MP170/180 Problem Sheet One

One-Dimensional Kinematics

This is not part of your assessment. These are for discussion in tutorials.

- 1. Sketch position vs time and velocity vs time diagrams for each of the following situations:
 - (a) A cyclist travels at 5 $\rm ms^{-1}$ for 10 s and then steadily slows down to rest for a further 10 s.
 - (b) A car starts from rest and increases steadily to a velocity of $10~\rm ms^{-1}$ in 5 s. The car continues at this velocity for $10~\rm s$ and slows steadily to rest for a further $10~\rm s$.
 - (c) A person jumps from an aircraft and falls until the parachute opens. The person then falls steadily to the ground.
- 2. A particle is set in motion at time t=0 s and its subsequent position is given by s(t). For each of the following cases:

(i)
$$s(t) = 4 + 5t - 2t^2$$
, (ii) $s(t) = t^2 - 4t + 1$, (iii) $s(t) = 3 + 18t - 7.5t^2 + t^3$

- Calculate the velocity after 2 s.
- Find the time when the particle comes to rest instantaneously.
- Find the acceleration after 1 s.
- 3. Find the first and second derivatives of the following functions of t:

(a)
$$s(t) = t + 2t^2 - 3$$

(b)
$$f(t) = t^2 - 1/t$$

(c)
$$f(t) = (1 - 2t + t^3)^{-1}$$

(d)
$$g(t) = (1+4t)/(2-3t^2)$$

4. Evaluate the following indefinite integrals:

(a)
$$\int (t - 3t^2) dt$$

(b)
$$\int (4t^4 - 1/t^2) dt$$

(c)
$$\int (5t^2 - 7t^4 + 2t^5) dt$$

5. Evaluate the following definite integrals:

(a)
$$\int_0^1 t^5 dt$$

(b)
$$\int_0^2 t (1-t^3) dt$$

(c)
$$\int_{-1}^{4} (2t^5 - 3t^3 - t) dt$$

6. A rocket is travelling at $80~\mathrm{ms^{-1}}$. The engines are then switched on for 6 s and the rocket accelerates at a constant rate of $40~\mathrm{ms^{-2}}$. Calculate the distance travelled in the 6 s. (Answer: $1200~\mathrm{m.}$)