40.017 PROBABILITY & STATISTICS

Homework 5

Michael Hoon

1006617

Section 2

 $April\ 16,\ 2024$

(a)

Since we have 4 brands of spark plugs, with 5 plugs of each brands being tested, we have $N = 4 \times 5 = 20$, and k = 4 for each brand. The degrees of freedom are given by: N - k = 20 - 4 = 16, k - 1 = 3, and N - 1 = 19. Figure 1 below shows the Excel screenshot of the missing entries.

ANOVA								
Source of Variation	SS	df	MS	F	P-value	F crit	N	k
Between Groups	75081.720	3	25027.240	1.701	0.207	3.239	20	4
Within Groups	235419.040	16	14713.690					
Total	310500.760	19						

Figure 1: Excel missing entries

The MSE is calculated using the relation MSE = $\frac{\text{SSE}}{N-k}$, and the SSA is calculated with the ANOVA Identity SST = SSA + SSE. Lastly, MSA is obtained with the relation MSA = $\frac{\text{SSA}}{k-1}$. The answers are given to 3 decimal places.

(b)

Let μ_i denote the mean performance of the *i*th brand of spark plugs, $\forall i \in 1, 2, 3, 4$. We define the hypothesis:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_1 : at least 1 pair of the μ_i 's are different

(c)

From Figure 1, since the p-value = $0.206927 > \alpha = 0.05$, we do not have sufficient evidence to reject H_0 at the 95% significance level, and hence we conclude that the mean performance of the 4 brands of spark plugs are equal.

(a)

Using the Bonferroni Method, we have $m = \binom{k}{2}$ pairs involved in testing. Since we have 4 sites in total, then we have $m = \binom{4}{2} = 6$ pairs.

(b)

37.54 37.01 36.71 37.03 37.03 37.01 37.03 37.7 37.36 36.75 37.45 x Sum 408.91+x	40.17 40.8 39.76 39.7 40.79 40.44 39.79 39.38	39.04 39.21 39.05 38.24 38.53 38.71 38.89	39.53 39.18 38.38 38.92 38.65	ANOVA Source of Variation Between Groups Within Groups Total	SS 40.46382259 9.852936389 50.31675897	df 3 35	MS 13.48794086 0.281512468	F 47.91241022	P-value 1.76215E-12	F crit 2.874187484
37.01 36.71 37.03 37.32 37.01 37.03 37.7 37.36 36.75 37.45 x Sum 408.91+x	40.8 39.76 39.7 40.79 40.44 39.79	39.21 39.05 38.24 38.53 38.71 38.89	39.53 39.18 38.38 38.92 38.65	Source of Variation Between Groups Within Groups	40.46382259 9.852936389	3 35	13.48794086			
36.71 37.03 37.32 37.01 37.03 37.7 37.36 36.75 37.45 x Sum 408.91 + x	39.76 39.7 40.79 40.44 39.79	39.05 38.24 38.53 38.71 38.89	39.18 38.38 38.92 38.65	Between Groups Within Groups	40.46382259 9.852936389	3 35	13.48794086			
37.03 37.32 37.01 37.03 37.7 37.36 36.75 37.45 x Sum 408.91+x	39.7 40.79 40.44 39.79	38.24 38.53 38.71 38.89	38.38 38.92 38.65	Within Groups	9.852936389	35		47.91241022	1.76215E-12	2.874187484
37.32 37.01 37.03 37.7 37.36 36.75 37.45 x Sum 408.91+x	40.79 40.44 39.79	38.53 38.71 38.89	38.92 38.65	·			0.281512468			
37.01 37.03 37.7 37.36 36.75 37.45 x Sum 408.91+x	40.44 39.79	38.71 38.89	38.65	Total	50.31675897					
37.03 37.7 37.36 36.75 37.45 x Sum 408.91+x	39.79	38.89		Total	50.31675897					
37.7 37.36 36.75 37.45 x Sum 408.91+x			39.96			38				
37.36 36.75 37.45 x Sum 408.91 + x	39.38	20 66								
36.75 37.45 x Sum 408.91+x		30.00	38.65							
37.45 x Sum 408.91 + x		38.51	39.38							
x Sum 408.91 + x		40.08								
Sum 408.91 + x										
1400 04 1 1/40 40	320.83	388.92	351.59							
Mean (408.91 + x) / 12 40	40.10375	38.892	39.065556	118.0613056						
Variance 0.2	0.2823696	0.2609289	0.2475028							
n 12	8	10	9							
N 39										
k 4										

