USEFUL THEOREMS AND FORMULAS FROM CALC:

Special Limits:

$$\lim_{x\to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x\to 0} \frac{1-\cos x}{x} = 0$$

Theorems About Continuity and Function Values:

Intermediate Value Theorem: If a function f(x) is continuous on [a,b], then the function will take on all the values of y between f(a) and f(b).

Continuity of Composite Functions: If g is continuous at c and f is continuous at g(c), then (fog(c) is continuous at c.

Derivatives and Differentiability:

Definition of the derivative: lim f(x+Ax)=f(x)

Common Derivative Rules:

f(x)	f'(x)
C	0
X n	nxn-1
c.f(x)	c.t.(x)
$f(x) \pm g(x)$	f'(x) ± g'(x)
Sin X	Cos ×
Cos X	-sin X
f(x)·g(x)	f(x) ·g'(x) + f'(x)·g(x)
g(x)	g(x)·f'(x)-f(x)·g'(x) [g(x)] ^a
tanx	Sec2 X
CSC X	-csc x cot x
Sec ×	sec x tan x
cot x	-csc2 x
e×	e×
ln X	1/×

, vasujaystudyguides.github.io

X|f(x) is differentiable at x=c, then f(x) is also continuous at x=c.

First Derivative Test!

- . (ff'(x) >0, then f(x) is increasing.
- . (f f(x) <0, then f(x) is decreasing.
- . (ff'(x)=0, then f(x) is constant.

Extreme Value Theorem: If f:s continuous on a closed interval [a,b], then f has both a minimum and a maximum on the interval.

Second Derivative Test:

- · If f"(x) >0, then f(x) is concave up.
- · (ff"(x)<0, then f(x) is concave down.
- · If f"(x)=0, the test cannot be used.

Theorems with Derivative Applications:

Rolle's Theorem:

If f(x) is continuous on the interval [a,b] and differentiable on (a_1b) , and f(a) = f(b), then there is a number c such that a < c < b, and f(c) = 0.

Mean Value Theorem (for derivatives):

If f(x) is continuous on [a, b] and differentiable on (a, b), then there is a number c such that:

Derivatives of More Complex Functions:

Dellamines			
f(x)	ticx)	t(x)	t,(x)
au	valna	arccot u	-U1
logau	Ulna	arcsec u	101\square 2 -1
arcsin u	VI - V2	arceseu	_ U1
arccos U	-U1 VI-U2	Wice is a	10/502-1
arctan u	1+02		vasujaystudyguides.github.io

Methods of Approximation:

Newton's Method for Approximating Zeros of a Function:

$$X^{N+1} = X^N - \frac{E_1(X^N)}{E(X^N)}$$

=> Rule for finding the nth Root of a:

$$X_{q+1} = \frac{1}{n} \left(X_q(n-1) + \frac{\alpha}{\chi^{n-1}} \right)$$

Tangent Line Approximation for Function Values:

Euler's Method for Approximating Function Values:

Rectangular Approximation Methods for Definite Integrals (st(x)dx):

$$LRAM = \frac{b-a}{n} \sum_{i=1}^{n} f(l_i)$$
 $MRAM = \frac{b-a}{n} \sum_{i=1}^{n} f(m_i)$

$$RRAM = \frac{b-a}{n} \sum_{i=1}^{n} f(r_i)$$

Trapezoidal Approximation for Definite Integrals:

$$TRAP = \frac{b-a}{2n} \left(f(x_0) + Zf(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right)$$

Simpson's Rule for Approximating Definite Integrals!

Theorems with Integral Applications:

FUNDAMENTAL THEOREM OF CALCULUS:

1. If f is nonnegative and continuous on [a,b], then $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$

2.
$$\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = f(x)$$

Mean Value Theorem (for integrals):

If f is continuous on [a, b], there is a value of x = c such that $f(c) = f_{ave} = \frac{1}{b-a} \int_{-a}^{b} f(x) dx$

Integration by Parts:

Sequences and Series:

*If lim an exists, then the sequence an converges.

*If a sequence is bounded and monotonic, then it converges.

Tests for Convergence / divergence of infinite series:

Geometric series: $\sum_{n=0}^{\infty} a \cdot r^n$ converges when |r| < 1, and diverges otherwise. *For |r| < 1, $\sum_{n=0}^{\infty} a \cdot r^n = \frac{a}{1-r}$

nth-Term Test: For a series \sum_{n=0}^{\infty} an, if lim an \not 0, then the series diverges.

p-series: $\sum_{n=1}^{\infty} \frac{1}{np}$ converges if p > 1, and diverges if 0

Telescoping Series: \(\sum_{n=1}^{10} \left(bn-bn+1 \right) \) converges if lim bn exists and = \(L \)

* | RN | 4 an+1

Integral Test: $\sum_{n=1}^{\infty} a_n$, where $a_n = f(n) \ge 0$, converges if $\int_1^{\infty} f(x)$ converges and diverges if $\int_1^{\infty} f(x) diverges$

 \star $0 < R_N < \int_N^\infty f(x) dx$

Root Test: \(\sum_{n=1}^{\infty} a_n \) converges if \(\sum_{n=0}^{\infty} \) \(\lambda_n \

and is inconclusive if lim Vlan = 1

Ratio Test: $\sum_{n=1}^{\infty} a_n$ converges if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, diverges if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ or =0,

Taylor Polynomials and Series:

* If f has n derivatives at x=c, then the polynomial $P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + ... + \frac{f^{(n)}(c)}{n!}(x-c)^n$

approximates f and is called taylor polynomial for fat c.

* If C = 0, Pn(x) is called the n+h Maclaurin polynomial for fat C.

Taylor's Theorem:

f(x) =
$$P_n(x) + R_n(x) \Rightarrow R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} (x-c)^{n+1}$$
, where $z \in \mathbb{Z}$ is between $x \in \mathbb{Z}$

A The Taylor series for f(x) at c is given by:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

Common Taylor Series!

•
$$\frac{1}{1} = \sum_{n=0}^{\infty} (-1)^n (x-1)^n$$

$$\frac{1}{1+x} = \sum_{n=0}^{10} (-1)^n x^n$$

•
$$\ln x = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}(x-1)^n}{n}$$

$$e^{\times} = \sum_{n=0}^{\infty} \frac{\chi^n}{n!}$$

$$oSin x = \sum_{n=0}^{\infty} \frac{(-1)^n \chi^{2n+1}}{(2n+1)!}$$

$$o \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

o arctan
$$x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$

o arcton
$$x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
 o arcsin $x = \sum_{n=0}^{\infty} \frac{(2n)! x^{2n+1}}{(2^n n!)^2 (2n+1)}$

Area and Volume with Integrals:

Area Under One Curve!

$$\int_{a}^{b} f(x) dx$$

Area Between Two Curves:

$$\int_{0}^{b} (f(x) - g(x)) dx, \text{ where } f(x) > g(x)$$

Volume with One Curve!

Horizontal Axis of Rotation:

vertical Axis of Rotation.

$$\prod_{a}^{b} (f(y))^{2} dy$$

Volume with Two Curves.

Horizontal Axis of Rotation:

$$\Pi \int_{-\infty}^{b} (f(x))^{2} - (g(x))^{2} dx$$

Vertical Axis of Rotation:

$$\Pi \int_{a}^{b} \left[(f(y))^{2} - (g(y))^{2} \right] dy$$

$$2\pi \int_{a}^{b} x(f(x)-g(x)) dx$$
vasujaystudyguides.github.io