$\operatorname{STAT600}$ - Probability theory I

Haoran Li

2020/08/18

Contents

1	σ -algebras	2
Ind	lex	6

1 σ -algebras

Definition 1.1. Ω is a set. \mathcal{F} is called an *algebra* if

- $\varnothing, \Omega \in \mathcal{F}$
- $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- $A_1, A_2 \in \mathcal{F} \Rightarrow A_1 \cup A_2 \in \mathcal{F}$

An algebra \mathcal{F} is called a σ -algebra if it satisfies σ additivity

•
$$\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

Note. If
$$\mathcal F$$
 is a σ -algebra, $A \setminus B = (A^c \cup B)^c \in \mathcal F$, $\bigcap_{i=1}^\infty A_i = \left(\bigcup_{i=1}^\infty A_i^c\right)^c \in \mathcal F$

Note. (Ω, \mathcal{F}) is called a measurable space

Proposition 1.2. Every finite algebra \mathcal{F} has 2^n elements for some n

Example 1.3. Consider $R_{a,b,c,d} = (a,b] \times (c,d]$, $0 \le a \le b \le 1$, $0 \le c \le d \le 1$, \mathcal{F} is the set of all finite unions of $R_{a,b,c,d}$'s, $\Omega = (0,1] \times (0,1]$. \mathcal{F} is an algebra but not a σ -algebra, just consider $R_{a,b,c,d}^c$

Definition 1.4. (Ω, \mathcal{F}) is a measurable space, $P : \mathcal{F} \to \mathbb{R}$ is a probability measure if

- $P(A) \geq 0$ for all $A \in \mathcal{F}$
- $P(\Omega) = 1$

•
$$P\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Elements in \mathcal{F} are called *events*

Remark 1.5. If we only assume $P(A_1 \sqcup A_2) = P(A_1) + P(A_2)$, then we still have $P\left(\bigsqcup_{i=1}^{\infty} A_i\right) \geq \sum_{i=1}^{\infty} P(A_i)$

$$\sum_{i=1}^{\infty} P(A_i)$$

Lemma 1.6. 1. If $A_1 \subseteq A_2 \subseteq \cdots$, then $P(\bigcup A_i) = \lim_{n \to \infty} P(A_n)$

2. If
$$A_1 \subseteq A_2 \subseteq \cdots$$
, then $P(\bigcup A_i) = \lim_{n \to \infty} P(A_n)$

- 3. σ additivity
- $1. \Leftrightarrow 2. \Leftrightarrow 3.$

Proposition 1.7 (Inclusion-exclusion inequality).

$$P(A_1 \cup \cdots \cup A_n) \leq \sum_{i=1}^n P(A_i)$$

$$P(A_1 \cup \dots \cup A_n) \geq \sum_{i=1}^n P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} \cap A_{i_2})$$

And so on

Definition 1.8. $\mathcal{G} \subseteq \mathscr{P}(\Omega)$, $\sigma(\mathcal{G})$ is the minimal σ -algebra that contains all elements of \mathcal{G}

Definition 1.9. The Borel algebra $\mathcal{B}(X)$ is the minimal σ -algebra generated by all open subsets of X

Definition 1.10. $(\Omega_1, \mathcal{F}_1), (\Omega_2, \mathcal{F}_2)$ are measurable spaces, the *product space* is $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \times \mathcal{F}_2)$ where $\mathcal{F}_1 \times \mathcal{F}_2$ is really a short hand for $\sigma(\mathcal{F}_1 \times \mathcal{F}_2)$

Definition 1.11. A topological space X is called separable if it contains a countable dense subset

Theorem 1.12. $(M_1, d_1), (M_2, d_2)$ are separable metric spaces. $d(x, y) = \sqrt{d_1(x, y)^2 + d_2(x, y)^2}$, then $\mathcal{B}(M) = \mathcal{B}(M_1) \times \mathcal{B}(M_2)$

Remark 1.13. $\mathcal{B}(X)$ is generally bigger than the minimal σ -algebra generated by open balls, a counter example would be a discrete metric space, however this is true if X is a separable metric space

Definition 1.14. $f: \Omega \to \Omega'$ is measurable if $f^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{F}'$. A random variable is a measurable function $f: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, or equivalently $f^{-1}(-\infty, a] \in \mathcal{F}$

Definition 1.15. $F: \mathbb{R} \to [0, 1]$ is a distribution function

- \bullet F is non-decreasing
- $\lim_{x \to +\infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$
- For any $x \in \mathbb{R}$, $\lim_{y \searrow x} F(y) = F(x)$

 $F_{\xi}(x) = P(\{\omega | \xi(\omega) \le x\}) = P(\xi \le x)$ is a distribution function, conversely, given a distribution function F, there exists a random variable ξ such that $F = F_{\xi}$

Definition 1.16. The mathematical expectation $E\xi = \int_{\Omega} \xi dP$ provided $\int_{\Omega} |\xi| dP < \infty$

Theorem 1.17 (Chebychev's inequality).

