



### **Final Project Documentation**

| Date          | 19 July 2024                                                            |
|---------------|-------------------------------------------------------------------------|
| Team ID       | SWTID1720110092                                                         |
| Project Title | Beneath the Waves: Unravelling Coral<br>Mysteries Through Deep Learning |
| Maximum Marks | 10 Marks                                                                |

# **Project Initialization and Planning Phase**

# Define Problem Statements: Beneath The Waves: Unraveling Coral Mysteries Through Deep Learning:

The project "Beneath the Waves" addresses the challenges faced in coral reef monitoring and conservation by leveraging deep learning techniques to provide real-time, accurate, and comprehensive data. Coral reefs are crucial for marine biodiversity but are under threat from climate change, pollution, and human activities. Traditional methods for monitoring reef health, assessing biodiversity, and evaluating environmental impacts are labor-intensive and lack precision. By using advanced algorithms and neural networks, Beneath the Waves aims to identify signs of coral bleaching, disease, and other stressors, automate the identification and classification of marine species, and analyze the impact of human activities. This approach enables researchers and conservationists to take timely actions, develop effective conservation strategies, and foster a deeper understanding of coral ecosystems, ultimately contributing to their preservation and sustainability.



| Problem<br>Statement<br>(PS) | I am<br>(Customer)                     | I'm trying<br>to                                        | But                                                                  | Because                                                               | Which<br>makes me<br>feel                                               |
|------------------------------|----------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|
| PS-1                         | A marine biologist and conservationist | Monitor the<br>health of<br>coral reefs<br>in real-time | I struggle with the time- consuming and labor- intensive traditional | They lack<br>the<br>precision<br>needed for<br>timely<br>intervention | Frustrated and concerned about the deteriorating health of Coral reeves |









# **Project Initialization and Planning Phase**

| Date          | 19 July 2024                                                           |
|---------------|------------------------------------------------------------------------|
| Team ID       | SWTID1720110092                                                        |
| Project Title | Beneath the Waves: Unraveling Coral<br>Mysteries Through Deep Learning |
| Maximum Marks | 3 Marks                                                                |

#### **Project Proposal (Proposed Solution) template**

The proposal report aims to revolutionize coral reef conservation using deep learning algorithms, enhancing understanding and preservation efforts. It addresses the challenges of manual monitoring and assessment, promising more accurate data collection, timely interventions, and informed conservation strategies. Key features include advanced deep learning models for coral health monitoring and biodiversity assessment.

| <b>Project Overview</b>  |                                                                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                | The primary objective is to leverage deep learning techniques to advance coral reef conservation efforts, improving monitoring and assessment capabilities for enhanced preservation outcomes.                                                                                                                     |
| Scope                    | The project encompasses the development and implementation of deep learning models tailored for coral health monitoring and biodiversity assessment, aiming to provide researchers and conservationists with robust tools for data-driven decision-making.                                                         |
| <b>Problem Statement</b> |                                                                                                                                                                                                                                                                                                                    |
| Description              | Current methods for coral reef monitoring and assessment rely heavily on manual processes, which are time-consuming, labor-intensive, and prone to errors. These inefficiencies hinder effective conservation efforts and pose significant challenges to understanding and mitigating threats to coral ecosystems. |
| Impact                   | Addressing these challenges with advanced deep learning algorithms will lead to more accurate and efficient monitoring, enabling timely interventions and informed conservation strategies. This will ultimately contribute to the preservation and sustainability of coral reefs worldwide.                       |





| <b>Proposed Solution</b> |                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approach                 | The project proposes the development and deployment of deep learning models capable of analyzing underwater imagery to detect signs of coral bleaching, disease, and other stressors. Additionally, the models will automate the identification and classification of marine species, facilitating comprehensive biodiversity assessments. |
| Key Features             | <ul> <li>Implementation of deep learning-based models for real-time coral health monitoring.</li> <li>Automation of biodiversity assessment through advanced image recognition and classification techniques.</li> <li>Integration of data-driven insights to inform conservation policies and strategies.</li> </ul>                      |

