Computer Organization & Architecture Chapter 8 – Secondary Storage

Zhang Yang 张杨 cszyang@scut.edu.cn Autumn 2021

Contents of this lecture

- 8.10 Secondary Storage
 - □ Types of Secondary Storage
 - Magnetic Disk
 - Magnetic Hard Disk
 - □ Data Organization
 - □ Disk Capacity
 - □ Disk Access Time
 - □ Disk Controller
 - □ Solved Problems Example 8.6 (P327)
 - □ Floppy Disks
 - □Summary

Types of Secondary Storage

- Magnetic Disk
 - Hard Disk
 - Floppy Disk
- Optical

 - CD-ROM
 - CD-Recordable (CD-R)
 - CD-R/W

 - Blu-ray
- Magnetic Tape

Magnetic Disk

- Metal or plastic disk coated with magnetizable material (iron oxide...rust).
- Range of packaging
 - Winchester hard disk
 - □ Removable hard disk
 - □ Floppy

Disk Systems

Physical Characteristics

Head Motion

Fixed head (one per track)

Movable head (one per surface)

Disk Portability

Nonremovable disk Removable disk

Sides

Single sided Double sided

Platters

Single platter Multiple platter

Head Mechanism

Contact (floppy)

Fixed gap

Aerodynamic gap (Winchester)

Contents of this lecture

- 8.10 Secondary Storage
 - □ Types of Secondary Storage
 - Magnetic Disk
 - Magnetic Hard Disk
 - □ Data Organization
 - □ Disk Capacity
 - □ Disk Access Time
 - □ Disk Controller
 - □ Solved Problems Example 8.6 (P327)
 - □ Floppy Disks
 - □Summary

Magnetic Hard Disk (1)

- Mechanical Structure
 - Overall Structure
 - One or more disks (double-sided/singlesided) mounted on a common spindle.
 - A disk is a circular platter constructed of metal or of plastic coated with a magnetizable material.
 - The disks are placed in a rotary drive and they rotate at a uniform speed.

Magnetic Hard Disk (2)

- Mechanical Structure (ctd.)
 - Overall Structure (ctd.)

Magnetic Hard Disk (3)

- Read/Write Head
 - Fixed Head
 - One read/write head per track.
 - Heads mounted on fixed ridged arm.
 - Expensive, no longer production.
 - Movable Head
 - One read/write head per side.
 - Mounted on a movable arm.
 - Detail
 - Each head consist of a magnetic yoke and a magnetizing coil.
 - Read/Write must be maintained at a very small distance from the moving disk surfaces.

Magnetic Hard Disk (4)

Read/Write Head (ctd.)

□ Detail

(b) Read/Write head detail

Magnetic Hard Disk (5)

- Read/Write Mechanism
 - Recording and retrieval via conductive coil(s) called a head(s).
 - May be single read/write head or separate ones.
 - During read/write, head is stationary (actually moves radially to platters) and platter rotates beneath head.

Magnetic Hard Disk (6)

- Read/Write Mechanism (ctd.)
 - ☐ Hard Drive Write
 - Current through coil produces magnetic field.
 - Pulses sent to head.
 - Magnetic pattern recorded on surface below.

Magnetic Hard Disk (7)

- Read/Write Mechanism (ctd.)
 - □ Hard Drive Read (Traditional)
 - Magnetic field *moving* relative to coil produces current. – Analogous to a generator or alternator.
 - Coil can be the same for read and write.

Magnetic Hard Disk (8)

- Disk Portability: Removable or Fixed
 - Removable disk
 - Can be removed from drive and replaced with another disk.
 - E.g. floppy, zip
 - Provides unlimited storage capacity.
 - Easy data transfer between systems.
 - Nonremovable disk
 - Permanently mounted in the drive.

Winchester Hard Disk

- Developed by IBM in Winchester (USA)
- Sealed unit
- One or more platters (disks)
- Heads fly on boundary layer of air as disk spins (crash into disk!)
- Very small head to disk gap
- Getting more robust.
- Universal
- Cheap
- Fastest external storage

Contents of this lecture

- 8.10 Secondary Storage
 - □ Types of Secondary Storage
 - Magnetic Disk
 - Magnetic Hard Disk
 - □ Data Organization
 - □ Disk Capacity
 - □ Disk Access Time
 - □ Disk Controller
 - □ Solved Problems Example 8.6 (P327)
 - □ Floppy Disks
 - □ Summary

Data Organization of Hard Disk (1)

Each surface is divided into concentric tracks, and each track is divided into sectors. Sector 0, track 1 Sector 3, trackn Sector 0, track 0

Figure 8.28. Organization of one surface of a disk.

