

BIOINFROMHER MODULE 2 PROJECT

Tracking the Evolution of the Hemoglobin Beta (HBB) Gene across Species

CONDUCTED BY:
Maram Nhaili

1 Sequence Retrieval and blast search:

1.1 Sequence Retrieval:

HBB for humain:

 $>NC_000011.10:c5227071-5225464$ Homo sapiens chromosome 11, GRCh38.p14 Primary Assembly

ACATTTGCTTCTGACACCACTGTTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC AGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCATGTGGAGACAGAGAAG ACTCTTGGGTTTCTGATAGGCACTGACTCTCTCTGCCTATTGGTCTATTTTCCCACCCTTAGGCTGCTGG TGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGG CAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGAC AACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACT TCAGGGTGAGTCTATGGGACGCTTGATGTTTTCTTTCCCCCTTCTTTTCTATGGTTAAGTTCATGTCATAG GAAGGGGATAAGTAACAGGGTACAGTTTAGAATGGGAAACAGACGAATGATTGCATCAGTGTGGAAGTCT TTTTTTTTTCTCCCCCAATTTTTACTATTATACTTAATGCCTTAACATTGTGTATAACAAAAGGAAATA TCTCTGAGATACATTAAGTAACTTAAAAAAAAACTTTACACAGTCTGCCTAGTACATTACTATTTGGAAT ATATGTGTGCTTATTTGCATATTCATAATCTCCCTACTTTATTTTCTTTTATTTTTAATTGATACATAAT CATTATACATATTTATGGGTTAAAGTGTAATGTTTTAATATGTGTACACATATTGACCAAATCAGGGTAA TTTTGCATTTGTAATTTTAAAAAATGCTTTCTTCTTTTTAATATACTTTTTTTGTTTATCTTATTTCTAATA CTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCTAAAG AATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATCTCTGCATATAAATATTTCTGCATATAAAT TGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTT ATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTT ATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT

