```
In [ ]: # Import statements
        import subprocess
        import os
        import json
        import pandas as pd
        import statsmodels.api as sm
        from IPython.display import display, Image, Markdown
In [2]: # Hardset vars
        dataset_path = "data/processed/labeled_asset_dataset_enriched.csv"
        config path = "config/generation params.json"
        alt_config = "config/alt_scenario_generation_params.json"
In [3]: # Utility functions for running the MLflow pipeline, resetting it, and displaying r
        def reset_pipeline():
            """Reset the pipeline by running the reset_pipeline.py script."""
            result = subprocess.run(
                ["python", "scripts/reset_pipeline.py"],
                capture_output=True,
                text=True,
                encoding="utf-8",
                errors="replace" # prevent crashes from non-UTF-8 characters
            )
            print(result.stdout)
            if result.stderr:
                print(result.stderr)
        def display_config(config_path):
            """Load and display the contents of a configuration file as formatted JSON."""
            if not os.path.exists(config_path):
                return
            with open(config_path, "r") as f:
                params = json.load(f)
            display(Markdown(f"### Contents of `{config_path}`:"))
            display(Markdown(f"```json\n{json.dumps(params, indent=4)}\n```"))
        def run_pipeline(dataset_path, alt_config=None, steps=None):
            Run the MLflow pipeline fully or step-by-step.
            Args:
                dataset_path (str): Path to the dataset CSV.
                alt_config (str, optional): Alternate config file for the generate step.
                steps (list, optional): Specific pipeline steps to run.
                                       If None, runs the full pipeline entry point.
            ....
```

```
# Determine processed_dir based on dataset_path
processed_dir = os.path.dirname(dataset_path)
# Ensure processed dir exists
os.makedirs(processed_dir, exist_ok=True)
# If dataset exists and no steps were specified, just load the data
if steps is None:
   try:
       df = pd.read_csv(dataset_path)
       return df
    except FileNotFoundError:
        print(f" A {dataset_path} not found. Running full MLflow pipeline...")
        result = subprocess.run(
                "mlflow", "run", ".", "-e", "pipeline", "--env-manager=local",
                "-P", f"processed_dir={processed_dir}"
            capture output=True, text=True, encoding="utf-8", errors="replace"
       print(result.stdout)
       if result.returncode != 0:
            print("X Full MLflow pipeline failed.")
            raise RuntimeError("Pipeline execution failed.")
       if os.path.exists(dataset path):
            print("☑ Dataset generated and loaded.")
            return pd.read csv(dataset path)
       else:
            raise FileNotFoundError(f"Dataset still not found at {dataset_path}
else:
    # Step-by-step pipeline execution
    step_cmds = []
    for step in steps:
       if step == "generate":
            cmd = [
                "mlflow", "run", ".", "-e", "generate", "--env-manager=local"
            if alt_config:
               cmd.extend(["-P", f"config={alt_config}"])
            step_cmds.append(("Generate", cmd))
       elif step == "prepare":
           cmd = [
                "mlflow", "run", ".", "-e", "prepare", "--env-manager=local",
                "-P", f"processed_dir={processed_dir}"
            step_cmds.append(("Prepare", cmd))
       elif step == "train-both":
            step_cmds.append(("Train Both", ["mlflow", "run", ".", "-e", "train
       else:
            print(f" ▲ Unknown step: {step}")
    for name, cmd in step_cmds:
       print(f"\n--- Running: {name} ---\n{' '.join(cmd)}\n")
        result = subprocess.run(cmd, capture_output=True, text=True, encoding="
        print(result.stdout)
```

```
if result.returncode != 0:
                print(f" X Step '{name}' failed. Check the output above.")
                break
            else:
                print(f" Step '{name}' completed.\n")
        # Reload dataset after step execution if it exists
        if os.path.exists(dataset path):
            return pd.read csv(dataset path)
        else:
            print(" \( \) Dataset not found after pipeline steps.")
            return None
def calculate presence stats(df):
    """Calculate asset presence counts and percentages across Inventory and IPAM.""
    total_assets = len(df)
    present_inventory = (df["missing_in_inventory"] == 0).sum()
    present ipam = (df["missing in ipam"] == 0).sum()
    present_all = ((df["missing_in_inventory"] == 0) & (df["missing_in_ipam"] == 0)
    return {
        "total_assets": total_assets,
        "present_inventory": present_inventory,
        "pct_inventory": present_inventory / total_assets * 100,
        "present ipam": present ipam,
        "pct_ipam": present_ipam / total_assets * 100,
        "present all": present all,
        "pct_all": present_all / total_assets * 100
    }
def display_presence_summary(stats, scenario_name):
    """Display a quick summary of asset presence counts and percentages."""
    print(f"\n=== {scenario_name} Presence Summary ===")
    print(f"Total Observability Assets: {stats['total_assets']:,}")
    print(f"Present in Inventory: {stats['present_inventory']:,} ({stats['pct_inventory']:,}
    print(f"Present in IPAM: {stats['present_ipam']:,} ({stats['pct_ipam']:.1f}%)")
    print(f"Present in BOTH: {stats['present_all']:,} ({stats['pct_all']:.1f}%)")
    summary = pd.DataFrame({
        "Metric": ["Present in Inventory", "Present in IPAM", "Present in BOTH"],
