Logică și structuri discrete Multimi

Casandra Holotescu casandra@cs.upt.ro

https://tinyurl.com/lecturesLSD

Mulțimi – aspecte teoretice

Ce sunt multimile?

Multimea e un concept matematic fundamental.

Definiție informală:

O mulțime e o colecție de obiecte numite elementele mulțimii.

Ce sunt multimile?

Multimea e un concept matematic fundamental.

Definiție informală:

O *mulțime* e o *colecție* de obiecte numite *elementele* mulțimii.

Două noțiuni distincte: element și mulțime

 $x \in S$: elementul x aparține mulțimii S

 $x \notin S$: elementul x *nu aparține* mulțimii S

Important:

Ordinea elementelor nu contează $\{1,2,3\} = \{1,3,2\}$ Un element nu apare de mai multe ori $\{1,2,3,2\}$

Moduri de definire a unei mulțimi

1. Prin enumerarea elementelor:

 $A = \{a, b, c\}$, $D = \{1, 2, 3, 6\}$ = mulțimea divizorilor lui 6 Elementele multimii se scriu între acolade, separate prin virgulă.

Moduri de definire a unei mulțimi

1. Prin enumerarea elementelor:

$$A = \{a, b, c\}$$
, $D = \{1, 2, 3, 6\}$ = mulțimea divizorilor lui 6
Elementele mulțimii se scriu între acolade, separate prin virgulă.

2. Printr-o proprietate caracteristică

$$S = \{x \mid x \text{ are proprietatea } P(x)\}$$

$$D(n) = \{d \in \mathbb{N} \mid n \mod d = 0\}$$
 (mulțimea divizorilor lui n)

Moduri de definire a unei mulțimi

1. Prin enumerarea elementelor:

$$A=\{a,b,c\}, \quad D=\{1,2,3,6\}=$$
 mulțimea divizorilor lui 6
Elementele mulțimii se scriu între acolade, separate prin virgulă.

2. Printr-o *proprietate* caracteristică

$$S = \{x \mid x \text{ are proprietatea } P(x)\}$$

$$D(n) = \{d \in \mathbb{N} \mid n \mod d = 0\}$$
 (mulțimea divizorilor lui n)

3. Inductiv (vezi cursul 2)

A e o submulțime a lui B: $A \subseteq B$ dacă fiecare element al lui A e și un element al lui B.

A e o submulțime a lui B: $A \subseteq B$ dacă fiecare element al lui A e și un element al lui B.

A e o submulțime proprie a lui B: $A \subset B$ dacă $A \subseteq B$ și există (măcar) un element $x \in B$ astfel ca $x \notin A$.

A e o submulțime a lui B: $A \subseteq B$ dacă fiecare element al lui A e și un element al lui B.

A e o submulțime proprie a lui B: $A \subset B$ dacă $A \subseteq B$ și există (măcar) un element $x \in B$ astfel ca $x \notin A$.

Obs. Ca să demonstrăm $A \nsubseteq B$ e suficient să găsim un element $x \in A$ pentru care $x \notin B$.

(Pentru a arăta ca o afirmație e falsă, ajunge un contraexemplu).

A e o submulțime proprie a lui B: $A \subset B$ dacă $A \subseteq B$ și există (măcar) un element $x \in B$ astfel ca $x \notin A$.

Atenție! \in e o relație între un *element* și o mulțime.

⊆ și ⊂ sunt relații între *două mulțimi*.

A e o submulțime proprie a lui B: $A \subset B$ dacă $A \subseteq B$ și există (măcar) un element $x \in B$ astfel ca $x \notin A$.

Atenție! \in e o relație între un *element* și o mulțime. \subseteq și \subset sunt relații între *două mulțimi*.

Dacă $A \subseteq B$ și $B \subseteq A$, atunci A = B (mulțimile sunt egale)

A e o submulțime proprie a lui B: $A \subset B$ dacă $A \subseteq B$ și există (măcar) un element $x \in B$ astfel ca $x \notin A$.

Atenție! \in e o relație între un *element* și o mulțime.

 \subseteq și \subset sunt relații între *două mulțimi*.

Dacă $A \subseteq B$ și $B \subseteq A$, atunci A = B (mulțimile sunt egale) dacă A e definită prin proprietatea $P_A(x)$ și B prin $P_B(x)$ demonstrăm A = B arătând $A \subseteq B \colon P_A(x) \Rightarrow P_B(x)$ si

 $B \subseteq A$: $P_B(x) \Rightarrow P_A(x)$

Reuniunea a două mulțimi:

Reuniunea a două mulțimi:

$$A \cup B = \{x \mid x \in A \text{ sau } x \in B\}$$

Reuniunea a două mulțimi:

$$A \cup B = \{x \mid x \in A \text{ sau } x \in B\}$$

Intersecția a două mulțimi:

$$A \cap B = \{x \mid x \in A \text{ si } x \in B\}$$

Reuniunea a două mulțimi:

$$A \cup B = \{x \mid x \in A \text{ sau } x \in B\}$$

Intersecția a două mulțimi:

$$A \cap B = \{x \mid x \in A \text{ si } x \in B\}$$

Diferența a două mulțimi:

$$A \setminus B = \{x \mid x \in A \text{ si } x \notin B\}$$

Figurile: diagrame Venn

Uzual, discutăm într-un *context*: avem un *univers* (de discurs) *U* al **tuturor elementelor** la care ne-am putea referi.

