10/28/2016 hw4v2

HW4 due 11:30a Mon Oct 31

1. Bases and matrix representations

Let L:V o W be a linear function where $\dim V=n<\infty$ and $\dim W=m<\infty$, and let $r=\operatorname{rank} L$.

a. Find bases for V and W with respect to which the matrix representation of L is:

$$egin{bmatrix} I_{r imes r} & 0_{r imes (n-r)} \ 0_{(m-r) imes r} & 0_{(m-r) imes (n-r)} \end{bmatrix}$$

b. Find a vector space U and a linear function $\tilde{L}:U\to U$ such that, no matter which basis you choose for U, the matrix representation of \tilde{L} does not have the form from (a.).

2. Eigenvalues, eigenvectors, eigenbases

Let $A \in \mathbb{R}^{n \times n}$ be a given matrix.

Suppose that, for each $\ell \in \{1, \dots, k\}$, there exists $\lambda_\ell \in \mathbb{C}$ and $v_\ell \in \mathbb{R}^n$ such that $v_\ell \neq 0$ and $Av_\ell = \lambda_\ell v_\ell$ (i.e. λ_ℓ is an eigenvalue for A with eigenvector v_ℓ).

a. If the eigenvalues $\{\lambda_\ell\}_{\ell=1}^k$ are distinct (i.e. $\lambda_i=\lambda_j\iff i=j$), show that the eigenvectors $\{v_\ell\}_{\ell=1}^k$ are linearly independent. (*Hint: use induction.*)

Now let $L:U\to U$ be linear and $\dim U=n$.

Suppose that $\lambda\in\mathbb{C}$ and $W=\{w_\ell\}_{\ell=1}^n$ is a basis for U such that $Lw_1=\lambda w_1$ and $Lw_k=\lambda w_k+w_{k-1}$ for all $k\in\{2,\ldots,n\}$.

b. Obtain the matrix representation of L with respect to the basis W.

3. Spectral mapping theorem

Let spec $A=\{\lambda_1,\ldots,\lambda_n\}$ denote the spectrum of $A\in\mathbb{C}^{n\times n}$ (i.e. the set of eigenvalues of A).

Theorem If $f: \mathbb{C} \to \mathbb{C}$ is analytic, then spec $f(A) = \{f(\lambda_1), \dots, f(\lambda_n)\}$.

- a. Prove or provide a counterexample: if $\lambda_1
 eq \lambda_2$, then $f(\lambda_1)
 eq f(\lambda_2)$.
- b. Prove or provide a counterexample: if A is invertible, then f(A) is invertible.