Fundamentos de Geometria

Aula 02: Ângulos

Objetivos

• Definir ângulos, representá-los, reconhecer seus elementos e operar com suas unidades de medida.

Região angular

É o conjunto formado pelos pontos internos de um ângulo e pelos seus lados.

Ângulos congruentes

São ângulos que, medidos na mesma unidade, têm medidas iguais.

med $\hat{O} = x$ e med $\hat{O} = x \rightarrow \hat{O} \equiv \hat{O}'$ Congruente

Ângulo de duas retas

São ângulos que, medidos na mesma unidade, têm medidas iguais.

São ângulos que, medidos na mesma unidade, têm medidas iguais.

Ângulos entre retas reversas

É o ângulo formado por duas retas concorrentes, respectivamente paralelas às reversas dadas.

r e s reversas
$$\rightarrow$$
 (rs) = ?

$$r'//r e s'//s \rightarrow (rs) = (r's') = \hat{a}$$

Ângulos consecutivos

São ângulos que têm o vértice comum e pelo menos um lado comum entre eles. Temos dois casos a considerar:

 α_1 e α_2 são consecutivos porque possuem o mesmo vértice (0) e um lado como (0C). Observe que, nesse caso, α_1 e α_2 possuem uma região angular em comum.

Ângulos adjacentes

São dois ângulos consecutivos que não possuem região angular em comum.

 α_1 e α_2 são adjacentes.

Observe que este é o caso 1 apresentado anteriormente.

Bissetriz de um ângulo

É a semirreta que divide o ângulos em dois ângulos congruentes.

 \overline{OC} é bissetriz de AÔC = CÔB

Ângulos opostos pelo vértice

Dois ângulos são opostos pelo vértice quando os lados de um são semirretas opostas dos lados do outro.

AÔB e CÔD são opostos pelo vértice. AÔC e BÔD são opostos pelo vértice.

Saiba mais

Dois ângulos opostos pelo vértice são congruentes. As bissetrizes de dois ângulos opostos pelo vértice são semirretas opostas.

AÔB e CÔD são opostos pelo vértice (opv). \overline{OX} é bissetriz de AÔB e \overline{OY} é bissetriz de CÔD \Rightarrow \overline{OX} e \overline{OY} são semirretas opostas.

Ângulos complementares e Ângulos suplementares

Dois ângulos são ditos complementares quando somam 90°. Um deles é o complemento do outro. Dois Ângulos são sumplementares quando somam 180°. Um deles é o suplemento do outro.

Saiba mais

As bissetrizes de dois ângulos adjacentes suplementares são perpendiculares entre si.

Medida de ângulo

A medida de um ângulo A^)B será indicada por med (AÔB). Temos as seguintes unidades de medidas de ângulos:

Clique nos botões para ver as informações. Grau O grau é a nonagésima parte do ângulo reto. Assim: 1º = 1/90 ângulo reto. Ele admite dois submúltiplos: • o minuto: símbolo ' • o segundo: símbolo " Temos que: 1' = '/60 do grau 1" = 1/60 do minuto Assim, temos: 1° = 60′ 1' = 60" <u>Grado</u> O grado é a centésima parte do ângulo reto. Ele admite os seguintes submúltiplos: • o decigrado (dgr) • o centígrado (cgr) • o miligrado (mgr)

O radiano é definido como a medida de um ângulo central, subentendido por um arco cujo comprimento é igual ao raio da circunferência que contém o arco.

Ângulos nulo e ângulo raso

Um ângulo é dito nulo quando seus lados coincidem. É denominado raso (ou de meia-volta) quando seus lados são semirretas opostas. Desse modo, podemos observar que a medida de um ângulo x é tal que:

 $0^{o} \leq x \leq 180^{o}$

Ângulos de lados paralelos

Dois ângulos de lados respectivamente paralelos são:

Congruentes: Se ambos forem agudos ou obtusos.

Suplementares: Se um for agudo e o outro obtuso.

Ângulos perpendiculares

Dois ângulos de lados respectivamente perpendiculares são:

Clique nos botões para ver as informações.

Se ambos forem agudos ou obtusos:

Se um for agudo e o outro obtuso:

Transformação de unidades de ângulo

Observe alguns exemplos para compreender como transformar unidades de ângulos.

1° caso: transformar para segundos

a) Transforme 12°23′18″ em segundos

Temos:

12° x 60 = 720′ +23′ = 743′ x 60 = 44580″ + 18 ″ = 44598″

Logo:

12°23′10" = 44598"

2° caso: transformar em graus, minutos e segundos

a)Transforme 449598" em graus minutos e segundos

Temos: 44598"

Logo: 44598" = 12°23'18"

Operações com medidas de ângulos

Observe alguns exemplos para compreender como são realizadas as operações com medidas de ângulos.

Adição e subtração

Efetue as seguintes operações:

1) 58°15′23″ +17°42′50″ + 36°47′52″

Multiplicação

1) 24°13′ 40″ x 3

Divisão

1) 53° 27'45" : 2

Representação simbólica

Em grande parte dos problemas que envolvem ângulos, devemos representar de forma simbólica o que nos diz o seu enunciado. Veja alguns exemplos:

Exemplo

Um ângulo qualquer de x:
• o dobro de u ângulo: 2x
• o quíntuplo de um ângulo: 5x
• a terça parte de um ângulo: x/3
• dois quintos de um ângulo: 2x/5
• o quadrado da medida de um ângulo: x ²
• o complemento de um ângulo: 90 – x
a soma de dois ângulos: x + y
• a diferença entre dois terços do suplemento e a sua quinta parte: 2/3 (180° - x_) - x/5
Atividades
1. Realize as transformações propostas a seguir: a) Transforme 40°30'20" em segundos
1. Realize as transformações propostas a seguir: a) Transforme 40°30'20" em segundos b) Tranasforme 145820° em graus, minutos e segundos
a) Transforme 40°30′20″ em segundos
a) Transforme 40°30′20″ em segundos
a) Transforme 40°30′20″ em segundos b) Tranasforme 145820° em graus, minutos e segundos 2. Realize as seguintes operações: a) 50°38′27″ – 40°36′52″
a) Transforme 40°30′20″ em segundos b) Tranasforme 145820° em graus, minutos e segundos 2. Realize as seguintes operações:
a) Transforme 40°30′20″ em segundos b) Tranasforme 145820° em graus, minutos e segundos 2. Realize as seguintes operações: a) 50°38′27″ – 40°36′52″
a) Transforme 40°30'20" em segundos b) Tranasforme 145820° em graus, minutos e segundos 2. Realize as seguintes operações: a) 50°38'27" – 40°36'52" b) 90° - 30°30'30"
a) Transforme 40°30′20″ em segundos b) Tranasforme 145820° em graus, minutos e segundos 2. Realize as seguintes operações: a) 50°38′27″ – 40°36′52″

Título modal ¹

Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos.

Título modal ¹

Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos.

Referências

DOLCE, Oswaldo; POMPEO, José Nicolau. **Fundamentos de Matemática Elementar**- Geometria Plana. São Paulo: Editora Atual,1998. Volume 9 – Fundamentos de Matemática Elementar – Geometria Plana.

RIBEIRO, Jackson. **Matemática** – Ciência e Linguagem. 1 ed. São Paulo: Scipione, 2007. Volume Único. IEZZI, Gelson et al, Matemática. 4. Ed. São Paulo: Atual, 2007. Volume Único.

Próxima aula

• Polígonos.

Explore mais

- texto com bold
- texto com italico
- texto com Link.