SOLUTIONS MANUAL M. MORRIS MANO

COMPUTER SYSTEM ARCHITECTURE

Third Edition

CHAPTER 8

8.1

- (a) 32 multiplexers, each of size 16 × 1.
- (b) 4 inputs each, to select one of 16 registers.
- (c) 4-to-16 line decoder
- (d) 32 + 32 + 1 = 65 data input lines 32 + 1 = 33 data output lines.
- (e) 4 4 4 6 = 18 bits

 | SELA | SELB | SELD | OPR |

8.2

30 + 80 + 10 = 120 n sec.

(The decoder signals propagate at the same as the muxs.)

8.3

		SELA	SELB	SELD	<u> </u>	Control word
(a)	R1 ← R2 + R3	R2	R3	R1	ADD	010 011 001 00010
(b)	$R4 \leftarrow \overline{R4}$	R4	_	R4	COMA	100 xxx 100 01110
(c)	R5 ← R5 – 1	R5	_	R5	DECA	101 xxx 101 00110
(d)	R6 ← SH1 R1	R1	_	R6	SHLA	001 xxx 110 11000
(e)	R7 ← Input	Input	_	R7	TSFA	000 xxx 111 00000

8.4

	Control word	SELA	SELB	SELD	<u>OPR</u>	Microoperation
(a)	001 010 011 00101	R1	R2	R3	SUB	R3 ← R1 – R2
(b)	000 000 000 00000	Input	Input	None	TSFA	Output ← Input
(c)	010 010 010 01100	R2	R2	R2	XOR	R2←R2⊕ R2
(d)	000 001 000 00010	Input	R1	None	ADD	Output←Input+R1
(e)	111 100 011 10000	R7	R4	R3	SHRA	R3 ← shrR7

8.5

- (a) Stack full with 64 items.
- (b) stack empty

8.6

PUSH: $M[SP] \leftarrow DR$ $SP \leftarrow SP - 1$ POP: $SP \leftarrow SP + 1$ $DR \leftarrow M[SP]$

8.7

- (a) AB * CD * EF * ++
- (b) AB * ABD * CE * + * +
- (c) FG + E * CD * + B * A +
- (d) ABCDE + * + * FGH + */

(a)
$$\frac{A}{B-(D+E)*C}$$

(b)
$$A + B - \frac{C}{D * E}$$

(c)
$$\frac{A}{B*C} - D + \frac{E}{F}$$

(d)
$$(((F + G) * E + D) * C + B) * A$$

8.9

				6		10		8		
	4		2	2	8	8	80	80	88	
3	3	7	7	7	7	7	7	7	7	616
3	4	+	2	6	+	10	*	8	+	*

8.10

WRITE (if not full):

 $M [WC] \leftarrow DR$

WC ← WC + 1

ASC ← ASC + 1

READ: (if not empty)

 $DR \leftarrow M [RC]$

RC ← RC + 1

ASC ← ASC -1

8.11

8	12	12	=	32bit	
op code	Address 1	Address 2	Tv	vo address instruc	ctions

 2^8 = 256 combinations.

256 - 250 = 6 combinations can be used for one address

op code	Address	
6 x 2 ¹²		

One address instructor

Maximum number of one address instruction:

$$= 6 \times 2^{12} = 24,576$$

8.12

(d) RPN:
$$\times$$
 AB – C + DE \times F – \times GHK \times + /=

8.13

$$256 \text{ K} = 2^8 \times 2^{10} = 2^{18}$$

op code	Mode	Register	Address		
5	3	6	18	=	32

32

8.14

Z = Effective address

(a) Direct: Z = Y(b) Indirect: Z = M[Y](c) Relative: Z = Y + W + 2(d) Indexed: Z = Y + X

bits

 $\begin{array}{c|c} PC & W & opcode Mode \\ \hline & W+1 & Y \\ \hline & XR = X & W+2 \\ \hline & Z & operand \\ \end{array}$

8.15

- (a) Relative address = 500 751 = -251
- (b) 251 = 000011111011; -251 = 111100000101
- (c) PC = 751 = 001011101111; 500 = 000111110100 PC = 751 = 001011101111 RA = -251 = +111100000101 EA = 500 = 000111110100

8.16

Assuming one word per instruction or operand.

Computational type	Branch type
Fetch instruction	Fetch instruction
Fetch effective address	Fetch effective address and transfer to PC
Fetch operand	
3 memory references	2 memory references

The address part of the indexed mode instruction must be set to zero.

