Analysis, Probability, and Stochastic Calculus

Andrew Lin

July 2019

1 Zorm lemma

Definition. X: a set with a relation \leq on X is a partial order if

- (1) $\forall x \in X, x \leqslant x$
- (2) $\forall x, x' \in X[x \leqslant x' \text{ and } x' \leqslant x \Rightarrow x = x']$
- (3) $\forall x, x', x'' [x \leqslant x' \leqslant x'' \Rightarrow x \leqslant x'']$.

Definition. A poset (X, \leqslant) is a chain or totally ordered set if $x, x' \in X[x \leqslant x' \text{ or } x' \leqslant x.$

Definition. b is a maximal element in X if $\forall x \in x, b \leq x$, then b = x.

Definition. (X, \leq) a chain. We say that (X, \leq) is a well-ordered set if $\forall A \subseteq X[A \neq \emptyset \Rightarrow A \text{ has a least element}].$

Theorem. (a version of Bourbaki's fixed point theorem) (X, \leq) a poset in which every well-ordered subset has least upper bound. $X \stackrel{f}{X}$ a map s.t. $x \leq f(x)$ for every $x \in X$. $\exists a \in X, f(a) = a$.

Theorem. (1) For any X, $\exists P_0(X) \xrightarrow{f} X, \forall S \in P_0(X), f(S) \in S$.

- (2) If X is a poset in which every well-ordered subset has a least upper bound in X, then X has a maximal element.
- (3) Every poset has a maximal chain.
- (4) If X is a poset, in which every chain has an upper bound in X, then X has a maximal element.
- (5) Every set has a well-order.
- (6) $\forall surjection X \xrightarrow{f} Y, \exists Y \xrightarrow{g} X \text{ s.t. } f \circ g = id_Y.$
- (7) Given sets S_{α} , there exists $A \xrightarrow{f} \bigcup_{\alpha \in A} S_{\alpha}$ s.t. $f(\alpha) \in S_{\alpha}$ for all $\alpha \in A$.

Proof. (7) \Rightarrow (1) Let $P_0(X) = \{S | S \in P_0(X)\}$. Then (7) $\Rightarrow \exists A \xrightarrow{f} \cup_{\alpha \in A} S_\alpha$ s.t. $f(\alpha) \in S_\alpha$ then $S \in f(S)$.

(1) \Rightarrow (2) Assume that X has no maximal element, $\forall a \in X, X_a = \{x \in X | a < x\} \neq \emptyset$. By (1), define a map k $a \longrightarrow X_a$ and $\exists P_0(X) \xrightarrow{f} X$ s.t. $f(S) \in S$ for all $S \subseteq X \neq \emptyset$. Let $g = f \circ k$. $\forall a \in X, g(a) = f(X_a) \in X_a$ and a < g(a).

Contradictory to Boubaki's fixed point theorem.

- $(2) \Rightarrow (3)$ Consider $X = \{C | C \text{ is a chain in P w.r.t. } \leqslant \}$ and thus is a poset with respect to \subseteq . We claim a stronger result: any totally ordered set in X has a lub in X. If $T \subseteq X$ is a totally ordered set, $\bigcup_{C \in T} C$ is $lub_x T$. By (2), X has the maximal element, i.e. a maximal chain in P.
- $(3) \Rightarrow (4)$ By (3), \exists maximal chain C. By assumption, C has an upper bound, say a, in X. Then a is a maximal element in X, otherwise, $\exists x \in X, a < x$, and hence $X \cup \{x\}$ is a chain. Contradictory!
- $(4) \Rightarrow (5)$ Let Y be a set. Consider $X = \{A | A = (S_A, \stackrel{\leqslant}{A}) \text{ where } S_A \subseteq Y \text{ and } S_A \subseteq Y \text{ an$ $\stackrel{>}{A}$ is a well-ordering on S_A . We define a relation \preceq on X: $A \preceq A' \Leftrightarrow A = A'$ or A is an initial segment of A', i.e. $a' \in S_{A'}, S_A = \{x \in S_{A'} | x < a'\}$ and

 $\forall x_1, x_2 \in S_A, x_1 \stackrel{\$}{A} x_2 \Leftrightarrow x_1 \stackrel{\$}{A'} x_2$. It is direct to see that \leq is a partial order. We claim X has a maximal element w.r.t. ≤ and a maximal element in X w.r.t. \preceq is of the form (Y, \preceq) . We first verify the latter. If (Y_0, \preceq) is a maximal element in X w.r.t. \leq and $Y_0 \neq Y$, then $\exists y \in Y \setminus Y_0$, and $Y_0 \cup \{y\}$ admits a well-ordering which makes an initial segment. We apply (4) to the former. Let

C be a chain in X w.r.t. \leq . Let $A_0 = (S_{A_0}, \overset{\leqslant}{A_0})$ where $S_{A_0} = \bigcup_{A \in C} S_A$ and $\stackrel{\$}{A_0}$: For any $x_1, x_2 \in S_{A_0}$, find $A \in C$, s.t. $x_1, x_2 \in S_A$ we say that $x_1 \stackrel{\$}{A_0} x_2$ if $x_1 \stackrel{>}{A} x_2$. Such A exists since C is a chain. In addition, $\stackrel{\stackrel{>}{A}_0}{A}$ is a total order and a well-ordering since let $T \subseteq S_{A_0} \neq \emptyset$. $T = T \cap S_{A_0} = T \cap \cup S_A = \cup (T \cap S_A)$ $\exists A \in C, T \cap S_A \neq \emptyset. \ (S_A, \stackrel{\leqslant}{A}) \text{ is a well-ordered set, } T \cap S_A \text{ has a least element}$ in S_A , say t. Then t is also the least element of T in S_{A_0} w.r.t. $\stackrel{\leqslant}{A_0}$. Thus, A_0 is in X. And check A_0 is the upper bound of X.

- $(5) \Rightarrow (6)$ Choose a well ordering \leq on X. $Fory \in Y$, define g(y) = the least element of $f^{-1}(y)$. $f \circ g(y) = y$.
- $(6) \Rightarrow (7)$ Consider $S = \bigcup_{\alpha \in A} S_{\alpha}$. Let $X = \{(s, \alpha) \in S \times A | s \in S_{\alpha}\}$. Let $X \stackrel{f}{\longrightarrow}$ A and $X \stackrel{p}{\longrightarrow} S$. f is surjective. By (6) $\exists A \stackrel{g}{\longrightarrow} X$ s.t. $f(g(\alpha)) = \alpha$ for all $\alpha \in A$. Let $h = p \circ g$. Since $g(\alpha) \in X$ and $f(g(\alpha)) = \alpha$. $(s(\alpha), \alpha) \in X \Rightarrow s(\alpha) \in S_{\alpha}$. $h(\alpha) = p(g(\alpha)) = p(s(\alpha), \alpha) = s(\alpha) \in S_{\alpha}$

Theorem. Every orthonormal set B in a Hilbert space H is contained in a maximal orthonormal set in H.

Proof. Let P be the class of all orthonormal sets in H which contain the given set B. Partially ordered P by set inclusion. Since $B \in P, P \neq \emptyset$, P contains a maximal chain Ω . Let S be the union of all members of Ω . It is clear that $B \subset S$. We then claim that S is a maximal orthonormal set: If $u_1, u_2 \in S$, then $u_1 \in A_1$ and $u_2 \in A_2$ for some A_1 and $A_2 \in \Omega$. Since Q is totally ordered, $A_1 \subset A_2$, SO THAT $u_1 \in A_2$ and $u_2 \in A_2$. Since A_2 is orthonormal, $\langle u_1, u_2 \rangle = 0$ if $u_1 \neq u_2, \langle u_1, u_2 \rangle = 1$ if $u_1 = u_2$. Thus S is an orthonormal set.

Suppose that S is not maximal. Then S is a proper subset of an orthonormal

set S^* . Clearly, S^* not in Ω . We may adjoin S^* to Ω and still have a total order. Contradictory!

Theorem. Let H be a Hilbert space, and let F be an orthogonal set in H. The following are equivalent:

F is maximal among all the orthogonal subsets of H. spanF is dense in X.

$\mathbf{2}$ Topology

Definition. A topological space $X = (X, T_X)$ consists of a set X, called the underlying space of X, and a family T_X of subsets of X s.t. (1) X and $\varphi \in T_X$, (2) $U_{\alpha} \in T_X(\alpha \in A), \cup_{\alpha \in A} U_{\alpha} \in T_X, (3) U, U' \in T_X, U \cap U' \in T_X, T_X \text{ called } a$ topology on X.

Theorem. Any two norms on a finite-dimensional vector space are equivalent.

Lemma. Let $(K, ||\cdot||)$ be a non-trivially valued field and V be a K-vector space. Two norms are equivalent if and only if there are constants A > 0 and B > 0such that $A||v||' \leq ||v|| \leq B||v||'$ for all $v \in V$.

Proof. (Proof of lemma)

The lemma is obvious if $V = \{0\}$, so assume that V is not $\{0\}$.

- (\Leftarrow) First assume that there are positive A and B such that $A||v||'\leqslant ||v||\leqslant$ B||v||' for all $v \in V$. Then for any open set $U \subset V$ w.r.t. $||\cdot||$ and $v \in U$, there is an $\epsilon > 0$ s.t. the open ϵ -ball w.r.t $||\cdot||$ around V is contained in U: $\{\omega \in V: ||\omega - v|| < \epsilon\} \subset U. \text{ Since } ||\omega - V||' < \frac{\epsilon}{B} \Rightarrow ||\omega - v|| < \epsilon \Rightarrow \text{ any open}$ $||\cdot||$ -ball around v contains an open $||\cdot||'$ -ball around v, so U is open w.r.t. $||\cdot||$. The contrary relation holds if using $||v||' \leq \frac{1}{A}||v||$.
- (\Rightarrow) Assume that $||\cdot||$ and $||\cdot||'$ are equivalent. Then the open unit ball around origin in V relative to $||\cdot||$ is open relative to $||\cdot||'$ and the open unit ball around the origin in V relative to $||\cdot||'$ is open relative to $||\cdot||$, so there are r > 0, s > 0 such that $\{v \in V : ||v||' < r\} \subset \{v \in V : ||v|| < 1\}, \{v \in V : ||v|| < s\} \subset \{v \in V : ||v||' < 1\}.$ Therefore, for each nonzero $v \in V$, there exists $\gamma \in K$ s.t. $|\gamma|^n \leqslant \frac{1}{s}||v|| \leqslant |\gamma|^{n+1}$. Then $||\frac{1}{\gamma^{n+1}}v|| = \frac{1}{|\gamma^{n+1}}||v|| < s$, so $||\frac{v}{\gamma^{n+1}}||' < 1$. Thus $||v||'|| < |\gamma|^{n+1} \leqslant \frac{|\gamma|}{s} ||v||$. By setting $B = |\gamma|/s$, we have ||v||' < B||v|| for all nonzero $v \in V$, so $||v||' \leqslant B||v||$ for all v. The similar conclusion holds using r in replace of s. In that result, $A = \frac{r}{|x|}$.

(Proof of theorem)

Choose arbitrary two norms $||\cdot||_a, ||\cdot||_b$.

We can claim that it is sufficient to consider $||\cdot||_b$ equivalent to $||\cdot||_1$ by transitivity. First define an L_1 -style norm by $||x||_1 = \sum_{i=1}^n |a_i|$. Suppose both $||\cdot||_a$ and $||\cdot||_{a'}$ are equivalent to $||\cdot||_1$ for constants $0 < C_1 \le C_2$ and $0 < C'_1 \le C'_2$, respectively:

$$C_1||x||_1 \le ||x||_a \le C_2||x||_1,$$

 $C_1'||x||_1 \le ||x||_a \le C_2'||x||_1,$

It immediately follows that

$$\frac{C_1'}{C_2}||x||_a \leqslant ||x||_{a'} \leqslant \frac{C_2'}{C_1}||x||_a,$$

and hence $||\cdot||_a$ and $||\cdot||_{a'}$ are equivalent.

Next, we claim that it is sufficient to consider only x with $||x||_1 = 1$ since the vector space is equipped with scalar multiplication.

Next, we claim that any norm $||\cdot||_a$ is continuous under $||\cdot||_1$. By the triangle inequality on $||\cdot||_a$, it follows that $|||x'||_a - ||x||_a| \le ||x' - x||_a$. And applying the triangle inequality again, and writing $x = \sum_{i=1}^n a_i e_i$ and $x' = \sum_{i=1}^n a_i' e_i$, we can obtain

$$||x - x'||_a \le \sum_{i=1}^n |a_i - a_i'| \cdot ||e_i||_a \le ||x - x'||_1 (\max_i ||e_i||_a).$$

Therefore, if we choose $\delta = \frac{\epsilon}{\max_i ||e_i||_a}$, it immediately follows that

$$||x - x'||_1 < \delta \Rightarrow |||x||_a - ||x'||_a| \leqslant ||x - x'||_a < \epsilon.$$

It is a standard theorem of analysis, the extreme value theorem, that a continuous functin on compact set must achieve a maximum and minimum value on the set. Let

$$C_1 = \min_{||u||_1 = 1} ||u||_a,$$

$$C_2 = \max_{||u||_1=1} ||u||_a,$$

Since $u \neq 0$ for $||u||_1 = 1$, it follows that $C_2 \geqslant C_1 > 0$ and $C_1 \leqslant ||u||_a \leqslant C_2$ as required by the previous step.

Definition. Let X and Y be topological spaces and $X \xrightarrow{f} Y$ a map. We say that f is continuous at point $x_0 \in X$ if $\forall V \in T_Y, \exists U \in T_X \text{ s.t. } F(U) \subseteq V$

Lemma. $f: continuous \Leftrightarrow \forall V \in T_Y, f^{-1}(V) \in T_X$

Definition. X: a top. space, $K \subseteq \underset{bar}{X}$. K is compact in X if $\forall U_{\alpha} \subset_{open} X (\alpha \in A)$, if $K \subseteq \bigcup_{\alpha \in A} U_{\alpha}$, \exists finite set $S \subseteq A$ s.t. $K \subseteq \bigcup_{\alpha \in S} U_{\alpha}$.

Proposition 1. $X \xrightarrow{f} Y$ and f is continuous, K is compact in X, $f(K) \subseteq Y$ is compact.

Proof. For $V_{\alpha} \subseteq_{open} Y(\alpha \in A)$ s.t. $f(K) \subseteq \bigcup_{\alpha \in A} V_{\alpha}$, we have $K \subseteq f^{-1}(f(K)) \subseteq f^{-1}(cup_{\alpha \in A}V_{\alpha}) = \bigcup_{\alpha \in A} f^{-1}(V_{\alpha})$. By the above lemma, $f^{-1}(V_{\alpha}) \subseteq_{open} X$. Since K is compact, \exists finite set $S \subseteq A$ s.t. $K \subseteq \bigcup_{\alpha \in S} f^{-1}(V_{\alpha}) \Rightarrow f(K) \subseteq f(f^{-1}(\bigcup_{\alpha \in S} V_{\alpha})) = \bigcup_{\alpha \in S} V_{\alpha}$.

Theorem. (Heine Borel theorem) K: cpt in X. K is bounded and closed in X.

Proof. $K \subseteq \bigcup_{r>0} B_r(a) (\forall a \in X$. Hence, K is bounded. Fix any x not in K. For any y in K, $\exists U_y$ which includes y open subset to X and V_y which includes X and open subset to X s.t. $U_y \cap V_y = \varphi$. $K = \bigcup_{y \in K} \{y\} \subseteq \bigcup_{y \in K} U_y \Rightarrow \exists$ finite set $S \subseteq K$ s.t. $K \subseteq \bigcup_{y \in S} U_y$. Let $V = \bigcap_{y \in S} V_y, x \in V \subseteq_{open} X$. $V \cap K \subseteq \bigcap_{y \in S} V_y \cap (\bigcup_{z \in S} U_z) = \bigcup_{z \in S} (\bigcap_{y \in S} V_y \cap U_z) = \varphi$. Conclusion: for all x not in K, exists $V_x \subseteq_{open} X$ s.t. $V_x \subseteq X \setminus K$. $X \setminus K = \bigcup_{x \in X \setminus K} V_x \subseteq_{open} X$. Thus K is closed.

Corollary. Finite-dimensional vector subspaces of a normed vector space are all closed.

Proof. For definiteness, assume that E is a real n.v.s. with norm $||\cdot||$. Consider any finite-dimensional vector subspace F of E, put n=dimension of F and choose a basis $v_1, ..., v_n$ of F. Define a new norm $||\cdot||'$ on F as follows: for $u = \sum_{j=1}^n \alpha_j v_j$ where $\alpha_1, \alpha_2, ..., \alpha_n$ are real numbers, let $||u||' = (\sum_{j=1}^n \alpha_j^2)^{\frac{1}{2}}$. Clearly, $||\cdot||'$ is a norm on F. Let T be the linear map from the Euclidean space R^n onto F, defined by $Tx = \sum_{j=1}^n x_j v_j$ for $x = (x_1, ..., x_n)$. If we denote the Euclidean norm by $|\cdot|$, then ||Tx||' = |x|. Then by the previous theorem, there is c > 0 such that $c||u||' \leqslant ||u|| \leqslant c^{-1}||u||'$ for $u \in F$. Consequently, $||Tx|| \leqslant c^{-1}|||Tx||' = c^{-1}|x|$ for $x \in R^n$. and hence T is a continuous map from R^n into E. We arbitrarily choose a sequence u_k in F that converges in E. Since the sequence converges, it is bounded, say $||u_k|| \leqslant A$ for all k for some A¿0. Now write $u_k = \sum_{j=1}^n \alpha_j^{(k)} v_j$ and put $\alpha^{(k)} = (\alpha_1^{(k)}, ..., \alpha_n^{(k)})$, then $u_k = T\alpha^{(k)}$ and $|\alpha^{(k)}| = ||u_k||' \leqslant c^{-1}||u_k|| \leqslant c^{-1}A$ for each k. Thus u_k is contained in the image $K \subset F$ of the closed ball $x \in R^n : |x| \leqslant c^{-1}A$ under T. Since closed ball in R^n are compact, K is compact by the above proposition and is therefore closed in E. Now $u_k \subset K$ implies that its limit is in $K \subset F$. This shows that F is closed.

Definition. A topological space X is

first countable if $\forall x \in X, \exists$ countable local basis at x. Ex: X: metric space. Choose $B_r(x)|r > 0, r \in Q$. Hence, it is easily to see that a metric space is first countable.

second countable if \exists countable basis of the topology. separable if it contains a countable dense subset. Lindelöf if every open cover has a countable subcover.

The 2nd countability can deduce to 1st countability, separability and Lindelöf.

3 Sequential descriptions of several notions in metric spaces

(1) Let (X, d) be a metric space. For any $A \subseteq X$, we have $\bar{A} = \{x \in X | \exists \text{ sequence } x_n \in A(n \in N) \text{ s.t. } x_n \to x \text{ as } n \to \infty\}.$

Proof. (Necessary condition) Suppose there exists a sequence $x_n \in A(n \in N)$ s.t. $x_n \to x$ as $n \to \infty$ }. Let $\epsilon > 0$. Then by definition: $\exists N \in N : \forall n > N : x_n \in B_{\epsilon}(x)$. Since $\forall n : x_n \in A$, it follows that: $\forall \epsilon > 0 : B_{\epsilon}(x) \cap A \neq \varphi$. Hence $x \in \bar{A}$. (Sufficient condition) Now suppose $x \in \bar{A}$. By definition of closure: $\forall n \in N : \exists x_n \in A \cup B_{\frac{1}{n}}(x)$. Thus clearly x_n converges to x.

- (2) all limit points of A in X= $\{x \in X | \exists \text{ sequence } a_n \in A \setminus \{n\} (n \in N) \text{ s.t. } a_n \to x \text{ as } n \to \infty.$
- (3) Let $X \xrightarrow{f} Y$ be a map between metric spaces and $x_0 \in X$. We have f is continuous $\Leftrightarrow \forall x_n \in X (n \in N), x_n \to x \text{ as } n \to \infty \Rightarrow f(x_n) \to f(x)$.

Remark. If X is a topological space instead of a metric space, $x \in X$ and $x_n \in X(n \in N)$, we may define $x_n \to x$ as $n \to \infty$ to mean that \forall open neighborhood U of $x \in X$, $\exists N$ s.t. $\forall n \in N, n \geqslant N \Rightarrow x_n \in U$. Then in (1)(2)(3), the left can deduce the right. The converse holds if X is first countable. Regard to (1), first countability ensures that every point has a countable local basis U_1, U_2, \ldots Then we can construct a decreasing set sequence $U_1, U_1 \cap U_2, \ldots$ And by closure property, we can choose a point from each intersection of A and the element of the above set sequence. Thus, we construct the point sequence as required.

Definition. (X,d): metric space.

- (1) (X,d) is sequentially compact if every sequence has a convergent subsequence.
- (2) (X,d) is totally bounded if $\forall \epsilon > 0, \exists$ finite set $S \subseteq X$ s.t. $X = \bigcup_{s \in S} B_{\epsilon}(s)$.

Remark. Total boundedness \Rightarrow separability.

Proof. More precisely, for any $n \in N$, there exists a finite set $S_n \subseteq X$ s.t. $X = \bigcup_{s \in S_n} B_{\frac{1}{n}}(s)$. Then $S := \bigcup_{n=1}^{\infty} S_n$ which is a countable dense subset in X w.r.t. d.

Theorem. A space X is compact if and only if every collection of closed subsets of X satisfying the finite intersection property has non-empty intersection.

Proof. ⇒ Let X be compact. Let C be a collection of closed subsets of X. We show that if C has the finite intersection property, then it has non-empty intersection. Suppose that $\cap C = \varphi$. Then $U = \{X - C : C \in C\}$ is an open cover of X. By the compactness of X, U has a finite subcover $\{X - C_0, X - C_1, ..., X - C_n\}$. Contradictory.

 \Leftarrow Let U be an open cover of X such that it has no finite subcover. Note that C has the finite intersection property but $\cap C = \varphi$. Contradictory.

Proposition 2. (X,d): metric space. The following are equivalent.

- (1) X is compact
- (2) X is sequentially compact
- (3) X is totally bounded and complete.

Proof. (1) \Rightarrow (2) Suppose that $\exists x_n (n \in N), \forall x \in X$, x is not the limit of any subsequence of x_n . Thus for any $x \in X, \exists$ open neighborhood U_x of x in X s.t. $n \in N | x_n \in U_x$ is finite. $X = \bigcup_{x \in X} U_x \overset{X:cpt}{\Longrightarrow} \exists p_1, ..., p_m, X = U_{p_1} \cup ... \cup U_{p_m}$. $N=n \in N | x_n \in X=\bigcup_{j=1}^m \{n \in N | x_n \in U_{p_j}\}$. Contradictory!

 $(2)\Rightarrow(3)$ (Proof of completeness) A Cauchy sequence converges to x if and only if it has a subsequence that converges to x. (Necessary condition) If a Cauchy sequence x_n converges to x, it trivially follows that x_n is a subsequence to itself that converges to x. (Sufficient condition) Suppose that x_{n_k} is a subsequence of x_n that converges to x. Let $\epsilon > 0$. By the definition of a Cauchy sequence, there exists a positive integer M such that: $\forall i,j \in N: i,j \geqslant M \Rightarrow d(x_i,x_j) < \frac{\epsilon}{2}$. By the definition of convergence, there exists a positive integer N such that: $\forall k \in N: k \geqslant N \Rightarrow d(x_{n_k},x) < \frac{\epsilon}{2}$. There exists a natural number $K > \max\{M,N\}$. Therefore, by the triangular inequality: $forallm \in N: m > K \Rightarrow d(x_m,x) \leqslant d(x_m,x_K) + d(x_K,x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. That is x_n converges to x. Thus, it soon follows that if (X,d) is sequentially compact, then it is complete.

(Proof of totally-boundedness) If X is not totally bounded, there exists $\epsilon > 0$ and x_1, \dots s.t. $d(x_i, x_j) \ge \epsilon$ if $i \ne j$. Futhermore, any subsequence of the above x_n does not converge. Contradictory!

 $(3)\Rightarrow(2)$ Let $x_n(n \in N)$ be a sequence in X. (X,d) totally bounded \Rightarrow For any given $n \in N$, X can be covered by finitely many $\frac{1}{n}$ -balls. $\Rightarrow \exists 1$ -ball B_1 s.t. $n \in N | x_n \in B_1$ is infinite. \Rightarrow \Rightarrow subsequence $x_{n_k} \in B_1 \cap ... \cap B_k$ for every $k \in N$. In fact, for every k and $l, l' \geqslant k$, we have $d(x_{n_l}, x_{n_{l'}})$. Thus, the subsequence is Cauchy and complete.

(2) \Rightarrow (1) Let F be a family of closed subsets of X which satisfies the FIP. We need to show that $\cap F \neq \varphi$. Suppose not $\cap F = \varphi \Rightarrow \{X \setminus C | C \in F\}$ is an open cover of $X \Rightarrow \exists C_1, C_2, ... \in F$ s.t. $X \setminus C_n | n \in N$ still covers $X \Rightarrow \cap_{n=1}^{\infty} C_n = \varphi$. Contradictory. We can choose $x_1 \in C_1, ...$ By sequentially compact, there exists a subsequence x_{n_k} that converges. Therefore, $\bigcap_{n=1}^{\infty} C_n \neq \varphi$.

Definition. Let X be a topological space and Y be a metric space. A family F of maps from X to Y is equicontinuous at a point $x_0 \in X$ if $\forall \epsilon > 0, \exists$ open neighborhood U of x_0 s.t. $\forall f \in F$ and $x \in X$ $x \in U \Rightarrow d(f(x), f(x_0)) < \epsilon$.

Theorem. If T is a continuous map a compact metric space M_1 into a metric space M_1 , then T is uniformly continuous on M_1 .

Proof. Let $\epsilon > 0$ be given, and $x \in M_1$. Since T is continuous at x, there is $\delta_x > 0$ s.t. $\rho_2(Ty,Tx) < \frac{\epsilon}{2}$ if $\rho_1(y,x) < \delta_x$. Consider $B_{\frac{\delta_x}{2}}(x)$ which is an open cover of M_1 . Since M_1 is compact, \exists a finite subcover $B_{\frac{\delta_{x_1}}{2}}(x_1),...,B_{\frac{\delta_{x_l}}{2}}(x_l)$. Choose $\delta = \frac{1}{2}\min\{\delta_{X_1},...\delta_{x_l}\}$. Suppose that $x,y \in M_1$ with $\rho_1(x,y) < \delta$. Since $x \in M_1$, $x_1 \in B_{\frac{\delta_{x_j}}{2}}(x_j), 1 \leqslant j \leqslant l$. Then $\rho_1(y,x_j) \leqslant \rho_1(y,x) + \rho_1(x,x_j) = \delta + \frac{\delta_{x_j}}{2} < \delta_{x_j}$.

Therefore, $\rho_2(Ty, Tx_j) < \frac{\epsilon}{2}$. Then, $\rho_2(Tx, Ty) \leqslant \rho_2(Tx, Tx_j) + \rho_2(Ty, Tx_j) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

Theorem. Let f_n be a sequence of real-valued continuous functions defined on a compact metric space M such that $f_1(x) \leq f_2(x)...$ and converges to a finite real number f(x) for each $x \in M$. If further, f is continuous on M, then the sequence f_n converges uniformly to f on M. If, further, f is continuous on M, then the sequence f_n converges uniformly to f on M.

Proof. Given $\epsilon > 0$ and $x \in M$, there is $k_x \in N$ such that $0 \geqslant f(x) - f_{k_x}(x) < \frac{\epsilon}{3}$. Because both f and f_{k_x} are continuous, there is an open ball B(x) centered at x such that $|f(y) - f(x)| < \frac{\epsilon}{3}$ and $|f_{k_x}(y) - f_{k_x}(x)| < \frac{\epsilon}{3}$ whenever $y \in B(x)$. As the result, we have $0 \leqslant f(y) - f_{k_x}(y) \leqslant |f(y) - f(x)| + |f(x) - f_{k_x}(x)| + |f_{k_x}(x) - f_{k_x}(y)| < \epsilon$ whenever $y \in B(x)$. Now $B(x) : x \in M$ is an open covering of M. There exists a finite subfamily that also covers M, say $B(x_1), ..., B(x_l)$. Let $k_0 = \max\{k_{x_1}, ..., k_{x_l}\}$. Then for $y \in M$ and $k \geqslant k_0$, it follows that $0 \leqslant f(y) - f_k(y) < \epsilon$.

Lemma. Let f_n be a sequence of continuous functions defined on a metric space M. Suppose that f_n converges uniformly to a function f on M, then f is continuous on M.

Proof. There exists n_0 s.t. $|f_{n_0}(x) - f(x)| < \frac{\epsilon}{3}$ for all x in M. In addition, f_{n_0} is continuous, for x,y in M with $\rho(x,y) < \delta$, $|f_{n_0}(y) - f_{n_0}(x)| < \frac{\epsilon}{3}$. $|f(x) - f(y)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(y) - f_{n_0}(x)| + |f(y) - f_{n_0}(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$.

Definition. C(X): All continuous valued functions defined on a compact metric space X with norm given by $||f|| = \sup_{x \in X} |f(x)|$.

Proposition 3. C(X) is a Banach space.

Proof. Let f_n be a Cauchy sequence in C(X). $|f_n(x) - f_m(x)| \leq ||f_n - f_m||$ for $x \in X$. Given $\epsilon > 0$, there is $n_0 \in N$ such that $||f_n - f_m|| < \epsilon$ whenever $n, m \geq n_0$, hence $|f_n(x) - f_m(x)| < \epsilon$ for all x in X and $n, m \geq n_0$, and thus $|f_n(x) - f(x)| < \epsilon$ for all x in X and $n, m \geq n_0$, and thus $|f_n(x) - f(x)| \leq \epsilon$ for all x in X if $n \geq n_0$, by letting $m \to \infty$. It follows that $f \in C(X)$. In addition, $\sup_{x \in X} |f_n(x) - f(x)| \leq \epsilon$ when $n \geq n_0$, or $||f_n - f|| \leq \epsilon$ when $n \geq n_0$. Thus, $\lim_{n \to \infty} ||f_n - f|| = 0$.

Theorem. (A generalization of Ascoli's theorem) Let X be a topological space and F a family of real-valued functions on X. If (1) X is separable, (2) F is equicontinuous everywhere on X and (3) $\forall x \in X$ $f(x)|f \in F$ is a bounded subset of R, then every sequence in F has a subsequence which converges compactly, i.e. uniformly on every compact subset of X.

Proof. Let $A = \{a_1, a_2, ...\}$ be a countable dense subset. Suppose that $f_n (n \in N)$ be a sequence in F.

Claim 1: \exists subsequence $f_{n_m}(m \in N)$ which converges pointwise on A such that $f_n(a_1)|n \in N \subseteq f(a_1)|f \in F \subseteq_{bounded} R. \Rightarrow n_m^{(1)}(m \in N)$ s.t. $f_{n_1}(a_1)$ converges.

Inductively, we can construct n_m^j s.t. (1) n^j strictly increasing, (2) $n_m^{(j)} \subseteq n_m^{(j-1)}$, and (3) $f_{n_m^{(j)}}(a_j)$ converges. Let $n_m := n_m^{(m)}$. Then $f_{n_m}(m = k, k+1, ...)$ is a subsequence of $f_{n_m^{(k)}}$, and hence $f_{n_m}(a_k)$ converges as $m \to \infty$.

