UNIDAD 3: Uniones Químicas

Cap. 9 y 10 del Raymond Chang

Postulados de la Teoría de Lewis

- 1. Los electrones (e⁻) de valencia participan en el enlace químico.
- 2. En algunos casos se transfieren e- de un átomo a otro, formándose iones (+) y (-) que se atraen mediante fuerzas electrostáticas llamadas Enlaces lónicos.
- 3. En otros casos se comparten uno o mas pares de e-, generando un enlace Covalente.
- 4. Los e- se transfieren o comparten de manera que los átomos adquieren una configuración estable. En general es una configuración de gas noble con 8 e- de valencia que constituyen un **octeto**.

Los electrones de valencia son los últimos electrones de un orbital en un átomo, que son los causantes de los enlaces químicos.

<u>Grupo</u>	e configuración	N° e⁻ de valencia
1A	ns	1
2A	ns ²	2
3A	ns2hp1	3
4A	ns2hp2	4
5A	ns ² hp ³	5
6A	ns ² hp ⁴	6
7A	ns [©] np [©]	7

Estructura de Lewis para los elementos representativos y gases nobles

ENLACE IÓNICO

Resulta de las interacciones electrostáticas entre iones. Hay una transferencia de electrones de un átomo a otro.

CaO

$$\begin{array}{c}
(Ca) \\
(Ca) \\
(Ca) \\
(Ar) \\
(AS^2) \\
(AS^2)$$

¿Cómo evaluamos la estabilidad de un compuesto iónico? ENERGÍA RETICULAR

Es la energía que se requiere para separar completamente un mol de un compuesto sólido en sus iones gaseosos.

Energía Potencial (Ley de Coulomb)

$$E = k \frac{Q_+ Q_-}{r}$$

Q₊ es la carga del catiónQ₋ es la carga del aniónr es la distancia entre ambos

	<u>Compuesto</u>	Energía de separación	
	■ MgF ₂	2957	Q = +2,-1
La energía es directamente proporcional a Q, e	MgO	3938	Q= +2,-2
inversamente proporcional a r.	J liF	1036	
	— Сп	1000	r F ⁻ < r Cl ⁻
	LiCl	853	

Ciclo de Born-Haber para determinar la energía reticular

Compuestos	Energía reticular (kJ/mol)	Puntos de fusión (°C)
LiF	1017	845
LiCl	828	610
LiBr	787	550
LiI	732	450
NaCl	788	801
NaBr	736	750
NaI	686	662
KCl	699	772
KBr	689	735
KI	632	680
$MgCl_2$	2527	714
Na ₂ O	2570	Sub*
MgO	3890	2800

^{*}Na2O sublimes at 1275°C.

ENLACE COVALENTE

Enlace covalente: Resulta de compartir un par de electrones entre dos átomos. Se trata de alcanzar el mismo número de electrones en la capa de valencia que los gases nobles más cercanos a ellos en la tabla periódica (regla del octeto).

ESTRUCTURAS DE LEWIS

- 1. Elegir un esqueleto simétrico.
- Dibuje la estructura del compuesto mostrando qué átomos están conectados con otros. Coloque el elemento menos electronegativo al centro.
- 3. Los átomos de oxígeno no se enlazan entre sí, salvo en O₂ y O₃, los peróxidos y superóxidos.
- 4. El hidrógeno y el fluor ocupan posiciones terminales
- 5. Calcule el número total de electrones de valencia. Agregue 1 por cada carga negativa y elimine 1 por cada carga positiva.
- 6. Complete los octetos de electrones para todos los elementos, excepto para el H (2 e⁻), Be (4 e⁻), Al y B (6 e⁻).
- 7. Forme enlaces dobles o triples en el átomo central cuando sea necesario.

Escriba la estructura de Lewis para el CCl₄.

Paso 1: El C es el átomo central ya que es menos electronegativo que el Cl.

