Tokenisation for Transformers & Contextual Embeddings

Introduction to NLP

Rahul Mishra

IIIT-Hyderabad March 22, 2024

"Today is a beautiful day outside."

Instead of

- white-space segmentation
- single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts of words as well as whole words)

Frequently used words should not be split into smaller subwords

Rare words should be decomposed into meaningful subwords.

Word-based tokenization

Very large vocabularies

Large quantity of out-ofvocabulary tokens

Loss of meaning across very similar words

Character-based tokenization

Very long sequences

Less meaningful individual tokens

Three common algorithms:

- Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
- Unigram language modeling tokenization (Kudo, 2018)
- WordPiece (Schuster and Nakajima, 2012)

All have 2 parts:

- A token learner that takes a raw training corpus and induces a vocabulary (a set of tokens).
- A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Let vocabulary be the set of all individual characters

Repeat:

- Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
- Add a new merged symbol 'AB' to the vocabulary
- Replace every adjacent 'A' 'B' in the corpus with 'AB'.

Until k merges have been done.

BPE Token Learning Algo

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

```
V \leftarrow all unique characters in C # initial set of tokens is characters

for i = 1 to k do # merge tokens til k times

t_L, t_R \leftarrow Most frequent pair of adjacent tokens in C

t_{NEW} \leftarrow t_L + t_R # make new token by concatenating

V \leftarrow V + t_{NEW} # update the vocabulary

Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
```

Original (very fascinating) corpus:

low low low low lowest lowest newer newer newer newer newer newer newer wider wider new new new

Add end-of-word tokens, resulting in this vocabulary:

```
vocabulary
\_, d, e, i, l, n, o, r, s, t, w
```

corpus representation

```
5 low__
2 lowest__
6 newer__
3 wider__
2 new__
```

Merge e r to er

```
vocabulary
corpus
5 low_
                    \_, d, e, i, l, n, o, r, s, t, w, er, er\_
2 lowest_
6 newer_
3 wider_
2 new_
Merge n e to ne
                    vocabulary
corpus
5 1 o w _
                   \_, d, e, i, 1, n, o, r, s, t, w, er, er\_, ne
2 lowest_
   ne w er_
   w i d er
   ne w _
```

The next merges are:

BPE Token Segmenter

On the test data, run each merge learned from the training data:

- Greedily
- In the order we learned them
- (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.

Result:

- Test set "n e w e r _ " would be tokenized as a full word
- Test set "I o w e r _ " would be two tokens: "low er _ "

BPE Properties

Usually include frequent words

And frequent subwords

Which are often morphemes like -est or -er

A morpheme is the smallest meaning-bearing unit of a language

unlikeliest has 3 morphemes un-, likely, and -est

WordPiece and SentencePiece

$$P(tok_1, tok_2) \rightarrow$$
 Pair probability $P(tok_1)P(tok_2)$

Japanese

トークナイザーに ついて楽しく学ん でいただければ幸 いです

Chinese

我希望您在学习 分词器过程中度 过愉快的时光

How do you pretokenize such languages?

TagLM (Pre-ELMo) Peters et al. 2017

TagLM (Pre-ELMo) Peters et al. 2017

$$\mathbf{h}_{k,1} = [\overrightarrow{\mathbf{h}}_{k,1}; \overleftarrow{\mathbf{h}}_{k,1}; \mathbf{h}_k^{LM}].$$

ELMo: Embeddings from Language Models

Train a bidirectional LM

Aim at performant but not overly large LM:

- Use 2 biLSTM layers
- Use character CNN to build initial word representation (only)
 - 2048 char n-gram filters and 2 highway layers, 512 dim projection
- User 4096 dim hidden/cell LSTM states with 512 dim projections to next input
- Use a residual connection
- Tie parameters of token input and output (softmax) and tie these between forward and backward LMs

ELMo: Embeddings from Language Models

- ELMo learns task-specific combination of biLM representations
- This is an innovation that improves on just using top layer of LSTM stack

$$R_k = \{\mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} | j = 1, \dots, L\}$$
$$= \{\mathbf{h}_{k,j}^{LM} | j = 0, \dots, L\},$$

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}$$

- γ^{task} scales overall usefulness of ELMo to task;
- s^{task} are softmax-normalized mixture model weights

ELMo

ELMo	ELMo in BiLSTM	2018	92.22
TagLM Peters	LSTM BiLM in BiLSTM tagger	2017	91.93
Ma + Hovy	BiLSTM + char CNN + CRF layer	2016	91.21
Tagger Peters	BiLSTM + char CNN + CRF layer	2017	90.87
Ratinov + Roth	Categorical CRF+Wikipeda+word cls	2009	90.80
Finkel et al.	Categorical feature CRF	2005	86.86
IBM Florian	Linear/softmax/TBL/HMM ensemble, gazettes++	2003	88.76
Stanford	MEMM softmax markov model	2003	86.07

TASK	PREVIOUS SOTA		OUR ELMO + BASELINE BASELINE		INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

ELMo layers

The two biLSTM NLM layers have differentiated uses/meanings

- Lower layer is better for lower-level syntax, etc.
 - Part-of-speech tagging, syntactic dependencies, NER
- Higher layer is better for higher-level semantics
 - Sentiment, Semantic role labeling, question answering, SNLI

ULMfit

ULMfit

Jan 2018

Training:

1 GPU day

GPT

June 2018

Training

240 GPU days

BERT

Oct 2018

Training

256 TPU days

~320–560

GPU days

GPT-2

Feb 2019

Training

~2048 TPU v3

days according to

a reddit thread

BERT

Problem: Language models only use left context *or* right context, but language understanding is bidirectional.

Why are LMs unidirectional?

Reason 1: Directionality is needed to generate a well-formed probability distribution.

We don't care about this.

Reason 2: Words can "see themselves" in a bidirectional encoder.

Unidirectional context Build representation incrementally

Bidirectional context

Words can "see themselves"

BERT

Solution: Mask out k% of the input words, and then predict the masked words

They always use k = 15%

store gallon 个

the man went to the [MASK] to buy a [MASK] of milk

Too little masking: Too expensive to train

Too much masking: Not enough context

BERT

BERT Fine Tuning

 Simply learn a classifier built on the top layer for each task that you fine tune for

BERT Next Sentence Prediction

 To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Label = IsNextSentence
```

```
Sentence A = The man went to the store.

Sentence B = Penguins are flightless.

Label = NotNextSentence
```

BERT Sent Pair Encoding

Token embeddings are word pieces
Learned segmented embedding represents each sentence
Positional embedding is as for other Transformer architectures

