Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

		математического и
	Кафедра	компьютерного моделирования
	1 . 1	наименование кафедры
		новления функции
-	•	ной работы полужирным шрифтом
вместе с её произв	одными с по	омощью операторов $\mathit{\Omega}_{\!\scriptscriptstyle r}$
ВЫПУСКНАЯ 1	КВАЛИФИК	АТОӘАЯ КАННОИЦА
студента (ки) 5 курса		
направления (специальности)		дная математика и информатика
	код и наи	именование направления (специальности)
Механи	ко-математич	неский факультет
		нститута, колледжа
	чев Вадим А.	
	фамилия, имя, от	
Научный руководитель		
паў шып руководшель		А. А. Хромов
должность, уч. степень, уч. звание	подпись.	
Консультант	подпись	, Autu minghaib, quinnin
10110 JUIDI WIII		В. П. Курдюмов
должность, уч. степень, уч. звание	подпись.	
Зав. кафедрой	подпись	, дага шицишы, физиым
зав.каф., д.ф.м.н.		А. П. Хромов
должность, уч. степень, уч. звание	подпись.	
gormioorb, y i. cremenb, y i. sbuille	подпись,	, Ania minimum, waminin

СОДЕРЖАНИЕ

			Стр.
0	предел	ІЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	. 3
В	ведени	1E	. 4
1	Прибли	жающие свойства резольвенты оператора	
	$L_1: y', y($	f(0)=0 на отрезке $[arepsilon,1].$. 5
	1.1	Лемма 1.1	
	1.2	Лемма 1.2	6
	1.3	Лемма 1.3	7
	1.4	Лемма 1.4	8
	1.5	Лемма 1.5	10
	1.6	Лемма 1.6	11
	1.7	Лемма 1.7	12
	1.8	Лемма 1.8	14
	1.9	Лемма 1.9	18
2	Прибли	жающие свойства резольвенты оператора	
	$L_2: y', y($	$(1) = 0$ на отрезке $[0, 1 - \varepsilon]$. 20
	2.1	Лемма 2.1	
	2.2	Лемма 2.2	21
	2.3	Лемма 2.3	22
	2.4	Лемма 2.4	22
	2.5	Лемма 2.5	24
	2.6	Лемма 2.6	24
	2.7	Лемма 2.7	25
	2.8	Лемма 2.8	27
	2.9	Лемма 2.9	28

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

введение

1 Приближающие свойства резольвенты оператора

 $L_1: y', y(0) = 0$ на отрезке $[\varepsilon, 1]$.

Рассмотрим простейший дифференциальный оператор первого порядка $L_1: y', y(0) = 0$. Обозначим через $R_{\lambda}(L_1)$ его резольвенту, т.е. оператор $R_{\lambda}(L_1) = (L_1 - \lambda E)^{-1}$, где E - единичный оператор, λ - спектральный параметр (числовой параметр, вообще говоря, комплексный). Найдем формулу для резольвенты.

1.1 Лемма 1.1

Для $y(x) = R_{\lambda}(L_1)u$ имеет место формула:

$$y(x) \equiv R_{\lambda}(L_1)u = \int_{0}^{x} e^{\lambda(x-t)}u(t)dt.$$
 (1.1)

Доказательство. Пусть $y = R_{\lambda}(L_1)u$. Тогда

$$y' - \lambda y = u, (1.2)$$

$$y(0) = 0. (1.3)$$

По методу вариации произвольной постоянной общее решение уравнения (1.2) есть

$$y(x) = Ce^{\lambda x} + \int_{0}^{x} e^{\lambda(x-t)} u(t) dt, \qquad (1.4)$$

Где C - произвольная постоянная. Находим эту постоянную из условия (1.3). Получаем C=0. Отсюда приходим к формуле (1.1).

Положим в (1.1) $\lambda-r$, где r>0, и рассмотрим операторы $rR_{-r}(L_1)$. Очевидно, эти операторы имеют вид:

$$rR_{-r}(L_1)u = r \int_0^x e^{-r(x-t)} u(t)dt$$
 (1.5)

Выясним приближающие свойства операторов (1.5) при $r \to \infty$.

1.2 Лемма 1.2

Для любой функции $u(x) \in C[0,1]$ имеет место сходимость:

$$||rR_{-r}(L_1)u - u||_{C[\varepsilon,1]} \to 0 \ npu \ r \to \infty, \tag{1.6}$$

arepsilon - произвольное малое положительное число.

Доказательство. Пусть сначала $u(x) \in C^1[0,1]$. Тогда

$$\int_{0}^{x} e^{-r(x-t)} u(t) dt = \frac{1}{r} \Big|_{0}^{x} e^{-r(x-t)} u(t) - \frac{1}{r} \int_{0}^{x} e^{-r(x-t)} u'(t) dt =$$

$$= \frac{1}{r} \left[u(x) - e^{-rx} u(0) - \int_{0}^{x} e^{-r(x-t)} u'(t) dt \right].$$

Отсюда получаем

$$rR_{-r}(L_1)u = u(x) - e^{-rx}u(0) - \frac{1}{r}(rR_{-r}(L_1)u').$$

Тогда

$$rR_{-r}(L_1)u - u = u(x) - e^{-rx}u(0) - \int_0^x e^{-r(x-t)}u'(t)dt.$$

Далее,

$$\left| \int_{0}^{x} e^{-r(x-t)} u'(t) dt \right| \le \|u'\|_{C[0,1]} \int_{0}^{x} e^{-r(x-t)} dt =$$

$$= \frac{1}{r} \|u'\|_{C[0,1]} \cdot (1 - e^{-rx})$$

Тогда

$$\left| rR_{-r}(L_1)u - u \right| \le e^{-rx} \left| u(0) \right| + \frac{1}{r} (1 - e^{-rx}) \|u'\|_{C[0,1]}.$$
 (1.7)

В силу того, что первое слагаемое в правой части последней оценки при x=0 является константой, не зависящей от r, то на всем отрезке [0,1] сходимости функций $rR_{-r}(L_1)u$ к u(x) при $r\to\infty$ мы отсюда не получим. Но если мы рассмотрим отрезок $[\varepsilon,1]$, где $\varepsilon>0$ - любое фиксированное как угодно малое число, то тогда $\|e^{-rx}_{C[\varepsilon,1]}=e^{-r\varepsilon}\to 0\|$ при $r\to\infty$. Отсюда следует утверждение леммы для $u\in C^1[0,1]$.

Пусть теперь $u(x) \in C[0,1]$. Покажем, что нормы операторов $eR_{-r}(L_1)$, рассматриваемых как операторы из C[0,1] в $C[\varepsilon,1]$, ограничены константой, не зависящей от r.

Действительно, имеем:

$$||rR_{-r}(L_1)u||_{C[\varepsilon,1]} \le ||rR_{-r}(L_1)u||_{C[0,1]} =$$

$$= ||r\int_{0}^{x} e^{-r(x-t)}u(t)dt||_{C[0,1]} \le ||u||_{C[0,1]}||1 - e^{-rx}||_{C[0,1]} \le ||u||_{C[0,1]}.$$
(1.8)

Далее, множество функций $u \in C^1[0,1]$ является всюду плотным в пространстве C[0,1]. (Это следует из теоремы Вейерштрасса об аппроксимации непрерывной функции полиномами). Поэтому по теореме Банаха- Штейнгауза из ограниченности норм операторов $rR_{-r}(L_1)$ отсюда следует сходимость (1.6) для любой $u \in C[0,1]$.

Лемма доказана.

Покажем теперь, что приближающие свойства операторов $rR_{-r}(L_1)$ сохраняются и в пространствах гладких функций, т.е. в пространствах $C^l[0,1]$.

Пусть сначала $u \in C^{l-1}[0,1]$. Рассмотрим операторы $D^k R_{-r}(L_1) \equiv (R_{-r}(L_1)u)_x^{(k)}k = 1,...,l, D^1 \equiv D(Du = u').$

1.3 Лемма 1.3

Операторы $D^k R_{-r}(L_1)$ имеют вид:

$$D^{k}R_{-r}(L_{1})u = u^{(k-1)}(x) - ru^{(k-2)}(x) + r^{2}u^{(k-3)}(x) - \dots + (-1)^{k-1}r^{k-1}u(x) + (-1)^{k}r^{k}\int_{0}^{x}e^{-r(x-t)}u(t)dt, k = 1, \dots, l.$$
(1.9)

Доказательство. Для k=1 имеем:

$$DR_{-r}(L_1)u = (DR_{-r}(L_1)u)'_x = \left(\int_0^x e^{-r(x-t)}u(t)dt\right)'_x =$$

$$= u(x) - r\int_0^x e^{-r(x-t)}u(t)dt.$$

Применяем метод математической индукции. Пусть (1.9) выполняется для k=m-1, т.е.

$$D^{m-1}R_{-r}(L_1)u = u^{(m-2)}(x) - ru^{(m-3)}(x) + \dots + (-1)^{m-2}r^{m-2}u(x) + (-1)^{m-1}r^{m-1} \int_{0}^{x} e^{-r(x-t)}u(t)dt.$$

Tогда для k=m получим:

$$D^{m}R_{-r}(L_{1})u = D(D^{m-1}R_{-r}(L_{1})u) = u^{(m-1)}(x) - ru^{(m-2)}(x) + \dots + (-1)^{m-2}r^{m-2}u'(x) + (-1)^{m-1}r^{m-1}u(x) + (-1)^{m}r^{m} \int_{0}^{x} e^{-r(x-t)}u(t)dt.$$

Лемма доказана.

