Variáveis correlacionadas

Correlação Linear

Correlação ⇒ dependência, mas dependência ⇒ correlação

Correlação Linear

Correlação ⇒ dependência, mas dependência ⇒ correlação

Correlação Linear

■ Correlação ⇒ dependência, mas dependência ⇒ correlação

Teoria de Cópulas

Estrutura de dependência;

•Mais genérica do que a correlação (que se resume a um único tipo de cópula);

Bem como consiste em um demétodo que cria estrutura de pêndencias entre distribuições marginais, a fim de criar uma distribuição conjunta.

Tipo de Cópulas

Cópula Independente;

Tipo de Cópulas

Cópula Independente;

Cópula gaussiana;

EXEMPLO - MATLAB

Tipo de Cópulas

Cópula Independente;

Cópula gaussiana;

Cópula de Plackett (c);

Cópula de Frank (d);

■Cópula de Clayton (e – f);

PCE – Para variáveis não independentes

- A teoria do PCE indica a necessidade de variáveis independentes. Então, como lidar quando as variáveis não são independentes?
- (i) Ignorar a correlação das variáveis;
- (ii) Através de transformações isoprobabilísticas, transformar duas variáveis dependentes em duas variáveis independentes;
- (iii) Construir um PCE com polinômios arbitrários, que sejam ortogonais às distribuições marginais do problema.

PCE – Para variáveis não independentes

- A teoria do PCE indica a necessidade de variáveis independentes. Então, como lidar quando as variáveis não são independentes?
- (i) Ignorar a correlação das variáveis;
- (ii) Através de transformações isoprobabilísticas, transformar duas variáveis dependentes em duas variáveis independentes;
- (iii) Construir um PCE com polinômios arbitrários, que sejam ortogonais às distribuições marginais do problema.

PCE – Para variáveis não independentes

- A teoria do PCE indica a necessidade de variáveis independentes. Então, como lidar quando as variáveis não são independentes?
- (i) Ignorar a correlação das variáveis;
- (ii) Através de transformações isoprobabilísticas, transformar duas variáveis dependentes em duas variáveis independentes;
- (iii) Construir um PCE com polinômios arbitrários, que sejam ortogonais às distribuições marginais do problema.

Métodos Globais

Método de Morris

Índices ANCOVA

Índices de Borgonovo

Índices Kucherenko

Índices Sobol

Método de Cotter*

Índices Sobol

$$Y = \mathcal{M}(X)$$

Supõe que o modelo pode ser decomposto em HDMR

$$Y = \mathcal{M}_0 + \sum_{i=1}^{M} \mathcal{M}_i(x_i) + \sum_{1 \le i \le j \le M}^{M} \mathcal{M}_{ij}(x_i, x_j) + \dots + \mathcal{M}_{1,2,\dots,M}(x_1, x_2, \dots, x_M)$$

Li e Rabitz (2010) indicam que é possível a decomposição de variâncias para variáveis correlacionadas. No entanto, a variância total deixa de ser escrita em parcelas de variâncias, e passa a ser descrita por relações de covariância.

- Li e Rabitz (2010) indicam que é possível a decomposição de variâncias para variáveis correlacionadas. No entanto, a variância total deixa de ser escrita em parcelas de variâncias, e passa a ser descrita por relações de covariância.
- A partir desse HDMR, os índices ANCOVA são definidos da seguinte maneira:

$$S_{i} = \frac{Cov[\mathcal{M}_{i}(x_{i}), Y]}{Var[Y]} \Rightarrow S_{i} = \frac{Var[\mathcal{M}_{i}(x_{i})]}{Var[Y]} + \frac{Cov[\mathcal{M}_{i}(x_{i}), (Y - \mathcal{M}_{i}(x_{i}))]}{Var[Y]}$$

