Módulos IP para MicroBlaze

Maestría en Sistemas Digitales

Alejandro J. Cabrera Sarmiento

Dpto. de Automática y Computación Universidad Tecnológica de La Habana "José Antonio Echeverría" CUJAE

alex@automatica.cujae.edu.cu

Sumario

- Módulos IP para MicroBlaze
- Procesador MicroBlaze
- Módulos IP compatibles con el bus PLB
 - Puerto de entrada/salida paralelo
 - Temporizador
 - Puerto serie
- Interrupción en MicroBlaze
 - Mecanismo de IT
 - Controlador de interrupciones

Sistema de procesamiento MicroBlaze

Procesador MicroBlaze

MicroBlaze es un procesador RISC de 32 bits optimizado para implementación sobre FPGAs de Xilinx

- Instrucciones de 32 bits con tres operandos y dos modos de direccionamiento
 - Similar a MIPS
- > Bus de direcciones de 32 bits
- > Arquitectura Harvard
 - Buses separados de instrucciones y datos
- Dos tipos de buses:
 - LMB: Local Memory Bus
 - PLB: Processor Local Bus (IBM)
- > 32 registros de propósito general de 32 bits
- Multiplicación hardware

Procesador MicroBlaze (cont.)

Elementos opcionales:

- Caché de instrucciones y datos
- Coprocesador aritmético
 - Unidad de punto flotante (FPU)
- Interfaces FSL
- Unidad de manejo de memoria (MMU)
 - Soporte de modo protegido

Toda la configuración de MicroBlaze se establece mediante parámetros

Diagrama de Bloques

Versión 3.0 de MicroBlaze, en EDK 6.3

Diagrama de Bloques

Versión 8.0 de MicroBlaze, en EDK 12.4

Diagrama de Bloques

Versión 10.0 de MicroBlaze, en Vivado 2016.4

Buses de MicroBlaze

Configuración de buses de MicroBlaze

Parámetros de MicroBlaze

El core MicroBlaze puede *configurarse* mediante *parámetros* que activan, seleccionan o dimensionan determinadas características.

Parameter Name	Feature/Description	Allowable Values		Default Value	EDK Tool Assig ned	VHDL Type
C_FAMILY	Target Family	aspartan3 aspartan3adsp aspartan3e aspartan6 qspartan6 qspartan6l spartan3 spartan3a spartan3adsp virtex6	spartan3an spartan3e spartan6 spartan6l qrvirtex4 qrvirtex5 qvirtex6 virtex4 virtex5 virtex5	virtex5	yes	string
C_DATA_SIZE	Data Size	32		32	NA	integer
C_INSTANCE	Instance Name	Any instance name		micro blaze	yes	string
C_D_PLB	Data side PLB interface	0, 1		0	yes	integer
C_D_AXI	Data side AXI interface	0, 1		0	yes	integer
C_D_LMB	Data side LMB interface	0, 1		1	yes	integer
C_I_PLB	Instruction side PLB interface	0, 1		0	yes	integer
C_I_AXI	Instruction side AXI interface	0, 1		0	yes	integer
C_I_LMB	Instruction side LMB interface	0, 1		1	yes	integer

Configuración de MicroBlaze

Configuración de MicroBlaze (cont.)

Módulos IP para MicroBlaze

Incluidos en EDK

Periféricos estándar

- XPS GPIO
- XPS Timer/Counter
- XPS UART-Lite
- XPS Interrupt Controller
- XPS TimeBase/WDT
- XPS SPI Interface
- XPS UART (16550)
- ...

Debug

- MDM
- ChipScope ICON
 - ChipScope PLB IBA

Buses

- LMB
- PLB
- FSL

Controladores de memoria

- LMB BRAM Controller
- XPS BRAM Controller
- MPMC (DDR Controller)
- XPS MCEM Controller (Flash, SRAM)
- XPS S ACE Controller (Compact Flash)

IPs de usuarios

XPS IPIF Interface

Procedimiento para trabajar con módulos IP

- Dominar HW del módulo IP
 - Características
 - Estructura interna
 - Señales
 - Registros asociados
 - Mecanismo de interrupción
 - Parámetros de configuración
- Dominar las funciones SW disponibles
 - Drivers de bajo / alto nivel
 - Parámetros
 - Utilización de las funciones

Puerto de E/S paralelo XPS GPIO

- Número de canales configurables (1 ó 2)
- Cada canal puede ser configurado como entrada solamente ó salida solamente
 - Reducción del consumo de recursos
- Número de bits configurable (1 a 32 bits)
- Cada bit puede ser configurado como entrada o salida
 - Registro de "dirección"
- Posibilidad de generación de interrupción
 - Transición en un bit de entrada
- Valores de RESET independientes para cada bit

XPS GPIO (data sheet)

XPS General Purpose Input/Output (GPIO) (v2.00.a)

DS569 Apr 19, 2010 **Product Specification**

Introduction

This document describes the specifications for the General Purpose Input/Output (GPIO) core for the Processor Local Bus (PLB). The XPS GPIO is a 32-bit peripheral that attaches to the PLBv4.6.

