Normalização

Tópicos do curso

- Introdução conceitos básicos e arquitetura de SGBD
- Modelagem de Dados (MER)
- Modelo Relacional
- Dependências Funcionais e normalização

Normalização

- Processo durante o qual esquemas de relações nãosatisfatórias são decompostas em esquemas de relações menores que possuem as propriedades desejadas
- Ferramenta para validar e melhorar o projeto lógico de modo a satisfazer certas restrições e evitar duplicação desnecessária de dados

Normalização

- Processo de decomposição de relações com anomalias de modo a produzir relações menores bem estruturadas
- Medir formalmente por que um conjunto de atributos em esquemas de relações é melhor do que outro

- Uma restrição entre dois atributos ou dois conjuntos de atributos
- Advém do conhecimento da semântica dos dados armazenados
- Para qualquer relação R, um atributo B é funcionalmente dependente de um atributo A se, para toda instância de R, este valor de A determina univocamente o valor de B
 - A→B
 - $\{A,B\} \rightarrow \{C,D\} \approx AB \rightarrow CD$

Material

<u>Materia</u> →Id -	Custo	Unidade_de_Medi da
Fornece		

Material_Id	Vendedor_I	Preço
\	<u>d</u>	

Vendedor

<u>Vendedor_Id</u>	Nome	Endereço
--------------------	------	----------

Material

Material_Id	Custo	Unidade_de_Medid
		а

Fornece

Material_I	Vendedor_Id	Preço
<u>d</u>		

Vendedor

<u>Vendedor_Id</u>	Nome	Endereço
--------------------	------	----------

- Material_Id→{Custo,Unidade_de_Me dida}
- Vendedor_Id →{Nome,Endereço}
- {Material_Id,Vendedor_Id} → Preço
- {Vendedor_Id, Nome} → Endereço

 Determinante: atributo do lado esquerdo da flecha (da dependência funcional)

Regras de Inferência de Armstrong

- Também chamado de Axiomas de Armstrong
 - A1. Se X contém Y então X → Y (reflexidade)
 - Uma df obtida por este axioma é chamada de df trivial
 - A2. Se X → Y então para qualquer Z, XZ→YZ (aumentativa)
 - A3. Se X → Y e Y → Z então X → Z (transitividade)
 - {A1,A2,A3}

Regras de Inferência de Armstrong

- A4. Se X → Y e X → Z, então X → YZ (união)
 - X → XY por A2; como X → Z, XY → ZY por A2 então X → ZY por A3
 - (Note que ZY=YZ)
- A5. Se X → Y e Y contém Z então X → Z (decomposição)
 - Y → Z por A1 e como X → Y, então X → Z por A3
 - Se $X \to A_1$, A_2 ,..., A_n então $X \to A_1$, $X \to A_2$,..., $X \to A_n$
 - Sem perda de generalidade pode-se supor que todas as dfs são do tipo X → A_i, onde A_i é um atributo simples
 - Forma canônica

Regras de Inferência de Armstrong

A6. Se X → Y, WY → Z, então
 WX → Z(pseudo-transitividade)

Fecho (Closure)

- O Fecho de um subconjunto F de dfs é o conjunto F+ de todas as dfs que podem ser inferidas a partir de F
- O Fecho de um conjunto de atributos X com relação a F é o conjunto X + de todos os atributos que são determinados funcionalmente por X
- X + pode ser calculado aplicando os axiomas A1, A2, A3 repetidamente usando as dfs em F

Fecho (Closure)

- Fecho de X: X+
- Algoritmo:
 - X+:= X
 - Repita
 - oldX+ := X+
 - Para toda DF Y → Z em F
 - Se X+ contém Y então
 - X+ := X+ 🖈 Z
 - Até que (oldX+ = X+)

Fecho (Closure)

