## **Department of Mechanical Engineering (NITC)**

**ZZ1001D ENGINEERING MECHANICS Tutorial Test 3-Set 4** 

1. The plate has a thickness of 0.5 in. and is made of steel having a specific weight of 490 lb/ft<sup>3</sup>. Determine the horizontal and vertical components of reaction at the pin A and the force in the cord at *B*.



S1ME

Time: One Hour



Figure 1

Figure 2

2. Determine the location of the centre of mass of the cylinder shown in Fig. 2 if its density varies directly with the distance from its base, i.e., density =  $200z \text{ kg/m}^3$ . 

## S<sub>1</sub>ME

Time: One Hour

**Department of Mechanical Engineering (NITC) ZZ1001D ENGINEERING MECHANICS** 

**Tutorial Test 3-Set 4** 

Maximum Marks: 20

Maximum Marks: 20

1. The plate has a thickness of 0.5 in. and is made of steel having a specific weight of 490 lb/ft<sup>3</sup>. Determine the horizontal and vertical components of reaction at the pin A and the force in the cord at B...





Figure 1

Figure 2

2. Determine the location of the centre of mass of the cylinder shown in Fig. 2 if its density varies directly with the distance from its base, i.e., density =  $200z \text{ kg/m}^3$ . ------P.T.O-------P.T.O-------

- 3. A plate of thickness 0.25ft and specific weight 180 lb/ft. determine the center of gravity and tension in chords used for supports fig3
- 4. Express the position vector  $\mathbf{r}$  in the Cartesian vector form; then determine its magnitude and coordinate direction angles. Fig 4



- 3. A plate of thickness 0.25ft and specific weight 180 lb/ft. determine the center of gravity and tension in chords used for supports fig3
- 4. Express the position vector  ${\bf r}$  in the Cartesian vector form; then determine its magnitude and coordinate direction angles. Fig 4

