17.2.2 Calculations

The volume resistivity shall be calculated from the measured insulation resistance by the following formula:

$$\rho = \frac{2 \times \pi \times l \times R}{\ln \frac{D}{d}}$$

where

 ρ is the volume resistivity, in ohms centimetres;

R is the measured insulation resistance, in ohms;

is the length of the cable, in centimetres;

D is the outer diameter of the insulation, in millimetres;

d is the inner diameter of the insulation, in millimetres.

The insulation resistance constant, K_i , expressed in megaohms × kilometres [M Ω · km] may also be calculated, using the formula:

$$K_{\rm i} = \frac{l \times R \times 10^{-11}}{\log \frac{D}{d}} = 10^{-11} \times 0.367 \times \rho$$

NOTE For the cores of shaped conductors, the ratio D/d is the ratio of the perimeter over the insulation to the perimeter over the conductor.

Table 13 - Electrical type test requirements for insulating compounds

Designation of compounds (see 4.2) Maximum conductor temperature in normal operation (see 4.2)	Unit	PVC/A	EPR/ HEPR 90	XLPE
 at 20 °C (see 17.2) 	Ω·cm	10 ¹³	-	_
 at maximum conductor temperature in normal operation (see 17.3) 	Ω·cm	10 ¹⁰	10 ¹²	10 ¹²
Insulation resistance constant K_i				
 at 20 °C (see 17.2) 	MΩ·km	36,7	-	_
 at maximum conductor temperature in normal operation (see 17.3) 	MΩ · km	0,037	3,67	3,67