

翟卫欣 副教授

zhaiweixin@cau.edu.cn

中国农业大学信息与电气工程学院

最优化方法

目录

增广矩阵的规范型

更新增广矩阵

单纯形法

单纯形表解法

大M法

两阶段法

目录

增广矩阵的规范型

更新增广矩阵

单纯形表解法

大M法

初等行变换

- 交换矩阵中任意两行的位置;
- 2 矩阵的某一行乘以一个非零实数;
- ❸ 矩阵的某一行乘以一个实数后加到另外一行。
 - 将矩阵进行初等行变换,等价于用相应的初等矩阵去左乘该矩阵
- 增广矩阵进行初等行变换后, 其对应的方程解不变。

增广矩阵的规范型

对于线性方程组Ax = b, rankA = m, 其增广矩阵为[A,b]。 $A = [a_1, a_2, \cdots, a_m, \cdots, a_n]$, 一般假设前m列为一组基底。对矩阵A进行初等行变换(和重新排序)后,可得到规范型:

$$x_1$$
 + $y_{1,m+1}x_{m+1} + \dots + y_{1,n}x_n = y_{1,0}$
 x_2 + $y_{2,m+1}x_{m+1} + \dots + y_{2,n}x_n = y_{2,0}$
...

$$x_m + y_{m,m+1}x_{m+1} + \cdots + y_{m,n}x_n = y_{m,0}$$

写成矩阵形式是 $[I_m, Y_{n-m}]x = y_0$

其中 x_1, x_2, \cdots, x_m 是基变量, $x_{m+1}, x_{m+2}, \cdots, x_n$ 是非基变量。

$$x = \begin{bmatrix} y_0 \\ 0 \end{bmatrix}$$
是其一组基本解。

(ロ) (部) (注) (注) 注 り(0)

增广矩阵的规范型

对于线性方程组Ax = b, rankA = m, 其增广矩阵为[A,b]。增广矩阵规范型为:

$$[I_m, Y_{n-m}, y_0] = \begin{bmatrix} 1 & 0 & \cdots & 0 & y_{1,m+1} & \cdots & y_{1,n} \\ 0 & 1 & \cdots & 0 & y_{2,m+1} & \cdots & y_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & y_{m,m+1} & \cdots & y_{m,n} & y_{m,0} \end{bmatrix}$$

增广矩阵规范型是由增广矩阵通过初等行变换得到。 $x=\begin{bmatrix}y_0\\\mathbf{0}\end{bmatrix}$ 既是增广矩阵规范型 $[I_m,Y_{n-m},y_0]$ 所对应的方程组的解,又是原增广矩阵[A,b]所对应的方程组的解,所以有:

$$b = y_{1.0}a_1 + y_{2.0}a_2 + \cdots + y_{m.0}a_m$$

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

6/72

Optimization Methods

最优化方法

增广矩阵的规范型

又因为 I_m 是一组标准基,所以有:

$$a_i = y_{1,i}a_1 + y_{2,i}a_2 + \dots + y_{m,i}a_m, m < j \leq n$$

- 增广矩阵规范型中第j列元素就是矩阵A中列向量 a_j (其中 $m < j \le n$)在 a_1, a_2, \cdots, a_m 上的坐标;
- 增广矩阵规范型最后一列的各元素是向量b在 a_1, a_2, \cdots, a_m 上的坐标。

←□ → ←□ → ← = → ← = → へ ○

目录

增广矩阵的规范型

更新增广矩阵

单纯形法

单纯形表解法

大M法

西阶段注

更新增广矩阵

目的:用非基变量 $\mathbf{a}_q, m < q \leq n$ 替换基变量 $\mathbf{a}_p, 1 \leq p \leq m$ 。如果 \mathbf{a}_q 替换 \mathbf{a}_p 后,前m个向量依然线性无关,则这些向量构成了新的基矩阵。

$$a_q = \sum_{i=1}^m y_{i,q} a_i = \sum_{i=1, i \neq p}^m y_{i,q} a_i + y_{p,q} a_p$$

当且仅当 $y_{p,q} \neq 0$ 时,向量组 $a_1, a_2, \cdots, a_{p-1}, a_q, a_{p+1}, \cdots, a_m$ 是线性无关的。

$$\boldsymbol{a}_p = \frac{1}{y_{p,q}} \boldsymbol{a}_q - \sum_{i=1, i \neq p}^m \frac{y_{i,q}}{y_{p,q}} \boldsymbol{a}_i$$

所以对任意向量 $a_i, m < j \le n$,将 a_p 的表达式代入 a_i 的表达式得到:

$$\mathbf{a}_{j} = \sum_{i=1, i \neq p}^{m} (y_{i,j} - \frac{y_{p,j}}{y_{p,q}} y_{i,q}) \mathbf{a}_{i} + \frac{y_{p,j}}{y_{p,q}} \mathbf{a}_{q}$$

更新增广矩阵

联立

$$\begin{cases} a_{j} = \sum_{i=1, i \neq p}^{m} y'_{i,j} a_{i} + y'_{p,j} a_{q} \\ a_{j} = \sum_{i=1, i \neq p}^{m} (y_{i,j} - \frac{y_{p,j}}{y_{p,q}} y_{i,q}) a_{i} + \frac{y_{p,j}}{y_{p,q}} a_{q} \end{cases}$$

