Online Learning in Games

Rida Laraki and Guillaume Vigeral

IASD Lecture 3, 2024

Last lectures: Zero-sum games

Definition

- ullet Two players, actions sets S^1 and S^2 , payoff function $g(s^1,s^2) o \mathbb{R}$
- Player 1 can guarantee $\underline{v} = \sup_{s^1} \inf_{s^2} g(s^1, s^2)$
- Player 2 can guarantee $\overline{v} = \inf_{s^2} \sup_{s^1} g(s^1, s^2)$
- Value exists iff $v = \overline{v} = v$

Theorem (von Neumann, Sion)

If S^1 and S^2 are convex, g is quasi-concave in s^1 , quasi-convex in s^2 and other regularity conditions (semi-continuity, compactness of S^1 or S^2), the game has a value and each payer has $(\varepsilon$ -)optimal strategy to guarantee $v(\pm \varepsilon)$

Contents

- 1 Nash equilibrium : the general case
- Nash equilibrium for finite games
- Potential Games
- Monotone Games

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game is strategic form. A Nash equilibrium of G is a strategy profile satisfying : $s = (s^i)_{i \in N}$ such that :

$$\forall i \in N, \forall t^i \in S^i, g^i(t^i, s^{-i}) \leq g^i(s)$$

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game is strategic form. A Nash equilibrium of G is a strategy profile satisfying : $s = (s^i)_{i \in N}$ such that :

$$\forall i \in N, \forall t^i \in S^i, g^i(t^i, s^{-i}) \leq g^i(s)$$

• Given a strategy profile $s = (s^1, ..., s^n)$, we say that player i has a profitable deviation if there is $t^i \in S^i$ such that $g^i(t^i, s^{-i}) > g^i(s)$.

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game is strategic form. A Nash equilibrium of G is a strategy profile satisfying : $s = (s^i)_{i \in N}$ such that :

$$\forall i \in N, \forall t^i \in S^i, g^i(t^i, s^{-i}) \leq g^i(s)$$

- Given a strategy profile $s = (s^1, ..., s^n)$, we say that player i has a profitable deviation if there is $t^i \in S^i$ such that $g^i(t^i, s^{-i}) > g^i(s)$.
- Thus, a Nash equilibrium is a strategy profile s.t. no player has a profitable deviation.

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game is strategic form. A Nash equilibrium of G is a strategy profile satisfying : $s = (s^i)_{i \in N}$ such that :

$$\forall i \in N, \forall t^i \in S^i, g^i(t^i, s^{-i}) \leq g^i(s)$$

- Given a strategy profile $s = (s^1, ..., s^n)$, we say that player i has a profitable deviation if there is $t^i \in S^i$ such that $g^i(t^i, s^{-i}) > g^i(s)$.
- Thus, a Nash equilibrium is a strategy profile s.t. no player has a profitable deviation.
- In zero-sum games, Nash equilibrium coincides with the saddle point.

• For a player i, a strategy profile of his adversaries is denoted s^{-i} .

- For a player i, a strategy profile of his adversaries is denoted s^{-i} .
- We say s^i is a best response against s^{-i} if : $\forall t^i \in S^i$, $g^i(t^i, s^{-i}) \leq g^i(s)$.

- For a player i, a strategy profile of his adversaries is denoted s^{-i} .
- We say s^i is a best response against s^{-i} if : $\forall t^i \in S^i$, $g^i(t^i, s^{-i}) \leq g^i(s)$.
- The best response correspondence of player i, is the mapping BR^i from S^{-i} to subsets of S^i which associates to each s^{-i} the set of best responses of player i.

- For a player i, a strategy profile of his adversaries is denoted s^{-i} .
- We say s^i is a best response against s^{-i} if : $\forall t^i \in S^i$, $g^i(t^i, s^{-i}) \leq g^i(s)$.
- The best response correspondence of player i, is the mapping BR^i from S^{-i} to subsets of S^i which associates to each s^{-i} the set of best responses of player i.
- The best response correspondence of the game G, is the mapping $BR: S \to 2^S$ defined by $BR(s) = \prod_{i \in N} BR^i(s^{-i})$.

- For a player i, a strategy profile of his adversaries is denoted s^{-i} .
- We say s^i is a best response against s^{-i} if : $\forall t^i \in S^i$, $g^i(t^i, s^{-i}) \leq g^i(s)$.
- The best response correspondence of player i, is the mapping BR^i from S^{-i} to subsets of S^i which associates to each s^{-i} the set of best responses of player i.
- The best response correspondence of the game G, is the mapping $BR: S \to 2^S$ defined by $BR(s) = \prod_{i \in N} BR^i(s^{-i})$.

s is a Nash equilibrium of G if and only if $s \in BR(s)$. We say that s is a fixed point of BR.

- For a player i, a strategy profile of his adversaries is denoted s^{-i} .
- We say s^i is a best response against s^{-i} if : $\forall t^i \in S^i$, $g^i(t^i, s^{-i}) \leq g^i(s)$.
- The best response correspondence of player i, is the mapping BR^i from S^{-i} to subsets of S^i which associates to each s^{-i} the set of best responses of player i.
- The best response correspondence of the game G, is the mapping $BR: S \to 2^S$ defined by $BR(s) = \prod_{i \in N} BR^i(s^{-i})$.

s is a Nash equilibrium of G if and only if $s \in BR(s)$. We say that s is a fixed point of BR.

Question: Under which condition a fixed point exists?

- For a player i, a strategy profile of his adversaries is denoted s^{-i} .
- We say s^i is a best response against s^{-i} if : $\forall t^i \in S^i$, $g^i(t^i, s^{-i}) \leq g^i(s)$.
- The best response correspondence of player i, is the mapping BR^i from S^{-i} to subsets of S^i which associates to each s^{-i} the set of best responses of player i.
- The best response correspondence of the game G, is the mapping $BR: S \to 2^S$ defined by $BR(s) = \prod_{i \in N} BR^i(s^{-i})$.

s is a Nash equilibrium of G if and only if $s \in BR(s)$. We say that s is a fixed point of BR.

Question: Under which condition a fixed point exists?

Exemple: Cournot Equilibrium.

• Let Δ be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.

- Let Δ be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.

- Let Δ be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.
- The mesh of a subdivision is the largest diameter of a sub-simplex.

- Let \triangle be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.
- The mesh of a subdivision is the largest diameter of a sub-simplex.
- Let V be the set of vertices of all sub-simplices in $\{\Delta_i\}$.

- Let Δ be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.
- The mesh of a subdivision is the largest diameter of a sub-simplex.
- Let V be the set of vertices of all sub-simplices in $\{\Delta_i\}$.
- Each $v \in V$ decomposes as a unique convex combination $v = \sum_{i=0}^k \alpha^i(v) x^i$.

- Let Δ be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.
- The mesh of a subdivision is the largest diameter of a sub-simplex.
- Let V be the set of vertices of all sub-simplices in $\{\Delta_i\}$.
- Each $v \in V$ decomposes as a unique convex combination $v = \sum_{i=0}^k \alpha^i(v) x^i$.
- A labeling of V is a function that associates to each $v \in V$ an integer in $I(v) = \{i : \alpha^i(v) > 0\} \subset \{0, \dots, k\}.$

- Let Δ be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.
- The mesh of a subdivision is the largest diameter of a sub-simplex.
- Let V be the set of vertices of all sub-simplices in $\{\Delta_i\}$.
- Each $v \in V$ decomposes as a unique convex combination $v = \sum_{i=0}^k \alpha^i(v) x^i$.
- A labeling of V is a function that associates to each $v \in V$ an integer in $I(v) = \{i : \alpha^i(v) > 0\} \subset \{0, \dots, k\}.$
- There are k+1 possible labels, an extreme point x^j has label j.

