Faster Weighted and Unweighted Tree Edit Distance and APSP Equivalence

Jakob Nogler¹ Adam Polak² Barna Saha³ Virginia Vassilevska Williams⁴ Yinzhan Xu³ Christopher Ye³

¹ETH Zurich

²Bocconi University

³UC San Diego

⁴MIT

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c,c')$

abcxef → abcyef

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c,c')$

2. Delete a character c with cost $\delta(c, \varepsilon)$

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c,c')$

2. Delete a character c with cost $\delta(c,\varepsilon)$

3. Insert a character c with cost $\delta(\varepsilon, c)$

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

1. Substitute a character c with c' with cost $\delta(c,c')$

2. Delete a character c with cost $\delta(c,\varepsilon)$

3. Insert a character c with cost $\delta(\varepsilon, c)$

"Unweighted" (String) Edit Distance: all costs are one

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ .

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ .

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ .

(String) Edit Distance Problem

Input: Two strings S_1 , S_2 and a cost function δ .

Output: Cheapest transformation of S_1 into S_2 using deletion, insertions and substitutions.

Tree Edit Distance Problem (TED)

Input: Two rooted, labeled, left-to-right-ordered trees T_1 , T_2 and a cost function δ .

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$

ty
)
,
n

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-arepsilon})$ algo under APSP

Background: Introduced by Selkow in the late 1970s. Applications in computational biology, structured data analysis, image processing, compiler optimization, and more.

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-\varepsilon})$ algo under APSP

Question 1: is there a $o(n^3)$, e.g. $O(n^3/\log n)$, algorithm for (weighted) TED?

Background: Introduced by Selkow in the late 1970s. Applications in computational biology, structured data analysis, image processing, compiler optimization, and more.

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-arepsilon})$ algo under APSP
2022	Mao	unweighted	$\mathcal{O}(n^{2.9546})$
2023	Dürr	unweighted	$\mathcal{O}(n^{2.9148})$

Question 1: is there a $o(n^3)$, e.g. $O(n^3/\log n)$, algorithm for (weighted) TED?

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time $\mathcal{O}(n^{3-\varepsilon})$ for any $\varepsilon>0$.

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time $\mathcal{O}(n^{3-\varepsilon})$ for any $\varepsilon > 0$.

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time $\mathcal{O}(n^{3-\varepsilon})$ for any $\varepsilon > 0$.

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph *G*.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time $\mathcal{O}(n^{3-arepsilon})$ for any arepsilon>0.

All-Pair Shortest Path Problem (APSP)

Input: A weighted and directed graph G.

Output: Shortest distance between every pair of nodes.

APSP Conjecture

There is no algorithm for APSP running in time $\mathcal{O}(n^{3-\varepsilon})$ for any $\varepsilon > 0$.

Question 2: is TED equivalent to APSP?

Can we reduce TED to computing min-plus product?

Min-plus Product

 $C_{i,j} = \min_{1 \le k \le n} \{A_{i,k} + B_{k,j}\}$

(APSP equivalent)

Can we reduce TED to computing min-plus product?

Monotone Min-plus Product

(Solvable in $\mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687})$ time)

• *B* is row monotone:

$$\forall i,j \quad B_{i,j} \leq B_{i,j+1}.$$

$$\forall i, j \quad A_{i,j}, B_{i,j} = \mathcal{O}(n).$$

Can we reduce unweighted TED to computing monotone min-plus product?

Monotone Min-plus Product

(Solvable in
$$\mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687})$$
 time)

• *B* is row monotone:

$$\forall i, j \quad B_{i,i} \leq B_{i,i+1}.$$

$$\forall i, j \quad A_{i,j}, B_{i,j} = \mathcal{O}(n).$$

Can we reduce unweighted TED to computing monotone min-plus product?

Yes! 🗸

Monotone Min-plus Product

(Solvable in
$$\mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687})$$
 time)

• *B* is row monotone:

$$\forall i, j \quad B_{i,i} \leq B_{i,i+1}.$$

$$\forall i, j \quad A_{i,j}, B_{i,j} = \mathcal{O}(n).$$

Can we reduce unweighted TED to computing monotone min-plus product?

