Matrice

1 Osnove

• Neka su $m, n \in \mathbb{N}$, familija elemenata $a_{ij} (i = 1 \dots m; j = 1 \dots n)$ može se zapisati u obliku:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & a_{2n} \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \text{ ili } \mathbf{A} = (a_{ij})$$

- Ovakav oblik zapisa elemenata se zove **matrica**. Prikazana matrica ima m **redova** i n **kolona**. Matrice se obilježavaju sa velikim slovom npr. A ili $A_{m \times n}$ dok se $m \times n$ zove **dimenzija matrice**.
- Elemenat a_{ij} je elemenat u *i*-tom redu i *j*-toj koloni matrice Elementi $(a_{11}, a_{12}, \ldots, a_{1n})$ čine prvi **red matrice**, a svaki sljedeći je *i*-ti **red matrice** Elementi $(a_{11}, a_{21}, \ldots, a_{m1})$ čine prvu **kolonu matrice**, a svaka sljedeća je *j*-ta **kolona matrice**
- Kvadratna matrica je matrica gdje vrijedi m = n i zove se matricom n-tog reda.
- Dijagonalu matrice čine elementi $a_{11}, a_{22}, \ldots, a_{nn}$. Također se zove glavna dijagonala. Antidijagonalu matrice čine elementi $a_{n,1}, a_{n-1,2}, \ldots, a_{1,n}$
- Matrica kod koje su svi elementi jednaki 0 se zove nul-matrica i obiježava se sa 0.
 Matrica kod koje su svi elementi osim dijagonalnih jednaki 0 zove se dijagonalna matrica.
- Kvadratna matrica kod koje su svi elementi dijagonale 1, a svi ostali elementi 0 se zove matrica identiteta ili jedinična matrica i obilježava se sa I.
- Zbir elemenata dijagonale se zove trag matrice, te vrijedi $tr(A) = trA = a_{11} + a_{22} + \ldots + a_{nn}$
- Transponovana matrica matrice $\mathbf{A} = (a_{ij})$ tipa $m \times n$ je matrica $\mathbf{A}^{\tau} = \mathbf{B} = (b_{ji})$ tipa $n \times m$. gdje vrijedi $b_{ji} = a_{ij} (i = 1 \dots m; j = 1 \dots n)$ npr.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 pa je transponovana matrica $\mathbf{B} = \mathbf{A}^{\tau}$ tj. $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^{\tau} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

- Dvije matrice $A_{m\times n}$ i $B_{p\times q}$ su **jednake** tj. A=B akko¹ $a_{ij}=b_{ij}\wedge m=p\wedge n=q$
- ullet Podmatrica matrice A je matrica dobivena brisanjem nekih kolona ili redova matrice A.

¹akko — ako i samo ako

2 Determinanta

Determinanta matrice je elemenat koji govori da li je matrica **regularna**. Determinanta se može primjenjivati samo na kvadratnim matricama:

Ako je
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 onda $det(\mathbf{A}) = det\mathbf{A} = |\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Za matrice viših dimenzija računa se na način da se odabere jedan red ili jedna kolona, i da se svaki element iz odabranog reda ili kolone množi sa determinantom podmatrice sastavljene od svih elemenata koji ne pripadaju redu i koloni kojoj odabrani element pripada.

$$|\mathbf{A}| = \begin{vmatrix} a^+ & b^- & c^+ \\ d & e & f \\ g & h & i \end{vmatrix} = +a \cdot \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \cdot \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \cdot \begin{vmatrix} d & e \\ g & h \end{vmatrix} = aei - afh - bdi + bfg + cdh - ceg$$

Koeficijent množenja je odabran formulom $(-1)^{i+j}$ gdje je i red, a j kolona odabranog elementa.

Kratica samo za računanje determinante matrica dimenzije 3×3 je proširivanje matrice za prvih (n-1) kolona. Ovo se još zove **Sarussovo pravilo**. Npr.

$$|\mathbf{A}| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{vmatrix} = aei + bfg + cdh - gec - hfa - idb$$

Matrica je **regularna** akko je $det(\mathbf{A}) \neq 0$, inače je **singularna**.

