Методы оптимизации и их применение к решению обратных задач

Факультет Космических Исследований, МГУ

Москва

Основные обозначения и определения

Введем обозначения:

$$x^* = \underset{x \in X}{\operatorname{argmin}} f(x), X \subset H, (*)$$
$$f^* = f(x^*) = \underset{x \in X}{\min} f(x).$$

Теорема

Пусть X - компакт в H, тогда f(x) - непрерывный X на функционал. Тогда существует точка глобального минимума f(x) на X.

Выпуклость и сильная выпуклость

Выпуклость функции f(x) означает, что $\forall x_1, x_2 \in X$, $\forall \lambda \in [0,1]$:

$$f(\lambda)x_1+(1-\lambda)x_2\leq \lambda f(x_1)+(1-\lambda)f(x_2).$$

Сильная выпуклость, плюс к вышесказанному существует $\theta > 0$:

$$f(\lambda)x_1 + (1-\lambda)x^2 \le \lambda f(x_1) + (1-\lambda)f(x_2) - \theta\lambda(1-\lambda)||x_1 - x_2||^2$$
.

Теорема

Если (*) - задача выпуклого программирования, то любая точка локального минимума является точкой глобального минимума.

Теорема

Пусть функционал f(x) является выпуклым на всем пространстве H и дифференцируемым в точке $x^* \in H$. Если f'(x) = 0, то x^* - точка минимума f(x) на H.

Локальный и глобальный минимум в случае выпуклых функций

Метод наименьших квадратов

$$\Phi(x) = ||Ax - b||^2 = (A^*Ax, x) - 2(A^*b, x) + (b, b),$$

легко получить

$$\Phi(x) = 2(A^*Ax - A^*b),$$

$$\Phi(x) = 2A^*A \ge 0.$$

Поскольку оператор A^*A - неотрицательно определен, то $\Phi(x)$ - выпулый функционал. Через равенство нулую градиента, получаем СЛАУ

$$A^*Ax = A^*b$$
.

(достаточное условие минимума $\Phi'(x) = 0$, $\Phi''(x) > 0$).

Основной итерационный процесс

Определим последовательность:

$$x^{n+1} = x^n + \alpha_n h^n$$
, $n = 0, 1, 2...$

Обозначим основные этапы алгоритма отпмизации:

- 1. Положить n = 0, задать x^0 ;
- 2. Проверить условия останова;
- **3**. Вычислить α_n ;
- 4. Вычислить x^{n+1} ;
- 5. Увеличить на единицу. Перейти к п. 2;

Методы нулевого/первого и более порядков.

Минимизирующая последовательность

Последовательность $\{x^n\}$ минимизирующая, если $f(x^n) \to f^* = \min_{x \in X} f(x)$ (сходимость по функционалу). Сходимость по аргументу $x^n \to x^* = \operatorname{argmin}_{x \in X} f(x)$. Различные виды сходимости со скоростью геометрической прогрессии:

$$||x^{n+1}-x^*|| \le q||x^n-x^*||, \ 0 \le q \le 1,$$

сверхлинейная сходимость:

$$||x^{n+1}-x^*|| \leq q_n||x^n-x^*||, q_n \to 0,$$

квадратичная скорость сходимости:

$$||x^{n+1} - x^*|| \le C||x^n - x^*||^2$$

Критерии остановки

Могут применяться следующие критерии остановки процесса минимизации:

1.

$$||x^{n+1}-x^*||\leq \varepsilon_1,$$

2.

$$|f(x^{n+1}) - f(x^n)| \le \varepsilon_2,$$

3.

