Alzheimer's Disease/Dementia Classification Model

Group 2: Kristine Carnavos Edgar Lorenzo Rahul Sinha Mary Mulrooney

Agenda

- Background
 - Alzheimer's Disease Background
 - Data Set Summary
- Goals of Analysis
- Data Cleaning
- Data Visualization
- Data Tools/Techniques
- Results
- Conclusions

Alzheimer's Disease Background

5.8 MILLION AMERICANS ARE LIVING WITH ALZHEIMER'S.

Every **65 SECONDS** SOMEONE IN THE UNITED STATES DEVELOPS THE DISEASE.

ALZHEIMER'S DISEASE IS THE **6TH LEADING**CAUSE OF DEATH IN THE UNITED STATES.

1 IN 3 SENIORS DIES WITH ALZHEIMER'S

ONLY 16% OF SENIORS RECEIVE REGULAR
COGNITIVE ASSESSMENTS DURING ROUTINE
HEALTH CHECK-UPS

IN 2019, ALZHEIMER'S AND OTHER DEMENTIAS WILL COST THE NATION **\$290 BILLION**. BY 2050, THESE COSTS COULD RISE AS HIGH AS \$1.1 TRILLION.

THE LIFETIME COST OF CARE FOR AN INDIVIDUAL LIVING WITH DEMENTIA IN 2018 WAS \$350,174.

Early diagnosis and intervention through various therapies has been shown to lessen the progression and severity of the disease→ only achieved through expensive, rigorous & time consuming testing

Data Set Summary- MRI and Alzheimer's Disease

- Data set obtained from Kaggle.com from the Open Access
 Series of Imaging Studies (OASIS)
- MRI Scans were conducted on 436 subjects ages 18 to 96, containing both male and female subjects, all right handed
- 100 of the subjects were clinically diagnosed with very mild to moderate Alzheimer's Disease
- <u>Target variable</u>: CDR (Clinical Dementia Rating)
 - Nominal variable
 - Measured on a scale of 0 to 2:
 - 0: no dementia
 - 0.5: very mild AD
 - 1: mild AD
 - 2: moderate AD

Note: Since values of CDR=2 encompass only 0.9% of data (2 lines), excluding these lines of data from classification model

Data Set Summary - Predictor Variables

- Gender (M/F)- nominal
- Age- continuous
- <u>Education Level</u>- nominal
 - Measured on scale of 1-5
- <u>Socioeconomic Status (SES)</u>- nominal
 - Measured on scale of 1-5 where 1 is highest and 5 is lowest
- Mini Mental State Examination (MMSE) continuous
- Estimated Total Intracranial Volume (eTIV)- continuous
- Normalized Whole Brain Volume (nWBV) continuous
- Atlas Scaling Factor (ASF) continuous

Goals of Analysis:

Determine classification model able to diagnose level of severity of Alzheimer's to allow for correct therapies & treatments to be prescribed to patients

- Visualize data to understand if any obvious correlations exist for data to CDR
- Understand relationships of predictor variables to CDR
- Formulate models with variables of significance to try to classify CDR
- Downselect best model to classify CDR & make recommendations for future model improvement

Data Set Cleaning- Missing Data & Outliers

•	Count	Number of columns missing	Patterns	ID	M/F	Hand	Age	Educ	SES	MMS E	CDR	eTIV	nWBV	ASF
1	216	0	00000000000	0	0	0	0	0	0	0	0	0	0	0
2	19	1	000001000000	0	0	0	0	0	1	0	0	0	0	0
3	191	4	000011110000	0	0	0	0	1	1	1	1	0	0	0

- 191 of the 436 subjects were missing both the target variable, CDR, as well as SES, Education, and MMSE
 - To deal with the large amount of data missing from these lines, these rows of data were excluded from our analysis
- **SES** noted to be missing 19 lines of data from remaining 245 lines of data (8%), ignored because nominal data does not allow imputing
- Outliers for variable eTIV and MMSE were observed but encompassed less than
 5% of the remaining 226 lines of data→ ignored

Data Visualization: Graphical Analysis

- Predictor variables were visualized to understand effects on CDR. The following was observed:
 - For variables Gender, SES, and eTIV, no difference was noted between the measured CDR for each of the groups (p-values of 0.1361, 0.2522, and 0.2540)

Data Visualization: Graphical Analysis

- Age, nWBV, and MMSE had significant impact on CDR (p-values < 0.0001)
- Correlation between nWBV and Age
- Greater educational attainment was associated with a lower likelihood of dementia due to Alzheimer's

Data Tools & Techniques: Correlations & PCA

Principal Components / Factor Analysis										
Principal Components: on Correlations										
Number	Eigenvalue	Percent	20 40	60 80	Cum Percent					
1	1.9897	99.487			99.487					
	0.0103	0.513	- 1		100,000					

Correlations:

- ASF & eTIV: Highly negatively correlated (98.97%), not strongly correlated to any other variables → <u>PCA Analysis</u> <u>Conducted for Variables</u>
- Other strong negative correlations noted between education and SES and nWBV and Age, but due to correlations of at least 1 of each of the variables in the pair on target, PCA was not performed.

