

Fig. 1

Fig. 2

Fig. 4

5																		
Evaluation	×	×	×	×	×	×	×	0	0	×	0	0	×	×	×	×	0	0
Concentra- tion of the carbon compounds (ppm)				3000			009	300	200		400	100				1000	200	300
Value of the increase of the voltage (V)	13.0	9.0	8.5	11.0	11.5	8.0	9.6	0.8	15.0	12.0	11.0	7.5	25	15	16	14	12	8.5
Lumen maintenance factor (%)	37	44	47	92	48	44	909	83	28	25	98	06	43	39	45	20	82	06
Ratio e/a	4.0 x 10 ⁻⁴	8.8 x 10 ⁻⁴	3.9 x 10 ⁻⁴	3.6 x 10 ⁻²	4.5 x 10 ⁻³	4.8 x 10-4	4.0×10^{-2}	1.2 x 10 ⁻²	6.3 x 10 ⁻⁴	5.5 x 10 ⁻⁴	1.8 x 10 ⁻⁴	3.3 x 10 ⁻⁴	3.4×10^{-2}	5.2×10^{-3}	4.8 x 10 ⁻⁴	3.8×10^{-2}	1.4×10^{-2}	6.4 × 10 ⁻⁴
Ratio d/a	2.1 x 10 ⁻⁴	4.0×10^{-2}	6.0 x 10⁴	6.9 x 10 ⁻⁴	1.5 x 10 ⁻⁴	2.7 x 10 ⁻⁴	5.5 x 10 ⁻⁴	3.1 x 104	4.4 x 10 ⁻⁴	4.8 x 10 ⁻²	4.5 x 10 ⁻³	7.2 x 104	5.0 x 10-4	8.1 x 10 ⁻⁴	4.5 x 10 ⁻⁴	3.6 x 10 ⁻⁴	7.5 x 10 ⁻⁴	5.8 x 10⁴
Ratio c/a	1.6 x 10 ⁻¹	6.0×10^{-3}	4.0 x 10 ⁻³	2.2 x 10 ⁻¹	1.8 x 10 ⁻¹	1.9 x 10 ⁻¹	2.7×10^{-2}	5.4 x 10 ⁻²	1.4 x 10 ⁻¹	7.2 x 10 ⁻³	4.5 x 10 ⁻³	4.8 x 10 ⁻³	2.1 x 10-1	2.1 x 10 ⁻¹	1.9 x 10-1	6.0×10^{-2}	1.1 x 10-1	6.0×10^{-2}
Ratio b/a	3.0×10^{-5}	6.5×10^{-5}	9.7 x 10-6	2.5×10^{-5}	2.0 x 10 ⁻⁴	1.5 x 10 ⁻⁴	3.0 x 10-4	4.5 x 10 ⁻⁴	3.5 x 10 ⁻⁴	2.0 x 10 ⁻⁴	1.0 x 10 ⁻⁴	1.5 x 10 ⁻⁴	6.0 x 10 ⁻⁴	5.3 x 10 ⁻³	3.4 x 10 ⁻³	7.2 x 104	1.2×10^{-2}	7.9×10^{-3}
Condition for the thermal treatment of the electrodes	Н3	H1	ЕН3	H1	Н2	Н3	Н1	Н2	Н3	H1	Н2	ЕН	H1	Н2	Н3	H1	Н2	Н3
Condition for the degas-sing treat-ment of the material of which the discharge vessel is formed	G1	63	63	G 1	G 1	G1	G2	G 2	G 2	G3	G3	63	G1	61	G1 .	62	62	G 2
Mixing ratio of the encapsulated gases O2/Ar (%)	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	9:0	6.0	0.5	0.5	0.5	0.5
·	1 (comparison)	2 (comparison)	3 (comparison)	4 (comparison)	5 (comparison)	6 (comparison)	7 (comparison)	8 (invention)	9 (invention)	10 (comparison)	11 (invention)	12 (invention)	13 (comparison)	14 (comparison)	15 (comparison)	16 (comparison)	17 (invention)	18 (invention)

Fig. 5

	8	_	_			_			_	_		_		,	
Evaluation	×	0	0	×	×	×	×	0	0	×	0	0	X	X	X
Concentra- tion of the carbon compounds (ppm)		200	320		006			009	150		300	440			
Value of the increase of the voltage (V)	23	16	12	14	8	7.5	11	12.5	16	52	14	9.5	8	16	
Lumen maintenance factor (%)	48	88	62	36	51	37	45	06	28	46	68	91.5	44	41	ı
Ratio e/a	7.6 x 10 ⁻⁴	1.3 x 10 ⁻⁴	3.3 x 10 ⁻⁴	4.1×10^{-2}	5.3×10^{-3}	4.8 x 10 ⁻⁴	4.6×10^{-2}	9.0×10^{-3}	6.3 x 10 ⁻⁴	4.0 x 10 ⁻⁴	3.3 x 104	4.5 x 10 ⁻⁴	4.0 x 10 ⁻⁴	7.3 x 104	3.5 x 10⁴
Ratio d/a	4.6 x 10-2	5.2 x 10 ⁻³	7.3 x 10 ⁻⁴	5.0 x 10 ⁻⁴	8.3 x 10 ⁻⁴	1.2 x 10 ⁻⁴	6.0 x 10 ⁻⁴	9.0 x 10 ⁻⁴	1.0 x 10 ⁻⁴	5.5 x 10 ⁻²	1.2×10^{-2}	7.2 x 10 ⁻⁴	1.4×10^{-4}	1.5×10^{-2}	6.0 x 10⁴
Ratio c/a	6.8 x 10 ⁻³	5.2×10^{-2}	4.8 x 10 ⁻³	2.0 × 10-1	2.4 x 10 ⁻¹	2.0 x 10 ⁻¹	5.9 x 10-2	1.3 x 10 ⁻¹	9.0 x 10-2	6.7×10^{-3}	6.0 x 10 ⁻³	5.1 x 10 ⁻³	2.0 x 10-1	6.7 x 10 ⁻³	4.8 x 10 ⁻³
Ratio b/a	4.8 x 10 ⁻³	2.6 x 10 ⁻³	3.4×10^{-3}	4.8 x 10 ⁻³	1.1 x 10-1	4.0 x 10-2	5.8 x 10 ⁻³	9.5 x 10-2	6.5 x 10 ⁻²	7.2 x 10 ⁻²	5.2×10^{-2}	1.2 x 10-1	2.5 x 10 ⁻¹	1.9 x 10-2	1.4 x 10 ⁻¹
Condition for the thermal treatment of the electrodes	Н1	Н2	ЕН	Н1	Н2	ЕН	H1	Н2	н3	Ĥ1	Н2	нз	ЕН	H1	Н3
Condition for the degassing treatment of the material of which the discharge vessel is formed	63	63	63	G1	61	61	. 62	62	62	63	63	63	61	63	63
Mixing ratio of the encapesulated gases Oz/Ar (%)	9.0	0.5	9.0	1	1	1	1	1	1	1	1	1	2	2	2
	19 (comparison)	20 (invention)	21 (invention)	22 (comparison)	23 (comparison)	24 (comparison)	25 (comparison)	26 (invention)	27 (invention)	28 (comparison)	29 (invention)	30 (invention)	31 (comparison)	32 (comparison)	33 (comparison)