Foundations for Calculus

1 Properties of Numbers

1.1 Division by Zero

0 * b = 0 for all numbers b.

Also, for all numbers $a \neq 0$, $\exists a^{-1}$ such that, $a * a^{-1} = 1$.

Therefore, since 0 * b = 0, we exclude 0^{-1} from the multiplicative inverse above, meaning division by zero can not exist.

note:
$$(x-1)(x-2) = 0$$
, implies $x = 1$ or $x = 2$ or BOTH.

1.2 Negative and Positive Numbers

0 is neither positive nor negative, since positive is defined as all numbers greater than zero (negative less than).

1.3 Absolute Value

For any number a,

$$|a| = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}$$

When solving equations, straightforward appraoch is to use definition.

Geometric Interpretation of |a| is the distance from the origin of a.

To solve |a| = 4, we can use the geometric interpretation: numbers that have a distance of 4 from the origin, a = 4 or a = -4.

More generally, for

- b > 0, if |a| = b, then a = b or a = -b.
- b = 0, a = 0
- b < 0, then no a exists, since distance can't be negative!

LOOK MORE INTO ABSOLUTE VALUES.

1.4 Triangle Inequality

Limits

f approaches the limit near a

for every $\epsilon > 0$, there exists $\delta > 0$ such that for all x

if
$$0 < |x - a| < \delta$$
, then $|f(x) - l| < \epsilon$

note $x \neq a$!

Observations:

- a function can't approach two different limits [gray]see proof with picture
- $\lim_{x\to a} f(x) + g(x) = \text{limit of each sumed (same for products)}$

redrecall polynomial factor and remainder theorems (long division). see mathisfun.com polynomials remainder factor