- Let \triangle be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.
- The mesh of a subdivision is the largest diameter of a sub-simplex.
- Let V be the set of vertices of all sub-simplices in $\{\Delta_i\}$.
- Each $v \in V$ decomposes as a unique convex combination $v = \sum_{i=0}^k \alpha^i(v) x^i$.
- A labeling of V is a function that associates to each $v \in V$ an integer in $I(v) = \{i : \alpha^i(v) > 0\} \subset \{0, \dots, k\}.$
- There are k+1 possible labels, an extreme point x^j has label j.
- A point v in the interior of the face $\operatorname{co}\{x^{i_1},\ldots,x^{i_m}\}$ has a label in $\{i_1,\ldots,i_m\}$.
- A sub-simplex Δ_i is a completely labeled sub-simplex if its vertices (extreme points) have all the k+1 labels.

- Let \triangle be a simplex of dimension k spanned by k+1 vertices by $\{x^0,\ldots,x^k\}$.
- A simplicial subdivision of Δ is a finite collection of sub-simplices $\{\Delta_i\}$ of Δ satisfying (1) $\bigcup_i \Delta_i = \Delta$ and (2) for all (i,j), $\Delta_i \cap \Delta_j$ is empty or is some sub-simplex of the collection.
- The mesh of a subdivision is the largest diameter of a sub-simplex.
- Let V be the set of vertices of all sub-simplices in $\{\Delta_i\}$.
- Each $v \in V$ decomposes as a unique convex combination $v = \sum_{i=0}^k \alpha^i(v) x^i$.
- A labeling of V is a function that associates to each $v \in V$ an integer in $I(v) = \{i : \alpha^i(v) > 0\} \subset \{0, \dots, k\}.$
- There are k+1 possible labels, an extreme point x^j has label j.
- A point v in the interior of the face $\operatorname{co}\{x^{i_1},\ldots,x^{i_m}\}$ has a label in $\{i_1,\ldots,i_m\}$.
- A sub-simplex Δ_i is a completely labeled sub-simplex if its vertices (extreme points) have all the k+1 labels.

Lemma (Sperner, 1928)

Every labeling of any simplicial subdivision of a simplex Δ has an odd number of completely labeled sub-simplices.

• The proof is by induction on the dimension k. For k = 0: trivial.

- The proof is by induction on the dimension k. For k=0: trivial.
- Suppose the result holds for k-1.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- ullet A door is any sub-simplex having exactly the labels 0 to k-1.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- ullet A door is any sub-simplex having exactly the labels 0 to k-1.
- Thus, a room Δ_i has no doors, 1 door or 2 doors.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- ullet A door is any sub-simplex having exactly the labels 0 to k-1.
- Thus, a room Δ_i has no doors, 1 door or 2 doors.
- By induction, there is an odd number of doors in the face $F = \operatorname{co}\{x^0, \dots, x^{k-1}\}$ of $\Delta = \operatorname{co}\{x^0, \dots, x^k\}$.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- ullet A door is any sub-simplex having exactly the labels 0 to k-1.
- ullet Thus, a room Δ_i has no doors, 1 door or 2 doors.
- By induction, there is an odd number of doors in the face $F = \operatorname{co}\{x^0, \dots, x^{k-1}\}$ of $\Delta = \operatorname{co}\{x^0, \dots, x^k\}$.
- Imagine you enter the house Δ from outside using a door in F.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- ullet A door is any sub-simplex having exactly the labels 0 to k-1.
- ullet Thus, a room Δ_i has no doors, 1 door or 2 doors.
- By induction, there is an odd number of doors in the face $F = \operatorname{co}\{x^0, \dots, x^{k-1}\}$ of $\Delta = \operatorname{co}\{x^0, \dots, x^k\}$.
- Imagine you enter the house Δ from outside using a door in F.
- If the room has another door, take it and keep going, until (1) you reach a room without other doors (a completely labeled room) or (2) you leave the house by the face F.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- A door is any sub-simplex having exactly the labels 0 to k-1.
- ullet Thus, a room Δ_i has no doors, 1 door or 2 doors.
- By induction, there is an odd number of doors in the face $F = \operatorname{co}\{x^0, \dots, x^{k-1}\}$ of $\Delta = \operatorname{co}\{x^0, \dots, x^k\}$.
- Imagine you enter the house Δ from outside using a door in F.
- If the room has another door, take it and keep going, until (1) you reach a
 room without other doors (a completely labeled room) or (2) you leave the
 house by the face F.
- No cycle can occur (by an orientation argument).

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- A door is any sub-simplex having exactly the labels 0 to k-1.
- ullet Thus, a room Δ_i has no doors, 1 door or 2 doors.
- By induction, there is an odd number of doors in the face $F = \operatorname{co} \{x^0, \dots, x^{k-1}\}$ of $\Delta = \operatorname{co} \{x^0, \dots, x^k\}$.
- Imagine you enter the house Δ from outside using a door in F.
- If the room has another door, take it and keep going, until (1) you reach a
 room without other doors (a completely labeled room) or (2) you leave the
 house by the face F.
- No cycle can occur (by an orientation argument).
- Thus, linked doors on the face F go by pairs. Since there is an odd number of doors in F, there is an odd number of completely labeled rooms reachable from outside.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- ullet A door is any sub-simplex having exactly the labels 0 to k-1.
- Thus, a room Δ_i has no doors, 1 door or 2 doors.
- By induction, there is an odd number of doors in the face $F = \operatorname{co} \{x^0, \dots, x^{k-1}\}$ of $\Delta = \operatorname{co} \{x^0, \dots, x^k\}$.
- Imagine you enter the house Δ from outside using a door in F.
- If the room has another door, take it and keep going, until (1) you reach a
 room without other doors (a completely labeled room) or (2) you leave the
 house by the face F.
- No cycle can occur (by an orientation argument).
- Thus, linked doors on the face F go by pairs. Since there is an odd number of doors in F, there is an odd number of completely labeled rooms reachable from outside.
- Also, completely labeled rooms that cannot be reached from outside go by pairs.

- The proof is by induction on the dimension k. For k = 0: trivial.
- Suppose the result holds for k-1.
- Imagine Δ is a house, and any sub-simplex Δ_i with dimension k a room.
- ullet A door is any sub-simplex having exactly the labels 0 to k-1.
- ullet Thus, a room Δ_i has no doors, 1 door or 2 doors.
- By induction, there is an odd number of doors in the face $F = \operatorname{co}\{x^0, \dots, x^{k-1}\}$ of $\Delta = \operatorname{co}\{x^0, \dots, x^k\}$.
- Imagine you enter the house Δ from outside using a door in F.
- If the room has another door, take it and keep going, until (1) you reach a
 room without other doors (a completely labeled room) or (2) you leave the
 house by the face F.
- No cycle can occur (by an orientation argument).
- Thus, linked doors on the face F go by pairs. Since there is an odd number of doors in F, there is an odd number of completely labeled rooms reachable from outside.
- Also, completely labeled rooms that cannot be reached from outside go by pairs.
- ullet Thus, Δ has an odd number of completely labeled rooms.

Brouwer Theorem

Corollary (Brouwer for simplices)

Every continuous function $f: \Delta \to \Delta$ has a fixed point.

Corollary (Brouwer for simplices)

Every continuous function $f: \Delta \to \Delta$ has a fixed point.

Démonstration.

Consider a simpliciale subdivision Δ with mesh $\epsilon > 0$.

Let λ be labelling of V defined as follows :

$$\lambda(v) \in I(v) \cap \{i : f^i(v) \le v^i\}.$$

Corollary (Brouwer for simplices)

Every continuous function $f: \Delta \to \Delta$ has a fixed point.

