

WHAT IS CLAIMED IS:

1. A data transmission method that puts variable length transmitted data into frames of a fixed time length and
5 transmits these frames, comprising the steps of:
 - at a transmitting side,
 - calculating an error-detecting code of the transmitted data, frame by frame;
 - generating frame data containing the
 - 10 transmitted data and the calculated error-detecting code such that the error-detecting code is arranged after the transmitted data and bit arrangements of the transmitted data and of the error-detecting code are set in a reverse order to each other; and
 - 15 transmitting the generated frame data, and
 - at a receiving side,
 - receiving the frame data;
 - assuming the transmitted data and the error-detecting code by assuming a final bit position of
 - 20 the frame data, frame by frame, for the received frame data and calculating the error-detecting code of the assumed transmitted data;
 - deciding that among the assumed final bit positions of the frame data, a position where the assumed
 - 25 error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

acquiring the transmitted data on the basis of
said decision result.

2. The data transmission method as claimed in claim 1,
5 wherein

at the transmitting side,

if the number of bits of the transmitted data
is zero, said step of calculating the error-detecting code
considers a previously-specified bit pattern to be the
10 error-detecting code, and

at the receiving side,

said step of calculating the error-detecting
code also assumes a position where the number of bits of
the transmitted data becomes zero as the final bit position
15 of the frame data, and

if the error-detecting code when the position
where the number of bits of the transmitted data becomes
zero is assumed as the final bit position of the frame data
agrees with said previously-specified bit pattern, said
20 step of deciding decides that the position where the number
of bits of the transmitted data becomes zero is the final
bit position of the frame data.

3. A data transmission method that puts variable length
25 transmitted data into frames of a fixed time length and
transmits these frames, comprising the steps of:

at a transmitting side,

calculating an error-detecting code of the transmitted data, frame by frame;

generating frame data containing the transmitted data and the calculated error-detecting code
5 such that the error-detecting code is arranged after the corresponding transmitted data, and bit arrangements of the transmitted data and of the error-detecting code are set in the same order; and

transmitting the generated frame data,
10 wherein if the number of bits of the transmitted data is zero, said step of calculating the error-detecting code considers a previously-specified bit pattern to be the error-detecting code, and

at the receiving side,
15 receiving the frame data;
assuming the transmitted data and the error-detecting code by assuming a final bit position of the frame data, frame by frame, for the received frame data and calculating the error-detecting code of the assumed
20 transmitted data;

deciding that among the assumed final bit positions of the frame data, a position where the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data
25 is the final bit position of the frame data; and
acquiring the transmitted data on the basis of said decision result,

wherein said step of calculating the error-detecting code also assumes a position where the number of bits of the transmitted data becomes zero is also assumed as the final bit position of the frame data, and

5 if the error-detecting code when the position where the number of bits of the transmitted data becomes zero is assumed as the final bit position of the frame data agrees with said previously-specified bit pattern said step of deciding decides that the position where the number
10 of bits of the transmitted data becomes zero is the final bit position of the frame data.

4. A data transmission method that puts variable length transmitted data into frames of a fixed time length and
15 transmits these frames, comprising the steps of:

at a transmitting side,
calculating an error-detecting code of the transmitted data, frame by frame;
generating frame data containing the
20 transmitted data and the calculated error-detecting code such that the error-detecting code is arranged ahead of the corresponding transmitted data; and
transmitting the generated frame data,
wherein if the number of bits of the transmitted
25 data is zero, said step of calculating the error-detecting code considers a previously-specified bit pattern to be the error-detecting code, and

at a receiving side,
receiving the frame data;
assuming the transmitted data and the
error-detecting code by assuming a final bit position of
5 the frame data, frame by frame, for the received frame data
and calculating the error-detecting code of the assumed
transmitted data;
deciding that among the assumed final bit
positions of the frame data, a position where the assumed
10 error-detecting code agrees with the error-detecting code
calculated on the basis of the assumed transmitted data
is the final bit position of the frame data; and
acquiring the transmitted data on the basis of
said decision result,
15 wherein said step of calculating the error-
detecting code also assumes a position where the number
of bits of the transmitted data becomes zero as the final
bit position of the frame data, and
if the error-detecting code when the position
20 where the number of bits of the transmitted data becomes
zero is assumed as the final bit position of the frame data
agrees with said previously-specified bit pattern, said
step of deciding decides that the position where the number
of bits of the transmitted data becomes zero is the final
25 bit position of the frame data.

5. The data transmission method as claimed in any one

of claims 1-4, further comprising the steps of:
at the transmitting side,
conducting error-correcting coding of the
generated frame data; and
5 conducting interleaving of the frame data that
has undergone the error-correcting coding, and
at the receiving side,
conducting deinterleaving of the received
frame data; and
10 conducting error-correcting decoding of the
frame data that has undergone the deinterleaving.

6. The data transmission method as claimed in claim 5,
wherein

15 at the transmitting side,
said step of generating the frame data generates the
frame data containing a tail bit; and
said step of conducting the error-correcting coding
conducts the error-correcting coding with a convolutional
20 code, and
at the receiving side,
said step of conducting the error-correcting
decoding assumes the final bit position of the frame data,
frame by frame, for the frame data that has undergone the
25 deinterleaving, conducts the error-correcting decoding
thereof by the maximum likelihood decoding method up to
said assumed final bit position, and at said assumed final

bit position, calculates a likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the transmitted data sequence and a likelihood of the decoded
5 data sequence obtained by terminating the decoding with respect to the transmitted data sequence, and

said step of deciding decides that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a

10 predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data.

15 7. The data transmission method as claimed in claim 6, wherein at the receiving side, the predetermined range regarding the likelihood difference at said step of deciding depends on the assumed final bit position of the frame data.

