WO 2005/008829 PCT/JP2004/010194

明細書

リチウム二次電池用非水電解液およびそれを用いたリチウム二次電池 技術分野

- [0001] 本発明は、優れたサイクル特性を示すリチウム二次電池、そしてそのようなサイクル 特性に優れたリチウム二次電池の製造に有用な非水電解液に関する。 背景技術
- [0002] 近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、基本的に、密閉容器内に収容された正極、負極、及び非水電解液から構成されており、特に、LiCoOなどのリチウム複合酸化物を正極材料とし、炭素材料又はリチウム金属を負極材料としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用の非水電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などのカーボネート類が好適に使用されている
- [0003] 近年、電池のサイクル特性および電気容量などの電池特性について、さらに優れ た特性を有するリチウム二次電池が求められている。
- [0004] すなわち、正極材料として、例えばLiCoO2、LiMnO4、LiNiO2などのリチウム複合酸化物を用いたリチウム二次電池では、非水電解液中の溶媒の一部が充電時に局部的に酸化分解することにより、該分解物が電池の望ましい電気化学的反応を阻害する結果となり、電池性能の低下を生じる。これは正極材料と非水電解液との界面における溶媒の電気化学的酸化に起因するものと理解されている。
- [0005] また、負極として例えば天然黒鉛や人造黒鉛などの髙結晶化した炭素材料を用いたリチウム二次電池では、非水電解液中の溶媒の一部が充電時に負極表面で還元分解される。特に、非水電解液溶媒として一般に広く使用されているエチレンカーボネート(EC)においても充放電を繰り返す間に、その一部が還元分解を起こし、電池性能が低下する。
- [0006] 特許文献1と2には、リチウム二次電池の電池特性を向上させるために、非水電解液にビニレンカーボネート化合物を添加することが推奨されている。そして、このよう

なビニレンカーボネート化合物を添加した電解液では、サイクル寿命が向上すること が示されている。

- [0007] 特許文献3~7には、リチウム二次電池の電池特性を向上させるために、非水電解液にアルキン化合物を添加することが推奨されている。そして、このようなアルキン化合物を添加した電解液では、サイクル寿命が向上することが示されている。
- [0008] 近年、リチウム二次電池の高容量化のために、正極の合利層や負極の合利層の密度を高くすることが検討されている。特許文献8には、アルミニウム箔上に形成される正極合利層の密度を3.3~3.7g/cm³とし、銅箔上に形成される負極合剤層の密度を1.4~1.8g/cm³とすることにより、高エネルギー密度で、安全性が高く、高温雰囲気での保存に適したリチウム二次電池が得られる旨の記載がある。

特許文献1:特開平8-45545号公報

特許文献2:米国特許第5626981号

特許文献3:特開2000-195545号公報

特許文献4:特開2001-313072号公報

特許文献5:米国特許第6479191/B1号

特許文献6:特開2002-100399号公報

特許文献7:特開2002-124297号公報

特許文献8:特開2003-142075号公報

発明の開示

発明が解決しようとする課題

- [0009] 上記の各種の特許文献の記載から明らかなように、リチウム二次電池の非水電解 液にビニレンカーボネート化合物あるいはアルキン化合物などの添加剤を添加する ことによりサイクル特性などの電池性能が向上する。
- [0010] 従来の比較的低密度の正極合剤層と負極合剤層を用いたリチウム二次電池では、これまでに知られているように、非水電解液にビニレンカーボネート化合物あるいはアルキン化合物などの添加剤を添加することによりサイクル特性などの電池性能が向上する。しかし、本発明者の研究によると、近年研究されている高密度の正極合剤層と負極合剤層を用いたリチウム二次電池では、これらの添加剤を添加した非水電解

液を用いても、サイクル特性(多数回の繰り返し充電・放電操作の後でも、高い放電 容量が維持される特性)が向上せず、またさらに、電池内の電解液が分解して、電解 液の不足(液枯れ)が発生することが判明した。

[0011] 本発明は、上記のようなリチウム二次電池川非水電解液に関する課題を解決する 非水電解液を提供することを目的とする。

課題を解決するための手段

[0012] 本発明は、非水溶媒に電解質塩が溶解されているリチウム二次電池用非水電解液において、該非水電解液中に0.01~10重量%の下記式(I)で表わされるビニレンカーボネート化合物:

[0013] [化8]

$$\begin{array}{c}
R^1 \\
R^2 \\
O \\
O
\end{array}$$
(I)

[0014] (式中、R¹とR²とはそれぞれ独立して、水素原子もしくは炭素原子数1〜4のアルキル 基を表わす)

及び0.01~10重量%の下記式(II)、(III)、(IV)、(V)、(VI)あるいは(VII)のいずれかで表わされる少なくとも一種のアルキン化合物:

[0015] [化9]

$$R^{3}-C = C - \left(C - \frac{R^{4}}{C} \right)_{x} OY^{1}$$
 (11)

[0016] [式中、R³~R⁵は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、 炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わ す;ただし、 R^4 と R^5 は、T.いに結合して炭素原子数3~6のシクロアルキル基を形成していても良い;xは1もしくは2を表わし;そして Y^1 は、 $-COOR^{20}$ 、 $-COR^{20}$ または $-SO_2$ R^{20} を表わす;ただし、 R^{20} は、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす] [0017] [化10]

[0018] [式中、 R^6 ~ R^9 は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす;ただし、 R^6 と R^7 そして R^8 と R^9 はそれぞれ互いに結合して炭素原子数3~6のシクロアルキル基を形成していても良い;xは1もしくは2を表わし; Y^2 は、 $-COOR^{21}$ 、 $-COR^{21}$ または $-SO_2R^{21}$ を表わし; Y^3 は、 $-COOR^{22}$ 、 $-COR^{22}$ または $-SO_2R^{22}$ を表わす;ただし、 R^{21} および R^{22} は互いに独立に、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす]

[0019] [化11]

[0020] [式中、R¹⁰~R¹³は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基 、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表 わす;ただし、R¹⁰とR¹¹そしてR¹²とR¹³はそれぞれ互いに結合して炭素原子数3~6の シクロアルキル基を形成していても良い;xは1もしくは2を表わし; Y^4 は、 $-COOR^{23}$ 、 $-COR^{23}$ または $-SO_2R^{23}$ を表わし; Y^5 は、 $-COOR^{24}$ 、 $-COR^{24}$ または $-SO_2R^{24}$ を表わす;ただし、 R^{23} および R^{24} は互いに独立に、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす]

[0021] [化12]

$$R^{14}-C = C - (C - X) = C - R^{15} - (V)$$

[0022] [式中、R¹⁴~R¹⁹は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす;ただし、R¹⁵とR¹⁶そしてR¹⁷とR¹⁸はそれぞれ互いに結合して炭素原子数3~6のシクロアルキル基を形成していても良い:xは1もしくは2を表わす]

[0023] [化13]

$$R^{25}$$
— $C = C - (C - X) - (VI)$

[0024] [式中、R²⁵、R²⁶およびR²⁷は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、炭素原子数6~12のアリール基、または炭素原子数7~12のアラルキル基を表わし;ただし、R²⁶とR²⁷とは互いに結合して、炭素原子数3~6のシクロアルキル基を形成していても良い;xは1もしくは2を表わし;Wはスルホキシド基、スルホン基、もしくはオギザリル基を表わし;Y⁶は、炭素原子数1~12のアルキル基、アルケニル基、アルキニル基、炭素原子数3~6のシク

ロアルキル基、炭素原子数6〜12のアリール基または炭素原子数7〜12のアラルキル基を表わす]

[0025] [化14]

$$R^{28} - \left(\begin{array}{c} \\ \end{array} \right)_{p} R^{29} \qquad (VII)$$

[0026] [式中、R²⁸は、炭素原子数1〜12のアルキル基、炭素原子数3〜6のシクロアルキル 基、炭素原子数6〜12のアリール基を表わし;R²⁹は、水素原子、炭素原子数1〜12 のアルキル基、炭素原子数3〜6のシクロアルキル基、または炭素原子数6〜12のアリール基を表わし;そしてpは1または2を表わす]。 が含有されていることを特徴とする非水電解液にある。

[0027] 本発明の特定量のビニレンカーボネート化合物と特定量のアルキン化合物とを共に含有する非水電解液を、正極合剤層と負極合剤層の密度を高めて、高容量としたリチウム二次電池に使用した場合には、液枯れの現象が起きることなく、しかもサイクル特性が向上する。この作用効果については明らかではないが、ビニレンカーボネート化合物とアルキン化合物とを併用することにより、強固な被膜が負極上に形成されるものと推定される。この本発明の非水電解液の使用によるサイクル特性の向上は、従来の比較的低密度の正極合剤層と負極合剤層とを用いるリチウム二次電池でも有効に機能する。

発明の効果

[0028] 本発明の非水電解液を用いることにより、リチウム二次電池のサイクル特性が向上する。本発明の非水電解液は、高密度の正極合剤層や負極合剤層を用いる高エネルギー(すなわち、放電容量が大きい)リチウム二次電池のサイクル特性の向上に特に有効である。

発明を実施するための最良の形態

- [0029] 本発明で用いる前記式(I)のビニレンカーボネート化合物において、R¹とR²は、それぞれ独立して水素原子、あるいはメチル基、エチル基、プロピル基、ブチル基などの炭素原子数1ー4のアルキル基を示す。これらの基は、全てがメチル基またはエチル基だけのように同一であってもよく、また、メチル基とエチル基のように異なった慣換基の組合せであっても良い。
- [0030] 前記式(I)で表されるビニレンカーボネート化合物の具体例としては、ビニレンカーボネート、3ーメチルビニレンカーボネート、3ーエチルビニレンカーボネート、3ープロピルビニレンカーボネート、3ープチルビニレンカーボネート、3ーtertープチルビニレンカーボネート、3、4ージメチルビニレンカーボネート、3、4ージエチルビニレンカーボネート、3、4ージプロピルビニレンカーボネート、3、4ージプチルビニレンカーボネート、3、4ージーtertープチルビニレンカーボネート、3ーエチルー4ーメチルビニレンカーボネート、3ーメチルー4ープチルビニレンカーボネート、3ーメチルー4ーtertープチルビニレンカーボネートが最も好ましい。
- [0031] 非水電解液中に含有される式(I)で表されるビニレンカーボネート化合物の含有量は、過度に多いと電池性能が低下することがあり、また、過度に少ないと期待した十分な電池性能が得られない。ビニレンカーボネート化合物の含有量は非水電解液の重量に対して、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.1 重量%以上が最も好ましい。そして、ビニレンカーボネート化合物の含有量は非水電解液の重量に対して10重量%以下が好ましく、5重量%以下がより好ましく、3重量%以下が最も好ましい。従って、ビニレンカーボネート化合物の含有量は非水電解液の重量に対して、0.01~10重量%の範囲にあることが好ましく、0.05~5重量%の範囲にあることがより好ましく、そして0.1~3重量%の範囲にあることが特に好ましい。
- [0032] 次に、本発明において、ビニレンカーボネート化合物と併用されるアルキン化合物 について詳しく説明する。
- [0033] 前記式(II)で表されるアルキン化合物の具体例としては下記の化合物を挙げることができる。
- [0034] (1)Y¹=-COOR²⁰の場合

