

Human Insulin Production

Name: Madhan N

Introduction:

Insulin promotes glucose metabolism and is required for the provision of energy to the body's cells. Diabetes mellitus, which is the third leading cause of mortality in industrialized nations after cardiovascular illnesses and cancer, is caused by impaired insulin production (Barfoed, 1987).

A 21-amino acid chain and a 30-amino acid chain make up each of the 51 amino acids that make up human insulin, which is a polypeptide. There are two disulfide bonds that join the A and B chains together. The isoelectric point of human insulin is 5.4 and its molecular weight is 5,734.

Process Description:

Table 11-11 Raw material requirements (1 batch = 11.31e kg MP)			
Raw Material	kg/Year	kg/Batch	kg/kg MP
Glucose	782,238	4,889	432.2
Salts	71,428	446	39.5
Air	3,647,536	22,797	2,015.5
Ammonia	75,689	473	41.8
Water	27,798,131	173,738	15,360.6
NaOH (0.5 M)	5,548,731	34,680	3,066.1
H3PO4 (20% w/w)	6,451,713	40,323	3,565.1
TRIS Base	43,200	270	23.9
WFI	61,446,154	384,038	33,953.6
EDTA	10,427	65	5.8
Triton-X-100	3,035	19	1.7
CNBr	15,268	95	8.4
Formic acid	1,751,525	10,947	967.9
Urea	3,062,697	19,142	1,692.4
MrEtOH	98,660	617	54.5
NH4HCO3	5,551	35	3.1
Sodium sulfite	48,318	302	26.7
Na2O6S4	24,159	151	13.4
Guanidine HCI	805,593	5,035	445.2
Sodium Chloride	778,032	4,863	429.9
Sodium Hydroxide	137,678	860	76.1
Acetic-Acid	2,435,170	15,220	1,345.6
Enzymes	3	0	0.0
Acetonitrile	767,190	4,795	423.9
Ammonium Acetate	181	1	0.1
Zinc Chloride	320	2	0.2
Total	115,808,631	723,804	63,993.0

Reference:

[1] R. G. Harrison, P. W. Todd, S. R. Rudge, and D. P. Petrides, "Bioprocess Design and Economics," in *Bioseparations Science and Engineering*, London, England: Oxford University Press, 2015.

