ML2017 Fall HW6

TAs ntu.mlta@gmail.com

Outline

- Unsupervised Learning & Dimension Reduction
 - Principal Components Analysis (PCA) of colored faces
 - Visualization of Chinese word embedding
 - Image clustering

PCA of colored faces - outline

- 學習用 numpy 實做 PCA 以達到 dimensionality reduction 的目的
- 跟以往不同,這次是對彩色的臉做 PCA。
- 數據集來自 Aberdeen University 的 Prof. Ian Craw,並經過助教們的挑選及 對齊,總共有 415 張 600 X 600 X 3 的彩圖。
- 連結: https://drive.google.com/open?id=1_zD31lglz6eTh55ushu-5dtciatuVyPy

PCA of colored faces - requirements

- 只能用 <u>numpy.linalg.svd</u> 或 <u>np.linalg.eig</u> 實做PCA
- 只能用 scikit-image 讀寫圖片
- 也就是說程式會在只有 numpy 和 scikit-image 的環境下執行。
- 程式要求在三分鐘內,在與 pca.sh 相同的目錄中儲存 reconstruction.jpg。
- \$1 是所有照片的資料夾(相對路徑)
- reconstruction.jpg 是 \$2 這張照片用前四個 Eigenfaces 重建的結果。
- 執行方式: bash pca.sh \$1 \$2,例如: bash pca.sh ../imgs 414.jpg

PCA of colored faces - report qeustions

- 1. 請畫出所有臉的平均。
- 2. 請畫出前四個 Eigenfaces,也就是對應到前四大 Eigenvalues 的 Eigenvectors。
- 3. 請從數據集中挑出任意四個圖片,並用前四大 Eigenfaces 進行 reconstruction,並畫出結果。
- 4. 請寫出前四大 Eigenfaces 各自所佔的比重,也就是 $\overline{\sum s_j}$,請用百分比表示並四捨五入到小數點後一位。

PCA of colored faces - reminder

- 請記得先減去平均再計算 Eigenfaces, Eigenvalues
- Eigenfaces 是奇怪的顏色是正常的,如右上圖(第十個Eigenface)
- 因為 Eigenfaces 會有負值,因此在畫圖時,請用以下方式轉換:
 - M -= np.min(M)
 - M /= np.max(M)
 - o M = (M * 255).astype(np.uint8)
- 程式只會執行最多三分鐘。
- 只能 import <u>numpy</u> 和 <u>skimage</u>
- 程式的結果是有標準答案的(可容許每個值相差 ±1 以內),可以事先和同學比看看

Visualization of Chinese word embedding - outline

- 用任何 word2vec 的套件在中文的句子上訓練中文字的 word embedding
 - o 有 python-package 的常用 word2vec 套件: gensim, word2vec, glove-python, glove
- 用任何dimension reduction的演算法在二維平面上視覺化 word embedding
 - 可以使用任何 dimension reduction 的演算法,但建議使用 <u>TSNE</u>
- 從視覺化的結果觀察 word embedding 訓練的成果

Visualization of Chinese word embedding - data

- 從三個 Final Project 的 training data 各取其中有中文句子的部份:
 - TV Conversation : provideData/training_data/1_train.txt ~ 5_train.txt
 - Chinese QA: train-v1.1.json
 - Listen & Translate : data/train.caption
- 用'。'或 '\n' 當做句子之間的分界,然後去掉長度小於6的
- 總共有 578810 句
- 連結:<u>https://drive.google.com/open?id=1E5lElPutaWqKYPhSYLmVfw6olHjKDgdK</u>

Visualization of Chinese word embedding - reminder

- 建議用 jieba 分詞
- 因為 jieba 預設主要是簡體字,建議使用繁體分詞更好的 <u>dict.txt.big</u>
 - 從連結下載詞典,然後用 jieba.set_dictionary (path_to_downloaded_dict.txt.big)
- Visualization 的時候,只針對出現次數 ≥K 的詞,建議 6000 ≥ K ≥ 3000
- 用 <u>adjustText</u> 避免圖表文字的重疊
- 用 matplotlib 作圖的話,要注意中文字體的設定,否則會出現亂碼
- 禁止使用 pretrained word embedding

Visualization of Chinese word embedding - report questions

- 1. 請說明你用哪一個 word2vec 套件,並針對你有調整的參數說明那個參數的意義
- 2. 在 Report.pdf 上放上你visualization的結果

3. 請討論你從 visualization 的結果期壑到什麽?

Image clustering - outline

- 目標:分辨給定的兩張 images 是否來自同一個 dataset
 - 所有的 image 都來自兩個不同的 dataset
 - 除了 image 本身之外,沒有任何 label
 - 只能用我們給的 data,不能使用額外的 dataset (包括用額外資料 train 的 model)
 - 在 kaggle deadline 之後會公布一個小型的 dataset,包含 10000 張 images。這個 dataset 前 5000 張 images 跟後 5000 張 images 是分別從兩個 dataset 得到的。
 到時候請大家對這個 dataset 做 visualization

Image clustering - evaluation

F1-Score $F1 = 2\frac{p \cdot r}{p+r} \text{ where } p = \frac{tp}{tp+fp}, \quad r = \frac{tp}{tp+fn}$

	prediction positive	prediction negative		
ground true positive	true positive (tp)	false negative (fn)		
ground true negative	false positive (fp)	true negative (tn)		

	prediction positive	prediction negative
ground true	true positive	false
positive	(tp)	negative (fn)
ground true	false positive	true negative
negative	(fp)	(tn)

• simple example

0	predict	1	1	1	1	0	0	0	0	0	0
	ground true	1	0	0	0	0	0	0	0	0	1
	result	tp	fp	fp	fp	tn	tn	tn	tn	tn	fn

$$\circ$$
 tp = 1, fp = 3, fn = 1, tn = 5

$$\circ$$
 p = 1 / (1+3) = 0.25, r = 1 / (1+1) = 0.5

$$F1 = 2\frac{p \cdot r}{p+r}$$
 where $p = \frac{tp}{tp+fp}$, $r = \frac{tp}{tp+fn}$

Image clustering - data

- 總共有 140000 張 image,都是黑白圖片
- image.npy.zip
 - 輸入指令 unzip image.npy.zip,會得到一個檔案叫做 image.npy
 - 使用 np.load() 讀取 image.npy,會得到一個 140000x784 的 ndarray
 - 每一個 row 都代表一張 28x28 image
- visualization.npy (kaggle deadline 之後公布在 kaggle 上)
 - 使用 np.load() 讀取 visualization.npy,會得到一個 10000x784 的 ndarray
 - 前 5000 張 images 來自 dataset A,後 5000 張 images 來自 dataset B

Image clustering - data (cont.)

- test_case.csv
 - o 每一行都有 ID, image1_index, image2_index,總共有 1,980,000 筆測資
 - o ID: test case index
 - image1_index: 對應到 image.npy 裡的 row index
 - image2_index: 對應到 image.npy 裡的 row index
- sample_submission.csv
 - 第一行是 "ID,Ans"
 - 之後每一行都會有 test case ID,以及對這個 test case 的 prediction
 - 如果 test case 的兩張 image 預測後是來自同一 dataset · Ans 的地方就是 1 · 反之是 0

Image clustering - methods

- 如果直接在原本的 image 上做 cluster, 結果會很差 (有很多冗餘資訊)
 - => 需要更好的方式來表示原本的 image
- 為了找出這個更好的方式,可以先將原始 image 做 dimension reduction,用比較少的維度來描述一張 image
 - o 可以試試 PCA, SVD, t-SNE, auto-encoder, or anything to represent an image in lower dimension

Image clustering - methods (cont.)

- 接著對降維過後過後的數據做 cluster
 - o cluster:可以試試 K-means
- 或者你可以衡量兩個降維過後的 images,他們之間的相似度 (similarity)。如果相 似度大於一個設定好的 threshold,就把這兩個 images 當成同一類別
 - 算 similarity 的方法: euclidean distance, cosine similarity......

Image clustering - methods (cont.)

