The Continued Fraction Method for Factorization

All programs are attached in the end of the report.

Throughout the report B is the set of prime numbers smaller than 50.

Question 1:

We use the trial division to develop a test on whether N is B-smooth. We use the test to investigate the probability that a d-digit number is B-smooth. The table of corresponding probabilities is shown below.

From the table we see that as d increases, the probability decreases exponentially. Hence if $d \ge 10$, almost no d-digit number is B-smooth.

Question 2:

Consider the continued fraction expansion of $x = \sqrt{N}$. We show that each x_n can be written in the form $\frac{r + \sqrt{N}}{s}$ with r, s integers and $s|r^2 - N$.

WLOG, N is not a perfect square.

First note that by the continued fraction algorithm, $\sqrt{N} = \frac{P_{n-1}x_n + P_{n-2}}{Q_{n-1}x_n + Q_{n-2}}$. Rearrange we see that

$$x_n = \frac{r_n + \sqrt{N}}{s_n}$$
 for some r_n, s_n to be determined. (1)

Table 1: Probability that a given *d*-digit number is *B*-smooth d=1 2 3 4 5 6 probability 1 0.888889 0.487778 0.214889 0.079733 0.025819

On the other hand,

$$x_n = a_n + \frac{1}{x_{n+1}} = a_n + \frac{s_{n+1}}{r_{n+1} + \sqrt{N}}$$
 (2)

By equating 1 and 2 we see that

$$s_n(a_n r_{n+1} + s_{n+1}) - N - r_n r_{n+1} = \sqrt{N}(r_{n+1} + r_n - a_n s_n)$$
 (3)

Since N is irrational, we have

$$s_n(a_n r_{n+1} + s_{n+1}) - N - r_n r_{n+1} = 0 (4)$$

$$r_{n+1} + r_n - a_n s_n = 0 (5)$$

Substitute 5 into 4 we have

$$N - r_{n+1}^2 = s_n s_{n+1} (6)$$

We calculate x_n iteratively using 5 and 6 with $s_0 = 1$ and $r_0 = 0$ to find convergents for \sqrt{N} without concerning the integer overflow issue.

We tabulate the partial quotients for \sqrt{N} for $N \leq 50$ in Appendix A.

The table shows that the period of \sqrt{N} is at most \sqrt{N} , and that the partial quotients are symmetric and the last term is always $\left\lfloor \sqrt{N} \right\rfloor$. Moreover by tabulating the values of r and s we see that $r \leq \left\lfloor \sqrt{N} \right\rfloor$ and that $s \leq \left\lfloor 2\sqrt{N} \right\rfloor$.

Question 3:

Now we consider the Pell equation

$$x^2 - Ny^2 = 1 \tag{7}$$

and the nagative Pell equation

$$x^2 - Ny^2 = -1 (8)$$

We note in the first place two necessary conditions for the insolubility of the negative Pell equation 8.

- 1. If 4|N, then by taking 8 mod 4 we have $x^2 = -1 \mod 4$, which is not possible.
- 2. If N contains a prime factor $p = 3 \mod 4$, then by taking 8 mod p we have $x^2 = -1 \mod p$. But for such p, -1 is not a quadratic residue.

We also develop a test for $x^2 - Ny^2 = \pm 1$ with $x, y, N \le 10^{15}$, we avoid the issue of integer overflow by exploiting the following fact:

For pairwise coprime integers n_i , there exists a unique solution x modulo M such that $x = k \mod n_i$, where M is the product of n_i 's and $k = \pm 1$.

We choose our n_i 's to be the prime numbers smaller than 200, so that $M \ge 10^{50}$, giving us enough magnitude to test whether 7 holds for $x, y, N \le 10^{15}$.

Now we tabulate the quantities $P_n^2 - NQ_n^2$ for N = 5, 13, 17 to investigate the use of continued fractions to solve 7 and 8. The result is shown in Appendix A.

From the table we see that the continued fraction is an ideal method for solving the Pell equation and, when N is not divisible by 4 or contains prime factor congruent to 3 mod 4, the negative Pell equation and usually gives the solution with only a few iterations.

We use the continued fraction method to solve the Pell equation for $1 \le N \le 100$ and $500 \le N \le 550$ and tabulate the results in Appendix A.

We see that for N = 509, 521, and 526 the Pell equation's solution is too large to be found by the program.