Démonstration.

Consider a simpliciale subdivision Δ with mesh $\epsilon > 0$.

Let λ be labelling of V defined as follows :

$$\lambda(v) \in I(v) \cap \{i : f^i(v) \le v^i\}.$$

This intersection is non empty, otherwise $1 = \sum_{i=0}^k f^i(v) > \sum_{i=0}^k v^i = 1$.

Corollary (Brouwer for simplices)

Every continuous function $f: \Delta \to \Delta$ has a fixed point.

Démonstration.

Consider a simpliciale subdivision Δ with mesh $\epsilon > 0$.

Let λ be labelling of V defined as follows :

$$\lambda(v) \in I(v) \cap \{i : f^i(v) \le v^i\}.$$

This intersection is non empty, otherwise $1 = \sum_{i=0}^k f^i(v) > \sum_{i=0}^k v^i = 1$. Sperner lemma implies existence of a completely labelled simplex.

Corollary (Brouwer for simplices)

Every continuous function $f: \Delta \to \Delta$ has a fixed point.

Démonstration.

Consider a simplicial subdivision Δ with mesh $\epsilon > 0$.

Let λ be labelling of V defined as follows :

$$\lambda(v) \in I(v) \cap \{i : f^i(v) \le v^i\}.$$

This intersection is non empty, otherwise $1=\sum_{i=0}^k f^i(v)>\sum_{i=0}^k v^i=1$. Sperner lemma implies existence of a completely labelled simplex. By tending ϵ to zero and using compactness of Δ we deduce existence of $v\in\Delta$ such that for all i, $f^i(v)\leq v^i$. Thus f(v)=v.

Corollary (Brouwer for convex compact sets)

Let C **be a convex compact** subset of \mathbb{R}^k and let $f: C \to C$ be continuous. **Then** f **has a fixed point** : $c \in C$ such that c = f(c).

Corollary (Brouwer for convex compact sets)

Let C **be a convex compact** subset of \mathbb{R}^k and let $f: C \to C$ be continuous. **Then** f **has a fixed point** : $c \in C$ such that c = f(c).

Corollary (Kakutani -fixed point for correspondences)

Let C be a convex compact subset of \mathbb{R}^k and let F be a correspondence from C to C such that :

Corollary (Brouwer for convex compact sets)

Let C **be a convex compact** subset of \mathbb{R}^k and let $f: C \to C$ be continuous. **Then** f **has a fixed point** : $c \in C$ such that c = f(c).

Corollary (Kakutani -fixed point for correspondences)

Let C be a convex compact subset of \mathbb{R}^k and let F be a correspondence from C to C such that :

(i) $\forall c \in C$, F(c) is convex, compact and non-empty;

Corollary (Brouwer for convex compact sets)

Let C **be a convex compact** subset of \mathbb{R}^k and let $f:C\to C$ be continuous. **Then** f **has a fixed point** : $c\in C$ such that c=f(c).

Corollary (Kakutani -fixed point for correspondences)

Let C be a convex compact subset of \mathbb{R}^k and let F be a correspondence from C to C such that :

- (i) $\forall c \in C$, F(c) is convex, compact and non-empty;
- (ii) The graph of F, $\{(c,d) \in C \times C : c \in F(d)\}$, is closed.

Corollary (Brouwer for convex compact sets)

Let C **be a convex compact** subset of \mathbb{R}^k and let $f:C\to C$ be continuous. **Then** f **has a fixed point** : $c\in C$ such that c=f(c).

Corollary (Kakutani -fixed point for correspondences)

Let C be a convex compact subset of \mathbb{R}^k and let F be a correspondence from C to C such that :

- (i) $\forall c \in C$, F(c) is convex, compact and non-empty;
- (ii) The graph of F, $\{(c,d) \in C \times C : c \in F(d)\}$, is closed.

Then, there is $c \in C$ such that $c \in F(c)$.

Theorem (Glicksberg 1952, pure stratregies)

Let
$$G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$$
 be a game s.t. for all $i \in N$:

Theorem (Glicksberg 1952, pure stratregies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game s.t. for all $i \in N$:

 S^i is a convex compact subset of a topological vector space

Theorem (Glicksberg 1952, pure stratregies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game s.t. for all $i \in N$:

S' is a convex compact subset of a topological vector space

 $g^i:S\to\mathbb{R}$ is continuous

Theorem (Glicksberg 1952, pure stratregies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game s.t. for all $i \in N$:

 S^i is a convex compact subset of a topological vector space

 $g^i:S o\mathbb{R}$ is continuous

for all $s^{-i} \in S^{-i}$, $s^i \mapsto g^i(s^i, s^{-i})$ is quasi-concave.

Theorem (Glicksberg 1952, pure stratregies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game s.t. for all $i \in N$:

S' is a convex compact subset of a topological vector space

 $g^i:S o\mathbb{R}$ is continuous

for all $s^{-i} \in S^{-i}$, $s^i \mapsto g^i(s^i, s^{-i})$ is quasi-concave.

Then the set of Nash equilibria of G is compact and non-empty.

Theorem (Glicksberg 1952, pure stratregies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game s.t. for all $i \in N$:

S' is a convex compact subset of a topological vector space

 $g^i:S o\mathbb{R}$ is continuous

for all $s^{-i} \in S^{-i}$, $s^i \mapsto g^i(s^i, s^{-i})$ is quasi-concave.

Then the set of Nash equilibria of G is compact and non-empty.

Proof: Apply Kakutani.

Theorem (Glicksberg 1952, pure stratregies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game s.t. for all $i \in N$:

S' is a convex compact subset of a topological vector space

 $g^i:S o\mathbb{R}$ is continuous

for all $s^{-i} \in S^{-i}$, $s^i \mapsto g^i(s^i, s^{-i})$ is quasi-concave.

Then the set of Nash equilibria of G is compact and non-empty.

Proof: Apply Kakutani.

Contents

- Nash equilibrium : the general case
- 2 Nash equilibrium for finite games
- Potential Games
- Monotone Games

1, -1	-1, 1
-1, 1	1, -1

1, -1	-1, 1
-1, 1	1, -1

3, 3	-1, 4
4, -1	0, 0

3, 2	1, 1
0, 0	2, 3

Matching-Pennies : no pure equilibrium

1, -1	-1, 1
-1, 1	1, -1

3, 3	-1, 4
4, -1	0, 0

3, 2	1, 1
0, 0	2, 3

- Matching-Pennies : no pure equilibrium
- 2 Prisoner dilemma : one pure equilibrium.

1, -1	-1, 1
-1, 1	1, -1

3, 3	-1, 4
4, -1	0, 0

3, 2	1, 1
0, 0	2, 3

- Matching-Pennies: no pure equilibrium
- 2 Prisoner dilemma : one pure equilibrium.
- 3 Battle of the sexes : Two pure equilibria (with different payoffs)

• $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$: a game in strategic form.

- $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$: a game in strategic form.
- N : set of players

- $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$: a game in strategic form.
- N : set of players
- S^i : pure strategies of player i.

- $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$: a game in strategic form.
- N : set of players
- S^i : pure strategies of player i.
- ullet $g^i:S=\prod_{i\in N}S^j
 ightarrow\mathbb{R}$: payoff function of player i

- $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$: a game in strategic form.
- N : set of players
- S^i : pure strategies of player i.
- ullet $g^i:S=\prod_{i\in N}S^j
 ightarrow\mathbb{R}$: payoff function of player i
- The game is finite if N and S^i is finite $\forall i$.

•
$$\Delta(S^i) = \{ \text{ set of mixed strategies of player } i \} : \sigma^i, \tau^i.$$

- $\Delta(S^i) = \{ \text{ set of mixed strategies of player } i \} : \sigma^i, \tau^i.$
- $\sigma^i(s^i)$: proba of s^i under σ^i .

