

영상기반 음영지역 보정 시제품 제작 및 시험

2019. 05. 24. Byoung-Dai Lee

Division of Computer Science & Engineering Kyonggi University

C/O/N/T/E/N/T/S

- 📵 그림자 이미지 생성 모듈 보완
- 📵 딥러닝 기반 그림자 제거 알고리즘 개발

Facade 기능 개발(1)

■시나리오

[건물 선택]

[주변 건물 제거 및 확대 후 카메라 정면 배치]

[회전을 통한 정면 이미지]

Facade 기능 개발 (2)

- 개발 완료 내용
 - 클릭 시 주변 건물 제거, 텍스쳐 원본 유지 (광원 효과 없음)

[Make Façade 기능 순서]

- 1. "Make_Façade" 토글 클릭
- 2. 건물 선택
- 3. 정면 이미지 캡처 (개발 중)

Facade 기능 개발 (3)

- 현재 개발 중
 - 정면을 바라볼 수 있도록 건물 회전 방법 구현 중

Facade 기능 개발 (4)

■문의 사항

- (A) 바닥면을 선택할 수 있는지? 도로 인접 방향은 불가능해 보임
- 건물 선택 시 Picking하는 면은 사실상 어려워보임
- 가로 세로 기준의 애매모호함

태양 위치 추적 기능 (1)

■시나리오

바닥에 그림자 있는 건물

수동 조절하여 태양 위치 추정

더블 클릭으로 접근

태양 위치 추적 기능 (2)

■ 문의 사항

- Vworld Viewer 기능이 무엇인지? (Unity? Vworld?)
- 그림자 영역/픽셀 정보 획득? 가상 그림자 색상 활용?
- 설정된 태양 위치의 가상 그림자 렌더링이 기존 Unity속 태양이 맞는지?
- 가상 그림자와 영상의 이미지 비교를 통한 오차범위는 눈으로 하는 것인지?
- 태양의 위치 설정 공식?
- 그림자 영역 선택은 불가능해 보임. 선택 지점의 픽셀 정보는 획득 가능

그림자 검출 및 제거 모듈 (1)

■시나리오

- 1. 현재 화면 캡처 이미지 또는 저장된 이미지 선택
- 2. Python 코드를 수행하는 명령어 입력으로 그림자 학습 프로그램의 모듈 실행
- 3. 모듈내부에서 그림자영역 표출 및 알고리즘 결과 표출 등의 출력 저장
- 4. 모듈 내부에서 제거 알고리즘 수행
- 5. 모듈 내부에서 그림자 제거 전후 비교 화면 및 통계 표출 저장

그림자 검출 및 제거 모듈 (2)

■ 문의 사항

- 건물, 지형, 도로 레이어 선택 기능?
- 학습 모델을 활용한 그림자 검출 및 그림자 표출 On/OFF는 프로그램 내부에서 표현하기 힘듦
- 객체별 텍스처와 그림자 중첩부분 추출과 저장은 Unity에서 안 해도 될 수 있음

딥러닝 기반 그림자 제거 (1)

■ 그림자 제거를 위한 딥러닝 기반 코드 개발

- Discriminator
 - Patch GAN에서 제시된 idea 적용
- Generator
 - Residual Block의 다양화
 - Dilated Convolution 적용
- Loss 수정
 - Joint loss 사용

딥러닝 기반 그림자 제거 (2)

Patch-based Image Inpainting with GAN (2018)

PGGAN Discriminator

2. Discriminator

Discriminator 부분의 개념

- (Patch + Global) => PGGAN Discriminator
 패치 단위와 전체 이미지 단위로 나누어 진짜 or 가짜 인지 판단하기 때문에, 패치 영역으로 좀 더 강조하여 판단할 수 있는 효과가기대됨.
- 기존의 전체 이미지 단위로만 판단한 것을 보완

딥러닝 기반 그림자 제거 (3)

Discriminator

1. ResNet block

PGGAN Discriminator

딥러닝 기반 그림자 제거 (4)

딥러닝 기반 그림자 제거 (5)

Generator

3x3 128 filters,

64 filters, 7x7

3x3 2 256 filters, Stride

3x3, Stride

Stride

Stride

Stride Stride

(a)

(b)

Stride

(c)

Stride

(d)

Stride 3x3,

Stride

256 filters,

128 filters, 3x3

64 filters, 7x7

(a) Dilation rate =2

(b) Dilation rate = 4

(c) Dilation rate = 8

(d) Dilation rate = 16

딥러닝 기반 그림자 제거 (6)

Joint Loss Function

- Reconstruction loss: 발생기에서 만든 이미지(가짜)와 GT 이미지 (진짜)의 픽셀단위 L1 distance 비교
- Adversarial loss : 분류기에서 G와 D를 동시에 학습
- Joint loss : 각 구성요소들을 비율에 따라 하나의 식으로 구성 $\lambda_1 = 0.995$, $\lambda_2 = 0.0025$, $\lambda_3 = 0.0025$
 - $L_{rec} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{WHC} ||y x||$
 - $L_{GAN}(G,D) = E_{x \sim p(x)}[log D(x)] + E_{y \sim pG(\tilde{x})}[log(1 D(G(\tilde{x})))]$
 - $L = \lambda_1 L_{rec} + \lambda_2 L_{g_adv} + \lambda_3 L_{p_adv}$

딥러닝 기반 그림자 제거 (7)

■실험 결과

딥러닝 기반 그림자 제거 (6)

■ 큰 차이는 없지만 미세한 부분들이 좀 더 자세히 복원

Information

Info

딥러닝 기반 그림자 제거 (7)

■성능 평가 방법

RMSE(Root Mean Squared Error)

RMSE =
$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(p_i-y_i)^2}$$
 p_i = 생성된 이미지 y_i = 정답 이미지

방법	성능 값(RMSE)
기존 데이터 셋(ISTD)	10.5153
생성기(Residual Block 6)	5.0789
생성기(Residual Block 9)	4.9220
Patch-based image	5.0883

딥러닝 기반 그림자 제거 (8)

■향후 진행 방향

- 성능 평가 방법 개선
 - 그림자 영역과 비그림자 영역을 나누어 진행
- 네트워크
 - Dilated residual block의 조합을 다양화하여 테스트 및 평가
 - Attention block[1]을 활용한 이미지 복원 방법 적용

[1] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. arXiv preprint arXiv:1801.07892 (2018)

Question or Comments?

