Dynamic Structural Equation Modeling of Intensive Longitudinal Data

MuSt Zurich: Intro to Dynamic SEM Day 2

Oisín Ryan

Utrecht University

March 2021

Cattell's data box

Panel Data: N = large and T is small (e.g. 2 -5 measurements)

Intensive Longitudinal Data: N=1 or many, T is large

Panel Data vs Intensive Longitudinal Data

Both consist of repeated measurements of the same set of variables over time

Panel Data:

- Many people, few measurements
- Time-points spaced far apart
- Longer Time-scale processes
- Suitable for describing global trajectories
- Captures between-person and average within-person dependencies
- "Wide" data format

Intensive Longitudinal Data:

- Single or multiple subjects. Many repeated measurements
- Time-points spaced closely together
- Attempts to directly capture short time-scale processes
- Focus primarily on individual within-person (idiographic) structure
- Sometimes called "time series" data
- "Long" format data

New technology

Intensive longitudinal data

Different forms of intensive longitudinal data:

- daily diary (DD); self-report end-of-day
- experience sampling method (ESM); self-report of subjective experience
- ecological momentary assessment (EMA); healthcare related self-report
- ambulatory assessment (AA); physiological measurements
- event-based measurements; self-report after a particular event
- observational measurements; expert rater

Intensive longitudinal data

Different forms of intensive longitudinal data:

- daily diary (DD); self-report end-of-day
- experience sampling method (ESM); self-report of subjective experience
- ecological momentary assessment (EMA); healthcare related self-report
- ambulatory assessment (AA); physiological measurements
- event-based measurements; self-report after a particular event
- observational measurements; expert rater

For more info on **methodology**, check out:

- Seminar of Tamlin Conner and Joshua Smyth on YouTube (https://www.youtube.com/watch?v=nQBBVp9vBIQ)
- Society for Ambulatory Assessment (http://www.saa2009.org/)
- Life Data (https://www.lifedatacorp.com/)
- Quantified Self (http://quantifiedself.com/)

Characteristics of these kind of data

Data structure:

- one or more measurements per day
- typically for multiple days
- sometimes multiple waves (i.e., Nesselroade's measurement-burst design)

Characteristics of these kind of data

Data structure:

- one or more measurements per day
- · typically for multiple days
- sometimes multiple waves (i.e., Nesselroade's measurement-burst design)

Advantages of ESM, EMA and AA

- no recall bias (in comparison to retrospective questionnaires)
- high ecological validity (in comparison to lab experiments)
- physiological measures over a large time span
- monitoring of symptoms and behavior, with new possibilities for feedback and intervention (e-Health and m-Health)
- window into the dynamics of processes

Outline

- Time series analysis
 - Univariate Models
 - Multivariate Models
- Multilevel time series analysis
- DSEM application: Multilevel VAR(1) model
- Extensions and Issues
- Discussion

What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics, seismology, meteorology, control engineering, and signal processing.

What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics, seismology, meteorology, control engineering, and signal processing.

Main characteristics:

- N=1 technique
- T is large (say >50)
- concerned with trends, cycles and autocorrelation structure (i.e., lagged relationships)
- goal: forecasting

TSA in the social and medical sciences

In sociology:

- quarterly unemployment numbers
- effect of alcohol consumption per capita on criminal violence rates
- effect of suicide news on suicide rates

In medical research:

- effect of safety warnings on antidepressants use
- effects of pain control strategies
- effect of 9/11 attacks on weekly psychiatric patient admissions

In psychology:

- network of symptoms in depressive patient
- effect of feedback on academic performance
- effect of an intervention on the relationship between stress and affect

Time Series Analysis

Similar to the models we considered yesterday, many time series models are based on *lagged regression*: Current values predicting future values.

Time Series Analysis

Similar to the models we considered yesterday, many time series models are based on *lagged regression*: Current values predicting future values.

In TSA however, we typically pay more attention to the choice of time-series model

- Because we have more measurements over time, we have much more flexibility in the type of time-series model we consider.
- Should current Y be predicted by Y an hour ago, or Y two hours ago? How about Y 24 hours ago? Or a week ago?
- This is referred to the *order* or *lag* of a time-series model

Lags

 y_1 y_2 *у*3 У4 *y*5 У6 У7 *y*₈ . . . y_T

Lags

Υ	Y at lag 1	
<i>y</i> 1		
<i>y</i> ₂	<i>y</i> 1	
У3	<i>y</i> 2	
У4	У3	
У5	<i>y</i> 4	
У6	<i>y</i> ₅	
<i>y</i> 7	У6	
У8	Y 7	
• • •		
y_T	y_{T-1}	
	y_T	

Lags

Υ	Y at lag 1	Y at lag 2
y_1		
y_2	<i>y</i> 1	
У3	<i>y</i> 2	y_1
У4	у3	У2
<i>y</i> 5	У4	У3
У6	У5	У4
У7	У6	У5
У8	<i>y</i> 7	У6
y_T	y_{T-1}	y_{T-2}
	y_T	y_{T-1}
		y_T

Box-Jenkins Method (1970). Aim: Model should explain all serial-dependencies present in the data – the **errors** of the regression model should contain no information about future observations (**white noise**)

Box-Jenkins Method (1970). Aim: Model should explain all serial-dependencies present in the data – the **errors** of the regression model should contain no information about future observations (**white noise**)

Model Components:

- Remove trends
- 2 Remove seasonal effects
- 3 Choose order/lag of model

Box-Jenkins Method (1970). Aim: Model should explain all serial-dependencies present in the data – the **errors** of the regression model should contain no information about future observations (**white noise**)

Model Components:

- Remove trends
- 2 Remove seasonal effects
- 3 Choose order/lag of model

Diagnostic Tools:

• Autocorrelation function (ACF). Raw/marginal correlation between lagged versions of our variable y_t and y_{t-k}

Box-Jenkins Method (1970). Aim: Model should explain all serial-dependencies present in the data – the **errors** of the regression model should contain no information about future observations (**white noise**)

Model Components:

- Remove trends
- 2 Remove seasonal effects
- 3 Choose order/lag of model

Diagnostic Tools:

- Autocorrelation function (ACF).
 Raw/marginal correlation between lagged versions of our variable y_t and y_{t-k}
- Partial autocorrelation functions (PACF). Partial correlation between y_t and y_{t-k} when controlling for the effect of intermediate observations y_{t-1} to y_{t-k+1} .

