Homework #2

Eric Tao Math 235: Homework #2

September 27, 2022

2.1

Problem 2.2.38. Let $E \subseteq \mathbb{R}^d$ with $|E| < \infty$. Prove that the following statements are equivalent:

- (a) E is Lebesgue measurable.
- (b) For each $\epsilon > 0$, we can write $E = (S \cup A) \setminus B$ where S is a union of finitely many nonoverlapping boxes and $|A|_e$, $|B|_e < \epsilon$.

Solution. First, suppose E is Lebesgue measurable. Let $\epsilon > 0$ be given. Due to the measurability, we may find an open set U such that $|U \setminus E| < \epsilon$. But also, by Lemma 2.1.5 in Heil, since U is open, there exists countably many nonoverlapping cubes $\{Q_k\}$ such that $U = \cup Q_k$. Since $|E| < \infty$, this implies that our choice of $|U| < \infty$ as well, unless $\epsilon = \infty$. Then, since cubes are measurable, this implies that $|U| = |U| < \infty$. So, since this converges, we may choose k_0 such that $|U| = |U| = \epsilon$ such that $|U| = |U| = \epsilon$ such that $|U| = |U| = \epsilon$. Set $|U| = |U| = |U| = \epsilon$ such that $|U| = \epsilon$ such

Firstly, define $E = E_{1,k} = (S_k \cup A_k) \setminus B_k$ for $k \ge 1$ where $|A_k|_e, |B_k|_e < \frac{\epsilon}{2^{k+1}}$. We claim that $E = ((\cup_k S_k) \cup (\cap_k A_k)) \setminus (\cup_k B_k)$.

First, suppose $x \in E$. Then, for every k, we have that either that x is in every A_k , so $x \in \cap_k A_k$. If $x \notin A_{k_0}$ for some k_0 , then $x \in S_{k_0} \subseteq \cup_k S_k$ and $x \notin B_k$ for all k, so $x \notin (\cap_k B_k)$. So $E \subseteq ((\cup_k S_k) \cup (\cap_k A_k)) \setminus (\cap_k B_k)$. Now, suppose that we have an $x \in ((\cup_k S_k) \cup (\cap_k A_k)) \setminus (\cup_k B_k)$. In particular then, for each $E_k = (S_k \cup A_k) \setminus B_k$, we have that either $x \in A_k$ or, if not, $x \in S_k$. Further, $x \notin B_k$, as otherwise, $x \in \cup_k B_k$. Thus, we have that $E = E_1 = ((\cup_k S_k) \cup (\cap_k A_k)) \setminus (\cap_k B_k)$. We identify the following: $S_1 = \cup_k S_k$, $A_1 = \cap_k A_k$, $B_1 = \cup_k B_k$. We notice then that since $A_1 \subseteq A_k$ for all k, then $|A_k| < \frac{\epsilon}{2^{k+1}}$ then $|A_1|_e = 0$ and thus measurable. Further, we have that S_1 is measurable, as it is a countable union of measurable sets. Finally, we have that $|B_1|_e = |\cup_k B_k|_e \le \Sigma |B_k| < \Sigma \frac{\epsilon}{2^{k+1}} = \frac{\epsilon}{2}$.

Now, construct E_i in the same way, but instead, force that $|A_k|_e, |B_k|_e < \frac{\epsilon}{2^k+i}$. We notice that S_i is still measurable, and A_i is still a set of measure 0, but we have $|B_i| = \sum_k \frac{\epsilon}{2^k+i} = \frac{\epsilon}{2^i}$, and $E = E_i$ for all i. We now have a countable collection of E_i . Here, we enforce that $S_i \cup A_i = \emptyset$ as if not, we can always just take $\overline{A_i} = A_i \setminus S_i$, which will keep $|\overline{A_i}|_e = 0$ and keep S_i as a union of union of boxes. Further, we enforce that $A_i \cap B_i = \emptyset$ as, if not, we can always find $\overline{A_i} = A_i \setminus B_i$ and same for B_i , which will keep the upper bound on $|B_i|_e < \frac{\epsilon}{2^i}$. Then, we may rewrite $E_i = (S_i \cup A_i) \setminus B_i = (S_i \cup A_i) \cap B_i^c = (S_i \cap B_i^c) \cup (A_i \cap B_i^c) = (S_i \setminus B_i) \cup A_i$.

We claim from here, that we can write $E = (\cap_i S_i \setminus \cap_i B_i) \cup (\cup_i A_i)$. Suppose $x \in E$. Then, for every i we can write $x \in (S_i \setminus B_i) \cup A_i$. If $x \in A_i$ for any i, then we're done. Otherwise, we have that $x \in S_i$ for every i and $x \notin B_i$ for any i. Then $x \in (\cap_i S_i \setminus \cap_i B_i)$ and thus, $E \subseteq (\cap_i S_i \setminus \cap_i B_i) \cup (\cup_i A_i)$. Now, instead, suppose we have an element $x \in (\cap_i S_i \setminus \cap_i B_i) \cup (\cup_i A_i)$. If $x \in (\cup_i A_i)$, then for some $i_0, x \in A_{i_0}$, so then $x \in (S_{i_0} \setminus B_{i_0}) \cup A_{i_0} = E$. Now, suppose not. Then, $x \in (\cap_i S_i \setminus \cap_i B_i)$ which implies that for all $i, x \in S_i$ and $x \notin B_i$. But then, for any $i, x \in S_i \setminus B_i \subseteq (S_i \setminus B_i) \cup A_i = E$. So we have set equality. But, that means that since $\cap_i B_i \subseteq B_i$ for all i, then $|\cap_i B_i|_e \le |B_i|_e = \frac{\epsilon}{2^i}$ which implies that $|\cap_i B_i|_e = 0$. Then, we have

a presentation of E such that $\cap_i S_i$ is measurable, being a countable intersection of measurable sets, $\cap_i B_i$ is a set of outer measure 0 and thus measurable, and $\cup_i A_i$ is a countable union of measurable sets, so thus measurable. Since E lies within the algebra of measurable sets then, E itself is measurable.

Problem 2.2.39. Let E be a subset of \mathbb{R}^d such that $0 < |E|_e < \infty$. Given $0 < \alpha < 1$, prove that there exists a cube Q such that $|E \cap Q|_e \ge \alpha |Q|$.

Solution. Fix an $\alpha \in (0,1)$ and an $E \subseteq \mathbb{R}^d$. Choose $\epsilon < \frac{\alpha-1}{\alpha}|E|_e$. We claim that we may relax our conditions to being a box Q such that $|E \cap Q|_e \ge \alpha |Q|$, because if this is true for the box, we may refine our countable cover to find a cube by rearranging our boxes to be cubes. We may find a countable cover of E with boxes $\{Q_k\}$ such that $|E|_e \le \Sigma |Q_k| \le |E|_e + \epsilon$. Now, suppose, to the contrary, that $|E \cap Q_k|_e < \alpha |Q_k|$ for all k. Then, we have that since $E = \cup (E \cap Q_k)$, that $|E|_e \le |\cup (E \cap Q_k)|_e \le \Sigma |E \cap Q_k|_e \le \Sigma \alpha |Q_k|$. But, from our original statement, we have $\Sigma |Q_k| \le |E|_e + \epsilon \implies \Sigma \alpha |Q_k| \le \alpha |E|_e + \alpha \epsilon$, so then we have that $|E|_e \le \alpha |E|_e + \alpha \epsilon$. However, from our choice of ϵ , we have that $\alpha |E|_e + \alpha \le \alpha |E|_e + \alpha |E$

Problem 2.2.44. Let E be a measurable subset of \mathbb{R}^d such that $|E| < \infty$. Suppose that A and B are disjoint subsets of E such that $E = A \cup B$. Prove that:

A and B are measurable \iff $|E| = |A|_e + |B|_e$

Solution. Clearly, if A, B are measurable, then from our disjoint union and countable additivity, we have that |E| = |A| + |B|.

Now, suppose we have $|E| = |A|_e + |B|_e$. Since E is measurable, we may find a $U \supseteq E$ such that $|U \setminus E| < \epsilon/2$. Now, let $\{Q_{k_A}\}$ be a collection of boxes that cover A such that their interiors cover A, and that $\sum_{k=1}^{\infty} |Q_{k_A}| = |A|_e + \epsilon/4$. Choose $\{Q_{k_B}\}$ in the same way.

