

Colectânea de problemas

Capítulo 1 - Díodos

1. Considere o circuito da figura D1 com o díodo D caracterizado por: $V\gamma{=}0{,}7V\;,\;\;R_f{=}0\Omega\;\;e\;\;R_r{=}\infty.\;Calcule\;o\;valor\;de\;V_R\;para\;as\;seguintes\;condições:$

b)
$$V = -11V$$
; $R = 30k\Omega$

R: a) 10.3V: b) 0V

Figura D1

- 2. Considere o circuito da figura D2, com os díodos caracterizados por V_{γ} =0,7V, R_f =0 Ω e R_r = ∞ ; calcule as correntes I_{R1} , I_{R2} e I_{R3} , indicando o seu sentido, para:
 - a) $V_1 = 10V e V_2 = 10V$.
 - b) $V_1 = 5V e V_2 = 10V$
 - c) $V_1 = 5V e V_2 = 2V$
 - d) Considerando os resultados obtidos na alínea a) determine V_{R2} .

- b) IR1=0; IR2=IR3=4,3mA;
- c) IR1=IR2=1,8mA; IR3=0

Figura D2

- 3. Considere o circuito da figura D3 e responda às questões seguintes, tendo o cuidado de indicar o sentido que arbitrou para cada circulação, assim como os sentidos das correntes e polaridades das tensões obtidas. Os díodos são caracterizados
 - por: $V\gamma=0.7V$, $R_f=0\Omega$ e $R_r=\infty$.
 - a) Calcule I_{R1} , I_{R2} , I_{R3} , I_{R4} , I_{R5} , V_{R2} e V_{R4} , para: $V_1 = 15V$, $V_2 = 10V$ e $V_3 = 15V$.
 - b) Calcule I_{R1} , I_{R2} , I_{R3} , I_{R4} , I_{R5} , V_{R2} e V_{R3} , para: $V_1 = -10V$, $V_2 = 5V$ e $V_3 = -5V$.

- b) IR1=0; IR2=IR3=4,3mA;
- c) IR1=IR2=1,8mA; IR3=0

Figura D3

Departamento de Engenharia Electrotécnica

- 4. Dado o circuito da figura D4, com V_1 =12V, R_p =50 Ω /0,25W, R_L =200 Ω /0,5W e o díodo zener Dz caracterizado por V_z =7,5V/0,5W, I_{zmin} =15mA, calcule:
 - a) A corrente I_{Rp}
 - b) A corrente I_{RL}
 - c) A corrente I_z
 - d) A potência dissipada na resistência R_p
 - e) A potência dissipada na resistência R_L
 - f) A potência dissipada no díodo de zener

Figura D4

- g) Entre que valores pode variar R_p de modo a que o díodo zener esteja a funcionar como regulador e não exceda os seus parâmetros máximos?
- h) Entre que valores pode variar R_L de modo a que o díodo zener esteja a funcionar como regulador e não exceda os seus parâmetros máximos?
- i) Descreva uma aplicação para o circuito.
- j) A potência nominal das resistências está correcta?

R :

- Para o circuito da figura D5, V_i é uma fonte de tensão alternada sinusoidal com V_{max}=15V e com período de 1ms. O díodo D é caracterizado por V_γ=0,7V, R_f=0Ω e R_r=∞ e a resistência R=100Ω. Responda às seguintes questões
 - a) Identifique o tipo de circuito;
 - b) Determine a corrente máxima em R;
 - c) Determine a corrente mínima em R;
 - d) Determine a corrente eficaz em R;
 - e) Determine a corrente média em R;
 - f) Esboce as formas de onda da tensão e corrente na resistência R e relacione-as com as formas de onda da tensão na entrada.

