M5310 硬件设计手册

NB-IOT 系列

版本: M5310_硬件设计手册_V1.0

日期: 2017-04-05

中移物联网有限公司

关于文档

修订记录

版本	日期	作者	描述
1. 0	2017-04-05	罗永兵	原始版本

目录

关	于文档.	1	-
目	录	2	_
逐	上索引	4	_
汞		4	
1	引言.		6
	1. 1	安全须知	6
2	综述.		7
	2. 1	主要性能	. 7
	2. 2	功能框图	
0	产田子	妾口	
3	应用 8		
	3. 1	管脚描述	
	3. 2	工作模式	11
	3. 3	电源供电	12
	3. 3. 1		
	3. 3. 2		
	3. <mark>3.</mark> 3		
	3. 4	开机	13
	3. 5	关机	13
	3. 6	复位模块	
	3. 7	SWD 接口	15
	3.8	串口	16
	3.7.1	主串口	17
	3.7.2	调试串口	17
	3. 7. 3	串口应用	18
	3.9	SIM IC.	19
	3. 10	ADC 数模转换 21	-
	3. 11	网络状态指示 21	-
4	天线技	妾口 22	_
	4. 1	射频参考电路 22	_
	4. 2	RF 输出功率 23	_
	4.3	RF 接收灵敏度 23	-
	4.4	工作频率 23	_
	4. 5	天线要求24	_
	4. 6	推荐 RF 焊接方式24	_

5	电气性	能, 可靠性 24 -
		绝对最大值 24 -
	5. 2	工作温度
	5. 3 5. 4	耗流 - 25 - 静电防护 - 26 -
6		→ - 26 -
		模块机械尺寸27-
	6. 2	模块俯视图 28 -
	6. 3	模块底视图 28 -
7		生产 29 -
	7. 1	存储 29 -
	7. 2	生产焊接29-
	7. 3	包装 30 -
8	附录 A	参考文档及术语缩写 31 -

图片索引

图] 1: 功能框图	8
图] 2: 管脚分配图	9
图] 3: VBAT 输入参考电路	12
图] 4: 供电输入参考设计	13
图] 5: 开机时序图	13
图] 6: 关机时序图	14
图] 7: 复位参考驱动电路	14
图] 8: 复位按键参考设计	15
图] 9: SWD 接口参考设计	15
图]10: 主串口连接方式示意图	17
] 11: 软件调试连接图	
图	· 12: 3.3V 电平转换电路	18
, ,] 13: 5V 电平转换电路	
]14: RS232 电平转换电路	
] 15: 6PINSIM 卡连接器参考电路	
	16: NETLIGHT 参考电路	
] <mark>17: 射频参考电路</mark>	
] 18: M5310 俯视尺寸图 (单位: 毫米)	
] 19: 模块俯视图	
] 20: 模块底视图	
] 21: 印膏图	
] 22: 炉温曲线	
图] 23: 载带卷盘尺寸图	30 -
丰林	格索引	
124	仕がり	
表	₹ 1: 模块主要性能	7
表	· 2: 引脚描述	9
表	₹ 3: 工作模式	11
表	₹ 4: 电源管脚定义	12
表	5: RESET 管脚定义	14
表	€ 6: SWD 管脚定义	15
表	· 7: 串口逻辑电平	16

表	8:	串口管脚定义	16
		SIM 卡管脚定义	
		: ADC 引脚定义	
表	11:	NETLIGHT 的工作状态	21 -
表	12:	RF 管脚定义	22 -
表	13:	RF 传导功率	23 -
表	14:	RF 传导灵敏度	23 -
表	15:	模块工作频率	23 -
表	16:	天线电缆的要求	24 -
表	17:	天线的要求	24 -
表	18:	绝对最大值	24 -
表	19:	工作温度	25 -
表	20:	模块耗流	25 -
表	21:	ESD 性能参数 (温度: 25℃,湿度: 45%)	26 -
表	22:	模块包装信息	31 -
表	23:	参考文档	31 -
表	24:	术语缩写	31 -

1 引言

本文档定义了 M5310 模块及其硬件接口规范, 电气特性和机械规范, 通过此文档的帮助, 结合我们的应用手册和用户指导书, 客户可以快速应用 M5310 模块于无线应用。