Question 4:

Given $x^2 = y^2 \mod N$ we have N|(x+y)(x-y). Hence $\gcd(N,x+y)$ and $\gcd(N,x-y)$ are two possible non-trivial factors of N. Note also that the Euclid algorithm is a fast method: At each iteration, the algorithm will reduce the divident or the divisor by at least a half, which gives an $O(\log N)$ complexity.

If N is an odd composite with N = pq, where gcd(p,q) = 1, then $x = \frac{p+q}{2}$ and $y = \frac{p-q}{2}$ are two instances for which $x^2 = y^2 \mod N$.

Modular Multiplication with Large Numbers:

Before proceeding to other questions, it's necessary to tackle the issue of integer overflow when we consider the expression of the form $ab \mod N$, where a, b and N are limited to 10^{10} . Here we show one way to circumvent the issue by decomposing a and b.

To begin with, we use the standard division algorithm to decompose $a = 10^7 a_1 + a_2$ and $b = 10^7 b_1 + b_2$, where a_2 and b_2 are small than 10^7 . Moreover by the upper bound of a and b we also have a_1 and b_1 are smaller than 10^3 .

Now we do the modular multiplication with standard properties of modular arithmetics. We compute

$$ab \mod N = (10^{7}a_{1} + a_{2})(10^{7}b_{1} + b_{2}) \mod N$$

$$= 10^{14}a_{1}b_{1} + 10^{7}b_{2}a_{1} + 10^{7}a_{2}b_{1} + a_{2}b_{2} \mod N$$

$$= ((10^{14} \mod N)a_{1} \mod N)b_{1} \mod N \qquad (9)$$

$$+ (10^{7}b_{2} \mod N)a_{1} \mod N$$

$$+ (10^{7}a_{2} \mod N)b_{1} \mod N$$

$$+ a_{2}b_{2} \mod N \qquad (10)$$

Note that we completely avoid the issue of integer overflow in this way because, for example, in 9, $10^{14} \mod N$ evaluates to a number smaller 10^{10} , and hence $((10^{14} \mod N)a_1 \mod N)$ can be done with the exact arithmetic, which multiplied with b_1 can also be done exactly modular N.

Question 5:

We modify our programs to tabulate $P_n \mod N$ and $P_n^2 \mod N$. The program is capable for $N \leq 10^{10}$. The results of the program for N = 1449774329, 3333999913 and 7686335197 are given in Appendix A.

We note that $P_n^2 \mod N$ is usually small, which is more likely to be B-smooth. Hence the continued fractions of \sqrt{N} is a good source for factorization.

Question 6:

We use Gaussian elimination to solve the Equation $A\mathbf{v} = 0$ over \mathbb{F}_2 . We put the matrix A in its row echelon form and use back substitution to find a non-trivial solution when it it exists.

For example, when

$$T = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$
 (11)

the program reduces T to its row echelon form

$$T_{ref} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$
 (12)

and generates a non-trivial solution to $T\mathbf{v} = 0$: $\mathbf{v} = (0, 0, 0, 1, 1, 1)^T$ is such a solution.

Question 7:

From Question 6 and tabulated values for $P_n^2 \mod N$, which are highly likely to be B-smooth, we see that the continued fraction is a good way of finding a sequence of integers $\{x_n\}_{n=1}^K$ such that $x_n^2 = y_n \mod N$, where y_n is B-smooth for all n. If we find a non-empty subset $A \subseteq [1, K]$ such that $\prod_{n \in A} y_n$ is a perfect square, we have a choice of (x, y) with $x^2 = y^2 \mod N$ as in Question 4.

The subset A is found by considering cases where the following quantity is a perfect square.

$$\prod_{n \in A} y_n = \prod_{n=1}^{K} y_n^{a_n}, \text{ where } a_n = 0 \text{ or } 1.$$
 (13)

13 is a square if and only if the prime factors of 13 are congruent to 0 mod 2. The combination of y_n 's for which the equivalent condition holds can be calculated by the program in Question 6.

We implement the continued fraction method for factorization.

To improve the performance of our method for very large values of N, we could take larger base B, so that the obtained sequence of P_n^2 is more likely to be B-smooth, and hence reduce the number of convergents required to factorize N.

