Shaft and Shaft Components

ME 310: Mechanical Design

Sappinandana Akamphon

Department of Mechanical Engineering, TSE

Outline

Overview

Shaft Layout

Shaft Design for Stress

Deflection Analysis

Critical Speeds for Shafts

Torque Transmission Components

Why Starting off with Shafts?

- Most engineering machines is powered by a rotational machines
- · Rotational machines need shafts
- The source of powers... and mistakes

Design Criteria

- · Material selection
- Layout
- · Stress and strength
- · Deflection and rigidity
- Vibration

Materials

- Stiffness and deflection: *E* same for all steels, so material choice does not matter.
- · Size:
- · For small diameter shafts, use cold drawn steel.
- If heat treatment is required, it should be machined after to provide work hardening.
- · Production volume:
 - Low → Turning (using lathe or CNC)
 - \cdot High o hot rolling, cold rolling, casting

Outline

Overview

Shaft Layout

Shaft Design for Stress

Deflection Analysis

Critical Speeds for Shafts

Torque Transmission Components

Layout

- steps to axially locate elements, i.e. gears, pulleys, bearings.
- support axial load using bearings
- provide torque transmission with gears, pulleys, sprockets...

6

Axial Location of Elements

- · 2 bearings per shaft in most cases
- · Shortest shaft possible to reduce bending
- Load bearing components should be close to bearings
- Use shoulders or retainer rings to fix axial locations

Axial Load Support

• If significant axial loads are present, support with appropriate bearings.

Outline

Overview

Shaft Layout

Shaft Design for Stress

Deflection Analysis

Critical Speeds for Shafts

Torque Transmission Components

Critical Locations

- Maximum bending moment
- · Steps, grooves, and notches

Stress Concentrations in Shafts

	Bending	Torsion	Axial
Shoulder fillet—sharp $(r/d = 0.02)$	2.7	2.2	3.0
Shoulder fillet—well rounded $(r/d = 0.1)$	1.7	1.5	1.9
End-mill keyseat $(r/d = 0.02)$	2.14	3.0	_
Sled runner keyseat	1.7	_	_
Retaining ring groove	5.0	3.0	5.0

Shaft Stresses

- · Torsion + Bending
- · Axial load usually small and negligible

$$\sigma_{a} = K_{f} \frac{M_{a}c}{I} \qquad \sigma_{m} = K_{f} \frac{M_{m}c}{I}$$

$$\tau_{a} = K_{fs} \frac{T_{a}c}{J} \qquad \tau_{m} = K_{fs} \frac{T_{m}c}{J}$$

Solid round shafts

$$\sigma_a = K_f \frac{32M_a}{\pi d^3} \qquad \sigma_m = K_f \frac{32M_m}{\pi d^3}$$

$$\tau_a = K_{fs} \frac{16T_a}{\pi d^3} \qquad \tau_m = K_{fs} \frac{16T_m}{\pi d^3}$$

Combine Normal and Shear Stresses

Use MDET

$$\sigma_e = (\sigma^2 + 3\tau^2)^{1/2}$$

$$\sigma_{ae} = (\sigma_a^2 + 3\tau_a^2)^{1/2} = \left[\left(\frac{32K_f M_a}{\pi d^3} \right)^2 + 3 \left(\frac{16K_{fs} T_a}{\pi d^3} \right)^2 \right]^{1/2}$$

$$\sigma_{me} = (\sigma_m^2 + 3\tau_m^2)^{1/2} = \left[\left(\frac{32K_f M_m}{\pi d^3} \right)^2 + 3 \left(\frac{16K_{fs} T_m}{\pi d^3} \right)^2 \right]^{1/2}$$

Apply Fatigue Limit

$$\frac{1}{N_s} = \frac{\sigma_{ae}}{S_e} + \frac{\sigma_{me}}{S_y}$$

$$\frac{1}{N_s} = \frac{16}{\pi d^3} \left\{ \frac{1}{S_e} \left[4 \left(K_f M_a \right)^2 + 3 \left(K_{fs} T_a \right)^2 \right]^{1/2} + \frac{1}{S_y} \left[4 \left(K_f M_m \right)^2 + 3 \left(K_{fs} T_m \right)^2 \right]^{1/2} \right\}$$

$$d = \left(\frac{16N_s}{\pi} \left\{ \frac{1}{S_e} \left[4 \left(K_f M_a \right)^2 + 3 \left(K_{fs} T_a \right)^2 \right]^{1/2} + \frac{1}{S_y} \left[4 \left(K_f M_m \right)^2 + 3 \left(K_{fs} T_m \right)^2 \right]^{1/2} \right\} \right)^{1/3}$$

Shaft Loading Conditions

- Torque
- \cdot Bending \implies radial load from torque transmission

$$F = \frac{T}{r\cos\theta} \qquad F = \frac{T}{r} \qquad F_2 - F_1 = \frac{T}{r}$$

