Physik: Wärmeausdehnung von Baustoffen

Theoretische Grundlagen

Die Wärmeausdehnung beschreibt die Änderung der Abmessungen (Länge, Volumen) eines Körpers bei Temperaturänderung. Die lineare Ausdehnung kann mit der folgenden Formel beschrieben werden:

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T$$

wobei:

- ΔL die Längenänderung ist,
- α der lineare Ausdehnungskoeffizient,
- L_0 die ursprüngliche Länge,
- ΔT die Temperaturänderung.

Ausdehnungskoeffizienten verschiedener Baustoffe

In der folgenden Tabelle sind die linearen Ausdehnungskoeffizienten einiger gängiger Baustoffe aufgeführt:

Tabelle 1: Ausdehnungskoeffizienten verschiedener Baustoffe.

Baustoff	Linearer Ausdehnungskoeffizient [mm/(m · K)]
Stahl	0,013
Beton	0,012
Backsteinmauerwerk	0,005
Kalksandsteinmauerwerk	0,008
Kupfer	0,019
Aluminium	0,023
Glas	0,009
Kunststoff (angenommen)	0,080

bau_schule

Aufgaben

Löse die untenstehenden Aufgaben. Runde das Ergebnis auf eine sinnvolle Anzahl von Dezimalstellen. Für die Bearbeitung der Aufgaben kannst du die obenstehende Tabelle (Tabelle 1) verwenden.

1. Berechnen Sie die Längenänderung eines 10 Meter langen Stahlträgers, wenn er sich von 20°C auf 35°C erwärmt. Der lineare Ausdehnungskoeffizient von Stahl beträgt 0,013 mm/(m·K).

Lösung:

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T = 0.013 \cdot 10 \cdot 15 = 1.95 \,\text{mm}$$

2. Ein Betonweg ist ursprünglich 50 Meter lang. Bei extremen Temperaturschwankungen zwischen Winter und Sommer kann sich die Temperatur um bis zu 30°C ändern. Berechnen Sie die maximale Längenänderung des Weges, wenn der Ausdehnungskoeffizient von Beton 0,012 mm/(m·K) ist.

Lösung:

$$\Delta L = 0.012 \cdot 50 \cdot 30 = 18 \, \text{mm}$$

3. Ein Kupferrohr hat bei einer Temperatur von 15°C eine Länge von 25 Metern. Wie lang ist das Rohr bei einer Temperatur von 60°C? Der Ausdehnungskoeffizient von Kupfer beträgt 0,019 mm/(m·K).

Lösung:

$$\Delta L = 0.019 \cdot 25 \cdot 45 = 21.375 \,\mathrm{mm}$$

Länge bei 60°C : $25\,\text{m} + 21.375\,\text{mm}$ = 25,021 375 m

4. Ein Aluminiumstab mit einer Anfangslänge von 30 Metern wird von -10°C auf 40°C erwärmt. Berechnen Sie die Längenänderung des Stabes. Der lineare Ausdehnungskoeffizient von Aluminium beträgt 0,023 mm/(m·K).

Lösung:

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T = 0.023 \cdot 30 \cdot (40 - (-10)) = 34.5 \,\text{mm}$$

5. Ein Glasfenster misst im Winter bei -5°C 2m x 3m. Wie gross ist seine Fläche im Sommer bei 35°C? Der lineare Ausdehnungskoeffizient von Glas beträgt 0,009 mm/(m·K). Nehmen Sie an, dass die Ausdehnung in beiden Dimensionen gleich ist.

bau_schule

Lösung:

$$\begin{split} \Delta L &= \alpha \cdot L_0 \cdot \Delta T = 0,\!009 \cdot 2 \cdot (35 - (-5)) = 0,\!72\,\text{mm} \\ \Delta B &= \alpha \cdot B_0 \cdot \Delta T = 0,\!009 \cdot 3 \cdot (35 - (-5)) = 1,\!08\,\text{mm} \\ NeueFlaeche &= (2\,\text{m} + 0.72\,\text{mm}) \times (3\,\text{m} + 1.08\,\text{mm}) \end{split}$$

= 6,00432078mm²

6. Ein Kunststoffrohr hat eine ursprüngliche Länge von 15 Metern bei 25°C. Wie lang ist das Rohr bei einer Temperatur von -20°C? Der Ausdehnungskoeffizient von Kunststoff (angenommen) beträgt 0,080 mm/(m · K).

Lösung:

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T = 0.080 \cdot 15 \cdot (-20 - 25) = -54 \,\mathrm{mm}$$

7. Ein Stahlbetonträger hat eine Länge von 30 Metern. Berechnen Sie den Unterschied in der Längenänderung zwischen dem Stahl und dem Beton, wenn sich die Temperatur von 10°C auf 40°C ändert. Der lineare Ausdehnungskoeffizient von Stahl beträgt 0,013 mm/(m·K) und der von Beton 0,012 mm/(m·K).

Lösung:

$$\Delta L_{\rm Stahl} = 0.013 \cdot 30 \cdot (40-10) = 11.7\,\mathrm{mm}$$

$$\Delta L_{\rm Beton} = 0.012 \cdot 30 \cdot (40-10) = 10.8\,\mathrm{mm}$$
 Unterschied = $\Delta L_{\rm Stahl} - \Delta L_{\rm Beton} = 11.7\,\mathrm{mm} - 10.8\,\mathrm{mm} = 0.9\,\mathrm{mm}$

8. Eine Glasfassade hat bei einer Temperatur von 10°C eine Fläche von 50 Quadratmetern. Wie gross ist die Fläche der Fassade bei einer Temperatur von 40°C? Der lineare Ausdehnungskoeffizient von Glas beträgt 0,009 mm/(m·K). Nehmen Sie an, dass die Ausdehnung in beiden Dimensionen gleich ist.

Lösung:

$$\Delta L = \alpha \cdot L_0 \cdot \Delta T = 0,009 \cdot \sqrt{50} \cdot (40 - 10) = 0,0135 \,\mathrm{m}$$

$$\Delta B = \alpha \cdot B_0 \cdot \Delta T = 0,009 \cdot \sqrt{50} \cdot (40 - 10) = 0,0135 \,\mathrm{m}$$

$$NeueFlaeche = (\sqrt{50} + 0.0135) \times (\sqrt{50} + 0.0135) \approx 50,54 \,\mathrm{m}^2$$

bau_schule