WT

- Contador Proporcional de TURBINA TANGENCIAL
- Aprobado según Directiva 2014/32/UE con Rango de medida (Q3/Q1) R40
- Pre-equipado para emisor de impulsos

EL **WT** es un contador de **turbina tangencial** con mecanismo extraíble. La relojería de transmisión magnética opera en un compartimento seco y solo la turbina está sumergida en el agua. La lectura del totalizador está asegurada por la utilización de un **vidrio mineral templado**: es plano y liso a diferencia de las cubiertas de plástico, resistente a los arañazos y sin pérdida de transparencia.

El WT está pre-equipado para instalar un emisor de impulsos en su versión estándar. El emisor se puede instalar posteriormente manteniendo la funcionalidad, el diseño y la garantía del contador.

El WT se puede instalar en posición horizontal o vertical.

Cumple con la Directiva 2014/32/UE y alcanza un **Rango de medida máximo** $\mathbf{Q_3/Q_1}$ **R40**.

El WT está certificado para el uso de agua potable de acuerdo las regulaciones internacionales.

- Los contadores WT están aprobados bajo la Directiva 2014/32/ UE y según la norma ISO 4064:2014 y su transposición en el RD 244/2016.
- Con vidrio mineral templado de espesor adecuado.
- El totalizador está construido en un compartimento seco que impide el contacto con el agua asegurando la lectura fácil y continua. Dispone de 7 tambores para la lectura de metros cúbicos y 2 agujas tradicionales para los submúltiplos.
- Las inscripciones MID están en una placa metálica solidaria con la brida del contador.
- Tapa con cierre metálico, bloqueable.
- Los emisores de pulsos mantienen su precinto metrológico y la carcasa de protección, aunque se coloquen después de la instalación del contador.
- Instalación horizontal o vertical.
- Cuerpo de fundición embridado con recubrimiento epoxi interno y externo.
- 100% de la producción se verifica hidráulicamente en los 3 puntos de la curva (Q₁, Q₂ y Q₃).
- Cuerpo embridado en hierro fundido con acabado epoxi interna y externamente. Está disponible también una versión roscada.
- Eje de acero y cojinetes de zafiro sintético.
- Mecanismo interno en material termoplástico, no higroscópico, anti-incrustante y resistente al desgaste.
- Temperatura máxima de utilización de 30°C. Garantizado el funcionamiento hasta los 50°C.
- Presión nominal (PN) 10 o 16 bar.

Curva típica de error

Diagrama de pérdida de carga

DATOS TÉCNICOS

Características Metrológicas

Directiva 2014/32/UE e ISO4064:2014

Diámetro Nominal	DN	mm	50	65	80	100	125	150	200
Diametro Nominai		"	2"	2 ½"	3"	4"	5″	6″	8"
Clase metrológica MID		R (Q ₃ /Q ₁) 40 H-V							
Caudal permanente	Q ₃	(m³/h)	40	63	63	100	160	250	400
Caudal máximo	Q ₄	(m³/h)	50	78,8	78,8	125	200	313	500
Rango dinámico R40 (Q ₃ /Q ₁)									
Caudal de transición (precisión ±2%)	Q ₂	(m³/h)	1,60	2,52	2,52	5,0	6,4	10,0	16,0
Caudal mínimo (precisión ±5%)	Q ₁	(m³/h)	1	1,58	1,58	3,13	4,0	6,25	10,0
Módulo B			TCM 142/13-5129						
Módulo D			0119-SJ-A010-08						

ESPECIFICACIONES TÉCNICAS

Diámetro Nominal	DN	mm	50	65	80	100	125	150	200
Clase de temperatura		T30							
Sensibilidad a la perturbación de flujo		U10-D5							
Caudal de arranque		l/h	125	190	320	450	700	1200	1800
Presión Nominal		bar	10/16	10/16	10/16	10/16	10/16	10/16	10/16
Pérdida de carga (ΔP a Q ₃)		bar	bar ΔP10						
Revoluciones/litro de la turbina			0,63	0,38	0,23	0,18	0,13	0,08	0,05
Máximo registro de lectura		m³	9.999.999 99.999.999					9.999	
Mínimo registro de lectura		I	0,002 0,02					02	
Peso		Kg	10,9	12,7	14	16,2	21,5	29,1	42,6
Valor de pulsos		l/imp.	100	100	100	100	100	1000	1000

DIMENSIONES

DN	(mm)	50	65	80	100	125	150	200
DN	"	2	2 ½"	3	4	5	6	8
L	mm	200	200	225	250	250	300	350
Н	mm	250	264	280	292	312	338	378
h	Mm	136	136	186	186	186	186	206
D	mm	165	185	200	220	250	280	340

ACCESORIOS

EMISOR REED

Disponible para la transmisión de datos y dosificación industrial.

MÓDULO DE RADIO ARROW

Se acopla al emisor de impulsos para la lectura remota del contador.

CONTRABRIDAS

Formado por dos bridas, con juntas, tornillos y tuercas.

ESTABILIZADOR DE CAUDAL

Para colocar aguas arriba del contador. Permite la instalación sin tramos rectos de tubería, reduciendo el espacio necesario.

Conthidra Cohisa Janz

@ConthidraSL

Cohisa-Conthidra

