Numerical Meturds & Probability Theory
(NMPT) (19A54401)
B-Tech-D-D sem
R-19 Regulation
(Common to EEE & MECH)
Syllabus
mit - W
Interpolation
Finite différences - Newton's Forward and Backward
Interpolation formulae - Lapronge's formulae Crouses Forward and Backward formula,
Stirlings formula, Bessels formula
*

by:
Shaik. Abdul Shabbir
M.sc. Mathe,
B.Ed Mathe,
B.Sc. Computers,

mit-I

(1)

Interpolation is the Forces of finding Unknown Value which lies in the given Set of tabulated values

To add a value into a Series by Calculating it foom Sussounding known Values is known as Interpolation (on)

Interpolation is the method of Constanting new data points within the starge for given set of points

The wood Interpolation denotes the Fracess of Computing the value of a function y=f(x). where x is the Independent Variable taking Values to 1 x1x2 -- xn and if is the dependent variable taking values go1 21 22 --- gu

*	x0, x1	, X2	x3 xn
. 7	yo 4,	, 8 2	83 4n

4.14

(a) Extempolation: Extempolation is the Power by
finding out the Unknown value which lies outside
the given set of tebulated values

(091)

Extrapolation is the method of Constaucting new data points outside the stange for given set of Points

Tinite Différences:

In this Unit, we introduce what are Called forward, backward and Central differences of a function y = f(x)

Forward différence table: (()

		1st diff	and diff	3rd diff	4th diff	240 gift
		DY (%)		D34 (00)	D44 (m)	P2A (2)
×	Y	V+(x)	V.t(x)	V3+CM	DA f(x)	DS-f(x)
Xo	yo	_ Dyo				
XI	31	Dy,	740	<u> </u>	D+40	
72	92	1	- Val	<u>₽34,</u>		- Dogo
X 3	43	- Δy ₂ - Δy ₃	- − Δ'y,			
X4	94	Δ33	- Dy	3		·
X 5	ys.	1				

Let y = f(x) be a function which takes values

By as you $y_1 y_2 - - y_1$ and Carresponding values

By as $x_0 x_1 x_2 - - x_1$ where x is an Independent Variable y is an dependent Variable

then the differences $(y_1 - y_0)$, $(y_2 - y_1)(y_3 - y_1) - - -$

Then the differences (41-40), (42-41) (43-41) --
are Caud as First forward differences & Y and

we denote them as Dyo, Dy, Dy2---
nespectively and defined as

Dy0 = 91- 40 Dy1 = 42-41

Dy= 43-42 ----

The difference of the First forward differences is Called as "Second Forward differences" and are denoted by Δy_0 , Δy_1 , Δy_2 , and define then as $\Delta y_0 = \Delta y_1 - \Delta y_0$ $\Delta y_1 = \Delta y_2 - \Delta y_1 - \Delta y_1$

The differences of the second Forward differences is called as "Third Forward differences" and they are denoted by Dayo, Day, Day, Day, and define them as Dayo = Day - Dayo

Day = Day - Day

 $\Delta^3 y_2 = \Delta^7 y_3 - \Delta^7 y_2 - - - - - ...$

My we Con find 4th, 5th & 6th nth
forward défférences.
The Symbol "D" is called as Forward difference
Operator
The above table is Called as forward difference
table (or) diagonal Ofference vable
- Here X is Called as Argument and
Y is Called as Function (or) Entry
"yo" the 1st entry is Called as Leading term and Dyo, Dyo, Dyo, Dyo, Dayo are called
and Ago, Ago, Ago, Ago,
as leading différences.
$\longrightarrow \triangle f(x) = f(x+h) - f(x)$
(1) Constouct the forward defference table for the
following set 2 Values
$\frac{1}{2}$ $\frac{3}{34}$ $\frac{4}{73}$ $\frac{5}{136}$

301:

(2) Constood the difference table for $y = x^3$ where x takes values 1,2,3,4,5,6

×	1	2	3	4	5	6
y=x3	1	8	27	64	125	216

Sol: The Forward difference table is.

×	y	Dy	Dr &	D 34	Day	PeA
1	1	7				
2	8	19	12	6		
3	27	37	18	6		-0
4	64	61	24	6	-0	
5	125	91	30			
6	216					

(3) Constoret the forward difference table for the following data and find the values "?"- $\triangle f(3)$, $\triangle f(2)$, $\triangle 3f(4)$, $\triangle 4f(2)$, $\triangle 5f(1)$ <u>Sol</u> . 2 3 4 6 × 23 14 17 27 différence table is brown D(+(x) D3 f(x) D4+(x) D4(w) $\nabla f(x)$ y X 2 7 9 2 3 17 4 **ઢે**3 27 6

