Appunti di Statistica Matematica

1 Introduzione

1.1 Funzione generatrice dei momenti

Lezione del 18/02, ultima modifica 04/03, Andrea Gadotti

Definizione 1. Sia X una variabile casuale (discreta o assolutamente continua). Se esiste $t_0 > 0$ tale per cui $\mathbb{E}(e^{tX}) < +\infty \ \forall t \in (-t_0, t_0)$, chiameremo la funzione

$$M_X := \mathbb{E}(e^{tX})$$

funzione generatrice dei Momenti di X.

Esempi

1. $X \sim b(1, p)$ con $p \in (0, 1)$. Si ha:

$$M_X(t) = \mathbb{E}(e^{tX}) = \sum_{x=0}^{1} e^{tx} \mathbb{P}(X = x)$$

$$= \sum_{x=0}^{1} e^{tx} p^{x} (1-p)^{1-x} = pe^{t} + (1-p)$$

2. $X \sim P(\lambda) \text{ con } \lambda > 0$. Si ha:

$$M_X(t) = \mathbb{E}(e^{tX}) = \sum_{x=0}^{+\infty} e^{tx} \frac{e^{-\lambda} \lambda^x}{x!} = e^{\lambda(e^t - 1)}$$

3. $X \sim G(\alpha, \beta)$, ovvero

$$f_X(x; \alpha, \beta) := \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{1}{\beta}x}$$

con $\alpha > 0$, $\beta > 0$, x > 0 e

$$\Gamma(\alpha) := \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx$$

(nota: $\alpha \in \mathbb{N} \Longrightarrow \Gamma(\alpha) = (\alpha - 1)$)

Abbiamo che:

$$M_X(t) = \mathbb{E}(e^{tX}) = \int_0^{+\infty} e^{tx} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{1}{\beta}x} dx$$

= ...[sostituzione
$$\sigma := x(\frac{1}{\beta} - t)$$
]...

$$=\frac{1}{(1-\beta t)^{\alpha}}$$

 $con t < \frac{1}{\beta}$

Momenti di una variabile casuale

Definizione 2. Se una variabile casuale ammette FGM derivabile infinite volte in un intorno di t = 0 e se tutti i suoi momenti sono finiti, allora definiamo il momento di ordine s non centrato:

$$\mu_s' := \mathbb{E}(X^s) = \frac{d^s}{dt^s} M_X(t)|_{t=0}$$

Il momento di di ordine s centrato in $a \in \mathbb{R}$ è:

$$\mu_s(a) := \mathbb{E}((X-a)^s)$$

Ovvero $\mu'_s = \mu_s(0)$. E' chiaro che $\mu'_1 = \mathbb{E}(X)$. Chiameremo infine momento di ordine s centrato (senza specificare altro, intenderemo centrato in μ'_1):

$$\mu_s := \mathbb{E}((X - \mu_1')^s)$$

Teorema 1. Vale la seguente relazione tra momenti centrati e non:

$$\mathbb{E}((X - \mu_1')^s) = \sum_{m=0}^s (-1)^m \binom{s}{m} \mu_{s-m}'(\mu_1')^m$$

Osserviamo che $\mu_2 = \mathbb{E}((X - \mu_1')^2) = Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \mu_2' - (\mu_1')^2$

Teorema 2. Date due (o più) v.c. X e Y aventi f densità / f massa f_X e f_Y e fgm $M_X(t)$ e $M_Y(t)$ rispettivamente e assunte X e Y essere indipendenti, allora si ha

$$M_{X+Y} = M_X(t)M_Y(t)$$

Teorema 3. Siano X e Y v.c. con funzioni di ripartizione $F_X(x)$ e $F_Y(y)$ rispettivamente. Siano $M_X(t)$ e $M_Y(t)$ le fgm di X e Y. Se $M_X(t) = M_Y(t)$ per ogni t in un intorno dell'origine, allora

$$X \stackrel{d}{=} Y$$

Osservazione 1. Il teorema appena visto ci dice sostanzialmente che, se esiste, la fgm caratterizza la distribuzione della corrispondente v.c.

Esempio Siano $(X_1, ..., X_n)$ risultati della replicazione di un esponenzionale casuiale dicotomico $(X_i \sim b(1, p))$. Vogliamo trovare la distribuzione di $S_n := \sum_{i=1}^n X_i$. Calcoliamo quindi la sua fgm:

$$M_{S_n}(t) = \mathbb{E}(e^{tS_n}) = \mathbb{E}(e^{t\sum_{i=1}^n X_i})$$

$$\stackrel{TEO1}{=} \prod_{i=1}^n \mathbb{E}(e^{tX_i}) = \prod_{i=1}^n M_{X_i}(t) = \prod_{i=1}^n (pe^t + (1-p)) = (pe^t + (1-p))^n$$

ovvero S_n è distribuita come b(n, p) per il Teorema 2.

esercizio Ripetere il calcolo precedente supponendo $X_i \sim P(\lambda), \forall i$.

1.2 Famiglia Esponenziale a k parametri

Una famiglia di f densità / f massa è detta essere una Famiglia Esponenziale a k parametri $\theta_1, ..., \theta_k$ se la corrispondente f densità / f massa (che è indicizzata da $\theta_1, ..., \theta_k$) può essere scritta come

$$f_X(x;\theta) = C^*(x)D^*(\theta)\{\sum_{m=1}^k A_m(\theta)B_m(x)\}$$

dove $C^*(x)$ è una funzione della sola x, $D^*(\theta)$ è una funzione del solo θ , $A_m(\theta)$ è una funzione del solo θ e $B_m(x)$ è una funzione della sola x. **Esempi**

1. $X \sim G(\alpha, \beta) \Longrightarrow f_X(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{1}{\beta}x} \mathbb{1}_{\mathbb{R}^+}(x), \ \alpha > 0, \ \beta > 0 \ \mathbb{1}_{\mathbb{R}^+}$ è detto supporto della distribuzione. Quindi possiamo riscrivere $f_X(x; \alpha, \beta)$ come

$$f_X(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \mathbb{1}_{\mathbb{R}^+}(x) exp((\alpha - 1)ln(x) - \frac{1}{\beta}x)$$

e quindi ponendo $D^*(\alpha, \beta) := \frac{1}{\Gamma(\alpha)\beta^{\alpha}}, C^*(x) := \mathbb{1}_{\mathbb{R}^+}(x), A_1(\alpha, \beta) := (\alpha - 1), B_1(x) := ln(x), A_2(\alpha, \beta) := -\frac{1}{\beta}$ e $B_2(x) := x$, otteniamo $G(\alpha, \beta)$ come famiglia esponenziale con k = 2.

2. $X \sim b(n,p) \Longrightarrow f_X(x;n,p) = \binom{n}{x} p^x (1-p)^{n-x} \mathbb{1}_{\{0,1,\ldots,n\}}(x)$ con $n \in \mathbb{N}$ noto. Quindi possiamo riscrivere $f_X(x;n,p)$ come

$$f_X(x; n, p) = \binom{n}{x} \mathbb{1}_{\{0, 1, \dots, n\}}(x) (1-p)^n exp(\ln(\frac{p}{1-p})x)$$

con $\frac{p}{1-p}$ detto odd ratio o parametra naturale della famiglia esponenziale.

Quindi ponendo $D^*(p) := (1-p)^n$, $C^*(x) := \binom{n}{x} \mathbb{1}_{\{0,1,\ldots,n\}}(x)$, $A_1(p) := \ln(\frac{p}{1-p})$, $B_1(x) := x$, otteniamo b(n,p) come famiglia esponenziale con k = 1.

