

BUNDEREPUBLIK DEUTSCHLAND

Best Available Copy

Prioritätsbescheinigung über die Einreichung einer Gebrauchsmusteranmeldung

Aktenzeichen:

202 14 629.4

Anmeldetag:

20. September 2002

Anmelder/Inhaber:

esmo AG, Rosenheim, Oberbay/DE

Bezeichnung:

Verschiebbare Befestigungsplatte

IPC:

G 01 R, H 05 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.

München, den 10. Oktober 2003 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Faus)

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH

RULE 17.1(a) OR (b)

Verschiebbare Befestigungsplatte

Die vorliegende Erfindung betrifft eine zwei- oder mehrteilige Befestigungsplatte zur kraftschlüssigen und/oder
formschlüssigen Verbindung einer Meß- und Prüfeinrichtung
10 (tester) für elektronische Bauteile einerseits mit einer
Handhabungsvorrichtung (handler) für elektronische Bauteile andererseits mit den im Oberbegriff des Schutzanspruchs
1 angegebenen Merkmalen.

Bei den erfindungsgemäß zur Anwendung kommenden elektroni-15 schen Bauteilen kann es sich insbesondere um integrierte Schaltkreise (IC's) oder um Wafer handeln, welche beispielsweise auf Silizium-Basis hergestellt sind.

Aus dem Stand der Technik ist es bekannt, eine Meß- und 20 Prüfeinrichtung (tester) für elektronische Bauteile mittels einer Positionier- und Verriegelungseinheit mit Zentrierstiften unmittelbar an einer Handhabungseinrichtung (handler) für elektronische Bauteile anzubringen.

- 25 Nachteilig ist hierbei insbesondere, daß mehrere unterschiedliche und teure Positionier- und Verriegelungseinheiten angeschafft, gewartet und bevorratet werden müssen, sofern verschiedene Handhabungseinrichtungen (handler) für unterschiedliche elektronische Bauteile mit jeweils ande-
- 30 ren Abmessungen und Verriegelungskonzepten mit derselben Meß- und Prüfeinrichtung (tester) oder ein Handler mit mehreren, voneinander verschiedenen Testern verbunden werden sollen.

Handhabungsvorrichtungen für elektronische Bauteile verfügen in der Regel ferner über eine Vielzahl von nebeneinander angeordneten und vor- sowie zurückbewegbaren Druckstempeln (plungers), mit deren Hilfe die zu prüfenden elektronischen Bauteile in Richtung des zentrierten Kontaktsockels einer gegenüberliegenden Meß- und Prüfeinrichtung (tester) für elektronische Bauteile verfahrbar sind.

- 10 Von dieser Vielzahl von handlerseitig vorhandenen Druckstempeln (plungers) ist meist lediglich ein einziger Druckstempel (plunger) aktiv in Form einer sogenannten "aktiven Kontaktierungsstelle" (activ contact site).
- 15 Während des Testvorganges muß der im Zentrum der Meß- und Prüfvorrichtung liegende testerseitige Kontaktsockel zentriert zu dem jeweils aktiven Druckstempel (plunger) der Handhabungsvorrichtung ausgerichtet sein.
- 20 Um den meist einzigen, zentrierten Kontaktsockel der Meßund Prüfeinrichtung (tester) mit dem jeweils aktiven,
 meist außermittigen Druckstempel (plunger) der Handhabungsvorrichtung (handler) in Eingriff zu bringen, ist es
 bei den Vorrichtungen des Standes der Technik erforder-
- 25 lich, die Meß- und Prüfeinrichtung vollständig sowie mühsam und zeitintensiv von der Handhabungseinrichtung zu demontieren, die ursprüngliche Positionier- und Verriegelungseinheit durch eine an die neue Position angepaßte Positionier- und Verriegelungseinheit zu ersetzen, eine
- 30 zeitintensive Justage vorzunehmen und eine abschließende Verriegelung durchzuführen.
 - Der zeitliche Aufwand für eine solche Umrüstung und damit die Stillstandzeit der gesamten Testvorrichtung beträgt hierfür etwa 10 Stunden.