Paso 2: Contar los electrones NECESARIOS (N) para completar el octeto. Teniendo en cuenta la excepciones al octeto.

$$C = 8 e^{-} y Cl = 8 e^{-} \rightarrow N = 8 + (4 \times 8) = 40$$
 electrones NECESARIOS

Paso 3: Contar los electrones DISPONIBLES (D) de valencia que forman parte de la estructura (agregar o quitar tantas unidades como carga negativas o positivas tenga el compuesto).

C = 4 e⁻ de valencia, conf. externa (2s²2p²) y el Cl= 7e⁻ de valencia conf. externa (3s²3p⁵)

Paso 4: Calcular los e- COMPARTIDOS $C = N - D = 40 - 32 = 8 e^{-}$ **COMPARTIDOS**, **4 enlaces**

Paso 5: Dibujar enlaces simples entre los átomos de C y Cl completando los octetos.

$$C = N - D = (8+4x8) - (4+7x4) = 40 - 32 = 8$$
 (8 e- compartidos, por lo tanto 4 enlaces)

Estructura de Lewis para F₂

14 electrones para distribuir en la estructura de Lewis.

Enlace Simple: dos átomos comparten un par de electrones

Estructura de Lewis para el agua H₂O

Enlace covalente simple

Estructura de Lewis para BF₃ (Excepción a la regla del octeto)

$$C = N - D = (3x8+6) - (7x3+3) = 30 - 24 = 6$$
 (6 e- compartidos, por lo tanto 3 enlaces) 24 electrones para distribuir en la estructura de Lewis.

Estructura de Lewis para el BeCl₂ (Excepción a la regla del octeto)

$$C = N - D = (2x8+4) - (7x2+2) = 20 - 16 = 4$$
 (4 e- compartidos, por lo tanto 2 enlaces)

16 electrones para distribuir en la estructura de Lewis.

Estructura de Lewis para el amonio NH 🖰

Resto un electrón por cada carga positiva y **Sumo** un electrón por cada carga negativa.

$$C = N - D = (8+4x2) - (5+4x1-1) = 16 - 8 = 8 (8 e- compartidos, por lo tanto 4 enlaces)$$

8 electrones para distribuir en la estructura de Lewis.

$$H^{\bullet \bullet N \bullet \bullet H} + H^{+} \longrightarrow \begin{bmatrix} H \\ H \\ H \end{bmatrix} + \begin{bmatrix} H \\ H \\ H \end{bmatrix} + \begin{bmatrix} H \\ H \\ H \end{bmatrix} + \begin{bmatrix} H \\ H \\ H \end{bmatrix}$$

$$NH_{4}^{+}$$

$$NH_{4}^{+}$$

Estructura de Lewis para CO₂

Doble enlace: dos átomos comparten dos pares de electrones

$$C = N - D = (8+8x2) - (4+6x2) = 24 - 16 = 8$$
 (8 e- compartidos, por lo tanto 4 enlaces)

16 electrones para distribuir en la estructura de Lewis.

Estructura de Lewis para N₂

Triple enlace: dos átomos comparten tres pares de electrones

$$C = N - D = (8x2) - (5x2) = 16 - 10 = 6$$
 (6 e- compartidos, por lo tanto 3 enlaces)

10 electrones para distribuir en la estructura de Lewis.

 $N = N$

La electronegatividad es la capacidad de un átomo para atraer los electrones de otro átomo en un enlace químico.

El tipo de enlace estará dado en relación a la diferencia de electronegatividad entre los átomos que forman el compuesto.

El **enlace polar** es un enlace covalente donde la diferencia de electronegatividad entre los dos átomos no es muy grande (aproximadamente menor a 2)

Distorsión de la nube electrónica entre dos átomos con diferente electronegatividad

Electronegatividad es relativa, F es el más electronegativo que el H

CLASIFICACIÓN DE LOS ENLACES POR ELECTRONEGATIVIDAD

El tipo de enlace estará dado en relación a la diferencia de electronegatividad entre los átomos que forman el compuesto.

