基于张量决策图的量子模型检测中的可达性分析 硕士学位论文答辩

高丁超

导师: 应圣钢

中国科学院软件研究所

2024年5月15日

- 1 背景介绍
- 2 基于张量决策图的量子模型检测
- 3 实验结果
- 4 学位论文修改情况

目录

- 1 背景介绍
- 2 基于张量决策图的量子模型检测
- 4 学位论文修改情况

研究背景

- 量子计算机硬件的快速发展
 - ▶ 规模化拓展方面:
 - IBM: Condor 1121 超导量子比特; 中科大: 九章三号 255 光量子比特。
 - ▶ 容错计算方面:
 - IonQ: 29 离子阱算法比特; QuEra: 48 中性原子量子比特。

研究背景

- 量子计算机硬件的快速发展
 - 规模化拓展方面:
 - IBM: Condor 1121 超导量子比特; 中科大: 九章三号 255 光量子比特。
 - 容错计算方面:
 - IonQ: 29 离子阱算法比特; QuEra: 48 中性原子量子比特。
- 现有验证方法
 - ▶ 模型检测自动化程度高,但存在资源爆炸的问题
 - 定理证明处理复杂问题有明显优势,但自动化程度低

基于张量决策图的量子模型检测中的可达性分析

- 问题:如何在量子系统中验证命题。
- 解决方案: 采用量子模型检测。
- 挑战:原有的方法随着量子比特数量的增加,资源需求指数级增长。
- 方法: 引入新的数据结构 TDD 对量子线路进行表示。同时实现了优化算法进 一步减少了时间消耗。

量子迁移系统

经典迁移系统: (S, I, Σ, T)

where
$$\begin{cases} x = x_1, \cdots, x_n \\ y = y_1, \cdots, y_n \\ \sigma = \sigma_1, \cdots, \sigma_m \end{cases}$$

图: 简化版的可调节台灯迁移系统

量子迁移系统

经典迁移系统: (S, I, Σ, T)

where
$$\begin{cases} x = x_1, \cdots, x_n \\ y = y_1, \cdots, y_n \\ \sigma = \sigma_1, \cdots, \sigma_m \end{cases}$$

• 量子迁移系统: $(\mathcal{H}, S, \Sigma, \mathcal{T})$

图: 简化版的可调节台灯迁移系统

可达性问题

量子模型检测例子

图: Grover 3 算法的电路。

- oracle 为 ccx, 即 $O|x\rangle|y\rangle = |x\rangle|f(x) \oplus y\rangle, f(x) = x_1 \wedge x_2$ 。
- model: $(\mathcal{H}_8, S = span\{|++-\rangle, |11-\rangle\}, \{1\}, \mathcal{T}_1), \mathcal{T}_1 = (2|\Psi\rangle\langle\Psi| I)O$
- property: $\mathcal{T}_1(S) = S$

张量决策图 (TDD)

- TDD 定义: 由节点集 V、边集 E、索引函数 index、值函数 value、低高边映射 low/high 和权重 w 组成。
- ullet 节点集 V 分为非终端节点 V_N 和终端节点 $V_{\mathcal{T}}$,且有唯一根节点 $r_{\mathcal{F}}$ 。
 - ▶ 边集 E 包含所有低边 (v, low(v)) 和高边 (v, high(v))。
 - ightharpoonup 索引函数 index 分配索引,值函数 value 赋予终端节点复数值,w 为边赋权重,特别是根边权重 $w_{\mathcal{F}}$ 。

TDD 例子

$$P = \frac{1}{6} \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ -1 & 1 & -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 & -3 & 3 \end{bmatrix}$$

图: 可以用一个 8*8 的矩阵或者 10 个 TDD 节点表示子空间 $S = span\{|++-\rangle, |11-\rangle\}$ 投 影算子。其中 TDD 虚线表示低点,实线表示高边。

目录

- 1 背景介绍
- 2 基于张量决策图的量子模型检测
- 4 学位论文修改情况

解决方案简介:

- 研究问题: 减缓量子模型检测中的资源消耗
- 基本方法:将转移关系和状态空间转化为 TDD 表示,然后计算系统的状态转 移。
- 改进算法:
 - 基于窗函数对 TDD 分割
 - 用子空间近似 TDD 表示 |ψ⟩
 - addition partition: 寻找依赖最多的索引项,从而分割线路。
 - contraction partition: 通过预设的参数进行线路分割。

理论支撑

对于 $(\mathcal{H}, S, \Sigma, \mathcal{T})$ 有:

定理

设T是一个量子操作。则

- 2 若 $\mathcal{T} = (\mathcal{T}_{\sigma})_{\sigma \in \Sigma}$ 且每个 \mathcal{T}_{σ} 有 Kraus 算符和表示 $\mathcal{T}_{\sigma} = \{E_{\sigma j_{\sigma}}\}$ 则 $\mathcal{T}(\mathit{S}) = \mathit{span}\Big(\bigcup_{\sigma,j_{\sigma}} \left\{ \mathit{E}_{\sigma j_{\sigma}} \left| \psi
 ight> : \left| \psi
 ight> \in \mathit{S}
 ight\} \Big)$.

子空间

- 通过投影算子 P 最左侧非零路径所对应的归 一化状态 |vi>, 求解空间的基分解
- 通过施密特正交化方法,向 S_1 中添加 S_2 正 交基中不在 S_1 子空间的基,得到 $S_1 \vee S_2$ 的 正交基

图: 子空间 $S = span\{|++-\rangle, |11-\rangle\}$ 投影算子 的 TDD 表示

子空间

- 通过投影算子 P 最左侧非零路径所对应的归 一化状态 |v_i⟩, 求解空间的基分解
- 通过施密特正交化方法,向 S_1 中添加 S_2 正 交基中不在 S_1 子空间的基,得到 $S_1 \lor S_2$ 的 正交基

图:
$$|\mathbf{v}_1\rangle = \frac{\sqrt{2}}{\sqrt{3}} |0\rangle |+\rangle |-\rangle + \frac{1}{\sqrt{3}} |1\rangle |0\rangle |-\rangle , |\mathbf{v}_2\rangle = |11-\rangle$$
 的 TDD 表示

窗函数分割

函数对于同一输入,始终满足以下条件:

- $w_1 + \cdots + w_k = 1$
- 对任意 $i \neq j$, $w_i \cdot w_i = 0$

窗函数分割

(a) |v₁〉的 TDD 表示

(b) $|v_1\rangle$ 在 $w_1=\bar{q_0}$ 下的 TDD 表示

(c) $|v_1\rangle$ 在 $w_2=q_0$ 下的 TDD

表示

用子空间近似 TDD 表示 $|\psi\rangle$

- 特定量子态 $|\psi\rangle$, 能够通过包含它的适当子空 间来近似 $|\psi\rangle$ 。
- 例如通过 {|00->, |01->, |10->} 近似表示 $|v_1\rangle$

 $|\mathbf{v}_1\rangle = \frac{\sqrt{2}}{\sqrt{3}} |0\rangle |+\rangle |-\rangle + \frac{1}{\sqrt{3}} |1\rangle |0\rangle |-\rangle$ 的 TDD 表示

adddition partition

- 将量子电路转换为索引依赖图 G。
- 通过图 G 的连通度选择索引进行电路分割。

图: Grover_3 电路的索引依赖图。对索引项 x_3^1, x_3^2 进行线路分割,效果更好。

Contraction partition

- 确定预设参数 k1 和 k2。
- 分割电路,每部分包括最多 k1 个量子比特,连接最多 k2 个多比特门。

图: 对 bit flip 电路进行划分,其中 k1 = 3, k2 = 2。

- 1 背景介绍
- 2 基于张量决策图的量子模型检测
- 3 实验结果
- 4 学位论文修改情况

对 TDD 结构的优化

表: TDD 拆分与近似的优化方案

线路	优化方法		k = 0	k = 1	k = 2	k = 3
Grover_40	TDD 分割	时间	1,510.42	1,519.24	1,459.02	1,495.20
		最大节点个数	589,865	393,423	393,239	245,814
QFT_100	子空间近似	时间	121.28	118.78	116.69	128.31
		最大节点个数	524,369	262,226	262,226	131,155

