Finding many collisions via quantum walks

Xavier Bonnetain André Chailloux André Schrottenloher Yixin Shen

November 2, 2022

Classical Collision Finding

Classical collision algorithms

$$f: \{0,1\}^n \to \{0,1\}^n$$

A first algorithm

- Create a sorted list of size 2^{n/2}
- Look for collisions

Classical collision algorithms

$$f: \{0,1\}^n \to \{0,1\}^n$$

A first algorithm

- Create a sorted list of size 2^{n/2}
- Look for collisions

Pollard-Rho

- ► The cyclic part of the functional graph of f is of size $\Theta(2^{n/2})$
- Seek a collision in the graph
- Memory-less, parallelizable

Other cases

$$f:\{0,1\}^n \to \{0,1\}^m,\, n \leq m \leq 2n$$

Same algorithms, complexity $2^{m/2}$.

Other cases

$$f: \{0,1\}^n \to \{0,1\}^m, n \le m \le 2n$$

Same algorithms, complexity $2^{m/2}$.

Finding 2^k collisions instead of 1

List of size $2^{k/2+m/2}$ contains 2^k collisions on average

Other cases

$$f: \{0,1\}^n \to \{0,1\}^m, n \le m \le 2n$$

Same algorithms, complexity $2^{m/2}$.

Finding 2^k collisions instead of 1

List of size $2^{k/2+m/2}$ contains 2^k collisions on average

Lower bounds

Matching query lower bound in all cases

Quantum Collision Finding

Quantum Search

Operators

- ▶ Test: $|x\rangle \mapsto -|x\rangle$ if x marked, identity otherwise
- ▶ Diffusion: $\sum_{i=0}^{2^n-1} |i\rangle \mapsto -\sum_{i=0}^{2^n-1} |i\rangle$, identity otherwise

Principle

Use the test operator to differentiate marked elements from the others, and use the diffusion operator to make marked elements interfere constructively.

Quantum Search

Operators

- ▶ Test: $|x\rangle \mapsto -|x\rangle$ if x marked, identity otherwise
- ▶ Diffusion: $\sum_{i=0}^{2^n-1} |i\rangle \mapsto -\sum_{i=0}^{2^n-1} |i\rangle$, identity otherwise

Principle

Use the test operator to differentiate marked elements from the others, and use the diffusion operator to make marked elements interfere constructively.

Algorithm

- Test and Diffusion are reflexions in the same plane
- ▶ Composition is a rotation of angle 2 $\arcsin \sqrt{\epsilon}$
- ▶ Need to repeat until angle is $\sim \pi/2$

Quantum Collision Finding via Quantum Search

Pollard-Rho

- Still need to compute f ∘ · · · ∘ f
- No quantum improvement!

Quantum Collision Finding via Quantum Search

Pollard-Rho

- ▶ Still need to compute $f \circ \cdots \circ f$
- No quantum improvement!

What works: a list + an enumeration (BHT algorithm)

- ► Take a list $L = (f(y_0), ..., f(y_{2^u}))$
- ▶ Search for an x such that there exists i with $f(x) = f(y_i)$ and $x \neq y_i$
- ► Cost 2^u memory, $2^u + \sqrt{\frac{2^n}{2^u}}$ time

BHT

BHT algorithm

- ► Take a list $L = (f(y_0), ..., f(y_{2^u}))$
- ▶ Search for an x with $f(x) = f(y_i)$ and $x \neq y_i$
- ► Cost 2^u memory, $2^u + \sqrt{\frac{2^n}{2^u}}$ time

Finding 2^k collisions

- ▶ Use one larger list of size $2^{n/3+2k/3}$
- ▶ Do 2^k quantum searches $\left(\cos t \ 2^k \times \sqrt{\frac{2^n}{2^{n/3-2k/3}}} = 2^{n/3+2k/3} \right)$

Lower bound [LZ19]

General query lower bound $\Omega\left(2^{m/3+2k/3}\right)$

With larger m

BHT algorithm

Query a list of size 2^{ℓ}

- ▶ Only 2^{2n-m} inputs are part of a collision
- **Each** element has probability 2^{n-m} to be in a collision pair
- $ightharpoonup \mathcal{O}\left(2^{\ell-m+n}\right)$ collisions pairs for the initial list.
- ▶ Output 2^k collision pairs, need $\ell m + n \ge k$, otherwise the list might contain no relevant input $\sim m \le \frac{3}{2}n$

Summary

Summary

Collision Finding via Random Walks

Cost of a classical random walk

We need procedures:

- ► To **setup** a starting arbitrary vertex (S)
- ► To move from one vertex to one of its neighbors (U)
- ► To **check** if a vertex is marked (trivial) (C)

We will find a marked vertex in time:

where $\frac{1}{\delta}$ is the number of updates before we reach a new uniformly random vertex.

