代数系入門 第3章環と多項式

今村勇輝

March 30, 2022

1 第3章環と多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 ℤ の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

Def. 1.1

R: set, $R \neq \emptyset$,

 $R \times R \to R, (a, b) \mapsto a + b, (a, b) \mapsto ab$

- 1 R:加法について可換群
- $\exists \forall a, b, c \in R \Rightarrow a(b+c) = ab + ac, (b+c)a = ba + ca$
- $\exists e \in R \text{ s.t. } \forall a \in R, ea = ae = a$

 $\stackrel{\text{def}}{\Leftrightarrow} R$: 環 (ring)

Def. 1.2

R: ring

- $\exists ! e_+ \in R \text{ s.t. } \forall a \in R, e_+ + a = a \stackrel{\text{def}}{\Leftrightarrow} 0 \coloneqq e_+ \colon R$ の零元 (additive identity)
- $\forall a \in R, \exists ! a' \in R \text{ s.t. } a + a' = 0 \stackrel{\text{def}}{\Leftrightarrow} -a := a'$

Def. 1.3

R: ring, $\forall a, b \in R \Rightarrow ab = ba \stackrel{\text{def}}{\Leftrightarrow} R$: 可換環 (commutative ring)

Thm. 1.1

 $R: \text{ring} \Rightarrow \exists ! e \in R \text{ s.t. } \forall a \in R, ea = ae = e$

Def. 1.4

1 := e : R の単位元 (multiplcative identity)

Exm. 1

 \mathbb{Z} : commutative ring: 有理整数環 (ring of rational integers)

Exm. 2

 $\mathbb{Q},\mathbb{R},\mathbb{C}$: commutative ring

Exm. 3

 $[0,1] \subset \mathbb{R}, R = \{f \mid f \colon [0,1] \to [0,1]\},\$

 $f,g\in R, \forall t\in [0,1], (f+g)(t)=f(t)+g(t), (fg)(t)=f(t)g(t)\Rightarrow R \text{ : commutative ring } f(t)=f(t)g(t)$

Exm. 4

$$\begin{split} \forall R: \text{ring}, \forall S: \text{set}, S \neq \emptyset, & M(S,R) = \{f \mid f \colon S \to R\}, \\ f, g \in M(S,R), \forall x \in S, (f+g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x) \Rightarrow M(S,R): \text{ring} \end{split}$$

Def. 1.5

- $0 \in M(S,R)$: S から R の零写像 (zero mapping)
- $-f \in R, \forall x \in S, (-f)(x) = -f(x)$

 $\underline{\mathsf{Rem.}}\ \forall x\in S, 0(x)=0_R$

Def. 1.6

 $\forall A$: additive group, $f: A \rightarrow A$: hom. : 自己準同型 (endomorphism)

 $\operatorname{End}(A) := \{ f \mid f : A \to A : \text{hom.} \}$

Exm. 5

 $\forall A$: additive group,

$$f,g \in \operatorname{End}(A), \forall x \in A, (f+g)(x) = f(x) + g(x), (fg)(x) = f(g(x)) \Rightarrow \operatorname{End}(A) : \operatorname{ring}(A) = \operatorname{End}(A)$$

Rem. End(A): 自己準同型環 (endomorphism ring)

Thm. 1.2

R: ring

$$0 \in R, \forall a \in R \Rightarrow a0 = 0a = 0$$

$$\forall a, b \in R \Rightarrow a(-b) = (-a)b = -ab$$

$$\forall a, b \in R \Rightarrow (-a)(-b) = ab$$

$$a_1, \dots, a_m, b_1, \dots, b_n \in R \Rightarrow (a_1 + \dots + a_m)(b_1 + \dots + b_m) = \sum_{i=1}^m \sum_{j=1}^n a_i b_j$$

1 第3章環と多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 Z または © の上の多項式
- §13 多変数の多項式

Thm. 2.1

$$R$$
: ring, $0, 1 \in R$

$$1 = 0 \Rightarrow R = \{0\} \ (\because \forall a \in R, a = 1a = 0a = 0)$$

Def. 2.1

R: ring, $0, 1 \in R, 1 = 0 \stackrel{\text{def}}{\Leftrightarrow} R$: 零環 (zero ring)

Rem. 今後、R は零環ではないとする.

