Machine Learning meets Selection Hyper-heuristics

Prof Ender Özcan School of Computer Science

12/06/2024

Outline

- Hyper-heuristics Definition, Origins, Motivation, Classification
- Selection Hyper-heuristics Controlling Perturbative Heuristics
 - HyFlex, Cross-Domain Heuristic Search Competition (CHeSC 2011)
 - AdapHH, MSHH
- Automated Design/Generation of Selection Hyper-heuristics
- An Apprenticeship Learning Hyper-heuristic for OVRP
 - Experts: AdapHH, MSHH, Apprentice: TDNN
- Concluding Remarks

State-of-the-art in Meta/heuristic Optimisation

Trial and Error:

- Design and implement algorithmic components
- Configure the algorithm and tune the parameters: Test on selected instances (revisit the design options)
- Performance analyses on unseen instances (revisit the design options)

Vehicle Routing

Flowshop Scheduling

Nurse Rostering

John

Gem

03	04	05	06	07	08	09	10	11	12	13	14	15	16
М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S
D	D			D	D	D	D	D	D				

Hyper-heuristics

A hyper-heuristic is a search method or learning mechanism for selecting or generating heuristics to solve computationally difficult problems

- A class of methodologies for cross-domain search
 - search methods with reusable components used for solving characteristically different multiple problems preferably with the least or even no "human" intervention (e.g., for tuning, applying the approach to a new instance, etc.)

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-heuristics: A Survey of the State of the Art, Journal of the Operational Research Society, 64 (12), pp. 1695-1724, 2013. [PDF]

Standard Heuristics

Operate upon

Potential Solutions

Motivation

- Hyper-heuristic research is motivated by raising the level of generality. What are the limits?
- Grand Challenge

Related Areas

- Adaptive operator selection (Fialho et al., 2008, and 2014)
- Algorithm configuration (López-Ibáñez et al., 2014, and 2016)
- Algorithm selection/portfolios (Kotthoff, 2014)
- Co-evolution/multimeme memetic algorithms/Memetic computing (Ong et al., 2006, Feri et al., 2012)
- Hybrid metaheuristics (Raidl, 2015)
- Meta-learning (Pappa et al., 2014, Blum et al., 2011)
- Parameter control (e.g., in EAs) (Eiben et al., 2007)
- Reactive search (Battiti & Brunato, 2017)
- Variable Neighbourhood Search (Hansen et al., 2010)
- ...

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan and J. Woodward, A Classification of Hyper-heuristic Approaches: Revisited, In Gendreau, M, and Potvin, JY. (eds.), Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 272, pp. 453-477. Springer Cham, 2019. [PDF]

J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, Automated design of production scheduling heuristics: A review. IEEE Trans. Evol. Comput., vol. 20, no. 1, pp. 110–124, Feb. 2016. [PDF]

Hyper-heuristics: Origins

1961-63 1975 1990-95 1997

Cowling P.I., Kendall G. and Soubeiga E., 2001. A Hyperheuristic Approach to Scheduling a Sales Summit, selected papers from PATAT 2000, Springer, LNCS 2079, 176-190.

Fisher H. and Thompson G.L., 1963. Probabilistic Learning Combinations of Local Job-shop Scheduling Rules. Ch 15,:225-251, Prentice Hall, New Jersey.

2001

Crowston W.B., Glover F., Thompson G.L. and Trawick J.D. Probabilistic and Parameter Learning Combinations of Local Job Shop Scheduling Rules. ONR Research Memorandum, GSIA, CMU, Pittsburgh, (117), 1963

THE ALGORITHM SELECTION PROBLEM

John R. Rice Computer Science Department Purdue University West Lafayette, Indiana 47907

July 1975

CSD-TR 152

Storer R. H., Wu S. D., Vaccari R., 1992. New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling, INFORMS, 38(10), 1495-1509.

Fang H.-L., Ross P. and Corne D., 1994. A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems., in ECAI, 590-594.

Denzinger J., Fuchs M. and Fuchs M., 1997. High performance ATP systems by combining several AI methods. In Proc. of the 15th IJCAI, 102-107.

A Selection Hyper-heuristic Framework for Cross-domain Search

- No domain knowledge, other than that embedded in a range of simple knowledge-poor heuristics.
- Robust enough to effectively handle a wide range of problems and problem instances from a variety of domains.