- F = {RG →Nome_Func, Num_Proj→{Nome_Proj,Loc_Pr oj}, {RG,Num_Proj} →Horas}
 - {RG}+={RG, Nome_Func}
 - {Num_Proj}+={Num_Proj, Nome_Proj, Loc_Proj}
 - {RG,Num_Proj}+={RG, Nome_func, Num_Proj, Nome_Proj, Loc_Proj, Horas}

Fecho (Closure): usos

- Determinar se uma df X → Y é uma df válida.
 - Calcular X⁺. Se X⁺ contém Y, então X → Y é uma df válida.
- Determinar se um dado subconjunto
 W é chave de R=(A₁,A₂,...,A_n)
 - Calcular W⁺ e verificar se W⁺={A₁,A₂,...,A_n}. Se isto ocorre, W→A₁, W→A₂,..., W→A_n e, portanto, W é superchave de R

Dependência Funcional: chave

- Atributo, ou combinação de atributos que identifica univocamente uma linha de uma relação
 - Identificação única: todo atributo não-chave é dependente funcionalmente da chave
 - Não-redundância: nenhum atributo na chave pode ser eliminado sem destruir a propriedade de identificação única

Dependência Funcional: chave

- A_i,A_j,...,A_k é uma chave de uma relação R se e somente se:
 - A_i, A_j,..., A_k determina todos os outros atributos de R
 - Nenhum subconjunto de A_i,A_j,...,A_k determina funcionalmente os atributos restantes de R
- Uma superchave de R é um subconjunto dos atributos de R que contém uma chave
 - Toda chave é uma superchave, mas nem toda superchave é chave

Forma Normal

- Estado de uma relação que resulta da aplicação de regras simples com respeito a dependências funcionais envolvendo atributos desta relação
- Conjunto de testes para "certificar" se uma dada relação pertence a uma forma normal
- Uma relação está em uma forma normal quando ela satisfaz um número de características desejáveis

- Uma relação não pode conter atributo multivalorado nem composto
- O domínio dos atributos deve incluir somente valores atômicos (simples/indivisíveis) e que o valor de qualquer atributo deve ser um único valor do domínio daquele atributo

<u>RA</u>	Nome	Curso	Habilidade
000001	João	Letras	{Tupi}
000002	Maria	Matemática	{Inglês,Espanhol}
963127	Ricardo	Computação	{Inglês,Francês}

○ Com redundância

Aluno

RA	Nome	Curso	Habilidade
000001	João	Letras	Tupi
000002	Maria	Matemática	Inglês
000002	Maria	Matemática	Espanhol
963127	Ricardo	Computação	Inglês
963127	Ricardo	Computação	Francês

Aluno

<u>RA</u>	Nome	Curso
000001	João Letras	
000002	Maria	Matemática
963127	Ricardo	Computação

Habilidades_Aluno

RA	<u>Habilidade</u>
000001	Tupi
000002	Inglês
000002	Espanhol
963127	Inglês
963127	Francês

Dependência Parcial

- Uma dependência funcional na qual um ou mais atributos não-chave são dependentes de parte da chave primária
- Um atributo A é dependente funcional parcial de um atributo X, se X → A e existe um subconjunto próprio Y de X tal que Y → A
 - Chama-se subconjunto próprio de um conjunto A, todo conjunto B, tal que B está contido em A e B ≠ A

Dependência Parcial

Empregado

Matr	Título_	Curso	Nome	Depto_Nome	Salário	Data_completado

- Uma relação R está em 2FN se está em 1FN e todo atributo não-chave é totalmente dependente funcionalmente da chave primária
- Uma relação R está em 2FN se nenhum ANP de R é dependente funcional parcial de qualquer chave de R

- Uma relação em 1FN está em 2FN:
 - Se a chave primária consiste de apenas um atributo
 - Nenhum atributo não-chave existe na relação (todos os atributos na relação são componentes da chave primária)
 - Todo atributo não-chave é dependente funcionalmente de todo o conjunto de atributos da chave primária

