RBE 2001 Final Presentation

Team 9

Overview of Challenge

- Design a pair of robots to pick up and replace "solar collectors" mounted at two different angles
- The first robot must pick up a collector off of one side of the "house," place it on a staging block, then replace it on the house, before the other robot does the same
- To do this, the robots will use two styles of grippers, four-bar assemblies, an infrared remote, an ultrasonic sensor, and a light sensor

Overview of Robot

Linkage Synthesis Design Solidworks Sketch

Linkage Synthesis Design Solidworks Sketch

Aluminum Plates at 45°, 25° and 0°

Position at 0°

Position at 25°

Position at 45°

Center of Mass at 0°

Center of Mass at 45°

Center of Mass at 25°

Moving Grabber from 0° to 25°

Moving Grabber from 0° to 45°

Motion Study

Known Parameters:

FBDs Of 4-Bar

$$d := 3.98in$$

 $W_3 := 1.081bf$ Theta₂ := 205deg

Theta₄ := 186.24deg

FBDs and equations of 4-Bar Continued

$$0 = A_x + B_x$$

$$0 = A_y + B_y - W_3$$

$$\Sigma M_A := 0$$

$$\sum F_{xx} = 0$$

$$\sum_{N} F := 0$$

FBDs and equations Of 4-Bar

 L_3 - Grabber

Grabber Forces on Joints and Torque

 $SA_x = 0.971bf$

 $SA_{v} = 1.191bf$

 $SB_x = -0.971bf$

 $SB_{V} = -0.111bf$

 $SC_x = -0.971bf$

 $SC_{V} = -0.111bf$

 $SD_x = 0.971bf$

 $SD_v = 1.191bf$

 $SM_2 = 2.4 \text{ in lbf}$

The calculated torque is 2.4in*lbf

Gear Ratio Calculations

2.4 in lbs = 27.12 N * cm

Stall T = $9.2 N^* cm$

 $\frac{1}{4}$ stall T (what we run at) =

2.3 N * cm

27.12:2.3 = 11.79:1

Minimum ratio: 12:1

Speed Analysis

Gear ratio = 28

Efficiency = .9

Running at 2.4 in lbs = $27.12 \text{ N}^*\text{cm}$

 $27.12 \,\text{N*cm}/\,28 \text{(efficiency^2)} = \text{motor}$ output = $1.2 \,\text{N*cm}$

1.2 N*cm makes motor run at 750 rpm

750 rpm/28 = 26.79 rpm = 0.45 rps

.45 rps is fast enough for our robot to complete it's challenges

Grabber Torque Analysis

W := 0.31251bf

 $F_L := 0.3681bf$

 $d_6 := 2in$

 $d_2 := 1.7in$

 $d_3 := 1.44in$

 $d_4 := 1in$

 $d_5 := 0.53in$

theta1 := 70deg

theta2 := 0deg

theta3 := 63deg

$$\begin{split} \Sigma \mathbf{M_F} &:= 0 = \mathbf{W} \, \mathbf{d_6} - \mathbf{F_L} \cdot \mathbf{d_2} \\ \mathbf{F_L} &:= \frac{\left(\mathbf{W} \cdot \mathbf{d_6}\right)}{\mathbf{d_2}} = 0.368 \mathrm{lbf} \\ \Sigma \mathbf{M_C} &:= 0 = \mathbf{I} \, \mathbf{F_L} \cdot \mathbf{d_3} + \mathbf{F_{AB}} \cdot \cos(\mathrm{theta2}) \cdot \mathbf{d_4} \\ \mathbf{F_{AB}} &:= \frac{\left(-\mathbf{F_L} \cdot \mathbf{d_3}\right)}{\cos(\mathrm{theta2}) \, \mathbf{d_4}} = -0.53 \mathrm{lbf} \end{split}$$

Grabber Torque Continued

$$\begin{split} \Sigma F_{x} &:= \mathbb{C}_{x} - F_{AB} \cdot (\cos(\text{theta1})) = 0 \\ C_{x} &:= -0.181 \text{bf} \\ \Sigma F_{y} &:= 0 = \mathbf{I} - F_{L} + \mathbb{C}_{y} + F_{AB} \cdot \sin(\text{theta1}) \\ C_{y} &:= 0.8661 \text{bf} \end{split}$$

$$\Sigma F_{x} := 0 = D_{x} - d_{5} \cdot sin(theta1)$$

$$D_{x} := 0.18 \cdot 1bf$$

$$\Sigma F_{y} := 0 = D_{y} + d_{5} \cdot sin(theta1)$$

$$D_{y} := -0.4981bf$$

Grabber Forces on Joints and Torque

$$D_{v} = -2.215 \,\mathrm{N}$$

$$D_{x} = 0.801 \,\mathrm{N}$$

$$C_{v} = 3.852 \,\mathrm{N}$$

$$C_x = -0.801 \,\mathrm{N}$$

$$\Sigma \mathbf{M_d} := \mathbf{F_{AB}} \cdot \sin(\text{theta1}) \mathbf{F_{AB}} \cdot \cos(\text{theta3}) - \mathbf{F_{AB}} \cdot \cos(\text{theta1}) \cdot \mathbf{F_{AB}} \cdot \cos(\text{theta3}) - \mathbf{T_1}$$

$$\mathbf{T_1} := 0.034 \text{in} \cdot 1 \text{bf}$$

- ☐ Stall torque of Servo Motor = 1.12 in lbs
- \bigcirc 0.034/1.12 = .03
- ☐ Motor will run at 3% stall torque to lift plates