Data Organization of Hard Disk (2)

Tracks & Sectors

Data Organization of Hard Disk (3)

- Tracks & Sectors (ctd.)
 - □ Each track has the same number of sectors.
 - Outer tracks have more sectors. (Applied in large disks)
 - □ Tracks usually
 - 500 2000 tracks per surface
 - □ Sectors usually
 - Typically 512K bytes
 - 10 100 sectors per track
- Disk address: (surface number, track number, sector number)

Data Organization of Hard Disk (4)

- Cylinders
 - A cylinder is the set of tracks at a given radius of a disk pack.
 - i.e. a cylinder is the set of tracks that can be accessed without moving the disk arm.
 - All the information on a cylinder can be accessed without moving the read/write arm.
 cylinder k

Data Organization of Hard Disk (5)

- Track Organization
 - □ Sector Header
 - Contains identification (addressing) information used to find the desired sector on the selected track.
 - □ ECC (Error-correcting Code) bits
 - Detect and correct errors that may have occurred in writing or reading of the 512 data bytes.
 - □ Intersector Gap
 - Distinguish between two consecutive sectors easily

Data Organization of Hard Disk (6)

- Track Organization (ctd.)
 - □Figure

Disk Format

- Divide the disk into tracks and sectors.
- The formatting process may discover some defective sectors or even whole tracks.
- The formatting information accounts for about 15 percent of the total information that can be stored on a disk.

Disk Capacity (1)

- Capacity: maximum number of bits that can be stored.
- Vendors express capacity in units of gigabytes (GB), where 1 GB = 10⁹ Bytes).
- Capacity is determined by these technology factors:
 - □ Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - □ Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment. (tpi)
 - □ Areal density (bits/in²): product of recording and track density.

Disk Capacity (2)

- Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)
- Example
 - □ 512 bytes/sector
 - □ 300 sectors/track (on average)
 - □ 20,000 tracks/surface
 - □ 2 surfaces/platter
 - □ 5 platters/disk
 - □ Capacity = $512 \times 300 \times 20000 \times 2 \times 5 = 30,720,000,000 = 30.72 \text{ GB}$

Disk Access Time

- The time to access a sector in a track on a surface is divided into 3 components:
 - Seek time: Time to move the read/write arm to the correct cylinder. (5-15ms)
 - Rotational delay (or latency): Time it takes for the disk to rotate so that the desired sector is under the read/write head. (4-8ms)
 - Transfer time: Once the read/write head is positioned over the data, this is the time it takes for transferring data. (25-100us)

Contents of this lecture

- 8.10 Secondary Storage
 - □ Types of Secondary Storage
 - Magnetic Disk
 - Magnetic Hard Disk
 - □ Data Organization
 - □ Disk Capacity
 - □ Disk Access Time
 - □ Disk Controller
 - □ Solved Problems Example 8.6 (P327)
 - □ Floppy Disks
 - □ Summary

Disk Controller (1)

- Interface between the disk drive and the system is known as a disk controller.
- A primary function is to ensure data read/write operations are from/to the correct sector.
- Since data rate to/from the disk is different than data rate to/from system memory, "buffering" is needed.

Disk Controller (2)

Disk Controller As a Buffer

- 2. Transfer data from buffer to system RAM (Note: this is a DMA operation)
- 1. Read data from disk into a buffer in the disk controller

Disk Controller (3)

DMA Transfer Using Disk Controller

Disk Controller (4)

Disk Controller (5)

Disk Controller (6)

- Main Functions of Disk Controller (from the disk drive's viewpoint)
 - Seek: Causes the disk drive to move the read/write head from its current position to the desired track.
 - □ Read: Initiates a Read operation, starting at the address specified in the disk address register.
 - □ Write: Transfers data to the disk, using a control method similar to that for Read operation.
 - □ Error checking: Computes the ECC value for the data read from a given sector and compares it with the corresponding ECC value read from the disk.

Contents of this lecture

- 8.10 Secondary Storage
 - □ Types of Secondary Storage
 - Magnetic Disk
 - Magnetic Hard Disk
 - □ Data Organization
 - □ Disk Capacity
 - □ Disk Access Time
 - □ Disk Controller
 - □ Solved Problems Example 8.6 (P327)
 - □ Floppy Disks
 - □ Summary

Solved Problems (1)

- Example 8.6 Problem: Consider a long sequence of accesses to a disk with an average seek time of 6 ms and an average rotational delay of 3 ms. The average size of a block being accessed is 8K bytes. The data transfer rate from the disk is 34 Mbytes/sec.
 - (a) Assuming that the data blocks are randomly located on the disk, estimate the average percentage of the total time occupied by seek operations and rotational delays.
 - □ (b) Repeat part (a) for the situation in which disk accesses are arranged so that in 90 percent of the cases, the next access will be to a data block on the same cylinder.

