SAR Test Report

Report No.: AGC08326161101FH01

FCC ID : 2AKZSM-1200S

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: Wireless USB Adapter

BRAND NAME : N/A

MODEL NAME : M-1200S

CLIENT: Shenzhen Xunman Technology Co., Ltd.

DATE OF ISSUE : Mar. 03,2017

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

V1.0

REPORT VERSION :

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC08326161101FH01 Page 2 of 57

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Mar. 03,2017	Valid	Original Report

Report No.: AGC08326161101FH01 Page 3 of 57

Test Report Certification				
Applicant Name	:	Shenzhen Xunman Technology Co., Ltd.		
Applicant Address	:	2/F., #3 Building, New Development Zone, Baishixia, Fuyong St., Baoan Dist., Shenzhen, China		
Manufacturer Name	:	Shenzhen Xunman Technology Co., Ltd.		
Manufacturer Address	:	2/F., #3 Building, New Development Zone, Baishixia, Fuyong St., Baoan Dist., Shenzhen, China		
Product Designation	:	Wireless USB Adapter		
Brand Name	:	N/A		
Model Name	:	M-1200S		
Different Description		N/A		
EUT Voltage	:	DC5V		
Applicable Standard	:	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005		
Test Date	:	Feb. 28,2017 to Mar. 01,2017		
Performed Location		Attestation of Global Compliance(Shenzhen) Co., Ltd.		
		2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China		
Report Template		AGCRT-US-5G/SAR (2016-01-01)		

	Frol Thou		
Tested By	Eric Zhou(Zhou Yongkang)	Mar. 01,2017	
	Angola li		
Checked By	Angela Li(Li Jiao)	Mar. 03,2017	
	Solya Zhong		
Authorized By	Solger Zhang(Zhang Hongyi)	Mar. 03,2017	

Authorized Officer

TABLE OF CONTENTS

1.SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	ε
2.1. EUT DESCRIPTION	€
3. SAR MEASUREMENT SYSTEM	7
3.1. SATIMO SYSTEM DESCRIPTION	8 9
3.4. VIDEO POSITIONING SYSTEM	
4. SAR MEASUREMENT PROCEDURE	12
4.1. SPECIFIC ABSORPTION RATE (SAR). 4.2. SAR MEASUREMENT PROCEDURE. 4.3. RF EXPOSURE CONDITIONS	13
5. TISSUE SIMULATING LIQUID	16
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID(BY WEIGHT %)	
6. SAR SYSTEM CHECK&VALIDATION PROCEDURE	18
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	21
7.1. BODY PART POSITION	21
8. SAR EXPOSURE LIMITS	22
9. TEST EQUIPMENT LIST	23
10. MEASUREMENT UNCERTAINTY	24
11. CONDUCTED POWER MEASUREMENT	30
12. TEST RESULTS	32
12.1. SAR TEST RESULTS SUMMARY	32
APPENDIX A. SAR SYSTEM CHECK DATA	37
APPENDIX B. SAR MEASUREMENT DATA	41
APPENDIX C. TEST SETUP PHOTOGRAPHS &EUT PHOTOGRAPHS	57
APPENDIX D. CALIBRATION DATA	57

Page 5 of 57

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Highest Reported SAR:

Antenna 0

Exposure Position	Frequency Band(MHz)	Highest Reported 1g-SAR(W/Kg)
Body (with 5mm	2.4 GHz	0.657
separation)	5.2 GHz	0.402

Antenna 1

Exposure Position	Frequency Band(MHz)	Highest Reported 1g-SAR(W/Kg)
Body (with 5mm	2.4GHz	0.421
separation)	5.2 GHz	0.293

Antenna 0+1

Exposure Position	Frequency Band(MHz)	Highest Reported 1g-SAR(W/Kg)
Body (with 5mm	2.4GHz	1.063
separation)	5.2 GHz	0.528

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 447498 D02 SAR Procedures for Dongle Xmtr v02r01
- KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

Page 6 of 57

2. GENERAL INFORMATION

2.1. EUT Description

General Information			
Product Designation	Wireless USB Adapter		
Test Model	M-1200S		
Hardware Version	V1.0		
Software Version	V1.0		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Antenna Type	PCB Antenna		
2.4 GHz WIFI			
Operation Frequency	2.412 GHz~2.462GHz		
Type of modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)		
Output Power	IEEE 802.11b:15.76dBm; IEEE 802.11g:12.42dBm; IEEE 802.11n(20):15.27dBm; IEEE 802.11n(40):12.09dBm		
Antenna Gain	2.0dBi		
5 GHz WIFI			
Operation Frequency	5150 GHz~5250GHz; 5725 GHz~5825GHz		
Type of modulation	BPSK, QPSK, 16QAM, 64QAM, 128QAM, 256QAM,OFDM		
Output Power	IEEE 802.11a20:10.54Bm IEEE 802.11n(40):10.08dBm; IEEE802.11n(20):12.70Bm IEEE802.11ac(20):12.47dBm IEEE802.11ac(40):10.51Bm EEE802.11ac(80):8.28dBm		
Antenna Gain	2.0dBi		

Note: The sample used for testing is end product.

Product

Type

☐ Production unit ☐ Identical Prototype

Page 7 of 57

3. SAR MEASUREMENT SYSTEM

3.1. SATIMO System Description

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

Report No.: AGC08326161101FH01 Page 8 of 57

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dissymmetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dissymmetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528-2013 and relevant KDB files) Under ISO17025. The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

13011 Opic L-1 leic	Probe Specification
Model	SSE5
Manufacture	MVG
Identification No.	SN 14/16 EP308
Frequency	0.3GHz-3.7GHz Linearity:±0.08dB(300MHz-3.7GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.08dB
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.

