

11-80 DTIC Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1	3. RECIPIENT'S CATALOG NUMBER
Special Report 80-27 \(\lambda \text{D} - A \circ 9 \circ \)	5 75
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
DYNAMICS OF NU AND NO IN CROPDED SOLIS TRAISCAME	1
DYNAMICS OF NH, AND NO IN CROPPED SOILS IRRIGATE WITH WASTEWATER-A FIELD STUDY	D
"TIM WADILWATER-R FIELD STODI	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*)	
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
I.K. Iskandar, L. Parker, C. McDade, J. Atkinson	1
and A. Edwards	}
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Cold Regions Research and Engineering	AREA & WORK UNIT NUMBERS
Laboratory	CWIS 31633, 31297
Hanover, New Hampshire 03755	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Directorate of Civil Works	June 1980
Office, Chief of Engineers	13. NUMBER OF PAGES 26
Washington, DC 20314 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS, (of this report)
month of the control in the control in an annual control in the co	}
	Unclassified
	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
Approved for public release; distribution unlimited in the state of the specific state of the specific state of the specific section of the specific s	
18. SUPPLEMENTARY NOTES Each reference to NH $_{\Lambda}$ and NO $_{3}$ implies NH $_{\Lambda}^{+}$ and NO	
*	,
19. KEY WORDS (Continue on reverse elde if necessary and identify by block number,	·
Field tests Soil nitrogen Land treatment Wastewater	
Nitrification	
Nitrogen cycle	•
9 -, -	i
20. ABSTRACT (Continue on reverse side H necessary and identify by block number)	
The objectives of this field study were 1) to obta behavior of wastewater NH7 and NO3 in soils, 2) to dance of NH7 and NO3 in soils receiving wastewater sonal effect on the fate of wastewater NH7 applied tion system. The study was conducted using an ontwo soil types and was covered with forage grass.	determine the relative abun- , and 3) to evaluate the sea- to soils in a slow infiltra- going test plot which contains Samples were collected in
June and October to study the seasonal effect on t	he dynamic of N The concern

DD , FORM 1473 EDITION OF 1 HOV 65 IS OSCOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (cont'd).

tions of NHM and NON in the soil reached a daily, quasi-steady state condition. The seasonal effect on the relative amounts of NHM and NOM, however, was significant. The vertical distribution of NHM and NOM was similar but there was always more NHM than NOM. The concentrations of both NHM and NOM in soil profile were high at the surface and decreased with depth, consistent with the higher CEC, the slow movement of NHM in soils, and the higher organic matter content in the surface. Both NHM and NOM concentrations were higher in the finer texture Charlton silt loam soil than in the coarser texture Windsor sandy loam soil.

Unclassified

11

PREFACE

This report was prepared by Dr. I.K. Iskandar, Research Chemist, L.V. Parker, Microbiologist, C. McDade, Physical Science Technician, of the Earth Sciences Branch, Research Division, U.S. Army Cold Regions Research and Engineering Laboratory, LTC J. Atkinson, U.S. Army Reserve, and Dr. A. Edwards, Visiting Scientist, U.S. Army. LTC Atkinson provided statistical support for this project as part of his annual active duty.

Financial support for this research was provided by funds from Chief of Engineers Civil Works Project CWIS 31633, "Optimization of Automated Procedures for Design and Management of Land Treatment Systems" and CWIS 31297, "Nitrogen Transformation in Land Treatment." The manuscript of this report was technically reviewed by Daniel Leggett and James Cragin of CRREL.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

Acce	ssion For	
	GDA&I	1
DITC		17
	ಾಂಭಾರಕನೆ	11
Just	ification	
By		
Dintr	dibution/	
_ /****	Lel titte (}⊹}⊹s
	4.5	, is
Dist	57-31.1	
1	1	
	} !	
<i>i</i> 7		

CONTENTS	Page
Abstract Preface Introduction Experimental design and analytical procedures Results and discussion June-July samples October samples Effect of season (temperature) on the distribution of NH ₄ and NO ₃ . Summary and conclusions Literature cited	i ii: 1 4 4 13 17 19
ILLUSTRATIONS	
Figure	
1. Test plot showing the location of randomly selected soil cores 2. Changes in NH_L and NO_3 -N concentration at different depths in the	3
Windsor soil over 16 days in July 1978	9
3. Changes in NH - and NO -N concentration at different depths in the Charlton soil over 16 days in July 1978	9
4. Changes in NH, - and NO -N concentrations at 0-25-cm depth in	,
Windsor and Charlton soils over 16 days in July 1978	10
Charlton soils in July 1978	11
6. Mean daily NH ₄ - and NO ₃ -N concentration in Windsor and Charlton soils at 0-7.5 cm depth in July 1978	16
7. Mean daily NH ₄ - and NO ₃ -N concentration in Windsor and Charlton	10
soils at 0-7.5 cm depth in October 1978	17
TABLES	
Table	
1. Analysis of applied wastewater for selected parameters	2
Cell 3) during 16 days during July 1978	5
3. Concentration of NO ₃ -N (meq/100 g soil) in Windsor soil (Test Cell 3) during July 1978	6
4. Concentration of NH,-N (meq/100 g soil) in Charlton soil (Test	_
Cell 4) during July 1978	7
Cell 4) during July 1978	8

	1
7. Analysis of variance, NH, - and NO, -N in Windsor and Charlton soils	2
8. Mean and standard deviation of NH ₂ - and NO ₃ -N in Windsor and Charl-	3
9. Concentration of NH,-N (meq/100 g soil) in Windsor and Charlton	4
10. Concentration of NO ₃ -N (meq/100 g soil) in Windsor and Charlton	15
11. Analysis of variance, NH ₄ - and NO ₃ -N in the top 7.5 cm in Windsor	6
12. Analysis of variance, NH _A - and NO ₃ -N in O-7.5 cm Windsor and Charl-	.8

v

INTRODUCTION

In land treatment of liquid waste, N is applied in several ionic forms, such as NH_2 , NO_3 , and organic N.* The relative amounts of each form depend mainly on the degree and type of pretreatment. One goal of land treatment is to optimize N removal and to decrease NO_3 movement into groundwater. Since soil has a high affinity for NH_4 it is desirable to keep the applied N in the NH_4 form, both for plant uptake and to slow the rate of NO_3 formation.

The rate of wastewater application, and consequently the cost of renovating wastewater, is highly dependent on the amount of N that can be applied without increasing the level of NO_3 in groundwater. A high level of NO_3 in groundwater is undesirable because of its association with infant methomoglobinemia (blue-baby syndrome) and open water eutrophication.

The behavior of N in land treatment is affected by numerous physical, chemical and biological processes as well as soil environmental conditions. With this information, mathematical models for predicting of the fate of N applied in land treatment have been recently developed and are being tested (Iskandar and Selim 1978). However, testing these models requires field data on the rate of transformation of N species. The fact that in land treatment N is repeatedly applied in small amounts (most often weekly), in contrast to normal agricultural fertilizing practice, should make significant differences in the N transformation kinetics. Also, under land treatment the soils are often kept wet (near or above field capacity), and the water flow pattern, as well as the N transformation processes, will vary significantly from those under agricultural regimes. These differences makes it difficult to utilize the rate constants obtained from agricultural N experiments with land treatment models.

