

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 DISCRETE MATHEMATICAL STRUCTURE SEMESTER - 1

Time: 3 I	lours)				[Full Mark	s : 7 0
				gradie Militaria. Na responsable de la composition de la		
· · · · · · · · · · · · · · · · · · ·		Graph sheet is	provided o	n Page 31.		
		GR	OUP - A			
		(Multiple Cho	ice Type g	ruestions)		
1. Cho	ose the correct a	lternatives for ar	y ten of th	e following:	10 × 1	= 10
0	in a group of	400 people, 250	can speak	in English only,	70 can speak	Hindi
	only.					
	How many can	speak in English	n ?			
	a) 250		b)	330		
	c) 400		d)	320.		
ti)	If the general t	term of the seque	ence {a _k	be a^k , which w	ill be the gene	rating
•	function?					
	a) 1/(1-x	:)	b)	a / (1-x)		
	c) k/(1-		ď)	1/(1-ax).		
HI)		with n vertices l	as maximi	19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (The state of the s	
щ						•
) / 2 edges		n^2 edges.	۲.	
	c) $n(n+1)$) / 2 edges	d)	n - euges.	L.	
iv)				number of edges a	nd k be the nu	ımber
	of components	of a graph G, th	en			
	a) $e > n + k$	•	b)	$e \ge n - k$		

none of these.

v)
$$A \cap B^c =$$

a)
$$A - B$$

b)
$$(A \cup B)^c$$

c)
$$A - B^c$$

vi) If
$$A = \{1, 2, 3\}$$
, $B = \{4, 5\}$, $C = [1, 2, 3, 4, 5]$, then $(C \times B) - (A \times B) =$

a)
$$(C-A)\times(B-A)$$

b)
$$B \times B$$

c)
$$(C \cap A) \times B$$

vii) If A and B are two fuzzy sets given by

$$A = \{ (1, 0.1), (3, 0.4), (5, 0.2), (7, 0.8) \}$$
 and

$$B = \{ (1, 0.3), (3, 0.2), (5, 0.5), (7, 0.7) \}$$
 then

a)
$$A \cup B = \{ (1, 0.3), (3, 0.4), (5, 0.2), (7, 0.8) \}$$

b)
$$A = \{ (1, 0.1), (3, 0.4), (5, 0.5), (7, 0.8) \}$$

c)
$$A \cup B = \{ (1, 0.3), (3, 0.4), (5, 0.5), (7, 0.8) \}$$

viii) If the function $f: R \to R$ defined by

$$f(x) = \begin{cases} 3x - 4, & x > 0 \\ -3x + 2, & x \le 0 \end{cases}$$

then $f^{-1}(2) =$

c)
$$\{2, -2\}$$

ix) The generating function of the sequence $\{0, 1, 0, -1, 0, 1, 0, -1, 0, ...\}$ is

a)
$$\frac{1}{1+x^2}$$

b)
$$\frac{x}{1+x^2}$$

c)
$$\frac{x^2}{1+x^2}$$

- x) A complete graph of n vertices has exactly
 - a) $\frac{n(n+1)}{2}$ vertices
- b) $\frac{n(n-1)}{2}$ vertices
- c) $\frac{(n+1)}{2}$ vertices
- d) none of these.

- xi) Cardinality of the power set of a non-empty set A is
 - a) 2 |A|

b) 2 |A|

c) |A|²

d) none of these.

xii) The solution of the recurrence relation

$$a_r - 7a_{r-1} + 10a_{r-2} = 0$$
 given $a_0 = 0$, $a_1 = 3$ is

a) $a_r = 5^{-r} - 2^r$

b) $5^r + 2^t$

c) $5^r - 2^r$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Solve the following using generating function:

$$a_n - a_{n-1} = 3 (n-1), n \ge 1$$
, and where $a_0 = 2$.

- 3. Find the coefficient of x^{18} in $(x+x^2+x^3+x^4+x^5)(x^2+x^3+x^4+x^5+...)^5$.
- 4. Let A be some fixed 10-element subset of $S = \{1, 2, 3, 4, 5, ... 50\}$. Show that A possesses two different 5-element subsets, the sums of whose elements are equal.
- 5. Show that $4^{2n+1} + 3^{n+2}$ is an integer multiple of 13, for all positive integers n.
- 6. Draw the graph represented by the given adjacency matrix:

$$\begin{pmatrix}
1 & 2 & 0 & 1 \\
2 & 0 & 3 & 0 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}$$

Δ

v)
$$A \cap B^c =$$

a) A-B

b) $(A \cup B)^c$

c) $A - B^c$

d) none of these.

vi) If $A = \{1, 2, 3\}$, $B = \{4, 5\}$, $C = \{1, 2, 3, 4, 5\}$, then $(C \times B) - (A \times B) =$

- a) $(C-A)\times(B-A)$
- b) $B \times B$

c) $(C \cap A) \times B$

d) none of these.