Appendix A: Tables

```
Table 2: Partial Quotients for \sqrt{N} for N \leq 50
N
                Partial Quotients
1
    1
2
        2
    1
3
        1
             2
    1
4
    2
5
    2
        4
    2
6
        2
             4
7
    2
        1
             1
                 1
                    4
8
    2
        1
             4
9
    3
10
    3
        6
    3
        3
11
             6
12
    3
        2
             6
13
    3
        1
             1
                 1
                     1
                         6
             2
14
    3
        1
                 1
                     6
        1
             6
15
    3
16
        8
17
    4
18
    4
        4
             8
        2
             1
19
    4
                 3
                     1
                         2
                            8
        2
20
             8
21
        1
             1
                2
                     1
                            8
22
             2
                 4
                     2
                         1 8
    4
        1
23
        1
             3
                 1
                     8
    4
             8
24
    4
        1
25
26
    5
        10
27
    5
        5
            10
28 | 5
        3
             2
                 3 10
```

```
N
                 Partial Quotients
29
      2
          1
                    10
30
   5
      2
         10
31
   5
      1
         1
             3 5
                     3
                        1 1 10
32
   5
          1
      1
             1 10
   5
          2
33
      1
             1
                 10
   5
34
      1
          4
                 10
      1
35
   5
         10
36
   6
37
     12
   6
38
   6
      6
         12
39
   6
      4
         12
   6
40
      3
         12
      2
          2
41
   6
             12
     2
42
   6
         12
      1
43
   6
         1
             3
                     5 1 3 1 1 12
                 1
        1
                 2
44
   6
     1
             1
                   1
                       1
                           1 12
        2
             2
                 2
   6 1
45
                    1
                        12
         3
                 1
                     2
                           2
     1
             1
                        6
46
   6
                              1 1 3
                                       1 12
47
   6
     1
          5
             1
                 12
      1
48
   6
         12
49
   7
50 7
      14
```

Table 4: Solutions to the Pell equation for $1 \leq N \leq 100$

n			n			n	1		n			
1	1	0	26	51	10	51	50	7	76	57799	6630	
2	3	2	27	26	5	52	649	90	77	351	40	
3	2	1	28	127	24	53	66249	9100	78	53	6	
4	1	0	29	9801	1820	54	485	66	79	80	9	
5	9	4	30	11	2	55	89	12	80	9	1	
6	5	2	31	1520	273	56	15	2	81	1	0	
7	8	3	32	17	3	57	151	20	82	163	18	
8	3	1	33	23	4	58	19603	2574	83	82	9	
9	1	0	34	35	6	59	530	69	84	55	6	
10	19	6	35	6	1	60	31	4	85	285769	30996	
11	10	3	36	1	0	61	1766319049	226153980	86	10405	1122	
12	7	2	37	73	12	62	63	8	87	28	3	
13	649	180	38	37	6	63	8	1	88	197	21	
14	15	4	39	25	4	64	1	0	89	500001	53000	
15	4	1	40	19	3	65	129	16	90	19	2	
16	1	0	41	2049	320	66	65	8	91	1574	165	
17	33	8	42	13	2	67	48842	5967	92	1151	120	
18	17	4	43	3482	531	68	33	4	93	12151	1260	
19	170	39	44	199	30	69	7775	936	94	2143295	221064	
20	9	2	45	161	24	70	251	30	95	39	4	
21	55	12	46	24335	3588	71	3480	413	96	49	5	
22	197	42	47	48	7	72	17	2	97	62809633	6377352	
23	24	5	48	7	1	73	2281249	267000	98	99	10	
24	5	1	49	1	0	74	3699	430	99	10	1	
25	1	0	50	99	14	75	26	3	100	1	0	

Table 5: Solutions to the Pell equation for $500 < N < 5$	Table 5:	Solutions	to the Pell	equation	for 500	< N	< 550
---	----------	-----------	-------------	----------	---------	-----	-------