20

8. A data transmission method that puts variable length transmitted data into frames of a fixed time length and transmits these frames, comprising the steps of:

at a transmitting side,

25 calculating an error-detecting code of the transmitted data, frame by frame;

generating frame data containing the

transmitted data, the calculated error-detecting code, and
a tail bit such that the error-detecting code is arranged
after the corresponding transmitted data, and at the same
time bit arrangements of the transmitted data and of the
5 error-detecting code are set in the same order;

conducting error-correcting coding of the
generated frame data with a convolutional code;

conducting interleaving of the frame data that
has undergone the error-correcting coding; and

10 transmitting the frame data that has undergone
the interleaving, and

at a receiving side,

receiving the frame data;

conducting deinterleaving of the received
15 frame data;

assuming a final bit position of the frame data,
frame by frame, for the frame data that has undergone the
deinterleaving, conducting error-correcting decoding
thereof by the maximum likelihood decoding method up to

20 said assumed final bit position, and at the assumed final
bit position, calculating a likelihood difference between
the maximum of likelihoods of a plurality of decoded data
sequences that are candidates with respect to the
transmitted data sequence and a likelihood of the decoded
25 data sequence obtained by terminating the decoding with
respect to the transmitted data sequence;

assuming the transmitted data and the

error-detecting code by assuming the final bit position of the frame data, frame by frame, for the frame data that has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed

5 transmitted data;

deciding that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a predetermined range and the assumed error-detecting code agrees with the

10 error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

acquiring the transmitted data on the basis of said decision result,

15 wherein the predetermined range regarding the likelihood difference at said step of deciding depends on the assumed final bit position of the frame data.

9. A data transmission method that puts variable length
20 transmitted data into frames of a fixed time length and transmits these frames, comprising the steps of:

at a transmitting side,

calculating an error-detecting code of the transmitted data, frame by frame;

25 generating frame data containing the transmitted data, the calculated error-detecting code, and a tail bit such that the error-detecting code is arranged

ahead of the corresponding transmitted data;

conducting error-correcting coding of the generated frame data with a convolutional code;

conducting interleaving of the frame data that

5 has undergone the error-correcting coding; and

transmitting the frame data that has undergone the interleaving, and

at a receiving side,

receiving the frame data;

10 conducting deinterleaving of the received frame data;

assuming a final bit position of the frame data, frame by frame, for the frame data that has undergone the deinterleaving, conducting error-correcting decoding

15 thereof by the maximum likelihood decoding method up to said assumed final bit position, and at said assumed final bit position, calculating a likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the

20 transmitted data sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the transmitted data sequence;

assuming the transmitted data and the error-detecting code by assuming the final bit position

25 of the frame data, frame by frame, for the frame data that has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed

transmitted data;

deciding that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a predetermined range and
5 the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

10 acquiring the transmitted data on the basis of said decision result,

wherein the predetermined range regarding the likelihood difference at said step of deciding depends on the assumed final bit position of the frame data.

15 10. The data transmission method as claimed in any one of claims 6-9, further comprising the step of:

at the transmitting side,

calculating transmission rate information indicating the number of bits of the transmitted data,
20 frame by frame,

wherein said step of generating the frame data generates the frame data containing the calculated transmission rate information, and

at the receiving side,

25 wherein both said step of conducting the error-correcting decoding and said step of calculating the error-detecting code assume the final bit position of the

frame data on the basis of the transmission rate information in the received frame data.

11. The data transmission method as claimed in claim 10,
5 wherein at the transmitting side, said step of conducting
the error-correcting coding conducts, for the transmission
rate information, independent error-correcting coding
that is separate from the error-correcting coding for the
transmitted data, the error-detecting code, and the tail
10 bit.

12. The data transmission method as claimed in claim 11,
wherein at the transmitting side, said step of conducting
the error-correcting coding conducts the error-correcting
15 coding of the transmission rate information by using a
block code.

13. The data transmission method as claimed in claim 10,
wherein at the transmitting side, said step of conducting
20 the error-correcting coding conducts the error-correcting
coding of all of the transmission rate information, the
transmitted data, the error-detecting code, and the tail
bit collectively with a convolutional code.

25 14. The data transmission method as claimed in any one
of claims 10-13, wherein at the receiving side, if said
step of deciding does not decide that the final bit position

of the frame data assumed on the basis of the transmission rate information in the received frame data is the final bit position of the frame data, both said step of conducting the error-correcting decoding and said step of calculating

5 the error-detecting code assume a position other than the final bit position of the frame data assumed on the basis of the transmission rate information in the received frame data as the final bit position of the frame data.

10 15. The data transmission method as claimed in any one of claims 6~~14~~4, wherein at the receiving side, if among the assumed final bit positions of the frame data exist a plurality of positions where the obtained likelihood difference is within the predetermined range and the

15 assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data, said step of deciding decides that a position where the obtained likelihood difference becomes the minimum is the final bit position of the frame data.

20

16. The data transmission method as claimed in claim 5, further comprising the step of:

at the transmitting side,

calculating transmission rate information

25 indicating the number of bits of the transmitted data, frame by frame,

wherein said step of generating the frame data

generates the frame data containing the calculated transmission rate information and a tail bit, and
said step of conducting the error-correcting coding conducts the error-correcting coding with a
5 convolutional code, and

at the receiving side,

wherein said step of conducting the error-correcting decoding assumes the final bit position of the frame data on the basis of the transmission rate

10 information in the received frame data, frame by frame, for the received frame data, and conducts the error-correcting decoding thereof by the maximum likelihood decoding method up to said assumed final bit position, and

said step of calculating the error-detecting

15 code assumes the final bit position of the frame data on the basis of the transmission rate information in the received frame data.

17. The data transmission method as claimed in claim 16,

20 wherein

at the receiving side, if said step of deciding does not decide that the final bit position of the frame data assumed on the basis of the transmission rate information in the received frame data is the final bit position of
25 the frame data,

said step of conducting the error-correcting decoding assumes the final bit position of the frame data,

frame by frame, for the received frame data, conducts the error-correcting decoding thereof by the maximum likelihood decoding method up to said assumed final bit position, and at said assumed final bit position,

5 calculates a likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the transmitted data sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the

10 transmitted data sequence,

both said step of conducting the error-correcting decoding and said step of calculating the error-detecting code assume a position other than the final bit position of the frame data assumed on the basis of the

15 transmission rate information in the received frame data as the final bit position of the frame data, and

20 said step of deciding decides that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data.

25 18. The data transmission method as claimed in claim 17, wherein at the receiving side, the predetermined range regarding the likelihood difference at said step of

determining depends on the assumed final bit position of the frame data.