Model	SSE2		
Manufacture	MVG		
Identification No.	SN 08/16 EPGO282		
Frequency	0.7GHz-6GHz Linearity:±0.09dB(700MHz-6GHz)		
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.09dB		
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm		
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.		

Page 9 of 57

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- □ Low ELF interference (the closed metallic

construction shields against motor control fields)

☐ 6-axis controller

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Page 10 of 57

3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Page 11 of 57

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- □ Left head
- ☐ Right head
- ☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Page 12 of 57

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
σ is the conductivity of the tissue in siemens per metre;
ρ is the density of the tissue in kilograms per cubic metre;
c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt} \mid t=0 \quad \text{is the initial time derivative of temperature in the tissue in kelvins per second}$

Report No.: AGC08326161101FH01 Page 13 of 57

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 and IEC62209 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 14 of 57

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	$\begin{array}{c} \Delta z_{Z00m}(1)\text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Z00m}(n > 1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: AGC08326161101FH01 Page 15 of 57

4.3. RF Exposure Conditions Test Configuration and setting:

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the front view)

For WLAN mode:

FOI WLAIN Mode:	
Test Configurations	Antenna to edges/surface
Body	
Back	2mm
Front	2mm
Antenna 1	
Edge 1 (Top)	3mm
Edge 2 (Right)	3mm
Edge 3 (Bottom)	18mm
Edge 4 (Left)	
Antenna 0	
Edge 1 (Top)	18mm
Edge 2 (Right)	3mm
Edge 3 (Bottom)	3mm
Edge 4 (Left)	

Page 16 of 57

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid(by weight %)

Ingredient	2450MHz	5000MHz
(Weight)	Body (100%)	Body (100%)
Water	70%	80%
Salt	1%	0
DGBE	9%	10%
Triton X-100	20%	10%

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	ŀ	nead	bo	ody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800–2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5200	36.0	4.66	49.0	5.30
5600	35.5	5.07	48.5	5.77
5800	35.3	5.27	48.2	6.00

($\varepsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$)

Page 17 of 57

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO

|--|

	Tissue Stimulant Measurement for 2450MHz								
	Fr.	Dielectric Par	Tissue	F					
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [°C]	Test time				
Body	2412	54.35	1.87						
	2437	53.87	1.90	20.0	Mar.				
	2450	53.16	1.92		01,2017				
	2462	52.59	1.93						

	Tissue Stimulant Measurement for 5800MHz							
	Fr.	Dielectric Par	Tissue	_				
	(MHz)	εr 49.0(44.1-53.9)	δ[s/m]5.30(4.77-5.83)	Temp [oC]	Test time			
Body	5180	45.98	5.02		□ b			
	5200	45.69	5.16	21.3	Feb. 28,2017			
	5240	45.06	5.21		20,2017			

Page 18 of 57

6. SAR SYSTEM CHECK&VALIDATION PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Report No.: AGC08326161101FH01 Page 19 of 57

6.2. SAR System Check

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	51.5	30.4	3.6

Frequency	L (mm)	W (mm)	L _f (mm)	W _f (mm)
5000MHz	40.39	20.19	81.03	61.98

Report No.: AGC08326161101FH01 Page 20 of 57

6.2.2. System Check Result

System Pe	System Performance Check at 2450MHz & 5200MHz								
Validation	/alidation Kit: SN 29/15DIP 2G450-393& SN 15/15 WGA 36								
Freq. [MHz]	$\frac{1}{4\pi^2}$ value(vv/kg) $\frac{1}{4\pi^2}$ $\frac{1}{4\pi^2}$ $\frac{1}{4\pi^2}$ $\frac{1}{4\pi^2}$ $\frac{1}{4\pi^2}$ $\frac{1}{4\pi^2}$						Test time		
	1g	10g	1g	10g	1g	10g	[°C]		
2450 Body	49.92	23.16	44.928-54.912	20.844-25.476	49.014	23.275	20.0	Mar. 01,2017	
5200 Body	158.49	56.44	142.641-174.339	50.7-62.084	162.988	51.786	21.3	Feb. 28,2017	

Page 21 of 57

7. EUT TEST POSITION

This EUT was tested in Body back, Body front and 3 edges(Top Edge, Right Edge, Bottom Edge).

7.1. Body Part Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm

Page 22 of 57

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 23 of 57

9. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	07/05/2016	07/04/2017	
SAR Probe	MVG	SN 14/16 EP308	12/05/2016	12/04/2017	
TISSUE Probe	SATIMO	SN 23/16 OCPG 75	07/05/2016	07/04/2017	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	-	Validated. No cal required.	Validated. No cal required.	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	07/05/2016	07/04/2019	
Dipole	SWG5500	SN 15/15 WGA 36	07/05/2016	07/04/2019	
Signal Generator	Agilent-E4438C	US41461365	02/27/2017	02/26/2018	
Vector Analyzer	Agilent / E4440A	US40420298	07/02/2016	07/01/2017	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	02/27/2017	02/26/2018	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	03/04/2016	03/03/2017	
Directional Couple	Werlatone/ C6026-10	SN99482	07/02/2016	07/01/2017	
Power Sensor	NRP-Z21	1137.6000.02	10/10/2016	10/09/2017	
Power Sensor	NRP-Z23	US38261498	02/27/2017	02/26/2018	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Report No.: AGC08326161101FH01 Page 24 of 57