Form the table we have ,

801: The Forward difference table

X	y	D +(x)	D4(x)	$\nabla_3 + (x)$	04.f(x)	Dz.fcx)
lo	110	110		` .		
15	220		-128			
20	ನಿಂ2	-18	125	a53	-686	
25	309	107	-308	-4-33		1620
30	108	-201	193	56)	934	
35	100	-8				
	1	•		1		

the above table he have

$$\triangle + (15) = -18$$

$$\nabla_{2} + (32) = 0$$

$$D_3 + (\infty) = 20$$

(6) Constoact the fooward difference table for the following data and also find the values of Δf(10), Δf(10),

					1	-	ŀ
1	10	,15	ఫిం	25	30	35	
7	19.97	21.51	22.47	23.52	24.65	25.89	\ _{\\\}

Rel			۸.		, .	• 1		
JE : 1	4	·y	0f(x)	D 7-f(x)	D3 f(x)	Dott(x)	Diff(M)	
	lo	19.97	1.54				-	
ę b	15	21.51	0.961	-0.58	0.67	-0.68		
	20	22.47	1.05	0.09	-0.01		0.72	- 20 1)
	25	23.52		0.08		0.04		
	30	24.65		80.11	०.०३			
	25	35.8					1, ,1	

Form the above table me have

$$P_3t(\infty) = 0.03$$

_		1st diff	and diff	3rd diff	444 व्यक्त	5th diff	
×	y	A+(a) Ah (w)	24 (4)(w)	234 23-2(m) 60)	74-f(x) on 74-y	₹5.£(x)	
Lo	yo	741	~	• •			
1 21	81		∀ 42	~ ∆3A3			
X2_	42	742	- 2, A3		V484	12 A2	l
X3	43	- AA3	V34	- 23 yy	1-74 ys		
74	- \ y 4	- √94	7785	— √ 345			
		+ Tys					1
XS	ys ys					· .	1

values of y as yo y, y2 -- yn and Corosespordry values of x as xo x, x2 -- - xn then the differences (y1-y0) (y2-y1) (y3-y2) -- are Called as First Backward differences of y and we denote them as ∇y , ∇y , ∇y , and we denote them as ∇y , ∇y , ∇y , and we define them as

∇y₁ = y₁-y₀ ∇y₂ = y=y₁ ∇y₂ = y₂-y₂ ----

(d) Construct a backward différence table for 4=109x

T	* 1	10	20	30	40	50	Ĺ
	8	1.0000	1,3010	1-4777)	1.602	1.6990	
		1	 	,	_	•	

Also find the value of $\nabla^3 \log (40)$, $\nabla^4 \log (50)$ $\nabla^4 \log (30)$, $\nabla^3 \log (50)$, $\nabla^4 \log (50)$, $\nabla^4 \log (40)$, $\nabla^4 \log (30)$ $\nabla \log (50)$, $\nabla \log (40)$, $\nabla \log (30)$

The Backward diff table is

	The	Dallew	and Chit	TOUBLE	· · · · · · · · · · · · · · · · · · ·	
	x	- y -	At (x)	△ ~f(x)	- 23tm	∀ 4.f(x)
	lo	1.0000			*	•
		-	0.3010			
	೩ ೦	1.3010		-0.1240		
	•	1.001	0.176		0.0738	
1	30	1.4971	0.1263	-0.05	1	-0.0508
	40	1.602	\	-0.024	H 0.0230	
			10.096	5 9 \		
	50	1.699	0 \			
			_ -			(

Form the table we have

$$\nabla^3 \log (40) = 0.0738$$

$$\nabla^4 (03(50) = -0.0508$$

$$\nabla^4 (03(30) = 0$$

$$\nabla^3 (03(50) = 0.0230$$

$$\nabla^4 (03(50) = -0.0281$$

$$abla^{n}\log(40) = -0.0511$$
 $abla^{n}\log(36) = -0.1249$
 $abla^{n}\log(50) = 0.0969$
 $abla^{n}\log(40) = 0.1230$
 $abla^{n}\log(80) = 0.1361$

Constant the Backward difference table from the data $810.30^{8} = 0.5000$ $810.35^{2} = 0.5736$ $810.46^{8} = 0.7071$ Constant

Assuming that the third difference to be Constant find the value of 811725°

<u>Sol</u> :

×	y	4 f(x)	√ ⁴ f(x)	Tifex)
25 °	0.4225	0.0775		* • •
30	0.5000	0.0736	-0.0039	-0.0005
35	0.5736		-0.004	_0.0005
400	0.6428	0.0643	1-0.0049	
45 ^e	0.707	1		