ELECTRONEGATIVIDADES EN LA TABLA PERIODICA

Aumenta 8A 1A H 2.1 2A 3A 4A 5A 6A N Li Be B C 0 1.5 2.0 2.5 3.5 4.0 1.0 3.0 Mg Al Si CI Na 2.1 1.8 2.5 3.0 0.9 1.2 1.5 3B4B 5B 6B 7B 8B · 1B 2B Sc Ti V Co K Ca Cr Mn Fe Ni Cu Zn Ga Ge As Se Br Kr 0.8 1.0 1.3 1.5 1.8 1.9 1.9 1.8 2.0 2.4 2.8 3.0 1.6 1.6 1.5 1.9 1.6 1.6 Y Zr Nb Rh Cd Sn Sb Te Xe Rb Sr Mo Tc Ru Pd I Ag In 0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.2 2.2 2.2 1.9 1.7 1.7 1.8 1.9 2.1 2.5 2.6 Cs Ba La-Lu Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At 0.9 1.0-1.2 1.3 1.5 2.2 2.2 2.2 1.8 1.9 1.9 2.2 0.7 1.7 1.9 2.4 1.9 2.0 Fr Ra 0.7 0.9

Aumenta

LONGITUD DE LOS ENLACES COVALENTES

Comparación de longitudes de enlace

Tipo de enlace	Lon. de enlace (pm)
C-H	107
c-o	143
c=0	121
C-C	154
c = c	133
$C \equiv C$	120
C-N	143
C = N	138
$C \equiv N$	116
N-O	136
N=0	122
O-H	96

Longitud

Triple enlace < Doble enlace < Enlace simple

Al cambio necesario en la entalpía para romper un enlace de un mol de un compuesto gaseoso se le llama energía de enlace.

Energía de enlace

Energía de enlace

Enlace Sencillo < Enlace Doble < Enlace Triple

Una estructura resonante ocurre cuando dos o más estructuras de Lewis para una misma molécula no pueden ser representadas gráficamente por una sola estructura de Lewis.

Resto un electrón por cada carga positiva y Sumo un electrón por cada carga negativa. C = N - D = (8+8x3) - (5+6x3+1) = 32 - 24 = 8 (8 e- compartidos, por lo tanto 4 enlaces) 24 electrones para distribuir en la estructura de Lewis.

Estructura de Lewis para el O₃

$$C = N - D = (3x8) - (6x3) = 24 - 18 = 6$$
 (6 e- compartidos, por lo tanto 3 enlaces)

18 electrones para distribuir en la estructura de Lewis.

Estructura de Lewis para el anión CO₃

Sumo un electrón por cada carga negativa.

$$C = N - D = (8+8x3) - (4+6x3+2) = 32 - 24 = 8 (8 e-compartidos, por lo tanto 4 enlaces)$$

24 electrones para distribuir en la estructura de Lewis.

$$\begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \vdots \circ & \vdots & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & \vdots & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}} \end{bmatrix}^{2^{-}} \begin{bmatrix} \vdots \circ & - \circ & \vdots \\ \vdots \circ & - \circ & \vdots \\ \end{bmatrix}^{2^{-}}$$

Estructuras con electrones impares

$$C = N - D = (2x8) - (5+6) = 16 - 11 = 5$$
 (5 e⁻, 2 enlaces y 1 e⁻ sin compartir)

11 electrones para distribuir en la estructura de Lewis.

El octeto expandido: SF_6 (un átomo central con un número cuántico n > 2)

$$C = N - D = (12+6x8) - (6+7x6) = 60 - 48 = 12 (6 enlaces)$$

El S expande su capa de valencia a 12 e 48 electrones para distribuir en la estructura de Lewis.

Recordemos

Los enlaces químicos son las fuerzas que mantienen unidos a los átomos en las moléculas de los elementos (O₂ y Cl₂); de compuestos (CO₂ y H₂O) y de metales.

Los átomos se combinan con el fin de alcanzar una configuración electrónica más estable.

La estabilidad máxima se produce cuando un átomo es isoelectrónico con un gas noble.

Solo los electrones externos de un átomo pueden ser atraídos por otro átomo cercano.

En la formación de enlaces químicos solo intervienen los electrones de valencia.

