FCC Part 15E Measurement and Test Report

For

GL Technologies (Hong Kong) Limited

Unit 210D, 2/F, Enterprise Place Hong Kong Science Park, Shatin, N.T. Hong Kong, China

FCC ID: 2AFIW-AR750

FCC Rule(s): FCC Part 15E

Product Description: <u>GL.iNet 750M Travel AC Router</u>

Tested Model: GL-AR750

Report No.: <u>HCT17IR269E-2</u>

Sample Receipt Date: Sep 15, 2017

Tested Date: Sep 15~Oct 27, 2017

Issued Date: Oct 27, 2017

Tested By: <u>Jason Su/ Engineer</u>

Reviewed By: Silin Chen / EMC Manager

Approved & Authorized By: <u>Jandy So / PSQ Manager</u>

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

Jason Su Silim chen James

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. 518101, China

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 TEST STANDARDS	
1.4 TABLE FOR PARAMETERS OF TEST SOFTWARE SETTING	
1.5 EUT OPERATING DURING TEST	
1.6 TEST FACILITY	
1.7 EUT SETUP AND TEST MODE	
1.9 TEST EQUIPMENT LIST AND DETAILS.	
2. SUMMARY OF TEST RESULTS	
3. RF EXPOSURE	
3.1 STANDARD APPLICABLE	
3.2 Test Result	
4. ANTENNA REQUIREMENT	
4.1 STANDARD APPLICABLE	
4.2 EVALUATION INFORMATION	
5. CONDUCTED EMISSIONS	
5.1 TEST PROCEDURE	
5.4 Environmental Conditions	
5.5 TEST RECEIVER SETUP	
5.6 SUMMARY OF TEST RESULTS/PLOTS	
6. POWER SPECTRAL DENSITY	
6.1 Standard Applicable	
6.3 Environmental Conditions	16
6.4 SUMMARY OF TEST RESULTS/PLOTS	16
7. EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
7.1 STANDARD APPLICABLE	
7.2 TEST PROCEDURE	
7.4 SUMMARY OF TEST RESULTS/PLOTS.	
8. MAXIMUM CONDUCTED OUTPUT POWER	49
8.1 Standard Applicable	
8.2 TEST PROCEDURE	49
8.3 ENVIRONMENTAL CONDITIONS	50
8.4 SUMMARY OF TEST RESULTS/PLOTS	
9. CONDUCTED UNDESIRABLE EMISSIONS AND BAND EDGE	
9.1 Standard Applicable	
9.3 Environmental Conditions	
10.4 SUMMARY OF TEST RESULTS/PLOTS	
10. RADIATED SPURIOUS EMISSIONS	70
10.1 STANDARD APPLICABLE	
10.2 TEST PROCEDURE	
10.4 CORRECTED AMPLITUDE & MARGIN CALCULATION	
10.5 Environmental Conditions	72
10.6 SUMMARY OF TEST RESULTS/PLOTS.	
11. FREQUENCY STABILITY	
11.1 Standard Applicable	
11.2 TEST PROCEDURE	

11.4 SUMMARY OF TEST RESULTS/PLOTS 91

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	GL Technologies (Hong Kong) Limited
Address of applicant:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park,
	Shatin, N.T. Hong Kong, China
Manufacturer:	GL Technologies (Hong Kong) Limited
Address of manufacturer:	Unit 210D, 2/F, Enterprise Place Hong Kong Science Park,
	Shatin, N.T. Hong Kong, China

General Description of EUT	
Product Name:	GL.iNet 750M Travel AC Router
Trade Name:	GL·ÎNet
Model No.:	GL-AR750
Adding Model(s):	N/A
Hardware Version:	GL-AR750-V1.1
Software Version:	2.263
Rated Voltage:	DC 5V/2A
Battery capacity:	/
Power Adapter Model:	I/P: AC100-240V/50Hz; O/P: DC 5V/2A

Technical Characteristics of EU	U T
Frequency Range:	U-NII-1: 5150MHz~5250MHz U-NII-3: 5725MHz~5850MHz
RF Output Power:	20.94 dBm (Conducted)
	802.11a: 6/9/12/18/24/36/48/54 Mbps
Data Rate:	802.11n: up to 150Mbps
	802.11ac: at most 433.3 Mbps
Modulation:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)
Quantity of Channels:	15
Type of Antenna:	Internal Antenna
Antenna Gain:	3.0dBi
Channel List:	As below table

Report No.: HCT17IR269E-2 Page 4 of 93 FCC Part 15.407

5G Band 5150~5250 MHz (U-NII-1)								
Frequency Band Channel No. Frequency Channel No. Frequency								
5150~5250 MHz Band 1	36	5180 MHz	44	5220 MHz				
	38	5190 MHz	46	5230 MHz				
	40	5200 MHz	48	5240 MHz				
	42	5210 MHz						

Remark: For 20 MHz Bandwidth, use channel 36, 40, 44, 48.

For 40 MHz Bandwidth, use channel 38, 46. For 80 MHz Bandwidth, use channel 38.

