Part4-The Master Method

Completed on	
Key videos	
Note	

Note

- ▼ Motivation
 - 重新分析整数乘法

Integer Multiplication Revisited

Motivation: potentially useful algorithmic ideas often need mathematical analysis to evaluate

Recall: grade-school multiplication algorithm uses $\theta(n^2)$ operation to multiply two n-digit numbers

一般算法分析:分为四个子问题,加减都是O(n)复杂度!

A Recursive Algorithm

Recursive approach Write
$$x=10^{n/2}a+b$$
 $y=10^{n/2}c+d$ [where a,b,c,d are n/2 – digit numbers]

So:
$$x \cdot y = 10^n ac + 10^{n/2} (ad + bc) + bd$$
 (*)

Algorithm#1: recursively compute ac,ad,bc,bd, then compute (*) in the obvious way.

T(n) = maximum number of operations this algorithm needs to multiply two n-digit numbers

<u>Recurrence</u>: express T(n) in terms of running time of recursive calls.

 $\frac{\text{Base Case}}{\text{For all n} > 1}: \quad T(n) \leq 4T(n/2) + O(n)$ Work done by recursive calls

• 优化大数乘法:三次乘法,加上一下额外的加减O(n)复杂度

A Better Recursive Algorithm

Algorithm #2 (Gauss): recursively compute ac, bd, $(a+b)(c+d)^{(3)}$ [recall ad+bc = (3) - (1) - (2)]

New Recurrence:

▼ Formal Statement

- 基本分析原理: 假设所有子问题尺寸等价(all subproblems have equal size)
- 基本形式:

除了跟输入大小n以外,有三个关键参数:递归子问题个数a;子问题缩减因子b;以及合并阶段指数d

Recurrence Format

- 1. <u>Base Case</u>: T(n) <= a constant for all sufficiently small n
- 2. For all larger n:

$$T(n) \le aT(n/b) + O(n^d)$$

where

a = number of recursive calls (>= 1)

b = input size shrinkage factor (> 1)

d = exponent in running time of "combine step" (>=0)

[a,b,d independent of n]

Tim Roughgarden

· The Master Method

三种情况的概括性分析

The Master Method

- **▼** Examples
- ▼ Proof I
- ▼ Interpretation of the 3 Cases
- ▼ Proof II

References

Master Method

主定理

https://zh.wikipedia.org/wiki/%E4%B8%BB%E5%AE%9A%E7%90%86

Master theorem (analysis of algorithms)

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

常用算法中的应用 [編輯]

算法	递回关系式	运算时间	备注
二分搜寻算法	$T(n) = T\left(rac{n}{2} ight) + \Theta(1)$	$\Theta(\log n)$	情形二 $(k=0)$
二叉树遍历	$T(n) = 2T\left(rac{n}{2} ight) + \Theta(1)$	$\Theta(n)$	情形一
最佳排序矩阵搜索(已排好序的二维矩阵)	$T(n) = 2T\left(rac{n}{2} ight) + O(\log n)$	$\Theta(n)$	
合并排序	$T(n) = 2T\left(rac{n}{2} ight) + \Theta(n)$	$\Theta(n \log n)$	情形二 $(k=0)$

• binary search

二分搜尋演算法

https://zh.wikipedia.org/wiki/%E4%BA%8C%E5%88%86%E6%90%9C%E5%B0%8B%E6%BC% 94%E7%AE%97%E6%B3%95

Binary search algorithm

https://en.wikipedia.org/wiki/Binary_search_algorithm