Capítulo 1 | Unidade lógico-aritmética (ALU)

Desenhou-se a **ALU** com três unidades a funcionarem em paralelo, abaixo descritas com maior detalhe.

O resultado produzido por estas unidades é introduzido num "multiplexer" que escolhe de acordo com sinais provenientes da unidade de descodificação qual o resultado e "Flags" a colocar à saída da **ALU**.

1.1 Unidade Aritmética

A unidade Aritmética é responsável pelas operações apresentadas na tabela 1.1.

OP	Operação	Mnemónica	Flags actualizadas
00000	C = A + B	add c, a, b	S,C,Z,V
00001	C = A + B + 1	addinc c, a, b	S,C,Z,V
00011	C = A + 1	inca c, a	S,C,Z,V
00100	C = A - B - 1	subdec c, a, b	S,C,Z,V
00101	C = A - B	sub c, a, b	S,C,Z,V
00110	C = A - 1	deca c, a	S,C,Z,V

Tabela 1.1: Operações Aritméticas

A unidade aritmética começa por analisar qual a operação a executar de acordo com os dados vindos da unidade de descodificação e em seguida começa por calcular o segundo membro da operação C=A+operB em que

$$operB = \left\{ \begin{array}{ll} B & : OP = 00000 \\ B+1 & : OP = 00001 \\ 1 & : OP = 00011 \\ -B-1 & : OP = 00100 \\ -B & : OP = 00101 \\ -1 & : OP = 00110 \end{array} \right.$$

De seguida calcula C=A+operB e as "Flags" correspondentes com base na análise do resultado e dos operandos.

1.2 Unidade Lógica

A unidade Lógica é responsável pelas operações apresentadas na tabela 1.2.

OP	Operação	Mnemónica	Flags actualizadas
10000	C = 0	zeros c	
10001	C = A & B	and c, a, b	S,Z
10010	C = !A&B	andnota c, a, b	S,Z
10011	C = B	passb c, b	
10100	C = A & !B	andnotb c, a, b	S,Z
10101	C = A	passa c, a	$_{\mathrm{S,Z}}$
10110	$C = A \oplus B$	xor c, a, b	$_{\mathrm{S,Z}}$
10111	C = A B	or c, a, b	S,Z
11000	C = !A & !B	nor c, a, b	$_{\mathrm{S,Z}}$
11001	$C = !(A \oplus B)$	xnor c, a, b	S,Z
11010	C = !A	passnota c, a	$_{\mathrm{S,Z}}$
11011	C = !A B	ornota c, a, b	$_{\mathrm{S,Z}}$
11100	C = !B	passnotb c, b	S,Z
11101	C = A !B	nand c, a, b	S,Z
11111	C=1	ones c	

Tabela 1.2: Operações de Deslocamento

1.3 Unidade de Deslocamentos

A unidade de Deslocamentos é responsável pelas operações apresentadas na tabela 1.3.

	OP	Operação	Mnemónica	Flags actualizadas
	01000	C = ShiftLgicoEsq.(A)	lsl c, a	S,C,Z
ĺ	01001	C = ShiftAritmticoDir.(A)	asr c, a	S,C,Z

Tabela 1.3: Operações de Deslocamento

No caso do "shift" lógico a saída resulta do deslocamento do sinal de entrada uma posição e preenchimento do "bit0" com 0.

No caso do "shift" aritmético a saída resulta do deslocamento do sinal de entrada uma posição e preenchimento do "bit15" com o "bit15" da entrada.