Lezione 6

Bayesian Learning

Martedì, 16 Novembre 2004

Giuseppe Manco

Readings:
Sections 6.1-6.5, Mitchell
Chapter 2, Bishop
Chapter 4, Hand-Mannila-Smith

Concetti probabilistici, apprendimento probabilistico

Concetti probabilistici

- Il concetto da apprendere è una funzione $c: X \rightarrow [0, 1]$
- c(x), il valore target, denota la probabilità che l'etichetta 1 (*True*) sia assegnata a
- Sostanzialmente, quello che abbiamo ottenuto finora
- Probabilistic (i.e., Bayesian) <u>Learning</u>
 - Utilizzo di un criterio probabilistico nella selezione di un'ipotesi h
 - Esempio: l'ipotesi "più probabile" considerando D: MAP hypothesis
 - Esempio: h per cui D è "più probabile": max likelihood (ML) hypothesis
 - NB: h può essere una qualsiasi funzione

Alcune definizioni di base

- Spazio degli eventi (Ω): Dominio di una variabile casuale X
- Misura di probabilità P(•)
 - P, è una misura su Ω
 - $P(X = x \in \Omega)$ è una misura della fiducia in X = x
- Assiomi di Kolmogorov
 - 1. \forall *x* ∈ Ω . 0 ≤ P(X = x) ≤ 1
 - 2. $P(\Omega) = \sum_{x \in \Omega} P(X = x) = 1$
 - 3. $\forall X_1, X_2, \dots \ni i \neq j \Rightarrow X_i \land X_j = \emptyset$.

$$P\left(\bigcup_{i=1}^{\infty} X_{i}\right) = \sum_{i=1}^{\infty} P(X_{i})$$

- Probabilità congiunta: P(X₁ ∧ X₂) ≡ dell'evento X₁ ∧ X₂
- indipendenza: $P(X_1 \wedge X_2) = P(X_1) \bullet P(X_2)$

II teorema di Bayes

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)} = \frac{P(h \land D)}{P(D)}$$

- P(h) = Probabilità a priori dell'ipotesi h
 - Misura la credenza iniziale indipendentemente da qualsiasi informazione (e quindi a priori)
- $P(D) \equiv Prior dell'insieme D$
 - Misura la probabilità dell'insieme D (i.e., expresses D)
- P(h | D) ≡ Probabilità di h dato D
 - | denota <u>condizionamento</u> P(h | D) is probabilità <u>condizionale</u> (a <u>posteriori</u>)
- P(D | h) ≡ Probabilità di D dato h
 - Probabilità di osservare D sapendo che vale h (modello "generativo")
- $P(h \land D) \equiv Probabilità congiunta di h e D$

Da Bayes "Essay towards solving a problem in the doctrine of chances" (1763)

Thomas Bayes

Born: 1702 in London, England

Died: 1761 in Tunbridge Wells, Kent, England

La scelta delle ipotesi

Teorema di Bayes

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)} = \frac{P(h \land D)}{P(D)}$$

- Ipotesi MAP
 - Si vuole l'ipotesi più probabile sullo specifico training set
 - $arg \max_{x \in \Omega} [f(x)] \equiv il \ valore \ di \ x \ nello \ spazio \ \Omega$ che esibisce il più alto f(x)
 - Maximum <u>a p</u>osteriori hypothesis, h_{MAP}

$$h_{MAP} = \arg \max_{h \in H} P(h \mid D)$$

$$= \arg \max_{h \in H} \frac{P(D \mid h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D \mid h)P(h)$$

- Ipotesi ML
 - Assumiamo $p(h_i) = p(h_i)$ (tutte le ipotesi sono equalmente probabili)
 - Si sceglie l'ipotesi che spiega meglio I dati, h_{ML}

$$h_{ML} = arg \max_{h_i \in H} P(D | h_i)$$

Esempio: Moneta bilanciata [1]

Lancio della moneta

- Spazio: $\Omega = \{Head, Tail\}$
- Scenario: la moneta è bilanciata o sbilanciata al 60% in favore di Head
 - $h_1 \equiv \text{bilanciata: } P(Head) = 0.5$
 - $h_2 = 60\%$ bias : P(Head) = 0.6
- Obiettivo: decidere tra l'ipotesi di default (null) e l'alternativa

