Säuren und Basen

Lösungen zu den Arbeitsblättern

Säuren und Basen - Die pH-Skala (3)

1. Dargestellt wird der Zusammenhang zwischen dem pH Wert und der Konzentration der Hydroniumionen sowie zwischen dem pOH-Wert und den Hydroxidionen. Das Diagramm zeigt eine Diagonale, mit der sich die mathematischen Zusammenhänge zwischen den vier aufgelisteten Größen erfassen lassen.

2. a), b) pH =
$$\frac{-\lg c (H_3O^+)}{mol \cdot l^{-1}}$$
 pOH = $\frac{-\lg c (OH^-)}{mol \cdot l^{-1}}$

c)
$$K_W = c (H_3O^+) \cdot c (OH^-) = 10^{-14} \text{ mol}^2 \cdot \Gamma^2$$

 $pK_W = pH + pOH = 14$

3.

c (H₃O [†]) in mol · F ¹	c (OH⁻) in mol·l⁻¹	pH- Wert	pOH- Wert	Reaktion der Lösung (sauer, neutral, alkalisch)
10-2	10 ⁻¹²	2	12	sauer
3,2 · 10⁻⁵	3,2 · 10 ⁻¹⁰	4.5	9,5	sauer
3 · 10 ⁻⁹	3,3 · 10 ⁻⁶	8.5	5,5	alkalisch
10 ⁻¹¹	10 ⁻³	11	3	alkalisch
5 · 10⁻⁴	2 · 10 ⁻¹¹	3 ,3	10,7	sauer
10 ⁻⁷	10 ⁻⁷	7	7	neutral

4. Die Konzentration der Hydroniumionen erniedrigt sich um den Faktor 100 000, die der Hydroxidionen erhöht sich um den gleichen Faktor.

Seite 235:

Säuren und Basen - Protolysereaktionen (4)

b) $HCI(aq) + H_2O(I) \longrightarrow CI^-(aq) + H_3O^+(aq)$

- a) Es sollten sich je nach Kalibrierung der pH-Elektrode folgende Messwerte näherungsweise ergeben. HCI (aq): pH \approx 0; HAc (aq): pH \approx 2,8; NaOH (aq): pH \approx 14; NH_3 (aq): $pH \approx 10.5$; NH_4Cl (aq): $pH \approx 4.5$; Na_2CO_3 (aq): pH ≈ 8,5; NaCl (aq): pH ≈ 7
- Das Protolysegleichgewicht liegt auf der Produktseite. NaOH (ag) \longrightarrow Na⁺ (ag) + OH⁻ (ag) Das Protolysegleichgewicht liegt auf der Produktseite. $CH_3COOH(aq) + H_2O(I) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$ Das Protolysegleichgewicht liegt auf der Eduktseite; nur ein kleiner Teil der Essigsäuremoleküle ist potolysiert. NH_3 (aq) + H_2O (I) \rightleftharpoons NH_4^+ (aq) + OH^- (aq) Das Protolysegleichgewicht liegt auf der Eduktseite; nur ein kleiner Teil der Ammoniakmoleküle ist potolysieri.

- c) NH_4^+ (aq) + H_2O (l) \Longrightarrow NH_3 (aq) + H_3O^+ (aq) Das Ammoniumion reagiert als Protonendonator. $CO_3^{2-}(aq) + H_2O(l) \longrightarrow HCO_3^{-}(aq) + OH^{-}(aq)$ Das Carbonation reagiert als Protonenakzeptor. Beim Kochsalz erfolgt keine Protolysereaktion.
- d) Saure Salze: Eisen(III)-chlorid, Ammoniumnitrat, Natriumhydrogensulfat, Natriumdihydrogenphisphat. Alkalische Salze: Ammoniumcarbonat, Natriumsulfit, Natriumacetat

Seite 236:

Säuren und Basen - Kompetenztest (5)

- 1. Säuren sind Protonendonatoren, Basen sind Protonenakzeptoren.
- 2. Beispiele: HCI/CI und NH4 / NH3
- 3. Eine BRÖNSTED-Säure muss über acide Wasserstoffatome verfügen; eine BRÖNSTED-Base über freie Elektronenpaare an einem elektronegativen Atom.
- BRÖNSTED-Säure: NH₄⁺; BRÖNSTED-Base: HSO₃⁻ Korrespondierend: NH₄⁺ / NH₃ und H₂SO₃ / HSO₃⁻

5. pH =
$$-\log \frac{c (H_3O^+)}{mol \cdot l^{-1}}$$

6.
$$c (H_3O^+) = 2 \cdot 10^{-3} \text{ mol} \cdot \Gamma^1 \implies pH = 2,7$$

 $c (OH^-) = 4 \cdot 10^{-5} \text{ mol} \cdot \Gamma^1 \implies pOH = 4,4 \implies pH = 9,6$

- 7. Beispiel: $c (H_3O^{\dagger}) = 0.5 \text{ mol} \cdot I^{-1} \implies \text{pH} = 0.3$ Verdoppelung $c (H_3O^{\dagger}) = 1 \text{ mol} \cdot \Gamma^{-1} \implies \text{pH} = 0$ Die Behauptung in der Aufgabenstellung ist falsch.
- **8.** Beispiel: $c(OH^-) = 10^{-6} \text{ mol} \cdot I^{-1} \implies c(H_3O^+) = 10^{-8} \text{ mol} \cdot \Gamma^1$ \Rightarrow pH = 8
- 9. In den Beispielen a) und d) müssen Hydroniumionen entstanden sein, in den Beispielen b) und c) Hydroxidionen.
- a) H_2S (aq) + H_2O (l) \Longrightarrow HS^- (aq) + H_3O^+ (aq) Das H₂S-Molekül reagiert als schwache Säure.
- b) $HCO_3^-(aq) + H_2O(l) \iff H_2CO_3(aq) + OH^-(aq)$ Das Hydrogendarbonation reagiert als schwache Base.
- c) $Ac^{-}(aq) + H_2O(l) \rightleftharpoons HAc(aq) + OH^{-}(aq)$ Acetationen reagieren als Basen.
- d) $HSO_4^-(aq) + H_2O(l) \implies SO_4^{2-}(aq) + H_3O^+(aq)$ Hydrogensulfationen reagieren als schwache Säuren.

Seite 237:

Stärke von Säuren und Basen – Protolysegrad (1)

1. a) Die Salzsäure protolysiert vollständig, die Essigsäure nur teilweise.

b)
$$HCI(aq) + H_2O(I) \longrightarrow C\Gamma(aq) + H_3O^+(aq)$$

 $CH_3COOH(aq) + H_2O(I) \Longrightarrow CH_3COO^-(aq) + H_3O^+(aq)$