Algoritmos e Estrutura de Dados II Algoritmos de Ordenação

prof. Frederico Santos de Oliveira

Universidade Federal de Mato Grosso Instituto de Engenharia

Roteiro

- Objetivos
- 2 Referências bibliográficas
- Shellsort
- Mergesort
- 6 Heapsort
- Quicksort

Objetivos

Esta aula tem como objetivos:

- Apresentar os conceitos básicos sobre ordenação;
- 2 Explicitar os métodos mais eficientes de ordenação por comparação:
 - Shellsort
 - Mergesort
 - Heapsort
 - Quicksort
- Semplificar a execução dos algoritmos.

Referências bibliográficas

MINUTH, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Third. Reading, Mass.: [s.n.], 1997. ISBN 0201896834 9780201896831.

OLIVEIRA, S. L. G. *Algoritmos e seus fundamentos*. 1. ed. Lavras: Editora UFLA. 2011.

SEDGEWICK, R.; FLAJOLET, P. An Introduction to the Analysis of Algorithms. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1996. ISBN 0-201-40009-X.

ZIVIANI, N. Projeto de Algoritmos: com implementações em Pascal e C. São Paulo: Cengage Learning, 2011. ISBN 9788522110506.

- Proposto por Donald Shell em 1959.
- Trata-se de uma extensão do algoritmo de ordenação por inserção (Insertionsort);

Shellsort Motivação

Na ordenação por inserção troca-se apenas os elementos adjacentes para posicioná-lo na

- Dessa forma, são efetuadas n-1 comparações e movimentações no pior caso (quando o menor item está na última posição).
- O Shellsort contorna este problema permitindo trocas de registros distantes entre si.

localização correta.

Algoritmo

- Os elementos que estão a uma distância h, são ordenados utilizando o algoritmo de ordenação por inserção.
 - O elemento na posição x é comparado (e trocado) com o elemento na posição x + h.
 - O vetor resultante é dito estar *h*-ordenado.
- A cada iteração diminuiu-se a distância h, reaplicando o algoritmo de ordenação por inserção, até atingir h = 1.
- Quando h=1, o algoritmo é equivalente ao algoritmo de ordenação por inserção (Insertionsort).

Exemplo

h=1)	1	0	5	2	4	6	3	7	8	9
h=1)	0	1	5	2	4	6	3	7	8	9
h=1)	0	1	5	2	4	6	3	7	8	9
h=1)	0	1	2	5	4	6	3	7	8	9
h=1)	0	1	2	4	5	6	3	7	8	9
h=1)	0	1	2	4	5	6	3	7	8	9
h=1)	0	1	2	3	4	5	6	7	8	9

Escolha da distância h

- Qualquer sequência terminando com h=1 garante ordenação correta.
- A escolha da distância h possui um forte impacto no desempenho do algoritmo.
- Exemplo de sequência ruim: 1, 2, 4, 8, 16.
 - Não compara elementos em posições pares com elementos em posições ímpares até a última iteração.

Escolha da distância h

• Sugestão de Knuth (1997) para a escolha de h:

$$h(s) = egin{cases} 1 & ext{se } s = 1 \ 3h(s-1)+1 & ext{se } s > 1 \end{cases}$$

- Essa sequência corresponde aos valores: 1, 4, 13, 40, 121, 364, 1093, 3280, ...
- Knuth (1997)[p. 95] mostrou experimentalmente que esta sequência é difícil de ser batida por mais de 20% em eficiência.
- Outras sequências têm desempenho similar.

Pseudo-código

Algoritmo 1: Shellsort

```
Entrada: Vetor V[0..n-1], tamanho n
   Saída: Vetor V ordenado
1 início
       h \leftarrow 1
       enquanto (h < n) faça
        h \leftarrow 3h + 1
       enquanto (h \ge 1) faça
            h \leftarrow \frac{h}{2}
            para (i \leftarrow h \ at\'e \ n-1) faça
                chave \leftarrow V[i]
                i \leftarrow i - h
                enquanto (j \ge 0 \ AND \ V[j] > chave) faça
                     V[j+h] \leftarrow V[j]
                 j \leftarrow j - h
12
                 V[j+h] \leftarrow chave
13
```

10

11

Complexidade

- A complexidade desse algoritmo ainda não é conhecida.
- Por enquanto ninguém foi capaz de encontrar uma fórmula fechada para sua função de complexidade.
- A sua análise contém alguns problemas matemáticos bem difíceis, como por exemplo, escolher a sequência de incrementos.
- O que se sabe é que cada incremento não deve ser múltiplo do anterior.

