Recursive Channel Model

Recursive Models

- Recursive = involving repeated application of a rule
- A recursive model for a discrete time waveform x(n) has two parts
 - a formula that defines the nth sample in terms of the past samples, e.g.

$$x(n) = f(x(n-1))$$

an initial (starting) condition, e.g.

$$x(0) = 0$$

- Generating the waveform by recursion:
 - Given x(0), find x(1) = f(x(0)).
 - Given x(1), find x(2) = f(x(1)).
 - and so on...

Examples

Can you think of recursive models for the following sequences:

-
$$x(n) = c$$
 (a constant) $x(0) = c$ $x(n) = x(n-1)$

-
$$x(n) = n$$
 (a linear ramp) $x(0) = 0$ $x(n) = x(n-1) + 1$

$$-x(n) = 0.2n$$
 $x(0) = 0$ $x(n) = x(n-1) + 0.2$

- x(n) = an alternating bit stream (0 1 0 1 0 1...) <math>x(0) = 0 x(n) = 1 - x(n-1)

Recursive Model of IR Channel

It turns out that the response of the IR channel y(n) to an input x(n) can be described by a recursive formula:

- The parameter a lies between 0 and 1.
- The parameter k scales the input.
- This is also known as a "feedback" system, since the output feeds back as an input to the system to determine the next output.

Example

• Given the channel model:

$$y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$$

• Assume that $a = \frac{1}{2}$ and k = 1, i.e.,

$$y(n) = \frac{1}{2} y(n-1) + \frac{1}{2} x(n)$$

Find the output of the channel if the input is

n	0	1	2	3	4	5	6	7
x(n)	0	0	1	1	1	0	0	0
y(n)	0 - 1/2	$\stackrel{\stackrel{1}{\cancel{2}} \downarrow}{\longrightarrow} 0 \stackrel{\stackrel{1}{\cancel{2}}}{\longrightarrow}$	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{2} \\ \hline & 2 \end{array}$	$\begin{array}{c c} & \frac{1}{2} \\ & \frac{1}{3} \\ \hline & 4 \end{array}$	+ \frac{1}{2} \rightarrow \frac{1}{2}	$\begin{array}{c c} & \frac{1}{2} \\ & 7 \\ \hline & 16 \end{array}$	$\begin{array}{c c} + \frac{1}{2} \\ \hline 7 \\ \hline 32 \end{array}$	+ \frac{1}{2} \rightarrow 7 \\ 64

Effect of the Parameter "a"

$$y(n) = a \cdot y(n-1) + (1-a) \cdot k \cdot x(n)$$

- The parameter a determines the "memory" in the channel
- a = 0
 - no memory of the past
 - y(n) = k·x(n)
 - the channel output is just the input multiplied by k
- a = 1
 - infinite memory of the past
 - y(n) = y(n-1)
 - the channel output is constant, ignores the channel input