ACF and PACF explained

ACF and PACF explained

ACF and PACF explained

Similar to a regression coefficient – controlling for Y_{t-1}

Sequence, ACF and PACF

AR(1) Model

AR(2) Model

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + e_t$$

 $\phi_1 = 0.2; \phi_2 = 0.6$

Granger and Morris (1976): An AR process is a momentum effect in a random variable that varies smoothly over time

Granger and Morris (1976): An AR process is a momentum effect in a random variable that varies smoothly over time

We think about a variable with a stable **equilibrium position**. The errors represent "shocks" that push the system away from equilibrium. The AR parameter describes the "carry-over" or "regulation" of those shocks from one moment to the next.

Granger and Morris (1976): An AR process is a momentum effect in a random variable that varies smoothly over time

We think about a variable with a stable **equilibrium position**. The errors represent "shocks" that push the system away from equilibrium. The AR parameter describes the "carry-over" or "regulation" of those shocks from one moment to the next.

AR(1) model: The **auto-regressive parameter** pulls the system **back** to equilibrium. The bigger the **absolute value**, the slower the system is to return to baseline

Granger and Morris (1976): An AR process is a momentum effect in a random variable that varies smoothly over time

We think about a variable with a stable **equilibrium position**. The errors represent "shocks" that push the system away from equilibrium. The AR parameter describes the "carry-over" or "regulation" of those shocks from one moment to the next.

AR(1) model: The **auto-regressive parameter** pulls the system **back** to equilibrium. The bigger the **absolute value**, the slower the system is to return to baseline

Note: We always need to assume **stationarity**: the system returns to baseline after a shock. This only happens when the model parameters take on a certain value.

• For an AR(1), we need $-1 < \phi < 1$

Multivariate Time Series Models

Typically we have ILD that consist of **more than one** variable:

- mother's depression and child's disruptive behaviour
- stress and anxiety
- physical activity and happiness
- sleep quality and mood
- ...

In that situation, we might be interested in what time-series researchers call "lead-lag relations" between these variables

A simple multivariate time-series model

To analyze these lead-lag relations, we can make use of a **vector autoregressive** (VAR) model

A VAR(1) model is a multivariate version of the popular AR(1) model. We can write it as a set of equations:

$$A_t = c_A + \phi_{11}A_{t-1} + \phi_{12}S_{t-1} + e_{A_t}$$

$$S_t = c_S + \phi_{12}A_{t-1} + \phi_{22}S_{t-1} + e_{S_t}$$

A simple multivariate time-series model

To analyze these lead-lag relations, we can make use of a **vector autoregressive** (VAR) model

A VAR(1) model is a multivariate version of the popular AR(1) model. We can write it as a set of equations:

$$A_{t} = c_{A} + \phi_{11}A_{t-1} + \phi_{12}S_{t-1} + e_{A_{t}}$$

$$S_{t} = c_{S} + \phi_{12}A_{t-1} + \phi_{22}S_{t-1} + e_{S_{t}}$$

where:

coefficients

 ϕ_{11} and ϕ_{22} are the **autoregressive** coefficients ϕ_{12} and ϕ_{21} are the cross-lagged

23/74

A simple multivariate time-series model

To analyze these lead-lag relations, we can make use of a **vector autoregressive** (VAR) model

A VAR(1) model is a multivariate version of the popular AR(1) model. We can write it as a set of equations:

$$A_{t} = c_{A} + \phi_{11}A_{t-1} + \phi_{12}S_{t-1} + e_{A_{t}}$$

$$S_{t} = c_{S} + \phi_{12}A_{t-1} + \phi_{22}S_{t-1} + e_{S_{t}}$$

where:

 ϕ_{11} and ϕ_{22} are the autoregressive coefficients

 ϕ_{12} and ϕ_{21} are the cross-lagged coefficients

or in matrix form

$$\begin{bmatrix} A_t \\ S_t \end{bmatrix} = \begin{bmatrix} c_A \\ c_S \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{12} & \phi_{22} \end{bmatrix} \begin{bmatrix} A_{t-1} \\ S_{t-1} \end{bmatrix} + \begin{bmatrix} e_{A_t} \\ e_{S_t} \end{bmatrix}$$

Bivariate VAR(1)

Researchers often interpret the cross-lagged parameters in terms of **causal dominance** or **Granger causal** relationships. Note: the **standardized cross-lagged regression coefficients** should be used!

VAR(1) vs CLPM

This should be starting to look pretty familiar to you - the path model looks essentially the same as the CLPM!

The VAR(1) is a time-series model for long single-subject data and the CLPM is a model for (short, multi-subject) panel data.

