MAT257—Analysis

Jonah Chen

September 17, 2021

Contents

1	Course Overview	1
2	Continuity	1
	2.1 Norms and Inner Product	2
	2.2 Distance Functions	3
3	Rectangles	5
1	Course Overview	

- $\mathbb{R} \to \mathbb{R}^n$
- Linear Algebra
- Continuity
- Differentiability
- Integration
- \bullet Key theorem of this class is $\bf Stokes'$ $\bf Theorem$

$$\int_{C} d\omega = \int_{\partial C} \omega \tag{1.1}$$

Generalizes the fundamental theorem of calculus:

$$\int_{[a,b]} F'(t)dt = F(b) - F(a) = \int_{\partial [a,b]} F$$
(1.2)

Note that $\partial[a,b] = \{b+,a-\}.$

2 Continuity

- Roughly speaking, continuity from $\mathbb{R} \to \mathbb{R}$ means if two points are near, their images should be near also.
- Thus, in \mathbb{R}^n , the intuitive meaning should be similar.

2.1 Norms and Inner Product

Note there are 2 conventions for \mathbb{R}^n

- 1. The set of all n-dimensional real column vectors.
- 2. The set of all n-dimensional real row vectors.

In this class, the distinction is not very important.

Definition: For $x, y \in \mathbb{R}^n$, "The standard (or euclidian) inner product of x and y, denoted

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i \tag{2.1}$$

The norm-squared of x is

$$|x|^2 = \langle x, x \rangle = \sum x_i^2 \tag{2.2}$$

and the norm of x is

$$|x| = \sqrt{|x|^2} = \sqrt{\sum x_i^2}$$
 (2.3)

Proposition: If $x, y, z \in \mathbb{R}^n$ and $a, b \in \mathbb{R}$, then

0. The inner product is bilinear & the norm is "semi-linear".

$$\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle \tag{2.4}$$

$$\langle z, ax + by \rangle = \dots {2.5}$$

$$|ax| = |a||x| \tag{2.6}$$

Aside:

$$1 = \sqrt{1} = \sqrt{-1 \cdot -1} = \sqrt{-1}\sqrt{-1} = i \cdot i = -1 \tag{2.7}$$

1.

$$|x| \ge 0 \& |x| = 0 \iff x = 0 \tag{2.8}$$

2.

$$\langle x, y \rangle = \langle y, x \rangle \tag{2.9}$$

3. Cauchy-Schwarz inequality

$$|\langle x, y \rangle| \le |x||y| \tag{2.10}$$

with equality if x & y are dependent.

4. Triangle inequality

$$|x+y| \le |x| + |y| \tag{2.11}$$

5. Polarization identity

$$\langle x, y \rangle = \frac{|x+y|^2 - |x-y|^2}{4}$$
 (2.12)

Proof:

1.
$$|x| = \sqrt{\sum x_i^2} |x| = 0 \implies \sum x_i^2 = 0 \implies \forall i, x_i^2 = 0 \implies \forall i, x_i = 0 \implies x = 0$$

2. For $s, t \in \mathbb{R}^n$

$$|s+t|^2 = |s|^2 + |t|^2 + 2\langle s, t \rangle \tag{2.13}$$

Look at

$$0 \le \left| |y|^2 x - \langle x, y \rangle y \right|^2 = |y|^4 |x| + \langle x, y \rangle^2 |y|^2 - 2|y|^2 \langle x, y \rangle^2$$
 (2.14)

$$= |y|^2 (|y|^2 |x|^2 - \langle x, y \rangle^2)$$
 (2.15)

This is equal to zero only if $|y|^2x - \langle x, y \rangle y = 0$. If we have equality, that implies x & y are dependent. Why, what does this mean?

As both sides of the triangle inequality are ≥ 0 , square both sides.

$$|x+y|^2 \stackrel{?}{\leq} (|x|+|y|)^2$$
 (2.16)

$$\langle x + y, x + y \rangle \stackrel{?}{\leq} |x|^2 + |y|^2 + 2|x||y|$$
 (2.17)

$$\langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \stackrel{?}{\leq} |x|^2 + |y|^2 + 2|x||y| \tag{2.18}$$

$$|x|^2 + |y|^2 + 2\langle x, y \rangle \stackrel{?}{\leq} |x|^2 + |y|^2 + 2|x||y|$$
 (2.19)

$$\langle x, y \rangle \stackrel{?}{\leq} |x||y| \tag{2.20}$$

(2.20) is true by cauchy-schwarz.

