5월 20일 교육 내용

- 프로젝트 진행상황 공유
- 센서,센서 하드웨어, 센서 펌웨어
- IMU센서 보드 만들기
- 부품 주문/PCB주문
- 조립계획

#프로젝트 진행상황 공유

MIC5332회로도

프로젝트 목표

mic5332를 작동할 수 있게 설계한다.

개선할 점

- 1. 캐패시터를 추가하고 PX4설계도를 참고하여 그리기
- 2. 방열판 E.P 추가하기
- 3. 부품 라벨 자세히 (예:22uF/25V)

MIC5332 Footprint

목표

footprint를 직접 디자인하여 PCB제작에 사용하여 본다.

잘한점

1. 방열처리를 고려하여 설계 하였고 패드를 10%정도 크게하여 땜질의 편의를 고려해 봄

개선할 점

- 1. 2번 핀이 GND인데 방열판도 같은 GND가 아닌 E.P로 새로 핀을 만들어 설정하기
- 2. 패드를 X축으로 2배정도 길게하여 납땜이 잘되게 하기

MIC5332 PCB

목표

회로도 설계에서 netlist를 만들어 부품에 맞는 footprint를 연결하여 주고 PCB를 그려본다.

잘한점

- 1. Datasheet의 레퍼런스 PCB를 참고하여 zone형식으로 제작
- 2. silk label을 붙여서 외부 포트가 어떤것인지 구분할 수 있게 만듬
- 3. 방열처리를 고려하여 그림

개선할 점

1. via hole을 개선 및 위치를 패드위에X

1차 MIC5332 3D모델 사진

뒤

질문한 내용

- Y축이 뒤집힌 이유
 - CAD프로그램 특성이거나 전통적인 방법으로 추측
- Layer 속성들
 - o Cu
 - 기판위를 덮는 얇은 구리, 도선이 된다.
 - Paste
 - 패드위에만 납을 바르기 위한 것, 마스크와 반대되게 만듬.
 - o Silk
 - 기판위에 그리는 그림, 보통 흰색으로 한다.
 - Mask
 - 패드에 페인트가 덮지 않도록 하기위한 마스크.
 - o Edge.Cut
 - 기판을 자르기 위해 만드는 선.
- via hole크기, 라인 굵기 정하는 방법
 - Kicad 내부에 있는 계산기를 사용하거나 구글에서 계산기 검색, PCB업체마다 환경과 특성이 달라서 업체에 문의 후에 설정해야함.

그 이외에 알게 된 내용

- Kicad내에서 라이브러리,Footprint 갱신하는 법
- 구리 두께에 따라 패드의 넓이 설정이 달라짐
- 부품리스트를 같이 만들어 둬야함
- window환경과 Linux환경이 달라서 저장경로를 변경해 줘야함

#센서,센서 하드웨어, 센서 펌웨어

MEMS(MicroElectroMechanical System)

GPS

위성에서 받은 신호로 절대적인 위치 파악이 가능하나 높이는 오차가 심하다.

Barometric Pressure Sensor

기압계로 GPS대용으로 Z값(높이)를 측정할 때 사용한다. 바람이나 온도에 따라서 오차가 매우 심하여 메인으로는 사용하지 않으나, GPS오차가 커지는 고고도에서는 사용하여야 한다.

Magnetometer

실내에서 YAW를 잡기가 힘듬(철,금속,모터에 영향받음) 보통 영향을 피하기 위해서 GPS와 같이 기체 외부에 설치함

자이로와 전자 나침반 설명: https://www.youtube.com/watch?v=egZgxR6eRjo

#IMU센서 보드 만들기

ICM-20602

MS5611

MPU-9250

- 1. 위 3가지 센서를 하나의 회로도로 작성하여 PCB를 만들기
- 2. SPI통신은 버스로 구성하여 준다

#부품 주문/PCB주문

부품주문

- 1. 부품 리스트를 만들어서 회로도와 같이 저장하기
- 2. 부품을 주문할 때 패키지 이름 확인
- 3. 원하는 전압을 출력하는 부품인지 확인

마우저: https://kr.mouser.com/ 디지키: https://www.digikev.kr/

PCB주문

기본사양정보

Sample을 제작시에 기본적인 주문 정보

한샘디지텍: https://www.hsdgt.com/ 국내업체로 한판당 가격처리

JLCPCB: https://ilcpcb.com/ 중국업체로 feedback은 없으나 매우싸게 제작가능

#조립계획

다음 수업때 450을 직접 조립할 계획