可得

$$y'_{i,j} = y_{i,j} - \frac{y_{p,j}}{y_{p,q}} y_{i,q}, y'_{p,j} = \frac{y_{p,j}}{y_{p,q}}$$

• 采取该方程,可以从原来的增广矩阵规范型推导出新的增广矩阵规范型。这些方程通常称为枢轴方程,*y_{p,q}*称为枢轴元素。

←□ → ←□ → ← = → ● ● の へ ○

10 / 72

目录

增广矩阵的规范型

更新增广矩阵

单纯形法

单纯形表解法

大M法

两阶段法

线性规划的标准模型:

minimize
$$c^T x$$
subject to $Ax = b$
 $x \geqslant 0$

其中 $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $b \geqslant 0$, $A \in \mathbb{R}^{m \times n}$, $m \leqslant n$, rankA = m.

单纯形法是一种应用最广的线性规划问题求解方法。其基本思想是 从某一个基本可行解变换到另一个基本可行解,直到找到最优基本可 行解。

◆□▶ ◆□▶ ◆■▶ ◆■ ● かへぐ

- 增广矩阵规范型的最后一列是基本解中的基变量(非0的变量), 即 $x_i = y_{i,0}, i = 1, 2, \cdots, m$ 且 $x_i = 0, m < i \le n$ 。基本解不一定是可行解,因为基本解中的基变量可能是负值。
- 这也就意味着在变换基向量时,相应的增广矩阵规范型的最后一列要保证是非负的。

4 D > 4 B > 4 B > 4 B > 4 C >

13 / 72

矩阵推导

- 对于Ax = b,且 $x \ge 0$ 假定存在一组基向量 a_1, a_2, \dots, a_m ,现将A分解为矩阵[$B_{m \times m}, N_{(n-m) \times m}$],其中B是基矩阵,N是非基矩阵。
- 设 $x^{(0)}=egin{bmatrix} B^{-1}b \ 0 \end{bmatrix}$ 是基本可行解,在 $x^{(0)}$ 处的目标函数值 $f_0=c^Tx^{(0)}=[c_B^T,c_N^T]egin{bmatrix} B^{-1}b \ 0 \end{bmatrix}=c_B^TB^{-1}b$ 。其中 c_B^T,c_N^T 分别对应 c^T 中的m,n维行向量。
- 矩阵推导过程中,不要求转为增广矩阵的规范型,实际过程中B通常为I。那么如何从基本可行解 $x^{(0)}$ 出发,得到一个改进的基本可行解,最终得到最优基本可行解?

(ロ) (部) (注) (注) 注 り((

$$egin{aligned} x &= egin{bmatrix} x_B \ x_N \end{bmatrix}$$
是任意一个可行解。 $Ax = b \Rightarrow Bx_B + Nx_N = b$ 得到 $x_B = B^{-1}b - B^{-1}Nx_N$,在点 x 处的目标函数值:

$$f = \boldsymbol{c}^T \boldsymbol{x} = [\boldsymbol{c}_B^T, \boldsymbol{c}_N^T] \begin{bmatrix} \boldsymbol{x}_B \\ \boldsymbol{x}_N \end{bmatrix}$$

$$= \boldsymbol{c}_B^T \boldsymbol{x}_B + \boldsymbol{c}_N^T \boldsymbol{x}_N$$

$$= \boldsymbol{c}_B^T (\boldsymbol{B}^{-1} \boldsymbol{b} - \boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_N) + \boldsymbol{c}_N^T \boldsymbol{x}_N$$

$$= \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{b} - (\boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{N} - \boldsymbol{c}_N^T) \boldsymbol{x}_N$$

$$= f_0 - \sum_{j \in R} (\boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{a}_j - c_j) \boldsymbol{x}_j$$

$$= f_0 - \sum_{i \in R} (z_j - c_j) \boldsymbol{x}_j$$

其中, $z_j = c_B^T B^{-1} a_j$,R是非基向量的下标集合。由于 $x_j \ge 0$,因此如果对所有的 $j \in R$ 都有 $z_j - c_j \le 0$,则该基本解 f_0 是最优可行解。常称 $z_j = c_j$ 为检验数。

如果存在至少一个 $j \in R$ 使得 $z_j - c_j > 0$ 则选取其中之一所对应的非基变量变为基向量,通常选取 $q = \max_j \{z_j - c_j\}$ 。我们希望把 \mathbf{a}_q 作为基变量放到基矩阵中,此时 $\mathbf{x}_N = (0, \cdots, 0, x_q, 0, \cdots, 0)^T$ 且 $x_q > 0$ 。

$$x_B = B^{-1}b - B^{-1}a_qx_q = y_0 - y_qx_q$$

其中, $y_0 = B^{-1}b, y_q = B^{-1}a_q$

则我们希望 x_B 中的一项变为0,其他仍为正数。

$$\boldsymbol{x}_{\boldsymbol{B}} = \begin{bmatrix} x_{B_1} \\ x_{B_2} \\ \vdots \\ x_{B_m} \end{bmatrix} = \boldsymbol{y}_0 - \boldsymbol{y}_q x_q = \begin{bmatrix} y_{1,0} \\ y_{2,0} \\ \vdots \\ y_{m,0} \end{bmatrix} - \begin{bmatrix} y_{1,q} \\ y_{2,q} \\ \vdots \\ y_{m,q} \end{bmatrix} x_q$$