19. A data transmission method that puts variable length
5 transmitted data into frames of a fixed time length and transmits these frames, comprising the steps of:
 - at a transmitting side,
 - calculating an error-detecting code of the transmitted data, frame by frame;
 - 10 calculating transmission rate information indicating the number of bits of the transmitted data, frame by frame;
 - generating frame data containing the calculated transmission rate information, the transmitted
15 data, the calculated error-detecting code, and a tail bit such that the error-detecting code is arranged after the corresponding transmitted data and bit arrangements of the transmitted data and of the error-detecting code are set in the same order;
 - 20 conducting error-correcting coding of the generated frame data with a convolutional code;
 - conducting interleaving of the frame data that has undergone the error-correcting coding; and
 - transmitting the frame data that has undergone
25 the interleaving, and
 - at a receiving side,
 - receiving the frame data;

conducting deinterleaving of the received
frame data;

assuming a final bit position of the frame data,
frame by frame, for the frame data that has undergone the
5 deinterleaving, and conducting error-correcting decoding
thereof by the maximum likelihood decoding method up to
said assumed final bit position;

assuming the transmitted data and the
error-detecting code by assuming the final bit position
10 of the frame data, frame by frame, for the frame data that
has undergone the error-correcting decoding, and
calculating the error-detecting code of the assumed
transmitted data;

deciding that among the assumed final bit
15 positions of the frame data, a position where an obtained
likelihood difference is within a predetermined range and
the assumed error-detecting code agrees with the
error-detecting code calculated on the basis of the assumed
transmitted data is the final bit position of the frame
20 data; and

acquiring the transmitted data on the basis of
said decision result,

wherein both said step of conducting the
error-correcting decoding and said step of calculating the
25 error-detecting code, first, assume the final bit position
of the frame data on the basis of the transmission rate
information in the received frame data, and if said step

of deciding does not decide that the assumed position is
the final bit position of the frame data,

5 said step of conducting the error-
correcting decoding assumes the final bit position of the
frame data, frame by frame, for the received frame data,
conducts the error-correcting decoding thereof by the
maximum likelihood decoding method up to said assumed final
bit position, and at said assumed final bit position,
calculates the likelihood difference between the maximum
10 of likelihoods of a plurality of decoded data sequences
that are candidates with respect to the transmitted data
sequence and the likelihood of the decoded data sequence
obtained by terminating the decoding with respect to the
transmitted data sequence,

15 both said step of conducting the
error-correcting decoding and said step of calculating the
error-detecting code assume a position other than the final
bit position of the frame data assumed on the basis of the
transmission rate information in the received frame data
20 as the final bit position of the frame data, and

 said step of deciding decides that among
the assumed final bit positions of the frame data, a
position where the obtained likelihood difference is
within the predetermined range and the assumed error-
25 detecting code agrees with the error-detecting code
calculated on the basis of the assumed transmitted data
is the final bit position of the frame data, and

the predetermined range regarding the likelihood difference at said step of deciding depends on the assumed final bit position of the frame data.

5 20. A data transmission method that puts variable length transmitted data into frames of a fixed time length and transmits these frames, comprising the steps of:

at a transmitting side,

calculating an error-detecting code of the

10 transmitted data, frame by frame;

calculating transmission rate information indicating the number of bits of the transmitted data, frame by frame;

generating frame data containing the

15 calculated transmission rate information, the transmitted data, the calculated error-detecting code, and a tail bit such that the error-detecting code is arranged ahead of the corresponding transmitted data;

conducting error-correcting coding of the

20 generated frame data with a convolutional code;

conducting interleaving of the frame data that has undergone the error-correcting coding; and

transmitting the frame data that has undergone the interleaving, and

25 at a receiving side,

receiving the frame data;

conducting deinterleaving of the received

frame data;

assuming a final bit position of the frame data,
frame by frame, for the frame data that has undergone the
deinterleaving, and conducting error-correcting decoding
5 thereof by the maximum likelihood decoding method up to
said assumed final bit position;

assuming the transmitted data and the
error-detecting code by assuming the final bit position
of the frame data, frame by frame, for the frame data that
10 has undergone the error-correcting decoding, and
calculating the error-detecting code of the assumed
transmitted data;

deciding that among the assumed final bit
positions of the frame data, a position where an obtained
15 likelihood difference is within a predetermined range and
the assumed error-detecting code agrees with the
error-detecting code calculated on the basis of the assumed
transmitted data is the final bit position of the frame
data; and

20 acquiring the transmitted data on the basis of
said decision result,

wherein both said step of conducting the
error-correcting decoding and said step of calculating the
error-detecting code, first, assume the final bit position
25 of the frame data on the basis of the transmission rate
information in the received frame data, and if said step
of deciding does not decide that the assumed position is

the final bit position of the frame data,
said step of conducting the error-
correcting decoding assumes the final bit position of the
frame data, frame by frame, for the received frame data,
5 conducts the error-correcting decoding thereof by the
maximum likelihood decoding method up to said assumed final
bit position, and at said assumed final bit position,
calculates the likelihood difference between the maximum
of likelihoods of a plurality of decoded data sequences
10 that are candidates with respect to the transmitted data
sequence and the likelihood of the decoded data sequence
obtained by terminating the decoding with respect to the
transmitted data sequence,

both said step of conducting the
15 error-correcting decoding and said step of calculating the
error-detecting code assume a position other than the final
bit position of the frame data assumed on the basis of the
transmission rate information in the received frame data
as the final bit position of the frame data, and

20 said step of deciding decides that among
the assumed final bit positions of the frame data, a
position where the obtained likelihood difference is
within the predetermined range and the assumed error-
detecting code agrees with the error-detecting code
25 calculated on the basis of the assumed transmitted data
is the final bit position of the frame data, and
the predetermined range regarding the

likelihood difference at said step of deciding depends on the assumed final bit position of the frame data.

21. The data transmission method as claimed in any one
5 of claims 17~~18~~20, wherein at the receiving side, if among the assumed final bit positions of the frame data exist a plurality of positions where the obtained likelihood difference is within the predetermined range and at the same time the assumed error-detecting code agrees with the
10 error-detecting code calculated on the basis of the assumed transmitted data, said step of deciding decides that a position where the obtained likelihood difference becomes the minimum is the final bit position of the frame data.

15 22. The data transmission method as claimed in any one of claims 16~~17~~21, wherein at the transmitting side, said step of conducting the error-correcting coding conducts, for the transmission rate information, independent error-correcting coding that is separate from the
20 error-correcting coding for the transmitted data, the error-detecting code, and the tail bit.