1.4 Лемма 1.4

 $Ecnu\ u(x) \in C^l[0,1],\ mo\ umeem\ mecmo\ cxodumocmb:$

$$||rD^k R_{-r}(L_1)u - u^{(k)}(x)||_{C[\varepsilon,1]} \to 0 \text{ npu } r \to \infty, k = 1, ..., l.$$
 (1.10)

arepsilon - произвольное малое положительное число.

Доказательство. Пусть k = 1. По лемме 1.3 имеем:

$$DR_{-r}(L_1)u = u(x) - r \int_0^x e^{-r(x-t)} u(t)dt.$$
 (1.11)

Далее,

$$\int_{0}^{x} e^{-r(x-t)} u(t) dt = e^{-rx} \int_{0}^{x} e^{rt} u(t) dt =
= e^{-rx} \Big|_{0}^{x} \frac{1}{r} e^{rt} u(t) - \frac{1}{r} \int_{0}^{x} e^{-r(x-t)} u'(t) dt =
= \frac{1}{r} u(x) - \frac{1}{r} e^{-rx} u(0) - \frac{1}{r} \int_{0}^{x} e^{-r(x-t)} u'(t) dt$$
(1.12)

Подставляя (1.12) в (1.11), получим:

$$DR_{-r}(L_1)u = e^{-rx}u(0) + \int_{0}^{x} e^{-r(x-t)}u'(t)dt$$

или

$$DR_{-r}(L_1)u = R_{-r}(L_1)u' + e^{-rx}u(0). (1.13)$$

Получим аналогичное (1.13) выражение для $D^k R_{-r}(L_1)$ при k > 1. В силу (1.13) имеем:

$$D^{2}R_{-r}(L_{1})u = D(DR_{-r}(L_{1})u) = D[R_{-r}(L_{1})u' + e^{-rx}u(0)] =$$

$$= DR_{-r}(L_{1})u' - re^{-rx}u(0).$$

Опять применяем (1.13), заменив u на u'.

Получаем:

$$D^{2}R_{-r}(L_{1})u = R_{-r}(L_{1})u'' + e^{-rx}u'(0) - re^{-rx}u(0).$$

Покажем, что в общем случае для любого k справедлива формула:

$$D^{k}R_{-r}(L_{1})u = R_{-r}(L_{1})u^{(k)} + e^{-rx}u^{(k-1)}(0) - er^{-rx}u^{(k-2)}(0) + \dots + (-1)^{k-1}r^{k-1}e^{-rx}u^{(0)}.$$
(1.14)

Мы показали, что (1.14) выполняется для k=1,2. Пусть это соотношение выполняется для k=m-1, т.е.

$$D^{m-1}R_{-r}(L_1)u = R_{-r}(L_1)u^{(m-1)} + e^{-rx}u^{(m-2)}(0) - re^{-rx}u^{(m-3)}(0) + \dots + (-1)^{m-2}r^{m-2}e^{-rx}u(0).$$

Тогда

$$D^{m}R_{-r}(L_{1})u = D(D^{m-1}R_{-r}(L_{1})u) = DR_{-r}(L_{1})u^{(m-1)} + D[e^{-rx}u^{(m-2)}(0) - re^{-rx}u^{(m-3)}(0) + \dots + (-1)^{m-2}r^{m-2}e^{-rx}u^{(0)}].$$

Используя (1.13) с заменой u(x) на $u^{(m-1)}(x)$, придём к выражению:

$$D^{m}R_{-r}(L_{1})u = R_{-r}(L_{1})u^{(m)} + e^{-rx}u^{(m-1)}(0) - re^{-rx}u^{(m-2)}(0) + r^{2}e^{-rx}u^{(m-3)}(0) + \dots + (-1)^{m-1}r^{m-1}e^{-rx}u^{(0)}.$$

Из формулы (1.14) получаем оценку:

$$||rD^k R_{-r}(L_1)u - u^{(k)}||_{C[\varepsilon,1]} \le ||rR_{-r}(L_1)u^{(k)} - u^{(k)}||_{C[\varepsilon,1]} + e^{-r\varepsilon} \sum_{j=0}^{k-1} r^j |u^{(k-j-1)}(0)|,$$

И тогда соотношение (1.10) вытекает из леммы 1.2.

Замечание. Если в лемме $1.2\ u(0)=0$, то сходимость (1.6) будет выполняться при $\varepsilon=0$, т.е. на всем отрезке [0,1]. Если в лемме $1.4\ u^{(m)}(0)=0, m=0,1,...,k$, то сходимость 1.10 будет выполняться также при $\varepsilon=0$.

В дальнейшем нам потребуются свойства не только самих операторов $rR_{-r}(L_1)$, но и их степеней – операторов $(rR_{-r}(L_1))^k$.

1.5 Лемма 1.5

Операторы $(rR_{-r}(L_1))^k$ имеют вид:

$$(rR_{-r}(L_1))^k u = r^k \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} e^{-r(x-t)} u(t) dt.$$
 (1.15)

Доказательство. Обозначим для краткости $rR_{-r}(L_1) = \Omega_{1r}$. Тогда для k=2 имеем:

$$\Omega_{1r}^{2}u = r^{2} \int_{0}^{x} e^{-r(x-t)} \int_{0}^{t} e^{-r(x-t)} u(\tau) d\tau dt =$$

$$= r^{2} e^{-rx} \int_{0}^{x} \int_{0}^{t} e^{r\tau} u(\tau) d\tau dt = r^{2} e^{-rx} \int_{0}^{x} \int_{\tau}^{x} dt e^{r\tau} u(\tau) d\tau =$$

$$= r^{2} e^{-rx} \int_{0}^{x} (x - \tau) e^{r\tau} u(\tau) d\tau = r^{2} \int_{0}^{x} (x - \tau) e^{-r(x-t)} u(\tau) d\tau.$$

Заменим обозначение τ на t, получим (1.15) при k=2.

Пусть для k=m-1 выполняется формула (1.15), т.е.

$$\Omega_{1r}^{m-1}u = r^{m-1} \int_{0}^{x} \frac{(x-t)^{m-2}}{(m-2)!} e^{-r(x-t)} u(t) dt.$$

Тогда

$$\Omega_{1r}^{m}u = \Omega_{1r}(\Omega_{1r}^{m-1}u) = r^{m} \int_{0}^{x} e^{-r(x-t)} \int_{0}^{t} \frac{(t-\tau)^{m-2}}{(m-2)!} e^{-r(t-\tau)} u(\tau) d\tau dt =
= r^{m} e^{-rx} \int_{0}^{x} \int_{0}^{t} \frac{(t-\tau)^{m-2}}{(m-2)!} e^{r\tau} u(\tau) d\tau dt =
= r^{m} e^{-rx} \int_{0}^{x} \int_{\tau}^{x} \frac{(t-\tau)^{m-2}}{(m-2)!} dt e^{r\tau} u(\tau) d\tau =
= r^{m} \int_{0}^{x} \frac{(x-\tau)^{m-1}}{(m-1)!} e^{-r(x-t)} u(\tau) d\tau,$$

что и требовалось доказать.

