Problem 1

- a) Define when we say that a vector space W is a quotient of V modulo U.
- b) Recall the construction (given in class) of the vector space V/U, and the onto map $q:V\to V/U$, with kernel $\ker(q)=U$.
- c) Suppose T is a linear transformation between vector spaces V and W,

$$T: V \to W$$

write down the natural induced map

$$\tilde{T}: V/\ker(T) \to \operatorname{im}(T),$$

and show that it is an isomorphism.

- a) A space W is called a quotient space of V modulo U, denoted W = V/U, if there exists a surjective linear transformation $e: V \to W$ such that $\ker(e) = U$.
- b) For any $v \in V$, consider the left coset $v + U = \{v + u : u \in U\}$. Define $q : V \to V/U$ by $v \mapsto v + U$. Clearly q is surjective. Recall that $\tilde{v} \mapsto \tilde{v} + U = U$ if and only if $\tilde{v} \in U$. Then we have that $\ker(q)$ is precisely the set of all $\tilde{v} \in V$ such that $\tilde{v} + U = U$, which is exactly U. Thus, $q : V \to V/U$ is a surjective linear transformation with $\ker(q) = U$, so V/U is a quotient space of V modulo U.
- c) First we write down the natural induced map $\tilde{T}: V/\ker(T) \to \operatorname{im}(T)$ by $\tilde{v} + \ker(T) \mapsto T(\tilde{v})$. To show that this is well-defined, suppose $\tilde{v} + \ker(T) = \tilde{w} + \ker(T)$ for some $\tilde{v}, \tilde{w} \in V$. Then $\tilde{v} \tilde{w} \in \ker(T)$, so $T(\tilde{v} \tilde{w}) = 0$, and thus $T(\tilde{v}) = T(\tilde{w})$. Hence, \tilde{T} is well-defined.

Next we show that \tilde{T} is an isomorphism. First, we show that \tilde{T} is linear. For any $\tilde{v}, \tilde{w} \in V$ and $a, b \in \mathbb{F}$, we show that $\tilde{T}(a(\tilde{v} + \ker(T)) + b(\tilde{w} + \ker(T))) = a\tilde{T}(\tilde{v} + \ker(T)) + b\tilde{T}(\tilde{w} + \ker(T))$. Consider

$$\tilde{T}(a(\tilde{v} + \ker(T)) + b(\tilde{w} + \ker(T))) = \tilde{T}((a\tilde{v} + b\tilde{w}) + \ker(T)) = T(a\tilde{v} + b\tilde{w}) = aT(\tilde{v}) + bT(\tilde{w}) = a\tilde{T}(\tilde{v} + \ker(T)) + b\tilde{T}(\tilde{w} + \ker(T)).$$

Thus, \tilde{T} is linear.

Next, we show that \tilde{T} is surjective. For any $w \in \operatorname{im}(T)$, there exists some $v \in V$ such that T(v) = w. Then $\tilde{T}(v + \ker(T)) = T(v) = w$, so \tilde{T} is surjective.

Finally, we show that \tilde{T} is injective. Suppose $\tilde{T}(\tilde{v} + \ker(T)) = 0$ for some $\tilde{v} \in V$. Then $T(\tilde{v}) = 0$, so $\tilde{v} \in \ker(T)$, and thus $\tilde{v} + \ker(T) = \ker(T)$, the zero element of $V/\ker(T)$. Hence, \tilde{T} is injective.

Thus we have that T is a bijective linear transformation, and hence an isomorphism.

Note: In part (c), I believe that we could also use the First Isomorphism Theorem to show that \tilde{T} is an isomorphism, since we have that \tilde{T} is a linear transformation from $V/\ker(T)$ to $\operatorname{im}(T)$ with kernel $\{0\}$, so by the First Isomorphism Theorem, $V/\ker(T) \cong \operatorname{im}(T)$.

Problem 2

Basis. Let V be a vector space over \mathbb{F} , and $\mathscr{B} \subset V$.

- a) Complete the following definition:
 - **Definition.** We say that \mathcal{B} is a basis of V if ...
- b) Suppose V is finite dimensional. Write down the general facts we know about existence and cardinality of bases for V.
- c) Suppose V is finite-dimensional and U < V, is a subspace. Suppose \mathscr{B}_U is a basis for U. Complete it to a basis \mathscr{B} for V, and consider the set $\mathscr{C} = \mathscr{B} \setminus \mathscr{B}_U$. Show that the set

$$\mathscr{B}_{V/U} = \{q(v); v \in \mathscr{C}\},\$$

(where $q:V\to V/U$ is the quotient map) is a basis for the quotient space V/U constructed above.

