Produit scalaire 2/2

I – Orthogonalité

A – Vecteurs orthogonaux

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si \overrightarrow{u} . $\overrightarrow{v}=0$

B - Projection orthogonale

1. Définition

Soit une droite d et un point M du plan. Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M. (voir fig 1)

Figure 1: Schéma I - B - 1

2. Propriétés

• Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls du plan tels que $\overrightarrow{u} = \overrightarrow{OA}$ et $\overrightarrow{v} = \overrightarrow{OB}$. H est le projeté orthogonal du point B sur la droite (OA).On a donc :

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{OA}.\overrightarrow{OH}$$

(voir fig 2)

- L'ensemble des points M vérifiant l'égalité $\overrightarrow{MA}.\overrightarrow{MB} = 0$ est le cercle de diamètre[AB]. (voir fig 3)
- Un point M distinct de A et B appartient au cercle de diamètre [AB] si le triangle ABM est rectangle en M. (voir fig 3)

v f $\alpha = 90^{\circ}$ A

II – Dans un repère orthonormé

A – Propriété

• Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs de coordonnées respectives (x;y) et (x':y'). On a \overrightarrow{u} . $\overrightarrow{v}=xx'+yy'$

Figure 3: Schéma I - B - 2