1 Simple Bias-Variance Tradeoff

Consider a random variable X, which has unknown mean μ and unknown variance σ^2 . Given n i.i.d. realizations of training points $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$ from the random variable, we wish to estimate the mean of X. We will call our estimate of X the random variable \hat{X} , which has mean $\hat{\mu}$. There are a few ways we can estimate μ given the realizations of the n samples:

- 1. Average the *n* sample points: $\frac{x_1 + x_2 + \ldots + x_n}{n}$.
- 2. Average the *n* sample points and one sample point of 0: $\frac{x_1 + x_2 + \ldots + x_n}{n+1}$.
- 3. Average the *n* sample points and n_0 sample points of 0: $\frac{x_1 + x_2 + \ldots + x_n}{n + n_0}$.
- 4. Ignore the sample points: just return 0.

In the parts of this question, we will measure the *bias* and *variance* of each of our estimators. The *bias* is defined to be

$$E[\hat{X} - \mu]$$

and the variance is defined to be

$$Var[\hat{X}].$$

- (a) What is the bias of each of the four estimators above?
- (b) What is the variance of each of the four estimators above?
- (c) Suppose we have constructed an estimator \hat{X} from some samples of X. We now want to know how well \hat{X} estimates a fresh (new) sample of X. Denote this fresh sample by X'. Note that X' is an i.i.d. copy of the random variable X.
 - Derive a general expression for the expected squared error $E[(\hat{X} X')^2]$ in terms of σ^2 and the bias and variance of the estimator \hat{X} . Similarly, derive an expression for the expected squared error $E[(\hat{X} \mu)^2]$. Compare the two expressions and comment on the differences between them, if any.
- (d) For the following parts, we will refer to expected total error as $E[(\hat{X} \mu)^2]$. It is a common mistake to assume that an unbiased estimator is always "best." Let's explore this a bit further. Compute the expected squared error for each of the estimators above.

- (e) Demonstrate that the four estimators are each just special cases of the third estimator, but with different instantiations of the hyperparameter n_0 .
- (f) What happens to bias as n_0 increases? What happens to variance as n_0 increases?
- (g) Say that $n_0 = \alpha n$. Find the setting for α that would minimize the expected total error, assuming you secretly knew μ and σ . Your answer will depend on σ , μ , and n.
- (h) For this part, let's assume that we had some reason to believe that μ should be small (close to 0) and σ should be large. In this case, what happens to the expression in the previous part?
- (i) In the previous part, we assumed there was reason to believe that μ should be small. Now let's assume that we have reason to believe that μ is not necessarily small, but should be close to some fixed value μ_0 .
 - In terms of X and μ_0 , how can we define a new random variable X' such that X' is expected to have a small mean? Compute the mean and variance of this new random variable.
- (j) Draw a connection between α in this problem and the regularization parameter λ in the ridge-regression version of least-squares.
 - What does this problem suggest about choosing a regularization coefficient and handling our data-sets so that regularization is most effective? This is an open-ended question, so do not get too hung up on it.

2 The Ridge Regression Estimator

Recall the ridge regression estimator for $\lambda > 0$,

$$\widehat{\theta}_{\lambda} := \arg \min_{\theta} ||X\theta - y||_2^2 + \lambda ||\theta||_2^2.$$

Let

$$X = UDV^{\top} = \sum_{i} d_{i} u_{i} v_{i}^{\top}$$

be the singular value decomposition of X. Here U and V are orthogonal matrices, meaning that $U^{\mathsf{T}}U = I$ and $V^{\mathsf{T}}V = I$. D is a diagonal matrix.

(a) Show that the optimal weight vector $\widehat{\theta}_{\lambda}$ can be expressed in the form

$$\widehat{\theta}_{\lambda} = V \Sigma U^{\mathsf{T}} y$$

where Σ is a diagonal matrix with $\Sigma_{ii} = \frac{d_i}{d_i^2 + \lambda}$. Equivalently, we can write $\widehat{\theta}_{\lambda}$ as

$$\widehat{\theta}_{\lambda} = \sum_{i=1}^{d} \frac{d_i}{d_i^2 + \lambda} v_i \langle u_i, y \rangle.$$

