Engine Number Engine Engine Transmission Vehicle Vehicle highway c Market Category Make Model Year Driven_Wheels Fuel of **HP** Cylinders Туре Size Style MPG Type Doors premium Factory BMW Series 2011 unleaded 335.0 6.0 MANUAL rear wheel drive 2.0 Tuner, Luxury, High-Compact Coupe 26 M (required) Performance premium 300.0 2011 6.0 MANUAL rear wheel drive 2.0 Luxury, Performance Compact Convertible 1 BMW unleaded 28 Series (required) premium Luxury, High-2 BMW 2011 unleaded 300.0 6.0 MANUAL rear wheel drive 2.0 Compact Coupe 28 Series Performance (required) premium 3 BMW 2011 230.0 2.0 Luxury, Performance Compact unleaded 6.0 MANUAL rear wheel drive Coupe 28 Series (required) premium 230.0 28 4 BMW 2011 unleaded 6.0 MANUAL rear wheel drive 2.0 Luxury Compact Convertible Series (required)

print(cars_df.info())

cars_df.head(5)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11914 entries, 0 to 11913
Data columns (total 16 columns):

	(, -	
#	Column	Non-Null Count	Dtype
0	Make	11914 non-null	object
1	Model	11914 non-null	object
2	Year	11914 non-null	int64
3	Engine Fuel Type	11911 non-null	object
4	Engine HP	11845 non-null	float64
5	Engine Cylinders	11884 non-null	float64
6	Transmission Type	11914 non-null	object
7	Driven_Wheels	11914 non-null	object
8	Number of Doors	11908 non-null	float64
9	Market Category	8172 non-null	object
10	Vehicle Size	11914 non-null	object
11	Vehicle Style	11914 non-null	object
12	highway MPG	11914 non-null	int64
13	city mpg	11914 non-null	int64
14	Popularity	11914 non-null	int64
15	MSRP	11914 non-null	int64
4	oc. £1co+C4/2\ int	(4/F) abiast(0)	

dtypes: float64(3), int64(5), object(8)
memory usage: 1.5+ MB

None

print(cars_df.dtypes)

Make		object
Model		object
Year		int64
Engine	Fuel Type	object
Engine	HP	float64
Engine	Cylinders	float64

```
Transmission Type
                      object
Driven_Wheels
                      object
Number of Doors
                     float64
Market Category
                      object
Vehicle Size
                      object
Vehicle Style
                      object
highway MPG
                       int64
city mpg
                       int64
Popularity
                       int64
MSRP
                       int64
dtype: object
```

cars_df.describe()

check_missing_values(cars_df)

```
Engine HP Engine Cylinders Number of Doors
                                                                           highway MPG
                                                                                            city mpg
                                                                                                       Popularity
                                                                                                                           MSRP
            11914.000000 11845.00000
                                            11884.000000
                                                             11908.000000 11914.000000 11914.000000
                                                                                                      11914.000000 1.191400e+04
      count
      mean
             2010.384338
                            249.38607
                                                5.628829
                                                                 3.436093
                                                                              26.637485
                                                                                           19.733255
                                                                                                       1554.911197 4.059474e+04
       std
                7.579740
                            109.19187
                                                1.780559
                                                                 0.881315
                                                                               8.863001
                                                                                            8.987798
                                                                                                       1441.855347 6.010910e+04
      min
             1990.000000
                             55.00000
                                                0.000000
                                                                 2.000000
                                                                              12.000000
                                                                                            7.000000
                                                                                                          2.000000 2.000000e+03
      25%
             2007.000000
                            170.00000
                                                4.000000
                                                                 2.000000
                                                                              22.000000
                                                                                           16.000000
                                                                                                        549.000000 2.100000e+04
             2015.000000
                            227.00000
                                                                              26.000000
      50%
                                                6.000000
                                                                 4.000000
                                                                                           18.000000
                                                                                                       1385.000000 2.999500e+04
      75%
             2016.000000
                            300.00000
                                                6.000000
                                                                 4.000000
                                                                              30.000000
                                                                                           22.000000
                                                                                                       2009.000000 4.223125e+04
             2017.000000
                           1001.00000
                                               16.000000
                                                                 4.000000
                                                                             354.000000
                                                                                          137.000000
                                                                                                       5657.000000 2.065902e+06
      max
def check_missing_values(df):
    null_values = df.isnull().sum()
    print("Null Values:")
    print(null_values)
    nan_values = df.isna().sum()
    print("\nNaN Values:")
    print(nan_values)
    empty_values = (df == '').sum()
    print("\nEmpty Values:")
    print(empty_values)
def preprocess_data(df, numeric_columns, categorical_columns):
    for col in numeric_columns:
        col_mean = df[col].mean()
        df[col].fillna(col_mean, inplace=True)
    for col in categorical_columns:
        df[col].fillna(df[col].mode()[0], inplace=True)
    return df
check_missing_values(cars_df)
numeric_cols = ['Engine HP', 'Engine Cylinders', 'Number of Doors', 'highway MPG', 'city mpg', 'Popularity', 'MSRP']
categorical_cols = ['Engine Fuel Type', 'Market Category']
cars_df = preprocess_data(cars_df, numeric_cols, categorical_cols)
```

