PROBLEM STATEMENT	2
	_
Code &Outputs: Read Data and Descriptive analysis.	2
	2
Code &Outputs: Exploratory Data Analysis and Normalization	3
Code &Outputs: Test & Train the model. Analyze Results	3
Data Visualization	Λ

Problem Statement

Multiple linear regression to predict Profit based on Administration spend, Marketing spends, R&D spend and State. Also, explains the trend and correlation between dependent and independent variables.

Code &Outputs: Read Data and Descriptive analysis.

```
# Importing the libraries

> import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
```

```
# Importing the dataset

dataset = pd.read_csv('50_Startups.csv')

#Understanding the data
print(dataset.head()) # top 5 rows of the data set
print(dataset.info()) # general information about the dataset. Fill missing values.
print(dataset.shape()) #find out rows and columns in the dataset
print(dataset.isnull().sum()) #count of null values
print(dataset.describe()) # summary statistics
```

Output: Dataset.head ()

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
(alace Imandee come from DataEname)					

Output: Dataset.Info ()

RangeIndex: 50 entries, 0 to 49 Data columns (total 5 columns):

Code & Outputs: Exploratory Data Analysis and Normalization.

Output: Count of null values and data type

#	Column	Non-Null Count	Dtype		
0	R&D Spend	50 non-null	float64		
1	Administration	50 non-null	float64		
2	Marketing Spend	50 non-null	float64		
3	State	50 non-null	object		
4	Profit	50 non-null	float64		
dtypes: float64(4), object(1)					
memory usage: 2.1+ KB					

Output: Summary Statistics

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

```
#Exploratory Data Analysis
Profitperstate = dataset.groupby('State')['Profit'].mean().sort_values(ascending=False)
 print(Profitperstate.head())
#assigning x & y for regression
                                                                                  Output:
X = dataset.iloc[:, :-1] #all values from all rows and all columns excluding the
y = dataset.iloc[:, 4] #all values from rows in the last column
                                                                                  X = (50,4)
#Convert the column into categorical columns
                                                                                  Y = (50,)
states=pd.get_dummies(X['State'],drop_first=True)
# Drop the state coulmn
X=X.drop('State',axis=1)
# concat the dummy variables
X=pd.concat([X,states],axis=1)
      Output: Profit Grouped by State
                                               Get dummy values (1 if value
New York
                   113756.446471
                                                exists and 0 if it doesn't) to
California
                   103905.175294
                                                 assign values to the state.
                                               Once in this format, the state
Name: Profit, dtype: float64
```

column is dropped, and these columns are concatenated

Code & Outputs: Test & Train the model. Analyze Results.

```
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

# Fitting Multiple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

# Predicting the Test set results i.e. Predicting Profit based on Administration spend, Marketing spend, R&D spend and State.
y_pred = regressor.predict(X_test)

from sklearn.metrics import r2_score
score=r2_score(y_test,y_pred)
print(score)
```

Output: R2 score

0.9347068473282423

y_pred uses 20% of the dataset for training (9 data points). y_test for testing utilizes the remaining 80% of datapoints.

The (Co-efficient of Determination) R² is 93% which determines that only 7% of the data points aren't closely fitted towards the best fit line. We can conclude that, variance in 93% of the data points behavior are explained by the solution and have a strong positive correlation with Profit (y).

Linear regression equation: Y = Mx = c, where Y is dependent variable the to be predicted, M is the slope (y2-y1/x2-x1), C is a constant which is equal to Y, when X = 0 and X is the independent variable.

For multiple linear regression, there are independent variables: where x1 = Administration spend, Marketing spends, R&D spend and State (converted to a categorical variable).

This use case: Y(Profit) = (M1) *(x1) + (M2) *(x2) + (M3) *(x3) + (M4) *(x4) + c

Data Visualization

- Between New York(NY)
 and Florida (FL), there is
 similar R&D and Profit.
 However, Marketing
 spends in NY is
 significantly greater (500k)
 which could partly
 increase the
 Administration spend as
 shown.
- 2. Between California (CA) and NY, similar admin spend and profits are seen. However CA has the least marketing and R&D spend.