Complementul unei mulțimi (față de universul
$$U$$
): $A^c = \{x \in U \mid x \notin A\} = U \setminus A \pmod{\overline{A}}$

Figurile: diagrame Venn

Generalizarea reuniunii și intersecției

Dacă A e o colecție de mulțimi, definim reuniunea a n mulțimi:

$$\bigcup_{A \in \mathcal{A}} A = \{ x \mid x \in A_i \text{ cu } A_i \in \mathcal{A} \}$$

$$\bigcup_{i=1}^{n} A_i = A_1 \cup \ldots \cup A_n \ (n \ \text{finit})$$

și reuniune infinită de mulțimi: $\bigcup A_i = A_0 \cup \ldots \cup A_n \cup \ldots$

Generalizarea reuniunii și intersecției

Dacă A e o colecție de mulțimi, definim reuniunea a n mulțimi:

$$\bigcup_{A\in\mathcal{A}}A=\{x\mid x\in A_i\text{ cu }A_i\in\mathcal{A}\}$$

$$\bigcup_{i=1}^{n} A_i = A_1 \cup \ldots \cup A_n \text{ (}n \text{ finit)}$$

și reuniune infinită de mulțimi: $\bigcup_{i\in\mathbb{N}}A_i=A_0\cup\ldots\cup A_n\cup\ldots$

Intersecția a n mulțimi:

$$\bigcap_{A\in\mathcal{A}}A=\{x\mid x\in A_i,\,\forall A_i\in\mathcal{A}\}$$

$$\bigcap_{i=1}^n A_i = A_1 \cap \ldots \cap A_n \ (n \ \text{finit})$$

și intersecție infinită de mulțimi: $\bigcap_{i\in\mathbb{N}}A_i=A_0\cap\ldots\cap A_n\cup\ldots$

Algebra Booleană a mulțimilor

Noțiune datorată matematicianului George Boole (sec. 19) Operațiile unei algebre Boolene (aici \cup și \cap) satisfac legile:

Comutativitate:
$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

Asociativitate:
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 și $(A \cap B) \cap C = A \cap (B \cap C)$

Distributivitate:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 și $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Identitate: există două valori (aici \emptyset și universul U) astfel ca:

$$A \cup \emptyset = A$$
 $A \cap U = A$

Complement: orice A are un complement A^c (sau \overline{A}) astfel ca:

$$A \cup A^c = U$$
 $A \cap A^c = \emptyset$

Algebra Booleană a mulțimilor (cont.)

Alte proprietăți (pot fi deduse din cele de mai sus):

Idempotență:
$$A \cup A = A$$
 $A \cap A = A$

Absorbţie:
$$A \cup (A \cap B) = A$$
 $A \cap (A \cup B) = A$

Dublu complement: $(A^c)^c = A$

Complementele elementelor identitate:
$$\emptyset^c = U$$
 $U^c = \emptyset$

Limită universală:
$$A \cup U = U$$
 $A \cap \emptyset = \emptyset$

Legile lui de Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
 $(A \cap B)^c = A^c \cup B^c$

Partiție a unei mulțimi

O *partiție* a unei mulțimi A e o **colecție de mulțimi** P_1, P_2, \ldots astfel încât:

- ▶ mulțimile $P_1, P_2, ...$ sunt **nevide** și **mutual disjuncte**, adică $P_i \cap P_j = \emptyset$, pentru orice $i \neq j$
- ▶ A e reuniunea tuturor mulțimilor P_i : $A = \bigcup_i P_i$

Cardinalul unei mulțimi

Cardinalul (cardinalitatea) unei mulțimi A e numărul de elemente al multimii. Îl notăm |A|.

Putem avea multimi finite sau infinite

Dacă A e o mulțime *finită* și P_1, \ldots, P_N o partiție a ei, atunci

$$|A|=|P_1|+\ldots+|P_n|$$

Cardinalul reuniunii / intersecției / diferenței

Legea reuniunii (pt. mulțimi finite):

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Legea diferenței (pt. mulțimi finite):

$$|A \setminus B| = |A| - |A \cap B|$$

Cardinalul reuniunii / intersecției / diferenței

Legea reuniunii (pt. mulțimi finite):

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Legea diferenței (pt. mulțimi finite):

$$|A \setminus B| = |A| - |A \cap B|$$

Putem demonstra considerând cele 2x2 cazuri posibile: $A \cap B$, $A \cap B^c$, $A^c \cap B$ și $A^c \cap B^c$ formează o *partiție* a universului $A = (A \cap B) \cup (A \cap B^c)$ (partiție) $\Rightarrow |A| = |A \cap B| + |A \cap B^c|$ La fel, $|B| = |A \cap B| + |A^c \cap B|$ și $|A \cup B| = |A \cap B| + |A \cap B^c| + |A^c \cap B|$ de unde, combinând, rezultă egalitătile de mai sus.

