1. Introduction

DTSA 5510 - Unsupervised Algorithms in Machine Learning Final Project

1. Exploratory Data Analysis

```
In [55]: diabetes = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv')
diabetes.head()

Out[55]: Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2

- 0.0

2. Modeling

Scaling

$$z=rac{x_i-\mu}{\sigma}$$

Scaling

```
y = diabetes["Outcome"]
X.head()
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
0	0.639947	0.865108	-0.033518	0.670643	-0.181541	0.166619	0.468492	1.425995
1	-0.844885	-1.206162	-0.529859	-0.012301	-0.181541	-0.852200	-0.365061	-0.190672
2	1.233880	2.015813	-0.695306	-0.012301	-0.181541	-1.332500	0.604397	-0.105584
3	-0.844885	-1.074652	-0.529859	-0.695245	-0.540642	-0.633881	-0.920763	-1.041549
4	-1.141852	0.503458	-2.680669	0.670643	0.316566	1.549303	5.484909	-0.020496

Unsupervised Approach - KMeans

```
kmeans_model = KMeans(init="random", n_clusters=2, n_init=10, max_iter=300, random_state=11)
y_pred = kmeans_model.fit_predict(diabetes)
```

```
n_correct_predictions = 0
for i in range(diabetes.shape[0]):
    if diabetes["Outcome"][i] != y_pred[i]:
        n_correct_predictions += 1
print("Accuracy for kmeans:" +str(n_correct_predictions/diabetes.shape[0]))
```

Accuracy for kmeans: 0.65364583333333334

Supervised Approach - KNN

Confusion matrix