1.2 Fasta formet for other species:

1.2.1 COW:

Accession number: M63453.1

>M63453.1 Bovine Beta globin gene and globin (PSI-3) pseudogene, complete

GGAGAATAAAGTTTCTGAGTCTAGACACACTGGATCAGCCAATCACAGATGAAGGGCACTGAGGAACAGG AGTGCATCTTACATTCCCCCAAACCAATGAACTTGTATTATGCCCTGGGCTAATCTGCTCAGAGCAGAGA GGGCAGGGGGCTGGGTGGGCTCACAAGCAAGACCAGGGCCCCTACTGCTTACACTTGCTTCTAACACAA CTTGCAACTGCACAAACACACATCATGGTGCATCTGACTCTTGAGGGGGAAGGCTACTTGTCACTGCCCTG CTCCTTCCTTATGCTGTTTTCACCCTGTAGGCTTCTGGTTGTCTACCCCTGGACTCAGAGGTTCTTTGAG TCCTTTGGGAACTTGCCCTCTGCTGATCTATTATGGGCAACCTAAGGTGAAGGCCCATGACAAGAAGGTG CTAGACTCCTTTACCAAAGGCCTGAAGCATGTTGACCACCTCAAGGGTGTCTTTGCTTTGCTAAGTGAGT TGCACTGTAAGAATCTGCATGTCAGTCCTGAGAACATCAGTGTGAGTCTACGGGATGCTTAATATTCTCC ATCTATTTTTTTTCTTCTGGTGGTTAAGTTCCTATCATGAGGAGAGTTAAGCAGCAGGATACAGTTCA GAATGGAAAAGAGATATTCTGGTTACATCACTATGGATTCCTCAGGAACATTTAGTTTCCTTTACTTTCT TTATTCAAACATTTTGAGTATTTAAAAACACTTTTATATTTTAAGTCACTTAAAATTTTATCTCATATTT TCCCCTTACCTCTTCCAAAGCAAGGGAGACAAAATGATGCATTGTGTCTTGAAATGGTTCAAAAGA ATAAAAAATGATAACAGGCTATGGACTAAGACAGAAAGGCAGAAACATTTCTAAGAACAAGTTCAGGCTG CTATCAATTCAGTTCAGTCACTCGTGTCCAACTCCTTTGCAACCCCATGAATCATAGTGCGCCAAG CCTCCCTGTCCATCACCAACTCCCGACTCTAGAGGATCCCCGGAGTTCACTCAGACTCACGTCCATTGAG TCAGAGTCTTTTCCAATGAGTCAACTCTTCGCATGAGGTGGCCAAAGTATTGGAGTTTCAGCTTTAGCAT TAGAAGTAACATCTATACTTCAGCCATCTTTCTACTTATATTCTAGGGGCACAGCTTGGGATGAGACTGA CCTTGGCAACATACTGGTAATTACACTGGCTCAAAACTTTGGCAAGGAATTCACCCCGGAGTTCCTGGCT GCCTATCAGAAGGTGGTGGCTGGTGTGCTAATGCCCTCACCTAAAAATACCACTGGGATCCTGGCCATTT ACCAATTCACACTCCTCTAGGTTATTACAGAGCCCTATTTGAATTCCTTGAGTGGATGAACATTGTGATA GCTTACAGTGAACAGTGTCAGATTTGTGGCCTCCAGAGGGACAATTTCGATCTGGGGCCAGAGAAGAGGC TTGATCACTCAGAGCTTTTGCATGGCAGAAATTTTATTACAGTGAAAAACGGACAGAGGAAGCTTCTGAG ATAGACATCAGAAGGGGAACTGTAGAGTGCCCTACTTGCTAGTCTTATCAAGACCTTATATACTTTTTCC AGTCAGAAGAATCTTAAGAAGGAGAACCAGGTCCTCAAGTAAGATGCATTGTTGTTATATAATCATTAGT ACAAAGTTAAGGAAAAACATACCTTTGAGCAAGATGAATTGTTTTGTTGTTTAATCATTGAAGTGAAGTG AAGTTGCTCAGCCATGTCCAACTCTTTTCGACCCCATGGACTGTAGCTTACAAGGCTCCCCTGTCCATGG CTAACCTGGGTATCCCACATTGCATGCAGACAATTTACCATCTGAGCTACCAGGGAAGCCATGGTAGAAG GTCAGCCTTATTCCTTGGACTGACTTTTTCAGCAATTAGAGTATATTTTGAGCCTAACTTTAAAAATAGG AGGTTTGTTGCCAAACAGAAAAGGAATTTCTTAACACTTTGATGAGGTAAAAATAAGGATTGACATGTTT ATGAACAGCATACTATGGCAAGACAGCATAGATAACCCTGTACTGGTCTGCAGGTCCTGAACACTGCACT GTCTGGTTCCCAAATTCCATCTGTAAAAAAGCAGCTTCACTCATTTCTCCAAGCAAATCTTAGGAGCAAA CGAGTCCACGTAAGGCTTCTGTCTCTGGTGTAACTAAAATGGAGGAAAATGGACTATGAAAGGGATCATC TACTTTTTCAGAGAAGACAAACGATGGGAGGTAGGAAAGCATTATGTTTTAAAACGACTTGAGTCTTGTA GGTTTCTGTTGGCCTCTCATGCTCTTCCTATTTGGAGAGTAAGATCTAATCACTTGATGTACATAAGAGG