Claim 2: $\forall \epsilon$ and $x \in X$, \exists open neighborhood U_x of x and a number $N_x > 0$ s.t. if $x' \in U_x$ and $k, l \geqslant N_x$, $|f_{n_k}(x') - f_{n_l}(x')| < \epsilon$. F is equicontinuous at x, for any $\epsilon > 0$, \exists open neighborhood U_x of x s.t. $|f(z) - f(x)| < \frac{\epsilon}{6} \forall z \in U_x$. Since A is dense in X, $\exists a \in U_x \cap A$. FOR any $x' \in U_x$, we have $|f_{n_k}(x') - f_{n_l}(x')| \le |f_{n_k}(x') - f_{n_k}(x)| + |f_{n_k}(x) - f_{n_k}(a)| + |f_{n_k}(a) - f_{n_l}(a)| + |f_{n_l}(a) - f_{n_l}(x)| + |f_{n_l}(x) - f_{n_l}(x')| \le |f_{n_k}(a) - f_{n_l}(a)| + \frac{2\epsilon}{3} < \epsilon$. Claim 3: $\forall K$ is compact in X. $f_{n_m}|_K$ converges uniformly. For an given $\epsilon > 0$, we have found U_x and N_x as in Claim 2. $K = \bigcup_{x \in K} x \subseteq \bigcup_{x \in K} U_x \Rightarrow \exists x_1, ..., x_p \in K, K \subseteq U_{x_1} \cup ... \cup U_{x_p}$. Let $N = \max\{N_{x_1}, ..., N_{x_p}\}$. Then for any $q \in K$ and

Definition. Let X be a topological space and $A \subseteq X$. A is relatively compact if \bar{A} is compact.

 $k, l \geqslant N$, we have $|f_{n_k}(q) - f_{n_l}(q)| < \epsilon$.

By Ascoli's theorem, $F \subseteq C(x, R)$ is equicontinuous and uniformly bounded \Rightarrow F is relatively compact in $(C(X, R), d_{sup})$.

Theorem. A subset A of a metric space M is totally bounded if and only if every sequence in A has a Cauchy subsequence. In particular, compact sets are totally bounded.

Proof. Suppose A is totally bounded and let x_n be a sequence in A. There is a $\frac{1}{2}$ net for A and hence ne of its balls contains a subsequence $x_n^{(1)}$. After the subsequence is chosen, we then choose a

frac14 net for A and construct $x_n^{(2)}$ from $x_n^{(1)}$. Now, $x_n^{(n)}$ is a subsequence of x_n . For each positive integer n_0 , if $n > m \ge n_0$, both $x_n^{(n)}, x_m^{(m)}$ are in a ball of radius 2^{-n_0} , hence $d(x_n^{(n)}, x_m^{(m)}) \le 2^{-n_0+1}$, form which it follows that $x_n^{(n)}$ is a Cauchy subsequence of x_n .

Next, suppose that each sequence of A has a Cauchy subsequence. Suppose to the contrary that for some $\epsilon_0 > 0$, no ϵ_0 net for A exists. Then, we could find a sequence whose points are distanced from each other farther than ϵ_0 . Hence, the sequence has no Cauchy subsequence. Contradictory.

Theorem. (Arzelà-Ascoli theorem) The converse of Ascoli's theorem is true.

Proof. Suppose K is relatively compact. Since C(X) is complete, K is totally bounded. Let $\epsilon>0$ and let $f_1,...,f_n$ be the center of an $\frac{\epsilon}{3}$ net for K. Since X is a compact space, $f_1,...,f_n$ are uniformly continuous on X, there is $\delta>0$ such that $|f_i(x)-f_i(y)|<\frac{\epsilon}{3}$ for i=1,...,n when $d(x,y)<\delta$. Consider now $f\in K$, there exists $j\in\{1,...n\}$ s.t. $\sup_{x\in X}|f(x)-f_j(x)|<\frac{\epsilon}{3}$. $|f(x)-f(y)|\leqslant |f(x)-f_j(x)|+|f_j(x)-f_j(y)|+|f_j(y)-f(y)|<\epsilon$. So K is equicontinuous. Since K is totally bounded, it is hence bounded.

4 Partitions of unity and paracompactness

Definition. For any R-valued function f on X, we define its support supp f := $\{x \in X | \bar{f}(x) \neq 0\}$. $X \setminus supp f = \{x \in X | F(X) = 0\}$; in other words, for any U open in X and $f|_{U} = 0 \Leftrightarrow U \subseteq X \setminus U$ i.e. $U \cap supp f = \emptyset$.

Temporary notation

For R-valued functions f on A and g on B with $A, B \subseteq X$, we define $(f \cdot g)(x) = f(x)g(x)$ if $x \in A \cap B$, = 0 if $x \in X \setminus (A \cap B)$. Note that $supp(f \cdot g) \subseteq supp f \cap supp g$.

Lemma. Given $U \subseteq_{open} X, f \in C(U)_R$ and $\rho \in C(X)_R$, if $supp \rho \subseteq U$, then $\rho \cdot f \in C(X)$.

Proof. $supp \rho \subseteq U \Leftrightarrow \{U, X \setminus supp \rho\}$ is an open cover of X. $(\rho \cdot f)|_{U} = \rho|_{U} \cdot f \in C(U)_{R}$. $(\rho \cdot f)|_{X \setminus supp \rho} = 0 \in C(X \setminus supp \rho)$.

The setting can be expanded to smoothness or continuous differentiability.

Definition. (refinements of open covers/paracompactness/partitions of unity) (1) Let $U_k(k \in K)$ and $V_j(j \in J)$ be an open cover of X. We say that V is a refinement of U if \exists a map $J \xrightarrow{k(\cdot)} K$ s.t. $\forall j \in J, V_j \subseteq U_{k(j)}$.

- (2) A family S_j of subsets of X is strongly locally finite. $\forall p \in X, \exists$ neighborhood W of p in X s.t. $j \in J|W \cap S_j \neq \emptyset$ is finite.
- (3) X is paracompact if X is Hausdorff and \forall open cover of X, \exists strongly locally finite refinement V of U.
- (4) Let U_k be an open cover of X and $X_j \xrightarrow{\rho_j} R$ a family of functions on X. We say that ρ_j is a continuous partition of unity on X subordinate to U if \exists strongly locally finite refinement V_j of U, s.t. supp $\rho_j \subseteq V_j$ for every $j \in J$. In addition, $\rho_j \geqslant 0$. And $\sum_{j \in J} \rho_j = 1$ for every $p \in X$.

Proposition 4. X: paracompact, $A \subseteq_{closed} X \Rightarrow A$: paracompact.

Proof. If W: w_k is an open cover of A, say $W_k = U_k \subseteq_{open} X$, U_k together with $X \setminus A$ form an open cover of X. Thus, \exists a finite refinement V_j . Then $V_j \cap A$ is an expected refinement of W.

Proposition 5. Paracompactness implies normality.

Proof. (Proof of regularity)

By Hausdorffness, we can define, for every $y \in A$ (A is a closed set of X and does not contain x), open subsets U_y, V_y s.t. $x \in U_y, y \in V_y$, and $U_y \cap V_y = \emptyset$. Then, $A \subseteq \bigcup_{y \in A} V_y$. The sets V_y and $X \setminus A$ form an open cover of X. Thus, by paracompactness of X, there is a locally finite open refinement. Throwing out from this any open subset not intersecting A, we still get a locally finite collection P of open subsets, each contained in some V_y that cover A. There exists an open set W containing x such that there are only finitely many members of P that intersect W. Let T be a finite subset of A that contains, for each of this finite list of members of P, a point y s.t. that member is contained in V_y .

Define $U = W \cap \bigcap_{y \in T} U_y$ and V to be the union of all the members of P. Then, $x \in U, A \subseteq V$, and U and V are disjoint: For this, note that all the members of P that intersect W are contained in V_y s, which are disjoint from the corresponding U_y s. So, U is disjoint from V.

(Proof of normality)

For every $a \in A$, there exist open sets $a \in U_a$, V_a containing B, such that U_a and V_a are disjoint. The U_a s form a collection of open subsets of X covering A. Along with $X \setminus A$, these form an open cover of X. This has a locally finite open refinement. Throwing out from this any open subset not intersecting A, we still get a locally finite collection Q of open subsets, each contained in some U_a , that cover A. Let C be the union of all members of Q. For any $b \in B$, there exists an open subset D_b around b that does not intersect C: First, there exists an open subset W_b around b intersecting finitely many members of Q. Let T be a finite subset of A that contains for each of this finite list of members of Q, a point a such that that is contained in U_a . Then, $D_b = W_b \cap \cap_T V_a$ works. \square

Theorem. If X is a Hausdorff space, X is paracompact \Leftrightarrow every open cover U of X admits a partition of unity subordinate to it.

Proof. (\Rightarrow) Possibly by replacing U with a strongly locally finite refinement, we may assume U to be such. We first set up some terminology: a U-admissible collection is a family of functions $\varphi_U|U\in J$ s.t. (1) the index set $J\subseteq U$, (2) $X\xrightarrow{\varphi_U} [0,1]$ for every $U\in J$, $supp\varphi_U\subseteq U$, and (3) $\varphi_U^{-1}(0,1]$ together with $U\setminus J$ form a open cover of X. Let A=all U-admissible collection be partially ordered by \subseteq . Then A admits a maximal chain $C\subseteq A$. Let $C_0=\cup C$, saying we may write $C_0=g_U|U\in J_0$, for some $U_0\subseteq U$. We then claim that C_0 is still a U-admissible collection.

It is straightforward that C_0 hold automatically. If C_0 is not in A, then (3) is violated, i.e. $\exists x \in X$ s.t. x not in $g_U^{-1}(0,1]$ and x not in U'. Let $U_1, U_2, ... U_n$ be the only members of U which contains x since U is locally finite. Then, $U_1, U_2, ... U_n$ must be in J_0 . Since C is a chain, $\exists C \in C$ of the form $g_U | U \in J_1$ s.t. $U_1, ... U_n \in J_1$; in particular, $x \in X = (\bigcup_{U \in J_1} g_U^{-1}(0,1]) \cup \bigcup_{W \in U \setminus J_1} W$, and hence $x \in \bigcup_{U \in J_1} g_U^{-1}(0,1]$.

Then, we claim that $J_0 = U$.

Suppose that $\exists U_0 \in U \setminus J_0$ and let $Y := (\bigcup_{U \in J_0} g_U^{-1}(0,1]) \cup_{W \in U \setminus J_0 \setminus U_0} W$. Then $X = U_0 \cup Y$ by (3). Let $Z = X \setminus Y \subseteq U$, a closed subset. By the previous proposition, X is normal and hence \exists open neighborhood V of Z in X s.t. $(V) \subseteq U_0$. By Urysohn's construction, $\exists X \xrightarrow{f} [0,1]$ s.t. $f|_Z = 1$ and $f|_{X \setminus V} = 0$. Then $Z \subseteq f^{-1}(0,1]$, and Hence $X = f^{-1}(0,1] \cup Y$. Let $g_{U_0} = f$. Then $g_U \mid U \in J_0 \cup U_0$. Contradiction.

In summary, $C_0 = g_U | U \in U$ is a U-admissible collection, and hence $X = \bigcup_{U \in U} g_U^{-1}(0,1]$. It suffices to take $\rho_U = \frac{g_U}{g}$ where $g = \sum_{U \in U} g_U$.

Lemma. If X is paracompact, then for every locally finite open cover U_j of X, there exists an open cover V_j s.t. $\bar{V}_j \subseteq U_j$.

Proof. Choose a partition of unity $\rho_U|U\in U$. Let $V_j=\rho_{U_j}^{-1}(0,1]$. $\bar{V}_j\subseteq U_j$. Since $\sum_{j\in J}\rho_j=1,\ X\subseteq \cup V_j$.

Lemma. Let X be a locally compact Hausdorff space. For any compact subset $K \subseteq X$ and open $V_1...V_n$ if $K \subseteq V_1 \cup ... \cup V_n$, then exists ρ_j s.t. $supp \rho_j \subseteq V_j$ and $\forall x \in K$, $\sum_{j=1} \rho_j(x) = 1$. K is compact, $\exists x_1, ..., x_m \in K$, s.t. $K = W_{x_1} \cup ... \cup W_{x_m}$. Let $H_i = \cup \overline{W_{x_j}}$, which is compact. By Urysohn's construction, \exists a continuous φ_i s.t. $\varphi_i|_{H_i} = 1$ and $supp \varphi_i \subseteq V_i$. Let $\rho_1 = \varphi_1, \rho_2 = (1 - \varphi_1)\varphi_2....\rho_n = (1 - \varphi_1)...(1 - \varphi_{n-1})\varphi_n$. Then, $supp \rho_k \subseteq \varphi_k \subseteq V_k$. In addition, $\rho_1 + ... \rho_n = 1 - (1 - \varphi_1)...(1 - \varphi_n)$. For any $x \in K$, since $X \in \overline{W_x} \subseteq V_i$, $x \in H_{i_x}$, and hence $\varphi_{i_x} = 1$.

Proof. For each $x \in K$, choose $i_x \in 1, ..., n$ s.t. $x \in V_{i_x}$. X: locally compact Hausdorff $\Rightarrow \exists$ open neighborhood W_x of x s.t. $\bar{W}_x \subseteq V_{i_x}$

5 Measure Theory and Probability

Definition. A family A of subsets of Ω is called an algebra of Ω if $\Omega \in A$, if $A \in A$, then $A^c \in A$. $A \cup B \in A$ whenever $A, B \in A$.

Definition. A family P of subsets of Ω is called a π -system on Ω if $A \cap B \in P$ if A, B in P.

Definition. A family L of subsets of Ω is called a λ -system on Ω if $\Omega \in L$, $A \in L$, then $A^c \in L$, if A_n is a disjoint sequence in L, then $\cup_n A_n \in L$.

Lemma. A family is both a π -system and a λ -system is a σ -algebra.

Proof. It suffices to show that the family, say S is closed under countable-unions. Let $A_1, \ldots \in S$. We want to prove that their union is in S. Let $B_1 = A_1$ and for $n \ge 1$, $B_n = A_n - (A_1 \cup A_2 \cup \ldots \cup A_{n-1}) = A_n \cap A_1^c \cap A_2^c \cap \ldots \cap A_n^c$ Thus S is a λ -system, each complement A_i^c is in S, and since S is a π -system it follows that B_n , which is a finite intersection of sets in S, is also in S.

Theorem. $(\pi - \lambda \ theorem)$ If P is a π -system on Ω , then $\lambda(P) = \sigma(P)$.

Proof. Let $L_0 = \lambda(P)$. If L_0 is a π -system, then L_0 is a σ -algebra, consequently $\sigma(P) \subset L_0$; since $L_0 = \lambda(P) \subset \sigma(P)$. It remains therefore to show that L_0 is a π -system.

For $A \in L_0$, let $L_A = \{B \subset \Omega | A \cap B\}$. To show that L_0 is a π -system is to show that $L_0 \subset L_A$ for every $A \in L_0$. Clearly, L_A is a λ -system. Observe then that if $B \in P$, since P is a π -system and hence L_B is a λ -system containing P. Therefore, $P \subset L_B$ if $B \in P$, this means that $A \cap B \in L_0$ and $B \in P$, or $P \subset L_A$ if $A \in L_0$. Since L_A is a λ -system, we then have $L_0 \subset L_A$ for $A \in L_0$. Thus, L_0 is a π -system and we proved the theorem.

Lemma. Let S be a set. Let I be a π -system on S, and let $\Sigma := \sigma(I)$. Suppose that μ_1 and μ_2 are measures on (S, Σ) such that $\mu_1(S) = \mu_2(S) < \infty$ and $\mu_1 = \mu_2$ on I. Then, $\mu_1 = \mu_2$ on Σ .

Proof. Let $D = \{F \in \Sigma : \mu_1(F) = \mu_2(F)\}$. Then, D is a λ -system. Indeed, the fact that S in D is given. If $A, B \in D$, then $\mu_1(B \setminus A) = \mu_1(B) - \mu_1(A) = \mu_2(B) - \mu_2(A) = \mu_2(B \setminus A)$. So that $B \setminus A \in D$. Finally, if $F_n \in D$ and $F_n \to F$, then $\mu_1(F) = \lim \mu_1(F_n) = \lim \mu_2(F_n) = \mu_2(f)$ so that F is in D. Since D is a λ -system and $I \subset D$ by hypothesis, the Dynkin's theorem shows that $\sigma(I) = \Sigma \subseteq D$, and hence we proves the lemma.

Definition. Premeasure: A set function, taking nonnegative value, montone, continuous from below, with empty set taking measure zero.

Definition. Measure with the σ -additivity.

Definition. A measure is finite if $\mu(X) < \infty$.

A measure is σ -finite if X is the countable union of measurable sets with finite measure.

5.1 Independence

Lemma. Suppose that G and H are sub- σ -algebras of F, and that I and J are π -systems with $\sigma(I) = G$, $\sigma(J) = H$. Then G and H are independent if and only if I and J are independent in that $P(I \cap J) = P(I)P(J)$.

Proof. Suppose that I and J are independent. For fixed I in I, the measures $H \to P(I \cap H)$ and $H \to P(I)P(H)$ on (Ω, H) have the same total mass P(I), and agree on J. And thus the measures agree on H. Then, fix H in H. We can still deduce that the two measures have the same total mass P(H), and agree on I. Therefore, agree on G.

Definition. A sequence of events E_n happen infinitely often:= $\limsup E_n := \bigcap_m \bigcup_{n \ge m} E_n = \omega : \omega \in E_n$ for infinitely many n.

Lemma. (First Borel-Cantelli lemma) Let E_n be a sequence of events such that $\sum_n P(E_n) < \infty$. Then $P(\limsup E_n) = P(E_n, i.o.) = 0$

Proof. Let $G_m = \bigcup_{n \geqslant m} E_n$. Then, we have $P(G) \geqslant P(G_m) \geqslant \sum_{n \geqslant m} P(E_n)$. Drive $m \to \infty$. The result directly proves the lemma.

Lemma. (Second Borel-Cantelli lemma) If E_n is a sequence of independent events. Then, $\sum P(E_n) = \infty \Rightarrow P(E_n, i.o.) = 1$

First, we have $(\lim \sup E_n)^c = \lim \inf E_n^c = \bigcup_m \cap_{n \geqslant m} E_n^c$. With p_n denoting $P(E_n)$, we have $P(\bigcup_{n \geqslant m} E_n^c) = (1 - p_m)$ For x > 0, $1 - x \leqslant e^{-x}$, since $\sum p_n = \infty$, $(1 - p_m)$... $\leqslant e^{-\sum_{n \geqslant m} = 0}$ So, we proved the lemma.

Theorem. (Komogorov's 0-1 law) Let X_n be a sequence of independent random variables, and let τ be the tail σ -algebra of X_n . Then, τ is P-trivial. That is, (i) $F \in \tau \Rightarrow P(F) = 0$ or P(F) = 1

(ii) if ϵ is a τ -measurable random variable, then ϵ is almost deterministic in that for some constant $c \in [-\infty, \infty]$, $P(\epsilon = c) = 1$.

Proof. Let $\chi_n = \sigma(X_1, ... X_n), \tau_n = \sigma(X_{n+1}, X_{n+2}, ...).$

We first claim that χ_n and τ_n are independent. The class K of events of the form $\omega: X_i(\omega) \leqslant x_i: 1 \leqslant i \leqslant n$ is a π -system which generates χ_n . The class J of sets of forms $\omega: X_j(\omega) \leq x_j: n+1 \leq j \leq n+r$. The claim is proved since X_n is a sequence of independent r.v.

Because $\tau \subseteq \tau_n$. Thus, χ_n and τ are independent.

We claim that $\chi_{\infty} = \sigma(X_n)(n \in N)$ and τ are independent. Because $chi_n \subseteq$ $\chi_{n+1}, \forall n$, the class $K_{\infty} = \bigcup \chi_n$ is a π -system which generates χ_{∞} . Moreover, K_{∞} and τ are independent. Then, the claim is proved.

Since $\tau \subseteq \chi_{infty}$, τ is independent of τ . Hence, (i) is proved. (ii) can be proved from (i).

The integration theory of Lebesgue 5.2

Definition. X, Y: measurable space. A measurable map $X \stackrel{f}{\longrightarrow} Y$ is a map $X \stackrel{f}{\longrightarrow} Y$

For a measure space (X,m,μ) , we aim at defining $\int_A f(x)d\mu(x) = \int_A f(x)\mu(dx)$ for suitable measurable functions $X \stackrel{f}{\longrightarrow} \bar{R}$ and for any $A \in m$ in a systematic manner.

(1) (Reduction to the $[0,\infty]$ -valued case) The idea is that $f=f^+-f^-$ where $f^+:=\max\{+f,0\},\ f^-:=\max\{-f,0\}.$ Since f,-f,0 are all measurable. f^+,f^- are measurable. We say that $\int_X f d\mu$ is defined if both $\int_X f^+ d\mu$ and $\int_X f^- d\mu$ are defined and not simultaneously ∞ . If this is the case $\int_X f d\mu = \int_X f^+ d\mu$ $\int_X f^- d\mu \in R$. If furthermore, $\int_X f d\mu \in R$, we say that f is μ -integrable. (Reduction to the case of measurable $[0,\infty)$ -valued simple functions) For any measurable function $X \xrightarrow{f} [0, \infty]$, we define $\int_A f d\mu = \sup \int_A s d\mu |S|$ is a measurable $[0,\infty)$ -valued simple functions on X s.t. $\forall x \in X, s(x) \leqslant f(x)$ where $\int_A s d\mu := \sum_{c \in [0,\infty)} c\mu(s^{-1}(c) \cap A)$. (Or, in more familiar terms, if $s = \sum_{j=1}^n \alpha_j \chi_{s^{-1}(\alpha_j)}$ with $\alpha_1,...\alpha_n \in [0,\infty)$ distinct and $E_1,...E_n \in m$ disjoint, then $\int_A^s s d\mu =$ $\sum_{j=1}^{n} \alpha_{j} \mu(E_{j} \cap A)$. Again, for measurable non-negative simple functions s, the two definitions coincide.

Basic properties: for non-negative measurable functions, monotonicity, positive homogeneity holds and whole-spaced integrability ensures subset integrability.

Lemma. Let s,t be non-negative measurable simple functions.

(1)
$$m \xrightarrow{\nu} [0, \infty](A \longrightarrow \int_A s d\mu)$$
 is a positive measure.
(2) $\int_X (s+t) d\mu = \int_X s d\mu + \int_X t d\mu$.

(2)
$$\int_{\mathbf{Y}} (s+t)d\mu = \int_{\mathbf{Y}} sd\mu + \int_{\mathbf{Y}} td\mu$$

$$\begin{array}{l} \textit{Proof.} \ (1) \ \text{Suppose that} \ A_n \in M \ \text{be a disjoint family. Write} \ s = \sum_{\alpha \in [0,\infty)} \alpha \chi_{s^{-1}(x)}. \\ \nu(\cup_{n=1}^{\infty} A_n) = \int_{\cup_{n=1}^{\infty} A_n} s d\mu = \int_{\cup_{n=1}^{\infty} A_n} (\sum_{\alpha \in [0,\infty)} \alpha \chi_{s^{-1}(\alpha)}) d\mu = \sum_{\alpha \in [0,\infty)} \int_{\cup_{n=1}^{\infty} A_n} \alpha \chi_{s^{-1}(\alpha)} d\mu = \\ \sum_{\alpha \in [0,\infty)} \alpha \int_{\cup_{n=1}^{\infty} A_n} \chi^{s^{-1}(\alpha)} d\mu = \sum_{\alpha \in [0,\infty)} \alpha \int_X \chi_{\cup_{n=1}^{\infty} A_n} \chi_{s^{-1}(\alpha)} d\mu = \sum_{\alpha \in [0,\infty)} \alpha \sum_{n=1}^{\infty} \chi_{a_n \cap s^{-1}(\alpha)} d\mu = \\ \sum_{\alpha \in [0,\infty)} \alpha \sum_{n=1}^{\infty} \mu(s^{-1}(\alpha) \cap A_n) = \sum_{n=1}^{\infty} \sum_{\alpha \in [0,\infty)} \alpha \mu(s^{-1}(\alpha) \cap A_n) = \sum_{n=1}^{\infty} \int_{A_n} s d\mu = \\ \sum_{n=1}^{\infty} \nu(A_n). \ \text{Besides, } \nu(\emptyset) = 0 \end{array}$$

(2) Write $t = \sum_{\beta \in [0,\infty)} \beta \chi_{t^{-1}(\beta)}$. $\int_X (s+t) d\mu = \nu((\bigcup_{\alpha \in [0,\infty)} s^{-1}(\alpha)) \cap (\bigcup_{\beta \in [0,\infty)} t^{-1}(\beta)) = \nu(\bigcup_{\alpha,\beta \in [0,\infty)} s^{-1}(\alpha) \cap t^{-1}(\beta)) = \sum_{\alpha,\beta \in [0,\infty)} \nu(s^{-1}(\alpha) \cap t^{-1}(\beta)) = \sum_{\alpha,\beta} \int_{s^{-1}(\alpha) \cap t^{-1}(\beta)} (s+t) d\mu = \sum_{\alpha,\beta} \int_X \chi_{s^{-1}(\alpha) \cap t^{-1}(\beta)} (s+t) d\mu = \sum_{\alpha,\beta} (\alpha+\beta) \mu(s^{-1}(\alpha) \cap t^{-1}(\beta)) = \sum_{\alpha} \alpha \sum_{\beta} \mu(s^{-1}(\alpha) \cap t^{-1}(\beta)) + \sum_{\beta} \beta \sum_{\alpha} \mu(s^{-1}(\alpha) \cap t^{-1}(\beta)) = \int_X s d\mu + \int_X t d\mu.$ Note that additivity holds for countable functions, which can be seen by approximating measurable functions by simple functions and thereafter applying monotone convergence theorem.

Theorem. (Lebesgue's monotone convergence theorem) Let $X \xrightarrow{f_n} [0, \infty](n \in N)$ be sequence of non-decreasing measurable functions f_n . Then $\int_X (\lim_{n\to\infty} f_n) = \lim_{n\to\infty} \int_X f_n d\mu$.

Proof. Let $f:=\lim_{n\to\infty}f_n$. By the monotonicity we have $\lim_{n\to\infty}\int_X f_n d\mu=\alpha\leqslant\int_X f d\mu$. It remains to show that $\sup\int_X s d\mu|s\leqslant f=\int_X f d\mu\leqslant\lim_{n\to\infty}\int_X f_n d\mu=\alpha$ and suffices to prove that $\alpha\geqslant\int_X s d\mu$ for all measurable $[0,\infty)$ -valued simple function with $s\leqslant f$. Let $c\in(0,1)$ and consider $E_n=x\in X|f_n(x)\geqslant cs(x)$. $E_n\to\bigcup_{n=1}^\infty E_n=X$. Therefore, $\int_X f_n d\mu\geqslant\int_{E_n} f_n d\mu\geqslant\int_{E_n} cs d\mu=c\int_{E_n} s d\mu(n\in N)$. Drive $n\to\infty$. $\alpha\geqslant c\nu(\bigcup_{n=1}^\infty E_n)=c\int_X s d\mu$. Let $c\to 1^-$, we proved the theorem.

Approximation by simple functions: for any measurable function $X \stackrel{f}{\longrightarrow} [0,\infty]$, we let

$$s_n(x) = \begin{cases} \frac{k-1}{2^n} & if \quad \frac{k-1}{2^n} \leqslant f(x) < \frac{k}{2^n} \\ n & if \quad f(x) \geqslant n \end{cases}$$
 (1)

Then $X \xrightarrow{s_n} [0, \infty)$ is a measurable simple function: $s_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{f^{-1}[\frac{k-1}{2^n}, \frac{k}{2^n})} + n\chi_{f^{-1}[n,\infty)}$. In addition, $s_n \to f$ as $n \to \infty$. By monotone convergence theorem, $\int_X s_n d\mu$ converges to $\int_X f d\mu$.

Lemma. (Fatou lemma) Let $X \xrightarrow{f_n} [0,\infty](n \in N)$ be measurable. Then $\int_X (\lim_n \inf f_n) d\mu \leqslant \lim_n \inf \int_X f_n d\mu$.

Proof. Note $\lim_k \inf f_k = \lim_{n \to \infty} \inf f_m \ge n f_m$. We let $\inf f_{m \geqslant n} = g_n$. For $m \geqslant n$, we have $f_m \geqslant g_n$. By monotonicity, $\inf \int_X f_m d\mu \geqslant \int_X g_n d\mu$. Then, $\int_X (\lim_n \inf f_n) d\mu = \int_X (\lim_{n \to \infty} g_n) d\mu = \lim_{n \to \infty} \int_X g_n d\mu \leqslant \lim_{n \to \infty} \inf f_{m \geqslant n} \int_X f_m d\mu$.

Lemma. (Reverse Fatou lemma) Let $X \xrightarrow{f_n} [0, \infty](n \in N)$ be measurable. We have $f_n \leq g, \forall n$, and g is integrable, then $int_X \limsup f_n d\mu \geqslant \limsup \int_X f_n d\mu$.

We construct a new sequence of measurable functions $g_n = g - f_n$. By Fatou lemma, $\int_X \lim_n \inf g_n d\mu \leqslant \lim_n \inf \int_X g_n d\mu$. That is, $\int_X \lim_n \inf (g - f_n) d\mu = \int_X g d\mu - \int_X \lim_n \sup_{m \geqslant n} f_m d\mu \leqslant \int_X g d\mu - \lim_n \sup_{m \geqslant n} \int_X f_m d\mu$

Lemma. If $f \in L^1(\mu)$, then $|f_X f d\mu| \leq \int_X |f| d\mu$

Proof. There exists $\alpha \in C$ s.t. $|\alpha| = 1$ and $\alpha \int_X f d\mu \in [0, \infty)$. $|\int_X f d\mu| =$ $|\alpha \int_X f d\mu| = |\int_X \alpha f d\mu| = \int_X \alpha f d\mu = \int_X Re(\alpha f) d\mu \leqslant \int_X |\alpha f| d\mu = \int_X Re(\alpha f) d\mu \leqslant \int_X Re(\alpha f) d\mu \leqslant \int_X |\alpha f| d\mu = \int_X Re(\alpha f) d\mu \leqslant \int_X |\alpha f| d\mu = \int_X Re(\alpha f) d\mu \leqslant \int_X Re(\alpha$

Theorem. (Lebesgue's dominant convergence theorem) Let $f_n \in L^1(X, \Sigma, \mu)$ which converges pointwise to a function f. Suppose that there exists $g \in L^1(X, \Sigma, \mu)_R$, s.t. $\forall n \in N, |f_n| \leqslant g$. Then, $\lim_{n \to \infty} \int_X |f_n - f| = 0$, whence $\lim_{n \to \infty} \int_X f_n d\mu = 0$ $\int_X f d\mu$.

Proof. $|f_n| \leq g(n \in N) \Rightarrow |f| \leq g$. $2g - |f_n - f| \geq 0$. By Fatou lemma, $\int_X \lim_{n \to \infty} \inf_{m \geq n} (2g - |f_m - f|) \leq \lim_{n \to \infty} \inf_{m \geq n} \int_X 2g - |f_m - f| d\mu$. $\int_X 2g d\mu \leq \int_X 2g d\mu - \lim \sup_{n \to \infty} |f_n - f| d\mu \Rightarrow \lim \sup_{n \to \infty} |f_n - f| d\mu = 0$

Definition. An element F of Σ is called μ -null if $\mu(F) = 0$. An statement about points is said to hold almost everywhere if the condition that the statement is false is a μ -null set.

It is possible to extend the result of the above theorems related to convergence with the concept of "almost everywhere".

Proposition 6. If $X \stackrel{f}{\longrightarrow} [0, \infty]$, $A \in m$ and $\int_A f d\mu = 0$, then f = 0 μ -a.e. on A.

Proof. By Chebyshev's inequality, $\forall c \in (0, \infty), \ c\mu x \setminus A | f(x) \geqslant c \leqslant \int_A f d\mu$. In particular, for $n \in N$, $\frac{1}{n}\mu x \in A|f(x) \geqslant \frac{1}{n} \leqslant \int_A f d\mu$. So that $\mu x \in A|f(x) \geqslant 1$ $\frac{1}{n} = \mu(A_n) = 0.$ $A_n \to x \in A | f(x) > 0$ as $n \to \infty$. Then, $\mu x \in A | f(x) \neq 0 = 0$. Hence, we proved the proposition.

Proposition 7. For $f \in L^1(\mu)$, $|\int_X f d\mu| = \int_X |f| d\mu \Leftrightarrow \exists \alpha \in C \text{ s.t. } |\alpha| = 1$ and $|f| = |\alpha f|$.