1.1 安全须知

通过遵循以下安全原则,可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。

道路行驶安全第一! 当你开车时,请勿使用手持移动终端设备,除非其有免提功能。 请停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止开启用以防止对 飞 机通讯系统的干扰。忽略该提示项可能会导致飞行安全,甚至触犯法律。

当在医院或健康看护场所,注意是否有移动终端设备使用限制。RF干扰会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

SOS

移动终端设备并不保障任何情况下都能进行有效连接,例如在移动终端设备没有话 费或 SIM 无效。当你在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号。当靠近电视,收音机电脑或者 其他电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当你靠近加油站,油库,化工厂或爆炸作业场所,请关闭移动终端设备。在任何有潜在爆炸危险场所操作电子设备都有安全隐患。

2 综述

M5310 模块是一款工业级的两频段 NB-IOT 无线模块。其工作频段是 Band 5 和 Band 8。它主要应用于低功耗的数据传输业务。满足 3gpp Release13 标准。

M5310 是 LCC 封装的贴片式模块,30 个管脚,尺寸仅有 $19\text{mm} \times 18\text{mm} \times 2.2\text{mm}$ 。M5310 内嵌 UDP/COAP 等数据传输协议及扩展的 AT 命令。

M5310 模块采用了低功耗技术, 电流功耗在深度睡眠模式低至 5 uA。

备注

该模块完全符合 RoHS 标准。

2.1 主要性能

表 1: 模块主要性能

表 1: 模块王安性能	
特色 说	明 ····································
供电	VBAT 供电电压范围: 3.1V ~ 4.2V 推荐供电电压: 3.8V
省电	DEEP SLEEP 模式下耗流: 5 uA
频段	两频: Band 5, Band 8 模块可自动搜寻频率 频段选择可以通过 AT 命令来设置
发射功率	23dBm ±2dB
温度范围	正常工作温度: -30° C ~ +75° C 受限工作温度: -40° C ~ -30° C and +75° C ~ +85° C ¹⁾ 存储温度: -40° C ~ +85° C
SIM 卡接口	支持SIM卡: 3V 支持内置 SIM IC: 3V
天线接口特征阻抗	50 欧姆
物理特征	尺寸: 19±0.2 × 18±0.2 ×2.2±0.2mm 重量: 1.8g
固件升级	串口升级 or SWD

2.2 功能框图

下图为 M5310 功能框图, 阐述了其主要功能。

- 电源管理
- GSM 射频
- 接口部分
 - 一电源供电
 - 一开关机接口
 - 一串口
 - 一SIM 卡接口
 - --射频接口

图 1: 功能框图

3 应用接口

M5310 模块有 30 个(1.6mm×0.7mm)贴片引脚。以下章节详细阐述了模块各组接口的功能:

- 电源供电(请参考 3.3 章节)
- SWD 接口(请参考 3.6 章节)
- 串口(请参考 3.7 章节)
- SIM 卡接口 (请参考 3.8 章节)
- ADC 接口(请参考 3.9 章节)
- RF接口(请参考4章节)

3.1 管脚描述

图 2: 管脚分配图

表 2: 引脚描述

. 1	L		15
	曰		\/IFI
Н	Н	·	.//;\

- L V//\	리 배 성	T /O	714-772	DO ## bl	A L
引脚号	引脚名	I/0	描述	DC 特性	备注
24, 25	VBAT	PI	模块主电源 VBAT=3.1V~4.2V	Vmax= 4.2V Vmin=3.1V Vnorm=3.8V	电源必须能够提供 达 0.5A 的 电流
16	VDD_EXT	PO	输出 3. 0 V	Vmax=3.1V Vmin=2.9V Vnorm=3.0V Imax=20mA	1. 如果不用则悬空。 2. 如果用这个管脚给外部供电,推荐 并 联 一 个2.2~4.7uF 的旁路电容。
26,27,29,30	GND		地		

复位

引脚号	引脚名	I/0	描述	DC 特性	备注
15	RESET	DI	拉低该脚 20ms 以上 复位模块	VILmax=0.6V VIHmin=2.1V VIHmax=3.3V Rpu≈78kΩ	内部已上拉