- $\Delta(S^i) = \{ \text{ set of mixed strategies of player } i \} : \sigma^i, \tau^i.$
- $\sigma^i(s^i)$: proba of s^i under σ^i .
- $Supp(\sigma^i) = \{s^i \in S^i | \sigma^i(s^i) > 0\}$: support of σ^i

- $\Delta(S^i) = \{ \text{ set of mixed strategies of player } i \} : \sigma^i, \tau^i.$
- $\sigma^i(s^i)$: proba of s^i under σ^i .
- $Supp(\sigma^i) = \{s^i \in S^i | \sigma^i(s^i) > 0\}$: support of σ^i
- $\prod_i \Delta(S^i) = \{ \text{ set of mixed strategy profiles } \}$

- $\Delta(S^i) = \{ \text{ set of mixed strategies of player } i \} : \sigma^i, \tau^i.$
- $\sigma^i(s^i)$: proba of s^i under σ^i .
- $Supp(\sigma^i) = \{s^i \in S^i | \sigma^i(s^i) > 0\}$: support of σ^i
- $\prod_i \Delta(S^i) = \{ \text{ set of mixed strategy profiles } \}$
- $\sigma = (\sigma^1, ..., \sigma^n), \ \tau = (\tau^1, ..., \tau^n)$

- $\Delta(S^i) = \{ \text{ set of mixed strategies of player } i \} : \sigma^i, \tau^i.$
- $\sigma^i(s^i)$: proba of s^i under σ^i .
- $Supp(\sigma^i) = \{s^i \in S^i | \sigma^i(s^i) > 0\}$: support of σ^i
- $\prod_i \Delta(S^i) = \{ \text{ set of mixed strategy profiles } \}$
- $\sigma = (\sigma^1, ..., \sigma^n), \ \tau = (\tau^1, ..., \tau^n)$
- $\Delta(S) = \{$ is the set of correlated strategy profiles $\}$

- $\Delta(S^i) = \{ \text{ set of mixed strategies of player } i \} : \sigma^i, \tau^i.$
- $\sigma^i(s^i)$: proba of s^i under σ^i .
- $Supp(\sigma^i) = \{s^i \in S^i | \sigma^i(s^i) > 0\}$: support of σ^i
- $\prod_i \Delta(S^i) = \{ \text{ set of mixed strategy profiles } \}$
- $\sigma = (\sigma^1, ..., \sigma^n), \ \tau = (\tau^1, ..., \tau^n)$
- $\Delta(S) = \{$ is the set of correlated strategy profiles $\}$
- $\Delta(S^{-i}) = \{$ is the set of correlated strategy profiles of the opponents of $i \}$

Mixed extension

• Given a mixed strategy profile $\sigma = (\sigma^i)_{i \in N}$, the expected payoff of player i is :

$$g^{i}(\sigma) = \sum_{s \in S} (\prod_{i \in N} \sigma^{i}(s^{i})) g^{i}(s)$$

Mixed extension

• Given a mixed strategy profile $\sigma = (\sigma^i)_{i \in N}$, the expected payoff of player i is :

$$g^{i}(\sigma) = \sum_{s \in S} (\prod_{i \in N} \sigma^{i}(s^{i})) g^{i}(s)$$

• This defines an extended game g^i from $\prod_{i \in N} S^i$ to $\prod_{i \in N} \Delta(S^i)$ that we denote also by g^i : and it is called the **mixed extension of** g^i .

Best responses

Let
$$\sigma^i \in \Delta(S^i)$$
 and $\theta^{-i} \in \Delta(S^{-i})$

 σ^i is a best response against θ^{-i} if

$$g^{i}(\sigma^{i}, \theta^{-i}) \geq g^{i}(\tau^{i}, \theta^{-i}) \quad \forall \tau^{i} \in \Delta(S^{i})$$

 $BR(\theta^{-i})$: is the set of all best responses against à θ^{-i} .

Properties

Properties

$$\bullet \ \sigma^i \in BR(\theta^{-i}) \Leftrightarrow g^i(\sigma^i, \theta^{-i}) \geq g^i(s^i, \theta^{-i}) \ \forall s^i \in S^i$$

Properties

$$\bullet \ \sigma^i \in BR(\theta^{-i}) \Leftrightarrow g^i(\sigma^i, \theta^{-i}) \geq g^i(s^i, \theta^{-i}) \ \forall s^i \in S^i$$

Nash equilibrium

Mixed Nash equilibrium : a $\sigma \in \prod_i \Delta(S^i)$ such that :

$$\forall i \in N, \sigma^i \in BR(\sigma^{-i})$$

Pure Nash equilibrium: mixed Nash equilibrium where all players play a pure strategy.

1, -1	-1, 1
-1, 1	1, -1

3, 3	-1, 4
4, -1	0, 0

1, -1	-1, 1
-1. 1	11

3, 3	-1, 4
4, -1	0, 0

3, 2	1, 1
0, 0	2, 3

Matching-Pennies: no pure, one mixed

1, -1	-1, 1
-1. 1	11

3, 3	-1, 4
4, -1	0, 0

3, 2	1, 1
0, 0	2, 3

- Matching-Pennies: no pure, one mixed
- 2 Prisoner dilemma : one pure, one mixed

1, -1	-1, 1
-1. 1	11

3, 3	-1, 4
4, -1	0, 0

3, 2	1, 1
0, 0	2, 3

- Matching-Pennies: no pure, one mixed
- 2 Prisoner dilemma : one pure, one mixed
- Battle of the sexes : two pures, three mixed

Theorem (Nash 1950)

Every finite game has a mixed Nash equilibrium

Proof 1: define a continuous function f s.t. all fixed point of f are equilibria.

Theorem (Nash 1950)

Every finite game has a mixed Nash equilibrium

Proof 1: define a continuous function f s.t. all fixed point of f are equilibria.

• (Nash, 1950)

$$f^{i}(\sigma)(s^{i}) = \frac{\sigma^{i}(s^{i}) + (g^{i}(s^{i}, \sigma^{-i}) - g^{i}(\sigma))^{+}}{1 + \sum_{t}(g^{i}(t^{i}, \sigma^{-i}) - g^{i}(\sigma))^{+}}$$

Theorem (Nash 1950)

Every finite game has a mixed Nash equilibrium

Proof 1: define a continuous function f s.t. all fixed point of f are equilibria.

• (Nash, 1950)

$$f^{i}(\sigma)(s^{i}) = rac{\sigma^{i}(s^{i}) + (g^{i}(s^{i},\sigma^{-i}) - g^{i}(\sigma))^{+}}{1 + \sum_{t^{i}}(g^{i}(t^{i},\sigma^{-i}) - g^{i}(\sigma))^{+}}$$

• (Gul, Pearce and Stacchetti, 1993) Let Π the orthogonal projection on the convex set $\prod_i \Delta(S^i)$. Define

$$f(\sigma) = \Pi(\{\sigma^i + Vg^i(\sigma^{-i})\}).$$

where $Vg^i(\sigma^{-i})$ is the S_i dimensional vector $\{g^i(s^i,\sigma^{-i})\}_{s_i\in S_i}$

Theorem (Nash 1950)

Every finite game has a mixed Nash equilibrium

Proof 1: define a continuous function f s.t. all fixed point of f are equilibria.