1.6 Лемма 1.6

Eсли $u \in C^1[0,1]$, то операторы Ω^k_{1r} имеют представление:

$$\Omega_{1r}^{k}u = -\frac{r^{k-1}x^{k-1}e^{-rx}}{(k-1)!}u(0) + \Omega_{1r}^{k-1}u - \frac{1}{r}\Omega_{1r}^{k}u', \tag{1.16}$$

 $r\partial e \ k \geq 2.$

Доказательство. Пусть k=2. Тогда из (1.15) мы получаем:

$$\Omega_{1r}^2 u = r^2 \int_{0}^{x} (x - t) e^{-r(x-t)} u(t) dt.$$

Интегрируем по частям:

$$\Omega_{1r}^{2}u = r^{2} \left\{ \frac{1}{r} \Big|_{0}^{x} e^{-r(x-t)}(x-t)u(t) - \frac{1}{r} \int_{0}^{x} e^{-r(x-t)}[-u(t) + (x-t)u'(t)]dt \right\} =
= r \left[-xe^{-rx}u(0) + \int_{0}^{x} e^{-r(x-t)}u(t)dt - \int_{0}^{x} e^{-r(x-t)}(x-t)u'(t)dt \right] =
= -rxe^{-rx}u(0) + \Omega_{1r}u - \frac{1}{r}\Omega_{1r}^{2}u'.$$

Предположим, что (1.16) выполняется для k=m-1, m>2. Тогда

$$\Omega_{1r}^{m-1}u = -\frac{r^{m-2}x^{m-2}e^{-rx}}{(m-2)!}u(0) + \Omega_{1r}^{m-2}u - \frac{1}{r}\Omega_{1r}^{m-1}u.$$

Отсюда

$$\Omega_{1r}^{m}u = r \int_{0}^{x} e^{r(x-t)} \left[-\frac{r^{m-2}t^{m-2}e^{-rt}}{(m-2)!} u(0) \right] dt + \Omega_{1r}(\Omega_{1r}^{m-2}u) - \frac{1}{r}\Omega_{1r}(\Omega_{1r}^{m-1}u') = -\frac{r^{m-1}x^{m-1}e^{-rx}}{(m-1)!} u(0) + \Omega_{1r}^{m-1}u - \frac{1}{r}\Omega_{1r}^{m}u',$$

что и требовалось доказать.

1.7 Лемма 1.7

Для $u(x) \in C[0,1]$ справедливы соотношения:

$$\|\Omega_{1r}^k u - u\|_{C[\varepsilon,1]} \to 0 \ npu \ r \to \infty, k = 1, 2, \dots$$
 (1.17)

Доказательство. Для k=1 соотношение (1.17) доказано в Лемме 1.2. Пусть $k\geq 2$, а $u(x)\in C^k[0,1]$ обозначим $\varphi_l(r,x)=-\frac{r^lx^le^{-rx}}{l!}$. Из (1.16) имеем:

$$\begin{split} &\|\Omega_{1r}^k u - u\|_{C[\varepsilon,1]} \leq \|\varphi_{k-1}(r,x)u(0)\|_{C[\varepsilon,1]} + \|\Omega_{1r}^{k-1} u - u\|_{C[\varepsilon,1]} + \\ &+ \left\|\frac{1}{r}\Omega_{1r}^k u'\right\|_{C[\varepsilon,1]} \leq \|\varphi_{k-1}(r,x)u(0)\|_{C[\varepsilon,1]} + \|\varphi_{k-2}(r,x)u(0)\|_{C[\varepsilon,1]} + \ldots + \\ &+ \|\varphi_{1}(r,x)u(0)\|_{C[\varepsilon,1]} + \|\Omega_{1r}u - u\|_{C[\varepsilon,1]} + \left\|\frac{1}{r}\Omega_{1r}^2 u'\right\|_{C[\varepsilon,1]} + \\ &+ \left\|\frac{1}{r}\Omega_{1r}^3 u'\right\|_{C[\varepsilon,1]} + \ldots + \left\|\frac{1}{r}\Omega_{1r}^k u'\right\|_{C[\varepsilon,1]}. \end{split}$$

Далее, поскольку $\varphi_l(r,x) \leq r^l e^{-r\varepsilon}$ на отрезке $[\varepsilon,1]$, то сумма слагаемых, содержащих функции $\varphi_l(r,x), l=1,...,k-1$, имеет оценку $O(r^{k-1}e^{-r\varepsilon}\|u\|_{C[0,1]})$. По лемме $1.2 \|\Omega_{1r}u-u\|_{C[\varepsilon,1]} \to 0$ при $r\to\infty$ для любой $u(x)\in C[0,1]$.

Осталось показать, что слагаемые, содержащие u'(x), могут быть как угодно малыми при $r\to\infty$, если $u(x)\in C^k[0,1]$, т.е., что $\left\|\frac{1}{r}\Omega_{1r}^lu'\right\|_{C[\varepsilon,1]}\to 0$ при $r\to\infty$ для l=2,...,k.

Пусть l=2. Тогда из (16) с заменой u на u' получим:

$$\frac{1}{r}\Omega_{1r}^2 u' = -xe^{-rx}u'(0) + \frac{1}{r}\Omega_{1r}u' - \frac{1}{r^2}\Omega_{1r}^2 u''.$$

Ho $\frac{1}{r}\Omega_{1r}u'$ и $\frac{1}{r^2}\Omega_{1r}^2u''$ есть $O(\frac{1}{r})$. Действительно,

$$\frac{1}{r}|\Omega_{1r}u'| = \left|\int_{0}^{x} e^{-r(x-t)}u'(t)dt\right| \le \|u'\|_{C[0,1]} \int_{0}^{x} e^{-r(x-t)}dt = \frac{1}{r}(1 - e^{-rx})\|u'\|_{C[0,1]} \le \frac{1}{r}\|u'\|_{C[0,1]}$$

И точно так же

$$\frac{1}{r^2}|\Omega_{1r}^2 u''| = \left|\int\limits_0^x e^{-r(x-t)}(x-t)u''(t)dt\right| \le \frac{1}{r}\|u''\|_{C[0,1]}.$$

Для произвольного l из (1.16) получаем:

$$\frac{1}{r}\Omega_{1r}^{l}u' = \frac{1}{r}\varphi_{l-1}(r,x)u'(0) + \frac{1}{r}\Omega_{1r}^{l-1}u' - \frac{1}{r^{2}}\Omega_{1r}^{l}u''.$$
 (1.18)

Из (1.15) имеем:

$$\frac{1}{r}\Omega_{1r}^{l-1}u' = r^{l-2} \int_{0}^{x} e^{-r(x-t)} \frac{(x-t)^{l-2}}{(l-2)!} u'(t)dt, \tag{1.19}$$

$$\frac{1}{r^2}\Omega_{1r}^l u'' = r^{l-2} \int_0^x e^{-r(x-t)} \frac{(x-t)^{l-1}}{(l-1)!} u''(t) dt.$$
 (1.20)

Берём интегралы в правых частях (1.19) и (1.20) по частям, каждый раз "перебрасывая" производную на функцию u'(t) до тех пор, пока перед интегралами не исчезнут степени r, т.е. интегрируем l-2 раза. Тогда в (1.19) мы придём к интегралу $\int\limits_0^x e^{-r(x-t)}u^{(l-1)}(t)dt$ а в (1.20) - к интегралу $\int\limits_0^x e^{-r(x-t)}(x-t)u^l(t)dt$ которые имеют оценки $O\left(\frac{1}{r}\|u^{(l-1)}\|_{C[0,1]}\right)$ и $O\left(\frac{1}{r}\|u^{(l)}\|_{C[0,1]}\right)$ соответственно.

Подстановки, которые получаются при интегрировании, будут состоять из функций $\varphi_m(r,x), m=1,...,l-3$ - в формуле (1.19); m=1,...,l-2 - в формуле (1.20), умноженных на значения производных функции u(x) в нуле до l-2 порядка включительно для формулы (1.19) и до l-1 порядка включительно для формулы (1.20). Общая сумма этих подстановок и первого слагаемого, стоящего в правой части выражения (1.18), будет иметь порядок $r^{l-1}e^{-r\varepsilon}$ на отрезке $[\varepsilon,1]$. Из вышесказанного следует, что соотношения (1.17) выполняются для любой $u(x) \in C^k[0,1]$. Но множество функций, k раз непрерывно дифференцируемых, всюду плотно в пространстве C[0,1] по теореме Вейерштрасса.

Далее нормы операторов Ω^k_{1r} , рассматриваемых как операторы из C[0,1] в $C_{\varepsilon}[0,1]$, ограничены константами, не зависящими от r, поскольку из (1.8) следует:

$$\|\Omega_{1r}^k u\|_{C[\varepsilon,1]} = \|\Omega_{1r}(\Omega_{1r}^{k-1})u\|_{C[\varepsilon,1]} = \|\Omega_{1r}\Omega_{1r}...(\Omega_{1r}u)\|_{C[\varepsilon,1]} \le \|u\|_{C[0,1]}.$$

По теореме Бахана-Штейнгауза соотношение (1.17) справедливо для любой $u \in C[0,1].$

Выясним вопрос о приближении производных с помощью операторов Ω^k_{1r} . Обозначим $D^m\Omega^k_{1r}u=\frac{d^m}{dx^m}\Omega^k_{1r}u, D^1\equiv D.$

