STA3010 Regression Analysis

Feng YIN

The Chinese University of Hong Kong (Shenzhen)

yinfeng@cuhk.edu.cn

April 24, 2020

Overview

1 Logistic Regression: Scope and Examples

2 Logistic Regression: Model and Parameter Fit

3 Appendix

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Logistic Regression: Definition

Logistic regression is a class of regression models with

- output, y, is qualitative/categorical/discrete-valued;
- input, x, is not constrained.

Binary Logistic Regression

Binary logistic regression models assume that the output has two possible outcomes, generically called "is-the-case" (1) and "not-the-case" (0). For instance, the output can be success vs. failure, alive vs. death, win vs. lose, etc.

In machine learning, this is also known as binary classification.

Multinomial Logistic Regression

Multinomial logistic regression models assume that the output has more than two possible outcomes.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 3 / 30

Logistic Regression: Scope and Aim

Logistic regression can be applied, when

- we want to model the probability of an output as a function of an input/feature vector;
- we want to predict the probability of a case falling into either category of the binary output as a function of the input/features;
- we want to classify a case into a suitable category based on the input/features.

Logistic Regression: Motivating Examples

Example I: academic performance prediction

- The output y is either "pass the exam (1)" or "fail the exam (0)"
- The input $x = [1, x_1, x_2, ..., x_k]^T$ may include "lecture attendance rate", "how many times sleeping in class", "time spent on the lecture materials", "frequency of visiting TAs", etc.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 5 / 30

Example II: PhD admission prediction

- The output y is either "accept (1)" or "reject (0)"
- The input $x = [1, x_1, x_2, ..., x_k]^T$ may include "GPA", "nationality", "master or bachelor", "GRE score", "research capability", etc.

Logistic Regression: Model

Binary logistic regression model in general form:

$$y = f(\mathbf{x}; \boldsymbol{\beta}) + \varepsilon. \tag{1}$$

- The output y takes on two possible outcomes: "is-the-case (1)" and "not-the-case (0)".
- The inputs $\mathbf{x} = [1, x_1, x_2, ..., x_k]^T$ are defined similarly as before in the multiple linear regression model.
- The model parameters $\beta = [\beta_0, \beta_1, \beta_2, ..., \beta_k]^T$ are to be estimated.
- The random error is denoted by ε .

Why can't we simply use multiple linear model for $f(\mathbf{x}; \beta)$.

We assume that the output y given a specific x is a Bernoulli random variable with the probability mass function as follows:

У	probability mass function
1	$P(y=1 \mathbf{x})=p$
0	$P(y=0 \mathbf{x})=1-p$

 $P(y = 1 | \mathbf{x}) = p$ can be read as "the probability that the output y takes outcome "1" given the inputs \mathbf{x} is equal to p.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 8 / 30

Due to the model assumptions:

$$y = f(\mathbf{x}; \boldsymbol{\beta}) + \varepsilon \tag{2}$$

$$= E(y|\mathbf{x},\boldsymbol{\beta}) + \varepsilon \tag{3}$$

$$=P(y=1|\mathbf{x})+\varepsilon\tag{4}$$

It is most widely used that

$$P(y = 1|\mathbf{x}) = \frac{\exp(\mathbf{x}^T \boldsymbol{\beta})}{1 + \exp(\mathbf{x}^T \boldsymbol{\beta})} = \frac{1}{1 + \exp(-\mathbf{x}^T \boldsymbol{\beta})}.$$
 (5)

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ ⟨○⟩

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 9 / 30

Logistic Regression: Sigmoid Function

Sigmoid function has the form

$$f(z) = \frac{1}{1 + \exp(-z)} : \mathbb{R} \to \mathbb{R}, \ z \in (-\infty, \infty)$$
 (6)

sigmoid function (in black color) versus the unit step function (in red color).