• (Nash, 1950)

$$f^{i}(\sigma)(s^{i}) = \frac{\sigma^{i}(s^{i}) + (g^{i}(s^{i}, \sigma^{-i}) - g^{i}(\sigma))^{+}}{1 + \sum_{t^{i}}(g^{i}(t^{i}, \sigma^{-i}) - g^{i}(\sigma))^{+}}$$

• (Gul, Pearce and Stacchetti, 1993) Let Π the orthogonal projection on the convex set $\prod_i \Delta(S^i)$. Define

$$f(\sigma) = \Pi(\{\sigma^i + Vg^i(\sigma^{-i})\}).$$

where $Vg^{i}(\sigma^{-i})$ is the S_{i} dimensional vector $\{g^{i}(s^{i},\sigma^{-i})\}_{s_{i}\in S_{i}}$

Proof 2 : Kakutani

Compute all pure and mixed Nash equilibria of the following finite games :

$$\begin{array}{c|cc}
 & L & R \\
T & (6,6) & (2,7) \\
B & (7,2) & (0,0)
\end{array}$$

Compute all pure and mixed Nash equilibria of the following finite games :

•

$$\begin{array}{c|c}
 & L & R \\
T & (6,6) & (2,7) \\
B & (7,2) & (0,0)
\end{array}$$

$$\begin{array}{c|cccc}
L & R \\
T & (2,-2) & (-1,1) \\
B & (-3,3) & (4,-4)
\end{array}$$

Compute all pure and mixed Nash equilibria of the following finite games :

•

$$\begin{array}{c|c}
L & R \\
T & (6,6) & (2,7) \\
B & (7,2) & (0,0)
\end{array}$$

•

$$\begin{array}{c|cccc}
L & R \\
T & (2,-2) & (-1,1) \\
B & (-3,3) & (4,-4)
\end{array}$$

$$\begin{array}{c|c}
L & R \\
T & (1,0) & (2,1) \\
B & (1,1) & (0,0)
\end{array}$$

Compute all pure and mixed Nash equilibria of the following finite games :

•

 $\begin{array}{c|c}
L & R \\
T & (6,6) & (2,7) \\
B & (7,2) & (0,0)
\end{array}$

ě

$$\begin{array}{c|cccc}
L & R \\
T & (2,-2) & (-1,1) \\
B & (-3,3) & (4,-4)
\end{array}$$

•

	L	R
Τ	(1,0)	(2,1)
В	(1, 1)	(0,0)

	L	Μ	R
Τ	(1, 1)	(0,0)	(8,0)
Μ	(0,0)	(4,4)	(0,0)
В	(0,8)	(0,0)	(6,6)

Compute all pure and mixed Nash equilibria of the following finite games :

 $\begin{array}{c|cc}
L & R \\
T & (6,6) & (2,7) \\
B & (7,2) & (0,0)
\end{array}$

 $\begin{array}{c|cccc}
L & R \\
T & (2,-2) & (-1,1) \\
B & (-3,3) & (4,-4)
\end{array}$

 $\begin{array}{c|c} & L & R \\ T & (1,0) & (2,1) \\ B & (1,1) & (0,0) \end{array}$

 A symmetric three-player finite game where each player chooses one of two rooms and wins 1 if he is alone and zero otherwise.

 The set of Nash Equilibria of a finite game is a compact semi-algebraic set, consequently, it has finitely many connected components.

- The set of Nash Equilibria of a finite game is a compact semi-algebraic set, consequently, it has finitely many connected components.
- Nash equilibria are rationalizable (e.g. they survive to repeated elimination of never best response strategies).

- The set of Nash Equilibria of a finite game is a compact semi-algebraic set, consequently, it has finitely many connected components.
- Nash equilibria are rationalizable (e.g. they survive to repeated elimination of never best response strategies).
- A finite game has typically many Nash equilibria (generically an odd number). They are not exchangeable, contrarily to zero-sum game.

- The set of Nash Equilibria of a finite game is a compact semi-algebraic set, consequently, it has finitely many connected components.
- Nash equilibria are rationalizable (e.g. they survive to repeated elimination of never best response strategies).
- A finite game has typically many Nash equilibria (generically an odd number). They are not exchangeable, contrarily to zero-sum game.
- Impact of common knowledge on stability / instability.

General games (infinite actions)

Theorem (Glicksberg 1952, mixed startegies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game such that for all $i \in N$:

General games (infinite actions)

Theorem (Glicksberg 1952, mixed startegies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game such that for all $i \in N$:

 S^i is compact metric, and $g^i:S\to\mathbb{R}$ is continuous,

General games (infinite actions)

Theorem (Glicksberg 1952, mixed startegies)

Let $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ be a game such that for all $i \in N$:

 S^i is compact metric, and $g^i:S\to\mathbb{R}$ is continuous,

then its set of mixed equilibria is compact and non-empty.

Contents

- Nash equilibrium : the general case
- 2 Nash equilibrium for finite games
- Opential Games
- Monotone Games

Potential games: Monderer and Shapley (1996)

Definition

A real valued function P defined on $S = \prod_{i \in N} S^i$ is a potential function for the game $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ if $\forall s^i, t^i \in S^i, u^{-i} \in S^{-i}, \forall i \in I$ one has

 $g^{i}(s^{i}, u^{-i}) - g^{i}(t^{i}, u^{-i}) = P(s^{i}, u^{-i}) - P(t^{i}, u^{-i}).$

Potential games: Monderer and Shapley (1996)

Definition

A real valued function P defined on $S = \prod_{i \in N} S^i$ is a potential function for the game $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ if $\forall s^i, t^i \in S^i, u^{-i} \in S^{-i}, \forall i \in I$ one has

$$g^{i}(s^{i}, u^{-i}) - g^{i}(t^{i}, u^{-i}) = P(s^{i}, u^{-i}) - P(t^{i}, u^{-i}).$$

• This prisoner dilemma is an exact potential game :

$$\begin{array}{c|cc} b_1 & b_2 \\ a_1 & (0,4) & (3,3) \\ a_2 & (1,1) & (4,0) \end{array}$$

with potential:

$$\begin{array}{c|cccc}
 & b_1 & b_2 \\
a_1 & 1 & 0 \\
a_2 & 2 & 1
\end{array}$$

Potential games: Monderer and Shapley (1996)

Definition

A real valued function P defined on $S = \prod_{i \in N} S^i$ is a potential function for the game $G = (N, (S^i)_{i \in N}, (g^i)_{i \in N})$ if $\forall s^i, t^i \in S^i, u^{-i} \in S^{-i}, \forall i \in I$ one has

$$g^{i}(s^{i}, u^{-i}) - g^{i}(t^{i}, u^{-i}) = P(s^{i}, u^{-i}) - P(t^{i}, u^{-i}).$$

• This prisoner dilemma is an exact potential game :

$$\begin{array}{c|cc} b_1 & b_2 \\ a_1 & (0,4) & (3,3) \\ a_2 & (1,1) & (4,0) \end{array}$$

with potential:

$$\begin{array}{c|cccc}
 & b_1 & b_2 \\
a_1 & 1 & 0 \\
a_2 & 2 & 1
\end{array}$$

Theorem

A potential game has a equilibrium in pure strategies.

• Two towns are connected via a set K of roads.

- Two towns are connected via a set K of roads.
- Each user i = 1, ...n can choose a road s^i in $K : S^i = K$.

- Two towns are connected via a set K of roads.
- Each user i = 1, ...n can choose a road s^i in $K : S^i = K$.
- $u^k(r)$ is the payoff of each of the users of **road** k, if their **number is** r.

- Two towns are connected via a set K of roads.
- Each user i = 1, ...n can choose a road s^i in $K : S^i = K$.
- $u^k(r)$ is the payoff of each of the users of **road** k, if their **number is** r.
- If $s = (s^1, ..., s^n)$, the payoff of player i choosing $s^i = k$ is

$$g^{i}(s) = g^{i}(k, s^{-i}) = u^{k}(t^{k}(s))$$

where $t^k(s)$ is the number of players j for which $s^j = k$.