1.8 Лемма 1.8

Операторы $D^m\Omega^k_{1r}u$ при $k\geq 1, m=0,...,k-1$ имеют вид

$$D^{m}\Omega_{1r}^{k}u = r^{k} \int_{0}^{x} K_{1m}(x, t, k, r)u(t)dt, \qquad (1.21)$$

$$K_{1m}(x,t,k,r) = (-1)^m e^{-r(x-t)} \left[r^m \frac{(x-t)^{k-1}}{(k-1)!} - mr^{m-1} \frac{(x-t)^{k-2}}{(k-2)!} + C_m^2 r^{m-2} \frac{(x-t)^{k-3}}{(k-3)!} + \dots + (-1)^{m-1} C_m^{m-1} r \frac{(x-t)^{k-m}}{(k-m)!} + \dots + (-1)^m \frac{(x-t)^{k-m-1}}{(k-m-1)!} \right].$$

$$(1.22)$$

Доказательство. По лемме 1.5 операторы Ω^k_{1r} имеют вид:

$$\Omega_{1r}^k u = r^k \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} e^{-r(x-t)} u(t) dt, k = 1, 2, \dots$$

Если $k\geq 2$, а m=1,2,...,k-2, то, очевидно, $D^m(x-t)^{k-1}=0$ при t=x. Эти производные присутствуют в выражениях для $D^m\Omega^k_{1r}u$ при $k\geq 2$, а m=1,2,...,k-1. Действительно, обозначим

$$K_{10}(x,t,k,r) = e^{-r(x-t)} \frac{(x-t)^{k-1}}{(k-1)!}.$$
(1.23)

Тогда будем иметь:

$$\Omega_{1r}^{k}u = r^{k} \int_{0}^{x} K_{10}(x, t, k, r)u(t)dt,$$

$$D\Omega_{1r}^{k}u = r^{k}K_{10}(x, t, k, r)_{|t=x} + r^{k} \int_{0}^{x} DK_{10}(x, t, k, r)u(t)dt =$$

$$= r^{k} \int_{0}^{x} DK_{10}(x, t, k, r)u(t)dt,$$

$$D^{2}\Omega_{1r}^{k}u = r^{k}K_{10}(x, t, k, r)_{|t=x} + r^{k} \int_{0}^{x} D^{2}K_{10}(x, t, k, r)u(t)dt.$$

В выражении $DK_{10}(x,t,k,r)$, очевидно, будут присутствовать степени $(x-t)^l$, начиная с l=k-2, поэтому, $DK_{10}(x,t,k,r)_{|t=x}=0$ и

$$D^{2}\Omega_{1r}^{k}u = r^{k}\int_{0}^{x}D^{2}K_{10}(x,t,k,r)u(t)dt.$$

Продолжая процесс дифференцирования с учетом того, что $D^2K_{10}(x,t,k,r)$ содержит степени $(x-t)^l$, начиная с l=k-3,

 $D^3K_{10}(x,t,k,r) \to c_0$ степени l=k-4, $D^{k-2}K_{10}(x,t,k,r)_{|t=x}$ - начиная со степени l=1. Поскольку $D^{k-2}K_{10}(x,t,k,r)_{|t=x}$ присутствует в выражении $D^{k-1}\Omega^k_{1r}u$, то получаем, что для любого $m\leq k-1, k\geq 2$ справедлива формула:

$$D^{m}\Omega_{1r}^{k}u = r^{k}\int_{0}^{x}D^{m}K_{10}(x,t,k,r)u(t)dt$$

Или, в соответствии с (1.23)

$$D^{m}\Omega_{1r}^{k}u = r^{k} \int_{0}^{x} D^{m} \left[\frac{(x-t)^{k-1}}{(k-1)!} e^{-r(x-t)} \right] u(t)dt.$$
 (1.24)

Отсюда видно, что для указанных значений m и k производные $D^m\Omega^k_{1r}u$ имеют интегральный вид.

При дальнейшем дифференцировании подстановки при t=x уже не будут равны нулю.

Найдем конкретные выражения для $D^m K_{10}(x,t,k,r)$.

Обозначим для простоты $\varphi_l(x,t)=\frac{(x-t)^l}{l!}$. Тогда $D^mK_{10}(x,t,k,r)=D^m[e^{-r(x-t)}\varphi_{k-1}(x,t)]$. Учтем, что $D\varphi_l(x,t)=\varphi_{l-1}(x,t)$. Тогда получим

$$DK_{10}(x,t,k,r) = e^{-r(x-t)}[-r\varphi_{k-1}(x,t) + \varphi_{k-2}(x,t)] =$$

$$= -e^{-r(x-t)}[r\varphi_{k-1}(x,t) - \varphi_{k-2}(x,t)],$$

$$D^{2}K_{10}(x,t,k,r) = e^{-r(x-t)}\{r^{2}\varphi_{k-1}(x,t) - r\varphi_{k-2}(x,t) -$$

$$-[r\varphi_{k-2}(x,t) - \varphi_{k-3}(x,t)]\} = e^{-r(x-t)}[r^{2}\varphi_{k-1}(x,t) -$$

$$-2r\varphi_{k-2}(x,t) + \varphi_{k-3}(x,t)],$$

$$D^{3}K_{10}(x,t,k,r) = e^{-r(x-t)}[r^{3}\varphi_{k-1}(x,t) - 2r^{2}\varphi_{k-2}(x,t) +$$

$$+r\varphi_{k-3}(x,t)] + e^{-r(x-t)}[r^{2}\varphi_{k-2}(x,t) - 2r\varphi_{k-3}(x,t) + \varphi_{k-4}(x,t)] =$$

$$= -e^{-r(x-t)}\{r^{3}\varphi_{k-1}(x,t) - 2r^{2}\varphi_{k-2}(x,t) + r\varphi_{k-3}(x,t) -$$

$$-r^{2}\varphi_{k-2}(x,t) + 2r\varphi_{k-3}(x,t) - \varphi_{k-4}(x,t)\} =$$

$$= -e^{-r(x-t)}[r^{3}\varphi_{k-1}(x,t) - 3r^{2}\varphi_{k-2}(x,t) + 3r\varphi_{k-3}(x,t) - \varphi_{k-4}(x,t)].$$

Применяем метод математической индукции.

Пусть для m=l выполняется:

$$D^{l}K_{10}(x,t,k,r) = (-1)^{l}e^{-r(x-t)}[r^{l}\varphi_{k-1}(x,t) - lr^{l-1}\varphi_{k-2}(x,t) + C_{l}^{2}r^{l-2}\varphi_{k-3}(x,t) + ... + (-1)^{l-1}C_{l}^{l-1}r\varphi_{k-l}(x,t) + (-1)^{l}\varphi_{k-l-1}(x,t)].$$

$$(1.25)$$

Найдём $D^{l+1}K_{10}(x,t,k,r)$. Имеем из (1.25):

$$\begin{split} D^{l+1}K_{10}(x,t,k,r) &= D(D^{l}K_{10}(x,t,k,r)) = D\{(-1)^{l}e^{-r(x-t)}[r^{l}\varphi_{k-1}(x,t) - \\ &- lr^{l-1}\varphi_{k-2}(x,t) + C_{l}^{2}r^{l-2}\varphi_{k-3}(x,t) + \ldots + \\ &+ (-1)^{l-1}C_{l}^{l-1}r\varphi_{k-l}(x,t) + (-1)^{l}\varphi_{k-l-1}(x,t)\}. \end{split}$$

Получим:

$$\begin{split} D^{l+1}K_{10}(x,t,k,r) &= (-1)^{l+1}e^{-r(x-t)}[r^{l+1}\varphi_{k-1}(x,t) - lr^{l}\varphi_{k-2}(x,t) + \\ &+ C_{l}^{2}r^{l-1}\varphi_{k-3}(x,t) + \ldots + (-1)^{l}C_{l}^{l-1}r^{2}\varphi_{k-1}(x,t) + (-1)^{l}r\varphi_{k-l-1}(x,t)] + \\ &+ (-1)^{l}e^{r(x-t)}[r^{l}\varphi_{k-2}(x,t) - lr^{l-1}\varphi_{k-3}(x,t) + C_{l}^{2}r^{l-2}\varphi_{k-4}(x,t) + \ldots + \\ &\quad + (-1)^{l-1}C_{l}^{l-1}r\varphi_{k-l-1}(x,t) + (-1)^{l}\varphi_{k-l-2}(x,t)] = \\ &= (-1)^{l+1}e^{-r(x-t)}\{r^{l+1}\varphi_{k-1}(x,t) - lr^{l}\varphi_{k-2}(x,t) + C_{l}^{2}r^{l-1}\varphi_{k-3}(x,t) + \\ &+ \ldots + (-1)^{l-1}C_{l}^{l-1}r^{2}\varphi_{k-l}(x,t) + (-1)^{l}r\varphi_{k-l-1}(x,t) - r^{l}\varphi_{k-2}(x,t) + \\ &+ lr^{l-1}\varphi_{k-3}(x,t) - C_{l}^{2}r^{l-2}\varphi_{k-4}(x,t) + \ldots + (-1)^{l-1}C_{l}^{l-1}\varphi_{k-l-1}(x,t) - \\ &\quad - (-1)^{l}\varphi_{k-l-2}(x,t)\}. \end{split}$$

Соберём члены с одинаковыми степенями r. Тогда при $r^l \varphi_{k-2}(x,t)$ с точностью до знака будет стоять коэффициент l+1, при $r^{l-1}\varphi_{k-3}(x,t)-C_l^2+l=\frac{l(l-1)}{2}+l=\frac{(l+1)l}{2}=C_{l+1}^2$. В общем случае при $r^{l-j}\varphi_{k-2-j}$ будет коэффициент

$$C_{l}^{j} + C_{l}^{j+1} = \frac{l(l-1)...(l-j+1)}{j!} + \frac{l(l-1)...(l-j)}{(j+1)!} = \frac{l(l-1)(l-j+1)}{(j+1)!}(j+1+l-j) = C_{l+1}^{j+1}.$$

Отсюда получаем формулу (1.25) с заменой l на l+1. Наконец, подставляя в m вместо l выражения $\varphi_l(x,t)$, получим утверждение леммы 1.8.

