The mean and the variance of a normal distribution:

First we find the moment generating function.

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx$$
$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^2}\left(-2xt\sigma^2 + (x-\mu)^2\right)} dx$$

In the exponent we have:

$$-2xt\sigma^{2} + (x-\mu)^{2} = -2xt\sigma^{2} + x^{2} - 2x\mu + \mu^{2} = x^{2} - 2x(\mu + t\sigma^{2}) + \mu^{2}.$$

Completing the square gives:

$$x^{2} - 2x(\mu + t\sigma^{2}) + \mu^{2} = (x - (\mu + t\sigma^{2}))^{2} - 2\mu t\sigma^{2} - t^{2}\sigma^{4}.$$

This allows us to write

$$M_X(t) = e^{\mu t + \frac{1}{2}t^2\sigma^2} \left(\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x - (\mu + t\sigma)}{\sigma}\right)^2} dx \right) = e^{\mu t + \frac{1}{2}t^2\sigma^2}$$

The moment generating function for normally distributed random variable X is:

$$M_X(t) = e^{\mu t + \frac{1}{2}t^2\sigma^2}$$

Now we will show that the mean and variance of X are indeed μ and σ^2 .

First derivative of the moment generating function:

$$\frac{d}{dt}M_X(t) = \frac{d}{dt}e^{\mu t + \frac{1}{2}t^2\sigma^2} = e^{\mu t + \frac{1}{2}t^2\sigma^2} \cdot (\mu + \sigma^2 t)$$

Second derivative of the moment generating function:

$$\frac{d^2}{dt^2} M_X(t) = \frac{d}{dt} \left(\mu e^{\mu t + \frac{1}{2}t^2 \sigma^2} + \sigma^2 t e^{\mu t + \frac{1}{2}t^2 \sigma^2} \right)$$

$$= \mu e^{\mu t + \frac{1}{2}t^2 \sigma^2} \cdot (\mu + \sigma^2 t) + \sigma^2 e^{\mu t + \frac{1}{2}t^2 \sigma^2}$$

$$+ \sigma^2 t e^{\mu t + \frac{1}{2}t^2 \sigma^2} \cdot (\mu + \sigma^2 t)$$

Setting t = 0 in both gives:

$$\frac{d}{dt}M_X(t) = \mu \qquad \frac{d^2}{dt^2}M_X(t) = \mu^2 + \sigma^2$$

Therefore the mean, E(X), is μ ; and the variance is $E(X^2) - \mu^2 = \sigma^2$.

The Standard Normal Distribution

The normal distribution with $\mu = 0$ and $\sigma = 1$ is called the standard normal distribution.

$$n(x;0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$$

Probabilities for the standard normal distribution may be found by way of a table of "pre-calculated" probabilities.

For example, Table III in the text book gives $P(0 \le X \le z)$ for various z values. Graphically this looks like,

Tabl	Table III: Standard Normal Distribution											
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359		
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753		
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141		
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517		
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879		
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224		
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549		
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852		
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133		
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389		
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621		
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830		
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015		
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177		
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319		
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441		
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545		
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633		
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706		
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767		
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817		
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857		
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890		
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916		
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936		
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952		
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964		
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974		
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981		
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4988		
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990		

Table III: Standard Normal Distribution											
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359	
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753	
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141	
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517	
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879	
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224	
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549	
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852	
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133	
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389	
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621	
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830	
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015	
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177	
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319	
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441	
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545	
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633	
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706	
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767	
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817	
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857	
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890	
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916	
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936	
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952	
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964	
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974	
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981	
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4988	
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990	

$$P(0 \le X \le 1.52)$$

= 0.4357

We noted earlier that μ , in this case 0, is the midpoint of the graph. Thus to find $P(X \le z)$, we look up our value of z in the table, then add 0.5.

Table III: Standard Normal Distribution										
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4988
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990

$$P(X \le 0.87)$$

= 0.3087 + 0.5
= 0.8087

Adding the first two areas gives the third.

