

Overview: Project & Goals

01

Data Collection

Overview of data collection, cleanup, and exploration processes

02

Our Approach

Relevant code for analysis, unanticipated insights, problems & how resolved?

03

Results & Conclusions

Relevant images & examples that support our work. Discuss issues & attempts to resolve

Potential Next Steps

Potential next steps with this dataset?
Data manipulations we have made?
Conclusions to explore?

Exploratory Data Analysis in Healthcare

Our **exploratory data analysis** of **breast cancer research** is important for understanding the following healthcare considerations:

- Reducing time to diagnosis
- Increasing our understanding of disease risks and causes
- Developing stronger prevention strategies
- Predicting and diagnosing illness

Zwitter, M., & Soklic, M. (2014, April 6). Breast Cancer Data. Retrieved October 2023,.

Project & Goals

For women with breast cancer, how does her menopausal status correlate to her recurrence status, number of months survived, and metastasis sites

Goals

By studying these relationships, we hope to better equip healthcare providers; for example, by increasing understanding of breast cancer risks & causes, or by speeding up breast cancer predictions & diagnosis.

Glossary Term	Description
Menopause	Cessation of menstruation and \downarrow production of estrogen & progesterone; average age of natural menopause 50
lt40	(Less Than 40) women in reproductive years; below average age of menopause
ge40	(Greater Than or Equal to 40) women 40+ years old; at or past average age of natural menopause
premeno	(Premenopausal) women in reproductive years & not begun menopause
Metastasis sites	(Regional v.s. Distant) Regional site: neoplasm has not left the breast; Distant sites: neoplasm has spread beyond the breast
Survival Months	(Integer) Number of months the patient has survived breast cancer
Positive Regional Nodes	Metastasis sites in breast with positive regional nodes are most likely to form breast cancer; the fewer <i>positives</i> nodes = higher number of months survived
Recurrence	(Recurrence v.s. No-Recurrence) breast cancer reoccurring vs breast cancer that does not return.
Neoplasm	Abnormal and uncontrolled growth of cells within the breast tissue; typically, malignant, i.e. cancerous

Breast Cancer Data Collection

We chose **two datasets**, because differing variables & measuring between datasets narrowed our options.

- Kaggle: SEER Breast Cancer Data
 - 4024 Patients in dataset
 - Survival Months (integer)
 - Metastasis Sites (Regional v.s. Distant)
- DataHub: Breast Cancer Data
 - 286 Patients in dataset
 - Menopausal Status (premeno, ge40, lt40)
 - ➤ Class (Recurrence v.s. No-Recurrence)

We chose these **variables**, because we wanted a sufficient amount of data, mimic complexity of future projects, and to challenge our abilities

Data Exploration

Our Cleanup Process

Find common column between datasets (age)

Step 4

Molleigh called needed columns from each dataset & merged using pd.concat

Step 2

df_1 = (age range) vs df_2 = (age)

Step 3

Stephanie
converted (age
range) into (age)
using mean &
pushed both csv

Problems & Solutions

01 Data Overwhelm

Numerous women's issues in healthcare; amount of data available is overwhelming

03 No Common Column

No common columns amidst available breast cancer datasets.
Thus, we converted the **age range** in one dataset to *create* our commonality: **age**

02 Difficulty Merging

- 3 attempts to merge!
- Issues with 2 columns from each dataset,
- Numerous duplicates & NaN values skewing
- Different number of patients: 4024 patients
 vs 286 patients

Main Problem: Merging

Relevant code for analysis

- 2 rows from each dataset,
- without duplicates,
- while maintaining correct total count for each variable

pd.merge, drop_duplicates(), and drop_na would not work with this data → created merge via pd.concat

	menopause	Class
count	286	286
unique	3	2
top	premeno	no-recurrence-events
freq	150	201

Example: illustrates how merged columns & kept the correct total counts for each selected variable

	Survival Months
count	4024.000000
mean	71.297962
std	22.921430
min	1.000000
25%	56.000000
50%	73.000000
75%	90.000000
max	107.000000

#Combine data into a single DataFrame

#Select the non-contiguous columns I want to merge from
clean_columns = clean_df[['menopause', 'Class']]

