L9: Generatori (12,15)

Argomenti lezione:

- Introduzione
- Combinazione lineare di vettori
- Vettori generatori di un sottospazio

Sottospazio vettoriale

Introduzione

Esempio: Consideriamo le seguenti tre matrici di M(2, 2, R):

$$A_1 \coloneqq \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \quad A_2 \coloneqq \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

Queste tre matrici appartengono al sottospazio vettoriale S(2, R) di M(2, 2, R) formato dalle matrici simmetriche.

Queste tre matrici appartengono anche al sottospazio E di M(2, 2, R) formato dalle matrici del tipo: $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & 0 \end{pmatrix}$

Esistono altri sottospazi contenenti le tre matrici ...

Domanda: C'è un sottospazio più "piccolo" di tutti gli altri?

Introduzione

Esempio: Consideriamo le seguenti tre matrici di M(2, 2, R):

$$A_1 \coloneqq \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \quad A_2 \coloneqq \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

<u>Domanda</u>: C'è un sottospazio più "piccolo" di tutti gli altri ? Un F di M (2, 2, R) che contiene le tre matrici deve contenere:

- le matrici del tipo k_1A_1 , k_2A_2 , k_3A_3 con k_1 , k_2 e k_3 numeri reali;
- le somme di questi multipli: $k_1A_1 + k_2A_2 + k_3A_3$;
- i multipli delle matrici create, poi le loro somme, e così via.

Segue l'insieme F delle matrici del tipo: $k_1A_1 + k_2A_2 + k_3A_3$

Si dimostra che F è un sottospazio vettoriale di M (2, 2, R).

Ad esempio: A_1 si ottiene per $k_1 = 1$, $k_2 = k_3 = 0$.

Introduzione

Esempio: Consideriamo le seguenti tre matrici di M(2, 2, R):

$$A_1 \coloneqq \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \quad A_2 \coloneqq \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

Domanda: C'è un sottospazio più "piccolo" di tutti gli altri?

Segue l'insieme F delle matrici del tipo: $k_1A_1 + k_2A_2 + k_3A_3$

Dimostriamo che F è un sottospazio vettoriale di M (2, 2, R).

Prese le matrici $A := k_1A_1 + k_2A_2 + k_3A_3$ e $B := h_1A_1 + h_2A_2 + h_3A_3$ Verifichiamo che:

$$kA = k (k_1A_1 + k_2A_2 + k_3A_3) = (k k_1) A_1 + (k k_2) A_2 + (k k_3) A_3$$

$$A + B = k_1A_1 + k_2A_2 + k_3A_3 + h_1A_1 + h_2A_2 + h_3A_3$$

$$= (k_1 + h_1) A_1 + (k_2 + h_2) A_2 + (k_3 + h_3) A_3$$

Dipendenza e indipendenza lineare

Sia nel piano che nello spazio, si ha la seguente definizione. Dati n vettori $v_1, v_2, ..., v_n$, essi si dicono **linearmente dipendenti** se esistono $a_1, a_2, ..., a_n$ <u>coefficienti non tutti nulli</u> tali che $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$

Dati n vettori $v_1, v_2, ..., v_n$, essi si dicono **linearmente indipendenti** se l'uguaglianza $a_1v_1 + a_2v_2 + ... + a_nv_n = 0$ è verificata solamente nel caso in cui $a_1 = a_2 = ... = a_n = 0$.

L'unica loro combinazione lineare uguale al vettore nullo è la combinazione lineare con <u>tutti i coefficienti nulli</u>.

Sia nel piano che nello spazio, si ha la seguente definizione.

Dati n vettori v_1, v_2, \dots, v_n , e dati n numeri reali a_1, a_2, \dots, a_n , il vettore $v := \sum_{i=1}^n a_i v_i$

viene chiamato **combinazione lineare** dei vettori $v_1, v_2, ..., v_n$ con **coefficienti** $a_1, a_2, ..., a_n$.