1.9 Лемма 1.9

При $k \geq 2, m = 1, ..., k-1$ для любой функции $u(x) \in C^{k-1}[0,1]$ справедливы соотношения:

$$||D^m \Omega_{1r}^k u - u^{(m)}||_{C[\varepsilon,1]} \to 0 \ npu \ r \to \infty,$$
 (1.26)

 $\Gamma \partial e \ D^m \Omega^k_{1r} u \ onpedeneны в (1.21)-(1.22).$

Доказательство. Пусть k=2. Тогда в соответствии с (1.19), интегрируя по частям, получим:

$$D\Omega_{1r}^{2}u = r^{2} \int_{0}^{x} \frac{d}{dx} [e^{-r(x-t)}(x-t)]u(t)dt =$$

$$= -r^{2} \int_{0}^{x} \frac{d}{dx} [e^{-r(x-t)}(x-t)]u(t)dt = r^{2}xe^{-rx}u(0) + \Omega_{1r}^{2}u'.$$

Отсюда получаем:

$$\|D\Omega_{1r}^2 u - u'\|_{C[\varepsilon,1]} \le r^2 e^{-r\varepsilon} |u(0)| + \|\Omega_{1r}^2 u' - u'\|_{C[\varepsilon,1]} \to 0$$
 при $r \to \infty$

по Лемме 1.7. Для k=3 имеем:

$$D\Omega_{1r}^{3}u = r^{3} \int_{0}^{x} \frac{d}{dx} \left[e^{-r(x-t)} \frac{(x-t)^{2}}{2} \right] u(t) dt =$$

$$= -r^{3} \int_{0}^{x} \frac{d}{dx} \left[e^{-r(x-t)} \frac{(x-t)^{2}}{2} \right] u(t) dt = r^{3} \frac{x^{2}}{2} e^{-rx} u(0) + \Omega_{1r}^{3} u',$$
(1.27)

И точно так же, как для k=2,

$$||D\Omega_{1r}^3 u - u'||_{C[\varepsilon,1]} \le r^3 e^{-r\varepsilon} |u(0)| + ||\Omega_{1r}^3 u' - u'||_{C[\varepsilon,1]} \to 0$$
 при $r \to \infty$ (1.28)

Далее, из (27) получаем:

$$D^{2}\Omega_{1r}^{3}u = D(D\Omega_{1r}^{3}u) = r^{3}D(\frac{x^{2}}{2}e^{-rx})u(0) + D\Omega_{1r}^{3}u'.$$
 (1.29)

Снова применяем формулу (27) с заменой на и получаем:

$$||D^2\Omega_{1r}^3 u - u''||_{C[\varepsilon,1]} \le \frac{3}{2}r^4 e^{-r\varepsilon}(|u(0)| + |u'(0)|) + ||D\Omega_{1r}^3 u' - u''||_{C[\varepsilon,1]}.$$

Из (28) заменяя u на u', получаем, что $\|D^2\Omega_{1r}^3u-u''\|_{C[\varepsilon,1]}\to 0$ при $r\to\infty.$

Действуем так же, как и в случае любого m, т.е. сначала получаем формулу, аналогичную (1.29), а затем пользуемся леммой 1.7.

В соответствии с (1.24) имеем:

$$D^{m}\Omega_{1r}^{k}u = r^{k} \int_{0}^{x} D^{m} \left[\frac{(x-t)^{k-1}}{(k-1)!} e^{-r(x-t)} \right] u(t)dt = r^{k} \int_{0}^{x} D^{m} K_{10}(x,t,k,r) u(t)dt.$$

Далее,

$$\int_{0}^{x} D^{m} K_{10}(x,t,k,r) u(t) dt = \int_{0}^{x} D(D^{m-1} K_{10}(x,t,k,r)) u(t) dt =
= -\int_{0}^{x} \frac{d}{dt} (D^{m-1} K_{10}(x,t,k,r)) u(t) dt = [D^{m-1} K_{10}(x,t,k,r)]_{t=0} u(0) +
\int_{0}^{x} D^{m-1} K_{10}(x,t,k,r) u'(t) dt = [D^{m-1} K_{10}(x,t,k,r)]_{t=0} u(0) +
+ [D^{m-2} K_{10}(x,t,k,r)]_{t=0} u'(0) + \dots + [D^{2} K_{10}(x,t,k,r)]_{t=0} u^{(m-3)}(0) +
+ [DK_{10}(x,t,k,r)]_{t=0} u^{(m-2)}(0) + K_{10}(x,t,k,r)_{t=x} u^{(m-1)}(0) +
+ \int_{0}^{x} K_{10}(x,t,k,r) u^{(m)}(t) dt.$$
(1.30)

Поскольку в лемме 1.8 $D^lK_{10}(x,t,k,r)=K_{1l}(x,t,k,r)$, где $K_{1l}(x,t,k,r)$ имеет вид (1.22) с заменой m на l, то отсюда следует, что все подстановки в выражении (1.30) есть $O(r^{m-1}e^{-r\varepsilon})$ на отрезке $[\varepsilon,1]$.

Отсюда получаем:

$$||D^m \Omega_{1r}^k u - u^{(m)}||_{C[\varepsilon,1]} = ||\Omega_{1r}^k u^{(m)} - u^{(m)}||_{C[\varepsilon,1]} + O(r^{k+m-1}e^{-r\varepsilon}).$$

Из леммы 1.7 следует соотношение (1.26).

2 Приближающие свойства резольвенты оператора

 $L_2: y', y(1) = 0$ на отрезке $[0, 1 - \varepsilon]$.

Рассмотрим оператор $L_2: y', y(1) = 0$, отличающийся от оператора L_1 лишь граничным условием.

Обозначим его резольвенту $R_{\lambda}(L_2)$. Положим $\lambda = r, r > 0$ и рассмотрим оператор $-rR_r(L_2)$.

Получим аналоги лемм 1.1-1.9.

2.1 Лемма 2.1

Для $y(x) = R_{\lambda}(L_2)$ имеет место формула:

$$y(x) \equiv R_{\lambda}(L_2)u = -\int_{x}^{1} e^{\lambda(x-t)}u(t)dt.$$
 (2.1)

Доказательство. Если $y = R_{\lambda}(L_2)$, то

$$y' - \lambda y = u, (2.2)$$

$$y(1) = 0. (2.3)$$

Общее решение уравнения (2.2) из доказательства леммы 1.1 имеет вид (1.4).

Найдём из условия (2.3):

$$Ce^{\lambda} + \int_{0}^{1} e^{\lambda(1-t)} u(t)dt = 0,$$

откуда

$$C = -\int_{0}^{1} e^{-\lambda t} u(t) dt. \tag{2.4}$$

Подставив (2.4) в (1.4), получим:

$$y(x) - -e^{\lambda t} \int_{0}^{1} e^{-\lambda t} u(t) dt + \int_{0}^{x} e^{\lambda(x-t)} u(t) dt = -\int_{x}^{1} e^{\lambda(x-t)} u(t) dt,$$

что и требовалось доказать.

Положим в (2.1) $\lambda = -r$, где r > 0 и рассмотрим операторы $-rR_r(L_2)$.

2.2 Лемма 2.2

Для любой непрерывной функции u(x) имеет место сходимость:

$$||-rR_r(L_2)u - u||_{C[0,1-\varepsilon]} \to 0 \ npu \ r \to \infty$$
 (2.5)

 $\epsilon de \ \epsilon$ - любое малое положительное число.

