Lecture 5: Latent Variable Models, Interpretations, & Effect Size

Kyle M. Lang

Institute for Measurement, Methodology, Analysis & Policy Texas Tech University Lubbock, TX

February 29, 2016

Outline

- Show how to test for indirect effects in latent variable models
- Discuss the interpretation of indirect effects
- Discuss effect size measures for indirect effects
- Talk about term-project ideas

Boring Model

So far, all of our models have been similar to:

But there is no reason that we need to restrict ourselves to mucking about with observed variables.

Better Model

We can (and should) test for indirect effects using *latent* variable models such as:

Measurement error can be a big problem for mediation analysis, so latent variable modeling is highly recommended.

```
library(lavaan)
dataDir \( - \text{".../data/"} \)
dat1 \( - \text{ readRDS(paste0(dataDir, "adamsKlpsData.rds"))} \)
## Specify the CFA model:
mod1.1 \( - \text{"} \)
merit =\( \text{moritP1 + meritP2 + meritP3} \)
policy =\( \text{policyP1 + policyP2 + policyP3} \)
"
## Fit the CFA and check model:
out1.1 \( - \text{cfa(mod1.1, data = dat1, std.lv = TRUE)} \)
## Check model fit:
round(fitMeasures(out1.1)[c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "srmr")], 4)
```

```
chisq df pvalue cfi tli rmsea srmr
16.8695 8.0000 0.0315 0.9215 0.8529 0.1129 0.0653
```

```
summary(out1.1)
```

lavaan (0.5-19) con	verged no	rmally af	ter 22	iterations	
Number of observa	tions			87	
Estimator				ML	
Minimum Function	Test Stat	istic		16.869	
Degrees of freedo	m			8	
P-value (Chi-squa				0.031	
Parameter Estimates	:				
Information				Expected	
Standard Errors				Standard	
Latent Variables:					
	Estimate	Std.Err	Z-value	P(> z)	
merit = \sim					
meritP1	0.690	0.134	5.155	0.000	
meritP2	0.968	0.142	6.830	0.000	
meritP3	0.748	0.137	5.458	0.000	
policy = \sim					
policyP1	0.851	0.186	4.570	0.000	

policy	1.000				
merit	1.000				
policyP3	0.857	0.297	2.882	0.004	
policyP2	0.942	0.256	3.683	0.000	
policyP1	1.836	0.324	5.671	0.000	
meritP3	0.833	0.172	4.857	0.000	
meritP2	0.445	0.201	2.211	0.027	
meritP1	0.865	0.165	5.248	0.000	
	Estimate	Std.Err	Z-value	P(> z)	
Variances:					
policy	-0.336	0.131	-2.563	0.010	
merit \sim	0 226	0 404	0 500	0.040	
	Estimate	Std.Err	Z-value	P(> z)	
Covariances:					
policylo	1.121	0.111	0.000	0.000	
policyP3	1.121	0.177	6.339	0.000	
policyP2	0.996	0.167	5.967	0.000	

```
## Specify the structural model:
mod1.2 ← "
merit =\sim meritP1 + meritP2 + meritP3
policy = ~ policyP1 + policyP2 + policyP3
policy ~ b*merit + polAffil
merit \sim a*polAffil
ab := a*b
## Fit the structural model and test the indirect effect:
out1.2 

sem (mod1.2, data = dat1, std.lv = TRUE,
              se = "boot", boot = 2500)
summary(out1.2)
```

lavaan (0.5-19) conve	rged no	rmally aft	er 24	iterations	
Number of observati	ons			87	
Estimator				ML	
Minimum Function Te	st Stat	istic		20.665	
Degrees of freedom				12	
P-value (Chi-square)			0.056	
Parameter Estimates:					
Information				Observed	
Standard Errors				Bootstrap	
Number of requested	bootst	rap draws		2500	
Number of successfu		-	3	2477	
Latent Variables:					
Es	timate	Std.Err	Z-value	P(> z)	
merit = \sim					
meritP1	0.545	0.127	4.301	0.000	
meritP2	0.858	0.132	6.490	0.000	
meritP2 meritP3		0.132 0.117			

policy =~ policyP1 policyP2 policyP3		0.799 0.924 1.001	0.191 2.404 2.134	4.185 0.384 0.469	0.701	
Regressions:		Estimate	Std.Err	Z-value	P(> z)	
$ ext{policy} \sim \\ ext{merit} \\ ext{polAffil} \\ ext{merit} \sim \\ ext{}$	(b)	-0.195 0.169	0.205 0.134		0.342 0.205	
polAffil	(a)	-0.411	0.100	-4.093	0.000	
Variances:		Estimate	Std.Err	Z-value	P(> z)	
meritP1		0.922	0.186			
meritP2		0.341	0.224			
meritP3		0.869				
policyP1 policyP2		1.801	0.338			
policyP3		0.918		0.007	0.995	
merit		1.000				
policy		1.000				

