Tarea 09

David Gomez

VIGILADA MINEDUCACIÓN

UNIVERSIDAD

UNIVERSIDAD

Índice

1.	Sec	ón 4.6	3
			3
			3
			4
	_		4
			5
			6
	-		7
			8
	1.9.	Punto 17	8
2	Sec	ón 4.7	9
۷.			9
			9
			9
		Punto 17	
		Punto 23	
		Punto 24	
	_	Punto 35	
		Punto 38	
	2.10	Punto 40	
		2.10.1. a	
		2.10.2. c	
		Punto 43	
	2.12	Punto 44 \dots 14	
	2.13	Punto 45 \dots 14	4
		$2.13.1.\ \mathrm{a}$	4
		2.13.2. b	5
		2.13.3. c	б
	2.14	d	б
3.	Sec	ón 5.1	
	3.1.	Punto 1	
		3.1.1. a	7
		3.1.2. f	7
		3.1.3. m	7
		3.1.4. t	7
		3.1.5. w	7
		3.1.6. x	7
		3.1.7. z	7
	3.2.	Punto 2	7
		3.2.1. a	7
		3.2.2. b	8
		3.2.3. c	
		3.2.4. d	
		3.2.5. e	
	3.3	Punto 5	
		3.3.1. a	
		3.3.2. b	
		5.0.2. 0	J

	3.5	3.3	.	\mathbf{c}																				 				18
3.4.	$^{\mathrm{d}}$																							 		 		19
3.5.	e																							 		 		19

Página 2 Tarea 09

1. Sección 4.6

1.1. Punto 4

```
Teo 4.24.3  (\phi \wedge true) 
\equiv \langle \operatorname{Def.}(\wedge) \rangle 
(\phi \equiv (true \equiv (\phi \vee true))) 
\equiv \langle \operatorname{Teo 4.19.2, Leibniz}(\phi = (\phi \equiv (true \equiv p))) \rangle 
(\phi \equiv (true \equiv true)) 
\equiv \langle \operatorname{Teo 4.6.2, Leibniz}(\phi = (\phi \equiv p)) \rangle 
(\phi \equiv true) 
\equiv \langle \operatorname{Identidad}(\equiv) \rangle 
\phi 
Por MT 4.21 se demuestra que \models_{\operatorname{DS}} ((\phi \wedge true) \equiv \phi)
```

1.2. Punto 5

```
Teo 4.24.4  (\phi \wedge false) 
\equiv \langle \operatorname{Def.}(\wedge) \rangle 
 (\phi \equiv (false \equiv (\phi \vee false))) 
\equiv \langle \operatorname{Identidad}(\vee), \operatorname{Conmutativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv (false \equiv p))) \rangle 
 (\phi \equiv (false \equiv \phi)) 
\equiv \langle \operatorname{Def.}(\neg), \operatorname{Conmutativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv p))) \rangle 
 (\phi \equiv (\neg \phi)) 
\equiv \langle \operatorname{Teo 4.15.7} \rangle 
 false 
Por MT 4.21 se demuestra que  \vdash_{\operatorname{DS}} ((\phi \wedge false) \equiv false)
```

Página 3 Tarea 09

1.3. Punto 6

```
Teo 4.24.5  (\phi \wedge \phi) \\ \equiv \langle \operatorname{Def.}(\wedge) \rangle \\ (\phi \equiv (\phi \equiv (\phi \vee \phi))) \\ \equiv \langle \operatorname{Asociativa}(\equiv) \rangle \\ ((\phi \equiv \phi) \equiv (\phi \vee \phi)) \\ \equiv \langle \operatorname{Idempotencia}(\vee), \operatorname{Leibniz}(\phi = ((\phi \equiv \phi) \equiv p)) \rangle \\ ((\phi \equiv \phi) \equiv \phi) \\ \equiv \langle \operatorname{Teo 4.6.3, Conmutativa}(\equiv) \rangle \\ (\phi \equiv true) \\ \equiv \langle \operatorname{Identidad} \rangle \\ \phi \\  Por MT 4.21 se demuestra que \models_{\operatorname{DS}} ((\phi \wedge \phi) \equiv \phi)
```

1.4. Punto 8

```
Teo 4.25.1  (\phi \wedge (\neg \phi)) 
\equiv \langle \operatorname{Def.}(\wedge) \rangle 
 (\phi \equiv ((\neg \phi) \equiv (\phi \vee (\neg \phi)))) 
\equiv \langle \operatorname{Asociativa}(\equiv) \rangle 
 ((\phi \equiv (\neg \phi)) \equiv (\phi \vee (\neg \phi))) 
\equiv \langle \operatorname{Teo 4.19.1, Identidad, Leibniz}(\phi = ((\phi \equiv (\neg \phi)) \equiv p)) \rangle 
 ((\phi \equiv (\neg \phi)) \equiv true) 
\equiv \langle \operatorname{Teo 4.15.7, Commutativa}(\equiv), \operatorname{Leibniz}(\phi = (p \equiv true)) \rangle 
 (false \equiv true) 
\equiv \langle \operatorname{Identidad} \rangle 
 false 
Por MT 4.21 se demuestra que  \models_{\operatorname{DS}} ((\phi \wedge (\neg \phi)) \equiv false)
```