        "Count": [stats["present_inventory"], stats["present_ipam"], stats["present
        "Percent": [stats["pct_inventory"], stats["pct_ipam"], stats["pct_all"]]
    display(summary)
def run_completeness_test(present_both, total_assets, threshold=0.75, alpha=0.05):
    stat, p value = sm.stats.proportions ztest(
        count=present both,
        nobs=total_assets,
        value=threshold,
        alternative="larger"
    return stat, p_value, p_value <= alpha</pre>
```

```
def evaluate completeness(stats, scenario name):
    """Run and display the completeness statistical test in a clean format."""
   z_stat, p_value, significant = run_completeness_test(stats["present_all"], stat
   result_text = "✓ Reject H<sub>0</sub> - completeness is statistically significant." if s:
   display(Markdown(f"""
### Completeness Statistical Test ({scenario_name})
                       | Value
Metric
| Null Hypothesis (H₀) | Completeness ≤ 75%
| Alternative (H<sub>1</sub>) | Completeness > 75% |
| Observed Rate | {stats['pct_all']:.2f}% |
                    {z_stat:.4f}
Z-statistic
P-value
                      {p_value:.4e}
                      0.05
| Alpha (α)
Result
                      {result_text}
"""))
# define a function to evaluate model performance
def evaluate_model(report_path, model_name, benchmark_f1=0.80):
   """Evaluate model performance against the success benchmark."""
   if not os.path.exists(report_path):
        return {
            "model": model name,
            "f1_score": None,
            "accuracy": None,
            "result": f" \( \) No report found for \{\) model name\}"
        }
   with open(report_path, "r") as f:
        report = json.load(f)
   f1 score = report["weighted avg"]["f1-score"]
   accuracy = report["accuracy"]
   result = " Meets benchmark" if f1_score >= benchmark_f1 else " X Below bench
   return {
        "model": model_name,
        "f1_score": f1_score,
        "accuracy": accuracy,
        "result": result
   }
def format_metric(value, percent=False):
   """Safely format metrics for display."""
   if value is None:
        return "N/A"
   return f"{value:.2%}" if percent else f"{value:.2f}"
def evaluate models(inventory report, ipam report, scenario name=None):
```

```
"""Evaluate and display predictive model performance in a clean table format.""
   inventory_eval = evaluate_model(inventory_report, "Inventory Model")
   ipam eval = evaluate model(ipam report, "IPAM Model")
   scenario_title = f" ({scenario_name})" if scenario_name else ""
   display(Markdown(f"""
### Predictive Model Evaluation{scenario title}
| Model
                 | Accuracy | Weighted F1-Score | Result
|-----|
{inventory_eval['model']} | {format_metric(inventory_eval['accuracy'], percent=Tr
**Benchmark:** F1-Score ≥ 0.80 required for success.
"""))
def display_report_images(scenario_name):
   """Display generated report images from the pipeline."""
   reports_dir = "reports"
   image_extensions = ('.png', '.jpg', '.jpeg', '.gif')
   found_images = []
   for root, _, files in os.walk(reports_dir):
       for file in files:
           if file.lower().endswith(image_extensions):
               found_images.append(os.path.join(root, file))
   if found_images:
       display(Markdown(f"### Generated Report Images ({scenario name})"))
       for img path in found images:
           rel_path = os.path.relpath(img_path, reports_dir)
           display(Markdown(f"**{rel path}**"))
           display(Image(filename=img_path))
   else:
       print(f"No report images found in '{reports_dir}' for {scenario_name}.")
def display_conclusion(stats, scenario_name, completeness_significant, inventory_ev
   """Generate and display a comprehensive conclusion summary for a scenario."""
   meets_threshold = stats['pct_all'] >= 75
   threshold_text = "meets" if meets_threshold else "does not meet"
   significance text = (
       "is statistically significant" if completeness_significant else "is not sta
   inv_model_text = "met" if inventory_eval["f1_score"] and inventory_eval["f1_score"]
   ipam_model_text = "met" if ipam_eval["f1_score"] and ipam_eval["f1_score"] >= 0
   conclusion md = f"""
## Conclusion ({scenario_name})
The analysis confirms that the original asset presence rate across systems **{thres
Out of **{stats['total_assets']:,}** observability assets:
```

```
- **{stats['present_inventory']:,}** ({stats['pct_inventory']:.1f}%) were found in
        - **{stats['present_ipam']:,}** ({stats['pct_ipam']:.1f}%) were found in IPAM.
        - **{stats['present_all']:,}** ({stats['pct_all']:.1f}%) were present in both syste
        Model performance evaluation:
        - The Inventory model **{inv_model_text}** the benchmark (F1 ≥ 0.80).
        - The IPAM model **{ipam model text}** the benchmark (F1 ≥ 0.80).
            if key_features:
                conclusion_md += f"Key features driving missingness include: **{', '.join(k
            conclusion_md += """Beyond validating data completeness, these insights enable
        on specific processes, automation, or staff actions most likely to cause data gaps.
        This data-driven approach not only supports immediate project goals but also lays t
        long-term improvements in asset data quality and system reliability.
            display(Markdown(conclusion_md))
In [4]: # Reset the pipeline (cleans data, mlruns, models, reports)
        reset_pipeline()
       🔁 Cleaning up pipeline artifacts...
       ✓ Removed directory: data
       ✓ Removed directory: mlruns
       ✓ Removed directory: models
       ✓ Removed directory: reports
       Directory not found: __pycache__
       Cleanup complete.
In [5]: display_config(config_path)
```

