Lesson 35		04/13/22
Exercite: {x'	$4 \lambda x = 0$	
λ=0, λ=-0		
	$\lambda = -\alpha^2$, none	*
$\lambda = \alpha^2$, <>0	om dittous
×(+)=	l'n, plug in endpt Acos Colt) + B	sin (dt)
	0 -> A.1.1 B 0 -> Bsin(a	
	true for B #	() Everaided
	$\alpha L = n\pi$	$\Rightarrow \alpha = \frac{n\pi}{L}$ $n = 1, 2, \dots$
		\Rightarrow $\alpha = \frac{n\pi}{L}$
	$\alpha L = n\pi$	\Rightarrow $\alpha = \frac{n\pi}{L}$
	$\alpha L = n\pi$	\Rightarrow $\alpha = \frac{n\pi}{L}$
	$\alpha L = n\pi$	\Rightarrow $\alpha = \frac{n\pi}{L}$

	$u_n(x,t) = X_n(x) T_n(t)$
	$\partial_{+}u_{n} = k \partial_{x}u_{n}$
	$X_n(x)$ $T_n(t) = E X_n''(x) T_n(t)$
Separate	
=>	$\frac{\sqrt{u(x)}}{\sqrt{u(x)}} = \frac{\sqrt{u(x)}}{\sqrt{u(x)}}$
Vaniables	$\frac{\chi_{n}(x)}{\chi_{n}(x)} = \frac{T_{n}(t)}{k} T_{n}(t)$
	only depends only depends
	only depends only the
	on x on t
	-2 Both are constant?
So:	$\times_{n}^{n}(x) = -\lambda \qquad (\alpha constant)$
36.	$\frac{\chi_{n}(x)}{\chi_{n}(x)} = -\lambda_{n} (a constant)$
	$\frac{Tn'(t)}{kTn(t)} = -\lambda_n (same constant)$
	$X_n''(x) + \lambda_n X_n(x) = 0$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	> In TBD
	$T_n'(t) = -\lambda_n k T_n(t)$
(*) + (1) helped us turn the PDE
	into two ODEs.

The should also satisfy
$$(x, t)$$
 should also satisfy (x, t) and (x, t) = un(L, t) = 0 for $t > 0$
 (x, t) = un(L, t) = 0 for $t > 0$
 (x, t) = (x, t) = (x, t) = 0 for $t > 0$
 (x, t) = (x, t) = (x, t) = 0 for $t > 0$
 (x, t) = (x, t) = 0 for (x, t) = 0

 (x, t) = (x, t) = 0

 $(x,$

(can assure
$$C_n = L$$
)

So: $u(x,t) = \frac{x}{L}$ $c_n e^{-\frac{t}{L}(\frac{n\pi}{L})^2 t} sin(\frac{n\pi}{L}x)$

Recali:

or $u(x,0) = f(x)$

or $u(x,0) = f(x)$

or $u(x,0) = f(x)$

F. Sine series for f :

$$f(x) = \frac{2}{L} \int_{0}^{L} f(x) sin(\frac{n\pi}{L}x) dx$$

by $f(x) = \frac{2}{L} \int_{0}^{L} f(x) sin(\frac{n\pi}{L}x) dx$

In summary: $solin$
 $u(x,t) = \frac{2}{L} \int_{0}^{L} f(x) sin(\frac{n\pi}{L}x)^2 t$
 $u(x,t) = \frac{2}{L} \int_{0}^{L} f(x) sin(\frac{n\pi}{L}x)^2 t$

Notice: green term $\int_{0}^{L} c_n x dx$

 $\frac{\mathcal{E}_{x}:}{\int_{A} u = \partial_{x}^{2} y} \qquad 0 < x < S$ $\int_{A} (0,t) = u(S,t) = 0$ $\int_{A} (x,0) = 2S$ $\int_{B} (x,0) = 2S$ $\int_{B} (x,0) = S(x) = S(x) = S(x) = S(x) = S(x)$ $\int_{B} (-1)^{n} - 1 = S(x) = S(x) = S(x) = S(x)$ $\int_{A} (x,t) = \frac{S}{N} (S(x)) = \frac{S}{N} (S(x))$