Linear Algebra Review

Vector Norms $\|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ (Euclidean norm) $\|\boldsymbol{x}\|_1 = \sum_{i=1}^n |x_i|$ (absolute value sum/taxi norm) $\|\boldsymbol{x}\|_{\infty} = \max_{i=1}^n |x_i|$ (largest component by abs. value)

Matrix Norms $\|\mathbf{A}\|_2 = \max_i \sqrt{\operatorname{eig}_i(\mathbf{A}^T\mathbf{A})}$ $\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}| \text{ (max abs. value column sum)}$ $\|\mathbf{A}\|_{\infty} \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}| \text{ (max abs. value row sum)}$ $\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\operatorname{tr}(\mathbf{A}^*\mathbf{A})}.$ (square root of the sum of the squares of every element in \mathbf{A}).

Systems of Linear Equations

Just Some Basic Stuff $\mathbf{X}\mathbf{A} = \mathbf{B} \iff \mathbf{A}^T\mathbf{X}^T = \mathbf{B}^T$ $(\mathbf{U}\mathbf{L})^{-1} = \mathbf{L}^{-1}\mathbf{U}^{-1}$ $\det \mathbf{L} = \prod_i^n \mathbf{L}_{ii} \quad \det \mathbf{U} = \prod_i^n \mathbf{U}_{ii}$

Forward Substitution Lx = b

 $\mathbf{L} \in \mathbb{R}^{n \times n}$ lower triangular, non-singular

$$x_i = \frac{1}{\mathcal{L}_{ii}} \left(b_i - \sum_{j=1}^{i-1} \mathcal{L}_{ij} x_j \right)$$
 Time cost: $\mathcal{O}(n^2)$

Back Substitution Ux = b

 $\mathbf{U} \in \mathbb{R}^{n \times n}$ upper triangular, non-singular

$$x_i = \frac{1}{U_{ii}} \left(b_i - \sum_{j=i+1}^n U_{ij} x_j \right)$$
 Time cost: $\mathcal{O}(n^2)$

LU Decomposition without Pivoting $A \in \mathbb{R}^{n \times n}$ diagonally dominant $\implies \exists A = LU$

Algorithm: $\mathbf{A}^{(j)} \equiv \mathbf{A}$ on algorithm's jth iteration.

Start with j=1 and $\mathbf{A}^{(1)}=\mathbf{A}$. Perform row subtraction on $A^{(j)}$'s rows j+1 to n; record subtraction coefficient in \mathbf{L} . Increment $j \to j+1$, repeat for all n rows.

Computational complexity: $\mathcal{O}(n^3)$

LU Decomposition with Partial Pivoting $A \in \mathbb{R}^{n \times n}$ non-singular $\implies \exists \ \mathbf{PA} = \mathbf{LU}$

Algorithm: $\mathbf{A}^{(j)} \equiv \mathbf{A}$ on algorithm's jth iteration.

Start with j=1 and $\mathbf{A}^{(1)}=\mathbf{A}$. Find largest element A_{ij} in column j from rows j to n. Switch jth row with row containing largest element. Record switch in \mathbf{P} . Perform row subtraction on $A^{(j)}$'s rows j+1 to n; record subtraction coefficient in \mathbf{L} . Increment $j \to j+1$, repeat for all n rows. Computational complexity: $\mathcal{O}(n^3)$

Applications of LU Decomposition To find inverse of $\mathbf{A} \in \mathbb{R}^{n \times n}$: Solve $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$

To find det **A**: Find **PA** = **LU**, use det **A** = $(-1)^s \cdot \det \mathbf{U}$ where s is number of row switches in permutation matrix **P**

Cholesky Decomposition $\mathbf{A} \in \mathbb{R}^{n \times n}$, \mathbf{A} symmetric and positive definite.

 $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ where \mathbf{L} is lower-diagonal.