Proof. Let $\alpha \in C$ s.t. $|\alpha|=1$ and $\alpha \int_X f d\mu = |\int_X f d\mu|$. Then, $|\int_X f d\mu| = \int_X \alpha f d\mu = Re \int_X \alpha f d\mu = \int_X Re(\alpha f) d\mu \leqslant \int_X |\alpha f| d\mu = \int_X |f| d\mu$ and by the assumption $|\int_X f d\mu| = \int_X |f| d\mu$. Therefore, $\int_X |\alpha f| - Re(\alpha f) d\mu = 0$. By the above proposition, $|\alpha f| = Re(\alpha f) \mu$ -a.e. Therefore, $|f| = \alpha f \mu$ -a.e.

Proposition 8. Given $X \xrightarrow{f_n} \bar{R}$ or C measurable. If $\sum_{n=1}^{\infty} \int_X |f_n| d\mu < \infty$,

- (1) $\sum_{n=1}^{\infty} f_n$ converges absolutely μ -a.e. (2) $\sum_{n=1}^{\infty} f_n \in L^1(\mu)$ (3) $\int_X (\sum_{n=1}^{\infty} f_n) d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$.

Proof. By Chebyshev's inequality for every $m \in N$, $m\mu x \in X | \sum_{n=1}^{\infty} |f_n(x)| \geqslant m \leqslant \int_X \sum_{n=1}^{\infty} |f_n(x)| d\mu = \sum_{n=1}^{\infty} \int_X |f_n(x)| d\mu < \infty. \ m \in N, \ \mu x \in X | \sum_{n=1}^{\infty} |f_n(x)| \geqslant m$ decreases to $m \in N$, $\mu x \in X | \sum_{n=1}^{\infty} |f_n(x)| = \infty$ as $n \to 0$. Since $\mu x \in X | \sum_{n=1}^{\infty} |f_n(x)| \geqslant m \leqslant \frac{\sum_{n=1}^{\infty} \int_X |f_n(x)| d\mu}{m} \to 0$ as $m \to \infty$. $|\sum_{n=1}^{\infty} f_n| \text{ is } \mu\text{-a.e. measurable. } |\lim_{m \to \infty} \sum_{n=1}^{m} f_n| = \lim_{m \to \infty} |\sum_{n=1}^{m} f_n| \leqslant \lim_{m \to \infty} \sum_{n=1}^{m} |f_n| = \sum_{n=1}^{\infty} |f_n| \in L^1(\mu). \text{ By DCT, } \sum_{n=1}^{\infty} f_n \in L^1.$

5.3 Constructions of measurable spaces

Definition. A map $P(X) \xrightarrow{\mu} \bar{R}_+$ is an outer measure on X if $\mu(\emptyset) = 0, A \subseteq B \subseteq X \Rightarrow \mu(A) \leqslant \mu(B)$, and σ -subadditivity, $\forall A_n \subseteq X, \mu(\cup_{n=1}^{\infty} A_n) \leqslant \sum_{n=1}^{\infty} \mu(A_n)$.

Theorem. (Carathèodory's construction of measures) $A_{\mu} := A \subseteq X | \forall E \subseteq X, \mu(E) = \mu(E \cap A) + \mu(E \setminus A)$. Then, $(X, A_{\mu}, \mu|_{A_{\mu}})$ is a complete measure space.

Proof. It is clear that $\emptyset \in A_{\mu}$ and $A^c \in A_{\mu} \Leftrightarrow A \in A_{\mu}$. Now we prove that $\forall A_n \in A_{\mu}(n \in N), [\cap_{n=1}^{\infty} A_n \in A_{\mu}]$. For any $E \subseteq X$ s.t. $\mu(E) < \infty$, $\mu(E) = \mu(E \cap A_1) + \mu(E \cap A^c) = \mu(E \cap A_1 \cap A_2) + \mu(E \cap A_1 \cap A_2^c) + \mu(E \cap A_1^c) = \mu(E \cap \bigcap_{n=1}^{m} A_n) + \sum_{n=1}^{m} \mu(E \cap A_1 \cap ... \cap A_{n-1} \cap A_n^c) \geqslant \mu(E \cap \bigcap_{n=1}^{\infty} A_n) + \sum_{n=1}^{m} \mu(E \cap A_1 \cap ... \cap A_{n-1} \cap A_n^c) \leqslant \mu(E) - \mu(E \cap \bigcap_{n=1}^{\infty} A_n) + \sum_{n=1}^{m} \mu(E \cap A_1 \cap ... \cap A_{n-1} \cap A_n^c) \leqslant \mu(E) - \mu(E \cap \bigcap_{n=1}^{\infty} A_n)$. By σ -subadditivity, $\mu(E \cap (\bigcap_{n=1}^{\infty} A_n)^c) = \mu(E \cap A_1 \cap ... \cap A_{n-1} \cap A_n^c) \leqslant \mu(E) - \mu(E \cap \bigcap_{n=1}^{\infty} A_n)$. And again by sigma-subadditivity, $\mu(E \cap (\bigcap_{n=1}^{\infty} A_n)^c) + \mu(E \cap \bigcap_{n=1}^{\infty} A_n) = \mu(E)$. Hence, we proved that A_{μ} is a σ -algebra on X. Now we show that $\mu|_{A_{\mu}}$ is a measure. Let $B_n \in A_{\mu}$ be a disjoint family. $\mu(\bigcup_{n=1}^{\infty} B_n) = \mu((\bigcup_{n=1}^{\infty} B_n) \cap B_1) + \mu((\bigcup_{n=1}^{\infty} B_n) \setminus B_1) = \mu(B_1) + \mu(\bigcup_{n=2}^{\infty} B_n) = ... = \sum_{n=1}^{m} + \mu(\bigcup_{n=m+1}^{\infty} B_n) \geqslant \sum_{n=1}^{m} \mu(B_n)$. As $m \to \infty$, $\mu(\bigcup_{n=1}^{infty} B_n) \geqslant \sum_{n=1}^{\infty} \mu(B_n)$. Again, by σ -subadditivity, the equality holds. In addition, completeness of measure can easily be seen.

Lemma. (Creating outer measures via coverings) X: a set, $S \subseteq P(X)$, $S \xrightarrow{\phi} \bar{R}_+$, a function. If $\emptyset \in S$ and $\phi(\emptyset) = 0$ (for simplicity), then $P(X) \xrightarrow{\mu_{\phi}} \bar{R}_+$, $A \longrightarrow \inf \Phi_A$ is an outer measure where $\Phi_A = \sum_{U \in U} \phi(U) | U \subseteq S$ is a countable cover of A.

Proof. $0 = \phi(\emptyset) \in Phi_{\emptyset} \Rightarrow \mu_{\phi}(\emptyset) = \inf \Phi_{\emptyset} = 0.$ $A \subseteq A' \Rightarrow \Phi_{A'} \subseteq \Phi_A \Rightarrow \mu_{\phi}(A) = \inf \Phi_A \leqslant \inf \Phi_{A'} = \mu_{\phi}(A').$ Given $A_n \subseteq X$, by definition, for any $\epsilon > 0$ and $n \in N$, there exists a countable cover $U_n \subseteq S$ of A_n s.t. $\sum_{U \in U_n} \phi(U) \leqslant \mu_{\phi}(A_n) + \frac{\epsilon}{2^n}.$ $U := \bigcup_{n=1}^{\infty}$ is a countable cover of $\bigcup_{n=1}^{\infty} A_n$. $\mu_{\phi}(\bigcup_n A_n) \leqslant_{U \in U} \phi(U) \leqslant \sum_{n=1}^{\infty} \sum_{U \in U_n} \phi(U) \leqslant \sum_{n=1}^{\infty} \mu_{\phi}(A_n) + \epsilon.$ Hence, we proved σ -subadditivity.

Example. X: metric space. $\alpha, \delta \in (0, \infty)$. Consider $S = S \subseteq X | diamS < \delta.(diam:=supd(s_1, s_2)|s_1, s_2 \in S)$

. Let S $R_+, S \to (diamS)^{\alpha}$. Then $H^{\alpha}_{\delta} = \mu_{\phi}$ is an outer measure and $\forall A \subseteq X$ and $\delta' > \delta > 0$, $[H^{\alpha}_{\delta'}(A) \leqslant H^{\alpha}_{\delta}(A)]$. Define $H^{alpha} = \sup H^{\alpha}_{\delta}$, called the α -dimensional Hausdorff outer measure when $X = R^d$ with the usual metric.

Remark. $\forall A \subseteq X \ and \ \delta \in (0,1)[H^{\alpha}_{\delta}(A) \downarrow \quad as \quad \alpha \uparrow]. \ We \ call \ sup \alpha > 0 | H^{\alpha} = \infty \ the \ Hausdorff \ dimension \ of \ A.$

Example. In R^d a standard rectangle is a subset of the form $I_1 \times I_2 \times ... \times I_d$ with I_d an interval of R. Let S =all standard rectangles. S R_+ , where vol = $l(I_1)...l(d)$. Then we call μ_{vol} the Lebesgue outer measure. We call μ_{vol} Lebesgue measurable sets.

Definition. Let X be a set and $S \subseteq P(Z)$. (1) S is a semiring on X if $\emptyset \in S$, $A \cap B \in S$ if $A, B \in S$, $\forall A, B \in S$, exists $S_1, ..., S_k \in S$, $B \setminus A = S_1 \cup ... \cup S_k$.

(2) A function S $\overset{\varphi}{R}_+$ is finitely/countable additive if for any finite/countable family of disjoint subsets A_n of X, $\cup_n A_n \in S$, then $\phi(\cup_n A_n) = \sum_n \phi(A_n)$. If furthermore $\phi(\emptyset) = 0$, we call ϕ a finitely/countably additive measure on the semiring S.

Lemma. Let μ be finitely additive measure on a semiring $S \subseteq P(X)$.

- (1) All elements of S are μ_{l} -measurable.
- (2) If μ is a countably additive measure on the semiring S, then $\mu_t|_S = \mu$

Proof. Let $S \in S$. It follows immediately from the definition of the induced outer measure that $\mu_{I}(S) \leqslant \mu(S)$. Therefore, it suffices to show that if $(A_{n})_{n=0}^{\infty}$ is a countable cover of S, then $\mu(S) \leqslant \sum_{n=0}^{\infty} \mu(A_{n})$ since $\mu(S) \leqslant \inf \sum_{n=0}^{\infty} \mu(A_{n}) = \mu_{I}$. Define, $\forall n \in N$: $B_{n} = A_{n} \backslash A_{n-1} \backslash ... \backslash A_{0}$. Using the mathematical induction, we will prove that for all natural numbers m < n, $B_{n,m} = A_{n} \backslash A_{n-1} \backslash ... \backslash A_{n-m}$ is the finite union of pairwise disjoint elements of S. The base case m=0 is trivial. Now assume that the induction hypothesis that the above statement is true for some m < n-1, and let $D_{1}, D_{2}, ..., D_{N}$ be pairwise disjoint elements of S such that: $B_{n,m} = \bigcup_{n=1}^{N} D_{k}$. Then, $B_{n,m+1} = B_{n,m} \backslash A_{n-m-1} = \bigcup_{n=1}^{N} D_{k} \backslash A_{n-m-1} = \bigcup_{n=1}^{N} (D_{k} \backslash A_{n-m-1})$. Hence $B_{n,m+1}$ is the finite union of pairwise disjoint elements of S, completing the induction step. Using the above result, we can choose a finite set F_{n} of pairwise disjoint elements of S for which $B_{n} = \bigcup F_{n}$. Now, $x \in S$ if and only if $\exists n \in N$ such that $x \in S \cap A_{n}$. Taking the smallest such n, it follows that x not in $A_{0}, A_{1}, ... A_{n-1}$, and so $x \in S \cap B_{n}$. Therefore, $S = \bigcup_{n=0}^{\infty} (S \cap B_{n})$. Hence, $\mu(S) = \mu(\bigcup_{n=0}^{\infty} (S \cap B_{n})) = \mu(\bigcup_{n=0}^{\infty} (S \cap \bigcup_{n=0}^{\infty} (S \cap F_{n})) = \mu(\bigcup_{n=0}^{\infty} (S \cap \bigcup_{n=0}^{\infty} (S \cap F_{n})) = \sum_{n=0}^{\infty} \mu(\bigcup_{n=0}^{\infty} (S \cap F_{n}) = \sum_{n=0}^{\infty} \mu(\bigcup_{n=0}^{\infty} (S \cap F_{n})$.

Remark. Let S = all standard rectangles. Then S is a semiring. It is easy to check so. To state $\mu_{vol} = vol$, it suffices to show that Lebesgue measure on the standard rectangles is indeed measure.

Lemma. Lebesgue measure on the standard rectangles is indeed measure.

Proof. It is known that $vol(\emptyset) = 0$. he only possibility for two disjoint half-open n-rectangles to constitute a single, large half-open n-rectangle is when they are of the form: [[a..b)][[a'..b']) s.t. we have for some i with $1 \le i \le n$: $i = j \Rightarrow a'_j = b_j$. We can then see that vol is finitely additive. Suppose that $[a_m..b_m) \downarrow \emptyset$. Then there exists at least $1 \le j \le n$ s.t.: $\lim_{m \to \infty} a_{m,j} = 1$

 $\lim_{m\to\infty}b_{m,j}$. The fact that the sequence is decreasing means that, from the Cartesian product of subsets, $\forall m\in N$, and $\forall 1\leqslant i\leqslant n$: $[a_{m,i},...,b_{m,i})\subseteq [a_{1,i},...b_{1,i})$. Hence we have: $\lim_{m\to\infty}vol([a_m.b_m))=\lim_{m\to\infty}m_{i=1}^\infty(b_{m,i}-a_{m,i})\leqslant \lim_{m\to\infty}(b_{m,j}-a_{m,j})\Pi_{i=1,i\neq j}^n(b_{m,i}-a_{m,i})=0$.

Theorem. (Carathèodory's criterion of Borel measurability) Let X be a metric space and $P(X) \stackrel{\mu}{\longrightarrow} \bar{R}_+$ an outer measure. If $\mu(A \cup B) = \mu(A) + \mu(B)$ for any $A, B \subseteq X$ s.t. $d(A,B) \not\ni 0$, then $B_x \subseteq A_\mu$

Proof. It suffices to show that $C \in A_{\mu}$ for all C: closed in X. Let $C_k = x \in X | d(x,c) \leqslant \frac{1}{k}$. For any $E \subseteq X$ with $\mu(E) < \infty$, since $d(E \setminus C_k, E \cap C) \geqslant \frac{1}{k} > 0$. $\mu(E) \geqslant \mu((E \setminus C_k) \cap (E \cap C)) = \mu(E \setminus C_k) + \mu(E \cap C)$. We will show that $\lim_{k \to \infty} \mu(E \setminus C_k) = \mu(E \setminus C)$. $E \setminus C = (E \setminus C_k) \cup \bigcup_{j=k}^{\infty} D_j$ where $D_j = x \in E | \frac{1}{j+1} < d(x,C) \leqslant \frac{1}{j}$. Then $\mu(E \setminus C_k \leqslant \mu(E \setminus C) \leqslant \mu(E \setminus C_k) + \sum_{j=k}^{\infty} \mu(D_j)$. Since $\sum_{j=1}^{\infty} \mu(D_j) = \sum_{j=1} \mu(D_{2j-1}) + \sum_{j=1} \mu(D_{2j}) \leqslant 2\mu(E) < \infty$.

Definition. (Regularity)

 $X: top. space (X, M, \mu): measurable space. A \subseteq X.$

- (1) A is outer regular w.r.t. μ if $\mu(A) = \inf_{A \subseteq U \subseteq_{open} X} \mu(U)$.
- (2) A is inner regular w.r.t. μ if $\mu(A) = \sup_{C \subseteq A} \mu(C)$
- (3) A is inner compact-regular w.r.t. μ if $\mu(A) = \sup_{K \subset A} \mu(K)$.

5.4 Integration on product spaces

Definition. Suppose that (X, A) and (Y, B) are measurable spaces. The product σ -algebra $A \otimes B$ is the σ -algebra on $X \times Y$ generated by the collection of all measurable rectangles, $A \otimes B = \sigma$ $(A \times B : A \in A, B \in B)$. The product of (X,A) and (Y,B) is the measurable space $(X \times Y, A \otimes B)$.

Definition. Let Z be a set and $m \subseteq P(Z)$. We say that m is a monotone class if $\forall S_n \in m(n \in N), S_n \uparrow S$ or $S_n \downarrow S$ and $S \in m$ as $n \to \infty$.

Remark. Every σ -algebra is a monotone class.

For any $S \subseteq P(Z), m(S) := \bigcap_{S \subseteq m} m$ is clear the smallest monotone class containing S.

Theorem. (monotone characterization of $A \otimes B$) Apply π - λ theorem. $\epsilon_{A,B}$ consists of all finite disjoint unions of measurable rectangles and thus a π -system. The smallest monotone class generated by $\epsilon_{A,B}$ is the smallest $\lambda(\epsilon_{A,B})$, and hence the smallest σ -algebra.

Lemma. Let (X, A) and Y, B be two measurable spaces. For any $E \in A \otimes B$ and $x \in X(resp. \ y \in Y)$, we have $E_x \in B(resp. \ E_y \in A)$.

Proof. Consider $n = S \subseteq X \times Y | \forall x \in X$ and $y \in Y, S_x \in B$ and $S_y \in A$. Then n includes all measurable rectangles. Besides n is a σ -algebra. This can be seen by checking directly or noticing n is the final σ -algebra induced by all the maps i_x and i_y . Hence it contains $A \otimes B \subseteq n$.

Theorem. If (X, A, μ) and (Y, B, ν) are σ -finite measure spaces, then for any $Q \subseteq A \otimes B$,

- (1) the functions $X \xrightarrow{\phi_Q} \bar{R}_+, x \to \nu(Q_x)$ and $Y \xrightarrow{\psi_Q} \bar{R}_+, y \to \mu(Q_y)$ A and B measurable respectively
- (2) $\int_X \phi_Q d\mu = \int_Y \psi_Q d\nu$.

Proof. Let $n=Q \subseteq A \otimes B|(1)$ and (2) holds for Q.

- (i) It is clear that n includes all measurable rectangles and all elementary sets, and hence a π -system.
- (ii) We claim: For any Q_n , if $Q_n \uparrow Q$ as $n \to \infty$, then $Q \in n$. $Q_n \uparrow Q \Rightarrow (Q_n)_x \uparrow$ Q_x as $n \to \infty$. Thus, $\phi_{Q_n} \uparrow \phi_Q$ as $n \to \infty$ by monotonicity of measure. Hence ϕ_Q is A-measurable. $\int_X phi_Q = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=} \lim_{n\to\infty} \int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{MON}{=}$ $\lim_{n\to J_Y} \psi_{Q_n} d\nu = \int_Y \psi_Q d\nu.$
- (iii) Next, we claim that: for any $Q_n \in n$, if $Q_n \downarrow Q$ as $n \to \infty$ and $\exists A \in A$ and $B \in B$ s.t. $Q_n \subseteq A \times B$ and $\mu(A), \nu(B) < \infty$, then $Q \in n$. $\phi_{Q_n} \downarrow \phi_Q$ and $\psi_{Q_n} \downarrow \psi_Q$ as $n \to \infty$ and hence ϕ_Q and ψ_Q are A and B measurable respectively. Besides, $\phi_{Q_n} \leqslant \nu(B)\chi_A$ and $\psi_{Q_n} \leqslant \mu(A)\chi_B$. Both $\nu(B)\chi_A$ and $\mu(A)\chi_B$ are in $L^1(\mu)$. By the dominated convergence theorem, $\int_X phi_Q =$ $\int_X (\lim_{n\to\infty} \phi_{Q_n}) d\mu \stackrel{DCT}{=} \lim_{n\to\infty} \int_X \phi_{Q_n} d\mu = \lim_{n\to} \int_Y \psi_{Q_n} d\nu = \int_Y \psi_Q d\nu.$
- (iv) We further claim: for any disjoint family $Q_n \in n$. $\bigcup_{n=1}^{\infty} Q_n \in n$. For any $x \in X$. $Q_x = \bigcup_{n=1}^{\infty} (Q_n)_x$ and hence $Q_x \in B$ and $\nu(Q_x) = \sum_{n=1}^{\infty} \nu(Q_{nx})$ and A measurable. $\int_X \phi_Q d\mu = \sum_{n=1}^{\infty} \int_X \phi_{Q_n} d\mu = \sum_{n=1}^{\infty} \int_Y \psi_{Q_n} d\nu = \int_Y \psi_Q d\nu$. (v) We also claim: Let $n' = Q \in A \otimes B | \forall m, n[Q \cap (X_m \times Y_n) \in n]$, then $n' = A \otimes B$.
- $(i)+(iv) \Rightarrow \epsilon_{A,B} \subseteq n'.$
- $(ii)+(iii) \Rightarrow n'$ is a monotone class.

 $A \otimes B \subseteq n'$. (vi) $n = A \otimes B$. For $Q \in A \otimes B = n'$, we have $Q \cap (X_m \times Y_n) \in n$. Since $Q \cap (X_m \times Y_n)$ is a disjoint countable family in n. By (iv), $Q = \bigcup Q \cap$ $(X_m \times Y_n) \in n$.

Remark. $(iv)+(n=A\otimes B)\Rightarrow \sigma\text{-}additivity.$ $\mu \otimes \nu(\emptyset \times \emptyset) = 0.$ $\mu \otimes \nu$ is called a positive product measure.

Theorem. (Tonelli's theorem) If f is \bar{R}_+ valued, then ϕ_f is A measurable, and ψ_f is B measurable, and $\int_X \phi_f d\mu = \int_Y \psi_f d\nu$.

Proof. The statement holds for $f = \phi_Q$, with $Q \in A \otimes B$, and hence every R_+ valued $A \otimes B$ -measurable simple functions. For a general R_+ -valued f, select a sequence s_n of R_+ -valued $A \otimes B$ -measurable simple functions s.t. $s_n \uparrow f$ as $n \to \infty$. $\phi_{s_n}(x) = \int_Y (s_n)_x d\nu \uparrow \int_Y f_x d\nu = \phi_f(x)$ as $n \to \infty$. ϕ_{s_n} : Ameasurable $\Rightarrow \phi_f$ A-measurable. $\int_X \phi_f d\mu = \int_X (\lim_{n \to \infty} \phi_{s_n} d\mu = \lim_{n \to \infty} \int_X \phi_{s_n} d\mu = \lim_{n \to \infty} \int_{X \times Y} s_n d(\mu \otimes \nu) = \int_{X \times Y} (\lim_{n \to \infty} s_n) d(\mu \otimes \nu) = \int_X \int_X \phi_{s_n} d\mu = \lim_{n \to \infty} \int_X$ $\int_{X\times Y} fd(\mu\otimes\nu).$

Theorem. (Fubini's theorem) Let f be a general measurable function. (1) If $\int_X \int_Y |f(x,y)| d\nu(Y) d\mu(x) < \infty$, then f is $\mu \otimes \nu$ -integrable.

(2) f is $\mu \otimes \nu$ -integrable, then f_x is ν -integrable for $\mu - a.e., x \in X$, f_y is μ -integrable for $\nu - a.e., y \in Y$.

Proof. (1) Applying Tonelli's theorem to |f|, we see that $\int_{X\times Y} |f| d(\mu\otimes\nu) = \int_X \int_Y |f(x,y)| d\nu(y) d\mu(x) < \infty$.

(2) It suffices to consider the \bar{R} -valued functions. By applying Tonelli's theorem to |f|, $\int_X \int_Y |f(x,y)| d\nu(y) d\mu(x) = \int_{X\times Y} |f| d(\mu\otimes\nu) < \infty$. Then $x\in X|\phi_{|f|}(x)=\infty$ is μ -null, in other words, $\phi_{|f|}(x)<\infty$ for ν -integrable for μ -a.e. and for all x. Thus, $\phi_f(x)=\int_Y f(x,y) d\nu$ is defined on a μ -big set $X\setminus x\in X|\phi_{|f|}(x)=\infty$. $\phi_f(x)=\int_Y f(x,y) d\nu=\int_Y f^+(x,y) d\nu-\int_Y f^-(x,y) d\nu=\phi_{f^+}(x)-\phi_{f^-}(x)$ at least on $X\setminus x\in X|\phi_{|f|}(x)=\infty$. By Tonelli's theorem, ϕ_{f^+},ϕ_{f^-} are A-measurable functions on X. Thus, $\phi_f(x)\stackrel{\mu}{=}h(x)=\phi_{f^+}(x)-\phi_{f^-}(x)$ if $x\in X\setminus x\in X|\phi_{|f|}(x)=\infty$, 0 if $x\in x\in X|\phi_{|f|}(x)=\infty$. It is easy to check h is in L^1 .

Theorem. (Egoroff's theorem) Let $f_n \in \mu(A)_k$. If (1) f_n takes value in C μ -a.e. for every $n \in N$, (2) f_n converges μ -a.e. as $n \to \infty$, and (3) $\mu(X) < \infty$, then $\forall \epsilon > 0, \exists A \in A$ s.t. $\mu(X \setminus A) < \epsilon$ and f_n converges uniformly in A.

Proof. By (1)(2), $\exists N \in A$ with $\mu(N) = 0$ s.t. f_n takes values in C on $X \setminus N$ and $f_n \to f$ pointwise on $X \setminus N$ as $n \to \infty$. Let $g_n(x) = \sup_{m \geqslant n} |f_m(x) - f(x)|$ for $x \in X \setminus N$. Then, $g_n(x) \downarrow 0$ on $X \setminus N$ as $n \to \infty$. By (3), $\mu(X) < \infty$. We have $g_n \xrightarrow{\mu} 0$ on $X \setminus N$ as $n \to \infty$. And hence $\forall \epsilon > 0$ and $k \in N$, $\exists n_k \in N$ s.t. $\mu x \in X \setminus N | g_{n_k} > \frac{1}{k} < \frac{\epsilon}{2^k}$. Let $B_k = x \in X \setminus N | g_{n_k} > \frac{1}{k}$ and $A = \bigcap((X \setminus N) \setminus B_k) = X \setminus (N \cup \bigcup_{k=1}^{\infty} B_k)$. So $\mu(X \setminus A) = \mu(N \cup \bigcup_{k=1}^{\infty} B_k) < \epsilon$ Besides, $x \in A \to \forall k \in N, x$ not in $N \cup B_k \Leftrightarrow \sup_{m \geqslant n_k} |f_m - f| = g_{n_k} < \frac{1}{k}$, Therefore, f_n converges to f uniformly on A.

5.5 Measures vs abstraction integration-Riesz's representation theorem

Let X be a topological space and $A \ [0, \infty]$ a positive measure on a σ -algebra A which includes B_x on X. Then all the continuous maps on X are B_x -measurable. Besides, if $\mu(K) < \infty$ for every compact sets $K \subseteq X$, then $C_c(x) \subseteq L^1(\mu)$. If this is the case, we have a C-linear map $C_c(X) \to C$, $f \to \int_X f d\mu$.

Definition. A C-linear map $C_c(X) \xrightarrow{\wedge} C$ is a positive functional if it maps $C_c(X)_{\geq 0}$ into $R_{\geq 0}$ or equivalently, $\forall f_1, f_2 \in C_c(X), f_1 - f_2 \geq 0 \Rightarrow \land f_1 \geq \land f_2$.

So there is a question: given a positive functional $C_c(x) \xrightarrow{\wedge} C$, does there exists a measure $A \xrightarrow{\mu} [0, \infty] with B_x \subseteq A$ s.t. $\wedge f = \int_X f d\mu$ for all $f \in C_c(X)$?

Definition. A demiregular measure on a topological space X is a measure on some σ -algebra which contains B_x s.t. every compact subsets of X is measure-finite, all open sets are inner compact regular, and the measure is outer regular.

Notation. Given a topological space X,

 $K \prec f$ means that K is compact in X, $f \in C_c(X)$, $0 \leqslant f \leqslant 1$, and $f|_K = 1$. $f \prec V$ means that V is open in X, $f \in C_c(X)$, $0 \leqslant f \leqslant 1$, and supp $f \subseteq V$.

Theorem. If $K \subseteq U \subseteq X$, then there exists $f \in C_c(X)$ such that $0 \leqslant f \leqslant 1$, $f_K = 1$ and support of f in U.

Remark. By Urysohn's lemma, X: locally compact Hausdorff $\Rightarrow \forall K \subseteq V \subseteq X, \exists f, s.t. \ K \prec f \prec V$.

Lemma. Let X be a locally compact Hausdorff space. Given a positive functional $C_c(X)$ $\stackrel{\wedge}{C}$ and a σ -algebra A which includes B_X on X, there exists at most one demiregular measure μ -on A s.t. $\forall f \in C_c(X), \land f = \int_X F d\mu$. Suppose that μ_1 and μ_2 are two such measures on A. By inner compact regularity of open sets and outer regularity, it suffices to show that $\mu_1(K) = \mu_2(K)$ for all compact subsets K of X since agreeing on the compact subsets implies that they agree on the open subsets by inner regularity of open sets, and on every subsets in A by outer regularity.

For any compact $K \subseteq X$ and $\epsilon > 0$, by the property of demiregularity, there exists an open set $V \supseteq k$ s.t. $\mu_2 < \mu_2(K) + \epsilon$. By Urysohn's lemma, $\exists f, K \prec f \prec V, f|_K = 1$. Then $\mu_1 = \int_X \chi_K d\mu_1 \le \int_X f d\mu_1 = \wedge f = \int_X f d\mu_2 \le \int_X \chi_v d\mu_2 = \mu_2(V) < \mu_2(K) + \epsilon$. Let $\epsilon \downarrow 0$, $\mu_1(K) \le \mu_2(K)$. By symmetry, $\mu_1(K) = \mu_2(K)$.

Theorem. (Riesz's representation theorem) Let X be a locally compact Hausdorff space. Given a positive functional $C_c(X) \xrightarrow{\wedge} C$, there exists a complete demiregular μ on some σ -algebra $A \supseteq B_x$ on X s.t. $\wedge f = \int_X f d\mu$ for every $f \in C_c(X)$ and every measure finite set is inner compact regular.

Proof. For any $V \subseteq_{open} X$, we let $\mu(V) = \sup\{ \land f | f \prec V \}$. For any $A \subseteq X$, we let $\mu(A) = \inf\{ \mu(V) | A \subseteq V \subseteq X \}$. Note that if A in X open, the two definitions coincide. Let $A_F := \{ A \subseteq X | \mu(A) < \infty \text{ and } \mu(A) = \sup\{ \mu(K) | K \subseteq A \} \}$. Finally, let $A = \{ A \subseteq X | A \cap K \in A_F, \text{ for every compact sets} \}$. We claim that $A \stackrel{\mu}{\longrightarrow} [0, \infty]$ is an expected measure.

Step 1. $\forall A_j \subseteq X$. $\mu(\cup_j A_j) \leqslant \sum_j \mu(A_j)$.

We may assume that $\mu(A_j) < \infty$ for all $j \in N$. $\forall \epsilon > 0, \exists$ open $V_j \supseteq A_j$ s.t. $\mu(V_j) < \mu(A_j) + \frac{\epsilon}{2^j}$. Let $V = \cup V_j$. Recall that $\mu(V) = \sup\{ \land f | f \prec V \}$. For any $f \prec V$, since suppf is compact, $\exists m, suppf \subseteq V_1 \cup ... \cup V_m$ Take a partial partition of unity $\rho_1, ... \rho_m$ for suppf w.r.t. $V_1, ... V_m$. Then $f = \sum_{i=1}^m \rho_i f$, and hence $\land f = \sum_{i=1}^m \land (\rho_i f) \leqslant \sum_{i=1}^m \mu(V_i) \leqslant \sum_{i=1}^m \mu(V_i) \leqslant \sum_{i=1}^m (\mu(A_i) + \frac{\epsilon}{2^i}) \leqslant \sum_{m=1}^\infty \mu(A_i) + \epsilon$. This proves that $\mu(V) \leqslant \sum_{m=1}^\infty \mu(A_i) + \epsilon$. Let $\epsilon \downarrow 0$. Step 2. \forall compact $K \subseteq X$, $K \in A_F$ and $\mu(K) = \inf\{ \land f | k \prec f \}$. For

Step 2. \forall compact $K \subseteq X$, $K \in A_F$ and $\mu(K) = \inf\{ \land f | k \prec f \}$. For any f s.t. $K \prec f$ and $0 < \alpha < 1$, we let $V_{\alpha} = \{ x \in X | f(x) > \alpha \}$. Then $\alpha \mu(K) \leqslant \alpha \mu(V_{\alpha}) = \sup\{ \alpha \land g | g \prec V_{\alpha} \} \leqslant \land f$. Let $\alpha \uparrow 1$, $\mu(K) \leqslant \land f \Rightarrow \mu(K) \leqslant \inf\{ \land f | K \prec f \}$. On the other hand, $\forall \epsilon > 0$, \exists open $V \supseteq K$ s.t. $\mu(V) < \mu(K) + \epsilon$. Choose h s.t. $K \prec h \prec V$. Then, $\land h \leqslant \mu(V) < \mu(K) + \epsilon$, and hence $\inf\{ \land f | K \prec f \} < \mu(K) + \epsilon$. Let $\operatorname{epsilon} \downarrow 0$.

