

KVM, OpenStack, and the Open Cloud

Adam Jollans, IBM & Mike Kadera, Intel CloudOpen Europe - October 13, 2014

Agenda

- A Brief History of Virtualization
- KVM Architecture
- Building Open Clouds
- OpenStack Architecture
- KVM and OpenStack
- Case Study of OpenStack & KVM Cloud Intel IT
- Futures
- Additional Sessions and Resources

A Brief History of Virtualization

LXC / Docker

KVM hypervisor

x86 hardware virtualization

Xen hypervisor for x86

VMware hypervisor for x86

Virtualization on Unix systems

Virtualization on mainframes

1960s

130ct14

1980s

1990s

2000s

2010s

2014

Open Virtualization Alliance

3

Conceptual Framework

Introduction to KVM

KVM Architecture

Open source hypervisor based on Linux

KVM

- Kernel module that turns Linux into a Virtual Machine Monitor
- Merged into the Linux kernel

QEMU

Emulator used for I/O device virtualization

x86 virtualization extensions

- Intel VT-x
- AMD (AMD-V)

KVM Performance

SPECvirt_sc2013

Source: SPECvirt_2013 Published Results - http://www.spec.org/virt_sc2013/results/specvirt_sc2013_perf.html

KVM Security

SELinux

- Mandatory Access Control (MAC)
 integrated into Linux
- •Provides "need to know" security between processes

sVirt

- Combines SELinux and KVM
- •Delivers "need to know" security between virtual machines

Certifications

•EAL4+ certification for KVM in RHEL 6 and SLES 11 SP 2 on various x86 64-bit Intel and AMD64-based hardware from Dell, HP, IBM and SGI

KVM Management - libvirt

User Interface

Library

- Open Source project
- Manages multiple hypervisors

Command Line

- Powerful
- Complex to use

Network Daemon

Enables remote management

Base for other management tools

9

- virt-manager, Kimchi, oVirt
- OpenStack

KVM Management - Kimchi

User Interface

Kimchi

- Open Source project
- Manages KVM on x86, Power

User Interface

- Easy to use
- Access from HTML5 web browser

Servers managed

Single digits

KVM Management - oVirt

User Interface

Storage

oVirt

- Open Source project
- Manages KVM on x86

User Interface

- Web portals
- Command line, API

oVirt Engine

- Manages VMs
- Configures storage, network

oVirt Nodes

Run virtual machines

Servers managed

Tens to hundreds

Compute

Building Open Clouds

- Security
- Resilience
- Performance
- Scalability thousands of nodes
- Heterogeneity
- Interoperability

Introduction to OpenStack

OpenStack Design Principles

- Open
 - Open Development Model
 - Open Design Process
 - Open Community
- General Purpose
 - Balancing Compute, Storage, Network
- Massively Scalable
- Multi-site
- Resilient and recoverable

Nova – Compute Service

Manages VM lifecycle

- Starting and stopping VMs
- Scheduling and monitoring VMs

Key Components

- API
- Database
- Scheduler
- Compute node and plug-ins

Authentication

Keystone

Access to VM images

- Glance
- Swift

OpenStack and Hypervisor Usage

Source: OpenStack User Survey May2014 - http://www.slideshare.net/ryan-lane/openstack-atlanta-user-survey

Keystone – Authentication Service

Manages security

- Service for all other modules
- Authentication
- Authorization

Key components

- API
- Backends
 - Token
 - Catalog
 - Policy
 - Identity

Cinder – Block Storage Service

Manages persistent block storage

- Provides volumes to running instances
- Pluggable driver architecture
- High Availability

Key components

- API
- Queue
- Database
- Scheduler
- Storage plug-ins

Authentication

Keystone

Neutron – Networking Service

Manages networking connectivity

- Provides volumes to running instances
- Pluggable driver architecture
- Support for range of networking technologies