Algorithm: For k = 1 initialize $\mathbf{L}_1 = \sqrt{\mathbf{A}_{11}}$. For $k = 2, \dots, n$, solve $\mathbf{L}_{k-1}\boldsymbol{l}_k = \boldsymbol{a}_k$ for \boldsymbol{l}_k . Solve $\mathbf{L}_{kk} = \sqrt{\mathbf{A}_{kk} - \boldsymbol{l}_k^T \boldsymbol{l}_k}$. Assemble $\mathbf{L}_k = \begin{bmatrix} \mathbf{L}_{k-1} & \mathbf{0}_k \boldsymbol{l}_k^T & \mathbf{L}_{kk} \end{bmatrix} \in \mathbb{R}^{k \times k}, \mathbf{0}_k \in \mathbb{R}^k$. Finish with $\mathbf{L} = \mathbf{L}_n$.

Notation: Matrix \mathbf{L}_k : $k \times k$ principle sub-matrix of \mathbf{L} . Vectors $\boldsymbol{a}_k, \boldsymbol{l}_k$: first k-1 entries in column k of \mathbf{A} and \mathbf{L}^T .

Solving Common Linear Systems 1. AX = B where $A \in \mathbb{R}^{n \times n}$ and $B, X \in \mathbb{R}^{n \times m}$

Write $\mathbf{B} = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_m)$, LU decomposition $\mathbf{A} = \mathbf{L}\mathbf{U}$. Solve $\mathbf{L}\boldsymbol{y}_i = \boldsymbol{b}_i$ with forward substitution, solve $\mathbf{U}\boldsymbol{x}_i = \boldsymbol{y}_i$ with back substitution, reconstruct $\mathbf{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_m)$.

2. $\mathbf{X}\mathbf{A} = \mathbf{B}$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B}, \mathbf{X} \in \mathbb{R}^{m \times n}$ Apply equality $\mathbf{X}\mathbf{A} = \mathbf{B} \iff \mathbf{A}^T\mathbf{X}^T = \mathbf{B}^T$. Solve the system $\tilde{\mathbf{A}}\tilde{\mathbf{X}} = \tilde{\mathbf{B}}$ using (1).

3. $\mathbf{A}\mathbf{X}\mathbf{B} = \mathbf{C}$ where $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{X} \in \mathbb{R}^{n \times n}$

Let $\mathbf{Y} = \mathbf{XB}$ and solve $\mathbf{LY} = \mathbf{C}$ for $\mathbf{Y} = (y_1, \dots, y_n)$ using (1). Solve $\mathbf{XB} = \mathbf{Y}$ for $\mathbf{X} = (x_1, \dots, x_n)$ using (2).

4. $\mathbf{AX} = \mathbf{B}$; $\mathbf{A} \in \mathbb{R}^{n \times n}$ symmetric; $\mathbf{B}, \mathbf{X} \in \mathbb{R}^{n \times m}$

Let $\mathbf{B} = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_m)$, Cholesky decomposition $\mathbf{A} = \mathbf{L}\mathbf{L}^T$. Solve $\mathbf{L}\boldsymbol{y}_i = \boldsymbol{b}_i$ with forward substitution, solve $\mathbf{V}^T\boldsymbol{x}_i = \boldsymbol{y}_i$ with back substitution, reconstruct $\mathbf{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_m)$.

Non-Linear Equations

Bisection Method Parameters: Function f, tolerance ϵ , original interval [a,b], variable interval $[\alpha,\beta]$ with midpoint c

Algorithm: Start with $\alpha = a, \beta = b$. Calculate midpoint $c = \alpha + \frac{\beta - \alpha}{2}$. If $\operatorname{sign} f(\alpha) = \operatorname{sign} f(c)$, let $\alpha = c$; if $\operatorname{sign} f(\alpha) \neq \operatorname{sign} f(c)$, let $\beta = c$. Repeat until $|\beta - \alpha| \leq \epsilon$, then return root $x_0 = \alpha + \frac{\beta - \alpha}{2}$.

Notes: After k iterations, interval width is $\ell = \frac{b-a}{2^k}$. Tolerance ϵ requires $k \ge \log_2 \frac{b-a}{\epsilon}$ iterations.

Fixed Point Iteration Algorithm: Solve f(x) = 0 for x = g(x). Choose tolerance ϵ and initial x_0 , find $x_{j+1} = g(x_j)$, repeat until $|x_{j+1} - x_j| < \epsilon$.

