

We will explore one of the most important visualization tools in statistics — the scatter plot. We will learn **what** it is, **why** it's useful, **how** to interpret it with real-life examples and some **common pitfalls** to avoid when using scatterplots

A scatter plot is a type of graph that shows the relationship between two quantitative or numerical variables using dots.

X-axis \rightarrow independent variable Y-axis \rightarrow dependent variable (AKA response) Each dot is a data point (x, y).

Example:

(2,5)

(4,8)

(3,4)

Easy to interpret and often the **first step** in data analysis.

Example1: Positive linear relationship

Suppose we collect data on students — their hours of study (X) and exam scores

(Y). Each point shows how much a student studied and what score they achieved.

Hours Studied	<u>Scores</u>
1	35
2	40
3	48
4	70
5	79
6	77
2.5	50
3.5	50
4.5	60
5.5	70
1.5	50
6.5	95

Example 2: Negative linear relationship

Suppose we collect data on students — their hours of video game playtime (X) and exam scores (Y). Each point shows how much a student played video games and what score

they achieved.

Hours Gaming	<u>Scores</u>
1	95
2	80
3	80
4	78
5	69
6	55
2.5	82
3.5	75
4.5	68
5.5	50
1.5	90
6.5	50

Example3: No linear relationship

Suppose we collect data on students — the number of pushups (X) and exam scores (Y). Each point shows how many pushups a student can do and what score they achieved.

Push-Ups	<u>Scores</u>
10	82
15	75
20	91
25	60
30	88
35	73
40	95
45	62
50	78
55	85
60	68
65	90

Why Scatter Plots Are Useful: Identify Relationships

- Detect correlation between variables.
- Direction of relationship:
 - Positive correlation: both increase
 - Negative correlation: one increases, the other decreases
 - No correlation: scattered, no clear trend

Why Scatter Plots Are Useful: Identify Strength of Relationship

Interpret strength:

If strong correlation then points are close to a straight line. If weak correlation then points are loosely spread.

Why Scatter Plots Are Useful: Spot Outliers

• Points that don't fit the pattern indicate unusual observations.

Why Scatter Plots Are Useful: Visualize Clusters

You can detect natural grouping of points.

X (distance from home) = [2.2, 1.9, 2.3, 2.8, 1.9, 1.9, 2.8, 2.4, 1.8, 2.3, 1.8, 1.8, 2.1, 1.0, 1.1, 1.7, 1.5, 2.2, 1.5, 1. 3, 6.4, 6.1, 5.9, 5.8, 5.3, 5.6, 5.8, 6.5, 6.2, 5.1, 6.2, 5.8, 5.7, 6.3, 6.5, 6.5, 5.6, 5.8, 6.2, 6.5, 9.9, 10.2, 10.7, 9.7, 9. 6, 9.7, 10.5, 10.2, 9.7, 10.3, 10.0, 10.5, 9.6, 9.8, 9.8, 9.8, 9.3, 10.1, 10.1, 10.0, 9.9]

Y (money spent on food) = [3.7, 2.9, 3.0, 2.3, 2.7, 3.1, 2.4, 3.2, 2.7, 2.9, 2.7, 3.9, 3.0, 2.5, 3.4, 2.4, 3.1, 2.0, 2.3, 3.1, 6.8, 6.9, 6.4, 6.4, 7.4, 7.7, 7.0, 7.5, 7.2, 6.7, 7.2, 7.8, 7.0, 7.8, 5.7, 7.4, 7.0, 6.9, 7.0, 6.0, 2.3, 2.8, 2.8, 2.6, 2.9, 3.2, 3.9, 3.1, 3.1, 3.0, 2.0, 3.0, 3.0, 4.2, 2.9, 3.2, 3.0, 2.4, 3.6, 3.4]

It is hard to detect clusters by looking at numbers, but easy to see them when they are plotted.

Common Mistakes and Tips

1. Using it for categorical data:

Scatter plots only make sense for columns that have numerical data. For example, below, the feature Department although has numeric data, but it is categorical in nature with following mapping:

1 -> HR

2 -> Sales	<u>Name</u>	<u>Department</u>	Years of Experience	<u>Salary</u>
3 -> Finance	Α	1	2	32000
	В	2	5	55000
	С	2	7	72000
	D	3	3	40000
	E	1	6	50000
	F	3	8	65000
	G	2	4	43000
	Н	2	9	80000
	1	1	1	30000
	J	3	10	85000

Common Mistakes and Tips

2. Misinterpreting correlation as causation:

"Just because two things move together doesn't mean one causes the other."

A study finds that **ice cream sales** and **electricity demand** both increase during certain months of the year. We may misinterpret this and claim increased ice cream consumption led to higher electricity demand.

Actual reason could be a lurking variable. The real cause is **seasonal temperature** — warm weather causes both:

- More ice cream sales (because people want cold desserts)
- Electricity demand grows (due to more AC, etc.)

Real-World Applications

- 1. Education: Hours studied vs. marks scored.
- 2. Health: Calorie intake vs. weight gain.
- 3. Business: Advertising spend vs. sales revenue.
- 4. Economics: Inflation vs. unemployment (Phillips Curve).
- **5. Data Science:** Feature relationships before modeling to check if variables are related.

Etc...

Hfdslfds fksdljfsD|] fkdslfa