Yes! ✓ But... existing reductions by Mao and Dürr:

- use observations that only apply to the unweighted case
- are not tight, yielding a $\mathcal{O}(n^{2.9148})$ -time algorithm

Monotone Min-plus Product

(Solvable in
$$\mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687})$$
 time)

• *B* is row monotone:

$$\forall i, j \quad B_{i,j} \leq B_{i,j+1}.$$

$$\forall i, j \quad A_{i,j}, B_{i,j} = \mathcal{O}(n).$$

Can we reduce unweighted TED to computing monotone min-plus product?

Yes! ✓ But... existing reductions by Mao and Dürr:

- use observations that only apply to the unweighted case
- are not tight, yielding a $\mathcal{O}(n^{2.9148})$ -time algorithm

Question 3: is there tight reduction from unweighted TED to monotone min-plus product?

Monotone Min-plus Product

(Solvable in $\mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687})$ time)

• B is row monotone:

$$\forall i, j \quad B_{i,j} \leq B_{i,j+1}.$$

$$\forall i, j \quad A_{i,j}, B_{i,j} = \mathcal{O}(n).$$

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{\mathsf{APSP}}(n) + n^{2+o(1)})$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{\mathsf{APSP}}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{\mathsf{APSP}}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{\mathsf{APSP}}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{\mathsf{APSP}}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Question 1: is there a $o(n^3)$ algorithm for (weighted) TED? \checkmark

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{\mathsf{APSP}}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? ✓

Williams '18: $T_{APSP}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Question 1: is there a $o(n^3)$ algorithm for (weighted) TED? \checkmark

Theorem 3

There is an algorithm for unweighted TED running in time $\mathcal{O}(T_{\mathsf{MonMUL}}(n) + n^{2+o(1)})$.

Chi, Duan, Xie, Zhang '22: $T_{\text{MonMUL}} = \mathcal{O}(n^{(\omega+3)/2})$.

Theorem 1

There is an algorithm for TED running in time $\mathcal{O}(T_{\mathsf{APSP}}(n) + n^{2+o(1)})$.

Question 2: is TED equivalent to APSP? <

Williams '18: $T_{APSP}(n) = n^3/2^{\Omega(\sqrt{\log n})}$.

Theorem 2

There is an algorithm for TED running in time $n^3/2^{\Omega(\sqrt{\log n})}$.

Question 1: is there a $o(n^3)$ algorithm for (weighted) TED? \checkmark

Theorem 3

There is an algorithm for unweighted TED running in time $\mathcal{O}(T_{\text{MonMUL}}(n) + n^{2+o(1)})$.

Chi, Duan, Xie, Zhang '22: $T_{\mathsf{MonMUL}} = \mathcal{O}(n^{(\omega+3)/2})$.

Question 3: is there a $\mathcal{O}(n^{(\omega+3)/2}) = \mathcal{O}(n^{2.687})$ algorithm for unweighted TED? \checkmark

Algorithms for Tree Edit Distance (Updated)

Year	Work	Setting	Complexity
1979	Tai	weighted	$\mathcal{O}(n^6)$
1989	Shasha, Zhang	weighted	$\mathcal{O}(n^4)$
1998	Klein	weighted	$\mathcal{O}(n^3 \log n)$
2007	Demaine, Mozes, Rossman, Weimann	weighted	$\mathcal{O}(n^3)$
2020	Bringmann, Gawrychowski, Mozes, Weinmann	weighted	no $\mathcal{O}(n^{3-arepsilon})$ algo under APSP
2024	This work	weighted	$n^3/2^{\Omega(\sqrt{\log n})}$
2022	Mao	unweighted	$O(n^{2.9546})$
2023	Dürr	unweighted	$O(n^{2.9148})$
2024	This work	unweighted	$\mathcal{O}(n^{2.687})$

How to visualize TED to come up with the reduction

The string alignment graph summarizes the DP scheme computing the edit distance.

Note: All border-to-border distances can be computed in $\mathcal{O}(n^2)$ time

Let us start by visualizing the tree edit distance between two caterpillar trees...