Análise

Conjecturas referentes ao número de comparações para a sequência de Knuth (1997):

- Conjectura 1: $C(n) = O(n^{1,25})$
- Conjectura 2: $C(n) = O(n(\log(n))^2)$

Vantagens × Desvantagens

- Vantagens
 - Shellsort é uma ótima opção para arquivos de tamanho moderado.
 - Sua implementação é simples e requer uma quantidade de código pequena.
- Desvantagens
 - O tempo de execução do algoritmo é sensível à ordem inicial dos elementos.
 - Não é estável.

- Mergesort é um algoritmo de ordenação recursivo.
- Recursivamente ordena as duas metades do vetor.
- Utiliza a estratégia de **Divisão e Conquista** (D&C).
- É um algoritmo eficiente: possui tempo de execução $O(n \log n)$.

Divisão e Conquista

Método de Divisão e Conquista

- Divisão: Divida o problema em duas ou mais partes, criando subproblemas menores.
- **Conquista**: Os subproblemas são resolvidos recursivamente usando D&C. Caso os subproblemas sejam suficientemente pequenos resolva-os de forma direta.
- Combina: Tome cada uma das partes e junte-as todas de forma a resolver o problema original.

Divisão e Conquista

D&C no Mergesort:

- Caso o tamanho do vetor seja maior que 1.
 - Divida o vetor no meio.
 - ② Ordene a primeira metade recursivamente.
 - Ordene a segunda metade recursivamente.
 - Intercale as duas metades.
- Senão devolva o elemento, pois 1 elemento encontra-se ordenado.

Exemplo

Exemplo

Pseudo-código

Algoritmo 2: MergesortOrdena

Entrada: Vetor V[0..n-1], tamanho do vetor n.

Saída: Vetor V ordenado

1 início

Mergesort(V,0,n)

Algoritmo 3: Mergesort

Entrada: Vetor V[i..f-1], início i de V, e o final f de V.

Saída: Vetor *V* ordenado

1 início

```
se (i < f - 1) então

m \leftarrow \frac{(i+f)}{2}

Mergesort(V,i,m)

Mergesort(V,m,f)
```

Merge(V, i, m, f)

Intercalação

A intercalação de dois vetores ordenados pode ser feito em tempo linear.

- Considere os dois vetores a serem intercalados:
 - O vetor da esquerda começa em ini e termina em meio-1.
 - O vetor da direita em meio e termina em fim-1.
- Ao realizar a intercalação, utiliza-se um vetor auxiliar W, de tamanho (fim ini), para armazenar os elementos intercalados.

Intercalação

Utilizaremos três variáveis para percorrer os vetores:

- \bullet i percorre o vetor da esquerda, indicando o próximo elemento a ser inserido em W.
- j percorre o vetor da direita, indicando o próximo elemento a ser inserido em W.
- ullet k indica a posição em que o elemento deve ser inserido em W.

Intercalação

- A intercalação acaba quando i = meio ou j = fim.
- A cada passo, comparamos o elemento na posição i com o elemento na posição j, selecionando o menor e inserindo em W.
- Em seguida, incremente os respectivos índice (i ou j e k).

```
1 i \leftarrow ini; j \leftarrow meio; k \leftarrow 0
2 enquanto ( i < meio \ AND \ j < fim) faça
      se V[i] \leq V[j] então
  |W[k] \leftarrow V[i]
       senão
           W[k] \leftarrow V[j]
        j \leftarrow j + 1
```

Intercalação

Considere como exemplo a intercalação dos dois vetores.

• Compara-se 3 com 1.

Intercalação

Considere como exemplo a intercalação dos dois vetores.

- Compara-se 3 com 1.
- ② Insere o menor (1) em W.

Intercalação

Considere como exemplo a intercalação dos dois vetores.

- Compara-se 3 com 1.
- ② Insere o menor (1) em W.
- **3** Por fim, incrementa-se $j \in k$:
 - $j \leftarrow 5 + 1$
 - $k \leftarrow 0 + 1$

Mergesort Intercalação

• Compara-se 3 com 2.

