

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

FONTE LINEAR REGULADA + AMPLIFICADOR

Relatório da Disciplina de Eletrônica Analógica I por

Ana Júlia Costa Santana ₋ 11811ETE003 Lesly Viviane Montúfar Berrios ₋ 11811ETE001

> Prof. Daniel Pereira de Carvalho Uberlândia, Outubro / 2019

Sumário

1	.0	2								
2	Fonte de Alimentação Linear Regulada									
	2.1	Comp	onentes e orçamento	3						
	2.2	ria de cálculo	4							
		2.2.1	Retificação	4						
		2.2.2	Filtragem	4						
		2.2.3	Regulação	5						
		2.2.4	Resistor para descarga do capacitor	5						
	2.3	Finali	zação e considerações sobre a PCB	6						
		2.3.1	Espessura da linha	6						
		2.3.2	Projeto final no <i>PROTEUS</i>	6						
	2.4	s e ensaios	9							
		2.4.1	Regulação de linha	9						
		2.4.2	Regulação de carga	9						
3	Circuito amplificador									
	3.1	Comp	onentes e orçamento	10						
4	Finalização do projeto: Fonte + Circuito amplificador									
5 Conclusões										

1 Introdução

Na construção e planejamento da primeira placa de impresso (*PCB*) está a essência de qualquer curso da Faculdade de Engenharia Elétrica (FEELT), uma vez que, à despeito das dificuldades no entendimento da disciplica teórica, o planejamento e análise da forma de onda da gradezas de tensão e corrente demonstram e ilustram com lucidez cada processo intrínseco do circuito. Nesse sentido, o uso de simuladores, seja *PROTEUS*, *MULTSIM* ou qualquer outro, é ferramenta de imprescindível para a análise do qualquer circuito, e entendimento dos componentes necessários e melhor adaptáveis às exigências do projeto.

O projeto a ser destrinchado em cálculos e demostrações é retirado do material El Cheapo [1] cujo título é Um realmente simples amplificador de potência (do inglês, A Really Simple Power Amplifier). Logo, é preciso planejar a elaboração de dois circuitos: a fonte de alimentação linear regulada e o circuito amplificador. Sabe-se que o projeto mencionado pode ser substituído em parte por um dispositivo menor (um amplificador operacional), contudo isso não é feito visto que o objetivo principal é o aprendizado dos componentes mais básicos da elétrica: reistores, capacitores, transistores e diodos.

À respeito da *fonte de alimentação linear regulada*, tratada na Seção 2, pode obter-se melhor experiência, seja na busca por componentes, assim como melhor envolvimento com ferramentas de simulação e elaboração de placas de circuito impresso. Sabendo-se que trata-se de um dispositivo responsável por converter a tensão elétrica alternada em contínua, foi possível verificar experimentalmente as qualidades e resultados de um circuito retificador em ponte, além de fitros capacitivos e circuitos reguladores com diodos zener.

Já o *circuito amplificador*, discutido na Seção 3, pode e deve ser realizado com maior empenho, devido à experiência adquirida durante a realização da fonte.

Na seção

2 Fonte de Alimentação Linear Regulada

2.1 Componentes e orçamento

Com intuito de realizar primeiramente o circuito que alimentará o circuito amplificador, ou seja a fonte de alimentação, El Cheapo sugere o esquemático da Figura 1, o qual já foi adaptado em [1] para componentes mais modernos, por exemplo substituindo os transistores de germânio por outros de silício. Assim, extraíse os componentes que estão dispostos na Tabela 1, na qual também verifica-se o orçamento total para esta etapa, nas lojas de eletrônicos de Uberlândia, sendo visitadas Mundo Eletrônico, Ponto Eletrônico, Rádio Peças Uberlândia e Ponto Eletrônico para a aquisição de todos os componentes necessários.

Figura 1: Esquemático El Cheapo do circuito alimentador [1].

A escolha dos componentes da Tabela 1 também exige análise do circuito mediante um simulador, visto que devem ser projetados para uma tensão suficientemente alta.

Dúvidas:

- Diferença entre séries GBJ e KBPC
- Existe de especificação de tensão máxima no datasheet, para as pontes retificadoras?
- O resistor de descarga só é necessário para fonte sem carga, entao retiro do orcamento? (Mas preciso dos resistores de for querer uma fonte independente, certo? Para mim, que eu possa regular a tensao de saida e corrente)

Tabela 1: Componentes e orçamento da fonte.

