Zdeněk Moravec

hugo@chemi.muni.cz

- Skupina metod pro stanovení měrného povrchu a porosity materiálů.
- Měrný povrch povrch materiálu vztažený na jednotku hmotnosti.
- Rtuťová intruzní porozimetrie založena na vtlačování rtuti do pórů. Používá se pro stanovení pórů o velikostech od 4 nm do stovek mikrometrů.
- ▶ Plynová porozimetrie sorpce plynu na povrch vzorku. Používá se pro stanovení pórů o velikostech od 0,33 nm do stovek nanometrů.

Struktura porézního zeolitu ZIF-8.1

¹Zdroj: François-Xavier Coudert/Commons

Měrný povrch je důležitou charakteristikou katalyzátorů, sorpčních materiálů, apod.

Materiál	SA $[m^2.g^{-1}]$
MOF	7140
Grafen	2700
Aktivní uhlí	500-3000
MCM-41 (SiO ₂)	1000
Molekulová síta	až 1000
Faujesite	900
Alumina	200
CaCO ₃	3

Mezoporézní silica.²

Velikost pórů:

Mikropóry	<2 nm
Mezopóry	2-50 nm
Makropóry	>50 nm

²Zdroj: Xin Min et al/Commons

Rtuťová porozimetrie

Rtuťová porozimetrie

- Do vzorku je vtláčena rtuť.
- Jde o destruktivní metodu.
- Umožňuje měřit velikost pórů od 4 nm do stovek mikrometrů.
- Čím vyšší tlak působí, tím se dostává rtuť do menších pórů, spodní hranici ovlivňuje maximální možný tlak.
- Měření je poměrně rychlé.
- Problémem je toxicita rtuti.

Rtuťový porozimetr.³

³Zdroj: Quantachrome

Rtuťová porozimetrie

Plynová porozimetrie

- Stanovení porozity pomocí sledování sorpce plynu.
- Využívá se dusík, argon a krypton.
- Založeno na fyzisorpci nedochází k chemickým reakcím.
- Tlaky se pohybují mezi atmosférickým tlakem a vakuem.
- Měření trvá hodiny až dny a probíhá při teplotě varu daného plynu.

Plyn	Teplota varu [°C]
Dusík	-195
Argon	-185
Krypton	-152

- Před měřením je nutné vzorek (přesně navážený) odplynit (degasovat).
- To se provádí zahříváním ve vakuu, doba a teplota závisí na konkrétním vzorku.
- ▶ Teplota by neměla překročit 80 % teploty tání nebo skelného přechodu, aby nedocházelo k povrchovým změnám.
- Teplotu je nutné volit i s ohledem na teplotní stabilitu vzorku.

- Na začátku měření je vzorek evakuován a ochlazen na měřící teplotu.
- Přístroj provede automatickou kalibraci – stanovení cold volume a warm volume.
- Do kyvety se vkládá skleněná tyčinka, která zmenšuje velikost mrtvého objemu.
- Pro měření malých pórů je nutné dosáhnout velmi nízkého tlaku, k tomu se využívá turbomolekulární vývěva.

- Byla vynalezena roku 1958 Dr. W.Beckerem.⁴
- Skládá se ze soustavy statických a rotujících lopatek.
- Rotující lopatky se pohybují velmi vysokou rychlostí (25 000–90 000 rpm).

Řez turbomolekulární vývěvou.⁵

⁴Turbomolecular pump

⁵Zdroj: Liquidat/Commons

- Vyžaduje předřazenou vývěvu pro vytvoření dostatečného vakua pro start. Tlak by měl být pod 10 Pa.
- Hřídel s lopatkami je umístěna v magnetickém ložisku.
- Umožňují dosažení tlaku až 10⁻⁹ Pa a čerpací rychlosti až 4 000 l.s⁻¹.

Schéma turbomolekulární vývěvy.⁶

⁶Zdroj: Kkmurray/Commons

- Přístroj postupně zvyšuje tlak plynu v kyvetě a měření objem nasorbovaného plynu, který se projevuje poklesem tlaku.
- Aby bylo možné měřit tlak s dostatečnou přesností potřebujeme velice přesný manometr a velmi dobře kalibrovaný manifold.
- V manifoldu se nastaví vyšší tlak a po otevření kyvety dojde k poklesu tlaku, který lze dopředu spočítat ze známého objemu kyvety a manifoldu.

- Každý bod analýzy má zadány hodnoty equilibration a tolerance.
- Equilibration udává, jak dlouho bude přístroj čekat na ustavení rovnováhy.
- ▶ Tolerance udává rozptyl hodnot tlaků.
- Jakmile je bod změřen, zvýší se tlak a měří se další.
- Zpravidla měříme adsorpčně-desorpční izotermu.

Plynová porozimetrie

- Příkladem mezoporézního materiálu je hexagonální silikát MCM-41.
- Jeho struktura sestává z válcovitých pórů o průměru 2 až 6 nm.
- Připravit ho lze vodnou sol-gelovou syntézou, jako zdroj křemíku slouží zpravidla TEOS.
- Velikost pórů můžeme ovlivnit volbou templátu, často se používá cetyltrimethylammonium bromid.

Syntéza mezoporézního materiálu MCM-41.7

⁷Zdroj: Hermann Luyken/Commons

Plynová porozimetrie

Adsorpčně-desorpční izoterma MCM-41 $_{\scriptscriptstyle{\text{\tiny A}}}$

Plynová porozimetrie

a.

Adsorpce plynů na povrchu.8

⁸Zdroj: Ricardo Amaral/Commons

- Brunauer–Emmett–Teller (BET) velmi používaný způsob výpočtu měrného povrchu.
- Využívá začátek adsorpční izotermy (P/P₀ = 0-0,3), kdy lze předpokládat vznik monovrstvy.
- Vychází z několika (bohužel nereálných) předpokladů:
 - plochý povrch adsorbentu
 - všechna adsorpční místa jsou energeticky ekvivalentní (homogenní)
 - neexistují vzájemné interakce mezi adsorbovanými molekulami
 - adsorpční energie je pro všechny molekuly vyjma první vrstvy rovna energii zkapalnění adsorbátu
 - neomezený počet adsorpčních vrstev, nekonečný při nasyceném tlaku
 - rychlost desorpce molekul v určité vrstvě je rovna rychlosti kondenzace ve vrstvě o jednu níže

$$\blacktriangleright \ \, \frac{\frac{p}{p_0}}{V(1-\frac{p}{p_0})} = \frac{1}{CV_m} + \frac{C-1}{CV_m} \frac{p}{p_0} \label{eq:constraint}$$

- Dříve se pro stanovení BET povrchu využívala adsorpce dusíku při 77 K, dnes se doporučuje argon při 87 K.⁹
- Molekula dusíku může zkreslovat výslednou hodnotu kvůli kvadrupolárnímu momentu molekuly dusíku. Může docházet k interakci s polárními místy na povrchu vzorku.
- Pro měření s argonem potřebujeme kapalný argon nebo zařízení, které dokáže temperovat kyvetu na teplotu kapalného argonu.

Jedenáctibodová izoterma

Jedenáctibodová BET křivka