Доказательство. Так же, как в лемме 1.2, сначала докажем сходимость (2.5) для $u(x) \in C^1[0,1]$. Тогда имеем:

$$\int_{x}^{1} e^{r(x-t)} u(t) dt = e^{rx} \int_{x}^{1} e^{-rt} u(t) dt = -e^{rx} \frac{1}{r} \left[e^{-rt} u(t) dt \Big|_{x}^{1} - \int_{x}^{1} e^{-rx} u'(t) dt \right] = \frac{1}{r} u(x) - \frac{1}{r} e^{-rx} u'(t) dt$$

Отсюда имеем:

$$\|-rR_r(L_2)u - u\|_{C[0,1-\varepsilon]} \le |u(1)|e^{-r\varepsilon} + \|u'\|_{C[0,1]} \times \left\| \int_x^1 e^{r(x-t)} dt \right\|_{C[0,1-\varepsilon]},$$
(2.6)

$$\int_{x}^{1} e^{r(x-t)} dt = -\frac{1}{r} (e^{-r(1-x)} - 1) \le \frac{1}{r},$$
(2.7)

а из этой оценки и оценки (2.6) получаем (2.5).

Пусть теперь $u(x) \in C[0,1]$. Покажем, что нормы операторов $-rR_r(L_2)$, рассматриваемых как операторы из C[0,1] в $C[0,1-\varepsilon]$, ограничены константой, не зависящей от r.

Действительно

$$\|-rR_r(L_2)u\|_{C[0,1-\varepsilon]} \le \|-rR_r(L_2)u\|_{C[0,1]} = \left\|r\int_x^1 e^{r(x-t)}u(t)dt\right\|_{C[0,1]} \le \|u\|_{C[0,1]}$$

в силу оценки (2.7).

Далее, как в лемме 1.2 (1.2), применяем теорему Банаха-Штейнгауза к операторам $-rR_r(L_2)$ и получаем утверждение леммы 2.2 (2.2).

Теперь займёмся приближающими свойствами операторов $-rR_r(L_2)$ в пространстве $C^l[0,1]$.

Пусть сначала $u(x) \in C^{l-1}[0,1]$. Рассмотрим операторы

$$D^k R_r(L_2) u \equiv (R_r(L_2) u)_x^{(k)}, k = 1, ..., l, D^1 \equiv D(Du = u').$$

2.3 Лемма 2.3

Операторы $D^k R_r(L_2)$ имеют вид:

$$D^{k}R_{r}(L_{2})u = u^{(k-1)}(x) - ru^{(k-2)}(x) + r^{2}u^{(k-3)}(x) + \dots + (-1)^{k-1}r^{k-1}u(x) + (-1)^{k}r^{k}\int_{x}^{1}e^{r(x-t)}u(t)dt.$$
(2.8)

Доказательство. Для k = 1 имеем:

$$DR_r(L_2)u = (R_r(L_2)u)_x' = \left(-\int_x^1 e^{(r(x-t))u(t)}dt\right)_x' = u(x) - r\int_x^1 e^{r(x-t)}u(t)dt.$$

Применяем метод математической индукции, как и в доказательстве леммы 1.3 (1.3). Все выкладки повторяются с заменой интеграла \int_0^x на интеграл \int_x^1 , а экспоненты $e^{-r(x-t)}$ на экспоненту $e^{r(x-t)}$. В результате получаем формулу (2.8).

2.4 Лемма 2.4

Если $u(x) \in C^l[0,1]$, то имеет место сходимость:

$$||-rD^kR(L_2)u-u^{(k)}(x)||_{C[0,1-\varepsilon]} \to 0 \ npu \ r \to \infty, k=1,...,l.$$
 (2.9)

Доказательство. Пусть k = 1. По лемме 2.3 (2.3) имеем:

$$DR_r(L_2)u = u(x) - r \int_x^1 e^{e(x-t)} u(t) dt.$$
 (2.10)

Далее

$$\int_{x}^{1} e^{r(x-t)} u(t) dt = e^{rx} \int_{x}^{1} e^{-rx} u(t) dt = -\frac{1}{r} e^{rx} (e^{-rx} u(t)) \Big|_{x}^{1} + \frac{1}{r} \int_{x}^{1} e^{r(x-t)} u'(t) dt =
= \frac{1}{r} u(x) - \frac{1}{r} e^{-r(1-x)} u(1) + \frac{1}{r} \int_{x}^{1} e^{r(x-t)} u'(t) dt.$$
(2.11)

Подставляя (2.11) в (2.10), получим:

$$DR_r(L_2)u = e^{-r(1-x)}u(1) - \int_x^1 e^{r(x-t)}u'(t)dt,$$

или

$$DR_r(L_2)u = R_r(L_2)u' + e^{-r(1-x)}u(1).$$

Повторяем рассуждения, рпиведённые в лемме 1.4 (1.4) с заменой $R_{-r}(L_1)$ на $R_r(L_2), e^{-rx}$ на $e^{-r(1-x)}$, интеграла $\int\limits_0^x$ на интеграл $\int\limits_x^1$.

Тогда приходим к формуле:

$$D^{k}R_{r}(L_{2})u = R_{r}(L_{2})u^{(k)} + e^{-r(1-x)}u^{(k-1)}(1) - re^{r(1-x)}u^{(k-2)}(1) + \dots + (-1)^{k-1}r^{k-1}e^{-r(1-x)}u(1).$$

$$(2.12)$$

Из формулы (2.12) получаем оценку:

$$|| -rD^{k}R_{r}(L_{2})u - u^{(k)}||_{C[0,1-\varepsilon]} \le || -rR_{r}(L_{2})u^{(k)} - u^{(k)}||_{C[0,1-\varepsilon]} + e^{-r\varepsilon} \sum_{j=0}^{k-1} r^{j} |u^{k-j-1}(1)|,$$

и тогда сходимость (2.9) вытекает из леммы 2.2 (2.2).

Замечание. Если в лемме 2.2 (2.2) u(1)=0, то сходимость (2.5) будет выполняться при $\varepsilon=0$, т.е. на всём отрезке [0,1]. Если в лемме 2.4 (2.4) $u^{(m)}(1)=0, m=0,1,...,k$, то сходимость (2.9) будет выполняться также при $\varepsilon=0$.

Обозначим $-rR_r(L_2) = \Omega_{2r}$ и рассмотрим свойства степеней Ω_{2r}^k .

2.5 Лемма 2.5

операторы Ω^k_{2r} имеют вид:

$$\Omega_{2r}^k u = r^k \int_x^1 \frac{(t-x)^{k-1}}{(k-1)!} e^{r(x-t)} u(t) dt.$$
 (2.13)

Доказательство. Для k=2 имеем:

$$\Omega_{2r}^{2}u = r^{2} \int_{x}^{1} e^{r(x-t)} dt \int_{t}^{1} e^{r(t-\tau)} u(\tau) d\tau = r^{2} e^{rx} \int_{x}^{1} dt \int_{x}^{1} \varepsilon(\tau, t) e^{-r\tau} u(\tau) d\tau,$$

где $\varepsilon(\tau,t)=1$ при $t\leq \tau$ и $\varepsilon(\tau,t)=0$ при $t\geq \tau.$

Меняем порядок интегрирования:

$$\Omega_{2r}^2 u = r^2 e^{rx} \int_x^1 e^{-r\tau} u(\tau) d\tau \int_x^1 \varepsilon(\tau, t) dt = r^2 e^{rx} \int_x^1 e^{-r\tau} u(\tau) d\tau \left[\int_x^\tau \varepsilon(\tau, t) dt + \int_\tau^1 \varepsilon(\tau, t) dt \right] = r^2 e^{rx} \int_x^1 e^{-r\tau} u(\tau) d\tau \int_x^\tau dt = r^2 \int_x^1 (\tau - x) e^{r(x - \tau)} u(\tau) d\tau.$$

Меняем обозначение au на t , получаем:

$$\Omega_{2r}^2 u = r^2 \int_{r}^{1} (t - x) e^{r(x-t)} u(t) dt.$$

Повторяем рассуждения, приведённые в доказательстве леммы 1.5~(1.5), приходим к утверждению леммы 2.5~(2.5).

2.6 Лемма 2.6

Eсли $u(x) \in C^1[0,1]$, то операторы Ω^k_{2r} имеют представление:

$$\Omega_{2r}^{k}u = -\frac{r^{k-1}(1-x)^{k-1}e^{-r(1-x)}}{(k-1)!}u(1) + \Omega_{2r}^{k-1}u + \frac{1}{r}\Omega_{2r}^{k}u'. \tag{2.14}$$

Доказательство. Пусть k=2. Тогда из (2.13) получаем:

$$\Omega_{2r}^2 u = r^2 \int_{r}^{1} (t - x) e^{r(x-t)} u(t) dt.$$

Интегрируем по частям, получаем:

$$\begin{split} \Omega_{2r}^2 u &= r^2 \bigg\{ -\frac{1}{r} [(t-x)e^{r(x-t)}u(t)]_x^1 + \frac{1}{r} \int_x^1 e^{r(x-t)} [(t-x)u(t)]_t' dt \bigg\} \\ &= -r(1-x)e^{-r(1-x)}u(1) + r \int_x^1 e^{r(x-t)} [u(t) + (t-x)u'(t)]_t' dt = \\ &= -r(1-x)e^{-r(1-x)}u(1) + r \int_x^1 e^{r(x-t)}u(t) dt + r \int_x^1 (t-x)e^{r(x-t)}u'(t) dt = -r(1-x)e^{-r(1-x)}u(t) dt - r(1-x)e^{-r(1-x)}u(t) dt - r(1-x)e^{-r(1$$

Применяем метод математической индукции, как и в лемме 1.6 (1.6), приходим к утверждению леммы 2.6 (2.6).

