AMENDMENTS TO THE CLAIMS

4	/ 47 70	
1.	(cancelled)	
••		

- 2. (currently amended) The method of claim 14, further comprising forming a silicide layer on said upper polysilicon region.
- 3. (currently amended) The method of claim 14, wherein said conductive barrier is selected from the group of: tungsten nitride (WN), tantalum nitride (TaN), titanium nitride (TiN), tungsten silicon nitride (WSiN), tantalum silicon nitride (TaSiN), aluminum titanium nitride (AlTiN), titanium silicide (TiSi), quantum conductive semi-insulating barriers, and combinations comprising at least one of the foregoing.

4. (currently amended) The method of claim 1, A method for forming a gate
structure for a semiconductor transistor, the method comprising:
forming a lower polysilicon region on a gate dielectric layer;
implanting said lower polysilicon region with a dopant at a first dopant
concentration;
forming a conductive barrier layer upon said lower polysilicon region;
forming an upper polysilicon region upon said conductive barrier layer;
and.
implanting said upper polysilicon region with dopant at a second dopant
concentration, said second concentration being different than said first concentration;
wherein said lower polysilicon region comprises silicon germanium
carbon (SiGeC).
5. (currently amended) The method of claim 1, A method for forming a gate
structure for a semiconductor transistor, the method comprising:
forming a lower polysilicon region on a gate dielectric layer:

implanting said lower polysilicon region with a dopant at a first dopant
concentration;
forming a conductive barrier layer upon said lower polysilicon region;
forming an upper polysilicon region upon said conductive barrier layer:
<u>and</u>
implanting said upper polysilicon region with dopant at a second dopant
concentration, said second concentration being different than said first concentration;
wherein said lower polysilicon region is doped at a concentration of about
1 x 10 ²¹ atoms/cm ³ , and said upper polysilicon region is doped at a concentration of about
$3 \times 10^{20} \text{ atoms/cm}^3$.
6. (currently amended) The method of claim 1, whorein said lower
polysilicon region is formed by: A method for forming a gate structure for a
semiconductor transistor, the method comprising:
forming a lower polysilicon region on a gate dielectric layer by defining a
polysilicon block on said gate dielectric layer; forming a sacrificial layer over said gate
dielectric layer and said polysilicon block; planarizing said sacrificial layer down to the
top of said polysilicon block, and recessing said polysilicon block below the top of the
planarized sacrificial layer:
implanting said lower polysilicon region with a dopant at a first dopant
concentration;
forming a conductive barrier layer upon said lower polysilicon region:
forming an upper polysilicon region upon said conductive barrier layer;
<u>and</u>
implanting said upper polysilicon region with dopant at a second dopant
concentration, said second concentration being different than said first concentration.

polysilicon region is formed directly upon a top surface of said conductive barrier layer.

The method of claim 14, wherein said upper

7. (currently amended)

- 8. (currently amended) The method of claim 14, wherein said second concentration is less than said first concentration.
- 9. (new) The method of claim 5, further comprising forming a silicide layer on said upper polysilicon region.
- 10. (new) The method of claim 5, wherein said conductive barrier is selected from the group of: tungsten nitride (WN), tantalum nitride (TaN), titanium nitride (TiN), tungsten silicon nitride (WSiN), tantalum silicon nitride (TaSiN), aluminum titanium nitride (AlTiN), titanium silicide (TiSi), quantum conductive semi-insulating barriers, and combinations comprising at least one of the foregoing.
- 11. (new) The method of claim 5, wherein said upper polysilicon region is formed directly upon a top surface of said conductive barrier layer.
- 12. (new) The method of claim 6, further comprising forming a silicide layer on said upper polysilicon region.
- 13. (new) The method of claim 6, wherein said conductive barrier is selected from the group of: tungsten nitride (WN), tantalum nitride (TaN), titanium nitride (TiN), tungsten silicon nitride (WSiN), tantalum silicon nitride (TaSiN), aluminum titanium nitride (AlTiN), titanium silicide (TiSi), quantum conductive semi-insulating barriers, and combinations comprising at least one of the foregoing.
- 14. (new) The method of claim 6, wherein said upper polysilicon region is formed directly upon a top surface of said conductive barrier layer.
 - 15. (new) The method of claim 6, wherein said second concentration is less than

said first concentration.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.