Features

- Connects as a 32-bit slave on PLB v4.6 bus of 32, 64 or 128 bits
- Configurable as single or dual GPIO channel(s)
- Number of GPIO bits configurable from 1 to 32 bits
- Each GPIO bit can be dynamically programmed as input or output
- Width of each of the channels can be individually configured
- Independent reset values for each bit of all registers
- Optional interrupt request generation

LogiCORE™ Facts					
Core Specifics					
Supported Device Family See EDK Supported Device Families.					
Version of Core	xps_gpio v2.00.a				
Resources Used					
	Min Max				
Slices					
LUTs	Refer to the Table 12, Table 13, Table 14, Table 15 and Table 16				
FFs					
Block RAMs N/A					

Estructura interna

GPIO_CORE Dual Channel Implementation

Registros asociados (datos)

- En cada canal:
 - Registro de datos (GPIOx_DATA)
 - Registro de "dirección" (GPIOx_TRI)
 - Para configuración dinámica de E/S
 - "1": Entrada; "0": Salida

Register Name	Description	PLB Address	Access
GPIO_DATA	Channel 1 XPS GPIO Data Register	C_BASEADDR + 0x00	Read/Write
GPIO_TRI	Channel 1 XPS GPIO 3-state Register	C_BASEADDR + 0x04	Read/Write
GPIO2_DATA	Channel 2 XPS GPIO Data register	C_BASEADDR + 0x08	Read/Write
GPIO2_TRI	Channel 2 XPS GPIO 3-state Register	C_BASEADDR + 0x0C	Read/Write

Registros asociados (interrupción)

- Registro de habilitación global (GIER), 1 bit
- Registro de habilitación de cada canal (IP_IER), 2 bit
- Registro de estado (IP_ISR) de solicitud, 2 bit
 - Es también el registro de solicitud
 - Un bit para cada canal
 - Se setea al existir una transición en un pin
 - El bit de solicitud se limpia al escribir un "1"

Register Name	Description	PLB Address	Access
GIER	Global Interrupt Enable Register	C_BASEADDR + 0x11C	Read/Write
IP IER	IP Interrupt Enable Register	C_BASEADDR + 0x128	Read/Write
IP ISR	IP Interrupt Status Register	C_BASEADDR + 0x120	Read/TOW[1]

Notes:

 Toggle-On-Write (TOW) access toggles the status of the bit when a value of "1" is written to the corresponding bit

Parámetros de configuración

GPIO Parameters					
GPIO Channel1 Data Bus Width	C_GPIO_WIDTH	1-32	32	integer	
GPIO Channel2 Data Bus Width	C_GPIO2_WIDTH	1-32	32	integer	
XPS GPIO Interrupt	C_INTERRUPT_ PRESENT	0 = Interrupt control module is not present 1 = Interrpt control module is present	0	integer	
GPIO_DATA reset value	C_DOUT_DEFAULT	Any valid std_logic_vector	00000000	std_logic_ vector	
GPIO_TRI reset value	C_TRI_DEFAULT	Any valid std_logic_vector	FFFFFFF	std_logic_ vector	
Use dual channel	C_IS_DUAL	0 = Single channel is enabled 1 = Both the channels are enabled	0	integer	
GPIO2_DATA reset value	C_DOUT_DEFAULT_2	Any valid std_logic_vector	00000000	std_logic_ vector	
GPIO2_TRI reset value	C_TRI_DEFAULT_2	Any valid std_logic_vector	FFFFFFF	std_logic_ vector	
Future Usage	C_ALL_INPUTS	0,1	0	Integer	
Future Usage	C_ALL_INPUTS_2	0,1	0	Integer	

Parámetros de configuración

Funciones disponibles

En driver de bajo nivel xgpio_l.h v.3.00a

Dependen de la versión del driver

- > Escritura en registro:
 - void XGpio_WriteReg (u32 BaseAddress, u32 RegOffset, u32 Data)
- Lectura en registro:
 - u32 XGpio_ReadReg (u32 BaseAddress, u32 RegOffset)