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 10 / 30

More examples of sigmoid function with $\mathbf{x}^T \boldsymbol{\beta}$ as argument:

Lecture 11

- (a) $E(y) = 1/(1 + \exp(-6 + x))$,
- (b) $E(y) = 1/(1 + \exp(6 x))$,
- (c) $E(y) = 1/(1 + \exp(-5 + 0.65x_1 + 0.4x_2)),$
- (d) $E(y) = 1/(1 + \exp(-5 + 0.65x_1 + 0.4x_2 + 0.15x_1x_2))$

Logistic Regression: Logistic Function

Sigmoid function is a special case of logistic function with

$$f(z) = \frac{a}{1 + \exp(-b(z - c))} : \mathbb{R} \to \mathbb{R}, \ z \in (-\infty, \infty)$$
 (7)

where

- a controls the maximum value of the function;
- b controls the steepness of the function curve;
- c controls the mid-point.

The sigmoid function is a special case with a = 1, b = 1, c = 0.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 12 / 30

Logistic Regression: Training Phase Vs. Test Phase

- **1** Training phase: given a set of n data points in $S = \{(y_1, \mathbf{x}_1), (y_2, \mathbf{x}_2), ..., (y_n, \mathbf{x}_n)\}$, we fit the model parameters $\boldsymbol{\beta}$ and obtain the maximum-likelihood estimate $\hat{\boldsymbol{\beta}}_{ML}$.
- Test phase: given a novel input x*, we desire an accurate prediction on the probability of having "0" or "1" based on the trained logistic regression model.

Logistic Regression: Model Fit Using ML Estimation

Given a set of n data points in $S = \{(y_1, \mathbf{x}_1), (y_2, \mathbf{x}_2), ..., (y_n, \mathbf{x}_n)\}$, the likelihood function is given as follows:

$$L(\mathbf{y}|\mathbf{X},\beta) = L(y_1, y_2, ..., y_n|\mathbf{X},\beta) = \prod_{i=1}^n P(y_i|\mathbf{x}_i) = \prod_{i=1}^n p_i^{y_i} (1-p_i)^{1-y_i}.$$
(8)

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 1

It is more convenient to work with the log-likelihood:

$$\ln L(\mathbf{y}|\mathbf{X},\beta) = \ln \prod_{i=1}^{n} P(y_i|\mathbf{x}_i)$$

$$= \sum_{i=1}^{n} \ln(1-p_i) + \sum_{i=1}^{n} y_i \ln\left(\frac{p_i}{1-p_i}\right)$$
(10)

$$= \sum_{i=1}^{n} y_i \mathbf{x}_i^T \boldsymbol{\beta} - \sum_{i=1}^{n} \ln \left(1 + \exp(\mathbf{x}_i^T \boldsymbol{\beta}) \right). \tag{11}$$

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 15 / 30

Logistic Regression: Model Fit Using ML Estimation

This slide can be skipped!

A modified expression: often in logistic regression models we have repeated observations at each level of the input \mathbf{x} .

Assuming we have n different input levels \mathbf{x}_i , i = 1, 2, ..., n, for each individual \mathbf{x}_i , we collect n_i observations y_{ij} , $j = 1, 2, ..., n_i$ with

$$P(y_{ij} = 1 | \mathbf{x}_i) = p_i \tag{12}$$

$$P(y_{ij} = 0 | \mathbf{x}_i) = 1 - p_i \tag{13}$$

The dataset is then:

$$S = \{(y_{1,1}, \mathbf{x}_1), (y_{1,2}, \mathbf{x}_1), ..., (y_{1,n_1}, \mathbf{x}_1), (y_{2,1}, \mathbf{x}_2), (y_{2,2}, \mathbf{x}_2), ..., (y_{2,n_2}, \mathbf{x}_{2,n_2}), \\ \vdots \\ (y_{n,1}, \mathbf{x}_n), (y_{n,2}, \mathbf{x}_n), ..., (y_{n,n_n}, \mathbf{x}_{n,n})\}$$

$$(14)$$

Logistic Regression: Model Fit Using ML Estimation

This slide can be skipped!