Example: Timing Belt Shaft

Size the shaft (AISI 1040, S_y = 400 MPa, S_{ut} = 600 MPa) using

- 1. MDET (Static Loading)
- Soderberg theory (Dynamic Loading)
 Take r_{pulley} = 10 cm and N_s = 3

- The applied torque T is (2020 20)(0.1) = 200 N-m.
- Midpoint load of 2020 + 20 = 2040 N
- Assuming end-mill keyseat at the sheave: K_f = 2.14, K_{fs} = 3

Calculating Stresses

$$M = \frac{FL}{4} = \frac{2040(0.6)}{4} = 306$$

$$\sigma_{bending} = K_f \frac{My}{I} = 2.14 \frac{306(d/2)}{(\pi/4)(d/2)^4} = \frac{6670}{d^3}$$

$$\tau_T = K_{fs} \frac{Tr}{J} = 3 \frac{200(d/2)}{(\pi/2)(d/2)^4} = \frac{3056}{d^3}$$

Applying MDET

Using MDET, we have that

$$\sigma_e = \sqrt{\left(\frac{6670}{d^3}\right)^2 + 3\left(\frac{3056}{d^3}\right)^2} = \frac{8514}{d^3}$$

$$N_s = 3 = \frac{S_y}{\sigma_e} = \frac{400 \times 10^6}{\sigma_e}$$

$$d^3 = \frac{8514}{400 \times 10^6} = 2.13 \times 10^{-5}$$

$$d = 0.0277$$

Applying Soderberg

- Bending → repeated stress (tensile and compressive)
- $\sigma_a = \sigma_{bending}$, $\sigma_m = 0$
- Torsion \rightarrow constant stress
- $\cdot \tau_a = 0, \tau_m = \tau_T$

$$\sigma_{ae} = \sqrt{\sigma_a^2 + 3\tau_a^2} = \sigma_{bending}$$

$$\sigma_{me} = \sqrt{\sigma_m^2 + 3\tau_m^2} = \sqrt{3}\tau_T$$

Applying Soderberg II

$$\frac{1}{N_s} = \frac{1}{3} = \frac{\sigma_{ae}}{S_e} + \frac{\sigma_{me}}{S_y} = \frac{6670}{d^3(0.5)(600 \times 10^6)} + \frac{\sqrt{3}(3056)}{d^3(400 \times 10^6)}$$
$$d^3 = 1.06 \times 10^{-4}$$
$$d = 0.0474$$

General Guidelines

- 1. shaft should be as short as possible
- 2. avoid sharp step
- 3. round shaft if possible
- 4. to save weight \rightarrow hollow shaft

Outline

Overview

Shaft Layout

Shaft Design for Stress

Deflection Analysis

Critical Speeds for Shafts

Torque Transmission Components

Deflection Considerations

- Need geometry for entire shaft
- Should evaluate at gears and bearings why?
- Maximum deflection < gear teeth size
- · In most case, software is needed

Outline

Overview

Shaft Layout

Shaft Design for Stress

Deflection Analysis

Critical Speeds for Shafts

Torque Transmission Components

Shaft Whirling or Shaft Whip

- At high speed, the centrifugal force can cause shaft deflection \sim buckling
- · For simple shafts:

$$\omega_1 = \left(\frac{\pi}{l}\right)^2 \sqrt{\frac{EI}{m}} = \left(\frac{\pi}{l}\right)^2 \sqrt{\frac{EI}{A\rho}}$$

m mass per unit length

ho density

E Young's modulus

A cross-sectional area

Example: Resize the Shaft

From previous example, use E = 210 GPa and reconsider the proper shaft size if $\omega_{\rm max}$ = 10000 rpm

Outline

Overview

Shaft Layout

Shaft Design for Stress

Deflection Analysis

Critical Speeds for Shafts

Torque Transmission Components

Torque Transmission

- Mechanical drive assembly
- Interference fit assembly
- Welded assembly

Mechanical Drive Assembly

Mechanical Drive Assemblies

Set Screw

PIII

Keyway

Spline Shaft

The most common mechanical-drive assembly is the conventional **key/keyway**. Other mechanical-drive assemblies are set screws, pins and spline shafts.

All transmit torque levels related to their mechanical interlocking:

Set screw << pin << keyway << spline shaft

All are easy to assemble or disassemble.

Webinar Series

% % - Set screw % - Pin % - Key % - Spline shaft %

- ** Setscrews}
 - Use friction to hold a component on the shaft \rightarrow holding power

Example: Key sizing

A steel shaft whose S_y = 450 MPa has a radius of 5 cm. The shaft rotates at 600 rpm and transmits 40 hp through a gear. Select and appropriate key for the gear. Use safety factor = 3.