3

Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung einer Vorrichtung zur Verbindung einer Meß- und Prüfeinrichtung (tester) für elektronische Bauteile einerseits mit einer Handhabungseinrichtung (handler) für elektronische Bauteile andererseits, welche die Anschaffung, Wartung und Bevorratung mehrerer unterschiedlicher Fositionier- und Verriegelungseinheiten selbst beim Einsatz unterschiedlicher Handhabungsvorrichtungen (handler) oder

- 10 Meß- und Prüfeinrichtungen (tester) nicht erfordert und welche eine besonders schnelle, einfache, exakte und kostengünstige Anpassung der Position des oder der Kontaktsockel einer Meß- und Prüfeinrichtung (Testkopf) an die Position des jeweils aktiven Druckstempels (plunger;
- 15 contact site) einer gegenüberliegenden Handhabungsvorrichtung (handler) erlaubt und damit die Stillstandzeit während des Umrüstens von einem aktiven Druckstempel auf einen anderen aktiven Druckstempel verkürzt.
- 20 Erfindungsgemäß wird diese Aufgabe bei einer gattungsgemäßen Vorrichtung durch die im kennzeichnenden Teil des Schutzanspruchs 1 angegebenen Merkmale gelöst. Besonders bevorzugte Ausführungsformen sind Gegenstand der Unteransprüche.

Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen näher beschrieben. Es zeigen:

Figur 1 eine schematische perspektivische Ansicht einer

Gesamtvorrichtung zum Testen elektronischer Bauteile, welche einerseits einer mittigen, erfindungsgemäßen Befestigungsplatte eine Handhabungseinrichtung für elektronische
Bauteile und andererseits der mittigen, erfindungsgemäßen
Befestigungsplatte eine Meß- und Prüfeinrichtung zum Te
35 sten elektronischer Bauteile aufweist;

Figur 2 eine schematische Seitenansicht eines Querschnittes entlang der Linie A-A in Figur 1;

5 Figur 3 eine schematische perspektivische Ansicht einer erfindungsgemäßen Befestigungsplatte, von der Seite einer Meß- und Prüfeinrichtung aus betrachtet;

Figur 4 eine schematische Vorderansicht einer erfindungs-10 gemäßen Befestigungsplatte, von der Seite einer Meß- und Prüfeinrichtung aus betrachtet.

Wie bereits aus Figur 2 hervorgeht, können an der erfindungsgemäßen ein- oder mehrteiligen Befestigungsplatte (1)

15 in der Regel einerseits eine Meß- und Prüfvorrichtung (2;
Testkopf) für elektronische Bauteile und andererseits eine
Handhabungsvorrichtung (3; Handler) für elektronische Bauteile mittelbar -beispielsweise über eine ein- oder mehrteilige Positionier- und Verriegelungseinrichtung (9)
20 oder unmittelbar reversibel anbringbar sein.

Vorzugsweise umfaßt die erfindungsgemäße Befestigungsplatte (1) zumindest eine testerseitige Einzelplatte (4) und eine handlerseitige Einzelplatte (5) oder drei oder mehrere Einzelplatten, welche gegeneinander in x- und/oder y- und/oder z-Richtung verschiebbar und arretierbar sind.

Die Verstellbarkeit der einen oder der mehreren Einzelplatten (4, 5) in z-Richtung ist gegebenenfalls vornehm30 bar, um die handlerseitige Fläche des Kontaktsockels (15)
der Meß- und Prüfeinrichtung (2) an der Rückwand der Handhabungsvorrichtung (3) anliegen zu lassen.

Die Verschiebbarkeit der Einzelplatten (4, 5) der Befestigungsplatte (1) gegeneinander kann beispielsweise durch ein oder mehrere Wälz- oder Gleitlager, Kugelführungsbuchsen, Gleitführungen, Rollenführungen, Linearlager, Linearführungen, Radiallager, Luftlager oder Hydrolager bewirkt werden.