Esempio:

$$egin{aligned} oldsymbol{v}_1 &\coloneqq \overrightarrow{OP_1} \ oldsymbol{v}_2 &\coloneqq \overrightarrow{OP_2} \ a_1 oldsymbol{v}_1 &= \overrightarrow{OP_1'} \ a_2 oldsymbol{v}_2 &= \overrightarrow{OP_2'} \ oldsymbol{v} &= a_1 oldsymbol{v}_1 + a_2 oldsymbol{v}_2 &= \overrightarrow{OP} \end{aligned}$$

Geometria e Combinatoria marcella.sama@uniroma3.it

<u>Definizione</u>: Dati dei vettori v_1, v_2, \ldots, v_r di uno spazio vettoriale V e degli scalari k_1, k_2, \ldots, k_r , una **combinazione lineare dei vettori** v_1, v_2, \ldots, v_r a coefficienti k_1, k_2, \ldots, k_r è $\sum_{i=1}^r k_i v_i$

<u>Definizione</u>: Dati dei vettori v_1, v_2, \ldots, v_r di uno spazio vettoriale V e degli scalari k_1, k_2, \ldots, k_r , una **combinazione lineare dei vettori** v_1, v_2, \ldots, v_r a coefficienti k_1, k_2, \ldots, k_r è $\sum_{i=1}^r k_i v_i$.

Esempio: Scrivere le combinazioni lineari delle matrici:

$$A_1 := \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} A_2 := \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} A_3 := \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} A_4 := \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$k_1 \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} + k_2 \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} + k_3 \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + k_4 \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

<u>Definizione</u>: Dati dei vettori v_1, v_2, \ldots, v_r di uno spazio vettoriale V e degli scalari k_1, k_2, \ldots, k_r , una **combinazione lineare dei vettori** v_1, v_2, \ldots, v_r a coefficienti k_1, k_2, \ldots, k_r è $\sum_{i=1}^r k_i v_i$.

Esempio: Scrivere le combinazioni lineari delle matrici:

$$A_1 := \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} A_2 := \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} A_3 := \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} A_4 := \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{bmatrix} k_1 \\ 1 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix} k_1 - k_2 + 3k_3 - k_4 \\ k_1 \end{pmatrix}$$
 $-k_1 + k_4$ $2k_4$ al variare di $k_1 + k_2 + k_3 + k_4 \end{pmatrix}$ $k_1, k_2, k_3 \in k_4 \text{ in } R.$

<u>Definizione</u>: Dati dei vettori v_1, v_2, \ldots, v_r di uno spazio vettoriale V e degli scalari k_1, k_2, \ldots, k_r , una **combinazione lineare dei vettori** v_1, v_2, \ldots, v_r a coefficienti k_1, k_2, \ldots, k_r è $\sum_{i=1}^r k_i v_i$.

Esempio: Scrivere le combinazioni lineari delle matrici:

$$A_1 := \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} A_2 := \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} A_3 := \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} A_4 := \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{bmatrix} k_1 \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} + k_2 \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} + k_3 \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + k_4 \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} k_1 - k_2 + 3k_3 - k_4 & -k_1 + k_4 & 2k_4 \\ k_1 & 2k_1 + k_2 & k_1 + k_2 + k_3 + k_4 \end{pmatrix}$$
 al variare di k_1, k_2, k_3 e k_4 in k_1 .

<u>Definizione</u>: Dati dei vettori v_1, v_2, \ldots, v_r di uno spazio vettoriale V e degli scalari k_1, k_2, \ldots, k_r , una **combinazione lineare dei vettori** v_1, v_2, \ldots, v_r a coefficienti k_1, k_2, \ldots, k_r è $\sum_{i=1}^r k_i v_i$.

Esempio: Scrivere le combinazioni lineari delle matrici:

$$A_1 := \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} A_2 := \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} A_3 := \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} A_4 := \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$k_1 \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{pmatrix} + k_2 \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} + k_3 \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + k_4 \begin{pmatrix} -1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} k_1 - k_2 + 3k_3 - k_4 & -k_1 + k_4 & 2k_4 \\ k_1 & 2k_1 + k_2 & k_1 + k_2 + k_3 + k_4 \end{pmatrix}$$
 al variare di k_1, k_2, k_3 e k_4 in k_1 .

Generatori

Teorema: L'insieme delle <u>combinazioni lineari</u> dei v_1, v_2, \ldots, v_r al variare dei coefficienti k_1, k_2, \ldots, k_r è un sottospazio vettor. di V chiamato sottospazio vettoriale **generato** dai vettori v_1, v_2, \ldots, v_r : $L(v_1, v_2, \ldots, v_r) := \{\sum_{i=1}^r k_i v_i \mid k_i \in \mathbb{R}\}.$

N.B. Tale sottospazio vettoriale contiene i vettori v_1, v_2, \ldots, v_r ed è contenuto in **tutti** i sottospazi vett. di V contenenti v_1, v_2, \ldots, v_r .