Figure 2: Excel values

The formula for SSA is given by

$$SSA = \sum_{i} (\bar{y}_i - \bar{\bar{y}})^2$$

$$= \sum_{i=1}^{4} n_i (\bar{y}_i - \bar{\bar{y}})^2$$

$$(1)$$

From the table, we find that SSA = 40.46382259. From Equation 1, we use the calculated \bar{y}_i 's as well as the grand mean to form a quadratic in x. We have the relation:

$$40.46382259 = 12\left(\frac{408.91 + x}{12} - \bar{y}\right)^2 + 8\left(40.10375 - \bar{y}\right)^2 + 10\left(38.892 - \bar{y}\right)^2 + 9\left(39.065556 - \bar{y}\right)^2$$

where $\bar{y} = (1470.25 + x)/39$. Restructuring the equation, we have

$$12\left(\frac{408.91+x}{12} - \bar{y}\right)^{2} + 8\left(40.10375 - \bar{y}\right)^{2} + 10\left(38.892 - \bar{y}\right)^{2} + 9\left(39.065556 - \bar{y}\right)^{2} - 40.46382259 = 0$$
(2)

We can now solve for x in Equation 2 by using an online solver. First, plotting the equation in desmos we get the following graph:

Figure 3: Desmos Graph

From here, we can see that the two values of x are 38.83 and 86.763. To determine which of the two is the correct solution, we plug these values into the Excel file and run the ANOVA test again:

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	12	447.74	37.31166667	0.322542424		
Column 2	8	320.83	40.10375	0.282369643		
Column 3	10	388.92	38.892	0.260928889		
Column 4	9	351.59	39.06555556	0.247502778		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	40.46382259	3	13.48794086	47.91241022	1.762E-12	2.8741875
Within Groups	9.852936389	35	0.281512468			
Total	50.31675897	38				

Figure 4: ANOVA for x = 38.83

 $Michael\ Hoon,\ 1006617$

We see that for x = 38.83, we obtain an ANOVA table with values which correspond to the original ANOVA table, and we can conclude that the correct solution for x is indeed 38.83.

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	12	495.673	41.30608333	205.0193295		
Column 2	8	320.83	40.10375	0.282369643		
Column 3	10	388.92	38.892	0.260928889		
Column 4	9	351.59	39.06555556	0.247502778		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	40.4629008	3	13.4876336	0.208739113	0.889663	2.8741875
Within Groups	2261.517595	35	64.61478842			
Total	2301.980495	38				

Figure 5: ANOVA for x = 86.763

On the other hand, the ANOVA table for x=86.763 does not match the values given in the original ANOVA table, hence we **reject this solution**.

The 90% Prediction Interval for the winning distance corresponding to the year 1940 is given by:

$$\left(\hat{y}_{1940}^* - t_{n-2, \alpha/2} \cdot s\sqrt{1 + \frac{1}{n} + \frac{(x_{1940}^* - \bar{x})^2}{(n-1)s_x^2}}, \ \hat{y}_{1940}^* + t_{n-2, \alpha/2} \cdot s\sqrt{1 + \frac{1}{n} + \frac{(x_{1940}^* - \bar{x})^2}{(n-1)s_x^2}}\right)$$

where s represents the Mean Squared Error (MSE) and we have n=29 observations, with $\alpha=0.10$. The values for each variable used is calculated in Excel in Figure 6.

