Reinforcement Learning

Goal: Learn to choose actions that maximize $r_0+\gamma r_1+\gamma^2 r_2+\dots\ ,\ \ \text{where}\ 0\leq\gamma<1$

Markov Decision Processes

Assume

- finite set of states S
- set of actions A
- at each discrete time agent observes state $s_t \in S$, and chooses action $a_t \in A$ (among the possible actions in state s_t)
- then receives immediate reward r_t , that can be positive (+), negative (-), o neutral (0)
- \blacksquare and state changes to s_{t+1}
- lacksquare Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - i.e., r_t and s_{t+1} depend only on *current* state and action
 - \blacksquare functions δ and r may be nondeterministic
 - lacktriangleright functions δ and r not necessarily known to agent

Agent's Learning Task

Agent goal: execute actions in environment, observe results, and

■ learn action policy $\pi: S \to A$ that maximizes

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

from any starting state in S

 \blacksquare here $0 \leq \gamma < 1$ is the discount factor for future rewards

Note the difference with respect to supervised leaning:

- lacksquare agent needs to learn a function $\pi: S \to A$
- using training examples of form ((s, a), r) (not (s, a))

Value Function

To begin, consider deterministic environments:

• for each possible policy π the agent might adopt, we can define an evaluation function over states

$$V^{\pi}(s) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$
$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where r_t, r_{t+1}, \ldots are generated by following policy π starting at state s

lacksquare restated, the task is to learn the optimal policy π^*

$$\pi^* \equiv ext{arg max}_\pi V^\pi(s), (orall s)$$

What to Learn

We might try to have agent learn the evaluation function V^{π^*} (which we write as V^*)

It could then do a lookahead search to choose best action from any state \boldsymbol{s} because

$$\pi^*(s) = \arg\max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

Problem:

- This works well if agent knows $\delta: S \times A \rightarrow S$, e $r: S \times A \rightarrow \mathbb{R}$
- ... but when it doesn't, it can't choose actions this way...

Q() Function

Solution:

lacktriangle define new function very similar to V^*

$$Q(s,a) \equiv r(s,a) + \gamma V^*(\delta(s,a))$$

lacksquare if agent learns Q, it can choose optimal action even without knowing $\delta!$

$$\pi^*(s) = \arg\max_{a} [r(s, a) + \gamma V^*(\delta(s, a))]$$

$$\pi^*(s) = \arg\max_{a} Q(s, a)$$

Thus, Q is the evaluation function the agent will learn

Example

 $\boldsymbol{r}(\boldsymbol{s},\boldsymbol{a})$ (immediate reward) values

Q(s,a) values

 $V^*(s)$ values

One optimal policy

Training Rule to Learn Q

Note that Q and V^* are closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q RECURSIVELY as

$$Q(s_{t}, a_{t}) = r(s_{t}, a_{t}) + \gamma V^{*}(\delta(s_{t}, a_{t}))$$

= $r(s_{t}, a_{t}) + \gamma \max_{a'} Q(s_{t+1}, a')$

Nice! Let \hat{Q} denote learner's current approximation to Q. Consider the following training rule:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

where s' is the state resulting from applying action a in state s

Q — Learning Algorithm

In case of deterministic worlds

- $\textbf{1} \ \ \mathsf{for \ each} \ s, a \ \mathsf{initialize \ table \ entry} \ \hat{Q}(s,a) \leftarrow 0$
- 2 observe current state s
- 3 do forever
 - 1 select an action a and execute it
 - 2 receive immediate reward r
 - 3 observe the new state s'
 - 4 update the table entry for $\hat{Q}(s, a)$ as follows:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

$$5 \quad s \leftarrow s'$$

Q — Learning Algorithm

In case of deterministic worlds

- $\textbf{1} \ \ \mathsf{for \ each} \ s, a \ \mathsf{initialize} \ \mathsf{table} \ \mathsf{entry} \ \hat{Q}(s,a) \leftarrow 0$
- 2 observe current state s
- 3 do forever
 - **1** select an action *a* and execute it how to select ?
 - 2 receive immediate reward r
 - 3 observe the new state s'
 - 4 update the table entry for $\hat{Q}(s, a)$ as follows:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

