RSA Algorithm Example

- Choose p = 3 and q = 11
- Compute n = p * q = 3 * 11 = 33
- Compute $\phi(n) = (p-1) * (q-1) = 2 * 10 = 20$
- Choose e such that $1 < e < \phi(n)$ and e and $\phi(n)$ are coprime. Let e = 7
- Compute a value for d such that $(d * e) \% \phi(n) = 1$. One solution is d = 3 [(3 * 7) % 20 = 1]
- Public key is (e, n) = (7, 33)
- Private key is (d, n) => (3, 33)
- The encryption of m = 2 is $c = 2^7 \% 33 = 29$
- The decryption of c = 29 is $m = 29^3 \% 33 = 2$

RSA Encryption

$$\phi(N) = (p-1)(q-1) = r$$
 Evlers Totient
e.d $\partial_0 r = 1$ \rightarrow $e' = d \vee d' = e$

then

Mark