Fast Algorithms via Dynamic-Oracle Matroids

Ta-Wei Tu (MPI-INF → Stanford)

Joint work with

Joakim Blikstad (KTH)

Sagnik Mukhopadhyay (University of Sheffield)

Danupon Nanongkai (MPI-INF & KTH)

 Unified way of solving problems fast via efficient reduction

 Unified way of solving problems fast via efficient reduction

 $\widetilde{O}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 Unified way of solving problems fast via efficient reduction

 $\widetilde{O}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{o}(1)} \times \underline{\text{"matroid intersection"}}$.

Bipartite matching, k-disjoint spanning tree, colorful spanning tree, graphic MI, ...

 Unified way of solving problems fast via efficient reduction

• *k*-disjoint spanning tree

 $\widetilde{O}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{0}(1)} \times \text{"matroid intersection"}$.

Bipartite matching, k-disjoint spanning tree, colorful spanning tree, graphic MI, ...

 Unified way of solving problems fast via efficient reduction

 $\widetilde{o}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{o}(1)} \times \underline{\text{"matroid intersection"}}$.

Bipartite matching, k-disjoint spanning tree, colorful spanning tree, graphic MI, ...

 Unified way of solving problems fast via efficient reduction

 $\widetilde{O}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{o}(1)} \times \underline{\text{"matroid intersection"}}$.

Bipartite matching, k-disjoint spanning tree, colorful spanning tree, graphic MI, ...

 Unified way of solving problems fast via efficient reduction

 $\widetilde{O}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{o}(1)} \times$ "matroid intersection".

Bipartite matching, k-disjoint spanning tree, colorful spanning tree, graphic MI, ...

 Unified way of solving problems fast via efficient reduction

 $\widetilde{O}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{o}(1) \times}$ "matroid intersection".

Bipartite matching, k-disjoint spanning tree, colorful spanning tree, graphic MI, ...

 Unified way of solving problems fast via efficient reduction

 $\widetilde{O}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{o}(1)} \times \underline{\text{"matroid intersection"}}$.

Bipartite matching, *k*-disjoint spanning tree, colorful spanning tree, graphic MI, ...

- $\tilde{O}(k^{3/2}|V|\sqrt{|E|})$ by [GW'92]
- $\tilde{O}\left(|E| + k^{3/2}|V|\sqrt{|V|}\right)$ [this paper, Quanrud'23]

 Unified way of solving problems fast via efficient reduction

 $\widetilde{o}(1) \times$ "max-flow".

Bipartite matching, Gomory-Hu tree, edge connectivity, vertex connectivity, ...

 $\underline{\tilde{o}(1)} \times \underline{\text{"matroid intersection"}}$.

Bipartite matching, *k*-disjoint spanning tree, colorful spanning tree, graphic MI, ...

k-disjoint spanning tree

- $\tilde{O}(k^{3/2}|V|\sqrt{|E|})$ by [GW'92]
- $\tilde{O}\left(|E| + k^{3/2}|V|\sqrt{|V|}\right)$ [this paper, Quanrud'23]

 $\widetilde{O}\left(k^{O(1)}(|E|+|V|\sqrt{|V|})\right)$ by e.g. [Karger'98, FNSYY'20] (implicitly)

Matroid: $\mathcal{M} = (U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^U$ satisfies certain properties

• U: ground set of n elements, \mathcal{I} : notion of independence

Matroid: $\mathcal{M} = (U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^U$ satisfies certain properties

- U: ground set of n elements, \mathcal{I} : notion of independence
- $rank(S) = max\{|A|: A \subseteq S, A \in \mathcal{I}\}$
- Basis = maximal/maximum independent set

Matroid: $\mathcal{M} = (U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^U$ satisfies certain properties

- U: ground set of n elements, \mathcal{I} : notion of independence
- $rank(S) = max\{|A|: A \subseteq S, A \in \mathcal{I}\}$
- Basis = maximal/maximum independent set

 $\mathcal{M} = \text{no duplicate colors}$ rank(S) = #distinct colors

Matroid: $\mathcal{M} = (U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^U$ satisfies certain properties

- U: ground set of n elements, \mathcal{I} : notion of independence
- $rank(S) = max\{|A|: A \subseteq S, A \in \mathcal{I}\}$
- Basis = maximal/maximum independent set

