# CMSC 207- Lecture 2 CHAPTER 1: SPEAKING MATHEMATICALLY – Contd.

#### Dr. Ahmed Tarek

The set of real numbers are represented as the set of all points on a line, as shown below.



The number 0 corresponds to a middle point, called the *origin*.

A unit of distance is marked off, and each point to the right of the origin corresponds to a positive real number found by computing its distance from the origin. Similarly, each point to the left of the origin corresponds to a negative real number found by computing the distance from the origin.

•The set of real numbers is therefore divided into three parts: the set of positive real numbers, the set of negative real numbers, and the number 0. Speaking Mathematically (Speaking Formally),

$$R = R^+ \cup R^- \cup \{0\}$$

• <u>Important</u>: 0 is neither positive nor negative.

Following shows a real number line with labels given for a few real numbers corresponding to points on the line.



The real number line is *continuous* because it doesn't contain any holes or gaps.

The set of integers corresponds to a collection of points located at fixed intervals along the real number line. Therefore, the real number line can also represent integers.

Hence, every integer is a real number, and because the integers are all separated from each other, the set of integers is called *discrete*. The name *discrete mathematics* comes from the distinction between continuous and discrete mathematical objects.

Another way to specify a set is called the:

#### set-builder notation:

Let S denotes a set, and P(x) be a property that elements of S may or may not satisfy

Define a new set such that it is the set of all elements x in S such that property P(x) is true (satisfied) for each one of them:

$$\{x \in S \mid P(x)\}$$

# In-class Assignment-1 (take 8 minutes to complete)

Given that **R** denotes the set of all real numbers, **Z** the set of all integers, and **Z**<sup>+</sup> the set of all positive integers, describe each of the following sets.

$$x \in \mathbb{R} \mid -2 < x < 5$$

b. 
$$\{x \in \mathbb{Z} \mid -2 < x < 5\}$$

$$\{x \in \mathbb{Z}^+ \mid -2 < x < 5\}$$

#### **Check Your Solution: In-class Assignment 1**

a.  $\{x \in \mathbb{R} \mid -2 < x < 5\}$  is the open interval of real numbers (strictly) between -2 and 5 (non-inclusive or exclusive of -2 and 5). It is pictured as: follows:



is the set of all integers (strictly)  $\{x \in \mathbb{Z} \mid -2 < x < 5\}$ ; (exclusive). It is equal to the set:

$$\{-1, 0, 1, 2, 3, 4\}.$$

**c.** Since all the integers in **Z**<sup>+</sup> are positive,

$${x \in \mathbf{Z}^+ | -2 < x < 5} = {1, 2, 3, 4}.$$

#### **Subsets-1**

A basic relation between sets is the subset relation If A and B are two sets, then A is called a subset of B, written as  $\mathbf{A} \subseteq \mathbf{B}$ , if and only if, every element in set A is also present in set B.

So  $A \subseteq B$  implies that For all elements x, if  $x \in A$  then  $x \in B$  (Formally,  $A \subseteq B \equiv \forall x, x \in A \rightarrow x \in B$ ) Here,  $\equiv$  is Equivalent Symbol.

Also, analogous statements are:

Set A is contained in set B
Set B contains set A

#### **Subsets-2**

For a set A not to be a subset of a set B means that there is at least one element of set A, and the element is not present in set B.

#### **Speaking Mathematically:**

 $A \nsubseteq B$  means that There is at least one element x such that  $x \in A$  and  $x \notin B$ .

#### Formally, $\exists x, x \in A \land x \notin B$ .

If A and B are sets, then A is a proper subset of B, if, and only if, every element of set A is in set B but there is at least one element of B that is not in A.

Formally,  $A \subset B$  (Set A is a proper subset of B)

$$\equiv (\forall x, x \in A \rightarrow x \in B) \land (\exists y, y \in B \land y \notin A)$$

# In-class Assignment-2 (take 8 minutes to complete)

Which of the following are true statements?

**a.** 
$$y \in \{x, y, z\}$$
 **b.**  $\{y\} \in \{x, y, z\}$  **c.**  $y \subseteq \{x, y, z\}$  **d.**  $\{y\} \subseteq \{x, y, z\}$  **e.**  $\{y\} \subseteq \{\{x\}, \{y\}\}\}$  **f.**  $\{y\} \in \{\{x\}, \{y\}\}\}$ 

#### **Solution:**

Only (a), (d), and (f) are true.