- 其他可能有幫助的事:
 - 必須找個方法來衡量方法的好壞,一個直覺的方法是利用降維過後的 feature 去
 reconstruct 成原本的 image。如果 reconstruct 的結果越接近原本的 image,可以一定程度的代表你抽出來的 feature 越好
 - 對原始 image 做 data augmentation
 - try different number of cluster
 - 看看老師 unsupervised learning 上課內容

Image clustering - report qeustions

- 1. 請實作兩種不同的方法,並比較其結果。(不同的降維方法或不同的 cluster 方法都可以算是不同的方法)
- 2. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。(用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取 feature 的前兩維)
- 3. visualization.npy 中前 5000 個 images 來自 dataset A,後 5000 個 images 來自 dataset B。請根據這個資訊,在二維平面上視覺化 label 的分佈,接著比較和自己預測的 label 之
- 間有何不同。(visualization.npy 將在 Kaggle deadline 之後公布在 Kaggle 上) *2 & 3 題請用 image.npy train 好的模型去預測 visualization.npy

• 取降維過後的 feature 前兩個維度作圖

● 把降維過後的 feature 再用 t-SNE 投影到二維

Image clustering - kaggle

- kaggle_url :
- 請至 kaggle 創帳號登入,需綁定 NTU 信箱。
- 個人進行,不需組隊。
- 隊名:學號_任意名稱 (ex. b02902000_日本一級棒),旁聽同學請避免學號開頭。
- 每日上傳上限 5 次。
- test set 的資料將被分為兩份,一半為 public,另一半為 private。
- 最後的計分排名將以 2 筆自行選擇的結果,測試在 private set 上的準確率為準。
- kaggle 名稱錯誤者將不會得到任何 kaggle 上分數。

Deadline

1.Kaggle: 1/11 23:59 (GMT+8)

2.Report and source code: 1/12 23:59 (GMT+8)

助教會在 deadline 一到就 clone 所有程式,並且不再重新 clone 任何檔案

Policy I - repository

- github 上 ML2018SPRING/hw4/ 裡面請至少包含:
 - Report.pdf
 - o pca.sh
 - hw4.sh (for image clustering 那題,這次只需上傳結果最好的方法)
 - your python files
 - your model files (can be loaded by your python file)
- · 請不要上傳 dataset
- 如果你的 model 超過 github 的最大容量,可以考慮把 model 放在其他地方 (http://slides.com/sunprinces/deck-16#/2%EF%BC%89)。
- model 可以是多個檔案,例如 keras model,或者是 image id mapping file。如果你的 code 需要極長的執行時間,可以把 image cluster 後的結果寫進一個 file,並在執行時讀取它。

Policy II – source code

- Python Only, 請使用 Python 3.5+
- PCA of colored faces 的部份只能使用 <u>numpy</u> 和 <u>scikit-image</u>
- Chinese word embedding 的部分不限定套件
- **Image clustering** 的部份可以使用 Keras 2.0.8, Tensorflow1.3.0, pytorch 0.2.0, h5py2.7.0, Numpy, scipy, Pandas 0.20+, matplotlib, scikit-image, pillow, scikit-learn, Python Standard Lib.
- 只可使用限定的 package,以及 python 內建的 package,並且限定使用 Tensorflow 作為 Keras 的backend。需要其它套件,請來信詢問。若 import 其他東西,或是使用 不同版本,造成批改錯誤,將不接受修正。
- 不能使用額外 data 來 training (包括 pre-training)
- 不能 call 其他線上 API
- 請附上訓練好的 model (及其參數)

Policy III – bash script

- 與之前作業相同,請在script中寫清楚使用python版本
- 以下的路徑,助教在跑的時候會另外指定,請保留可更改的彈性,不要寫死
 - PCA of colored faces: (詳見第4頁) 時限三分鐘
 - bash pca.sh <images path> <target image>
 - Image clustering:

Policy IV - programs scores

- PCA of colored faces: (1%) 正確性
- Kaggle Rank
 - o (0.8%) kaggle 上和 reproduce 都超過 public leaderboard 的 simple baseline 分數
 - o (0.8%) kaggle 上和 reproduce 都超過 public leaderboard 的 strong baseline 分數
 - o (0.8%) kaggle 上和 reproduce 都超過 private leaderboard 的 simple baseline 分數
 - (0.8%) kaggle 上和 reproduce 都超過 private leaderboard 的 strong baseline 分數
 - 。 (0.8%) 2018/1/4 23:59 (GMT+8) 前 kaggle 上超過 public simple baseline 分數
 - (BONUS) kaggle 排名前五名 (且願意上台跟大家分享的同學)
- 前五名排名以 private 平均為準,屆時助教會公布名單
- hw4.sh 的結果必須超過 public simple baseline 否則程式部分將不會有任何分數。

