

## Анализ первого домашнего задания

#### Созыкин Андрей Владимирович

К.Т.Н.

Заведующий кафедрой высокопроизводительных компьютерных технологий Институт математики и компьютерных наук



# Обедающие философы





## Обедающие философы

Написать многопоточную программу моделирующую задачу обедающих философов. Требования:

- Избежать взаимоблокировок (deadlock)
- Избежать голодания (livelock)
- Обеспечить равномерное «питание» всех философов



# Взаимоблокировки

Как обнаружить?



# Взаимоблокировки

Как обнаружить?

• Убрать задержку во время «думания»



## Взаимоблокировки

Как обнаружить?

• Убрать задержку во время «думания»

Взаимоблокировки у 1 человека



#### Livelock

Встречается в 1 решении Схема решения

- Берем левую вилку
- Пытаемся взять правую вилку
- Если не получается, ждем одинаковый для всех интервал времени (sleep(10))



#### Равномерное распределение еды

Неравномерное распределение еды – ошибка, которая встречается чаще всего

#### Основная проблема:

- Тестирование на малом количестве философов (5 шт.)
- При увеличении количества философов (20 или 100) начинает проявляться неравномерность

#### Хорошее решение:

- Реализовано равномерное распределение еды
- Проведено тестирование на разном количестве философов, результаты представлены в отчете



# Равномерное распределение еды

| Параметры               | Реализация 1                                                                                                                                                                                                                                                                                                                                                                        | Реализация 2                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ./phil 5 20 100 100 0   | [1] 128 7385<br>[2] 127 7212<br>[3] 129 7580<br>[4] 124 7151<br>[5] 136 7409<br>среднее: 128<br>вариация: 3.5%                                                                                                                                                                                                                                                                      | [1] 131 6949<br>[2] 142 5965<br>[3] 141 6544<br>[4] 142 6590<br>[5] 134 5298<br>среднее: 138<br>вариация: 3.7%                                                                                                                                                                                                                                                                  |
| ./phil 25 20 100 100 0  | [1] 107 10120 [2] 103 10163 [3] 104 10007 [4] 98 10389 [5] 97 10750 [6] 94 10525 [7] 91 10474 [8] 89 11003 [9] 89 10609 [10] 93 10407 [11] 94 10779 [12] 90 10514 [13] 90 10265 [14] 97 10877 [15] 95 10356 [16] 96 10640 [17] 100 10503 [18] 97 10701 [19] 94 10507 [20] 97 9961 [21] 95 10106 [22] 105 10108 [23] 104 10127 [24] 102 9604 [25] 103 9631 среднее 97 вариация: 5.5% | [1] 148 5953 [2] 129 7124 [3] 149 5505 [4] 140 5766 [5] 136 5910 [6] 140 5646 [7] 136 7127 [8] 147 5487 [9] 139 6165 [10] 136 6567 [11] 144 5433 [12] 135 6716 [13] 141 5435 [14] 131 7274 [15] 142 5236 [16] 137 6661 [17] 139 5784 [18] 132 6784 [19] 138 5873 [20] 138 6551 [21] 143 6019 [22] 138 6273 [23] 133 6479 [24] 138 6506 [25] 144 5723 среднее 138 вариация: 3.7% |
| ./phil 100 20 100 100 0 | <br>среднее: 94                                                                                                                                                                                                                                                                                                                                                                     | <br>среднее: 140                                                                                                                                                                                                                                                                                                                                                                |
|                         | вариация: 4.5%                                                                                                                                                                                                                                                                                                                                                                      | вариация: 3.8%                                                                                                                                                                                                                                                                                                                                                                  |



## Равномерное распределение еды





### Варианты решения задачи

Мало тривиальных решений Иерархия ресурсов Случайное время ожидания при захвате вилок Официант (стол) Общение между философами



## Вариант 1. Иерархия ресурсов

Вилки пронумерованы от 0 до 4 (Количество философов-1) Философ:

- 1. Всегда берёт сначала вилку с наименьшим номером, а потом вилку с наибольшим номером.
- 2. Кладёт сначала вилку с бо́льшим номером, потом с меньшим.



