

Horizon 2020
European Union funding
for Research & Innovation

CPU Idle Loop Ordering Problem

Rafael J. Wysocki Intel

Thomas IIsche

Center for Information Services and High Performance Computing (ZIH), TU Dresden

OSPM 2018 - Pisa

Observing Power Consumption Anomalies

- Energy efficiency research
- □ Fine grained instrumentation (microsecond resolution)
- □ Large scale instrumentation (HPC system 1400 nodes)
- Tuned for low idle power consumption

Observing Power Consumption Anomalies

- Prolonged phases of high power consumption during idle
- Disrupted power measurements
- Significant increase in idle power on Skylake 36 core system with stock Ubuntu installation

Impact of Package C States

Understanding Power Anomalies

Understanding Power Anomalies

Cause, Trigger, Contributing Factors

- Cause
 - Menu governor heuristic underestimates sleep time
 - Uses repeatable interval detector with 8 data points
 - Non-optimal C state is selected
- Trigger
 - Short sleep phases on one core
 - Interaction between processes, e.g. kworkers, ssh/zsh/screen, lustre ping
 - Synthetic: burst sleep intervals
- Contributing factors
 - Long idle phase, no correction of wrongly selected C state
 - Stubborn heuristic
 - □ High impact of single core in wrong state

Understanding Power Anomalies (HPC System)

- □ Found on production HPC System with > 1400 nodes
- □ Lustre related pattern every 25 seconds

Understanding Power Anomalies (HPC System)

- □ Found on production HPC System with > 1400 nodes
- Lustre related pattern every 25 seconds
- Triggers up to one second Powernightmare
- \square 87 W \rightarrow 131 W
- Lower impact due to regular background activity

Synthetic trigger with idle-loop v9

Fixing Powernightmares for Linux 4.17

- Dual socket, 36 core SKL-SP system
- Default Ubuntu server installation, fully idle, no extra services
 - Frequent power spikes up to 120 W
 - Average system power 78 W

- □ Upcoming kernel 4.17
 - Constant, low idle power
 - Average system power **70 W** (-10.3%)

References

- Thomas Ilsche, Marcus Hähnel, Robert Schöne, Mario Bielert and Daniel Hackenberg. "Powernightmares: The Challenge of Efficiently Using Sleep States on Multi-Core Systems" In: 5th Workshop on Runtime and Operating Systems for the Many-core Era (ROME). 2017
- Thomas Ilsche, Robert Schöne, Mario Bielert, Andreas Gocht and Daniel Hackenberg. "lo2s - Multi-Core System and Application Performance Analysis for Linux" In: Workshop on Monitoring and Analysis for High Performance Computing Systems Plus Applications (HPCMASPA). 2017. DOI: 10.1109/CLUSTER.2017.116 = https://github.com/tud-zih-energy/lo2s
- Thomas Ilsche, Robert Schöne, Joseph Schuchart, Daniel Hackenberg, Marc Simon, Yiannis Georgiou and Wolfgang E. Nagel.
 - "Power Measurement Techniques for Energy-Efficient Computing: Reconciling Scalability, Resolution, and Accuracy" In: Second Workshop on Energy-Aware High Performance Computing (EnA-HPC). 2017