∢ロ > ∢回 > ∢ 重 > ∢ 重 > り へ ○

- $\Leftrightarrow p = \min_{p} \{ y_{p,0} / y_{p,q} | y_{p,q} > 0 \};$
- 新的可行解为

$$\mathbf{x} = [x_{\mathbf{B}_1}, x_{\mathbf{B}_2}, \cdots, x_{\mathbf{B}_{n-1}}, 0, x_{\mathbf{B}_{n+1}}, \cdots, x_{\mathbf{B}_m}, 0, \cdots, x_q, 0, \cdots, 0]^T$$

- 其前m项即为 $\mathbf{B}^{-1}\mathbf{b} \mathbf{B}^{-1}\mathbf{a}_q x_q$ 后n - m项即为 $\mathbf{x}_N = (0, \dots, 0, x_q, 0, \dots, 0)^T$
- 又因 $y_{p,q} \neq 0$,且已知 $y_q = B^{-1}a_q \Rightarrow a_q = By_q = \sum_{i=1}^m y_{i,q}a_{B_i}$ 所以用 a_q 取代 a_{B_p} 后, $a_{B_1}, a_{B_2}, a_{B_{p-1}}, a_{B_{p+1}}, \cdots, a_{B_m}, a_q$ 是线性无关的基底:
- 所以, 新的可行解x是基本可行解。

目标函数值:

$$f = \boldsymbol{c}^T \boldsymbol{x} = [\boldsymbol{c}_{\boldsymbol{B}}^T, \boldsymbol{c}_{\boldsymbol{N}}^T] \begin{bmatrix} \boldsymbol{x}_{\boldsymbol{B}} \\ \boldsymbol{x}_{\boldsymbol{N}} \end{bmatrix}$$

代入 $x_{\boldsymbol{B}} = \boldsymbol{B}^{-1}\boldsymbol{b} - \boldsymbol{B}^{-1}\boldsymbol{a}_q x_q \boldsymbol{\xi} x_N = (0, \cdots, 0, x_q, 0, \cdots, 0)^T$,可得

$$f = \boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{x}_{\boldsymbol{B}} + \boldsymbol{c}_{\boldsymbol{N}}^{T} \boldsymbol{x}_{\boldsymbol{N}}$$

$$= \boldsymbol{c}_{\boldsymbol{B}}^{T} (\boldsymbol{B}^{-1} \boldsymbol{b} - \boldsymbol{B}^{-1} \boldsymbol{a}_{q} \boldsymbol{x}_{q}) + c_{q} \boldsymbol{x}_{q}$$

$$= f_{0} - (z_{q} - c_{q}) \boldsymbol{x}_{q} < f_{0}$$

由于 $z_q - c_q > 0$,所以依照单纯型法每次迭代的解优于迭代之前的解。

4 D > 4 A > 4 B > 4 B > B 4 9 Q Q

单纯形的计算步骤

- 0) 得到初始基本可行解,假设初始基为B
- 1) 解 $Bx_B=b$, 求得 $x_B=B^{-1}b=y_0$, 令 $x_N=0$, 计算目标函数 值 $f=c_B^Tx_B$
- 2) 计算检验数 $z_j c_j = \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{a}_j c_j$,选取 $q = \max_j \{z_j c_j\}$,如果 $z_q c_q \leq 0$,那么停止计算,当前基本可行解是最优解。
- 3) $y_q = B^{-1}a_q$ 。如果 $y_q \le 0$,则 y_q 的每个分量均为非正数,停止计算,问题不存在有限最优解,否则进行步骤4)
- 4) 确定下标p,使得 $p = \min_{p} \{y_{p,0}/y_{p,q}|y_{p,q}>0\}$ 。 x_{B_p} 为出基变量, x_q 为进基变量,用 a_q 替代 a_{B_n} ,得到新的基矩阵B,返回步骤1)。

4 D > 4 B > 4 E > 4 E > 9 Q @

19 / 72

问题: 求解线性规划问题

maximize
$$4x_1 + x_2$$

subject to
$$-x_1 + 2x_2 \le 4, 2x_1 + 3x_2 \le 12, x_1 - x_2 \le 3, x_1, x_2 \ge 0$$

引入松弛变量,原问题转化为标准型

minimize
$$-4x_1 - 1x_2 - 0x_3 - 0x_4 - 0x_5$$

subject to $-x_1 + 2x_2 + x_3 = 4$
 $2x_1 + 3x_2 + x_4 = 12$
 $x_1 - x_2 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

$$c_B^T = [c_1, c_2, c_3, c_4, c_5] = [-4, -1, 0, 0, 0]$$
相应的增广矩阵

\boldsymbol{a}_1	\boldsymbol{a}_2	\boldsymbol{a}_3	a_4	a_5	b
-1	2	1	0	0	4
2	3	0	1	0	12
1	-1	0	0	1	3

21 / 72

第一次迭代
$$\mathbf{B} = \begin{bmatrix} \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 3 \end{bmatrix}, \quad \mathbf{x}_{N} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$f_1 = \boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{x}_{\boldsymbol{B}} = [0, 0, 0][4, 12, 3]^T = 0$$

$$z_1 - c_1 = \boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1} \boldsymbol{a}_1 - c_1 = [0, 0, 0] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} - (-4) = 4$$

$$z_2 - c_2 = \boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1} \boldsymbol{a}_2 - c_2 = \begin{bmatrix} 0, 0, 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} - (-1) = 1$$

