חלוקה הוגנת עם שיתוף מינימלי Fair Division with Minimal Sharing

אראל סגל-הלוי

?איך "חותכים" חפץ בדיד

החפץ שצריך "לחתוך" נשאר בבעלות **משותפת**. לא קל, אבל בדרך-כלל אפשרי:

- ילדים משמורת משותפת;
- **דירת מגורים** השכרה וחלוקת הרווחים;
- דירת נופש, רכב שימוש בזמנים שונים;
 - : משרדי ממשלה רוטציה או פיצול
 - פשרה יצירתית כלשהי.

המטרה: למצוא חלוקה הוגנת ויעילה עם **הכי מעט שיתופים שאפשר**.

חלוקת חפצים בין שני אנשים

נתונים:

- שני שחקנים.
- .(או נושאים שיש עליהם מחלוקת) $m \bullet$
- כל שחקן מייחס ערך באחוזים לכל חפץ (סכום הערכים = 100).
 - :האתגר להחליט מי יקבל כל חפץ כך ש
 - החלוקה תהיה פרופורציונלית וללא קנאה.
 - החלוקה תהיה יעילה פארטו.
 - נצטרך לחתוך (לשתף) חפץ אחד לכל היותר.

"אלגוריתם "המנצח המתוקן" (Adjusted Winner) Brams and Taylor, 1996

- א. סדר חפצים בסדר עולה של יחס הערכים: ערך-עבור-שחקן-א / ערך-עבור-שחקן-ב.
 ב. אתחול: תן את כל החפצים לשחקן א.
 ג. העבר חפצים לשחקן ב לפי הסדר, עד ש:
 (1) סכום הערכים של א שווה לסכום של ב, או -
- ראו גליון אלקטרוני מצורף winner.ods. (2)

חלוקה מסודרת

"המנצח המתוקן" מחזיר תמיד חלוקה מסודרת:

הגדרה: חלוקה מסודרת = יחסי-הערכים של החפצים בסל של שחקן ב קטנים או שווים ליחסי-הערכים של החפצים בסל של שחקן א.

משפט: כל חלוקה מסודרת בין שני שחקנים היא יעילה־פארטו.

הוכחה: בחלוקה מסודרת קיים מספר r, כך ש:

- r ≤ שחקן א מקבל חפצים עם יחס־ערכים •
- r ≥ שחקן ב מקבל חפצים עם יחס־ערכים •

<==

חלוקה מסודרת [המשך]

: נגדיר, עבור כל חפץ

- ;א הערך לשחקן א = va •
- ;ב vb = רערך לשחקן ב
- .r ב כפול = vc=r*vb

לפי הגדרת חלוקה מסודרת:

- $va/vb \ge r$ → $va \ge vc$: לחפצים בסל של שחקן א
- $va/vb \le r$ → $vc \ge va$: לחפצים בסל של שחקן ב

מכאן, שהחלוקה הסופית ממקסמת את הסכום:

vc + va = r*vb + va

וכל חלוקה הממקסמת סכום של פונקציה עולה כלשהי של הערכים, היא יעילה־פארטו. ***

"אלגוריתם "המנצח המתוקן

משפט: "המנצח המתוקן" מחזיר תמיד חלוקה יעילה-פארטו, פרופורציונלית, וללא קנאה.

:הוכחה

י**עילות-פארטו**: כי החלוקה מסודרת.

הוגנות: לשני השותפים סל עם ערך שווה. אילו הערך הזה קטן מ-50, הם היו יכולים להתחלף וזה היה שיפור פארטו – סתירה למשפט הקודם. לכן הערך הוא לפחות 50. לכן החלוקה פרופורציונלית וללא קנאה.

אלגוריתם "המנצח המתוקן" מחזיר חלוקה יעילה והוגנת עם שיתוף של **חפץ אחד לכל היותר**. שיתוף זה לא נוח. לכן נעדיף חלוקה יעילה והוגנת **בלי** שיתוף בכלל, אם אפשר.

משפט: כל חלוקה יעילה פארטו היא מסודרת.

