

Talstelsels

- Decimale stelsel
- Binaire stelsel
- Hexadecimale stelsel
- Octale stelsel

Negatieve binaire getallen

- Teken/grootte notatie
- Plus n-notatie
- Een- en tweecomplementnotatie
- Overflow

Niet-gehele binaire getallen

- 'Floating point'-getallen
- IFFF-notatie
- BCD-getallen

(PXL)IT Teken/grootte - Definitie

Teken-en-grootte (sign-and-magnitude)

$$\rightarrow$$
 7° bit = tekenbit

TEKENBIT

- 0 = Positief (+)
- 1 = Negatief

= Getalwaarde

= Teken

(PXL)IT Teken/grootte - Voorbeeld

Voorbeeld

$$+7_{(10)}$$
 = 0 0 0 0 0 1 1 1₍₂₎
 $-7_{(10)}$ = 1 0 0 0 0 1 1 1₍₂₎
 $+21_{(10)}$ = 0 0 0 1 0 1 0 1₍₂₎
 $-21_{(10)}$ = 1 0 0 1 0 1 0 1₍₂₎

(PXL)IT Teken/grootte – Opmerking optelling

2 voorstellingen voor getal 0 overlappen

$$\Rightarrow$$
 -0 = 1000 0000₍₂₎

$$\Rightarrow$$
 +0 = 0000 0000₍₂₎

Binaire optelling dient anders te gebeuren

- Vaste lengte van het bitpatroon
- Waarde 0 = waarde in het midden van het spectrum van mogelijke waarden
- Waarde één hoger = 1 binair bij optellen
- Waarde één lager = 1 binair van aftrekken

(PXL)IT plus n – plus 4-notatie (n=4)

→ 3 bits als vaste lengte

- 0 (referentiewaarde)
- +1 (één optellen)
- -1 (één aftellen)

Plus 4 notatie

$$100_{(2)}$$
 = referentiewaarde = $0_{(10)}$

100 (2)

101 (2)

011 (2)

4 bits lengte => plus 8 OF plus 7-notatie

Plus 7

• 0111 = referentiewaarde 0

Plus 8

• 1000 = referentiewaarde 0

Plus 7	Binair	Plus 8
+8	1111	+7
+7	1110	+6
+6	1101	+5
+5	1100	+4
+4	1011	+3
+3	1010	+2
+2	1001	+1
+1	1000	0
0	0111	-1
-1	0110	-2
-2	0101	-3
-3	0100	-4
-4	0011	-5
-5	0010	-6
-6	0001	-7
-7	0000	-8

(PXL)IT plus n — omzetten decimaal naar binair (CS) Computer Systems

Decimaal → binair

- 1. Getal **optellen** met referentiewaarde (n)
- 2. Omzetten naar binaire waarde.

Voorbeeld (+ 4-notatie)

$$+2 \rightarrow 2 + 4 = 6$$

$$\rightarrow$$
 binair: 110

$$-2 \rightarrow -2 + 4 = 2$$

$$\rightarrow$$
 binair: 010

$$-4 \rightarrow -4 + 4 = 0$$

$$\rightarrow$$
 binair: 000

(PXL)IT plus n — omzetten binair naar decimaal (CS) Computer Systems

Binair \rightarrow decimaal

- 1. Omzetten naar decimaal
- 2. **Verminderen** met referentie waarde

Voorbeeld (+4-notatie)

$$110 = 6 \rightarrow 6 - 4 = +2$$

$$010 = 2 \rightarrow 2 - 4 = -2$$

$$0.00 = 0 \rightarrow 0 - 4 = -4$$

Voordeel:

1 aanduiding van nul ('n')

Nadeel:

Niet bruikbaar voor rekenkundige bewerkingen.

Voorbeeld:

$$+4: 1100$$
 $-3: 0101$
 $0001 \rightarrow (-7)$

$$0001 \rightarrow +8 \text{ notatie} \rightarrow 1 -8 = -7 !!$$

(PXL)IT plus n – samenvatting

"n" (binair) = Nieuwe referentie waarde voor 0 (decimaal)

Plus 4: 100 \rightarrow 0

plus 8: 1000 \rightarrow 0

plus 127: 0111 1111 \rightarrow 0

> **Binair** Decimaal + n 1-complement 2-complement

(PXL)IT 1-complement notatie - definitie

"Het 1-complement bekomt men door het n-bits getal af te trekken van een n-bits getal met alle bits op 1."

