

Tema 4. Planificación de monoprocesadores

Dr. José Raúl Fernández del Castillo Díez Dr. Juan José Sánchez Peña

Tipos de planificación (I)

Planificación a largo plazo

Decisión de añadir procesos al conjunto de procesos a ejecutar.

Planificación a medio plazo

Decisión de añadir procesos al conjunto de procesos que se encuentran parcial o completamente en la memoria.

Planificación a corto plazo

Decisión sobre qué proceso disponible será ejecutado en el procesador

Planificación de E/S

Decisión sobre qué solicitud de E/S pendiente será tratada por un dispositivo de E/S disponible

Tipos de planificación (II)

Largo

- Determina cuáles son los programas admitidos en el sistema.
- Controla el grado de multiprogramación.
- Cuantos más procesos se crean, menor es el porcentaje de tiempo en el que cada proceso se puede ejecutar.

Medio

- Forma parte de la función de intercambio.
- Se basa en la necesidad de controlar el grado de multiprogramación.

Corto.

- También conocido como distribuidor.
- Es el de ejecución más frecuente.
- Se ejecuta cuando ocurre un suceso:
 - Interrupciones del reloj.
 - Interrupciones de E/S.
 - Llamadas al sistema operativo.
 - · Señales.

Figure 9.2 Levels of Scheduling

Objetivos y conceptos.

- Tiempo de respuesta.
 - Tiempo transcurrido entre el lanzamiento de un proceso y el momento en el que éste comienza a dar resultados (primera asignación).
 - Valor perceptible por el usuario.
- Tiempo de retorno.
 - Intervalo de tiempo transcurrido entre el lanzamiento de un proceso y su finalización.
 - Resulta de la suma de la espera (de ser planificado y en espera de los recursos) y del tiempo de ejecución real.
- Productividad.
 - Número de procesos terminados por unidad de tiempo.

Objetivos y conceptos: planificación corto plazo (I)

- Dos procesos.
 - Planificador: Scheduler.
 - Ejecutor de la planificación: Dispatcher.

Se activan por IRQ, eventos (semáforos, I/O,etc.), fin de proceso.

- Directrices
 - Distribución equitativa del tiempo de CPU.
 - Tiempo de respuesta mínimo.
 - Productividad: nº máximo de trabajos por unidad de tiempo.
 - ☐ Eficiencia del procesador: CPU ocupada al 100%.
- Activación.
 - Interrupciones del reloj.
 - ☐ Interrupciones de E/S.
 - Llamadas al sistema operativo.
 - Señales.

Objetivos y conceptos: planificación corto plazo (II)

- También conocido como distribuidor.
- Es el de ejecución más frecuente.
- Optimiza el sistema.
- Criterios de actuación:
 - Orientado al sistema.
 - Uso máximo de la CPU.
 - Máximo número de procesos terminados.
 - Orientados al usuario
 - Tiempo mínimo de respuesta (al usuario).
 - Tiempo mínimo de asignación del proceso a la CPU.

Objetivos y conceptos: planificación corto plazo (III)

Diagrama de colas de planificación.

Algoritmos de asignación: tipos de asignación

No preferente:

Una vez que el proceso pasa al estado de Ejecución, continúa ejecutando hasta que termina o se bloquea en espera de una E/S.

Preferente:

- El proceso que se está ejecutando actualmente puede ser interrumpido y pasado al estado de Listos por el sistema operativo.
- Permiten dar un mejor servicio ya que evitan que un proceso pueda monopolizar el procesador durante mucho tiempo.
 - First Come Firts Served (FCFS).
 - Turno rotatorio (Round Robin, RR).
 - Shortest Job First (SJF) o Primero en trabajo más corto.
 - Menor ráfaga restante.
 - Mayor tasa de respuesta.

Ejemplo de planificación de procesos

Proceso	Instante de llegada	Tiempo de servicio
A	0	3
В	2	6
С	4	4
D	6	5
E	8	2

Primero en llegar, primero en servirse (FCFS)

- Cada proceso se incorpora a la cola de listos.
- Cuando el proceso actual cesa su ejecución, se selecciona el proceso más antiguo de la cola.

- Puede que un proceso corto tenga que esperar mucho tiempo antes de que pueda ser ejecutado.
- No requisa → malo para sistemas interactivos.
- Favorece a los procesos con carga de CPU:
 - **Efecto convoy:** los procesos con carga de E/S tienen que esperar a que se completen los procesos con carga de CPU.

Turno rotatorio (Round Robin)

- Utiliza la requisa dependiente de un reloj. Periódicamente, se genera una interrupción de reloj.
- Se determina una cantidad de tiempo (*quanto*) que permite a cada proceso utilizar el procesador durante este periodo de tiempo.
- Cuando se genera la interrupción, el proceso que está en ejecución se sitúa en la cola de Listos y se selecciona el siguiente trabajo.