Now, consider the related collection of sets $\{U \cap Q_{k_A}^o\}$ and $\{U \cap Q_{k_B}^o\}$, where $Q_{k_A}^o$ denotes the interior of Q_{k_A} and same for Q_{k_B} . Since the interior of boxes is open, and U is open, each $U \cap Q_{k_A}^o$ and $U \cap Q_{k_B}^o$ is open. Further, since $A \subseteq E$ and $A \subseteq \bigcup_{k_A=1}^\infty Q_{k_A}^o$ by construction, we have that $U_B = \bigcup_{k_A=1}^\infty U \cap Q_{k_A}^o \supseteq A$ and the same occurs for $U_B = \bigcup_{k_B=1}^\infty U \cap Q_{k_B}^o \supseteq B$. Since U_A, U_B are unions of open sets, they are open. Then we consider the following. By Caratheodory's Criterion, we take $U_A \setminus A$ as our set, and E as our measurable set to yield:

$$|U_A \setminus A|_e = |(U_A \setminus A) \cap E|_e + |(U_A \setminus A) \setminus E|_e$$

But, we notice that $(U_A \setminus A) \cap E = U_A \cap A^c \cap (A \cup B) = U_A \cap B$, and $(U_A \setminus A) \setminus E = U_A \cap A^c \cap E^c = U_A \cap E^c = U_A \setminus E$. Now, due to our construction, we have that since $U_A \subset U$, that $(U_A \setminus E) \subseteq (U \setminus E)$. Further, because we have $|E| = |A|_e + |B|_e$, then, we can claim from our construction that $|U_A \cup U_B| + |U_A \cap U_B| = |U_A| + |U_B| \le |\sum_{k=1}^{\infty} |Q_{k_A}| + \sum_{k=1}^{\infty} |Q_{k_B}| = |A|_e + \epsilon/4 + |B|_e + \epsilon/4 = |E| + \epsilon$, but, by construction, we have $U_A \cup U_B \supseteq E$, so $|U_A \cup U_B|_e \ge |E|$, so $|U_A \cap U_B| \le \epsilon/2$. But, since $B \subseteq U_B$, we have then that $|U_A \cap B| \le |U_A \cap U_B| \le \epsilon/2$.

Thus, we have that:

$$|U_A \setminus A|_e = |U_A \cap B|_e + |U_A \setminus E|_e \le |U_A \cap U_B|_e + |U \setminus E|_e \le \epsilon/2 + \epsilon/2 = \epsilon$$

Thus, A is Lebesgue measurable, and B follows with the same argument, switching the labels.

Problem 2.2.50. Let X be a set, and let Σ be the collection of all $E \subseteq X$ such that at least one of E or $X \setminus E$ is countable. Prove that Σ is a σ -algebra on X.

Solution. Here, we check that Σ is non-empty, that it is closed under complements in X, and that it is closed under countable unions.

Clearly, Σ is non-empty, as \emptyset is countable, vacuously. Then, $\emptyset, X \in \Sigma$.

Further, by construction, we can see that Σ is closed under complements. Suppose $E \in \Sigma$. Then, consider $E^c = X \setminus E$. Because $E \in \Sigma$, if $X \setminus E$ is countable, then we're done. Otherwise, suppose $X \setminus E$ is not countable, and E is countable. Well, by deMorgan's Laws, we have that: $X \setminus (X \setminus E) = X \cap (X \setminus E)^c = X \cap (X \cap E^c)^c = X \cap (X^c \cup E) = X \cap E = E$, which is countable. Then, E^c is countable.

Now, suppose we have $\bigcup_{k=1}^{\infty} E_k$, with $E_i \in \Sigma$ for all $i \in \mathbb{N}$. If each E_i is countable, then we're done, since a countable union of countable sets is countable. Else, suppose E_n is uncountable for some n. Then, because $E_n \in \Sigma$, we have that E_n^c must be countable. Consider, by deMorgan's Laws, $(\bigcup_{k=1}^{\infty} E_k)^c = \bigcap_{k=1}^{\infty} E_k^c$. In particular, we have then that $\bigcap_{k=1}^{\infty} E_k^c \subseteq E_n^c$, and a subset of a countable set is countable. Thus, Σ is closed under countable unions.