10. MEASUREMENT UNCERTAINTY

SATIMO Uncertainty-SN 14/16 EP308									
							la a al\		
Uncertainty Component	ement uncert Sec.	ainty for Di	Prob.	aged over Div.	1 gram / 1 Ci (1g)	0 gram.(F Ci	1g Ui	10g Ui	Vi
Oncertainty Component	0ec.	(+- %)	Dist.	Div.	Ci (ig)	(10g)	(+-%)	(+-%)	VI
Measurement System		,	1	l .	l .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	∞
Probe Modulation	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Axial Isotropy	E.2.2	0.6	R	$\sqrt{3}$	1	1	0.36	0.35	8
Hemispherical Isotropy	E.2.2	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	1.91	R	$\sqrt{3}$	1	1	0.69	0.69	∞
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.02	N	□ 1	1	1	0.02	0.02	∞
Response Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
RF Ambient Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF Ambient Reflection	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe Positioner	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Probe Positioning	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Post-processing	E.5	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Test sample Related									
Device Positioning	E.4.2	0.03	N	1	1	1	3.60	3.60	8
Device Holder	E.4.1	5	N	1	1	1	2.90	2.90	∞
Measurement SAR Drift	E.2.9	0.65	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Power Scaling	E.6.5	5	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Phantom and set-up									
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid Conductivity(Meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М
Liquid Permittivity(Meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid Conductivity-temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	8
Liquid Permittivity-temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	∞
Combined Standard Uncertainty	,		RSS				10.39	10.118	8
Expanded Uncertainty (95% Confidence interval)			k				20.86	20.315	

Report No.: AGC08326161101FH01 Page 25 of 57

System vs	SATIN Alidation uncer	MO Un	certai	nty-sn	14/16 EP3	308	(Hood)		
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci	1g Ui	10g Ui	Vi
Checitainty Component	000.	(+- %)	Dist.	Div.	Or (1g)	(10g)	(+-%)	(+-%)	VI
Measurement System		(I		\ - J/	(/	(/	ı
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	∞
Probe Modulation	E.2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Axial Isotropy	E.2.2	0.6	R	$\sqrt{3}$	1	1	1.44	1.44	∞
Hemispherical Isotropy	E.2.2	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞ ×
Linearity	E.2.4	1.2	R	$\sqrt{3}$	1	1	0.69	0.69	×
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	×
Readout Electronics	E.2.6	0.02	N	□ 1	1	1	0.02	0.02	×
Response Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞ ×
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
RF Ambient Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF Ambient Reflection	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe Positioner	E.6.1	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Probe Positioning	E.6.2	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Post-processing	E.6.3	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
System validation source		1	I	, V -			l	l	l
Deviation of exp. dipole	E6.4	5	R	1	1	1	5.00	5.00	∞
Dipole Axis to Liquid Dist.	8,E.6.6	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8
Input power & SAR drift	8,6.6.4	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
Phantom and set-up		•	•	,			•	•	•
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid Conductivity(Meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М
Liquid Permittivity(Meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid Conductivity-temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	∞
Liquid Permittivity-temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	∞
Combined Standard Uncertainty			RSS				11.17	10.920	∞
Expanded Uncertainty (95% Confidence interval)			k				20.879	20.333	

Page 26 of 57

SATIMO Uncertainty-SN 14/16 EP308 System Check uncertainty for Dipole averaged over 1 gram / 10 gram.(Head)									
								40 = 11:	\ /:
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System		(1 70)	Diot.			(109)	(1 70)	(1 70)	
Modulation response	E.2.5	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	∞
System detection limits	E.2.4	1.0	R	√3	0	0	0.00	0.00	∞
Readout Electronics	E.2.6	0.02	N	_ 1	0	0	0.00	0.00	∞
Response Time	E.2.7	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF Ambient Noise	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF Ambient Reflection	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Probe Positioner	E.6.1	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Probe Positioning	E.6.2	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Post-processing	E.6.3	5.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Field source									
Deviation of exp. dipole	E6.4	5	R	1	1	1	5.00	5.00	8
Dipole Axis to Liquid Dist.	8,E.6.6	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
Input power & SAR drift	8,6.6.4	1	R	√3	1	1	0.58	0.58	∞
Phantom and set-up									
Phantom Uncertainty	E.3.1	0.05	R	√3	1	1	0.03	0.03	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid Conductivity(Meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М
Liquid Permittivity(Meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid Conductivity-temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	∞
Liquid Permittivity-temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	∞
Combined Standard Uncertainty			RSS				7.076	6.667	∞
Expanded Uncertainty (95% Confidence interval)			k				14.152	13.334	

Page 27 of 57

		SATIM	O Un	certai	nty					
Measur	Measurement uncertainty for DUT averaged over 1 gram / 10 gram.(Head)									
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi	
Measurement System		, ,					,	. ,		
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	∞	
Probe Modulation	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8	
Axial Isotropy	E.2.2	0.6	R	$\sqrt{3}$	1	1	0.35	0.35	8	
Hemispherical Isotropy	E.2.2	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	8	
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8	
Linearity	E.2.4	1.95	R	$\sqrt{3}$	1	1	1.13	1.13	8	
System detection limits	E.2.4	0.9	R	$\sqrt{3}$	1	1	0.52	0.52	∞	
Readout Electronics	E.2.6	0.02	N	□ 1	1	1	0.02	0.02	8	
Response Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8	
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8	
RF Ambient Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8	
RF Ambient Reflection	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8	
Probe Positioner	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	8	
Probe Positioning	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	8	
Post-processing	E.5	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8	
Test sample Related										
Device Positioning	E.4.2	5	R	1	1	1	5.00	5.00	8	
Device Holder	E.4.1	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8	
Measurement SAR Drift	E.2.9	1	R	$\sqrt{3}$	1	1	0.58	0.58	8	
Phantom and set-up										
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	8	
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8	
Liquid Conductivity(Meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М	
Liquid Permittivity(Meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М	
Liquid Conductivity-temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	∞	
Liquid Permittivity-temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	8	
Combined Standard Uncertainty			RSS				11.08	10.822	8	
Expanded Uncertainty (95% Confidence interval)			k				22.16	21.643		

