- 1. Recall that to say that $y = \log_b x$ also implies that $b^y = x$. Evaluate the following expressions without a calculator.
 - (a) $\log_2 64$

(d) $\log_2 \frac{\sqrt{32}}{\sqrt[3]{2}}$

(b) $\log_2 \frac{1}{32}$

(e) $\ln e^2$

(f) $\ln \sqrt[3]{e^4}$

(c) $\log_2 \sqrt{8}$

- (g) $2 \log 10 + 3 \ln e^3$
- 2. Remember that the exponential $y = b^x$ is the inverse of the logarithm base b, in other words $b^{\log_b u} = u$ and $\log_b b^u = u$. Evaluate the following without a calculator.
 - (a) $\log 10^{2x}$

(c) $\log 10^{x^2+2x+1}$

(b) $10^{\log 2x}$

- (d) $e^{3 \ln 5x}$
- 3. Use the idea of inverse functions to solve for x in the following equations.
 - (a) $120 = 3(10)^x$

(d) $100 = \log(25x^2)$

(b) $120 = 3(10)^{x+3}$

(e) $100 = 3e^{x+5}$

(c) $100 = \log(10x)$

(f) $100 = \ln(25x^3)$

- 4. Let $A(t) = 1000(1.03)^t$.
 - (a) If the function A were supposed to model the amount of money A in terms of time t in years, give an explanation of the meaning of the numbers 1000 and 1.03 in the model.
 - (b) How much money is there at time 0?
 - (c) How long would it take to double the amount of money?
 - (d) How long would it take to triple the amount of money?
 - (e) How long would it take to have five times the original amount of money?
 - (f) How long would it take to have n times the original amount of money?

- 5. Let $f(x) = \log_2(x-5)$ and $g(x) = \log(x+2) + 5$
 - (a) Give the domain of f.
 - (b) Give the domain of g.
 - (c) Give the range of f.
 - (d) Give the range of g.
 - (e) On the same axes give a sketch of both f and g including their vertical asymptotes.
- 6. Explain why the magnitude of earthquakes is measured on a logarithmic scale.
- 7. What other phenomena are measured on a logarithmic scale?