2-プロピニルメチルカーボネート $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ メチル、x=1]、 1-メチル-2-プロピニルメチルカーボネート $[R^3=$ 水素、 $R^4=$ メチル、 $R^5=$ 水素、 $R^{20}=$ メチル、x=1]、

2-プロピニルエチルカーボネート[$R^3 = R^4 = R^5 = x$ 表、 $R^{20} = x$ チル、x = 1]、

2ープロピニルプロピルカーボネート[$R^3 = R^4 = R^5 =$ 水 来、 $R^{20} =$ プロピル、x = 1]、

2ープロピニルブチルカーボネート[$R^3 = R^4 = R^5 = \lambda x$ 、 $R^{20} = 7 + 1$ 、x = 1]、

2-プロピニルフェニルカーボネート[$R^3 = R^4 = R^5 = x$ 来、 $R^{20} = 7$ ェニル、x = 1]、

2ープロピニルシクロヘキシルカーボネート $[R^3=R^4=R^5=$ 水菜、 $R^{20}=$ シクロヘキシル、x=1]、

2-ブチニルメチルカーボネート $(R^3=$ メチル、 $R^4=R^5=$ 水索、 $R^{20}=$ メチル、x=1)

3-ブチニルメチルカーボネート $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ メチル、x=2]、 2-ペンチニルメチルカーボネート $[R^3=$ エチル、 $R^4=R^5=$ 水素、 $R^{20}=$ メチル、x=1]、

1-メチルー2-ブチニルメチルカーボネート $[R^3=R^4=$ メチル、 $R^5=$ 水素、 $R^{20}=$ メチル、x=1]、

- 1, 1-ジメチルー2-プロピニルメチルカーボネート $\{R^3 = x$ 素、 $R^4 = R^5 = x$ チル、 $R^{20} = x$ チル、x = 1
- 1, 1—エチルメチルー2ープロピニルメチルカーボネート $[R^3 = x$ 素、 $R^4 = x$ チル、 $R^5 = x$ チル、 $R^{20} = x$ チル、x = 1、、
- 1, 1-イソブチルメチルー2-プロピニルメチルカーボネート $[R^3 = x 素、<math>R^4 = 1$ -イソブチル、 $R^5 = x$ チル、 $R^{20} = x$ チル、x = 1]、
- 1, 1-ジメチルー2-ブチニルメチルカーボネート $[R^3=R^4=R^5=$ メチル、 $R^{20}=$ メチル、x=1]、

1ーエチニルシクロヘキシルメチルカーボネート $[R^3 = \chi x, R^4 \geq R^5 \geq \pi$ 結合 = ペンタメチレン、 $R^{20} = \chi x$ 、 $\chi = 1$ 、

- 1, 1-フェニルメチルー2-プロピニルメチルカーボネート $\{R^3 = 水素、<math>R^4 =$ フェニル、 $R^5 =$ メチル、 $R^{20} =$ メチル、x = 1
- 1, 1-ジフェニルー2-プロピニルメチルカーボネート $\{R^3 = \hbar x R^4 = R^5 = D x = L R^{20} = x R^{20} = x$
- 1, 1-ジメチル-2-プロピニルエチルカーボネート[R³=水菜、R⁴=R⁵=メチル、R 20 =エチル、x=1]。
- [0035] (2)Y¹=-COR²⁰の場合

ギ酸2-プロピニル[$R^3 = R^4 = R^5 = R^{20} =$ 水素、x = 1]、

ギ酸1ーメチルー2ープロピニル $[R^3 =$ 水索、 $R^4 =$ メチル、 $R^5 =$ 水索、 $R^{20} =$ 水索、x = 1]、

酢酸2-プロピニル[$R^3 = R^4 = R^5 = x$ 来、 $R^{20} = x$ チル、x = 1]、

酢酸1ーメチルー2ープロピニル $[R^3 = x_{\overline{x}}, R^4 = x_{\overline{x}}, R^5 = x_{\overline{x}}, R^{20} = x_{\overline{x}}, x_{\overline{x}}]$

プロピオン酸2-プロピニル[$R^3 = R^4 = R^5 = \chi$ 素、 $R^{20} = x$ 手ル、x = 1]、

酪酸2-プロピニル[$R^3 = R^4 = R^5 =$ 水素、 $R^{20} =$ プロピル、x = 1]、

安息香酸2-プロピニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ フェニル、x=1]、

シクロヘキシルカルボン酸2-プロピニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ シクロヘキシル、x=1]、

ギ酸2-ブチニル[R^3 =メチル、 R^4 = R^5 = R^{20} =水素、x=1]、

ギ酸3-ブチニル[$R^3 = R^4 = R^5 = R^{20} =$ 水素、x = 2]、

ギ酸2-ペンチニル[R^3 =エチル、 R^4 = R^5 = R^{20} =水素、x=1]、

ギ酸1-メチルー2-ブチニル[$R^3 = R^4 =$ メチル、 $R^5 = R^{20} =$ 水素、x = 1]、

ギ酸1, 1ージメチルー2ープロピニル $[R^3$ =水素、 R^4 = R^5 =メチル、 R^{20} =水素、x=1]、

ギ酸1, 1-エチルメチルー2ープロピニル $[R^3$ =水素、 R^4 =エチル、 R^5 =メチル、 R^{20} =ギ酸、x=1]、

ギ酸1, 1-イソプチルメチルー2ープロピニル $[R^3 = 水素、<math>R^4 = 1$ イソプチル、 $R^5 = 1$ メチル、 $R^{20} = 1$ 0、 $R^{20} = 1$ 1、 $R^{20} = 1$ 1 $R^{20} = 1$ 2 R^{2

ギ酸1, 1-ジメチルー2-ブチニル $\{R^3 = R^4 = R^5 = メチル、R^{20} = 水素、x=1\}$ 、 ギ酸1-エチニルシクロヘキシル $\{R^3 = 水素、R^4 \ge R^5 \ge n$ 結合=ペンタメチレン、 $R^{20} = 水素、x=1\}$ 、

ギ酸1, 1-フェニルメチルー2-プロピニル $[R^3 = x \, \bar{x} \, \bar{x}]$ $R^5 = x \, \bar{x} \, \bar{x}$ $R^5 = x \, \bar{x}$ $R^5 = x \, \bar{x}$ \bar{x} $\bar{$

ギ酸1, 1-ジフェニル-2-プロピニル $\{R^3 = \chi x, R^4 = R^5 = J_{x} = \chi x, R^{20} = \chi x \}$ x=1

酢酸3-ブチニル[$R^3 = R^4 = R^5 = x$ x, $R^{20} = x$ x = 2]、

酢酸2-ペンチニル[R^3 =エチル、 R^4 = R^5 =水素、 R^{20} =メチル、x=1]、

酢酸1-メチル-2-ブチニル[$R^3 = R^4 = メチル、R^5 = 水素、R^{20} = メチル、x=1$]、

酢酸1, 1-ジエチルー2-プロピニル $[R^3 = \Lambda 素、<math>R^4 = R^5 =$ エチル、 $R^{20} =$ メチル、x = 1]、

酢酸1, 1-エチルメチルー2ープロピニル $[R^3 = x$ 素、 $R^4 = x$ チル、 $R^5 = x$ チル、 $R^{20} = x$ チル、x = 1

酢酸1, 1-イソブチルメチルー2-プロピニル $[R^3$ =水素、 R^4 =イソブチル、 R^5 =メチル、 R^{20} =メチル、x=1]、

酢酸1, 1-ジメチルー2-ブチニル $[R^3=R^4=R^5=$ メチル、 $R^{20}=$ メチル、x=1]、 酢酸1-エチニルシクロヘキシル $[R^3=$ 水素、 R^4 と R^5 とが結合=ペンタメチレン、 $R^{20}=$ メチル、x=1]、

酢酸1, 1-フェニルメチルー2-プロピニル $[R^3$ =水素、 R^4 =フェニル、 R^5 =メチル、 R^{20} =メチル、x=1]、

プロピオン酸1, 1-ジメチルー2-プロピニル $\{R^3 = 水素、<math>R^4 = R^5 =$ メチル、 $R^{20} =$ エチル、x=1]。

[0036] (3)Y¹=-SO₂R²⁰の場合

メタンスルホン酸2ープロピニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ メチル、x=1]、 メタンスルホン酸1ーメチルー2ープロピニル $[R^3=$ 水素、 $R^4=$ メチル、 $R^5=$ 水素、 $R^{20}=$ メチル、x=1]、

エタンスルホン酸2ープロピニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ エチル、x=1]、 プロパンスルホン酸2ープロピニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ プロピル、x=1]、 pートルエンスルホン酸2ープロピニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ pートリル、x=1]、 シクロヘキシルスルホン酸2ープロピニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ シクロヘキシル、x=1]、

メタンスルホン酸2ープチニル $[R^3=$ メチル、 $R^4=R^5=$ 水素、 $R^{20}=$ メチル、x=1]、 メタンスルホン酸3ープチニル $[R^3=R^4=R^5=$ 水素、 $R^{20}=$ メチル、x=2]、 メタンスルホン酸2ーペンチニル $[R^3=$ エチル、 $R^4=$ R $^5=$ 水素、 $R^{20}=$ メチル、x=1]

メタンスルホン酸1-メチルー2-ブチニル $[R^3=R^4=$ メチル、 $R^5=$ 水素、 $R^{20}=$ メチル、x=1]、

メタンスルホン酸1, 1ージメチルー2ープロピニル $[R^3$ =水素、 R^4 = R^5 =メチル、 R^{20} =メチル、x=1]、

メタンスルホン酸1, 1-ジェチルー2-プロピニル $[R^3$ =水素、 R^4 = R^5 =エチル、 R^{20} =メチル、x=1]、

メタンスルホン酸1, 1ーエチルメチルー2ープロピニル $[R^3 = x \, \bar{x} \, \bar{x} \, \bar{x}]$ メチル、 $[R^2 = x \, \bar{x} \, \bar{x}]$ 、 $[R^3 = x \, \bar{x}]$ 、 $[R^3 = x$

メタンスルホン酸1, 1ーイソブチルメチルー2ープロピニル $\{R^3 = x$ 素、 $R^4 = 1$ イソブチル、 $R^5 = 1$ メチル、 $R^{20} = 1$

