

PI74ALVC162835

18-Bit Universal Bus Driver with 3-State Outputs

Product Features

- PI74ALVC162835 is designed for low voltage operation, Vcc=2.3V to 3.6V
- Outputs have equivalent 26Ω series resistors
- Supports PC100 Registered DIMM
- Typical Volp (Output Ground Bounce)
 <0.8V at Vcc=3.3V, Ta=25°C
- Typical Vohv (Output Voh Undershoot)
 < 2.0V at Vcc = 3.3V, Ta = 25°C
- Industrial operation at -40° C to $+85^{\circ}$ C
- · Packages available:
 - -56-pin 240 mil wide plastic TSSOP(A)
 - -56-pin 173 mil wide plastic TVSOP(K)
 - -56-pin 300 mil wide plastic SSOP (V)

Product Description

Pericom Semiconductor's PI74ALVC series of logic circuits are produced in the Company's advanced 0.5 micron CMOS technology, achieving industry leading speed.

The 18-bit PI74ALVC162835 universal bus driver is designed for 2.3V to 3.6V Vcc operation.

Data flow from A to Y is controlled by Output Enable (OE). The device operates in the transparent mode when LE is HIGH. The A data is latched if CLK is held at a high or low logic level. If LE is LOW, the A-bus is stored $\underline{\text{in}}$ the latch/flip-flop on the low-to-high transition of CLK. When $\overline{\text{OE}}$ is HIGH, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Logic Block Diagram

Product Pin Description

Pin Name	Description
ŌĒ	Output Enable Input (Active LOW)
LE	Latch Enable
CLK	Clock Input
A	Data Input
Y	Data Output
GND	Ground
Vcc	Power

Product Pin Configuration

Truth Table(1)†

	Inputs							
ŌĒ	LE	CLK	A	Outputs Y				
Н	X	X	X	Z				
L	Н	X	L	L				
L	Н	X	Н	Н				
L	L	1	L	L				
L	L	1	Н	Н				
L	L	Н	X	Yo(2)				
L	L	L	X	Yo(3)				

Notes:

2

1 H = High Signal Level

L = Low Signal Level

Z = High Impedance

↑ = Transition LOW-to-HIGH

X = Irrelevant

- 2. Output level before the indicated steady-state input conditions were established, provided that CLK is high before LE goes low.
- 3. Output level before the indicated steady-state input conditions were established.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Input Voltage Range, V _{IN}	0.5V to V _{CC} +0.5V
Output Voltage Range, VOUT	0.5V to V _{CC} +0.5V
DC Input Voltage	0.5V to +5.0V
DC Output Current	100mA
Power Dissipation	1.0W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions(1)

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
Vcc	Supply Voltage		2.3		3.6	
V	Innet HIGH Velter	$V_{CC} = 2.3V \text{ to } 2.7V$	1.7			
Vih	Input HIGH Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$	2.0			
V	Innut I OW Voltogo	$V_{CC} = 2.3V \text{ to } 2.7V$			0.7	V
Vil	Input LOW Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$			0.8	
Vin	Input Voltage		0		Vcc	
Vout	Output Voltage		0		Vcc	
		$V_{CC} = 2.3V$			-6	
Іон	High-level Output Current	$V_{\rm CC} = 2.7V$			-8	
		$V_{CC} = 3.0V$			-12	
		$V_{CC} = 2.3V$			6	mA
Iol	Low-level Output Current	$V_{CC} = 2.7V$			8	
		$V_{CC} = 3.0V$			12	
Та	Operating Free-Air Tempera	ature	-40		85	°C

Note

1. Unused control inputs must be held HIGH or LOW to prevent them from floating.

3

PI74ALVC162835 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 3.3V \pm 10\%$)

