Deep Learning Using TensorFlow

Section 2.2: Problems with Gradient Descent Algorithm

Outline

- Problems with Gradient Descent (GD) Algorithm
- Solutions to GD Algorithm Problem
- Vanishing Gradient Problem of Activation Functions

What is Gradient Descent Algorithm?

- Suppose a function y = f(x) is given
 - Gradient Descent algorithm allows us to find the values of 'x' where the 'y' value becomes minimum or maximum values
- The Gradient Descent algorithm can be extended to any function with 2 or more variables 'z = f(x,y)'
- Function y=f(x)
- Gradient Descent Algorithm: Minimum
 - Initialize the value of x
 - Learning rate = η
 - While NOT converged:
 - $x^{t+1} \leftarrow x^t \eta \frac{\partial y}{\partial x} \|_{x^t}$

- Function z=f(x,y)
- Gradient Descent Algorithm: Minimum
 - Initialize the value of x and y
 - Learning rate = η
 - While NOT converged:

$$x^{t+1} \leftarrow x^t - \eta \frac{\partial z}{\partial x} \|_{x^t, y^t}$$

$$y^{t+1} \leftarrow y^t - \eta \frac{\partial z}{\partial y} \parallel_{x^t, y^t}$$

Example 1

- $y = x^2 + 6x$
- To find minimum point, equate the first derivative = 0

- x = -3
- Gradient Descent Algorithm
 - Initialize the value of x
 - Learning rate = η
 - While NOT converged:

•
$$x^{t+1} \leftarrow x^t - \eta \frac{\partial y}{\partial x} \|_{x^t}$$

Regression Using R 'lm' command

```
> x = c(0,1,2,3,4)
> y = c(1,3,7,13,21)
> plot(x,y)
> model = lm(y~x)
> summary(model)
Call:
lm(formula = y \sim x)
Residuals:
1 2 3 4 5
 2 -1 -2 -1 2
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                    1.6733 -0.598 0.59220
(Intercept) -1.0000
             5.0000
                     0.6831 7.319 0.00527 **
X
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 2.16 on 3 degrees of freedom
Multiple R-squared: 0.947, Adjusted R-squared: 0.9293
F-statistic: 53.57 on 1 and 3 DF, p-value: 0.005268
> abline(model)
>
```



```
Regression Equation y = 5x - 1
```

Regression Gradient Descent Algorithm Approach

Regression Equation y = 5x - 1

```
> dRSS dm = function (m,b) \{-2*sum((y-m*x-b)*x)
> dRSS db = function (m,b) \{ -2*sum(y-m*x-b) \}
> mStart = bStart = 0
> learningRate = 0.01; maxLimit = 500
> mHistory = bHistory = rep(0,maxLimit)
> for ( i in 1:maxLimit )
   mHistory[i] = mStart
   bHistory[i] = bStart
   dW = dRSS dm (mStart, bStart)
   db = dRSS db (mStart, bStart)
   mStart = mStart - learningRate * dW
   bStart = bStart - learningRate * db
> plot(mHistory,type='l')
> plot(bHistory,type='l')
```


Problems with Gradient Descent Algorithm

- When the gradient of the error function is low (flat)
 - It takes a long time for the algorithm to converge (reach the minimum point)
- If there are multiple local minima, then
 - There is no guarantee that the procedure will find the global minimum

Error Function

- *Error Function*: $y = f(x) = 1 e^{-(x-2)^2}$
- $\frac{dy}{dx} = 2(x-2)e^{-(x-2)^2}$
- The error function 'y' is almost flat
 - $f(x) = 0: -\infty < x < 0$ and
 - f(x) = 0: $4 < x < \infty$

Gradient Descent Algorithm

- Starting Point = -4
- Number of iteration = 1,000

Starting Point = -4, DOES NOT CONVERGE

After 1,000 iteration Starting Point -3, -2, -1, -0.5

Index

Starting Point = -3, -2, -1: 'x' value DOES NOT CONVERGE

Starting Point = -0.5,

'x' value CONVERGES AFTER 250 ITERATIONS

Error Function

Derivative of Error Function

©2020 Dr. Ash Pahwa

10

Problems with Gradient Descent Algorithm

- If the error function has very small gradient
 - Starting point is on the flat surface
 - Gradient Descent Algorithm will take a long time to converge

Solutions to Gradient Descent Algorithm Problem

- Solution#1: Increase the step size
 - Momentum based GD
 - Nesterov GD
- Solution#2: Reduce the data points for approximate gradient
 - Stochastic Gradient Descent
 - Mini Batch Gradient Descent
- Solution#3: Adjust the Learning rate (η)
 - AdaGrad
 - RMS Prop
 - Adam

- Function y=f(x)
- Gradient Descent Algorithm:Minimum
 - Initialize the value of x
 - Learning rate = η
 - While NOT converged:

•
$$x^{t+1} \leftarrow x^t - \eta \frac{\partial y}{\partial x} \|_{x^t}$$

Vanishing Gradient Problem

Activation Functions

Types of Activation Functions

- Binary Step Function
- Linear Function
- 3. Sigmoid Function
- 4. Hyperbolic Tangent Function
- 5. ReLU (Rectified Linear Unit) Function
- Leaky ReLU Function
- Softmax Function

1. Binary Step Function

•
$$y = f(x) = 0 \text{ when } x < 0$$

•
$$y = f(x) = 1 \text{ when } x > 0$$

2. Linear Function

$$y = f(x) = x$$

3. Sigmoid Function

$$f(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$$

Sigmoid Function Problems

$$f(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$$

- Output of a Sigmoid Function
 - Varies between 0 and 1
 - Gives only positive values
 - Not symmetric around origin
- Gradient very small when
 - (X > 3) & (X < -3)
 - This contributes towards vanishing gradient problem
 - Computations are time consuming and complex
 - It is slow in convergence