Page 28 of 57

	SATIMO Uncertainty									
System va	System validation uncertainty for Dipole averaged over 1 gram / 10 gram.(Head)									
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi	
Measurement System										
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	∞	
Probe Modulation	E.2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞	
Axial Isotropy	E.2.2	0.6	R	$\sqrt{3}$	1	1	1.44	1.44	∞	
Hemispherical Isotropy	E.2.2	0.7	R	$\sqrt{3}$	1	1	2.31	2.31	∞	
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞	
Linearity	E.2.4	1.2	R	$\sqrt{3}$	1	1	0.69	0.69	∞	
System detection limits	E.2.4	0.7	R	$\sqrt{3}$	1	1	0.40	0.40	∞	
Readout Electronics	E.2.6	0.02	N	<u></u>	1	1	0.02	0.02	∞	
Response Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞	
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞	
RF Ambient Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞	
RF Ambient Reflection	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞	
Probe Positioner	E.6.1	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞	
Probe Positioning	E.6.2	0.05	R	√3	1	1	0.03	0.03	∞	
Post-processing	E.6.3	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞	
System validation source	(dipole)	•	•	•	•		•	•		
Deviation of exp. dipole	E6.4	5	R	1	1	1	5.00	5.00	∞	
Dipole Axis to Liquid Dist.	8,E.6.6	4.7	R	√3	1	1	2.71	2.71	_∞	
Input power & SAR drift	8,6.6.4	1	R	$\sqrt{3}$	1	1	0.58	0.58	8	
Phantom and set-up										
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞	
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	∞	
Liquid Conductivity(Meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М	
Liquid Permittivity(Meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М	
Liquid Conductivity-temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	∞	
Liquid Permittivity-temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	∞	
Combined Standard Uncertainty			RSS				10.34	10.069	∞	
Expanded Uncertainty (95% Confidence interval)			k				20.69	20.137		

Page 29 of 57

	SATIMO Uncertainty								
System (Check uncerta				-	10 gram.(Head)		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System							,		I
Modulation response	E.2.5	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
System detection limits	E.2.4	0.7	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Readout Electronics	E.2.6	0.02	N	□ 1	0	0	0.00	0.00	∞
Response Time	E.2.7	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	×
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF Ambient Noise	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF Ambient Reflection	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Probe Positioner	E.6.1	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Probe Positioning	E.6.2	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Post-processing	E.6.3	5.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Field source					•			•	•
Deviation of exp. dipole	E6.4	5	R	1	1	1	5.00	5.00	∞
Dipole Axis to Liquid Dist.	8,E.6.6	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
Input power & SAR drift	8,6.6.4	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Phantom and set-up		11	u	.	I.			l .	I
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid Conductivity(Meas.)	E.3.3	5	N	1	0.78	0.71	3.90	3.55	М
Liquid Permittivity(Meas.)	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid Conductivity-temperature uncertainty	E.3.4	5	R	√3	0.78	0.71	2.25	2.05	8
Liquid Permittivity-temperature uncertainty	E.3.4	5	R	√3	0.23	0.26	0.66	0.75	8
Combined Standard Uncertainty			RSS				7.076	6.667	8
Expanded Uncertainty (95% Confidence interval)			k				14.152	13.334	

Report No.: AGC08326161101FH01 Page 30 of 57

11. CONDUCTED POWER MEASUREMENT

2.4GHz WIFI

Mode	Data Rate (Mbps)	Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 1 (dBm)	Average Power Total (dBm)
		01	2412	15.42	15.03	
802.11b	1	06	2437	15.76	15.24	
		11	2462	15.61	15.18	
	6	01	2412	11.88	11.37	
802.11g		06	2437	12.42	11.79	
		11	2462	12.18	11.64	
		01	2412	11.77	11.35	14.58
802.11n(20)	6.5	06	2437	12.35	11.95	15.16
		11	2462	12.46	12.06	15.27
		03	2422	8.45	8.11	11.29
802.11n(40)	13.5	06	2437	8.84	8.37	11.62
		09	2452	9.24	8.91	12.09

Report No.: AGC08326161101FH01 Page 31 of 57

5G WIFI

Mode	Charrel	Frequency	Av	Avg. Burst Power (dBm) Antenna 0 Antenna 1 Tot					
Mode	Channel	(MHz)	Antenna 0	Antenna 1	Total				
	36	5180	10.35	9.86					
	40	5200	10.22	9.41					
000 44 - 00	48	5240	10.54	9.99					
802.11a20	149	5745	8.23	7.95					
	157	5785	8.03	7.10					
	165	5825	825 8.86 8.25 180 9.75 9.62						
	36	5180	9.75	9.62	12.70				
	40	5200	9.14	8.46	12.03				
000 44100	48	5240	9.35	8.89	12.14				
802.11N20	149	5745	8.64	8.47	11.57				
	157	5785	8.52	8.01	11.41				
	165	5825	8.94	8.42	11.70				
	38	5190	7.14	6.94	10.05				
000 44840	46	5230	7.28	6.85	10.08				
802.11N40	151	5755	6.31	5.95	9.14				
	159	5795	6.25	5.98	9.13				
	36	5180	9.68	9.22	12.47				
	40	5200	8.15	8.06	11.36				
902 110020	48	5240	8.88	8.37	11.64				
802.11ac20	149	5745	8.76	8.55	11.67				
	155	5775	8.54	8.26	11.13				
	165	5825	8.69	8.51	11.61				
	38	5190	7.75	7.24	10.51				
002 110040	46	5230	7.61	7.15	10.40				
802.11ac40	151	5755	6.42	6.11	9.28				
	159	5795	6.32	5.88	9.12				
002 112200	42	5210	5.42	5.12	8.28				
802.11ac80	155	5775	4.62	4.09	7.37				

