Záróvizsga tételsor

1. Függvények határértéke, folytonossága

Fekete Dóra

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága. Kompakt halmazon folytonos függvények tulajdonságai: Heinetétel, Weierstrass-tétel, Bolzano-tétel. A hatványsor fogalma, Cauchy–Hadamard-tétel, analitikus függvények.

1 Függvények határértéke

Adott $f \in \mathbb{K}_1 \to \mathbb{K}_2$, $a \in \mathcal{D}_f'$ (torlódási pont). Az f függvénynek az a helyen van határértéke, ha $\exists A \in \overline{\mathbb{K}}_2$, ahol $\overline{\mathbb{K}} = \mathbb{C} \vee \mathbb{R} \vee +\infty \vee -\infty$, amelyre tetszőleges $K(A) \subset \mathbb{K}_2$ környezetet is véve megadható az a-nak egy alkalmas $k(a) \subset \mathbb{K}_1$ környezete, amellyel $f[(k(a) \setminus \{a\}) \cap \mathcal{D}_f] \subset K(A)$ teljesül.

Másképp: $f(x) \in K(A), (a \neq x \in k(a) \cap \mathcal{D}_f).$

Ekkor az egyértelműen létező $A \in \overline{\mathbb{K}}_2$ számot vagy valamelyik végtelent az f függvény a helyen vett határértékének nevezzük.

Jelölés: $\lim_{x \to a} f(x) = \lim_{a} f = A$

1.1 Torlódási pont

 $A \subset \mathbb{K}$, ekkor az $\alpha \in \overline{\mathbb{K}}$ torlódási pontja az A halmaznak, ha bármely $K(\alpha)$ környezetre $(K(\alpha) \setminus \{\alpha\}) \cap A \neq \emptyset$.

Egyenlőtlenségekkel: $A \subset \mathbb{K}$, ekkor $\alpha \in \mathbb{K}$ szám torlódási pontja az A halmaznak, ha $\forall \varepsilon > 0$ esetén $\exists x \in A$, hogy $0 < |x - \alpha| < \varepsilon$.

1.2 Környezet

 $A \subset \mathbb{K}, a \in A, r > 0 : K_r(a) = K(a) = \{x \in A : |x - a| < r\}.$

1.3 Függvény

 $\emptyset \neq A, B$ halmazok, $f \subset A \times B$ reláció. Valamely $x \in A$ elem
re legyen $f_x := \{y \in B : (x,y) \in f\}$. f reláció függvény, ha
 $\forall x \in A$ -ra az f_x halmaz legfeljebb egy elemű.

2 Függvények folytonossága

Az $f \in \mathbb{K}_1 \to \mathbb{K}_2$ függvény az $a \in \mathcal{D}_f$ pontban folytonos, ha $\forall \varepsilon > 0$ számhoz megadható olyan $\delta > 0$ szám, amellyel bármely $x \in \mathcal{D}_f, |x - a| < \delta$ esetén $|f(x) - f(a)| < \varepsilon$. Jelölés: $f \in \mathcal{C}\{a\}$, ha $\forall x \in \mathcal{D}_f : f \in \mathcal{C}\{x\}$, akkor $f \in \mathcal{C}$.

3 Összefüggés határérték és folytonosság között

Legyen $f \in \mathbb{K}_1 \to \mathbb{K}_2, a \in \mathcal{D}_f \cap \mathcal{D}_f'$. Ekkor $f \in \mathcal{C}\{a\} \iff \lim_a f = f(a)$.

4 Fogalmak

4.1 Kompakt halmaz

 $A \subset \mathbb{K}$ kompakt, ha bármely $(x_n) : \mathbb{N} \to A$ sorozatnak van olyan (x_{ν_n}) részsorozata, amely konvergens és $\lim (x_{\nu_n}) \in A$.

Ekkor A korlátos és zárt.