2.7 Лемма 2.7

Для u(x) inC[0,1] справедливы соотношения:

$$\|\Omega_{2r}^k u - u\|_{C[0,1\varepsilon]} \to 0 \ npu \ r \to \infty, k = 1, 2, \dots$$
 (2.15)

Доказательство. Для k=1 соотношение (2.15) доказано в лемме 2.2 (2.2). Пусть $k\geq 2$, а $u(x)\in C^k[0,1]$. Обозначим $\widetilde{\varphi}_l(r,x)=-\frac{r^l(1-x)^le^{-r(1-x)}}{l!}$. Из (2.15) имеем:

$$\|\Omega_{2r}^k u - u\|_{C[0,1\varepsilon]} \le \|\widetilde{\varphi}_{k-1}(r,x)u(1)\|_{C[0,1-\varepsilon]} + \|\Omega_{2r}^{k-1} u - u\|_{C[0,1-\varepsilon]} + \left\|\frac{1}{r}\Omega_{2r}^k u'\right\|_{C[0,1-\varepsilon]} \le \|\Omega_{2r}^k u - u\|_{C[0,1-\varepsilon]} \le \|\Omega_{2r}^k u - u\|_{C[$$

Далее, по аналогии с доказательством леммы 1.7 (1.7), имеем: $\widetilde{\varphi}_l(r,x) \le r^l e^{-r\varepsilon}$ на отрезке $[0,1-\varepsilon]$, по лемме 2.2 (2.2) $\|\Omega_{2r}u-u\|_{C[0,1-\varepsilon]} \to 0$ при $r\to\infty$

для любой $u\in C[0,1].$ Осталось позазать, что $\left\|\frac{1}{r}\Omega_2^lu'\right\|_{C[0,1-\varepsilon]} o 0$ при $r o\infty$ для l=2,...,k.

Пользуемся для этого формулой (2.14), применяя её к производным от функции u.

Получим:

$$\frac{1}{r}\Omega_{2r}^{l}u' = \frac{1}{r}\widetilde{\varphi}_{l-1}(r,x)u'(1) + \frac{1}{r}\Omega_{2r}^{l-1}u' - \frac{1}{r^{2}}\Omega_{2r}^{2}u'',$$

$$\frac{1}{r}\Omega_{2r}^{l-1}u' = r^{l-2} \int_{x}^{1} e^{r(x-t)} \frac{(t-x)^{l-2}}{(l-2)!} u'(t)dt, \tag{2.16}$$

$$\frac{1}{r}\Omega_{2r}^{l}u'' = r^{l-2} \int_{x}^{1} e^{r(x-t)} \frac{(t-x)^{l-1}}{(l-1)!} u''(t) dt, \qquad (2.17)$$

Затем берём интегралы в правых частях (2.16)-(2.17) по частям l-2 раза, каждый раз "перебрасывая" производную на функцию u'(t) в (2.16) и функцию u''(t) в (2.17) до тех пор, пока не исчезнут степени r перед интегралами.

Тогда в (2.16) мы придём к интегралу $\int_x^1 e^{r(x-t)} u^{(l-1)}(t) dt$, а в (2.17) - к интегралу $\int_x^1 e^{r(x-t)} u^{(l)}(t) dt$.

Эти интегралы, а также подстановки, полученные при интегрировании по частям, будут иметь те же оценки, что и аналогичные им интегралы и подстановки в доказательстве леммы 1.7~(1.7).

Отсюда получаем сходимость (2.15) для любой функции $u \in C^k[0,1]$. Далее доказываем ограниченность норм $\|\Omega_{2r}^k u\|_{C[0,1]\to C[0,1-\varepsilon]}$:

$$\|\Omega_{2r}^k u\|_{C[0,1]\to C[0,1-\varepsilon]} = \|\Omega_{2r}(\Omega_{2r}^{k-1}u)\|_{C[0,1-\varepsilon]} = \|\Omega_{2r}\Omega_{2r}...(\Omega_{2r}u)\|_{C[0,1-\varepsilon]} \le \|u\|_{C[0,1]}$$

Наконец, пользуемся теоремой Банаха-Штейнгауза и приходим к утверждению леммы 2.7 (2.7).

Рассмотрим теперь операторы $D^m \Omega_{2r}^k u = \frac{d^m}{dx^m} \Omega_{2r}^k u, D' = D.$

2.8 Лемма 2.8

Операторы имеют вид

$$D^{m}\Omega_{2r}^{k}u = r^{k} \int_{x}^{1} K_{2m}(x, t, k, r)u(t)dt, \qquad (2.18)$$

e

$$K_{2m}(x,t,k,r) = e^{r(x-t)} \left[r^m \frac{(t-x)^{k-1}}{(k-1)!} - mr^{m-1} \frac{(t-x)^{k-2}}{(k-2)!} + C_m^2 r^{m-2} \frac{(t-x)^{k-3}}{(k-3)!} + \dots + \frac{(t-x)^{k-1}}{(k-2)!} + C_m^2 r^{m-2} \frac{(t-x)^{k-3}}{(k-3)!} + \dots + \frac{(t-x)^{k-3}}{(k-3$$

Доказательство. Рассуждаем по аналогии с доказательством леммы 1.8 (1.8). обозначим $K_{20}(x,t,k,r)=e^{r(x-t)}\frac{(t-x)^{k-1}}{(k-1)!},$ записываем представление (2.13) из леммы 2.5 (2.5) в виде:

$$\Omega_{2r}^{k}u = r^{k} \int_{r}^{1} K_{20}(x, t, k, r)u(t)dt,$$

учитываем, что в выражении для $D^j K_{20}(x,t,k,r)$ при j=1,...,k-2 будут присутствовать степени t-x, и тогда будет справедливо выражение:

$$D^{m}\Omega_{2r}^{k}u = r^{k} \int_{x}^{1} D^{m}K_{20}(x, t, k, r)dt = r^{k} \int_{x}^{1} D^{m} \left[\frac{(t - x)^{k-1}}{(k-1)!} e^{r(x-t)} \right] u(t)dt.$$
(2.20)

Осталось найти конкретное выражение для $D^m K_{20}(x,t,k,r)$.

Обозначим

$$\widetilde{\varphi}_l(x,t) = \frac{(t-x)^l}{l!}.$$

Учтём, что $D\widetilde{\varphi}_l(x,t) = -D\widetilde{\varphi}_{k-2}(x,t)$.

Тогда получим:

$$D^{2}K_{20}(x,t,k,r) = e^{r(x-t)} \{ r^{2} \widetilde{\varphi}_{k-1}(x,t) - r \widetilde{\varphi}_{k-2}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-1}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-1}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-1}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-1}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-1}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-1}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-1}(x,t) - 2r^{2} \widetilde{\varphi}_{k-2}(x,t) + r \widetilde{\varphi}_{k-3}(x,t) + D[r^{2} \widetilde{\varphi}_{k-2}(x,t) + D[r^{2} \widetilde{\varphi}_{k-2}(x$$

Сравнивая полученные выражения с соответствующими выражениями в лемме 1.8 (1.8), видим, что они отличаются заменой $e^{-r(x-t)}$ на $e^{r(x-t)}$, $\varphi_l(x,t)$ на $\widetilde{\varphi}_l(x,t)$, а также заменой знака на противоположный при вычислении $D^lK_{20}(x,t,k,r)$ при l - нечётном.

С учётом этого повторяем дословно дальнейшие рассуждения в доказательстве леммы 1.8 (1.8) и приходим к утверждению леммы 2.8 (2.8).

2.9 Лемма 2.9

При $k \geq 2, m = 1, ..., k-1$ для любой функции $u(x) \in C^{k-1}[0,1]$ справедливы соотношения:

$$||D^m \Omega_{2r}^k u - u^{(m)}||_{C[0,1-\varepsilon]} \to 0 \ npu \ r \to \infty.$$
 (2.21)

Доказательство. Пусть k=2. Тогда в соответствии с (2.20), интегрируя по частям, получим:

$$D\Omega_{2r}^2 u = r^2 \int_x^1 \frac{d}{dx} [e^{r(x-t)}(t-x)] u(t) dt = -r^2 \int_x^1 \frac{d}{dt} [e^{r(x-t)}(x-t)] (u(t) dt = -r^2 [[e^{r(x-t)}(x-t)] u(t) dt] = -r^2 [[e^{r(x-t)}(x-t)] u(t) dt]$$

Отсюда получаем:

$$\|D\Omega_{2r}^2 u - u'\|_{C[0,1-\varepsilon]} \le r^2 e^{-r\varepsilon} |u(1)| + \|\Omega_{2r}^2 u' - u'\|_{C[0,1-\varepsilon]} \to 0 \text{ при } r \to \infty$$
 по лемме 2.7 (2.7).