Since the third difference to be Constant, the

```
Shift Operator (E):
       The Shift operator of "f(x)" is denoted by
 Ef(x) and defined as
           Ef(x) = f(x+h)
           E^{r}f(x) = f(x+2h)
           E_3 + (x) = -(x+3y) - - - + E_0 + (x) = + (x+0y)
The Sinverse Operator " E-1" is defined by
           E-1 +(x) = +(x-h)
   Central difference Operator (8):
          The Central difference Operator of f(x) is
denoted by "8 f(x)" and defined
            8 + (x + \frac{h}{2}) - + (x - \frac{h}{2})
                    = EM2 f(x) - E/2 f(x)
              8f(x) = (E/12 = 1/2) f(x)
                : | S = E12_E-1/2
   Freezoging Operators (M):
            The overaging Operator of fix) is denoted
by "uf(x)" and defined as
4 f(x) = f(x+h/2) + f(x-h/2)
```

$$\mu_{+}(x) = \left(\begin{array}{c} E^{1}x + E^{-1}x \\ \end{array}\right)$$

$$\mu_{+}(x) = \left(\begin{array}{c}$$

Sol: we know that

$$= f(x) - E_{-1}f(x)$$

$$= f(x) - f(x-h)$$

Properties:

$$\longrightarrow$$
 $(1+\Delta)(1-\Delta)=1$

$$\triangle f(x) = f(x+h) - f(x)$$

$$\rightarrow$$
 $\forall f(x+h) = f(x+h) - f(x)$

$$\longrightarrow \Delta f(x) = \nabla f(x+h)$$

Evaluate
$$\triangle$$
 eax

Sol: we know that

$$\triangle f(x) = f(x+h) - f(x)$$

$$\triangle e^{\alpha x} = e^{\alpha x}(x+h) - e^{\alpha x}$$

$$= e^{\alpha x} (e^{\alpha h} - e^{\alpha x})$$

$$= e^{\alpha x} (e^{\alpha h} - e^{\alpha$$

Evaluate
$$\triangle \log x$$

Sol: We know that
$$\triangle f(x) = f(x+h) - f(x)$$

$$f(x) = \log x$$

$$f(x+h) = \log (x+h)$$

$$\triangle \log x = \log (x+h) - \log x$$

$$= \log \left(\frac{x+h}{x}\right)$$

$$\triangle \log x = \log \left(\frac{1+\frac{h}{x}}{x}\right)$$

$$\triangle \log x = \log \left(\frac{1+\frac{h}{x}}{x}\right)$$

$$\triangle \log x = \log \left(\frac{1+\frac{h}{x}}{x}\right)$$

$$\Rightarrow \text{Evaluate } \triangle \text{Sinax}$$

$$\text{Sol: We know that } \triangle f(x) = f(x+h) - f(x)$$

$$\text{1ot } f(x) = \sin \alpha x$$

$$f(x+h) = \sin \alpha (x+h)$$

$$\Rightarrow \sin (x+ah) - \sin \alpha x$$

$$\Rightarrow \cos \left(\frac{x+h}{x}\right) \sin \left(\frac{x+h}{x}\right)$$

$$\Rightarrow \sin \alpha x = \sin \alpha x + \cos \alpha x$$

$$\Rightarrow \cos \left(\frac{x+h}{x}\right) \sin \left(\frac{x+h}{x}\right)$$

$$\Rightarrow \sin \alpha x + \cos \alpha x$$

$$\Rightarrow \cos \left(\frac{x+h}{x}\right) \sin \left(\frac{x+h}{x}\right)$$

 \triangle sinax = & Cos $\left(\frac{2ax+ah}{2}\right)$ sin $\left(\frac{ah}{2}\right)$

Evaluate
$$\triangle'' e^{x}$$
, $h=1$

Sol: we know that

$$\triangle f(x) = f(x+h) - f(x)$$

Let $f(x) = e^{x}$

$$f(x+h) = e^{x+h}$$

$$\triangle^{w} e^{x} = \triangle(\triangle e^{x})$$

$$= \triangle(e^{x+h} - e^{x})$$

$$= \triangle(e^{x+h} - \triangle e^{x})$$

$$= e^{x+2h} - e^{x+h} + e^{x}$$

$$\triangle^{w} e^{x} = e^{x+2h} - 2e^{x+h} + e^{x}$$

$$\triangle^{w} e^{x} = e^{x+2h} - 2e^{x+h} + e^{x}$$

$$\triangle^{w} e^{x} = e^{x+2h} - 2e^{x+h} + e^{x}$$

$$b=1$$

$$= e^{x} \cdot e^{2} - 2 \cdot e^{x} e^{1} + e^{x}$$

$$= e^{x} \cdot e^{2} - 2 \cdot e^{x} e^{1} + e^{x}$$

$$= e^{x} \cdot (e^{2} - 2e^{x} + 1)$$

$$\triangle^{w} e^{x} = e^{x} \cdot e^{x} = e^{x} \cdot (e^{x} - 2e^{x} + 1)$$

$$\triangle^{w} e^{x} = e^{x} \cdot e^{x} = e^{x} \cdot (e^{x} - 2e^{x} + 1)$$

$$\triangle^{w} e^{x} = e^{x} \cdot e^{x} = e^{x} \cdot (e^{x} - 2e^{x} + 1)$$

The Forward difference of a Constant is Zero

SOI: Let
$$f(x) = a$$
 (Constant)