Principiul includerii și excluderii

pentru mulțimi finite

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Mai general,

$$|\bigcup_{i=1}^{n} A_{i}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}| + \ldots + (-1)^{n-1} |A_{1} \cap \ldots A_{n}|$$

Demonstrație: prin inducție după n

Tupluri

Un *n*-tuplu e un șir de *n* elemente $(x_1, x_2, ..., x_n)$

Proprietăți:

elementele nu sunt neapărat distincte ordinea elementelor în tuplu contează

Cazuri particulare:

```
pereche (a, b),
triplet (x, y, z), etc.
```

Produs cartezian

Produsul cartezian a două mulțimi e mulțimea perechilor
$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Exemplu: mulțimea numerelor complexe poate fi văzută ca produs cartezian $\mathbb{R} \times \mathbb{R}$ (putem găsi o *bijecție* între ele)

Produsul cartezian a
$$n$$
 mulțimi e mulțimea $n-$ tuplelor $A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in A_i, 1 \leq i \leq n\}$

Dacă mulțimile sunt finite, atunci

$$|A_1 \times A_2 \times \ldots \times A_n| = |A_1| \cdot \ldots \cdot |A_n|$$

Mulțimea submulțimilor

Mulțimea submulțimilor (engl. power set) a unei mulțimi S, notată $\mathcal{P}(S)$ (uneori 2^S):

$$\mathcal{P}(S) = \{X \mid X \subseteq S\}$$

Exemplu, pentru $S = \{a, b, c\}$, avem $\mathcal{P}(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

Mulțimea submulțimilor

Mulțimea submulțimilor (engl. power set) a unei mulțimi S, notată $\mathcal{P}(S)$ (uneori 2^S):

$$\mathcal{P}(S) = \{X \mid X \subseteq S\}$$

Exemplu, pentru $S = \{a, b, c\}$, avem $\mathcal{P}(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

Dacă S e finită, atunci $|\mathcal{P}(S)| = 2^{|S|}$

Există o bijecție între $\mathcal{P}(S)$ și mulțimea funcțiilor $f:S \to \{0,1\}$ dacă f(x)=1, x aparține submulțimii, altfel nu. numărul funcțiilor e $|\{0,1\}|^{|S|}=2^{|S|}$

Mulțimi – numărabile & nenumărabile

Mulțimi numărabile și nenumărabile

Informal: o mulțime e *numărabilă* dacă îi putem lista elementele \Leftrightarrow dacă putem asocia fiecărui element un număr (natural, diferit).

Mulțimi numărabile și nenumărabile

Informal: o mulțime e *numărabilă* dacă îi putem lista elementele \Leftrightarrow dacă putem asocia fiecărui element un număr (natural, diferit).

O mulțime S e *numărabilă* dacă are cardinalul egal cu cardinalul unei submulțimi a numerelor naturale (deci $|S| \leq |\mathbb{N}|$).

Mulțimi numărabile și nenumărabile

Informal: o mulțime e *numărabilă* dacă îi putem lista elementele ⇔ dacă putem asocia fiecărui element un număr (natural, diferit).

O mulțime S e *numărabilă* dacă are cardinalul egal cu cardinalul unei submulțimi a numerelor naturale (deci $|S| \leq |\mathbb{N}|$).

O mulțime S e *numărabilă* dacă există o funcție injectivă $f:S \to \mathbb{N}$ sau o funcție surjectivă $g:\mathbb{N} \to S$ și deci $|S| \le |\mathbb{N}|$

Mulțimi numărabile

Orice mulțime finită e numărabilă:

```
|A|=n \Rightarrow A=\{a_1,a_2,...a_n\} (indicii reprezintă corespondența cu \{1,2,...n\})
```

Mulțimi numărabile

Orice multime finită e numărabilă:

$$|A| = n \Rightarrow A = \{a_1, a_2, ...a_n\}$$

(indicii reprezintă corespondența cu $\{1, 2, ...n\}$)

Dar nu orice mulțime numărabilă e finită

 $\mathbb N$ e numărabilă: în definiție, luăm f funcția identitate

$$\mathbb Z$$
 e numărabilă: putem enumera: $0,-1,1,-2,2,...$ $f(x)=2x$, pentru $x\geq 0$, $f(x)=-2x-1$ pentru $x<0$

Mulțimi numărabile

Orice multime finită e numărabilă:

$$|A| = n \Rightarrow A = \{a_1, a_2, ... a_n\}$$
 (indicii reprezintă corespondența cu $\{1, 2, ... n\}$)

Dar nu orice multime numărabilă e finită

 $\mathbb N$ e numărabilă: în definiție, luăm f funcția identitate

$$\mathbb{Z}$$
 e numărabilă: putem enumera: $0,-1,1,-2,2,...$ $f(x)=2x$, pentru $x\geq 0$, $f(x)=-2x-1$ pentru $x<0$

Definiție echivalentă: S e numărabilă dacă e fie finită, fie există o bijecție între S și \mathbb{N} (e infinit numărabilă, $|S| = |\mathbb{N}|$).

