Name of the Examination: B.E. Instrumentation & Electronics Engineering. 3rd Year 2nd Semester Examination, 2018

SUBJECT: PROCESS CONTROL-I

Time: Three hours Full Marks 100

Q1.

- I) a) Give the basic block diagram of an industrial process control system and explain.
- b) How many types of mathematical modeling are there in process control and describe their uses.
- c) Derive the state equations for a stirred tank heater.
- d) What is a feed forward control?
- e) Explain self regulatory system.

3+3+3+7+2+2

OR

Q1.

- II) a) Explain the basic requirement for developing a process plant.
- b) Explain MIMO system.
- c) Explain the process control elements (G₁₁, G12, G21, and G22) in the figure below.

Given: $A_1=1m^2$ $A_2=0.5m^2$ $R_1=0.5sec/m^2$ $R_2=2sec/m^2$ $R_3=1sec/m^2$

d) Explain degrees of freedom and find its value for a stirred tank heater.

4+3+8+2+3

Q2.

- 1) a) What do you mean by controller tuning.
- b) Explain ISE, IAE and ITAE.
- c) Explain process reaction curve method and find different types of optimally tuned parameters. 4+6+10

Q2.

- II) a) Describe Ziegler-Nichols ultimate methods and express the optimum tuned parameters.
- b) What are the performance criteria's for the selection and tuning of the controllers.
- c) For a unity feedback system, process T.F. is given by G(s) = 1/s(s+1)(s+5)The controller is in PID mode. Calculate the optimal values of controller parameters based on Z-N method of tuning. 8+6+6

Q3. Attempt any FOUR:

4x5

- a) Describe cavitation and flashing and describe the basic difference between them.
- b) Give the working principle of flapper nozzle system with diagram.
- c) Explain air-to-open and air-to-close valves with diagram.
- d) Explain pressure control valves.
- e) Sketch and discuss different inherent characteristics of control valve plugs.
- f) Explain globe valve and its different applications
- g) What do you mean by valve sizing and valve capacity?

Q4.

- I) a) Determine the response of the 1st order system with respect to ramp and impulse forcing functions mathematically.
- b) A unity feedback system is characterized by an open-loop transfer function, G(s) = K/s(s+10). The system has a damping ratio of 0.5. Determine the steady state gain and natural frequency of the closed loop system.
- c) Determine the stability of the system with closed loop transfer function $G(x)P(x) = 10\sqrt{3} + 2\sqrt{4} + 2\sqrt{3} + 2\sqrt{2} + 2\sqrt{3} + 2\sqrt{3$

 $C(s)/R(s) = 10/s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3$

10+4+6

OR

Q4.

- II) a) Explain in detail the basic addressing scheme of Programmable logic controller.
- b) Explain the single layer perceptron model. Differentiate it with multiple layers perceptron model.
- c) What are the basic activation functions used in ANN?
- d) Identify the logic gates realized in the following figure. Make a table of inputs and outputs and plot the values.

Q5.

-

I) a) Explain any discontinuous controller.

- b) What is offset?
- c) Why offset cannot be removed using proportional control action? But which control action offset can be eliminated?
- d) Draw a plot of the PI controller o/p for the given error plot given below: Assume $K_p=5$, $K_l=1s^{-1}$ and $P_l(0)=20\%$.

- e) Describe split range control. Under what circumstances is it recommended?
- f) What is selector control? Describe any one of the selector control with an example.

2+1+2+2+5+4+4

OR

Q5.

- II) a) Explain on-off controller.
- b) A liquid level control system linearly converts a displacement of 2-3 meters into 4-20 mA control signal. A relay serves as a two position controller to open or close an inlet valve. The relay closes at 12 mA and opens at 10mA. Find
 - i) The relation between the displacement and current
 - ii) The neutral zone in meters
- c) What is proportional band, explain with diagram.
- d) Explain cascade control with a block diagram and example.
- e) Draw a plot of the 3-mode (PID) controller output for the error curve given below.

Assume $K_p=5$, $K_1=0.7 \text{ s}^{-1}$, $K_D=0.5 \text{ s}$ and $P_1(0)=20\%$. **2+4+2+4+8**

Subject: PROCESS CONTROL-I		
L	Different parts of the same question should be answered together	Full Marks: 10
CO I [20]	Answer any one from (I) and (II) in this block	
	(II)	[3+3+3+7+2+2]
CO2 [20]	Answer any one from (I) and (II) in this block	[4+3+8+2+3]
		[4+6+10]
CO3 [20]	Answer any four(4) from seven(7) questions in this block:	[8+6+6] [4x5]
CO4 [20]	Answer any one from (I) and (II) in this block	
		[10+4+6]
CO5 20]	Apswer	[4+4+2+4+6]
	(11)	[2+1+2+2+5+4+4]
		2+4+2+4+8

COI: Describe and examine process dynamics of process control and develop mathematical model of a particular system (K2, K3,

CO2: Describe and analyse controller tuning based on performance criteria's (K3, K4, A1)

CO3: Characterize the detailed instrumentation for final control elements and categorise various valve parameters like valve sizing, to characteristics etc. (K3, K4, A2) CO3: Characterize the detailed instrumentation for final control elements and categorise various valve parameters like valve sizing, valve characteristics etc.(K3, K4, A2)
CO4: Explain and examine the dynamic behaviour of a control system and analyse the stability of closed loop control systems (K5,

^{205:} Differentiate between various control schemes and interpret their necessity (K3, K4, A3)