- Se conoce también como fracciones de tiempo.
- El cambio de contexto: Necesario equilibrio entre Quanto largo y corto.

Ej.:

Q=20 mseg con c.contex.= 5 mseg \rightarrow 20% de tiempo en cambios.

Q=500 mseg con c.contex.= 5 mseg > 1% de tiempo en cambios.

Pero si $Q = 500 \text{ mseg} \rightarrow \text{tiempo de respuesta a usuario lento.}$

Ajuste del Q para que el 80% de las ráfagas de CPU sean menores que Q.

Primero el proceso más corto

- Es una política no preferente.
- Se selecciona el proceso con menor tiempo esperado de ejecución.
- Un proceso corto saltará a la cabeza de la cola, sobrepasando a trabajos largos.

- Se reduce la previsibilidad de los procesos largos.
- Si la estimación de tiempo del proceso no es correcta, el sistema puede abandonar el trabajo.
- Posibilidad de inanición para los procesos largos.
- Estimación del futuro desde el pasado: media exponencial.

$$\tau n+1 = \alpha T n + (1-\alpha) \tau n$$

$$\alpha = 0 \rightarrow \tau n + 1 = \alpha T n + (1-\alpha) \tau n = \tau n$$

$$\alpha = 1 \rightarrow \tau n + 1 = \alpha T n + (1-\alpha) \tau n = T n$$

$$\begin{split} &\tau_{n+1} = \alpha T_n + (1 \text{-} \alpha) \ \tau_n = \tau_{n+1} = \alpha T_n + (1 \text{-} \alpha) (T_{n-1} + (1 \text{-} \alpha) \ \tau_{n-1}) \\ &\tau_n = \alpha T_{n-1} + (1 \text{-} \alpha) \ \tau_{n-1} \\ &\tau_{n-1} = \alpha T_{n-2} + (1 \text{-} \alpha) \ \tau_{n-2} \\ &\tau_{n-2} = \alpha T_{n-3} + (1 \text{-} \alpha) \ \tau_{n-3} \end{split}$$

$$\tau_{n+(n-2)} = \alpha T_{n-(n-1)} + (1-\alpha) \tau_{n-(n-1)}$$

$$\tau_{1} = \alpha T_{0} + (1-\alpha) \tau_{0} = \alpha T_{0} + (1-\alpha) (\alpha T_{n} + (1-\alpha) \tau_{n})$$

$$\begin{split} \tau_{_{n+1}} &= \alpha T_{_{n}} + (1-\alpha) \; \alpha \; T_{_{n-1}} + (1-\alpha)^2 \; \alpha \; T_{_{n-2}} + (1-\alpha)^3 \; \alpha \; T_{_{n-3}} + (1-\alpha)^4 \; \alpha \; T_{_{n-4}} \, ... \\ ... &+ \; (1-\alpha)^i \; \alpha \; T_{_{n-i}} + \ldots + (1-\alpha)^n \; \alpha \; T_{_{0}} \end{split}$$

Consideraciones:

Menor tiempo restante (SJF con requisa)

- Es una versión preferente de la política de primero el proceso más corto.
- Debe estimar el tiempo de proceso.

Primero el de mayor tasa de respuesta (HRRN)

Elige el proceso con la tasa más alta.

tiempo consumido esperando al procesador + tiempo de servicio esperado
tiempo de servicio esperado

t=9	T espera	T resp	Tasa de resp.
1			
2			
3	5	4	2.25
4	3	5	1.6
5	1	2	1.5

t=13	T espera	T resp	Tasa de resp.
1			
2			
3			
4	7	5	2.4
5	5	2	3.5

Realimentación

- No se conoce el tiempo de ejecución restante del proceso.
- Se estima el orden de planificación en función del pasado de los procesos.
- Penaliza a los trabajos que han estado ejecutándose durante más tiempo.

Planificación por prioridades (I)

- Cada proceso recibe una prioridad. Los procesos Listos se clasifican en colas dependiendo de la prioridad.
- El planificador seleccionará primero los procesos de mayor prioridad antes que a los de menor prioridad.
- Tiene múltiples colas de Listos para representar cada nivel de prioridad.
- Los procesos de prioridad más baja pueden sufrir inanición:
 - Permite que un proceso cambie su prioridad en función de su edad o su historial de ejecución.
- Existe planificación entre colas: reasignación dinámica.

Asignación de las prioridades:

- Internamente: Cantidad medible.
 - Requerimientos de MEM.
 - No de archivos / recursos.
 - Relación entre la I/O y el tiempo de CPU.
- **Externamente**: Parámetros subjetivos.
 - Importancia del proceso / usuario.
 - Políticas.
 - Económicas.

Planificación por prioridades (II)

Colas de prioridad.