	$\begin{array}{c c} n \\ 526 \\ 527 \\ 528 \\ 529 \\ 530 \\ 531 \\ 532 \\ 533 \\ 534 \end{array}$	1 528 23 1 1059 530 2588599 74859849	0 23 1 0 46 23 112230 3242540
5 502288218432 7 171046278 8 1099 9 20 9 36 5 2 1 60 1 1985797689600	527 528 529 530 531 532 533	528 23 1 1059 530 2588599 74859849	23 1 0 46 23 112230
7 171046278 8 1099 9 20 9 36 5 2 1 60 1 1985797689600	528 529 530 531 532 533	23 1 1059 530 2588599 74859849	1 0 46 23 112230
8 1099 9 20 9 36 5 2 1 60 1 1985797689600	529 530 531 532 533	1 1059 530 2588599 74859849	0 46 23 112230
9 20 9 36 5 2 1 60 1 1985797689600	530 531 532 533	1059 530 2588599 74859849	46 23 112230
9 36 5 2 1 60 1 1985797689600	531 532 533	530 2588599 74859849	23 112230
5 2 1 60 1 1985797689600	532 533	2588599 74859849	112230
1 60 1 1985797689600	533	74859849	
1 1985797689600			3242540
	534	3678725	
1 0		3010123	159194
1 0	535	1618804	69987
1 12	536	145925	6303
0 185290497	537	192349463	8300492
7 29427	538	9536081203	411129654
1 608020	539	3970	171
5 204	540	119071	5124
6 767	541	1	0
5 742	542	4293183	184408
9 25990786260	543	669337	28724
7 104	544	2449	105
6 651925	545	1961	84
9 285	546	701	30
1 0	547	160177601264642	6848699678673
3 858	548	6083073	259856
6 3577314675	549	1766319049	75384660
9 9835470	550	30580901	1303974
7652059679	60 185290497 57 29427 51 608020 25 204 06 767 55 742 99 25990786260 67 104 76 651925 99 285 1 0 03 858 26 3577314675	1 0 535 71 12 536 60 185290497 537 57 29427 538 51 608020 539 25 204 540 06 767 541 55 742 542 99 25990786260 543 67 104 544 76 651925 545 99 285 546 1 0 547 03 858 548 26 3577314675 549	1 0 535 1618804 71 12 536 145925 60 185290497 537 192349463 57 29427 538 9536081203 51 608020 539 3970 25 204 540 119071 06 767 541 1 55 742 542 4293183 99 25990786260 543 669337 67 104 544 2449 76 651925 545 1961 99 285 546 701 1 0 547 160177601264642 03 858 548 6083073 26 3577314675 549 1766319049

Table 6: $P_n \mod N$ for some values of N

N					$P_n \mod N$			
1449774329	38075	38076	380759	1561112	3502983	8567078	12070061	286178481
3333999913	57740	57741	230963	288704	18419315	18708019	55835353	465390843
7686335197	87671	87672	263015	350687	6926068	48833163	153425557	509109834

Table 7:	P_n^2	\bmod	N	for	some	valu	es	of	N
					6				

N								
1449774329	-68704	7447	-16819	29495	-22367	52459	-3160	29137
3333999913	-92313	23168	-91239	1791	-77568	37273	-12648	83849
7686335197	-130956	44387	-126548	8817	-23853	50516	-52251	6503