25 23. The data transmission method as claimed in claim 22, wherein at the transmitting side, said step of conducting the error-correcting coding conducts the error-correcting coding of the transmission rate information by using a block code.

24. The data transmission method as claimed in any one
of claims 16-21, wherein at the transmitting side, said
step of conducting the error-correcting coding conducts
5 the error-correcting coding of all of the transmission rate
information, the transmitted data, the error-detecting
code, and the tail bit collectively with a convolutional
code.

10 25. The data transmission method as claimed in any one
of claims 1-24, wherein said error-detecting code is a CRC
code.

15 26. A data transmission system that puts variable length
transmitted data into frames of a fixed time length and
transmits these frames, comprising:
in a transmitter,
means for calculating an error-detecting code
of the transmitted data, frame by frame;
20 means for generating frame data containing the
transmitted data and the calculated error-detecting code
such that the error-detecting code is arranged after the
corresponding transmitted data and bit arrangements of the
transmitted data and of the error-detecting code are set
25 in a reverse order to each other; and
means for transmitting the generated frame data,
and

in a receiver,

means for receiving the frame data;

means for assuming the transmitted data and the
error-detecting code by assuming a final bit position of
5 the frame data, frame by frame, for the received frame data,
and calculating the error-detecting code of the assumed
transmitted data;

means for deciding that among the assumed final
bit positions of the frame data, a position where the
10 assumed error-detecting code agrees with the error-
detecting code calculated on the basis of the assumed
transmitted data is the final bit position of the frame
data; and

means for acquiring the transmitted data on the
15 basis of said decision result.

27. The data transmission system as claimed in claim 26,
wherein

in the transmitter,

20 if the number of bits of the transmitted data
is zero, said means for calculating the error-detecting
code considers a previously-specified bit pattern to be
the error-detecting code, and

in the receiver,

25 said means for calculating the error-detecting
code also assumes a position where the number of bits of
the transmitted data becomes zero as the final bit position

of the frame data, and

if the error-detecting code when the position where the number of bits of the transmitted data becomes zero is assumed as the final bit position of the frame data
5 agrees with said previously-specified bit pattern, said means for deciding decides that the position where the number of bits of the transmitted data becomes zero is the final bit position of the frame data.

10 28. A data transmission system that puts variable length transmitted data into frames of a fixed time length and transmits these frames, comprising:

in a transmitter,

means for calculating an error-detecting code
15 of the transmitted data, frame by frame;

means for generating frame data containing the transmitted data and the calculated error-detecting code such that the error-detecting code is arranged after the corresponding transmitted data and bit arrangements of the
20 transmitted data and of the error-detecting code are set in the same order; and

means for transmitting the generated frame data,

wherein, if the number of bits of the
25 transmitted data is zero, said means for calculating the error-detecting code considers a previously-specified bit pattern to be the error-detecting code, and

(3)

in a receiver,

means for receiving the frame data;

means for assuming the transmitted data and the error-detecting code by assuming a final bit position of

5 the frame data, frame by frame, for the received frame data, and calculating the error-detecting code of the assumed transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where the

10 assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the

15 basis of said decision result,

wherein said means for calculating the error-detecting code also assumes a position where the number of bits of the transmitted data becomes zero as the final bit position of the frame data, and

20 if the error-detecting code when the position where the number of bits of the transmitted data becomes zero is assumed as the final bit position of the frame data agrees with said previously-specified bit pattern, said means for deciding decides that the position where the

25 number of bits of the transmitted data becomes zero is the final bit position of the frame data.

29. A data transmission system that puts variable length transmitted data into frames of a fixed time length and transmits these frames, comprising:

 in a transmitter,

5 means for calculating an error-detecting code of the transmitted data, frame by frame;

 means for generating frame data containing the transmitted data and the calculated error-detecting code such that the error-detecting code is arranged ahead of
10 the corresponding transmitted data; and

 means for transmitting the generated frame data,

 wherein if the number of bits of the transmitted data is zero, said means for calculating the error-detecting code considers a previously-specified bit pattern to be the error-detecting code, and

 in a receiver,

 means for receiving the frame data;

15 means for assuming the transmitted data and the error-detecting code by assuming a final bit position of the frame data, frame by frame, for the received frame data, and calculating the error-detecting code of the assumed transmitted data;

20 means for deciding that among the assumed final bit positions of the frame data, a position where the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed

transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the basis of said decision result,

5 wherein said means for calculating the error-detecting code also assumes a position where the number of bits of the transmitted data becomes zero as the final bit position of the frame data, and

10 if the error-detecting code when the position where the number of bits of the transmitted data becomes zero is assumed as the final bit position of the frame data agrees with said previously-specified bit pattern, said means for deciding decides that the position where the number of bits of the transmitted data becomes zero is the 15 final bit position of the frame data.

30. The data transmission system as claimed in any one of claims 26-29, further comprising:

 in the transmitter,

20 means for conducting error-correcting coding of the generated frame data; and

 means for conducting interleaving of the frame data that has undergone the error-correcting coding, and
 in the receiver,

25 means for conducting deinterleaving of the received frame data; and

 means for conducting error-correcting

decoding of the frame data that has undergone the deinterleaving.

31. The data transmission system as claimed in claim 30,

5 wherein

in the transmitter,

said means for generating the frame data generates the frame data containing a tail bit, and
said means for conducting the error-correcting

10 coding conducts the error-correcting coding with a convolutional code, and

in the receiver,

said means for conducting the error-correcting decoding assumes the final bit position of the frame data, 15 frame by frame, for the frame data that has undergone the deinterleaving, conducts the error-correcting decoding thereof by the maximum likelihood decoding method up to said assumed final bit position, and at said assumed final bit position, calculates a likelihood difference between 20 the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the transmitted data sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the transmitted data sequence; and

25 said means for deciding decides that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a

predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data.

5

32. The data transmission system as claimed in claim 31, wherein in the receiver, the predetermined range regarding the likelihood difference at said means for deciding depends on the assumed final bit position of the frame data.