For (**b**) to be true, the set {x, y, z} would have to contain the element {y}. But the only elements of {x, y, z} are x, y, and z, and y is not equal to {y}. Hence (**b**) is false.

#### Example 4 – Solution

For (c) to be true, the number y would have to be a set and every element in the set y would have to be an element of  $\{x, y, z\}$ . This is not the case, so (c) is false.

For (**e**) to be true, every element in the set containing only the number y would have to be an element of the set whose elements are {x} and {y}. But y is not equal to either {x} or {y}, and so (**e**) is false.

#### **Cartesian Products**

#### Notation

Given elements a and b, the symbol (a, b) denotes the **ordered pair** consisting of a and b together with the specification that a is the first element of the pair and b is the second element. Two ordered pairs (a, b) and (c, d) are equal if, and only if, a = c and b = d. Symbolically:

(a,b) = (c,d) means that a = c and b = d.

# Example 5 – Ordered Pairs

**a.** Is 
$$(1, 4) = (4, 1)$$
?

**b.** Is 
$$(3, \frac{5}{10}) = (\sqrt{9}, \frac{1}{2})$$
 ?

c. What is the first element of (2, 2)?

#### Solution:

**a.** No. By definition of equality of ordered pairs, (1, 4) = (4,1) if, and only if, 1 = 4 and 4 = 1. But  $1 \neq 4$ , and so the ordered pairs are not equal.

## Example 5 – Solution

**b.** Yes. By definition of equality of ordered pairs,

$$(3, \frac{5}{10}) = (\sqrt{9}, \frac{1}{2})$$
 if, and only if,  $3 = \sqrt{9}$  and  $\frac{5}{10} = \frac{1}{2}$ .

Because these equations are both true, the ordered pairs are equal.

**c.** In the ordered pair (2, 2), the first and the Second elements are both 2.

#### Cartesian Products

#### Definition

Given sets A and B, the **Cartesian product of** A **and** B, denoted  $A \times B$  and read "A cross B," is the set of all ordered pairs (a, b), where a is in A and b is in B. Symbolically:

$$\mathbf{A} \times \mathbf{B} = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

# Example 6 – Cartesian Products

Let  $A = \{1, 2, 3\}$  and  $B = \{u, v\}$ .

**a.** Find  $A \times B$ 

**b.** Find  $B \times A$ 

**c.** Find  $B \times B$ 

**d.** How many elements are in  $A \times B$ ,  $B \times A$ , and  $B \times B$ ?

CMSC 207

16

## Example 6 – Solution

**a.** 
$$A \times B = \{(1, u), (2, u), (3, u), (1, v), (2, v), (3, v)\}$$

**b.** 
$$B \times A = \{(u, 1), (u, 2), (u, 3), (v, 1), (v, 2), (v, 3)\}$$

**c.** 
$$B \times B = \{(u, u), (u, v), (v, u), (v, v)\}$$

**d.**  $A \times B$  has six elements. Note that this is the number of elements in A times the number of elements in B.

 $B \times A$  has six elements, the number of elements in B times the number of elements in A.  $B \times B$  has four elements, the number of elements in B times the number of elements in B.

# The Meaning of: $\mathbf{R} \times \mathbf{R}$

**R** × **R** is the set of all ordered pairs (x, y) where both x and y are real numbers.

 If horizontal and vertical axes are drawn on a plane, and a unit length is marked off, then each ordered pair in R × R corresponds to a unique point in the plane, with the first, and second elements of the pair indicating, respectively, the horizontal and vertical positions of the point.

#### The Meaning of: R × R Continued.

The term **Cartesian plane** is often used to refer to a plane with this coordinate system, as illustrated in **Figure 1.2.1.** 



**Figure 1.2.1** CMSC 207

#### The Language of Relations and Functions

Let us use the notation x R y as a shorthand for the sentence "x is related to y." Then

```
\begin{array}{ccccccc}
0 & R & 1 & since & 0 & < 1, \\
0 & R & 2 & since & 0 & < 2, \\
0 & R & 3 & since & 0 & < 3, \\
1 & R & 2 & since & 1 & < 2, \\
1 & R & 3 & since & 1 & < 3, & and \\
2 & R & 3 & since & 2 & < 3.
\end{array}
```

On the other hand, if the notation  $x \not \in y$  represents the sentence "x is not related to y,"

CMSC 207

20