Thus, such a Σ is a σ -algebra.

2.2

Problem 2.3.17. Assume that $E \subseteq \mathbb{R}^d$ is measurable, with $0 < |E| < \infty$, and $A_n \subseteq E$ are measurable sets such that $|A_n| \to |E|$ as $n \to \infty$. Prove that there exists a subsequence $\{A_{n_k}\}_{k \in \mathbb{N}}$ such that $|\cap A_{n_k}| > 0$. Show by example that this may fail if $|E| = \infty$.

Solution. Arbitrarily, choose A_{n_1} as $A_i: |A_i| > 0.9|E|$. Now, choose A_{n_2} such that $|A_{n_2}| \ge 0.99|E|$ which we can do, because $|A_n| \to |E|$ as $n \to \infty$. We notice that because A_{n_1}, A_{n_2} are measurable, so are their intersection. From 2.2.32 in homework #1, since A_i are measurable for all i, we have that $|A_{n_1}| + |A_{n_2}| = |A_{n_1} \cup A_{n_2}| + |A_{n_1} \cap A_{n_2}|$. But because all of these have finite measure, and because we chose $|A_{n_2}| + |A_{n_1}| \ge |E|$, this implies that $|A_{n_1} \cap A_{n_2}| > 0$. In particular, we have that $|A_{n_1} \cap A_{n_2}| \ge |A_{n_1}| + |A_{n_2}| - |E| \ge (0.9 + 0.99 - 1)|E| = 0.89|E| = (1 - \sum_{n=1}^2 10^{-n})|E|$. Iteratively, we can continue this process at each step, taking $|A_{n_{m+1}}| \ge (1 - 10^{-n_{m+1}})|E|$, which we can always do due to the convergence. But then, we have that $|\bigcap_{k=1}^m A_{n_k} \cap A_{n_{m+1}}| \ge |\bigcap_{k=1}^m A_{n_k}| + |A_{n_{m+1}}| - |E| \ge (1 - \sum_{n=1}^m 10^{-n})|E| + (1 - 10^{-(m+1)})|E| - |E| = (1 - \sum_{n=1}^m 10^{-n})|E|$.

Now, we have a sequence of measurable sets $\{\bigcap_{i=1}^k A_{n_k}\}_{k\in\mathbb{N}}$, and further, a decreasing set with $A_{n_1}\supseteq A_{n_1}\cap A_{n_2}\supseteq\ldots\supseteq\bigcap_{i=1}^k A_{n_k}\supseteq\ldots$ all with finite measure. Then, we apply continuity from above to find that $|\bigcap_{i=1}^\infty A_{n_i}|=|\bigcap_{i=1}^\infty\bigcap_{k=1}^k A_{n_k}|=\lim_{j\to\infty}|\bigcap_{k=1}^j A_{n_k}|$. But, we have by construction that $|\bigcap_{k=1}^j A_{n_k}|=(1-\sum_{n=1}^j 10^{-n})|E|$. Taking the limit of that, we find then that $\lim_{j\to\infty}|\bigcap_{k=1}^j A_{n_k}|=\lim_{j\to\infty}(1-\sum_{n=1}^j 10^{-n})|E|=8/9|E|>0$.

Now, take d=2, and let $\{p_k\}$ be an enumeration of the prime numbers. Define $E=\cup_k\{(x,y):p_k< x< p_{k+1}\}$. This is measurable because this is a countable union of open sets, and has infinite measure because it is unbounded in the y-direction. Now, consider $A_i=\{(x,y):p_i< x< p_{i+1}\}$. This is also measurable, an open set, contained within E, and $|A_i|=|E|=\infty$ for all i. However, by construction, $A_i\cap A_j=\emptyset$ for all $i\neq j$, so there cannot exist a subsequence with intersection with postiive measure.

Problem 2.3.19. Let E be a measurable subset of \mathbb{R}^d , and set $f(t) = |E \cap B_t(0)|$ for t > 0. Prove the following statements:

- (a) f is monotone increasing and continuous on $(0, \infty)$
- (b) $\lim_{t\to 0^+} f(t) = 0$
- (c) $\lim_{t\to\infty} f(t) = |E|$
- (d) If $|E| < \infty$, then f is uniformly continuous on $(0, \infty)$.