<u>Teorema</u>: L'insieme delle <u>combinazioni lineari</u> dei v_1, v_2, \ldots, v_r al variare dei coefficienti k_1, k_2, \ldots, k_r è un sottospazio vettor. di V chiamato sottospazio vettoriale **generato** dai vettori v_1, v_2, \ldots, v_r :

$$L(v_1, v_2, \ldots, v_r) := \{ \sum_{i=1}^r k_i v_i \mid k_i \in \mathbb{R} \}.$$

Dimostrazione:

- 1. Notiamo che $L(v_1, v_2, ..., v_r)$ contiene tutti i vettori $v_1, v_2, ..., v_r$ Per esempio si ha: $v_1 = 1v_1 + 0v_2 + ... + 0v_r$
- 2. Sia E un sottospazio vettoriale di V contenente $v_1, v_2, ..., v_r$. Allora: E contiene tutti i vettori del tipo $k_1v_1, k_2v_2, ..., k_rv_r$. E contiene tutte le loro combinazioni lineari: $k_1v_1+k_2v_2+...+k_rv_r$. Quindi E è generato da $L(v_1, v_2, ..., v_r)$.

<u>Teorema</u>: L'insieme delle <u>combinazioni lineari</u> dei v_1, v_2, \ldots, v_r al variare dei coefficienti k_1, k_2, \ldots, k_r è un sottospazio vettor. di V chiamato sottospazio vettoriale **generato** dai vettori v_1, v_2, \ldots, v_r :

$$L(v_1, v_2, \ldots, v_r) := \{ \sum_{i=1}^r k_i v_i \mid k_i \in \mathbb{R} \}.$$

Dimostrazione:

3. Dimostriamo che $L(v_1, v_2, ..., v_r)$ è un sottospazio vettor. di V $L(v_1, v_2, ..., v_r)$ è non vuoto (e.g. contiene i vettori $v_1, v_2, ..., v_r$)

Dati $u = k_1v_1 + k_2v_2 + ... + k_rv_r$ e $v = h_1v_1 + h_2v_2 + ... + h_rv_r$.

Sia (u + v) che (k u) appartengono a $L(v_1, v_2, ..., v_r)$.

Infatti: $u + v = (k_1 + h_1) v_1 + (k_2 + h_2) v_2 + ... + (k_r + h_r) v_r$ $k u = (k k_1) v_1 + (k k_2) v_2 + ... + (k k_r) v_r$

Definizione:

Se $V = L(v_1, v_2, ..., v_r)$ allora V è **generato** dai vettori $v_1, v_2, ..., v_r$. In altre parole, $v_1, v_2, ..., v_r$ sono **generatori** di (o generano) V se e solo se ogni vettore di V è combinazione lineare di $v_1, v_2, ..., v_r$.

Esempi:

Data una retta r passante per l'origine O del piano o dello spazio, e dato un punto A della retta r distinto da O, l'insieme dei vettori \overrightarrow{OP} con P in r è un sottospazio vettoriale generato dal vettore \overrightarrow{OA} .

Dati in $V^2(O)$ due vettori \overrightarrow{OP}_1 e \overrightarrow{OP}_2 con O, P_1 e P_2 non allineati, i vettori \overrightarrow{OP}_1 e \overrightarrow{OP}_2 generano $V^2(O)$.

Definizione:

Se $V = L(v_1, v_2, ..., v_r)$ allora V è **generato** dai vettori $v_1, v_2, ..., v_r$. In altre parole, $v_1, v_2, ..., v_r$ sono **generatori** di (o generano) V se e solo se ogni vettore di V è combinazione lineare di $v_1, v_2, ..., v_r$.

Esempi:

Dati in $V^3(O)$ due vettori \overrightarrow{OP}_1 e \overrightarrow{OP}_2 con O, P_1 e P_2 non allineati, i vettori \overrightarrow{OP}_1 e \overrightarrow{OP}_2 generano il sottospazio di $V^3(O)$ formato dai vettori \overrightarrow{OP} con P appartenente al piano passante per O, P_1 e P_2 .