# **Resource Requirements**

| Resource Type           | Description                             | Specification/Allocation                                                      |  |  |  |  |  |
|-------------------------|-----------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|
| Hardware                |                                         |                                                                               |  |  |  |  |  |
| Computing Resources     | CPU/GPU specifications, number of cores | 2 x NVIDIA V100 GPUs                                                          |  |  |  |  |  |
| Memory                  | RAM specifications                      | RAM: 8 GB                                                                     |  |  |  |  |  |
| Storage                 | Disk space for data, models, and logs   | Disk space: 1 TB SSD                                                          |  |  |  |  |  |
| Software                | Software                                |                                                                               |  |  |  |  |  |
| Frameworks              | Python frameworks                       | Python frameworks: Flask                                                      |  |  |  |  |  |
| Libraries               | Additional libraries                    | Additional libraries: scikit-<br>learn, pandas, numpy,<br>matplotlib, seaborn |  |  |  |  |  |
| Development Environment | IDE, version control                    | IDE: Jupyter Notebook,<br>PyCharm                                             |  |  |  |  |  |
| Data                    |                                         |                                                                               |  |  |  |  |  |
| Data                    | Source, size, format                    | Kaggle dataset, UCI dataset                                                   |  |  |  |  |  |









# **Initial Project Planning Template**

# **Product Backlog, Sprint Schedule, and Estimation (4 Marks)**

Use the below template to create a product backlog and sprint schedule

| Sprint   | Functional<br>Requirement<br>(Epic)     | User Story<br>Number | User Story / Task               | Story<br>Points | Priority | Team<br>Members       | Sprint<br>Start Date | Sprint End<br>Date<br>(Planned) |
|----------|-----------------------------------------|----------------------|---------------------------------|-----------------|----------|-----------------------|----------------------|---------------------------------|
| Sprint-1 | Data Collection<br>and<br>Preprocessing | SL-3                 | Understanding & loading data    | 2               | Low      | Mohammed<br>Saif      | 2024/07/09           | 2024/07/16                      |
| Sprint-1 | Data Collection<br>and<br>Preprocessing | SL-4                 | Data cleaning                   | 1               | High     | Mohammed<br>Saif      | 2024/07/09           | 2024/07/16                      |
| Sprint-1 | Data Collection<br>and<br>Preprocessing | SL-5                 | EDA (Exploratory Data Analysis) | 2               | Medium   | Akshita<br>Gupta      | 2024/07/09           | 2024/07/16                      |
| Sprint-2 | Model<br>Development                    | SL-8                 | Training the model              | 2               | Medium   | Akshita<br>Gupta      | 2024/07/16           | 2024/07/23                      |
| Sprint-2 | Model<br>Development                    | SL-9                 | Evaluating the model            | 1               | High     | Aditya<br>Karthikeyan | 2024/07/16           | 2024/07/23                      |





| Sprint   | Functional<br>Requirement<br>(Epic) | User Story<br>Number | User Story / Task       | Story<br>Points | Priority | Team<br>Members       | Sprint<br>Start Date | Sprint End<br>Date<br>(Planned) |
|----------|-------------------------------------|----------------------|-------------------------|-----------------|----------|-----------------------|----------------------|---------------------------------|
| Sprint-2 | Model Tuning and Testing            | SL-13                | Model tuning            | 1               | High     | Aditya<br>Karthikeyan | 2024/07/16           | 2024/07/23                      |
| Sprint-2 | Model Tuning and Testing            | SL-14                | Model testing           | 2               | Low      | Arpan<br>Chatterjee   | 2024/07/16           | 2024/07/23                      |
| Sprint-3 | Web Integration and Deployment      | SL-16                | Building HTML templates | 2               | High     | Arpan<br>Chatterjee   | 2024/07/23           | 2024/07/30                      |
| Sprint-3 | Web Integration and Deployment      | SL-17                | Local deployment        | 1               | Medium   | Aditya<br>Karthikeyan | 2024/07/23           | 2024/07/30                      |
| Sprint-4 | Project Report                      | SL-20                | Report                  | 1               | Medium   | Mohammed<br>Saif      | 2024/07/30           | 2024/08/13                      |





# **Data Collection Plan & Raw Data Sources Identification Template**

Elevate your data strategy with the Data Collection plan and the Raw Data Sources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