$$|f'(x^n)| \leq \varepsilon_3.$$

Методы спуска

Пусть известно направление спуска такое что $f(x + \alpha x) < f(x)$. Пусть заданы x^n , h^n , необходимо выбрать α_n , такое что

$$f(x^n + \alpha_n h^n) = \min_{\alpha \ge 0} f(x^n + \alpha h^n).$$

Данную задачу не сложно решить в явном виде для квадратичного функционала:

$$f(x) = \frac{1}{2}(Ax, x) + (b, x) + (c, c).$$

Метод доверительной области

Рассмотрим приближенную модель с учетом ограниченного шага

$$\min_{p\in\mathbb{R}} m_k(p) = \frac{1}{2} p^T B_k p + g_k^T p + f_k, ||p|| \leq \triangle_k,$$

важна величина близости модели к исходной функции

$$\rho_{k} = \frac{f(x_{k}) - f(x_{k} + p_{k})}{m_{k}(0) - m_{k}(p_{k})},$$

идеальный случай $ho_k \sim 1$, если ho_k - маленькое - уменьшаем область, если ho_k близко к 1 и шаг ho_k достигает границы - увеличиваем.

Контуры минимизации

Разница подходов: доверительная область - максимальный радиус, направление Для методов спуска - направление, длина шага.

Контуры доверительной области

Методы спуска с условиями Вульфа и Голдштайна

Условие Вульфа

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f_k^T p_k = I(\alpha), c_1 \in (0, 1),$$

в том числе условия кривизны

$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k, c_2 \in (c_1, 1),$$

Условие Гольдштайна

$$f(x_k) + (1 - c)\alpha_k \nabla f_k^T p_k \le f(x_k + \alpha_k p_k) \le f(x_k) + c\alpha_k \nabla f_k^T p_k$$

Контрпример

Рассмотрим последовательность $f(x_k) = 1/k$

которая не

сходится к минимуму $f(x^*) = -1$.

Условия Вульфа иллюстрация

Условия Гольдштайна, иллюстрация

Метод наискорейшего спуска

Пусть функционал имеет квадртоичный вид

$$f(x) = \frac{1}{2}x^T Q x - b^T x,$$

Матрица Q - симметрична и положительно определена, минимум соответствует решению уравнения Qx=b. Приравнивая к нулю производные функции $f(x_k-\alpha\nabla f_k)$, находим значение оптимального параметра

$$\alpha_k = \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k},$$

получим итерационный процесс

$$x_{k+1} = x_k - \left(\frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T Q \nabla f_k}\right) \nabla f_k.$$

Метод наискорейшего спуска, иллюстрация

Метод Ньютона

Направление спуска для метода Ньютона

$$p_k^N = -\nabla^2 f_k^{-1} \nabla f_k,$$

- 1. матрица Гессе $\nabla^2 f_k$ не всегда положительно определена
- 2. p_k^N может не быть направлением уменьшения;

Возможные решения проблем заключаются в 1. модификации матрицы Гессе для обеспечения ее положительной определенности, 2. подход доверительных областей, в котором матрица $\nabla^2 f_k$ положительно определена. Таким образом, будет обеспечена квадратичная сходимость, при том, что параметр спуска $\alpha_k=1$.

Квазиньютоновские методы

Рассмотрим направления спуска, достаточно положить $lpha_{\pmb{k}}=1$

$$p_k = -B_k^{-1} \nabla f_k,$$

Теорема

Пусть функционал f два раза непрервывно дифференцируем. Рассматривая итерации $x_{k+1} = x_k + \alpha_k p_k$, где α_k удовлетворяют условиям Вульфа. Если последовательность $\{x_k\}$ сходится κ точке x^* для которой $\nabla f(x^*) = 0$ и $\nabla f(x^*)$ положительно определена, а также направления спуска удовлетворяют условиям

$$lim_{k\to\infty}\frac{||\nabla f_k + \nabla^2 f_k p_k||}{||p_k||} = 0,$$

то справедливо длины шага $\alpha_k = 1$ допустимы начаная с некоторого k_0 и если $\alpha_k = 1$ при $k > k_0$, сходимость к x^* сверхлинейная.

