Polar Coordinates

David Robinson

Converting Points between Coordinate Systems

Given a point P in the plane with Cartesian coordinates (x, y) and polar coordinates (r, θ) , the following conversion formulas hold true.

$$x = r \cos \theta$$
 $y = r \sin \theta$ $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$

Common Polar Equations

• Line passing through the pole with slope $\tan K$.

$$\theta = K$$

• Circle

$$r = a\cos\theta + b\sin\theta$$

• Spiral

$$r = a + b\theta$$

• Cardioid

$$r = a(1 + \cos \theta)$$
 or $r = a(1 + \sin \theta)$ or $r = a(1 - \cos \theta)$ or $r = a(1 - \sin \theta)$

• Limaçon

$$r = a\cos\theta + b$$
 or $r = a\sin\theta + b$

• Rose

$$r = a\cos(b\theta)$$
 or $r = a\sin(b\theta)$

Symmetry in Polar Curves and Equations

Consider a curve generated by the function $r = f(\theta)$ in polar coordinates.

- 1. The curve is symmetric about the polar axis if for every point (r, θ) on the graph, the point $(r, -\theta)$ is also ont eh graph. Similarly, the equation $r = f(\theta)$ is unchanged by replacing θ with $-\theta$.
- 2. The curve is symmetric about the pole if for every point (r, θ) on the graph, the point $(r, \pi + \theta)$ is also on the graph. Similarly, the equation $r = f(\theta)$ is unchanged when replacing r with -r, or θ with $\pi + \theta$.
- 3. The curve is symmetric about the vertical line $\theta = \frac{\pi}{2}$ if for every point (r, θ) on the graph, the point $(r, \pi \theta)$ is also on the graph. Similarly, the equation $r = f(\theta)$ is unchanged when θ is replaced by $\pi \theta$.