- a) We say that \mathscr{B} is a basis of V if \mathscr{B} is linearly independent and spans V.
- b) From Linear Algebra 1, if V is finite dimensional, then V has a basis, and any two bases of V have the same cardinality. We call this cardinality the dimension of V, denoted $\dim(V)$.

c) Suppose V is finite-dimensional and U < V, is a subspace. Suppose \mathscr{B}_U is a basis for U. Complete it to a basis \mathscr{B} for V, and consider the set $\mathscr{C} = \mathscr{B} \setminus \mathscr{B}_U$. Show that the set

$$\mathscr{B}_{V/U} = \{q(v); v \in \mathscr{C}\},\$$

(where $q:V\to V/U$ is the quotient map) is a basis for the quotient space V/U constructed above.

Proof. First we show that $\mathscr{B}_{V/U}$ spans V/U. For any $\tilde{v} + U \in V/U$, since \mathscr{B} spans V, we can write $\tilde{v} = a_1b_1 + a_2b_2 + \cdots + a_nb_n$ for some $b_i \in \mathscr{B}$ and $a_i \in \mathbb{F}$. We can separate the b_i into those that are in \mathscr{B}_U and those that are in \mathscr{C} . Thus, we can write

$$\tilde{v} = c_1 u_1 + c_2 u_2 + \dots + c_m u_m + d_1 c_1' + d_2 c_2' + \dots + d_k c_k',$$

where $u_i \in \mathcal{B}_U$, $c'_i \in \mathcal{C}$, and $c_i, d_j \in \mathbb{F}$. Then

$$\tilde{v} + U = (d_1c'_1 + d_2c'_2 + \dots + d_kc'_k) + U = d_1(c'_1 + U) + d_2(c'_2 + U) + \dots + d_k(c'_k + U),$$

so $\tilde{v} + U$ is in the span of $\mathscr{B}_{V/U}$. Thus, $\mathscr{B}_{V/U}$ spans V/U.

Next we show that $\mathscr{B}_{V/U}$ is linearly independent. Suppose

$$a_1(q(c'_1)) + a_2(q(c'_2)) + \dots + a_k(q(c'_k)) = 0,$$

for some $c_i' \in \mathscr{C}$ and $a_i \in \mathbb{F}$. Then

$$q(a_1c_1' + a_2c_2' + \dots + a_kc_k') = 0,$$

so $a_1c'_1 + a_2c'_2 + \cdots + a_kc'_k \in U$. Since $c'_i \in \mathscr{C}$ and \mathscr{C} is linearly independent, we must have $a_i = 0$ for all i. Thus, $\mathscr{B}_{V/U}$ is linearly independent.

We have shown that $\mathscr{B}_{V/U}$ spans V/U and is linearly independent, so it is a basis for V/U.

Problem 3

Dual Space. Let V be a vector space over \mathbb{F} .

- a) Define the <u>dual space</u> of V. We denote the <u>dual space</u> by V^* , and call its elements functionals.
- b) Suppose V is finite dimensional and \mathscr{B} is a basis for V. For $v \in \mathscr{B}$ define a functional $\varphi_v \in V^*$ by the following values on every $u \in \mathscr{B}$,

$$\varphi_v(u) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

Show that $\mathscr{B}^* = \{\varphi_v : v \in \mathscr{B}\}$ is a basis for V^* (it is called the dual basis to \mathscr{B}). In particular, $\dim(V^*) = \dim(V)$.

c) Write down a natural isomorphism

$$\mathbb{F}_{\text{row}}^n \to (\mathbb{F}_{\text{col}}^n)^*$$
.

- a) According to the definition given in class, the dual space of V, denoted V^* , is $\operatorname{Hom}(V, \mathbb{F})$, the set of all linear transformations from V to \mathbb{F} .
- b) Proof. We show that $\mathscr{B}^* = \{\varphi_v : v \in \mathscr{B}\}\$ is a basis for V^* . First we show that \mathscr{B}^* spans V^* . For any $\psi \in V^*$, since \mathscr{B} is a basis for V, we can write any $x \in V$ as x = V

 $a_1b_1 + a_2b_2 + \cdots + a_nb_n$ for some $b_i \in \mathscr{B}$ and $a_i \in \mathbb{F}$. Then we have that

$$\psi(x) = \psi(a_1b_1 + a_2b_2 + \dots + a_nb_n) = a_1\psi(b_1) + a_2\psi(b_2) + \dots + a_n\psi(b_n).$$

Since $\psi \in V^*$, we can express $\psi(b_i)$ in terms of the dual basis elements:

$$\psi(b_i) = \varphi_{b_i}(b_i) = 1$$
 and $\psi(b_j) = 0$ for $j \neq i$.