Numerele raționale sunt numărabile

```
1/1 1/2 1/3 1/4 ... 2/1 2/2 2/3 2/4 ... 3/1 3/2 3/3 3/4 ... ...
```

NU putem număra elementele pe linii: deja prima linie e infinită, nu ajungem niciodată la a doua!

Enumerăm pe diagonale (după valoare crescătoare a lui m+n, numărător + numitor): 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, ...

⇒ fiecare element va fi numărat

Numerele raționale sunt numărabile

```
1/1 1/2 1/3 1/4 ... 2/1 2/2 2/3 2/4 ... 3/1 3/2 3/3 3/4 ... ...
```

NU putem număra elementele pe linii: deja prima linie e *infinită*, nu ajungem niciodată la a doua!

Enumerăm pe diagonale

```
(după valoare crescătoare a lui m+n, numărător + numitor): 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, . . .
```

⇒ fiecare element va fi numărat

Tehnică generală:

asociem fiecărui element o $m ilde{a} rime$: aici m+n; lungimea la șiruri; etc așa încât cu fiecare mărime să avem un număr finit de elemente numărăm după mărime crescătoare \Rightarrow ajungem la fiecare element

Construcții cu mulțimi numărabile

O mulțime e numărabilă dacă putem $\it enumera$ elementele într-un șir:

Un șir e o funcție de la $\mathbb N$ la mulțimea elementelor șirului (sau de la $\{1,\,2,\,\dots\,n\}$ la elementele șirului, pentru un șir finit)

Construcții cu mulțimi numărabile

O mulțime e numărabilă dacă putem enumera elementele într-un șir:

Un șir e o funcție de la $\mathbb N$ la mulțimea elementelor șirului (sau de la $\{1,\,2,\,\dots\,n\}$ la elementele șirului, pentru un șir finit)

Reuniunea a două mulțimi numărabile e numărabilă.

Enumerăm alternativ mulțimile (similar cu cazul lui \mathbb{Z}):

$$A = \{a_1, a_2, \dots, a_n, \dots\},$$

$$B = \{b_1, b_2, \dots, b_n, \dots\}$$
 (le putem enumera)
$$\Rightarrow \text{ formăm sirul } a_1, b_1, a_2, b_2, \dots, a_n, b_n, \dots$$
 (putem avea duplicate, oricum am enumerat toate elementele)

Prin inducție, reuniunea a *n* mulțimi *numărabile* e *numărabilă*.

Construcții cu mulțimi numărabile

Produsul cartezian $A \times B$ a două mulțimi numărabile e numărabil

Folosim aceeași construcție ca la numerele raționale:

$$(a_1, b_1)$$
 (a_1, b_2) (a_1, b_3) (a_1, b_4) ...
 (a_2, b_1) (a_2, b_2) (a_2, b_3) (a_2, b_4) ...
 (a_3, b_1) (a_3, b_2) (a_3, b_3) (a_3, b_4) ...

enumerăm perechile în ordine crescătoare a sumei indicilor: $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_1, b_3), (a_2, b_2), (a_3, b_1), \ldots\}$

Prin inducție, produsul cartezian a *n* mulțimi *numărabile* e *numărabil*.

Realii sunt nenumărabili

Construcția diagonală a lui Cantor:

Reprezentăm numerele subunitare în baza 2: cifrele sunt 0 și 1 $0.01101...=0+0\cdot 2^{-1}+1\cdot 2^{-2}+1\cdot 2^{-3}+1\cdot 2^{-4}+1\cdot 2^{-5}+\ldots$

Presupunem prin absurd că realii din [0, 1) ar fi numărabili \Rightarrow enumerăm realii subunitari pe rânduri, după numărul de ordine

```
r_1 = 0. d_{11} d_{12} d_{13} ... 0.1011101... r_2 = 0. d_{21} d_{22} d_{23} ... 0.0110010... r_3 = 0. d_{31} d_{32} d_{33} ... 0.1101101...
```

Realii sunt nenumărabili

Construcția diagonală a lui Cantor:

Reprezentăm numerele subunitare în baza 2: cifrele sunt 0 și 1 $0.01101...=0+0\cdot 2^{-1}+1\cdot 2^{-2}+1\cdot 2^{-3}+1\cdot 2^{-4}+1\cdot 2^{-5}+\ldots$

Presupunem prin absurd că realii din [0, 1) ar fi numărabili \Rightarrow enumerăm realii subunitari pe rânduri, după numărul de ordine

$$r_1 = 0.$$
 d_{11} d_{12} d_{13} ... $0.1011101...$ $r_2 = 0.$ d_{21} d_{22} d_{23} ... $0.0110010...$ $r_3 = 0.$ d_{31} d_{32} d_{33} ... $0.1101101...$

Construim un număr real $\mathbf{x}=0.d_1d_2d_3\ldots$ cu următoarele cifre: $d_i=1-d_{ii}$ (urmărind diagonala matricii, schimbăm $0\leftrightarrow 1$) Dar \mathbf{x} diferă de toate numerele din tabel (diferă de r_i la poziția i)!