 $\mathcal{M} = \text{no duplicate colors}$ rank(S) = #distinct colors

Matroid: $\mathcal{M} = (U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^U$ satisfies certain properties

- U: ground set of n elements, \mathcal{I} : notion of independence
- $rank(S) = max\{|A|: A \subseteq S, A \in \mathcal{I}\}$
- Basis = maximal/maximum independent set

 $\mathcal{M} = \text{no duplicate colors}$ rank(S) = #distinct colors

Matroid: $\mathcal{M} = (U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^U$ satisfies certain properties

- U: ground set of n elements, \mathcal{I} : notion of independence
- $rank(S) = max\{|A|: A \subseteq S, A \in \mathcal{I}\}$
- Basis = maximal/maximum independent set

 $\mathcal{M} = \text{no duplicate colors}$ rank(S) = #distinct colors

Matroid: $\mathcal{M} = (U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^U$ satisfies certain properties

- U: ground set of n elements, \mathcal{I} : notion of independence
- $rank(S) = max\{|A|: A \subseteq S, A \in \mathcal{I}\}$
- Basis = maximal/maximum independent set

 $\mathcal{M} = \text{no duplicate colors}$ rank(S) = #distinct colors

$$U = \text{edges}$$

 $\mathcal{M} = \text{acyclic subgraphs}$
 $\text{rank}(S) = |V| - \#CC(G[S])$

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

U =edges of bipartite graph

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

U = edges of bipartite graph $\mathcal{M}_1 = \text{left vertex incident to at most one edge}$

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

U = edges of bipartite graph $\mathcal{M}_1 = \text{left vertex incident to at most one edge}$

 \mathcal{M}_2 = right vertex incident to at most one edge

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

U =edges of bipartite graph

 \mathcal{M}_1 = left vertex incident to at most one edge

 \mathcal{M}_2 = right vertex incident to at most one edge

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Matroid union

- Input $\mathcal{M}_1 = (U_1, \mathcal{I}_1), ..., \mathcal{M}_k = (U_k, \mathcal{I}_k).$
- Output: the maximum-size $S = S_1 \cup \cdots \cup S_k$ where $S_i \in \mathcal{I}_i$.

k-fold Matroid union

- Input $\mathcal{M} = (U, \mathcal{I})$.
- Output: the maximum-size $S = S_1 \cup \cdots \cup S_k$ where $S_i \in \mathcal{I}$.

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Matroid union

- Input $\mathcal{M}_1 = (U_1, \mathcal{I}_1), ..., \mathcal{M}_k = (U_k, \mathcal{I}_k).$
- Output: the maximum-size $S = S_1 \cup \cdots \cup S_k$ where $S_i \in \mathcal{I}_i$.

k-fold Matroid union

- Input $\mathcal{M} = (U, \mathcal{I})$.
- Output: the maximum-size $S = S_1 \cup \cdots \cup S_k$ where $S_i \in \mathcal{I}$.

Matroi

- Inpu
- Outp
- Matroi
 - Inpu
 - Outp
- *k*-fold
 - Inpu
 - Outp

Examples:

- Bipartite matching
- *k*-Disjoint spanning tree
- Colorful spanning tree
- Arboricity & spanning tree packing number
- Some scheduling problems
- Some graph orientation problems

• ...

A special case of submodular function minimization (SFM).

Matroid intersection

- Input: $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$
- Output: the maximum-size $S \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Matroid union

- Input $\mathcal{M}_1 = (U_1, \mathcal{I}_1), ..., \mathcal{M}_k = (U_k, \mathcal{I}_k).$
- Output: the maximum-size $S = S_1 \cup \cdots \cup S_k$ where $S_i \in \mathcal{I}_i$.

k-fold Matroid union

- Input $\mathcal{M} = (U, \mathcal{I})$.
- Output: the maximum-size $S = S_1 \cup \cdots \cup S_k$ where $S_i \in \mathcal{I}$.
- Notation: $n = \max |U_i|$, $r = \max \operatorname{rank}(\mathcal{M}_i)$

```
(number of edges |E|) (number of vertices |V|)
```

How do algorithms access matroids?

- How do algorithms access matroids?
 - *Independence* oracle: determine if *S* is independent.
 - *Rank* oracle: compute rank(*S*).

- How do algorithms access matroids?
 - *Independence* oracle: determine if *S* is independent.
 - *Rank* oracle: compute rank(*S*).
- "Traditional" model: minimize the number of queries.