Fig. 1. The hyperheuristic approach and the problem domain barrier

2 The Sales Summit Scheduling Problem

The problem we are studying is encountered by a commercial company that organises regular sales summits which bring together two groups of company representatives. The first group, *suppliers*, represent companies who wish to sell some product or

Cowling P.I., Kendall G. and Soubeiga E., 2001. A Hyperheuristic Approach to Scheduling a Sales Summit, selected papers from PATAT 2000, Springer, LNCS 2079, 176-190. [PDF]

Selection Hyper-heuristics Recent Applications of

Application Domain	References
Design problems	Kheiri et al. (2015); Peraza-Vázquez et al. (2016); Allen et al. (2013)
Dynamic environments	Uludağ et al. (2012, 2013); Kiraz et al. (2013a,b); Topcuoglu et al. (2014); van der Stockt and Engelbrecht (2014); Baykasoğlu and Ozsoydan (2017)
Knapsack	Drake et al. (2016, 2014); Soria-Alcaraz et al. (2014a, 2017a); Lassouaoui and Boughaci (2014)
Maximum satisfiability	Jackson et al. (2014); Ferreira et al. (2015)
Puzzles and games	Wauters et al. (2012); Kheiri and Özcan (2014); Li and Kendall (2017)
Real-valued blackbox optimisation	Epitropakis et al. (2014); Grobler et al. (2013, 2014, 2015); Damaševičius and Woźniak (2017); Tinoco and Coello (2013)
Scheduling	Mısır et al. (2012a); Bilgin et al. (2012); Mısır et al. (2013a); Koulinas and Anagnostopoulos (2013); Rajni and Chana (2013); Tsai et al. (2014); Mısır and Lau (2014); Koulinas et al. (2014); Aron et al. (2015); Zheng et al. (2015); Mısır et al. (2015); Monemi et al. (2015); Asta et al. (2016a); Hassan and Pillay (2016); Chen et al. (2016a); Asta et al. (2016b); Wu et al. (2016); Lin et al. (2017); Pour et al. (2017); Chen et al. (2017)
Search based software engineering	Henard et al. (2014); Jia et al. (2015); Zamli et al. (2016, 2017)
Shelf allocation	Bai et al. (2013); Zhao et al. (2016)
Telecommunication	Yang et al. (2014); Hassan and Pillay (2016); Tsai et al. (2017)
Timetabling	Kalender et al. (2012, 2013); Kheiri et al. (2016b); Burke et al. (2014); Soria-Alcaraz et al. (2014b); Ahmed et al. (2015); Kheiri and Keedwell (2017); da Fonseca et al. (2016); Soria-Alcaraz et al. (2016, 2017c,b)
Traveling salesman	Swiercz et al. (2014); Qu et al. (2015); Smith and Imeson (2017); Choong et al. (2017); Martins et al. (2017); El Yafrani et al. (2018)
Vehicle routing	Akar et al. (2014); Marshall et al. (2015); Urra et al. (2015); Sabar et al. (2015c); Yin et al. (2016); Sim and Hart (2016); Chen et al. (2016b); Mourdjis et al. (2016); Tyasnurita et al. (2017); Soria-Alcaraz et al. (2017b)

A Hyper-heuristic Framework

A Selection Hyper-heuristic Framework – Single Point Search

A Selection Hyper-heuristic Framework – Single Point Search

- 1. generate initial candidate solution p
- while (termination criteria not satisfied) {
- select a heuristic (or subset of heuristics) h from $\{H_1, ..., H_n\}$
- generate a new solution (or solutions) s by applying h to p
- decide whether to accept s or not
- 6. if (s is accepted) then
- p=s
- 8. return p;

Heuristic Selection

Component name	Reference(s)			
Heuristic selection wi	th no learning			
Simple Random	Cowling et al (2000, 2002b)			
Random Permutation	Cowling et al (2000, 2002b)			
Heuristic selection v	with learning			
Peckish	Cowling and Chakhlevitch (2003)			
	Cowling et al (2000, 2002b); Cowling and			
Greedy	Chakhlevitch (2003)			
Random Gradient	Cowling et al (2000, 2002b)			
Random Permutation Gradient	Cowling et al (2000, 2002b)			
	Cowling et al (2000, 2002b); Maashi et al (2015);			
Choice Function	Drake et al (2015)			
Reinforcement Learning	Nareyek (2003); Pisinger and Ropke (2007)			
Reinforcement Learning with Tabu Search	Burke et al (2003); Dowsland et al (2007)			
Quality Index and Tabu based Learning Heuristic Selection	Mısır et al (2009, 2012)			
Dominance-based Selection	Kheiri and Özcan (2011; 2015)			
Probability-based Selection	Lehrbaum and Musliu (2012)			
Adaptive pursuit	Walker et al (2012)			

Extended Classification of Selection Hyper-heuristics Selection Hyper-heuristics

J. H. Drake, A. Kheiri, E. Özcan, and E. K. Burke, *Recent Advances in Selection Hyper-heuristics*, EJOR, 285(2): 405-428, 2020 [PDF].

