Brand Sentiment Analysis with Natural Language Processing (NLP)

September 2023

Overview

Use <u>NLP to analyze consumer attitudes</u> towards Google/Android and Apple and leverage <u>machine learning techniques to classify a given tweet</u> as having positive, negative, or neutral emotions

The Data: Original Version

	tweet_text	emotion_in_tweet_is_directed_at	is_there_an_emotion_directed_at_a_brand_or_product
0	.@wesley83 I have a 3G iPhone. After 3 hrs twe	iPhone	Negative emotion
1	@jessedee Know about @fludapp ? Awesome iPad/i	iPad or iPhone App	Positive emotion
2	@swonderlin Can not wait for #iPad 2 also. The	iPad	Positive emotion
3	@sxsw I hope this year's festival isn't as cra	iPad or iPhone App	Negative emotion
4	@sxtxstate great stuff on Fri #SXSW: Marissa M	Google	Positive emotion

- The data comes from tweets posted by contributors at a festival
 - The dataset contains 3 columns and 9,093 rows
 - "is_there_an_emotion_directed_at_a_brand_or_product" is our target variable
 - The remaining columns contain the actual tweet and the product the tweet refers to

The Data: Target Variable

- The bar plot shows the distribution of our "sentiment" (target) variable
- ~81% of attitudes towards the brands at the conference is positive
- We address the imbalance with weighted metrics and oversampling minority classes

The Data: Processing and Cleaning

- Cleaning and preprocessing consists of:
 - Removing duplicate entries
 - Renaming values and columns to be less ambiguous
 - Splitting tweets into lists of words without punctuations (tokens)
 - Assigning numerical values to the target variable

The Data: Processing and Cleaning

													twee	t	pro	duct	sentimer	nt	tweet_without_stopwords_and_punc
0					.0	@wesle	ey83 i h	ave a	3g ip	hone	e. afte	er 3	hrs twe		iPł	hone	negativ	e	[3g, iphone, 3, hrs, tweeting, riseaustin, dea
1				(@jesse	edee k	now ab	out @	fluda	pp?	awe	som	e ipad/i	. il	Pad or iPhone	Арр	positiv	e	[know, awesome, ipad, iphone, app, likely, app
2					@	swon	derlin d	an no	ot wai	t for #	#ipac	12 a	lso. the			iPad	positiv	e	[wait, ipad, 2, also, sale, sxsw]
3						@sxs	w i ho	e this	s year	's fes	stival	isn'	t as cra	. il	Pad or iPhone	Арр	negativ	e	[hope, years, festival, crashy, years, iphone,
4					(extxs	tate gr	eat st	uff on	fri #s	sxsw	: ma	rissa m		Go	ogle	positiv	e	[great, stuff, fri, sxsw, marissa, mayer, goog
•••																	•		
9088								ip	oad e	veryw	here	e. #s	xsw {link	}		iPad	positiv	e	[ipad, everywhere, sxsw, link]
9089					V	vave, I	ouzz	rt @m	entio	n we	inter	rupt	your re		unkn	nown	nor	e	[wave, buzz, , rt, interrupt, regularly, sched
9090					g	oogle	s zeige	r, a p	hysici	an ne	ever i	repo	rted po		unkn	nown	nor	e	[googles, zeiger, physician, never, reported,
9091					som	e veriz	zon iph	one c	uston	ners o	comp	olain	ed their		unkn	nown	nor	e	[verizon, iphone, customers, complained, time,
9092	ï; ïà	ü_	ê	î	ò	£	á â	â.	_	£		â_	ûârt @		unkn	nown	nor	e	[, ï, ¡, , ïà, , ü, , , ê, , , î, , ,
8914 rd	ows × 4	colu	mns																

Our processed dataset has shorter column names and 8,914 rows x 4 columns

Results

Naïve Bayes Classifier and Sentiment Analysis

- Optimal binary classification model
- Optimal multiclass classification model
- Sentiment Analysis by Brand

Results: Optimal Binary Classification

	precision	recall	f1-score
0	0.65	0.44	0.53
1	0.91	0.96	0.93
accuracy			0.88
macro avg	0.78	0.70	0.73
weighted avg	0.87	0.88	0.87

- A Naïve Bayes classifier with best parameters, over sampling techniques, tokenization, and stopword removal
- Returns weighted f1 score of 0.87 and an overall test score (accuracy) of 0.88
- The model emphasizes weighted f1, because it combines recall and precision and accounts for imbalance

Results: Optimal Multiclass Classification

2 = none

	precision	recall	f1-score
0 1 2	0.77 0.61 0.71	0.17 0.52 0.84	0.28 0.56 0.77
accuracy macro avg weighted avg	0.70 0.68	0.51	0.69 0.54 0.67

- A Naïve Bayes classifier with best parameters, tokenization, and stopword removal
- Returns weighted f1 score of 0.67 and an overall test score (accuracy) of 0.69
- The model emphasizes weighted f1, because it combines recall and precision and accounts for imbalance
- This model performs better without oversampling, as the new target variable increases overfitting

Results: Sentiment Analysis

We also use NLP to visualize the top ten bigrams associated with positive and negative tweets for Google/Android and Apple. An example of visualizations are below. Please refer to the <u>Appendix</u> for a complete version.

<u>Takeaway:</u> Google Maps appears to be popular among users and launch events featuring guests garner positive attitudes. Conversely, sentiment surrounding the Google Circles launch is negative and requires further research.

Brands can leverage machine learning algorithms like Naïve Bayes to categorize large quantities of online text data

Google/Android

- Invest in Google Maps' competitive advantage
- Hold live events with guests like Marissa Mayer
- Address compatibility issues with Android

Apple

- Open popup stores frequently and promote launches
- Increase product testing for design and battery
- Strengthen corporate social responsibility and values

Contact Information

- <u>Email</u>
- Github
- <u>LinkedIn</u>

Appendix

Appendix: Google Sentiment

Appendix: Google Sentiment

Appendix: Android Sentiment

Appendix: Android Sentiment

Negative Tweets about Android

Appendix: Apple Sentiment

Appendix: Apple Sentiment

Negative Tweets about Apple

