Database connectivity with Backend (Insert and Display Table records)

```
In [ ]:
          1 import tkinter as tk
          2 | from mysql.connector import connect, Error
In [4]:
          1 | db_config = {
                 'host':'127.0.0.1',
          2
          3
                 'user':'root',
          4
                 'password':'manager',
                 'database':'sys'
          5
          6 }
          1 def execute_query(query, values=None):
In [5]:
          2
                 try:
          3
                     with connect(**db_config) as connection:
          4
                         cursor = connection.cursor()
          5
                         if values:
          6
                             cursor.execute(query, values)
          7
                         else:
          8
                             cursor.execute(query)
          9
                             connection.commit()
         10
                             return cursor.lastrowid
         11
         12
                 except Error as e:
         13
                     print(f"Error executing query : {e}")
In [6]:
          1 def insert_data():
                 id = entry_id.get()
          3
                 name = entry_name.get()
          4
                 email = entry_email.get()
          5
                 query = "INSERT INTO student(id,name,email) VALUES (%s,%s,%s)"
                 values = (id,name,email)
          6
          7
                 execute_query(query, values)
In [9]:
          1 def select_data():
          2
                 try:
                     with connect(**db_config) as connection:
          3
          4
                         query = "SELECT * FROM student"
                         cursor = connection.cursor()
          5
          6
                         cursor.execute(query)
          7
                         rows = cursor.fetchall()
          8
                         for row in rows:
          9
                             print(row)
         10
         11
                 except Error as e:
         12
                     print(f"Error executing query : {e}")
In [ ]:
          1 root = tk.Tk()
          2 label_id = tk.Label(root, text = "ID")
            label_id.grid(row = 0, column = 0)
          3
          5 | label_id = tk.Entry(root)
            label_id.grid(row = 0, column = 1)
            label_name = tk.Label(root, text = "Name")
            label_name.grid(row = 1, column = 0)
         10
         11
            label_name = tk.Entry(root)
         12 | label_name.grid(row = 1, column = 1)
         14 label email = tk.Label(root, text = "Email")
         15 label_email.grid(row = 2, column = 0)
         16
         17 | label email = tk.Entry(root)
         18 | label_email.grid(row = 2, column = 1)
         19
         20 button_insert = tk.Button(root, text = "Insert", command = insert_data)
         21 button insert.grid(row=4,column=0)
         22
         23 button_select = tk.Button(root, text = "Select", command = select_data)
         24 button_select.grid(row=4,column=1)
         25
         26 root.mainloop()
```

Program to demonstrate GUI programming using Tkinter.

```
In [13]:
           1 from tkinter import *
           3 \mid window = Tk()
           4 window.geometry("500x300")
             window.title("LOGIN")
           7 | 11 = Label(window,text="LOGIN",fg="WHITE",bg="BLACK",font="20")
           8 | l1.grid(row=1, column=2, pady=20)
          10 | 12 = Label(window, text="USERNAME : ")
          11 | 12.grid(row=2, column=1, padx=20, pady=20)
          12
          13 t2 = Entry(window, width = "50")
          14 t2.grid(row=2,column=2, padx=50)
          15
          16 | 13 = Label(window, text = "PASSWORD : ")
          17 | 13.grid(row=3, column=1, padx=2, pady=20)
          18
          19 t3 = Entry(window, width = "50")
          20 t3.grid(row=3,column=2, padx=50)
          21
          22 | 14 = Label(window, text = "PASSWORD SAVED : ")
          23 | 14.grid(row=4, column=1, padx=2, pady=20)
          24
          25 | r1 = Radiobutton(window, text="YES")
          26 r1.grid(row=4, column=2)
          27 | r2 = Radiobutton(window, text="NO")
          28 r2.grid(row=5, column=2, padx="5", pady = 20)
          29
          30 window.mainloop()
```

Program for data structure algorithm using python for sorting

```
In [14]:
           1 a = []
           2 size = int(input("Enter the size of array : "))
           3 for i in range(0,size):
                 a.append(int(input()))
           5
             print("Before Sorted : ",a)
          7
             for i in range(0,len(a)):
           8
                 for j in range(0,len(a)-1):
           9
                     if(a[j]>a[j+1]):
          10
                          temp = a[j]
          11
                          a[j] = a[j+1]
          12
                          a[j+1] = temp
          13
             print("After Sorted : ",a)
         Enter the size of array : 5
         10
         50
         20
         40
         Before Sorted : [10, 50, 20, 40, 30]
         After Sorted: [10, 20, 30, 40, 50]
```

Program to find out a factorial of given number.

Python program for linear search

```
In [15]:
          2 size = int(input("Enter the size of array : "))
          3 for i in range(0,size):
                 a.append(int(input()))
           6 ele = int(input("Enter element for search : "))
          7 f=0
           8 for i in range(0,len(a)):
                 if(ele == a[i]):
          9
          10
                     f=1
          11
                     print("Element found at : ",i)
          12
                     break
          13
          14 if f==0:
          15
                 print("Element not found")
```

```
Enter the size of array : 5
1
3
4
2
5
Enter element for search : 2
Element found at : 3
```

Program to demonstrate class, object, Inheritance.

```
In [19]:
           1 class first:
                 a = "This is first class variable"
                 def f_m(self):
           3
                     print("First Method ")
           4
           5
           6 class second(first):
           7
                 def s_m(self):
                     print("Second Method")
           8
          10 f = first()
          11 f.f_m()
          12 \mid s = second()
          13 s.f_m()
          14 s.s_m()
```

