

ELEC 3210 Introduction to Mobile Robotics Lecture 7

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

L1 - L6

- Navigation, Pose, Odometry, Sensors, ICP, Map etc.
- Project 1 Iterative Closest Point

2

Real World

• Noise, Dynamics, Light Change etc.

Why Sensor Fusion?

- Single sensor-only state estimation is too noisy, slow, and delayed for feedback control of agile mobile robots
- To improve robustness with multiple sensors and handle sensor failures
- To estimate quantities that are unobservable using single sensors

Red: Vision+IMU Fusion

Blue: Vision-only

Design Considerations

- Accuracy
- Frequency
- Latency
- Sensor synchronization & timestamp accuracy
- Delayed and out-of-order measurements
- Estimator initialization
- Sensor calibration
- Different measurement models with uncertainties
- Robustness to outliers
- Computational efficiency

Outline

- Bayes Filter
 - Introduction to probability
 - Bayes Filter

Bayesian Filter

Problem Overview

Questions

- What are sources of uncertainty?
- How do we mathematically represent uncertainty in the system?
- How do we use collected evidence to update our belief?

Courtesy: Shaojie Shen

Introduction to Probability

Random Variables

Definition:

Variable whose value is subject to change due to randomness or chance

Properties:

- Can be continuous (e.g., position in 3D) or discrete (e.g., roll of a die)
- Observed values of random variables are called realizations

Example:

• Pose of a robot, p(X = x), or value of a rolled die, p(D = d)

Probability Density Function

- **Definition:** Function describing the likelihood that a random variable X will take on a particular value X
- Properties:
 - Total probability is 1, $\int p(X=x)dx = 1$, $\sum_{x} p(X=x) = 1$
 - Non-negative, $p(X = x) \ge 0$

Courtesy: Shaojie Shen

Expected Value

- **Definition:** Probability-weighted average value
 - $E[X] = \int p(X = x) x dx$
- Intuition: "Center of mass" of the probability distribution

Courtesy: Shaojie Shen

Joint Probability Distribution

- Definition: The probability density function of a set of two or more random variables
- Also called a multivariate distribution
- Example:
 - p(X = x, Z = z) = a robot having a pose x and receiving a measurement z

Covariance

- Definition: A measure of how two random variables change together
 - $\sigma(X,Y) = E[(X E[X])(Y E[Y])]$
- The variance is a special case where the two random variables are identical
 - $\sigma^2(X) = \sigma(X, X)$
- **Intuition:** The "moment of inertia" of the probability distribution

Covariance Matrix

• For a multivariate distribution over $\mathbf{X} = [X_1, X_2, ..., X_n]^T$ we define the **covariance matrix** to be

•
$$\Sigma = E[(X - E[X])(X - E[X])^T]$$

$$= \begin{bmatrix} \sigma^2(X_1) & \sigma(X_1, X_2) & \cdots & \sigma(X_1, X_n) \\ \sigma(X_2, X_1) & \sigma^2(X_2) & \cdots & \sigma(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma(X_n, X_1) & \sigma(X_n, X_2) & \cdots & \sigma^2(X_n) \end{bmatrix}$$

- The covariance matrix is symmetric and positive semi-definite
 - Proof: https://statproofbook.github.io/P/covmat-psd.html

Independence

- Definition: Two random variables are independent if the outcome of one has no effect on the outcome of the other
- p(x,z) = p(x) p(z)
- Example:
 - If X, Z are the outcomes of two dice rolls
- Properties:
 - Independent random variables are *uncorrelated*, $\sigma(X,Z)=0$
 - Uncorrelated random variables are not necessarily independent
- Example:
 - X=U[-1,1] (uniform distribution between -1 and 1)
 - $Y = X^2$
 - X and Y are uncorrelated but clearly dependent

Conditional Probability

 Definition: Probability of an event z occurring conditioned on another event x occurring

•
$$p(z \mid x) = \frac{p(x,z)}{p(x)} \Leftrightarrow p(x,z) = p(z \mid x) p(x)$$

- Example:
 - z = {there is a door next to the robot}

Courtesy: Shaojie Shen

Conditional Independence

- Definition: Two random variables are conditionally independent if the outcome of one has no effect on the outcome of the other when conditioned on the outcome of a third random variable
- $p(z_1, z_2 | x) = p(z_1 | x) p(z_2 | x)$
- Example:
 - Let Z_1 , Z_2 be two measurements taken from the same place
 - Z_1 , Z_2 are conditionally independent given X

• Question: Are Z_1 , Z_2 are independent?

Marginal Distribution

- Definition: The probability distribution of the subset of a collection of random variables
- $p(z) = \int p(x, z) dx$
- Also known as the Law of Total Probability

$$p(z) = \sum_{i=1}^{3} p(z \mid X = x_i) p(X = x_i)$$

Bayes Theorem

•
$$p(x,z) = p(z \mid x) p(x) = p(x \mid z)p(z)$$

•
$$p(x \mid z) = \frac{p(z \mid x) p(x)}{p(z)} = \frac{liklihood * prior}{evidence}$$

Intuition: Describes how the belief about a random variable X should change to account for the collected evidence (measurement) z

Thomas Bayes 1701-1761

Simple Example

- Suppose a robot obtains measurement z (e.g. brightness)
- What is P(open|z)?