$$P(|\xi - E\xi| \ge c) = P(|\xi - E\xi|^2 \ge c^2) \le \frac{\operatorname{Var} \xi}{c^2}$$

Definition 1.18. $f:(\Omega, \mathcal{F}, P) \to (\Omega', \mathcal{F}')$ is measurable, the *induced measure* P' is such that $P'(A) = P(f^{-1}(A))$. If $\xi: \Omega' \to \mathcal{R}$ is a random variable, then $\int_{\Omega'} \xi dP' = \int_{\Omega} \xi \circ f dP$ is change of variable

Exercise 1.19. Chapter 1: 5,6,14

Chapter 3: 2,3,4,5,6,7

Exercise 1.20. ξ_n are random variables, F is the distribution, show that

•
$$A = \left\{ \omega \middle| \lim_{n \to \infty} \xi_n(\omega) \text{ exists} \right\} \in \mathcal{F}$$

•
$$\int_{-\infty}^{\infty} F(x+10) - F(x) dx = 10$$

Theorem 1.21. Let $\mathcal{I} = \{(a,b], (-\infty,b], (a,\infty), (-\infty,\infty)\}$, suppose $m: \mathcal{I} \to \mathbb{R}$ is a function such that $m(I) \geq 0$ for all $I \in \mathcal{I}$, $m\left(\bigsqcup_{i=1}^{\infty} I_i\right) = \sum_{i=1}^{\infty} m(I_i)$ for $\{I_i\} \subseteq \mathcal{I}$, then there exists a unique measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu(I) = m(I)$ for all $I \in \mathcal{I}$

Proof. Suppose F is a distribution, define m((a,b]) = F(b) - F(a), then there exists a unique measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mu((-\infty,b]) = F(b)$, $\xi : (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu) \to \mathbb{R}$, $\xi(x) = x$, then $\mu(\xi \leq b) = F(b)$

Definition 1.22. F is a distribution function, g is measurable on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, define $\int_{\mathbb{R}} g d\mu_F$

Definition 1.23. A measure μ is σ -finite if $\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)<\infty$ for $\{A_{n}\}\subseteq\mathcal{F}$

Definition 1.24. A measure μ is *locally finite* if there exist $\Omega_1, \Omega_2, \cdots$ such that $\Omega_n \subseteq \Omega_{n+1}$, $\bigcup \Omega_i = \Omega, \ \mu(\Omega_n) < \infty$

Definition 1.25. A measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is discrete if $A = \{a_1, a_2, \dots\}$, finite or countable, such that $\mu(\mathbb{R}) = \mu(A)$

Definition 1.26. A measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is singular continuous if there exists $A \subseteq \mathbb{R}$ such that m(A) = 0, $\mu(\mathbb{R}) = \mu(A)$ and $\mu(\{r\}) = 0$ for all $r \in R$

Theorem 1.27. If μ is a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then there exist unique measures μ_1, μ_2, μ_3 such that $\mu = \mu_1 + \mu_2 + \mu_3$, μ_1 is discrete, μ_2 is singular continuous and μ_3 is absolutely continuous

Proof. Let $a_1^1, \dots, a_{k_1}^1$ be all the points such that $\mu(a_i^1) \geq 1$, $a_1^2, \dots, a_{k_2}^2$ be all the points such that $\mu(a_i^2) \geq \frac{1}{2}$, and so on. Let $A = \{a_i^j\}$, define $\mu_1(B) = \mu(A \cap B)$, $\mu' = \mu - \mu_1$, for any a, $\mu'(\{a\}) = 0$. Find a Borel set A_1 such that $\lambda(A_1) = 0$, $\mu'(A_1) \geq \frac{1}{k}$ with smallest possible k, if no such k exists, take $A_1 = \emptyset$. Find a Borel set $A_2 \subseteq (\mathbb{R} \setminus A_1)$ such that $\lambda(A_2) = 0$, $\mu'(A_2) \geq \frac{1}{k}$ with smallest possible k, and so on. $A' = \bigcup A_i$. Uniqueness

Definition 1.28. ρ is the *density* of a distribution function F if $F(b) - F(a) = \int_a^b \rho(t) d\lambda(t)$, by the uniqueness of the extension theorem, $\mu_F(A) = \int_A \rho d\lambda$. p is the density of ξ if $P(\xi \in A) = \int_A p d\lambda$

Example 1.29. C is the Cantor set, F is Cantor function, with $F(x) = \lim_{\substack{y \searrow x \\ y \in C}} F(y)$, then F is continuous

References

 $[1] \ \ Theory \ of \ probability \ and \ random \ processes \ (second \ edition)$ - Leonid B. Koralov

Index

 $\sigma\text{-algebra},\,2$ $\sigma\text{-finite measure},\,4$

Algebra, 2

Borel algebra, 3

Density of a distribution, 4 Discrete measure, 4 Distribution function, 3

Event, 2

Induced measure, 3

Locally finite measure, 4

Mathematical expectation, 3

Measurable map, 3 Measurable space, 2

Probability measure, 2

Product of measurable spaces, 3

Random variable, 3

Singular continuous, 4