Math 578 Assignment 1

Daniel Anderson 260457325

Fall 2016

Question 2

Signum function

For all polynomial degrees the order of error was constant with respect to h. This is reasonable; the discontinuity at 0 is poorly approximated by continuous functions, especially with respect to the sup norm.

Figure 1: loglog error wrt. h, signum function

Sine

The error for sine showed good agreement with the theory, until it reached our effective machine epsilon around 10^{-16} . The order of the error was about h^3 , h^9 , and h^{17} for the degree 2, 7, and 16 polynomial interpolations. Note that the degree 16 converged rapidly the machine epsilon, so we needed to toss out many small h-values to obtain the 'true' order of error.

Figure 2: loglog error wrt. h, sine function

Absolute value

The absolute value had order h convergence for all degrees. This agrees with the theory: abs is in C^0 but not C^1 .

Quintic

At first glance, this is garbage. The error should obviously plummet to 0 for the degree 7 and 16 polynomials. However, there is some itsy-bitsy instability in the calculation of the coefficients for P^n , hence we pick up some rounding error.

Figure 3: loglog error wrt. h, absolute value function

Figure 4: loglog error wrt. h, quintic function

Question 3

Equidistant

Behold! We observe the Runge phenomenon for large n: more equidistant points fail to guarantee convergence if the derivatives of a function are poorly behaved. Note, however, that error still decreases with respect to h, up to some lower bound determined by the condition of the matrix.

Table 1: Errors for n-degree interpolants of Runge function, wrt. h.

h	n=2	n=7	n=16	n=100
1.0000e+00	8.0957e-01	6.1306 e - 01	7.3637e + 01	1.9667e + 06
5.0000e-01	6.4491e-01	2.4631e-01	1.4373e + 01	6.2507e + 03
2.5000e-01	3.9445 e-01	9.6406 e - 02	4.0398e-01	1.4555e + 00
1.2500 e-01	1.4045 e-01	1.2113e-02	6.3266 e-04	1.0609 e-06
6.2500 e-02	2.3066e-02	2.7710e-04	4.6669 e - 08	5.8000 e-08
3.1250 e-02	2.0714e-03	2.0345 e-06	4.9116e-13	1.4652 e-08
1.5625 e-02	1.4353e-04	9.4982e-09	6.2172 e-15	5.5565 e-09
7.8125 e-03	9.2139 e-06	3.8854e-11	1.2212e-14	2.8005e-08
3.9062 e-03	5.7977e-07	1.5343e-13	9.3259 e-15	4.0407e-08
1.9531e-03	3.6297e-08	7.7716e-16	2.3315e-15	3.5323 e-08

Figure 5: loglog plot of error vs. h, for equidistant points

Chebyshev

Sampling the Chebyshev nodes should guarantee convergence of the \sup norm with respect to n; below, we largely see that trend holds, except in the upper right hand corner. This is attributable to roundoff error from a poorly conditioned matrix for large n.

Table 2: Errors for various n-degree Chebyshev interpolants of Runge function, wrt. h.

h	n=2	n=7	n=16	n=100
1.0000e+00	7.8366e-01	7.4327e-01	1.8882e-01	1.6040 e - 01
5.0000e-01	5.9990 e-01	3.9059 e-01	3.2580 e-02	2.2293 e-03
2.5000e-01	3.3651e-01	8.7943e-02	1.3095e-03	2.4638e-07
1.2500 e-01	1.0967e-01	5.6849 e-03	3.8888e-06	4.7828e-13
6.2500 e- 02	2.1216e-02	9.1388e-05	5.4007e-10	1.1102e-15
3.1250 e- 02	2.0238e-03	5.8748e-07	7.6605e-15	4.6629 e-15
1.5625 e-02	1.4284 e-04	2.6401e-09	4.4409e-16	3.4417e-15
7.8125 e-03	9.2145 e-06	1.0700e-11	3.3307e-16	1.9984e-15
3.9062e-03	5.8053e-07	4.2299e-14	4.4409e-16	3.9968e-15
1.9531e-03	3.6356e-08	3.3307e-16	2.2204 e-16	8.5487e-15

Figure 6: loglog plot of error vs. h, for Chebyshev points

Figure 7: plot of Lagrange interpolating polynomial vs. Runge function

Figure 8: plot of Chebyshev interpolating polynomial vs. Runge function

Question 4

Table 3: Slope of best-fit line for various functions and interpolation methods.