指示灯

引脚号	引脚名	I/0	描述	DC 特性	备注

11

SIM_VDD

DO

SIM卡供电电压

Vnorm=3.0V

21	NETLIGHT	D0	网络状态指示	VOLmax=0.4V VOHmin=2.4V	不用则悬空。
串口					
引脚号	引脚名	I/0	描述	DC 特性	备注
				VILmax=0.6V	
2	RXD	DI	模块接收数据	VIHmin=2.1V	
2	KAD	DΊ	伏	VIHmax=3.3V	3. 0V 电源域。
1	TXD	DO	模块发送数据	VOLmax=0. 4V	- 不用则悬空
1	ΙΛ	υσ	快吹及必数据	VOHmin=2.4V	
18	DBG TXD	DO	调试串口发送	VOLmax=0.4V	
	-		,,,,,	VOHmin=2.4V	
19	DBG_RXD	DI	调试串口接收	VILmax=0.6V	不用则悬空
				VIHmin=2.1V	
				VIHmax=3.3V	
SWD 接	口				
引脚号	引脚名	I/0	描述	DC 特性	备注
				TOT O ATT	
				VOLmax=0.4V	
2	CWD TO	10	电行张数据信息	VOHmin=2.4V	用工用从升级
3	SWD_IO	10	串行线数据信号	VOHmin=2.4V VILmin=-0.3V	用于固件升级
3	SWD_IO	10	串行线数据信号	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V	用于固件升级
3	SWD_IO	10	串行线数据信号	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V	用于固件升级
3	SWD_IO	10	串行线数据信号	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V	用于固件升级
4	SWD_IO SWD_CLK	DI DI	串行线数据信号	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V	用于固件升级用于固件升级
1	V		Chi	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V	bile
1	V		Chi	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V	bile
4	V		Chi	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V	bile
4 振铃	SWD_CLK	DI	串行线时钟信号	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V VOHmin=2.4V	用于固件升级
4 振铃 引脚号 23	SWD_CLK 引脚名	DI I/0	串行线时钟信号 描述	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V VOHmin=2.4V	用于固件升级
4 振铃 引脚号 23 射频	SWD_CLK 引脚名 RI	DI	串行线时钟信号 描述 作通用 IO 口使用	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V VOHmin=2.4V	用于固件升级 备注 不用则悬空。
4 振铃 引脚号 23	SWD_CLK 引脚名 RI 引脚名	DI 1/0 10	串行线时钟信号 描述 作通用 IO 口使用 描述	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V VOHmin=2.4V DC 特性 VOLmax=0.4V VOHmin=2.4V	用于固件升级
4 振铃 引脚号 23 射脚号 1脚号 28	SWD_CLK 引脚名 RI 引脚名 RF_ANT	DI	串行线时钟信号 描述 作通用 IO 口使用	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V VOHmin=2.4V	用于固件升级 备注 不用则悬空。 备注
4 振铃 引脚号 23 射频 引脚号	SWD_CLK 引脚名 RI 引脚名 RF_ANT	DI 1/0 10	串行线时钟信号 描述 作通用 IO 口使用 描述 射频天线焊盘	VOHmin=2.4V VILmin=-0.3V VILmax=0.6V VIHmin=2.1V VIHmax=3.3V VOLmax=0.4V VOHmin=2.4V DC 特性 VOLmax=0.4V VOHmin=2.4V	用于固件升级 备注 不用则悬空。 备注

10	SIM_DATA	10	SIM 卡数据线,内 部通过 10K 电阻上 拉到 SIM_VDD	VOLmax=0.4V VOHmin=2.4V VILmin=-0.3V	SIM 卡接口建议
				VILmax=0.6V VIHmin=2.1V VIHmax=3.3V	使用 TVS 管 ESD 保护, SIM 卡座
12	SIM_CLK	DO	SIM 卡时钟线	VOLmax=0.4V VOHmin=2.4V	到 模块最长布 线 不 要 超 过 200mm。
13	SIM_RST	DO	SIM 卡复位线	VOLmax=0.4V VOHmin=2.4V	

ADC

引脚号	引脚名	I/0	描述	DC 特性	备注
7	ADC0	AI	数模转换	电压输入范围: -0.3V~4.2V	不用则悬空

SPARE

DITHU					
引脚号	引脚名	I/0	描述	DC 特性	备注
5, 6, 9, 14, 17, 20, 22	SPARE		预留引脚		保持这些引脚悬 空

注:模组背面的圆形焊盘是模组自身生产与测试时使用的测试点。实际使用中无需对其做任何电气连接。

3.2 工作模式

下表简要地叙述了模块的各种工作模式。

表 3: 工作模式

模式	功能	描述
	Active 模式	在 Active 模式,所有功能模块都是可用的,所有处理器都正常运行。无线电可以正常收发。只能在 Active 模式下切换到 Standby 模式和 Deep-Sleep 模式。
正常工作	Standby 模式	在 Standby 模式,所有处理器未运行,但所有的外设可以被激活。系统时钟有效,通过控制时钟和功率降低功耗。 当所有处理器执行等待中断指令时进入 Standby 模式。

Deep-Sleep 模式

在 Deep-Sleep 模式,只有 32KHZ RTC 正常工作,这意味着模块可以通过使用 RTC 的外围设备的 RTC 中断或者外部中断切换到 Active 模式。所有处理器设置为 Deep-Sleep 模式,执行等待中断指令。

3.3 电源供电

3.3.1. 模块电源供电接口

M5310 提供了两个 VBAT 接口用于外部供电。 下表是 VBAT 和 GND 接口描述。

表 4: 电源管脚定义

引脚号	引脚名	描述	Min	Тур	Max	Unit
24,25	VBAT	模块主电源	3. 1	3. 8	4. 2	V
26, 27, 29, 30	GND	地		0		V

3.3.2. 减少电压跌落

会产生太大的电压跌落。建议VBAT 走线宽度不少于2mm,并且走线越长,线宽越宽。

图 3: VBAT 输入参考电路

3.3.3. 供电参考电路

电源设计对模块的供电至关重要,必须选择能够提供至少 0.5A 电流能力的电源。若输入电压跟模块的供 电电压的压差不是很大,建议选择 LDO 作为供电电源。若输入输出之间存在比较大的压差,则使用开关电源转换器。

下图是+5V 供电的参考设计,采用了 Micrel 公司的 LDO,型号为 MIC29302WU。它的输出电压是 4.16V,负载电流峰值到 3A。为确保输出电源的稳定,建议在输出端预留一个稳压管,并且靠近模块 VBAT 管脚摆放。建议选择反向击穿电压为 5.1V,耗散功率为 1W 以上的稳压管。

图 4: 供电输入参考设计

3.5 关机

当模块 VBAT 引脚切断供电时模块关机。

3.6 复位模块

M5310 通过拉低 RESET 管脚一定时间实现模块复位。实现复位的低电平持续时间要求如下。

表 5: RESET 管脚定义

15 RESET DI 实现模块复位 >100ms	引脚号	引脚名	I/0	描述	RESET TIME
		RESET	DI	实现模块复位	>100ms

图 7: 复位参考驱动电路

图 8: 复位按键参考设计

3.7 SWD 接口

M5310 模块提供了一个 SWD 接口用来固件升级,建议保留 SWD 接口用来升级固件.

表 6: SWD 管脚定义

引脚号	引脚名	I/0	描述
3	SWD_IO	10	串行线数据信号
4	SWD_CLK	DI	串行线时钟信号

SWD 接口参考设计如下:

图 9: SWD 接口参考设计

3.8 串口

模块提供了两个通用异步收发器:主串口和调试串口。波特率支持范围9600bps。调试串口只用于调试和测试。

主串口:

TXD: 发送数据到DTE 设备的RXD 端。

RXD: 从DTE 设备TXD 端接收数据。

RI: 振铃提示。

调试串口:

DBG_TXD: 发送数据到DTE 的串口。

DBG_RXD: 从DTE 的串口接收数据。

串口逻辑电平如下表所示:

表 7: 串口逻辑电平

参数	最小值	最大值	单位
V_{IL}	−0.1 × VDD_EXT	0.2×VDD_EXT	V
V_{IH}	0. 7×VDD_EXT	1.1 × VDD_EXT	V
V _{OL}		0.4	V
VOH	2. 4	VDD_EXT	V

表 8: 串口管脚定义

接口	名称	管脚	作用
	TXD	1	模块串口发送数据
主串口	RXD	2	模块串口接收数据
	RI	23	振铃提示
调试串口	DBG_TXD	18	模块调试串口发送数据
	DBG_RXD	19	模块调试串口接收数据