(b) Show that

$$\|\widehat{\theta}_{\lambda}\|_{2}^{2} = \sum_{i:d>0} \left(\frac{d_{i}}{d_{i}^{2} + \lambda}\right)^{2} (u_{i}^{\mathsf{T}} y)^{2}.$$

- (c) Recall the least-norm least-squares solution is $\widehat{\theta}_{LN,LS}$ from Discussion Section 6. Show that if $\widehat{\theta}_{LN,LS} = 0$, then $\widehat{\theta}_{\lambda} = 0$ for all $\lambda > 0$. *Hint*: Recall that in Discussion 6 we showed that $\widehat{\theta}_{LN,LS} = \sum_{i:d_i>0} d_i^{-1} \langle u_i, y \rangle v_i$. This shows that in the case where the least-norm least square solution is zero, the ridge regression solution is also zero.
- (d) Show that if $\widehat{\theta}_{LN,LS} \neq 0$, then the function $f(\lambda) = ||\widehat{\theta}_{\lambda}||_2^2$ is strictly decreasing and strictly positive on $(0, +\infty)$.
- (e) Show that

$$\lim_{\lambda \to 0^+} \widehat{\theta}_{\lambda} \to \widehat{\theta}_{LN,LS}.$$

Note that just because the limit of the ridge-regression objective as $\lambda \to 0^+$ is the least-squares objective, this does not immediately guarantee that the limit of the ridge solution is the least-squares solution.

(f) In light of the above, why do you think that people describe the ridge regression as "controlling the complexity" of the solution $\widehat{\theta}_{\lambda}$?

3 The Bias-Variance Tradeoff for Ridge Regression

Recall the statistical model for ridge regression from lecture. We have a set of sample points $\{x_i, y_i\}_{i=1}^n$ and Gaussian noise z_i . Our model follows, where the rows of X are x_i .

$$Y = Xw^* + z$$

Throughout this problem, you may assume X^TX is invertible. Recall both least-squares estimators we studied.

$$w_{\text{ols}} = \min_{w \in \mathbb{R}^d} ||Xw - y||_2^2$$

$$w_{\text{ridge}} = \min_{w \in \mathbb{R}^d} ||Xw - y||_2^2 + \lambda ||w||_2^2$$

- (a) Write the solution for w_{ols} , w_{ridge} . No need to derive it.
- (b) Let $\widehat{w} \in \mathbb{R}^d$ denote any estimator of w_* . In the context of this problem, an estimator $\widehat{w} = \widehat{w}(X, Y)$ is any function which takes the data X and a realization of Y, and computes a guess of w_* .

Define the MSE (mean squared error) of the estimator \widehat{w} as

$$MSE(\widehat{w}) := E \|\widehat{w} - w_*\|_2^2.$$

Above, the expectation is taken with respect to the randomness inherent in z. Define $\widehat{\mu} := E\widehat{w}$. Show that the MSE decomposes as

$$MSE(\widehat{w}) = \left\| \widehat{\mu} - w_* \right\|_2^2 + Tr(Cov(\widehat{w})).$$

Hint: Expectation and trace commute, so E[Tr(A)] = Tr(E[A]) for any square matrix A.

(c) Show that

$$E[w_{\text{ols}}] = w_*, \qquad E[w_{\text{ridge}}] = (X^T X + \lambda I_d)^{-1} X^T X w_*.$$

That is, w_{ols} is an *unbiased* estimator of w_* , whereas w_{ridge} is a *biased* estimator of w_* .

(d) Let $\gamma_1 \ge \gamma_2 \ge ... \ge \gamma_d$ denote the *d* eigenvalues of the matrix X^TX arranged in non-increasing order. First, argue that the smallest eigenvalue, γ_d , is positive (i.e. $\gamma_d > 0$). Then, show that

$$\operatorname{Tr}(\operatorname{Cov}(w_{\operatorname{ols}})) = \sigma^2 \sum_{i=1}^d \frac{1}{\gamma_i}, \qquad \operatorname{Tr}(\operatorname{Cov}(w_{\operatorname{ridge}})) = \sigma^2 \sum_{i=1}^d \frac{\gamma_i}{(\gamma_i + \lambda)^2} \; .$$

Finally, use these formulas to conclude that

$$Tr(Cov(w_{ridge})) < Tr(Cov(w_{ols}))$$
.

Hint: For the ridge variance, consider writing X^TX in terms of its eigendecomposition $U\Sigma U^T$.