First Method First Method Second Method

Use of DataFrame method and use of .csv files.

```
In [16]:
           1 import pandas as pd
           2 dataset = pd.read_csv("student_scores.csv")
           3 print(dataset)
           4 print(dataset.head(2))
             print(dataset.tail(2))
           6 print(dataset.info())
           7 print(dataset.describe())
             Hours Scores
               2.5
         0
                         21
         1
               5.1
                         47
               3.2
                         27
                         75
               8.5
               3.5
                         30
                         20
         5
               1.5
         6
               9.2
                         88
         7
               5.5
                         60
         8
               8.3
                         81
         9
               2.7
                         25
         10
               7.7
                         85
         11
               5.9
                         62
               4.5
         12
                         41
         13
               3.3
                         42
         14
               1.1
                         17
         15
               8.9
                         95
         16
               2.5
                         30
         17
               1.9
                         24
         18
               6.1
                         67
         19
               7.4
                         69
         20
               2.7
                         30
         21
               4.8
                         54
         22
               3.8
                         35
         23
               6.9
                         76
         24
               7.8
                         86
             Hours Scores
               2.5
               5.1
                        47
             Hours
                    Scores
         23
               6.9
                         76
               7.8
                         86
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 25 entries, 0 to 24
         Data columns (total 2 columns):
               Column Non-Null Count Dtype
          0
                                       float64
              Hours
                      25 non-null
              Scores 25 non-null
                                       int64
         dtypes: float64(1), int64(1)
         memory usage: 532.0 bytes
         None
                     Hours
                               Scores
         count 25.000000 25.000000
         mean
                 5.012000 51.480000
         std
                 2.525094 25.286887
         min
                 1.100000 17.000000
         25%
                 2.700000
                           30.000000
         50%
                 4.800000 47.000000
         75%
                 7.400000 75.000000
                 9.200000 95.000000
         max
```

Create a file, Write in to file, read a file, append the file.

```
1 wf = input("Enter the filename : ")
 2 file = open(wf,'w')
 3 file.write("File created")
 4 | file.close()
 6 rf = input("Enter the filename : ")
 7 file = open(rf,'r')
 8 print(file.read())
 9
   file.close()
10
11 af = input("Enter the filename : ")
12 file = open(af, 'a')
13 | file.write("Content Updated")
14 file.close()
Enter the filename : rohit
Enter the filename : rohit
File created
Enter the filename : rohit
```

List and Dictionary with its important function (minimum 3)

```
In [24]:
           1 | 11 = [10,30,20,40]
           2 print(11)
           3 | 11.append([50])
           4 print(11)
           5 | 11.extend([90,80,60,70])
           6 print(l1)
           7 | 11.insert(2,100)
           8 print(l1)
          9 print(l1.count(10))
          10 l1.clear()
          11 print(l1)
          12
          13 d1 = {"Name":"ROHIT BHOI", "S_NO" : "010101"}
          14 print(d1.keys())
          15 print(d1.values())
          16 print(d1.items())
          17 print(d1.popitem())
          18 | print(d1)
          19 print(d1.pop("Name"))
          20 d1.clear()
          21 print(d1)
         [10, 30, 20, 40]
         [10, 30, 20, 40, [50]]
         [10, 30, 20, 40, [50], 90, 80, 60, 70]
         [10, 30, 100, 20, 40, [50], 90, 80, 60, 70]
         1
         []
         dict_keys(['Name', 'S_NO'])
         dict_values(['ROHIT BHOI', '010101'])
         dict_items([('Name', 'ROHIT BHOI'), ('S_NO', '010101')])
         ('S_NO', '010101')
         {'Name': 'ROHIT BHOI'}
         ROHIT BHOI
         {}
```

Program to find out odd and even number up to given number.

```
In [25]:
          1 | num = int(input("Enter the Number : "))
           2 | even = []
          3 | odd = []
          4 | for i in range(1, num+1):
          5
                 if(i%2==0):
                     even.append(i)
           6
          7
                 else:
           8
                     odd.append(i)
          10 print("Even : ",even)
          11 print("Odd : ",odd)
         Enter the Number: 20
         Even: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
         Odd: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
```

Program to find out the given number is prime or not

Enter Number : 7
Number is Prime

Program to find out the given number is palindrome or not

```
In [34]:
          1 | num = int(input("Enter the Number : "))
          2 temp = num
          3 s=0
           4 while(num>0):
                r=num%10
           6
                 s=s*10+r
          7
                num=num//10
           8
          9 if s==temp:
          10
                print("Number is Palindrome")
          11 else:
                 print("Number is not Palindrome")
          12
```

Enter the Number : 554455 Number is Palindrome

Program to find out the given string is palindrome or not.

```
In [21]: 1 s1 = input("Enter a String : ")
    rev = ""
    for i in s1:
        rev=i+rev

    if s1 == rev:
        print("String is palindrome")
    else:
        print("String is not Palindrome")
```

Enter a String : nayan String is palindrome

Program to find out the given number is Armstrong or not.

```
1 | num = int(input("Enter the Number : "))
In [1]:
         2 temp = num
         3 s = 0
         4 while(num>0):
             r=num%10
                s=s+(r*r*r)
         6
         7
                num=num//10
         8
         9 | if s==temp:
         10
                print("Number is Armstrong ")
         11 else:
                print("Number is not Armstrong")
         12
```

Enter the Number: 5252 Number is not Armstrong

Program to calculate the addition of odd number up to given range.

Program to calculate the addition of even number up to given range.

Enter the Number : 4 Addition : 6

Addition: 9

120

Program to find out factorial using recursion.