Contents of config/generation_params.json:

```
{
         "IPAM_REGION_MISSING_PROBS": {
           "northeast": 0.3,
           "northwest": 0.01,
           "central": 0.01,
           "east": 0.02,
           "west": 0.05.
           "southeast": 0.03,
           "southwest": 0.01
         },
         "INVENTORY_MODEL_MISSING_PROBS": {
           "ISR4431": 0.5,
           "SRX345": 0.6,
           "ETX-2": 0.4,
           "MX204": 0.01,
           "NCS540": 0.05,
           "7750 SR-1": 0.01,
           "7280R": 0.03,
           "FSP3000": 0.1,
           "FSP150": 0.1,
           "QFX5120": 0.05,
           "7050X3": 0.02,
           "Catalyst9300": 0.03
         },
         "DEFAULT_MODEL_FAILURE_PROB": 0.1,
         "DEFAULT_REGION_FAILURE_PROB": 0.1
      }
In [6]: # Load the dataset for analysis, if it is not present, trigger a mlflow run using t
         df = run_pipeline(dataset_path)
```

▲ data/processed/labeled_asset_dataset_enriched.csv not found. Running full MLflow pipeline...

[DEBUG] Pipeline received config: config/generation_params.json

☑ Enriched dataset written to: data/processed\labeled_asset_dataset_enriched.csv
--- Model Report ---

	precision	recall	f1-score	support
0	0.91	0.97	0.94	1966
1	0.59	0.32	0.41	284
accuracy			0.89	2250
macro avg	0.75	0.64	0.67	2250
weighted avg	0.87	0.89	0.87	2250
Model Rep	ort			
	precision	recall	f1-score	support
0	0.93	1.00	0.96	2103
1	0.00	0.00	0.00	147
accuracy			0.93	2250
macro avg	0.47	0.50	0.48	2250
weighted avg	0.87	0.93	0.90	2250

☑ Dataset generated and loaded.

```
In [7]: # Default scenario stats
default_stats = calculate_presence_stats(df)
```

In [8]: display_presence_summary(default_stats, "Default Scenario")

=== Default Scenario Presence Summary ===
Total Observability Assets: 11,246

Present in Inventory: 9,826 (87.4%)
Present in IPAM: 10,512 (93.5%)
Present in BOTH: 9,171 (81.5%)