Def. 2.2

 $R: \text{ring}, \exists a, b \in R \text{ s.t. } a \neq 0, b \neq 0, ab = 0 \overset{\text{def}}{\Leftrightarrow} a, b : R$ **②零因子** (zero divisor)

a: 左零因子 (left zero divisor), b: 右零因子 (right zero divisor)

Def. 2.3

R: commutative ring, $\forall a, b \in R, a \neq 0, b \neq 0 \Rightarrow ab \neq 0 \stackrel{\text{def}}{\Leftrightarrow} R$: **Existing** (integral domain)

└─ §2 整域, 体

Exm. 1

 $\ensuremath{\mathbb{Z}}$: integral domain

Exm. 2

§1 Exm. 3 は整域ではない

Def. 2.4

 $R: \operatorname{ring}, a \in R, \exists b \in R \text{ s.t. } ba = ab = 1$

 $\overset{\mathrm{def}}{\Leftrightarrow} a: R$ の可逆元または単元 (unit), $a^{-1}\coloneqq b: a$ の逆元 (inverse)

Thm. 2.2

- $a \in R : \text{unit} \Rightarrow a \neq 0$
- $a \in R$: unit $\Rightarrow \exists ! a^{-1} \in R$ s.t. $a^{-1}a = aa^{-1} = 1$

Lem. A

 $R: ring, G = \{a \in R \mid a: unit\} \Rightarrow G: 乗法に関して群$

Exm. 3

A: additive group, $A \neq \{0\}$

- $f \in \operatorname{End}(A), f : \operatorname{unit} \Rightarrow f : \operatorname{iso}.$
- $\blacksquare \ G = \{ f \in \operatorname{End}(A) \mid f : \operatorname{unit} \} \Rightarrow G = \operatorname{Aut}(A)$

Def. 2.5

R: ring

- R : skew field, R : commutative $\stackrel{\text{def}}{\Leftrightarrow} R$: $^{\text{th}}$ (field)

└ §2 整域, 体

Thm. 2.3

R: ring

■ R: skew field $\Leftrightarrow G = \{a \in R \mid a \neq 0\}$: 乗法に関して群

■ R: field $\Leftrightarrow G = \{a \in R \mid a \neq 0\}$: 乗法に関して可換群

Exm. 4

 $\blacksquare \mathbb{Z} : \text{ring} \Rightarrow \mathbb{Z} : \text{field}$

 $\blacksquare \mathbb{Q}, \mathbb{R}, \mathbb{C} : \text{ring} \Rightarrow \mathbb{Q}, \mathbb{R}, \mathbb{C} : \text{field}$

■ Q: 有理数体 (the field of rational numbers)

■ R: 実数体 (the field of real numbers)

■ C: 複素数体 (the field of complex numbers)

Thm. 2.4

 $\forall R : \text{field} \Rightarrow R : \text{integral domain}$

Lem. B

R: integral domain, $|R| < \infty \Rightarrow R$: field

Def. 2.6

 $R: \operatorname{ring}, R' \subset R, R' \neq \emptyset$

R': R で定義されている加法, 乗法に関して環, $1_R \in R'$

def ⇔ R': R の部分環 (subring)

Thm. 2.5

R: ring, $R' \subset R$

R': subring of $R \Leftrightarrow 1_R \in R', \forall a, b \in R' \Rightarrow -a, a+b, ab \in R'$

Def. 2.7

R': subring of R

- $\blacksquare R'$: skew field $\stackrel{\text{def}}{\Leftrightarrow} R$ の部分斜体
- R': field ⇔ R の部分体 (subfield)

Exm. 5

- 環 ℤ:体 ℚ の部分環
- 体 ℚ: 体 ℝ の部分体

Exm. 6

 $R = \{f \mid f \colon [0,1] \to [0,1]\}$ (§1 Exm. 3 の環)

- $R' = \{f \mid f : [0,1] \to [0,1] :$ 連続関数 $\} \Rightarrow R' :$ subring of R
- $R'' = \{f \mid f : [0,1] \rightarrow [0,1] :$ 微分可能関数 $\} \Rightarrow R'' :$ subring of R'

Def. 2.8

R: skew field, $\forall a, b \in R \Rightarrow ab \neq ba \stackrel{\text{def}}{\Leftrightarrow} R$: 非可換体 (noncommutative field)

Exm. 7

 \mathbb{C} :複素数の加法群, $A = \mathbb{C} \times \mathbb{C}$

 $\bullet \alpha, \beta \in \mathbb{C}, f_{\alpha,\beta} : A \to A; (x,y) \mapsto (\alpha x - \beta y, \bar{\beta} x + \bar{\alpha} y) \Rightarrow f_{\alpha,\beta} \in \operatorname{End}(A)$

 $Q = \{f_{\alpha,\beta} \mid \bot 記 f_{\alpha,\beta}\} \Rightarrow Q$: subring of End(A)

 ${f 3} \ {\it Q}$: noncommutative ring

Rem. $Q: \mathbb{R}$ 上の四元数環 (quaternion ring)

Thm. 2.6

R: integral domain or field $\Rightarrow \exists 0, 1 \in R \text{ s.t. } 0 \neq 1$

1 第3章環と多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 Z または Q の上の多項式
- §13 多変数の多項式

Def. 3.1

 $R: \operatorname{ring}, J \subset R, J \neq \emptyset$

- $\forall a, b \in J \Rightarrow a + b \in J$
- $\forall r \in R, \forall a \in J \Rightarrow ra \in J$

 $\Leftrightarrow J \leq_l R, J : R$ の左イデアル (left ideal)

Thm. 3.1

 $R: \operatorname{ring}, J \subset R, J \neq \emptyset$

 $J \leq_I R \Leftrightarrow J \leq R$: additive subgroup, $\forall r \in R, \forall a \in J \Rightarrow ra \in J$

Def. 3.2

R: ring, $J \leq R$: additive subgroup, $\forall r \in R, \forall a \in J \Rightarrow ar \in J$

 $\stackrel{\mathrm{def}}{\Leftrightarrow} J \trianglelefteq_r R, J : R$ の右イデアル (right ideal)

Def. 3.3

 $J \leq_l R, J \leq_r R$

 $\overset{\mathrm{def}}{\Leftrightarrow} J \unlhd R, J: R$ のイデアル (ideal) または両側イデアル (tow-sided ideal)

Rem. R が可換なら, 左イデアル, 右イデアル, 両側イデアルは一致する

Exm. 1

$$R = \{f \mid f : [0,1] \to [0,1] :$$
実数値連続関数 $\}$ $c \in [0,1], J_c = \{f \in R \mid f(c) = 0\} \Rightarrow J_c \leq R$

Exm. 2

$$n\in\mathbb{Z}, n\geq 0 \Rightarrow n\mathbb{Z} \trianglelefteq \mathbb{Z}$$

Exm. 3

R: ring

- $\blacksquare a \in R, J_a = \{xa \mid x \in R\} \Rightarrow J_a \leq_l R$
- $\blacksquare a_1, \cdots, a_n \in R, J = \{x_1 a_1 + \cdots + x_n a_n \mid x_1, \cdots x_n \in R\} \Rightarrow J \leq_l R$

Def. 3.4

R: ring

- $a \in R, Ra($ または $(a)) := \{xa \mid x \in R\}$: a によって生成される単項左イデアル (left principal ideal)
- **■** $a_1, \dots, a_n \in R, (a_1, \dots, a_n) \coloneqq \{x_1 a_1 + \dots + x_n a_n \mid x_1, \dots, x_n \in R\}$ $\vdots a_1, \dots, a_n$ によって生成される左イデアル

Thm. 3.2

$$\forall J \leq_l R, a_1, \cdots, a_n \in J \Rightarrow (a_1, \cdots, a_n) \subset J$$

Thm. 3.3

R: ring

$$1 \in R \Rightarrow (1) = R$$

$$0 \in R \Rightarrow (0) = \{0\}$$

$$\blacksquare$$
 $R \leq R$, $(0) \leq R$

Def. 3.5

 $J ext{ } ext{$<$} ext{$<$} R, J = \{0\} \overset{ ext{def}}{\Leftrightarrow} 0 \coloneqq J :$ 零イデアル (zero ideal)

Thm. 1

R: ring, $R \neq \emptyset$

R: skew field $\Leftrightarrow \forall J \leq_I R \Rightarrow J = R \text{ or } 0$

Rem. 右イデアルも同様に成り立つが, 両側イデアルの場合 \Leftarrow は必ずしも成り立たない.