A Sample of Selection Hyper-heuristics

Source	Search points	Feedback	LLH set	Grouping of LLHs	Accept/reject	Parameter setting in move acceptance
(Chan et al., 2012)	Single	Mixed	Whole	Predefined	Basic, threshold	Static, adaptive
(Di Gaspero & Urli, 2012)	Single	Online	Whole	Predefined	Basic	None
(Drake et al., 2012)	Single	Online	Reduced	Without distinction	Basic	None
(Hsiao et al., 2012)	Mixed	Online	Reduced	Predefined	_	_
(Kubalík, 2012)	Population	Mixed	Reduced	Predefined	-	
(Lehrbaum & Musliu, 2012)	Mixed	Online	Reduced	Predefined	-	
(Mascia & Stützle, 2012)	Single	Offline	Reduced	Predefined	Stochastic	Static
(Mısır et al., 2012b)	Single	Online	Whole	Without distinction	Threshold	Adaptive
(Jackson et al., 2013)	Single	Online	Whole	Without distinction	Threshold	Static
(Adriaensen et al., 2014b)	Single	Online	Whole	Predefined	Stochastic	Adaptive
(Kheiri et al., 2016)	Single	Online	Reduced	Predefined	Threshold	Adaptive
(Asta & Özcan, 2015)	Single	Offline	Reduced	Stage-based	Basic	Static
(Drake, 2014)	Single	Online	Whole	Without distinction	Basic	None
(Kheiri & Keedwell, 2015)	Single	Online	Reduced	Without distinction	Threshold	Adaptive
(Asta et al., 2016a)	Single	Online	Reduced	Stage-based	Threshold	Adaptive
(Kheiri & Özcan, 2016)	Single	Online	Increased	Stage-based	Threshold	Adaptive
(Meignan et al., 2016)	Single	Online	Reduced	Predefined	Basic	None
(Chuang & Smith, 2017)	Single	No learning	Reduced	Predefined	Basic	None
(Ferreira et al., 2017)	Single	Online	Whole	Without distinction	Threshold	Dynamic
(Yates and Keedwell 2017)	Single	Offline	Whole	Without distinction	Stochastic	Static

Hyper-heuristics Flexible Interface (HyFlex)

https://www.cs.nott.ac.uk/~pszwj1/chesc2011/ (web archive

Methodologies to decide which low level heuristic (o_i) to apply to which solution (s_i) and at which location to store the new solution (s_k) in the list of solutions based on the history of visited solutions and their objective values.

Hyper-heuristic Layer

Domain Layer

- Set of low level heuristics {o₁,..., o_i,..., o_n}
- List of solutions $\{s_1, ..., s_k, ..., s_j, ..., s_M\}$
- Evaluation /objective function (e)
- Problem instance

Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M, Kendall G, McCollum B, Parkes AJ, Petrovic S, Burke EK (2012) HyFlex: a benchmark framework for cross-domain heuristic search. In: Evolutionary Computation in Combinatorial Optimization, LNCS 7245, pp 136–147 [PDF]

HyFlex v1.0 Java Implementation

- Heuristic types: mutational (MU), ruin-recreate (RC), local search (HC), crossover (XO)
- Parameters: intensity of mutation (MU+RC), depth of search (HC)

	MAX-SAT
ins	Bin Packing
Domains	Flow Shop
Problem	Personnel Scheduling
Ā	TSP
	VRP

Heuristic IDs	LLH0	LLH1	LLH2	LLH3	LLH4	LLH5	LLH6	LLH7
MAX-SAT	MU_{0}	MU_1	MU_2	MU_3	MU_4	MU_{5}	RC_0	HC_0
Bin Packing	MU_0	RC_0	\mathbf{RC}_1	MU_1	HC_0	\mathbf{MU}_2	\mathbf{HC}_1	\mathbf{XO}_0
PS	HC_0	HC_1	HC_2	HC_3	\mathbf{HC}_4	RC_0	RC_1	\mathbf{RC}_2
PFS	MU_0	MU_1	$\mathrm{MU_2}$	$\mathrm{MU_3}$	\mathbf{MU}_4	RC_0	\mathbf{RC}_1	HC_0
TSP	MU_{0}	$\mathrm{MU_{1}}$	MU_2	$\mathrm{MU_{3}}$	\mathbf{MU}_4	\mathbf{RC}_0	HC_0	HC_1
VRP	MU_0	MU_1	RC_0	\mathbf{RC}_1	HC_0	XO_0	\mathbf{XO}_1	MU_2
Heuristic IDs	LLH8	LLH9	LLH10	LLH11	LLH12	LLH13	LLH14	
MAX-SAT	\mathbf{HC}_1	XO_0	\mathbf{XO}_1					
PS	XO_0	XO_1	\mathbf{XO}_2	MU_0				
PFS	HC_1	HC_2	\mathbf{HC}_3	XO_0	XO_1	XO_2	\mathbf{XO}_3	
TSP	\mathbf{HC}_2	XO_0	XO_1	XO_2	\mathbf{XO}_3			
VRP	HC_1	\mathbf{HC}_2						

CHeSC 2011 benchmark based on HyFlex v1.0

Bin Packing

Flow Shop

Personnel Scheduling

TSP

VRP

10 public training instances

- 5 test instances
 (3 training + 2 hidden/all hidden)
- Set problem instance
- Set time limit (10 min.)
- Perform 31 runs
- Report median

Ranking: Formula 1 scoring system

Organising	Partners:

Sponsor:

Problem Domains

Rank

4

rest

Score

10

8

6

5

0

And the winner is...