TTTGGTAAAGATCAATCAGTCTTTCTCTAAGAGACTTGGCCACTGATAATACATCCACCACAAAGGAGAA TACCTAAACCATGAATATATCCTGTACTGGCACCATCATTAAGAATAGGCTTGGAAACAGGACTTGATGC CCATTCTTGGCAACCCCATGGAGTCTGTCTGGTTTCTTCTGCCATGGGATTCTCCAGGCAAGAATACTGG AGTGGGTTGCCATTCCCTCCTTCAGGGATCTTCCCAACCCAGGCATCGAAGCCAGGTTTCCTACATTGCT GATAGATTCTTTACTGTCTGAGCCAGCAAGGAAGCCCTTTACCTTTACTTTAACCACCTAGGTTATGCAT GGGTTTAAAGAGCTCTGGGCTTAAAGAAAGTTAGTCTTGAGATGTTGTCACAACTCAGAGTTGAAGAAAA ATGTCTTATGTGACTAAGACTTTGCAATGTAGAACAAAACATTTTTCCTTTTCTCCTCCTTGAGAGCTCC TTCCCTAGATTCTTCTATTTTTACAGTTTAATTTTTAAGTCATTTTTCAGTTGTGATATTGCTTCTGTT GTTTTTTATGTTCCTGTTTTCAGGCCACAAGGCATGTCAGATCTTAGTCCCCTGAACAGAAATAGAACCC TCACGCCCTGCATTACACTAAGCCTTAAACACTAGACTGTCAGGAAGGCCCCAGTATTTCCCCAGATGTT ${\tt TCAATTTCCTGATTCAGTTTACTCATTTTCCCCCCTAAGGATATGGGAAAGTCCCTAAGGGTCTATTGAT}$ ATGGATGAAGCTTCTGTCTCAAAGCACAAGAACTATTAAGAAGGTTTAAAATATAGACAGGATACTGGCA TTGCAGGGAATCATGGAAAACTTCAAACCTAGGCAGAAACTTCAGGCTAATTCTGATCCATATCCACTAA TTACTCAAGAAATAGTGTGCTCAATCAGAGACATAATGATTACTCAAGAAACCATTATTAACGAAACCCT TTTTCATACTTCCCTTGCCTGCACATTGTAGGCAACGATGCTAGATTACATCCGATATTCCCAATCTAAT GCATAATCTCCCTCTCCCACTTGCCCCAAATAGCCTCCAAAATTAACCCCAACCTCCCATTTCAGGTAAA GCTCAGTGCTTGCATAACACTTGCTTGAATCTTTTGACCTTGTCATCAGTGAAATTTCCAGTATTGCCTA AGGAAATTCTTCCAAACCCTCCCACTCCAAACTTTGCACATTTCTTCCTGTCTAGCATACTCACCCTGTG TGCTGTATAAGGGTTTCTGCCTTTTATACTATCCTACATGATTACCATGTCTTATACAGCAAATCCACCA CTGGGAGTAGAGGACAACTTTTAAAAATAGGCTATTGTACAGTGTTTCTTTGGTTTTAGTGCTACAATATA CAATGAGGAAGCACACGGAAAGTAAATCACTGATTAGATATTTGCTTTCTTGCTTATAGGTAGTACAAT CTCTGTGCGACCCCAGAGATGGCAGCCCACCAGGCTCCTCTTTCCCTGGGATTCTCCAGGCAAGAACACT GGAGTGGGTTGCCATTTCCTTCTCCAATTTCATGAAAGTGAAAAGTGAAAGTCAAGTCGCTCAGTCATGT CCGACTCTTAGCCACCCCATGGACTGCAGCCTACCAGGCTCCTCAATCCATGAGATTTTCCAGGCAAGAG TACTGGAGTGGGGTACCATTGCCTTCTCCATTCCAATTAAAACTGTTGTGATAGTTTCAAGTGCACAGCA AAGTGACTAAACCATTTATATACATGTTTCCATTCTCCCCCAAACTCCCATCCCATCCAAGCTGGCACATA ATATGTCCATCCCAAACTCCCTAACTATCCCTTGTGAAATTATTTTTTGTCATATGTAAAATTGGAAGGAC TTCTAGAACCTTCTAACTTAAATAAACTGAAGTGAAGTTGCTCAGTCGTGTCCAACTTTTTGTGAGCCCC ATGGACGGAGAGCCTGCACCAGGCTACTCATCCAGTGATTTTTCAGGCAAGAATACTGGAGTGGGTTGCC ATTTGCATGCATTTCTTTAAATCTATATCATGTTCCTGTTGATTAAAAAATTGTTGACTACCTGAAACAG AACAAGTTGCTTCCCAGGTTATAGACAATGCATTACAGTTCACTTTTTCACAACTATATTTTGAATTATC TGAAGGCAGATGAGCTTTTAAATATTTATTTTTTTCTCATGTCATTATACATAATAGGCACTGAGAATCC TTTACACCCCAACACTATGTTTAAAAACCACAGGGTCACATCACAGAATCAGAGACATTTCAGGAAAATT TTGGGAAGTTTCCTTTCACATTCTTGAGCACAGAAACGTCATGATAAAATTAGACATTAGGAGACAAAGA GATTTTCAAAATGTTTGAAAGAGCGTAAGGGGAGACTGTGAGTTTCACAATCTCAAATGAGAAAACAAAG TACACTTCTTCCTTCTAAATGTTCATAAAAGTTTAAAAAATATCTGAAGAACTTACTGTATTCTCTTTTG TTCTTTCACCTTTGGAACTGCCAATCAGTCTAGGCAAGAAGTTGGGACTGAAAATCCCAATACTGGAGAA