The likelihood function can be written, for the new dataset in eq.(13), as follows:

$$L(\mathbf{y}|\mathbf{X},\beta) = \prod_{i=1}^{n} \prod_{j=1}^{n_i} \rho_i^{y_{ij}} (1-\rho_i)^{1-y_{ij}}$$
 (15)

Similarly, the log-likelihood function is derived as

$$\ln L(\mathbf{y}|\mathbf{X},\beta) = \sum_{i=1}^{n} t_i \ln(p_i) + \sum_{i=1}^{n} (n_i - t_i) \ln(1 - p_i).$$
 (16)

Herein, t_i denotes the total number of 1's observed for the same input \mathbf{x}_i in n_i independent Bernoulli trials. For large n_i , the ratio $\frac{t_i}{n_i} \approx p_i$.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 17 / 30

Logistic Regression: Newton's Method

• We define $I(\beta) = -\ln L(\mathbf{y}, \beta | \mathbf{X})$ and find the maximum-likelihood estimate via

$$\hat{\beta}_{ML} = \arg\min_{\beta} I(\beta) \tag{17}$$

• Newton's method requires both the gradient and the Hessian matrix of the cost function $I(\beta)$, details are given in the manuscript.

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 18 / 30

The final results are:

$$\mathbf{g} = \nabla_{\beta} I(\beta) = \mathbf{X}^{T} (\mathbf{p} - \mathbf{y}), \tag{18}$$

$$\mathbf{H} = \nabla_{\beta} \nabla_{\beta}^{T} I(\beta) = \mathbf{X}^{T} \mathbf{V} \mathbf{X}, \tag{19}$$

where

- $\mathbf{p} = [p_1, p_2, ..., p_n]^T$;
 - $\mathbf{V} = diag(p_1(1-p_1), p_2(1-p_2), ..., p_n(1-p_n)).$

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 19 / 30

Newton Method

- ullet Find an initial estimate \hat{eta}^0
- Select a threshold δ_T
- For $\eta = 0, 1, 2, ...$, do
 - Select a proper step-length α^{η} (can be $\alpha^{\eta}=1$ to have the vanilla version)
 - 2 Compute $\hat{\boldsymbol{\beta}}^{\eta+1} = \hat{\boldsymbol{\beta}}^{\eta} \alpha^{\eta} \left(\mathbf{H}^{\eta} \right)^{-1} \mathbf{g}^{\eta}$.
 - **3** Terminate if the change in two consequent costs and/or parameter estimates is smaller than the threshold δ_T , or if the maximal number of iterations has been reached.
 - **①** Otherwise $\eta := \eta + 1$ and repeat the above iterative process.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 20 / 30

Prediction with the Trained Model

After the ML based training,

- given a novel input \mathbf{x}_* , we can perform prediction in light of $P(y_* = 1 | \mathbf{x}_*, \hat{\boldsymbol{\beta}}_{ML}) = \frac{\exp(\mathbf{x}_*^T \hat{\boldsymbol{\beta}}_{ML})}{1 + \exp(\mathbf{x}_*^T \hat{\boldsymbol{\beta}}_{ML})}$.
- based on the above probability, we can further make a binary decision, i.e., choosing either 1 or 0, if necessary.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

Logistic Regression: Other Existing Models

Cumulative normal distribution function:

$$P(y = 1|\mathbf{x}) = \Phi\left(\mathbf{x}^{T}\boldsymbol{\beta}\right). \tag{20}$$

The inverse function is called probit function.