Dependência Parcial

Empregado

Matr	Título_Curso	Nom	Depto_Nom	Salári	Data_completad
		e	е	0	0

- Solução: decompor em duas relações
 - Empregado(<u>Matr</u>, Nome, Depto_Nome, Salário)
 - EmpCurso(<u>Matr,Título_Curso</u>,Data_Completa do)

- Dependência Transitiva
 - Dependência entre dois ou mais atributos não-chaves
 - Dadas as dfs X → Y, Y → X, e Y → Z, dizemos que Z depende transitivamente de X

Vendas

Cliente_Id	Nome	Vendedor	Região

Vendas

Cliente_Id	Nome	Vendedor	Região
8023	Anderson	Sandro	Sul
9167	Bruno	Humberto	Oeste
7929	Horácio	Sandro	Sul
6837	Tom	João	Leste
8596	Emerson	Humberto	Oeste
7018	Arnaldo	Fabricio	Norte

- Possíveis Anomalias
 - Inserção
 - Um novo vendedor não pode ser inserido a menos que um cliente tenha sido alocado para um vendedor
 - Deleção
 - Quando um cliente é deletado (6837) da tabela, perde-se a informação de que João está alocado para a região Leste
 - Atualização
 - Se um vendedor muda de região, várias linhas deverão ser modificadas para refletir este fato

Vendas

Cliente_Id	Nome	Vendedor	Região
8023	Anderson	Sandro	Sul
9167	Bruno	Humberto	Oeste
7929	Horácio	Sandro	Sul
6837	Tom	João	Leste
8596	Emerson	Humberto	Oeste
7018	Arnaldo	Fabricio	Norte

- Solução: decompor a relação em duas
 - Economiza espaço: região não repetida para cada client

- Uma relação em 2FN que não tem nenhuma dependência transitiva
- Uma relação R está em 3FN se nenhum ANP de R depende transitivamente de qualquer chave de R

- O Uma relação R está em 3FN se, para toda df não trivial X → Y, válida para R, então
 - (a) X é uma superchave ou
 - (b) Y é atributo primo

- O Uma relação R está em 3FN se, para toda df não trivial X → Y, válida para R, então
 - (a) X é uma superchave ou
 - (b) Y é atributo primo
- Se uma relação R viola 3FN, tanto a condição (a) quanto a condição (b) é violada
 - Violar (b): Y é um atributo não-primo
 - Violar (a): X não é um superconjunto de nenhuma chave de R
 - X poderia ser não-primo
 - Viola 3FN (transitividade)
 - X poderia ser subconjunto de uma chave de R
 - Viola 2FN e 3FN: dependência parcial da chave

Exemplos (1)

Exemplos (1)

Exemplos (2)

Exemplos (2)

Forma Normal de Boyce-Codd (FNBC)

 Oma relação R está em FNBC se, para toda df não trivial X → Y, válida para R, X é uma superchave de R

Forma Normal de Boyce-Codd (FNBC)

Livros(<u>num_tombo,autores,assuntos</u>)

Livros

num_tombo	<u>autores</u>	<u>assuntos</u>	
31416	Aho	algoritmos	
31416	Aho	complexidade	
31416	Aho	busca	
31416	Ullman	algoritmos	
31416	Ullman	complexidade	
31416	Ullman	busca	

- Está em FNBC
- Grande redundância: um livro com k autores e m assuntos
 - k*m linhas

- Dependência Funcional Multivalorada (multivalued dependency (MVD))
 - Seja R um esquema de relação e seja α∈ R e β ∈ R. A dependência multivalorada α → β realiza-se em R se, para qualquer relação r(R), para todos os pares de tuplas t₁ e t₂ de r, tal que t₁[α] = t₂[α], existem tuplas t₃ e t₄ em r tal que
 - $0 t_1[a] = t_2[a] = t_3[a] = t_4[a]$
 - $\circ t_3[\beta] = t_1[\beta]$
 - $\circ t_3[R-\alpha-\beta] = t_2[R-\alpha-\beta]$
 - $\circ t_4[\beta] = t_2[\beta]$
 - $\circ t_4[R-\alpha-\beta] = t_1[R-\alpha-\beta]$