Osservazione 2. Le famiglie di esponenziali di ?...? hanno interessanti proprietà matematiche (proprietà di regolarità).

Dal punto di vista statistico, ciò si traduce in un'interessante conseguenza: tutta l'informazione contenuta nei dati a disposizione $(X_1,...,X_n)$ relativa alla funzione $f_X(x;\theta)$ può essere sintetizzata attraverso k quantità (funzioni di $(X_1,...,X_n)$) che potranno essere impiegate per costruire procedure inferenziali (stima, test per la verifica di ipotesi) riguardanti il parametro θ .

Ovvero, l'appartenenza a una famiglia esponenziale permette una riduzione dei dati $(X_1,...,X_n)$ via B_m .

1.3 Trasformazioni di variabili casuali

Lezione del 01/03, ultima modifica 03/03, Michele Nardin

Discrete

Teorema 4. Sia X una vc con funzione di massa $f_X(x) = P(X = x)$, e sia A_X il suo supporto. Sia W=h(X) una nuova vc. Allora

$$P(W = w) = \sum_{\{x \in A_X : h(x) = w\}} P(X = x)$$

Esempi

1. Sia $X \sim b(n, p)$ con relativa funzione di massa $f_X(x, p) = \binom{n}{p} p^x (1-p)^{n-x} \mathbb{1}_{0,1,\dots,n}(x)$, n noto e $p \in (0, 1)$.

Considero quindi W = n - X. Come si distribuisce W?

$$P(W = w) = P(X = n - w) = \binom{n}{n - w} p^{n - w} (1 - p)^{w} \mathbb{1}_{0, 1, \dots, n}(w)$$

2. Sia X una vc tale che $f_X(x) = P(X = x) = \left(\frac{1}{2}\right)^x \mathbb{1}_N(x), W = X^3$.

$$P(W = w) = P(X^3 = w) = P(X = \sqrt[3]{w}) = \left(\frac{1}{2}\right)^{\sqrt[3]{w}} \mathbb{1}_{1,8,27,\dots}(w)$$

Assolutamente continue

Teorema 5. Sia X una variabile casuale (ass continua) con funzione di densità $f_X(x)$ e sia W = h(X), ove h è una funzione monotona. Supponiamo inoltre che $f_X(x)$ sia continua sul supporto di X e che $h^{-1}(w)$ abbia derivata continua sul supporto di W. Allora

$$f_W(w) = f_X(h^{-1}(w)) \left| \frac{d}{dw} h^{-1}(w) \right| \mathbb{1}_{A_W}(w)$$

Esempio (Standardizzazione di una vc normale) Sia $X \sim N(m, s^2)$. Considero $W = h(X) = \frac{X-m}{s}$. Allora, dato che $h^{-1}(w) = sw + m$, che ha derivata continua su tutto \mathbb{R} ,

$$f_W(w) = f_X(sw + m)|s| = \frac{e^{-\frac{w^2}{2}}}{\sqrt{2\pi}}$$

Teorema 6. Se W = h(X) ove h è monotona a tratti (un numero finito k) e valgono le condizioni del teorema precedente (su ogni tratto), allora

$$f_W(w) = \sum_{n=1}^k f_X(h_n^{-1}(w)) \left| \frac{d}{dw} h_n^{-1}(w) \right| \mathbb{1}_{A_W}(w)$$

Esempio (Chi-quadro): Sia $X \sim N(0,1)$ e $W = h(X) = X^2$. h è monotona sui tratti $A_0 = 0$, $A_1 = (-\infty,0)$, $A_2 = (0,+\infty)$. Trovo inoltre $h_1^{-1}(w) = -\sqrt{w} \in A_1 \forall w \geq 0$, mentre $h_2^{-1}(w) = \sqrt{w} \in A_2 \forall w \geq 0$. $\frac{d}{dw} h_1^{-1}(w) = -\frac{1}{2\sqrt{w}}$, $\frac{d}{dw} h_2^{-1}(w) = \frac{1}{2\sqrt{w}}$ sono entrambe continue su \mathbb{R}_+ .

$$f_W(w) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(-\sqrt{w})^2}{2}} \left| \frac{1}{2\sqrt{w}} \right| + \frac{1}{\sqrt{2\pi}} e^{\frac{-(\sqrt{w})^2}{2}} \left| \frac{1}{2\sqrt{w}} \right|$$
$$= \frac{1}{\sqrt{2\pi w}} e^{\frac{-w}{2}} \mathbb{1}_{\mathbb{R}^+}(w) = \frac{1}{2^{1/2} \Gamma(1/2)} w^{\frac{1}{2} - 1} e^{\frac{-w}{2}}$$

Si riconosce che $W \sim \mathcal{G}(\alpha=1/2,\beta=2)$ e si chiama Chi quadrato con $\nu=1$ gradi di libertà. In generale, una vc Chi Quadro con $\nu=n$ gradi di libertà è $W=\sum_{i=1}^n X_i^2$, ove $X_1,X_2,...,X_n$ sono vc iid N(0,1). Per il teorema sulla FGM di una somma di vc iid si trova immediatamente che $W \sim \mathcal{G}(\alpha=n\cdot 1/2,\beta=2)$.

1.4 Convergenze

Convergenza in probabilità

Definizione 3. Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili casuali e sia X un'altra variabile casuale, tutte definite sullo stesso spazio campionario. Diciamo che X_n converge in probabilità a X (scriviamo $X_n \stackrel{p}{\to} X$) se $\forall \varepsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| \le \varepsilon) = 0$$

Osservazione 3. Se $X_n \stackrel{p}{\to} X$ diciamo che la massa della differenza $|X_n - X|$ converge a 0. Inoltre, quando scriviamo $X_n \stackrel{p}{\to} X$, stiamo sottintendendo tutta la parte iniziale della definizione precendete, cioè il sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili casuali....

Teorema 7. Alcuni risultati utili:

- 1. Supponiamo che $X_n \xrightarrow{p} X$ e $Y_n \xrightarrow{p} Y$. Allora $X_n + Y_n \xrightarrow{p} X + Y$
- 2. Supponiamo che $X_n \stackrel{p}{\to} X$ e sia a una costante. Allora $aX_n \stackrel{p}{\to} aX$
- 3. Supponiamo che $X_n \xrightarrow{p} a$ costante, e sia g una funzione reale continua in a. Allora $g(X_n) \xrightarrow{p} g(a)$
- 4. (Corollario di 3.) Se $X_n \xrightarrow{p} a$, allora $X_n^2 \xrightarrow{p} a^2$, $\frac{1}{X_n} \xrightarrow{p} \frac{1}{a}$ (se $a \neq 0$), $\sqrt{X_n} \xrightarrow{p} a$ $(a \geq 0)$.
- 5. $X_n \stackrel{p}{\to} X$ $e Y_n \stackrel{p}{\to} Y$ allora $X_n Y_n \stackrel{p}{\to} XY$

Convergenza in distribuzione

Definizione 4. Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili casuali e sia X un'altra variabile casuale, tutte definite sullo stesso spazio campionario.

Siano F_{X_n} e F_X le relative funzioni di ripartizione (di distribuzione, sinonimo). Sia $C(F_X)$ l'insieme dei punti ove F_X è continua. Diciamo che X_n converge in distribuzione (o in legge) a X (scriviamo $X_n \stackrel{d}{\to} X$) se

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \forall x \in C(F_X)$$

Teorema 8. Se $X_n \stackrel{p}{\to} X$ allora $X_n \stackrel{d}{\to} X$.