- How do algorithms access matroids?
 - *Independence* oracle: determine if *S* is independent.
 - *Rank* oracle: compute rank(*S*).
- "Traditional" model: minimize the number of queries.

 $\tilde{O}(n\sqrt{r})$ rank-query algorithm [CLSSW'19]

- How do algorithms access matroids?
 - *Independence* oracle: determine if *S* is independent.
 - *Rank* oracle: compute rank(*S*).
- "Traditional" model: minimize the number of queries.

 $\tilde{O}(n\sqrt{r})$ rank-query algorithm [CLSSW'19]

 $ilde{O}(|E|\sqrt{|V|})$ bipartite matching [HK'73] $ilde{O}(|E|\sqrt{|V|})$ colorful spanning tree [GS'85] $ilde{O}(|E|\sqrt{|V|})$ graphic MI [GX'89] $ilde{O}(n\sqrt{r})$ convex transversal MI [XG'94]

- How do algorithms access matroids?
 - *Independence* oracle: determine if *S* is independent.
 - *Rank* oracle: compute rank(*S*).
- "Traditional" model: minimize the number of queries.

 $\tilde{O}(n\sqrt{r})$ rank-query algorithm [CLSSW'19]

```
\tilde{O}(|E|\sqrt{|V|}) bipartite matching [HK'73] \tilde{O}(|E|\sqrt{|V|}) colorful spanning tree [GS'85] \tilde{O}(|E|\sqrt{|V|}) graphic MI [GX'89] \tilde{O}(n\sqrt{r}) convex transversal MI [XG'94]
```

Question. Does *efficient* matroid algorithm imply *efficient* algorithms on the right via a *black-box* reduction?

- How do algorithms access matroids?
 - *Independence* oracle: determine if *S* is independent.
 - *Rank* oracle: compute rank(*S*).
- "Traditional" model: minimize the number of queries.

 $\tilde{O}(n\sqrt{r})$ rank-query algorithm [CLSSW'19]

```
\tilde{O}(|E|\sqrt{|V|}) bipartite matching [HK'73] \tilde{O}(|E|\sqrt{|V|}) colorful spanning tree [GS'85] \tilde{O}(|E|\sqrt{|V|}) graphic MI [GX'89] \tilde{O}(n\sqrt{r}) convex transversal MI [XG'94]
```

Question. Does *efficient* matroid algorithm imply *efficient* algorithms on the right via a *black-box* reduction? No! rank(S) takes at least $\Omega(|S|)$ time!

Question. Can we get *efficient* reduction to matroid algorithms and a *unified* way of solving matroid problem instances?

Question. Can we get *efficient* reduction to matroid algorithms and a *unified* way of solving matroid problem instances?

- Hard: Compute rank(S) from scratch, takes $\Omega(|S|)$ time.
- (Potentially) Easier: Update rank(S) to rank($S \pm \{e\}$).
 - Colorful matroid: counting, O(1)
 - Graphic matroid: connectivity, O(polylog n)

Question. Can we get *efficient* reduction to matroid algorithms and a *unified* way of solving matroid problem instances?

- Hard: Compute rank(S) from scratch, takes $\Omega(|S|)$ time.
- (Potentially) Easier: Update rank(S) to rank($S \pm \{e\}$).
 - Colorful matroid: counting, O(1)
 - Graphic matroid: connectivity, O(polylog n)
- Goal: Issue "close" queries.

Question. Can we get *efficient* reduction to matroid algorithms and a *unified* way of solving matroid problem instances?

- Hard: Compute rank(S) from scratch, takes $\Omega(|S|)$ time.
- (Potentially) Easier: Update rank(S) to rank($S \pm \{e\}$).
 - Colorful matroid: counting, O(1)
 - Graphic matroid: connectivity, O(polylog n)
- Goal: Issue "close" queries.

Definition (Dynamic Oracle). Starting from $Q_0 = \emptyset$, in the k-th query the algorithm can only ask $Q_k = Q_i \pm \{e\}$ for some i < k.

Question. Can we get *efficient* reduction to matroid algorithms and a *unified* way of solving matroid problem instances?

- Hard: Compute rank(S) from scratch, takes $\Omega(|S|)$ time.
- (Potentially) Easier: Update rank(S) to rank($S \pm \{e\}$).
 - Colorful matroid: counting, O(1)
 - Graphic matroid: connectivity, O(polylog n)
- Goal: Issue "close" queries.

