитcs}$
- (b) $\int_a^b f$ расходится $\Rightarrow \int_a^b g$ расходится
- 2. $\exists \lim_{x \to b-0} \frac{f(x)}{g(x)} = l < \infty$

To:

- (a) $l \in \mathbb{R}^+ \backslash \{0\} \Rightarrow \int_a^b g$ и $\int_a^b f$ сходятся и расходятся одновременно
- (b) $l = +\infty \Rightarrow$ см. пункт 1, заменяя сходится на расходится и наоборот.
- (c) $l = 0 \Rightarrow$ см. пункт 1

Доказательство:

1. $\Phi(A) = \int_{a}^{A} f(x)dx; \Psi(A) = \int_{a}^{A} g(x)dx$

 $\int_a^b g(x)$ - сходится $\Leftrightarrow \Psi(A)$ - ограничен $\Rightarrow \Psi(A) \geq \Phi(A) \Rightarrow \Phi(A)$ - ограничен $\Leftrightarrow \int_a^b f(x) dx$ - сходится. Второй случай разбирается аналогично.

2. (a) $l \in \mathbb{R}^+ \setminus \{0\}$

По определению предела, начиная с некоторого $x \frac{f(x)}{g(x)}$ будет лежать в окрестности l. НУО возьмем окрестность $\frac{1}{2}$, т.е.

$$\frac{1}{2}l < \frac{f(x)}{g(x)} < \frac{3}{2}l$$

$$\frac{1}{2}lg(x) < f(x) < \frac{3}{2}lg(x)$$

И по пункту 1 этой теоремы g и f сходятся одновременно.

(b) $l = \infty$

Условие буквально означает, что начиная с некоторого места $\frac{f(x)}{g(x)} > 2022 \cdot l \Rightarrow 2022 \cdot l \cdot g(x) < f(x) \Rightarrow f(x)$ - расходится $\Rightarrow g(x)$ - расходится.

(c) l = 0

Аналогично п.b

1.4 Теоремы

1.4.1 Теорема о свойствах неопределённого интеграла 1

1.4.1.1 Характеристика множества первообразных функции

Формулировка

$$F, f: \langle a, b \rangle \to \mathbb{R}, \forall x \in \langle a, b \rangle \quad F'(x) = f(x)$$

Верны следующие утверждения:

- 1. $\forall c \in \mathbb{R}$ F+c первообразная f на $\langle a,b \rangle$
- 2. $\forall \overline{F}$ первообразная f на $\langle a,b \rangle$ $\overline{F} = F + C$

Доказательство

- 1. Очевидно (F'(c) = 0)
- 2. $(\overline{F}-F)'=0,\int 0\,\mathrm{d}x=C\Rightarrow\overline{F}$ отличается от F на C

1.4.1.2 Правила интегрирования

Формулировка

f,g имеют F,G на $\langle a,b \rangle$

1.
$$\int f + g = \int f + \int g$$

2.
$$\forall \alpha \in \mathbb{R} \quad \int \alpha f = \alpha \int f$$

3. Пусть
$$\phi: \langle c, d \rangle \to \langle a, b \rangle$$
. Тогда $(\int f(x) dx)|_{x := \phi(t)} = F(\phi(t)) + C = \int f(\phi(t))\phi'(t) dt$

4.
$$\forall \alpha, \beta \in \mathbb{R}, \alpha \neq 0$$
 $\int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta)$

5.
$$f,g$$
 дифференцируемы. $\exists \int fg' \Rightarrow \exists \int f'g = fg - \int fg'$ Пример: $\int \ln x \, \mathrm{d}x = \int 1 \cdot \ln x \, \mathrm{d}x$. Тогда $f' = 1 \Rightarrow f = x, g = \ln x \Rightarrow g' = \frac{1}{x}$. $\int 1 \cdot \ln x \, \mathrm{d}x = x \cdot \ln x - \int x \cdot \frac{1}{x} \, \mathrm{d}x = x \ln x - x + C$

Доказательство

1.
$$(F+G)' = F' + G' = f + g$$

2.
$$(\alpha F)' = \alpha f$$

3.
$$(F(\phi(t)))' = f(\phi(t)) \cdot \phi'(t)$$

4.
$$\int f(\alpha x + \beta) dx = \int \frac{f(z) dz}{(\alpha x + \beta)'} = \frac{1}{\alpha} F(\alpha x + \beta)$$

5.
$$(fg)'=f'g+fg'\Rightarrow (fg)'-fg'=f'g$$
. По арифметическим свойствам $\int f'g=\int (fg)'-\int fg'=fg-\int fg'$

1.4.2 Правило Лопиталя³

1.4.2.1 Лемма об ускоренной сходимости

Формулировка

 $f,g:D o\mathbb{R},D\subset\overline{\mathbb{R}},a$ — предельная точка $D,a\in\overline{\mathbb{R}}.$

 $\exists \dot{V}_a: f,g \neq 0$ на $\dot{V}_a \cap D, \lim_{x \to a} f(x) = 0, \lim_{x \to a} g(x) = 0$

Тогда $\forall x_k: x_k \to a, x_k \in D, x_k \neq a \; \exists y_k: y_k \to a, y_k \in D, y_k \neq a$ такая, что

$$\lim_{k \to \infty} \frac{g(y_k)}{g(x_k)} = 0, \qquad \lim_{k \to \infty} \frac{f(y_k)}{g(x_k)} = 0$$

Доказательство. Для всякого k можем подобрать n такое, что

$$\left| \frac{g(x_n)}{g(x_k)} \right| < \frac{1}{k}, \qquad \left| \frac{f(x_n)}{g(x_k)} \right| < \frac{1}{k}.$$

Теперь достаточно взять $y_k := x_n$.

1.4.2.2 Правило Лопиталя

Формулировка:

 $f, g: (a, b) \to \mathbb{R}, a \in \overline{\mathbb{R}}$

f,g — дифф., $g' \neq 0$ на (a,b)

Если:

$$\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = L \text{ и } \frac{f(x)}{g(x)} \in \left\{\frac{0}{0}, \frac{\infty}{\infty}\right\}$$

Тогда:

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = L$$

Доказательство. $g' \neq 0 \Rightarrow g'$ – постоянного знака $\Rightarrow g$ монотонна $\Rightarrow g \neq 0$.

По Гейне $x_k: x_k \to a, x_k \in (a,b), x_k \neq a,$ построим y_k из леммы. Тогда, по теореме Коши

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(c_k)}{g'(c_k)}$$

Будем выражать отсюда $\frac{f(x_k)}{g(x_k)}$:

$$\frac{f(x_k)}{g(x_k)} = \frac{f(y_k)}{g(x_k)} + \frac{f'(c_k)}{g'(c_k)} \left(1 - \frac{g(y_k)}{g(x_k)}\right).$$

И т.к.
$$\frac{f(y_k)}{g(x_k)} \to 0, \frac{g(y_k)}{g(x_k)} \to 0,$$
 то $\frac{f(x_k)}{g(x_k)} \to L.$

1.4.3 Теорема Штольца¹

1.4.3.1 Лемма о смешной сумме

Ну что вы хотели, КПК же

Формулировка

$$s < \frac{a}{b} < t$$

$$s < \frac{c}{d} < t$$

$$a + c$$

$s < \frac{a+c}{b+d} <$

Доказательство

Упражнение ☺

Формулировка

 x_n,y_n — вещественные последовательности, $x_n,y_n \to 0$

$$\lim \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \lim \frac{x_n}{y_n}$$

Доказательство

⊳ Nota bene: Вообще мы тут рассматриваем только положительные числа, т.к. вышеупомянутая лемма вроде как работает только там. Но тут не должно быть проблем с сохранением общности, так что пофиг.

$$\lim \frac{x_{n+1}-x_n}{y_{n+1}-y_n}=c \Rightarrow \forall \varepsilon>0 \\ \exists N: \forall N_1>N, \forall n>N_1 \quad c-\varepsilon<\frac{x_{N_1+1}-x_{N_1}}{y_{N_1+1}-y_{N_1}}< c+\varepsilon$$

Тут трюк такой: поскольку данное определение верно для всех $N_1 > N$, то мы можем продолжать расписывать такие неравенства до бесконечности (то есть рассмотреть $x_{N_1+2}-x_{N_1+1}$ и так далее. Давайте применим лемму о смешной сумме и сложим этот ряд неравенств. У нас всё, очевидно, сократится, кроме крайних членов:

$$c - \varepsilon < \frac{x_n - x_{N_1}}{y_n - y_{N_1}} < c + \varepsilon$$

Где $n \to \infty$. Ну а по определению предела, $x_n \to 0$, ровно как и y_n . Тогда их можно опустить в предельном переходе:

$$c - \varepsilon < \frac{y_{N_1}}{y_{N_1}} < c + \varepsilon$$

 \triangleleft

1.4.4 Теорема Барроу¹

1.4.4.1 Интеграл с переменным верхним пределом

 $f \in C[a,b], \phi: [a,b] \to \mathbb{R}$ Обозначим его за

$$\phi(x) = \int_{a}^{x} f(x)$$

Формулировка

$$\forall x \in [a, b] \quad \phi'(x) = f(x)$$

Вот это прикол! Взяли какие-то странные интегралы, которые определены как какая-то недоплощадь, ещё и сделали область интегрирования переменной. А получили (внезапно) аж первообразную!

Доказательство

Давайте распишем производную этой непонятной функции:

$$\phi'(x) = \lim_{y \to x+0} \frac{\phi(y) - \phi(x)}{y - x} = \lim_{y \to x+0} \frac{\int\limits_a^y f - \int\limits_a^x f}{y - x} = \lim_{y \to x+0} \frac{\int\limits_x^y f}{y - x} = \lim_{t \to x$$

1.4.5 Интегральное неравенство Чебышева. Неравенство для сумм²

Формулировка

ВИНОГРАДЫЧ

 $f,g:[a,b] o \mathbb{R}$, причём f — возрастает, а g — убывает.

Тогда:

$$\frac{1}{b-a} \int_{a}^{b} fg \le \left(\frac{1}{b-a} \int_{a}^{b} f\right) \cdot \left(\frac{1}{b-a} \int_{a}^{b} g\right)$$

KOXACb

 $f,g:[a,b] \to \mathbb{R}$, монотонны ОДИНАКОВО

Let
$$I_f = \frac{\int_a^b f}{b-a}$$

Тогда:

$$I_f \cdot I_q \leq I_{fq}$$

 \triangleright

 $\forall x, y \in [a, b] : (f(x) - f(y)) (g(x) - g(y)) \ge 0$, так как монотонны одинаково.

Раскрываем скобки:

$$f(x)g(x) - f(x)g(y) - f(y)g(x) + f(y)g(y) \ge 0$$

Интегрируем по y на промежутке [a,b] и делим на (b-a)

$$f(x)g(x) - I_f g(x) - f(x)I_g + I_f g \ge 0$$

Интегрируем по x на промежутке [a,b] и делим на (b-a)

$$I_{fg} - I_f I_g - I_f I_g + I_{fg} \ge 0$$

$$I_f I_g \le I_{fg}$$

<1

Формулировка

ВИНОГРАДЫЧ

 $n \in \mathbb{N}; a,b \in \mathbb{R}^n$, причём $a_1 \leq a_2 \leq \ldots \leq a_n$ и $b_1 \geq b_2 \geq \ldots \geq b_n$

Тогда:

$$\frac{1}{n} \sum_{k=1}^{n} a_k b_k \le \left(\frac{1}{n} \sum_{k=1}^{n} a_k\right) \cdot \left(\frac{1}{n} \sum_{k=1}^{n} b_k\right)$$

KOXACb

 $n\in\mathbb{N}; a,b\in\mathbb{R}^n$, причём $a_1\leq a_2\leq\ldots\leq a_n$ и $b_1\leq b_2\leq\ldots\leq b_n$

Тогда:

$$\left(\frac{1}{n}\sum_{k=1}^{n}a_k\right)\cdot\left(\frac{1}{n}\sum_{k=1}^{n}b_k\right)\leq \frac{1}{n}\sum_{k=1}^{n}a_kb_k$$

Доказательство

 \triangleright

Возьмём т.н. кусочно-постоянные функции $f,g:[0,1]\to\mathbb{R}$, которые разбиты на n кусочков, и $\left(\frac{k-1}{n},\frac{k}{n}\right)$ -й кусочек равен a_k и b_k соответственно. Тогда просто запишем стандартное неравенство Чебышева и у нас всё получится! (на разрывы в конечном числе точек пофигу).

 \triangleleft

1.4.6 Свойства определенного интеграла: линейность, интегрирование по частям, замена переменных 2

1.4.6.1 Линейность

$$\int_{a}^{b} \alpha f(x) = \alpha \int_{a}^{b} f(x)$$
$$\int_{a}^{b} f(x) + g(x) = \int_{a}^{b} f(x) + \int_{a}^{b} g(x)$$

1.4.6.2 Интегрирование по частям

$$\int_a^b fg' = fg|_a^b - \int_a^b gf'$$

1.4.6.3 Замена переменных

$$\int_{\alpha}^{\beta} f(\phi(x))\phi'(x) = \int_{\phi(\alpha)}^{\phi(\beta)} f$$

1.4.6.4 Доказательство

Всё выводится из таких же свойств неопределённого интеграла

1.4.7 Иррациональность числа пи²

Let
$$H := \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2 \right)^n \cos t dt = \dots$$

Проинтегрируем по частям:

$$u = \left(\frac{\pi^2}{4} - t^2\right)^n \Rightarrow du = -2nt\left(\frac{\pi^2}{4} - t^2\right)^{n-1} dt$$

 $dv = \cos t dt \Rightarrow v = \sin t$

Следовательно, ... = $\frac{1}{n!} \left(\frac{\pi^2}{4} - t^2 \right) \sin t |_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{2}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t \left(\frac{\pi^2}{4} - t^2 \right)^{n-1} dt = \dots$ (причём слагаемое с синусом занулится)

Опять проинтегрируем по частям:

$$u = t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \Rightarrow du = \left(\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - 2t^2(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-2}\right) dt$$

 $dv = \sin t dt \Rightarrow v = -\cos t$

Поработаем с du, приплюсуем и вычтем $2(n-1)\frac{\pi^2}{4}\left(\frac{\pi^2}{4}-t^2\right)^{n-2}$ и вынесем $2(n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-2}$ у минусового слагаемого в du и плюсового $2(n-1)\frac{\pi^2}{4}\left(\frac{\pi^2}{4}-t^2\right)^{n-2}$:

$$du = \left(2(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-2}\left(\frac{\pi^2}{4} - t^2\right) + \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - 2(n-1)\frac{\pi^2}{4}\left(\frac{\pi^2}{4} - t^2\right)^{n-2}\right)dt$$

$$= \left((2n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - (n-1)\frac{\pi^2}{2}\left(\frac{\pi^2}{4} - t^2\right)^{n-2}\right)dt$$

$$\dots = 0 + \frac{2}{(n-1)!}t\left(\frac{\pi^2}{4} - t^2\right)^{n-1}\left(-\cos t\right)\Big|_{-\frac{\pi^2}{4}}^{\frac{\pi^2}{4}} + \frac{2}{(n-1)!}\left((2n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - (n-1)\frac{\pi^2}{2}\left(\frac{\pi^2}{4} - t^2\right)^{n-2}\right)\cos tdt$$

$$= (4n-2)H_1 - \pi^2 H_2$$

Формулировка

Число π — иррационально.

Доказательство

$$H_0 = 2, H_1 = \dots [$$
 по частям $] = 4$

$$H_n = (\ldots) H_1 + (\ldots) H_0 = P_n(\pi^2)$$
 — многочлен от π^2 степени $\leq n$.

Почему? Ну типа мы взяли произвольное n, и посчитали для него H_n , и по рекуррентной формуле просто раскрыли всё до примитивов (H_0, H_1) получили в конечном итоге огромный многочлен, зависящий от π^2 .

Пусть $\pi^2 = \frac{p}{q}$ (рациональное)

 $q^n P_n(\frac{p}{q}) =$ целое число (у нас огромный многочлен степени не больше n, в котором переменные = $\pi^2 = \frac{p}{q} = q^n H_n > 0$ (интеграл положителен на нашем интервале) $\Rightarrow q^n H_n \geq 1$ (так как интеграл положительный, q^n — целое, произведение тоже целое, а значит минимальное положительное целое — 1)

$$1 \le \frac{q^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t dt \le \frac{q^n}{n!} 4^n \pi \to_{n \to \infty} 0$$

Противоречие!

1.4.8 Компактность и конечные эпсилон-сети²

1.4.8.1 Определения

- 1. Множество $N \subset X$ называется ε -сетью для D, если $\varepsilon > 0 \ \forall x \in D \exists y \in N \quad \rho(x,y) < \varepsilon$
- 2. Множество D сверхограниченное в X, если $\forall \varepsilon > 0 \exists$ конечная ε -сеть

1.4.8.2 Свойства

1. D — сверхограниченно в $X \Leftrightarrow D$ — сверхограниченно в себе

Доказательство: ⊳

← ОЧЕВИДНО.

 \Rightarrow Отметим $\{x_1, x_2, \dots, x_n\} - \frac{\varepsilon}{2}$ сеть в X. Теперь в каждом шарике $B(x_i, \frac{\varepsilon}{2})$ берём $y_i \in D$, если такая есть. Вуаля, $\{y_1, \dots, y_{m \le n}\} - \varepsilon$ -сеть для D.

2. Сверхограниченность сохраняется при равномерно непрерывном отображении

$$\forall \varepsilon > 0 \exists \delta > 0 \forall u,v \in X: \rho(u,v) < \delta \ \rho(f(u),f(v)) < \varepsilon; f(\delta$$
-сети) = ε -сеть

Доказательство: ⊳

Возьмём δ из условия, выберем конечную δ -сеть N для D. Тогда, нам необходимо узнать, что при $E=f(D),\ y=f(x),\ E$ — сверхорганиченно. Давайте возьмём любую точку x, найдём ближайшую x_i из D и посмотрим $f(x_i)$. Окажется, что $\rho(y,f(x_i))<\varepsilon$. Вы скажете — а почему??? Да всё просто, по равномерной непрерывности!

 \triangleleft

3. D — сверхограниченно $\Rightarrow Cl(D)$ — сверхограниченно

Доказательство: ⊳

N — конечная ε -сеть.

 $\forall x \in D \exists y \in N : \rho(x,y) < \varepsilon$

Тогда:

 $\forall x \in Cl(D) \exists y \in N : \rho(x, y) \le \varepsilon$

Возьмём $a \in D, a_i \to b(b \in Cl(D))$. Покрасим эту бесконечную последовательность в конечное число цветов, следовательно существует подпоследовательность одинакового цвета a_{n_k} . Следовательно, $a_{n_k} : \exists x_i \in N : \rho(a_{n_k}, x_i) < \varepsilon \dots$ (предельный переход) $\rho(b, x_i) \leq \varepsilon$. Получается, что мы получили т.н. 2ε -сеть, типа, типа эпсилон надо взять чуть-чуть побольше.

 \triangleleft

4. D- сверхограниченно $\Leftrightarrow \forall$ последовательность из D содержит фундаментальную подпоследовательность

Доказательство: ⊳

 \Rightarrow

 $\{y_n\}$ — последовательность из D. Зафиксируем $\varepsilon=1:\{x_1,\ldots,x_n\}$. Логично, что в одном из шаров $B(x_i,\varepsilon)$ — содержится бесконечно много элементов последовательности. Далее будем рассматривать только те элементы последовательности, которые внутри шара.

Зафиксируем $\varepsilon = \frac{1}{2} : \{\hat{x}_1, \dots, \hat{x}_n\}$. Логично, что в одном из шаров $B(\hat{x}_i, \varepsilon = \frac{1}{2})$ — содержится бесконечно много элементов последовательности. Далее будем рассматривать только те элементы последовательности, которые внутри шара.

И так далее!

А почему же построенная система из под-шаров будет являться фундаментальной последовательностью? Да дело в том, что по определению фундаментальной последовательности, начиная с какого-то номера все элементы подпоследовательности будут лежать сколь угодно близко. А мы тут делаем ровно это — просто берём нужный эпсилон и строим шары.

 \Leftarrow

Очевидно. ©

Так как если нет конечной ε -сети, то $\exists \{x_n\}$ в $D: \rho(x,x_i) \geq \varepsilon \Rightarrow$ нельзя выбрать фундаментальную подпоследовательность.

⊲

1.4.8.3 Теорема

Формулировка:

 (X, ρ) — метрическое пространство, X — полное, $D \subset X$

Тогда эквивалентно:

- 1. D компактно.
- $2.\ D-$ сверхограничено, замкнуто.

Доказательство:

(в метрическом пространстве)

X — компактно \Leftrightarrow X — секвенциально компактно

 \triangleright

 \Rightarrow

Полноту получаем автоматически. Если \exists фундаментальная последовательность $\{y_n\}$, не имеющая предела, то из секвенциальной компактности X следует, что существует сходящаяся подпоследовательность $\{x_{n_k}\}$

Допустим, что X — не сверограниченно $\Rightarrow \exists \{x_n\}$, из которой нельзя извлечь фундаментальную подпоследовательность, однако, это противоречит секвенциальной компактности (сх. подпосл. фундаментальна).

 \leftarrow

Сверхограниченно \Rightarrow из любой последовательности можно извлечь фундаментальную \Rightarrow она сходится (в силу полноты) \Rightarrow оно секвенциально компактно $\Rightarrow_{\rm B} \chi$ компактно.

 \triangleleft

1.4.9 Площадь криволинейного сектора: в полярных координатах и для параметрической кривой 2

Формулировка:

 $f(\varphi):[0,2\pi]\to[0,\infty)$ — непрерывная функция.

$$\Phi([\alpha, \beta]) = S_{\text{сектора}}[\alpha, \beta], \ g(\phi) = \frac{r^2(\phi)}{2}$$

$$\Phi([\alpha, \beta]) = \int_{\alpha}^{\beta} g(\phi) d\phi = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\phi) d\phi$$

Для параметрической:

$$S = \frac{1}{2} \int_{t_{\alpha}}^{t_{\beta}} \left(y'(t)x(t) - x'(t)y(t) \right) dt$$

 \triangleright

Во первых, возьмём функцию промежутка (угла) $\Phi([\alpha,\beta]) = S_{\text{сектора}}[\alpha,\beta]$ и 'функцию' $g(\varphi) = r^2(\varphi)/2$. Если мы докажем, что g — плотность Φ , то теореме о вычислении $\Lambda\Phi\Pi$ по плотности у нас всё будет супер.

Заметим, что кусочек круга (круговой сектор) имеет площадь $\frac{1}{2}(\beta-\alpha)r^2$ (цитата: *школьная* формула, а вообще, это достаточно логично, мы выбираем кусок круга, ограниченный двумя углами, причём мы смотрим внутри одной четверти, поэтому делим обычную площадь πr^2 на 4). Также, достаточно очевидно, что если мы на нашем промежутке (любом) найдём минимум и максимум функции, то cekmop (минимума) $\subset cekmop$ (функции) $\subset cekmop$ (максимума). Ура!

$$\frac{1}{2}(\beta-\alpha)\min r^2(\varphi)_{\varphi\in[\alpha,\beta]}\leq \Phi([\alpha,\beta])\leq \frac{1}{2}(\beta-\alpha)\max r^2(\varphi)_{\varphi\in[\alpha,\beta]}$$

Тогда по определению, g — плотность Φ .

<1

Теперь просто переведём для параметрической формулы. $r(\varphi) = \sqrt{x^2(t) + y^2(t)}$. Также, проведём замену переменный в интеграле, $\phi(t) = \arctan \frac{y(t)}{x(t)}$

$$\Phi([\alpha, \beta]) = \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\varphi) d\varphi = \frac{1}{2} \int_{\phi(\alpha)}^{\phi(\beta)} r^{2}(\varphi) \phi'(t) dt = \frac{1}{2} \int_{\phi(\alpha)}^{\phi(\beta)} (x^{2}(t) + y^{2}(t)) \left(\arctan \frac{y(t)}{x(t)} \right)' dt =$$

$$= \frac{1}{2} \int_{\phi(\alpha)}^{\phi(\beta)} (x^{2}(t) + y^{2}(t)) \left(\frac{1}{1 + \left(\frac{y(t)}{x(t)} \right)^{2}} \right) \left(\frac{y(t)}{x(t)} \right)' dt =$$

$$= \frac{1}{2} \int_{\phi(\alpha)}^{\phi(\beta)} (x^{2}(t) + y^{2}(t)) \left(\frac{x^{2}(t)}{x^{2}(t) + y^{2}(t)} \right) \left(\frac{y'(t)x(t) - x'(t)y(t)}{x^{2}(t)} \right) dt =$$

$$= \frac{1}{2} \int_{\phi(\alpha)}^{\phi(\beta)} y'(t)x(t) - x'(t)y(t) dt$$

1.4.10 Изопериметрическое неравенство²

Формулировка:

$$G\subset\mathbb{R}^2$$
 — замкнуто и ограничено. diam $G=\sup\left\{
ho(x,y): \forall x,y\in G
ight\} \leq 1$ $\sigma(G)\leq \frac{\pi}{4}$

Доказательство:

Рассмотрим наше множество в 1 четверти декартовой системы координат:

Рассмотрим его над- и под- графики. Заметим, что эти функции почти дифференцируемые (?). Возьмём какую-нибудь производную (касательную) и примем её за Оу:

Теперь можем ввести функцию для площади сектора $r(\varphi)\Rightarrow \frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}r^2(\varphi)d\varphi.$

Возьмём какой-нибудь уголок φ , и отложим от него 90 градусов вниз, тем самым получим с Ох новый угол $\varphi-\frac{\pi}{2}$. Теперь делаем финт ушами, делим наш интеграл на промежуток до 0 и после, в части от $-\frac{\pi}{2}$ до 0 заменяем переменную на $\alpha=\varphi-\frac{\pi}{2}$ и потом грациозно меняем α на φ , так как нам по барабану, как называется переменная. Суммируем интегралы:

$$\frac{1}{2} \int_0^{\frac{\pi}{2}} r^2(\varphi) + r^2(\varphi - \frac{\pi}{2}) d\varphi$$

А теперь самое интересное. Посмотрим на отрезки AB и AC, заметим, что это прямоугольный треугольник, и, соответственно, сумма их квадратов равна BC. А $BC \leq \text{DIAG}(G) \leq 1$, следовательно:

$$\frac{1}{2} \int_0^{\frac{\pi}{2}} 1d\varphi = \frac{\pi}{4}$$

 \triangleleft

1.4.11 Обобщенная теорема о плотности 1

Формулировка

 $\exists \phi: \operatorname{Segm}\langle a,b \rangle \to \mathbb{R}$ — аддитивная функция промежутка

 $\exists f: \langle a,b \rangle \to \mathbb{R}$ — непрерывна

 $\exists \delta$ — произвольный отрезок $\in \langle a,b \rangle$

 $\exists m_{\delta} \leq \inf_{x \in \delta} f(x), M_{\delta} \geq \sup_{x \in \delta} f(x)$

- 1. $m_{\delta} \cdot l_{\delta} \leq \phi(\delta) \leq M_{\delta} \cdot l_{\delta}$
- 2. $\forall x \in \delta \quad m_{\delta} \leq f(x) \leq m_{\delta}$
- 3. $\forall \delta \to [x, x] \quad M_{\delta} m_{\delta} \to 0$

Вот это ВСЁ должно выполняться. И тогда мы утверждаем, что верно: $\phi([p,q]) = \int_p^q f(x) \, \mathrm{d}x$. Это утверждение — синоним того, что f — плотность ϕ

Доказательство

 \triangleright

Для начала введём функцию, для которой потом будем пытаться доказать то, что она первообразная.

 $\exists F(x)=0,$ если x=p (отрезок [p,p]). $F(x)=\phi([p,x]),$ если $x\in(p,q].$

$$\exists \delta = [x, y] \in [p, q]$$

Идём просто по порядку нумерованных утверждений:

- 1. Разделим всё на l_δ . $m_\delta \leq \frac{\phi(\delta)}{l_\delta} \leq M_\delta$. Заметим, что $\phi(\delta) = F(y) F(x)$, т.к. ϕ аддитивна.
- 2. Заметили, что наши достижения из прошлого пункта и в этом зажаты в одном промежутке $([m_{\delta}, M_{\delta}])$. Давайте этим воспользуемся и вычтем из первого второе: $|\frac{F(y)-F(x)}{l_{\delta}}-f(x)| \leq M_{\delta}-m_{\delta}$.
- 3. Возьмём достижение из прошлого пункта. Заметим, что $l_{\delta}=y-x$. А теперь давайте устремим l_{δ} в 0. $\lim_{y\to x}|\frac{F(y)-F(x)}{y-x}-f(x)|\leq M_{\delta}-m_{\delta}$. Вспоминаем что мы писали в условии про 3 пункт, выясняется, что $M_{\delta}-m_{\delta}\to 0$, то есть всё это выражение стремится к 0. О БОЖЕ!!! Мы же получили ровно определение производной!

 \triangleleft

1.4.12 Объём фигур вращения 1

$$\exists \delta = [p, q] \in \langle a, b \rangle$$

 $f:\langle a,b \rangle$ непрерывна (или кусочно-непрерывна, но там мы рассматриваем эти куски отдельно, ничего интересного)

 $\exists \phi_x$ — объём фигуры вращения fотносительно оси x (получится криволинейная сосиска $\circledcirc)$

 $\exists \phi_y$ — объём фигуры вращения f относительно оси y (получится бублик). Обращаем внимание, что радиус бублика в каждой точке вращения разный (чем дальше от оси, тем больше)

Утверждаем, что $\phi_x(\delta) = \pi \cdot \int_p^q f^2(x) \, \mathrm{d}x$. Вместо доказательств давайте разберёмся что откуда берётся: π мы просто вынесли как константу, $\pi f^2(x)$ — это площадь среза нашей колбасы в точке x. Ну и интегрируем её просто на нужном отрезке.

Далее, $\phi_y(\delta) = 2\pi \cdot \int_p^q x \cdot f(x) \, \mathrm{d}x$. Тут не всё так очевидно на первый взгляд. На самом деле, всё элементарно: $2\pi x$ — это просто длина окружности в точке вращения. f(x) же просто высота среза в этом месте.

1.4.13 Формула Тейлора с остатком в интегральной форме 1

Формулировка

$$f \in C^{n+1}(\langle a, b \rangle)$$

$$x, x_0 \in \langle a, b \rangle$$

Тогда

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt$$

Доказательство

 \triangleright

А получается это очень просто, по индукции. База n=0:

$$f(x) = f(x_0) + \int_{x_0}^x f'(t) dt$$

Важно: чтобы такие трюки работали, производная должна существовать (по условию $f \in C^{n+1}$ Интегрируем по частям: $\int 1 \, \mathrm{d}t = t + C = t - x = -(x - t)$

$$\int_{x_0}^{x} f'(t) dt = -(x - t) \cdot f'(t) + \int_{x_0}^{x} (x - t) \cdot f''(t) dt$$

Ещё раз: $\int -(x-t) dt = \frac{1}{2} - (x-t)^2$. Заметили, что степень будет каждую итерацию инкрементиться, а так же каждую итерацию будет появляться множитель–дробь с знаменателем i. Так, когда мы дойдём до n, эта часть будет равна $\frac{1}{n!} - (x-t)^n <$

1.4.14 Вычисление длины гладкого пути¹

Формулировка

 $\exists \gamma : [a,b] \to \mathbb{R}^m, \ \gamma$ — гладкий путь.

$$l(\gamma) = \int_{a}^{b} |\gamma'(t)| \, \mathrm{d}t$$

Note: работает только когда γ инъективен.

Доказательство

 \triangleright

$$\exists [p,q] \in \operatorname{Segm}[a,b]$$

Введём функцию $\phi([p,q])=l(\gamma|_{[p,q]}).$ Заметим, что это аддитивная функция промежутка (по 2 аксиоме гладкого пути). Вспоминаем "Теорема о вычислении аддитивной функции промежутка по плотности". То есть мы уже можем сказать, что на всём [a,b] длина считается через $\int\limits_a^b ||\gamma'(t)|| \,\mathrm{d}t.$

Однако, нам надо доказать, что $||\gamma'(t)|| -$ плотность ϕ .

Для этого нужно проверить 3 утверждения:

$$M_i([p,q]) := \max_{t \in [p,q]} |\gamma_i'(t)|$$

1. $m_{[p,q]} \cdot l_{[p,q]} \leq \phi([p,q]) \leq M_{[p,q]} \cdot l_{[p,q]}$ Введём $\overline{\gamma} : [p,q] \to \mathbb{R}^m \quad \overline{\gamma}(t) = M([p,q]) \cdot t$

Введём носители путей γ и $\overline{\gamma}$: $C_{\gamma}C_{\overline{\gamma}}$

Заметим, что отображение $T: C_{\gamma} \to C_{\overline{\gamma}}$ — растяжение, т.к. $\forall i,j \in [p,q]$ — $\rho(\gamma(i),\gamma(j)) = \sqrt{\sum_{k=1}^{m}(\gamma_{k}(i)-\gamma_{k}(j))^{2}}$ — $\sqrt{\sum_{k=1}^{m}(\gamma_{k}'(c_{k})\cdot(j-i))^{2}} \leq |j-i|\cdot\sqrt{\sum_{i=1}^{m}M_{i}^{2}([p,q])} = |j-i|\cdot M_{[p,q]} = \rho(\overline{\gamma}(i),\overline{\gamma}(j))$

А это ровно и обозначает то, что мы записали в условии: $\phi([p,q]) \leq |j-i| \cdot M_{[p,q]}$

Для минимумов симметрично

- 2. $\forall x \in [p,q] \quad m_{[p,q]} \leq ||\gamma'(x)|| \leq M_{[p,q]}$ $\gamma'(x) = \sqrt{\sum_{i=1}^m (\gamma_i'(x))^2} \leq M_{[p,q]}$, т.к. никакое $\gamma_i'(x)$ не может быть больше максимума на промежутке. Для минимума симметрично.
- 3. $\forall x \in [p,q]$ $M_{[p,q]} m_{[p,q]} \underset{q-p \to 0}{\longrightarrow} 0$

Поскольку все $\gamma_i'(x)$ непрерывны, то предел максимума на отрезке, стремящемся к нему будет равен самому $\gamma_i'(x)$. Таким образом, разность минимума и максимума $\to 0$ (из непрерывности γ' и предыдущего утверждения)

 \triangleleft

1.4.15 Свойства верхнего и нижнего пределов¹

Формулировка

 $\exists r_{-}$

Если ничего не написано про нижний предел, значит там всё работает аналогично.

- 1. $\lim x_n \leq \overline{\lim} x_n$
- 2. $\exists k_n \leq x_n \quad \overline{\lim} k_n \leq \overline{\lim} x_n$
- 3. $\exists \lambda \geq 0 \quad \overline{\lim}(\lambda x_n) = \lambda \overline{\lim} x_n$
- 4. $\overline{\lim}(-x_n) = -\underline{\lim}x_n$
- 5. $\exists k_n \quad \overline{\lim}(x_n + k_n) \leq \overline{\lim}x_n + \overline{\lim}k_n$ $\lim(x_n + k_n) \geq \lim x_n + \lim k_n$
- 6. $\exists t_n \to l \in \mathbb{R} \quad \overline{\lim}(x_n + t_n) = \overline{\lim}(x_n) + l$
- 7. $\exists t_n \to l > 0 \in \mathbb{R} \quad \overline{\lim}(t_n \cdot x_n) = l \cdot \overline{\lim} x_n$

Тут я буду ссылаться на простейшие свойства из определения Верхний и нижний пределы¹.

- 1. Очевидно из свойства 2.
- 2. $\overline{\lim} x_n = \sup(x_n, x_{n+1}, ...)$ $\overline{\lim} k_n = \sup(k_n, k_{n+1}, ...)$. Следовательно, поскольку все элементы меньше, то и точная граница будет меньше.
- 3. Очевидно по той же логике. Если мы берём $\sup(\lambda x_n, \lambda x_{n+1}, \ldots) = \lambda \sup(x_n, x_{n+1}, \ldots)$
- 4. Простая логика неравенств: $x < a \Rightarrow -x > -a$. $\sup(-x_n, -x_{n+1}, \ldots) = -\inf(x_n, x_{n+1}, \ldots)$
- 5. Очевидно. Равенство достигается, когда последовательности положительны. В противном случае, одна может вычесть другую и вместо увеличения верхнего предела, он уменьшится.

 $y_N \to \overline{\lim} x_n, \sup(t_N + x_N, t_{N+1} + x_{N+1}, \dots) \to \overline{\lim} (x_n + t_n)$

 $\overline{\lim}(x_n) + l - \varepsilon \le \overline{\lim}(x_n + t_n) \le \overline{\lim}(x_n) + l + \varepsilon$. А поскольку $\varepsilon \to 0$, мы его опускаем и получаем выражение из условия

То есть что мы тут сделали: расписали предел t_k , прибавили к нему x_k , перешли к супремуму, устремили N в бесконечность и сделали предельный переход, после которого всё превратилось в верхние пределы и сошлось.

7. КПК не хочет доказывать ☺

1.4.16 Техническое описание верхнего предела¹

Формулировка

 $\exists x_n$

- 1. $\overline{\lim} x_n = +\infty \Leftrightarrow x_n$ не ограничено сверху
- 2. $\overline{\lim} x_n = -\infty \Leftrightarrow x_n \to -\infty$
- 3. $\overline{\lim} x_n = l \in \mathbb{R} \Leftrightarrow$
 - (a) $\forall \varepsilon > 0 \exists N : \forall n > N \quad x_n < l + \varepsilon$
 - (b) $\forall \varepsilon > 0 \exists$ беск. число $n: x_n > l \varepsilon$

- 1. Очевилно
- 2 -

Так же очевидно: $\sup(x_n, x_{n+1}, ...) = -\infty$, а по свойству 2, $x_n \le y_n$.

 \Leftarrow

Если x_n стремится к $-\infty$, то $\forall E < 0 \exists N : \forall n > N \quad x_n < E \Rightarrow sup(x_n, x_{n+1}, \ldots) < E$

- $3. \Rightarrow$
 - (a) По свойству 2, $x_n \leq y_n$, а y_n монотонно убывает и $y_n \to l$
 - (b) Очевидно из того факта, что последовательность y_n имеет бесконечное количество элементов, при том, что $y_n \to l$. То есть мы можем брать бесконечное число элементов и получим выполнение условия.

 \Leftarrow

 $\forall \varepsilon > 0 \exists N : \forall n > N \quad x_n < l + \varepsilon, \forall \varepsilon > 0 \exists$ беск. число $n : x_n > l - \varepsilon$. Возьмём эти неравенства и перейдём к супремуму (который мы обозначаем как y_n :

 $l-\varepsilon \leq y_n \leq l+\varepsilon$. Верхняя оценка верна по умолчанию, а нижняя потому, что y_n — супремум, то есть ВЕРХНЯЯ граница.

1.4.17 Теорема о существовании предела в терминах верхнего и нижнего пределов¹

Формулировка

 $\overline{\lim} x_n = \underline{\lim} x_n \Leftrightarrow \exists \lim x_n$

Доказательство

 \Rightarrow

 $\underline{\lim} x_n$ это предел последовательности z_m , которая состоит из $\inf_{n \in [m,+\infty) \cap \mathbb{N}} x_n$. Очевидно, $z_n \leq x_n$. Аналогичное верно для $\overline{\lim} x_n$ (пусть последовательность тут будет k_n).

Соответственно, $z_n \leq x_n \leq k_n$. А поскольку $\overline{\lim} x_n = \underline{\lim} x_n$, то по теореме о двух городовых, x_n имеет тот же предел.

 \Leftarrow

 $\overline{\lim} x_n = l \Rightarrow \forall \varepsilon > 0 \exists N : \forall n > N x_n < l + \varepsilon$. Заметим, что если мы сюда подставим определение предела последовательности по Коши, то это определение так же выполняется. Разумеется, в оба определения в качестве предела мы подставляем точку l и видим, что ничего не нарушается (ε -окрестность точки l, в которой лежат все точки, начиная с N, гарантирует выполнение $x_n < l + \varepsilon$. Для нижнего предела всё то же самое, а поскольку точка у нас фиксирована, мы видим равенство верхнего и нижнего пределов.

1.4.18 Теорема о характеризации верхнего предела как частичного¹

Формулировка

 $\overline{\lim} x_n = l \Rightarrow \exists \lim x_{n_k} = l$

Очевидно, чтобы такое доказать, надо предъявить подходящую подпоследовательность. По тех. определению верхнего предела, точка является предельной в последовательности, то есть мы можем сколько угодно приближать ε , в ней найдётся нужная точка.

$$\forall k \in \mathbb{N} \exists n_k : l - \frac{1}{k} \le x_{n_k} \le l + \frac{1}{k}$$

То есть грубо говоря, мы выдумали последовательность, которая стремится к l. Супремум является предельной точкой, а значит, мы можем приближать нашу последовательность в любом из супремумов (у нас же предел — последовательность супремумов). Ну другими словами, это значит, что мы можем при всём этом сделать так, чтобы последовательность n_k была возрастающей. И таким образом мы вытащили самую настоящую подпоследовательность, а значит нашли частичный предел, равный верхнему.

Ещё не забываем, что верхний предел может быть бесконечностью, но там всё очевидно. Выбираем подпоследовательность, стремящуюся в бесконечность. У нас последовательность не ограничена, а значит такой есть.

1.4.19 Теорема о формуле трапеций, формула Эйлера-Маклорена²

Формулировка (Теорема о формуле трапеций):

$$f \in C^2[a,b], au$$
 — дробление, $\delta = \max(x_i - x_{i-1})$

Тогда

$$\left| \int_{a}^{b} f - \sum \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}) \right| \le \frac{\delta^2}{8} \int_{a}^{b} |f''|$$

Доказательство (Теорема о формуле трапеций):

Введем $\xi_k = \frac{x_{k-1} + x_k}{2}$

Рассмотрим интеграл на каждом отрезке дробления:

$$\int_{x_{k-1}}^{x_k} f(x)dx = \int_{x_{k-1}}^{x_k} f(x)d(x - \xi_k) =$$

Проинтегрируем по частям: $u=f(x)\Rightarrow u'=f'(x)$ $v'=1\Rightarrow v=x-\xi_k$

$$= f(x)(x - \xi_k)|_{x_{k-1}}^{x_k} - \int_{x_{k-1}}^{x_k} f'(x)(x - \xi_k) dx = \frac{f(x_{k-1}) + f(x_k)}{2} \cdot (x_k - x_{k-1}) - \int_{x_{k-1}}^{x_k} f'(x)(x - \xi_k) dx$$

Последнее равенство верно в силу того, что

$$f(x_k)(x_k - \xi_k) - f(x_{k-1})(x_{k-1} - \xi_k) = f(x_k)x_k - f(x_k)\xi_k + f(x_{k-1})x_{k-1} - f(x_{k-1})\xi_k$$

Введем
$$\psi(x) = (x_k - x)(x - x_{k-1})$$
 $x \in [x_{k-1}, x_k]$

$$\psi'(x) = (x_k \cdot x - x_k \cdot x_{k-1} - x^2 + x \cdot x_{k-1})' = -2x + x_k + x_{k-1} \Rightarrow -\frac{1}{2}\psi(x) = x - \xi_k$$

Получившийся до этого интеграл снова проинтегрируем по частям $u=f'(x)\Rightarrow u'=f''(x)\quad v'=\psi'(x)\Rightarrow v=\psi(x)$

$$\frac{1}{2} \int_{x_{k-1}}^{x_k} f'(x)\psi'(x)dx = \frac{1}{2} (f'(x) \cdot \psi(x)|_{x_{k-1}}^{x_k} - \int_{x_{k-1}}^{x_k} f''(x)\psi(x)dx)$$

Итого:

$$\int_{x_{k-1}}^{x_k} f'(x)dx = \frac{f(x_{k-1}) + f(x_k)}{2} - \frac{1}{2} \int_{x_{k-1}}^{x_k} f''(x)\psi(x)dx$$

Теперь поработаем с началом:

$$\left| \int_{a}^{b} f(x)dx - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_{k})}{2} \cdot (x_{k} - x_{k-1}) \right| =$$

$$= \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(x)dx - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_{k})}{2} (x_{k} - x_{k-1}) \right| =$$

$$= \left| \frac{1}{2} \sum_{k=1}^{n} (f(x_{k}) + f(x_{k-1}))(x_{k} - x_{k-1}) + \int_{x_{k-1}}^{x_{k}} f''(x)\psi(x)dx - \frac{f(x_{k-1}) + f(x_{k})}{2} (x_{k} - x_{k-1}) \right| \le$$

$$\leq \left| \frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f''(x)\psi(x)dx \right| = \left| \frac{1}{2} \int_{a}^{b} f''(x)\psi(x)dx' \right|$$

Теперь оценим $\psi(x)$:

$$\psi(\xi_k) = (x_k - \xi_k)(\xi(k) - x_{k-1}) = \left(x_k - \frac{x_k + x_{k-1}}{2}\right) \left(\frac{x_k + x_{k-1}}{2} - x_{k-1}\right) = \left(\frac{x_k - x_{k-1}}{2}\right) \left(\frac{x_k - x_{k-1}}{2}\right) = \frac{1}{4}(x_k - x_{k-1})^2 = \psi(x) \le \frac{1}{4}\delta^2$$

здесь δ - максимум по отрезкам.