Ньютоновские методы с модификацией Гессиана

Один из простых способов скорректировать матрицу с учетом минмального отрицательного собственного значения

- 1. положим $\beta > 0$
- 2. $\tau_0 = -\min(a_{ii}) + \beta$;
- 3. обновляем матрицу $B_k = \nabla^2 f(x_k) + \tau_k I$;
- 4. проверяем положительную определенность применением разложения Холецкого $L^T L = A + \tau_k I$;
- 5. увеличиваем $au_{k+1} = 2 au_k$, повторяем предыдушую итерацию;
- 6. решаем систему $B_k p_k = -\nabla f(x_k)$;
- 7. проводим шаг минимизации $x_{k+1} = x_k + \alpha_k p_k$;

Алгоритм Бройдена — Флетчера — Гольдфарба — Шанно (BFGS)

Пусть получена дискретизация функционала

$$m_k(x) = \frac{1}{2} p^T B_k p + \nabla f_k^T p + f_k,$$

где вектор p используется в качестве направления спуска $x_{k+1} = x_k + \alpha_k p_k$ (α_k - можно найти например по методу Вульфа). Построим итерационный процесс для обновления матрицы Гессе:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}.(*)$$

Схема алгоритма BFGS

- 1. Задается начальное приближение x_0 , точность ϵ ;
- 2. While $||\nabla f_k|| > \epsilon$
 - 2.1 вычисляется направление $p_k = -H_k \nabla f_k$;
 - 2.2 $x_{k+1} = x_k + \alpha_k p_k$, где α_k ищется по направлению наискорейшего спуска;
 - 2.3 вычисляется H_{k+1} по формуле (*);
 - 2.4 следующий шаг k = k + 1;
- end(while)

Идейная связь методов

Левенберга - Марквардта схема метода

```
Algorithm
                                        Levenberg-Marquardt method
begin
     \hat{k} := 0; \quad \nu := 2; \quad \mathbf{x} := \mathbf{x}_0

\mathbf{A} := \mathbf{J}(\mathbf{x})^\mathsf{T} \mathbf{J}(\mathbf{x}); \quad \mathbf{g} := \mathbf{J}(\mathbf{x})^\mathsf{T} \mathbf{r}(\mathbf{x})
     found := (\|\mathbf{g}\|_{\infty} \le \varepsilon_1); \mu := \tau * \max\{a_{ii}\}
     while (not found) and (k < k_{max})
           k := k+1; Solve (\mathbf{A} + \mu \mathbf{I})\mathbf{h}_{lm} = -\mathbf{g}
           if \|\mathbf{h}_{lm}\| < \varepsilon_2(\|\mathbf{x}\| + \varepsilon_2)
              found := true
           else
                 \mathbf{x}_{new} := \mathbf{x} + \mathbf{h}_{lm}
                 \varrho := (F(\mathbf{x}) - F(\mathbf{x}_{\text{new}}))/(L(\mathbf{0}) - L(\mathbf{h}_{\text{lm}}))
                                                                                                                       {step acceptable}
                 if \rho > 0
                     \begin{aligned} \mathbf{x} &:= \mathbf{x}_{new} \\ \mathbf{A} &:= \mathbf{J}(\mathbf{x})^{\mathsf{T}} \mathbf{J}(\mathbf{x}); \quad \mathbf{g} &:= \mathbf{J}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x}) \end{aligned}
                     found := (\|\mathbf{g}\|_{\infty} \le \varepsilon_1)
                      \mu := \mu * \max\{\frac{1}{2}, 1 - (2\varrho - 1)^3\}; \quad \nu := 2
                      \mu := \mu * \nu; \nu := 2 * \nu
end
```

Левенберга - Марквардта (доверительные интервалы)

Связь метода с методом доверительной области

$$\min_{p} \frac{1}{2} ||J_k p + r_k||^2, \, ||p|| \le \triangle_k,$$

когда достиагется граничное условие, задачу можно свести к

$$(J^T J + \lambda I)p = -J^T r.$$

Метод сопряженных градиентов, квадратичный случай

Рассмотрим квадратичный функционал

$$f(x) = \frac{1}{2}(Ax, x) + (b, x) + c.$$

Definition

Векторы h^1 , h^2 называются сопряжнными относительно матрицы A, если $(Ah^1,h^2)=0$.

