FELADATKIÍRÁS

A feladatkiírást a tanszéki adminisztrációban lehet átvenni, és a leadott munkába eredeti, tanszéki pecséttel ellátott és a tanszékvezető által aláírt lapot kell belefűzni (ezen oldal helyett, ez az oldal csak útmutatás). Az elektronikusan feltöltött dolgozatban már nem kell beleszerkeszteni ezt a feladatkiírást.

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

Modellelemek effektív jogosultságainak származtatása finomszemcsés hozzáférési szabályokból

SZAKDOLGOZAT

 $\begin{tabular}{ll} $K\'{e}sz\'{i}tette \\ Balogh T\'{i}mea \end{tabular}$

Konzulens Debreceni Csaba

Tartalomjegyzék

Kivonat			3	
\mathbf{A}	$\mathbf{bstract}$	4	4	
1.	Bevezetés	ļ	5	
2.	Esettanulmány 2.1. 2.2. 2.3.		7 7 7	
3.	Háttértechnológiák	8	8	
4.	Áttekintés	9	9	
5.	Megvalósítás	10	0	
6.	Kiértékelés	1	1	
7.	Kapcsolódó munkák	1:	2	
8.	Összefoglalás	1	3	
Ir	odalomjegyzék	1	4	

Alulírott Balogh Tímea, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2017. november 21.	
	Balogh Tímea
	hallgató

Kivonat

Bizonyos informatikai rendszerek üzemeltetése esetén a velük szemben támasztott elsődleges követelmény, hogy ne veszélyeztessenek emberi életeket, ne okozzanak anyagi, természeti károkat. Ilyen úgynevezett biztonságkritikus rendszerek például a vasúti-, repülőgép irányítási berendezések, nukleáris erőművek.

Komplexitásuk miatt ezek tradicionális kód alapú fejlesztését egyre inkább felváltja a modellvezérelt megközelítés, amely során magasszintű modellekből kiindulva, azokat tovább finomítva a rendszer a legapróbb részletekig megtervezhető. A metodika előnyei többek között az automatikus kód-, teszteset- és dokumentáció-generálás, valamint, hogy a létrejövő modellek verifikálásával már a fejlesztés korai szakaszában kiszűrhetők bizonyos hibák.

Ezeken a komplex rendszereken általában egy vagy akár több cég fejlesztő csapatai kollaboratív módon dolgoznak. Így felmerül a modellelemek biztonságának kérdése is, legyen szó olyan bizalmas adatról, létrejövő szellemi tulajdonról, amelyhez csak bizonyos pozíciókban lévő felhasználók férhetnek hozzá, vagy a rendszernek olyan kritikus részéről, amelyet csak megfelelő szaktudással rendelkező fejlesztők módosíthatnak.

A MONDO nemzetközi kutatási projektben készült kollaborációs keretrendszer modellszinten, finomszemcsés szabályok alapján végzi a hozzáférés-vezérlést. Ezekben a szabályokban gráflekérdezésekkel határozható meg, hogy a modellnek milyen típusú vagy pontosan mely elemeire milyen jogok vonatkozzanak különböző felhasználók tekintetében.

Munkám során szöveges szintaxist definiáltam a hozzáférési szabályok meghatározásához, majd implementáltam egy olyan algoritmust, amely képes ilyen szabályok EMF modellek feletti kiértékelésére, vagyis az effektív érvényre jutó hozzáférések kiszámítására. Az algoritmust a már említett MONDO projekt egyik esettanulmányaként használt szélturbina vezérlőről készült modellel teszteltem. Végül az elkészült nyelvtan és algoritmus integrálásra került a kollaborációs keretrendszerbe.

Abstract

Bevezetés

A nagyméretű, komplex ipari szoftverek fejlesztése több ember együttes munkáját igényli. A tervezés modellalapú megközelítése azért is előnyös, mert a magasszintű modellek akár különböző szakterületeken mozgó fejlesztő csapatok számára is ugyanolyan módon értelmezhetők, ami elősegíti a hatékony, összehangolt munkavégzést.