最大判别数是4,对应下标q=1

$$\mathbf{y_1} = \mathbf{B}^{-1} \mathbf{a}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

$$\mathbf{y_0} = \mathbf{B}^{-1}\mathbf{b} = \mathbf{x_B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 3 \end{bmatrix}$$

确定下标p,使得 $p = \min_{n} \{y_{p,0}/y_{p,1}|y_{p,1}>0\}$:

$$p=1$$
时, $y_{1,1}<0$;

$$p=2$$
时, $y_{2,0}/y_{2,1}=12/2=6$;

$$p = 3$$
 Fig. $y_{3,0}/y_{3,1} = 3/1 = 3$

所以, p = 3, 选取 x_B 中的第3个分量 x_5 作为离基变量, x_1 为进基变量。 即用 a_5 来替代 a_1 。

第二次迭代
$$\mathbf{B} = \begin{bmatrix} \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} x_{3} \\ x_{4} \\ x_{1} \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ 3 \end{bmatrix}, \quad \mathbf{x}_{N} = \begin{bmatrix} x_{2} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$f_2 = \boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{x}_{\boldsymbol{B}} = [0, 0, -4][7, 6, 3]^T = -12$$

$$z_2 - c_2 = \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{a}_2 - c_2 = [0, 0, -4] \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} - (-1) = 5$$

$$z_5 - c_5 = \boldsymbol{c_B}^T \boldsymbol{B}^{-1} \boldsymbol{a_5} - c_5 = [0, 0, -4] \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - (0) = -4$$

最大判别数是5,对应下标q=2

40 14 40 15 15 15 10 10

$$y_2 = B^{-1}a_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}$$

$$\mathbf{y_0} = \mathbf{B}^{-1}\mathbf{b} = \mathbf{x_B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ 3 \end{bmatrix}$$

确定下标p,使得 $p = \min_{p} \{y_{p,0}/y_{p,2}|y_{p,2}>0\}$:

$$p=1$$
时, $y_{1.0}/y_{1.2}=7/1=7$;

$$p = 2$$
时, $y_{2,0}/y_{2,2} = 6/5 = 6/5$

$$p = 2$$
 py, $y_{2,0}/y_{2,2} = 6/5 = 6/5$

$$p=3$$
时, $y_{3,2}<0$;

所以, p=2, 选取 x_B 中的第2个分量 x_4 作为离基变量, x_2 为进基变量。 即用 a_2 来替代 a_4 。

25 / 72

第三次迭代
$$\mathbf{B} = \begin{bmatrix} \mathbf{a}_3, \mathbf{a}_2, \mathbf{a}_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
, $\mathbf{B}^{-1} = \begin{bmatrix} 1 & -1/5 & 7/5 \\ 0 & 1/5 & -2/5 \\ 0 & 1/5 & 3/5 \end{bmatrix}$,

$$\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix} = \begin{bmatrix} 29/5 \\ 6/5 \\ 21/5 \end{bmatrix}, \quad \mathbf{x}_{N} = \begin{bmatrix} x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$f_{3} = \mathbf{c}_{B}^{T}\mathbf{x}_{B} = [0, -1, -4][29/5, 6/5, 21/5]^{T} = -18.$$

10149111111111111

$$z_{4} - c_{4} = \boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{a}_{4} - c_{4} = [0, -1, -4] \begin{bmatrix} 1 & -1/5 & 7/5 \\ 0 & 1/5 & -2/5 \\ 0 & 1/5 & 3/5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 0 = -1$$

$$z_{5} - c_{5} = \boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{a}_{5} - c_{5} = [0, -1, -4] \begin{bmatrix} 1 & -1/5 & 7/5 \\ 0 & 1/5 & -2/5 \\ 0 & 1/5 & 3/5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0 = -4$$

最大判别数小于0, 当前解是最优解, $x_1 = 21/5, x_2 = 6/5, f_{min} = -18$

27 / 72

目录

增广矩阵的规范型

更新增广矩阵

单纯形表解法

大M法

单纯形表解法

单纯形表是一种常见的单纯形方法的求解方法。

	x_{B_1}	 x_{B_p}	 x_{B_m}	 x_j	 x_k	
x_{B_1}	1	 0	 0	 $y_{1,j}$	 $y_{1,k}$	 y _{1,0}
:	:	:	:	:	 :	 h I á
$x_{\boldsymbol{B}p}$	0	 1	 0	 $y_{p,j}$	 $y_{p,k}$	 $y_{p,0}$
:	:	:		:	 :	
x_{B_m}	0	 0	 1	 $y_{1,j}$	 $y_{m,k}$	 $y_{m,0}$
f	0	 0	 0	 $z_j - c_j$	 $z_k - c_k$	 $c_B B^{-1} b$

- 对所有行都进行基础行变换消元:
- 基变量的一列只有一个1, 其他都是0(包括最后一行即f行);
- 替换基变量之后, 更新最左列。

minimize
$$x_1 - 2x_2 + x_3 + 0x_4 + 0x_5 + 0x_6$$

subject to $x_1 + x_2 - 2x_3 + x_4 = 10$
 $2x_1 - x_2 + 4x_3 + x_5 = 8$
 $-x_1 + 2x_2 - 4x_3 + x_6 = 4$
 $x_1, x_2, x_3, x_4, x_5, x_6 \geqslant 0$

