CS2010 – Data Structures and Algorithms II

Lecture 01 – Introduction chongket@comp.nus.edu.sg

Welcome ©

Introduction of Staffs

Lecturer:

Dr Chong <u>Ket Fah</u>
COM2-02-66
chongket@comp.nus.edu.sg

TAs (there are many):

See CS2010 IVLE

Outline

Some course administration:

- Assessments
- The IT tools used in this module:
 - VisuAlgo: Visualization/animation tool and Online Quiz tool,
 - Codecrunch: Platform for submission and grading of PSes
- The module itself
- Competitive Programming 3 (CP3) reference text

CS1020 Quick Review + Comparison with CS2010

OOP, algo analysis, linear DS, recursion, sorting, hashing

Problem Solving Paradigms in the context of CS2010

• Complete Search, Divide & Conquer, Greedy, and Dynamic Programming

Assessments: Overview

Activities	Weightages
Tutorial+Lab attendance/participation	6 (3+3)%
Problem Sets	24%
2 Written Quizzes (open book+calculator)	20% (14+6)
2 Online Quizzes (open book+calculator)	10% (5+5)
Final Exam (open book+calculator)	40%

- Labs on Thursday
- Tutorials on Monday/Tuesday
- Open Book = allowed to bring in lectures notes, tutorials, quizzes, reference books or any piece of paper you want but no internet!

Assessment: Bi-Weekly PS (1)

There are 6* Problem Sets (PSes) in CS2010

- Most of them are "related"
 ©, and use real-life examples (some are a bit exaggerated)
- Each of the PSes have the same weightage (4% each)
- PS is based on a subtask system with each subtask have some marks
- Full marks for each subtask is given only if you pass all test cases for that subtask
 - For <u>highest subtask</u> attempted but failed, ¼ marks of that subtask will be given if solution is almost correct (this is a very strict criteria)

Assessment: Bi-Weekly PS (2)

Rules for Bi-Weekly PS:

- Collaboration at the algorithmic level is encouraged, but you have to write the solution (i.e. the Java code) by yourself!
 - Cannot discuss/show/copy each others' code
- Posting algorithm/data structure ideas to Facebook group is encouraged, but never send Java code to anyone before deadline, even if it is a "buggy" one!
 - You have to write and debug your own Java code!
 - Looking at your seniors' code is also considered as plagiarism
 - All submissions to CodeCrunch is <u>recorded</u>!
 Do NOT submit someone else's code using your account!
 - We will be using an automatic plagiarism checker, be careful!
 - Note about stuffs like GitHub or ideone.com, make them private!

Assessment: Bi-Weekly PS (3)

Rules for Bi-Weekly PS:

 Offender caught cheating will be referred to the NUS Board of Discipline

Assessment: Bi-Weekly PS (4)

PSes are the core of CS2010

- Most likely you will spend many hours (depending on your aim) discussing and implementing the solutions
 - It is designed as one "simple" problem with "subtasks" having gradual level of difficulty
 - The easier subtask just require CS1010-CS1020 knowledge
 - Most subtasks definitely require CS2010 knowledge
 - The last subtask may require more creative usage of CS2010 knowledge or higher level knowledge
- The ideas (not the Java code) that can solve Subtask 1-2 of each PS will be discussed during the tutorial sessions ©
 - So, you can score up to 25-50 (out of 100) marks by understanding what is discussed in the tutorial and then implementing it

Assessment: Bi-Weekly PS (5)

PSes are the core of CS2010 (continued)

- The implementation of the required technique (but not the actual solution) that can be used to solve parts of the harder subtasks will be discussed during the lab demos
 - You can score up to 50-75 (out of 100) marks by understanding what your Lab TA is trying to tell you during his/her lab demo
- The last subtask of each PS is designed for those who are aiming to get A/A+ in this module... they are either difficult or tedious
 - If this is your aim, you may end up spending hours to solve this
 - If you aim for A/A+ you will need to do this, otherwise don't spend too much time on it, but I will still recommend everyone to try it

Assessment: Bi-Weekly PS (6)

Assessment: Written Quizzes 20%

2 Written Quizzes

- Quiz 1 14% 6th week (Friday 22nd Sep, 7pm 8:30pm),
 just before recess week please don't go on
 holiday on Friday!
- Quiz 2 6% 12th week (Wednesday 8th Nov during lecture), shorter one to prepare you for final exam
- PSes deal with more with your ability to come up with and implement the algorithm
- Quizzes/Final assessment deal more with your ability to model the problem correctly and come up with the algorithm to solve it (only need pseudo-code)