Policy V - report questions and scores

- PCA of colored faces
 - (.5%) 請畫出所有臉的平均。
 - o (.5%) 請畫出前四個 Eigenfaces,也就是對應到前四大 Eigenvalues 的 Eigenvectors。
 - o (.5%) 請從數據集中挑出任意四個圖片,並用前四大 Eigenfaces 進行 reconstruction,並畫出結果。
 - o (.5%) 請寫出前四大 Eigenfaces 各自所佔的比重 (explained variance ratio),請四捨五入到小數點後一位。
- Visualization of Chinese word embedding
 - o (.5%) 請說明你用哪一個 word2vec 套件,並針對你有調整的參數說明那個參數的意義。
 - o (.5%) 請在 Report 上放上你 visualization 的結果。
 - o (.5%) 請討論你從 visualization 的結果觀察到什麼。
- Image clustering *2 & 3 題請用 image.npy train 好的模型去預測 visualization.npy
 - (.5%) 請比較至少兩種不同的 feature extraction 及其結果。(不同的降維方法或不同的 cluster 方法都可以算是不同的方法)
 - (.5%) 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。
 - (.5%) visualization.npy 中前 5000 個 images 來自 dataset A,後 5000 個 images 來自 dataset B。請根據 這個資訊,在三維平面上視覺化 label 的分佈,接著比較和自己預測的 label 之間有何不同。

Policy VI - reminders

- Report 強烈建議使用中文作答。
- 請根據 Report Template 寫Report,如果想要用其他排版模式也請註明題號以及題目內容(請勿擅自更改題號)。
- 請交 pdf 檔,檔名為 Report.pdf
- Collaborators 請附上學號與姓名
- 若有問題,請寄信詢問。並在標題打上 [HW4]

小老師制度(手把手教學)

- 1. 在 1/4 以前超過 simple baseline 並願意在 1/5 在上課時間教導同學撰寫作業六程式,請填寫一下表單:https://goo.gl/forms/xSn2ljAaXMbouE733
- 2. 1/4 將公布小老師名單在作業網頁,人數太多將以符合以下標準的同學為主:
 - 1. 沒有當過小老師
 - 2. Kaggle Public Leaderboard 成績排名較高 (但請不要因此想overfit public set)
- 3. 小老師當次成績 +1%

Other Policy

- script 錯誤直接 0 分。若是格式錯誤,請在公告時間內找助教修好,修完kaggle分數*0.7
- Kaggle 超過 deadline 直接 shut down,可以繼續上傳但不計入成績
- Github 遲交一天(*0.7),不足一天以一天計算,不得遲交超過兩天,有特殊原因請找助教
- Github 遲交表單:
 - code: https://goo.gl/forms/U739TuuKJE3QDdWb2 (遲交才需填寫)
 - o report: https://goo.gl/forms/ulB0FqGngd8cmvjf2 (遲交才需填寫)
- 遲交請「先上傳程式」Github 再填表單,助教會根據表單填寫時間當作繳交時間
- 請勿使用任何其他非助教提供的 data,否則以 0 分計算
- 上傳的 model 總和大小建議在 500 MB以內

FAQ

- 1. 作業網址: <u>Link</u>
- 2. 若有其他問題,請po在FB社團裡或寄信至助教信箱,請勿直接私訊助教。
- 3. 助教信箱: ntumlta2018@gmail.com

Link

- 1. 雲端使用方法:<u>http://slides.com/sunprinces/deck-16#/2</u>)
- 2. Kaggle: https://www.kaggle.com/t/a9a500b3bcc447c68b5a2285bf55b822
- 3. 作業網址: https://ntumlta.github.io/2017fall-ml-hw6/
- 4. Report template:
 - https://docs.google.com/document/d/13c6RqKvcYdSBMxq4yFljUUDnj5fXmv9cGa01 yfFwcFU/edit?usp=sharing
- 5. Github 遲交表單: 未開放
- 6. 小老師報名表單:未開放