- Two towns are connected via a set K of roads.
- Each user i = 1, ...n can choose a road s^i in $K : S^i = K$.
- $u^k(r)$ is the payoff of each of the users of **road** k, if their **number is** r.
- If $s = (s^1, \dots, s^n)$, the payoff of player i choosing $s^i = k$ is

$$g^{i}(s) = g^{i}(k, s^{-i}) = u^{k}(t^{k}(s))$$

where $t^k(s)$ is the number of players j for which $s^j = k$.

• G is a potential game with potential P given by

$$P(s) = \sum_{k \in K} \sum_{r=1}^{t^k(s)} u^k(r).$$

Additional characterizations of potential games

Theorem

A finite game G is potential if and only if its mixed extension \tilde{G} is an exact potential game.

Additional characterizations of potential games

Theorem

A finite game G is potential if and only if its mixed extension \tilde{G} is an exact potential game.

Theorem

A finite game G is potential if and only for any two players (i,j), and any strategies (s^i,t^i) of i and (s^j,t^j) of j, and any profil of the opponents (omitted below) one has: $[g^i(t^i,s^j)-g^i(s^i,s^j)]+[g^j(t^i,s^j)-g^j(t^i,t^j)]+[g^i(t^i,t^j)-g^j(s^i,t^j)]=0$.

Additional characterizations of potential games

Theorem

A finite game G is potential if and only if its mixed extension \tilde{G} is an exact potential game.

Theorem

A finite game G is potential if and only for any two players (i,j), and any strategies (s^i,t^i) of i and (s^j,t^j) of j, and any profil of the opponents (omitted below) one has: $[g^i(t^i,s^j)-g^i(s^i,s^j)]+[g^j(t^i,s^j)-g^j(t^i,t^j)]+[g^i(t^i,t^j)-g^j(s^i,t^j)]+[g^j(s^i,t^j)-g^j(s^i,s^j)]=0$.

Theorem

Every finite potential game $G=(g^i,S^i)_{i\in N}$ is isomorphic to a congestion game $F=(f^i,T^i)_{i\in N}$, e.g. there are isomorphisms $\phi^i:S^i\to T^i$ such that

$$g^{i}(s^{1},...,s^{n}) = f^{i}(\phi^{1}(s^{1}),...,\phi^{n}(s^{n})).$$

Improvement path algorithm in potential games

A improvement path is a sequence of strategy profiles $(s_1, s_2, ...s_k, ...)$ such that for **every period** k, there is a unique player, say i, that changes his strategy from k-1 to k $(s_k=(x^i,s_{k-1}^{-i}))$ and get his payoff strictly improved $(g^i(s_k)>g^i(s_{k-1}))$.

Improvement path algorithm in potential games

A improvement path is a sequence of strategy profiles $(s_1, s_2, ...s_k, ...)$ such that for **every period** k, there is a unique player, say i, that changes his strategy from k-1 to k $(s_k=(x^i,s_{k-1}^{-i}))$ and get his payoff strictly improved $(g^i(s_k)>g^i(s_{k-1}))$.

Theorem (Monderer and Shapley (1996))

In a finite potential game, any improving path converges to a Nash equilibrium in finite time.

Improvement path algorithm in potential games

A improvement path is a sequence of strategy profiles $(s_1, s_2, ...s_k, ...)$ such that for **every period** k, there is a unique player, say i, that changes his strategy from k-1 to k $(s_k = (x^i, s_{k-1}^{-i}))$ and get his payoff strictly improved $(g^i(s_k) > g^i(s_{k-1}))$.

Theorem (Monderer and Shapley (1996))

In a finite potential game, any improving path converges to a Nash equilibrium in finite time.

Proof: the potential keep increasing along the path!

Extensions of potential games

Ordinal potential games :

$$g^{i}(s^{i}, u^{-i}) > g^{i}(t^{i}, u^{-i}) \Leftrightarrow P(s^{i}, u^{-i}) > P(t^{i}, u^{-i})$$

Extensions of potential games

• Ordinal potential games :

$$g^{i}(s^{i}, u^{-i}) > g^{i}(t^{i}, u^{-i}) \Leftrightarrow P(s^{i}, u^{-i}) > P(t^{i}, u^{-i})$$

• Generalized ordinal potential games :

$$g^{i}(s^{i}, u^{-i}) > g^{i}(t^{i}, u^{-i}) \Rightarrow P(s^{i}, u^{-i}) > P(t^{i}, u^{-i})$$

Extensions of potential games

• Ordinal potential games :

$$g^{i}(s^{i}, u^{-i}) > g^{i}(t^{i}, u^{-i}) \Leftrightarrow P(s^{i}, u^{-i}) > P(t^{i}, u^{-i})$$

• Generalized ordinal potential games :

$$g^{i}(s^{i}, u^{-i}) > g^{i}(t^{i}, u^{-i}) \Rightarrow P(s^{i}, u^{-i}) > P(t^{i}, u^{-i})$$

• Best best reply potential games :

$$\arg\max_{s^i} g^i(s^i, u^{-i}) = \arg\max_{s^i} P(s^i, u^{-i})$$

• Generalized best reply potential games :

$$\arg\max_{s^i} g^i(s^i,u^{-i}) \subset \arg\max_{s^i} P(s^i,u^{-i})$$

A characterization of ordinal potential games

<u>Th</u>eorem

A finite game G is a generalized ordinal potential game if and only if every improvement path is finite.

A finite game G is a generalized best reply potential game if and only if every best reply path is finite (e.g. acyclic).

Principle

• We start from any (s_1) in $S = \prod_i S^i$.

Principle

- We start from any (s_1) in $S = \prod_i S^i$.
- At each stage $n \ge 2$, each player will play a best response to the average past behavior of the opponents up to stage n-1.

Principle

- We start from any (s_1) in $S = \prod_i S^i$.
- At each stage $n \ge 2$, each player will play a best response to the average past behavior of the opponents up to stage n-1.

Definition

A sequence $(s_n)_{n\geq 1}$ is a FP process if for each $n\geq 1$ if : s_{n+1}^i is a best response of player i against $\bar{x}_n^j:=\frac{1}{n}\sum_{t=1}^n\delta_{j_t}\in\Delta(S^j),\,j\neq i.$

Principle

- We start from any (s_1) in $S = \prod_i S^i$.
- At each stage $n \ge 2$, each player will play a best response to the average past behavior of the opponents up to stage n-1.

Definition

A sequence $(s_n)_{n\geq 1}$ is a FP process if for each $n\geq 1$ if : s_{n+1}^i is a best response of player i against $\bar{x}_n^j:=\frac{1}{n}\sum_{t=1}^n\delta_{j_t}\in\Delta(S^j),\,j\neq i.$

Theorem

Fictitious play converges in smooth and compact potential games to the set of Nash equilibria.

Let P be the potential. By definition of average profiles, we have

Let P be the potential. By definition of average profiles, we have

$$\bar{x}_{n+1} = (\bar{x}_{n+1}^i)_{i \in N} = \left(\frac{1}{n+1}(s_{n+1}^i - \bar{x}_n^i) + \bar{x}_n^i\right)_{i \in N}$$

Let P be the potential. By definition of average profiles, we have

$$\bar{x}_{n+1} = (\bar{x}_{n+1}^i)_{i \in N} = \left(\frac{1}{n+1}(s_{n+1}^i - \bar{x}_n^i) + \bar{x}_n^i\right)_{i \in N}$$

and by multi-linearity of P, we have for some constants $0 < K_n < K < \infty$.

$$P(\bar{x}^{n+1}) - P(\bar{x}^n) = \frac{1}{n+1} \left(\sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_{-i}^n) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}) \right) + \frac{K_n}{(n+1)^2}.$$

Let P be the potential. By definition of average profiles, we have

$$\bar{x}_{n+1} = (\bar{x}_{n+1}^i)_{i \in N} = \left(\frac{1}{n+1}(s_{n+1}^i - \bar{x}_n^i) + \bar{x}_n^i\right)_{i \in N}$$

and by multi-linearity of P, we have for some constants $0 < K_n < K < \infty$.

$$P(\bar{x}^{n+1}) - P(\bar{x}^n) = \frac{1}{n+1} \left(\sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_{-i}^n) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}) \right) + \frac{K_n}{(n+1)^2}.$$

If we denote

$$b_n = \sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_n^{-i}) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}), \quad n \in \textbf{N},$$

then $b_n \geq 0$.

