2009 Fall Conference of IEEK

Face Recognition-based Automatic Tagging Scheme for SNS

Chung-yeon Lee Jae-dong Lee Seongah Chin

Sungkyul University Multimedia Engineering

Outline

- Introduction
- Motivation
- Related Work
- Methodology
 - Face Detection
 - Face Matching
- Experimental Results
- Conclusion

Introduction

- Tag is...
 - Metadata related with Internet Contents
 - Used by Most Web 2.0-oriented websites
 - Effective Information Classification System
- Applications
 - Tag Cloud, Location Tag, Photo Tag
 - Collaboration Tagging, Auto Tagging
- Problem
 - Abuse / Misuse of Tag (spam tag)
 - Troublesome work for normal user
 - Not interesting

Motivation

- Automatic Tagging
 - Using algorithms of pattern recognition
 - Prevent inappropriate, unnecessary tagging
 - Exact & Convenient

- Facial Tagging
 - Tag whose name on his/her face
 - Novel & Fun (image-based)
 - Applicable to various field
 - People Searching
 - Categorize pictures by relationship

Related work

- Face Recognition Methods
 - Principal Component Analysis (M. Turk & A. Pentland, 1994)
 - Linear Discriminant Analysis (S. Balakrishname & A. Ganapathiraju, 1998)
 - Neural Network (J. E. Meng & W. Shiqian, 2002)
 - Gabor Wavelet (L.C.Jain & U.Halici, 1999)
 - Support Vector Machines (E. Osuna, & R. Freund 1997)

Related work

- Face Detection Methods
 - Knowledge-base Method (G. Yang & T.S. Huang, 1994)
 - Geometric features, Histogram
 - Feature-based method (R. Kjeldsen & J. Kender, 1996)
 - Facial elements, texture, skin color, outline, or combination of them
 - Template Matching Method (I. Craw et al., 1992)
 - Standard facial templates (created manually)
 - AAM(active appearance model), ASM(active shape model)
 - Appearance-based Method (M. Turk & A. Pentland, 1991)
 - Using classifiers that is learned features of face
 - PCA, SVM, HMM, NN, etc.

Related work

- Social Network Service (SNS)
 - Internet service supporting social network on the web
 - Sharing personal daily life or interesting things with UCC
 - A value-added killer-app in Web 2.0
 - Cyworld, Facebook, Myspace, Twitter, Me2day, Mixi, etc.
 - Including Blog, Café and Virtual world(Second Life)

Research Object

- Detect faces in pictures on the picture management system of SNS
- Match the face to the member data and display it
- Tag his/her name on the picture

- Haar-like features
 - Calculate the difference of the sum of pixels of areas inside the rectangle
 - The values indicate certain characteristics of a particular area of the image
 - Each feature type can indicate the existence of certain characteristics in the image, such as edges or changes in texture.

Face Detection

- Using Integral image for fast computation
 - Summed area tables: 2D Lookup table with the same size of the original image
 - Each element of the Integral Image contains the sum of all pixels located on the up-left region of the original image
 - It allows to compute sum of rectangular areas in the image, at any position or scale, using only 4 lookups: $sum = \alpha \beta \gamma + \delta$

- Classifier Learning using AdaBoost
 - A weak classifier is called repeatedly in a series of rounds t = 1, ..., T
 - For each call, a distribution of weights D_t is updated that indicates the importance of examples in the data set for the classification.
 - On each round, the weights of each incorrectly classified example are increased, so that the new classifier focuses more on those examples.

- Face Matching
 - Feature Extraction
 - Make a face vector from face image
 - Extract its eigenvector and eigenvalue using PCA
 - Since the feature seems like a face, it is dubbed 'eigenface'
 - Recognition & Matching
 - Compare the feature vector of input image with the feature vectors of learned image set
 - The face has minimum euclidean distance is the closest one
 - So, it returns the index number and seek the member data from DB

System Overview

Detected facial region

Input tag list

Recognized Profile

Trimmed facial region

Activate face detection

Detection time

average detection time: 366.96 ms

Learning time

average learning time: 498.75 ms

Recognition time

average reconition time: 396.93

Recognition rate

Thank you