- Dependência Funcional Multivalorada (multivalued dependency (MVD))
 - Seja R um esquema de relação e seja α R e β R. A dependência multivalorada α →→ β realiza-se em R se, para qualquer relação r(R), para todos os pares de tuplas t₁ e t₂ de r, tal que t₁[α] = t₂[α], existam tuplas

R

	a	β	R – α – β
t1	a ₁ a _i	a _{i+1} a _j	a _{j+1} a _n
t2	a ₁ a _i	$\mathbf{b}_{i+1}\mathbf{b}_{j}$	b _{j+1} b _n
t3	a ₁ a _i	a _{i+1} a _j	b _{j+1} b _n
t4	a ₁ a _i	$\mathbf{b}_{i+1}\mathbf{b}_{j}$	a _{j+1} a _n

$$t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$$

 $t_3[\beta] = t_1[\beta]$
 $t_3[R-\alpha-\beta] = t_2[R-\alpha-\beta]$
 $t_4[\beta] = t_2[\beta]$
 $t_4[R-\alpha-\beta] = t_4[R-\alpha-\beta]$

R

	αβ		R – α – β
t1	a ₁ a _i	a _{i+1} a _j	a _{j+1} a _n
t2	a ₁ a _i	$\mathbf{b}_{i+1}\mathbf{b}_{j}$	b _{j+1} b _n
t3	a ₁ a _i	a _{i+1} a _j	b _{j+1} b _n
t4	a ₁ a _i	$\mathbf{b}_{i+1}\mathbf{b}_{j}$	a _{j+1} a _n

Regras de Inferência

- IR1 (reflexibilidade): Se X → Y, então X -> Y.
- IR2 (incremento/aumento): {X → Y} ②■XZ →
 YZ.
- IR3 (transitividade): {X -> Y, Y ->Z} ②■X -> Z.
- IR4 (complementação): {X —>> Y} ②■X —>> (R (X か Y))}.
- IR5 (incremento multivalorado): If X —>> Y e
 W →Z então WX —>> YZ.
- IR6 (transitividade multivalorada): {X —>> Y, Y —>> Z} ②■X —>> (Z Y).
- IR7 (replicação): {X -> Y} ②■X -->> Y.
- IR8 (coalescência): Se X —>> Y e existe W com as propriedades (a) W & Y é vazio, (b) W -> Z, e (c) Y →Z, então X -> Z.

- R(A,B,C,G,H,I)
- Suponha que A $\rightarrow \rightarrow$ BC realiza-se.
- Se t₁[A]=t₂[A], então existem tuplas t₃ e t₄
 tal que
 - $t_1[A] = t_2[A] = t_3[A] = t_4[A]$
 - $t_3[BC] = t_1[BC]$
 - $t_3[GHI] = t_2[GHI]$
 - $t_4[BC] = t_2[BC]$
 - $t_4[GHI] = t_1[GHI]$
- Regra da complementação: se A →→ BC então A →→ GHI. Observe que t₃ e t₄ satisfazem a definição A →→ GHI (mudam-se apenas os atributos)

- Uma MVD X ->> Y em R é chamada de trivial se (a) Y é um subconjunto de X, ou (b) X v Y = R.
- Uma relação R está em 4FN se para toda dependência mulivalorada não trivial X→→Y válida para R, então X é uma superchave de R
 - A relação R não está em 4FN pois num_tombo→→autores é uma dependência multivalorada não trivial, mas num_tombo não é uma superchave de R

Livros(<u>num_tombo,autores,assuntos</u>)

Livros

num_tombo	<u>autores</u>	<u>assuntos</u>	
31416	Aho	algoritmos	
31416	Aho	complexidade	
31416	UAho	busca	
31416	Ullman	algoritmos	
31416	Ullman	complexidade	
31416	Ullman	busca	

Solução:

- Livros1(<u>num_tombo,autores</u>)
- Livros2(<u>num_tombo,assuntos</u>)
- k+m linhas

