

Machine Learning and Decision Making for Sustainability

Stefano Ermon

Department of Computer Science

Stanford University

April 12

Overview

Stanford Artificial Intelligence Lab

Big Data

Technology Push

Sensing revolution

Artificial Intelligence

Fellow, Woods Institute for the Environment

Computational

Sustainability

Vision: sustainability challenges as control problems

Algorithmic challenges and opportunities at every step

- Data acquisition and interpretation
- Model fitting
- Decision making and policy optimization

Computational Sustainability

Materials discovery for energy applications

Summary

- Introduction
- Machine Learning for Public Policy
- Al for Sustainable Energy
- Conclusion

UN's Global Goals for Sustainable Development

The 2030 Development Agenda (Transforming our world)

- 1. End extreme poverty
- 2. Fight inequality & injustice
 - 3. Fix climate change

Data scarcity

Consumption/Income Survey Availability, 2000-2010

Wealth Survey Availability, 2000-2010

- Expensive to conduct surveys
- Poor spatial and temporal resolution
- Questionable data quality

Simultaneously becoming **cheaper** and **higher resolution** (DigitalGlobe, Planet Labs, Skybox, etc.)

we could **infer** socioeconomic indicators from large-scale, remotely-sensed data?

Input Output Poverty, wealth, child mortality, etc.

- Lots of unlabeled data (images)
- Very little labeled training data (few thousand data points)
- Nontrivial for humans (hard to crowdsource labels)

Transfer learning overcomes data scarcity

Transfer learning: Use knowledge gained from one task to solve a different (but related) task

Training data on the proxy task is plentiful

Labeled input/output training pairs

Low nightlight intensity

High nightlight 'intensity

Millions of training images

Images summarized as low-dimensional feature vectors

Model learns relevant features automatically

Satellite image

Filter activation map

Overlaid image

We can differentiate different levels of poverty

2 indicators:

Consumption expenditures

Household assets

We outperform recent methods based on mobile call record data

Models travels well across borders

Models trained in one country perform well in other countries

Can make predictions in countries where no training data exists

Scalable High Resolution Poverty Maps

Run the model on about 500,000 images from Uganda:

Scalable and inexpensive approach to generate high resolution maps.

The Upshot

The New york Times

Satellite Images Can Pinpoint Poverty Where Surveys Can't

Economic View

By SENDHIL MULLAINATHAN APRIL 1, 2016

Ongoing work

- Describe, model, and predict changes over time
- Incorporate new data sources (phone data, crowdsourcing, etc.)

Credit: premise.com

- Mapping and estimating crop yields
 - 1st prize at INFORMS yield prediction challenge

Summary

- Introduction
- Machine Learning for Public Policy
- Al for Sustainable Energy
- Conclusion

Computational Sustainability

Goal

Accelerate the pace and reduce the cost of discovery, and deployment of advanced material systems

20 years \rightarrow 5 years

Very exciting new research area for Computer Science and Big Data techniques

Vision: Al for materials research

Cornell High Energy Synchrotron Source

4 million XANES spectrums collected in a few minutes with 30 nm spatial resolution.

Vision: Al for materials research

Cornell High Energy Synchrotron Source

Stanford Linear Accelerator

LCLS tuning at SLAC

Linac Coherent Light Source (LCLS) is the world's first X-ray laser. 10 billion times brighter than any other X-ray source before it

Very complex machine, difficult to operate, requires manual tuning (hundreds of hours per year)

Operating cost close to \$1,000 per minute – want to make parameter tuning as robust and as quick as possible

Bayesian Optimization for LCLS

Archiving system: records almost 200,000 independent variables once a second, and goes back several years

Bayesian optimization:

- Works by seeking promising points that aren't already explored
- Sound way to deal with the classic exploration vs exploitation tradeoff

Sparse Gaussian Processes for Bayesian Optimization

[under review at UAI-16]

Vision: Al for materials research

Cornell High Energy Synchrotron Source

Stanford Linear Accelerator

Summary

- Introduction
- Machine Learning for Public Policy
- Al for Sustainable Energy
- Conclusion

Conclusions

 Growing concerns about the threats of Artificial Intelligence to the future of humanity

 Recent advances in Al also create enormous opportunities for having deeply beneficial influences on society (energy, sustainability, ...)

Exciting opportunities for Computer Science research

Sustainability Sciences

Computational Sciences