Componente	Especificação	Quantidade	Preço (R\$)	Descrição
Capacitores	$4700\mu F - 100V$	2	10+25 = 35	C1, C3
Capacitores	$470\mu F - 100V$	1	9,50 (2,00)	C2
Resistores	$1k\Omega$	2	$2 \times 0,06 = 0,12$	R1, R2
Resistores	1k8Ω - $5W$	2	$2 \times 2, 42 = 4, 84$	Descarga do capacitor
Ponte Retificadora	6A	1	7,15	Havia a GBJ606
Transistores	BD139	1	0,85	Q1
Transistores	TIP35C	1	5,85	Q2
Fusível	4A	1	0,30	FUS
Borne Painel	5A	4	5,25	Só havia de 20A
Placa de fenolite	$10 \times 15cm$	1	6,80	Tamanho adequado
		Total:	R\$ 75,66	

2.2 Memória de cálculo

Cada componente possui uma função no circuito, que pode ser analisada a nível de tensão e corrente. Espera-se um sinal contínuo na saída, com o qual poderá conectar-se a carga, ou seja o circuito amplificador de 8Ω .

2.2.1 Retificação

Esta etapa transforma a tensão alternada em uma tensão contínua pulsante, e é realizada principalmente pela ponte retificadora. a ponte escolhida foi uma de 6A, 100 V que atende aos parâmetros do circuito montado.

2.2.2 Filtragem

Transforma a tensão contínua pulsante em uma tensão contínua quase perfeita. Mas essa tensão contínua apresenta, quando a fonte é ligada a uma carga, uma oscilação chamada Tensão de Ripple. Essa etapa é realizada pelos capacitores encontrados eno circuito que devido a sua composição, ao sofrer o processo de carga e descarga diminuem a oscilação da tensão já que a tensão fornecida ao circuito agora nos momentos de pulso é suprida pela descarga do capacitor. Porém como abprdado anteriormente, resta ainda o riplle e para eliminar esse fator incômodo existe ainda outra etapa...

2.2.3 Regulação

Após a retificação e a filtragem, ocorre a etapa de regulação, com o objetivo de eliminar definitivamente a tensão de oscilação, mesmo com uma carga variável. O diodo utilizado, conta com uma tensão Zener nominal de 62 V para uma corrente de teste de 4 mA.

O comportamento do zener é observado para dois processos, a regulação de linha, que mostra acapacidade da fonte de manter a tensão de saída diante de variações na tensão de entrada.

Se a tensão de entrada aumenta muito, ao invés de ter todo esse acréscimo em cima da carga, o diodo Zener, regula esse valor de tensão, por meio da sua característica de operação em ruptura reversa. Isso é bem observado na corrente, que sofre maiores alterações para que a tensão se mantenha constante. Para o processo inverso, com um descréscimo na tensão de entrada, um processo análogo. As variações na tensão de entrada, são direcioandas ao resistor limitador, mostrando serem válidas as equações abaixo.

$$I_S = I_Z + I_R \tag{1}$$

$$V_S = V_{in} - V_Z \tag{2}$$

Existe ainda a regulação de carga, que mostra a capacidade da fonte de manter uma tensão de sída constante diante de variações na corrente de carga. Que depende da potência requerida pela carga.

$$I_S = \frac{V_{in} - V_Z}{R_S} \tag{3}$$

Logo, para toda a avariação na corrente de carga é compensada por uma variação oposta na corrente através do diodod Zener, mantendo a tensão constante.

2.2.4 Resistor para descarga do capacitor

Para segurança do circuito, e daqueles que forem manejá-lo, resistores foram acrescentados em paralelo com os capacitores, para que, ao efetuar o desligamento da placa os capacitores pudessem ser descarregados em segurança. Para projetar a resistência necessária nos capacitores, as equações conhecidas para descarga num capacitor foram aplicadas.

$$t = RC \cdot ln \left(1 - \frac{V_C}{V_{in}} \right) \tag{4}$$

Considerado os capacitores de 4700uF e um tempo de descarga de 10 s, para

uma tensão média entre os dois capacitores, V_C de 64,85V (de acordo com simulação) e V_{in} de 80 V_{pp} , a resitência mínima necessária é de 1,3 $k\Omega$, para suprir esses requisitos mínimos, foi utilizado um reistor de 1,8 $k\Omega$ de 5W.

2.3 Finalização e considerações sobre a PCB

2.3.1 Espessura da linha

Ao projetar a plca de circuito impresso. Um cuidado maior com relação as trilhas precisa ser tomado, para que não haja problemas quanto a passagem de corrente, e para otimizar a dissipção do calor na placa. Para escolher uma espessura de linha que cumprisse tais propósitos, utilizamos o equacionamento de acordo com a norma IPC-2221, que através de sua curva define as constantes k, b e c que são utilizadas no cálculo da espessura da trilha mais adequada. Iniciando pelo cálculo da área temos:

$$A[th^{2}] = \left(\frac{I}{k \cdot (Temp - Rise[deg.C])^{b}}\right)^{\frac{1}{c}}$$
(5)

E em sequência a largura é dada:

$$L[th] = \frac{A}{Espessura[oz] \cdot 1,378} \tag{6}$$

Considerando k = 0,048, b = 0,44, c = 0,725 e a placa de fenolite de 1 OZ, e uma variação de temperatura de aproximadamente $10^{\circ}C$, descobriu-se um valor para a espessura das linhas de aproximadamente 90th, o qual foi utilizado na maioria das trilhas do projeto.