Formas Normais

Quinta Forma Normal (5FN) Project-Join Normal Form

- Dependência de Junção (DJ)
- DJ(R₁,R₂,...,R_n) especificada na relação R
 - Toda instância legal r de R deveria ter uma decomposição de junção sem perda em R₁, R₂, ..., R_n
 - $\mathscr{L}_1(R) |x| \mathscr{L}_2(R) |x| ... |X| \mathscr{L}_n(R) = R$
 - DJ trivial: um dos esquemas R_i em
 DJ(R₁,R₂,...,R_n) é igual a R

 \circ R(A,B,C), com df A \rightarrow B

K		
A	В	С
a1	b1	c1
a2	b1	c2

D

Decomposição em duas relações R1 e
 R2

•
$$R_1$$
 (R) $R_2 = R_2$

A	В
a1	b1
a2	b1

_	
В	С
b1	c1
b1	c2

 Como os dados originais estão em R', esperaríamos que R' seria recuperada pela junção R₁ |X| R₂

- No caso:
 - junção aditiva ou com perdas

A	В	С
a1	b1	c1
a1	b1	c2
a2	b1	c1
a2	b1	c2

 $R_1 \mid X \mid R_2$

Quinta Forma Normal (5FN) Project-Join Normal Form

 Uma relação R está em 5FN com respeito a um conjunto de dependências funcionais, multivaloradas e de junção se, para toda dependência de junção não-trivial $DJ(R_1,R_2,...,R_n)$ em F^+ , cada R_i é uma superchave de R

Projeto do BD

- Projeto top-down
 - Modelo Entidade-Relacionamento
 - Mapeamento para modelo Relacional
 - Normalização
- Projeto bottom-up
 - Síntese relacional

- Esquema relacional universal R={A₁,A₂,...A_n}
 - Todos os atributos de R
 - Atributo é único
- Conjunto F de dfs válidas
- Algoritmos para projeto
 - Decompõem R em um conjunto de relações D={R₁,R₂,...,R_m}
 - D é chamado de decomposição de R

- Preservação de atributos
 - $U_{i=1}^m R_i = R$
 - Todos os atributos em R aparecerão em pelo menos um esquema da relação R_i

Preservação de Dependência Funcional

- O Toda df X → Y especificada em F
 - Aparece em um dos esquemas R_i
 - Poderia ser inferida pelas dfs que aparecem em R_i
- Importância: continua a representar restrições no BD

Preservação de Dependência Funcional

- Dizemos que uma decomposição D={R1,R2,...,Rm} de R preserva dependência com respeito a F se a união das projeções de F em Ri é equivalente a F
 - $(A(R_1) \cup A(R_2) \cup ... \cup A(R_m))^+ = F^+$

Fecho (Closure)

- Fecho de X: X+
- Algoritmo:
 - X+:= X
 - Repita
 - oldX+ := X+
 - Para toda DF Y → Z em F
 - Se X+ contém Y então
 - X+ := X+ 🖈 Z
 - Até que (oldX+ = X+)

Preservação de Dependência Funcional

A dependência FD2 é perdida

Equivalência de Conjuntos de Dfs

- Diz-se que um conjunto de dfs F cobre outro conjunto de dfs E se toda df em E também está em F+
 - Toda df em E pode ser inferida a partir de F
 - E é coberto por F
- Dois conjuntos de dfs E e F são equivalentes se E⁺ = F⁺
 - E cobre F e F cobre E

Cobertura Mínima

- Seja F um conjunto de dfs
- Cobertura minimal G para F: um conjunto mínimo de df que é equivalente a F
 - 1. Cada df em G tem apenas um atributo do lado direito
 - 2. Não se pode remover nenhuma df de G e ainda ter um conjunto de dfs equivalentes a F
 - Não se pode substituir nenhuma df X→A em G por uma df Y→A, onde Y é subconjunto de X, e ainda ter o conjunto de dfs que é equivalente a F

