

**(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG**

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
18. Juli 2002 (18.07.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/055693 A2

(51) Internationale Patentklassifikation⁷: **C12N 15/11**

(21) Internationales Aktenzeichen: PCT/EP02/00152

(22) Internationales Anmeldedatum:
9. Januar 2002 (09.01.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
101 00 586.5 9. Januar 2001 (09.01.2001) DE
101 55 280.7 26. Oktober 2001 (26.10.2001) DE
101 58 411.3 29. November 2001 (29.11.2001) DE
101 60 151.4 7. Dezember 2001 (07.12.2001) DE

LIMMER, Stephan [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). **ROST, Sylvia** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE). **HADWIGER, Philipp** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(74) Anwalt: **GASSNER, Wolfgang**; Nägelsbachstrasse 49a, 91052 Erlangen (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **RIBOPHARMA AG** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): **KREUTZER, Roland** [DE/DE]; Universitätsstrasse 30, 95447 Bayreuth (DE).

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR INHIBITING THE EXPRESSION OF A TARGET GENE

(54) Bezeichnung: VERFAHREN ZUR HEMMUNG DER EXPRESSION EINER ZIELGENS

WO 02/055693 A2

(57) Abstract: The invention relates to a method for inhibiting the expression of a target gene in a cell, comprising the following steps: introduction of an amount of at least one dual-stranded ribonucleic acid (dsRNA I) which is sufficient to inhibit the expression of the target gene. The dsRNA I has a dual-stranded structure formed by a maximum of 49 successive nucleotide pairs. One strand (as1) or at least one section of the one strand (as1) of the dual-stranded structure is complementary to the sense strand of the target gene. The dsRNA has an overhang on the end (E1) of dsRNA I formed by 1 - 4 nucleotides.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte: Einführen mindestens einer doppelstängigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Sinn-Strang des Zielgens ist, und wobei die dsRNA am einen Ende (E1) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Verfahren zur Hemmung der Expression eines Zielgens

Die Erfindung betrifft ein Verfahren, eine Verwendung und ein Medikament zur Hemmung der Expression eines Zielgens.

5

Aus der WO 99/32619 sowie der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe einer doppelsträngigen Ribonukleinsäure (dsRNA) bekannt. Die bekannten Verfahren sind zwar 10 hoch effektiv. Es besteht gleichwohl das Bedürfnis, deren Effizienz weiter zu steigern.

Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere 15 ein Verfahren, eine Verwendung und ein Medikament angegeben werden, mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.

Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 41 und 20 81 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 40, 42 bis 80 und 82 bis 120.

Mit den erfindungsgemäß beanspruchten Merkmalen wird überraschenderweise eine drastische Erhöhung der Effektivität der 25 Hemmung der Expression eines Zielgens *in vitro* und *in vivo* erreicht. Durch die besondere Ausbildung der Enden der dsRNA kann sowohl deren Effizienz bei der Vermittlung der hemmenden Wirkung auf die Expression eines Zielgens als auch deren Stabilität gezielt beeinflusst werden. Durch die Vergößerung der 30 Stabilität wird die wirksame Konzentration in der Zelle erhöht.

Unter einem "Zielgen" im Sinne der Erfindung wird der DNA-Strang der doppelsträngigen DNA in der Zelle verstanden, welcher kkomplementär zu einem bei der Transkription als Matritze 35 dienenden DNA-Strang einschließlich aller transkribierten Be-

reiche ist. Bei dem "Zielgen" handelt es sich also im allgemeinen um den Sinnstrang. Der eine Strang bzw. Antisinnstrang (as1) kann komplementär zu einem bei der Expression des Zielgens gebildeten RNA-Transkript oder deren Prozessierungsprodukt, z.B. eine mRNA, sein. Unter "Einführen" wird die Aufnahme in die Zelle verstanden. Die Aufnahme kann durch die Zelle selbst erfolgen; sie kann auch durch Hilfsstoffe oder Hilfsmittel vermittelt werden. Unter einem "Überhang" wird ein endständiger einzelsträngiger Überstand verstanden, welcher nicht nach Watson & Crick gepaarte Nukleotide aufweist. Unter einer "doppelsträngigen Struktur" wird eine Struktur verstanden, bei der die Nukleotide der Einzelstränge im Wesentlichen nach Watson & Crick gepaart sind. Im Rahmen der vorliegenden Erfindung kann eine doppelsträngige Struktur auch einzelne Fehlpaarungen ("Mismatches") aufweisen.

Nach einer besonderen vorteilhaften Ausgestaltung weist die dsRNA I den Überhang am 3'-Ende des einen Strangs bzw. Antisinnstrangs as1 und/oder am 3'-Ende des anderen Strangs bzw. Sinnstrang ss1 auf. Die dsRNA I kann auch an einem Ende glatt ausgebildet sein. In diesem Fall befindet sich das glatte Ende vorteilhafterweise auf der Seite der dsRNA I, die das 5'-Ende des einen Strangs (Antsinnstrang; as1). In dieser Ausbildung zeigt die dsRNA I einerseits eine sehr gute Effektivität und andererseits eine hohe Stabilität im lebenden Organismus. Die Effektivität insgesamt *in vivo* ist hervorragend. Der Überhang ist zweckmäßigerweise aus 1 bis 4 Nukleotiden, vorzugsweise aus 1 oder 2 Nukleotiden, gebildet.

Nach einem weiteren Ausgestaltungsmerkmal kann die Effektivität des Verfahrens weiter erhöht werden, wenn zumindest eine entsprechend der erfindungsgemäßen dsRNA I ausgebildete weitere dsRNA II in die Zelle eingeführt wird, wobei der eine Strang oder zumindest ein Abschnitt des einen Strangs der doppelsträngigen Struktur der dsRNA I komplementär zu einem ersten Bereich des Sinnstrangs des Zielgens ist, und wobei

ein weiterer Strang oder zumindest ein Abschnitt des weiteren Strangs der doppelsträngigen Struktur der weiteren dsRNA II komplementär zu einem zweiten Bereich des Sinnstrangs des Zielgens ist. Die Hemmung der Expression des Zielgens ist in 5 diesem Fall deutlich gesteigert. Der erste und der zweite Bereich können abschnittsweise überlappen, aneinander grenzen oder auch voneinander beabstandet sein.

Es hat sich weiter als vorteilhaft erwiesen, wenn die dsRNA I 10 und/oder die weitere dsRNA II eine Länge von weniger als 25 aufeinander folgenden Nukleotidpaaren aufweisen. Als besonders effektiv hat sich eine Länge im Bereich zwischen 19 und 23 Nukleotidpaaren erwiesen. Die Effizienz kann weiter gesteigert werden, wenn an den vorzugsweise aus 19 bis 23 Nu- 15 kleotidpaaren gebildeten Doppelsträngen einzelsträngige Überhänge von 1 bis 4 Nukleotiden vorhanden sind.

Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal 20 eine der in dem anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Prionen, Gene zur Expression von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie Apoptose- und Zellzyklus-regulierende Molekülen sowie Gene zur Expression des EGF-Rezeptors. Beim Zielgen kann es sich insbesondere um das MDR1-Gen handeln. Es kann in diesem Zusammenhang eine der Sequenzen SQ141 - 173 bestehende bzw. ein aus jeweils zusammengehörenden Antisinn (as) - und Sinnsequenzen (ss) kombinierte 25 dsRNA I/II verwendet werden.

