

Advance Technical Information

High Voltage Power MOSFET

IXTT1N250HV

 $V_{DSS} = 2500V$ $I_{D25} = 1.5A$ $R_{DS(an)} \le 40\Omega$

N-Channel Enhancement Mode Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Rati	ngs
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	2500	V
V_{DGR}	$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$	2500	V
V _{GSS}	Continuous	±20	V
\mathbf{V}_{GSM}	Transient	±30	V
I _{D25}	T _c = 25°C	1.5	A
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	6	Α
P_{D}	T _c = 25°C	250	W
T,		- 55 +150	°C
T _{JM}		150	°C
T _{stg}		- 55 +150	°C
T _L	1.6mm (0.062 in.) From Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
Weight		4	g

G	= Gate	D	=	Drain
S	= Source	Tab	=	Drain

Features

- High Blocking Voltage
- High Voltage Package
- Fast Intrinsic Diode
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings
- High Power Density

SymbolTest ConditionsCharacter $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			cteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	2500			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nΑ
I _{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$		25	25	μ Α μ Α
R _{DS(on)}	V _{GS} = 10V, I _D = 0.5 • I _{D25} , Note 1			40	Ω

Applications

- High Voltage Power Supplies
- Capacitor Discharge
- Pulse Circuits

Symbol	Test Conditions	Characteristic Values		
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 50V, I_{D} = 0.5A, \text{ Note 1}$	1.0	1.8	mS
C _{iss}			1660	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		77	pF
C _{rss})		23	pF
t _{d(on)}	Resistive Switching Times		69	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 1A$		25	ns
$\mathbf{t}_{d(off)}$	30 30 3		132	ns
t,	$\int R_{g} = 5\Omega \text{ (External)}$		39	ns
Q _{g(on)}			41	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 600V, I_{D} = 0.5A$		8	nC
\mathbf{Q}_{gd}	J		16	nC
R _{thJC}				0.50 °C/W
R _{thCS}			0.21	°C/W

TO-268 (VHV) Outline 1 - Gate 2 - Source 3 - Drain 0.215 [5:5] RECOMMENDED MINIMUM FOCT PRINT INCHES MILLIMETER SYM MIN MAX MIN .201 5.10 2.90 .193 4.90 Α .106 Α2 0.02 0.25 Ь .016 .026 0.40 .543 465 295 307 7.50 2.90 114 624 524 215 736 .752 .079 18.70 19.10 1.70 2.00 Н .067 1.00 0.25 BS .039 .0 .045 1.15 3.80 4.10 .150 .161

Source-Drain Diode

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)		Chara Min.	cteristic Typ.	Values Max.	;
I _s	$V_{GS} = 0V$			1.5	A
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			6	Α
V _{SD}	$I_F = 1A, V_{GS} = 0V, \text{ Note } 1$			1.5	V
t _{rr}	$I_F = 1A, -di/dt = 100A/\mu s, V_R = 200V$		2.5		μs

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ T_J = @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 0.5A Value vs. Junction Temperature

Fig. 3. $R_{DS(on)}$ Normalized to $I_D = 0.5A$ Value vs. Drain Current

Fig. 5. Maximum Drain Current vs.

Case Temperature

Fig. 6. Input Admittance

Fig. 11. Forward-Bias Safe Operating Area $@T_C = 25^{\circ}C$

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

