Task 2 - The Sparks Foundation

Name-Smita Rautmare

Prediction Using Unsupervised ML

From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually.

```
In [*]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
 In [ ]: import warnings
          warnings.filterwarnings('ignore')`
 In [5]: from sklearn.cluster import KMeans
In [10]: data = pd.read_csv('./iris (1).csv')
In [11]: | data.head()
Out[11]:
              Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                            Species
              1
           0
                            5.1
                                          3.5
                                                         1.4
                                                                       0.2 Iris-setosa
              2
                            4.9
                                          3.0
                                                         1.4
                                                                       0.2 Iris-setosa
              3
                            4.7
                                          3.2
                                                         1.3
                                                                       0.2 Iris-setosa
                            4.6
                                          3.1
                                                         1.5
                                                                       0.2 Iris-setosa
              5
                            5.0
                                          3.6
                                                         1.4
                                                                       0.2 Iris-setosa
```

```
In [12]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 6 columns):
         Ιd
                          150 non-null int64
         SepalLengthCm
                          150 non-null float64
         SepalWidthCm
                          150 non-null float64
                          150 non-null float64
         PetalLengthCm
         PetalWidthCm
                          150 non-null float64
         Species
                          150 non-null object
```

In [13]: data.describe()

memory usage: 7.2+ KB

dtypes: float64(4), int64(1), object(1)

Out[13]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [19]: data['Species'].unique()
```

Out[19]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

```
In [25]: c =data.corr()
c
```

Out[25]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
ld	1.000000	0.716676	-0.397729	0.882747	0.899759
SepalLengthCm	0.716676	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.882747	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.899759	0.817954	-0.356544	0.962757	1.000000

```
In [39]: sns.distplot(data['SepalLengthCm'])
    plt.xlabel('sepal length')
    plt.ylabel('Probability')
    plt.title('Distribution plot')
    plt.show()
```



```
In [41]: sns.distplot(data['SepalWidthCm'])
    plt.xlabel('sepal Width')
    plt.ylabel('Probability')
    plt.title('Distribution plot')
    plt.show()
```



```
In [40]: sns.distplot(data['PetalWidthCm'])
    plt.xlabel('petal width')
    plt.ylabel('Probability')
    plt.title('Distribution plot')
    plt.show()
```



```
In [42]: sns.distplot(data['PetalLengthCm'])
    plt.xlabel('petal length')
    plt.ylabel('Probability')
    plt.title('Distribution plot')
    plt.show()
```


K means clustering

```
In [58]: # added column
data.head()
```

Out[58]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	Cluster
0	1	5.1	3.5	1.4	0.2	Iris-setosa	2
1	2	4.9	3.0	1.4	0.2	Iris-setosa	2
2	3	4.7	3.2	1.3	0.2	Iris-setosa	2
3	4	4.6	3.1	1.5	0.2	Iris-setosa	2
4	5	5.0	3.6	1.4	0.2	Iris-setosa	2

```
In [60]: centroid=kl.cluster_centers_

In [65]: c1 = data[data.Cluster==0]
    c2 = data[data.Cluster==1]
    c3 = data[data.Cluster==2]
    plt.scatter(c1['SepalLengthCm'],c1['SepalWidthCm'],color="red",s=100)
    plt.scatter(c2['SepalLengthCm'],c2['SepalWidthCm'],color="blue",s=100)
    plt.scatter(c3['SepalLengthCm'],c3['SepalWidthCm'],color="pink",s=100)
    plt.scatter(centroid[:,0],centroid[:,1],color='green',marker='*', label='Centroic
    plt.xlabel('Sepal Length Cm')
    plt.ylabel('Sepal Width Cm')
    plt.title('Clustering')
    plt.legend()
```

Out[65]: <matplotlib.legend.Legend at 0x2b63e895c88>

here we use elbow method to determine no. of cluster inside the data

```
In [72]: plt.plot(range(1,10),a)
    plt.title('Elbow Method')
    plt.xlabel('no. of cluster')
    plt.ylabel('Error')
    plt.show()
```


 ${\bf Colclusion: K_\ means\ clustering\ is\ used\ to\ find\ groups\ in\ data\ ,with\ the\ number\ of\ groups\ represented\ by\ variable\ K\ and\ data\ points\ are\ clustered\ based\ on\ feature\ similarity}$

```
In [ ]:
```