We know $\triangle f(x) = f(x+h) - f(x)$
 $\triangle a = a - a = 0$

The difference of a Constant is Zero

Prome $\triangle f(x) \cdot g(x) = f(x+h) \cdot \triangle g(x) + g(x) \cdot \triangle f(x)$

SOI: $\triangle f(x) \cdot g(x) = f(x+h) \cdot g(x+h) - f(x) \cdot g(x)$
 $= f(x+h) \cdot g(x) - f(x) \cdot g(x)$
 $= f(x+h) \cdot g(x) - f(x) \cdot g(x)$
 $= f(x+h) \cdot 2g(x) + g(x) \cdot 2g(x)$
 $= f(x+h) \cdot 2g(x) + g(x) \cdot 2g(x)$

SOI: Consider

 $\triangle f(x) = g(x) \cdot 2g(x) - g(x) \cdot 2g(x)$
 $= g(x) \cdot g(x+h) - g(x) \cdot 2g(x) - g(x+h) \cdot f(x)$
 $= g(x) \cdot g(x+h) - g(x+h) \cdot f(x)$

$$3(x) \left[f(x+h) - f(x) \right] + f(x) \left[g(x) - g(x+h) \right]$$

$$3(x) \left[f(x+h) - f(x) \right] + f(x) \left[g(x) - g(x+h) \right]$$

$$3(x) \left[f(x+h) - f(x) \right] + f(x) \left[g(x) - g(x+h) \right]$$

$$3(x) \left[f(x+h) - f(x) \right] + f(x)$$

$$3(x) \left[f(x+h) - f(x) \right]$$

$$= \log \left[f(x+h) - \log f(x) \right]$$

1) Newtone Forward Interpolation formula Newton Gregory Forward Interpolation Formula Let y = f(x) be a function which takes Values of y as yo, y, y, -... yn and Corresponding Values of X as xo, x, x, -... xn then the Newton's focused Interpolation $\frac{U(\upsilon-1)(\upsilon-2)}{3!} \triangle^{3} y_{0} + \frac{U(\upsilon-1)(\upsilon-2)(\upsilon-3)}{4!} N^{4} y_{0}^{*} + --$ where $x = x_0 + ch$ $\Longrightarrow U = \frac{x - x_0}{h}$ $\int_{-\infty}^{\infty} f(x) = f(x^0 + ny) = f(x^0) + ny + (x^0) + \frac{\pi i}{n(n-1)} \nabla_{x} f(x^0) + \frac{\pi i}{n(n$ $\frac{U(\upsilon-1)(\upsilon-2)}{3!} \triangle^{3} f(x_{0}) + \frac{U(\upsilon-1)(\upsilon-2)(\upsilon-3)}{4!} \triangle^{4} f(x_{0}) + \cdots$ where $x = x_0 + uh$ $\longrightarrow U = \frac{x - x_0}{h}$

1) Find the value of Sin 52° from the values given below
$$Sin 45° = 0.7671$$
 $Sin 50° = 0.7660$

3in 60° = 0.8660 Using Newton tosward

Interpolation - Formula.

$$0.00$$
 : Given 0.707 Sin 0.707 Sin 0.8092 Sin 0.709 Sin 0.709 Sin 0.8092 Sin 0.709 Sin 0.709 Sin 0.8092

Torward difference table:

×	y	Dy	D44	₽ 3 4
X0 A5° X1 50° X1 55° X2 60°	0.7660 9.7660 91 0.8192 92 0.8660 93		0.0057 -0.0064	-6000-0 F000 -0

we know that Newton Forward Interpolation formula he $Y = f(x) = f(x_0 + \omega h) = y_0 + \omega \Delta y_0 + \frac{\omega(\omega - 1)}{21} \Delta y_0 + \frac{\omega(\omega - 1)(\omega - 2)}{31}$

$$Y = f(52^{\circ}) = f(45^{\circ} + (1\cdot4)(5)) = 0.7671 + (1\cdot4)(0.0589) + (1\cdot4)(1\cdot4-1)(1\cdot4-1)(1\cdot4-2)(-0.0007) + (1\cdot4)(1\cdot4-1)(1\cdot4-2)(-0.0007) + \cdots$$