И в итоге получаем:

$$\left| \frac{1}{8} \int_{a}^{b} f''(x) dx \right| = \frac{1}{8} \int_{a}^{b} |f''(x)| dx$$

Формулировка (Формула Эйлера-Маклорена):

$$m,n\in\mathbb{Z},f\in C^2[m,n]$$

Тогда

$$\int_{m}^{n} f = \sum_{i=m}^{n} f(i) - \frac{1}{2} \int_{m}^{n} f''(x) \{x\} (1 - \{x\}) dx$$

Причём первое и последнее слагаемое в сумме входят с множителем $\frac{1}{2}$

Доказательство (Формула Эйлера-Маклорена):

Из доказательства предыдущей теоремы вспоминаем, что:

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} \cdot (x_k - x_{k-1}) - \frac{1}{2} \int_{a}^{b} f''(x)\psi(x)dx$$

и понимаем, что $\{x\}(1-\{x\})$ - просто интересная запись для $\psi(x)$.

1.4.20 Асимптотика степенных сумм²

Формулировка:

Наша функция $p > 1, f(x) = x^p$. Возьмём сумму первых n членов:

$$1^{p} + 2^{p} + \ldots + n^{p} = \int_{1}^{n} f(x) = \sum_{i=1}^{n-1} x^{p} + \frac{1}{2} 1^{p} + \frac{1}{2} n^{p} - \frac{1}{2} \int_{m}^{n} p(p-1) x^{p-2} \{x\} (1 - \{x\}) = \ldots = \frac{n^{p+1}}{p+1} + \frac{1}{2} n^{p} + O(\max 1, n^{p-1})$$

Доказательство:

Формула Эйлера-Маклорена:

$$1^{p} + 2^{p} + \ldots + n^{p} = \int_{1}^{n} x^{p} dx + \frac{1}{2} + \frac{n^{p}}{2} + \frac{p(p-1)}{2} \int_{1}^{n} x^{p-1} \{x\} (1 - \{x\}) dx$$

Теперь один из интегралов оценим, а второй просто посчитаем.

$$0 \le \int_1^n x^{p-2} \{x\} \{1 - x\} dx \le \frac{1}{4} \left(\frac{n^{p-1} - 1}{p - 1} \right) = O\left(\max 1, n^{p-1} \right)$$

Оценка справедлива, т.к. $\max{\{x\}\{1-x\}}$ достигается при $x=\frac{1}{2}$

$$\int_{1}^{n} x^{p} dx = \frac{n^{p+1} - 1}{p+1}$$

Итого:

$$1^{p} + 2^{p} + \ldots + n^{p} = \frac{1}{2}(1 + n^{p}) + \frac{n^{p+1} - 1}{p+1} + O(\max 1, n^{p-1})$$

Все константы запихиваем под O

$$1^{p} + 2^{p} + \ldots + n^{p} = \frac{n^{p}}{2} + \frac{n^{p+1}}{p+1} + O(\max 1, n^{p-1})$$

q.e.d.

Fun fact:

При
$$p < -1$$
 $1^p + 2^p + \ldots + n^p = O(1) \Rightarrow \sum_{n=1}^{+\infty} n^p$ - сходится.

${f 1.4.21}$ Асимптотика частичных сумм гармонического ряда 3

Формулировка:

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \ldots = \ln n + \gamma + o(1), \gamma \in \left[\frac{1}{2}, \frac{1}{2} + \frac{1}{8}\right]$$

Доказательство.

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \frac{1}{2} \left(1 + \frac{1}{n} \right) + \ln n + \ln 1 + \int_{1}^{n} \frac{1}{x^{3}} \{x\} \{1 - x\} dx$$

Заметим, что правый интеграл возрастает как f(n) и ограничен

$$\int_{1}^{n} \frac{1}{x^{3}} \{x\} \{1 - x\} \, \mathrm{d}x \le \frac{1}{4} \int_{1}^{n} \frac{1}{x^{3}} \, \mathrm{d}x \le \frac{1}{4} \left(-\frac{1}{2} \frac{1}{x^{2}} \Big|_{1}^{n} \right) \le \frac{1}{8} \left(1 - \frac{1}{n^{2}} \right) \le \frac{1}{8}$$

Первый переход легитимен, т.к. это возрастающая функция. Последний переход справедлив, т.к. $\frac{1}{n^2}$ - возрастающая. Таким образом,

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \dots = \ln n + \gamma + o(1)$$
 (1)

где $\gamma \in [\frac{1}{2}; \frac{1}{2} + \frac{1}{8}]$ - постоянная Эйлера, оборачивает интеграл и $\frac{1}{2} \left(1 + \frac{1}{n}\right)$.

1.4.22 Формула Валлиса¹

Формулировка

$$\int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \frac{n-1!!}{n!!} \frac{\pi}{2}, n$$
– чётно
$$\int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \frac{n-1!!}{n!!}, n$$
– нечётно

Доказательство

 \triangleright

$$I_n := \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x$$

$$I_0 = \frac{\pi}{2}$$

$$I_1 = 1$$

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \sin x \cdot \sin^{n-1} x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \sin^n$$

$$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) dx = (n-1) \int_0^{\frac{\pi}{2}} (\sin^{n-2} x - \sin^n x) dx =$$

$$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x dx - (n-1) \int_0^{\frac{\pi}{2}} \sin^n x dx = (n-1) I_{n-2} - (n-1) I_n$$

$$I_n + (n-1) I_n = (n-1) I_{n-2}$$

$$I_n = \frac{n-1}{n} I_{n-2}$$

 \triangleleft

Простейшие свойства несобственного интеграла 2

Формулировка:

1. Критерий Больцано-Коши

$$\lim_{A o b-0}\int_a^A$$
 — конечный $\Leftrightarrow \forall arepsilon>0 \ \exists \delta\in(a,b) \ \forall A,B\in(\delta,b) \quad \left|\int_A^B\right|$

2. Аддитивность по промежутку

f — допустима, $[a,b),c\in(a,b)$. Тогда $\int_a^{\to b}$ и $\int_c^{\to b}$ — сходятся и расходятся одновременно. А если сходятся, то $\int_a^{\to b}=\int_a^c+\int_c^{\to b}$

3. Линейность

f,g — допустимы, $\int_a^{\to b}f,\int_a^{\to b}g$ — сходятся, $\lambda\in\mathbb{R}$. Тогда $\lambda f,f\pm g$ — допустимы, $\int_a^{\to b}\lambda f$ и $\int_a^{\to b}f\pm g$ — сходятся.

(a)
$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f$$

(b)
$$\int_a^{\to b} f \pm g = \int_a^{\to b} f + \int_a^{\to b} g$$

4. Интегрирование неравенств

$$f,g$$
 — допустимы, $\int_a^{\to b} f, \int_a^{\to b} g$ — существуют в $\overline{\mathbb{R}},\, f \leq g$ на $[a,b)$. Тогда $\int_a^{\to b} f \leq \int_a^{\to b} g$

5. Интегрирование произведения

f,g — дифф. на[a,b), f',g' — допустимы. $\Leftrightarrow f,g \in C[a,b]$.

 $\int_a^{\to b} f g' = f g|_a^{\to b} - \int_a^{\to b} f' g$ (если существуют хотя бы 2 предела, то существует и 3й, и равенство выполняется)

6. Интегрирование композиции

$$\phi: [\alpha, \beta) \to \langle A, B \rangle, \phi \in C[\alpha, \beta] \ f: \langle A, B \rangle \to \mathbb{R}, \exists \phi (\beta - 0) \in \overline{\mathbb{R}}$$

$$\int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt = \int_{\phi(\alpha)}^{\beta} \phi(\beta-0) f(x)dx$$

 Π римечание: f — кусочно непрерывна на [a,b]. Если рассмотреть на [a,b), то $\int_a^{\to b} f = \int_a^b f$

Доказательство:

1. Почти в тупую выводится из признака Больцано-Коши:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x_1, x_2 : |x_1 - b| < \delta \quad |x_2 - b| < \delta \quad |f(x_1) - f(x_2)| < \varepsilon \Leftrightarrow \exists \lim_{x \to b} f(x) \in \mathbb{R}$$

(это он же, но для $\lim_{A\to b-0}\Phi(A),$ где $\Phi(A)=\int_a^A f(x)dx)$

 $2. \ \forall A \in (a,b)$

$$\int_{a}^{A} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{A} f(x)dx$$

Дальше делаем предельный переход и радуемся жизни.

Следствие из критерия Больцано-Коши

Если
$$\exists A_n \to b-0 \quad B_n \to b-0; \quad A_n < B_n; \quad \int_{A_n}^{B_n} f(x) dx \nrightarrow 0$$

Тогда $\int_a^{\to b} f(x)dx$ - расходится.

Доказывается пристальным взглядом на верхний и нижний предел.

3.

4.

5.

6. Все эти пункты доказываются по аналогии с п.2: Мы сводим признаки к признакам обычных определенных интегралов и делаем предельный переход.

1.4.24 Изучение сходимости интеграла $\int_{10}^{\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}$

Формулировка:

 $\int_{10}^{\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}$ - когда-то сходится, а когда-то нет.

Доказательство:

Рассмотрим возможные значения α :

1. $\alpha > 1$

Пусть $\alpha=1+2a,\quad a\in(0,+\infty).$ Тогда:

$$\int_{10}^{+\infty} \frac{dx}{x^{1+2a} \cdot (\ln x)^{\beta}} = \int_{10}^{+\infty} \frac{dx}{x^{1+a}} \cdot \frac{1}{x^{a} \cdot (\ln x)^{\beta}}$$

Заметим, что второй множитель $\to 0$ при $x \to \infty$. Почему? При $\beta \ge 0$ - тривиально, знаменатель будет улетать в бесконечность.

Для $\beta<0$ применим хитрое правило Лопиталя: $\frac{1}{x^{a}\cdot(\ln x)^{-\beta}}=\frac{(\ln x)^{\beta}}{x^{\alpha}}$ - здесь уже $\beta>0$, а числитель и знаменатель $\to+\infty$. Лопиталим:

$$\frac{\beta (\ln x)^{\beta-1} \frac{1}{x}}{a \cdot x^{a-1}} = \frac{\beta \cdot (\ln x)^{\beta-1}}{a \cdot x^a}$$

Видим, что просто уменьшается степерь у $\ln x \Rightarrow$ применив Лопиталя β раз получим что-то вроде $\frac{\beta!}{a^{\beta}x^{a}} \to 0$ (важно, что "вроде т.к. степени могут быть неделыми) \Rightarrow от β ничего не зависит при $\alpha > 1 \Rightarrow \int_{10}^{+\infty} \frac{dx}{x^{1+a}} \cdot \frac{1}{x^{a} \cdot (\ln x)^{\beta}} \le \frac{1}{x^{1+a}}$ - сходится, начиная с некоторого x.

 $2. \ \alpha < 1$

Пусть $\alpha = 1 - 2b$, $b \in (0, +\infty)$. Тогда:

$$\int_{10}^{+\infty} \frac{dx}{x^{1-b}} \cdot \frac{1}{x^{-b} \cdot (\ln x^{\beta})} = \int_{10}^{+\infty} \frac{dx}{x^{1-b}} \cdot \left(\frac{x^b}{(\ln x)^{\beta}}\right) \ge \frac{1}{x^{1-b}}$$

- начиная с некоторого места расходится.

3. $\alpha = 1$

$$\int_{10}^{+\infty} \frac{dx}{x \cdot (\ln x)^{\beta}} = \begin{bmatrix} y = \ln x \\ x = e^y \end{bmatrix} = \int_{\ln 10}^{+\infty} \frac{dy \cdot e^y}{e^y \cdot y^{\beta}} = \int_{\ln 10}^{+\infty} \frac{dy}{y^{\beta}}$$

где-то эту штуку мы уже видели. При $\beta \le 1$ - расходится, а при $\beta > 1$ - сходится.

Итого:

 $\alpha > 1$,

 $\forall \beta$ - сходится.

 $\alpha < 1$,

 $\forall \beta$ - расходится.

 $\alpha = 1$.

 $\beta \leq 1$ - расходится,

 $\beta > 1$ - сходится.

2 Период Мезозойский

2.1 Важные определения

2.1.1 Гамма функция Эйлера 1

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t$$

2.1.2 Абсолютно сходящийся интеграл, ряд 1

2.1.2.1 Интеграл

 $\exists f: [a,b) \to \mathbb{R}$ допустима

Несобственный интеграл называется абсолютно сходящимся, когда выполняются 2 условия:

- 1. $\int_a^{\to b} f(x) \, \mathrm{d}x$ сходится
- 2. $\int_a^{\to b} |f(x)| \, \mathrm{d}x$ сходится

2.1.2.2 Ряд

 $\exists a_n$

- 1. $\sum_{n=1}^{+\infty} a_n$ сходится
- 2. $\sum_{n=1}^{+\infty} |a_n|$ сходится

2.1.3 Числовой ряд, сумма ряда, сходимость, расходимость 1

2.1.3.1 Числовой ряд

Выражение

$$\sum_{k=1}^{+\infty} a_k \quad | \quad a_1 + a_2 + a_3 + \dots$$

называется формальным рядом. Введём понятие частичных сумм:

$$S_N = a_1 + a_2 + \ldots + a_N$$

Тогда ряд можно представить как предел последовательности частичных сумм:

$$\lim_{N \to +\infty} S_N = S$$

2.1.3.2 Сумма ряда

S называют суммой ряда.

2.1.3.3 Сходимость

Если $S \in \mathbb{R}$, то такой ряд называют сходящимся

2.1.3.4 Расходимость

Если $S=\pm\infty$ или $\nexists \lim S_N$, то такой ряд называют расходящимся

2.2 Определения

2.2.1 n-й остаток ряда¹

 $R_N = \sum_{k=N}^{+\infty} a_k - N$ -ый остаток ряда.

2.2.2 Критерий Больцано-Коши сходимости числового ряда 1

Критерий Больцано-Коши

2.2.3 Бесконечное произведение³

Выражение вида $\prod_{k=1}^{+\infty} a_k$ будем называть бесконечным произведением.

Обозначим $P_n = \prod\limits_{k=1}^n a_k$ - что-то типа частичного произведения.

Если:

1. \exists конечный $\lim_{n \to +\infty} P_n \in (0, +\infty)$, то произведение сходится

2. $\lim_{n\to+\infty}P_n=+\infty$, то произведение расходится

3. $\lim_{n\to+\infty}P_n=0$, то произведение расходится к нулю

4. $\sharp \lim_{n \to +\infty} P_n$, то произведение расходится

Обозначим $\prod_n = \prod_{k=n}^{+\infty}$ и отметим пару свойств бесконечных произведений:

 $1. \prod_{k=n}^{+\infty} = P_{n-1} \cdot \prod_{n}$

2. $\prod_{k=n}^{+\infty} a_k$ сходится $\Rightarrow \prod_n \to 1$ при $n \to +\infty$

3. $\prod_{k=n}^{+\infty} a_k$ сходится $\Rightarrow a_k \to 1$

4. $\prod_{k=n}^{+\infty}a_k$ сходится только если $\exists K\in\mathbb{N}:\quad\forall k>K\quad a_k>0$

5. Пусть $a_k>0$. Тогда $\prod_{k=n}^{+\infty}a_k$ сходится \Leftrightarrow ряд $\sum \ln a_k$ сходится. Причем если $\sum \ln a_k=S$, то $\prod_{k=n}^{+\infty}a_k=e^S$

Доказываются эти свойства очевидно, поэтому просто накину идеи доказательств.

1. Предельный переход при $n \to +\infty$

- 2. Выражаем нужный член из первого пункта
- 3. $a_k = \frac{P_k}{P_{k-1}} \to 1$ при $k \to +\infty$
- 4. Теорема о стабилизации знака
- 5. Просто прологарифмируем P_n

2.3 Важные теоремы

2.3.1 Гамма функция Эйлера. Простейшие свойства. 1

Формулировка + доказательство

1. Область определения

Поищем где интеграл сходится:

Рассмотрим промежуток интегрирования от 0 до 1. Очевидно, при $t \to 0$ $t^{x-1}e^{-t} \equiv t^{x-1}$. Ну а так как x-1>-1, то и интеграл сходится. Обратите внимание, это именно то условие, почему при $x \le 0$ всё ломается.

Теперь осталось посмотреть на промежуток от 1 до $+\infty$: Надо просто заметить что экспонента стремится к нулю быстрее, чем возрастает t^{x-1} . Соответственно, мы можем отломить от неё кусок, заметив, что вся наша формула неотрицательна (т.к. все члены положительны):

$$0 < t^{x-1}e^{-t} = t^{x-1}e^{-\frac{t}{2}}e^{-\frac{t}{2}}$$

Так как экспонента стремится к нулю быстрее при росте t, а t^{x-1} ограничена, то $t^{x-1}e^{-\frac{t}{2}}$ тоже стремится к нулю, а значит:

$$t^{x-1}e^{-\frac{t}{2}}e^{-\frac{t}{2}} < e^{-\frac{t}{2}}$$

А это уже стремится к нулю, то есть интеграл сходится.

2. Выпуклость

Зафиксируем t и рассмотрим подынтегральную функцию. Тогда формула превратится в $f(x) = t^{x-1}e^{-t}$. Теперь мы смотрим на t как на константу и видим произведение показательной функции с какой-то константой. Показательная функция выпукла $\Longrightarrow f(\alpha_1 x_1 + \alpha_2 x_2) \le \alpha_1 f(x_1) + \alpha_2 f(x_2)$. Теперь если всё это безобразие проинтегрировать и подшаманить, то получится

$$\int_0^{+\infty} t^{\alpha_1 x_1 + \alpha_2 x_2 - 1} e^{-t} \, \mathrm{d}t \le \alpha_1 \int_0^{+\infty} t^{x_1 - 1} e^{-t} \, \mathrm{d}t + \alpha_2 \int_0^{+\infty} t^{x_2 - 1} e^{-t} \, \mathrm{d}t$$

А это определение выпуклости нашей рассматриваемой функции. BTW, из выпуклости следует непрерывность этой функции на всей области определения.

3. Значение Проинтегрируем нашу гамма-функцию по частям:

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = -t^x e^{-t} \Big|_0^{+\infty} + x \int_0^{+\infty} t^{x-1} e^{-t} dt = 0 + x \int_0^{+\infty} t^{x-1} e^{-t} dt = x \cdot \Gamma(x)$$

45

Теперь заметим, что $\Gamma(1)=1$, из чего по индукции получаем $\Gamma(n+1)=n!$

4. График

Рассмотрим $\Gamma(x) = \frac{\Gamma(x+1)}{x}$

При
$$x \to 0$$
 $\Gamma(x+1) \to \Gamma(1) = 1 \Rightarrow \Gamma(x) = \frac{\Gamma(x+1)}{x} \to \frac{1}{x}$

5. Связь с π

$$\Gamma(\frac{1}{2}) = \int_0^{+\infty} t^{-\frac{1}{2}} e^{-t} \, \mathrm{d}t = 2 \int_0^{+\infty} x \cdot x^{-1} e^{-x^2} \, \mathrm{d}x = 2 \int_0^{+\infty} e^{-x} \, \mathrm{d}x = 2 \int_0^{-$$

2.3.2 Неравенство Йенсена для сумм¹

Формулировка

 $f:\langle a,b \rangle o \mathbb{R}$ выпуклая.

$$\forall x_1, x_2, \dots, x_n \in [a, b]$$

 $\forall \alpha_1, \alpha_2, \dots, \alpha_n : \sum_i \alpha_i = 1$

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \ldots + \alpha_n f(x_n)$$

Доказательство

Пользуясь выпуклостью, мы можем провести опорную прямую такую, что f(x) будет выше этой прямой. Нас интересует прямая в точке $x^* := \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$ по условию. Но сначала надо убедиться, что точка лежит в $\langle a, b \rangle$:

$$a \le \min_{i}(x_i) \le \sum_{i} \alpha_i \cdot x_i \le \sum_{i} \alpha_i \cdot \max_{j}(x_j) = \max_{j}(x_j) \sum_{i} \alpha_i = \max_{j}(x_j) \le b$$

Теперь проводим опорную прямую:

$$f(x^*) = kx^* + b = \sum_{i} (k\alpha_i \cdot x_i) + b = \sum_{i} (k\alpha_i \cdot x_i + b \cdot \alpha_i) = \sum_{i} (\alpha_i(k \cdot x_i + b)) \le \sum_{i} \alpha_i f(x_i)$$

Note: $b = \sum_i (\alpha_i \cdot b)$, так как сумма $\alpha_i = 1$

2.3.3 Неравенство Гельдера для интегралов³

Формулировка

Пусть $f, g \in C[a, b]; \frac{1}{p} + \frac{1}{q} = 1$. Тогда

$$\left| \int_a^b fg \right| \le \left(\int_a^b |f|^p \right)^{1/p} \left(\int_a^b |g|^q \right)^{1/q}$$

Доказательство. Распишем интегральные суммы: $x_k := a + k \frac{b-a}{n}$; $\Delta x_k = \frac{b-a}{n}$. Пусть $a_i = f(x_k)(\Delta x_k)^{1/p}, b_i = g(x_k)(\Delta x_k)^{1/q}$, тогда, по неравенству Гёльдера для сумм:

$$\left| \sum f(x_k) g(x_k) (\Delta x_k)^{\frac{1}{p} + \frac{1}{q}} \right| \le \left(\sum |f(x_k)|^p \Delta x_k \right)^{1/p} \left(\sum |g(x_k)|^q \Delta x_k \right)^{1/q} \\ \left| \sum f(x_k) g(x_k) \right| \le \left(\sum |f(x_k)|^p \right)^{1/p} \left(\sum |g(x_k)|^q \right)^{1/q}$$

Осталось лишь сделать предельный переход при $n \to \infty$

$$\left| \int_a^b fg \right| \leq \left(\int_a^b |f|^p \right)^{1/p} \left(\int_a^b |g|^q \right)^{1/q}$$

2.3.4 Признак сравнения сходимости положительных рядов¹

2.3.4.1 Лемма о сходимости положительных рядов

Формулировка

 $a_n > 0$

 $\sum a_n$ сходится $\Leftrightarrow S_n$ ограничено.

