Algoritmo de Grover

Reyes Granados Naomi Itzel.

Definición del Problema

Dado un conjunto, llamamos tarea de búsqueda al encontrar un elemento específico. Cualquier tarea de búsqueda se puede expresar con una función f(x) tal que si x es el elemento buscado entonces f(x)=1, en otro caso f(x)=0.

Definición del Problema

Así el problema general se reduce a dado un conjunto *A* y una función de búsqueda:

 $f: A \rightarrow \{0,1\}$

Encontrar el valor x en A tal que f(x)=1.

Ejemplos

Algunos ejemplos de problemas que podemos expresar de la forma anterior son:

- El problema SAT en lógica proposicional.
- Búsqueda en base de datos.
- Factorización de enteros: ¿Es el número N divisible por el número x?

Dado un conjunto A y una función f, cómo se resolvería de manera clásica?

Para cada uno de los elementos de nuestro conjunto evaluamos f si nos da 1 ya terminamos; si nos da 0 probamos con otro.

Para cada uno de los elementos de nuestro conjunto evaluamos f si nos da f ya terminamos; si nos da f probamos con otro.

Para cada uno de los elementos de nuestro conjunto evaluamos f si nos da 1 ya terminamos; si nos da 0 probamos con otro.

Qué complejidad tiene el algoritmo?

Qué complejidad tiene el algoritmo? Lineal, *O(n)*

Para entrar ya en la solución cuántica primero vamos a recordar algunas definiciones.

Para dos estados cuales quiera, $|\phi\rangle$, $|\theta\rangle$, decimos que son perpendiculares si

Para dos estados cuales quiera, $|\phi\rangle, |\theta\rangle$, decimos que son perpendiculares si

$$\langle \phi || \theta \rangle = 0$$

Para dos estados cuales quiera, $|\phi\rangle$, $|\theta\rangle$, decimos que son perpendiculares si

$$\langle \phi || \theta \rangle = 0$$

Si más aún, si $|\phi\rangle$, $|\theta\rangle$ son estados base entonces solo tenemos dos opciones:

- 1. $\operatorname{Si}\langle\phi||\theta\rangle = 0$ entonces
- 2. Si $\langle \phi || \theta \rangle = 1$ entonces

Para dos estados cuales quiera, $|\phi\rangle$, $|\theta\rangle$, decimos que son perpendiculares si

$$\langle \phi || \theta \rangle = 0$$

Si más aún, si $|\phi\rangle$, $|\theta\rangle$ son estados base entonces solo tenemos dos opciones:

- 1. $\operatorname{Si}\langle\phi||\theta\rangle = 0$ entonces $|\phi\rangle \neq |\theta\rangle$
- 2. Si $\langle \phi || \theta \rangle = 1$ entonces

Para dos estados cuales quiera, $|\phi\rangle$, $|\theta\rangle$, decimos que son perpendiculares si

$$\langle \phi || \theta \rangle = 0$$

Si más aún, si $|\phi\rangle$, $|\theta\rangle$ son estados base entonces solo tenemos dos opciones:

- 1. $\operatorname{Si}\langle\phi||\theta\rangle = 0$ entonces $|\phi\rangle \neq |\theta\rangle$
- 2. Si $\langle \phi || \theta \rangle = 1$ entonces $|\phi \rangle = |\theta \rangle$

Sea $f: \{0, 1\}^n \rightarrow \{0,1\}$, tal que para algún valor x en $\{0,1\}^n$ f(x)=1. La meta es encontrar a dicho x.

Supuestos del ejemplo

- Utilizamos 2 qubits, por lo tanto $N=2^2=4$ elementos posibles: $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.
- Suponemos que el estado marcado es |11>.
- Es decir, la función que marca los estados es:

$$f(x) = \begin{cases} 1 & \text{si } x = 11 \\ 0 & \text{en otro caso} \end{cases}$$
$$f(x) = \begin{cases} 1 & \text{si } x = 11 \\ 0 & \text{en otro caso} \end{cases}$$

 $, |11\rangle.$

Paso 1: Inicialización

Inicializamos los 2 qubits en el estado base |00):

$$|\psi_0\rangle = |00\rangle$$

Paso 2: Superposición inicial

Aplicamos una compuerta Hadamard a cada qubit:

$$H^{\otimes 2} |00\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

Estado después de este paso:

$$|\psi_1\rangle = \frac{1}{2} \sum_{x=0}^{3} |x\rangle$$

Paso 3: Aplicar el oráculo O_f

El oráculo invierte el signo de la amplitud del estado marcado:

$$O_f: |x\rangle \mapsto (-1)^{f(x)} |x\rangle$$

Aplicamos el oráculo:

$$O_f\left(\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)\right) = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle - |11\rangle)$$

Paso 4: Difusor (inversión respecto a la media)

Este paso amplifica la probabilidad del estado marcado.