Intercalação

- Compara-se 3 com 2.
- ② Insere o menor (2) em W.

Intercalação

- Compara-se 3 com 2.
- ② Insere o menor (2) em W.
- \odot Por fim, incrementa-se $j \in k$.
 - $j \leftarrow 6+1$
 - $k \leftarrow 1 + 1$

Mergesort Intercalação

Compara-se 3 com 4.

Intercalação

- Compara-se 3 com 4.
- ② Insere o menor (3) em W.

Intercalação

- Compara-se 3 com 4.
- 2 Insere o menor (3) em W.
- \odot Em seguida, incrementa-se i e k.
 - $i \leftarrow 0+1$
 - $k \leftarrow 2 + 1$

Mergesort Intercalação

• Compara-se 5 com 4.

- Compara-se 5 com 4.
- ② Insere o menor (4) em W.

- Compara-se 5 com 4.
- 2 Insere o menor (4) em W.
- **1** Em seguida, incrementa-se j e k.
 - $j \leftarrow 7 + 1$
 - $k \leftarrow 3+1$

Intercalação

• Compara-se 5 com 6.

- Compara-se 5 com 6.
- ② Insere o menor (5) em W.

- Compara-se 5 com 6.
- 2 Insere o menor (5) em W.
- \odot Em seguida, incrementa-se i e k.
 - $i \leftarrow 1 + 1$
 - $k \leftarrow 4+1$

Mergesort Intercalação

• Compara-se 8 com 6.

- Compara-se 8 com 6.
- ② Insere o menor (6) em W.

- Compara-se 8 com 6.
- 2 Insere o menor (6) em W.
- **3** Em seguida, incrementa-se j e k.
 - $j \leftarrow 8 + 1$
 - $k \leftarrow 5+1$

Mergesort Intercalação

• Compara-se 8 com 7.

- Compara-se 8 com 7.
- ② Insere o menor (7) em W.

- Compara-se 8 com 7.
- 2 Insere o menor (7) em W.
- **3** Em seguida, incrementa-se j e k.
 - $j \leftarrow 9 + 1$
 - $k \leftarrow 6+1$

- lacktriangle Todos os elementos do vetor da direita foram inseridos em W.
- **2** A condição "**Enquanto** (i < meio AND j < fim)" não é mais verdadeira.
 - pois j = fim, ou seja, atingiu o fim do vetor.
- Mas ainda falta inserir os elementos que restam no vetor da esquerda.

- Quando um dos dois vetores não tiver mais elementos, deve-se copiar os elementos restantes para o vetor W.
- O código a seguir realiza essa operação para ambos os vetores (da esquerda e da direita).

```
1 enquanto (i < meio) faça

2 W[k] \leftarrow V[i]

3 i \leftarrow i+1

4 k \leftarrow k+1

5 enquanto (j < fim) faça

6 W[k] \leftarrow V[j]

7 j \leftarrow j+1

8 k \leftarrow k+1
```

Intercalação

• Ao copiar todos os elementos restantes para W, o vetor W estará ordenado.

• Mas ainda resta copiar os elementos de W para V, pois o algoritmo ordena o vetor V.

Intercalação

ullet Por fim, copie os elementos de W para V.

- 1 para ($i \leftarrow ini \ at\'e \ fim 1$) faça
- $2 \qquad V[i] \leftarrow W[i-ini]$
- O algoritmo completo fica conforme o pseudo-código a seguir:

Merge

Pseudo-código

Algoritmo 4: Merge

```
Entrada: Vetor V[ini..fim - 1], ini, meio, fim.
   Saída: Vetor V ordenado
1 início
        // Considere o vetor auxiliar W[ini..fim-1]
       i \leftarrow ini; j \leftarrow meio; k \leftarrow 0
       enquanto (i < meio e j < fim) faça
           se V[i] \leq V[j] então
                W[k] \leftarrow V[i]
                i \leftarrow i + 1
            senão
                W[k] \leftarrow V[j]
              j \leftarrow j + 1;
           k \leftarrow k + 1
11
       enquanto (i < meio) faça
12
            W[k] \leftarrow V[i]
13
14
         i \leftarrow i + 1; k \leftarrow k + 1
       enquanto (j < fim) faça
15
           W[k] \leftarrow V[j]
         j \leftarrow j+1; k \leftarrow k+1
17
       para (i \leftarrow ini \ at\'efim - 1) faça
18
         V[i] \leftarrow W[i-ini]
19
```