# **Data Collection Plan Template**

| Section                     | Description                                                                                                                                                                                                                                                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Overview            | The coral image classification project aims to develop an AI model capable of accurately distinguishing between healthy and bleached coral reefs. This model will contribute to conservation efforts by providing insights into coral health based on image analysis. |
| Data Collection Plan        | The dataset will be collected from publicly available sources on Kaggle, specifically focusing on images of healthy and bleached coral reefs.                                                                                                                         |
| Raw Data Sources Identified | Train and Test dataset from Kaggle contains images categorized into healthy and bleached corals used for training a machine learning model.                                                                                                                           |





# **Raw Data Sources Template**

| Source<br>Name   | Description                                                                                                    | Location/URL                                                                                                      | Format         | Size        | Access<br>Permissions |
|------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------|
| Train<br>Dataset | Dataset containing training images of healthy and bleached coral reefs for machine learning model development. | https://www.kagg<br>le.com/datasets/g<br>auravduttakiit/cor<br>als-image-<br>classification/data<br>?select=train | JPEG<br>images | 85.29<br>kB | Public                |
| Test<br>Dataset  | Dataset containing test images of healthy and bleached coral reefs for model evaluation.                       | https://www.kagg<br>le.com/datasets/g<br>auravduttakiit/cor<br>als-image-<br>classification/data<br>?select=test  | JPEG<br>images | 21.42<br>kB | Public                |





# **Data Collection and Preprocessing Phase**

# **Data Quality Report Template**

The Data Quality Report Template will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

| Data<br>Source | Data Quality Issue      | Severity | Resolution Plan                                                                                                                          |
|----------------|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Dataset        | Image Quality Variation | Moderate | Implement data augmentation techniques (e.g., rotation, shifting, zooming) to increase dataset diversity and model robustness.           |
| Dataset        | Class Imbalance         | Moderate | Utilize techniques such as oversampling minority classes or adjusting class weights during model training to address imbalance issues.   |
| Dataset        | Inconsistent Metadata   | Low      | Develop scripts to standardize<br>and validate metadata fields<br>across the dataset to ensure<br>consistency in data<br>representation. |
| Dataset        | Labeling Errors         | High     | Conduct thorough manual review and correction of labels, and                                                                             |





|  | implement automated validation checks to minimize future errors. |
|--|------------------------------------------------------------------|
|  |                                                                  |





# **Data Collection and Preprocessing Phase**

## **Preprocessing Template**

The images will be preprocessed by resizing, normalizing, augmenting, denoising, adjusting contrast, detecting edges, converting color space, cropping, batch normalizing, and whitening data. These steps will enhance data quality, promote model generalization, and improve convergence during neural network training, ensuring robust and efficient performance across various computer vision tasks.

| Section           | Description                                                                                                                                             |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Data Overview     | The data consists of images of coral reefs collected from various sources, labeled with categories related to reef health and environmental conditions. |  |
| Resizing          | Resize images to a specified target size (224x224 pixels) using TensorFlow's ImageDataGenerator.                                                        |  |
| Normalization     | Normalize pixel values to a specific range (0 to 1) using rescale=1./255 in ImageDataGenerator.                                                         |  |
| Data Augmentation | Apply augmentation techniques such as rotation, shifting, zooming, and flipping to increase dataset diversity and model robustness                      |  |
| Denoising         | Not applicable for image data in this context.                                                                                                          |  |
| Edge Detection    | Not applicable for image data in this context.                                                                                                          |  |