2 Log-Weibull distribution function:

$$P(y = 1 | \mathbf{x}) = 1 - \exp\left(-\exp\left(\mathbf{x}^{T}\boldsymbol{\beta}\right)\right). \tag{21}$$

The inverse function is called complimentary log-log function.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 22 / 30

Logistic Regression: Other Models

Comparison of the three models:

Logistic Regression: More than Two Outcomes

- Consider the case where there are m+1 (m>1) possible categorical outcomes but the outcomes are nominal (i.e., no ranking).
- Let the outcomes be represented by 0, 1, 2, ..., m.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

The probabilities that the responses on observation i take on one of the m+1 possible outcomes can be modeled as:

$$P(y_i = 0|\mathbf{x}_i) = \frac{1}{1 + \sum_{j=1}^{m} \exp(\mathbf{x}_i^T \boldsymbol{\beta}^j)},$$
 (22)

$$P(y_i = 1 | \mathbf{x}_i) = \frac{\exp(\mathbf{x}_i^T \boldsymbol{\beta}^1)}{1 + \sum_{j=1}^m \exp(\mathbf{x}_i^T \boldsymbol{\beta}^j)},$$
 (23)

 $\dot{\dot{}}=\dot{\dot{}}$

$$P(y_i = m | \mathbf{x}_i) = \frac{\exp(\mathbf{x}_i^T \boldsymbol{\beta}^m)}{1 + \sum_{j=1}^m \exp(\mathbf{x}_i^T \boldsymbol{\beta}^j)}.$$
 (24)

Note that there are m parameter vectors β^{j} , j = 1, 2, ..., m to be tuned.

- **↓**ロト **↓**┛ト **↓** 目 → りへで

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 25 / 30

Comparing each response category to a "baseline" produces logits

$$\ln\left(\frac{P(y_i = 1|\mathbf{x}_i)}{P(y_i = 0|\mathbf{x}_i)}\right) = \mathbf{x}_i^T \boldsymbol{\beta}^1, \tag{25}$$

$$\ln\left(\frac{P(y_i = 2|\mathbf{x}_i)}{P(y_i = 0|\mathbf{x}_i)}\right) = \mathbf{x}_i^T \boldsymbol{\beta}^2, \tag{26}$$

$$\dot{\dot{z}} = \dot{z} \tag{27}$$

$$\ln\left(\frac{P(y_i = m|\mathbf{x}_i)}{P(y_i = 0|\mathbf{x}_i)}\right) = \mathbf{x}_i^T \boldsymbol{\beta}^m,$$
 (28)

where our choice of zero as the baseline category is arbitrary.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 26 / 30

Summary

- Regression with categorical output
- Binary logistic regression
- Sigmoid function versus logistic function
- Maximum-likelihood parameter estimation using Newton's method
- Asymptotic property of the ML parameter estimator
- Extension to more than two categorical outcomes

Appendix: Bernoulli Trials

Bernoulli trials occurs when a Bernoulli experiment is performed several independent times and the probability of "is-the-case", denoted by p, remains the same from trial to trial. In addition, we shall frequently let 1-p denote the probability of "not-the-case".

Example: Suppose that the probability of germination of a beet seed is 0.8 and the germination of a seed is called "is-the-case". If we plant 10 seeds and can assume that the germination of one seed is independent of the germination of another seed, this would correspond to 10 Bernoulli trials with p=0.8.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 28 / 30

Appendix: Bernoulli Distribution

Let y be a random variable associated with a Bernoulli trial with y=1 representing "is-the-case" while y=0 representing "not-the-case".

When y is Bernoulli distributed, the probability mass function (pmf) is as follows:

$$P(y=1) = p, \tag{29}$$

$$P(y=0) = 1 - p. (30)$$

Alternatively, $P(y) = p^{y}(1-p)^{(1-y)}$, y = 0 or 1.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 29 / 30

The expectation of a Bernoulli distributed random variable, y, is

$$\mu = E(y) = \sum_{y \in \{0,1\}} y \, p^y (1-p)^{(1-y)} = p. \tag{31}$$

The variance of a Bernoulli distributed random variable, y, is

$$\sigma^2 = var(y) = \sum_{y \in \{0,1\}} (y-p)^2 p^y (1-p)^{(1-y)} = p(1-p).$$
 (32)

In a sequence of n Bernoulli trials, we shall let y_i denote the observation associated with the ith Bernoulli trial.

Feng YIN (CUHKSZ) Lecture 11 April 24, 2020 30 / 30