

Série 4a

Transformation géométrique et en niveau de gris

Execrice 1

Etant donné une image source f(u, v) et une transformation géométrique (x, y) = T(u, v) = (u + 2v, -u + 2v), il est demandé de reconstruire l'image g(x, y).

Image originale f et image transformée g. Les valeurs dans les cercles indiquent la valeur du niveau de gris

- a) Donner g(x, y) (valeurs de A,B,C) en faisant une interpolation de degré 0
- b) Donner g(x, y) (valeurs de A,B,C) en faisant une interpolation de degré 1

Exercice 2

Décrire chacune des transformations en niveau de gris suivante en évoquant les modifications d'intensité, de contraste et éventuellement l'application possible

Exercice 2

- Inversez l'image « lena10.pgm » avec une lookup table. Comparez les histogrammes.
- Modifiez le contraste de l'image « boat_lowContrast_NB_512x512.tif » avec une lookup table. Comparez les histogrammes.

Exercice 3

Utilisez les fonctions OpenCV permettant de normaliser un histogramme cv2.normalize(), d'égaliser un histogramme cv2.equalizeHist() et de faire une égalisation d'histogramme adaptative CLAHE cv2.createCLAHE() et clahe.apply().