Página 4 Tarea 09

Punto 9

UNIVERSIDAD

1.5.

```
Teo 4.25.2
                                                                       (\neg(\phi \wedge \psi))
                                                                   \equiv \langle \text{ Def.}(\wedge), \text{ Leibniz}(\phi = (\neg p)) \rangle
                                                                       (\neg(\phi \equiv (\psi \equiv (\phi \lor \psi))))
                                                                    \equiv \langle \text{Conmutativa}(\vee), \text{Leibniz}(\phi = (\neg(\phi \equiv p))) \rangle
                                                                       (\neg(\phi \equiv (\psi \equiv (\psi \lor \phi))))
                                                                    \equiv \langle \text{Conmutativa}(\equiv), \text{Leibniz}(\phi = (\neg(\phi \equiv p))) \rangle
                                                                       (\neg(\phi \equiv ((\psi \lor \phi) \equiv \psi)))
                                                                   \equiv \  \  \langle \mbox{ Teo 4.15.6, Leibniz}(\phi = (\neg(\phi \equiv ((\psi \vee p) \equiv \psi)))) \ \rangle
                                                                       (\neg(\phi \equiv ((\psi \lor (\neg(\neg\phi))) \equiv \psi)))
                                                                    \equiv \langle \text{Teo } 4.19.4, \text{Leibniz}(\phi = (\neg(\phi \equiv p))) \rangle
                                                                       (\neg(\phi \equiv (\psi \lor (\neg \phi))))
                                                                   \equiv \langle Conmutativa 4.15.4 \rangle
                                                                       ((\neg \phi) \equiv (\psi \lor (\neg \phi)))
                                                                   \equiv \langle \text{Conmutativa}(\vee), \text{Leibniz}(\phi = ((\neg \phi) \equiv p)) \rangle
                                                                       ((\neg \phi) \equiv ((\neg \phi) \lor \psi))
                                                                   \equiv \langle \text{Conmutativa}(\equiv) \rangle
                                                                       (((\neg \phi) \lor \psi) \equiv (\neg \phi))
                                                                   \equiv \langle \text{Teo } 4.15.6, \text{Leibniz}(\phi = (((\neg \phi) \lor p) \equiv (\neg \phi))) \rangle
                                                                       (((\neg \phi) \lor (\neg (\neg \psi))) \equiv (\neg \phi))
                                                                   \equiv \langle Teo 4.19.4 \rangle
                                                                       ((\neg \phi) \lor (\neg \psi))
  Por MT 4.21 se demuestra que
  \vDash_{\mathrm{DS}} ((\neg(\phi \land \psi)) \equiv ((\neg\phi) \lor (\neg\psi)))
```

Página 5 Tarea 09

UNIVERSIDAD

1.6. Punto 11

```
Teo 4.25.4
```

```
(((\phi \land \psi)) \equiv ((\phi \land \tau)) \equiv \phi)
                                                 \equiv \langle \operatorname{Def.}(\wedge) \rangle
                                                     (((\phi \equiv (\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))) \equiv \phi)
                                                 \equiv \langle \text{Conmutativa}(\equiv) \rangle
                                                     (\phi \equiv ((\phi \equiv (\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv p)) \rangle
                                                     (\phi \equiv (\phi \equiv ((\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv) \rangle
                                                     ((\phi \equiv \phi) \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \text{Teo 4.6.2, Leibniz}(\phi = (p \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))) \rangle
                                                     (true \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \text{Conmutativa}(\equiv), \text{Identidad}(\equiv) \rangle
                                                     ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))
                                                 \equiv \langle \text{Conmutativa}(\equiv), \text{Leibniz}(\phi = ((\psi \equiv (\phi \lor \psi)) \equiv p)) \rangle
                                                     ((\psi \equiv (\phi \lor \psi)) \equiv ((\tau \equiv (\phi \lor \psi)) \equiv \phi))
                                                 \equiv \langle Asociativa(\equiv) \rangle
                                                     (((\psi \equiv (\phi \lor \psi)) \equiv (\tau \equiv (\phi \lor \psi))) \equiv \phi)
                                                 \equiv \langle \text{Conmutativa}(\equiv) \rangle
                                                     (\phi \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\tau \equiv (\phi \lor \psi))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv (\phi \equiv p))) \rangle
                                                     (\phi \equiv (\psi \equiv ((\phi \lor \psi) \equiv (\tau \equiv (\phi \lor \psi)))))
                                                 \equiv \langle \text{Conmutativa}(\equiv), \text{Leibniz}(\phi = (\phi \equiv (\psi \equiv p))) \rangle
                                                     (\phi \equiv (\psi \equiv ((\tau \equiv (\phi \lor \psi)) \equiv (\phi \lor \psi))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv p)) \rangle
                                                     (\phi \equiv ((\phi \equiv \tau) \equiv ((\phi \lor \tau) \equiv (\phi \lor \psi))))
                                                 \equiv \langle \operatorname{Distribución}(\vee, \equiv), \operatorname{Leibniz}(\phi = (\phi \equiv ((\psi \equiv \tau) \equiv p))) \rangle
                                                     (\phi \equiv ((\psi \equiv \tau) \equiv (\phi \lor (\tau \equiv \psi))))
                                                 \equiv \langle \text{Conmutativa}(\vee), \text{Leibniz}(\phi = (\phi \equiv ((\psi \equiv \tau) \equiv (\phi \vee p)))) \rangle
                                                     (\phi \equiv ((\psi \equiv \tau) \equiv (\phi \lor (\psi \equiv \tau))))
                                                 \equiv \langle \operatorname{Def.}(\wedge) \rangle
                                                     (\phi \wedge (\psi \equiv \tau))
Por MT 4.21 y Conmutativa(≡) se demuestra que
\vDash_{\mathrm{DS}} ((\phi \land (\psi \equiv \tau)) \equiv (((\phi \land \psi) \equiv (\phi \land \psi)) \equiv \phi))
```

