Low Rank Approximations

Note Title

LECTURE 16

Recall Outer product in Lecture 3. Let $U \in \mathbb{R}^m = \mathbb{R}^{m \times 1}$, $V \in \mathbb{R}^n = \mathbb{R}^{n \times 1}$.

Then, the outer product between IN and & is:

This matrix has rank 1 because u v = [v, u, ..., vnu] i.e., each column is just a scalar multiple of the same vector u.

Now SVD can be viewed as a sum of rank 1 matrices:

Thu $A = \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}, r = rank(A)$ (Proof) just obvious!

[$u_{1} \cdots u_{m}$] $\begin{bmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \end{bmatrix}$ $\begin{bmatrix} v_{1}^{T} \\ v_{n}^{T} \end{bmatrix}$

Among all possible $m \times n$ matrices of rank k ($k \le r$), $\sum_{j=1}^{k} \sigma_{j} u_{j} u_{j}^{T}$ is the test approximation of A in the following sense:

Thm For any
$$k$$
 with $0 \le k \le r$,

let $A_k := \sum_{j=1}^k \sigma_j \ U_j \ U_j^T$

If $k = p = min(m, n)$, then define

 $\sigma_{k+1} = 0$. Then,

 $\|A - A_k\|_2 = \inf \|A - B\|_2 = \sigma_{k+1}$
 $B \in \mathbb{R}^{m \times n}$
 $\operatorname{rank}(B) \le k$

(Proof)

 $\|A - A_k\|_2 = \|\sum_{j=k+1}^p \sigma_j \ U_j \ U_j^T \|_2$
 $= \|U\begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ 0 & \circ & \sigma_p \end{bmatrix} V^T \|_2$
 $= \|U\begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ 0 & \circ & \sigma_p \end{bmatrix} V^T \|_2$
 $= \|U\begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ 0 & \circ & \sigma_p \end{bmatrix} V^T \|_2$
 $= \|U\begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ 0 & \circ & \sigma_p \end{bmatrix} V^T \|_2$
 $= \|U\begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ 0 & \circ & \sigma_p \end{bmatrix} V^T \|_2$

orthogonal!

= ok+1 by definition of the matrix norm

Prove Note: If $D = diag(d_1, \dots, d_m) = \begin{bmatrix} d_1 & 0 \\ 0 & d_m \end{bmatrix}$ then $||D||_p = \max_{1 \le j \le m} |d_j| \quad p \ge 1$ exercise! Now, let $B \in \mathbb{R}^{m \times n}$ be any rank kmatrix. Then dim(null(B)) = n - kwhy? Because of the following thm:

For any $A \in \mathbb{R}^{m \times n}$, rank (A) + dim(null(A)) = n

Let Wi= null(B) (& Vi..., Vk+1) We know W = {O} because $\dim (null(B)) = n - R$ dim (< bi, ---, tre+1>) = k+1 so, if there two do not intersect, IR"'s dimension would be come n-k+k+1=n+1 This cannot happen! # So let h ∈ W, h + O. We can always normalize th, so can assume $||th||_2 = 1$. Then, 1| A - B||2 ≥ || (A - B) f ||2 by def. ⇒ || Ath || since th ∈ null(β) = || U \(\sur_{\text{th}} \) |, $V^{\mathsf{T}} h = \begin{bmatrix} * \\ * \\ 0 \end{bmatrix} k+1$ 2 Jan 11 VT R 12 = Op+1 ||R||2 = Op+1 Thm For any k with 0 < k < r, || A-Ak || = inf || A-B|| F

BEIRMAN $rank(B) \le k$ $= \sqrt{\sigma_{kt1}^2 + \dots + \sigma_r^2}$

(Proof) Exercise!

So, for a given matrix, say, A how to determine a good "k" so that we can efficiently (i.e., compress) A without losing too much info of A?

⇒ Check the distribution of the singular values!

rank k approximation of A only uses IIII portions!

* Condition Number and SVD Recall the condition number for a square nonsingular matrix A:

 $K(A) = cond(A) := ||A||_{2} ||A^{-1}||_{2}$

K(A): Small $\Rightarrow A$: well-conditioned. $\kappa(A)$: large $\Rightarrow A$: ill-conditioned, lose ≈ logio K(A) digits to solve AX= b.

If A: singular, $\kappa(A) = + \infty$.

Using SVD of A, we can nicely compute K(A) as follows. 1| A ||2 = 0, → by definition 11 A-1 11 2 = 1/0m why? A-1 = (U \(\SV^T\)^- = V \(\ST^{-1}U^T\) = V diag (1/0,;-, 1/0m) U largest

So, $\kappa(A) = \sigma_i/\sigma_m$

We can generalize the definition of the condition number for a rectangular matrix $A \in \mathbb{R}^{m \times n}$ using the pseudo-inverse A^{\dagger} and SVDs as

 $K(A) := \|A\|_{2} \cdot \|A^{\mathsf{T}}\|_{2}$ $= \sigma_i / \sigma_r$ r=rank(A) $\leq \min(m,n)$