## Agenda

- 5:30 Networking
- 6:00 Talk
- 6:30 Discussion and

Networking

#### WiFi

- Name: RokkinCat Guest
- Password: makingstuff

#### Bathroom

 Take a bathroom key and go down a floor and the bathrooms are at the end of the hall



# Image Style Transfer

Milwaukee Machine Learning Meetup

Mitchell Henke / @MitchellHenke



### About Me/This Meetup

- Software Architect
- Specialize in data, databases, APIs
- Self-taught R, Python/Keras, Machine Learning

Chairs sponsored by:



## Image Style Transfer



A Neural Algorithm of Artistic Style (Gatys, 2015)



# Convolutional Neural Networks

#### **CNN** Feature Extraction



#### activation map



#### Input image



#### Convolution Kernel

#### Feature map



| 1,  | 1,0 | 1,  | 0 | 0 |
|-----|-----|-----|---|---|
| 0,0 | 1,  | 1,0 | 1 | 0 |
| 0,1 | 0,0 | 1,  | 1 | 1 |
| 0   | 0   | 1   | 1 | 0 |
| 0   | 1   | 1   | 0 | 0 |

| - 1 | - |    |     |    |
|-----|---|----|-----|----|
|     | m | 12 | 10  | 1  |
| -   |   | 10 | 1 = | ٠. |
|     |   |    | -   |    |

| 4           |                  |           |
|-------------|------------------|-----------|
| (A) (A)     | 37               |           |
| 3 50<br>5 V | 35 - 5<br>37 - 7 | 93<br>193 |
| v 5         | .,               |           |

Convolved Feature

#### **CNN Feature Extraction**



We stack these up to get a "new image" of size 28x28x6!

### **CNN** Downsampling

#### Single depth slice



max pool with 2x2 filters and stride 2

| 6 | 8 |
|---|---|
| 3 | 4 |

У

## **CNN** Downsampling



#### Convolutional Neural Networks



#### **Convolutional Neural Networks**



#### Convolutional Neural Networks

- Excellent pre-trained CNN image models are published and shared
  - VGGNet (2014)
  - ResNet (2015)
- Transfer Learning
  - Pre-trained model can be fine-tuned for specific problem

# Loss Functions

#### Loss Functions

- Defines how close your model is to producing expected output
  - Mean Absolute Error
  - Mean Squared Error
  - Categorical/Binary Cross Entropy
  - o ???
- Function of many factors
  - Factors can be weighted differently
  - Ultimately has to be a single number
- Network optimizes layer parameters from this output

### A Neural Algorithm of Artistic Style (Gatys, 2015)

- Uses frozen pre-trained VGG-19 model to recognize features
- Content features
  - High level features like buildings, people, or animals
- Style features
  - Low level features (colors, textures)
  - Higher level features (multiple yellow stars on top of blue)



### Overview of A Neural Algorithm of Artistic Style

- Save style features from style image
- Save content features from content image
- Begin with a randomized white noise image
- Compare style features in white noise image to saved style features
- Compare content features in white noise image to saved content features
- Neural net modifies white noise image pixels to get closer to matching both style and content features

#### Style Transfer Loss Function

- Pass style image and white noise image through 5 of VGG's convolutional layers
  - VGG output captures a range of features from simple to complex
  - Compare difference in activations
- Pass content image and white noise image through 1 of VGG's later layers
  - VGG output only captures more complex features
  - Compare difference in activations
- Train the initially white noise pixels to minimize the difference in style and content

Loss = (Difference in style features) + (Difference in content features)

### A Neural Algorithm of Artistic Style

- Loss is calculated with respect to generated image pixels
- Training produces a single image, not a model
- Each new image or style requires re-training

# Perceptual Losses for Real-Time Style Transfer and Super-Resolution (Johnson, 2016)

- Similar techniques to A Neural Algorithm of Artistic Style
- Builds a network that can produce images in a single style without retraining
- Also uses similar concepts to do "super-resolution" or enhancement of low resolution images

Style
The Starry Night,
Vincent van Gogh,
1889





Style
The Muse,
Pablo Picasso,
1935



















#### Architecture

| Layer                                     | Activation size            |  |
|-------------------------------------------|----------------------------|--|
| Input                                     | $3 \times 256 \times 256$  |  |
| Reflection Padding $(40 \times 40)$       | $3 \times 336 \times 336$  |  |
| $32 \times 9 \times 9$ conv, stride 1     | $32 \times 336 \times 336$ |  |
| $64 \times 3 \times 3$ conv, stride 2     | $64 \times 168 \times 168$ |  |
| $128 \times 3 \times 3$ conv, stride 2    | $128 \times 84 \times 84$  |  |
| Residual block, 128 filters               | $128 \times 80 \times 80$  |  |
| Residual block, 128 filters               | $128 \times 76 \times 76$  |  |
| Residual block, 128 filters               | $128 \times 72 \times 72$  |  |
| Residual block, 128 filters               | $128 \times 68 \times 68$  |  |
| Residual block, 128 filters               | $128 \times 64 \times 64$  |  |
| $64 \times 3 \times 3$ conv, stride $1/2$ | $64 \times 128 \times 128$ |  |
| $32 \times 3 \times 3$ conv, stride $1/2$ | $32 \times 256 \times 256$ |  |
| $3 \times 9 \times 9$ conv, stride 1      | $3\times256\times256$      |  |

## Examples





## Examples





Photo By ICMA Photos, used under CC SA

## Examples





# Thanks!

#### References:

- Stanford CS231
- A Neural Algorithm of Artistic Style, Gatys et al. (2015)
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution, Johnson et al. (2016)
- Deepart.io
- pikazoapp.com

#### **Next Month:**

Multi-class Tagging of Notes with Naive Bayes by Rob Hoelz August 22nd, 2017