Osservazione 4. Il contrario in generale non vale, tranne nel caso in cui X è una ve degenere (cioè costante).

Teorema 9. Supponiamo che $X_n \stackrel{d}{\to} X$ e sia g una funzione continua sul supporto di X. Allora $g(X_n) \stackrel{d}{\to} g(X)$

Teorema 10 (Slutsky). Supponiamo che $X_n \stackrel{d}{\to} X$, $A_n \stackrel{p}{\to} a$ costante e $B_n \stackrel{p}{\to} b$ costante. Allora $A_n + B_n X_n \stackrel{d}{\to} a + bX$

1.5 Teoria asintotica

Lezione del 04/03, ultima modifica 05/03, Michele Nardin

Teorema 11. (Δ -method) Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di vc tale che $\sqrt{n}(X_n-\vartheta)\stackrel{d}{\to} N(0,\sigma^2)$. Supponiamo che una funzione g(X) sia derivabile in ϑ e che $g'(\vartheta)\neq 0$. Allora

$$\sqrt{n}(g(X_n) - g(\vartheta)) \stackrel{d}{\to} N(0, \sigma^2(g'(\vartheta))^2)$$

Esempi

1. Considero

$$Y_n = \frac{\chi_n^2 - n}{\sqrt{2n}} = \sqrt{n} \left(\frac{\chi_n^2}{\sqrt{2n}} - \frac{1}{\sqrt{2}} \right)$$

ove χ_n^2 è la chiquadro con n gradi di libertà. Ricordiamo che $\mathbb{E}(\chi_n^2) = n$ e che $Var(\chi_n^2) = 2n$ (discende dal fatto che $\chi_n^2 \sim \mathcal{G}(\alpha = n/2, \beta = 2)$. Siccome $Y_n \stackrel{d}{\to} N(0,1)$, scrivendo Y_n nella forma $Y_n = \sqrt{n} \left(\frac{\chi_n^2}{\sqrt{2}n} - \frac{1}{\sqrt{2}}\right)$ riconosciamo che la prima parte delle ipotesi del Δ -method sono soddisfatte. Considero quindi $g(t) = \sqrt{t}$, che è derivabile in $\vartheta = 1/\sqrt{2}$, $g'(t) = \frac{1}{2\sqrt{t}}|_{\vartheta=1/\sqrt{2}} = 2^{-3/4}$. Allora

$$\sqrt{n}(g\left(\frac{\chi_n^2}{\sqrt{2}n}\right)-g(\vartheta))=\sqrt{n}\left(\sqrt{\frac{\chi_n^2}{\sqrt{2}n}}-\sqrt{\frac{1}{\sqrt{2}}}\right)\overset{d}{\to}N(0,1^2\cdot 2^{-3/2})$$

Teorema 12. (Teorema centrale del limite) Siano $X_1,...X_n$ ve iid dotate di media μ e varianza finita σ^2 . Allora

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n} \cdot \sigma} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{d}{\to} N(0, 1)$$

Esempi/Applicazioni

- 1. $X \sim b(n, p), X \stackrel{a}{\sim} N(np, np(1-p))$
- 2. $X_1,...,X_n$ vc $P(\lambda=1)$. Considero $Y_n=\sum X_i$. Dato che $Y_n\stackrel{a}{\sim} N(n\lambda,n\lambda), \frac{Y_n}{n}\stackrel{a}{\sim} N(1,1/n)$
- 3. Considerato $W_n = \sqrt{n}(Y_n/n 1) = \frac{Y_n/n 1}{1/\sqrt{n}} = \frac{\bar{Y}_n \mathbb{E}(\bar{Y}_n)}{\sqrt{Var(Y_n/n)}}$

Teorema 13. Sia $\{X_n\}$ una succ di ve iid con FGM $M_{X_n}(t)$ definita $e < \infty$ per $t \in (-h, h) \forall n$, e sia X un'altra ve con FGM $M_X(t)$ definita $e < \infty$ per $t \in (-h_1, h_1), h_1 \leq h$. Se

$$\lim_{n \to +\infty} M_{X_n}(t) = M_X(t) \forall |t| \le h_1$$

allora $X_n \stackrel{d}{\to} X$.

Applicazione

Sia $X_n \sim b(n, p)$. Ricordiamo che $X_n = \sum X_i$ ove $X_i \sim b(1, p)$, ed inoltre $\mu = \mathbb{E}(X) = np$. Siccome $M_{X_n}(t) = \mathbb{E}(e^{tX_n}) = [(1-p) + pe^t]^n = [1 + \frac{\mu}{n}(e^t - 1)]^n$,

$$M_{X_n}(t) \stackrel{n \to \infty}{\longrightarrow} e^{\mu(e^t - 1)}$$

che è la FGM di una Poisson di parametro μ .

2 Approccio alla Statistica Matematica

2.1 Introduzione

Definizione 5. (Campione Casuale) Il vettore casuale $(X_1,...,X_n)$ si dice Campione Casuale relativamente ad una vc $X \sim F_X(x,\vartheta)$ se i suoi elementi sono vc i.i.d.

Osservazione Il fatto che le vc siano i.i.d. implica che

$$F_{X_1,...,X_n}(X_1,...,X_n) = \prod_{i=1}^n F_{X_i}(X_i)$$

 \mathbf{e}

$$f_{X_1,...,X_n}(X_1,...,X_n) = \prod_{i=1}^n f_{X_i}(X_i)$$

Definizione 6. (Statistica) Sia $(X_1,...,X_n)$ un campione casuale da una distribuzione associata alla ve X, e sia Ω lo spazio campionario di $(X_1,...,X_n)$ Ogni funzione

$$T(X_1,...,X_n):\Omega\longrightarrow\mathbb{R}^k$$

che NON dipende da parametri incogniti è detta Statistica.

Osservazioni Le cose scritte tra virgolette "sono concetti e/o definizioni non ancora introdotti, che vengono usati per dare un'idea intuitiva di quello che si andrà a vedere, cose che poi durante il corso verranno trattate con rigore.

- 1. Una statistica T è una caratteristica numerica del campione: si presta a sintetizzare l'informazione su ϑ contenuta nel campione.
- 2. $\sum_{i=1}^{n} X_i$ e $\sum_{i=1}^{n} X_i^2$ sono entrambe statistiche: sono alla base di due stimatori molto importanti:

Media Campionaria: $\bar{X}_n = \frac{1}{n} \sum X_i$

Varianza Campionaria: $S_n^2 = \frac{1}{n-1} \sum (X_i - \bar{X}_n)^2 = \frac{1}{n-1} \sum X_i^2 - \frac{n}{n-1} \bar{X}_n^2$

3. Ogni statistica è una vc: ha quindi una distribuzione, che dipende dal parametro.

Esempio Considero $\bar{X} = \frac{1}{n} \sum X_i$ ove $X_i \sim N(\mu, \sigma^2)$. Allora $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. Da questo si potrà dedurre la bontà di \bar{X} come stimatore di μ .

