# Midterm Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

#### Exercise 1 (5 points)

Answer on the answer sheet. Let us consider the following 10-bit binary number: 10010110102.

- 1. Write down its hexadecimal representation.
- 2. Assuming that it is an unsigned integer, write down its decimal representation.
- 3. Assuming that it is a signed integer, write down its decimal representation.
- 4. Write down the 8-bit binary representation of the following unsigned number: 128<sub>10</sub>.
- 5. Write down the 8-bit binary representation of the following signed number: -128<sub>10</sub>.
- 6. Determine the minimum number of bits required to encode the following unsigned number:  $2^{42}$ ?
- 7. Determine the minimum number of bits required to encode the following signed number:  $-2^{42}$ ?
- 8. Determine the minimum number of bits required to encode the following signed number:  $2^{42}$ ?
- 9. How many bytes does the value 1 Mib contain? Use a power-of-two notation.
- 10. How many bits does the value **256 KiB** contain? Use binary prefixes (Ki, Mi or Gi) and choose the most appropriate prefix so that the integer numerical value will be as small as possible.

## Exercise 2 (7 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form:  $k \times 2^n$  where k and n are integers (either positive or negative).

Midterm Exam S2

#### Exercise 3 (3 points)

For each question in this exercise, choose only one correct answer from these five:

- The output is always 0.
- The output is always 1.
- The output never changes.
- The output toggles on each negative edge of the clock signal.
- We do not know.

Let us consider a master-slave JK flip-flop:

- 1. How does the output behave if J = K = 1?
- 2. How does the output behave if J = 1 et K = Q?
- 3. How does the output behave if  $J = \overline{Q}$  et K = Q?

### Exercise 4 (5 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.



Figure 1



Figure 2

Midterm Exam S2 2/4

## Computer Architecture – EPITA – S2 – 2018/2019

| Last name:                |   | First nam | e: Group            | ): |
|---------------------------|---|-----------|---------------------|----|
| ANSWER SHEET              |   |           |                     |    |
| Exercise 1                |   |           |                     |    |
| 1.                        |   |           | 6.                  |    |
| 2.                        |   |           | 7.                  |    |
| 3.                        |   |           | 8.                  |    |
| 4.                        |   |           | 9.                  |    |
| 5.                        |   |           | 10.                 |    |
| Exercise 2                |   |           |                     |    |
| 1.                        |   |           |                     |    |
| Number                    | S | E         | M                   |    |
| -88                       |   |           |                     |    |
| 45.375                    |   |           |                     |    |
| 0.375                     |   |           |                     |    |
| 2.                        |   |           |                     |    |
| IEEE-754 Representation   |   |           | Associated Represen |    |
| $432100000000000_{16} \\$ |   |           |                     |    |
| $FFFFFFFFFFFFF_{16}$      |   |           |                     |    |
| $7 FF 000000000000_{16}$  |   |           |                     |    |
| 800240000000000016        |   |           |                     |    |
| Exercise 3                |   |           |                     |    |
| 1.                        |   |           |                     |    |
|                           |   |           |                     |    |
| 2.                        |   |           |                     |    |
| 3.                        |   |           |                     |    |
|                           |   |           |                     |    |

#### Exercise 4



Figure 1



Figure 2

Feel free to use the blank space below if you need to:

