What is claimed is:

1	1. A method for generating multiple high-resolution pulse width
2	modulated (PWM) signals comprising the steps of:
3	receiving data representative of duty cycle values;
4	sorting said duty cycle values in a duty cycle table to generate a PWM
5	generation table;
6	generating an interrupt from a capture and compare interrupt defined
7	by a match between a timer value and a duty cycle register;
8	generating an interrupt from a timer overflow;
9	generating multiple PWM signals as defined by said PWM generation
10	table upon detection of said capture and compare interrupt; and
11	returning to a beginning point in said PWM generation table upon
12	generation of a timer overflow interrupt.
1	
1	2. The method as claimed in claim 1 wherein said step of sorting
2	said duty cycle values further comprises the steps of:
3	sorting said duty cycle values along with data stored in a port table
4	containing port pin assignments for each duty cycle value; and
5	sorting said duty cycle values along with data stored in a bit-mask table
6	containing bit-mask assignments corresponding to a specific port pin
7	assignment.
1	3. The method as claimed in claim 1 wherein said step of sorting
2	
3	said duty cycle values to generate a PWM generation table further comprises
4	the step of placing an invalid duty cycle value at the end of the PWM generation table, wherein said invalid duty cycle value is a value that is not
5	
J	equal to said timer value for allowing the timer to overflow.
1	4. The method as claimed in claim 1 wherein said step of
2	generating an interrupt further comprises the step of writing values to a
3	plurality of port pins directly from said PWM generation table.

20

21

22

1	5. The method as claimed in claim 1 wherein said step of sorting
2	said duty cycle values is done in a background task.
1	6. The method as claimed in claim 1 wherein said step of
2	generating an interrupt from a timer overflow further comprises the step of
3	resetting a plurality of port pins to low.
1	7. A system for generating multiple high-resolution pulse width
2	modulated (PWM) signals comprising:
3	a microprocessor having a timer, said microprocessor for receiving
4	duty cycle values;
5	a communication bus for sending duty cycle values to said
6	microprocessor;
7	a capture and compare module in communication with said
8	microprocessor;
9	a duty cycle table at a predetermined location in memory of said
10	microprocessor, said duty cycle table for storing said duty cycle values;
11	a port table having port assignments corresponding to a duty cycle
12	value in said duty cycle table, said port table being stored in memory of said
13	microprocessor;
14	a bit-mask table having bit-mask assignments corresponding to a port
15	assignment in said port table, said bit-mask table being stored in memory of
16	said microprocessor;
17	a PWM generation table created by sorting said duty cycle table, said
18	port table and said bit-mask table upon receipt of all duty cycle values; and
19	an interrupt routine that is entered only upon generation of an interrupt

wherein said interrupt routine allows said microprocessor to write a

predetermined duty cycle value from said PWM generation table to a

predetermined port assignment from said PWM generation table.

1	8. The system as claimed in claim 7 wherein said interrupt is
2	generated by a match between a value of said timer and a duty cycle value;
3	and
4	said predetermined values are written to said port assignment from said
5	PWM generation table.
1	9. The system as claimed in claim 7 wherein said interrupt is
2	generated by a timer overflow and said predetermined values for said port
3	assignments are all low.
1	10. A method for generating multiple high-resolution pulse width
2	modulated (PWM) signals in a system having a microprocessor, a
3	communication bus, and a timer, said method comprising the steps of:
4	receiving a plurality of duty cycle values at said microprocessor;
5	placing said duty cycle values in a duty cycle table wherein each duty
6	cycle value has a corresponding port assignment in a port table and a
7	corresponding bit-mask assignment in a bit-mask table, said port and bit-mask
8	tables being embedded in software in said microprocessor;
9	generating a PWM generation table by sorting said duty cycle, port and
10	bit-mask tables in a background task of said microprocessor;
11	generating a capture and compare interrupt when a source of said
12	interrupt is when a timer value matches a duty cycle value;
13	generating a timer overflow interrupt when a source of said interrupt is
14	an overflow of said timer;
15	receiving an interrupt at said microprocessor;
16	determining a source for said received interrupt;
17	writing predetermined values to a plurality of pins on said
18	microprocessor based on said source for said interrupt;
19	writing values to a plurality of ports wherein said values are taken
20	directly from said PWM generation table during a capture and compare
21	interrupt;

- writing a low value to a plurality of pins during a timer overflow interrupt; and
- returning to a beginning point in said PWM generation table upon generation of a timer overflow interrupt.
- 1 11. The method as claimed in claim 10 wherein said step of 2 generating a PWM generation table further comprises placing an invalid duty 3 cycle value at the end of said PWM generation table, said invalid duty cycle
- 4 value being a value that can never be equal to a value of said timer.