Insbesondere die Figuren 3 und 4 zeigen, daß die erfindungsgemäße Befestigungsplatte (1) zur Positionierung der
Einzelplatten (4, 5) einander gegenüber eine oder mehrere,
an einer der Einzelplatten (4 oder 5) fest oder verschiebbar und arretierbar angebrachte Lochplatten (6) umfassen
kann.

15

Es liegt auf der Hand, daß die Lochplatte (6) alternativ hierzu beispielsweise an der Handhabungsvorrichtung (3) oder der Meß- und Prüfeinrichtung (2) selbst mittelbar oder unmittelbar anbringbar sein kann.

20

Die Lochplatte (6) kann beispielsweise in Form einer Platte mit Bohrungen, eines Gitters, Netzes oder Rahmens mit Segmenten ausgestaltet sein.

Vorzugsweise greifen in die beispielsweise an der handlerseitigen Einzelplatte (5) oder an der Handhabungsvorrichtung (3) oder an der Meß- und Prüfeinrichtung (2) angebrachte Lochplatte (6) eine oder mehrere, an der anderen, gegebenenfalls testerseitigen Einzelplatte (4) angebrachte Arretierungseinrichtungen (7) reversibel ein.

Die mindestens eine Arretierungseinrichtung (7) kann beispielsweise in Form eines gefederten oder ungefederten Positionierstiftes, eines Schnappmechanismus, eines Einrast-35 mechanismus oder eines Druckstückes ausgebildet sein.

In der Regel ist die mindestens eine Lochplatte (6) auswechselbar angebracht und vorzugsweise in x- und/oder y- und/oder z- Richtung verstellbar gelagert und arretierbar.

Vorzugsweise korrespondieren die Abstände und Anordnungen der Bohrungen dieser Lochplatte (6) zu den Abständen und Anordnungen der Druckstempel (plungers; contact sites) der Handhabungsvorrichtung (3; handler).

10

Aufgrund dieser Entsprechung der Positionen der Ausnehmungen der Lochplatte (6) und der Positionen der handlerseitigen Druckstempel sind gegebenenfalls durch einen einfachen und schnellen Lochwechsel innerhalb derselben Lochplatte (6) der oder die mittigen Kontaktierungssockel (15) einer einerseitigen Meß- und Prüfeinrichtung (2) über dem oder den aktiven, meist außermittigen Druckstempeln (plungers) einer anderseitigen Handhabungsvorrichtung (3; handler) zentrierbar.

20

Bei einem Wechsel der Handhabungsvorrichtung (3) kann die ursprüngliche Lochplatte (6) gegen eine an die Stempelabstände und Stempelanordnung der neuen Handhabungsvorrichtung (3) angepaßte Lochplatte (6) ebenfalls schnell und einfach ausgetauscht werden.

In beiden vorgenannten Fällen wird die aus dem Stand der Technik bekannte und gefürchtete Stillstandzeit beziehungsweise Umrüstzeit der gesamten Testvorrichtung von etwa 10 Stunden auf etwa 10 Minuten verkürzt, wodurch sich eine dramatische Verbesserung des Durchsatzes und damit der Wirtschaftlichkeit einer mit der erfindungsgemäßen Befestigungsplatte (1) ausgerüsteten Testvorrichtung ergibt.

sein.

7

Wie den Figuren 1, 3 und 4 zu entnehmen ist, kann die erfindungsgemäße Befestigungsplatte (1) in einer bevorzugten Ausführungsform beispielsweise für die testerseitige, eine 5 Meß- und Prüfeinrichtung (2) tragende, verschiebbare Einzelplatte (4) eine selbsthemmende, zumindest in y-Richtung wirkende Höhenverstellung (8) umfassen.

Im Falle einer Entriegelung der Arretierungseinrichtung
(7) kann dank einer solchen selbsthemmenden Höhenverstellung (8) ein unbeabsichtigtes Absinken der verschiebbaren
testerseitigen Einzelplatte (4) mit der daran angebrachten
Meß- und Prüfvorrichtung (2) sicher vermieden werden.