メタンスルホン酸1, $1-\tilde{y}$ メチルー2ープチニル $[R^3=R^4=R^5=$ メチル、 $R^{20}=$ メチル、x=1]、

メタンスルホン酸1-エチニルシクロヘキシル[R³=水素、R⁴とR⁵とが結合=ペンタメ

チレン、 R^{20} =メチル、x=1]、

メタンスルホン酸1, 1-フェニルメチル-2-プロピニル $[R^3$ =水素、 R^4 =フェニル、 R^5 =メチル、 R^{20} =メチル、x=1]、

メタンスルホン酸1, 1-ジフェニル-2-プロピニル $[R^3$ =水素、 R^4 = R^5 =フェニル、 R^{20} =メチル、x=1]、

エタンスルホン酸1, 1-ジメチルー2-プロピニル $[R^3$ =水素、 R^4 = R^5 =メチル、 R^{20} =エチル、x=1]。

- [0037] 前記式(III)で表されるアルキン化合物の具体例としては下記の化合物を挙げることができる。

2ープチン-1, 4ージオール ジエチルジカーボネート[$R^6 = R^7 = R^8 = R^9 =$ 水素、 $R^{21} = R^{22} =$ エチル、x = 1]、

3-ヘキシン-2, 5-ジオール ジメチルジカーボネート[$R^6 = R^8 =$ メチル、 $R^7 = R^9 =$ 水素、 $R^{21} = R^{22} =$ メチル、x = 1]、

3-ヘキシン-2, 5-ジオール ジェチルジカーボネート $(R^6=R^8=$ メチル、 $R^7=R^9=$ 水素、 $R^{21}=R^{22}=$ エチル、x=1〕、

2, 5-ジメチルー3-ヘキシンー2, 5-ジオール ジメチルジカーボネート[$R^6 = R^7 = R^8 = R^9 =$ メチル、 $R^{21} = R^{22} =$ メチル、 $R^{21} = R^{22} =$ メチル、 $R^{21} = R^{22} =$

2, 5-ジメチルー3ーへキシンー2, 5-ジオール ジエチルジカーボネート[$R^6 = R^7 = R^8 = R^9 =$ メチル、 $R^{21} = R^{22} =$ エチル、x = 1]。

[0039] (2) $Y^2 = -COR^{21}$ および $Y^3 = -COR^{22}$ の場合

2-ブチン-1, 4-ジオール ジホルメート $[R^6=R^7=R^8=R^9=R^{21}=R^{22}=$ 水素、x=1]、

2-ブチン-1, 4-ジオール ジアセテート $[R^6=R^7=R^8=R^9=$ 水素、 $R^{21}=R^{22}=$ メチル、x=1]、

2-ブチン-1, 4-ジオール ジプロピオネート[R⁶=R⁷=R⁸=R⁹=水素、R²¹=R²²=

エチル、x=1]、

3-ヘキシン-2, 5-ジオール ジホルメート $(R^6=R^8=$ メチル、 $R^7=R^9=R^{21}=R^{22}=$ 水素、x=1]、

3-ヘキシン-2, 5-ジオール ジアセテート $[R^6=R^8=$ メチル、 $R^7=R^9=$ 水森、 $R^{21}=$ R $^{22}=$ メチル、x=1]、

- 2, 5ージメチルー3ーへキシンー2, 5ージオール ジホルメート $(R^6=R^7=R^8=R^9=$ メチル、 $R^{21}=R^{22}=$ 水菜、x=1)、
- 2, 5ージメチルー3ーへキシンー2, 5ージオール ジアセテート $(R^6 = R^7 = R^8 = R^9 = x^7 + R^2 = x^7 = R^2 = x^7 + R^2 = x^7 =$
- 2, 5ージメチルー3ーへキシンー2, 5ージオール ジプロピオネート $[R^6=R^7=R^8=R^9]$ =メチル、 $R^{21}=R^{22}=$ エチル、x=1]。
- [0040] (3) $Y^2 = -SO_2R^{21}$ および $Y^3 = -SO_2R^{22}$ の場合

2ープチン-1, 4-ジオール ジエタンスルホネート $[R^6=R^7=R^8=R^9=$ 水素、 $R^{21}=$ $R^{22}=$ エチル、x=1]、

3-ヘキシン-2, 5-ジオール ジエタンスルホネート $\{R^6=R^8=$ メチル、 $R^7=R^9=$ 水素、 $R^{21}=R^{22}=$ エチル、x=1

- 2, 5-ジメチルー3-ヘキシンー2, 5-ジオール ジメタンスルホネート $[R^6=R^7=R^8=R^9=$ メチル、 $R^{21}=R^{22}=$ メチル、x=1]、
- 2, 5-ジメチルー3ーへキシンー2, 5-ジオール ジエタンスルホネート $(R^6 = R^7 = R^8 = R^9 = \chi$ チル、 $R^{21} = R^{22} = x$ チル、x = 1]。
- [0041] 前記式(IV)で表されるアルキン化合物の具体例としては下記の化合物を挙げることができる。

- [0042] (1)Y⁴=-COOR²³およびY⁵=-COOR²⁴の場合
 - 2, 4-ヘキサジイン-1, 6-ジオール ジメチルジカーボネート[$R^{10}=R^{11}=R^{12}=R^{13}$ =水素、 $R^{23}=R^{24}=$ メチル、x=1]、
 - 2, 4~~キサジイン-1, 6~ジオール ジエチルジカーボネート[$R^{10} = R^{11} = R^{12} = R^{13} =$ 水 $R^{23} = R^{24} =$ エチル、x = 1]、
 - 2, 7-ジメチルー3, 5-オクタジインー2, 7-ジオール ジメチルジカーボネート[R^{10} = R^{11} = R^{12} = R^{13} =メチル、 R^{23} = R^{24} =メチル、x=1]、
 - 2, 7-ジメチルー3, 5-オクタジインー2, 7-ジオール ジエチルジカーボネート[R^{10} = R^{11} = R^{12} = R^{13} =メチル、 R^{23} = R^{24} =エチル、x=1]。
- [0043] (2)Y⁴=-COR²³およびY⁵=-COR²⁴の場合

 - 2, 4~ヘキサジイン-1, 6~ジオール ジアセテート[$R^{10}=R^{11}=R^{12}=R^{13}=$ 水素、 $R^{23}=R^{24}=$ メチル、x=1]、
 - 2, 4ーヘキサジイン-1, 6ージオール ジプロピオネート $[R^{10}=R^{11}=R^{12}=R^{13}=$ 水素、 $R^{23}=R^{24}=$ エチル、x=1)、
 - 2, 7-ジメチルー3, 5-オクタジインー2, 7-ジオール ジホルメート[$R^{10} = R^{11} = R^{12}$ = $R^{13} =$ メチル、 $R^{23} = R^{24} =$ 水素、x = 1]、
 - 2, 7ージメチルー3, 5ーオクタジインー2, 7ージオール ジアセテート[$R^{10} = R^{11} = R^{12}$ = $R^{13} = \lambda$ チル、 $R^{23} = R^{24} = \lambda$ チル、x = 1]、
 - 2, 7-ジメチルー3, 5-オクタジインー2, 7-ジオール ジプロピオネート[$R^{10} = R^{11} = R^{12} = R^{13} =$ メチル、 $R^{23} = R^{24} =$ エチル、x = 1]。
- [0044] (3) $Y^4 = -SO_{,R}^{23}$ および $Y^5 = -SO_{,R}^{24}$ の場合
 - 2, 4~~キサジイン-1, 6-ジオール ジメタンスルホネート[$R^{10}=R^{11}=R^{12}=R^{13}=$ 水素、 $R^{23}=R^{24}=$ メチル、x=1]、
 - 2, 4~~キサジイン~1, 6~ジオール ジエタンスルホネート[$R^{10}=R^{11}=R^{12}=R^{13}=$ 水素、 $R^{23}=R^{24}=$ エチル、x=1]、
 - 2, 7-ジメチルー3, 5-オクタジインー2, 7-ジオール ジメタンスルホネート[R^{10} =R

- $^{11}=R^{12}=R^{13}=\lambda + \nu, R^{23}=R^{24}=\lambda + \nu, x=1$
- 2, 7-ジメチルー3, 5-オクタジインー2, 7-ジオール ジエタンスルホネート($R^{10}=R^{11}=R^{12}=R^{13}=$ メチル、 $R^{23}=R^{24}=$ エチル、x=1)。
- [0045] 前記式(V)で表されるアルキン化合物の具体例としては下記の化合物を挙げることができる。

ジプロパルギルカーボネート $[R^{14}=R^{15}=R^{16}=R^{17}=R^{18}=R^{19}=$ 水素、x=1]、 $ジ(1-メチルー2-プロピニル) カーボネート<math>[R^{14}=R^{16}=R^{18}=R^{19}=$ 水素、 $R^{15}=R^{17}=$ メチル、x=1]、

ジ(2ープチニル)カーボネート[$R^{14}=R^{19}=$ メチル、 $R^{15}=R^{16}=R^{17}=R^{18}=$ 水素、x=1]、

ジ(3ープチニル)カーボネート[$R^{14}=R^{15}=R^{16}=R^{17}=R^{18}=R^{19}=$ 水素、x=2]、 ジ(2ーペンチニル)カーボネート[$R^{14}=R^{19}=$ エチル、 $R^{15}=R^{16}=R^{17}=R^{18}=$ 水素、x=1]、

ジ(1ーメチルー2ーブチニル)カーボネート[$R^{14}=R^{15}=R^{16}=R^{19}=$ メチル、 $R^{17}=R^{18}=$ 本素、x=1]、

2ープロピニル 2ーブチニルカーボネート $[R^{14}=R^{15}=R^{16}=R^{17}=R^{18}=$ 水素、 $R^{19}=$ メチル、x=1

ジ(1, 1ージメチルー2ープロピニル)カーボネート[$R^{14}=R^{19}=$ 水素、 $R^{15}=R^{16}=R^{17}=$ $R^{18}=$ メチル、x=1]、

ジ(1, 1ージエチルー2ープロピニル)カーボネート[$R^{14}=R^{19}=$ 水素、 $R^{15}=R^{16}=R^{17}=$ $R^{18}=$ エチル、x=1]、

ジ(1, 1-エチルメチルー2ープロピニル)カーボネート[$R^{14}=R^{19}=$ 水素、 $R^{15}=R^{17}=$ エチル、 $R^{16}=R^{18}=$ メチル、x=1]、

ジ(1, 1ーイソブチルメチルー2ープロピニル)カーボネート $(R^{14}=R^{19}=$ 水素、 $R^{15}=R^{17}=$ イソブチル、 $R^{16}=R^{18}=$ メチル、x=1)、

ジ(1, 1ージメチルー2ーブチニル)カーボネート[$R^{14}=R^{15}=R^{16}=R^{17}=R^{18}=R^{19}=$ メチル、x=1]、

ジ(1-エチニルシクロヘキシル)カーボネート[R14=R19=水素、R15とR16とが結合=

ペンタメチレン、 R^{17} と R^{18} とが結合=ペンタメチレン、x=1]。

- [0046] 前記式(VI)で表されるアルキン化合物の具体例としては下記の化合物を挙げることができる。
- [0047] (1)Wがスルホキシド基の場合

ジ(2ープロピニル) サルファイト[$R^{25}=R^{26}=R^{27}=$ 水菜、 $Y^{6}=2$ -プロピニル、x=1]

