Exercice 1 : Résoudre une inéquation du second degré

Résoudre dans R les inéquations suivantes :

$$1. -4x^2 - 4x + 8 \ge 0$$

2.
$$-2x^2 - 4x - 3 < 0$$

1. Soit P le polynôme défini pour tout x de \mathbb{R} par $P(x) = -4x^2 - 4x + 8$. On cherche à résoudre $P(x) \geq 0$.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = (-4)^2 - 4 \times (-4) \times 8 = 144$$

$$\Delta>0$$
 donc le polynôme admet deux racines : $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$.

$$x_1 = \frac{4 - \sqrt{144}}{-8} = 1$$

$$x_2 = \frac{4 + \sqrt{144}}{-8} = -2$$

On sait qu'un polynôme du second degré est du signe de a à l'extérieur de ses racines.

Comme a=-4<0, on peut dire que $P(x)\geq 0$ sur $S=]-\infty;-2]\cup [1;+\infty[$

On peut résumer le signe du polynôme dans un tableau de signes :

x	$-\infty$		-2		1		$+\infty$
$-4x^2 - 4x + 8$		_	0	+	0	_	

Finalement S = [-2; 1].

2. Soit P le polynôme défini pour tout x de \mathbb{R} par $P(x) = -2x^2 - 4x - 3$. On cherche à résoudre $P(x) \leq 0$.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = (-4)^2 - 4 \times (-2) \times (-3) = -8$$

 $\Delta < 0$ donc le polynôme ${\cal P}$ n'admet pas de racine.

Il est toujours du signe de a=-2<0, donc P(x)<0 pour tout x de $\mathbb{R}.$

On en déduit $S = \mathbb{R}$.