Solution. (a)

Firstly, we claim that f is monotone increasing. Take real numbers $t_1 > t_0$ where $t_0, t_1 > 0$. Suppose $x \in E \cap B_{t_0}(0)$. Then, $x \in E$ and $x \in B_{t_0}(0)$. Since $t_1 > t_0$, $B_{t_0}(0) \subseteq B_{t_1}(0)$. Then, $x \in B_{t_1}(0)$ and thus, $x \in E \cap B_{t_1}(0)$. Since the choice of x was arbitrary, we have that $E \cap B_{t_0}(0) \subseteq E \cap B_{t_1}(0)$, and by the monotonicity of the Lebesgue measure, this implies that $|E \cap B_{t_0}(0)| \leq |E \cap B_{t_1}(0)|$. Since the choice of t_0, t_1 was arbitrary other than $t_1 > t_0$, this is true for every $t_1 > t_0$, and thus f is monotone increasing.

Now, claim that this is continuous. From Theorem 2.3.15, we have that if L is a linear transformation $L: \mathbb{R}^d \to \mathbb{R}^d$, and E a measurable set, then $|L(E)| = |\det(L)||E|$. Then, since rI for r a real postiive number, I the identity matrix maps the unit ball centered on the origin to the ball with radius r centered on the origin, and $\det(rI) = r^d$, we have that $|B_{t_0}(0)| = t_0^n |B_1)(0)|$. Consider f(x) - f(y) and, wlog, choose $x \not\in y$. Then we have $f(x) - f(y) = |E \cap B_x(0)| - |E \cap B_y(0)|$. Due to measures being positive, the worst this could be would be if $|E \cap B_y(0)| = 0$. But, in that case, since $B_y(0) \subseteq B_x(0)$, we would have $|E \cap B_x(0)| - |E \cap B_y(0)| \le |E \cap (B_x(0) \setminus B_y(0))| \le |B_x(0) \setminus B_y(0)| = |B_x(0)| - |B_y(0)| = x^d |B_1(0)| - y^d |B_1(0)|$. But, we already know that polynomials are continuous, so we know that for any $\epsilon > 0$, we can choose $\delta > 0$ such that $d(x,y) \implies |x^d - y^d| |B_1(0)| < \epsilon$. Thus, f is continuous.

(b)

To prove this, we want to prove a related claim: $\lim_{t\to 0} B_t(0) = \{0\}.$

Let $\epsilon > 0$ be given. Then, we choose $\delta = \epsilon$. Here, we recall quickly that the defintion of $B_t(0) = \{x \in \mathbb{R}^d : ||x|| = d(x,0) \le t\}$, where we use ||x|| to denote the norm of x. Let $x_t \in B_t(0)$ such that $0 < t < \delta$. Well, $d(x_t,0) = ||x_t|| \le t < \delta = \epsilon$. Then, by problem 1.1.23's definition, we have that $x_t \to 0$ as $t \to 0$. Since the choice of x_t was arbitrary, this implies that $\lim_{t\to 0} B_t(0) = \{0\}$.

Then, we have that, since E is constant with respect to t, $\lim_{t\to 0^+} f(t) = \lim_{t\to 0^+} |E\cap B_t(0)| = |E\cap \{0\}| \le |\{0\}|$. This is a countable set, so $|\{0\}| = 0$, so $\lim_{t\to 0^+} f(t) = 0$. (c)

In a similar vein to (b), we will prove the related claim: $\lim_{t\to\infty} B_t(0) = \mathbb{R}^d$. Here, we just need to show that for any $x \in \mathbb{R}^d$, there exists a t_0 such that $x \in B_{t_1}(0)$ when $t_1 > t_0$. But this is easy - just choose $t_0 = ||x||$. Then, by construction, $x \in B_{t_1}(0)$ for $t_1 > t_0$.

Then, in the same fashion, because E is independent of t, we have that $\lim_{t\to\infty} f(t) = \lim_{t\to\infty} |E\cap B_t(0)| = |E\cap (\lim_{t\to\infty} B_t(0))| = |E\cap \mathbb{R}^d| = |E|$.