Para cada amplitud a_i , se transforma en:

$$a_i \mapsto 2\bar{a} - a_i$$

donde \bar{a} es la media de las amplitudes actuales.

Paso 4: Difusor (inversión respecto a la media)

Este paso amplifica la probabilidad del estado marcado.

Para cada amplitud a_i , se transforma en:

$$a_i \mapsto 2\bar{a} - a_i$$

donde \bar{a} es la media de las amplitudes actuales. Amplitudes antes del difusor:

$$|00\rangle: +\frac{1}{2}$$

$$|01\rangle: +\frac{1}{2}$$

$$|10\rangle: +\frac{1}{2}$$

$$|11\rangle: -\frac{1}{2}$$

Paso 4: Difusor (inversión respecto a la media)

Este paso amplifica la probabilidad del estado marcado.

Para cada amplitud a_i , se transforma en:

$$a_i \mapsto 2\bar{a} - a_i$$

donde \bar{a} es la media de las amplitudes actuales. Amplitudes antes del difusor:

Media:

$$\bar{a} = \frac{1}{4} \left(3 \cdot \frac{1}{2} - \frac{1}{2} \right) = \frac{1}{4}$$

$$|00\rangle: +\frac{1}{2}$$

$$|01\rangle: +\frac{1}{2}$$

$$|10\rangle: +\frac{1}{2}$$

$$|11\rangle: -\frac{1}{2}$$

$$|01\rangle: +\frac{1}{2}$$

$$|10\rangle: +\frac{1}{2}$$

$$|11\rangle: -\frac{1}{2}$$

Nuevas amplitudes:

$$|00\rangle: 2 \cdot \frac{1}{4} - \frac{1}{2} = 0$$

 $|01\rangle: 0$
 $|10\rangle: 0$
 $|11\rangle: 2 \cdot \frac{1}{4} - (-\frac{1}{2}) = 1$

Nuevas amplitudes:

$$|00\rangle: 2 \cdot \frac{1}{4} - \frac{1}{2} = 0$$

 $|01\rangle: 0$
 $|10\rangle: 0$
 $|11\rangle: 2 \cdot \frac{1}{4} - (-\frac{1}{2}) = 1$

Resultado final

Después del difusor, el sistema está en el estado:

$$|\psi_{\mathrm{final}}\rangle = |11\rangle$$

$$|\phi_0\rangle = |0\rangle^{\otimes n} \otimes |0\rangle$$

$$|\phi_0\rangle = |0\rangle^{\otimes n} \otimes |0\rangle$$
$$|\phi_1\rangle = (I^{\otimes n} \otimes \sigma_x) |\phi_0\rangle$$

$$|\phi_0\rangle = |0\rangle^{\otimes n} \otimes |0\rangle$$
$$|\phi_1\rangle = (I^{\otimes n} \otimes \sigma_x) |\phi_0\rangle$$
$$= |0\rangle^{\otimes n} \otimes (\sigma_x |0\rangle)$$

Vamos a ir viendo como evoluciona nuestro estado a través del circuito.

$$|\phi_0\rangle = |0\rangle^{\otimes n} \otimes |0\rangle$$

$$|\phi_1\rangle = (I^{\otimes n} \otimes \sigma_x) |\phi_0\rangle$$

$$= |0\rangle^{\otimes n} \otimes (\sigma_x |0\rangle)$$

$$= |0\rangle^{\otimes n} \otimes |1\rangle$$

Vamos a ir viendo como evoluciona nuestro estado a través del circuito.

$$|\phi_1\rangle = |0\rangle^{\otimes n} \otimes |1\rangle$$

Vamos a ir viendo como evoluciona nuestro estado a través del circuito.

$$\begin{aligned} |\phi_1\rangle &= |0\rangle^{\otimes n} \otimes |1\rangle \\ |\phi_2\rangle &= (H^{\otimes (n+1)})|\phi_1\rangle &= \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} |\bar{z}\rangle|-\rangle = |s\rangle|-\rangle \end{aligned}$$

Vamos a ir viendo como evoluciona nuestro estado a través del circuito.

$$|\phi_1\rangle = |0\rangle^{\otimes n} \otimes |1\rangle$$
$$|\phi_2\rangle = (H^{\otimes (n+1)})|\phi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} |\bar{z}\rangle|-\rangle = |s\rangle|-\rangle$$