噩

```
venicie Size
Vehicle Style
                     0
highway MPG
                     0
city mpg
                     0
Popularity
                     0
MSRP.
                     0
dtype: int64
NaN Values:
Make
                     0
Model
                     0
Year
                     0
Engine Fuel Type
                     0
Engine HP
                     0
Engine Cylinders
Transmission Type
                     0
Driven_Wheels
                     0
Number of Doors
Market Category
                     0
Vehicle Size
                     0
Vehicle Style
highway MPG
                     0
city mpg
                     0
Popularity
                     0
MSRP
dtype: int64
Empty Values:
Make
                     0
Model
                     0
Year
                     0
Engine Fuel Type
Engine HP
                     0
Engine Cylinders
                     0
Transmission Type
Driven_Wheels
Number of Doors
                     0
                     0
Market Category
Vehicle Size
Vehicle Style
                     0
highway MPG
                     0
city mpg
Popularity
                     0
MSRP
                     0
dtype: int64
```

CORRELATION HEATMAP

```
plt.figure(figsize=(10, 8))
sns.heatmap(cars_df.corr(), annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap')
plt.show()
```


sns.pairplot(cars_df)
plt.show()

Numerical vs Categorical:

```
Boxplot: Engine Fuel Type vs MSRP
```

```
plt.figure(figsize=(8, 4))
sns.boxplot(x='Engine Fuel Type', y='MSRP', data=cars_df)
plt.title('Engine Fuel Type vs MSRP')
plt.xticks(rotation=45)
plt.show()
```


Numerical vs Categorical:

Barplot: Transmission Type vs MSRP

```
plt.figure(figsize=(6, 6))
sns.barplot(x='Transmission Type', y='MSRP', data=cars_df)
plt.title('Transmission Type vs MSRP')
plt.xticks(rotation=45)
plt.show()
```


Categorical vs Categorical:

Countplot: Vehicle Style by Drivetrain

```
plt.figure(figsize=(8, 6))
sns.countplot(x='Vehicle Style', hue='Driven_Wheels', data=cars_df)
plt.title('Vehicle Style by Drivetrain')
plt.legend(loc='upper right')
plt.xticks(rotation=45)
plt.show()
```


Numerical and Categorical vs Categorical:

```
Barplot: Engine Cylinders & Vehicle Size by Market Category
```

```
plt.figure(figsize=(12, 16))
sns.barplot(x='Engine Cylinders', y='Market Category', hue='Vehicle Size', data=cars_df)
plt.title('Engine Cylinders & Vehicle Size by Market Category')
plt.legend(loc='upper right')
plt.show()
```


Two Numerical vs One Categorical:

Scatterplot: Engine HP, Highway MPG by Vehicle Style

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Engine HP', y='highway MPG', hue='Transmission Type', data=cars_df)
plt.title('Engine HP, Highway MPG by Vehicle Style')
plt.legend(loc='upper right')
plt.show()
```


Three Numerical Variables:

dtype: int64

3D Scatterplot: Engine HP, Highway MPG, City MPG

```
Q1 = cars_df.quantile(0.25)
Q3 = cars_df.quantile(0.75)
IQR = Q3 - Q1
outliers = ((cars_df < (Q1 - 1.5 * IQR)) | (cars_df > (Q3 + 1.5 * IQR))).sum()
print("Potential Outliers (using IQR method):")
print(outliers)
     Potential Outliers (using IQR method):
     Driven_Wheels
     Engine Cylinders
                          357
     Engine Fuel Type
                            0
     Engine HP
     MSRP
                          996
     Make
                            a
     Market Category
                            0
     Model
     Number of Doors
                            0
     Popularity
                          881
     Transmission Type
                            0
     Vehicle Size
                            0
     Vehicle Style
                            a
     Year
                          661
     city mpg
                          316
     highway MPG
                          192
```

<ipython-input-15-73b63a5a9663>:1: FutureWarning: The default value of numeric_only in DataFrame.quantile is deprecated. In a future ver

```
Q1 = cars_df.quantile(0.25)
<ipython-input-15-73b63a5a9663>:2: FutureWarning: The default value of numeric_only in DataFrame.quantile is deprecated. In a future ver Q3 = cars_df.quantile(0.75)
<ipython-input-15-73b63a5a9663>:5: FutureWarning: Automatic reindexing on DataFrame vs Series comparisons is deprecated and will raise V outliers = ((cars_df < (Q1 - 1.5 * IQR)) | (cars_df > (Q3 + 1.5 * IQR))).sum()
```

T-TEST

```
premium_unleaded = cars_df[cars_df['Engine Fuel Type'] == 'premium unleaded (required)']
regular_unleaded = cars_df[cars_df['Engine Fuel Type'] == 'regular unleaded']

t_stat, p_value = stats.ttest_ind(premium_unleaded['MSRP'], regular_unleaded['MSRP'])
print(f"T-test results - t-statistic: {t_stat}, p-value: {p_value}")

alpha = 0.05  #significance level

if p_value < alpha:
    print("Reject null hypothesis: There is a significant difference in MSRP based on engine type.")
else:
    print("Fail to reject null hypothesis: No significant difference in MSRP based on engine type.")