Parameter	Conditions	Conditions			Min. ⁽¹⁾ Typ. ⁽²⁾ Max. ⁽¹⁾		
	I _{OH} = -100μA		Min to Max.	V _{CC} -0.2			
	$I_{OH} = -4mA$	V _{IH} =1.7V	2.3V	1.9			
V.	I (m)	V _{IH} =1.7V	2.3V	1.7			
V_{OH}	$I_{OH} = -6mA$	V _{IH} =2.0V	3.0V	2.4			
	$I_{OH} = -8mA$	V _{IH} =2.0V	2.7V	2.0			
	I_{OH} = -12mA	V _{IH} =2.0V	3.0V	2.0			
	I _{OH} = 100μA		Min to Max.			0.2	V
	I _{OH} = 4mA	$V_{\rm IL} = 0.7 V$	2.3V			0.4	
V	I - (A	$V_{\rm IL} = 0.7 V$	2.3V			0.55	
V_{OL}	$I_{OH} = 6mA$	$V_{\rm IL} = 0.8 V$	3.0V			0.55	
	I _{OH} = 8mA	$V_{\rm IL} = 0.8 V$	2.7V			0.6	
	$I_{OH} = 12mA$	$V_{\rm IL} = 0.8 V$	3.0V			0.8	
II	$V_I = V_{CC}$ or GND		3.6V			±5	
I _{OZ}	$V_O = V_{CC}$ or GND		3.6V			±5	
I _{CC}	$V_I = V_{CC}$ or GND		3.6V			40	μΑ
ΔI_{CC}	One input at VCC - 0.6V, Other inputs a VCCor GND		3V to 3.6V			750	
C _I Controls Inputs	$V_{I} = V_{CC}$ or GND		3.3V		3.5		
Data Input	$V_O = V_{CC}$ or GND		3.3V		5		pF
C _O Outputs	$V_O = V_{CC}$ or GND		3.3V		7		

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient and maximum loading.
- 3. For I/O ports, the Ioz includes the input leakage current.

Timing Requirements over Operating Range

Parameters	Description			Vcc =	Vcc = 2.7V		$Vcc = 3.3V \pm 0.3V$	
	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
fCLOCK	Clock frequency	0	150	0	150	0	150	MHz
tw Pulse	LE high	3.3		3.3		3.3		
Duration	CLK high or low	3.3		3.3		3.3		
t _{SU} Setup	Data before CLK↑	2.2		2.1		1.7		
	Data before LE↓, CLK High	1.9		1.6		1.5		ns
	Data before LE↓, CLK Low	1.3		1.1		1		
t _H Hold time	Data after CLK↑	0.6		0.6		0.7		
	Data after LE4, CLK High or Low	1.4		1.7		1.4		
Δt/Δv ⁽¹⁾	Input Transition Rise or Fall	0	10	0	10	0	10	ns/V

Note:

1. Unused control inputs must be held HIGH or LOW to prevent them from floating.

Switching Characteristics Over Operating Range⁽¹⁾

Parameters From (Input)	From	То	$V_{CC} = 2.5$	$5V \pm 0.2V$	V _{CC} =	= 2.7V	$V_{CC} = 3$	3.3V ±0.3V	IIn:ta
	(Input) (Output)	Min.	Max.	Min.	Max.	Min.	Max.	Units	
f _{MAX}			150		150		150		MHz
tpD	A	Y	1	5		5	1	4.2	
tpD	LE	Y	1.3	5.9		5.8	1.3	5.1	
tpD	CLK	Y	1.4	6.3		6.1	1.4	5.4	ns
t _{EN}	ŌĒ	Y	1.4	6.3		6.5	1.1	5.5	
tDIS	ŌĒ	Y	1	4.9		4.9	1.3	4.5	

Notes:

Switching Characteristics, from 0°C to 65°C, CL = 50pF

Parameter	From To		V _{CC} = 3.3	$V \pm 0.15V$	Units
	(Input) (Output	(Output)	Min.	Max.	
4	A	V	1	4	
tPD	CLK	Y	1.9	5	ns

Operating Characteristics, $T_A = 25^{\circ}C$

Parameters		Test	$V_{CC} = 2.5V \pm 0.2V$	$V_{CC} = 3.3V \pm 0.3V$	Units
Taranc	1 arameters		Conditions Typical		Cints
C _{PD} Power Dissipation	Outputs Enabled	$C_L = 0pF$,	35.5	40	рF
Capacitance	Outputs Disabled	F = 10 MHz	12.5	14	pr

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

^{1.} Unused control inputs must be held HIGH or LOW to prevent them from floating.