1.	I pro	ints) Honor Code mise that I will complete this quiz independently and will not use a r-based materials during the quiz, nor will I communicate with other stu	_	_
	I wil	l not violate the Honor Code during this quiz.	○ True	○ False
2.		oints) True or False rmine whether the following statements are true or false.		
	` '	(1') In any queue, you are able to access elements in the middle of the the preceding elements.	queue witho	out dequeuing
	` /	(1') If we implement a queue using a circular array, the minimal mem the maximal possible numbers of elements in the queue.	nory we need True	l is related to Control Control False
		(1') Stacks are commonly used in algorithms for parsing expressions are	nd syntax ch	O
	` /	(1') In a stack implemented using a linked list, it is possible that the pstack overflow.	○ True○ ush operati○ True	○ Falseon result in a○ False
	` ,	(1') Linked list is more efficient than array when we only want to find s value.	some element True	t with specific
		(1') In any circular doubly linked list, you are able to traverse the entende.	tire list start	ting from any O False
	(g)	(1') In any singly linked list, removing the last element requires $O(1)$ time	ie. () True	○ False
	(h)	(1') If $f(n) = n^{\log n}$ then for all $\alpha \ge 1$, we have $f(n) = \omega(n^{\alpha})$.	O True	○ False
	(i)	(1') For any two functions $f(n)$ and $g(n)$, if $f(n)$ is $O(g(n))$, then $g(n)$, , , ,	
	(·)		O True	○ False
	(0)	(1') For an algorithm, it is impossible that the worst-case running time running time is $\Omega(n)$.	is $O(n)$ and \bigcirc True	the best-case Carry False

3. (4 points) Possible Order Popped from Stack

Suppose there is an initially empty stack of capacity 7, and then we do a sequence of 14 operations, which is a permutation of 7 push(x) and 7 pop() operations. If the order of the elements pushed to the stack is 1 2 3 4 5 6 7, then for each sequence of elements listed below, determine whether it is a possible order of the popped elements. If possible, write down the 14 operations in order.

- (a) (2') 1 2 3 4 7 5 6
- (b) (2') 2 4 5 6 3 7 1

4. (7 points) Order the functions

Order the following functions so that for all i, j, if f_i comes before f_j in the order then $f_i = O(f_j)$. Do NOT justify your answers.

$$f_1(n) = \sqrt{n}$$

$$f_2(n) = n^{\frac{1}{4}}$$

$$f_3(n) = 2^{\log_2 n}$$

$$f_4(n) = 3^n$$

$$f_5(n) = (\frac{1}{2})^n$$

$$f_6(n) = \log_2 n$$

$$f_7(n) = 2^{\sqrt{n}}$$

$$f_8(n) = n!$$

As an answer you may just write the functions as a list, e.g. f_8, f_4, f_1, \ldots

5. (4 points) Analysing the Time Complexity of a Function

We are going to analyze the average-case time complexity of function FOO. Assume that all basic operations take constant time.

```
1: function FOO(a_1, a_2, \cdots, a_{n-1}, a_n)
                                                                                            \triangleright a is an array with n elements
       max \leftarrow a_1
                                                            \triangleright max is the maximal value among the first i elements
2:
3:
        for i = 2 to n do
            if max < a_i then
4:
                 max \leftarrow a_i
5:
                 (a_1, a_2, \cdots, a_{i-1}, a_i) \leftarrow (a_i, a_{i-1}, \cdots, a_2, a_1)
                                                                                              \triangleright Reverse the first i elements
6:
            end if
7:
8:
        end for
9: end function
```

The probability of entering the **if** body in the i-th **for** iteration is ______, because it is the probability that a_i has the maximal value among the first i elements. (Assuming all elements in array a is independent and evenly distributed.)

And the time complexity of the **if** body in the *i*-th **for** iteration is $\Theta(i)$ because we need to reverse the first i elements.

Therefore the average-case time complexity of the **if** statement is $\Theta(\underline{\hspace{1cm}})$.

And the for loop iterates $\Theta(n)$ times , so the average-case complexity of for loop is $\Theta(\underline{\hspace{1cm}})$

Therefore the average-case time complexity of FOO is $\Theta(\underline{\hspace{1cm}})$.