5G Band 5725~5850 MHz								
Frequency Band Channel No. Frequency Channel No. Frequency								
	149	5745 MHz	157	5785 MHz				
5725~5850 MHz	151	5755 MHz	159	5795 MHz				
Band 4	153	5765 MHz	161	5805 MHz				
	155	5775 MHz	165	5825 MHz				

Remark: For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165.

For 40 MHz Bandwidth, use channel 151, 159.

For 80 MHz Bandwidth, use channel 155.

1.2 Test Standards

The following report is prepared on behalf of the **GL Technologies** (**Hong Kong**) **Limited** in accordance with FCC Part 15, Subpart C&E, and section 15.203, 15.205, 15.207, 15.209 and 15.407 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C&E, and section 15.203, 15.205, 15.207, 15.209 and 15.407 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The measurement guide KDB 789033 D02 v01r04 for Unlicensed National Information Infrastructure (U-NII) Devices and KDB 662911 D01 Multiple Transmitter Output v02r01 shall be performed also.

1.4 Table for parameters of Test Software setting

The test utility software used during testing was "RPTA1-71W.M4300.01.GD.2015Sep1". During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Report No.: HCT17IR269E-2 Page 5 of 93 FCC Part 15.407

						Test Fr	equenc	y (MHz))				
Mode						NC	CB: 20N	1Hz					
	5180	5200	5240	5260	5300	5320	5500	5580	5700	5720	5745	5785	5825
802.11a 6Mbps	19	19	19								15	15	15
802.11n-HT20 MCS0	19	19	19								15	15	15
Mode						NC	B: 40N	1Hz					
Mode	5190	523	30	5270	5310	551	0	5550	5670	57	10	5755	5795
802.11n-HT40 MCS0	19	19	9									15	15
Mode	NCB: 80MHz												
Mode		5210		5290)	5530		5610		5690	0	57	75
802.11ac-HT80 MCS0/Nss2		19										1	5

1.5 EUT Operating during test

EUT was programmed to be in continuously transmitting mode. During the test, EUT operation to normal function and programs under WIN XP were executed.

1.6 Test Facility

FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM. Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.7 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode L	ist	
Test Mode	Description	Remark
TM1	802.11a	5180MHz,5200MHz,5240MHz,5260MHz,5300MHz,5320MHz,55 00MHz,5600MHz,5700MHz, 5745MHz, 5785MHz,5825MHz
TM2	802.11n-HT20	5180MHz,5200MHz,5240MHz,5260MHz,5300MHz,5320MHz,55 00MHz,5600MHz,5700MHz, 5745MHz, 5785MHz,5825MHz
TM3	802.11n-HT40	5190MHz,5230MHz,5270MHz,5310MHz,5510MHz,5590MHz,56 70MHz,5755MHz,5795MHz
TM4	802.11ac-HT80	5210MHz,5290MHz,5530MHz,5610MHz,5690MHz,5775MHz

Note: All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Core
Adapter Cable	1.45	Shielded	Without Core

Report No.: HCT17IR269E-2 Page 6 of 93 FCC Part 15.407

Special Cable List and Detail	S		
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Equipment List and Details						
Description	Manufacturer	Model	Serial Number			
/	/	/	/			
/	/	/	/			
/	/	/	/			
/	/	/	/			
/	/	/	/			

1.8 Measurement Uncertainty

Measurement uncertainty						
Parameter	Conditions	Uncertainty				
RF Output Power	Conducted	± 0.42 dB				
Occupied Bandwidth	Conducted	±1.5%				
Power Spectral Density	Conducted	±1.8dB				
Conducted Spurious Emission	Conducted	±2.17dB				
Conducted Emissions	Conducted	±2.88dB				
Transmitter Spurious Emissions	Radiated	±5.1dB				

1.9 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2017-06-12	2018-06-11
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2017-06-12	2018-06-11
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2017-06-12	2018-06-11
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2017-06-12	2018-06-11
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2017-06-12	2018-06-11
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2018-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2018-06-07
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2017-06-08	2018-06-07
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2018-06-07
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2017-06-12	2018-06-11
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2017-06-12	2018-06-11
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2017-06-12	2018-06-11
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2017-08-15	2018-08-14
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2017-08-15	2018-08-14
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2017-06-12	2018-06-11
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2017-03-09	2018-03-08

Report No.: HCT17IR269E-2 Page 7 of 93 FCC Part 15.407

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203; § 15.405	Antenna Requirement	Compliant
§ 15.207; § 15.407(b)(6)	Conducted Emission	Compliant
§ 15.407(a)(1),(2)	Power Spectral Density	Compliant
§ 15.407(e)	Emission Bandwidth and Occupied Bandwidth	Compliant
§ 15.407(a)(1),(2)	Maximum Conducted Output Power	Compliant
§ 15.407(b)(1),(2),(3)	Conducted Spurious Emission	Compliant
§ 15.205; § 15.407(b)(1),(2),(3)	Radiated Emission	Compliant
§ 15.407(g)	Frequency Stability	Compliant
§ 15.407(h)	Dynamic Frequency Selection (DFS)	N/A

N/A: not applicable

Report No.: HCT17IR269E-2 Page 8 of 93 FCC Part 15.407

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the MPE Report.