TTCAAGAGAACATCACTGGGGTGGGACTTGGATGAAGTTCAAACAGTTGCTGTATTGCTGGTGTGGTGTC TCCACGTTGGGAGTGAGGAAGTCAAGGGACGGAAAGAGACTTGGAAGCTTGTTATATGTTTTCATTCCTT TTATCCAATAGTTACTTCTAGTTCCTCCCTATCATGTTGCTTTCTAGATCATGTTCAATATGTGTTAATG CAGATGGGGTATGTGTGGAAGAAAGAAGATGGAAAGAGACCAGAGGCAAGAGAGAAGAACAGAGGCAGG GAGAGAGAAGTAATGTTGTGCATTGATTTCCATAATCATTTTAAAAATCAGCCAGTTGAATGTCAT GGGAATTTAGGATGCTATTCTAGATTTTCTATCTCTTAAGCCTCAGAGACGGCAATGTTGGCTTTGGGAA TTAATGCCTTATGTATTTGTCAAGGGTGACCAGTCTGAAGCCACGGTTCTGCCTTTCCAGACATACAGCT TCAAATTTTACTTAAGAAAGACTGCCCCTTTGTTCTTGATAAATCAAGACCATTGCCCATTTTTGAGGTA AATAAAAGCTAATTCTGAATGAATTAAAATCTGAGCCCAGTGGGGGAAATATTAATATGGAATTGATAAA CAGACACTAACTGGTCTGTAATAATTAGGATATATTTTTTCAAAATTATGGCTATGTTGATTTCACTGTT TTTAGAAAGAAATTTGACCTTTTTAAACATGAATTAGACTATAACATTCCTAAACTATTCTGTTTATGAC TTATTTTTGAAACAGTGCTAAAACTGAGGTAACTAAGATATTGTACATCTGGGGAAGAAGAGTAAATAAT AACTGCTTTATCTTGTAATAAATGCGAATGGAAAATAACCAAAGAAAATAGCTACTTTACCCAGAAAAAT ATAGATTAGATTGCTGAAATATTCTACTTGGATAATTAAAACTTGAACAGCAGAGCATGTACAAAAGAAT TCTAGCTGAATGAAATTTTTGAACCAAATGATGAAACCACACATCTCTGGATGAAATGTCATGATTCTCC TGAAGAAAGTCAATATTCATCCTCTTAATTATACTCAGAATAGGCCCAGCCTGGTATAGAACATTAGGAA TGTGTGAGTTTGTGCATGTGTGTGTGTATGCTCAACAGGGCTTTAATCAAAGTAGAGCAGACATGCGGTAGA TCCCTTCACAGAGTCCAAGAAAGCTCACGGTGGTGAAGATGGTAGTGGGCCTAAGAAGCATTCCAGAACT TTTTAGTGGCGACCTGGATTTGCACTTTAGGGTCTGAACATAACCCCATTTATATAACTATTCACTCTTC CTTATTTTTGCCTGAACTTTTGATGTCTGATAACAACTTTCAGACTTGTCCCTGCAGAGTTAGAAGGAAA AACCCATTTCACTCTTTAATCATACCAAGTAGCAAGCGTGAAAGATAGCAACAACTCTTGCTCTGAGACT TGCATGATGGTGGCTGCAGCAGCAATCAGTACAAAAGAGGGACTCATAGACCATTCATAGCAAAGGAAGA ACACACGTATACTGGAATATTACATATGACTCAGGTATAAAAAAGAATGAAATTTTGCCAGTTGCAACAA TATAGAGAACAAACTAGTATTTACCCATGGGGAGAGGGGAGGGTCAGGATAAGGGTAGGGGATTCAGAAA ${\tt TACAAACTATTGTGTATAAAGTAGATTAGCAACAAGGATATTTGTACAGAACAGAAAACATAGTCAGTA}$ ATTTATTGCAACTTTAAATGGTGCATAGTCCTTAAAAACACTGAATCACTATGCTGTGCACCTGAAACTA ATATAATATTCTAGATTAAATATTTAAAAATAATTAATTTAAAGCAAATGAATTAGGGAAATCATCTCTG GCCCTGACAATTTGACTCCTTTTACAAGAAAATATAGGAATAGACTATACTACTATTTAGTAAATTCTGT ATATGCCTGACCTCTGATATCAGGGATGTGAATAGGGTGTTTAAAAGAGTACAAATATAAAACAATGATA GTTTTTAACATTTAAAACACTTGAAAGATTTCTTTTCCCAGAAGTCAACATATGGAAATTTTTTTCTAAG TATAGACCAATAGTTAGAGCCTCTTTGTTTGAGGGTTGCAGAAAAGAGTGTATATAAATTGAAAATGTTT AAATTCTATATTTTTTACCCCTATAATCTTTTGTGGGCATATAATTCTGCCCTAACTTCCAGAAAGCTAG GAGTAACGAAAGCTGGACATTTATGAATTTCTTTGTAACAACTAGAAATGCAGAAGTTCTTTCCTTCTAG TTCACCTAAAAATATATTAGTTGAGTTACAGAGACATAGAGCTGAAAGAATGAGCATTTTTTTAAACATG TTTTGCCAGTGATGGCAAAGGTGAGAGAGAGGTGATTCTAGACATCAAGTTGTCTGAATCAGGAGAAGGT TCTAAGGAGAGATCATGGAAAGTAAATATATATGTTCTTTACTGAAAGGAAGTAGAAATTGAAGAAGG