ジ(1ーメチルー2ープロピニル) サルファイト[R^{25} =水素、 R^{26} =メチル、 R^{27} =水素、 Y^{6} =1ーメチルー2ープロピニル、x=1]、

ジ(2ープチニル) サルファイト[R^{25} =メチル、 R^{26} = R^{27} =水菜、 Y^{6} =2ープチニル、X=1]、

ジ(3ープチニル) サルファイト $[R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=3$ ープチニル、x=2]、 ジ(2ーペンチニル) サルファイト $[R^{25}=$ エチル、 $R^{26}=$ R $^{27}=$ 水素、 $Y^6=$ 2ーペンチニル、x=1]、

ジ(1ーメチルー2ーブチニル) サルファイト $[R^{25}=R^{26}=$ メチル、 $R^{27}=$ 水素、 $Y^{6}=1$ ーメチルー2ープチニル、x=1]、

ジ(1, 1-ジメチル-2-プロピニル) サルファイト $[R^{25}=$ 水素、 $R^{26}=R^{27}=$ メチル、 $Y^{6}=1, 1-ジメチル-2-プロピニル、<math>x=1$]、

ジ(1, 1-ジェチル-2-プロピニル) サルファイト[R^{25} =水素、 R^{26} = R^{27} =エチル、 Y^{6} =1, 1-ジェチル-2-プロピニル、<math>x=1]、

ジ(1-xチル-1-xチル-2-プロピニル)サルファイト $[R^{25}=x 素 R^{26}=x + x]$ 、 $R^{27}=x$ チル、 $Y^{6}=1-x$ チルー1-メチルー2-プロピニル、x=1]、

ジ(1ーイソブチルー1ーメチルー2ープロピニル) サルファイト $[R^{25}=$ 水素、 $R^{26}=$ イソブチル、 $R^{27}=$ メチル、 $Y^6=$ 1ーイソブチルー1ーメチループロピニル、x=1 〕、

ジ(1, 1ージメチルー2ープチニル) サルファイト[$R^{25}=R^{26}=R^{27}=$ メチル、 $Y^{6}=1$, 1ージメチルー2ープチニル、x=1]、

ジ(1-エチニルシクロヘキシル)サルファイト[R^{25} =水素、 R^{26} と R^{27} とが結合=ペンタメチレン、 Y^6 =1-エチニルシクロヘキシル、x=1]、

ジ(1ーメチルー1ーフェニルー2ープロピニル) サルファイト $[R^{25}=$ 水素、 $R^{26}=$ フェニル

、 R^{27} =メチル、 Y^6 =1-メチルー1-フェニルー2-プロピニル、x=1〕、 ジ(1, 1-ジフェニルー2-プロピニル)サルファイト $(R^{25}$ =水素、 R^{26} = R^{27} =フェニル、 Y^6 =1, 1-ジフェニルー2-プロピニル、x=1〕、

メチル 2ープロピニルサルファイト $[R^{25}=R^{26}=R^{27}=$ 水森、 $Y^6=$ メチル、x=1]、メチル 1-メチルー2-プロピニルサルファイト $[R^{25}=$ 水森、 $R^{26}=$ メチル、 $R^{27}=$ 水森、 $Y^6=$ メチル、x=1]、

エチル 2ープロピニルサルファイト[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^{6}=$ エチル、x=1]、フェニル 2ープロピニルサルファイト[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^{6}=$ フェニル、x=1]

シクロヘキシル 2ープロピニルサルファイト[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^{6}=$ シクロヘキシル、x=1]。

[0048] (2)Wがスルホン基の場合

ジ(2ープロピニル) サルフェート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^{6}=2$ -プロピニル、x=1]

ジ(1ーメチルー2ープロピニル) サルフェート $[R^{25} =$ 水素、 $R^{26} =$ メチル、 $R^{27} =$ 水素、 $Y^{6} = 1$ ーメチルー2ープロピニル、X = 1]、

ジ(3ーブチニル) サルフェート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=3$ -ブチニル、x=2]、 ジ(2ーペンチニル) サルフェート[$R^{25}=$ エチル、 $R^{26}=$ $R^{27}=$ 水素、 $Y^6=$ 2-ペンチニル、x=1]、

ジ(1ーメチルー2ーブチニル)サルフェート $[R^{25}=R^{26}=$ メチル、 $R^{27}=$ 水素、 $Y^{6}=1$ ーメチルー2ーブチニル、x=1]、

ジ(1, 1ージメチルー2ープロピニル) サルフェート[R^{25} =水素、 R^{26} = R^{27} =メチル、 Y^{6} =1, 1ージメチルー2ープロピニル、x=1]、

ジ(1, 1ージエチルー2ープロピニル) サルフェート[R^{25} =水素、 R^{26} = R^{27} =エチル、 Y^{6} =1, 1ージエチルー2ープロピニル、X=1]、

ジ(1-エチル-1-メチル-2-プロピニル)サルフェート[R²⁵=水素、R²⁶=エチル、R

 27 = 1 27 = 1 $^$

ジ(1-イソプチル-1-メチル-2-プロピニル)サルフェート $\{R^{25}=$ 水素、 $R^{26}=$ イソブチル、 $R^{27}=$ メチル、 $Y^6=1-$ イソプチル-1-メチル-2-プロピニル、x=1 $\}$ 、

ジ(1, 1ージメチルー2ープチニル) サルフェート[$R^{25}=R^{26}=R^{27}=$ メチル、 $Y^{6}=1$, 1ージメチルー2ープチニル、x=1]、

ジ(1ーエチニルシクロヘキシル)サルフェート $[R^{25}=$ 水菜、 R^{26} と R^{27} とが結合=ペンタメチレン、 $Y^{6}=1$ ーエチニルシクロヘキシル、x=1]、

ジ(1ーメチルー1ーフェニルー2ープロピニル) サルフェート[R^{25} =水素、 R^{26} =フェニル、 R^{27} =メチル、 Y^{6} =1ーメチルー1ーフェニルー2ープロピニル、x=1]、

ジ(1, 1ージフェニルー2ープロピニル) サルフェート $[R^{25}=$ 水x、 $R^{26}=R^{27}=$ フェニル、 $Y^{6}=1, 1$ ージフェニルー2ープロピニル、x=1]、

メチル 2ープロピニルサルフェート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=$ メチル、x=1]、メチル 1- メチルー2ープロピニルサルフェート[$R^{25}=$ 水素、 $R^{26}=$ メチル、 $R^{27}=$ 水素、 $Y^6=$ メチル、x=1]、

エチル 2ープロピニルサルフェート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=$ エチル、x=1]、フェニル 2ープロピニルサルフェート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=$ フェニル、x=1]

シクロヘキシル 2ープロピニルサルフェート $[R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=$ シクロヘキシル、x=1]。

[0049] (3)Wがオギザリルの場合

ジ(2ープロピニル)オギザレート[R^{25} = R^{26} = R^{27} =水素、 Y^{6} =2ープロピニル、x=1]

ジ(1ーメチルー2ープロピニル)オギザレート $[R^{25}=$ 水素、 $R^{26}=$ メチル、 $R^{27}=$ 水素、 $Y^{6}=$ 1ーメチルー2ープロピニル、X=1]、

ジ(2ーブチニル)オギザレート[R^{25} =メチル、 R^{26} = R^{27} =水素、 Y^{6} =2ーブチニル、X=1]、

ジ(3ーブチニル)オギザレート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=3$ -ブチニル、x=2]、 ジ(2ーペンチニル)オギザレート[$R^{25}=x$ チル、 $R^{26}=R^{27}=$ 水素、 $Y^6=2$ -ペンチニ $\nu, x=1$

ジ(1ーメチルー2ープチニル)オギザレート $[R^{26}=R^{26}=$ メチル、 $R^{27}=$ 水素、 $Y^{6}=1$ ーメチルー2ープチニル、x=1]、

ジ(1, 1ージメチルー2ープロピニル)オギザレート[R^{25} =水素、 R^{26} = R^{27} =メチル、 Y^{6} =1, 1ージメチルー2ープロピニル、x=1]、

ジ(1ーエチルー1ーメチルー2ープロピニル)オギザレート $[R^{25}=$ 水素、 $R^{26}=$ エチル、 $R^{27}=$ メチル、 $Y^6=1-$ エチルー1ーメチルー2ープロピニル、x=1]、

ジ(1ーイソブチルー1ーメチルー2ープロピニル)オギザレート $[R^{25}=$ 水索、 $R^{26}=$ イソブチル、 $R^{27}=$ メチル、 $Y^{6}=$ 1ーイソブチルー1ーメチルー2ープロピニル、x=1]、

ジ(1, 1-ジメチルー2-ブチニル)オギザレート[$R^{25}=R^{26}=R^{27}=$ メチル、 $Y^{6}=1, 1$ -ジメチルー2-ブチニル、x=1]、

ジ(1-エチニルシクロヘキシル)オギザレート $[R^{25}=$ 水素、 R^{26} と R^{27} が結合=ペンタメチレン基、 $Y^6=1-$ エチニルシクロヘキシル、x=1]、

ジ(1ーメチルー1ーフェニルー2ープロピニル)オギザレート $\{R^{25}$ =水素、 R^{26} =フェニル、 R^{27} =メチル、 Y^6 =1ーメチルー1ーフェニルー2ープロピニル、x=1 $\}、$

ジ(1, 1-ジフェニル-2-プロピニル)オギザレート $[R^{25}=$ 水素、 $R^{26}=R^{27}=$ フェニル、 $Y^{6}=1, 1-ジフェニル-2-プロピニル、<math>x=1$]、

メチル 2ープロピニルオギザレート $[R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=$ メチル、x=1〕、メチル 1-メチルー2-プロピニルオギザレート $[R^{25}=$ 水素、 $R^{26}=$ メチル、 $R^{27}=$ 水素、 $Y^6=$ メチル、x=1〕、

エチル 2ープロピニルオギザレート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=$ エチル、x=1]、フェニル 2ープロピニルオギザレート[$R^{25}=R^{26}=R^{27}=$ 水素、 $Y^6=$ フェニル、x=1]

シクロヘキシル 2ープロピニルオギザレート $[R^{25}=R^{26}=R^{27}=$ 水素、 $Y^{6}=$ シクロヘキシル、x=1]。

[0050] 前記式(VII)で表されるアルキン化合物の具体例としては下記の化合物を挙げるこ

とができる。

2-ペンチン[$R^{28} =$ メチル、 $R^{29} =$ エチル、p=1]、

1-ヘキシン $(R^{28} = \mathcal{I} + \mathcal{I})$ 、 $R^{29} = \mathcal{I}$ 水素、p=1

2ーヘキシン $[R^{28} = \mathcal{T} p \mathcal{L} p]$ 、 $R^{29} = \lambda \mathcal{L} p$ 、p = 1]、

3-ヘキシン[$R^{28}=R^{29}=$ エチル、p=1]、

1-ヘプチン[R²⁸=ペンチル、R²⁹=水菜、p=1]、

1-オクチン[R²⁸=ヘキシル、R²⁹=水素、p=1]、

2-オクチン[$R^{28} = メチル、<math>R^{29} = ペンチル、p=1$]、

4ーオクチン[$R^{28} = R^{29} = プロピル、p=1$]、

1-デシン[R²⁸=オクチル、R²⁹=水菜、p=1]、

1-ドデシン[R²⁸=デシル、R²⁹=水素、p=1]、

フェニルアセチレン[R^{28} =フェニル、 R^{29} =水素、p=1]、

1-フェニルー1-プロピン[R^{28} =フェニル、 R^{29} =メチル、p=1]、

1-フェニルー1-ブチン[R^{28} =フェニル、 R^{29} =エチル、p=1]、

1-フェニルー1-ペンチン $[R^{28}=フェニル, R^{29}=プロピル, p=1]$

1-フェニルー1-ヘキシン $[R^{28}=フェニル、R^{29}=ブチル、p=1]$ 、

ジフェニルアセチレン[$R^{28} = R^{29} = フェニル、p=1$]、

4-エチニルトルエン[R^{28} =p-トリル、 R^{29} =水素、p=1]、

4—tert—ブチルフェニルアセチレン[R^{28} =4—tert—ブチルフェニル、 R^{29} =水素、p=1]、

1-エチニル-4-フルオロベンゼン[R^{28} =p-フルオロフェニル、 R^{29} =水素、p=1]

1,4ージエチニルベンゼン $[R^{28}=p$ ーエチニルフェニル、 $R^{29}=$ 水素、p=1]、 ジシクロヘキシルアセチレン $[R^{28}=R^{29}=$ シクロヘキシル、p=1]、1,4ージフェニル ブタジイン $[R^{28}=R^{29}=$ フェニル、p=2]。

[0051] 非水電解液中における本発明で用いるアルキン化合物の含有量は、過度に多いと 、電解液の電導度などが変わり電池性能が低下することがあるため、電解液の重量 に対して10重量%以下が好ましく、5重量%以下がより好ましく、3重量%以下が最も 好ましい。また、過度に少ないと、十分な被膜が形成されず、期待した電池特性が得られないので、電解液の重量に対して0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.1重量%以上が最も好ましい。従って、アルキン化合物の含有量は非水電解液の重量に対して、0.01~10重量%の範囲にあることが好ましく、0.05~5重量%の範囲にあることがより好ましく、そして0.1~3重量%の範囲にあることが特に好ましい。

- 本発明の非水電解液で使用される非水溶媒の例としては、エチレンカーボネート([0052] EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニルエチレンカ ーボネート(VEC)などの環状カーボネート類や、yーブチロラクトン(GBL)、yーバ レロラクトン(GVL)、αーアンゲリカラクトン(AGL)などのラクトン類、ジメチルカーボ ネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、 メチルプロピルカーボネート(MPC)、ジプロピルカーボネート(DPC)、メチルブチル カーボネート(MBC)、ジブチルカーボネート(DBC)などの鎖状カーボネート類、テ トラヒドロフラン、2ーメチルテトラヒドロフラン、1,4ージオキサン、1,2ージメトキシエタ ン、1, 2-ジエトキシエタン、1, 2-ジブトキシエタンなどのエーテル類、アセトニトリル 、アジポニトリルなどのニトリル類、プロピオン酸メチル、ピバリン酸メチル、ピバリン酸 ブチル、ピバリン酸オクチルなどの鎖状エステル類、ジメチルホルムアミドなどのアミド 類、リン酸トリメチルやリン酸トリオクチルなどのリン酸エステル類、1、3-プロパンスル トン、1, 4ープロパンスルトン、ジビニルスルホン、1, 4ーブタンジオールジメタンスルホ ネート、グリコールサルファイト、プロピレンサルファイト、グリコールサルフェート、プロ ピレンサルフェートなどのS=O含有化合物などが挙げられる。
- [0053] これらの非水溶媒の組み合わせは、例えば、環状カーボネート類と鎖状カーボネート類との組み合わせ、環状カーボネート類とラクトン類との組み合わせ、環状カーボネート類と強状カーボネート類と鎖状エステルとの組み合わせ、環状カーボネート類と鎖状カーボネート類と・カーボネート類との組み合わせ、環状カーボネート類と鎖状エステル類との組み合わせ、環状カーボネート類と鎖状エステル類との組み合わせなど種々の組み合わせが挙げられる。環状カーボネート類と鎖状エステルカーボネート類との組み合わせあるいは環状カーボネート類とラクトン類と鎖状エステ

ルとの組み合わせが好ましい。環状カーボネートと鎖状カーボネートとの割合は、容量比率で1:9~10:0、好ましくは2:8~7:3とするのがよい。

- [0054] 本発明の非水電解液で使用される電解質塩としては、例えば、LiPF。LiBF、Li ClO、LiN(SO_CF3)2、LiN(SO_CF5)2、LiC(SO_CF3)3、LiPF4(CF3)2、LiPF3(CF3)3、LiPF3(CF3)3、LiPF3(iso-C3F7)3、LiPF5(iso-C3F7)などの鎖状のアルキル基を含有するリチウム塩や、(CF2)2(SO2)2 NLi、(CF2)3(SO2)2 NLiなどの環状のアルキレン鎖を含有するリチウム塩が挙げられる。これらの電解質塩は、一種類で使用してもよく、二種類以上組み合わせて使用してもよい。これら電解質塩が溶解されて使用される濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.5 M以上がより好ましく、0.7M以上が最も好ましい。また、これら電解質塩の濃度は、3M以下が好ましく、2.5M以下がより好ましく、2M以下が最も好ましい。
- [0055] 本発明の非水電解液は、例えば、前記したエチレンカーボネート、プロピレンカーボネート、メチルエチルカーボネートのような非水溶媒を混合し、これに前記の電解質塩を溶解し、ビニレンカーボネート化合物およびアルキン化合物を溶解することにより得られる。
- [0056] また、本発明の非水電解液に、例えば、空気や二酸化炭素を含ませることにより、 電解液の分解によるガス発生の抑制や、サイクル特性や保存特性などの電池性能を 向上させることができる。
- [0057] 本発明において、非水電解液中に二酸化炭素または空気を含有(溶解)させる方法としては、(1)あらかじめ非水電解液を電池内に注液する前に空気または二酸化炭素含有ガスと接触させて含有させる方法、(2)注液後、電池封口前または後に空気または二酸化炭素含有ガスを電池内に含有させる方法のいずれでもよく、またこれらを組み合わせて使用することもできる。空気や二酸化炭素含有ガスは、極力水分を含まないものが好ましく、露点−40℃以下であることが好ましく、露点−50℃以下であることが特に好ましい。
- [0058] さらに、本発明の非水電解液において、例えば、シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物(例、1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン)、ビフ

エニル、ターフェニル(o-体、m-体、p-体)、ジフェニルエーテル、2ーフルオロジフェニルエーテル、4ージフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン(o-体、m-体、p-体)、2ーフルオロビフェニル、4ーフルオロビフェニル、2,4ージフルオロアニソール、tertーブチルベンゼン、1,3ージーtertーブチルベンゼン、1ーフルオロー4ーtertーブチルベンゼン、tertーアミルベンゼン、4ーtertーブチルビフェニル、lertーアミルビフェニル、oーターフェニルの部分水素化物(1,2ージシクロヘキシルベンゼン、2ーフェニルビシクロヘキシル、1,2ージフェニルシクロヘキサン、oーシクロヘキシルビフェニル、以下、m-体、p-体の場合も同様)、m-ターフェニルの部分水素化物、p-ターフェニルの部分水素化物等の芳香族化合物から選ばれる少なくとも一種を非水電解液の重量に対して0.1〜5重量%使用することにより過充電時の電池の安全性を確保することができる。

- [0059] 芳香族化合物は二種類以上組合せて用いてもよく、その場合、例えば、ビフェニルとシクロへキシルベンゼン、シクロへキシルベンゼンとtertーブチルベンゼン、シクロへキシルベンゼンとtertーアミルベンゼン、ビフェニルとフルオロベンゼン、シクロへキシルベンゼンとフルオロベンゼン、2,4ージフルオロアニソールとシクロへキシルベンゼン、シクロへキシルベンゼンと1ーフルオロー4ーtertーブチルベンゼン、シクロへキシルベンゼンとフルオロシクロへキシルベンゼン化合物、フルオロシクロへキシルベンゼン化合物とフルオロジーのへキシルベンゼン化合物、フルオロシクロへキシルベンゼン化合物のように組み合わせることができ、混合比率(重量比)は50:50~10:90が好ましく、50:50~20:80がより好ましく、50:50~25:75が最も好ましい。なかでも、ビニレンカーボネート化合物とアルキン化合物とを併用する非水電解液系では、前記芳香族化合物のうち一種以上がフッ素置換された芳香族化合物であることが好ましく、フルオロシクロへキシルベンゼン化合物を含有することが特に好ましい。
- [0060] 本発明の非水電解液は、二次電池、特にリチウム二次電池の構成部材として使用される。二次電池を構成する非水電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。
- [0061] 例えば、正極活物質としてはコバルト、マンガン、ニッケルを含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、一種類だけを選択して使用し

- [0062] 正極の導電剤として、化学変化を起こさない電子伝導材料であれば何でも良い。 例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チェンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類などが挙げられる。また、グラファイト類とカーボンブラック類を適宜混合して用いても良い。 導電剤の正極合剤への添加量は、1~10重量%が好ましく、特に2~5重量%が好ましい。
- [0063] 正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤 およびポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレン とブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して正極合剤とした後、この 正極材料を集電体としてのアルミニウム箔やステンレス製のラス板に圧延して、50℃ 〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製される。
- [0064] 負極は、リチウムを吸蔵・放出可能な材料が使用され、例えば、リチウム金属、リチウム合金、および炭素材料「熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕、スズ、スズ化合物、ケイ素、ケイ素化合物が使用される。
- [0065] 負極(負極活物質)としては、炭素材料においては、特に、格子面(002)の面間隔 (d₀₀₂)が0.340nm以下であることが好ましく、0.335~0.340nmである黒鉛型結晶構造を有するグラファイト類を使用することがより好ましい。これらの負極活物質は

、一種類だけを選択して使用しても良いし、2種類以上を組み合わせて用いても良い。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPD M)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用される。負極の製造方法は、特に限定されず、上記の正極の製造方法と同様な方法により製造することができる。