Análise

- Quando um algoritmo contém chamadas recursivas, o cálculo de seu tempo de execução pode usar recorrências.
- Para o método de Divisão e Conquista.
- Seja T(n) o tempo do algoritmo. Suponha que dividimos em a subproblemas de tamanho $\frac{n}{b}$ cada e seja D(n) o tempo para dividir os subproblemas e C(n) o tempo para combiná-los. Então

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le c \\ aT(\frac{n}{b}) + D(n) + C(n) & \text{se } n > c \end{cases}$$

Análise

- Dividir: Tempo Constante $\Theta(1)$.
- Conquistar: Dois problemas de $\frac{n}{2}$ cada: $2T(\frac{n}{2})$.
- Combinar: Tempo do Merge: $\Theta(n)$.

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1\\ 2T(\frac{n}{2}) + \Theta(n) & \text{se } n > 1 \end{cases}$$

• Como resolver? Árvore de Recursão!

Características

- Possui o mesmo princípio de funcionamento da ordenação por seleção (Selectionsort).
 - Selecione o menor item do vetor.
 - Troque-o pelo item da primeira posição.
 - Repita operação com os elementos restantes do vetor.
- Implementação direta.
 - Encontrar o menor elemento requer n-1 comparações.
- Ideia:
 - Utilização de uma fila de prioridades implementada com um Heap.

Fila de Prioridades

- Uma Fila de Prioridades é um tipo abstrato de dados que permite executar as seguintes operações :
 - inserir um novo item;
 - remover o item com a maior chave (maior prioridade).
- A chave de cada item reflete a prioridade em que se deve tratar aquele item.
- Aplicações:
 - Sistemas operacionais, paginação de memória, ordenação, simulação de eventos.

Fila de Prioridades

Operações em uma Fila de Prioridades:

- Constrói uma Fila de Prioridade em um vetor de n itens.
- Insere um novo item.
- Retira o maior item.
- Altera a prioridade de um item.

Fila de Prioridades

Uma fila de prioridades pode ser representada utilizando:

- Lista encadeada ordenada
- Lista encadeada não ordenada
- Heap

	Constrói	Insere	Retira máximo	Altera prioridade
Lista ordenada	O(N log N)	O(N)	O(1)	O(N)
Lista não ordenada	O(N)	O(1)	O(N)	O(1)
Heaps	O(N)	O(log N)	O(log N)	O(log N)

Fila de Prioridades

Existem dois tipos de **Heap**:

- Heap Máximo pai maior que os filhos.
- Heap Mínimo pai menor que os filhos.
- Entre os filhos não existe ordenação.

Fila de Prioridades

Como representar um **Heap**:

- Representação por Árvore Binária:
 - Pai maior (ou menor) que os filhos.
- Representação vetorial V[0..n-1].
 - Heap Máximo pai na posição i, filhos nas posições 2i + 1 e 2i + 2.
 - $V[i] \ge V[2i+1]$ e $V[i] \ge V[2i+2]$ para todo i.
 - Heap Mínimo pai na posição i, filhos nas posições 2i + 1 e 2i + 2.
 - $V[i] \le V[2i+1]$ e $V[i] \le V[2i+2]$ para todo i.

0	1	2	3	4	5	6	
S	R	O	E	N	A	D	

Fila de Prioridades

Representações:

- Correspondência entre representação em árvore e representação em vetor.
- Nós são numerados de 0 a n .
- O primeiro é chamado raiz.
- O nó $\frac{k}{2}$ é o pai do nó k, 1 < k < n.
- Os nós (2k+1) e (2k+2) são filhos da esquerda e direita do nó k, para $0 \le k < \frac{n}{2}$.

0	1	2	3	4	5	6	_
S	R	0	Е	N	A	D	

Fila de Prioridades

- Representação por meio de vetores é compacta.
- Permite caminhar pelos nós da árvore facilmente.
- Filhos de um nó i estão nas posições 2i + 1 e 2i + 2.
- O pai de um nó i está na posição $\frac{i-1}{2}$.
- A maior chave sempre está na posição 1.

- Precisamos garantir que o valor da chave do pai é maior que dos filhos.
- Se tiver filho maior do que o pai, troca o maior filho com o pai.