Causal vs. Diagnostic Reasoning

- P(open/z) is diagnostic.
- P(z|open) is causal
 - Light sensor: If the door is open, what's the likelihood that the sensor receives this amount of light
 - Robot localization: Given a map, what's the likelihood that the sensor (camera/laser/etc.) gets this measurement
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

•
$$P(z/open) = 0.6$$
 $P(z/\neg open) = 0.3$ \rightarrow Likelihood
• $P(open) = P(\neg open) = 0.5$ \rightarrow Prior

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$

$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67 \quad \text{Law of Total}$$
Probability

• z raises the probability that the door is open.

Bayesian Filter

• x: state

• u: control signal

• z: measurement

Markov Property

- **Definition:** The future state of the system is conditionally independent of the past states given the current state
 - $p(x_{t+1}|x_{0:t}) = p(x_{t+1}|x_t)$
 - $p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) = p(z_t \mid x_t)$
 - $p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) = p(x_t \mid x_{t-1}, u_t)$

Question:

- Which of the following satisfy the Markov assumption?
 - A first order system with x = [position], u = [velocity]
 - A second order system with x = [position], u = [acceleration]
 - How about with x = [position, velocity], u = [acceleration]

Bayes Filter Derivation

- Goal: Update the probability distribution of the robot pose using the realizations of the control input and measurement
- Note: Bayes Rule and decompose measurement

•
$$p(x_t \mid z_{1:t}, u_{1:t}) = \frac{p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})}{p(z_t \mid z_{1:t-1}, u_{1:t})}$$

How?

Bayes Filter Derivation

- Goal: Update the probability distribution of the robot pose using the realizations of the control input and measurement
- Note: Bayes Rule and decompose measurement

•
$$p(x_t \mid z_{1:t}, u_{1:t}) = \frac{p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})}{p(z_t \mid z_{1:t-1}, u_{1:t})}$$

- Note: The measurement is conditionally independent of the past measurements and control inputs given the current state of the robot
- $p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) = p(z_t \mid x_t)$
- Note: The denominator can be found as a marginal distribution of the numerator
- $p(z_t \mid z_{1:t-1}, u_{1:t}) = \int p(x_t, z_t \mid z_{1:t-1}, u_{1:t}) dx_t = \frac{1}{\eta}$

Process Model

- Also known as the transition model or motion model
- $p(x_t | z_{1:t-1}, u_{1:t})$
- Note: Can find the current pose via marginalization
- $p(x_t \mid z_{1:t-1}, u_{1:t}) = \int p(x_t, x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$
- = $\int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$
- **Note:** The future state is *conditionally independent* of the past measurements and control inputs given the current state and input
- $p(x_t \mid z_{1:t-1}, u_{1:t}) = \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$

Prediction Process model

- Prior: $p(x_0)$
- Process model: $p(x_t \mid x_{t-1}, u_t)$

- Prediction step:
- $p(x_t \mid z_{1:t-1}, u_{1:t}) = \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$

- Prior: $p(x_0)$
- Process model: $p(x_t \mid x_{t-1}, u_t)$
- Measurement model: $p(z_t \mid x_t)$
- Prediction step:
- $p(x_t \mid z_{1:t-1}, u_{1:t}) = \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$
- Update step:
- $p(x_t \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$

- Prior: $p(x_0)$
- Process model: $p(x_t \mid x_{t-1}, u_t)$
- Measurement model: $p(z_t \mid x_t)$
- Prediction step:

•
$$p(x_t \mid z_{1:t-1}, u_{1:t}) = \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

- Update step:
- $p(x_t \mid z_{1:t}, u_{1:t}) = \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$

$$Bel(x_t) = \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Derivation

$$\begin{aligned} & \textit{Bel}(x_t) = P(x_t \mid u_1, z_1 \dots, u_t, z_t) \\ & = \eta \ P(z_t \mid x_t, u_1, z_1, \dots, u_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ & = \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ & = \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_1, z_1, \dots, u_t, x_{t-1}) \\ & \qquad \qquad P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ & = \eta \ P(z_t \mid x_t) \ \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ & = \eta P(z_t \mid x_t) \ \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) \ dx_{t-1} \\ & = \eta P(z_t \mid x_t) \ \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \end{aligned}$$

Loop

Bayes Filters are Familiar

$$Bel(x_t) = \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Applications

- Can use Bayesian filtering in many other domains
 - Robot Localization
 - Simultaneous localization and mapping (SLAM)
 - Feature tracking
 - Pose estimation
 - Target tracking
 - etc.

Resources

- Probabilistic Robotics: Ch. 2 and Ch. 3
- Bayes Filter by Prof. Cyrill Stachniss

Back to Questions

- What are sources of uncertainty?
- How do we mathematically represent uncertainty in the system?
- How do we use collected evidence to update our belief?

Courtesy: Shaojie Shen 44

Next Lecture

- October 9th Kalman Filter
 - Kalman Filter is Bayes Filter with Gaussians
- Project 1 out by October 12th
- Homework 1 will be released this week

Enjoy holiday and study break ☺