Лекция 3

Тема: Метод на изкуствения базис. М-задача.

Задачата на линейното оптимиране лесно се записва в стандартно-каноничен вид, като се състави М-задачата и се въведат изкуствени променливи x_{n+i} (i=1,...,m), които образуват базис.

М-за∂ачата се формулира по следния начин:

(3.9)
$$\min(\max) \quad \overline{z} = \sum_{j=1}^{n} c_j x_j + (-) M \sum_{i=1}^{m} x_{n+i}$$

(3.10)
$$\sum_{i=1}^{n} a_{ij} x_j + x_{n+i} = b_i, (b_i \ge 0, i = 1, ..., m)$$

(3.11)
$$x_j \ge 0, (j = 1, ..., n + m).$$

Числото M е достатъчно голямо положително в сравнение с коефициентите $c_{\,i}\,(\,j=1,...,n)$.

Забележка. Ако в дадено уравнение от ограниченията има базисна променлива, то в това уравнение не се въвежда изкуствена променлива.

Теорема 3.2. Ако в оптималното решение на М-задачата всички изкуствени променливи са равни на нула, то е намерено и оптималното решение на дадената задача.

Теорема 3.3. Ако в оптималното решение на М-задачата съществува изкуствена променлива с положителна стойност, то дадената задача е противоречива.

Теорема 3.4. Ако М-задачата няма оптимално решение, то и дадената задача няма оптимално решение.

Правила за решаване на задачи

- Дадената задачата се записва в стандартна форма:
- 1. всички свободни членове са неотрицателни;
- 2. всички ограничения са равенства;
- 3. всички неизвестни са неотрицателни.
- Определят се базисните неизвестни и ако липсват се съставя М-задачата.
- Съставя се първата симплекс таблица и се пресмята индексният ред.
- Проверява се критерият за оптималност (3.4) и ако е изпълнен се прави извод за решението на дадената задача по Теореми 3.1, 3.2, 3.3, 3.4.
- Ако критерият за оптималност (3.4) не е изпълнен, то по (3.5) и (3.6) се определя новия базис и ключовото число.
- Симплекс таблицата се преобразува по (3.7) и (3.8). Отново се пресмята индексния ред и се проверява критерият за оптималност.
- Преобразуванията на симплекс таблицата продължават до изпълнение на критерия за оптималност в индексния ред.

3.3. Да се реши задачата на линейното оптимиране:

$$\min z = -x_1 + x_2$$

$$\begin{vmatrix} 2x_1 - x_2 - x_3 &= 2 \\ x_1 - 2x_2 &\le 2 \\ x_1 + x_2 &\le 5 \end{vmatrix}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

Решение: Неравенствата в системата ограниченителни условия трябва да се преобразуват в равенства. Във второто и третото ограничение добавяме, съответно неотрицателните балансиращи неизвестни x_4 и x_5 . Получаваме следната задача:

$$\min z = -x_1 + x_2$$

$$\begin{vmatrix} 2x_1 - x_2 - x_3 & = 2 \\ x_1 - 2x_2 & + x_4 & = 2 \\ x_1 + x_2 & + x_5 = 5 \end{vmatrix}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$$

Този вид на задачата, обаче, не позволява определяне на изходно допустимо базисно решение, без да се нарушат условията на неотрицателност на коефициентите b_i , i=1,2,3. Тъй като липсва базисно неизвестно в първото уравнение, там добавяме изкуствена променлива x_6 , като по този начин формулираме М-задача на общата задача на линейното оптимиране, както (3.9)-(3.11).

$$\min \overline{z} = -x_1 + x_2 + Mx_6$$

$$\begin{vmatrix} 2x_1 - x_2 - x_3 & +x_6 = 2 \\ x_1 - 2x_2 & +x_4 & = 2 \\ x_1 + x_2 & +x_5 & = 5 \end{vmatrix}$$

$$x_j \ge 0, j = 1, ...6, M >> 0.$$

Базисните неизвестни са $(x_6; x_4; x_5)$. Образуваме симплекс таблицата- *табл.* 3.5.

