3A3: The equations of fluid flow & their numerical solution

Examples Paper 1

February 2016

1 The differential equation

$$\frac{dy}{dt} = -y$$

with initial conditions y(0) = 1, is to be solved approximately by a finite-difference method. Let $y_n = y(n\Delta t)$ denote the approximation for y at time $t = n\Delta t$. By using a first order accurate forward difference approximation for dy/dt, show that $y_n = (1 - \Delta t)^n$, and hence that, for small values of Δt , $y_n \approx e^{-t}$. (You may find it helpful to use one of the limit formulae in section 2 of the Maths Data book).

- 2 (a) By considering the points at i-2, i-1, i, i+1 and i+2, derive a central difference approximation to $\partial^3 F/\partial x^3$ on a uniform grid with spacing Δx .
- (b) By considering points at i = 1, 2 and 3 on a uniform grid with spacing Δx , obtain approximations to $\partial F/\partial x$ and $\partial^2 F/\partial x^2$ at the boundary point i = 1. What is the order of accuracy of these approximations?
- (c) By considering points at i = 1, 2, 3 and 4 on a uniform grid with spacing Δx , obtain a second-order accurate approximation to $\frac{\partial^2 F}{\partial x^2}$ at the boundary point i = 1.
- A non-uniform grid has spacing Δx_+ between points i and i+1 and spacing Δx_- between i-1 and i. Use a Taylor series to obtain approximations to $\partial F/\partial x$ and $\partial^2 F/\partial x^2$ at the central grid point i. Show that these expressions are second order accurate only if $(\Delta x_+ \Delta x_-)$ is small, i.e. or order Δx^2 .
- 4 Show that a downwind difference scheme for the one dimensional convection equation

$$\frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x}$$

Page 1 of 2

of the form

$$u_i^{n+1} = u_i^n - c \left(u_{i+1}^n - u_i^n \right)$$

is unstable to a disturbance of the form of a "sawtooth" wiggle for all values of c.

5 Show that the Lax-Wendroff scheme applied to the one-dimensional convection equation is like solving the equivalent PDE

$$\frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = -\frac{A\Delta x^2}{6} \left(1 - \frac{A^2 \Delta t^2}{\Delta x^2} \right) \frac{\partial^3 u}{\partial x^3}$$

6 Consider the convection-diffusion equation

$$\frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = v \frac{\partial^2 u}{\partial x^2}$$

(a) By using a first-order forward difference formula for $\partial u/\partial t$, first-order upwind in space for $\partial u/\partial x$ and a second-order central difference for $\partial^2 u/\partial x^2$ show that the finite-difference equation is given by

$$u_i^{n+1} = u_i^n - c(u_i^n - u_{i-1}^n) + \alpha(u_{i-1}^n - 2u_i^n + u_{i+1}^n)$$

where *c* is the CFL and $\alpha = v\Delta t/\Delta x^2$.

- (b) Modify the convection.m code from Handout 2, to solve this finite difference equation for a "ramp" initial condition with c = 0.5 and $\alpha = 1/6$. Compare the result (plot u versus x on the same graph) after 10 time steps with that obtained for $\alpha = 0$.
- (c) Give a physical explanation for why the ramp has a lower slope when $\alpha \neq 0$.