If z < 0, we find $P(X \le z)$ by finding $0.5 - P(X \le |z|)$.

						` _				
Tabl	e III: St	andard 1	Normal 1	Distribu	tion					
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4988
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990

$$P(X \le -1.44) = 0.5 - 0.4251 = 0.0749$$

The difference of the first two areas is equal to the third.

If X has standard normal distribution, find $P(-0.75 \le X \le 1.22)$

Table III: Standard Normal Distribution										
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4930
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.496
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.498
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4988
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.499

To find $P(-0.75 \le X \le 1.22)$, add $P(0 \le X \le 0.75)$ to $P(0 \le X \le 1.22)$

Tabl	Table III: Standard Normal Distribution											
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359		
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753		
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141		
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517		
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879		
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224		
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549		
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852		
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133		
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389		
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621		
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830		
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015		
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177		
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319		
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441		
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545		
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633		
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706		
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767		
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817		
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857		
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890		
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916		
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936		
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952		
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964		
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974		
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981		
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4988		
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990		

$$P(-0.75 \le X \le 1.22)$$

= 0.2374 + 0.3888
= 0.6262

$$P(0 \le X \le 0.75) + P(0 \le X \le 1.22) = P(-0.75 \le X \le 1.22)$$

The sum of the first two areas equals the third. (This plays on the symmetry of the graph)

A couple of rules when using the table:

- ► For z values not found on the table we may simply choose the closest value.
- If our z value is exactly the midpoint between two z values on the table, then we can average the two probabilities.

The Normal Distribution

Theorem

If X has a normal distribution with mean μ and standard deviation σ then

$$Z = \frac{X - \mu}{\sigma}$$

is a random variable having the standard normal distribution.

This allows us to compute probabilities for non-standard normal distributions with the standard normal table.

Proof

Let $Z = \frac{X - \mu}{\sigma}$. First note that

$$x_1 < X < x_2 \quad \Leftrightarrow \quad z_1 = \frac{x_1 - \mu}{\sigma} < Z < \frac{x_2 - \mu}{\sigma} = z_2$$

Then, using the substitution rule for integrals,

$$P(x_1 < X < x_2) = \frac{1}{\sigma\sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{z_1}^{z_2} e^{-\frac{1}{2}(z)^2} dz$$

$$= P(z_1 < Z < z_2).$$

Therefore $P(x_1 < X < x_2) = P\left(\frac{x_1 - \mu}{\sigma} < Z < \frac{x_2 - \mu}{\sigma}\right)$, and we are able to look this up on the table.

Non-standard Normal Distribution

Example

Let X be a continuous random variable with normal distribution n(x,70,4); i.e. $\mu=70,\sigma=4$. Find

1.
$$P(68 \le X \le 74)$$

Non-standard Normal Distribution

By the theorem

$$P(68 \le X \le 74) = P(\frac{68 - 70}{4} \le Z \le \frac{74 - 70}{4}) = P(-0.5 \le Z \le 1)$$

Then, by the symmetry in the graph,

$$P(-0.5 \le Z \le 1) = P(Z \le 0.5) + P(Z \le 1)$$

= 0.1915 + 0.3413 = 0.5328

The Normal Approximation of the Binomial Distribution

If X is a random variable with binomial distribution $b(x; n, \theta)$, then the normal distribution $n(x; n\theta, \sqrt{n\theta(1-\theta)})$, with mean $n\theta$ and standard deviation $\sqrt{n\theta(1-\theta)}$, gives an approximation of the binomial distribution.

See the text book for how this is derived using the moment generating functions as $n \to \infty$.

To use this approximation, we need to "convert" the discrete binomial random variable to the continuous case. Here P(X = k) will be a approximated with the normal distribution by integrating from k - 0.5 to k + 0.5.

The Normal Approximation of the Binomial Distribution

Example

Find the probability of getting 6 heads in 16 flips of a balanced coin. (binomial distribution)

Approximate this with the normal distribution.