CLASSIFICAÇÃO

MANOELA KOHLER

Prof.manoela@ica.ele.puc-rio.br

TÓPICOS

R

Análise exploratória

Pré-processamento

- Balanceamento
- Outliers
- Missing values
- Normalização
- Seleção de atributos (Filtros, Wrappers, PCA)

Associação:

- Apriori
- FP-Growth
- Eclat

Classificação:

- Regressão logística
- Support Vector Machine (SVM)
- Árvores de Decisão
- Random Forest
- Redes Neurais
- K nearest neighbors

Regressão

- Regressão linear simples
- Regressão linear múltipla
- Regressão não linear simples
- Regressão não linear múltipla

Agrupamento

- Particionamento (K-means, K-medoids)
- Hierárquico (DIANA, AGNES)
- Densidade (DBSCAN)

Séries Temporais

- Naive
- Média Móvel
- Amortecimento exponencial
- Auto-regressivo integrados de média móvel
- Auto regressivo n\u00e4o linear

Recapitulação

ETAPAS DE UM PROJETO DE DATA MINING

ESQUEMA BÁSICO DE UM PROJETO DE DM

CLASSIFICAÇÃO

5 CLASSES DE PROBLEMAS DE DM

SUPERVISIONADO

Aproximador: função mapeia entradas e saída.

NÃO SUPERVISIONADO

SVM - Support Vector Machine

SVM NÃO LINEAR

Ideia geral: o espaço de atributos original pode – com alta probabilidade (<u>Teorema de Cover</u>) – ser mapeado para um espaço de atributos maior, onde os dados podem ser separados:

Árvores de Decisão

ÁRVORES DE DECISÃO — ID3

Predictors				Target
Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	Falce	No
Rainy	Hot	High	True	No
Overoact	Hot	High	Faice	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	Faice	Yes
Sunny	Cool	Normal	True	No
Overoact	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	Faice	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overoast	Mild	High	True	Yes
Overoact	Hot	Normal	Falce	Yes
Sunny	Mild	High	True	No

(W

Regras de

decisão

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R_s: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

Agregar múltiplos modelos treinados com o objetivo de melhorar a acurácia do modelo conjunto.

Intuição: simula o que fazemos quando combinamos conhecimento de especialistas em um processo de tomada de decisão.

Conhecidos também por:

- Comitês especialistas;
- Sistemas múltiplos de classificação;
- Comitê de classificadores;
- Máquina de Comitê;
- Mistura de especialistas;
- Aprendizado em conjunto.

Diversos estudos demonstram sua utilização com sucesso em problemas onde um único especialista não funciona bem.

Votação:

- Maioria do votos
- Maioria ponderada dos votos
- Borda count
- Média
- Média ponderada
- Soma

- Soma ponderada
- Produto
- Máximo
- Mínimo
- Mediana

APRENDIZADO DO COMITÊ

Aprendizado de Comitês

Ás vezes cada técnica de aprendizado retorna diferentes 'hipóteses' (funções), mas nenhuma hipótese perfeita.

Poderíamos combinar várias hipóteses imperfeitas para se ter uma hipótese melhor?

MOTIVAÇÃO

Analogias:

Eleições combinam votos de eleitores para escolher um candidato bom;

Comitês combinam opiniões de especialistas para tomar decisões melhores;

Estudantes trabalhando em conjunto em um projeto.

Intuição:

Indivíduos cometem erros, mas a maioria é menos propensa a erros;

Indivíduos em geral têm conhecimento parcial. Um comitê pode juntar conhecimento para tomar decisões melhores.

Quando usar?

- Temos um conjunto muito grande de dados;
- A região de domínio do problema é muito complexa;
- Queremos melhorar os resultados de classificadores individuais.

Vantagem

- A combinação de modelos pode apresentar melhor desempenho que um modelo só;
- Neutraliza ou minimiza fortemente a instabilidade inerente aos algoritmos de aprendizagem;

Desvantagens

- Não há garantia de que as estruturas modulares apresentem os melhores resultados;
- Modelos combinados são mais difíceis de analisar;
- O custo é alto.

COMITÊS - TÉCNICAS

Boosting: Observações classificadas incorretamente são atribuídas maiores pesos!

- Bagging: média ou maioria de votos.
- Boosting: média ponderada (classificadores com resultados melhores, têm pesos maiores).

Boosting:

- Durante etapa de treinamento, erro de treinamento é guardado.
- Existe uma condição para determinar se um modelo será utilizado ou será descartado.
- AdaBoost, LPBoost, XGBoost, GradientBoost, BrownBoost

COMITÊS: STACKING

COMITÊS: RMS

Random Subspace Method (RMS)

Similar ao Bagging, mas com aleatorização sobre os atributos.

Classificadores-base aprendem nos subespaços S de mesma dimensão.

Decisão final é por votação.

RANDOM FOREST

RANDOM FOREST: WORKFLOW

A proporção de votos diferentes da classe target em relação ao total de votos é o erro OOB (Out-Of-Bag estimate)

RANDOM FOREST - CLASSIFICAÇÃO

Criada através de árvores de decisão individuais cujos parâmetros podem variar aleatoriamente.

Treinamento

Bagging (Bootstrap)

Random subspace method

Recall

Maioria de votos

ESTUDOS DE CASO

Prêmio de 1 milhão de dólares

- Melhora na acurácia do sistema de recomendação de filmes da Netflix em 10%.
- Os melhores times combinaram diversos modelos e algoritmos em um comitê.