Assessment: Online Quizzes 10%

2 online quizzes

- Quiz 15% 6th week (21st Sep) during lab
- Quiz 2 5% 11th week (2nd Nov) during lab

 Test basic to intermediate knowledge on the algorithms/data structures learned

Introducing VisuAlgo

Dr Steven Halim's data structures & algorithms visualization Tool:

https://visualgo.net
(still an evolving project)

VisuAlgo will be <u>very heavily used</u> in CS2010 lectures, tutorials, and lab demos (bring your laptop/tablet*)

VisuAlgo Online Quiz Tool

7 VISUALGO

TRAINING MODE

5+5 = 10% of your grade will be machine-graded https://visualgo.net/training

Make VisuAlgo as <u>your personal tutor</u> © Bookmark the base URL; tell the world it exists!

CodeCrunch - https://codecrunch.comp.nus.edu.sg/

Guide on using CodeCrunch is included in the lecture notes package

CodeCrunch - https://codecrunch.comp.nus.edu.sg/

- PS0 is up on CodeCrunch for you to try.
- Unlike for CS1010/CS1020 there will not be output shown when there is an error between your result and the expected result!
 - Have to test your program first using test cases you construct
 - Learn to create good test cases -> very important skill!
- Other then compilation error, what you will see is (not exhaustive)
 - Time Limit Exceeded
 - Memory Limit Exceeded
 - Incorrect Output
 - Runtime exception/error

THE MODULE...

How to get B-/B grade in CS2010

Very simple

Just do the minimum requirements

- Get slightly better than passing for your written quizzes/exam
- get ~75% for all PSes
- get ~8 out of 10 for online quizzes
- Attend all your labs+tutorials

How to get B+/A- grade in CS2010

Do all those required for B-/B grade

Improve your mathematics proficiency

(One indicator is your performance on CS1231 or MA1100)

Occasionally complete the harder subtasks of the PSes

+

Occasionally be able to solve the harder questions in the written quiz and final exam

How to get A/A+ grade in CS2010

Summary: Do everything that is graded with near perfect score...

A/A+ students in CS2010 are invited to take Dr Steven Halim's CS3233 course in Sem2 AY 2017/2018

Discussion Forum on Facebook not IVLE!

We have a **Facebook** page!

https://www.facebook.com/groups/241724769269875

This is where discussions will be held instead of IVLE forum

Join now (if you don't have FB account**, register)!

What's IVLE for then?

- Publishing Lecture Notes/Tutorials
- Annoucements
- Gradebook

CP3 Book Sales

Not compulsory (actually a CS3233 text book)

Written by Dr Steven Halim and contains about ~65% of his algorithmic knowledge so far

 Might be useful to tackle the last subtask of each PS and to answer some tricky questions during Quiz1/2/Final (maximum 20-25% per test)

Will sell the book today (16th August) from 2pm to 7pm

- Come to my office at COM2-02-66 to buy it
- 22 SGD/copy
- will have 50 copies for sale

Alternative option: Borrow @ CL

RBR (Reserved Books/Readings) QA76.6 Hal 2013

5 minutes break, and then...

CS1020 REVIEW WITH HELP OF VISUALGO

CS1020 - OOP

Object Oriented Programming (OOP) in Java

```
class BankAccount {
  private int Balance;
  public BankAccount();
  public void Deposit(int Amount);
  public void Withdraw(int Amount);
  public int CheckBalance();
}
```

We will use Java classes/OOP principles in our CS2010 PSes

 e.g. We use "IntegerScanner", "IntegerPair", and many more in CS2010

CS1020 – Basic Algorithm Analysis

Big O notation, the O(g(n)) stuffs, e.g.

```
sum = 0;
for (int i = 0; i < n; i++)
  sum += A[i];
// is an O(n) algorithm</pre>
```

In CS2010, we will

- Extensively use this kind of algorithm analysis
- Learn a few more advanced algorithm analysis skills

CS1020 – Linear Data Structures (1)

Data Structure is a way to store, organize and answer queries about data

We will frequently abbreviate it as <u>DS</u>

A good DS is needed to support *efficient*:

- Insertions: add a new item into the DS
- Searches: is item X inside the DS or not?
- **Deletions**: remove a certain item out from the DS
- Queries: how many items is the DS?, what is the min item in the DS?
- **Updates**: combination of (or a more efficient form than) "delete the old item" and "insert the new item"

Different situations may require different DS

CS1020 – Linear Data Structures (2)