Tarea 09 Página 6

1.7. punto 12

```
Teo 4.25.5
```

$$((\phi \land \psi) \not\equiv (\wedge \land \tau))$$

$$\equiv \langle \operatorname{Def.}(\land) \rangle$$

$$((\phi \equiv (\psi \equiv (\phi \lor \psi))) \not\equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))$$

$$\equiv \langle \operatorname{Def.}(\not\equiv) \rangle$$

$$((\neg(\phi \equiv (\psi \equiv (\phi \lor \psi)))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))$$

$$\equiv \langle \operatorname{Teo 4.15.4} \rangle$$

$$(\neg((\phi \equiv (\psi \equiv (\phi \lor \psi)))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\psi \equiv (\phi \lor \psi)) \equiv \phi) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg((\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\phi \equiv (\phi \lor \tau))))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor (\phi \lor \psi))) \equiv ((\phi \equiv \phi) \equiv (\tau \equiv (\phi \lor \tau))))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv \psi) \equiv (\tau \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg((\phi \lor \psi) \equiv (\psi \equiv (\tau \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg((\phi \lor \psi) \equiv ((\psi \equiv \tau) \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg((\phi \lor \psi) \equiv ((\phi \lor \tau) \equiv (\psi \equiv \tau)))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\phi \lor \tau)) \equiv (\psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\phi \lor \tau)) \equiv (\psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\phi \lor \tau)) \equiv (\psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Teo 4.19.4} \rangle$$

$$(\neg(((\phi \lor (\psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Teo 4.19.4} \rangle$$

$$(\neg((((\neg \phi) \lor (\psi \equiv \tau)))))$$

$$\equiv \langle \operatorname{Teo 4.19.4} \rangle$$

$$(\neg((((\neg \phi) \lor (\psi \equiv \tau)))))$$

$$\equiv \langle \operatorname{Teo 4.15.4}, \operatorname{Def.}(\not\equiv) \rangle$$

$$(\phi \land (\psi \not\equiv \tau)))$$

Por MT 4.21 y Conmutativa(\equiv) se demuestra que $\vDash_{DS} ((\phi \land (\psi \not\equiv \psi)) \equiv ((\phi \land \psi) \not\equiv (\phi \land \tau)))$

Página 7 Tarea 09

1.8. Punto 16

Debilitamiento 0. $(\phi \wedge \psi)$ Hipótesis (Debilitamiento) 1. $(\phi \equiv (\psi \equiv (\phi \lor \psi)))$ $Def.(\equiv)$, Ecuanimidad(p0) 2. $((\phi \lor \phi) \equiv (\phi \lor (\psi \equiv (\phi \lor \psi))))$ $Leibniz(\phi = (p \lor \phi))$ 3. $((\phi \lor (\psi \equiv (\phi \lor \psi))) \equiv ((\phi \lor \psi) \equiv (\phi \lor (\phi \lor \psi))))$ $Dist.(\vee, \equiv)$ 4. $(((\phi \lor \psi) \equiv (\phi \lor (\phi \lor \psi))) \equiv ((\phi \lor \psi) \equiv ((\phi \lor \phi) \lor \psi)))$ Asociativa(\vee), Leibniz($\phi = ((\phi \vee \psi) \equiv p)$) 5. $(((\phi \lor \psi) \equiv ((\phi \lor \phi) \lor \psi)) \equiv ((\phi \lor \psi) \equiv (\phi \lor \psi)))$ Idempotencia(\vee), Leibniz($\phi = ((\phi \vee \psi) \equiv p)$) 6. $(((\phi \lor \psi) \equiv (\phi \lor \psi)) \equiv true)$ Teo 4.6.27. $((\phi \lor \phi) \equiv true)$ Transitividad(p6, p5, p4, p3, p2) 8. $(\phi \lor \phi)$ $Identidad(\equiv)(p7)$ 9. ϕ Idempotencia(\vee)(p8)

Debilitamiento permite quitar información de una conjunción. Puesto que esta es verdad únicamente cuando sus dos partes son verdaderas, se puede concluir cualquiera de ellas.

