Analysis I - Vorlesungs-Script

Inhaltsverzeichnis

1	Inte	egralrechnung	1
	1.1	Treppenfunktionen	1
	1.2		2
			4
		1.2.2 Vorgehen	4
		1.2.3 Eigenschaften	7
	1.3	Fundamentalsatz der Analysis	0
	1.4	Integrationstechniken	3
		1.4.1 Partielle Integration	3
		1.4.2 Substitutionsregel	4
		1.4.3 Rationale Funktionen	5
	1.5	Reihenintegration	5
	1.6	Reimannsche Summen	7
	1.7	Das uneigentliche Integral	8
	1.8	Majorantenkriterium	9
2	Kui	rven (Kapitel 12)	0
	2.1		2

1 Integral rechnung

Ziel mathematisch präzise Formulierung des "Flächeninhalts" unter dem Graphen einer Funktion

Fragen

- Welche Funktionen sind zulässig?
- Wie definiert man das Integra für diese Funktionen?

Idee

- 1. def. Integral für spezielle Funktionen (Treppenfunktionen)
- 2. betrachte Folgen von Treppenfunktionen und führe geeigneten Konvergenzbegriff ein (gleichmässige Konvergenz), \to mögliche Limiten sind Regelfunktionen
- 3. falls $f_n \xrightarrow{n \to \infty} f$ (Folge von Treppenfunktionen), setze $\int_a^b f \, dx := \lim_{n \to \infty} \left(\int_a^b f_n \, dx \right)$

$$f_n \to f \mathrm{folgt}\left(\int_a^b f_n \,\mathrm{d}\,x\right)_{n \in \mathbb{N}} \mathrm{konvergent}$$

$$f_n \& g_n \to f \mathrm{zwei} \ \mathrm{Folgen} \implies \lim_{n \to \infty} \left(\int_a^b f_n \,\mathrm{d}\,x\right) = \lim_{n \to \infty} \left(\int_a^b g_n\right)$$

1.1 Treppenfunktionen

- $a < b, a, b \in \mathbb{R} \{x_0, x_1, \cdots, x_n\}$ Zerlegung von $[a, b] \Leftrightarrow a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$
- $\phi[a,b] \to \mathbb{C}$ Treppenfunktion (auf [a,b]) $\Leftrightarrow \exists$ Zerlegung $\{x_0,x_1,\cdots,x_n\}$ von [a,b] so $\overline{\mathrm{dass}} \ \phi|_{(x_{n-1},x_n)}$ konstant $\forall k=1,\cdots,n$

Bemerkung 1. • keine Aussage über $\phi(x_0), \dots, \phi(x_n)$

- nicht verboten zu feine Zerlegungen zu betrachten
- $\tau([a,b])$ (ein Vektorraum über \mathbb{C}, ϕ, ψ Treppenfunktionen) Menge aller Treppenfunktionen auf [a,b]

Definition 1. Integral von Treppenfunktionen $\phi : [a, b] \to \mathbb{C}$ Teppenfunktion mit Zerlegung $\{x_0, x_1, \dots, x_n\}$

- c_K = Funktionswert von ϕ auf (x_{k-1}, x_k)
- $\bullet \ \Delta x_k = x_k x_{k-1}$

$$\int_{a}^{b} \phi(x) dx = \sum_{k=1}^{n} (c_k \cdot \Delta x_k)$$

Lemma 1. Das Integral einer Treppenfunktion ist unabhängig von der gewählten Zerlegung

Beweis 1.

Frage I(Z) = I(Z')

Zeige $I(Z) = I(Z \cup Z') = I(Z')$

 $Z \cup Z'$ entsteht aus Z durch Hinzufügen von endlich vielen Punkten. Angenommen $Z \cup Z' = Z \cup \{y\}, y \notin Z$. Leicht zu sehen: $I(Z) = I(Z \cup \{y\})$

$$I(Z) = I(Z \cup \{y\}) \stackrel{Ind}{\Longrightarrow} I(Z) = I(Z \cup \{y_1\}) = I(Z \cup \{y_1\} \cup \{y_2\}) = \dots = I(Z \cup Z')$$

Lemma 2.

$$\int_a^b \mathrm{d} x \tau([a,b]) \to \mathbb{C}$$

1. $\int_a^b dx$ ist linear, d.h.

$$\forall \phi, \psi \in \tau([a,b]), \alpha, \beta, \in \mathbb{C}: \int_a^b \alpha \phi + \beta \psi \, \mathrm{d}\, x = \alpha \left(\int_a^b \phi \, \mathrm{d}\, x \right) + \beta \left(\int_a^b \phi \, \mathrm{d}\, x \right)$$

2.

$$\left| f_a^b \phi \, \mathrm{d} \, x \right| \leq \int_a^b \left| \phi \right| \, \mathrm{d} \, x \leq (b-a) \underbrace{\| \phi \|}_{Supremum}$$

3. $f\ddot{u}r \ \phi, \psi : [a,b] \to \mathbb{R} \ mit \ \phi(x) \le \psi(x) \ \forall x \in [a,b] \implies$

$$\int_{a}^{b} \psi \, \mathrm{d} \, x \le \int_{a}^{b} \psi \, \mathrm{d} \, x$$

Beweis 2. ϕ und ψ Treppenfunktionen mit Zerlegung Z bzw. $Z' \implies Z \cup Z'$ Zerlegung für ϕ und ψ

$$\int_{a}^{b} \alpha \phi + \beta \psi \, \mathrm{d} x = (\alpha \phi)|_{(x_{k-1}, x_k)} = \alpha (\phi|_{(x_{k-1}, x_k)})$$

wobei $\Delta x_k = x_k - x_{k-1}$.

Wert von ϕ auf $(x_{k-1}, x_k) =: c_k$, Wert von ψ auf $(x_{k-1}, x_k) =: d_k$

$$\sum_{i=1}^{n} (\alpha c_k + \beta d_k) \Delta x_k = \alpha (\sum_{i=1}^{n}) + \beta (\sum_{i=1}^{n} d_k \Delta x_k) = \alpha \int_a^b \phi dx + \beta \int_a^b \psi dx$$

Bemerkung 2. $\int_a^b \mathrm{d}\,x:\tau([a,b])\to\mathbb{C}$ linear, $\ker(\int_a^b \mathrm{d}\,x)\subset\tau([a,b])$ Untervektorraum

Bemerkung 3. lineares erzeugendes System von $\tau([a,b])$ $A \subset \mathbb{R}$

$$1_A(x) = \begin{cases} 1 & \text{für } x \in A \\ 0 & \text{sonst} \end{cases}$$

 $\{1_{[c,d]} \text{ mit } a < c \le d < b \}$ erzeugendes System

1.2 Regelfunktionen

Definition 2. Regelfunktionen $f:[a,b]\to\mathbb{C}$ Regelfunktionen (auf [a,b]) \Leftrightarrow

$$\begin{aligned} \forall y \in (a,b) : \exists \lim_{x \searrow y} f(x) \ \& \ \lim_{x \nearrow y} f(x) \\ \text{(nicht n\"{o}tig:} \lim_{x \searrow y} f(x) = \lim_{x \nearrow y} f(x)) \end{aligned}$$

$$\exists \lim_{x \searrow y} f(x) \& \exists \lim_{x \searrow y} f(x)$$

Bemerkung 4.

$$\lim_{x \to u} f(x) = c : \Leftrightarrow \forall \varepsilon > 0 \exists \rho \ \forall 0 < x - y < \rho : |f(x) - c| < \varepsilon$$

R([a,b]) Menge aller Regelfunktionen auf [a,b]

$$R([a,b])$$
 Vektorraum über $\mathbb C$
 $T([a,b])\subset R([a,b])$ Untervektorraum

Frage R([a,b])/T([a,b]) Vektorraum über \mathbb{C} , Dimension?