- Precisamos garantir que o valor da chave do pai é maior que dos filhos.
- Se tiver filho maior do que o pai, troca o maior filho com o pai.

- Precisamos garantir que o valor da chave do pai é maior que dos filhos.
- Se tiver filho maior do que o pai, troca o maior filho com o pai.

- Precisamos garantir que o valor da chave do pai é maior que dos filhos.
- Testa se os elementos V[2i+1] e V[2i+2] são menores ou igual a V[i].
- Troca com o major filho caso contrário

0	1	2	3	4	5	6
0	R	D	E	N	Α	
R	0	D	E	N	Α	
				- 4		

ConstroiHeap

Pseudo-código

10

11

12

13

14

Algoritmo 5: ConstroiHeap

```
Entrada: Vetor V[i..n-1], raiz no nó i, tamanho do vetor n
 Saída: Heap no vetor V[i..n-1]
1 início
     maior \leftarrow i // Inicializa maior como a raiz
     I \leftarrow 2i + 1 // Filho da esquerda
     r \leftarrow 2i + 2 // Filho da direita
     // Se o filho da esquerda é maior que a raiz
     se (I < n \ AND \ V[I] > V[maior]) então
        maior \leftarrow I
     // Se filho da direita é maior que a raiz
     se (r < n \ AND \ V[r] > V[maior]) então
        maior \leftarrow r
      // Se maior não é a raiz
     se (maior \neq i) então
         Troca V[i] \leftrightarrow V[maior] // O maior passa a ser a raiz
        ConstroiHeap(V, maior, n) // Cria o heap na sub-árvore
```

10

11

Algoritmo 6: Heapsort

```
Entrada: Vetor V[0..n-1], tamanho do vetor n
  Saída: Vetor V ordenado
1 início
     // Contrói o heap rearranjando o vetor
     para (i \leftarrow \frac{n}{2} - 1 \text{ decrescendo até } i = 0) faça
        ConstroiHeap(V, i, n)
     // Extrai cada elemento, um por um, do heap
     para (i \leftarrow n-1 decrescendo até i=0) faca
         // Move a raiz atual para o fim do vetor.
         Troca V[0] \leftrightarrow V[i]
         // Chama a função para recriar o heap
         // no vetor reduzido
         ConstroiHeap(V, 0, i)
```

Heapsort

Análise

- A função ConstroiHeap é chamado recursivamente no máximo log n vezes.
- Na função Heapsort, a função ConstroiHeap é chamada dentro dos laços de repetição das linhas 3 e 6.
 - O laço da linha 3 é executado $\frac{n}{2}$ vezes.
 - O laço da linha 6 é executado n vezes.
- Logo, o Heapsort gasta um tempo proporcional a $O(n \log n)$, no pior caso.

Heapsort

Vantagens × Desvantagens

- Vantagens
 - Comportamento $O(n \log n)$.
- Desvantagens
 - Não é estável.
 - Não é tão rápido quanto o Quicksort.
 - A função ConstroiHeap realiza mais operações que a função Particiona do Quicksort.

Características

- Proposto por Hoare em 1960 e publicado em 1962.
- É o algoritmo de ordenação interna mais rápido que se conhece para uma ampla variedade de situações.
- Provavelmente é o mais utilizado.
- A ideia básica é dividir o problema de ordenar um conjunto com *n* itens em dois problemas menores.
- Os problemas menores são ordenados independentemente.
- Os resultados são combinados para produzir a solução final.

Características

Método de Divisão e Conquista

- A parte mais delicada do método é o processo de partição.
- O vetor V[Esq..Dir] é rearranjado por meio da escolha arbitrária de um pivô x.
- O vetor V é particionado em duas partes:
 - Parte esquerda: chaves $\leq x$.
 - Parte direita: chaves $\geq x$.

Ideia Geral

- Algoritmo para o particionamento:
 - \bigcirc Escolha arbitrariamente um pivô x.
 - 2 Percorra o vetor a partir da **esquerda** para a **direita** até que $V[i] \ge x$.
 - **3** Percorra o vetor a partir da **direita** para a **esquerda** até que $V[j] \le x$.
 - Troque V[i] com V[j].
 - \odot Continue este processo até os apontadores i e j se cruzarem.

