(rows)

-> All training data is taken into consideration to take a single step. i.e. to calculate the slope

-> n input cols -> (n+1) (oefficients

v	V 2	y. <u>6</u>			
X ₁	X2 X-W	ji ji	$\hat{y} = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_m x_{im}$		_
Х,,	X12 X 1M	<u> </u>	$y_i = \beta_0 + \beta_1 \lambda_{i1} + \beta_2 \lambda_{i2} + \dots + \beta_m \lambda_{im}$	-₿. →	_
X 21	X22 X2m	Y2 Ŷ2	_ ' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B ₂	1
Xii	Xiz Xim	Yi 9i	\	P ₃	Ī
				P3	L
				_ Bm]	

	,		
૯૧.	\ x,	X2	Υ
J	×u	X,2	у.
	X 21	X 22	Y ₂

1) Random values

2) epoch = 100, y = 0.1

$$\beta_0 = \beta_0 - \frac{\partial L}{\partial \beta_0}$$
 $\beta_1 = \beta_1 - \frac{\partial L}{\partial \beta_1}$ $\beta_2 = \beta_2 - \frac{\partial L}{\partial \beta_2}$ $\beta_1 = \beta_1 - \frac{\partial L}{\partial \beta_n}$

n-dim -> (not) partal derivatives

$$L = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \left[(y_i - \hat{y}_i)^2 + (y_2 + \hat{y}_2)^2 \right]$$
froms

B.

$$L = \frac{1}{2} \left[(\gamma_1 - \beta_1)^2 + (\gamma_2 - \gamma_2)^2 \right]$$

$$= \frac{1}{2} \left[(\gamma_1 - \beta_0 - \beta_1 x_{11} - \beta_2 x_{22})^2 + (\gamma_2 - \beta_0 - \beta_1 x_{21} - \beta_2 x_{22})^2 \right]$$

$$\frac{\delta L}{\delta \beta_0} = \frac{1}{2} \left[(-2)(\gamma_1 - \hat{\gamma}_1) + (-2)(\gamma_2 - \hat{\gamma}_2) \right]$$

$$= \frac{-2}{2} \left[(\gamma_1 - \hat{\gamma}_1) + (\gamma_2 - \hat{\gamma}_2) \right]$$

$$\frac{\partial L}{\partial \beta} = \frac{2}{n} \sum_{i=1}^{n} (\gamma_i - \hat{\gamma}_i)$$

AB.

$$L = \frac{1}{2} \left[(\gamma_1 - \hat{\gamma}_1)^2 + (\gamma_2 - \hat{\gamma}_2)^2 \right]$$

$$= \frac{1}{2} \left[(\gamma_1 - \beta_0 - \beta_1 x_{11} - \beta_2 x_{22})^2 + (\gamma_2 - \beta_0 - \beta_1 x_{21} - \beta_2 x_{22})^2 \right]$$

$$\frac{\partial L}{\partial \beta_1} = \frac{1}{2} \left[(-2) \times_{11} (\gamma_1 - \hat{\gamma}_1) + (-2) \times_{21} (\gamma_2 - \hat{\gamma}_2) \right]$$

$$= \frac{-2}{2} \left[\times_{11} (\gamma_1 - \hat{\gamma}_1) + \times_{21} (\gamma_2 - \hat{\gamma}_2) \right]$$

$$= \frac{-2}{n} \left[\chi_{\parallel} (\gamma_1 - \hat{\gamma}_1) + \chi_{21} (\gamma_2 - \hat{\gamma}_2) + \dots + \chi_{m} (\gamma_m - \hat{\gamma}_m) \right]$$

$$\frac{\partial L}{\partial \beta_i} = -\frac{2}{n} \sum_{i=1}^{n} X_{ii} (\gamma_i - \hat{\gamma}_i)$$

$$\frac{\partial L}{\partial \beta_{\underline{m}}} = \frac{-2}{n} \sum_{i=1}^{n} x_{i\underline{m}} (y_i - \hat{y}_i)$$

```
Problems:
    L= + [1/-9/ + (1/- 1/2) + ... + (1/- 1/2)]
  for each epoch
                                                                  e.g. n= 1000

katures = 5 -> 6 coefficients

epochs = 50
  for each coefficient
                                                                            in each epoch, for I coefficient we need to calculate 1000 derivatives!
   Calc n-derivatives (n=# rows)
                                                                             total compulations = epochs x (features + 1) x M
* 1) Slow on big duta (computat
                                                                                                           > 50 x 6 x 1000
                                                                                                           = 300,000
                                                      Need to load all X_train

To data at once to Calculate \( \hat{\chi} \). Drich reguires RAM.
          hardware limitations.
         class BatchGradientDescent:
             def __init__(self,learning_rate,epochs):
    self.lr = learning_rate
    self.epochs = epochs
             def fit(self,X,y):
                  self.intercept = 0
                  self.coef = np.ones(shape=(X.shape[1],))
                  for _ in range(self.epochs):
                                                                                 D instead of lap, we use vectorization
                      y_pred = np.dot(X,self.coef) + self.intercept -
                      bias_slope = np.sum(y-y_pred)*(-2/X.shape[0])
self.intercept = self.intercept - (self.lr*bias_slope)
                      coef_slope = np.dot(X.T,y-y_pred)*(-2/X.shape[0])
self.coef = self.coef - (self.lr*coef_slope)
             def predict(self,X):
                  return np.dot(X,self.coef)+self.intercept
```