Lem. C

R: ring, J riangleleft R

 $\forall a, a', b, b' \in R, a \equiv a' \pmod{J}, b \equiv b' \pmod{J} \Rightarrow ab \equiv a'b' \pmod{J}$

Thm. 2

 $R : \underline{\text{ring}}, J \leq R, \underline{R/J} \ni \overline{a} \coloneqq \underline{a} + \underline{J}$

 $\bar{a}, \bar{b} \in R/J, \bar{a} + \bar{b} = \overline{a+b}, \ \bar{a}\bar{b} = \overline{ab} \Rightarrow R/J : \text{ring}$

Def. 3.6

R/J: R の J による剰余環 (factor ring) または商環 (quotient ring)

Thm. 3.4

- R/J: zero ring $\Leftrightarrow J = R$
- $J = (0) \Rightarrow R/J \cong R$
- **3** R: commutative ring $\Rightarrow \forall R/J$: commutative

1 第3章環と多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環

■ §4 ℤ の商環

- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

本節では特に有理数環 ℤ について考える.

Thm. 4.1

$$n \ge 0, (n) := n\mathbb{Z}, (n) \le \mathbb{Z} \ (\because \S 3 \text{ Exm. 2})$$

 $\forall J \le \mathbb{Z} \Leftrightarrow \exists n \in \mathbb{Z} \text{ s.t. } n \ge 0, J = (n)$

Def. 4.1

$$n \geq 1, \mathbb{Z}_n \coloneqq \mathbb{Z}/(n)$$
: 法 n に関する \mathbb{Z} の商環

$$\underline{\mathsf{Rem.}} \; |\mathbb{Z}_n| = n, \mathbb{Z}_1 = \{0\}$$

Def. 4.2

$$n \geq 2, \mathbb{Z}_n \ni \bar{a} \coloneqq a + (n)$$

Thm. 4.2

$$\bar{a} \in \mathbb{Z}_n, \bar{a} \neq \bar{0}, (a, n) = 1, \forall a' \in a + (n) \Rightarrow (a', n) = 1$$

Rem. 上記 ā: 第1章 §8の「法nに関する既約剰余類」のこと

Lem. D

$$n \ge 2, \bar{a} \in \mathbb{Z}_n, \bar{a} \ne \bar{0}$$

- $(a,n)=1 \Rightarrow \bar{a}:$ unit
- $(a, n) \neq 1 \Rightarrow \bar{a}$: zero divisor

Thm. 3

 $n \ge 2$

- n = p: prime $\Rightarrow \mathbb{Z}_p$: field
- n : not prime $\Rightarrow \exists \bar{a} \in \mathbb{Z}_n$ s.t. \bar{a} : zero divisor

Rem. $\mathbb{Z}_2 = \{\bar{0}, \bar{1}\}$: field

Def. 4.3

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \coloneqq \{\bar{a} \in \mathbb{Z}_n \mid (a,n)=1\} : 法 n に関する \mathbb{Z} の既約剰余類群$$

Def. 4.4

$$\varphi(n) := |\{a \in \mathbb{Z} \mid 1 \le a < n, (n, a) = 1\}|$$
: Euler の関数

Thm. 4.3

$$|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \varphi(n)$$

Thm. 4.4 (Euler)

$$a, n \in \mathbb{Z}, n \ge 0, (a, n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$$

Thm. 4.5

p : prime

$$|(\mathbb{Z}/p\mathbb{Z})^{\times}| = p - 1$$

$$(\mathbb{Z}/p\mathbb{Z})^{\times} = \{ \bar{a} \in \mathbb{Z}_p \mid \bar{a} \neq \bar{0} \}$$

 \blacksquare $(\mathbb{Z}/p\mathbb{Z})^{\times}$: cyclic group

これらの証明は体論と関係させたほうが都合がよいので第5章 §2で行う.

1 第3章環と多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環

■ §5 準同型写像

- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

Def. 5.1

R, R': ring, $f: R \to R'$

$$f(1_R) = 1_{R'}, \forall x, y \in R, f(x+y) = f(x) + f(y), f(xy) = f(x)f(y) \stackrel{\text{def}}{\Leftrightarrow} f$$
: 準同型写像

Rem. 加法群の準同型写像と区別する場合は環準同型 (写像) とよぶ

Thm. 5.1

R, R', R'': ring

 $f: R \to R' : \text{hom.}, g: R' \to R'' : \text{hom.} \Rightarrow g \circ f: R \to R'' : \text{hom.}$

Rem. 単射準同型, 全射準同型, 同型, 自己同型などの語の用法は群の場合と同様

Def. 5.2

R, R': ring

 $\exists f: R \to R' : \text{iso.} \stackrel{\text{def}}{\Leftrightarrow} R \cong R' : R \succeq R'$ は同型