10

33. A data transmission system that puts variable length transmitted data into frames of a fixed time length and transmits these frames, comprising:

in a transmitter,

15

means for calculating an error-detecting code of the transmitted data, frame by frame;

means for generating frame data containing the transmitted data, the calculated error-detecting code, and a tail bit such that the error-detecting code is arranged

20

after the corresponding transmitted data and bit arrangements of the transmitted data and of the error-detecting code are set in the same order;

means for conducting error-correcting coding of the generated frame data with a convolutional code;

25

means for conducting interleaving of the frame data that has undergone the error-correcting coding; and

means for transmitting the frame data that has

undergone the interleaving, and
in a receiver,
means for receiving the frame data;
means for conducting deinterleaving of the
5 received frame data;
means for assuming a final bit position of the
frame data, frame by frame, for the frame data that has
undergone the deinterleaving, conducting error-
correcting decoding thereof by the maximum likelihood
10 decoding method up to the assumed final bit position, and
at said assumed final bit position, calculating a
likelihood difference between the maximum of likelihoods
of a plurality of decoded data sequences that are
candidates with respect to the transmitted data sequence
15 and a likelihood of the decoded data sequence obtained by
terminating the decoding with respect to the transmitted
data sequence;
means for assuming the transmitted data and the
error-detecting code by assuming the final bit position
20 of the frame data, frame by frame, for the frame data that
has undergone the error-correcting decoding, and
calculating the error-detecting code of the assumed
transmitted data;
means for deciding that among the assumed final
25 bit positions of the frame data, a position where the
obtained likelihood difference is within a predetermined
range and the assumed error-detecting code agrees with the

error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the
5 basis of said decision result,

wherein the predetermined range regarding the likelihood difference in said means for deciding depends on the assumed final bit position of the frame data.

10 34. A data transmission system that puts variable length transmitted data into frames of a fixed time length and transmits these frames, comprising:

in a transmitter,

means for calculating an error-detecting code
15 of the transmitted data, frame by frame;

means for generating frame data containing the transmitted data, the calculated error-detecting code, and a tail bit such that the error-detecting code is arranged ahead of the corresponding transmitted data;

20 means for conducting error-correcting coding of the generated frame data with a convolutional code;

means for conducting interleaving of the frame data that has undergone the error-correcting coding; and

means for transmitting the frame data that has
25 undergone the interleaving, and

in a receiver,

means for receiving the frame data;

means for conducting deinterleaving of the received frame data;

means for assuming a final bit position of the frame data, frame by frame, for the frame data that has
5 undergone the deinterleaving, conducting error-correcting decoding thereof by the maximum likelihood decoding method up to said assumed final bit position, and at said assumed final bit position, calculating a likelihood difference between the maximum of likelihoods
10 of a plurality of decoded data sequences that are candidates with respect to the transmitted data sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the transmitted data sequence;

15 means for assuming the transmitted data and the error-detecting code by assuming the final bit position of the frame data, frame by frame, for the frame data that has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed
20 transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a predetermined range and the assumed error-detecting code agrees with the
25 error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the basis of said decision result,

wherein the predetermined range regarding the likelihood difference at said means for deciding depends
5 on the assumed final bit position of the frame data.

35. The data transmission system as claimed in any one of claims 31-~~34~~, further comprising:

in the transmitter,

10 means for calculating transmission rate information indicating the number of bits of the transmitted data, frame by frame,

wherein said means for generating the frame data generates the frame data containing the calculated
15 transmission rate information, and

in the receiver,

wherein both said means for conducting the error-correcting decoding and said means for calculating the error-detecting code assume the final bit position of
20 the frame data on the basis of the transmission rate information in the received frame data.

36. The data transmission system as claimed in claim 35, wherein in the transmitter, said means for conducting the error-correcting coding conducts, for the transmission rate information, independent error-correcting coding
25 that is separate from the error-correcting coding for the

transmitted data, the error-detecting code, and the tail bit.

37. The data transmission system as claimed in claim 36,
5 wherein in the transmitter, said means for conducting the
error-correcting coding conducts the error-correcting
coding of the transmission rate information by using a
block code.

10 38. The data transmission system as claimed in claim 35,
wherein in the transmitter, said means for conducting the
error-correcting coding conducts the error-correcting
coding of all of the transmission rate information, the
transmitted data, the error-detecting code, and the tail
15 bit collectively with a convolutional code.

39. The data transmission system as claimed in any one
of claims 35~~43~~38, wherein in the receiver, if said means
for deciding does not decide that the final bit position
20 of the frame data assumed on the basis of the transmission
rate information in the received frame data is the final
bit position of the frame data, both said means for
conducting the error-correcting decoding and said means
for calculating the error-detecting code assume a position
25 other than the final bit position of the frame data assumed
on the basis of the transmission rate information in the
received frame data as the final bit position of the frame

data.

40. The data transmission system as claimed in any one
of claims 31/39, wherein in the receiver, if among the
5 assumed final bit positions of the frame data exist a
plurality of positions where the obtained likelihood
difference is within the predetermined range and the
assumed error-detecting code agrees with the error-
detecting code calculated on the basis of the assumed
10 transmitted data, said means for deciding decides that a
position where the obtained likelihood difference becomes
the minimum is the final bit position of the frame data.

41. The data transmission system as claimed in claim 30,
15 further comprising:

in the transmitter,

means for calculating transmission rate
information indicating the number of bits of the
transmitted data, frame by frame,

20 wherein said means for generating the frame
data generates the frame data containing the calculated
transmission rate information and a tail bit, and

25 said means for conducting the error-correcting
coding conducts the error-correcting coding with a
convolutional code, and

in the receiver,

wherein said means for conducting the

error-correcting decoding assumes the final bit position
of the frame data on the basis of the transmission rate
information in the received frame data, frame by frame,
for the received frame data, and conducts the error-
5 correcting decoding thereof by the maximum likelihood
decoding method up to said assumed final bit position, and
said means for calculating the error-detecting
code assumes the final bit position of the frame data on
the basis of the transmission rate information in the
10 received frame data.

42. The data transmission system as claimed in claim 41,
wherein:

15 in the receiver, if said means for deciding does not
decide that the final bit position of the frame data assumed
on the basis of the transmission rate information in the
received frame data is the final bit position of the frame
data,

20 said means for conducting the error-correcting
decoding assumes the final bit position of the frame data,
frame by frame, for the received frame data, conducts the
error-correcting decoding thereof by the maximum
likelihood decoding method up to said assumed final bit
position, and at said assumed final bit position,
25 calculates a likelihood difference between the maximum of
likelihoods of a plurality of decoded data sequences that
are candidates with respect to the transmitted data

sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the transmitted data sequence,

both said means for conducting the error-
5 correcting decoding and said means for calculating the error-detecting code assume a position other than the final bit position of the frame data assumed on the basis of the transmission rate information in the received frame data as the final bit position of the frame data, and

10 said means for deciding decides that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the
15 basis of the assumed transmitted data is the final bit position of the frame data.