Solution: Key sizing

To keep things simple, pick a square key and pick key length = 2 cm.

$$T = \frac{\text{Power}}{\omega} = \frac{40(746)}{600(2\pi/60)}$$
$$= 475 \text{ N-m}$$

For the width (and height) of the key section,

$$N_s T_{\text{max}} = 0.577 S_y b l r_{\text{shaft}}$$

$$b = \frac{3(475)}{0.577(450 \times 10^6)(0.02)(0.05)}$$

$$b = 0.00549 \text{ m}$$

- ** Retaining Rings}
 - · Used to axially locate a component on a shaft or a hub.
 - Need to cut grooves in shaft to fit \rightarrow stress concentration

Limitation of Mechanical Drive

- · Stress concentration
- Backlash
- · Machining costs
- · Uneven distribution of mass

Interference Fit Assemblies

- Press fit: $d_{\text{shaft}} > d_{\text{hub}}$
- Tapered fit: Taper + Fastener = Fit
- · Shrink fit: Hole is heated or shaft is cooled before assembly
- Used to minimize need for shoulders and keyways

Limitations of Interference Fits

- Material, surface, and design restrictions need sufficient friction
- \cdot Close tolerance o high machining costs
- · Micro-movement causes fretting corrosion
- \cdot Surface galling o difficult disassembly
- High stress in components

Stress in Interference Fits

· Assumed uniform pressure on shaft and hub

$$p = \frac{d_{\text{shaft}} - d_{\text{hub}}}{\frac{d}{E_o} \left(\frac{d_o^2 + d^2}{d_o^2 - d^2} + \nu_o \right) + \frac{d}{E_i} \left(\frac{d^2 + d_i^2}{d^2 - d_i^2} - \nu_i \right)}$$

· When both are of the same material

$$p = \frac{E(d_{\text{shaft}} - d_{\text{hub}})}{2d^3} \left[\frac{(d_o^2 - d^2)(d^2 - d_i^2)}{d_o^2 - d_i^2} \right]$$

d nominal shaft diameter d_i inside diameter of shaft d_o outside diameter of hub

Stress in Interference Fits

· Tangential and radial stresses in shaft and hub are

$$\sigma_{t,\text{shaft}} = -p \frac{d^2 + d_i^2}{d^2 - d_i^2}$$

$$\sigma_{t,\text{hub}} = p \frac{d_0^2 + d^2}{d_0^2 - d^2}$$

$$\sigma_{t,\text{shaft}} = -p$$

$$\sigma_{t,\text{hub}} = -p$$

· Combine σ_t and σ_r using MDET to determine failure

Torque Capacity in Interference Fits

• Depends on friction generated between shaft and hub \rightarrow pressure from interference fits

$$f = \mu N = \mu(pA)$$

$$= \pi \mu p l d$$

$$T = f d / 2 = \pi \mu p l d (d / 2)$$

$$= \frac{\pi}{2} \mu p l d^{2}$$

Example: Torque Capacity of a Gear on a Shaft

A solid shaft whose diameter is 5 cm is pressed onto a gear whose hub inner diameter is 4.99 cm and outer diameter is 6 cm. If both are made of the same steel whose E=210 GPa and $\nu=0.3$, determine the radial and tangential stresses, along with the torque capacity of the fit. Assume steel-on-steel $\mu=0.3$, and the hub is 7 cm long.

Solution: Torque Capacity of a Gear on a Shaft

$$\begin{split} p &= \frac{E(d_{\text{shaft}} - d_{\text{hub}})}{2d^3} \left[\frac{(d_o^2 - d^2)(d^2 - d_i^2)}{d_o^2 - d_i^2} \right] \\ &= \frac{210 \times 10^9 (0.05 - 0.0499)}{2(0.05)^3} \left[\frac{(0.06^2 - 0.05^2)(0.05^2 - 0)}{0.06^2 - 0} \right] \\ &= 64.2 \text{ MPa} \\ \sigma_{r,\text{shaft}} &= \sigma_{r,\text{hub}} = -64.2 \text{ MPa} \\ \sigma_{t,\text{shaft}} &= -64.2 \frac{0.05^2}{0.05^2} = -64.2 \text{ MPa} \\ \sigma_{t,\text{hub}} &= 64.2 \frac{0.06^2 + 0.05^2}{0.06^2 - 0.05^2} = 356 \text{ MPa} \\ T &= \frac{\pi}{2} \mu p l d^2 = \frac{\pi}{2} (0.3) 64.2 \times 10^6 (0.07) (0.05^2) = 5294 \text{ N-m} \end{split}$$

Welded Assembly

- · Connections by welding the part
- · Load carried by small welded area

Limitations of welded assembly

- · Only compatible materials
- · Heating can cause warpage
- · Difficult disassembly
- · Additional costs
- · Need skilled personnel
- Addtional cleaning and grinding afterwards