Page 32 of 57

12. TEST RESULTS

12.1. SAR Test Results Summary

12.1.1. Test position and configuration

Body SAR was performed with the device 5mm from the phantom

12.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥ 0.8 W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 4. Per KDB 248227 D01 v02r02 Chapter 5.2.2,when SAR measurement is required for 2.4GHz 802.11g/n OFDM configurations, the measurement and test reducing procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - (1) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - (2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is≤1.2 W/Kg,
- 5. Per KDB 248227 D01 v02r02 Chapter 5.3.4, SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.
 - (1) When SAR test exclusion provisions of KDB Publication 447498 D01 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
 - (2) When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements,

Page 33 of 57

is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

Page 34 of 57

12.1.3. Test Result

SAR MEASUREMENT- Antenna 0												
Depth of Liquid (cm)::	>15											
Product: Wireless US	B Adapter											
Test Model: M-1200S												
Position	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune -up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg				
2.4GHz WIFI-802.11b)											
Body Back	06	2437	-0.36	0.622	16.00	15.76	0.657	1.6				
Body Front	06	2437	0.02	0.489	16.00	15.76	0.517	1.6				
Edge 1 (Top)	06	2437	0.32	0.079	16.00	15.76	0.083	1.6				
Edge 2 (Right)	06	2437	-1.66	0.256	16.00	15.76	0.271	1.6				
Edge 3 (Bottom)	06	2437	0.23	0.191	16.00	15.76	0.202	1.6				
5.2 GHz WIFI-802.11	A20											
Body Back	48	5240	-0.96	0.362	11.00	10.54	0.402	1.6				
Body Front	48	5240	0.02	0.118	11.00	10.54	0.131	1.6				
Edge 1 (Top)	48	5240	-0.23	0.027	11.00	10.54	0.030	1.6				
Edge 2 (Right)	48	5240	1.35	0.206	11.00	10.54	0.229	1.6				
Edge 3 (Bottom)	48	5240	0.32	0.053	11.00	10.54	0.059	1.6				
5.2 GHz WIFI-802.11	AC20											
Body Back	36	5180	-0.54	0.241	10.00	9.68	0.259	1.6				
Body Front	36	5180	1.23	0.065	10.00	9.68	0.070	1.6				
Edge 1 (Top)	36	5180	-0.32	0.012	10.00	9.68	0.013	1.6				
Edge 2 (Right)	36	5180	0.65	0.180	10.00	9.68	0.194	1.6				
Edge 3 (Bottom)	36	5180	-0.23	0.070	10.00	9.68	0.075	1.6				
5.2 GHz WIFI-802.11I	N20											
Body Back	36	5180	-0.01	0.152	10.00	9.75	0.161	1.6				
Body Front	36	5180	0.23	0.056	10.00	9.75	0.059	1.6				
Edge 1 (Top)	36	5180	0.33	0.012	10.00	9.75	0.013	1.6				
Edge 2 (Right)	36	5180	-0.02	0.064	10.00	9.75	0.068	1.6				
Edge 3 (Bottom)	36	5180	0.65	0.037	10.00	9.75	0.039	1.6				

Note

⁽¹⁾ When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

⁽²⁾ According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels.

Page 35 of 57

SAR MEASUREMENT- Antenna 1

Depth of Liquid (cm):>15

Product: Wireless USB Adapter

Test Model: M-1200S

TOST MODEL. IN 120	700							
Position	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune -up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
2.4GHz WIFI -802	.11b							
Body Back	06	2437	-0.23	0.341	16.00	15.24	0.406	1.6
Body Front	06	2437	1.00	0.353	16.00	15.24	0.421	1.6
Edge 1 (Top)	06	2437	0.02	0.123	16.00	15.24	0.147	1.6
Edge 2 (Right)	06	2437	-0.23	0.136	16.00	15.24	0.162	1.6
Edge 3 (Bottom)	06	2437	1.36	0.071	16.00	15.24	0.085	1.6
5.2 GHz WIFI-802	.11A20							
Body Back	48	5240	-0.98	0.100	11.00	9.99	0.126	1.6
Body Front	48	5240	1.32	0.232	11.00	9.99	0.293	1.6
Edge 1 (Top)	48	5240	0.02	0.038	11.00	9.99	0.048	1.6
Edge 2 (Right)	48	5240	-0.23	0.201	11.00	9.99	0.254	1.6
Edge 3 (Bottom)	48	5240	1.25	0.021	11.00	9.99	0.026	1.6
5.2 GHz WIFI-802	.11AC20							
Body Back	36	5180	-0.36	0.092	10.00	9.22	0.110	1.6
Body Front	36	5180	0.02	0.176	10.00	9.22	0.211	1.6
Edge 1 (Top)	36	5180	0.23	0.035	10.00	9.22	0.042	1.6
Edge 2 (Right)	36	5180	1.25	0.153	10.00	9.22	0.183	1.6
Edge 3 (Bottom)	36	5180	0.23	0.020	10.00	9.22	0.024	1.6
5.2 GHz WIFI-802.	11N20							
Body Back	36	5180	-0.33	0.157	10.00	9.62	0.171	1.6
Body Front	36	5180	0.33	0.157	10.00	9.62	0.171	1.6
Edge 1 (Top)	36	5180	-0.23	0.012	10.00	9.62	0.013	1.6
Edge 2 (Right)	36	5180	0.02	0.148	10.00	9.62	0.162	1.6
Edge 3 (Bottom)	36	5180	0.36	0.039	10.00	9.62	0.043	1.6

Note

⁽¹⁾ When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

⁽²⁾ According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels.

