Table of Contents

Pre	reface	
Foreword		xiii
1.	Introduction	1
	What Are Graphs?	2
	What Are Graph Analytics and Algorithms?	3
	Graph Processing, Databases, Queries, and Algorithms	6
	OLTP and OLAP	7
	Why Should We Care About Graph Algorithms?	8
	Graph Analytics Use Cases	12
	Conclusion	14
2.	Graph Theory and Concepts	15
	Terminology	15
	Graph Types and Structures	16
	Random, Small-World, Scale-Free Structures	17
	Flavors of Graphs	18
	Connected Versus Disconnected Graphs	19
	Unweighted Graphs Versus Weighted Graphs	19
	Undirected Graphs Versus Directed Graphs	21
	Acyclic Graphs Versus Cyclic Graphs	22
	Sparse Graphs Versus Dense Graphs	23
	Monopartite, Bipartite, and k-Partite Graphs	24
	Types of Graph Algorithms	27
	Pathfinding	27
	Centrality	27
	Community Detection	27

	Summary	28
3.	Graph Platforms and Processing	29
	Graph Platform and Processing Considerations	29
	Platform Considerations	29
	Processing Considerations	30
	Representative Platforms	31
	Selecting Our Platform	31
	Apache Spark	32
	Neo4j Graph Platform	34
	Summary	37
4.	Pathfinding and Graph Search Algorithms	39
	Example Data: The Transport Graph	41
	Importing the Data into Apache Spark	43
	Importing the Data into Neo4j	44
	Breadth First Search	45
	Breadth First Search with Apache Spark	46
	Depth First Search	48
	Shortest Path	49
	When Should I Use Shortest Path?	50
	Shortest Path with Neo4j	51
	Shortest Path (Weighted) with Neo4j	53
	Shortest Path (Weighted) with Apache Spark	54
	Shortest Path Variation: A*	56
	Shortest Path Variation: Yen's k-Shortest Paths	58
	All Pairs Shortest Path	60
	A Closer Look at All Pairs Shortest Path	60
	When Should I Use All Pairs Shortest Path?	62
	All Pairs Shortest Path with Apache Spark	62
	All Pairs Shortest Path with Neo4j	63
	Single Source Shortest Path	65
	When Should I Use Single Source Shortest Path?	67
	Single Source Shortest Path with Apache Spark	67
	Single Source Shortest Path with Neo4j	69
	Minimum Spanning Tree	70
	When Should I Use Minimum Spanning Tree?	71
	Minimum Spanning Tree with Neo4j	72
	Random Walk	73
	When Should I Use Random Walk?	74
	Random Walk with Neo4j	74
	Summary	75

5.	Centrality Algorithms	. 77
	Example Graph Data: The Social Graph	79
	Importing the Data into Apache Spark	80
	Importing the Data into Neo4j	81
	Degree Centrality	81
	Reach	81
	When Should I Use Degree Centrality?	82
	Degree Centrality with Apache Spark	83
	Closeness Centrality	84
	When Should I Use Closeness Centrality?	85
	Closeness Centrality with Apache Spark	86
	Closeness Centrality with Neo4j	88
	Closeness Centrality Variation: Wasserman and Faust	89
	Closeness Centrality Variation: Harmonic Centrality	91
	Betweenness Centrality	92
	When Should I Use Betweenness Centrality?	94
	Betweenness Centrality with Neo4j	95
	Betweenness Centrality Variation: Randomized-Approximate Brandes	98
	PageRank	99
	Influence	99
	The PageRank Formula	100
	Iteration, Random Surfers, and Rank Sinks	102
	When Should I Use PageRank?	103
	PageRank with Apache Spark	103
	PageRank with Neo4j	105
	PageRank Variation: Personalized PageRank	107
	Summary	108
5.	Community Detection Algorithms	109
	Example Graph Data: The Software Dependency Graph	112
	Importing the Data into Apache Spark	114
	Importing the Data into Neo4j	114
	Triangle Count and Clustering Coefficient	114
	Local Clustering Coefficient	115
	Global Clustering Coefficient	116
	When Should I Use Triangle Count and Clustering Coefficient?	116
	Triangle Count with Apache Spark	117
	Triangles with Neo4j	117
	Local Clustering Coefficient with Neo4j	118
	Strongly Connected Components	119
	When Should I Use Strongly Connected Components?	120
	Strongly Connected Components with Apache Spark	120

	Strongly Connected Components with Neo4j	122
	Connected Components	124
	When Should I Use Connected Components?	124
	Connected Components with Apache Spark	125
	Connected Components with Neo4j	126
	Label Propagation	127
	Semi-Supervised Learning and Seed Labels	129
	When Should I Use Label Propagation?	129
	Label Propagation with Apache Spark	130
	Label Propagation with Neo4j	131
	Louvain Modularity	133
	When Should I Use Louvain?	137
	Louvain with Neo4j	138
	Validating Communities	143
	Summary	143
7.	Graph Algorithms in Practice	145
	Analyzing Yelp Data with Neo4j	145
	Yelp Social Network	146
	Data Import	147
	Graph Model	147
	A Quick Overview of the Yelp Data	148
	Trip Planning App	152
	Travel Business Consulting	157
	Finding Similar Categories	162
	Analyzing Airline Flight Data with Apache Spark	166
	Exploratory Analysis	168
	Popular Airports	168
	Delays from ORD	170
	Bad Day at SFO	172
	Interconnected Airports by Airline	174
	Summary	181
8.	Using Graph Algorithms to Enhance Machine Learning	183
	Machine Learning and the Importance of Context	183
	Graphs, Context, and Accuracy	184
	Connected Feature Extraction and Selection	185
	Graphy Features	187
	Graph Algorithm Features	188
	Graphs and Machine Learning in Practice: Link Prediction	190
	Tools and Data	190
	Importing the Data into Neo4j	192

Ind	Index	
A.	Additional Information and Resources	225
	Wrapping Things Up	224
	Summary	224
	Predicting Links: Community Detection	218
	Predicting Links: Triangles and the Clustering Coefficient	214
	Predicting Links: Basic Graph Features	201
	Creating a Machine Learning Pipeline	200
	How We Predict Missing Links	199
	Creating Balanced Training and Testing Datasets	194
	The Coauthorship Graph	193