#### Discretización

$$\frac{\partial U}{\partial x} = \frac{T_{i+1}^j - T_i^j}{dx} \quad y \quad \frac{\partial U}{\partial y} = \frac{T_i^{j+1} - T_i^j}{dy}$$

Y las derivadas segundas:

$$\begin{split} \frac{\partial^2 T}{\partial x^2} &= \frac{\frac{\partial T}{\partial x}_{i+1} - \frac{\partial T}{\partial x}_i}{dx} = \frac{\frac{T^j_{i+1} - T^j_i}{dx} - \frac{T^j_{i} - T^j_{i-1}}{dx}}{dx} = \frac{T^j_{i+1} - 2T^j_i + T^j_{i-1}}{dx^2} \\ \frac{\partial^2 T}{\partial y^2} &= \frac{\frac{\partial T}{\partial y}_{i+1} - \frac{\partial T}{\partial y}_i}{dy} = \frac{\frac{T^j_{i+1} - T^j_i}{dy} - \frac{T^j_{i} - T^j_{i-1}}{dy}}{dy} = \frac{T^j_{i+1} - 2T^j_i + T^j_{i-1}}{dy^2} \\ \frac{T^j_{i+1} - 2T^j_i + T^j_{i-1}}{dx^2} + \frac{T^{j+1}_i - 2T^j_i + T^{j-1}_i}{dy^2} = 0 \end{split}$$

$$T_i^{j+1} + T_{i+1}^j - 4T_i^j + T_i^{j-1} + T_{i-1}^j = 0$$



#### Sistema de Ecuaciones

$$T_i^{j+1} + T_{i+1}^j - 4T_i^j + T_i^{j-1} + T_{i-1}^j = 0$$

$$\mathsf{T}^\mathsf{b}_{\lambda}$$

#### Ecuaciones:

$$40 + 10 - 4T_1 + T_2 + T_4 = 0$$

$$T_1 + 10 - 4T_2 + T_3 + T_5 = 0$$

$$T_2 + 10 - 4T_3 + 20 + T_6 = 0$$





Sistema de Ecuaciones, solución.

| 40.000 10.000 | 10.000 | 10.000 | 20.000 |
|---------------|--------|--------|--------|
| 40.000 25.000 | 19.464 | 17.857 | 20.000 |
| 40.000 30.536 | 25.000 | 21.964 | 20.000 |
| 40.000 32.143 | 28.036 | 25.000 | 20.000 |
| 30.000 30.000 | 30.000 | 30.000 | 20.000 |

Sistema de Ecuaciones, métodos de resolucion, Gauss Seidel.

$$x_i^{j+1} = \frac{1}{a_{ii}} \cdot \left[ b_i - \sum_{j=1, j \neq 1}^n a_{ij} \cdot x_j^k \right]$$

$$T_i^{j+1} + T_{i+1}^j - 4T_i^j + T_i^{j-1} + T_{i-1}^j = 0$$

#### Ecuaciones:

$$40 + 10 - 4T_1 + T_2 + T_4 = 0$$

$$T_1 + 10 - 4T_2 + T_3 + T_5 = 0$$

$$T_2 + 10 - 4T_3 + 20 + T_6 = 0$$

$$T_i^j = \frac{T_i^{j+1} + T_{i+1}^j + T_i^{j-1} + T_{i-1}^j}{4}$$

### <u>Código</u>

```
do while (error.gt.tol)
 uant=u !Guardo u en iteracion anterior
 do i=2,nx-1
  do j=2,ny-1
   T(i,j) = (T(i-1,j) + T(i+1,j) + T(i,j-1) + T(i,j+1))/4.
  enddo
 enddo
 error=norma(Tant,T) !Recalculo el error
Enddo
end subroutine
```

Condiciones de frontera de calor.





$$2T_{i-1}^{j} - 4T_{i}^{j} + T_{i}^{j+1} + T_{i}^{j-1} = 0$$

Condiciones de frontera adiabática. Código

```
do while (error.qt.tol)
 uant=u
 do i=2.nx-1
  do j=2,ny-1
   T(i,j) = (T(i-1,j) + T(i+1,j) + T(i,j-1) + T(i,j+1))/4.
  enddo
  !T(i,ny)= T(i,ny-1) !Condicion adiabática en la direccion y (derecha)
  !T(i,1= T(i,2) !Condicion adiabática en la direccion y (izquierda)
 enddo
 !T(nx,:)=T(nx-1,:) !Condicion adiabática en la direccion x (abajo)
 !T(1:)= T(2,:) !Condicion adiabática en la direccion x (arriba)
 error=norma(Tant,T)!Recalculo el error
Enddo
end subroutine
```

Condiciones de frontera de calor (Neumann).

$$k\frac{\partial T}{\partial x} = h(T_0 - T)$$

$$k \frac{T_{i+1}^{j} - T_{i}^{j}}{dx} = h(T_{0} - T_{i}^{j})$$

$$T_{i+1}^{j} = T_{i}^{j} + \frac{dx h}{k} (T_{0} - T_{i}^{j})$$