parameterEstimates(out1.2, boot = "bca.simple")[-c(1 : 3)]

```
label
                             z pvalue ci.lower ci.upper
            est
                     se
          0.545
                 0.127
                         4.301 0.000
                                          0.325
                                                   0.824
1
2
          0.858
                  0.132
                         6.490 0.000
                                          0.620
                                                   1.150
3
          0.609
                  0.117
                         5.204 0.000
                                          0.375
                                                   0.827
4
          0.799
                 0.191
                         4.185 0.000
                                       0.446
                                                   1.144
5
          0.924
                  2.404
                         0.384 0.701
                                          0.658
                                                   1.479
6
          1.001
                  2.134
                         0.469
                                0.639
                                          0.574
                                                   1.666
7
       b -0.195
                 0.205 -0.950 0.342
                                         -0.622
                                                   0.193
8
          0.169
                 0.134
                        1.267 0.205
                                         -0.087
                                                   0.443
9
       a - 0.411
                 0.100 -4.093
                                0.000
                                         -0.625
                                                  -0.235
10
          0.922
                 0.186
                         4.947
                                0.000
                                          0.615
                                                   1.344
11
          0.341
                 0.224
                         1.522 0.128
                                         -0.127
                                                   0.691
12
          0.869
                 0.185
                         4.696
                                 0.000
                                          0.563
                                                   1.284
13
          1.801
                  0.338
                         5.326
                                0.000
                                          1.219
                                                   2.570
14
          0.918 136.895
                         0.007
                                 0.995
                                          0.341
                                                   1.567
```

15		0.922	126.529	0.007	0.994	0.019	1.581	
16		1.000	0.000	NA	NA	1.000	1.000	
17		1.000	0.000	NA	NA	1.000	1.000	
18		2.444	0.000	NA	NA	2.444	2.444	
19	ab	0.080	0.093	0.859	0.390	-0.081	0.286	

Interpretation of Indirect Effects

Although indirect effects are composed parameters, they have direct interpretations, independent of the interpretations of their constituent paths:

- The $X \to M \to Y$ indirect effect ab is interpreted as:
 - The expected change in Y for a unit change in X that is transmitted indirectly through M, or...
 - For a unit change in X, Y is expected to change by ab units, indirectly through M, or...
 - Participants who differ by one unit on X are expect to differ by ab units on Y as a results of the effect of X on M which, in turn, affects Y.
- ullet The interpretation/scaling of the indirect effect is entirely defined by the input X and outcome Y
 - ullet The scaling of the intermediary variable M does not affect the interpretation of the indirect effect.

Partially Standardized Indirect Effect

$$ab_{ps} = \frac{ab}{SD_Y}$$

$$c'_{ps} = \frac{c'}{SD_Y}$$

$$c_{ps} = \frac{c}{SD_Y} = ab_{ps} + c'_{ps}$$

- Simple
- Removes binding to the scale of Y
- \bullet Still scale-bound by X
- Not clear what constitutes a "large" effect

Completely Standardized Indirect Effect

$$ab_{cs} = \frac{SD_X ab}{SD_Y}$$

$$c'_{cs} = \frac{SD_X c'}{SD_Y}$$

$$c_{cs} = \frac{SD_X c}{SD_Y} = ab_{cs} + c'_{cs}$$

- Simple
- Removes all scale binding
- Not clear what constitutes a "large" effect

Ratio of the Indirect Effect to the Total Effect

$$P_M = \frac{ab}{c} = \frac{ab}{c' + ab}$$

- Very simple
- ullet Not bounded by 0 and 1
- Explodes toward $\pm \infty$ as $c \to 0$
- Very unstable
 - High between-sample variability
 - Requires $N \ge 500$

Ratio of the Indirect Effect to the Direct Effect

$$R_M = \frac{ab}{c'} = \frac{P_M}{1 - P_M}$$

- Very simple
- Not bounded by 0 and 1
- Explodes toward $\pm \infty$ as $c' \to 0$
- Very unstable
 - High between-sample variability
 - Requires $N \ge 2000$

Proportion of Variance in Y Explained by the Indirect Effect

Developed by Fairchild, MacKinnon, Taborga, and Taylor (2009).

• Given a non-zero total effect, represents the proportion of variance in Y accounted for by the indirect effect.

$$R_{med}^2 = r_{MY}^2 - \left(R_{Y.MX}^2 - r_{XY}^2\right)$$

- Mostly sensible interpretation
- Predicated on the assumption that $\beta_{YX} \neq 0$
- $|ab| > |c| \Rightarrow R_{med}^2 < 0$
 - Not a strict proportion

Kappa Squared

Developed by Preacher and Kelley (2011).

• Gives the proportion of the maximum possible indirect effect represented by ab.

$$\kappa^2 = \frac{ab}{\max(ab)}$$

- Bounded by 0 and 1
- Values closer to 1.0 indicate a bigger effect
- A bit of a pain to calculate.