Step 3. \forall open $V \subseteq X$. $\mu(V) = \sup\{\mu(K) | K \subseteq V\}$.

It suffices to prove that $\mu(V) \leq \sup\{\mu(K)|K \subseteq V\}$. For any $\beta < \mu(V)$, there exists $f \prec V$ s.t. $\beta < \wedge f$. Then $\beta < \wedge f \leq \mu(\operatorname{supp} f)$: $\mu(\operatorname{supp} f) = \inf \mu(U) | \operatorname{supp} f \subseteq U \subseteq X$ and $\wedge f \leq \mu(U)$ if $f \prec U$.

Step 4. \forall disjoint $a_j \in A_F$. $\mu(\cup_j A_j) = \sum_j \mu(A_j)$. If furthermore, $\mu(\cup_j A_j) < \infty$, then $\cup_j A_j \in A_F$.

We claim that \forall compact K and K' in X, $\mu(K \cup K') = \mu(K) + \mu(K')$. $\forall \epsilon > 0$, $\exists f, \ K \cup K' \prec f \ \text{and} \ \land f < \mu(K \cup K') + \epsilon \ \text{by step 2.}$ Applying Urysohn's lemma, $\exists \rho, \ K \prec \rho \prec X \setminus K' \Rightarrow K \prec \rho f \ \text{and} \ K' \prec (1-p)f. \ \mu(K) + \mu(K') \leqslant \land (\rho f) + \land ((1-\rho)f) = \land f < \mu(K \cup K') + \epsilon.$ Then, let $\epsilon \downarrow 0$. Now since $Aj \in A_F$, $\exists \ \text{compact} \ K_j \subseteq A_j \ \text{s.t.} \ \mu(A_j) - \frac{\epsilon}{2^j} \cdot \sum_j \mu(A_j) - \epsilon \leqslant \sum_{j=1}^\infty \mu(K_j) = \lim_{m \to \infty} \sum_{j=1}^m \mu(K_j) = \lim_{m \to \infty} \mu(\cup_{j=1}^m K_j) \leqslant \mu(\cup_{j=1}^\infty A_j).$ Let $\epsilon \downarrow 0$. If furthermore $\mu(\cup_{j=1}^\infty A_j) < \infty$, then $\exists N \ \text{s.t.} \ \mu(\cup_j A_j) - \epsilon < \sum_{j=1}^N \mu(A_j) < \sum_{j=1}^N \mu(A_j) < \sum_{j=1}^N \mu(K_j) + \epsilon = \mu(\cup_{j=1}^N K_j) + \epsilon.$ Hence we proved. Step 5. $\forall A \in A_F \ \text{and} \ \epsilon > 0$, $\exists K \subseteq A \subseteq V \subseteq X$, $\mu(V \setminus K) < \epsilon$. By the definitions

Step 5. $\forall A \in A_F \text{ and } \epsilon > 0$, $\exists K \subseteq A \subseteq V \subseteq X$, $\mu(V \setminus K) < \epsilon$. By the definitions of μ and A_F , $\exists K \subseteq A \subseteq V \subseteq X$ s.t. $\mu(V) < \mu(A) + \frac{\epsilon}{2}$ and $\mu(A) - \frac{\epsilon}{2} < \mu(K)$. Thus, $\mu(V) - \mu(K) < \epsilon$. Since $V \setminus K \subseteq X$ and $\mu(V \setminus K) < \mu(V)$. By step 3, $V \setminus K \in A_F$ and by step 2, $K \in A_F$. Thus, $\mu(V) = \mu(K) + \mu(V \setminus K)$ and hence $\mu(V \setminus K) < \epsilon$.

Step 6. $\forall A_1, A_2 \in A_F$, $A_1 \setminus A_2$, $A_1 \cap A_2$, and $A_1 \cup A_2 \in A_F$.

By step 5. $\forall \epsilon > 0$, $\exists K_i \subseteq A_i \subseteq V_i \subseteq X$ s.t. $\mu(V_i \setminus K_i) < \frac{\epsilon}{2}$. Then $A_1 \setminus A_2 \subseteq V_1 \setminus K_2 \subseteq (V_1 \setminus K_1) \cup (K_1 \setminus V_2) \cup (V_2 \setminus K_2)$, and hence $\mu(A_1 \setminus A_2) \leqslant \mu(V_1 \setminus K_1) + \mu(K_1 \setminus V_2) + \mu(V_2 \setminus K_2) < \mu(K_1 \setminus V_2) + \epsilon$. Note that $K_1 \setminus V_2$ is a compact and $\mu(A_1 \setminus A_2) < \infty$. Thus, $A_1 \setminus A_2 \in A_F$. $A_1 \cap A_2 = A_1 \setminus (A_1 \setminus A_2)$. $A_1 \cup A_2 = (A_1 \setminus A_2) \cup A_2$. Since $\mu(A_1 \cup A_2) \leqslant \mu(A_1) + \mu(A_2) < \infty$. Then, $A_1 \cup A_2 \in A_F$.

Step 7. A is a σ -algebra on X containing B_X .

Let $A \in A$, for any compact $K \subseteq X$, $(X \setminus A) \cap K = K \setminus (A \cap K) \in A_F$ by step 6. Under the complement operation, it is closed.

Let $A_j \in A$. For any compact $K \subseteq X$, set $B_1 = A_1 \cap K$ and $B_n = A_n \cap K \setminus \bigcup_{j=1}^{n-1} B_j$. Then B_j is a disjoint family in A_F , and hence $\bigcup_j A_j \cap K = \bigcup_j B_j \cap K$. Since $\mu(\bigcup_j (B_j \cap K)) \leq \mu(K)$. Therefore, by step 4, A_j is in A_F .

Let $C \subseteq_{closed} X$. For any compact $K \subseteq X$, $C \cap K$ compact $A \in A_F$. Step 8. $A_F = \{A \in A | \mu(A) < \infty\}$

 \subseteq Let $A \in A_F$. For any compact $K \subseteq X$, $A \cap K \subseteq K$, then $A \in A$.

(\supseteq) Let $A \in A$ s.t. $\mu(A) < \infty$. By the definition of $\mu(A)$, \exists open $V \supseteq A$ with $\mu(V) < \mu(A) + 1 < \infty$. By step 3, $V \in A_F$. Let $\epsilon > 0$, by step 5, $\exists K \subseteq V$ with $\mu(V \setminus K) < \epsilon$. $A \cap K \in A_F$ since $A \in A$. Thus \exists compact $H \subseteq A \cap K$ with $\mu(A \cap k) < \mu(H) + \epsilon$. $A = (A \cap K) \cup (A \setminus K) \subseteq (A \cap K) \cup (V \setminus K)$. $\mu(A) \le \mu(A \cap K) + \mu(V \setminus K) < \mu(H) + 2\epsilon$. $\mu(A) = \sup\{\mu(H) | H \subseteq A\}$.

Step 9. $A \xrightarrow{\mu} [0, \infty]$ is a measure.

Given disjoint $A_j \in A$, if $\mu(A_j = \infty \text{ for some j, then } \mu(\cup_j A_j) = sum_j \mu(A_j)$, and if every $\mu(A_j) < \infty$, $A \in A_F$, by step 4, $\mu(\cup_j A_j) = sum_j \mu(A_j)$. The completeness of measure can be obtained by applying the results of previous steps. Step 10. $\forall f \in C_c(X), \land f = \int_X f d\mu$.

It suffices to verify that $\wedge f \leqslant \int_X f d\mu$ for every $f \in C_c(X)_R$. Choose a,b, s.t.

 $\begin{array}{l} a < f(x) \leqslant b \text{ for all } x \in X \text{ and for } \epsilon > 0 \text{, choose } a = y_1 < \ldots < y_n = b \text{ s.t.} \\ y_i - y_{i-1} < \epsilon \text{. Let } A_i = \left\{x \in X | y_{i-1} < f(x) \leqslant y_i\right\} \cap suppf \text{ which is Borel since} \\ \text{f is continuous. Therefore, } A_i \in A. \ \exists \text{ open } V_i \supseteq A_i \text{ s.t. } \mu(V_i) < \mu(A_i) + \frac{\epsilon}{n}. \text{ We} \\ \text{assume that } f|_{v_i} < y_i + \epsilon \text{ by replacing } V_i \text{ by } V_i \cap \left\{x \in X | f(x) < y_i + \epsilon\right\}. \text{ Take a} \\ \text{partial partition of unity, } \rho_1, \ldots \rho_n \text{ for suppf w.r.t. } V_1, \ldots V_n. \text{ Then } f = \sum_{i=1}^n \rho_i f \\ \text{and } suppf \prec \sum_{i=1}^n \rho_i. \text{ Then } \mu(suppf) \leqslant \wedge \left(\sum_{i=1}^n \rho_i\right). \ \rho_i f \leqslant (y_i + \epsilon)\rho_i. \text{ Then } \\ \wedge f = \sum_{i=1}^n \wedge (\rho_i f) \leqslant \sum_{i=1}^n (y_i + \epsilon) \wedge \rho_i = \sum_{i=1}^n (|a| + y_i + \epsilon) \wedge \rho_i - |a| \sum_{i=1}^n \wedge \rho_i \leqslant \\ \sum_{i=1}^n (|a| + y_i + \epsilon) (\mu(A_i + \frac{\epsilon}{n}) - |a| \mu(suppf) = \sum_{i=1}^n (y_i - \epsilon) \mu(A_i) + 2\epsilon \sum_{i=1}^n \mu(A_i) + \\ \sum_{i=1}^n (|a| + y_i + \epsilon) \frac{\epsilon}{n} - |a| \mu(suppf) + |a| \sum_{i=1}^n \mu(A_i) \leqslant \int_X f d\mu + \epsilon (2\mu(suppf) + |a| + b + \epsilon). \text{ Let } \epsilon \downarrow 0. \end{array}$

Remark. There is another approach of proving. In the above step 1 implies that μ_{\wedge} is an outer measure on X. By Carathéodory's construction $A_{\mu_{\wedge}} = \{A \subseteq X | \forall E \subseteq X, \mu_{\wedge}(E) = \mu_{\wedge}(E \cap A) + \mu(E \setminus A)\}$ is an σ -albegra and μ_{\wedge} is a complete measure. There can verify directly that $\sigma_{\mu_{\wedge}} \supseteq T_X$ and hence $A_{\mu_{\wedge}} \supseteq B_x$. Thus step 2 and the definition of μ_{\wedge} imply that $A_{\mu_{\wedge}} \stackrel{\mu_{\wedge}}{\longrightarrow} [0, \infty]$ a demiregular measure on X. By Cohn 7.2.6, for a demiregular measure on a Hausdorff space every σ -finite measurable sets is μ_{\wedge} -inner compact regular. Finally step 10 works, another proof is complete.

6 L^p space

Let (X, A, μ) be a measure space. Recall that for $0 and <math>f \in \mu(A)$, $||f||_p = (\int_X |f(x)|^p d\mu(x))^{\frac{1}{p}} \in [0, \infty]$. $L^p(\mu)_K = \{f \in \mu(A)_K |||f||_p < \infty\}$.

Definition. $L^{\infty}(\mu)_K = \{all \ K\text{-}valued \ bounded \ measurable \ functions}\}.$ For $f \in L^{\infty}(\mu)_K$, $||f||_{\infty} = \inf\{M|\{x \in X||f(x)| > M\} \ is \ \mu\text{-}finull\}.$

Theorem. (Young's inequality) $\forall a,b \geq 0$ and $p,q \geq 0$, $\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow ab \leq \frac{a^p}{p} + \frac{b^q}{q}$.

Proof. e^x is convex. $e^{\frac{1}{p}plna+\frac{1}{q}qlnb} \leq \frac{1}{p}e^{plna}+\frac{1}{q}e^{qlnb}$.

Theorem. (Hölder's inequality) For any conjugate exponents where $p,g \in [0,\infty] \frac{1}{p} + \frac{1}{q} = 1$. If f and g are extended real valued nonnegative A-measurable functions, then $\int X f g d\mu \leq ||f||_p ||g||_q$.

Proof. $(1 We may assume that <math>||f||_p$ and $||g||_q$ are both finite and nonzero. Let $F = \frac{f}{||f||_p}$ and $G = \frac{g}{||g||_q}$. Then by Young's inequality, $\int_X FGd\mu \le \int_X (\frac{F^p}{p} + \frac{G^q}{q}) d\mu = 1$.

 $\begin{array}{l} \int_X (\frac{F^p}{p} + \frac{G^q}{q}) d\mu = 1. \\ (p=1) \text{ Let } E = \{x \in X | f(x) > 0\}, \text{ which is σ-finite. And } N = \{x \in X | g(x) > ||g||_{\infty}\} \ E \cap N \text{ is μ-null. } f(x)g(x) \leqslant f(x)||g(x)||_{\infty} \text{ for all } x \in X \setminus E \cap N. \text{ Then } \int_X |f(x)g(x)| d\mu = \int_{X \setminus E \cap N} |f(x)g(x)| d\mu \leqslant \int_{X \setminus E \cap N} f(x) d\mu ||g||_{\infty}. \end{array}$

Theorem. (Minkowski's inequality) For any $1 \le p \le \infty$ and $f, g \in \mu(A)$, we may have $||f + g||_p \le ||f||_p + ||g||_p$.

Proof. $(p < \infty)$ We may assume that both $||f||_p$ and $||g||_p$ are both finite. Then $||f + g||_p < \infty$, since $(\frac{|f+g|}{2})^p ≤ (\frac{|f|+|g|}{2})^p ≤ \frac{1}{2}|f|^p + \frac{1}{2}|g|^p$. $|f + g|^p ≤ |f||f + g|^{p-1} + |g||f + g|^{p-1}$. Then by Hölder's inequality, $\int_X |f + g|^p dμ ≤ ||f||_p (\int_X |f + g|^{(p-1)q})^{\frac{1}{q}} + ||g||_p (\int_X |f + g|^{(p-1)q})^{\frac{1}{q}} ⇒ (\int_X |f + g|^p dμ)^{1-\frac{1}{q}} = (\int_X |f + g|^p dμ)^{\frac{1}{p}} ≤ ||f||_p + ||g||_p.$ $(p = \infty) f, g ∈ L^\infty(μ) ⇒ f + g ∈ L^\infty(μ)$. Let $N_1 = \{x ∈ X | f(x) > ||f||_\infty\}$ and $N_2 = \{x ∈ X | g(x) > ||g||_\infty\}$. $N_1 ∪ N_2$ is μ-finull. Then $|f(x) + g(x)| ≤ ||f(x)| + ||g(x)| ≤ ||f||_\infty + ||g||_\infty$. □

Corollary. $(L^p, ||||_p)$ is a seminormed space.

Definition. $N^p(\mu) = \{f \in L^p(\mu)|||f||_p = 0\} = \{f|f\mu 0\} \text{ for } 0 0\}, \mu-finull\} \text{ for } p = \infty \text{ is a vector subspace of } L^p(\mu) \text{ by using } Minkowski's inequality. Let ordinary } L^p = L^p(\mu) \setminus N^p(\mu).$ $(L^p(\mu), ||\dot{|}|_{L^p}) \text{ where } ||< f>||_{L^p} = ||f||_p.$

Theorem. Let (X, A, μ) be a measurable space and $1 \leq p \leq \infty$. $L^p(\mu)$ is a Banach space.

Proof. $(1 \leq p < \infty)$. Let $< f_n >$ be a Cauchy sequence in $L^p(\mu)$. Then f_n is Cauchy sequence w.r.t. the seminorm $||\dot{|}|_p$, i.e. $\forall \epsilon > 0, \exists N, \forall n, m \geqslant N \Rightarrow ||f_n - f_m||_p < \epsilon$. By Chebyshev's inequality, for any $\epsilon > 0$, $\mu(\{x|f_n - f_m| > \epsilon\}) \leq \frac{1}{\epsilon^p} \int_X |f_n - f_m|^p d\mu = \frac{1}{\epsilon} ||f_n - f_m||_p^p$. Thus, $\lim_{N \to \infty, m, n \geqslant N} \sup \mu(\{x||f_n - f_m| > \epsilon\}) \leq \lim_{n \to \infty, n, m \geqslant N} \frac{1}{\epsilon^p} (||f_n - f_m||_p)^p = 0$. Therefore, there exists a subsequence f_{n_k} wich converges μ -a.e. to some function f. By Fatou's lemma, $\int_X |f_{n_k} - f|^p d\mu = \int_X \lim_{l \to \infty} |f_{n_k} - f_{n_l}|^p d\mu \leq \lim_{l \to \infty} \int_X |f_{n_k} - f_{n_l}|^p d\mu \to 0$ as $k \to \infty$ and hence $||f_{n_k} - f||_p < \infty$ if k is sufficiently large since $||f||_p \leq ||f_{n_k} - f||_p + ||f_{n_k}||_p < \infty$ by Minkowski inequality. Therefore, $||< f_{n_k} > - < f > ||_p \to 0$ as $k \to \infty$. Since the subsequence converges, the Cauchy sequence converges $\Rightarrow < f_n > \to < f > \text{w.r.t.}$ $||\dot{|}|_p$ as $n \to \infty$. $(p = \infty)$ Suppose that $< g_n \in L^\infty(\mu)$ s.t. $\sum_{n=1}^\infty ||g_n||_\infty < \infty$. For any $n \in N$,

 $(p=\infty) \text{ Suppose that } \langle g_n \in L^\infty(\mu) \text{ s.t. } \sum_{n=1}^n ||g_n||_\infty \langle \infty. \text{ For any } n \in N, \\ N_n = \{x \in X | g_n(x) > ||g_n||_\infty \} \text{ is μ-finull. Since } (K, |\dot{}|) \text{ is complete, for every } \\ x \in X \setminus \bigcup_{m=1}^\infty N_n, \text{ the series } \sum_{n=1}^\infty g_n(x) \text{ converges absolutely. Let } s(x) = \\ \sum_{n=1}^\infty g_n(x) \text{ if } x \in X \setminus \bigcup_{n=1}^\infty N_n, = 0 \text{ if } x \in \bigcup_{n=1}^\infty N_n. |s(x) - \sum_{n=1}^m g_n(x)| \leqslant \\ \sum_{n=m+1}^\infty |g_n(x)| \leqslant \sum_{n=m+1}^\infty ||g_n||_\infty \text{ if } x \in X \setminus \bigcup_{n=1}^\infty. \text{ Thus, } ||s - \sum_{n=1}^\infty g_n||_\infty \leqslant \\ \sum_{n=m+1}^\infty ||g_n||_\infty \to 0 \text{ as } m \to \infty \text{ and hence } s = \sum_{n=1}^\infty g_n \text{ in } L^\infty(\mu).$

Proposition 9. The simple functions in $L^p(\mu)$ form a dense subspace of $L^p(\mu)$.

Proof. We may assume K=R.

 $1 \leqslant p < \infty$ For any $f \in L^p(\mu)$, there exits $[0, \infty)$ -valued simple functions g_n and h_n s.t. $g_n \uparrow f^+$ and $h_n \uparrow f^-$. Let $f_n = g_n - hn$. $f_n \uparrow f$ pointwise. $|f_n(x) - f(x)|^p \leqslant |f(x)|^p$ for all $x \in X$ and $n \in N$. By LDCT, $\lim_{n \to \infty} ||f_n - f||_p = 0$ $p = \infty$ Given $f \in L^\infty(\mu)$ For any $\epsilon > 0$, there exists $a_0, ...a_k$ s.t. $a_0 < -||f||_\infty < a_1 < ... < a_k = ||f||_\infty$ and $\max_j a_j - a_{j-1} < \epsilon$. Let $g = \sum_{j=1}^k a_j \chi_{A_j}$ where $A_j = f^{-1}((a_{j-1}, a_j])$. Then $g \in L^\infty$. Then $||g - f||_\infty < \epsilon$.

Corollary. If $1 \le p < \infty$, X is a LCH, and μ is a demiregular measure s.t. $A \in A$ with $\mu(A) < \infty$ is μ -inner compact regular, then $C_cX \subseteq L^p(\mu)$.

Proof. For any simple functions $g \in L^p(\mu)$, if we let $A = \{x \in X | g(x) \neq 0\}$, then $\mu(A) < \infty$. By Lusin's theorem, for any $\epsilon > 0$, $\exists h \in C_c(X)$ s.t. $\mu(\{x | h(x) \neq g(x)\}) < \epsilon$ and $\sup_x |h| = \sup_x |g|$. Then $||g - h||_p = (\int_X |g - h|^p d\mu)^{\frac{1}{p}} \leq \epsilon^{\frac{1}{p}} \sup_x |g|$.

6.1 Duality

Suppose that $\frac{1}{p} + \frac{1}{q} = 1$ with $p, q \in [1, \infty]$. We have natural pairing $L^p(\mu) \times L^q(\mu) \xrightarrow{T} K$ i.e. maps $(f, g) \longrightarrow \int_X fg d\mu$ which descends to a pairing $(< f >, < g >) \longrightarrow \int_X fg d\mu$ s.t. $|T(< f >, < g >)| \leqslant || < f > ||_p||| < g > ||_q$. $T \in L(L^p, L^q, K)$. T induces a map $L^q(\mu) \xrightarrow{\varphi} L^p(\mu)^* = L(L^p(\mu), K)$. $||\varphi||_{L(L^q(\mu), L^p(\mu)^*)} = \sup \frac{||\varphi_{< g}||_{L^p(\mu)}}{||\langle g \rangle||_q}$. $||\varphi_{< g}||_{L^p(\mu)} = \sup \frac{||\varphi_{< g}||_{L^p(\mu)}}{||\langle f \rangle||_p} = \frac{|T(< f >, < g >)|}{||\langle f \rangle||_p} \leqslant ||\varphi_{< g}||_{L^p(\mu)}$. Thus, $||\varphi||_{L(L^q(\mu), L^p(\mu)^*)} \leqslant 1$.

Theorem. If $1 \leq p < \infty$, then $L^q(\mu) \xrightarrow{\varphi} L^p(\mu)^*$ preserves norms. Actually, ϕ is a surjection if 1 , or <math>p = 1 and μ is σ -finite, or p = 1, X is LCH, $(A, \mu) = (A_{\mu_{\wedge}}, \mu|_{A_{\mu_{\wedge}}})$, or p = 1, G : LCH topological group, μ : demiregular measure on B_G s.t. $\mu(A) \Rightarrow$ inner compact regular.

Proof. For any $z \in C$ we let

$$sign(z) = \begin{cases} \frac{z}{|z|}, & if \quad z \neq 0\\ 0, & if \quad z = 0 \end{cases}$$
 (2)

(1) p=1: Let $g \in L^{\infty}(\mu)_K$ with $||g||_{\infty} > 0$. Then for any $\epsilon > 0$, the set $\{x \in X ||g(x)| > ||g||_{\infty} - \epsilon\}$ is not mu-finull, and hence $\exists A \in A$ with $\mu(A) < \infty$ s.t. $B = \{x \in X ||g(x)| > ||g||_{\infty} - \epsilon\} \cap A, \mu(B) > 0$. If $\underline{f}(\dot{)} = signg(\dot{)}\chi_B$, then $f \in L^1(\mu)_K$, $||f||_1 \le \mu(B)$ and $\varphi_{<g>}(<f>) = \int_X signg(\dot{)}\chi_B(x)g(x)d\mu(x) = \int_B |g|d\mu \geqslant (||g||_{\infty} - \epsilon)\mu(B) \geqslant (||g||_{\infty} - \epsilon)||f||_1$. Then $||\varphi_{<g>}|| \geqslant ||g||_{\infty} - \epsilon$. Let $\epsilon \downarrow 0$.

(2) $1 Let <math>g \in L^q(\mu)_K$ and $f = signg|g|^{q-1}$. Then $|f|^p = |g|^q \in L^1(\mu)_K$. $\varphi_{<g>}(<f>) = \int_X signg|g|^{q-1}gd\mu = (||g||_q)^q = (||f||_p)^p$. $(||g||_q)^q = |\varphi_{<g>}(<f>)| \le ||\varphi_{<g>}||_{L^p(\mu)^*}|| < f> ||_p = ||\varphi_{<g>}||_{L^p(\mu)^*}(||g||_q)^{\frac{q}{p}}$. Then $||g||_q \le ||\varphi_{<g>}||$.

6.2 Signed measures and complex measures

Definition. Let $A \stackrel{\mu}{\longrightarrow} \bar{R}(resp.C)$ be a map.

- (1) μ is finitely or countably additive if \forall disjoint $A_n \in A$, $\mu(\cup_n A_n) = \sum_n \mu(A_n)$
- (2) μ is signed or complex measure on (X,A) if it is σ -additive and nontrivial $\mu(\emptyset) = 0$.
- (3) μ is a finite signed neasure if it is a signed measure which take values in R.

Note that a signed measure is not monotone in general.

A signed measure μ cannot take both ∞ and $-\infty$ as values.

Definition. Let μ be a signed measure on (X,A) and $A \in A$. We say that A is a positive set if $\forall E \in A, E \subseteq A \rightarrow \mu(E) \geqslant 0$. \emptyset is both μ -positive and negative.

Countable union of μ -positive (resp. μ -negative) is μ -positive (resp. μ -negative). μ is monotone on a μ -positive or μ -negative set

Lemma. μ : signed measure on (X, A) and $A \in A$. If $-\infty < \mu(A) < 0$, then $\exists \mu$ -negative set $B \subseteq A$ s.t. $\mu(B) \leqslant \mu(A)$.

Proof. Let $\delta_1 = \sup\{\mu(E) | E \in A \text{ and } E \subseteq A\} \geqslant \mu(\emptyset) = 0$ $\exists E_1 \in A \text{ s.t. } E_1 \subseteq A \text{ and } \mu(E_1) \geqslant \min\{\frac{\delta_1}{2},1\}.$ Then define δ_n and E_n inductively. $\delta_n = \sup\{\mu(E) | E \in A \text{ and } E \subseteq A \setminus (E_1 \cup \ldots \cup E_{n-1})\}$ and $E_n \in A$ s.t. $E_n \subseteq A \setminus (E_1 \cup \ldots \cup E_{n-1})$ and $\mu(E_n) \geqslant \min\{\frac{\delta_n}{2},1\}.$ Let $A_\infty = \bigcup_{n=1}^\infty E_n$ and $B = A \setminus A_\infty$. It is easily to see that E_n are disjoint and $\mu(A_\infty) = \sum_{n=1}^\infty \mu(E_n) \geqslant 0$ and hence $\mu(B) \leqslant \mu(B) + \mu(A_\infty) = \mu(A).$ Now it remains to prove B is μ -negative. Since $\mu(A) \neq -\infty$ and $\mu(A) = \mu(B) + \mu(A_\infty) \Rightarrow \mu(A_\infty) \neq \infty$ and $\mu(A_\infty) = \sum_n \mu(E_n) < \infty \Rightarrow \lim_{n \to \infty} \mu(E_n) = 0 \Rightarrow \lim_{n \to \infty} \delta_n = 0.$ For any $E \in A, E \subseteq B \subseteq A \setminus \bigcup_{n=1}^\infty E_n$, then $\mu(E) \leqslant \delta_n$ and hence $\mu(E) \leqslant 0$.

Theorem. (Hahn's decomposition) For any signed measure μ on (X, A). There exists a μ -positive P and μ -negative N s.t. $X = P \cup N$ and $P \cap N = \emptyset$.

Proof. We may assume that $\mu(E) \neq -\infty$ for every $E \in A$. Let $L = \inf\{\mu(A) | A$ is μ -negative $\} \leqslant 0$ and choose a sequence N_m of μ -negative sets s.t. $\lim_{m \to \infty} \mu(N_m) = L$. We define $N = \bigcup_{m=1}^{\infty} N_m$. N is still a μ -negative set and $\mu(N) \neq -\infty$ by assumption. Since $L \leqslant \mu(N) \leqslant \mu(N_m)$ for all m, $\mu(N_m) \to L \Rightarrow \mu(N) = L$. Now define $P = X \setminus N$. It remains to show that P is μ -positive. Suppose not. $\exists A \in A$ s.t. $A \subseteq P$ and $\mu(A) < 0$. By the above lemma, $\exists \mu$ -negative set $B \subseteq A$ s.t. $\mu(B) \leqslant \mu(A)$. Since $B \cap N = \emptyset$, $B \cup N$ is still a μ -negative set with $\mu(B \cup N) < \mu(N) = L$. Contradictory.

Remark. The Hahn's decomposition is not unique. But the differences between (P,N),(P',N') are some μ -trivial subsets in A. Jordan's decomposition of a signed measure. For a signed measure μ on (X,A), fix a Hahn decomposition (P,N) for μ . We define $A \xrightarrow{\mu^+} \mu(A \cap P)$ and $A \xrightarrow{\mu^-} -\mu(A \cap N)$. Then μ^+, μ^- are both positive measures on (X,A), at least one of which is finite, s.t. $\mu = \mu^+ - \mu^-$. Then (μ^+, μ^-) is called the Jordan's decomposition of μ , which is independent of the choice of (P,N).

Proposition 10. $\mu^{\pm}(A) = \sup\{\pm \mu(E) | E \in A \text{ and } E \subseteq A\}.$

Proof. For any $E \in A$ with $E \subseteq A$, $\mu(E) = \mu^+(E) - \mu^-(E) \leqslant \mu^+(E) \leqslant \mu^+(A)$ and hence \geqslant holds. On the other hand, $\mu^+(A) = \mu(A \cap P)$, since $A \cap P \subseteq A \Rightarrow \leqslant$ holds.

Definition. $|\mu|$ is called the variation of μ . $||\mu|| = |\mu|(X)$ is called the total variation.

Definition. Let μ be a complex measure on (X, A). For any $A \in A$, we define $|\mu|(A) = \sup\{\sum_{j=1}^{n} |\mu(A_j)||A_1,...,A_n \text{ form a partition of } A,n \in N\}$. We call $A \xrightarrow{|\mu|} [0,\infty]$ the variation and $|\mu| = |\mu|(X)$ the total variation of μ .

Proposition 11. For any complex measure μ , $|\mu|$ is a finite positive measure. If $|\mu|(A) \leq \nu(A)$ where ν is a positive measure, then $|\mu| \leq \nu$.

Proof. (1) $|\mu|(\emptyset) = 0$ (2) We first prove that $|\mu|$ is finitely additive. Let A and $A' \in A$ be disjoint. If $A \cup A' = \bigcup_{j=1}^n A_j$ where A_j is a partition of $A \cup A'$, then $\sum_{j=1}^n = \sum_{j=1}^n |\mu(A_j \cap A) + \mu(A_j \cap A')| \leq \sum_{j=1}^n |\mu(A_j \cap A)| + \sum_{j=1}^n |mu(A_j \cap A')| \leq |\mu|(A) + |\mu|(A')$ and hence $|\mu|(A \cup A') \leq |\mu|(A) + |\mu|(A')$. On the other hand, for any number $M < |\mu|(A) + |\mu|(A')$ we may choose $M_1, M_2 \in R$ s.t. $M = M_1 + M_2, M_1 < |\mu|(A)$

and $M_2 < |\mu|(A')$. Then \exists partitions B_j , $A = \bigcup_{j=1}^l B_j$ and B_k' , $A' = \bigcup_{k=1}^m B_k'$ s.t. $M_1 < \sum_{j=1}^l |\mu(B_j)|$ and $M_1 < \sum_{k=1}^m |\mu(B_k')|$. Therefore, $M = M_1 + M_2 < \sum_{j=1}^l |\mu(B_j)| + sum_{k=1}^m |\mu(B_k')| \le |\mu|(A \cup A')$ since B_k' , B_j together form a partition of $A \cup A'$. So $|\mu|(A) + |\mu|(A') \le |\mu|(A \cup A')$.