Report No.: HCT17IR269E-2 Page 9 of 93 FCC Part 15.407

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an integral antenna, fulfill the requirement of this section.

Report No.: HCT17IR269E-2 Page 10 of 93 FCC Part 15.407

5. Conducted Emissions

5.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

5.3 Basic Test Setup Block Diagram

5.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

5.5 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	
Sweep Speed	
IF Bandwidth	
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

5.6 Summary of Test Results/Plots

According to the data in section 3.8, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

5.7 Conducted Emissions Test Data

Report No.: HCT17IR269E-2 Page 12 of 93 FCC Part 15.407

Plot of Conducted Emissions Test Data

EUT: GL.iNet 750M Travel AC Router

Tested Model: GL-AR750 Operating Condition: Transmitting

Comment: AC 120V/60Hz; Adapter DC5V/2A

Test Specification: Neutral

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.4660	32.81	9.80	42.61	56.58	-13.97	peak
2*	0.4660	23.29	9.80	33.09	46.58	-13.49	AVG
3	1.5180	14.02	9.75	23.77	46.00	-22.23	AVG
4	1.7940	24.49	9.74	34.23	56.00	-21.77	peak
5	4.0860	12.32	9.68	22.00	46.00	-24.00	AVG
6	7.8980	21.44	9.58	31.02	60.00	-28.98	peak

Note

- 1. Result Level = Reading Level +Correct Factor (LISN Factor + Pulse Limiter Factor + Cable loss).
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz), Step size: 4 kHz, Scan time: auto.

EUT: GL.iNet 750M Travel AC Router

Tested Model: GL-AR750 Operating Condition: Transmitting

Comment: AC 120V/60Hz; Adapter DC5V/2A

Test Specification: Line

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1*	0.4740	34.17	9.80	43.97	56.44	-12.47	peak
2	0.4740	22.23	9.80	32.03	46.44	-14.41	AVG
3	1.3860	27.10	9.75	36.85	56.00	-19.15	peak
4	1.4260	14.51	9.75	24.26	46.00	-21.74	AVG
5	3.7340	26.11	9.69	35.80	56.00	-20.20	peak
6	3.7340	10.67	9.69	20.36	46.00	-25.64	AVG

Note:

- 1. Result Level = Reading Level +Correct Factor (LISN Factor + Pulse Limiter Factor + Cable loss).
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz), Step size: 4 kHz, Scan time: auto.

6. Power Spectral Density

6.1 Standard Applicable

Section 15.407(a) Power limits:

- (1) For the band 5.15-5.25 GHz.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.2 Test Procedure

According to 789033 D02 General UNII Test Procedures New Rules v01r04, the following is the measurement procedure.

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW $\geq 1/T$, where T is defined in section II.B.l.a).
- b) Set VBW \geq 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log (500 \text{kHz/RBW})$ to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

Report No.: HCT17IR269E-2 Page 15 of 93 FCC Part 15.407

6.3 Environmental Conditions

Temperature:	20° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

6.4 Summary of Test Results/Plots

5150-5250MHz

Operating mode	Test Channel	Power Spectral Density dBm/MHz	Limit (dBm/MHz)
	5180	2.10	11.00
802.11a	5200	2.52	11.00
	5240	3.71	11.00
	5180	-0.92	11.00
802.11n-HT20	5200	0.30	11.00
	5240	2.46	11.00
902 11 _m HT40	5190	-3.82	11.00
802.11n HT40	5230	-2.22	11.00
	5180	-1.03	11.00
802.11ac 20	5200	-0.14	11.00
	5240	1.46	11.00
902 11 22 40	5190	-4.14	11.00
802.11ac 40	5230	-2.26	11.00
802.11ac 80	5210	-4.16	11.00

5725-5850MHz

Operating mode	Test Channel	Power Spectral Density dBm/500kHz	Limit (dBm/500kHz)
	5745	3.98	30.00
802.11a	5785	5.56	30.00
	5825	6.63	30.00
	5745	2.44	30.00
802.11n-HT20	5785	4.24	30.00
	5825	5.19	30.00
902 11 _m HT40	5755	0.02	30.00
802.11n HT40	5795	1.56	30.00
	5745	2.22	30.00
802.11ac 20	5785	3.91	30.00
	5825	4.66	30.00
802.11ac 40	5755	-0.25	30.00
802.11ac 40	5795	1.48	30.00
802.11ac 80	5775	-1.38	30.00

Test Plots

IEEE 802.11a mode /5180 ~ 5240MHz (U-NII-1)

CH Low

CH Mid

CH High

802.11 n(20)/ 5180 ~ 5240MHz (U-NII-1)

CH Low

CH Mid

CH High

802.11 n (40) /5190 ~ 5230MHz (U-NII-1)

CH Low

CH High

802.11 ac(20) /5180 ~ 5240MHz (U-NII-1) CH Low

CH Mid

CH High

802.11 ac (40) /5190 ~ 5230MHz (U-NII-1)

CH Low

CH High

802.11 ac (80) /5210 MHz (U-NII-1)

IEEE 802.11a mode /5745 ~ 5825MHz (U-NII-3)

