Calcul intégral et applications

Table des matières

1.	Théorèmes
	1.1. Convergence monotone (ou Beppo-Levi) · · · · · · · · · · · · · · · · · · ·
	1.2. Lemme de Fatou · · · · · · · · · · · · · · · · · · ·
	1.3. Convergence dominée
	1.4. Continuité et dérivabilité sous le signe intégral · · · · · · · · · · · · · · · · · · ·
	1.5. Fubini

1. Théorèmes

1.1. Convergence monotone (ou Beppo-Levi)

Théorème 1.1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables positives. Si $(f_n)_{n\in\mathbb{N}}$ est une suite croissante, alors $\lim_{n\to+\infty}f_n$ est mesurable positive et

$$\lim_{n \to +\infty} \int f_n \, \mathrm{d}\mu = \int_E \lim_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

Corollaire 1.2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables positives. Alors

$$\sum_{n=0}^{+\infty} \int_E f_n \, \mathrm{d}\mu = \int_E \sum_{n=0}^{+\infty} f_n \, \mathrm{d}\mu.$$

1.2. Lemme de Fatou

Théorème 1.3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions **mesurables positives**. Alors

$$\liminf_{n\to +\infty} \int_E f_n \,\mathrm{d}\mu \geq \int_E \liminf_{n\to +\infty} f_n \,\mathrm{d}\mu.$$

Corollaire 1.4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions **mesurables positives**. S'il existe une fonction positive g **intégrable** telle que pour tout $x\in E, \forall n\in\mathbb{N}, f_n(x)\leq g(x)$ alors

$$\limsup_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu \le \int_{E} \limsup_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

1.3. Convergence dominée

Théorème 1.5. Soit $\left(f_{n}\right)_{n\in\mathbb{N}}$ et f des fonctions **mesurables**. Si

- 1. pour μ -presque tout $x \in E, \lim_{n \to +\infty} f_n(x) = f(x)$,
- 2. il existe une fonction g intégrable avec pour μ -presque tout $x \in E, \forall n \in \mathbb{N}, |f_n(x)| \leq g(x)$,

alors $\forall n \in \mathbb{N}, f_n$ et f sont **intégrables** et

$$\lim_{n \to +\infty} \int f_n \, \mathrm{d}\mu = \int_E \lim_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

Corollaire 1.6. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions **mesurables**. Si $\sum_{n=0}^{+\infty} \int_E |f_n| \,\mathrm{d}\mu$ est finie, alors $\sum_{n=0}^{+\infty} f_n$ est **définie** μ -presque partout et intégrable, et

$$\sum_{n=0}^{+\infty} \int_E f_n \, \mathrm{d}\mu = \int_E \sum_{n=0}^{+\infty} f_n \, \mathrm{d}\mu.$$

1.4. Continuité et dérivabilité sous le signe intégral

Théorème 1.7. Soit $f: E \times \mathbb{R} \to \overline{\mathbb{R}}$ une fonction et y_0 in \mathbb{R} . S'il existe une fonction g intégrable telle que

- 1. pour tout $y \in \mathbb{R}, x \mapsto f(x, y)$ est mesurable,
- 2. pour μ -presque tout $x \in E, y \mapsto f(x, y)$ est continue en y_0 ,
- 3. pour μ -presque tout $x \in E$ et pour tout $y \in \mathbb{R}, |f(x,y)| \leq g(x)$,

alors la fonction $y \mapsto \int_E f(x,y) d\mu(x)$ est **définie sur** \mathbb{R} et **continue en** y_0 .

Théorème 1.8. Soit I un intervalle de \mathbb{R} , $f: E \times I \to \mathbb{R}$ une fonction. S'il existe une fonction g intégrable telle que

- 1. pour tout $y \in \mathbb{R}, y \mapsto f(x, y)$ est intégrable,
- 2. pour μ -presque tout $x \in E, y \mapsto f(x, y)$ est **dérivable sur** I,
- 3. pour μ -presque tout $x \in E$ et pour tout $y \in \mathbb{R}$, $|\partial_y f(x,y)| \leq g(x)$,

alors la fonction $F: y \mapsto \int_E f(x,y) \, \mathrm{d}\mu(x)$ est **définie** et **dérivable sur** I avec

$$\forall y \in I, F'(y) = \int_{E} \partial_{y} f(x, y) \, \mathrm{d}\mu(x).$$

1.5. Fubini

Théorème 1.9. Soit μ et ν deux mesures σ -finies, et $f: E \times F \to \overline{\mathbb{R}}_+$ une fonction **mesurable positive**. Alors

- 1. Les fonctions $x \mapsto \int_E f(x,y) \, d\nu(y)$ et $y \mapsto \int_E f(x,y) \, d\mu(x)$ sont **mesurables**,
- 2. on a l'égalité

$$\int_{E\times F} f(x,y)\,\mathrm{d}(\mu\otimes\nu)(x,y) = \int_E \int_F f(x,y)\,\mathrm{d}\nu(y)\,\mathrm{d}\mu(x) = \int_F \int_E f(x,y)\,\mathrm{d}\mu(x)\,\mathrm{d}\nu(y).$$

Théorème 1.10. Soit μ et ν deux mesures σ -finies, et $f: E \times F \to \mathbb{R}$ une fonction intégrable.

- 1. pour μ -presque tout $x \in E$, $y \mapsto f(x,y)$ et pour μ -presque tout $y \in F$, $x \mapsto f(x,y)$ sont intégrables,
- 2. Les fonctions $x\mapsto \int_F f(x,y)\,\mathrm{d}\nu(y)$ et $y\mapsto \int_F f(x,y)\,\mathrm{d}\mu(x)$ sont **intégrables**,
- 3. on a l'égalité

$$\int_{E\times F} f(x,y) \,\mathrm{d}(\mu\otimes\nu)(x,y) = \int_E \int_F f(x,y) \,\mathrm{d}\nu(y) \,\mathrm{d}\mu(x) = \int_F \int_E f(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\nu(y).$$