3.7.1 主串口

3.7.1.1. 主串口特点

- 8 个数据位, 无奇偶校验, 一个停止位。
- 用以AT命令传送,GPRS 数传等。串口支持软件升级。
- 支持波特率如下: 9600。

3.7.1.2. 串口参考设计

串口请参考如下的连接方式。

图 10: 主串口连接方式示意图

3.7.2 调试串口

调试串口:

- 数据线: DBG_TXD 和 DBG_RXD
- 调试口仅用作软件调试,波特率配置为 9600bps
- 串口会自动向外面输出 log 信息
- Log 信息需要专门的软件抓取解析

调试串口连线参考如下方式连接:

图 11: 软件调试连接图

3.7.3 串口应用

3.3V 电平情况下的电平匹配电路参考设计如下。如果 MCU/ARM 是 3V 的电平,则根据分压原则,将电阻 5K6 要改为 10K。

图 12: 3.3V 电平转换电路

5V 系统的电平匹配,模块和外设之间的电平匹配可以参考如下的连接方式,其中 VCC_MCU 是客户端的 I/O 电平电压。 VDD_EXT 是模块输出的 I/O 电平电压。

图 13:5V 电平转换电路

由于模块的串口是 3.0V CMOS 电平, 当模块和 PC 机进行通信时, 需要在他们之间加 RS232 电平转换电路。下图为模块与 PC 通信时, 串口电平的转换电路。

图 14: RS232 电平转换电路

3.9 SIM IC

对于 M5310 模块, 其内部包含 SIM 卡接口和 SIM IC。对于客户需要设计小巧型的产品有很大的好处, 不需要外接 SIM 卡, 就可以满足其发送短信及 GPRS 数据传输功能。

SIM卡接口由模块内部供电,只支持3.0VSIM卡。

表 9: SIM卡管脚定义

引脚号	引脚名	描述 备注
8	SIM_GND	SIM 卡专用地
10	SIM_DATA	SIM 卡数据引脚
11	SIM_VDD	SIM 卡供电引脚,供电 压 3.0V±5%.

12	SIM_CLK	SIM 卡时钟引脚
13	SIM_RST	SIM 卡复位引脚

6-pinSIM 卡连接器参考电路如下:

图 15: 6PINSIM卡连接器参考电路

备注

为了保证 SIM 卡在应用中的可靠性和可用性,请按照以下标准进行 SIM 卡电路设计。

- 1、布局时尽可能的将 SIM 卡靠近模块, 走线长度尽可能小于 200MM。
- 2、SIM卡信号线远离 RF和 VBAT。
- 3、确保模块和 SIM 卡连接器之间短而宽,接地宽度不小于 0.5mm,以保持相同的电位。SIM_VDD 的去耦电容小于 1uf,必须靠近 SIM 卡连接器。
- 4、为避免 DATA 和 CLK 之间的串扰,应保持 3 倍线宽间距,尽量对其包地处理进行屏蔽。
- 5、为了提供良好的 ESD 保护,建议添加 TVS 二极管阵列。最重要的规则是将 ESD 保护装置放置在靠近 SIM 卡连接器处,并确保被保护的 SIM 卡接口信号线首先通过 ESD 保护装置,然后通向模块。22 Ω 电阻应在模块和 SIM 卡之间串联连接,抑制 EMI 杂散传输,增强 ESD 保护。SIM 卡外围电路应该靠近 SIM 卡连接器,将所有信号线上的旁路电容放置在 SIM 卡附近,以改善EMI 抑制效果。