1.9. Punto 17

Unión $0. \phi$	Hipótesis(Unión)
$1. \psi$	Hipótesis(Unión)
2. $(\phi \equiv true)$	$Identidad(\equiv)(p0)$
3. $(\phi \lor (\phi \equiv \psi))$	Debilitamiento(\vee)(p0)
4. $((\phi \lor (\phi \equiv \psi)) \equiv ((\phi \lor \phi) \equiv (\phi \lor \psi)))$	$\mathrm{Dist.}(\vee,\equiv)$
5. $(((\phi \lor \phi) \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\phi \lor \psi)))$	$Idempotencia(\vee), Leibniz(\phi = (\phi \vee p))$
6. $((\phi \lor (\phi \equiv \psi)) \equiv (\phi \equiv (\phi \lor \psi)))$	Transitividad(p5, p4, p3)
7. $(\phi \equiv (\phi \lor \psi))$	Ecuanimidad(p6, p3)
8. $(\psi \equiv true)$	$Identidad(\equiv)(p1)$
9. $((\phi \equiv (\phi \lor \psi)) \equiv true)$	$Identidad(\equiv)(p7)$
10. $((\phi \equiv (\phi \lor \psi)) \equiv \psi)$	Transitividad(p9, p8)
11. $(\psi \equiv (\phi \equiv (\phi \lor \psi)))$	Conmutativa(\equiv), Ecuanimidad(p10)
12. $(\phi \wedge \psi)$	Def.(\land), Conmutativa(\lor), Conmutativa(\land), Ecuanimidad(p11)

Unión permite juntar varias proposiciones las cuales se tienen como verdaderas. Puesto que la conjunción es verdadera cuando sus dos partes son verdaderas, es posible conectar dos proposiciones verdaderas mediante una conjunción.

Página 8 Tarea 09

2. Sección 4.7

2.1. Punto 3

```
Teo 4.28.2  ((\phi \land \psi) \equiv \phi)   \equiv \langle \operatorname{Def.}(\land), \operatorname{Leibniz}(\phi = (p \equiv \phi)) \rangle   ((\phi \equiv (\psi \equiv (\phi \lor \psi))) \equiv \phi)   \equiv \langle \operatorname{Conmutativa}(\equiv), \operatorname{Asociativa}(\equiv), \operatorname{Identidad}(\equiv) \rangle   (\psi \equiv (\phi \lor \psi))   \equiv \langle \operatorname{Conmutativa}(\equiv), \operatorname{Def.}(\rightarrow) \rangle   (\phi \to \psi)   \operatorname{Por MT 4.21 y Conmutativa}(\equiv) \text{ se demuestra que}   \models_{\operatorname{DS}} ((\phi \to \psi) \equiv ((\phi \land \psi) \equiv \phi))
```

2.2. punto 7

Teo 4.29.4
$$\begin{array}{c} (\phi \to \mathit{false}) \\ \equiv & \langle \text{ Teo 4.28.1 } \rangle \\ & ((\neg \phi) \lor \mathit{false}) \\ \equiv & \langle \text{ Identidad}(\lor) \: \rangle \\ & (\neg \phi) \\ \end{array}$$
 Por MT 4.21 se demuestra que
$$\models_{\mathrm{DS}} ((\phi \to \mathit{false}) \equiv (\neg \phi))$$

2.3. punto 10

```
Teo 4.30.3  (\phi \to (\psi \land \tau)) 
\equiv \langle \text{ Teo 4.28.1} \rangle 
 ((\neg \phi) \lor (\psi \land \tau)) 
\equiv \langle \text{ Dist.}(\lor, \land) \rangle 
 (((\neg \phi) \lor \psi) \land ((\neg \phi) \lor \tau)) 
\equiv \langle \text{ Def.}(\to) \rangle 
 ((\phi \to \psi) \land (\phi \to \tau)) 
Por MT 4.21 se demuestra que
 \models_{\text{DS}} ((\phi \to (\psi \to \tau)) \equiv ((\phi \to \psi) \land (\phi \to \tau)))
```

Página 9 Tarea 09

2.4. Punto 17

```
Teo 4.31.5  (\phi \to (\psi \to \tau)) 
\equiv \langle \text{ Teo 4.18.1} \rangle 
((\neg \phi) \lor (\psi \to \tau)) 
\equiv \langle \text{ Teo 4.28.1, Leibniz}(\phi = ((\neg \phi) \lor p)) \rangle 
((\neg \phi) \lor ((\neg \psi) \lor \tau)) 
\equiv \langle \text{ Asociativa}(\lor) \rangle 
(((\neg \phi) \lor (\neg \psi)) \lor \tau) 
\equiv \langle \text{ De Morgan, Leibniz}(\phi = (p \lor \tau)) \rangle 
((\neg (\phi \land \psi)) \lor \tau) 
\equiv \langle \text{ Teo 4.28.1} \rangle 
((\phi \land \psi) \to \tau) 
Por MT 4.21 se demuestra que \models_{\text{DS}} ((\phi \land \psi) \to \tau))
```

2.5. Punto 18

```
Teo 4.31.6  (\phi \vee (\phi \to \psi))   \equiv \langle \operatorname{Teo} 4.28.1, \operatorname{Leibniz}(\phi = (\phi \vee p)) \rangle   (\phi \vee ((\neg \phi) \vee \psi))   \equiv \langle \operatorname{Asociativa}(\vee) \rangle   ((\phi \vee (\neg \phi)) \vee \psi)   \equiv \langle \operatorname{Teo} 4.19.1, \operatorname{Identidad}(\equiv) \rangle   (\operatorname{true} \vee \psi)   \equiv \langle \operatorname{Teo} 4.19.2 \rangle   \operatorname{true}   \operatorname{Por} \operatorname{MT} 4.21 \ \operatorname{e} \ \operatorname{Identidad}(\equiv) \ \operatorname{se} \ \operatorname{demuestra} \ \operatorname{que}   \models_{\operatorname{DS}} (\phi \vee (\phi \to \psi))
```