vii) If A and B are two fuzzy sets given by

 $A = \{ (1, 0.1), (3, 0.4), (5, 0.2), (7, 0.8) \}$ and

 $B = \{ (1, 0.3), (3, 0.2), (5, 0.5), (7, 0.7) \}$ then

- a) $A \cup B = \{ (1, 0.3), (3, 0.4), (5, 0.2), (7, 0.8) \}$
- b) $A = \{ (1, 0.1), (3, 0.4), (5, 0.5), (7, 0.8) \}$
- c) $A \cup B = \{ (1, 0.3), (3, 0.4), (5, 0.5), (7, 0.8) \}$
- d) none of these.

viii) If the function $f: R \to R$ defined by

$$f(x) = \begin{cases} 3x - 4, & x > 0 \\ -3x + 2, & x \le 0 \end{cases}$$

then $f^{-1}(2) =$

a) {2-}

b) { 0, 2 }

c) $\{2, -2\}$

d) none of these.

ix) The generating function of the sequence $\{0, 1, 0, -1, 0, 1, 0, -1, 0, ...\}$ is

a) $\frac{1}{1+x^2}$

b) $\frac{x}{1+x^2}$

c) $\frac{x^2}{1+x^2}$

d) none of these.

- x) A complete graph of n vertices has exactly
 - a) $\frac{n(n+1)}{2}$ vertices
- b) $\frac{n(n-1)}{2}$ vertices
- c) $\frac{(n+1)}{2}$ vertices
- d) none of these.
- xi) Cardinality of the power set of a non-empty set A is
 - a) 2 |A|

b) 2 |A|

c) $|A|^2$

d) none of these.

xii) The solution of the recurrence relation

$$a_r - 7a_{r-1} + 10a_{r-2} = 0$$
 given $a_0 = 0$, $a_1 = 3$ is

a) $a_r = 5^{-r} - 2^r$

b) 5 ^r + 2 ^r

c) $5^r - 2^r$

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Solve the following using generating function:

$$a_n - a_{n-1} = 3 (n-1), n \ge 1$$
, and where $a_0 = 2$.

- 3. Find the coefficient of x^{18} in $(x+x^2+x^3+x^4+x^5)(x^2+x^3+x^4+x^5+...)^5$.
- 4. Let A be some fixed 10-element subset of $S = \{1, 2, 3, 4, 5, ... 50\}$. Show that A possesses two different 5-element subsets, the sums of whose elements are equal.
- 5. Show that $4^{2n+1} + 3^{n+2}$ is an integer multiple of 13, for all positive integers n.
- 6. Draw the graph represented by the given adjacency matrix:

$$\begin{pmatrix}
1 & 2 & 0 & 1 \\
2 & 0 & 3 & 0 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}$$

- 7. Find the generating function for the sequence 1 1 0 1 1 1 1
- 8. Explain the Ring Sum operation with an example. Find the centre of the following graph:

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3\times15=45$

9. Let R and S be two fuzzy relations from X to Y given in the following matrix forms. Find (a) $R \cup S$, (b) $R \cap S$, (c) R + S and (d) $R \cdot S$.

$$M_{S} = \begin{matrix} y_{1} & y_{2} & y_{3} \\ x_{1} & 0.6 & 0.1 & 0.9 \\ x_{2} & 0 & 0.2 & 0.3 \end{matrix}$$

Draw Hasse-diagram to illustrate the following partial ordering:

The set of all subsets of $\{1, 2, 3, 4\}$ having at least two numbers partially ordered by \subseteq . Show that $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$ where x is a real number. 8 + 5 + 2

- 10. Prove that s simple graph with n vertices and k components can have at most (n-k)(n-k+1)/2 edges. Prove that in a tree there exists one and only one path between every pair of vertices. 6+9
- 11. Find the shortest path of the following graph using Prim's algorithm:

Given the post-order and inorder traversals of a binary tree. Draw the unique binary tree:

Post-order:

decfbhiga

Inorder:

dcebfahgi

8 + 7

- 12. a) Define grammar of a language and its types. Give an example of a grammar which is Type 2 but not Type 3.
 - b) Find the grammar for the language

$$L = L = \{ w \in \{ a, b, c \}^* : w = a^n b^n c^m, n \ge 1, m \ge 0 \}.$$

c) Define Mealy machine and Moore Machine. Construct a Moore machine from the following Mealy machine:

	Next State					
Present	а	= 0	a = 1			
State	State	Output	State	Output		
s ₀	s _o	1	s ₁	0		
s ₁	s ₃	1	s ₃	1		
s 2	s ₁	1.	s ₂	1		
s ₃	s ₂	0	s _o	1		

13.	a)	Define a lattic	e. Prove that	a collection	of sets close	d union and	intersection is a
	• •	lattice.					1 + 4
				•			

- b) Prove that in a bounded distributive lattice (L, \cap , \cup) an element cannot have more than one complement.
- c) Find the sum of all four digits of even numbers that can be made with the digits 0, 1, 2, 3, 5, 6 and 8.

END