Sin 52 = 0.7880

(2) Find f (1.6) Using Newton Forward Partypolation

formula from the table given below

| 1 | 1.4 | 1.8 | 2.2 |
| f(u) | 3.49 | 4.82 | 5.96 | 6.5

Dol: Since the given value 1.6 is at the beginning of the table so we use Newton Forward Interpolation formula

X	y	Dy	D 4	BY	1
14	3·49 % A·82	1.33 	D'80 -0.19		,
1.8	5.96	0.54	-0.60	4. 9	· ·

$$x = x_0 + ch \implies 0 = \frac{x - x_0}{h} = \frac{1.6 - 1}{0.4} = \frac{1.5}{h} = 1.14 = 0.4$$

Newton's Forward Interpolation Formula B

Dol: Since the given value 0.6 is at the beginning of the table so we use Newton Forward Interpolation formula

Forward difference table:

×	4	DY	D "4	By	D4 y	Dry	Dby
0.1	0.003	<u> </u>				•	
0.3	0.067	0.081	0.17	0.002		·	•
0.5	0148		1-0.019		0.001	0	,
0.7	0.248	0.[22	0.022	0.003	100.00		-0
0.9	0.370	0.148	0.026	0.004	0.001	10	
1.3	0.518	0.179	0.03	0.005			

$$x = x_0 + uh$$
 $\implies U = \frac{x - x_0}{h} = \frac{0.6 - 0.1}{0.2} = 0.5$

(4) For
$$x = 0, 1, 2, 3, 4$$

$$f(x) = 1, 14, 15, 5, 6$$

find $f(3)$ Osing Newton Forward Interpolation Formula

Sol: Since the given value 3 is at the beginning

The table so we used Newton Forward

Enterpolation Formula

Torusad difference Table

×	y	Dy	Dry	Ď34	Dety
0	t	13			
•	14	15	-12		
2	15	 	-11	72-	21
3	5	-lo	l ii		
4	6				

$$x = x_0 + v_h \longrightarrow v = \frac{x - x_0}{h} = \frac{3 - 0}{1} = 3$$

(5) Find f(2.5) Using Newton Forward Interpolation forms from the following table.

X	0	1	2_	3	4	2	6
y	0	1	16	18	ર્ચક્	625	1296

$$\frac{30!}{1}$$
: $x = x_0 + vh$ $\Rightarrow v = \frac{x - x_0}{h} = \frac{2.5 - 0}{1} = 2.5$

(d) Newton Brewnd Interpolation Fromta

Newton Gregory Browned Paterpolation formula

Let Y = f(x) be a function which

takes value of Y as y_0 , y_1 , y_2 ... y_n and

Consespondly blues of X as x_0 , x_1 , x_2 ... x_n then

the Newton Backward Paterpolation formula is $Y = f(x) = f(x_0 + \psi h) = y_0 + \psi \nabla y_0 + \frac{\psi(\psi + 1)}{2!} \nabla y_0$ $Y = \frac{1}{3!} \nabla^3 y_0 + \frac{\psi(\psi + 1)(\psi + 2)(\psi + 3)}{3!} \nabla^3 y_0 + \cdots$ where $y = y_0 + \psi h$

 $\frac{1}{h} = \frac{h}{x - xy}$

Différence blu Forward & Baskwoord : (Hint)

Forward	Barrend
Δ	7,
10	20
yo.	yn
-+	+++

robleme

(1) Calculate the value of f(7.5) from the following data given below

O).
1	2	3	4	5	6	7	8	
1	8	27	64	125	216	343	512	
	1	1 2	1 2 3	1 2 3 4	1 2 3 4 5	1 2 3 7	1 2 3 7	1 2 3 7

Dol: Since the given Value 7.5 is at the end of the table, so we use Newton Backward Interpolation formula

Backward difference table:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	تسبيره".	_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×	4	AY	*\D''\	V3 4	△ 44	Dest	12 KD
1 8 150-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1 2 3 4 5 6	27 64 125 216		30	6 6	0	-0	

we know that $x = x_1 + vh \Rightarrow v = \frac{x - x_1}{h} = \frac{7.5 - 8}{1} = \frac{-0.5}{1}$

Newton Barward Interpolation formula is $U = f(x) = f(x_0 + c_0h) = y_0 + c_0 \nabla y_0 + \frac{c_0(c_0 + c_0)}{2!} \nabla y_0 + \frac{c_0(c_0 + c_0)}{3!} \nabla y_0 + \cdots - \frac{c_0(c_0 + c_0)}{3!} \nabla$

(2) The Population of a town in a decimal Census was given below now estimate the population for the year 1955

'Yeog (4)	1921	1931	1941	1951 .	1961	\$
Pop(4) in thousand	46	66	81	93	10	

Sol: The given year 1955 is at the end of the table so we use N.B. I.F

Backward diff table:

N	4 1	74	√ ¼4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7ty
1921 1931 1941 1951	46 66 81 93 101	- 20 - 15 - 12 - 8	-3	(G-1)	3

We know that NBIF is

$$U = \frac{x - x_0}{h} = \frac{1955 - 1961}{10} = \frac{0.6}{10}$$

 $f(91) = \frac{1000}{5} = -1.8 \cdot 0 = -1.8$ $f(91) = 6504 \cdot 1248$

$$V = f(32) = 0.3165$$

$$f(32) = 0.3165$$

(2) Apply house Forward Central Frence and find f(3.5) Using the following table given below

×	. 25	13	**	5	35
y	ನಿ.6ನಿರ	3.454	4.784	6.98%	

Sol: given

$$f(x) = 3.636 \qquad f(4) = 4.784$$

$$f(3) = 3.454 \qquad f(5) = 6.986$$
Here we have to find $f(3.5)$ which is neared to f(3)

now toking Origin as 3

$$x_0 = 3$$

$$h = 1 \qquad = \frac{x - x_0}{h} = \frac{3.5 - 3}{l} = 0.5$$

$$x = 3.5$$
Central diffuence table:

Since the given Nature 3.5 Ps. nearer to Value 3 So one Can Consider No=3 & \$\frac{1}{90} = 3.454

The Gauss Forward formula is

$$V = f(x) = f(x_0 + uh) = y_0 + uhy_0 + \frac{u(u-1)}{2!} hy_1$$

$$+ (u+1)u(u-1) hy_1 + \dots$$

$$= 3! + (0.5)!$$

$$= 3.454 + (0.5) (1.330) + (0.5)(0.5-1)(0.500)$$

$$+ (0.5+1)(0.5) (0.5-1) (0.870) + \dots$$

$$= 3.454 + 0.665 - 0.06275 - 0.023127$$

$$= 4.033$$

$$= 4.033$$

$$= (3) Apply hours Forward Central difference interpolating formula and find the value of Un 24

$$= 40$$

$$= 40$$

$$= 40$$$$

$$\frac{1}{h} U = \frac{x - x_0}{h} = \frac{9 - 8}{4} = \frac{1}{4} = 0.25$$

Since the gien value 9 hs reason to value 8, So cre Con Consider xo=8, yo=32

$$x = x_0 + ch$$
 \Rightarrow $C = \frac{x_0 - x_0}{h} = \frac{q - 8}{4} = \frac{1}{4} = \frac{0.25}{4}$

$$Y = f(9) = f(8+(0-20)4)$$

= 33.117

$$f(30) = 16.9303$$

15.5154 -0.8278

37

<u>-0.0640</u>

(4) hours Brekward Central différence formula Let y = f(x) be a function which takes values of y as yo y, y2 -- yn and Converponding values of of as no x1 x2 -- no than the Crows Balkword differnce formula & (= f(x) = f(xn+vh) = fo + v Dy-1 + U(0+1) Dy-1 + (U+1)U(0-1) D3y-2 (0+2) (0+1) U(0-1) A7-2 + This is Called hours Backward Central differne formela.

$$x = 25$$
 $y = \frac{x - x_0}{h} = \frac{25 - 28}{4} = \frac{-0.75}{4}$

The Central difference table is

1	×	y	Δ9	D74	८ ³४
-2	3 0	48854	308		
-1	24	3162	(382)	74	(-8)
c	28	3544	448	(66) AJ-1	Ø34-2
,	32	39,72		\	

Raws Barrand Central diff Formula &

$$V = f(x) = f(x_0 + uh) = y_0 + u \Delta y_{-1} + \frac{u(u+1)}{2!} \Delta y_{-1} + \frac{u(u+1)}{2!} \Delta y_{-1} + \frac{u(u+1)}{3!} \Delta y_{-2} + \frac{u(u+1)}{3!} \Delta y_{-2} + \frac{u(u+1)}{2!} \Delta y_{-1} +$$

$$\begin{aligned}
f &= f(25) = f\left(28 + (-0.77)4\right) \\
&= 3544 + (-0.77)(382) + \frac{(-0.77)(0.25)(66)}{2} \\
&+ \frac{(0.27)(-0.77)(-1.77)}{6}(-8) \\
&= 3544 - 286.5 - 6.1875 - 0.4375
\end{aligned}$$

(d) Apply house Backward Central difference formula to find the population for the year at 1936 for the data given below

Year (x)	1901	1911	1921	1931	1941	1957
Pop (Thos)	12_	15	20	27	39	52

Sol: Takny Origin as 1941

$$x_0 = 1941$$
 $x = 1936$
 $y = \frac{x - x_0}{h} = \frac{1936 - 1941}{10} = \frac{-0.5}{10}$

