

Transient respons

Øvelse 4

Emma Spanner 201907955 Mads Emil Nielsen 201908775 Peter Gehlert Theilgaard 201907648

Hold 2

9. december 2019

IKLT-MMLS 1. semester Ingeniørhøjskolen Aarhus Universitet

Indhold

1	Ind	ledning	\mathbf{g}			2						
2		alyse Analys	yse af 1. ordens lavpasfilter	•		3 3						
3	Sim	ulering	ng			9						
	3.1	Simule	lering af 1. ordens lavpasfilter			9						
		3.1.1	Simularing af $10 \text{ k}\Omega$			9						
		3.1.2	Simularing af 100 k Ω			11						
	3.2	Simule	lering af 2. ordens lavpasfilter			13						
		3.2.1	Simularing af 1 k Ω			13						
		3.2.2	Simularing af 10 k Ω	•		14						
4	Realisering 1											
			15									
		4.1.1	sering af 1. ordens lavpasfilter									
		4.1.2	$100 \mathrm{k}\Omega$			15						

1 Indledning

Formålet med denne øvelse er at vise:

- Hvordan beregnes og måles steprespons signaler i et kredsløb.
- Hvordan påvirker et kredsløbs komponenter det beregnede og målte steprespons.

I øvelsen betragtes 1. og 2. ordens lavpasfiltre. Resultaterne fra øvelsen præsenteres i form af en målejournal og godkendes af underviserne ved det den afsluttede måling.

2 Analyse

Øvelsen er opdelt i to dele, 1. og 2. ordens lavpasfilter.

2.1 Analyse af 1. ordens lavpasfilter

Figur 1 viser et 1. ordens lavpasfilter med en modstand og en kondensator. V_{in} er stepinput med spænding 0-5 V. Steppet sker til tiden t=0 sek.

$$V_{in}(t) = \begin{cases} 0 & \text{if } t < 0 \\ V_0 & \text{if } t > 0 \end{cases} \tag{1}$$

Ligning: 1 Indgangs spændingen er en funktion af t

Figur 1: Første ordens lavpasfilter

Strøm-spænding sammenhængen for en modstand og en kondensator er: Modstand:

$$V_R = R \cdot i \tag{2}$$

Ligning 2: Spændingen over en modstand

Kondensator:

$$i = C \cdot \frac{d(V_C)}{dt} \tag{3}$$

Ligning 3: Strømen gennem en kondensator

Output spænding:

$$V_{Out}(t) = V_C(t) \tag{4}$$

Ligning 4: Spændingen over $V_C(t)$ er den samme som i punktet $V_{Out}(t)$

Følgende 8 delopgaver er givet:

1. Vis ved Kirchhoffs love: KVL

Vis ved Kirchhoffs love at følgende differentialligning gælder for kredsløbet i Figur 1:

$$V_{in}(t) = R \cdot C \cdot \frac{d(V_{out}(t))}{dt} + V_{out}(t)$$
(5)

Efter en kredsløbsanalyse ses det at:

$$V_{in} = V_R + V_C \tag{6}$$

Ved brug af Ligning 1 og Ligning 4 kan ligningen omskrives til

$$V_0 = V_R + V_{Out} \tag{7}$$

Ved at kombinere Ligning 2 og Ligning 3, kan der findes et nyt udtryk fra V_R som er afhængig af tiden t

$$V_R = R \cdot C \cdot \frac{d}{dt} \cdot V_C \tag{8}$$

Dernæst kan den indsættes i Ligning 7 hvilket medføre

$$V_0 = R \cdot C \cdot \frac{d(V_{out}(t))}{dt} + V_{out}(t) \tag{9}$$

2. Løs differentialligningen med hensyn til Vout

Løs differentialligningen med hensyn til Vout for $0 \le t < \infty$ Ligning 5 kan omskrives så konstanten foran $\frac{d(V_{out}(t))}{dt}$ ved at gange igennem med $\frac{1}{R \cdot C}$, det medføre

$$\frac{d(V_{out}(t))}{dt} + \frac{1}{R \cdot C} \cdot V_{out}(t) = \frac{1}{R \cdot C} \cdot V_0$$
 (10)

Ved hjælp af en løsnings protokol Ligning 10 nu løses:

$$P(t) = \frac{1}{R \cdot C} \tag{11}$$

$$Q(t) = \frac{1}{R \cdot C} \cdot V_0 \tag{12}$$

$$\mu(t) = e^{\int P(t)dt} \to e^{(\frac{t}{R \cdot C})} \tag{13}$$

Ligning 13: Hjælpefunktion

$$F(t) = \int \mu(t) \cdot Q(t)dt \to V_0 + k \cdot e^{-\frac{t}{R \cdot C}}$$
(14)