Доказательство

Тривиально следует из того, что ввиду того, что $a_n \ge 0$, последовательность частичных сумм S_n монотонно возрастает. То есть оно ограничено своим пределом частичных сумм и монотонно к нему стремится снизу.

2.3.4.2 Теорема

Формулировка

 $\exists a_n \geq 0, b_n \geq 0, \sum a_n, \sum b_n$

1. $a_n \leq b_n \Rightarrow \sum b_n$ сходится $\Rightarrow \sum a_n$ сходится, $\sum a_n$ расходится $\Rightarrow \sum b_n$ расходится. Замечание: аналогичное утверждение верно для $\forall k a_n \leq k \cdot b_n$, так как сходимость b_n и $k \cdot b_n$ эквивалентна и можно безопасно их тут подменить.

2. $\exists \lim \frac{a_n}{b_n} = l$. Тогда если $l \in \mathbb{R}_+$, то сходимость $\sum a_n$ эквивалентна сходимости $\sum b_n$. Если $l = \infty$, то $\sum a_n$ сходится $\Rightarrow \sum b_n$ сходится, $\sum b_n$ расходится $\Rightarrow \sum a_n$ расходится. Если l = 0, то $\sum b_n$ сходится $\Rightarrow \sum a_n$ сходится, $\sum a_n$ расходится $\Rightarrow \sum b_n$ расходится.

Доказательство

- 1. Воспользуемся приведённой леммой и просто сведём наши сходящиеся ряды к частичным суммам и обратно: $a_n \leq b_n \Rightarrow S_n^{(a)} \leq S_n^{(b)}$. Положим $\sum b_n$ сходится, тогда по лемме $S_n^{(b)}$ ограничено. Тогда $S_n^{(a)}$ тоже ограничено, а значит и $\sum a_n$ сходится. Аналогично работает наоборот.
- 2. Давайте всё сведём к предыдущему пункту. Если $l \in \mathbb{R}_+$, то мы всегда можем домножить a_n на какое-то вещественное число, чтобы оно стало меньше b_n (т.к. начиная с какого-то n частное всей последовательности будет лежать в какой-то окрестности l). Также наоборот, мы всегда можем сделать $k \cdot a_n > b_n$, то есть мы получили первое утверждение в обоих случаях симметрично. То есть действительно сходимость у этих рядов эквивалентна.

Примечание: то, что мы рассматриваем сходимость рядов начиная с какого-то n, абсолютно законно, так как мы ранее доказывали эквивалентность сходимости n-го остатка и самого ряда.

При $l=\infty$ всё тривиально, так как в этом случае начиная с какого-то места, очевидно, $a_n>b_n$, что уже свелось к первому признаку. Для l=0 аналогично.

2.3.4.3 Важные эталонные ряды, с которыми надо всё сравнивать

- 1. $\sum \frac{1}{n^p}$ расходится при $p \le 1$, сходится при p > 1.
- 2. $\sum q^n$ сходится при 0 < q < 1, расходится при $q \ge 1$.

2.3.5 Признак Коши сходимости положительных рядов¹

Формулировка

$$\sum a_n \ge 0; \exists k_n = \sqrt[n]{a_n}$$

Тогда:

- 1. Начиная с какого-то места $\exists q: k_n < q < 1 \ (q$ мы ввели чтобы потом сравнивать с ним, так как признак сравнения у нас строго < 1 и с 1 сравнивать неудобно) $\Rightarrow \sum a_n$ сходится
- 2. \exists бесконечное число элементов $k_n \ge 1 \Rightarrow \sum a_n$ расходится.

Доказательство

1. Выразим из "волшебного" k_n нормальный a_n . $k_n = \sqrt[n]{a_n} \Rightarrow a_n = k_n^n < q^n$. У нас q < 1, а значит можно сравнить его с ближайшим рациональным < 1 и у нас получается эталонный $\frac{1}{\alpha^n}$ где n у нас, разумеется > 1, а значит всё сходится.

2. Прошлая стратегия не работает т.к. $q \ge 1$, а значит мы не подберём рациональную дробь для эталонного. Но зато у нас тут не выполнится необходимый признак сходимости, так как k_n не стремится к 0, сколько не возводи его в большую степень, он только увеличится.

2.4 Теоремы

2.4.1 Интеграл Эйлера-Пуассона¹

Формулировка

$$\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}$$

Доказательство

Простое неравенство, которое непросто запомнить:

$$1 - x^2 \le e^{-x^2} \le \frac{1}{1 + x^2}$$

Следует из выпуклости $(e^t \ge 1 + t)$ и работает для $x \in \mathbb{R}$

Как обычно, проинтегрируем (неравенство по середине выражения обуславливается положительностью функции) и возведём всё в степень n:

$$\int_0^1 (1 - x^2)^n \, \mathrm{d}x \le \int_0^1 e^{-nx^2} \, \mathrm{d}x \le \int_0^{+\infty} e^{-nx^2} \, \mathrm{d}x \le \int_0^{+\infty} \frac{1}{(1 + x^2)^n} \, \mathrm{d}x$$

Теперь аккуратно считаем части неравенства:

$$\int_0^1 (1-x^2)^n \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} (\sin t)^{2n+1} \, \mathrm{d}t = = \int_0^{\frac{\pi}{2}} \frac{(2n)!!}{(2n+1)!!}$$

$$\int_{0}^{1} e^{-nx^{2}} dx = \frac{1}{t = \sqrt{n} \cdot x} \int_{0}^{+\infty} e^{-t^{2}} dt$$

$$\int_0^{+\infty} \frac{1}{(1+x^2)^n} \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \cos^{2n-2} t \, \mathrm{d}t = \underbrace{(2n-3)!!}_{\Phi \text{ормула Валлиса}^1} \frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2}$$

Домножаем наши достижения на \sqrt{n} :

$$\frac{(2n)!!\sqrt{n}}{(2n+1)!!} \le \int_0^{+\infty} e^{-t^2} dt \le \frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2} \sqrt{n}$$

Предельный переход:

$$\frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{n}} \xrightarrow{\Phi_{\text{ормула Валлиса}^1}} \sqrt{\pi}$$

$$\frac{\sqrt{n}}{2n+1} \equiv \frac{1}{2\sqrt{n}}$$

$$\frac{(2n)!!\sqrt{n}}{(2n+1)!!} = \frac{(2n)!!}{(2n-1)!!} \frac{\sqrt{n}}{2n+1} \equiv \frac{(2n)!!}{(2n-1)!!} \frac{1}{\sqrt{n}} \frac{1}{2} \xrightarrow[\Phi \text{ормула Валлиса}^1]{\sqrt{\pi}} \frac{\sqrt{\pi}}{2}$$

$$\frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2} \sqrt{n} = \frac{1}{\frac{(2n-2)!!}{(2n-3)!!} \cdot \frac{1}{\sqrt{n-1}}} \cdot \frac{\sqrt{n}}{\sqrt{n-1}} \cdot \frac{\pi}{2} \to \frac{1}{\sqrt{\pi}} \cdot 1 \cdot \frac{\pi}{2} = \frac{\sqrt{\pi}}{2}$$

По Т. О двух городовых

$$\int_0^{+\infty} e^{-t^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{2}$$

${f 2.4.2}$ Лемма об оценке приближения экспоненты ее замечательным пределом 3

Формулировка

При $0 \le t \le n$ справедливо

$$0 \le e^{-t} - \left(1 - \frac{1}{n}\right)^n \le \frac{1}{n} t^2 e^{-t}$$

Доказательство

Из доказательства предыдущей теоремы берем неравенство:

$$1 + y \le e^y \le (1 - y)^{-1}, \quad y \in [0, 1)$$

Подставим $y=\frac{t}{n}$ и возведем в степень -n:

$$\left(1 + \frac{t}{n}\right)^{-n} \ge e^{-t} \ge \left(1 - \frac{t}{n}\right)^n$$

Из правой части неравенства следует

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n = e^{-t} \left(1 - e^t \left(1 - \frac{t}{n}\right)^n\right)$$

Из левой части неравенства следует, что $e^t \ge \left(1 + \frac{t}{n}\right)^n$. Применим ее

$$0 \leq e^{-t} \left(1 - e^t \left(1 - \frac{t}{n}\right)^n\right) \leq e^{-t} \left(1 - \left(1 + \frac{t}{n}\right)^n \left(1 - \frac{t}{n}\right)^n\right) = e^{-t} \left(1 - \left(1 - \frac{t^2}{n^2}\right)^n\right)$$

Из неравенства Бернулли следует

$$\left(1-\frac{t^2}{n^2}\right)^n \geq 1-\frac{t^2}{n}, \text{ то есть } 1-\left(1-\frac{t^2}{n^2}\right)^n \leq \frac{1}{n}\,t^2$$

Применяем результат и получаем требуемое неравенство

2.4.3 Теорема об абсолютно сходящихся интегралах и рядах 1

Формулировка

2.4.3.1 Интегралы

 $\exists f: [a,b) \to \mathbb{R}$ допустима

Тогда эквивалентны следующие утверждения:

- 1. $\int_a^b f(x) dx$ абсолютно сходится
- 2. $\int_a^b |f(x)| dx$ сходится
- 3. $\int_a^b f_+$ и $\int_a^b f_-$ сходятся

2.4.3.2 Ряды

 $\exists a_n$ ряд.

Тогда эквивалентны следующие утверждения:

- 1. $\sum_{n=1}^{+\infty} a_n$ абсолютно сходится
- 2. $\sum_{n=1}^{+\infty} |a_n|$ сходится
- 3. $\sum_{n=1}^{+\infty} a_n^+$ и $\sum_{n=1}^{+\infty} a_n^-$ сходятся

Доказательство

 $1 \rightarrow 2$

По определению абсолютной сходимости

 $2 \rightarrow 3$

Заметим, что f_+ и f_- либо положительны, либо константный 0. Другими словами, одна из срезок будет равна |f(x)|, а другая в это время будет равна 0. Соответственно, существует конечный предел f(x) при $x \to b-0$. Ну а значит, что и срезка будет его иметь и всё сойдётся. В 0 проблем не будет по Т. О стабилизации знака.

 $3 \rightarrow 1$

Очевидно, т.к. можно выразить $f = f_{+} - f_{-}$

2.4.4 Изучение интеграла $\int_1^\infty \frac{\sin x \, dx}{x^p}$ на сходимость и абсолютную сходимость²

p > 1

 $\frac{|\sin x|}{x^p} \leq \frac{1}{x^p} \Rightarrow$ при p > 1 есть абсолютная сходимость.

По следствию из критерия Больцано-Коши докажем, что при $p \le 1$ нет абсолютной сходимости:

Выберем $A_k = \pi k$ $B_k = 2\pi k$. Обе последовательности $\to \infty$ при $k \to \infty$

$$\int_{\pi k}^{2\pi k} \frac{|\sin x|}{x^p} \ge \int_{\pi k}^{2\pi k} \frac{|\sin x|}{x} \qquad p \le 1$$

Теперь делаем финт ушами:

$$\geq \frac{1}{2\pi k} \int_{\pi k}^{2\pi k} = \frac{2k}{2\pi k} \nrightarrow 0$$

 \Rightarrow при $p \leq 1$ нет абсолютной сходимости

 $p \in (0,1]$

$$\int_{1}^{+\infty} \frac{\sin x dx}{x^{p}} = \begin{bmatrix} u = \frac{1}{x^{p}} & u' = -\frac{p}{x^{p+1}} \\ v' = \sin x & v = -\cos x \end{bmatrix} = -\frac{\cos x}{x^{p}} \Big|_{1}^{+\infty} - p \int_{1}^{+\infty} \frac{\cos x}{x^{p+1}} dx$$

т.к. левое слагаемое сходится, а интеграл вообще сходится абсолютно $\Rightarrow p > 0$ - сходится, а т.к. p > 1 - абсолютно сходится \Rightarrow просто сходится при $p \in (0,1]$

 $p \le 0$

Ну, видимо при p < 0 интеграл расходится. Докажем это через следствие из критерия Больцано-Коши.

$$A_k = 2\pi k \qquad B_k = 2\pi k + \pi$$

$$\int_{2\pi k}^{2\pi k + \pi} \frac{\sin x}{x^p} \ge \frac{1}{(2\pi k + \pi)^p} \int_{2\pi k}^{2\pi k + \pi} \sin x = \frac{2}{(2\pi k + \pi)^p} \to 0$$

 \Rightarrow расходится.

Итого:

p > 1 - сходится абсолютно.

 $p \in (0,1]$ - просто сходится.

 $p \leq 0$ - расходится.

2.4.5 Признак Абеля-Дирихле сходимости несобственного интеграла²

Формулировка:

1. Дирихле

f - допустима на [a,b) . $F(A)=\int_a^A f(x)dx$. $A\in [a,b))$

Пусть F - ограничена: $\exists c_1 > 0 : \forall A \in [a,b) \quad |F(a)| \leq c_1$

 $g\in C^1[a,b];\quad g(x) o 0$ при $x o b-0;\quad g(x)$ - монотонна $\Rightarrow \int_a^{ o b}$ - сходится.

2. Абель

f - допустима на [a,b) $\int_a^{\to b} f$ - сходится.

 $g \in C^1[a,b]; \quad g(x)$ - монотонна; g(x) - ограничена: $\exists c_2 > 0 : \forall x \in [a,b] \quad |g(x)| < c_2$ $\Rightarrow \int_a^{\to b}$ - сходится.

Доказательство:

1.

$$\int_{a}^{B} f(x)g(x)dx = \begin{bmatrix} u' = f & u = F = f' \\ v = g & v' & = g' \end{bmatrix} = F(x)g(x)|_{a}^{B} - \int_{a}^{B} F(x)g'(x)dx$$

Теперь видим, что первое слагаемое ограничено и $\to 0$, а интеграл: $\int_a^B |F(x)g'(x)| dx$ - сходится $\Leftrightarrow \exists \lim_{B \to b = 0}$

Почему? Потому что (абсолютно):

$$\int_{a}^{B} |F(x)g'(x)| dx \le c_1 \int_{a}^{b} |g'(x)| dx = \pm c_1 \int_{a}^{b} g'(x) dx = \pm c_1 g(x)|_{a}^{b}$$

- конечный, т.к. $g(x) \to 0$ при $x \to b - 0$. Вся эта история конечна \Rightarrow сходится.

2. $\lim_{x\to b-0} g(x) = \alpha \in \mathbb{R}$ (т.к. монотонна и ограничена)

Рассмотрим $\int_a^b fg = \int_a^b f(g-\alpha) + \int_a^b f \cdot \alpha$.

Второй интеграл сходится и конечный, а первый сходится по Дирихле: f - ограничена по теореме Вейерштрасса, $(g-\alpha)$ - монотонно стремится к 0.

Победа.

2.4.6 Интеграл Дирихле 2

Формулировка:

$$\int_0^{+\infty} \frac{\sin x}{x} = \frac{\pi}{2}$$

Доказательство:

Рассмотрим сумму $\cos x + \cos 2x + \cos 3x + \ldots + \cos nx$ и домножим ее на $2\sin \frac{x}{2}$:

$$2\sin\frac{x}{2}\cos x + 2\sin\frac{x}{2}\cos 2x + \ldots + 2\sin\frac{x}{2}\cos nx$$

Раскрываем слагаемые по формуле: $\sin \alpha \cos \beta = \frac{1}{2} \left(\sin \left(\alpha - \beta \right) + \sin \left(\alpha + \beta \right) \right)$ и получаем телескопическую сумму:

$$2 \cdot \frac{1}{2} \cdot \left(\sin\left(\frac{x}{2} - x\right) + \sin\left(\frac{x}{2} + x\right)\right) + 2 \cdot \frac{1}{2} \cdot \left(\sin\left(\frac{x}{2} + x\right) + \sin\left(\frac{x}{2} - 2x\right)\right) + \dots + 2 \cdot \frac{1}{2} \left(\sin\left(\frac{x}{2} - xn\right) + \sin\left(\frac{x}{2} + xn\right)\right) =$$

$$= -\sin\left(\frac{x}{2}\right) + \sin\left(\frac{3}{2}x\right) - \sin\left(\frac{3}{2}x\right) + \sin\left(\frac{5}{2}x\right) + \dots + \sin\left(\frac{(2n+1)x}{2}\right) = \frac{\sin\left(n + \frac{1}{2}x\right)}{2\sin\frac{x}{2}} - \frac{1}{2}$$

Здесь мы поделили на $2\sin\frac{x}{2}$

A теперь проинтегрируем полученное равенство $\cos x + \cos 2x + \cos 3x + \ldots + \cos nx = \frac{\sin{(n+\frac{1}{2})x}}{2\sin{\frac{x}{2}}} - \frac{1}{2}$ от 0 до π :

$$0 = \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} - \int_0^{\pi} \frac{1}{2}dx \Rightarrow \frac{\pi}{2} = \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}}$$

Итого, нам очень хочется верить, что

$$\int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{2 \cdot \frac{x}{2}} = \frac{\pi}{2}$$

Почему? т.к.

$$\int_0^\pi \frac{\sin \left(n + \frac{1}{2}\right) x}{2 \cdot \frac{x}{2}} = \left[y = (n + \frac{1}{2})x\right] = \int_0^{(n + \frac{1}{2})\pi} \frac{\sin y}{y} dx$$

А затем мы просто устремляем $n \to +\infty$

Hy а если мы хотим во что-то верить, это надо сперва доказать. Но сначала проведем эксперимент:

$$\int_0^{\pi} \sin Nx \cdot f(x) = \begin{bmatrix} u = f(x) & u' = f'(x) \\ v' = \sin Nx & u = \frac{\cos Nx}{N} \end{bmatrix} = \frac{-\cos Nx}{N} \cdot f(x) \Big|_0^{\pi} + \frac{1}{N} \int_0^{\pi} \cos Nx \cdot f'(x) dx$$

И при $N \to +\infty$ вся эта штука $\sim O\left(\frac{1}{N}\right)$. При условии хорошей $f(x) \in C^1[0,\pi]$. Зафиксировали. Теперь, наконец, проверим интересуещее нас утверждение:

$$\int_0^\pi \frac{\sin\left(\frac{1}{n} + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} = \frac{\pi}{2}$$

$$\int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} - \frac{\sin\left(n + \frac{1}{2}\right)x}{2\cdot\frac{x}{2}} \to 0 \qquad n \to \infty$$

$$\int_0^\pi \sin\left(\left(n + \frac{1}{2}\right)x\right) \left(\frac{1}{2\sin\frac{x}{2}} - \frac{1}{2\frac{x}{2}}\right) \to 0$$

Переход выше верен по нашему наблюдению. То, что в скобках - f(x), а оставшийся синус - $\sin Nx$. Осталось только проверить, что f(x) - хорошая.

1. Непрерывность

$$\frac{1}{2\sin\frac{x}{2}} - \frac{1}{2\frac{x}{2}} = \frac{2\cdot\frac{x}{2} - 2\sin\frac{x}{2}}{2\sin\frac{x}{2}\cdot 2\cdot\frac{x}{2}} = -\frac{\sin\frac{x}{2} - \frac{x}{2}}{2\cdot\sin\frac{x}{2}\cdot\frac{x}{2}} = -\frac{-\left(\frac{x}{2}\right)^3 + \frac{x}{2} - \frac{x}{2}}{2\cdot\frac{x}{2}\cdot\frac{x}{2}} = O(x) \to 0 \qquad x \to 0$$

2. Дифференцируемость

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{-\frac{1}{2}\cos\frac{x}{2}}{2\sin^2\frac{x}{2}} + \frac{1}{x^2} = \lim_{x \to 0} \frac{1}{x^2} - \frac{1}{4}\frac{\cos\frac{x}{2}}{\sin^2\frac{x}{2}} = \lim_{x \to 0} \frac{4\sin^2\frac{x}{2} - x^2\cos\frac{x}{2}}{x^2\sin^2\frac{x}{2}} = \lim_{x \to 0} \frac{4\cdot\frac{x^2}{4} - x^2\cdot\frac{x^2}{4}\cdot c}{x^2\left(\frac{x^2}{4}\right)} \sim \lim_{x \to 0} \frac{cx^4}{cx^4} = c$$

Последнее равенство получается из формулы Тейлора. А в конце нам вообще плевать, какая константа. Главное, что она есть.

Итого получаем, что f(x) - хорошая, и все сходится.

2.4.7 Неравенство Йенсена для интегралов¹

Формулировка

 $f: \langle A, B \rangle \to \mathbb{R}$ выпуклая, непрерывная.

 $x:[a,b]\to \langle A,B\rangle$, непрерывная.