- Li e Rabitz (2010) indicam que é possível a decomposição de variâncias para variáveis correlacionadas. No entanto, a variância total deixa de ser escrita em parcelas de variâncias, e passa a ser descrita por relações de covariância.
- A partir desse HDMR, os índices ANCOVA são definidos da seguinte maneira:

$$S_{i} = \frac{Cov[\mathcal{M}_{i}(x_{i}), Y]}{Var[Y]} \Rightarrow S_{i} = \frac{Var[\mathcal{M}_{i}(x_{i})]}{Var[Y]} + \frac{Cov[\mathcal{M}_{i}(x_{i}), (Y - \mathcal{M}_{i}(x_{i}))]}{Var[Y]}$$

$$S_{i}^{U}$$

$$S_{i}^{C}$$

- Li e Rabitz (2010) indicam que é possível a decomposição de variâncias para variáveis correlacionadas. No entanto, a variância total deixa de ser escrita em parcelas de variâncias, e passa a ser descrita por relações de covariância.
- A partir desse HDMR, os índices ANCOVA são definidos da seguinte maneira:

$$S_{i} = \frac{Cov[\mathcal{M}_{i}(x_{i}), Y]}{Var[Y]} \Rightarrow S_{i} = \frac{Var[\mathcal{M}_{i}(x_{i})]}{Var[Y]} + \frac{Cov[\mathcal{M}_{i}(x_{i}), (Y - \mathcal{M}_{i}(x_{i}))]}{Var[Y]}$$

$$S_{i}^{U}$$

$$S_{i}^{C}$$

Caniou (2012) sugere o uso de PCEs para a construção do HDMR no cálculo de índices ANCOVA.

$$S_i^{U,T} = \frac{Var[\mathcal{M}_{i \in u}(x_i)]}{Var[Y]}$$

$$S_i^{C,T} = \frac{Cov[\mathcal{M}_{i \in u}(x), \mathcal{M}_{i \notin v}(x)]}{Var[Y]}$$

$$S_{i}^{U,T} = \frac{Vr[\mathcal{M}(x_{i})]}{Var[Y]}$$

$$S_{i}^{C,T} = \frac{Co}{Var[Y]}$$

$$S_{i} = S_{i}^{U} + S_{i}^{I} + S_{i}^{C} = \frac{Var[\mathcal{M}_{i}(x_{i})]}{Var[Y]} + \frac{Cov[\mathcal{M}_{i}(x_{i}), \mathcal{M}_{i \in u}(x)]}{Var[Y]} + \frac{Cov[\mathcal{M}_{i}(x_{i}), \mathcal{M}_{i \notin v}(x)]}{Var[Y]}$$

$$S_{i}^{U,T} = \frac{Vr[\mathcal{M}(x_{i})]}{Var[Y]}$$

$$S_{i}^{C,T} = \frac{Co}{Var[Y]}$$

$$S_{i} = S_{i}^{U} + S_{i}^{I} + S_{i}^{C} = \frac{Var[\mathcal{M}_{i}(x_{i})]}{Var[Y]} + \frac{Cov[\mathcal{M}_{i}(x_{i}), \mathcal{M}_{i \in u}(x)]}{Var[Y]} + \frac{Cov[\mathcal{M}_{i}(x_{i}), \mathcal{M}_{i \notin v}(x)]}{Var[Y]}$$

Métodos Globais

Método de Morris

Índices ANCOVA

Índices de Borgonovo

Índices Kucherenko

Índices Sobol

Método de Cotter*

Método de Kucherenko

Utiliza a lei da variância total para definir uma nova metodologia de partição da variância total. Isso permite escrever a variância total como:

$$Var[Y] = Var_i[E_{\sim i}[Y|X_i]] + E_i[Var_{\sim i}[Y|X_i]]$$

Método de Kucherenko

$$S_i^T = \frac{E_{\sim i}[Var_i[Y|X_i]]}{Var[Y]}$$

$$S_i = \frac{Var_i[E_{\sim i}[Y|X_i]]}{Var[Y]}$$

Estes valores podem ser estimados através de um loop duplo de Monte Carlo!