4. The proof is trivial because you can expand the right hand side.

Note: The inner product and the norm are not independent. If you know how to compute one, you can compute the other.

2.2 Distance Functions

Definition: If $x, y \in \mathbb{R}^n$, define the distance between x & y

$$d(x,y) = |x-y| \tag{2.21}$$

Theorem:

- 1. d is symmetric: d(x,y) = d(y,x)
- 2. d is positive definite: $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- 3. Triangle inequality: $d(x,z) \leq d(x,y) + d(y,z)$

The significance of this theorem is that this is all we need to know about distances to comment on continuity. **Aside:** Later, this theorem will become a definition for a distance function or a metric.

3

Proof:

1.

$$d(x,y) = |x - y| = |-(y - x)| = |-1||y - x| = |y - x| = d(y,x)$$
(2.22)

2.

$$d(x,y) = 0 \iff |x-y| = 0 \iff x-y = 0 \iff x = y \tag{2.23}$$

3.

$$|x-z| \stackrel{?}{\leq} |x-y| + |y-z|$$
 (2.24)

This is true by the previous triangle inequality, $|p| + |q| \ge |p+q|$. Letting $p = x - y, q = y - z \implies p + q = x - z$.

There are other norms and distance functions that we will rarely use.

- The euclidian norm which we use is $|x|_{L^2} = \sqrt{\sum x_i^2}$.
- There is a L1 norm $|x|_{L^1} = \sum |x_i|$.
- The L-infinity norm is $|x|_{L^{\infty}} = \max |x_i|$.

The distance functions for these norms also satisfys these three properties.

- There is a bijection between linear maps from $\mathbb{R}^n \to \mathbb{R}^m$ and the set of $m \times n$ matrices with real coefficients. This bijection can be realized by choosing a basis.
- In \mathbb{R}^n or \mathbb{R}^m , there is a natural basis (the standard basis) $e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i$ —th position
- by $A \in M_{m \times n} \to L_A(x) = Ax$, where $x \in \mathbb{R}^n$.
- If T is a linear transformation, $M_T = \left(Te_1|Te_2|\dots|Te_n\right)$

Definition: Homomorphism: A map that preserve the structure.

Theorem:

0. Bijective

$$L_{(M_T)} = T, M_{(L_A)} = A (2.25)$$

- 1. $A \to L_A$ is linear: $L_{aA+bB} = aL_A + bL_b$
 - $T \to M_T$ is linear: $M_{aT+bS} = aM_T + bM_S$
- 2. Given $T: \mathbb{R}^n \to \mathbb{R}^m, S: \mathbb{R}^m \to \mathbb{R}^p$, and $S \circ T \equiv T//S: \mathbb{R}^n \to \mathbb{R}^p$. Then, $M_S M_T = M_{S \circ T}$.

End of the review.

3 Rectangles

- It is common to use intervals in \mathbb{R} . In \mathbb{R}^n , we use rectangles.
- To specify a rectangle, we must bound the each of the *n* coordinates.

Definition: Given $a_i \leq b_i$, where $i = 1, \ldots, n$,

• The closed rectangle corresponding to a_i, b_i is defined as

$$R = \prod_{i=1}^{n} [a_i, b_i] = \{ x \in \mathbb{R}^n : \forall i \ a_i \le x_i \le b_i \}$$
 (3.1)

• The opened rectangle defined by a_i, b_i is defined as

$$R = \prod_{i=1}^{n} (a_i, b_i) = \{ x \in \mathbb{R}^n : \forall i \ a_i < x_i < b_i \}$$
(3.2)

- If X&Y are sets, we define (from set theory) the cartesian product $X\times Y=\{(x,y):x\in X,y\in Y\}$
- Given 3 sets, the cartesian product is strictly speaking not associative as $((x,y),z) \neq (x,(y,z))$. However, for convinence we agree that ((x,y),z)=(x,y,z)=(x,(y,z)). Thus, the cartesian product is associative.
- $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}.$

Definition:

- $A \subset \mathbb{R}^n$ is called an open set if $\forall a \in A \exists$ an open rectangle $R : x \in R \subset A$.
- $A \subset \mathbb{R}^n$ is called an open set if $\forall a \in A \exists$ an open ball $B : x \in B \subset A$. An open ball $B = B_r(x_0) = \{y \in \mathbb{R}^n : x \in B \subseteq A : x \in B :$ $|x_0 - y| < r$ Note an open ball can be defined with any norm.

