Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum II

,				1	Λ
Ĥ	lol	ha	č.	•	u

Název úlohy: Hallův jev	
Jméno: Vladislav Wohlrath	Obor: FOF FAF FMUZV
Datum měření: 17. 10. 2016	Datum odevzdání:

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci.
- 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.
- 3. Výsledky měření zpracujte graficky a vyhodnoť te měrnou vodivost a Hallovu konstantu vzorku.
- 4. Vypočtěte pohyblivost a koncentraci nositelů náboje.

Teoretická část

Hlavním cílem této úlohy je změřit pohyblivost μ a koncentraci n nositelů náboje ve vzorku polovodiče. Měřený polovodič bude vzorek germania typu n, tedy majoritními nositeli náboje jsou elektrony. Pohyblivost a koncentraci elektronů určíme ze změřené měrné vodivosti σ a Hallovy konstanty R_H .

Použitý vzorek je tvaru hranolu s rozměry t, d a l a je opatřený šesti kontakty (viz obrázek 1).

Měrnou vodivost vzorku určíme z naměřené voltampérové charakteristiky. Vzorek zapojíme jako na obrázku 2 a naměříme závislost I_{12} na U_{34} . Měrnou vodivost určíme z fitu

$$I_{12} = \sigma \frac{td}{l} U_{34} \,. \tag{1}$$

Pro měření Hallovy konstanty vložíme vzorek procházený proudem I_{12} do pole o magnetické indukci B. V důsledku působení magnetického pole na pohybující se elektrony ve vzorku se elektrony odchýlí a mezi kontakty 5 a 6 vznikne tzv. Hallovo napětí U_H . Hallovo konstantu určíme z fitu [1]

$$U_H = R_H \frac{I_{12} \cdot B}{t} \,. \tag{2}$$

Vzhledem k tomu, že kontakty 5 a 6 nejsou s velkou pravděpodobností umístěny přesně symetricky, naměříme na nich při průchodu proudu vzorkem nenulové napětí i při nulové magnetické indukci. Abychom tento jev eliminovali, změříme napětí při obou polaritách magnetického pole a správnou hodnotu U_H určíme jako

$$|U_H| = |U_{56}^+ - U_{56}^-|/2. (3)$$

Mezi R_H a koncentrací n platí vztah [1]

$$R_H = \frac{r_H}{en} \,, \tag{4}$$

kde e je náboj elektronu a r_H je tzv. rozptylový faktor. V našem případě můžeme uvažovat $r_H = 3\pi/8$. [1] Ze známé R_H a σ můžeme vypočítat tzv. Hallovskou pohyblivost ze vztahu [1]

$$\mu = R_H \sigma \,. \tag{5}$$

Magnetické pole budeme realizovat elektromagnetem.

Výsledky měření

Měření proběhlo při normálním tlaku a pokojové teplotě (přibližně $22\,^{\circ}$ C). Všechny uvedené nejistoty jsou standardní a v zápisu 10(1) znamená číslo v závorce nejistotu v řádu poslední uvedené číslice.

Proud I_{12} jsme měřili digitálním multimetrem MASTECH MY-68 a napětí U_{34} a U_{56} digitálním multimetrem METEX MXD 4660A. Proud I_M procházející elektromagnetem jsme měřili analogovým ampérmetrem s třídou přesnosti 0.5 a rozsahem $6\,\mathrm{V}$.

Rozměry vzorku byly $l=6,\!000(5)\,\mathrm{mm},\,d=3,\!350(5)\,\mathrm{mm}$ a $t=0,\!720(5)\,\mathrm{mm}.$

Měrnou vodivost vzorku jsme určili $\sigma = 5,28(5)\,\mathrm{S}\,\mathrm{m}^{-1}$. Naměřená voltampérová charakteristika je uvedena v tabulce 1 a zanesena do grafu 1.

