ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ЖУРНАЛ ПРАКТИКИ

Студента 1 курса <u>Феі</u>	<u>йзуллина Кирилла Ма</u> (Фамилия, 1	<u>ратовича</u> имя. отчество)
Институт №8 <u>«Информацио</u>	нные технологии и пр	оикладная математика»
Кафедра 804 <u>«Теория веро</u>	эятностей и компьюте	рное моделирование»
Учебная группа <u>М8О-101М-</u>	- <u>21</u>	
Направление <u>01.04.04.</u> (иифр)	Прикладна (название на	ая математика правления)
Вид практикиучебная	я (исследовательская	(<u>r</u>
в Московском авиационно	м институте (НИУ)	
(наименова	ание предприятия, учреждения	г, организации)
Руководитель практики от МАИ	<u>Платонов Е.Н.</u> (ФИО)	(Подпись)
Фейзуллин K.M.	/	/ "04" января 2022 г.
(ФИО)		(дата)

1. Место и сроки проведения практики

Дата начала практики	" <u>01</u> " <u>сентября</u>	2021 <i>г</i> .	
Дата окончания практики	" <u>04</u> " <u>января</u>	2022 г.	
Наименование предприятия		<u> АВИАЦИОННЫЙ</u>	<u>ИНСТИТУТ</u>
<u>(НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕ</u>	<u>ЛЬСКИЙ УНИВЕРСІ</u>	MTET)	
Название структурного подразд	еления) <u>к</u>	афедра 804	
2. Иметруистом не техниче безен	(OOHOOTH		
2. Инструктаж по технике безоп	асности		
<u>Платонов Е.Н.</u> /	/	" <u>01</u> " <u>сентября</u> 202	21 г.
(ne	одпись НР) (дат	а проведения)	
3. Индивидуальное задание студ	центу		
Исследование задачи прогно	озирования оттока	клиентов	
 – задача бинарной классифи 	кации.		
Исследование задачи UpLift мо	оделирования.		
-			

4. План выполнения индивидуального задания

1 – сентября – получение задания		
1 сентября – 1 октября – изучение	е теоретического материал	та
2 октября – 21 ноября – формули	рование математической г	постановки задачи
22 ноября – 6 декабря – определе	ние и исследование метод	ов решения
6 декабря – оформление отчета по	о практике	
Руководитель практики от МАИ:	Платонов Евгений Никол (Фамилия, имя, отчество)	<u>паевич</u> // (Подпись)
Фейзуллин Кирилл Маратович	/	/ " <u>04</u> " <u>января</u> 2022 г.
(ФИО)	(подпись студента)	(дата)

5.Отзыв руководителя практики

Запланированная работа выполн	нена. Материалы, изложе	нные в о	тчете студен	нта,
полностью соответствуют индиг	видуальному заданию.			
Оценка за практику «отлично».				
Руководитель	<u> Платонов Е.Н.</u>	/		/
	(Фамилия, имя, отчество)		(Подпись)	

Отчет студента

Объектом исследования являются задача прогнозирования оттока клиентов.

Цель работы – постановка задачи и исследование методов решения.

