Self-contained derivation of $\langle S_z(t) \rangle$, $\langle S_y(t) \rangle$, $\langle S_x(t) \rangle$

Below is one self-contained, fully-detailed derivation that starts with the Hamiltonian

$$\langle S_z(t) \rangle, \qquad \langle S_y(t) \rangle, \qquad \langle S_x(t) \rangle$$

0 Notation used throughout

symbol	meaning		
$\gamma = \frac{eg}{2m_e c}$	gyro-magnetic ratio		
B_z	static field along $+\hat{z}$		
B_1	magnitude of circularly-polarized RF field		
ω	RF angular frequency		
$\omega_0 = -\gamma B_z$	Larmor (Zeeman) frequency		
$\omega_0 = -\gamma B_z$ $\tilde{\omega} = \omega - \omega_0$	detuning		
$g \equiv -\frac{\gamma \hbar B_1}{2}$	RF coupling energy (δ)		
$\Omega_0 = g/\bar{\hbar}$	RF coupling frequency		
$\Omega_R = \sqrt{\Omega_0^2 + (\tilde{\omega}/2)^2}$	generalized (detuned) Rabi frequency		
$\Omega_R = \sqrt{\Omega_0^2 + (\tilde{\omega}/2)^2}$ $\alpha = \Omega_R t, \ \theta = \tilde{\omega}t, \ b = \frac{\tilde{\omega}}{2\Omega_R}$	shorthand		

1 Hamiltonian

$$H = -\gamma \mathbf{S} \cdot \mathbf{B} = \underbrace{\frac{\hbar \omega_0}{2} \sigma_z}_{H_0} + \underbrace{g \left(\sigma_x \cos \omega t + \sigma_y \sin \omega t\right)}_{V(t)}$$

Spin basis:
$$|1\rangle \equiv |+\rangle_z$$
, $|2\rangle \equiv |-\rangle_z$, so $H_0 = \frac{\hbar\omega_0}{2}(|2\rangle\langle 2| - |1\rangle\langle 1|)$.
With $S_{\pm} = (\sigma_x \pm i\sigma_y)/2$,

$$V(t) = \hbar\Omega_0[S_+e^{i\omega t} + S_-e^{-i\omega t}] = \hbar\Omega_0(e^{i\omega t}|2\rangle\langle 1| + e^{-i\omega t}|1\rangle\langle 2|).$$

2 Interaction (Dirac) picture

Let

$$|\psi_I(t)\rangle = C_1(t)|1\rangle + C_2(t)|2\rangle.$$

Schrodinger equation:

$$i\hbar\dot{C}_1 = g\,e^{i\tilde{\omega}t}C_2, \qquad i\hbar\dot{C}_2 = g\,e^{-i\tilde{\omega}t}C_1$$
 (I, II)

Eliminate one amplitude:

$$\ddot{C}_2 + i\tilde{\omega}\dot{C}_2 + \Omega_0^2 C_2 = 0,$$

whose eigen-values are $\tilde{\omega}/2 \pm \Omega_R$.

3 Probability amplitudes

Initial state: $C_1(0) = 1$, $C_2(0) = 0$:

$$C_{2}(t) = -\frac{i\Omega_{0}}{\Omega_{R}} e^{-i\theta/2} \sin \alpha,$$

$$C_{1}(t) = e^{i\theta/2} \left[\cos \alpha - i b \sin \alpha\right].$$
(1)

Check: $|C_1|^2 + |C_2|^2 = 1$.

