5401 Problem Set 5 Nikko Cleri April 8. 2020

Question I.

In Exam 1, Problem 1, find the probability of finding the particle on the left half of the potential well at time t, given that at time t = 0, its wave function is defined as in part b.

Question II.

Shankar 7.34

Using Eqs. (7.3.23)-(7.3.25), show that

$$\langle n' | X | n \rangle = \left(\frac{\hbar}{2m\omega} \right)^{1/2} [\delta_{n,n+1}(n+1)^{1/2} + \delta_{n,n-1}m^{1/2}]$$

 $\langle n' | P | n \rangle = \left(\frac{m\hbar\omega}{2} \right)^{1/2} i [\delta_{n,n+1}(n+1)^{1/2} - \delta_{n,n-1}m^{1/2}]$

Question III.

Shankar 7.35

Using the symmetry arguments from Exercise 7.3.3 show that $\langle n|X|n\rangle = \langle n|P|n\rangle = 0$ and thus that $\langle X^2\rangle = (\Delta X)^2$ and $\langle P^2\rangle = (\Delta P)^2$ in these states. Show that $\langle l|X^2|l\rangle = 3\hbar/2m\omega$ and $\langle l|P^2|l\rangle = \frac{3}{2}m\omega\hbar$. Show that $\psi_0(x)$ saturates the uncertainty bound $\Delta X \cdot \Delta P \geq \hbar/2$.

Question IV.

Shankar 7.36

Consider a particle in a potential

$$V(x) = \frac{1}{2}m\omega^2 x^2 \quad x < 0$$
$$= \infty \quad x \le 0$$

What are the boundary conditions on the wave functions now? Find the eigenvalues and eigenfunctions.

Question V.

Shankar 7.41

Compute the matrix elements of X and P in the $|n\rangle$ basis and compare with the result from Exercise 7.3.4.

Question VI.

Shankar 7.45

At t = 0 a particle starts out in $|\psi(0)\rangle - 1/2^{1/2}(|0\rangle + |1\rangle)$.

- 1. Find $|\psi(t)\rangle$.
- 2. Find $\langle X(0) \rangle = \langle \psi(0) | X | \psi(0) \rangle$, $\langle P(0) \rangle$, $\langle X(t) \rangle$, $\langle P(t) \rangle$.
- 3. Find $\langle \dot{X}(t) \rangle$ and $\langle \dot{P}(t) \rangle$ using Ehrenfest's theorem and solve for $\langle X(t) \rangle$ and $\langle P(t) \rangle$ and compare to part (2).