Sabemos que en $|s\rangle$ está el estado tal que valua a f(x) en 1, digamos sin perdida de generalidad que dicho estado es $|w\rangle$. Definamos al estado $|s'\rangle$ como,

$$|s'\rangle = \frac{1}{\sqrt{2^n - 1}} \sum_{j \neq w} |j\rangle$$

Sea $N=2^n$, entonces podemos reescribir al estado $|s\rangle$ en función de $|s'\rangle$ y $|w\rangle$:

$$|s\rangle = |w\rangle + |s'\rangle$$

Sea $N=2^n$, entonces podemos reescribir al estado $|s\rangle$ en función de $|s'\rangle$ y $|w\rangle$:

$$|s\rangle = \frac{1}{N}|w\rangle + \frac{\sqrt{N-1}}{\sqrt{N}}|s'\rangle$$

obs. Qué pasa con $\langle w||s'\rangle$? y por tanto estos estados son

obs. Qué pasa con $\langle w||s'\rangle$? Es cero y por tanto estos estados son

obs. Qué pasa con $\langle w||s'\rangle$? Es cero y por tanto estos estados son perpendiculares.

obs. Qué pasa con $\langle w||s'\rangle$? Es cero y por tanto estos estados son perpendiculares.

Podemos ver representado así a nuestro estado |s>:

Podemos ver representado así a nuestro estado ls>:

Podemos ver representado así a nuestro estado ls>:

Vamos a ir viendo como evoluciona nuestro estado a través del circuito.

$$|\phi_1\rangle = |0\rangle^{\otimes n} \otimes |1\rangle$$

$$|\phi_2\rangle = (H^{\otimes (n+1)})|\phi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} |\bar{z}\rangle|-\rangle = |s\rangle|-\rangle$$

$$\operatorname{Con} |s\rangle = \frac{1}{N} |w\rangle + \frac{\sqrt{N-1}}{\sqrt{N}} |s'\rangle$$

 $|\phi_3\rangle = U_f |\phi_2\rangle = U_f |s\rangle |-\rangle = \frac{1}{N} U_f |w\rangle |-\rangle + \frac{\sqrt{N-1}}{\sqrt{N}} U_f |s'\rangle |-\rangle$

$$|\phi_3\rangle = U_f |\phi_2\rangle = U_f |s\rangle |-\rangle = \frac{1}{N} U_f |w\rangle |-\rangle + \frac{\sqrt{N-1}}{\sqrt{N}} U_f |s'\rangle |-\rangle$$

Aplicando Kickback

$$|\phi_3\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{f(\bar{z})} |\bar{z}\rangle |-\rangle$$

$$|\phi_3\rangle = U_f |\phi_2\rangle = U_f |s\rangle |-\rangle = \frac{1}{N} U_f |w\rangle |-\rangle + \frac{\sqrt{N-1}}{\sqrt{N}} U_f |s'\rangle |-\rangle$$

Aplicando Kickback

$$|\phi_3\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{f(\bar{z})} |\bar{z}\rangle |-\rangle$$

Recordamos que el único estado donde f es 1 es cuando $\bar{z} = w$, así

$$|\phi_3\rangle = -\frac{1}{N}|w\rangle|-\rangle + \frac{\sqrt{N-1}}{\sqrt{N}}|s'\rangle|-\rangle$$

Así a nuestro estado $|\phi 3\rangle$ se visualiza como:

Así a nuestro estado $|\phi 3\rangle$ se visualiza como:

Vamos a definir la compuerta G como:

$$2|s\rangle\langle s|-I$$

Lo que hará está compuerta es aplicar simetría para el estado $|P\rangle$ sobre el estado $|s\rangle$, de tal forma que la probabilidad de medir $|w\rangle$ aumente.

Notemos que $|A\rangle = M + p\bar{M}$

$$M = d|s\rangle$$

 $p\bar{M} = d|s\rangle - |p\rangle$

Notamos que $p\bar{M}$ es perpendicular a $|s\rangle$ por tanto.

$$\langle s||(d|s\rangle - |p\rangle)\rangle = 0$$

Despejando tenemos $d = \langle s||p\rangle$ Sustituyendo en M tenemos,

$$M = |s\rangle\langle s||p\rangle$$

Sustituyendo en $p\bar{M}$ tenemos,

$$p\bar{M} = |s\rangle\langle s||p\rangle - |p\rangle$$

Finalmete obtenemos que,

$$|A\rangle = M + p\bar{M} = 2|s\rangle\langle s||p\rangle - |p\rangle = (2|s\rangle\langle s|-I)|p\rangle$$

Cual es la utilidad de esta compuerta en el algoritmo?

Por qué se necesitan raíz de n iteraciones?

