1 Algebraic Topology

Definition 1.1 (de Rham complex). Ω^* is the algebra generated over \mathbb{R} by dx_1, \ldots, dx_n subject to

- 1. $(dx_i)^2 = 0$,
- 2. $dx_i dx_j = -dx_j dx_i, i \neq j$.

The C^{∞} differential forms on \mathbb{R} are elements of

$$\Omega^*(\mathbb{R}^n) = \{ C^{\infty} \text{ functions on } \mathbb{R}^n \} \otimes_{\mathbb{R}} \Omega^*.$$
 (1)

We have $\Omega^*(\mathbb{R}^n) = \bigoplus_{q=0}^n \Omega^q(\mathbb{R}^n)$, where $\Omega^q(\mathbb{R}^n)$ consists of the C^{∞} q-forms on \mathbb{R}^n . We define

$$d: \Omega^q(\mathbb{R}^n) \to \Omega^{q+1}(\mathbb{R}^n), \tag{2}$$

the exterior differentiation, by

- 1. if $f \in \Omega^0(\mathbb{R}^n)$, then $df = \sum \partial f/\partial x_i dx_i$,
- 2. if $\omega = \sum_{I} f_{I} dx_{I}$, then $d\omega = \sum_{I} df_{I} dx_{I}$, where $dx_{I} = dx_{I} dx_{I}$...

The wedge product is defined by

$$\tau \wedge \omega = \sum \tau_I \omega_J \, dx_I dx_J = (-1)^{\deg \tau \, \deg \omega} \omega \wedge \tau. \tag{3}$$

Proposition 1.2. d is an antiderivation,

$$d(\tau \wedge \omega) = (d\tau) \wedge \omega + (-1)^{\deg \tau} \tau \wedge d\omega. \tag{4}$$

Proposition 1.3. $d^2 = 0$.

Definition 1.4. The q-th de Rham cohomology of \mathbb{R}^n is the vector space

$$H^q(\mathbb{R}^n) = \{\text{closed } q\text{-forms}\}/\{\text{exact } q\text{-forms}\},$$
 (5)

where closed means in the kernel of d and exact means in the image of d. We denote by $[\omega]$ the cohomology class of ω .

Remark. Only the constant functions are relevant for \mathbb{R}^n ,

$$H^*(\mathbb{R}^n) = \begin{cases} R & \text{in dimension 0,} \\ 0 & \text{otherwise.} \end{cases}$$
 (6)

Definition 1.5. A differential complex is a direct sum of Vector spaces $C = \bigoplus_{q \in \mathbb{Z}} C^q$ if there are homomorpisms

$$\ldots \longrightarrow C^{q-1} \stackrel{d}{\longrightarrow} C^i \stackrel{d}{\longrightarrow} C^{q+1} \longrightarrow \ldots$$

with $d^2 = 0$. The cohomology of C is given by $H(C) = \bigoplus_{q \in \mathbb{Z}} H^q(C)$, with

$$H^{q}(C) = (\ker d \cap C^{q})/(\operatorname{im} d \cap C^{q}). \tag{7}$$

A map $f: A \to B$ between two differential complexes is a chain map it it commutes with the differential operators of A and B, $fd_A = d_B f$. A sequence of vector spaces

$$\dots \longrightarrow V_{q-1} \xrightarrow{f_{i-1}} V_i \xrightarrow{f_i} V_{q+1} \longrightarrow \dots$$

is said to be exact if the image of f_{i-1} is the kernel of f_i . An exact sequence of the form

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

is called a short exact sequence. Note that f is injective and g surjective. If f, g are chain maps, there is a long exact sequence of cohomology groups

 f^* , g^* are the naturally induced maps and $d^*[c]$ is obtained through the commutative diagram

$$0 \longrightarrow A^{q+1} \stackrel{f}{\longrightarrow} B^{q+1} \stackrel{g}{\longrightarrow} C^{q+1} \longrightarrow 0$$

$$\downarrow d \qquad \downarrow 0$$

$$0 \longrightarrow A^{q} \stackrel{f}{\longrightarrow} B^{q} \stackrel{g}{\longrightarrow} C^{q} \longrightarrow 0$$

Since g is surjective there is $b \in B^q$ with g(b) = c. Because g(db) = d(gb) = dc = 0, there is $a \in A^{q+1}$ with db = f(a). Then $d^*[c] := [a]$. a is closed because f is injective. To see that the sequence is exact, note that if b is closed then f(a) = 0, and due to injectivity a = 0. On the other hand, f(a) is exact and therefore [f(a)] = 0.

Definition 1.6. $\Omega_c^*(\mathbb{R}^n)$ is the de Rham complex for functions of compact support, $H_c^*(\mathbb{R})$ is its cohomology.