43. The data transmission system as claimed in claim 42, wherein in the receiver, the predetermined range regarding
20 the likelihood difference at said means for determining depends on the assumed final bit position of the frame data.

44. A data transmission system that puts variable length transmitted data into frames of a fixed time length and
25 transmits these frames, comprising:

in a transmitter,

means for calculating an error-detecting code

of the transmitted data, frame by frame;
means for calculating transmission rate
information indicating the number of bits of the
transmitted data, frame by frame;

5 means for generating frame data containing the
calculated transmission rate information, the transmitted
data, the calculated error-detecting code, and a tail bit
such that the error-detecting code is arranged after the
corresponding transmitted data and bit arrangements of the
10 transmitted data and of the error-detecting code are set
in the same order;

means for conducting error-correcting coding
of the generated frame data with a convolutional code;

means for conducting interleaving of the frame
15 data that has undergone the error-correcting coding; and
means for transmitting the frame data that has
undergone the interleaving, and
in a receiver,

means for receiving the frame data;

20 means for conducting deinterleaving of the
received frame data;
means for assuming a final bit position of the
frame data, frame by frame, for the frame data that has
undergone the deinterleaving, and conducting error-

25 correcting decoding thereof by the maximum likelihood
decoding method up to said assumed final bit position;
means for assuming the transmitted data and the

error-detecting code by assuming the final bit position of the frame data, frame by frame, for the frame data that has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed

5 transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where an obtained likelihood difference is within a predetermined range and the assumed error-detecting code agrees with the
10 error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the basis of said decision result,

15 wherein said means for conducting the error-correcting decoding and said means for calculating the error-detecting code first assume the final bit position of the frame data on the basis of the transmission rate information in the received frame data, and if said
20 means for deciding does not decide that the assumed position is the final bit position of the frame data,

said means for conducting the error-correcting decoding assumes the final bit position of the frame data, frame by frame, for the received frame data,
25 conducts the error-correcting decoding thereof by the maximum likelihood decoding method up to said assumed final bit position, and at said assumed final bit position,

calculates the likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the transmitted data sequence and a likelihood of the decoded data sequence
5 obtained by terminating the decoding with respect to the transmitted data sequences,

both said means for conducting the error-correcting decoding and said means for calculating the error-detecting code assume a position other than the
10 final bit position of the frame data assumed on the basis of the transmission rate information in the received frame data as the final bit position of the frame data, and

15 said means for deciding decides that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within the predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data, and

20 the predetermined range regarding the likelihood difference at said means for deciding depends on the assumed final bit position of the frame data.

45. A data transmission system that puts variable length
25 transmitted data into frames of a fixed time length and transmits these frames, comprising:

in a transmitter.

means for calculating an error-detecting code
of the transmitted data, frame by frame;

means for calculating transmission rate
information indicating the number of bits of the
transmitted data, frame by frame;

means for generating frame data containing the
calculated transmission rate information, the transmitted
data, the calculated error-detecting code, and a tail bit
such that the error-detecting code is arranged ahead of
the corresponding transmitted data;

means for conducting error-correcting coding
of the generated frame data with a convolutional code;

means for conducting interleaving of the frame
data that has undergone the error-correcting coding; and

means for transmitting the frame data that has
undergone the interleaving, and

in a transmitter,

means for receiving the frame data;

means for conducting deinterleaving of the
received frame data;

means for assuming a final bit position of the
frame data, frame by frame, for the frame data that has
undergone the deinterleaving, and conducting error-
correcting decoding thereof by the maximum likelihood
decoding method up to said assumed final bit position;

means for assuming the transmitted data and the
error-detecting code by assuming the final bit position

of the frame data, frame by frame, for the frame data that has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed transmitted data;

5 means for deciding that among the assumed final bit positions of the frame data, a position where an obtained likelihood difference is within a predetermined range and the assumed error-detecting code agrees with an error-detecting code calculated on the basis of the assumed
10 transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the basis of said decision result,

wherein both said means for conducting the
15 error-correcting decoding and said means for calculating the error-detecting code first assume the final bit position of the frame data on the basis of the transmission rate information in the received frame data, and if said means for deciding does not decide that the assumed
20 position is the final bit position of the frame data,
said means for conducting error-correcting decoding assumes the final bit position of the frame data, frame by frame, for the received frame data, conducts the error-correcting decoding thereof by the
25 maximum likelihood decoding method up to said assumed final bit position, and at said assumed final bit position, calculates the likelihood difference between the maximum

of likelihoods of a plurality of decoded data sequences
that are candidates with respect to the transmitted data
sequence and a likelihood of the decoded data sequence
obtained by terminating the decoding with respect to the
transmitted data sequence;

both said means for conducting the
error-correcting decoding and said means for calculating
the error-detecting code assume a position other than the
assumed final bit position of the frame data assumed on
the basis of the transmission rate information in the
received frame data as the final bit position of the frame
data; and

said means for determining determines
that among the assumed final bit positions of the frame
data, a position where the obtained likelihood difference
is within the predetermined range and the assumed
error-detecting code agrees with an error-detecting code
calculated on the basis of the assumed transmitted data
is the final bit position of the frame data, and

the predetermined range regarding the
likelihood difference at said means for deciding depends
on the assumed final bit position of the frame data.

46. The data transmission system as claimed in any one
of claims 42-45, wherein in the receiver, if among the
assumed final bit positions of the frame data exist a
plurality of positions where the obtained likelihood

difference is within the predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data, said means for deciding decides that a
5 position where the obtained likelihood difference becomes the minimum is the final bit position of the frame data.

47. The data transmission system as claimed in any one of claims 41-~~46~~, wherein in the transmitter, said means
10 for conducting the error-correcting coding conducts, for the transmission rate information, independent error-correcting coding that is separate from the error-correcting coding for the transmitted data, the error-detecting code, and the tail bit.

