Algoritmy a datové struktury

Skiplisty a hashovací tabulky

Obsah přednášky

- ► SkipList
- ► Hašovací tabulka

Datové struktury

- Spojové seznamy
 - ► jednoduchá implementace
 - vysoká složitost vkládání a hledání

Datové struktury

- Spojové seznamy
 - jednoduchá implementace
 - vysoká složitost vkládání a hledání O(n)
- Vyvažované stromy
 - nízká složitost vkládání a hledání

Datové struktury

- Spojové seznamy
 - jednoduchá implementace
 - vysoká složitost vkládání a hledání O(n)
- Vyvažované stromy
 - nízká složitost vkládání a hledání O(log n)
 - složitá implementace (operace vyvážení)
 - navíc problém s iterátorem
 - projít všechny položky vyžaduje rekurzivní průchod celým stromem
- Zkusit získat výhody obojího...

Rozšíření seznamů

- Rozšířit spojový seznam o seznam významných bodů
 - např. slovník

Rozšíření seznamů

- Rozšířit spojový seznam o seznam významných bodů
 - např. slovník
 - možnost rozšířit o další vrstvu...

SkipList

- Přeskakovací seznam
- ► Relativně mladá struktura (1990)
- N-vrstvá struktura
 - založená na pravděpodobnosti
- Podobně jako spojový seznam
 - hlavička (ocásek)
 - vícerozměrný

Skip-List

- je datová struktura, která může být použita jako náhrada za vyvážené stromy.
- představují pravděpodobnostní alternativu k vyváženým stromům (struktura jednotlivých uzlů se volí náhodně)
- · Na rozdíl od stromů má skip list následující výhody:
 - jednoduchá implementace
 - jednoduché algoritmy vložení/zrušení
 - časová složitost vyhledávání je obdobná jako u stromů

Základní myšlenka zavedení skip-listů

seznam	složitost vyhledávání – nejhorší případ
a) obyčejný spoj.seznam	n
b) extra ukazatele mezi každým 2. uzlem	「n/2
c) extra ukazatele mezi každým 4. uzlem	「n/4]+1
d) extra ukazatele mezi každým 2 ⁱ . uzlem	「log n distribution of the log n distributi
e) náhodná volba extra uzlů s ukazateli (skip list)	???

Skip-List

- prky v seznamu jsou uspořádány
- seznam obsahuje prvky, které mají k ukazatelů
 1 < k < max_level
- uzel s k-ukazateli se nazývá uzel úrovně k
- seznam úrovně k obsahuje prvky s maximálně k ukazateli
- ideální skip-list každý 2ⁱ-tý prvek má ukazatel, který ukazuje o 2ⁱ prvků dopředu

Pokud má každý 2ⁱtý uzel 2ⁱ ukazatelů na následující uzly, pak jsou uzly jednotlivých úrovní rozloženy následovně:

```
50% uzlů úrovně 1
25% uzlů úrovně 2
12.5% uzlů úrovně_3
atd.
```

Výhoda: složitost vyhledávání O(log n)

Nevýhoda: po provedení operací insert/delete je nutné provádět restrukturalizaci seznamu

Řešení: ponechat rozložení uzlů ale vyhnout se restrukturalizaci – tj.

uzly úrovně k jsou vkládány náhodně s uvedeným pravděpodobnostním rozložením

Prvek Skip-listu

 každý prvek seznamu úrovně k má k ukazatelů (k se volí náhodně při vytvoření prvku)

Prázdný seznam

Inicializace seznamu_

- je vytvořena hlavička seznamu (obsahuje MaxLevel ukazatelů)
- všechny ukazatele se inicializují na NIL
- celkový počet úrovní MaxLevel se volí na základě maximálního počtu prvků N MaxLevel=log₂(N)

Proč pravděpodobnost?

- Proč použít náhodná čísla?
 - proč nedát každý druhý prvek do 2. vrstvy, čtvrtý do 3. vrstvy...?

Proč pravděpodobnost?

- Proč použít náhodná čísla?
 - proč nedát každý druhý prvek do 2. vrstvy, čtvrtý do 3. vrstvy...?
 - dynamická struktura, náhodná čísla zajistí "rozumné" rozložení
- ▶ Prvek z vrstvy I se objeví s pravděpodobností p v I+1 vrstvě
- lacktriangle Prvek se objeví v průměru v 1/(1-p) vrstvách
 - ▶ $1 + p + p^2 + \dots$
- Volba výšky hlavičky
 - ▶ log_(1/p)(n)
- Možnost neomezit výšku
 - příliš složité

