Lista de Exercícios

Escopo de Variáveis e Recursividade

De forma simplificada podemos dizer que, quando temos um conjunto de dados finito $x_1, x_2, x_3, \cdots, x_N$, onde cada valor tem a mesma probabilidade $\frac{1}{N}$, o desvio padrão σ pode se define como:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Onde \overline{x} representa o valor médio que se calcula como:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Com base num conjunto de dados x_1 , x_2 , x_3 , ..., x_N , que tem valor médio \overline{x} , pode ser gerado um novo conjunto de dados normalizados y_1 , y_2 , y_3 , ..., y_N , com média zero da seguinte forma:

$$y_i = x_i - \bar{x}$$

Com base nestas definições:

- 1. Implemente uma função para calcular o valor médio de um conjunto de valores armazenados um array de valores de tipo double. O cabeçalho da função deve ser: double valorMedioG(double x[]);
 - A quantidade de elementos no array é armazenada na variável global, ${\tt N},$ declarada como sendo de tipo ${\tt int}.$
- 2. Implemente uma função para calcular o desvio padrão de um conjunto de valores armazenados um array de valores de tipo double. O cabeçalho da função deve ser: double desvioPadraoG(double x[]);
 - A quantidade de elementos no array é armazenada na variável global, N, declarada como sendo de tipo int. Esta função deve utilizar, internamente, a função definida no exercício anterior para calcular o valor médio.
- 3. Utilizando os exemplos desenvolvidos em sala de aula desenvolva um programa que:
 - a. Importe do arquivo de cabeçalhos lista_02.h, as definições das duas funções implementadas nos exercícios anteriores e a declaração da variável global N.
 - b. Peça para o usuário a quantidade de elementos a serem analisados e armazene na variável global N.
 - c. Gere um conjunto de N valores de ponto flutuante (double), entre -1 e 1, e armazene num array.
 - d. Utilizando as funções implementadas nos exercícios anteriores, retorne a média e o desvio padrão do conjunto de valores gerados.
- 4. Modifique a função do Exercício 1 para que, agora, receba o tamanho do array como um parâmetro passado por valor. A nova função deve ter o seguinte cabeçalho:

```
double valorMedio(double x[], int n);
```

A quantidade de elementos no array é passada no parâmetro n.

5. Modifique a função do Exercício 2 para que, agora, receba o tamanho do array como um parâmetro passado por valor. A nova função deve ter o seguinte cabeçalho:

```
double desvioPadrao(double x[], int n);
```

- A quantidade de elementos no array é passada no parâmetro n. Esta função deve utilizar internamente a função desenvolvida no exercício anterior, para calcular o valor médio.
- 6. Implemente uma função para normalizar os valores de um conjunto gerado de forma aleatória para que eles passem a ter média zero. O cabeçalho da função deve ser: void normaliza (double x inout[] int n);
 - A quantidade de elementos no array é passada no parâmetro n. Esta função deve utilizar internamente a função desenvolvida anteriormente para calcular o valor médio..
- 7. Utilizando os exemplos desenvolvidos em sala de aula desenvolva um programa que:
 - a. Importe do arquivo de cabeçalhos lista_02.h, as definições das funções implementadas nos exercícios anteriores.
 - b. Peça para o usuário a quantidade de elementos a serem analisados e armazene numa variável local da função main.
 - c. Gere um conjunto de valores de ponto flutuante (double), entre 0 e 2, e armazene num array.
 - d. Utilizando as funções implementadas nos exercícios anteriores, retorne a média e o desvio padrão do conjunto de valores gerados.
 - e. Normalize os valores do conjunto gerado para que eles passem a ter média zero. Mostre qual a média e o desvio padrão do novo conjunto de dados.

f

- 8. Em sala de aula analisamos uma versão recursiva para calcular a soma dos elementos de uma array. Faça uma versão recursiva da função que implementa o cálculo da média dos elementos de um array.
- 9. Faça uma implementação recursiva de uma função que:
 - a. Com base num array, modifique seus elementos para que cada um deles vire o inverso do valor original (o inverso de $x \in \frac{1}{x}$)
 - b. Inverta a ordem dos elementos do array (coloque eles no array de traz para frente)
 - c. Retorne o maior valor do array.
 - d. Retorne o menor valor do array.