AdapHH – M. Mısır

K. Verbeeck

P. De Causmaecker

G. Vanden Berghe

Rank	Hyper-heuristic	Score	Rank	Hyper-heuristic	Score
1	AdapHH	181.00	11	ACO-HH	39.00
2	VNS-TW	134.00	12	GenHive	36.50
3	ML	131.50	13	DynILS	27.00
4	PHUNTER	93.25	14	SA-ILS	24.25
5	EPH	89.75	15	XCJ	22.50
6	HAHA	75.75	16	AVEG-Nep	21.00
7	NAHH	75.00	17	GISS	16.75
8	ISEA	71.00	18	SelfSearch	7.00
9	KSATS-HH	66.50	19	MCHH-S	4.75
10	HAEA	53.50	20	Ant-Q	0.00

AdapHH – Overview

$$\begin{array}{lcl} p_i & = & w_1 \Big[\Big(C_{p,best}(i) + 1 \Big)^2 \Big(t_{remain} / t_{p,spent}(i) \Big) \Big] \times b + \\ & & w_2 \Big(f_{p,imp}(i) / t_{p,spent}(i) \Big) - w_3 \Big(f_{p,wrs}(i) / t_{p,spent}(i) \Big) + \\ & & w_4 \Big(f_{imp}(i) / t_{spent}(i) \Big) - w_5 \Big(f_{wrs}(i) / t_{spent}(i) \Big) \end{array}$$

$$b = \begin{cases} 1, & \sum_{i=0}^{n} C_{p,best}(i) > 0 \\ 0, & otw. \end{cases} \quad avg = \left[\left(\sum_{i=0}^{n} QI_{i} \right) / n \right]$$
$$pl = ph_{duration} / t_{subset}$$

$$ph_{duration} = t_{total}/ph_{requested}$$

$$exc(i) = t_{perMove}(i)/t_{perMove}(fastest)$$

 $\sigma > 2.0 \; ; \; exc(i) > 2\varpi \; ; \; nb > 1$

$$pr_i = ((C_{best}(i) + 1)/t_{spent})^{(1+3tf^3)}$$

$$k = \begin{cases} ((l-1).k + iter_{elapsed})/l, & \text{if } cw = 0\\ ((l-1).k + \sum_{i=0}^{cw} k.0.5^{i}.tf)/l, & \text{otherwise} \end{cases}$$

$$tf = (t_{exec} - t_{elapsed})/t_{exec}$$

$$cw = iter_{elapsed}/k$$

Algorithm AILLA move acceptance

```
Input: i = 1, K \ge k \ge 0, l > 0
   for i=0 to l-1 do best_{list}(i) = f(S_{initial})
 1 if adapt\_iterations > K then
        if i < l - 1 then
            i + +
        end
   end
 4 if f(S') < f(S) then
        w\_iterations = 0
        if f(S') < f(S_b) then
             S_b \leftarrow S'
10
             w\_iterations = adapt\_iterations = 0
11
            best_{list}.remove(last)
            best_{list}.add(0, f(S_b))
12
13 else if f(S') = f(S) then
15 else
        w\_iterations + +
16
        adapt\_iterations + +
17
        if w\_iterations \ge k and f(S') \le best_{list}(i) then
18
            S \leftarrow S' and w\_iterations = 0
19
        end
   end
```


Algorithm Relay hybridisation

Input: $list_{size} = 10; \gamma \in (0.02, 50); p, p' \in [0:1]$ 1 $\gamma = (C_{best,s} + 1)/(C_{best,r} + 1)$ 2 if $p \leq (C_{phase}/pl)^{\gamma}$ then

3 | select LLH using a LA and apply to $S \rightarrow S'$ 4 | if $size(list_i) > 0$ and p' <= 0.25 then

5 | select a LLH from $list_i$ and apply to $S' \rightarrow S''$ 6 | else

7 | select a LLH and apply to $S' \rightarrow S''$ | end
| end

Mustafa Misir, Katja Verbeeck, Patrick De Causmaecker, Greet Vanden Berghe. A New Hyper-heuristic as a General Problem Solver: an Implementation in HyFlex. Journal of Scheduling, 16(3), 2013 [PDF]

Steven Adriaensen, and Ann Nowé. Case Study: An Analysis of Accidental Complexity in a State-of-the-art Hyper-heuristic for HyFlex. 2016 IEEE CEC, 1485-1492 [PDF] LeanGIHH

An Iterated Multi-stage Selection Hyper-heuristic (MSHH)

A. Kheiri and E. Özcan, *An Iterated Multi-stage Selection Hyper-heuristic*, European Journal of Operational Research (250)1:77–90, 2016 [PDF]

Single point based search – Crossover operators are ignored

Parameter setting: IoM and DoS are discretised {0.2, 0.4,...,1.0}
 and a random value is chosen. The same value is used as long as

there is improvement, otherwise it is set to another value

randomly.