In the model developed recently by Selim and Iskandar (in press), plant uptake of N from the NH $_4$ and NO $_3$ sources was assumed to be a function of their concentrations in the soil solution. It was also assumed that the plants (forage grasses) had no preference for either form (S. Barber, personal communication). Therefore, to utilize such models it is necessary to determine the validity of these assumptions.

The objectives of this field study were 1) to obtain information on the dynamics of wastewater $\mathrm{NH_4}$ in soils, 2) to determine the relative amounts of both $\mathrm{NH_4}$ and $\mathrm{NO_3}$ in soils during a one-week cycle of wastewater application, 3) to assess the transport of $\mathrm{NH_4}$ and $\mathrm{NO_3}$ in soils under field conditions, and 4) to evaluate the seasonal effect on the fate of wastewater $\mathrm{NH_4}$ applied to soils in a slow infiltration mode.

EXPERIMENTAL DESIGN AND ANALYTICAL PROCEDURES

The study was conducted at the CRREL land treatment facilities in Hanover, New Hampshire. Two outdoor plots (test cells) were used, each 8.4 m square and 1.5 m deep, constructed of concrete, and filled with soils to their field bulk density in 1973. For detailed information on the construction and performance of the plots, the reader should consult Iskandar et al.

*Each reference to NH₄ and NO₃ in this report implies NH₄ and NO₃.

(1976). One cell contained Windsor sandy loam soil and the other Charlton silt loam soil. A mixture of reed canarygrass (Phalaris arundinacea L.), timothy (Phleum pratense L. var. "Climax"), and smooth bromegrass (Bromus inermis Leyss. var. "Lincoln") was seeded on 21 May 1973. However, during the course of the present study (summer and fall 1978) quackgrass (Agropyron repens L.) was predominant and Kentucky bluegrass (Poa pratensis L.) and reed canarygrass were present in lesser quantities.

Domestic wastewater was applied to the plots in variable amounts by spray irrigation during the period 1973 to 1976 (Jenkins et al. 1978). The application rates were 7.5 cm/wk from 1976 to 1977 and 5 cm/wk during the course of the present study. The 5-cm applications were made once per week over a 6-hr period and commenced on 16 May 1978. Table 1 shows selected analyses of the wastewater used.

Table 1. Analysis of applied wastewater for selected parameters.

	July	<u> 0ct</u>	Mea June 77 to	
			Cell 3	Cell 4
NO_3 (mg liter ⁻¹)	3.7	0.2	0.8	0.4
$NH_4 \text{ (mg liter}^{-1})$	23.3	31.4	26.1	27.3
$N(K)^*$ (mg liter ⁻¹)	30.2	41.7	32.1	30.9
$P(T)^+$ (mg liter ⁻¹)	7.0	7.4	6.4	6.0
$C(0)^{**}$ (mg liter ⁻¹)	43.3	-	69.0	70.0
Cl (mg liter 1)	35.4	32.8	31.1	31.0
рН	7.6	7.4	7.6	7.7
cond (μ mho cm ⁻¹)	500	643	484	473
$BOD_5 \text{ (mg liter}^{-1}\text{)}$	-	-	44	-
$SS(T)^{++}$ (mg liter ⁻¹)	-	-	129	146
SS(V) (mg liter ⁻¹)	-	-	85	121

^{*} Kjeldahl-N

⁺ Total phosphorus

^{**} Organic carbon

⁺⁺ Total suspended solids

⁺⁺⁺ Volatile suspended solids

Figure 1. Test plot showing the location of randomly selected soil cores.

Each of the two plots was subdivided into 64 $1-m^2$ subplots for sampling (Fig. 1) with the spray head at the center of the grid.

The present study was conducted in June-July 1978 and was repeated in October 1978 to investigate the seasonal effect on the fate of applied wastewater NH $_4$. During June and July, two soil cores from randomly selected subplots were collected from test cells 3 and 4 on 14 days of a 16-day period (19-26, 28-30 June and 2-4 July). Each 1-m subplot was visually subdivided into four equal areas for core sampling (Fig. 1). Soil cores were only collected from the sprayed areas. The soil cores were divided into five depth intervals (0-2.5, 2.5-7.5, 7.5-15, 15-30 and 30-60 cm) and were airdried immediately after collection. In October 1978, soil cores were taken only from the 0-7.5-cm depth except on the third and tenth days when samples were collected down to 60 cm. Soil samples (5 g) were analyzed for soluble and exchangeable NH $_4$ -N and NO $_3$ -N by direct distillation and titration using the semi-micro steam distillation method (Bremmer and Keeney 1966).

Secondary wastewater was applied on days 1,8 and 16. In all cases, wastewater was applied immediately after collection of the soil samples designated for that day.

Statistical analyses were conducted with two Dartmouth Time Sharing System (DTSS) library programs: ANOVAR*** for analysis of variance and CELLMEAN*** for determination of the means and standard deviations. Missing data were calculated using the Yates method (Steel and Torrie 1966) considering day and depth simultaneously, or were estimated as a mean of all values at that depth if the Yates method produced a negative value.

RESULTS AND DISCUSSION

June-July Samples

Tables 2-5 show the concentration (meq-N/100 g soil) of NH₄ and NO₃ for the Windsor sandy loam (test cell 3) and the Charlton silty loam (test cell 4). As anticipated, the concentration of NH₄ was high in the topsoil and decreased with depth. In general, higher concentrations of NH₄-N than of NO₂-N were found in both soils during the study period. This was particularly true in the top 30 cm and could be attributed to several reasons, including 1) most of the N in the applied wastewater (>80%) is in the NH₄ form, 2) wastewater is applied weekly (5 cm/wk), and 3) most of the nitrified N is taken up by plants (sink) or leached to a lower depth.

Unexpected, relatively high values of NH₄-N were found deeper in the profiles, at 30-60 cm, in both soils. The maximum concentration was ≤ 0.30 and ≤ 0.07 meq/100 g soil in the Windsor sandy loam and the Charlton silty loam, respectively. This could be due either to movement of wastewater NH₄ during the present study or to movement of NH₄ from previous applications during late fall and early spring. Movement of NH₄-N in soil solution to depths of 150 cm in the same soils has been reported (Iskandar et al. 1976, Jenkins et al. 1978) and was related to soil type, amounts of NH₄ and wastewater applied, and length of time of wastewater application during the nongrowing season.

Figures 2-4 show the changes in $\mathrm{NH_4}-\mathrm{N}$ and $\mathrm{NO_3}-\mathrm{N}$ (mean of four analyses for each depth) at various depths with time in the Windsor and Charlton soils, respectively. The variation in $\mathrm{NO_3}$ with time was much less than the variation in $\mathrm{NH_4}$. The highest concentration of $\mathrm{NH_4}$ was in the top 15 cm. Concentrations of $\mathrm{NO_3}$ in the soil were low, as expected, because of leaching and plant uptake.

