

Paralelização do algoritmo de Estimativa de Densidade (KDE) utilizando GPU/CUDA

Juan Emanuel Hipólito Valenzuela Raul Sena Ferreira Orientador: D. Sc. Marcelo Zamith

Sumário

- Motivação
- KDE (Kernel Density Estimation)
- Paralelização com CUDA/GPU
- Resultados Computacionais
- Trabalhos Futuros
- Bibliografia

Motivação

- Estatísticamente, alguns dados ou populações não possuem estruturas ou parâmetros característicos(não-paramétricos)
- Nesse caso, os dados precisam ser visualizados e/ou tratados de forma diferente dos dados convencionais
- Um algoritmo amplamente usado para este tipo de amostra é o KDE

- O algoritmo de Estimativa de Densidade pelo método Kernel (KDE) é um método não paramétrico de análise de dados.
- O estimador kernel pode ser pensado como uma generalização do histograma
- Complexidade O(n²k)
- A partir de um dado número de observações n, calculamos curvas de densidade delas em relação a distância de um valor central o

- Muito utilizado em:
 - Correção de ruídos em sinais elétricos
 - Análise estática de dados
 - Estimativa de densidade populacional
 - Estimativa de Densidade Geográfica de uma região

Comparison of the histogram (left) and kernel density estimate (right) constructed using the same data. The 6 individual kernels are the red dashed curves, the kernel density estimate the blue curves. The data points are the rug plot on the horizontal axis.

Algorithm 3 KDE Multivariante

```
1: for i \leftarrow 0 to n do
        soma\_kernel \leftarrow 0.0
 2:
        for j \leftarrow 0 to n do
 3:
             prod\_kernel \leftarrow 1.0
 4:
             for k \leftarrow 0 to xLen do
 5:
                 prod\_kernel \leftarrow prod\_kernel * K((x[i][k] - x[j][k])/h)/h
6:
             end for
 7:
             soma\_kernel \leftarrow soma\_kernel + prod\_kernel
8:
        end for
9:
        pdf[i] \leftarrow soma\_kernel/n
10:
11: end for
```


Paralelização com CUDA/GPU

- Quando o número de indivíduos é grande o tempo do algoritmo tende a crescer rapidamente.
- Por ser um problema altamente escalável, podemos tirar proveito da GPU para executar o algoritmo de forma paralelizada.

Paralelização com CUDA/GPU

- Utilizando o modelo de programação unificado CUDA (Compute Unified Device Architecture), criamos um programa Host, que irá gerenciar a troca de informações entre a GPU e o CPU.
- A GPU tem um grande número de processadores e milhares de threads em cada um deles, logo, a velocidade de execução do algoritmo aumenta drasticamente.

Resultados Computacionais

- Todos os resultados utilizando CUDA foram obtidos usando 1000 Threads por bloco
- Os dados utilizados no experimento foram as latitudes e longitudes convertidos a partir do CEP dos alunos matriculados na UFRRJ
- Os testes foram executados 3 vezes com exclusividade na máquina e depois foi extraído a média

Resultados Computacionais

Pontos(x,y)	Tempo Sequencial	Tempo MatLAB	Tempo CUDA
1000	0.181333s	0.126229s	0.020041s
2000	0.647333s	0.357517s	0.040032s
5000	4.045333s	1.192155s	0.188097s
10000	16.220666s	3.495502s	0.577605s
14027	31.317333s	6.275648s	1.033042s
30000	149,018333s	24.398795s	4.321454s

Resultados Computacionais

Мара

Gráfico

Contato

Buscar

Resultados Computacionais

Trabalhos Futuros

- Otimização do uso das GPUs
- Automatizar alguns parâmetros de entrada do algoritmo
- Testar com populações maiores
- Fazer ajustes no algoritmo para tentar diminuir ainda mais o tempo

Bibliografia

- Programming Massively Parallel Processors -A Hands-on Approach - Second Edition -David B. Kirk and Wen-mei W. Hwux'
- Epanechnikov, V.A. (1969). "Non-parametric estimation of a multivariate probability density". Theory of Probability and its Applications 14: 153–158.
- http://www.cin.ufpe.br/~fatc/AM/kernel.pdf

Perguntas ou Sugestões?

- Raul Sena Ferreira raulsenaferreira@gmail.com
- Juan Emanuel Hipólito Valenzuela juan.emanuel@outlook.com
- Marcelo Zamith
 zamith.marcelo@gmail.com
- Link da aplicação teste:

http://107.170.124.51/wsage/