1 Introduction

2 Description of the model. Field theoretic formulation

$$S_{v}(v',v) = v'D_{v}v'/2 + v'\{-\nabla_{t} + \nu_{0}\partial^{2}\}v + \omega_{0}v'_{i}(\partial_{i}\theta)\partial^{2}\theta$$
 (1)

$$S(v, v', \theta, \theta') = S_v(v', v) + \theta' D_{\theta} \theta' / 2 + \theta' \{ -\nabla_t + k_0 \partial^2 \} \theta$$
 (2)

Feynmam rules.

$$\langle v, v' \rangle_0 = \langle v', v \rangle_0^T = (-i\omega + \nu_0 k^2)^{-1}$$
 (3)

$$\langle v, v \rangle_0 = P_{ij} D_0 k^{4-d-y} (-i\omega + \nu_0 k^2)^{-2}$$
 (4)

$$\langle \theta, \theta' \rangle_0 = \langle \theta', \theta \rangle_0^T = (-i\omega + \nu_0 k^2)^{-1} \tag{5}$$

$$\langle \theta, \theta \rangle_0 = K_0 k^{2-d-y} (-i\omega + \nu_0 k^2)^{-2} \tag{6}$$

$$\langle v_i', \theta, \theta \rangle_0 = -i[p_i k^2 + p^2 k_i] \tag{7}$$

p,k - momentum of field θ .

$$\langle \theta', v_i, \theta \rangle_0 = +ip_i \tag{8}$$

p - momentum of field θ .

$$\langle v_i', v_k, v_s \rangle_0 = -i[p_k \delta_{is} + p_s \delta_{ik}] \tag{9}$$

p - momentum of field v'.

3 Canonical dimensions, UV divergences and the renormalization

F	ψ	ψ^{\dagger}	v	λ_0, λ	$ au_0, au$	m, μ, Λ	g_0^2	ω_0	$g^2, \omega, \alpha, a_0, a$
d_F^k	$\frac{d-2}{2}$	$\frac{d+2}{2}$	-1	-2	2	1	2-d	ξ	0
d_F^{ω}	0	0	1	1	0	0	2	0	0
d_F	$\frac{d-2}{2}$	$\frac{d+2}{2}$	1	0	2	1	6-d	ξ	0