 $V^3(O)$ è generato dai vettori \overrightarrow{OP}_1 , \overrightarrow{OP}_2 e \overrightarrow{OP}_3 con O, P_1 , P_2 e P_3 non complanari.

Definizione:

Se $V = L(v_1, v_2, ..., v_r)$ allora V è **generato** dai vettori $v_1, v_2, ..., v_r$. In altre parole, $v_1, v_2, ..., v_r$ sono **generatori** di (o generano) V se e solo se ogni vettore di V è combinazione lineare di $v_1, v_2, ..., v_r$.

Esempi: Consideriamo le seguenti tre matrici di M(2, 2, R):

$$A_1 \coloneqq \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \quad A_2 \coloneqq \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}, \quad A_3 \coloneqq \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

Il sottospazio vettoriale che esse generano è quello formato dalle matrici del tipo $k_1A_1 + k_2A_2 + k_3A_3$. Facendo i calcoli:

$$\begin{pmatrix} k_1 + 3k_2 & 2k_1 + k_2 + 2k_3 \\ 2k_1 + k_2 + 2k_3 & 0 \end{pmatrix}$$

Definizione:

Se $V = L(v_1, v_2, ..., v_r)$ allora V è **generato** dai vettori $v_1, v_2, ..., v_r$. In altre parole, $v_1, v_2, ..., v_r$ sono **generatori** di (o generano) V se e solo se ogni vettore di V è combinazione lineare di $v_1, v_2, ..., v_r$.

Esempi:

Consideriamo i tre polinomi 1, x, x^2 . Vediamo che le loro combinazioni lineari sono i polinomi del tipo: $k_1 + k_2 x + k_3 x^2$. Dunque 1, x, x^2 generano $R^3[x]$, ovvero il sottospazio vettoriale di R[x] formato dai polinomi di grado minore di 3.

In maniera analoga si potrebbe verificare che $1, x, x^2, \ldots, x^n$ generano $\mathbb{R}^{n+1}[x]$.

Esercizio: Sia *E* il sottospazio vettoriale di R^4 generato dai vettori $v_1 := (3, 2, 2, 1), v_2 := (1, 0, 1, -1)$ e $v_3 := (0, 1, 1, 2)$.

<u>Domanda</u>: Il vettore v := (0, 1, 0, 2) appartiene al sottospazio E?

Dobbiamo stabilire se v è combinazione lineare di v_1 , v_2 e v_3 .

Vale a dire se esistono tre scalari k_1 , k_2 e k_3 tali che:

$$(0, 1, 0, 2) = k_1 (3, 2, 2, 1) + k_2 (1, 0, 1, -1) + k_3 (0, 1, 1, 2)$$

Esercizio: Sia *E* il sottospazio vettoriale di R^4 generato dai vettori $v_1 := (3, 2, 2, 1), v_2 := (1, 0, 1, -1)$ e $v_3 := (0, 1, 1, 2)$.

<u>Domanda</u>: Il vettore v := (0, 1, 0, 2) appartiene al sottospazio E?

Dobbiamo stabilire se v è combinazione lineare di v_1 , v_2 e v_3 .

Vale a dire se esistono tre scalari k_1 , k_2 e k_3 tali che:

$$(0, 1, 0, 2) = k_1 (3, 2, 2, 1) + k_2 (1, 0, 1, -1) + k_3 (0, 1, 1, 2)$$

$$(0, 1, 0, 2) = (3k_1 + k_2, 2k_1 + k_3, 2k_1 + k_2 + k_3, k_1 - k_2 + 2k_3)$$

$$(3k_1 + k_2) = 0$$

$$\begin{cases} 3k_1 + k_2 &= 0\\ 2k_1 &+ k_3 = 1\\ 2k_1 + k_2 + k_3 = 0\\ \hline k_1 - k_2 + 2k_3 = 2 \end{cases}$$

Esercizio: Sia E il sottospazio vettoriale di R^4 generato dai vettori $v_1 := (3, 2, 2, 1), v_2 := (1, 0, 1, -1)$ e $v_3 := (0, 1, 1, 2)$.