Then, it suffices to show that for any $E_n \in A$, if $E_n \downarrow \emptyset$ then $|\mu|(E_n) \to 0$ as $n \to \infty$. $\forall A \in A$, $|\mu|(A) \leqslant |Re\mu|(A) + |Im\mu|(A)$ where $(Re\mu)() = Re(\mu()), (Im\mu)() = Im(\mu())$. It is easily to see that $|Re\mu|(A), |Im\mu|(A)$ are finite positive measure. Therefore, $|Im\mu|(E_n), |Re\mu|(E_n) \to 0$ as $n \to \infty$. Thus, |mu| is σ -additive and finite.

Remark. If μ is a finite signed measure on (X, A), then the two definitions of $|\mu|$ coincide.

Proposition 12. $(M(X,A)_K, ||\cdot||)$ is a Banach space.

Proof. It is easily to see that $(M(X,A)_K,||\cdot||)$ is a normed space. We then want to prove every Cauchy sequence converges. Let $\mu_n \in M(X,A)_K$ be a Cauchy sequence w.r.t. total variation. Then, as a sequence of K-valued functions on A $(\sigma$ -algebra), μ_n is uniformly Cauchy. For any $A \in A$, $|\mu_n(A) - \mu_m(A)| \leq |\mu_n - \mu_m|(A) \leq ||\mu_n - \mu_m||$. Thus, μ_n converge uniformly to a function $A \stackrel{\mu}{K} = \mu_n(\emptyset) = \lim_{n \to \infty} \mu_n(\emptyset) = 0$. We claim that μ is σ -additive. Then it suffices that for any $E_n \in A$, if $E_n \downarrow \emptyset$ then $\mu(E_n) \to 0$. (Noting that finite additivity is obvious)

 $\forall \epsilon > 0, \exists N > 0, \forall A \in A, n \geqslant N,$ by uniformly convergence, $|\mu(A) - \mu_n(A)| < \frac{\epsilon}{2}$. Since μ_N is a finite measure, $\exists M > 0, \ |\mu_N(E_m)| < \frac{\epsilon}{2}$ if $m \geqslant M$. Thus, $|\mu(E_m)| \leqslant |\mu(E_m) - \mu_N(E_m)| + |\mu_N(E_m)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ if $m \geqslant M$. In other words, $\mu(E_m) \to 0$ as $m \to \infty$. Therefore, $\mu \in M(X, A)_K$. Eventually, $||\mu_n - \mu|| \to 0$ as $n \to \infty$ can be easily proved, so we ignore.

6.3 Hilbert space

Theorem. (Orthogonal Projection Theorem) Let C be a closed convex set in a Hilbert space E and $x \in E$, then there is unique $y \in C$ such that $||y - x|| = \inf_{z \in C} ||x - z|| = \min_{z \in C} ||x - z||$

Furthermore, y is characterized by $x - y \in M^{\perp}$.

Proof. Let $\alpha=\inf_{z\in M}||x-z||$. There is a sequence y_n in M such that $\alpha_2\leqslant ||x-z||\leqslant \alpha^2+\frac{1}{n}$. By parallelogram property, $||(y_n-x)-(y_m-x)||^2+||(y_n-x)+(y_m-x)||^2=2(||y_n-x||^2+||y_m-x||^2)\leqslant 4\alpha^2+\frac{2}{m}+\frac{2}{n}$. Therefore, $||y_n-y_m||^2\leqslant 4\alpha^2+\frac{2}{m}+\frac{2}{n}-4||\frac{y_m+y_n}{2}-x||^2\leqslant \frac{2}{n}+\frac{2}{m}$ since C is convex. Then y_n is a Cauchy sequence. Since M is a subspace of Hilbert space, then M is still complete and hence there is $y\in M$ such that $\lim_{n\to\infty}||y_n-y||=0$.

Now let y be any element of M which satisfies $||x-y|| = \min_{z \in M} ||x-z||$. For $t \in R$ and $z \in M$, we have $||x-y-tz||^2 = ||x-y||^2 - 2Re(x-y,z)t + t^2||z||^2 \geqslant ||x-y||^2$. Then $-2Re(x-y,z)t + t^2||z||^2 \geqslant 0$. If t > 0, $-2Re(x-y,z) + t||z|| \geqslant 0$, then drive $t \downarrow 0$ and we have $-2Re(x-y,z) \leqslant 0$. If t < 0, $-2Re(x-y,z) + t||z|| \leqslant 0$, then drive $t \uparrow 0$ and we have $-2Re(x-y,z) \geqslant 0$. Then Re(x-y,z) = 0 By the similar way, we take iz and have Im(x-y,z) = 0. Thus, $x-y \perp z$.

Now we prove for uniqueness. Suppose that there are two $y, y' \in M$ with $\min_{z \in M} ||x - z|| = ||y - x|| = ||y' - x||, ||y - y'||^2 = 2(||y - x||^2 + ||y' - x||^2) - ||y + y' - 2x||^2 \leq 0$. Then y = y'.

Corollary. If F is a closed vector subspace of E, then P_F is a linear map from E onto F with $||P_F|| = 1$ F $\neq \{0\}$ and the decomposition is unique.

Theorem. Let H_1 and H_2 be two Hilbert spaces with inner product $<\cdot>_1$ and $<\cdot>_2$ respectively. The following are equivalent.

- (1) $U: H_1 \longrightarrow H_2$ is an isometric isomorphism.
- (2) $U: H_1 \longrightarrow H_2$ is a surjective isometry.
- (3) $U: H_1 \longrightarrow H_2$ is surjective and $\langle Ux, Uy \rangle_2 = \langle x, y \rangle_1 \ \forall x, y \in H_1$.
- (4) $U^*: H_2 \longrightarrow H_1$ s.t. $<Ux, y>_2 = < x, U^*y>_1, \forall x \in H_1$ and $\forall y \in H_2$ is the inverse of U.

Proof. $1 \Rightarrow 2$ is obvious.

 $2\Rightarrow 3$ follows from considering $< U(x+\alpha y), U(x+\alpha y)>_2=< x+\alpha y, x+\alpha y>_1$ by isometry which leads to $< Ux, Ux>_2=< Ux, U\alpha y>_2+< U\alpha y, Ux>_2+< U\alpha y, U\alpha y>_2=< x, x>_1+/, x\alpha y>_1+< \alpha y, x>_1+< \alpha y, \alpha y>_1$. Using the fact that U is isometric, we have $E(\alpha)=< Ux, \alpha Uy>_2+< \alpha Uy, Ux>_2=< x, \alpha y>_1+< \alpha y, x>_1$. By considering E(1) and E(i) cases, we can find $< Ux, Uy>_2=< x, y>_1 \forall x, y\in H_1$.

The proof of $3 \Rightarrow 4$ is straightforward: $\forall x, y \in H_1, \langle x, y \rangle_1 - \langle Ux, Uy \rangle_2 = \langle x, y \rangle_1 - \langle U^*ux, y \rangle_1 = \langle x - U^*Ux, y \rangle_1$. But this means $U^*Ux = x$ for all $x \in H_1$. Since U is surjective, it implies U^*U and UU^* are equivalent to I. Therefore, U^* is a inverse map of U. Since U has an inverse it must be a bijection. Moreover, $||Ux||_2^2 = \langle Ux, Ux \rangle_2 = \langle x, U^*Ux \rangle_1 = \langle x, x \rangle_1 = ||x||_2^2$.

Proposition 13. H: Hilbert space.

 $M \oplus M^{\perp} \xrightarrow{U} H$ is an isomorphism of Hilbert spaces.

Proof. By the previous theorem, it suffices to show that $M \oplus M^{\perp} \xrightarrow{U} H$ is surjective and $\langle U(m,m^{\perp}),U(n,n^{\perp})\rangle_{H}=\langle (m,m^{\perp}),\langle n,n^{\perp})\rangle_{M\oplus M^{\perp}}.$ First the surjectivity: Denote by P the orthogonal projection on M. Then for any $h\in H$, we have h=Ph+(h-Ph). By definition of P, $Ph\in M$. Furthermore, by the orthogonal projection theorem, $h-Ph\perp M$; that is $h-Ph\in M^{\perp}.$ It follows that h=U(Ph,h-Ph), showing U is a surjection.

It remains to check U preserves the inner product: $< U(m, m^{\perp}), U(n, n^{\perp}) >_{H} = < m + m^{\perp}, n + n^{\perp} >_{H} = < m, n >_{H} + < m^{\perp}, n >_{H} + < m, n^{\perp} >_{H} + < M^{\perp}, n >_{H} = < m, n >_{H} + < m^{\perp}, n^{\perp} >_{H} = < (m, m^{\perp}), (n, n^{\perp}) >_{M \oplus M^{\perp}}.$

Corollary. If $L[inL(H,K), \exists !y \in H, s.t. \forall x \in H, Lx = (x,y)_h$. If Lx = 0 for all x, then take y=0. Otherwise, define $M = \{x : Lx = 0\}$. The linearity of L shows that M is a subspace. The continuity of L shows that M is closed. Then by the orthogonal projection theorem, M^{\perp} does not consist of 0 alone. Hence there exists $z \in M^{\perp}$, with ||z|| = 1. Put u = (Lx)z - (Lz)x. Since Lu = (Lx)(Lz) - (Lz)(Lx) = 0, we have $u \in M$. Thus, (u,z)=0. Thus, Lx = (Lx)(z,z) = (Lz)(x,z). Take $y = \alpha z$, where $\bar{\alpha} = Lz$. The uniqueness of y is easily proved, for if (x,y) = (x,y') for all $x \in H$, set z = y - y'. Then, (x,z) = 0 for all $x \in H$; in particular, (z,z) = 0, hence z = 0.

Corollary. $L^2(\mu)_K \stackrel{\Phi^2}{L}(\mu)_K^*$. Φ is isomorphic.

Theorem. (Equivalences of definitions of closed linear span) Let H be a Hilbert space over K and let $A \subseteq H$. The following definitions of the concept of closed linear psan of A are equivalent:

- (1) $span(A) = \cap M$, where M consists of all closed linear subspaces M of H with $A \subseteq M$.
- (2) span(A) is the smallest linear subspace M of H s.t. $A \subseteq M$.
- (3) $s\bar{pan}(A) = cl(\{\sum_{k=1}^{n} \alpha_k f_k : n \in \mathbb{N}, \alpha_i \in F, f_i \in A\})$

Proof. Let the proposition (1) holds; assume that the closed linear subspace M' contains the set A, then because $M' \in M$, we have $s\bar{pan}(A) \subseteq M'$. We claim that the intersection of arbitrary family of subspaces is a subspace. Suppose C is a family of subspaces. Denotes $\cap C = \{f \in H | \text{ for any } V \in C, \text{ there } f \in V\}$. If $f \in \cap C$, then for any $V \in C$, $f \in V$, there $\alpha f \in V$ for $\alpha \in F$. If $f, g \in \cap C$, we have for any $V \in C, f + g \in V$. Therefore, $s\bar{pan}(A)$ is a subspace and in addition it is closed, as intersection of arbitrarily family of closed closed sets is closed.

Next if (2) holds. Since $A \subseteq sp\bar{a}n(A), sp\bar{a}n(A) \in M$. $sp\bar{a}n(A)$ is the smallest one in M; hence $sp\bar{a}n(A) = \cap M$. then, the equivalence between (1) and (2) are established. Finally we come to (3). We claim that cl(span(A)) is a subspace. It is easily to check by the definition of closure. Now we need to establish the equivalence of (2) and (3): cl(span(A)), the closed linear subspace, contains span(A) and thus contains A. For any closed linear subspace M which contains

A, $span(A) \subseteq M$ since the linear span of A is the smallest subspace that contains A. Because M is closed, $cl(span(A)) \subseteq M$. cl(span(A)) is the smallest closed linear subspace Mof H with $A \subseteq M$. Because arbitrary intersection of closed sets is closed and arbitrary intersection of subspaces is a subspace, the smallestness is unique.

Theorem. Let $S \subset H$ be any subset of a Hilbert space H. Then $span S = (S^{\perp})^{\perp}$. That is, $y \in span S$ if and only if y is perpendicular to everything that is perpendicular to $S: \langle y, z \rangle = 0$ for all z such that $\langle x, z \rangle = 0$ for all $x \in S$.

Proof. Recall that a closed subspace Y satisfies $(Y^{\perp})^{\perp} = Y$. Thus, $barspan(S) = (s\bar{pan}(S)^{\perp})^{\perp} = (S^{\perp})^{\perp}$. It suffices to show that $s\bar{pan}(S)^{\perp} = S^{\perp}$. Since $S \subset s\bar{pan}(S)$ we clearly have $(s\bar{pan}(S))^{\perp} \subseteq S^{\perp}$. On the other end, if $z \in S^{\perp}$. Thus z is perpendicular to span S and by continuity of the scalar product $z \perp s\bar{pan}S = barspanS$. Thus, $S^{\perp} \subset (s\bar{pan}S)^{\perp}$.

Lemma. Let S be an orthonormal set of vectors in a Hilbert space H. Then the span S consists of all vectors of the for

6.4 Absolute continuity and singularity

Definition. Given $\mu \in M(X,A)_{\geqslant}$ and $\nu \in M(X,A)_K$, we say that ν is absolute continuous w.r.t. μ if $\forall A \in A$, $\mu(A) = 0 \Rightarrow \nu(A) = 0$. We denote this relation $\nu << \mu$.

Definition. Given a measure ν on (X,A) and $A \in A$, we say that ν is concentrated on A if $\forall E \in A$, $\nu(E) = \nu(E \cap A)$ or equivalently, $\nu(F) = 0, \forall F \in A$ with $F \cap A = \emptyset$.

Definition. The two measures are mutually singularly if $\exists A_1, A_2 \in A$, disjoint s.t. ν_i is concentrated on $A_i(j = 1, 2)$. Denote $\nu_1 \perp \nu_2$.

Lemma. For a positive finite measure μ on (X, A), $f \in L^1(\mu)$ and S is closed in C, if $A_E(f) = \frac{1}{\mu(E)} \int_E f d\mu \in S$ for every $E \in A$ with $\mu(E) > 0$, then $f(x) \in S$ for μ -a.e. $x \in X$.

Proof. Write
$$C \setminus S = \bigcup_{n=1}^{\infty} B_{r_n}(a_n)$$
. If $\mu(f^{-1}(C \setminus S)) \neq 0$, then $\exists n \in N$ s.t. $\mu(E) > 0$ where $E = f^{-1}(B_{r_n}(a_n))$. $|A_E(f) - a_n| = |\frac{1}{\mu(E)} \int_E |f - a_n| d\mu < r_n$. Contradictory!

Lemma. $\forall \sigma$ -finite positive measure μ on (X, A), $\exists w \in L^1$ s.t. 0 < w < 1.

Proof. Suppose $X = \bigcup_{n=1}^{\infty} A_n$ for some $A_n \in A$ with $\mu(A_n) < \infty$. We may make $w = \sum_{n=1}^{\infty} \frac{1}{2^n (1 + \mu(A_n))} \chi_{A_n}$.

Theorem. Let μ be a σ -finite positive measure and $\nu \in M(X, A)_C$. (1) (Lebesgue's decomposition) $\exists ! (\nu_a, \nu_s) \in M(X, A)_C \times M(X, A)_C$ s.t. $\nu = \nu_a + \nu_s, \ \nu_a << \mu \ and \ \nu_s \perp \mu$. If furthermore, ν is a finite signed measure (respectively finite measure), so are ν_a and ν_s . (2) (The Radon-Nikodym theorem) $\exists ! < h > \in L^1(\mu) \text{ s.t. } \nu_a(E) = \int_E h d\mu \text{ for } \mu$ every $E \in A$.

Proof. (von Neumann) Both the uniqueness parts of (1) and (2) are clear. For the rest parts, we only need to deal with the case that ν be a finite positive measure. By the previous lemma, $\exists w \in L^1(\mu)$ with 0 < w < 1. Consider the measure $\phi(E) = \nu(E) + \int_E w d\mu$, a finite positive measure. Then $\int_X f d\phi =$ $\int_X f d\nu + \int_X f w d\mu$ for every nonnegative real extended measurable functions. (By the monotone convergence theorem)

We claim the map $f \in L^2(\phi) \longrightarrow \int_X f d\nu \in C$ is a continuous linear function w.r.t. $||\cdot||_{L^2(\phi)}$. $|\int_X f d\nu| \leqslant \int_X |f| d\nu \leqslant \int_X \nu(X)^{\frac{1}{2}} ||f||_{L^2(\nu)} \leqslant \nu(X)^{\frac{1}{2}} ||f||_{L^2(\phi)}$. We further claim that \exists measurable function with $0 \leqslant g \leqslant 1$ and $\int_X f d\nu =$ $\int_X fgd\phi$ for every $f \in L^2(\phi)$. By Riesz representation theorem for Hilbert spaces, $\exists g \in L^2(\phi)$ s.t. $int_X f d\nu = \int_X f g d\phi$ for every $f \in L^2(\phi)$. For $E \in A$, then $\chi_E \in L^2(\phi)$, and hence $\nu(E) = \int_E g d\phi$. If $\phi(E) > 0$, then $\frac{1}{\phi(E)} \int_E g d\mu =$ $\frac{\nu(E)}{\phi(E)} \in [0,1]$. By the previous lemma, $g(x) \in [0,1]$ for ϕ a.e. $x \in X$. Redefining g(x) to be 0 if g(x) not in [0,1].

Now that $\int_X f d\nu = \int_X f g d\nu + \int_X f g w d\mu$. $\int_X f (1-g) d\nu = \int_X f g w d\mu$. We claim that if $A = \{x | 0 \le g(x) < 1\}$ and $B = \{x | g(x) = 1\}$, then $\nu_a(E) = \nu(E \cap A)$ and $\nu_s(E) = \nu(E \cap B)$ form a Lebesgue's decomposition. $\nu = \nu_a + \nu_s$ is clear since A and B cover X and are disjoint. Invert (1-g). Consider $1+g+\ldots+g^n$. Setting $f = \chi_E(1+g+...g^n)$, $\int_E(1-g^{n+1})d\nu = \int_E(1+g+...g^n)gwd\mu$. Note that $1-g^{n+1} \uparrow \chi_A$ as $n \to \infty$. Besides on $A = X \backslash B$, $1+g+...g^n)gw \uparrow \frac{gw}{1-g}$ as $n \to \infty$. By the monotone convergence theorem, $\nu(E \cap A) = \int_E \chi_A d\nu = \int_{E \cap A} \frac{gw}{1-g} d\mu$ since setting $f = \chi_B$, $0 = \int_B w d\mu$, and hence $\mu(B) = 0$. In addition, we can see that $\nu_s \perp \mu$. Finally, let

$$h(x) = \begin{cases} \frac{g(x)w(x)}{1 - g(x)}, & x \in A\\ 0, & x \in B \end{cases}$$
 (3)

Then $\nu_a(E) = \int_{E \cap A} \frac{gw}{1-a} d\mu = \int_E h d\mu$.

Differentiation

Theorem. If $R \xrightarrow{F} R$ is monotone, F' exists a.e.

Lemma. If $R \xrightarrow{F} R$ is monotone nondecreasing,

- (1) $F(x^{\pm}) = \lim_{y \to x^{\pm}} F(y)$ both exist for $x \in R$ (2) $D = \{x \in R | F \text{ is discontinuous at } x\}$ is countable
- (3) $x \in R \xrightarrow{G} F(x^+)$ is nondecreasing and right continuous.

Proof. (1) Actually $F(x^+) = \inf_{x < y} F(y)$ and $F(x^-) = \sup_{x > y} F(y)$.

(2) For any $x_1 < x_2$, we have $F(x_1^+) \leqslant F(x_2^-)$. Note that $x \in D \Leftrightarrow F(x^-) < \infty$ $F(x^+)$. For each $x \in D$ we choose $r_x \in (F(x^-), F(x^+)) \cap Q$. The map is an injection. Thus the cardinality of D is equal to or smaller than the cardinality of the rationals, and thus countable.

If $x_1 < x_2$, $F(x_1^+) \le F(x_2^-) \le F(x_2) \le F(x_2^+)$. Thus, let $G(x) = F(x^+)$. G is monotone. $\forall M > G(x) = F(x^+) = \inf_{y>x} F(y)$, $\exists y_0 > x$ and $F(y_0) < M$. $G(y) = F(y^+) < F(y_0) < M$ if $y \in (x, y_0)$.

Proof of theorem

(Reduction to the right continuous case) We follow the notation in the lemma. Note that G coincides with F at least on $R \setminus D$. Besides, if G(c) = F(c), $\frac{F(x) - F(c)}{x - c}$ lies between $\frac{G(x^-) - G(c)}{x - c}$ and $\frac{G(x) - G(c)}{x - c}$. In particular, if G'(c) exists, then $\lim_{x \to c} \frac{G(x^-) - G(c)}{x - c} = G'(c)$.

(Reduction to the bounded case) Replace F by $F^{[-n,n]}(n \in N)$.

Now assume that F is bounded, monotone, and right continuous s.t. $F(-\infty) = 0$. Let $\mu = \mu_F$ (the finite Borel measure on R s.t. $\mu_F = F$). Take Lebesgue's decomposition $\mu = \mu_a + \mu_s = hd\lambda + \mu_s$ w.r.t. λ on R, $\frac{F(x_n) - F(c)}{x_n - c} = \frac{\mu_a((c, x_n))}{\lambda((c, x_n))} + \frac{\mu_s((c, x_n))}{\lambda((c, x_n))} \rightarrow h(c) + 0 = h(c)$.

Given a function $R \xrightarrow{F} R$ and an interval [a, b], when can we conclude that (1) F' exists a.e. (2) $F' \in L^1([a, b])$ and (3) $F(x) - F(a) = \int_a^x F'(t)$ for all $x \in [a, b]$?

Find necessary condition for (1)(2)(3).

Suppose that F satisfies (1)+(2). Then $\nu(E) = \int_E F' d\lambda$ is a finite signed measure on [a,b] s.t. $\nu << \lambda_{[a,b]}$. For any interval $[\alpha,\beta] \subseteq [a,b]$, $\nu([\alpha,\beta]) = \int_{[\alpha,\beta]} F' d\lambda$. If (3) holds, then $\nu([\alpha,\beta]) = F(\beta) - F(\alpha)$. In summary, F satisfies (1)(2)(3) only if $\forall \epsilon > 0, \exists \delta > 0$, s.t. \forall countable disjoint family $[\alpha_j,\beta_j] \subseteq [a,b]$,

$$\sum_{j} (\beta_{j} - \alpha_{j}) < \delta \Rightarrow \sum_{j} |F(\beta_{j}) - F(\alpha_{j})| = \sum_{j} |\int_{(\alpha_{j}, \beta_{j})} F' d\lambda| \leq \int_{\cup (\alpha_{j}, \beta_{j})} |F'| d\lambda < \epsilon$$

by the property of the absolute continuity of measure.

Lemma. $(\epsilon - \delta \ characterization \ of \ absolute \ continuity \ of \ measures) \ \mu << \nu \Leftrightarrow \forall \epsilon, \exists \delta \ s.t. \ \forall A \in A, \nu(A) < \delta \Rightarrow \mu(A) < \epsilon.$

Proof. (\Leftarrow) It is obvious. (\Rightarrow) Suppose not, then there exists ϵ s.t. for all $E_n(n \in N)$ with $\nu(E_n) < 2^{-n}$ and $\mu(E_n) \geqslant \epsilon$. Then let $F_k = \bigcup_{i=k}^{\infty} E_i$ and $F = \bigcap_{k=1}^{\infty} F_k$. $\nu(F_k) < 2^{1-k} \Rightarrow \nu(F) = 0$. However, $\mu(F) \geqslant \epsilon$ leads to contradiction!

Lemma. Let $[a,b] \xrightarrow{F} R$ be continuous and nondecreasing. The followings are equivalent.

- (1) F is AC on [a,b].
- (2) F maps sets of measure 0 to sets of measure 0.
- (3) F is differentiable a.e. and $F' \in L^1$. Besides $F(x) F(a) = \int_a^x F'(t) dt$.

Proof. (1) \Rightarrow (2) Let $A \subseteq R$ be λ -null. To show that F(A) is λ -null it is harmless to assume that $A \subseteq (a,b)$. For $\epsilon > 0$, let $\delta > 0$ be as given by the definition of AC functions. Since λ is outer regulat, there exists $V \subseteq (a,b)$, and V is open s.t. $A \subseteq V$ and $\lambda(V) < \lambda(A) + \delta = \delta$. Note that V may be written as the union of a countable disjoint family of open intervals $(\alpha_j, \beta_j)(j \in N)$. Then $\sum_j (\beta_j - \alpha_j) = \lambda(V) < \delta$, and hence $\lambda(F(A)) \leq \lambda(F(V)) \leq \lambda(\bigcup_j F([\alpha_j, \beta_j]) \leq \sum_j \lambda(F([\alpha_j, \beta_j])) = \sum_j |F(\alpha_j) - F(\beta_j)| < \epsilon$. (2) \Rightarrow (3) First assume that F is strictly increasing. Let $m_{[a,b]} = \{A \in m_L | A \subseteq [a,b]\}$. We show that F maps $m_{[a,b]}$ into m_L . Let $A \in m_{[a,b]}$. Then $A = C \cup N$ for some σ -compact C and some λ -null N. Thus $F(A) = F(C) \cup F(N) \in m_L$. Now we define $\mu(A) = \lambda(F(A))(A \in m_{[a,b]})$ and is a measure by the infectivity of F. In addition, $\mu << \lambda_{[a,b]}$ by (2). By the Radon-Nikodym theorem, $\exists h \in L^1(\lambda_{[a,b]})$ s.t. $\mu = hd\lambda_{[a,b]}$. In particular, for a4Fny $x \in [a,b]$, we have $\int_{[[a,x]} hd\lambda = \mu([a,x]) = \lambda(F([a,x])) = F(x) - F(a)$. By the easy part of the fundamental theorem of calculus, we have proved the equivalence.

If F is only strictly nondecreasing, we can extend the result further to the nondecreasing functions G(x) by letting G(x) = x + f(x).

Lemma. If $[a,b] \xrightarrow{F} R$ is AC on [a,b], then so is V_F .

Proof. For $\epsilon>0$ let $\delta>0$ be as given by the definitions of AC. Consider any non-overlapping family $[\alpha_j,\beta_j]\subseteq [a,b](j\in N)$. For any $\eta>0$ and $j\in N$, choose $\alpha_j=t_0^{(j)}\leqslant\ldots\leqslant t_{k_j}^{(j)}=\beta_j$ s.t. $V_F[\alpha_j,\beta_j]-\frac{\mathrm{let}a}{2^j}<\sum_{l=1}^{k_j}|F(t_l^{(j)})-F(t_{l-1}^{(j)})|$. Then we have $\sum_{j=1}^{\infty}|V(\beta_j)-V(\alpha_j)|=\sum_{j=1}^{\infty}V_F[\alpha_j,\beta_j]<\sum_{j=1}^{\infty}\sum_{l=1}^{k_j}|F(t_l^{(j)})-F(t_{l-1}^{(j)})|+\eta$ since $[t_{l-1}^{(j)},t_l^{(j)}]$ are non-overlapping and the choose of η is arbitrary.

Corollary. If $[a,b] \xrightarrow{F} R$ is AC on [a,b], then F' exists a.e. and is integrable on [a,b] and $F(x) - F(a) = \int_a^x F'(t) dt$.

Proof.
$$F = \frac{1}{2}(V+F) - \frac{1}{2}(V-F)$$
.

Lipschitz condition implies AC.

8 Tangent Vectors and Tangent Maps

Let M be a manifold diffeomorphic to dimension n and p \in M. Consider $M(p) := \{I \xrightarrow{\nu} M | I \text{ an open neighborhood of } 0 \in R \text{ and } r \text{ differentiable at } t = 0 \text{ and } r(0) = p\}$. For any $I_1 \xrightarrow{r_1} M$ and $I_2 \xrightarrow{r_2} M$ in M(p), we say that $r_1 \approx r_2$ if there exists a chart $\varphi \in \Phi_M$

9 Oriented manifolds and orientation

Definition. Let M be a C^{∞} manifold of dim m. Two charts $\varphi_{\alpha}, \varphi_{\beta} \in \Phi_{M}$ with coordinates $x_{\alpha}^{1}, ..., x_{\alpha}^{m}$ and $x_{\beta}^{1}, ..., x_{\beta}^{m}$ respectively are said to have compatible orientations if $\det(\partial x_{\alpha}/\partial x_{\beta}) > 0$ for all $p \in U_{\alpha} \cup U_{\beta}$.

10 Oriented integration of differential top forms on manifolds

 C^{∞} manifold of dimension m which is oriented by maximal compatible C^{∞} atlas $\widetilde{\Phi}_{M}$. We are talking about the notion $\int_{M} \omega$ for $\omega \in A^{m}(M)$

Definition. Choose a C^{∞} partition of unity ρ_j $(j \in J)$ of M subordinate to the open cover $\{U_{\varphi}|\varphi \in \Phi_M\}$ (say $\operatorname{supp}\rho_j \subseteq U_{\varphi_j}$ for some φ_j) so that $\operatorname{supp}\rho_j$ is compact for every $j \in J$. For any $\omega \in A^m(M)$, we let $\omega_j = \omega_{\varphi_j} \in A^m(V_j)$. Thus $\rho_j \omega \in A^m_c(M)$ has local expression $(\rho_j \circ \varphi_j^{-1})(x_j)f_j(x_j)$ which can be viewed as an element of $A^m_c((-\infty,0] \times R^{m-1})$. If $\sum \int_{(-\infty,0] \times R^{m-1}} (\rho_j \circ \varphi_j^{-1})(x_j)f_j(x)dx^1...dx^m$ exists and has the same value for all choices of such partitions of unity ρ_j and φ_j , we call this value the integral of ω on M denoted by $\int_M \omega$.

Proposition 14. If $\omega \in A_c^m(M)$, then $\int_M \omega$ exists.

Proof. Suppose that ρ_j and ρ_k' are two smooth partitions of unity subordinate to $\{U_{\varphi}|\varphi\in\Phi_M'\}$ so that $\sup_{\alpha}\rho_j\subseteq U_{\varphi_j}$ is compact and the same relation holds for ρ_k' where $\varphi_j, \varphi_k'\in\Phi_M'$. Do $\sum_{j\in J}\int_{(-\infty,0]\times R^{m-1}}(\rho_j\circ\varphi_j^{-1})(x)f_j(x)dx^1...dx^m$ and $\sum_{k\in K}\int_{(-\infty,0]\times R^{m-1}}(\rho_k'\circ\varphi_k'^{-1})(x')f_k'(x)dx^1...dx^m$ exist and take the same value? Essentially, the sum is a finite sum since $\sup_{\alpha}\omega$ is compact and $\sup_{\alpha}\rho_j$ is strongly locally finite.

$$\sum_{j \in J} \int_{(-\infty,0] \times R^{m-1}} (\rho_j \circ \varphi_j^{-1})(x) f_j(x) dx^1 ... dx^m =$$

$$\sum_{j \in J} \int_{(-\infty,0] \times R^{m-1}} \sum_{k \in K} (\rho_k' \circ \varphi_j^{-1})(x) (\rho_j \circ \varphi_j^{-1})(x) f_j(x) dx^1 ... dx^m =$$

$$\sum_{j \in J} \sum_{k \in K} \int_{(-\infty,0] \times R^{m-1}} (\rho_k' \rho_j \circ \varphi_j^{-1})(x) f_j(x) dx^1 ... dx^m =$$

$$\sum_{j \in J} \sum_{k \in K} \int_{(-\infty,0] \times R^{m-1}} (\rho_k' \rho_j \circ \varphi_j^{-1})(\varphi_j \varphi_k^{-1}(x')) f_j(\varphi_j \varphi_k^{-1}(x'))$$

$$|det(\partial x/\partial x')| dx'^1 ... dx'^m = \sum_{k \in K} \int_{(-\infty,0] \times R^{m-1}} (\rho_k' \circ \varphi_k'^{-1})(x') f_k'(x) dx^1 ... dx^m$$
(by positive orientation)

11 Stokes' theorem

11.1 Origin

Notation. If Z is an oriented C^{∞} manifold of dimension d and $Z \xrightarrow{f} M$ a C^{∞} map to a C^{∞} manifold M, for any $\omega \in A^{d}(M)$, we have $f^*\omega \in A^{d}(Z)$ and

hence we can talk about whether $\int_Z f^*\omega$ exists. If $\int_Z f^*\omega$ exists, we often write $\int_Z \omega$ if f is clear in the context.

