

探索性数据分析

Exploratory Data Analysis (EDA) 是指对已有的 数据在尽量少的先验假 定下进行探索,并通过 作图、制表、方程拟合、 计算特征量等手段探索 数据的结构和规律的一 种数据分析方法。

抗性 分析 模式 残差 EDA 检验

Reference: Hoaglin, D.C. 1982. Exploratory data analysis. In encyclopedia of statistical sciences, Volume 2

集中趋势与离中趋势

×	类别	指标	含义	Matlab函数
		众数(Mode)	一组数据中出现最多的变量值	mode
\setminus		中位数(Median)	一组数据排序后处于中间位置的变量值	median
ď	集中	四分位数(Quartile)	一组数据排序后处于25%和75%位置上的值	quartile
	趋势			
		和值(Sum)	一组数据相加后的值	sum
		均值(Mean)	一组数据相加后除以数据的个数的值	mean
	÷. 4	极大值(Maximum)	某变量所有取值的最大值	max
		极小值(Minimum)	某变量所有取值的最小值	min
O	离中 趋势	极差(Range)	极大值与极小值之差	
		标准差(Std Dev)	数据相对于均值的离散程度	std
		方差(Variance)	标准差的平方	var

分布分析与频度分析

类别	指标	含义	Matlab函数
分布	偏态(Skewness)	描述数据分布的对称性。	skewness
分析	峰态(Kurtosis)	描述数据分布的平峰或尖峰程度	kurtosis
频度	组距	对离散数据进行分组时每一组的范围	
分析	频数	每一组内数据的出现次数	
频率	周期	时序数据重复的时间间隔	
分析	频率	单位时间内时序信号重复的次数	

频率分析(周期性分析)

探索某个变量是否随着时间变化而呈现出某种周期变化趋势。

- o 年度周期性趋势
- 季节性周期趋势
- 月度周期性趋势
- 周度周期性趋势

- o天周期性趋势
 - 小时周期性趋势
 - 0----

数据变换——简单函数变换

简单函数变换就是对原始数据进行某些数学函数变换,常用的函数变换包括平方、开方、对数、差分运算等,即:

$$x' = x^{2}$$

$$x' = \sqrt{x}$$

$$x' = \log(x)$$

$$\nabla f(x_{k}) = f(x_{k+1}) - f(x_{k})$$

数据变换——规范化

最小-最大规范化:也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0,1]之间

$$x^* = \frac{x - min}{max - min}$$

其中max为样本数据的最大值, min为样本数据 的最小值。

数据变换——规范化

零-均值规范化:也叫标准差标准化,经过处理的数据的 平均数为0,标准差为1。

$$x^* = \frac{x - \overline{x}}{\sigma}$$

其中 \bar{x} 为原始数据的均值, σ 为原始数据的标 准差。

数据变换——规范化

小数定标规范化:通过移动属性值的小数位数,将属性值映射到[-1,1]之间,移动的小数位数取决于属性值绝对值的最大值。

$$x^* = \frac{x}{10^k}$$