Página 10 Tarea 09

2.6. Punto 23

Teo 4.33.2	0. $((\phi \to \psi) \land (\psi \to \tau))$	Suposición del antecedente						
	1. $(\phi \to \psi)$	Debilitamiento(p0)						
	2. $(\psi \to \tau)$	Debilitamiento(p0)						
	3. $((\neg \phi) \lor \psi)$	Teo 4.28.1, Ecuanimidad(p1)						
	4. $((\neg \psi) \lor \tau)$	Teo 4.28.1, Ecuanimidad(p2)						
	5. $(\psi \lor (\neg \phi))$	$Conmutativa(\vee)$						
	6. $((\neg \phi) \lor \tau)$	Corte(p5, p4)						
	7. $(\phi \to \tau)$	Teo 4.28.1, Ecuanimidad(p6)						
Así, tomando (p7, p0), se demo	Así, tomando (p7, p0), se demuestra que $\vDash_{DS} (((\phi \to \psi) \land (\psi \to \tau)) \to (\phi \to \tau))$							

2.7. Punto 24

Teo 4.33.3						
0. $((\phi \to \psi) \land (\psi \to \phi))$	Suposición del antecedente					
1. $(\phi \rightarrow \psi)$	Debilitamiento(\land)(p0)					
2. $(\psi \to \phi)$	Debilitamiento(\land)(p0)					
3. $((\phi \lor \psi) \equiv \psi)$	$\text{Def.}(\rightarrow), \text{ Ecuanimidad}(\text{p1})$					
4. $((\psi \land \phi) \equiv \psi)$	Teo 4.28.2, Ecuanimidad(p2)					
5. $((\phi \lor \psi) \equiv (\phi \land \psi))$	Transitividad(p4, p3), Conmutativa(\wedge)					
6. $((\phi \lor \psi) \equiv (\phi \equiv (\psi \equiv (\phi \lor \psi))))$	Def.(\land), Leibniz($\phi = ((\phi \lor \psi) \equiv p)$), Ecuanimidad(p5)					
7. $((\phi \lor \psi) \equiv ((\phi \equiv \psi) \equiv (\phi \lor \psi)))$	Asociativa(\equiv), Leibniz($\phi = ((\phi \lor \psi) \equiv p)$), Ecuanimidad(p6)					
8. $((\phi \lor \psi) \equiv ((\phi \lor \psi) \equiv (\phi \equiv \psi)))$	Conmutativa(\equiv), Leibniz($\phi = ((\phi \lor \psi) \equiv p)$), Ecuanimidad(p7)					
9. $(((\phi \lor \psi) \equiv (\phi \lor \psi)) \equiv (\phi \equiv \psi))$	$Asociativa(\equiv)$					
10. $(true \equiv (\phi \equiv \psi))$	Teo 4.6.2, Leibniz($\phi = (p \equiv (\phi \equiv \psi))$), Ecuanimidad(p9)					
11. $(\phi \equiv \psi)$	$Identidad(\equiv), Conmutativa(\equiv)(p10)$					
Así, tomando (p0, p11), se demuestra que $\vDash_{DS} (((\phi \to \psi) \land (\psi \to \phi)) \to (\phi \equiv \psi))$						

Página 11 Tarea 09

2.8. Punto 35

Teo 4.35.5 $((\phi \to \tau) \land (\psi \to \tau))$ $\equiv \langle \text{ Teo 4.28.1} \rangle$ $(((\neg \phi) \lor \tau) \land ((\neg \psi) \lor \tau))$ $\equiv \langle \text{ Conmutativa}(\lor), \text{ Distribución}(\lor, \land) \rangle$ $(\tau \lor ((\neg \phi) \land (\neg \psi)))$ $\equiv \langle \text{ Commutativa}(\lor) \rangle$ $((((\neg \phi) \land (\neg \psi)) \lor \tau)$ $\equiv \langle \text{ De Morgan} \rangle$ $((\neg (\phi \lor \psi)) \lor \tau)$ $\equiv \langle \text{ Teo 4.28.1} \rangle$ $((\phi \lor \psi) \to \tau)$ Por MT 4.21 y Commutativa(\equiv) se demuestra que $\models_{\text{DS}} (((\phi \lor \psi) \to \tau) \land (\psi \to \tau)))$

2.9. Punto 38

Teo 4.36.3	$((\phi \to \psi) \land (\psi \equiv \tau))$	Suposición del antecedente						
1	$(\phi \to \psi)$	Debilitamiento(p0)						
2	$(\psi \equiv \tau)$	Debilitamiento(p0)						
3	$((\phi \to \psi) \equiv (\phi \to \tau))$	$\text{Leibniz}(\phi = (\phi \to p))(\text{p2})$						
4	$(\phi \to \tau)$	Ecuanimidad(p3,p1)						
Así, tomando (p4,p0), se demuestr	Así, tomando (p4,p0), se demuestra que $(((\phi \to \psi) \land (\psi \equiv \tau)) \to (\phi \to \tau))$							