 \Rightarrow [0,1) nenumărabilă; $[0,1)\subset\mathbb{R}$ deci \mathbb{R} e nenumărabilă !

Limitele calculabilității

Mulțimea programelor care pot fi scrise e numărabilă:

alfabetul Σ al unui limbaj de programare e finit programele au lungime finită (1, 2, 3, ... simboluri)

 $\Sigma \cup \Sigma^2 \cup \Sigma^3 \cup ...$ e o reuniune numărabilă de mulțimi numărabile (chiar finite) \Rightarrow e numărabilă

Limitele calculabilității

Mulțimea programelor care pot fi scrise e numărabilă:

alfabetul Σ al unui limbaj de programare e finit programele au lungime finită (1, 2, 3, ... simboluri)

 $\Sigma \cup \Sigma^2 \cup \Sigma^3 \cup ...$ e o reuniune numărabilă de mulțimi numărabile (chiar finite) \Rightarrow e numărabilă

Putem *calcula* orice număr real? în sensul de a scrie un program, care îl tipărește, cifră cu cifră, eventual rulând la infinit.

Limitele calculabilității

Mulțimea programelor care pot fi scrise e numărabilă:

alfabetul Σ al unui limbaj de programare e finit programele au lungime finită (1, 2, 3, ... simboluri)

 $\Sigma \cup \Sigma^2 \cup \Sigma^3 \cup ...$ e o reuniune numărabilă de mulțimi numărabile (chiar finite) \Rightarrow e numărabilă

Putem *calcula* orice număr real? în sensul de a scrie un program, care îl tipărește, cifră cu cifră, eventual rulând la infinit.

NU, pentru că programele sunt numărabile, dar \mathbb{R} e *nenumărabilă*! \Rightarrow se pot formula mai multe probleme decât pot fi rezolvate!

Teorema lui Cantor: Pentru orice mulțime S, $|S| < |\mathcal{P}(S)|$. sau, echivalent: Nu există bijecție de la S la $\mathcal{P}(S)$.

Teorema lui Cantor: Pentru orice mulțime S, |S| < |P(S)|.

sau, echivalent: Nu există bijecție de la S la $\mathcal{P}(S)$.

Să presupunem că ar exista o bijecție $f:S o \mathcal{P}(S).$

Formăm mulțimea:

$$Y = \{x \in S \mid x \not\in f(x)\}$$

Cum $Y \in \mathcal{P}(S)$, și f e bijecție, există $y \in S$ cu f(y) = Y.

Teorema lui Cantor: Pentru orice mulțime S, |S| < |P(S)|.

sau, echivalent: Nu există bijecție de la S la $\mathcal{P}(S)$.

Să presupunem că ar exista o bijecție $f: S \to \mathcal{P}(S)$. Formăm multimea:

$$Y = \{x \in S \mid x \not\in f(x)\}$$

Cum $Y \in \mathcal{P}(S)$, și f e bijecție, există $y \in S$ cu f(y) = Y.

Dacă $y \in Y$, cum Y = f(y) atunci $y \in f(y)$, și nu respectă condiția de construcție a lui Y, deci $y \notin Y \Rightarrow$ contradicție.

Dacă $y \notin Y$, atunci $y \notin f(y)$ și satisface condiția pentru Y, deci $y \in Y \Rightarrow$ contradicție.

Teorema lui Cantor: Pentru orice mulțime S, |S| < |P(S)|.

sau, echivalent: Nu există bijecție de la S la $\mathcal{P}(S)$.

Să presupunem că ar exista o bijecție $f: S \to \mathcal{P}(S)$.

Formăm mulțimea:

$$Y = \{x \in S \mid x \notin f(x)\}$$

Cum $Y \in \mathcal{P}(S)$, și f e bijecție, există $y \in S$ cu f(y) = Y.

Dacă $y \in Y$, cum Y = f(y) atunci $y \in f(y)$, și nu respectă condiția de construcție a lui Y, deci $y \notin Y \Rightarrow$ contradicție.

Dacă $y \notin Y$, atunci $y \notin f(y)$ și satisface condiția pentru Y, deci $y \in Y \Rightarrow$ contradicție.