 α fixed point of $x_{j+1} = g(x_j)$ if $\alpha = g(\alpha)$

Convergence: Fixed point $\alpha = g(\alpha)$ convergent if $|g'(\alpha)| \le 1$ Fixed point $\alpha = g(\alpha)$ has order of convergence p if $g^{(k)}(\alpha) = 0$ for $k = 1, \dots, p-1$ and $g^{(p)}(\alpha) \ne 0$

Newton's Method Iteration function: $g(x) = x - \frac{f(x)}{f'(x)}$ Algorithm: Choose tolerance ϵ and initial guess x_0 , find $x_{j+1} = x_j - \frac{f(x_j)}{f'(x_j)}$, repeat until $|x_{j+1} - x_j| < \epsilon$.

Convergence: If α is a simple zero (i.e. $f'(\alpha) \neq 0$), convergence is quadratic if $f''(\alpha) \neq 0$ and cubic if $f''(\alpha) = 0$.

Secant Method: $x_{j+1} = x_j - f(x_j) \frac{x_j - x_{j-1}}{f(x_j) - f(x_{j-1})}$

Polynomial Roots Given $p_n(x) = a_n x^n + \cdots + a_1 x + a_0$, construct $n \times n$ matrix

$$\mathbf{A}_{p} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\frac{a_{0}}{a_{n}} & -\frac{a_{1}}{a_{n}} & -\frac{a_{2}}{a_{n}} & \cdots & -\frac{a_{n-1}}{a_{n}} \end{bmatrix}$$

The polynomial's p_n 's roots are \mathbf{A}_p 's eigenvalues $\operatorname{eig}(\mathbf{A}_p)$

Linear Least Squares

Problem Given vector of data points $\boldsymbol{b} \in \mathbb{R}^m$ and model function $f = f(t, a_1, \ldots, a_m)$, find vector of parameters $\boldsymbol{x} = (a_1, \ldots, a_n) \in \mathbb{R}^n$ minimizing $\|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|_2$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$; rank $\mathbf{A} = n$.

 A_{ij} are coefficients of jth parameter a_i at ith data point.

Normal System $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$; solved with Cholesky decomposition.

 $\boldsymbol{x} \in \mathbb{R}^n$ is desired vector of parameters

Unstable if **A**'s columns are nearly linearly dependent.

QR Decomposition $\mathbf{A} \in \mathbb{R}^{m \times n} \implies \mathbf{A} = \mathbf{QR}$. $\mathbf{Q} \in \mathbb{R}^{m \times n}$ has orthogonal columns and $\mathbf{R} \in \mathbb{R}^{n \times n}$ is upper triangular.

Solve $\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}$ for least squares parameter vector \mathbf{x} .

 $\begin{array}{ll} \textit{Householder Reflection } \mathbf{P} = \mathbf{I} - \frac{2}{\boldsymbol{w}^T \cdot \boldsymbol{w}} \boldsymbol{w} \boldsymbol{w}^T & \mathbf{P} = \mathbf{P}^T = \mathbf{P}^{-1} \\ \text{For } \mathbf{A} = [\boldsymbol{a}_1, \dots, \boldsymbol{a}_n] \in \mathbb{R}^{m \times n} \text{ find } \boldsymbol{w} \in \mathbb{R}^m \text{ so } \mathbf{P} \mathbf{a}_1 = k \mathbf{e}_1 \end{array}$ $\mathbf{w} = \begin{bmatrix} a_1 + \operatorname{sgn} \|\mathbf{a}\|_2, a_2, \dots, a_m \end{bmatrix}^T \|\mathbf{a}\|_2 = k$ $\mathbf{Q} = (\mathbf{P}_n \mathbf{P}_{n-1} \dots \mathbf{P}_1)^T = \dots = \mathbf{P}_1 \mathbf{P}_2 \dots \mathbf{P}_n$ Givens Rotation \mathbf{Q}^T Givens rotation such that $\mathbf{Q}^T \mathbf{A} = \mathbf{R}$ $\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^T \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} r & R_{12} \\ 0 & R_{22} \end{bmatrix}$ $r = \sqrt{A_{11}^2 + A_{21}^2} \quad \cos \phi = \frac{A_{11}}{r} \quad \sin \phi = \frac{A_{21}}{r}$

