```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read_csv("3_Fitness-1 (1).csv")
df

Out[2]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9 entries, 0 to 8

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Row Labels	9 non-null	object
1	Sum of Jan	9 non-null	object
2	Sum of Feb	9 non-null	object
3	Sum of Mar	9 non-null	object
4	Sum of Total Sales	9 non-null	int64

dtypes: int64(1), object(4)
memory usage: 488.0+ bytes

In [4]: df.describe()

Out[4]:

	Sum of Total Sales		
count	9.000000		
mean	255.555556		
std	337.332963		
min	75.000000		
25%	127.000000		
50%	167.000000		
75%	171.000000		
max	1150.000000		

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x17b1294f700>

In [6]: sns.displot(df['Sum of Total Sales'])

Out[6]: <seaborn.axisgrid.FacetGrid at 0x17b1665cf10>

In [7]: df1=df.drop(['Row Labels'],axis=1)
df1

Out[7]:

	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	5.62%	7.73%	6.16%	75
1	4.21%	17.27%	19.21%	160
2	9.83%	11.60%	5.17%	101
3	2.81%	21.91%	7.88%	127
4	25.28%	10.57%	11.82%	179
5	8.15%	16.24%	18.47%	167
6	18.54%	8.76%	17.49%	171
7	25.56%	5.93%	13.79%	170
8	100.00%	100.00%	100.00%	1150

```
sns.heatmap(df1.corr())
 In [8]:
 Out[8]: <AxesSubplot:>
                                                        -1.100
                                                        - 1.075
                                                        - 1.050
                                                        - 1.025
                                                        -1.000
           Sum of Total Sales
                                                        - 0.975
                                                         -0.950
                                                         -0.925
                                                         0.900
                          Sum of Total Sales
 In [9]: from sklearn.model_selection import train_test_split
          from sklearn.linear_model import LinearRegression
In [14]: y=df['Sum of Total Sales']
          x=df1.drop(['Sum of Jan','Sum of Feb','Sum of Mar'],axis=1)
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
          print(x_train)
             Sum of Total Sales
          7
                              170
          3
                              127
          8
                             1150
          6
                              171
          2
                              101
                              167
In [15]: | model=LinearRegression()
          model.fit(x_train,y_train)
          model.intercept_
Out[15]: 5.684341886080802e-14
          coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
In [16]:
          coeff
Out[16]:
                            Coefficient
           Sum of Total Sales
                                   1.0
```

```
In [17]:
         prediction=model.predict(x_test)
         plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x17b184401f0>
          180
          160
          140
          120
          100
           80
                         100
                                120
                                        140
                                                160
                                                        180
In [18]: model.score(x_test,y_test)
Out[18]: 1.0
         from sklearn.linear_model import Ridge,Lasso
In [20]: rr = Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[20]: Ridge(alpha=10)
In [21]: |rr.score(x_test,y_test)
Out[21]: 0.999999977141774
In [22]: la = Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[22]: Lasso(alpha=10)
In [23]: la.score(x_test,y_test)
Out[23]: 0.9999999177084288
 In [ ]:
```