Porovnání s ostatními datovými strukturami

Implementation	Search Time	Insertion Time	Deletion Time
Skip lists	0.051 msec (1.0)	0.065 msec (1.0)	0.059 msec (1.0)
non-recursive AVL trees	0.046 msec (0.91)	0.10 msec (1.55)	0.085 msec (1.46)
recursive 2-3 trees	0.054 msec (1.05)	0.21 msec (3.2)	0.21 msec (3.65)
Self-adjusting trees:			
top-down splaying	0.15 msec (3.0)	0.16 msec (2.5)	0.18 msec (3.1)
bottom-up splaying	0.49 msec (9.6)	0.51 msec (7.8)	0.53 msec (9.0)

Table 2 - Timings of implementations of different algorithms

р	Normalized search times (i.e., normalized L(n)/p)	Avg. # of pointers per node (i.e., $1/(1-p)$)
$^{1/2}_{^{1/e}}_{^{1/4}}_{^{1/8}}$	1 0.94 1 1.33 2	2 1.58 1.33 1.14 1.07

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ► jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- Např. číslo 19

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ▶ jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- Např. číslo 19

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ► jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- ► Např. číslo 19

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ► jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- ► Např. číslo 19

- Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ► jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- ► Např. číslo 19

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ► jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- ► Např. číslo 19

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ▶ jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- ► Např. číslo 19

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ► jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- ► Např. číslo 19

- ► Hledání ve spojovém seznamu
 - lineární procházení spodní vrstvy
 - ► jednoduché, ale pomalé
 - ▶ složitost *O*(*n*)
- ► Např. číslo 19

- Víceúrovňové hledání
 - začneme v nejvyšším patře
 - lineárně prohledáváme
 - když narazíme na větší prvek, přesuneme se o patro níž
 - podobá se hledání půlením intervalu
 - v každé vrstvě omezený počet uzlů O(1)
 - celkem log n vrstev

- Víceúrovňové hledání
 - začneme v nejvyšším patře
 - lineárně prohledáváme
 - když narazíme na větší prvek, přesuneme se o patro níž
 - podobá se hledání půlením intervalu
 - v každé vrstvě omezený počet uzlů O(1)
 - celkem log n vrstev

- Víceúrovňové hledání
 - začneme v nejvyšším patře
 - lineárně prohledáváme
 - když narazíme na větší prvek, přesuneme se o patro níž
 - podobá se hledání půlením intervalu
 - v každé vrstvě omezený počet uzlů O(1)
 - celkem log n vrstev

- Víceúrovňové hledání
 - začneme v nejvyšším patře
 - lineárně prohledáváme
 - když narazíme na větší prvek, přesuneme se o patro níž
 - podobá se hledání půlením intervalu
 - v každé vrstvě omezený počet uzlů O(1)
 - celkem log n vrstev

- Víceúrovňové hledání
 - začneme v nejvyšším patře
 - lineárně prohledáváme
 - když narazíme na větší prvek, přesuneme se o patro níž
 - podobá se hledání půlením intervalu
 - v každé vrstvě omezený počet uzlů O(1)
 - ► celkem log *n* vrstev

- Víceúrovňové hledání
 - začneme v nejvyšším patře
 - lineárně prohledáváme
 - když narazíme na větší prvek, přesuneme se o patro níž
 - podobá se hledání půlením intervalu
 - v každé vrstvě omezený počet uzlů O(1)
 - celkem log n vrstev

- Víceúrovňové hledání
 - začneme v nejvyšším patře
 - lineárně prohledáváme
 - když narazíme na větší prvek, přesuneme se o patro níž
 - podobá se hledání půlením intervalu
 - v každé vrstvě omezený počet uzlů O(1)
 - celkem log n vrstev

Operace vkládání

- Vygeneruje se výška vkládaného prvku
- ► Při hledání pozice prvku se zapamatují předchozí prvky v jednotlivých vrstvách
- Prvek se vloží do všech vrstev listu
 - podobně jako u spojového seznamu
- Např. číslo 5

Operace vkládání

- Vygeneruje se výška vkládaného prvku
- Při hledání pozice prvku se zapamatují předchozí prvky v jednotlivých vrstvách
- Prvek se vloží do všech vrstev listu
 - podobně jako u spojového seznamu
- Např. číslo 5

Operace vkládání

- Vygeneruje se výška vkládaného prvku
- ► Při hledání pozice prvku se zapamatují předchozí prvky v jednotlivých vrstvách
- Prvek se vloží do všech vrstev listu
 - podobně jako u spojového seznamu
- ► Např. číslo 5

Operace mazání

- Přímočará operace
 - nalezení prvku a zapamatování si předchůdců
 - upravení ukazatelů na následníky

- Přímočará operace
 - nalezení prvku a zapamatování si předchůdců
 - upravení ukazatelů na následníky

- Přímočará operace
 - nalezení prvku a zapamatování si předchůdců
 - upravení ukazatelů na následníky