<u>Distrivuzione a Priori</u>

- $-P(h_1) = 0.75, P(h_2) = 0.25$
- Riflette le credenze iniziali su H
- L'apprendimento è revisione delle credenze

Evidenze

- d ≡ singolo lancio, viene Head
- D: Cosa crediamo adesso?
- R: Calcoliamo $P(d) = P(d | h_1) P(h_1) + P(d | h_2) P(h_2)$

Esempio: Moneta bilanciata [2]

- Inferenza Bayesiana: Calcoliamo $P(d) = P(d \mid h_1) P(h_1) + P(d \mid h_2) P(h_2)$
 - $P(Head) = 0.5 \cdot 0.75 + 0.6 \cdot 0.25 = 0.375 + 0.15 = 0.525$
 - Questa è la probabilità dell'osservazione d = Head
- Apprendimento bayesiano
 - In base al teorema di Bayes
 - $P(h_1 \mid d) = P(d \mid h_1) P(h_1) / P(d) = 0.375 / 0.525 = 0.714$
 - $P(h_2 \mid d) = P(d \mid h_2) P(h_2) / P(d) = 0.15 / 0.525 = 0.286$
 - Le credenze sono state spostate verso h₁
 - MAP: crediamo ancora che la moneta sia bilanciata
 - Approccio ML (assumiamo priors identici)
 - Le credenze sono revisionate a partire da 0.5
 - C'è più sbilanciamento a favore di h₁
- Ulteriore evidenza: Sequenza D di 100 lanci con 70 heads e 30 tails
 - $P(D) = (0.5)^{70} \cdot (0.5)^{30} \cdot 0.75 + (0.6)^{70} \cdot (0.4)^{30} \cdot 0.25$
 - Ora $P(h_1 | D) << P(h_2 | D)$

Stima di densità

- Obiettivo principale: stimare P(D | h)
 - Grazie al teorema di Bayes, possiamo ottenere la probabilità "a posteriori"
- Tre approcci
 - Metodi parametrici
 - Si assume una forma funzionale per le densità
 - Si stimano i parametri di tali forme funzionali
 - Metodi nonparametrici
 - La forma funzionale è determinata dai dati
 - Mixture models
 - Combinazioni di molte possibili forme funzionali
 - Neural Networks

Esempio: Maximum Likelihood Estimation

- Dati M parametri
- Si trovino i valori più probabili
 - Massimizzando la probabilità congiunta
 - Assumendo N istanze indipendenti

$$\mathbf{\theta} = \left[\theta_1, ..., \theta_M\right]$$

$$L(\mathbf{x}_1,...,\mathbf{x}_N) = \prod_{i=1}^N p(\mathbf{x}_i \mid \mathbf{\theta})$$

Minimizzando l'errore corrispondente

$$E = -\ln L(\mathbf{x}_1, ..., \mathbf{x}_N) = -\sum_{i=1}^N \ln p(\mathbf{x}_i \mid \mathbf{\theta})$$

Il caso di dati gaussiani

- Assunzione tipica: gli attributi numerici hanno una distribuzione normale (Gaussiana)
- La densità di probabilità è definita da due parametri
 - densità f(x):

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Dati gaussiani e MLE

Stimiamo la verosimiglianza

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_i - \mu)^2/(2\sigma^2)} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-(1/2\sigma^2) \sum_{i=1}^n (x_i - \mu)^2}$$

– Al logaritmo:

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

- Derivando:

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$
$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

- Otteniamo

$$\hat{\mu} = \overline{X} \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

La più probabile classificazione delle nuove istanza

- MAP and MLE: Limitazioni
 - Il problema: "trovare l'ipotesi più probabile"
 - Ci basta la migliore classificazione di x, dato D

Metodi

- Troviamo la migliore (MAP) h, la usiamo per classificare
- Non è detto che la classificazione sia ottimale
- Esempio:l'albero con l'errore minimo può sbagliare la classificazione su un'istanza specifica

Obiettivo (raffinato)