Nach einem weiteren vorteilhaften Ausgestaltungsmerkmal wird 30 die Expression nach dem Prinzip der RNA-Interferenz gehemmt.

Das Zielgen wird zweckmäßigerweise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viroids, sein. Das Virus oder Viroid kann auch ein 5 tier- oder pflanzenpathogenes Virus oder Viroid sein.

Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind.

10

Zumindest ein Ende der dsRNA I/II kann modifiziert werden, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken. Vorteilhafterweise wird dazu der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt 15 der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall- 20 Ionenkoordination gebildet werden. Es hat sich weiter als zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen Endes gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 24 25 bis 30 entnommen werden, ohne dass es dafür einer näheren Erläuterung bedarf.

Die dsRNA I/II kann dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird. Zum Transport der dsRNA I/II in die Zelle hat es sich auch als vorteilhaft erwiesen, dass diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein

1 und/oder das Virus-Protein 2 des Polyomavirus enthalten.
Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei
Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
5 sidartigen Gebildes gewandt ist. Ferner ist es von Vorteil,
dass der eine Strang der dsRNA I/II (as1/2) zum primären oder
prozessierten RNA-Transkript des Zielgens komplementär ist.
Die Zelle kann eine Vertebratenzelle oder eine menschliche
Zelle sein.

10

Weiterhin hat es sich gezeigt, dass die dsRNA I/II vorteil-
hafterweise bereits in einer Menge von höchstens 5 mg/kg Kör-
pergewicht pro Tag einem Säugetier, vorzugsweise einem Men-
schen, verabreicht werden kann. Bereits in dieser geringen
15 Dosis wird eine ausgezeichnete Effektivität erzielt.

Überraschenderweise hat sich gezeigt, dass die dsRNA I/II zur
Applikation in eine Pufferlösung aufgenommen und dann oral
oder mittels Injektion oder Infusion intravenös, intratumo-
20 ral, inhalativ, intraperitoneal verabreicht werden kann.

Erfindungsgemäß ist weiterhin die Verwendung einer doppel-
strängigen Ribonukleinsäure (dsRNA I) zur Hemmung der Express-
sion eines Zielgens in einer Zelle vorgesehen, wobei die
25 dsRNA I eine doppelsträngige aus höchstens 49 aufeinander
folgenden Nukleotidpaaren gebildete Struktur aufweist, und
wobei ein Strang (Antisinnstrang; as1) oder zumindest ein Ab-
schnitt des einen Strangs (as1) der doppelsträngigen Struktur
komplementär zum Sinnstrang des Zielgens ist, und wobei die
30 dsRNA I zumindest an einem Ende einen aus 1 bis 4 Nukleotiden
gebildeten Überhang aufweist.

Nach weiterer Maßgabe der Erfindung ist ein Medikament zur
Hemmung der Expression eines Zielgens in einer Zelle vorgese-
35 hen, enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA
I) in einer zur Hemmung der Expression des Zielgens ausrei-

chenden Menge, wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur 5 komplementär zum Sinnstrang des Zielgens ist, und wobei die dsRNA I zumindest an einem Ende einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

Wegen der weiteren vorteilhaften Ausgestaltung der dsRNA I/II 10 wird auf die vorangegangenen Ausführungen verwiesen.

Die Erfindung wird nachfolgend anhand der Zeichnungen und Ausführungsbeispiele beispielhaft erläutert. Es zeigen:

15 Fig. 1a, b schematisch eine erste und zweite doppelsträngige RNA und

Fig. 2 schematisch ein Zielgen,

20 Fig. 3 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (erstes Experiment),

25 Fig. 4 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (zweites Experiment),

30 Fig. 5 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (drittes Experiment),

Fig. 6 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in NIH/3T3-Zellen (viertes Experiment),

Fig. 7 relative YFP-Fluoreszenz nach Applikation verschiedener dsRNA in HeLa-S3-Zellen (fünftes Experiment),

5 Fig. 8 fluoreszenzmikroskopische Aufnahmen von NIH/3T3-Zellen nach Transfektion mit pcDNA-YFP bzw nach Kotransfektion mit pcDNA-YFP und verschiedenen dsRNAs,

10 Fig. 9 fluoreszenzmikroskopische Aufnahmen von HeLa-S3-Zellen nach Transfektion mit pcDNA-YFP bzw. nach Kotransfektion mit pcDNA-YFP und verschiedenen dsRNAs,

15 Fig. 10 gelelektrophoretische Auftrennung von S1 nach Inkubation in Maus-Serum,

Fig. 11 gelelektrophoretische Auftrennung von S1 nach Inkubation in humanem Serum,

20 Fig. 12 gelelektrophoretische Auftrennung von S7 nach Inkubation in Maus-Serum,

25 Fig. 13 gelelektrophoretische Auftrennung von S7 nach Inkubation in humanem Serum,

Fig. 14 gelelektrophoretische Auftrennung von K3 nach Inkubation in Maus-Serum,

30 Fig. 15 gelelektrophoretische Auftrennung von PKC1/2 nach Inkubation in Maus-Serum,

Fig. 16 gelelektrophoretische Auftrennung von S1A/S4B nach Inkubation in humanem Serum,

- Fig. 17 gelelektrophoretische Auftrennung von K2 nach Inkubation in humanem Serum und
- Fig. 18 GFP-spezifische Immunoperoxidase-Färbung an Nieren-Paraffinschnitten transgener GFP-Mäuse,
5
- Fig. 19 GFP-spezifische Immunoperoxidase-Färbung an Herz-Paraffinschnitten transgener GFP-Mäuse,
10
- Fig. 20 GFP-spezifische Immunoperoxidase-Färbung an Pankreas-Paraffinschnitten transgener GFP-Mäuse,
15
- Fig. 21 Western-Blot-Analyse der GFP-Expression im Plasma,
15
- Fig. 22 Western-Blot-Analyse der GFP-Expression in der Niere,
20
- Fig. 23 Western-Blot-Analyse der GFP-Expression im Herz,
25
- Fgi. 24 Western-Blot-Analyse der EGFR-Expression in U-87 MG Glioblastom-Zellen,
25
- Fig. 25a Northern-Blot-Analyse des MDRI mRNA-Niveaus in der Kolonkarzinom-Zelllinie LS174T, wobei die Zellen nach 74 Stunden geerntet wurden,
30
- Fig. 25b Quantifizierung der Banden nach Fig. 25a, wobei die Mittelwerte aus zwei Werten dargestellt sind,
30
- Fig. 26a Northern-Blot-Analyse des MDRI mRNA-Niveaus in der Kolonkarzinom-Zelllinie LS174T, wobei die Zellen nach 48 Stunden geerntet wurden,
35

Fig. 26b Quantifizierung der Banden nach Fig. 26a, wo-
bei die Mittelwerte aus zwei Werten darge-
stellt sind,

5

Fig. 27 vergleichende Darstellung einer durchlicht-
und fluoreszenzmikroskopischen Aufnahme einer
Transfektion mit 175 nM dsRNA (Sequenz R1 in
Tabelle 4).

10

Die in den Fig. 1a und 1b schematisch gezeigten doppelsträn-
gigen Ribonukleinsäuren dsRNA I und dsRNA II weisen jeweils
ein erstes Ende E1 und ein zweites Ende E2 auf. Die erste und
die zweite Ribonukleinsäure dsRNA I/dsRNAlII weisen an ihren
15 beiden Enden E1 und E2 einzelsträngige, aus etwa 1 bis 4 un-
gepaarten Nukleotiden gebildete Abschnitte auf. Es sind zwei
mögliche Varianten dargestellt (Variante 1 und 2), wobei Va-
riante 2 ein glattes Ende (E2) aufweist. Das glatte Ende kann
jedoch auch in einer weiteren Variante am anderen Ende (E1)
20 liegen.