8.18

Effective address

- (a) Direct: 400
- (b) Immediate: 301
- (c) Relative: 302 + 400 = 702
- (d) Reg. Indirect: 200
- (e) Indexed: 200 + 400 = 600

		Memory
$PC \rightarrow$	-300	opcode Mode
RI = 200	301	400
	302	Next instruction

8.19

$$1 = C$$
 $0 = C$ $1 = C$ $0 = Reset initial carry$

6E C3 56 7A

<u>13</u> <u>55</u> <u>6B</u> <u>8F</u>

 $\overline{82}$ $\overline{18}$ $\overline{C2}$ $\overline{09}$ Add with carry

8.20

10011100		10011100		10011100	
<u>10101010</u>	AND	<u>10101010</u>	OR	<u>10101010</u>	XOR
10001000		11111110		00110110	

8.21

- (a) AND with: 0000000011111111 (b) OR with: 0000000011111111
- (c) XOR with: 00001111111110000

8.22

Initial: 01111011 C = 1

SHR: 00111101 SHL: 11110110 SHRA: 00111101

SHLA: 11110110 (over flow)

ROR: 10111101 ROL: 11110110 RORC: 10111101 ROLC: 11110111

8.23

$$+83 = 01010011 -83 = 10101101 +68 = 01000100 -68 = 10111100$$

(b) 1 0 carries

$$-68$$
 10111100
 -83 +10101101
 -151 01101001
 $^{\wedge}$ (over flow)
(c) $-68 = 10111100$

(c)
$$-68 = 10111100$$

 $-34 = 11011110$
 $\oplus = 1$

(d)
$$-83 = 10101101$$

 $-166 \neq 01011010$
Over flow

$$Z = F'_0 F'_1 F'_2 F'_3 F'_4 F'_5 F'_6 F'_7 = (F_0 + F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7)'$$

8.25

(a) 72 01110010

$$C6$$
 11000110
138 00111000
 $C = 1$ $S = 0$ $Z = 0$ $V = 0$

(b) 0 1
72 01110010

$$1E$$
 00011110
90 10010000
 $C = 0$ $S = 1$ $Z = 0$ $V = 1$

$$C = 0$$
 $S = 0$ $Z = 1$ $V = 0$
(e) $C = 0$ $S = 0$ $Z = 1$ $V = 0$

8.26

C = 1 if A < B, therefore C = 0 if A
$$\geq$$
 B
Z = 1 if A = B, therefore Z = 1 if A \neq B
For A > B we must have A \geq B provided A \neq B
Or C = 0 and Z = 0 (C'Z') = 1
For A \leq B we must have A < B or A = B
Or C = 1 or Z = 1 (C + Z) = 1

A \geq B implies that A - B \geq 0 (positive or zero) Sign S = 0 if no over flow (positive) or S = 1 if over flow (sign reversal) Boolean expression: S'V' + SV = 1 or (S \oplus V) = 0 A < B is the complement of A \geq B (A - B negative) then S = 1 if V = 0 or S = 0 if V = 1 (S \oplus V) = 1 A > B Implies A \geq B but not A = B (S \oplus V) = 0 and Z = 0 A \leq B Implies A < B or A = B S \oplus V = 1 or Z = 1

8.28

8.29

- (c) C = 0 Z = 0 S = 1 V = 0
- (d) BNC BNZ BM BNV

8.30

(a)
$$A = 01000001 = +65$$

 $B = 10000100 = 132$
 $A - B = 10111101 = -67$ (2's comp. of 01000011)
(b) C (borrow) = 1; $Z = 0$ 65 < 132
 $A < B$

(c) BL, BLE, BNE

(a)

$$A = 01000001 = + 65$$

$$B = 10000100 = -124$$

$$A - B = 101111101 + 189 = 010111101$$
9 bits

(b) S = 1 (sign reveral) +189 > 127

$$Z = 0$$

 $V = 1$ (over flow) 65 > -124
 $A > B$

(c) BGT, BGE, BNE

8.32

	<u>PC</u>	<u>SP</u>	Top of Stack
Initial	1120	3560	5320
After CALL	6720	3559	1122
After RETURN	1122	3560	5320

8.33

Branch instruction – Branch without being able to return.

Subroutine call – Branch to subroutine and then return to calling program.

Program interrupt – Hardware initiated branch with possibility to return.

(a) PC \leftarrow M[SP]

 $SP \leftarrow SP + 1$

SP ← SP+1

PSW ← MISP1

8.34

See Sec. 8–7 under "Types of Interrupts".

8.35

8-37

Window Size = L + 2C + G

Computer 1: 10 + 12 + 10 = 32 Computer 2: 8 + 16 + 8 = 32 Computer 3: 16 + 32 + 16 = 64

Register file = (L + C)W + G

Computer 1: $(10 + 6) 8 + 10 = 16 \times 8 + 10 = 138$ Computer 2: $(8 + 8) 4 + 8 = 16 \times 4 + 8 = 72$ Computer 3: $(16 + 16) 16 + 16 = 32 \times 16 + 16 = 528$

8-38

(a) SUB R22, #1, R22

(b) XOR R22, # -1, R22

(c) SUB R0, R22, R22

(d) ADD R0, R0, R22

(e) SRA R22, # 2, R22

(f) OR R1, R1, R1

or ADD R1, R0, R1

or SLL R1, #0, R1

 $R22 \leftarrow R22 - 1$ (Subtract 1)

 $R22 \leftarrow R22 \oplus all 1's (x \oplus 1 = x')$

 $R22 \leftarrow 0 - R22$

 $R22 \leftarrow 0 + 0$

Arithmetic shift right twice

 $R1 \leftarrow R1 V R1$

 $R1 \leftarrow R1 + 0$

shift left 0 times

8-39

(a) JMP Z, # 3200, (RO)

(b) JMPR Z, – 200

 $PC \leftarrow 0 + 3200$

 $PC \leftarrow 3400 + (-200)$