[0066]本発明のリチウム二次電池の構造は特に限定されるものではなく、正極、負極およ び単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロー ル状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。な お、セパレータとしては公知のポリプロピレン、ポリエチレン等のポリオレフィンの微多 孔膜、織布、不織布などが使用される。また、電池用セパレータは単層多孔質フィル ム及び積層多孔質フィルムのいずれの構成であっても良い。本発明で使用される電 池用セパレータは、製造条件によっても異なるが、透気度が50〜1000秒/100cc が好ましく、100~800秒/100ccがより好ましく、300~500秒/100ccが最も好 ましい。透気度が高すぎるとリチウムイオン伝導性が低下するために電池用セパレー タとしての機能が十分でなく、低すぎると機械的強度が低下するので上記範囲とする のが好ましい。また、空孔率は30〜60%が好ましく、35〜55%がより好ましく、40〜 50%が最も好ましい。特に空孔率をこの範囲とすると、電池の容量特性が向上する ので好ましい。さらに、電池用セパレータの厚みはできるだけ薄い方がエネルギー密 度を高くできるため好ましいが、機械的強度、性能等の両面から5~50μmが好まし ζ 、10〜40 μ mがより好ましく、15〜25 μ mが最も好ましい。

[0067] 本発明の非水電解液は、特に正極合剤層と負極合剤層とが高い密度を持つように 形成されたリチウム二次電池において、特に有効である。特に、アルミニウム箔上に 形成される正極合剤層の密度は3.2~4.0g/cm³が好ましく、更に好ましくは3.3 ~3.9g/cm³、最も好ましくは3.4~3.8g/cm³である。正極合剤密度が4.0g/ cm³を超えて大きくなると、実質上、作製が困難となる。一方、銅箔上に形成される負 極合剤層の密度は1.3~2.0g/cm³、更に好ましくは1.4~1.9g/cm³、最も好 ましくは1.5~1.8g/ cm^3 の間である。負極合剤層の密度が2.0g/ cm^3 を超えて大きくなると、実質上、作製が困難となる。

- [0068] 本発明における好適な正極の電極層の厚さ(集電体片面当たり)は、30~120 μ m、好ましくは50~100 μ mであり、負極の電極層の厚さ(集電体片面当たり)は、1 ~100 μ m、好ましくは3~70 μ mである。電極材料層の厚みが好適な前記範囲より 薄いと、電極材料層での活物質量が低下するために電池容量が小さくなる。一方、その厚さが前記範囲より厚いと、サイクル特性やレート特性が低下するので好ましくない。
- [0069] また、リチウム二次電池の構成は特に限定されるものではなく、正極、負極、多孔膜セパレータおよび電解液を有するコイン電池や円筒型電池、角型電池、積層型電池などが一例として挙げられる。
- [0070] 本発明におけるリチウム二次電池は、充電終止電圧が4.2Vより大きい場合にも長期間にわたり、優れたサイクル特性を有しており、特に充電終止電圧が4.3V以上のような場合にも優れたサイクル特性を有している。放電終止電圧は、2.5V以上とすることができ、さらに2.8V以上とすることができる。電流値については特に限定されるものではないが、通常0.1~3Cの定電流放電で使用される。また、本発明におけるリチウム二次電池は、-40℃以上で充放電することができるが、好ましくは0℃以上である。また、100℃以下で充放電することができるが、好ましくは80℃以下である。
- [0071] 本発明におけるリチウム二次電池の内圧上昇の対策として、封口版に安全弁を用いることができる。その他、電池缶やガスケットなどの部材に切り込みを入れる方法も利用することができる。この他、従来から知られている種々の安全素子(過電流防止素子として、ヒューズ、バイメタル、PTC素子の少なくとも1種以上)を備えつけていることが好ましい。
- [0072] 本発明におけるリチウム二次電池は必要に応じて複数本を直列および/または並列に組み電池パックに収納される。電池パックには、PTC素子、温度ヒューズ、ヒューズおよび/または電流遮断素子などの安全素子のほか、安全回路(各電池および/または組電池全体の電圧、温度、電流などをモニターし、電流を遮断する機能を有する回路)を設けても良い。

実施例

[0073] 本発明について、次に、実施例および比較例を挙げてより具体的に説明する。

[0074] [実施例1]

〔非水性解液の調製〕

EC:PC:MEC(容量比)=30:5:65の非水溶媒を調製し、これに電解質塩として LiPF を1Mの濃度になるように溶解して非水電解液を調製した後、この非水電解液 に対して2-プロピニルメチルカーボネート[式(II)のアルキン化合物]を0.1重量% そしてビニレンカーボネートを3重量%となるように加えた。

[0075] 〔リチウム二次電池の作製および電池特性の測定〕

LiCoO₂(正極活物質)を94重量%、アセチレンブラック(導電剤)を3重量%、ポリフッ化ビニリデン(結着剤)を3重量%の割合で混合し、これに1ーメチルー2ーピロリドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処理して正極合剤層を形成して正極を得た。別に、格子面(002)の面間隔(d₀₀₂)が0.335nmである黒鉛型結晶構造を有する人造黒鉛(負極活物質)を95重量%、ポリフッ化ビニリデン(結着剤)を5重量%の割合で混合し、これに1ーメチルー2ーピロリドン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極合剤層を形成して負極を得た。そして、電池容器内に、正極、負極、そしてポリエチレン微多孔性フィルムのセパレータ(厚さ20μm)を収容し、前記の非水電解液を注入した後、電池封口前に露点が一60℃の空気を電池内に含有させて18650サイズの円筒電池(直径18mm、高さ65mm)を作製した。電池には、圧力開放口および内部電流遮断装置(PTC素子)を設けた。この時、正極合剤層の密度は、3.5g/cm³であり、負極合剤層の密度は1.6g/cm³であった。正極の合剤層の厚さ(集電体片面当たり)は70μmであり、負極の合剤層の厚さ(集電体片面当たり)は70μmであり、負極の合剤層の厚さ(集電体片面当たり)は70μmであり、負極の合剤層の厚さ(集電体片面当たり)は70μmであり、負極の合剤層の厚さ(集電体片面当たり)は70μmであり、負極の合剤層の厚さ(集電体片面当たり)は60μmであった。

[0076] この18650電池を用いて、高温(60℃)下、2. 2A(1C)の定電流で4. 2Vまで充電した後、終止電圧4. 2Vとして定電圧下に合計3時間充電した。次に2. 2A(1C)の定電流下、終止電圧3. 0Vまで放電し、この充放電を繰り返した。初期放電容量(mAh)は、ビニレンカーボネートを3重量%含有し、アルキン化合物を添加しない1M

LiPF₆-EC/PC/MEC(容量比30/5/65)を非水電解液として用いた場合(後記の比較例1)とほぼ同等であり、300サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は79.2%であった。初期放電容量(相対値)と300サイクル後の放電容量維持率を表1に示す。

[0077] [実施例2~4]

添加剂として、2-プロピニルメチルカーボネートを非水電解液に対して、それぞれ 0.5 重量%、1重量%、あるいは5重量%使用したほかは、実施例1と同様に非水電 解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。 初期放電容量(相対値)と300サイクル後の放電容量維持率を表1に示す。

[0078] [実施例5]

添加剤として、2-プロピニルメチルカーボネートおよびビニレンカーボネートを非水 電解液に対して、それぞれ1重量%および0.1重量%使用したほかは、実施例1と 同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試 験を行った。初期放電容量(相対値)と300サイクル後の放電容量維持率を表1に示 す。

[0079] [実施例6]

添加剤として、2-プロピニルメチルカーボネートおよびビニレンカーボネートを非水 電解液に対して、それぞれ1重量%および5重量%使用したほかは、実施例1と同様 に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を 行った。初期放電容量(相対値)と300サイクル後の放電容量維持率を表1に示す。

[0080] [比較例1]

添加剤として、2-プロピニルメチルカーボネートを使用せず、ビニレンカーボネートを非水電解液に対して3重量%含有させたほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。初期放電容量(相対値)と300サイクル後の放電容量維持率を表1に示す。

[0081] [比較例2]

添加剤として、ビニレンカーボネートを使用せず、2一プロピニルメチルカーボネートを非水電解液に対して3重量%含有させたほかは、実施例1と同様に非水電解液を

調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。初期放電容量(相対値)と300サイクル後の放電容量維持率を表1に示す。

[0082] [表1]

表1

. •		2ープロピニルメチル カーボネート(重量 %)	初期放電容量	放電容量維持率(%)
実施例1	3	0. 1	1. 00	79. 2
実施例2	3	0. 5	1. 00	82. 1
実施例3	3	1	1. 00	82. 5
実施例4	3	5	1. 00	81. 1
実施例5	0. 1	1	1. 00	78. 3
実施例6	5	1	1. 00	80. 1
比較例1	3	0	1. 00	64. 3
比較例2	0	3	1. 00	65. 8

[0083] 表1の結果から、本発明のビニレンカーボネート化合物とアルキン化合物との非水 電解液への併用添加により、高い放電容量維持率(サイクル特性)が達成できている ことが分る。

[0084] [実施例7]

アルキン化合物としてメタンスルホン酸2-プロピニル[式(II)の化合物]を1重量% 使用したほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池 を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:82.7

[0085] [実施例8]

アルキン化合物として2-ブチン-1, 4-ジオール ジメチルジカーボネート[式(III) の化合物]を1重量%使用したほかは、実施例1と同様に非水電解液を凋製して186 50サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:81.3

[0086] [実施例9]

アルキン化合物として2-ブチン-1, 4-ジオール ジメタンスルホネート[式(III)の 化合物]を1重量%使用したほかは、実施例1と同様に非水電解液を調製して1865 0サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:81.4

[0087] [実施例10]

アルキン化合物として2,4-ヘキサジイン-1,6-ジオール ジメチルジカーボネート[式(IV)の化合物]を1重量%使用したほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:80.3

[0088] [実施例11]

アルキン化合物としてジプロペルギルカーボネート[式(V)の化合物]を0.5重量% 使用したほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池 を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:80.5

[0089] 「実施例12]

アルキン化合物としてジ(2-プロピニル)サルファイト[式(VI)の化合物]を0.5重量

%使用したほかは、火施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:82.5

[0090] [実施例13]

アルキン化合物としてジ(2-プロピニル)オギザレート[式(VI)の化合物]を0.2重量%使用したほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:81.7

[0091] [実施例14]

アルキン化合物としてフェニルアセチレン[式(VII)の化合物]を0.1重量%使用したほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:80.4

[0092] [実施例15]

アルキン化合物としてメタンスルホン酸2-プロピニル[式(II)の化合物]を1重量% 使用し、正極(正極活物質)として、 $LiCoO_2$ に代えて $LiMn_2O_4$ を使用したほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):0.87

300サイクル後の放電容量維持率:80.8

[0093] 「実施例16]