Ligning 14: Stamfunktion

$$V_{Out}(t) = \frac{1}{\mu(t)} \cdot (F(t) + k) \xrightarrow{simplify} V_{Out}(t) = V_0 + k \cdot e^{-\frac{t}{R \cdot C}}$$
(15)

Ligning 15: Fuldstændig løsning

$$k = V_{Out}(0) \xrightarrow{solve,k} -V_0 \tag{16}$$

Ligning 16: Betingelse

$$V_{Out}(t) = V_0 - V_0 \cdot e^{\frac{-t}{R \cdot C}} \tag{17}$$

Ligning 17: Specifikke Løsning

3. Beregn tidskonstanten

Beregn tidkonstanten τ for lavpasfilteret med hhv. $R=10~k\Omega$, $R=100~k\Omega$ og C=100nF. Tidskonstanten er et udtryk for at V_{Out} er opnået 63% af V_{in} .

$$\tau = R \cdot C \tag{18}$$

Ligning 18: Generel tidskonstant

Tidskonstant τ_{10} :

Ved brug af Ligning 18 kan τ_{10} beregnes:

$$\tau_{10} = R_{10} \cdot C$$

$$\tau_{10} = 10k\Omega \cdot 100nF$$

$$\tau_{10} = 1ms$$
(19)

Tidskonstant τ_{100} :

Ved brug af Ligning 18 kan τ_{100} beregnes:

$$\tau_{100} = R_{100} \cdot C$$

$$\tau_{100} = 100k\Omega \cdot 100nF$$

$$\tau_{100} = 10ms$$
(20)

Figur 2: $10k\Omega$ - 0-50ms

Figur 3: $10k\Omega$ - 0-10ms

4. Beregn kurveform

Beregn kurveform for Vout med hhv. $R=10~k\Omega$ og $R=100~k\Omega$, og vis disse grafisk for $0 \le t \le 50ms$

Bestemt er: $V_0 = 5V$ og t = 0s, 0.1ms..50ms

Kurveformen er givet ved Ligning 17, da dette er den specifikke løsning.

Derefer kan man nu indsætte parametrene i ligningen og derved får man 2 nye ligninger der begge afhænger af tiden t:

 $V_{Out_{10}}(t)$:

$$V_{Out_{10}}(t) = 5V - 5V \cdot e^{-\frac{t}{10k\Omega \cdot 100nF}}$$
 (21)

 $V_{Out_{100}}(t)$:

$$V_{Out_{100}}(t) = 5V - 5V \cdot e^{-\frac{t}{100k\Omega \cdot 100nF}}$$
 (22)

Figur 4: $10k\Omega$ - 0-50ms

5. Beregn Vout max

Beregn den maksimale værdi af Vout i de to tilfælde. Når V_{Max} skal beregnes vil den være højste i det signalet stepper ned. Det vil sige ved t = 50ms

 $V_{OutMax_{10}}$:

$$V_{OutMax_{10}}(50ms) = 5V - 5V \cdot e^{-\frac{50ms}{10k\Omega \cdot 100nF}}$$

$$V_{OutMax_{10}}(50ms) = 5V$$
(23)

 $V_{OutMax_{100}}$:

$$V_{OutMax_{100}}(50ms) = 5V - 5V \cdot e^{-\frac{50ms}{100k\Omega \cdot 100nF}}$$
$$V_{OutMax_{100}}(50ms) = 4.996V \tag{24}$$

6. Bestem stigetiden tr

Bestem stigetiden tr (10-90%). Stigetiden er den tid det tager V_{out} at komme fra 10% til 90% af V_{in} .

Ved $10k\Omega$:

$$t_{10} = -\ln(0.9) \cdot \tau_{10}$$

$$t_{10} = -\ln(0.9) \cdot 1.0ms$$

$$t_{10} = 0.105ms$$

$$t_{90} = -\ln(0.1) \cdot \tau_{10}$$

$$t_{90} = -\ln(0.1) \cdot 1.0ms$$

$$t_{90} = 2.303ms$$

$$t_{10} = t_{90} - t_{10}$$

$$t_{10} = 2.303ms - 0.105ms$$

$$t_{10} = 2.167ms$$

$$(25)$$

Side 7 of 17

Ved $100k\Omega$:

$$t_{10} = -ln(0.9) \cdot \tau_{100}$$

$$t_{10} = -ln(0.9) \cdot 1.0ms$$

$$t_{10} = 1.054ms$$
(28)

$$t_{90} = -ln(0.1) \cdot \tau_{100}$$

$$t_{90} = -ln(0.1) \cdot 1.0ms$$

$$t_{90} = 23.026ms \tag{29}$$

$$tr_{100} = t_{90} - t_{10}$$

$$tr_{100} = 23.026ms - 1.054ms$$

$$tr_{100} = 21.972ms$$
(30)

7. Forklar

Forklar hvordan tidskonstanten og stigetiden kan findes ud fra grafen for Vout, og opstil en ligning til bestemmelse af C , når tidskonstanten τ og modstanden R er kendte.