Table 6 summarizes the analyses of variance for NH₂ and NO₃ in the Windsor and Charlton soils as related to the effect of depth D, day of sampling T, soils S, variability among cores C', and analytical errors E. Since the selection of soil core location was random with no correlation of cores from day to day, the effect of core location should be negligible. Therefore, the full factorial model was modified to include the core effect by combining all the core interaction terms (C' = C + DC + TC + SC + DTC + DSC + TSC + DTSC).

The analyses showed that the variation between cores (the term C') at the same depth, soil, and day was significantly greater than the analytical error E, which was determined by replicate chemical analyses of the same

Table 2. Concentration of $NH_{\lambda}-N$ (meq/100 g soil) in Windsor soil (Test Cell 3), July 1978.

	8	lante z. Colicei	Concentration of	ham) N-7 N TO	Soil Soil	oil depth, cm	l soil lies	ce11 3),	July 1976.	
Day	0-2	2.5	• 1	5-7.5	7.	5-15	15-	5-30	30-60	01
-	3.0537	# 0 - 1614 ***	0 - 0482 0 - 0521	6.0517	0.0152	0.6186	0 0122	0.0175	0.0047	0 • 0 0 3 9
7	3 • u 5 1 4 3 • u 5 9 8	0.3674 0.0445	0.0474 0.0404+	6.0507 0.037c+	0.0404 0.0455	0.5277	0.0165 0.0220	0.0231	0.0056	0.0032
3	J.0441 J.0587	0.0426	3 • 62 3 9 6 • 3 4 4 5	0.0175 0.0494	0.0297 0.0396	0.0198 0.0218	0.0128 0.0263	0.0169 0.0146	0.0082	0.0092
4	3.655§ 3.1581	6.0787 0.1337	3.0674 0.0787	0.0663 0.076£	0.0705 0.6713	0.0558 0.0803	0.0179 0.0231	0.0166 0.0233	0.0134	0.0093
2	3.1290 3.1133	0.1280 0.1096	0.0624 0.1125	0.0014 0.1081	0.0624	0.0579 6.0491	0.0181 0.0175	0.0196	0.0084	0.0051
9	3.1467 9.2880	6.1252 6.2715	0.0638 0.0929	0.0583 0.0834	0.0816 0.0482	0.0779	0.0220 0.0186	9.0118 0.0164	0.0025	0.0068 0.0058
7	0.0742	0.0775 0.0775	0.0463 0.0645	0.0535 0.0711	0.0595 0.0505	0.0426	6.0272 0.0756	0.C262 0.0873	0.0062	0.0097
∞	0.1362	6.1233 0.0801	0.0584 0.0389	0.0494 0.0316	0.0534 0.0531	0.9616 0.0550	0.0185 0.0241	0.0154 0.0202	0.0188	0.01854
10	0.10996 0.0096	3.1664 3.0498	0.3381 0.0705	0.0437 6.0574	0.0600	0.0618 0.0503	C.0360 C.0210	0.0343	0.0290	0.0204
11	0.0512 0.2237	6 • 6 5 7 2 0 • 2 2 6 4	0.0542 0.0580	0.0499 0.0550	0.0456 0.0352	0.0552	0.0187 0.0356	0.0171	0.0111	0.0074
12	3.0651 0.0933	0.0962 0.0962	0.0333 0.0404	0 • 0 3 5 4 0 • 0 3 5 4	6.0385 6.0544	0.9274 0.0581	0.0034 0.0307	0.0270	0.0090+	6.0085++ 0.0105
14	0.0511	U.0682 U.1860	0.0396	0.0383 0.0453	0.0194 0.0239	0.0196 0.0225	0.0264	0.0396	0.0088 0.0062	0.0139
15	0.0274 0.0433	0.0254 0.0435	0.0426 0.0488	0.0515 0.0569	0.0247 0.0202	6.0237 0.0335	0.0101	0.0122 0.0250	0.0058 0.0124	0.0074
16	3.0849 3.1833	0.1069 0.1920	0.0566 0.3742	0 • 0 5 5 0 0 • 0 6 3 2	0.0494	0.0470	0.0169	0.0237	0.0140 0.0058	0.0126
* * *	Soil Soil Secon	Soil core #1, top line Soil core #2, bottom 1: Second column at each of determinations	for ea ine for depth r	ch day and dep each day and epresents repl	th depth .icate	+ Missing v Torrie 19 ++ Missing v depth	alue cal 60, p. 1 alue cal	culated by Yates 39) culated as mean	method of all v	(Steel and values at one
						•				

Table 3. Concentration of NO₃-N (meq/100 g soil) in Windsor soil (Test Cell 3), July 1978. Soil depth, cm

į

					מסדד חבלוני	ED FILE				
Day	,	νį	15.	5-7.5	7.5	.5-15	15-30	-30	30-60	Q)
1	3.0355 0.0264	0 0 0 1 4 1 **	0.0552 0.0187	0.0350 0.0352	0.0086	0.0112	8 0 1 2 0	0.0063	0 00 400	0 0 0 0 6 4
2	0.0465 0.0425	0.04×0 0.04×0	0.0136 0.028¥	0.0244 0.0313+	0.0161	0.0258 0.0218	0.0378 0.0206	0.0177	0.0078 0.0030	0.0064
m	1.0468 1.0320	0.0321	0.0200	0 • 02 35 0 • 02 35	0.0286 0.0299	0.0241 0.0190	0.0047	0.0054 0.0125	0.0062	0.0045
4	0.0350 0.0542	0.0453	0 • 0 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.3215 0.0387	0.0167 0.0242	0.0194 0.0225	0.0062	0.00 × 0 0.0128	0.0039 0.0095	0.0046 0.0093
5	3.5330 3.0377	0.0235 0.0455	0 • 0 2 4 3 0 • 5 4 9 9	0.0387	0.0192 0.6239	0.0169 0.0161	0.0100 0.0101	0.0100 0.0202	0.0126	0.0103
9	0.0231 0.0321	0.0321	0.0272	6.0270 6.0285+	0.0393 0.0181	0 • U258 0 • 0220	0.0072	0 • 00 6 0 0 • 00 5 5	0.0032 0.0089	0.0058
7	7.0348 J.0255	0.0434	0.0253 0.0288	0.0307	0.6165 0.0181	0.0177	0.0087	0.0208 0.0208	0.0084	0.0080
œ	0.0272	0.0295 0.0396	0.0237	3.6255 0.0145	0.0218 0.0220	0.0350	0.0103	0.0126 0.0069	0.0067+	0.0060+ 0.0105
10	0.6391).0162	0.042b 0.0171	0.0181	0.0194 0.0270	0.0185 0.0210	0.0177	0.0119	0.0169	0.0103	0.0070
11	9.0466	0.0367 0.0955	0.0330	0.0270	0.0196 0.0243	0.0140	0.0103	0.0095	0.0037	0.0060
12	0.0550	0.0357 0.0338	3.9586 0.0210	0.0618 0.0241	0.0181 0.0293	0.0204 0.0288	0.0117	0.0169 0.0268	0.0197+	0.0190 0.0052
14	0.0241	0.0169	0.0190 0.018b	0.0234	0.0161 0.0146	0.0212 0.0145	0.0111 0.0138	0.0173 0.0192	0.0041	0.0072
15	0.0103	0.0136 0.0222	6.0140 0.0198	0.0220	0.0150 0.0109	0.0080 0.0161	0.0015	0.0054	0.0019	0.0012 0.0080
16	0.0222	0.0190	0.0148 0.0336	0.0148	0.0214 0.0205	0.0214 0.0225	0.0103 0.0140	0.0149 0.0185	0.0134	0.0078
	* Soil ** Soil *** Seco	Soil core #1, Soil core #2, Second column	top line bottom li at each d	for each day and ne for each day a epth represents 1	d depth and depth replicate	+ Missing Torrie	value 1960, p	lated by)	Yates method ((Steel and

6

determinations

- - -

Table 4. Concentration of $\mathrm{NH_4-N}$ (meq/100 g soil) in Charlton soil (Test Cell 4), July 1978. Soil depth, cm

				ממד תנ	deptil, cm				
Day 0	0-2.5		5-7.5	7	.5-15	15	5-30	30-60	09
13.0511	# 6.6674### ##0.0719	0.0597	0.0465	0.0513 0.0371	0.0569	0.0245 0.0216	0.0297	0.0119	0.0099 0.0166
2 0.1125	t.Jen + u.1115+	0.0554 0.0381+	U = 0 4 8 4 0 = 0 4 0 1 +	0.0349	0.0353	0.0309 0.0268+	0.0319 0.0243+	0.0267	0.0179 0.0078
3 0.5143	0.443 0.0443	0.0371	0 • 02 9 0 0 • 0 4 8 0	0.0235 0.0325	0.0268 0.0319	0.0223	0.0212	0.0132	0.0163 0.0139
4 0.1014	0.0468 0.0443	0.8593 0.0628	5090°0 0°0647	0.0606	0.0505 0.0494	$0.1510 \\ 0.0309$	0.1755	0.0210 0.0131	0.0220 0.0184
5 0.0543 0.0587	0.0512 0.0313	0.0519	0.0583 0.0952	0.0068 0.1125	0.0202 0.1096	0.0733	0.0651 0.6336	0.0105	0.0126 0.0131+
6 9.0557	0.0583 0.0927	6.0946 0.0775	0.1131	0.0556 0.1209	0.0523	0.0231 0.0911	0.0173	0.0181	0.0253
7 9.0731	0.0742 0.1520	0.0799 0.0585	0.0845 0.0550	0.0770	0.0816	0.0474	0.0301	0.0353 0.0218	0.0439
8 0.0700 9.0591	0.0606 0.0453	0.0585 0.6396	0.0560 0.0303	0.0902	0.0803	0.1333 0.0264	0.1401 0.6358	0.0433	0.0398
10 0.1252	0.1318 0.1016	0.6273	0.0309	0.0875 0.1014	0.0906 0.1051	0.0501 0.0550	0.6593	0.0672 0.0528	0.0575
11 0.0287	0.0205	0.0752	U•0908 O•0354	0.0579	0.0493 0.6602	0.0397 6.0206	0.0389 0.0266	0.0338	0.0231
12 3.0773	0.0556 1.1332	0.540	u.0266 u.1189	0.0733	0.0455 0.0495	0.0408	0.0505 0.0428	0.0307	0.0220
14 3.2749 0.0985	0.2072	0.4338 0.0358	0.0418 c.0315	0.028R 0.0272	0.0305 0.0270	0.0385	0.0474	0.0470	0.0371 0.0165
15 9.3661 0.6826	0.0749 0.0655	5.8828 0.1735	0.0721 0.1644	6.1055 J.0387	0.1071	0.0956	9.0789 0.0251	0.0247 0.0177	0.0229
16 0.1421	0.1450 0.1589	0.0917	0.1106 0.1051	5.1261 0.0939	0.1279 0.1059	0.0414	0.0447	0.0144 0.0516+	0.0068 0.0502
* Soil co ** Soil co *** Second	re #1, top re #2, bot column at	top line for ead bottom line for at each depth re	ch day and each day epresents	depth and depth replicate	+ Missing Torrie]	value calcul 1960, p. 139)	ated by	Yates method	(Steel and

determinations

Table 5. Concentration of NO₃-N (meq/100 g soil) in Charlton soil (Test Cell 4), July 1978. Soil depth. cm

			,	Soil d	depth, cm				
Day (0-2.5	2.5	-7.5	7.	5-15	15-	30	30-60	ol
1 0.0142	2 章 D = D 1 5 D = 章 章 5 章 E - D + D の	0 - 0 3 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 0 4 3 1 0 • 0 3 6 4	0.0156 0.0358	0.0142 0.0490	0.0085	0.0115	0.0138 0.0058	0.009
2 0 0 0 6 6 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 0.0852 6+ 0.0548+	C • C 2 4 G	+/************************************	C - 0523	0.3551 + 0.0238+	0.0166 0.0058	0.0135 0.0088	0.0166 0.0091	0.012
3 0.046	0.0188	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 4 3 a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0187	0.0163	0.0105	0.008
4 9 0 0 3 5 4 5 1	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0416 0.0447	0.0589 0.0511	0.0305 0.0198	0 0 0 0 0 0 0 0 0	0.0278 0.0682	0.0255	0.0208	0.012
5 0.037	7 0.0398 1 C.6542	6.0779 6.0385	6.0865 0.0517	0.0777 0.059¤	0.0886 0.0983	0.0354	0.0385	0.0087	0.016
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 05 9 3 8 0 0 0 3 3 5	0.0540 0.0453	0.0499.4	C.0643 U.0587	0.0496 0.0474	0.0177	0.0165	0.0272	0.029
7 0.0245	5 0 0 4 3 3 0 0 6 6 9	0.0402 6.0367	3 • 0 • 1 ± 0 • 0 • 0 • 0 3 6 9	0.0323	0.0295 6.0210	0.0225	0.0140	0.0073	0.008
8 0.025	9 0.0239 8 0.0402	0.0350	0.0319 0.0451	0.0315	0.0315	0.0344	0.0398 0.0338	0.0169	0.014
10 0 0 0 3 7 8 0 5 0 5	4 0 0 6 7 8 0 0 0 6 7 2 5	0.0387	0.0391 0.0583	0.0381 0.0325	0.0550 0.0323	0.0192	0.0269	0.0260	0.019 0.015
11 0 0 0 2 17	7 0.0220 1 0.0494	0.0486 0.0521	0 • 0 3 4 8 0 • 0 3 4 4	0.0369	0.0581 0.0245	0.0228	0.0205	0.0089	0.020
12 0.0544	4 0.0488 2 0.1555	0.0573	0.0311	0.0235 0.0358	0.0328 0.0206	0.0210 0.0218	0.0210 0.0181	0.0093 0.0255	0.010
14 0.017	6 0 1 9 5 0 0 4 8 4	0.0579 0.0164	0.0591	0.0307	0.018 0.018 0188	0.0253	0.0426 0.0118	0.0217	0.014
15 0.0387	7 0.0350 5 0.0402	0.6369	6 0 0 2 3 5 0 0 0 6 3 2	0.0290 0.0126	0.0305 0.0208	0.0367	0.0222 0.0146	0.0117	0.012
16 0.027	9 0.0249 2 0.0355	0.6587	0.0571	0.0529 0.0258	0.0323	0.0183	0.0194	0.0081	0.007
* Soil ** Soil *** Secon	core #1, top core #2, bot id column at	ne for line f h deptb	for each day and ne for each day a lepth represents r	depth and depth replicate	+ Missing va and Torrie	value calculatie 1960, p.	lated by 139)	Yates method ((Steel ar

Figure 2. Changes in NH $_4$ - and NO $_3$ -N concentration at different depths in the Windsor soil over 16 days in July 1978.

