% midulul => xunsivder

n'.a => remainder when n is divided by a

Dividend = Quartent X divisor + remainder (D) (q) (d) (r)

largest multiple of divisor less thour or equal to dividend

Oms 1 3 120 %11

largest nuckple of 11 <= 150

a.
$$120 \times 11 = \frac{1}{2}$$

$$L = 120 - 149 = \frac{1}{2}$$

quez 2 00%7

$$7)100(14)$$
 $\frac{7}{x30}$
 $\frac{38}{x2}$

Qui2 3 => largest no. => -43 -42 -76 -35

Qu2-40 -40 %. 7

7: Brisdend - largest mullopre of alivisor <= Brisdend

· jemainder can neuer be -ue

Quiz 5 => -60 %, 9

:
$$C|C++|Saua|fs$$
 Python

 $-40'/.7 = -5+7$
 $-607.9 = -6+9$
 $-30 \times 4 = -2+4$

for -ue no. (°10) in $C|C=+|Saua|fs$.

m 4 m % D C= m . \ P)

very herpul for + 1) Mashmap Mashhable Mashsel Bicking Map

3) Encyphon

Modular Asithmusic: (7) (7) (7)

(0+6)°1. M = (0°1. M + 6°1. M) % M

Modular Additive Rule

er 2) 0/26 628 M=10

(a+b) 1/ M

91. M + 61. M

m ~(87d) =

= 6 'NO + 8 'NO

= 141/10

= 64 8

 $(0 \times 6)^{\circ}$, M = $(0^{\circ}$, M × 6°, M)% M

Modular Mulkpica Rule

0126 628 M210.

 $\alpha = 6$ $\beta = 6$ M = 10

(axp)x M - (axp)x (axp) x (axp)

5 (Px (0 X & x (0)) x 10

= (6 x 8) x (0 = 4 8 x (0

= (618)4.10 2 8

° aus, return aus % 109 +7

II. Implement a power func. which returns $a^{n} ?.p$.

ies power $(a, n, p) \rightarrow a^{n} ?.p$

Put power (a, u, p)
$$\S$$

ans =1

for (i=1; i<= N; i++) \S

ans = (ans # a) 9. \S

3

and ans = 1

strugg Bright

(QXb)'M = (QMM x 6 MM) MM

an % p 50 p-1)

(2,8,10) out power (a, u, p) } ans =1 Cus for (12); ita N; ita) { aus Befor ana 1 aus 2 (aus %, p × a 1, p) %, p 3 4 2 xtum aus 8 6 2 6 (M) O (M) Sc = 0 (1) 6 p=(0.) = 256 × (0.26) a v v. p -> a / N = no matter holm of an aus 2 (aus %, p x a ', p) %, p P= 109+5 b= 0<= b<=104 0 < - 10 c) 210h (109+4) x (109+4) Overflow for intrange

· Divisibility rules:-

mo. is divisible by a specific

2 divisible by 3 -> 2°1.3 ==0 then divisible

R'1.3 [20 not divisible]

: Rule of 3: Sum of all digits should be dissolde by 3

Ux ≈ 4563 → 18%3==0 b
45637.3==0

(41.3 x (031.3) 1/3 + (51.3 x 1027.3) 1/3 t (6'1.3 × 10'1.3) 1/1.3 t 3'1.3 1031.3 = 1 1021/23=1 => (4'23)'23 + (5'23) ×3 + (6x3) ×3 +3°/23 | 10 × 3 =1 10 1 7 3 2 1 on 41.3 + 57.3 + 67.3 + 37.3] 1.3 (a+b)'1. M 2(a'1. M+61.M)'1.m (a 1. b) 1. b (41%10) %10 [454643] 1.3 = (4563)%.3 = 17.10 3 41×10

rule of 4: No. formed by the last two digits should be divisible loy y 13824 - 24/1.4 = =0. \\
13824/1.4 = =0. \\
13824/1.4 = =0. \\
13824/1.4 = =0. $(3484)\%, 4 \longrightarrow (84)\%$ (3000 + 400 + 80 +4) %, 4 [(a+6) %, M = [a1/M+61/M] /, M = (3000 % 4 + 400 % 4 + 80 % 4 + 4 % 4) % 4 = (3x103)xy + (4x100)xy + (8x10)xy + 4xxy)xy [(ax6)/m = (a/M x6/M)/m] = (3/4 x103/4)/4 (4/4 x100/4)/4 + (8/4 x10/4)/4)/4
+ 4/4 100%4 = 0 = \(8 x, 4 x 10 x, 4) x, 4 + 4 x, 4] x, 4 10324 = 0

1074 = a

= [(8 ×10) ×4 + 4×4) ×4

man m = 10 10 6 - 1 > 10 1000000 0 - 1 9999 ~ 10000 · 1 104-1 (o s - (999 --- (06 (05) Nor

100

99999 -

____ (00 h²~

(3×106) + (8×105) + (4×104) + (3×103) + (6×102) + 8×10+9 /27 => (3x106) 1.P + (8 x106) 1.P + (4x104) 1.P + (3x103) 1.P + (6x102) 1.P + (8 X10) X P 7 9 XP (additive me)

an = 0

for (1=0; i<N; i+1) {

an = ans + (Atil 1.p x pour (10, N-i-1, p)) /2

y an = [ans x p + () x p) x p.

setym an i'-p

JC = O(NXN) = O(N2) SC = O(1) 6 mon = 105

N2 = 1010 (Britfone)

Type to Sphings 10 (N bg N)

$$\frac{10^{5}}{10^{5}} \rightarrow \frac{997}{10^{5}} - \frac{10^{5} \text{ hims}}{10^{5} \text{ d}} = \frac{9979}{10^{5} \text{ d}} = \frac{9979}{10^{5} \text{ d}} = \frac{99979}{10^{5} \text{ d}} = \frac{99999}{10^{5} \text{ d}} = \frac{9999}{10^{5} \text{ d}} = \frac{9999}{10^{5} \text{ d}} = \frac{9999}{10^{5} \text{ d}} = \frac{$$

$$\begin{array}{c} 100 \\ 101 \\$$