Intra-guild competition and ecosystem services of mammal scavengers in a new colonized wolf landscape

Intra-guild competition and ecosystem services of mammal scavengers in a new colonized wolf landscape

R. Brogi*1, P. Bongi1, M. Del Frate1, S. Sieni1, A. Cavallera2, & M. Apollonio1

- 1 Department of Veterinary Medicine, University of Sassari, Italy
- 2 Department of Agri-food Production and Environmental Sciences (DISPAA), University of Florence, Italy
- *rbrogi@uniss.it

Wolf return → consequences on the ecosystem level

Low human impact

Wolf return → consequences on the ecosystem level

Low human impact

Kuijper et al. 2024 J Applied Ecology

Human-modified environments

Novel ecosystem functions

"wolves in human-modified ecosystems will engage in an array of novel interactions and potential <u>novel trophic</u> cascades"

Wolf return to human-dominated, prey-rich landscapes

Wolf return to human-dominated, prey-rich landscapes

- Who is going to win the competition for the emerging resource represented by deer carcasses?
- How does scavenger competition for wolf-killed carcasses change over time following wolf return?

Study area

Methods

- 12,000+ km transects since 2017 to 2022
- 103 fresh wolf-killed fallow deer carcasses
- monitored by camera traps for 7-10 days

Only 3 mammal scavengers:

Methods

- Likelihood of finding and using the carcass
- Total time spent feeding on the carcass
- Outcome of direct interactions
- Interspecific spatiotemporal associations

modelled across species
and along the 5 years
and along period
monitoring period

Likelihood of finding and using the carcass ~ species*time + carcass weight + re(carcass id)

Total time spent feeding on the carcass ~ species*time + carcass weight + re(carcass id)

Outcome of direct interactions on the carcasses

Outcome of direct interactions on the carcasses

Outcome of direct interactions on the carcasses (n=44)

Interspecific spatiotemporal association ~ species*time + re(carcass id)

i.e., delay in arriving on a carcass after the competitor species

Interspecific spatiotemporal association ~ species*time + re(carcass id)

i.e., delay in arriving on a carcass after the competitor species

Interspecific spatiotemporal association ~ species*time + re(carcass id)

i.e., delay in arriving on a carcass after the competitor species

Red foxes did not avoid wild boars; No variations along the study period

Mostly indirect competition

- Wolves did not even take part
- Wild boar > red fox

≠ previous studies

Vucetich et al. 2012, Focardi et al. 2017

Selva et al. 2005, Bassi et al. 2018

91 ± 10 fallow deer/km²

 wolves up, deer down?

91 ± 10 fallow deer/km²

 wolves up, deer down?

CONCLUSIONS

 Wild boar competed with red foxes but progressively monopolized the emerging niche

Wolf return + unnaturally high prey density >
 enhanced predictability of carcass availability

 Minimal carcass reutilization by wolves, but what with the increasing wolf population?

Thanks for listening!

Rudy Brogi rbrogi@uniss.it