Teoría de repulsión de los pares electrónicos de la capa de valencia (RPECV)

Predicción de la geometría de las moléculas mediante la repulsión electroestática de pares de electrones compartidos y no compartidos.

Grupo Electrónico: Enlace simple, doble o triple ó un par de electrones no enlazados.

Clase	N° de átomos unidos al átomo central	N° de pares no compartidos	Geometría Electrónica	Geometría molecular	Ejemplos
			Plana Trigonal	Plana Trigonal	
AB_3	3	0	120°	B	BF _{3,} BCI ₃
AB ₂ E	2	1	B Plana Trigonal	Angular	O ₃
				·oo:	

Clase	N° de átomos unidos al átomo central	N° de pares no compartidos	Geometría Electrónica	Geometría molecular	Ejemplos
AB_4	4	0	Tetraédrica	tetraédrica B B B	CH _{4,} NH ₄ +
AB ₃ E	3	1	B A B Tetraédrica	Piramidal trigonal	NH_3
AB_2E_2	2	2	B B Tetraédrica	H H Angular	H ₂ O

Repulsión de pares de electrones

MOMENTOS DIPOLARES Y MOLECULAS POLARES

Medida de la polaridad

Producto de la carga (Q) por la distancia (r)

$$\mu = Q \cdot r$$

Expresado en Debye (D)

$$1 D = 3.36 \times 10^{-30} C \cdot m$$

μ= 0 para un molécula no polar

Comportamiento de moléculas polares

Moléculas Polares

- El átomo central, en general, tiene pares de electrones no enlazantes.
- Su geometría es asimétrica.

Momento dipolar (µ) en la serie de halogenuros de hidrógeno

CH₂F₂ Molécula Polar

Sumatoria de momentos dipolares $\Sigma \mu \neq 0$

Moléculas Apolares tienen un momento dipolar neto igual a Cero.

Molécula Apolar Sumatoria de momentos dipolares Σμ= 0

Molécula Apolar Sumatoria de momentos dipolares $\Sigma \mu = 0$

Molécula Apolar Sumatoria de momentos dipolares Σμ= 0

Molécula Apolar Sumatoria de momentos dipolares $\Sigma \mu = 0$

Enlaces Sigma (σ) y Pi (π)

Enlace simple 1 enlace sigma

Enlace doble 1 enlace sigma y 1 enlace pi

Enlace triple 1 enlace sigma y 2 enlaces pi

Enlaces Múltiples

Dobles

$$C = C$$
 CH_3
 H
propileno

Triples

Nitrógeno molecular

Acetonitrilo

Etileno C₂H₄

Es el compuesto orgánico más utilizado en todo el mundo. Casi el 60% de su producción industrial se utiliza para obtener polietileno.

Enlaces Sigma (σ)

Acetileno C₂H₂

El **acetileno** o **etino** es un gas, altamente inflamable e incoloro. Es utilizado en equipos de soldadura debido a las elevadas temperaturas (hasta 3000 °C) que alcanzan las mezclas de acetileno y oxígeno en su combustión.

Teoría de Orbitales Moleculares

Niveles de energía de enlace y de antienlace en el orbital molecular del hidrógeno (H₂).

Un *orbital molecular de enlace* tiene menos energía y mayor estabilidad que los orbitales atómicos que lo formaron.

Un *orbital molecular de antienlace* tiene más energía y menor estabilidad que los orbitales atómicos que lo formaron.

Interferencia constructiva y destructiva de dos ondas con la misma longitud y amplitud

Interferencia constructiva:

Interferencia destructiva:

Interacciones posibles entre dos orbitales equivalentes p

Interacciones posibles entre dos orbitales equivalentes p

Configuraciones de orbitales moleculares (OM)

- 1. El número de OM que se forma siempre es igual al número de orbitales atómicos que se combinan.
- 2. Cuanto más estable es el OM de enlace, menos estable es el OM de antienlace correspondiente.
- 3. Los OM se llenan de acuerdo con su nivel de energía.
- 4. Cada OM puede tener hasta dos electrones.
- 5. Se utiliza la regla de Hund cuando se añaden electrones a los OM del mismo nivel de energía.
- 6. El número de electrones en los OM es igual a la suma de todos los electrones en los átomos unidos.