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents is $|N_1 \cap N_2| = 2^r 1$
- $ightharpoonup rac{1}{\delta} = rac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents is $|N_1 \cap N_2| = 2^r 1$
- ▶ $\frac{1}{\delta} = \frac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size 2^r
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents is $|N_1 \cap N_2| = 2^r 1$
- $ightharpoonup rac{1}{\delta} = rac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size 2^r
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Complexity

$$2^r + \frac{1}{2^{2r-n}}(2^r \times 1 + 2^r) \approx \max(2^r, 2^{n-r})$$

Definition (Johnson graph)

- Nodes are sets of 2^r elements among 2ⁿ
- ▶ N_1 and N_2 are adjacents is $|N_1 \cap N_2| = 2^r 1$
- $ightharpoonup rac{1}{\delta} = rac{2^r(2^n-2^r)}{2^n} \simeq 2^r$ (We need to replace all elements.)

Collision finding with Johnson graph

- Create a random list of elements of size 2^r
- Repeat until a collision is found:
 - Walk 2^r times
 - Check whether the node contains a collision

Complexity

$$2^r + \frac{1}{2^{2r-n}} (2^r \times 1 + 2^r) \approx \max(2^r, 2^{n-r}) \quad \rightsquigarrow \quad \text{optimal for } r = n/2$$

Time of a quantum walk (MNRS framework)

- The setup now requires to create a superposition over all vertices
- ▶ As in quantum search, we perform $\sqrt{\frac{1}{\epsilon}}$ steps instead of $\frac{1}{\epsilon}$
- But the mixing is also accelerated!

$$S + \underbrace{\sqrt{\frac{1}{\epsilon}}}_{\text{Walk steps}} \left(\underbrace{\sqrt{\frac{1}{\delta}}U}_{\text{Mixing time}} + C \right)$$

The Update handles all vertices and all edges in superposition

Ambainis's algorithm for Collision Finding

Problem

 $f: \{0,1\}^n \to \{0,1\}^m, n \le m \le 2n$, find a collision

MNRS walk in a Johnson graph

- ▶ Setup : Creat the uniform superposition of all lists of 2^r elements.
- Fraction of marked nodes : $\epsilon = 2^{2r-m}$
- ▶ Mixing time: $\sqrt{\frac{1}{\delta}} = 2^{r/2}$
- Assume Update and Test polynomial time
- ► Cost $2^r + 2^{m/2-r} \times 2^{r/2} \simeq \max(2^r, 2^{m/2-r/2})$

Ambainis's algorithm for Collision Finding

Problem

 $f: \{0,1\}^n \rightarrow \{0,1\}^m, n \le m \le 2n$, find a collision

MNRS walk in a Johnson graph

- ► Setup : Creat the uniform superposition of all lists of 2^r elements.
- Fraction of marked nodes : $\epsilon = 2^{2r-m}$
- Mixing time: $\sqrt{\frac{1}{\delta}} = 2^{r/2}$
- Assume Update and Test polynomial time
- ► Cost $2^r + 2^{m/2-r} \times 2^{r/2} \simeq \max(2^r, 2^{m/2-r/2})$ \sim optimal for r = m/3

Quantum data structures

▶ Need efficient data structures to allow poly time Update and Test

Quantum data structures

- Need efficient data structures to allow poly time Update and Test
- ➤ To have a proper interference, one node must be represented by a single quantum state

Quantum data structures

- Need efficient data structures to allow poly time Update and Test
- ➤ To have a proper interference, one node must be represented by a single quantum state
- This state must not depend on the path in the graph

- Need efficient data structures to allow poly time Update and Test
- ➤ To have a proper interference, one node must be represented by a single quantum state
- ► This state must not depend on the path in the graph

- Need efficient data structures to allow poly time Update and Test
- ➤ To have a proper interference, one node must be represented by a single quantum state
- This state must not depend on the path in the graph

History-free quantum data structures: step 1

Take an efficient classical data structure (ex. radix tree)

Tree representing {0000,0010,1001,1011,1111}.

