100 YEARS RAINFALL

PROBLEM STATEMENT: TO PREDICT AND ANALYZE THE RAINFALL FOR AN YEAR IN DISTRICT.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

DATA COLLECTION

```
In [3]: df=pd.read_csv(r"C:\Users\chait\Desktop\district wise rainfall normal.csv")
    df
```

Out[3]:	STATE LIT NAME	
	SIAIF III NAME	

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9
•••									
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7

641 rows × 19 columns

DATA CLEANING

In [4]: df.head()

Out[4]:	ST	TATE_UT_NAME	DISTRICT	JAN I	EB	MAR	APR	MAY	JUN	JUL	AUG	:
	0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	R 107.3 5	7.9	65.2	117.0	358.5	295.5	285.0	271.9	3:
	1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMA	127 2	6.0	18.6	90.5	374.4	457.2	421.3	423.1	4 <u>:</u>
	2	ANDAMAN And NICOBAR ISLANDS	M & N N & N	327 1	5.9	8.6	53.4	343.6	503.3	465.4	460.9	4 <u>:</u>
	3	ARUNACHAL PRADESH	I ()HII	42.2 8	8.08	176.4	358.5	306.4	447.0	660.1	427.8	31
	4	ARUNACHAL PRADESH		333 /	'9.5	105.9	216.5	323.0	738.3	990.9	711.2	5€
4												
In [5]:	df.ta	i1()										
	a i v ca	()										
Out[5]:	STATE_UT_NAME			DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JL	IL
	636	KERA	LA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788	.9
	637	KERA	LA K	(ASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108	.5
	638	KERA	LA PATHAN	AMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539	.9
	639	KERA	LA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110	.4
	640	LAKSHADWE	EP LAKS	SHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287	.7
4	-	_	_	_								
In [6]:	df do	escribe()										
					_				_		_	
Out[6]:		JAN	FEB	MA		Al		MA		JUN		
	count		641.000000	641.00000		1.0000		1.000000		1.000000		1.00
	mean		20.984399	30.03478		5.5432		1.53510		5.007332		5.03
	std		27.729596	45.45108		1.5562		1.960390		5.556284		1.36
	min	0.000000	0.000000	0.00000	U	0.0000	00	0.90000	J :	3.800000) [1.60
	350/	6,000,000	7,000000	7 00000	^	F 0000	00 1	2 10000	· ·	00000	20	- 41
	25%		7.000000	7.00000		5.0000		2.100000		3.800000		5.4(
	25% 50% 75%	13.300000	7.000000 12.300000 24.100000	7.00000 12.70000 33.20000	0 1	5.0000 5.1000 8.3000	00 3	2.100000 3.900000 1.900000	0 131	3.800000 1.900000 5.600000) 29.	5.4(3.7(4.8(

```
In [7]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 641 entries, 0 to 640
       Data columns (total 19 columns):
                         Non-Null Count Dtype
           Column
           _____
                         -----
        0
           STATE_UT_NAME 641 non-null object
           DISTRICT
                      641 non-null object
                        641 non-null float64
        2
           JAN
                        641 non-null float64
        3
           FEB
        4
           MAR
                        641 non-null float64
        5
           APR
                       641 non-null float64
        6
           MAY
                       641 non-null float64
        7
           JUN
                        641 non-null float64
                       641 non-null float64
        8
           JUL
        9
           AUG
                       641 non-null float64
                       641 non-null float64
        10 SEP
                       641 non-null float64
        11 OCT
        12 NOV
                       641 non-null float64
                       641 non-null float64
        13 DEC
        14 ANNUAL
                       641 non-null
                                        float64
                       641 non-null float64
        15 Jan-Feb
                       641 non-null float64
        16 Mar-May
        17 Jun-Sep
                        641 non-null
                                        float64
        18 Oct-Dec
                         641 non-null
                                        float64
       dtypes: float64(17), object(2)
       memory usage: 95.3+ KB
In [8]: df.shape
Out[8]: (641, 19)
In [9]: features=df[2:13]
        target=df.columns[14]
In [10]: df.fillna(method='ffill',inplace=True)
In [14]: X = np.array(df['JAN']).reshape(-1,1)
        y = np.array(df['ANNUAL']).reshape(-1,1)
In [19]: X_train,x_test,y_train,y_test = train_test_split(X,y,train_size=0.65)
        regr = LinearRegression()
        regr.fit(X_train,y_train)
        print(regr.score(x_test, y_test))
       0.0028369256345803784
In [20]: y_pred = regr.predict(x_test)
        plt.scatter(x_test, y_test, color ='b')
        plt.plot(x_test, y_pred, color ='k')
```

plt.show()

In [21]: coeff_df=pd.DataFrame(regr.coef_)
coeff_df

Out[21]: 0 0 7.765861

EDA REPORT

In [22]: sns.pairplot(df)

Out[22]: <seaborn.axisgrid.PairGrid at 0x2308906ee00>

In [23]: sns.displot(df['ANNUAL'])

Out[23]: <seaborn.axisgrid.FacetGrid at 0x2309d6df6a0>

RIDGE

```
In [24]: from sklearn.linear_model import Ridge,RidgeCV,Lasso

In [25]: ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(X_train,y_train)
        train_score_ridge = ridgeReg.score(X_train,y_train)
        test_score_ridge = ridgeReg.score(x_test,y_test)
        print('\nRidge model\n')
        print('Train score for ridge model is {}'.format(train_score_ridge))
        print('Test score for ridge model is {}'.format(test_score_ridge))

        Ridge model
```

Train score for ridge model is 0.03652434582445707 Test score for ridge model is 0.002839010973817113

LASSO

```
In [26]: lassoReg=Lasso(alpha=10)
    lassoReg.fit(X_train,y_train)
    train_score_lasso=lassoReg.score(X_train,y_train)
    test_score_lasso=lassoReg.score(x_test,y_test)
    print('\nLasso Model\n')
    print('Train score for lasso model is {}'.format(train_score_lasso))
    print('Test score for lasso model is {}'.format(test_score_lasso))
```

Train score for lasso model is 0.036524032343096646 Test score for lasso model is 0.002948290745804938

ELASTICNET

CONCLUSION

THE SCORE OF THE REGRESSION IS COMPARED TO ALL (RIDGE, LASSO AND ELASTICNET ARE HIGHER THEN LINEAR REGRESSION).