Série d'exercices n° 3

Exercice 1

Trouver tous les polynômes $P,Q \in \mathbb{K}[X]$ vérifiant

1.
$$P \circ P = P$$
 2. $P(X^2) = P$
3. $P(X+1) = XP$ 4. $Q^2 = XP^2$

Exercice 2

Effectuer la division euclidienne de A par B dans les cas suivants :

1.
$$A = X^3 + X^2 - X - 1$$
; $B = X + 1$

2.
$$A = X^3 - 2iX^2 - i$$
; $B = X + i$

3.
$$A = 2X^3 + 5X^2 + X - 2$$
; $B = X^2 + 2$

Exercice 3

Soient $P \in \mathbb{K}[X]$, et r et s les restes de la division euclidienne de P par (X-a) et (X-b) respectivement. Exprimer le reste de la division euclidienne de P par (X-a)(X-b), en fonction de r et s si $a \neq b$, et en fonction de $\widetilde{P}(a)$ et $\widetilde{P}'(a)$ si a = b.

Exercice 4 (Formule d'interpolation de Lagrange)

Soient x_1, \ldots, x_n des éléments deux à deux distincts de \mathbb{K} , et $\alpha_1, \ldots, \alpha_n$ des éléments de \mathbb{K} . On cherche un polynôme $P \in \mathbb{K}[X]$ tel que

$$\tilde{P}(x_1) = \alpha_1, \quad \tilde{P}(x_2) = \alpha_2, \quad \dots, \quad \tilde{P}(x_n) = \alpha_n$$

- 1. Montrer que si $deg(P) \le n 1$, alors P est unique.
- 2. Montrer que, pour tout $i \in [1; n]$, il existe un unique polynôme L_i vérifiant

$$\begin{cases} \deg(L_i) \le n - 1 \\ \widetilde{L}_i(x_j) = \delta_{ij} \end{cases}$$

- On pose P = α₁L₁ + α₂L₂ + ··· + α_nL_n.
 Montrer que le polynôme P répond à la question.
- 4. Déterminer un polynôme $P \in \mathbb{R}[X]$ de degré ≤ 2 tel que $\widetilde{P}(0) = 1$, $\widetilde{P}(1) = -1$, et $\widetilde{P}(2) = -2$.

Exercice 5

On pose $P = X^5 + X^4 + 2X^3 + 2X^2 + X + 1 \in \mathbb{C}[X]$.

- Déterminer les polynômes dérivés P^(k), pour k ∈ [0; 5].
- Ecrire la formule de Taylor, pour n = 5 et a = i, puis a = −i. En déduire l'ordre de multiplicité des racines i et −i.
- 3. Factoriser P dans C.

Exercice 6

Trouver tous les polynômes $P \in \mathbb{R}[X]$ tels que $P' \mid P$.

Exercice 7

On pose $P = (X + 1)^n - (X - 1)^n \in \mathbb{C}[X]$, avec $n \in \mathbb{N}^*$.

- 1. Montrer que z est une racine de P si et seulement si $\left(\frac{z+1}{z-1}\right)^n=1$.
- 2. En déduire que z est une racine de P si et seulement si $z=-i\cot \left(\frac{k\pi}{n}\right)$, où $k\in [1;n-1]$.
- Calculer le coefficient dominant de P. En déduire la factorisation de P dans C.

Exercice 8

Décomposer en produit de facteurs irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ les polynômes suivants :

1.
$$P_1 = X^4 - 1$$
 3. $P_3 = X^4 + X^2 + 1$ 2. $P_2 = X^5 + 1$ 4. $P_4 = X^4 - X^3 + X^2 - X + 1$

Exercice 9

Calculer dans $\mathbb{R}[X]$ le PGCD et le PPCM des polynômes suivants :

$$A = X^6 - 2X^5 + X^4 - X^2 + 2X - 1;$$
 $B = X^5 - 3X^3 + X^2 + 2X - 1$

Exercice 10

- 1. Montrer que $A = X^5 1$ et $B = X^2 + X + 1$ sont premiers entre eux dans $\mathbb{C}[X]$.
- 2. En utilisant l'algorithme d'Euclide, trouver $U,V\in\mathbb{C}[X]$ tels que UA+VB=1.

Exercice 11

Soient $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$.

Montrer que α est une racine double de P si et seulement si α est une racine simple de $P \wedge P'$.

Exercice 12

Soient $n, m \in \mathbb{N}$.

- Montrer que si d | n alors (X^d − 1) | (Xⁿ − 1).
- 2. On pose n=mq+r, où q et r sont respectivement le quotient et le reste de la division euclidienne de n par m. Montrer que

$$(X^n-1)\wedge (X^m-1)=(X^m-1)\wedge (X^r-1)$$

3. On note $d = m \wedge n$. Montrer que $(X^n - 1) \wedge (X^m - 1) = (X^d - 1)$,