Ta65,000 2 5

i	Таолица 3.5.). J.		
			c_{j}	-1	1	0	0	0	М
	$c_{\scriptscriptstyle E}$	$x_{\scriptscriptstyle E}$	b_i x_j	x_1	x_2	x_3	x_4	x_5	x_6
I.	М	x_6	2	2	-1	-1	0	0	1
	0	x_4	2	1	-2	0	1	0	0
	0	x_5	5	1	1	0	0	1	0
	$z_1 = 2M$			2M+1	-M-1	-M	0	0	0

	-1	x_1	1	1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	-
II.	0	x_4	1	0	$-\frac{3}{2}$	$\frac{1}{2}$	1	0	-
	0	x_5	4	0	$\frac{3}{2}$	$\frac{1}{2}$	0	1	-
Z_1	=-1			0	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	ı
	-1	x_1	2	1	-2	0	1	0	-
III.	0	x_3	2	0	-3	1	2	0	-
	1	x_5	3	0	3	0	-1	1	-
	$z_3 = -2$			0	1	0	-1	0	-
	-1	x_1	4	1	0	0	$\frac{1}{3}$	$\frac{2}{3}$	-
IV	0	x_3	5	0	0	1	1	1	-
	1	x_2	1	0	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	-
	$z_4 = -3$			0	0	0	$-\frac{2}{3}$	$-\frac{1}{3}$	-

Попълваме първи индексен ред. Стойността на целевата функция е $z_{\rm l}=2M$ и не е оптимална, защото числото $\Delta_{\rm l}=2M+1>0$ нарушава критерия за оптималност (3.5). Променяме базисното решение, като в него влиза $x_{\rm l}$. Тъй като изкуствената променлива $x_{\rm l}$ напуска базиса, то изчисленията в съответния стълб може да не се извършват.

Решението на задачата следва правилата на симплекс метода за намиране на оптимална стойност на целева функция в случая, когато търсеният екстремум е минимум. Намереното решение е оптимално, както за М-задачата, така и за изходната задача – Теорема 3.2. Оптималното решение се намира на четвъртата стъпка и е $z_{\min} = -3$ при $X_{opt}(4;1;5)$.

3.4. Да се реши задачата:

$$\max z = 3x_1 + 4x_2 + 2x_3$$
$$\begin{vmatrix} x_1 + 2x_2 + 3x_3 = 12\\ 2x_1 + x_2 + x_3 = 6\\ 3x_1 + 3x_2 + x_3 \le 9\\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0. \end{aligned}$$

Решение: Преобразуваме последното ограничение в равенство с помощта на балансиращата променлива $x_4 \ge 0$, а в първите две ограничения въвеждаме изкуствените променливи $x_5 \ge 0$ и $x_6 \ge 0$, за да получим базис. Съставяме съответната М-задача, както (3.9) – (3.11) :

$$\max \overline{z} = 3x_1 + 4x_2 + 2x_3 - Mx_5 - Mx_6$$

$$\begin{vmatrix} x_1 + 2x_2 + 3x_3 & +x_5 & = 12 \\ 2x_1 + x_2 + x_3 & +x_6 & = 6 \\ 3x_1 + 3x_2 + x_3 + x_4 & = 9 \end{vmatrix}$$

$$x_j \ge 0, j = 1, ..., 6, M >> 0.$$

Началните базисни променливи са $(x_5; x_6; x_4)$. Образуваме симплекс таблицата - mабл. 3.6.

В *част I.* критерият за оптималност е нарушен. Имайки предвид, че M >> 0, то по (3.5), трябва променливата x_3 да влезе в базиса, а по (3.6) напуска базиса x_5 . Тъй като x_5 е изкуствена неизвестна, то не се налага да се правят понататъшни изчисления в съответния стълб.

Решението на задачата следва правилата на симплекс метода за намиране на оптимална стойност на целева функция в случая, когато търсеният екстремум е максимум.

Критерият за оптималност е в сила на четвърта стъпка. Намереното решение е оптимално както за М-задачата, така и за изходната задача – Теорема 3.2. и то е $z_{\rm max}$ =13 при $X_{\it out}$ (1;1;3) .

Таблица 3.6. -M -M C_{E} $x_{\scriptscriptstyle E}$ X_{i} x_1 x_2 x_3 x_4 x_5 x_6 -M x_5 -M x_6 I. x_4 $z_1 = -18M$ -3M-1 -3M-4 -4M-2 χ_3 $\frac{-}{3}$ 11. -M x_6 X_{Δ}

Z_{ij}	=8-2M			$-\frac{7}{3} - \frac{5}{3}M$	$-\frac{8}{3} - \frac{1}{3}M$	0	0	-	0
III	2	x_3	$\frac{18}{5}$	0	$\frac{3}{5}$	1	0	1	-
	3	x_1	$\frac{6}{5}$	1	$\frac{1}{5}$	0	0	-	-
	0	x_4	9 5	0	$\frac{9}{5}$	0	1	-	-
	$z_3 = \frac{54}{5}$			0	$-\frac{11}{5}$	0	0	1	-
IV	2	x_3	3	0	0	1	$-\frac{1}{3}$	ı	-
	3	x_1	1	1	0	0	$-\frac{1}{9}$	-	-
	4	x_2	1	0	1	0	<u>5</u> 9	-	-
	$z_4 = 13$			0	0	0	<u>11</u> 9	-	-