$$s \leftarrow s'$$

Q — Learning Algorithm

In case of deterministic worlds

- 1 for each s,a initialize table entry $\hat{Q}(s,a) \leftarrow 0$
- 2 observe current state s
- 3 do forever
 - select an action a and execute it random (exploration) strategy $arg \max_a \hat{Q}(s,a)$ (exploitation)
 - 2 receive immediate reward r
 - 3 observe the new state s'
 - **4** update the table entry for $\hat{Q}(s, a)$ as follows:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

$$5 \quad s \leftarrow s'$$

Example of application...

$$\begin{array}{lcl} \hat{Q}(s_1, a_{\rightarrow}) & \leftarrow & r + \gamma \max_{a'} \hat{Q}(s_2, a') \\ & \leftarrow & 0 + 0.9 \; \max\{66, 81, 100\} \\ & \leftarrow & 90 \end{array}$$

notice if rewards non-negative, then

$$(\forall s, a, n) \ \hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a)$$

and

$$(\forall s, a, n) \ 0 \leq \hat{Q}_n(s, a) \leq Q(s, a)$$

Convergence

\hat{Q} converges to Q

Consider case of deterministic world where each (s, a) is visited infinitely often

Proof. Define a full interval to be an interval during which each (s,a) is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ

Let \hat{Q}_n be table after n updates, and Δ_n be the maximum error in \hat{Q}_n , i.e.

$$\Delta_n = \max_{s,a} |\hat{Q}_n(s,a) - Q(s,a)|$$

Convergence contd.

For any table entry $\hat{Q}_n(s,a)$ updated on iteration n+1, the error in the revised estimate $\hat{Q}_{n+1}(s,a)$ is

$$\begin{aligned} |\hat{Q}_{n+1}(s,a) - Q(s,a)| &= |(r + \gamma \max_{a'} \hat{Q}_n(s',a')) \\ &- (r + \gamma \max_{a'} Q(s',a'))| \\ &= \gamma |\max_{a'} \hat{Q}_n(s',a') - \max_{a'} Q(s',a')| \\ &\leq \gamma \max_{a'} |\hat{Q}_n(s',a') - Q(s',a')| \\ &\leq \gamma \max_{a'} |\hat{Q}_n(s'',a') - Q(s'',a')| \\ &\leq \gamma \max_{s'',a'} |\hat{Q}_n(s'',a') - Q(s'',a')| \\ |\hat{Q}_{n+1}(s,a) - Q(s,a)| &\leq \gamma \Delta_n \end{aligned}$$

Note we used general fact that

$$|\max_{a} f_1(a) - \max_{a} f_2(a)| \le \max_{a} |f_1(a) - f_2(a)|$$

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$V^{\pi}(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$
$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$

$$Q(s,a) \equiv E[r(s,a) + \gamma V^*(\delta(s,a))]$$

To learn, alter training rule to

$$\hat{Q}_n(s,a) \leftarrow (1 - \alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')]$$

$$\alpha_n = \frac{1}{1 + visite_{-}(s,a)}$$

where

Under specific conditions, can still prove convergence of \hat{Q} to Q

Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$$

Or n?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \dots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \hat{Q}(s_{t+n}, a)$$

Blend all of these:

$$Q^{\lambda}(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots \right]$$

Temporal Difference Learning contd.

$$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots \right]$$

Equivalent expression:

$$Q^{\lambda}(s_t, a_t) = r_t + \gamma [(1 - \lambda) \max_{a} \hat{Q}(s_t, a_t) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1})]$$

 $\mathsf{TD}(\lambda)$ algorithm uses above training rule

- sometimes converges faster than Q learning
- lacksquare converges for learning V^* for any $0 \le \lambda \le 1$
- Tesauro's TD-Gammon uses this algorithm

Many improvements/extensions are possible

— one is to replace \hat{Q} table with a (deep) neural net!