2)-amp integrator

Ie =
$$C \cdot \frac{\text{olve}}{\text{olt}} \rightarrow \mathcal{Q} = C \cdot V_C$$

Vant

DC: Capacitor - short circuit

High freq: Capacitor - open circuit

=> Set → Low freq as Vin : Vax & I Eshunt remain the same (no oscillation)

=> High freq at Vin : Vaut has ripple (the brush converter case)

Response time: RC. (short TRC - response guicker)

Apply Millman's theorem at negative input:

$$\frac{V(s)}{V(s)} = -\frac{1}{K}cs$$

$$V = \frac{\sqrt{\ln + JC} \text{ w Vowt}}{R} + JC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Transfer function:} \qquad V_{In} = -JRC \text{ w Vowt} \qquad \text{Tran$$

Treating)

$$C \cdot \frac{dV_c}{dt} = -\frac{V_{in}}{R}$$
 $C \cdot \frac{dV_{out}}{dt} = -\frac{V_{in}}{R}$
 $C \cdot S \cdot V(S) = -\frac{V_{in}(S)}{R}$

Value

 $V_{in}(S) = -\frac{1}{CRS}$

Unitation: DC component in Vin casy to be saturate (offset voltage)

$$C \cdot S \cdot Vout(s) + \frac{Vout(s)}{R_2} = -\frac{Vin(s)}{R_1}$$

$$(CS + \frac{1}{R^2}) \times Vout(s) = -\frac{Vin(s)}{R_1}$$

$$\frac{Vout(s)}{Vin(s)} = -\frac{1}{R_1}$$

$$= -\frac{R_2}{R_1}$$

$$R_1 \times \frac{1}{Cs + R_2}$$

$$= -\frac{R_2}{R_1}$$

$$R_2 \times \frac{1}{R_2}$$

$$= -\frac{R_2}{R_1}$$

$$= -\frac{R_2}{R_1}$$

$$= -\frac{R_2}{R_1}$$

$$= -\frac{R_2}{R_1}$$

$$= -\frac{R_2}{R_1}$$

Mow inpost signal -> Ip. lomp		. 0	
10.0.012	7 0 00	o.fmV => 4.1 V ava	•
o. Imv reference voltage -> (o.	1A.0.012 output 4.	1V 20.3mV = 4	556 gain
\rightarrow		1.10 2 4.96 Mg	
$R_2/R_1 = 1$ or smaller		5.Pm/x 7 7 75 56 ×119/	
RC > Bandwicken for R2/	gain = 1200	(B	
Asc /	er gain	kolog(x) = 120	4
Bokw Bokwizwk.		X = 66 5x	0
		IM IR	
B20 KN 2, 25M 22	5ok	ION CO TOOL	<u>L</u>
4		10M 47 1012	•
2. 25×106 H2 = 1	C = / \mu	(oW =/ .	
f ₂ C	m k n p		
= 1	in ×1	•	
= 1/2 x 1x107		(
$\frac{1}{2.25 \times 10^6 \times 10^{-1}}$	if C = 10P = 1×10-11C	fc= 1P = 1x lo	-12 C=0,1p
= 103	B= 1 2.25×106×10-11		,
		R2=444k	0 -> 1101
= 4.44.42	= \$ 0444 x 10 5	R1=972=100	2 => Vadam
1	- 44.4 K.2		Told to
	K = P.71	=> alv ripple ->	
if Ri = loks			lom 2
R2 = 45560 K	C =	10m/2 0	- lak
= 45M1	18.x2.27x106	9/1/	
*	45560 × 103 × 2, 21		9 1,044 NO. 954A
	= 10-9		pple. 0.09A
			2.09 × 0.0101 ×6-2 ×10-2
-1m4 V+-V-	= 9.76 × 10 1x 10	<u>-</u>	9×6-4
	= 0.876x 10-15		5.5x10-4V
tate			10-4 V
	Vac = 5V 6/0.1,		
	= 5000 =	5.0000 gain	
	105mV ->		

