Remark 1. Scheeper's $S(\kappa)$ requiring injections is stronger than my $S'(\kappa)$ requiring finite-to-one maps. Dow suggests that $S'(\omega_{\omega})$ holds in ZFC by the following.

Definition 2. A topological space is said to be ω -bounded if each countable subset of the space has compact closure.

Theorem 3. For each $k < \omega$ there exists a topology on ω_k which is ω -bounded and locally countable.

Proof. TODO: write up Alan's proof

Definition 4. A Kurepa family \mathcal{K} is a family of countable sets such that for each $A \in \mathcal{K}$, $\mathcal{K} \upharpoonright A = \{K \cap A : K \in \mathcal{K}\}$ is countable.

Corollary 5. There exists a Kurepa family cofinal in $[\omega_k]^{\omega}$ for each $k < \omega$.

Proof. This is actually a corollary of an observation of Todorcevic communicated by Dow in [TODO cite Gen Prog in Top I]: if every Kurepa family of size at most θ extends to a cofinal Kurepa family, then the same is true of θ^+ . So the result follows as every Kurepa family of size ω extends to the cofinal Kurepa family $[\omega]^{\omega}$. (TODO am I understanding this right?)

We may alternatively obtain the result from the previous topological argument by using the family \mathcal{K} of compact sets in the constructed topology on ω_k as our witness. Of course, every Lindelöf set in a locally countable space is countable. Thus \mathcal{K} is cofinal since for every countable set A, \overline{A} is compact and countable. It is Kurepa since for every compact (countable) set A, (TODO).

Theorem 6. $S'(\omega_k)$ for each $k < \omega$.

Proof. Let $k < \omega$, and \mathcal{K} be a cofinal Kurepa family on ω_k . (TODO finish)