

Guiding Unsupervised Image Restoration with few Annotated Subjects for Lesion Detection

Master thesis: Jonatan Kronander Supervisors: Xiaoran Chen and Prof. Dr. Ender Konukoglu 14 July 2020, Zürich

Lesion Detection

- Segmentation of lesions is important for diagnosis and treatment
- Manual segmentation is a tedious task
- Automatic measurements help clinicians be more efficient and precise

Problems of Previous Work

Supervised Methods

Well trained 3D U-Net ¹
Autoencoder Regularization ²
Convolutional Neural Networks ³

- Good Performance
- Requires Large Datasets
- Bad Generalisation of Unseen Lesions

Unsupervised Methods

Constrained Adversarial Autoencoders ⁴
Detection via Image Restoration ⁵
Autoencoding models ⁷

- No Need of Annotated Datasets
- + Detects any Lesion
- Performance

Proposed Method

Semi-supervised method

- Need of Only few Annotated Training data
- + Performance
- 1. Isensee, Fabian, et al. "No new-net." International MICCAI Brainlesion Workshop. Springer, Cham, 2018.
- 2. Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018.
- 3. Pereira, Sérgio, et al. "Brain tumor segmentation using convolutional neural networks in MRI images." *IEEE transactions on medical imaging* 35.5 (2016): 1240-1251.
- 4. Chen, Xiaoran, and Ender Konukoglu. "Unsupervised detection of lesions in brain mri using constrained adversarial auto-encoders." arXiv preprint arXiv:1806.04972 (2018).
- 5. Baur, Christoph, et al. "Deep autoencoding models for unsupervised anomaly segmentation in brain MR images." *International MICCAI Brainlesion Workshop*. Springer, Cham, 2018.
- 6. You, Suhang, et al. "Unsupervised lesion detection via image restoration with a normative prior." International Conference on Medical Imaging with Deep Learning. 2019.

Agenda

- 1. Related Work
- 2. Proposed Methods
- 3. Experimental Setup and Baseline Methods
- 4. Results
- 5. Summary

Related Work - Detection with Normative Prior¹

Step 1 - Learn normative prior from healthy data

^{1.} You, Suhang, et al. "Unsupervised lesion detection via image restoration with a normative prior." *International Conference on Medical Imaging with Deep Learning*. 2019. Image source: Chen, Xiaoran, et al. "Unsupervised lesion detection via image restoration with a normative prior." *Medical Image Analysis* (2020): 101713.

Related Work - Detection with Normative Prior¹

Step 2 - Detect Lesions via Image Restoration

^{1.} You, Suhang, et al. "Unsupervised lesion detection via image restoration with a normative prior." *International Conference on Medical Imaging with Deep Learning*. 2019. Image source: Chen, Xiaoran, et al. "Unsupervised lesion detection via image restoration with a normative prior." *Medical Image Analysis* (2020): 101713.

Proposed methods - Restoration

Lesions assumed as Additive Noise:

Input MRI Lesion
$$Y = X + D \Rightarrow D = |X - Y|$$
Healthy image

X is Found via Image Restoration with MAP estimation:

$$\underset{X}{\operatorname{argmax}} P(X|Y) = \underset{X}{\operatorname{argmax}} \left[\frac{P(X)P(Y|X)}{P(Y)} \right]$$

$$\propto \underset{X}{\operatorname{argmax}} \left[\log(P(X)) + \log(P(Y|X)) \right]$$

MAP estimation is solved with gradient descent:

$$X_{i+1} = X_i - \alpha \left[\frac{\partial}{\partial X_i} ELBO(X) - \frac{\partial}{\partial X_i} ELBO(X) \cdot NN(X, Y) \right]$$

Proposed methods - Restoration

Image source 1: Chen, Xiaoran, et al. "Unsupervised lesion detection via image restoration with a normative prior." *Medical Image Analysis* (2020): 101713.

Image source 2: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." *International Conference on Medical image computing and computer-assisted intervention*. Springer, Cham, 2015.

Learning the likelihood - Implicit Approach

$$Loss_{\theta} = Dice_{Loss}(NN_{\theta}($$

Learning the likelihood - Explicit Approach

Data Augmentation

Weak Augmentation

Transform	Parameter
Horisontal Flip	0.5%
Rotate	$random(\pm 10 \deg)$
Elastic Deformation	$\alpha = \text{random}(0, 100), \sigma = 10$
Scale	$random(\pm 0.20\%)$
Average Blur	random(0,4)
Linear Contrast	$random(\pm 0.2)$
Intensity Multiply	$random(\pm 0.2)$

Transform	Parameter		
Horisontal Flip	0.5%		
Vertical Flip	0.5%		
Rotate	$random(\pm 20 \deg)$		
Elastic Deformation	$\alpha = \text{random}(0, 200), \sigma = 20$		
Scale	$random(\pm 0.20\%)$		
Average Blur	random(0,4)		
Linear Contrast	$random(\pm 0.3)$		
Intensity Multiply	$random(\pm 0.2)$		

Selecting Threshold for Binary Segmentation

$$D=|Y-X|$$
 S

Experimental setup

- Dataset: T2 weighted MRI axial slices
 - BraTS 2017: 283 subjects with labelled brain tumours
 - CamCAN: 652 healthy brain scans
 - 1/3/10/30/100 # of Subjects
- Data preprocessing
 - Bias field correction
 - Normalisation
 - Resize and Crop
 - Histogram Matching
- Hyperparameters for VAE and Segmentation network:
 - Batchsize: 32, Adam optimiser with learning rate: 10^-3
- Hyperparameters for restoration:
 - Step size: 3x10^-1, # of steps: 10
- Implementation using Pytorch

Baseline Methods

- Unsupervised detection via image restoration
- Supervised U-Net
- Semi-supervised U-Net trained with sim-CLR

Image source 1: Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." *International Conference on Medical image computing and computer-assisted intervention.* Springer, Cham, 2015.