But there are some other **key differences** to keep in mind. Notably, time-series models like the VAR(1) models are only able to model *stationary processes*

Stationarity

Stationary processes are those for which the mean, variance, and auto-correlation structure **stay the same over our window of observation**

- Lagged regression parameters stay fixed across waves
 - Always necessary in some form otherwise impossible to estimate!
- Only certain AR(1) and VAR(1) parameters are allowed
 - For AR(1) $-1 < \phi < 1$
 - For VAR(1) the -1 < eigenvalues of $\Phi < 1$
- Mean is fixed over time (no trends or trends removed)
 - Not so different to CLPM approaches there either we are modeling the trend only, or removing the trend first!

Time Series Analysis: In a nutshell

This concludes our brief tour of time-series analysis

We only focused on a limited range of time-series models based on auto-regressive (AR) models. Actually, there is a much broader suite of time-series models, sometimes known as ARIMA models. See **Hamaker & Dolan (2009)**

AR(1) and VAR(1) models are some of the most popular time-series models. Largely because they are the easiest to interpret.

For that reason, they have been the most popular choices for *multilevel* time series analysis

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application: Multilevel VAR(1) model
- Extensions and Issues
- Discussion

Lagged relationships in multilevel data

Single-subject time series data allows us to study (for a *stationary process*):

- Lagged relationships between a variable and itself: autoregression
- Lagged relationships between different variables: cross-lagged relationships

Lagged relationships in multilevel data

Single-subject time series data allows us to study (for a *stationary process*):

- Lagged relationships between a variable and itself: autoregression
- Lagged relationships between different variables: cross-lagged relationships

If we have time series data from multiple individuals, we may want to study:

- individual differences in autoregression
- individual differences in cross-lagged relationships

Lagged relationships in multilevel data

Single-subject time series data allows us to study (for a *stationary process*):

- Lagged relationships between a variable and itself: autoregression
- Lagged relationships between different variables: cross-lagged relationships

If we have time series data from multiple individuals, we may want to study:

- individual differences in autoregression
- individual differences in cross-lagged relationships

If we use multilevel modeling for this, we could refer to it as **multilevel time series** analysis, or dynamic multilevel modeling.

ID

5 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
ID	Yit
1	<i>y</i> 11
1	<i>y</i> 12
1	<i>y</i> 13
1	
1	y_{1T}
2	<i>y</i> 21
2	<i>y</i> 22
2	<i>y</i> 23
2	
2	y_{2T}
•••	
N	y_{N1}
N	y _{N2}
N	y _N 3

Groating lagged p			
ID	Yit	y_{it-1}	
1	<i>y</i> 11		
1	<i>y</i> 12	<i>y</i> 11	
1	<i>y</i> 13	<i>y</i> ₁₂	
1			
1	y_{1T}	y_{1T-1}	
2	<i>y</i> 21		
2	<i>y</i> 22	<i>y</i> 21	
2	<i>y</i> 23	<i>y</i> 22	
2			
2	<i>y</i> 2 <i>T</i>	y_{2T-1}	
•••		• • •	
N	y_{N1}		
N	y_{N2}	y_{N1}	
N	y _N 3	YN2	

3 - 3 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 -				
ID	Yit	y_{it-1}	x_{it-1}	
1	<i>y</i> 11			
1	<i>y</i> ₁₂	y 11	x_{11}	
1	<i>y</i> 13	<i>y</i> 12	x_{12}	
1				
1	y_{1T}	y_{1T-1}	x_{1T-1}	
2	<i>y</i> 21			
2	<i>y</i> 22	<i>y</i> 21	x_{21}	
2	<i>y</i> 23	<i>y</i> 22	x_{22}	
2				
2	y_{2T}	y_{2T-1}	x_{2T-1}	
•••	• • •	• • •	• • •	
N	y_{N1}			
N	y _{N2}	y_{N1}	x_{N1}	
N	y _N 3	YN2	x_{N2}	
				30/7

Inertia research based on multilevel AR(1) models

Level 1 model:

$$NA_{it} = c_i + \phi_i NA_{i,t-1} + \zeta_{it}$$

Inertia research based on multilevel AR(1) models

Level 1 model:

$$NA_{it} = c_i + \phi_i NA_{i,t-1} + \zeta_{it}$$

Level 2 model:

$$c_i = \gamma_{00} + u_{0i}$$

$$\phi_i = \gamma_{01} + u_{1i}$$

Inertia research based on multilevel AR(1) models

Level 1 model:

$$NA_{it} = c_i + \phi_i NA_{i,t-1} + \zeta_{it}$$

Level 2 model:

$$c_i = \gamma_{00} + u_{0i}$$

$$\phi_i = \gamma_{01} + u_{1i}$$

This research line was initiated by **Suls, Green and Hillis (1998)**, and continued by the group of **Kuppens**.

The focus is on individual differences in the **autoregressive parameter** ϕ_i (=inertia, carry-over, regulatory weakness), which is shown to be:

- positively related to current depression, neuroticism, and being female
- predictive of later depression (Kuppens and Koval)

Dynamic networks based on multilevel VAR(1) models

Level 1 model:

$$y_{1it} = c_{1i} + \phi_{11i}y_{1it-1} + \dots + \phi_{1ki}y_{kit-1} + \zeta_{1it}$$

$$y_{2it} = c_{2i} + \phi_{21i}y_{1it-1} + \dots + \phi_{2ki}y_{kit-1} + \zeta_{2it}$$

$$\dots$$

$$y_{kit} = c_{ki} + \phi_{k1i}y_{1it-1} + \dots + \phi_{kki}y_{kit-1} + \zeta_{kit}$$

Dynamic networks based on multilevel VAR(1) models

Level 1 model:

$$y_{1it} = c_{1i} + \phi_{11i}y_{1it-1} + \dots + \phi_{1ki}y_{kit-1} + \zeta_{1it}$$

$$y_{2it} = c_{2i} + \phi_{21i}y_{1it-1} + \dots + \phi_{2ki}y_{kit-1} + \zeta_{2it}$$

$$\dots$$

$$y_{kit} = c_{ki} + \phi_{k1i}y_{1it-1} + \dots + \phi_{kki}y_{kit-1} + \zeta_{kit}$$

Initiated by **Bringmann et al. (2013)**, and further popularized by the software from **Sacha Epskamp**.