Orden de Enlace =
$$\frac{1}{2}$$
 (Número de electrones en los OM de enlaces - Número de electrones en los OM de antienlaces)

$$\sigma_{ls}^{\star}$$

enlace

Moléculas diatómicas homonucleares de elementos del segundo período

		Li ₂	B ₂	C ₂	N ₂	02	F ₂	
	$\sigma_{2p_x}^{igstar}$							$\sigma_{2p_x}^{igstar}$
	$\pi_{2p_y}^{\bigstar}, \pi_{2p_y}^{\bigstar}$					\uparrow	$\uparrow\downarrow\uparrow$	$\pmb{\pi}^\bigstar_{2p_j},\pmb{\pi}^\bigstar_{2p_z}$
	σ_{2p_x}				$\uparrow\downarrow$	$\uparrow\downarrow\uparrow\downarrow$	$\uparrow\downarrow\uparrow\downarrow$	π_{2p_y} , π_{2p_z}
	π_{2p_y} , π_{2p_z}		\uparrow \uparrow	$\uparrow\downarrow\uparrow\downarrow$	11 11	↑↓	$\uparrow\downarrow$	σ_{2p_x}
	σ_{2s}^{\bigstar}		$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	σ_{2s}^{\bigstar}
	σ_{2s}	$\uparrow\downarrow$	$\uparrow\downarrow$	1	1	↑ ↓	1	σ_{2s}
Bond order		1	1	2	3	2	1	
Bond length (pm)		267	159	131	110	121	142	
Bond enthalpy (kJ/mol)		104.6	288.7	627.6	941.4	498.7	156.9	
Magnetic properties	9	Diamagnetic	Paramagnetic	Diamagnetic	Diamagnetic	Paramagnetic	Diamagnetic	

^{*}For simplicity the σ_{1s} and σ_{1s}^{\star} orbitals are omitted. These two orbitals hold a total of four electrons. Remember that for O_2 and F_2 , σ_{2p_s} is lower in energy than σ_{2p_s} and σ_{2p_s} .

Molécula B₂Real

Molécula de O₂

 $(\sigma_{1s})^2 \ (\sigma^*_{1s})^2 \ (\sigma_{2s})^2 \ (\sigma^*_{2s})^2 \ (\pi_{2py})^1 \ (\pi_{2pz})^1$

 $(\sigma_{1s})^2 \ (\sigma_{1s}^*)^2 \ (\sigma_{2s}^*)^2 \ (\sigma_{2s}^*)^2 \ (\sigma_{2px}^*)^2 \ (\pi_{2py})^2 \ (\pi_{2pz})^2 \ (\pi \ ^*_{2py})^1 \ (\pi \ ^*_{2pz})^1$

Experimentalmente se observa que el O₂ es paramagnético

Enlace metálico

➤ Orbitales de valencia vacíos, para que circulen los electrones con facilidad; esto da origen a la teoría de bandas.

- > Elementos metálicos con baja energía de ionización.
- Unión entre núcleos atómicos y electrones de valencia.

PROPIEDADES

Ductilidad: Son dúctiles (facilidad de formar hilos) y maleables (facilidad de formar láminas) al aplicar presión.

- •Dureza: Son en general duros (resistentes al rayado).
- Oxidación: La mayoría se oxida con facilidad

- Temperaturas de fusión y ebullición: muy elevadas. Son sólidos a temperatura ambiente (excepto el mercurio que es líquido).
- Insolubles en agua. En estado fundido son muy solubles en otros metales formando aleaciones.
- Conductividad eléctrica: Buenos conductores de la electricidad (nube de electrones deslocalizada) y del calor (facilidad de movimiento de electrones y de vibración de los restos atómicos positivos).
 La conductividad es mayor a bajas temperaturas.

La fuerza aplicada desplaza las capas del cristal

Los electrones de valencia se mueven a través del metal; forman enlaces deslocalizados con los iones positivos.

