Lecture 11 – Multiple Linear Regression and Feature Engineering

DSC 40A, Fall 2022 @ UC San Diego
Dr. Truong Son Hy, with help from many others

Announcements

- Look at the readings linked on the course website!
- Groupwork Relsease Day: Thursday afternoon Groupwork Submission Day: Monday midnight Homework Release Day: Friday after lecture Homework Submission Day: Friday before lecture
- See dsc40a.com/calendar for the Office Hours schedule.

Midterm study strategy

- Review the solutions to previous homeworks and groupworks.
- Re-watch lecture, post on Campuswire, come to office hours.
- Look at the past exams at https://dsc40a.com/resources.
- Study in groups.
- Remember: it's just an exam.

Agenda

- Many demo.
- Recap of linear regression and linear algebra.
- Using multiple features.

Many demo

Regression and linear algebra

Last time, we used linear algebra to fit a prediction rule of the form

$$H(x) = W_0 + W_1 x$$

To do so, we first defined a **design matrix** X, **parameter vector** \vec{w} , and **observation vector** \vec{y} as follows:

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix}, \qquad \vec{W} = \begin{bmatrix} W_0 \\ W_1 \end{bmatrix}, \qquad \vec{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

We also re-wrote our prediction rule as a matrix-vector multiplication, defining the hypothesis vector \vec{h} as

$$\vec{h} = X\vec{w}$$

Minimizing mean squared error

With our new linear algebra formulation of regression, our mean squared error now looks like:

$$R_{sa}(\vec{w}) = ||\vec{y} - X\vec{w}||^2$$

- To find \vec{w}^* , the optimal parameter vector, we took the gradient of $R_{sq}(\vec{w})$ with respect to \vec{w} , set it equal to 0, and solved.
- ► The result is the **normal equations**:

$$X^T X \vec{w}^* = X^T y$$

 \triangleright When X^TX is invertible, an equivalent form is

$$\vec{w}^* = (X^T X)^{-1} X^T y$$

Using multiple features

Using multiple features

- How do we predict salary given multiple features?
- We believe salary is a function of experience and GPA.
- ▶ In other words, we believe there is a function *H* so that:

salary \approx H(years of experience, GPA)

- Recall: H is a prediction rule.
- Our goal: find a good prediction rule, H.

Example prediction rules

$$H_1$$
(experience, GPA) = \$2,000 × (experience) + \$40,000 × $\frac{GPA}{4.0}$

$$H_2$$
(experience, GPA) = \$60,000 × 1.05^(experience+GPA)

$$H_3$$
(experience, GPA) = cos(experience) + sin(GPA)

Linear prediction rules

We'll restrict ourselves to linear prediction rules:

$$H(\text{experience}, \text{GPA}) = w_0 + w_1(\text{experience}) + w_2(\text{GPA})$$

- ► This is called multiple linear regression.
- Note that H is linear in the parameters w_0 , w_1 , w_2 .
 - ightharpoonup H is a linear combination of features (1, experience, GPA) with ws as the coefficients (w_0 , w_1 , and w_2).
- As a result, we can solve the **normal equations** to find w_0^* , w_1^* , and w_2^* !
- Linear regression with multiple features is called multiple linear regression.

Geometric interpretation

Question: The prediction rule

$$H(experience) = w_0 + w_1(experience)$$

looks like a line in 2D.

- 1. How many dimensions do we need to graph $H(\text{experience, GPA}) = w_0 + w_1(\text{experience}) + w_2(\text{GPA})$
- 2. What is the shape of the prediction rule?

Example dataset

For each of *n* people, collect each feature, plus salary:

Person #	Experience	GPA	Salary
1	3	3.7	85,000
2	6	3.3	95,000
3	10	3.1	105,000

We represent each person with a feature vector:

$$\vec{x}_1 = \begin{bmatrix} 3 \\ 3.7 \end{bmatrix}$$
, $\vec{x}_2 = \begin{bmatrix} 6 \\ 3.3 \end{bmatrix}$, $\vec{x}_3 = \begin{bmatrix} 10 \\ 3.1 \end{bmatrix}$

The hypothesis vector

When our prediction rule is

$$H(\text{experience, GPA}) = w_0 + w_1(\text{experience}) + w_2(\text{GPA}),$$

the hypothesis vector $\vec{h} \in \mathbb{R}^n$ can be written

$$\vec{h} = \begin{bmatrix} H(\text{experience}_1, \text{GPA}_1) \\ H(\text{experience}_2, \text{GPA}_2) \\ \dots \\ H(\text{experience}_n, \text{GPA}_n) \end{bmatrix} = \begin{bmatrix} 1 & \text{experience}_1 & \text{GPA}_1 \\ 1 & \text{experience}_2 & \text{GPA}_2 \\ \dots & \dots & \dots \\ 1 & \text{experience}_n & \text{GPA}_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

How do we find \vec{w}^* ?

To find the best parameter vector, \vec{w}^* , we can use the design matrix and observation vector

$$X = \begin{bmatrix} 1 & \text{experience}_1 & \text{GPA}_1 \\ 1 & \text{experience}_2 & \text{GPA}_2 \\ \dots & \dots & \dots \\ 1 & \text{experience}_n & \text{GPA}_n \end{bmatrix}, \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

and solve the normal equations

$$X^T X \vec{w}^* = X^T \vec{y}$$

Notice that the rows of the design matrix are the (transposed) feature vectors, with an additional 1 in front.

Notation for multiple linear regression

- ► We will need to keep track of multiple¹ features for every individual in our data set.
- As before, subscripts distinguish between individuals in our data set. We have *n* individuals (or training examples).
- Superscripts distinguish between features.² We have d features.
 - \triangleright experience = $x^{(1)}$
 - $Arr GPA = x^{(2)}$

¹In practice, we might use hundreds or even thousands of features.

²Think of them as new variable names, such as new letters.

Augmented feature vectors

The augmented feature vector $Aug(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

$$\vec{x} = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \qquad \text{Aug}(\vec{x}) = \begin{bmatrix} 1 \\ x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

► Then, our prediction rule is

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_d x^{(d)}$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

The general problem

We have n data points (or training examples): $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ where each \vec{x}_i is a feature vector of d features:

$$\vec{X}_i = \begin{bmatrix} x_i^{(1)} \\ X_i^{(2)} \\ X_i^{(d)} \\ \dots \\ X_i^{(d)} \end{bmatrix}$$

We want to find a good linear prediction rule:

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_d x^{(d)}$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

The general solution

Use design matrix

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \\ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(d)} \end{bmatrix} = \begin{bmatrix} \operatorname{Aug}(\vec{x_1})^T \\ \operatorname{Aug}(\vec{x_2})^T \\ \dots \\ \operatorname{Aug}(\vec{x_n})^T \end{bmatrix}$$

and observation vector to solve the normal equations

$$X^T X \vec{w}^* = X^T \vec{y}$$

to find the optimal parameter vector.

Interpreting the parameters

- ▶ With *d* features, \vec{w} has d + 1 entries.
- \triangleright w_0 is the bias, also known as the intercept.
- w₁,..., w_d each give the weight, i.e. coefficient, of a feature.

$$H(\vec{x}) = W_0 + W_1 x^{(1)} + ... + W_d x^{(d)}$$

The sign of w_i tells us about the relationship between *i*th feature and the output of our prediction rule.