In Fig. 2 ist schematisch ein auf einer DNA befindliches
Zielgen gezeigt. Das Zielgen ist durch einen schwarzen Balken
kenntlich gemacht. Es weist einen ersten Bereich B1 und einen
25 zweiten Bereich B2 auf.

Jeweils der eine Strang der ersten dsRNA I (as1) bzw. der
zweiten dsRNA II (as2) ist komplementär zum entsprechenden
Bereich B1 bzw. B2 auf dem Zielgen.

30

Die Expression des Zielgens wird dann besonders wirkungsvoll
gehemmt, wenn die dsRNA I/dsRNA II an ihren Enden E1, E2 ein-
zelsträngige Abschnitte aufweist. Die einzelsträngigen Ab-
schnitte können sowohl am Strang as1 oder as2 als auch am Ge-
35 genstrang (ss1 bzw. ss2) oder am Strang as1, as2 und am Ge-
genstrang ausgebildet sein.

Die Bereiche B1 und B2 können, wie in Fig. 2 gezeigt, von einander beabstandet sein. Sie können aber auch aneinander grenzen oder überlappen.

5

I. Hemmung der Expression des YFP-Gens in Fibroblasten:

Es wurden aus Sequenzen des Yellow Fluorescent Proteine (YFP), einer Variante des GFP (Grün-fluoreszierendes Protein) der Alge *Aequoria victoria* abgeleitete doppelsträngige RNAs (dsRNAs) hergestellt und zusammen mit einem YFP-kodierenden Plasmid in Fibroblasten mikroinjiziert. Anschließend wurde die Fluoreszenzabnahme gegenüber Zellen ohne dsRNA ausgewertet.

15

Versuchsprotokoll:

Mittels eines RNA-Synthesizer (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen SQ148, 149 und SQ159 ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung mit Hilfe der HPLC. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur. Die so erhaltenen dsRNAs wurden in die Testzellen mikroinjiziert.

30

Als Testsystem für diese Zellkultur-Experimente diente die murine Fibroblasten-Zelllinie NIH/3T3, ECACC No. 93061524 (European Collection of Animal Cell Culture). Für die Mikroinjektionen wurde das Plasmid pcDNA-YFP verwendet, das ein 800bp großes Bam HI/Eco RI-YFP-Fragment in den entsprechenden Restriktionsschnittstellen des Vectors pcDNA3 enthält. Die Expression des YFP wurde unter dem Einfluß gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Die Auswer-

tung unter dem Fluoreszenzmikroskop erfolgte frühestens 3 Stunden nach Injektion anhand der grünen Fluoreszenz.

Vorbereitung der Zellkulturen:

5 Die Kultivierung der Zellen erfolgte in DMEM mit 4,5 g/l Glu-
cose, 10 % fötalem Kälberserum (FCS), 2 mM L-Glutamin, Peni-
cillin/Streptomycin (100 IE/100 µg/ml, Biochrom) im Brut-
schränk unter 5 % CO₂-Atmosphäre bei 37°C. Die Zellen wurden
alle 3 Tage passagiert, um sie in der exponentiellen Wachs-
10 tumsphase zu halten. Einen Tag vor der Durchführung der
Transfektion wurden die Zellen trypsinisiert (10x Tryp-
sin/TEDTA, Biochrom) und mit einer Zelldichte von 0,3 x 10⁵
Zellen in beschichteten Petrischalen (CORNING® Cell Culture
Dish, 35 mm, Corning Inc., Corning, USA) ausgesät. Die Petri-
15 schalen wurden mit 0,2 % Gelatine (Biochrom) für mindestens
30 Minuten bei 37°C inkubiert, einmal mit PBS gewaschen und
sofort für die Aussaat der Zellen verwendet. Um ein Wieder-
finden individueller Zellen zu ermöglichen, wurden CELLocate
Coverslips der Fa. Eppendorf (Square size 55 µm) verwendet.
20

Mikroinjektion:

Zur Durchführung der Mikroinjektion wurden die Petrischalen
ca. 10 Minuten aus dem Brutschrank genommen. Pro Schale und
Ansatz wurden ca. 50 Zellen mikroinjiziert (FemtoJet; Mikro-
25 manipulator 5171, Eppendorf). Für die Mikroinjektion wurden
Glaskapillaren (FemtoTip) der Firma Eppendorf mit einem Spitz-
zeninnendurchmesser von 0,5 µm verwendet. Die Injektionsdauer
betrug 0,8 Sekunden und der Druck 30 hPa. Durchgeführt wurden
die Mikroinjektionen an einem Olympus IX50 Mikroskop mit
30 Fluoreszenzeinrichtung. Als Injektionspuffer wurde 14 mM
NaCl, 3 mM KCl, 10 mM KH₂PO₄, pH 7,0 verwendet, der 0,01
µg/µl pcDNA-YFP enthielt. Zur Überprüfung einer erfolgreichen
Mikroinjektion wurde der Injektionslösung jeweils 0,08% (w/v)
an Dextran-70000 gekoppeltes Texas-Rot (Molecular Probes,
35 Leiden, Niederlande) zugesetzt. Um die Inhibition der YFP-
Expression mit spezifischer dsRNA zu untersuchen, wurden der

Injektionslösung dsRNAs zugegeben: Ansatz 1: 0,1 µM dsRNA (Sequenzprotokoll SQ148/149); Ansatz 2: 0,1 µM dsRNA (Sequenzprotokoll SQ148/159); Ansatz 3: ohne RNA. Nach der Mikroinjektion wurden die Zellen für mindestens drei weitere 5 Stunden im Brutschrank inkubiert. Danach wurden die intrazelluläre YFP-Fluoreszenz am Mikroskop ausgewertet: gleichzeitig rot und grün-fluoreszierende Zellen: Mikroinjektion war erfolgreich, es wird keine Inhibition der YFP-Expression durch dsRNA beobachtet; bzw. es handelt sich um 10 Kontrollzellen, in die keine dsRNA injiziert wurde; nur rot-fluoreszierende Zellen: Mikroinjektion war erfolgreich, die dsRNA inhibiert YFP-Expression.

Ergebnisse:

Bei einer dsRNA-Konzentration von 0,1 µM konnte beim Einsatz 15 der dsRNA mit den an beiden 3'-Enden um je zwei Nukleotide überstehenden Einzelstrangbereichen (Sequenzprotokoll SQ148/159) eine merklich erhöhte Hemmung der Expression des YFP-Gens in Fibroblasten beobachtet werden im Vergleich zur 20 dsRNA ohne überstehende Einzelstrangenden (Tabelle 1).

Die Verwendung von kurzen, 19-25 Basenpaare enthaltenden, 25 dsRNA-Molekülen mit Überhängen aus wenigen, vorzugsweise 1 bis 3 nicht-basengepaarten, einzelsträngigen Nukleotiden ermöglicht somit eine vergleichsweise stärkere Hemmung der Genexpression in Säugerzellen als die Verwendung von dsRNAs mit derselben Anzahl von Basenpaaren ohne die entsprechenden Einzelstrangüberhänge bei jeweils gleichen RNA-Konzentrationen.

