Data: Nume:

Test AC Varianta 7

1. Se consideră un modul de prelucrare a două intrări pe 8 biți, așa cum este ilustrat mai jos.

- a) Dacă bitul de paritate ai intrării **x** coincide cu bitul de paritate ai intrării **y** atunci se va inversa jumătatea mai semnificativă ai intrării **x** cu jumătatea mai puțin semnificativă ai intrării **y**, iar intrările combinate vor fi direcționate spre ieșirea **o**. În caz contrar se va inversa jumătatea mai puțin semnificativă ai intrării **x** cu jumătatea mai semnificativă ai intrării **y**, intrările combinate fiind furnizate la ieșirea **o**.
- b) Redactaţi un **testbench** care să verifice funcţionalitatea modulului Verilog implementat anterior.

_	_		U	·			
7	עם ר	ancıdar	2 III	matarul	tahal	dΔ	adevăr:
۷.	ンヒし	UHSIUEL	a un	iliatoi ui	tabei	uc	aucvai.

	Inp	uts	Outputs			
I_3	I_2	I_1	I_0	o_2	o_1	o_0
0	0	0	0	0	1	0
0	0	0	1	1	0	1
0	0	1	0	1	0	0
0	0	1	1	0	1	1
0	1	0	0	0	1	0
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	0	1	1	0	1

Obs: Mintermii de la 10 → 15 sunt considerați elemente don't care

Pe baza configurațiilor binare date în tabel să se :

- a) Minimizeze pe foaie funcțiile de la ieșire folosind metoda diagramelor Karnaugh.
- b) Redacteze un modul care implementează funcția booleană rezultată după minimizare. Modulului i se va atribui un nume sugestiv (ex. *minimization*).

Punctaj: **1.** a) 2p; b) 2p | **2.** a) 1p; b) 1p | **3.** a) 1p; b) 1p; c) 1p | **1 punct din oficiu** | **Total**: 10p

Data: Nume:

3. Se consideră un Linear Feedback Shift Register (LFSR) de 4 ranguri, construit conform secvenței de ieșire: $q[0] \leftarrow q[3]$; $q[1] \leftarrow q[0] \oplus q[3]$; $q[2] \leftarrow q[1]$; $q[3] \leftarrow q[2]] \oplus q[3]$.

- a) Să se deseneze pe o foaie arhitectura completă a LFSR-ului conform secvenței de propagare menționată mai sus.
- b) Să se implementeze, folosind **vectori de instanțe**, structura LFSR proiectată la subpunctul a).
- c) Să se redacteze, folosind limbajul Verilog, un **testbench** care să verifice funcționalitatea modulului Verilog implementat anterior.