Formula for Princ1 Variable:

0.0044092741 •eTIV +-5.463358731 •ASF +0.210907798

Classification Model Creation Summary

Validation

- o 60/20/20 Split
- Stratified Random on CDR

Models Run

- Nominal Logistic
- Decision Tree (Partition)
- Bootstrap Forest
- Neural Network (One Layer)

Model Compare - Classification Model

Measures of Fit	for CDR							
Creator	.2 .4 .6 .8	Entropy RSquare	Generalized RSquare	Mean -Log p	RMSE	Mean Abs Dev	Misclassification Rate	N
Fit Nominal Logistic		0.4305	0.6552	0.5364	0.4086	0.3229	0.2553	47
Partition		0.3768	0.5994	0.587	0.4360	0.3623	0.2553	47
Bootstrap Forest		0.2134	0.3904	0.7409	0.5147	0.4729	0.3191	47
Neural		0.4262	0.6432	0.52	0.4145	0.3399	0.2093	43

- Of the 4 models run, the model that best predicts CDR for the validation data set is the **Neural Network**
- Neural Network has lowest misclassification rate: 20.93%
 - Not very good model, confusion matrices show some risk of false positives
 - Data exclusion of 201 lines missing data may have resulted in reduced ability to classify
 - Additional issue may be data set itself→ over 57% of data set was 0 (No Dementia)

Alternative Approach - Prediction Model

- Recoded CDR as 0/1 nominal data and run as a prediction model
 - **0**: Will not get Alzheimer's Disease (57.4%)
 - 1: Will get Alzheimer's Disease (42.6%)
- Benefits of Recoding Data to Prediction Model:
 - Allows better distribution of target variable in data set
 - Allows additional models to be considered (ie Boosted Tree)
- Noted differences between classification & prediction model:
 - Gender and eTIV are noted to have statistically different means when grouped by 0/1 CDR variable (were not different in classification model)

Alternative Approach - Prediction Model

Predictors								
Measures of Fit	for CDR	0/1						
Creator	.2 .4 .6 .8	Entropy RSquare	Generalized RSquare	Mean -Log p	RMSE	Mean Abs Dev	Misclassification Rate	N
Fit Nominal Logistic		0.7447	0.8564	0.1731	0.2109	0.1410	0.0435	4
Partition		0.7335	0.8489	0.1807	0.2128	0.1463	0.0435	4
Boosted Tree		0.6703	0.8043	0.2235	0.2495	0.1626	0.0652	46
Bootstrap Forest		0.3979	0.5624	0.41	0.3406	0.3316	0.0444	45
Neural		0.7396	0.8534	0.1774	0.1983	0.1502	0.0444	45

- For the 5 models run, the best predictor model was found to be Fit Nominal Logistic
 - R-squared value of 74.47%
 - Neural Network and Partition were also fairly close with RSquared Values of 73.96% and 73.35%
 - Misclassification rate of all models are fairly low as well (4.35-4.44%)
 - Still room for improvement, but points towards data being better suited for predictor model in current state for if Alzheimer's will occur rather than a classification model.

Recommendations & Conclusions

1. Based on analysis, data set is better suited for a prediction model than a classification model

- a. R-Squared of prediction model: 75.17%
- Misclassification Rate of classification model: 20.93%

2. To improve classification abilities of the model:

- a. CDR sample should be leveled to include more patients from 0.5 to 2 categories (currently, 57% of data set represents CDR=0)
 - This will allow CDR=2 to be included in model (more serious form of alzheimer's).
- Excluded lines of data due to large amounts of missing prediction variables should be looked into to determine if those variables can be collected
- If large amounts of predictor variables are still missing, impute data set and rerun model to see if classification rate improves

Thank You!

Questions?

Appendix

Data Tools & Techniques – Nominal Logistic (Classification)

- Misclassification Rate: 24.29%
- Significant predictor variables (p<0.05):
 - o MMSE
 - o nWBV
- Same for if run for forward/backward analysis

Confusion Matrix

	Hummi	9				
Actual	Predicted Cour					
CDR	0	0.5	1			
0	73	8	0			
0.5	15	23	4			
1	1	6	10			

Training

1000			- 70			
Actual	Predicted Count					
CDR	0	0.5	1			
0	23	4	0			
0.5	2	9	3			
1	0	3	3			

Validation

	lest					
Actual	Predicted Count					
CDR	0	0.5	1			
0	23	4	0			
0.5	7	3	4			
1	0	3	2			

Data Tools & Techniques - Decision Tree (Classification)

- Number of Splits: 2
- Partition Variables:
 - MMSE (<24 or >=24)
 - MMSE (<28 or >=28)
- Misclassification rate: 22.14%

Data Tools & Techniques - Bootstrap Forrest (Classification)

