# Flüssigkeits-Beschreibung von Plasmen



"Flüssiges Plasma, Wellen in einem blauen Ton" (ArenaCreative, Colourbox #2425387)

### Beschreibung von Plasmen

- Einzelteilchen-Beschreibung
  - Kraft auf jedes einzelne Teilchen:  $F = F(t, \vec{x}, \vec{v})$
  - Bewegungsgleichungen:  $d\vec{v}/dt = (q/m)F$  (viele!)
- Kinetische Beschreibung
  - Verteilungsfunktion (Dichte) im 6-dimensionalen Phasenraum  $f(t, \vec{x}, \vec{v})$
  - Bewegungsgleichung: Teilchenzahlerhaltung im Phasenraumvolumen
- Flüssigkeits-Beschreibung ← (wir sind hier)
  - Geschwindigkeits-Momente der Verteilungsfunktion  $\int \vec{v}^k f(t, \vec{x}, \vec{v})$
  - Bewegungsgleichung für die Momente (potenziell unendlich viele für  $k = 0...\infty$ )
  - Abbruch bei endlichem k:
    - \* Nur wenige ortsabhängige Gleichungen (überschaubar!)
    - \* (Unendlicher) Regress der jeweils k-ten Gleichung auf  $v^{k+1}$

# Momentengleichungen

Oft kann oder soll die Verteilungsfunktion nicht geschlossen bestimmt werden.

→ Entwicklung nach Momenten der Geschwindigkeit.

*k*-tes Moment, Boltzmann-Gleichung:

$$\int_{v} \vec{v}^{k} \frac{\partial f}{\partial t} d^{3}v + \int_{v} \vec{v}^{k+1} \cdot \nabla_{x} f d^{3}v + \int_{v} \vec{v}^{k} \frac{\vec{F}}{m} \cdot \nabla_{v} f d^{3}v = \int_{v} \vec{v}^{k} \left(\frac{\delta f}{\delta t}\right)_{c} d^{3}v$$

"Schliessungsproblem":

Die k-te Gleichung beinhaltet die k + 1-te Potenz von  $\vec{v}$ !

→ Zur korrekten Lösung müssten eigentlich alle (unendliche viele!) Momenten-Gleichungen gemeinsam gelöst werden. *Kommen darauf zurück!* 

Zunächst berechnen wir die Momente k = 0...2.

# Null-tes Moment: Kontinuitätsgleichung

Boltzmann-Gleichung über  $\vec{v}$  integrieren,

Stoßterm (R.S.) verschwindet, da kurzreichweitige Stöße die Dichte nicht verändern:

$$\int_{v} \frac{\partial f}{\partial t} d^{3}v + \int_{v} \vec{v} \cdot \nabla_{x} f d^{3}v + \int_{v} \frac{\vec{F}}{m} \cdot \nabla_{v} f d^{3}v = \underbrace{\int_{v} \left(\frac{\delta f}{\delta t}\right)_{c} d^{3}v}_{=0}$$

Dritter Term (mit Satz von Gauss) verschwindet, wenn f für  $v \to \infty$  schnell abfällt:

$$\int_{\mathcal{V}} \vec{F} \cdot \nabla_{\mathcal{V}} f d^3 \mathcal{V} = \int_{\mathcal{V}} \nabla_{\mathcal{V}} \cdot (\vec{F} f) d^3 \mathcal{V} = \int_{\mathcal{S}} (\vec{F} f) \cdot d\mathcal{S}_{\mathcal{V}} = 0$$

⇒ Kontinuitätsgleichung für die betrachtete Spezies:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n \ u) = 0$$

Ladungserhaltung:  $\times q$  und über alle Spezies aufsummieren:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = 0$$

