Machine Learning for Neuroscience

Slides and notebooks: https://github.com/PBarnaghi/ML4NS

Mathematical Notations

Symbols and meaning:

 \sum : sum or sum up; e.g., $\sum_{1}^{n} x = x_1 + x_2 ... + x_n$

 $\frac{d}{dx}$: Derivative function; $\frac{df(x)}{dx}$ specifies the rate of change for function f(x) with respect to changes in its parameter x

 $\frac{\partial}{\partial x}$: Partial derivative; when a function has multiple parameters, a partial derivative specifies the rate of change for that function with respect to one of its parameters while other parameters are kept as constants; e.g., f(x,y) = 2xy + 3y then $\frac{\partial f}{\partial x} = \frac{\partial 2xy + 3y}{\partial x} = 2y$

 $a \wedge b$: Logical AND

 $a \vee b$: Logical OR

 $a \neg b$: Logical NOT

 ∞ : Infinity

 \lim : In mathematics limit of function a is the value that a function approaches as its input approaches a vlue; for example $\lim f(x)_{x\to 0}$ means the value of f(x) when x approaches 0. If we assume f(x) = 2x + 3 then $\lim f(x)_{x\to 0} = \lim (2x+3)_{x\to 0} = 3$

 \rightarrow : tends towards to; for example $x \rightarrow \infty$

 \propto : Proportional; for example, if $y = \alpha x$ then $y \propto x$

n!: Factorial function; e.g., $n! = n \times (n-1) \times (n-2)... \times 1$; $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

≈: Approximately equal to

≜: Defined as

 $argmx_x f(x)$: Argmax or the Arguments of Maxima are the value(s) of x that maximises the function f(x)

 $\binom{n}{k}$: n chooses k which is equal to n!/k!(n-k)!

exp(x): Exponential function; e^x

A: Matrix A

 A^{-1} : Inverse of a matrix

 \boldsymbol{A}^T : Transpose of a matrix; e.g. if $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ then $A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

 \boldsymbol{a} or $\boldsymbol{x} :$ refer to a vector; e.g., $\boldsymbol{x} = [1,2,3]$

 \boldsymbol{a}^T or \boldsymbol{x}^T : refer to transpose of a vector; e.g. $x^T = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

 \boldsymbol{X}_{ij} : Element (i,j) in matrix X where i is the row number of j is the column number

 $m{I}$ or $m{I}_d$: Identity matrix; e.g. A 3×3 identify matrix $m{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $\|\boldsymbol{x}\|_1$: L1 norm of a vector or Manhattan distance $\sum_{j=1}^d x_j^2$

 $\|\boldsymbol{x}\|_{\mathbf{2}} :$ L2 norm of a vector or Euclidean distance $\sqrt{\sum_{j=1}^{d} x_{j}^{2}}$

 $x \otimes y$: Tensor product x and y; e.g. if $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $y = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ then

$$x \otimes y = \begin{bmatrix} 1 \times 4 \\ 1 \times 5 \\ 2 \times 4 \\ 2 \times 5 \\ 3 \times 4 \\ 3 \times 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 8 \\ 10 \\ 12 \\ 15 \end{bmatrix}$$

Notations is probability theory:

 $X \perp Y$: means X is independent of Y

 $\mathbb{E}[X]$: Expected value of X

 $\mathbb{H}[X]$: Expected value of distribution of p(X)

L(y, o) or Loss(y, o): Loss function/value for the output of o when the actual output/value is y

 μ : Mean of a scalar distribution

 σ : Standard deviation of a scalar distribution

 σ^2 : Variance

 π : In the probability theory it refers to the stationary of a Markov chain

sigm(x): Sigmoid function $sigm(x) = 1/1 - e^{-x}$

Notations in machine learning:

C: Number of Classes or Class set

X: Design matrix or an input dataset to a model

 \mathcal{D} : Training data

 \mathcal{N} : Number of samples in a dataset

 \mathcal{N}_c : Number of samples in Class c

x: Input vector (one sample)

D: Dimentionality of data or the number of features

 $\mathcal{D}_{\mathcal{T}}$: Test data

 $J(\theta)$: Cost function

k(x,y: Kernel function

K: Kernel matrix

T: Transition matrix of Markov chain

 $\boldsymbol{\theta}$: Parameters of a model or parameter vector

W: Weight matrix in a regression model or a neural network

End Notes

Mathmatical notations, Machine learning: A Probabilistic Perspective, Kevin Murphy, MIT Press, 2013; pages: 1013-1018, see: http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf

Tensor products, https://www.math3ma.com/blog/the-tensor-product-demystified