

Vadhiraj K P P

Department of Electrical Engineering

ELEMENTS OF ELECTRICAL ENGINEERING

Unit 2 – Lecture 36 - Numerical Examples on Series-Parallel AC Circuits

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Numerical Example 3

Question:

A voltage of 200 V is applied to a pure resistor (R), a pure capacitor, C and a lossy inductor coil with resistance of 100 Ω , all of them connected in parallel. The total current is 2.45 A, while the component currents are 1.5, 2.0 and 1.2 A respectively. Find the total power factor and also the power factor of the coil. Also find the total active and reactive power.

PES UNIVERSITY

Numerical Example 3

Solution:

Let us consider supply voltage as reference

$$\Rightarrow \overline{V} = 200 \angle 0^{\circ} V$$

Therefore,
$$\overline{l_1} = 1.5 \angle 0^\circ \text{ A}$$
; $\overline{l_2} = 2 \angle 90^\circ \text{ A}$
In branch 3, $|Z_3| = \frac{200}{1.2} = 166.66\Omega$

PES UNIVERSITY

Numerical Example 3

Solution:

Therefore,
$$\phi_3 = \cos^{-1}(\frac{r_3}{|Z_3|}) = 53.13^\circ \Rightarrow \overline{l_3} = 1.2 \angle -53.13^\circ A$$

Hence, $\overline{l_5} = \overline{l_1} + \overline{l_2} + \overline{l_3} = 2.45 \angle 25.1^\circ A$

Phase Angle of the network = $\phi = \angle \overline{V} - \angle \overline{I_s} = -25.1^{\circ}$

Overall Power factor = $\cos \phi = 0.905$ Lead

PES UNIVERSITY

Numerical Example 3

Solution:

Power factor of the coil = $\cos \phi_3 = 0.6$ Lag

Total Active Power, $P_T = V^*I_s^* \cos \phi = 443.45W$

Total Reactive Power, $Q_T = V^*I_S^* \sin \varphi = -207.85 \text{ VAR}$

Numerical Example 4

Question:

The load connected across an AC supply consists of a heating load of 15KW, a motor load of 40KVA at 0.6 lag and a load of 20KW at 0.8 lag. Calculate the total power drawn from the supply in (KW and KVA) and its power factor. What would be the KVAR rating of a capacitor to bring the power factor to unity and how must the capacitor be connected?

Numerical Example 4

Solution:

Load 1 : Heating Load \Rightarrow Resistive \Rightarrow cos $\phi_1 = 1$

$$P_1 = 15KW$$
 (given)

$$Q_1 = 0$$

$$S_1 = \sqrt{P_1^2 + Q_1^2} = 15KVA$$

Numerical Example 4

Solution:

Load 2 : Motor Load ⇒ Inductive

$$S_2 = 40KVA \& cos\phi_2 = 0.6 Lag (given)$$

$$P_2 = S_2 \cos \phi_2 = 24KW$$

$$Q_2 = \sqrt{S_2^2 - P_2^2} = 32KVAR$$

Numerical Example 4

Solution:

Load 3: Inductive Load

$$P_3 = 20KW \& \cos\phi_3 = 0.8 \text{ Lag (given)}$$

$$S_3 = \frac{P_3}{\cos\phi_3} = 25KVA$$

$$Q_3 = \sqrt{S_3^2 - P_3^2} = 15KVAR$$

Numerical Example 4

Solution:

Net Active Power, $P_T = P_1 + P_2 + P_3 = 59KW$

Net Reactive Power, $Q_T = Q_1 + Q_2 + Q_3 = 47KVAR$

Net Apparent Power, $S_T = \sqrt{P_T^2 + Q_T^2} = 75.43 \text{KVA}$

To make overall power factor unity, net reactive power must be zero. Hence, connect a capacitor of rating 47KVAR in parallel to achieve this.

Numerical Example 5

Question:

8M

Numerical Example 3

	The power consumed in the inductive load is 5 kW at 0.6 lagging power factor .The input voltage is 230 V, 50 Hz. Find the value of the capacitor C which must be	8
	placed in parallel, such that the resultant power factor of the input current improves to 0.8 lagging.	

- c) A single-phase AC network consists of impedances Z₁ and Z₂ connected in parallel. This parallel combination is connected in series with another impedance Z₃. If this network is connected across a 200V, 50Hz AC supply & the supply current is 10A at a lagging power factor of 0.6, determine
 - i) Impedance Z_2 if $Z_1 = (15+j20) \Omega \& Z_3 = (6+j8) \Omega$
 - ii) Branch currents in Z_1 and Z_2
 - iii) Reactive Powers in Z_1 and Z_2

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu