Nice Clique

Given a sequence of n numbers, $D=(d_1,d_2,\ldots,d_n)$, what's the maximum size of a subsequence of D in which every pair is a *nice pair*?

The pair (a, b) is a nice pair iff at least one of the following condition holds.

- 1. The parity of the number of distinct prime divisors of a is equal to that of b. For example, 18 has two distinct prime divisors: a and a.
- 2. The parity of the sum of all positive divisors of a is equal to that of b.

Input Format

The first line contains a single integer n. The second line contains n space-separated integers d_1, d_2, \ldots, d_n .

Constraints

- $1 \le n \le 200$
- $1 < d_i < 10^{15}$

Output Format

Print the maximum size of any subsequence of D in which every pair is a nice pair.

Sample Input 0

```
4
2 3 6 8
```

Sample Output 0

3

Explanation 0

22 (1)

dPrime divisors (count)Divisors (sum)

1, 2 (3)

33 (1) 1, 3 (4) 62, 3 (2) 1, 2, 3, 6 (12) 82 (1) 1, 2, 4, 8 (15)

You can verify that the pairs $(d_1,d_2),(d_1,d_4),(d_2,d_3),(d_2,d_4)$ are nice, while (d_1,d_3) and (d_3,d_4) are not.

The largest subsequence of D in which all pairs are nice pairs is (2,3,8) and its size is 3.