	Metric	Count	Percent
0	Present in Inventory	9826	87.373288
1	Present in IPAM	10512	93.473235
2	Present in BOTH	9171	81.548995

```
In [9]: evaluate_completeness(default_stats, "Default Scenario")
```

Metric

Completeness Statistical Test (Default Scenario)

Null Hypothesis (H₀) Cor		Completeness ≤ 75%		
	Alternative (H ₁)	Completeness > 75%		
Observed Rate		81.55%		
Z-statistic		17.9042		
P-value		5.4699e-72		
	Alpha (α)	0.05		
	Result	$ ightharpoonup$ Reject H_0 – completeness is statistically significant.		
In [10]:	<pre># Save significance result for use in conclusion _, _, default_completeness_significant = run_completeness_test(default_stats["present_all"], default_stats["total_assets"])</pre>			
In [11]:	<pre># Evaluate models inventory_eval = evaluate_model("reports/inventory/inventory_classification_report. ipam_eval = evaluate_model("reports/ipam/ipam_classification_report.json", "IPAM Mo</pre>			
	<pre>evaluate_models("reports/inventory/inventory_classification_report.json",</pre>			

Value

Predictive Model Evaluation (Default Scenario)

Model	Accuracy	Weighted F1-Score	Result
Inventory Model	88.58%	0.87	Meets benchmark
IPAM Model	93.16%	0.90	Meets benchmark

Benchmark: F1-Score ≥ 0.80 required for success.

```
In [12]: display_report_images("Default Scenario")
```

Generated Report Images (Default Scenario)

inventory\inventory_feature_importance.png

ipam\ipam_feature_importance.png

Conclusion

```
In [23]: display_conclusion(
    default_stats,
    "Default Scenario",
    completeness_significant=default_completeness_significant,
    inventory_eval=inventory_eval,
    ipam_eval=ipam_eval,
```

```
key_features=["region", "role"]
)
```

Conclusion (Default Scenario)

The analysis confirms that the original asset presence rate across systems **meets** the 75% threshold and is statistically significant based on the statistical test.

Out of 11,246 observability assets:

- 9,821 (87.3%) were found in the Inventory system.
- **10,515** (93.5%) were found in IPAM.
- **9,178** (81.6%) were present in both systems.

Model performance evaluation:

- The Inventory model **met** the benchmark (F1 ≥ 0.80).
- The IPAM model **met** the benchmark (F1 \geq 0.80).

Key features driving missingness include: **region, role**.

Beyond validating data completeness, these insights enable the organization to focus audit efforts on specific processes, automation, or staff actions most likely to cause data gaps. This data-driven approach not only supports immediate project goals but also lays the groundwork for long-term improvements in asset data quality and system reliability.

Analysis demonstrating alternative data generation scenarios

To validate that our ML model would make different predictions given different failures, we ran an alternative config to validate

```
In [14]: # display_config(alt_config)
display_config(alt_config)
```

Contents of

config/alt_scenario_generation_params.json:

```
"IPAM_REGION_MISSING_PROBS": {
            "northeast": 0.01,
            "northwest": 0.01,
            "central": 0.01,
            "east": 0.02.
            "west": 0.45,
            "southeast": 0.03,
            "southwest": 0.01
         },
         "INVENTORY_MODEL_MISSING_PROBS": {
            "ISR4431": 0.01,
            "SRX345": 0.03,
            "ETX-2": 0.02,
            "MX204": 0.01,
            "NCS540": 0.05,
            "7750 SR-1": 0.01,
            "7280R": 0.03,
            "FSP3000": 0.1,
            "FSP150": 0.87,
            "QFX5120": 0.91,
            "7050X3": 0.02,
            "Catalyst9300": 0.03
         },
         "DEFAULT MODEL FAILURE PROB": 0.1,
         "DEFAULT_REGION_FAILURE_PROB": 0.1
       }
In [16]: # Run the pipeline for the alternative scenario
          alt_df = run_pipeline(
              dataset_path="data/processed/labeled_asset_dataset_enriched.csv",
              alt_config="config/alt_scenario_generation_params.json",
              steps=["generate", "prepare", "train-both"]
        --- Running: Generate ---
        mlflow run . -e generate --env-manager=local -P config=config/alt_scenario_generatio
        n_params.json
```