Beispiel 1. jede stetige Funktion ist eine Regelfunktion

Beispiel 2. jede monotone Funktion auf [a, b] ist eine Regelfunktion (sehe Seite 78)

Bemerkung 5.

$$f,g \in R([a,b]) \implies \lambda f_{\lambda \in \mathbb{C}}, f+g, \left|f\right|, f \cdot g, \max(f,g), \min(f,g)$$

sind in R([a,b])

Definition 3. gleichmässige Konvergenz $(f_n)_{n\in\mathbb{N}}$ Folge von Funktionen auf $D\subset R, f$ Funktion auf D.

$$(f_n)_{n\in\mathbb{N}}$$
 konvergiert gleichmässig gegen $f\Leftrightarrow\lim_{n\to\infty}\underbrace{\|f-f_n\|}_{\sup_{x\in D}|f(x)-f_n(x)|}=0$

Bemerkung 6. falls $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmässig \Longrightarrow limes ist eindeutig Bemerkung 7. $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmässig gegen $f \Longrightarrow f_n(x) \to f(x) \ \forall x \in D$

$$(|f(x) - f_n(x)| \le \sup_{x \in D} |f(x) - f_n(x)| \to 0)$$

Bemerkung 8. Die Umkehrung gilt NICHT D = (0, 1]

$$f = 0, f_n(x) = \begin{cases} 1 - nx & 0 \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} \le x \le 1 \end{cases}$$

$$\forall x \in D : f_n(x) \xrightarrow{n \to \infty} 0$$

$$\|f - f_n\| = \sup_{x \in D} |f(x) - f_n(x)| = 1$$

$$\lim_{n \to \infty} \|f - f_n\| = 1$$

1.2.1 Zusammenfassung

- $\tau\left([a,b]\right)=$ Vektorraum der Treppenfunktionen auf [a,b]
- $\int : \tau[a;b] \to \mathbb{C}$ lineare Abbildung
- Eigenschaften:
 - lineare Abbildung
 - Monotonie: $f \leq g \implies \int_a^b f \cdot dx \leq \int_a^b g \cdot dx$
 - Beschränktheit: $\left|\int_a^b f\cdot \mathrm{d}\,x\right| \leq \int_b^a |f(x)|\,\mathrm{d}\,x \leq (b-a)\,\|f\| = \sup_{x\in[a;b]} f$
- Regelfunktionen: $R([a,b]) = \text{Vektor nach der Regel } f \supset \tau([a;b])$
- gleichmässige Konvergenz $f_n \to f \stackrel{\text{def}}{\Longleftrightarrow} \|f_n f\| \to 0$

1.2.2 Vorgehen

- 1. Jede Regelfunktion kann man gleichmässig durch Treppenfunktionen approximieren.
- 2. Damit kann man das Integral von Regelfunktionen definieren.
- 3. Regenregeln (insbesondere Hauptsatz)
- 4. Riemannsche Summen

Satz 1. Approximationssatz

$$f \in Ra; b \Leftrightarrow \exists Folge \phi_n \in \tau[a;b] : \phi_n \to fgleichm \ddot{a}ssig$$

ist per Definition äquivalent mit

$$\exists Folge \phi_n \in \tau[a;b] : ||\phi_n - f|| \to 0$$

wobei

$$\|\phi_n - f\| = \sup_{x \in [a;b]} |\phi_n(x) - f(x)|$$

Dieser Grenzwert ist wiederum äquivalent mit

$$\forall \varepsilon > 0 \exists \phi \in \tau[a;b] : ||f - \phi|| < \varepsilon$$

(eine ε -approximierende Treppenfunktion)

Beweis 3. \Rightarrow d.h. $f \in R \implies \exists \varepsilon$ -approx. Treppen. Widerspruchsbeweis:

$$f \in R[a;b]$$

 $\exists \varepsilon > 0 : f besitzt \ keine \varepsilon - approx. \ Treppen funktion$

Wir konstruieren eine Intervallschachtelung $I_n = [a_n; b_n]$ s.d. $\forall_n f|_{I_n}$ besitzt keine ε -approx. Treppenfunktion

$$I_1 = [a; b]$$

rekursiv: $M = \frac{b_n - a_n}{2} + a_n$ Mittelpunkt

$$I_{n+1} := \begin{cases} [a_n; M] & falls f|_{[a_n; M]} keine\varepsilon\text{-}approx. \ Treppenfunktion bestzt} \\ [M, b_n] & andernfalls \end{cases}$$

Sei $\xi \in I_n \forall n$

$$c_e := \lim_{x \uparrow \xi} f(x)$$

$$c_r := \lim_{x \downarrow \xi} f(x)$$

 \Longrightarrow

$$\exists \delta : |f(x) - c_e| < \varepsilon : \qquad x \in [\xi - \delta; \xi)$$
$$|f(x) - c_r| < \varepsilon : \qquad x \in (\xi; \xi + \delta]$$

Auf $[\xi - \delta; \xi + \delta]$ definieren wir eine Treppenfunktion:

$$\phi(x) := \begin{cases} c_e & \xi - \delta \le x < \xi \\ f(\xi) & x = \xi \\ c_r & \xi + \delta \ge x > \xi \end{cases}$$

Fall $1 \Longrightarrow \phi$ ist eine ε -approx. Treppenfunktion auf $[\xi - \delta], [\delta + \delta]$. Fall $2 \Longrightarrow \phi$ ist eine ε -approx. Treppenfunktion auf $[\xi - \delta], [\delta + \delta]$, alle $I_n \subset [\xi + \delta; \xi + \delta]$ Ψ

Beweis 4. $\Leftarrow f$ Regelfunktion $\Leftarrow f$ besitzt ε -approx. Treppenfunktion $\forall \varepsilon > 0$. Sei $x_0 \in [a;b)$. Zu zeigen: $\exists \lim_{x \downarrow x_0} f(x)$.

$$\forall \varepsilon > 0 \ \exists \phi \in \tau[a; b] : ||f - \phi|| < \frac{\varepsilon}{2}$$

Sei $\beta > x_0 : \phi \text{ konstant auf } (x_0, \beta)$

$$\forall x, x' \in (x_0; \beta)$$

$$|f(x) - f(x')| \le |f(x) - \phi(x)| + \left| \phi(x)^{(=\phi(x')} - f(x') \right|$$

$$\le ||f - \phi|| + ||\phi - f|| < \varepsilon$$

 $\forall \varepsilon > 0 \ \exists \beta : Cauchy eigenschaft \ gilt \ auf \ (x_0; R) \implies \exists \lim_{x \uparrow x_0} f(x). \ \ddot{A}hnlich: \exists \lim_{x \uparrow x_0} f(x) \ \forall x_0 \in (a; b].$

Korollar 1.

$$f \in R[a;b] \iff \exists Folge \Psi_b \in \tau[a;b] : \sum_{k=1}^{\infty} \phi_k = f$$

konvergiert konstant

Korollar 2. f Regelfunktion auf $I \implies f$ fast überall stetig. $d.h. \exists A \subset I$ s.d.