Definition (Dynamic Oracle). Starting from $Q_0 = \emptyset$, in the k-th query the algorithm can only ask $Q_k = Q_i \pm \{e\}$ for some i < k.

Minimize the number of "dynamic" queries.

"Dynamic" Oracle Complexity vs Runtime

 $\tilde{O}(n\sqrt{r})$ "dynamic"-rank-query algorithm [this paper]

```
	ilde{O}(|E|\sqrt{|V|}) bipartite matching [HK'73] 	ilde{O}(|E|\sqrt{|V|}) colorful spanning tree [GS'85] 	ilde{O}(|E|\sqrt{|V|}) graphic MI [GX'89] 	ilde{O}(n\sqrt{r}) convex transversal MI [XG'94]
```

•••

"Dynamic" Oracle Complexity vs Runtime

 $\tilde{O}(n\sqrt{r})$ "dynamic"-rank-query algorithm [this paper]

Dynamic connectivity [KKM'13]

Dynamic convex bipartite matching [BGHK'07]

Dynamic rank maintenance [vdBNS'19]

Worst-case to fully-persistence [DSST'86]

 $ilde{O}(|E|\sqrt{|V|})$ bipartite matching [HK'73] $ilde{O}(|E|\sqrt{|V|})$ colorful spanning tree [GS'85] $ilde{O}(|E|\sqrt{|V|})$ graphic MI [GX'89] $ilde{O}(n\sqrt{r})$ convex transversal MI [XG'94]

...

Theorem 1. Matroid intersection can be solved in $\tilde{O}(n\sqrt{r})$ time and dynamic rank queries.

Theorem 1. Matroid intersection can be solved in $\tilde{O}(n\sqrt{r})$ time and dynamic rank queries.

We also have dynamic-independence-query algorithm.

Theorem 1. Matroid intersection can be solved in $\tilde{O}(n\sqrt{r})$ time and dynamic rank queries.

Theorem 2. Matroid union over k matroids can be solved in $\tilde{O}_k(n+r\sqrt{r})$ time and dynamic rank queries.

Theorem 1. Matroid intersection can be solved in $\tilde{O}(n\sqrt{r})$ time and dynamic rank queries.

Theorem 2. Matroid union over k matroids can be solved in $\tilde{O}_k(n+r\sqrt{r})$ time and dynamic rank queries.

Imply an $\tilde{O}_k(|E| + |V|\sqrt{|V|})$ k-disjoint spanning tree algorithm. (Concurrently and independently by [Quanrud'23]).

Theorem 1. Matroid intersection can be solved in $\tilde{O}(n\sqrt{r})$ time and dynamic rank queries.

Theorem 2. Matroid union over k matroids can be solved in $\tilde{O}_k(n+r\sqrt{r})$ time and dynamic rank queries.

Theorem 3. Matroid intersection requires $\Omega(n \log n)$ "dynamic" rank queries or "traditional" independence queries deterministically.

Theorem 1. Matroid intersection can be solved in $\tilde{O}(n\sqrt{r})$ time and dynamic rank queries.

Theorem 2. Matroid union over k matroids can be solved in $\tilde{O}_k(n+r\sqrt{r})$ time and dynamic rank queries.

Theorem 3. Matroid intersection requires $\Omega(n \log n)$ "dynamic" rank queries or "traditional" independence queries deterministically

Improve the $\log_2(3)n - o(n) \approx 1.58n$ lower bound of [Harvey'08].

