<pre>import numpy as np import matplotlib.pyplot as plt import seaborn as sns # TensorFlow / Keras import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models from tensorflow.keras.applications import ResNet50, MobileNetV2 from tensorflow.keras.preprocessing import image_dataset_from_directory from tensorflow.keras import optimizers from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tqdm.keras import TqdmCallback</pre>	
<pre># Scikit-learn (for evaluation metrics) from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay # Optional (for reproducibility) import random # Ignore warnings import warnings warnings.filterwarnings("ignore")</pre> [2]: import kagglehub	
<pre># Download latest version path = kagglehub.dataset_download("gpiosenka/sports-classification") print("Path to dataset files:", path) Path to dataset files: /kaggle/input/sports-classification 3]: # Path from the KaggleHub log base_dir = "/kaggle/input/sports-classification"</pre>	
<pre># Subdirectories train_dir = f"{base_dir}/train" val_dir = f"{base_dir}/valid" test_dir = f"{base_dir}/test" # Parameters img_height, img_width = 224, 224 # dataset images are 224x224 batch_size = 16 # Load datasets train_ds = image_dataset_from_directory(</pre>	
<pre>train_dir, image_size=(img_height, img_width), batch_size=batch_size, shuffle=True) val_ds = image_dataset_from_directory(val_dir, image_size=(img_height, img_width), batch_size=batch_size,</pre>	
<pre>shuffle=True) test_ds = image_dataset_from_directory(test_dir, image_size=(img_height, img_width), batch_size=batch_size, shuffle=False) # Class names</pre>	
class_names = train_ds.class_names print("Number of classes:", len(class_names)) print("Example classes:", class_names[:10]) Found 13492 files belonging to 100 classes. Found 500 files belonging to 100 classes. Found 500 files belonging to 100 classes. Number of classes: 100 Example classes: ['air hockey', 'ampute football', 'archery', 'arm wrestling', 'axe throwing', 'balance beam', 'barell racing', 'baseball', 'ba	sketball', 'baton twirling']
<pre>plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): # take 1 batch for i in range(9): # show first 9 images ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) # convert tensor -> numpy -> image plt.title(class_names[labels[i]]) # show class name plt.axis("off") snowmobile racing wheelchair basketball snowmobile racing</pre>	
HAMBURG WELCZ VRILDE BEST W	
billiards wheelchair racing weightlifting William Sunday	
ski jumping ice yachting ski jumping	
4487	
Preprocessing & Performance Normalize images and enable prefetching for faster training: • AUTOTUNE lets TensorFlow automatically tune the performance of your input pipeline (e.g., how many elements to fetch in parallel).	
 It makes the pipeline faster without you needing to manually set parameters. .cache() Saves the dataset in memory after the first load, so it doesn't repeatedly read from disk (faster training). .prefetch(AUTOTUNE) While the model is training on one batch, TensorFlow loads the next batch in the background. This overlaps data preparation with model execution, making training faster. 	
train_ds = train_ds.map(lambda x, y: (x/255.0, y)).cache("train_cache").shuffle(100).prefetch(AUTOTUNE) val_ds = val_ds.map(lambda x, y: (x/255.0, y)).cache("val_cache").prefetch(AUTOTUNE) test_ds = test_ds.map(lambda x, y: (x/255.0, y)).cache("test_cache").prefetch(AUTOTUNE) Model Training: MobileNetV2 for 100-Class Sports Image Classification In this section, we train the MobileNetV2 base model for the 100-class sports image classification task. The model is fine-tuned using transfer learning with the following configuration	ration:
 Number of Classes: 100 Loss Function: sparse_categorical_crossentropy (suitable for integer-labeled multi-class classification) Optimizer: Adam with initial learning rate of 0.01 Callbacks: EarlyStopping: Monitors validation accuracy, stops training if no improvement for 5 epochs, and restores the best weights. ReduceLROnPlateau: Reduces learning rate by a factor of 0.2 if validation loss does not improve for 2 epochs. TqdmCallback: Provides a progress bar for training visualization. 	
The model is trained for up to 10 epochs, with validation performance monitored at each epoch. Training may terminate early based on validation accuracy trends to prevent over the description of the model is trained for up to 10 epochs, with validation performance monitored at each epoch. Training may terminate early based on validation accuracy trends to prevent over the model in the model in the model in the model is upon the model in the mo	rfitting.
<pre>layers.Depose(num_classes, activation="softmax")]: num_classes = 100 # Define callbacks early_stopping = EarlyStopping(monitor='val_accuracy', # watch validation accuracy mode='max', # higher is better</pre>	
<pre>mode='max', # higher is better patience=5, # wait 5 epochs before stopping restore_best_weights=True # keep the best model) reduce_lr = ReduceLROnPlateau(monitor='val_loss', # watch validation loss factor=0.2, # shrink learning rate to 20% of current patience=2, # wait 2 bad epochs before reducing verbose=1)</pre>	
<pre># MobileNetV2 mobilenet_model = build_mobilenet(num_classes) mobilenet_model.compile(optimizer=optimizers.Adam(learning_rate=0.01), # safer option would be the default 0.001 loss="sparse_categorical_crossentropy", metrics=["accuracy"])</pre>	
<pre>print("Training MobileNetV2") history_mobilenet = mobilenet_model.fit(train_ds, validation_data=val_ds, batch_size=16, epochs=6, # higher max epochs, early stopping will stop earlier verbose=1, # - one line per epoch (progress bar). callbacks=[TqdmCallback(verbose=1), early_stopping, reduce_lr]) Training MobileNetV2 Oenoch [00:00. 2enoch/s]</pre>	
Oepoch [00:00, ?epoch/s] Obatch [00:00, ?batch/s] Epoch 1/6 844/844	g_rate: 0.0100 g_rate: 0.0100
844/844 359s 410ms/step - accuracy: 0.8747 - loss: 0.8459 - val_accuracy: 0.8680 - val_loss: 1.3052 - learning Epoch 5/6 844/844 359s 412ms/step - accuracy: 0.9332 - loss: 0.3406 - val_accuracy: 0.8960 - val_loss: 0.7601 - learning Epoch 6/6 844/844 359s 413ms/step - accuracy: 0.9465 - loss: 0.2441 - val_accuracy: 0.8940 - val_loss: 0.7669 - learning Model Evaluation Evaluate the trained model using:	g_rate: 0.0020
<pre>print("\nEvaluating model") val_loss, val_acc = mobilenet_model.evaluate(val_ds, verbose=1) print(f"Validation Accuracy: {val_acc:.4f}") # Collect true and predicted labels y_true, y_pred = [], [] for images, labels in val_ds: preds = mobilenet_model.predict(images) y_true.extend(labels.numpy()) # true labels are already integer class indices y_pred.extend(np.argmax(preds, axis=1)) # predicted labels v true = np.array(v true)</pre>	
<pre>y_true = np.array(y_true) y_pred = np.array(y_pred) # Classification report print("\nClassification Report:") print(classification_report(y_true, y_pred, digits=4)) Evaluating model 32/32</pre>	