Funciones generales de lectura/escritura en registros

Funciones disponibles

Bus Interfaces	Ports A	ddresses			Bus Interface Filt
Name	Bus Nam	IP Type	IP Version		By Connectic
dlmb		mb_v10 mb_v10	1.00.a		✓ Conr
ilmb		☆ Imb_v10	1.00.a		Unco
mb_plb			1.05.a		⊟ By Bus Stand
⊕ microblaze_0		microblaze 🙀	8.00.b		₩ LIVIB
imb_bram		mam_block	1.00.a		
⊕ dlmb_cntlr		mb_bram_if_cntlr	2.10.b		⊟ ✓ Xilinx
ilmb_cntlr		mb_bram_if_cntlr	2.10.b		x X
⊕ SRAM_256Kx32		🛊 xps_mch_emc	3.01.a		
<u> mdm_</u> 0		mdm 🙀 mdm	2.00.a		▼ X
<u>□ DIP_Switches_8Bit</u>		🛊 xps_gpio	2.00.a		
■ LED_7SEGMENT		A voc anio	2.00 =		By Interface T
⊟ LEDs_8Bit		Configure IP			■ By Interface
SPLB	mb 💂	10 1400			V Slave V Mast
⊕ Push_Buttons_3Bit	;	View MPD			✓ Mast
⊕ RS232		View IP Modifications	(Change Log)		✓ Moni
clock_generator_0		View PDF Datasheet			
proc_sys_reset_0		Browse HDL Sources.			✓ Targe
		Driver: gpio_v3_00_a	→	View MDE)
		Delete Instance		View API (Documentation
		Make This IP Local			

Funciones disponibles (cont.)

Funciones disponibles (cont.)

Puerto serie XPS UART Lite

- Puerto serie asincrónico simple, full duplex
 - Configurable, no programable
- Razón de baudios configurable
- 5-8 bits x caracter
- Paridad par, impar o ninguna
- FIFOs de Tx y Rx (16 caracteres)
- Lógica de detección de errores
 - Paridad, sobrescritura y trama
- Posibilidad de generación de interrupción
 - Por Rx y por Tx

XPS UART Lite (data sheet)

XPS UART Lite (v1.01a)

DS571 April 19, 2010 **Product Specification**

Introduction

The XPS Universal Asynchronous Receiver Transmitter (UART) Lite Interface connects to the PLB (Processor Local Bus) and provides the controller interface for asynchronous serial data transfer. This soft IP core is designed to interface with the PLBV46.

Features

- PLB interface is based on PLB v4.6 specification
- Supports 8-bit bus interfaces
- One transmit and one receive channel (full duplex)
- 16-character Transmit FIFO and 16-character Receive FIFO
- Configurable number of data bits in a character (5-8)
- Configurable parity bit (odd or even)
- Configurable baud rate

LogiCORE™ Facts						
Core Specifics						
Supported Device See EDK Supported Device Families.						
Version of Core	xps_uartlite v1.01a					
Resources Used						
	Min Max					
Slices	Slices					
LUTs	Refer to the Table 9, Table 10, Table 11, Table 12 and Table 13					
FFs						
Block RAMs N/A						

Estructura interna

Registros asociados

- FIFO de Recepción
- FIFO de Transmisión
- Registro de Estado
- Registro de Control

Base Address + Offset (hex)	Register Name	Access Type	Default Value (hex)	Description
C_BASEADDR + 0x0	Rx FIFO	Read ^[1]	0x0	Receive Data FIFO ^[3]
C_BASEADDR + 0x4	Tx FIFO	Write ^[2]	0x0	Transmit Data FIFO[3]
C_BASEADDR + 0x8	STAT_REG	Read ^[1]	0x4	UART Lite Status Register
C_BASEADDR + 0xC	CTRL_REG	Write ^[2]	0x0	UART Lite Control Register

Notes:

- Writing of a read only register has no effect.
- Reading of a write only register returns zero.
- 3. When system reset is applied both Rx FIFO and Tx FIFO are reset/cleared.

