Week 2 Report

Ben Chen

Dept of Computer Science and Engineering, SUSTech

September 19, 2024

TOC

Title	Conference	Institute	Authors	Idea
A Security RISC: Microarchitectural Attacks on Hardware RISC-V CPUs	Oakland '23	CISPA	Lukas Gerlach Daniel Weber Ruiyi Zhang Michael Schwarz	Cache+Time, Flush+Fault, CycleDrift on SiFive U74 & T-Head C906 with 6 case studies
(M)WAIT for It: Bridging the Gap between Microarchitectural and Architectural Side Channels	USENIX '23	CISPA	Ruiyi Zhang Taehyun Kim Daniel Weber Michael Schwarz	Exploiting umonitor and umwait to enhance spectre attack without timer

Systematic analysis of microarchitectural components:

Hardware Timer: rdcycle and rdtime instructions on both CPUs, a higher resolution in retire instruction counter on U74 via rdinstret or csrr instructions.

Systematic analysis of microarchitectural components:

- Hardware Timer: rdcycle and rdtime instructions on both CPUs, a higher resolution in retire instruction counter on U74 via rdinstret or csrr instructions.
- Cache: Capacity and replacement policy (deterministic), FIFO on C906 and PLRU on U74; Cache maintainance instructions: fence.i by ISA and dcache.civa by C906 ⇒ efficient cache eviction.

Systematic analysis of microarchitectural components:

- ► Hardware Timer: rdcycle and rdtime instructions on both CPUs, a higher resolution in retire instruction counter on U74 via rdinstret or csrr instructions.
- Cache: Capacity and replacement policy (deterministic), FIFO on C906 and PLRU on U74; Cache maintainance instructions: fence.i by ISA and dcache.civa by C906 ⇒ efficient cache eviction.
- ► TLB: SV39, two separate 10-entry fully-associative TLBs for data and instructions, effectively evictable.

Systematic analysis of microarchitectural components:

- ► Hardware Timer: rdcycle and rdtime instructions on both CPUs, a higher resolution in retire instruction counter on U74 via rdinstret or csrr instructions.
- Cache: Capacity and replacement policy (deterministic), FIFO on C906 and PLRU on U74; Cache maintainance instructions: fence.i by ISA and dcache.civa by C906 ⇒ efficient cache eviction.
- ► TLB: SV39, two separate 10-entry fully-associative TLBs for data and instructions, effectively evictable.
- ▶ BRU: In-order pipeline but speculative prefetching, with BHT, BJT, and RAS.

flush i\$ \Rightarrow mistrain to load A but not B \Rightarrow timing difference

flush i $\$ \Rightarrow$ jump to victim's code and trigger a fault \Rightarrow timing difference to determine whether A or B is in cache

- addi a0, zero, zero in attacker's code
- ▶ then jump to ld xx, 0(a0) in victim's code

Monitor number of retired instructions with a certain cycles:

Platform	SBI_EXT_BASE_GET_MVENDORID	SBI_EXT_O_1_CONSOLE_PUTCHAR	padded square-and-multiply
U74	963 cycles	85507 cycles	14(-3) instructions
C906	613 cycles	85109 cycles	18(-2) instructions

Case studies:

Square and Multiply in MbedTLS: Flush+Fault, Cache+Time

- Square and Multiply in MbedTLS: Flush+Fault, Cache+Time
- ▶ Breaking KASLR: CycleDrift, timming difference in page-table walk

- Square and Multiply in MbedTLS: Flush+Fault, Cache+Time
- Breaking KASLR: CycleDrift, timming difference in page-table walk
- Zigzagger Bypass: CycleDrift

- Square and Multiply in MbedTLS: Flush+Fault, Cache+Time
- Breaking KASLR: CycleDrift, timming difference in page-table walk
- Zigzagger Bypass: CycleDrift
- Leaking Contents of a Drop-Box Folder: CycleDrift,

- Square and Multiply in MbedTLS: Flush+Fault, Cache+Time
- ▶ Breaking KASLR: CycleDrift, timming difference in page-table walk
- Zigzagger Bypass: CycleDrift
- Leaking Contents of a Drop-Box Folder: CycleDrift,
- Interrupt Detection: CycleDrift

- Square and Multiply in MbedTLS: Flush+Fault, Cache+Time
- ▶ Breaking KASLR: CycleDrift, timming difference in page-table walk
- Zigzagger Bypass: CycleDrift
- Leaking Contents of a Drop-Box Folder: CycleDrift,
- Interrupt Detection: CycleDrift
- OpenSSL 1.0.1 AES T-Table: Cache attacks

Motivation:

▶ Intel introduces umonitor and umwait in Alder Lake to optimize idle-loop.