Постановка задачи

Задача бинарной классификации

Как было описано выше, у продуктовых или ретейл компаний появилась потребность в прогнозировании оттока покупателей для применения мер предотвращения. Для оптимального распределения бюджета нельзя осуществлять коммуникацию со всеми пользователями сразу, так как это будет очень дорогая коммуникация. Тогда будем осуществлять коммуникацию с теми пользователями, от которых мы получим наибольший отклик, наибольшую пользу. В современном мире пользу нельзя рассматривать только как прибыль, теперь пользу для компании несет сам покупатель, уделяя ей внимание. Тогда главной целью коммуникации определим сохранение внимания и наибольшую пользу такая коммуникация принесет с потенциально ушедшим пользователем. Формализуя, задача будет классификации выглядеть следующим образом. Дана выборка пользователей с одинаковым набором признаков X = $\{x_i \mid i \in \{1, 2, ..., n\}\}$, которую мы разделим на обучающую подвыборку $X' = \{x_i' | j \in \{1, 2, ..., m\}\}$ и тестовую подвыборку $X'' = \{x_i'' | k \in \{1, 2, ..., m\}\}$ $\{1,2,...,j\}\}$ так, что $X=X'\cup X''$ и $X'\cap X''=\emptyset$. Так же мы делим множество правильных ответов $Y = \{y_i \mid i \in \{1, 2, ..., n\}\}$ на Y' и Y'' так, что $Y = Y' \cup \{1, 2, ..., n\}$ Y'' и $Y' \cap Y'' = \emptyset$. Итак, есть выборка пользователей X и выборка правильных ответов $Y \in \{0,1\}$. Пусть $\xi \colon \Omega \to X$ – случайная величина, представляющая собой случайного покупателя X. И пусть $\eta:\Omega\to Y$ — случайная величина, представляющая собой случайный правильный ответ из Y. Тогда определим случайную величину $(\xi, \eta): \Omega \to (X, Y)$ с распределением p(y|x), которое является совместным распределением объектов и их классов. Тогда размеченная выборка — это элементы из распределения $(x_i, y_i) \sim p(y|x)$. Определим, что все элементы независимо и одинаково распределены. Тогда задача классификации будет сведена к задаче нахождения p(y|x) и заданном наборе элементов $D = \{(x_i, y_i) \sim p(y|x), i = \overline{1,N} \}$. С помощью обучающей выборки X' и правильных ответов Y' будем находить распределение p(y|x), а уже на тестовой выборке X'' и наборе правильных ответов Y'' для нее, будем смотреть, как хорошо тот или иной метод решения с помощью машинного обучения работает с контрольной выборкой.

Задача UpLift моделирования

При росте клиентской базы мало знать, какой клиент может вскоре от нас уйти. Для минимизации затрат нужно определить, на каких клиентов коммуникация сработает, а на каких нет.

Эффект от коммуникации определим как casual effect:

$$\tau_i = Y_i^1 - Y_i^0,$$

где Y_i^1 - реакция i – го человека, если коммуникация была, Y_i^0 - реакция, если коммуникации не было.

Зная признаковое описание i – го объекта X, можно ввести условный усредненный эффект от воздействия *Conditional Average Effect* (CATE):

$$CATE(x) = M[Y_i^1 | X_i] - M[Y_i^0 | X_i]$$

Casual effect и CATE можно только оценить, так как одновременно невозможно провести коммуникацию с человеком и не провести. Оценка CATE и является UpLift. Тогда для конкретного объекта он имеет следующее определение:

$$UpLift(x) = M[Y_i|X_i = x, W_i = 1] - M[Y_i|X_i = x, W_i = 0],$$

 Γ де Y_i — наблюдаемая реакция клиента в результате маркетинговой кампании:

$$Y_i = W_I Y_i^1 + (1 - W_i) Y_i^0 = egin{cases} Y_i^1, ext{ если } W_I = 1 \ Y_i^0, ext{ если } W_i = 0 \end{cases}$$

 $W_i=1,$ если объект попал в *целевую* (threatment) группу, в которой была коммуникация,

 $W_i = 0$, если объект попал в *контрольную* (control) группу, в которой коммуникации не было,

 $Y_i = 1$, если объект совершил целевое действие,

 $Y_i = 0$, если объект не совершил целевое действие (произошел отток)

Анализ области исследования

Исходя из задач, при решении которых могут быть использованы результаты данной работы, могут принципиально отличаться как алгоритмы решения, так и подходы к нему в целом. Решения могут быть эвристическими, могут включать в себя построение более сложных алгоритмов, в том числе с использованием моделей машинного обучения. От выбора подхода к решению зависят существование базовых решений, набор используемых атрибутов запроса, определение методов извлечения эвристик и построения правил, способы оценки параметров алгоритма, необходимость в наличии разметки данных, методы оценки качества и многие другие факторы.

