Homework 2

1. Prove that both weak and weak* topologies are Hausdorff.

Proof Let $x \neq y \in X$. Define f(y - x) = 1 and extend linearly on the subspace spanned by y - x. By Hahn-Banach, we can extend f to $\varphi : X \to \mathbb{R}$ and find that $W_{\frac{1}{2}}(x;\varphi)$ and $W_{\frac{1}{2}}(y;\varphi)$ are disjoint weak neighborhoods which separate x and y. Thus the weak topology is Hausdorff.

Let $\varphi \neq \psi \in X^*$. Since they are not equal as functions, there is some $x \in X$ with $\varphi(x) \neq \psi(x)$. Denoting $r = \varphi(x) - \psi(x)$, then $W_{\frac{1}{2}}(\varphi; x)$ and $W_{\frac{1}{2}}(\psi; x)$ are disjoint weak* neighborhoods which separate ψ and φ . Thus the weak* topology is Hausdorff.

2. Let X be Banach, and let S be the unit sphere in X. Find the weak closure \bar{S}^w of S.

Answer: $\bar{S}^w = \bar{B}(X)$, the closed unit ball in X.

Proof Let $x \in \bar{B}(X)$. Since any weak neighborhood W of x contains an infinite-dimensional hyperplane in X, then W also contains a point y of any magnitude greater than that of x, in particular there exists $y \in W$ with ||y|| = 1, so $y \in S$. Thus $x \in \bar{S}^w$.

Next, let $x \notin \bar{B}(X)$. By Hahn-Banach there exist a functional φ which separates[†] the convex compact set $\{x\}$ from the convex closed set $\bar{B}(X)$, so letting $r = \varphi(x) - 1$, we have $W_r(x; \varphi)$ contains x and is disjoint with $\bar{B}(X)$, so $x \notin \bar{S}^w$.

3. (i) Show that the set of all weak* neighborhoods

$$W(\varphi;x_1,\ldots,x_n)$$

forms a basis for a topology on X^* .

(ii) Show that convergence of a sequence $(\varphi_n)_{n=1}^{\infty}$ in this topology is equivalent to weak* convergence.

Proof (i) Denote the set of all weak* neighborhoods by \mathcal{B} . Note that \mathcal{B} covers X^* since $W(\varphi;0)$ is the whole space for any $\varphi \in X^*$.

Let $W(\varphi_1, x), W(\varphi_2, y) \in \mathcal{B}$.

[†]That is, maps x into $(1, \infty)$ and maps $\bar{B}(X)$ into (0, 1).

For any ψ in the intersection of these two weak* neighborhoods,

$$|\langle \psi, x \rangle - \langle \varphi_1, x \rangle| < 1$$
 and $|\langle \psi, y \rangle - \langle \varphi_2, y \rangle| < 1$,

so if we denote r as the smaller of the two quantities above, then

$$\psi \in W_r(\psi; x, y) \subset W(\varphi_1; x) \cap W(\varphi_2; y).$$

Since this holds for two arbitrary weak* neighborhoods, then it holds for finitely many. Therefore \mathcal{B} is a basis for a topology.

(ii) Denote convergence in the topology by $\varphi_n \xrightarrow{T} \varphi$.

Suppose $\varphi_n \xrightarrow{T} \varphi$. Then by definition, for every $\varepsilon > 0$ and $x \in X$, there exists N > 0 such that for all n > N,

$$\varphi_n \in W_{\varepsilon}(\varphi; x),$$

which is to say

$$|\langle \varphi_n, x \rangle - \langle \varphi, x \rangle| < \varepsilon,$$

which statement is exactly the definition of

$$\varphi_n \xrightarrow{w^*} \varphi.$$

This proof also works in reverse, so we are done.

4. Let (x_n) be a sequence in ℓ^1 such that $x_n \xrightarrow{w} y$ and $||x_n||_{\ell^1} \to ||y||_{\ell^1}$. Prove that $x_n \xrightarrow{\ell^1} y$.