#### **Erstes Moment**

Boltzmann-Gleichung,  $\int_{V} m\vec{v} \dots$ 

$$m \int_{v} \vec{v} \frac{\partial f}{\partial t} d^{3}v + m \int_{v} \vec{v} (\vec{v} \cdot \nabla_{x} f) d^{3}v + \int_{v} \vec{v} (\vec{F} \cdot \nabla_{v}) f d^{3}v = m \int_{v} \vec{v} \left( \frac{\delta f}{\delta t} \right)_{c} d^{3}v$$

L.S., Erstes Integral:

$$m \int_{v} \vec{v} \frac{\partial f}{\partial t} d^{3}v = \frac{\partial}{\partial t} \left( m \int_{v} \vec{v} f d^{3}v \right) = \frac{\partial}{\partial t} \left( mn\vec{u} \right)$$

L.S., Zweites Integral:

$$m \int_{v} \vec{v} (\vec{v} \cdot \nabla_{x} f) d^{3}v = \nabla_{x} \cdot \left[ m \int_{v} \vec{v} \, \vec{v} f d^{3}v \right] - m \int_{v} f \underbrace{(\nabla_{x} \cdot \vec{v} \, \vec{v})}_{=0} d^{3}v$$

Umschreiben, mit  $\vec{v}$   $\vec{v} = (\vec{v} - \vec{u})(\vec{v} - \vec{u}) + \vec{u}$   $\vec{v} + \vec{v}$   $\vec{u} - \vec{u}$   $\vec{u}$ :

$$m\int_{v}\vec{v}\,\vec{v}f\mathrm{d}^{3}v = m\int_{v}(\vec{v}-\vec{u})(\vec{v}-\vec{u})f\mathrm{d}^{3}v + 2m\vec{u}\underbrace{\int_{v}\vec{v}f\mathrm{d}^{3}v}_{=n\vec{u}} - m\vec{u}\,\vec{u}\underbrace{\int_{v}f\mathrm{d}^{3}v}_{=n} = \overline{P} + mn\vec{u}\,\vec{u}$$

# **Erstes Moment: Kraftgleichung**

L.S., Drittes Integral (Ann.: F sei Lorentz-Kraft,  $\nabla_v F = 0$ )

$$\int_{\mathcal{V}} \vec{v} \left( \vec{F} \cdot \nabla_{\mathcal{V}} \right) f \, d^{3} v \, = \, \int_{\mathcal{V}} \vec{v} \left[ \nabla_{\mathcal{V}} \cdot \left( \vec{F} f \right) \right] d^{3} v \, = \, - \int_{\mathcal{V}} \vec{F} f d^{3} v \, = \, -qn \left( \vec{E} + \vec{u} \times \vec{B} \right)$$

R.S., Kollisionsterm: Impulsübertrag pro Volumen und Zeit durch Stöße

$$m \int_{v} \vec{v} \frac{\delta_{c} f}{\delta t} d^{3} v = \frac{\delta_{c} p}{\delta t}$$

Alles zusammenfassen und geeignet umformen:

$$\frac{\partial}{\partial t} (mn\vec{u}) + \nabla \cdot (mn\vec{u}\vec{u}) = mn \underbrace{\left[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u}\right]}_{\text{d}\vec{u}/\text{d}t} = nq \underbrace{\left[\vec{E} + \vec{u} \times \vec{B}\right]}_{\text{Lorentz-Kraft}} \underbrace{-\nabla \cdot \overline{\overline{P}}}_{\text{Druckgradient}} + \underbrace{\frac{\delta_c p}{\delta t}}_{\text{Reibungskraft}}$$

(Newton'sche Kraftgleichung auf Flüssigkeitselement)

### **Zweites Moment**

I.a.:  $\vec{v}$   $\vec{v}$ : Tensor 2. Ordnung  $\Rightarrow$  9 Gleichungen

(6 nicht-redundant, 3 Diagonal-, 3 Nebendiagonalelemente)