Theorem: Defining "open" using rectangles is equivalent to define "open" using balls.

Proof: \Longrightarrow Every open rectangle is open using the ball definition. Every open ball is open using the rectangle definition.

Definition: A set B is "closed" if \mathbb{R}^n $B = B^C$ is open.

Proposition: [De-Morgan's Laws]

If Y_{α} is any collection of subsets of some universe U,

$$\left(\bigcup Y_{\alpha}\right)^{C} = \bigcap Y_{\alpha}^{C} \tag{3.3}$$

$$\left(\bigcup Y_{\alpha}\right)^{C} = \bigcap Y_{\alpha}^{C} \tag{3.3}$$

$$\left(\bigcap Y_{\alpha}\right)^{C} = \bigcup Y_{\alpha}^{C} \tag{3.4}$$

Theorem:

- 1. \emptyset , \mathbb{R}^n are clopen.
- 2. Any union of open sets is open. Any intersection of closed sets is closed.
- 3. A finite intersection of open sets is open. A finite union of closed sets is closed.

Proof:

- 1. \mathbb{R}^n is open. $x \in \prod (x_i 1, x_i + 1) \subset \mathbb{R}^n$. $\Longrightarrow \emptyset$ is closed. The empty set has no points, thus the condition holds. "Every horse in an empty set of horses has horns." $\Longrightarrow \mathbb{R}^n$ is closed.
- 2. Suppose $\{A_{\alpha}\}_{{\alpha}\in I}$, where I is an arbiturary indexing set, is a collection of open sets.

$$A = \bigcup_{\alpha \in I} A_{\alpha} = \{x : \exists \alpha \in I \ x \in A_{\alpha}\}$$

$$(3.5)$$

Let $x \in A$, find α such that $s \in A_{\alpha}$. Find an open rectangle R such that $x \in R \subset A_{\alpha} \subset A$ Suppose $\{B_{\alpha}\}_{{\alpha} \in I}$ is a collection of closed sets, show $\cap B_{\alpha}$ is closed. $(\bigcap B_{\alpha})^C = \bigcup B_{\alpha}^C$ is open $\Longrightarrow \bigcap B_{\alpha}^C$ is closed.

Lemma 1: The intersection of two open rectangles, if non-empty, is an open rectangle.

3.

Suppose A_1 and A_2 are open. Pick $x \in A_1 \cap A_2$. By openness of A_1 , $x \in A_1 \implies \exists R_1 : x \in \mathbb{R}_1 \subset A_1$. Similarly, by openness of A_2 , $x \in A_2 \implies \exists R_2 : x \in \mathbb{R}_2 \subset A_2$. Then, $x \in R_1 \cap R_2 \equiv R \subset A_1 \cap A_2$. Suppose A_i , i = 1, ..., n are open.

$$\bigcap_{i=1}^{n} A_i = \left(\bigcap_{i=1}^{n-1} A_i\right) \bigcap A_n \tag{3.6}$$

By induction hypothesis, $\left(\bigcap_{i=1}^{n-1} A_i\right)$ is an open set. The intersection of two open sets are open \implies the intersection of n open sets are open.

Suppose B_i , i = 1, ..., n is closed,

$$\left(\bigcup_{i=1}^{n} B_i\right)^C = \bigcup_{i=1}^{n} B_i^C \tag{3.7}$$

• Consider the following example,

$$\bigcap_{n \ge 0} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) = [0, 1] \tag{3.8}$$

This infinite intersection of open sets is not an open set due to the pointS 0 and 1.

Clopen Sets: Suppose $A \subset \mathbb{R}^n$ is clopen $\implies A^C$ is clopen. Suppose neither is empty.

Consider the line segment $l_{xy}(t) = ty + (1-t)x$.

$$l_{xy}(0) = x \in A \tag{3.9}$$

$$l_{xy}(1) = y \in A^C \tag{3.10}$$

$$t_0 = \sup_{t \in [0,1]} \{ l_{xy}(t) \in A \}$$
(3.11)

$$l_{xy}(t_0) = z (3.12)$$

if $z \in A$, the rectangele containing $z \cap l_{xy}$ includes $l(t_0 + \epsilon) \in A^C$ for some ϵ .

Similarly if $z \in A^C \implies$ one of A and A^C is not clopen so the other one isn't clopen either.

Thus, the only clopen sets is \emptyset and \mathbb{R}^n