| Color Space Conversion              | Not applicable for image data in this context.                                                                                                                                                                                                |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Image Cropping                      | Not applicable as the images are already resized to a fixed size.                                                                                                                                                                             |  |
| Batch Normalization                 | Apply batch normalization to the input of each layer in the neural network to improve training efficiency and convergence.                                                                                                                    |  |
| Data Preprocessing Code Screenshots |                                                                                                                                                                                                                                               |  |
| Loading Data                        | <pre>import pandas as pd train_df = pd.read_csv('D:/train_updated.csv').sample(200 test_df = pd.read_csv('D:/test_updated.csv').sample(50)</pre>                                                                                              |  |
| Resizing                            | <pre>train_datagen = ImageDataGenerator(     rescale=1./255,     rotation_range=20,     width_shift_range=0.1,     height_shift_range=0.1,     shear_range=0.1,     zoom_range=0.1,     horizontal_flip=True,     fill_mode='nearest' )</pre> |  |
| Normalization                       | test_datagen = ImageDataGenerator(rescale=1./255)                                                                                                                                                                                             |  |
| Data Augmentation                   | <pre>train_generator = train_datagen.flow_from_dataframe(     dataframe=train_df,     x_col='local_filename',     y_col='label',     target_size=IMG_SIZE,     batch_size=BATCH_SIZE,     class_mode='categorical' )</pre>                    |  |
| Batch Normalization                 | <pre>from tensorflow.keras.layers import BatchNormalization x = BatchNormalization()(x)</pre>                                                                                                                                                 |  |





# **Model Development Phase Template**

# **Model Selection Report**

In the model selection report for future deep learning and computer vision projects, various architectures, such as CNNs or RNNs, will be evaluated. Factors such as performance, complexity, and computational requirements will be considered to determine the most suitable model for the task at hand.

### **Model Selection Report:**

| Model      | Description                                                                                                                                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | EfficientNetB0 Backbone:                                                                                                                                                                                                                                                                                                    |
| Main Model | <ul> <li>Architecture: EfficientNetB0 is a convolutional neural network (CNN) that balances network depth, width, and resolution for efficient performance.</li> <li>Pre-trained Weights: The model uses pre-trained weights from ImageNet, which helps leverage learned features from a large, diverse dataset.</li> </ul> |
|            | <ul> <li>Excluding Top Layers: The top (fully connected) layers are excluded (include_top=False) to allow custom layers to be added for the specific classification task.</li> <li>Fine-Tuning:</li> </ul>                                                                                                                  |





• **Partial Freezing**: The first 100 layers of EfficientNetB0 are frozen to retain their pre-trained weights, while the remaining layers are trainable to adapt to the new dataset.

#### • Custom Layers:

- **Input Layer**: Defines the shape of the input images.
- **Base Model**: The EfficientNetB0 base model processes the input images.
- **Global Average Pooling**: Reduces the spatial dimensions of the feature maps, summarizing the presence of features.
- **Dropout Layers**: Adds regularization by randomly setting a fraction of input units to 0 at each update during training to prevent overfitting.

**Dense Layer**: Fully connected layer with 128 units and ReLU activation.

- Another Dropout Layer: Adds further regularization.
- **Output Layer**: Dense layer with 2 units (for binary classification) and softmax activation to output class probabilities.

#### • Model Compilation:

- **Optimizer**: Adam optimizer with a learning rate of 0.0001, known for its adaptive learning rate capabilities.
- **Loss Function**: Categorical cross-entropy, suitable for multi-class classification tasks.
- **Metrics**: Accuracy, to monitor the fraction of correctly classified samples.

#### • Data Augmentation and Generators:

- **ImageDataGenerator**: Used for data augmentation to improve model generalization by creating variations of the training images.
- **Data Generators**: Generate batches of tensor image data with real-time data augmentation for training and testing.

#### • Model Training:





- **Training**: The model is trained for a specified number of epochs with training and validation data generators.
- Model Evaluation and Saving:
  - **Saving the Model**: The trained model is saved to a file.
  - **Evaluation**: The model's performance is evaluated on the test set, and test accuracy is printed.





### **Model Development Phase**

# **Initial Model Training Code, Model Validation and Evaluation Report**

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

### **Initial Model Training Code (5 marks):**

Paste the screenshot of the model training code

### **Model Validation and Evaluation Report (5 marks):**

| Model   | Summary                           | Training and Validation Performance Metrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model 1 | Neural network<br>summarized code | <pre>import tensorflow as tf from tensorflow.keras.applications import EfficientNetB0 from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout, BatchNormalization from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam  # Define the model IMG_SIZE = (224, 224) base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(*IMG_SIZE, 3)) base_model.trainable = True  fine_tune_at = 100 for layer in base_model.layers[:fine_tune_at]:</pre> |