Essentially, we have a monotone, continous, bounded function. So, let $\epsilon > 0$ be given. If |E| = 0, then we're done, as f(t) is identically zero. Else, because the function is monotone, there exists t_0 such that $|E| > f(t_1) > (|E| - \epsilon)$ for all $t_1 > t_0$. This implies then, that for $t_2, t_3 > t_0$, that $|f(t_3) - f(t_2)| \le (|E| - (|E| - \epsilon)) = \epsilon$, irrespective of the point on the interval (t_0, ∞) . Now, consider the related function on $[0, t_0]$, \overline{f} which agrees with f on $(0, t_0]$ and attains 0 at t = 0. By part (a) combined with part (b), this function is continous. Moreover, because this is a continous function on a compact set, it is uniformly continuous on the entirety of the compact set. Then, this implies that for our ϵ , there exists a δ such that $d(x,y) < \delta \implies d(\overline{f}(x),\overline{f}(y)) < \epsilon$. But, because $\overline{f} = f$ on $(0,t_0)$, this δ works for f on $(0,t_0]$ as well. Since δ exists, and is independent of a point in $(0,\infty)$ that we are checking continuity at, f is uniformly continuous.

2.3

Problem 2.4.8. (a) Prove that continuity from below holds for exterior Lebesgue measure. That is, if $E_1 \subseteq E_2 \subseteq ...$ is any nested increasing sequence of subsets of \mathbb{R}^d , then $|\cup E_k|_e = \lim_{k \to \infty} |E_k|_e$.

(b) Show that there exists sets $E_1 \supseteq E_2 \supseteq ...$ in $\mathbb R$ such that $|E_k|_e < \infty$ for every k, and that:

$$|\cap_{k=1}^{\infty} E_k|_e < \lim_{k \to \infty} |E_k|_e$$

Solution. (a)

First, we note that due to the monotonicity of the outer measure, we have that $E_i \subseteq \bigcup_{k=1}^{\infty} E_i \Longrightarrow |E_i|_e \le |\bigcup_{k=1}^{\infty} E_i|_e$. Now, assume that $\lim k \to \infty |E_k|_e = \infty$. Then, due to monotonicity, we have that $|\bigcup_{k=1}^{\infty} E_i|_e = \infty$, as otherwise, if it were bounded, we could find a $|E_i|_e \ge |\bigcup_{k=1}^{\infty} E_i|_e$. More generally, due to monotonicity, we already will have that $\lim_{k\to\infty} |E_k|_e \le |\bigcup_{k=1}^{\infty} E_i|_e$.

Now, suppose $\lim k \to \infty |E_k|_e$ is finite. Let $\epsilon > 0$ be given. For each E_i , we may find an open set $U_i \supseteq E_i$ such that $|E_i| \le |U_i| \le |E_i| + \epsilon$. Construct the related sequence of sets $V_k \cup_{i=k}^\infty U_k$. By construction, we have that these sets are nested $V_1 \subseteq V_2 \subseteq \ldots$. Consider the union over all $k \cup_k V_k$. By the construction of the U_i , since $E_i \subseteq E_j$ for j > i, then, $E_i \subseteq U_i$ for all j > i, and thus $E_i \subseteq V_i \subseteq U_i$ for all i, it follows that $\cup E_k \subseteq \cup V_k$. Then, we have that, via continuity from below, that $|\cup E_k| \le |\cup V_k| = \lim_{k \to \infty} |V_k|$. But, from our construction, we also have that for each i, $|E_i| \le |V_i| \le |U_i| \le |E_i| + \epsilon$, and thus $\lim_{k \to \infty} |V_k| \le \lim_{k \to \infty} |E_k| + \epsilon$. Then, we have that:

$$|\cup E_k| \leq |\cup V_k| = \lim_{k \to \infty} |V_k| \leq \lim_{k \to \infty} |E_k| + \epsilon$$

Since ϵ can be taken to be arbitrarily small, this now implies that $|\cup E_k| = \lim_{k \to \infty} |E_k|$, as desired. (b)

Take the set constructed in Heil for the proof of Theorem 2.4.5. That is, define the set M as such: Start with the interval [0,1] and define the equivalence relation $x \sim y = \{x = y + q : q \in \mathbb{Q}\}$. Consider the equivalence classes of $[0,1]/\sim$. Construct M by applying the axiom of choice, and selecting one element from each equivalence class. Continue and construct the collection $\{M_k\}$ where we take $\{q_k\}$ as an enumeration of the rationals, and we define $M_k = (M+q_k)/[0,1]$, that is, modulo the interval [0,1], so that each $M_k \subseteq [0,1]$. We notice that M is in our collection, because 0 is rational. Because equivalence classes partition a set, we are guaranteed that each M_k is disjoint, and that $\cup M_k = [0,1]$.