problems	our bounds	state-of-the-art results
(Via k-fold matroid union)		
k-forest ⁸	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
k-pseudoforest	$\tilde{O}(E + (k V)^{3/2})$ X	$ E ^{1+o(1)}$ [CKL ⁺ 22]
k-disjoint spanning trees	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
arboricity ⁹	$\tilde{O}(E V)$ $m{\chi}$	$\tilde{O}(E ^{3/2})$ [Gab95]
tree packing	$\tilde{O}(E ^{3/2})$	$\tilde{O}(E ^{3/2})$ [GW88]
Shannon Switching Game	$\tilde{O}(E + V ^{3/2})$ \checkmark	$\tilde{O}(V \sqrt{ E })$ [GW88]
graph k -irreducibility	$\tilde{O}(E + (k V)^{3/2} + k^2 V)$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
(Via matroid union)		
(f, p)-mixed forest-pseudoforest	$\tilde{O}_{f,p}(E + V \sqrt{ V })$ \checkmark	$\tilde{O}((f+p) V \sqrt{f E })$ [GW88]
(Via matroid intersection)		
bipartite matching (combinatorial ¹²)	$O(E \sqrt{ V })$	$O(E \sqrt{ V })$ [HK73]
bipartite matching (continuous)	$\tilde{O}(E \sqrt{ V })$ X	$ E ^{1+o(1)}$ [CKL ⁺ 22]
graphic matroid intersection	$\tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GX89]
simple job scheduling matroid intersection	$\tilde{O}(n\sqrt{r})$	$\tilde{O}(n\sqrt{r})$ [XG94]
convex transversal matroid [EF65] intersection	$\tilde{O}(V \sqrt{\mu})$	$\tilde{O}(V \sqrt{\mu})$ [XG94]
linear matroid intersection 10	$\tilde{O}(n^{2.529}\sqrt{r})$ X	$\tilde{O}(nr^{\omega-1})$ [Har09]
colorful spanning tree	$\tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GS85]
maximum forest with deadlines	$\tilde{O}(E \sqrt{ V })$	(no prior work)
		,

problems	our bounds	state-of-the-art results
(Via k-fold matroid union)		
k-forest ⁸	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
k-pseudoforest	$ \tilde{O}(E + (k V)^{3/2})$ X	$ E ^{1+o(1)}$ [CKL ⁺ 22]
k-disjoint spanning trees	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
arboricity ⁹	$\tilde{O}(E V)$ $ imes$	$\tilde{O}(E ^{3/2})$ [Gab95]
tree packing	$\tilde{O}(E ^{3/2})$	$\tilde{O}(E ^{3/2})$ [GW88]
Shannon Switching Game	$\tilde{O}(E + V ^{3/2})$	$\tilde{O}(V \sqrt{ E })$ [GW88]
graph k -irreducibility	$\tilde{O}(E + (k V)^{3/2} + k^2 V)$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
(Via matroid union)		
(f, p)-mixed forest-pseudoforest	$\tilde{O}_{f,p}(E + V \sqrt{ V })$ \checkmark	$\tilde{O}((f+p) V \sqrt{f E })$ [GW88]
(Via matroid intersection)		
bipartite matching (combinatorial ¹²)	$\tilde{O}(E \sqrt{ V })$	$O(E \sqrt{ V })$ [HK73]
bipartite matching (continuous)	$\tilde{O}(E \sqrt{ V })$ X	$ E ^{1+o(1)}$ [CKL ⁺ 22]
graphic matroid intersection	$O(E \sqrt{ V })$	$O(E \sqrt{ V })$ [GX89]
simple job scheduling matroid intersection	$\tilde{O}(n\sqrt{r})$	$\tilde{O}(n\sqrt{r})$ [XG94]
convex transversal matroid [EF65] intersection	$\tilde{O}(V \sqrt{\mu})$	$\tilde{O}(V \sqrt{\mu})$ [XG94]
linear matroid intersection 10	$\tilde{O}(n^{2.529}\sqrt{r})$ X	$\tilde{O}(nr^{\omega-1})$ [Har09]
colorful spanning tree	$\tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GS85]
maximum forest with deadlines	$ \tilde{O}(E \sqrt{ V })$	(no prior work)