הוכחת המשפט: נניח בשלילה ששחקן א קיבל את חפץ 1 או חלק ממנו, ושחקן ב קיבל את חפץ 2 או חלק ממנו, ושחקן ב היבל את חפץ 2 או חלק ממנו, ויחס הערכים הוא לא לפי הסדר הנכון:

המשך ההוכחה:

נבחר שני מספרים קטנים מ־1, y ו־z, שהיחס ביניהם נמצא בין היחסים באי־השיוויון הקודם:

 $v_{a1} / v_{a2} < z / y < v_{b1} / v_{b2}$

מחפץ 2 מחפץ 1 משחקן א לשחקן ב, ונעביר z 2 מחפץ א מחפן ב לשחקן א

שחקן א הפסיד y val אבל הרוויח z va2, ושחקן ב

:ע z vb2 אבל הרוויח y vb1. אבל הרוויח z vb2 אבל ב

 $z v_{a2} > y v_{a1}$ $y v_{b1} > z v_{b2}$

*** מכאן, שהחלוקה הלא-מסודרת אינה יעילה-פארטו.

הוכחת המשפט - דוגמה מהקובץ winner.ods, שני

החפצים מימין:

		אחוזת
נושא:	תכשיטים	גריניץ
דונאלד:	15	15
איואנה:	40	25
יחס:	0.375	0.6

נניח שדונאלד קיבל את התכשיטים (חפץ 1) ואיוואנה את האחוזה (חפץ 2). אז:

$$v_{d1} = 15, \ v_{d2} = 15, \ v_{d1}/v_{d2} = 1$$

 $v_{i1} = 40, \ v_{i2} = 25, \ v_{i1}/v_{i2} = 1.6$

$$z/y = 1.2$$
; $z = 0.6$, $y = 0.5$

נבחר למשל:

דונאלד נותן לאיוואנה 0.5 מהתכשיטים תמורת 0.6 מהאחוזה. הוא מפסיד 7.5 אבל מרויח 9;

איוואנה מפסידה 15 אבל מרויחה 20. שיפור פארטו חזק!

חישוב חלוקה יעילה והוגנת עם מינימום שיתופים:

- אם יחס-הערכים הוא שונה לכל חפץ, אז יש רק דרך אחת לסדר את החפצים לפי יחס-הערכים.לכן, יש רק 1+m חלוקות יעילות-פארטו בלי שיתופים.
 אפשר לבדוק את כולן בזמן פולינומיאלי: אם אחת מהן פרופורציונלית מחזירים אותה; אחרת מריצים את "המנצח המתוקן".
- אם יש הרבה חפצים עם יחס-ערכים שווה, אז בעיית השיתוף המינימלי היא NP-קשה. ניתן לפתור אותה בעזרת חיפוש במרחב המצבים, עם גיזום של חלוקות לא-מסודרות.

שלושה שחקנים ויותר

n-1 שחקנים, ייתכן שנצטרך n-1. כשיש שחקנים, ייתכן שנצטרך u שיתופים כדי להשיג חלוקה הוגנת.

הוכחה. ייתכן שיש n-1 חפצים זהים.

משפט 2. אם קיימת חלוקה א עם מספר שיתופים cdun-1 אז קיימת חלוקה ב יעילה-פארטו, עם עד n-1 שיתופים, הנותנת לכל שחקן לפחות את הערך שהיה לו בחלוקה א.

הוכחה. בהמשך השיעור.

מסקנה. קיימת חלוקה יעילה-פארטו ופרופורציונלית n-1 שיתופים כל היותר.

n שחקנים – בדיקת יעילות פארטו

חלוקה מסודרת היא תנאי הכרחי ליעילות, אבל לא תנאי מספיק:

	אוהל	דירה	מחסן
עמי:	3	1	6
תמי:	6	3	1
רמי:	1	6	3

החלוקה המודגשת היא מסודרת לכל זוג של שחקנים (כי 3/6>1/3), אבל לא יעילה פארטו.

גרף ההחלפות

הגדרה. גרף־ההחלפות של חלוקה נתונה הוא גרף מכוון שלם, עם

- •n צמתים צומת לכל שחקן.
- •קשת מכוונת בין כל שני שחקנים i,j.
- (j ערך i / ערך של i -> j שרך של e i -> j שרך של משקל הקשת הקשת הומצא בסל של שחקן i.

n שחקנים – בדיקת יעילות פארטו

משפט. חלוקה היא יעילה־פארטו אם־ורק־אם בגרף־ההחלפות שלה אין מעגלים מכוונים, שמ*כפלת־המשקלים* שלהם קטנה מ־1.