Задача бинарной классификации оттока

Решение данной задачи возможно как аналитически, с помощью анализа исторических данных, так и с помощью машинного обучения.

Одно из аналитических решений предполагает анализ «выживаемости». Находится период с момента последней покупки до

настоящего времени всей пользовательской базы. Для каждой сферы продаж распределение будет отличаться.

Рисунок 1. Моделирование потребительского поведения.

На рисунке 1 отображена гистограмма зависимости количества покупателей от количества прошедших дней с момента последней покупки. По рисунку 1 можно сказать, что если пользователь не закупался в течении 12 дней, то скорее всего, мы его потеряли, так как данное количество дней соответствует перцентилю в 90%.

Вариантом сложнее является RF[1] сегментация покупателей на основе частоты и давности покупки. Пример моделирования такой сегментации на рисунке 2.

Рисунок 2. RF сегментация.

В нашем случае покупателей в ручную разобьем на пять сегментов на основе нашей экспертной оценки. На основе рисунка 1 было предположение, что если человек не совершил покупку в течении 12 дней, то скорее всего, он для нас потерян. Тогда можно сказать, что сегмент точек, отмеченных серым, можно считать оттоком покупателей, так как это

множество давно не совершало покупки и в общей сложности совершило их малое количество.

Данные подходы можно использовать как с размеченными данными, так и с не размеченными.

Следующим вариантом решения задачи прогноза оттока клиентов является машинное обучение. Данного рода решений существует огромное количество, начиная классической логистической регрессией[2] и заканчивая нейронными сетями[2][3].

Эффективность стандартных методов решения задачи бинарной классификации[4] отразим в таблице 1.

Метод	Верно	Ошибочно
классификации	классифицированны	классифицированны
	х объектов	х объектов
Случайный лес	69%	31%
Градиентный	73.3%	26.7%
бустинг		
Наивный	75%	25%
Байесовский		
классификатор		
Дискриминантны	75.7%	24.3%
й анализ		
Логистическая	74%	26%
регрессия		

Однако, стоит взять во внимание, что в зависимости от задачи, точность классификации может варьироваться для одних и тех же методов. Из чего сделаем вывод, что придется исследовать некоторые модели для нашей задачи самим.

Задача UpLift моделирования

Перед решением самой задачи UpLift моделирование следует описать предшествующие шаги, так как при расчете данной величины

 $UpLift(x) = M[Y_i|X_i = x, W_i = 1] - M[Y_i|X_i = x, W_i = 0]$ мы уже должны работать с выборками, где была коммуникация и где ее не было.

Опишем шаги:

- 1. Формируется клиентская база с разделением на две части контрольная и экспериментальная.
- 2. Проводится коммуникация.
- 3. Строим UpLift модель.

Если первые два шага напоминают AB — тестирование и имеют понятную природу, то третий шаг разберем подробнее дальше.

Существует несколько основных методов UpLift моделирования:

- 1. Метод с 1 моделью.
- 2. Метод с 2 моделями.
- 3. Трансформация целевой переменной.
- 4. Решающие деревья с UpLift критерием разбиения.

Начнем с первого метода. Данный вариант решения использует переменную W как признак. Тогда обучающий набор данных имеет вид, приведенных в таблице 1.

