

Escuela Rafael Díaz Serdán

Matemáticas 3
JC Melchor Pinto

Autocontrol

3° de Secundaria

Unidad 3 2022-2023

Utiliza áreas de cuadrados para visualizar el teorema de Pitágoras

Guía 39

Nombre del alumno:

Aprendizajes: _____

🔽 Formula, justifica y usa el teorema de Pitágoras.

Fecha:

Puntuacion:						
Pregunta	1	2	3	4	5	Total
Puntos	20	20	20	20	20	100
Obtenidos						

Teorema de Pitágoras

El **teorema de Pitágoras** es una relación en geometría euclidiana entre los tres lados de un triángulo rectángulo. Afirma que el área del cuadrado cuyo lado es la hipotenusa c (el lado opuesto al ángulo recto) es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos a y b (los otros dos lados que no son la hipotenusa), como se muestra a continuación:

$$a^2 + b^2 = c^2$$

Figura 1

Vocabulario

 $\mathbf{Cateto} \to \text{lado}$ que junto con otro forma el ángulo recto de un triángulo rectángulo.

Triángulo rectángulo \rightarrow triángulo que tiene un ángulo recto.

 $\mathbf{Hipotenusa} \to \mathbf{lado}$ opuesto al ángulo recto en un triángulo rectángulo.

La Hipotenusa

La **hipotenusa** es el lado más largo y está enfrente del ángulo recto (ver Figura 2). Los dos catetos son los lados más cortos que forman el ángulo recto:

Figura 2

Ejemplo 1

El diagrama muestra un triángulo rectángulo y tres cuadrados. El área del cuadrado más grande es 55 unidades 2 , como se muestra en la figura 5.

Figura 3

- a ¿Cuáles pueden ser las áreas de los cuadrados más pequeños?
 - \Box 12 y 43
 - \square 14 y 40
 - □ 16 y 37
 - \Box 44 y 11
 - \Box 5 y 11
 - \Box 20 y 25
 - \Box 10 y 45
 - \Box 16 y 39

Ejercicio 1 20 puntos

El diagrama muestra un triángulo rectángulo y tres cuadrados. El área del cuadrado más grande es 67 unidades 2 , como se muestra en la figura 4.

Figura 4

o ¿Cuáles pueden ser las áreas de los cuadrados más pequeños?

- \Box 42 y 25
- \Box 1 y 67
- \square 30 y 37
- \Box 44 y 11
- \Box 34 y 32
- □ 42 y 25
- \Box 36 y 32
- \Box 17 y 50

Ejercicio 2 20 puntos

El diagrama muestra un triángulo rectángulo y tres cuadrados. El área del cuadrado más grande es 55 unidades 2 , como se muestra en la figura 5.

Figura 5

a ¿Cuáles pueden ser las áreas de los cuadrados más pequeños?

- □ 12 y 43
- \Box 14 y 40
- \square 16 y 37
- □ 44 y 11
- □ 5 y 11
- \square 20 y 25
- \Box 10 y 45
- \Box 16 y 39

Las áreas de los cuadrados adyacentes a dos lados de un triángulo rectángulo son 35 unidades² y 50 unidades².

Ejercicio 3 20 puntos

Las áreas de los cuadrados adyacentes a dos lados de un triángulo rectángulo se muestran en el siguiente diagrama.

Figura 7

¿Cuál es el área del cuadrado adyacente al tercer lado del triángulo?

Ejemplo 3

Las áreas de los cuadrados adyacentes a dos lados de un triángulo rectángulo son 32 unidades² y 32 unidades².

Encuentra la longitud x del tercer lado del triángulo.

Ejercicio 4 20 puntos

Las áreas de los cuadrados adyacentes a dos lados de un triángulo rectángulo son $29.25~\mathrm{unidades^2}$ y $13~\mathrm{unidades^2}$.

Figura 9

Encuentra la longitud x del tercer lado del triángulo.

Ejemplo 4

Dos lados de un triángulo rectángulo miden 2 unidades y 4 unidades, como se muestra en la figura 10.

¿Cuál es el área del cuadrado que comparte un lado con el tercer lado del triángulo?

Ejercicio 5 20 puntos

Dos lados de un triángulo rectángulo miden 7 unidades y 3 unidades, como se muestra en la figura 11.

Figura 11

¿Cuál es el área del cuadrado que comparte un lado con el tercer lado del triángulo?