Vector bundles and finite Covers
$f: X \rightarrow Y$ $f_* O_X$
Finite flat Vector bundle on Y.
Question: Which vector bundles arise in this way?
?
Endow V with fin V
the structure of an Vector bundle on Y
Oy-algebra. Then
X = Spec, V.
Question: Which rector bundles admit the structure of an
Or-algebra?
-, J
Suppose $V = f_* O_X$. If tr
we have (chartd)
'
So $V = O_Y \oplus E^{\vee} - O$
, , , , , , , , , , , , , , , , , , ,
Answer: Any such V admits an algebra structure.
Take $E \otimes E' \rightarrow V$ to be Zero,
= Thickening = E + 19111111111111111111111111111111111
& Zew sedim.
Y
•
Modified Q: X, Y smooth, connected.

Then E exhibits positivity.
$- H^{\circ}(Y, E') = 0$
• For $Y = IP^n$, then E is ample (Lazarofeld)
· E is weakly positive, so nef if dim Y=1-
(Peternell-Sommese)
Not 84 fficient
Example: $Y = IP'$. $f: X \rightarrow Y$
, L M (1) 0 0 f(c)
Then $E \stackrel{\sim}{=} \theta(a_i) \oplus \cdots \oplus \theta(a_{J-1})$,
cohere $a_1, a_2, \ldots, a_d > 0$
called "Scrollar invariants" of X.
du? · A a a la a la
d=2: Any a, >0 can be a scrollar invariant.
$d=3$: $a_1 > a_2 > 0$ are scrollar invariants iff
$2a_2 \geqslant a_1 \geqslant a_2$.
In general, a necessary condition for $a_1,, a_{d-1}$ to be Scrollar invariants is that they are not "too far apart."
Conbuchi, Coppens, Martens).
e.g. (Ohbuchi) \Rightarrow (d-1) $Q_{d-1} > Q_1$ (barning some exceptions)
Asymptotic Q: Does every E arise from a finite cover
Asymptotic Q: Does every E arise from a finite cover up to twisting by a line bundle?
eg. O(1) BO(99) — NO
0(1001) A O(1099) - YES!

Thm 1: Let Y be a smooth curve and E a V.b on Y. There exists N (depending on Y, E) such that for every line bundle L of degree > N, the twist $E \otimes L$ arises from a cover $f: X \rightarrow Y$ with smooth X. Let $H_{d,g}(Y) = \begin{cases} f: X \rightarrow Y \mid g(x) = g \\ deg f = d \end{cases}$ $f \sim E_f g r k (d-1) g deg b = g-1-d(gr-1).$ Md-1,b = { V.b. of 1k d-1 & deg b on Y}

Thm 2: Suppose $g(Y) \ge 2$. If g is sufficiently large, then a general $f \in H_{dg}(Y)$ gives a stable E_f .

Also, the map $H_{d,g}(Y) \xrightarrow{---} M_{d-1,b}(Y)$ $f \longmapsto E_f$

Q: Effective bounds?

is dominant.

No such theorems for $d \ge 6$.

Rem: Thm 2 proved by Kanev for $d \le 5$ (2004,05,13)

Using explicit structure theorems for coverings of deg ≤ 5 .

Basic fact: X finite flat map of degree of Then we have a canonical embedding i > d pts in pd-2 Smooth out X inside IPEq. =: IP But NX/IP is typically negative. Solution: X'= X U { Rational normal curves }.

Higher dimensions.
let Y be a smooth proj var & L an ample line bundle on Y
® Given a v.b. E on Y, E⊗L" arises from a finite
cover for sylficiently large n.
Set d = rkE+1.
(is false if dim Y >> d.
Consider the multiplication $F \otimes E' \to \mathcal{O} \oplus E'$
Must be 0 for some y ∈ Y.
Must be 0 for some $y \in Y$. \Rightarrow Fiber of $X \rightarrow Y$ over $y \not S$ a fet point
Contradich X is smooth (even Gorenstein)
Cazursfeld => 4 is false for Y=P, r > d+1.
For dimy > d+1, there are nontrivial restrictions on
topology of X.
Q: Is & true for dimY < d?