Registro de Control

- Habilitación de Interrupción
- Limpiar FIFOs de Tx y de Rx

Registro de Estado

- Estado de habilitación de IT
- Estado de FIFO de Rx
- Estado de FIFO de Tx
- Errores
 - Paridad
 - Sobreescritura
 - Trama

Parámetros de configuración

XPS UART Lite Design Parameters

Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type
	System Parame	er		
Target FPGA family	C_FAMILY	See C_FAMILY paramet	er values.	string
System clock frequency (in Hz) driving the UART Lite peripheral	C_SPLB_CLK_ FREQ_HZ	integer (ex. 100000000)	100_ 000_ 000	Integer
	PLB Parameter	S		
PLB Base Address	C_BASEADDR	Valid Address ^[1]	None ^[3]	std_logic_ vector
PLB High Address	C_HIGHADDR	Valid Address ^[2]	None ^[3]	std_logic_ vector
PLB least significant address bus width	C_SPLB_AWIDTH	32	32	integer
PLB data width	C_SPLB_DWIDTH	32, 64, 128	32	integer
Baud rate of the UART Lite in bits per second	C_BAUDRATE	integer (ex. 128000)	9600 ^[5]	Integer
The number of data bits in the serial frame	C_DATA_BITS	5 - 8	8	Integer
Determines whether parity is used or not	C_USE_PARITY	0 = Do not use parity 1 = Use parity	1	Integer
If parity is used, determines whether parity is odd or even	C_ODD_PARITY	0 = Even parity 1 = Odd parity	1	Integer

Parámetros de configuración

Funciones disponibles

En driver de bajo nivel xuartlite_l.h v.2.00a

Dependen de la versión del driver

- Transmisión de un caracter:
 - void XUartLite_SendByte (u32 BaseAddress, u8 Data)
- Lectura de un carácter recibido :
 - u8 XUartLite_RecvByte (u32 BaseAddress)

Funciones generales de Tx/Rx Esperan por disponibilidad

Funciones disponibles (cont.)

- Escritura en registro de CONTROL:
 - void XUartLite_SetControlReg (u32 BaseAddress, u32 Mask)
- Lectura en registro de ESTADO:
 - u32 XUartLite_GetStatusReg (u32 BaseAddress)
- Información de ESTADO (Boolean):
 - int XUartLite_IsReceiveEmpty (u32 BaseAddress)
 - int XUartLite_IsTransmitFull (u32 BaseAddress)

Funciones disponibles (cont.)

- Asociadas a la INTERRUPCIÓN:
 - int XUartLite_IsIntrEnabled (u32 BaseAddress)
 - void XUartLite_EnableIntr (u32 BaseAddress)
 - void XUartLite_DisableIntr (u32 BaseAddress)

Revisar documentación de driver xuartlite_l.h v.2.00a

Temporizador XPS Timer

- Número de timers configurables (1 ó 2)
- Cada timer puede ser de hasta 32 bits (min 8)
- Conteo ascendente o descendente
- Tres modos de operación:
 - Generación (salida activa al desbordarse)
 - Captura de eventos (x activación de entrada)
 - Modulación de ancho del pulso (PWM)
 - Requiere de ambos contadores
- Posibilidad de generación de interrupción
 - Por captura o desbordamiento
 - NO tiene funciones de conteo (externo)

XPS Timer (data sheet)

LogiCORE IP XPS Timer/Counter (v1.02a)

DS573 April 19, 2010 Product Specification

Introduction

This document describes the specifications for a XPS Timer/Counter core for the Processor Local Bus.

The XPS Timer/Counter is a 32-bit timer module that attaches to the PLB bus.

Features

- Connects as a 32-bit slave on PLB V4.6 buses of 32, 64 or 128 bits
- PLB interface with byte-enable support
- Two programmable interval timers with interrupt, event generation, and event capture capabilities
- Configurable counter width
- One Pulse Width Modulation (PWM) output
- Freeze input for halting counters during software debug

LogiCORE™ Facts			
C	ore Specifics		
Spartan®-6, Virtex®-6/-6CX, Spartan-3, Spartan-3A, Supported Device Family Spartan-3E, Automotive Spartan-3/3E/3A/3A DSP, Spartan-3 ADSP, Virtex-4, QVirtex-4, QRVirtex-4,Virtex-5/5FX			
Version of Core	xps_timer v1.02a		
Resources Used			
	Min Max		
Slices			
LUTs	Refer to the Table 9, Table 10, Table 11, Table 12, and Table 13.		
FFs			
Block RAMs	s N/A		
Provided with Core			
Documentation Product Specification			

Estructura interna

Por cada canal...

