

Advanced GCE Chemistry B (Salters) (H433) Data Sheet

The information in this sheet is for the use of candidates following the Advanced Subsidiary GCE in Chemistry B (H033) course and Advanced GCE in Chemistry B (H433) course.

Clean copies of this sheet must be available in the examination room, and must be given up to the invigilator at the end of the examination.

Copies of this sheet may be used for teaching.

This document consists of 4 pages.

Instructions to Exams Officer/Invigilator

 Do not send this Data Sheet for marking; it should be retained in the centre or destroyed.

General Information

Molar gas volume = 24.0 dm³ mol⁻¹ at RTP

Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

Specific heat capacity of water, $c = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$

Planck constant, $h = 6.63 \times 10^{-34} \text{ J Hz}^{-1}$

Speed of light in a vacuum, c = 3.00 x 108 m s⁻¹

lonic product of water, $K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ at 298 K

1 tonne = 10^6 g

Arrhenius equation: $k = Ae^{-Ea/RT}$ or $\ln k = -E_a/RT + \ln A$

Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

Triplet base codes (codons) for some amino acids used in mRNA Glycine **GGU** Alanine GCC Leucine CUG Serine UCG Aspartic acid **GAU** Glutamine CAA **GUC** Valine

Characteristic infrared absorptions in organic molecules

Bond	Location	Wavenumber / cm ⁻¹
C–H	Alkanes	2850–2950
	Alkenes, arenes	3000–3100
C–C	Alkanes	750–1100
C=C	Alkenes	1620–1680
aromatic C=C	Arenes	Several peaks in range 1450–1650 (variable)
C=O	Aldehydes	1720–1740
	Ketones	1705–1725
	Carboxylic acids	1700–1725
	Esters	1735–1750
	Amides	1630–1700
	Acyl chlorides and acid anhydrides	1750–1820
C-O	Alcohols, ethers, esters and carboxylic acids	1000–1300
C≣N	Nitriles	2220–2260
C–X	Fluoroalkanes	1000–1350
	Chloroalkanes	600–800
	Bromoalkanes	500–600
О–Н	Alcohols, phenols	3200–3600 (broad)
	Carboxylic acids	2500-3300 (broad)
N–H	Primary amines	3300–3500
	Amides	ca. 3500

Monomers of DNA and RNA

(thymine has a CH₃ at position *)

Some useful organic reactions

1
$$R-Br + CN^ \longrightarrow$$
 $R-CN + Br^-$

3
$$\stackrel{R}{\searrow}$$
 C==0 NaBH₄ $\stackrel{R}{\longrightarrow}$ CH-OH

4 R-COOH + SOC
$$l_2$$
 — R-COC l + SO $_2$ + HC l

$$\frac{\text{Sn + conc. HC} l}{\text{reflux}}$$

¹H NMR chemical shifts relative to TMS

Chemical shifts are variable and can vary depending on the solvent, concentration and substituents. As a result, shifts may be outside the ranges indicated above.

OH and NH chemical shifts are very variable and are often broad. Signals are not usually seen as split peaks.

Note that CH bonded to 'shifting groups' on either side, e.g. O-CH₂-C=O, may be shifted more than indicated above.

The Periodic Table of the Elements

(1)	(2)											(3)	(4)	(5)	(6)	(7)	(0)
1 H hydrogen 1.0				Key omic numl Symbol name ve atomic										45	40	47	2 He helium 4.0
3 Li lithium 6.9 11 Na	4 Be beryllium 9.0 12 Mg											13 5 B boron 10.8 13 Al	6 C carbon 12.0 14 Si	7 N nitrogen 14.0 15 P	16 8 0 oxygen 16.0 16 S	9 F fluorine 19.0	10 Ne neon 20.2 18 Ar
sodium 23.0	magnesium 24.3	3	4	5	6	7	8	9	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
19 K potassium 39.1	20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe iron 55.8	27 Co cobalt 58.9	28 Ni nickel 58.7	29 Cu copper 63.5	30 Zn zinc 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35 Br bromine 79.9	36 Kr krypton 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr zirconium 91.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn tin 118.7	51 Sb antimony 121.8	52 Te tellurium 127.6	53 I iodine 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba barium 137.3	57–71 lanthanoids	72 Hf hafnium 178.5	73 Ta tantalum 180.9	74 W tungsten 183.8	75 Re rhenium 186.2	76 Os osmium 190.2	77 Ir iridium 192.2	78 Pt platinum 195.1	79 Au gold 197.0	80 Hg mercury 200.6	81 T <i>l</i> thallium 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89–103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium		114 F <i>l</i> flerovium		116 Lv livermorium		

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
138.9	140.1	140.9	144.2	144.9	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89 Ac actinium	90 Th thorium 232.0	91 Pa protactinium	92 U uranium 238.1	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr lawrencium