

DUBLIN INSTITUTE OF TECHNOLOGY

School of Mathematical Sciences

Structured PhD

Assignment 1 2016/2017

MATH 9973: NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS

DR. JOHN S. BUTLER
DR C HILLS

External examiner missing!

Due: 24, March 2017

Duration:

Attempt all questions

All questions carry equal marks

Approved calculators may be used

Mathematical tables are provided

New Cambridge Statistical Tables are NOT permitted

1. a) Use the Euler's method to estimate the solution of the system of first order initial value problems

$$\frac{du}{dt} = u^2 + v, \quad u(0) = 1,$$

$$\frac{dv}{dt} = u - v, \quad v(0) = -1,$$

using h = 0.25, approximate the value of the solution at t = 0.5.

(18 marks)

b) Consider the differential equation

$$y' + 10y + x = 0$$
, $2 \le x \le 3$, $y(2) = 1$.

Apply the midpoint method to approximate the solution at y(3.0) using h=0.25 (11 marks)

c) Suggest two ways to improve the numerical solution.

(4 marks)

2. a) Derive the Adams-Bashforth two step method which is of the form

$$w_0 = \alpha_0$$
 $w_1 = \alpha_1$

$$w_{n+1} = w_n + \frac{h}{2} [3f(t_n, w_n) - f(t_{n-1}, w_{n-1})]$$

for the initial value problem

$$y'=f(x,y),$$

$$y(x_0) = w_0.$$

(15 marks)

b) Show that the local truncation error of the 2 step Adams-Bashforth method is

$$\tau_{n+1}(h) = \frac{5h^2}{12} y^{(3)}(\mu_n).$$

(8 marks)

- c) Define what it means for a linear multistep method to be strongly stable, weakly stable and unstable.

 (6 marks)
- **d)** Show that the three step Adams-Bashforth method is stable. (4 marks)
- **3. a)** Use the Midpoint method to approximate the solutions to the following initial value problem

$$y' = 2t y$$
, $(0 \le t \le 1)$, $y(0) = 1$,

with h = 0.2 with and compare with the exact solution $y(t) = e^{t^2}$. Calculate the theoretical upper limit of error for the above initial value problem for the midpoint method.

(18 marks)

b) Apply the two step Adams-Moulton method to approximate the solution of the initial value problem:

$$y' = \frac{y}{t} - y$$
, $(2 \le t \le 3)$ $y(3) = 0$.

Using N = 5 steps, given that y(2.2) = 0.2442.

(15 marks)