4 Operator matrices

$$S_z = \frac{\hbar}{2}\sigma_z, \quad S_x = \frac{\hbar}{2}\sigma_x, \quad S_y = \frac{\hbar}{2}\sigma_y = \frac{\hbar}{2}\binom{0}{i} \quad \frac{-i}{0}.$$

5 Expectation values

5.1 Longitudinal component $\langle S_z(t) \rangle$

$$S_z = \frac{\hbar}{2} \left[1 - \frac{2\Omega_0^2}{\Omega_R^2} \sin^2 \alpha \right]$$

5.2 Transverse y-component $\langle S_y(t) \rangle$

$$\langle S_y \rangle = \frac{\hbar}{2} i (C_2^* C_1 - C_1^* C_2) = \hbar \operatorname{Im} [C_1^* C_2].$$

$$C_1^*C_2 = -\frac{i\Omega_0}{\Omega_R}\sin\alpha \,e^{-i\theta} \big(\cos\alpha + i\,b\sin\alpha\big), \qquad \operatorname{Im}(C_1^*C_2) = -\frac{\Omega_0}{\Omega_R}\sin\alpha \big[\cos\alpha\cos\theta + b\sin\alpha\sin\theta\big].$$

$$\langle S_y(t) \rangle = -\frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \Big[\Omega_R \sin(2\alpha) \cos \theta + \tilde{\omega} \sin^2 \alpha \sin \theta \Big]$$

5.3 Transverse x-component $\langle S_x(t) \rangle$

$$\langle S_x \rangle = \frac{\hbar}{2} (C_1^* C_2 + C_2^* C_1) = \hbar \operatorname{Re}[C_1^* C_2],$$

$$\operatorname{Re}(C_1^*C_2) = \frac{\Omega_0}{\Omega_R} \sin \alpha [b \sin \alpha \cos \theta - \cos \alpha \sin \theta].$$

$$\langle S_x(t) \rangle = \frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \left[-\Omega_R \sin(2\alpha) \sin \theta + \tilde{\omega} \sin^2 \alpha \cos \theta \right]$$

6 One-line summary

$$\begin{split} \left\langle S_z \right\rangle &= \frac{\hbar}{2} \left[1 - \frac{2\Omega_0^2}{\Omega_R^2} \sin^2 \alpha \right], \\ \left\langle S_y \right\rangle &= -\frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \left[\Omega_R \sin(2\alpha) \cos \theta + \tilde{\omega} \sin^2 \alpha \sin \theta \right], \\ \left\langle S_x \right\rangle &= \frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \left[-\Omega_R \sin(2\alpha) \sin \theta + \tilde{\omega} \sin^2 \alpha \cos \theta \right]. \end{split}$$

Appendix A – Laboratory frame vs. rotating frame

Why "replace $\tilde{\omega}t$ by ωt " when we plot the Bloch vector?

1 Physical setting

Take a spin- $\frac{1}{2}$ or two-level atom in a static field $B_0\hat{z}$ plus a weak r.f. (microwave, laser) field of frequency ω in the transverse plane:

$$H = \underbrace{\frac{\hbar\omega_0}{2}\sigma_z}_{H_0} + \underbrace{\frac{\hbar\Omega_R}{2}\left(\sigma_x\cos\omega t + \sigma_y\sin\omega t\right)}_{V(t)}, \qquad \omega_0 = \gamma B_0, \ \Omega_0 = \gamma B_1. \tag{1}$$

2 Schrodinger picture (laboratory frame)

Time-dependent state vector:

$$|\psi_S(t)\rangle = \begin{pmatrix} C_1(t) \\ C_2(t) \end{pmatrix}, \qquad \langle \mathbf{S} \rangle_{\text{lab}} = \frac{\hbar}{2} \langle \psi_S | \boldsymbol{\sigma} | \psi_S \rangle.$$
 (2)

Every transverse observable obtained from these amplitudes **rotates rapidly** at the Larmor frequency ω_0 . Animating that motion is possible but visually crowded.

3 Interaction picture / rotating frame

Define a unitary that "removes" the static Zeeman term:

$$|\psi_I(t)\rangle = e^{+iH_0t/\hbar} |\psi_S(t)\rangle = e^{+i\omega_0 t \sigma_z/2} \begin{pmatrix} C_1(t) \\ C_2(t) \end{pmatrix}, \tag{3}$$

$$V_I(t) = e^{+iH_0t/\hbar} V(t) e^{-iH_0t/\hbar} = \frac{\hbar\Omega_0}{2} \left(\sigma_x \cos[\tilde{\omega}t] + \sigma_y \sin[\tilde{\omega}t] \right),$$

$$\tilde{\omega} \equiv \omega - \omega_0 \quad \text{(detuning)}.$$
(4)

All fast $e^{\pm i\omega_0 t}$ factors are gone; the Bloch vector in this frame processes only with the *slow* detuning $\tilde{\omega} = \omega - \omega_0$ and the Rabi frequency Ω_R .

