MLP Előrejelzések

Kovászna MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
4.33	4.60	
4.56	4.30	
4.18	4.20	
4.04	4.10	
4.04	4.00	
3.96	3.80	
3.76	3.80	
3.81	3.80	
3.86	3.80	
3.86	3.80	
3.86	4.20	
4.34	4.90	

Hargita MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
4.01	3.90	
4.08	4.00	
4.19	4.20	
4.36	4.40	
4.53	4.40	
4.39	4.50	
4.41	4.30	
4.15	4.20	
4.01	4.00	
3.88	3.80	
3.72	3.80	
3.85	3.70	
5.5 Hargita MLP 2022 augusz	stus - 2023 július között — Hargita M.P. — Hargita mért	

Maros MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
2.74	2.80	
2.83	2.90	
2.92	3.10	
3.09	3.20	
3.15	3.20	
3.09	3.10	
2.97	3.10	
2.99	3.00	
2.90	2.70	
2.60	2.70	
2.67	2.70	
2.72	2.70	

Model	MSE	RRMSE	MAPE
Kovászna MLP ((12, 12, 12,), 5 réteg)	5.12 %	5.58 %	3.78 %
Hargita MLP ((12, 12, 12,), 5 réteg)	0.82 %	2.19 %	1.93 %
Maros MLP ((12, 12, 12,), 5 réteg)	1.05 %	3.54 %	2.85 %

Kovászna MLP modell összefoglaló

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	78
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	adam
Optimalizálási ciklus lépésszáma:	424
Rejtett rétegek Aktivációs függvénye:	relu

```
Tanító párok: (amiből megtanulta a súlyokat)
                                                                                   Teszt párok (amiket meg kell jósoljon):
1. [12.2 12.5 12.3] --> 11.9
                                                                                   1. [4.7 4.4 4.5] --> 4.6
2. [12.5 12.3 11.9] --> 11.1
                                                                                   2. [4.4 4.5 4.6] --> 4.3
                                                                                   3. [4.5 4.6 4.3] --> 4.2
3. [12.3 11.9 11.1] --> 10.9
                                                                                   4. [4.6 4.3 4.2] --> 4.1
4. [11.9 11.1 10.9] --> 11.4
5. [11.1 10.9 11.4] --> 11.2
                                                                                   5. [4.3 4.2 4.1] --> 4.0
ELtolási értékek vektora:
                                                                                   Rétegek súlyai:
[array([-0.43618457, 0.72644521, 0.38343614,
                                                  -0.5283658
                                                                   -0.62713971,
                                                                                    [array([[-0.59769799,
                                                                                                            0.31641279,
                                                                                                                          0.42577351,
                                                                                                                                         0.10237687,
                                                                                                                                                       0.26254963,
-0.32107459, -0.05138271, -0.19690814, 0.61520576, 0.49616321,
                                                                   -0.20137292,
                                                                                    -0.09654184, 0.46796432, -0.30847405, -0.46018528, -0.00332336, 0.10210154,
-0.54379749]), array([-0.15338024, 0.61453559,
                                                                    0.07090431,
                                                                                   0.56118975], [ 0.28137092, -0.23576837, 0.06892502, 0.01633727, -0.03638818,
                                                     -0.16531035,
```

0.33479363,

identity

0.44507467, 0.53342819, 0.08758483, -0.21578192, 0.55867219,

-0.41565963], [-0.24119572, -0.12276985, 0.55170832, -0.28805176, -0.0967689

Hargita MLP modell összefoglaló

0.10396841,

0.66071266, 0.2414024 , -0.04637746, -0.47262962, -0.45180006, 0.55314626,

0.12435785,

0.17125991]), array([-0.02603678,

Kimeneti réteg Aktivációs függvénye:

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	78
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	adam
Optimalizálási ciklus lépésszáma:	407
Rejtett rétegek Aktivációs függvénye:	relu
Kimeneti réteg Aktivációs függvénye:	identity

```
Tanító párok: (amiből megtanulta a súlyokat)

1. [10.9 11.4 11.2] --> 10.7

2. [11.4 11.2 10.7] --> 9.6

3. [11.2 10.7 9.6] --> 9.3

4. [10.7 9.6 9.3] --> 8.6

5. [9.6 9.3 8.6] --> 8.7

Teszt párok (amiket meg kell jósoljon):

1. [3.7 3.8 3.8] --> 3.9

2. [3.8 3.8 3.9] --> 4.0

3. [3.8 3.9 4.] --> 4.2

4. [3.9 4. 4.2] --> 4.4

5. [4. 4.2 4.4] --> 4.4
```

```
ELtolási értékek vektora:

[array([-0.49780405, 0.71069354, 0.41477891, -0.5283658 , -0.62713971, -0.30212003, -0.05833068, -0.22520519, 0.62175745, 0.48100651, -0.20891602, -0.5351424 ]), array([-0.15339745, 0.61230329, -0.16531035, 0.07394996, 0.65550689, 0.24018555, -0.04807167, -0.5636212 , -0.45180006, 0.53964441, 0.10179652, 0.17057496]), array([-3.98894705e-02, 1.14172590e-01, 3.34844533e-
```

```
Rétegek súlyai:

[array([[-0.54543861, 0.2955442 , 0.36796545, 0.10961464, 0.27303497, -0.04847711, 0.43218584, -0.2813862 , -0.47652263, -0.01990147, 0.11695193, 0.56800811], [ 0.33007475, -0.25516744, 0.01553964, 0.01889826, -0.04059433, 0.47507467, 0.50581504, 0.1053057 , -0.25567358, 0.54243401, -0.20965811, -0.41992408], [-0.19858605, -0.12156057, 0.50938952, -0.29885054, -0.10381984,
```

Maros MLP modell összefoglaló

```
Bemeneti neuronok száma:
                                                                                                                                                       3
                                                                                                                                                       1
Kimeneti neuronok száma:
                                                                                                                                                       80
Legjobb random kezdőérték a súlyozásra:
Rejtett rétegek és azok neuronjainak száma:
                                                                                                                                                       (12, 12, 12,)
Normalizálási eljárás:
                                                                                                                                                       standard
Optimalizálási Algoritmus:
                                                                                                                                                       adam
Optimalizálási ciklus lépésszáma:
                                                                                                                                                       314
Rejtett rétegek Aktivációs függvénye:
                                                                                                                                                       relu
Kimeneti réteg Aktivációs függvénye:
                                                                                                                                                       identity
```

```
Tanító párok: (amiből megtanulta a súlyokat)

1. [8.3 8.4 8.5] --> 8.2

2. [8.4 8.5 8.2] --> 7.9
```

```
Teszt párok (amiket meg kell jósoljon):
```

1. [2.6 2.7 2.7] --> 2.8

2. [2.7 2.7 2.8] --> 2.9

3. [8.5 8.2 7.9] --> 7.8 4. [8.2 7.9 7.8] --> 7.9

5. [7.9 7.8 7.9] --> 8.3

ELtolási értékek vektora:

[array([-0.33854096, 0.152649 , -0.46029266, -0.48761522, 0.70447463, 0.73875805, -0.53532659, 0.50359409, -0.5167707 , 0.47275841, 0.03201579, -0.43002129]), array([3.86843226e-01, 4.46223349e-01, 4.28362481e-01, 3.86682014e-01, 4.91026264e-01, -3.24500614e-01, -7.47886557e-05, 2.48018066e-01, 2.73850787e-01, 5.45404927e-01, -2.11265004e-01, 1.60150832e-02]), array([

3. [2.7 2.8 2.9] --> 3.1

4. [2.8 2.9 3.1] --> 3.2

5. [2.9 3.1 3.2] --> 3.2

Rétegek súlyai:

[array([[0.03784063, 0.31925197, -0.29021895, 0.17408085, 0.56929643, 0.33043473, -0.14381248, -0.1564595 , -0.09193176, -0.41421107, 0.4458605 , -0.49547158], [-0.26267951, 0.11803951, 0.44571408, -0.42696592, 0.45394074, -0.04621073, 0.16510926, -0.51809357, 0.04188976, -0.19254275, -0.39999559, -0.06960003], [-0.00830415, 0.64387249, 0.30836577, 0.55289831, 0.16798489,