 $V_0 = 5V \ t = 0ms, 0.1ms..50ms$

Den gennerelle formel for V_{Out} er følgende:

$$V_{Out}(t) = V_0 - V_0 \cdot e^{\frac{-t}{R \cdot C}} \tag{31}$$

Ligning 31: Specifikke Løsning

$$0.1 \cdot V_0 = 0.5V \ 0.9 \cdot V_0 = 4.5V$$

Tidskonstanten findes ved at finde tiden til 63% af den stationære spænding. Da den stationære spænding er aflæst til 5V, vil Tau være 3.15V. $10k\Omega$

Her ses, at tidskonstanten, tau, er aflæst til 1.027ms, til 63% af den stationære spænnding. Desuden kan tiden til 10% af den stationære spænding aflæses til 0.116 ms og 90% af den stationære spænding aflæses til 2.316 ms, hvorefter forskellen udregnes.

$$t_{90} - t_{10} = 2.316ms - 0.116ms = 2.2ms$$

 $100k\Omega$

Her ses, at tidskonstanten, tau, er aflæst til 10.028ms, til 63% af den stationære spænnding. Desuden kan tiden til 10% af den stationære spænding aflæses til 1.207 ms og 90% af den stationære spænding aflæses til 23.411 ms, hvorefter forskellen udregnes.

$$t_{90} - t_{10} = 23.442ms - 1.207ms = 22.204ms$$

Bestem C Hvis tidskonstanten ta og modstanden R er kendt, kan man bestemme C:

$$\begin{aligned} \tau_C &= R \cdot C \Rightarrow C = \frac{\tau_C}{R} \\ \mathbf{10} \ \mathbf{k}\Omega \ C_{10} &= \frac{1ms}{10k\Omega} = 100nF \\ \mathbf{100} \ \mathbf{k}\Omega \ C_{100} &= \frac{1ms}{100k\Omega} = 100nF \end{aligned}$$

8. Indfør resultatur i Tabel 1

Resultaterne indføres i Tabel 1.

Figur 5: $10k\Omega$

Figur 6: $100k\Omega$

3 Simularing

3.1 Simularing af 1. ordens lavpasfilter

Resultaterne fra analysen simuleres med diagrammerne vist i Figur 7 og 8 I de to tilfælde bestemmes tau (τ) , stigetiden og den maksimale spænding, disse resultater indføres i tabel 1.

Figur 7 viser simuleringen af 1. ordens lavpasfilter og Figur 8 viser simulering af 2. ordens lavpasfilter.

3.1.1 Simularing af 10 k Ω

Tidskonstanten(τ) bestemmes ved at beregne:

$$V_{max} \cdot 0.63 = V_{\tau}$$

Herefter måles tidsforskellen fra t_0 V til V_{τ} V_{max} er ud fra figur 9 målt til 4.97 V 4.97 $V \cdot 0.63 = 3.131$ V

Tidsforskellen fra t_0 V til V_{τ} måles via figur 9 til 1.01 ms ($\tau = 1.01$ ms)

Figur 7: Simulering af 1. ordens lavpasfilter

Figur 8: Simulering af 2.ordens lavpasfilter

Stigetiden bestemmes ved formlen:

$$t_{90} - t_{10} = stigetid$$

Ud fra målinger af figur 10 er stigetiden blevet beregnet til

$$t_{10} = 4.97V \cdot 0.1 = 0.497V$$

 $t_{90} = 4.97V \cdot 0.9 = 4.473V$

Tidsforskellen mellem t_{90} og t_{10} måles via figur 10 til 2.08 ms Maksimal spænding bestemmes ved formlen:

$$V_{max} - V_{min} = \text{Maksimal spænding}$$

Afstanden mellem V_{max} og V_{min} måles via figur 11 til 4.97 V

Figur 9: måling af τ

Figur 10: stigetid

3.1.2 Simularing af 100 k Ω

Tidskonstanten(τ) bestemmes ved at beregne:

$$V_{max} \cdot 0.63 = V_{\tau}$$

Herefter måles tidsforskellen fra t_0 V til V_{τ} V_{max} er ud fra figur ?? målt til 4.96 V 4.96 $V \cdot 0.63 = 3.125 V$