Eigenvalues and Eigenvectors

Power Method Used to find largest eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$ Algorithm: Pick initial vector $z_0 \in \mathbb{R}^n$ and tolerance ϵ . For $k = 0, 1, \dots$ find $y_{k+1} = Az_k$ and normalize $z_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|}$. Stop when $\|\mathbf{A}\mathbf{z}_k - \rho_k \mathbf{z}_k\| \le \epsilon$ where $\rho(\mathbf{x}, \mathbf{A}) = \frac{\mathbf{x}^H \mathbf{A} \mathbf{x}}{\mathbf{x}^H \mathbf{x}}$. ρ_k is the approximation for **A**'s largest eigenvalue.

Eigenvalue Reduction Problem: For eigenvalueeigenvector pair λ_i, x_i of matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ where $||x_i|| = 1$, find $\mathbf{B} \in \mathbb{R}^{n \times n}$, so $eig(\mathbf{B}) = eig(\mathbf{A}) \setminus \{\lambda_i\}$ and $\lambda_i \to 0$ i.e. λ_i is replaced by 0.

For symmetric matrices: $\mathbf{B} = \mathbf{A} - \lambda_i \mathbf{x}_i \mathbf{x}^T$

For non-symmetric matrices: $\mathbf{B} = \mathbf{Q}\mathbf{A}\mathbf{Q}^T$ for orthogonal \mathbf{Q} such that $\mathbf{Q}\mathbf{x}_i = k\mathbf{e}_i$; \mathbf{e}_i unit vector corresponding to λ_i .

Inverse Iteration Used to find smallest eigenvalue of $A \in$ $\mathbb{R}^{n\times n}$.

Algorithm: Use power method to find largest eigenvalue ψ_{max} of \mathbf{A}^{-1} ; $\lambda_{min} = \frac{1}{\psi_{max}}$ is smallest eigenvalue of \mathbf{A} .

QR Iteration To find eigenvalues of non-symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Algorithm: Start with $\mathbf{A}_0 = \mathbf{A}$. For $k = 0, 1, \ldots$ find QR decomposition $\mathbf{A}_k = \mathbf{Q}_k \mathbf{R}_k$ and calculate $\mathbf{A}_{k+1} = \mathbf{R}_k \mathbf{Q}_k$.

If $eig(\mathbf{A}) \in \mathbb{R}$, then for large k, \mathbf{A}_k becomes upper-triangular and \mathbf{A}_k 's diagonal entries approach \mathbf{A} 's eigenvalues.

If **A** has m < n complex eigenvalues, then for large k, \mathbf{A}_k becomes quasi-upper triangular, \mathbf{A}_k 's diagonal entries approach **A**'s real eigenvalues, and a $m \times m$ sub-matrix whose eigenvalues are \mathbf{A} 's complex eigenvalues remains on \mathbf{A}_k 's diagonal.

Symmetric and Tridiagonal Matrices For all symmetric $\mathbf{A} \in \mathbb{R}^{n \times n}$ there exists permutation matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{T} = \mathbf{P}\mathbf{A}\mathbf{P}^T$ is tridiagonal.

T irreducible \implies T has no zeros on upper tridiagonal.

$$\mathbf{T} = \begin{bmatrix} a_1 & b_1 \\ b_1 & a_1 & b_2 \\ & \ddots & \ddots & \ddots \\ & b_{n-2} & a_{n-1} & b_{n-1} & b_{n-1} & a_n \end{bmatrix}$$

$$\mathbf{T}_i = \mathbf{T}$$
's $i \times i$ principle sub-matrix

 $\mathbf{T}_i \equiv \mathbf{T}$'s $i \times i$ principle sub-matrix.

Sturm Sequence $f_i(\lambda) = \det(\mathbf{T} - \lambda \mathbf{I}) \equiv \mathbf{T}_i$'s characteristic polynomial.

Sturm sequence:
$$f_{i+1}(\lambda) = (a_{i+1} - \lambda)f_i(\lambda) - b_i^2 f_{i-1}(\lambda),$$

 $f_0(\lambda) = 1$ and $f_1(\lambda) = a_1 - \lambda$ $i = 0, ..., n$

For λ_0 , $s(\lambda_0)$ is the number of sign agreements between successive terms in the sequence $f_i(\lambda_0), i = 0, \ldots, n$.