|                                          | layer.trainable = False                                                                           |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------|--|
|                                          |                                                                                                   |  |
|                                          | inputs = tf.keras.Input(shape=(*IMG_SIZE, 3))                                                     |  |
|                                          | x = base_model(inputs, training=True)                                                             |  |
|                                          | x = GlobalAveragePooling2D()(x)                                                                   |  |
|                                          | x = BatchNormalization()(x)                                                                       |  |
|                                          | x = Dropout(0.3)(x)                                                                               |  |
|                                          | x = Dense(128, activation='relu')(x)                                                              |  |
|                                          | x = BatchNormalization()(x)                                                                       |  |
|                                          | x = Dropout(0.3)(x)                                                                               |  |
|                                          | outputs = Dense(2, activation='softmax')(x)                                                       |  |
|                                          |                                                                                                   |  |
|                                          | model = Model(inputs, outputs)                                                                    |  |
|                                          | model.compile(optimizer=Adam(learning_rate=0.0001),                                               |  |
|                                          | loss='categorical_crossentropy', metrics=['accuracy'])                                            |  |
|                                          |                                                                                                   |  |
|                                          | # Print the model summary                                                                         |  |
|                                          | model.summary()                                                                                   |  |
| Screenshot of the neural network summary | Model accuracy  Train Validation  0.9  0.8  0.9  0.8  0.9  0.8  0.8  0.8                          |  |
|                                          | 0.6 - 0.7 - 0.6 - 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 - 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Epoch |  |
|                                          | import pandas as pd                                                                               |  |
| Training and Validation Code             | from tensorflow.keras.preprocessing.image import ImageDataGenerator                               |  |
|                                          | # Load the data                                                                                   |  |





```
train_df = pd.read_csv('D:/train_updated.csv').sample(200)
test_df = pd.read_csv('D:/test_updated.csv').sample(50)
# Data augmentation and preprocessing
train_datagen = ImageDataGenerator(
  rescale=1./255,
  rotation_range=20,
  width_shift_range=0.1,
  height_shift_range=0.1,
  shear_range=0.1,
  zoom_range=0.1,
  horizontal_flip=True,
  fill_mode='nearest'
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_dataframe(
  dataframe=train_df,
  x_col='local_filename',
  y_col='label',
  target_size=IMG_SIZE,
  batch_size=16,
  class_mode='categorical'
)
test_generator = test_datagen.flow_from_dataframe(
  dataframe=test_df,
  x_col='local_filename',
```





```
y_col='label',
  target_size=IMG_SIZE,
  batch_size=16,
  class_mode='categorical',
  shuffle=False
)
# Train the model
history = model.fit(
  train_generator,
  steps_per_epoch=train_generator.samples // 16,
  epochs=5,
  validation_data=test_generator,
  validation_steps=test_generator.samples // 16
# Save the model
model.save('coral_classification_model.h5')
# Output training and validation performance metrics
import matplotlib.pyplot as plt
# Plot training & validation accuracy values
plt.figure(figsize=(14, 5))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
```





|  | plt.xlabel('Epoch')                                   |
|--|-------------------------------------------------------|
|  | plt.legend(['Train', 'Validation'], loc='upper left') |
|  |                                                       |
|  | # Plot training & validation loss values              |
|  | plt.subplot(1, 2, 2)                                  |
|  | plt.plot(history.history['loss'])                     |
|  | plt.plot(history.history['val_loss'])                 |
|  | plt.title('Model loss')                               |
|  | plt.ylabel('Loss')                                    |
|  | plt.xlabel('Epoch')                                   |
|  | plt.legend(['Train', 'Validation'], loc='upper left') |
|  |                                                       |
|  | # Save the plot as a file                             |
|  | plt.savefig('training_validation_metrics.png')        |
|  |                                                       |
|  | # Show the plots                                      |
|  | plt.show()                                            |
|  |                                                       |





# **Model Optimization and Tuning Phase Template**

| Date          | 19 July 2024                                                           |
|---------------|------------------------------------------------------------------------|
| Team ID       | SWTID1720110092                                                        |
| Project Title | Beneath the Waves: Unraveling Coral<br>Mysteries Through Deep Learning |
| Maximum Marks | 10 Marks                                                               |