Return best

MSHH – Stage 1 Hyper-heuristic (S1HH)

- A score is maintained for each low level heuristic (score_i)
- Select a low-level heuristic i with probability

$$score_i / \sum_{\forall k} (score_k)$$

- Apply the chosen heuristic
- Accept/reject based on an adaptive threshold acceptance method
- Stage 1 terminates if a duration of s₁ is exceeded without any improvement

MSHH – An Adaptive Threshold Move **Acceptance Method**

$$\in (c_i, f(S_{beststage}))$$

 c_i is an integer value in $C = \{c_0, \dots, c_i, \dots, c_{(l-1)}\}$ and C is a circular list

MSHH – Stage 2 Hyper-heuristic (S2HH)

Given N LLHs, e.g., LLH₁, LLH₂ Pair up all and increase the number of LLHs to $N+N^2$

$$\begin{aligned} \mathsf{LLH}_3 \leftarrow & \mathsf{LLH}_1 + \mathsf{LLH}_1 \\ \mathsf{LLH}_4 \leftarrow & \mathsf{LLH}_2 + \mathsf{LLH}_2 \\ \mathsf{LLH}_5 \leftarrow & \mathsf{LLH}_1 + \mathsf{LLH}_2 \\ \mathsf{LLH}_6 \leftarrow & \mathsf{LLH}_2 + \mathsf{LLH}_1 \end{aligned}$$

Reduce the
Number of LLHs
(N → n)
+
Assign
Probabilities

LLH₁=2, LLH₂=1, LLH₃=1 50% 25% 25%

6 LLHs → 3 LLHs

Parameter Tuning

 The proposed approach introduces 6 system parameters to be set

- $\tau = \{10, 15, 20, 30\}$ (in milliseconds)
- $d = \{7, 9, 10, 12\}$ (in seconds)
- $s_1 = \{10, 15, \mathbf{20}, 25\}$ (in seconds)
- $s_2 = \{3, 5, 10, 15\}$ (in steps/iterations)
- $P_{S2HH} = \{0.1, \mathbf{0.3}, 0.6, 0.9, 1.0\}$
- $C = \{\{0\}, \{3\}, \{6\}, \{9\}, \{0, 3, 6, 9\}\}$