GAAGATCAGAAAGTACAGATGGTAGAAAGTAGGGGAACCTCAGGGAACTCTGAAGTTCTGCTGAGCTCAG AAATGCTTGCTGCTTTTTCATTGAATCTTCTAGTAGTAAGAAACAGACCTCTATACCTCAGAA AACAAAATTATGGATGAATAAAATAGAAGTAATTCTTATGAACACAGTATTCTTAGAGGCTTAGAGAAAG AAAACAAATAATCCGATTCAAGCTGGACTGTCTTTCCACAATTTTATCCCTCCTTTTAAATCATGGAGAA GCTTCTCTGTTCTCCAGACACTTTCCCAGGTCAGTCCATGAAGAAACAAGTTATATGCCTCTACTAGTC TGAGTAGATAAGCAAATGAATATTTGTTTTCATACCAGAACGATTTAATCCCAAACAACAACAAAAAAGA GATGCGTATTTAGAACAAGGGCAGAGGTTGTATCCAGGTTGTACTTGTAATTCTTTTGCATATTCTGAAG GCACAGGAGATGATCCACATAGTCTTAAGTCGAATCATAGTGGACAAATCCTTTCCATTTTCTGGA GCCCGGATTTTTCATCTGTATAATAAGAAAATTGAGGAGGTGGTATCCAAGAGATTACTTCGTTGCTGAT TCTTAAATCTCTGTGAGCAAACTTGCCAAGGAAGATGATTTTAATAGCAATTTGTATTGCTGGAATGACT GTGATCTAGAGATGCCCAGAAAGAGGGCTGATGGTCTAAAGTCAGTGCCAGGAAGACCAAGGAGGACTAT GACTATCATCGTTCAAGCCTCACCCTGTGGAACCACAACTTGGCATGAGCCAATCTGCTCACAGAAGCAG GGAGGGCAGGAGGCAGGGCTGGGCATAAAAGGAAGACTGGGCCAGCTGCTGCTTACACTTGCTTCTGAC ACAACCGTGTTCACTAGCAACTACACAAACAGACACCATGCTGACTGCTGAGGAGAAGGCTGCCGTCACC AAGGCAGGTTTAAGGAGAGTGAAATGCACCTGGGCGTGTGAGGACAGAGCCGTCCCTGAGATTCAGAGAG CTGCTGGCTTCCTCTGACCTTGTGCTGTTTTCTCCCCCTAGGCTGCTGGTTGTCTACCCCTGGACTCAGA GGTTCTTTGAGTCCTTTTGGGGACTTGTCCACTGCTGATGCTGTTATGAACAACCCTAAGGTGAAGGCCCA TGGCAAGAAGGTGCTAGATTCCTTTAGTAATGGCATGAAGCATCTCGATGACCTCAAGGGCACCTTTGCT GCGCTGAGTGAGCTGCACTGTGATAAGCTGCATGTGGATCCTGAGAACTTCAAGGTGAGTTTGTGGAATC CTCAGTGTTCTCCTTCTTCTTTTTATGGTCAAGCTCATGTCATGAGGAGAAAGCTGAATGGCAGGACACA GTTTAGAATGGAGAAGAGGTATTCTGGTTAGATTACTAAGGACTCCTCAGAACCGTTTAGACTCTTTTAA CCTCTTTGTTCACAACCAGTATTTCCTCTGATTCATTCTTGTTCTCTGTTGTCTGCAATGTCCTCTTTTT ATATTTCCCCCTTATCTGTTCCTTTCAAGGAATAAGATGTTCTATTGCTTTTTGAAATGATTCAAAATAA TAAAAATAATAACAAGTTCTGGATTAAGTTAGAAAGAGAGAAACATTTCTAAATATATTCGGGAAGAT ATAGGTAGATTCACATCAGTAGTAACAACTTCACTTCAGTCATCTTTGTGCTTATATCTACGGTCACAGC TTGGGATAAGACTGAAATACCCTGAATCTAACCTTGGATTTCCCTCATAGCTCAGTTGGTTAAGCATCTG CCTGCAATGCAAGAGATCCCAGTTCGATTCCTGGGTCGGGAAGGATGGCTGGAGAAGGGATAGGCACCCA TTCTATCCCTGAGTTTGGAAGATCCCCTGGAGAAGGGAAAGGCTACCCACTCCAGTATTCTGGCCTGGAG AAATCTATGGACTGTAGAGTCATGGGGTTGCAAAGAATCAGACACGATTGAGAGACTCTCACTTCACTCA $\tt CCTGCACTAACCCTGCCCTTGCTTAATGTCTTTTCCACACACGCTCCTGGGCAACGTGCTAGTGGTTGTGC$ TGGCTCGCAATTTTGGCAAGGAATTCACCCCGGTGCTGCAGGCTGACTTTCAGAAGGTGGTGGCTGGTGT GGCCAATGCCCTGGCCCACAGATATCATTAAGCTCCCTTTCCTGCTTTCCAGGAAAGGTTTTTTCATCCT CAGAGCCCAAAGATTGAATATGGAAAAATTATGAAGTGTTTTTGAGCATCTGGCCTCTGCCTAATAAAGAC ATTTATTTCATTGCACTGGTGTATTTAAATTATTTCACTGTCTCTTACTCAGATGGGCACATGGGAGGG CAAAACACTGAAGACATAAAGAAATGAAGGGCTAGTCGAGACCTTGAGAAAATATATCAGTATCTTGGAC ${\tt CCCATGACAGCAGTGGTTGTAAATAGCTGATGTTATGGAAAACAGGCTTTGCTCCTTAGCCTTACTCTCCC}$ CTTAAAGAATTC