4.2 Konvergens

Egy $x=(x_n): \mathbb{N} \to \mathbb{K}$ számsorozatot konvergensnek nevezünk, ha $\exists \alpha \in \mathbb{K}, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n > N: |x_n - \alpha| < \varepsilon.$

 α az x sorozat határértéke.

4.3 Korlátos

Sorozatra: x_n korlátos $\Rightarrow \exists \nu : x \circ \nu$ konvergens

Halmazra: $\emptyset \neq A \subset \mathbb{K}$ korlátos, ha $\exists q \in \mathbb{R} : |x| \leq q, (x \in A)$

4.4 Zárt halmaz

Komplementere nyílt halmaz.

4.5 Nyílt halmaz

A nyílt halmaz $\iff \forall a \in A, \exists K(a) : K(a) \subset A,$ vagyis az A halmaz minden pontja belső pont.

5 Heine-tétel

Ha az $f \in \mathbb{K}_1 \to \mathbb{K}_2$ függvény folytonos és \mathcal{D}_f kompakt, akkor f egyenletesen folytonos.

5.1 Egyenletesen folytonos

 $f \in \mathbb{K}_1 \to \mathbb{K}_2$ függvény egyenletesen folytonos, ha $\forall \varepsilon > 0, \exists \delta > 0 : |f(x) - f(t)| < \varepsilon, (x, t \in \mathcal{D}_f, |x - t| < \delta).$

6 Weierstrass-tétel

Tegyük fel, hogy az $f \in \mathbb{K} \to \mathbb{R}$ függvény folytonos és \mathcal{D}_f kompakt. Ekkor az \mathcal{R}_f értékkészletnek van legnagyobb és legkisebb eleme $(\exists \max \mathcal{R}_f, \exists \min \mathcal{R}_f)$.

7 Bolzano-tétel

Tegyük fel, hogy valamely $-\infty < a < b < +\infty$ esetén az $f:[a,b] \to \mathbb{R}$ függvény folytonos, és $f(a) \cdot f(b) < 0$ (ellenkező előjelű).

Ekkor van olyan $\xi \in (a, b)$, amelyre $f(\xi) = 0$.

8 A hatványsor fogalma

Legyen adott az $a \in \mathbb{K}$ középpont és az $(a_n) : \mathbb{N} \to \mathbb{K}$ együttható-sorozat, továbbá ezek segítségével tekintsük az alábbi függvényeket: $f_n(t) := a_n(t-a)^n, (t \in \mathcal{D} := \mathbb{K}, n \in \mathbb{N})$. Ekkor a $\sum (f_n)$ függvénysort hatványsornak nevezzük.

8.1 Sorozat

Az f függvényt sorozatnak nevezzük, ha $\mathcal{D}_f = \mathbb{N}$.

8.2 Függvénysorozat, függvénysor

 (f_n) sorozat függvénysorozat, ha $\forall n \in \mathbb{N}$ esetén f_n függvény, és valamilyen $\mathcal{D} \neq \emptyset$ halmazzal $\mathcal{D}_{f_n} = \mathcal{D}, (n \in \mathbb{N}).$

Ha a szóban forgó (f_n) függvénysorozatra $\mathcal{R}_{f_n} \subset \mathbb{K}, (n \in \mathbb{N})$ is igaz, akkor az (f_n) függvénysorozat által meghatározott $\sum (f_n)$ függvénysor a következő függvénysorozat: $\sum (f_n) := (\sum_{k=0}^n f_k)$.

9 Cauchy-Hadamard-tétel

Tegyük fel, hogy az $(a_n): \mathbb{N} \to \mathbb{K}$ sorozat esetén létezik a $\lim \left(\sqrt[n]{|a_n|} \right)$ határérték, és legyen

$$r := \left\{ \begin{array}{ll} +\infty & ha \lim \left(\sqrt[n]{|a_n|} \right) = 0 \\ \frac{1}{\lim \left(\sqrt[n]{|a_n|} \right)} & ha \lim \left(\sqrt[n]{|a_n|} \right) > 0 \end{array} \right.$$

r-t a konvergenciasugárnak nevezzük. Ekkor bármely $a \in \mathbb{K}$ mellett a $\sum (a_n(t-a)^n)$ hatványsorról a következőket mondhatjuk:

- 1. Ha r > 0, akkor minden $x \in \mathbb{K}, |x-a| < r$ helyen a $\sum (a_n(t-a)^n)$ hatványsor az x helyen abszolút konvergens.
- 2. Ha $r < +\infty$, akkor tetszőleges $x \in \mathbb{K}, |x-a| > r$ mellett a $\sum (a_n(t-a)^n)$ hatványsor az x helyen divergens.

9.1 Abszolút konvergens

A $\sum_{n=1}^{\infty} a_n$ végtelen sort abszolút konvergensnek nevezzük, ha a $\sum_{n=1}^{\infty} |a_n|$ sor konvergens.

9.2 Divergens

Ha a $\lim_{n\to\infty} a_n$ nem létezik, vagy nem véges, akkor a $\sum a_n$ végtelen sor divergens.

9.3 Cauchy-Hadamard-tételből következik

- 1. Ha $r=+\infty$, akkor $\mathcal{D}_0=\mathbb{K}$, és $\forall x\in\mathbb{K}$ -ra a hatványsor abszolút konvergens.
- 2. Ha r = 0, akkor $\mathcal{D}_0 = \{a\}$ és $\sum_{n=0}^{\infty} a_n (a-a)^n = a_0$.
- 3. Ha $0 < r < +\infty$, akkor $K_r(a) \subset \mathcal{D}_0 \subset G_r(a) = \{x \in \mathbb{K} : |x-a| \le r\}$ és a $K_r(a)$ környezet $\forall x$ pontjára a hatványsor az x helyen abszolút konvergens.
- 4. Ha r > 0, akkor tetszőleges $0 \le \rho < r$ számhoz válasszuk az $x \in K_r(a)$ elemet úgy, hogy $|x a| = \rho$. Ekkor $\sum_{n=0}^{\infty} |a_n(x-a)^n| = \sum_{n=0}^{\infty} |a_n||x-a|^n = \sum_{n=0}^{\infty} |a_n||p^n < +\infty$

10 Analitikus függvények

Tegyük fel, hogy a $\sum (a_n(t-a)^n)$ hatványsor r konvergenciasugara (ld. C–H-tétel) nem nulla. Ekkor értelmezhetjük az alábbi függvényt: $f(x) := \sum_{n=0}^{\infty} a_n(x-a)^n, (x \in K_r(a))$, ami nem más, mint a $\sum (a_n(t-a)^n)$

függvénysor $F(x) := \sum_{n=0}^{\infty} a_n(x-a)^n, (x \in \mathcal{D}_0)$ összegfüggvényének a leszűkítése a $K_r(a)$ környezetre: $f = F|_{K_r(a)}, (f$ a hatványsor összegfüggvénye). Az ilyen szerkezetű f függvényt analitikusnak nevezzük. Megjegyzés: \mathcal{D}_0 a $\sum (a_n(t-a)^n)$ hatványsor konvergenciatartományát jelöli.

10.1 Fontos analitikus függvények

Olyan a_n -ek, amire $\lim \left(\sqrt[n]{|a_n|}\right) = 0$, tehát $r = +\infty$ a $\sum (a_n t^n)$ hatványsorok esetén. Ezek az a_n -ek: $\frac{1}{n!}, \frac{(-1)^n}{(2n+1)!}, \frac{(-1)^n}{(2n)!}, \frac{1}{(2n+1)!}, \frac{1}{(2n)!}$.

•
$$\exp x := \exp(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, (x \in \mathbb{K})$$

•
$$\sin x := \sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, (x \in \mathbb{K})$$

•
$$\cos x := \cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, (x \in \mathbb{K})$$

•
$$\sinh x := \sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, (x \in \mathbb{K})$$

•
$$\cosh x := \cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, (x \in \mathbb{K})$$