МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

3BIT

Лабораторна робота №5:

«Операційні підсилювачі з негативним зворотнім зв'язком»

Гетманцев Олександр,

Група 5-а

Зміст

1. Теоретичні відомості	3
2. Практична частина	4
3. Висновок	8

Мета роботи — ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

Об'єкт досдіження — операційний підсилювач (інтегральна мікросхема).

Метод дослідження — це метод співставлення: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Теоретичні відомості

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення зворотного зв`язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв`язку (33) на його вхід. Якщо сигнал зворотного зв`язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi=1800$), то зворотний зв`язок називають негативним (H33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi=0$ 0), то такий зворотний зв`язок називають позитивним (П33).

Практична частина

Інвертувальний підсилювач

Схема 1

Покази осцилографа при однаковій чутливості на зеленому і синьому входах

Зменшимо чутливість зеленого входу:

Неінвертувальний підсилювач:

Схема 2

Покази осцилографа при однаковій чутливості на зеленому і синьому входах:

Зменшимо чутливість зеленого входу:

Інтегратор:

Схема:

Покази осцилографа одразу після включення схеми:

Висновок

Ми дослідили характер зміни сигналу після проходження операційних підсилювачів з негативним зворотнім зв'язком. Були розглянуті такі підсилювачі: інвертувальний, неінвертуючий підсилювачі та інтегратор на базі інвертуючого підсилювача. Для дослідження перших двох типів використовувався гармонічний сигнал, для інтегратора — імпульсний. Отримані результати вважаю задовільними.