Differentially Private Multi-Agent Constraint Optimization

Sankarshan Damle, Aleksei Triastcyn, Boi Faltings and Sujit Gujar

Goal

Designing a scalable DCOP algorithm that preserves constraint privacy from unrelated participants through distributed computation; and from related participants through differential privacy techniques

Challenges

- Protecting information leak
 - during information exchange
 - · from the final assignment
- Ensuring Scalability

Benchmark Problems in DCOP

SD-Gibbs: Algorithm Framework [1]

Constraint Privacy loss due to,

- 1. Sampling
- 2. Difference in utility

(Assumption) Bounded Sampling Divergence. We assume that the maxdivergence between the SD-Gibbs sampling distributions is bounded by Γ_{∞} , i.e.,

$$D_{\infty}(P_i||P_j) \le \Gamma_{\infty}$$

Applying the soft-max function with temperature γ , over P_i , we get,

$$\Gamma_{\infty} = 2/\gamma$$

Sensitivity. We define sensitivity as the maximum absolute difference between any two-relative utility, i.e.,

$$\tau = \max_{\{\Delta, \Delta'\}} |\Delta - \Delta'|$$

From sampling divergence assumption, we get,

$$\tau = 2\Gamma_{\infty}$$

P-Gibbs. The information leak due to sampling is bounded by Γ_{∞} P-Uniform. As each agent samples uniformly, the information leak due to sampling is 0

The (ϵ, δ) parameters for the Gaussian noise mechanism can be computed using either basic composition along with [2] or the moments accountant [3]

Summarizing the (ϵ, δ) -DP Bounds

Algorithm	(ϵ_s, δ)	(ϵ_n, δ)	$(\epsilon = \epsilon_s + \epsilon_n, \delta)$ for T iterations
P-Gibbs	$(\Gamma_{\infty},0)$	$(\frac{\tau}{\sigma}\sqrt{2\ln\frac{1.25}{\delta}},\delta)$	$\left(\frac{T}{\lambda}c_t^{(s)}(\lambda) + \frac{T}{\lambda}c_t^{(n)}(\lambda) - \frac{1}{\lambda}\ln\delta, \ \delta\right)$
P-Uniform	(0, 0)	$(\frac{\tau}{\sigma}\sqrt{2\ln\frac{1.25}{\delta}},\delta)$	$\left(\frac{T}{\lambda}c_t^{(n)}(\lambda) - \frac{1}{\lambda}\ln\delta, \ \delta\right)$

Results

SQ for Graph-coloring

SQ for Meeting-schedule

Average SQ for **Graph-coloring**

Average SQ for Meeting-schedule

ACTION AND THE ACT OF					
Algorithm	ϵ	$\mathbf{SQ} \; (\mathbf{mean} \pm \mathbf{std})$	Algorithm	ϵ	${f SQ}$ (mean \pm std)
P-Gibbs	5	0.281 ± 0.143	P-Gibbs	5	0.973 ± 0.0513
	7.5	0.348 ± 0.159		7.5	0.973 ± 0.051
	10	0.324 ± 0.192		10	0.975 ± 0.0498
P-Uniform	1	0.190 ± 0.119	P-Uniform	1	0.979 ± 0.0475
	5	0.322 ± 0.180		5	0.985 ± 0.0372
	7.5	0.321 ± 0.153		7.5	0.987 ± 0.0373
	10	0.341 ± 0.195		10	0.990 ± 0.0328

References

- 1. Nguyen, Duc Thien, William Yeoh, Hoong Chuin Lau, and Roie Zivan. "Distributed gibbs: A linear-space sampling-based dcop algorithm." Journal of Artificial Intelligence Research 64 (2019): 705-748.
- 2. Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4), 211-407.
- 3. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 308-318).
- Triastcyn, Aleksei, and Boi Faltings. "Bayesian differential privacy for machine learning." In International Conference on Machine Learning, pp. 9583-9592. PMLR, 2020.