Access	Trigger	UMONITOR	MONITORX	MONITOR
architectural	Write	1	1	1
	Flush	X	/	1
	clzero	N/A	/	1
	clwb	N/A	t	t
	prefetchw	1	†	t
transient	Speculative write	1	+	t
	Write after exception	1	+	+

† only on Zen 3, not on Zen or Zen+.

Motivation:

- Intel introduces umonitor and umwait in Alder Lake to optimize idle-loop.
- AMD has similar instructions monitorx and mwaitx.

Access	Trigger	UMONITOR	MONITORX	MONITOR
	Write	1	1	1
architectural	Flush	×	/	1
	clzero	N/A	/	/
	clwb	N/A	t	t
	prefetchw	1	†	t
transient	Speculative write	1	+	t
	Write after exception	✓	+	t

† only on Zen 3, not on Zen or Zen+.

Motivation:

- Intel introduces umonitor and umwait in Alder Lake to optimize idle-loop.
- AMD has similar instructions monitorx and mwaitx.
- umonitor tells monitor component to start monitoring a memory region, umwait waits until the region is modified (either in cache or memory), interrupt arrives or a timeout.

Access	Trigger	UMONITOR	MONITORX	MONITOR
	Write	1	1	1
architectural	Flush	X	/	1
	clzero	N/A	/	/
	clwb	N/A	t	t
	prefetchw	1	+	t
transient	Speculative write	1	+	+
	Write after exception	1	+	+

† only on Zen 3, not on Zen or Zen+.

- Carry flag (CF) is set to 0 if waken up by writing cache/memory, to 1 if waken up due to timeout.
- ► Leaks architectural state about whether the victim transient writes to the target cache line

Set a threshold to determine if the targeted memory region is present in cache line \Rightarrow enable a spectre attack without timer.

Storytelling: build a covert channel to transmit data without a timer.

Carry flag as Manchester-encoded bit to transmit data

Storytelling: build a covert channel to transmit data without a timer.

- Carry flag as Manchester-encoded bit to transmit data
- An rising edge in CF indicates a 1, a falling edge indicates a 0

Storytelling: build a covert channel to transmit data without a timer.

- Carry flag as Manchester-encoded bit to transmit data
- An rising edge in CF indicates a 1, a falling edge indicates a 0
- ▶ Without synchronization, the channel achieves 697 bit/s

Case studies:

Spectral: Enhance Spectre PHT with TWM, by monitoring if the target cache line is written without probing the cache line.

- Spectral: Enhance Spectre PHT with TWM, by monitoring if the target cache line is written without probing the cache line.
- ➤ Timerless Cache Attacks on OpenSSL 1.0.1 T-Table: Substitute Prime+Probe with TLT.

- ➤ Spectral: Enhance Spectre PHT with TWM, by monitoring if the target cache line is written without probing the cache line.
- ➤ Timerless Cache Attacks on OpenSSL 1.0.1 T-Table: Substitute Prime+Probe with TLT.
- Network Fingerprints: Utilize umwait's waken up by external interrupt to fingerprint the network interrupts with a time bucket.

References

- [1] Lukas Gerlach et al. "A Security RISC: Microarchitectural Attacks on Hardware RISC-V CPUs". In: 2023 IEEE Symposium on Security and Privacy (SP). 2023, pp. 2321–2338. DOI: 10.1109/SP46215.2023.10179399.
- [2] Ruiyi Zhang et al. "(M)WAIT for It: Bridging the Gap between Microarchitectural and Architectural Side Channels". In: 32nd USENIX Security Symposium (USENIX Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp. 7267–7284. ISBN: 978-1-939133-37-3. URL: https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-ruiyi.