Exame de Recurso de FQII – 2021-2022

5 de Fevereiro de 2022

(2 pts) Calcule o seguinte elemento de matriz envolvendo estados e operadores do oscilador harmónico

$$\langle m|aa^{\dagger}a^{\dagger}|n\rangle$$
.

2. (4 pts) Sabendo que

$$L_{+}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m+1)}|l,m+1\rangle$$

$$L_{-}|l,m\rangle = \hbar\sqrt{l(l+1) - m(m-1)}|l,m-1\rangle$$

construa as matrizes (4×4) para os operadores L_z , L_x e L_y para o momento angular l=3/2. Sugestão: para simplificar a conta calcule primeiro os elementos de matriz $\langle l,m|L_{\pm}|l,n\rangle$, para n e m arbitrários e só depois especifique que l=3/2.

3. (5 pts) Considere um spin 1/2 ao qual é aplicado um campo magnético $\mathbf{B} = B_0(1/\sqrt{2},1/\sqrt{2},0)$. O hamiltoniano do acoplamento Zeeman, do campo magnético ao spin, é dado por

$$H_Z = -\lambda \mathbf{S} \cdot \mathbf{B},$$

onde $\lambda > 0$ e $\mathbf{S} = (S_x, S_y, S_x)$ é o vector formado pelas componente do operador de spin.

- (a) Mostre que o hamitoniano comuta com o operador S^2 . Sugestão: use a relação seguinte envolvendo comutadores de operadores [AB, C] = A[B, C] + [A, C]B.
- (b) Determine os valores e vectores próprios deste hamiltoniano.
- (c) Suponha que no tempo t=0 o sistema se encontra no estado

$$|\psi\rangle = \frac{1}{\sqrt{3}}|\uparrow\rangle + \sqrt{\frac{2}{3}}|\downarrow\rangle,$$

onde $|\uparrow\rangle$ e $|\downarrow\rangle$ são estados próprios do operador S_z . Determine $|\psi(t)\rangle$ num tempo arbitrário t.

- 4. (5 pts) Considere que ao problema anterior se adiciona uma perturbação da forma $V = ig(S_xS_z S_zS_x)$, onde g > 0 e $i = \sqrt{-1}$. O hamiltoniano total é da forma $H = H_Z + V$.
 - (a) Avalie o comutador [S_x, S_z] e expresse-o em termos de S_y.
 - (b) Calcule, em teoria de perturbações de primeira ordem (independente do tempo), a correção aos valores próprios de H_Z devido à perturbação V.
 - (c) Calcule, em segunda ordem de teoria de perturbações (independente do tempo), a correção aos valores próprios de H_Z devido à perturbação V.
 - (d) Calcule, em primeira ordem de teoria de perturbações (independente do tempo), os estados próprios de H.
- (4 pts) Considere um poço radial descrevendo um centro espalhador, de profundidade −V₀, com V₀ > 0, e de alcance L.
 - (a) Faça um esboço da energia potencial.
 - (b) Calcule o desvio de fase δ_0 associado ao canal de momento angular l=0, para uma partícula de energia E>0. Poderá útil saber que

$$j_0(x) = \frac{\sin x}{x},$$

$$\eta_0(x) = -\frac{\cos x}{x}.$$

- (c) Calcule o desvio de fase δ₀ no limite em que E ≫ V₀, onde E é a energia da partícula. (Ao fazer as expansões poderá ter que considerar ordens superiores relativamente à ordem zero.)
- (d) Calcule a secção eficaz diferencial devido a δ₀, no limite do item anterior.