Results

0 Subjects

Methods	AUC	Dice (naive)	DICE (fpr 0.01)	DICE (fpr 0.05)
You et al.	0.80	_	0.34	0.35

1 Subject

Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
Implicit Learning	$0.86 (\pm 0.02)$	$0.51(\pm 0.05)$	$0.51(\pm 0.07)$	$0.53 (\pm 0.05)$
Explicit Learning *	$0.80(\pm 0.04)$	$0.38(\pm 0.03)$	$0.41(\pm 0.04)$	$0.41(\pm 0.03)$
U-Net	$0.85(\pm 0.02)$	$0.49(\pm 0.06)$	_	-
SimCLR / U-Net	$0.84(\pm 0.02)$	$0.50(\pm 0.13)$	_	-

10 Subjects

Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
Implicit Learning	$0.91(\pm 0.03)$	$0.64(\pm 0.03)$	$0.54(\pm 0.12)$	$0.64(\pm 0.05)$
Explicit Learning	$0.85(\pm 0.04)$	$0.55(\pm 0.04)$	$0.45(\pm 0.07)$	$0.48(\pm 0.06)$
U-Net	$0.94(\pm 0.01)$	$0.70(\pm 0.03)$	_	_
SimCLR / U-Net	$0.94(\pm 0.01)$	$0.70(\pm 0.04)$	=	_

100 Subjects

	Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
	Implicit Learning	0.96	0.73	0.67	0.75
3	Explicit Learning	0.90	0.61	0.41	0.61
	U-Net	0.98	0.82	_	_
	SimCLR / U-Net	0.98	0.82	_	::

Results: Visualisation Implicit

Results: Visualisation Explicit

100 training subject 1 training subject 10 training subject Input Restored Lesion map Output (fpr = 1%)Ground truth

Summary

- The proposed supervised extension of You et al. increases performance
- Competes with supervised and semi-supervised baselines using few annotated training subjects
- Future work:
 - Improved optimisation
 - Better training of segmentation network
 - More accurate approximation of normative prior

Thank you!

Jonatan Kronander jonatank@student.ethz.ch

Git Repository:

https://github.com/jkkronk/lesion_seg

Results: Visualisation 2 Implicit

Results: Visualisation 2 Explicit

Results: Visualisation You et al.

Results: Visualisation U-Net

1 training subject

10 training subject

100 training subject

Ground truth

Results: Restoration 1 subject

Results: Results 100 subject

Restored

Predicted segmentation

Ground truth

Full results

Methods	AUC	Dice (naive)	DICE (fpr 0.01)	DICE (fpr 0.05)
You et al.	0.80	-	0.34	0.35

(a) Result comparison using 0 subjects.

Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
Implicit Learning	$0.86(\pm 0.02)$	$0.51(\pm 0.05)$	$0.51(\pm 0.07)$	$0.53(\pm 0.05)$
Explicit Learning *	$0.80(\pm0.04)$	$0.38(\pm 0.03)$	$0.41(\pm 0.04)$	$0.41(\pm 0.03)$
U-Net	$0.85(\pm 0.02)$	$0.49(\pm 0.06)$	-	
SimCLR / U-Net	$0.84(\pm 0.02)$	$0.50(\pm 0.13)$	_	-

(b) Result comparison using 1 subject. * Uses one extra labelled subject for tuning the K-factor.

Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
Implicit Learning	$0.90(\pm 0.02)$	$0.61(\pm 0.03)$	$0.61(\pm 0.05)$	$0.63 (\pm 0.02)$
Explicit Learning	$0.83(\pm 0.05)$	$0.48(\pm 0.09)$	$0.45(\pm 0.07)$	$0.47(\pm 0.07)$
U-Net	$0.90(\pm 0.02)$	$0.58(\pm 0.07)$		_
SimCLR / U-Net	$0.87(\pm 0.05)$	$0.59(\pm 0.07)$	LTT.	_

(c) Result comparison using 3 subjects.

Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
Implicit Learning	$0.91(\pm 0.03)$	$0.64(\pm 0.03)$	$0.54(\pm 0.12)$	$0.64(\pm 0.05)$
Explicit Learning	$0.85(\pm 0.04)$	$0.55(\pm 0.04)$	$0.45(\pm 0.07)$	$0.48(\pm 0.06)$
U-Net	$0.94(\pm 0.01)$	$0.70(\pm 0.03)$	400	
SimCLR / U-Net	$0.94(\pm 0.01)$	$0.70(\pm 0.04)$	_	· —

(d) Result comparison using 10 subjects.

Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
Implicit Learning	$0.95(\pm 0.01)$	$0.67(\pm 0.04)$	$0.65(\pm 0.07)$	$0.67(\pm 0.03)$
Explicit Learning	$0.88(\pm 0.02)$	$0.56(\pm 0.04)$	$0.46(\pm 0.11)$	$0.49(\pm 0.10)$
U-Net	$0.97(\pm 0.01)$	$0.78(\pm 0.02)$	_	_
SimCLR / U-Net	$0.98(\pm 0.01)$	$0.79(\pm0.01)$		1 — 1

(e) Result comparison using 30 subjects.

Methods	AUC	Dice (naive)	Dice (fpr 0.05)	Dice (fpr 0.01)
Implicit Learning	0.96	0.73	0.67	0.75
Explicit Learning	0.90	0.61	0.41	0.61
U-Net	0.98	0.82	_	_
SimCLR / U-Net	0.98	0.82	-	-

