Stochastic Financial Models 13

Michael Tehranchi

November 3, 2023

1 Discrete-time martingales

Example.

- Let X_1, X_2, \ldots be independent with $\mathbb{E}(X_n) = 0$ for all n.
- Let $S_0 = 0$ and $S_n = X_1 + \ldots + X_n$.

Then $(S_n)_{n\geq 0}$ is a martingale in the filtration generated by $(X_n)_{n\geq 1}$ since

- S_n is integrable: $\mathbb{E}(|S_n|) \leq \mathbb{E}(|X_1|) + \ldots + \mathbb{E}(|X_n|) < \infty$
- S_n is clearly \mathcal{F}_n measurable (since it is a function of X_1, \ldots, X_n)
- $\mathbb{E}(S_n S_{n-1}|\mathcal{F}_{n-1}) = \mathbb{E}(X_n|\mathcal{F}_{n-1}) = \mathbb{E}(X_n) = 0$ by the independence of X_n and \mathcal{F}_{n-1} .

Note that in this example $(S_n)_{n\geq 0}$ and $(X_n)_{n\geq 1}$ generate the same filtration

Definition. A discrete-time process $(H_n)_{n\geq 1}$ is *previsible* (or *predictable*) with respect to a filtration $(\mathcal{F}_n)_{n\geq 0}$ iff H_n is \mathcal{F}_{n-1} -measurable for all $n\geq 1$.

Remark. The index set for a previsible process is usually $\{1, 2, \ldots\}$. Remark. Let $X_n = H_{n+1}$. Then $(H_n)_{n \geq 1}$ is previsible if and only if $(X_n)_{n \geq 0}$ is adapted.

Definition. The martingale transform of a previsible process $(H_n)_{n\geq 1}$ with respect to an adapted process $(X_n)_{n\geq 0}$ is the process defined by

$$Y_n = \sum_{k=0}^{n} H_k(X_k - X_{k-1})$$

Theorem. The martingale transform of a bounded previsible process with respect to a martingale is a martingale.

Proof. Let $(H_n)_{n\geq 1}$ be bounded and previsible and $(X_n)_{n\geq 0}$ a martingale, and let $(Y_n)_{n\geq 0}$ be the martingale transform. Note that $(Y_n)_{n\geq 0}$ is adapted since each term of the formula defining Y_n is \mathcal{F}_n -measurable by the adaptedness of (X_n) and the previsibility of (H_n) . Integrability follows from by the triangle inequality

$$\mathbb{E}(|Y_n|) \le \mathbb{E}\left(\sum_{k=1}^n |H_k||X_k - X_{k-1}|\right) \le C\sum_{k=1}^n \mathbb{E}(|X_k - X_{k-1}|) < \infty$$

and the integrability of (X_n) (from the definition of martingale), where C > 0 is the constant such that $|H_k| \leq C$ a.s. for all k (from the assumption of boundedness of (H_n))

Now

$$\mathbb{E}(Y_n - Y_{n-1}|\mathcal{F}_{n-1}) = \mathbb{E}[H_n(X_n - X_{n-1})|\mathcal{F}_{n-1}]$$

$$= H_n \mathbb{E}(X_n - X_{n-1}|\mathcal{F}_{n-1})$$

$$= 0$$

by taking out what is known, and the martingale property of $(X_n)_{n>0}$.

Important example from finance. Consider a market

- with a risk-free asset with interest rate r
- and d risky assets with time n prices $(S_n)_{n>0}$.

and investor who

- holds the portfolio $\theta_n \in \mathbb{R}^d$ of risky assets during the time interval (n-1, n],
- and the rest of his wealth is held in the risk-free asset.
- Suppose the investor is *self-financing*: his changes in wealth are explained by the changes in asset prices (but not by consumption or non-market income)

$$X_n = (1+r)X_{n-1} + \theta_n^{\top} [S_n - (1+r)S_{n-1}]$$

Definition. The investor's discounted wealth at time n is $\frac{X_n}{(1+r)^n}$. The discounted asset prices at time n are $\frac{S_n}{(1+r)^n}$.

Proposition. A self-financing investor's discounted wealth is the initial wealth plus the martingale transform of the portfolio process with respect to the discounted risky asset prices.

Proof. It is easy to see by induction that

$$\frac{X_n}{(1+r)^n} = X_0 + \sum_{k=1}^n \theta_k^{\top} \left(\frac{S_k}{(1+r)^k} - \frac{S_{k-1}}{(1+r)^{k-1}} \right)$$

2 Stopping times

Definition. A stopping time for a filtration $(\mathcal{F}_t)_{t\geq 0}$ is a random variable T valued in $\{0,1,2,\ldots,+\infty\}$ (discrete-time) or $[0,+\infty]$ (continuous time) such that

$$\{T \le t\} \in \mathcal{F}_t \text{ for all } t \ge 0$$

Example.

- Let $(X_n)_{n\geq 0}$ be a discrete-time adapted process.
- Let $T = \inf\{n \ge 0 : X_n > 0\}$
- Convention: $\inf \emptyset = \infty$.
- \bullet Then T is a stopping time.

Note $\{T \leq n\} = \bigcup_{k=0}^n \{X_k > 0\} \in \mathcal{F}_n$ since $\{X_k > 0\} \in \mathcal{F}_k \subseteq \mathcal{F}_n$ for all $k \leq n$. (Recall that the sigma-algebra \mathcal{F}_n is closed under finite unions.)

Possible counter-example.

- Let $(X_n)_{n\geq 0}$ be an adapted process.
- Let $T = \sup\{n \ge 0 : X_n > 0\}$
- Then T is a *not* a stopping time in general.

Note $\{T \leq n\} = \bigcap_{k=n+1}^{\infty} \{X_k \leq 0\}$ so the event $\{T \leq n\}$ generally contains information about the future.