CH Low

CH Mid

CH High

802.11 n (20)/ 5745 ~ 5825MHz (U-NII-3) CH Low

CH Mid

CH High

802.11 n (40) /5755 ~ 5795MHz (U-NII-3)

CH Low

CH High

802.11 ac (20) /5745 ~ 5825MHz (U-NII-3)

CH Low

CH Mid

CH High

802.11 ac (40) /5755 ~ 5795MHz (U-NII-3)

CH Low

CH High

802.11 ac (80) /5775MHz (U-NII-3)

7. Emission Bandwidth and Occupied Bandwidth

7.1 Standard Applicable

According to 15.303(c)

for purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Compliance with the emissions limits is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

According to 15.407 (a) and (e)

- (1) For the band 5.15-5.25 GHz.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

7.2 Test Procedure

According to 789033 D02 v01r04 section C&D, the following is the measurement procedure.

- 1. Emission Bandwidth (EBW)
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.

- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

D. 99 Percent Occupied Bandwidth

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 General UNII Test Procedures New Rules v01r04 define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set $\overrightarrow{RBW} = 1 \%$ to 5 % of the OBW
- 4. Set VBW \geq 3 RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

7.3 Environmental Conditions

Temperature:	24° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

7.4 Summary of Test Results/Plots

5150-5250MHz

Test Made	Test Channel	26 dB Bandwidth	99% Bandwidth	Limit
Test Mode	MHz	MHz	MHz	MHz
	5180	22.92	17.10	≥500
802.11a	5200	22.80	17.16	≥500
	5240	23.02	17.10	≥500
	5180	22.92	17.10	≥500
802.11n-HT20	5200	22.80	17.16	≥500
	5240	23.02	17.10	≥500
802.11n-HT40	5190	42.64	36.48	≥500
δ02.11II-Π140	5230	44.92	36.48	≥500
	5180	26.00	18.50	≥500
802.11ac 20	5200	24.80	18.20	≥500
	5240	25.30	18.30	≥500
802.11ac 40	5190	45.12	36.64	≥500
	5230	44.92	36.64	≥500
802.11ac 80	5210	90.40	76.50	≥500

Report No.: HCT17IR269E-2 Page 33 of 93 FCC Part 15.407

5725-5850MHz

Test Mode	Test Channel MHz	26 dB Bandwidth MHz	99% Bandwidth MHz	Limit MHz
	5745	26.58	17.20	≥500
802.11a	5785	24.70	17.20	≥500
	5825	25.20	17.20	≥500
	5745	26.40	18.20	≥500
802.11n-HT20	5785	26.00	18.20	≥500
	5825	25.90	18.20	≥500
802.11n-HT40	5755	43.56	36.48	≥500
δ02.11II-Π140	5795	42.96	36.48	≥500
	5745	25.60	18.20	≥500
802.11ac 20	5785	26.00	18.30	≥500
	5825	25.00	18.20	≥500
802.11ac 40	5755	43.40	36.48	≥500
	5795	42.96	36.60	≥500
802.11ac 80	5775	89.00	76.20	≥500

Test Plot

TX 802.11a Mode (U-NII-1)

Low

Mid

High

TX 802.11n(HT20) Mode (U-NII-1) Low

Mid

High

TX 802.11n(HT40) Mode (U-NII-1)

Low

Mid

TX 802.11ac(20) Mode (U-NII-1)

Low

Mid

High

TX 802.11ac(40) Mode (U-NII-1)

Low

Mid

TX 802.11ac(80) Mode (U-NII-1)

Low

FCC Part 15.407

TX 802.11a Mode (U-NII-3)

Low

Mid

High

TX 802.11n(20) Mode (U-NII-3)

Low

Mid

High

TX 802.11n(40) Mode (U-NII-3)

Low

Mid

TX 802.11ac(20) Mode (U-NII-3)

Low

Mid

High

TX 802.11ac(40) Mode (U-NII-3) Low

Mid

TX 802.11ac(80) Mode (U-NII-3)

Low

Model: GL-AR750

8. Maximum Conducted Output Power

8.1 Standard Applicable

Section 15.407(a) Power limits:

- (1) For the band 5.15-5.25 GHz.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

8.2 Test Procedure

According to KDB789033 D02 v01r04 section E, the following is the measurement procedure.

- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set $VBW \ge 3$ MHz.
- (iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