The focus is on **cross-lagged parameters** between variables (=nodes; typically symptoms), and on measures based on these (e.g., centrality).

Main idea is that **stronger connections** lead to an **increased risk** of developing and maintaining psychopathology.

Within- and Between- Variance

Cross-sectional relationship

Within-person relationship

Between-person relationship

Between-person differences in within-person slopes

Taken from Hamaker and Grasman (2014).

Between-person differences in within-person slopes

Taken from Hamaker and Grasman (2014).

In conclusion: To study within-person processes we need

- (intensive) longitudinal data
- to **decompose** observed variance into within and between
- to consider individual differences in within-person dynamics

Multilevel vs Single-Subject Time Series

Advantages of Multi-Level Time Series Models:

- Allow to model within-person and between-person structure simultaneously
- Regularizes estimates of within-person parameters
 - Person-specific parameters get "pulled" towards the mean. Estimates have lower variance across samples
- In general, higher power than single-subject models the more similar people are, and the more people we have, the less observations we need per person

Multilevel vs Single-Subject Time Series

Advantages of Multi-Level Time Series Models:

- Allow to model within-person and between-person structure simultaneously
- Regularizes estimates of within-person parameters
 - Person-specific parameters get "pulled" towards the mean. Estimates have lower variance across samples
- In general, higher power than single-subject models the more similar people are, and the more people we have, the less observations we need per person

Disadvantages of Multi-Level Time Series Models:

- Need to assume the same type of time series model (or a very general model) for everyone
- Regularizes estimates of within-person parameters
 - If we have enough time points, and we really care about the individual-specific parameters, we don't want this to happen
 - If people are not that similar, we might get a very strange/uninformative "average" model

Why use DSEM in Mplus?

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

Why use DSEM in Mplus?

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

- negative bias in autoregression when centering the lagged predictor (Nickell's bias)
- only **one outcome variable** (thus, separate models for multivariate outcomes)
- only **observed variables** (no measurement error, moving average terms, factor models)
- missing data result in many missing cases
- unequally spaced observations

Why use DSEM in Mplus?

If we are interested in **dynamic multilevel modeling**, we may run into the following problems/limitation when using **standard multilevel software**:

- negative bias in autoregression when centering the lagged predictor (Nickell's bias)
- only one outcome variable (thus, separate models for multivariate outcomes)
- only **observed variables** (no measurement error, moving average terms, factor models)
- missing data result in many missing cases
- unequally spaced observations

Dynamic structural equation modeling (DSEM) in Mplus:

- A specific implementation of multilevel time-series models within an SEM framework
- Uses Bayesian estimation techniques
- Tackles the above problems

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application: Multilevel VAR(1) model
- Extensions and Issues
- Discussion

Data: Daily measurements affect

Data come from the **COGITO study** of the MPI in Berlin; goal is to study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (2018).

Data: Daily measurements affect

Data come from the **COGITO study** of the MPI in Berlin; goal is to study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (2018).

Characteristics of the **younger** and **older sample**:

- aged 20-31; aged 65-80
- 101 individuals; 103 individuals
- about 100 daily measurements of positive affect (PA) and negative affect (NA)

Decomposition

Decomposition into a between part and a within part

$$PA_{it} = \mu_{PA,i} + PA_{it}^*$$

 $NA_{it} = \mu_{NA,i} + NA_{it}^*$

Decomposition

Decomposition into a between part and a within part

$$PA_{it} = \mu_{PA,i} + PA_{it}^*$$

 $NA_{it} = \mu_{NA,i} + NA_{it}^*$

- μ_{PA,i} and μ_{NA,i} are the individual's means on PA and NA (i.e., baseline, trait, or equilibrium scores) ⇒ between-person part
- PA^{*}_{it} and NA^{*}_{it} are the within-person centered (cluster-mean centered) scores ⇒ within-person part

Total, between-, and within-person variance

Intraclass correlation:
$$\frac{\sigma_{between}^2}{\sigma_{between}^2 + \sigma_{within}^2} = \frac{\sigma_{between}^2}{\sigma_{total}^2}$$

Bivariate model: Multilevel vector AR(1) model

Within-person level model

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)

Within-person level model

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the **cross-lagged parameter** for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the **cross-lagged parameter** for PA to NA (i.e., spill-over)

Within-person level model

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the **cross-lagged parameter** for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the **cross-lagged parameter** for PA to NA (i.e., spill-over)
- $\zeta_{PA,it}$ is the **innovation** for PA (residual, disturbance, dynamic error)
- $\zeta_{NA,it}$ is the **innovation** for NA (residual, disturbance, dynamic error)

Within-person level model

Lagged within-person model:

$$PA_{it}^* = \phi_{PP,i}PA_{i,t-1}^* + \phi_{PN,i}NA_{i,t-1}^* + \zeta_{PA,it}$$

$$NA_{it}^* = \phi_{NN,i}NA_{i,t-1}^* + \phi_{NP,i}PA_{i,t-1}^* + \zeta_{NA,it}$$

where

- $\phi_{PP,i}$ is the **autoregressive parameter** for PA (i.e., inertia, carry-over)
- $\phi_{NN,i}$ is the **autoregressive parameter** for NA (i.e., inertia, carry-over)
- $\phi_{PN,i}$ is the **cross-lagged parameter** for NA to PA (i.e., spill-over)
- $\phi_{NP,i}$ is the **cross-lagged parameter** for PA to NA (i.e., spill-over)
- $\zeta_{PA,it}$ is the **innovation** for PA (residual, disturbance, dynamic error)
- $\zeta_{NA,it}$ is the **innovation** for NA (residual, disturbance, dynamic error)