# **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

# **Hyperparameter Tuning Documentation (8 Marks):**

| Model   | Tuned Hyperparameters                                                         |
|---------|-------------------------------------------------------------------------------|
|         | IMG_SIZE: Defines the target size for input images.                           |
|         | IMG_SIZE = (224, 224)                                                         |
|         | <b>BATCH_SIZE</b> : Specifies the number of samples per gradient update.      |
| Model 1 | <b>EPOCHS</b> : Number of times the entire training dataset is passed through |
|         | the model.                                                                    |
|         | BATCH_SIZE = 16 EPOCHS = 5                                                    |
|         | train_datagen and test_datagen: Configures the image data generators          |
|         | for training and testing, including data augmentation parameters              |





```
train_datagen = ImageDataGenerator(
     rescale=1./255,
     rotation_range=20,
     width_shift_range=0.1,
     height_shift_range=0.1,
     shear_range=0.1,
     zoom_range=0.1,
     horizontal_flip=True,
     fill_mode='nearest'
 )
test_datagen = ImageDataGenerator(rescale=1./255)
fine_tune_at: Number of layers to freeze during fine-tuning.
fine_tune_at = 100
Dropout rates: Fraction of the input units to drop for the dropout layers.
x = Dropout(0.3)(x)
Learning rate: Learning rate for the Adam optimizer.
model = Model(inputs, outputs)
model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
```

#### **Final Model Selection Justification (2 Marks):**

| Final Model | Reasoning                                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| Model 1     | EfficientNetB0 Backbone: EfficientNetB0 is known for its efficient architecture, providing a good balance between accuracy and |





computational efficiency. It is a strong feature extractor due to its pretrained weights on the ImageNet dataset.

**Data Augmentation**: The use of ImageDataGenerator with various augmentation techniques helps to generalize the model better by simulating real-world variations in the training images.

**Fine-Tuning**: By setting fine\_tune\_at = 100, the model partially fine-tunes the EfficientNetB0 backbone.

**Dropout Layers**: Dropout layers are used to prevent overfitting by randomly dropping a fraction of the units during training. This makes the model more robust and improves generalization.

**Reduced Complexity**: By reducing the dropout rates and the data augmentation parameters, the model converges faster, which is beneficial when working with smaller subsets of the data.

**Model Compilation**: The model is compiled with the Adam optimizer, a popular choice for its adaptive learning rate properties, along with categorical cross-entropy loss and accuracy as the metric.

**Training and Validation Strategy**: The training and validation strategy ensures that the model is evaluated on unseen data, providing a good indication of its generalization capability.

# **Output Screenshots:**

















Found 200 validated image filenames belonging to 2 classes. Found 50 validated image filenames belonging to 2 classes. Model: "functional 1"

| Layer (type)                                         | Output Shape        | Param #   |
|------------------------------------------------------|---------------------|-----------|
| input_layer_1 (InputLayer)                           | (None, 224, 224, 3) | 0         |
| efficientnetb0 (Functional)                          | (None, 7, 7, 1280)  | 4,049,571 |
| global_average_pooling2d<br>(GlobalAveragePooling2D) | (None, 1280)        | 0         |
| batch_normalization<br>(BatchNormalization)          | (None, 1280)        | 5,120     |
| dropout (Dropout)                                    | (None, 1280)        | 0         |
| dense (Dense)                                        | (None, 128)         | 163,968   |
| batch_normalization_1 (BatchNormalization)           | (None, 128)         | 512       |
| dropout_1 (Dropout)                                  | (None, 128)         | 0         |
| dense_1 (Dense)                                      | (None, 2)           | 258       |

Total params: 4,219,429 (16.10 MB)
Trainable params: 4,007,390 (15.29 MB)
Non-trainable params: 212,039 (828.28 KB)

Epoch 1/5





### **Advantages & Disadvantages**

### **Advantages:**

- 1. Scientific Insight: Enhanced understanding of coral ecosystems.
- 2. Conservation Efforts: Data aids in reef protection and restoration.
- 3. Educational Value: Increases public awareness and knowledge.
- 4. Biodiversity Preservation: Supports marine biodiversity conservation.
- 5. Technological Advancement: Utilizes cutting-edge technology for marine research.