Report No.: HCT17IR269E-2 Page 49 of 93 FCC Part 15.407

Model: GL-AR750

8.3 Environmental Conditions

Temperature:	26° C
Relative Humidity:	65%
ATM Pressure:	1011 mbar

8.4 Summary of Test Results/Plots

For the frequency band 5.15-5.25GHz, 5725-5850GHz

Test mode	Frequency MHz	Output Power (dBm)	Duty factor (dB)	Output Power + Duty factor (dBm)	Output Power + Duty factor mW	Limit mW
802.11a	5180	20.82	0.09	20.91	123.31	250
	5200	19.64	0.11	19.75	94.41	250
	5240	20.11	0.09	20.20	104.71	250
	5745	20.77	0.10	20.87	122.18	1000
	5785	20.94	0.09	21.03	126.77	1000
	5825	20.31	0.09	20.40	109.65	1000
802.11n-HT20	5180	19.17	0.13	19.30	85.11	250
	5200	20.04	0.12	20.16	103.75	250
	5240	10.01	0.10	10.11	10.26	250
	5745	20.69	0.11	20.80	120.23	1000
	5785	20.47	0.12	20.59	114.55	1000
	5825	20.37	0.06	20.43	110.41	1000
	5190	17.71	0.14	17.85	60.95	250
902 11m HT40	5230	17.44	0.13	17.57	57.15	250
802.11n-HT40	5755	18.39	0.12	18.51	70.96	1000
	5795	18.49	0.11	18.60	72.44	1000
802.11ac 20	5180	20.48	0.15	20.63	115.61	250
	5200	19.78	0.14	19.92	98.17	250
	5240	20.16	0.13	20.29	106.91	250
	5745	20.42	0.13	20.55	113.50	1000
	5785	20.54	0.12	20.66	116.41	1000
	5825	20.24	0.11	20.35	108.39	1000
802.11ac 40	5190	17.53	0.15	17.68	58.61	250
	5230	18.07	0.15	18.22	66.37	250
	5755	18.15	0.13	18.28	67.30	1000
	5795	18.73	0.13	18.86	76.91	1000
802.11ac 80	5210	19.51	0.15	19.66	92.47	250
	5775	20.21	0.15	20.36	108.64	1000

Model: GL-AR750

9. Conducted Undesirable Emissions and Band Edge

9.1 Standard Applicable

According to §15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

9.2 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer via a RF combiner.
- 2. Set the spectrum analyzer as RBW = 100kHz/1MHz, VBW=300kHz/3MHz, Sweep = auto
- 3. Set the Lowest, Middle and Highest Transmitting Channel, observed the outside band of 30MHz to 40GHz, then mark the higher-level emission for comparing with the FCC rules.

9.3 Environmental Conditions

Temperature:	21° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

10.4 Summary of Test Results/Plots

Report No.: HCT17IR269E-2 Page 51 of 93 FCC Part 15.407

Conducted Band Edges Test Result

(U-NII-1)

Band Edges (IEEE 802.11a mode / 5180~5240 MHz)

Band Edges (IEEE 802.11n 20 mode /5180~5240 MHz)

TX 802.11ac(20) Mode 5180MHz /5240MHz

TX 802.11n(40) Mode 5190MHz /5230MHz (U-NII-1)

TX 802.11ac(40) Mode 5190MHz /5230MHz (U-NII-1)

TX 802.11ac(80) Mode 5210MHz (U-NII-1)

(U-NII-3)

TX 802.11a Mode 5745MHz /5825MHz (U-NII-3)

TX 802.11n(20) Mode 5745MHz /5825MHz (U-NII-3)

TX 802.11ac(20) Mode 5745MHz /5825MHz (U-NII-3)

TX 802.11n(40) Mode 5755MHz /5795MHz (U-NII-3)

TX 802.11ac(40) Mode 5755MHz /5795MHz (U-NII-3)

TX 802.11ac(80) Mode 5775MHz (U-NII-3)

Conducted Undesirable Emission Test Result

(U-NII-1) IEEE 802.11a (5180 ~ 5240MHz) CH Low

CH Mid

CH High

IEEE 802.11n HT20 (5180 ~ 5240MHz) CH Low

CH Mid

CH High

(U-NII-3)

IEEE 802.11a (5745 ~ 5825MHz) CH Low

CH Mid

CH High

IEEE 802.11n HT20 (5745 ~ 5825MHz) CH Low

FCC Part 15E

CH Mid

CH High

10. Radiated Spurious Emissions

10.1 Standard Applicable

According to §15.407(b)(6), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.

According to §15.407(b), The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

As below table:

Un-restricted band emissions above 1GHz Limit				
Operating Band	Limit			
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]			
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]			
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]			
5.725 - 5.850 GHz	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27			

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Test procedure used is 789033 D02 General UNII Test Procedures New Rules v01r04

If radiated measurements are performed, field strength is then converted to EIRP as follows:

 $EIRP = ((E*d)^2) / 30$

where:

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.

10.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.407(b)(6) and FCC Part 15.209 Limit..

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.3 Test Receiver Setup

During the radiated emission test for above 1GHz, the test receiver was set with the following configurations:

For peak detector:

RBW = 1000kHz, VBW = 3000kHz, Sweep Time = Auto

For average detector:

RBW = 1000kHz, VBW = 10Hz, Sweep Time = Auto

10.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

10.5 Environmental Conditions

Temperature:	22° C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

10.6 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.407(b) standards, and had the worst margin of:

Test Plots: Radiated Undesirable Emissions and Band Edge for 5.725-5.850GHz

Channel 149: 5745MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	5650	43.23	8.97	52.2	68.3	-16	270	150	QP
2	5700	42.93	9.32	52.27	105.2	-52.93	51	150	QP
3	5739	77.82	9.28	87.1	122.2	-35.1	360	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 149: 5745MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	5650	43.12	8.97	51.09	68.2	-17.11	275	150	QP
2	5751.4	76.85	9.32	86.17	122.2	-36.03	55	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	5826.6	72.13	8.98	81.11	122.2	-41.09	272	150	QP
2	5875.5	45.07	9.35	50.42	105.2	-54.78	56	150	QP
3	5925.0	40.23	9.88	50.11	68.00	-18.09	175	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	5826.6	55.62	8.95	64.57	122.2	-43.62	255	150	QP
2	5875.5	24.94	9.37	34.31	105.2	-56.82	88	150	QP
3	5925.0	25.17	9.66	34.83	68.2	-19.24	175	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 149: 5745MHz @ 802.11n (HT20) mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	5650.0	41.51	8.88	50.39	122.2	-17.81	255	150	QP
2	5700.0	41.2	9.36	50.56	105.2	-54.64	88	150	QP
3	5745.0	67.94	9.67	77.61	68.2	-44.59	175	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 149: 5745MHz @ 802.11n (HT20) mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	5650.0	42.76	8.87	51.63	68.2	-16.57	275	150	QP
2	5700.0	40.73	9.37	50.10	105.2	-155.10	90	150	QP
3	5745.0	71.89	9.65	81.54	122.2	-40.66	180	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11n (HT20) mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	5827.0	68.07	9.24	77.32	122.2	-44.88	255	150	QP
2	5875.0	40.44	9.36	49.8	105.2	-55.4	88	150	QP
3	5925.0	41.69	9.65	51.34	68.2	-16.86	175	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Channel 165: 5825MHz @ 802.11n (HT20) mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	5825.0	67.99	9.25	77.24	122.2	-44.88	260	150	QP
2	5875.0	39.55	9.35	48.9	105.2	-55.4	95	150	QP
3	5925.0	39.79	9.64	49.43	68.2	-16.86	185	150	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Radiated Undesirable Emissions (Below 1GHz)

Note:

We test all modes, and only the worst case (802.11a mode, Low, Middle, High) data presented in the report.

Worst case of Channel 165: 5745MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	151.0666	39.28	-14.96	24.32	43.50	-19.18	360	100	QP
2	203.5228	37.71	-11.76	25.95	43.50	-17.55	147	300	QP
3	299.3158	39.42	-9.74	29.68	46.00	-16.32	151	100	QP
4	599.3213	35.06	-4.33	30.73	46.00	-15.27	235	100	QP
5	896.9965	35.21	1.41	36.62	46.00	-9.38	49	300	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5745MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	37.1550	43.41	-11.05	32.36	40.00	-7.64	36	100	QP
2	115.3205	44.44	-13.17	31.27	43.50	-12.23	77	300	QP
3	147.9214	43.94	-14.92	29.02	43.50	-14.48	175	100	QP
4	236.6447	38.14	-11.21	26.93	46.00	-19.07	260	300	QP
5	419.1081	33.10	-7.91	25.19	46.00	-20.81	178	300	QP
6	597.2234	38.54	-4.42	34.12	46.00	-11.88	311	100	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5785MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	202.8104	37.35	-11.72	25.63	43.50	-17.87	264	100	QP
2	245.9509	38.46	-10.69	27.77	46.00	-18.23	241	300	QP
3	373.3112	33.52	-7.30	26.22	46.00	-19.78	175	100	QP
4	599.3213	35.38	-4.33	31.05	46.00	-14.95	54	300	QP

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5785MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	52.3913	46.30	-11.19	35.11	40.00	-4.89	126	300	QP
2	88.9639	42.08	-14.09	27.99	43.50	-15.51	69	300	QP
3	230.0985	37.35	-11.71	25.64	46.00	-20.36	354	100	QP

Remark:

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5825MHz @ 802.11a mode

Polarization: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	202.8104	37.70	-11.72	25.98	43.50	-17.52	215	100	QP
2	243.3772	37.88	-10.80	27.08	46.00	-18.92	36	300	QP
3	298.2681	39.85	-9.72	30.13	46.00	-15.87	68	100	QP
4	599.3212	35.37	-4.33	31.04	46.00	-14.96	147	300	QP

Remark:

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Channel 165: 5825MHz @ 802.11a mode

Polarization: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(•)	(cm)	
1	38.8879	14.75	9.06	23.81	40.00	-16.19	177	100	QP
2	103.8055	14.46	5.73	20.19	43.50	-23.31	90	300	QP
3	513.6331	15.58	11.21	26.79	46.00	-19.21	336	100	QP
4	734.4913	16.04	15.22	31.26	46.00	-14.74	360	300	QP

Remark:

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Undesirable Emissions (Above 1GHz)

- WOISE CASE OF HOTHORICS AND SOUTIONS EMESSIONS FOR THE HEAVENCY DUNG 5.130-3.230GHz (602.1	case of Hormonics And Spurious Emissions for the frequency ba	and 5.150-5.250GHz (802.11a)
--	---	-----------------------------	---

