Biostat 216 Homework 7

Due Nov 18 Friday @ 11:59pm

Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on BruinLearn.

SVD

• Q1. Find the closest rank-1 approximation (in Frobenius norm or spectral norm) to these matrices

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- · Q2. Moore-Penrose inverse from SVD.
 - 1. With singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$, verify that

$$\mathbf{X}^+ = \mathbf{V}\mathbf{\Sigma}^+\mathbf{U}' = \mathbf{V}_r\mathbf{\Sigma}_r^{-1}\mathbf{U}_r' = \sum_{i=1}^r \sigma_i^{-1}\mathbf{v}_i\mathbf{u}_i',$$

where $\Sigma^+ = \operatorname{diag}(\sigma_1^{-1}, \dots, \sigma_r^{-1}, 0, \dots, 0)$ and $r = \operatorname{rank}(\mathbf{X})$, satisfies the four properties of the Moore-Penrose inverse (https://ucla-biostat-216.github.io/2022fall/slides/06-matinv/06-matinv.html#Generalized-inverse-and-Moore-Penrose-inverse-(optional)).

- 2. Show that $rank(\mathbf{X}^+) = rank(\mathbf{X})$.
- 3. Show that X^+X is the orthogonal projector into C(X') and XX^+ is the orthogonal projector into C(X).
- 4. Show that $\beta^+ = \mathbf{X}^+ \mathbf{y}$ is a minimizer of the least squares criterion $f(\beta) = \|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\|^2$. Hint: check β^+ satisfies the normal equation $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{y}$.
- 5. Show that $\beta^+ \in \mathcal{C}(\mathbf{X}')$.
- 6. Show that if another β^* minimizes $f(\beta)$, then $\|\beta^*\| \ge \|\beta^+\|$. This says that $\beta^+ = X^+y$ is the least squares solution with smallest L2 norm. Hint: since both β^* and β^+ satisfy the normal equation, $X'X\beta^* = X'X\beta^+$ and deduce that $\beta^* \beta^+ \in \mathcal{N}(X)$.
- Q3. Let **B** be a submatrix of $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that the largest singular value of **B** is always less than or equal to the largest singular value of \mathbf{A} .
- Q4. Show that all three matrix norms (ℓ_2 , Frobenius, nuclear) are invariant under orthogonal transforms. That is

$$\|\mathbf{Q}_1 \mathbf{A} \mathbf{Q}_2'\| = \|\mathbf{A}\|$$
 for orthogonal \mathbf{Q}_1 and \mathbf{Q}_2 .

Optimization and multivariate calculus

- Q5.
 - 1. Explain why the intersection $K_1 \cap K_2$ of two convex sets is a convex set.
 - 2. Prove that the maximum F_3 of two convex functions F_1 and F_2 is a convex function. Hint: What is the set above the graph of F_3 ?
- Q6. Show that these functions are convex:
 - 1. Entropy $x \log x$.
 - $2. \log(e^x + e^y).$
 - 3. ℓ_p norm $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p)^{1/p}, p \ge 1$.
 - 4. $\lambda_{max}(S)$ as a function of the symmetric matrix S. Hint: HW6 Q10.6 and Q5.2.
- Q7. Minimize $f(x_1, x_2) = \frac{1}{2} \mathbf{x}' \mathbf{S} \mathbf{x} = \frac{1}{2} x_1^2 + 2x_2^2$ subject to the constraint $\mathbf{A}' \mathbf{x} = x_1 + 3x_2 = b$.
 - 1. What is the Lagrangian $L(\mathbf{x}, \lambda)$ for this problem.
 - 2. What are the three equations "derivative of L=zero"?
 - 3. Solve these equations to find $\mathbf{x}^\star = (x_1^\star, x_2^\star)$ and the multiplier λ^\star .
 - 4. Verify that the derivative of the minimum cost is $\partial f^{\star}/\partial b = -\lambda^{\star}$.