Thus,

$$\psi(x) = a_i \varphi_{b_i}(b_i) = a_i.$$

This shows that \mathscr{B}^* spans V^* .

Next we show that $\dim(V^*) = \dim(V)$. Since \mathscr{B} is a basis for V, we have that $\dim(V) = |\mathscr{B}|$. Since \mathscr{B}^* is constructed by taking one functional φ_v for each $v \in \mathscr{B}$, we have that $|\mathscr{B}^*| = |\mathscr{B}|$. Thus, $\dim(V^*) = |\mathscr{B}^*| = |\mathscr{B}| = \dim(V)$.

c) The natural isomorphism $\Phi: \mathbb{F}_{row}^n \to (\mathbb{F}_{col}^n)^*$ is given by

$$\Phi((a_1, a_2, \dots, a_n))((x_1, x_2, \dots, x_n)^T) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n,$$

where $(a_1, a_2, \dots, a_n) \in \mathbb{F}_{row}^n$ and $(x_1, x_2, \dots, x_n)^T \in \mathbb{F}_{col}^n$. This map is linear, bijective, and thus an isomorphism.

Problem 4

Determinant. Denote $\mathbb{F}^2_{\text{col}}$ the vector space of column vectors of length two over a field \mathbb{F} . We assume that $-1 \neq 1$ in \mathbb{F} .

a) Complete the definition: The vector space $\Lambda(\mathbb{F}^2_{\text{col}})$, called the <u>determinant</u> of $\mathbb{F}^2_{\text{col}}$, is the collection of functions

$$\mathscr{A}: (\mathbb{F}^2_{\mathrm{col}}) \times (\mathbb{F}^2_{\mathrm{col}}) \to \mathbb{F},$$

that satisfies:

- 1. Multilinearity: Namely,
- 2. Skew-symmetry: Namely,
- b) Show that
 - 1. An element, $\mathscr{A} \in \Lambda(\mathbb{F}^2_{col})$, is completely determined by the value

$$\mathcal{A}((1,0),(0,1)).$$

- 2. Show that $\Lambda(\mathbb{F}^2_{col})$ is 1-dimensional.
- 3. Verify that the element $\mathscr{A}_1 \in \Lambda(\mathbb{F}^2_{\mathrm{col}})$ that satisfies

$$\mathcal{A}_1((1,0),(0,1)) = 1,$$

has the formula

$$\mathscr{A}_1((x,y),(x',y')) = xy' - x'y.$$

c) Consider the natural action $M[\mathscr{A}]$ of a matrix $M \in M_2(\mathbb{F})$ on an element $\mathscr{A} \in \Lambda(\mathbb{F}^2_{col})$, where $M(\mathscr{A})$ is given by

$$M[\mathscr{A}]((x,y),(x',y')) = \mathscr{A}((x,y)M,(x',y')M).$$

Compute a formula for the scalar $d(M) \in \mathbb{F}$, such that

$$M[\mathscr{A}] = d(M) \cdot \mathscr{A}.$$

Hint: Since $\dim(\Lambda(\mathbb{F}^2_{\operatorname{col}})) = 1$, the linear transformation on $\Lambda(\mathbb{F}^2_{\operatorname{col}})$ is given by $\mathscr{A} \mapsto M[\mathscr{A}]$ is just multiplication by a scalar d(M). For

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

this scalar can be computed by computing both sides of (1) in the following case

$$M[\mathscr{A}_1]((1,0),(0,1)) = d(M) \cdot \mathscr{A}_1((1,0),(0,1)),$$

where \mathcal{A}_1 is the function defined in the previous section.

a) Complete the definition: The vector space $\Lambda(\mathbb{F}^2_{\text{col}})$, called the <u>determinant</u> of $\mathbb{F}^2_{\text{col}}$, is the collection of functions

$$\mathscr{A}: (\mathbb{F}^2_{\mathrm{col}}) \times (\mathbb{F}^2_{\mathrm{col}}) \to \mathbb{F},$$

that satisfies:

1. Multilinearity: Namely, for all $u, v, w \in \mathbb{F}_{col}^2$ and all $c \in \mathbb{F}$,

$$\mathscr{A}((u+v),w) = \mathscr{A}(u,w) + \mathscr{A}(v,w),$$

$$\mathscr{A}(u,(v+w)) = \mathscr{A}(u,v) + \mathscr{A}(u,w),$$

$$\mathscr{A}((cu), v) = c \cdot \mathscr{A}(u, v),$$

$$\mathscr{A}(u,(cv)) = c \cdot \mathscr{A}(u,v).$$

2. Skew-symmetry: Namely, for all $u, v \in \mathbb{F}_{col}^2$,

$$\mathscr{A}(u,v) = -\mathscr{A}(v,u).$$

b) 1. Proof. Let $\mathscr{A} \in \Lambda(\mathbb{F}^2_{col})$. For any $(x,y),(x',y') \in \mathbb{F}^2_{col}$, we can write

$$(x,y) = x(1,0) + y(0,1),$$

$$(x', y') = x'(1, 0) + y'(0, 1).$$

Then by multilinearity, we have

$$\mathscr{A}((x,y),(x',y')) = \mathscr{A}(x(1,0) + y(0,1), x'(1,0) + y'(0,1)).$$

Expanding this using multilinearity, we get

$$= xx'\mathscr{A}((1,0),(1,0)) + xy'\mathscr{A}((1,0),(0,1)) + yx'\mathscr{A}((0,1),(1,0)) + yy'\mathscr{A}((0,1),(0,1)).$$

By skew-symmetry, we have $\mathscr{A}((1,0),(1,0))=0$ and $\mathscr{A}((0,1),(0,1))=0$. Also by skew-symmetry, we have $\mathscr{A}((0,1),(1,0))=-\mathscr{A}((1,0),(0,1))$. Thus,

$$\mathscr{A}((x,y),(x',y')) = xy'\mathscr{A}((1,0),(0,1)) - yx'\mathscr{A}((1,0),(0,1)) = (xy'-yx')\mathscr{A}((1,0),(0,1)).$$

This shows that \mathscr{A} is completely determined by the value $\mathscr{A}((1,0),(0,1))$.

- 2. Proof. From part (1), we have that any $\mathscr{A} \in \Lambda(\mathbb{F}^2_{\operatorname{col}})$ is completely determined by the value $\mathscr{A}((1,0),(0,1))$. Thus, we can define a linear transformation $\Phi: \Lambda(\mathbb{F}^2_{\operatorname{col}}) \to \mathbb{F}$ by $\Phi(\mathscr{A}) = \mathscr{A}((1,0),(0,1))$. This map is linear and surjective. The kernel of this map is the set of all \mathscr{A} such that $\mathscr{A}((1,0),(0,1)) = 0$. But from part (1), this means that \mathscr{A} is the zero map. Thus, the kernel is trivial, so Φ is injective. Hence, Φ is an isomorphism. Since \mathbb{F} is 1-dimensional, we have that $\Lambda(\mathbb{F}^2_{\operatorname{col}})$ is also 1-dimensional.
- 3. Proof. Let $\mathscr{A}_1 \in \Lambda(\mathbb{F}^2_{\operatorname{col}})$ be such that $\mathscr{A}_1((1,0),(0,1)) = 1$. For any $(x,y),(x',y') \in \mathbb{F}^2_{\operatorname{col}}$, we have

$$\mathscr{A}_{1}((x,y),(x',y')) = \mathscr{A}_{1}(x(1,0) + y(0,1), x'(1,0) + y'(0,1))$$

$$= xx'\mathscr{A}_{1}((1,0),(1,0)) + xy'\mathscr{A}_{1}((1,0),(0,1)) + yx'\mathscr{A}_{1}((0,1),(1,0)) + yy'\mathscr{A}_{1}((0,1),(0,1))$$

$$= xy' \cdot 1 + yx' \cdot (-1)$$

$$= xy' - yx'.$$

Thus, $\mathscr{A}_1((x, y), (x', y')) = xy' - yx'$.

c) We compute the formula for the scalar $d(M) \in \mathbb{F}$ such that

$$M[\mathscr{A}] = d(M) \cdot \mathscr{A}.$$

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

We compute both sides of the equation

$$M[\mathscr{A}_1]((1,0),(0,1)) = d(M) \cdot \mathscr{A}_1((1,0),(0,1)).$$

First, we compute the left side:

$$M[\mathscr{A}_1]((1,0),(0,1)) = \mathscr{A}_1((1,0)M,(0,1)M)$$

= $\mathscr{A}_1((a,c),(b,d))$
= $ad - bc$.

Next, we compute the right side:

$$d(M) \cdot \mathcal{A}_1((1,0),(0,1)) = d(M) \cdot 1 = d(M).$$

Equating both sides, we have

$$ad - bc = d(M)$$
.

Thus, the formula for the scalar d(M) is

$$d(M) = ad - bc,$$

which is the determinant of the matrix M.