- Vogliamo determinare la <u>più probabile classificazione</u>
- Combiniamo la predizione di tutte le ipotesi
- Le predizioni sono pesati dalle probabilità condizionali
- Result: <u>Bayes Optimal Classifier</u>

Classificazione Bayesiana

Struttura

- Si trovi la più probabile classificazione
- $f: X \rightarrow V$ (dominio ≡ spazio delle istanze, codominio ≡ insieme finito di valori)
- $x \in X$ espresso come collezione di attributi $x \equiv (x_1, x_2, ..., x_n)$
- classificatore Bayesiano
 - Dato x_i
 - Si determini: il <u>più probabile valore</u> v_i ∈ V

$$\begin{aligned} \mathbf{v}_{MAP} &= \arg\max_{\mathbf{v}_{j} \in V} \mathbf{P}(\mathbf{v}_{j} \mid \mathbf{x}) = \arg\max_{\mathbf{v}_{j} \in V} \mathbf{P}(\mathbf{v}_{j} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) \\ &= \arg\max_{\mathbf{v}_{j} \in V} \mathbf{P}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n} \mid \mathbf{v}_{j}) \mathbf{P}(\mathbf{v}_{j}) \end{aligned}$$

Problematiche

- Stimare $P(v_j)$ è semplice: per ogni valore v_j , contiamo la sua frequenza in $D = \{ < x, f(x) > \}$
- Tuttavia, è problematica la stima di $P(x_1, x_2, ..., x_n | v_j)$ senza assunzioni a priori

Classificazione Bayesiana (con ipotesi)

Idea

- $h_{MAP}(x)$ non fornisce necessariamente la classificazione più probabile
- **Esempio**
 - Tre ipotesi: $P(h_1 \mid D) = 0.4$, $P(h_2 \mid D) = 0.3$, $P(h_3 \mid D) = 0.3$
 - Su una nuova istanza x, $h_1(x) = +$, $h_2(x) = -$, $h_3(x) = -$
 - Qual'è la migliore classificazione per x?

Bayes Optimal Classification (BOC)
$$v^* = v_{BOC} = arg \max_{v_j \in V} \sum_{h_i \in H} [P(v_j \mid h_i) \cdot P(h_i \mid D)]$$

- **Esempio**
 - $P(h_1 \mid D) = 0.4$, $P(- \mid h_1) = 0$, $P(+ \mid h_1) = 1$
 - $P(h_2 \mid D) = 0.3$, $P(- \mid h_2) = 1$, $P(+ \mid h_2) = 0$
 - $P(h_3 \mid D) = 0.3$, $P(- \mid h_3) = 1$, $P(+ \mid h_3) = 0$
- $\sum [P(-\mid h_i) \cdot P(h_i \mid D)] = 0.6$

Naïve Bayes Classifier

• Classificatore MAP
$$v_{MAP} = arg \max_{v_j \in V} P(v_j \mid x) = arg \max_{v_j \in V} P(v_j \mid x_1, x_2, ..., x_n)$$

$$= arg \max_{v_i \in V} P(x_1, x_2, ..., x_n \mid v_j) P(v_j)$$

- Naive Bayes
 - Uno dei metodi più pratici di apprendimento
 - Assunzione di base: gli attributi di x sono indipendenti
- Quando si può usare
 - II training set è grande
 - Gli attributi che descrivono x sono (sostanzialmente) independenti
- Applicazione più di successo
 - Classificazione di testi
- Assunzione Naïve
- Classificatore (Naïve) Bayes

$$P(x_1, x_2, ..., x_n | v_j) = \prod_i P(x_i | v_j)$$

$$v_{NB} = \arg \max_{v_j \in V} P(v_j) \prod_i P(x_i | v_j)$$

Probabilità per PlayTennis

Ou	tlook		Tempe	erature		Hu	midity			Wind		Pla	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	Light	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	Strong	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	Light	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	Strong	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5		Outloo	k	Temp	Humidity	Wind	Play	
							Sunny		Hot	High	Light	No	
							Sunny		Hot	High	Stron	g No	
							Overc	ast	Hot	High	Light	Yes	
							Rainy		Mild	High	Light	Yes	
							Rainy		Cool	Normal	Light	Yes	
							Rainy		Cool	Normal	Stron	g No	
							Overc	ast	Cool	Normal	Stron	g Yes	
							Sunny		Mild	High	Light	No	
							Sunny		Cool	Normal	Light	Yes	
							Rainy		Mild	Normal	Light	Yes	
							Sunny		Mild	Normal	Stron	g Yes	
							Overc	ast	Mild	High	Stron	g Yes	
							Overc	ast	Hot	Normal	Light	Yes	
	_						Rainy		Mild	High	Stron	g No	