Ezen komplex modellek kollaboratív fejlesztése offline vagy online formában valósul meg. Előbbi esetben a felhasználók egy közös tárhelyen lévő, verziókezelt modellből kérik le a saját példányukat, majd a módosítások végrehajtása után visszaküldik azokat a szerverre. A többiek csak akkor értesülnek ezekről a változásokról, amikor frissítik a sajátjukat a közös modell alapján. Így, ha közben ők is dolgoztak rajta, akkor az összefésülendő verziók között adódhatnak konfliktusok. Ezzel szemben online kollaboráció során a felhasználók által eszközölt változások mindenki számára rögtön láthatók a modellen.

Offline és online forgatókönyv esetén is felmerül a modellelemek biztonságának, hozzáférésszabályozásnak a kérdése. Abban az esetben például, amikor egy cég a munka egy bizonyos
részét ledelegálja egy másik cégnek, az adott modell megfelelő részeit elérhetővé teszi neki.
Viszont lehetnek a modellnek bizalmas, a cég szellemi tulajdonának számító elemei, amelyekhez nem akar hozzáférést biztosítani az alvállalkozó számára. Hasonlóan, ha például
vannak a modellnek olyan kritikus részei, amelyek fejlesztése speciális szaktudást igényel,
akkor ezeket csak a hozzáértő felhasználók módosíthatják, a többiek nem férhetnek hozzájuk.

Modellek feletti hozzáférés-kezelésre létező gyakorlat, hogy a modelleket, modellrészeket tartalmazó fájlokhoz határoznak meg olvasási, írási jogosultságokat. A rendszert újabb felhasználókkal, és számukra meghatározott hozzáférési szabályokkal bővítve a modell megfelelő fragmenseit le kell választani, és külön fájlban eltárolni. Ennek hatására a modell elemek ezreire aprózódhat. A fájlszintű szabályozás hátránya, hogy ez a jelenség a rendszert nehezen skálázhatóvá, rugalmatlanná teszi.

Erre a problémára a hozzáférések modellszintű szabályozása nyújt megoldást. A MON-DO nemzetközi kutatási projektben készült kollaborációs keretrendszer finomszemcsés szabályok alapján végzi a hozzáférés-vezérlést. Ezekben a modell elemi részeire, objektumokra és azok attribútumaira, referenciáira külön-külön lehet hozzáférési jogokat meghatározni a különböző felhasználók tekintetében. A kérdéses modellelemeket gráflekérdezés eredmé-

1.1. ábra. A fájlszintű hozzáférés-szabályozás problémája

nyeként kapjuk, amely úgy is megfogalmazható, hogy tetszőleges számú és tulajdonságú elemet adjon vissza. Így egy milliós nagyságrendű modell esetén nem szükséges egyesével minden egyes elemre leírni a jogosultságokat. A finomszemcsézettségből fakadóan a megadott szabályok között előfordulhat konfliktus, inkonzisztencia. Ezek feloldásához szükséges egy olyan kiértékelő komponens, ami eredményként az effektív, valóban érvényre jutó hozzáférési szabályokat adja.

A szakdolgozat kidolgozása során kitűzött célok:

- Szöveges szintaxis definiálása lekérdezés alapú, finomszemcsés szabályok megfogalmazásához
- EMF modellek felett a fenti nyelven megadott szabályok kiértékelését végző algoritmus implementálása, ami
 - megvizsgálva az explicit megadott szabályokat,
 - megtartva a modell belső konzisztenciáját,
 - kiválasztja közülük azokat, amelyek érvényre jutnak
- Az algoritmus működésének bemutatása, teljesítményének kiértékelése egy részletesen kidolgozott esettanulmányon

Esettanulmány

- 2.1.
- 2.2.
- 2.3.

Háttértechnológiák

Áttekintés

Megvalósítás

Kiértékelés

Kapcsolódó munkák

Összefoglalás

Irodalomjegyzék