2020 级理科数学分析(I)期中考试试题

- 1. (10 分)判断下列命题是否正确:
- (1) 若 $\forall \varepsilon > 0$, $\{a_n\}$ 中都有无穷多项属于 $(L-\varepsilon, L+\varepsilon)$,则 $\lim_{n\to +\infty} a_n = L$.
- (2) 若对任意的 $\varepsilon > 0$,都存在 $\delta > 0$,使得当 $0 < |x x_0| \le \delta$ 时, $|f(x) L| \le 2\varepsilon$,则 $\lim_{x \to x_0} f(x) = L$.
- (3) 若极限 $\lim_{x \to x_0} f(x)$ 存在,则极限 $\lim_{x \to x_0} \ln(f(x))$ 也存在.
- (4) 若 f(x) 在 x_0 点连续, x_0 是 g(x) 的第一类间断点,则 x_0 是 f(x) + g(x) 的第一类间断点.
- (5) 设 f(x) 是定义在 [-a,a](a>0) 的连续函数,则 $g(x) = \frac{f(x) + f(-x)}{x-A}$ 是

[-a,a]上连续的非奇非偶函数,其中A > a.

(6) 若
$$\lim_{h\to 0} \frac{f(1+h)-f(1-h)}{2h} = 0$$
,则 $f(x)$ 在 $x = 1$ 点可导,且 $f'(1) = 0$.

(7) 设
$$f(x)$$
 在 x_0 点可微,则 $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{2h} = f'(x_0)$.

- (8) 设f(x)和g(x)在 x_0 点可导,且 $f(x_0) = g(x_0)$,则 $f'(x_0) = g'(x_0)$.
- (9) 若 f(x) 在闭区间 [a,b] 上连续,且有唯一的极大值和唯一的极小值,则此极大值一定是最大值,此极小值一定是最小值.
- (10) 设 f(x) 在区间(a,b)上可导,则对任意的 $x_1, x_2 \in (a,b)$,存在 ξ 介于 x_1, x_2 之
- 间,使得 $f(x_2) f(x_1) = f'(\xi)(x_2 x_1)$.
- 2. (18分) 求下列极限

(1)
$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4}$$
 (2)
$$\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$

(3)
$$\lim_{n \to +\infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n} \right)$$

- 3. (18分)
- (1) 设 y = y(x) 是由方程 $e^{xy} = 3x^2y$ 确定的隐函数,求 $\frac{d^2y}{dx^2}$.
- (2) 设 y = f(x) 是由参数方程 $\begin{cases} x = 2t t^2 \text{ 确定的函数, } x \frac{d^2 y}{dx^2}. \\ y = 3t t^3 \end{cases}$
- (3) 设 f(x) 在 $(-\infty, +\infty)$ 二阶可导, $F(x) = f(\frac{1}{x})$, 求 F''(x).
- 4. (12 分) 设 $x_1 > 0$, $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$ $(n=1,2,\cdots)$. 证明: $\{x_n\}$ 收敛, 并求 $\lim_{n \to +\infty} x_n$.
- 5. $(12 \ \beta) \ \partial f(x) = e^x \sin 3x$.
- (1) 求 f(x) 在 x = 0 点的 4 阶 Taylor 展开式;
- (2) 求 $f^{(4)}(0)$.
- 6. (15分)证明下列不等式
- (1) $\ln(1+x) < x$, $x > -1 \perp x \neq 0$.
- (2) $(1+a)\ln(1+a) + (1+b)\ln(1+b) < (1+a+b)\ln(1+a+b)$, 0 < a < b.
- 7. (15 分) 设 f(x) 在 $(-\infty, +\infty)$ 连续. 证明:
- (1) 若 $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = +\infty$,则 f(x) 在 $(-\infty, +\infty)$ 有最小值.
- (2) 若存在唯一一点 x_0 ,使得 $f(f(x_0)) = x_0$,则存在唯一一点 ξ ,使得 $f(\xi) = \xi$.