Now, consider the following sequence of sets. Define $E_1 = [0,1]$, and define $E_i = E_1 \setminus \bigcup_{k=2}^i M_{k-1}$ for $i \geq 2$, where we just assume the enumeration of the M_k starts at k = 1.

Here, we go off to the side and prove a result from Heil: 2.2.43(d). Define the inner Lebesgue measure of a set $A \subseteq \mathbb{R}^d$ to be $|A|_i = \sup\{|F|: F \text{ is closed and } F \subseteq A\}$. If E is Lebesgue measurable, and $A \subseteq E$, then $|E| = |A|_i + |E \setminus A|_e$. Because E is Lebesgue measurable, we may take a $U \supseteq E$ such that $|U \setminus E| < \epsilon$. Take any closed set $F \subseteq A$. We notice that $U \setminus F$ is open, because $U \cap F^c$ is an intersection of open sets. Moreover, it is a cover of $E \setminus A$ by construction. So, we have that $|U| = |E| + |U \setminus E| = |F| + |U \setminus F|$, where we have equality because $F, U \setminus F$ are measurable. Now, take any sequence of F_k such that $|A|_i leq|F_k|+1/k$, which we may do because the inner measure is a supremum. Then, we note for each F_k , $(U \setminus F_k)$ is a sequence of sets such that these are open, and converge to $|U \setminus A|_e$. Then, we have that $|E| + |U \setminus E| = |A|_i + |U \setminus A|_e$. Now, since the choice of U is arbitrary, we can actually shrink U such that $|U \setminus E| \to 0$, and $|U \setminus A|_e \to |E \setminus A|_e$, because $|U \setminus A| \le |E \setminus A| + |U \setminus E|$, and $|U \setminus E| < \epsilon$. Then, we find that $|E| = |A|_i + |E \setminus A|_e$.

Now, consider the inner Lebesgue measure. Clearly, we have that it is translation invariant, as the Lebesgue measure of a closed set is translation invariant. Further, we also have monotonicity from the monotonicity of the Lebesgue measure, as well as subadditivity. (that is, suppose we have $A \cup B$, and $F_A \subseteq A$, $F_B \subseteq B$ with F_A , F_B closed. Then, $F_A \cup F_B$ is closed, and $|F_A \cup F_B| \le |F_A| + |F_B|$ since they need not be disjoint. Since this is true for any F_A , F_B , this implies that $|F_A \cup F_B|_i \le |F_A|_i + |F_B|_i$.)

Then, by the same argument that shows M as non-measurable in Heil, we can claim that because $[0,1] = \overline{[0,1]}$, the closure, that [0,1] has inner measure 1, and that $|M|_i = 0$ because otherwise, we have a countable sum of inner measures of M as M_k are just translations.

Now, consider the outer measure of each E_i . $E_1 = [0,1]$. From what we proved about the inner measure, we have that $|[0,1]| = |\cup_{k=2}^i M_{k-1}|_i + |[0,1] \setminus \bigcup_{k=2}^i M_{k-1}|_e \implies |E_i|_e = |[0,1] \setminus \bigcup_{k=2}^i M_{k-1}|_e = |[0,1]| = 1$. So, we have a sequence of sets, with outer measure identically 1, so then we have that $\lim_{k \to \infty} |E_k|_e = 1$. However, we know that $\cap E_k = \emptyset$ because since the M_k partition [0,1], for every $x \in [0,1]$, $x \in M_{k_0}$ for exactly one k_0 . But then, by construction, this means that $x \in \bigcup_{k=2}^i M_{k-1}$ for $i > k_0$, so $x \notin E_i$ for any $i > k_0$. Since the choice of x was arbitrary, this is true for all x, and thus $\cap E_k = \emptyset \implies |\cap E_k|_e = 0 < \lim_{k \to \infty} |E_k|_e = 1$.

