

Number Theory is

a branch of mathematics that deals with the properties and relationships of numbers, especially positive integers.

Contents

- What is Number Theory?
- Even and Odd
- Prime Numbers and Divisors
- Prime Factorization
- GCD and LCM
- Sieve of Eratosthenes

Even and Odd Numbers

Even

An integer n is even, if and only if, n is twice some integer.

e.g. n=2*k

Odd

An integer n is odd, if and only if, n is twice some integer plus 1

e.g.
$$n = 2k+1$$

Prime and Divisor Numbers

Prime

An integer n > 1 is prime, if and only if, for all positive integers r and s, if n=r × s, then r=1 or s=1

e.g. n=1*r

Divisor

An integer n is divisible by an integer d $(d \neq 0)$, if and only if, n equals d times of some integer k

e.g. n = d*k

```
getDivisors
                                                  O(n)
       void getDivisors(int n){
           for(int i=1;i<=n;i++)</pre>
               if(n%i==0)
                   cout<<i<" ";
                                           // 1 2 3 4 6 12
           cout<<endl;
                                                  0(\sqrt{n})
getDivisorsSqrt
```


If n = 9, 3 will be printed twice.

Practice

https://codeforces.com/contest/

762/problem/A

Solution:

https://ideone.com/mlHxlx

Prime Factorization

Prime Factorization

Division Algorithm

$$N = P_1^a \times P_2^b \times P_3^c \times \dots$$

N is the product of all of its prime numbers raised to a certain power

Greatest Common Divisor (GCD)

We can get all divisors and easily take all common divisors and multiply them together. Or...

```
int gcd (int a, int b) {
    while (b) {
        a %= b;
        swap(a, b);
    return a;
```

Use __gcd(a, b); built-in function. Depending on your compiler it could be gcd(a, b); too

O(log(n))

Least/Lowest Common Multiple (LCM)

A method to find the smallest possible multiple of two or more numbers.

```
int lmc (int a, int b) {
    return a*b/__gcd(a, b);
}
```

Better return

a/__gcd(a, b)*b; to

avoid overflow.

But its still preferable to use long long and focus on constrains.

Practice

https://codeforces.com/contest/1764/problem/B

Solution: https://ideone.com/PQhnLD

PRIME NUMBERS

What if I'm having m queries?

How can we get it?

O(m*sqrt(n))...

```
bool prime(int x) {
    for (int i = 2; i * i <= x; i++) {
        if(x%i==0)
        return 0;
    }
    return 1;
}</pre>
```

SIEVE OF ERATOSTHENES

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	
		_	_	_	_	_	_	_	_	

SIEVE CODE

```
Time complexit: n*log(log(n))
```

Problem: https://codeforces.com/contest/1474/problem/B Solution: https://ideone.com/rFp0oN

Resources

https://www.youtube.com/watch?v=gN -nIXpl2rQ&t=2073s (first 2 hours, third hour is off -topic)

Factorization:

https://www.youtube.com/watch?v=PTxi1Uh6tks (1:04:40 -> 1:57:30)

Sieve of Eratosthenes:

https://www.youtube.com/watch?v=fuEZwSLmi7g
https://www.youtube.com/watch?v=4ZsieTY8rJ8&t
https://www.youtube.com/watch?v=AyLP2h7qvcE

Thanks

Do you have any questions?

CREDITS: This presentation template was created by $\bf Slidesgo$, including icons by $\bf Flaticon$, and infographics & images by $\bf Freepik$