Source Code

```
1 function L = trialFactorize(n)
2 L = [];
3 if n<0
4 \quad n = -n;
5 L = [-1];
  end
8 [a,b] = TrialDivFactorize(n);
9 if a == 1
10 L = [L,n];
11 else
12 t = n/b;
13 L = [L,b];
14 while t>1
15 [a,b] = TrialDivFactorize(t);
16 if a == 1
17 L = [L, t];
18 t = 1;
19 else
20 L = [L,b];
21 t = t/b;
22 end
23 end
24 end
```

```
1
2 function [x,f] = TrialDivFactorize(n)
3 x = 1;
4 k = 2;
5 f = n;
6 while k \le sqrt(n)
7 r = Mod(n,k); % Mod stands for modulo
8 if r == 0
9 f = k;
10 x = 0; % x is composite with a factor = k
11 break
12 end
13 k = k + 1;
14 end
```

```
1 function p = productMod(a,b,N,k)% k = 10^14 mod N
2 [a1,a2] = decompose(a);% n = 10^7 * a + b
3 [b1,b2] = decompose(b);
4
5
6 f = Mod(k*a1,N);%first term
```

```
7  f = Mod(f*b1,N);
8
9  s = Mod(10^7*b2,N); % second term
10  s = Mod(s*a1,N);
11
12
13  t = Mod(10^7*a2,N); % third term
14  t = Mod(t*b1,N);
15
16  fo = Mod(a2*b2,N); % fourth term
17
18  p = Mod(f+s+t+fo,N);
19  end
```

```
2 function x = powerMod(a, b, N) %% this method aims to compute ...
       a^b mod N, accelarated by binary operations
3 k = Mod(10^14, N);
4 b2 = base2(b);
5 \times = 1;
6 A = [Mod(a, N)];
7 	ext{ for } i = 1: (length(b2)-1)
8 A = [productMod(A(1), A(1), N, k), A]; &A = [a^2^m, a^2^m-1 ... ...
       a^2, a] mod N
11 for i = 1:length(b2)
12 \text{ if } b2(i) == 1
13 x = productMod(A(i), x, N, k);
14 else
15 x = x;
16 end
17 end
18 end
```

```
1 function [pn,pn.sqr] = pnModN(N)
2 k = Mod(10^14,N);
3 root_N = sqrt(N);
4 a0 = floor(root_N);
5 pn = zeros(1,10);
6 pn.sqr = zeros(1,10);
7 if (root_N - a0) ≠ 0
8 R(1) = a0;
9 S(1) = N - a0^2;
10 A(1) = floor(nthConvergent(N,R(1),S(1)));
11 P(1) = a0*A(1)+1;
12 Q(1) = A(1);
13 X = [a0];
14 i = 2;
15 while 1
```

```
16 if i < 10
17 r = A(i-1) *S(i-1) - R(i-1);
18 s = (N-r^2)/S(i-1);
19 x = nthConvergent(N,r,s);
20 R(i) = r;
21 S(i) = s;
22 X = [X, X];
23 A(i) = floor(x);
24 if i == 2
25 P(i) = A(i) *P(i-1)+a0;
26 Q(i) = A(i) *Q(i-1)+1;
27 else
28 P(i) = A(i) *P(i-1) +P(i-2);
29 Q(i) = A(i) *Q(i-1) +Q(i-2);
31 else
32 break
33 end
34 \quad i = i + 1;
35 end
36 P = [a0, P];
37 Q = [1,Q];
38 end
39 for i = 1:length(P)
40 a = Mod(P(i),N);
41 if a>N/2
42 pn(i) = a-N;
43 else
44 pn(i) = a;
45 end
47 b = productMod(P(i), P(i), N, k);
48 if b>N/2%%%%we find minimal positive b mod N.
49 pn_sqr(i) = b-N;
50 else
51 \text{ pn\_sqr(i)} = b;
52 end
53 end
```

```
1 function L = PellTabulate(N)
2 root_N = sqrt(N);
3 a0 = floor(root_N);
4 L = [];
5 if (root_N - a0) ≠ 0
6 R(1) = a0;
7 S(1) = N - a0^2;
8 A(1) = floor(nthConvergent(N,R(1),S(1)));
9 P(1) = a0*A(1)+1;
10 Q(1) = A(1);
11 X = [a0];
12 L = [a0^2-N];
13 L = [L,P(1)^2-N*Q(1)^2];
```

```
14 i = 2;
15 while 1
16 if i < 8
17 r = A(i-1) *S(i-1) - R(i-1);
18 s = (N-r^2)/S(i-1);
19 x = nthConvergent(N,r,s);
20 R(i) = r;
21 S(i) = s;
22 X = [X, X];
23 A(i) = floor(x);
24 if i == 2
25 P(i) = A(i) *P(i-1) +a0;
26 Q(i) = A(i) *Q(i-1)+1;
27 else
28 P(i) = A(i) *P(i-1) +P(i-2);
29 Q(i) = A(i) *Q(i-1) +Q(i-2);
30 end
31 L = [L, P(i)^2-N*Q(i)^2];
32 else
33 break
34 end
35 i = i + 1;
36 end
37 P = [a0, P];
38 Q = [1,Q];
39
40 end
41 end
```

```
1 function flag = PellEqnTest(x,y,N)%L is the list of primes ...
      smaller than 200
2 flag = 1;
3 L = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, ...]
       47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, ...
       107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, ...
       167, 173, 179, 181, 191, 193, 197, 199];
4 \text{ for } i = 1:46
5 \quad a = Mod(x, L(i));
6 = Mod(a^2, L(i));
7 b = Mod(y, L(i));
8 \ b = Mod(b^2, L(i));
9 \text{ c} = \text{Mod}(N, L(i));
if Mod(a-b*c,L(i)) \neq Mod(1,L(i))
11 flag = 0;
12 break
13 end
14 end
15 end
```

```
1 function T = PellEqnSolver(N)
```

```
2 \text{ root_N} = \text{sqrt(N)};
3 a0 = floor(root_N);
4 threshold = 500;
5 T = [1,0];
6 if PellEqnTest(a0,1,N) == 1\%N=2
7 T = [a0, 1];
8 i = threshold + 1;
9 end
10 if (root_N - a0) \neq 0
11 R(1) = a0;
12 S(1) = N - a0^2;
13 A(1) = floor(nthConvergent(N,R(1),S(1)));
14 P(1) = a0 *A(1) +1;
15 Q(1) = A(1);
16 X = [a0];
17 i = 2;
if PellEqnTest(P(1),Q(1),N) == 1
19 T = [P(1),Q(1)];
i = threshold + 1;
21 end
22 while 1
23 if i < threshold
24 r = A(i-1)*S(i-1) - R(i-1);
25 s = (N-r^2)/S(i-1);
26 x = nthConvergent(N,r,s);
27 R(i) = r;
28 S(i) = s;
29 X = [X, X];
30 A(i) = floor(x);
31 if i == 2
32 P(i) = A(i) *P(i-1) +a0;
33 Q(i) = A(i) *Q(i-1)+1;
34 else
35 P(i) = A(i) *P(i-1) +P(i-2);
36 Q(i) = A(i) *Q(i-1) +Q(i-2);
37 end
38 if PellEqnTest(P(i),Q(i),N) == 1
39 \quad T = [P(i),Q(i)];
40 break
41 end
42 else
43 break
44 end
45 \quad i = i + 1;
46
47 end
48 end
49 end
```

```
1
2 function x = nthConvergent(N,r,s)
3 x = (sqrt(N)+r)/s;
```