线路划分技术的参数选择

图: 不同参数 k 对 Grover_15 线路的 additon 划分方案的时间影响,k 不应选择过大

线路划分技术的参数选择

表: 对 grover_15 应用不同的 contration 参数的时间对比, k1, k2 均不应选择过大

\k2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
_k1 \															
1	2.8	2.2	2.1	2.0	1.9	2.0	2.1	2.0	2.1	2.0	2.0	2.1	2.2	2.1	2.1
2	2.6	2.0	2.0	1.8	2.0	2.0	2.0	2.0	2.1	2.0	2.3	2.0	2.3	2.3	2.4
3	2.2	1.9	1.8	1.6	2.0	1.9	2.1	2.1	2.5	2.3	2.7	2.3	3.1	2.8	3.3
4	2.3	1.8	2.0	1.7	2.0	2.1	2.2	2.1	2.6	2.3	2.8	2.7	3.3	3.0	3.3
5	2.2	1.7	1.9	1.6	1.9	2.0	2.3	1.9	2.5	2.3	2.8	2.7	3.4	3.0	3.6
6	2.1	1.5	1.8	1.7	2.2	1.9	2.5	2.2	2.9	2.8	3.1	2.9	3.7	3.7	4.2
7	2.1	1.5	1.9	1.6	2.2	1.9	2.5	2.2	2.8	3.0	3.6	3.3	4.2	5.7	5.0
8	2.0	1.7	1.8	1.7	2.1	2.0	2.4	2.2	2.8	2.8	3.7	3.4	4.3	4.8	5.2
9	2.1	1.5	2.0	1.4	2.2	2.0	2.5	2.0	3.3	2.9	3.7	3.5	4.9	4.7	5.8
10	2.3	1.9	2.3	1.6	2.6	2.7	3.1	2.2	4.0	3.6	4.6	3.9	5.6	5.2	7.5
11	3.2	3.2	3.5	3.1	4.7	4.2	5.6	4.2	6.8	7.2	7.6	6.3	9.0	8.1	11
12	5.6	6.0	7.2	6.0	8.3	9.0	8.9	7.8	11	11	12	11	12	15	16
13	11	12	14	12	15	18	18	15	18	20	18	32	32	30	25
14	20	21	24	32	31	44	77	50	86	109	68	133	70	119	142
15	28	30	31	53	69	111	85	81	102	153	114	130	166	162	235

线路划分技术

benchmark	basic	addition	contraction
Grover 20	~5 分	~4 分	~4 秒
Quantum Fourier Transform 20	~20 分	$\sim \! 11$ 分	<1 秒
Quantum Random walk 20	~6 分	\sim 4 分	\sim 15 秒
Bernstein-Vazirani 100	~7 秒	~7 秒	\sim 0.4 秒
GHZ 500	~3 秒	$\sim \! 1.5$ 秒	$\sim \! 1.7$ 秒

表: 对不同量子算法计算一步迁移的时间消耗

- 对于有特殊结构的算法,如 GHZ 算法,addition partiton 有更好的执行效率。
- 对于一般的电路, contraction partition 的执行效率更好。

总结

- 设计了并实现了有效识别给定子空间基的算法,并针对子空间及量子线路,提 出了多种优化策略。
- 以量子迁移系统中一步迁移算法为例,本次研究设计了数值实验,验证了工具 可行性。
- 数值实验验证了采用基于 contraction 的线路分割算法能大幅提升量子迁移系统 中一步迁移算法的效率。

目录

- 1 背景介绍
- 2 基于张量决策图的量子模型检测
- 4 学位论文修改情况

盲审结果与修改情况

● 审稿人意见: 优秀, 良好, 良好

• 表达规范性: 专有名词, 引用学者称呼规范化

• 工作完整性: 算法的正确性保证

谢谢