Echo: NLP Based Music Recommendation System to Mirror Your Mood

Team Name: Zero2One Anish Adnani, Atharva Potdar, Dheeraj Komandur, Sumedh Pawar, Yash Mate

Motivation and Introduction

Good Music Recommendations can enhance user experience. For this, mood identification is extremely crucial. Understanding the song lyrics can be a good way of understanding the mood/genre. YT provides good recommendations but for listening to music people prefer music streaming apps. This research can serve as a good base for building a recommendation system in a music streaming app.

Dataset

GENIUS

- Dataset generated using various YouTube playlists and other song lists on basis of various moods.
- Lyrics of every song extracted using LyricsGenius
- 7 Classes and Total of 1283 Songs.

Artist	Song	Mood	Lyrics
Pharrell Williams	Нарру	Нарру	It might seem crazy what I am 'bout to say Sunshine she's here, you can take a break
Gayle	ABCDE FU	Hate	F**k you and your mom and your sister and your job And your broke-ass car and that shit you call art
Ed sheeran	Perfect	Romantic	I found a love for me Oh, darling, just dive right in and follow my lead

Class Distributions

Novel Contributions

- Used various models and RoBERTa yielded the highest accuracy.
- Created a new dataset.
- Probabilistic Output for Multi-class Classification.
- Pre-calculated probability vectors for all the songs in the Database.

Word Cloud of 4 Classes

Lyrics Preprocessing

Frequent Tokens

RoBERTa / BERT

- A robustly optimized method for pretraining NLP systems
- RoBERTa Improves on BERT
- RoBERTa, which was implemented in PyTorch, modifies key hyperparameters in BERT, including removing BERT's next-sentence pretraining objective, and training with much larger mini-batches and learning rates.
- This allows RoBERTa to improve on the masked language modeling objective compared with BERT and leads to better downstream task performance.

Class Label Roberta / Bert E[CLS] E1 E2 ... EN Single Sentence

Feed forward Neural Network

- Used TFIDF Vectorizer.
- Optimizer: ADAM
- Loss Function: Binary Cross Entropy
- Activation Function: ReLU
- 7 Feed Forward Neural Networks. One for each class
- Output is a Probability Vector.
- Probability Vector is used for computing cosine similarity.

Cosine Similarity

- Cosine similarity measures the similarity between two vectors of an inner product space.
- It is often used to measure document similarity in text analysis.

Probability Vectors

Song	Нарру	Sad	Romantic	Hate	Peaceful	Motivational	Funny
Agamemnon	0.06763	0.2260	0.050166	0.081293	5.433927e-06	0.001263	0.25627
Stuck Like Glue	0.10415	0.2524	0.236007	0.288053	1.996922e-02	0.077675	0.02639
Hate to Feel	0.07575	0.1911	0.092943	0.421903	4.665852e-04	0.049611	0.26781
Don't Worry Be Happy	0.37665	0.2331	0.128397	0.178368	6.122708e-03	0.054017	0.15763
Calling The Targets	0.01455	0.0205	0.008305	0.105131	2.980919e-08	0.000636	0.86082

Recommendation System

- Recommendations are obtained using Cosine Similarity.
- 10 Songs Recommended Based on Current Song
- These recommendations aim to mirror the user's mood which is identified based on the current playing song.

Results and Fine Tuning

Fine Tuning The Model

- I. Countering the Problem of Overfitting
 - Early Stopping
 - Larry StoppingL2 Regularization
- 2. Hyperparameters Tuned
 - Number of layers, Neurons, Learning Rate
- 3. Convergence of Loss Function
 - Weight Decay
 - Tracking No. of Epochs
 - Specifying Max Sequence Length