- Registro de Conteo (TCRx)
- Registro de Carga (TLRx)
- Registro de Control y Estado (TCSRx)

Register	Address (Hex)	Size	Туре	Description
TCSR0	C_BASEADDR + 0x00	Word	Read/Write	Control/Status Register 0
TLR0	C_BASEADDR + 0x04	Word	Read/Write	Load Register 0
TCR0	C_BASEADDR + 0x08	Word	Read	Timer/Counter Register 0
TCSR1	C_BASEADDR + 0x10	Word	Read/Write	Control/Status Register 1
TLR1	C_BASEADDR + 0x14	Word	Read/Write	Load Register 1
TCR1	C_BASEADDR + 0x18	Word	Read	Timer/Counter Register 1

Registro de Control y Estado

- Modo del Timer
- Habilitación de Timer(s)
- Habilitación de Interrupción
- Sentido de conteo (asc/desc)
- Autorecarga, etc.

Parámetros de configuración

XPS Timer/Counter Parameter				
The width in bits of the counters in the XPS Timer/Counter	C_COUNT_WIDTH	8 - 32	32	integer
Number of Timer modules	C_ONE_TIMER_ONLY	0 = Two timers are present 1 = One timer is present (No PWM mode)	0	integer
Assertion level for CaptureTrig0	C_TRIG0_ASSERT	'0' = CaptureTrig0 input is low-true '1' = CaptureTrig0 input is high-true	1	std_logic
Assertion level for CaptureTrig1	C_TRIG1_ASSERT	'0' = CaptureTrig1 input is low-true '1' = CaptureTrig1 input is high-true	1	std_logic
Assertion level for GenerateOut0	C_GEN0_ASSERT	'0' = GenerateOut0 output is low-true '1' = GenerateOut0 output is high-true	1	std_logic
Assertion level for GenerateOut1	C_GEN1_ASSERT	'0' = GenerateOut1 output is low-true '1' = GenerateOut1 output is high-true	1	std_logic

Parámetros de configuración

Funciones disponibles

En driver de bajo nivel xtmrctr_l.h v.2.02a

Dependen de la versión del driver

- Lectura de un registro:
 - u32 XTmrCtr_ReadReg (u32 BaseAddress, u8 TimerNumber, unsigned RegOffset)
- Escritura en un registro:
 - void XTmrCtr_WriteReg (u32 BaseAddress, u8 TimerNumber, unsigned RegOffset, u32 ValueToWrite)

Funciones generales de lectura/escritura en registros

Funciones disponibles (cont.)

Asociadas al Registro de Carga:

- u32 XTmrCtr_GetLoadReg (u32 BaseAddress, u8 TmrCtrNumber)
- void XTmrCtr_SetLoadReg (u32 BaseAddress, u8 TmrCtrNumber, u32 RegisterValue)

Asociadas al Registro de Conteo:

- u32 XTmrCtr_GetTimerCounterReg (u32 BaseAddress, u8 TmrCtrNumber)
- void XTmrCtr_LoadTimerCounterReg (u32 BaseAddress, u8 TmrCtrNumber)

Funciones disponibles (cont.)

Asociadas al Registro de Control y Estado:

- •u32 XTmrCtr_GetControlStatusReg (u32 BaseAddress, u8 TmrCtrNumber)
- void XTmrCtr_SetControlStatusReg (u32 BaseAddress, u8 TmrCtrNumber, u32 RegisterValue)
- void XTmrCtr_Enable (u32 BaseAddress, u8 TmrCtrNumber)
- void XTmrCtr_Disable (u32 BaseAddress, u8 TmrCtrNumber)
- void XTmrCtr_EnableIntr (u32 BaseAddress, u8 TmrCtrNumber)
- void XTmrCtr_DisableIntr (u32 BaseAddress, u8 TmrCtrNumber)
- •int XTmrCtr_HasEventOccurred (u32 BaseAddress, u8 TmrCtrNumber)

Máscaras del registro TCSR

Función	Opciones	XTC_CSR_Máscara_MASK
Modo de trabajo	"1": Captura	CAPTURE_MODE
Conteo up/down	"1": conteo descendente	DOWN_COUNT
Habilitar señal de salida	"1": habilita GenerateOut	EXT_GENERATE
Habilitar entrada de captura	"1": habilita <i>CaptureTrig</i>	EXT_CAPTURE
Autorecarga o retención	"1": Autorecarga	AUTO_RELOAD
Cargar el timer	"1": TLR> TCR	LOAD
Habilitar (o no) interrupción	"1": Habilita interrupción	ENABLE_INT
Habilitar el timer	"1": Habilita el timer	ENABLE_TMR
Bandera de solicitud de IT	"1": Solicitud de IT	INT_OCCURED
Modo PWM	"1": Establece modo PWM	ENABLE_PWM
Habilitación general	"1": Habilita el XPS Timer	ENABLE_ALL