Figure 3. Changes in NH $_2$ - and NO $_3$ -N concentration at different depths in the Charlton soil over 16 days in July 1978.

Figure 4. Changes in NH₄- and NO₃-N concentrations at 0-25-cm depth in Windsor and Charlton soils over 16 days in July 1978.

core. Since none of the interactions of depth x time, depth x soil, or depth x time x soil were significant, the data does not need to be treated separately by soil type, time, or depth for further analysis of variance. Each effect is independent of the others. The effect of depth was highly significant (0.1% level) for both soils and constant over time. The effect of soil type was found to be significant on the NH, distribution (2.5% level) and highly significant on the NO₃ distribution (0.1% level). The NH, and NO₃ levels were significantly higher in the Charlton silt loam than in the Windsor sandy loam. The effect of time was uncertain, appearing significant for the NO₃ distribution but not for the NH, distribution. This may be due to reapplication of wastewater in the middle of the experiment (the 8th day). This means that the statistical analysis should also have been done on a weekly, rather than on a 16-day, basis.

Since some samples were not collected during the second week, the data were arranged into two weeks of 5 days where week 1 consisted of days 3, 4, 5, 7 and 8 and week 2 consisted of days 10, 11, 12, 14 and 15. (Days 3 and 10 were two days after application.) The variables examined in this case were depth, day, week and soil. The analysis of variance (Table 7) indicated again that depth was highly significant (0.1% level) for both the NH₂-and the NO₃-N values, while soil was significant (5% level) for the NH₄-values and highly significant (0.1% level) for the NO₃-N values. Day and week again were not significant for the NH₄ values but day was highly significant (0.1% level) for the NO₃-N values, while week was not significant. An examination of Figures 2 and 3 indicates that the variation with day of the week is random and that there is no trend with time.

Figure 5 shows the depth distribution of the mean concentration of NH_4 - and NO_3 -N in the Windsor and Charlton soils. At any depth, the concentration of NH_4 -N was much higher than that of NO_3 -N. In the top 15

Table 6. Analysis of Variance, NH₄- and NO₃-N in Windsor and Charlton soils during July 1978. (Effect of soil type on the concentration of NH₄- and NO₃-N.)

		NH ₄ -N			NO ₃ -1	N	
Factor	D.F.*	Mean square	F	S.L.+ (%)	Mean square	F	S.L. (%)
Depth (D)	4	1.7040x10 ⁻¹	16.45	0.1	1.7516×10 ⁻²	53.29	0.1
Day (T)	13	9.1298×10^{-3}	0.88	NS	7.8495x10 ⁻⁴	2.39	1.0
Soil (S)	1	6.0291×10 ⁻²	5.82	2.5	1.7950x10 ⁻²	54.61	0.1
DT	52	8.9486×10^{-3}	0.86	NS	3.3192×10^{-4}	1.01	NS
DS	4	2.8152×10^{-3}	0.27	NS	4.028x10 ⁻⁴	1.22	NS
TS	13	1.1512×10 ⁻²	1.11	NS	4.0219x10 ⁻⁴	1.22	NS
DTS	52	1.0847x10 ⁻²	1.05	NS	3.3659×10^{-4}	1.02	NS
Core** (C')	140	1.0356x10 ⁻²	151.01	0.1	3.2869×10^{-4}	8.67	0.1
Analytical error (E)	260	6.8580×10 ⁻⁵					
	259++				3.7894x10 ⁻⁵	·-·	

^{*} Degrees of freedom

⁺⁺ After subtracting one D.F. for each calculated missing value

Figure 5. Depth distribution NH₄-and NO₃-N concentration in Windsor and Charlton soils in July 1978.

^{*} Significance Level

^{**} Core is the sum of C + DC + TC + SC + DTC + DSC + TSC + DTSC

Table 7. Analysis of variance, NH₄- and NO₃-N in Windsor and Charlton soils during July 1978. (Effect of day when arranged in weeks.)

		NH ₄ ·	-N		NO	3-N	
Factor	D.F.*	Mean square	F	S.L.+ (%)	Mean square	F	S.L. (%)
Depth (D)	4	1.2999x10 ⁻¹	9.28	0.1	1.2042×10 ⁻²	37.41	0.1
Day (T)	4	7.4040×10^{-3}	0.53	NS	1.9301×10 ⁻³	5.54	0.1
Week (W)	1	5.5079x10 ⁻³	0.39	NS	1.4440x10 ⁻⁵	0.04	NS
Soil (S)	1	6.5826x10 ⁻²	4.70	5.0	1.5690x10 ⁻²	45.00	0.1
DT	16	1.0661x10 ⁻²	0.76	NS	3.0463×10^{-4}	0.87	NS
DW	4	8.9318x10 ⁻³	0.64	NS	4.7593x10 ⁻⁴	1.36	NS
TW	4	9.4822x10 ⁻³	0.68	NS	3.5029×10 ⁻⁴	1.00	NS
DS	4	8.5560×10^{-3}	0.61	NS	2.3102×10 ⁻⁴	0.66	NS
TS	4	1.0567x10 ⁻²	0.75	NS	5.5129x10 ⁻⁴	1.58	NS
WS	1	1.2409×10 ⁻²	0.89	NS	1.5252×10 ⁻⁴	0.44	NS
DTW	16	4.4261x10 ⁻²	1.02	NS	4.0632x10 ⁻⁴	1.16	NS
DTS	16	1.0785×10 ⁻²	0.77	NS	4.4522x10 ⁻⁴	1.28	NS
DWS	4	5.9579x10 ⁻³	0.42	NS	4.1143c10 ⁻⁴	1.18	NS
TWS	4	1.9309x10 ⁻²	1.38	NS	4.1042×10 ⁻⁴	1.18	NS
DTWS	16	1.8620×10 ⁻²	1.33	NS	4.3068×10 ⁻⁴	1.24	NS
Core (C')	100	1.4011×10 ⁻²	180.16	0.1	3.4864z10 ⁻⁴	9.81	0.1
Analytical error (E)	190	7.7771x10 ⁻⁵	_	_			
, -,	188	-			3.5538×10 ⁻⁵	-	-

^{*} Degrees of freedom

Significance Level

^{**} Core is the sum of C + DC + TC + WC + SC + DTC + DWC + TWC + DSC + TSC + WSC + DTWC + DTSC DWSC + TWSC + DTWSC

After subtracting one D.F. for each calculated missing value

Table 8. Means and standard deviations of NH $_4$ - and NO $_3$ -N in the Windsor and Charlton soils during July 1978.

