Precision Electroweak Measurements and Beyond the Standard Model Searches at the Electron-Ion Collider

Kaan Şimşek

References:

2204.07557, 2207.10261

Collaborators:

R. Boughezal, F. Petriello, D. Wiegand, and

S. Mantry et al. (EIC Group)

March 30, 2023

Prelude

A next-gen electron-hadron collider Accardi *et al.* 1212.1701

- A US DOE project under design at BNL, Upton, NY.
- It will use the Relativistic Heavy Ion Collider (RHIC @ BNL, in operation since 2000) acceleration complex. (RHIC is the first heavy-ion collider and also the world's only spin-polarized proton collider.)
- It will combine experience from HERA to deliver polarized e^- beams with experience from RHIC to be the first machine that provides polarized e^- with polarized p, and later polarized ²H and ³He.
- It is planned to start operating in a decade.

A next-gen electron-hadron collider

Accardi et al. 1212.1701

Unique features:

- Designed to collide 5 to 18 GeV e^- beams with 41 to 275 GeV polarized p beams, polarized light ions with energies up to 137 GeV (2 H) and 166 GeV (3 He), and unpolarized heavy ion beams up to 110 GeV
- CM energies between fixed-target scattering and high-energy collisions, 70 to 140 GeV
- First lepton-ion collider to polarize both beams
- Luminosity orders of magnitude higher than HERA
- Reduced point-to-point luminosity uncertainties $\sim 10^{-4}$
- First collider with fast spin-flip capacity*: distinguished from HERA

A next-gen electron-hadron collider

Accardi *et al.* 1212.1701

Data sets:

Label	$E_e [\mathrm{GeV}] \times E_H [\mathrm{GeV}]$	\mathcal{L} [fb ⁻¹]
D1	5×41	4.4
$\overline{D2}$	5×100	36.8
D3	10×100	44.8
D4	10×137	100
D5	18×137	15.4
P1	5×41	4.4
P2	5×100	36.8
P3	10×100	44.8
P4	10×275	100
P5	18×275	15.4
P5	18×275	100

cuts to avoid nonperturbative QCD and nuclear dynamics

 \mathcal{X}

SMEFT

for all

YR reference

Khalek et al. 2103.05419

A next-gen electron-hadron collider

Accardi et al. 1212.1701

Observable of interest:

$$A_{\rm PV} = \frac{\sigma_{\rm NC}^{+} - \sigma_{\rm NC}^{-}}{\sigma_{\rm NC}^{+} + \sigma_{\rm NC}^{-}} \quad \begin{array}{c} \rm unpolarized \\ \rm PV \ asymmetry \end{array}$$

$$\Delta A_{\mathrm{PV}} = rac{\Delta \sigma_{\mathrm{NC}}^{0}}{\sigma_{\mathrm{NC}}^{0}}$$
 polarized PV asymmetry

$$A_{\rm LC} = \frac{\sigma_{\rm NC}^{e^{-}} - \sigma_{\rm NC}^{e^{+}}}{\sigma_{\rm NC}^{e^{-}} + \sigma_{\rm NC}^{e^{+}}}$$

lepton-charge (LC) asymmetry

 $(\Delta)\sigma_{NC}^{\pm}$: un(polarized) NC $e^{-}H$ DIS cross section with only one beam polarized

 $(\Delta)\sigma_{NC}^0$: un(polarized) NC e^-H DIS cross section with no beams polarized

6 / 20 $\sigma_{NC}^{e^{\pm}}$: unpolarized NC $e^{\pm}H$ DIS cross section with no beams polarized

A next-gen electron-hadron collider

Accardi et al. 1212.1701

PDF sets used:

- Precision EW:
 - * CT18NLO
 - * MMHT2014nlo_68cl
 - * NNPDF31 NLO
- BSM analysis:
 - * NNPDF3.1 NLO
 - * NNPDFPOL1.1

A next-gen electron-hadron collider

Accardi et al. 1212.1701

$$-A_{\rm LC} - \delta \, A_{\rm LC,stat} - \delta \, A_{\rm LC,sys} - \delta \, A_{\rm LC,qed} - \delta \, A_{\rm LC,lum} - \delta \, A_{\rm LC,pdf}$$

Dominant uncertainties:

 A_{PV} : statistical

 $\Delta A_{\mathrm{PV}}:\mathrm{PDF}$

 $A_{\rm LC}$: luminosity

Phenomenology

Precision EW measurements

Extraction of $sin(\theta_W)^2$

Boughezal *et al.* 2204.07557

Observable: unpolarized PV asymmetry including target-mass correction terms in the structure-function language

$$A_{\text{PV}} = \frac{P_e \eta_{\gamma Z} \left[g_A^e 2y F_1^{\gamma Z} + g_A^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma Z} + g_V^e (2 - y) F_3^{\gamma Z} \right]}{2y F_1^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma} - \eta_{\gamma Z} \left[g_V^e F_1^{\gamma Z} + g_V^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2} \right) F_2^{\gamma Z} + g_A^e (2 - y) F_3^{\gamma Z} \right]}$$

 $\sin(\theta_W)^2$ enters through $g_{V,A}^e$ and $g_{V,A}^q$. One-loop RGE of $\sin(\theta_W)^2$ in the $\overline{\text{MS}}$ scheme and particle thresholds arising between $\mu=m_Z$ and $\mu=\sqrt{Q^2}$ are included. Fitting procedure:

$$\chi^2 = (A^{\text{theory}} - A^{\text{pseudodata}})^{\top} H(A^{\text{theory}} - A^{\text{pseudodata}})$$

where pseudodata is generated by smearing uncertainties around the SM predictions with a gaussian profile.