2.3.2 Projeto final no *PROTEUS*

Utilizando todos os conceitos já descritos foi possível organizar os componentes em uma placa de cirucito impresso, utilizando o software PROTEUS.

Figura 2: Projeto ISIS da fonte.

Figura 3: Projeto ARES da fonte.

Figura 4: Parte inferior do placa.

Figura 5: Parte superior da placa.

- 2.4 Testes e ensaios
- 2.4.1 Regulação de linha
- 2.4.2 Regulação de carga

3 Circuito amplificador

3.1 Componentes e orçamento

O esquemático *El Cheapo*, apresentado na Figura 6, possui alguns dispositivos que são obsoletos hoje, por exemplo os trasistores de germânio, os quais podem ser equivalentemente substituidos pelos componentes descritos na Tabela 2.

Figura 6: Esquemático El Cheapo do circuito amplificador [1].

Dos componentes da Tabela 2, extraídos do esquemático da Figura 6, ainda são possíveis mudanças para o aprimoramento dos mecanismo do circuito. O capacitor $C7^*$ por exemplo poderia ter aumento de capacitância para $4700\mu F$, com o intuito de suprir o amortecimento insuficiente do arranjo de capacitores. Ademais, é importante ressaltar que os diodos (D1, D2 e D3) devem estar em contato com o dissipador, uma vez que

 ${\it Tabela 2: Componentes e orçamento do circuito amplificador.}$

Componente	Especificação	Quantidade	Preço	Descrição	Observações
	$15\mu F$	1		C1	
	$200\mu F$	1	5,00	C2	
	68pF	1	0,50	С3	50V cerâmico
Capacitores	$20\mu F$	1	0,76	C4	22UF 100V
	$220\mu F$	1	6,20	C5	220MF 100V (6,20) 220V (5,00)
	100nF	1	0,42	C6	100k 50V cerâmico
	$1000\mu F$	1	1,20	C7*	4700MF 63V(15,50)/1000MF 25V
	$2M7\Omega$	1		R1	
	$150k\Omega$	1	0,10	R2	1/8W
	$33k\Omega$	1	0,10	R3	1/8W
	$1k\Omega$	3	0,15	R4, R11, R14	
	$18k\Omega$	2	0,16	R5, R7	1/8W
Resistores	$47k\Omega$	1	0,10	R6	1/8W
Resistores	$330R\Omega$	1	0,10	R8	1/8W
	$6k8\Omega$	1	0,10	R9	1/8W
	$1k5\Omega$	1	0,10	R10	1/8W
	$0R47\Omega$	2	0,20	R12, R15	1/8W
	$27R\Omega$	1	0,10	R13	1/8W
	$18R\Omega$	1	0,05	R16	1/8W
Diodos	1N456A	3		D1, D2, D3.	
	BC559	1	0,93	Q1	
m : 4	BD139	2	5,40	Q2, Q3	
Transistores	BD140	1	1,68	Q4	
	2N3055 (TIP35C)	2	11,82	Q5, Q6	
Potenciômetro	200k	1		VR1	
		Total:	R\$ 35,17		

11

4 Finalização do projeto: Fonte + Circuito amplificador

5 Conclusões

Referências

- [1] Rod Elliott, "El Cheapo A Really Simple Power Amplifier", ESP, Elliott Sound Products, 2005. Disponível em: https://sound-au.com/project12a. htm. Acesso em: out. 2019.
- [2] Brooks Doug, Graves Dave, "Current Carrying Capacity of Vias" Disponível em: https://www.ultracad.com/articles/viacurrents.pdf. Acesso em: out. 2019.
- [3] Soares Camila, "Dedução das equações de carga e descarga dos capacitores utilizando equações diferenciais de primeira ordem". Disponível em: https://camilasoares.wordpress.com/2009/04/07/deducao-das-equações-decarga-e-descarga-dos-capacitores-utilizando-equações-diferenciais-de-primeira-ordem/ Acesso em: out. 2019.
- [4] Petry Clovis Antonio, "D. PROJETO DE PLACAS DE CIRCUITO IM-PRESSO BÁSICO "Disponível em: http://www.professorpetry.com.br/Bases_Dados/Apostilas_Tutoriais/Projeto_PCI_Charles.pdf. Acesso em: out. 2019.
- [5] "6.0A GLASS PASSIVATED BRIDGE RECTIFIER", DIODES INCOR-PORATED. Disponível em: https://www.diodes.com/assets/Datasheets/ds21216.pdf. Acesso em: out. 2019.
- [6] "BD135/137/139", FAIRCHILD SEMICONDUCTOR. Disponível em: http://www.redrok.com/NPN_BD135_45V_1.5A_12.5W_Hfe40_T0-126.pdf. Acesso em: out. 2019.
- [7] "Silicon NPN Power Transistors TIP35/35A/35B/35C", SavantIC Semiconductor. Disponível em: https://pdf1.alldatasheet.com/datasheet-pdf/view/269985/SAVANTIC/TIP35.html. Acesso em: out. 2019.