Die selbsthemmende und zumindest in y-Richtung wirkende Höhenverstellung (8) kann beispielsweise in Form einer elektrischen, hydraulischen, pneumatischen oder mechanischen Verstelleinrichtung oder eines Spindelmechanismus, Zahnstangenmechanismus, eines Riemens, einer Kette oder in 20 Form von Bändern, Seilen oder Bowdenzügen ausgebildet

In einer besonders bevorzugten Ausführungsform umfaßt die erfindungsgemäße Befestigungsplatte ferner eine Siche-25 rungseinrichtung, welche erst nach ihrer Deaktivierung ein Verschieben der Einzelplatten (4, 5) gegeneinander zuläßt.

Grundsätzlich kann die Verschiebbarkeit der Einzelplatten (4, 5) gegeneinander manuell und/oder hydraulisch und/oder 30 pneumatisch und/oder elektrisch und/oder mechanisch erfolgen.

Gegebenenfalls sind auf der testerseitigen Einzelplatte (4) ein oder mehrere Positionier- und Verriegelungsein-35 richtungen (9; docking-Einrichtungen) zur mittelbaren Be-

R

festigung und Positionierung der Meß- und Prüfeinrichtung (2; Testkopf) an der testerseitigen Einzelplatte (4) reversibel oder irreversibel anbringbar.

5 So kann die testerseitige Einzelplatte (4) eine oder mehrere Aussparungen (10), Bohrungen mit oder ohne Gewinde, Aufbauten, Adapter, Haken oder Kulissen für die reversible Anbringung einer ein- oder mehrteiligen Positionierungsund Verriegelungseinrichtung (9) oder für die unmittelbare

10 Anbringung einer Meß- und Prüfvorrichtung (2) aufweisen.

Wie insbesondere aus den Figuren 3 und 4 hervorgeht, kann die erfindungsgemäße Befestigungsplatte (1) in bevorzugten Ausführungsformen in ihrer testerseitigen Einzelplatte (4) 15 eine zentrale, runde oder polygonale Aussparung (11) zur reversiblen, mittelbaren oder unmittelbaren Aufnahme einer zwischen der Meß- und Prüfeinrichtung (2) und der Handhabungsvorrichtung (3) wirkenden Kontaktplatine (12; deviceunder-test-board) aufweisen.

20

Gegebenenfal's ist in die Aussparung (11) der testerseitigen Einzelplatte (4) eine an die Form der Aussparung (11) außenseitig und an die Form der Kontaktplatine (12) innenseitig angepaßte Kontaktplatinen-Abstützung (13; deviceundertestboard-support) reversibel sowie lose passend oder

25 dertestboard-support) reversibel sowie lose passend oder im wesentlichen gasdicht einsetzbar.

In der Regel ist die Kontaktplatinen-Abstützung (13) ringförmig, strebenförmig, gitterförmig, quadratisch, rechtekkig oder polygonal sowie elektrisch isolierend ausgestal-

30 tet.

Der Vorteil einer elektrisch isollerenden Ausgestaltung der Kontaktplatinen-Abstützung (13) liegt in einer sicheren Vermeidung einer zerstörerischen Kurzschlußgefahr.

Korrespondierend zu der mittigen Aussparung (11) der testerseitigen Einzelplatte (4) kann auch die handlerseitige
5 Einzelplatte (5) eine mittig zentrierte Aussparung (14)
zur Aufnahme und/oder Führung des oder der Kontaktsockel
(15) einer Handhabungseinrichtung (3) aufweisen.

Zusammenfassend ist festzustellen, daß im Rahmen der vorliegenden Erfindung eine befestigungsplattenförmige Vorrichtung zur Verbindung einer Meß- und Prüfeinrichtung
(tester) für elektronische Bauteile einerseits mit einer
Handhabungseinrichtung (handler) für elektronische Bauteile andererseits bereitgestellt wird.