Let us start by visualizing the tree edit distance between two caterpillar trees...

Let us start by visualizing the tree edit distance between two caterpillar trees...

Let us start by visualizing the tree edit distance between two caterpillar trees...

...with the assumption that spine, left and right nodes of T only match with nodes of their same type (color) in T', respectively.

ted(T, T') is a pair of **interlaced paths** that minimize three terms:

- 1. corner-to-corner path in the alignment graph of ed(L, L');
- 2. corner-to-corner path in the alignment graph of ed(R, R'); and
- 3. a set of spine-to-spine matchings where the two paths intersect.

- 1. (x, x')-to-corner path in the alignment graph of ed(L, L');
- 2. (y, y')-to-corner in the alignment graph of ed(R, R'); and
- 3. a set of spine-to-spine matchings where the two paths intersect.

Divide and Conquer Scheme Input:

• A rectangle in the grid.

Output:

- 1. (x, x')-to-corner path in the alignment graph of ed(L, L');
- 2. (y, y')-to-corner in the alignment graph of ed(R, R'); and
- 3. a set of spine-to-spine matchings where the two paths intersect.

Divide and Conquer Scheme

Input:

- A rectangle in the grid.
- val((x, x'), (y, y')) w/ (x, x'), (y, y') on upper-right border.

Output:

- 1. (x, x')-to-corner path in the alignment graph of ed(L, L');
- 2. (y, y')-to-corner in the alignment graph of ed(R, R'); and
- 3. a set of spine-to-spine matchings where the two paths intersect.

Divide and Conquer Scheme

Input:

- A rectangle in the grid.
- val((x, x'), (y, y')) w/ (x, x'), (y, y') on upper-right border.

Output:

• val((x, x'), (y, y')) w/ (x, x'), (y, y') on lower-left border.

- 1. (x, x')-to-corner path in the alignment graph of ed(L, L');
- 2. (y, y')-to-corner in the alignment graph of ed(R, R'); and
- 3. a set of spine-to-spine matchings where the two paths intersect.

Divide and Conquer Scheme

Input:

- A rectangle in the grid.
- val((x, x'), (y, y')) w/ (x, x'), (y, y') on upper-right border.

Output:

• val((x, x'), (y, y')) w/ (x, x'), (y, y') on lower-left border.

- 1. (x, x')-to-corner path in the alignment graph of ed(L, L');
- 2. (y, y')-to-corner in the alignment graph of ed(R, R'); and
- 3. a set of spine-to-spine matchings where the two paths intersect.

Divide and Conquer Scheme

Input:

- A rectangle in the grid.
- val((x, x'), (y, y')) w/ (x, x'), (y, y') on upper-right border.

Output:

• val((x, x'), (y, y')) w/ (x, x'), (y, y') on lower-left border.

- 1. (x, x')-to-corner path in the alignment graph of ed(L, L');
- 2. (y, y')-to-corner in the alignment graph of ed(R, R'); and
- 3. a set of spine-to-spine matchings where the two paths intersect.

Steps needed to extend to general trees:

Steps needed to extend to general trees:

1. Drop the assumption on caterpillars that left matches w/ left, right w/ right and spine w/ spine.

Steps needed to extend to general trees:

- 1. Drop the assumption on caterpillars that left matches w/ left, right w/ right and spine w/ spine.
- 2. Generalize TED on caterpillar to spine edit distance on general trees.

Input: trees T, T', root-to-leaf paths $S \subseteq T, S' \subseteq T'$, and $ted(sub(v), sub(v')) \ \forall (v, v') \in (T \times T') \setminus (S \times S')$.

Images from [BGHS19]

Output: $ted(sub(v), sub(v')) \forall (v, v') \in S \times S'$.

Steps needed to extend to general trees:

- 1. Drop the assumption on caterpillars that left matches w/ left, right w/ right and spine w/ spine.
- 2. Generalize TED on caterpillar to spine edit distance on general trees.
- 3. Devise algorithm computing border-to-border distances in forest alignment graphs in APSP time.

Thanks!