Exm. 1

$$R = \{f \mid f : [0,1] \to [0,1] : 連続関数 \}$$

 $c \in [0,1], F : R \to \mathbb{R}; f \mapsto f(c) \Rightarrow F : hom.$

Exm. 2

$$f: \mathbb{C} \to \mathbb{C}; \alpha \mapsto \bar{\alpha} \Rightarrow f \in \operatorname{Aut}(\mathbb{C})$$

Exm. 3

$$R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} : \text{ring}$$

 $f : R \to R; a + b\sqrt{2} \mapsto a - b\sqrt{2} \Rightarrow f \in \text{Aut}(R)$

Exm. 4

R: ring, $J \leq R$

 $\varphi: R \to R/J; a \mapsto \bar{a} \Rightarrow \varphi: \text{hom}.$

Def. 5.3

 $\varphi: R \to R/J; a \mapsto \bar{a}: \text{hom.}:$ 標準的準同型写像または自然な準同型写像

Thm. 5.2

R, R': ring

 $f: R \to R': \text{hom.} \Rightarrow f(0_R) = 0_{R'}, f(-x) = -f(x)$

Thm. 5.3

R, R': ring

 $f: R \to R' : \text{hom.} \Rightarrow R' \supset f(R) : \text{ring}$

Def. 5.4

R, R': ring, $f: R \to R'$: hom. Ker $f := f^{-1}(0): f$ の核 (kernel)

 $\underline{\mathsf{Rem.}}\ \mathsf{Ker} f$ は加法群の準同型としての f の核にほかならない

Thm. 5.4

R, R': ring

 $f: R \to R' : \text{hom.} \Rightarrow \text{Ker} f \leq R$

Thm. 5.5

R, R': ring, $f: R \to R'$: hom.

 $R' \neq \{0\} \Rightarrow \operatorname{Ker} f \neq R$

└─_{§5} 準同型写像

Exm. 5

$$R = \{f \mid f : [0,1] \to [0,1] : 連続関数 \}$$

$$F\colon f\mapsto f(c): \text{hom.}(\text{Exm. 1}), J_c=\{f\in R\mid f(c)=0\} \text{ (§3 Exm. 1)} \Rightarrow \operatorname{Ker} F=J_c$$

Exm. 6

R: ring

$$\forall J \leq R, f : R \to R/J : \text{hom.} \Rightarrow \text{Ker} f = J$$

└─§5 準同型写像

Thm. 5.6

R: skew field, $R' \neq \emptyset$: ring, $f: R \rightarrow R'$: hom. $\Rightarrow f$: mon.

Thm. 4 (環の準同型定理)

R, R': ring

 $f: R \to R': \text{hom.}, \text{Ker} f = J \Longrightarrow R/J \cong f(R)$

Thm. <u>5</u>

 $R, R' : \operatorname{ring}_{f} f : R \to R' : \operatorname{epi.}_{K} \operatorname{Ker}_{f} = J$

 $\blacksquare M \trianglelefteq R, M' \trianglelefteq R' \Rightarrow R/M \cong R'/M'$

Def. 5.5

$$R:$$
 ring, $J_L ext{ } ext{$\leq l$} \ R, J_R ext{ } ext{$\leq r$} \ R, \ J_L, J_R \neq R$ $orall M ext{ } ext{$\leq l$} \ (ext{$\leq r$}) R, \ J_L(J_R) \subset M \Rightarrow M = R \ ext{or} \ J_L(J_R)$ $\overset{\text{def}}{\Leftrightarrow} J_L(J_R): R$ の極大左 (右) イデアル (maximal left (right) ideal)

Thm. 5.7

R: ring, $J_L ext{ } ext{$\leq$}_l R$: maximal, $J_R ext{$\leq$}_r R$: maximal, $J_L, J_R \neq R$

 $R: commutative \Rightarrow J_L = J_R$

Def. 5.6

R: commutative ring, $J \leq R$, $J \neq R$

 $\forall M \leq R, \ J \subset M \Rightarrow M = R \text{ or } J \stackrel{\text{def}}{\Leftrightarrow} J : R$ の極大イデアル (maximal ideal)

一第 3 章 環と多項式

└─_{§5} 準同型写像

Thm. 6

 $R : ring, J \leq R, J \neq R$

R/J : skew field $\Leftrightarrow J \unlhd_l R$: maximal $\Leftrightarrow J \unlhd_r R$: maximal