Interrupción en MicroBlaze (1)

- Una entrada (puerto) de solicitud de IT
 - Interrupt
 - Configurable x flanco o x nivel
- Enmascarable
 - microblaze_enable_interrupts(); /
 - microblaze_disable_interrupts();
- Funciones incluidas en standalone
- Puede conectarse directamente a la solicitud de IT de UN periférico o a la salida de un Controlador de IT (IntC)
- No implementa stack x HW ni tiene registro SP
- (1) Características adicionales a partir de v. 8.30

Configuraciones de IT

Interrupts without an Interrupt Controller

Configuraciones de IT (cont.)

Mecanismo de IT en MicroBlaze

- 1. Finaliza la instrucción en curso
- 2. Salva la dirección de la siguiente instrucción en R14
- 3. Inhabilita la IT
- 4. Carga PC con la dirección 0x10
 - Primera instrucción del manipulador de IT de bajo nivel de la plataforma SW (o del SO)
 - Usualmente un salto a otra dirección
- 5. Se ejecuta el manipulador de IT principal de la plataforma SW (o del SO)...

- 6. El manipulador de IT principal de la plataforma SW (o del SO)...
 - Salva todos los registros de MB en el stack de la aplicación
 - Este stack lo maneja la plataforma SW
 - Transfiere el control al siguiente nivel del manipulador de IT de la plataforma SW
- 7. Este nivel puede ser: la rutina de IT de la aplicación o el manipulador de IT del controlador de IT

- 8. El manipulador de IT principal de la plataforma SW (o del SO)...
 - Consulta una tabla de vectores de IT de MB para determinar el siguiente nivel
 - La tabla de vectores de IT de MB es creada por la plataforma SW
- 9. Si NO existe controlador de IT, el siguiente nivel es el manipulador de IT (rutina de IT) de la aplicación

- 10. Necesidad de colocar la dirección de esta rutina en la tabla de vectores de IT
 - void microblaze_register_handler (XInterruptHandler

Handler, void *DataPtr)

11. La rutina de IT tiene que desmarcar la solicitud de IT en el periférico

Función incluida en standalone

- 12. Al finalizar la rutina de IT, se transfiere el control al manipulador de IT principal de la plataforma SW
 - Restaura los registros de MB
 - Restaura PC (dirección de la siguiente instrucción)
 - Habilita la IT en MB

Flujo de IT en MicroBlaze sin IntC

- 9. Si existe controlador de IT (IntC), el siguiente nivel es el manipulador de IT del IntC
- 10. Encuesta las entradas de solicitud de IT activas y habilitadas en el IntC
- 11. Por cada IT activa, accede en orden de prioridad a la Tabla de Vectores de IT del IntC para ejecutar la rutina de IT del periférico
- 12. La Tabla de Vectores de IT del IntC es creada por el driver del IntC

- 13. Necesidad de colocar la dirección de esta rutina en la tabla de vectores de IT del IntC
 - void XIntc_RegisterHandler (.....)
- 14. La rutina de IT tiene que desmarcar la solicitud de IT en el periférico

Función incluida en *xintc_l.h*

- 15. Al finalizar la rutina de IT, se transfiere el control al manipulador de IT del IntC, y de este al manipulador de IT principal de la plataforma SW
 - Restaura los registros de MB
 - Restaura PC (dirección de la siguiente instrucción)
 - Habilita la IT en MB

Flujo de IT en MicroBlaze con IntC

Controlador de Interrupciones XPS INTC

- Número de entradas configurable (1 a 32)
- Lógica de prioridades fijas (0: más prioritaria)
- Entradas de IT enmascarables
 - Registro de habilitación (máscara)
- Solicitud por frente o por nivel
 - Independiente para cada entrada
- Posibilidad de conexión en cascada

XPS INTC (data sheet)

LogiCORE IP XPS Interrupt Controller (v2.01a)

DS572 April 19, 2010 Product Specification

Introduction

The LogiCORE IP XPS Interrupt Controller (XPS INTC) concentrates multiple interrupt inputs from peripheral devices to a single interrupt output to the system processor. The registers for checking, enabling and acknowledging interrupts are accessed through a slave interface for the Processor Local Bus (PLB V4.6). The number of interrupts and other aspects can be tailored to the target system.