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
				Low	Channel (5	5180MHz)				
10360	PK	56.62	360	V	38.9	9.8	40.5	64.82	74	-9.18
10360	PK	55.94	360	Н	38.9	9.8	40.5	64.14	74	-9.86
10360	AV	39.9	360	V	38.9	9.8	40.5	48.10	54	-5.90
10360	AV	39.18	360	Н	38.9	9.8	40.5	47.38	54	-6.62
15540	PK	52.06	360	V	40.7	10.9	39.6	64.06	74	-9.94
15540	PK	50.66	360	Н	40.7	10.9	39.6	62.66	74	-11.34
15540	AV	36.86	360	V	40.7	10.9	39.6	48.86	54	-5.14
15540	AV	35.96	360	Н	40.7	10.9	39.6	47.96	54	-6.04
20720										
25900										
31080										
36260										
				High	Channel (5	5240MHz)				
10480	PK	55.52	360	V	38.9	9.8	40.5	63.72	74	-10.28
10480	PK	54.91	360	Н	38.9	9.8	40.5	63.11	74	-10.89
10480	AV	37.84	360	V	38.9	9.8	40.5	46.04	54	-7.96
10480	AV	36.4	360	Н	38.9	9.8	40.5	44.60	54	-9.40
15720	PK	51.46	360	V	40.7	10.9	39.6	63.46	74	-10.54
15720	PK	50.91	360	Н	40.7	10.9	39.6	62.91	74	-11.09
15720	AV	37.68	360	V	40.7	10.9	39.6	49.68	54	-4.32
15720	AV	36.44	360	Н	40.7	10.9	39.6	48.44	54	-5.56
20960		-		1						
26200		-		1						
31440										
36680										

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Harmonics And Spurious Emissions for the frequency band 5.725-5.850GHz (802.11a)

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
				Low	Channel (5	5745MHz)				
11490	PK	52.32	360	V	39.1	10.1	40.2	61.32	74	-12.68
11490	PK	51.71	360	Н	39.1	10.1	40.2	60.71	74	-13.29
11490	AV	34.64	360	V	39.1	10.1	40.2	43.64	54	-10.36
11490	AV	33.2	360	Н	39.1	10.1	40.2	42.2	54	-11.8
17235	PK	48.26	360	V	41.3	11.2	39.4	61.36	74	-12.64
17235	PK	47.71	360	Н	41.3	11.2	39.4	60.81	74	-13.19
17235	AV	34.48	360	V	41.3	11.2	39.4	47.58	54	-6.42
17235	AV	33.24	360	Н	41.3	11.2	39.4	46.34	54	-7.66
22980										
28725										
34470		ł	1	1	1			1		-
40000		1	1	-	1			1		
				High	Channel (5	5825MHz)				
11650	PK	51.97	360	V	39.1	10.1	40.2	60.97	74	-13.03
11650	PK	51.36	360	Н	39.1	10.1	40.2	60.36	74	-13.64
11650	AV	34.29	360	V	39.1	10.1	40.2	43.29	54	-10.71
11650	AV	32.85	360	Н	39.1	10.1	40.2	41.85	54	-12.15
17475	PK	47.91	360	V	41.3	11.2	39.4	61.01	74	-12.99
17475	PK	47.36	360	Н	41.3	11.2	39.4	60.46	74	-13.54
17475	AV	34.13	360	V	41.3	11.2	39.4	47.23	54	-6.77
17475	AV	32.89	360	Н	41.3	11.2	39.4	45.99	54	-8.01
23300		1								
29125										
34950		1								
40000		1						1		

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured

Worst case of Hormonics And Spurious Emissions for the frequency band 5.150-5.250GHz (802.11n HT20)

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
				Low	Channel (5	180MHz)				
10360	PK	52.56	360	V	38.9	9.8	40.5	60.76	74	-13.24
10360	PK	51.95	360	Н	38.9	9.8	40.5	60.15	74	-13.85
10360	AV	34.88	360	V	38.9	9.8	40.5	43.08	54	-10.92
10360	AV	33.44	360	Н	38.9	9.8	40.5	41.64	54	-12.36
15540	PK	48.50	360	V	40.7	10.9	39.6	60.50	74	-13.50
15540	PK	47.95	360	Н	40.7	10.9	39.6	59.95	74	-14.05
15540	AV	34.72	360	V	40.7	10.9	39.6	46.72	54	-7.28
15540	AV	33.48	360	Н	40.7	10.9	39.6	45.48	54	-8.52
20720										
25900										
31080										
36260										
				High	Channel (5	5240MHz)				
10480	PK	53.53	360	V	38.9	9.8	40.5	61.73	74	-12.27
10480	PK	52.92	360	Н	38.9	9.8	40.5	61.12	74	-12.88
10480	AV	35.85	360	V	38.9	9.8	40.5	44.05	54	-9.95
10480	AV	34.41	360	Н	38.9	9.8	40.5	42.61	54	-11.39
15720	PK	49.47	360	V	40.7	10.9	39.6	61.47	74	-12.53
15720	PK	48.92	360	Н	40.7	10.9	39.6	60.92	74	-13.08
15720	AV	35.69	360	V	40.7	10.9	39.6	47.69	54	-6.31
15720	AV	34.45	360	Н	40.7	10.9	39.6	46.45	54	-7.55
20960										
26200		-		-						
31440										
36680		-								