Hier: Benutze  $\vec{v} \cdot \vec{v} = v^2$  (Spur) als 2. Moment

Multipliziere mit Boltzmann-Gl (und integriere über alle Geschwindigkeiten)

$$\frac{m}{2} \int_{v} v^{2} \frac{\partial f}{\partial t} d^{3}v + \frac{m}{2} \int_{v} v^{2} \left( \vec{v} \cdot \nabla_{x} f \right) d^{3}v + \frac{1}{2} \int_{v} v^{2} \left( \vec{F} \cdot \nabla_{v} \right) f d^{3}v = m \int_{v} v^{2} \left( \frac{\delta f}{\delta t} \right)_{c} d^{3}v$$

L.S., Erster Term, W: Kinetische Energiedichte

$$\frac{m}{2} \int_{v} v^{2} \frac{\partial f}{\partial t} d^{3}v = \frac{\partial}{\partial t} \left( \int_{v} \frac{1}{2} m v^{2} f d^{3}v \right) = \frac{\partial W}{\partial t}$$

L.S., Zweiter Term,  $\vec{Q}$ : Wärmefluss

$$\frac{m}{2} \int_{v} v^{2} (\vec{v} \cdot \nabla_{x} f) d^{3}v = \nabla \cdot \left( \int_{v} \frac{1}{2} \vec{v} v^{2} f d^{3}v \right) = \nabla \cdot \vec{Q}$$

# **Zweites Moment: Energiegleichung**

L.S., Dritter Term, mit  $\nabla_v v^2 = 2\vec{v}$ , und  $\vec{v} \cdot (\vec{v} \times \vec{B}) = 0 \rightarrow$  Joule'sche Wärme

$$\frac{1}{2} \int_{\mathcal{V}} v^2 \left( \vec{F} \cdot \nabla_{\mathcal{V}} f \right) d^3 v = -\frac{1}{2} \int_{\mathcal{V}} f \left( \vec{F} \cdot \nabla_{\mathcal{V}} v^2 \right) d^3 v = -q \vec{E} \cdot \int_{\mathcal{V}} \vec{v} f d^3 v = -\vec{E} \cdot \vec{j}_i$$

Energiegleichung *i*-te Spezies:

$$\frac{\partial W_i}{\partial t} + \nabla \cdot \vec{Q}_i - \vec{E} \cdot \vec{j}_i = \int_{v} \frac{1}{2} m_i v^2 \frac{\delta_c f_i}{\delta t} d^3 v$$

Summation über alle Spezies, Kollisionsterm (Energieaustausch) hebt sich auf:

$$\frac{\partial W}{\partial t} + \underbrace{\nabla \cdot \vec{Q}}_{\text{Wärmeleitung}} = \underbrace{\vec{E} \cdot \vec{j}}_{\text{Wärmequelle}}$$

### Das Schliessungsproblem

Der Term  $\vec{v} \cdot \nabla f$  der Boltzmanngleichung verknüpft jede Momentengleichung mit dem nächsthöheren Moment  $\rightarrow$  Zur Schliessung des Systems mit endlich vielen Gleichungen ist eine zusätzliche Bedingung notwendig.

Keine allgemeine Lösung dieses "Schliessungsproblems"

#### (Triviale) **Option 1: Kaltes Plasma**

Wenn  $k_BT \rightarrow 0$ , dann  $p = nk_BT = 0$  und normalerweise auch

$$\overline{\overline{P}} = 0$$

(alle Tensorkomponenten).

→ Kraftgleichung ist höchstes Moment, da keine Wärme mehr gespeicher ist:

$$mn\left[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u}\right] = nq\left[\vec{E} + \vec{u} \times \vec{B}\right] + \frac{\delta_c p}{\delta t}$$

# Option 2: Adiabatische Zustandsgleichung

Ideales Gas:  $pV = Nk_BT$ .

Thermodynamisches Gleichgewicht:  $pV^{\gamma} = const.$ ,  $(\gamma = C_p/C_v)$ .

