trivariate and higher order entropies

for three discrete random variables X, Y and Z the trivariate entropy is bounded

$$H(X, Y) \le H(X, Y, Z) \le H(X, Z) + H(Y, Z) - H(Z)$$

the two increments of the inequalities around H(X, Y, Z):

M expected joint entropy

EJ(X, Y|Z) =
$$H(X,Z) + H(Y,Z) - H(Z) - H(X,Y,Z)$$
 association graph divergence statistic non-negative and equal to 0 iff $(X,Y) \perp Z$

expected conditional entropy
$$EH(Z|X,Y)=H(X,Y,Z)-H(X,Y) \text{ prediction power}$$
 non-negative and equal to 0 iff $X\to Y$

similarly for H(X, Y, Z, U), H(X, Y, Z, U, V), H(X, Y, Z, U, V, W), ...

example: network study of corporate law firm

univariate and bivariate entropies of vertex variables

##	senior	status	gender	office	years	age	practice	lawschool
## ser	ior 6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.15
## sta	itus NA	1.00	1.70	2.08	2.01	2.28	1.98	2.46
## ger	nder NA	NA NA	0.82	1.93	2.23	2.38	1.80	2.32
## off	ice NA	NA NA	NA	1.12	2.69	2.67	2.09	2.61
## yea	nrs NA	NA NA	NA	NA	1.58	2.75	2.56	3.01
## age	. NA	NA NA	NA	NA	NA	1.58	2.56	2.88
## pra	nctice NA	NA NA	NA	NA	NA	NA	0.98	2.51
## law	school NA	NA NA	NA	NA	NA	NA	NA	1.53

redundancy

```
# matrix with bivariate entropies
H <- entropy_bivar(dat)
diag(H) # univariate entropies</pre>
```

Tredundant variables

```
senior status gender office years age practice lawschool
##
## senior
## status
                                                                      0
## gender
                                                                      0
## office
## years
## age
                                        0
                                                                      0
## practice
                                                                      0
## lawschool
                                        0
                          0
                                 0
                                                                      0
```

detect redundancy
redundancy(dat, dec = 3)