

3

The problem

- The adversary records the encrypted session
- If the adversary compromises the PSK K_{AB} then (s)he can now recover K from M1
- Then, the adversary decrypts the session and violates secrecy
- The long-term secret/key K_{AB} becomes a single-point of failure

Apr-25

Perfect Forward Secrecy

Perfect Forward Secrecy

- (DEF) Perfect Forward Secrecy
 - Disclosure of long-term secret keying material does not compromise the secrecy of the exchanged keys from earlier runs
- Public Key Cryptography makes it possible to achieve this requirement

Apr-25 Perfect Forward Secrecy

. check divided scorecy

PSK-DHE

- Ephemeral Diffie-Hellman
 - Keys a and b are ephemeral and one-time (per-session or per message)
 - Once a and b (and K) have been deleted there is no way to recover K, and thus the session, even if the long-term private K_{ab} is compromised
 - · Neither A nor B can
 - The adversary has still to solve the DLP
 - K_{ab} is used for authentication, not for confidentiality anymore

Apr-25

Perfect Forward Secrecy

7

7

PKE-based Key Exchange A (pubK_B) K <- random() M1: E(pubK_B, K) M2: E(K, session) Delete K Private key privK_B is a long-term secret Key K is the session key SSL/TLS employs a similar scheme

The problem

- The adversary records the encrypted session
- If the adversary compromises privK_B then (s)he can recover K from CT
- Then, the adversary decrypts the session and violates secrecy
- The long-term secret becomes a single-point of failure

Apr-25

Perfect Forward Secrecy

Misc

- PROS
 - PFS makes it nearly impossible for intercepted communications to be decrypted retroactively, even if the private keys are compromised.
- CONS
 - PFS requires more computation
 - Crypto-(co)processors do not support PFS (for the moment)
 - Ongoing tension between privacy and security in the digital age.

 governments dan't Like at!

Apr-25

Perfect Forward Secrecy

11

11

Who implements PFS

- Google: e.g., Gmail and Google Search.
- Facebook: messaging and browsing.
- WhatsApp: end-to-end encryption.
- Apple: e.g., iMessage and FaceTime.
- Dropbox: to secure data transfers between users and its servers.
- SSL/TLS: ECDHE is part of the cryptographic suite

Apr-25

Perfect Forward Secrecy

12

DIRECT AUTHENTICATION

Apr-25

Perfect Forward Secrecy

13

13

Direct Authentication

- (DEF) Direct Authentication: To prove the peer the knowledge of the key K
 - If a Key Exchange protocol does not fulfil direct authentication, this authentication is achieved at the first application message
 - DA is also said Key Confirmation in the BAN parlance
- · DHE and RSAE don't fulfil direct authentication
 - Until E(K, session)
- **Station-To-Station** (STS) Protocol fulfils direct authentication while guaranteeing PFS

Apr-25

Perfect Forward Secrecy

14