初始单纯形表:

	x_1	x_2	x_3	x_4	0 1 0	x_6	
<i>x</i> ₄	1	1	-2	1	0	0	10
<i>x</i> ₅	2	-1	4	0	1	0	8
x_6	-1	2	-4	0	0	1	4
f	-1	2	-1	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	
x_4	1	1	-2	1	0	0	10
<i>x</i> ₅	2	-1	4	0	1	0	8
x_6	-1	1 -1 2	-4	0	0	1	4
\overline{f}	-1	2	-1	0	0	0	0

最左列是基变量,最右列是基变量的值。最下行的基变量对应0,最下行的非基变量对应 $c_B^T B^{-1} a_j - c_j = z_j - c_j, j \in R$,R是非基变量下标集。选f行大于0的值中最大的值所对应的列,再在该列中选择 $\frac{y_{i,0}}{y_{i,p}}$ 最小的,且需满足 $y_{i,p} > 0$ 。

31/72

更新后的单纯形表:

	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	
x_4	3/2	0	0	1	0	-1/2	8
<i>x</i> ₅	3/2	0	2	0	1	1/2	10
x_2	-1/2	1	-2	0	0	-1/2 1/2 1/2	2
\overline{f}	0	0	3	0	0	-1	-4

 x_2 已经替换了 x_6 ,当前表中 $y_{2,3}$ 是主元。

更新后的单纯形表:

	x_1	x_2	x_3	x_4	x_5	x_6	
x_4	3/2	0	0	1	0	-1/2	8
x_3	3/4	0	1	0	1/2	1/4	5
x_2	1	1	0	0	1	-1/2 1/4 1	12
\overline{f}	-9/4	0	0	0	-3/2	-7/4	-19

x3已经替换了x5,当前表中所有判别数均不大于0,已经是最优解,右 下角即为最优解的值-19。

此时基变量的数值在表的最右侧列中, 非基变量为0。

具体到本例中, 最优基本解为 $x_2 = 12, x_3 = 5, x_4 = 8, x_1 = 0, x_5$ $0, x_6 = 0$

对于线性规划问题

$$max - x_1 + 3x_2 + x_3$$
s.t. $3x_1 - x_2 + 2x_3 \le 7$
 $-2x_1 + 4x_2 \le 12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

- (a)请将该问题转化为标准型;
- (b)请用单纯形法求该问题的最优解及目标函数的最大值。

(a)

该问题的标准型为

min
$$x_1 - 3x_2 - x_3$$

s.t. $3x_1 - x_2 + 2x_3 + x_4 = 7$
 $-2x_1 + 4x_2 + x_5 = 12$
 $-4x_1 + 3x_2 + 8x_3 + x_6 = 10$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

(b)

单纯形表:

	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	
x_4	3	-1	2	1	0	0	7
<i>x</i> ₅	-2	4	0	0	1	0	12
x_6	3 -2 -4	3	8	0	0	1	10
\overline{f}	-1	3	1	0	0	0	0

$$x_2$$
入基, $7/-1 = -7 < 0$, $12/4 = 3$, $10/3 > 3$ 所以 x_5 出基

36 / 72

单纯形表解法举例

更新后的单纯形表:

	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	<i>x</i> ₅	x_6	
x_4	5/2	0	2	1	1/4	0	10
x_2	-1/2	1	0	0	1/4	0	3
x_6	5/2 -1/2 -5/2	0	8	0	-3/4	1	1
\overline{f}	1/2	0	1	0	-3/4	0	-9

 x_3 入基, 10/2 = 5, 1/8 < 5 所以 x_6 出基

单纯形表解法举例

更新后的单纯形表:

	x_1	x_2	x_3	x_4	x_5	x_6	
x_4	25/8	0	0	1	7/16	-1/4	39/4
						0	3
x_3	-5/16	0	1	0	$\frac{1}{4}$ $-3/32$	1/8	1/8
\overline{f}	13/16	0	0	0	-21/32	-1/8	-73/8

 x_1 入基,(39/4)/(25/8) = 78/25 > 0, 3/(-1/2) < 0, (1/8)/(-5/16) < 0 所以 x_4 出基

38 / 72

更新后的单纯形表:

	x_1	x_2	x_3	x_4	x_5	x_6	
x_1	1	0	0	8/25	7/50	-2/25	78/25
x_2	0	1	0	4/25	8/25	-1/25	114/25
x_3	0	0	1	1/10	-1/20	1/10	11/10
\overline{f}	0	0	0	-13/50	-77/100	-3/50	-583/50

检验数均小于0

所以,问题的最优解为 $x_1 = 78/25, x_2 = 114/25, x_3 = 11/10$ 目标函数最大值为 583/50

39 / 72

增广矩阵的规范型

更新增广矩阵

单纯形法

单纯形表解法

大M法

两阶段法

大M法和两阶段法

使用单纯形法,需要给定一个基本可行解,以便从该基本可行解出发得到改进的基本可行解。

对于最优化问题

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

其中 $b \geqslant 0$, $A \not\equiv m \times n$ 阶矩阵如果A中有m阶单位矩阵,则初始可行解可立即得到。例如 $A = [I_m, N]$,则 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$,若不含m阶单位矩阵,则可以通过大M法或者两阶段法来求得初始基本可行解,辅助求解。