Parameters estimated at this level are the residual variances and covariance:

$$\begin{bmatrix} \zeta_{PA,it} \\ \zeta_{NA,it} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \theta_{11} \\ \theta_{21} & \theta_{22} \end{bmatrix} \end{bmatrix}$$

Between-person level model

Between level: fixed and random effects

Where:

- γ_P to $\gamma_{NN} \Rightarrow$ fixed effects
- $u_{P,i}$ to $u_{NN,i} \Rightarrow$ random effects

Between-person level model

Between level: fixed and random effects

Where:

- γ_P to $\gamma_{NN} \Rightarrow$ fixed effects
- $u_{P,i}$ to $u_{NN,i} \Rightarrow$ random effects

Parameters estimated at this level are:

- 6 fixed effects (i.e., γ's)
- 6 variances for random effects (i.e., diagonal elements of Ψ)
- 15 covariances between the random effects (i.e., off-diagonal elements in Ψ)

Bivariate model: Mplus code

VARIABLE: NAMES ARE id sessdate

na1 na2 na3 na4 na5 na6 na7 na8 na9 na10 pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10

sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;

CLUSTER = id; ! Specify the person id variable

USEVAR = dayPA dayNA; ! Specify which variables are used in the model

MISSING = ALL(-999);

LAGGED = dayPA(1) dayNA(1); ! This creates lagged variables TINTERVAL = sessdate(1); ! This is to account for unequal intervals

ANALYSIS: TYPE IS TWOLEVEL RANDOM; ! This allows for random slopes

ESTIMATOR = BAYES; ! DSEM requires Bayesian estimation

PROC = 2; ! Using 2 processors makes it faster

BITER = (5000); ! This implies at least 5000 iterations are used THIN = 10; ! Thinning helps with getting more stable results

Bivariate model: Mplus code

```
MODEL:
                %WITHIN%! Specify the random lagged relationships
                p pp | dayPA ON dayPA&1;
                p pn | dayPA ON dayNA&1;
                p np | davNA ON davPA&1;
                p nn | dayNA ON dayNA&1:
                %BETWEEN%! Allow all 6 random effects to be correlated
                p_pp WITH p_pn-p_nn dayPA dayNA;
                p_pn WITH p_np-p_nn dayPA dayNA;
                p np WITH p nn dayPA dayNA:
                p nn WITH davPA davNA:
                davPA WITH davNA:
OUTPUT:
                TECH1 TECH8 STDYX:
PLOT:
                TYPE = PLOT3;
                FACTORS =ALL;
```

Mplus results: Within-person (younger sample)

	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
Within Level						
DAYNA WITH DAYPA	-0.069	0.004	0.000	-0.076	-0.061	*
Residual Variances						
DAYPA	0.414	0.006	0.000	0.403	0.426	*
DAYNA	0.302	0.004	0.000	0.294	0.311	*

Mplus results: Between-person (younger sample)

		Posterior	One-Tailed	95% C.I.			
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance	
[]							
Between Level							
[]							
Means							
DAYPA	3.090	0.110	0.000	2.875	3.308	*	
DAYNA	0.977	0.077	0.000	0.826	1.128	*	
P PP	0.334	0.026	0.000	0.283	0.387	*	
P_PP P_PN	0.050	0.022	0.016	0.006	0.093	*	
P_NP	0.038	0.015	0.006	0.008	0.068	*	
P_NN	0.370	0.027	0.000	0.315	0.423	*	
Variances							
DAYPA	1.178	0.189	0.000	0.886	1.618	*	
DAYNA	0.595	0.101	0.000	0.443	0.832	*	
P PP	0.055	0.010	0.000	0.039	0.079	*	
P_PN	0.024	0.006	0.000	0.014	0.039	*	
P NP	0.013	0.003	0.000	0.008	0.021	*	
P_NN	0.062	0.012	0.000	0.044	0.089	*	
						47/	

Standardization in multilevel models is a **tricky issue**.

Standardization in multilevel models is a **tricky issue**.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Standardization in multilevel models is a **tricky issue**.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it **parallels standardizing when** N=1.

Standardization in multilevel models is a **tricky issue**.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016) discuss four forms of **standardization in multilevel models**, using:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it **parallels standardizing when** N=1.

Standardized fixed effect should be the average standardized within-person effect.