Figura D5

g) Esboce as formas de onda de tensão e corrente no díodo e relacione-as com as formas

R :

6. Para o circuito da figura D6, considere V_i =20.sin(2 π 100t) [V]. Com R=1k Ω , V_{Zo} =7,5V, V_{γ} =0,7V, R_f =0 Ω , R_Z =0 Ω e R_r = ∞ responda às seguintes questões:

 b) Esboce as formas de onda de tensão e corrente no díodo de zener, relacionando-as com as formas de onda de entrada

Figura D6

Departamento de Engenharia Electrotécnica

- 7. Pretende-se projectar um rectificador de onda completa, usando um transformador com ponto médio, com tensões no secundário de $16+16V_{ef}$, usando díodos rectificadores com $V_{\gamma}=0.7V,\,R_f=0\Omega$ e $R_r=\infty$.
 - a) Desenhe o esquema adequado à montagem;
 - Esboce a forma de onda das tensões na entrada e saída, indicando os valores máximo e mínimo de cada uma;
 - c) Qual o valor da corrente eficaz no circuito com uma resistência de carga de 100Ω ?

R :

- 8. Pretende-se projectar uma fonte de alimentação, com rectificação em ponte, filtrada e regulada com díodo zener, para alimentar uma carga que necessita de 12V com consumo de 100mA e um *ripple* máximo de 0,1V. Temos no nosso armazém o seguinte material:
 - Transformador 220V/20V, 20VA, $\eta = 80\%$;
 - Díodos zener de 1W para diversas tensões;
 - Resistências de 2W com diversos valores;
 - Condensadores de 50V com diversas capacidades;
 - a) Desenhe o esquema adequado do circuito;
 - b) Calcule o valor de todos os componentes e verifique se podem ser utilizados os que existem em armazém;
 - c) Qual o *ripple* da fonte na saída?
 - d) Aumentando o consumo para 200 mA o que é que acontece?
 - e) Represente as formas de onda da tensão nos pontos principais do circuito.
- 9. No circuito da figura D8, considere: V_i =5.sin(wt)[V], V_f =2,5V, R=1k Ω , D_1 =D2 => V γ =0,7V, R_f =0 Ω e R_r = $\infty\Omega$.
 - a) Esboce a forma de onda da tensão na entrada, V_i , e na saída, V_o :
 - b) Esboce a forma de onda da tensão na entrada, V_i , e na saída, V_o , considerando V_f = -2,5V;
 - c) Esboce a forma de onda da tensão na entrada, V_i , e na saída, V_o , substituindo a fonte V_f por um díodo zener com V_{ZO} =3V, com o cátodo ligado ao ânodo do díodo D_2 .

Figura D9

- 10. Considere o circuito da figura D10 com V_i=10.sin(wt) [V].
 - a) Identifique o tipo de circuito.
 - b) Considere o díodo ideal. Represente graficamente as formas de onda V_i e V_o indicando os seus valores máximo e mínimo.

d) Sugira uma aplicação para o circuito.

c) Idem para V_2 =-5V.

Figura D10

Figura D11

12. Considere o circuito da figura D12-a) em que o sinal de entrada, V_i, tem a forma representada na figura D12-b) e V₂=3V; o díodo D é ideal.

Figura D12-a)

Figura D12-b)

- a) Esboce as formas de onda das tensões V_D e V_o e calcule os seus valores máximo e mínimo, justificando todos os passos que conduziram o seu raciocínio.
- 13. Considere o circuito da figura D13, em que Vi é uma tensão alternada sinusoidal com V_{max} =25 V e o díodo D é ideal.

- b) Esboce um esquema de uma aplicação deste circuito.
- c) Esboce a forma de onda da tensão na saída, Vo.
- d) Qual o efeito do aumento da capacidade do condensador C na forma de onda na saída?

Figura D13

14. Considere o circuito da figura D14 com os díodos zener, D_{Z1} e D_{Z2} , caracterizados por $V_{\gamma}=0.7V$, $V_{Z0}=10V$, $R_f=R_Z=0\Omega$ e $R_r=\infty$ e

 $V_i=20\sin(wt)$ [V].

- a) Esboce a forma de onda das tensões na entrada e na saída, Vi e Vo.
- b) Calcule, analiticamente, os valores da tensão de entrada, Vi, para os quais os díodos zener mudam de estado.

