Universidad Tecnológica Nacional Facultad Regional Córdoba

Ingeniería Electrónica

CATEDRA

Titulo

SUBTITULO

DOCENTES XXXXXXXXXX XXXXXXXX.

XXXXXXXXXX XXXXXXXX...

COMISIÓN XRX

ALUMNOS XXXXX XXXXX, XXXXX XXXXX. XXXXX

XXXXX XXXXX, XXXXX XXXXX. XXXXX

Córdoba, 9 de septiembre de 2023

CONTENIDO

1.	Introducción	3
2.	Marco teorico	3
3.	Primera Parte 3.1. Circuito	3 3
4.	Segunda Parte4.1. Circuito4.2. Procedimiento4.3. Simulación4.4. Experimental	5

1. Introducción

2. Marco teorico

3. Primera Parte

3.1. Circuito

3.2. Procedimiento

- 1. Armar el circuito seleccionando un correcto valor de R en función del datasheet del DIAC.
- 2. Variar la tensión de alimentación (V1) desde 0V a 50V según la tabla que se observa aquí abajo.
- 3. Medir la corriente y caída de tensión en el DIAC.
- 4. Invertir los terminales del DIAC y repetir las variaciones y mediciones expresadas en el punto 1 y 2

3.3. Calculo de R

3.4. Simulación

Figura 1: Circuito simulado

3.5. Experimental

V_{CC}	V_D	I
5	0	0
10	0	0
15	0	0
20	0	0
22	0	0
24	0	0
26	0	0
28	0	0
30	0	0
32	0	0
34	0	0
36	0	0
38	0	0
40	0	0
45	0	0
50	0	0

4. Segunda Parte

4.1. Circuito

4.2. Procedimiento

- 1. Armar el circuito.
- 2. Colocar la VCC = 0V.
- 3. Cerrar el interruptor Sw.
- 4. Variar el potenciómetro de forma de relevar la tabla.
- 5. Graficar los valores obtenidos y comparar la curva con la de otro componente ya estudiado.
- 6. Abrir el interruptor Sw.

- 7. Colocar un voltímetro en paralelo a la resistencia de carga (RL) y otro en paralelo al Anodo-Catodo del SCR.
- 8. Variar la VCC desde 0V a 600V en pasos de 10V controlando permanentemente lo que sucede en los voltímetros.
- 9. Finalizado el ensayo, ¿noto un cambio de comportamiento en el circuito?, ¿En qué valor de tensión?.
- 10. Desconectando las alimentaciones de tensión, ¿puede analizar el valor ohmico de la resistencia de carga (RL)?, ¿Qué sucedió?.
- 11. Colocar la VG = 0V y cerrar el interruptor Sw.
- 12. Colocar VCC = 100V.
- 13. Subir lentamente el valor de VG hasta observar un cambio importante en la IAK (Disparo del SCR). Tomar nota del valor de VG e IG que produjo ese disparo del SCR.
- 14. Manteniendo el potenciómetro en la posición donde generó el disparo abrir el interruptor Sw y analizar que sucede con la IAK.
- 15. Manteniendo el interruptor Sw abierto bajar el valor de VCC en pasos de 10V anotando el valor de IAK para cada caso. Los últimos 10V antes de llegar a cero deben disminuirse en pasos de 1V.
- 16. Volver a subir paulatinamente la VCC hasta colocarla nuevamente en 100V analizando el comportamiento que tiene la IAK

4.3. Simulación

Figura 2: Circuito simulado

4.4. Experimental

V_G	I_G
0.2	0
0.3	0
0.4	0
0.5	0
0.6	0
0.7	0
0.8	0
0.9	0
1.0	0
1.1	0
1.2	0
1.3	0
	,