- $f|_{I \setminus A}$ stetig
- A höchstens abzählbar $x \in [a; b]$

Beweis 5.

$$\Psi_k \in \tau[I]$$

$$f = \sum \phi_k normal$$

Ist ϕ_k stetig in $x \forall k \implies f$ stetig in x.

Ist x Unstetigkeitsstelle von f, $\exists k : \phi_k$ unstetig in x, höchstens abzählbare viele k.

• Eine Treppenfunktion hat endlich viele Unstetigkeitsstellen

 $\{ Unstetigkeitsstellen \ von \ f \} \subset (h\"{o}chstens \ abz\"{a}hlbare \ Vereinigung \ von \ endlichen \ Mengen) \implies h\"{o}chstens \ abz\"{a}hlbar$

$$I = \overbrace{U_{lpha}}^{h\"{o}chstens\ abz\"{a}hlbar\ kompakt} I_{lpha}$$

Satz 2.

$$f \in R([a:b]) \implies f beschränkt auf[a;b]$$

Beweis 6.

$$\varepsilon = 1$$

$$\exists \overbrace{\phi} \qquad \in \tau \left([a;b] \right) : \|f - \phi\| \le 1$$

$$\Longrightarrow \|f\| = \|f - \phi + \phi\| \le \|f - \phi\| + \|\phi\| = \le 1 + \|\phi\|$$

Definition 4. Integration von Regelfunktionen \dots auch bekannt als "Regelintegral"

Sei $f \in R[a; b]$

$$\int_{a}^{b} f(x)fx : \lim_{n \to \infty} \int_{a}^{b} \phi_{n}(x) dx$$

wobei ϕ_n eine approximierene Folge von Treppenfunktionen ist (d.h. $\|\phi_n - f\| \to 0$)

zu zeigen:

- 1. Die Folge $I_n := \int_a^b \phi_n(x) \, \mathrm{d} x$ konvergiert $\forall \|\phi_n f\| \to 0$
- 2. Der Grenzwert ist von der Wahl der approximierenden Folge unabhängig

Beweis 7. von 1

$$|I_n - I_m| = \stackrel{Linearit"}{a} \left| \int_a^b (\phi_n(x) - \phi_m(x)) \, \mathrm{d} x \right| \le \stackrel{beschr"}{a} (b - a) \|\phi_n - \phi_m\|$$

$$\|\phi_n - f\| \to 0 \xrightarrow{Dreiecksungleichung} \forall \varepsilon > 0 \ \exists N : \|\phi_n - \phi_m\| < \varepsilon \ \forall n, m > N$$

 $\implies I_n \ \textit{Cauchyfolge} \ \Longrightarrow \ I_n \ \textit{konvergiert}$

Beweis 8. von 2 Seien $\phi_n, \psi_n \in \tau[a; b]$

$$\|\phi_n - f\| \to 0$$
$$\|\psi_n - f\| \to 0$$

$$\{X_n\} = \psi_1, \phi_1, \psi_2, \phi_2, \psi_3, \phi_3, \cdots$$
$$X_n := \begin{cases} \phi_{\frac{n}{2}} & ngerade \\ \psi_{\frac{n+1}{2}} & nungerade \end{cases}$$

 $\implies I_n(\phi) \text{ und } I_n(\psi) \text{ Teilfolgen von } I_n(X)$

$$\implies ||X_n - f|| \to 0$$

$$I_n(x) = \int x_n$$

$$I_n(\phi) = \int \phi_n$$

$$I_n(\psi) = \int \psi_n$$

 \Longrightarrow

$$\lim I_n(\phi) = \lim I_n(X) = \lim I_n(\psi)$$

Beispiel 3. Dirichlet eine Funktion, die keine Regelfunktion ist.

$$f: [0;1] \to \mathbb{R}$$

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

f unstetig $\forall x$ intuitiv: $\int_0^1 f(x) fx = 0$

Beispiel 4. Riemann sog. modifizierte Dirichlet-Funktion

$$g:[0;1]\to\mathbb{R}$$

$$g:[0;1]\to\mathbb{R}$$

$$g(x)=\begin{cases} \frac{1}{q} & x=\frac{p}{q}, p, q \text{teiler fremd}, q>0\\ 0 & x\in\mathbb{R}\setminus\mathbb{Q} \end{cases}$$

 $g \in R[0;1]$ und $int_a^b g(x) dx = 0$

Eigenschaften 1.2.3

Satz 3.

$$\forall f,g \in R[a;b] \forall \alpha,\beta \in \mathbb{C} gelten$$

Linearität

$$\int_a^b (\alpha f + \beta g) \, \mathrm{d} \, x = \alpha \int_a^b f \cdot \mathrm{d} \, x + \beta \int_a^b g \cdot \mathrm{d} \, x$$

Beschränktheit

$$\left| \int_a^b f(x) \cdot dx \right| \le \int_a^b |f(x)| dx \le (b-a) \|f\|$$

Monotonie

$$f \leq g \implies \int_a^b f(x) \, \mathrm{d} \, x \leq \int_a^b g(x) \, \mathrm{d} \, x$$

 $(f, g \text{ reellwertig } f(x) \leq g(x) \forall x)$

Satz 4. Additivität Sei $f \in R[a;b]$ und sei $c \in (a;b)$

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Beweis 9. $f = \phi$ Treppenfunktion trivial

$$f = \lim \phi_n \ gleichmässig$$

$$\begin{array}{ll} \phi_n \in \tau[a;c]\phi_n^l := & \phi_n|_{[a;b]} \in \tau[a;b] \\ \phi_n^r := & \phi_n|_{[b;c]} \in \tau[b;c] \end{array}$$

$$\int_{a}^{c} \phi_{n}(x) dx = \int_{a}^{b} \phi_{n}^{l}(x) dx + \int_{b}^{c} \int_{n}^{r} (x) dx$$
$$\|\phi_{n} - f\| \to 0$$
$$\|\phi_{n}^{l} - f\|_{[a;b]} \le \|\phi_{n} - f\| \ge \|\phi_{b}^{+} f\|_{[b;c]}$$

$$\int_{a}^{c} \phi_{n}(x) dx = \int_{a}^{b} \phi_{n}^{l}(x) dx + \int_{b}^{c} \int_{n}^{r} (x) dx$$
$$= \int_{a}^{c} f \cdot dx = \int_{a}^{b} f(x) \cdot dx = \int_{b}^{c} f(x) dx$$

 $\phi_n^l \to f|_{[a;b]}$ $\phi_n^r \to f|_{[b;c]}$

Definition 5. $f \in R[a; b], b > a$

$$\int_b^a f(x) dx := \int_a^b f(x) dx$$
$$\int_a^a f(x) dx := 0$$

Satz 5. $f \in RI(): \forall a, b, c \in I$

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$$

Bemerkung 9. Linearität

Beschränktheit:

$$\left| \int_{a}^{b} f(x) \, \mathrm{d} \, x \right| \le \left| \int_{a}^{b} |f(x)| \, \mathrm{d} \, x \right| \le |b - a| \, ||f||$$