Proof Let $\varepsilon > 0$. Since $||x_n|| \to ||y||$, there exists N_1 such that for all $n > N_1$,

$$\left| \sum_{j=1}^{\infty} |x_{nj}| - \sum_{j=1}^{\infty} |y_j| \right| < \varepsilon.$$

Since $||y|| < \infty$, then there exists J such that

$$\sum_{j=J}^{\infty} |y_j| < \varepsilon,$$

which means that for all $n > N_1$ we have $\sum_{j=J}^{\infty} |x_{nj}| < 2\varepsilon$, so

$$\sum_{j=J}^{\infty} |x_{nj} - y_j| \le \sum_{j=J}^{\infty} |x_{nj}| + |y_j|$$

$$< 3\varepsilon. \tag{1}$$

Now observe that since $x_n \xrightarrow{w} y$, then in particular $\langle x_n, e_j \rangle \xrightarrow{n} \langle y, e_j \rangle$ where e_j is the functional which simply returns the j-th coordinate. This means that for all j we have $x_{nj} \xrightarrow{n} y_j$, so

there exists some M_j such that if $n > M_j$, we have $|x_{nj} - y_j| < \varepsilon$. Let $N_2 = \max_{j \le J} M_j$, then for all $n > N_2$,

$$\sum_{j=1}^{J} |x_{nj} - y_j| < J\varepsilon. \tag{2}$$

Combining (1) and (2) yields $\sum_{j=1}^{\infty} |x_{nj} - y_j| < (J+3)\varepsilon$, and after rescaling, we're done.

5. Prove that the closed unit ball $\bar{B}(X)$ in a Banach space X is weakly closed. Prove that $\bar{B}(X^*)$ is weak* closed.

Proof We showed in problem 2 that the weak closure of S(X) is $\bar{B}(X)$, so it is weakly closed. Now we show that $\bar{B}(X^*)$ is weak* closed. Observe:

- $\bar{B}(X^*)$ is weak* compact by Banach-Alaoglu.
- $\bar{B}(X^*)$ is weak* Hausdorff. Proof Let $\varphi \neq \psi \in \bar{B}(X^*)$. Since $\varphi \neq \psi$ as functions on X, there exists $x \in X$ with $\langle x, \varphi \rangle \neq \langle x, \psi \rangle$. Letting $a = \operatorname{avg}(\langle x, \varphi \rangle, \langle x, \psi \rangle)$ we have $\hat{x} \in X \subset X^{**}$ a linear functional on X^* such that $\langle x, \varphi \rangle < a$ and $\langle x, \psi \rangle > a$. Since \hat{x} is weak* continuous by definition of the weak* topology, then $\hat{x}^{-1}(-\infty, a)$ and $\hat{x}^{-1}(a, \infty)$ are open sets which separate φ and ψ , so $\bar{B}(X^*)$ is weak* Hausdorff.
- $\bar{B}(X^*)$ is weak* closed. Proof In this proof, all topological terms refer to the weak* topology. We will show that $\bar{B}(X^*)^{\complement} = X^* \setminus \bar{B}(X^*)$ is open. Let $\psi \notin \bar{B}(X^*)$. Since $\bar{B}(X^*)$ is Hausdorff, for every $\varphi_{\alpha} \in \bar{B}(X^*)$, there exist open sets U_{α}, V_{α} which separate φ_{α} and ψ , respectively. Since $\{U_{\alpha}\}$ is an open cover of $\bar{B}(X^*)$, it has a finite subcover $\{U_i\}$ with a corresponding finite collection of sets $\{V_i\}$. Since $\bigcap_i V_i \subset V_i$ for all i, then the intersection is disjoint with $\bigcup_i U_i$ which covers $\bar{B}(X^*)$. Thus $\bigcap_{i=1}^N V_i \subset V_i$ is an open subset of $\bar{B}(X^*)^{\complement}$ containing ψ , so we're done.
- **6.** Prove the statement from the lectures: Let X be a separable Banach space with a dense set $U = \{u_n\}_{n \in \mathbb{N}}$. Then the weak* topology restricted to $\bar{B}(X^*)$ denoted $\sigma(\bar{B}(X^*), X)$, coincides with the topology of the metric