 $\alpha:[a,b]\to\mathbb{R}_+$, непрерывная. $\int_a^b \alpha(t)\,\mathrm{d}t=1$

$$f(\int_a^b x(t)\alpha(t) dt) \le \int_a^b \alpha(t)f(x(t)) dt$$

Доказательство

Тупо везде подставляем вместо сумм интеграл. ФСЁ!

Пользуясь выпуклостью, мы можем провести опорную прямую такую, что f(x) будет выше этой прямой. Нас интересует прямая в точке $x^* := \int_a^b \alpha(t) x(t) \, \mathrm{d}t$ по условию. Но сначала надо убедиться, что точка лежит в $\langle a,b \rangle$:

$$m := \inf_{t \in [a,b]} x(t)$$

$$M := \sup_{t \in [a,b]} x(t)$$

$$a \le m \le \int_a^b x(t)\alpha(t) \, \mathrm{d}t \le \int_a^b M \cdot \alpha(t) \, \mathrm{d}t = M \int_a^b \alpha(t) \, \mathrm{d}t = M \le b$$

Теперь проводим опорную прямую:

$$f(x^*) = kx^* + b = k \cdot \int_a^b \alpha(t)x(t) \, \mathrm{d}t + b = \int_a^b \alpha(t) \cdot k \cdot x(t) \, \mathrm{d}t + \int_a^b b \cdot \alpha(t) \, \mathrm{d}t = \int_a^b \alpha(t)(k \cdot x(t) + b) \, \mathrm{d}t \le \int_a^b \alpha(t)f(x(t)) \, \mathrm{d}t$$

Note: $b = \int_a^b \alpha(t) \cdot b \, \mathrm{d}t$, так как сумма $\alpha_i = 1$

2.4.8 Теорема об условиях сходимости бесконечного произведения 3

Формулировка

- 1. Если, $\exists K \in \mathbb{N} : \forall k > K \quad a_k > 0$, то сходимость $\prod (1+a_k)$ равносильна сходимости $\sum a_k$
- 2. Если ряды $\sum a_k$ и $\sum a_k^2$ сходятся, то $\prod (1+a_k)$ тоже сходится

Доказательство

- 1. $a_k>0\Rightarrow$ сходимость $\prod(1+a_k)$ равносильна сходимости $\sum \ln(1+a_k)$, что равносильно сходимости ряда $\sum a_k$ (заменили на эквивалентную, т.к. при сходимости $a_k\to 0$)
- 2. Рассмотрим сходимость ряда $\sum \ln(1+a_k)$ на сходимость. Разложим логарифм в ряд Маклорена:

$$\sum \ln(1 + a_k) = \sum a_k - \frac{a_k^2}{2} + o(a_k^2)$$

Тогда если ряды $\sum a_k$ и $\sum a_k^2$ сходятся, то сходится и ряд $\sum \ln(1+a_k)$, а значит и соответствующее произведение.

2.4.9 Лемма о представлении синуса в виде конечного произведения³

Формулировка

 $\forall x \in \mathbb{R} \quad \forall n \in \mathbb{N}$:

$$\sin x = (2n+1)\sin\frac{x}{2n+1} \cdot \prod_{k=1}^{n} \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2\frac{\pi k}{2n+1}}\right)$$

Доказательство

Пусть m = 2n + 1. Распишем формулы Эйлера и Муавра:

$$e^{imz} = (\cos z + i\sin z)^m = \cos mz + i\sin mz$$

Но

$$(\cos z + i\sin z)^m = \sum_{k=1}^m C_m^k \cdot (\cos z)^{m-k} \cdot (i\sin z)^k$$

$$\sin mz = m \cdot (\cos z)^{m-1} \sin z - C_m^3 \cdot (\cos z)^{m-3} (\sin z)^3 + \dots$$

 ${
m T. \kappa.} \ m$ - нечетное, то заменим везде косинусы на синусы (основное тригонометрическое тождество).

$$\sin mz = \sin z P(\sin^2 z)$$

Здесь P - многочлен степени n от $\sin^2 x$

Рассмотрим $z = \frac{k\pi}{m}$, где k = 1, 2, 3, ... (все эти числа лежат в $(0, \pi/2)$). При любом $k \sin mz = 0$, $\sin z \neq 0$, т.е. $\forall z \sin^2 z$ - корень P. Разложим этот многочлен на n множителей.

$$P(u) = C\left(u - \sin^2\frac{\pi}{m}\right)\left(u - \sin^2\frac{2\pi}{m}\right)\dots\left(u - \sin^2\frac{n\pi}{m}\right)$$

Здесь C - константа. Равносильная запись:

$$P(u) = C\left(1 - \frac{u}{\sin^2\frac{\pi}{m}}\right)\left(1 - \frac{u}{\sin^2\frac{2\pi}{m}}\right)\dots\left(1 - \frac{u}{\sin^2\frac{n\pi}{m}}\right)$$

Заметим, что $P(0)=C, \lim_{z\to 0}\frac{\sin mz}{\sin z}=m.$ Теперь x=mz=(2n+1)z.Подставляем всю эту шнягу в выражение, в котором мы получили многочлен, и радуемся жизни.

2.4.10 Разложение синуса в бесконечное произведение³

Формулировка

 $\forall x \in \mathbb{R}$:

$$\sin x = x \cdot \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{\pi^2 k^2} \right)$$

Доказательство

Пусть $x \neq \pi l$, при $l \in \mathbb{Z}$ (иначе очевидно). По предыдущей лемме:

$$\sin x = (2n+1)\sin\frac{x}{2n+1} \cdot \prod_{k=1}^{n} \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2\frac{\pi k}{2n+1}}\right)$$

Рассмотрим типичный член произведения при $n \to \infty$:

$$1 - \frac{\sin^2 \frac{x}{2n+1}}{\sin^2 \frac{\pi k}{2n+1}} \to 1 - \frac{x^2}{\pi^2 k^2}$$

и перепишем уравнение из леммы:

$$\sin x = (2n+1)\sin\frac{x}{2n+1} \cdot \prod_{l=1}^{k} \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2\frac{\pi l}{2n+1}}\right) \cdot \prod_{l=k+1}^{n} \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2\frac{\pi l}{2n+1}}\right)$$

Введем обозначения:

$$u_k^n = (2n+1)\sin\frac{x}{2n+1} \cdot \prod_{l=1}^k \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2\frac{\pi l}{2n+1}}\right)$$
$$V_k^n = \prod_{l=k+1}^n \left(1 - \frac{\sin^2\frac{x}{2n+1}}{\sin^2\frac{\pi l}{2n+1}}\right)$$

Несколько наблюдений:

$$u_k = u_k^n \to x \cdot \prod_{l=1}^k \left(1 - \frac{x^2}{\pi^2 l^2}\right) \qquad n \to \infty$$

Следовательно, существует конечный предел $V_k = \lim_{n \to \infty} V_k^n$. Итого $\sin x = u_k \cdot V_k$ Теперь $k \to \infty$. Понятно, что

$$\lim_{k \to \infty} u_k = x \cdot \prod_{l=1}^{\infty} \left(1 - \frac{x^2}{\pi^2 l^2} \right)$$

Проверим теперь, что $V_k \to 1$, при $k \to \infty$

Заметим, что $\frac{2}{\pi}\cdot \varphi \leq \sin \varphi \leq \varphi$ при $\varphi \in \left[0,\frac{\pi}{2}\right]$. Теперь ясно, что

$$1 \ge 1 - \frac{\sin^2 \frac{x}{2n+1}}{\sin^2 \frac{\pi l}{2n+1}} \ge 1 - \frac{\frac{x^2}{(2n+1)^2}}{\frac{4\pi^2 l^2}{\pi^2 (2n+1)^2}} = 1 - \frac{x^2}{4l^2}$$

Следовательно,

$$1 \ge V_k^n \ge \prod_{l=k+1}^n \left(1 - \frac{x^2}{4l^2}\right)$$

Здесь n и k должны быть достаточно большими, чтобы условное $\varphi \in (0, \frac{\pi}{2})$. Теперь $n \to \infty$

$$1 \ge V_k \ge \prod_{l=k+1}^{+\infty} \left(1 - \frac{x^2}{4l^2}\right) \to 1$$

2.4.11 Неравенство Коши (для сумм и для интегралов) 3

2.4.11.1 Неравенство для сумм

Формулировка

$$a_i > 0; \frac{1}{n} \sum a_i \ge \sqrt[n]{a_1 \dots a_n}$$

Доказательство. Напишем неравенство Йенсена для $\alpha_i = \frac{1}{n}; f(x) = \ln x$ - вогнутой:

$$\ln\left(\frac{1}{n}a_1 + \frac{1}{n}a_2 + \dots + \frac{1}{n}a_n\right) \ge \frac{1}{n}\ln a_1 + \frac{1}{n}\ln a_2 + \dots + \frac{1}{n}\ln a_n$$

$$\ln\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \ge \frac{1}{n}\ln\left(a_1a_2 \dots a_n\right)$$

$$\ln\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \ge \ln\left(a_1a_2 \dots a_n\right)^{\frac{1}{n}}$$

Осталось только проэкспоненцировать получившееся неравенство:

$$\frac{a_1 + a_2 + \ldots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \ldots a_n}$$

2.4.11.2 Неравенство для интегралов

Формулировка

Пусть $f \in C[a,b], f > 0$. Тогда

$$\exp\left(\frac{1}{b-a}\int_a^b \ln f\right) \le \frac{1}{b-a}\int_a^b f$$

Доказательство. Рассмотрим интегральное неравенство Йенсена:

$$f(\int_a^b x(t)\alpha(t) dt) \le \int_a^b \alpha(t)f(x(t)) dt$$

для $f(x)=\ln x$ - вогнутой, непрерывной. $\alpha(t)=\frac{1}{b-a}=const.$ Видно, что $\int_a^b \alpha(t)\,\mathrm{d}t=1.$ Итого:

$$\ln\left(\int_{a}^{b} x(t) \frac{1}{b-a} dt\right) \ge \int_{a}^{b} \frac{1}{b-a} \ln x(t) dt$$

$$\ln\left(\frac{1}{b-a} \int_{a}^{b} x(t) dt\right) \ge \frac{1}{b-a} \int_{a}^{b} \ln x(t) dt$$

Остается проекспоненцировать и получить требуемое неравенство:

$$exp\left(\frac{1}{b-a}\int_{a}^{b}\ln x(t)\,\mathrm{d}t\right) \le \frac{1}{b-a}\int_{a}^{b}x(t)\,\mathrm{d}t$$

2.4.12 Неравенство Гельдера для сумм³

Формулировка

Пусть, $p>1,q:\frac{1}{p}+\frac{1}{q}=1\Leftrightarrow q=\frac{p}{p-1}\ a_1,a_2,\ldots,a_n,b_1,b_2,\ldots,b_n>0$ Тогда

$$\sum a_i b_i \le \left(\sum a_i\right)^{\frac{1}{p}} \left(\sum b_i\right)^{\frac{1}{q}}$$

$$\left(\sum \alpha_i x_i\right)^p \le \sum \alpha_i x_i^p$$

Положим

$$lpha_i := rac{b_i^q}{\sum b_j^q}$$

$$x_i = a_i b_i^{-\frac{1}{p-1}} \sum b_j^q$$

Тогда

$$\sum \alpha_{i} x_{i} = \sum \frac{b_{i}^{q}}{\sum b_{j}^{q}} a_{i} b_{i}^{-\frac{1}{p-1}} \sum b_{j}^{q} =$$

$$= \sum a_{i} b_{i}^{\frac{p}{p-1} - \frac{1}{p-1}} = \sum a_{i} b_{i}$$

$$\sum \alpha_{i} x_{i}^{p} = \sum \frac{b_{i}^{q}}{\sum b_{j}^{q}} a_{i}^{p} b_{i}^{-\frac{p}{p-1}} \left(\sum b_{j}^{q}\right)^{p-1} =$$

$$= \sum a_{i}^{p} b_{i}^{0} \left(\sum b_{j}^{q}\right)^{p-1} = \left(\sum b_{j}^{q}\right)^{p-1} \sum a_{i}^{p}$$

Подставляем полученные выражения в неравенство Йенсена:

$$\left(\sum a_i b_i\right)^p \le \left(\sum b_j^q\right)^{p-1} \sum a_i^p$$

Возводим обе части в степень $\frac{1}{p}$ и получаем требуемое неравенство:

$$\sum a_i b_i \le \left(\sum a_i^p\right)^{\frac{1}{p}} \left(\sum b_j^q\right)^{\frac{1}{q}}$$

2.4.13 Неравенство Минковского³

Формулировка

Пусть, $p \ge 1$. Тогда

$$\left(\sum (a_i + b_i)^p\right)^{\frac{1}{p}} \le \left(\sum a_i^p\right)^{\frac{1}{p}} + \left(\sum b_i^p\right)^{\frac{1}{p}}$$

Доказательство. Отображение $(x_1, x_2, \dots, x_n) \mapsto (\sum |x_i|^p)^{\frac{1}{p}}$ является нормой, т.е. выполняется неравенство треугольника:

$$\left(\sum |a_i + b_i|^p\right)^{\frac{1}{p}} \le \left(\sum |a_i|^p\right)^{\frac{1}{p}} + \left(\sum |b_i|^p\right)^{\frac{1}{p}}$$

При p=1 - очевидно. Пусть p>1, будем рассматривать только положительные a_i,b_i , все остальные будем сводить к ним.

Рассмотрим

$$\sum |a_i||a_i+b_i|^{p-1}, \qquad \sum |b_i||a_i+b_i|^{p-1}$$

Неравенство Гёльдера делает бррррр:

$$\sum |a_i| |a_i + b_i|^{p-1} \le \left(\sum (a_i)^p\right)^{\frac{1}{p}} \left(\sum (a_i + b_i)^{(p-1)*q}\right)^{\frac{1}{q}} = \left(\sum (a_i)^p\right)^{\frac{1}{p}} \left(\sum (a_i + b_i)^p\right)^{\frac{1}{q}}$$

Аналогично поступаем с $\sum |a_i| |a_i + b_i|^{p-1}$ и складываем:

$$\sum |a_i + b_i|^p \le \sum |a_i + b_i|^{p-1} |a_i + b_i| \le \left(\left(\sum |a_i^p| \right)^{\frac{1}{p}} + \left(\sum |b_i|^p \right)^{\frac{1}{p}} \right) \left(\sum |a_i + b_i|^p \right)^{\frac{1}{q}}$$

Делим обе части уравнения на $(\sum |a_i + b_i|^p)^{\frac{1}{q}}$:

$$\left(\sum |a_i + b_i|^p\right)^{1 - \frac{1}{q}} \le \left(\sum |a_i|^p\right)^{\frac{1}{p}} + \left(\sum |b_i|^p\right)^{\frac{1}{p}}$$
$$\left(\sum |a_i + b_i|^p\right)^{\frac{1}{p}} \le \left(\sum |a_i|^p\right)^{\frac{1}{p}} + \left(\sum |b_i|^p\right)^{\frac{1}{p}}$$

 ${\bf 2.4.14}~$ Свойства рядов: линейность, свойства остатка, необх. условие сходимости, критерий Больцано–Коши 1

2.4.14.1 Линейность

$$\sum a_n, \sum b_n$$
 сходятся, $c_n = a_n + b_n \Rightarrow \sum c_n$ сходится, $\sum c_n = \sum a_n + \sum b_n$

$$c_n = a_n + b_n \Rightarrow S_N^c = S_N^a + S_N^b$$

<

$$\sum a_n$$
 сходится $\Rightarrow \forall \alpha \in \mathbb{R}$ $\sum \alpha a_n$ сходится, $\sum \alpha a_n = \alpha \cdot \sum a_n$

 \triangleright

$$S_N^{\alpha a} = \alpha a_1 + \alpha a_2 \dots \alpha a_N = \alpha (a_1 + a_2 + \dots + a_N) = \alpha S_N^a \in \mathbb{R}$$

 \triangleleft

2.4.14.2 Свойства остатка

1. $\sum_{k=1}^{+\infty} a_k$ сходится $\Rightarrow \forall N$ R_N сходится.

⊳ Рассмотрим частичные суммы:

$$S_N^a = \sum_{k=1}^N a_k = \sum_{k=1}^m a_k + \sum_{k=m+1}^N a_k$$

При $n \to +\infty$

$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{m} a_k + \sum_{k=m+1}^{+\infty} a_k$$

 \triangleleft

- 2. $\exists N : R_N$ сходится $\Rightarrow \sum_{k=1}^{+\infty} a_k$ сходится.
 - ⊳ Такое же доказательство. <
- 3. $\sum_{k=1}^{+\infty} a_k$ сходится $\Leftrightarrow R_N \to 0$

 \triangleright

 \Rightarrow

Воспользуемся предыдущим доказательством, после предельного перехода мы получили выражение $\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^m a_k + \sum_{k=m+1}^{+\infty} a_k$. $\sum_{k=1}^{+\infty} a_k$ ограничено, $\sum_{k=1}^m a_k$ ограничено. Причём $R_N = \sum_{k=m+1}^{+\infty} a_k$ и оно тоже ограничено. При $N \to +\infty$ всё больше членов ряда "отщипывается" в $\sum_{k=1}^{m} a_k$, следовательно, эта частичная сумма стремится к исходному ряду. В таком случае, R_N ничего не остаётся, кроме как стремиться к 0, иначе доказанная выше сумма не выполнится.

 \Leftarrow

Если мы рассматриваем последовательность остатков R_N как какой-то объект, то там должна быть последовательность каких-то чисел, то есть они существуют, то есть существуют такие остатки в этой последовательности, которые будут сходиться к этим числам, то есть выполняется свойство 2.

 \triangleleft

2.4.14.3 Необх. условие сходимости

Формулировка

$$\sum a_n$$
 сходится $\Rightarrow a_n \to 0$

Доказательство

 $\sum a_n$ сходится \Rightarrow последовательность $R_n \to 0$. Это мы доказали выше. А теперь скажем $a_n = R_n - R_{n+1}$. $R_{n+1} \to 0$ так же, как и R_n . Таким образом, $a_n \to 0$ как разность двух бесконечномалых

2.4.14.4 Критерий Больцано-Коши

Хотим предложить какой-нибудь достаточный критерий для выяснения сходимости.

$$\forall \varepsilon > 0 \exists N : \forall n > N \forall p > 0 \quad |a_n + a_{n+1} + \ldots + a_{n+p}| < \varepsilon$$

Правое выражение эквивалентно следующему:

$$|S_{n+p} - S_n| < \varepsilon$$

При помощи этого мусора нетрудно доказать, что $\sum \frac{1}{n^p}$ расходится при $p \leq 1$. Давайте просто предъявим $\varepsilon = 10^{-6}, \ n = N+1, p = N$. Там всё оценивается снизу по минимальному члену, n сокращается и получается $\frac{1}{2} > \varepsilon$

2.4.15 Признак Коши сходимости положительных рядов $(pro)^1$

Формулировка

$$\sum a_n \ge 0; \exists k_n = \sqrt[n]{a_n}$$

Тогда:

1. $\exists \overline{\lim} k_n < 1 \Rightarrow \sum a_n$ сходится

2. $\exists \overline{\lim} k_n > 1 \Rightarrow \sum a_n$ расходится

3. $\exists \overline{\lim} k_n = 1 \Rightarrow \odot$

Доказательство

Вспоминаем Признак Коши сходимости положительных рядов¹. Там сказаны чудесные слова про $k_n < q < 1$, а так же про бесконечное число элементов ≥ 1 . А теперь нам дали какие-то верхние пределы. Отлично!

Вспоминаем Техническое описание верхнего предела¹, а там у нас написано РОВНО ЭТО! В первом случае в качестве ε предложим наше $q-k_n$, а во втором просто найдём какую-то точку $x:1 < x < \overline{\lim} k_n$. И снова у нас будет выполняться тех. описание верхнего предела. Короче, мы в 2 строчки свелись к Признак Коши сходимости положительных рядов¹.

Если посмотреть на $\overline{\lim} k_n = 1$, то там всё грустно, так как предел не запрещает нашей функции быть в ε -окрестности как сверху от 1, так и снизу. Так что признак не работает.

Есть даже примеры: $\sum \frac{1}{n}$ и $\sum \frac{1}{n^2}$, один из них расходится, второй сходится, однако наша выбранная k_n всё равно будет стремиться к 1.

2.4.16 Признак Даламбера сходимости положительных рядов¹

Формулировка

$$\sum a_n \ge 0; \exists D_n = \frac{a_{n+1}}{a_n}$$

Тогда:

- 1. Начиная с какого-то места $\exists q: D_n < q < 1 \; (q \; \text{мы ввели чтобы потом сравнивать с ним, так как признак сравнения у нас строго <math>< 1 \; \text{и с } 1 \; \text{сравнивать неудобно}) \Rightarrow \sum a_n \; \text{сходится}$
- 2. Начиная с какого-то места $D_n \ge 1 \Rightarrow \sum a_n$ расходится.

2.4.16.1 Рго версия:

 $\exists \lim D_n = D$

- 1. D < 1 -сходится
- 2. D > 1 расходится
- 3. $D = 1 \odot$

Доказательство

1. $\exists N_0: \forall k \in \mathbb{N} \quad \frac{a_{N_0+k+1}}{a_{N_0+k}} < q < 1$. Теперь распишем это как выражения $\frac{a_{N_0+1}}{a_{N_0}} < q, \frac{a_{N_0+2}}{a_{N_0+1}} < q, \dots, \frac{a_{N_0+k+1}}{a_{N_0+k}} < q$.

Главный трюк — перемножим все эти выражения (левые и правые части) и у нас всё сократится: $\frac{a_{N_0+k+1}}{a_{N_0}} < q^k$. Выразим a_{N_0+k+1} : $a_{N_0+k+1} < q^k \cdot a_{N_0}$.

Теперь устремим $k \kappa + \infty$ и получим, что получившееся неравенство — это 2 ряда под признаком сравнения, при том, что справа у нас бесконечно убывающая геом. прогрессия, у которой по определению можно посчитать сумму, а значит она сходится. Слева неравенства у нас в таком случае будет записан остаток исходного ряда R_{N_0+1} . По признаку сравнения остаток сходится, а значит и исходный ряд сходится.