<u>Domanda</u>: Il vettore v := (0, 1, 0, 2) appartiene al sottospazio E?

$$\begin{cases} 3k_1 + k_2 &= 0 \\ 2k_1 &+ k_3 = 1 \\ 2k_1 + k_2 + k_3 = 0 \\ k_1 - k_2 + 2k_3 = 2 \end{cases} \longrightarrow A := \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} \mathbf{rk} A = \mathbf{3}$$

v appartiene a E se e solo
se il sistema è risolubile
calcolare il rango di A e A'
e applicare Rouché-Capelli

$$A' := \begin{pmatrix} 3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & -1 & 2 & 2 \end{pmatrix} \mathbf{rk} A' = \mathbf{3}$$

Esercizio: Sia *E* il sottospazio vettoriale di R^4 generato dai vettori $v_1 := (3, 2, 2, 1), v_2 := (1, 0, 1, -1)$ e $v_3 := (0, 1, 1, 2)$.

<u>Domanda</u>: Il vettore v := (0, 1, 0, 2) appartiene al sottospazio E?

$$\begin{cases} 3k_1 + k_2 &= 0 \\ 2k_1 &+ k_3 = 1 \\ 2k_1 + k_2 + k_3 = 0 \\ k_1 - k_2 + 2k_3 = 2 \end{cases} \longrightarrow A := \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} \text{ rk} A = 3$$

Abbiamo che rkA = rkA'. il sistema è risolubile!

Quindi v appartiene a E

$$A' := \begin{pmatrix} 3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & -1 & 2 & 2 \end{pmatrix} \text{ rk} A' = 3$$

Esercizio: Sia E il sottospazio vettoriale di R⁴ generato dai vettori $v_1 := (3, 2, 2, 1), v_2 := (1, 0, 1, -1) e v_3 := (0, 1, 1, 2).$

<u>Domanda</u>: Il vettore v := (0, 1, 0, 2) appartiene al sottospazio E?

$$\begin{cases} 3k_1 + k_2 &= 0 \\ 2k_1 &+ k_3 = 1 \\ 2k_1 + k_2 + k_3 = 0 \\ k_1 - k_2 + 2k_3 = 2 \end{cases} \implies A := \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} \text{ rk} A = 3$$

$$\Rightarrow A \coloneqq \begin{pmatrix} 3 & 1 & 3 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$

Le soluzioni del sistema: $k_1 = 1/3, k_2 = -1, k_3 = 1/3$ (non ho parametri dato che rk A = q incognite)

$$A' := \begin{pmatrix} 3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & -1 & 2 & 2 \end{pmatrix} \text{ rk}A' = 3$$

Esercizio: Sia E il sottospazio vettoriale di R^4 generato dai vettori $v_1 := (3, 2, 2, 1), v_2 := (1, 0, 1, -1)$ e $v_3 := (0, 1, 1, 2)$.

<u>Domanda</u>: Il vettore v := (0, 1, 0, 2) appartiene al sottospazio E?

$$\begin{cases} 3k_1 + k_2 &= 0 \\ 2k_1 &+ k_3 = 1 \\ 2k_1 + k_2 + k_3 = 0 \\ k_1 - k_2 + 2k_3 = 2 \end{cases} \implies A := \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} \text{ rk} A = 3$$

Le soluzioni del sistema:

$$k_1 = 1/3, k_2 = -1, k_3 = 1/3$$

$$ightharpoonup egin{aligned} oldsymbol{v} = rac{1}{3}oldsymbol{v}_1 - oldsymbol{v}_2 + rac{1}{3}oldsymbol{v}_3 \end{aligned}$$

$$A' := \begin{pmatrix} 3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & -1 & 2 & 2 \end{pmatrix} \text{ rk} A' = 3$$

Esercizio: Sia E il sottospazio vettoriale di M(2, 3, R) generato da:

$$A_1 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} A_2 := \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} A_3 := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} A_4 := \begin{pmatrix} 1 & 0 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$

<u>Domanda</u>: Le seguenti matrici appartengono a *E* ?

$$A \coloneqq \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \mathbf{e} \quad B \coloneqq \begin{pmatrix} -2 & 0 & 0 \\ 2 & -3 & -3 \end{pmatrix}$$

Esercizio: Sia E il sottospazio vettoriale di M(2, 3, R) generato da:

$$A_1 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} A_2 := \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} A_3 := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} A_4 := \begin{pmatrix} 1 & 0 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$