Ansatz	Name	Sequenzprotokoll-Nr.	0.1 µM
1	S1A/ S1B	SQ148 SQ149	+
2	S1A/ S4B	SQ148 (überstehende Enden) SQ159	+++
3		ohne RNA	-

Tabelle 1: Die Symbole geben den relativen Anteil an nicht oder schwach grün-fluoreszierenden Zellen an (+++ > 90%; ++ 60-90%; + 30-60%; - < 10%).

5

II. Hemmung der Genexpression eines Zielgens in kultivierten HELA-S3-Zellen und Mausfibroblasten durch dsRNA:

10 Die Effektivität der Inhibition der YFP-Expression nach transienter Transfektion eines YFP-codierenden Plasmids auf der Basis der RNA-Interferenz mit dsRNAs lässt sich durch Gestaltung der 3'-Enden und der Länge des basengepaarten Bereichs modulieren.

15

Ausführungsbeispiel:

Zum Wirksamkeitsnachweis der dsRNA bei der spezifischen Inhibition der Genexpression wurden transient transfizierte 20 NIH/3T3-Zellen (Fibroblasten aus NIH Swiss Mausembryo, ECCAC (European collection of animal cell culture) Nr. 93061524) und HELA-S3 (humane cervikale Karzinomzellen, DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) Nr. ACC 161) verwendet. Für die Transfektion wurde das Plasmid pcDNA-YFP 25 verwendet, das ein 800 bp großes Bam HI /Eco RI-YFP-Fragment in den entsprechenden Schnittstellen des Vektors pcDNA3 enthält. Aus der Sequenz des gelb-fluoreszierenden Proteins (YFP) abgeleitete doppelsträngige RNAs (dsRNAs) wurden herge-

stellt und zusammen mit dem Plasmid pcDNA-YFP transient in die Fibroblasten transfiziert (Die verwendeten spezifischen dsRNAs sind in ihren Antisinn-Strängen komplementär zu entsprechenden Abschnitten der Gensequenzen von sowohl YFP als 5 auch GFP). Nach 48 Stunden wurde die Fluoreszenzabnahme quantifiziert. Als Kontrollen fungierten Zellen, die entweder nur mit pcDNA-YFP oder mit pcDNA-YFP und einer Kontroll-dsRNA (nicht aus der YFP-Sequenz abgeleitet) transfiziert wurden.

10 Versuchsprotokoll:

dsRNA-Synthese:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reinigung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; 20 als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/ Minute. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 25 6 Stunden auf Raumtemperatur.

Aussaat der Zellen:

30 Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der NIH/3T3-Zellen und der HELA-S3 erfolgte im Brutschrank (CO₂-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO₂ und gesättigter

Luftfeuchtigkeit in DMEM (Dulbecco's modified eagle medium, Biochrom), für die Mausfibroblasten, und Ham's F12 für die HELA-Zellen mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom) und Penicillin/Streptomycin (100 IE/100 µg/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passiert. 24 Stunden vor der Durchführung der Transfektion wurden die Zellen trypsinisiert (10x Trypsin/EDTA, Biochrom, Deutschland) und mit einer Zelldichte von $1,0 \times 10^4$ Zellen/Vertiefung in einer 96-Loch-Platte (Multiwell Schalen 96-Well Flachboden, Labor Schubert & Weiss GmbH) in 150 µl Wachstumsmedium ausgesät.

15

Durchführung der transienten Transfektion:

Die Transfektion wurde mit Lipofectamine Plus™ Reagent (Life Technologies) gemäß den Angaben des Herstellers durchgeführt. Pro Well wurden 0,15 µg pcDNA-YFP-Plasmid eingesetzt. Das Gesamt-Transfektionsvolumen betrug 60 µl. Es wurden jeweils 3-fach-Proben angesetzt. Die Plasmid-DNA wurde zuerst zusammen mit der dsRNA komplexiert. Dazu wurde die Plasmid-DNA und die dsRNA in serumfreiem Medium verdünnt und pro 0,1 µg Plasmid-DNA 1 µl PLUS Reagent eingesetzt (in einem Volumen von 10 µl) und nach dem Mischen für 15 Minuten bei Raumtemperatur inkubiert. Während der Inkubation wurde pro 0,1 µg Plasmid-DNA 0,5 µl Lipofectamine in insgesamt 10 µl serumfreiem Medium verdünnt, gut gemischt, zu dem Plasmid/dsRNA/PLUS-Gemisch zugegeben und nochmals 15 Minuten inkubiert. Während der Inkubation wurde ein Mediumwechsel durchgeführt. Die Zellen wurden dazu 1 x mit 200 µl serumfreiem Medium gewaschen und danach mit 40 µl serumfreiem Medium bis zur Zugabe von DNA/dsRNA/PLUS/Lipofectamine weiter im Brutschrank inkubiert. Nach der Zugabe von 20 µl DNA/dsRNA/PLUS/Lipofectamine pro

Well wurden die Zellen für 2,5 Stunden im Brutschrank inkubiert. Anschließend wurden die Zellen nach der Inkubation 1 x mit 200 µl Wachstumsmedium gewaschen und für 24 Stunden bis zur Detektion der Fluoreszenz in 200 µl Wachstumsmedium im
5 Brutschrank inkubiert.

Detektion der Fluoreszenz:

24 Stunden nach dem letzten Mediumwechsel wurde die Fluoreszenz der Zellen am Fluoreszenz-Mikroskop (IX50-S8F2, Fluoreszenz-Einheit U-ULS100Hg, Brenner U-RFL-T200, Olympus) mit einer USH-I02D-Quecksilber-Lampe (USHIO Inc., Tokyo, Japan), ausgestattet mit einem WIB-Fluoreszenz-Würfel und einer digitalen CCD-Kamera (Orca IIIm, Hamamatsu) und C4742-95 Kamera-Controller) photographiert. Die Auswertung der Fluoreszenzaufnahmen erfolgte mit der analysis-Software 3.1 (Soft Imaging System GmbH, Deutschland). Um die YFP-Fluoreszenz in Relation zur Zelldichte zu setzen, wurde eine Zellkernfärbung (Hoechst-Staining) durchgeführt. Dazu wurden die Zellen in 100 µl Methylcarnoy (75% Methanol, 25% Eisessig) zuerst für 5 und danach nochmals für 10 Minuten in Methylcarnoy fixiert.
Nach dem Lufttrocknen wurden die fixierten Zellen für 30 Minuten im Dunkeln mit 100 µl pro Well Hoechst-Farbstoff (75 ng/ml) inkubiert. Nach 2maligem Waschen mit PBS (PBS Dulbecco w/o Ca²⁺, Mg²⁺, Biochrom) wurden die Hoechst-gefärbten Zellen unter dem Fluoreszenz-Mikroskop (Olympus, WU-Fluoreszenz-Würfel für Hoechst) photographiert.

In den Fig. 3 bis 9 sind die Ergebnisse zur Inhibition der YFP-Expression durch dsRNA in kultivierten Zellen zusammengefasst:

30

In Fig. 3, 4, 5 und 6 sind die Effekte von YFP-spezifischen dsRNAs und von Kontroll-dsRNAs auf die YFP-Expression in NIH/3T3-Mausfibroblasten nach transienter Transfektion zusammengefasst. Die Experimente wurden wie im Versuchsprotokoll

beschrieben durchgeführt. Die Konzentration der dsRNA bezieht sich auf die Konzentration im Medium während der Transfektionsreaktion. Die Bezeichnungen für die dsRNAs sind der Tabelle 2 zu entnehmen. Dargestellt ist die relative Fluoreszenz 5 pro Bildausschnitt in Flächenprozent. Pro Well wurden 3 verschiedene Bildausschnitte ausgewertet. Die Mittelwerte ergeben sich aus den 3-fach-Ansätzen.