15
48. The data transmission system as claimed in claim 47, wherein in the transmitter, said means for conducting the error-correcting coding conducts the error-correcting coding of the transmission rate information by using a
20 block code.

49. The data transmission system as claimed in any one of claims 41-~~46~~, wherein in the transmitter, said means for conducting the error-correcting coding conducts the
25 error-correcting coding of all of the transmission rate information, the transmitted data, the error-detecting code, and the tail bit collectively with a convolutional

code.

50. The data transmission system as claimed in any one
of claims 26-49, wherein said error-detecting code is a
5 CRC code.

51. A transmitter that puts variable length transmitted
data into frames of a fixed time length and transmits these
frames, comprising:

10 means for calculating an error-detecting code of the
transmitted data, frame by frame;

means for generating frame data containing the
transmitted data and the calculated error-detecting code
such that the error-detecting code is arranged after the
15 corresponding transmitted data and bit arrangements of the
transmitted data and of the error-detecting code are set
in a reverse order to each other; and

means for transmitting the generated frame data.

20 52. A transmitter that puts variable length transmitted
data into frames of a fixed time length and transmits these
frames, comprising:

means for calculating an error-detecting code of the
transmitted data, frame by frame;

25 means for generating frame data containing the
transmitted data and the calculated error-detecting code
such that the error-detecting code is arranged after the

corresponding transmitted data and bit arrangements of the transmitted data and of the error-detecting code are set in the same order; and

means for transmitting the generated frame data,
5 wherein if the number of bits of the transmitted data is zero, said means for calculating the error-detecting code considers a previously-specified bit pattern to be the error-detecting code.

10 53. A transmitter that puts variable length transmitted data into frames of a fixed time length and transmits these frames, comprising:

means for calculating an error-detecting code of the transmitted data, frame by frame;

15 means for generating frame data containing the transmitted data and the calculated error-detecting code such that the error-detecting code is arranged ahead of the corresponding transmitted data; and

means for transmitting the generated frame data,
20 wherein if the number of bits of the transmitted data is zero, said means for calculating the error-detecting code considers a previously-specified bit pattern to be the error-detecting code.

25 54. A receiver for receiving frame data containing variable length transmitted data, and an error-detecting code calculated, frame by frame, for said transmitted data

in each frame of a fixed time length such that the error-detecting code is arranged after the corresponding transmitted data, and bit arrangements of the transmitted data and of the error-detecting code are set in a reverse
5 order to each other, comprising:

means for receiving the frame data;

means for assuming the transmitted data and the error-detecting code by assuming a final bit position of the frame data, frame by frame, for the received frame data,
10 and calculating the error-detecting code of the assumed transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where the assumed error-detecting code agrees with the error-detecting code
15 calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the basis of said decision result.

20 55. A receiver for receiving frame data containing variable length transmitted data and an error-detecting code calculated, frame by frame, for said transmitted data in each frame of a fixed time length such that the error-detecting code is arranged after the corresponding transmitted data, bit arrangements of the transmitted data
25 and of the error-detecting code are set in the same order, and if the number of bits of the transmitted data is zero,

a previously-specified bit pattern is considered to be the error-detecting code, comprising:

means for receiving the frame data;

means for assuming the transmitted data and the

5 error-detecting code by assuming a final bit position of the frame data, frame by frame, for the received frame data, and calculating the error-detecting code of the assumed transmitted data;

10 means for deciding that among the assumed final bit positions of the frame data, a position where the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

15 means for acquiring the transmitted data on the basis of said decision result,

wherein said means for calculating the error-detecting code also assumes a position where the number of bits of the transmitted data becomes zero as the final bit position of the frame data, and

20 if the error-detecting code when the position where the number of bits of the transmitted data becomes zero is assumed as the final bit position of the frame data agrees with said previously-specified bit pattern, said means for determining determines that the position where 25 the number of bits of the transmitted data becomes zero is the final bit position of the frame data.

56. A receiver for receiving frame data containing variable length transmitted data and an error-detecting code calculated, frame by frame, for said transmit data in each frame of a fixed time length such that the

5 error-detecting code is arranged ahead of the corresponding transmitted data, and if the number of bits of the transmitted data is zero, a previously-specified bit pattern is considered to be the error-detecting code, comprising:

10 means for receiving the frame data;

 means for assuming the transmitted data and the error-detecting code by assuming a final bit position of the frame data, frame by frame, for the received frame data, and calculating the error-detecting code of the assumed
15 transmitted data;

 means for deciding that among the assumed final bit positions of the frame data, a position where the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data
20 is the final bit position of the frame data; and

 means for acquiring the transmitted data on the basis of said decision result,

 wherein said means for calculating the error-detecting code also assumes a position where the number
25 of bits of the transmitted data becomes zero as the final bit position of the frame data, and

 if the error-detecting code when the position where

the number of bits of the transmitted data becomes zero
is assumed as the final bit position of the frame data
agrees with said previously-specified bit pattern, said
means for deciding decides that the position where the
5 number of bits of the transmitted data becomes zero is the
final bit position of the frame data.

57. A receiver for receiving frame data containing
variable length transmitted data, an error-detecting code
10 calculated, frame by frame, for said transmitted data, and
a tail bit in each frame of a fixed time length such that
the error-detecting code is arranged after the
corresponding transmitted data, bit arrangements of the
transmitted data and of the error-detecting code are set
15 in the same order, if the number of bits of the transmitted
data is zero, the previously-specified bit pattern is
considered to be the error-detecting code, and the frame
data has undergone error-correcting coding with a
convolutional code and interleaving, comprising:

20 means for receiving the frame data;
means for conducting deinterleaving of the received
frame data;
means for assuming a final bit position of the frame
data, frame by frame, for the frame data that has undergone
25 the deinterleaving, conducting error-correcting decoding
thereof by the maximum likelihood decoding method up to
said assumed final bit position, and at the assumed final

bit position, calculating a likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the transmitted data sequence and a likelihood of the decoded

5 data sequence obtained by terminating the decoding with respect to the transmitted data sequence;

means for assuming the transmitted data and the error-detecting code by assuming the final bit position of the frame data, frame by frame, for the frame data that

10 has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where the obtained

15 likelihood difference is within a predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

20 means for acquiring the transmitted data on the basis of said decision result,

wherein the predetermined range regarding the likelihood difference at said means for deciding depends on the assumed final bit position of the frame data.

