Minimalizacja funkcji na podstawie Tablic Karnaugh'a.

Minimalne wyrażenie w postaci alternatywnej normalnej (Postać Normalna Sumy) lub w postaci koniunkcyjnej normalnej (Postać Normalna Iloczynu) otrzymujemy wybierając najmniejszą ilość grup sąsiednich jedynek (sąsiednich zer) które w sumie obejmują wszystkie 1 (wszystkie 0) danej funkcji. Liczba jedynek (zer) musi być równa 2ⁿ (1, 2, 4, 8, 16, 32).

Wyrażenie to jest sumą iloczynów reprezentujących wybrane grupy jedynek (iloczynem sum reprezentujących wybrane grupy zer).

Przykład.

$\chi_3 \chi_4$						
X_1X_2	00	01	11	10		
00	0	1	1	0		
01	0	0	1	1		
11	0	0	0	0		
10	1	0	0	1	F1	

Wybranym jedynkom w tabeli Karnaugh'a odpowiadają poniższe iloczyny pełne:

$$\overline{\mathbf{X}_{1}}\overline{\mathbf{X}_{2}}\overline{\mathbf{X}_{3}}\mathbf{X}_{4}$$
, $\overline{\mathbf{X}_{1}}\overline{\mathbf{X}_{2}}\mathbf{X}_{3}\mathbf{X}_{4}$,

Można zauważyć, że dla sąsiednich jedynek wyrażenie przyjmie prostszą postać (wykorzystujemy tzw. regułę sklejania):

$$\overline{\mathbf{X}_{1}}\overline{\mathbf{X}_{2}}\overline{\mathbf{X}_{3}}\mathbf{X}_{4} + \overline{\mathbf{X}_{1}}\overline{\mathbf{X}_{2}}\mathbf{X}_{3}\mathbf{X}_{4} = \overline{\mathbf{X}_{1}}\overline{\mathbf{X}_{2}}\mathbf{X}_{4}(\overline{\mathbf{X}_{3}} + \mathbf{X}_{3}) = \overline{\mathbf{X}_{1}}\overline{\mathbf{X}_{2}}\mathbf{X}_{4}$$

$X_3 X_4$	1				
$X_1 X_2$	00	01	11	10	ı
00	0	1	1	0	
01	0	0	1	1	
11	0	0	0	0	
10	1	0	0	1	F1

$$F1 = \overline{X_1} \overline{X_2} X_4 + \overline{X_1} \overline{X_2} X_3 + \overline{X_1} \overline{X_2} X_4$$

Przykład.

$\chi_3 \chi_4$					
$X_3 X_4$ $X_1 X_2$	00	01	11	10	
00	0	0	1	1	
01	0	1	1	1	
11	1	1	1	0	
10	1	1	0	0	F2

$$F2 = \overline{X_1}X_3 + \overline{X_2}X_4 + \overline{X_1}\overline{X_3}$$

Jeśli w tabeli występują kreski oznacza to, że funkcja jest nieokreślona. Przy minimalizacji funkcji możemy "sklejać" również komórki z kreskami.

Przykład.

$X_3 X_2$	1				
X_1X_2	00	01	11	10	
00	1	•	1	1	
01	0	0	0	0	
11	1	-	0	0	
10	0	0	0	0	F3

$$F3 = \overline{X_1} \overline{X_2} + \overline{X_1} \overline{X_2} \overline{X_3}$$

Minimalizacja dla wyrażeń koniunkcyjnych przebiega podobnie, przy czym sklejamy grupy zer (lub zer i kresek).

Przykład.

$X_3 X_4$	1				
X_1X_2	00	01	11	10	ī
00	0	0	0	-	
01	1	1	1	1	
11	1	1	1	1	
10	-	1	1	0	F4

 $F4 = (X_2 + X_4) + (X_1 + X_2)$

Tworzenie wyrażeń normalnych na podstawie grup jedynek lub zer znajdywanych w tabelach Karnaugh'a jest w miarę szybkie, ale wymaga pewnej wprawy. Tabele Karnaugh'a dla funkcji o więcej niż 6 zmiennych są zbyt duże by można w nich było znajdować grupy sąsiednich jedynek (zer). Komplikacje wynikają z coraz bardziej zróżnicowanych definicji "sąsiedztwa" w coraz większych tabelach Karnaugh'a.

Rozwiązaniem jest zastosowanie algorytmu Quine'a-McCluskey'a. Daje on takie same wyniki jak metoda Karnaugh'a, ale jest w pełni sformalizowany i tym samym można go zaimplementować w postaci systemu komputerowego.