

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS
Pure Mathematics : Paper One

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	1

2	x(11-2x) = 12 $2x^2-11x+12=0$ Solution of quadratic $\rightarrow (1\frac{1}{2},8)$ and $(4,3)$ (i) $4s^4+5=7(1-s^2) \rightarrow 4x^2+7x-2=0$ (ii) $4s^4+7s^2-2=0$ $\rightarrow s^2 = \frac{1}{4}$ or $s^2 = -2$ $\rightarrow \sin\theta = \pm \frac{1}{2}$	M1 A1 DM1 A1 [4] B1 [1]	Complete elimination of x, or of y. Correct quadratic. (or y²-11y+24=0) Correct method of solution→2values All correct (guesswork or TI B1 for one pair of values, full marks for both) Use of s²+c²=1. Answer given. Recognition of quadratic in s²
	\rightarrow $\theta = 30^{\circ}$ and 150° and $\theta = 210^{\circ}$ and 330°	A1A1√ A1√ [4]	Co. For 180° - "his value" For other 2 answers from "his value", providing no extra answers in the range or answers from $s^2=-1$
3	(a) $a=60$, $n=48$, $S_n=3726$ S_n formula used $\rightarrow d = \$0.75$ 3^{rd} term = $a+2d = \$61.50$ (b) $a=6$ ar =4 $\therefore r=\frac{2}{3}$ $S_{\infty} = a/(1-r) = 18$	M1 A1 A1√ [3] M1 M1A1 [3]	Correct formula (M0 if nth term used) Co Use of a+2d with his d. 61.5 ok. a, ar correct, and r evaluated Correct formula used, but needs r <1 for M mark
4	(i) $y = x^3 - 2x^2 + x$ (+c) (1,5) used to give c= 5 (ii) $3x^2-4x+1>0$ \rightarrow end values of 1 and $\frac{1}{3}$	B2,1,0 B1√ [3] M1 A1	Co - unsimplified ok. Must have integrated + use of x=1 and y=5 for c Set to 0 and attempt to solve. Co for end values – even if <,>,=,etc
5	$\rightarrow x < \frac{1}{3} \text{ and } x > 1$ (i) m of BC = $\frac{1}{2}$	A1 [3]	Co (allow \leq and \geq). Allow $1 < x < \frac{1}{3}$
0	Eqn BC y-6= $\frac{1}{2}$ (x-4) m of CD = -2 eqn CD y-5=-2(x-12)	M1A1√ M1 A1√ [5]	Correct form of eqn. $\sqrt{\text{ on m}}="1/2"$." Use of $m_1m_2=-1$ $\sqrt{\text{ on his "1/2" but needs both M marks.}}$
	(ii) Sim eqns $2y=x+8$ and $y+2x=29$ \rightarrow C (10,9)	M1 A1 [2]	Method for solving Co Diagram only for (ii), allow B1 for (10,9)

