Evaluation of applications over an intranet

Intranet architecture

Workload analysis

Intranet applications (there are different classes):

1) Corporate training: web based application

2) Access to local file system

Infrastructure hypothesis

- All file server and web server have a single CPU and a single disk
- The FDDI and the routers are very fast versus the Lan Ethernet, then they can be modelled as a simple delay, therefore they are server without queue
- All the other components can be modelled as queues with service time independent by the load.

User hypotheses

- Finite number of users
- An user generates a new request, after having received an answer to the previous request, after a time equal to its thinking time
- 85% of users is working with the local file system
- 15% of users is working with the Web Server

Queueing network

Multiclass closed queue model, each class is charaterized by: client group, application, server

- client group: CLi: clients in Lan i (i: 1 to 4)
- application:
 - FS for local file server access,
 - TR for Training
- server:
 - FSi: i-th NFS server (i: 1 to 4)
 - WebS: Web Server

Class types and number of users

(CL1, FS, FS1)	$120 \times 0.85 = 102$
(CL2, FS, FS2)	$50 \times 0.85 = 43$
(CL3, FS, FS3)	$100 \times 0.85 = 85$
(CL4, FS, FS4)	$100 \times 0.85 = 85$
(CL1, TR, WebS)	$120 \times 0.15 = 18$
(CL2, TR, WebS)	$50 \times 0.15 = 7$
(CL3, TR, WebS)	$100 \times 0,15 = 15$
(CL4, TR, WebS)	$100 \times 0,15 = 15$

Server types

Routers: low delay, given their low latency

FDDI ring: low delay, given high bandwidth

CPU

Disks

LANs

servers with load independent service time

Service Demands: $D_{i,r} = V_{i,r} \times S_{i,r}$

where $V_{i,r}$ = Visit Ratio $S_{i,r}$ = Service Time

QN model

(for a training session)

- Avg request document size per HTTP request:
 - 20 rqs for txt documents (2.000 bytes per doc)
 - − 100 rqs for inline images (50.000 bytes each)
 - (20 text pages x 5 inline/text pages)
 - 15 rqs for other multi-media (mm) obj (2.000.000 bytes each)

- % request for:
 - $\text{ txt documents} = \frac{20}{(20+100+15)} = 15 \%$
 - inline images = 100/(20+100+15) = 74 %
 - other mm obj = 15/(20+100+15) = 11 %

• Average document size $0.15 \times 2.000 + 0.74 \times 50.000 + 0.11 \times 2.000.000 = 257.300 \text{ bytes}$

Note it is an average, the overhead associated to the three document sizes is different

• Document request arrival rate is function of the think time and of the number of users in the thinking phase

- Device service time
 - CPU: 1 msec processing time x HTTP request
 - Disk:

We need to consider

- Seekrand= avg time to position at a random cylinder
- DiskRevTIme = time for a complete disk revolution
- TransferTime = BlockSize/ 10⁶ x TransferRate
- ControllerTime = time spent at the controller for an I/O req.

S_d = ControllerTime +Pmiss x (SeekRand + DiskRevolutionTime/2+TransferTime)

• Lan hp: no fragmentation i.e. max data area 1500 bytes; hp no data overhead for HTTP request

Overhead_n = TCPOvhd+Ndatagrams x (IPOvhd + FrameOvhd_n)

ServiceTime_n =
$$\frac{8 \text{ x (MessageSize + Overhead}_n)}{10^6 \text{ x Bandwidth}}$$

- Lan hp: no fragmentation i.e. max data area 1500 bytes; hp no data overhead for HTTP request
- Ethernet

NDatagrams =
$$\frac{257300 + 20}{1500 - 20} = 174$$

Overhead_n = 20 + Ndatagrams x (20 + 18) = 6632

ServiceTime_n =
$$\frac{8 \times (257300 + 6632)}{10^6 \times Bandwidth}$$

- Lan hp: no fragmentation i.e. max data area 1500 bytes; hp no data overhead for HTTP request
- Token ring

NDatagrams =
$$\frac{257300 + 20}{1500 - 20} = 174$$

Overhead_n =
$$20 + \text{Ndatagrams x } (20 + 28) = 8372$$

ServiceTime_n =
$$\frac{8 \times (257300 + 8372)}{10^6 \times Bandwidth}$$

- Router
 - delay 134 **µsec** x packet (approximated in total to 1 msec)

FDDI

delay with

ServiceTime_n =
$$\frac{8 \text{ x (MessageSize + Overhead}_n)}{10^6 \text{ x Bandwidth}}$$

Local file system workload characterization

- File dimension 8192 bytes
- avg NFS request arrival rate is function of the think time and number od users in the thinking phase

Local file system workload characterization

• Device service time

- CPU: 1 msec per file request
- Disk:

We need to consider

- Seekrand= avg time to position at a random cylinder
- DiskRevTIme = time for a complete disk revolution
- TransferTime = BlockSize/ 10⁶ x TransferRate
- ControllerTime = time spent at the controller for an I/O req.
- N blocks to read = 8192/2048 = 4
- Lan i with 8192 bytes

Throughput & response time

	Class	Throughput	Response time
		(req/sec)	(sec)
•	CL1, FS, FS1	10,12	0,08
•	CL2, FS, FS2	4,23	0,06
•	CL3, FS, FS3	8,44	0,08
•	CL4, FS, FS4	8,44	0,07
•	CL1, TR, WebS	0,34	8,58
•	CL2, TR, WebS	0,14	8,55
•	CL3, TR, WebS	0,28	7,96
•	CL4, TR, WebS	0,28	8,35