2.10. Punto 40

2.10.1. a

```
((\phi \to \psi) \to ((\phi \equiv \tau) \to (\psi \equiv \tau))) No es teorema, por un solo caso \mathbf{F} = \{\phi \mapsto false, \ \psi \mapsto true, \ \tau \mapsto false\}
```

Página 12 Tarea 09

2.10.2. c

```
\vDash_{\mathrm{DS}} ((\phi \to \psi) \to ((\phi \lor \tau) \to (\psi \lor \tau)))
                                                                     (\phi \to \psi)
                                                                 \equiv \langle Teo 4.28.1 \rangle
                                                                      ((\neg \phi) \lor \psi)
                                                                \Rightarrow \langle Debilitamiento(\vee) \rangle
                                                                     (((\neg \phi) \lor \psi) \lor \tau)
                                                                 \equiv \langle Asociativa(\vee) \rangle
                                                                     ((\neg \phi) \lor (\psi \lor \tau))
                                                                 \equiv \langle Teo 4.19.4 \rangle
                                                                     ((\phi \lor (\psi \lor \tau)) \equiv (\psi \lor \tau))
                                                                 \equiv \langle \text{Asociativa}(\vee), \text{Leibniz}(\phi = (p \equiv (\psi \vee \tau))) \rangle
                                                                     (((\phi \lor \psi) \lor \tau) \equiv (\phi \lor \tau))
                                                                 \equiv \langle \text{Idempotencia}(\vee), \text{Leibniz}(\phi = (((\phi \vee \psi) \vee p) \equiv (\phi \vee \tau))) \rangle
                                                                      (((\phi \lor \psi) \lor (\tau \lor \tau)) \equiv (\phi \lor \tau))
                                                                 \equiv \langle Asociativa(\lor), Conmutativa(\lor), Asociativa(\lor) \rangle
                                                                     (((\phi \lor \tau) \lor (\psi \lor \tau)) \equiv (\psi \lor \tau))
                                                                 \equiv \langle \operatorname{Def.}(\rightarrow) \rangle
                                                                     ((\phi \lor \tau) \to (\psi \to \tau))
  Por MT 5.5.1 se demuestra que
  \vDash_{\mathrm{DS}} ((\phi \to \psi) \to ((\phi \lor \tau) \to (\psi \lor \tau)))
```

2.11. Punto 43

Modus Tollens	0. $(\phi \to \psi)$	Hipótesis MTT
	1. $(\neg \psi)$	Hipótesis MTT
	2. $((\neg \phi) \lor \psi)$	Teo 4.28.1, Ecuanimidad(p0)
	3. $(\psi \equiv false)$	$\text{Def.}(\neg), \text{Ecuanimidad}(\text{p1})$
	4. $((\neg \phi) \lor false)$	$Leibniz(\phi = ((\neg \phi) \lor p))(p3)$
	5. $(\neg \phi)$	$\operatorname{Identidad}(\vee)$

En términos de causas y consecuencias, al tener que a sucede a causa de b, y que es cierto que a no sucede, entonces se puede decir que no ha ocurrido b. Análogamente, decir que en una fila de 2 fichas de dominó, si se sabe en que sentido se van a tirar, y la segunda no ha caído, se puede concluir que no se ha tirado la primera ficha.

Página 13 Tarea 09

2.12. Punto 44

Transitividad - Silogísmo disyuntivo

La regla de transitividad, hablando en términos de causas y consecuencias, dice:

Si a sucede debido a b, y b sucede debido a c, entonces a sucede debido a c

Es decir, conecta el principio de una cadena de causa-consecuencia con su final. La demostración y su relación con Corte se puede hallar en el punto 23

2.13. Punto 45

2.13.1. a

PM1 es tautología

0. $(\exists \mathbf{v} \,|\, \mathbf{v}[((\phi \lor \phi) \to \phi)] = \mathbf{F})$ Intento por contradicción

1. $\mathbf{v}[((\phi \lor \phi) \to \phi)] = \mathbf{F}$ Def.(p0)

2. $\mathbf{v}[(\phi \lor \phi)] = \mathbf{T} \ \mathbf{v}[\phi] = \mathbf{F}$ MT 2.23(\rightarrow)(p1)

3. $\mathbf{v}[(\phi \lor \phi)] = \mathbf{F}$ MT 2.23(\lor)(p2)

4. $\mathbf{v}[(\phi \lor \phi)] = \mathbf{F} \ \mathbf{v}[(\phi \lor \phi)] = \mathbf{F}$ Contradicción (p3, p2)

Por lo que $\vDash ((\phi \lor \phi) \to \phi)$

PM2 es tautología

0. $(\exists \mathbf{v} \,|\, \mathbf{v}[(\phi \to (\phi \lor \psi))] = \mathbf{F})$ Intento por contradicción

1. $\mathbf{v}[(\phi \to (\phi \lor \psi))] = \mathbf{F}$ Def.(p0)

2. $\mathbf{v}[\phi] = \mathsf{T} \ \mathsf{v}[(\phi \lor \psi)] = \mathsf{F} \qquad \mathsf{MT} \ 2.23(\to)(\mathsf{p}1)$

3. $\mathbf{v}[\phi] = F \ y \ \mathbf{v}[\psi] = F$ MT 2.23(\vee)(p2)

