Finite Projective Planes

Thomas Cohn

11/1/18

Yesterday we prove that if (X, \mathcal{L}) is a finite projective plane, then

- (n+1) lines through every $x \in X$
- (n+1) points on every line $\ell \in \mathcal{L}$
- $|X| = |\mathcal{L}| = n^2 + n + 1$
- \bullet *n* is the order of the finite projective plane

Defn: If (X, \mathcal{L}) is a FPP, then its dual (Y, τ) has a point y_{ℓ} for every $\ell \in \mathcal{L}$ and a line t_x for every point $x \in X$, and $x \in \ell \Leftrightarrow y_{\ell} \in t_x$.

Thm: (Y, τ) is also a FPP.

Proof: Let (Y, τ) be the dual of (X, \mathcal{L}) . Properties P1 and P2 obviously hold by the definition of the dual. So it is enough to show the property P0 holds.

By P0 for (X, \mathcal{L}) , we have points $\{a, b, c, d\} \subset X$ s.t. $\forall \ell \in \mathcal{L}, |\ell \cap F| \leq 2$. Consider

 $y_{\overline{ab}} \quad y_{\overline{cd}} \quad y_{\overline{ad}} \quad y_{\overline{bc}}$ Then for $\overline{F} = \{y_{\overline{ab}}, y_{\overline{cd}}, y_{\overline{ad}}, y_{\overline{bc}}\}$; for each point in \overline{F} , no line could intersect more than 2 points, or else we would have a line in $\mathscr L$ which intersects more than 2 points.

Therefore, property P0 holds, so (Y, τ) is a FPP. \square

Construct a bipartite graph from (X, \mathcal{L}) .

- Let A, B be 2 sets with $|A| = |B| = |X| = |\mathcal{L}|$.
- $a \in A$ is adjacent to $b \in B$ if and only if $x_a \in \ell_b$.

Then $|A| = |B| = n^2 + n + 1$, and for every $a \in A$, every $b \in B$ has degree n + 1.

The dual of (X, \mathcal{L}) is the one with A and B flipped.

Existence and construction

Existence: $2, 3, 4, 5, \emptyset, 7, 8, 9, 10, 11, \dots$

Can we find a pattern? It seems like numbers which are prime or only have one prime factor have a projective plane, but numbers with more than one prime factor do not.

Uniqueness: 2, 3, 4, 5, 7, 8. 9 does not satisfy uniqueness – there are 3 finite projective planes.

Thm: If n is a prime power, there is a fpp of order n.

Open question: We do not know if there exists a finite projective plane for a non-prime power order.

Defn: A field F is a set with 2 operations +, \cdot with the following rules:

- a + (b + c) = (a + b) + c (+ associativity)
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (· associativity)
- a + b = b + a (+ commutativity)
- $a \cdot b = b \cdot a$ (· commutativity)
- $a + 0_F = a$ (Existence of the additive identity 0_F)
- $a \cdot 1_F = a$ (Existence of the multiplicative identity 1_F)
- $\forall a \in F, \exists (-a) \in F \text{ s.t. } a + (-a) = 0_F \text{ (existence of an additive inverse)}$
- $\forall a \in F, \exists a^{-1} \in F \text{ s.t. } a \cdot a^{-1} = 1_F \text{ (existence of a multiplicative inverse)}$
- $0_F \neq 1_F$

Ex: \mathbb{R} , \mathbb{Q} , and \mathbb{C} are all fields

Ex:
$$F_2 = \{0_{F_2}, 1_{F_2}\}$$
, where $1_{F_2} + 1_{F_2} = 0$ $F_3 = \{-1_{F_2}, 0_{F_2}, 1_{F_2}\}$ with the usual multiplication, and $1_{F_2} + 1_{F_2} = -1_{F_2}, -1_{F_2} + (-1_{F_2}) = 1_{F_2}$ For prime $p, F_p = \{0, 1, \dots, p-1\}$ where $i + j = (i + j \pmod{p})$ and $i \cdot j = (i \cdot j \pmod{p})$.

Thm: If $q = p^k$ for some prime p, then there is a unique finite field F_q with q elements, up to isomorphism.

If q is not a prime power, there is not a finite field with q elements.

Constructing a finite projective plane from a finite field:

- 1. Consider a field F. Let $V = F^3 = F \times F \times F$, a vector space on the field F.
- 2. Let X be the set of 1-dimensional subspaces in V.
- 3. Let \mathcal{L} be the set of 2-dimensional subspaces in V.

Then we claim that (X, \mathcal{L}) forms a finite projective plane, with $x \in \ell \Leftrightarrow S_x \subset T_\ell$.

Goal:
$$|X| = a^2 + a + 1$$

 $F_q^3 = \{(x,y,z): x,y,z \in F_q\}$. So there are q^3-1 non-zero points in F_q^3 . But there are q points in every 1-dimensional subspace, so we need to divide by q-1. This gives us $|X| = \frac{q^3-1}{q-1} = q^2+q+1$

Thm: If G on n vertices has no $K_{2,2}$ subgraphs, then $|E| \leq \frac{1}{2}(n^{3/2} + n)$. We proved this previously.

Thm: For infinitely many values m, there is a $K_{2,2}$ -free graph on m vertices, with at least $0.35m^{3/2}$ edges.

Proof: Let $q=p^k$. Then consider (X,\mathcal{L}) of order q. Construct a bipartite graph: $\overline{x\ell} \leftrightarrow x \in \ell$. Then there are $m=|X|+|\mathcal{L}|=2(q^2+q+1)$ vertexes. And there are $|E|=(q^2+q+1)(q+1)$ edges.

$$|E| = (q^2 + q + 1)(q + 1) \ge (q^2 + q + 1)\sqrt{q^2 + q + 1} = (q^2 + q + 1)^{3/2} = \left(\frac{m}{2}\right)^{3/2} \approx 0.35m^{3/2}$$
. \square

The 0.35 can be improved to 0.5. The "sharp" asymptotics is $\frac{1}{2}m^{3/2}$.