Ideia Geral

- ullet Ao final do algoritmo de partição, o vetor V[Esq..Dir] está particionado de tal forma que:
 - Os itens em V[Esq], V[Esq + 1], ..., V[j] são menores ou iguais a x.
 - Os itens em V[i], V[i+1], ..., V[Dir] são maiores ou iguais a x.

Exemplo

• Como exemplo, considere o vetor V[0..10], de tamanho n=11, a seguir.

Esq	q pivô									Dir
↓	↓									↓
8	3	7	10	5	6	2	1	9	4	0

- As variáveis **Esq** e **Dir** delimitam o vetor.
- Vamos utilizar o Pivô como o elemento do meio.

- Inicializa-se as variáveis auxiliares i e j.
 - $i \leftarrow Esq$.
 - Irá percorrer o vetor da Esq para a Dir.
 - Ou seja, será incrementado: $i \leftarrow i + 1$.
 - $j \leftarrow Dir$.
 - Irá percorrer o vetor da Dir para a Esq.
 - Ou seja, será decrementado: $j \leftarrow j-1$.
- Calcula-se o **Pivô** $x \leftarrow V[\frac{(Esq+Dir)}{2}]$

- Verifica se o elemento na posição i é maior que o **Pivô**.
 - Se **verdadeiro**, pára.
- Verifica se o elemento na posição j é menor que o **Pivô**.
 - Se verdadeiro, pára.

- Troca o elemento na posição i com o elemento na posição j.
 - $V[0] \leftrightarrow V[10]$.
- Em seguida, incrementa *i* e decrementa *j*.
 - $i \leftarrow 0 + 1$
 - $j \leftarrow 10-1$

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
 - Se **falso**, incrementa $i \leftarrow 1 + 1$.
- Verifica se o elemento na posição j é menor que o Pivô.
 - Se verdadeiro, pára.

- Verifica se o elemento na posição i é maior que o **Pivô**.
- Verifica se o elemento na posição j é menor que o **Pivô**.
- Se **verdadeiro**, pára.

- Troca o elemento na posição i com o elemento na posição j.
 - $V[2] \leftrightarrow V[9]$.
- Em seguida, incrementa i e decrementa j.
 - $i \leftarrow 2 + 1$
 - $j \leftarrow 9-1$

- Verifica se o elemento na posição i é maior que o **Pivô**.
 - Se **verdadeiro**, pára.
- Verifica se o elemento na posição j é menor que o **Pivô**.
 - Se **falso**, decrementa $j \leftarrow 8 1$.

- Verifica se o elemento na posição i é maior que o **Pivô**.
- Verifica se o elemento na posição j é menor que o **Pivô**.
- Se **verdadeiro**, pára.

- Troca o elemento na posição i com o elemento na posição j.
 - $V[3] \leftrightarrow V[7]$.
- Em seguida, incrementa *i* e decrementa *j*.
 - $i \leftarrow 3+1$
 - $j \leftarrow 7 1$

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
 - Se **falso**, incrementa $i \leftarrow 4 + 1$.
- Verifica se o elemento na posição j é menor que o **Pivô**.
 - Se **verdadeiro**, pára.

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
- Verifica se o elemento na posição j é menor que o **Pivô**.
 - Se verdadeiro, pára.

- Troca o elemento na posição i com o elemento na posição j.
 - $V[5] \leftrightarrow V[6]$.
- Em seguida, incrementa *i* e decrementa *j*.
 - $i \leftarrow 5+1$
 - $j \leftarrow 6-1$

- O processo é interrompido quando *i* e *j* se cruzam.
 - Ou seja, i > j.

- Em seguida, os vetores são divididos em dois e ordena-se recursivamente cada vetor.
 - O vetor da esquerda V[Esq..j], começa em Esq e termina em j.
 - ullet O vetor da direita V[i..Dir], começa em i e termina em Dir.

- ullet Realiza-se uma chamada recursiva para o vetor da esquerda V[Esq..j]
 - Quicksort(V,0,5)
- ullet e uma chamada recursiva para o vetor da direita V[i..Dir]
 - Quicksort(V,6,10)

Exemplo

Ordenando recursivamente o vetor da esquerda:

- Inicializa-se as variáveis auxiliares i e j.
 - $i \leftarrow Esq$.
 - $j \leftarrow Dir$.
- Calcula-se o **Pivô** $x \leftarrow V[\frac{(Esq+Dir)}{2}]$
- Verifica se o elemento na posição i é maior que o Pivô.
 - Se **falso**, incrementa $i \leftarrow 0 + 1$.
- Verifica se o elemento na posição j é menor que o Pivô.
 - Se **verdadeiro**, pára.