Consideriamo una combinazione lineare delle quattro matrici:

$$k_1 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + k_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} + k_4 \begin{pmatrix} 1 & 0 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} -k_2 + k_4 & 0 & k_1 + k_4 \\ k_2 - k_4 & k_1 + k_3 + 3k_4 & k_3 + 2k_4 \end{pmatrix}$$

$$A \coloneqq \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 Il sistema non è risolubile,
 A non appartiene a E

$$\begin{pmatrix} -k_2+k_4 & 0 & k_1+k_4 \\ k_2-k_4 & k_1+k_3+3k_4 & k_3+2k_4 \end{pmatrix} \begin{cases} -k_2 & +k_4=1 \\ 0=0 \end{cases}$$
A appartiene a E se e solo se il seguente sistema è risolubile:
$$A:=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 Il sistema non è risolubile,
$$A := \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 A non appartiene a E
$$k_1 + k_4 = 0$$

$$k_2 - k_4 = 1$$

$$k_1 + k_3 + 3k_4 = 0$$

$$k_3 + 2k_4 = 0$$

Esercizio: Sia E il sottospazio vettoriale di M(2, 3, R) generato da:

$$A_1 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} A_2 := \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} A_3 := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} A_4 := \begin{pmatrix} 1 & 0 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$

Consideriamo una combinazione lineare delle quattro matrici:

$$k_1 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + k_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} + k_4 \begin{pmatrix} 1 & 0 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} -k_2 + k_4 & 0 & k_1 + k_4 \\ k_2 - k_4 & k_1 + k_3 + 3k_4 & k_3 + 2k_4 \end{pmatrix}$$

$$B \coloneqq \begin{pmatrix} -2 & 0 & 0 \\ 2 & -3 & -3 \end{pmatrix}$$

$$\begin{pmatrix} -k_2 + k_4 & 0 & k_1 + k_4 \\ k_2 - k_4 & k_1 + k_3 + 3k_4 & k_3 + 2k_4 \end{pmatrix} \begin{cases} -k_2 & + k_4 = -2 \\ 0 = 0 \end{cases}$$
B appartiene a E se e solo se il seguente sistema è risolubile:
$$B \coloneqq \begin{pmatrix} -2 & 0 & 0 \\ 2 & -3 & -3 \end{pmatrix}$$
Facendo i calcoli si ha:
$$B = \begin{pmatrix} -2 & 0 & 0 \\ 2 & -3 & -3 \end{pmatrix}$$
Il sistema è risolubile,
$$B = B = B = B = B = B$$

23/11/20

Geometria e Combinatoria marcella.sama@uniroma3.it

Osservazione: In generale non c'e alcun motivo perché dato un qualsiasi spazio vettoriale V esistano v_1, v_2, \dots, v_r che generano V.

Esempio:

Si consideri lo spazio vettoriale dei polinomi R[x].

Consideriamo un numero finito di n polinomi $f_1[x], \ldots, f_n[x]$.

Essi non possono essere generatori di R[x], perchè tutte le combinazioni lineari di $f_1[x], \ldots, f_n[x]$ sono polinomi di grado minore o uguale a g (ovvero il massimo dei gradi di tali polinomi).

Ma allora il polinomio x^{g+1} , appartenente a R[x], <u>non</u> è ottenibile come combinazione lineare di $f_1[x], \ldots, f_n[x]$.

Questi ultimi non sono quindi generatori di R[x].

<u>Definizione</u>: Diciamo che uno spazio vettoriale V è **finitamente generato** se esistono $v_1, v_2, ..., v_r$ tali che $V = L(v_1, v_2, ..., v_r)$.

Esempi:

- $V^2(O)$ è finitamente generato;
- $V^3(O)$ è finitamente generato;
- R[x] non è finitamente generato.

Esercizio (1): Dati r+1 vettori $v_1, v_2, ..., v_r, v_{r+1}$ di uno spazio vett. V mostrare che $L(v_1, v_2, ..., v_r) \subseteq L(v_1, v_2, ..., v_r, v_{r+1})$.

Dobbiamo mostrare che ogni combinazione lineare dei vettori $v_1, v_2, ..., v_r$ è anche combinazione lineare dei vettori $v_1, v_2, ..., v_r, v_{r+1}$.

Infatti se v è combinazione lineare dei vettori $v_1, v_2, ..., v_r$, esistono numeri reali $k_1, k_2, ..., k_r$ tali che:

$$v = k_1 v_1 + k_2 v_2 + \dots + k_r v_r$$

$$v = k_1 v_1 + k_2 v_2 + \dots + k_r v_r + \mathbf{0} v_{r+1}$$

Segue che v è combinazione lineare di $v_1, v_2, ..., v_r, v_{r+1}$.