- $2. \ q \ge 1$, а значит, что как минимум с этого места наш ряд не уменьшается, а значит он не может стремиться у нулю, а значит нет необходимого признака сходимости.
- 1. Доказывать нечего: выберем ε такой, чтобы верхнее ограничение нашей последовательности было < 1, а это уже подходит под пункт 1 упрощённой версии.
- 2. Аналогично
- 3. Не работает, так как при $\varepsilon>0$ у нас элементы в последовательности могут быть как >1так и < 1. Простейший контрпример: $\sum \frac{1}{n}$ и $\sum \frac{1}{n^2}$. У них у обоих D=1

Признак Раабе сходимости положительных рядов¹

Лемма (улучшенный признак сравнения)

Формулировка

 $\exists a_n, b_n > 0$ Если начиная с некоторого места

$$\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$$

- 1. $\sum b_n$ сходится $\Rightarrow \sum a_n$ сходится
- 2. $\sum a_n$ расходится $\Rightarrow \sum b_n$ расходится

Доказательство

 $\exists N_0: \forall k \in \mathbb{N} \quad \frac{a_{N_0+k+1}}{a_{N_0+k}} < \frac{b_{N_0+k+1}}{b_{N_0+k}}. \text{ Теперь распишем это как выражения } \frac{a_{N_0+1}}{a_{N_0}} < \frac{b_{N_0+1}}{b_{N_0}}, \frac{a_{N_0+2}}{a_{N_0+1}} < \frac{b_{N_0+2}}{b_{N_0+1}}, \dots, \frac{a_{N_0+k+1}}{a_{N_0+k}} < \frac{b_{N_0+k+1}}{b_{N_0+k}}.$

Главный трюк — перемножим все эти выражения (левые и правые части) и у нас всё сократится: $\frac{a_{N_0+k+1}}{a_{N_0}} < \frac{b_{N_0+k+1}}{b_{N_0}}.$ Выразим a_{N_0+k+1} : $a_{N_0+k+1} < \frac{a_{N_0}}{b_{N_0}} \cdot b_{N_0+k+1}.$

Теперь устремим k к $+\infty$ и получим, что справа неравенства у нас имеет место остаток ряда $R_{N_0+1}^{(b)}$, а слева тоже остаток $R_{N_0+1}^{(a)}$. Получается, мы свели эти все дроби к обычному признаку сравнения для рядов $\sum b_n$ и $\sum a_n$

2.4.17.2Теорема

Формулировка

 $\exists a_n > 0$

- 1. Начиная с некоторого места $n(\frac{a_n}{a_{n+1}}-1)\geq r>1\Rightarrow \sum a_n$ сходится. Вот тут может быть больно: дробь записана вверх ногами, ещё и все неравенства перевёрнуты и ещё сравнение в обоих случаях нестрогое.
- 2. Начиная с некоторого места $n(\frac{a_n}{a_{n+1}}-1) \leq 1 \Rightarrow \sum a_n$ расходится.

Доказательство

1. Итак, здесь всё сложно. Сначала давайте возьмём эталонный ряд, про который мы всё хорошо знаем и прогоним его в предельном переходе через формулу из формулировки:

$$\lim n \left(\frac{\frac{1}{n^S}}{\frac{1}{(n+1)^S}} - 1 \right) = \lim n \left(\frac{n^S (1 + \frac{1}{n})^S}{n^S} - 1 \right) = \lim n \left(\left(1 + \frac{1}{n} \right)^S - 1 \right) = n \cdot S \frac{1}{n} = S$$

Это всё значит, что мы можем взять наш эталонный ряд в такой хитровыебанной форме и с ним сравнивать то, что нам дают. Конкретно тут мы хотим подобрать такое S, чтобы оно лежало между r и 1. Слава Аллаху, это возможно. Разумеется, тогда мы выберем такое ε , что с некоторого места ВЕСЬ целиком эталонный ряд будет лежать между r и 1. Тогда мы сможем тупо сравнить эталонный ряд с тем, что нам дали по лемме выше.

Запишем что мы только что доказали:

$$1 < n \left(\frac{\frac{1}{n^S}}{\frac{1}{(n+1)^S}} - 1 \right) < r \le n \left(\frac{a_n}{a_{n+1}} - 1 \right)$$

Теперь разделим на n, прибавляем 1 и получаем красивое:

$$\frac{\frac{1}{n^S}}{\frac{1}{(n+1)^S}} < \frac{a_n}{a_{n+1}}$$

Ой, всё перевёрнуто((, ну ок:

$$\frac{a_{n+1}}{a_n} < \frac{\frac{1}{(n+1)^S}}{\frac{1}{n^S}}$$

Итак, триумфальное шествие: по лемме если правая часть неравенства сходится, то сходится и левая. А мы знаем, что она (правая) сходится только при S>1. А у нас 1 < S < r, то есть мы подогнали всё так, что доказали сходимость. ЧТД.

2. И вот тут мы наконец узнаем откуда взялось магическое $n(\frac{a_n}{a_{n+1}}-1)$:

$$n(\frac{a_n}{a_{n+1}} - 1) \ge 1 \Leftrightarrow \frac{a_n}{a_{n+1}} \ge \frac{1}{n} + 1 = \frac{1+n}{n} = \frac{\frac{1}{n}}{\frac{1}{n+1}}$$

Оказывается, всё это время в этом выражении было зашито сравнение нашего ряда по нашей лемме с любимым эталонным рядом. Итого имеем:

$$\frac{\frac{1}{n+1}}{\frac{1}{n}} \le \frac{a_{n+1}}{a_n}$$

То есть если ряд слева расходится, то и справа расходится. А слева у нас спрятан ряд $\sum \frac{1}{n^1}$, то есть он как раз расходится.

2.4.17.3 Pro

Аналогично, как в Даламбере:

$$\lim n \left(\frac{a_n}{a_{n+1}} - 1 \right) = r$$

- 1. $r > 1 \Rightarrow \sum a_n$ сходится
- 2. $r < 1 \Rightarrow \sum a_n$ расходится
- 3. $r=1\Rightarrow \odot$. Контрпример: ряды $\sum \frac{1}{n \ln n}$ и $\sum \frac{1}{n \ln^2 n}$

2.4.18 Интегральный признак Коши сходимости числовых рядов¹

Формулировка

 $\exists f: [1,+\infty) \to \mathbb{R}_+$ непрерывная, монотонная.

Тогда

$$\sum_{k=2}^{+\infty} f(k) \operatorname{сходится} \ \mathrm{вместe} \ \mathrm{c} \ \int_{1}^{+\infty} f(x) \, \mathrm{d}x$$

Доказательство

Разбиение здесь единичное, так что ни на что не умножаем, зато мы тут видим, что мы можем достроить неучтённую в Римановой сумме часть функции до прямоугольника по левой стороне каждого отрезка (так как функция монотонно убывает). Сумма таких прямоугольников будет |f(1)-f(n)| где n — правая граница границы интегрирования/частичной суммы, которую мы фиксируем.

Итак, мы можем записать всё это вот так:

$$\left| \sum_{k=2}^{n} f(k) - \int_{1}^{n} f(x) \, \mathrm{d}x \right| \le |f(1) - f(n)|$$

Для монотонно возрастающей функции всё симметрично.

Отсюда можно выразить частичную сумму

$$S_n = \int_1^n f(x) \, \mathrm{d}x + \delta_n, |\delta_n| \le |f(1) - f(n)|$$

 δ_n — это наша добавка—разница между суммой и интегралом.

Сходимость ряда будет следовать из существования + конечности предела этого предела при $n \to +\infty$. Если с влиянием на его конечность интеграла всё понятно, то остаётся только разобраться с влиянием на ответ δ_n .

Заметим, что δ_n монотонно растёт в одну фиксированную сторону, ввиду монотонности исходной функции. Может ли он быть бесконечным? Очевидно, ввиду наших ограничений на функцию, в частности, непрерывности, бесконечным он может стать только если сама функция стремится в неограниченна, а следовательно, её интеграл тоже будет бесконечным, а значит этот частный случай никак не влияет на ответ. В остальных случаях δ_n конечная ввиду ограниченности f, а значит не влияет на сходимость ряда при предельном переходе.

2.4.19 Формула Эйлера для гамма-функции³

Лемма 1

Введем функцию $\Pi(n,x) := \int_0^n (1-\frac{t}{n})^n t^{x-1} dt$

Тогда
$$\Pi(n,x) = \frac{1 \cdot 2 \cdot 3 \dots n}{x(x+1)(x+2)\dots(x+n)} \cdot n^x$$

Доказательство

$$\Pi(n,x) = \begin{bmatrix} t := ns \\ dt := n \cdot ds \end{bmatrix} = n^x \int_0^1 (1-s)^n s^{x-1} dx = \begin{bmatrix} f = (1-s)^n & f' = n(1-s)^{n-1} \\ g' = s^{x-1} & g = \frac{s^x}{x} \end{bmatrix} =$$

$$= n^x \left((1-s)^n \cdot \frac{s^x}{x} \Big|_{s=0}^{s=1} + \frac{n}{k} \int_0^1 (1-s)^{n-1} s^x ds \right) = \dots$$

Понимаем, что эта первое слагаемое зануляется, а интеграл подозрительно похож на тот, который был до интегрирования по частям, только одна степень пониже, а другая повыше. Таким образом, продолжая делать то, что мы делали, придем к требуемому результату.

Лемма 2

При $0 \le t \le n$

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{1}{n} t^2 e^{-t}$$

Доказательство

Пусть $y \in [0,1]$. Тогда из выпуклости экспоненты следует: $1+y \le e^y \le \frac{1}{1-y}$

Теперь рассмотрим $y:=\frac{t}{n}$. Подставим это в неравенство выше и возведем все в степень -n: $\left(1+\frac{t}{n}\right)^{-n} \geq e^{-t} \geq \left(1-\frac{t}{n}\right)^{n}$.

Теперь следим за руками:

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n = e^{-t} \left(1 - e^t \left(1 - \frac{t}{n}\right)^n\right) \le e^{-t} \left(1 - \left(1 - \frac{t^2}{n^2}\right)^n\right) \le e^{-t} \cdot \frac{t^2}{n}$$

Теперь объясним движения руками: первый переход - буквально правая часть неравенства выше. Третий переход - левая часть этого неравенства. А последний - неравенство Бернулли: $(1-a)^n \ge 1 - na \Leftrightarrow na \ge 1 - (1-a)^n$

Формулировка

$$\lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \dots n}{x(x+1) \dots (x+n)} \cdot n^x = \Gamma(x)$$

Доказательство

По определению

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

Теперь применим первую лемму и рассмотрим

$$\Gamma(x) - \lim_{n \to \infty} \Pi(n,x) = \lim_{n \to \infty} \left(\int_0^n \left(e^{-t} - \left(1 - \frac{t}{n}\right)^n \right) t^{x-1} dt + \int_n^{+\infty} t^{x-1} e^{-t} dt \right) = 0$$

Но почему? Второе слагаемое очевидно стремится к 0 как остаток сходящегося интеграла, а подынтегральное выражение в первом интеграле по второй лемме не меньше нуля и не превосходит $\frac{1}{n} \int_0^n e^{-t} \, t^{x+1} \, dt \leq \frac{1}{n} \int_0^{+\infty} \cdots = \frac{\Gamma(x+2)}{n} \to 0$

2.4.20 Формула Вейерштрасса для гамма-функции³

Формулировка

$$\frac{1}{\Gamma(x)} = x \cdot e^{\gamma x} \cdot \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}}$$

где γ - постоянная Эйлера (если верить Википедии, то постоянная Эйлера-Маскерони)

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right)$$

Доказательство

$$\frac{1}{\Gamma(x)} = \lim_{n \to \infty} \left(n^{-x} \cdot x \left(1 + x \right) \left(1 + \frac{x}{2} \right) \dots \left(1 + \frac{x}{n} \right) \right) = \lim_{n \to \infty} x \, n^{-x} \prod_{k=1}^{n} \left(1 + \frac{x}{k} \right) =$$

$$= \lim_{n \to \infty} x \, e^{x \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right)} \cdot \prod_{k=1}^{n} \left(1 + \frac{x}{k} \right) \, e^{-\frac{x}{k}} =$$

$$= x \, e^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k} \right) \, e^{-\frac{x}{k}}$$

Причем это произведение сходится:

$$\left(1 + \frac{x}{k}\right)e^{-\frac{x}{k}} = \left(1 + \frac{x}{k}\right)\left(1 - \frac{x}{k} + \frac{x^2}{2k^2}\dots\right) = 1 - \frac{x^2}{2k^2} + o\left(\frac{1}{x^2}\right)$$

И если мы представим это произведение в виде $\prod (1+a_k)$, то заметим, что уже победили. Еще и сходится эта штука при $x\in\mathbb{C}\setminus(-\mathbb{N})$

${f 2.4.21}$ Вычисление произведений с рациональными сомножителями 3

$$u_n = A \cdot \frac{(n+a_1)(n+a_2)\dots(n+a_k)}{(n+b_1)(n+b_2)\dots(n+b_l)}$$

 a_i, b_i - неотрицательные, целые.

$$\prod_{n=1}^{+\infty} = ?$$

Решение

Необходимое исловие

$$u_n \to 1 \Leftrightarrow k = l, A = 1$$

$$u_n = \frac{(n+a_1)(n+a_2)\dots(n+a_k)}{(n+b_1)(n+b_2)\dots(n+b_k)} = \frac{\left(1+\frac{a_1}{n}\right)\dots\left(1+\frac{a_k}{n}\right)}{\left(1+\frac{b_1}{n}\right)\dots\left(1+\frac{b_k}{n}\right)} = 1 + \frac{1}{n}\left(a_1+a_2+\dots+a_k-b_1-\dots-b_k\right) + O\left(\frac{1}{n^2}\right)$$

Последний переход справедлив, т.к. из верхних скобок эта хрень просто выносится, а для нижних работает $\frac{1}{1+\frac{b_i}{n}}=\left(1-\frac{b_i}{n}+o\left(\frac{1}{n}\right)\right)$

Вспоминаем, что сходимость $\prod (1+a_k) \Leftrightarrow$ сходимости $\sum a_k$. Для сходимости произведения необходимо: $\sum a_k = \sum b_k$

Внезапное напоминание о формуле Вейерштрасса для Г-функции:

$$\frac{1}{\Gamma(x)} = x \cdot e^{\gamma x} \cdot \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}}$$

Теперь начинаем сопоставлять

$$\prod_{n=1}^{+\infty} u_n = \prod_{n=1}^{+\infty} \frac{(n+a_1)\dots(n+a_k)}{(n+b_1)\dots(n+b_k)} = \prod_{n=1}^{+\infty} \frac{\left(1+\frac{a_1}{n}\right)e^{-\frac{a_1}{n}}\cdot\left(1+\frac{a_2}{n}\right)e^{-\frac{a_2}{n}}\dots\left(1+\frac{a_k}{n}\right)e^{-\frac{a_k}{n}}}{\left(1+\frac{b_1}{n}\right)e^{-\frac{b_1}{n}}\cdot\left(1+\frac{b_2}{n}\right)e^{-\frac{b_2}{n}}\dots\left(1+\frac{b_k}{n}\right)e^{-\frac{b_k}{n}}} = \\
= \frac{\Gamma(b_1+1)e^{\gamma b_1}\cdot\Gamma(b_2+1)e^{\gamma b_2}\dots\Gamma(b_k+1)e^{\gamma b_k}}{\Gamma(a_1+1)e^{\gamma a_1}\cdot\Gamma(a_2+1)e^{\gamma a_2}\dots\Gamma(a_k+1)e^{\gamma a_k}} = \frac{\Gamma(b_1+1)\dots\Gamma(b_k+1)}{\Gamma(a_1+1)\dots\Gamma(a_k+1)} = \frac{\Gamma(b_1+1)\dots\Gamma(b_k+1$$

2.4.22 Формула дополнения для Г—функции³

Формулировка

 $\forall x \in (0,1)$

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}, \qquad x \in \mathbb{R}\backslash\mathbb{Z}$$

Доказательство

Распишем формулу Вейерштрасса для Г функции:

$$\frac{1}{\Gamma(x)} = x \cdot e^{\gamma x} \cdot \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}}$$

$$\frac{1}{\Gamma(1-x)} = (1-x)e^{\gamma(1-x)} \prod_{k=1}^{+\infty} \left(1 + \frac{1-x}{k}\right) e^{-\frac{1-x}{k}}$$

Из формулы Вейерштрасса следует: $\Gamma(1+x)=x\,\Gamma(x)$, при $x\in \mathbb{Z}$

Заметим, что:

$$\frac{1}{\Gamma(1-x)} = \frac{1}{(-x)\Gamma(-x)} = \frac{1}{-x} \cdot (-x)e^{-\gamma x} \prod_{k=1}^{+\infty} \left(1 - \frac{x}{k}\right) e^{\frac{x}{k}}$$

И теперь эти две функции замечательно перемножаются:

$$\frac{1}{\Gamma(x)\Gamma(1-x)} = x \prod_{k=1}^{+\infty} \left(1 - \frac{x^2}{k^2}\right)$$

Подозрительно похоже на разложение синуса в бесконечное произведение. Ну а если похоже, то подставим, и получим, что эта штука равна $\frac{\sin \pi x}{\pi}$. Победа

3 Период Кайнозойский

3.1 Важные определения

3.1.1 Сходимость последовательности в \mathbb{R}^m , покоординатная сходимость 1

Последовательность сходится в $\mathbb{R}^m \Leftrightarrow$ есть покоординатная сходимость.

Когда пишем последовательности в \mathbb{R}^m , мы пишем индекс сверху в скобках, а снизу пишем координату.

$$x^{(n)} \to a \in \mathbb{R}^m \Leftrightarrow \begin{cases} x_1^{(n)} & \xrightarrow{n \to +\infty} a_1 \\ & \vdots \\ x_m^{(n)} & \xrightarrow{n \to +\infty} a_m \end{cases}$$

3.1.2 Предельная точка, замкнутое множество, замыкание 1

Тут тоже без новостей:

Предельная точка — точка, любая проколотая окрестность которой непуста.

Замкнутое множество — множество, включающее все свои предельные точки (или просто дополнение к открытому).

Замыкание — минимальное по включению замкнутое множество, включающее исходное.

3.1.3 Отображение бесконечно малое в точке 2

 $arphi: E \subset R^m o R^l$ — отображение

 $x_0 \in E-$ предельная точка E

 φ является бесконечно малым в точке x_0 , если $\varphi(x) \to_{x \to x_0} 0$

3.1.4 Отображение, дифференцируемое в точке²

$$F: E \subset \mathbb{R}^m \to \mathbb{R}^l, a \in Int(E)$$

Если $\exists L: \mathbb{R}^m \to \mathbb{R}^l$ — линейный оператор, $\exists \alpha: E \to \mathbb{R}^l$ — бесконечно малое, то F(x) дифференцируемо в точке a:

$$F(a+h) = F(a) + Lh + \alpha \cdot h, h \to 0$$

$$F(a+h) = F(a) + L \cdot h + o(h)$$

$$x := a+h$$

$$F(x) = F(d) + L \cdot (x-a) + o(|x-a|)$$

3.1.5 Производный оператор, матрица Якоби, дифференциал 2

Из определения выше, L — производный оператор. В точке a записывается следующим образом: F'(a)

Матрица, задающая производный оператор, называется матрицей Якоби (по сути своей, матрица производных по всем переменным в этой точке).

Дифференциал функции F в точке a-F'(x)h, где $h\to 0$

3.1.6 Частные производные 2

 $F: E \subset \mathbb{R}^m \to \mathbb{R}^1$

Фиксируем какую-нибудь переменную $x_k, 1 \le k \le m, a \in Int(E)$

Заведём себе функцию $\varphi_k(t) := f(a_1, a_2, \dots, a_{k-1}, t, a_{k+1}, \dots, a_m)$, причём $t \in U(a)$.

$$\lim_{s \to 0} \frac{\varphi_k(t+s)}{\varphi_k(t)}$$

— частная производная F в точке a по x_k . Причём частная от слова partial, a не от private.

Также немаловажным будет отметить, как их обозначают. $\frac{\partial^2 f}{\partial x_1 \partial x_2}$ — это производная 2-го порядка, причём сначала мы дифференцировали по x_2 , а потом уже по x_1 . Однако, нам не важно, в каком порядке дифференцировать, что доказывается далее. Причём, через неважность для перестановки 2х спокойно выражаются и перестановки любой длины, через транспозиции (привет, ДМ 1 сем!).

3.1.7 Формула Тейлора (различные виды записи) 2

 $f: E \subset \mathbb{R}^m \to \mathbb{R}, \quad B(x,a) \subset E$ - открытое.

 $f \in C^{r+1}(E)$, тогда $\exists \theta \in (0,1)$:

Для здоровых людей:

$$f(x) = \sum_{j:|j| \le r} \frac{f^{(j)}(a)}{j!} (x-a)^j + \sum_{j:|j| = r+1} \frac{f^{(j)}(a+\theta(x-a))}{j!} (x-a)^j$$

Для психов:

$$f(x) = \sum_{j:|j| \le r} \frac{1}{j^{1}! j^{2}! \dots j^{m}!} \frac{\partial^{(j)} f}{\partial x^{j}}(a) (x - a)^{j} + \sum_{j:|j| = r+1} \frac{1}{j^{1}! j^{2}! \dots j^{m}!} \frac{\partial^{r+1} f}{\partial_{x_{1}}^{j_{1}} \dots \partial_{x_{m}}^{j_{m}}} (a + \theta(x - a)) (x - a)^{j}$$

В форме *п*-го дифференциала:

$$f(a+h) = \sum_{n=1}^{r} \frac{d^{n}(a,n)}{n!} + d^{n+1}(a+\theta h, h)$$

B форме a+h, Лагранжа:

$$f(a+h) = \sum_{j:|j| \le r} \frac{f^{(j)}}{j!}(a)h^j + \sum_{j:|j| = r+1} \frac{f^{(j)}(a+\theta h)}{j!}h^j$$

В форме Пеано:

$$f(a+h) = \sum_{j:|j| \le r} \frac{f^{(j)}}{j!}(a)h^j + o(|h|^r)$$

3.2 Определения

3.2.1 Скалярное произведение, евклидова норма и метрика в \mathbb{R}^{m1}

$$\exists a, b \in \mathbb{R}^m$$

3.2.1.1 Скалярное произведение

$$\langle a, b \rangle := \sum a_i \cdot b$$

3.2.1.2 Евклидова норма

$$|a| = \sqrt{\langle a, a \rangle}$$

3.2.1.3 Метрика в \mathbb{R}^{m}

$$\rho(a,b) = |a-b|$$

Вообще ничего нового, просто напоминалка, получается.