Monotonie

$$f \le g; b > a$$

$$\int_a^b f(x) \, \mathrm{d} \, x \ge \int_a^b g(x) \, \mathrm{d} \, x$$

Bemerkung 10. f stetig $([a;b]) \implies ||f|| = \max |f|$ reellwertig $\stackrel{\text{ZWS}}{\Longrightarrow} f$ nimmt alle Werte zwischen 0 und $\max |f|$

$$\exists \xi \in [a; b] :$$

$$\int_{a}^{b} f(x) dx = (b - a) f(\xi)$$

Satz 6. Mittelwertsatz Sei $f:[a;b] \to \mathbb{R}$ <u>stetig</u>. Sei $p:[a;b] \to \mathbb{R}$ Regelfunktion mit $p \geq 0$. Dann $\exists \xi \in [a;b]$ s.d.

$$\int_a^b f(x)p(x) dx = f(\xi) \int_a^b p(x) dx$$

Falls $\int p \neq 0$

$$\frac{\int f(x)p(x) \, \mathrm{d} x}{\int p(x) \, \mathrm{d} x} = f(\xi) = \int_a^b f(x)\tilde{p}(x) \, \mathrm{d} x$$
$$\tilde{p}(x) = \frac{p(x)}{\int_a^b p(x) \, \mathrm{d} x}$$
$$\implies \int_a^b \tilde{p}(x) \, \mathrm{d} x = 1$$

Beweis 10. f besitzt ein Maximum M und ein Minimum m

$$m \le f(x) \le M \ \forall x \in [a; b]$$

 $mp(x) \le f(x)p(x) \le Mp(x)$

Monotonie

$$\int_{a}^{b} mp(x) dx \leq \inf_{a}^{b} f(x)p(x) dx \leq \int_{a}^{b} Mp(x) dx$$

$$= m \int_{a}^{b} p(x) dx \qquad = M \int_{a}^{b} p(x) dx$$

 $\implies \exists \mu \in [m; M]$:

$$\int_a^b f(x)p(x) \, \mathrm{d} \, x = \mu \int_a^b p(x) \, \mathrm{d} \, x$$

 $ZWS \implies \exists \xi \in [a;b]:$

$$\mu = f(\xi)$$

Satz 7. Sei $f:[a;b] \to \mathbb{R}$ Regelfunktion mit $f \geq 0$ und $\int_a^b f(x) dx = 0$. Dann ist $f(x_0) = 0$ an jeder Stetigkeitsstelle x_0 . Ferner gilt: f = 0 fast überall.

Beweis 11. (Widerspruchsbeweis) Sei x_0 eine Stetigkeitsstelle mit $f(x_0) > 0$. f stetig in $x_0 \implies \exists x_0 \in [a:b] \subset [a:b]$ s.d.

$$f(x) > \frac{1}{2}f(x_0) \ \forall x \in [\alpha : \beta]$$

Sei

$$\phi(x) := \begin{cases} \frac{1}{2} f(x_0) & x \in [\alpha; \beta] \\ 0 & x \notin [\alpha; \beta] \end{cases}$$

Treppenfunktion, deshalb Regelfunktion

$$\implies f \ge \phi \implies \underbrace{\int_{\alpha}^{\beta} f(x) \, \mathrm{d} x}_{=0} \ge \int_{\alpha}^{\beta} \phi(x) \, \mathrm{d} x = \frac{\beta - \alpha}{2} f(x_0) > 0$$

Ψ

Satz 8. f Regelfunktion \implies f besitzt höchstens abzählbar viele Unstetigkeitsstellen \implies f=0 fast überall

Korollar 3.
$$f:[a;b] \to \mathbb{R}$$
 stetig, $f \ge 0$, $\int_a^b f(x) \, dx = 0 \implies$

$$f(x) = 0 \ \forall x \in [a; b]$$

1.3 Fundamentalsatz der Analysis

Satz 9. Sei $f:I\to\mathbb{C}$ Regelfunktion und sei $a\in I$. Für jedes $x\in I$ definiert man

$$F(x) := \int_{a}^{x} f(t) dt \ F : I \to \mathbb{C}$$

Dann ist F eine Stammfunktion zu f (d.h. F ist stetig und fast überall differenzierbar (und F' = f fast überall)) mit

$$F'_{+}(x_0) = f_{+}(x_0)$$

$$F'_{-}(x_0) = f_{-}(x_0)$$

 $\forall x_0 \in I$

Beweis 12. $\forall x_1, x_2 \in I \ gilt$

$$F(x_2) - F(x_1) = \int_a^{x_2} f(t) dt - int_a^{x_1} f(t) dt =$$

$$= \int_a^{x_2} + \int_{x_1}^a \int_{x_1}^{x_2} f(t) dt$$

Sei $\tau \subset I$ Teilintervall. $\forall x_1, x_2 \in \tau$

$$|f(x_2) - F(x_1)| = \left| \int_{x_1}^{x_2} f(t) dt \right| \le^{Bijektivit \ddot{a}t} |x_2 - x_1| ||f||_{\tau}$$

 $\Longrightarrow F|_{\tau}$ Lipschitz-stetig $\Longrightarrow F|_{\tau}$ stetig $\forall \tau \Longrightarrow F$ stetig auf I. Wir berechnen $F'_{+}(x_{0})$. f Regelfunktion $\Longrightarrow \exists f_{+}(x_{0})$. $\forall \varepsilon > 0 \exists \delta > 0$

$$|f(x) - f_+(x_0)| < \varepsilon \ \forall x \in (x_0, x_0 + \delta)$$

 $F\ddot{u}r \ x \in (x_0, x_0 + \delta)$

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f_+(x_0) \right| =$$

$$\left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{f_+(x_0)}{x - x_0} \int_{x_0}^x \langle Fehlt danicht was? \rangle dt \right| =$$

$$\left| \frac{1}{x - x_0} \right| \int_{x_0}^x (f(t) - f_+(x_0)) dt \le$$

$$\frac{1}{|x - x_0|} |x - x_0| ||f(x) - f_+(x_0)||_{x_0; x} \le \varepsilon$$

Korollar 4. Sei $f: I \to \mathbb{C}$ Regelfunktion und sei Φ eine Stammfunktion zu f. Dann $\forall a, b \in I$

$$\int_{a}^{b} f(x) dx = \Phi(b) - \Phi(a)$$

$$=: \Phi \Big|_{a}^{b}$$

Beweis 13. Φ und F sind Stammfunktionen zu f, insbesondere $\Phi' = F'$ fast überall. Eindeutigkeitssatz $\implies \exists c \text{ konstant } s.d.$

$$\Phi(x) = F(x) + c \ \forall x \in I$$

$$\int_a^b f(x) dx = F(b) = F(b) - \underbrace{F(a)}_{=0} =$$

$$= (\Phi(b) - c) - (\Phi(a) - c) = \Phi(b) - \Phi(a)$$

Korollar 5. Jede Regelfunktion beseitzt eine Stammfunktion

Definition 6. Eine Funktion heisst fast überall stetig differenzierbar, wenn sie die Stammfunktion zu einer Regelfunktion ist. (Wo sie nicht stetig differenzierbar ist, besitzt sie linke und Rechte Grenzwerte)

Beispiel 5.

$$f(x) = \begin{cases} 0 & x = 0\\ x^2 \sin\frac{1}{x} & x \neq 0 \end{cases}$$

f ist in $\mathbb{R}\setminus\{0\}$ differenzierbar. f' besitzt linke und rechte Grenzwerte, in 0 nicht. Also keine Regelfunktion.

 $Bemerkung\ 11.$ Mit dem Lebesgne-Integral kann man solche Funktionen aus einem Integral erhalten.

Eigenschaften 1. Charakterisierung f fast überall stetig differenzierbar auf $I \implies \exists A \subset I, A$ höchstens abzählbar s.d.

