## **Bunker Hill Community College**

## Third Statistics Exam 2019-04-25

Exam ID 008

| Name:                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                        |
| This take-home exam is due <b>Monday, April 29</b> at the beginning of class.                                                                                                                          |
| You may use any notes, textbook, or online tools; however, you may not request help from any other human. If you believe a question is ambiguous, unanswerable, or erroneous, please lead the me know. |
| You will show your work on the pages with questions. When you are sure of your answers, you will put those answers in the boxes on the first few pages.                                                |
| Unless you have an objection to doing so, please copy the honor-code text below and sign.                                                                                                              |
| I understand that outside help is NOT allowed on this exam. On my honor, the work herein is my own.                                                                                                    |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
|                                                                                                                                                                                                        |
| Signature:                                                                                                                                                                                             |

| 1. | (a) |  |
|----|-----|--|
|    | (b) |  |
|    | ` , |  |
| 2. | (a) |  |
|    |     |  |
|    | (b) |  |
|    |     |  |
|    | (c) |  |
|    |     |  |
|    | (d) |  |
|    |     |  |
|    | (e) |  |
|    |     |  |
|    | (f) |  |
|    |     |  |
|    | (g) |  |
| _  | , , |  |
| 3. | (a) |  |
|    |     |  |
|    | (b) |  |
|    |     |  |
|    | (c) |  |
|    | (0) |  |
|    |     |  |
|    | (d) |  |
|    |     |  |
|    | (e) |  |
|    |     |  |
|    | (f) |  |
|    |     |  |
|    | (g) |  |
|    |     |  |
| 4. | (a) |  |
|    |     |  |
|    | (b) |  |
| _  |     |  |
| 5. |     |  |
|    |     |  |
| 6. | (a) |  |

| Mat-181 3rd Exam | , version 008. | NO OUTSIDE HELP |
|------------------|----------------|-----------------|
|------------------|----------------|-----------------|

| (b) |  |
|-----|--|
|     |  |
| (c) |  |
|     |  |
| (d) |  |
|     |  |
| (e) |  |
|     |  |
| (f) |  |
|     |  |
| (g) |  |
| (3) |  |

- 1. As an ornithologist, you wish to determine the average body mass of *Seiurus aurocapillus*. You randomly capture 23 adults of *Seiurus aurocapillus*, resulting in a sample mean of 23.17 grams and a sample standard deviation of 1.4 grams. You decide to report a 99.5% confidence interval.
  - (a) Determine the lower bound of the confidence interval.
  - (b) Determine the upper bound of the confidence interval.

2. A teacher has 6 students who have each taken two quizzes. Perform a two-tail test with significance level 0.02 to determine whether students' performance changed on average.

|         | student1 | student2 | student3 | student4 | student5 | student6 |
|---------|----------|----------|----------|----------|----------|----------|
| quiz 1: | 66.5     | 64       | 74.6     | 81.8     | 69.9     | 69.5     |
| quiz 2: | 65.6     | 68.5     | 77.3     | 84.2     | 74.6     | 75.7     |

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either  $z^*$  or  $t^*$ . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either  $z_{obs}$  or  $t_{obs}$ . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

3. You are interested in whether a treatment causes an effect on a continuously measurable attribute. You use a treatment group with 6 cases and a control group with 6 cases. You decide to run a hypothesis test with a significance level of 0.05. Your data is below. Please use 7 for the degrees of freedom (calculated with the Welch-Satterthwaite equation).

| treatment | control |
|-----------|---------|
| 580       | 400     |
| 490       | 510     |
| 570       | 500     |
| 550       | 530     |
| 490       | 330     |
| 480       | 240     |

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either  $z^*$  or  $t^*$ . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either  $z_{obs}$  or  $t_{obs}$ . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

- 4. From a very large population, a random sample of 1200 individuals was taken. In that sample, 46.3% were glowing. Determine a 95% confidence interval of the population proportion.
  - (a) Find the lower bound of the confidence interval.
  - (b) Find the upper bound of the condifence interval.

5. Your boss wants to know what proportion of a very large population is messy. She also wants to guarantee that the margin of error of a 99% confidence interval will be less than 0.009 (which is 0.9 percentage points). How large of a sample is needed? Please round up, using only 2 significant digits.

6. An experiment is run with a treatment group of size 132 and a control group of size 176. The results are summarized in the table below.

|          | treatment | control |
|----------|-----------|---------|
| sick     | 55        | 55      |
| not sick | 77        | 121     |

Using a significance level of 0.1, determine whether the treatment causes an effect on the proportion of cases that are sick.

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either  $z^*$  or  $t^*$ . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either  $z_{obs}$  or  $t_{obs}$ . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?