Voorbeeld:

$$+14 = 00001110 \Rightarrow -14 = \frac{-00001110}{11110001}$$

⇒ in praktijk inversie van alle bits

Probleem

2 voorstellingen voor het getal 0

$$\Rightarrow$$
 +0 = 0 000 0000

$$\Rightarrow$$
 - 0 = 1 111 1111

(PXL)IT 2-complement notatie, definitie

"Negatief decimaal getal omzetten naar 2sC Het twee-complement bekomt men door het n-bits getal af te trekken van een n+1-bits getal met de MSB op 1 en alle volgende bits op 0."

Voorbeeld:

$$+14 = 00001110 \Rightarrow -14 = \frac{-00001110}{11110010}$$

⇒ in praktijk inversie van alle bits + 1 optellen

(PXL)IT 2-complement notatie, bin > dec

- Indien een positief getal (MSB = 0 !!)
 - ⇒Binaire waarde = absolute waarde
- Indien een negatief getal (MSB = 1 !!)
 - ⇒Alle bits inverteren en plus 1. (=2'sc)
 - ⇒Bekomen waarde is de absolute waarde!
- !! Een negatief getal (binair 2'complement) begint met een 1

(PXL)IT 2-complement notatie, bin > dec


```
Voorbeeld: 1111 1011: → negatief want MSB = 1!!!
```

```
11111011
                     \rightarrow ( = 2-complement voorstelling)
0000100
                      → (= complementaire waarde )
                     \rightarrow abs. waarde = 0101 = 5
00000101
```

De waarde van 1111 1011 is dus -5 !!

```
!!! Een negatief getal (binair 2'complent) begint met een 1 !!!
```


(PXL)IT 2-complement notatie, dec > bin

Positief getal

→ Dec. waarde omzetten. (Binair start met een nul!)

Negatief getal

- \rightarrow Absolute waarde omzetten (DEC \rightarrow BIN).
 - → Alle bits inverteren en tel binair 1 op. (=2'sc) Resultaat is altijd MSB = 1!!

!!! Een negatief getal (binair 2'complent) begint met een 1 !!!

(PXL)IT 2-complement notatie, dec > bin

Voorbeeld: -12

```
→ (=Binaire voorstellen |12|)
00001100
                → (= complementaire waarde)
 11110011
 11110100
    -12 = 1111 \ 0100
```


(PXL)IT 2-complement notatie vs plus-8

_Plus 8-notatie	2s-C	_
1 1 1 1	→ +7	0111
1 1 1 0	→ +6	0110
1 1 0 1	→ +5	0101
1 1 0 0	→ +4	0100
1011	→ +3	0011
1010	→ +2	0010
1001	→ +1	0001
1000	\rightarrow 0	0000
0 1 1 1	→ -1	1111
0 1 1 0	→ -2	1110
0 1 0 1	→ -3	1101
0 1 0 0	→ -4	1100
0011	→ -5	1011
0010	→ -6	1010
0001	→ -7	1001
0000	→ -8	1000

(PXL)IT 2-complement notatie: bewerking

Bij de 2-complement methode geeft een bewerking de correcte uitkomst:

Notatie van -4: 0000 0100 (+4) 1111 1011 (1'sC) 1111 1100 (2'sC van -4)

+4: 00000100

-4: 11111100

£00000000

De overdrachtsbit of carrybit speelt op dit moment geen rol en die laten we wegvallen

(PXL)IT 2-complement notatie - optelling

Beide getallen positief

$$\begin{array}{c}
(+4) \xrightarrow{binair} 0000 \ 0100 \\
(+9) \xrightarrow{binair} 0000 \ 1001 \\
(+13) \xrightarrow{binair} 0000 \ 1101
\end{array}$$

Een getal negatief, carry uit tekenbits

$$\begin{array}{c}
(-4) \xrightarrow{binair} & 1111 \ 1100 \\
\underline{(+9)} \xrightarrow{binair} & 0000 \ 1001 \\
\underline{(+5)} \xrightarrow{binair} & 10000 \ 0101
\end{array}$$

Beide getallen negatief

"end-around-carry" wordt verworpen aangezien de computer werkt met een vaste bitlengte (in dit geval 8)

(PXL)IT 2-complement notatie – getal nul

1 voorstelling voor het getal 0

$$\Rightarrow$$
 +0 = 0 000 0000

$$\Rightarrow$$
 - 0 = 0 000 0000

(PXL)IT 2-complement notatie - samenvatting

1 voorstelling voor het getal 0

- +0 = 00000000
- -0 = 00000000

Waarde-range van één byte

- Positief van +0 $(00000000_{(2)})$ tot +127 $(01111111_{(2)})$
- Negatief van -1 (11111111₍₂₎) tot -128 (10000000₍₂₎)

