Mustererkennung WiSe 12/13 Übung 5

Lutz Freitag, Sebastian Kürten

1 Aufgabe 1: Ridge Regression

1.1 Plot

Figure 1: Darstellung der Features

1.2 Code

1.2.1 a1.m

```
1 % Daten laden
2 data = load('data.mod');
3 % Testdaten von Trainingdaten trennen:
4 % Bei Trainingsdaten steht in der letzten Spalte eine 0,
5 % bei den Testdaten steht in der letzten Spalte eine 1.
6 % Außerdem weglassen der ersten Spalte, dort steht die Nummer
7 training = data(data(:,11) == 0,2:end-1);
8 testing = data(data(:,11) == 1,2:end-1);
```

```
9
10 \operatorname{cnt} = \operatorname{size}(\operatorname{training})(1)
11
12 % normalisiere trainingsdaten
13 meanTraining = mean(training)
14
   training = training .- repmat(meanTraining, cnt, 1);
15
    varTraining = std(training,1)
16 normalizedTraining = training ./ repmat(varTraining, cnt, 1)
17
18~\%~Trenne~abh\"angige~von~unabh\"angigen~Daten
19
   known = normalizedTraining(:,1:end-1); \% lcavol, lweight, ..., pgg45
20
21
   y = normalizedTraining(:,end); % lpsa
22
23 % Bestimme X durch Anfügen von 1-en vor die erste Spalte
24
   X = augmentWithOnes(known);
25
26 hold on
27
28 % calculate singular value decomposition to get eigenvalues of X
   d = \mathbf{svd}(X);
30
31
32 for lambda = logspace(0.5, 4.5, 100) % chosen by looking
33
            % Alpha bestimmen mit Formel für ridge Regression
34
             alpha = (X' * X + lambda * eye(size(X' * X)))^(-1) * X' * y;
35
             dl = sum(d .^2 ./ (d .^2 + lambda))
36
             plot(repmat(dl, size(alpha)), alpha, "@")
37
   end
38
   hold off
39
40 print("a1.png");
41 print("a1.pdf");
```

2 Aufgabe 2: Bootstrap

Die Ausgabe sind Mittelwerte und Standardabweichung der ersten zehn Datensätze bezogen auf die 100 vorhergesagten Werte mit Hilfe linearer Regression auf Basis zufällig gewählter Trainingsgruppen der Größe 50.

2.1 Ausgabe

```
mus =
           0.921
                             0.800
   1.159
                    1.279
                                     1.925
                                              0.889
                                                       1.917
                                                               1.892
                                                                        1.046
                                                                                 1.621
sigmas =
 Columns 1 through 8:
   0.0597
             0.0828
                                0.0966
                                          0.0246
                      0.0618
                                                   0.0863
                                                             0.0246
                                                                       0.0249
 Columns 9 and 10:
   0.0699
             0.0314
```

2.2 Code

2.2.1 a2.m

```
% Daten laden
   data = load('data.mod');
 3
   data = data(:, 2:\mathbf{end}-1);
 5~\%~relevante~Daten~ausw\"{a}hlen
   sdata = data(:, [1 5 7 end]);
   % hier speichern wir die Koeffizienten,
 9 % ein Quadrupel von Koeffizienten je Zeile
10
    coefficients = [];
11
12~\%~100~Experimente~durch f\"{u}hren
13
   for x = 1:100
14
            \% 50 Datensätze auswählen
            idx = randint(50, 1, [1, size(data, 1)]);
15
16
            d = sdata(idx, :);
17
            % Koeffizenten berechnen und abspeichern
18
            alphas = linreg(d);
19
            coefficients = [coefficients; alphas];
20
   end
21
   % 10 Testdatensätze nehmen und Einsen anfügen
   knownTest = sdata(1:10,1:end-1);
24
   Xtest = augmentWithOnes(knownTest);
25
26 % Vorhersagen mit allen Koeffizientenvektoren
    predictions = Xtest * coefficients ';
28 % Mittelwert und Standardabweichung ausrechnen
29 mus = mean(predictions, 2);
   diffs = predictions - repmat(mus, 1, size(predictions, 2));
   sigmas = sum(diffs.^2, 2) / size(predictions, 2);
32
```

```
33 % Ausgabeoptionen

34 output_max_field_width(3);

35

36 % für die Ausgabe transponieren :)

37 mus = mus'

38 sigmas = sigmas'
```

3 Aufgabe 3: Experiment

Wir haben hier mit der 8 gearbeitet. Die Beobachtung ist, dass die x_k konvergieren, d.h. dass sich die Richtung der Vektoren nich mehr ändert.

3.1 Code

3.1.1 a3.m

```
1 % Daten laden
2 trainingData = load("-ascii", "pendigits-training.txt");
3\ \%\ wir\ arbeiten\ mit\ der\ Acht
4 \quad \text{digit} = 8;
6 % select all samples labeled with 'digit'
   samples = trainingData(trainingData(:,17) == digit,:)(:,1:end-1);
9 % compute mu and covanriance matrix
10
  [mu, cov] = gauss(samples);
11
12 % plot the mean vector
13 plotDigit (mu, int2str(digit), 'mean.pdf', 'mean.png')
14
15 % select a random vector as x0
16 x0 = normalize(rand(1, 16));
17 \% start with xk = x0
18 	 xk = x0;
19 for k = 0:14
20
21
            % create a plot of the iteration
22
            label = sprintf('iteration_%d', k);
23
            pdfname = sprintf('iteration%d.pdf', k);
24
            pngname = sprintf('iteration%d.png', k);
25
            plotDigit(xk, label, pdfname, pngname);
26
            \% multiply xk with the covariance matrix
27
            xk = normalize(cov * xk);
28 end
```

3.2 Plots

Siehe unten

6

Figure 2: Darstellung der ersten x Iterationen