

Tensor Cores

Programación en GPUs

Jose Maureira Magíster en Informática Universidad Austral de Chile 23-09-2024

Agenda

- Introducción
- Tecnología a Nivel de Hardware y Programación
- Ventajas de Rendimiento y Limitaciones
- Usos Alternativos de los Tensor Cores
- Impacto en lA y Posible Beneficio para Regresión Simbólica
- Futuro de los Tensor Cores

Introducción

• ¿Qué son los Tensor Cores?

- O Unidades especializadas en GPUs de NVIDIA.
- Optimizadas para operaciones de matrices.

Relevancia de los Tensor Cores

- O Aceleración en tareas de IA, especialmente deep learning.
- o Reducción de tiempos de entrenamiento de modelos.

• Temas a cubrir en la presentación

- o Tecnología a nivel de hardware y programación.
- Ventajas y limitaciones.
- Aplicaciones fuera de la IA.
- o Impacto en mi investigación.
- o Futuro de los Tensor Cores.

Tecnología a Nivel de Hardware y Programación

- ¿Qué son los Tensor Cores?
 - Unidades en GPUs NVIDIA optimizadas para cálculos matriciales.
 - Realizan operaciones en precisión mixta (FP16/INT8 → FP32).
- Funcionamiento de los Tensor Cores
 - Operan en precisión mixta: mayor eficiencia, menos consumo.
 - Operaciones clave: GEMM (Multiplicación de Matrices General), FMA (Fused Multiply-Add).

- Programación con Tensor Cores
 - Librerías: cuBLAS, cuDNN (alta optimización sin necesidad de bajo nivel).
 - Instrucciones de bajo nivel en CUDA: wmma (Warp Matrix Multiply Accumulate).

Tecnología a Nivel de Hardware y Programación

Ventajas de Rendimiento y Limitaciones

Ventajas

- Aceleración en operaciones matriciales (hasta 8x más rápido).
- Reducción de tiempos en entrenamiento de modelos de IA.
- Eficiencia energética: Menos consumo de energía.

Limitaciones

- Optimización enfocada en operaciones de precisión mixta.
- Uso limitado fuera de deep learning y multiplicaciones de matrices.
- Requiere ajustes en los algoritmos para aprovechar su potencial.

Usos Alternativos de los Tensor Core

- •Simulación de ondas elásticas: Uso de Tensor Cores INT8 en la simulación de propagación de ondas en mallas estructuradas "Low-Ordered Orthogonal Voxel Finite Element with INT8 Tensor Cores for GPU-Based Explicit Elastic Wave Propagation Analysis" (T. Ichimura et al., 2024).
- •Optimización matemática en ingeniería eléctrica: Aceleración de descomposición QR para fitting vectorial "TC-GVF: Tensor Core GPU based Vector Fitting via Accelerated Tall-Skinny QR Solvers" (V. Kukutla et al., 2024).

Simulaciones científicas

Dinámica molecular y sistemas complejos.

Gráficos por computadora

Aceleración de técnicas como ray tracing.

Criptografía

Cálculos matriciales en algoritmos de cifrado.

Procesamiento de señales

Mejora del rendimiento en transformadas de Fourier (FFT).

Impacto en IA y Beneficio en mi Investigación (Tesis)

Impacto en IA

- Aceleración del entrenamiento e inferencia de redes neuronales.
- Aplicaciones en transformers, CNNs, vehículos autónomos y más.

Beneficio para mi investigación

- Aceleración en la regresión simbólica utilizando deep learning.
- Reducción del tiempo de entrenamiento de modelos complejos.
- Evaluación de la eficiencia en el uso de GPUs y paralelización.

Futuro de los Tensor Cores

- Nuevas generaciones: Soporte para TF32, FP64, ampliando su uso a ciencia e ingeniería.
- Separación de núcleos de IA: Núcleos dedicados en futuras arquitecturas (RTX 50).
- Expansión más allá de IA: Aplicaciones en medicina, biotecnología, energías renovables.
- Optimización en la comunicación: Eliminación de cachés entre núcleos IA.

Tensor Cores

Programación en GPUs

Jose Maureira Magíster en Informática Universidad Austral de Chile 23-09-2024