Vlastnosti

- Logaritmické složitosti pro všechny operace
- Rychlost srovnatelná s vyváženými stromy
 - paměťově náročnější
 - rychlejší pro některé operace
- Omezená hloubka stromu nemusí být na překážku
 - logatitmická závislost (pro hloubku 15 přes 65 tisíc položek)
 - Ize upravit na neomezené
 - komplikované
- Možnost doladit rychlost/paměť
 - změna pravděpodobnosti
 - ▶ ideálně 1/e
 - programově snadné 1/2
 - menší čísla sníží paměťové nároky
 - větší než 1/2 nemá cenu

- ► Pole
 - hledání

- ► Pole
 - ► hledání O(n), O(logn)
 - vkládání

- ► Pole
 - ▶ hledání O(n), O(logn)
 - vkládání O(n)
 - navíc problém s omezenou velikostí
 - mazání

- ► Pole
 - ▶ hledání O(n), O(logn)
 - ▶ vkládání Ô(n)
 - navíc problém s omezenou velikostí
 - ▶ mazání O(n)

- ► Pole
 - ▶ hledání O(n), O(logn)
 - ▶ vkládání O(n)
 - navíc problém s omezenou velikostí
 - ▶ mazání O(n)
- Spojové seznamy
 - hledání, vkládání, mazání

- ► Pole
 - ▶ hledání O(n), O(logn)
 - ▶ vkládání O(n)
 - navíc problém s omezenou velikostí
 - ▶ mazání O(n)
- Spojové seznamy
 - hledání, vkládání, mazání O(n)
 - není problém s velikostí

- ► Pole
 - ▶ hledání O(n), O(logn)
 - ▶ vkládání O(n)
 - navíc problém s omezenou velikostí
 - ▶ mazání O(n)
- Spojové seznamy
 - hledání, vkládání, mazání O(n)
 - není problém s velikostí
- Stromy
 - hledání, vkládání, mazání

- Pole
 - ▶ hledání O(n), O(logn)
 - ▶ vkládání O(n)
 - navíc problém s omezenou velikostí
 - ▶ mazání O(n)
- Spojové seznamy
 - hledání, vkládání, mazání O(n)
 - není problém s velikostí
- Stromy
 - hledání, vkládání, mazání O(logn)
- Nešlo by to rychleji?
 - přístup do paměti pomocí adresy O(1)
 - najít způsob, jak přepočítat klíč na adresu

Hašování

- ► Hašovací funkce
 - lacktriangle mapuje klíče na celá čísla z intervalu [0,N-1]
 - ▶ např. pro celá čísla h(x) = x mod N
 - h(x) je hašovací hodnota klíče x
- Hašovací tabulka
 - pole velikosti N
- Položka (klíč, data) se ukládá do tabulky na pozici h(k)

Příklad

- ► Telefonní čísla podle posledního dvojčíslí
 - počet možných čísel: 1 000 000 000
 - ▶ velikost tabulky: 100

Hašovací funkce

- Obvykle dvě funkce
 - generování haš kódu
 - klíč → celé číslo
 - kompresní funkce
 - ightharpoonup celé číslo ightarrow [0, N-1]
- ightharpoonup Cílem hašovací funkce je rovnoměrné rozprostření klíčů na celý interval [0,N-1]

Haš kód

- Integer cast
 - klíč se rozdělí na části, které se interpretují jako cifry
 - vhodné pro krátké klíče
 - vejdou se do typu int
 - např. float klíče
- Součet komponent
 - klíč se rozdělí na části, které se posčítají
 - bez ošetření přetečení
 - vhodné pro velká čísla
 - ▶ např. long, double

Haš kód

- Výpočet polynomu
 - ▶ klíč se rozdělí na části a₀...a_{n-1}
 - vyhodnotí se polynom $p(z) = a_0 \cdot z^0 + a_1 \cdot z^1 + \dots + a_{n-1} \cdot z^{n-1}$
 - z je fixní, neošetřuje se přetečení
 - rychlé vyčíslení pomocí Hornerova schématu
 - ► složitost O(n) $p_0(z) = a_{n-1}, p_i(z) = a_{n-i-1} + z \cdot p_{i-1}(z)$
 - vhodné pro řetězce

Kompresní funkce

- Celočíselné dělení
 - $h(y) = y \mod N$
 - N je velikost tabulky
 - $N \approx 2$ · očekávaný počet položek
- Multiply, Add, Devide (MAD)
 - vynásobení, přičtení a vydělení
 - $h(y) = (a \cdot y + b) \mod N$
 - a, b libovolná celá čísla
 - ▶ $a \mod N \neq 0$

Kolize

- Po kompresi nemusí platit, že jednomu kód odpovídá právě jeden klíč
 - v tabulce dochází ke kolizi

Oddělené řetězení

- Rozšíření položky v poli na spojový seznam
 - libovolný počet prvků
 - roste spotřeba paměti
 - potřebuje složitější zacházení

Otevřené adresování

- Kolidující položky se umístí do jiné buňky v tabulce
- Lineární zkoušení
 - pokouší se umístit kolidující položku do další buňky (cyklicky)
 - mohou vznikat kolize, které by předtím nevznikly
- Možnost upravit na kvadratické zkoušení
 - ▶ na pozicích x + 1, x + 2, x + 4 . . .