רעיון ההוכחה: כל מעגל מכוון עם מכפלה < 1 מתאים להחלפה שבה כל השחקנים במעגל

מרויחים, ולהיפך.

3
1/2

1/2

1/2

1/2

1/2

1/2

n שחקנים – בדיקת יעילות פארטו

- איך מחפשים מעגל עם מכפלת-משקלים < 1? 1)הופכים כל משקל ללוגריתם שלו;
 - 2)מחפשים מעגל עם סכום-משקלים שלילי
 - (למשל, בעזרת אלגוריתם בלמן-פורד).
- איך מחפשים חלוקה הוגנת ויעילה ללא שיתופים?
 - •מבצעים חיפוש במרחב המצבים;
 - •גוזמים מצבים המתאימים לחלוקות לא יעילות.

אבל מה עושים אם לא מצאנו חלוקה הוגנת ויעילה בלי שיתופים?

n שחקנים, n-1 שיתופים

הגדרה. חלוקה ב היא **שיפור פארטו חלש** של חלוקה א, אם הערך שמקבל כל שחקן בחלוקה ב גדול לפחות כמו הערך שהוא מקבל בחלוקה א.

משפט. קיים אלגוריתם עם זמן-ריצה פולינומיאלי המוצא, לכל חלוקה נתונה, שיפור־פארטו־חלש עם לכל היותר n-1 שיתופים.

גרף הצריכה

- **הגדרה. גרף־הצריכה** של חלוקה נתונה הוא גרף דו־צדדי לא־מכוון וללא משקלים, שבו:
 - הקודקודים בצד אחד הם n השחקנים;
 - הקודקודים בצד השני הם m החפצים;
 - יש צלע בין שחקן i לבין חפץ j, אם ורק אם
 שחקן i מקבל חלק חיובי של חפץ j.

משפט*. קיים אלגוריתם עם זמן-ריצה פולינומיאלי המוצא, לכל חלוקה נתונה, שיפור־פארטו־חלש עם ארף צריכה ללא מעגלים (--> לכל היותר m+n-1 צלעות --> לכל היותר n-1 שיתופים).

גרף צריכה ללא מעגלים

.*הוכחת המשפט

נחפש מעגל בגרף-הצריכה. אם אין – סיימנו! אם בגרף הצריכה יש מעגל – למשל:

א - x - z - y - x - z - y אז בגרף ההחלפות יש שני מעגליים מכוונים אז בגרף בכיוונים מנוגדים:

א -> ב -> א; א -> ב -> א

מכפלת הערכים במעגל הראשון ≤ 1 חלקי מכפלת הערכים במעגל השני. לכן, לפחות לאחד מכפלת הערכים במעגל השני לכן, לפחות לאחד משני מעגלי־ההחלפה יש מכפלת ערכים ≤ 1. ==>

גרף צריכה ללא מעגלים

[המשך ההוכחה].

- אם מכפלת הערכים באחד המעגלים < 1, אז
 אפשר לבצע החלפה ולקבל שיפור-פארטו.
- אם מכפלת הערכים באחד המעגלים = 1, אז אפשר לבצע החלפה ולקבל שיפור-פארטו-חלש, ולקבוע את גודל ההחלפה כך שאחת הצלעות במעגל תיעלם.

נמשיך בתהליך זה עד שלא יישארו מעגלים בגרף הצריכה. ***

חלוקה הוגנת ויעילה עם n-1 שיתופים

- 1)נמצא חלוקה פרופורציונלית ויעילה-פארטו (למשל: לקסימין-אגליטרית עם הערכות מנורמלות).
- 2)נמצא שיפור-פארטו-חלש עם גרף-צריכה ללא מעגלים.

:החלוקה החדשה היא

- יעילה-פארטו.•
- •פרופורציונלית.
- •יש בה לכל היותר n-1 שיתופים!

פתרון לבעיית הרכבת הממשלה ניתן להקים ממשלה עם n מפלגות, ולחלק את התיקים בהגינות מדוייקת (לא בקירוב), בהתאם לגדלים השונים של המפלגות, כך שיהיו לכל היותר n-1 תיקים עם רוטציה.

