Yushu Pan

+1-626-318-5125 | yp2602@columbia.edu | 560 Riverside Drive, APT 1S, NY, 10027 | Personal Website

RESEARCH INTEREST

Causal inference and machine learning, with a focus on **causal generative models** and **causal representation learning**.

EDUCATION

Columbia University

Sep 2021 - Expected Jun 2026

Ph.D. Research Scientist in Computer Science

New York, United States

• GPA: 4.0/4.0 Advisor: Prof. Elias Bareinboim

• California Institute of Technology

Sep 2019 - Jun 2021

Master of Science in Electrical Engineering

Pasadena, United States

∘ GPA: 4.2/4.3 Advisor: Prof. Yisong Yue

Beijing Institute of Technology

Sep 2015 - Jun 2019

Bachelor of Science in Electrical Engineering

Beijing, China

• GPA: 93/100 Ranking: 1/425 Advisor: Prof. Yuantao Gu

Peking University

Sep 2017 - Jun 2019

Bachelor of Economics

Beijing, China

∘ GPA: 3.7/4

PUBLICATIONS

[1] Pan, Y*., Li, A*., Bareinboim, E. "Disentangled Representation Learning in Non-Markovian Causal Systems", In 38th Conference on Neural Information Processing Systems (NeurIPS), 2024.

*Contributed equally, Author names in alphabetical order

- [2] Pan, Y. and Bareinboim, E. "Counterfactual Image Editing", In Proceedings of International Conference on Machine Learning (ICML), 2024.
- [3] Xia, K., Pan, Y., Bareinboim, E. "Neural Causal Models for Counterfactual Identification and Estimation", In International Conference on Learning Representations, (ICLR), 2023.
- [4] **Pan, Y.**, Jiao, Y., Li, T., Gu, Y. "An efficient algorithm for hyperspectral image clustering", IEEE International Conference on Acoustics, Speech and Signal Processing (**ICASSP**), 2019.

SELECTED RESEARCH PROJECTS

Causal Image Editing with Large Generative Models

Mar 2023 - present

Advisor: Prof. Elias Bareinboim, Columbia University

- Developed causal theory and neural network models to realistically edit images. Proved that current state-of-the-art models (e.g. DALLE, StableDiffusion) cannot provide causal reliability for image editing tasks.
- Proposed 'counterfactual(ctf)-consistent estimators' that ensure causal consistency between the features users prioritize for practical applications. Developed an algorithm called Augmented Neural Causal Model (ANCM) that efficiently estimates counterfactuals, and generates high-fidelity realistic images.
- (Ongoing) Incorporate 'ctf-consistent estimators' with text-to-image pre-trained models (e.g., StableDiffusion, Latent Diffusion Model) to perform causal image editing using text prompts.

Causal Disentangled Representation Learning

Oct 2023 - present

Advisor: Prof. Elias Bareinboim, Columbia University

- Formalized a general version of the causal representation learning problem and developed graphical criteria and an algorithm (CRID) to determine whether representations are identifiable, leading to robust downstream tasks
- Developed a VAE and normalizing flow algorithm to perform realistic image generation and robust downstream classification tasks without annotations.
- Causal Neural Networks for Counterfactual Identification and Estimation Sep 2022 May 2023 Advisor: Prof. Elias Bareinboim, Columbia University
- Theoretically proved that deep models are incapable of making causal inferences when trained solely on observational data. Developed a class of causal models using neural networks, called Neural Causal Models (NCMs), for counterfactual identification and estimation.
- Developed a causal GAN (a practical version of NCM) and conducted experiments to demonstrate causal GANs are able to estimate causal queries more efficiently and accurately than existing baselines.

Data-Driven Optimization for ML Algorithms

Jan 2020 - Sep 2021

Advisor: Prof. Yisong Yue, Caltech

- Developed a data-driven optimization approach incorporating meta-learning and reinforcement learning techniques to achieve auto-hyperparameter tuning for structure learning methods (e.g., NOTEARS). Conduct experiments to show that the designed method provides more robust results in synthetic and real datasets.
- Subspace Methods and Hyperspectral Images Clustering

Mar 2018 - Jun 2019

Advisor: Prof. Yuantao Gu, Tsinghua University

• Designed a highly accurate clustering algorithm for hyperspectral images that is more efficient than existing subspace algorithms, and applied successfully on medical and satellite imagery.

INDUSTRIAL EXPERIENCE

Pulmonary Nodules Detection in CT Images

Dec 2017 - Mar 2018

Advisor: Prof. Yi Zhang, West China Hospital

• Implemented and optimized 3D-convolutional neural networks, and 3D-region proposal U-nets in PyTorch leading to 2x improved lung nodule detection with West China Hospital's CT scans.

HONORS AND AWARDS

Chinese Ministry of Education

• **Greenwoods Fellowship**Fu Foundation of Engineering and Applied Science at Columbia University Oct 2021

• Xu Te Li Scholarship (awarded to top 0.1% of undergraduates)

Beijing Institute of Technology

May 2019

Beijing Institute of TechnologyNational Scholarship

Dec 2017

• Grand prize in the Excellence 9 Mathematical Competition of China Excellence League

Oct 2016

TEACHING

• TA, CS 4775, Causal Inference I, Columbia University, Fall 2023 / Fall 2024.

(

- TA, CS 4995, Causal Inference II, Columbia University, Spring 2023.
- TA, ACM 116, Introduction to Probability Models, Caltech, Fall 2020.

(

SKILLS

- Programming Languages: Python, C, Verilog, VHDL, Matlab, CAD
- Packages: Numpy, Scipy, Pandas, SQL, Lightning, Git, Docker
- ML: Causal Inference, Diffusion, Transformers, LLMs, Subspace