3 Operacije

• **Zbir** dvije matrice C = A + B dimenzija $m \times n$ je zbir svih elemenata tj. $c_{ij} = a_{ij} + b_{ij}$ Za zbir matrica vrijede sljedeća pravila:

$$egin{aligned} A+B=B+A & ext{(komutativnost)} \ (A+B)+C=A+(B+C) & ext{(asocijativnost)} \ A+0=0+A=A \ & (A+B)^{ au}=A^{ au}+B^{ au} \end{aligned}$$

• Skalarni proizvod je proizvod nekog broja x sa matricom A i rezultat je proizvod svakog elementa matrice sa brojem x tj. $a_{ij} = x \cdot a_{ij}$. Neka postoji neki drugi broj y, onda vrijedi:

$$y \cdot (x \cdot \mathbf{A}) = (x \cdot y) \cdot \mathbf{A}$$
$$(x + y) \cdot \mathbf{A} = x \cdot \mathbf{A} + y \cdot \mathbf{A}$$

• Množenje dvije matrice $A_{m\times n}\cdot B_{p\times q}$ je moguće akko n=p tj. broj kolona lijeve matrice je jednak broju redova desne matrice. tj. vrijedi: $C_{m\times q}=A_{m\times n}\cdot B_{n\times q}$

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & 3 & 1 \end{bmatrix}_{2\times3} \cdot \begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 0 \end{bmatrix}_{3\times2} = \begin{bmatrix} (1\cdot3+0\cdot2+2\cdot1) & (1\cdot1+0\cdot1+2\cdot0) \\ (-1\cdot3+3\cdot2+1\cdot1) & (-1\cdot1+3\cdot1+1\cdot0) \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}$$

• Prilikom množenja matrica vrijedi:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
 (asocijativnost)
 $I \cdot A = A \cdot I = A$
 $0 \cdot A = A \cdot 0 = 0$
 $A \cdot B \neq B \cdot A$ (nije komutativno)
 $A \cdot (B + C) = A \cdot B + A \cdot C$ (distributivnost)

4 Inverzna matrica

- Kao i nad brojevima, inverzna operacija se može definisati i za kvadratne matrice. Npr. $1=\frac{8}{8}=8^{-1}\cdot 8$ tako i za $\pmb{I}=\pmb{A^{-1}\cdot A}$
- Računanje inverzne matrice je potrebno jer ako postoje matrice A i B i nepoznata matrica X onda se može reći XA = B, te je $X = A^{-1}B$ i inverzna matrica dimenzija 2×2 se računa:

$$\boldsymbol{A^{-1}} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{2\times 2}^{-1} = \frac{1}{det(\boldsymbol{A})} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

tj. a i d zamjene mjesta, b i c se negira, te sve podijeli sa determinantom

- Inverzna matrica postoji akko $det(\mathbf{A}) \neq 0$
- Pronalazak inverznih matrica većih od 2×2 je van opsega ovih bilješki.
- Korištenjem matrica, može se elegantno riješiti sistem linearnih jednačina. Npr.

$$3x - y = -3$$
$$2x + 3y = 6$$

se u matričnom obliku može napisati kao:

$$\begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \end{bmatrix}$$

Što liči na $A \cdot X = B$ tj. $X = A^{-1}B$:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \begin{bmatrix} -0.27272 \dots \\ 2.181818 \dots \end{bmatrix}$$

I zaista, uvrštavanjem ovih vrijednosti u x i y se vidi da su jednakosti tačne.

Kramerova metoda (metoda determinanti) 5

Ukoliko postoji sistem linearnih jednačina, poput:

$$-2x + 5y + 4z = 3$$
$$5x + 2y - 2z = 8$$
$$2y - z = 1$$

onda se u matričnom obliku to može napisati kao:

$$\begin{bmatrix} -2 & 5 & 4 \\ 5 & 2 & -2 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \\ 1 \end{bmatrix}$$

Ako bi se ovaj sistem rješavao koristeći inverznu matricu onda bi prethodni izraz mogao biti tretiran kao: AX = B, te bi rezulat bio izračunat koristeći inverznu matricu A^{-1} . Tj. $X = A^{-1}B$

5.1 Kramerova metoda

Kramerova metoda rješavanja sistema linearnih jednačina koristi determinante i to na sljedeći način (koristeći primjer iznad):