大M法和两阶段法需要引进人工变量。人工变量不同于松弛变量或剩余变量。引入松弛变量、剩余变量的目的是将不等式约束改为等式约束。引入人工变量的目的是构造*m*阶单位矩阵来求基本可行解。人工变量引入后改变了原来的约束,但是其所求得的最优解是有效的。

(ロ) (部) (注) (注) (注) (P) (P)

大M法

原问题:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

引入人工变量后的新问题:

minimize
$$c^T x + Me^T x_a$$

subject to $Ax + x_a = b$
 $x \ge 0, x_a \ge 0$

其中 $b \ge 0$, $A \ge m \times n$,M > 0很大,在极小化函数的过程中,由于M的存在,将迫使人工变量离基。 $e = (1,1,\cdots,1)^T \ge m$ 维列向量,分量全为1。 $x = 0, x_a = b$ 是一个可行解,可以从[0,b]出发开始计算。

原问题:

minimize
$$x_1 + x_2 - 3x_3$$

subject to $x_1 - 2x_2 + x_3 \le 11$
 $2x_1 + x_2 - 4x_3 \ge 3$
 $x_1 - 2x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

引入松弛变量和剩余变量x4,x5后,很难找到基础可行解。

例如
$$[a_3, a_4, a_5] = \begin{bmatrix} 1 & 1 & 0 \\ -4 & 0 & -1 \\ -2 & 0 & 0 \end{bmatrix}$$
,是一组基底。但求不出可行解,因此需要引

入人工变量。

4 D X 4 D X

引入人工变量 x_6, x_7 ,其目的是为了构造 I_3 。

minimize
$$x_1 + x_2 - 3x_3 + M(x_6 + x_7)$$

subject to $x_1 - 2x_2 + x_3 + x_4 = 11$
 $2x_1 + x_2 - 4x_3 - x_5 + x_6 = 3$
 $x_1 - 2x_3 + x_7 = 1$
 $x_1, x_2, \dots, x_7 \ge 0$

初始单纯形表:

	l		x_3					
x_4	1	-2	1	1	0	0	0	11
x_6	2	1	-4	0	-1	1	0	3
<i>x</i> ₇	1		1 -4 -2					
	3M-1	M-1	-6M+3	0	-M	0	0	4M

注意,最后一行中,第4、6、7列是基向量,对应0;第1、2、3、5列是 非基向量,对应的是 $z_i - c_i = c_B^T B^{-1} a_i - c_i$,其中 $c_B = [0, M, M]^T, B^{-1} =$ I_3 。最后一列是 $c_B^T B^{-1} b$ 。

45 / 72

更新单纯形表:

	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	Cl
x_4	0	-2	3	1	0	0	-1	10
x_6	0	1	0	0	-1	1	-1 -2 1	1
x_1	1	0	-2	0	0	0	1	1
	0	M-1	1	0	-M	0	1-3M	1+M

		x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	
	<i>x</i> ₄	0	0	3	1	-2	2	-5	12
	x_2	0	1	0	0	-1	1	-2	1
	x_1	1	0	-2	0	0	0	-5 -2 1	1
_		0	0	1	0	-1	1-M	-1-M	2

(ロ) (部) (注) (注) (型) (の)

更新单纯形表:

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	Hh
<i>x</i> ₃	0	0	1	1/3	-2/3	2/3	-5/3	4
x_2	0	1	0	0	-1	1	-2	1
x_1	1	0	0	2/3	-4/3	2/3 1 4/3	-7/3	9
	0	0	0	-1/3	-1/3	1/3-M	2/3-M	-2

由于M是很大的正数,所以最后一行的判别数都满足 $z_i - c_i \leq 0, j \in R$ 。 人工变量 $x_6, x_7 = 0$ 。所以最优解是 $x_1 = 9, x_2 = 1, x_3 = 4, f_{min} = -2$ 。

目录

增广矩阵的规范型

更新增广矩阵

单纯形法

单纯形表解法

大M法

两阶段法

两阶段法

两阶段法同样是需要引入人工变量来使得问题的增广矩阵中构造出单位矩阵*I*_m,来进行单纯型法求解。

两阶段法的第一阶段是用单纯形法消去人工变量,即把人工变量都换成非基变量,求出原来问题的一个基本可行解。第一阶段问题:

minimize
$$e^T x_a$$

subject to $Ax + x_a = b$
 $x \ge 0, x_a \ge 0$

其中 $b \ge 0$, $A \ge m \times n$ 矩阵,第一阶段的求解结果为 $x_a = 0$,其最优解可作为第二阶段的初始可行解。第二阶段就是普通的单纯型法求解方式。

<ロ > < @ > < 重 > < 重 > の < で

原问题:

maximum
$$2x_1 - x_2$$

subject to $x_1 + x_2 \ge 2$
 $x_1 - x_2 \ge 1$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

引入松弛变量和剩余变量 x_3, x_4, x_5 ,此时不易求出可行解。

再引入人工变量 x_6, x_7 ,此时第一阶段问题为:

minimize
$$x_6 + x_7$$

subject to $x_1 + x_2 - x_3 + x_6 = 2$
 $x_1 - x_2 - x_4 + x_7 = 1$
 $x_1 + x_5 = 3$
 $x_1, x_2, \dots, x_7 \geqslant 0$