Tidsforskellen fra t_0 V til V_{τ} måles via figur 12 til 10.04 ms ($\tau=10.04$ ms)

Figur 11: Maksimal spænding

Figur 12: måling af τ

Stigetiden bestemmes ved formlen:

$$t_{90} - t_{10} = stigetid$$

Ud fra målinger af figur 13 er stigetiden blevet beregnet til

$$u_{10} = 4.96V \cdot 0.1 = 0.496V$$

 $t_{90} = 4.96V \cdot 0.9 = 4.464V$

Tidsforskellen mellem t_{90} og t_{10} måles via figur
13 til 19.72 ms Maksimal spænding bestemmes ved formlen:

$$V_{max} - V_{min} = \text{Maksimal spænding}$$

Afstanden mellem V_{max} og V_{min} måles via figur 14 til 4.96 V

Figur 13: stigetid

Figur 14: Maksimal spænding

3.2 Simularing af 2. ordens lavpasfilter

3.2.1 Simularing af 1 $k\Omega$

 τ_5 er via figur 15 afmålt til 4.966 V, altså det tidspunkt, hvor vores kurve er vokset med 5 τ Stigetiden bestemmes ved formlen:

$$t_{90} - t_{10} = stigetid$$

Ud fra målinger af figur 15 er stigetiden blevet beregnet til

$$t_{90} = 4.966V \cdot 0.9 = 4.473V$$

$$t_{10} = 4.966V \cdot 0.1 = 0.497V$$

Tidsforskellen mellem t_{90} og t_{10} måles via figur 15 til 1.6 μ s Maksimal spænding bestemmes ved formlen:

$$V_{max} - V_{min} = Maksimal spænding$$

Afstanden mellem V_{max} og V_{min} måles via figur 16 til 5.876 V

Figur 15: Stigetid

Figur 16: Maksimal spænding

3.2.2 Simularing af 10 k Ω

 τ_5 er via figur
17 afmålt til 4.956 V, altså det tidspunkt, hvor vores kurve er vokset med 5
 τ Stigetiden bestemmes ved formlen:

$$t_{90} - t_{10} = stigetid$$

Ud fra målinger af figur 17 er stigetiden blevet beregnet til

$$t_{90} = 4.956V \cdot 0.9 = 4.46V$$

$$t_{10} = 4.956V \cdot 0.1 = 0.496V$$

Tidsforskellen mellem t_{90} og t_{10} måles via figur 17 til 20.6 μ s Maksimal spænding bestemmes ved formlen:

$$V_{max} - V_{min} = Maksimal spænding$$

Afstanden mellem V_{max} og V_{min} måles via figur 18 til 4.941 V

Figur 17: Stigetid

Figur 18: Maksimal spænding

4 Realisering

Kredsløbene fra analysen og simuleringen opbygges og måles i laboratoriet med oscilloskop. Figurerne nedenfor viser de fysiske måleopstillinger.

4.1 Realisering af 1. ordens lavpasfilter

- **4.1.1** $1k\Omega$
- **4.1.2 100**kΩ

Figur 19: Lavpasfilter R: 100 k $\Omega,$ C = 100nF

Figur 20: Lavpasfilter R=1k Ω , =1mH, C=1nF

Figur 21: Måling V_{max} på 1. ordens lavpasfilter med $100 \mathrm{k}\Omega$

Tabel 1: Multirow table.

Analyse					Simulering				Måling				
R	τ	t_r	V_{Max}	R	τ	t_r	V_{Max}	R	τ	t_r	V_{Max}		
$k\Omega$	[msek]	[msek]	[V]	$[k\Omega]$	[msek]	[msek]	[V]	$[k\Omega]$	[msek]	[msek]	[V]		
1. ordens lavpas filter													
10	1.0	2.197	5	10	1	2.08	4.97	10	1.01	2.18	5.06		
10	(19)	(27)	(23)										
100	10	21.972	4.966	100	10.04	19.72	4.96	100	9.87	21.053	4.65		
100	(20)	(30)	(24)										
2. ordens lavpas filter													
1		$1.849 \ \mu s$	5.766	1		$1.6~\mu s$	5.786	1		$1.618 \ \mu s$	5.79		
10		$20.905 \ \mu s$	5.0	10		$20.6~\mu s$	4.94	10		$20.263 \ \mu s$	5.03		