Mplus standardized results (younger sample)

STDYX Standardization

	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significa	nce
Within-Level Stand	ardized Estim	nates Averag	ed Over Clus	ters			
P_PP DAYPA ON DAYPA&1	0.335	0.011	0.000	0.312	0.358	*	
P_PN DAYPA ON DAYNA&1	0.034	0.013	0.006	0.008	0.059	*	
P_NP DAYNA ON DAYPA&1	0.038	0.011	0.000	0.017	0.059	*	
P_NN DAYNA ON DAYNA&1	0.370	0.012	0.000	0.347	0.394	*	
DAYNA WITH DAYPA	-0.194	0.010	0.000	-0.213	-0.175	*	
Residual Variance DAYPA DAYNA	0.816 0.792	0.008	0.000	0.799 0.775	0.832 0.808	* *	
							49/7

Mplus standardized results (younger sample)

R-SQUARE

Within-Level R-Square Averaged Across Clusters

Variable	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%
DAYPA DAYNA	0.184 0.208	0.008	0.000	0.168 0.192	0.201 0.225

Between-person level: Correlated random effects

To **represent the correlation matrices** of the 6 random effects in each group, we can use the network representation (with qgraph from Sacha Epskamp in R):

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application: Multilevel VAR(1) model
- Extensions and Issues
 - More SEM
 - Time-Intervals
 - Stationarity
- Discussion

Multilevel VAR in a SEM world

One of the benefits of fitting Multilevel time series model in a SEM framework is that we can build up models in much the same way as we build up SEM models

For instance, we can include a measurement model and fit a multilevel-VAR(1) on latent variables

View of random effects as latent variables allows us to do other creative things

Disclaimer: In DSEM, testing general fit of models is not so straightforward, due to the Bayesian estimation techniques used. **DIC** is the Bayesian information criteria, but model comaprison can be tricky due to irregularities in how model complexity is counted

Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and afterwards, using the CESD; we include these measures at the between-person level as a **predictor** and an **outcome**.

Between level: Including a level 2 predictor

$$\mu_{PA,i} = \gamma_{00} + \gamma_{01}CESDpre_i + u_{0i}$$
 $\mu_{NA,i} = \gamma_{10} + \gamma_{11}CESDpre_i + u_{1i}$
 $\phi_{PP,i} = \gamma_{20} + \gamma_{21}CESDpre_i + u_{2i}$
 $\phi_{PN,i} = \gamma_{30} + \gamma_{31}CESDpre_i + u_{3i}$
 $\phi_{NN,i} = \gamma_{40} + \gamma_{41}CESDpre_i + u_{4i}$
 $\phi_{NP,i} = \gamma_{50} + \gamma_{51}CESDpre_i + u_{5i}$

Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and afterwards, using the CESD; we include these measures at the between-person level as a **predictor** and an **outcome**.

Between level: Including a level 2 predictor

$$\mu_{PA,i} = \gamma_{00} + \gamma_{01}CESDpre_i + u_{0i}$$

$$\mu_{NA,i} = \gamma_{10} + \gamma_{11}CESDpre_i + u_{1i}$$

$$\phi_{PP,i} = \gamma_{20} + \gamma_{21}CESDpre_i + u_{2i}$$

$$\phi_{PN,i} = \gamma_{30} + \gamma_{31}CESDpre_i + u_{3i}$$

$$\phi_{NN,i} = \gamma_{40} + \gamma_{41}CESDpre_i + u_{4i}$$

$$\phi_{NP,i} = \gamma_{50} + \gamma_{51}CESDpre_i + u_{5i}$$

Between level: Including a level 2 outcome

$$CESDpost_{i} = \gamma_{60} + \gamma_{61}CESDpre_{i} + \gamma_{62}\mu_{PA,i} + \gamma_{63}\mu_{NA,i} + \gamma_{64}\phi_{PP,i} + \gamma_{65}\phi_{PN,i} + \gamma_{66}\phi_{NN,i} + \gamma_{67}\phi_{NP,i} + u_{6i}$$

Dynamic mediation model

Mplus input level-2 mediation model

VARIABLE: NAMES ARE id sessdate

na1 na2 na3 na4 na5 na6 na7 na8 na9 na10 pa1 pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10

sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;

CLUSTER = id;

USEVAR = dayPA dayNA CESDpre CESDpost; ! Plus level 2 variables BETWEEN = CESDpre CESDpost; ! Specify these as level 2 variables

LAGGED = dayPA(1) dayNA(1); TINTERVAL = sessdate(1); MISSING = ALL(-999);

DEFINE: CENTER CESDpre CESDpost (GRANDMEAN);! Grand mean centering

ANALYSIS: TYPE IS TWOLEVEL RANDOM;

ESTIMATOR = BAYES; PROCESSORS = 2; BITER = (5000); THIN = 10:

Bivariate model: Mplus code

```
MODEL:
                           %WITHIN% | Same as before
                           p_pp | dayPA ON dayPA&1;
                           p_pn | dayPA ON dayNA&1;
                           p np | dayNA ON dayPA&1;
                           p nn | dayNA ON dayNA&1;
                           %BETWEEN%! Mediation model with parameter names
                           p pp-p nn dayPA dayNA ON CESDpre (a1-a6):
                           CESDpost ON p pp-p nn davPA davNA CESDpre (b1-b7):
MODEL CONSTRAINT:
                           ! Compute the indirect effects
                           new (ab p pp); ab p pp=a1*b1;
                           new (ab p pn); ab p pn=a2*b2;
                           new (ab p np); ab p np=a3*b3;
                           new (ab p nn); ab p nn=a4*b4;
                           new (ab dayPA); ab dayPA=a5*b5;
                           new (ab davNA); ab davNA=a6*b6;
OUTPUT:
                           TECH1 TECH8 STDYX:
PLOT:
                           TYPE = PLOT3:
                           FACTOR =ALL:
```

Mplus output level-2 mediation model (younger sample)

[] Between Level []	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
Intercepts						
CESDPOST	0.104	0.136	0.223	-0.167	0.365	
DAYPA	3.088	0.103	0.000	2.888	3.293	*
DAYNA	0.989	0.076	0.000	0.844	1.146	*
P_PP	0.338	0.024		0.289		*
P_PN	0.031	0.020		-0.008	0.071	
P_NP	0.035	0.014		0.007	0.062	*
P_NN	0.376	0.024	0.000	0.329	0.423	*
Residual Varia						
	0.067	0.012	0.000	0.048	0.005	*
CESDPOST			0.000	0.048	0.095	*
DAYPA	1.049	0.158			1.416	*
DAYNA	0.517	0.091	0.000	0.377	0.729	
P_PP	0.045	0.008	0.000	0.032	0.064	*
P_PN	0.019	0.005	0.000	0.011	0.030	*
P_NP	0.010	0.003		0.005		*
P_NN	0.043	0.008	0.000	0.031	0.062	*
New/Additional	Parameters					
AB P PP	0.010	0.025	0.266	-0.028	0.076	
AB P PN	-0.002	0.032	0.439	-0.074	0.062	
AB P NP	-0.004	0.037		-0.089		
AB P NN	0.195	0.070		0.081	0.359	*
AB DAYPA	0.049	0.035	0.029	-0.001	0.135	
AB DAYNA	0.028	0.033	0.234	-0.052	0.119	
AD_DATNA	0.028	0.043	0.234	0.032	0.119	

Mplus output level-2 mediation model (older sample)

[] Between Level []	Estimate	Posterior S.D.			C.I. Upper 2.5%	Significance
Intercepts						
CESDPOST	0.015	0.113	0.448	-0.210	0.236	
DAYPA	4.566	0.120	0.000	4.336	4.796	*
DAYNA	0.313	0.052	0.000	0.210	0.417	*
P PP	0.421	0.026	0.000	0.370	0.472	*
PPN	0.133	0.039	0.000	0.057	0.212	*
PNP	0.016	0.017	0.167	-0.018	0.051	
P_NN	0.239	0.027	0.000	0.185	0.291	*
Residual Variance						
CESDPOST	0.039	0.006	0.000	0.029	0.053	*
DAYPA	1.416	0.221	0.000	1.079	1.918	*
DAYNA	0.269	0.041	0.000	0.203	0.365	*
P PP	0.056	0.010	0.000	0.039	0.079	*
P PN	0.083	0.021	0.000	0.051	0.131	*
PNP	0.024	0.004	0.000	0.018	0.035	*
P_NN	0.051	0.009	0.000	0.037	0.072	*
New/Additional Par	ameters					
AB P PP	0.005	0.016	0.302	-0.018	0.049	
AB_P_PN	-0.004	0.025	0.396	-0.061	0.045	
AB_P_NP	0.012	0.027	0.268	-0.035	0.076	
AB_P_NN	-0.036	0.038	0.112		0.025	
AB_DAYPA	0.028	0.038	0.209	-0.042	0.110	
AB_DAYNA	0.027	0.036	0.194	-0.040	0.108	

Level-1 Mediation and Network Analysis

We may also be interested in *direct*, *indirect* and *total effects* **across lags**. Often the interest in *psychological network analysis*

Level-1 Mediation and Network Analysis

Groen, Ryan, Wigman et al (2020): Average within-person VAR(1) network structure of different "symptom-state" items in ESM data, across three groups: Comorbid, Anxiety-only and Depression-only.

No evidence that the comorbid group displayed higher indirect effects through "bridge symptoms" than the other groups. All analyses in DSEM

The Time-Interval Problem

VAR(1) models are **discrete time**: Do not account in any way for time-interval information

As we discussed yesterday, all lagged regression models (potentially) suffer from the time-interval problem.

Effects can change sign, size and relative ordering depending on how measurements are spaced in time (Kuiper & Ryan, 2018)

The Time-Interval Problem

Problem 1: If you sample at a fixed interval, Δt , relationships may not generalize to **other** intervals

Problem 2: If you sample at a mix of intervals $\Delta t_1, \Delta t_2...$ parameters may be a *mix* of effects at all different intervals, not correctly characterizing relationships at **any** interval

The Time-Interval Problem

Problem 1: If you sample at a fixed interval, Δt , relationships may not generalize to **other** intervals

Problem 2: If you sample at a mix of intervals $\Delta t_1, \Delta t_2...$ parameters may be a *mix* of effects at all different intervals, not correctly characterizing relationships at **any** interval

DSEM cannot solve these problems, but does try to mitigate them

- Choose a target interval and try to estimate effects at that interval
- Do this by inserting missing values in a grid such that rows are approximately "equally spaced" with Δt
- 'TINTERVAL' command

Alternative Approach: Continuous-Time Modeling

Continuous-Time models **explicitly** model time-interval dependencies

Based on **differential equation** models (tradition of physics, ecology, systems biology):

- DE models describe the **truly** moment-to-moment dependencies
- Relationships at longer lags a result of "adding up" or "path-tracing" moment-to-moment effects
- Can still be estimated from ESM type data

Relating continuous and discrete time solutions

$$\mathbf{\Phi}(\Delta t_i) = e^{\mathbf{A} \times \Delta t_i}$$

Alternative Approach: Continuous-Time Modeling

Continuous-Time models for panel data:

- Voelkle, Oud, Davidov & Schmidt (2012)
- Deboeck & Preacher (2018) Mediation

Continuous-Time models for ILD/ESM data in psychology:

- Ryan, Kuiper, Hamaker (2018)
- Ryan & Hamaker (under review) Continuous Time Network Analysis

Estimation:

- ctsem (Driver, Oud, Voelkle, 2017). Bayesian, multilevel, CT analysis.
- dynr (Ou, Hunter, Chow, 2017).
- **Disclaimer:** Less user-friendly than Mplus!

Beyond Stationarity

Time-Varying VAR(1) models:

- Haslbeck, Bringmann & Waldorp (2020)
- Assumes "local stationarity" all parameters can be smooth functions of time
- Mostly single-subject, needs even more time-points

Regime-Switching Models:

- Time-series models where the system "switches" between different states with different parameters
- See Hamaker, Grasman, Kamphuis (2010); Haslbeck* & Ryan* (2021); dynr (Ou, Hunter, Chow, 2017)

In Mplus:

- Residual dynamic modeling: Allows for de-trending in the model
- Cross-classified models: Allows for random effects of time

Outline

- Time series analysis
- Multilevel time series analysis
- DSEM application: Multilevel VAR(1) model
- Extensions and Issues
- Discussion

Summary

Time-series analysis aims to capture the structure of within-person variation over time when we have many repeated measures

When we have ILD from multiple individuals, **multi-level time series models** can be used to try and explore how within-person structure varies across people

The VAR(1) is just one type of time-series model which happens to be very popular - simple, lag-1 linear relationships.

The VAR(1) is related to the cross-lagged panel model - both use auto-regressive and cross-lagged relationships to model change over time

Some differences and similarities

RI-CLPM for Panel Data:

- "Wide" data format: Many subjects, few measurements per subject
- Random-Intercepts capture between-person variation in means
- No random slopes. Logic: Not enough measurements within-person
- Relationships can be different at every wave
- Means can change at each point in time

Multilevel VAR(1) for ILD

- "Long" data format: Many repeated measurements, 1 or more subjects
- Random-Intercepts capture between-person variation in means
- Random slopes capture between-person variation in within-person lagged parameters
- Relationships must be the same at every wave (stationarity)
- Trends/changes in mean must be removed, but can be done in the model (residual DSEM)

DSEM in Mplus

Compared to standard multilevel software:

- Multiple outcome variables: this allows for correlated residuals and correlated random effects
- Unequal time interval: can be handled by choosing a grid for inserting missings
- Outcomes at between-person level
- Person-mean centering integral part of model estimation (solves Nickell's bias)

DSEM in Mplus

Compared to standard multilevel software:

- Multiple outcome variables: this allows for correlated residuals and correlated random effects
- Unequal time interval: can be handled by choosing a grid for inserting missings
- Outcomes at between-person level
- Person-mean centering integral part of model estimation (solves Nickell's bias)

Compared to other Bayesian software (e.g., WinBUGS, jags, Stan):

- Easy to use due to tailor-made code
- **Default uninformative priors** for parameters (even for small variances)
- Fast (which makes a difference in case of Bayes)

Other possibilities: mIVAR, ctsem, dynr, GIMME

Discussion

Of course, big issue is: which time-series models are substantively interesting?

- Which captures/reproduces patterns that are interesting?
- How can this be driven by theory?

Approach direct (and causal) interpretation with care

Tip: Pick a model and simulate time-series data from it (e.g. in R) - get a feel for what types of patterns it produces

These models are just tools. Proper use must be informed by theory (Haslbeck*, Ryan*, Robinaugh* et al, in press)

Thank you!

o.ryan@uu.nl

Thank you!

o.ryan@uu.nl

For more info, some relevant summer schools at UU:

- Introduction to SEM using Mplus
- Advanced course on Mplus
- Modeling the Dynamics of Intensive Longitudinal Data

References

- Box, George; Jenkins, Gwilym (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.
- Bringmann, Vissers, Wichers, Geschwind, Kuppens, Peeters, Borsboom & Tuerlinckx (2013). A network
 approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8, e60188, 1-13.
- Hamaker (2012). Why researchers should think "within-person": A paradigmatic rationale. In M. R. Mehl & T. S. Conner (Eds.). Handbook of Research Methods for Studying Daily Life, 43-61. New York, NY: Guilford Publications.
- Hamaker, Asparouhov, Brose, Schmiedek & Muthén (submitted). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Multivariate Behavioral Research.
- Hamaker & Grasman (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492.
- Hamaker & Wichers (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. Current Directions in Psychological Science, 26, 10-15.
- Haslbeck, J. M., Bringmann, L. F., & Waldorp, L. J. (2020). A tutorial on estimating time-varying vector autoregressive models. Multivariate behavioral research, 1-30.
- Haslbeck*, J., Ryan*, O., Robinaugh*, D., Waldorp, L., Borsboom, D. (in press). Modeling psychopathology: From data models to formal theories. *Psychological Methods*. Pre-print: psyarxiv.com/jgm7f/
- Jongerling, Laurenceau & Hamaker (2015). A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50, 334-349.

References

- Koval, Kuppens, Allen & Sheeber (2012). Getting stuck in depression: The roles of rumination and emotional inertia. Cognition & Emotion, 26, 1412-1427.
- Kuppens, Allen & Sheeber (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21, 984-991.
- Kuppens, Sheeber, Yap, Whittle, Simmons & Allen (2012). Emotional inertia prospectively predicts the onset of depressive Multilevel AR(1) model 33 disorder in adolescence. *Emotion*, 12, 283-289.
- Ryan, O., Kuiper, R. M., & Hamaker, E. L. (2018). A continuous time approach to intensive longitudinal data: What, Why and How? In K. v. Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 27-54). New York, NY: Springer. Pre-print: ryanoisin.github.io
- Ryan, O. & Hamaker, E.L. (under review) Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality. Pre-print: /psyarxiv.com/2ambn
- Schuurman, Ferrer, de Boer-Sonnenschein & Hamaker (2016). How to compare cross-lagged associations in a multilevel autoregressive model. Psychological Methods, 21, 206-221.
- Suls, Green & Hillis (1998). Emotional reactivity to everyday problems, affective inertia, and neuroticism. Personality and Social Psychology Bulletin, 24, 127-136.
- Voelkle, M. C., Oud, J. H., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological methods, 17(2), 176.