- 1. f ist auf $I \setminus A$ differenzierbar
- 2. f' ist auf $I \setminus A$ stetig
- 3. $\forall x \in A$ existieren $f'_{+}(x)$ und $f'_{-}(x)$

Definition 7. unbestimmtes Integral Das unbestimmte Integral der Regelfunktion f ist die Gesamtheit aller Stammfunktionen zu f.

Notation 1. unbestimmtes Integral

$$\int f(x) \, \mathrm{d} \, x$$

In Tabellen wird oft

$$\int x \, \mathrm{d} \, x = \frac{x^2}{2}$$

geschrieben

Beispiel 6.

$$\int x \, \mathrm{d} \, x = \frac{x^2}{2} + C$$

Eigenschaften 2.

$$\int x^{a} dx = \frac{x^{a+1}}{a+1} a \in \mathbb{C} \setminus \{-1\}$$

$$\int \frac{1}{x} dx = \ln |x|$$

$$\int e^{cx} dx = \frac{1}{c} e^{cx}, c \neq 0$$

$$\int \sin x \cdot dx = -\cos x$$

$$\int \cos x \cdot dx = \sin x$$

Satz 10. Seien f_1 und f_2 Regelfunktionen auf I

$$f_1 = f_2 f \cdot \ddot{u} = \int f_1 \, \mathrm{d} \, x = \int f_2 \, \mathrm{d} \, x$$

Insbesondere $\forall a, b \in I$

$$\int_a^b f(x) \, \mathrm{d} \, x = \int_a^b f_2(x) \, \mathrm{d} \, x$$

Beweis 14. Sei F_1 / F_2 Stammfunktion zu f_1 / f_2

$$\implies F_1' = F_2' f.\ddot{u}.$$

 $\implies F_1 = F_2 + C$

 $Bemerkung\ 12.\ Anwendung$

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q}, p, q \text{teiler fremd} \\ 0 & x \neq \mathbb{Q} \end{cases}$$
$$\int_a^b f(x) \, \mathrm{d} \, x = 0$$

Definition 8. Sit f eine fast überall differenzierbare Funktion, so bezeichnet f' irgendeine Regelfunktion, die fast überall gleich zur Ableitung von f ist.

Satz 11. Hauptsatz Sei f eine fast überall stetig differenzierbare Funktion auf I. Dann

$$\int f'(x) dx = f$$

$$\int_a^b f'(x) = f(b) - f(a) \ a, b \in I$$

Notation 2. Leibnitz-Notation

$$f' = \frac{\mathrm{d}f}{\mathrm{d}x}$$

$$\int \frac{\mathrm{d}f}{\mathrm{d}x} \, \mathrm{d}x = f$$

$$\int df = f$$

$$\int_a^b df = \Delta F := f(b) - f(a)$$

1.4 Integrationstechniken

Eigenschaften 3. Integrationstechniken

- 1. Linearität
- 2. Partielle Integration
- 3. Substutionsregel

1.4.1 Partielle Integration

Satz 12. Seien U und V fast überall stetig differenzierbar Funktionen auf I, so ist auch UV fast überall stetig differenzierbar und

$$\int uv' \, dx = uv - \int u'v \, dx$$
$$\int_a^b uv' \, dx = (uv)|_a^b - \int_a^b u'v \, dx$$

Beweis 15. u, v stetig und u, v Regelfunktionen $\implies u'v + uv'$ Regelfunktion. Fast überall: u'v + uv' = (uv)' Kettenregel.

$$\int (u'v + uv') dx = \int (uv)' dx = uv$$

Beispiel 7.

$$\int \ln x \, \mathrm{d} \, x = \int 1 \cdot \ln x \, \mathrm{d} \, x = \int \frac{\mathrm{d} x}{\mathrm{d} x} \ln x \, \mathrm{d} \, x =$$

$$= x \ln x - \int x \frac{\mathrm{d} \ln x}{\mathrm{d} x} \, \mathrm{d} \, x = x \ln x - \int x \frac{1}{x} \, \mathrm{d} \, x = x \ln x - x$$

Beispiel 8.

$$\int \cos^2 x \, dx = \int \cos x \cdot \cos x \, dx = \int \left(\frac{d}{dx}\sin x\right)\cos x \, dx =$$

$$= \sin x \cos x - \int \sin x \frac{d}{dx}\cos x \, dx = \sin x \cos x + \int \sin^2 x$$

$$\int (\cos^2 x - \sin^2 x) \, dx = \sin x \cos x$$

$$\int (\cos^2 x + \sin^2 x) \, dx = x$$

$$\int \cos^2 x \, dx = \frac{\sin x \cos x + x}{2}$$

Beispiel 9.

$$\int \sqrt{1+x^2} = \int \frac{dx}{dx} \sqrt{1+x^2} \, dx = x\sqrt{1+x^2} - \int x \frac{2x}{2\sqrt{1+x^2}} \, dx =$$

$$= x\sqrt{1+x^2} \int \frac{1+x^2}{\sqrt{1+x^2}} \, dx + \int \frac{1}{\sqrt{1+x^2}} =$$

$$= x\sqrt{1+x^2} - \int \sqrt{1+x^2} \, dx + \arcsin x$$

$$\int \sqrt{1+x^2} \, dx = \frac{x\sqrt{1+x^2} + \arcsin x}{2}$$

1.4.2 Substitutionsregel

Satz 13. Substitutionsregel Sei f Regelfunktion auf I, F eine Stammfunktion zu f, t: $[a;b] \rightarrow I$ stetig differenzierbar und streng monoton. Dann ist $F \circ t$ eine Stammfunktion zu

$$(f \circ t)t'$$
 auf $[a;b]$

und

$$\int_{a}^{b} f(t(x))t'(x) dx = \int_{t(a)}^{t(b)} f(t) dt$$
$$(I = [t(a); t(b)] oder [t(b); t(a))$$

Notation 3.

$$f\frac{\mathrm{d}t}{\mathrm{d}x}\,\mathrm{d}x = \int f\,\mathrm{d}t$$

Beweis 16. Kettenregel:

$$\frac{\mathrm{d}}{\mathrm{d}x}(F \circ t) = (F' \circ t)t' \stackrel{f.i.}{=} (f \circ t)t'$$

$$\int_a^b f(t(x))t'(x) \, \mathrm{d}x = int_a^b \frac{\mathrm{d}}{\mathrm{d}x}(F \circ t) \, \mathrm{d}x = F \circ t|_a^b = F(t(b)) - F(t(a))$$

$$\int_{t(a)}^{t(b)} f(t) \, \mathrm{d}t = F|_{t(a)}^{t(b)} = F(t(b)) - F(t(a))$$

Beispiel 10.

$$\int_a^b f(x+c) \, \mathrm{d} \, x \stackrel{t(x)=x+c}{=} \int_a^b f(x+c)t' \, \mathrm{d} \, x =$$

$$= \int_{a+c}^{b+c} f(t) \, \mathrm{d} \, t$$

Beispiel 11.

$$\int_a^b f(cx) \, \mathrm{d} \, x \stackrel{t(x)=cx}{=} \frac{1}{c} \int_a^b f(cx) t' \, \mathrm{d} \, x = \frac{1}{c} \int^{cb} caf(t) \, \mathrm{d} \, t$$

c = -1

$$\int_{a}^{b} f(-x) \, \mathrm{d} \, x = - \int_{-a}^{-b} f(x) \, \mathrm{d} \, x = \int_{-b}^{-a} f(x) \, \mathrm{d} \, x$$