Remark. Only the *n*-forms whose integrals are different from zero are relevant, since if it was zero then its antiderivative can have compact support,

$$H_c^*(\mathbb{R}^n) = \begin{cases} R & \text{in dimension n,} \\ 0 & \text{otherwise.} \end{cases}$$
 (8)

Definition 1.7. $f: \mathbb{R}^m \to \mathbb{R}^n$ induces a pullback on functions

$$f^*(g) = g \circ f. \tag{9}$$

On forms the pullback is defined as

$$f^*(\sum g_I dy_{i_1} \dots dy_{i_q}) = \sum (g_I \circ f) df_{i_1} \dots df_{i_q},$$
 (10)

with $f_i = y_i \circ f$ the i-th component of f, y_i the standard coordinates.

Proposition 1.8. f^* commutes with d.

Definition 1.9. Let $M = U \cup V$ with U, V open. Then we have the inclusions

$$M \leftarrow U \sqcup V \leftarrow U \cap V \tag{11}$$

where \sqcup is the disjoint union (each element has a label indicating wether it's from U or V). Using the inclusions as pushforwards we get

$$\Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V).$$
 (12)

The Mayer-Vietoris sequence is given by

$$0 \to \Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0, \quad (13)$$

with

$$\Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V); (\omega, \tau) \mapsto \tau - \omega.$$
 (14)

Proposition 1.10. The Mayer-Vietoris sequence is exact. This is achieved through partitions of unity ρ ,

$$(\rho_U \omega) - (-\rho_V \omega) = \omega. \tag{15}$$

Definition 1.11. The Mayer-Vietoris sequence induces a long exact sequence with the same name:

$$H^{q+1}(M) \xrightarrow{H^{q+1}(U) \oplus H^{q+1}(V)} \longrightarrow H^{q+1}(U \cap V)$$

$$\stackrel{d^*}{\longrightarrow} H^q(M) \longrightarrow H^q(U) \oplus H^q(V) \longrightarrow H^q(U \cap V)$$

Explicitly

$$d^*[\omega] = \begin{cases} [-d(\rho_V \omega)] & \text{on } U, \\ [d(\rho_U \omega)] & \text{on } V. \end{cases}$$
 (16)

Definition 1.12. If $j: U \to M$ is the inclusion of U in M, then let $j_*: \Omega_c^*(U) \to \Omega_c^*(M)$ the map which extends a form to M by zero. Because pullbacks of compact forms are in general not compact, we instead use the inclusions

$$\Omega_c^*(M) \leftarrow_{\text{sum}} \Omega_c^*(U) \oplus \Omega_c^*(V) \leftarrow_{\delta} \Omega_c^*(U \cap V)$$
$$\delta : \omega \mapsto (-j_*\omega, j_*\omega). \tag{17}$$

We then get the Mayer-Vietoris sequence

$$0 \leftarrow \Omega_c^*(M) \leftarrow \Omega_c^*(U) \oplus \Omega_c^*(V) \leftarrow \Omega_c^*(U \cap V) \leftarrow 0, \quad (18)$$

which induces

$$H_c^{q+1}(M) \longleftarrow H_c^{q+1}(U) \oplus H_c^{q+1}(V) \longleftarrow H_c^{q+1}(U \cap V)$$

$$H_c^q(M) \longleftarrow H_c^q(U) \oplus H_c^q(V) \longleftarrow H_c^q(U \cap V)$$

and we now instead get

$$d^*[\omega] = \begin{cases} [d(\rho_U \omega)] & \text{on } U, \\ [d(\rho_V \omega)] & \text{on } V. \end{cases}$$
 (19)

Proposition 1.13. The Mayer-Vietoris sequence of forms with compact support is exact.

Proposition 1.14. A manifold of dimension n is orientable iff it has a global nowhere vanishing n-form.

Definition 1.15. Let $\mathbb{H}^n = \{x_n \geq 0\} \subset \mathbb{R}^n$ with standard orientation $dx_1 \dots dx_n$. The induced orientation of $\partial \mathbb{H}^n = \{x_n = 0\}$ is given by the equivalence class of $(-1)^n dx_1 \dots dx_{n-1}$. For an orientation-preserving diffeomorphism ϕ we define for manifolds

$$[\partial M] = \phi^* [\partial \mathbb{H}^n]. \tag{20}$$

Remark. This definition is due to $\omega|_{\partial M} := i_{\hat{n}}\omega$ for the normal \hat{n} .

Theorem 1.16 (Stokes'). Let ω be an (n-1)-form with compact support on an oriented manifold M, then

$$\int_{M} d\omega = \int_{\partial M} \omega. \tag{21}$$