Deductive Databases

TD 5: Data Exchange

Exercise 1.

Given the schema mapping: $\Sigma : E(x, y) \to \exists z, H(x, z) \land H(z, y)$ with the source instance I = E(a, b). - Are the following J_i solutions? Justify

Q1.1.
$$J_1 = [H(a,b), H(b,b)]$$

Q1.2. $J_2 = [H(a,a), H(a,b)]$
Q1.3. $J_3 = [H(a,X), H(X,b)]$
Q1.4. $J_4 = [H(a,X), H(X,b), H(a,Y), H(Y,b)]$
Q1.5. $J_5 = [H(a,X), H(X,b), H(Y,Y)]$

- Specify for each J_i whether it is a universal solution or not, and justify.

Exercise 2.

Create the dependency graph for the following schema mapping and specify if/why the sets of tgds are weakly acyclic.

2.1.

$$\Sigma_{st} = \left[DeptEmp(d, n, e) \rightarrow \exists M \left(Dept(d, M, n) \land Emp(e, d) \right) \right]$$

$$\Sigma_{t} = \left[Dept(d, m, e) \rightarrow Emp(m, d), Emp(e, d) \rightarrow \exists M \exists N Dept(d, M, N) \right]$$

2.2.

$$\Sigma_{st} = \left[DeptEmp(d, n, e) \rightarrow \exists M \left(Dept(d, M, n) \land Emp(e, d) \right) \right]$$

$$\Sigma_{t} = \left[Dept(d, m, e) \rightarrow \exists D Emp(m, D), Emp(e, d) \rightarrow \exists M \exists N Dept(d, M, N) \right]$$

Exercise 3.

Let us consider the following source instance:

NYSE

name	symbol
Google	GOOG
Yahoo!	YHOO

Public-Company

name	city	
Apple	Cup	
Adobe	SJ	

Public-Grant

company	investigator	amount
Apple	Mike B.	25,000
Adobe	Anne C.	50,000

NSF-Grantee

id	name	symbol
23	Yahoo!	YHOO
25	Adobe	ADBE

NSF-Grant

company	amount
23	18,000
25	50,000

and the constraints $\Sigma_{st} = [m_1, m_2, m_3, m_4]$ and $\Sigma_t = [t_1, e_1]$ such that:

$$\begin{split} &m_1 \colon \forall \, s, n, NYSE(s,n) \to \exists \, I \, Company(I,n,s) \\ &m_2 \colon \forall \, n, c, a, \, pi, \, Public \, Company(n,c) \land \, Public \, Grant(n,i,a) \to \exists \, I, \exists \, S \, Company(I,n,S) \land \, Grant(a,I) \\ &m_3 \colon \forall \, i, n, s, \, NFS \, Grantee(i,n,s) \to \, Company(i,n,s) \\ &m_4 \colon \forall \, a, c, \, NFS \, Grant(a,c) \to \, Grant(c,a) \\ &t_1 \colon \forall \, a, c, \, Grant(a,c) \to \, \exists \, N, \, \exists \, S \, Company(c,N,S) \\ &e_1 \colon \forall \, n, n', i, i', s, \, Company(i,n,s) \land \, Company(i',n',s) \to (n=n') \land (i=i') \end{split}$$

Specify if the following instances are universal solutions? not universal? Or other.

J_1 Company

id	name	symbol
N1	Google	GOOG
N2	Yahoo	YHOO
11	Apple	S1
12	Adobe	S2
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company
25,000	11
50,000	12
18,000	23
50,000	25

J_2 Company

id	name	symbol
N1	Google	GOOG
11	Apple	S1
12	Adobe	S2
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company
25,000	I 1
50,000	12
18,000	23
50,000	25

J_3 Company

id	name	symbol
N1	Google	GOOG
11	Apple	NULL
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company	
25,000	11	
18,000	23	
50,000	25	

J_4 Company

id	name	symbol
N1	Google	GOOG
11	Apple	NULL
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company
25,000	11
18,000	12
50,000	25
80,000	N1