EC:DMC:DEC(容量比) = 30:20:50の非水溶媒を調製し、これに電解質塩としてLiPF。およびLiN(SO₂CF₃)₂をそれぞれ、0.9M、0.1Mの濃度になるように溶解して非水電解液を調製した後、さらに1、3-プロパンスルトン(PS)およびシクロヘキシルベンゼン(CHB)をそれぞれ非水電解液に対して1重量%、2重量%添加し、

さらに添加剤として、2-プロピニルメチルカーボネート[式(II)のアルキン化合物] およびビニレンカーボネートを非水電解液に、それぞれ1重量%含有させたほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:82.2

[0094] [実施例17]

EC:DMC:DEC(容量比)=30:20:50の非水溶煤を調製し、これに電解質塩としてLiPF。を1Mの濃度になるように溶解して非水電解液を調製した後、さらにビフェニル(BP)およびシクロヘキシルベンゼン(CHB)をそれぞれ非水電解液に対して0.5重量%、2重量%添加し、さらに添加剤として、ジ(2-プロピニル)サルファイト[式(VI)のアルキン化合物]およびビニレンカーボネートを非水電解液に、それぞれ0.5重量%、1重量%含有させたほかは、実施例1と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:81.1

[0095] 「実施例18]

EC:DMC:DEC(容量比)=30:20:50の非水溶媒を調製し、これに電解質塩としてLiPFを1Mの濃度になるように溶解して非水電解液を調製した後、さらにtertーブチルベンゼン(TBB)およびシクロヘキシルベンゼン(CHB)をそれぞれ非水電解液に対して1重量%添加し、さらに添加剤として、ジ(2ープロピニル)サルファイト[式(VI)のアルキン化合物]およびビニレンカーボネートを非水電解液に、それぞれ0.5 重量%、1重量%含有させたほかは、実施例1と同様に非水電解液を調製して1865 0サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:81.4

[0096] [実施例19]

EC:DMC:DEC(容量比)=30:20:50の非水溶媒を調製し、これに電解質塩としてLiPF。を1Mの濃度になるように溶解して非水電解液を調製した後、さらにtertーアミルベンゼン(TAB)およびシクロヘキシルベンゼン(CHB)をそれぞれ非水電解液に対して1重量%添加し、さらに添加剂として、ジ(2-プロピニル)サルファイト[式(VI)のアルキン化合物]およびビニレンカーボネートを非水電解液に、それぞれ0.5 重量%、1重量%含有させたほかは、実施例1と同様に非水電解液を調製して1865 0サイズの円筒電池を作製し、充放電サイクル試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:81.8

[0097] [実施例20]

[非水電解液の調製]

EC: MEC(容量比) = 30:70の非水溶媒を調製し、これに電解質塩としてLiPFを 1Mの濃度になるように溶解して非水電解液を調製した後、この非水電解液に対して ジ(2-プロピニル)オギザレート[式(VI)のアルキン化合物]を0.3重量%そしてビニレンカーボネートを2重量%となるように加え、さらに、シクロヘキシルベンゼン(CHB)を1重量%、1-フルオロー4-シクロヘキシルベンゼン(FCHB)を非水電解液に対して、3重量%となるように加えた。

[0098] 〔リチウム二次電池の作製および電池特性の測定〕

LiCoO₂(正極活物質)を94重量%、黒鉛(導電剤)を3重量%、ポリフッ化ビニリデン(結着剤)を3重量%の割合で混合し、これに1-メチル-2-ピロリドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処理して正極合剤層を形成して、正極を得た。別に、格子面(002)の面間隔(d₀₀₂)が0.335nmである黒鉛型結晶構造を有する人造黒鉛(負極活物質)を95重量%、ポリフッ化ビニリデン(結着剤)を5重量%の割合で混合し、これに1-メチル-2-ピロリドン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極合剤層を形成させ、負極を得た。そして、電池容器内に、正極、負極、そしてポリエチレン微多孔性フ

ィルムのセパレータ(厚さ20 μ m)を収容し、前記の非水電解液を注入した後、電池 封口前に露点-60℃の二酸化炭素を電池内に含有させて18650サイズの円筒電池 (直径18mm、高さ65mm)を作製した。電池には、圧力開放口および内部電流遮 断装置(PTC素子)を設けた。正極合剂層の密度は、3.5g/cm³であり、負極合剂 層の密度は1.6g/cm³であった。正極の電極層の厚さ(集電体片面当たり)は70 μ mであり、負極の電極層の厚さ(集電体片面当たり)は60 μ mであった。

[0099] この18650電池を用いて、高温(60℃)下、2.2A(1C)の定電流で4.2Vまで充電した後、終止電圧4.2Vとして定電圧下に合計3時間充電した。次に2.2A(1C)の定電流下、終止電圧3.0Vまで放電し、この充放電を繰り返した。初期放電容量(mAh)は、ビニレンカーボネートを3重量%含有し、アルキン化合物を添加しない1M LiPF。—EC/PC/MEC(容量比30/5/65)を非水電解液として用いた場合(前記比較例1)とほぼ同等(1.01)であり、300サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は82.5%であった。さらに、サイクル試験を5回繰り返した18650電池を用いて、常温(20℃)下、4.2Vの満充電状態から2.2A(1C)の定電流で続けて充電することにより2時間の過充電試験を行い、電池の表面温度が120℃を越えないことを安全性の基準とした結果、電池の表面温度は120℃以下であった。

[0100] [実施例21]

添加剤として、1-フルオロ-4-シクロヘキシルベンゼン(FCHB)に代えてフルオロベンゼン(FB)を非水電解液に対して、4重量%使用したほかは、実施例20と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.01

300サイクル後の放電容量維持率:82.1

過充電試験における電池の表面温度:120℃以下

[0101] 「実施例22]

添加剤として、シクロヘキシルベンゼン(CHB)に代えてフルオロベンゼン(FB)を 非水電解液に対して、4重量%使用し、1-フルオロ-4-シクロヘキシルベンゼン(F CHB)を非水電解液に対して、1重量%使用したほかは、火施例20と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.01

300サイクル後の放電容量維持率:82.2

過充電試験における電池の表面温度:120℃以下

[0102] [実施例23]

添加剤として、1-フルオロー4-シクロヘキシルベンゼン(FCHB)に代えて2, 4-ジフルオロアニソール(DFA)を非水電解液に対して、1重量%使用し、シクロヘキシルベンゼン(CHB)を非水電解液に対して、1.5重量%使用したほかは、実施例20と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.01

300サイクル後の放電容量維持率:81.5

過充電試験における電池の表面温度:120℃以下

[0103] 「実施例24]

添加剤として、シクロヘキシルベンゼン(CHB)に代えて2,4ージフルオロアニソール(DFA)を非水電解液に対して、1重量%使用し、1ーフルオロー4ーシクロヘキシルベンゼン(FCHB)を非水電解液に対して、2重量%使用したほかは、実施例20と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.01

300サイクル後の放電容量維持率:81.9

過充電試験における電池の表面温度:120℃以下

[0104] [実施例25]

添加剤として、エチル 2-プロピニルオギザレート[式(VI)のアルキン化合物]、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)および1-フルオロー4-シクロヘキシルベンゼン(FCHB)に、さらにエチレンサルファイト(ES)を非水電解液に

対して、0.4重量%使用したほかは、実施例20と同様に非水電解液を調製して186 50サイズの円筒電池を作製し、光放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対低):1.01

300サイクル後の放電容量維持率:82.6

過充電試験における電池の表面温度:120℃以下

[0105] [実施例26]

添加剤として、ジ(2-プロピニル)オギザレート、ジ(2-プロピニル)サルファイト、ビニレンカーボネート(VC)、tertーアミルベンゼン(TAB)および1-フルオロー4-シクロヘキシルベンゼン(FCHB)を非水電解液に対して、それぞれ0.3重量%、0.3重量%、2重量%、1重量%、3重量%使用したほかは、実施例20と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.01

300サイクル後の放電容量維持率:83.2

過充電試験における電池の表面温度:120℃以下

[0106] [実施例27]

EC:PC:DMC:DEC(容量比)=30:5:15:50の非水溶媒を調製し、これに電解質塩としてLiPF。を1Mの濃度になるように溶解して非水電解液を調製した後、さらに非水電解液に対してギ酸2-プロピニル[式(II)のアルキン化合物]を0.5重量%、ビニレンカーボネートを2重量%となるように加えた。

次いで、実施例20と同様に18650サイズの円筒電池を作製し、充放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:82.4

過充電試験における電池の表面温度:120℃以下

[0107] 「実施例28]

アルキン化合物として2-ブチン-1,4-ジオール ジホルメート「式(III)の化合物]

を非水電解液に0.5重量%含有させたほかは、火施例27と同様に非水電解液を調製して18650サイズの円筒電池を作製し、光放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:82.0

過充電試験における電池の表面温度:120℃以下

[0108] [実施例29]

アルキン化合物として2,4-ヘキサジイン-1,6-ジオール ジホルメート[式(IV)の化合物]を非水電解液に0.5重量%含有させたほかは、実施例27と同様に非水電解液を調製して18650サイズの円筒電池を作製し、充放電サイクル試験と過充電試験を行った。その結果を次に記載する。

初期放電容量(相対値):1.00

300サイクル後の放電容量維持率:81.4

過充電試験における電池の表面温度:120℃以下

請求の範囲

[1] 非水溶媒に電解質塩が溶解されているリチウム二次電池用非水電解液において、 該非水電解液中に0.01~10重量%の下記式(I)で表わされるビニレンカーボネー ト化合物:

[化1]

$$R^1 \longrightarrow R^2$$
 $O \longrightarrow O$
(I)

(式中、 R^1 と R^2 とはそれぞれ独立して、水素原子もしくは炭素原子数1-4のアルキル基を表わす)

及び0.01~10重量%の下記式(II)、(III)、(IV)、(V)、(VI)あるいは(VII)のいずれかで表わされる少なくとも一種のアルキン化合物:

[化2]

$$R^{3}-C \equiv C - \left(C - \frac{R^{4}}{C}\right)_{x} OY^{1}$$
(11)

[式中、 R^3 ~ R^5 は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす;ただし、 R^4 と R^5 は、互いに結合して炭素原子数3~6のシクロアルキル基を形成していても良い;xは1もしくは2を表わし;そして Y^1 は、 $-COOR^{20}$ 、 $-COR^{20}$ または $-SO_R^{20}$ を表わす;ただし、 R^{20} は、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす〕

[化3]

$$Y^{2}O \xrightarrow{R^{6}} C = C \xrightarrow{R^{8}} C \xrightarrow{R^{8}} OY^{3}$$

$$(111)$$

[式中、 R^6 ~ R^9 は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす;ただし、 R^6 と R^7 そして R^8 と R^9 はそれぞれ互いに結合して炭素原子数3~6のシクロアルキル基を形成していても良い;xは1もしくは2を表わし; Y^2 は、 $-COOR^{21}$ 、 $-COR^{21}$ または $-SO_2R^{21}$ を表わし; Y^3 は、 $-COOR^{22}$ 、 $-COR^{22}$ または $-SO_2R^{22}$ を表わす;ただし、 R^{21} および R^{22} は互いに独立に、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす]