#Select the column I want to merge from unclean_df
unclean_column = unclean_df[['Survival Months']]

#Concatenate the selected columns horizontally (along columns)
trivariate_df = pd.concat([clean_columns, unclean_column], axis=

#Display theh data tabel for preview
print(trivariate df)

[4]

	menopause	Class	Survival Months
0	premeno	recurrence-events	60
1	ge40	no-recurrence-events	62
2	ge40	recurrence-events	75
3	premeno	no-recurrence-events	84
4	premeno	recurrence-events	50
4019	NaN	NaN	49
4020	NaN	NaN	69
4021	NaN	NaN	69
4022	NaN	NaN	72
4023	NaN	NaN	100

[4024 rows x 3 columns]

Through this research, we have learned that the recognition of breast cancer's heterogeneity has had a profound impact on the field, emphasizing the need for personalized approaches and paving the way for more effective and targeted treatments.

Link with Penn Medical research = \$10 millions

grant for breast cancer recurrence

Menopause & Recurrence

Results

P-value of 3.3084e-12 suggesting a significant association between menopausal status & recurrence

Conclusion

Visuals of this bar chart, suggest ~30% chance of recurrence

Despite different sizes, the bars are similarly proportioned

Tasha

Menopause & Survival Months

Results

As reflected in boxplot, each menopausal whisker is similar, including essentially equal means
Statistically describing patient's ages & number of months survived in visual way

Conclusions

Similar means from boxplot = similar longevity for patients, regardless of menopausal status

likely no correlation between menopausal status & months of survival

Mean age of a woman in this study is about 54 years old

Menopause & Metastasis Sites

Results

In 2% of our patients, neoplasm left the breast & spread into other parts of the body

Regional metastasis sites shows three bursts in data at ages: 45-50, 52-57, & 69-72.

Conclusion

Both illustrations suggest no correlation between the menopausal status & metastasis sites

A peak number of women diagnosed ~ 47 years of age; remains unclear if correlation naturally occurring or are routine medical reminders skewing the data?

Hidv

Menopause & Trivariate Data

- recurrence-events
- no-recurrence-events

Results

- ➤ Issue: Scatterplot with 3 variables shows NaN
 - Many attempts to remove NaN, but unsuccessful as attempts also removed necessary data
- Data is most dense in no-recurrence early onset & premeno groups

Conclusions

- Fair attempt at trivariate data illustration, however, no major correlations discovered visually
- Despite lacking correlations, encouraging insights are discovered: highest data density for women surviving 50 months or more with no-recurrence. This is statistically encouraging news for others

Menopause & Categorical Data

Results

- Until now, we've mostly worked with continuous data, but now we're using categorical data!
- This trivariate illustration is a great example of potential next steps achievable with this data

Miranda

Conclusion

Fewer positive regional nodes (metastasis site) present in the breast strongly correlates with the greatest number of months survived for ALL the ranges of months survived

 Women with less than 10 positive regional nodes are the most likely to survive

Menopause & Qualitative Data

Miranda

Results

This trivariate barchart shows how marital status (in varying age ranges) may affect the number of patients surviving to *x* months

Another example of potential next steps

Conclusion

Across all the ranges of months survived, married patients are overwhelmingly most likely to survive breast cancer

Conversely, separated & widowed patients are the least likely to achieve longevity

Breast Cancer Progression

In the future, we surmise that **qualitative variables** such as marital status and race, will be the **most expressive and instructive** for data analysis

The **more data analysis** performed on breast cancer research, the **more informed** all women will become about protecting, preventing, and treating breast cancer

Marital Status

Why are married women more likely to survive? Why are separated & widowed women less likely to survive

Positive Regional Nodes

Additional data analysis on positive regional nodes juxtaposed with qualitative variables may be helpful

Recurrence

Recently, Penn Medicine researchers receive \$10 million grant for preventing breast cancer recurrence

Project & Goals

For women with breast cancer, how does her menopausal status correlate to her recurrence status, number of months survived, and metastasis sites

Goals

By studying these relationships, we hope to better equip healthcare providers; for example, by increasing understanding of breast cancer risks & causes, or by speeding up breast cancer predictions & diagnosis.