Solved Problems (2)

- Example 8.6 Solution: It takes 8K/34M = 0.23 ms to transfer a block of data.
 - □ (a) The total time needed to access each block is 6 + 3 + 0.23 = 9.23 ms. The portion of time occupied by seek and rotational delay is 9/9.23 = 0.97 = 97%.
 - \Box (b) In 90% of the cases, only rotational delays are involved. Therefore, the average time to access a block is $0.9 \times 3 + 0.1 \times 9 + 0.23 = 3.83$ ms. The portion of time occupied by seek and rotational delay is 3.6/3.83 = 0.94 = 94%.

Floppy Disks (1)

- A floppy disk is a data storage medium that is composed of a disk of thin, flexible ("floppy") magnetic storage medium encased in a square or rectangular plastic shell.
- Invented by IBM, floppy disks in 8-inch (200 mm), 5¼-inch (133.35 mm), and 3½-inch (90 mm) formats enjoyed many years as a popular and ubiquitous form of data storage and exchange, from the mid-1970s to the late 1990s.
- They have now been largely superseded by USB flash drives

8-inch, 5¼-inch, and 3½-inch floppy disks

Floppy Disks (2)

Disk format	Year introduced	Formatted Storage capacity in KB (1024 bytes) if not stated	Marketed capacity ¹
8-inch - IBM 23FD (read-only)	1971	79.7	?
8-inch - SSSD IBM 33FD / Shugart 901	1973	237.25	3.1 Mbits unformatted
8-inch - DSSD IBM 43FD / Shugart 850	1976	500.5	6.2 Mbits unformatted
8-inch DSDD IBM 53FD / Shugart 850	1977	980 - 1200 (MS-DOS FAT)	I 1.7 MRI
5¼-inch DD	1978	360 or 800	360 KB
3½-inch HP single sided	1982	280	264 kB
3-inch	1982	360	125 kB
3½-inch (DD at release)	1984	720 (400 SS, 800 DS on Macintosh, 880 DS on Amiga)	1 MB
5¼-inch HD	1982 YE Data YD380	1,182,720 bytes	1.2 MB
3-inch DD	1984	720	?
2-inch	1985	720	?
5¼-inch Perpendicular	1986	100 MB	?
3½-inch HD	1987	1440	1.44 MB (2.0 MB unformatted)
3½-inch ED	1987	2880	2.88 MB
3½-inch Floptical (LS)	1991	21000	21 MB
3½-inch LS-120	1996	120.375 MB	120 MB
3½-inch LS-240	1997	240.75 MB	240 MB
3½-inch HiFD	1998/99	150/200 MB	150/200 MB

Summary

- ■知识点: Magnetic Hard Disk
 - □ Capacity
 - □ Data Organization
 - □Access Time
 - □Cylinder

Homework

- P332 8.22(1)(2)
- ■查阅资料,了解SSD的发展历史、原理 用途和发展趋势,撰写报告。

Exercise (1)

- 1. The data of all tracks of a _____ can be accessed without moving the read-write head.
 - □ A. surface
 - B. platter
 - □ C. sector
 - □ D. cylinder
- Solution:
 - □ D. cylinder

Exercise (2)

- 2. According to the specifications of a particular hard disk, a seek takes 3 ms between adjacent tracks. If the disk has 100 cylinders, how long will it take for the head to move from the innermost cylinder to the outermost cylinder?
 - ☐ A. 3ms
 - B. 30ms
 - □C. 300ms
 - □ D. 3000ms
- Solution:
 - □ C. 300ms

Exercise (3)

- 3. A hard disk with 5 double-sided platters has 2048 tracks/platter, how many movable heads does it have?
 - □ A. 5
 - □ B. 10
 - □C. 2048×5
 - □ D. 2048×10

- Solution:
 - □ B.10

Exercise (4)

- 4. When we read a block of data from a disk into memory, the seek time refers to ().
 - □ A. the time required to move the read-write head to the proper track
 - B. the time required to position the read-write head and transfer the data block
 - C. the time required to rotate the correct sector under the head
 - □ D. none of the above
- Solution:
 - $\square A$

Exercise (5)

- 5. The amount of time required to read a block of data from a disk into memory is composed of seek time, rotational latency, and transfer time.
 Rotational latency refers to ().
 - A. the time it takes for the platter to make a full rotation
 - □ B. the time it takes for the read-write head to move into position over the appropriate track
 - C. the time required to rotate the correct sector under the head
 - □ D. none of the above
 - Solution: C

Exercise (6)

A hard disk with 5 platters has 2048 tracks/platter, 1024 sectors/track (fixed number of sectors per track), and 512 byte sectors. What is its total capacity?

```
□ A. 5G;
```

- □B. 10G;
- □C. 15G;
- □ D. 20G;
- Solution:
 - □ A. 5G;