Performance Comparison

			M	SHH				S1HH				S2HH	
Domain	Instance	avg.	std.	median	min.	vs.	avg.	std.	min.	vs.	avg.	std.	min.
	Inst1	0.9	0.7	1.0	0.0	>	6.4	4.5	1.0	>	15.0	4.6	3.0
	Inst2	3.1	3.9	2.0	1.0	>	21.3	13.3	3.0	>	44.9	9.8	18.0
SAT	Inst3	0.7	0.5	1.0	0.0	>	7.1	7.7	0.0	>	26.3	14.0	1.0
	Inst4	1.7	1.0	1.0	1.0	>	5.7	4.3	1.0	>	20.0	4.6	12.0
	Inst5	7.6	0.9	7.0	7.0	>	10.4	1.5	7.0	>	15.4	1.7	13.0
	Inst1	0.0163	0.0014	0.0163	0.0136	<	0.0159	0.0010	0.0137	>	0.0198	0.0015	0.0160
	Inst2	0.0037	0.0015	0.0030	0.0025	>	0.0061	0.0015	0.0034	>	0.0104	0.0021	0.0077
BP	Inst3	0.0050	0.0015	0.0049	0.0025	\geq	0.0054	0.0012	0.0027	>	0.0128	0.0011	0.0104
	Inst4	0.1084	0.0000	0.1084	0.1083	<	0.1084	0.0000	0.1083	>	0.1084	0.0000	0.1084
	Inst5	0.0050	0.0019	0.0044	0.0032	\geq	0.0055	0.0021	0.0032	>	0.0210	0.0015	0.0187
	Inst1	25.5	4.5	25.0	16.0	>	28.8	4.7	18.0	>	31.6	4.9	22.0
	Inst2	9668.9	217.8	9638.0	9184.0	\leq	9645.3	159.6	9334.0	\leq	9645.8	106.7	9391.0
PS	Inst3	3283.7	93.3	3270.0	3132.0	≥	3304.8	99.6	3134.0	\geq	3309.9	110.2	3172.0
	Inst4	1786.3	172.1	1760.0	1545.0	>	1801.0	142.3	1570.0	≥	1836.0	291.1	1400.0
	Inst5	353.2	21.2	350.0	315.0	>	724.4	657.3	320.0	>	810.7	621.5	360.0
	Inst1	6239.8	14.9	6239.0	6212.0	>	6287.6	21.9	6249.0	>	6353.3	29.8	6301.0
	Inst2	26895.2	55.3	26889.0	26775.0	<	26873.2	30.7	26822.0	>	26976.9	54.7	26849.0
PFS	Inst3	6333.8	19.0	6325.0	6303.0	>	6360.5	16.4	6323.0	>	6405.5	23.7	6369.0
	Inst4	11363.8	32.7	11359.0	11320.0	>	11429.9	43.8	11357.0	>	11529.3	35.9	11436.0
	Inst5	26711.9	47.0	26709.0	26630.0	\leq	26693.1	40.7	26608.0	>	26779.1	49.8	26702.0
		48208.1	31.8	48194.9	48194.9	>	50032.0	571.1	49263.1	>	50326.5	606.6	49221.6
	Inst2	$2.09e^{+7}$	$9.05e^{+4}$	$2.09e^{+7}$	$2.07e^{+7}$	>	$2.14e^{+7}$	$1.12e^{+5}$	$2.12e^{+7}$	>	$2.13e^{+7}$	$1.05e^{+5}$	$2.11e^{+7}$
TSP	Inst3	6809.1	7.1	6808.8	6796.6	>	7012.5	30.4	6964.6	>	7040.2	31.3	6988.6
	Inst4	66840.2	276.5	66843.6	66236.8	>	68908.4	382.4	68159.9	>	70241.9	704.6	68791.0
	Inst5	53011.4	469.7	52910.2	52341.3	>	54411.1	595.1	53686.0	>	55814.8	946.4	53992.4
		70998.4	3840.3	70506.5	63948.2	<	70223.0	2960.2	64273.2	>	84103.9	7225.8	68958.3
	Inst2	13421.8	251.6	13359.6	13303.9	\geq	13658.0	471.4	13319.6	>	13695.8	473.9	13320.0
VRP	Inst3	148498.2	1625.8	148436.2	145466.5	\leq	148232.6	1935.3	145426.5	\geq	149553.2	2377.8	145362.7
	Inst4	21016.4	488.2	20671.4	20650.8	\leq	20991.3	478.0	20653.5	>	21131.9	510.3	20657.5
	Inst5	148813.7	1272.5	149193.7	146334.6	\geq	148999.1	1217.1	146844.9	>	150282.6	1616.3	146666.9

Performance Comparison to CHeSC 2011 competitors

Top with a CHeSC 2011 score of 163.60

Automated Design of Selection Hyper-heuristics

- Sabar, Ayob, Kendall, and Qu (2013) used Grammatical Evolution for CVRP and ETT
- <u>Adriaensen, Brys, and Nowé (2014a)</u> performed a meta-level search using ILS over a set of design decisions for developing a simple selection hyper-heuristic (HyFlex)
- <u>Sabar and Kendall (2015)</u> used Monte Carlo Tree Search to generate heuristic select.(HyFlex)
- Ayob, Kendall, and Qu (2015a) applied Gene Expression Programming (Hyflex)
- <u>Fontoura, Pozo, and Santana (2017)</u> used Grammatical Evolution for protein structure prediction
- <u>Karapetyan, Punnen, and Parkes (2017)</u> introduced Conditional Markov Chain Search to solve the bipartite boolean quadratic programming problem
- <u>El Yafrani et al. (2018)</u> used Genetic Programming for the traveling thief problem
- <u>Choong, Wong, and Lim (2018)</u> used Reinforcement Learning to choose components of ILS based selection hyper-heuristics

Apprenticeship Learning / Learning by Demonstration Concept

P. Abbeel and A. Y. Ng, "Apprenticeship learning via inverse reinforcement learning,"

in Proc. of the ICML '04, 2004 [PDF]

B. D. Argall, S. Chernova, M. Veloso, B. Browning, "A survey of robot learning from demonstration". *Robotics and Autonomous*Systems. **57** (5): 469–483, 2009 [PDF]

http://www.calinon.ch/images/hoap2-xsens01.jpg

Can we automatically design a new selection hyper-heuristic by observing an expert hyper-heuristic in operation?

