Backpropagation Main Ideas

• It optimizes the Weights and Biases in Neural Networks.

In this part, we talk about the **Main Ideas** of **Backpropagation**:

1) Using the Chain Rule to calculate derivatives...

- Let's name weights (\$w_1\$, \$w_2\$, \$w_3\$ and \$w_4\$) and biases (\$b_1\$, \$b_2\$ and \$b_3\$).
- Backpropagation works with the last parameter and works its way backwards to estimate all of the other parameters.
- However, we can discuss main idea by estimating last parameter, bias \$b_3\$.

Note: Unoptimized Doses and Optimized Doses

• Now if we run Dosages from 0 to 1 through the connection to the top Node in the Hidden Layer, then we get the x-axis coordinates for the Activation Function

and when we plug the x-axis coordinates into the Activation Function (in this case is Softplus Activation Function i.e., $f(x) = \log(1 + e^x)$)

• Then we multiply the y-axis coordinates on the blue curve by -1.22

and then we get the final blue curve.

• Now if we run Dosages from 0 to 1 through the connection to the bottom Node in the Hidden Layer, ...

and then we get the final orange curve.

- Adding those blue and orange curves will get us a green squiggle
- Since we don't have optimal value of \$b_3\$, we gotta give it some initial value like \$0\$.
- \$0\$ means green squiggle doesn't move and it is far from observed values.

• It can be quantified how good it fits the data by calculating \$Sum\$ \$of\$ \$Squared\$ \$Residuals\$ \$=\$ \$\sum_{i=1}^{n} {(Observed_i - Predicted_i)^2}\$.

Note: Changing Bias means Squiggle translates

Bias	Sum of Squared Residuals		
0	20.4		
1	7.8		
2	1.11		
3	0.46		

However, instead of plugging in tons of values to find the lowest point in the pink curve, we use **Gradient**Descent to find it relatively quickly.

And that means we need to find the derivative of the **Sum of the Squared Residuals** with respect to **b**₃.

- Therefore, \$green\$ \$squiggle_i\$ \$=\$ \$blue\$ \$+\$ \$orange\$ \$+\$ \$b_3\$.
- For Gradient Descent to optimize \$b_3\$, we need to take SSR's derivative \$w.r.t\$ \$b_3\$.

\$\frac{d , SSR}{d , b_3}\$

• Therefore by The Chain Rule,

network.

- \$\frac{d , SSR}{d , b_3}\$ \$=\$ \$\frac{d , SSR}{d ,
 Predicted}\$ \$\times\$ \$\frac{d , Predicted}{d , b_3}\$
 - 1. \$\frac{d , SSR}{d , Predicted} = -2 \times \sum_{i=1}^{n} {(Observed_i - Predicted_i)}\$

$_2. \frac{d}{d} = 1$

3. $\frac{d \, SSR}{d \, b_3} = -2 \times \frac{i=1}^{n} {Observed_i - Predicted_i}$

Note: Let Learning Rate be \$0.1\$

Bias	\$d , SSR}{d , b_3}\$	Step Size = \$\frac{d , SSR}{d , b_3} \times \text{Learning Rate}\$	<pre>\$ \text{New } b_3 = \text{Old } b_3 - \text{Step Size}\$</pre>
0	-15.7	\$-15.7 \times 0.1 = -1.57\$	1.57
1.57	-6.26	\$-6.26 \times 0.1 = -0.626\$	2.19

Do it till Step Size close to 0.

• Most optimized \$b_3 = 2.61.\$