Y-2 CONSOLIDATION AND SECONDARY COMPRESSION

	PAGE
1. Terzaghi Theory	Ź
1.1 assumptions and basic equation	. 2
1.2 Solution en demensionless form	2
1.3 Coef of consolidation from incremental ordanetu tests	3
2. Miscellaneous Topics	4
2.1 Primary consolidation vs. secondary compression	4
2.2 Influence of stress history and sample distrutance (on Cv and Cx)	5
2.3 Rate of loading	6
2.4 Layered system	6
3. Secondary Compression	7
3.1 Rate of secondary compression or slope of 1-D	7
Complession Clinic	
3.2 Some practical peputts of secondary compression	. 8
3.2 Some practical Algutts of secondary compression 1) hureased settlement after end of primary consolidation	
2) aging of "NC" deposits	
3) Behavin during standard (24h.) incremental	. 9
ocdometer kest	

Sheet A: Cda vs. Co relationships for three soils

TV> 0.2: 0=1-8

U vs. Log T. for Tarzaghi Theory (Linear Us)

Part I-2

CC 3/24/%

Secondary compression = drained creep for I-D loading. Mechanisms

Controversial (CCL = contact slippage, not viscous Hro).

Usually linear is by t - constant rate of second. comps. Constant rate of second. comps. Constant rate of second.

lower cv

- SECONDARY COMPRESSION (Drained 1-0 creep at constant one
 - 3.1 Rate of Secondary Compression us. Slope of I-D Compression Curve
 - 1) Experimental correlations between Cole = -de/dlogt and slope of EOP (and-of-primary) compression curve, "Ce" = -de/dlog o'x

Hence drawed creep is unequely related to compressibility of sail during primary consolidation -> Same physical mechanisms (CCL openiar)

(See Sheet A for actual data)

2) Values of Cxe/Cc = Cxe/(des/dlog Txc)

Material	C_{α}/C_{e}
Granular soils including rockfill	0.02 ± 0.01
Shale and mudstone	0.03 ± 0.01
Inorganic clays and silts	0.04 ± 0.01
Organic clays and silts	0.05 ± 0.01
Peat and muskeg	0.06 ± 0.01

Most cohesive soils: NC FOC CHE = CHE = 0.045 +0.015

:. Cx (OC) << Cx (NC)

Values of C_{α}/C_{e} for Geotechnical Materials

11/21/96

3.2 Some Practical Results of Secondary Compression

3.2.1 Increased settlement ofter end of premary consolidation

- 1) Basic equations for NC soil (Cd = CdE)
 - · Primary consolidation settlement, Pcf = H. CR. log Oxf/op
 - · Secondary compression settlement, Ps = H. Cd. 109 t/tp

2) Examples for Ca/CR = 0.045

Ov+ lop	109 Tuflop	109 t/tp	Ps/Pct (%)	Most important when have:
2	0.30	. 1	15	
		2	30	· Your Ove lop
1.5	0.175	1	= 25	- Relatively small to
•		2	<i>≈ 50</i>	- Small Hd
1. 化基金线管		·		- Installation of
				vertical draws

3.2.2 Aging of "normally consolidated" deposits (morease in OCR)

For
$$C_{A}/C_{R} = 0.045$$
 $t/E_{p} = 10 \rightarrow OCR = 1.13$ $RR/C_{R} = 0.15$ $= 100$ $= 1.27$ $(expandent = 0.045 | 0.053)$ $= 1000$ $= 1.44$

42.381 50 SHEETS 5 SQUARE 42.382 100 SHEETS 5 SQUARE 42.389 200 SHEETS 5 SQUARE

3,2.3 Behavior during standard (24h.) incremental oedometer fests

• For typical Hot & 1 cm and $C_{\nu} \approx 10^{-3} \text{cm/s}$,
get $tp \leq 15 \text{ min} \Rightarrow t_{1} \text{day}/t_{p} \gtrsim 100$

Path during increment:
 a-b = recompression
 b-c - vergin compression
 c-d - secondary compression

1) Use of 24hr (Iday) curve, which is allowed by ASTM D2435-90, will > Lower extensited of than from EOP(tp) curve.

Difference is typically about 15 ± 5%. Therefore should use d100, rather that df, in order to plot EOP curve.

Unly tensitly most labs plat Iday curve

Unfortunately, most labs plot Iday cure

(unless MIT or Uof I graduates)

dioo - t

tp Od;

2) Use of 24 hr. increments affects computed C, especially from VE method.

• Sample initially exhibits OC behavior with high Cv > curved

dial re VE plot > too steep fitted line.

— actual

. Probably explains why Cu(TE) > Cu(logt)

dial

> vi t

Canadian Quick Clay

 $C_{\alpha e}\,vs.\,C_{c}\,Relationships$ for three soils

Adapted from Mesri & Castro (1987), " C_{α} / C_{c} Concept and K_{o} During Secondary Compression". ASCE, JGE, 113(3), 230-247.