An Introduction to Chaos in Topological Dynamical Systems

Fraser Robert Love

School of Mathematics and Statistics University of St Andrews

March 27, 2023

Table of Contents

Topological Dynamics

Introduction to Chaos

Topological Characteristics of Chaos

Devaney Chaos

Concluding Remarks

Bibliography

Definition (Topological Dynamical System).

- Let X be a non-empty compact metric space. A *topological* dynamical system, denoted (X, f), is given by a continuous map $f: X \to X$.
- ▶ The system starts at an initial point $x \in X$ and evolves through successive iterations of the map f.
- ▶ After $k \in \mathbb{N}$ iterations of f, the system can be described by $f^n := f \circ f \circ \cdots \circ f$, where x is mapped to the point $f^n(x)$.

Definition (Orbit).

Let (X, f) be a topological dynamical system. The *orbit* of $x \in X$ under f is the set $\mathcal{O}_f(x) = \{f^n(x) : n \ge 0\} = \{x, f(x), f^2(x), \dots\}$ of iterates of x under the map f.

Definition (Periodic Point, Cycle).

- Let (X, f) be a topological dynamical system. A point $x \in X$ is *periodic* if $f^n(x) = x$ for some $n \in \mathbb{N}$.
- ▶ The *period* of a point x is the least positive integer k such that $f^k(x) = x$. If x has a period of k we say that x is a *period-k* point.
- ▶ The orbit $\mathcal{O}_f(x) = \{x, f(x), \dots, f^{k-1}(x)\}$ of a periodic point is a finite set of unique points, called a *periodic orbit* of period k or simply a k-cycle.

Example (Logistic Map).

Define $F_{\mu}:[0,1]\to [0,1]$ to be the *logistic map*, where $F_{\mu}(x)=\mu x(1-x)$ and $\mu>0$.

Figure: Logistic map F_{μ} with $\mu = 3$.

Example (Doubling Map).

Define $\mathcal{D}: S^1 \to S^1$ to be the doubling map on $S^1 = \{z \in \mathbb{C}: |z| = 1\}$, where $\mathcal{D}(z) = z^2$, or equivalently $\mathcal{D}(e^{i\theta}) = e^{2i\theta}$ for some $\theta \in \mathbb{R}$.

Figure: First ten iterations of the doubling map \mathcal{D} .

Definition (Sequence Space).

- Let $\Sigma_2 = \{(s_1, s_2, \dots) : s_i \in \{0, 1\}\}$ be the set sequences of ones and zeros.
- ▶ Define (Σ_2, d) to be the sequence space where $d(s,t) = \sum_{i=1}^{\infty} |s_i t_i| 2^{-i}$ is a metric for $(s)_{i=1}^{\infty}$, $(t)_{i=1}^{\infty} \in \Sigma_2$.
- ▶ The sequence space (Σ_2, d) is compact.

Proposition.

The shift map $\sigma: \Sigma_2 \to \Sigma_2$ given by $\sigma((s)_{i=1}^{\infty}) = (s)_{i=2}^{\infty}$ is continuous.

Proof.

Let $\varepsilon>0$ and choose $\underline{s}=(s_i)_{i=1}^\infty,\ \underline{t}=(t_i)_{i=1}^\infty\in\Sigma_2$ such that $d(\underline{s},\underline{t})=\Sigma_{i=1}^\infty|s_i-t_i|2^{-i}<\delta$. Choose n such that $2^{-n}\leq\varepsilon$ and let $\delta=2^{-(n+1)}$. Hence \underline{s} and \underline{t} agree on the first n+1 symbols and $\sigma(\underline{s})$ and $\sigma(\underline{t})$ agree on the first n symbols. Then $d(\sigma(\underline{s}),\sigma(\underline{t}))=d((s)_{i=n+1}^\infty,(t)_{i=n+1}^\infty)=\Sigma_{i=n+1}^\infty|s_i-t_i|2^{-i}\leq 2^{-n}\leq\varepsilon$.

Hence (Σ_2, σ) defines a topological dynamical system.

Proposition.

The shift map (Σ_2, σ) has a dense orbit. [2]

Proof.

Let $\underline{t}=(t)_{i=0}^{\infty}\in\Sigma_2$ be arbitrary and $\varepsilon>0$. Consider the sequence $\underline{s}=(0,1,\{0,0\},\{0,1\},\{1,0\},\{1,1\},\{0,0,0\},\{0,0,1\},\dots)$ of 0s and 1s sorted in len-lex order. By construction we can perform some $k\in\mathbb{N}$ iterations of σ such that the first n symbols of $\sigma^k(\underline{s})$ and \underline{t} agree. Choose $N\geq\log_2\frac{1}{\varepsilon}$. Therefore for $n\geq N-1$ we have that, $d(\sigma^k(\underline{s}),\underline{t})=\sum_{i=n}^{\infty}|\sigma^k(\underline{s})_i-t_i|2^{-i}\leq 2^{-(n+1)}<2^{-N}\leq\varepsilon$. Hence the orbit of \underline{s} is dense in Σ_2 .

Proposition.

The periodic points of the shift map (Σ_2, σ) are dense in Σ_2 . [2]

Proof.

Let $\underline{s}=(s)_{i=1}^{\infty}$ be an arbitrary point in Σ_2 and let $\varepsilon>0$. Pick an n such that $2^{-n}\leq \varepsilon$ and define $t_n=(s_0,\ldots,s_n,s_0,\ldots,s_n,\ldots)$ to be an infinite repeating sequence where $t_i=s_i$ for $1\leq i\leq n$. Then $d(s,t)=\sum_{i=0}^n|s_i-t_i|2^{-i}+\sum_{i=n+1}^\infty|s_i-t_i|2^{-i}=\sum_{i=n+1}^\infty2^{-i}\leq 2^{-n}\leq \varepsilon$. Hence as $n\to\infty$ we have $t_n\to\underline{s}$. Since \underline{s} was arbitrary, the periodic points of σ are dense.