- 4. Tra tutti i modi di sintetizzare l'informazione contenuta in $(X_1, ..., X_n)$ relativamente a ϑ , siamo interessati a quelli che NON tralasciano informazioni o quote di informazioni rilevanti per il parametro.
- 5. In relazione ad uno stimatore potremmo essere interessati ad alcune proprietà, in particolare a queste due:
 - · Accuratezza [concetto legato alla media dello stimatore] (Non distorsione)
 - · Precisione [concetto legato alla varianza dello stimatore] (efficienza o consistenza)

2.2 Statistiche d'ordine

Lezioni 08 e 11 Marzo, ultima modifica 21/03, Scritte da: Marco Peruzzetto

Definizione. Sia (X_1, \ldots, X_n) un campione casuale con distribuzione $F_X(x, \theta)$, densità $f_X(x, \theta)$ e supporto supp $\{X\} := (a, b) \subset \mathbb{R}$ ove $X \in \{X_1, \ldots, X_n\}$ e $-\infty \le a < b \le +\infty$. Definiamo ricorsivamente le seguenti variabili casuali:

- $X_{(1)} := \min(\{X_1, \dots, X_n\});$
- $X_{(i)} := \min (\{X_1, \dots, X_n\} \setminus \{X_{(1)}, \dots, X_{(i-1)}\}) \ \forall 1 < i \le n.$

Chiameremo allora $X_{(i)}$ la *i*-esima Statistica d'Ordine del campione.

Osservazione: La statistica d'ordine consiste semplicemente nel vettore per il quale le variabili casuali vengono appunto ordinate, in base al valore che assumono in un determinato punto del loro dominio comune, in ordine crescente. In particolare $X_{(i)}$ sarà l'i-esima variabile più piccola. Naturalmente, se il campione ha lunghezza n, allora $X_{(n)} = \max(\{X_1,\ldots,X_n\})$. Osserviamo che la funzione $(X_1,\ldots,X_n) \longmapsto (X_{(1)},\ldots,X_{(n)})$ è essa stessa una Statistica.

Teorema. Sia $(X_1, ..., X_n)$ un campione casuale come sopra. Allora si ottiene $\forall 1 \leq m \leq n$ che la densità dell' m-esima statistica d'ordine è data da:

$$f_{X_{(m)}}(x,\theta) = \frac{n!}{(m-1)!(n-m)!} f_X(x,\theta) \cdot F_X(x,\theta)^{m-1} \cdot (1 - F_X(x,\theta))^{n-m}$$

Daremo due dimostrazioni, la seconda più bella della prima.

Dimostrazione. Innanzi tutto si ha che il supporto (a, b) può essere partizionato in n parti, per cui evidentemente si ha:

$$f_{(X_{(1)}, \dots, X_{(n)})}(x_{(1)}, \dots, x_{(n)}, \theta) = \begin{cases} n! \prod_{i=1}^{n} f_X(x_{(i)}, \theta) & \text{se } a < x_{(1)} < x_{(2)} < \dots < x_{(n)} < b \\ 0 & \text{altrimenti.} \end{cases}$$

ove la produttoria è giustificata dal fatto che le variabili sono tutte indipendenti e che devono essere ciascuna minore dell'altra per l'ordinamento assegnato; il coefficiente fattoriale è presente poiché le n parti dell'intervallo (a,b) possono essere assegnate alle n variabili in tale numero di modi, dato che ciascuna $X_i \ \forall 1 \leq i \leq n$ ha la stessa distribuzione.

Adesso per trovare la distribuzione di ciascuna $X_{(m)}$ sarà dunque sufficiente integrare $f_{(X_{(1)},\dots,X_{(n)})}$ nei domini possibili di tutte le altre funzioni di distribuzione di ciascuna $X_{(i)}$ con $i\neq m$. In particolare, ciascuna $f_{X_{(i)}}$ per i< m dovrà assumere a piacere valori necessariamente inferiori a $f_{X_{(m)}}$, viceversa ogni $f_{X_{(i)}}$ per i>m dovrà assumere valori obbligatoriamente superiori a quelli di $f_{X_{(m)}}$ in ogni punto. Ricordando allora che possiamo scrivere la distribuzione come $\int_a^x f_X(\theta,t)dt = F_X(\theta,x)$ essendo la densità la derivata della funzione di distribuzione, otterremo quindi che $\forall a < x_{(m)} < b$ la distribuzione sarà data da:

$$\begin{split} f_{X(m)}(x_{(m)},\theta) &= \\ &= \int_{a}^{x_{(2)}} dx_{(1)} \cdots \int_{a}^{x_{(m)}} dx_{(m-1)} \int_{x_{(m)}}^{b} dx_{(m+1)} \cdots \int_{x_{(n-1)}}^{b} dx_{(n)} f_{(X_{(1)},\dots,X_{(n)})}(x_{(1)},\dots,x_{(n)},\theta) \\ &= \int_{a}^{x_{(2)}} dx_{(1)} \cdots \int_{a}^{x_{(m)}} dx_{(m-1)} \int_{x_{(m)}}^{b} dx_{(m+1)} \cdots \int_{x_{(n-1)}}^{b} dx_{(n)} n! \prod_{i=1}^{n} f_{X}(x_{(i)},\theta) \\ &= f_{X}(x_{(m)}) \int_{a}^{x_{(2)}} dx_{(1)} \cdots \int_{a}^{x_{(m)}} dx_{(m-1)} \int_{x_{(m)}}^{b} dx_{(m+1)} \cdots \int_{x_{(n-1)}}^{b} dx_{(n)} n! \prod_{i=1,i\neq m}^{n} f_{X}(x_{(i)},\theta) \\ &= \frac{n!}{(m-1)!(n-m)!} f_{X}(x,\theta) \cdot F_{X}(x,\theta)^{m-1} \cdot \left(1 - F_{X}(x,\theta)\right)^{n-m}, \end{split}$$

dove è stato usato il fatto che
$$\int_a^b F_X^{\alpha}(\theta,t) f_X(\theta,t) dt = \frac{F_X^{\alpha+1}}{\alpha+1}, \forall \alpha \neq -1.$$

Dimostrazione. Sia Ω il dominio comune del campione casuale. Definiamo per $x \in \mathbb{R}$ la nuova variabile casuale Y_x come:

$$\Omega \longrightarrow \{0, \dots, n\}$$

$$Y_x(\omega) := \sum_{i=1}^n \mathbb{1}_{\{X_i(\omega) \le x\}}(\omega) = \#\{i \in \{1, \dots, n\} : X_i \le x\},$$

funzione che, per così dire, "conta" il numero di variabili casuali X_i che non superano x. Si vede immediatamente che $\forall 1 \leq m \leq n$, si ha la distribuzione

$$F_{X_{(m)}}(\theta, x) = \mathbb{P}[Y_x \ge m] = \sum_{k=m}^n \mathbb{P}[Y_x = k] =$$

$$= \sum_{k=m}^n \binom{n}{k} F_X^k(\theta, x) (1 - F_X(\theta, x))^{n-k}.$$

Come nella prima dimostrazione usiamo il fatto che la densità si può vedere come derivata della funzione di ripartizione. Ne segue che per calcolare la densità sarà sufficiente calcolare la derivata in ciascun punto x della distribuzione appena trovata. In particolare si potrà vedere che coesisteranno il termine che vogliamo ottenere con altre due sommatorie, che tuttavia si elidono l'una con l'altra lasciando quindi la relazione espressa dal teorema. Si ha infatti che:

$$\begin{split} f_{(m)}(\theta,x) &= \frac{\partial}{\partial x} F_{X_{(m)}}(\theta,x) = \\ &= \sum_{k=m}^{n} \binom{n}{k} \cdot f_X(\theta,x) \Big\{ k F_X^{k-1}(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-k} - (n-k) F_X^k(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-k-1} \Big\} \\ &= m \binom{n}{m} \cdot f_X(\theta,x) F_X^{m-1}(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-m} + \\ &\qquad \qquad \sum_{k=m+1}^{n} k \binom{n}{k} f_X(\theta,x) F_X^{k-1}(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-k} - \sum_{k=m}^{n} (n-k) \binom{n}{k} F_X^k(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-k-1} \\ &= \frac{n!}{(m-1)!(n-k)!} \cdot f_X(\theta,x) F_X^{m-1}(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-m} + \\ &\qquad \qquad \sum_{j=m}^{n-1} (j+1) \binom{n}{j+1} f_X(\theta,x) F_X^j(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-j-1} - \sum_{k=m}^{n-1} (n-k) \binom{n}{k} F_X^k(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-k-1} \\ &= \frac{n!}{(m-1)!(n-k)!} \cdot f_X(\theta,x) F_X^{m-1}(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-m} + \\ &\qquad \qquad \sum_{j=m}^{n-1} \frac{n!}{j!(n-j-1)!} f_X(\theta,x) F_X^j(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-j-1} - \sum_{k=m}^{n-1} \frac{n!}{k!(n-k-1)!} F_X^k(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-k-1} \\ &= \frac{n!}{(m-1)!(n-k)!} \cdot f_X(\theta,x) F_X^{m-1}(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-j-1} - \sum_{k=m}^{n-1} \frac{n!}{k!(n-k-1)!} F_X^k(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-k-1} \\ &= \frac{n!}{(m-1)!(n-k)!} \cdot f_X(\theta,x) F_X^{m-1}(\theta,x) \big(1 - F_X(\theta,x) \big)^{n-m}. \end{split}$$

Definizione. Sia $(X_{(1)}, \ldots, X_{(n)})$ una statistica d'ordine di un campione casuale. Allora possiamo definire le nuove seguenti variabili:

- $X_{(n)} X_{(1)}$, detta Range oppure Misura di Dispersione;
- $\frac{X_{(1)}+X_{(n)}}{2}$ detta $Mid\ Range$ oppure $Misura\ di\ Centralità;$

9

- Sia $\frac{1}{2(n+1)} , che possiamo in ogni caso pensare come <math>0 per <math>n$ molto grande. A questo punto possiamo definire l'intero $k_p := \lfloor p(n+1) \rfloor + \lfloor 2(p(n+1) \lfloor p(n+1) \rfloor) \rfloor$, che risulta essere così ben definito in quanto compreso tra 1 e n e restituisce l'approssimazione all'intero più vicino al variare di p del reale p(n+1).
- A questo punto, se scegliamo $\xi_p \in F_X^{-1}(p)$, chiameremo ξ_p Quantile di popolazione di ordine p. In seguito troveremo utile stimare tale valore. Perciò introduciamo la variabile casuale ad esso collegata $X_{(k_p)}$, detta Quantile campionario di ordine p. Se $p = \frac{i}{m}$, allora $X_{(k_p)}$ è detta anche i-esimo m-ile campionario. In particolare con Q_1 e Q_3 si indicano rispettivamente il primo e il terzo quartile.
- Le variabili $LF := Q_1 h$ e $UF := h + Q_3$, ove $h := \frac{3}{2}(Q_3 Q_1)$ sono dette rispettivamente Lower e Upper Fence.

Osservazione: Osserviamo che più la misura di centralità si discosta dalla mediana, più vi è asimmetria nella funzione di distribuzione F (i.e.: una funzione di distribuzione è simmetrica: $\iff \exists x_0 \in \mathbb{R} : F(x_0 + x) = F(x_0 - x), \forall x \in \text{Dom}(F)$.) Inoltre, ponendo che la funzione di ripartizione sia iniettiva e simmetrica, si vede immediatamente che la media di popolazione, ovvero il quantile di popolazione di ordine $p = \frac{1}{2}$ coincide con il valore di aspettazione della variabile casuale, il quale a sua volta deve coincidere con x_0 .

Dato un campione casuale di parametro $\theta \in \mathbb{R}$ fissato, sappiamo che una qualsiasi funzione di statistiche su tali variabili è, proprio per definizione, uno stimatore del parametro θ . L'esistenza di un'infinità non numerabile di stimatori è sicuramente un problema da ovviare in merito alla scelta tra essi di uno stimatore che effettivamente permetta di stimare il più correttamente possibile il parametro θ . Cercheremo dunque di individuare alcune proprietà che possano effettivamente giustificare la scelta di un determinato stimatore, affinché esso risulti il più possibile affidabile.

Definizione. Sia (X_1, \ldots, X_n) un campione di parametro θ e $T_n(X_1, \ldots, X_n)$ uno stimatore. La funzione $B_{\theta}[T_n(X_1, \ldots, X_n)] := \mathbb{E}_{\theta}[T_n(X_1, \ldots, X_n)] - \theta$ si dice distorsione di T_n . In particolare T_n si dirà non distorto se e solo se la sua distorsione è nulla $\forall \theta \in \mathbb{R}$. Altrimenti si dice distorto. Se infine si ottiene che $\lim_{n \to +\infty} B_{\theta}[T_n(X_1, \ldots, X_n)] = 0$, T_n si dice asintoticamente non distorto.

Esempio: Sia $(X_{(1)}, \ldots, X_{(n)})$ un campione casuale con distribuzione simmetrica (senza perdita di generalità, la assumiamo simmetrica rispetto all'origine) e scegliamo come stimatore T_n proprio la mediana campionaria. È chiaro innanzi tutto che essa in generale gode delle seguenti due proprietà:

- $\forall b \in \mathbb{R}, T_n(X_1 + b, \dots, X_n + b) = T_n(X_1, \dots, X_n) + b;$
- $T_n(-X_1,\ldots,-X_n) = -T_n(X_1,\ldots,X_n).$

Abbiamo inoltre che la distribuzione di (X_1, \ldots, X_n) e del vettore (X_1, \ldots, X_n) coincidono (ricordando che l'origine è il centro di simmetria). Si avrà dunque:

$$\mathbb{E}[T_n] = \mathbb{E}[T_n(X_1, \dots, X_n)] = \mathbb{E}[T_n(-X_1, \dots, -X_n)]$$

$$= \mathbb{E}[T_n(-X_1, \dots, -X_n)] = \mathbb{E}[-T_n(X_1, \dots, X_n)]$$

$$= -\mathbb{E}[T_n(X_1, \dots, X_n)] = -\mathbb{E}[T_n],$$

perciò, in definitiva, $2\mathbb{E}[T_n] = 0 \Leftrightarrow \mathbb{E}[T_n] = 0$. Quindi, nel caso di una distribuzione simmetrica, la media campionaria è uno stimatore non distorto del valore di aspettazione, del punto di simmetria e della media della popolazione (dato che tutti loro nel nostro caso coincidono).

Esempio: Sia (X_1, \ldots, X_n) un campione casuale di parametro $\theta \in \mathbb{R}$ fissato e con $\mu := \mathbb{E}[X], \sigma^2 := \text{Var}[X]$. Vogliamo provare a calcolare la distorsione di due stimatori "classici":

- 1. Scegliamo come stimatore la media campionaria $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$. Allora $B_{\theta}[\overline{X}_n] = \mathbb{E}_{\theta}[\overline{X}_n] \theta = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\theta}[X_i] \theta = \frac{1}{n} \cdot n \mathbb{E}_{\theta}[X] = \mu \theta$. Dunque la distorsione è costante $\forall n \in \mathbb{N}$. In particolare è uno stimatore non distorto per il valore di aspettazione μ . Possiamo calcolare facilmente anche la varianza di \overline{X}_n che risulta essere $\frac{\sigma^2}{n}$. La media campionaria si rivela essere quindi un buon stimatore.
- 2. Prendiamo ora come stimatore la varianza campionaria, data dalla variabile $S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2$. Allora:

$$\mathbb{E}[S_n^2] = \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}[(X_i - \overline{X}_n)^2] = \frac{1}{n-1} \sum_{i=1}^n \mathbb{E}\left[\left((X_i - \mu) - (\overline{X}_n - \mu)\right)^2\right] =$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^n \mathbb{E}[(X_i - \mu)^2] - \sum_{i=1}^n \mathbb{E}[(\overline{X}_n - \mu)^2]\right) = \frac{1}{n-1} \cdot (n-1)\sigma^2 = \sigma^2. \text{ Perciò } S_n^2 \text{ è uno stimatore non distorto di } \sigma^2. \text{ Notiamo che lo stimatore } S_n^* \coloneqq \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
avrebbe distorsione $-\frac{\sigma^2}{n}$, e dunque è peggiore della varianza campionaria, anche se è asintoticamente non distorto.