更新单纯型表 (第一阶段):

	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	<i>x</i> ₅	x_6	<i>X</i> 7	
x_6	1	1	-1	0	0	1	0	2
<i>X</i> 7	1 1 1	-1	0	-1	0	0	1	1
x_5	1	0	0	0	1	0	0	3
\overline{f}	2	0	-1	-1	0	0	0	3

其中f行的非0值是非基变量,对应 $z_i - c_i = c_R^T B^{-1} a_i - c_i$ 。

		x_1	x_2	<i>x</i> ₃	<i>X</i> 4	X5	x_6	<i>X</i> 7	
	x_6	0	-1 1	-1	1	0	1	-1	1
	x_1	1	-1	0	-1	0	0	1	1
	x_5	0	1	0	1	1	0	1 -1	2
•	f	0	2	-1	1	0	0	-2	1

最终得到第一阶段的结果

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_2	0	1	-1/2	1/2	0	1/2	-1/2	1/2
x_1	1	0	-1/2	-1/2	0	1/2	1/2	3/2
x_5	0	0	1/2	1/2	1	1/2 1/2 1/2 -1/2	-1/2	3/2
\overline{f}	0	0	0	0	0	-1	-1	0

基本解 $[3/2, 1/2, 0, 0, 3/2, 0, 0]^T$,前5个变量为原问题的可行解。可以从 $[3/2, 1/2, 0, 0, 3/2]^T$ 开始进行第二阶段的计算。

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

53 / 72

更新单纯型表(第二阶段): 问题maximum $2x_1 - x_2$ 等价为minimum $-2x_1 + x_2$

$$c_B = [-2, 1, 0, 0, 0]^T$$

单纯型表第一阶段去掉 x_6 , x_7 对应的列,最后一行(f行)的值要更新,因为两阶段的c不同。

	x_1	x_2	x_3	x_4	x_5	
x_2	0	1	-1/2	1/2	0	1/2
x_1	1	0	-1/2	-1/2	0	3/2
x_5	0	0	1/2	1/2 -1/2 1/2	1	3/2
f	0	0	1/2	3/2	0	-5/2

其中
$$z_3 - c_3 = [1, -2, 0]I[-1/2, -1/2, 1/2]^T - 0 = 1/2$$

 $z_4 - c_4 = [1, -2, 0]I[1/2, -1/2, 1/2]^T - 0 = 3/2$
 $f = -3/2 \times 2 + 1/2 \times 1 = -5/2$

更新单纯型表 (第二阶段):

	$ _{x_1}$	X2	x_3	χ_A	<i>X</i> 5	
<i>x</i> ₄	0	2	-1	1	0	1
x_1	1	1	-1	0	0	2
x_5	0	-1	-1 -1 1	0	1	1
f	0	-3	2	0	0	-4

最终结果:

	i.					ı
	x_1	x_2	x_3	x_4	x_5	
x_4	0	1	0	1	1	2
x_1	1	1 0 -1	0	0	1	3
x_3	0	-1	1	0	1	1
\overline{f}	0	-1	0	0	-2	-6

所以在 $[x_1, x_2]^T = [3, 0]^T$ 时, $-2x_1 + x_2$ 取最小值-6,即对应原问题的最大值6。

56 / 72

4.对于线性规划问题

$$\max 3x_1 - 5x_2$$
s.t. $-x_1 + 2x_2 + 4x_3 \le 4$

$$x_1 + x_2 + 2x_3 \le 5$$

$$-x_1 + 2x_2 + x_3 \ge 1$$

$$x_1, x_2, x_3 \ge 0$$

- (a)请将该问题转化为标准型;
- (b)请用两阶段法求该问题的最优解及目标函数的最大值。

57 / 72

(a)

该问题的标准型为:

$$min - 3x_1 + 5x_2$$
s.t. $-x_1 + 2x_2 + 4x_3 + x_4 = 4$

$$x_1 + x_2 + 2x_3 + x_5 = 5$$

$$-x_1 + 2x_2 + x_3 - x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

(b)

引入人工变量 x_7 ,此时第一阶段问题为:

min
$$x_7$$

s.t. $-x_1 + 2x_2 + 4x_3 + x_4 = 4$
 $x_1 + x_2 + 2x_3 + x_5 = 5$
 $-x_1 + 2x_2 + x_3 - x_6 + x_7 = 1$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$

更新单纯形表(第一阶段):

		x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	
-X	4	-1	2	4	1	0	0	0	4
X	5	1	1	2	0	1	0	0	5
х	7	-1 1 -1	2	1	0	0	-1	1	1
f	c	-1	2	1	0	0	-1	0	1

$$x_2$$
入基, $4/2 = 2, 5/1 = 5, 1/2 < 2$
所以 x_7 出基

60 / 72

最终得到第一阶段的结果:

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	
x_4	0	0	3	1	0	1	-1	3
x_5	3/2	0	3/2	0	1	1/2	-1/2	9/2
x_2	-1/2	1	1/2	0	0	1 $1/2$ $-1/2$	1/2	1/2
f	0	0	0	0	0	0	-1	0