Linear DSes that you learned in CS1020:

- Items listed in left-to-right (or top-to-bottom) order
 - Array (fixed size)/Vector (resizeable)
 - Linked List
 - Stack: Last In First Out (LIFO)
 - Queue: First In First Out (FIFO)

In CS2010 you will learn non-linear DSes:

• (Binary) Heap, Binary Search Tree, Union Find DS, Graph

Linked List Visualization

CS1020 – Recursion

In CS1020, you may have learned these examples:

- "Countdown"
- Factorial
- Printing a linked list in reverse order
- Towers of Hanoi
- N choose K
- String permutations
- Recursive binary search
- Fibonacci

In CS2010, we will see much more recursion

Recursion Tree/DAG Visualization

CS1020 – Sorting

What you learn in CS1020:

- O(N²) Selection Sort, Bubble sort, Insertion sort
- O(N log N) Merge sort
- Expected O(N log N) Quick sort if the pivot is randomized
 - Can run in $O(N^2)$ otherwise (this is what you learned in CS1020)
 - A stronger analysis of Randomized Quicksort later in CS3230

In CS2010:

- If not explicitly stated, you can use Java API,
 e.g. Collections.sort for all your sorting needs
- We will learn more sorting algorithms: Heap Sort, BST Sort

Sorting Visualization

CS1020 – Hashing

Concepts that you learn:

- Direct Addressing Table
- Creating good Hash Function
- Handling collisions: Birthday paradox
 - Separate chaining
 - Linear probing, modified linear probing, quadratic probing, double hashing

We won't relearn hashing again in CS2010

But you may have to contrast and compare it with BST later

Hash Table

Let's Review CS1020!

- VisuAlgo Online training
 - CS1020 Review Questions

Source:

- -. Competitive Programming 3, Chapter 3 (overview)
- -. Introduction to Algorithms, 2nd ed, Chapter 7 and 15-16

This is what we will learn in CS2010 ©

PROBLEM SOLVING PARADIGMS

Complete Search

Given an integer array $A = \{10, 7, 3, 5, 8, 2, 9\}$, n = 7Find the largest and the smallest element of A!

Divide and Conquer

```
Given an integer array A = \{10, 7, 3, 5, 8, 2, 9, ...\}, but now n = 100000 items
```

What is the 12345th smallest item in A?

Is the previous Complete Search algorithm suitable?

Greedy

Given an integer array $A = \{10, 7, 3, 5, 8, 2, 9, ...\}$ n is still 100000 items

Find the largest gap g such that $x, y \in A$ and g = |x - y|

Dynamic Programming

- Given an integer array $A = \{10, 7, 3, 5, 8, 2, 9, ...\}$ but now n = 1000 items
- What is the **longest subsequence** of A that if viewed from left to right is always non decreasing?
 - {3, 5, 8} is a subsequence, and non decreasing
 - $-\{3, 5, 8, 2\}$ is also a subsequence, but $8 \rightarrow 2$ is decreasing
 - {3, 5, 8, 9} is the longest so far (ignoring the '...')

In the Context of CS2010 (1)

Lecture 02

- A Divide and Conquer principle in Data Structure
- Heap DS and operations on it

Lecture 03-04

- Another Divide and Conquer principle in Data Structure
- Binary Search Tree (BST) and operations on it
- Balanced BST: Adelson-Velskii Landis (AVL) Tree

In the Context of CS2010 (2)

Lecture 05

- A few more Data Structures
 - Union-Find Data Structure
 - Basic Graph Data Structure
- (Quiz 1 is up to here)

Lecture 06

- Graph Traversal
 - Breadth-First and Depth-First Search
 - Their applications (usually classified as Complete Search)

In the Context of CS2010 (3)

Lecture 07

- Minimum Spanning Tree (MST)
 - Prim's and Kruskal's are both Greedy algorithms

Lecture 08-09:

- Single-Source Shortest Paths (SSSP)
 - Bellman Ford's, Dynamic Programming
 - Dijkstra's, Greedy algorithm
- (Quiz 2 is up to here)

In the Context of CS2010 (4)

Lecture 10-11-12

- Algorithms on DAG
- Classical DP
- All-Pairs Shortest Paths
 - All use Dynamic Programming
- (Final exam is up to here)

Lecture 13

Review lecture + Special Topic? (not tested)

That's all for today

We will gear up for the first main topic of CS2010

ADT Priority Queue and Binary Heap Data Structure

To do list at home:

 Review CS1020 material about Array, Linked List, Queue and Recursion