function	nearest	linear	spline	pchip	cubic
signum	NaN	0.012206	0.014586	0.018865	0.018865
sine	1.036637	1.993232	3.907034	3.019374	3.019374
abs	1.044457	1.056662	1.081153	1.056662	1.056662
quintic	0.944555	1.912727	3.914612	2.933812	2.933812
runge	0.970954	1.893706	3.857821	1.895098	1.895098

Briefly put, you can't make chicken pie out of chicken feed. Regardless of the method chosen, irregular functions like signum and abs will not be well-approximated by a polynomial scheme, and their order of convergence is independent of the polynomial degree past their level of continuity. Smooth functions with bounded derivatives like sin and x^5 behave nicely, and converge more quickly with higher-degree schemes (nearest < linear < cubic < spline).

There are a few points of interest. One is that pchip is an alias for cubic¹. The other is that pchip did not give $O(h^4)$ convergence, while the the 'true' spline did. This is not due to numerical screw-up, but an inherent quality of the method. For answers, we go to the source². In short: since we do not provide interp1 with the derivatives at each grid point, the pchip method estimates them by taking, roughly, a central difference at each point. This works, but worsens the error compared to the cubic Hermite interpolant done in class and in quesiton 5, which uses the exact derivative.

(note: parabolic was not supported by my verison of MATLAB; judging by the docs, I would guess it has about $O(h^3)$ convergence).

¹indeed, consult http://blogs.mathworks.com/cleve/2012/07/16/splines-and-pchips/.

²https://www.mathworks.com/moler/interp.pdf

Question 5

Part 1

So we solve one of the given equations and obtain a linear system for each function: $Ac_i = f_i$, where c_i is the vector of coefficients for the given polynomial, and f_i is the constraint vector specified in the problem. For example, the coefficients of L^{10} are given by:

$$Ac_{L^{10}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 0 \\ -1 & 1 & -1 & 1 \\ 3 & -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} c_3 \\ c_2 \\ c_1 \\ c_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = f_{L^{10}}$$

While R^{11} would be given by:

$$Ac_{R^{11}} = egin{bmatrix} 1 & 1 & 1 & 1 \ 3 & 2 & 1 & 0 \ -1 & 1 & -1 & 1 \ 3 & -2 & 1 & 0 \end{bmatrix} egin{bmatrix} c_3 \ c_2 \ c_1 \ c_0 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix} = f_{R^{11}}$$

So we invert, solve for c_i of each function, and obtain our Hermite interpolation. The computed error is 0.96823 for Hermite, and 0.95035 for Chebyshev.

Figure 9: Chebyshev vs. Hermite interpolation of signum; degree 3

Part 2

Let $G^n(x) = c_n x^n + c_{n-1} x^{n-1} + ... + c_0$ be the generic polynomial of nth degree, and $N = \frac{n}{2}$. Then, the kth row of the $n \times n$ matrix A^n corresponding to our linear system will be determined by the coefficients of $d_x^{k-1} G^n(1)$, for $1 \le k \le N$, and $d_x^{k-1-N} G^n(-1)$, for $N+1 \le k \le n$. Explicitly,

$$a_{ij}^n = \begin{cases} 0 & n-j-i+1 < 0 \text{ and } i \le N \\ \frac{(n-j)!}{(n-j-i+1)!} & i \le N \\ 0 & n-j-i+N+1 < 0 \text{ and } i > N \\ (-1)^{i-N+1+j} \frac{(n-j)!}{(n-j-i+1+N)!} & i > N \end{cases}$$

The constraint vectors follow naturally: let L^i be the function for the *i*th derivative on the left, and R^i for the *i*th derivative on the right. Then, $R^i = \delta_{ij}$ and $L^i = \delta_{N+i,j}$.

Part 3

As expected, the error remains constant for all degrees of the interpolants. This is a failing of the sup norm; it is a local measure (essentially, the residual at 0) when what we probably want is something global, like L^1 .

Table 4: Error of Hermite and Chebyshev interpolation for various degrees.

degree	Hermite error	Chebyshev error
3	0.96823	0.95035
5	0.97515	0.95529
7	0.97890	0.95742
9	0.98135	0.95862
11	0.98311	0.95939

Figure 10: Chebyshev vs. Hermite interpolation of signum; degree $5\,$

Figure 11: Chebyshev vs. Hermite interpolation of signum; degree 7

Figure 12: Chebyshev vs. Hermite interpolation of signum; degree $9\,$

Figure 13: Chebyshev vs. Hermite interpolation of signum; degree 11

\mathbf{Code}

See http://github.com/mxork/numerics for code.