Deci presupunerea e falsă, nu poate exista o bijecție.

$$\Rightarrow |S| < |\mathcal{P}(S)|$$

Există oricâte infinituri

```
\begin{split} |\mathbb{N}| < |\mathcal{P}(\mathbb{N})| \quad & (\text{deci } \mathcal{P}(\mathbb{N}) \text{ nu este numărabilă}) \\ |\mathbb{N}|, \, |\mathcal{P}(\mathbb{N})|, \, |\mathcal{P}(\mathcal{P}(\mathbb{N}))|, \, \dots \text{sunt cardinalități infinite tot mai mari!} \end{split}
```

Există oricâte infinituri

$$\begin{split} |\mathbb{N}| < |\mathcal{P}(\mathbb{N})| \quad & (\text{deci } \mathcal{P}(\mathbb{N}) \text{ nu este numărabilă}) \\ |\mathbb{N}|, \, |\mathcal{P}(\mathbb{N})|, \, |\mathcal{P}(\mathcal{P}(\mathbb{N}))|, \, \dots \text{sunt cardinalități infinite tot mai mari!} \end{split}$$

Există o bijecție între $\mathcal{P}(S)$ și mulțimea funcțiilor $f:S \to \{0,1\}$, iar numărul funcțiilor e $|\{0,1\}|^{|S|}=2^{|S|}$

$$\Rightarrow |\mathcal{P}(\mathbb{N})| = 2^{|\mathbb{N}|}$$

Există oricâte infinituri

```
\begin{split} |\mathbb{N}| < |\mathcal{P}(\mathbb{N})| &\quad \text{(deci $\mathcal{P}(\mathbb{N})$ nu este numărabilă)} \\ |\mathbb{N}|, \, |\mathcal{P}(\mathbb{N})|, \, |\mathcal{P}(\mathcal{P}(\mathbb{N}))|, \, \dots \text{sunt cardinalități infinite tot mai mari!} \end{split}
```

Există o bijecție între $\mathcal{P}(S)$ și mulțimea funcțiilor $f:S \to \{0,1\}$, iar numărul funcțiilor e $|\{0,1\}|^{|S|}=2^{|S|}$

$$\Rightarrow |\mathcal{P}(\mathbb{N})| = 2^{|\mathbb{N}|}$$

$$|\mathbb{N}|=leph_0$$
 ("aleph-zero" sau "aleph-null") $leph_0$ – cel mai mic cardinal infinit

$$|\mathcal{P}(\mathbb{N})| = 2^{|\mathbb{N}|} = 2^{\aleph_0} > \aleph_0$$

 $|\mathcal{P}(\mathcal{P}(\mathbb{N}))| = 2^{|\mathcal{P}(\mathbb{N})|} = 2^{2^{\aleph_0}} > 2^{\aleph_0}$

. . .

Este demonstrat și că $|\mathbb{R}|=2^{\aleph_0}$

Mulțimi în ML

Funcția caracteristică: mulțimi și funcții boolene

Dacă fixăm universul U al elementelor, putem reprezenta orice mulțime $S\subseteq U$ prin funcția caracteristică

$$f_S:U o \mathbb{B}$$
: $f_S(x)=true\ \mathsf{daca}\ x\in S,\quad \text{si } \textit{false}\ \mathsf{altfel}\ (\mathsf{daca}\ x
ot\in S)$

Un limbaj funcțional poate reprezenta date (mulțimi) prin funcții

Funcția caracteristică: mulțimi și funcții boolene

Dacă fixăm universul U al elementelor, putem reprezenta orice mulțime $S\subseteq U$ prin funcția caracteristică

```
f_S:U	o \mathbb{B}:

f_S(x)=true\ \mathsf{daca}\ x\in S,\quad \text{si } \textit{false}\ \mathsf{altfel}\ (\mathsf{daca}\ x
ot\in S)
```

Un limbaj funcțional poate reprezenta date (mulțimi) prin funcții

Pornim de la mulțimea cu un singur element, a

```
let singleton a = fun x -> x = a (*adev. doar pt. a *)
singleton a are tipul 'a -> bool: mulțimea e o funcție
testul de element e aplicarea funcției la element: m x
let empty = fun _ -> false (*functie constanta *)
```

Funcția caracteristică. Operațiile pe mulțimi

```
let singleton a = fun x -> x = a
multimea e o funcție
testul de element e aplicarea funcției la element: m x
let empty = fun _ -> false
```

Funcția caracteristică. Operațiile pe mulțimi

```
let singleton a = fun x -> x = a
multimea e o funcție
testul de element e aplicarea funcției la element: m x
let empty = fun _ -> false
```

Operațiile pe mulțimi corespund direct la operatorii booleni

```
let add a m = fun x -> x = a || m x (*adauga elem *)
let union m1 m2 = fun x -> m1 x || m2 x
let inter m1 m2 = fun x -> m1 x && m2 x
let diff m1 m2 = fun x -> m1 x && not (m2 x)
```

Mulțimi în ML: modulul Set

```
Nu există sintaxă specială { 1, 2 } { "ana", "bob", "cora" }
Întâi instanțiem un modul pentru lucru cu mulțimi (ex. de șiruri)
module S = Set.Make(String)
(* String: un modul standard *)
(* S are tipuri + functii standard, particularizate pt siruri
  val mem : elt -> t -> bool
             elt = tip element: string
  val cardinal : t -> int
                  t = tip multime de string
  val elements : t -> elt list
  si multe alte functii *)
```

Mulțimi în ML: modulul Set

```
let s0 = S.add "cora" (S.add "bob" (S.add "ana" S.empty))
let s1 = S.singleton "ana" |> S.add "bob" |> S.add "cora"
let s2 = S.of_list ["ana"; "are"; "mere"]
(*creeaza multime din lista*)
```

 $x \mid > f$ înseamnă f x (util la compunere fără paranteze)

Funcțiile pe mulțimi creează mulțimi noi, nu modifică argumentele!