4 end

```
1 function flag = negPellEqnTest(x,y,N)%L is the list of ...
     primes smaller than 200
2 flag = 1;
3 L = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, ...
      47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, ...
      107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, ...
      167, 173, 179, 181, 191, 193, 197, 199];
4 for i = 1:46
s = Mod(x, L(i));
6 \ a = Mod(a^2, L(i));
7 b = Mod(y, L(i));
8 b = Mod(b^2, L(i));
9 c = Mod(N,L(i));
if Mod(a-b*c,L(i)) \neq Mod(-1,L(i))
11 flag = 0;
12 break
13 end
14 end
15 end
```

```
1 function x = multiplicity(p,L)
2 x = 0;
3 for i = 1:length(L)
4 if p == L(i)
5 x = x + 1;
6 end
7 end
```

```
1 function r = Mod(n,k) % n mod k
2 r = (n - k*floor(n/k));
3 end
```

```
1
2 function B = matrixMod2(A)
3 B = A - 2*floor(A./2);
4 end
```

```
1 function [v] = F2LinearSolver(A)
2 r = length(A(:,1));
3 c = length(A(1,:));
4 REF = F2GaussElimination(A);
5 v = zeros(c,1);
6 column = 0;
```

```
7 for i = 1:c
8 \text{ if all(REF(:,i)==0)} == 1
9 column = i;
10 v(i) = 1;
11 end
12 end
13
14 if column == 0 %no zero pivot
15 	 s = 0;
16 for i = 1:r
17
18 if s == 0
19 for j = 1:c-1
20 if REF(i,j)\neq0
21 for k = j+1:c
22 if REF(i,k)\neq0
23 \text{ row} = i;
24 column = k;
25 	 s = 1;
26 break
27 end
28 end
29 end
30 end
31 else
32 break
33 end
34 end
35
36 \text{ v(row)} = 1;
37 \text{ v(column)} = 1;
38 \text{ for i} = 1:r
39 if REF(i,column) == 1
40 \text{ v(i)} = 1;
41 end
42 end
43 end
44 end
```

```
12 	 f = 0;
13 elseif k == 1
14 swapflag = 0; %swapflag indicates whether there exists an ...
       element A(i,k)!=0
15 for i = k:r
16 if A(i,k) == 1
17 temp_row = A(i,:);
18 A(i,:) = A(k,:);
19 A(k,:) = temp_row;
20 swapflag = 1;
21 break
22 end
23 end
24 if swapflag == 1
25 for i = k+1:r
26 \text{ if } A(i,k) == 1
27 A(i,:) = matrixMod2(A(k,:) - A(i,:));
28 end
29 end
30 end
31 else
32 swapflag = 0; %swapflag indicates whether there exists an ...
       element A(i,k)!=0
33 for i = k:r
34 \text{ if } A(i,k) == 1
35 temp_row = A(i,:);
36 \text{ A(i,:)} = \text{A(k,:)};
37 A(k,:) = temp_row;
38 swapflag = 1;
39 break
40 end
41 end
42 if swapflag == 1
43 for i = k+1:r
44 if A(i,k) == 1
45 A(i,:) = matrixMod2(A(k,:) - A(i,:));
46 end
47 end
48
49 %%we eliminiate nonzero elements above the kth row.
50 for i = 1:k-1
51 \text{ if } A(i,k) == 1
52 A(i,:) = matrixMod2(A(i,:) - A(k,:));
53 end
54 end
55 end
56 end
57 B = A;
58 end
```

```
1
2 function B = F2GaussElimination(A)
```

```
3  r = length(A(:,1));
4  c = length(A(1,:));
5  k.max = min(r,c);
6  B = A;
7  f = 1;
8  for k = 1:k.max
9
10  if f == 1
11  [f,B] = F2GaussEliminationStep(B,k,r,c);
12  else
13  break
14  end
15  end
16  end
```

```