Features

- Connects as a 32-bit slave on PLB V4.6 bus of 32, 64 and 128-bit data width
- Configurable number of (up to 32) interrupt inputs
- Single interrupt output
- Easily cascaded to provide additional interrupt inputs
- Priority between interrupt requests is determined by vector position. The least significant bit (LSB, in this case bit 0) has the highest priority
- Interrupt Enable Register for selectively disabling individual interrupt inputs
- Master Enable Register for disabling interrupt request output

LogiCORE™ Facts			
С	ore Specifics		
Supported Device Family	Spartan [®] -6, Virtex [®] -6/6CX, Spartan-3, Spartan-3A, Spartan-3E, Automotive Spartan-3/3E/3A/3A DSP, Spartan-3 ADSP, Virtex-4, QVirtex-4, QRVirtex-4, Virtex-5/5FX		
Version of Core	xps_intc	v2.01a	
Re	sources Used		
	Min	Max	
Slices			
FFs	See Table 13, Table 14, Table 15, Table 16, Table 17, and Table 18		
LUTs]		
Block RAMs	N/A		
Pro	vided with Core		
Documentation	Product Specifica	ation	
Design File Formats	VHDL		
Constraints File	N/A		
Verification	N/A		
Instantiation Template	N/A		
Reference Designs & Application Notes	N/A		

Estructura interna simplificada

Estructura interna

Note:

Into Interface: Design module does not exist by this name. This interface is part of top-level XPS INTC.

Parámetros de configuración

INTC Parameters					
Number of interrupt inputs	C_NUM_INTR_INPUTS	1 - C_SPLB_NATIVE_ DWIDTH	2	integer	
Type of interrupt for each input 1 = Edge 0 = Level	C_KIND_OF_INTR	See ⁽⁷⁾	ALL 1's	std_logic _vector	
Type of each edge sensitive input 1 = Rising 0 = Falling Valid if C_KIND_OF_INTR = 1's	C_KIND_OF_EDGE	See ⁽⁷⁾	ALL 1's	std_logic _vector	
Type of each level sensitive input 1 = High 0 = Low Valid if C_KIND_OF_INTR = 0's	C_KIND_OF_LVL	See ⁽⁷⁾	ALL 1's	std_logic _vector	
Indicates the presence of IPR	C_HAS_IPR	0 = Not Present 1 = Present	1	integer	
Indicates the presence of SIE	C_HAS_SIE	0 = Not Present 1 = Present	1	integer	

Parámetros de configuración (cont.)

Indicates the presence of CIE	C_HAS_CIE	0 = Not Present 1 = Present	1	integer
Indicates the presence of IVR	C_HAS_IVR	0 = Not Present 1 = Present	1	integer
Indicates level or edge active Irq	C_IRQ_IS_LEVEL	0 = Active Edge 1 = Active Level	1	integer
Indicates the sense of the Irq output	C_IRQ_ACTIVE	0 = Falling / Low 1 = Rising / High	1	std_logic

Parámetros de configuración

- Registro de Habilitación (IER)
- Registro de Habilitación Maestro (MER), 2 bit
 - Sirve también para habilitación de IT x SW (bit HIE)
- Registro de Estado (ISR)
- Registro de Reconocimiento de IT (IAR)
 - Para limpiar la solicitud de IT
- Registros opcionales: SIE, CIE, IVR, IPR

Register Name	Abbreviation	OPB Offset
Interrupt Status Register	ISR	0 (00h)
Interrupt Pending Register	IPR	4 (04h)
Interrupt Enable Register	IER	8 (08h)
Interrupt Acknowledge Register	IAR	12 (0Ch)
Set Interrupt Enable Bits	SIE	16 (10h)
Clear Interrupt Enable Bits	CIE	20 (14h)
Interrupt Vector Register	IVR	24 (18h)
Master Enable Register	MER	28 (1Ch)

Register Name	Base Address + Offset (Hex)	Access Type	Abbreviation	Reset Value
Interrupt Status Register	C_BASEADDR + 0x0	Read / Write	ISR	All Zeros
Interrupt Pending Register	C_BASEADDR + 0x4	Read	IPR	All Zeros
Interrupt Enable Register	C_BASEADDR + 0x8	Read / Write	IER	All Zeros
Interrupt Acknowledge Register	C_BASEADDR + 0xC	Write	IAR	All Zeros
Set Interrupt Enable Bits	C_BASEADDR + 0x10	Write	SIE	All Zeros
Clear Interrupt Enable Bits	C_BASEADDR + 0x14	Write	CIE	All Zeros
Interrupt Vector Register	C_BASEADDR + 0x18	Read	IVR	All Ones
Master Enable Register	C_BASEADDR + 0x1C	Read / Write	MER	All Zeros