Mulțimi în ML: modulul Set

OCaml necesită o funcție de *comparare* pe elementele unei mulțimi. ⇒ trebuie un *modul* definind tipul element și funcția de comparare

```
(* trebuie definit un modul pentru intregi *)
module Int = struct
  type t = int
  let compare = compare
   (*Pervasives.compare, bun pt.orice tip*)
end
(* Char, String: similare, dar predefinite *)
module IS = Set.Make(Int)
(* IS: un modul Set particularizat pt Int *)
```

Parcurgerea mulțimilor

```
Mulțimile nu au un element special (cum e capul listei)
pentru obținerea unui element oarecare există
choose : t → elt
⇒ e important să folosim functiile de parcurgere
```

```
val iter : (elt -> unit) -> t -> unit
val filter : (elt -> bool) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
```

Ordinea parametrilor la fold e ca la List.fold_right:
f (elem, rez-partial) multime val-init-rez

Parcurgerea mulțimilor

Putem defini de exemplu union folosind fold

```
let union s1 s2 = S.fold (fun e s -> S.add e s) s1 s2
(* parcurge s1, adauga fiecare element, val.init. e s2 *)
let union = S.fold S.add
(* f x y = g x y => f = g *)
```

Funcțiile pe mulțimi *creează mulțimi noi*, nu modifică argumentele! (la fel ca toate funcțiile studiate)

Mulțimi: formalizare și paradoxuri

Mulțimile, fundament al matematicii

Georg Cantor (1874): teoria naivă a mulțimilor

Practic toată matematica poate fi formalizată în teoria mulțimilor (sau în logică, de care e strâns legată, după cum vom vedea).

Mulțimile, fundament al matematicii

Georg Cantor (1874): teoria naivă a mulțimilor

Practic toată matematica poate fi formalizată în teoria mulțimilor (sau în logică, de care e strâns legată, după cum vom vedea).

Exemplu: o pereche (ordonată!) poate fi definită ca: $(a,b) = \{\{a\}, \{a,b\}\}$ (Kazimierz Kuratowski, 1921)

Multimile, fundament al matematicii

Georg Cantor (1874): teoria naivă a multimilor

Practic toată matematica poate fi formalizată în teoria multimilor (sau în logică, de care e strâns legată, după cum vom vedea).

Exemplu: o *pereche* (ordonată!) poate fi definită ca: $(a,b) = \{\{a\}, \{a,b\}\}\$ (Kazimierz Kuratowski, 1921)

Numerele naturale au fost formalizate de Giuseppe Peano (1889): 0 e un număr natural dacă n e un număr natural, S(n) e un număr natural (funcția succesor S e injectivă, și $S(n) \neq 0$ pentru orice n)

Putem defini folosind multimi: $0 \stackrel{def}{=} \emptyset$ $S(n) \stackrel{def}{=} n \cup \{n\}$

Mulțimile, fundament al matematicii

Georg Cantor (1874): teoria naivă a mulțimilor

Practic toată matematica poate fi formalizată în teoria mulțimilor (sau în logică, de care e strâns legată, după cum vom vedea).

Exemplu: o pereche (ordonată!) poate fi definită ca: $(a,b) = \{\{a\},\{a,b\}\}$ (Kazimierz Kuratowski, 1921)

Numerele naturale au fost formalizate de Giuseppe Peano (1889): 0 e un număr natural dacă n e un număr natural, S(n) e un număr natural (funcția succesor S e injectivă, și $S(n) \neq 0$ pentru orice n) Putem defini folosind multimi: $0 \stackrel{def}{=} \emptyset \quad S(n) \stackrel{def}{=} n \cup \{n\}$

Însă, pornind de la definiții *imprecise*, în limbaj natural, în teoria naivă a mulțimilor apar *paradoxuri*.

Paradoxul lui Russell

Fie R mulțimea tuturor mulțimilor care nu se conțin pe ele însele: $R = \{X \mid X \not\in X\}$. Mulțimea R se conține pe ea însăși? dacă $R \in R$, pentru a satisface condiția de definiție, $R \not\in R$. dacă $R \not\in R$, atunci R satisface conditia, deci $R \in R$: paradox!

O formulare intuitivă (paradoxul bărbierului):

Bărbierul bărbierește exact oamenii care nu se bărbieresc singuri. Bărbierul se bărbierește pe el însuși sau nu ?