Page 36 of 57

Simultaneous Multi-band Transmission Evaluation:

N	\cap	Simultaneous state	Portable Handset				
141	<u> </u>	Simulaneous state	Head	Body-worn	Hotspot		
1		WLAN 2.4GHz Antenna 0 (data) + WLAN 2.4GHz Antenna 1 (data)	-	Yes	-		
2	2	WLAN 5.0GHz Antenna 0 (data) + WLAN 5.0GHz Antenna 1 (data)	-	Yes	-		

Eroguenov	Test	Simultaneous Tr	ansmission Scenario	Σ1g SAR	SPLSR
Frequency	Position	Antenna 0	Antenna 1	(W/Kg)	(Yes/No)
	Body Back	0.657	0.406	1.063	No
2 4CH= WIEI	Body Front	0.517	0.421	0.938	No
2.4GHz WIFI -802.11b	Edge 1 (Top)	0.083	0.147	0.230	No
-002.110	Edge 2 (Right)	0.271	0.162	0.433	No
	Edge 3 (Bottom)	0.202	0.085	0.287	No
	Body Back	0.402	0.126	0.528	No
5 2 CU-	Body Front	0.131	0.293	0.424	No
5.2 GHz WIFI-802.11A20	Edge 1 (Top)	0.030	0.048	0.078	No
WIF1-002.11A20	Edge 2 (Right)	0.229	0.254	0.483	No
	Edge 3 (Bottom)	0.059	0.026	0.085	No
	Body Back	0.259	0.110	0.369	No
5 2 CU-	Body Front	0.070	0.211	0.281	No
5.2 GHz WIFI-802.11AC20	Edge 1 (Top)	0.013	0.042	0.055	No
WIF1-002.11AC20	Edge 2 (Right)	0.194	0.183	0.377	No
	Edge 3 (Bottom)	0.075	0.024	0.099	No
	Body Back	0.161	0.171	0.332	No
E 2 CU-	Body Front	0.059	0.171	0.230	No
5.2 GHz WIFI-802.11N20	Edge 1 (Top)	0.013	0.013	0.026	No
WIFI-OUZ. I IINZU	Edge 2 (Right)	0.068	0.162	0.230	No
	Edge 3 (Bottom)	0.039	0.043	0.082	No

Note:

[·]According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 37 of 57

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Mar. 01,2017

System Check Body 2450 MHz

DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=5.33 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\epsilon r = 53.16$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.1, Liquid temperature (°C): 20.0, Relative Humidity (%):57.5

SATIMO Configuration

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=2.00, Y=1.00 SAR Peak: 5.56 W/kg

SAR 10g (W/Kg)	1.468553	
SAR 1g (W/Kg)	3.092549	

Report No.: AGC08326161101FH01 Page 38 of 57

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	5.6052	3.2818	1.5817	0.7855	0.3889	0.1957	0.0983
(W/Kg)							
	5.60-	<u> </u>					
	5.00-	+	+++		+		
	4.00-	$\perp \downarrow \downarrow \downarrow$					
	(2) } 3.00-						
	€ ¥ 2.00-						
	1.00-						
	0.05-			\leftarrow			
		.'02.'55.'07.'5	12.5 17	.5 22.5 2	27.5 32.5	40.0	
				Z (mm)			

Date: Feb. 28,2017

Page 39 of 57

Test Laboratory: AGC Lab System Check Body 5200 MHz

DUT: Dipole 5000MHz Type: SWG5500

Communication System: CW; Communication System Band: D5000 (5000.0 MHz); Duty Cycle: 1:1; Conv.F=2.36 Frequency: 5200 MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.16$ mho/m; $\epsilon r = 45.69$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=15dBm

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.3, Relative Humidity (%):56.6

SATIMO Configuration:

Probe: SSE2; Calibrated: 07/05/2016; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/System Check 5200MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 5200MHz Body/Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Maximum location: X=-5.00, Y=-1.00 SAR Peak: 13.68 W/kg

SAR 10g (W/Kg)	1.637624
SAR 1g (W/Kg)	5.154141

Report No.: AGC08326161101FH01 Page 40 of 57

Z (mm)	0.00	2.00	7.00	12.00	17.00	22.00	27.00
SAR	13.1500	8.4735	1.8713	0.3040	0.0303	0.0070	0.0070
(W/Kg)							
	13.15-						
	12.00 -	} 	+++		+++		
	10.00 -	Λ					
	_						
	፟፟፟ 8.00−	+	+++		+++		
	SAR (W/kg)	N					
	6.00-						
	- 4.00 °	+	+		+		
	2.00-						
	0.01 -		1				
	0.	.0 2.5 5.0 7.5	10.0 15.0	20.0 25.0	30.0 35	.0 40.0	
				Z (mm)			