Magnetické pole buzené elektromagnetem mělo indukci

$$B(T) = 0.098 \cdot I_M(A) \tag{6}$$

Změřili jsme Hallovu konstantu $R_H=0.061(1)\,\mathrm{m}^3\,\mathrm{A}^{-1}\,\mathrm{s}^{-1}$. Naměřené hodnoty jsou uvedeny v tabulce 2 a zaneseny do grafu 2. Hodnoty $U_{56}^+,\,U_{56}^-$ neuvádíme, pouze U_H , stejně tak místo I_M uvádíme pouze B, tyto hodnoty jsou k nahlédnutí v záznamu z měření.

Podle (5) jsme vypočítali Hallovskou pohyblivost $\mu = 0.324(3) \,\mathrm{A}\,\mathrm{m}^2\,\mathrm{kg}^{-1}$ a podle (4) koncentraci nositelů náboje $n = 1.07(1) \cdot 10^{20} \,\mathrm{m}^{-3}$.

Obrázek 1: Označení rozměrů a kontaktů na měřeném vzorku (převzato z [1])

Obrázek 2: Zapojení pro měření měrné vodivosti

U_{34} (V)	$I_{12} (\mathrm{mA})$
0,232(2)	0,50(4)
0,474(2)	1,00(5)
0,712(2)	1,50(5)
0,946(3)	2,00(6)
1,183(3)	2,50(7)
1,423(3)	3,00(7)
1,651(3)	3,50(8)
1,885(3)	4,00(8)
2,11(2)	4,50(9)
2,34(2)	5,00(9)

Tabulka 1: Voltampérová chrakteristika vzorku

Graf 1: Voltampérová charakteristika vzorku

$I_{12} = 2,50(6) \mathrm{mA}$		$I_{12} = 5,00(9) \mathrm{mA}$		
B(T)	$U_H(mV)$	B(T)	$U_H(mV)$	
0,049(3)	12(2)	0,049(3)	20(2)	
0,098(3)	23(2)	0,098(3)	42(2)	
0,147(3)	33(2)	0,147(3)	63(2)	
0,196(3)	45(2)	0,196(3)	83(2)	
0,245(3)	55(2)	0,245(3)	103(2)	
0,294(3)	66(2)	0,294(3)	124(2)	
0,343(3)	76(2)	0,343(3)	145(2)	
0,392(3)	86(2)	0,392(3)	163(2)	

Tabulka 2: Měření Hallovy konstanty

Graf 2: Měření Hallovy konstanty

Diskuze

Na vzorku jsme zaznamenali parazitické kontaktní napětí, které jsme po konzultaci s vyučujícím vyhodnotili jako ne zcela zanedbatelné. Přesto jsme ho zanedbali.

Naměřené hodnoty vyšly přibližně podle očekávání a řádově jsou jistě správné.

V grafu 2 je vidět, že naměřené hodnoty pro $I_{12}=2.5\,\mathrm{mV}$ leží všechny nad proloženou přímkou, zatímco všechny hodnoty pro $I_{12}=5.0\,\mathrm{mV}$ leží pod ní. Přesná přícina je nám neznámá, možné vysvětlení je, že jeden z parametrů μ nebo n není zcela nezávislý na procházejícím proudu a tedy i R_H je pro různé proudy jiné. Naměřené hodnoty pro oba proudy I_{12} ale přibližně odpovídají teoretické závislosti a má proto smysl uvažovat pouze jednu hodnotu R_H .

Závěr

Změřili jsme měrnou vodivost vzorku $\sigma = 5,28(5)\,\mathrm{S\,m^{-1}}$ a Hallovu konstantu $R_H = 0,061(1)\,\mathrm{m^3\,A^{-1}\,s^{-1}}$. Pomocí těchto údajů jsme určili Hallovskou pohyblivost elektronů ve vzorku $\mu = 0,324(3)\,\mathrm{A\,m^2\,kg^{-1}}$ a jejich koncentraci $n = 1,07(1)\cdot 10^{20}\,\mathrm{m^{-3}}$.

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2016-04-06]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start).