LINEAR REGRESSION
FOR PREDICTION

ORRELATION US

CAUSATION

NICE TO KNOW.

PREPICTION

HARD TO DO.

THE REGRESSION TASK

NUMERIC

FEAT UNE

GRADE	GPA	Masou	Yean
89	3.23	STAT	3
७७)	3,5 l	M 47 4	3
72	2.61	Econ	Ч
93	4,00	STAT	Ч
95	3.62	cs	2_

"DATA VIEW"

NEW STUDENT

GPA = 3.42

MAJUR = MATH

VEAR = 4

GRADE = ?

IN PRACTICE DON'T

MAKING GOOD PREDICTIONS

WE WANT
$$f(x)$$
 CLOSE TO Y.

IN PARTICULAR WE WANT $(Y-f(x))^2$ TO BE SMALL

THIS HAPPENS WHEN

LINEAR REGRESSION MODELS

LINEAR CUMBINATION OF FEATURES

4550me

OR CONDITIONAL MEAN

THAT IS

TUNCTION

FIND
$$\beta_s$$
 THAT

$$\sum_{i=1}^{n} \left(y_i - \left(\beta_b + \beta_i x_{ii} + \dots + \beta_p x_{ip} \right) \right)^2 \qquad "Least sources"$$

CALL THESE $\hat{\beta}_s$

Gives
$$\hat{a}(x) = \hat{B}_{e} + \hat{B}_{f}, x, + \dots + \hat{B}_{p} \times p$$

PROBLEM

Assume

M(x) = Bo+ Bix. + Bix + B3x3

PERFECT!

() VERFITTING

SOLUTION

USE "UN SEEN" DATA TO EVALUATE MODELS RANGOM SAMPLE y x. 200% y x, TEST DATA

MORE COMPLICATED SOLUTION

LOOK AT THE DATA

· SPULT DATA TST- TRN EST- VAL

. PICK CANDIDATE MODELS

- · FIT MODELS TO ESTIMATION DATA
- · EVALUATE AND SELECT ON VACIDATION DATA
- . FIT CHUSEN MODEL TO TRAIN DATA
 - ESTIMATE GRAVE OF CHOSEN MOSEL OU TEST DATA
- . USE !