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Worst case of Harmonics And Spurious Emissions for the frequency band 5.725-5.850GHz (802.11n HT20)

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
				Low	Channel (5	745MHz)				
11490	PK	52.82	360	V	39.1	10.1	40.2	61.82	74	-12.18
11490	PK	52.21	360	Н	39.1	10.1	40.2	61.21	74	-12.79
11490	AV	35.14	360	V	39.1	10.1	40.2	44.14	54	-9.86
11490	AV	33.7	360	Н	39.1	10.1	40.2	42.7	54	-11.3
17235	PK	48.76	360	V	41.3	11.2	39.4	61.86	74	-12.14
17235	PK	48.21	360	Н	41.3	11.2	39.4	61.31	74	-12.69
17235	AV	34.98	360	V	41.3	11.2	39.4	48.08	54	-5.92
17235	AV	33.74	360	Н	41.3	11.2	39.4	46.84	54	-7.16
22980	1	1	1	1	1	1		1		
28725	1	1	1	1	1	1		1		
34470	1	1	1	1	1	1		1		
40000				-						
				High	Channel (5	825MHz)				
11650	PK	53.31	360	V	39.1	10.1	40.2	62.31	74	-11.69
11650	PK	52.7	360	Н	39.1	10.1	40.2	61.7	74	-12.3
11650	AV	35.63	360	V	39.1	10.1	40.2	44.63	54	-9.37
11650	AV	34.19	360	Н	39.1	10.1	40.2	43.19	54	-10.81
17475	PK	49.25	360	V	41.3	11.2	39.4	62.35	74	-11.65
17475	PK	48.7	360	Н	41.3	11.2	39.4	61.8	74	-12.2
17475	AV	35.47	360	V	41.3	11.2	39.4	48.57	54	-5.43
17475	AV	34.23	360	Н	41.3	11.2	39.4	47.33	54	-6.67
23300	1	1		-						
29125										
34950										
40000										

- 1. Margin = Emission level Limit value
- 2. "---" states emission level at least lower than limit 20dB, so without recorded any values;
- 3. Result Level = Reading Level + Correct factor (Antenna Factor + Cable loss PRM Factor).
- 4. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.
- 5. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

11. Frequency Stability

11.1 Standard Applicable

According to §15.407(g), Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

11.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

Temperature:	Supply Voltage
20°C	85-115% of declared nominal voltage
-30°C to +50°C	Normal

11.3 Environmental Conditions

Temperature:	20°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

11.4 Summary of Test Results/Plots

5150-5250MHz, Worst case @ 802.11a mode:

801.11a	801.11a : 5200 MHz						
Voltage vs. Fi	Voltage vs. Frequency Stability						
Voltage (V)	Measurement Frequency (MHz)						
132	5199.9926						
120	5199.9954						
118	5199.9975						
Max. Deviation (MHz)	0.0074						
Max. Deviation (ppm)	1.42						
Temperature vs.	Frequency Stability						
Temperature (℃)	Measurement Frequency (MHz)						
0	5199.9928						
10	5199.9947						
20	5199.9966						
30	5199.9973						
40	5199.9978						
50	5199.9988						
Max. Deviation (MHz)	0.0072						
Max. Deviation (ppm)	1.38						

801.11a : 5200 MHz						
Voltage vs. Frequency Stability						
Voltage (V)	Measurement Frequency (MHz)					
132	5199.9926					
120	5199.9954					
118	5199.9975					
Max. Deviation (MHz)	0.0074					
Max. Deviation (ppm)	1.42					
Temperature vs. Frequency Stability						
Temperature (℃)	Measurement Frequency (MHz)					
0	5199.9928					
10	5199.9947					
20	5199.9966					
30	5199.9973					
40	5199.9978					
50	5199.9988					
Max. Deviation (MHz)	0.0072					
Max. Deviation (ppm)	1.38					

5725-5850MHz, Worst case @ 802.11n HT20 mode:

802.11n HT20 : 5745 MHz						
Voltage vs. Frequency Stability						
Voltage (V)	Measurement Frequency (MHz)					
132	5745.0086					
120	5745.0092					
118	5745.0098					
Max. Deviation (MHz)	0.0098					
Max. Deviation (ppm)	1.71					
Temperature vs.	Frequency Stability					
Temperature (°C)	Measurement Frequency (MHz)					
0	5745.0047					
10	5745.0039					
20	5745.0028					
30	5745.0074					
40	5745.0069					
50	5745.0035					
Max. Deviation (MHz)	0.0067					
Max. Deviation (ppm)	1.16					

802.11n HT20 : 5745 MHz	
Voltage vs. Frequency Stability	
Voltage (V)	Measurement Frequency (MHz)
132	5745.0086
120	5745.0092
118	5745.0098
Max. Deviation (MHz)	0.0098
Max. Deviation (ppm)	1.71
Temperature vs. Frequency Stability	
Temperature (℃)	Measurement Frequency (MHz)
0	5745.0023
10	5745.0016
20	5745.0018
30	5745.0026
40	5745.0033
50	5745.0068
Max. Deviation (MHz)	0.0068
Max. Deviation (ppm)	1.18

***** END OF REPORT *****