1.A)

B)
$$df1 = num df = df_{cntrl} = 9$$

$$df2 = denom df = df_{LowChr} = 13$$

$$H_0: \frac{\sigma_1}{\sigma_2} = \frac{\sigma_{cntrl}}{\sigma_{LowChr}} = 1$$

$$H_1$$
: $\frac{\sigma_1}{\sigma_2} = \frac{\sigma_{cntrl}}{\sigma_{LowChr}} \neq 1$

Test Statistic, F = $\frac{s_1^2}{s_2^2}$ = 0.78978; Rejection Region, F>3.312032 or F<0.261056.

P-value = 0.7373 > α (=0.05), which means we fail to reject the null hypothesis that the true ratio of variances $(\frac{\sigma_{cntrl}}{\sigma_{LowChr}})$ is equal to 1 with 95% confidence.

- C) Levene test P value = 0.6789 > α (=0.05), which means we fail to reject (with 95% confidence) the null hypothesis that the true ratio of variances $(\frac{\sigma_{cntrl}}{\sigma_{LowChr}})$ is equal to 1.
- D) As we fail to reject that $\frac{\sigma_{cntrl}}{\sigma_{LowChr}}=1$, pooled variance t-test would be preferred.

E) H₀:
$$\mu_{cntrl} - \mu_{LowChr} = 0$$

$$H_0$$
: $\mu_{cntrl} - \mu_{LowChr} \neq 0$

```
Test statistic, t = 2.1709
```

p-value = $0.041 < \alpha$ (=0.05), which means we can reject null hypothesis H₀ with 95% confidence.

F)

Comparing the results to E, we see that the p value of ANOVA test is 0.041, which is the same as the p-value obtained from two-sample t-test. And F-value obtained from ANOVA is $4.713 = 2.1709^2 = t^2$