**Skalarer Druck:**  $\overline{\overline{P}} = \overline{\overline{1}}p$ 

Wenn Teilchendichte gegeben:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{p}{n^{\gamma}}=0, \quad p=p_0\left(\frac{n}{n_0}\right)^{\gamma}$$

Verknüpfung mit Zahl der Freiheitsgrade z:

$$\gamma = \frac{z+2}{z}$$

 $\Rightarrow$  3-D:  $\gamma = 5/3$ , 2-D:  $\gamma = 2$ , 1-D:  $\gamma = 3$ 

# Option 3: Zustandsgleichung für nicht-isotropen Druck

Geringe Kopplung (Stöße) zwischen Bewegung  $\|\vec{B}$  und  $\perp \vec{B} \Rightarrow$  Anisotroper Druck-Tensor

$$egin{aligned} \overline{\overline{P}} &= p_\perp \overline{\overline{1}} + \left(p_\parallel - p_\perp\right) rac{ec{B} ec{B}}{B^2} = egin{pmatrix} p_\perp & 0 & 0 \ 0 & p_\perp & 0 \ 0 & 0 & p_\parallel \end{pmatrix} \end{aligned}$$

mit  $p_{\parallel} = nk_BT_{\parallel}$ ,  $p_{\perp} = nk_BT_{\perp}$ .

$$p_\parallel = p_{\parallel,0} \left(rac{n}{n_0}
ight)^3, \qquad p_\perp = p_{\perp,0} \left(rac{n}{n_0}
ight)^2$$

### Allerdings:

- Keine Kopplung der Druckkomponenten im inhomogenen  $\vec{B}$ -Feld
- Keine Feldabhängigkeit von  $p_{\parallel}/p_{\perp}$  (wie z.B. im magnetischen Spiegel)

# Option 4: Chew-Goldberger-Low-Zustandsgleichungen

1. Adiabatische Invariante: Erhaltung des magnetischen Moments:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mu = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{mv_{\perp}^2}{2B}\right) = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{k_BT_{\perp}}{B}\right) = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{p_{\perp}}{n\,B}\right) = 0$$



2. Adiabatische Invariante:

Erhaltung von  $J = \oint v_{\parallel} ds$ , bzw.  $J = v_{\parallel} L = const$ .

Teilchenzahlerhaltung: N = nAL = const.

Flusserhaltung:  $\Psi = AB = const$ .

$$\frac{d}{dt} \frac{J^2 \Psi^2}{N} = \frac{d}{dt} \left( \frac{2p_{\parallel} L^2}{nm} \frac{B^2 A^2}{n^2 A^2 L^2} \right) = \frac{d}{dt} \left( \frac{p_{\parallel} B^2}{n^3} \right) = 0$$

Ideales Gas:  $T_{\perp} \propto B$ ,  $T_{\parallel} \propto (n/B)^2$ 

Temperatur-Anisotropie bei Strömung im inhomogenen  $\vec{B}$ -Feld, z.B. Magnetosphäre

# Zusammenfassung: Flüssigkeits-Beschreibung

### Flüssigkeitsgleichungen (je Spezies)

k = 0: Kontinuitätsgleichung

$$\frac{\partial n}{\partial t} + \nabla \cdot (n \ u) = 0$$

k = 1: Kraftgleichung

$$mn\left[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u}\right] = nq\left(\vec{E} + \vec{u} \times \vec{B}\right) - \nabla \cdot \overline{P} + \frac{\delta_c p}{\delta t}$$

k = 2: Energiegleichung

$$\frac{\partial W}{\partial t} + \nabla \cdot \vec{Q} - \vec{E} \cdot \vec{j} = \int_{v} \frac{1}{2} m v^{2} \frac{\delta_{c} f}{\delta t} d^{3} v$$

#### Schliessungen

- 1. Kaltes Plasma:  $\overline{\overline{P}} = 0$
- 2. Adiabatische Schliessung:  $\overline{\overline{P}} = p$

$$p = p_0 \left(\frac{n}{n_0}\right)^{\gamma}$$

Mit z: Zahl der Freiheitsgrade:

$$\gamma = \frac{z+2}{z}$$