- Misclassification Rate: 30%
- Number of Trees: 4

■ Bootstrap Forest for CDR

Target Column:	CDR	Training Rows:	140
Validation Column:	Validation	Validation Rows:	47
		Test Rows:	46
Number of Trees in the Forest:	4	Number of Terms:	7
Number of Terms Sampled per Split:	1	Bootstrap Samples:	140
		Minimum Splits per Tree:	10
		Minimum Size Split:	5

△ Overall Statistics

Measure	Training	Validation	Test	Definition
Entropy RSquare	0.3038	0.2134	0.1948	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.5121	0.3904	0.3573	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))
Mean -Log p	0.6501	0.7409	0.7376	Σ-Log(p[j])/n
RMSE	0.4805	0.5147	0.5188	$\sqrt{\sum (y[j]-p[j])^2/n}$
Mean Abs Dev	0.4328	0.4729	0.4774	Σ [y[j]-ρ[j]]/n
Misclassification Rate	0.3000	0.3191	0.3478	∑(p[j]≠pMax)/n
N	140	47	46	n

△ Confusion Matrix

	Irainin	g	
Actual	Predic	ted Co	unt
CDR	0	0.5	1
0	78	3	0
0.5	26	15	1
1	4	8	5

Actual	Predicted Count					
CDR	0	0.5	1			
0	24	3	0			
0.5	7	7	0			
1	1	4	1			

	Test					
Actual	Predicted Count					
CDR	0	0.5	1			
0	26	1	0			
0.5	8	4	2			
1	1	4	0			

Data Tools & Techniques – Neural Network (Classification)

- Misclassification Rate: 20.93%
- One layer used due to limited complexity of model

Data Tools & Techniques – Nominal Logistic (Classification)

- Misclassification Rate: 24.29%
- Significant predictor variables (p<0.05):
 - o MMSE
 - o nWBV
- Same for if run for forward/backward analysis

Confusion Matrix

Actual	Predic	ted Co	unt
CDR	0	0.5	1
0	73	8	0
0.5	15	23	4
1	1	6	10

Training

A -4 1	Validati		
Actual	Predic	tea Co	unt
CDR	0	0.5	1
0	23	4	0
0.5	2	9	3
1	0	3	3

Mattalastan

	lest		
Actual	Predic	ted Co	unt
CDR	0	0.5	1
0	23	4	0
0.5	7	3	4
1	0	3	2

Data Tools & Techniques – Decision Tree (Classification)

- Number of Splits: 2
- Partition Variables:
 - MMSE (<24 or >=24)
 - MMSE (<28 or >=28)
- Misclassification rate: 22.14%

onfusio	on Ma	trix									
	Trainin	g			Validati	on			Test		
Actual	Predic	ted Co	ount	Actual	Predic	ted Co	unt	Actual	Predic	ted Co	unt
CDR	0	0.5	1	CDR	0	0.5	1	CDR	0	0.5	1
0	75	6	0	0	24	3	0	0	24	3	0
0.5	15	20	7	0.5	3	6	5	0.5	7	1	6
1	2	1	14	1	0	1	5	1	0	2	3

Data Tools & Techniques – Bootstrap Forrest (Classification)

- Misclassification Rate: 30%
- Number of Trees: 4

■ Bootstrap Forest for CDR

Target Column:	CDR	Training Rows:	140
Validation Column:	Validation	Validation Rows:	47
		Test Rows:	46
Number of Trees in the Forest:	4	Number of Terms:	7
Number of Terms Sampled per Split:	1	Bootstrap Samples:	140
		Minimum Splits per Tree:	10
		Minimum Size Split:	5

△ Overall Statistics

Measure	Training	Validation	Test	Definition
Entropy RSquare	0.3038	0.2134	0.1948	1-Loglike(model)/Loglike(0)
Generalized RSquare	0.5121	0.3904	0.3573	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)
Mean -Log p	0.6501	0.7409	0.7376	Σ-Log(ρ[j])/n
RMSE	0.4805	0.5147	0.5188	$\sqrt{\sum (y[j]-p[j])^2/n}$
Mean Abs Dev	0.4328	0.4729	0.4774	Σ y[j]-ρ[j] /n
Misclassification Rate	0.3000	0.3191	0.3478	∑(p[j]≠pMax)/n
N	140	47	46	n

△ Confusion Matrix

Training						
Actual	Predic	ted Co	unt			
CDR	0	0.5	1			
0	78	3	0			
0.5	26	15	1			
1	4	8	5			

	Validati	on		
Actual Predicted Cour				
CDR	0	0.5	1	
0	24	3	0	
0.5	7	7	0	
1	1	4	1	

lest					
Actual	ted Co	unt			
CDR	0	0.5	1		
0	26	1	0		
0.5	8	4	2		
1	1	4	0		

Data Tools & Techniques Nominal Logistic (Prediction)

- R-Squared: 24.29%
- <u>Significant predictor variables</u>
 (p<0.05):
 - o MMSE
 - o nWBV
 - Age (borderline, left in)
- Same for if run for forward/backward analysis

