RSA cryptography

EE577A

Fall 2019

RSA Outline

- Plain text: m
- Cipher text: *c*
- Public key: *n*, *e*
- Encryption: $c \equiv m^e \mod n$
- Private key: n, d
- Decryption: $m \equiv c^d \mod n$

Euler's Totient Function and Theorem

- Euler's totient function $\varphi(n)$:
- For a positive integer n, $\varphi(n)$ is the number of integer $k \in [1, n]$ where GCD(k, n) = 1.
- If *n* is a prime, $\varphi(n) = n 1$.
- $\varphi(7) = 6$ since $k \in \{1,2,3,4,5,6\}$
- $\varphi(8) = 4$ since $k \in \{1,3,5,7\}$
- Euler's Theorem:
- If n and a are coprime positive integers, we have

$$\mathbf{a}^{\varphi(n)} \equiv 1 \mod \mathbf{n} \to \exists k_1 \in \mathbb{Z}, \mathbf{a}^{\varphi(n)} = 1 + k_1 n$$

Generation of Keys

- p, q: random large primes and $p \neq q$. (They are usually similar in magnitude.)
- n = pq and $\varphi(n) = \varphi(p)\varphi(q) = (p-1)(q-1)$.
- e: an integer in $(1, \varphi(n))$ and $GCD(e, \varphi(n)) = 1$.
- $d \equiv e^{-1} \mod \varphi(n) \rightarrow ed \equiv 1 \mod \varphi(n) \rightarrow \exists k_2 \in \mathbb{Z}, ed = 1 + k_2 \varphi(n).$

RSA Proof

- $m \equiv c^d \mod n \rightarrow c \equiv m^e \mod n$
- $c^d \equiv (m^e \mod n)^d \equiv m^{ed} \equiv m^{1+k_2\varphi(n)} \mod n$
- $c^d \equiv (m \mod n) * (m^{\varphi(n)} \mod n)^{k_2} \equiv m \mod n$
- We usually choose $m, c \in [0, n)$.
- Modular exponentiation is a very complex operation.

Chinese Remainder Theorem (CRT)

- Assume $b_1, ..., b_k$ are mutually coprime positive integers.
- We want to find a unique congruent solution x, so that

$$x \equiv a_i \bmod b_i$$
, $1 \le i \le k$

- for positive integers $a_1, ..., a_k$.
- The solution is $x \equiv \left(\sum_{i=1}^k B_i B_i^{-1} a_i\right) \mod b$
- $b = \prod_{i=1}^{k} b_i, B_i = \prod_{j=1, j \neq i}^{k} b_j = \frac{b}{b_i}$, and $B_i B_i^{-1} \equiv 1 \mod b_i$

Chinese Remainder Theorem (CRT)

- If we want to find $x \equiv A \mod b$ and $b = \prod_{i=1}^k b_i$.
- We can calculate $a_i \equiv A \mod b_i$ so that $x \mod b_i \equiv (A \mod b) \mod b_i \equiv A \mod b_i \equiv a_i$
- Therefore, $x \equiv \left(\sum_{i=1}^k B_i B_i^{-1} a_i\right) \mod b$ is the solution of $x \equiv A \mod b$.

- In RSA, we have $b_1 = p$, $b_2 = q$, $b = b_1b_2 = pq = n$, and $A = c^d$.
- $M_p = a_1 \equiv c^d \mod p$ and $M_q = a_2 \equiv c^d \mod q$
- $B_1 = \frac{b}{b_1} = \frac{pq}{p} = q \text{ and } B_2 = p$
- $B_1B_1^{-1} \equiv 1 \bmod b_1 \to qq^{-1} \equiv 1 \bmod p$
- $m \equiv c^d \equiv (B_1 B_1^{-1} a_1 + B_2 B_2^{-1} a_2) \equiv (q q^{-1} M_p + p p^{-1} M_q) \mod n$

- $d = d_p + k_{dp}(p-1) = d_p + k_{dp}\varphi(p)$
- $M_p \equiv c^d \equiv c^{d_p + k_{dp} \varphi(p)} \equiv c^{d_p} mod p$
- $c = c_p + k_{cp}p$
- $M_p \equiv c^{d_p} \equiv (c_p + k_{cp}p)^{d_p} \equiv c_p^{d_p} \mod p$
- $M_q \equiv c_q^{d_q} \mod q$
- $m \equiv (qq^{-1}M_p + pp^{-1}M_q) \mod n$

- Bezout's identity: $pp^{-1} + qq^{-1} \equiv 1 \mod n$.
- $m \equiv qq^{-1}M_p + pp^{-1}M_q \equiv qq^{-1}M_p + (1 qq^{-1})M_q \mod n$
- $m \equiv M_q + qq^{-1}(M_p M_q) \mod n$
- $h \equiv q^{-1}(M_p M_q) \equiv q^{-1}((M_p M_q) \mod p) \mod p$
- $m \equiv (M_q + qh) \mod n$

- If we choose remainders of all congruent classes.
- $m \equiv (M_q + qh) \mod n$
- $0 \le h \le p-1 \rightarrow 0 \le hq \le pq-q=n-q$
- $0 \le M_q \le q 1 \to 0 \le M_q + qh \le n q + q 1 = n 1$
- $m \equiv (M_q + qh) \mod n \rightarrow m = M_q + qh$

Modular Exponentiation

- $M_p \equiv c_p^{d_p} \mod p$ and $d_p = \sum_{i=0}^{n-1} d_i 2^i$ so objects which
- $M_p \equiv \prod_{i=0}^{n-1} c_p^{d_i 2^i} \equiv \prod_{i=0}^{n-1} \left(c_p^{2^i} \right)^{d_i} \equiv \prod_{i=0}^{n-1} \left(c_p^{2^i} \bmod p \right)^{d_i} \bmod p$
- Example: n=4, MM is Montgomery modular multiplication.

12

RSA Implementation

• Assume: p > q, 7-bit p, q, 14-bit c, d, m O(p) is 7-bit

Time

RSA Example: 10 bits

- p = 1,009, q = 1,021, m = 2,003
- $p^{-1} = 85$, $q^{-1} = 925$, n = pq = 1,030,189, $\varphi(n) = 1,008 * 1,020 = 1,028,160$
- $d = 939577 \rightarrow e = 1033, c = m^e \mod n = 1,016,820$
- $c_p = c \mod p = 757, c_q = c \mod q = 925$
- $d_p = d \mod (p-1) = 121, d_q = d \mod (q-1) = 157$
- $M_p = c_p^{d_p} \mod p = 994, M_q = c_q^{d_q} \mod q = 982$
- $M_p M_q \mod p = 12, h = q^{-1}(M_p M_q) \mod p = 1$
- $m = M_q + qh = 2003$

RSA Project

Function								
Inputs								Outputs
Given				Python				Hardware
С	d	p	q	r_p	p^{-1}	r_q	q^{-1}	m
831	2971	127	113					
4624	9833	107	97					
4058	2831	113	109					
6757	6593	103	89					
Metric								
Time (ns)			Area (mm^2)			Area*Time		