Step 'Generate' completed. --- Running: Prepare --mlflow run . -e prepare --env-manager=local -P processed_dir=data/processed Enriched dataset written to: data/processed\labeled_asset_dataset_enriched.csv ✓ Step 'Prepare' completed. --- Running: Train Both --mlflow run . -e train-both --env-manager=local --- Model Report --precision recall f1-score support 0 0.97 0.97 0.97 1830 1 0.88 0.88 0.88 420 0.96 2250 accuracy macro avg 0.93 2250 0.93 0.93 weighted avg 0.96 0.96 0.96 2250 --- Model Report --precision recall f1-score support 0 0.93 0.98 0.95 2066 1 0.41 0.16 0.23 184 0.91 accuracy 2250 macro avg 0.67 0.57 0.59 2250 0.91 weighted avg 0.89 0.89 2250 Step 'Train Both' completed.

```
In [17]: # Calculate presence statistics
    alt_stats = calculate_presence_stats(alt_df)

In [18]: # Display quick summary
    display_presence_summary(alt_stats, "Alternative Scenario")

=== Alternative Scenario Presence Summary ===
    Total Observability Assets: 11,246
    Present in Inventory: 9,148 (81.3%)
    Present in IPAM: 10,327 (91.8%)
    Present in BOTH: 8,395 (74.6%)
```

In [19

	Metric	Count	Percent
0	Present in Inventory	9148	81.344478
1	Present in IPAM	10327	91.828206
2	Present in BOTH	8395	74.648764
-	# Evaluate complet	•	
1 2	Present in IPAM Present in BOTH	10327 8395 eness (:	91.828206 74.648764 statistica

Completeness Statistical Test (Alternative Scenario)

```
Metric
                                                       Value
         Null Hypothesis (H₀)
                            Completeness ≤ 75%
         Alternative (H<sub>1</sub>)
                             Completeness > 75%
         Observed Rate
                             74.65%
         Z-statistic
                             -0.8562
         P-value
                             8.0406e-01
         Alpha (α)
                             0.05
         Result
                             \times Fail to reject H<sub>0</sub> – completeness is not statistically significant.
In [20]: # Save significance result for use in conclusion
          _, _, alt_completeness_significant = run_completeness_test(
               alt_stats["present_all"],
               alt_stats["total_assets"]
In [21]:
          # Evaluate models
          inventory_eval_alt = evaluate_model("reports/inventory/inventory_classification_rep
          ipam_eval_alt = evaluate_model("reports/ipam/ipam_classification_report.json", "IPA
          evaluate_models(
               "reports/inventory/inventory_classification_report.json",
               "reports/ipam/ipam_classification_report.json",
               "Alternative Scenario"
```

Predictive Model Evaluation (Alternative Scenario)

Model	Accuracy	Weighted F1-Score	Result
Inventory Model	95.56%	0.96	Meets benchmark
IPAM Model	91.24%	0.89	Meets benchmark

Benchmark: F1-Score ≥ 0.80 required for success.

```
In [22]: # Display generated report images
display_report_images("Alternative Scenario")
```

Generated Report Images (Alternative Scenario)

inventory\inventory_feature_importance.png

ipam\ipam_feature_importance.png


```
In [24]: # Display conclusion for alternative scenario
display_conclusion(
    alt_stats,
    "Alternative Scenario",
    completeness_significant=alt_completeness_significant,
    inventory_eval=inventory_eval_alt,
    ipam_eval=ipam_eval_alt,
    key_features=["region", "role"]
)
```

Conclusion (Alternative Scenario)

The analysis confirms that the original asset presence rate across systems **does not meet** the 75% threshold and is not statistically significant based on the statistical test.

Out of **11,246** observability assets:

- 9,139 (81.3%) were found in the Inventory system.
- **10,325** (91.8%) were found in IPAM.
- **8,387** (74.6%) were present in both systems.

Model performance evaluation:

- The Inventory model **met** the benchmark (F1 ≥ 0.80).
- The IPAM model **met** the benchmark (F1 \geq 0.80).

Key features driving missingness include: **region, role**.

Beyond validating data completeness, these insights enable the organization to focus audit efforts on specific processes, automation, or staff actions most likely to cause data gaps. This data-driven approach not only supports immediate project goals but also lays the groundwork for long-term improvements in asset data quality and system reliability.