

Daily Tutorial Sheet 3

JEE Advanced (Archive)

30.(C) Transition energy (
$$\Delta E$$
) = $kZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = \frac{hc}{\lambda}$ i.e., $\Delta E \propto \frac{1}{\lambda}$

31.(C)
$$Cl(17)=1s^2 2s^2 2p^6 3s^2 3p^5$$

The last, unpaired electron has, n = 3, l = 1(p) and m can have any of the three value (-1, 0, +1)

32.(A)
$$\operatorname{Cr}(24) = \underbrace{1s^2 2s^2 2p^6 3s^2 3p^6}_{\Delta_r} 3d^5 4s^1$$

The above configuration is exception to Aufbau's principle.

33.(C) X-rays is electrically neutral, not deflected in electric or magnetic fields.

34. Orbital

35. (Orientation in space)

 $2p_x$, $2p_y$ and $2p_z$ have different orientation in space.

36.(True) Very large mass of alpha particles than beta particles is responsible for less deflection in former case.

37.
$$Cr = [Ar]3d^5, 4s^1$$

38.(C) Total number of nodes =
$$(n-1)$$

For 3p orbital, total nodes = 3-1=2

Number of radial nodes = n-l-1

For 3p orbital, radial nodes = 3-1-1=1

Number of angular nodes = 1

For 3p orbital number of angular nodes = 1

[For 3p orbital, n = 3, l = 1].

39.(D) Diffraction is property of wave, $E = mc^2$ determine energy of particle and E = hv determine energy of photon.

40.(B) Expression for orbital angular momentum (*L*) is
$$L = \sqrt{l(l+1)} \frac{h}{2\pi} = 0$$
 for 3s-electrons

 \therefore For s-orbital, l = 0

41.(D)
$$Mg^{2+} = 1s^2 2s^2 2p^6$$
 no unpaired electron

 $Ti^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$ one unpaired electron

 $V^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^2$ two unpaired electrons

 $Fe^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ four unpaired electrons

42.(A) The orbital angular momentum (L) =
$$\sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{6} \frac{h}{2\pi}$$
 ($l=2$ for d-orbital)

43.(B) Bohr first made use of quantum theory to explain the structure of atom and proposed that energy of electron in an atom is quantised.

44. (Heisenberg, de-Broglie)

Heisenberg proposed uncertainty principle and de-Broglie proposed wave nature of electron.

45.(ABC) (a)
$$Cr = [Ar] 3d^5 4s^1$$
, an exception to Aufbau principle.

- **(b)** For a given value of l, m can have any value from (-l to + l), so can have negative value.
- (c) Ag is in copper group with $d^{10}s^1$ configuration, i.e. 46 electrons are spin paired.