In den Fig. 7 und 9 ist die spezifische Inhibition der YFP-Genexpression durch dsRNAs in HELA-S3-Zellen dargestellt.

10 In Fig. 7 ist die hemmende Wirkung unterschiedlich gestalteter dsRNA-Konstrukte (Tabelle 2) in verschiedenen Konzentrationen auf die Expression von YFP in HeLa-Zellen dargestellt. Fig. 8 zeigt repräsentative fluoreszenzmikroskopische Aufnahmen von transient mit YFP transfizierten NIH/3T3-Maus-
15 fibroblasten ohne dsRNA und mit spezifisch gegen YFP gerichteten dsRNAs (x 100 Vergrößerung).

8A: YFP-Kontrolle

8B: S1, 10 nM

8C: S4, 10 nM

20 8D: S7, 10 nM

8E: S7/S11, 1 nM

8F: S7/S12, 1 nM

Fig. 9 zeigt repräsentative fluoreszenzmikroskopische Aufnahmen von transient mit YFP transfizierten HELA-3S-Zellen ohne 25 dsRNA und mit spezifisch gegen YFP gerichteten dsRNAs (x 100 Vergrößerung).

9A: K2-Kontrolle, 10 nM

9B: S1, 10 nM

30 9C: S4, 10 nM

9D: S7, 10 nM

9E: S7/11, 1 nM

9F: S7/12, 1 nM

9G: S1A/S4B, 10 nM

9H: YFP-Kontrolle

Ergebnisse:

- 5 Fig. 3 zeigt, dass die YFP-Expression nach transienter Kotransfektion von Mausfibroblasten mit dem YFP-Plasmid und spezifisch gegen die YFP-Sequenz gerichteten dsRNAs dann besonders wirkungsvoll gehemmt wird, wenn die 3'-Enden der 22 und 19 Basenpaare enthaltenden Bereiche der dsRNAs einzelsträngige Abschnitte von 2 Nukleotiden (nt) aufweisen. Während die dsRNA S1 mit glatten 3'-Enden bei einer Konzentration von 1 nM (bezogen auf die Konzentration im Zellkultur-Medium während der Durchführung der Transfektion) keine inhibitorischen Effekte auf die YFP-Expression zeigt, inhibieren 10 die dsRNAs S7 (19 Nukleotidpaare) und S4 (22 Nukleotidpaare) mit jeweils 2nt Überhängen an beiden 3'-Enden die YFP-Expression um 50 bzw. um 70% im Vergleich zu den entsprechenden Kontroll-dsRNAs K3 und K2. Bei einer Konzentration von 10 nM inhibiert die als S1 bezeichnete dsRNA mit glatten Enden 15 die YFP-Expression um ~65%, während die Inhibition der YFP-Expression durch die S4 dsRNA ~93% beträgt (Fig. 4). Der inhibitorische Effekt der mit S4 und S7 bezeichneten dsRNAs ist konzentrationsabhängig (Fig. 3 und 4, siehe auch Fig. 7).
- 20
- 25 Fig. 4 zeigt, dass für die effiziente Unterdrückung der YFP-Genexpression die einzelsträngige Ausbildung nicht an beiden 3'-Enden (auf Sinn- und Antisinn-Strang) notwendig ist. Um eine möglichst effektive Inhibition der YFP-Expression zu erreichen, ist lediglich der 2nt-Überhang am 3'-Ende auf dem 30 Antisinn-Strang notwendig. So liegt die Inhibition der YFP-Expression bei einer Konzentration von 1 nM bei den beiden dsRNAs S4 (mit 2nt-Überhängen auf beiden 3'-Enden) und S1A/S4B (mit einem 2nt-Überhang auf dem 3'-Ende des Antisinn-Stranges) bei ~70%. Befindet sich dagegen der 2nt-Überhang

auf dem 3'-Ende des Sinn-Stranges (und das 3'-Ende des Anti-sinn-Stranges trägt keinen einzelsträngigen Bereich), so liegt die Inhibition der YFP-Genexpression lediglich bei 50%. Analog ist die Inhibition bei höheren Konzentrationen deutlich besser, wenn mindestens das 3'-Ende des Antisinn-Stranges einen 2nt-Überhang trägt.

Eine deutlichere Hemmung der YFP-Expression wird erreicht, wenn der basengepaarte Bereich 21 Nukleotid-Paare statt 22 (S1 und S4), 20 (S13 bzw. S13/14) oder 19 (S7) umfasst (Fig. 5, 6 und 7). So beträgt die Inhibition der YFP-Expression durch S1 (22 Basenpaarungen mit glatten Enden) in einer Konzentration von 5 nM ~40%, während die Inhibition durch S7/S12 (21 Basenpaarungen mit glatten Enden), ebenfalls mit 5 nM bei ~92% liegt. Weist die dsRNA mit 21 Basenpaarungen noch einen 2nt-Überhang am Antisinnstrang-3'-Ende (S7/S11) auf, so liegt die Inhibition bei ~ 97% (verglichen mit ~73% Inhibition durch S4 und ~70% Inhibition durch S7).

20

III. Untersuchung der Serumstabilität der doppelsträngigen RNA (dsRNA):

Ziel ist es, die in den Zellkulturen gefundene Effektivität der durch dsRNAs vermittelten Hemmung der Genexpression von Zielgenen für den Einsatz *in vivo* zu steigern. Dies wird durch eine verbesserte Stabilität der dsRNAs im Serum und durch eine daraus resultierende verlängerte Verweilzeit des Moleküls im Kreislauf bzw. die damit verbundenen erhöhte-wirksame-Konzentration des funktionellen Moleküls erreicht.

Ausführungsbeispiel:

Die Serumstabilität der die GFP-Expression hemmenden dsRNAs wurde *ex vivo* in murinem und humanem Serum getestet.

Versuchsprotokoll:

5

Die Inkubation mit humanem bzw. murinem Serum mit der entsprechenden dsRNA erfolgte bei 37°C. Es wurden je 85 µl Serum mit 15 µl 100µM dsRNA inkubiert. Nach bestimmten Inkubationszeiten (30 min, 1h, 2h, 4h, 8h, 12h, 24h) wurden die Proben 10 bei -80°C eingefroren. Als Kontrolle wurde dsRNA ohne Serum (+85 µl ddH₂O) und dsRNA mit Serum zum Zeitpunkt 0 verwendet.