### **Disadvantages:**

- 1. High Costs: Expensive equipment and fieldwork.
- 2. Environmental Impact: Potential disruption to marine life.
- 3. Data Complexity: Challenges in data collection and analysis.
- 4. Funding Dependency: Reliant on grants and sponsorships.
- 5. Accessibility Issues: Limited access to remote reef locations.

#### 8. Conclusion

"Beneath Waves: Unravelling the Coral Mysteries" provides valuable insights into coral ecosystems, fostering conservation and educational efforts. While there are challenges, the project's potential to advance scientific knowledge and contribute to marine biodiversity preservation is significant.

# 9. Future Scope

- 1. Advanced Research: Further exploration of coral responses to climate change.
- 2. Innovative Technologies: Development of new tools for underwater research.
- 3. Global Collaboration: Expanding partnerships with international research institutions.
- 4. Policy Influence: Informing and shaping marine conservation policies.
- 5. Public Engagement: Increasing community involvement and awareness programs.

# **Appendix:**

# **Source Code:**

```
import os
import pandas as pd
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D,
Dropout, BatchNormalization
```





```
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
tf.random.set seed (42)
IMG SIZE = (224, 224)
BATCH SIZE = 16
EPOCHS = 5
# Load the data
train df = pd.read csv('D:/train updated.csv').sample(200)
test df = pd.read csv('D:/test updated.csv').sample(50)
# Data augmentation and preprocessing
train datagen = ImageDataGenerator(
    rescale=1./255,
    rotation range=20,
    width shift range=0.1,
    height shift range=0.1,
    shear range=0.1,
    zoom_range=0.1,
    horizontal flip=True,
    fill mode='nearest'
)
test datagen = ImageDataGenerator(rescale=1./255)
train generator = train datagen.flow from dataframe(
    dataframe=train df,
    x col='local filename',
    y col='label',
    target size=IMG SIZE,
    batch size=BATCH SIZE,
    class mode='categorical'
)
test generator = test datagen.flow from dataframe(
    dataframe=test df,
    x col='local filename',
    y col='label',
    target size=IMG SIZE,
    batch size=BATCH SIZE,
    class mode='categorical',
    shuffle=False
)
# Load the base model
base model = ResNet50 (weights='imagenet', include top=False,
input shape=(*IMG SIZE, 3))
base model.trainable = True
fine tune at = 100
for layer in base model.layers[:fine tune at]:
```





```
layer.trainable = False
# Build the model
inputs = tf.keras.Input(shape=(*IMG SIZE, 3))
x = base model(inputs, training=True)
x = GlobalAveragePooling2D()(x)
x = BatchNormalization()(x)
x = Dropout(0.3)(x)
x = Dense(128, activation='relu')(x)
x = BatchNormalization()(x)
x = Dropout(0.3)(x)
outputs = Dense(2, activation='softmax')(x)
model = Model(inputs, outputs)
model.compile(optimizer=Adam(learning rate=0.0001),
loss='categorical crossentropy', metrics=['accuracy'])
model.summary()
# Train the model
history = model.fit(
    train generator,
    steps per epoch=train generator.samples // BATCH SIZE,
    epochs=EPOCHS,
    validation data=test generator,
    validation steps=test generator.samples // BATCH SIZE
)
# Save the model
model.save('resnet50 coral classification model.h5')
# Evaluate the model
test loss, test accuracy = model.evaluate(test generator)
print(f"Test accuracy: {test accuracy:.4f}")
# Output training and validation performance metrics
import matplotlib.pyplot as plt
# Plot training & validation accuracy values
plt.figure(figsize=(14, 5))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
# Plot training & validation loss values
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title('Model loss')
plt.ylabel('Loss')
```





```
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
```

# Github Repo:-

https://github.com/MohammedSaifAkkiwat/Project\_Beneath\_the\_Waves

# Demo:-

https://drive.google.com/file/d/1loryqmFCXY\_0T0Osle5i4OQ5-w1xEQq2/view?usp=sharing