Example for set $S = \{0000, 0010, 1001, 1011, 1111\}$:

$$(5,1,2,00,1)$$

$$(3,5,7,0,111)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

Format: (# leaves, addr left, addr right, label left, label right)
Actual memory content:

Valid sequence: (0, 1, 3, 4, 2, 5, 8, 9, 7)

Example for set $S = \{0000, 0010, 1001, 1011, 1111\}$:

$$(5,6,2,00,1)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

$$(1,\bot,\bot,\varepsilon,\varepsilon)$$

Format: (# leaves, addr left, addr right, label left, label right)
Actual memory content:

Valid sequence: (0, 6, 1, 7, 2, 4, 3, 9, 5)

Quantum memory allocation

We work with

$$|T(S)\rangle = \sum_{\text{valid sequences } I} |T_I(S)\rangle$$
.

Problem when inserting a new node

Compute the uniform superposition of all free memory cells

Quantum memory allocation

We work with

$$|\mathit{T}(\mathcal{S})
angle = \sum_{\mathsf{valid sequences}\; \mathit{I}} |\mathit{T}_\mathit{I}(\mathcal{S})
angle \;\;.$$

Problem when inserting a new node

Compute the uniform superposition of all free memory cells

Approach 1: Random guess

Store in 1 qubit per cell its availability. Do a quantum search to compute the superposition of available cells.

Quantum memory allocation

We work with

$$|T(S)\rangle = \sum_{\text{valid sequences } I} |T_I(S)\rangle$$
.

Problem when inserting a new node

Compute the uniform superposition of all free memory cells

Approach 1: Random guess

Store in 1 qubit per cell its availability. Do a quantum search to compute the superposition of available cells.

Approach 2 : Memory tree

Maintain a tree with each memory cell as a leaf. Count for each node the number of free cells.

Finding 2^k collisions

Idea

Repeat the quantum walk 2^k times.

Finding 2^k collisions

Idea

Repeat the quantum walk 2^k times.

Issue

Repeat Ambainis's walk 2^k times is expensive.

Finding 2^k collisions

Idea

Repeat the quantum walk 2^k times.

Issue

Repeat Ambainis's walk 2^k times is expensive.

Aim

At the end of each walk, extract collisions and preserve a useful quantum data structure \leadsto new starting state of the next quantum walk.

Begin with a normal quantum walk

- Begin with a normal quantum walk
- Measure the number of collisions we have in the end

- Begin with a normal quantum walk
- Measure the number of collisions we have in the end
- Remove reversibly this number of collision from the tree

- Begin with a normal quantum walk
- Measure the number of collisions we have in the end
- Remove reversibly this number of collision from the tree
- Measure the extracted collisions

- Begin with a normal quantum walk
- Measure the number of collisions we have in the end
- Remove reversibly this number of collision from the tree
- Measure the extracted collisions
- Final state is now the uniform superposition of all nodes:
 - Without collision
 - Without any of the extracted inputs

- Begin with a normal quantum walk
- Measure the number of collisions we have in the end
- Remove reversibly this number of collision from the tree
- Measure the extracted collisions
- Final state is now the uniform superposition of all nodes:
 - Without collision
 - Without any of the extracted inputs
- Do a new march on a smaller Johnson graph:
 - With smaller sets (-collisions)
 - In a smaller ambient set (avoid the extracted preimages)

- Begin with a normal quantum walk
- Measure the number of collisions we have in the end
- Remove reversibly this number of collision from the tree
- Measure the extracted collisions
- Final state is now the uniform superposition of all nodes:
 - Without collision
 - Without any of the extracted inputs
- Do a new march on a smaller Johnson graph:
 - With smaller sets (-collisions)
 - In a smaller ambient set (avoid the extracted preimages)

Complexity:
$$\widetilde{\mathcal{O}}\left(2^{\ell}+2^k2^{m/2-\ell/2}\right)=\widetilde{\mathcal{O}}\left(2^{k+m/2-\ell/2}\right)$$
 where $\ell\leq\min(2k/3+m/3,m/2)$.

Results

Results

Results

Many applications:

- Quantum impossible differentials
- ▶ Quantum lattice sieving $2^{0.2570d} \rightarrow 2^{0.2563d}$