Environmental Influences on Turbine Performance Recent results

Dale Apgar GE Wind Validation

Overview

- > It is known in the greater wind turbine power performance community that environmental factors outside the standard TI/shear behavior influence performance
- Recent campaigns undertaken on turbines support added attention to other known environmental phenomena:
 - > Wind Veer: direction difference in incoming wind speeds as a function of elevation
 - > Directional performance drops: the greater picture
 - > Met mast placement as a function of prevailing winds and relative to the tested turbine
 - > Rotor-equivalent wind speed

Wind Veer

- > At one site, over four hours of consecutive data with 10min avg wind speed > 8.5 m/s, and directional delta bet. lower tip and hub height > 22° strong under-performance
 - > Post-campaign in-situ calibration verified there was no offset between the two wind vanes at elevation > no incorrect bias

Density-Corrected Wind Speed [m/s]

ecomagination

GE proprietary

Wind Veer

> Lidar data shows another site with binned 10min average veer ~10° between lower tip and hub heights

Directional Dependence

> On a site with a site calibration, flow around turbine could be accelerated at the met tower, skewing performance data

Directional Dependence

- > Looking at the bin-wise performance trend as the sector is reduced reveals strong evidence for discarding data
- > Systematically reducing measurement sector shows strong increase in bin-wise performance
 - > Faster wind moving around turbine 'back pressure' zone
 - \rightarrow Faster wind hits met mast \rightarrow 'artificially' drops turbine performance

Takeaways:

> Though further reduction of the measurement sector could be warranted and would improve results, cuts were limited to 65° of total available sector, or 26% total reduction

Met Mast Placement

- > Placement of the met mast need not 'blindly' follow IEC criteria \rightarrow could skew results
- > At one large, flat site, six turbines selected for power performance testing, serviced by three met masts -> Performance of machines with met behind is much worse than met-in-front turbines

- > One mast servicing two turbines
- Mast is at least 'upwind' of operational turbines for 4/6 machines
- > For two turbines the met mast is 'behind' the machines → does this accurately capture the free stream wind speed hitting the turbine?

ecomagination
7 / GE Title or job number / 10/7/2014

Nacelle Transfer Function: Quadratic

- > Compare the quadratic NTF with data from the south and north
- > Theoretically, there should be no change between the two when not correcting for density → just the raw ano:ano comparison
- > Data does show a change in the TF slight, but potentially significant

Nacelle Transfer Function: Quadratic

- Assume the nacelle anemometer is accurate as a baseline against which a met tower > can be compared from both → major assumption
- What is the impact of those different transfer functions? >
- When winds are southerly prevailing, the met tower reads a "higher wind speed" >
- Compare the transfer functions to see the magnitude of the difference >

What happens if this 'adjustment' is applied to the southerly data?

imagination at work

ecomagination 9 / GE Title or job number / 10/7/2014

Nacelle Transfer Function: Quadratic

- > Expectedly, the power curve improves because the wind speeds were adjusted downward on a bin-wise basis
- > Magnitude is significant
- > Unable to perform 'controls' on the other turbines due to their being waked from the north by neighboring turbines

Takeaways:

- > 'Adjusting' the southerly met readings to match northerly NTF shows a bias in the reading
- > Impact on power curve could exceed 1% AEP

Rotor Equivalent Wind Speed

- A ground-based lidar was placed near the met tower at a validation campaign, allowing the calculation for rotor-equivalent wind speed as compared to a single hub height anemometer
- > Keeping all other variables constant, the resulting power curve calculation with the existing rotor-equivalent wind speed was comparatively lower: 1 2% Relative AEP drop

$$V_{eq} \cong \left(\sum_{1}^{n} V_{n}^{3} * v\right)^{\frac{1}{3}}$$

Bin-wise Power Delta

AEP Delta

Takeaways:

> A combination of larger rotors and high wind shear can create situations where turbines can't capture all energy available in a stream tube

Conclusions

- > Wind veer is being observed with more intensity and frequency at tested sites
 - > Strong veer 'events' are correlated with underperformance
 - > Should be considered in site assessment and turbine performance evaluation
- > Directional dependence indicating that large measurement sectors may be good for quickly filling capture matrices, but perhaps less advantageous for accuracy
 - > In existing campaigns, directional breakdown of performance should be considered, if possible.
- \rightarrow Met mast placement \rightarrow is there an aversion to placing met towers up-wind of turbines?
 - > Selection of turbines and met mast placement should receive scrutiny by all parties
 - > Recommendations:
 - Place met mast in at least one section of the calculated measurement sector upwind of the turbine with a strong probability of experiencing the prevailing wind during the measurement campaign
 - If directional dependence is expected, quantification of performance impact can be calculated
- > Rotor equivalent wind speed could be dropping measured performance
 - > Especially with large diameters and high wind shears, the wind speed used for analysis should be carefully considered