[化4]

[式中、 R^{10} ~ R^{13} は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わす;ただし、 R^{10} と R^{11} そして R^{12} と R^{13} はそれぞれ互いに結合して炭素原子数3~6のシクロアルキル基を形成していても良い;xは1もしくは2を表わし; Y^4 は、 $-COOR^{23}$ 、 $-COR^{23}$ または $-SO_2R^{23}$ を表わし; Y^5 は、 $-COOR^{24}$ 、 $-COR^{24}$ または $-SO_2R^{24}$ を表わす;ただし、 R^{23} および R^{24} は互いに独立に、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を

表わする

[化5]

$$R^{14}-C \equiv C - (C \rightarrow X) = C - R^{15} - (V)$$

[式中、R¹⁴ーR¹⁹は、それぞれ独立して、水素原子、炭素原子数1ー12のアルキル基、炭素原子数3ー6のシクロアルキル基、または炭素原子数6ー12のアリール基を表わす;ただし、R¹⁵とR¹⁶そしてR¹⁷とR¹⁸はそれぞれ互いに結合して炭素原子数3ー6のシクロアルキル基を形成していても良い;xは1もしくは2を表わす] [化6]

[式中、R²⁵、R²⁶およびR²⁷は、それぞれ独立して、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、炭素原子数6~12のアリール基、または炭素原子数7~12のアラルキル基を表わし;ただし、R²⁶とR²⁷とは互いに結合して、炭素原子数3~6のシクロアルキル基を形成していても良い;xは1もしくは2を表わし;Wはスルホキシド基、スルホン基、もしくはオギザリル基を表わし;Y⁶は、炭素原子数1~12のアルキル基、アルケニル基、アルキニル基、炭素原子数3~6のシクロアルキル基、炭素原子数6~12のアリール基または炭素原子数7~12のアラルキル基を表わす〕

[化7]

$$R^{28} - \left(\begin{array}{c} \\ \end{array} \right)_{R} R^{29} \qquad (VII)$$

[式中、R²⁸は、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、炭素原子数6~12のアリール基を表わし;R²⁹は、水素原子、炭素原子数1~12のアルキル基、炭素原子数3~6のシクロアルキル基、または炭素原子数6~12のアリール基を表わし;そしてpは1または2を表わす]が含有されていることを特徴とする非水電解液。

- [2] 非水電解液中のビニレンカーボネート化合物の含有量が、0.05~5重量%の範囲の値である請求項1に記載の非水電解液。
- [3] 非水電解液中のビニレンカーボネート化合物の含有量が、0.1~3重量%の範囲 の値である請求項1に記載の非水電解液。
- [4] 非水電解液中のアルキン化合物の含有量が、0.05~5重量%の範囲の値である 請求項1に記載の非水電解液。
- [5] 非水電解液中のアルキン化合物の含有量が、0.1~3重量%の範囲の値である請求項1に記載の非水電解液。
- [6] ビニレンカーボネート化合物がビニレンカーボネートである請求項1に記載の非水電解液。
- [7] アルキン化合物が、2ープロピニルメチルカーボネート、メタンスルホン酸 2ープロピニル、2ーブチンー1,4ージオール ジメチルジカーボネート、2ーブチンー1,4ージオール ジメタンスルホネート、2,4ーヘキサジインー1,6ージオール ジメチルジカーボネート、ジプロパギル カーボネート、ジ(2ープロピニル)サルファイト、ジ(2ープロピニル) オギザレート、フェニルアセチレン、エチル 2ープロピニルオギザレート、ギ酸 2ープロピニル、2ーブチンー1,4ージオール ジホルメート、あるいは2,4ーヘキサジインー1,6ージオール ジホルメートである請求項1に記載の非水電解液。

- [8] さらに、シクロヘキシルベンゼン、フルオロシクロヘキシルベンゼン化合物、ビフェニル、ターフェニル、ジフェニルエーテル、2ーフルオロジフェニルエーテル、4ージフェニルエーテル、フルオロベンゼン、ジフルオロベンゼン、2ーフルオロビフェニル、4ーフルオロビフェニル、2,4ージフルオロアニソール、tertーブチルベンゼン、1,3ージーtertーブチルベンゼン、1ーフルオロー4ーtertーブチルベンゼン、tertーアミルベンゼン、4ーtertーブチルビフェニル、tertーアミルビフェニル、ローターフェニルの部分水素化物、mーターフェニルの部分水素化物、およびpーターフェニルの部分水素化物からなる群から選ばれる少なくとも一種の芳香族化合物を0.1〜5重量%含む請求項1に記載の非水電解液。
- [9] さらに、ビフェニルとシクロヘキシルベンゼン、シクロヘキシルベンゼンとtertープチルベンゼン、シクロヘキシルベンゼンとtertーアミルベンゼン、ビフェニルとフルオロベンゼン、シクロヘキシルベンゼンとフルオロベンゼン、2,4ージフルオロアニソールとシクロヘキシルベンゼン、シクロヘキシルベンゼンとフルオロシクロヘキシルベンゼン化合物、フルオロシクロヘキシルベンゼン化合物とフルオロシクロヘキシルベンゼン化合物とフルオロアニソールとフルオロシクロヘキシルベンゼン化合物を、混合重量比率は50:50~10:90にて、かつ合計量が0.1~5重量%となるように含む請求項1に記載の非水電解液。
- [10] 正極、負極および非水電解液からなるリチウム二次電池において、正極がリチウム 複合酸化物を含む材料であって、負極がリチウムの吸蔵・放出が可能な材料であり、 非水電解液が請求項1に記載の非水電解液であることを特徴とするリチウム二次電 池。
- [11] 正極、負極および非水電解液からなるリチウム二次電池において、正極が、アルミニウム箔上に形成されたリチウム複合酸化物を含む密度が3.2~4.0g/cm³の範囲にある正極合剤層材料からなり、非水電解液が請求項1に記載の非水電解液であることを特徴とするリチウム二次電池。
- [12] 正極、負極および非水電解液からなるリチウム二次電池において、負極が、銅箔上に形成されたリチウムの吸蔵・放出が可能な材料を含む密度が1.3~2.0g/cm³の範囲にある負極合剤層からなり、非水電解液が請求項1に記載の非水電解液である

ことを特徴とするリチウム二次電池。

[13] 正極、負極および非水電解液からなるリチウム二次電池において、正極が、アルミニウム箔上に形成されたリチウム複合酸化物を含む密度が3.2~4.0g/cm³の範囲にある正極合剤層材料からなっていて、負極が、銅箔上に形成されたリチウムの吸蔵・放出が可能な材料を含む密度が1.3~2.0g/cm³の範囲にある負極合剤層からなり、そして非水電解液が請求項1に記載の非水電解液であることを特徴とするリチウム二次電池。

INTERNATIONAL SEARCH REPORT

International application No.

		1 101/012	004/010194.		
	ATION OF SUBJECT MATTER H01M10/40, H01M4/02, H01M4/58		-		
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum docum Int.C1 ⁷	entation searched (classification system followed by class H01M10/40, H01M4/02-4/04, H01M	ssification symbols) M4/36-4/58			
Jitsuyo Kokai Ji	itsuyo Shinan Koho 1971-2004 Jit	roku Jitsuyo Shinan Koho csuyo Shinan Toroku Koho	1994-2004 1996-2004		
Electronic data b	ase consulted during the international search (name of d	ata base and, where practicable, search to	arms used)		
	ITS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app		Relevant to claim No.		
X Y	JP 2001-043895 A (Ube Industrate 16 February, 2001 (16.02.01), Claim 15; examples 21, 22 & CN 1277468 A	ries, Ltd.),	1-10 1-13		
X	JP 2003-059529 A (Ube Industrate 28 February, 2003 (28.02.03), Claims 1 to 11; example 6 (Family: none)	ries, Ltd.),	1-10		
¥	JP 2003-142075 A (Matsushita Industrial Co., Ltd.), 16 May, 2003 (16.05.03), Claim 1 (Family: none)	Electric	11-13		
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.			
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		"T" later document published after the int date and not in conflict with the applic the principle or theory underlying the "X" document of particular relevance; the considered novel or cannot be cons step when the document is taken along	cation but cited to understand invention cannot be idered to involve an inventive		
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
Date of the actual completion of the international search 27 October, 2004 (27.10.04)		Date of mailing of the international sea 22 November, 2004			
	ng address of the ISA/ se Patent Office	Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/010194

). DOCUMENTS CONSIDERED TO BE RELEVANT	T
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2000-195545 A (Ube Industries, Ltd.), 14 July, 2000 (14.07.00), Claims 1, 2 (Family: none)	1-13
Y	JP 2002-124297 A (Ube Industries, Ltd.), 26 April, 2002 (26.04.02), Claims 1, 2 (Family: none)	1-13
E,A	JP 2004-265848 A (Mitsubishi Chemical Corp.), 24 September, 2004 (24.09.04), Par. No. [0034] (Family: none)	1-13
A	JP 2002-343426 A (Mitsui Chemicals, Inc.), 29 November, 2002 (29.11.02), Claims 2, 12; example 3 (Family: none)	1-13
		·
	·	
	-	
	·	
. •		
•		

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' H01M10/40, H01M4/02, H01M4/58

B. 関査を行った分野・

脚査を行った最小限資料(国際特許分類(IPC))

Int. Cl' H01M10/40, H01M4/02-4/04, H01M4/36-4/58

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公阴寒用新寨公報

1971-2004年

日本国登録実用新案公報

1994-2004年

日本国実用新集登録公報 1996-2004年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X Y	JP 2001-043895 A (宇部興産株式会社), 200 1.02.16, 請求項15, 実施例21, 22 & CN 12 77468 A	1-10	
X Y	JP 2003-059529 A (宇部興産株式会社), 200 3.02.28,請求項1-11,実施例6 (ファミリーなし)	1-10 1-13	
Y	JP 2003-142075 A (松下電器産業株式会社), 20 03.05.16,請求項1 (ファミリーなし)	11-13	

🗵 C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す。
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に官及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

27. 10. 2004

国際調査報告の発送日

22.11,2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) . 天野 斉 4X 9151

電話番号 03-3581-1101 内線 3477

C (統き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2000-195545 A (宇部興産株式会社), 200 0.07.14, 請求項1, 2 (ファミリーなし)	1-13
Y	JP 2002-124297 A (宇部興産株式会社), 200 2.04.26,請求項1,2 (ファミリーなし)	1-13
E, A	JP 2004-265848 A (三菱化学株式会社), 200 4.09.24,【0034】 (ファミリーなし)	1-13
A	JP 2002-343426 A (三井化学株式会社), 200 2. 11. 29, 請求項2, 12, 実施例3 (ファミリーなし)	1-13
·		
·		
,		