	- h = 10					
X	u_	DY	Mu	63 4	A4-11	1
1901	12	•	7	BY	2319	234
1911	15	5	2 \			1.
1921	20	7	-2	3	3	D54-7
1931	27		5	(-0)	(-7)	
1941	39)	13	1	D3y-2	Δ^{\dagger}	9-
1951	52	13	D'8-1			

$$\begin{aligned}
(J = f(x) = g_0 + u \Delta g_{-1} + \frac{u(u+1)}{2!} \Delta g_{-1} + \\
(u+1)u(u-1) \Delta g_{-2} + \frac{(u+2)(u+1)u(u-1)}{4!} \Delta g_{-2} + \\
(u+1)u(u-1) \Delta g_{-2} + \frac{4!}{4!} \Delta g_{-2} + \\
(u+1)(u+1)u(u-1) \Delta g_{-2} + \\
(u+1)(u+1)u(u-1)$$

(3) Apply house Balkwood Central difference formula to find
$$f(32)$$
, given,

Sol : River that's

×	25	30	35	40
y	0.2707	0.3027	0.3386	0-3794

Central difference table is

X	y	DY	D"4	N34
25	0.2707			
_		0.032		
30	0.3027	D4-1	- 0.003g	
(35)	0.3386	(0.0359)		0.000
40	0.3794	0,0408	0.0049	
40	1-2.794		1 29-1	-

Since the given value 32 reases to 35 form Backward So we Consider to 35 yo = 0.3386

$$X = X_0 + ch$$
 $\Rightarrow 0 = \frac{x - x_0}{h} = \frac{32 - 35}{5} = \frac{-3}{5} = -0.6$

The Gouss Bookward Central diff formula be

$$Y = f(x) = f(x_0 + uh) =$$

$$y_0 + uhy_{-1} + \frac{u(u+1)}{21} hy_{-1} + \frac{(u+1)u(u-1)}{6} hy_{-2} + \cdots$$

(5) Legronge Interpolation

Let Y = f(x) be a function which takes values of x as $x_0 x_1 x_2 - \cdots x_n$ and Consumpendity values of y of $y_0 y_1 y_2 - \cdots y_n$ then the Legrange Interpolation formula for the given data by

-	x	No	71	X2_	X 3
	y	Ho	81	82	d3_

$$Y = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}$$

replace
$$\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}$$

replace
$$(x-x_0)(x-x_1)(x-x_3)$$
 y_2 $(x_2-x_0)(x_2-x_1)(x_2-x_3)$

replace
$$\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} + \cdots$$

1) Find
$$f(10)$$
 given $f(x) = 168, 192, 336$ et $x = 1, 7, 15$ respectively.

Using Legrange Protupolation formula

Sol: given obta

X	מא	T F	15 72	
ð	168	192	336	

The Leglange Protupolation formula is

$$\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} y_2 + \cdots$$

$$Y = f(10) = \frac{(10-7)(10-15)}{(1-7)(1-15)}(168) + \frac{(10-1)(10-15)}{(7-1)(7-15)}(192) +$$

$$\frac{(10-1)(10-7)}{(15-1)(15-7)}(336)+---$$

(a) Using Legrange Protupolation formula Find the value of f(10) form the following table given below

*	5 _{x0}	6 X1	9 %	11 1/3
y .	12	13	14	16 y 3

Sol: Legrange Protupolation formula Ps

$$Q = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 +$$

$$\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)}$$

$$\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} + \frac{1}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}$$

$$\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} + - -$$

$$Y = f(10) = 14.666 = 15$$

(3) Using Legrange Protupolation found find the Value of M3 fours the following data given below Mo = 580, M1 = 556, M2 = 520, M4 = 385

Sol: given data

	<u>·</u>		•	\	l
×	0	1	2,	4 x3	1
y	580	556	520	385	<u></u>

Legrange Interpolation formula:

$$C = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} = f(x)$$

$$(x_0 = x_1)$$
 $(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)$ $(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)$

$$(x_1 = x_2)$$
 $\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}$ y_2 +

$$\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_0-x_0)(x-x_1)(x_0-x_2)} + 3 + \cdots$$

$$y = f(3) = 465$$

(5) Using Legrange Portrodation formula find fle)
from the following table

					·
	×	. O _{xo}	1 	3 x2	4 x3
•	y	5	6	50	100

|50|: |+(2) = 19.833

(6) Using Legrange formula find f(4) from the table given below

×	Q	2	3,	6 ×3
y	-4	2	14	128

6. Stirlige formula

Lot y = f(x) be a function which takes values of y as $y_0 y_1 y_2 - - y_0$ and Corosesponding Values of y_0 as $y_0 y_1 y_2 - - y_0$ and Corosesponding Values of y_0 as $y_0 y_1 y_2 - - y_0$ then the Stirting's formula is given by

$$Y = f(x) = f(x_0 + uh) = y_0 + u(\frac{\Delta y_0 + \Delta y_{-1}}{2}) +$$

$$\frac{U^{r}}{2!} \Delta^{r}_{y-1} + \frac{U(U^{r}-1^{r})}{3!} \left(\frac{\Delta^{r}_{y-1} + \Delta^{r}_{y-2}}{2} \right) + \frac{1}{2!}$$

This Ps Called Stirlings Toronda.

