Econometrics
of Human
Capital

Philipp Eisenhauer

Material available on

grmpy Tutorial

Benedikt Kauf

Introduction

grmpy is ...

- ... an open-source Python Package for the simulation and estimation of the generalized Roy model.
- intended as a useful device to support and improve the understanding of the framework by providing the opportunity to experience the effect of particular specifications directly.

Setup

Setup

Normal linear-in-parameters version of the generalized Roy model.

Potential Outcomes

$$Y_1 = \beta_1 X + U_1 \qquad Y_0 = \beta_0 X + U_0$$

Observed Outcomes Choice
$$Y = DY_1 + (1-D)Y_0$$
 $D = I[D^* \ge 0]$ $D^* = \mu_D(X, Z) - V$ $U_D = F_V(V)$

The unobservables follow a normal distribution $(U_1, U_0, V) \sim N(0, \Sigma)$ with mean zero and covariance matrix Σ .

Features

Features

- grmpy is currently capable of the following features:
 - Simulating a dataset based on your own specifications.
 - Providing some useful information about the simulated dataset for instance:
 - Distributional outcome characteristics
 - ► B^{ATE}, B^{TT}, B^{TUT}
 - ► B^{MTE} by ventile
 - Estimating the coefficients of interest given a dataset (of a specific form).

Install the package

- OS, Linux: Use the pip install manager (pip install grmpy) or download the package via GitHub and install it manually.
- Windows: The same procedure as for Linux, OS but you have to verify that the *numpy* package is already installed on your machine.

Initialization file

- The initialization file provides the user with the opportunity to specify all parameters of his/her model, for instance:
 - Simulation parameters (number of observations, name of the output files)
 - Estimation parameters (optimization algorithm, start values)
 - Optimizer spezifications
 - Coefficients and covariance parameters, dummy variables ...

Initialization file

- ► Example
- ► for a detailed explanation see: *grmpy*-documentation

Simulation

- grmpy.simulate():
 - Input: path of the initialization file.
 - ► The function returns a data frame based on your specifications and different output files.
 - ▶ The data set as a pickle and a txt file.
 - An Info file that provides the distributional characteristics of the data as well as information about the different treatment effects.

Estimation

- grmpy.fit():
 - Input: path of the initialization file.
 - At the moment the estimation process is only capable of two different optimization algorithms:
 - Broyden Fletcher Goldfarb Shanno (BFGS) algorithm
 - Powell's conjugate direction method

- ► There are two different options for the start values that could be set in the initialization file:
 - init: The estimation process uses the coefficient values specified in the initialization file as the start values for the estimation process.
 - auto: The start values are determined via a simple OLS followed by a Probit regression for the choice indicator.
- ► The estimation results are printed to an output file.

Test battery

- We also provide a test battery that includes several tests to ensure that the processes perform as intended.
 - Property-based testing
 - Reliability testing
 - Regression testing

What's new?

Figure: Replication Carneiro (2011)

Figure: Performance comparison

Implementation of standard errors and adjustments on the output files

See: Example

Online documentation

Appendix

References

Abbring, J. H., & Heckman, J. J. (2007). Econometric evaluation of social programs, part III: Distributional treatment effects, dynamic treatment effects, dynamic discrete choice, and general equilibrium policy evaluation. In J. J. Heckman & E. E. Leamer (Eds.), *Handbook of econometrics* (Vol. 6, pp. 5145–5303). Amsterdam, Netherlands: Elsevier Science.

- Heckman, J. J., & Vytlacil, E. J. (2007a). Econometric evaluation of social programs, part I: Causal effects, structural models and econometric policy evaluation. In J. J. Heckman & E. E. Leamer (Eds.), Handbook of econometrics (Vol. 6B, pp. 4779–4874). Amsterdam, Netherlands: Elsevier Science.
- Heckman, J. J., & Vytlacil, E. J. (2007b). Econometric evaluation of social programs, part II: Using the marginal treatment effect to organize alternative economic estimators to evaluate social programs and to forecast their effects in new environments. In J. J. Heckman & E. E. Leamer (Eds.), *Handbook*

of econometrics (Vol. 6B, pp. 4875–5144). Amsterdam, Netherlands: Elsevier Science.