Cobertura Mínima

- Faça G:=F
- Substitua cada df X→A₁,A₂,...,A_n em G por n dfs X→A₁, X→A₂,..., X→A_n
- Para cada df X→A em G faça
 - Para cada atributo B que é um elemento de X faça
 - Compute (X-B)+, considerando o conjunto de dfs G
 - Se (X-B)+ contém A então substitua X →A por (X-B) →A em G
- Para cada df X → A restante em G faça
 - Compute X+, considerando o conjunto de dfs G-{X→A}
 - Se X+ contém A então
 - Remova X → A de G

Decomposição em relações 3FN que preserva dependência

Algoritmo de Síntese Relacional

- Encontre uma cobertura minimal G de F
- Para cada X presente no lado esquerdo de uma df que aparece em G faça
 - Crie um esquema de relação {XUA₁UA₂U...UAm} em D, onde X→A₁,A₂,...,Am são as únicas dfs em G que têm X do lado esquerdo
- Coloque todos os atributos restantes em uma única relação para garantir a propriedade de preservação de atributo

- Garante que nenhuma tupla espúria é gerada quando uma junção natural é aplicada às relações resultantes da decomposição
- Toda instância legal r de R deveria ter uma decomposição de junção sem perda em R₁, R₂, ..., R_n
 - $\mathcal{A}_1(r) |x| \mathcal{A}_2(r) |x| ... |X| \mathcal{A}_n(r) = r$

- Relação universal R, uma decomposição D
 = {R₁, R₂, ..., R_m} de R, e um conjunto F de dfs
- Crie uma matriz inicial S com uma linha i para cada relação R_i em D, em uma coluna j para cada atributo A_i em R
- 2. Faça $S(i,j):=b_{ij}$ para todas as células da matriz (* cada b_{ij} é um símbolo distinto associado aos ínidices (i,j) *).
- Para cada linha i representando um esquema de relação R;
 - ${ {
 m Para \ cada \ coluna \ j \ representando \ um \ atributo \ {\it A}_{i} }$
 - {se (relação R_i inclui atributo A_j) então faça $S(i,j):=a_j;$ };
- (* cada a_j é um símbolo distinto associado ao

- Repita o loop abaixo até que a execução do loop não provoque mudanças em S
 - Para cada df X 尞Y em F
 - 1. Para todas as linhas em S que tenham os mesmos símbolos nas colunas correspondentes a X
 - 1. Faça os símbolos em cada coluna que corresponde a um atributo em Y ser o mesmo em todas estas linhas como definido a seguir: se qualquer duas linhas têm um símbolo "a" para a coluna, faça as outras linhas terem o mesmo símbolo "a" na coluna. Se não há um símbolo "a" para o atributo em qualquer das linhas, escolha um dos símbolos "b" que aparecem em uma das linhas para o atributo e faça as outras linhas receberem o mesmo símbolo "b" na coluna
- 2. Se uma linha só tem símbolos "a", então a decomposição tem a propriedade de ser sem-perda; caso contrário a decomposição é com perdas.

(a) R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
R₁=EMP_LOCS={ENAME, PLOCATION}
R₂=EMP_PROJ1={SSN, PNUMBER, HOURS, PNAME, PLOCATION}

 $D=\{R_1, R_2\}$

 $F = \{SSN \rightarrow ENAME; PNUMBER \rightarrow \{PNAME, PLOCATION\}; \{SSN, PNUMBER\} \rightarrow HOURS\}$

	SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS	
R ₁	b 11	a 2	^b 13	b 14	a ₅	^b 16	
R_2	a 1	b ₂₂	^а 3	a ₄	a ₅	^a 6	

(no changes to matrix after applying functional dependencies)

(b)

EMP			PROJECT	PROJECT			WORKS_ON		
	SSN	ENAME	PNUMBER	PNAME	PLOCATION		SSN	PNUMBER	HOURS

(c) R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}
R₁=EMP={SSN, ENAME}
R₂=PROJ={PNUMBER, PNAME, PLOCATION}
R₃=WORKS_ON={SSN, PNUMBER, HOURS}