Дальше повторяем рассуждения, приведённые в доказательсте леммы 1.9~(1.9) с заменой x-t на $t-x,\,e^{-r(x-t)}$ на $e^{r(x-t)},$ степеней x в подстановках - на степени 1-x и отрезок $[\varepsilon,1]$ - на отрезок $[0,1-\varepsilon]$.

Тогда придём к следующему:

$$D^{m}\Omega_{2r}^{k}k = r^{k} \int_{x}^{1} D^{m}K_{20}(x,t,k,r)u(t)dt =$$

$$= -\int_{x}^{1} \frac{d}{dt}(D^{m-1}K_{20}(x,t,k,r))u(t)dt = -[D^{m-1}K_{20}(x,t,k,r)]_{x}^{1} + \int_{x}^{1} D^{m-1}K_{20}(x,t,k,r)]_{x}^{1} + \int_{x}^{1} D^{m-1}K_{20}(x,t,k,r)]_{t=1}^{1} u(t) - [D^{m-2}K_{20}(x,t,k,r)]_{t=1}^{1} u'(t) - [D^{2}K_{20}(x,t,k,r)]_{t=1}^{1} u'(t)$$

Так же как для операторов $D^m\Omega^k_{1r}$ все подстановки на отрезке $[0,1-\varepsilon]$ будут иметь оценку $O(r^{m-1}e^{-r\varepsilon})$.

Отсюда приходим к равенству:

$$||D^m \Omega_{2r}^k u - u^{(m)}||_{C[0,1-\varepsilon]} = ||\Omega_{2r}^k u^{(m)} - u^{(m)}||_{C[0,1-\varepsilon]} + O(r^{k+m-1}e^{-r\varepsilon}),$$

откуда следует утверждение леммы 2.9 (2.9).

3 Восстановление функции вместе с её производными

3.1 Приближение функции и её производных на [0,1] с помощью оператора Ω_r

С помощью оператора Ω_{1r} из главы 1 и оператора Ω_{2r} из главы 2 а так же их степеней можно получить приближение к непрерывной функции и её производным во внутренних точках отрезка [0,1]. Теперь можно построить оператор, позволяющий получить приближение к непрерывной функции и её производным на всём отрезке.

Рассмторим оператор Ω_r , являющийся комбинацией операторов Ω_{1r} , Ω_{2r} .

$$\Omega_{r}u = \begin{cases}
\Omega_{2r}u \equiv r \int_{x}^{1} e^{r(x-t)}u(t)dt, & x \in [0, 1/2], \\
\Omega_{1r}u \equiv r \int_{0}^{x} e^{-r(x-t)}u(t)dt, & x \in [1/2, 1].
\end{cases}$$
(3.1)

В силу свойств операторов Ω_{1r} и Ω_{2r} (леммы 1.2 (1.2) и 2.2 (2.2)) на каждом из отрезков [0,1/2] и [1/2,1] эти операторы дают равномерную сходимость в метрике C[0,1/2] и C[1/2,1] соответственно к любой функции $u(x) \in C[0,1]$.

Будем смотреть на функцию $\Omega_r u$ как на элемент пространства $L_\infty[0,1],$ с нормой:

$$||v(x)||_{L_{\infty}[0,1]} = \max\{||v(x)||_{C[0,1/2]}, ||v(x)||_{C[1/2,1]}\}.$$
(3.2)

Далее определим по аналогии с (3.1) в соответствии с леммами 1.5 (1.5) и 2.5 (2.5) оператор $\Omega_r^{(k)}$:

$$\Omega_r^{(k)} u = \begin{cases}
\Omega_{2r}^k u \equiv r^k \int_x^1 \frac{(t-x)^{k-1}}{(k-1)!} e^{r(x-t)} u(t) dt, & x \in [0, 1/2], \\
\Omega_{1r}^k u \equiv r^k \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} e^{-r(x-t)} u(t) dt, & x \in [1/2, 1].
\end{cases}$$
(3.3)

A также построим оператор $D^k\Omega_r(D^k = \frac{d^k}{dx^k}, D' \equiv D)$:

$$D^{k}\Omega_{r}u = \begin{cases} D^{k}\Omega_{2r}u, x \in [0, 1/2], \\ D^{k}\Omega_{1r}u, x \in [1/2, 1], \end{cases} k = 1, 2, \dots$$
 (3.4)

где в соответствии с леммами 1.3 (1.3) и 2.3 (2.3) операторы $D^k\Omega_{1r}u$ и $D^k\Omega_{2r}u$ определены в формулах (1.9) и (2.8) соответственно.

Из (3.2),(3.4) и лемм 1.2 (1.2),2.2 (2.2),1.4 (1.4) и 2.4 (2.4) вытекает теорема:

Теорема 3.1 Для любой функции $u(x) \in C^l[0,1], l \geq 0$ выполняется $cxo\partial umocmb$:

$$||D^k \Omega_r u - u^{(k)}||_{L_{\infty}[0,1]} \to 0 \ npu \ r \to \infty, k = 0, 1, ..., l.$$
 (3.5)

Рассмотрим операторы $D^m \Omega_r^{(k)}$ при $k \ge 1, m = 0, ..., k-1$:

$$D^{m}\Omega_{r}^{(k)}u = \begin{cases} D^{m}\Omega_{2r}^{k}u \equiv r^{k} \int_{x}^{1} K_{2m}(x,t,k,r)u(t)dt, x \in [0,1/2], \\ D^{m}\Omega_{1r}^{(k)}u \equiv r^{k} \int_{0}^{x} K_{1m}(x,t,k,r)u(t)dt, x \in [1/2,1]. \end{cases}$$
(3.6)

где $K_{1m}(x,t,k,r)$, $K_{2m}(x,t,k,r)$ определены в формулах (1.22),(2.19) в соответствии с леммами 1.8 (1.8) и 2.8 (2.8).

Из (3.2),(3.6) и лемм 1.7 (1.7),2.7 (2.7),1.9 (1.9) и 2.9 (2.9) вытекает теорема: **Теорема 3.2** Для любой функции $u(x) \in C^{k-1}[0,1]$ при $k \geq 1, m = 0,...,k-1$ выполняется сходимость:

$$||D^m \Omega_r^{(k)} u - u^{(m)}||_{L_\infty[0,1]} \to 0 \ npu \ r \to \infty.$$
 (3.7)

3.2 Постановка задачи восстановления функции

Пусть $u(x) \in C^m[0,1]$ задана приближением $f_\delta(x)$ по метрике пространства $L_2[0,1]$, т.е. $\|f_\delta-u\|_{L_2[0,1]} \le \delta$. Ставится задача по f_δ и δ найти равно-

мерное приближение u(x). Строится приближение с помощью оператора Ω_r , опредённого в (3.1).

Теорема 3.3 Для сходимости

$$\Delta(\delta, \Omega_r, u) \equiv \sup_{f_{\delta}} \{ \|\Omega_r f_{\delta} - u\|_{L_{\infty}[0,1]} : \|f_{\delta} - u\|_{L_{2}[0,1]} \le \delta \} \to 0 \ npu \ \delta \to 0$$
(3.8)

необходимо и достаточно выполенение согласования:

$$r = r(\delta), r(\delta) \to \infty, (r(\delta))^{1/2}\delta \to 0.$$

3.3 Постановка задачи восстановления производной функции порядка m

Пусть $u(x) \in C^{k-1}[0,1]$ задана приближением $f_{\delta}(x)$ по метрике пространства $L_2[0,1]$. Ставится задача по f_{δ} и δ найти равномерное приближение $u^{(m)}(x), 0 \leq m \leq k-1$. Строится приближение с помощью оператора $D^m \Omega_r^{(k)}$, опредённого в (3.6).

Теорема 3.4 Для сходимости

$$\Delta(\delta, D^{m}\Omega_{r}^{(k)}, u) \equiv \sup_{f_{\delta}} \{ \|D^{m}\Omega_{r}^{(k)}f_{\delta} - u^{(m)}\|_{L_{\infty}[0,1]} : \|f_{\delta} - u\|_{L_{2}[0,1]} \le \delta \} \to 0 \ npu$$

$$\delta \to 0, k > 1, 0 < m < k - 1,$$
(3.9)

необходимо и достаточно выполенение согласования:

$$r = r(\delta), r(\delta) \to \infty, (r(\delta))^{\frac{2m+1}{2}} \delta \to 0.$$