4 Spin components in the rotating frame

Solve the Rabi problem (under the rotating-wave approximation) and write the expectation values:

$$S_x^R(t) = \frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \left[-\Omega_R \sin(2\alpha) \sin \tilde{\omega}t + \tilde{\omega} \sin^2 \alpha \cos \tilde{\omega}t \right],$$

$$S_y^R(t) = \frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \left[-\Omega_R \sin(2\alpha) \cos \tilde{\omega}t - \tilde{\omega} \sin^2 \alpha \sin \tilde{\omega}t \right],$$

$$S_z^R(t) = \frac{\hbar}{2} \left[\cos^2 \alpha - \sin^2 \alpha \cos \tilde{\omega}t \right],$$
(5)

with

$$\alpha = \frac{1}{2} \arctan \frac{\Omega_0}{\tilde{\omega}}, \qquad \Omega_R = \sqrt{\Omega_0^2 + (\tilde{\omega}/2)^2}.$$

These are the formulas that use the **tilde phase** $\tilde{\omega}t$.

5 Back-transform to the laboratory frame

A passive rotation by $\omega_0 t$ about $+\hat{z}$ restores the lab axes:

$$\langle S_x \rangle_{\text{lab}} = \cos \omega_0 t \ S_x^R - \sin \omega_0 t \ S_y^R,$$

$$\langle S_y \rangle_{\text{lab}} = \sin \omega_0 t \ S_x^R + \cos \omega_0 t \ S_y^R,$$

$$\langle S_z \rangle_{\text{lab}} = S_z^R.$$
(6)

All occurrences of $\tilde{\omega}t$ combine with the extra $\omega_0 t$ to produce

$$\omega t = \tilde{\omega}t + \omega_0 t$$

exactly the phase that appears when you plot with fixed x, y, z axes. Collecting terms gives:

$$\langle S_x \rangle_{\text{lab}} = \frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \Big[-\Omega_R \sin(2\alpha) \sin \omega t + \tilde{\omega} \sin^2 \alpha \cos \omega t \Big],$$

$$\langle S_y \rangle_{\text{lab}} = -\frac{\hbar}{2} \frac{\Omega_0}{\Omega_R^2} \Big[\Omega_R \sin(2\alpha) \cos \omega t + \tilde{\omega} \sin^2 \alpha \sin \omega t \Big],$$

$$\langle S_z \rangle_{\text{lab}} = \frac{\hbar}{2} \Big[\cos^2 \alpha - \sin^2 \alpha \cos \tilde{\omega} t \Big].$$
(7)

These are the ωt versions you found "make the code work".

6 What the animation program is really doing

- The Matplotlib axes you draw are stationary in real space \rightarrow lab frame.
- Feeding in $S_{x,y}^R(t)$ (rotating frame) therefore describes the Bloch vector in a coordinate system that is itself spinning about z at ω_0 . The apparent motion looks wrong.
- Multiply the transverse pair by the rotation matrix above (or, equivalently, replace $\tilde{\omega}t \to \omega t$) and the picture matches the exact quantum dynamics.

7 Summary

frame	state / operators	evolution phase	spin components contain
laboratory (Schrödinger)	$ \psi_S(t) angle$	$e^{-i\omega_0 t \sigma_z/2}$	$\sin \omega t, \cos \omega t$
rotating / interaction	$ \psi_I(t)\rangle = e^{+i\omega_0 t \sigma_z/2} \psi_S(t)\rangle$	fast Larmor term removed	$\sin \tilde{\omega} t, \cos \tilde{\omega} t$

Therefore **replace** $\tilde{\omega}t$ **by** ωt whenever you display results in a non-rotating plot. The mathematical step is nothing more than the inverse unitary transformation between the two standard pictures of quantum mechanics.