Problem 2.4.10. Given any integer d>0, show that there exists a set $N\subseteq\mathbb{R}^d$ that is not Lebesgue

measurable.

Solution. We use the same construction and argument in Heil, and extend to multiple dimensions.

Fix a dimension d. Consider the rationals in the unit box $\Pi_{i=1}^d[0,1]\cap\mathbb{Q}^d$. We define the equivalence relationship $x\sim y\iff x-y\in\mathbb{Q}^d$. This is an equivalence relation because it is reflexive ($x-x=0\in\mathbb{Q}^d$), symmetric (if $x-y\in\mathbb{Q}^d$, then $-(x-y)=y-x\in\mathbb{Q}^d$ by being a ring) and transitive (if $x-y\in\mathbb{Q}^d$ and $y-z\in\mathbb{Q}^d$, then $x-z=x-y+y-z=(x-y)+(y-z)\in\mathbb{Q}^d$ due to \mathbb{Q}^d being a ring). Then, the equivalence classes partition $[0,1]^d$ by virtue of being an equivalence relationship. Using the axiom of choice, construct a set M such that M has one representative from each (uncountably many) equivalence class.

Suppose M, and actually, all sets are measurable, under the Lebesgue measure μ , which we note to have the following properties for measurable sets:

- (a) $\mu([0,1]^d) = 1$
- (b) If $\{E_i\}$ is a countable collection of disjoint measurable subsets of \mathbb{R}^d , then $\mu(\cup E_i) = \Sigma \mu(E_i)$
- (c) $\mu(E+h) = \mu(E)$ for every $E \subseteq \mathbb{R}^d$ and for any $h \in \mathbb{R}^d$.

Take an enumeration of $\mathbb{Q}^d \cap [-1,1]^d$, and call it $\{q_k\}$. This should exist because d is finite, countable, and \mathbb{Q} is countable, so has cardinality of at most $\mathbb{N} \times \mathbb{N}$, which is countable. Consider the sets $M_k = M + q_k$. These sets must be disjoint, because, suppose not, that is $x \in M_i \cap M_j$. Then, $x = [x] + q_i = [x'] + q_j$, for some equivalence classes [x], [x']. But then, we have that $[x] = [x'] + (q_j - q_i)$, with $q_j - q_i$ rational. But, then [x], [x'] differ by a rational, they are the same equivalence class then, which implies x = x' as we only pick one element from each equivalence class, which implies that $q_j = q_i$.

Consider the union of all such M_k , $\bigcup_{k=1}^{\infty} M_k$. This is a countable union of disjoint subsets of \mathbb{R}^d . Further, since $q_k \in [-1,1]^d$, we have that each $M_k \subseteq [-1,2]^d$. But also, because M contains one element from every equivalence relation, we hit with any rational in $\mathbb{Q}^d \cap [-1,1]^d$, and every element of $[0,1]^d$ belongs to some equivalence class, $[0,1]^d \subseteq \cup M_k$.

We notice by (a), that we have $\mu([0,1]^d) = 1$. By using the translations and countable additivity, we also have that $\mu([-1,2]^d) = 3^d$.

Then, using the monotonicity of the Lebesgue measure with our set inclusions, we have that:

$$1 = \mu([0,1]^d) \le \mu(\bigcup_{k=1}^{\infty} M_k) \le \mu([-1,2]^d) = 3^d$$

However, by the definition of M_k , (b), and (c), we have that:

$$\mu(\bigcup_{k=1}^{\infty} M_k) = \sum_{k=1}^{\infty} \mu(M_k) = \sum_{k=1}^{\infty} \mu(M)$$

Then, we have that $1 \leq \sum_{k=1}^{\infty} \mu(M) \leq 3^d$. But, μ can only take on values in $[0, \infty]$, and in particular then, $\sum_{k=1}^{\infty} \mu(M)$ is either 0 if $\mu(M) = 0$ and infinite otherwise. But that is a contradiction with our inequality.

Thus, M may not be a Lebesgue measurable set.