	winning									
year	distance (m)									
1896	13.71	x*	1940		Upper Cl	15.12016				
1900	14.47	x_bar	1960.58621		Lower Cl	16.46213				
1904	14.35	s_x^2	1474.82266							
1908	14.92	s_y^2	1.82949							
1912	14.76	s_xy^2	2486.934603							
1920	14.51	s_xy	49.86917							
1924	15.53	B_1 hat	0.033813676							
1928	15.21	B_0 hat	-49.80738445							
1932	15.72	y hat	15.79114606							
1936	16.00	t	1.703288446							
1948	15.40	s	0.385404865							
1952	16.22									
1956	16.35	Data Analysis Package								
1960	16.81	Regression Sta	tistics							
1964	16.85	Multiple R	0.960056982							
1968	17.39	R Square	0.921709408							
1972	17.35	Adjusted R Square	0.918809757							
1976	17.29	Standard Error	0.385404865							
1980	17.35	Observations	29							
1984	17.25									
1988	17.61	ANOVA								
1992	18.17		df	SS	MS	F	Significance F			
1996	18.09	Regression	1	47.21528274	47.21528	317.869	1.83551E-16			
2000	17.71	Residual	27	4.010496575	0.148537					
2004	17.79	Total	28	51.22577931						
2008	17.67									
2012	17.81		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90.0%	Upper 90.0%
2016	17.86	Intercept	-49.80738445	3.719072514	-13.3924	1.93E-13	-57.43829092	-42.17647797	-56.14203769	-43.47273121
2021	17.98	X Variable 1	0.033813676	0.001896567	17.82888	1.84E-16	0.029922241	0.03770511	0.030583274	0.037044077

Figure 6: Excel Calculations for variables

With this, we obtain the 90% Confidence Interval in 3 decimal places:

(14.983, 16.599)

(a)

The formula for SSE for Regression is given by:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Let n be the number of rows of data, and k be the total number of predictors. AIC is defined as follows:

$$AIC = n \ln \left(\frac{SSE}{n} \right) + 2(m+1)$$

with m representing the subset of number of predictors in the model. The Excel calculated values are given in Figure below.

Figure 7: SSE and AIC Values

The SSE and AIC values for each model is given in Table below (3 decimal places).

Model	$Y \text{ vs } x_1$	$Y \text{ vs } x_2$	$Y \text{ vs } x_1, x_2$
SSE	32.620	52.343	32.570
AIC	8.276	21.517	10.233

Table 1: Table of SSE and AIC Values

The AIC values are computed as follows (3 decimal places):

$$AIC_{x_1} = 28 \ln \left(\frac{32.61954}{28}\right) + 2(1+1) \approx 8.276$$

$$AIC_{x_2} = 28 \ln \left(\frac{52.34314}{28}\right) + 2(1+1) \approx 21.517$$

$$AIC_{x_1, x_2} = 28 \ln \left(\frac{32.57028307}{28}\right) + 2(2+1) \approx 10.233$$

(b)

The best model corresponds to the one with the lowest AIC, which is given by

$$\min\{8.276, 21.517, 10.233\} = 8.276$$

This value corresponds to model (1), which is Y vs x_1 .

The Python code is modified to conduct the bootstrap resampling 10⁴ times, and the distribution is obtained from the means of each resampling process. Then, the values are sorted in ascending order into a Python list (using list comprehension), and a Histogram of the distribution is plotted, with the corresponding 'L' and 'U' markers to denote the Lower and Upper bounds of the bootstrap Confidence Interval for the true mean.

Since we are finding the 99% Confidence Interval, only the lowest $\frac{0.01 \times 10^4}{2} = 50$ and highest 50 values were excluded from the interval. Figure 8 below shows the Python Code used.

Figure 8: Python Code for Bootstrap

From the Python code, we obtain a 99% Confidence Interval (3 decimal places) of

[22.182, 28.879]