1 function [a,b] = decompose(n) % n = 10^7 * a + b
2 a = floor(n/10^7);
3 b = n - 10^7*a;
4 end
```

```
1
   2 function continuedFractionFactor(N)
   3
   4 k = Mod(10^14, N);
   6 r = 0;
   7 \text{ root_N} = \text{sqrt(N)};
   8 a0 = floor(root_N);
   9 R(1) = a0;
 10 S(1) = N - a0^2;
 11 A(1) = floor(nthConvergent(N,R(1),S(1)));
 12 P(1) = a0*A(1)+1;
13 Q(1) = A(1);
14 T = zeros(16, 2);
 15 b = productMod(a0, a0, N, k);
 if b>N/2%%%% find minimal positive b mod N.
 17 pn_sqr = b-N;
 18 else
19 pn_sqr = b;
20 end
21
[x,L] = B_Smooth(pn_sqr);
23 if x == 1
24 r = r + 1;
 25 \text{ pn(r)} = a0;
 y_{int} = y_{i
27 T(:,r) = matrixMod2(B_Representation(L));
28 end
29
30
```

```
31 b = productMod(P(1),P(1),N,k);
32 if b>N/2\%\%\% we find minimal positive b mod N.
33 \text{ pn\_sqr} = b-N;
34 else
35 pn_sqr = b;
36 end
37
38 [x,L] = B_Smooth(pn_sqr);
39 if x == 1
40 r = r + 1;
41 pn(r) = P(1);
42 y_list(r) = pn_sqr;
43 T(:,r) = matrixMod2(B_Representation(L));
45 T
 46 if length(T(1,:)) > 1
47 v = F2LinearSolver(T);
48 if any (v == 0) == 1
49 V
50 end
51 end
52
53 i = 2;
54 while 1
 55 R(i) = A(i-1) *S(i-1) - R(i-1);
S(i) = (N-r^2)/S(i-1);
x = \text{nthConvergent}(N,R(i),S(i));
58 A(i) = floor(x);
59 if i == 2
60 P(i) = A(i) *P(i-1) +a0;
61 Q(i) = A(i) *Q(i-1)+1;
62 else
63 P(i) = A(i) *P(i-1) +P(i-2);
64 Q(i) = A(i) *Q(i-1) +Q(i-2);
67 b = productMod(P(i), P(i), N, k);
68\, if b>N/2%%%%we find minimal positive b mod N.
69 pn_sqr = b-N;
70 else
71 \text{ pn\_sqr} = b;
72 end
73
74 [x,L] = B_Smooth(pn_sqr);
75 if x == 1
76 r = r + 1;
77 pn(r) = P(i);
78 \text{ y_list(r)} = pn_sqr;
79 T(:,r) = matrixMod2(B_Representation(L));
80 end
si if length(T(1,:)) > 1
v = F2LinearSolver(T);
83 if any (v == 0) == 1
84 V
```

```
85 break
86 end
87 end
88 if r == 17
89 break
90 end
91 i = i + 1;
92 end
93 T
94 pn
95 y-list
96
97
98
99 end
```

```
2 function [P,Q,R,S,A] = ContinuedFraction(N)
3 \text{ root_N} = \text{sqrt(N)};
4 a0 = floor(root_N);
5 if (root_N - a0) == 0
6 P = a0;
7 Q = 1;
8 R = 0;
9 S = 1;
10 A = a0;
11 else
12 R(1) = a0;
13 S(1) = N - a0^2;
14 A(1) = floor(nthConvergent(N,R(1),S(1)));
15 P(1) = a0 *A(1) +1;
16 \ Q(1) = A(1);
17 X = [a0];
18 i = 2;
19 while 1
20 r = A(i-1) *S(i-1) - R(i-1);
s = (N-r^2)/S(i-1);
22 x = nthConvergent(N,r,s);
23 if any (X==x)
24 P = P(1:length(P)-1);
Q = Q(1:length(Q)-1);
R = R(1:length(R)-1);
27 S = S(1:length(S)-1);
28 A = A(1:length(A)-1);
29 break
30 else
31 R(i) = r;
32 S(i) = s;
33 X = [X, X];
34 A(i) = floor(x);
35 if i == 2
36 P(i) = A(i) *P(i-1) +a0;
```

```
37 Q(i) = A(i) *Q(i-1)+1;

38 else

39 P(i) = A(i) *P(i-1)+P(i-2);

40 Q(i) = A(i) *Q(i-1)+Q(i-2);

41 end

42 end

43 i = i + 1;

44 end

45 A = [a0,A];

46 P = [a0,P];

47 Q = [1,Q];

48 R = [0,R];

49 S = [1,S];