Binaire optelregels blijven geldig

$$(+4) \xrightarrow{binair} 0000 0100$$

$$(-4) \xrightarrow{binair} 1111 1100$$

$$(-0) \xrightarrow{binair} 10000 0000$$

Meest gebruikte voorstelling

(PXL)IT 2-complement notatie - samenvatting

 $+\rightarrow$ $MSB = 0 \Rightarrow positief getal$

⇒ waarde omzetten

 $MSB = 1 \Rightarrow negatief getal$

 \implies 2's complement \implies = |abs waarde|

(PXL)IT 2-complement notatie - oefeningen (CS) Computer Systems

Teken-grootte notatie:

$$0011 \ 1101 = ..._{(10)}$$
 $1010 \ 0011 = ..._{(10)}$
 $1001 \ 1111 = ..._{(10)}$

Plus n notatie:

• 2'sC notatie:

$$0011 \ 1101 = ..._{(10)}$$
 $1010 \ 0011 = ..._{(10)}$
 $1001 \ 1111 = ..._{(10)}$
 $0110 \ 1101 = ..._{(10)}$
 $1010 \ 0000 = ..._{(10)}$

Teken-grootte notatie:

```
+60 =
                                         0011\ 1101 = +61_{(10)}
                  0011 1100 <sub>(2)</sub>
                  1010 0001 (2)
-33 =
                                         1010 0011 = - 35<sub>(10)</sub>
-129= 1000 0000 1000 0001 (2)
                                         1001 1111 = - 31<sub>(10)</sub>
-598 = 1000 0010 0101 0110_{(2)}
                                         0110 1101
                                                      = + 109<sub>(10)</sub>
```

ALGEMEEN (teken en grootte):

Plus n notatie:

```
= 010 <sub>(2)</sub>
- 2 (plus4)
                                          001 (plus 4) =
+ 2 (plus4)
                                           110 (plus 4)=
                        = 110
                        = 0001<sub>(2)</sub>
- 7 (plus8)
                                          1010 (plus 8)=
                                                                   +2 (10)
+ 1 (plus8)
                        = 1001<sub>(2)</sub>
                                                                   -5 <sub>(10)</sub>
                                           0011 (plus 8)=
+ 10 (plus127)
                                           0110 1010 (+127)=
                   = 1000 1001<sub>(2)</sub>
                                                                   -21<sub>(10)</sub>
```

Opgelet: vaste bitlengte!!

ALGEMEEN (plus n notatie):

```
"n" (Binair) <=> 0 (Decimaal)
```

vb: plus 8: 1000 <=> 0 plus 127: 0111 1111 <=> 0 vb:

→ van BIN naar DEC → - 'n'

→ van DEC naar BIN → + 'n'

2Cs notatie:

```
0011 1100 (2)
                                                       = +61_{(10)}
+ 60 =
                                         0011 1101
- 33 = 1101 1111 <sub>(2)</sub>
                                         1010 0011
                                                       = -97 <sub>(10)</sub>
- 98 =
              1001 1110 (2)
                                         1001 1111
+ 192= 0000 0000 1100 0000 (2)
                                                       = + 109 (10)
                                         0110 1101
- 129= 1111 1111 0111 1111 <sub>(2)</sub>
                                                       = -96 <sub>(10)</sub>
                                         1010 0000
```

<u>Twee-complement notatie – werkwijze:</u>

```
+ \rightarrow MSB = 0 \Rightarrow Positief getal
                        ⇒ Waarde omzetten
\rightarrow MSB = 1
                      \Rightarrow Negatief getal
                        \Rightarrow 2's Complement
                                 = INVERT + binair 1
                        \Rightarrow = |abs waarde|
```


Teken-grootte notatie:

+60 =	0011 1100 ₍₂₎	0011 1101	= +61 ₍₁₀₎
-33 =	1010 0001 (2)	1010 0011	= -35 ₍₁₀₎
-129= 100	00 0000 1000 0001 (2)	1001 1111	= -31 ₍₁₀₎
-598 = 10	00 0010 0101 0110 (2)	0110 1101	= +109 ₍₁₀₎

Plus-n notatie:

-2 (plus4)	= 010 ₍₂₎	001 (plus 4)=	-3 ₍₁₀₎
+2 (plus4)	= 110 (2)	110 (plus 4)=	+2 (10)
-7 (plus8)	= 0001 (2)	1010 (plus 8)=	+2 (10)
+1 (plus8)	= 1001 ₍₂₎	0011 (plus 8)=	-5 ₍₁₀₎
+10 (plus127)	= 1000 1001 ₍₂₎	0110 1010 (+127)=	-21 ₍₁₀₎