25

58. A receiver for receiving frame data containing variable length transmitted data, an error-detecting code

calculated, frame by frame, for said transmitted data, and a tail bit in each frame of a fixed time length such that the error-detecting code is arranged ahead of the corresponding transmitted data, if the number of bits of

5 the transmitted data is zero, a previously-specified bit pattern is considered to be the error-detecting code, and the frame data has undergone error-correcting coding with a convolutional code and interleaving, comprising:

means for receiving the frame data;

10 means for conducting deinterleaving of the received frame data;

means for assuming a final bit position of the frame data, frame by frame, for the frame data that has undergone the deinterleaving, conducting error-correcting decoding

15 thereof by the maximum likelihood decoding method up to said assumed final bit position, and at said assumed final bit position, calculating a likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the

20 transmitted data sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the transmitted data sequence;

means for assuming the transmitted data and the error-detecting code by assuming the final bit position

25 of the frame data, frame by frame, for the frame data that has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed

transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within a predetermined range and

5 the assumed error-detecting code agrees with the error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the basis
10 of said decision result,

wherein the predetermined range regarding the likelihood difference at said means for deciding depends on the assumed final bit position of the frame data.

15 59. A receiver for receiving frame data containing variable length transmitted data, transmission rate information indicating the number of bits of the transmitted data calculated, frame by frame, for said transmitted data, an error-detecting code calculated,
20 frame by frame, for said transmitted data, and a tail bit in each frame of a fixed time length such that the error-detecting code is arranged after the corresponding transmitted data, bit arrangements of the transmitted data and of the error-detecting code are set in the same order,
25 if the number of bits of the transmitted data is zero, a previously-specified bit pattern is considered to be the error-detecting code, and the frame data has undergone

error-correcting coding with a convolutional code and interleaving, comprising:

means for receiving the frame data;

means for conducting deinterleaving of the received

5 frame data;

means for assuming a final bit position of the frame data, frame by frame, for the frame data that has undergone the deinterleaving, and conducting error-correcting decoding thereof by the maximum likelihood decoding method

10 up to said assumed final bit position;

means for assuming the transmitted data and the error-detecting code by assuming the final bit position of the frame data, frame by frame, for the frame data that has undergone the error-correcting decoding, and

15 calculating the error-detecting code of the assumed transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where an obtained likelihood difference is within a predetermined range and

20 at the same time the assumed error-detecting code agrees with an error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

means for acquiring the transmitted data on the basis

25 of said decision result,

wherein both said means for conducting the error-correcting decoding and said means for calculating the

error-detecting code first assume the final bit position of the frame data on the basis of the transmission rate information in the received frame data, and if said means for deciding does not decide that the assumed position is

5 the final bit position of the frame data,

 said means for conducting the error-correcting decoding assumes the final bit position of the frame data, frame by frame, for the received frame data, conducts the error-correcting decoding thereof by the maximum

10 likelihood decoding method up to said assumed final bit position, and at said assumed final bit position, calculates the likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences that are candidates with respect to the transmitted data

15 sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the transmitted data sequence,

 both said means for conducting the error-correcting decoding and said means for calculating the

20 error-detecting code assume a position other than the final bit position of the frame data assumed on the basis of the transmission rate information in the received frame data as the final bit position of the frame data, and

 said means for deciding decides that among the

25 assumed final bit positions of the frame data, a position where the obtained likelihood difference is within the predetermined range and the assumed error-detecting code

agrees with an error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data, and

the predetermined range regarding the likelihood
5 difference at said means for determining depends on the assumed final bit position of the frame data.

60. A receiver for receiving frame data containing variable length transmitted data, transmission rate
10 information indicating the number of bits of the transmitted data calculated, frame by frame, for said transmitted data, an error-detecting code calculated, frame by frame, for said transmitted data, and a tail bit in each frame of a fixed time length such that the
15 error-detecting code is arranged ahead of the corresponding transmitted data, if the number of bits of the transmitted data is zero, a previously-specified bit pattern is considered to be the error-detecting code, and the frame data has undergone error-correcting coding with
20 a convolutional code and interleaving, comprising:

means for receiving the frame data;

means for conducting deinterleaving of the received frame data;

means for assuming a final bit position of the frame
25 data, frame by frame, for the frame data that has undergone the deinterleaving, and conducting error-correcting decoding thereof by the maximum likelihood decoding method

up to said assumed final bit position;

means for assuming the transmitted data and the error-detecting code by assuming the final bit position of the frame data, frame by frame, for the frame data that 5 has undergone the error-correcting decoding, and calculating the error-detecting code of the assumed transmitted data;

means for deciding that among the assumed final bit positions of the frame data, a position where an obtained 10 likelihood difference is within a predetermined range and at the same time the assumed error-detecting code agrees with an error-detecting code calculated on the basis of the assumed transmitted data is the final bit position of the frame data; and

15 means for acquiring the transmitted data on the basis of said decision result,

wherein both said means for conducting the error-correcting decoding and said means for calculating the error-detecting code first assume the final bit position 20 of the frame data on the basis of the transmission rate information in the received frame data, and if said means for deciding does not decide that the assumed position is the final bit position of the frame data,

said means for conducting the error-correcting 25 decoding assumes the final bit position of the frame data, frame by frame, for the received frame data, conducts the error-correcting decoding thereof by the maximum

likelihood decoding method up to said assumed final bit position, and at said assumed final bit position, calculates the likelihood difference between the maximum of likelihoods of a plurality of decoded data sequences

5 that are candidates with respect to the transmitted data sequence and a likelihood of the decoded data sequence obtained by terminating the decoding with respect to the transmitted data sequence,

both said means for conducting the error-
10 correcting decoding and said means for calculating the error-detecting code assume a position other than the final bit position of the frame data assumed on the basis of the transmission rate information in the received frame data as the final bit position of the frame data, and

15 said means for deciding decides that among the assumed final bit positions of the frame data, a position where the obtained likelihood difference is within the predetermined range and the assumed error-detecting code agrees with the error-detecting code calculated on the
20 basis of the assumed transmitted data is the final bit position of the frame data, and

the predetermined range regarding the likelihood difference at said means for determining depends on the assumed final bit position of the frame data.