1. Proračunati determinantu matrice:

$$D = det(A) = \begin{vmatrix} -2 & 5 & 4\\ 5 & 2 & -2\\ 0 & 2 & -1 \end{vmatrix} = 61$$

2. Potom se za svaku nepoznatu varijablu kreiraju nove matrice i proračunaju njihove determinante tako da se zamjene kolone nepoznate sa rezultatom jednačine:

$$D_x = \begin{vmatrix} \mathbf{3} & 5 & 4 \\ \mathbf{8} & 2 & -2 \\ \mathbf{1} & 2 & -1 \end{vmatrix} = 92$$

$$D_x = \begin{vmatrix} \mathbf{3} & 5 & 4 \\ \mathbf{8} & 2 & -2 \\ \mathbf{1} & 2 & -1 \end{vmatrix} = 92 \qquad D_y = \begin{vmatrix} -2 & \mathbf{3} & 4 \\ 5 & \mathbf{8} & -2 \\ 0 & \mathbf{1} & -1 \end{vmatrix} = 47 \qquad D_z = \begin{vmatrix} -2 & 5 & \mathbf{3} \\ 5 & 2 & \mathbf{8} \\ 0 & 2 & \mathbf{1} \end{vmatrix} = 33$$

$$D_z = \begin{vmatrix} -2 & 5 & \mathbf{3} \\ 5 & 2 & \mathbf{8} \\ 0 & 2 & \mathbf{1} \end{vmatrix} = 33$$

3. Rezultat nepoznatih se dobija dijeljenjem determinanti:

$$x = \frac{D_x}{D} = \frac{92}{61}$$

$$y = \frac{D_y}{D} = \frac{47}{61}$$

4

$$x = \frac{D_x}{D} = \frac{92}{61}$$
 $y = \frac{D_y}{D} = \frac{47}{61}$ $z = \frac{D_z}{D} = \frac{33}{61}$

6 Inverzne matrice višeg reda

- Kao što je moguće pronaći inverzne matrice drugog reda, tako je moguće pronaći inverzne matrice višeg reda.
- Generalna formula za pronalazak inverzne matrice je:

$$\mathbf{A}^{-1} = \frac{1}{det(A)} \cdot adj(A)$$

gdje je adj(A) adjungovana matrica matrice A, koja se računa na sljedeći način. Npr. matrica 3×3 :

$$\mathbf{adj} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} & + \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{bmatrix}^{\tau} \\ - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} & - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{33} \end{vmatrix} \\ + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} & - \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} & + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \end{bmatrix}$$

- Koraci za računanje adjungovane matrice su:
 - 1. Napravi se matrica čiji su elementi rezultati računanja determinante svih podmatrica orginalne matrice, sastavljenih od svih elemenata osim onih u redovima i kolonama u kojima se gledani element nalazi.
 - 2. Dodijele se kofaktori $(+-+-+\cdots)$ formulom $(-1)^{i+j}$ gdje je i red a j kolona elementa
 - 3. Na kraju se dobivena matrica transponuje

Npr. pronaći inverznu matricu matrice ${\pmb A}$ ako je: ${\pmb A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}$

1. Pronaći determinantu svake podmatrice:

$$\begin{vmatrix} 5 & 6 \\ 8 & 10 \end{vmatrix} = 2 \quad \begin{vmatrix} 4 & 6 \\ 7 & 10 \end{vmatrix} = -2 \quad \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = -3$$

$$\begin{vmatrix} 2 & 3 \\ 8 & 10 \end{vmatrix} = -4 \quad \begin{vmatrix} 1 & 3 \\ 7 & 10 \end{vmatrix} = -11 \quad \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = -6$$

$$\begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -3 \quad \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = -6 \quad \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3$$

tako se sada može formirati matrica: $\begin{bmatrix} 2 & -2 & -3 \\ -4 & -11 & -6 \\ -3 & -6 & -3 \end{bmatrix}$

- 2. Nakon primjene kofaktora $\begin{bmatrix} + & & + \\ & + & \\ + & & + \end{bmatrix}$ dobija se: $\begin{bmatrix} 2 & 2 & -3 \\ 4 & -11 & 6 \\ -3 & 6 & -3 \end{bmatrix}$
- 3. Ovako dobivena matrica se **transponuje** te je dobivena adjungovana matrica: $adj(A) = \begin{bmatrix} 2 & 4 & -3 \\ 2 & -11 & 6 \\ -3 & 6 & -3 \end{bmatrix}$
- 4. Pošto je $A^{-1} = \frac{1}{\det(A)} \cdot adj(A)$ potrebno je izračunati determinantu: $\det(A) = -3$