Page 41 of 57

APPENDIX B. SAR MEASUREMENT DATA

Antenna 0

Test Laboratory: AGC Lab Date: Mar. 01,2017

2.4G- 802.11b Mid-Body-Worn- Back DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.33;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.87$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):21.1, Liquid temperature ($^{\circ}$ C): 20.0

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Body- Back /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11b Mid- Body- Back /Zoom Scan: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	2450MHz		
Channels	Middle		
Signal	Crest factor: 1.0		

Maximum location: X=0.00, Y=-11.00 SAR Peak: 1.16 W/kg

SAR 10g (W/Kg)	0.282487
SAR 1g (W/Kg)	0.622418

Report No.: AGC08326161101FH01 Page 42 of 57

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.1744	0.6806	0.3229	0.1589	0.0786	0.0400	0.0207
(W/Kg)							
	1.2-						
	1.0-	\longrightarrow		\perp			
	್ಜ 0.8−	$\overline{}$					
	-8.0 -8.0 (%/Jrg)	$\perp \downarrow \downarrow$					
	- 5						
	ഗ് 0.4-						
	0.2-						
				-			
	0.0-	02 55 07 5	12.5 17.	5 22.5 2	7.5 32.5	40.0	
				Z (mm)			

Page 43 of 57

Test Laboratory: AGC Lab Date: Feb. 28,2017

5.2G -802.11a20 High-Body-Worn- Back DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11a20; Duty Cycle: 1:1; Conv.F=2.36; Frequency: 5240MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.21 \text{mho/m}$; $\epsilon = 1000 \text{ kg/m}$; $\epsilon = 1000 \text{ kg/m}$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: 07/05/2016; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/802.11a20 High - Body- Back /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11a20 High - Body- Back /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf10mm.txt
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body Back
Band	5200MHz
Channels	High
Signal	Crest factor: 1.0

Maximum location: X=-3.00, Y=-13.00 SAR Peak: 1.08 W/kg

Sille I can 100 Wing				
SAR 10g (W/Kg)	0.089045			
SAR 1g (W/Kg)	0.362028			

Report No.: AGC08326161101FH01 Page 44 of 57

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.1707	0.4272	0.0247	0.0083	0.0086	0.0086	0.0086
(W/Kg)							
	1.2-						
	1.0-						
	1.0	\					
	_ 0.8-	\longrightarrow	++++	+++			
	(F) 0.8	Λ					
	≥ 0.6-	- N - - 	+++	+++	++++		
	S 0.4-	111					
	ഗ 0.4−	+					
	0.2-						
	0.2-						
	0.0-		+				
	0.0	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35	.0 40.0	
				Z (mm)			
		2.5 5.5 7.5 1			33.3	.55	

Page 45 of 57

Test Laboratory: AGC Lab Date: Feb. 28,2017

5.2G -802.11ac20 Low-Body-Worn- Back DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11ac20; Duty Cycle: 1:1; Conv.F=2.36; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.02 \text{mho/m}$; $\epsilon = 1000 \text{ kg/m}$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: 07/05/2016; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/802.11ac20 Low - Body- Back /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11ac20 Low - Body- Back /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf10mm.txt			
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm			
Phantom	Validation plane			
Device Position	Body Back			
Band	5200MHz			
Channels	Low			
Signal	Crest factor: 1.0			

Maximum location: X=-8.00, Y=-23.00 SAR Peak: 0.73 W/kg

SAR 10g (W/Kg)	0.059229
SAR 1g (W/Kg)	0.240895

Report No.: AGC08326161101FH01 Page 46 of 57

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.6903	0.2610	0.0165	0.0085	0.0073	0.0074	0.0222
(W/Kg)							
	0.7-						
	0.6-	\Box		\perp			
		\					
	0.5-	\ 	 				
	(S) 0.4	\rightarrow					
	8	$\Lambda \sqcup \Box$					
	SAR 0.3-	- 	 				
	° 0.2-	\perp					
	0.1-	 	++++				
	0.0-		+		┵┯┾╼┶╴┆		
	0.0	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35	.0 40.0	
				Z (mm)			

Page 47 of 57

Test Laboratory: AGC Lab Date: Feb. 28,2017

5.2G -802.11N20 Low-Body-Worn- Back DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11N20; Duty Cycle: 1:1; Conv.F=2.36; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.02 \text{mho/m}$; $\epsilon r = 45.98$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: 07/05/2016; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/802.11N20 Low - Body- Back /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11N20 Low - Body- Back /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	5200MHz		
Channels	Low		
Signal	Crest factor: 1.0		

Maximum location: X=-1.00, Y=-21.00 SAR Peak: 0.41 W/kg

SAR 10g (W/Kg)	0.039274
SAR 1g (W/Kg)	0.151668

Report No.: AGC08326161101FH01 Page 48 of 57

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.4548	0.1635	0.0083	0.0085	0.0085	0.0085	0.0083
(1125)	0.5- 0.4- (6) 0.3- WW 0.2- 0.1-	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35.	0 40.0	
				Z (mm)			

Page 49 of 57

Antenna 1

Test Laboratory: AGC Lab Date: Mar. 01,2017

2.4G- 802.11b Mid-Body-Worn- Front DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.33;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.87$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):21.1, Liquid temperature ($^{\circ}$ C): 20.0

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016 Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Body- Front /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11b Mid- Body- Front /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt	
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm	
Phantom	Validation plane	
Device Position	Body Front	
Band	2450MHz	
Channels	Middle	
Signal	Crest factor: 1.0	