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
 - Se **falso**, , incrementa $i \leftarrow 1 + 1$.
- Verifica se o elemento na posição j é menor que o **Pivô**.
 - Se verdadeiro, pára.

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
- Verifica se o elemento na posição j é menor que o **Pivô**.
- Se **verdadeiro**, pára.

- Troca o elemento na posição i com o elemento na posição j.
 - $V[2] \leftrightarrow V[5]$.
- Em seguida, incrementa *i* e decrementa *j*.
 - $i \leftarrow 2+1$
 - $j \leftarrow 5-1$

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
 - Se **falso**, incrementa $i \leftarrow i + 1$.
- Verifica se o elemento na posição j é menor que o **Pivô**.
 - Se **falso**, decrementa $j \leftarrow j 1$.

- O processo é interrompido quando *i* e *j* se cruzam.
 - Ou seja, i > j.

- Em seguida, os vetores são divididos em dois e ordena-se recursivamente cada vetor.
 - O vetor da esquerda V[Esq..j], começa em Esq e termina em j.
 - O vetor da direita V[i..Dir], começa em i e termina em Dir.

- ullet Realiza-se uma chamada recursiva para o vetor da esquerda V[Esq..j]
 - Quicksort(V,0,3)
- ullet e uma chamada recursiva para o vetor da direita V[i..Dir]
 - Quicksort(V,4,5)

Exemplo

• Inicializa-se as variáveis e calcula-se o pivô em cada vetor.

- Vetor da Esquerda:
 - Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
 - Se **falso**, incrementa $i \leftarrow i + 1$.
 - Verifica se o elemento na posição j é menor que o Pivô.
 - Se verdadeiro, pára.
- Vetor da Direita:
 - Realiza-se a mesma verificação: ambas são verdadeiras.

- Vetor da Esquerda:
 - Verifica os elementos na posição i e j em relação ao pivô.
 - Ambos os testes são verdadeiros, o laço de repetição pára.
- Vetor da Direita:
 - Realiza-se a troca dos elementos.
 - Incrementa $i \leftarrow i+1$ e decrementa $j \leftarrow j-1$.

- Vetor da Esquerda:
 - Realiza-se a troca dos elementos.
 - Incrementa $i \leftarrow i+1$ e decrementa $j \leftarrow j-1$.
- Vetor da Direita:
 - *i* e *j* se cruzaram, laço de repetição pára.

- Vetor da Esquerda:
 - i e j apontam para o mesmo elemento (Não precisa trocar).
 - Incrementa $i \leftarrow i + 1$ e decrementa $j \leftarrow j 1$.
- Vetor da Direita:
 - Ordenado.

- Vetor da Esquerda:
 - *i* e *j* se cruzaram, laço de repetição pára.
 - O vetor está ordenado.
- Vetor da Direita:
 - Ordenado.

Exemplo

Ainda falta ordenar o vetor da direita:

• Inicializa as variáveis i e j e calcula o pivô.

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
 - Se **falso**, incrementa $i \leftarrow i + 1$.
- Verifica se o elemento na posição j é menor que o **Pivô**.
 - Se **verdadeiro**, pára.

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
- Verifica se o elemento na posição j é menor que o **Pivô**.
- Se **verdadeiro**, pára.

- Realiza-se a troca dos elementos.
- Incrementa $i \leftarrow i+1$ e decrementa $j \leftarrow j-1$.

- Verifica se o elemento na posição *i* é <u>maior</u> que o **Pivô**.
- Verifica se o elemento na posição j é menor que o **Pivô**.
- Se **verdadeiro**, pára.

- Realiza-se a troca dos elementos.
- Incrementa $i \leftarrow i+1$ e decrementa $j \leftarrow j-1$.

- i e j se cruzaram, laço de repetição pára.
- Realiza as chamadas recursivas.

- Realiza uma chamada recursiva para o vetor da esquerda V[Esq..j].
- E uma chamada recursiva para o vetor da direita V[i..Dir].

- Inicializa as variáveis i e j.
- Calcula o pivô.