1/1 1s 788ms/step 1/1 1s 772ms/step 1/1 1s 770ms/step 1/1 1s 770ms/step 1/1 1s 7743ms/step 1/1 1s 983ms/step 1/1 1s 778ms/step 1/1 1s 818ms/step 1/1 1s 1s/step 1/1 1s 765ms/step 1/1 1s 791ms/step	
1 1.0000 1.0000 1.0000 5 2 0.8333 1.0000 0.9091 5 3 1.0000 1.0000 1.0000 5 4 0.8000 0.8000 0.8000 5 5 1.0000 0.6000 0.7500 5 6 1.0000 0.8000 0.8889 5 7 1.0000 0.8000 0.8889 5 8 1.0000 1.0000 1.0000 5 10 1.0000 1.0000 1.0000 5 11 1.0000 1.0000 1.0000 5	
12 1.0000 1.0000 5 13 0.8000 0.8000 5 14 1.0000 1.0000 5 15 0.8333 1.0000 0.9091 5 16 0.7143 1.0000 0.8333 5 17 1.0000 1.0000 5 18 1.0000 1.0000 5 19 1.0000 1.0000 5 20 0.7143 1.0000 0.8333 5 21 1.0000 1.0000 5	
22 1.0000 1.0000 1.0000 5 23 1.0000 1.0000 5 24 1.0000 0.6000 0.7500 5 25 0.7143 1.0000 0.8333 5 26 0.8333 1.0000 0.9091 5 27 1.0000 0.8000 0.8889 5 28 0.7143 1.0000 0.8333 5 29 1.0000 1.0000 5 30 0.8333 1.0000 0.9091 5 31 0.8333 1.0000 0.9091 5 32 1.0000 1.0000 5	
32 1.0000 1.0000 1.0000 5 33 0.5000 0.8000 0.6154 5 34 1.0000 1.0000 1.0000 5 35 1.0000 0.8000 0.8889 5 36 0.8333 1.0000 0.9091 5 37 0.7500 0.6000 0.6667 5 38 1.0000 1.0000 5 39 1.0000 0.8889 5 40 1.0000 0.8889 5 41 1.0000 1.0000 5 42 1.0000 1.0000 5	
43 0.8333 1.0000 0.9091 5 44 0.8000 0.8000 0.8000 5 45 1.0000 1.0000 1.0000 5 46 1.0000 0.6000 0.7500 5 47 0.8333 1.0000 0.9091 5 48 1.0000 1.0000 1.0000 5 49 1.0000 1.0000 5 50 1.0000 0.6000 0.7500 5 51 1.0000 0.8000 0.8889 5 52 1.0000 0.4000 0.5714 5	
53 1.0000 0.8889 5 54 1.0000 1.0000 5 55 0.6667 0.8000 0.7273 5 56 0.6250 1.0000 0.7692 5 57 1.0000 1.0000 5 58 1.0000 1.0000 5 59 1.0000 1.0000 5 60 0.8333 1.0000 0.9091 5 61 1.0000 1.0000 5 62 0.8333 1.0000 0.9091 5 63 0.8000 0.8000 0.8000 5	
64 1.0000 1.0000 5 65 0.6667 0.8000 0.7273 5 66 0.8333 1.0000 0.9091 5 67 1.0000 1.0000 1.0000 5 68 1.0000 0.8889 5 69 0.6667 0.8000 0.7273 5 70 1.0000 1.0000 5 71 0.8333 1.0000 0.9091 5 72 1.0000 1.0000 5 73 1.0000 0.6000 0.7500 5	
74 1.0000 0.8000 0.8889 5 75 1.0000 0.8000 0.8889 5 76 1.0000 0.6000 0.7500 5 77 0.6667 0.8000 0.7273 5 78 0.8333 1.0000 0.9091 5 79 0.6000 0.6000 0.6000 5 80 1.0000 0.8000 0.8889 5 81 0.7500 0.6000 0.6667 5 82 1.0000 0.6000 0.7500 5 83 0.8333 1.0000 0.9091 5	
84 0.8333 1.0000 0.9091 5 85 1.0000 1.0000 5 86 1.0000 0.8000 0.8889 5 87 0.7143 1.0000 0.8333 5 88 1.0000 0.8000 0.8889 5 89 1.0000 1.0000 5 90 0.7143 1.0000 0.8333 5 91 1.0000 0.4000 0.5714 5 92 1.0000 0.8000 0.8889 5 93 1.0000 0.8000 0.8889 5	
94 1.0000 1.0000 1.0000 5 95 1.0000 1.0000 1.0000 5 96 1.0000 1.0000 1.0000 5 97 1.0000 1.0000 1.0000 5 98 1.0000 1.0000 1.0000 5 99 0.7143 1.0000 0.8333 5 accuracy macro avg 0.9159 0.8960 0.8940 500 weighted avg 0.9159 0.8960 0.8940 500	
<pre># Training Curves (Side by Side) # fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) # Accuracy subplot ax1.plot(history_mobilenet.history["accuracy"], label="Train Accuracy") ax1.plot(history_mobilenet.history["val_accuracy"], label="Validation Accuracy") ax1.set_xlabel("Epochs") ax1.set_ylabel("Training ws Validation Accuracy") ax1.set_title("Training ws Validation Accuracy")</pre>	
<pre>ax1.set_title("Training vs Validation Accuracy") ax1.legend() # Loss subplot ax2.plot(history_mobilenet.history["loss"], label="Train Loss") ax2.plot(history_mobilenet.history["val_loss"], label="Validation Loss") ax2.set_xlabel("Epochs") ax2.set_ylabel("Loss") ax2.set_title("Training vs Validation Loss") ax2.set_title("Training vs Validation Loss") ax2.legend()</pre>	