Maximum location: X=1.00, Y=-25.00 SAR Peak: 0.69 W/kg

	0
SAR 10g (W/Kg)	0.152376
SAR 1g (W/Kg)	0.353165

Report No.: AGC08326161101FH01 Page 50 of 57

0.1000	0.0496	0.0203	0.0112
+++-			
+++-			
++++			
		· · · ,	
	27.5 32.5	40.0	
Z (mm)			
-	5 17.5 22.5 Z (nm)		

Page 51 of 57

Test Laboratory: AGC Lab Date: Feb. 28,2017

5.2G -802.11a20 High-Body-Worn- Front DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11a20; Duty Cycle: 1:1; Conv.F=2.36; Frequency: 5240MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.21 \text{mho/m}$; $\epsilon = 1000 \text{ kg/m}$; $\epsilon = 1000 \text{ kg/m}$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: 07/05/2016; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/802.11a20 High - Body- Front /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11a20 High - Body- Front /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf10mm.txt	
ZoomScan 8x8x13 dx=4mm dy=4mm dz=2mm		
Phantom	Validation plane	
Device Position	Body Front	
Band	5200MHz	
Channels	High	
Signal	Crest factor: 1.0	

Maximum location: X=1.00, Y=-19.00 SAR Peak: 0.71 W/kg

SAR 10g (W/Kg)	0.052909
SAR 1g (W/Kg)	0.232105

Report No.: AGC08326161101FH01 Page 52 of 57

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.7219	0.2569	0.0086	0.0086	0.0086	0.0086	0.0086
	0.7-		+ + +		++++	_	
	0.6-	igwedge			\perp		
	€ 0.5-	\longrightarrow					
	O.5 O.4 O.3	\longrightarrow					
	¥ 0.3-	$+\!\!+\!\!+\!\!-$					
	0.2-	$+ \lambda +$					
	0.1-	++					
	0.0-		 				
	0.0	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0 Z (mm)	30.0 35.	0 40.0	

Page 53 of 57

Test Laboratory: AGC Lab Date: Feb. 28,2017

5.2G -802.11ac20 Low-Body-Worn- Front DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11ac20; Duty Cycle: 1:1; Conv.F=2.36; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.02 \text{mho/m}$; $\epsilon = 1000 \text{ kg/m}$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: 07/05/2016; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/802.11ac20 Low - Body- Front /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11ac20 Low - Body- Front /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf10mm.txt
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body Front
Band	5200MHz
Channels	Low
Signal	Crest factor: 1.0

Maximum location: X=-2.00, Y=-24.00 SAR Peak: 0.54 W/kg

SAR 10g (W/Kg)	0.042060
SAR 1g (W/Kg)	0.175726

Report No.: AGC08326161101FH01 Page 54 of 57

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.5205	0.1854	0.0070	0.0085	0.0085	0.0085	0.0085
(W/Kg)							
	0.5-						
		$\setminus \mid \cdot \mid \cdot \mid$					
	0.4-	V					
	₹ 0.3-	$\rightarrow + +$	\bot	\rightarrow	+		
	8	$\Lambda \sqcup \Box$					
	₹ 0.2-						
	0.1-	++					
	0.0-						
	0.0	2.5 5.0 7.5 1		20.0 25.0	30.0 35.	0 40.0	
				Z (mm)			

Page 55 of 57

Test Laboratory: AGC Lab Date: Feb. 28,2017

5.2G -802.11N20 Low-Body-Worn- Front DUT: Wireless USB Adapter; M-1200S

Communication System: Wi-Fi; Communication System Band: 802.11N20; Duty Cycle: 1:1; Conv.F=2.36; Frequency: 5180MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.02 \text{mho/m}$; $\epsilon r = 45.98$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: 07/05/2016; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/802.11N20 Low - Body- Front /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11N20 Low - Body- Front /Zoom Scan: Measurement grid: dx=4mm,dy=4mm, dz=2mm

Area Scan	sam_direct_droit2_surf10mm.txt			
ZoomScan	8x8x13 dx=4mm dy=4mm dz=2mm			
Phantom	Validation plane			
Device Position	Body Front			
Band	5200MHz			
Channels	Low			
Signal	Crest factor: 1.0			

Maximum location: X=-7.00, Y=-21.00 SAR Peak: 0.54 W/kg

SAR 10g (W/Kg)	0.040976		
SAR 1g (W/Kg)	0.157300		

Report No.: AGC08326161101FH01 Page 56 of 57

0.00	4.00	9.00	14.00	19.00	24.00	29.00
0.5564	0.1976	0.0085	0.0085	0.0094	0.0085	0.0085
0.0						
0.5-						
0.4	\					
a 0.4-	1					
Š n 2_L	\					
≥ 0.3 T	Λ					
₹ n2-	\perp					
0, 0.2	\perp					
0.1-	\perp	\square	\perp			
0.1	\					
0.0		+ + +	+++	- 		
0.0	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35.	0 40.0	
			Z (mm)			
	0.5564 0.6- 0.5 0.4 (MW) 0.3 VS 0.2 0.1	0.5564 0.1976 0.6- 0.5- 0.4- 0.3- 0.3- 0.1- 0.0-	0.5564 0.1976 0.0085 0.6 0.5 0.4 0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5564 0.1976 0.0085 0.0085 0.6- 0.5- 0.4- 0.4- 0.3- 0.2- 0.1- 0.0-	0.5564 0.1976 0.0085 0.0085 0.0094 0.6 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5564 0.1976 0.0085 0.0085 0.0094 0.0085 0.6- 0.5- 0.4- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0

Page 57 of 57

APPENDIX C. TEST SETUP PHOTOGRAPHS & EUT PHOTOGRAPHS

Refer to Attached files.

APPENDIX D. CALIBRATION DATA

Refer to Attached files.