

so the solution is:

y(t) = yo cosout + yo' son out · Frad the solution y(1) to $\begin{cases} \frac{1^2 y}{10^2} - \frac{1^2 y}{10^2} = \frac{$ The general solution to the equation is

y(t) = Ae + Be

The initial conditions imply:

yo = A + B

(A - B)

(B - 1 (yo - yo))

2 (yo - yo) so the solution is xt

y(t) = \frac{1}{2} (y_0 + y_0') e + \frac{1}{2} (y_0 - y_0') e^{-\frac{1}{2}} The two cases $\frac{d^2y}{dt^2}$, $\omega^2y = 0$, $\omega^2 > 0$ and $\frac{d^2y}{dt^2}$, $\frac{\lambda^2}{y} = 0$, $\frac{\lambda^2}{y} > 0$ $\frac{d^2y - \lambda^2y - 0}{dx^2}$ Indeed, if $\chi^2 > 0$, fet $\omega^2 - \chi^2$ to obtain 12 + w2 y - 0 and y(1) = Ae + Be = Ae + Be

In that case, we can indeed expand $\vec{u}(0) - \vec{u}_0$ in the basis of eigenvectors: $\vec{u}_0 - c_1 \vec{x}_1 + c_2 \vec{x}_2 + \cdots + c_n \vec{x}_n$ The general solution to du - 400 is then the linear combination at an at it is then the $\vec{u} = c_1 e^{-x_1} + c_2 e^{-x_2} + \cdots + c_n e^{-x_n}$ Indeed, du = \ cie \(\frac{1}{2}\) + \ \ \ \ \ \ = Au' \\ and by construction, $\vec{u}(0) - \vec{u_0}$ Example: Solve the system of differential equations (dw - - 2w + y - 2z 1 dy - w - 2y + 2z $\frac{d^2}{dt} = 3w - 3y + 5z$ w(0) = -2, y(0) = 2, z(0) = 4This system can be rewitten as

with $\vec{u}(t) = \begin{pmatrix} v(t) \\ y(t) \end{pmatrix}$ and $A = \begin{bmatrix} -2 & 1 & -2 \\ 1 & -2 & 2 \\ 3 & -3 & 5 \end{bmatrix}$
The eigenvalues of A are 3 with eigenvector [1] and [-1] with eigenvectors [1] and [-2] [1]
We have $\tilde{u}(0) = \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Hence, the solution is
Hence, the salution is $\frac{3}{3}\left(\frac{1}{4}\right) = \frac{3}{4}\left(\frac{1}{4}\right) = \frac{1}{4}\left(\frac{1}{4}\right) = \frac{1}{$
$\frac{3}{3} + \frac{1}{2} + \frac{3}{3} + \frac{1}{2} + \frac{1}$

2) Second order equations The matican of a mass on attached to a spring and slicking on a friction less scurface

y(1): distance from equilibrium (red)

wall

wall

wall Fromenless surface is given by: $\frac{d^2y}{dt^2} + \frac{2}{m}y = 0$ where k is called the spring constant, and determine
the strength of the spring & large means that
the spring is strong. In physics, any equation of the type dy, w2 y=0 is said to be the equation of an harmonic oscillator Suppose now that the surface is not fretroulet, so the mass is subject to fretrom. The equation for an harmonic oscillator is then modified to: $\frac{d^2y}{dt^2} + \frac{dy}{dt} + \frac{1}{m} = 0$ where I characterizes the strength of friction

Tf A is antisymmetric e = (e) and e = e = e Hence (e) = (e4) : e 1 is orthogonal.	(A)
Hence (e At) - (e At) : e At is orthogonal.	
0	
	-