Precision EW measurements

Extraction of $sin(\theta_W)^2$

Boughezal *et al.* 2204.07557

bridge between high-energy colliders and low- to medium-energy SM tests

Constraints on SMEFT parameters

Boughezal *et al.* 2204.07557

Extend SM Lagrangian with higher-dimensional operators, $O_k^{(n)}$, built up of SM fields at an energy scale Λ that is heaver than all SM fields and accessible collider energy, introducing Wilson coefficients, $C_k^{(n)}$, as effective couplings:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{n>4} \frac{1}{\Lambda^{n-4}} \sum_{k} C_k^{(n)} O_k^{(n)}$$

SM couplings are shifted in a gauge-invariant manner, e.g.

$$g_{V,A}^f \to g_{V,A}^f [1 + c_{V,A}^f(M_Z, G_F, \alpha; C_k, \Lambda)]$$

We focus on the case n = 6 and semi-leptonic four-fermion operators that induce the contact interaction of leptons with quarks.

Constraints on SMEFT parameters

Boughezal *et al.* 2204.07557

Observable: un(polarized) PV and lepton-charge asymmetries linearized w.r.t C_k

$$A = A_{\rm SM} + \sum_{k} C_k \, \delta A_k$$

Fitting procedure:

$$\chi^2 = (A^{\text{theory}} - A^{\text{pseudodata}})^{\top} H(A^{\text{theory}} - A^{\text{pseudodata}})$$

where pseudodata is generated by smearing uncertainties around the SM predictions with a gaussian profile.

Constraints on SMEFT parameters

Boughezal *et al.* 2204.07557

95% CL nonmarginalized bounds at $\Lambda = 1$ TeV in single-parameter fits

Corresponding effective UV scales

Constraints on SMEFT parameters

Boughezal *et al.* 2204.07557

95% confidence ellipse at $\Lambda = 1$ TeV in two-parameter fits

LHC NC Drell-Yan
8 TeV 20 fb⁻¹
not 13 TeV high lum

Boughezal *et al.* 2104.03979

Limits on $e \leftrightarrow \tau$ in leptoquark framework

Zhang et al. 2207.10261

Br($\mu \to e\gamma$) < 4.2 × 10⁻¹³ and bounds on $e \leftrightarrow \tau$ are much stronger. However, some BSM models seem to enhance $e \leftrightarrow \tau$. The goal is to test sensitivity of the EIC to $e \leftrightarrow \tau$ in LQ framework in the limit $M_{\text{LQ}} \gg \sqrt{Q^2}$, \sqrt{s} .

Consider 3-prong τ decay following $e^- + p \rightarrow \tau + X$ using the data set 18 GeV \times 275 GeV with 100

fb⁻¹ (P6, YR reference config).

First, need to reconstruct the τ vertex: Decay length of τ is 87 μ m. ECCE can resolve 20-30 μ m.

Then, identify τ decays by reconstructing the 3π candidates.

Limits on $e \leftrightarrow \tau$ in leptoquark framework

2

Zhang et al. 2207.10261

1

3

4

background (1M each). Then start cutting events.

- 1 Primary vertex: τ must be identified.
- 2 $1 < p_{\perp} < 9 \text{ GeV}$ suppress CC ν or
 Suppress NC misdetected e^{-} γ prod.
- Candidate decay length $> 30 \mu m$
- Avg. of reconstructed decay lengths from 3 pair combinations of the 3π candidates > 0.5 mm.

Limits on $e \leftrightarrow \tau$ in leptoquark framework Zhang et al. 2207.10261

Bounds on
$$\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2}$$
:

 λ_{ij} is the leptoquark coupling of i^{th} lepton generation and j^{th} quark generation.

Coda

Conclusion

- The EIC will provide a determination of $\sin(\theta_W)^2$ at an energy scale that bridges higher-energy colliders with low- to medium-energy SM tests.
- It will offer distinct correlations compared to LHC Drell-Yan fits of SMEFT parameters, showing complementarity, and resolve blind spots, demonstrating superiority of the EIC.
- The EIC will place a more stringent limit on $e \leftrightarrow \tau$ mediated by LQs than the previous HERA data thanks to the very high vertex resolution of the ECCE detector configuration.

The EIC is designed as a QCD machine but seems promising as a useful probe of precision EW measurements, as well as BSM physics.