Let P be the potential. By definition of average profiles, we have

$$\bar{x}_{n+1} = (\bar{x}_{n+1}^i)_{i \in N} = \left(\frac{1}{n+1}(s_{n+1}^i - \bar{x}_n^i) + \bar{x}_n^i\right)_{i \in N}$$

and by multi-linearity of P, we have for some constants $0 < K_n < K < \infty$.

$$P(\bar{x}^{n+1}) - P(\bar{x}^n) = \frac{1}{n+1} \left(\sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_{-i}^n) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}) \right) + \frac{K_n}{(n+1)^2}.$$

If we denote

$$b_n = \sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_n^{-i}) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}), \quad n \in \textbf{N},$$

then $b_n \geq 0$. Thus

$$P(\bar{x}_{n+1}) - P(\bar{x}_n) = b_n/(n+1) + K/(n+1)^2,$$

which gives

$$\sum_{n\in N}b_n/(n+1)=\sum_{n\in N}P(\bar{x}_n)-P(\bar{x}_{n+1})+\sum_{n\in N}K/(n+1)^2<+\infty.$$

Let P be the potential. By definition of average profiles, we have

$$\bar{x}_{n+1} = (\bar{x}_{n+1}^i)_{i \in N} = \left(\frac{1}{n+1}(s_{n+1}^i - \bar{x}_n^i) + \bar{x}_n^i\right)_{i \in N}$$

and by multi-linearity of P, we have for some constants $0 < K_n < K < \infty$.

$$P(\bar{x}^{n+1}) - P(\bar{x}^n) = \frac{1}{n+1} \left(\sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_{-i}^n) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}) \right) + \frac{K_n}{(n+1)^2}.$$

If we denote

$$b_n = \sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_n^{-i}) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}), \quad n \in N,$$

then $b_n \geq 0$. Thus

$$P(\bar{x}_{n+1}) - P(\bar{x}_n) = b_n/(n+1) + K/(n+1)^2,$$

which gives

$$\sum_{n\in N}b_n/\big(n+1\big)=\sum_{n\in N}P\big(\bar{x}_n\big)-P\big(\bar{x}_{n+1}\big)+\sum_{n\in N}K/\big(n+1\big)^2<+\infty.$$

Consequently $\lim_{k\to\infty}\frac{\sum_{n=1}^k b_n}{k}=0$.

Let P be the potential. By definition of average profiles, we have

$$\bar{x}_{n+1} = (\bar{x}_{n+1}^i)_{i \in N} = \left(\frac{1}{n+1}(s_{n+1}^i - \bar{x}_n^i) + \bar{x}_n^i\right)_{i \in N}$$

and by multi-linearity of P, we have for some constants $0 < K_n < K < \infty$.

$$P(\bar{x}^{n+1}) - P(\bar{x}^n) = \frac{1}{n+1} \left(\sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_{-i}^n) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}) \right) + \frac{K_n}{(n+1)^2}.$$

If we denote

$$b_n = \sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_n^{-i}) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}), \quad n \in N,$$

then $b_n \geq 0$. Thus

$$P(\bar{x}_{n+1}) - P(\bar{x}_n) = b_n/(n+1) + K/(n+1)^2,$$

which gives

$$\sum_{n\in N}b_n/(n+1)=\sum_{n\in N}P(\bar{x}_n)-P(\bar{x}_{n+1})+\sum_{n\in N}K/(n+1)^2<+\infty.$$

Consequently $\lim_{k\to\infty}\frac{\sum_{n=1}^k b_n}{k}=0$. Using the fact that $\|\bar{x}_n-\bar{x}_{n+1}\|=O(1/n)$, there is C>0 such that $|b_n-b_{n+1}|\leq C/n$. This gives $\lim_{n\to\infty}b_n=0$.

Let P be the potential. By definition of average profiles, we have

$$\bar{x}_{n+1} = (\bar{x}_{n+1}^i)_{i \in N} = \left(\frac{1}{n+1}(s_{n+1}^i - \bar{x}_n^i) + \bar{x}_n^i\right)_{i \in N}$$

and by multi-linearity of P, we have for some constants $0 < K_n < K < \infty$.

$$P(\bar{x}^{n+1}) - P(\bar{x}^n) = \frac{1}{n+1} \left(\sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_{-i}^n) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}) \right) + \frac{K_n}{(n+1)^2}.$$

If we denote

$$b_n = \sum_{i \in N} g^i(s_{n+1}^i, \bar{x}_n^{-i}) - g^i(\bar{x}_n^i, \bar{x}_n^{-i}), \quad n \in \textbf{N},$$

then $b_n \geq 0$. Thus

$$P(\bar{x}_{n+1}) - P(\bar{x}_n) = b_n/(n+1) + K/(n+1)^2,$$

which gives

$$\sum_{n\in N}b_n/(n+1)=\sum_{n\in N}P(\bar{x}_n)-P(\bar{x}_{n+1})+\sum_{n\in N}K/(n+1)^2<+\infty.$$

Consequently $\lim_{k\to\infty}\frac{\sum_{n=1}^kb_n}{k}=0$. Using the fact that $\|\bar{x}_n-\bar{x}_{n+1}\|=O(1/n)$, there is C>0 such that $|b_n-b_{n+1}|\leq C/n$. This gives $\lim_{n\to\infty}b_n=0$. Thus for all $\epsilon>0$, there exists $N_\epsilon\in N$ such that for all $n>N_\epsilon$, \bar{x}_n is an ϵ -equilibrium.

Non-convergence of Fictitious play in 2-player games : Shapley (1964)

Suppose two players follow FP in a finite 2-person game.

Non-convergence of Fictitious play in 2-player games: Shapley (1964)

Suppose two players follow FP in a finite 2-person game.

• The anticipated payoff at stage n is

$$A_n^i = g^i(s_n^i, \bar{x}_{n-1}^{-i})$$

The realised payoff up to stage n is

$$R_n^i = \frac{1}{n-1} \sum_{p=1}^{n-1} g^i(s_p)$$

then we must have

$$A_n^i \geq R_n^i$$
.

Non-convergence of Fictitious play in 2-player games : Shapley (1964)

Suppose two players follow FP in a finite 2-person game.

 \bullet The anticipated payoff at stage n is

$$A_n^i=g^i(s_n^i,\bar{x}_{n-1}^{-i})$$

The realised payoff up to stage n is

$$R_n^i = \frac{1}{n-1} \sum_{p=1}^{n-1} g^i(s_p)$$

then we must have

$$A_n^i \geq R_n^i$$
.

We must also have the improvement principle

$$g^{i}(s_{n}^{i}, s_{n-1}^{-i}) \geq g^{i}(s_{n-1}).$$

Non-convergence of Fictitious play in 2-player games: Shapley (1964)

Suppose two players follow FP in a finite 2-person game.