NETFLIX PRIZE

Tarefa de aprendizado supervisionado

- Dados de treinamento são formados por um conjunto de usuários e as avaliações dos filmes (1,2,3,4,5 estrelas) feitas por esses usuários;
- Construir um classificador que dado um usuário e um filme não avaliado, classifique corretamente aquele filme como 1, 2, 3, 4, ou 5 estrelas;
- Prêmio de \$1 milhão para 10% em melhora na acurácia em relação ao modelo atual.

ESTUDOS DE CASO

KNN

- 1. Determinar o valor de K, ou número de vizinhos
- 2. Calcular a distância entre cada par de registros
- 3. Determinar quais são os K registros (vizinhos) mais próximos do novo registro
- 4. Dentre esses K vizinhos, contar o número de vizinhos em cada classe
- 5. O novo registro vai ser da classe majoritária entre os vizinhos mais próximos

A classe do novo padrão é igual ao da K maioria mais próxima.

Pendências:

- Qual tipo de distância usar?
- Qual valor de K?
- Como Desempatar?

DISTÂNCIA

DISTÂNCIA

DISTÂNCIA

A classe do novo padrão é igual ao da K maioria mais Próxima.

Pendências:

- Qual tipo de distância usar?
- Qual valor de K?
- Como Desempatar?

Escolha experimental

A classe do novo padrão é igual ao da K maioria mais Próxima.

Pendências:

- Qual tipo de distância usar?
- Qual valor de K?
- Como Desempatar?

Escolha aletória Escolha aletória ponderada Classe mais próxima

DESEMPATE

Supondo K = 4

Escolha Aleatória:

"Jogue uma moeda honesta": caso saia cara, escolha a classe vermelha, caso saia coroa, escolha a classe azul.

DESEMPATE

Supondo K = 4

Escolha Aleatória Ponderada:

"Jogue uma moeda desonesta": Dê mais chance à classe que está relacionada a classe que possua mais padrões.

Caso saia cara, escolha a classe vermelha, caso saia coroa, escolha a classe azul.

DESEMPATE

Supondo K = 4

Classe mais próxima:

Selecione a classe cuja distância é menor.

Passo 1: Determinar o valor de K, ou número de vizinhos K = 5

Passo 2: Calcular a distância entre cada par de registros

Passo 3: Determinar quais são os 5 vizinhos mais próximos (distância euclidiana) do novo registro

Passo 4: Dentre os 5 vizinhos, contar o número de vizinhos em cada classe

Passo 5: O novo registro vai ser da classe majoritária entre os vizinhos mais próximos

Passo 5: O novo registro vai ser da classe majoritária entre os vizinhos mais próximos

ESTUDOS DE CASO

ANÁLISE DE CRÉDITO BANCÁRIO

A base de dados contém **2077 exemplos** de créditos concedidos ou não.

Possui 11 atributos de entrada e 2 classes de saída.

A saída indica se o cliente pagou o empréstimo (=1) ou se não pagou (=0).

ANÁLISE DE CRÉDITO BANCÁRIO

	Nome das	Descrição	Tipo	Valores
	Variáveis			possíveis
1	ESTC	Estado civil	Categórica	0,1,2,3
2	NDEP	Número de dep endentes	Categórica	0,1,2,3,4,5,6,7
3	RENDA	Renda Familiar	Numérica	300-9675
4	TIPOR	Tipo de residência	Categórica	0,1
5	VBEM	Valor do bem a ser adquirido	Numérica	300-6000
6	NPARC	Número de parc elas	Numérica	1-24
7	VPARC	Valor da parc ela	Numérica	50-719
8	TEL	Se o cliente possui tel efone	Categórica	0,1
9	IDADE	Idade do cliente	Numérica	18-70
10	RESMS	Tempo de moradia (Res idência)	Numérica	0-420
10		(em meses)		
11	ENTRADA	Valor da entrada	Numérica	0-1300
=	CLASSE	=1 se o cliente pagou a dívida	Categórica	0,1

CÂNCER DE MAMA

University of Wisconsin, Clinical Sciences Center

30 atributos + classe + id:

- Raio: distância media do centro à pontos no perímetro do tumor;
- Textura: desvio padrão dos valores em escala de cinza;
- Perímetro;
- Área;
- Etc...

569 instâncias: 357 Benignas / 212 Malignas

REGRESSÃO LINEAR SIMPLES

Simple Linear Regression:

$$y = b_0 + b_1^* x$$

Salary = $b_0 + b_1$ *Experience

Pensando em probabilidades, esses 'pedaços' não fazem mais sentido.

Poderíamos alterar para modelar melhor o problema.

Regressão Linear Aplica sigmoidal Regressão Logística

$$y = b_0 + b_1 x_1 \implies p = \frac{1}{1 + e^{-y}}$$

$$\ln(\frac{p}{1-p}) = b_0 + b_1 x_1$$

REGRESSÃO LOGÍSTICA - INFERÊNCIA

ESTUDOS DE CASO

Análise de Crédito Bancário

ANÚNCIOS EM REDES SOCIAIS

400 registros para inferir se determinado cliente vai ou não comprar o produto anunciado.

- Gênero
- Idade
- Salário Estimado

Trabalho