Calcoleremo adesso la varianza della varianza campionaria. Assumiamo per il momento che il campione provenga da una distribuzione normale $N(\mu,\sigma^2)$. In tal caso mostriamo che $\frac{n-1}{\sigma^2}S_n^2 \sim \chi_{n-1}^2$ e dunque si avrà subito $\mathrm{Var}[S_n^2] = \frac{2\sigma^4}{n-1}$. Infatti, $\frac{n-1}{\sigma^2}S_n^2 = \sum_{i=1}^n \left(\frac{X_i-\overline{X}_n}{\sigma}\right)^2 = \sum_{i=1}^n \left(\frac{X_i-\mu}{\sigma}-\frac{\overline{X}_n-\mu}{\sigma}\right)^2 = \sum_{i=1}^n \left(\frac{X_i-\mu}{\sigma}\right)^2 - n\left(\frac{\overline{X}_n-\mu}{\sigma}\right)^2 = \sum_{i=1}^n \left(\frac{X_i-\mu}{\sigma}\right)^2 - \left(\frac{\overline{X}_n-\mu}{\sigma}\right)^2 \Rightarrow \sum_{i=1}^n \left(\sim \chi_1^2\right) - \left(\sim \chi_1^2\right) \Rightarrow \frac{n-1}{\sigma^2}S_n^2 \sim \chi_{n-1}^2$, ove abbiamo usato il seguente teorema:

Teorema. Sia (X_1, \ldots, X_n) un campione casuale ove la funzione generatrice di ciascuna X_i , $1 \le i \le n$ è $M_X(t)$. Allora $M_{\overline{X}_n}(t) = M_X(\frac{t}{n})^n$.

per mostrare che
$$\overline{X}_n \sim N(\mu, \frac{\sigma}{n})$$
. Infatti:
$$M_{\overline{X}_n}(t) = M_X(\frac{t}{n})^n = \left(e^{\mu \frac{t}{n} + \frac{\sigma^2 t^2}{2n^2}}\right)^n = e^{\mu t + \frac{\sigma^2}{n} \cdot \frac{t}{2}}, \text{ da cui la tesi.}$$

Teorema. Sia (X_1, \ldots, X_n) un campione casuale da una popolazione con distribuzione discreta o assolutamente continua dove la densità associata sia della forma $f(x,\theta) = C(x)D(\theta)\exp\{\sum_{m=1}^k A_m(\theta)B_m(x)\}$ con k naturale positivo. Siano T_1, \ldots, T_k statistiche definite $\forall 1 \leq m \leq k$ da $T_m(X_1, \ldots, X_n) \coloneqq \sum_{i=1}^n B_m(X_i)$. Allora la distribuzione di (T_1, \ldots, T_k) sarà ancora della forma esponenziale:

$$f_{(T_1,\ldots,T_k)}(\theta,t_1,\ldots,t_k) = C(t_1,\ldots,t_k)D(\theta)^n exp\left\{\sum_{i=1}^k A_m(\theta)t_m\right\}$$

.

Esempio. Sia (X_1,\ldots,X_n) un campione casuale. Supponiamo che $X\sim \text{Bin}(1,p)$. Allora la densità sarà discreta, ossia sarà $f(p,x)=\mathbb{P}[X=x]=\mathbb{1}_{\{0,1\}}(x)(1-p)\exp\big\{\log\big(\frac{p}{1-p}x\big)\big\}$. Applicando il teorema otteniamo $T_1(X_1,\ldots,X_n)=$

 $\sum_{i=1}^{n} B_1(X_i) = \sum_{i=1}^{n} X_i \text{ da cui si deduce subito che } T_1 \sim \text{Bin}(n,p). \text{ In particolare possiamo scriverne la densità: } f_{T_1}(p,t_1) = \mathbb{1}_{\{0,\dots,n\}}(t_1)\binom{n}{t_1}(1-p)^n \exp\{\log\left(\frac{p}{1-p}t_1\right)\}.$

Esempio. Sia (X_1,\ldots,X_n) un campione casuale e supponiamo che il nostro campione casuale abbia distribuzione uniforme Unif($[0,\theta]$). Vogliamo stimare θ . Supponiamo che, essendo θ il massimo valore che ciascuna variabile può assumere, un plausibile buon stimatore possa essere proprio il massimo della statistica ordinata, ovvero $T_n(X_1,\ldots,X_n) \coloneqq X_{(n)}$. Ne conosciamo già la distribuzione: $f_{T_n}(\theta,x) = \frac{n!}{(n-1)!(n-n)!} \frac{1}{\theta} \left(\frac{x}{\theta}\right)^{n-1} \left(1 - \frac{x}{\theta}\right)^{n-n} = \frac{n}{\theta^n} x^{n-1}$. Allora $\mathbb{E}[T_n] = \int_0^\theta \frac{n}{\theta^n} x^n dx = \frac{n}{n+1} \theta \neq \theta \Longrightarrow B_\theta[T_n] = \frac{-1}{n+1}$. Ne segue che è distorto, ma asintoticamente non distorto per θ . Possiamo anche calcolarne la varianza: $\mathrm{Var}[T_n] = \mathbb{E}[T_n^2] - \mathbb{E}[T_n]^2 = \int_0^\theta \frac{n}{\theta^n} x^{n+1} dx - \frac{n}{n+1} = \frac{n\theta^2}{(n+1)^2(n+2)} \xrightarrow[n\to\infty]{} 0$. Perciò il massimo $X_{(n)}$ rimane in ogni caso uno stimatore affidabile. Osserviamo che possiamo tuttavia introdurre un nuovo stimatore che ci assicura la non distorsione, ovvero $T_n^* \coloneqq \frac{n+1}{n}T$, che possiede le proprietà cercate.

Definizione. Sia $(X_1, ..., X_n)$ un campione casuale con distribuzione $F(\theta, x)$, ove $\theta \in \Theta \subset \mathbb{R}$. Sia poi T_n una statistica $\forall n \in \mathbb{N}$. Diremo T_n essere uno stimatore consistente di $\theta :\iff T_n(X_1, ..., T_n) \xrightarrow[n \to \infty]{\mathbb{P}} \theta$.

Esempio. Sia (X_1, \ldots, X_n) un campione casuale, ove $X \in \mathcal{L}^2(\mathbb{R})$. Indichiamo come al solito media e varianza rispettivamente con μ e σ^2 . Allora abbiamo:

- 1. La media campionaria $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{\mathbb{P}} \mu$, grazie alla legge debole dei grandi numeri poiché $\lim_{n \to +\infty} \mathbb{P}[(\overline{X}_n \mu) > \varepsilon] = 0, \forall \varepsilon > 0$.
- 2. Consideriamo adesso la varianza campionaria

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2 \right)$$

. Abbiamo ora i seguenti tre termini:

- $\lim_{n\to+\infty} \frac{n}{n-1} = 1$, un semplice limite;
- $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\xrightarrow[n\to\infty]{\mathbb{P}}\mathbb{E}[X^{2}]$, ancora grazie alla legge debole dei grandi numeri e al fatto che X^{2} rimane ancora sommabile;
- $\overline{X}_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \mu^2 = \mathbb{E}[X]^2$ grazie al Teorema 4 sulla convergenza.

