	•
Q 1:	
Searching	
Michael R. Nowak Texas A&M University	
iodo nom comy	
Acknowledgement: Lecture slides based on those created by	
J. Michael Moore	
	1
G 1	
Search	
Common problem in computing	
Large data setsWant to find specific information	
want to find specific information	-
Linear Search	
Rarely is data structured Collected over time	
	·

т :	C 1-	A 1 -	:41
Linear	Search A	412	orithm

For each item in the list

If the item matches, stop and return location of item Return invalid location

- · Invalid location could be
 - a negative number (what if using unsigned version?)
 a value equal to the size of the list

0	27
1	93
2	42
3	77
4	19
5	55
6	212
7	32
8	111

Linear Search

- Effective if we only need to find a few items.
- Order of the list does not matter.
- In the worst case we have to look at every item in the list.
- What if we are always searching a list that rarely changes?
 - E.g. Library catalog
- Can we do better????
- · What if the list is ordered?

0	27	
1	93	
2	42	
з	77	
4	19	
5	55	
6	212	
7	32	
8	111	

Binary Search

- · Assume the data is ordered...
 - We'll talk about sorting soon.
- Much faster than linear search.

 - Setup takes a while since sorting can take a while.
 If we sort rarely but search a lot, can be faster over time.

0	19	
1	27	
2	32	
3	42	
4	55	
5	77	
6	93	
7	111	
8	212	

Binary Search

- · Look at middle element
 - Matches? We are done!
 - Less than? Look before
 - Greater than? Look after
- Divide and Conquer Algorithm

Binary Search Algorithm

- 1. low <- index of first
- 2. high <- index of last

- 2. high <- index of last
 3. while low <= high
 a. mid = (high + low)/2;
 b. if list[mid] = value
 return mid
 c. else if list[mid] < value (not at mid or below)
 low <- mid + 1 (low to next higher)
 d. else (no check but list[mid] > value not at mid or above)
 high <- mid 1 (high to next lower)
- 4. return invalid position (size of list)

0	19	
1	27	
2	32	
3	42	
4	55	
5	77	
6	93	
7	111	
8	212	

Binary Search Algorithm

· With a flowchart

Son	t?	?	?

• Use built in sort

#include <algorithm>
/* ... */
vector<int> vec;
/* ... */
vector(vec.begin(), vec.end());
/* ... */

• Or write your own... (Coming soon)

Linear vs. Binary Search

- Value more clear when you have lots of values
- Suppose we have integers ordered from smallest to largest.

Number of Integers	Linear Search Worst case number of elements examined	Binary Search Worst case number of elements examined
1,000,000,000	1,000,000,000	30
1,000,000,000,000,000,000,000 (1X10 ²¹)	1X10 ²¹	70
1X10 ⁵⁰	1X10 ⁵⁰	166