Mercedes-Benz Greener Manufacturing Project

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_selection import VarianceThreshold
from sklearn.preprocessing import LabelEncoder
```

In [4]:

```
# read in train and test data
data_train= pd.read_csv('mbtrain.csv')
data_test = pd.read_csv('mbtest.csv')
print(train.shape, test.shape)
```

(4209, 378) (4209, 377)

In [5]:

```
data_train.head()
```

Out[5]:

	ID	у	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380
0	0	130.81	k	٧	at	а	d	u	j	0	 0	0	1	0	0	0
1	6	88.53	k	t	av	е	d	У	I	0	 1	0	0	0	0	0
2	7	76.26	az	w	n	С	d	х	j	х	 0	0	0	0	0	0
3	9	80.62	az	t	n	f	d	х	I	е	 0	0	0	0	0	0
4	13	78.02	az	٧	n	f	d	h	d	n	 0	0	0	0	0	0

5 rows × 378 columns

←

In [6]:

```
data_train.shape
```

Out[6]:

(4209, 378)

In [7]:

```
##chech missing value
data_train.isna().sum()
```

Out[7]:

```
ID
       0
        0
У
X0
        0
X1
        0
X2
        0
X380
       0
X382
       0
X383
       0
X384
       0
X385
       0
Length: 378, dtype: int64
```

In [8]:

```
data_train.nunique()
```

Out[8]:

ID y X0 X1	4209 2545 47 27
X2	44
X380	2
X382	2
X383	2
X384	2
ハンロー	_

Length: 378, dtype: int64

In [9]:

data_train.describe()

Out[9]:

	ID	у	X10	X11	X12	X13	X14
count	4209.000000	4209.000000	4209.000000	4209.0	4209.000000	4209.000000	4209.000000
mean	4205.960798	100.669318	0.013305	0.0	0.075077	0.057971	0.428130
std	2437.608688	12.679381	0.114590	0.0	0.263547	0.233716	0.494867
min	0.000000	72.110000	0.000000	0.0	0.000000	0.000000	0.000000
25%	2095.000000	90.820000	0.000000	0.0	0.000000	0.000000	0.000000
50%	4220.000000	99.150000	0.000000	0.0	0.000000	0.000000	0.000000
75%	6314.000000	109.010000	0.000000	0.0	0.000000	0.000000	1.000000
max	8417.000000	265.320000	1.000000	0.0	1.000000	1.000000	1.000000

8 rows × 370 columns

4

In [11]:

```
## try find variance of column
print(data_train.var)
<bound method DataFrame.var of</pre>
                                            ID
                                                          X0 X1
                                                                  X2 X3 X4 X5 X6
                                                       У
          X375 X376 X377 X378
0
          0 130.81
                        k v
                               at
                                               j
                                                               0
                                                                      0
                                                                             1
                                                                                    0
                                   а
                                      d
                                           u
                                                  0
1
          6
               88.53
                        k
                           t
                                       d
                                               1
                                                               1
                                                                      0
                                                                             0
                                                                                    0
                               av
                                   e
                                           у
                                                  0
                                                      . . .
2
          7
               76.26
                                   C
                                       d
                                               j
                                                               0
                                                                      0
                                                                             0
                                                                                    0
                       az
                           W
                                n
                                           Х
                                                  Χ
                                                      . . .
3
          9
                                   f
                                                               0
                                                                      0
                                                                             0
                                                                                    0
               80.62
                       az
                           t
                                n
                                       d
                                           Х
                                               1
                                                  e
                                                      . . .
4
         13
              78.02
                       az
                           ٧
                                n
                                   f
                                       d
                                               d
                                                               0
                                                                      0
                                                                             0
                                                                                    0
                 . . .
. . .
        . . .
                                                             . . .
      8405
             107.39
4204
                       ak
                           s
                               as
                                   c
                                       d
                                          aa
                                               d
                                                               1
                                                                      0
                                                                             0
                                                                                    0
                                                  q
                                                      . . .
4205
      8406
             108.77
                        j
                           0
                                t
                                   d
                                       d
                                          aa
                                               h
                                                  h
                                                               0
                                                                      1
                                                                             0
                                                                                    0
4206
      8412
             109.22
                       ak
                           V
                                r
                                   а
                                       d
                                               g
                                                  e
                                                               0
                                                                      0
                                                                             1
                                                                                    0
                                          aa
                                                      . . .
                                   f
4207
      8415
               87.48
                                                               0
                                                                      0
                                                                             0
                                                                                    0
                       al
                           r
                                e
                                       d
                                          aa
                                               1
                                                  u
                                                      . . .
4208
      8417
             110.85
                        Z
                           r
                               ae
                                   c
                                       d
                                          aa
                                               g
                                                               1
                                                                      0
                                                                             0
                                                                                    0
                                                  W
                                                      . . .
      X379
             X380
                    X382
                           X383
                                  X384
                                         X385
0
          0
                 0
                        0
                                      0
                                             0
                               0
1
          0
                 0
                        0
                               0
                                      0
                                             0
2
          0
                 0
                                      0
                                             0
                        1
                               0
3
          0
                 0
                        0
                                      0
                                             0
                               0
4
          0
                 0
                        0
                               0
                                      0
                                             0
4204
          0
                 0
                        0
                               0
                                      0
                                             0
4205
          0
                 0
                        0
                               0
                                      0
                                             0
                                      0
4206
          0
                 0
                        0
                               0
                                             0
4207
          0
                 0
                        0
                               0
                                      0
                                             0
4208
          0
                 0
                        0
                                      0
                                             0
[4209 rows x 378 columns]>
In [12]:
cols=[c for c in data_train.columns if 'X' in c]
print('Number of features: {}'.format(len(cols)))
Number of features: 376
In [13]:
print('Feature types:')
data_train[cols].dtypes.value_counts()
Feature types:
Out[13]:
int64
           368
object
dtype: int64
```