Für die Isolierung der dsRNA aus dem Inkubationsansatz, die auf Eis erfolgte, wurden jeweils 400 µl 0,1% SDS zu den Ansätzen gegeben und diese einer Phenolextraktion unterzogen: 15 Pro Ansatz wurden 500 µl Phenol : Chloroform : Isoamylalkohol (IAA, 25:24:1, Roti®-Phenol, Roth, Karlsruhe) zugegeben und für 30 sec auf höchster Stufe gevortext (Vortex Genie-2; Scientific Industries). Nach 10minütiger Inkubation auf Eis 20 erfolgte die Phasentrennung durch Zentrifugation bei 12.000xg, 4°C, für 10 min (Sigma 3K30, Rotor 12131-H). Die obere wässrige Phase (ca. 200 µl) wurde abgenommen und zuerst einem DNase I- und danach einem Proteinase K - Verdau unterzogen: Zugabe von 20 µl 10xfach DNaseI-Puffer (100 mM Tris, 25 pH 7,5, 25 mM MgCl₂, 1 mM CaCl₂) und 10 U DNase I (D7291, Sigma-Aldrich), 30 min Inkubation bei 37°C, erneute Zugabe von 6 U DNase I und Inkubation für weitere 20 min bei 37°C, Zugabe von 5 µl Proteinase K (20 mg/ml, 04-1075, Peqlab, Deutschland) und 30 min Inkubation bei 37°C. Danach wurde eine 30 Phenolextraktion durchgeführt. Dazu wurde 500 µl Phenol : Chloroform : IAA (25:24:1) zugegeben, 30 sec auf höchster Stufe gevortext, 10 min bei 12.000xg, 4°C, zentrifugiert, der Überstand abgenommen und nacheinander mit 40 µl 3 M Na-Ac (Natriumacetat), pH 5,2, und 1 ml 100% EtOH versetzt, dazwi-

schen gut gemischt und für mindestens 1 h bei -80°C gefällt. Das Präzipitat wurde durch Zentrifugation bei 12.000xg für 30 min und 4°C pelletiert, mit 70% EtOH gewaschen und erneut zentrifugiert (10 min, 12.000xg, 4°C). Das luftgetrocknete

- 5 Pellet wurde in 30 µl RNA-Gelauftragspuffer (7 M Harnstoff, 1 x TBE (0,09 M Tris-Borat, 0,002 M EDTA (Ethylendiamintetraacetat), 0,02% (w/v) Bromphenolblau, 0,02% (w/v) Xylencyanol) aufgenommen und bis zum Gelauftrag bei -20°C gelagert.
- 10 Zur Charakterisierung der dsRNA wurde eine analytische, denaturierende Polyacrylamid-Gelelektrophorese (analytische PAGE) durchgeführt. Die Harnstoffgele wurden kurz vor dem Lauf hergestellt: 7M Harnstoff (21g) wurde in 25 ml 40% wässrige Acrylamid/Bisacrylamid Stammlösung (Rotiphorese-Gel, A515.1, Roth) und 5 ml 10 x TBE (108 g Tris, 55 g Borsäure, 9,3 g EDTA pro L Aqua dest.) unter Rühren gelöst und auf 50 ml mit Aqua dest. aufgefüllt. Kurz vor dem Gießen wurden 50 µl TEMED (N,N,N',N'-Tetramethylethylendiamin) und 500 µl 10% APS (Ammoniumperoxidisulfat) zugesetzt. Nach dem Auspolymerisieren 15 wurde das Gel in eine vertikale Elektrophorese-Apparatur (Merck, Darmstadt) eingesetzt und ein Vorlauf für 30 min bei konstant 40 mA Stromstärke durchgeführt. Als Laufpuffer wurde 20 1 x TBE-Puffer verwendet. Vor dem Auftrag auf das Gel wurden die RNA-Proben für 5 min bei 100°C erhitzt, auf Eis abgekühlt und für 20 sec in einer Tischzentrifuge (Eppendorf, minispin) 25 abzentrifugiert. Es wurden je 15 µl auf das Gel aufgetragen. Der Lauf erfolgte für ca. 2h bei einem konstanten Stromfluß von 40 mA. Nach dem Lauf wurde das Gel 30 min bei RT (Raumtemperatur) mit Stains all-Färbelösung (20 ml Stains all 30 Stammlösung (200 mg Stains all in 200 ml Formamid gelöst) mit 200 ml Aqua dest. und 180 ml Formamid versetzt) gefärbt und die Hintergrundfärbung danach durch Spülen in Aqua dest. für 45 min entfernt. Die Gele wurden mit dem Photodokumentationsystem Image Master VDS von Pharmacia photographiert.

Die Fig. 10 bis 17 zeigen die Serumstabilität der dsRNA nach Inkubation mit humanem bzw. murinem Serum und nachfolgender elektrophoretischer Auftrennung im 20%igem 7M Harnstoffgel.

5 **Fig. 10: Inkubation von S1 (0-22-0) in Maus-Serum**

1. zum Zeitpunkt 0 (ohne Serum)
 2. zum Zeitpunkt 0
 3. für 30 Minuten
 4. für 1 Stunde
 - 10 5. für 2 Stunden
 6. für 4 Stunden
 7. für 12 Stunden
 8. 2 μ l 100 μ M S1 ohne Inkubation
- S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
15 S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 11: Inkubation von S1 (0-22-0) in humanem Serum

1. 2 μ l 100 μ M S1 unbehandelt (ohne Inkubation)
 2. für 30 Minuten
 3. für 2 Stunden
 - 20 4. für 4 Stunden
 5. für 6 Stunden
 6. für 8 Stunden
 7. für 12 Stunden
 8. für 24 Stunden
- 25 S1A) Sinnstrang S1 (10 μ l 20 μ M S1A)
S1B) Antisinnstrang S1 (10 μ l 20 μ M S1B)

Fig. 12: Inkubation von S7 (2-19-2) in Maus-Serum

1. zum Zeitpunkt 0 (ohne Serum)
2. für 30 Minuten
- 30 3. für 4 Stunden
4. für 12 Stunden

Fig. 13: Inkubation von S7 (2-19-2) in humanem Serum

1. Sinnstrang S7 (10 μ l 20 μ M S7A)

2. Antisinnstrang S7 (10 µl 20 µM S7B)
3. für 30 Minuten
4. für 1 Stunde
5. für 2 Stunden
6. für 4 Stunden
7. für 6 Stunden
8. für 12 Stunden
9. für 24 Stunden
10. zum Zeitpunkt 0 (ohne Serum)

10 **Fig. 14: Inkubation von K3 (2-19-2) in Maus-Serum**

1. Sinnstrang K3 (10 µl 20 µM K3A)
2. Antisinnstrang K3 (10 µl 20 µM K3B)
3. zum Zeitpunkt 0 (ohne Serum)
4. zum Zeitpunkt 0 (mit Serum)
- 15 5. für 30 Minuten
6. für 1 Stunde
7. für 2 Stunden
8. für 4 Stunden
9. für 12 Stunden

20 **Fig. 15: Inkubation von PKC1/2 (0-22-2) in Maus-Serum**

1. für 30 Minuten
2. für 1 Stunde
3. für 2 Stunden
4. für 4 Stunden
- 25 5. für 12 Stunden
6. 2 µl 100 µM PKC1/2 (unbehandelt)

Fig. 16: Inkubation von S1A/S4B (0-22-2) in humanem Serum

1. zum Zeitpunkt 0 (ohne Serum)
2. für 24 Stunden
- 30 3. für 12 Stunden
4. für 8 Stunden
5. für 6 Stunden
6. für 4 Stunden

7. für 2 Stunden
8. für 30 Minuten
9. Sinnstrang S1A (10 µl 20 µM S1A)
10. Antisinnstrang S4B (10 µl 20 µM S4B)

5 **Fig. 17: Inkubation von K2 (2-22-2) in humanem Serum**

1. Sinnstrang K2 (10 µl 20 µM K2A)
2. Antisinnstrang K2 (10 µl 20 µM K2B)
3. zum Zeitpunkt 0 (ohne Serum)
4. für 30 Minuten
5. für 2 Stunden
6. für 4 Stunden
7. für 6 Stunden
8. für 8 Stunden
9. für 12 Stunden
10. für 24 Stunden

Ergebnisse:

dsRNAs ohne einzelsträngige Bereiche an den 3'-Enden sind im Serum sowohl von Mensch und Maus wesentlich stabiler als dsRNAs mit einzelsträngigen 2nt-Überhängen an den 3'-Enden (Fig. 10 bis 14 und 17). Nach 12 bzw. 24 Stunden Inkubation von S1 in murinem bzw. humanem Serum ist noch immer eine Bande in der ursprünglichen Größe fast vollständig erhalten. Dagegen nimmt bei dsRNAs mit 2nt-Überhängen an beiden 3'-Enden die Stabilität in humanem als auch im murinen Serum deutlich ab. Bereits nach 4 Stunden Inkubation von S7 (Fig. 12 und 13) oder K3 (Fig. 14) ist keine Bande in der Originalgröße mehr detektierbar.