T-test results - t-statistic: 53.05815695600708, p-value: 0.0
Reject null hypothesis: There is a significant difference in MSRP based on engine type.")</pre>
```

Correlation Analysis

ANOVA TEST

```
grouped_data = cars_df.groupby('Vehicle Style')['MSRP'].apply(list)
f_statistic, p_value = f_oneway(*grouped_data)
print("\nANOVA Test - MSRP variation among Vehicle Styles:")
print(f"F-Statistic: {f_statistic}, p-value: {p_value}")

ANOVA Test - MSRP variation among Vehicle Styles:
    F-Statistic: 92.55549649004786, p-value: 5.613983147064976e-271
```

T-TFST

```
engine_fuel_types = cars_df['Engine Fuel Type'].unique()

for fuel_type in engine_fuel_types:
    subset = cars_df[cars_df['Engine Fuel Type'] == fuel_type]['MSRP']
    t_stat, p_value = ttest_ind(subset, cars_df['MSRP'])
    print(f"\nT-test for {fuel_type} Engine Fuel Type and MSRP:")
    print(f"T-statistic: {t_stat}, p-value: {p_value}")

T-test for premium unleaded (required) Engine Fuel Type and MSRP:
    T-statistic: 34.910868116537976, p-value: 4.7306254324863656e-256
```

```
T-test for regular unleaded Engine Fuel Type and MSRP:
T-statistic: -24.345905204481735, p-value: 5.905242990090284e-129
T-test for premium unleaded (recommended) Engine Fuel Type and MSRP:
T-statistic: 0.14094797183948202, p-value: 0.8879131574803788
T-test for flex-fuel (unleaded/E85) Engine Fuel Type and MSRP:
T-statistic: -2.1588670958355616, p-value: 0.030878987504420384
T-test for diesel Engine Fuel Type and MSRP:
T-statistic: 0.039873987036859695, p-value: 0.9681942496423356
T-test for electric Engine Fuel Type and MSRP:
T-statistic: 0.9926277529140373, p-value: 0.3209114461704788
T-test for flex-fuel (premium unleaded recommended/E85) Engine Fuel Type and MSRP:
T-statistic: 0.6825686452754542, p-value: 0.4948926966706487
T-test for natural gas Engine Fuel Type and MSRP:
T-statistic: -0.2947803041303683, p-value: 0.7681668493734748
T-test for flex-fuel (premium unleaded required/E85) Engine Fuel Type and MSRP:
T-statistic: 14.483807998706142, p-value: 3.838640790513522e-47
T-test for flex-fuel (unleaded/natural gas) Engine Fuel Type and MSRP:
T-statistic: -0.05707185895069415, p-value: 0.9544889099295308
```

Chi-square Test:

```
cross_tab = pd.crosstab(cars_df['Vehicle Style'], cars_df['Market Category'])
chi2, p, dof, expected = chi2_contingency(cross_tab)
print("\nChi-square Test - Association between Vehicle Style and Market Category:")
print(f"Chi-square value: {chi2}, p-value: {p}")

Chi-square Test - Association between Vehicle Style and Market Category:
    Chi-square value: 27100.05046976974, p-value: 0.0

X = cars_df['Engine HP']  # Independent variable
y = cars_df['MSRP']  # Dependent variable

X = sm.add_constant(X)  # Add a constant term for intercept
model = sm.OLS(y, X).fit()  # Fit the model
print(model.summary())
```

OLS Regression Results

Dep. Variable:		1	1SRP	R-squared:			0.438
Model:			OLS	Adj.	R-squared:		0.438
Method:		Least Squ	ares	F-sta	atistic:		9275.
Date:		Thu, 16 Nov 2	2023	Prob	(F-statisti	c):	0.00
Time:		23:54	1:11	Log-l	ikelihood:		-1.4458e+05
No. Observa	tions:	1:	L914	AIC:			2.892e+05
Df Residual	.s:	1:	1912	BIC:			2.892e+05
Df Model:			1				
Covariance	Type:	nonrol	oust				
======================================							
	coef	std err		t	P> t	[0.025	0.975]
const	-5.05e+04	1032.111	-48	3.932	0.000	-5.25e+04	-4.85e+04
Engine HP	365.2884	3.793	96	5.308	0.000	357.854	372.723
========						=======	========
Omnibus:		23521	.060	Durb	in-Watson:		0.713
Prob(Omnibu	ıs):	0	.000	Jarqı	ue-Bera (JB)	: 10	05879175.386
Skew:		15	628	Prob	(JB):		0.00
Kurtosis:		463	.771	Cond	. No.		680.

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.