ANALYSIS OF ALGORITHMS

LECTURE 5: GRAPHS

WHY?

- What's the point of using graphs?
- Map colouring problem
- Now read sections 3.1 and 3.2

	0	1	2	3	4	5
0	-	Т	F	Т	Т	F
1	Т	-	Т	Т	Т	Т
2	F	Т	-	F	F	F
3	Т	Т	F	-	Т	F
4	Т	Т	F	Т	-	Т
5	F	Т	F	F	Т	-

Adjacency list

0	1,3,4
1	0,2,3,4,5
2	I
3	0,1,4
4	0,1,3,5
5	1,4

Adjacency list

0	1,3,4
1	0,2,3,4,5
2	Ī
3	0,1,4
4	0,1,3,5
5	1,4

	0	1	2	3	4	5
0	-	Т	F	Т	Т	F
1	Т	-	Т	Т	Т	Т
2	F	Т	-	F	F	F
3	Т	Т	F	-	Т	F
4	Т	Т	F	Т	-	Т
5	F	Т	F	F	Т	-

Adjacency list

0	1,3,4
1	0,2,3,4,5
2	I
3	0,1,4
4	0,1,3,5
5	1,4

Adjacency matrix

	0	I	2	3	4	5
0	-	Т	F	Т	Т	F
1	Т	-	Т	Т	Т	Т
2	F	Т	-	F	F	F
3	Т	Т	F	-	Т	F
4	Т	Т	F	Т	-	Т
5	F	Т	F	F	Т	-

Why do both of these representations exist?

Adjacency list

0	1,3,4
1	0,2,3,4,5
2	I
3	0,1,4
4	0,1,3,5
5	1,4

	0	1	2	3	4	5
0	-	Т	F	Т	Т	F
1	Т	-	Т	Т	Т	Т
2	F	Т	-	F	F	F
3	Т	Т	F	-	Т	F
4	Т	Т	F	Т	-	Т
5	F	Т	F	F	Т	-

- Consider the cost of checking whether two items are adjacent
- In an adjacency matrix, we just look up the item and see if true or false $-\Theta(1)$
- In an adjacency list, we do a linear search in one vertex's list $-\Theta(n)$
- Adjacency matrix WINS!

Adjacency list

0	1,3,4
1	0,2,3,4,5
2	Ī
3	0,1,4
4	0,1,3,5
5	1,4

	0	I	2	3	4	5
0	-	Т	F	Т	Т	F
1	Т	-	Т	Т	Т	Т
2	F	Т	-	F	F	F
3	Т	Т	F	-	Т	F
4	Т	Т	F	Т	-	Т
5	F	Т	F	F	Т	-

- Consider the cost of checking the degree of a vertex
- In an adjacency matrix, we count the number of Trues in a row $-\Theta(n)$
- In an adjacency list, we check the size of the vertex's list $-\Theta(1)$
- Adjacency list WINS!