Figura D14

- 15. No circuito da figura D15 os díodos zener são caracterizados por V_{γ} =0V, V_{zo} =5V, R_f = R_z =0 Ω , R_r = ∞ e Vi=20.sin(wt) [V].
 - a) Calcule os valores da tensão de entrada, Vi, para os quais os díodos mudam de estado.
 - b) Esboce a forma de onda das tensões na entrada e saída, V_i e V_o.
 - c) Repita a alínea b) considerando $R_z=10\Omega$.

Figura D15

16. O díodo emissor de luz (LED) tem um papel importante na monitorização de circuitos electrónicos. Considerando que o LED usado no circuito da figura D16, tem V_{γ} =1,8V, R_f =0 Ω , R_r = ∞ , I_{dmin} =5mA e I_{dmax} = 50mA e Vi=20.sin(wt) [V]:

b) Quais os valores de Vi para os quais o LED emite luz apreciável?

Figura D16

- 17. No circuito da figura D17, Vi é uma tensão alternada sinusoidal, com amplitude máxima de 10V, R=1kΩ e o díodo D é caracterizado por Vγ=0,7V, R=0Ω e D R=∞.
 - a) Esboce a característica de transferência do circuito Vo(Vi).
 - b) Esboce a forma de onda da corrente I_R e das tensões na entrada e saída, Vi e Vo.
 - c) Determine o valor de pico da corrente no díodo.

Figura D17

- 18. No circuito da figura D18 o díodo zener é caracterizado por $V_{Z0}=5V$, $I_{Zmin}=10mA$ e $P_{Dzmax}=1W$, $V_1=15V$ e $R_L=500\Omega$.
 - a) Determine I_Z , I_{Rp} , I_{RL} e V_{RL} , para R_p =65 Ω .
 - b) Determine o valor mínimo que R_p pode assumir para que o circuito se comporte como regulador de tensão.
 - c) Determine o valor máximo que R_p pode assumir para que o circuito se comporte como regulador de tensão.

Figura D18

- 19. No circuito da figura D19 considere $V_{Z0}=5V$, $I_{Zmin}=15mA$, $P_{Dzmax}=1W$, $V_1=15V$ e $R_p=45\Omega$.
 - a) Determine I_Z , I_{Rp} , I_{RL} e V_{RL} , para R_L =100 Ω .
 - b) Determine o valor mínimo que R_L pode assumir para que o circuito se comporte como regulador de tensão.
 - c) Determine o valor máximo que R_L pode assumir para que o circuito se comporte como regulador de tensão.
 - d) Considere R_L =80 Ω . Determine o valor mínimo que V_1 pode assumir para que o circuito se comporte como regulador de tensão.

Figura D19

20. Considere o circuito da figura D20. Os díodos D1 a D4 têm $V\gamma$ =0,7V; V2=10V, V3=-10V, R1=R2=R3=10 $k\Omega$.

Esboce a evolução da tensão Vo aos terminais de R3 nas seguintes condições:

- b) $-4,65V \le Vi \le +4,65V$;
- c) Vi<-4,65V;
- d) Vi>+4,65V;
- e) Vi=10.sin(wt) V;
- f) Qual a alteração na evolução de Vo considerando os díodos ideais?

Figura D20

- 21. No circuito da figura D21 o díodo zener é caracterizado por $V_{Z0}=10V$, $I_{Zmin}=1mA$, $V\gamma=0,6V$, $R_f=10\Omega$, $R_Z=5\Omega$ e $R_f=\infty$. $R_f=100$, $R_f=100$ 0 e $R_f=100$ 0 e $R_f=100$ 0.
 - a) Calcule I_{R1} e I_{R3} , e indique o seu sentido, quando I_D =-15mA;
 - b) Calcule V_1 para as condições da alínea anterior ;
 - c) Para V₁=60.sin(wt) V, esboce a forma de onda da tensão aos terminais da resistência R₅.

Figura D21