	NH ₄ -N	, meq/100	g soil	NO ₃ -N,	meq/100 g	soil
Depth, cm	Mean	S.D.		Mean	S.D.	
02.5	0.120	0.172		0.041	0.023	
2.5-7.5	0.060	0.026		0.036	0.015	
7.5-15	0.054	0.027		0.028	0.014	
15-30	0.036	0.029		0.018	0.010	
30-60	0.017	0.013		0.010	0.007	

cm of either soil, NH_{$_2$}-N concentration was more than twice that of NO_{$_3$}-N. This could be explained by the leaching of NO_{$_3$} and the sorption of NH_{$_4$}-N in by soils. As expected, there was a much higher concentration of NH_{$_4$}-N in the surface soil than in the subsoil samples, largely due to higher surface cation exchange capacity (CEC) in the former. The trend with depth was the same, but to a much lesser degree, in the case of the NO_{$_3$}-N distribution.

An attempt was made to use the Freundlich equation to relate the NH $_4$ -N concentration to depth in each soil without regard to time. However, the deviation from the straight line regression was highly significant at the 0.5% level.

The mean NH₄-N concentrations in the top 7.5 cm of the Windsor and Charlton soils during the 16-day study in July 1978 were 0.047 ± 0.044 and 0.068 ± 0.012 meq-N/100 g soil, respectively. The mean NO₃-N concentrations in the Windsor and Charlton soils were 0.021 ± 0.014 and 0.032 ± 0.021 meq-N/100 g soil, respectively. Table 8 shows the mean and standard deviation of the NH₄- and NO₃-N concentrations in both soils with relation to depth.

October Samples

Tables 9 and 10 display the NH₄-N and NO₃-N concentrations in the Windsor and Charlton soils (test cells 3 and 4, respectively) for the October 1978 samples. Figure 6 shows the mean daily NH₄- and NO₃-N concentrations in the Windsor and Charlton soils (0-7.5 cm).

Analysis of variance (Table 11) of the October data for the O-7.5-cm depth showed that the soil type has a highly significant effect on the NO_3 -N concentration (0.1% level) but not on the NO_4 -N concentration. This is similar to the results in July where soil was highly significant (0.1% level) for the NO_3 values and significant at the 2.5% level for the NO_4 values. The mean concentrations of NO_4 -N for cores of the 0-7.5-cm depth in the Windsor and Charlton soils were 0.021 ± 0.010 and 0.031 ± 0.022 meq-N/100 g soil respectively; the July values for the same soil and depth were 0.067 ± 0.018 and 0.094 ± 0.055 meq/100 g soil. The October values are less than half of the July values. This may be due to higher uptake of NO_4

Table 9. Concentration of NH_4 -N (meq/100 g soil) in Windsor and Charlton soils during October 1978. (Day 1 = 24 October 1978.)

		0-7	.5cm	7.5-	15cm	15-3	Ocm	30-	60cm
Day	TEST*	A	В	A	В	A	В	Α	B
1	W	0.0317	0.0266						
	С	0.0408	0.0334						
2	W	0.0200	0.0233						
	С	0.0610	0.0624						
3	W	0.0402	0.0134	0.0138	0.0152	0.0101	0.0122	0.0006	0.0058
	С	0.0569	0.0904	0.0138	0.0134	0.0111	0.0103	0.0043	0.0085
4	W	0.0138	0.0258						
·	Ċ	0.0406	0.0476						
5	W	0.0227	0.0266						
,	Ċ	0.0179	0.0274						
6	W	0.0371	0.0237						
	С	0.0251	0.0338						
7	W	0.0039	0.0078						
,	C	0.0039	0.0078						
8	W	0.0529	0.0377						
Ū	Ċ	0.0284	0.0169						
	7.7	0.0068	0.0216						
9	, C	0.0140	0.0216						
10	W	0.0212	0.0080	0.0124	0.0130	0.0047	0.097	0.0017	0.0072
	С	0.0194	0.0249	0.0225	0.0247	0.0142	0.0099	0.0107	0.0082
11	W	0.0235	0.0216						
	С	0.0171	0.0206						
12	W	0.0142	0.0169						
	Ĉ	0.0015	0.0138						
13	W	0.0288	0.0115						
	С	0.0130	0.0165						
14	W	0.0305	0.0350						
	С	0.0150	0.0206						
15	t.i	0.0171	0.0185						
13	W C	0.0171	0.0183						
	~								
16	W	0.0233	0.0330						
	С	0.0134	0.0216						

W = Windsor sandy loam (Test Cell 3) C = Charlton silt loam (Test Cell 4)

į.

Table 10. Concentration of NO₃-N (meq/100 g soil) in Windsor and Charlton soils during October 1978. (Day l=24 October 1978.)