基本解 $[0,1/2,0,3,9/2,0,0]^T$,前6个变量为原问题的可行解。可以从 $[0,1/2,0,3,9/2,0]^T$ 开始进行第二阶段的计算。

61 / 72

更新单纯形表(第二阶段):问题为 $minimum - 3x_1 + 5x_2$ $c_B = [-3, 5, 0, 0, 0, 0]^T$

						x_6	
x_4	0	0	3	1	0	1	3
x_5	3/2	0	3/2	0	1	1/2	9/2
x_2	-1/2	1	1/2	0	0	$1 \\ 1/2 \\ -1/2$	1/2
\overline{f}	1/2	0	5/2	0	0	-5/2	5/2

$$x_3$$
入基, $3/3 = 1$, $(9/2)/(3/2) = 3>1$, $(1/2)/(1/2) = 1$ 所以 x_4 出基

62 / 72

更新单纯形表(第二阶段):

	x_1	x_2	x_3	x_4	x_5	x_6	
x_3	0	0	1	1/3	0	1/3	1
x_5	3/2	0	0	-1/2	1	0	3
x_2	-1/2	1	0	-1/6	0	1/3 0 $-2/3$	0
\overline{f}	1/2	0	0	-5/6	0	-10/3	0

$$x_1$$
入基, $3/(3/2) = 2$ 所以 x_5 出基

63 / 72

最终结果:

	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	
<i>x</i> ₃	0	0	1	1/3	0	1/3	1
x_1	1	0	0	-1/3	2/3	0	2
x_2	0					1/3 0 $-2/3$	
\overline{f}	0	0	0	-2/3	-1/3	-10/3	-1

所以在 $[x_1, x_2]^T = [2, 1]^T$ 时, $-3x_1 + 5x_2$ 取最小值-1,即对应原问题的最大值1。

Optimization Methods 64 / 72

用单纯型法求解下列线性规划问题:

max
$$2x_1 + x_2$$

s.t. $x_1 + x_2 \le 5$
 $x_1 - x_2 \ge 0$
 $6x_1 + 2x_2 \le 21$
 $x_1, x_2 \ge 0$

65 / 72

引入松弛变量和剩余变量 x_3, x_4, x_5 ,转化为标准模型。 再引入人工变量 x_6 ,该问题的模型为:

min
$$-2x_1 - x_2$$

s.t. $x_1 + x_2 + x_3 = 5$
 $x_1 - x_2 - x_4 + x_6 = 0$
 $6x_1 + 2x_2 + x_5 = 21$
 $x_i \ge 0 \ (i = 1, 2, ..., 6)$

第一阶段问题为: $min x_6$, 约束与原模型相同。 列单纯形表 (第一阶段):

	x_1	x_2	x_3	x_4	x_5	x_6	
x_3	1	1	1	0	0	0	5
x_6	1	-1	0	-1	0	1	0
x_5	1 1 6	2	0	0	1	0	21
\overline{f}	1	-1	0	-1	0	0	0

本阶段 $\mathbf{c}_{\mathbf{B}}^{T} = [0, 1, 0]$ 。 x_1 入基, x_6 出基。

更新单纯型表 (第一阶段):

	x_1	x_2	x_3	x_4	x_5	x_6	
x_3	0	2	1	1	0	-1	5
x_1	1	-1	0	-1	0	1	0
x_5	0	8	0	6	1	-1 1 -6	21
f	0	0	0	0	0	-1	0

得基本解 $[0,0,5,0,21,0]^T$,前5个变量为原问题的可行解。可以从 $[0,0,5,0,21]^T$ 开始进行第二阶段的计算。

68 / 72

第二阶段问题为: $min - 2x_1 - x_2$, 约束与原模型相同。 更新单纯型表(第二阶段):

	x_1	x_2	x_3	x_4	<i>x</i> ₅	
<i>x</i> ₃	0	2	1	1	0	5
x_1	1	-1	0	-1	0	0
x_5	0	-1 8	0	6	1	21
\overline{f}	0	3	0	2	0	0

本阶段 $\mathbf{c}_{B}^{T} = [0, -2, 0]$ 。 x_2 入基, x_3 出基。

更新单纯型表 (第二阶段):

		x_1	x_2	x_3	x_4	<i>x</i> ₅	
_	<i>x</i> ₃	0	1	1/2	1/2	0	5/2
	x_1	1	-1	1/2	-1/2	0	5/2
	<i>x</i> ₅	0	0	1/2 1/2 -4	2	1	1
	f	0	0	-3/2	1/2	0	-15/2

 x_4 入基, x_5 出基。

更新单纯型表 (第二阶段):

	$ x_1 $	x_2	x_3	x_4	<i>x</i> ₅	
x_2	0	1	3/2	0	-1/4	9/4
x_1	1	0	-1/2	0	1/4	11/4
x_4	0	0	-2	1	-1/4 1/4 1/2	1/2
\overline{f}	0	0	-1/2	0	-1/4	-31/4

检验数均不大于0,求解完毕。

在 $[x_1, x_2]^T = [11/4, 9/4]^T$ 时, $-2x_1 - x_2$ 取最小值-31/4,对应原问题的最大值31/4。

4 D > 4 B > 4 B > 4 B > 4 C >

Thank you for your attention!

翟卫欣 副教授

zhaiweixin@cau.edu.cn

中国农业大学信息与电气工程学院

4D + 4B + 4B + B + 900