• The anticipated payoff at stage n is

$$A_n^i=g^i(s_n^i,\bar{x}_{n-1}^{-i})$$

The realised payoff up to stage n is

$$R_n^i = \frac{1}{n-1} \sum_{p=1}^{n-1} g^i(s_p)$$

then we must have

$$A_n^i \geq R_n^i$$
.

We must also have the improvement principle

$$g^{i}(s_{n}^{i},s_{n-1}^{-i})\geq g^{i}(s_{n-1}).$$

Consider the following two-player game :

(0,0)	(a, b)	(b, a)
(b,a)	(0,0)	(a,b)
(a, b)	(b, a)	(0,0)

with a > b > 0.

Starting from a Pareto entry, the above principles imply that fictitious play does not converge to (1/3, 1/3, 1/3) (the unique equilibrium of the game)

Contents

- Nash equilibrium : the general case
- Nash equilibrium for finite games
- Potential Games
- Monotone Games

Variational Characterization

Definition

The game is smooth if $s^i \mapsto g^i(s^i, s^{-i})$ is \mathcal{C}^1 for all s^{-i} and $i \in I$. It is concave if $s^i \mapsto g^i(s^i, s^{-i})$ is concave for all s^{-i} and $i \in I$. The game is Hilbert if each strategy set is a subset of a Hilbert space.

Theorem

Let $G = (I, \{S^i\}_{i \in I}, \{g^i\}_{i \in I})$ be a smooth Hilbert game. Then :

1) If s is a Nash equilibrium then

$$\langle \overrightarrow{\nabla} g(s), s-t \rangle \geq 0, \quad \forall t \in S,$$

where
$$\langle \overrightarrow{\nabla} g(s), s-t \rangle := \sum_{i \in I} \langle \nabla_i g^i(s), s^i - t^i \rangle$$
.

2) If the game is concave, condition 1) is sufficient for s to be a Nash equilibrium.

Above, $\nabla_i g^i(s)$ denote the gradient of $g^i(s^i, s^{-i})$ with respect to s^i .

Monotone Games

Definition

A Hilbert smooth game is monotone if, for all $(s, t) \in S \times S$,

$$\langle \overrightarrow{\nabla} g(s) - \overrightarrow{\nabla} g(t), s - t \rangle \leq 0,$$

and the game is strictly monotone if the inequality is strict whenever $s \neq t$.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle > 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \geq 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \ge 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
 - By monotonicity and the characterization in Theorem $\ref{eq:starting}$, if s is a Nash equilibrium then for all $t \in S$:

$$0 \leq \langle \overrightarrow{\nabla} g(s), s-t \rangle \leq \langle \overrightarrow{\nabla} g(t), s-t \rangle.$$

Theorem (Rosen)

For a Hilbert smooth monotone game :

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \geq 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
 - By monotonicity and the characterization in Theorem $\ref{eq:starting}$, if s is a Nash equilibrium then for all $t \in S$:

$$0 \leq \langle \overrightarrow{\nabla} g(s), s-t \rangle \leq \langle \overrightarrow{\nabla} g(t), s-t \rangle.$$

• Conversely, suppose $\langle \overrightarrow{\nabla} g(t), s-t \rangle \geq 0$ for all $t \in S$, or equivalently, for all $i \in I$ and z^i in S^i , $\langle \nabla g(z^i, s^{-i}), s^i - z^i \rangle \geq 0$ (by taking $t = (z^i, s^{-i})$).

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \geq 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
 - By monotonicity and the characterization in Theorem $\ref{eq:starting}$, if s is a Nash equilibrium then for all $t \in S$:

$$0 \leq \langle \overrightarrow{\nabla} g(s), s-t \rangle \leq \langle \overrightarrow{\nabla} g(t), s-t \rangle.$$

- Conversely, suppose $\langle \overrightarrow{\nabla} g(t), s-t \rangle \geq 0$ for all $t \in S$, or equivalently, for all $i \in I$ and z^i in S^i , $\langle \nabla g(z^i, s^{-i}), s^i z^i \rangle \geq 0$ (by taking $t = (z^i, s^{-i})$).
- Now fix a player i and a deviation t^i .

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \geq 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
 - By monotonicity and the characterization in Theorem $\ref{eq:starting}$, if s is a Nash equilibrium then for all $t \in S$:

$$0 \leq \langle \overrightarrow{\nabla} g(s), s-t \rangle \leq \langle \overrightarrow{\nabla} g(t), s-t \rangle.$$

- Conversely, suppose $\langle \overrightarrow{\nabla} g(t), s-t \rangle \geq 0$ for all $t \in S$, or equivalently, for all $i \in I$ and z^i in S^i , $\langle \nabla g(z^i, s^{-i}), s^i z^i \rangle \geq 0$ (by taking $t = (z^i, s^{-i})$).
- Now fix a player i and a deviation t^i .
- By the mean value theorem, there is a $z^i = \lambda t^i + (1 \lambda)s^i$ such that $g^i(s^i, s^{-i}) g^i(t^i, s^{-i}) = \langle \nabla g(z^i, s^{-i}), s^i t^i \rangle$ and $s^i z^i = \lambda(s^i t^i)$.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \geq 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
 - By monotonicity and the characterization in Theorem $\ref{eq:starting}$, if s is a Nash equilibrium then for all $t \in S$:

$$0 \leq \langle \overrightarrow{\nabla} g(s), s-t \rangle \leq \langle \overrightarrow{\nabla} g(t), s-t \rangle.$$

- Conversely, suppose $\langle \overrightarrow{\nabla} g(t), s-t \rangle \geq 0$ for all $t \in S$, or equivalently, for all $i \in I$ and z^i in S^i , $\langle \nabla g(z^i, s^{-i}), s^i z^i \rangle \geq 0$ (by taking $t = (z^i, s^{-i})$).
- Now fix a player i and a deviation t^i .
- By the mean value theorem, there is a $z^i = \lambda t^i + (1 \lambda)s^i$ such that $g^i(s^i, s^{-i}) g^i(t^i, s^{-i}) = \langle \nabla g(z^i, s^{-i}), s^i t^i \rangle$ and $s^i z^i = \lambda(s^i t^i)$.
- Consequently, $g^i(s^i, s^{-i}) \ge g^i(t^i, s^{-i}) : s$ is a Nash equilibrium.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \ge 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \ge 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
- Let s and t be two Nash equilibria.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \ge 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
 - Let s and t be two Nash equilibria.
 - ullet By the characterization $\langle \overrightarrow{
 abla} g(s), s-t \rangle \geq 0$ and $\langle \overrightarrow{
 abla} g(t), t-s \rangle \geq 0$.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \ge 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
 - Let s and t be two Nash equilibria.
 - ullet By the characterization $\langle \overrightarrow{
 abla} g(s), s-t \rangle \geq 0$ and $\langle \overrightarrow{
 abla} g(t), t-s \rangle \geq 0$.
 - ullet This implies that $\langle \overrightarrow{
 abla} g(s) \overrightarrow{
 abla} g(t), s-t
 angle \geq 0$.

Theorem (Rosen)

- 1) A profile $s \in S$ is a Nash equilibrium if and only if for all $t \in S$, $\langle \overrightarrow{\nabla} g(t), s t \rangle \ge 0$.
- 2) If the game is strictly monotone, a Nash equilibrium is unique.
- Let s and t be two Nash equilibria.
- ullet By the characterization $\langle \overrightarrow{
 abla} g(s), s-t \rangle \geq 0$ and $\langle \overrightarrow{
 abla} g(t), t-s \rangle \geq 0$.
- ullet This implies that $\langle \overrightarrow{
 abla} g(s) \overrightarrow{
 abla} g(t), s-t \rangle \geq 0$.
- By strict monotonicity, we have the opposite inequality, hence equality, thus s=t.