MAS241 ANALYSIS I QUIZ 4

Problem 1. (15 points) Prove or disprove. If the statement is wrong, give a counterexample.

- (1) For every set S in \mathbb{R}^n , the complement of S^0 is the closure of S^c
- (2) For every set S in \mathbb{R} , the closure of S and S have the same interiors.
- (3) For every set S in \mathbb{R} , the interior of S and S have the same closures.

Proof. (1) S^0 is the union of all open sets contained in S. By De Morgan's laws, the complement of S^0 is the intersection of all closed containing S^c , that is the closure of S^c

- (2) Let $S = \mathbb{Q}$, then \overline{S} is \mathbb{R} . $S^0 = \emptyset$, $\overline{S}^0 = \mathbb{R}$
- (3) Let $S = \mathbb{Q}$, then S^0 is \emptyset . $\overline{S^0} = \emptyset$, $\overline{S} = \mathbb{R}$

Problem 2. (15 points) Prove that \mathbb{R} is connected and the only clopen(both close and open) subsets of \mathbb{R} are \emptyset and \mathbb{R}

Proof. Assume \mathbb{R} is disconnected.

There exist two nonempty, open sets U and V such that $\mathbb{R} \subseteq U \cup V$ and $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$ $U \cup V \subseteq \mathbb{R} \implies V = U^c$. U is open, so V is closed.

Claim: The only clopen set of \mathbb{R} are \emptyset and \mathbb{R} .

Let $S \neq \emptyset$, \mathbb{R} be a clopen set. Because S is closed, S contains all boundary point of S.

Let $x \in S$ be a boundary point of S. Then $N(x) \cap S^c$ is nonempty.

But S is open, $\forall x \in S$ are interior points, $\exists \epsilon > 0$ such that $N(x; \epsilon) \subset S$ (contradiction)

Since V is clopen, V is either \emptyset or \mathbb{R} . If V is \emptyset , it contradicts the assumption. If V is \mathbb{R} , then U is \emptyset . Then it contradicts the assumption again. Therefore \mathbb{R} is not disconnected, i.e. \mathbb{R} is connected.

Date: 1 April 2021.

1