3.10 ADC 数模转换

M5310 提供一路外部 ADC 接口, 其引脚定义如下表所示。

表 10: ADC 引脚定义

名称	引脚	作用
ADC0	7	模数转换器接口

备注

此功能正在开发中。

3.11网络状态指示

NETLIGHT 管脚信号可以用来指示网络的状态,该管脚工作状态如下表所示。指示灯的连接参考电路如下图所示。

表 11: NETLIGHT 的工作状态

NETLIGHT 高低电平状态	模块工作状态
持续低电平(灯灭)	模块没有工作或者未与网络同步
持续高电平 (灯亮)	模块与网络同步

图 16: NETLIGHT 参考电路

备注

此功能正在开发中。

4 天线接口

管脚 28 是 RF 天线输入端。RF 接口是具有 50Ω 特性阻抗的接口。 表 12: RF 管脚定义

名称	管脚	作用	
GND	26	地	
GND	27	地	
RF_ANT	28	RF 天线接口	
GND	29	地	
GND	30	地	

4.1 射频参考电路

对于天线接口的外围电路设计,为了能够更好地调节射频性能,建议预留匹配电路。天线连接参考电路如下图所示。其中 C1, C2 缺省不贴,只贴 0 欧姆 R1 电阻。

图 17: 射频参考电路

M5310 提供了一个 RF 焊盘接口供连接外部天线。从该焊盘到天线连接器间射频走线的特性 阻抗要控制 在 50 欧姆左右,且走线尽可能短。为了获得更好的射频性能,RF 接口两侧各有两个接地焊盘。(具体请参考通信模组外围 PCB 设计手册 V1.0)

为了最小化 RF 走线或者 RF 线缆上的损耗,必须谨慎设计。建议插入损耗必须满足以下条件:

- EGSM900<1dB
- DCS1800<1.5dB

4.2 RF 输出功率

表 13: RF 传导功率

频率	最大	最小
900MHZ	23dBm ±2dB	<-40dBm
850MHZ	23dBm ±2dB	<-40dBm

备注

该设计符合 3GPP Rel-13 中的 NB-IOT 广播协议。

4.3 RF 接收灵敏度

表 14: RF 传导灵敏度

频率	接收灵敏度
900MHZ	-135dBm
850MHZ	-135dBm

4.4 工作频率

表 15: 模块工作频率

频率	接收频率	发射频率	
900MHZ	925~960MHz	880 [~] 915MHz	
850MHZ	865~894MHz	824 [~] 849MHz	

4.5 天线要求

下表为 NB-IOT 天线的要求:

表 16: 天线电缆的要求

频率	要求
791-960MHZ	插入损耗<1dB

表 17: 天线的要求

Туре	要求
频率范围	791-960MHZ
VSER	€2
Gain(dbi)	≥1
最大输入功率(W)	5
输入阻抗(Ω)	50
极化方式	线极化

4.6 推荐 RF 焊接方式

如果连接外置天线的射频连接器是通过焊接方式与模块相连的,请务必注意连接线的剥线方式及焊接方法,尤其是地要焊接充分,请按照正确的焊接方式进行操作,以避免因焊接不良引起线损增大。

5 电气性能, 可靠性

5.1 绝对最大值

下表所示是模块数字、模拟管脚的电源供电电压电流最大耐受值。

表 18: 绝对最大值

参数	最小	最大	单位
VBAT	-0.3	4. 2	V
电源供电峰值电流	0	0.3	A
电源供电平均电流(TDMA 一帧时间)	0	0. 25	A
数字管脚处电压	-0.3	3. 0	V
模拟管脚处电压	-0.3	4. 2	V
关机模式下数字/模拟管脚处电压	-0. 25	0. 25	V

5.2 工作温度

下表所示为模块工作温度。

表 19: 工作温度

参数	最小	典型	最大	单位
正常工作温度	-TBD	25	+TBD	$^{\circ}\! \mathbb{C}$
受限温度1)	-40 [∼] -35		+80 ~+ 85	$^{\circ}\! \mathbb{C}$
存储温度	-40		+85	${\mathbb C}$

备注

- 1. 在正常工作温度范围内,模块符合 3GPP 标准。
- 2. 在受限温度范围内,模块仍然能够建立和维护短信,数据传输等。没有不可恢复的故障,对无线电频谱也没有影响,对无线电网络无害。只有一个或多个 Pout 参数可能会降低其值并超出规定的误差。当温度恢复到正常工作温度时,模块再次符合 3GPP 规范。

5.3 耗流

模块耗流值如下表所示。

表 20: 模块耗流

参数	描述	条件	Min	Тур	MAX	Unit
	深度睡眠模式	省电状态			4	uA
_	待机模式	空闲状态		6		mA
I _{VBAT}		900MHZ		250		mA
		850MHZ		180		mA
	运行模式	3GPP data receiving		61		mA