Ne segue quindi che $S_n^2 \xrightarrow[n \to \infty]{\mathbb{P}} \sigma^2$, sempre per i teoremi sulla convergenza di somma, prodotto e prodotto per costanti di variabili casuali.

3. Consideriamo ancora il campione casuale distribuito uniformemente Unif([0, θ]) con stimatore $T_n(X_1, \dots, X_n) := X_{(n)}$. Troviamo che anch'esso è consistente per la stima del massimo. Infatti, $\mathbb{P}[|T_n - \theta| > \varepsilon] = \mathbb{P}[\theta - T_n > \varepsilon] = \mathbb{P}[X_{(n)} \le \theta - \varepsilon] = F_{X_{(n)}}(\theta - \varepsilon) = \left(1 - \frac{\varepsilon}{\theta}\right)^n \xrightarrow[n \to \infty]{} 0$. Allo stesso modo si può verificare che anche T_n^* è consistente per θ .

Definizione. Sia (X_1, \ldots, X_n) un campione casuale e $T_n : \mathfrak{X} \longrightarrow \mathcal{Y}_{T_n}$ una statistica (stimatore). Vi sia inoltre una funzione di parametri $a : \Theta \longrightarrow \mathcal{Y}_{\Theta}$. Allora la funzione non

negativa Loss : $(\mathcal{Y}_{T_n} \cup \mathcal{Y}_{\Theta}) \times \mathcal{Y}_{\Theta} \longrightarrow \mathbb{R}_{\geq 0}$ viene detta Funzione di Perdita se soddisfa alle seguenti condizioni:

- 1. Loss $(a(\theta), a(\theta)) = 0, \forall \theta \in \Theta$;
- 2. Per ogni $T_n \in \mathcal{T}$, esiste una funzione Risk : $Y_{T_n} \times Y_{\Theta} \longrightarrow \mathbb{R}$, detta Funzione di Rischio, tale che Risk $(T_n, a(\theta)) = \mathbb{E}_{\theta}[\operatorname{Loss}(T_n, a(\theta))], \forall \theta \in \Theta$.

Osservazione. La funzione di perdita può essere pensata come una misura della discrepanza tra l'azione T_n e lo stato della natura $a(\theta)$.

Definizione. Possiamo già definire due tipologie di funzioni di perdita che spesso vengono utilizzate in statistica:

- 1. Loss₁ $(T_n, a(\theta)) := |T_n a(\theta)|$, chiamata *Errore assoluto*;
- 2. Loss₂ $(T_n, a(\theta)) := (T_n a(\theta))^2$. Essa ammette anche come possibile funzione di rischio Risk₂ $(T_n, a(\theta)) := \mathbb{E}_{\theta}[T_n a(\theta)]^2$; se tuttavia $a = \mathrm{id}_{\Theta}$, allora la funzione $\mathrm{MSE}_{\theta}(T_n) := \mathrm{Risk}_2(T_n, \theta)$ prende il nome di *Mean Square Error* (oppure *Errore Quadratico Medio*).

Osservazione. Semplicemente aggiungendo e sottraendo il valore $\mathbb{E}[T_n]$ si ottiene subito la seguente uguaglianza: $\mathrm{MSE}_{\theta}(T_n) = \mathrm{Var}_{\theta}[T_n] + B_{\theta}[T_n]^2$.

Teorema. Sia T_n uno stimatore di θ (non necessariamente non distorto). Allora si ha che $\lim_{n\to+\infty} \mathrm{MSE}_{\theta}(T_n) = 0$ è condizione sufficiente (ma non necessaria) per la consistenza di T_n .

Dimostrazione. Si ha infatti la seguente semplice catena di diseguaglianze:

$$\mathbb{P}[|T_n - \theta| > \varepsilon] = \int_{|T_n - \theta| > \varepsilon} f_{T_n}(\theta, t_n) dt_n$$

$$< \int_{|T_n - \theta| > \varepsilon} \frac{(t_n - \theta)^2}{\varepsilon^2} f_{T_n}(\theta, t_n) dt_n < \frac{1}{\varepsilon^2} MSE_{\theta}(T_n).$$

2.3 Intervalli di confidenza

Lezione del 15/03, ultima modifica 18/03, Michele Nardin

Definizione 7. Sia $(X_1, ..., X_n)$ un campione casuale da una distribuzione con funzione di ripartizione $F_X(x, \vartheta)$, $\vartheta \in \Theta$. Definiamo Statistica Pivot una funzione $Q((X_1, ..., X_n), \vartheta)$ tale che

- 1. Q è funzione del campione casuale e del parametro ϑ (parametro su cui si vuol fare inferenza)
- 2. Q non contiene parametri incogniti oltre a ϑ
- 3. la distribuzione di Q, F_Q , è completamente nota (ossia non dipende da ϑ)
- 4. Q è invertibile rispetto a ϑ

Esempi: Campione casuale da $N(\mu, \sigma^2)$:

1. Supponiamo di conoscere la varianza: allora un esempio di statistica pivot è

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}$$

la quale, grazie all'ipotesi di campionamento da ve normale, ha distribuzione N(0,1).

2. Supponiamo di non conoscere la varianza: in tal caso, al posto della varianza usiamo lo stimatore varianza campionaria S_n^2 , il quale è non distorto (già dimostrato) e consistente (infatti $MSE_{\sigma^2}(S_n^2) = Var(S_n^2) + B^2(S_n^2) = \frac{2\sigma^4}{n-1} \to 0$) e quindi la statistica pivot in questione sarà

$$Q = \frac{\bar{X}_n - \mu}{\S_n / \sqrt{n}}$$

la quale (dimostreremo che) ha distribuzione t-student con n-1 gradi di libertà.

Siano $(X_1, ..., X_n)$ da una ve avente cdf $F_X(x, \vartheta)$. Vogliamo stimare ϑ : per farlo usiamo uno stimatore T_n . Quando il campione casuale sarà effettivamente estratto, avremo una nupla di valori reali $(x_1, ..., x_n)$, i quali permettono di calcolare l'effettivo valore della stima: è impensabile però che la stima coincida esattamente con il valore (se X ha distribuzione continua $\mathbb{P}(T_n = \vartheta) = 0$!). Dobbiamo quindi associare a T_n un margine di errore.