Training vs Validation Accuracy O.95 - Train Accuracy Validation Accuracy 0.90 - Validation Accuracy	n Loss Train Loss Validation Loss
0.85 - 0.80 - 0.80 - 0.80 - 0.80 -	
0.75 - 0.70 - 0.65 -	
0 1 2 3 4 5 0 1 2 Epochs Epochs Epochs Epochs Epochs Epochs Epochs	3 4 5
<pre>print("\n\ Best Model Performance:") print(f"Best Validation Accuracy: {val_acc:.4f}") print(f"Best Validation Loss: {val_loss:.4f}") print(f"Final Test Accuracy: {test_acc:.4f}") print(f"Final Test Loss: {test_loss:.4f}") <pre></pre></pre>	
Sample Predictions on Test Data Visualize 16 test images with model predictions vs. true labels: • Green title: Correct prediction • Red title: Incorrect prediction Uses batch from test_ds and converts class indices to names using class_names.	
<pre>Uses batch from test_ds and converts class indices to names using class_names . Prediction is done via mobilenet_model.predict() . : # Get one batch of test data images, labels = next(iter(test_ds.unbatch().batch(16))) # 16 sample images # Run predictions pred_probs = mobilenet_model.predict(images) pred_classes = np.argmax(pred_probs, axis=1) # Plot results</pre>	
<pre># Plot results plt.figure(figsize=(15, 8)) for i in range(16): plt.subplot(4, 4, i + 1) plt.imshow(images[i].numpy()) plt.axis("off") true_label = labels[i].numpy() pred_label = pred_classes[i] # Show predicted and true labels</pre>	
# Show predicted and true labels color = "green" if pred_label == true_label else "red" plt.title(f"P: {pred_label}\nT: {true_label}", color=color) plt.suptitle("Sample Predictions (P=Predicted, T=True)", fontsize=16) plt.show() 1/1	
T: 0 T: 0 T: 0	
T: 0 T: 1 T: 2 T: 2	
T: 1 T: 2 T: 2 T: 2 T: 2 T: 2 T: 2 T: 3	
# Get class names from dataset	
<pre>: # Get class names from dataset # class_names = train_ds.class_names # This line caused the error, using the existing class_names variable instead # Take a batch of 16 test images images, labels = next(iter(test_ds.unbatch().batch(16))) # Get predictions pred_probs = mobilenet_model.predict(images) pred_classes = np.argmax(pred_probs, axis=1) # Plot images with predicted vs true labels</pre>	
<pre>plt.figure(figsize=(15, 8)) for i in range(16): plt.subplot(4, 4, i + 1) plt.imshow(images[i].numpy()) plt.axis("off") true_label = labels[i].numpy() pred_label = pred_classes[i] # Convert class index -> class name</pre>	
<pre># Convert class index -> class name true_name = class_names[true_label] pred_name = class_names[pred_label] # Show result color = "green" if pred_label == true_label else "red" plt.title(f"P: {pred_name}\nT: {true_name}", color=color, fontsize=9) plt.suptitle("Sample Predictions (P=Predicted, T=True)", fontsize=16) plt.show() 1/1</pre>	
1/1 ———————————————————————————————————	
P: air hockey T: air hockey	
P: air hockey P: air hockey P: air hockey P: air hockey	
P: air hockey T: air hockey	

In [16]: # --- Save the best model --mobilenet_model.save("mobilenet_best.h5")
print("\n Model saved as 'mobilenet_best.h5'")

WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Ker as format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.

Model saved as 'mobilenet_best.h5'

Konecta Internship Task 5 (Image Classification using Deep Learning)

Name: Ahmed Ayman Ahmed Alhofy

In [1]: # Core libraries
import os

Track: Artificial Intelligence & Machine Learning

Load Image Data and Explore it

Repository Link: https://github.com/AhmedAyman4/konecta-internship/tree/main/Task-5