Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Разработка интернет-приложений»

Отчет по рубежному контролю №1

Выполнил: Студент группы ИУ5-63Б Балабас Анна

Руководители: Гапанюк Ю.Е.

Дата: 18.04.22

Задача №1.

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Для студентов групп ИУ5-63Б, ИУ5Ц-83Б - для произвольной колонки данных построить график "Ящик с усами (boxplot)".

Текст программы

```
[19] import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     %matplotlib inline
    sns.set(style="ticks")
[20] from sklearn import datasets
    data = datasets.load_iris()
     # Считайте DataFrame, используя данные функции
     df = pd.DataFrame(data.data, columns=data.feature_names)
     # Добавьте столбец "target" и заполните его данными.
     df['target'] = data.target
     # Посмотрим первые пять строк
     df.head()
        sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
     0
                       5.1
                                         3.5
                                                           1.4
                                                                             0.2
                       49
                                                                             0.2
                                                                                       0
                                         3.0
                       4.7
                                                                             0.2
      3
                       4.6
                                                            1.5
                                                                             0.2
                                                                                       0
                                         3.1
                                                                             0.2
                       5.0
                                         3.6
```

```
[24] df.columns

Index(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)', 'target'], dtype='object')

[25] # Список колонок с типами данных df.dtypes
```

sepal length (cm) float64
sepal width (cm) float64
petal length (cm) float64
petal width (cm) float64
target int64
dtype: object

[26] # Проверим наличие пустых значений
Цикл по колонкам датасета
for col in df.columns:
 # Количество пустых значений - все значения заполнены
 temp_null_count = df[df[col].isnull()].shape[0]
 print('{} - {}'.format(col, temp_null_count))

sepal length (cm) - 0
sepal width (cm) - 0
petal length (cm) - 0
petal width (cm) - 0
target - 0

[27] # Основные статистические характеристки набора данных df.describe()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

[28] df.corr()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
sepal length (cm)	1.000000	-0.117570	0.871754	0.817941	0.782561
sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
petal length (cm)	0.871754	-0.428440	1.000000	0.962865	0.949035
petal width (cm)	0.817941	-0.366126	0.962865	1.000000	0.956547
target	0.782561	-0.426658	0.949035	0.956547	1.000000

[29] df.corr(method='spearman')

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
sepal length (cm)	1.000000	-0.166778	0.881898	0.834289	0.798078
sepal width (cm)	-0.166778	1.000000	-0.309635	-0.289032	-0.440290
petal length (cm)	0.881898	-0.309635	1.000000	0.937667	0.935431
petal width (cm)	0.834289	-0.289032	0.937667	1.000000	0.938179
target	0.798078	-0.440290	0.935431	0.938179	1.000000

[39] df.corr(method='kendall')

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
sepal length (cm)	1.000000	-0.076997	0.718516	0.655309	0.670444
sepal width (cm)	-0.076997	1.000000	-0.185994	-0.157126	-0.337614
petal length (cm)	0.718516	-0.185994	1.000000	0.806891	0.822911
petal width (cm)	0.655309	-0.157126	0.806891	1.000000	0.839687
target	0.670444	-0.337614	0.822911	0.839687	1.000000

10.

[30] sns.heatmap(df.corr())

[31] sns.heatmap(df.corr(), annot=True, fmt='.3f')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4f502c6c50>


```
[32] # Треугольный вариант матрицы

mask = np.zeros_like(df.corr(), dtype=np.bool)

# чтобы оставить нижнюю часть матрицы

# mask[np.triu_indices_from(mask)] = True

# чтобы оставить верхнюю часть матрицы

mask[np.tril_indices_from(mask)] = True

sns.heatmap(df.corr(), mask=mask, annot=True, fmt='.3f')
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations


```
[33] fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
     sns.heatmap(df.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(df.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
      sns.heatmap(df.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
      fig.suptitle('Корреляционные матрицы, построенные различными методами')
     ax[0].title.set_text('Pearson')
     ax[1].title.set_text('Kendall')
     ax[2].title.set_text('Spearman')
                                             Корреляционные матрицы, построенные различными методами
                                 Pearson
                                                                            Kendall
                                                                                                                     Spearman
                                                                                                                                           -1.0
       sepal length (cm) - 1.00 -0.12
                                  0.87 0.82 0.78
                                                                - 1.00
                                                                             0.72 0.66 0.6
                                                                                                           - 1.00 -0.17
                                                                                                                       0.88 0.83 0.80
                                                      - 0.8
                                                                                                                                            - 0.8
                                                       - 0.6
                                                                                                                                            - 0.6
       sepal width (cm) - -0.12 1.00
                                  -0.43 -0.37 -0.43
                                                                 -0.08
                                                                             -0.19 -0.16 -0.34
                                                                                                 - 0.6
                                                                                                                       -0.31 -0.29 -0.44
                                                       - 0.4
                                                                                                                                            0.4
                                                                                                  0.4
       petal length (cm) - 0.87 -0.43
                                  1.00 0.96 0.95
                                                                 0.72
                                                                       -0.19
                                                                            1.00 0.81 0.82
                                                                                                           - 0.88
                                                                                                                       1.00 0.94 0.94
                                                       - 0.2
                                                                                                                                            - 0.2
                                                                                                  - 0.2
       petal width (cm) - 0.82 -0.37
                                  0.96 1.00 0.96
                                                       - 0.0
                                                                             0.81 1.00 0.84
                                                                                                            0.83 -0.29
                                                                                                                       0.94 1.00 0.94
                                                                                                                                            - 0.0
                                                                                                  0.0
               target - 0.78
                                  0.95 0.96 1.00
                                                                             0.82 0.84 1.00
                                                                                                            0.80
                                                                                                                       0.94 0.94 1.00
                                   (CII)
                                                                                                                         (ca)
                              Œ
                                         (GE)
                                                                        (ca)
                                                                              Θ
                                                                                    (GE)
                                                                                                             (cm)
                                                                                                                   (cm)
                        length
                                                                   length
                                                                                                             length
                             width
                                   ength
                                         width
                                                                        width
                                                                              ength
                                                                                   width
                                                                                                                   width
                                                                                                                         length
                                                                                                                              width
                                                                                    petal
                                   peta
                                                                                                                         petal
[34] fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
         fig.suptitle('Корреляционная матрица')
         sns.heatmap(df.corr(), ax=ax, annot=True, fmt='.3f')
         <matplotlib.axes._subplots.AxesSubplot at 0x7f4f5043c290>
                                                                  Корреляционная матрица
```


Ящик с усами

<matplotlib.axes._subplots.AxesSubplot at 0x7f4f4ffdb1d0>