3.2.2 Окрестность точки в \mathbb{R}^m , открытое множество¹

Открытое множество — множество, все точки которого внутренние (входят вместе с какой-то окрестностью)

Окрестность точки — какое-то открытое множество, включающее эту точку. Обозначается U(a). Может быть проколото, в этом случае сама точка удаляется.

Шар B(a,r) — множество всех точек, для которых верно $\rho(x,a) < r$.

 ε -окрестность точки — открытый шар $B(a, \varepsilon)$

3.2.3 Компактность, секвенциальная компактность, принцип выбора Больцано-Вейерштрасса¹

Компактное множество в \mathbb{R}^m — это замкнутое и ограниченное множество (ввиду полноты \mathbb{R}^m).

В \mathbb{R}^m компактное множество секвенциально компактно, либо замкнуто + имеет конечную ε -сеть.

Секвенциальная компактность множества гласит, что в любой последовательности, заданной в множестве можно выбрать подпоследовательность, сходящуюся к точке в самом этом множестве.

Принцип выбора Больцано—Вейерштрасса почти про то же. В любой последовательности в ограниченном множестве можно выбрать сходящуюся подпоследовательность (предел не обязательно лежит в множестве, так что этого недостаточно для компактности!)

3.2.4 Координатная функция¹

$$f: \mathbb{R}^m \to \mathbb{R}^l$$

Такую функцию можно расписать как вектор координатных функций:

$$x \mapsto f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_l(x) \end{pmatrix}$$

3.2.5 Двойной предел, повторный предел 1

$$\exists f: (x_1, x_2) \to \mathbb{R}, (a_1, a_2)$$
 — предельная точка

3.2.5.1 Двойной предел

На языке окрестностей (иначе зачем мы только что их вводили):

$$\lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2) = L \Leftrightarrow \forall U(L) \exists U(a_1) \exists U(a_2) : \forall x_1 \in \dot{U}(a_1) \cap D_1 \forall x_2 \in \dot{U}(a_2) \cap D_2 \quad f(x_1, x_2) \in U(L)$$

A ещё мы разрешили $a_1 \in \overline{\mathbb{R}}, a_2 \in \overline{\mathbb{R}}, L \in \overline{\mathbb{R}}.$

Мы нарисовали двойной предел... Добавить нечего.

3.2.5.2 Повторный предел

Введём

$$\phi(x_1) = \lim_{x_2 \to a_2} f(x_1, x_2)$$

Тогда можно определить предел

$$\lim_{x_1 \to a_1} \phi(x_1) = \lim_{x_1 \to a_1} \lim_{x_2 \to a_2} f(x_1, x_2)$$

Но если вы не прогуливали матан в 1 семестре, вы скажете, что тут как бы надо вообще гарантировать, что $\phi(x)$ возвращает что-то адекватное ($\in \mathbb{R}$, например) при всех $x \in D \setminus a_1$, иначе мы не сможем посчитать этот самый коварный наружный предел.

Вот то, что мы ввели вообще-то прозвали *повторным пределом* в точке (a_1, a_2) .

Nota bene: таким же образом мы имеем право ввести ещё и другой повторный предел, нарисовав композицию двух пределов в другом порядке (и даже получить другой ответ в некоторых случаях \odot)

3.2.6 Предел по направлению, предел вдоль пути¹

3.2.6.1 Предел по направлению

Зададим прямую (направление) как $\phi(t) = a + t \cdot v$, где $a, v \in \mathbb{R}^m$. Физический смысл a, b такой же как и в одномерном случае для начального сдвига и коэффициента наклона.

Тогда можно посчитать предел $\lim_{t\to 0} (\phi(t)) = \lim_{t\to 0} (a+t\cdot v)$.

3.2.6.2 Предел вдоль пути

 $\exists E$ — путь, проходящий через a такой, что $[-\varepsilon,\varepsilon]\mapsto (x_1(t),x_2(t)),(x_1(0),x_2(0))=a$

Тогда можно посчитать предел $\lim_{t\to 0} f(x_1(t), x_2(t))$. Не то, чтобы прям содержательно, но да.

3.2.7 Линейный оператор 1

Линейный оператор — отображение $F: X \to Y$ (где X, Y — линейные пространства), которое имеет свойство линейности: $F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$.

 $F:X \to \mathbb{R}^n$ договорились называть линейным функционалом

Для фиксированного множества X, Y можно задать множество всех линейных операторов и обозначить как Lin(x, y).

Договорились допускать операции над самими лин. операторами, которые сами по себе тоже являются лин. операторами в том же множестве Lin:

$$(F+G)(x) := F(x) + G(x)$$
$$(\alpha F)(x) := \alpha F(x)$$
$$F: X \to Y, G: Y \to Z \Rightarrow G(F): X \to Z$$

3.2.8 o(h) при $h \to 0^2$

 $arphi: E\subset \mathbb{R}^m o \mathbb{R}^l,\, 0$ — предельная точка E.

Можно задать нашу функцию $\varphi(h)$ двумя способами:

1.
$$\varphi(h)=o(h),$$
 при $h\to 0$
$$\frac{\varphi(h)}{|h|}\underset{h\to 0}{\longrightarrow} 0$$

2.
$$\exists \alpha(h): E \to \mathbb{R}^l$$
 бесконечно малая при $h \to 0$
$$\varphi(h) = |h| \cdot \alpha(h)$$

3.2.9 Теорема о двойном и повторном пределах 1

$$\exists f: (x_1, x_2) \to \mathbb{R}$$

Если

1.
$$\exists \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2) = L$$

2.
$$\forall x_1 \in D_1 \setminus \{a_1\} \exists$$
 конечный $\phi(x_1) := \lim_{x_2 \to a_2} f(x_1, x_2)$

Тогда
$$\exists \lim_{x_1 \to a_1} \phi(x_1) = L$$

Был показательный пример с $\frac{x_1+x_2}{x_1-x_2}$, в котором разные повторные пределы давали разный ответ. Так вот, по этой теореме мы сможем убедиться, что тут не выполняется первый пункт, а значит повторный предел не существует.

3.2.10 Производная по направлению²

$$f: E \subset \mathbb{R}^m \to \mathbb{R}, \ a \in Int(E), \ h \in \mathbb{R}^m$$

Пусть $t \in \mathbb{R}, |h| = 1$ (такой вектор называется направлением).

Тогда $\lim_{t\to 0} \frac{f(a+th)-f(a)}{t} = (\frac{\partial f}{\partial d})(a)$ — производная по направлению.

Замечание

Функция дифференцируема ⇒ функция дифференцируема по любому вектору (направлению)

$$\lim_{t\to 0} \frac{f(a+th)-f(a)}{t} = \lim_{t\to 0} \frac{f_1'(a)th+f_2'(a)th+...+f_m'(a)th+o(t)}{t} = f_1'(a)h+f_2'(a)h+...+f_m'(a)h = \langle \nabla f, h \rangle$$

3.2.11 Градиент²

$$f: E \subset \mathbb{R}^m \to \mathbb{R}, \ a \in Int(E), \ h \in \mathbb{R}^m$$

$$f(a+h) = f(h) + \langle L, h \rangle + o(|h|), h \to 0$$

Вектор L называется градиентом f в точке a.

$$L = \operatorname{grad} f = \nabla f$$

3.2.12 Мультииндекс и обозначения с ним²

Мультииндекс k в $\mathbb{R}^m - (k_1, k_2, \dots, k_m), \ k_i \in \mathbb{N} \setminus \{0\}$

Некоторые обозначения:

- 1. $|k| = k_1 + k_2 + \ldots + k_m$ высота мультииндекса
- 2. $k! = k_1!k_2! \dots k_m!$
- 3. $x^k = x^{k_1} x^{k_2} \dots x^{k_m}$

3.2.13 n-й дифференциал²

LITERALLY THIS:

$$d^{n}f = \sum_{i:|j|=n} \frac{n!f^{(j)}(a)}{j!} h^{j}$$

(п-я сумма из леммы о нахождении производной сдвига (?))

Но можно расписать и по-другому, основываясь на выводе полиномиальной формулы (наивная версия):

$$d^n f = \sum_{i_1=1}^m \sum_{i_2=1}^m \cdots \sum_{i_m=1}^m \frac{\partial^n}{\partial^{j_1} x_1 \partial^{j_2} x_2 \dots \partial^{j_m} x_m} (a) dx_1 dx_2 \dots dx_m$$

Что тут происходит? Мы ищем производную n-го порядка, с какой-нибудь комбинацией переменных, по которым дифференцируем. А также отмечаем, по каким переменных шло дифференцирование, домножая на dx_i

3.3 Важные теоремы

3.3.1 Признак Лейбница¹

Формулировка

$$\exists \sum_{n=1}^{+\infty} (-1)^n C_n, C_n \ge C_{n+1} \ge 0$$

Тогда

$$C_n \to 0 \Rightarrow \sum_{n=1}^{+\infty} (-1)^n C_n$$

сходится.

Доказательство

Будем попарно брать столбики с противоположными знаками и разницу между ними закрашивать. Заметим, что сумма всех этих "разниц— это и будет сумма ряда. А ещё она вся вписывается в первый столбец (очевидно, ввиду монотонности, на рисунке видно).

Но! В условии ещё что-то сказано про $C_n \to 0$. Так вот, если этого не соблюсти, то у нас произойдёт разночтение предела, т.к. можно будет взять частичные суммы до чётного члена, а также до нечётного. И вот если этот "последний" член окажется нечётным, то он нам добавит чего лишнего, а если предел неоднозначен, то его не существует. И вот, чтобы этого избежать, мы требуем, чтобы оно стремилось к 0.

3.3.2 Достаточное условие дифференцируемости²

Формулировка:

$$f: E \subset \mathbb{R}^m \to \mathbb{R}, \ a \in Int(E)$$

Пусть в окрестности B(a,r) существуют конечные f'_1,\ldots,f'_m и все они непрерывны в точке a. Тогда, f дифференцируема в точке a.

Доказательство:

 \triangleright

Рассмотрим для m=2, для остальных всё аналогично.

Возьмём разность $f(x_1,x_2)-f(a_1,a_2)$. Добавим и вычтем $f(a_1,x_2)$:

$$= (f(x_1, x_2) - f(a_1, x_2)) + (f(a_1, x_2) - f(a_1, a_2)) =$$

Расписываем каждую скобку по теореме Лагранжа, переменные с шапочками — это что-то среднее между иксом и ашкой:

$$= f'_{x_1}(\hat{x_1}, x_2)(x_1 - a_1) + f'_{x_2}(a_1, \hat{x_2})(x_2 - a_2) =$$

Теперь добавим и вычтем $i \in \{1,2\}, \ f'_{x_i}(a_1,a_2)(x_i-a_i)$

$$= f'_{x_1}(a_1, a_2)(x_1 - a_1) + f'_{x_2}(a_1, a_2)(x_2 - a_2) +$$

$$+(x_1-a_1)(f'_{x_1}(\hat{x_1},x_2)-f'_{x_1}(a_1,a_2))+(x_2-a_2)(f'_{x_2}(a_1,\hat{x_2})-f'_{x_2}(a_1,a_2))$$

Заметим, что $i \in \{1,2\}, \ (x_i-a_i) \le |x_i-a_i|$ (нормы), а выражения в скобках — бесконечно малые при $x \to a$.

В итоге, получили формулу дифференцирования, где слева стоит формула, справа линейная часть и бесконечно малая.

 \triangleleft

3.3.3 Дифференцирование композиции²

$$f: E \subset \mathbb{R}^m \to \mathbb{R}^l$$

3.3.3.1 Лемма об оценке нормы линейного оператора

Формулировка

 $A:\mathbb{R}^m \to \mathbb{R}^l$ - линейный оператор, $A \Leftrightarrow (a_{ij})$

Тогда:

$$\forall x \in \mathbb{R}^m \qquad |Ax| \leq C_A \cdot |x|, \quad \text{где } C_A = \sqrt{\sum a_{ij}^2}$$

Доказательство

Рассмотрим:

$$|Ax|^2 = \sum_{i=1}^{l} \left(\sum_{j=1}^{m} (a_{ij} \cdot x_j) \right)^2$$

Тут мы просто умножили вектор на матрицу. Теперь распишем внутреннюю сумму по КБШ и вынесем сумму с иксом, т.к. от внешней она не зависит.

$$\sum_{i=1}^{l} \left(\sum_{j=1}^{m} (a_{ij} \cdot x_j) \right)^2 \le \sum_{i=1}^{l} \left(\sum_{j=1}^{m} a_{ij}^2 \right) \left(\sum_{j=1}^{m} x_j^2 \right) = |x|^2 \cdot \sum_{i=1}^{l} \sum_{j=1}^{m} a_{ij}^2 = |x|^2 \cdot C_A^2$$

$$|Ax| \le |x| C_A$$

3.3.3.2 Теорема о дифференцировании композиции

Формулировка

$$F: E \subset \mathbb{R}^m \to \mathbb{R}^l$$
 $F(E) \in I$ $a \in Int(E)$

$$G: I \subset \mathbb{R}^l \to \mathbb{R}^m \qquad F(a) \in Int(I)$$

F - дифференцируема в т.a, G - дифференцируема в т. F(a)

Тогда:

$$G \circ F$$
 - дифференцируема в т.а $(G \circ F)'(a) = G'(F(a)) \cdot F'(a)$

Доказательство

$$b := F(a), \quad k := F'(a) \cdot h + \alpha(h) \cdot |h|$$

$$F(a+h) = F(a) + F'(a) \cdot h + \alpha(h) \cdot |h|$$

$$G(b+k) = G(b) + G'(q) \cdot k + \beta(k)|k|$$

Рассмотрим:

$$G(F(a+h)) = G(b+k) = G(b) + G'(b) \cdot k + \beta(k)|k| = G(F(a)) + G'(F(a)) \cdot (F'(a)h + \alpha(h) \cdot |h|) + \beta(k) \cdot |F'(a) \cdot h + \alpha(h) \cdot h|$$

Здесь мы получили как раз формулу "дифференцирования" для G в т.F(a). Теперь нужно доказать что вот эта длинная блямба в конце - бесконечно малое, и все будет супер.

Теперь воспользуемся доказанной леммой:

$$G(F(a+h)) = G(F(a)) + G'(F(a)) \cdot F'(a) \cdot h + G'(F(a)) \cdot \alpha(h)|h| + \beta(h) \cdot |F'(a)| \cdot h + \alpha(h)|h|$$

Рассмотрим третье слагаемое:

$$G'(F(a)) \cdot \alpha(h)|h| \le C_{G'(b)} \cdot |\alpha(h)| \cdot |h|$$

И рассмотрим четвертое:

$$|F'(a) \cdot h + \alpha(h)|h|| \le |F'(a)h| + |\alpha(h)|h|| \le (C_{F'(a)} + |\alpha(h)|) \cdot |h|$$

Внимательно вглядываемся в получившееся выражение и понимаем, что скобка - ограничена, а $|h| \to 0$ при $x \to a$

То есть

$$\beta(k) \cdot |F'(a) \cdot h + \alpha(h)|h|| \le |\beta(k)| \cdot (C_{F'(a)} + |\alpha(h)|) \cdot |h|$$

Итого:

Получившиеся два выражения в сумме - бесконечно малое ⇒ формула сошлась и все хорошо.

3.3.4 Теорема Лагранжа для векторнозначных функций³

Формулировка

 $F:[a,b]\to\mathbb{R}^m$ непрерывна на [a,b], дифференцируема на (a,b)

Тогда:
$$\exists c \in (a,b) \quad |F(b) - F(a)| \leq |F'(c)|(b-a)$$

Доказательство

 \triangleright

Заведем
$$\varphi(t) := \langle F(b) - F(a), F(t) - F(a) \rangle \quad t \in [a,b]$$

Небольшая ревизия:

$$\varphi(0) = 0$$

$$\varphi'(t) = <(F(b) - F(a))', F(t) - F(a) > + < F(b) - F(a), F'(t) - 0 > = < F(b) - F(a), F'(t) > + < F(b), F'($$

$$\varphi(b) = |F(b) - F(a)|^2$$

$$\varphi(b) - \varphi(a) = |F(b) - F(a)|^2 + <0,0>$$

$$\varphi(b)-\varphi(a)=\varphi'(c)(b-a)$$
 - обычная теорема Лагранжа.

$$|F(b) - F(a)|^2 = \langle F(b) - F(a), F'(c) \rangle (b - a) \le |F(b) - F(a)||F'(c)|(b - a)$$

Делим на |F(b) - F(a)|, (для b = a тривиально)

$$|F(b) - F(a)| \le |F'(c)|(b-a)$$

◁

3.3.5 Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)³

Формулировка

 $f:E\subset\mathbb{R}^m o\mathbb{R},\quad B(x,a)\subset E$ - открытое.

$$f \in C^{r+1}(E)$$
, тогда $\exists \theta \in (0,1)$:

Для здоровых людей:

$$f(x) = \sum_{j:|j| \le r} \frac{f^{(j)}(a)}{j!} (x-a)^j + \sum_{j:|j| = r+1} \frac{f^{(j)}(a+\theta(x-a))}{j!} (x-a)^j$$

Для психов:

$$f(x) = \sum_{j:|j| \le r} \frac{1}{j^1! j^2! \dots j^m!} \frac{\partial^{(j)} f}{\partial x^j}(a) (x-a)^j + \sum_{j:|j|=r+1} \frac{1}{j^1! j^2! \dots j^m!} \frac{\partial^{r+1} f}{\partial_{x_1}^{j_1} \dots \partial_{x_m}^{j_m}} (a + \theta(x-a)) (x-a)^j$$

В форме *п*-го дифференциала:

$$f(a+h) = \sum_{n=1}^{r} \frac{d^{n}(a,n)}{n!} + d^{n+1}(a+\theta h, h)$$

В форме a+h, Лагранжа:

$$f(a+h) = \sum_{j:|j| \le r} \frac{f^{(j)}}{j!}(a)h^j + \sum_{j:|j| = r+1} \frac{f^{(j)}(a+\theta h)}{j!}h^j$$

Доказательство

 \triangleright

Из прошлой теоремы: $\varphi(t)=f(a+th),\quad h=x-a$

$$\varphi^{(k)} = \sum_{i:|j| \le r} \frac{r!}{j!} \frac{\partial^k}{\partial x^j} f(a+th)$$

 $\varphi(0)=f(a);$ Распишем Формулу Тейлора с остатком в виде Лагранжа для $\varphi(t)$ в точке 0.

$$\varphi(t) = \varphi(0) + \frac{\varphi(0)}{1!}(t) + \dots + \frac{\varphi^{(r)}}{r!}(t) + \frac{\varphi^{(r+1)}(\bar{t})}{(r+1)!}t^{r+1}$$

$$f(x) = \sum_{j:|j| \le r} \frac{f^{(j)}(a)}{j!} (x-a)^j + \sum_{j:|j| = r+1} \frac{f^{(j)}(a+\theta(x-a))}{j!} (x-a)^j$$

В чем фишка: мы подставляем $\varphi^{(i)}$ -ю производную в формулу Тейлора для φ (которую мы получили из предыдущей теоремы о сдвиге), тем самым уничтожая факториалы. И все супер.

Теперь в форме Пеано:

$$f(a+h) = \sum_{j:|j| \le r} \frac{f^{(j)}}{j!}(a)h^j + o(|h|^r)$$

Заметим, что $j^1+j^2+\cdots+j^m=r+1$ (Для последнего члена в форме Лагранжа)

Докажем, что $h_1^{j_1} \cdot h_2^{j_2} \dots h_m^{j_m} = o(|h|^r), \quad h \to 0$

Распишем дробь:

$$\frac{h_1^{j_1}h_2^{j_2}\dots h_m^{j_m}}{|h^r|}|h| = \frac{|h_1^{j_1}}{|h|^{j_1}} \cdot \frac{|h_2^{j_2}}{|h|^{j_2}} \cdots \frac{|h_m^{j_m}}{|h|^{j_m}}|h|$$

Все получившиеся дроби <1. Это следует из того, что $|h|=\sqrt{\sum_{i\in[1,m]}|h_i|^2}$, и, типа, мы просто делим 1 координату на сумму всех \Rightarrow заведомо меньше \Rightarrow при $h\to 0$ все равно $o(|h|^r)$

 \triangleleft

Теоремы 3.4

Признаки Дирихле и Абеля сходимости числового ряда¹

Преобразование Абеля (суммирование по частям)

$$A_n := \sum_{i=1}^n a_i$$

$$\sum_{k=1}^N a_k b_k = A_N b_N + \sum_{k=1}^{N-1} A_k (b_k - b_{k+1})$$

3.4.1.2Дирихле

Φ ормулировка $\exists \sum_{n=1}^{+\infty} a_n b_n$

$$\exists \sum_{n=1}^{+\infty} a_n b_n$$

- 1. A_n ограничено, т.е. $\exists C_A : \forall n > 0 \quad |A_n| \leq C_A$
- $2.~b_n$ монотонно и $b_n o 0$

Если всё выполняется, ряд сходится.

Доказательство

Запишем преобразование Абеля:

$$\sum_{k=1}^{N} a_k b_k = A_N b_N + \sum_{k=1}^{N-1} A_k (b_k - b_{k+1})$$

Здесь A_N ограничено, b_N б.м. $\Rightarrow A_N b_N \to 0$.

