PMT PMT

Question Number	Scheme	Marks
1. (a)	$\frac{z_1}{z_2} = \frac{2+8i}{1-i} \times \frac{1+i}{1+i}$	M1
	$=\frac{2+2i+8i-8}{2}=-3+5i$	A1 A1
(b)	$\left \frac{z_1}{z_2} \right = \sqrt{(-3)^2 + 5^2} = \sqrt{34}$ (or awrt 5.83)	(3) M1 A1ft (2)
(c)	$\tan \alpha = -\frac{5}{3}$ or $\frac{5}{3}$	M1
	$\arg \frac{z_1}{z_2} = \pi - 1.03 = 2.11$	A1
		(2) (7 marks)
2. (a)	f(1.6) = -1.29543081 awrt -1.30	B1
	f(1.8) = 0.5401863372 awrt 0.54	B1
	$\frac{\alpha - 1.6}{"1.29543081"} = \frac{1.8 - \alpha}{"0.5401863372"}$	M1
	$\alpha = 1.741143899$ awrt 1.741	A1 (4)
(b)	$f'(x) = 10x - 6x^{\frac{1}{2}}$	M1 A1
	f(1.7) = -0.4161152711 awrt -0.42	B1
	f'(1.7) = 9.176957114 awrt 9.18	B1
	$\alpha_2 = 1.7 - \frac{f(1.7)}{f'(1.7)}$	M1
	$\alpha_2 = 1.745$ cao	A1
		(6) (10 marks)

Question Number	Scheme	Marks
3. (a)	$PQ = 12 \Rightarrow \text{By symmetry } y_p = \frac{12}{2} = 6$	B1
(b)	$y^2 = 8x \implies 6^2 = 8x$	(1) M1
	$\Rightarrow x = \frac{36}{8} = \frac{9}{2}$	A1
(c)	Focus $S(2,0)$	B1 (2)
	Gradient $PS = \frac{6-0}{\frac{9}{2}-2} \left(= \frac{6-0}{\frac{9}{2}-2} = \frac{12}{5} \right)$	M1
	Either $y-0 = \frac{12}{5}(x-2)$ or $y-6 = \frac{12}{5}(x-\frac{9}{2})$	M1
	Or $y = \frac{12}{5}x + c$ and $0 = \frac{12}{5}(2) + c \implies c = -\frac{24}{5}$	
	l: 12x - 5y - 24 = 0	A1 (4)
		(7 marks)
4. (a)	$\alpha + \beta = \frac{4}{5}, \alpha\beta = \frac{1}{5}$	B1, B1
(b)	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$	(2) B1
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	B1
	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha\beta} = \frac{\frac{16}{25} - \frac{2}{5}}{\frac{1}{5}}$ $= \frac{6}{5} *$	M1
	$=\frac{6}{5}$ *	A1
	$\alpha + \frac{1}{\alpha} + \beta + \frac{1}{\beta} = \alpha + \beta + \frac{\alpha + \beta}{\alpha \beta} = \frac{24}{5}$	(4) M1 A1
	$\left(\alpha + \frac{1}{\alpha}\right)\left(\beta + \frac{1}{\beta}\right) = \alpha\beta + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{1}{\alpha\beta} = \frac{1}{5} + \frac{6}{5} + 5 = \frac{32}{5}$	M1 A1
	$x^{2} - \frac{24}{5}x + \frac{32}{5} = 0 \Rightarrow 5x^{2} - 24x + 32 = 0$	M1 A1
		(6) (12 marks)

PMT PMT

Question Number	Scheme	Marks
5.	f(1) = 5 + 8 + 3 = 16, (which is divisible by 4). (: True for $n = 1$).	B1
	Assume true for $f(k)$	
	Using the formula to write down $f(k+1)$, $f(k+1) = 5^{k+1} + 8(k+1) + 3$	B1
	$f(k+1) - f(k) = 5^{k+1} + 8(k+1) + 3 - 5^k - 8k - 3$	M1
	$= 5(5^{k}) + 8k + 8 + 3 - 5^{k} - 8k - 3 = 4(5^{k}) + 8$	A1
	$f(k+1) = 4(5^k + 2) + f(k)$, which is divisible by 4	A1
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n .	A1
		(6 marks)
6. (a)	$r(r+1)(r+3) = r^3 + 4r^2 + 3r$, so use $\sum r^3 + 4\sum r^2 + 3\sum r$	M1
	$= \frac{1}{4}n^{2}(n+1)^{2} + 4\left(\frac{1}{6}n(n+1)(2n+1)\right), +3\left(\frac{1}{2}n(n+1)\right)$	A1, A1
	$= \frac{1}{12}n(n+1)\left\{3n(n+1) + 8(2n+1) + 18\right\} \text{ or } = \frac{1}{12}n\left\{3n^3 + 22n^2 + 45n + 26\right\}$	M1
	or = $\frac{1}{12}(n+1)\{3n^3+19n^2+26n\}$	A1
	$= \frac{1}{12}n(n+1)\left\{3n^2 + 19n + 26\right\} = \frac{1}{12}n(n+1)(n+2)(3n+13) \qquad (k=13)$	M1 A1
(b)	$\sum_{21}^{40} = \sum_{1}^{40} - \sum_{1}^{20}$	(7) M1
	$= \frac{1}{12} (40 \times 41 \times 42 \times 133) - \frac{1}{12} (20 \times 21 \times 22 \times 73), = 707210$	A1, A1
	12	(3) (10 marks)

Question Number	Scheme	Marks
7. (a)	$y = \frac{36}{x} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -36x^{-2}$	M1
	At $\left(6t, \frac{6}{t}\right)$, $\frac{dy}{dx} = -\frac{c^2}{(6t)^2} = -\frac{1}{t^2}$	M1 A1
	$y - \frac{6}{t} = -\frac{1}{t^2}(x - 6t)$ $\Rightarrow y = -\frac{1}{t^2}x + \frac{12}{t}$ (*)	M1 A1cso (5)
(b)	Substitute (-9, 12): $12 = -\frac{1}{t^2}(-9) + \frac{12}{t}$	M1
	$12t^2 - 12t - 9 = 0$	A1
	$(2t-3)(2t+1) = 0$ \Rightarrow $t = \frac{3}{2}$ $t = -\frac{1}{2}$	M1 A1
	$t = \frac{3}{2}$ $t = -\frac{1}{2} \Rightarrow$ Points are (9, 4) and (-3, -12)	M1 A1 A1
		(7) (12 marks)
8. (i)	2π	
(a)	120° or $\frac{2\pi}{3}$ rotation about the origin, anticlockwise.	B1, B1
	(3 0)	(2)
(b)	$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$	B1
	$\left(2 - 3\right) \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}\right) \left(-\frac{3}{2} - \frac{3\sqrt{3}}{2}\right)$	(1)
(c)	$\mathbf{R} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} & -\frac{3\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$	M1 A1 A1 (-1 each error)
(ii)		(3)
(a)	det $S = 1 \times 1 - 3 \times -3 (= 10)$ or $3^2 + 1^2 (= 10) \Rightarrow$ Enlargement scale factor $= \sqrt{10}$	M1 A1
		(2)
(b)	$\tan \theta = \frac{3}{1} \Rightarrow \theta = 71.6^{\circ}$, anticlockwise.	M1 A1, A1
		(3) (11 marks)