- Vetor da Esquerda:
 - Compara os elementos nas posições *i* e *j* com o pivô.
 - Incrementa $i \leftarrow i + 1$.
- Vetor da Direita:
 - Compara os elementos nas posições *i* e *j* com o pivô.
 - As condições são **falsas**, incrementa *i* e decrementa *j*.

- Vetor da Esquerda:
 - Compara os elementos nas posições *i* e *j* com o pivô.
 - As condições são verdadeiras, o laço de repetição pára.
- Vetor da Direita:
 - i e j se cruzaram, o laço de repetição pára.
 - O vetor está ordenado.

- Vetor da Esquerda:
 - Realiza-se a troca dos elementos.
 - Incrementa $i \leftarrow i + 1$ e decrementa $j \leftarrow j 1$.
- Vetor da Direita:
 - Ordenado.

- Vetor da Esquerda:
 - i e j se cruzaram, o laço de repetição pára.
 - O vetor está ordenado.
- Vetor da Direita:
 - Ordenado.

QuicksortOrdena

Pseudo-código

Algoritmo 7: QuicksortOrdena

```
Entrada: Vetor V[0..n-1], tamanho n
```

Saída: Vetor V ordenado

1 início

```
2 Quicksort(V, 0, n-1)
```

Algoritmo 8: Quicksort

```
Entrada: Vetor V[Esq..Dir], Esq, Dir
```

Saída: Vetor V ordenado

1 início

11

13

Algoritmo 9: Particiona

```
Entrada: Vetor V[Esq..Dir], Esq. Dir
   Saída: Vetor V ordenado
1 início
        i \leftarrow \textit{Esa}: i \leftarrow \textit{Dir}
      x \leftarrow V\left[\frac{(i+j)}{2}\right]
        repita
            enquanto (x > V[i]) faça
              i \leftarrow i + 1
            enquanto (x < V[j]) faça
              j \leftarrow j-1
            se (i < j) então
                Trocar V[i] \leftrightarrow V[j]
10
               i \leftarrow i + 1
                j \leftarrow j - 1
        até (i > j);
        retorna (i, j)
```

Quicksort Pseudocódigo

- O laço de repetição da função Particiona é extremamente simples.
- Razão pela qual o algoritmo Quicksort é tão rápido.

Análise

- Qual o pior caso para o Quicksort?
- Por que?
 - Qual sua ordem de complexidade?
 - Qual o melhor caso?
 - O algoritmo é estável?

Análise

- Melhor caso: $C(n) = 2C(\frac{n}{2}) + n = n \log n$
- Ocorre quando o problema é sempre divido em subproblemas de igual tamanho após a partição.

Análise

- Pior caso: $C(n) = O(n^2)$
- O pior caso ocorre quando, sistematicamente, o pivô é escolhido como sendo um dos extremos de um arquivo já ordenado.

O(n) operações por nível da árvore de execução

Análise

- O pior caso pode ser evitado empregando pequenas modificações no algoritmo.
- Para isso basta escolher três itens quaisquer do vetor e usar a mediana dos três como pivô.

Análise

- Caso médio de acordo com Sedgewick e Flajolet (1996)[p. 17):
- $C(n) \approx 1,386 n \log n 0,846 n$.
- Isso significa que em média o tempo de execução do QuickSort é cerca de $O(n \log n)$.

Vantagens × Desvantagens

- Vantagens:
 - É extremamente eficiente para ordenar arquivos de dados.
 - Necessita de apenas uma pequena pilha como memória auxiliar.
 - Requer $O(n \log n)$ comparações em média (caso médio) para ordenar n itens.
- Desvantagens:
 - Tem um pior caso $O(n^2)$ comparações.
 - Sua implementação é delicada e difícil: um pequeno engano pode levar a efeitos inesperados para algumas entradas de dados.
 - O método não é estável.

Melhorias

- Pivô mediana de três ou mediana de cinco.
- Não empilhar quando tem apenas um item.
- Usar algoritmo de inserção (Insertionsort) para vetores pequenos.
- Escolha correta do lado a ser empilhado primeiro.
- Resultado: melhoria no tempo de execução de 25% a 30%.

Algoritmos e Estrutura de Dados II Algoritmos de Ordenação

prof. Frederico Santos de Oliveira

Universidade Federal de Mato Grosso Instituto de Engenharia