For example, for any $\tau \in A^{dimM-1}(M)$, we define $\int_{\partial M} \tau = \int_{\partial M} i^* \tau$ where $\partial M \xrightarrow{i} M$. If M oriented, is there a natural orientation on ∂M ?

11.2 Positively oriented manifold boundary

Let M be a C^{∞} manifold of dim m. For any $\varphi \in \Phi_M$ which maps $p \in U_{\varphi}$ to $\varphi(p) = (x^1(p),...,x^m(p)) \in (-\infty,0] \times R^{m-1}$ $(p \in U_{\varphi} \cap \partial M \Leftrightarrow x^1(p) = 0)$, we let $U_{\varphi} \cap \partial M \stackrel{\varphi^{\partial M}}{\longrightarrow} (x^2(p),...,x^m(p))$, which gives a topological chart of ∂M on $U_{\varphi} \cap \partial M$. $Phi^{\partial M} = (\varphi^{\partial M}\varphi \in \Phi_M)$ is a C^{∞} atlas of ∂M which induces the unique C^{∞} structure on ∂M so that $\partial M \stackrel{i}{\longrightarrow} M$ is C^{∞} . And $\Phi^{\partial M}$ is a maximal c^{∞} atlas. Now suppose that M is oriented and Φ_M a maximal compatible C^{∞} atlas of M which determines the orientation of M. Then $\Phi^{\partial M} = (\varphi^{\partial M}|\varphi \in \varphi_M)$ is also a compatible smooth atlas on ∂M , and hence determines an orientation on ∂M , which is called the positive orientation of ∂M induced by the orientation of M. Unless otherwise mentioned, we will always use ∂M to denote the positively oriented boundary.

Remark. M: a C^{∞} manifold of dim m. Let $A_{\Phi}^K(M) = ((\omega_{\varphi}|\varphi \in \Phi| \omega_{\varphi} \in A^k(\varphi(U_{\varphi})))$ for all $\varphi \in \Phi$ so that * holds for every pair of charts) where $\Phi \in \Phi_M$ is a C^{∞} atlas of M. If $\Phi_1 \subseteq \phi_2... \subseteq \Phi_M \Rightarrow A_{\Phi_2}^k(M) \xrightarrow{T_{\Phi_1}^{\Phi_2}} A_{\Phi_1}^k(M)$ where $T_{\Phi_1}^{\Phi_2}$ is a bijection.

11.3 Stokes' theorem

If M is an oriented C^{∞} manifold and $\omega \in A_c^{\dim M-1}(M)$, then $\int_M d\omega = \int_{\partial M} \omega = \int_{\partial M} i^*\omega$

Proof. Choose an arbitrary C^{∞} partition of unity $\rho_{j}(j \in J)$ subordinate to $(U_{\varphi}|\varphi \in \Phi_{M})$ so that $supp\rho_{j}$ are all compact, say $supp\rho_{j} \subseteq U_{\varphi_{j}} = U_{j}$ for some $\varphi_{j} \in \Phi_{M}$. Since $supp\omega$ is compact, $\omega = \sum_{j \in J} \rho_{j}\omega$ is essentially a finite sum, it suffice to show that if $\eta \in A_{c}^{dimM-1}(M)$ and $supp\eta \subseteq U_{\varphi}$ for some φ , then $\int_{M} d\eta = \int_{\partial M} \eta$.

 $\int_M d\eta = \int_{\partial M} \eta.$ Suppose that the coordinates induced by φ are $x^1,...,x^m$ and the local expression of η is $\sum_{l=1}^m f_l dx^1 \wedge ... \wedge dx^l ... \wedge dx^m$. f_l is a C^∞ function on half space with compact support. $d\eta$ has local expression on U_φ is $\sum_{l=1}^m \frac{\partial f_l}{\partial x^l} dx^l \wedge ... \wedge dx^m = (\sum_{l=1}^m (-1)^{l-1} \frac{\partial f_l}{\partial x^l}) dx^1 \wedge ... \wedge dx^m$. $\int_M d\eta = \int_{(-\infty,0] \times R^{m-1}} \sum_{l=1}^m (-1)^{l-1} (\frac{\partial f_l}{\partial x^l}) dx^1 \wedge ... \wedge dx^m$. There are two conditions.

For l=2,...,m, choose a suitable rectangle R and the integral is equal to 0 since $\int_R \frac{\partial f_l}{\partial x^l} dx^1 \wedge ... \wedge dx^m = \int_{R_l} (\int_{a_l}^{b_l} \frac{\partial f_l}{\partial x^l} dx^l) dx^1 \wedge ... \wedge dx^m =$

 $\int_{R_l} (f(x^1,...b_l,...,x^m) - f(x^1,...a_l,...,x^m)) dx^1 \wedge ... \wedge dx^l \dots \wedge dx^m = 0.$ For l=1, the integral is equal to $\int_{(-\infty,0]\times R^{m-1}} frac\partial f_l \partial x^1 dx^1 \wedge ... \wedge dx^m = \int_{R_1} (\int_{a_1}^{b_1} \frac{\partial f_l}{\partial x^1} dx^1) \wedge ... \wedge dx^m = \int_{R_1} ((f(b_1,...,x^m) - f(a^1,...,x^m)) dx^2 \wedge ,..., \wedge dx^m = \int_{R_1} f(b_1,...,x^m) dx^2 \wedge ,..., \wedge dx^m.$ Then integrate $i^*\eta$ on ∂M . $i^*\eta$ has local expression $f_l(0,x^2,...,x^m) dx^2 \wedge ..., \wedge dx^m.$ Thus the proof is complete. \square

12 Tangent vector fields

M: a c^k manifold of dim m, $V \in M$.

Definition. A rule assigning to each point $p \in V$ with a tangent vector $X(p) \in T_pM$ is called a tangent vector field on V. More formally, we define the tangent bundle of M. $TM := \bigcup_{p \in M} T_pM$ and canonical projection. Then a tangent vector field X on V is exactly a map $V \subseteq M \xrightarrow{x} TM$ so that $\pi \circ X(p) = p$. X is called a section of $TM \xrightarrow{\pi} M$ over V.

Definition. Let X be a vector field on V. For any $\varphi \in \Phi_M$ defined on $U \subseteq_{open} M$ whose coordinates are $x^1, ..., x^m$, and for any $p \in V \cap U$ since $(\frac{\partial}{\partial x^1})_p, ... (\frac{\partial}{\partial x^m})_p$ forms a basis of T_pM . x(p) can be written as $x^j(p)(\partial/\partial x^j)_p$ for a unique set of "components" $x^1(p), ..., x^m$ are functions on $V \cap U$. $(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^m})$ is called the frame of TM on U induced by φ .

Definition. A vector field X on V is C^k near a point $p \in V$ if $\exists \varphi \in \Phi_M$ defined near p so that the components of X induced by φ are C^k functions, i.e. $x^1 \circ \varphi^{-1}, ..., x^m \circ \varphi^{-1}$ are C^k functions on $\varphi(V \cap U)$. If X is C^k at or near every point of V, we can call X a C^k vector field.

12.1 The quotient/gluing viewpoint

Idea. A topological manifold X with a topological atlas Φ can be reconstructed by gluing $V_{\alpha} := \varphi_{\alpha}(U_{\alpha})(\alpha \in A)$ along $V_{\alpha\beta} := \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})(\alpha\beta \in A)$ via $v_{\alpha\beta} \stackrel{\varphi_{\alpha\beta}}{\leftarrow} V_{\beta\alpha}$. Note that the data $(V_{\alpha}, v_{\alpha\beta} \stackrel{\varphi_{\alpha\beta}}{\leftarrow} V_{\beta\alpha})$ satisfy the following conditions: $\forall \alpha, \beta, \gamma \in A$, $V_{\alpha\alpha} = V_{\alpha}, V_{\alpha\beta} \subseteq_{open} V_{\alpha}, v_{\alpha\beta} \stackrel{\varphi_{\alpha\beta}}{\leftarrow} V_{\beta\alpha}$ is homeomorphic, $V_{\alpha\beta} \cap V_{\alpha\gamma} = \varphi_{\alpha\beta}(V_{\beta\alpha} \cap V_{\beta\gamma})$ and informally $\varphi_{\alpha\beta} \circ \varphi_{\beta\gamma} = \varphi_{\alpha\gamma}$.

13 Multilinear algebra-tensors

V: usually finitely dimensional vector space over K. $V^* := (v \xrightarrow{f} K | f K - linear)$. If $e_1, ..., e_n$ form a basis of V, then we have the dual basis $e^1, ..., e^n$ of V^* where $e^j(e_k) = \delta^j_k(Kronecker \delta) = 1(j = k)$ or $= 0(j \neq k)$.

13.1 Multilinear algebra

U, V, W: vector spaces over K. $U^* \otimes V^* \otimes W^* := (U \times V \times W \xrightarrow{f} K|f)$ is multilinear). Does $U^* \otimes V^* \otimes W^*$ have a specific basis induced by these bases?

$$\begin{array}{l} \textbf{Definition.} \ \ f \in U^*, g \in V^*, h \in W^*, \ U \times V \times W \overset{f \otimes g \otimes h}{\longrightarrow} K. \\ \begin{pmatrix} \overset{\sim}{v_s} \\ \overset{\sim}{w_t} \end{pmatrix} \ another \ bases \ of \begin{pmatrix} U \\ V \\ W \end{pmatrix}. \ u^i \otimes v^j \otimes w^k = a^i_r b^r_s c^k_t \stackrel{\sim}{u_r} \otimes \stackrel{\sim}{v_s} \otimes \stackrel{\sim}{w_t} \ if \\ \begin{pmatrix} \overset{\sim}{v_s} = a^i_r u^i \\ \overset{\sim}{v_s} = b^r_s v_s \\ \overset{\sim}{w_t} = c^k_t w_t \\ \end{array}$$

(by Einstein convention)

Definition. V: vector space over k. $\wedge^k V^* := (V \times ... \times V \xrightarrow{f} K | f \quad k-linear$ and alternating). Ex: determinants. $V^* \otimes ... \otimes V^*$ can be denoted by $\otimes^k V^*$. An alternating mapping from $\otimes^k V^*$ to itself is an isomorphism.

 $\otimes^k V^* \xrightarrow{Alt} \wedge^k V^*$. It is easily to find that for any $f \in \otimes^k V^*$, $f \in \wedge^k V^* \Leftrightarrow Alt(f) = f$.

$$\varphi \in \wedge^k V^*, \psi \in \wedge^l V^*, \varphi \wedge \psi \stackrel{def}{=} \frac{(k+l)!}{k!l!} \times Alt(\varphi \otimes \psi) = \frac{1}{k!l!} \times \widetilde{Alt} \; (\varphi \otimes \psi).$$

Claim. $e^{i_1} \wedge ... \wedge e^{i_k}$ forms a basis of $\wedge^k V^*$.

Proof.
$$f \in \wedge^k V^*$$
. $f = f_{i_1,\dots,i_k} e^{i_1} \otimes \dots \otimes e^{i_k} = \sum_{1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n} \sum_{\sigma \in S_k} f_{i_{\sigma 1},\dots,i_{\sigma k}} e^{i_{\sigma 1}} \otimes \dots \otimes e^{i_{\sigma k}} = \sum_{1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n} f_{i_{\sigma 1},\dots,i_{\sigma k}} \sum_{\sigma \in S_k} (-1)^{\sigma} e^{i_{\sigma 1}} \otimes \dots \otimes e^{i_{\sigma k}} = \sum_{1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n} f_{i_{\sigma 1},\dots,i_{\sigma k}} \stackrel{\sim}{Alt} e^{i_1} \otimes \dots \otimes e^{i_k}$

13.2 Tensor fields and differential forms

M is a C^{∞} manifold of dim m. $TM = \bigcup_{p \in M} T_p M$. $T^*M = \bigcup_{p \in M} T_p^* M$. (cotangent bundle of m) $\otimes^k T^*M = \bigcup_{p \in M} \otimes^k T_p^*M$. (tensor bundle of m) $\wedge^k T^*M = \bigcup_{p \in M} \wedge^k T_p^*M$.

Definition. A tensor field S on $V \subseteq_{open} M$ is a map $V \xrightarrow{S} \otimes^k T^*M$. Furthermore, S is called a k-tensor of M on V. S is called a differential k-form if $S_p \in \wedge^k T_p^*M$ for all $p \in M$.

Definition. $(\frac{\partial}{\partial x^j})_p \stackrel{dualbasis}{\longrightarrow} (dx^j)_p$

Definition. vector field $X: X(p) = X^j (\frac{\partial}{\partial x^j})_p \in T_p M$ $k\text{-tensor } S: S(p) = S_{j_1, \dots, j_k}(p) (dx^{j_1})_p \otimes \dots \otimes (dx^{j_k})_p$ $k\text{-form } S: S(p) = \sum_{j_1 < \dots < j_k} S_{j_1, \dots, j_k}(p) (dx^{j_1})_p \wedge \dots \wedge (dx^{j_k})_p$. We say that S is C^{∞} if all S_{j_1, \dots, j_k} are smooth functions on $V \cap U$.

13.3 Cartan's exterior differentiation

M: C^{∞} manifold of dim m. $A^k(M) = (M \xrightarrow{\omega} \wedge^k T^*M | \omega(p) \in \wedge^k T_p^*M)$.

Definition.
$$A^k(M) \stackrel{d}{\longrightarrow} A^{k+1}(M)$$
. $d\omega \in \wedge^{k+1}T^*M$. For any $U_{\alpha} \stackrel{\varphi_{\alpha}}{\longrightarrow} \varphi_{\alpha}(U_{\alpha}) = V_{\alpha} \subseteq R^m \in \Phi_M$, we can write $\omega = \omega_{j_1,...,j_k} dx^{j_1} \wedge ... \wedge dx^{j_k}$. We define $d\omega$ on $U.p \in U_{\alpha} \Longrightarrow (d\omega)(p) = \frac{\partial(\omega_{j_1,...,j_k} \circ \varphi_{\alpha}^{-1})}{\partial x_{\alpha}^{j_0}} (\varphi_{\alpha}(p))(dx_{\alpha}^{j_0})_p \wedge (dx_{\alpha}^{j_1})_p \wedge ... \wedge (dx_{\alpha}^{j_k})_p$.

Beyond the definition above, we should ensure the $d\omega$ is still the same mapping through different charts. Suppose that on $U \cap V$ (V is another chart), $\eta = \eta_{l_1, \dots, l_k} dy^{l_1} \wedge \dots \wedge dy^{l_k}$. By coordinate transformation,

$$\begin{array}{l} \eta = \eta_{l_1,\ldots,l_k} dy \wedge \ldots \wedge dy & \text{By coordinate transformation}, \\ \eta_{l_1,\ldots,l_k} \left(\frac{\partial y^{l_1}}{\partial x^{j_1}}\right) \left(\frac{\partial y^{l_1}}{\partial x^{j_1}}\right) \ldots \left(\frac{\partial y^{l_k}}{\partial x^{j_k}}\right) = \omega_{j_1,\ldots,j_k} \Longrightarrow \\ \frac{\partial \omega_{j_1,\ldots,j_k}}{\partial x^{j_0}} = \frac{\partial m_{l_1,\ldots,l_k}}{\partial y^{l_0}} \left(\frac{\partial y^{l_0}}{\partial x^{j_0}}\right) \left(\frac{\partial y^{l_1}}{\partial x^{j_1}}\right) \ldots \left(\frac{\partial y^{l_k}}{\partial x^{j_k}}\right) + \eta_{l_1,\ldots,l_k} \sum_{s=1}^k \left(\frac{\partial y^{l_1}}{\partial x^{j_1}}\right) \left(\frac{\partial^2 y^{l_s}}{\partial x^{j_s}\partial x^{j_0}}\right) \ldots \left(\frac{\partial y^{l_k}}{\partial x^{j_k}}\right) \\ \Longrightarrow \frac{\partial \omega_{j_1,\ldots,j_k}}{\partial x^{j_0}} dx^{j_0} \wedge \ldots \wedge dx^{j_k} = \left(\frac{\partial m_{l_1,\ldots,l_k}}{\partial y^{l_0}} \left(\frac{\partial y^{l_1}}{\partial x^{j_0}}\right) \left(\frac{\partial y^{l_1}}{\partial x^{j_1}}\right) \ldots \left(\frac{\partial y^{l_k}}{\partial x^{j_k}}\right) + \eta_{l_1,\ldots,l_k} \\ \sum_{s=1}^k \left(\frac{\partial y^{l_1}}{\partial x^{j_1}}\right) \left(\frac{\partial^2 y^{l_s}}{\partial x^{j_s}\partial x^{j_0}}\right) \ldots \left(\frac{\partial y^{l_k}}{\partial x^{j_k}}\right) dx^{j_0} \wedge \ldots \wedge dx^{j_k} = \frac{\partial m_{l_1,\ldots,l_k}}{\partial y^{l_0}} dy^{l_0} \wedge \ldots \wedge dy^{l_k}. \end{array}$$
 (the latter term is equal to zero)

14 Homology

Let M be a C^{∞} manifold of dim m. We call $\longrightarrow A^{-1}(M) \longrightarrow A^{0}(M) \xrightarrow{d^{0}} A^{1}(M)... \longrightarrow A^{j}(M) \xrightarrow{d^{0}} A^{j}(M) \longrightarrow ... \longrightarrow A^{m}(M)$ the deRham complex of M and let $H^{j}(M,C)$ =closed n-form on M/exact n-form on M, called the j-th deRham cohomology of M which is a C-vector space.

Terminology. For $\omega \in A^j(M)$, ω is closed $\Leftrightarrow d\omega = 0(Z^j)$ and is exact $\Leftrightarrow \exists \eta \in A^{j-1}(M), \omega = d\eta(B^j)$.

Example. $H^0(M,C) \simeq \ker(A^0(M) \xrightarrow{d} A^1(M))$. That is, $f \in H^0(M,C)$ is locally constant. Therefore, if we let $\pi_0(M)$ be the path connected components of M (each of which is open in M), then $H^0(M,C) \xleftarrow{\sim} C^{x\pi_0(M)}$, which is the canonical map.

Example. Let $M = R^2/\{p\}$ where $p = (a,b) \in R^2$. Let $\omega_p = \frac{(y-b)dx - (x-a)dy}{(x-a)^2 + (y-b)^2} \in Z^1(M) = \ker(A^1(M) \xrightarrow{d} A^2(M))$. For any closed $\eta \in Z^1(M)$, let $c = \int_{\gamma} \eta$. gamma is the path surrounding p. So what is $H^1(M,C)$? $\eta - \frac{c}{2\pi}\omega_p \in B^1(M)$. $H^1(M,C) \simeq C$ with basis ω_p . In addition, $M = R^2/\{p_1,p_2\}(p_1 \neq p_2)$. It is easy to find that $H^1(M,C) \simeq C \oplus C$ with two linear-independent bases $\omega_{p_1},\omega_{p_2}$.

Definition. A sequence of homomorphisms of groups ... $\longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow ...$ is an exact at B if ker(g) = im(f). It is called an exact sequence at every position.

Theorem. Given chain maps $(A_*) \xrightarrow{(S_*)} (B_*) \xrightarrow{(T_*)}$. If $0 \longrightarrow (A_{j+1}) \xrightarrow{(S_{j+1})} (B_{j+1}) \xrightarrow{(T_{j+1})} 0$ for every $j \in Z$, then \exists homomorphisms $H_j(C_j) \xrightarrow{\delta_j} H_{j-1}(A_{j-1})$ forming an exact long chain.

Remark. $0 \longrightarrow A \stackrel{f}{\longrightarrow} B$ is exact, f is injective. $B \stackrel{f}{\longrightarrow} C \longrightarrow 0$ is exact, f is surjective.

15 The deRham cohomologies of $C\infty$ manifolds

Definition. deRham cohomologies $H^k(M,C) = ker(a^k(M))$ $\xrightarrow{d} A^{k+1}(M) / im(a^{k-1}(M) \xrightarrow{d} A^k(M))$. The elements of $H^k(M,C)$ are of the form $\omega + dA^{k-1}(M)$ with ω a closed k-form.l

15.1 The cup product on cohomologies

For any $k, l \in \mathbb{Z}$, we define the cup product map $H^k(M,C) \times H^l(M,C) \xrightarrow{\cup} = H^{k+l}(M,C), ([\omega], [\eta]) \longmapsto [\omega] \cup [\eta] = [\omega \wedge \eta]$. Recall the super-Leibniz rule: $\forall \alpha \in A^a(M)$ and $\beta \in A^b(M) \Longrightarrow d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^\alpha \alpha \wedge (d\beta) = 0$. Therefore $[\omega \wedge \eta]$ is defined. If $[\omega_1] = [\omega_2]$, then $\exists \tau \in A^{k-1}(M)$ s.t. $\omega_1 = \omega_2 + d\tau$ and hence $\omega_1 \wedge \eta - \omega_2 \wedge \eta = d\tau \wedge \eta = d(\tau \wedge \eta) \pm \tau \wedge (d\eta) = 0 \Longrightarrow [\omega_1 \wedge \eta] = [\omega_2 \wedge \eta]$. \cup is a C-bilinear map.

Definition. $H^*(M,C) := \bigoplus_{k \in \mathbb{Z}} H^k(M,C)$

Proposition 15. $(H^*(M,C),+,\cup)$ is a supercommutative Z-gradient C-algebra.

15.2 Pulling-back cohomology classes

Every C^{∞} map $M \xrightarrow{f} N$ induces a cochain map between deRham complexes. Particularly, f induces C-linear maps $H^k(N,C) \xrightarrow{f^*} H^k(M,C)$. (well defined by basic algebra) Moreover, $H^*(N,C) \xrightarrow{f^*} H^*(M,C)$ is a homomorphism of C-linear algebra: $f^*([\eta] \cup [\eta']) = f^*[\eta \wedge \eta'] = [f^*(\eta \wedge \eta')] = [(f^*\eta) \wedge (f^*\eta')]$. If there is a chain $M \xrightarrow{f} N \xrightarrow{g} P \Rightarrow (g \circ f)^* = f^* \circ g^*$. And there exists a identity map between $H^*(M,C)$ and itself. So there exists a contravariant functor).

16 The long exact sequence of cohomologies induced by a short exact sequence of cochain complexes

Given a short sequence of chain complexes with all squares commutative all columns complexes and rows exact. We have the induced maps (homomorphisms) $H_k(A) \xrightarrow{f_{*k}} H_k(B) \overset{g_{*k}}{H_k}(C)$. We can construct natural (functorial) homomorphisms $H_K(c)$ longrightarrow $H_{k-1}(A)$. and the induced long sequence which is an exact sequence. $\partial_{*k}(k \in Z)$ so constructed are called the connecting homomorphisms. (zig-zag)

Proof. (well-defined) Begin from choose any z,z', where [z]=[z']. It is straightforward to write $z-z'=dc(c\in C^{k-1})$. Since the mapping between B and C is onto $\exists \tilde{b}.\ b-b'-d\tilde{b}\mapsto 0$. (where b,b' maps to c,c' by g. Next, $\exists \tilde{a}\mapsto b-b'-d\tilde{b}$. $d\tilde{a}\mapsto db-db'\mapsto 0$. Therefore, $a-a'-d\tilde{a}$. Hence, $a=a'+d\tilde{a}\Longrightarrow [a]=[a']$. (exactness) Three conditions. For $H^k(A)\stackrel{f^{*k}}{\longrightarrow} H^k(B)\stackrel{g^{*k}}{H}$ (C), $[z]\mapsto [f(z)]\mapsto [g(f(z))]=0\Longrightarrow imf^{*k}\subseteq kerg^{*k}$. For $H^k(B)\stackrel{g^{*k}}{\longrightarrow} H^k(C)\stackrel{\delta^k}{\longrightarrow} H^{k+1}(A)$, first $[\omega]\mapsto [g(\omega)]$, and $d\omega=0$, and hence $\delta^k[g(\omega)]=[0]=0\Longrightarrow img^{*k}\subseteq ker\delta^k$. And for $H^k(C)\stackrel{\delta^k}{\longrightarrow} H^{k+1}(A)\stackrel{f^{*k+1}}{\longrightarrow} H^{k+1}(B)$, $[\omega]\in H^k(C)\mapsto [a]\mapsto [f(a)]=[db]=0\Longrightarrow im\delta^k\subseteq kerf^{*k+1}$. And proof for the opposite direction is similar.

17 Cohomologies of the simplest class of space

Definition. Given an R-vec. space V, a subset $S \subseteq V$ is a star-shaped set if $\exists p \in V$, s.t. $\forall s \in S$ and $t \in [0,1][(1-t)p+ts \in S]$, such a point p is called a center of S. In most occassions, we may assume 0 is a center of S by translation.

Now consider a star-shaped open $U \subseteq R^m$ (center at 0). Then $H^0(U,C) \simeq C$ by the path-connectedness of U. So what is $H^n(U,C)$? Given a closed $\omega \in A^l(U)$ with $l \geqslant 1$, can one obtain an $\eta \in A^{l-1}(U)$ s.t. $\omega = d\eta$ by integration?

Notation. $U':=((x,t)\in R^m\times R|tx\in U).$ There is a map $U'\stackrel{H}{\longrightarrow} U.$ We consider a slightly more general setting. Given any set U and a subset $V\subseteq U\times R$, we say that all vertical slices of V are open intervals containing $0\in R$ if $\forall x\in U, \exists -\infty\leqslant a_x<0< b_x\leqslant \infty$ s.t. $V\cap (x\times R)=X\times (a_X,b_x).$ When talking about such a V, we adopt the following definitions: for any $t\in R$, $V_t:=(x\in U|(x,t)\in V)$, called the horizontal slice of V of height $t;V_t\stackrel{l_t}{\longrightarrow} V$ $V\stackrel{\pi}{\longrightarrow} U$ for any $W\subseteq U$, $W_0:=\pi^{-1}(W)$

Now consider the case $U \subseteq_{open} R^m$ and $V \subseteq_{open} U \times R$. What if we integrate a C^{∞} differential form along t?

Every $\phi \in A^l(V)$ can be uniquely written in the form $\sum_{1 \leqslant j_1 < \ldots < j_l \leqslant m} A_{j_1,\ldots,j_l}(x,t) dx^{j_1} \wedge \ldots \wedge dx^{j_l} + \sum_{1 \leqslant k_1 < \ldots < k_{l-1} \leqslant m} B_{k_1,\ldots,k_{l-1}}(x,t) dt \wedge dx^{k_1} \wedge \ldots \wedge dx^{k_{l-1}}$. We define $A^l(V) \xrightarrow{I} A^{l-1}(V)$, $phi = \sum_{|J|=l} A_J(x,t) dx^J + \sum_{|k|=l-1} B_K(x,t) dt \wedge dx^K \mapsto \sum_{|K|=l-1} (\int_0^t B_K(x,s) ds) dx^k$.

Then $dI\phi = \sum_{|K|=l-1} [(\int_0^t \frac{\partial B_K}{\partial x^k}(x,s)ds)dx^k \wedge dx^K + B_K(x,t)dt \wedge dx^K]$. Since $d\phi = \sum_{|J|=l} (\frac{\partial A_J}{\partial x^j})(x,t)dx^j \wedge dx^J + \frac{\partial A_J}{\partial t}(x,t)dt \wedge dx^J) + \sum |K| = l - 1 \frac{\partial B_k}{\partial x^k}(x,t)dx^k \wedge dt \wedge dx^K$.

$$\begin{split} &Id\phi = \sum_{|J|=l} (\int_0^t \frac{\partial A_J}{\partial s}(x,s)ds)dx^J - \sum_{|K|=l-1} (\int_0^t (\frac{\partial B_k}{\partial x^k}(x,s)ds)dx^k \wedge dx^K = \\ &\sum_{|J|=l} A_J dx^J - \sum_{|J|=l} A_J(x,0)dx^J - \sum_{|K|=l-1} [(\int_0^t \frac{\partial B_K}{\partial x^k}(x,s)ds)dx^k \wedge dx^K]. \end{split}$$
 Thus $dI\phi + Id\phi = \phi - (l_0 \circ \pi)^*\phi$ for all $\phi \in A^l(V)$.

Corollary. (the Poincare lemma) $H^l(U,C) = C(if \ l=0)$ or 0 if $l \neq 0$ if U is a star-shaped open subset of R^m .

Proof. For any $[\omega] \in H^l(U,C)$ with $l \geqslant 1$, we have $dIH^*\omega + IdH^*\omega = H^*\omega - \pi^*l_0^*H^*\omega$ with $IdH^*\omega = IH^*d\omega = 0$ and $H \circ l_0(x) = H(x,0) = 0$. Therefore, $dIH^*\omega = H^*\omega$. Applying l_1^* , we have $dl_1^*IH^*\omega = l_1^*dIH^*\omega = l_1^*H^*\omega = \omega \Rightarrow [\omega] = 0$.

We may globalize the construction of I. Let M be a C^{∞} manifold of dim m and $V \subseteq M \times R$ an open subset whose vertical slices are open intervals containing $0 \in R$. V has a natural C^{∞} structure by the atlas Phi_0 which consists of the charts $U_{\varphi_0} := \xrightarrow{\varphi_0} \varphi_0(U_{\varphi_0} = \bigcup_{x \in U_{\varphi}} (\varphi(x)0 \times (a_x, b_x))$.

Definition. We define $A^l(V) \xrightarrow{I_V} A^{l-1}(V)$ to be unique map which is commute.

18 Homotopy

Definition. We say that two C^{∞} maps f_1, f_0 from M to N are C^{∞} homotopic to each other if $\exists C^{\infty}$ map $M \times I \xrightarrow{H} N$ where I is an open interval containing [0,1] s.t. $f_j = H \circ l_j$

Notation. $f_1 \sim f_0$ denotes f_1, f_0 are homotopic.

Corollary. (homotopy invariance of cohomology maps) Given C^{∞} maps f_1, f_0 S.T. $f_1 \sim f_0$, then $H^l(M, C) \stackrel{f_0^*=f_1*}{\longleftarrow} H^l(M, C)$.

Proof. For any $[\omega] \in H^l(N,C)$, we have $f_1^*\omega = (H \circ l_1)^*\omega = l_1^*H^*\omega = l_1)^*(dIh^*\omega + IdH^*\omega + \pi^*l_0^*H^*\omega) = d(l_1^*IH^*\omega) + l_1^*\pi^*l_0^*H^*\omega = d(l_1^*IH^*\omega) + (id_M)^*f_0^*\omega$. \square

Definition. (homotopy equivalence) $A \ C^{\infty} \ map \ M \xrightarrow{f} N \ is \ a \ C^{\infty} \ homotopy$ equivalence if $\exists C^{infty} \ map \ M \xleftarrow{g} N \ s.t. \ g \circ f \sim id_M \ and \ f \circ G \sim id_N$. Such

a map g is called a homotopy invariance of f. Given C^{∞} manifolds M and N, we say that they have the same homotopy type if $\exists C^{\infty}$ homotopy equivalence $M \xrightarrow{f} N$.

Corollary. Given C^{∞} manifods M and N, if $M \xrightarrow{f} N$, then $H^{l}(M,C) \stackrel{f^{*}}{\simeq} H^{l}(N,C)$.

Definition. Given a C^{∞} manifold M, a subset $A \subseteq M$ which itself has a smooth structure s.t. the inclusion map $A \stackrel{i}{\longrightarrow} M$ is C^{∞} and a C^{∞} map $M \stackrel{r}{\longrightarrow} A$, r is called a retraction if r(p) = p when $p \in A$; r is called a deformation retraction if $r \circ i = id_A$ and $i \circ \sim id_M$.

On cohomologies, if r is a C^{∞} retraction $\Longrightarrow H^l(A,C) \xrightarrow{r^*} H^l(M,C)$ a injection and $H^l(A,C) \stackrel{i^*}{\longleftarrow} H^l(M,C)$ a surjection. What does the condition $I \circ r \sim id_M$ mean under the assumption $r \circ i = id_A$?