4. $\mathbf{v}[\phi] = \mathbf{F} \ \mathbf{v} \ \mathbf{v}[\phi] = \mathbf{T}$ Contradicción (p3, p2)

Por lo que $\vDash (\phi \to (\phi \lor \psi))$

PM3 es tautología

0. $(\exists \mathbf{v} \mid \mathbf{v}[((\phi \to \psi) \to ((\tau \lor \phi) \to (\tau \lor \psi)))] = \mathbf{F})$ Intento por contradicción

1. $\mathbf{v}[((\phi \to \psi) \to ((\tau \lor \phi) \to (\tau \lor \psi)))] = \mathbf{F}$ Def.(p0)

 $(\tau \lor \psi))$] = F MT 2.23(\rightarrow)(p0)

2. $\mathbf{v}[(\phi \to \psi)] = \mathbf{T} \ \mathbf{v} \ \mathbf{v}[((\tau \lor \phi) \to (\tau \lor \psi))] = \mathbf{F}$

MT $2.23(\rightarrow)(p2)$

3. $\mathbf{v}[(\tau \lor \phi)] = \mathbf{T} \ \mathbf{v}[(\tau \lor \psi)] = \mathbf{F}$

W11 2.25(/)(P2

4. $\mathbf{v}[\tau] = \mathbf{F} \wedge \mathbf{v}[\psi] = \mathbf{F}$

MT $2.23(\vee)(p3)$

5. $\mathbf{v}[\phi] = \mathbf{T}$

MT $2.23(\vee)(p4, p3)$

6. $\mathbf{v}[\phi] = \mathbf{F}$

MT $2.23(\to)(p4, p2)$

7. $\mathbf{v}[\phi] = \mathbf{F} \ \mathbf{v}[\phi] = \mathbf{T}$

Contradicción(p6, p5)

Por lo que $\vDash ((\phi \to \psi) \to ((\tau \lor \phi) \to (\tau \lor \psi)))$

Página 14 Tarea 09

PM4 es tautología

```
0. (\exists \mathbf{v} \mid \mathbf{v}[((\phi \lor \psi) \to (\psi \lor \phi))] = \mathbf{F}) Intento por contradicción

1. \mathbf{v}[((\phi \lor \psi) \to (\psi \lor \phi))] = \mathbf{F} Def.(p0)

2. \mathbf{v}[(\phi \lor \psi)] = \mathbf{T} \mathbf{y} \mathbf{v}[(\psi \lor \phi)] = \mathbf{F} MT 2.23(\to)(\mathbf{p}1)
```

3.
$$\mathbf{v}[\psi] = \mathbf{F} \ \mathbf{v}[\phi] = \mathbf{F}$$
 MT 2.23(\vee)(p2)

3.
$$\mathbf{v}[\psi] = \mathbf{r} \quad \mathbf{v}[\psi] = \mathbf{r}$$
 MT 2.23(\vee)(p2)
4. $\mathbf{v}[(\phi \lor \psi)] = \mathbf{F}$ MT 2.23(\vee)(p3)

5.
$$\mathbf{v}[(\phi \lor \psi)] = \mathsf{T} \ \mathsf{y} \ \mathbf{v}[(\phi \lor \psi)] = \mathsf{F}$$
 Contradicción (p4, p2)

2.13.2. b

PM1 es teorema en DS

$$\begin{array}{l} ((\phi \lor \phi) \to \phi) \\ \equiv & \langle \; \mathrm{Idempotencia}(\lor) \; \rangle \\ (\phi \lor \phi) \\ \equiv & \langle \; \mathrm{Teo} \; 4.28.1 \; \rangle \\ ((\neg \phi) \lor \phi) \\ \equiv & \langle \; \mathrm{Teo} \; 4.19.1, \; \mathrm{Identidad}(\equiv) \; \rangle \\ true \end{array}$$

Por MT 4.21 se demuestra que $\vdash_{\text{DS}} ((\phi \lor \phi) \to \phi)$

PM2 es teorema en DS

$$\begin{array}{l} (\phi \rightarrow (\phi \lor \psi)) \\ \equiv & \langle \ \mathrm{Teo} \ 4.28.1 \ \rangle \\ & ((\neg \phi) \lor (\phi \lor \psi)) \\ \equiv & \langle \ \mathrm{Asociativa}(\lor) \ \rangle \\ & (((\neg \phi) \lor \phi) \lor \psi) \\ \equiv & \langle \ \mathrm{Teo} \ 4.19.1, \ \mathrm{Identidad}(\equiv) \ \rangle \\ & (\mathit{true} \lor \psi) \\ \equiv & \langle \ \mathrm{Teo} \ 4.19.1 \ \rangle \\ & \mathit{true} \end{array}$$

