CS 4398.001 Digital Forensics

Dr. Gupta

## 1. Show my device information

| -                             | gistered]<br>100% free | Alloc. of visible drive space                       |                                                 | Bytes per cluster:<br>Free clusters: | 4,096<br>3,779,023       |
|-------------------------------|------------------------|-----------------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------|
| File system:                  | NTFS                   | Cluster No.: 0                                      | Used space: 40.3 MB                             | Total clusters:                      | 3,789,327                |
| Volume label:                 | USB DISK               | \$Boot                                              | 42,205,184 bytes                                | Bytes per sector:                    | 512                      |
| Default Edit Mode             |                        | \                                                   | Free space: 14.4 GB                             | Sector count:                        | 30,314,624               |
| State:                        | original               | Snapshot taken 10 min. ago                          | 15,478,878,208 bytes                            | Physical disk:                       | 2                        |
| Undo level:<br>Undo reverses: | 0<br>n/a               | Logical sector No.: 0<br>Physical sector No.: 8,064 | Total capacity: 14.5 GB<br>15,521,087,488 bytes |                                      | exadecimal<br>exadecimal |

## 2. Highlight MBR signature

| 000000100 | DT  | UL  | DD | 07  | υU   | CD  | TO   | LD  | F 2 | CO  | Uυ  | UH  | 41  | 20  | 07  | 69  |
|-----------|-----|-----|----|-----|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 000000190 | 73  | 6B  | 20 | 72  | 65   | 61  | 64   | 20  | 65  | 72  | 72  | 6F  | 72  | 20  | бF  | 63  |
| 0000001A0 | 63  | 75  | 72 | 72  | 65   | 64  | 00   | 0D  | 0A  | 42  | 4F  | 4F  | 54  | 4D  | 47  | 52  |
| 0000001B0 | 20  | 69  | 73 | 20  | 63   | 6F  | 6D   | 70  | 72  | 65  | 73  | 73  | 65  | 64  | 00  | 0D  |
| 0000001C0 | 0A  | 50  | 72 | 65  | 73   | 73  | 20   | 43  | 74  | 72  | 6C  | 2B  | 41  | 6C  | 74  | 2B  |
| 0000001D0 | 44  | 65  | 6C | 20  | 74   | 6F  | 20   | 72  | 65  | 73  | 74  | 61  | 72  | 74  | 0D  | 0A  |
| 0000001E0 | 00  | 00  | 00 | 00  | 00   | 00  | 00   | 00  | 00  | 00  | 00  | 00  | 00  | 00  | 00  | 00  |
| 0000001F0 | 00  | 00  | 00 | 00  | 00   | 00  | 8A   | 01  | A7  | 01  | BF  | 01  | 00  | 00  | 55  | AA  |
| 000000000 | 0.7 | 0.0 | 40 | 0.0 | 4.72 | 0.0 | 4.12 | 0.0 | E 4 | 0.0 | 4.0 | 0.0 | 4.7 | 0.0 | E 2 | 0.0 |

## 3. Highlight LBA of my partition

| Offset    | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8   | 9  | A  | В  | С  | D  | E  | F  |
|-----------|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|
| 000000000 | EB | 52 | 90 | 4E | 54 | 46 | 53 | 20 | 20  | 20 | 20 | 00 | 02 | 08 | 00 | 00 |
| 000000010 | 00 | 00 | 00 | 00 | 00 | F8 | 00 | 00 | 3F  | 00 | FF | 00 | 80 | 1F | 00 | 00 |
| 000000020 | 00 | 00 | 00 | 00 | 80 | 00 | 00 | 00 | 7 F | 90 | CE | 01 | 00 | 00 | 00 | 00 |
| 000000030 | 00 | 00 | 0C | 00 | 00 | 00 | 00 | 00 | 02  | 00 | 00 | 00 | 00 | 00 | 00 | 00 |

4. From the LBA value, calculate the start of my partition

To do this, I need to multiply the LBA value by sector size, which is 512 bytes (as shown in part 1) The LBA value is shown above from part 3, 08 00, or a value of 2048.

The partition starts at sector 2048, or 2048\*512 = 1048576 bytes offset (0x100000)

5. The Superblock Magic Signature is NTFS in Hex, 4E 54 46 53.

| Offset      |    |     |     |     |    |    |     |     |    |    |    |     |     |     |     |     |    |      |   |
|-------------|----|-----|-----|-----|----|----|-----|-----|----|----|----|-----|-----|-----|-----|-----|----|------|---|
| 00000000000 | EB | 52  | 90  | 4E  | 54 | 46 | 53  | 20  | 20 | 20 | 20 | 00  | 02  | 08  | 00  | 00  | ëR | NTFS |   |
| 00000000016 | 00 | 00  | 00  | 00  | 00 | F8 | 00  | 00  | 3F | 00 | FF | 00  | 80  | 1F  | 00  | 00  |    | Ø    | ? |
| 00000000032 | 00 | 0.0 | 0.0 | 0.0 | 80 | 00 | 0.0 | 0.0 | 78 | 90 | CE | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |    | €    |   |

6. 0x0D indicates sectors per cluster, and there are 8 sectors per cluster

| ,            |    |     |     |     |    |     |     |     |    |     |    |     |     |     |     |     |
|--------------|----|-----|-----|-----|----|-----|-----|-----|----|-----|----|-----|-----|-----|-----|-----|
| Offset       | 0  | 1   | 2   | 3   | 4  | 5   | 6   | 7   | 8  | 9   | 10 | 11  | 12  | 13  | 14  | 15  |
| 00000000000  | EB | 52  | 90  | 4E  | 54 | 46  | 53  | 20  | 20 | 20  | 20 | 00  | 02  | 08  | 00  | 00  |
| 000000000016 | 00 | 00  | 00  | 00  | 00 | F8  | 00  | 00  | 3F | 00  | FF | 00  | 80  | 1F  | 00  | 00  |
| 000000000022 | 00 | 0.0 | 0.0 | 0.0 | 90 | 0.0 | 0.0 | 0.0 | 75 | 0.0 | CE | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |

The block size is 512/8 since there are 8 sectors and each sector is 512 bytes (shown in part 1)

Each sector(block) is 64 bytes.

- 7. Number of blocks(sectors) per group (cluster) can be calculated using the information shown in part 1, since it tells us that there are 4096 bytes per cluster and each block is 512 bytes. 4096/512 = 8 blocks.
- 8. Since the superblock is in the first block it was in block #1. Each group has blocks consisting: super block, group descriptors, data block bitmap, inode bitmap, inode table, and a data block. The number of blocks are always an integral power of 2
- 9. To get to block group 3, I need to multiply 2x4096 to jump to the location at offset 0x8192



In a block group, the first block will always be the superblock, so here is the first block of block group 3.

Now, I will automate this through writing a c++ program, on linux.

The source code is attached on github,

https://github.com/charlestw127/Digital-Forensics/blob/main/Hexedit%20Diagnose.cpp

## Here is the output of the program:

```
forensics@forensics:~$ g++ 4398assignment3.cpp -o printinfo
forensics@forensics:~$ sudo ./printinfo /dev/sdc
Partition address: 0x100000

Superblock Group 0 address: 0x100400
Magic Number: 0xEF53
Block Size: 4096 bytes
Blocks per Group: 32768 blocks
Block Group Number: 0

Superblock Group 3 address: 0x18100000
Magic Number: 0xEF53
Block Size: 4096 bytes
Blocks per Group: 32768 blocks
Block Group Number: 3
```