Lerture 28 Problem: Problem 1

for a "generic matrix of the form

(a): Since A is similarto B.	
(a): Since A is similarto B,	
$A=M^{-1}BM \Rightarrow A^2=M^{-1}BMM^{-1}BM$	
$= M^{-1} B^2 M$	
and thus Azissimilarta Bz	
(b): For	
$A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, A^2 = B^2$ but AMMe is not similar	on to B.
O Car For	
$M = \begin{bmatrix} 1 + i \end{bmatrix}$	
WR have that	
$\begin{bmatrix} 30 \\ 04 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 30 \\ 0 & 4 \end{bmatrix}$	
Wi For [30] there is a plane of eigenvertor but for [3] there	i)
all be,	
Ces. The ren and column excharge matrix is	
Thus	
	•
Which is As a min inverse of the A = MBM = A is smilarta	0.