Adjacent terms with same sign and interior zeroes of $f_i(\lambda_0)$ count as sign agreements.

The number of sign agreements $s(\lambda_0)$ is the number of T's eigenvalues that are strictly larger than λ_0 .

Polynomial Interpolation

Given n points $(x_i, y_i), i = 0, 1, ..., n$, all x_i unique, find a polynomial of degree $\leq n$ such that $p(x_i) = y_i$ for all i.

Classic Form Interpolation polynomial: $p_n(x) = a_n x^n +$ $\cdots + a_1 x + a_0 \ a_n x_0^n + \cdots + a_1 x_0 + a_0 = y_0$ $a_n x_1^n + \dots + a_1 x_1 + a_0 = y_1 \qquad \Longrightarrow \mathbf{V} \mathbf{a} = \mathbf{y}$ $a_n x_n^n + \dots + a_1 x_n + a_0 \stackrel{\cdot}{=} y_n$ Find parameter vector $\mathbf{a} \in \mathbb{R}^n$ by solving $\mathbf{V}\mathbf{a} = \mathbf{y}$.

Lagrange Polynomial Interpolation Lagrange polynomials: $l_i(x) = \prod_{j \neq i}^{n} \frac{x - x_j}{x_i - x_j}, \quad l_i(x_j) = \delta_{i,j}$ Interpolation polynomial: $p_n(x) = \sum_{i=0}^n y_i l_i(x)$ If $\omega(x) = (x - x_0) \cdots (x - x_n)$ then $l_i(x) = \frac{\omega(x)}{(x - x_i)\omega'(x_i)}$

Newton Polynomial Interpolation Divided difference for function f and points (x_i, y_i) is the leading coefficient of polynomial p_n interpolating f at (x_i, y_i) .

$$[x_0, \dots, x_k]f = \frac{[x_1, \dots, x_k]f - [x_0, \dots, x_{k-1}]f}{x_k - x_0} \qquad [x_k]f = f(x_k)$$

$$\lim_{x_1 \to x_0} [x_0, x_1]f = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0)$$
If $x_0 = \dots = x_n$, then $[x_0, \dots, x_n]f = \frac{f^{(n)}(x_0)}{n!}$
Interpolation polynomial: $p_n(x) = [x_0]f + (x - x_0)[x_0, x_1]f + \dots + (x - x_0) \dots (x - x_{n-1})[x_0, \dots, x_n]f$

Error Estimation for Lagrange and Newton When interpolating $f(x), f'(x), \ldots$ on the interval I = [a, b] at m

points
$$x_1, ..., x_m$$
 with n th degree polynomial p_n .
$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega(x), \qquad \xi \in [a, b]$$

$$\omega(x) = (x - x_1)^{k_1} (x - x_2)^{k_2} \cdots (x - x_n)^{k_n}$$

$$k_i = 1 \text{ for } f(x_i), k_i = 2 \text{ for } f(x_i) \text{ and } f'(x_i), \text{ etc...}$$

$$\max_{x \in [a,b]} |f(x) - p_n(x)| \leq \frac{1}{(n+1)!} \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)| \max_{x \in [a,b]} |\omega(x)|$$

Differential Equations

To convert $a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0$ to a linear system: Let $\tilde{y}_1 = y$, $\tilde{y}_2 = y'$, ..., $\tilde{y}_n = y^{(n-1)}$ $\mathbf{Y} = [\tilde{y}_1, \dots, \tilde{y}_n]$ $\mathbf{Y}' = \mathbf{F}(x, \mathbf{Y})$ Explicit Euler: $y_{n+1} = y_n + hf(x_n, y_n)$ Implicit Euler: $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$ Trapezoid: $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$

Runge-Kutta RK2
$$k_1 = hf(x_n, y_n)$$

 $k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$
 $y_{n+1} = y_n + k_2 + \mathcal{O}(h^3)$

Runge-Kutta RK4
$$k_1 = hf(x_n, y_n)$$

 $k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$
 $k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$
 $k_4 = hf(x_n + h, y_n + k_3)$
 $y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 + \mathcal{O}(h^5)$