problems	our bounds	state-of-the-art results
(Via k-fold matroid union)		
k-forest ⁸	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
k-pseudoforest	$\tilde{O}(E + (k V)^{3/2})$ X	$ E ^{1+o(1)}$ [CKL ⁺ 22]
k-disjoint spanning trees	$\tilde{O}(E + (k V)^{3/2})$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
arboricity ⁹	$\tilde{O}(E V)$ X	$\tilde{O}(E ^{3/2})$ [Gab95]
tree packing	$\tilde{O}(E ^{3/2})$	$\tilde{O}(E ^{3/2})$ [GW88]
Shannon Switching Game	$\tilde{O}(E + V ^{3/2})$	$\tilde{O}(V \sqrt{ E })$ [GW88]
graph k -irreducibility	$\tilde{O}(E + (k V)^{3/2} + k^2 V)$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
U I		
(Via matroid union)		
(f, p)-mixed forest-pseudoforest	$\tilde{O}_{f,p}(E + V \sqrt{ V })$ \checkmark	$\tilde{O}((f+p) V \sqrt{f E })$ [GW88]
(Via matroid intersection)		
bipartite matching (combinatorial ¹²)	$ \tilde{O}(E \sqrt{ V }) $	$O(E \sqrt{ V })$ [HK73]
bipartite matching (continuous)	$\tilde{O}(E \sqrt{ V })$ X	$ E ^{1+o(1)}$ [CKL+22]
graphic matroid intersection	$\tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GX89]
simple job scheduling matroid intersection	$\tilde{O}(n\sqrt{r})$	$\tilde{O}(n\sqrt{r})$ [XG94]
convex transversal matroid [EF65] intersection	$\tilde{O}(V \sqrt{\mu})$	$\tilde{O}(V \sqrt{\mu})$ [XG94]
linear matroid intersection 10	$\tilde{O}(n^{2.529}\sqrt{r})$ X	$\tilde{O}(nr^{\omega-1})$ [Har09]
colorful spanning tree	$\tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GS85]
maximum forest with deadlines	$O(E \sqrt{ V })$	(no prior work)

Matroid intersection

- Construct "binary search tree" to explore a single augmenting path
- Lazily update the tree when the solution changes
- Apply structural lemmas of [CLSSW'19] to reduce the number of updates to the tree

Matroid intersection

- Construct "binary search tree" to explore a single augmenting path
- Lazily update the tree when the solution changes
- Apply structural lemmas of [CLSSW'19] to reduce the number of updates to the tree

Matroid intersection

- Construct "binary search tree" to explore a single augmenting path
- Lazily update the tree when the solution changes
- Apply structural lemmas of [CLSSW'19] to reduce the number of updates to the tree
- Matroid union (from $\tilde{O}(n\sqrt{r})$ to $\tilde{O}(n+r\sqrt{r})$, think of $n\gg r$)
 - Sparsify the exchange graph with a decremental basis data structure
 - SQRT-decomposition + sparsification ($\tilde{O}\left(\sqrt{|V|}\right)$ dynamic MST [Fre'85, EGIN'97])

Matroid intersection

- Construct "binary search tree" to explore a single augmenting path
- Lazily update the tree when the solution changes
- Apply structural lemmas of [CLSSW'19] to reduce the number of updates to the tree
- Matroid union (from $\tilde{O}(n\sqrt{r})$ to $\tilde{O}(n+r\sqrt{r})$, think of $n\gg r$)
 - Sparsify the exchange graph with a decremental basis data structure
 - SQRT-decomposition + sparsification ($\tilde{O}\left(\sqrt{|V|}\right)$ dynamic MST [Fre'85, EGIN'97])

Lower bounds

- Reduce to communication complexity of matroid intersection
- Then a reduction from (s, t)-connectivity: $\Omega(n \log n)$ lower bound [HMT'88]

Colorful spanning tree

- New way of using interior point methods (IPMs), or
- Faster "combinatorial" algorithms for bipartite matching.

Colorful spanning tree

- New way of using interior point methods (IPMs), or
- Faster "combinatorial" algorithms for bipartite matching.

k-Disjoint spanning tree

- k-disjoint "arborescence" can be solved in $\tilde{O}_k(m)$ time.
- We don't know anything better even when k=2 for the undirected case.

Colorful spanning tree

- New way of using interior point methods (IPMs), or
- Faster "combinatorial" algorithms for bipartite matching.

k-Disjoint spanning tree

- k-disjoint "arborescence" can be solved in $\tilde{O}_k(m)$ time.
- We don't know anything better even when k=2 for the undirected case.

Other useful dynamic oracles

Submodular function minimization/maximization

Colorful spanning tree

- New way of using interior point methods (IPMs), or
- Faster "combinatorial" algorithms for bipartite matching.

k-Disjoint spanning tree

- k-disjoint "arborescence" can be solved in $\tilde{O}_k(m)$ time.
- We don't know anything better even when k=2 for the undirected case.

Other useful dynamic oracles

Submodular function minimization/maximization

Improved lower bounds

• $\Omega(n \log n)$ "traditional"-rank-query lower bound implies better SFM lower bounds [CGJS'22].

Thanks for Listening!

Paper: https://arxiv.org/abs/2302.09796

1h-talk by Joakim at ETHZ: https://www.youtube.com/live/XgSTiseAaW8