Theorem

Если $\{h^k\}$ взаимно сопряженные относительно матрицы A, k=0,...,m-1, α_k находится по наискорейшему спуску, то $f(x^m)=\min_{x\in X_m}f(x)$, где $X_m=\{x: x=x^0+\sum \lambda_k h^k,\}$ - афинное многообразие.

Метод сопряженных градиентов, нелинейный случай

Рассмотрим алгоритм в форме Флетчера-Ривса:

- 1. Вычисляем антиградиент в начальной точке $d_0 = -\nabla f(x_0)$;
- 2. осуществляем наискорейший спуск $f(x_i + \alpha_i d_i)$;
- 3. переход в новую точку $x_{i+1} = x_i + \alpha_i d_i$;
- 4. вычисляется антиградиент $r_{i+1} = -\nabla f(x_{i+1})$;
- 5. коэффициент $\beta_k = \frac{(r_{k+1}, r_{k+1})}{(r_k, r_k)}$
- 6. вычисление нового направления $d_{i+1} = r_{i+1} + \beta_{i+1} d_i$.

Условная оптимизация

Решается задача

$$\min_{x\in\mathbb{R}^n}f(x)$$

с ораничениями

$$\begin{cases} c_i(x) = 0, i \in \mathcal{E}, \\ c_i(x) \geq 0, i \in \mathcal{I}, \end{cases}$$

Вводим функцию Лагранжа

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x),$$

Условия Каруша — Куна — Таккера

Теорема

Пусть есть локальное решение и функции непрерывно дифференцируемы, выполенно (LICQ) (градиенты активных ограничений и градиенты ограничений неравенств линейно независимы) в точке х*. Тогда сущуествуют значения множителей Лагранжа, так что выполнены следующие условия:

$$egin{aligned}
abla_{x}\mathcal{L}(x^{*},\lambda^{*})&=0,\ &c_{i}(x^{*})&=0,\ i\in\mathbb{E},\ &c_{i}(x^{*})&\geq0,\ i\in\mathbb{I},\ &\lambda_{i}^{*}&\geq0,\ i\in\mathbb{I},\ \end{pmatrix} \lambda_{i}^{*}c_{i}(x^{*})&=0,\ i\in\mathbb{E}\cup\mathbb{I}. \end{aligned}$$

Последовательное квадратичное программирование (SQP)

Минимизируем min f(x) при условии c(x)=0. Пусть $A(x)=[\nabla c_1(x),...,\nabla c_m(x)]$, Система ККТ первого рода:

$$F(x,\lambda) = \begin{pmatrix} \nabla f(x) - A(x)^T \lambda \\ c(x) \end{pmatrix} = \theta.$$

(Необходимые условия локального минимума для задач с ограничениями исследуются давно. Одним из основных остаётся предложенный Лагранжем перенос ограничений в целевую функцию. Условия Куна-Таккера тоже выведены из этого принципа.)

Последовательное квадратичное программирование (SQP)

якобиан задается формулой

$$F'(x,\lambda) = \begin{pmatrix} \nabla_{xx}^2 \mathcal{L}(x,\lambda) & -A(x)^T \\ A(x) & 0 \end{pmatrix},$$

для приращений $x_{k+1}=x_k+p_k,\ \lambda_{k+1}=\lambda_k+p_\lambda$ можно получить систему Ньютона-ККТ

$$\begin{pmatrix} \nabla_{\mathsf{xx}}^2 \mathcal{L}_k & -A_k^\mathsf{T} \\ A_k & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_\lambda \end{pmatrix} = \begin{pmatrix} -\nabla f_k + A_k^\mathsf{T} \lambda_k \\ -c_k \end{pmatrix}$$

