Sujet 1

On étudie en phase gazeuse l'équilibre de dimérisation de FeCl₃, de constante d'équilibre $K^{\circ}(T)$ à une température T donnée et d'équation-bilan

$$2 \operatorname{FeCl}_{3(g)} = \operatorname{Fe}_2 \operatorname{Cl}_{6(g)}$$

La réaction se déroule sous une pression totale constante $p_{\text{tot}} = 2p^{\circ} = 2$ bars. À la température $T_1 = 750$ K, la constante d'équilibre vaut $K^{\circ}(T_1) = 20,8$. Le système est maintenu à la température $T_1 = 750$ K. Initialement le système contient n_0 moles de FeCl₃ et de Fe₂Cl₆. Soit n_{tot} la quantité totale de matière d'espèces dans le système.

- 1) Exprimer la constante d'équilibre en fonction des pressions partielles des constituants à l'équilibre et de p° .
- 2) Exprimer le quotient de réaction Q_r en fonction de la quantité de matière de chacun des constituants, de la pression totale p_{tot} et de p° . Calculer la valeur initial $Q_{r,0}$ du quotient de réaction.
- 3) Le système est-il initialement à l'équilibre thermodynamique ? Justifier la réponse. Si le système n'est pas à l'équilibre, dans quel sens se produira l'évolution ?

On considère désormais une enceinte indéformable, de température constante $T_1 = 750 \,\mathrm{K}$, initialement vide. On y introduit une quantité n de FeCl₃ gazeux et on laisse le système évoluer de telle sorte que la pression soit maintenu constante et égale à $p = 2p^\circ = 2$ bars. On désigne par ξ l'avancement de la réaction.

4) Calculer à l'équilibre la valeur du rapport $z = \xi/n$.

Sujet 2

Utilisation du quotient de réaction

Un récipient de volume $V_0=2,00\cdot l$ contient initialement $0,500\cdot mol$ de COBr₂, qui se décompose à une température de $T_0=300\cdot K$ selon la réaction :

$$COBr_2(g) = CO(g) + Br_2(g).$$

Tous les gaz sont supposés parfaits. La réaction se fait à température et à volume constants.

- 1) Déterminer la pression initiale du système en Pa, puis en bar.
- 2) Déterminer le quotient de réaction initial de ce système chimique. En déduire le sens d'évolution de ce système.
- 3) Exprimer la pression totale du système à l'équilibre en fonction de l'avancement à l'équilibre x, T_0 et V_0 .
- 4) Quelle est la composition du système à l'équilibre, sachant que la constante d'équilibre de la réaction précédemment citée vaut $K^{\circ} = 5$ à 300·K?
- 5) Calculer le pourcentage de $COBr_2(g)$ décomposé à cette température. Conclure.
- 6) L'équilibre précédent étant réalisé, on ajoute 2,00·mol de monoxyde de carbone CO, sans modifier la température ni le volume du système. Calculer le quotient de réaction Qr'_i juste après l'introduction du monoxyde de carbone et conclure quant à l'évolution ultérieure du système.

Sujet 3

I \mid Régime transitoire

On considère le circuit ci-contre constitué d'une source idéale de tension continue de force électromotrice E, d'un condensateur de capacité C, d'une bobine d'inductance L, d'une résistance R et d'un interrupteur K. On suppose que l'interrupteur K est ouvert depuis longtemps quand on le ferme à l'instant t=0. On suppose que le condensateur est initialement chargé à la tension $u_c=E$.

- 1) Faire le circuit équivalent à l'instant $t = 0^-$. Exprimer $i_1(0^-)$ en fonction de E et R.
- 2) Exprimer $i_1(0^+)$ et $u(0^+)$ en fonction de E et R.
- 3) Faire le circuit équivalent quand le régime permanent est atteint pour $t \to +\infty$. En déduire les expressions de $i(+\infty)$ et $i_1(+\infty)$.
- 4) Montrer que l'équation différentielle vérifiée par $i_1(t)$ pour $t \geq 0$ peut se mettre sous la forme :

$$\frac{d^2 i_1(t)}{dt^2} + \frac{\omega_0}{Q} \frac{d i_1(t)}{dt} + \omega_0^2 i_1(t) = \omega_0^2 A$$

Exprimer ω_0 , Q et A en fonction de E, R, L et C.

- 5) On suppose que le régime transitoire est de type pseudo-périodique. Donner alors l'inégalité vérifiée par R. On fera intervenir une résistance critique R_c que l'on exprimera en fonction de L et C.
- 6) Exprimer la pseudo-pulsation ω en fonction de ω_0 et Q.
- 7) Donner l'expression de $i_1(t)$ pour $t \geq 0$ en fonction de E, R, L, C, ω et t.
- 8) Tracer l'évolution de i_1 en fonction du temps.
- 9) Exprimer la variation d'énergie emmagasinée \mathcal{E}_L par la bobine entre l'instant initial t=0 et le régime permanent correspondant à $t \to +\infty$. Commenter ce résultat.
- 10) Exprimer la variation d'énergie emmagasinée \mathcal{E}_C par le condensateur entre l'instant initial t=0 et le régime permanent correspondant à $t \to +\infty$. Commenter ce résultat.
- 11) Exprimer la puissance reçue \mathcal{P}_R par la résistance R en régime permanent.