### Вариант 1. Иерархия ресурсов

#### Отсутствие взаимоблокировки:

- Если четыре из пяти философов одновременно возьмут вилку с наименьшим номером, на столе останется вилка с наибольшим возможным номером.
- Пятый философ не сможет взять ни одной вилки
- Только один философ будет иметь доступ к вилке с наибольшим номером, так что он сможет есть двумя вилками.

#### Отсутствие голодания:

• Философ не отпустит вилку, пока не поест.



# Вариант 1. Примеры работы

| [1] | 352 | 24197 | [1] | 360 | 24630 | [1] | 356 | 24730 |
|-----|-----|-------|-----|-----|-------|-----|-----|-------|
| [2] | 391 | 20522 | [2] | 393 | 21596 | [2] | 406 | 19875 |
| [3] | 420 | 18173 | [3] | 414 | 19208 | [3] | 417 | 19256 |
| [4] | 455 | 14207 | [4] | 464 | 14066 | [4] | 467 | 13896 |
| [5] | 361 | 23043 | [5] | 385 | 23683 | [5] | 370 | 23556 |



### Вариант 1. Равномерное «питание»

Философы едят одной и той же вилкой по очереди В Вилке запоминаем номер Философа, который брал ее последним

Философ не может взять вилку при двух условиях:

- Сейчас очередь есть другого философа
- Другой философ голодный



## Вариант 1. Примеры работы

```
[0] 375 22956 ms
```

[1] 374 21965 ms

[2] 378 20791 ms

[3] 384 21821 ms

[4] 390 20543 ms



## Вариант 1. Примеры работы

[14] 385 21758 ms



### Вариант 1. Упорядочиваем философов

Нумеруем философов

Четные философы берут сначала правую вилку - потом левую, нечетные наоборот

Равномерное «питание»:

- Философ проверяет, голодный ли сосед
- Если голодный, задержка (поток засыпает)



## Вариант 2. Случайное время ожидания

Философ пытается захватить **левую** вилку в течение **случайного интервала времени** 

• Если время закончено, философ отпускает вилку

Философ пытается захватить правую вилку в течение случайного интервала времени

Если время закончено, философ отпускает вилку

В случае успешного захвата вилок философ ест

Если вилки захватить не удалось, задержка

• Случайное время, увеличивающееся экспоненциально с номером попытки (exponential backoff)



## Вариант 2. Случайное время ожидания

```
[Philosopher 0] ate 414 times and waited 19376 ms [Philosopher 1] ate 417 times and waited 18731 ms [Philosopher 2] ate 412 times and waited 19222 ms [Philosopher 3] ate 411 times and waited 19248 ms [Philosopher 4] ate 420 times and waited 17592 ms
```



## Вариант 2. Случайное время ожидания

[Philosopher 0] ate 425 times and waited 18846 ms [Philosopher 1] ate 418 times and waited 17155 ms [Philosopher 2] ate 396 times and waited 18403 ms [Philosopher 3] ate 421 times and waited 17372 ms [Philosopher 4] ate 437 times and waited 17585 ms [Philosopher 5] ate 421 times and waited 19313 ms [Philosopher 6] ate 429 times and waited 16575 ms [Philosopher 7] ate 412 times and waited 19679 ms [Philosopher 8] ate 423 times and waited 17378 ms [Philosopher 9] ate 411 times and waited 19184 ms [Philosopher 10] ate 421 times and waited 17522 ms [Philosopher 11] ate 419 times and waited 20164 ms [Philosopher 12] ate 434 times and waited 17536 ms [Philosopher 13] ate 423 times and waited 18278 ms [Philosopher 14] ate 428 times and waited 19173 ms



Проголодавшийся философ обращается к официанту Официант ставит запрос в очередь

- Проверяет, едят ли соседи
- Если не едят, то разрешает философу есть
- Если едят, то не разрешает
- Философ ждет некоторое время и повторяет запрос



- [1] 185 41300
- [2] 186 41554
- [3] 188 42278
- [4] 187 41882
- [5] 189 42383
- [6] 188 42433
- [7] 187 41404
- [8] 191 42341
- [9] 186 41636
- [10] 189 42489
- [11] 188 42671
- [12] 189 42612
- [13] 189 42357
- [14] 191 42059
- [15] 190 42322



Официант «пускает» к столу N-1 философов Реализация официанта в виде семафора



Официант «пускает» к столу N-1 философов Реализация официанта в виде семафора





## Вариант 4. Общение между философами

The Drinking Philosophers Problem Chandy, K.M.; Misra, J. (1984).

