Linyun He

https://he-linyun.github.io/

Email: 1he85@gatech.edu Address: 755 Ferst Dr. NW

Atlanta, GA 30332

Education

• Ph.D. in Operations Research

Advisor: Dr. Eunhye Song

Georgia Institute of Technology

Atlanta, GA

2025 (expected)

M.A. in Statistics

Columbia University

2019

2017

New York, NY

B.S. in Mathematics and Applied Mathematics

Fudan University

Shanghai, China

Research Interest

• Methodologies: robust simulation analysis, simulation optimization under model risk, non-parametric methods and high-dimensional statistics.

• Applications: smart manufacturing and digital twins.

Publications

[7] **Linyun He**, Luke Rhodes-Leader, and Eunhye Song (2024). Digital Twin Validation with Multi-Epoch, Multi-Variate Output Data. In *Proceedings of the 2024 Winter Simulation Conference (WSC)*, 347–358.

- [6] **Linyun He** and Eunhye Song (2024). Introductory Tutorial: Simulation Optimization under Input Uncertainty. In *Proceedings of the 2024 Winter Simulation Conference (WSC)*, 1338–1352.
- [5] **Linyun He**, Uday V Shanbhag, and Eunhye Song (2024). Stochastic Approximation for Multi-period Simulation Optimization with Streaming Input Data. *ACM Transactions on Modeling and Computer Simulation*, 34(2):1–27.
- [4] **Linyun He**, Eunhye Song, and Ben Feng (2023). Efficient Input Uncertainty Quantification for Regenerative Simulation. In *Proceedings of the 2023 Winter Simulation Conference (WSC)*, 385–396.
- [3] Zhunxuan Wang, **Linyun He**, Chunchuan Lyu, and Shay Cohen (2022). Nonparametric Learning of Two-Layer ReLU Residual Units. *Transactions on Machine Learning Research*, 1–41.
- [2] **Linyun He** and Eunhye Song (2021). Nonparametric Kullback-Liebler Divergence Estimation Using M-spacing. In *Proceedings of the 2021 Winter Simulation Conference (WSC)*, 1–12.
- [1] Zihao Wang, Linyun He, Zhenyun Qin, Roger Grimshaw, and Gui Mu (2019). High-order Rogue Waves and Their Dynamics of the Fokas–Lenells Equation Revisited: A Variable Separation Technique. *Nonlinear Dynamics*, 98:2067–2077.

Preprints and Working Papers

- [2] **Linyun He**, Ben Feng, and Eunhye Song (2024). Efficient Input Uncertainty Quantification for Ratio Estimator. Under Major Revision at *INFORMS Journal on Computing*.
- [1] Linyun He, Luke Rhodes-Leader, and Eunhye Song (2024). Nonparametric Digital Twin Validation with Multi-Epoch, Multivariate and Dependent Output Data. In Preparation.

Awards and Honors

[4]	Finalist of the 2023	Winter Simulation	Conference Best	Theoretical	Contributed Paper	Award (5/209)	2023
-----	----------------------	-------------------	-----------------	-------------	-------------------	---------------	------

[3] Overseas Exchange Scholarship by Fudan University Education Development Foundation 2017

[2] Third Prize of the Scholarship for Outstanding Students at Fudan University 2014, 2015, 2016

[1] Major Scholarship of School of Mathematical Sciences at Fudan University 2014, 2015, 2016

Con	ference Presentations					
[8]	2024 Winter Simulation Conference Title a: Digital Twin Validation with Multi-epoch, Multi-variate Outp Title b: Introductory Tutorial: Simulation Optimization under Input					
[7]	2024 INFORMS Annual Meeting Title: Digital Twin Validation with Multi-Epoch, Multi-Dimensional I	Seattle, WA, 2024.10 Data				
[6]	2023 Winter Simulation Conference Title: Efficient Input Uncertainty Quantification for Regenerative Sim	San Antonio, TX, 2023.12 sulation				
[5]	2023 INFORMS Annual Meeting Title: Efficient Input Uncertainty Quantification for Regenerative Sim	Phoenix, AZ, 2023.10 rulation				
[4]	4] 2023 IISE Annual Conference New Orleans, LA, 2023.03 Title: Efficient Input Uncertainty Quantification for Steady-state Simulation					
[3]	3] 2022 IISE Annual Conference Seattle, WA, 2022.05 Title: Statistical Analysis of Data-driven Simulation: Model Calibration and Optimization					
[2]	2] 2021 Winter Simulation Conference Phoenix, AZ, 2021.12 Title: Nonparametric Kullback-Liebler Divergence Estimation Using M-Spacing					
[1]] 2020 INFORMS Annual Meeting online, 2020.11 Title: Stochastic Approximation for Simulation Optimization with Streaming Input Data					
Teac	ching Experience					
• In	structor for ISYE 3044 Simulation Analysis and Design	Georgia Tech, summer 2023				
• Te	eaching Assistant for IE425 Stochastic Models in Operations Research	Penn State Univeristy, spring 2021				
• Te	eaching Assistant for IE453 Simulation Modeling For Decision Support	Penn State Univeristy, fall 2020				
Industrial Experience						
• R	esearch Scientist Intern at Amazon.com Inc	Bellevue, Washington 2022.05-2022.08				
• Q	uantitative Analyst Intern at COFCO Futures Co., LTD	Shanghai, China 2017.01-2017.03				
• Q	uantitative Analyst Intern at Everbright Securities Co., LTD	Shanghai, China 2016.06-2016.08				
• A	udit Intern for KPMG	Shanghai, China 2016.01-2016.02				

Service

- Session Chair for 2024 INFORMS Annual Meeting
- Session Chair for 2023–2024 Winter Simulation Conferences

Software

• alocv: R package for computationally efficient approximation of the leave-one-out cross validation risk