Korollar 6.

$$f(-x) = -f(x)$$
$$\int_{-a}^{a} f(x) = 0$$

Beweis 17.

$$\int_{-a}^{a} f(-x) \, \mathrm{d} \, x = -\int_{-a}^{a} f(x) \, \mathrm{d} \, x = \int_{-a}^{a} f(x) \, \mathrm{d} \, x$$

Beispiel 12.

$$\int \frac{t'(x)}{t(x)} dx \stackrel{f=\frac{1}{t}}{=} \int f(t) dt =$$
$$= \int \frac{1}{t} dt = \ln|t|$$

1.4.3 Rationale Funktionen

\rightarrow Pratialbruchzerlegung

$$\int \frac{\mathrm{d}x}{x+a} = \ln|x+a|$$

$$\int \frac{Bx+C}{x^2+2bx+c} \,\mathrm{d}x = \cdots$$

Wobei $x^2 + 2bx + c$ keine reelen Lösungen ergeben darf.

Satz 14. Eine rationale Funktion kann man mittels rationaler Funktionen, des Logarithmus sowie des Arcustangens integrieren.

1.5 Reihenintegration

Satz 15. Sei f_n eine Folge Regelfunktionen auf [a;b]. Konvergiert die Reihe $\sum f_n$ normal, so ist

$$f: \sum_{n=1}^{\infty} f_n$$

eine Regelfunktion und

$$\int_{a}^{b} f(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx$$
$$(\int \sum_{n=1}^{\infty} \int_{a}^{\infty} f(x) dx = \int_{a}^{\infty} \int_{a}^{\infty} f(x) dx$$

Insbesondere gilt der Satz für Potenzreichen in ihren Konvergenzintervallen.

Beweis 18. $\forall \varepsilon > 0 \exists N$:

$$\sum_{n=N}^{\infty} \|f_n\| < \frac{\varepsilon}{2}$$

 $\forall p \geq N$

$$\left\| f - \sum_{n=1}^{p} f_n \right\| < \frac{\varepsilon}{2}$$

 f_n Regelfunktion $\implies \sum_{n=1}^p f_n$ Regelfunktion $\implies \exists$ Treppenfunktion ϕ mit

$$\left\| \sum_{n=1}^{p} f_n - \phi \right\| < \frac{\varepsilon}{2}$$

 \Longrightarrow

$$||f - \phi|| \le \left| \left| f - \sum_{n=1}^{p} f_n \right| + \left| \left| \sum_{n=1}^{p} f_n - \phi \right| \right| < \varepsilon$$

 $\implies f$ Regelfunktion

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - \sum_{n=1}^{p} \int_{a}^{b} f_{n}(x) \, \mathrm{d}x \right| \le$$

$$\le \int_{a}^{b} \left| f(x) - \sum_{n=1}^{p} f_{n}(x) \right| \, \mathrm{d}x \le$$

$$\le |b - a| \left\| f - \sum_{n=1}^{p} f_{n} \right\| <$$

$$< |b - a| \frac{\varepsilon}{2}$$

Beispiel 13.

$$\arctan x = \int_0^x \frac{1}{1+t^2} \, \mathrm{d} \, t = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} \, \mathrm{d} \, t \stackrel{|x|<1}{=}$$

$$\sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}$$

1.6 Reimannsche Summen

- alte Definition des Regelintegrals (äquivalent)
- Approximationstechnik
- Man kann Resultate über Summen erweitern (z.B. Höldersche Ungleichung, Cauchy-Schwarzsche Ungleichung)

Definition 9. Zerlegung [a; b] kompates Intervall

Eine Zerlegung von [a;b] ist die Wahl $x_0, x_1, x_2, \cdots, x_n$ s.d.

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1}x_n = b$$

Notation 4. $Z := \{x_0, x_1, \cdots, x_n\}$

Definition 10. Feinheit der Zerlegung

$$\Delta x_k := x_k - x_{k-1}$$

Die <u>Feinheit</u> der Zerlegung ist $\max\{\Delta x_1, \Delta x_2, \cdots, \Delta x_n\}$

Definition 11. Die Riemannsche Summe von f bezüglich der Zerlegung Z und der Wahl von Stützstellen $\xi =: (\xi_1, \dots, x_n)$

$$\xi_k \in [x_{k-1}; x_k]$$

ist die Summe

$$S(f; Z; \xi) := \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Satz 16. Sei $f:[a;b] \to \mathbb{C}$ eine Regelfunktion. Dann gilt folgendes:

$$\forall \varepsilon > 0 \ \exists \delta > 0$$

sd. für jede Zerlegung Z der Feinheit $\leq \delta$ und für jede Wahl Stützstellen ξ gilt

$$\left| S(f; Z; \xi) - \int_{a}^{b} f(x) \, \mathrm{d}x \right| < \varepsilon$$

Beweis 19. (Idee)

- 1. Satz gilt, falls f eine Treppenfunktion ist. Beweis durch Indunktion nach der Anzahl Sprungstellen
- 2. $\exists \phi \ Treppenfunktion \ s.d.$

$$||f - \phi|| < \frac{\varepsilon}{3(b-a)}$$

1) $\Longrightarrow \exists Z, \xi$

$$\left| S\left(\phi; Z; \xi\right) - \int_{a}^{b} \phi(x) \, \mathrm{d} \, x \right| < \frac{\varepsilon}{3}$$

3-Ecks Ungleichung

Korollar 7. Sei $f:[a;b] \to \mathbb{C}$ Regelfunktion. Sei Z_1, Z_2, Z_3, \cdots Folge Zerlegungen von [a;b] mit Feinheit $(Z_n) \to 0$. Für jede Wahl Stützstellen ξ_m aus Z_n

$$\lim_{n \to \infty} S(f; Z_n; \xi_m) = \int_a^b f(x) \, \mathrm{d} x$$

Definition 12. p-Norm Seu $f[a;b] \to \mathbb{C}$ Regelfunktion. Die p-Norm von f (mit $p \ge 1$)

$$||f||_p := \sqrt[p]{\int_a^b |f(x)|^p dx}$$

Satz 17. Seien $f, g : [a; b] \to \mathbb{C}$ Regelfunktionen. Seien $p, q \ge 1$ mit $\frac{1}{p} + \frac{1}{q} = 1$. Dann haben wir

$$\int_{a}^{b} |f(x)g(x)| \, \mathrm{d} \, x \le \|f\|_{p} \, \|g\|_{q}$$

Höldersche Ungleichung

Spezialfall: p = q = 2 Cauchy-Schwarzsche Ungleichung

Beweis 20. (Idee)

- 1. Man approximiert die 3 Integrale durch Riemannsche Summen
- 2. Man benützt die Höldersche Ungleichung für Summen
- 3. Man nimmt die Grenzwerte

1.7 Das uneigentliche Integral

Satz 18. Seien $a, b \in \bar{\mathbb{R}}$

$$-\infty \le a < b \le +\infty$$

Sei I ein Intervall mit Randwerten a und b (z.B. I = [a;b], I = [a;b)). Sei f eine Regelfunktion auf I. Wir wollen $\int_a^b f(x) dx$ definieren, wenn möglich.