Equal Worsening

REJECT

Improving

ACCEPT

Apprenticeship Learning Framework

Problem Domain

Domain: Open Vehicle Routing Problem Low Level Heuristics

Parameter 'intensity of mutation' (IoM)

- LLH0 MU₀ swaps randomly selected two adjacent customers within a route
- LLH1 MU₁
- LLH7 MU₂
- LLH2 RC₀ selects a number of customers to remove from the solution based on their proximity to a given location.
- LLH3 RC₁

Parameter 'depth of search' (DoS)

- LLH4 HC₀ accepts the first improvement, repeatedly swapping the current city and the next nearest city to it
- LLH8 HC₁
- **LLH9** HC₂

Heuristic IDs	LLH0	LLH1	LLH2	LLH3	LLH4	LLH5	LLH6	LLH7
MAX-SAT	MU_{0}	MU_{1}	MU_2	$\mathrm{MU_{3}}$	$\mathrm{MU_4}$	$\overline{\mathrm{MU}_{5}}$	\mathbf{RC}_0	HC_{0}
Bin Packing	MU_{0}	RC_0	\mathbf{RC}_1	MU_{1}	HC_{0}	\mathbf{MU}_2	\mathbf{HC}_1	\mathbf{XO}_0
PS	HC_0	HC_1	HC_2	HC_3	\mathbf{HC}_4	RC_0	RC_1	\mathbf{RC}_2
PFS	MU_{0}	$\mathrm{MU_{1}}$	$\mathrm{MU_2}$	$\mathrm{MU_3}$	\mathbf{MU}_4	RC_0	RC_1	HC_{0}
TSP	MU_{0}	MU_{1}	$\mathrm{MU_2}$	$\mathrm{MU_{3}}$	\mathbf{MU}_4	\mathbf{RC}_0	HC_{0}	HC_1
VRP	MU_0	MU_1	RC_0	\mathbf{RC}_1	HC_0	XO_0	\mathbf{XO}_1	${f MU}_2$
Heuristic IDs	LLH8	LLH9	LLH10	LLH11	LLH12	LLH13	LLH14	
MAX-SAT	\mathbf{HC}_1	XO_0	XO_1					
PS	XO_0	XO_1	\mathbf{XO}_2	${ m MU}_0$				
PFS	HC_1	HC_2	\mathbf{HC}_3	XO_0	XO_1	XO_2	\mathbf{XO}_3	
		77.0	T/O	VO	VO			
TSP	\mathbf{HC}_2	XO_0	XO_1	XO_2	\mathbf{XO}_3			
TSP VRP	HC_2 HC_1	HC_2	XO_1	ΛO_2	\mathbf{AO}_3			

- Different ML algorithms deliver different performances
 - TDNN, Multilayer Perceptron, C4.5
- Hyper-parameter tuning is required
 - No. of neurons in the hidden layer is the most influential factor on the hyperheuristic performance in TDNN
 - Taguchi DoE: 24 hidden nodes, 0.07 learning rate, and 0.9 momentum
- ML generated selection hyper-heuristic performs significantly better than the expert (MCF-AM) on majority of the instances

R. Tyasnurita, E. Özcan and R. John, Learning Heuristic Selection using a Time Delay Neural Network for Open Vehicle Routing, Proc. of the 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1474-1481. [PDF]

Time Delay Neural Network Apprenticeship **Learning Using Multiple Experts for OVRP**

Apply Time Delay Neural Network on the collected data to generate classifiers

+ OVRP

Apprenticeship Learning for Open Vehicle Routing

- Time Delay Neural Net
 - Expert A: AdapHH
 - Expert B: MSHH
 - intensity of mutation = 0.4
 - depth of search = 0.8
 - n = 8
 - Generated ALHH
 - ALHH-Both
 - ALHH-AdapHH
 - ALHH-MSHH

OVRP Benchmark

S: Brandão (2004)

• L: Li et al. (2007)

VL: Li et al.(2005)

Instance ID	Customers	Vehicles	Vehicle capacity
S1	50	5	160
S2	75	10	140
S3	100	8	200
S4	150	12	200
S5	199	16	200
S6	50	5	160
S7	75	10	140
S8	100	8	200
S9	150	12	200
S10	199	16	200
S11	120	7	200
S12	100	10	200
S13	120	7	200
S14	100	10	200
L1	200	5	900
L2	240	9	550
L3	280	7	900
L4	320	10	700
L5	360	8	900
L6	400	9	900
L7	440	10	900
L8	480	10	1000
VL1	560	10	1200
VL2	600	15	900
VL3	640	10	1400
VL4	720	10	1500
VL5	760	21	900
VL6	800	11	1700
VL7	840	21	900
VL8	880	10	1800
VL9	960	10	2000
VL10	1040	10	2100
VL11	1120	10	2300
VL12	1200	10	2500

Performance of Classifiers and Low Level Heuristics

Class	Exact match ratio (%)	AUC
LLH0	98.25	0.781
LLH1	99.46	0.768
LLH2	91.58	0.864
LLH3	99.18	0.651
LLH4	75.99	0.743
LLH7	77.43	0.956
LLH8	64.32	0.805
LLH9	93.78	0.782