What does the condition $I \circ r \sim id_M$ mean under the assumption $r \circ i = id_A$? $\exists C^{\infty} \mod M \times I \xrightarrow{H} M$ s.t. $\forall p \in M, H(p,0) = p$ and $H(p,1) = i \circ r(p) = r(p).t \in I \mapsto h(p,t) \in M$ is a smooth path. In practice, to construct a smooth deformation retraction, we first create a smooth retraction $M \xrightarrow{r} A$ and a smoth path $I \xrightarrow{\gamma_p} M$ s.t. $\gamma_p(0) = p$ and $\gamma_p(1) = r(p)$ for every $p \in M$, and prove that the map $M \times I \xrightarrow{rH} M$ is C^{∞} .

Example. (contractible spaces) M is contractible if $\exists p \in M$ and a defromation retraction $M \xrightarrow{r} (p)$. For example, all star-shaped are contractible.

Theorem. (Brouwer's fixed point theorem) If $\bar{B} \xrightarrow{f} \bar{B}$ is a continuous map $(\bar{B} := B_1(0) \subseteq R^n)$, then $\exists x \in \bar{B}$, f(x) = x.

Proof. Case 1. f is C^{∞} . Suppose that $\forall x \in \overline{B}, f(x) \neq x$. We can yield a map $\overline{B} \xrightarrow{r} \partial \overline{B} = S$. Then r is a smooth retraction. Contradictory!

Remark. (Lefschiz's fixed point theorem) Let M be a compact oriented C^{∞} manifold and $M \xrightarrow{f} M$ be a C^{infty} map. If $L(f) := \sum_{l=0}^{\infty} (-1)^l tr(H^l(M,C) \xleftarrow{f^*} H^l(M,C) \neq 0$, then $\exists x \in M, f(x) = x$.

19 Stochastic process and calculus

19.1 The continuity of sample paths

Definition. Let $(X_t)_{t\in T}$ and $(\tilde{X}_t)_{t\in T}$ be two random processes indexed by the same index set T and with values in the same metric space E, We say that \tilde{X} is a modification of X if $\forall t \in T, P(\tilde{X}_t = X_t) = 1$.

Definition. The process \tilde{X} is said to be indistinguishable from X if there exists a negligible subset N of Ω such that $\forall \omega \in \Omega \setminus N, \forall t \in T, \ \tilde{X}_t(\omega) = X_t(\omega)$.

Lemma. (Kolmogorov's lemma) Let $X = (X_t)_{t \in I}$ be a random process indexed by a bounded interval I of R, and taking values in a complete metric space (E,d). Assume that there exists three reals $q, \epsilon, C > 0$ s.t. for every $s, t \in I$, $E[d(X_s, X_t)^q \leq C|t-s|^{1+\epsilon}$. Then there is a modification \tilde{X} of X whose sample paths are Hölder continuous with component α for every $\alpha \in (0, \frac{\epsilon}{q})$. This means that for every $\omega \in \Omega$ and every $\alpha \in (0, \frac{\epsilon}{q})$, there exists a finite constant $C_{\alpha}(\omega)$ such that for every $s, t \in I$, $d(\tilde{X}_s(\omega), \tilde{X}_t(\omega)) \leq C_{\alpha}(\omega)|t-s|^{\alpha}$.

Proof. To simplify the presentation, we take I = [0,1] and then fix $\alpha \in (0,\frac{\epsilon}{a})$. By Chebyshev inequality and the assumption of the lemma, for $\alpha > 0, s, t' \in$ $I, P(d(X_s, X_t) \geqslant A = a) \leqslant a^{-q} E[d(X_s, X_t)^q] \leqslant Ca^{-q} |t - s|^{1+\epsilon}$. We apply this inequality to $s = (i-1)2^{-n}, t = i2^{-n}$ for $i \in \{1, ..., 2^n\}$ and $\alpha = 2^{-n\alpha}$: $P(d(X_{(i-1)2^{-n}}, X_{i2^{-n}}) \ge 2^{-n\alpha}) \le C2^{nq\alpha}2^{-(1+\epsilon)n}$. By summing over i, $P(\bigcup_{i=1}^{2^n} \{d(X_{(i-1)2^{-n}}, X_{i2^{-n}}) \geqslant 2^{-n\alpha}\} \leqslant 2^n C 2^{nq\alpha - (1+\epsilon)n} = C 2^{-n(\epsilon - q\alpha)}$. By assumption, $\epsilon - q\alpha > 0$, summing over n, we obtain $\sum_{n=1}^{\infty} P(\bigcup_{i=1}^{2^n} \{d(X_{(i-1)2^{-n}}, X_{i2^{-n}}) \ge 0\}$ $2^{-n\alpha}$ }) $< \infty$, and by Borel-Cantelli lemma, with probability 1, we can find a finite integer $n_0(\omega)$ s.t. $\forall n \ge n_0(\omega), \forall i \in \{1, ..., 2^n\}, d(X_{(i-1)2^{-n}}, X_{i2^{-n}}) \ge 2^{-n\alpha}$. Then let s, t satisfy $0 < t - s < 2^{n_0(\omega)}$. Hence there exists $n \ge n_0(\omega)$ such that $2^{-(n+1)} \leqslant t - s < 2^{-n}$. Next, we claim that there is a constant $K_{\alpha}(\omega)$, such that $d(X_t(\omega), X_s(\omega)) \leq K_{\alpha}(\omega)|t-s|^{\alpha}, \forall s, t \in D, 0 < s-t < 2^{-n_0(\omega)}$. For the moment, we restrict to the set of $s, t \in \bigcup_{m \geqslant n+1} D_m$, with $0 < t-s < 2^{-n}$. By induction to $m \ge n+1$ we will first show that $d(X_t(\omega), X_s(\omega)) \le 2\sum_{k=n+1}^m 2^{-\alpha k}$ if $s, t \in D_m$. Suppose that $s, t \in D_{n+1}$, then $t - s = 2^{-(n+1)}$. Therefore, $\exists k \in \{0, ..., 2^{(n+1)} - 1\}$, s.t. $t = \frac{k}{2^{n+1}}$ and $s = \frac{k+1}{2^{n+1}}$. Assume that the claim hols for some $m \geqslant n+1$. Put $s' = \min\{u \in D_m | u \geqslant s\}$ and $t' = \max\{u \in D_m | u \leqslant t\}$. By construction and the assumption, $s \leqslant s' \leqslant t' \leqslant t$ and $s' - s, t - t' \leqslant 2^{-(m+1)}$. $d(X_t(\omega), X_s(\omega)) \leqslant d(X_t(\omega), X_{t'}(\omega)) + d(X_{t'}(\omega), X_{s'}(\omega)) + d(X_{s'}(\omega), X_s(\omega)) \leqslant 2^{-\alpha(m+1)} + 2\sum_{k=n+1}^{m} 2^{-\alpha k} + 2^{-\alpha(m+1)} = 2\sum_{k=n+1}^{m+1} 2^{-\alpha k}$. Now let $s, t \in D$ with $0 < t - s < 2^{-n_0(\omega)}$. As noted before, there exists $n \ge n_0(\omega)$ s.t. $2^{-(n+1)} \le t - s < 2^{-n}$. Then there exists $m \le n+1$ such that $t,s\in D_m$. Apply the previous result, we construct $K_\alpha(\omega)=\frac{2}{1-2^{-\alpha}}$. And now fix ω the mapping $t \to X_t(\omega)$ is Hölder continuous on D and hence uniformly continuous on D. Since (E, d) is complete, the mapping has a unique continuous extension.

Corollary. Let $B = (B_t)_{t \ge 0}$ be a pre-Brownian motion. The process B has a modification whose sample paths are continuous, and even locally Hölder continuous with exponent $\frac{1}{2} - \delta$ for every $\delta \in (0, \frac{1}{2})$.

Proof. If s < t, the random variable $B_t - B_s$ is distributed as N(0, t - s). For every q > 0, $E|B_t - B_s|^q = (t - s)^{\frac{q}{2}} E|U|^q$ where U N(0,1). Taking q > 2, we apply the lemma and $\epsilon = \frac{q}{2} - 1$. It follows that B has a modification whose sample paths are locally Höolder continuous with exponent α for every $\alpha < \frac{q-2}{2q}$.

19.2 Filtrations and Martingales

Definition. A process X_t with values in a measurable space (E, ϵ) is said to be measurable if the mapping $(\omega, t) \to X_t(\omega)$ is measurable to $F \otimes B(R^+)$ adapted if for every $t \ge 0$, X_t is F_t -measurable. progressive if for every $t \ge 0$, X_t is $F_t \otimes B([0, t])$ -measurable.

Proposition 16. X_t is adapted and the sample paths are right or left continuous. Then X_t is progressive measurable.

Proof. It suffices to show that it is the case for right continuity. Fix t_{i} 0. For every $n \geqslant 1$ and $s \in [0,t]$, define a random variable X_{s}^{n} by setting $X_{s}^{n} = X_{\frac{kt}{n}}$ if $s \in [\frac{(k-1)t}{n}, \frac{kt}{n}), k \in \{1, ..., n\}$ and $X_{t}^{n} = X_{t}$. The right continuity of sample paths ensures $X_{s}(\omega) = \lim_{n \to \infty} X_{s}^{n}(\omega)$. On the other hand, for every Borel subset A of E, $\{(\omega, s) \in \Omega \times [0, t] : X_{s}^{n}(\omega) \in A\} = (\{X_{t} \in A\} \times \{t\}) \cup (\bigcup_{k=1}^{n} (\{X_{\frac{kt}{n}} \in A\} \times [\frac{(k-1)t}{n}, \frac{kt}{n}))) \in F_{t} \otimes B([0, t])$. Hence, for every $n \geqslant 1$, the mapping $(\omega, s) \to X_{s}^{n}(\omega)$ is measurable for $F_{t} \otimes B([0, t])$. Since a pointwise limit of measurable functions is also measurable. Thus X is progressive.

(Upcrossings, discrete version) The number $U_N[a,b](\omega)$ of upcrossings [a,b] made by $n \to X_n(\omega)$ by time N is defined to be the largest k in Z^+ such that we can find $0 \le s_1 < t_1 < s_2 < t_2 < \ldots < s_k < t_k \le N$ with $X_{s_i}(\omega) < a, X_{t_i}(\omega) > b$. $C_n = I_{\{C_{n-1}=1\}}I_{\{X_{n-1}leqslantb\}} + I_{\{C_{n-1}=0\}}I_{\{X_{n-1}< a\}}$. Therefore, C_n is bounded, nonnegative, and previsible. We then have the following inequality: $Y_n(\omega) = C_n \dot{X}_n \le (b-a)U_N[a,b](\omega) - [X_N(\omega)-a]^-$.

Theorem. (Doob's upcrossings lemma, discrete version) Let X be a supermartingale. Let $U_N[a,b]$ be the number of upcrossings of [a,b] by time N. Then, $(b-a)EU_N[a,b] \leq E[(X_N-a)^-]$.

Proof. The process C is previsible, bounded and nonnegative, and $Y = C\dot{X}$. Hence Y is a supermartingale, and $E(Y_N) \leq 0$.

Theorem. (Martingale convergence theorem, discrete version) Let X be a supermartingale bounded in L^1 . Then, a.s., $X_{\infty} = \lim X_n$ exists and is finite. For definiteness, we define $X^{\infty}(\omega) = \lim \sup X_n(\omega)$ s.t. X_{∞} is F^{∞} measurable and $X_{\infty} = \lim X_n$ a.s.

Proof. Let $A = \{\omega : X_n(\omega) \text{ does not converge to a limit in } [-\infty, \infty]\} = \{\omega : \lim\inf X_n(\omega) < \lim\sup x_n(\omega)\} = \cup \{\omega : \lim\inf X_n(\omega) < a < b < \lim\sup x_n(\omega)\} \subseteq \{\omega : U_\infty[a,b](\omega) = \infty\} \text{ since } (b-a)EU_N[a,b] \leqslant |a|+E|X_N| \leqslant |a|+\sup_n E|X_N| \text{ and MON can be applied. Thus, } P(A) = 0. \text{ And since } A \text{ is a countable union of } \{\omega : \lim\inf X_n(\omega) < a < b < \lim\sup X_n(\omega)\}, \ X_\infty = \lim X_n \text{ a.s.}$

But by Fatou's lemma, $E|X_{\infty}| = E(\lim\inf|X_n|) \leqslant \lim\inf E(|X_n|) \leqslant \sup E(|X_n|) < \infty$.

Theorem. If M is a martingale and $p \nmid 1$, then for all $n \in N$, $E(\max_{k \leq n} |M_k|^p) \leq (\frac{p}{1-p})^p E|M_n|^p$ provided that M is in L^p .

Proof. Define $M^* = \max_{k \leqslant n} |M_k|$. We have for any $m \in NN$. $E(M^* \land m)^p = \int_{\omega} (M^*(\omega) \land m)^p dP(\omega) = \int_{\omega} \int_0^{M^* \land m} px^{p-1} dx dP(\omega) = \int_{\omega} \int_0^m px^{p-1} 1_{\{M^*(\omega) \geqslant x\}} ds dP(\omega) = \int_0^m px^{p-1} P\{M^* \geqslant x\} dx$. By maximal inequality, $P\{M^* \geqslant x\} \leqslant \frac{E(|M_n|1_{\{M^* \geqslant x\}})}{x}$. Then $E(M^* \land m)^p \leqslant \int_0^m px^{p-2} \frac{E(|M_n|1_{\{M^* \geqslant x\}})}{x} dx = \int_0^m px^{p-2} \int_{\omega:M^* \geqslant x} |M_n(\omega)| dP(\omega) dx = p \int_{\omega} |M_n(\omega)| \int_0^{M^*(\omega) \land m} x^{p-2} dx dP(\omega) = \frac{p}{p-1} E(|M_n|(M^8 \land m)^{p-1})$. By Hölder's inequality, $E|M^* \land m|^p \leqslant \frac{p}{p-1} (E|M_n|^p)^{\frac{1}{p}} (E|M^* \land m|^p)^{\frac{p-1}{p}}$. Then $E|M^* \land m|^p \leqslant (\frac{p}{p-1})^p E|M_n|^p$. At the end, drive m to infinity.

Theorem. Let X_t be a supermartingale, and let D be a countable dense subset of R_+ .

(1) For almost every $\omega \in \Omega$, the restriction of the functions $s \to X_s(\omega)$ to the set D has a right-limit at every $t \in [0,\infty)$ and a left-limit at every $t \in (0,\infty)$. (2) For every $t \in R_+, X_{t+} \in L^1$ and $X_t \geqslant E[X_{t+}|F_t]$, witj equality if the function $t \to E[X_t]$ is right-continuous. The process X_{t+} is a supermartingale with respect to the filtration F_{t+} . It is a martingale if X is a martingale.

Proof. (1) Fix $T \in D$. By the maximal inequality, $\sup_{s \in S \cap [0,T]} |X_s| < \infty$ a.s. We then choose a swquence $(D_m)_{m \geqslant 1}$ of finite subsets of D that increase to $D \cap [0,T]$ and are such that $0,T \in D_m$. Upcrossing inequality then can be applied. $E[M_{ab}^X(D_m)] \leqslant \frac{1}{b-a}E[(X_T-a)^-]$. Then we drive $m \to \infty$. We thus have $M_{ab}^f([0,T] \cap D) < \infty$ a.s. Set $N = \bigcup_{T \in D}(\{\sup_{t \in D \cap [0,T]} |X_t| = \infty\} \cup \{\bigcup_{a,b \in Q,b < a} \{M_{ab}^X(D \cap [0,T]) = \infty\})$. Then, the right and left limit exist. (2) It follows from (1). We set

$$X_{t+}(\omega) = \begin{cases} \lim_{s \downarrow t, s \in D} X_s(\omega) \\ 0, & otherwise \end{cases}$$
 (4)

With this definition, X_{t+} is F_{t+} -measurable.

Fix $t\geqslant 0$ and choose a sequence in D such that t_n decreases to t as $n\to$. Then by construction, we have a.s. $X_{t+}=\lim_{n\to\infty}X_{t_n}$. Set $Y_k=X_{t_{-k}}$ for every $k\leqslant 0$. Then Y is a backward supermartingale with respect to the backward discrete filtration. Since $\sup_{k\leqslant 0}E|Y_k|<\infty$, the backward convergence theorem can be applied and then $X_{t_n}\stackrel{L^1}{\longrightarrow}X_{t^+}$. Thanks to L^1 convergence, $X_t\geqslant E[X_{t_n}|F_t]\Rightarrow X_t\geqslant \lim_{n\to\infty}E[X_{t_n}|F_t]=E[\lim_{n\to\infty}X_{t_n}|F_t]=E[X_{t^+}|F_t]$. Thanks again to L^1 convergence, we have $E[X_{t^+}]=\lim E[x_{T_n}$. Thus, if the function $s\to E[X_s]$ is right-continuous, we must have $E[X_t]=E[X_{t^+}]=E[E[x_{t^+}|F_t]]$, and the inequality $X_t\geqslant E[X_{t^+}|F_t]$ then forces $X_t=E[X_{t^+}|F_t]$.

Theorem. Assume that the filtration F_t is right-continuous and complete. Let X_t be a supermartingale, such that the function $t \to E[X_t]$ is right-continuous. Then X has a modification with cadlag sample paths, which is also an F_t -supermartingale.

Proof. We can construct

$$Y_t(\omega) = \begin{cases} X_{t+}(\omega), & \omega \quad not \quad in \quad N \\ 0, & \omega \in N \end{cases}$$
 (5)

Then the sample paths of Y_t are cadlag.

The random variable X_{t^+} is F_{t^+} -measurable, and thus F_t -measurable since the filtration is right-continuous. As the negligible set N belongs to F_{∞} , the completeness of the filtration ensures Y_t is F_t -measurable. By the previous theorem, $X_t = E[X_{t^+}|F_t] = E[X_{t^+}|F_{t^+}] = X_{t^+} = Y(t)$ a.s. Consequently, Y_t is a modification of X_t .

Definition. A class C of random variables is called uniformly integrable if given $\epsilon > 0$, $\exists K \in [0, \infty)$ s.t. $\forall X \in C$, $E(|X|1_{|X|>K}) < \epsilon$.

Theorem. (An absolute continuity property of Lebesgue integral) Assume f is Lebesgue integrable on E. $\forall \epsilon > 0$, $\exists \delta$ s.t. if the Lebesgue measure of A is less than δ , the integral of |f| over A is less than ϵ .

Proof. Note that by DCT, we have that $\lim_{\lambda \to \infty} \int_{\{|f| > \lambda\}} |f| d\mu = 0$. Let $\epsilon > 0$, there exists λ s.t. $\int_{\{|f| > \lambda\}} |f| d\mu < \frac{\epsilon}{2}$. Choose $\delta \leqslant \frac{\epsilon}{2\lambda}$ and take any measurable A s.t. $\mu(A) < \delta$. Then $\int_A |f| d\mu = \int_{A \cap \{|f| > \lambda\}} |f| d\mu + \int_{A \cap \{|f| \leqslant \lambda\}} |f| d\mu \leqslant \frac{\epsilon}{2} + \delta \lambda \leqslant \epsilon$.

Theorem. (Bounded convergence theorem) Let X_n be a sequence of random variables, and let X be a random variable. Suppose that $X_n \stackrel{p}{\longrightarrow} X$ and for some K is nonnegative and finite, we have for every n and ω , $|X_n(\omega)| \leq K$. Then $X_n \stackrel{L^1}{\longrightarrow} X$.

Proof. $P(|X| > K + k^{-1}) ≤ P(|X - X_n| > k^{-1})$. $P(|X| > K) = P(\cup_k {|X| > K + k^{-1}}) = 0$. Let $\epsilon > 0$ be given. Choose n_0 s.t. $P(|X_n - X| > \frac{\epsilon}{3}) < \frac{\epsilon}{3K}$ when $N ≥ n_0$. $E(|X_n - X|) = E(|X_n - X|1_{|X_n - X| > \frac{\epsilon}{3}}) + E(|X_n - X|1_{|X_n - X| ≤ \frac{\epsilon}{3}}) ≤ 2KP(|X_n - X| > \frac{\epsilon}{3}) + \frac{\epsilon}{3} ≤ \epsilon$. □

Theorem. Let X_n be a sequence in L^1 , and let $X \in L^1$. Then $X_n \xrightarrow{L^1} X$ if and only if $X_n \xrightarrow{p} X$ and X_n is uniformly integrable.

Proof. (Proof of if part) For $K \in [0, \infty)$, define a function $\varphi_K(x)$:

$$\varphi_K(x) = \begin{cases} K, & if \quad x > K \\ x, & if \quad |x| \le K \\ -K, & if \quad x < -K \end{cases}$$
 (6)

Let $\epsilon > 0$ as given. By the UI property of X_n , we can choose K s.t. $\forall n, E\{|\varphi_K(X_n) - X_n|\} < \frac{\epsilon}{3}$ and $E\{\varphi_K(X) - X|\} < \frac{\epsilon}{3}$. Since $P(|\varphi_K(X_n) - \varphi_K(X)| > \epsilon) \leq P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$, $\varphi_K(X_n) \xrightarrow{p} \varphi_K(X)$. By the bounded convergence theorem, we have n_0 s.t. $\forall n \geq n_0$, $E\{|\varphi_K(X_n) - \varphi_K(X)|\} < \frac{\epsilon}{3}$. Since

 $E(|X_n-X|)\leqslant E\{|\varphi_K(X_n)-X_n|\}+E\{|\varphi_K(X_n)-\varphi_K(X)|\}+E\{\varphi_K(X)-X|\}<\epsilon$

(Proof of only if part) Suppose $X_n \stackrel{L^1}{\longrightarrow} X$. Let $\epsilon > 0$ be given. Choose N such that $n \geqslant N \Rightarrow E(|X_n - X|) < \frac{\epsilon}{2}$. By the absolute continuity of Lebesgue integral, we can choose $\delta > 0$ s.t. $P(F) < \delta$, we have $E(|X_n|1_F) < \epsilon$ $(1 \leqslant n \leqslant N)$ and $E(|X|1_F) < \frac{\epsilon}{2}$. Since X_n is bounded in L^1 , we can choose K such that $K^{-1}sup_rE(|X_t|) < \delta$. Then for $n \geqslant N$, we have $P(|X_n| > K) < \delta$ and $E(|X_n|1_{\{|X_n>K\}}) \leqslant E(|X|1_{\{|X_n>K\}}) + E(|X-X_n|) < \epsilon$. For $n \leqslant N$, we have $P(|x_n| > K) < \delta$ and $E(|X_n|1_{\{|X_n|>K\}}) < \epsilon$. x_n is a UI family. The convergence in probability is directly implied by convergence in L^1 .

Definition. A martingale X_t is said to be closed if there exists $Z \in L^1$ s.t. for every $t \ge 0$, $X_t = E[Z|F_t]$.

Theorem. Let X be a martingale with right-continuous sample paths. Then the following properties are equivalent.

- (1) X is closed.
- (2) the collection X_t is uniformly integrable.
- (3) X_t converges a.s. and in L^1 .

Proof. (1) \Rightarrow (2) Suppose $Z \in L^1$ closes X_t . Let $\epsilon > 0$ be given. Choose $\delta > 0$ s.t. $F \in F$, $P(F) < \delta$, then $E(|Z|1_F) < \epsilon$. Choose K s.t. $K^{-1}E(|Z|) < \delta$. Since $X_t = E(Z|F_t)$. By Jensen's inequality, $E|X_t| \leqslant E|z|$ and $KP(|X_t| > K) \leqslant E|x_t| \leqslant E|Z|$. Therefore, $P(|X_t| > K) < \delta$. Since $|X_t| > K$ is F_t -measurable and thus F measurable, $E(|X_t|1_{\{|X_t|>K\}}) \leqslant E(|Z|1_{\{|X_t|>K\}}) < \epsilon$.

 $(2) \Rightarrow (3)$ It is easily seen by applying the martingale convergence theorem.

$$(3) \Rightarrow (1)$$
 By simply take $Z = X_{\infty}$.

Theorem. (Optional stopping theorem, discrete version) Let X be a supermartingale. Let T be a stopping time. Then X_T is integrable and $E(X_T) \leq E(X_0)$ in each of the following situations:

- (1) T is bounded.
- (2) X is bounded and T is a.s. finite.
- (3) $E(T) < \infty$ and for some K, $|X_n(\omega) X_{n-1}(\omega)| \leq K$.

Proof. We know that $E(X_{T \wedge n} - X_0) \leq 0$. For (1), we can take n = N.

For (2), we can let $n \to by$ using bounded convergence theorem.

For (3), $|X_{T \wedge n} - X_0| = |\sum_{k=1}^{T \wedge n} (X_k - X_{k-1})| \leq$, then by applying the DCT we have proved the theorem.

Theorem. If X_n is a uniformly integrable submartingale then for any stopping time N, $X_{N \wedge n}$ is uniformly integrable.

Proof. X_n^+ is a submartingale, so $EX_{N\wedge n}^+ \leqslant EX_N^+$. Since X_n^+ is uniformly integrable, it follows that $\sup_n EX_{N\wedge n}^+ \leqslant \sup_n EX_n^+ < \infty$. By the martingale convergence theorem, $X_{N\wedge n} \to X_N$ a.s. and $E|X_N| < \infty$. $E(|X_N \cap 1_{\{|X_N| > K, N \leqslant n\}} + E(|X_N| 1_{\{|X_N| > K, N > n\}} \leqslant E(|X_n| 1_{\{|X_n| > K\}} + E(|X_N| 1_{\{|X_N| > K\}}) + E(|X_N| 1_{\{|X_N| > K\}}) = E(|X_N| 1_{\{|X_N| > K\}} + E(|X_N| 1_{\{|X_N| > K\}}) = E(|X_N| 1_{\{|X_N| > K\}} + E(|X_N| 1_{\{|X_N| > K\}}) = E(|X_N| 1_{\{|X_N| >$

Theorem. If X_n is a uniformly integrable submartingale then for any stopping time $N \leq \infty$, we have $EX_0 \leq EX_N \leq EX_\infty$.

Proof. Letting
$$n \to \infty$$
 implies to $X_{N \wedge n} \xrightarrow{L^1} X_N$ and $X_n \xrightarrow{L^1} X_\infty$.

Theorem. (Levy's upward theorem) Let M_n be closed by ϵ . Then M is a UI martingale and $M_n \to E(\epsilon|F_\infty)$ a.s. and in L^1 .

Proof. It suffices to show that $M_{\infty} = E(\epsilon|F_{\infty})$. Now consider the measures Q_1 and Q_2 on (Ω, F_{∞}) , where $Q_1(F) = E(E(\epsilon|F_{\infty})1_F)$ and $Q_2(F) = E(M_{\infty})1_F)$, $F \in F_{\infty}$. If F is in F_n , then $E(E(\epsilon|F_{\infty})1_F) = E(E(E(\epsilon|F_{\infty})1_F)|F_n) = E(M_n 1_F) = E(M_{\infty} 1_F)$. Since F_n is a π -system generating F_{∞} , therefore Q_1 and Q_2 agree on F_{∞} .

Theorem. (Optional stopping theorem for uniformly integrable martingale) If $L \leq M$ are stopping times and $Y_{M \wedge n}$ is a uniformly integrable submartingale then $EY_L \leq EY_M$ and $Y_L \leq E(Y_M|F_L)$.

Proof. Let $A \in F_L$ and define

$$N = \begin{cases} L, & on \quad A \\ M, & on \quad A^c \end{cases} \tag{7}$$

is a stopping time because $\{N=n\}=(\{L=n\}\cap A)\cup \cup_{m=1}^n(\{L=m\}\cap \{M=n\}\cap A^c)$. Since M=N on A^c and $EY_N=E[Y_N1_A]+E[Y_N1_{A^c}]$, it follows that $E[Y_L1_A]=E[Y_N1_A]\leqslant E[Y_M1_A]=E[E[Y_M|F_L]1_A]$. In particular, if $\epsilon>0$ and we let $A=\{Y_L-E[Y_M|F_L]>\epsilon\}\in F_L$, then $\epsilon P(A)\leqslant E[Y_L-E[Y_M|F_L]]\leqslant 0$ and so P(A)=0. We have $Y_L\leqslant E(Y_M|F_L)$ a.s.

19.3 Local martingales

Definition. An adapted process M(t) is called a local martingale if there exists a sequence of stopping time T_n s.t. $T_n \uparrow \infty$ and for each n the stopped process $M(t \land T_n)$ is a uniformly integrable martingale in t.

Theorem. Let M(t) be a local martingale such that $|M(t)| \leq Y$, with $EY < \infty$. Then M is a uniformly integrable martingale.

Proof. Let T_n be a localizing sequence. Then for any n and s < t.

$$E(M_{t \wedge T_n}|F_s) = M_{s \wedge T_n}. \tag{8}$$

M is clearly integrable. By dominated convergence of conditional expectations $\lim_{n\to\infty} E(M_{t\wedge T_n}|F_s) = E(M_t|F_s)$. Since $\lim_{n\to n} M_{s\wedge T_n} = M_s$, $\lim_{n\to\infty} E(M_{t\wedge T_n}|F_s) = E(M_t|F_s) = M(s)$. And the UI property is clear.

Theorem. A non-negative local martingale M_t is a supermartingale, that is $EM_t < \infty$, and for s < t, $E(M_t|F_s) \leq M_s$.

Proof. Since $M_{t \wedge T_n} \geq 0$, by Fatou's lemma $E(\lim_{n \to \infty} \inf M_{t \wedge T_n}) \leq \lim_{n \to \infty} \inf E(M_{t \wedge T_n})$. Since the limit exists, $E(\lim_{n \to \infty} \inf M_{t \wedge T_n}) = E(M_t) \leq \lim_{n \to \infty} \inf E(M_{t \wedge T_n}) = EM_0$, so that M is integrable. Then applying Fatou's lemma again for conditional expectations, $E(\lim_{n \to \infty} \inf M_{t \wedge T_n} | F_s) \leq \lim_{n \to \infty} \inf E(M_{t \wedge T_n} | F_s) = M_{s \wedge T_n}$. Then drive $n \to \infty$. We obtain $E(M_t | F_s) \leq M_s$.

Definition. A process X is of Dirichet class D, if the family X_T is uniformly integrable.

Theorem. A local martingale is a uniformly integrable martingale if and only if it is of class D.

Proof. Suppose that M is a local martingale of class D. Let T_n be a localizing sequence. Since $T_n \to \infty$, $M_{s \wedge T_n} \to M_s$ a.s. By class D property, $M_{s \wedge T_n} \to M_s$ also in L^1 . Using the properties of conditional expectation, $E|E(M_{t \wedge T_n}|F_s) - E(M_t|F_s)| = E|E(M_{t \wedge T_n} - M_t|F_s) \leqslant E(E|M_{t \wedge T_n} - M_t||E_s) = E|M_{t \wedge T_n} - M_t|$. The latter converges to zero. This implies $E(M_{t \wedge T_n}|F_s) \to E(M_t|F_s)$ as $n \to \infty$. $\lim_{n \to \infty} M_{s \wedge T_n} = M(s) = \lim_{n \to \infty} E(M_{t \wedge T_n}|F_s) = E(M_t|F_s)$.

Proposition 17. For every $t \in (0,T]$, $\int_0^t |da(s)| = \sup\{\sum_{i=1}^p |a(t_i) - a(t_{i-1})|\}$. Clearly, it is enough to treat the case t = T. $|a(t_i) - a(t_{i-1})| = |\mu((t_{i-1},t_i])| \le |\mu|((t_{i-1},t_i])$. In order to show the reverse inequality, we will use a martingale argument, leaving aside the trivial case and introduce the probability space $\Omega = [0,T]$, which is equipped with the Borel σ -field B[0,T] and the probability measure $P(ds) = (|\mu|([0,T]))^{-1}|\mu|(ds)$. On this probability space, we consider discrete filtration B_n s.t. for every integer ≥ 0 , B_n is the σ -field generated by the intervals $(t_{i-1}^n, t_i^n]$, $1 \leq i \leq p_n$. We then set $X(s) = 1_{D^+}(s) - 1_{D^-}(s) = \frac{d\mu}{d|\mu|}$ and for every n, $X_n = E[X|B_n]$ and is a constant. Since X_n is closed martingale and thus converges to X in L^1 . In addition, since |X(s)| = 1, $|\mu|(ds)$ a.e., $\lim_{n\to\infty} E|X_n| = E|X| = 1$. Note that $E|X_n| = (|\mu|([0,T]))^{-1} \sum_{i=1}^{p_n} |a(t_i^n) - a(t_{i-1}^n)|$. Drive $n\to\infty$.

