Answer All Questions, Total Marks: 20 Date/Time: 13-02-2018 / 9.30-10.30 AM

This is a question cum answer booklet. Answer need to be provided within the space given.

· Read the questions carefully and Answer all questions.

If any data found incomplete that could be assumed suitably and justification shall be furnished.

1. a) Sketch a Bar-Chart of room temperature strength (ie., tensile strength) values for various metals, ceramics, polymers and composite materials. (1 1/2 Marks)

Tende Strength:

Metale > Ceranics > Polymers > Composite
Material

b) List the following construction materials in the descending order of density (1/2 Mark)

A. Water

B. Brick

C. Concrete

D. Steel

Your Answer: Steel > Concrete > Brick > Water.

 Sketch the relationship between inter-atomic forces vs separation distance and mark how the Young's modulus is being calculated. (2 Marks)

3. Determine the indices for the directions shown in the following cubic unit sell. (2 Marks)

4. Determine the Miller indices for the planes shown below (2 Marks)

5. Determine the Miller indices for the planes shown below (2 Marks)

$$\infty$$
, -1, ∞
=> $(0, -1, 0)$
 $k'=0$ $k=0$
 $k'=-1$
 $k'=-1$
 $k'=0$
 $k=-(-1+0)$
=1

:. Miller indices: (0, T, 1,0)

$$\frac{1}{2}, -1, \infty$$

$$\frac{1}{2}, -1, 0$$

$$\frac{1}$$

Milly indices: (2770)

6. a) Write the basic expression for the Modulus of Resilience (1/2 Marks)

Ur =
$$\frac{6^2}{2E}$$
; Ur -> modulus of resilience
E -> true stregs
E -> Young's Modulus

b) The tensile σ-ε data for a few hypothetical materials (metals) are presented in the following table.

Material	Yield Strength (MPa)	Tensile Strength (MPa)	Strain at Fracture	Fracture Strength (MPa)	Elastic Modulus (GPa)
A	310	340	0.23	265	210
В	100	120	0.40	105	150
B	415	550	0.15	500	310
D	700	850	0.14	720	210
E	Fractures before yielding			650	350

Of these metals, a) which will experience the greatest percent reduction in area, b) Which is the strongest and c) Which is the stiffest (1 ½ Marks)

- a) · B -> enperiences greatest percent reduction in area · lowest yield strength (i.e 100 MPa) · Lowest tensile strength (i.e 120 MPa)
- b) D is the strongest as it has the highest value of 'Tenrile strength' (i.e., 850 MPa)

 c) *E is the striffest
 - c) *E is the stiffest * Has greatest value of 'Elastic Modulus' * Elastic Modulus = 350 Gra.

$$\Delta l = \frac{Pl}{AE} = \frac{Pl}{\pi dl} \Rightarrow d = \sqrt{\frac{4Pl}{\pi dl}}$$

$$= \frac{4 \times 11100 \times 500}{3.14 \times (0.38)(201 \times 10^{9})} = 89.881 \times 10^{-6}$$

d = 9.4 mm

3

Load		Length	
	N	zem:	
1	0	63.50	
2	1380	63.53	
3	2780	63.56	
4	5630	63.62	
4 56	7430	63.70	
6	8140	63.75	
7	. 9870	64.14	
8	12,850	65.41	
9	14,100	66.68	
10	14,340	67.95	
W	13,830	69.22	
12	12,500	70.49	
	Fract	ure	

- a) Plot the data as engineering stress vs engineering strain (2 ½ Marks)
- b) Compute 'E' (1/2 Mark)
- c) Determine yield strength at strain offset, 0.002 (1/2 Mark)
- d) Determine the tensile strength, (1/2 Mark)
- e) Compute modulus of resilience, (1/2 Mark)
- f) What is ductility, in percent elongation?, (1/2 Mark)
- g) Compute true stress for a particular value of engineering stress (1/2 Mark)
- h) Compute true strain for a particular value of engineering strain (1/2 Mark)

$$CS_A = (3.2 \times 19.1) \times 10^{-6} \text{ m}^2 = 61.12 \times 10^{-6} \text{ m}^2$$
.
 $\sigma = P/A_0$.

b)
$$E = \frac{15}{8} = \frac{2780 - 1380}{8} \times \frac{6353}{0.03} = 48506 \times 10^{6} = 48.5 \times 10^{9} \text{ fa}$$

= 48.5 GPa

e)
$$U_{\gamma} = \frac{\sigma^2}{2E} = \frac{(2780 - 1380)^2}{2(61 \cdot 12 \times 10^4)^2 \times 48.5 \times 10^9} = 5.4 \times 10^3 \text{ Pa} = 5.4 \text{ kPa}$$

$$(3)$$
 $O_{7} = O(1+E) = : O_{7,2} = O_{12}(1+E_{12}) = O_{12}(1+E_{12$

$$E_{T} = ln(1+E) : E_{T_{1}12} = ln(1+E_{12}) = ln(1+0.11)$$

= 0.104

d) Tenrile strength = 251.04 MPa.
(
$$67 = 6 (14 E) = 234.62 (1+0.07)$$

= 251.04 MPa

da

type

a for

y for

ave

froi