Por MT 4.21 se demuestra que $\vdash_{\text{DS}} (\phi \to (\phi \lor \psi))$

Página 15 Tarea 09

PM3 es teorema en DS

Punto 40.(b)

$$((\phi \to \psi) \to ((\phi \lor \tau) \to (\psi \lor \tau)))$$

$$\equiv \langle \text{Conmutativa}(\lor), \text{Leibniz}(\phi = ((\phi \to \psi) \to (p \to (\psi \lor \tau)))) \rangle$$

$$((\phi \to \psi) \to ((\tau \lor \phi) \to (\psi \lor \tau)))$$

$$\equiv \langle \text{Conmutativa}(\lor), \text{Leibniz}(\phi = ((\phi \to \psi) \to ((\tau \lor \phi) \to p))) \rangle$$

$$((\phi \to \psi) \to ((\tau \lor \phi) \to (\tau \lor \psi)))$$

Por MT 4.21 se demuestra que

$$\vdash_{\mathrm{DS}} ((\phi \to \psi) \to ((\tau \lor \phi) \to (\tau \lor \psi)))$$

PM4 es teorema en DS

0.
$$((\phi \lor \psi) \equiv (\psi \lor \phi))$$
 Conmutativa(\lor)

1. $(((\phi \lor \psi) \to (\psi \lor \phi)) \land ((\psi \lor \phi) \equiv (\phi \lor \psi)))$ Teo 4.33.3, Ecuanimidad(p0)

2. $((\phi \lor \psi) \to (\psi \lor \phi))$ Debilitamiento(p1)

2.13.3. c

Si $\vdash_{PM} \phi$ entonces \vdash_{DS}

Puesto que los axiomas de PM son teoremas en DS, significa que se puede comenzar una demostración en DS a partir de estos axiomas. Y ya que la regla de inferencia Modus Ponens aplica en DS, significa que cualquier teorema obtenido mediante las herramientas de PM puede ser obtenido en DS usando la misma estrategia.

2.14. d

Si $\vdash_{\mathrm{DS}} \phi$ entonces $\vdash_{\mathrm{PM}} \phi$

Si se toma la regla de Ecuanimidad de DS, por la definición de equivalencia usando implicaciones y la regla Debilitamiento(\wedge), Es posible usar Ecuanimidad de la misma forma que Modus Ponens.

La regla de Leibniz de DS, por la definición de equivalencia usando implicaciones y la regla de Debilitamiento(\land), Es posible usar Leibniz de la siguiente forma:

$$\frac{(\psi \to \tau) \qquad (\tau \to \psi)}{(\phi[p := \psi] \to \phi[p := \tau])} _$$
$$(\phi[p := \tau] \to \phi[p := \tau])$$

El único conector en DS que no se ve de forma clara como expresarse usando únicamente \vee y \rightarrow es \neg . Pero se sabe que la negación es dar un valor de falsedad a una proposición. Y se sabe que una falsedad sería la negación de cualquier teorema o axioma, por lo que la negación usando su definición $((\neg \phi) \equiv (\phi \equiv false))$ y tomando lo dicho para el uso de Ecuanimidad. se tiene entonces que la "traducción" de la negación a PM sería $(\phi \rightarrow false)$ (como ya se mencionó la idea en PM es que false sea la negación de cualquier axioma o teorema).

Una vez "traducido" el sistema formal DS en términos de PM se puede afirmar que los teoremas de DS pueden ser obtenidos usando las herramientas de PM.

Página 16 Tarea 09

3. Sección 5.1

3.1. Punto 1

3.1.1. a

$$\begin{array}{c} \mathbf{a} \\ \phi \lor \psi \lor \tau \equiv \phi \lor \psi \lor \tau \end{array}$$

3.1.2. f

3.1.3. m

$$\begin{array}{c|c} \mathbf{m} & \\ \phi \equiv \neg \phi \equiv \mathit{false} \end{array}$$

3.1.4. t

3.1.5. w

$$\phi \to \psi \lor \tau \equiv (\phi \to \psi) \lor (\phi \to \tau)$$

3.1.6. x

$$\mathbf{x}$$

$$\phi \to \psi \land \tau \equiv (\phi \to \psi) \land (\phi \to \tau)$$

3.1.7. z

$$\begin{array}{c} \mathbf{z} \\ \phi \lor \psi \to \phi \land \psi \equiv \phi \equiv \psi \end{array}$$

3.2. Punto 2

3.2.1. a

Es ambigüa

$$p \lor (q \land r)$$
$$(p \lor q) \land r$$

Página 17 Tarea 09

3.2.2. b

Es ambigüa

$$p \wedge (q \vee r)$$
$$(p \wedge q) \vee r$$

3.2.3. c

Es ambigüa

$$p \to (q \to r)$$
$$(p \to q) \to r$$

3.2.4. d

Es ambigüa

$$p \to (q \leftarrow r)$$
$$(p \to q) \leftarrow r$$

3.2.5. e

Es ambigüa

$$p \leftarrow (q \rightarrow r)$$
$$(p \leftarrow q) \rightarrow r$$

3.3. Punto 5

3.3.1. a

$$true \vee p \wedge q$$

$$true \lor (p \land q)$$

3.3.2. b

$$p \equiv p \vee q$$

$$(p \equiv p) \vee q$$

3.3.3. c

$$p \to q \equiv r \equiv p \land q \equiv p \land r$$

$$p \to (q \equiv R \equiv P \land q \equiv p \land r)$$

Página 18 Tarea 09

3.4. d

$$p \equiv q \not\equiv r \leftarrow false \land p \qquad (p \equiv q \not\equiv r) \leftarrow false \land p$$

3.5. e

$$\neg p \land p \equiv p \to r$$

$$\neg (p \land p \equiv p) \to r$$

Página 19 Tarea 09