$$d(\phi, \psi) = \sum_{n=1}^{\infty} 2^{-n} \frac{|(\phi - \psi)(u_n)|}{1 + |(\phi - \psi)(u_n)|}.$$

Proof Since we are working in $B(X^*)$, then every functional has norm at most 1. Since the two topologies are both translation invariant, it suffices to show that W(0; p) is open in the d-topology and that the d-ball ${}_dB_r(0)$ is open in the weak* topology.

Let W(0,p) be an arbitrary subbasic weak* neighborhood in $\sigma(\bar{B}(X^*),X)$, centered at 0. Let

$$\phi \in W(0,p)$$
.

We will produce a d-ball $_dB_r(0)\subset W(0,p)$. Since U is dense in X, then there exists some u_N such that

$$||u_N - p|| < \frac{1}{3}.$$

Let

$$r = \frac{1}{(3)(2^{N+1})}.$$

Then if $\psi \in {}_{d}B_{r}(0)$, then

$$\sum_{n=1}^{\infty} 2^{-n} \frac{|(\psi)(u_n)|}{1 + |(\psi)(u_n)|} < r,$$

and since the whole sum is bounded by r, then in particular so is each term since they are all positive. Thus

$$2^{-N} \frac{|\psi(u_N)|}{1 + |\psi(u_N)|} < \frac{1}{(3)(2^{N+1})}$$

$$\implies 2|\psi(u_N)| < \frac{1 + |\psi(u_N)|}{3}$$

$$\implies |\psi(u_N)| < \frac{1}{5}.$$

Now we observe that $\psi \in W(0, p)$:

$$|\psi(p)| \le |\psi(p - u_N)| + |\psi(u_N)|$$

 $< ||\psi|| ||u_N - p|| + \frac{1}{5}$
 $< \frac{1}{3} + \frac{1}{5}$
 < 1

Thus the weak* topology is a subset of the d-topology.

Let ${}_dB_r(0)$ be an arbitrary d-ball centered at 0. Then fix $\phi \in {}_dB_r(0)$, and observe that

$$||\phi||_d = \sum_{n=1}^{\infty} 2^{-n} \frac{|\phi(u_n)|}{1 + |\phi(u_n)|} < r$$

and since this sum converges, there exists N > 0 such that $\sum_{n=1}^{\infty} 2^{-n} \frac{|\phi(u_n)|}{1+|\phi(u_n)|} < \varepsilon$ for all $\varepsilon > 0$. Let

$$\delta = \min_{n \le N} \left(\frac{r}{(N)2^{-n+1} - r} \right),$$

so that for all n < N,

$$2^{-n} \frac{\delta}{1+\delta} < \frac{r}{2N}.$$

Consider $W_{\delta}(0; u_1, u_2, \dots, u_N)$. For any ϕ in this weak neighborhood, $|\phi(u_n)| < \delta$ for all n < N, so

$$\sum_{n=1}^{\infty} 2^{-n} \frac{|\phi(u_n)|}{1 + |\phi(u_n)|} = \sum_{n=1}^{N} 2^{-n} \frac{|\phi(u_n)|}{1 + |\phi(u_n)|} + \sum_{n=N}^{\infty} 2^{-n} \frac{|\phi(u_n)|}{1 + |\phi(u_n)|}$$

$$\leq \sum_{n=1}^{N} \frac{r}{2N} + \varepsilon$$

$$= \frac{r}{2} + \varepsilon$$

$$< r.$$

Thus the *d*-topology is a subset of the weak* topology.