1.2.2 Chimpanzee:

Accession number: X02345.1

>X02345.1 P.troglodytes beta-globin gene, exons 1-3 AATTCATGAGAACATCACCTGGATGGGACATGTGCCGAGCAACACAATTACTATATGCTAGGCATTGCTA TCTTCATATTGAGGAGGAGGAGGTCAAGAGATGAAAAAAGACTTGGCACCTTGTTGTTATATTAAAATTA TTTGTTAGAGTAGAGCTTTTGTAAGAGTCTAGGAGTGTGGGGGGCTAAATGATGATACACATGGACACAAA GAATAGATCAACAGACACCCAGGCCTACTTGAGGGTTGAGGGTGGGAAGAGGGAGACCATGAAAAAGTAC CTATTGGGTATTAAGTTCATCACTGAGTGATGAAATAATCTGTACATCAAAACCCAGTGATATGCAATTT ACCTATATAACTTGTACATGTACCCCCAAATTTAAAATGAAGTTAAAACAAAGTATAGGAGTGGAATTAA TTCCTCAAGATTTGGCTTTAATTTTATTTGATAATTTATCAAATGGTTGTTTTTCTTTTCTCACTATGGC AATGCCTACATGTTTGTAAAGGGTGTTCAGACTGAAGCCAAGATTCTACCTCTAAAGAGATGCAATCTCA AATTTCTCTGAAGACTGTACCTCTGCTCTCCATAAATTGACACCGTGGCCCACTTAATGAGGTTAAAAAA AAGCTAATTCTGAATGAAAATCTGAGCCCAGTGGAGGAAATATTAATGAACAAGGTGTAGACTGAAATAT AAACTTTTCTGTAATAATTATGCATATACTTTAGCAAAGTTCTGTCTATGTTGACTTTATTGCTTTTTTGG ${\tt TAAGAAATACAACTTTTTAAAGTGAACTAAACTATCCTATTTCCAAACTATTTTGTGTGTATGCGGTTTG}$ GTTGTGTTTACTGAGAGATTGTGTATCTGCGAGAGAGTCTGTAGCAAGTAGCTAGACTGTGCTTGACCT AGGAACATATACAGTAGATTGCTAAAATGTCTCACTTGGGGAATTTTTAGACTAAACAGTAGAGCATGTAT AAAAATACTCTAGTCAAGTGCTGCTTTTGAAACAGATGATAAAACCACACTCCCATAGATGAGTGTCATG ATTTTCATGGAGGAAGTTAATATTCATCCTCTAAGTATACTCAGACTAGGGCCATTCTGATATAAAACAT TGAGGACTTGTGTGTGTGTGTGTGTTGTTGTGGTCAGTGGGGCTGGAATAAAAGTAGAATAGACCTGCA CCTGCTGTGGCATCCATTCACAGAGTAGAAGCAAGCTCACAATAGTGAAGATGTCAGTAAGCTTGAGTAG TTTTTCAGGAACTTTGAATGCTGATTTAGATTTGAAACTGAGGCTCTGGCCATAACCAAATTTGCACTAT TTATTGCTTCTTGAAACTTATTTTTGCCTGGTATGCCTGGGCTTTTGATGGTCTTAGTATAGCTTGCAGC CTTGTCCCTGCAGGATATTATGGGTCATAGAAAGAAAGTCTGCATTACACTCTAGTCACACTAAGTAAC TACCATTGGAAAAGCAACCCCTGCCTTGAAGCCAGGATGATGGTATCTGCAGCAGTTGCCAACACAAGAG AAGGATCCATAGTTCATCATTTAAAAAAGAAAACAAAAAAGAAAAAGGAAAACTATTTCTGAGCATAAGA AGTTGTAGGGTAAGTCTTTAAGAAGGTGACAATTTCTGCCAATCAGGATTTCAAAGCTGTTGCTTTGACA ATTTTGGTCTTTCAGAATACTATAAATATAACCTATATTATAATTTCATAAAGTCTGTGGATTTTCTTTG ACCCGGGATATTTGCAAAAGACATATTCAAACTTCCGCAGAACACTTTATTTCACATATACATGCCTCTT ATATCAGGGATGTGAAACAGGGTCTCGAAAACTGTCTAAATCTAAAACAATGCTAATGCAGGTTTAAATT TGATAAAATAAAATCCAAAATCTAAAAGCCAAGTCAAATCTGTATGTTTTAACATTTAAAATATTTTAAA GACGTCTTTTCCCAGGATTCAACACGTGAAATCTTTTCTCAGGGATACACGTGTGCCTAGATCCTCATTG CTTTAGTTTTTTACAGAGGAATGAGCATACAAAGAAAATACTTAAATTTTATCTCTCTTACCTCTATCAT CATACACAGGCATAATTTTTTAACCTAGGCTCCAGACAGCCATAGAAGAACCAAACACTTTCTGCGTGTG TGAGAATAATCAGAGTGAGATTTTATTCACAAGTACCTGATGAGGGTTGAGACAGGTAGAAAAAGTGAGA GATCTCTATTTATTTAGCAATAATAGAGAAAGCATTTAAGAGAATAAAGCAATGGAAATAAGAAATTTGT AAATTTCCTTCTGATAACTAGAAATAGAGGATCCAGTTTCTTTTTGGTTAACCTAAATTTTATTTCATTTT ATTATTTTATTTTGTGTAATCGTAGTTTCAGAGTGTTACAGCTGAAAGGAAGAAGTAGGAACATG GAAAGTAAAAGTATAACACTTTCCTTACTAAAACGACAGGGGTTTCCAGGTAGGGGCAGGATTCAGAATG ACTGACAGGGCCCTTAGGAAACACTGAGACCCTACGCTGACCTCATAAAGGCTTGCTACCTTTGCTGTTT TAATTACATCTTTTAATAGCAGGAAGCAGAACTCTGCACTTCAAAAGTTTTTCCTCACCTGAGGAGTTAA GAGTAAATTTTAGTAAAGGAGGTTTAAACAAACAAAATATAAAGAGAAATAGGAACTTGAATCAAGGAAA TGATTTTAAAACGCAGTATTCTTAGTAGACTAGAGGAAAAAAATAATCTGAGCCAAGTAGAAGACCTTTT CCCCTCCTACCCCTACTTTTTAAGTCACAGAGGCTTTTTGTTCCCCCAGACACTTCTGCAGATTAGTCCA GGCAGAAACAGTTAGCTGTCCCCAGTTAACCTCCTATTTGACACCACTGATTACCCCATTGTTAGTCACA CTTTGGGTTGTAAGTGACTTTTTATTTATTTGTATTTTTGACTGCATTAAGAGGTCTCTAGTTTTTTATC TCCAAATGAGGAGAAGATATGCTTAGAACTGAGGTAGAGTTTTCATCCATTCTGTCCTGTAAGTATTTTG