5

te je inverzna matrica $\mathbf{A}^{-1} = \begin{bmatrix} -2/3 & -4/3 & 1 \\ -2/3 & 11/3 & -2 \\ 1 & -2 & 1 \end{bmatrix}$, što se može provjeriti računajući

7 Ponavljanje

- 1. Koja je razlika između nul i jedinične matrice?
- 2. Koja je razlika između jedinične i dijagonalne matrice?
- 3. Definisati transponovanu matricu.
- 4. Množenje matrica je (zaokruži tačne odgovor/e): a) asocijativno b) komutativno c) distributivno
- 5. Dopuniti:
 - (a) Matrica je singularna _____
 - (b) Matrica je regularna _____
- 6. Riješiti:

(a)
$$\begin{bmatrix} -3 & 1 & 4 \\ 5 & 2 & -1 \end{bmatrix}^{\tau} = ?$$
 $\begin{bmatrix} 2 & -5 & 6 \\ -1 & 2 & -4 \\ -3 & -1 & 0 \end{bmatrix}^{\tau} = ?$

(b) Neka je
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 5 & -3 \end{bmatrix}$$
 i $\mathbf{B} = \begin{bmatrix} -2 & 4 \\ 3 & -2 \end{bmatrix}$, koliko je $2\mathbf{A} + \mathbf{B}^{\tau}$?

(c) Neka je
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 4 & -3 \end{bmatrix}$$
 i $\mathbf{B} = \begin{bmatrix} -1 & 4 \\ 6 & -2 \end{bmatrix}$, koliko je $3\mathbf{A}^{\tau} + 2\mathbf{B}^{\tau}$?

(d) Neka je
$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 2 \\ -2 & 4 & 0 \end{bmatrix}$$
 i $\mathbf{B} = \begin{bmatrix} 2 & 0 \\ -1 & 4 \\ -3 & 2 \end{bmatrix}$, koliko je $\mathbf{A} \cdot \mathbf{B}$, koliko je $\mathbf{B} \cdot \mathbf{A}$?

(e) Neka je
$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 5 \\ 0 & -1 & 6 \\ -4 & 2 & -1 \end{bmatrix}$$
 i $\mathbf{B} = \begin{bmatrix} 2 & -1 & 0 \\ 3 & -5 & 2 \\ 1 & 4 & -2 \end{bmatrix}$, koliko je $\mathbf{A} \cdot \mathbf{B}$, koliko je $\mathbf{B} \cdot \mathbf{A}$?

(f)
$$\det \mathbf{A} = \begin{vmatrix} -3 & -1 \\ 4 & -5 \end{vmatrix} = ?$$

$$\begin{vmatrix} 3 & 0 & -1 \\ 2 & -5 & 4 \\ -3 & 1 & 3 \end{vmatrix} = ?$$

$$\begin{vmatrix} 5 & 1 & -2 \\ -1 & 0 & 4 \\ 2 & -3 & 3 \end{vmatrix} = ?$$

(g)
$$\mathbf{A}^{-1} = \begin{bmatrix} 7 & 4 \\ 2 & 1 \end{bmatrix}^{-1} = ?$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}^{-1} = ?$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}^{-1} = ?$$

7. Riješiti sisteme jednačina pomoću matrica (kramerovom i metodom inverzne matrice):

(a)
$$3x + y = 3$$

 $4x - 3y = 17$

(b)
$$2x + 3y = 11$$

 $-3x - 4y = -13$

(c)
$$3x - y = -11$$

 $2x + 3y = 11$

(d)
$$3x + 2y = -9$$

 $-5x - 7y = -7$

(e)
$$x + 2y - z = 7$$

 $2x - 3y - 4z = -3$
 $x + y + z = 0$

(f)
$$5x - 2y + 4x = 0$$

 $2x - 3y + 5z = 8$
 $3x + 4y - 3z = -11$

(g)
$$x + 2y + 2z = 5$$

 $3x - 2y + z = 6$
 $2x + y - z = -1$