ESTADÍSTICA enero 2016

1. (2'5 puntos). Un grupo de seis estudiantes está formado por 2 chicas y 4 chicos. Uno de ellos ha aprobado Estadística y acompaña a sus amigos a la revisión del examen con el objetivo de "arañar" lo que sea.

- a) Calcular la probabilidad de que el primero de los amigos en entrar a revisión sea una de las chicas
- b) Si se produce el hecho de que el que entra el primero a revisar su examen resulta ser chica, calcular la probabilidad de que la otra chica sea la aprobada

Solución:

Sean los sucesos

 $A = \{ la aprobada es una chica \}$

 $B = \{el \text{ aprobado es un chico}\}\$

$$P(A) = 2/6 \text{ y } P(B) = 4/6$$

a) Definimos el suceso C = {entra primero a revisión una chica}

$$P(C) = P(C / A) \times P(A) + P(C / B) \times P(B)$$

Donde P(C / A) = probabilidad de que entre a revisión una chica si la aprobada es chica = 1/5. (Solo una chica suspendida de cinco amigos).

Donde P(C / B) = probabilidad de que entre a revisión una chica si el aprobado es chico = 2/5. (Dos chicas suspendidas de cinco amigos).

Por tanto:
$$P(C) = P(C/A) \times P(A) + P(C/B) \times P(B) = 1/5 \times 2/6 + 2/5 \times 4/6 = 1/3$$

b) Aplicando el teorema de Bayes

$$P(A/C) = P(C/A) P(A) / P(C) = 1 /5 \times 2/6 / 1/3 = 6/30 = 1/5$$

- **2. (2'5 puntos).** Una empresa se dedica a la fabricación de placas. Cada placa está compuesta por una subpieza metálica tipo A, cuya longitud se distribuye normal de media 25 cm y desviación típica 2 cm, que se suelda sin solapamiento a otra subpieza tipo B con longitud distribuida normal de media 20 cm y desviación típica 2 cm. Ambas subpiezas se fabrican independientemente. La soldadura supone la pérdida de material con longitud distribuida normal de media 1 cm y desviación típica 1 cm, independiente de las anteriores. La placa es correcta si su longitud es de 44 ± 2 cm. Se pide:
- a) Probabilidad de fabricar placas correctas
- b) Un envío está compuesto por 5 placas escogidas al azar de entre las fabricadas. Un envío es correcto si al menos cuatro placas tienen las medidas adecuadas. Calcular la probabilidad de realizar envíos de placas correctos

Solución:

a) Definimos las variables

LA= longitud subpieza tipo A es N(25,2)

LB= longitud subpieza tipo B es N(20,2)

LP= longitud perdida de material es N(1,1)

Las 3 variables son independientes.

La longitud total de la placa será:

$$E(LT) = E(LA+LB-LP)= 25+20-1= 44$$

$$Var(LT) = Var(LA + LB - LP) = 4 + 4 + 1 = 9$$

Con lo que LT es N(44, 3)

La placa es correcta si su longitud es de 44 ± 2 cm.

$$P(42 < LT < 46) = P(42 - 44/3 < Z < 46 - 44/3) = P(-2/3 < Z < 2/3) = \Phi(2/3) - \Phi(-2/3) = 2 \Phi(2/3) - 1 = 2 \Phi(0.67) - 1 = (2x0.7486) - 1 = 0.4972 = 0.5$$

b)

X = número de placas correctas de 5 B (5,0.5)

$$P(\text{envio correcto}) = P(X>4) = 1 - P(X<4) = 1 - P(X<3) = 1 - 0.8125 = 0.1875$$

3. (2'5 puntos). Una empresa tiene unos gastos de 1000 euros a la semana si la proporción de artículos defectuosos que fabrica supera el 10%, mientras que dichos gastos desaparecen si el porcentaje de defectos es menor. Sabiendo que los ingresos fijos por las ventas semanales son de 13000 euros, y conociendo, además, que el porcentaje de artículos defectuosos es una variable aleatoria X definida entre 0 y 20 con función de densidad:

$$f(x) = \frac{1}{200}x \ si \ 0 \le x \le 20$$

Calcular el beneficio esperado semanal.

Solución:

Beneficio=Ingreso-Gasto

$$B = I-G$$

$$E[B] = E[I-G] = I - E[G] = 13000 - E[G]$$

Los Ingresos son fijos =13000 euros

El Gasto es una variable aleatoria definida como:

$$G = \begin{cases} 1000 & \text{si } x > 10 \\ 0 & \text{si } x < 10 \end{cases}$$

Siendo X= porcentaje semanal de artículos defectuosos

$$E[G]=0 P(X<10) + 1000 P(X>10)$$

$$E(G) = 0 \int_0^{10} \frac{1}{200} x dx + 1000 \int_{10}^{20} \frac{1}{200} x dx = \frac{1000}{200} \int_{10}^{20} x dx = \frac{10}{2} \left[\frac{x^2}{2} \right]_{10}^{20} = 750$$

$$E[B] = E[I-G] = I - E[G] = 13000 - E[G] = 13000 - 750 = 12250$$
 euros

4. (2'5 puntos). Se lanza una moneda 3 veces y se definen las siguientes variables:

$$X = \begin{cases} 0 & \text{Si sale cara en la primera tirada} \\ 1 & \text{Si sale cruz en la primera tirada} \end{cases}$$

Y = número de caras en las tres tiradas

Calcular:

- a) La función de cuantía (probabilidad) conjunta de (X, Y)
- b) Cov(X, Y)

Solución: Se tienen las funciones de cuantía

								1			
								3	1/8	0	
X	0	1	Y	0	1	2	3	2	2/8	1/8	
f_1	1/2	1/2	f_2	1/8	3/8	3/8	1/8	1	1/8	2/8	
	•	•						0	0	1/8	
									0	1	X

V

De las tablas se calcula la covarianza

$$\mathrm{Cov}\left(X,Y\right) = \mathrm{E}\left(XY\right) - \mathrm{E}\left(X\right)\mathrm{E}\left(Y\right) = 1 \cdot 1 \cdot \frac{2}{8} + 1 \cdot 2 \cdot \frac{1}{8} - \frac{1}{2} \cdot \frac{3}{2} = -\frac{1}{4}$$