5.4 静电防护

在模块应用中,由于人体静电,微电子间带电摩擦等产生的静电,通过各种途径放电给模块,可能会对模块造成一定的损坏,所以 ESD 保护必须要重视,不管是在研发、生产组装、测试等过程,尤其在产品设计中,都应采取防 ESD 保护措施。如电路设计在接口处或易受 ESD 点增加 ESD 保护,生产中佩戴防静电手套等。

下表为模块重点 PIN 脚的 ESD 耐受电压情况。

表 21: ESD 性能参数 (温度: 25℃, 湿度: 45%)

测试点	接触放电	空气放电
VBAT, GND	±5KV	\pm 10KV
RF_ANT	±5KV	±10KV
TXD, RXD	±2KV	±4KV
Others	±0.5KV	±1KV

6 机械尺寸

6.1 模块机械尺寸

6.2 模块俯视图

图 19: 模块俯视图

6.3 模块底视图

图 20: 模块底视图

7 存储和生产

7.1 存储

M5310 以真空密封袋的形式出货。模块的存储需遵循如下条件: 环境温度低于 40 摄氏度,空气湿度小于 90%情况下,模块可在真空密封袋中存放 12 个月。 当真空密封袋打开后,若满足以下条件,模块可直接进行回流焊或其它高温流程:

- ▶ 模块环境温度低于30摄氏度,空气湿度小于60%,工厂在72小时以内完成贴片。
- ▶ 空气湿度小于10%若模块处于如下条件,需要在贴片前进行烘烤:
- ▶ 当环境温度为23摄氏度(允许上下5摄氏度的波动)时,湿度指示卡显示湿度大于10%
- ▶ 当真空密封袋打开后,模块环境温度低于 30 摄氏度,空气湿度小于 60%,但工厂未能在 72 小时以内完成贴片
- ▶ 当真空密封袋打开后,模块存储空气湿度大于 10% 如果模块需要烘烤,请在 125 摄氏度下(允许上下 5 摄氏度的波动)烘烤 48 小时。

备注

1. 模块的包装无法承受如此高温,在模块烘烤之前,请移除模块包装。如果只需要短时间的烘烤,请参考 IPC/JEDECJ-STD-033 规范。

7.2 生产焊接

用印刷刮板在网板上印刷锡膏, 使锡膏通过网板开口漏印到 PCB 上, 印刷刮板力度需调整合适, 为保 证模块印膏质量, M5310 模块焊盘部分对应的钢网厚度应为 0.23mm。

图 21: 印膏图

为避免模块反复受热损伤,建议客户 PCB 板第一面完成回流焊后再贴中移物联网模块。推荐的炉温曲线图如下图所示:

图 22: 炉温曲线

7.3 包装

M5310 模块用卷带包装,并用真空密封袋将其封装。 每个卷带包含 250 个 M5310 模块,卷 带直径 330 毫米,具体规格如下:

图 23: 载带卷盘尺寸图

表 22: 模块包装信息

模块名称	量产最小订单	最小箱包装(250pcs)	整箱包装 (250×4=1000pcs)
M5310	250pcs	体积: 370×350×56mm	体积: 380×250×365mm
		净重: 0.88kg	净重: 3.53kg
		毛重: 1.72kg	毛重: 7.20kg

8 附录 A 参考文档及术语缩写

表 23:参考文档

序号	文档名称	备注
[1]	M5310_ATC	M5310 AT commands set
[2]	GSM_UART_AN	UART port application notes
[3]	GSM_FW_Upgrade_AN01	GSM Firmware upgrade application notes
[4]	M5310_EVB_UGD	M5310 EVB 用户指导手册

表 24: 术语缩写

缩写	描述
ARP	Antenna Reference Point
BER	Bit Error Rate
BTS	Base Transceiver Station
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear To Send
DRX	Discontinuous Reception
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
GMSK	Gaussian Minimum Shift Keying

GSM	Global System for Mobile Communications
I/0	Input/Output
IMEI	International Mobile Equipment Identity
Imax	Maximum Load Current
Inorm	Normal Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver &Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
VILmin	W** T , T T T T T T T T T T T T T T T T T
VImax	Minimum Input Low Level Voltage Value
	Absolute Maximum Input Voltage Value
VImin	

VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value