Algorithm	Local search	Mutation	Ruin-recreate
Standard			
TDNN-ALHH-Both	64%	27%	9%
AdapHH	75%	25%	0%
MSHH	61%	21%	18%
Very Large			
TDNN-ALHH-Both	66%	29%	5%
AdapHH	76%	24%	0%
MSHH	62%	25%	13%

LLH0 - MU₀, **LLH1** - MU₁, **LLH7** - MU₂, **LLH2** - RC₀, **LLH3** - RC₁, **LLH4** - HC₀, **LLH8** - HC₁, **LLH9** - HC₂

Experimental Results

- ALHH-Both is the top ranking approach (1.62)
- ALHH-MSHH is the second best (2.12)
- ALHH-Both performs significantly better than all, except ALHH-MSHH
- ALHH-AdapHH and ALHH-MSHH performs significantly better than AdapHH and MSHH
- AdapHH (4.50, no best performance)

Training & Testing

- '>': Algorithm 1 performs better than Algorithm 2 with a statistically significant difference in the performance within a confidence interval of 95% over 30 runs, and '<' indicates vice versa.
- Non-statistically significant differences in performance are denoted by '≈'.

Algorithm 1	Algorithm 2	>	<	≈	
Standard (train) to standard (test)					
TDNN-ALHH-Both	TDNN-ALHH-AdapHH	10	1	3	
TDNN-ALHH-Both	TDNN-ALHH-MSHH	10	1	3	
TDNN-ALHH-Both	AdapHH	11	1	2	
TDNN-ALHH-Both	MSHH	10	1	3	
TDNN-ALHH-AdapHH	AdapHH	11	0	3	
TDNN-ALHH-MSHH	MSHH	10	0	4	
Standard (train) to large (test)					
TDNN-ALHH-Both	TDNN-ALHH-AdapHH	5	0	3	
TDNN-ALHH-Both	TDNN-ALHH-MSHH	5	0	3	
TDNN-ALHH-Both	AdapHH	6	1	1	
TDNN-ALHH-Both	MSHH	6	0	2	
TDNN-ALHH-AdapHH	AdapHH	5	2	1	
TDNN-ALHH-MSHH	MSHH	5	1	2	
Standard (train) to very large (test)					
TDNN-ALHH-Both	TDNN-ALHH-AdapHH	5	1	6	
TDNN-ALHH-Both	TDNN-ALHH-MSHH	5	0	7	
TDNN-ALHH-Both	AdapHH	5	1	6	
TDNN-ALHH-Both	MSHH	5	0	7	
TDNN-ALHH-AdapHH	AdapHH	6	1	5	
TDNN-ALHH-MSHH	MSHH	6	0	6	
Large (train) to very large (test)					
TDNN-ALHH-Both	TDNN-ALHH-AdapHH	7	3	2	
TDNN-ALHH-Both	TDNN-ALHH-MSHH	7	1	4	
TDNN-ALHH-Both	AdapHH	7	0	5	
TDNN-ALHH-Both	MSHH	7	0	5	
TDNN-ALHH-AdapHH	AdapHH	7	1	4	
TDNN-ALHH-MSHH	MSHH	7	2	3	
Standard + Large (train) to very					
large (test)					
TDNN-ALHH-Both	TDNN-ALHH-AdapHH	7	1	4	
TDNN-ALHH-Both	TDNN-ALHH-MSHH	7	0	5	
TDNN-ALHH-Both	AdapHH	9	2	1	
TDNN-ALHH-Both	MSHH	9	1	2	
TDNN-ALHH-AdapHH	AdapHH	8	2	2	
TDNN-ALHH-MSHH	MSHH	8	1	3	

- HyFlex framework has been in use for hyper-heuristic research and benchmarking for more than a decade
 - Put search methods on a much more experimentally rigorous footing
 - Build an invaluable communal resource that is of benefit to both practitioners and researchers
- The standard mode of using hyper-heuristics "One-off with opaque domain barrier and no learning between instances" can be greatly extended without loss of domain independence
- The need for more flexible/modular tools with reusable components supporting information rich environments is growing

- A novel train-and-test approach to automated generation of selection hyperheuristics based on Apprenticeship Learning is investigated
 - ML can effectively find hidden patterns in the heuristic selection and move acceptance choices of the multiple experts
 - 'Student surpasses the teacher'
- There are still many issues/open questions to be explored:
 - Data collection
 - Feature engineering
 - Data balancing
 - Generalisation
 - Which ML method to use for what purpose
 - Mixing different ML approaches (parameter setting)
 - Explainability

Thank you.

Ender.Ozcan@nottingham.ac.uk

EWG DSO: EURO working group on Data Science meets Optimization goo.gl/6Fe1EX

University of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

http://www.cs.nott.ac.uk/~pszeo/