Fall 0

$$a, b \in \mathbb{R}, \ I = [a; b]$$

$$\int_{a}^{b} f(x) dx Regelintegral$$

Fall 1

$$b \in \overline{\mathbb{R}}, \ I = [a; b)$$
$$\int_a^b f(x) \, \mathrm{d} \, x = \lim_{\beta \uparrow b} \int_a^\beta f(x) \, \mathrm{d} \, x$$

Falls der Grenzwert existiert.

Fall 2

$$a \in \mathbb{R}, b \in \mathbb{R}, b > a, I = (a; b]$$

$$\int_{a}^{b} f(x) dx = \lim_{\alpha \downarrow a} \int_{\alpha}^{b} f(x) dx$$

Falls der Grenzwert existiert.

Fall 3

$$a, b \in \overline{\mathbb{R}}, a < b, I = (a; b)$$

$$\int_{a}^{b} F(x) \, \mathrm{d} \, x := \int_{a}^{c} f(x) \, \mathrm{d} \, x + \int_{c}^{b} f(x) \, \mathrm{d} \, x$$

Sei $c \in (a; b)$ falls beide Integrale auf der rechten Seite existieren!

Definition 13. Wert eines Integrals Existiert das uneigentliche Integral von f, so heisst $\int_a^b f(x) dx$ konvergent so heisst der Grenzwert Wert des Integrals

Definition 14. absolut konvergentes Integral Konvergiert das Integral von |f|, so heisst das Integrals absolut konvergent

Beispiel 14. $I=(0;+\infty)$

$$F_s(x) := \int \frac{1}{x^s} dx = \begin{cases} \ln x & s = 1\\ \frac{x^{1-s}}{1-s} & s \neq 1 \end{cases}$$

$$F_s(x) \xrightarrow{x \to \infty} 0 \Leftrightarrow s > 1, \text{ divergiert sonst}$$

$$F_s(x) \xrightarrow{x \to 0} 0 \Leftrightarrow s < 1, \text{ divergiert sonst}$$

$$\int_{a}^{+\infty} \frac{1}{x^{s}} \, \mathrm{d}x$$

existiert genau dann, wenn a>0 und s>1 und hat den Wert $\frac{a^{1-s}}{s-1}$

$$\int_0^a \frac{1}{x^s} \, \mathrm{d} x$$

existiert genau dann, wenn s < 1 und hat den Wert $\frac{a^{1-s}}{1-s}$

Beispiel 15. $e^{-x} \in R(\mathbb{R})$

$$\int_0^{+\infty} e^{-x} \, \mathrm{d} \, x = \lim_{a \to +\infty} \int_0^a e^{-x} \, \mathrm{d} \, x =$$

$$= \lim_{a \to +\infty} \left(e^{-x} \right) \big|_0^a = \lim_{a \to +\infty} \left[-e^{-a} + e^0 \right] = 1$$

Beispiel 16. $f(x) = \frac{x}{1+x^2} \in R(\mathbb{R})$

$$\int f(x) \, dx = \frac{1}{2} \ln(1 + x^2)$$

divergiert $x \to \pm \infty$. Deshalb existieren

$$\int_0^{+\infty} f(x) \, \mathrm{d} x \text{ und } \int_{-\infty}^0 f(x) \, \mathrm{d} x$$

nicht. Aber:

$$\int_{-R}^{R} f(x) dx = 0$$

$$\lim_{R \to +\infty} \int_{-R}^{R} f(x) dx = 0$$

Beispiel 17. Sei $F(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$. Sei $f = F' \in R(\mathbb{R} \setminus \{0\})$ aber keine Regelfunktion auf \mathbb{R} x > 0

$$\int_0^{\pi} f(x) dx = \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{x} f(x) dx =$$

$$= \lim_{\varepsilon \downarrow 0} F(x)|_{\varepsilon}^{x} = \lim_{\varepsilon \to 0} (F(x) - F(\varepsilon)) = F(x)$$

1.8 Majorantenkriterium

Satz 19. Majorantenkriterium Seien f und g Regelfunktionen [a;b) mit $|f| \leq g$. Existiert $\int_a^b g(x) \, \mathrm{d} \, x$, so existiert auch $\int_a^b f(x) \, \mathrm{d} \, x$

Beweis 21. Sei

$$F(u) = \int_{a}^{u} f(x) dx$$

$$G(u) = \int_{a}^{u} g(x) dx$$

$$\forall u, v \in [a; b)$$

$$|F(u) - F(v)| = \left| \int_{b}^{u} f(x) dx \right| \le |f_{v}^{u}|f(x)| dx| \le$$

$$\le \left| \int_{v}^{u} g(x) dx \right| = |G(u) - G(v)|$$

G(u) $u \to 0$ existiert \Longrightarrow G erfüllt das Cauchykriterium. \Longrightarrow F erfüöllt das Cauchykriterium \Longrightarrow $\lim_{n\to b} F(u)$ existiert

2 Kurven (Kapitel 12)

$$\gamma: I \to \mathbb{R}^n$$

 $\gamma: t \mapsto (x_1(t), x_2(t), x_3(t), \cdots, x_n(t))$

 $x_i: I \to \mathbb{R}$ Komponentenfunktionen

Definition 15. parametrisierte Kurve Eine parametrisierte Kurve (kurz: Kurve) ist eine Abbildung $\gamma: I \to \mathbb{R}^n$, deren Komponentenfunktionen stetig sind.

Definition 16. differenzierbare Kurve Eine Kurve heisst differenzierbar, wenn jede Komponentenfunktion differenzierbar ist. Analog für stetig differenzierbar.

Definition 17. Spur Das Bild $\gamma(I) \in \mathbb{R}^n$ heisst die Spur von γ .

$$Spur(\gamma)$$

Bemerkung 13. Eine Kurve ist eine Abbildung und ihre Spur ist eine Teilmenge

Beispiel 18. Sei $k \in \mathbb{Z} \setminus \{0\}$

$$\gamma_k : \mathbb{R} \to \mathbb{C} \cong \mathbb{R}^2$$

$$t \mapsto e^{ikt}$$

 $|\gamma(t)| = 1 \ \forall t \ \mathrm{Spur} \ \gamma_k = S^1 \ k > 0$: Gegenuhrzeigersinn k < 0: Uhrzeigersinn

Beispiel 19. Schraubenlinie $\gamma: \mathbb{R} \to \mathbb{R}^3$

$$t \mapsto (r \cos t, r \sin t, ht)$$

Definition 18. Tangentialvektor einer Kurve Sei $\gamma: I \to \mathbb{R}^n$ differenzierbar.

$$\dot{\gamma} := (\dot{x}_1(t), \dot{x}_2(t), \dots)$$

 $\dot{\gamma}$ heisst der Tangentialvektor oder Geschwindigkeitsvektor zur Stelle t.

Definition 19. Geschwindigkeit einer Kurve $\|\dot{\gamma}(t)\|$ heisst Geschwindigkeit. Der Geschwindigkeitsvektor hängt vom Parameter ab, nicht von der Stelle in \mathbb{R}^n .

Definition 20. reguläre Kurve Eine stetig differenzierbare Kurve $\gamma: I \to \mathbb{R}^n$ heisst regulär an der Stelle $t_0 \in I$, wenn $\dot{\gamma}(t_0) \neq 0$. Sie heisst regulär, wenn sie an allen STellen regulär ist.

Beispiel 20. $\gamma(t) = (t^3, t^3), t \in \mathbb{R}$ Spur $\gamma = (y = x) \dot{\gamma}(t) = (3t^2, 3t^2) \dot{\gamma} = (0, 0)$ nicht regulär! Aber der Punkt (0, 0) ist nicht singulär.