 $F = \{SSN \rightarrow \{ENAME; PNUMBER \rightarrow \{PNAME, PLOCATION\}; \{SSN, PNUMBER\} \rightarrow HOURS\}\}$

 $D=\{R_1, R_2, R_3\}$

	SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS
R ₁	^a 1	a 2	^b 13	b 14	^b 15	^b 16
R ₂	b 21	b 22	a ₃	a ₄	a ₅	^b 26
R ₃	^a 1	b 32	а 3	b ₃₄	b ₃₅	^a 6

(original matrix S at start of algorithm)

	SSN	ENAME	PNUMBER	PNAME	PLOCATION	HOURS
R ₁	a 1	a ₂	^b 13	^b 14	^b 15	^b 16
R ₂	b 21	b 22	а 3	a ₄	^a 5	^b 26
R ₃	a 1	b 32 2	а ₃	b 34 4	b ₃₅ a ₅	a 6

(matrix S after applying the first two functional dependencies - last row is all "a" symbols, so we stop)

- Propriedade 1
 - Uma decomposição D={R₁,R₂} de R é não-aditiva (sem perda) obedecendo a um conjunto de dfs F em R se, e somente se,
 - Ou a df $((R_1 \cap R_2) \rightarrow (R_1 R_2)$ está em F⁺
 - Ou a df $((R_1 \cap R_2) \rightarrow (R_2 R_1)$ está em F⁺
 - Propriedade aplicável para decomposições em duas relações
- Ex.: Funcionário(<u>numf</u>,RG,nome,end,depto,nome_dep to)
 - numf e RG são chaves
 - depto → nome_depto
- A decomposição
 D={F1(numf,RG,nome,end,depto),
 F2(depto,nome_depto)} é não-aditiva
 - F1 ∩ F2 = depto, F2-F1=nome_depto
 - (F1 \cap F2) \rightarrow F2-F1

Propriedade 2

 Se uma decomposição $D = \{R_1, R_2, ..., R_m\}$ de R tem a propriedade de junção sem perda em relação a um conjunto F de dfs em R, e se uma decomposição $D1 = \{Q_1, Q_2, ..., Q_k\}$ de R_i tem a propriedade de junção sem perda com relação a projeção de F em R_i, então a decomposição $D2=\{R_{1},R_{2},...,R_{i-1},$ $Q_1,Q_2,...,Q_k,R_{i+1},...,R_m$ } é sem perda

- Toda relação R obedecendo a um conjunto de dfs F e que não esteja em FNBC, possui uma decomposição não-aditiva em relações obedecendo a FNBC
- Não garante que as dfs serão preservadas

Algoritmo para Decomposição Sem-perdas em Relações FNBC

- Faça D:={R}
- Enquanto houver uma relação Q em D que não esteja em FNBC faça
 - Escolha uma relação Q em D que não está em FNBC
 - Encontre uma df X→Y em Q que viola FNBC
 - Troque Q em D por dois esquemas (Q-Y) e (X υ Y)

Algoritmo para Decomposição Sem-perdas em Relações 3FN que Preservam Dependência

- Encontre a cobertura minimal G para F
- Para cada atributo X que aparece do lado esquerdo em G faça
 - Crie um esquema de relação {X∪A₁∪A₂∪...∪A_m} em D, onde X→A₁,A₂,...,A_n são as únicas dfs em G que têm X do lado esquerdo
- Coloque todos os atributos restantes em uma única relação para garantir a propriedade de preservação de atributo
- Se nenhuma das relações contêm uma chave de R, crie uma ou mais relações que contenham atributos que formam uma chave para R

Algoritmo para se determinar a chave K de uma relação R

- K:=R
- Para cada atributo A em K
 - Compute (K-A)⁺ com respeito ao conjunto de dfs
 - Se (k-A)+ contém todos os atributos em R, então K:=K-{A}
- Chave: depende da ordem na qual os atributos são removidos