Projet Bin Packing 1D

Adrien GARBANI

7 juin 2021

Les instructions pour exécuter le code peuvent être trouvés dans le fichier README.md

1 Borne inférieure des jeux de données

La borne inférieure du nombre de bin à utiliser est obtenue en divisant la somme de la taille de tous les objets par la taille d'un bin.

nom	taille d'un bin	nombre d'items	nombre de bin
binpack1d_00.txt	9	24	13
binpack1d_01.txt	150	250	99
binpack1d_02.txt	150	500	198
binpack1d_03.txt	1000	60	20
binpack1d_04.txt	1000	120	40
binpack1d_05.txt	1000	249	83
binpack1d_06.txt	1000	501	167
binpack1d_11.txt	100	50	25
binpack1d_12.txt	120	50	26
binpack1d_13.txt	120	500	252
binpack1d_14.txt	150	500	215
binpack1d_21.txt	10000	141	11
binpack1d_31.txt	1000	160	61

Résultats obtenus avec la commande : ./Project_opti.exe question 1.

2 Résolution avec FirstFitDecreasing

L'implémentation peut être trouvé dans la fonction FileData::first_fit_decreasing() dans le fichier src/FileData.cpp.

nom	borne inférieure	FirstFitDecreasing
binpack1d_00.txt	13	13
binpack1d_01.txt	99	100
binpack1d_02.txt	198	201
binpack1d_03.txt	20	23
binpack1d_04.txt	40	45
binpack1d_05.txt	83	94
binpack1d_06.txt	167	190
binpack1d_11.txt	25	25
binpack1d_12.txt	26	29
binpack1d_13.txt	252	258
binpack1d_14.txt	215	220
binpack1d_21.txt	11	12
binpack1d_31.txt	61	62

Résultats obtenus avec la commande : ./ $Project_opti.exe$ question 2.

3 Résolution linéaire

3.1 Solution de binpack1d 00.txt

La résolution linéaire donne un résultat optimal à 13 bins en environ 38ms. Le contenu de chaque bin étant :

items	total
6	6
6,3	9
5,3	8
5,4	9
5,2,2	9
4,5	9
4,5	9
4,4	8
2,7	9
2,7	9
5,4	9
8	8
8	8

Résultats obtenus avec la commande :

3.2 Limite de la résolution linéaire

4 Générateurs aléatoires

Les générateurs de solution aléatoires peuvent être trouvés dans les fonctions FileData::solve_simple() et FileData::first_fit_random() dans le fichier src/FileData.cpp.

Leur résultats peuvent être obtenus avec la commande :

./Project_opti.exe question 4 file resources/binpack1d_00.txt verbose.

5 Opérateurs de voisinage

Les opérateurs peuvent être trouvés dans les fonctions $Solution::move_item(...)$ et $Solution::swap_items(...)$ dans le fichier src/Solution.cpp.

Une démonstration des opérateurs peut être obtenue avec la commande : ./Project_opti.exe question 5.

6 Recuit simulé

6.1 binpack1d 00.txt

7 Tabu Search

^{./}Project_opti.exe question 3 file resources/binpack1d_00.txt verbose.