

COMP20003 Algorithms and Data Structures

Recurrences

Nir Lipovetzky
Department of Computing and Information Systems
University of Melbourne
Semester 2

Divide and Conquer Algorithms

Mergesort and quicksort are instances of divide-and-conquer algorithms:

 Solve the problem by continually dividing into smaller problems

Other examples?

Split-solve-join approach:

For problems where the output is a transformation of the input, need to:

- process both subproblems, and
- join the sub-solutions after processing

Recurrence for divide and conquer sorting algorithms

One pass through the data reduces problem size by half. Process both halves:

- Operation (process) takes constant time c
- Base case takes time d

Recurrence for divide and conquer sorting algorithms

One pass through the data reduces problem size by half. Process both halves

- Operation takes constant time c
- Base case takes time d

```
T(1) = d

T(n) = 2T(n/2) + nc

= nc + 2cn/2 + 4cn/4...+ n/2*2c + nd

= c(n-1)log n + nd
```

THE UNIVERSITY OF MELBOURNE

Divide and Conquer: Recurrences to Master Theorem

• Most common case:

$$T(n) = 2T(n/2) + n$$

General case:

$$T(n) = aT(n/b) + f(n)$$

$$f(n) \in \Theta(n^{o})$$

• Most common case:

$$T(n) = 2T(n/2) + n$$

 $a=2, b=2, d=1$

Master Theorem for Divide and Conquer

•
$$T(n) = aT(n/b) + f(n)$$

 $f(n) \in \Theta(n^d)$

 T(n) closed form varies, depending on whether:

```
• d > log_b a T(n) \in \Theta(n^d)
```

•
$$d = log_b a$$
 $T(n) \in \Theta(n^d \log n)$

•
$$d < log_b a$$
 $T(n) \in \Theta(n^{log} b^a)$

Master Theorem for Divide and Conquer

- T(n) = aT(n/b) + f(n), where $a \ge 1$, b > 1, n^d asymptotically positive
- T(n) closed form varies, depending on whether:
 - $d > log_b a$ $T(n) \in \Theta(n^d)$
 - $d = log_b a$ $T(n) \in \Theta(n^d \log n)$
 - $d < log_b a \qquad T(n) \in \Theta(n^{log}b^a)$

Where do Θ () solutions to the Master Theorem come from?

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$$

Size of subproblems decreases by b

- So base case reached after log_hn levels
- Recursion tree log_bn levels

Branch factor is a

At kth level, have ak subproblems

At level k, total work is then

- $a^k * O(n/b^k)^d$
- (#subproblems * cost of solving one)

Where do ⊕() solutions to the Master Theorem come from?

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$$

At level k, total work is then

$$\bullet a^k * O(n/b^k)^d = O(n^d) * (a/b^d)^k$$

As k (levels) goes from 0 to $log_b n$, this is a geometric series, with ratio a/b^d

$$\Sigma O(n^d)^* (a/b^d)^k$$

Where do Θ () solutions to the Master Theorem come from?

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$$

Geometric series: $O(n^d) * (a/b^d)^k$

• as k goes from $0 \rightarrow \log_b n$

Case 1: ratio $a/b^d < 1$ or $d > log_b a$

- $(a/b^d)^k$ gets smaller as k goes from $1 \rightarrow \log n$
- a/b^d First term is the largest, and is <1
- $O(n^d)$

Example for $a/b^d < 1$

$$T(n) = 2T(n/2) + n^2$$

Where do the solutions to the Master Theorem come from?

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$$

Geometric series: $O(n^d) * (a/b^d)^k$

• as k goes from $0 \rightarrow \log_b n$

Case 2: ratio $a/b^d = 1$ or $d = log_b a$

- Series is $O(n^d) + O(n^d) + ...$
 - -For *log_bn* levels
- Sum = $O(n^d \log n)$

Example for most common case $a/b^d = 1$

$$T(n) = 2T(n/2) + n$$

$$T(n) = 2(2T(n/4) + n/2) + n$$

$$= 4T(n/4) + n + n$$

$$= 8T(n/8) + n + n + n$$

• • • •

Where do ⊕() solutions to the Master Theorem come from?

$$T(n) = aT(n/b) + f(n), f(n) \in \Theta(n^d)$$

Geometric series: $O(n^d) * (a/b^d)^k$

as k goes from 0 → log_bn

Case 3: ratio $a/b^d > 1$ or $d < log_b a$

- $a/b^d > 1 \rightarrow$ series is increasing
- Sum dominated by last term:
 - $-O(n^d)(a/b^d)^{\log(b)n}=n^{\log(b)a}$

Example for $a/b^d > 1$

$$T(n) = 4T(n/2) + n$$

Some pointers...

For more on geometric series, and calculation of closed form, see:

http://www.youtube.com/watch?v=JJZ-shHiayU

4 minute tutorial from Rose-Hulman Institute of Technology