Таблица 1.Пример обучающего набора данных

	Обучающи	е признаки		Целевая переменная
X11	•••	X1n	W1	Y1
X21	•••	X2n	W2	Y2
			• • • • • • • • • • • • • • • • • • • •	
Xm1		Xmn	Wm	Ym

С помощью логистической регрессии или подобной модели классификации обучаем модель на данных и после обучения находим разность вероятностей на тестовой выборке, где в переменной W задаем везде единицы — будто бы была коммуникация, и на той же выборке обрабатываем данные, где в переменной W задаем нули — будто бы единицы не было. Тогда Uplift будет иметь вид:

$$UpLift = P\left(\begin{bmatrix} x_1^1 & \cdots & x_1^n & 1 \\ \vdots & \ddots & \vdots \\ x_m^1 & \cdots & x_m^n & 1 \end{bmatrix}\right) - P\left(\begin{bmatrix} x_1^1 & \cdots & x_1^n & 0 \\ \vdots & \ddots & \vdots \\ x_m^1 & \cdots & x_m^n & 0 \end{bmatrix}\right)$$

Второй подход требует уже обучения двух моделей, одна модель для экспериментальной группы -P[Y|X=x,W=1], где была коммуникация, вторая модель для контрольной группы P[Y|X=x,W=0] где коммуникации не было. После обучение моделей на тренировочных выборках, совершается обработка тестовой выборки для каждой модели и за UpLift берется так же разность двух вероятностей:

$$UpLift = P[Y|X = x, W = 1] - P[Y|X = x, W = 0]$$

Первые два метода имеют простоту реализации как позитивный фактор, но отрицательным фактором является то, что признак коммуникации W является не целевой переменной, а лишь признаком.

Решает данную проблему трансформация целевой переменной следующим образом:

$$Y_i^* = Y_i \frac{W_I}{p(X_i)} - Y_i \frac{1 - W_I}{1 - p(X_i)} = Y_i \frac{W_I - p(X_i)}{p(X_i) * (1 - p(X_i))},$$

Где $p(X_i) = P(W_i = 1|X_i)$ — вероятность принадлежности к целевой группе. Причем, в практике это просто доля экспериментальной выборки, что обычно составляет половину, то есть $p(X_i) = 0.5$.

Тогда область значений новой целевой переменной и ее область определения имеет вид:

$$\begin{pmatrix} Y & w \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} \to p=0.5 \begin{pmatrix} Y^* \\ 2 \\ 0 \\ -2 \\ 0 \end{pmatrix}$$

Далее на тренировочной выборке обучается модель регрессии с среднеквадратичной функцией потерь, так как она обеспечивает связь между UpLift и новой целевой переменной Y^* при обучении, что доказано в [5].

Последний метод решения основан на деревьях решений, в которых изменен критерий разделения на дочерние узлы. Критерий изменяется для максимизации разброса UpLift, так как в данной задаче требуется найти максимальную разность между контрольной и экспериментальной выборкой. Тогда критерий разбиения будет иметь следующий вид на примере евклидового расстояния:

$$D_E\left(P,Q
ight) = \sum (p_i - q_i)^2$$
 , где $p = rac{\sum Y_i W_i}{\sum W_i}$, $q = rac{\sum Y_i (1-W_i)}{\sum (1-W_i)}$

Так как в нашей задаче стоит максимально эффективная коммуникация, то есть пользователи с прогнозируемым максимальным значением UpLift, список прогнозов ранжируется по убыванию и выбираются первые N пользователей для коммуникации. Размер выборки N определяется исходя из бюджета, заложенного на коммуникацию

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. RF сегментация // https://www.moengage.com/blog/rfm-analysis-using-rfm-segments/
- 2. Глубокое обучение / Ян Гудфеллоу, Иошуа Бенджио, Аарон Курвилль // ДМК Пресс, 2018г., второе цветное издание, исправленное
- 3. Глубокое обучение. / Николенко С., Кадурин А., Архангельская Е. // СПб: Питер, 2018. 480 с.: ил. (Серия «Библиотека программиста»).
- 4. Анализ методов бинарной классификации / Ю.С. Донцова // Известия Самарского научного центра Российской академии наук, том 16, No 6(2), 2014
- 5. Курс лекций анализа данных. Лекция 7 UpLift моделирование / Платонов Е.Н. // Московский авиационный институт