Gerenciamento E/S

Hardware E/S

Interface de E/S

Sub-sistema de E/S do kernel

Transformando requisição de E/S em operações de hardware

Streams

Performance

Estrutura básica de E/S

Hardware de E/S

- Problema: grande variedade de dispositivos de E/S
- Conceitos comuns
 - Porta
 - Barramento
 - Controladora
- Dispositivos têm endereços usados para:
 - Instruções de acesso direto a E/S
 - E/S mapeada em memória

Estrutura típica de um barramento de PC

Localização de portas de dispositivos de E/S num PC (lista parcial)

I/O address range (hexadecimal)	device	
000-00F	DMA controller	
020-021	interrupt controller	
040-043	timer	
200-20F	game controller	
2F8-2FF	serial port (secondary)	
320-32F	hard-disk controller	
378-37F	parallel port	
3D0-3DF	graphics controller	
3F0-3F7	diskette-drive controller	
3F8-3FF	serial port (primary)	

Polling

- Determina o estado de um dispositivo
 - command-ready
 - busy
 - Error
- Necessita de ciclos busy-wait para esperar pela resposta do dispositivo.

Interrupções

- CPU faz/recebe requisição de interrupção
- Manipulador de interrupções recebe interrupções
- Pode haver mascaramento para ignorar ou atrasar tratamento de interrupções
- Um vetor de interrupções é usado para selecionar o manipulador correto da interrupção:
 - Baseado em prioridade
 - Algumas interrupções são não-mascaráveis
- Mecanismo de interrupção também é usado para tratar exceções

Ciclo de interrupção para E/S

Tabela de Interrupções da família Pentium

vector number	description	
0	divide error	
1	debug exception	
2	null interrupt	
3	breakpoint	
4	INTO-detected overflow	
5	bound range exception	
6	invalid opcode	
7	device not available	
8	double fault	
9	coprocessor segment overrun (reserved)	
10	invalid task state segment	
11	segment not present	
12	stack fault	
13	general protection	
14	page fault	
15	(Intel reserved, do not use)	
16	floating-point error	
17	alignment check	
18	machine check	
19Ð31	(Intel reserved, do not use)	
32Ð255	maskable interrupts	

Acesso direto à memória (DMA)

- Usado para evitar E/S programada para movimentação de grandes blocos de dados
- Requer uma controladora de DMA
- Libera a CPU para outras tarefas, uma vez que transfere dados diretamente entre dispositivo E/S e memória.

Seis passos básicos de DMA

Interface de E/S

- Systems calls de E/S encapsulam comportamentos de dispositivos em classes genéricas
- Camada de driver de dispositivo (device driver) esconde diferenças entre controladoras de E/S do kernel
- Dispositivos variam em muitas dimensões
 - Stream de caracteres ou blocos
 - Acesso seqüencial ou direto
 - Compartilhado ou dedicado
 - Velocidade de operação
 - Leitura-escrita, só leitura ou só escrita

Uma estrutura de E/S típica

Características de dispositivos de E/S

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controller disk

Dispositivos de bloco e caractere

- Dispositivos de bloco incluem drives de disco
 - Comandos incluem leitura(read), escrita(write) e posicionamento(seek)
 - Permitem leitura direta (Raw I/O) ou acesso por sistema de arquivos
 - Possibilidade de uso de arquivos mapeados em memória
- Dispositivos de caractere incluem teclados, mouse e portas seriais
 - Comandos incluem get, put

Dispositivos de Rede

- Variam entre bloco e caractere para ter sua própria interface
- Unix e Windows NT/9*i*/2000 incluem interface de socket
 - Separa protocolo de rede da operação de rede

■ Variadas estruturas de comunicação(pipes, FIFOs, streams, filas, mailboxes)

Clocks e Timers

Disponibilizam temporização para o SO

- Timer variável interna
- Clock dispositivo de hardware
- Timer normalmente é alterado com base em interrupções de clock.

E/S por bloqueamento(blocking) e sem bloqueamento (nonblocking)

- Por bloqueamento processo é suspenso até E/S ser realizada completamente
 - Fácil de usar e entender
 - Insuficiente para algumas necessidades
- Sem bloqueamento realizações intermediárias de E/S
 - Utiliza bufferização
 - Implementação via multi-threading
 - Retorna rapidamente com contador de blocos escritos ou lidos
- Assíncrono Processo roda enquanto E/S é realizada
 - Difícil de usar
 - Sub-sistema de E/S informa o processo quando a E/S for realizada.

Sub-sistema de E/S do Kernel

- Escalonamento
 - Algumas requisições de E/S são feitas via filas de dispositivos
- Buffering armazenar dados em memória enquanto ocorre transferência entre dispositivos

Sub-sistema de E/S do Kernel

- Caching memória de alta velocidade que armazena dados acessados
 - Mantém sempre uma cópia
 - Estrutura básica para aumentar performance

- Spooling manter saída para um dispositivo
 - Se o dispositivo consegue atender uma requisição de cada vez
 - Exemplo típico: impressora

Estruturas de Dados para E/S no Kernel

- Kernel mantém informação de estado para componentes de E/S, incluindo tabelas de arquivos abertos, conexões de rede, estado de dispositivos de caractere, etc.
- Estruturas mais complexas podem ser necessárias para gerenciar buffers, alocação de memória, sincronização de cópias (dirty buffers).
- É comum o uso de métodos de orientação a objetos e passagem de mensagens para implementar E/S.

Estrutura de E/S UNIX

Transformação de requisições de E/S para operações em Hardware

Considere-se um processo que precise ler um arquivo de disco:

- Determinar qual dispositivo armazena o arquivo
- Traduzir o nome do arquivo para a representação de disco
- Ler dados do disco para um buffer
- Tornar os dados disponíveis para o processo
- Retornar o controle ao processo

Ciclo de vida de uma requisição de E/S

STREAMS

- STREAM Um canal de comunicação full-duplex entre um processo de nível de usuário e um dispositivo.
- Um STREAM consiste de:
 - interfaces de cabeçalho **STREAM** com o processo do usuário
 - interfaces driver end com o dispositivo
 - zero ou mais módulos STREAM entre eles.
- Cada módulo contém uma fila de leitura e uma de escrita.
- Passagem de mensagem é um mecanismo usado para implementar comunicação entre as filas.

A estrutura de STREAMS

Comunicações entre máquinas