Planificación con colas múltiples

- Los procesos Listos se clasifican en colas dependiendo de alguna propiedad.
 - Tamaño de memoria.
 - Tipo de proceso.
 - Prioridad.
 - Anterior uso de la CPU.
 - Relación de I/O, etc.
- Necesario un mecanismo de planificación entre colas (prioridad más alta la cola de procesos con mayor prioridad).
- Cada cola su propio algoritmo de planificación.
- Ej.: Dos colas:
 - Prioridad alta: Procesos interactivos.
 - Prioridad baja: Procesos de segundo plano.

Planificación con colas múltiples realimentadas (I)

- La prioridad y/o la asignación a las colas cambia dinámicamente.
 - Mucho uso de CPU → baja la prioridad.
 - Mucha I/O e interactivos → sube la prioridad.
 - Mucha espera de CPU → sube la prioridad.
 - Según se hunden en las colas su Q sube. Se premian procesos cortos.
- Definición de los sistemas de colas:
 - Nº de colas.
 - Algoritmo de planificación entre colas a la baja.
 - Algoritmo de planificación entre colas al alza.
 - Algoritmo de planificación de cada cola.
 - Método de asignación inicial a la cola.

Planificación con colas múltiples realimentadas (II)

Planificación con realimentación.

Properties

Go to Service(s)

Physical Memory: 53%

Prioridades en Windows XP

Clases de Prioridad (procesos)

(hilos)		real- time	high	above normal	normal	below normal	idle priority
豆	time-critical	31	15	15	15	15	15
	highest	26	15	12	10	8	6
0	above normal	25	14	11	9	7	5
ad	normal	24	13	10	8	6	4
ij	below normal	23	12	9	7	5	3
Modificadores	lowest	22	11	8	6	4	2
≥	idle	16	1	1	1	1	1

- El algoritmo es de Colas Multinivel con Realimentación. Cada prioridad tiene asociada una cola con planificación RR.
- Prioridades 0-15 variables, 16-31 fijas (tiempo real).
- A los hilos que agotan su quantum se les reduce la prioridad. Cuando un hilo pasa de espera a listo se aumenta su prioridad.

Above Normal

Below Normal Low

rocess

Normal

Planificación de tiempo real

• Hard real-time:

- El sistema garantiza la finalización de los procesos en un tiempo dado.
- El proceso indica explícitamente los recursos necesarios.
- El sistema acepta o no al proceso.

• Soft real-time:

- Se da prioridad a procesos críticos.
- Posible asignación desfavorable de recursos: esperas, inanición.
- Sistemas multimedia, gráficos, etc.

System type	Hard or soft real time?
Traffic light control	Hard RT - Critical
Automated teller machine	Soft RT - Non-Critical
Controller for radiation therapy machine	Hard RT – Critical
Car simulator for driver training	Hard RT – Non Critical
Highway car counter	Soft RT - Non-Critical
Missile control	Hard RT - Critical
Video games	Hard RT - Non Critical
Network chat	Soft RT - Non-Critical

Evaluación de los planificadores (I)

- La selección del algoritmo se realiza según:
 - Máximo uso de la CPU.
 - Máximo número de salidas.
- Métodos:
 - Deterministas.
 - Modelos de colas.
 - Simulaciones.
 - Implementación.

Evaluación de los planificadores (II)

Deterministas.

- Forma analítica según carga y tipo de algoritmo.
- Cálculo del tiempo de salida y atención del proceso.
- Simple, rápido, fácil de comparar algoritmos.
- Aplicación a condiciones similares.

Modelos (modelos de colas).

- Distribución de las ráfagas de CPU y I/O (probabilidad).
- Aproximaciones al caso real.
- Cálculos de:
 - Tiempos medios de salida.
 - Tiempos medios de espera.
 - Grado de utilización.
- Ej:

<n> procesos en cola.
w tiempo de espera.
λ ritmo de llegada de los procesos.
λ*ω marca el número de procesos nuevos.
El estado estacionario será para λ*ω=n

Evaluación de los planificadores (III)

Simulaciones

- Simula reloj del sistema, IRQ, dispositivos, procesos, planificador, etc.
- Datos:
- 1. Generados:
 - Aleatorios (Procesos, ráfagas, tiempos de llegada, etc.).
- 2. Distribuciones existentes:
 - Sistemas reales bajo estudio.
 - Aproximada: solo nº de procesos por unidad de tiempo.
- 3. Distribuciones reales:
 - Captura de datos de sistemas reales.
 - Conjunto real e idéntico de procesos para someterlos a pruebas.

Implementación

- Mejor solución.
- Problema → Costes

Planificación clásica en UNIX

- Emplea realimentación multinivel usando turno rotatorio en cada una de las colas de prioridad.
- La prioridad de cada proceso se calcula cada segundo.
- La prioridad base (**PBase**) divide los procesos en bandas fijas de prioridad.
 - Swap.
 - Control dispositivos I/O bloque.
 - Gestión archivos.
 - Control dispositivos I/O carácter.
 - Procesos usuario.
- Se utiliza un factor de ajuste para impedir que un proceso salga fuera de la banda que tiene asignada.