Probabilità per PlayTennis

Out	tlook		Tempe	erature		Hu	midity		V	Vindy		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	Light	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	Strong	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	Light	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	Strong	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Una nuova istanza:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	Strong	?

verosimiglianza delle due classi

Per "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

Per "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Probabilità associata:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

In pratica...

Outlook	Temp.	Humidity	Wind	Play
Sunny	Cool	High	Strong	?

$$Pr(yes \mid E) = Pr(Outlook = Sunny \mid yes)$$

$$\times Pr(Temperature = Cool \mid yes)$$

$$\times Pr(Humidity = High \mid yes)$$

$$\times Pr(Windy = True \mid yes)$$

$$\times \frac{Pr(yes)}{Pr(E)}$$

$$= \frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{Pr(E)}$$

Il problema della "frequenza-zero"

 Che succede se il valore di un attributo non compare con un valore di classe?

(esempio: "Humidity = high" per la classe "yes")

La probabilità è zero!

$$Pr(Humidity = High \mid yes) = 0$$

La probabilità a posteriori diventa zero!

$$Pr(yes \mid E) = 0$$

 Rimedio: sommiamo 1 al conteggio di ogni combinazione attributoclasse (Laplace estimator)

Stime di probabilità

- Aggiungere una costante differente da 1 può risultare più appropriato
- Esempio su OutLook

$$\frac{2+\mu/3}{9+\mu}$$

$$\frac{4+\mu/3}{9+\mu}$$

$$\frac{3+\mu/3}{9+\mu}$$

Sunny

Overcast

Rainy

 I pesi non devono necessariamente essere uguali (ma la somma deve essere 1)

$$\frac{2 + \mu p_1}{9 + \mu}$$

$$\frac{4+\mu p_2}{9+\mu}$$

$$\frac{3+\mu p_3}{9+\mu}$$

Valori mancanti

- Nel training: l'istanza non viene conteggiata nella combinazione attributo-valore
- Nella classificazione: l'attributo viene omesso dal calcolo
- esempio:

Outlook	Temp.	Humidity	Wind	Play
?	Cool	High	Strong	?

```
verosimiglianza di "yes" = 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238 verosimiglianza di "no" = 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343 P("yes") = 0.0238 / (0.0238 + 0.0343) = 41\% P("no") = 0.0343 / (0.0238 + 0.0343) = 59\%
```

Attributi numerici

- Assunzione tipica: gli attributi hanno una distribuzione normale (Gaussiana)
- La densità di probabilità è definita da due parametri
 - Valor medio sul campione μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Devianza sul campione σ

$$\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

densità
$$f(x)$$
:
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Ancora Playtennis

Outlook		Temperature		Humid	Humidity		Wind			Play	
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	Light	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	Strong	3	3		
Rainy	3	2	72 ,	85,	80,	95,					
Sunny	2/9	3/5	μ=73	μ=75	μ=79	μ=86	Light	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	<i>σ</i> =6.2	σ =7.9	σ =10.2	σ =9.7	Strong	3/9	3/5		
Rainy	3/9	2/5									

Valore di densità

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Classificazione su valori numerici

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Verosimiglianza di "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ Verosimiglianza di "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$ P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%

P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1%

Riassumendo...

- Il Naïve Bayes funziona sorprendentemente bene (anche sel'assunzione di indipendenza è chiaramente violata)
 - Non servono stime accurate di probabilità finché la probabilità massima è assegnata alla classe corretta
- Tuttavia: troppi attributi ridondanti può causare problemi
- Inoltre: molti attributi numerici non seguono la distribuzione normale
- Migliaramenti:
 - Selezioniamo i migliori attributi
 - Reti Bayesiane