Каждая вилка "принадлежит" некоторому философу и может быть либо чистой, либо грязной.

В начальный момент времени все вилки грязные.

Начать прием пищи можно только чистой вилкой.

После того, как философ поел, обе его вилки становятся грязными.



## Вариант 4. Общение между философами

Когда философ собрался поесть он "заполучает" обе вилки:

- 1) Если вилка принадлежит ему и является грязной, философ моет ее.
- 2) Если вилка в данный момент времени принадлежит его соседу, то философ "просит" его отдать ему вилку. После того, как сосед закончит прием пищи, он сделает вилку чистой и передаст философу.
- 3) Философ не отдает вилку, вилку, которой обладает, пока вилка не станет грязной (то есть пока философ не поест ей хотя бы раз с момента получения).



## Вариант 4. Общение между философами

При таком подходе преимущество всегда получает наиболее голодный философ:

- если философ обладает чистой вилкой, значит он проголодался и помыл ее раньше, чем у него ее попросили.
- если же вилка на момент запроса грязная, то запрашивающий философ проголодался раньше.



#### Crawler

#### Многопоточные структуры данных:

- Многопоточная очередь (ссылки для скачивания)
- Многопоточное множество (запоминание скачанных страниц)

#### Счетчик скаченных страниц:

- Защита mutex
- Атомарные переменные

#### Потоки:

- Пул потоков
- vector (массив) с потоками



### Отдельно счетчик и mutex

```
void Crawler::run_single_thread(UrlQueue &url_queue, FileStorage &file_storage,
    const unsigned max_num_pages, std::mutex &num_pages_mutex,
    unsigned &num_pages) {
    std::unique_lock<std::mutex> num_pages_lock(num_pages_mutex);
    if (num pages >= max num pages) {
        return;
    const unsigned id = num_pages;
    ++num_pages;
    num pages lock.unlock();
```



### Инициализация libcurl

```
/* Must initialize libcurl before any threads are started */
curl global init(CURL GLOBAL ALL);
/* Thread code */
CURL *curl;
curl = curl easy init();
If you did not already call curl global init, curl easy init does it
automatically. This may be lethal in multi-threaded cases, since curl global init
is not thread-safe, and it may result in resource problems because there is no
corresponding cleanup.
http://curl.haxx.se/libcurl/c/multithread.html
http://curl.haxx.se/libcurl/c/curl easy init.html
```



#### Отчеты.







#### Отчеты. Гипотеза

Ясно, что при использовании N таких потоков время работы программы сократится в лучшем случае в N раз.

Это справедливо только в том случае, когда число вычислительных ядер не меньше числа потоков: если число потоков окажется больше, там прироста производительности происходить не будет, и начиная с некоторого момента накладные расходы на переключение контекста станут велики и начнётся замедление.



### Домашнее задание 3. Задача 1

#### Анализ графа пользователей Твиттера

- Данные: (user\_id, follower\_id)
- Вычислить распределение количества подписчиков
- Определить Тор50 пользователей по количеству подписчиков
- Вычислить среднее количество подписчиков



### Домашнее задание 3. Задача 2

Построить инвертированный индекс для русской и английской Википедий

- Данные: (docid, content)
- Формат индекса: (word, [<docid1, tf-idf1>, <docid2, tf-idf2>, ...])
- Статьи должны быть отсортированы в порядке убывания tfidf
- Ограничить список N наиболее релевантными статьями
- Исключить из индекса Тор20 высокочастотных слов



# Вопросы?