50 end

51 end
```

```
2 function [x,L] = B_Smooth(n)
3 \times = 1; %n \text{ is b smooth}
4 L = [];
5 if n<0
6 n = -n;
7 L = [-1];
8 end
9 t = 2;
10 while t > 1
11 [a,b] = TrialDivFactorize(n);
12 if b > 49
13 x = 0; %x \text{ is not } B-smooth.
14 t = 1;
15 else
16 L = [L,b];
17 if a == 1
18 t = 1;
19 else
20 n = n/b;
21
22 end
23 end
24 end
25 end
```

```
1
2 function T = B.Representation(L)
3 T = zeros(16,1);
4 T(1) = multiplicity(-1,L);
5 T(2) = multiplicity(2,L);
6 T(3) = multiplicity(3,L);
7 T(4) = multiplicity(5,L);
8 T(5) = multiplicity(7,L);
```

```
9 T(6) = multiplicity(11,L);
10 T(7) = multiplicity(13,L);
11 T(8) = multiplicity(17,L);
12 T(9) = multiplicity(19,L);
13 T(10) = multiplicity(23,L);
14 T(11) = multiplicity(29,L);
15 T(12) = multiplicity(31,L);
16 T(13) = multiplicity(37,L);
17 T(14) = multiplicity(41,L);
18 T(15) = multiplicity(43,L);
19 T(16) = multiplicity(47,L);
20 end
```

```
1 L = zeros(1,6);
2 for i = 0:5
3 counter = 0;
4 for j = 10^i:10^(i+1)-1
5 if B_Smooth(j) == 1
6 counter = counter + 1;
7 end
8 end
9 L(i+1)=counter/(10^(i+1)-10^(i));
10 end
```

```
1
2 for i = 1:50
3 [P,Q,R,S,A] = ContinuedFraction(i);
4 filename = 'PartialQuotients.xlsx';
5 filename2 = 'R.xlsx';
6 filename3 = 'S.xlsx';
7 sheet = 1;
8 xlRange = strcat('A',num2str(i));
9 xlswrite(filename,A,sheet,xlRange)
10 xlswrite(filename2,R,sheet,xlRange);
11 xlswrite(filename3,S,sheet,xlRange);
12 end
```

```
filename = 'PellTabulate.xlsx';
sheet = 1;
xlRange = strcat('A',num2str(1));
xlswrite(filename,PellTabulate(5),sheet,xlRange);
xlRange = strcat('A',num2str(2));
xlswrite(filename,PellTabulate(13),sheet,xlRange);
xlRange = strcat('A',num2str(3));
xlswrite(filename,PellTabulate(17),sheet,xlRange);

xlswrite(filename,PellTabulate(17),sheet,xlRange);

filename = 'PellSolution.xlsx';
sheet = 1;
```

```
for i = 1:100
14    xlRange = strcat('A', num2str(i));
15    xlswrite(filename, PellEqnSolver(i), sheet, xlRange);
16    end
17
18    for i = 0:50
19    xlRange = strcat('A', num2str(500+i));
20    xlswrite(filename, PellEqnSolver(500+i), sheet, xlRange);
21    end
```

```
1
2 filename = 'PnModN.xlsx';
3 sheet = 1;
4 filename2 = 'PnSqrModN.xlsx';
6 N = 1449774329;
7 xlRange = strcat('A', num2str(1));
  [pn,pn\_sqr] = pnModN(N);
9 xlswrite(filename,[N,pn],sheet,xlRange);
10 xlswrite(filename2,[N,pn_sqr],sheet,xlRange);
11
12 N = 3333999913;
13 xlRange = strcat('A', num2str(2));
14 [pn,pn\_sqr] = pnModN(N);
15 xlswrite(filename,[N,pn],sheet,xlRange);
16 xlswrite(filename2, [N, pn_sqr], sheet, xlRange);
18 N = 7686335197;
19 xlRange = strcat('A', num2str(3));
20 [pn,pn\_sqr] = pnModN(N);
21 xlswrite(filename,[N,pn],sheet,xlRange);
22 xlswrite(filename2,[N,pn_sqr],sheet,xlRange);
```