Proposition 18. Let A be a finite variation process, and let B be a progressive process such that $\forall t \geq 0, \forall \omega \in \Omega, \int_0^t |H_s(\omega)| |dA_s(\omega)| < \infty$. Then the process $B \cdot A$ defined by $(B \cdot A)_t = \int_0^t |H_s(\Delta)| dA_s$ is also a finite variation process.

Theorem. Let M be a continuous local martingale. Assume that M is also a finite variation process, in particular $M_0 = 0$. Then $M_t = 0$ a.s.

Proof. Set $T_n = \inf\{t \geq 0: \int_0^t |dM_s| \geq n\}$ for every integer $n \geq 0$. Fix $n \geq 0$ and set $N = M^{T_n}$. $|N_t| = |M_{t \wedge T_n}| \leq \int_0^{t \wedge T_n} |dM_s| \leq n$. N is a bounded martingale. Then, we have $E[N_t^2] = \sum_{i=1}^p E[(N_{t_i} - N_{t_{i-1}}])^2] \leq E[(\sup_{i \in N_t} |N_{t_i} - N_{t_{i-1}}]) \leq n E[\sup_{i \in N_t} |N_{t_i} - N_{t_{i-1}}]]$. Since N is bounded and with continuous sample paths, $\lim_{k \to \infty} E[\sup_{1 \leq p \leq p} |N_{t_i} - N_{t_{i-1}}|] = 0$. Then, $E[N_t^2] = 0$, and hence $M_{t \wedge T_n} = 0$ a.s. Letting n tend to ∞ , we get $M_t = 0$ a.s.

Theorem. (The quadratic variation of a continuous local martingale) Let M_t be a continuous local martingale. There exists an increasing process denoted by $< M, M >_t$, which is unique up to indistinguishability, such that $M_t^2 - < M, M >_t$ is a continuous local martingale. Furthermore, for every fixed $t_{\delta}\theta$, if $0 = t_0^n < t_1^n < ... < t_{p_n}^n = t$ is an increasing sequences of subdivisions of [0, t] with mesh tending to θ , we have $< M, M >_t = \lim_{n \to \infty} \sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})^2$ in probability.

Proof. The proof is divided into two parts.

(Proof of uniqueness) If A and A' be two increasing processes satisfying the condition in the statement. Then $A_t - A'_t = (M_t^2 - A')t) - (M_t^2 - A_t$ is both the continuous local martingale and a finite variation process. A - A' = 0 a.s. (Proof of existence) We consider first the case $M_0 = 0$ and M is bounded. Hence M is a true martingale. Fix K > 0 and an increasing sequence $0 = t_0^n < t_1^n < ... < t_{n_0}^n = K$ with mesh tending to 0.

... $< t_{p_n}^n = K$ with mesh tending to 0. We observe that, for every $0 \le r < s$ and for every bounded F_r -measurable variable Z, the process $N_t = Z(M_{s \wedge t} - M_{r \wedge t})$ is a martingale since for k < r, $E(N_t|F_k) = 0 = N_k$ and for $r \le k < s$, $E(N_t|F_k) = ZE(M_{s \wedge t} - M_{r \wedge t}|F_k) = ZE(M_{s \wedge t}|F_k) - ZEM_r = ZEM_{s \wedge k} - ZEM_r = N_k$, and for $k \ge s$, $E(N_t|F_k) = Z(M_s - M_r) = N_k$. It follows that for every n, $X_t^n = \sum_{i=1}^{p_n} M_{t_{i-1}^n}(M_{t_i^n \wedge t} - M_{t_{i-1}^n \wedge t})$ is a martingale. Then, $M_{t_j^n}^2 - 2X_{t_j^n}^n = M_{t_j^n}^2 - 2\sum_{i=1}^j M_{t_{i-1}^n}(M_{t_i^n} - M_{t_{i-1}^n}) = \sum_{i=1}^j (M_{t_i^n} - M_{t_{i-1}^n})^2$.

We then claim that $\lim_{n,m\to\infty} E[(X_K^m - X_K^n)^2] = 0$.

Let us fix $n \leq m$ and evaluate the product

$$\begin{split} E(X_K^m X_K^n) &= E(\sum_{i=1}^{p_n} [M_{t_{i-1}^n} (M_{t_i^n} - M_{t_{i-1}^n})] \sum_{j=1}^{p_m} [M_{t_{j-1}^m} (M_{t_j^m} - M_{t_{j-1}^m})]) \\ &= \sum_{i=1}^{p_n} \sum_{j=1}^{p_m} E[M_{t_{i-1}^n} (M_{t_i^n} - M_{t_{i-1}^n}) M_{t_{j-1}^m} (M_{t_j^m} - M_{t_{j-1}^m})]. \end{split}$$

In this double sum, the only terms that may be nonzero are those corresponding to indices i and j such that the interval $(t^m_{j-1},t^m_j]$ is contained in $(t^n_{i-1},t^n_i]$ since suppose that $t^n_i \leqslant t^m_{j-1}$ (the case $t^m_j \leqslant t^n_{i-1}$ can be treated analogically), then conditionally on $F_{t^m_{j-1}}$, we have

$$\begin{split} E[M_{t_{i-1}^n}(M_{t_i^n}-M_{t_{i-1}^n})M_{t_{j-1}^m}(M_{t_j^m}-M_{t_{j-1}^m})]\\ &=E(E[M_{t_{i-1}^n}(M_{t_i^n}-M_{t_{i-1}^n})M_{t_{j-1}^m}(M_{t_j^m}-M_{t_{j-1}^m})|F_{j-1}^m])\\ &=E[E[M_{t_{i-1}^n}(M_{t_i^n}-M_{t_{i-1}^n})M_{t_{j-1}^m}E(M_{t_j^m}-M_{t_{j-1}^m}|F_{j-1}^m)]=0 \end{split}$$

For every $j=1,...,p_m$ write $i_{n,m}(j)$ for the unique index i such that $(t_{j-1}^m,t_j^m]\subset (t_{i-1}^n,t_i^n]$. It follows from the previous considerations that

$$E(X_K^m X_K^n) = \sum_{1 \leqslant j \leqslant p_m, i = i_{n,m}(j)} E[M_{t_{i-1}^n} (M_{t_i^n} - M_{t_{i-1}^n}) M_{t_{j-1}^m} (M_{t_j^m} - M_{t_{j-1}^m})]$$

In each term $E[M_{t_{i-1}^n}(M_{t_i^n}-M_{t_{i-1}^n})M_{t_{i-1}^m}(M_{t_i^m}-M_{t_{i-1}^m})]$, we can decompose

$$M_{t_i^n} - M_{t_{i-1}^n} = \sum_{k: i_{n,m}(k) = i} (M_{t_k^m} - M_{t_{k-1}^m})$$

We observe that if $i_{n,m}(k) = i, k \neq j$, $E[M_{t_{i-1}^n}(M_{t_k^m} - M_{t_{k-1}^n})M_{t_{j-1}^m}(M_{t_j^m} - M_{t_{j-1}^n})] = 0$ (condition on $F_{t_{k-1}^m}$ if k > j and on $F_{t_{j-1}^m}$ if k < j). The case that remains is k = j, we have thus obtained

$$E(X_K^m X_K^n) = \sum_{1 \le j \le p_m, i = i_{n,m}(j)} E[M_{t_{i-1}}^n M_{t_{j-1}}^m (M_{t_j^m} - M_{t_{j-1}}^m)^2]$$

As a special case of this relation, we have

$$E[(X_K^m)^2] = \sum_{1 \leqslant j \leqslant p_m} E[M_{t_{j-1}}^2 (M_{t_j^m} - M_{t_{j-1}}^m)^2].$$

Furthermore,

$$\begin{split} E[(X_K^n)^2] &= \sum_{1\leqslant i\leqslant p_n} E[M_{t_{i-1}}^2 (M_{t_i^n} - M_{t_{i-1}^n})^2] \\ &= \sum_{1\leqslant i\leqslant p_n} E[M_{t_{i-1}}^2 E(M_{t_i^n} - M_{t_{i-1}^n})^2 | F_{t_{i-1}^n})] \\ &= \sum_{1\leqslant i\leqslant p_n} E[M_{t_{i-1}}^2 \sum_{j: i_{n,m}(j)=i} E[(M_{t_j^m} - M_{t_{j-1}^m})^2 | F_{t^n i-1}]] \\ &= \sum_{1\leqslant j\leqslant p_m, i=i_{n,m}(j)} E[M_{t_{i-1}^n}^2 (M_{t_j^m} - M_{t_{j-1}^m})^2] \end{split}$$

Then we combine the last three equation:

$$E[(X_K^n - X_K^m)^2] = E[\sum_{1 \le j \le p_m, i = i_{n,m}(j)} (M_{t_{i-1}^n} - M_{t_{j-1}^m})^2 (M_{t^m} - M_{t_{j-1}^m})^2].$$

Using Cauchy-Schwarz inequality, we then have

$$\begin{split} E[(X_K^n - X_K^m)^2] \leqslant E[sup_{1 \leqslant j \leqslant p_m, i = i_{n,m}(j)}] (M_{t_{i-1}^n} - M_{t_{j-1}^m})^4]^{\frac{1}{2}} \\ \times E[(\sum_{1 \leqslant j \leqslant p_m} (M_{t_j^m} - M_{t_{j-1}^m})^2)^2]^{\frac{1}{2}}. \end{split}$$

By the continuity of sample paths and dominated convergence, we have

$$\lim_{n,m\to\infty,n\leqslant m} E[\sup_{1\leqslant j\leqslant p_m, i=i_{n,m}(j)}](M_{t_{i-1}^n}-M_{t_{j-1}^m})^4]=0$$

To complete the proof that $\lim_{n,m\to\infty} E[(X_K^n-X_K^m)^2]=0$, it remains to show that there exists a constant C such that, for every m, $E[(\sum_{1\leqslant j\leqslant p_m}(M_{t_j^m}-E_{t_j^m})^2]=0$

$$M_{t_{i-1}^m})^2)^2] \leqslant C.$$

Let A be a constant such that $|M_t| \leq A$ for every $t \geq 0$.

$$\begin{split} &E[(\sum_{1\leqslant j\leqslant p_m}(M_{t_j^m}-M_{t_{j-1}^m})^2)^2]\\ &=E[\sum_{1\leqslant j\leqslant p_m}(M_{t_j^m}-M_{t_{j-1}^m})^4]+2E[\sum_{1\leqslant j< k\leqslant p_m}(M_{t_j^m}-M_{t_{j-1}^m})^2(M_{t_k^m}-M_{t_{k-1}^m})^2]\\ &\leqslant 4A^2E[\sum_{1\leqslant j\leqslant p_m}(M_{t_j^m}-M_{t_{j-1}^m})^2]+2\sum_{j=1}^{p_m-1}E[(M_{t_j^m}-M_{t_{j-1}^m})^2E[\sum_{k=j+1}^{p_m}(M_{t_k^m}-M_{t_{k-1}^m})^2|F_{t_j^m}]]\\ &=4A^2E[\sum_{1\leqslant j\leqslant p_m}(M_{t_j^m}-M_{t_{j-1}^m})^2]+\sum_{j=1}^{p_m-1}E[(M_{t_j^m}-M_{t_{j-1}^m})^2E[(M_K-M_{t_j^m})^2|F_{t_j^m}]]\\ &\leqslant 12A^2E[\sum_{1\leqslant j\leqslant p_m}(M_{t_j^m}-M_{t_{j-1}^m})^2]=12A^2E[(M_K-M_0)^2]\leqslant 48A^4 \end{split}$$

Then thanks to Dob's inequality in L^2 , we have

$$E[\sup_{t \leqslant k} (X_t^n - X_t^m)^2] \leqslant 4E[(X_K^n - X_K^m)^2] \Rightarrow \lim_{n,m \to \infty} E[\sup_{t \leqslant k} (X_t^n - X_t^m)^2] = 0$$

Therefore, for every $t \in [0, K]$, X_t^n is a Cauchy sequence in L^2 and thus converges in L^2 . We want to argue that the limit yields a process Y index by [0, K] with continuous sample paths. To see this, we choose a strictly increasing sequence $(n_k)_{k\geqslant 1}$ of positive integers such that for every $k\geqslant 1$, $E[sup_{t\leqslant K}(X_t^{n_k+1}-X_t^{n_k})^2]\leqslant 2^{-k}$. This implies that

$$E[\sum_{k=1}^{\infty} \sup_{t \leqslant K} |X_t^{n_k+1} - X_t^{n_k}|] < \infty$$

and thus

$$\sum_{t=1}^{\infty} sup_{t\leqslant K}|X_t^{n_k+1}-X_t^{n_k}|<\infty \quad ,a.s.$$

Consequently, except on the negligible set N where the series in the last display diverges, the sequence of random functions $(X_t^{n_k}, 0 \le t \le K)$ converges uniformly on [0, K] as $k \to \infty$, and the limiting random function is continuous by uniform convergence.

Since the filtration is complete, we can thus set

$$Y_t(\omega) = \begin{cases} \lim_{k \to \infty} X_t^{n_k}(\omega), & if \quad \omega \in \Omega \setminus N \\ 0, & if \quad \omega \in N \end{cases}$$

Furthermore, since the L^2 -limit of X_t^n must coincide with the a.s. limit of a subsequence, Y_t is also the limit of X_t^n in L^2 . Then, we can pass to the limit in the martingale property for X_n , to obtain $E[Y_t|F_s] = Y_s$ for every

 $0 \leq s \leq t \leq K$. It follows that $(Y_{t \wedge K})_{t \geq 0}$ is a martingale with continuous sample paths.

On the other hand, the sample paths of $M_t^2 - 2X_t^n = \sum_{i=1}^{p_n} (M_{t_i^n} - M_{t_{i-1}^n})^2$ are nondecreasing, by passing to the limit $n \to \infty$ along the sequence n_k , we get the sample paths of $M_t^2 - 2Y_t$ are nondecreasing on [0, K], except maybe on the negligible set N. For every $t \in [0, K]$, we set $A_t^{(K)} = M_t^2 - 2Y_t$ on $\omega \setminus N$, and $A_t^{(K)} = 0$ on N. Then $A_0^{(K)} = 0$, $A_t^{(K)}$ is F_t -measurable for every $t \in [0, K]$. By the uniqueness argument, for the case $M_0 = 0$ and M_t is bounded, the existence equality holds in L^2 .

Let us consider the general case. Writing $M_t = M_0 + N_t$, s.t. $M_t^2 = M_0^2 + 2M_0N_t + N_t^2$, and noting that M_0N_t is a continuous local martingale, we see that we may assume that $M_0 = 0$. We then set $T_n = \{t \geq 0 : |M_t| \geq N\}$ and we can apply the bounded case to the stopped martingales M^{T_n} . Set $A^{[n]} = \langle M^{T_n}, M^{T_n} \rangle$. The uniqueness hows that the processes $A_{t \wedge T_n}^{[n+1]}$ and $A_t^{[n]}$ are distinguishable. It follows that there exists an increasing process A such that for every n, the processes $A_{t \wedge T_n}$ and $A_t^{[n]}$ are indistinguishable. By construction and the previous theorem, $M_{t \wedge T_n}^2 - A_{t \wedge T_n}$ is a martingale for every n, which precisely implies that $M_t^2 - A_t$ is a continuous local martingale. We take $\langle M, M \rangle_t = A_t$. Finally, the previously bounded case holds if M and $\langle M, M \rangle_t$ are replaced by M^{T_n} and $\langle M, m \rangle_{t \wedge T_n}$. Then it is enough to observe that for every t > 0, $P(t \leq T_n)$ converges to 1 when $n \to \infty$.

Theorem. Let M be a continuous local martingale such that $M_0 = 0$. Then we have $\langle M, M \rangle = 0$ if and only if M = 0.

Proof. Suppose that $\langle M, M \rangle_t = 0$. Then M_t^2 is a nonnegative continuous local martingale. And by the previous theorem, it is also a supermartingale. Hence, $E(M_t^2) \leq E(M_0^2)$. Then, $M_t = 0$ a.s. The converse is obvious.

Proposition 19. Let M be a continuous local martingale with $M_0 \in L^2$.

(1) The following are equivalent:

M is a martingale bounded in L^2

 $E[\langle M, M \rangle_{\infty}] < \infty$ (2) The following are equivalent:

M is a martingale and $M_t \in L^2$ for every $t \geqslant 0$

 $E[\langle M, M \rangle_t] < \infty \text{ for every } t \geqslant 0$

Proof. We may assume $M_0 = 0$ in the proof.

(1) Let us first assume that M is a martingale bounded in L^2 . By Doob's inequality, for every T > 0,

$$E[sup_{0\leqslant t\leqslant T}M_t^2]\leqslant 4E[M_T^2].$$

By letting T goes to infinity, we have

$$E[\sup_{t\geqslant 0} M_t^2] \leqslant 4\sup_{t\geqslant 0} E[M_t^2] = C < \infty.$$

Set $S_n = \inf\{t \ge 0 : \langle M, M \rangle_T \ge n\}$. Then the continuous local martingale $M_{t \wedge S_n}^2 - \langle M, M \rangle_{t \wedge S_n}$ is dominated by the variable $\sup_{s \ge 0} M_s^2 + n$, which is

integrable. Then $M_{t \wedge S_n}^2 - \langle M, M \rangle_{t \wedge S_n}$ is a uniformly integrable martingale. $E(M_{t \wedge S_n}^2) = E(\langle M, M \rangle_{t \wedge S_n}) \leqslant C < \infty$. By letting n and then t tend to infinity, and using monotone convergence theorem, we get $E[\langle M, M \rangle_{\infty}] \leqslant C < \infty$.

Conversely, assume that $E[\langle M, M \rangle_{\infty}] < \infty$. Set $T_n = \inf\{t \geq 0 : |M_t| \geq n\}$. Then the continuous local martingale $M_{t \wedge T_n}^2$ is dominated by $n^2 + \langle M, M \rangle_{\infty}$, which is integrable. Hence, this continuous local martingale is a uniformly integrable martingale. Using Fatou's lemma,

$$\begin{split} E[\lim_{n\to\infty} \inf M_{t\wedge T_n}^2] &\leqslant \lim_{n\to\infty} \inf E[M_{t\wedge T_n}^2] \\ &= \lim_{n\to\infty} \inf E[< M, M>_{t\wedge T_n}] \\ &= \lim_{n\to\infty} \inf E[< M, M>_{\infty}] < \infty E[\lim_{n\to\infty} \inf M_{t\wedge T_n}^2] \leqslant \lim_{n\to\infty} \inf E[M_{t\wedge T_n}^2] \\ &= \lim_{n\to\infty} \inf E[< M, M>_{t\wedge T_n}] \\ &= \lim_{n\to\infty} \inf E[< M, M>_{\infty}] < \infty. \end{split}$$

So M_t is bounded in L^2 . In addition, since the bound on $E[M_{\lfloor}^2 t \wedge T_n]$ shows that the sequence is uniformly integrable, and therefore converges both a.s. and in L^1 to M_t , for every $t \geq 0$. Recalling that M^{T_n} is a martingale, $E[M_{t \wedge T_n}|F_s] = M_{s \wedge T_n}$, for $0 \leq s < t$. By the L^1 covergence, $E[\lim_{n \to \infty} M_{t \wedge T_n}|F_s] = \lim_{n \to \infty} M_{s \wedge T_n} = M_s$. Thus, M is a martingale. The uniformly integrable property is clear. \square

Definition. If M and N are two continuous local martingales, the brackets is the finite variation process defined by setting, for every $t \ge 0$, $< M, N>_t = \frac{1}{2}(< M+N, M+N>_t - < M, M>_t - < N, N>_t)$.

Theorem. Let M and N be continuous local martingales and let H and K be two measurable processes. Then, a.s., $\int_0^\infty |H_s| |K_s| |d < M, N>_s| \leq (\int_0^\infty H_s^2 d < M, M>_s)^{\frac{1}{2}} (\int_0^\infty K_s^2 d < N, N>_s)^{\frac{1}{2}}$

19.4 Stochastic integrals for martingales bounded in L^2

We denote H^2 for the space of all continuous martingales M which are bounded in L^2 and such that $M_0=0$. In addition, if $M,N\in H^2$, the random variable $< M,N>_{\infty}$ is well-defined and we have $E|< M,N>_{\infty}|<\infty$. This allows us to define a symmetric bilinear form on H^2 via the formula $(M,N)_{H^2}=E< M,N>_{\infty}=E[M_{\infty}N_{\infty}]$. Clearly, $(M,M)_{H^2}=0$ if and only if $M_t=0$. Then, the scalar product $(M,N)_{H^2}$ thus yields a norm on H^2 given by

$$||M||_{H^2} = (M, M)_{H^2}^{\frac{1}{2}} = E[\langle M, M \rangle_{\infty}]^{\frac{1}{2}} = E[(m_{\infty})^2]^{\frac{1}{2}}.$$

Proposition 20. The space H^2 equipped with the scalar product $(M, N)_{H^2}$ is a Hilbert space.

Proof. We need to verifty the completeness of the space. Let M^n be a sequence in H^2 which is Cauchy for that norm. We have then

$$\lim_{m,n\to\infty} E[(M_{\infty}^n - M_{\infty}^n)^2] = \lim_{m,n\to\infty} (M^n - M^m, M^n - M^m)_{H^2} = 0$$

Consequently, the sequence M_{∞}^n converges in L^2 to a limit, which we denote by Z.

By Doob's inequality, $E[\sup_{t\geqslant 0}(M^n_t-M^m_t)^2]\leqslant 4E[(M^n_\infty-M^m_\infty)^2]$. We thus obtained that $\lim_{m,n\to\infty}E[\sup_{t\geqslant 0}(M^n_t-M^m_t)^2]=0$. Hence for every $t\geqslant 0$, m^n_t converges in L^2 .

Then, we want to argue that the limit yields a process with continuous sample paths. We first choose an increasing $n_k \uparrow \infty$ s.t.

$$E[\sum_{k=1}^{\infty} \sup_{t\geqslant 0} |M_t^{n_k} - M_t^{n_k+1}|] \leqslant \sum_{k=1}^{\infty} E[\sup_{t\geqslant 0} (M_t^{n_k} - M_t^{n_k+1})^2]^{\frac{1}{2}} < \infty.$$

The last display implies that, a.s. $\sum_{k=1}^{\infty} \sup_{k\geqslant 1} |M_t^{n_k} - M_t^{n_k+1}| < \infty$, and thus the sequence converges uniformly on R^+ a.s. to a limit denoted by $(M_t)_{t\geqslant 0}$. On the negligible set where the uniform convergence does that hold, we take $M_t = 0$ for every $t\geqslant 0$. Clearly the limiting process has continuous sample paths and is adapted. Furthermore, by L^2 convergence, we can yield that M_t is a continuous martingale and is bounded in L^2 , so that $M\in H^2$. The a.s. convergence of $(M_t^{n_k})_{t\geqslant 0}$ to $(M_t)_{t\geqslant 0}$ then ensures $M_\infty = \lim M_\infty^{n_k} = Z$ a.s. Finally, the L^2 convergence of (M_∞^n) to Z shows that the sequence converges to M in H^2 . \square

We denote the progressive σ -field on $\Omega \times \mathbb{R}^+$ by P and if $M \in \mathbb{H}^2$, we let $L^2(M)$ be the set of all progressive processes such that

$$E[\int_0^\infty H_s^2 d < M, M >_s] < \infty.$$

We can view $L^2(M)$ as an ordinary L^2 space, namely,

$$L^2(M) = L^2(\Omega \times \mathbb{R}^+, P, dPd < M, M >_{\mathfrak{s}})$$

where $dpd < M, M >_s$ refers to the finite measure on $(\omega \times R^+, P)$ that assigns the mass to a set $A \in P$

$$E[\int_0^\infty 1_A(\omega, s)d < M, M >_s]$$

Just like any L^2 space, $L^2(M)$ is a Hilbert space with the associated norm $||H||_{L^2}=(E[\int_0^\infty H_s^2d< M, M>_s])^{\frac{1}{2}}.$

Definition. An elementary process is a progressive process of the form

$$H_s(\omega) = \sum_{i=0}^{p-1} H_{(i)}(\omega) 1_{(t_i, t_{i+1}]}(s)$$

, where $0 = t_0 < t_1 < ... < t_p$ and for every $i \in \{0,1,...,p-1\}, H_{(i)}$ is a bounded F_{t_i} measurable random variable.

The set ε of all elementary processes forms a linear subspace of $L^2(M)$. To be precise, we should here say equivalence classes of elementary processes. (Recall that H and H' are identified in $L^2(M)$ if $||H - H'||_{L^2(M)} = 0$)

Proposition 21. For, every $M \in H^2$, ε is dense in $L^2(M)$.

Proof. It suffices to show that if $K \in L^2(M)$ is orthogonal to ε , then K = 0. Assume that $K \in L^2(M)$ is orthogonal to ε , and set for every $t \ge 0$,

$$X_t = \int_0^t K_u d < M, M >_u .$$

The integral on the ride hand side makes sense and is finite since by the Cauchy Schwarz inequality,

$$E\left[\int_{0}^{t} |K_{u}| < M, M >_{u}\right] \leq \left(E\left[\int_{0}^{t} (K_{u})^{2} d < M, M >_{u}\right]\right)^{\frac{1}{2}} \times \left(E\left[< M, M >_{\infty}\right]\right)^{\frac{1}{2}}$$

Therefore, we yield that a.s. $\forall t \geq 0, \int_0^t |K_u| d < M, M >_u < \infty$. Then, X_t is a finite variation process and bounded in L^1 .

Next, we let the elementary process $H_r(\omega)=F(\omega)1_{(s,t]}(r)$. Writing $(H\cdot M)_{L^M}=0$, we get

$$0 = (H \cdot M)_{L^2(M)}$$

$$= E\left[\int_0^\infty H_u K_u d < M, M >_u\right]$$

$$= E\left[\int_s^t H_u K_u d < M, M >_u\right]$$

$$= E\left[F\int_s^t K_u d < M, M >_u\right]$$

It follows that $E[F(X_t - X_s)] = 0$ for every s < t and every bounded F_s measurable variable F. Since the process X is adapted and we know that $X_r \in L^1$ for every $r \ge 0$, this implies that X is a martingale. On the other hand, x is a finite variation process. Thus X = 0 a.s. Then, $X_t = \int_0^t K_u d < M, M >_u = 0, \forall t \ge 0$ a.s. Thus, $K_u = 0, d < M, M >_u$ a.e. a.s.

Theorem. Let $M \in H^2$. For every $H \in \varepsilon$ of the form

$$H_s = \sum_{i=0}^{p-1} H_{(i)}(\omega) 1_{(t_i, t_{i+1}]}(s)$$

 $the\ formula$

$$(H \cdot M)_t = \sum_{i=0}^{p-1} H_{(i)} (M_{t_{i+1} \wedge t} - M_{t_i \wedge t})$$

defines a process $H \cdot M \in H^2$. The mapping $H \longrightarrow H \cdot M$ extends to an isometry from $L^2(M)$ into H^2 . Furthermore, $(H \cdot M)$ is the unique martingale of H^2 that satisfies the property

$$\langle H \cdot M, N \rangle = h \cdot \langle M, N \rangle, \forall N \in H^2$$

If T is a stopping time, we have

$$(1_{[0,T]}H) \cdot M = (H \cdot M)^T = H \cdot M^T$$

We often use the notation

$$(H \cdot M)_t = \int_0^t H_s dM_s$$

Proof. It is easy to check that for every $i \in \{0, 1, ..., p-1\}$, set $M_t^i = H_{(i)}(M_{t_{i+1} \wedge t} - M_{t_i \wedge t})$ for every $t \geq 0$, M^i is a continuous martingale. Since $H_{(i)}$ is bounded, it follows that $H \cdot M = \sum_{i=0}^{p-1} H_{(i)}(M_{t_{i+1} \wedge t} - M_{t_i \wedge t})$ is a martingale in H^2 . In addition, M^i are orthogonal and their respective quadratic variations are given by

$$< M^i, M^i>_t = H^2_{(i)}(< M, M>_{t_{i+1} \wedge t} - < M, M>_{t_i \wedge t}).$$

We conclude that $\langle H \cdot M, H \cdot M \rangle_{t} = \sum_{i=0}^{p-1} = H_{(i)}^2 (\langle M, M \rangle_{t_{i+1} \wedge t} - \langle M, M \rangle_{t_i \wedge t}) = \int_0^t H_s^2 d \langle M, M \rangle_s$. Consequently,

$$||H \cdot M||_{H^2}^2 = E[< H \cdot M, H \cdot M>_{\infty}] = E[\int_0^{\infty} H_s^2 d < M, M>_s] = ||H||_{L^2(M)}^2$$

Therefore, the mapping $H \longrightarrow H \cdot M$ makes sense from ε viewed as a subspace of $L^2(M)$ into H^2 . The latter mapping is linear, and since it preserves the norm, it is an isometry from ε into H^2 . Since ε is dense in $L^2(M)$ and H^2 is a Hilbert space, this mapping can be extended in a unique way to an isometry from $L^2(M)$ into H^2 .

Next, we fix $N \in H^2$. We first note that, if $H \in L^2(M)$, the Kunita-Watanabe inequality shows that

$$E[\int_0^\infty |H_s||d < M, N >_s |] \le ||H||_{L^2(M)} ||N||_{H^2} < \infty$$

and thus the variable $\int_0^\infty H_s d < M, N>_S = (H\cdot < M, N>)_\infty$ is well defined and in L^1 .

Consider first the case where H is an elementary process of the form given in the statement of the theorem, and define the continuous martingale M^i , $0 \le i \le p-1$, as previously. Then, we have

$$< H \cdot M, N > = \sum_{i=0}^{p-1} < M^i, N >$$

It follows that

$$< H \cdot M, N>_t = \sum_{i=0}^{p_{n-1}} H_{(i)}(< M, N>_{t_{i+1} \wedge t} - < M, N>_{t_i \wedge t}) = \int_0^t H_s d < M, N>_s.$$

Hence, we prove that the property $< H \cdot M, N >= h \cdot < M, N >, \forall N \in H^2$ holds for $H \in \varepsilon$.

We then observe that the linear mapping $X \longrightarrow < X, N >_{\infty}$ is continuous from H^2 L^1 since again by Kunita-Watanabe inequality,

$$E[|\langle X, N \rangle_{\infty}|] \leqslant E[\langle X, X \rangle_{\infty}^{\frac{1}{2}}] = ||N||_{H^{2}} ||X||_{H^{2}}.$$

If H^n is a sequence in ε , such that $H_n \to H$ in $L^2(M)$, we have therefore

$$< H \cdot M, N>_{\infty} = \lim_{n \to \infty} < H^n \cdot M, N>_{\infty} = \lim_{n \to \infty} (H^n \cdot < M, N>)_{\infty} = (H \cdot < M, N>)_{\infty}$$

where the first equality holds for continuity, the secong equality holds for the property we have proved for elementary processes, and the third equality holds in L^1 since again by Kunita-Watanabe inequality,

$$E[|\int_0^\infty (H_s^n - H_s)d < M, N>_s|] \leqslant E[< N, N>_\infty]^{\frac{1}{2}} ||H^n - H||_{L^2(M)}.$$

Then, we can replace N by the stopped martingale N^t in this identity and yield $\langle H \cdot M, N \rangle_t = (H \cdot \langle M, N \rangle)_t$. If $N \in H^2$,

$$<(H \cdot M)^{T}, N>_{t} = < H \cdot M, N>_{t \wedge T}$$

= $(H \cdot < M, N>)_{t \wedge T}$
= $(1_{[0,T]}H \cdot < M, N>)_{t}$
= $<1_{[0,T]}H \cdot M, N>_{t}$

$$< H \cdot M^T, N> = H \cdot < M^T, N> = H \cdot < M, N>^T = 1_{[0,T]}H \cdot < M, N>,$$
 we proved that $(1_{[0,T]}H) \cdot M = (H \cdot M)^T = H \cdot M^T$.