DAY TEST* A B A A			0-7.5cm		7.5-15cm		15-30cm		30-6	Ocm
C 0.0344 0.0377 2 W 0.0185 0.0202	DAY		A	В	A	В	A	В	A	В
C 0.0344 0.0377 2 W 0.0185 0.0202	1	W	0.0173	0.0245						
C 0.0344 0.0280 C 0.0344 0.0280 C 0.0000 0.0000 0.0000 0.0005 0.0031 0.0023 C 0.0408 0.0577 0.0037 0.0150 0.0000 0.0047 0.0000 0.0000 C 0.0000 0.0000 0.0144 C 0.0049 0.0043 0.0000 0.0000 0.0000 C 0.0000 0.0000 0.0144 C 0.0049 0.0043 0.0000 0.00000 C 0.0000 0.0000 0.0144 C 0.0000 0.0000 0.0000 0.0000 C 0.0000 0.0000 0.0000 C 0.00000 0.0000 0.0000 C 0.0000 0.00000 C 0.0000 0.0000 C 0.00000 C 0.0000 0.0000 C 0.00000 C 0.0000 C 0.0000 C 0.0000 C 0.0000 C 0.0000 C	-									
C 0.0344 0.0280 C 0.0344 0.0280 C 0.0000 0.0000 0.0000 0.0005 0.0031 0.0023 C 0.0408 0.0577 0.0037 0.0150 0.0000 0.0047 0.0000 0.0000 C 0.0000 0.0000 0.0144 C 0.0049 0.0043 0.0000 0.0000 0.0000 C 0.0000 0.0000 0.0144 C 0.0049 0.0043 0.0000 0.00000 C 0.0000 0.0000 0.0144 C 0.0000 0.0000 0.0000 0.0000 C 0.0000 0.0000 0.0000 C 0.00000 0.0000 0.0000 C 0.0000 0.00000 C 0.0000 0.0000 C 0.00000 C 0.0000 0.0000 C 0.00000 C 0.0000 C 0.0000 C 0.0000 C 0.0000 C 0.0000 C	2	w	0.0185	0.0202						
C 0.0408 0.0577 0.0037 0.0150 0.0000 0.0047 0.0000 9.0000 W 0.0253 0.0247 C 0.0185 0.0299 W 0.0183 0.0157 C 0.0208 0.0371 W 0.0105 0.0268 C 0.0128 0.0274 R W 0.0264 0.0575 C 0.0154 0.0379 W 0.0274 0.0185 0.0379 W 0.0274 0.0185 0.0379 W 0.0275 0.0358 0 0.0235 0.0368 0.0316 0.0060 0.0144 0.0049 0.0043 0.0089 0.0080 0.0115 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 W 0.0264 0.0212 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 W 0.0253 0.0364 0.0264 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 W 0.0264 0.0212 0.0364 0.0264 W 0.0203 0.0641 0.0264 0.0262 0.0293 0.0641 W 0.0237 0.0146 0.0264 W 0.02037 0.0121 0.0264 W 0.0237 0.0204	-									
C 0.0408 0.0577 0.0037 0.0150 0.0000 0.0047 0.0000 9.0000 W 0.0253 0.0247 C 0.0185 0.0299 W 0.0183 0.0157 C 0.0208 0.0371 W 0.0105 0.0268 C 0.0128 0.0274 R W 0.0264 0.0575 C 0.0154 0.0379 W 0.0274 0.0185 0.0379 W 0.0274 0.0185 0.0379 W 0.0275 0.0358 0 0.0235 0.0368 0.0316 0.0060 0.0144 0.0049 0.0043 0.0089 0.0080 0.0115 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 W 0.0264 0.0212 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 W 0.0253 0.0364 0.0264 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 W 0.0264 0.0212 0.0364 0.0264 W 0.0203 0.0641 0.0264 0.0262 0.0293 0.0641 W 0.0237 0.0146 0.0264 W 0.02037 0.0121 0.0264 W 0.0237 0.0204	1	u	0 0000	0.0206	0.0154	0.0126	0.0080	0.0035	0.0031	0 0023
C 0.0309 0.0299 N	,									
C 0.0309 0.0299 N	4	w	0 0284	0 0241						
C 0.0185 0.0299 6 W 0.0183 0.0157	7									
C 0.0185 0.0299 6 W 0.0183 0.0157	5	w	0 0253	0.0247						
C 0.0208 0.0371 7 W 0.0105 0.0268 C 0.0128 0.0274 8 W 0.0264 0.0575 C 0.0154 0.0379 9 W 0.0274 0.0185 C 0.0235 0.0358 10 W 0.0253 0.0136 0.0060 0.0144 0.0049 0.0043 0.0089 0.0080 C 0.0363 0.0309 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 11 W 0.0194 0.0212 C 0.0354 0.0264 12 W 0.0206 0.0262 C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	,									
C 0.0208 0.0371 7 W 0.0105 0.0268 C 0.0128 0.0274 8 W 0.0264 0.0575 C 0.0154 0.0379 9 W 0.0274 0.0185 C 0.0235 0.0358 10 W 0.0253 0.0136 0.0060 0.0144 0.0049 0.0043 0.0089 0.0080 C 0.0363 0.0309 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 11 W 0.0194 0.0212 C 0.0354 0.0264 12 W 0.0206 0.0262 C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	4	t.i	0.0183	0.0157						
C 0.0128 0.0274 8 W 0.0264 0.0575	O									
C 0.0128 0.0274 8 W 0.0264 0.0575	7		0 0105	0 0269						
C 0.0154 0.0379 9 W 0.0274 0.0185	,									
C 0.0154 0.0379 9 W 0.0274 0.0185			0.0264	0.0575						
9 W 0.0274 0.0185 C 0.0235 0.0358 10 W 0.0253 0.0136 0.0060 0.0144 0.0049 0.0043 0.0089 0.0080 C 0.0363 0.0309 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 11 W 0.0194 0.0212 C 0.0354 0.0264 12 W 0.0206 0.0262 C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290	8									
C 0.0235 0.0358 10 W 0.0253 0.0136 0.0060 0.0144 0.0049 0.0043 0.0089 0.0080 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 11 W 0.0194 0.0212 C 0.0354 0.0264 12 W 0.0206 0.0262 C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	_									
10 W 0.0253 0.0136 0.0060 0.0144 0.0049 0.0043 0.0089 0.0088 11 W 0.0194 0.0212 0.0354 0.0264 12 W 0.0206 0.0262 0.00293 0.0641 13 W 0.0237 0.0146 0.0264 14 W 0.0200 0.0264 15 W 0.0152 0.0121 0.0290 16 W 0.0237 0.020	9									
C 0.0363 0.0309 0.0115 0.0140 0.0084 0.0025 0.0052 0.0078 11 W 0.0194 0.0212	_									
11 W 0.0194 0.0212 C 0.0354 0.0264 12 W 0.0206 0.0262 C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	10									
C 0.0354 0.0264 12 W 0.0206 0.0262 C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020					0.01.13	0.0140	0.000	0.002	0.0052	0.00.0
12 W 0.0206 0.0262 C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	11									
C 0.0293 0.0641 13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020										
13 W 0.0237 0.0146 C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	12									
C 0.0210 0.0264 14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020		C	0.0293	0.0041						
14 W 0.0200 0.0264 C 0.0313 0.0264 15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	13	••								
C 0.0313 0.0264 15 W 0.0152 0.0121		(,	0.0210	0.0204						
15 W 0.0152 0.0121 C 0.0179 0.0290 16 W 0.0237 0.020	14									
C 0.0179 0.0290 16 W 0.0237 0.020		C	0.0313	0.0204						
16 W 0.0237 0.020	15									
		С	0.01/9	0.0290						
	16									
C 0.0218 0.0346		С	0.0218	0.0346						

W = Windsor sandy loam (Test Cell 3)

C = Charlton silt loam (Test Cell 4)

Figure 6. Mean daily NH₂-and NO₃-N concentration in Windsor and Charlton soils at 0-7.5 cm depth in July 1978.

Table 11. Analysis of variance, NH_4- and NO_3-N in 0-7.5-cm Windsor and Charlton soils during October 1978.

		NH ₄ -N			NO ₃ -N			
Factor	D.F.*	Mean square	F	S.L.+ (%)	Mean squar	e F	S.L. (%)	
Day (D)	15	4.861	1.44	NS	0.826	0.98	NS	
Soil (S)	1	3.032	0.90	NS	13.764	16.31	0.1**	
DS	15	3.365	4.91	0.1**	1.330	1.58	NS	
Analytical error (E)	32	0.686	-	-	0.844	-	-	

^{*} Degrees of freedom

i

⁺ Significance level

^{**} Highly significant

by plant roots which are more established at the end of the growth season.

A lower mineralization rate during October as compared to July, because of the temperature effect, may also contribute to the lower concentrations of NH₄ in October. The mean concentrations of the NO₃-N from the two soils at the same depths in October were 0.020 ± 0.007 and 0.031 ± 0.009 for the Windsor and Charlton soils, respectively. The July NO₃-N values are similar to those obtained for October. The mean concentration in the Windsor soil was 0.033 ± 0.008 and the mean concentration in the Charlton soil was 0.050 ± 0.011 meq-N/100 g soil.

