

IN THE CLAIMS:

Please cancel claims 1-12 and 20, without prejudice, and amend the remaining claims as follows:

Claims 1-12. (Cancelled)

13. (Currently Amended) A catalyst system comprising an activated bridged compound having the formula:

wherein M is a 3d, 4d or 5d transition metal; each X is an atom or group covalently or ionically bonded to M and may are be the same or different; R₁ and R₂ may are be the same or each may be different and are substituted or unsubstituted cyclopentadienyl groups or aromatic rings; R_B is a structural bridge between the cyclopentadienyl or aromatic rings R₁ and R₂ and imparts stereorigidity to the rings, and comprises comprising three heteroatoms at least one heteroatom bonded to M, with each of R₁ and R₂ bonded to the same or different heteroatom of R_B which heteroatom is also bonded to M; Z is the coordination number of M and is greater than or equal to 4; m is the number of bonds between M and heteroatoms of R_B and to impart stereorigidity m≥2; and with R₁, R₂ and R_B selected to provide a catalyst component with C₁, C₂ or C₃ symmetry.

14. (Currently Amended) The system of claim 13, wherein M is selected from the group consisting of transition metals and lanthanide metals, wherein the heteroatoms are selected from the group consisting of O, N, S and P.

15. (Currently Amended) The system of claim 13, wherein R_B comprises at least three heteroatoms bonded to M, and wherein R₁ is bonded to one of the heteroatoms, and R₂ is bonded to a different one of the heteroatoms.

16. (Currently Amended) The system of claim 13, wherein M is selected from the group consisting essentially of among Fe, Co and Ni.

17. (Currently Amended) The system of claim 13, wherein M is Fe, R_B-comprises three heteroatoms bonded to M, and wherein R₁ is bonded to one of the three heteroatoms, and R₂ is bonded to a heteroatom different than the heteroatom to which R₁ is bonded; M is selected from among Fe, Co and Ni.

18. (Currently Amended) The system of claim 17, wherein each X is independently selected from the group consisting of among halides and substituted or unsubstituted hydrocarbons.

19. (Currently Amended) A method of making a catalyst system comprising contacting an activator with a bridged compound having the formula:

wherein M is a 3d, 4d or 5d transition metal; each X is an atom or group ~~equivalently or ionically bonded to M and are may be the same or different; R₁ and R₂ are may be the same or each may be different and are substituted or unsubstituted cyclopentadienyl groups or aromatic rings; R_B is a structural bridge between the cyclopentadienyl or aromatic rings R₁ and R₂ and imparts stereorrigidity to the rings, and comprises three heteroatoms at least one heteroatom bonded to M, with each of R₁ and R₂ bonded to the same or different heteroatom of R_B which heteroatom is also bonded to M; Z is the coordination number of M and is greater than or equal to 4; m is the number of bonds between M and heteroatoms of R_B and to impart stereorrigidity m≥2; and with R₁, R₂ and R_B are selected to provide a catalyst component with C₁, C₂ or C_S symmetry.~~

20. (Cancelled)

Please add new claim 21 to replace cancelled claims:

21. A catalyst system comprising the formula:

wherein M is a 3d, 4d or 5d transition metal; each X is an atom or group ~~equivalently or ionically bonded to M and are the same or different; R₁ and R₂ are the same or different and are substituted or unsubstituted cyclopentadienyl groups; R_B is a structural bridge~~

between R₁ and R₂ comprising three heteroatoms-bonded to M, with each of R₁ and R₂ bonded to the same or different heteroatom of R_B which heteroatom is also bonded to M; Z is the coordination number of M and is greater than or equal to 4; and m is the number of bonds between M and the heteroatoms of R_B and is greater than or equal to 2.