Durch den Einsatz der erfindungsgemäßen, hinsichtlich ihrer Einzelplatten (4, 5) verfahrbaren Befestigungsplatte
(1) ist die Anschaffung, Wartung und Bevorratung mehrerer
unterschiedlicher, teurer Positionier- und Verriegelungs20 einheiten selbst beim Einsatz unterschiedlicher Handhabungsvorrichtungen (handler) oder Meß- und Prüfeinrichtungen (tester) erstmalig nicht mehr erforderlich.

Darüber hinaus gestattet die erfindungsgemäße Befesti25 gungsplatte (1) eine besonders schnelle, einfache, exakte
und kostengünstige Anpassung der Position des oder der'
Kontaktsockel (15) einer Meß- und Prüfeinrichtung (2;
Testkopf) an die Position des jeweils aktiven Druckstempels (plunger; contact site) einer gegenüberliegend ange30 brachten Handhabungsvorrichtung (3; handler).

Die Stillstandzeit während des Umrüstens von einem aktiven Druckstempel auf einen anderen aktiven Druckstempel der Handhabungseinrichtung (3) wird dank der erfindungsgemäßen

Befestigungsplatte (1) Folglich dramatisch verkürzt und damit der Durchsatz beztiehungsweise die Wirtschaftlichkeit der gesamten Testvorrichtung erheblich verbessert.

Schutzansprüche

5 1. Ein- oder mehrteilige Befestigungsplatte (1) zur mittelbaren oder unmittelbaren Anbringung einer Meß- und
Prüfvorrichtung (2; Testkopf) für elektronische Bauteile
einerseits und einer Handhabungsvorrichtung (3; Handler)
für elektronische Bauteile andererseits, 'dadurch gekenn10 zeichnet, daß sie zumindest eine testerseitige Einzelplatte (4) und eine handlerseitige Einzelplatte (5) oder drei
oder mehrere Einzelplatten umfaßt, welche gegeneinander in
x- und/oder y- und/oder z-Richtung verschiebbar und arretierbar sind.

15

Befestigungsplatte nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verschiebbarkeit der Einzelplatten (4, 5) der Befestigungsplatte (1) gegeneinander durch ein oder mehrere Wälz- oder Gleitlager, Kugelführungsbuchsen, Gleitführungen, Rollenführungen, Linearlager, Linearführungen, Radiallager, Luftlager oder Hydrolager bewirkt wird.

25

3. Befestigungsplatte (i) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie zur Positionierung der Einzelplatten (4, 5) einander gegenüber eine oder mehrere, an einer der Einzelplatten (4 oder 5) fest oder verschiebbar und arretierbar angebrachte Lochplatten (6) umfaßt, in welche eine oder mehrere, an der anderen Einzelplatte (4 oder 5) angebrachte Arretierungseinrichtungen (7) reversibel eingreifen.

- 4. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Lochplatte (6) auswechselbar ist, wobei die Abstände und 5 Anordnungen der Bohrungen dieser Lochplatte (6) den Abständen und Anordnungen der Druckstempel (plunger; contact sites) der Handhabungsvorrichtung (3; handler) entsprechen, so daß durch einen einfachen Lochwechsel innerhalb derselben Lochplatte (6) der oder die mittigen Kontaktierungssockel (15) der Meß- und Prüfeinrichtung (2) über dem oder den aktiven Druckstempeln (plunger) der Handhabungsvorrichtung (3; handler) zentrierbar sind und wobei bei einem Wechsel der Handhabungsvorrichtung (3) die ursprüngliche Lochplatte (6) gegen eine an die Stempelabstände und Stempelanordnung der neuen Handhabungsvorrichtung (3) angepäßte Lochplatte (6) auszutauschen ist.
- 5. Befestigungsplatte (1) nach einem oder mehreren der 20 vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die mindestens eine Lochplatte (6) in x- und/oder y- und/oder z- Richtung verstellbar gelagert und arretierbar ist.
- 25 6. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die mindestens eine Arretierungseinrichtung (7) in Form eines gefederten oder ungefederten Positionierstiftes, eines Schnappmechanismus, eines Einrastmechanismus oder eines 30 Druckstückes ausgebildet ist.

7. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie für die eine Meß- und Prüfeinrichtung (2) tragende, verschiebbare Einzelplatte (4) eine selbsthemmende, zumindest in y-Richtung wirkende Höhenverstellung (8) umfaßt, so daß im Falle einer Entriegelung der Arretierungseinrichtung (7) ein unbeabsichtigtes Absinken der verschiebbaren testerseitigen Einzelplatte (4) mit der daran angebrachten Meß- und Prüfvorrichtung (2) vermieden wird.

10

8. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die selbsthemmende und in y-Richtung wirkende Höhenverstellung (8) in Form einer elektrischen, hydraulischen, pneumatischen oder mechanischen Verstelleinrichtung oder eines Spindelmechanismus, Zahnstangenmechanismus, eines Riemens, einer Kette oder in Form von Bändern, Seilen oder Bowdenzügen ausgebildet ist.

,20

 Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie eine Sicherungseinrichtung umfaßt, welche erst nach ihrer
 Deaktivierung ein Verschieben der Einzelplatten (4, 5) gegeneinander zuläßt.

10. Befestigungsplatte (1) nach einem oder mehreren der 30 vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verschiebbarkeit der Einzelplatten (4,5) gegeneinander manuell und/oder hydraulisch und/oder pneumatisch und/oder elektrisch und/oder mechanisch erfolgt.

11. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf der testerseitigen Einzelplatte (4) ein oder mehrere Positionier- und Verriegelungseinrichtungen (9; docking-

5 Einrichtungen) zur Befestigung und Positionierung der Meßund Prüfeinrichtung (2; Testkopf) an der testerseitigen
Einzelplatte (4) reversibel oder irreversibel anbringbar
sind.

10

12. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die testerseitige Einzelplatte (4) ein oder mehrere Aussparungen (10), Bohrungen mit oder ohne Gewinde, Aufbauten, Ad-

15 apter, Haken oder Kulissen für die reversible Anbringung einer ein- oder mehrteiligen Positionierungs- und Verriegelungseinrichtung (9) oder für die unmittelbare Anbringung einer Meß- und Prüfvorrichtung (2) aufweist.

- 13. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die testerseitige Einzelplatte (4) eine zentrale, runde oder polygonale Aussparung (11) zur reversiblen, mittelbaren
- oder unmittelbaren Aufnahme einer zwischen der Meß- und Prüfeinrichtung (2) und der Handhabungsvorrichtung (3) wirkenden Kontaktplatine (12; device-under-test-board) aufweist.
- 30 14. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in die Aussparung (11) der testerseitigen Einzelplatte (4) eine an die Form der Aussparung (11) außenseitig und an die Form der Kontaktplatine (12) innenseitig angepaßte

lassen.

5

Kontaktplatinen-Abstützung (13; deviceundertestboardsupport) reversibel sowie lose passend oder im wesentlichen gasdicht einsetzbar ist.

15. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kontaktplatinen-Abstützung (13) ringförmig, strebenförmig,

10 gitterförmig, quadratisch, rechteckig oder polygonal sowie elektrisch isolierend ausgestaltet ist.

16. Befestigungsplatte (1) nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die handlerseitige Einzelplatte (5) eine mittig zentrierte Aussparung (14) zur Aufnahme und/oder Führung des oder der Druckstempel (15) der Handhabungseinrichtung (3) aufweist.

17. Befestigungsplatte (1) nach einem oder mehreren der

vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Verstellbarkeit der einen oder der mehreren Einzelplatten (4, 5) in z-Richtung vornehmbar ist, um die handlerseitige 25 Flache des Kontaktsockels der Meß- und Prüfeinrichtung (2) an der Rückwand der Handhabungsvorrichtung (3) anliegen zu

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.