Esercizio (2): Stabilire se le matrici S_1 e S_2 generano S(2, R).

$$S_1 \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad S_2 \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Dobbiamo verificare se una qualsiasi matrice simmetrica S può essere espressa come combinazione lineare di S_1 e S_2 .

Dobbiamo stabilire se esistono k_1 e k_2 tali che $S = k_1S_1 + k_2S_2$, cioè:

$$k_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

$$\begin{pmatrix} k_2 & k_1 \\ k_1 & k_2 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
 Determiniamo k_1 e k_2 se e solo se $a = c$.

Dunque **non** tutte le matrici simmetriche sono combinazioni lineari di S_1 e S_2 . Perciò, S_1 e S_2 **non** generano S(2, R).

Esercizio (3): Stabilire se le matrici S_1 , S_2 e S_3 generano S(2, R).

$$S_1 \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad S_2 \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad S_3 \coloneqq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Dobbiamo verificare se una qualsiasi matrice simmetrica S può essere espressa come combinazione lineare di S_1 , S_2 e S_3 .

Dobbiamo stabilire se esistono k_1 , k_2 e k_3 t.c. $S = k_1S_1 + k_2S_2 + k_3S_3$:

$$k_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + k_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

$$\begin{pmatrix} k_2 & k_1 \\ k_1 & k_3 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
 Basta porre: $k_1 = b$, $k_2 = a$, $k_3 = c$.

Dunque <u>tutte</u> le matrici simmetriche sono combinazioni lineari di S_1 , S_2 e S_3 . Perciò, S_1 , S_2 e S_3 generano S(2, R).

Esercizio (4): Si consideri il sottospazio vettoriale di R[x] generato dai polinomi $p_1(x) := 3+2x$, $p_2(x) := x+x^3$, $p_3(x) := 1+x+x^2-x^3$. Stabilire se i polinomi $p(x) := 1 + 2x + x^3$ e $q(x) := -7 + 2x^2 + 2x^3$ appartengono al sottospazio E.

Stabiliamo se p(x) è combinazione lineare di $p_1(x)$, $p_2(x)$ e $p_3(x)$, cioè: $p(x) = k_1 p_1(x) + k_2 p_2(x) + k_3 p_3(x)$

$$1 + 2x + x^3 = k_1(3+2x) + k_2(x+x^3) + k_3(1+x+x^2-x^3)$$

$$1 + 2x + x^3 = 3k_1 + k_3 + (2k_1 + k_2 + k_3)x + k_3x^2 + (k_2 - k_3)x^3$$

$$\begin{cases} 3k_1 + k_3 = 1 \\ 2k_1 + k_2 + k_3 = 2 \\ k_3 = 0 \\ k_2 - k_3 = 1 \end{cases}$$

23/11/20

Svolgendo i calcoli si vede che questo sistema <u>non</u> è risolubile.

Perciò, p(x) non appartiene al sottospazio E.

Esercizio (4): Si consideri il sottospazio vettoriale di R[x] generato dai polinomi $p_1(x) := 3+2x$, $p_2(x) := x+x^3$, $p_3(x) := 1+x+x^2-x^3$. Stabilire se i polinomi $p(x) := 1 + 2x + x^3$ e $q(x) := -7 + 2x^2 + 2x^3$ appartengono al sottospazio E.

Stabiliamo se q(x) è combinazione lineare di $p_1(x)$, $p_2(x)$ e $p_3(x)$, cioè:

$$q(x) = k_1 p_1(x) + k_2 p_2(x) + k_3 p_3(x)$$

$$-7 + 2x^2 + 2x^3 = k_1(3+2x) + k_2(x+x^3) + k_3(1+x+x^2-x^3)$$

$$-7 + 2x^2 + 2x^3 = 3k_1 + k_3 + (2k_1 + k_2 + k_3)x + k_3x^2 + (k_2 - k_3)x^3$$

$$\begin{cases} 3k_1 + k_3 = -7 \\ 2k_1 + k_2 + k_3 = 0 \\ k_3 = 2 \\ k_2 - k_3 = 2 \end{cases}$$

Svolgendo i calcoli si vede che questo sistema è risolubile.

Perciò, q(x) appartiene al sottospazio E.