Stirlings formula Can be Obtained by toking, average of Gauss Forward & Gauss Backward

This formers involves means of odd diffuences just about and even differences on the line as snown below

$$A^{6} - \left(\frac{\nabla^{60}}{\nabla^{3-1}}\right) - \nabla^{3-1} - \left(\frac{\nabla^{3}^{3-1}}{\nabla^{3}^{3-5}}\right) - \nabla^{4}^{3-5} - \left(\frac{\nabla^{3}^{3-5}}{\nabla^{3}^{3-3}}\right)$$

- Dby-3- -- Central line

Stirlings Torrivla

$$V = f(x) = f(x_0 + 0h) = y_0 + 0 \left(\frac{\Delta y_0 + \Delta y_{-1}}{2} \right) + \frac{0}{2} \left(\frac{\Delta y_{-1} + \Delta^3 y_{-2}}{2} \right) + \frac{0}{2} \left(\frac{\Delta^2 y_{-1} + \Delta^3 y_{-2}}{2} \right) + \frac{0}{2} \left(\frac{\Delta^2 y_{-1} + \Delta^3 y_{-2}}{2} \right) + \frac{0}{2} \left(\frac{\Delta^2 y_{-1} + \Delta^3 y_{-2}}{2} \right) + \frac{(0.2)^4 \left((0.2)^4 - (0.2)^4 \right) \left((0.2)^4 - (0.2)^4 - (0.2)^4 \right) \left((0.2)^4 - (0.2)^4 - (0.2)^4 - (0.2)^4 \right) \left((0.2)^4 - (0.2)^4 - (0.2)^4 - (0.2)^4 \right) \left((0.2)^4 - (0.2)^4 - (0.2)^4 - (0.2)^4 - (0.2)^4 \right) \left((0.2)^4 - (0.2$$

×	20	3 o ``	40	50	
y	512	439	346	243	

$$\frac{Sol}{h}$$
: $V = \frac{x-x_0}{h} = \frac{35-30}{10} = \frac{0.5}{10}$

Stirling's formula 18

$$Y = f(x) = f(x_0 + u_0) = y_0 + \frac{u}{2} \left(\Delta y_0 + \Delta y_{-1} \right) + \frac{u^m}{2} \Delta^m y_{-1} + \frac{u(u^m - 1)}{6} \left(\Delta^n y_{-1} + \Delta^n y_{-2} \right) + \cdots$$

$$= 439 + \frac{0.5}{2} \left(-93 - 73\right) + \frac{0.27}{2} \left(-20\right)$$

(7) Besseli Interpolation

$$\frac{1}{2!} \int_{-\infty}^{\infty} \frac{1}{2!} \int_{-\infty}^{\infty} \frac{1$$

$$\frac{U(\upsilon-1)(\upsilon-2)(\upsilon+1)}{4!} \left[\Delta^{4}y-2 + \Delta^{4}y-1 \right] + - - - -$$

"
$$x = x_0 + ch \longrightarrow C = \frac{x - x_0}{h_1}$$

This is Called Bessels Interpolation formed

Problems

X	25	ત્રે.હ	2.7	2.8	2.9	3.0	
y	0.4938	0,4823	0.4965	0 4974	0.4981	0-4987	

$$\frac{Sol}{h}$$
: $0 = \frac{x-x_0}{h} = \frac{3.73-3.7}{0.1} = 0.3$

×	y	₽à	Dry	D34	Dtey	My
& 5	0.4938	0 00100	8			
a .6	0.4953	0.0012	-0.0003		D4y-1	
2.9	0.4965	.	-0.0003	0.000	0.000	(-0.000)
9.8	0.4979	0.0007	-0.0002 A ^M /do	0.000	0.000	May
2,9	0.4981		_0.0001	(0.000)	D9-1	
3.0	0.4987	0,0006			-	

$$O = \frac{x - x_0}{h} = \frac{2.73 - 2.7}{0.1} = 0.3$$

$$f(2.73) = 0.4968$$

(d) Using Bessels Indupolation formed find

+ (1.22) form the table given below

100 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

9 0.84147 0.89121 0.93204 0.96356 0.98545 0.9934 0.9932 0.99385 0.99385

f (1.22) = 0.93910

,