DERact bit with n-degree polynomial

Given (n+1) deta points: (xo, yo), (x, y),...

(Xn, yn)

n'h order polynomial

y=f(x) = 90+ 91x+ 2x2+ -... + 91xx

ao, a,, --. an are unknown constants

$$Y_1 = 9.49_1X_1 + 9.2 \times 1 + - - - 9.1 \times 1 - 2$$

$$y_n = a_0 + a_1 x_n + a_2 x_n^2 + - - a_n x_n^n - (n-1)$$

-		Ł.	χ, ² χ, ²	x°2		Xo	[ð•]	[yo]			
	1	۲,	X, ^L	7,3	,	x,~	1,	الإ =			
	•								1		
	. 1	Xn	Xn	Xh	•	χ ^ν ,	[an]	LynJ			
		1		' 1	(n+1)(h+1)	(h+1))XI (HH))	()		
$ \frac{A}{(n+1)(n+1)} = b $ $ \frac{A}{(n+1)(n+1)} \times 1 $											
	_										

Solve for X

Gauss-Jordan Gauss-Seidel :

EXAMPLE

the following data

X	0)	2
y	2	0	4

Generate a polynomial fit to the data

3 data points 2 degree polynomial

Substitute

$$2 = |q_0 + a_1(0) + a_2(0)^2$$

$$0 = |q_0 + a_1(1) + a_2(1)^2$$

$$4 = |q_0 + a_1(2) + a_2(2)^2$$

$$\begin{bmatrix} 2 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0^2 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 9_0 \\ 9_1 \\ 9_2 \end{bmatrix}$$

$$90 = 2$$
; $91 = -5$; $42 = 3$ => $y = 2 - 5x + 3x^2$