Effect of Season (Temperature) on the Distribution of 4 and NO3

Figures 6 and 7 show the mean NH_A - and NO_3 -N concentrations for the two soils during October and July 1978. Only the data for the 0-7.5cm layer is presented since the maximum temperature effect as well as the maximum NH, level is to be found in this surface layer. In general, much higher concentrations of NH $_{\Lambda}$ -N were present in the July samples than in the October samples. The mean concentration for the 0-7.5-cm depth in July, without regard to soil type, was 0.081 ± 0.042 and in October was 0.026 ± 0.042 0.018 meq-N/100 g soil. The average temperature in July in the Hanover area was 20.6°C and in October was 6.8°C. It was expected that the higher mean temperature in July would be associated with a greater nitrification rate and faster disappearance of NH4. High residual N from root decay and accumulation of NH $_{\!\Delta}$ applied late in the previous season are thought to be the reasons for the higher NH concentration in the surface layers in July. With the exception of the first three days in October for the Charlton soil (Fig. 6), the concentration of $NH_{L}-N$ in both soils during the October sampling was less variable than in July. Analysis of variance (Table 12)

Figure 7. Mean daily NH₄- and NO₃-N concentration in Windsor and Charlton soils at 0-7.5 cm depth in October 1978.

Table 12. Analysis of variance, NH_4 - and NO_3 -N in 0-7.5-cm Windsor and Charlton soils during July and October 1978.

		NH ₄ -	N	NO ₃ -N			
Factor	D.F.*	Mean square	F	S.L+. (%)	Mean square	F	S.L. (%)
Soils (S)	1	6.3012x10 ⁻³	1.92	NS	3.4492x10 ⁻³	11.17	5.0
Day (T)	4	1.7464x10 ⁻³	<1	NS	3.7042x10 ⁻⁴	1.20	NS
Week (W)	1	1.2800x10 ⁻⁵	<1	NS	5.2531x10 ⁻⁶	<1	NS
Month (M)	1	6.0808x10 ⁻²	18.48	2.5**	3.4152×10^{-3}	11.06	5.0
ST	4	1.3708×10 ⁻³	<1	NS	7.8389x10 ⁻⁶	<1	NS
sw	1	2.4436x10 ⁻⁴	<1	NS	3.0012×10^{-7}	<1	NS
TW	4	1.7042x10 ⁻³	<1	NS	5.2533x10 ⁻⁵	1.43	NS
SM	1	1.2688×10 ⁻³	<1	NS	9.0951x10	<1	NS
TM	4	1.4426x10 ⁻³	<1	NS	1.2928x10	<1	NS
WM	1	3.8948x10 ⁻³	1.18	NS	4.6561x10 ⁻⁶	<1	NS
STW	4	3.5908×10^{-3}	1.09	NS	7.6357x10 ⁻⁵	2.08	NS
STM	4	1.9291x10 ⁻³	<1	NS	3.0880x10 ⁻⁴	8.43	0.1**
SWM	1	5.5112×10^{-3}	1.67	NS	1.2980x10 ⁻⁴	3.54	NS
TWM	4	8.3941x10 ⁻⁴	<1	NS	5.0532x10 ⁻⁵	1.38	NS
STWM	4	3.2909x10 ⁻³	61.42	0.1**	4.0774x10 ⁻⁵	1.11	NS
Analytical error (E)	40	5.3582x10 ⁻⁵	•		3.6650x10 ⁻⁵		

^{*} Degrees of freedom

showed that the effect of the month (temperature) on the NH₄-N concentration is significant (2.5% level). The higher NH₄ values in the July samples could be due to a higher mineralization rate as a result of the higher temperature.

The variations in NO $_3$ levels with time (days of the week after wastewater application) were much less than for NH $_4$ (Fig. 6 and 7). Again, analysis of variance indicated that the month, or temperature, was a significant factor (5% level). The NO $_3$ concentration, without regard to soil type, was 0.041 \pm 0.013 meq-N/100 g soil for July and 0.025 \pm 0.010 meq-N/100 g soil

⁺ Significance Level

^{**} Highly significant

for October. Analysis of variance also showed that soil type has a significant effect (5% level) on the surface layer ${\rm NO_3}$ -N concentration. In both seasons (July and October), ${\rm NO_3}$ -N concentrations were consistently higher in the Charlton silt loam than in the Windsor sandy loam. This is due to higher water holding capacity and a lower infiltration rate of the former soil. There was no significant effect of the week or the day of the week on ${\rm NO_3}$ -N concentration in the surface layer of both soils.

SUMMARY AND CONCLUSIONS

This study shows that the concentration of NO $_3$ - and NH $_4$ -N in soils irrigated frequently (weekly) with domestic wastewater seems to reach steady state conditions. In general, there was no significant change with time in the NH $_4$ concentration in surface soils. The NH $_4$ -N concentration decreased with soil depth. At any time and depth, there was more NH $_4$ present than NO $_3$. The Charlton silt loam contained more NH $_4$ and NO $_4$ at all soil depths than the Windsor sandy loam although this difference wasn't always significant for the NH $_4$ values. The vertical distribution of NH $_4$ and NO $_3$ in both soils, however, is similar. There was a significant seasonal effect (month) on the distribution of NH $_4$ -N in both soils; the concentrations of NH $_4$ -N were much higher during the warmer month.

With a few exceptions, there were no significant changes in soil NO $_3$ -N at any specified depth with time. As with the NH $_4$ distribution, soil depth was found to be the most significant factor affecting NO $_3$ distribution. The concentration of NO $_3$ -N was high at the surface and decreased gradually with depth. The high NO $_3$ -N concentration at the surface was related to the presence of a higher concentration of NH $_4$ -N, favorable conditions for a higher rate of nitrification, and greater CEC in the surface soils to retain the NH $_4$. Also, NO $_3$ -N concentrations were significantly higher in the Charlton silt loam than in the Windsor sandy loam. Temperature was a significant factor for the distribution of NO $_3$ -N in both soils; the NO $_3$ -N concentrations were higher in July than October.

LITERATURE CITED

- Bremner, J.M. and D.R. Keeney (1965) Steam-distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta, 32, p. 485-495.
- Iskandar, I.K., R.S. Sletten, D.C. Leggett and T.F. Jenkins (1976)
 Wastewater renovation by a prototype slow infiltration land treatment system. U.S. Army Cold Regions Research and Engineering Laboratory, CRREL Report 76-19.
- Iskandar, I.K. and H.M. Selim (1978) Evaluation of nitrogen models for prediction of NO₃-N in percolate water in land treatment. Proceedings, International Symposium on State of Knowledge in Land Treatment of Wastewater, Vol. I, p. 163-169.

- Jenkins, T.F., A.J. Palazzo, P.W. Schumacher, D.B. Keller, J.M. Graham, S.T. Quarry, H.E. Hare, J.J. Bayer, Jr. and E.S. Foley (1978) Five year performance of CRREL land treatment test cells. CRREL Special Report 78-26.
- Selim, H.M. and I.K. Iskandar (in press) A simplified model for prediction of nitrogen behavior in land treatment of wastewater. CRREL Special Report.
- Steel, G.D. and J.H. Torrie (1960) Principles and Procedures of Statistics. New York: McGraw-Hill.

\$U.S GOVERNMENT PRINTING OFFICE: 1980-601-024/103

DATE ILMED