fiche d'indications de la FTD N°0 : ensembles de nombres

<u>Ex 1</u>

1.
$$a = \frac{1183}{104} = \frac{91}{8} = \frac{91}{2^3}$$
, $b = \frac{1274}{1960} = \frac{13}{20} = \frac{13}{2^2 \times 5}$ et $c = \frac{661}{256} = \frac{661}{2^8}$

2.
$$a = \frac{91 \times 5^3}{10^3} = \frac{11375}{1000} = 11,375$$
. A vous de faire pour b et c .

<u>Ex 2</u>

1.a. Si
$$q$$
 est décimal alors $\frac{2019}{9} = \frac{a}{10^n}$ et $2019 \times 10^n = 9a$...

1.b. Utiliser le critère de divisibilité par 9.

2. Par l'absurde, q n'est pas un décimal.

<u>Ex 3</u>

$$a = \frac{6}{7} = 0.857142$$
, $b = \frac{3}{11} = 0.27$ et $c = \frac{8}{37} = 0.21621$.

Ex 4:
$$x = 3,\underline{25} = \frac{322}{99}$$
 et $y = 0,574\underline{17} = \frac{956}{1665}$.

<u>Ex 5</u>

1. Montrer que si a est impair alors a^2 est impair puis conclure.

2.a. Passer au carré dans l'égalité $\sqrt{2} = \frac{p}{q}$.

2.b. Etudier d'abord la parité de p^2 .

2.c. Poser p = 2k.

2.d. Justifier que p et q admettent au moins un diviseur commun autre que 1.

3. Chercher la contradiction.