Um die Stabilität von dsRNA im Serum zu erhöhen, ist es ausreichend, wenn die dsRNA ein glattes Ende besitzt. Im Maus-Serum ist nach 4 Stunden Inkubation (Fig. 15, Bahn 4) die

Banden in der Originalgröße kaum abgebaut im Vergleich zu S7 (nach 4 Stunden vollständiger Abbau; Fig. 12, Bahn 3).

- Als optimaler Kompromiß hinsichtlich der biologischen Wirksamkeit von dsRNA kann die Verwendung von dsRNA mit einem glatten Ende und einem einzelsträngigem Bereich von 2 Nukleotiden angesehen werden, wobei sich der einzelsträngige Überhang am 3'-Ende des Antisinn-Stranges befinden sollte.
- Die hier verwendeten Sequenzen sind aus der nachstehenden Tabelle 2 und den Sequenzprotokollen SQ148-151 und 153-167 ersichtlich.

Name	Sequenz- proto- koll-Nr.	dsRNA-Sequenz	
S1	SQ148	(A) 5' - CCACAUGAAGCAGCACGACUUC -3'	0-22-0
	SQ149	(B) 3' - GGUGUACUUCGUCGUGCUGAAG -5'	
S7	SQ150	(A) 5' - CCACAUGAAGCAGCACGACUU -3'	2-19-2
	SQ151	(B) 3' - CUGGUGUACUUCGUCGUGCUG -5'	
K1	SQ153	(A) 5' - ACAGGAUGAGGAUCGUUCGCA -3'	0-22-0
	SQ154	(B) 3' - UGUCCUACCUAGCAAAGCGU -5'	
K3	SQ155	(A) 5' - GAUGAGGAUCGUUCGCAUGA -3'	2-19-2
	SQ156	(B) 3' - UCCUACCUAGCAAAGCGUA -5'	
K2	SQ157	(A) 5' - ACAGGAUGAGGAUCGUUCGCAUG -3'	2-22-2
	SQ158	(B) 3' - UCUGUCCUACCUAGCAAAGCGU -5'	
S1A/ S4B	SQ148	(A) 5' - CCACAUGAAGCAGCACGACUUC -3'	0-22-2
	SQ159	(B) 3' - CUGGUGUACUUCGUCGUGCUGAAG -5'	

PKC 1/2	SQ160 SQ161	(A) 5'- CUUCUCCGCCUCACACCGCUGCAA -3' (B) 3'- GAAGAGGCAGGAGUGUGGGCGACG -5'	2-22-0
S7/S12	SQ150 SQ162	(A) 5'- CCACAUGAAGCAGCACGACUU -3' (B) 3'- GGUGUACUUCGUCGUGCUGAA -5'	0-21-0
S7/S11	SQ150 SQ163	(A) 5'- CCACAUGAAGCAGCACGACUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAA -5'	0-21-2
S13	SQ164 SQ165	(A) 5'- CCACAUGAAGCAGCACGACU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGA -5'	0-20-2
S13/14	SQ164 SQ166	(A) 5'- CCACAUGAAGCAGCACGACU -3' (B) 3'- GGUGUACUUCGUCGUGCUGA -5'	0-20-0
S4	SQ167 SQ159	(A) 5'- CCACAUGAAGCAGCACGACUUCUU -3' (B) 3'- CUGGUGUACUUCGUCGUGCUGAAG -5'	2-22-2
K1A/ K2B	SQ153 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCA -3' (B) 3'- UCUGUCCUACCUAGCAAAGCGU -5'	0-22-2
K1B/ K2A	SQ154 SQ157	(A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3'- UGUCCUACCUAGCAAAGCGU -5'	2-22-0
S1B/ S4A	SQ149 SQ167	(A) 5'- CCACAUGAAGCAGCACGACUUCUU -3' (B) 3'- GGUGUACUUCGUCGUGCUGAAG -5'	2-22-0

Tabelle 2IV. In vivo-Studie:

5

Es wurde „GFP-Labormäusen“, die das Grün-fluoreszierende Protein (GFP) in allen Proteinbiosynthese betreibenden Zellen exprimieren, doppelsträngige RNA (dsRNA), die aus der GFP-Sequenz abgeleitet wurde, bzw. unspezifische dsRNA intravenös in die Schwanzvene injiziert. Am Versuchsende wurden die Tie-

re getötet und die GFP-Expression in Gewebeschnitten und im Plasma analysiert.

Versuchsprotokoll:

5

Synthese der dsRNA:

Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen er-
10 sichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reini-
gung der rohen Syntheseprodukte mit Hilfe der HPLC. Als Säu-
len wurden NucleoPac PA-100, 9x250 mm der Fa. Dionex, verwen-
det; als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8,
15 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM
NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/Minute.
Die Hybridisierung der Einzelstränge zum Doppelstrang erfolg-
te durch Erhitzen des stöchiometrischen Gemisches der Einzel-
stränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl,
20 auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stun-
den auf Raumtemperatur.

Versuchstierhaltung und Versuchsdurchführung:

Es wurde der transgene Labormausstamm TgN(GFPU) 5Nagy (The
25 Jackson Laboratory, Bar Harbor, ME, USA) verwendet, der GFP
(mit einem beta-Aktin-Promotor und einem CMV intermediate
early enhancer) in allen bisher untersuchten Zellen expri-
miert (Hadjantonakis AK et al., 1993, Mech. Dev. 76: 79-90;
Hadjantonakis AK et al., 1998 Nature Genetics 19: 220-222).
30 GFP-transgene Mäuse lassen sich eindeutig anhand der Fluores-
zenz (mit einer UV-Handlampe) von den entsprechenden Wildtypen (WT)
unterscheiden. Für die Zucht wurde jeweils der ent-
sprechende WT mit einem heterozygotem GFP-Typ verpaart.

Die Versuchsdurchführung erfolgte gemäß den deutschen Tier- schutzbestimmungen. Die Tiere wurden unter kontrollierten Um- weltbedingungen in Gruppen von 3-5 Tieren in Typ III Makro- lon-Käfigen der Fa. Ehret, Emmendingen, bei einer konstanten
5 Temperatur von 22°C und einem Hell-Dunkel-Rhythmus von 12h gehalten. Als Sägemehleinsteu wurde Weichholzgranulat 8/15 der Fa. Altromin, Lage, verwendet. Die Tiere erhielten Lei- tungswasser und Standardfutter Altromin 1324 pelletiert (Al- tromin) ad libitum.

