Genome-wide Mapping of Chromosomal Proteins in Drosophila

Genome Sequence & Gene Expression

Chromosome Inheritance & Genome Stability

Chromatin states & Nuclear Organization

The Players

Antibodies, Chromatin Preps, ChIP-Mapping, Validation

Gary Karpen - LBNL and UC Berkeley

Sarah Elgin - Washington University

Mitzi Kuroda - Harvard Medical School

Vince Pirrotta - Rutgers University

Bioinformatics / Computational Analysis

Peter Park - Harvard Medical School

Peter Kharchenko

Which Proteins?

~100 total

Histone modifications and variants (~50)

'heterochromatin', silenced genes

H3K9me,me2,me3

H3K27me,me2,me3

H2Av

'euchromatin', active genes

H3K4me,me2,me3

H3 and H4 K acetylations (limited)

H2Av

Histone modifying enzymes (~25)

Su(var)3-9, G9a, dSET DB1 (H3K9me)

TRX, TRR, ASH1 (H3K4me)

E(z) (H3K27me)

LSD1 demethylase (H3K4me)

JMJD2A, UTX demethylases (H3K9me, H3K27me)

Which Proteins?

Chromosomal proteins (~25)

Histone modification binding

Pc (H3K27me)

HP1 (H3K9me)

H2Av

Chromatin remodeling

SWI/SNF

NURF

ACF

Insulators

architecture

Su(Hw)

Mod(mdg)4

CTCF

Nuclear lamina and pores

Lamin C

Lamin B receptor

Nup 153

'Epigenetic Sets'

H3K9me, me2, me3: modifications

Su(var)3-9, G9a, dSET DB1: methylases

JMJD2A: demethylase

HP1: binds H3K9me2 and 3, Su(var)3-9

More details

Poster # 767B

General Approach: ChIP

Antibodies

purchase histone modification/ variant-specific antibodies

Validate these (mass spectrometry)

obtain existing antibodies for other chromosomal proteins (~20)

Generate and Validate Chromosomal Protein Antibodies

clone & express protein fragments
~30 chromosomal proteins
2 antigens / protein
antibody production &

affinity purification 2 rabbits / antigen

validate with Westerns and IF

1 cell line, normal and RNAi-depleted

SE,GK,MK,VP

make antibodies for other ~30 chromosomal proteins

two Abs: against two protein fragments per protein

Donate good antibodies

Chromatin Preparation

```
3 cell lines (MK, VP)
```

S2 (embryonic)
Cl.8+ (larval wing disc)
MLDmBG3-c2 (neuronal)

2 embryo stages (SE)

2-4 hrs (blastoderm, relatively uniform)
14-16 hrs (highly determined/differentiated)

Target: map 100 proteins in these 5 sources

150 proteins/modifications on lists

initially will just use 2 cell lines (S2 & Cl.8) to identify which proteins show interesting patterns, which redundant/less interesting (e.g. histone acetylations)

Differentiayed tissues

- 1) salivary glands-direct correlation with protein mapping on polytenes
- 2) third instar wing discsundifferentiated and diploid, show specific patterns of gene silencing and activation, and of interest for comparisons with Cl.8+ cells
- 3) adult heads-terminallydifferentiated diploid cells
- 4) germ-line cells- likely to be the most undifferentiated cells in the organism, could identify a baseline state for chromatin

Data Collection

Array Hybridization and Data Collection

hybridization
1 array / ChIP replicate
(2 arrays per protein)

deposit data on FTP site

 VP

Affymetrix Genome Tiling Arrays

Direct sequencing
Solexa ?? ABI??

Rutterscratificy(e.g. satellites)
more quantitative?
cheaper?
availability?

ChIP/seq

may offer very significant advantages in resolution and dynamic range

Kuroda & Park

Data Analysis

statistical analysis of data quality control normalization

identify peaks and broad domains

bioinformatic comparisons compare tissues combinatorial patterns compare to transcriptome data cluster analysis

PP

Data Submission

submit all data to DCC once verified, update after validation

all antibodies will be made available to the 'public'

PcG proteins and histone modifications

at the Ubx gene

Yuri Schwartz & Tanya Kahn

Binding sites for DNA binding proteins with

known connection to PcG function

protein	"traditional" binding consensus	Microarray-based binding consensus
GAF	GAGAG	pair of GAGAG spaced from 1 to 150bp
РНО	GCCAT	GCNGCCATttt
DSP1	GAAAA	GTTGTT, GTGCGT
PSQ	GAGAG	gtgGTGACCG, CGATA

Yuri Schwartz & Tanya Kahn

91% computationally defined PREs in Sg4 show prominent binding of TRX-C

TRX-C binds to thousands of active genes

(3R chromosome in Sg4 cells)

TRX-C binds to thousands of active genes

(fragment of 3R chromosome)

TRX at TSS

Alternative chromatin states of PcG target genes

Cell lines: Sg4 – embryonic origin

BG3c2 - neural origin

D23 – wing imaginal disc

Proteins: Pc, Ez, (Psc for Sg4 only), H3K27me3

Trx-C, Trx-N, Ash1, PollI,

H3K4me3, H3K27Ac

Overlapping between semicomplete PcG sites

General Plan and Expectations

Chromatin from Cell Lines, Embryos, Tissues SE,MK,VP

validated
'landscape' of
histone
modifications/varian
ts & other
chromosomal
proteins

correlations with each other, transcripts, functional elements

Purchase Histone Modification-specific Antibodies

Generate or Obtain, & Validate
Antibodies to Chromosomal Proteins

SE,GK,MK,VP

epigenetic interactions, cell- and tissue-specific differences

General Approach: ChIP-array, ChIP-chip