```
In [14]:
```

```
##Count the data in each of the columns
counts = [[], [], []]
for c in cols:
    typ = data train[c].dtype
    uniq = len(np.unique(data_train[c]))
    if uniq == 1:
        counts[0].append(c)
    elif uniq == 2 and typ == np.int64:
        counts[1].append(c)
    else:
        counts[2].append(c)
print('Constant features: {} Binary features: {} Categorical features: {}\n'
      .format(*[len(c) for c in counts]))
print('Constant features:', counts[0])
print('Categorical features:', counts[2])
Constant features: 12 Binary features: 356 Categorical features: 8
Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289',
'X290', 'X293', 'X297', 'X330', 'X347']
Categorical features: ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
In [16]:
# the prediction output
y_train = data_train['y'].values
y_train
Out[16]:
array([130.81, 88.53, 76.26, ..., 109.22, 87.48, 110.85])
In [17]:
##remove columns ID and Y from the data
remove_columns = list(set(data_train.columns) - set(['ID', 'y']))
y_train = data_train['y'].values
id_test = data_test['ID'].values
x train = data train[remove columns]
x_test = data_test[remove_columns]
In [19]:
#Check for null and unique values for tain and test dataset
def check_missing_values(df):
    if df.isnull().any().any():
        print("There are missing values in the dataframe")
    else:
        print("There are no missing values in the dataframe")
```

In [20]:

```
##check null in train dataest
check missing values(x train)
```

There are no missing values in the dataframe

In [21]:

```
## check null in test dataset
check_missing_values(x_test)
```

There are no missing values in the dataframe

In [22]:

```
## If for any column(s), the variance is equal to zero
## Apply label encoder
for column in remove_columns:
    val = len(np.unique(x_train[column]))
    if val == 1:
        x_train.drop(column, axis=1) # Column with only one
        # value is useless so we drop it
        x_test.drop(column, axis=1)
    if val > 2: # Column is categorical
        mapper = lambda x: sum([ord(digit) for digit in x])
        x_train[column] = x_train[column].apply(mapper)
        x_test[column] = x_test[column].apply(mapper)
x_train.head()
```

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:11: SettingWi thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

This is added back by InteractiveShellApp.init_path()

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:12: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '':

Out[22]:

	X327	X297	X353	X382	X99	X292	X115	X257	X252	X89	 X66	X203	X321	X19
0	1	0	0	0	0	0	0	0	0	0	 0	0	0	
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	
2	0	0	0	1	0	0	0	0	1	0	 0	0	0	
3	0	0	0	0	0	0	0	0	1	0	 0	0	0	
4	0	0	0	0	0	0	0	0	1	0	 0	0	0	

5 rows × 376 columns

```
In [23]:
```

```
print('Feature types:')
x_train[cols].dtypes.value_counts()

Feature types:
```

Out[23]:

int64 376 dtype: int64

In [24]:

```
## Perform dimensionality reduction (PCA)
from sklearn.decomposition import PCA
```

In [25]:

```
pca = PCA(n_components=12, random_state=420)
pca2_results_train = pca.fit_transform(x_train)
pca2_results_test = pca.transform(x_test)
```

In [26]:

```
## Training using xgboost
import xgboost as xgb
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
```

In [27]:

```
x_train, x_valid, y_train, y_valid = train_test_split(
    pca2_results_train,
    y_train, test_size=0.2,
    random_state=4242)
```

In [28]:

```
d_train = xgb.DMatrix(x_train, label=y_train)
d_valid = xgb.DMatrix(x_valid, label=y_valid)
d_test = xgb.DMatrix(pca2_results_test)
```

In [29]:

```
params = {}
params['objective'] = 'reg:linear'
params['eta'] = 0.02
params['max_depth'] = 4

def xgb_r2_score(preds, dtrain):
    labels = dtrain.get_label()
    return 'r2', r2_score(labels, preds)

watchlist = [(d_train, 'train'), (d_valid, 'valid')]
```

In [30]:

[06:03:51] WARNING: /workspace/src/objective/regression_obj.cu:167: reg:li near is now deprecated in favor of reg:squarederror.

[0] train-rmse:99.14835 valid-rmse:98.26297 train-r2:-58.35295 valid-r2:-67.63754

Multiple eval metrics have been passed: 'valid-r2' will be used for early stopping.

Will train until valid-r2 hasn'	•	
[10] train-rmse:81.27653	valid-rmse:80.36433	train-r2:-38.88428
valid-r2:-44.91014		
[20] train-rmse:66.71610	valid-rmse:65.77334	train-r2:-25.87403
valid-r2:-29.75260		
[30] train-rmse:54.86957	valid-rmse:53.88973	train-r2:-17.17752
valid-r2:-19.64401		
[40] train-rmse:45.24491	valid-rmse:44.21970	train-r2:-11.35979
valid-r2:-12.89996		
[50] train-rmse:37.44729	valid-rmse:36.37237	train-r2:-7.46666
valid-r2:-8.40428		
[60] train-rmse:31.14748	valid-rmse:30.01874	train-r2:-4.85757
valid-r2:-5.40570		
[70] train-rmse:26.08660	valid-rmse:24.90890	train-r2:-3.10872
valid-r2:-3.41053		
[80] train-rmse:22.04638	valid-rmse:20.83274	train-r2:-1.93458
valid-r2:-2.08514		
[90] train-rmse:18.84403	valid-rmse:17.60316	train-r2:-1.14397
valid-r2:-1.20274		
[100] train-rmse:16.33631	valid-rmse:15.08444	train-r2:-0.61131
valid-r2:-0.61749		
[110] train-rmse:14.40372	valid-rmse:13.14818	train-r2:-0.25262
valid-r2:-0.22889		
[120] train-rmse:12.92871	valid-rmse:11.68941	train-r2:-0.00921
valid-r2:0.02867		
[130] train-rmse:11.80812	valid-rmse:10.61535	train-r2:0.15815
valid-r2:0.19897		
[140] train-rmse:10.98603	valid-rmse:9.84998	train-r2:0.27129
valid-r2:0.31031		
[150] train-rmse:10.37399	valid-rmse:9.32204	train-r2:0.35023
valid-r2:0.38226		
[160] train-rmse:9.92029	valid-rmse:8.95919	train-r2:0.40582
valid-r2:0.42942		
[170] train-rmse:9.59071	valid-rmse:8.71397	train-r2:0.44464
valid-r2:0.46022		
[180] train-rmse:9.34334	valid-rmse:8.55560	train-r2:0.47292
valid-r2:0.47967		
[190] train-rmse:9.15814	valid-rmse:8.45152	train-r2:0.49361
valid-r2:0.49225		
[200] train-rmse:9.01373	valid-rmse:8.38985	train-r2:0.50945
valid-r2:0.49963		
[210] train-rmse:8.90228	valid-rmse:8.34352	train-r2:0.52151
valid-r2:0.50514		
[220] train-rmse:8.82529	valid-rmse:8.32079	train-r2:0.52975
valid-r2:0.50783		
[230] train-rmse:8.76744	valid-rmse:8.30674	train-r2:0.53589
valid-r2:0.50950		
[240] train-rmse:8.71781	valid-rmse:8.29981	train-r2:0.54113
valid-r2:0.51031		
[250] train-rmse:8.67893	valid-rmse:8.29033	train-r2:0.54522
valid-r2:0.51143		
[260] train-rmse:8.64604	valid-rmse:8.28552	train-r2:0.54866
valid-r2:0.51200		
[270] train-rmse:8.61700	valid-rmse:8.28521	train-r2:0.55168

```
valid-r2:0.51204
[280]
      train-rmse:8.58766
                              valid-rmse:8.28510
                                                     train-r2:0.55473
valid-r2:0.51205
[290] train-rmse:8.55980
                              valid-rmse:8.28708
                                                     train-r2:0.55762
valid-r2:0.51181
                              valid-rmse:8.28718
[300] train-rmse:8.53510
                                                     train-r2:0.56017
valid-r2:0.51180
[310] train-rmse:8.50959
                              valid-rmse:8.28848
                                                     train-r2:0.56279
valid-r2:0.51165
[320] train-rmse:8.48800
                             valid-rmse:8.28924
                                                     train-r2:0.56501
valid-r2:0.51156
Stopping. Best iteration:
[272] train-rmse:8.60985
                            valid-rmse:8.28187
                                                     train-r2:0.55243
valid-r2:0.51243
```

In [31]:

```
## Predict data_test values using xgboost
p_test = clf.predict(d_test)

sub = pd.DataFrame()
sub['ID'] = id_test
sub['y'] = p_test
sub.to_csv('xgb.csv', index=False)
```

In [32]:

```
p_test
```

Out[32]:

```
array([ 82.87171 , 97.357605, 83.43425 , ..., 98.78521 , 107.399536, 96.946365], dtype=float32)
```