Computing $\max(ab)$

$$a \in \left\{ \frac{\sigma_{\mathit{YM}} \sigma_{\mathit{YX}} \pm \sqrt{\sigma_{\mathit{M}}^2 \sigma_{\mathit{Y}}^2 - \sigma_{\mathit{YM}}^2} \sqrt{\sigma_{\mathit{X}}^2 \sigma_{\mathit{Y}}^2 - \sigma_{\mathit{YX}}^2}}{\sigma_{\mathit{X}}^2 \sigma_{\mathit{Y}}^2} \right\} = [a_{low}, a_{high}],$$

$$b \in \left\{ \pm \frac{\sqrt{\sigma_X^2 \sigma_Y^2 - \sigma_{YX}^2}}{\sqrt{\sigma_X^2 \sigma_M^2 - \sigma_{MX}^2}} \right\} = [b_{low}, b_{high}],$$

$$\max(a) = \begin{cases} a_{high}, & \text{if} & \hat{a} > 0 \\ a_{low}, & \text{if} & \hat{a} < 0 \end{cases}, \quad \max(b) = \begin{cases} b_{high}, & \text{if} & \hat{b} > 0 \\ b_{low}, & \text{if} & \hat{b} < 0 \end{cases},$$

$$\max(ab) = \max(a)\max(b)$$

```
## Specify the model:
mod2 
    "
policy ~ b*sysRac + cp*polAffil
sysRac ~ a*polAffil

ab := a*b
"
## Estimate the model:
out2 
    sem(mod2, data = dat1)
##
## Extract/compute the necessary quantities:
ab 
    prod(coef(out2)[c("a", "b")])
ab
```

```
[1] 0.1015958
```

```
cPrime 		 coef(out2)["cp"]

##

sdY 		 sd(dat1$policy)

sdX 		 sd(dat1$polAffil)

##

r2MY 		 with(dat1, cor(policy, sysRac))^2

r2XY 		 with(dat1, cor(policy, polAffil))^2
R2Y.MX 		 inspect(out2, "r2")["policy"]
```

```
## Partially Standardized:
abPS ← ab / sdY
abPS
```

```
[1] 0.08559454
```

```
cPrimePS ← cPrime / sdY
cPrimePS
```

```
cp
0.1138675
```

```
\begin{array}{lll} \texttt{cPS} & \leftarrow & \texttt{abPS} + & \texttt{cPrimePS} \\ \texttt{cPS} & & & \end{array}
```

```
cp
0.199462
```

```
## Completely Standardized: abCS \leftarrow (sdX * ab) / sdY abCS
```

[1] 0.1345859

```
cPrimeCS ← (sdX * cPrime) / sdY
cPrimeCS
```

```
cp
0.1790413
```

```
\begin{array}{lll} \texttt{cCS} & \leftarrow & \texttt{abCS} + & \texttt{cPrimeCS} \\ \texttt{cCS} & & & \end{array}
```

```
cp
0.3136272
```

```
## Proportions:
pm ← ab / (cPrime + ab)
pm
```

```
cp
0.429127
```

```
\begin{array}{lll} \texttt{rm} \; \leftarrow \; \texttt{ab} \; / \; \texttt{cPrime} \\ \texttt{rm} \end{array}
```

```
cp
0.7517031
```

```
## R2:
R2med ← r2MY - (R2Y.MX - r2XY)
R2med
```

```
policy
0.06905689
```

```
## Subset the data:
tmpData 	 dat1[ , c("polAffil", "sysRac", "policy")]
colnames(tmpData) 	 c("x", "m", "y")

##
## Extract pertinent variance/covariance elements:
cov1 	 cov(tmpData)
sYM 	 cov1["x", "m"]
sYX 	 cov1["y", "x"]
sMX 	 cov1["m", "x"]
s2X 	 cov1["m", "x"]
s2X 	 cov1["m", "m"]
s2Y 	 cov1["m", "m"]
s2Y 	 cov1["m", "m"]
```

```
## Possible range of a:

aMarg \( - \text{ sqrt}(s2M * s2Y - sYM^2) * sqrt(s2X * s2Y - sYX^2) \)

aInt \( - \text{ c}( (sYM * sYX - aMarg) / (s2X * s2Y), (sYM * sYX + aMarg) / (s2X * s2Y) \)

aInt
```

[1] -0.4378558 0.5793099

```
##
## Possible range of b:
bMarg \leftarrow sqrt(s2X * s2Y - sYX^2) / sqrt(s2X * s2M - sMX^2)
bInt \leftarrow c(-1 * bMarg, bMarg)
bInt
```

```
[1] -1.289996 1.289996
```

```
a
0.5793099
```

```
b
1.289996
```

```
##
## max(ab)
abMax ← aMax * bMax
abMax
```

```
a
0.7473075
```

```
##
## Kappa Squared:
k2 ← ab / abMax
k2
```

```
a
0.1359491
```

Practice

Suppose:

1 Σ is given by:

	x	m	у
X	1.5		
\mathbf{m}	0.3	1.4	
У	0.6	0.45	1.55

- 2 The estimated paths are:
 - a = 0.2
 - b = 0.246
 - ab = 0.049

Compute κ^2 for the estimated ab.

REFERENCES

- Fairchild, A. J., MacKinnon, D. P., Taborga, M. P., & Taylor, A. B. (2009). R-squared effect-size measures for mediation analysis. *Behavior Research Methods*, 41(2), 486–498.
- Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. *Psychological Methods*, 16(2), 93.