CHAPTER 4

Convex sets

Contents

4.1	Convex sets	1
4.2	Convex hulls	2
4.3	Exercises	4

4.1 Convex sets

Here we restrict to the case where $k = \mathbb{R}$.

Definition. A subset *Y* of an affine space *X* is called *convex* if for any $P, Q \in Y$ the segment

$$[PQ] = \{(1-t)P + tQ : t \in [0,1]\}$$

lies in *Y*.

Examples 4.1. We have

- 1. Any affine subspace of a real affine space is a convex set.
- 2. The interior of any triangle, trapezoid, regular Polygon, tetrahedron or parallelepiped.
- 3. The interior of a circle or the interior of any n-dimensional ball.
- 4. Closed and open half-spaces.

Remark 4.2. If C is a family of convex sets in X, then

$$\bigcap_{C \in C} C$$
 is convex.

Remark 4.3. If *M* is convex then so are its interior \mathring{M} and its closure \overline{M} .

Remark 4.4. $Y \subseteq X$ is convex if and only if (why?)

$$\forall m \in \mathbb{N}, \forall P_1, \dots, P_m \in X \text{ and } \forall \mu_1, \dots, \mu_m \in [0, 1] \text{ with } \sum_{i=1}^n \mu_i = 1 \text{ we have } Bar(P_1, \dots, P_m; \mu_1, \dots, \mu_m) \in Y.$$

$$(4.1)$$

Definition. The affine combination (4.1) with coefficients in [0,1] is called *convex combination*.

4.2 Convex hulls

Definition. For a subset *M* of the affine space *X*, the *convex hull* of *M* is

$$conv(M) = \bigcap \{Y : convex subset of X containing M\}.$$

Proposition 4.5. For $M, N \subseteq X$ we have

- 1. $M \subseteq \operatorname{conv}(M)$,
- 2. conv(M) is a convex set,
- 3. *if* Y *is a convex set containing* M *then* $conv(M) \subseteq Y$,
- 4. if $M \subseteq N$ then $conv(M) \subseteq conv(N)$,
- 5. conv(M) = M if and only if M is a convex set,
- 6. $\operatorname{conv}(\operatorname{conv}(M)) = \operatorname{conv}(M)$,
- 7. $\operatorname{conv}(M) \subseteq \operatorname{aff}(M)$.

Theorem 4.6 (Carathéodory). For $M \subseteq X$

$$\operatorname{conv}(M) = \left\{ \operatorname{Bar}(P_0, \dots, P_m; \mu_1, \dots, \mu_m) : \forall m \le n, \forall P_0, \dots, P_m \in X \text{ and } \forall \mu_0, \dots, \mu_m \in [0, 1] \text{ with } \sum_{i=1}^n \mu_i = 1. \right\}$$

$$Proof.$$

Theorem 4.7 (Radon). Let X be a real affine space of dimension n and $M \subseteq X$ a finite subset. If $|M| \ge n+2$, then there exists a partition $M = M_1 \cup M_2$ of M ($M_1 \cap M_2 = \emptyset$) such that

$$\operatorname{conv}(M_1) \cap \operatorname{conv}(M_2) \neq \emptyset$$
.

Proof.
$$\Box$$

Theorem 4.8 (Helly). Let X be a real affine space of dimension n and $M_1, ..., M_m$ convex subsets of X. If $m \ge n + 1$ and the intersection of any n + 1 of the sets is non-empty, then

$$M_1 \cap \cdots \cap M_m \neq \emptyset$$
.

Proof.

4.3 Exercises

Exercise 1. Let *A* and *B* be two convex sets in \mathbb{R}^n . Show that A + B is convex.

Exercise 2. For an affine space X we define the operator s by

$$s(M) = \{tP + (1-t)Q : P, Q \in M, t \in [0,1]\} \subseteq X$$

for any subset $M \subseteq X$.

- 1. For $X = \mathbb{R}^2$ and $M = \{(1,0), (-1,-1), (0,3)\}$ describe s(M) and $s^2(M) = s(s(M))$.
- 2. What are s(M), $s^2(M)$ and $s^3(M)$ for a the vertices M of a parallelepiped?
- 3. Show that the sequence

$$M \subseteq s(M) \subseteq s^2(M) \subseteq \dots$$

is stationary if X is finite dimensional.

Exercise 3. In \mathbb{R}^2 consider the points $A(x_A, y_A)$, $B(x_B, y_B)$ and $C(x_C, y_C)$. Show that a point $P(x_P, y_P)$ lies in the triangle ABC if and only if

$$S_{AB}(x_P, y_P)S_{AB}(x_C, y_C) > 0$$
 and $S_{BC}(x_P, y_P)S_{BC}(x_A, y_A) > 0$ and $S_{CA}(x_P, y_P)S_{CA}(x_B, y_B) > 0$

where

$$S_{ij}(x,y) = \begin{vmatrix} x & y & 1 \\ x_i & y_i & 1 \\ x_j & y_j & 1 \end{vmatrix}.$$

Can you generalize this to more than three points?

Exercise 4 (Gauss-Lucas theorem). Let P(x) be a polynomial with complex coefficients and consider the isomorphism $\mathbb{C} \cong \mathbb{R}^2$. Show that the roots of P' lie in the convex hull of the roots of P.

Bibliography

- [1] I.P. Popescu Geometrie Afină si euclidiană Timișoara, 1984
- [2] P. Michele Géométrie notes de cours Lausanne, 2016
- [3] C. Pintea Geometrie afină note de curs Cluj-Napoca, 2017
- [4] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie Cluj-Napoca, 1979.