Key components

- API
- Queue
- Database
- Scheduler
- Agent
- Networking plug-ins

Authentication

Keystone

Glance – Image Service

Manages VM images

- Catalog of images
- Search and registration
- Fetch and delivery

Key components

- API
- Registry
- Database

Authentication

Keystone

Storage of VM images

- Swift
- Local file system

Swift – Object Storage Service

Manages unstructured object storage

- Highly scalable
- Durable three times replication
- Distributed

Key components

- Proxy / API
- Rings
 - Accounts
 - Containers
 - Objects
- Data stores

Authentication

Keystone

Provisioning a VM

KVM and OpenStack

- KVM excels at choice criteria for Hypervisor
 - Cost
 - Scale & Performance
 - Security
 - Interoperability
- Development Affinity
 - Both open source projects
 - KVM is default hypervisor for OpenStack development
- Deployment Affinity
 - KVM is best supported, easiest to deploy, with most full-featured driver

Intel IT's Cloud Goals

80% Effective Utilization

Efficiency through Federation

- Pervasive Virtualization (75%)
 - Enterprise App Virtualization
 - Secure Virtualization
- Larger Pools in Fewer Data Centers

Velocity Increase

Agility through Automation & Self Service

- On-Demand Self Service the Norm
- Provision VMs within minutes
- Innovative Idea to Production <day
- External Cloud for Burst Demand

Zero Business Impact

- Reduce MTTR
- · App Design for Failure
- · Increase Availability

Intel IT & OpenStack/KVM

Deployment History

- OpenStack Essex
- ~1000 virtual instances for external services
- qemu-system-x86_64 1.0

- OpenStack Grizzly
- ~3500 instances for multiple services (~40:1, ~100 vCPU)
- qemu-system-x86_64 1.4.2

Intel IT & OpenStack/KVM

KVM Benefits

Performance

- 2012 Study on 'standard' cloud workloads (database)
 - Par or better vs. marketplace
- HV realm is seemingly near-stable on straight performance

Stability

- Open Source, tight OpenStack and Linux kernel integration
- Hypervisor efficiency
- Drinking our own champagne we've got a few KVM devs :-)

KVM Lessons Learned

Performance

- Check flags lots of features/options
- Windows guest updates
- Keep your images current

Stability

- Oversubscribing & big multi-vCPU instances
- Windows guest can be sensitive IO interruptions

Intel & OpenStack/KVM

Future Direction

IT

- It's not just the hypervisor... it's how they are managed within the stack
- OpenStack enabled Single Control Plane to simplify hosting multiple environments

Intel in the community

- Expose optimized hardware features to KVM and OpenStack schedulers
- EG: Cache QoS monitoring, chipset features (AVX2, Intel® AES-NI, etc.), VMCS
 Shadowing, APIC virtualization

See how you can accelerate your applications with features like Intel® AVX in your OpenStack VMs at our booth (#19 - #21)

KVM Futures

- Heterogeneous processor support
 - ARM
 - POWER
 - System z
 - GPUs
- Network Function Virtualization
- Additional Performance Improvements
 - Minimizing locks
 - Multi-threaded device model
- Nested Virtualization

OpenStack Futures – Juno

- Keystone
 - LDAP Integration
- Heat
 - Templates
- Nova
 - Network Function Virtualization
- Glance
 - Additional artifacts beyond just images
- Marconi
 - Messaging and Queuing System

Additional Resources

- LinuxCon Europe
 - "Linux: Where are we Going"
 - Weds 15Oct14, 9:40am
 - "What's Coming up in OpenStack Juno"
 - Weds 15Oct14, 4:30pm
- KVM Forum
 - Tues-Thurs 14-16Oct14
- OpenStack Summit, Paris
 - Mon-Fri 3-7Nov14
- Open Virtualization Alliance
 - https://openvirtualizationalliance.org
- Forthcoming IDC White Paper
 - "KVM Open Source Virtualization for the Enterprise and Opel
- New Linux Foundation Training Course
 - LFS540 "Linux KVM Virtualization"