Cor. 6.1

R: commutative ring, $J \leq R$, $J \neq R$

R/J: field $\Leftrightarrow J \leq R$: maximal

Lem. E

$$\forall R : \mathsf{ring} \Rightarrow \exists ! \mu \colon \mathbb{Z} \to R : \mathsf{hom. s.t. } \mu(n) = n1_R$$

Thm. 5.8

$$R : \text{ring}, \mu : \mathbb{Z} \to R; n \mapsto n1_R$$

 $\forall R' \subset R : \text{subring} \Rightarrow \mu(\mathbb{Z}) \subset R'$

Def. 5.7

$$\mu \colon \mathbb{Z} \to R; n \mapsto n1_R, \exists ! m \ge 0 \text{ s.t. } \text{Ker } \mu = (m)$$
 def $\Leftrightarrow \operatorname{Char}(R) := m : R$ の標数 (characteristic)

Thm. 5.9

$$R$$
: ring, $Char(R) = m$

$$m = 0 \Rightarrow \mu(\mathbb{Z}) \cong \mathbb{Z}$$

└─§5 準同型写像

Thm. 5.10

R: ring, Char(R) = m

$$\blacksquare R = \{0\} \Leftrightarrow m = 1$$

$$R \neq \{0\} \Rightarrow m = 0 \text{ or } m \geq 2$$

■
$$m = 0 \Rightarrow 1_R \in R$$
: additive group, $o(1_R) = \infty$

■
$$m \ge 2 \Rightarrow 1_R \in R$$
: additive group, $o(1_R) = m$

Lem. F

R: integral domain, $\operatorname{Char}(R) = m \Rightarrow m = 0$ or m: prime

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像

■ §6 商の体

- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

Thm. 6.1

 $R: \operatorname{ring}_{}, R \neq \{0\}, F: \operatorname{field}_{}, \exists f: R \to F: \operatorname{mon.} \Rightarrow R: \operatorname{integral domain}$

Thm. 6.2

 $R, R' : \operatorname{ring}_{f} : R \to R' : \operatorname{mon.} \Rightarrow R \cong f(R)$

これより, R を R' の部分環として考えることができる.

Def. 6.1

R, R': ring

- $\blacksquare f: R \to R' : mon. : R$ から R' への埋め込み (embedding)
- $\exists f: R \to R' : \text{mon.} : R \ \mathsf{tt} \ R'(\mathfrak{O}\mathfrak{P}) \ \mathsf{に埋め込み可能}$

Def. 6.2

F: field, $R \subset F$: subring

 $a,b \in R, b \neq 0, ab^{-1} = b^{-1}a \stackrel{\text{def}}{\Leftrightarrow} a/b : a,b$ から作られる商または分数

└─§6 商の体

Thm. 6.3

 $F: \mathsf{field}, R \subset F: \mathsf{subring}$

 $\forall a,b,a',b' \in R, a/b = a'/b' \Leftrightarrow ab' = a'b$

Lem. G

F: field, $R \subset F$: subring

- $L := \{a/b \mid a, b \in R, b \neq 0\} \Rightarrow L \subset F$: subfield
- \blacksquare $\forall L' \subset F$: subfield, $R \subset L' \Rightarrow L \subset L'$

Def. 6.3

F: field, $R \subset F$: subring

L: Rの (F における) 商の体 (field of quotients) または分数体 (fraction field)

Rem. 商体 (quotient field) と呼ばれることもあるが, §3 の商環と概念上まぎらわしいため, 本書では上記のような語を用いる.

Def. 6.4

$$R$$
: integral domain, $R^* = \{a \in R \mid a \neq 0\}$

$$(a,b),(a',b') \in R \times R^*, ab' = a'b \stackrel{\text{def}}{\Leftrightarrow} (a,b) \sim (a',b')$$

Thm. 6.4

~: R×R* における同値関係

Def. 6.5

$$[a,b] := \{(a',b') \in R \times R^* \mid (a,b) \sim (a',b')\}\$$

 $K := \{[a,b] \mid a \in R, b \in R^*\}$

Thm. 6.5

$$\forall [a,b], [a',b'] \in K, [a,b] = [a',b'] \Leftrightarrow ab' = a'b$$

Thm. 6.6

$$\forall [a,b], [c,d] \in K, [a,b] + [c,d] = [ad + bc,bd], [a,b][c,d] = [ac,bd] \Rightarrow K : field$$

Thm. 7

R: integral domain $\Rightarrow \exists K:$ field, $\varphi: R \to K:$ hom. s.t.

