Data oddania:

pon., 12:15

Komputerowe systemy rozpoznawania

2019/2020

Prowadzący: dr hab. inż. Adam Niewiadomski prof. uczelni

Ocena:

Mateusz Walczak 216911 Konrad Kajszczak 216790

Zadanie 2: Lingwistyczne podsumowania baz danych*

1. Cel

Praca w toku

2. Wprowadzenie

Praca w toku

3. Opis implementacji

Praca w toku

4. Materiały i metody

Wybrana przez nas baza danych zawiera historyczne pomiary pogodowe z Holandii [1]. Dane zostały zgromadzone przez KNMI (*Dutch weather institute* - Holenderski instytut pogodowy) na przestrzeni lat 1901-2018 i pochodziły z 50 różnych stacji pogowych znajdujących się na terenie całego kraju.

^{*} SVN: https://github.com/Walducha1908/KSR2

Ze względu na fakt, iż oryginalna baza danych składa się z 804099 krotek, postanowiliśmy wybrać tylko niewielką część z dostępnych danych. Zdecydowaliśmy się na najnowsze dane pomiarowe - z lat 2016-2018. W ten sposób ograniczyliśmy liczbę wykorzystywanych krotek do 17000.

4.1. Wybór kolumn

W celu analizy bazy danych i tworzenia jej lingwistycznych podsumowań wybraliśmy następujące 10 kolumn z danymi liczbowymi:

- \bullet FG średnia prędkość wiatru przez cały dzień $[0.1\frac{m}{s}].$
- \bullet FHX najwyższa średnia prędkość wiatru w ciągu jednej godziny $[0.1\frac{m}{s}].$
- \bullet FHN najniższa średnia prędkość wiatru w ciągu jednej godziny $[0.1\frac{m}{s}].$
- FXX najszybszy podmuch wiatru w ciągu całego dnia $[0.1\frac{m}{s}]$.
- TG średnia dzienna temperatura $[0.1^{\circ}C]$.
- TN minimalna dzienna temperatura $[0.1^{\circ}C]$.
- TX maksymalna dzienna temperatura $[0.1^{\circ}C]$.
- T10N minimalna dzienna temperatura na wysokości 10 cm od poziomu gruntu $[0.1^{\circ}C]$.
- Q nasłonecznienie, energia słoneczna przypadająca na powierzchnię $\left[\frac{J}{cm^2}\right]$.
- RH suma opadów atmosferycznych w ciągu całegi dnia [0.1mm].

Oprócz wyżej opisanych danych liczbowych, w naszej bazie znajdują się także dwie dodatkowe kolumny, służące do identyfikacji pomiaru:

- STN numer stacji badawczej wykonującej pomiar.
- YYYYMMDD data pomiaru w formacie opisanym przez nazwę kolumny.

	A	В	C	D	E	F	G	Н	1	J	K	L
1	STN	YYYYMMDD	FG	FHX	FHN	FXX	TG	TN	TX	T10N	Q	RH
2	380	20181231	23	30	10	60	83	74	91	70	96	19
3	370	20181231	27	40	20	70	89	73	99	72	115	5
4	350	20181231	28	40	20	80	89	75	98	72	132	5
5	375	20181231	28	50	20	90	90	73	98	71	105	1
6	290	20181231	36	60	20	90	88	74	99	73	126	2
7	275	20181231	30	50	20	90	86	72	98	70	132	1
8	279	20181231	40	60	20	100	86	78	97	77	150	-1
9	260	20181231	27	40	20	100	89	77	100	76	137	1
10	269	20181231	36	50	20	80	87	78	100	75	155	-1
11	280	20181231	40	60	20	110	88	80	99	77	174	5
12	240	20181231	45	70	30	110	90	83	109	76	205	-1
13	344	20181231	35	50	20	90	91	79	104	77	207	-1
14	215	20181231	42	60	20	90	89	82	97	80	212	0
15	235	20181231	51	80	40	110	90	83	98	77	229	-1
16	270	20181231	50	80	30	120	87	82	97	78	236	-1
17	310	20181231	48	60	30	90	88	73	102	71	335	3
18	375	20181230	32	40	20	90	79	53	92	42	137	31
19	350	20181230	29	50	20	80	82	56	93	49	139	14
20	260	20181230	26	50	20	100	85	62	95	52	112	10
21	370	20181230	33	50	20	90	80	51	91	45	156	11
22	269	20181230	33	60	20	110	82	63	92	54	119	8
23	344	20181230	36	60	20	120	86	50	97	36	141	4
24	215	20181230	43	60	20	100	87	57	99	48	127	7
25	275	20181230	35	70	20	120	77	55	90	48	138	24
26	279	20181230	39	80	20	160	76	67	84	62	148	10

Rysunek 1. Fragment widoku bazy w formacie xlsx

4.2. Przykładowe zmienne lingwistyczne

W poniższych tabelach zaproponowano przykładowe zmienne lingwistyczne dla wybranych atrybutów $^{1}.$

Etykieta	a	b	\mathbf{c}	d
Gentle	5	10	21	26
Moderate	25	32	42	49
Strong	48	75	125	157

Tabela 1. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny FG.

Etykieta	a	b	c	d
Cold	-81	-50	50	75
Warm	74	100	175	200
Hot	199	225	275	306

Tabela 2. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny TG.

Etykieta	a	b	С	d
Overcast	24	150	375	500
Cloudy	499	700	1300	1500
Sunny	1499	1900	2700	3145

Tabela 3. Przyporządkowane parametry funkcji trapezoidalnej dla kolumny Q.

5. Wyniki

Praca w toku

6. Dyskusja

Praca w toku

7. Wnioski

Praca w toku

Literatura

[1] Baza danych - "Historical weather in the Netherlands 1901-2018"

 $^{^1}$ Wartości prezentowane w tabelach są tylko propozycjami. Autorzy sprawozdania zastrzegają sobie możliwość do ich późniejszej modyfikacji