Остаётся доказать абсолютную сходимость $\sum_{k=1}^{N-1} A_k (b_k - b_{k+1})$:

$$b_n \to 0 \Rightarrow \exists C_B : \forall n > 0 \quad |b_n| < C_B$$

$$\sum_{k=1}^{N-1} |A_k| |b_k - b_{k+1}| \le C_A \sum_{k=1}^{N-1} |b_k - b_{k+1}| = \pm C_A (b_k - b_{k+1} + b_{k+1} - b_{k+2} + \ldots + b_{N-1} - b_N) = \pm C_A (b_k - b_N) \le 2 \cdot C_A \cdot C_B$$

Все числа здесь конечны, а значит ряд абсолютно сходится (а значит, просто тоже сходится), а значит в исходном преобразовании Абеля у нас все слагаемые сходятся, а значит сам представленный ряд сходится.

3.4.1.3 Абель

Формулировка

1.
$$\sum_{n=1}^{+\infty} a_n$$
 сходится $(\Rightarrow \exists \lim_N \sum_{n=1}^N a_n = \alpha)$

 $2. \ b_n$ монотонно, b_n ограничено

Здесь требования к a_n сильнее, а к b_n слабее.

Доказательство

Вспоминаем, что у монотонной и ограниченной последовательности есть предел:

$$\exists \lim b_n := \beta$$

Далее нам надо сделать супер–мега–трюк, а именно прибавить и отнять от исходного ряда $\beta \sum_{n=1}^{N} a_n$:

$$\sum_{n=1}^{N} a_n b_n = \beta \sum_{n=1}^{N} a_n + \sum_{n=1}^{N} a_n b_n - \beta \sum_{n=1}^{N} a_n = \beta \sum_{n=1}^{N} a_n + \sum_{n=1}^{N} a_n (b_n - \beta)$$

При $N \to +\infty$ происходит предельный переход:

$$\sum_{k=1}^{+\infty} a_k b_k = \beta \alpha + \sum_{n=1}^{+\infty} a_n (b_n - \beta)$$

Левое слагаемое конечно, обратим внимание на правое: $\sum_{k=1}^{+\infty} a_k (b_k - \beta)$ сходится по признаку Дирихле, так как a_k сходится $\Rightarrow a_k$ ограничено, $b_k \to \beta \Rightarrow b_k - \beta \to 0$, монотонность b_k у нас остаётся по условию.

Таким образом, получившееся выражение тоже целиком сходится.

3.4.2 Теорема о группировке слагаемых³

Формулировка:

Рассмотрим ряды: $(A) = (a_1 + \ldots + a_{n_1}) + (a_{n_1+1} + \ldots + a_{n_2}) + \ldots$, $(B) = b_1 + \ldots + b_k + \ldots$, где $b_k = a_{n_{k-1}+1} + \ldots + a_{n_k}$. Тогда справедливы утверждения:

- 1. Если ряд (A) сходится, то ряд (B) сходится и имеет ту же сумму.
- 2. Если (A) положительный ряд, то $S^a = S^b$ (или суммы рядов равны бесконечности)

Доказательство:

В принципе, тривиально: из того, что $S_m^b = S_{n_m}^a$, в первом случае получаем, что S_m^b стремится к сумме ряда (A), а во втором - что они сходятся к одному конечному значению или к бесконечности одновременно.

84

Замечания:

- 1. Из сходимости ряда (B) не следует сходимость (A)
- 2. Если $a_n \to 0$, а ряд (B) сходится, причем скобки в нем ограниченного размера, то есть

$$\exists M : \forall k \, n_k - n_{k-1} \leq M,$$

то ряд (A) тоже сходится

Доказательство:

- 1. Контрпример: ряд $1-1+1-1+\dots$ расходится, но если расставить скобки так: $(1-1)+\dots$, то ряд получается сходящимся.
- 2. Рассмотрим частичную сумму S_N^a , где $n_k \leq N \leq n_{k+1}$. Ее можно записать как $S_k^b + \Delta_k$, где Δ_k "неполная скобка т.е. $\Delta_k = a_{n_k+1} + \ldots + a_N$. Тогда

$$|\Delta_k| \le |a_{n_k+1}| + \ldots + |a_N| \le |a_{n_k+1}| + \ldots + |a_{n_k+M}| \to 0$$
, при $k \to \infty$

т.к. с некоторого места $a_{n_k+i} \leq \varepsilon/M$

3.4.3 Теорема о перестановке слагаемых³

Формулировка:

Рассмотрим ряд $\sum a_k$ - положительный ряд.

Пусть $\sum b_k$ - его перестановка.

Тогда, если ряд $\sum a_k$ абсолютно сходится, то ряд $\sum b_k$ абсолютно сходится к той же сумме.

Доказательство:

1. Путь $\sum a_k$ - положительный ряд.

По определению частичная сума $\sum S_k^b = a_{\pi(1)} + \ldots + a_{\pi(k)} \le S_M^a$, где $M = \max{(\pi(1),\ldots,\pi(k))}$

Так как $M \to \infty$ при $k \to \infty$, а пределы частичных сумм существуют, получаем, что $S^b \le S^a$, следовательно существует π^{-1} .

Аналогично получаем $S^a \leq S^b$, т.е. $S^a = S^b$.

2. Убираем ограничение на член ряда.

Рассматриваем ряды $\sum a_k^+, \sum b_k^+$, где $a_k^+ = \max(a_k, 0), b_k^+ = \max(b_k, 0)$. Опа, то есть эти ряды - есть перестановки, которые задаются биекцией, и по п.1 абсолютно сходятся к одному и тому же значению.

Аналогично определяем $a_k^- = \max{(-a_k, 0)}, b_k^- = \max{(-b_k, 0)}$. Понимаем, что $\sum a_k = \sum a_k^+ + \sum a_k^-$. И осознаем, что теорема доказана.

3.4.4 Теорема о произведении рядов³

Формулировка:

Пусть ряды $\sum a_k, \sum b_k$ абсолютно сходятся и их суммы равны S^a и S^b соответственно. Тогда для любой биекции $\gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, которая переводит x в $(\varphi(x), \psi(x))$, произведение рядов $\sum a_k, \sum b_k$ - абсолютно сходящийся ряд, сумма которого равна $S^a \cdot S^b$

Доказательство:

Обозначим $\sum |a_k| = S_*^a, \sum |b_k| = S_*^b$ и исследуем произведение рядов на абсолютную сходимость:

$$\sum_{k=1}^{N} |a_{\varphi(k)}| \cdot |b_{\psi(k)}| \le \sum_{k=1}^{n} |a_k| \cdot \sum_{k=1}^{m} |b_k| \le S_*^a \cdot S_*^b$$

где $n = \max(\varphi(1), \dots, \varphi(N))$, $m = \max(\psi(1), \dots, \psi(N))$. Итого получаем, что множество частичных сумм нашего произведения ограничено, а значит, оно сходится (т.е. произведение сходится абсолютно).

Но если взять другую биекцию, то произведения, полученные с помощью нее - просто перестановка нашего произведения, а значит оба произведения сходятся к этой же сумме.

В качестве γ возьмем "нумерацию по квадратам". Т.е. $\varphi(k)$ будет как бы "координатой" по x, а $\psi(k)$ - "координатой" по y. По сути рассматриваем все возможные попарные произведения рядов выше.

Тогда получим

$$\sum_{k=1}^{n^2} a_{\varphi(k)} b_{\psi(k)} = \left(\sum_{k=1}^n a_k\right) \left(\sum_{k=1}^n b_k\right) \to S^a \cdot S^b \qquad n \to \infty$$

3.4.5 Единственность производной 2

Формулировка:

Производный оператор (если он существует) определён однозначно.

Доказательство:

|

Краткий ответ: так как он вычисляется однозначно для каждого $u \in \mathbb{R}^m$.

Докажем этот удивительный аспект!

$$F: E \subset \mathbb{R}^m \to \mathbb{R}^l$$

$$F(a+h) = F(a) + Lh + o(h)$$

Пусть h=tu, где $t\in\mathbb{R}$. Причём, $|t|<\frac{r}{|u|}, B(a,r)\in E$ Тогда:

$$F(a+tu) = F(a) + tLu + o(t)$$

$$Lu = \frac{F(a+tu) - F(a)}{t} - \frac{o(t)}{t}$$

$$Lu = \lim_{t \to 0} \frac{F(a+tu) - F(a)}{t}$$

однозначно определено!

<

Замечание (о дифференцируемости функции нескольких переменных):

Логично, что $x \mapsto (x_1, x_2, \dots, x_m) \Rightarrow f(x_1, x_2, \dots, x_m)$. Поэтому в векторном виде можно записать дифференцируемость так:

$$F(x + a) = F(a) + L(x - a) + \Phi(x - a)|x - a|$$

3.4.6 Лемма о дифференцируемости отображения и его координатных функций²

Формулировка:

 $f: E \subset \mathbb{R}^m \to \mathbb{R}^l$

$$F(x) \mapsto (f_1(x), f_2(x), \dots, f_m(x)), \ a \in Int(E)$$

- 1. F(x) дифференцируема в точке $a \Leftrightarrow$ все f_i дифференцируемы в точке a
- 2. i-я строчка матрицы Якоби F является матрицей Якоби для f_i

Доказательство:

 \triangleright

Просто распишем производную в точке a для i координатной функции:

$$f_i(x) = f(a) + (\lambda_{i1} + \lambda_{i2} + \ldots + \lambda_{im})(x - a) + \Phi_i(x - a)|x - a|$$

(очевидно всё выполняется, плюс они все ещё и непрерывны, что очевидно, если расписать по координатам)

 \triangleleft

3.4.7 Необходимое условие дифференцируемости²

Формулировка:

$$F: E \subset \mathbb{R}^m \to \mathbb{R}, \ a \in Int(E)$$

F — дифференцируема в точке a.

Тогда $\exists f_1', f_2', \dots, f_m'$ и матрица Якоби в точке $a = (f_1', f_2', \dots, f_m')$

Доказательство:

 \triangleright

Распишем определение дифференцируемости:

$$f(a+h) = f(a) + \lambda_1 h_1 + \lambda_2 h_2 + \ldots + \lambda_m h_m + \alpha(h)|h|$$

Зафиксируем точку $k \in [1, m]$. Пусть $h_k := s \cdot (0, 0, 0, 0, 0, 1, \dots, 0, 0, 0)$ (единичка на k-том месте), причём s < r, где $B(a, r) \subset E$.

$$f(a_1, a_2, \dots, a_k + s, \dots, a_m) = f(a) + \lambda_k \cdot s + \alpha(h(s))|s|$$

Выражаем λ_k :

$$\lambda_k = \frac{\partial f}{\partial x_k}$$

Итого, все производные существуют и в матрице Якоби действительно располагаются они.

 \triangleleft

3.4.8 Дифференцирование 'произведений' 2

Формулировка:

$$F, G: E \subset \mathbb{R}^m \to \mathbb{R}^l \quad a \in Int(e)$$

 $\lambda: E \to \mathbb{R}$

 F, G, λ - дифференцируемы в точке a

Тогда:

- 1. $(\lambda F)'(a) \cdot h = (\lambda'(a)h)F(a) + \lambda(a)F'(a) \cdot h$ причем тут в первом слагаемом справа от равенства мы на h "действуем а не умножаем.
- 2. $(\langle F, G \rangle)'(a)h = \langle F'(a)h, G(a) \rangle + \langle F(a), G'(a)h \rangle$

Доказательство:

 \triangleright

- 1. Сначала рассмотрим based версию для l=1: $(\lambda f)(a+h)-(\lambda f)(a)=\lambda(a+h)f(a+h)-\lambda(a)f(a)=(\lambda(a)+\lambda'(a)h+\alpha(h)|h|)\cdot (f(a)+f'(a)h+\beta(h)|h|)-\lambda(a)f(a)=\lambda(a)f(a)+\lambda(a)f'(a)h+\lambda'(a)hf(a)+o(h)$ Итого: $(\lambda'(a)h)f(a)+\lambda(a)(f'(a)h+o(h))$ А теперь просто скажем, что это одна из координат по которой мы дифференцируем, и будем радоваться жизни.
- 2. По определению:

$$\langle F, G \rangle (x) = \sum_{i=1}^{l} f_i(x)g_i(x)$$

А теперь:

$$\begin{split} ((< F, G >)'(a))'h &= \sum_{i=1}^{l} (f_i(a)g_i(a))'h = \\ &= \sum_{i=1}^{l} f_i'(a)hg_i(a) + f_i(a)g_i'(a)h = \\ &= \sum_{i=1}^{l} f_i'(a)hg_i(a) + \sum_{i=1}^{l} f_i(a)g_i'(a)h = \\ &= < F'(a)h, G(a) > + < F(a), G'(a)h > \end{split}$$

 \triangleleft

3.4.9 Экстремальное свойство градиента³

Формулировка:

 $f: E \subset \mathbb{R}^m \to \mathbb{R} \quad a \in Int(E)$

f - дифференцируема в т.a $grad f(a) = \nabla f(a) \neq 0$

 $l:=\frac{\nabla f(a)}{|\nabla f(a)|}$ - вектор-направление градиента (наискорейшего возрастания функции)

T.e. $\forall h \in \mathbb{R}^m |h| = r$

$$-|\nabla f(a)| = -\frac{\partial f}{\partial l}(a) \le \frac{\partial f}{\partial h}(a) \le \frac{\partial f}{\partial t}(a) = |\nabla f(a)|$$

Причем равенство достигается при h=-l слева и h=l справа.

Доказательство:

 \triangleright

По определению градиента:

$$\frac{\partial f}{\partial h}(a) = <\nabla f(a), h>$$

Неравенство КБШ:

$$<\nabla f(a), h> \le |\nabla f(a)||h| = |\nabla f(a)|$$

Так как по факту скалярное произведение стоит под модулем, то и исходное условие выполняется.

Альтернативная версия, с помощью которой проще понять идею: l - нормирован, h - тоже нормирован, l - будет максимальным при l = h.

 \triangleleft

3.4.10 Независимость частных производных от порядка дифференцирования 3

Формулировка:

$$f: E \subset \mathbb{R}^2 \to \mathbb{R} \quad a \in Int(a)$$

Мы рассматриваем m=2, остальные сводятся к этому случаю по правилу раскрытия дифференциала

Если $\exists f''_{xy}, f''_{yx}$ в окрестности т.a и они непрерывны $\Rightarrow f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$

Доказательство:

Рассмотрим суперфункцию:

$$\Delta^2 f(h,k) = f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)$$

$$\alpha(h) = \Delta^2 f(h, k')$$

где k' - фикированное k.

Пусть \bar{h} - какая-то средняя точка.

$$\alpha(0) = 0$$

$$\alpha(h) = \alpha(h) - \alpha(0) \underset{\text{По Лагранжу}}{=} \alpha'(\bar{h}) \cdot h = \left(f_x'(x_0 + \bar{h}, y_0 + k') - f_x'(x_0 + \bar{h}, y_0) \right) h \underset{\text{По Лагранжу}}{=} f_{xy}''(x_0 + \bar{h}, y_0 + \bar{k}) \cdot h \cdot k = \left(f_x'(x_0 + \bar{h}, y_0 + k') - f_x'(x_0 + \bar{h}, y_0) \right) h \underset{\text{По Лагранжу}}{=} f_{xy}''(x_0 + \bar{h}, y_0 + \bar{k}) \cdot h \cdot k$$

Аналогично вводим $\beta(k)$ с фиксированным h

Получаем:

$$\beta(k) = \dots = f_{yx}''(x_0 + \bar{\bar{h}}, y_0 + \bar{\bar{k}}) \cdot h \cdot k$$

При фиксированных $h,k\neq 0$

$$\alpha(h) = \beta(k)$$

$$h \cdot k \cdot f''_{xy}(x_0 + \bar{h}, y_0 + \bar{k}) = f''_{yx}(x_0 + \bar{\bar{h}}, y_0 + \bar{\bar{k}}) \cdot h \cdot k$$

 $\bar{h},\bar{k},\bar{\bar{h}},\bar{\bar{k}}$ - какие-то средние значения между [0,h] и [0,k].

$$f''_{xy}(x_0 + \bar{h}, y_0 + \bar{k}) = f''_{yx}(x_0 + \bar{\bar{h}}, y_0 + \bar{\bar{k}}) \xrightarrow[\bar{h}, \bar{k}, \bar{\bar{h}}, \bar{\bar{k}} \to \infty]{} f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$$

 \triangleleft

3.4.11 Полиномиальная формула³

Формулировка:

$$(a_1 + a_2 + \dots + a_m)^r = \sum_{n_1=1}^m \sum_{n_2=1}^m \dots \sum_{n_r=1}^m a_{n_1} \cdot a_{n_2} \cdots a_{n_r} = \sum_{j:|j|=r} \frac{r!}{j!} a^j$$

3десь j - мультииндекс.

Первое равенство - наивная реализация раскрытия скобок.

Доказательство:

 \triangleright

Как ни странно, по индукции.

База:

r = 1 - очевидно.

Переход:

Пусть все верно для r:

$$(a_1 + a_2 + \dots + a_m)^r = \sum_{j:|j|=r} \frac{r!}{j!} a^j$$

Покажем для r+1

$$(a_1 + a_2 + \dots + a_m)^{r+1} = (a_1 + a_2 + \dots + a_m)(a_1 + a_2 + \dots + a_m)^r = (a_1 + a_2 + \dots + a_m) \cdot \sum_{j:|j|=r} \frac{r!}{j!} a^j = a_1 + a_2 + \dots + a_m \cdot \sum_{j:|j|=r} \frac{r!}{j!} a^j = a_1 + a_2 + \dots + a_m \cdot \sum_{j:|j|=r} \frac{r!}{j!} a^j = a_1 + a_2 + \dots + a_m \cdot \sum_{j:|j|=r} \frac{r!}{j!} a^j = a_1 + a_2 + \dots + a_m \cdot \sum_{j:|j|=r} \frac{r!}{j!} a^j = a_1 + a_2 + \dots + a_m \cdot \sum_{j:|j|=r} \frac{r!}{j!} a^j = a_1 + a_2 + \dots + a_m \cdot \sum_{j:|j|=r} \frac{r!}{j!} a^j = a_2 + \dots + a_m \cdot \sum_{j:|j|=r} \frac{r$$

Вот теперь мы повеселимся. Сначала "домножим" на первую скобку, породив m сумм:

$$= \sum_{j:|j|=r} \frac{r!}{j_1! j_2! \dots j_m!} a_1^{j_1+1} a_2^{j_2} \dots a_m^{j_m} + \dots + \sum_{j:|j|=r} \frac{r!}{j_1! j_2! \dots j_m!} a_1^{j_1} a_2^{j_2} \dots a_m^{j_m+1}$$

Теперь перепишем вот это вот все к более удобному виду. На примере первой суммы:

$$\sum_{j:|j|=r} \frac{r!}{j_1! j_2! \dots j_m!} a_1^{j_1+1} a_2^{j_2} \dots a_m^{j_m} \longrightarrow \sum_{j:|j|=r+1 \\ j_1 \ge 1} \frac{r! j_1}{j_1! j_2! \dots j_m!} a_1^{j_1} a_2^{j_2} \cdots a_m^{j_m}$$

Итак, мы добавили 1 член, поэтому теперь мультииндекс $|j| \le r+1$. Причем, $j_1 \ge 1$, т.к. надо гарантировать это, потому что мы только что домножили на скобку. Также мы по пути трансформировали индексы j, поэтому из дроби $\frac{r!}{j_1!\dots}$ j_1 - это как бы (j_1+1) из прошлой суммы. Поэтому домножаем дробь на j_1 , чтобы в знаменателе сократить последний член.

Итого:

$$\sum_{j:|j| \le r+1} \frac{r! j_1}{j_1! j_2! \dots j_m!} a_1^{j_1} a_2^{j_2} \dots a_m^{j_m} + \dots + \sum_{j:|j| = r+1, j_m \ge 1} \frac{r! j_m}{j_1! j_2! \dots j_m!} a_1^{j_1} a_2^{j_2} \dots a_m^{j_m}$$

Отметим, что приписка $j_i \geq 1$ - бессмысленна, т.к. если он равен нулю, то слагаемое просто занулится, и все будет норм.

Выносим все общее:

$$\sum_{j:|j|=r+1} \frac{r!(j_1+j_2+\cdots+j_m)}{j_1!j_2!\dots j_m!} a_1^{j_1} a_2^{j_2}\dots a_m^{j_m} = \sum_{j:|j|=r+1} \frac{(r+1)!}{j!} a^{(r+1)}$$

Все сошлось!

 \triangleleft

3.4.12 Лемма о дифференцировании "сдвига"

Формулировка:

$$\begin{split} f: E \subset \mathbb{R}^m &\to \mathbb{R} \quad f \in C^r(E) \\ a \in E, \quad h \in \mathbb{R}^m \quad a + th \in E, \text{при } t \in [-1,1] \\ \Pi \text{усть } \varphi(t) &= f(a+th) \\ \text{Тогда } \varphi^{(k)}(t) &= \sum_{j:|j|=k} \frac{k!}{j!} \frac{\partial^k f}{\partial x^j}(a+th) \end{split}$$

Доказательство:

 \triangleright

$$\varphi(t)_t' = f(a+th)_t' = \frac{\partial}{\partial t} f(a_1 + th_1, a_2 + th_2, \dots, a_m + th_m) = \sum_{i=1}^m \frac{\partial f}{\partial x_i} (a+th) \cdot h_i$$
$$\varphi''(t)_t = \left(\sum_{i=1}^m \frac{\partial f}{\partial x_i} (a+th)h_i\right)_t' = \sum_{i=1}^m \sum_{i_2=1}^m \frac{\partial^2 f}{\partial x_{i_2} \partial x_{i_1}} (a+th) \cdot h_{i_1} \cdot h_{i_2}$$

Замечаем закономерность:

$$\varphi^{(k)}(t)_t = \sum_{i_1=1}^m \sum_{i_2=1}^m \cdots \sum_{i_k=1}^m \frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} (a+th) h_{i_1} \cdot h_{i_2} \cdot \dots \cdot h_{i_k} =$$

И т.к. нам без разницы, в каком порядке брать производные, применяем полиномиальную формулу:

$$= \varphi^{(k)}(t) = \sum_{j:|j|=k} \frac{k!}{j!} \frac{\partial^k f}{\partial x^j}(a+th)$$

 \triangleleft