2'sC notatie:

$$+60 = 0011 \ 1100_{(2)}$$
 $-33 = 1101 \ 1111_{(2)}$
 $-98 = 1001 \ 1110_{(2)}$
 $+192 = 0000 \ 0000 \ 1100 \ 0000_{(2)}$
 $-129 = 1111 \ 1111 \ 0111 \ 1111_{(2)}$
 $0011 \ 1101 = +61_{(10)}$
 $1010 \ 0011 = -93_{(10)}$
 $0110 \ 1101 = +109_{(10)}$
 $0110 \ 1101 = -96_{(10)}$

Negatieve binaire getallen Overflow – Definitie

Er is onvoldoende geheugenruimte om resultaat voor te stellen = OVERFLOW

2 manieren om overflow te detecteren:

Cary over NAAR de tekenbit =/ Cary over VAN de tekenbit

(PXL)IT Overflow - Voorbeeld

$$\begin{array}{c}
(-3) \xrightarrow{binair} & 1101 \\
(+2) \xrightarrow{binair} & 0010 \\
\hline
(-1) \xrightarrow{binair} & 1111
\end{array}$$

GEEN OVERFLOW:

- & + → onmogelijk overflow Carry van tekenbit = carry naar tekenbit

```
1111 = Negatief getal (MSB =1)
2cs = 0001
                        (invert +1)
\rightarrow |1|
                        (absolute waarde)
```

PXL)IT Overflow – Voorbeeld

$$(+3) \xrightarrow{binair} 0011$$

$$(-5) \xrightarrow{binair} 1011$$

$$(-2) \xrightarrow{binair} 1110$$

GEEN OVERFLOW:

+ & - → onmogelijk overflow

Carry van tekenbit = carry naar tekenbit

```
1110 = Negatief getal (MSB = 1)

2cs = 0010 (invert +1)

\rightarrow |2| (absolute waarde)
```

PXL)IT Overflow – Voorbeeld

Overflow !! (4bit) → oplossing: uitbreiden naar 8 bit !!

$$\begin{array}{c}
(+3) \xrightarrow{binair} & 0000 \ 0011 \\
(+5) \xrightarrow{binair} & 0000 \ 0101 \\
\hline
(+8) \xrightarrow{binair} & 0000 \ 1000
\end{array}$$

GEEN OVERFLOW!!:

+ & + → Uitkomst is +

Carry van tekenbit = carry naar tekenbit !!!

(Overflow 4bit) → oplossing: uitbreiden naar 8 bit !!

PXL)IT Overflow – Voorbeeld

Overflow !! (4bit) → oplossing: uitbreiden naar 8 bit !!

Uitbreiding naar 8 bit !!

PXL)IT Overflow — 8-bit voorbeeld

1: optelling van 2 positieve getallen

$$\begin{array}{ccc}
(+65) & \xrightarrow{binair} & 01000001 \\
(+66) & \xrightarrow{binair} & 01000010 \\
\hline
(????) & \xrightarrow{binair} & 10000011
\end{array}$$
2-complement = -61

2: optelling van 2 negatieve getallen

PXL)IT Overflow – samenvatting

'De fout wordt in beide gevallen opgemerkt door het plots verschijnen van een ander teken."

"Sommatie van twee positieve getallen resulteert in een negatief getal"

"Sommatie van twee negatieve getallen resulteert in een positief getal"

Vermits we hier werken met vaste bitpatronen van 8 bits zitten we zoals in de voorbeelden werd aangegeven, al vlug buiten het bereik.

(PXL)IT Data types in programmeertalen

Data types

bits	naam	Java	.Net	bereik
1 bit	bit	boolean	boolean	true false
8	byte, octet	byte	byte	-128 tot 127
16	word	char (unicode)	char	0 tot 65535
16	word	short	short	-32768 tot 32767
32	doubleword	int	integer	-2.147.483.648 tot 2.147.483.647
64	quadword	long	long	-9.223.372.036.854.775.808 tot +9.223.372.036.854.775.807
128	octaword			
32		float	single	1,401298.e ⁻⁴⁵ tot 3,40282.e ⁺³⁸
64		double	double	4,940656.e ⁻³²⁴ tot 1,797693.e ³⁰⁸

(PXL)IT Overflow – oefeningen

Maak de optelling en controleer op overflow.

$$+14 + (-30)$$

$$+58 + (-72)$$

$$-68 + (-50)$$

$$-87 + (-82)$$

$$73_{(h)} + 7A_{(h)}$$

Plus-n