Executable Calculational Specifications

Francisco Cháves Camilo Rocha

Escuela Colombiana de Ingeniería

10 Congreso Colombiano de Computación – 10CCC Bogotá, September 25, 2015

Motivation

The Calculational Style

Expressions

Justification

Quantifiers

Collections

The Calculational Package

Demo

Conclusion and Remarks

Agenda

Motivation

The Calculational Style

Expressions

Justification

Quantifiers

Collections

The Calculational Package

Demo

Conclusion and Remarks

The Calculational Style (DS)

- ► A semi-formal style of program verification and derivation
- Originated by Dijkstra and Hoare
- Consolidated by Dijkstra and Scholten

Common Uses

- ► Teaching logic and discrete mathematics
- Program verification and construction
- Symbolic manipulation

Common Uses

- Teaching logic and discrete mathematics
- ▶ Program verification and construction
- Symbolic manipulation
- Programming

Agenda

Motivation

The Calculational Style

Expressions

Justification

Quantifiers

Collections

The Calculational Package

Demo

Conclusion and Remarks

Expressions

In addition to usual mathematical operators and expressions, DS has special syntax for:

- Quantifiers
- Collections

The notation:

$$\sum_{i=i}^{k} e$$

in some cases could have ambiguities:

The notation:

$$\sum_{i=j}^{k} e$$

in some cases could have ambiguities:

► Scope:

$$\sum_{i=1}^{3} i + 1$$

means
$$(1+1)+(2+1)+(3+1)$$
 or $(1+2+3)+1$

Some ambiguities

▶ Range: the sum of prime numbers below *k*. Solution, relaxing with a predicate:

$$\sum_{\phi(k)} f(k)$$

Some ambiguities

▶ Range: the sum of prime numbers below k. Solution, relaxing with a predicate:

$$\sum_{\phi(k)} f(k)$$

but
$$\sum_{k \le i \le k} i \times k$$
 reduces to

Some ambiguities

▶ Range: the sum of prime numbers below *k*. Solution, relaxing with a predicate:

$$\sum_{\phi(k)} f(k)$$

but
$$\sum_{k \le i \le k} i \times k$$
 reduces to

$$\sum_{i=k} i \times k = \sum_{k=i} i \times k$$

the equal sign (=) is a predicate or bounds a variable?

DS notation:

$$(\Sigma \ \mathsf{bv} \mid \mathsf{range} : \mathsf{term})$$

Examples:

$$(\sum k \mid \phi(k) : f(k)) (\sum i \mid 1 \le i \le 3 : i^{2}) (\sum i \mid 0 \le i < n : a[i]) (\sum i, j \mid 0 \le i < j \le n : i + j)$$

DS Quantifier Generalization

$$(\oplus i \mid r : e)$$

where (\oplus, τ) is an Abelian monoid, i is a variable, r an optional predicate (True if not given) and $e \in \tau$ an expression

DS Quantifier Generalization

$$(\oplus i \mid r : e)$$

where (\oplus, τ) is an Abelian monoid, i is a variable, r an optional predicate (True if not given) and $e \in \tau$ an expression Examples:

$$(+i \mid 1 \le i \le 3 : i^2)$$

 $(*i \mid 1 \le i \le 3 : i^2)$
 $(\cup x \in S \mid :x)$

DS Quantifier Generalization

$$(\oplus i \mid r : e)$$

where (\oplus, τ) is an Abelian monoid, i is a variable, r an optional predicate (True if not given) and $e \in \tau$ an expression Examples:

$$(+i \mid 1 \le i \le 3 : i^2)$$

 $(*i \mid 1 \le i \le 3 : i^2)$
 $(\cup x \in S \mid :x)$

and also Universal and Existential quantification:

$$(\forall k \mid 0 \le k \le n : a[k] = 0)$$

 $(\exists k \mid 0 \le k \le n : a[k] = 0)$

DS Collections

Collections can be defined by extension:

- ► Sets: {1, 2, 3}
- ▶ Bags: $\{1, 2, 2, 3, 3, 3\}$
- \triangleright Sequences: [1, 2, 1, 3, 1, 3]

DS Collections

Collections can be defined by extension:

- ► Sets: {1,2,3}
- ▶ Bags: {[1, 2, 2, 3, 3, 3]}
- ► Sequences: [1, 2, 1, 3, 1, 3]

Collection comprehensions are defined similarly to quantification:

- ► Sets: $\{i \mid -3 \le i \le 3 : i^2\}$
- ▶ Bags: {| $i \mid -3 \le i \le 3 : i^2$ |}
- ► Sequences: $[i \mid -3 \le i \le 3 : i^2]$

Agenda

Motivation

The Calculational Style

Expressions

Justification Quantifiers

Collections

The Calculational Package

Demo

Conclusion and Remarks

The Calculational Package

Consider the following specification for computing the summation of values in *a*:

```
Precondition: 0 \le N
Postcondition: s = (\Sigma i \mid 0 \le i < N : a[i])
```

The Calculational Package

Consider the following specification for computing the summation of values in *a*:

```
Precondition: 0 \le N
Postcondition: s = (\Sigma i \mid 0 \le i < N : a[i])
```

Mixing with the Haskell syntax, this can be specified in *Calculational* introducing a function:

```
sumA :: (Num e) => Array Int e -> Int -> e sumA a n = [calc| (\Sigma i <- [0 .. n-1] | : a!i) |]
```

The Calculational Package

Consider the following specification for computing the summation of values in *a*:

```
Precondition: 0 \le N
Postcondition: s = (\Sigma i \mid 0 \le i < N : a[i])
```

Mixing with the Haskell syntax, this can be specified in *Calculational* introducing a function:

```
sumA :: (Num e) => Array Int e -> Int -> e

sumA a n = [calc | (\Sigma i <- [0 .. n-1] | : a!i) |]
```

using Haskell array indices function:

```
sumA :: (Ix i,Num e) => Array i e -> e sumA a = [calc| (\Sigma i <- indices a | : a ! i) |]
```

Demo

The code shown can be seen as a correct prototype for a more efficient solution.

Conclusion and Remarks

The Calculational tool offers:

➤ A specification can be made executable for a broad class of calculational expressions.

Conclusion and Remarks

The Calculational tool offers:

- A specification can be made executable for a broad class of calculational expressions.
- ► The syntax includes quantifiers (summation, universal, existential, etc.) and collections (sets, bags and lists).

Conclusion and Remarks

The Calculational tool offers:

- A specification can be made executable for a broad class of calculational expressions.
- ➤ The syntax includes quantifiers (summation, universal, existential, etc.) and collections (sets, bags and lists).
- ► The executable code could be used as a correct prototype for a more efficient solution.

Future Work

► A formal alternative for database querying.

Future Work

- ▶ A formal alternative for database querying.
- ▶ Derivation of algorithms introducing symbolic variables.

Future Work

- A formal alternative for database querying.
- ▶ Derivation of algorithms introducing symbolic variables.
- Implementations in other programming languages.

Thank You!

Francisco Chaves francisco.chaves@escuelaing.edu.co

Camilo Rocha camilo.rocha@escuelaing.edu.co