CATATTCTGGAGACACAGGAAGAGTCCATCTACACATCCCAAAGCTGAATTATGGTAGACAAAACTCTT CCACTTTTAGTGCATCAATTTCTTATTTGTGTAATAAGAAAATTGGGAAAACGATCTTCAATATGCTTAC CAAGCTGTGATTCCAAATATTACGTAAACACACTTGCAAAGGAGGATGTTTTTAGTAGCAATTTGTACTG ATGGTGTGGGGCCAAGAGATATATCTTAGAGGGAGGGCTGAGGGTTTGAAGTCCAACTCCTAAGCCAGTG CCAGAAGAGCCAAGGACAGGTATGGCTGTCATCACTTAGACCTCACCCTGTGGAGCCACACCCTAGGGTT GGCCAATCTACTCCCAGGAGCAGGGAGGGCAGAAGCCAGGGCTGGGCATAAAAGTCAGGGCAGAGCCATC TATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCACCTG ACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGG CCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGCTTAAGGAGACCAGTAGAAACTGGGCATGTGGAGA GCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTTGGGGATCTGTCCACTCCTGATGCT GTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTC TGTCATAGGAAGGGGATAAGTAACAGGGTACAGTTTAGAATGGGAAACAGACGAATGATTGCATCAGTGT GGAACTCTCAGGATCATTTTAGTTTCTTTTATTTGCTGTTCATAACAATTGTTTTCTTTTTGTTTAATTCT TGCTTTCTTTTTTTTTCTCTCTGCAATTTTTACTATTATACTTAATGCCTTAACGTTGTGTATAACAAA TACATAATCATTATACATATTTATGGGTTAAAGTGTAATGTTTTAATATGTGTACACATATTGACCAAAT TTCTACTACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCA TTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATTTCTGCATATAAATATTTCTGC ATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGTTACCATTCTTCT TTTATTTTATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCA TACCTCTTGTCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAA

1.2.3 Zebrafish:

No significant similarity found

1.2.4 Chicken:

No significant similarity found

1.2.5 Mouse:

>EF605360.1 Mus musculus isolate Lima138A beta-globin (Hbbt1) gene, complete cds

GCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTC GCTGAGAAGGCTGCTGTCTCTGGCCTGTGGGGAAAGGTGAACGCCGATGAAGTTGGTGGTGAGGCCCTGG GCAGGTTGGTATCCAGGTTACAAGGCAGCTCACAAGTAGAAGTTGGGTGCTTGGAGACAGAGGTCTGCTT TCCAGCAGGCACTAACTTTGAGTGTCCCCTGTCTATGTTTCCCTTTTTAGGCTGCTGGTTGTCTACCCTT GGACCCAGCGGTACTTTGATAGCTTTGGAGACCTATCCTCTGCCTCTGCTATCATGGGTAATGCCAAAGT GAAGGCCCATGGCAAGAAAGTGATAACTGCCTTTAACGATGGCCTGAATCACTTGGACAGCCTCAAGGGC ACCTTTGCCAGCCTCAGTGAGCTCCACTGTGACAAGCTGCATGTGGATCCTGAGAACTTCAGGGTGAGTC TGATGGGCACCTCCTGGGTTTCCTTCCCCTGGCTATTCTGCTCAACCTTCCTATCAGAAGGAAAGGGGAA GCGATTCTAGGGAGCAGTCTCCATGACTGTGTGTGGAGTGTTGACAAGAGTTCGGATATTTTATTCTCTA TCCAGTCGCATTTTACTAAATTAATTAAGCTGGTTATTTACTTCCCATCCTGATATCAGCTTCCCCTCCT $\tt CCTTTCCTCCCAGTCCTTCTCTCTCTCTCTCTTTTCTCTAATCCTTTCCTTTCCCTCAGTTCATTTCT$ TCTTCTTTGATCTACGTTTGTTTTGTCTTTTTAAATATTGCCTTGTAACTTGCTCAGAGGACAAGGAAGAT ATGTCCCTGTTTCTCATAGCTCTCAAGAATAGTAGCATAATTGGCTTTTATGCCAGGGTGACAGGGG AAGAATATTTTTACATATAAATTCTGTTTGACATAGGATTCTTATAATAATTTTGTCAGTAGTTTAAAGGT TGCAAACAAATGTCTTTGTAAATAAGCCTGCAGTATCTGGTATTTTTGCTCTACAGTTATGTTGATGGTT CTTCCATCTTCCCACAGCTCCTGGGCAATATGATCGTGATTGTGCTGGGCCACCACCTGGGCAAGGATTT CACCCCGCTGCACAGGCTGCCTTCCAGAAGGTGGTGGCTGGAGTGGCCGCTGCCCTGGCTCACAAGTAC ${\tt CACTAAACCCCCTTTCCTGCTCTTGCCTGTGAACAATGGTTAATTGTTCCCAAGAGAGCATCTGTC}$

1.3 Blast search:

Species	Acession Number	Identity
Cow	M63453.1	81.09%
Mouse	EF605360	79.61%
Zebrafish		No significant similarity found
Chicken		No significant similarity found
Champanzee	X02345.1	98.71%

2 Pairwaise sequence Alignment:

Species	Similarity	Identity	Number of gaps
Cow	8.9%	8.9%	89.1%
Champanzee	99%	99%	0%

Interpretation:

Based on the data provided from the table above we can confirm that the chimpanzee has more conserved regions that the cow because its similarity and identity (99%) is higher than the one found in the cow which represents 8.9%. Moreover, we can see that the number of gaps is higher in the cow that the chimpanzee.

3 Multiple sequence alignment:

The sequence logo shows that each columns correspond to a position in MSA (multiple sequence alignment).we observe high conserved regions due to the height of the nucleotide at each position where their total height correspond to 2 bits.

Additionally, there are highly conserved residues meaning there is little variation across sequences at those sites.

These conserved regions play critical role. They are functional importance where these regions could be :

- A promoter
- An enhancer
- A biding site for transcription factors or regulatory proteins

Structural stability

Evolutionary conservation

4 Phylogenetic tree construction:

- Human and Mouse beta-globin sequences cluster together more closely than with the other species, suggesting a more recent common ancestor between them for this gene region (which might reflect conserved functional regions rather than strict evolutionary distance).
- Chimpanzee (P. troglodytes) appears more distant, which is biologically unexpected given its close relation to humans. This suggests:

The chimpanzee sequence may be shorter (only "exons 1-"), or

There could be alignment gaps or divergence in the sequenced region used.

• Bovine (cow) gene shows greater divergence, as expected due to larger evolutionary distance from primates and rodents.

Maram Nhaili		BioinformHer Module 2			
Does this tree match what you expect evolutionarily?					
No, this tree does not match the expected evolutionary relationships of the species involved $-$ especially not in the broad evolutionary sense.					