Blue Motor Current At Maximum Torque

- Stall current: .3661 A
- No-load torque: .07 A
- Max torque from motion study: 2.4 in-lb
- Max torque from blue motor = $2.4(e_1)(e_2)(e_3)(e_4)$
- Max torque from blue motor = $2.4(.25)(.1429)(.95)^2 = .07734$ in-lb
- Speed from torque: -17.917(T)+165.18
- Speed at 2.4 in-lb: -17.917(2.4)+165.18 = 122.1792 RPM
- Current from speed: -.0021(w) + .3661
- Current at 2.4 in-lb: -.0021(122.1792) + .3661 = .11 A

Gear Free Body Diagram

$$\Sigma M_{shaft} = F_{gear}(pitch circle)(sin(pitch angle)) - M_{shaft} = 0$$

$$\Sigma F_{x} = F_{x-\text{gear}}(\cos(20)) + F_{x-\text{shaft}} = 0$$

$$\Sigma F_{y} = F_{y-\text{gear}}(\sin(20)) + F_{y-\text{shaft}} = 0$$

$$F_{gear}(3.5 \text{ in/2})(\sin(20)) = 2.4 \text{ in-lb}$$

$$F_{gear} = 4.01 lb$$

$$F_{x-shaft} = -3.768 \text{ lb}$$

$$F_{y-shaft} = -1.372 \text{ lb}$$

Gear Stresses and Factor of Safety

$$\tau_{gear} = \frac{F}{A}$$

$$T = 2.4 \text{ (in-lb)}$$

$$Diametral pitch = 24 \text{ (teeth/in)}$$

$$N_{teeth} = 84 \text{ teeth}$$

$$b = .5 \text{ (in)}$$

$$d = \frac{diametral pitch}{N_{teeth}} = \frac{84 \text{ (teeth)}}{24 \text{ (teeth/in)}} = 3.5 \text{ (in)}$$

$$T_{gear} = \frac{F}{A} = \frac{1.37 \text{ (lb)}}{.033 \text{ (in}^2)} = 41.91 \text{ (psi)}$$

$$FoS = \frac{\tau_{pla}}{\tau_{gear}}$$

$$\tau_{pla} = 2500 \text{ (psi)}$$

$$FoS = \frac{\tau_{pla}}{\tau_{gear}} = \frac{2500 \text{ (psi)}}{41.91 \text{ (psi)}} = 59.7$$

$$FoS = \frac{\tau_{pla}}{\tau_{gear}} = \frac{2500 \text{ (psi)}}{41.91 \text{ (psi)}} = 59.7$$

$$FoS = \frac{\pi_{pla}}{\tau_{gear}} = \frac{2500 \text{ (psi)}}{41.91 \text{ (psi)}} = 59.7$$

Software

Summary of Sensors - External Inputs

- Light Sensor
 - Two outputs representing left and right
 - High when dark, low when light
 - Used to follow black lines on playing field by finding difference between two outputs
- Ultrasonic Sensor (range finder)
 - Two transducers speaker and microphone
 - Calculates time between pulse sent from speaker and reception by microphone
 - Uses interrupts to constantly update distance values in front of robot
- IR Receiver
 - Used to receive inputs from the IR remote
 - Allows crew to interact with robot during the program to confirm that certain conditions have been met

Summary of Sensors - Internal Inputs

- Drive motor encoders
 - Track rotations of drive motors
 - Allow for "dead reckoning" movement based on encoder ticks per revolution
- Blue motor encoders
 - Quadrature encoders to allow tracking of direction as well as speed
 - Uses interrupts to accurately track changes in the motor's position
- Rotary Potentiometer
 - Allows for careful and accurate control of standard servo's positions
- Linear Potentiometer
 - Used to track position and speed of continuous servo
 - Connected to bottom plate of linear slide gripper to give position of plate, and then translate that to control of servo

```
void isrA()
    if(digitalRead(ENCB) != digitalRead(ENCA))
        direction = 1;
    else
        direction = -1;
    count += direction;
void isrB()
    if(digitalRead(ENCA) != digitalRead(ENCB))
        direction = -1;
        direction = 1;
    count += direction;
```


Program Flowchart - Overview

Program Flowchart - Part 1

Program Flowchart - Part 2

Program Flowchart - Part 3

Solidworks Bill of Materials and Exploded View

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.	MATERIAL	UNIT WEIGHT	EXTENDED WEIGHT	unit cost	EXTENDED COST
1	2001.01	RIGHT CHASSIS MOUNT	1	PLA	0.0224	0.0224	0.15	0.15
2	2001.02	LEFT CHASSIS MOUNT	1	PLA	0.0224	0.0224	0.15	0.15
3	2001.03	LASER CUT MOUNT	2	PLYWOOD	0.0623	0.1245	0.37	0.74
4	2001.04	BLUE MOTOR	1	PROVIDED				
5	2001.05	MOTOR GEAR	1	PLA	0.02127	0.02127	0.15	0.15
6	2001.06	TOP LINK	1	PLA	0.0587	0.0587	0.32	0.32
7	2001.07	1/4 INCH SPACER	2	PLA	0.0002	0.0004	0.05	0.10
8	2001.08	BEARING FLAT	6	PLA	0.0060	0.0036	0.10	0.60
9	2001.09	GRABBER ASSEMBLY	1	VARIOUS				
10	2001.10	GEAR LINK	1	PLA	0.0890	0.0890	0.37	0.37
11	2001.11	POLOLU BREAD BOARD	1	PROVIDED				
12	2001.12	BREADBOARD MOUNT	1	PLA	0.0347	0.0347	0.20	0.20
13	2001.13	COMBO GEAR	1	PLA	0.0435	0.0435	0.23	0.23
14	2001.14	1/8 INCH SPACER	1	PLA	0.0002	0.0002	0.05	0.05
15	2001.15	0.08 INCH SPACER	1	PLA	0.0002	0.0002	0.05	0.05
	_		-	: :		0.4423		3.11