Master Enable Register (MER)

- Registro de dos bit: ME y HIE
- Habilitación general del XIntC (ME)

```
void XIntc_MasterEnable (u32 BaseAddress)
```

void XIntc_MasterDisable (u32 BaseAddress)

- Posibilidad de IT x SW (HIE = 0)
- Una vez seteado HIE, IT x HW (hasta RESET)

void XIntc_SetIntrSvcOption (u32 BaseAddress, int Option)

Funciones disponibles

En driver de bajo nivel *xintc_l.h* v2.02a

Dependen de la versión del driver

void XIntc_MasterEnable (u32 BaseAddress)

void XIntc_MasterDisable (u32 BaseAddress)

void XIntc_EnableIntr (u32 BaseAddress, u32 EnableMask)

void XIntc_DisableIntr (u32 BaseAddress, u32 DisableMask)

void XIntc_AckIntr (u32 BaseAddress, u32 AckMask)

u32 XIntc_GetIntrStatus (u32 BaseAddress)

Funciones disponibles (cont.)

En driver de bajo nivel *xintc_l.h* v2.02a

Dependen de la versión del driver

void XIntc_RegisterHandler (u32 BaseAddress, int InterruptId, XInterruptHandler Handler, void *CallBackRef)

void XIntc_SetIntrSvcOption (u32 BaseAddress,
int Option)

void XIntc_DeviceInterruptHandler (void
*DeviceId)

XIntc_DeviceInterruptHandler (..)

This function is the **primary interrupt handler** for the driver. It must be connected to the interrupt source such that is called when an interrupt of the interrupt controller is active. It will resolve which interrupts are active and enabled and call the appropriate interrupt handler. It uses the AckBeforeService flag in the configuration data to determine when to acknowledge the interrupt. Highest priority interrupts are serviced first. The driver can be configured to service only the highest priority interrupt or all pending interrupts using the {XIntc_SetOptions()} function or the {XIntc_SetIntrSrvOption()} function.

- ➤ This function assumes that an interrupt vector table has been previously initialized. It does not verify that entries in the table are valid before calling an interrupt handler.
- Parameters: DeviceId is the zero-based device ID defined in xparameters.h of the interrupting interrupt controller. It is used as a direct index into the configuration data, which contains the vector table for the interrupt controller. Note that even though the argument is a void pointer, the value is not a pointer but the actual device ID. The void pointer type is necessary to meet the XInterruptHandler typedef for interrupt handlers.

Secuencia de programación de IT

- Habilitar la salida de solicitud de IT del periférico
- Habilitar la entrada correspondiente a dicho dispositivo en el controlador de IT
- Habilitar la salida de solicitud de IT del controlador de IT
- Habilitar la entrada de IT de MicroBlaze
 - microblaze_enable_interrupts();
 - microblaze_disable_interrupts();

Incluidas en standalone

Enlace con la subrutina de IT

- Las rutinas de IT para cada uno de los periféricos conectados al controlador de IT pueden especificarse en el fichero MSS]
 - PARAMETER int_handler =
 <nombre_de_la_rutina>, int_port = Interrupt
- LibGen crea automáticamente una tabla de vectores a las diferentes rutinas de IT ordenados según las prioridades correspondientes.

Obsoleto. NO soportado a partir de v. 13

Enlace con la subrutina de IT (cont.)

- Los vectores de IT también pueden ser ubicados dinámicamente en la tabla de vectores del controlador de IT utilizando la función:
 - void XIntc_RegisterHandler (u32 BaseAddress, int InterruptId, XInterruptHandler Handler, void
 * CallBackRef)
 - Ejemplo: XIntc_RegisterHandler
 (XPAR_XPS_INTC_0_BASEADDR,
 XPAR_XPS_INTC_0_TIMER_0_INTERRUPT_INTR,
 (XInterruptHandler) Timer0_interrupt_handler, NULL);
- Revisar API

Documentación

Documentación

Manuales

- Getting Started with the Embedded Development Kit
- Platform Studio User Guide
- Embedded System Tools Ref. Manual → Xilinx Platform Studio
- MicroBlaze Processor Reference Guide
- Processor IP Reference Guide

Soporte Web

- MicroBlaze
 - http://www.support.xilinx.com/microblaze
- Módulos IP
 - http://www.support.xilinx.com/ise/embedded/edk_ip.htm
- EDK
 - http://www.support.xilinx.com/edk