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	1

6 (i) $20 = 2r + r\theta$ $\rightarrow \theta = (20 / r) - 2$ (ii) $A = \frac{1}{2}r^{2}\theta$ $\rightarrow A = 10r - r^{2}$	M1 A1 [2] M1 A1	Eqn formed + use of $r\theta$ + at least one r Answer given. Appropriate use of $\frac{1}{2}r^2\theta$ Co – but ok unsimplified –eg $\frac{1}{2}r^2(20/r)$ –2)
(iii) Cos rule $PQ^2 = 8^2+8^2-2.8.8\cos 0.5$ Or trig $PQ = 2 \times 8\sin 0.25$ $\rightarrow PQ = 3.96 \text{ (allow 3.95)}.$	[2] M1 A1 A1 [3]	Recognition of "chord" +any attempt at trigonometry in triangle. Correct expression for PQ or PQ ² .
7 (i) Height = 4	B1 [1]	Pythagoras or guess – anywhere, 4k ok.
$ \begin{array}{c} B \\ 5 \\ \hline $	B2,1√ B1√ [3]	√ for "4". Special case B1 for −3 i +6 j +4 k √ on "4". Accept column vectors. (nb if (ii) incorrect, but answers are correct in (iii) allow feedback).
(iii) MC.MN = $-36+16 = -20$ MC.MN = $\sqrt{61}\sqrt{52} \cos\theta$ $\rightarrow \theta = 111^{\circ}$	M1A1√ M1 A1 [4]	Use of $x_1y_1+x_2y_2+x_3y_3$. $$ on MC and MN Product of two moduli and $\cos \theta$. Co. Nb If both MC and MN "reversed", allow 111° for full marks.
8 (i) $y = 72 \div (2x^2)$ or $36 \div x^2$ $A = 4x^2 + 6xy$ $A = 4x^2 + 216 \div x$	B1 M1 A1 [3]	Co from volume = lbh. Attempts most of the faces(4 or more) Co – answer was given.
(ii) $dA/dx = 8x - 216 \div x^2$ = 0 when $8x^3 = 216$ $\rightarrow x = 3$	M1 DM1 A1 [3]	Reasonable attempt at differentiation. Sets his differential to 0 and uses. Co. (answer = ± 3 loses last A mark)
(iii) Stationary value = 108 cm^2 $d^2A/dx^2=8+432 \div x^3$ \rightarrow Positive when x=3 Minimum.	A1√ M1 A1 [3]	For putting his x into his A. Allow in (ii). Correct method – could be signs of dA/dx A mark needs d ² A/dx ² correct algebraically, + x=3 + minimum. It does not need "24".

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	1

9	(i) $dy/dx = -24/(3x+2)^2$	M1A1	Use of fn of fn. Needs ×3 for M mark. Co.
A 3 3x+2	Eqn of tangent y-1=- $\frac{3}{8}$ (x-2) Cuts y=0 when x= $\frac{4^2}{3}$	M1A1√	Use of line form with dy/dx. Must use calculus. √ on his dy/dx. Normal M0.
	Area of Q = $\frac{1}{2} \times 2^{2} / 3 \times 1 = \frac{4}{3}$	M1A1 [6]	Needs y=0 and ½bh for M mark. (beware fortuitous answers)
(ii) Vol = $\pi \int y^2 dx = \pi \int 64(3x+2)^{-2} dx$ = $\pi \left[-64(3x+2)^{-1} \div 3 \right]$ Limits from 0 to 2 $\rightarrow 8\pi$		M1 A1A1 DM1 A1 [5]	Uses $\int y^2 + \text{some integration} \rightarrow (3x+2)^k$. A1 without the $\div 3$. A1 for $\div 3$ and π Correct use of 0 and 2. DMO if 0 ignored. Co. Beware fortuitous answers.
(i) fg	g(x) = g first, then f = $8/(2-x) - 5 = 7$	M1 DM1	Correct order - g first, then into f. Correct method of solution of fg=7.
(or f(A)=7, A	$ → x = 1\frac{1}{3} $ $A = 6, g(x) = 6, → x = 1\frac{1}{3})$	A1 [3]	Co. (nb gf gets 0/3) (M1 for 6. M1 for g(x)=6. A1)
M	$f^{1} = \frac{1}{2}(x+5)$ Makes y the subject $y = 4 \div (2-x)$ $\Rightarrow g^{-1} = 2 - (4 \div x)$	B1 M1 A1 [3]	Anywhere in the question. For changing the subject. Co – any correct answer. (A0 if f(y).)
U	$2-4/x = \frac{1}{2}(x+5)$ ⇒ $x^2+x+8=0$ (se of b^2 -4ac → Negative value) ⇒ No roots.	M1 M1 A1 [3]	Algebra leading to a quadratic. Quadratic=0 + use of b²-4ac. Correct deduction from correct quadratic.
(iv)	4 0 ×	B1 B1 B1 [3]	Sketch of f Sketch of f ⁻¹ Evidence of symmetry about y=x.