Paradoxul lui Russell

Fie R mulțimea tuturor mulțimilor care nu se conțin pe ele însele: $R = \{X \mid X \not\in X\}$. Mulțimea R se conține pe ea însăși? dacă $R \in R$, pentru a satisface condiția de definiție, $R \not\in R$. dacă $R \not\in R$, atunci R satisface condiția, deci $R \in R$: paradox!

O formulare intuitivă (paradoxul bărbierului):

Bărbierul bărbierește exact oamenii care nu se bărbieresc singuri. Bărbierul se bărbierește pe el însuși sau nu ?

Motivul: în teoria naivă a mulțimilor, orice proprietate (predicat) P(x) poate defini o mulțime:

 $\exists y \forall x (x \in y \Leftrightarrow P(x))$ $x \in \text{in } y \text{ dacă și numai dacă } P(x)$

Căutăm să obținem o echivalență între o propoziție și negația ei: alegem $P(x): x \not\in x$ și luăm x=y (în $\forall x...$ putem alege orice x). Obținem $y \in y \Leftrightarrow y \not\in y$, paradox.

Paradoxul lui Russell (cont.)

Poate fi *evitat* în mai multe feluri, impunând *restricții* asupra modului în care se poate defini o mulțime.

de ex.: Nu putem defini o mulțime doar printr-o proprietate P(x), trebuie să *specificăm universul* din care își poate lua elementele:

$$R = \{X \mid X \subseteq U \text{ si } X \notin X\}$$

Dacă presupunem $R \in R$, din proprietatea care definește mulțimea, rezultă $R \not\in R$

(nu e un paradox, înseamnă doar că presupunerea a fost falsă).

Dacă $R \notin R$, rezultă doar că nu putem avea $R \subseteq U$ și $R \notin R$.

Rezultă că $\neg(R \subseteq U)$, deci R nu e o mulțime (valid definită) în universul considerat.

Teoria axiomatică a multimilor

O *axiomă* e o propoziție presupusă adevărată.

E un punct de plecare pentru un raționament.

Sistemele axiomatice au fost dezvoltate pentru a evita paradoxurile din teoria naivă a mulțimilor (cu noțiuni definite în limbaj natural)

Teoria axiomatică a mulțimilor

O axiomă e o propoziție presupusă adevărată.

E un punct de plecare pentru un raționament.

Sistemele axiomatice au fost dezvoltate pentru a evita paradoxurile din teoria naivă a mulțimilor (cu noțiuni definite în limbaj natural) Cel mai răspândit: sistemul Zermelo-Fraenkel (1907..1930).

Câteva axiome:

Axioma extensionalitătii:

Două mulțimi sunt egale dacă și numai dacă au aceleași elemente (dacă fiecare element al lui A e și un element al lui B, și reciproc)

$$\forall A \forall B (A = B \Leftrightarrow \forall C (C \in A \Leftrightarrow C \in B))$$

Axioma mulțimii vide (existență):

Există o mulțime care nu are niciun element

$$\exists E \forall X \neg (X \in E)$$

. . .

Axiome ale teoriei mulțimilor (cont.)

Axioma regularității (a fundației)

Orice multime nevidă are un element $x \in A$ disjunct de ea: $x \cap A = \emptyset$ $\forall X(X \neq \emptyset) \Rightarrow \exists Y(Y \in X \land \neg \exists Z(Z \in X \land Z \in Y))$

Axiome ale teoriei mulțimilor (cont.)

Axioma regularității (a fundației)

Orice mulțime nevidă are un element $x \in A$ disjunct de ea: $x \cap A = \emptyset$ $\forall X(X \neq \emptyset) \Rightarrow \exists Y(Y \in X \land \neg \exists Z(Z \in X \land Z \in Y))$

Rezultă că nu există un șir infinit $A_0,A_1,\ldots A_n\ldots$ astfel încăt $A_0\ni A_1\ni\ldots\ni A_n\ni\ldots$

(altfel $\{A_0, A_1, \ldots\}$ ar fi o astfel de mulțime)

Rezultă că nicio mulțime nu se poate avea ca element, $X \notin X$, altfel $X \ni X \ni X...$ ar fi un astfel de șir

Axiome ale teoriei mulțimilor (cont.)

Axioma regularității (a fundației)

Orice multime nevidă are un element $x \in A$ disjunct de ea: $x \cap A = \emptyset$ $\forall X(X \neq \emptyset) \Rightarrow \exists Y(Y \in X \land \neg \exists Z(Z \in X \land Z \in Y))$

Rezultă că nu există un șir infinit $A_0,A_1,\ldots A_n\ldots$ astfel încăt $A_0\ni A_1\ni\ldots\ni A_n\ni\ldots$

(altfel $\{A_0, A_1, \ldots\}$ ar fi o astfel de mulțime)

Rezultă că nicio mulțime nu se poate avea ca element, $X \notin X$, altfel $X \ni X \ni X...$ ar fi un astfel de șir

Intuitiv: orice mulțime e formată din elemente (posibil mulțimi) mai simple, care la rândul lor conțin elemente mai simple, până ajungem la elemente fundamentale

⇒ elimină paradoxul lui Russell