Esempio introduttivo (exit poll) Vogliamo stimare la proporzione p_i dei voti ricevuti dall'iesimo partito sul totale. Il nostro problema sarà quello di trovare un intervallo centrato nella stima $\hat{p_i}$, ed un margine d'errore, ME, tale per cui, ad un fissata soglia di probabilità α si abbia

$$P(p_i \in (\hat{p_i} - ME, \hat{p_i} + ME) = 1 - \alpha$$

2.3.1 Costruzione generale

In generale, sia ϑ_0 il valore vero del parametro ϑ che vogliamo stimare, e per semplicità assumiamo che T_n sia un suo stimatore tale che

$$\sqrt{n}(T_n - \vartheta_0) \stackrel{d}{\to} N(0, \sigma_{T_n}^2)$$

Per il momento assumiamo di conoscere $\sigma_{T_n}^2$, sicché

$$Z_n = \frac{\sqrt{n}(T_n - \vartheta_0)}{\sigma_{T_n}} \stackrel{a}{\sim} N(0, 1)$$

Bisogna notare che Z_n è una statistica pivot. Fissato $\alpha \in (0,1)$, consideriamo i quantili della distribuzione N(0,1), $\pm z_{\alpha/2}$ (ossia quei valori tali per cui, se $X \sim N(0,1)$, $P(-z_{\alpha/2} \leq X \leq z_{\alpha/2}) = 1 - \alpha$). Possiamo affermare che, per n sufficientemente grande, (il simbolo \doteq indica un'uguaglianza approssimata)

$$P(-z_{\alpha/2} \le Z_n \le z_{\alpha/2}) \doteq 1 - \alpha$$

da cui

$$P(-z_{\alpha/2} \le \frac{\sqrt{n}(T_n - \vartheta_0)}{\sigma_{T_n}} \le z_{\alpha/2}) \doteq 1 - \alpha$$

e ancora

$$P(T_n - z_{\alpha/2} \frac{\sigma_{T_n}}{\sqrt{n}} \le \vartheta_0 \le T_n + z_{\alpha/2} \frac{\sigma_{T_n}}{\sqrt{n}}) \doteq 1 - \alpha$$

Possiamo quindi definire un intervallo casuale,

$$IC = \left[T_n - z_{\alpha/2} \frac{\sigma_{T_n}}{\sqrt{n}}, T_n + z_{\alpha/2} \frac{\sigma_{T_n}}{\sqrt{n}} \right]$$

(è casuale perchè per T_n è una vc). IC è uno Stimatore Intervallare. Si può affermare che $P(\vartheta \in IC) \doteq 1 - \alpha$. **Nomenclatura** : $z_{\alpha/2}$ si dice Fattore di Affidabilità, $\frac{\sigma_{T_n}}{\sqrt{n}}$ si dice Standard Error dello stimatore T_n .

Sia ora $(x_1, ..., x_n)$ una determinazione campionaria (ossia i dati effettivamente osservati da un campione casuale) (cioè una n-upla) e sia $T_n(x_1, ..., x_n) = t_n$ l'effettivo valore assunto dallo stimatore. Definiamo l'intervallo di confidenza con probabilità di copertura $1 - \alpha$

$$IC_{\vartheta}(1-\alpha) := \left[t_n - z_{\alpha/2} \frac{\sigma_{T_n}}{\sqrt{n}}, t_n + z_{\alpha/2} \frac{\sigma_{T_n}}{\sqrt{n}}\right]$$

La probabilità di copertura viene anche detta livello di confidenza.

Nella pratica, $\sigma_{T_n}^2$ non è noto a priori. Possiamo però usare lo stimatore varianza campionaria di T_n , $S_{T_n}^2$, il quale sappiamo che converge in probabilità a $\sigma_{T_n}^2$. Allora, per il teorema di Slutsky, troviamo che

$$Z_n = \frac{\sqrt{n}(T_n - \vartheta_0)}{S_{T_n}} = \frac{\sqrt{n}}{S_{T_n}} T_n - \frac{\sqrt{n}}{S_{T_n}} \vartheta_0 \stackrel{d}{\to} N(0, 1)$$

Possiamo quindi ripetere il ragionamento fatto poco sopra usando la varianza campionaria al posto di $S_{T_n}^2$, e quindi costruire l'intervallo di confidenza con probabilità di copertura pari a $1-\alpha$ come

$$IC_{\vartheta}(1-\alpha) := \left[t_n - z_{\alpha/2} \frac{S_{T_n}}{\sqrt{n}}, t_n + z_{\alpha/2} \frac{S_{T_n}}{\sqrt{n}}\right]$$

2.3.2 Intervallo di confidenza per la media μ

Sia $(X_1,...,X_n)$ un campione casuale, media e varianza incognite. Siano \bar{X}_n e S_n^2 gli stimatori di media e varianza della popolazione. Allora per il TLC e per il teorema di Slutsky si ha che

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} \stackrel{d}{\to} N(0, 1)$$

che è una statistica pivot. Quindi l'intervallo di confidenza con probabilità di copertura $1-\alpha$ (sempre approssimato) sarà

$$IC_{\mu}(1-\alpha) = \left[\bar{X}_n - z_{\alpha/2} \frac{S_n}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{S_n}{\sqrt{n}}\right]$$

2.3.3 Intervallo di confidenza per una proporzione p

Sia $(X_1, ..., X_n)$ un campione casuale da b(1, p) e sia $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$ lo stimatore (corretto e consistente) di p. Troviamo che per il TLC e per il WLLN

$$\frac{\sqrt{n}(\hat{p}_n - p)}{\sqrt{\hat{p}_n(1 - \hat{p}_n)}} \stackrel{d}{\to} N(0, 1)$$

e quindi l'intervallo di confidenza con probabilità di copertura $1-\alpha$ approssimato sarà

$$IC_p(1-\alpha) = \left[\hat{p}_n - z_{\alpha/2}\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}, \hat{p}_n + z_{\alpha/2}\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}\frac{S_n}{\sqrt{n}}\right]$$

2.3.4 Distribuzione esatta della statistica pivot per campioni poco numerosi

Lezione del 18/03, ultima modifica 19/03, Michele Nardin

La distribuzione t di student La distribuzione di student con ν gradi di libertà è definita come $T=\frac{Z}{\sqrt{S^2/\nu}}$ ove $Z\sim N(0,1)$ mentre $S^2\sim \chi^2_{\nu}$ (chiquadro con ν gradi di libertà). La funzione di densità è

$$f_{t_{\nu}}(t,\nu) = \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)} \frac{1}{\sqrt{\pi\nu}} \frac{1}{[1+t^2/\nu]^{\frac{\nu+1}{2}}} \mathbb{1}_{\mathbb{R}}(t)$$

tale funzione è simmetrica, ha la classica forma a campana come la normale, ma a differenza di quest'ultima ha le code più pesanti. Risulta che la statistica pivot per la media in campioni poco numerosi (in caso di campionamento da normale) ha distribuzione t. Infatti

$$Q = \frac{\bar{X}_n - \mu}{S_n / \sqrt{n}} = \frac{\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{S_n^2}{\sigma^2}}}$$

ovviamente al numeratore abbiamo che $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$, (grazie al fatto che le X_i sono equi distribuite normalmente) mentre al denominatore abbiamo che

$$\sqrt{\frac{S_n^2}{\sigma^2}} = \sqrt{\frac{(n-1)S_n^2}{(n-1)\sigma^2}}$$

abbiamo già dimostrato che $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$ e quindi risulta esattamente che al denominatore abbiamo la radice di una chiquadro diviso i suoi gradi di libertà. Quindi, quando il campione casuale è poco numeroso, è conveniente usare i quantili della distribuzione t di student per costruire gli intervalli di confidenza. (per n¿30, approssimare la distribuzione t di student con la distribuzione normale offre risultati soddisfacenti! Ricordiamo che per il tlc $Q \to N(0,1)$) Fissato un livello di confidenza $1-\alpha$, consideriamo i quantili della distribuzione t di student (con n-1 gradi di libertà, ove n è la dimensione campionaria) $\pm t_{(\alpha/2:n-1)}$, troviamo che

$$P\left(-t_{(\alpha/2;n-1)} \le \frac{\bar{X}_n - \mu}{S_n/\sqrt{n}} \le t_{(\alpha/2;n-1)}\right) = 1 - \alpha$$

Notiamo che questa volta vale l'uguaglianza vera, non è un'approssimazione! Quindi in presenza del campione effettivamente estratto, $(x_1, ..., x_n)$,