4. Hyperbolic 'tanh' Function

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Like Sigmoid Function

Sigmoid Function =
$$f(x) = \frac{1}{1 + e^{-x}}$$

> abline (v=seq(-6,6,6),col="black",lty=1)

Hyperbolic 'tanh' Function Problems

- Output of a 'tanh' Function
 - Varies between -1 and 1
 - Symmetric around origin
- Gradient very small when
 - (X > 3) & (X < -3)
 - This contributes towards vanishing gradient problem

5. Rectified Linear Unit (ReLU) Function

•
$$ReLU(x) = x \text{ when } x \ge 0$$

- _____
- ReLU(a) = max(0, a)
- Results in having sparse
 Neural Network with fewer neurons
- This makes the Neural Network very efficient

 Leaky ReLu allow a small, positive gradient when the unit is not active

$$f(x) = \begin{cases} x & \text{if } x > 0, \\ 0.01x & \text{otherwise} \end{cases}$$

Activation Functions Sigmoid Function

- Binary Step Function
- Linear Function
- 3. Sigmoid Function
- 4. Hyperbolic Tangent Function
- 5. ReLU (Rectified Linear Unit) Function
- 6. Leaky ReLU Function
- Softmax Function

```
R Code for Sigmoid Function
> x <- seq(-6,6,0.1)
> y1 <- exp(x)/(1+exp(x))
> y2 <- 1/(1+exp(-x))
> plot(x,y2,type='l',col="blue")
> abline(v=seq(-6,6,6),col="black",lty=1)
> abline(h=seq(0,1,0.5),col="lightgrey",lty=1)
```

$$f(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

Derivative of Sigmoid Function

$$f(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d \sigma(x)}{dx} = \frac{d}{dx} \frac{1}{(1+e^{-x})} = \frac{(1+e^{-x})\frac{d}{dx}(1) - 1\frac{d}{dx}(1+e^{-x})}{(1+e^{-x})^2}$$
 Apply Quotient Rule

$$\frac{d \sigma(x)}{dx} = \frac{0 - (-1)e^{-x}}{(1 + e^{-x})^2} = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{e^{-x} + 1 - 1}{(1 + e^{-x})^2} = \frac{1 + e^{-x}}{(1 + e^{-x})^2} - \frac{1}{(1 + e^{-x})^2}$$

$$\frac{d \sigma(x)}{dx} = \frac{1}{1+e^{-x}} - \left(\frac{1}{1+e^{-x}}\right)^2$$

$$\frac{d \sigma(x)}{dx} = \sigma(x) - (\sigma(x))^2$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Plot of Sigmoid Function and its Derivative


```
\sigma(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}
```

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

```
> # Plot of the derivative of Sigmoid function
>
> sigmoid = function (x) { 1/(1+\exp(-x)) }
>
> der.sigmoid = function (x) { sigmoid(x) * (1 - sigmoid(x)) }
>
> x < - seq(-6, 6, 0.1)
>
> plot(x, sigmoid(x), type='l', col="blue")
>
> abline(v=seg(-6,6,6),col="black",lty=1)
> abline(h=seq(0,1,0.5),col="lightgrey",lty=1)
>
> lines(x,der.sigmoid(x), type='l',col="red",lwd=2)
>
> text(2,0.8, "Sigmoid Function")
> text(2,0.3, "Derivative of Sigmoid Function")
```

Sigmoid Function

Derivative of Sigmoid Function

Hyperbolic 'tanh' function

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Similar to Sigmoid Function

Sigmoid Function =
$$f(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic Tangent

•
$$g(Z) = \tanh(Z) = \frac{\sinh(Z)}{\cosh(Z)} = \frac{e^Z - e^{-Z}}{e^Z + e^{-Z}}$$

$$\frac{\cosh(Z)*\frac{d}{dZ}\sinh(Z)-\sinh(Z)*\frac{d}{dZ}\cosh(Z)}{\cosh(Z)^2}$$

Apply Quotient Rule

$$\frac{\cosh(Z) * \cosh(Z) - \sinh(Z) * \sinh(Z)}{\cosh(Z)^2} = \frac{\cosh(Z)^2 - \sinh(Z)^2}{\cosh(Z)^2} = 1 - \tanh(Z)^2$$

Vanishing Gradient Problem

Function	Function Definition	Gradient of	Gradient computed
1 dilottori	T dilotion Bellintion	Activation Function	at x = -4.0
		Activation Function	
			x = 0.5
			x = 4.0
Sigmoid	e^x 1	$\sigma'(x) = \sigma(x)(1 - \sigma(x))$	x = -4.0, Gradient=0.0176
	$\sigma(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$		x = 0.5, Gradient=0.235
			x = 4.0, Gradient=0.0176
Tanh	$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	d . 1(7)	x = -4.0, Gradient=0.0013
	$tann(x) = \frac{1}{cosh(x)} = \frac{1}{e^x + e^{-x}}$	$\frac{d}{dZ}\tanh(Z) = 1 - \tanh(Z)^2$	x = 0.5, Gradient=0.7864
	cosh(x) c i c	42	x = 4.0, Gradient=0.0013
ReLu	f(x) = x	1 for x > 0	x = -4.0, Gradient=0
	_		x = 0.5, Gradient=1
			x = 4.0, Gradient=1

- Problems with Gradient Descent (GD) Algorithm
- Solutions to GD Algorithm Problem
- Vanishing Gradient Problem of Activation Functions