WHAT IS CLAIMED IS:

1	1. A method of interlinking first and second switch
2	modules in a common switch node, comprising the steps of:
3	providing first and second redundant links between said first
4	and second switch modules;
5	receiving a data packet with a destination address;
6	over-writing said destination address with a routing tag
7	identifying only an active one of the first and second links; and
8	outputting the data packet only to said active one of said
9	first and second links identified by the routing tag.
1	2. A method according to claim 1, further including the step
2	of simultaneously receiving at first and second link terminals in
3	said first switch module the data packet having the routing tag.
1	3. A method according to claim 1, further including the
2	steps of:
3	passing the data packet through a switch core and
4	therein performing the overwriting step.
1	4. A method according to claim 1, further including the
2	steps of:
3	detecting a fault condition in the active one of said first and
4	second links; and thereafter
5	the over-writing step overwrites said destination address
6	with the routing tag identifying the other of said first and second
7	links.

1	5. A module in a switch node operatively linked with a
2	second module in the same switch node, comprising:
3	first and second redundant links connecting the first module
4	to the second module; and
5	a routing tagger to receive a stream of data packets destined
6	for the second module and to apply a node-internal routing tag to
7	the data packets in the stream to direct the stream to only one of
8	the first and second redundant links.
1	6. A module according to claim 5, further including:
2	a set of device boards outputting the data packets with
3	standard addresses;
4	a switch core in communication with the set of device
5	boards to receive the data packets and overwrite the standard
6	addresses with the node-internal routing tags;
7	first and second redundant link terminals in communication
8	with the switch core;
9	the first link coupled to the first link terminal and to the
10	second module, said first link associated with a first unique one of
11	the routing tags; and
12	the second link coupled to the second link terminal and to
13	the second module, said second link associated with a second
14	unique one of the routing tags.
1	7. A module according to claim 6, wherein:
2	at least one of said first and/or second link terminals receive
3	the data packets;

4	the first link terminal passes the data packets to the first link
5	if the switch core overwrites the standard address with the first
6	unique one of the routing tags; and
7	the second link terminal passes the data packets to the
8	second link if the switch core overwrites the standard address with
9	the second unique one of the routing tags.
1	8. A module as in claim 7, wherein both the first and
2	second link terminals receive said data packets, and one of the first.
3	and second link terminals blocks the passage of said data packets
4	to a corresponding one of the first and second links.
1	9. A module as in claim 7, wherein both the first and
2	second link terminals receive said data packets, and one of the first
3	and second link terminals also blocks the passage of said data
4	packets to a corresponding one of the first and second links until
5	the overwrite changes from a current one of the first and second
6	routing tags to the other of the first and second routing tags.
1	10. A module according to claim 7, wherein:
2	said set of device boards create said data packets without
3	regard to the redundancy of the first and second links.
1	11. A module according to claim 7, wherein:
2	said switch core overwrites the standard addresses with the
3	first unique one of said routing tags under a first operational
4	condition, and

5	said switch core overwrites the standard addresses with the
6	second unique one of said routing tags under a second operational
7	condition different from said first operational condition.
1	12. A module according to claim 11, wherein the first
2	operational condition identifies a detected normal condition in the
3	first link and the second operational condition identifies a detected
4	fault condition in the first link.
1	13. A switch node, comprising:
2	first and second switch modules operatively linked to each
3	other, each module having:
4	a set of device boards outputting data packets having
5	standard routing tags;
6	a switch core in communication with the set of device
7	boards to receive the data packets and overwrite the standard
8	routing tags with modified routing tags;
9	first and second redundant link terminals in communication
10	with the switch core;
11	a first link coupled to the first link terminal and to the other
12	of said modules, said first link associated with a first unique one of
13	said modified routing tags; and
14	a second link, redundant to the first link, coupled to the
15	second link terminal and to the other of said modules, said second
16	link associated with a second unique modified routing tag,
17	wherein:
18	at least one of said first and second link terminals receive
19	said data packets, and wherein:

20	said first link terminal passes said data packets to the first
21	link when the switch core overwrites said standard routing tag
22	with said first unique one of said modified routing tags, and
23	said second link terminal passes said data packets to the
24	second link when the switch core overwrites said standard routing
25	tag with said second unique one of said modified routing tag.
1	14. A switch node according to claim 13, further including:
2	a third module between said first and second modules,
3	comprising a space switching module.
1	15. A switch node according to claim 13, further including:
2	a plurality of modules between said first and second
3	modules, each comprising a space switching module.
1	16. A set of ATM switch modules in an ATM switch node,
2	each comprising:
3	a power distribution layer;
4	a clock functions layer in communication with the power
5	distribution layer;
6	ATM switch planes in communication with the clock
7	functions layer;
8	an interconnection links layer connecting to another
9	interconnection links layer of another of said set of ATM switch
10	modules via at least first and second redundant links, said
11	interconnection links layer detecting faults in said links and
12	redirecting communication to one of said first and second links
13	whenever faults are detected in the other of said links; and

14	an applications layer in communication with the
15	interconnections links and providing data packets to said
16	interconnection links layer, said applications layer operating
17	independently of said detecting and re-directing aspects of said
18	interconnection links layer.
1	17. A switch node comprising:
2	a first switch module operatively communicating with a
3	second switch module through a set of links;
4	said set of links including a first set of links actively
5	carrying data packets between the first and second modules and at
6	least one extra link that remains idle until a failure is detected in
7	any one of the first set of links, whereupon the extra link takes the
8	place of the failed link in carrying assigned ones of said data
9	packets.
1	18. A switch node according to claim 17, including:
2	multiple extra links, each available to take the place of any
3	failed ones of the first set of links in carrying assigned ones of the
4	data packets.
1	19. A switch node according to claim 17, further including:
2	internal routing taggers to tag the data packets to particular
3	ones of the first set of links until any one of the first set of links
4	fails whereupon said taggers instead tag the data packets otherwise
5	destined for the failed link to the extra link.

20. A switch node comprising:
a number N of first links and a number M of second links,
all connecting first and second switch modules, each switch
module including:
a fault detector to determine N number of currently operable
ones of said N&M first and second links;
a switch core communicating between at least one device
circuit and the first and second links to route data packets from the
device circuits to at least the N number of currently operable first
and second links; and
a device-side switch port interface between the device
circuit and the switch core to add internal routing tags to the data
packets identifying only the N number of currently operable first
and second links; and
a link-side switch port interface between the switch core and
the links to read the internal routing tags and route the data
packets to the N number of currently operable first and second
links.
21. A switch node according to claim 20, wherein:
N is one and M is one.
22. A switch node according to claim 20, wherein:
•
N is at least two and M is one.
23. A switch node according to claim 20, wherein:
N is at least two and M is at least two.

1	24. A switch node according to claim 20, further including:
2	N+M number of link exchanges coupled between the
3	switch core and corresponding ones of the first and second
4	links; and wherein:
5	the link-side switch port interface includes N+M link-
6	side switch port interfaces, one per link exchange.
1	25. A switch node according to claim 20, wherein:
2	each switch module includes device circuits, and
3	the device-side switch port interface includes multiple
4	device-side switch port interfaces, one per device circuit.