Verifying the Resilience of Neural Network Watermarking

Ben Goldberger¹, Yossi Adi², Joseph Keshet², and Guy Katz¹

¹ The Hebrew University of Jerusalem, Israel {jjgold, guykatz}@cs.huji.ac.il

² Bar Ilan University, Israel {a, b}@biu.ac.il

1 Introduction

DNNs are really important and conquering the world

Learning as a service paradigm: sell your almost-trained network. What if someone tries to rip you off?

Watermarking as the solution to earlier problem. But how can we be sure watermarks are good?

DNN verification is a new and promising field. We propose a novel methodology to use verification to measure and verify the robustness of watermarking techniques. Main uses of our approach: verify watermarked networks, assess efficiency of watermarking schemes.

The rest of this paper is organized as follows. In Section 2 we provide the necessary background on DNNs, watermarking, and DNN verification. Next, in Section 3 we introduce our technique for casting the watermark resilience problem into a verification problem. Section 4 describes our implementation and evaluation of the approach on several watermarked DNNs for image recognition. We discuss related work in Section 5, and conclude in Section 6.

2 Background

[2,3]

3 Finding the minimal change that will get rid of the network's WaterMark

Given a watermarked trained neural network as described here [1]. We tested what is the minimal change to the network last layer in order to "remove" some watermarks from the network.

Guy: make this a proper citation

3.1 Defining the problem

Given a neural network N with an output size m the network decision for an input x is defined as the coordinate with the maximal value, if the network output is the vector y the decision is $argmax_{i \in [m]} \{y_i\}$

Given a watermarked network N with a set of K watermarks (A set of inputs to the network) $\{x_1, \dots, x_K\}$ we'll mark the network last layer L such that L is a $m \times n$ matrix were n is the layer's number of neurons and m is the network output size. The change to the last layer will be a matrix with the same dimension as L we'll mark as ε , such that $\varepsilon_{i,j}$ is the change to the last layer matrix entry $L_{i,j}$. Well measure the overall change to the layer as $\|\varepsilon\|_{\infty} = \max_{i,j} \{|\varepsilon_{i,j}|\}$.

For a certain input x we're only interested in the input to the last layer we'll mark the input to the last layer v. v is a $n \times 1$ vector. So the original network output y = Lv and the changed network output is $y' = (L + \varepsilon)v$. For a single input x we need to find the minimal ε so that the $argmax_{i \in [m]} \{y_i\} \neq argmax_{i \in [m]} \{y'_i\}$

Denote $d := argmax_{i \in [m]} \{y_i\}$ For some $d' \in [m]$, $d' \neq d$ finding ε with minimal $\|\varepsilon\|_{\infty}$ such that $y' = (L + \varepsilon)v$ and $d' = argmax_{i \in [m]} \{y'_i\}$ can be described in a Linear Programming form like so:

$$\begin{aligned} & \textit{Minimize}: & c \\ & \textit{Subject to}: & \forall i, j - c \leq \varepsilon_{i,j} \leq c \\ & y' = (L + \varepsilon)v \\ & y'_d \leq y'_{d'} \end{aligned}$$

*The variables are the entries in ε and y'

Using the same method we can find how to change the network to more than one input.

Given inputs x_1, \dots, x_k and their respective inputs to the last layer v_1, \dots, v_k and their respected outputs and decisions $\{y_1, \dots, y_k\}$ $\{d_1, \dots, d_k\}$ we want to find ε such that

 $\forall 1 \leq j \leq k \quad d_j \neq argmax_{i \in [m]} \{((L + \varepsilon) v_j)_i\}$ Assuming we choose our new desired output $\{d'_1, \cdots, d'_k\}$ And now our LP looks like this: Minimize: c

 $Subject\ to:\ \ \forall i,j \quad -c \leq \varepsilon_{i,j} \leq c$

 $\forall j \quad y_j' = (L + \varepsilon)v_j$

 $\forall j \quad \left(y_j'\right)_{d_j} \le \left(y_j'\right)_{d_j'}$

*The variables are the entries in ε and y'_i

Using Marabou we can solve for the minimal ε under different norm $\|\varepsilon\|_1 = \sum_{i,j} |\varepsilon_{i,j}|$ since using this norm gives us a piece-wise linear problem.

4 Evaluation

We tested this approach on a Neural network trained on the MNIST data set, the network was watermarked with 100 images of Gaussian noise.

Fig. 1: The same cup of coffee. Two times.

5 Related Work

6 Conclusion and Future Work

References

 Y. Adi, C. Baum, B. Pinkas, and J. Keshet. Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring. In *Proc. 27st USENIX Security Symposium*, 2018. Guy: Overall, this looks good. Some stuff will need to be moved to other sections according to the paper layout.

Guy: I think you can start populating this section next. We will need graphs and pictures.

- 2. G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In *Proc. 29th Int. Conf. on Computer Aided Verification (CAV)*, pages 97–117, 2017.
- 3. G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Framework for Verification and Analysis of Deep Neural Networks. In *Proc. 31st Int. Conf. on Computer Aided Verification (CAV)*, 2019.