No cambia la atracción entre las placas. El metal cambia de forma sin romperse

ATRACCIONES INTERMOLECULARES

Fuerzas intermoleculares

Las *fuerzas <u>intermoleculares</u>* son las fuerzas de atracción que existen **entre** las moléculas.

Las *fuerzas <u>intramoleculares</u>* mantienen juntos los átomos de una molécula.

Fza Intermolecular vs Fza Intramolecular

- 41 kJ para vaporizar 1 mol de agua (intermolecular)
- 930 kJ para romper todos los enlaces O-H en 1 mol de agua (intramolecular)

"Medidas" de fuerzas intermoleculares

Generalmente, las fuerzas intermoleculares son mucho más débiles que las fuerzas intramoleculares.

punto de ebullición punto de fusión

 ΔH_{vap}

 ΔH_{fus}

 $\Delta \mathsf{H}_\mathsf{sub}$

Fuerzas Intermoleculares

Fuerzas de Van der Waals

- Dipolo- Dipolo
- Fuerzas de dispersión
- Puente de Hidrógeno

Fuerzas electrostáticas

• Ión-dipolo

Fuerza dipolo - dipolo

Existe entre moléculas polares.

$$F = k \frac{Q_1 Q_2}{d^2}$$

Atracción electrostática de dos moléculas polares

(a) Attraction

(b) Attraction

Interacción de muchos dipolos en un estado condensado

Fuerzas de Dispersión

Fuerzas de atracción que surgen como resultado de dipolos temporales inducidos en átomos o moléculas. Están presentes en todas las moléculas.

El carácter polarizable de los gases que contienen átomos o moléculas no polares, les permite condensarse. Ej : He, N₂, O₂ H₂

Fuerzas de Dispersión

Polarización es la facilidad de distorsionar la distribución de los electrones en el átomo o molécula.

Puntos de Ebullición de compuestos no polares similares

Compuestos	Punto de Ebullición °C				
CH ₄	-182.5				
CF ₄	-150.0				
CCl ₄	-23.0				
CBr ₄	90.0				
CI ₄	171.0				

(a) Increasing mass and boiling point

La *polarización* aumenta con:

- Mayor número de electrones, es decir con la masa molar.
- Difusión de más nubes de electrones, es decir con el área superficial de la molécula

Fuerzas de Dispersión

Puente de Hidrógeno

El *enlace por puente de hidrógeno* es una interacción dipolodipolo especial entre el átomo de hidrógeno en un enlace polar N-H, O-H, o F-H y un átomo electronegativo de O, N o F.

Puente de Hidrógeno: influencia

- Estructura de proteínas
- Estructura de ácidos nucleicos
- Propiedades anómalas del H_2O (Peb, Pf, δ_{hielo} , propiedades disolventes, etc.)

<u>1A</u>															8A	
2A										3A4A5A6A7A						
												N	0	F		
			7													
		87								5	- 5					
		166														

¿Cuál de las siguientes especies puede formar puente hidrógeno con el agua?

Condición: O, N, F, H-(X)

$$H_3C-\overset{\cdots}{O}: \overset{\cdots}{H}-\overset{\cdots}{O}: \qquad :\overset{\cdots}{F}: \overset{\cdots}{H}-\overset{\cdots}{O}: \qquad H$$

Dimetil Eter

Interacción Ión-Dipolo.

- Interacción entre un ión y un dipolo (ej. Na+ y agua).
- Es función de la carga y tamaño del ión y del momento dipolar y tamaño de la molécula.

Interacción de una molécula de agua con un ión Na⁺ y con un ión Mg²⁺

Que tipo de fuerzas intermoleculares existen entre los siguientes pares:

a) Cl₂ y CBr₄

Dispersión

b) HBr y H₂S

Dipolo – Dipolo, Dispersión

c) I_2 y NO_3^-

Ión - Dipolo Inducido, Dispersión

d) NH_3 y C_6H_6

Dipolo – Dipolo Inducido , Dispersión