HW6

Code Appendix

2023-11-13

```
data(pbc, package="survival")
data = pbc |>
  mutate(time = time/30,
         status = ifelse(status != 0, 1, 0),
         edema = ifelse(edema == 0.5, 1, edema),
         sexn = case_when(sex == "m" ~ 1,sex == "f" ~ 0)) |>
  drop_na()
s = coxph(Surv(time, status) ~ sexn + edema + bili + albumin + copper + ast + protime + stage, data)
base = data.frame(sexn = 0,
                  edema = 0,
                  bili = 0,
                  albumin = 0,
                  copper = 0,
                  ast = 0,
                  protime = 0,
                  stage = 1)
survival = basehaz(s, newdata = base) |>
  mutate(survival = exp(-hazard)) |>
  filter(survival >= 0.8976 & survival <= 0.9005) |>
  knitr::kable()
b = data.frame(sexn = 1,
               edema = 1.
               bili = median(data$bili),
               albumin = median(data$albumin),
               copper = median(data$copper),
               ast = median(data$ast),
               protime = median(data$protime),
               stage = 4)
survival_2 = basehaz(s, newdata = b) |>
  mutate(survival = exp(-hazard)) |>
  filter(survival >= 0.895 & survival <= 0.9005) |>
  knitr::kable()
```

0.1

- 1. Potential confounding factors for the observed dose-response in efficacy:
- First, identify potential confounding factors by: imbalance baseline characteristics between two doses with a 1-side significant level of 0.05.
- Then, identify prognostic factors by: test each factor individually by controlling the dose and keep significant factors as the confounding factors.
- Lastly, control all the selected confounding factors.
- 2. If there were any dose by baseline interactions. Use Cox model to compare the survival function of different (independent) groups:
- Use a set of K covariates to represent the K+1 groups, select a reference group where k=0;
- Fit Cox model, and use likelihood ratio test for the results.

0.2

0.2.1

survival

hazard	time	survival
0.1048102	76.26667	0.9004954
0.1048102	76.46667	0.9004954
0.1080196	76.56667	0.8976100
0.1080196	76.70000	0.8976100
0.1080196	77.26667	0.8976100
0.1080196	77.66667	0.8976100
0.1080196	77.73333	0.8976100

The survival time that 90% subjects survived for baseline survival function is 76.6 month.

0.2.2

survival 2

hazard	time	survival
0.1050784	17.76667	0.9002540
0.1108590	18.30000	0.8950649

The survival time for male subjects who had edema and stage=4 and taking median for all other covariates in the model is 18.3 month.

0.3

After backward selection, the variables I chose are: sex, edema, bili, albumin, copper, ast, protime, stage.

• Here's the code for SAS:

```
libname mylib "/home/u61890905/EPG1V2";
proc import datafile="/home/u61890905/pbc.xlsx"
out=pbc
dbms=xlsx replace;
run;
proc phreg data=pbc;
class trt sex;
model time*status(0)=trt sex
ascites hepato spiders edema
bili chol albumin copper
alk.phos ast trig platelet
protime stage
/selection=backward
slentry{=}0.25
slstay=0.15
details;
run;
```