- $oldsymbol{arphi}$: embedding
- $\forall k \in K, \exists a, b \in R \text{ s.t. } b \neq 0, k = \varphi(a)/\varphi(b)$

Def. 6.6

 $K: (\varphi: R \to K \ \texttt{Cehottom}) R \ \textbf{o} \ \textbf{o} \ \textbf{o} \ \textbf{o} \ \textbf{o} \ \textbf{o} \ \textbf{k}$

Thm. 6.7

F: field, $R \subset F$: subring $\Rightarrow L \cong K$ (ただし L: Def.6.3, K: Def.6.6)

Rem. 以後, $a \in R$ と $\varphi(a) \in K$ とを同一視することにする. そうすれば, $R \subset K$, $\forall k \in K$, $\exists a, b \in R, b \neq 0, k = a/b$

Def. 6.7

R: integral domain

 $Frac(R) := \{a/b \mid a, b \in R, b \neq 0\}$

Exm. 6.1

 $\mathbb{Q} := \operatorname{Frac}(\mathbb{Z})$

Lem. H

R: integral domain, E: field, $f: R \to E$: embedding, $K = \operatorname{Frac}(R)$

 $\Rightarrow \exists ! f^* \text{ s.t. } f^* \colon K \to E : \text{embedding}, f = f^*|_R$

Rem. Lem. H は Lem. G をより精密にしたもの.

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体

■ §7 多項式環

- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

Def. 7.1

$$a_0, \cdots, a_m \in \mathbb{R}, x$$
: variable

$$a_0 + a_1 x + \cdots + a_m x^m$$
: 多項式 (polynomial)

Def. 7.2

$$a_0, \cdots, a_m \in \mathbb{R}, x$$
: variable

$$f: \mathbb{R} \to \mathbb{R}; x \mapsto a_0 + a_1 x + \dots + a_m x^m$$
: 多項式写像 or 多項式関数

Def. 7.3

$$R$$
: commutative ring, $R \neq 0$

$$\tilde{P} \coloneqq \{f \mid f \colon \mathbb{N} \to R\}, a_n \coloneqq f(n)$$

Thm. 7.1

$$f \in \tilde{P} \Rightarrow f = (a_0, a_1, a_2, \cdots) = (a_n)_{n \ge 0} = (a_n)$$

Thm. 7.2

$$\begin{split} \forall f,g \in \tilde{P}, & f = (a_n), g = (b_n) \\ f + g = (a_n + b_n), & fg = \sum_{i=0}^n a_i b_{n-i} \Rightarrow \tilde{P} : \text{commutative ring} \end{split}$$

Rem. $ilde{P}$ と $M(\mathbb{N},R)$ は集合として同じで加法の定義も同じだが, 乗法の定義は異なっている.

Def. 7.4

- $\forall a \in R, \ \bar{a} : \mathbb{N} \to R, \bar{a}\{0\} = n, \bar{a}\{n\} = 0 \ (n \neq 0), \bar{a} = (a, 0, 0, 0, \cdots)$
- $x: \mathbb{N} \to R, x\{1\} = 1, x\{n\} = 0 \ (n \neq 1), x = (0, 1, 0, 0, \cdots)$

Thm. 7.3

- $x^i\{i\} = 1, x^i\{n\} = 0 \ (n \neq i)$
- $\bar{a}x^{i}\{i\} = a, \bar{a}x^{i}\{n\} = 0 \ (n \neq i)$

└─§7 多項式環

Def. 7.5

$$P \coloneqq \{f \in \tilde{P} \mid \exists N \in \mathbb{N} \text{ s.t. } \forall k \in \mathbb{N}, k > N, a_k = 0\}$$

Thm. 7.4

- ${lackbox{ }} P\subset \tilde{P}$: subring
- $\forall f \in P, f = (a_0, \dots, a_m, 0, \dots) \Rightarrow f = \bar{a}_0 + \bar{a}_1 x + \dots + \bar{a}_m x^m$

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環

■ §8 体の上の多項式, 単項イデアル整域

- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 Z または © の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域

■ §9 素元分解とその一意性

- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- 85 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性

■ §10 ℤ[i] の素元

- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

└─§11 多項式の根, 代数的閉体

1 第3章環と多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元

■ §11 多項式の根, 代数的閉体

- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式