Definition 21. Tangentialeinheitsvektor Ist γ an der Stelle t_0 regulär, so definiert man

$$T\gamma(t_0) := \frac{\dot{\gamma}(t_0)}{\|\dot{\gamma}(t_0)\|}$$

als Tangentialeinheitsvektor. $||T_{\gamma}|| = 1$

Definition 22. Parametrisierte Kurve Sei $f: J \to \mathbb{R}$ stetig differenzierbar. Der parametrisierte Graph von f ist die Kurve

$$\gamma_f: J \to \mathbb{R}^2$$

$$t \mapsto (t, f(t))$$

 $\operatorname{Spur}(\gamma_f) = \operatorname{Graph}(f)$

$$\dot{\gamma}_f(t) = (1, f'(t)) \neq 0 \ \forall t$$

Eigenschaften 4. parametrisierter Graph Ein parametrisierter Graph ist regulär

Satz 20. Sei $\gamma: I \to \mathbb{R}^2$, $t \mapsto (x(t), y(t))$ stetig differenzierbar. Wenn $\dot{x}(t)$ keine Nullstennen hat, gibt es eine stetig differenzierbare Funktion

$$f: J \to \mathbb{R}^2$$

wobei

$$J := x(I)$$

s.d.

$$\operatorname{Graph} f = \operatorname{Spur} \gamma$$

Bemerkung 14. $\dot{y} \neq 0 \rightsquigarrow \text{Graph von } x(y)$

Satz 21. Sei $t_0 \in I$, $x_0 := x(t_0)$

$$f'(x_0) = \frac{y(\dot{t}_0)}{\dot{x}(t_0)}$$

$$y = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

Ist γ w-mal stetig differenzierbar, so ist es f auch und

$$f''\underbrace{(x_0)}_{=x(x_0)} \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\dot{x}^3}$$

Beweis 22. $\dot{x} \neq 0 \implies x(t)$ streng monoton \implies invertierbar. \exists Umkehrabbildung

$$\tau: J \to I$$

$$\tau(x(t)) = t \ \forall t$$

stetig differenzierbar

$$\tau = \frac{1}{\dot{x}}$$

$$\gamma(t) = (x(t), y(t)) = (x(t), y(\tau(x(t))))$$

$$= (x(t), (y \circ \tau)(x(t)))$$

$$= (x(t), f(x(t)))$$

$$f := y \circ \tau$$

$$\gamma_f : x \mapsto (x, f(x))$$

$$\operatorname{Spur} \gamma = \operatorname{Spur} \gamma_f = \operatorname{Graph} f$$

$$f'(x_0) = \dot{y}t(t_0)\tau'(x_0) = \dot{y}(t_0)\frac{1}{\dot{x}(t_0)}$$

$$f'' = \left(\frac{\mathrm{d}}{\mathrm{d}x}\dot{y}\right)\frac{1}{\dot{x}} + \dot{y}\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{\dot{x}}\right) =$$

$$= (\ddot{y}\tau')\frac{1}{\dot{x}} + \dot{y}\left(-\frac{1}{\dot{x}^2}\ddot{x}\tau'\right) =$$

$$= \ddot{y}\frac{1}{\dot{x}}\frac{1}{\dot{x}} - \dot{y}\frac{1}{\dot{x}^2}\ddot{x}\frac{1}{\dot{x}} =$$

$$= \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\dot{x}^3}$$

Eigenschaften 5.

$$\begin{split} \dot{x} \neq 0 \leadsto y = f(x) \\ \dot{y} \neq 0 \leadsto x = g(y) \\ \gamma \text{regul\"{a}r} \implies \forall t \exists \text{Umgebung } I \text{ von } t \text{ s.d.} \\ \dot{x}(\tau) \neq 0 \ \forall \tau \in I \\ \dot{y}(\tau) \neq 0 \ \forall \tau \in I \end{split}$$

2.1 Die Bogenlänge

Definition 23. Sei $\gamma: I \to \mathbb{R}^n$. Sei $Z = (t_0, t_1, \dots, t_n)$ $t_i \in I$ $t_0 < t_1 < \dots < t_n$ Länge des Sehnenpolygons.

$$S(Z) := \sum_{i=1}^{m} \|\gamma(t_i) - \gamma(t_{i-1})\|$$

Gilt $Z^* \supset Z$, dann $S(Z^*) \ge S(Z)$

$$Z_1 \subset Z^*, Z_2 \subset Z^* \implies S(Z^*) \ge \max(S(Z_1), S(Z_2))$$

Idee: $s(\gamma) := \sup_{Z} S(2)$

Definition 24. rektifizierbare Kurve Eine Kurve γ heisst rektifizierbar, wenn die Menge der Längen aller einbeschriebenen Sehnenpolygone beschränkt ist.

Satz 22. Sei $\gamma:[a;b] \to \mathbb{R}^n$ fast überall stetig differenzierbar, (d.h. jede Komponente ist fast überall stetig differenzierbar). Dann ist γ rektifizierbar (1) und

$$s(\gamma) = \int_{a}^{b} \|\dot{\gamma}(t)\| \,\mathrm{d}t \ge 0 \tag{2}$$

Bemerkung 15. Ist γ_f der pramametrisierte Graph von f

$$\gamma_f(t) = (t, f(t))$$

so ist

$$\dot{\gamma}_f(t) = (1, f'(t))$$
$$\|\dot{\gamma}_f\| = \sqrt{1 + f'^2}$$
$$s(\gamma_f) = \int_a^b \sqrt{1 + f'(t)} \, \mathrm{d} t$$

Notation 5. Sei $f = (f_1, \dots, f_n)$ ein n-Tupel Funktionen

$$\int f(x) dx := \left(\int f_1 dx, \int f_2 dx, \cdots, \int f_n dx \right)$$

Lemma 3.

$$\left\| \int_a^b f(x) \, \mathrm{d} \, x \right\| \le \int_a^b \|f(x)\| \, \mathrm{d} \, x$$

Beweis

- 1. Lemma gilt für Treppenfunktionen
- ${\it 2. \ Approximations sazu}$

Beweis 23. Sei $Z = (t_0, \dots, t_m)$ eine Zerlegung von [a; b]

$$S(Z) = \sum_{i=1}^{m} \|\gamma(t_i) - \gamma(t_{i-1})\|$$

$$= \sum_{i=1}^{m} \left\| \int_{t_{i-1}}^{t_i} \dot{\gamma}(t) \, \mathrm{d}t \right\|$$

$$\leq \sum_{i=1}^{m} \int_{t_{i-1}}^{t_i} \|\dot{\gamma}\| \, \mathrm{d}t$$

$$= \int_{-1}^{b} \|\dot{\gamma}\| \, \mathrm{d}t$$

 $(\|\dot{\gamma}\| \ ist \ eine \ Regelfunktion) \ Diese \ Abschätzung \ gilt \ für \ alle \ Zerlegungen. \implies \gamma \ rektifizierbar.$

$$s(\gamma) \le \int_a^b \|\dot{\gamma}\| \,\mathrm{d}\,t$$

 $= f\ddot{u}r(2)$

$$\forall \varepsilon > 0 \ \exists Z : S(Z) \ge f(\|\dot{\gamma}\| - \varepsilon)$$

Treppen funktion en + Approximations satz