Introduction to Chaos

- Many different definitions of chaos exist for topological dynamical systems.
- Devaney chaos, Li-Yorke chaos, Topological chaos, etc.
- These definitions rely on many different topological characteristics to define chaos in a natural way.
- Topological transitivity / existence of a dense orbit, sensitive dependence on initial conditions, dense periodic points, existence of an uncountable scrambled-set, and positive topological entropy.

Definition (Topological Transitivity).

Let (X, f) be a topological dynamical system. The map f is topologically transitive if for every pair of non-empty open sets $U, V \subseteq X$ there exists k > 0 such that $f^k(U) \cap V \neq \emptyset$.

In a topologically transitive mapping, points in an arbitrarily small set can be mapped into any other arbitrary small set under a repeated number of iterations of the map.

Proposition.

Let (X, f) be a topological dynamical system and suppose X has no isolated points. The map f is topologically transitive if and only if there exists some $x \in X$ such that $\mathcal{O}(x)$ is dense in X. [4]

Example.

Let (S^1, \mathcal{D}) be the doubling map over S^1 , where $\mathcal{D}(z) = z^2$. Then \mathcal{D} is topologically transitive.

Proof.

```
Let z_1,z_2\in S^1. Let (z_1,z_2)=U define an arc between z_1 and z_2. Suppose now d(z_1,z_2)>\frac{2\pi}{2^k} for some k\in\mathbb{N}. Then d\left(\mathcal{D}^k(z_1),\mathcal{D}^k(z_2)\right)=d\left(2^kz_1,2^kz_2\right)=2^kd\left(z_1,z_2\right)>2^k\cdot\frac{2\pi}{2^k}=2\pi. Hence \mathcal{D}^k((z_1,z_2)) covers S^1 so for any V\subseteq S^1 we obtain \mathcal{D}^k(U)\cap V\neq\emptyset. Hence \mathcal{D} is topologically transitive. \square
```

Definition (Sensitive Dependence on Initial Conditions).

Let (X, f) be a topological dynamical system and $\varepsilon > 0$. A point $x \in X$ is ε -unstable if, for every neighbourhood U of x, there exists a point $y \in U$ and $k \ge 0$ such that $d\left(f^k(x), f^k(y)\right) \ge \varepsilon$. The map f has sensitive dependence on initial conditions if for all points $x \in X$, x is ε -unstable.

In other words, there exist points arbitrary close to x that eventually get mapped at least ε far apart under multiple applications of the map.

Example.

Let (S^1, \mathcal{D}) be the doubling map over the S^1 , where $\mathcal{D}(z) = z^2$. Then \mathcal{D} has sensitive dependence on initial conditions.

Proof.

Let
$$z_1, z_2 \in S^1$$
 and $\varepsilon < 2^k \delta$ and suppose $d(z_1, z_2) = \delta$, then $d\left(\mathcal{D}^k(z_1), \mathcal{D}^k(z_2)\right) = d\left(2^k z_1, 2^k z_2\right) = 2^k d(z_1, z_2) = 2^k \delta > \varepsilon$. Hence we can always choose a k large enough so this holds, and so \mathcal{D} has sensitive dependence on initial conditions.

Devaney Chaos

Definition (Devaney Chaos).

A topological dynamical system (X, f) is *chaotic in the sense of Devaney* if it is topologically transitive, has sensitive dependence on initial conditions, and if the periodic points of f are dense in X.

Devaney's definition considers:

- Unpredictability (sensitive dependence on initial conditions).
- Repetitiveness (dense periodic points).
- Indecomposability (topological transitivity).

Devaney Chaos

It turns out sensitive dependence on initial conditions is a redundant characteristic via the following proposition.

Proposition.

Let (X, f) be a topological dynamical system. If the map f is topologically transitive and has dense periodic points then f has sensitive dependence on initial conditions. [1] [3]

Devaney Chaos

Proposition.

The shift map (Σ_2, σ) is chaotic in the sense of Devaney.

Proof.

We previously showed that (Σ_2, σ) has a dense orbit and so is topologically transitive. We also showed that the periodic points of the shift map are dense in Σ_2 . Hence, by the proposition above, we conclude that (Σ_2, σ) is Devaney chaotic.

Concluding Remarks

- We have defined chaos to be a mixture of unpredictability, repetitiveness and indecomposability.
- This was achieved using the properties of topological transitivity, sensitive dependence on initial conditions and dense periodic points.
- We have shown that the shift map (Σ_2, σ) is a Devaney chaotic topological dynamical system.
- ▶ Using symbolic dynamics and topological conjugacy we can also prove that ($[0,1], F_{\mu}$), (S^1, \mathcal{D}) and many more systems exhibit Devaney chaos.
- ► Furthermore, some of these systems also exhibit other types of chaos, such as Li-Yorke chaos and Topological chaos.

Bibliography

J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On devaney's definition of chaos. *The American Mathematical Monthly*, 99(4):332–334, 1992.

R. L. Devaney.

An introduction to Chaotic Dynamical Systems.

Addison-Wesley Publishing Company Advanced Book Program, Redwood City, California, second edition, 1989.

E. Glasner and B. Weiss.

Sensitive dependence on initial conditions.

Nonlinearity, 6(6):1067-1075, 1993.

S. Silverman.

On maps with dense orbits and the definition of chaos.

Rocky Mountain Journal of Mathematics, 22(1):353-375, 1992.