Метод сопряженного градиента для решения задач на специальных множествах

Минимизируем функционал

$$\Phi(z) = ||Az - u_{\delta}||^2,$$

на множестве ограниченны монотонных $Z\downarrow$, выпуклых \breve{Z} , выпуклых монотонных $\breve{Z}\downarrow$

$$\Phi'(z) = 2(A^*Az - A^*u_\delta),$$

условие Липшица

$$||\Phi'(z_1) - \Phi'(z_2)|| \le 2||A||^2||z_1 - z_2||,$$

позволяет применить метод условного градиента.

1

$$(\Phi'(z^k), \bar{z}^k) = \min_{z \in M} (\Phi'(z^k), z),$$

точка \bar{z}^k принадлежит границе множества M, в случае когда M - ограниченнй замкнутый выпуклый многогранник (возможно перебрать вершины, если они известны).

построим

$$z^{k+1} = z^k + \lambda_k (\bar{z}^k - z^k),$$

где $\lambda_k \in [0,1]$ является решением одномерной задачи

$$\Phi(z^{k+1}) = \Phi(z^k + \lambda_k(\bar{z}^k - z^k)) = \min_{\lambda \in [0,1]} \Phi(z^k + \lambda(\bar{z}^k - z^k)).$$

Иллюстрация метода условного градиента

Метод сопряженных градиентов для решения оз 1

Будем рассматривать задачи на множествах простой структуры

Данное ограничение легко представимо в виде

$$Fz \leq g$$
,

выделим множество активных ограничений I(z) для которых выполнено

$$\sum_{i=1}^n F_{ij} = g_i.$$

Алгоритм метода СГ с ограничениями 1

Исходный квадратичный функционал представим в виде

$$\phi(z) = (z, Qz) + (d, z) + e,$$

- 1. минимизацию начинаем с произвольной точки z^0 , число активных ограничений m=0;
- 2. если k = n, то решение найдено, останов;
- 3. направление спуска для k=0, $p^k=grad\phi(z^k)$, $p^k=-grad\phi(z^k)+\frac{||grad\phi(z^k)||}{||grad\phi(z^{k-1})||}p^{k-1}$,
- 4. вычисляется величина оптимального шага вдоль заданного направления p^k :

$$a_k = \frac{1}{2} \frac{(grad\phi(z^k), p^k)}{(Qp^k, p^k)},$$

Алгоритм метода СГ с ограничениями 2

- 5. вычисляется величина a_{max} максимально возможного шага вдоль направления p^k , не выводящего за пределы множества Y;
- 6. если $a_k \leq a_{max}$, $z^{k+1} = z^k + a_k p^k$, k = k+1, переход на пункт, иначе $z^{k+1} = z^k + a_{max} p^k$, переходим на следующий шаг;
- 7. появилось новое активное ограничение I(z), m=m+1;
- 8. вычисляем проектор P_I на подпространство R_{n-m} $(F_I z = 0)$, по формуле $P_I = E F_I^* (F_I F_I^*)^{-1} F_I$;
- 9. повторяем шаг , только в качестве начальной точки берется и всюду вместе берется их проекция, минимум по методу сг находится за n-m шагов
- 10. если минимум на многообразии найден и m=0, если минимум найден m>0 то переходим к слудющему шагу, если минимум не найден $a_k>0$, то переходим к шагу.

Алгоритм метода СГ с ограничениями 3

11. вычислим набор из m параметров по формуле

$$u^0 = (F_I F_I^*)^{-1} F_I grad \phi$$

- 12. если $u_i^0 \ge 0$, то найдено решение задачи;
- 13. если $u_i^0 < 0$ для каждого i исключаем из I(z), переходим на шаг..., положив m = m 1.