Otevřené adresování

- Kolidující položky se umístí do jiné buňky v tabulce
- Lineární zkoušení
 - pokouší se umístit kolidující položku do další buňky (cyklicky)
 - mohou vznikat kolize, které by předtím nevznikly
- Možnost upravit na kvadratické zkoušení
 - na pozicích x + 1, x + 2, x + 4 . . .

Operace hledání

- Začátek hledání na pozici h(k)
- Pokud je buňka prázdná, prvek neexistuje
- ▶ Pokud obsahuje prvek s klíčem *k*, je nalzeno
- Jinak se posuneme na další buňku a opakujeme postup
 - v nejhorším teoretickém případě končíme po zkontrolování celého pole
- Např. číslo 605 89 63 97

Operace hledání

- Začátek hledání na pozici h(k)
- Pokud je buňka prázdná, prvek neexistuje
- ▶ Pokud obsahuje prvek s klíčem *k*, je nalzeno
- Jinak se posuneme na další buňku a opakujeme postup
 - v nejhorším teoretickém případě končíme po zkontrolování celého pole
- Např. číslo 605 89 63 97

Operace hledání

- Začátek hledání na pozici h(k)
- Pokud je buňka prázdná, prvek neexistuje
- ▶ Pokud obsahuje prvek s klíčem *k*, je nalzeno
- Jinak se posuneme na další buňku a opakujeme postup
 - v nejhorším teoretickém případě končíme po zkontrolování celého pole
- Např. číslo 605 89 63 97

- Pokud je tabulka plná, nelze vložit další prvek
 - pokud k tomu došlo, udělali jsme chybu v návrhu
- ightharpoonup Začneme na pozici h(k)
- Zkoušíme postupně pozice dokud nenarazíme na "vhodnou" buňku
- Na tuto pozici vložíme prvek
- Např. číslo 605 89 63 97

- Pokud je tabulka plná, nelze vložit další prvek
 - pokud k tomu došlo, udělali jsme chybu v návrhu
- ightharpoonup Začneme na pozici h(k)
- Zkoušíme postupně pozice dokud nenarazíme na "vhodnou" buňku
- Na tuto pozici vložíme prvek
- Např. číslo 605 89 63 97

- Pokud je tabulka plná, nelze vložit další prvek
 - pokud k tomu došlo, udělali jsme chybu v návrhu
- ightharpoonup Začneme na pozici h(k)
- Zkoušíme postupně pozice dokud nenarazíme na "vhodnou" buňku
- ▶ Na tuto pozici vložíme prvek
- Např. číslo 605 89 63 97

- Pokud je tabulka plná, nelze vložit další prvek
 - pokud k tomu došlo, udělali jsme chybu v návrhu
- ightharpoonup Začneme na pozici h(k)
- Zkoušíme postupně pozice dokud nenarazíme na "vhodnou" buňku
- Na tuto pozici vložíme prvek
- Např. číslo 605 89 63 97

▶ Nalzneme prvek s klíčem *k* a...

Např. číslo 777 32 45 97

▶ Nalzneme prvek s klíčem *k* a...

Např. číslo 777 32 45 97

- Nalzneme prvek s klíčem k a... uložíme specielní položku označující volnou buňku
- Např. číslo 777 32 45 97

- Nalzneme prvek s klíčem k a... uložíme specielní položku označující volnou buňku
- Proč tak složitě?
 - při hledání musíme vědět, že tady něco bylo
- Např. číslo 777 32 45 97

Dvojité hašování

- Pro zlepšení řešení kolizí možno použít druhou hašovací funkci
- Při kolizi se posouváme o krok daný druhou funkcí
 - ▶ např. $d(k) = a (k \mod a)$, kde a je konstanta
- ▶ d(k) nesmí vracet 0
- ightharpoonup d(k) se nesmí chovat stejně jako primární hašovací funkce

Vlastnosti

- Nejhorší možný případ
 - všechny klíče kolidují
 - operace O(n)
 - chyba je na naší straně
- Faktor naplnění
 - \rightarrow A = n/N
 - poměr počtu položek k velikosti tabulky
 - čím víc se blíží 1, tím větší je pravděpodobnost kolize
- Očekávaná složitost
 - ▶ O(1)
 - pro faktor naplnění kolem 0.7 (70%)

Konec