10

Für die Versuchsdurchführung wurden die heterozygoten GFP- Tiere zu je 3 Tieren gruppenweise in Käfigen wie oben be- schrieben gehalten. Die Injektionen der dsRNA-Lösung erfolg- ten intravenös (i.v.) in die Schwanzvene im 12h-Turnus (zwi-
15 schen 5³⁰ und 7⁰⁰ sowie zwischen 17³⁰ und 19⁰⁰ Uhr) über 5 Tage hinweg. Das Injektionsvolumen betrug 60 µl pro 10 g Körperge- wicht und die Dosis betrug 2,5 mg dsRNA bzw. 50 µg pro kg Körpergewicht. Die Einteilung in die Gruppen war wie folgt:

20 Gruppe A: PBS (phosphate buffered saline) je 60 µl pro 10 g Körpergewicht,

Gruppe B: 2,5 mg pro kg Körpergewicht einer unspezifi-
25 schen Kontroll-dsRNA (K1-Kontrolle mit glatten Enden und einem Doppelstrangbereich von 22 Nu- kleotidpaaren),

Gruppe C: 2,5 mg pro kg Körpergewicht einer weiteren un-
30 spezifischen Kontroll-dsRNA (K3-Kontrolle mit 2nt-Überhängen an beiden 3'-Enden und einem Doppelstrangbereich von 19 Nukleotidpaaren),

Gruppe D: 2,5 mg pro kg Körpergewicht dsRNA (spezifisch gegen GFP gerichtet, im weiteren als S1 be-

zeichnet, mit glatten Enden und einem Doppelstrangbereich von 22 Nukleotidpaaren),

Gruppe E: 2,5 mg dsRNA pro kg Körpergewicht (spezifisch
5 gegen GFP gerichtet, im Weiteren als S7 bezeichnet, mit 2nt-Überhängen an den 3'-Enden beider Stränge und einem Doppelstrangbereich von 19 Nukleotidpaaren)

10 Gruppe F: 50 µg S1-dsRNA pro kg Körpergewicht (also 1/50 der Dosis der Gruppe D).

Nach der letzten Injektion von insgesamt 10 Injektionen wurden die Tiere nach 14-20h getötet und Organe und Blut wie beschrieben entnommen.
15

Organentnahme:

Sofort nach dem Töten der Tiere durch CO₂-Inhalation wurden Blut und verschiedene Organe entnommen (Thymus, Lunge, Herz,
20 Milz, Magen, Darm, Pankreas, Gehirn, Niere und Leber). Die Organe wurden kurz in kaltem, sterilem PBS gespült und mit einem sterilen Skalpell zerteilt. Ein Teil wurde für immunhistochemische Färbungen in Methyl Carnoys (MC, 60% Methanol, 30% Chloroform, 10% Eisessig) für 24h fixiert, ein Teil für
25 Gefrierschnitte und für Proteinisolierungen sofort in flüssigem Stickstoff schockgefroren und bei -80°C gelagert und ein weiterer, kleinerer Teil wurde für RNA-Isolierungen in RNAeasy-Protect (Qiagen) bei -80°C eingefroren. Das Blut wurde sofort nach der Entnahme 30 min auf Eis gehalten, gemixt,
30 5 min bei 2000 rpm (Mini spin, Eppendorf) zentrifugiert, der Überstand abgenommen und bei -80°C gelagert (hier als Plasma bezeichnet).

Prozessieren der Biopsien:

Nach 24h Fixierung der Gewebe in MC wurden die Gewebestücke in einer aufsteigenden Alkoholreihe bei RT (Raumtemperatur) dehydriert: je 40 min 70% Methanol, 80% Methanol, 2 x 96% Methanol und 3 x 100% Isopropanol. Danach wurden die Gewebe 5 in 100% Isopropanol auf 60°C im Brutschrank erwärmt, nachfolgend für 1h in einem Isopropanol/Paraffin-Gemisch bei 60°C und 3 x für 2h in Paraffin inkubiert und sodann in Paraffin eingebettet. Für Immunperoxidase-Färbungen wurden mit einem Rotationsmikrotom (Leica) Gewebeschnitte von 3 µm Schnittdicke 10 angefertigt, auf Objektträger (Superfrost, Vogel) aufgezogen und für 30 min bei 60°C im Brutschrank inkubiert.

Immunperoxidase-Färbung gegen GFP:

Die Schnitte wurden 3 x 5 min in Xylol deparaffiniert, in einer absteigenden Alkoholreihe (3 x 3 min 100% Ethanol, 2 x 2 min 95% Ethanol) rehydriert und danach 20 min in 3% H₂O₂/Methanol zum Blocken endogener Peroxidasen inkubiert. Alle Inkubationsschritte wurden im Folgenden in einer feuchten Kammer durchgeführt. Nach 3 x 3 min Waschen mit PBS wurde 20 mit dem 1. Antikörper (goat anti-GFP, sc-5384, Santa Cruz Biotechnology) 1:500 in 1% BSA/PBS über Nacht bei 4°C inkubiert. Die Inkubation mit dem biotinyliertem Sekundärantikörper (donkey anti-goat; Santa Cruz Biotechnology; 1:2000 Verdünnung) erfolgte für 30 min bei RT, danach wurde für 30 min 25 mit Avidin D Peroxidase (1:2000-Verdünnung, Vector Laboratories) inkubiert. Nach jeder Antikörperinkubation wurden die Schnitte 3 x 3 min in PBS gewaschen und Pufferreste mit Zellstoff von den Schnitten entfernt. Alle Antikörper wurden in 1% Rinderserumalbumin (BSA)/PBS verdünnt. Die Färbung mit 30 3,3'-Diaminobenzidin (DAB) wurde mit dem DAB Substrat Kit (Vector Laboratories) nach Herstellerangaben durchgeführt. Als nukleäre Gegenfärbung wurde Hämatoxylin III nach Gill (Merck) verwendet. Nach der Dehydrierung in einer aufsteigenden Alkoholreihe und 3 x 5 min Xylol wurden die Schnitte mit

Entellan (Merck) eingedeckt. Die mikroskopische Auswertung der Färbung erfolgte mit dem IX50 Mikroskop von Olympus, ausgestattet mit einer CCD-Camera (Hamamatsu).

5 Proteinisolierung aus Gewebestücken:

Zu den noch gefrorenen Gewebestücken wurden jeweils 800 µl Isolierungspuffer (50 mM HEPES, pH 7,5; 150 mM NaCl; 1 mM EDTA; 2,5 mM EGTA; 10% Glycerol; 0,1% Tween; 1 mM DTT; 10 mM β-Glycerol-Phosphat; 1 mM NaF; 0,1 mM Na₃VO₄ mit einer Protease-Inhibitor-Tablette „Complete“ von Roche) zugegeben und 2 x 30 Sekunden mit einem Ultraturrax (DIAx 900, Dispergierwerkzeug 6G, Heidolph) homogenisiert, dazwischen auf Eis abgekühlt. Nach 30 Minuten Inkubation auf Eis wurde gemischt und für 20 Minuten bei 10.000xg, 4°C, zentrifugiert (3K30, Sigma). Der Überstand wurde erneut 10 Minuten auf Eis inkubiert, gemischt und 20 Minuten bei 15.000xg, 4°C, zentrifugiert. Mit dem Überstand wurde eine Proteinbestimmung nach Bradford, 1976, modifiziert nach Zor & Selinger, 1996, mit dem Roti-Nanoquant-System von Roth nach den Angaben des Herstellers durchgeführt. Für die Protein-Eichgerade wurde BSA (bovines Serumalbumin) in Konzentrationen von 10 bis 100 µg/ml eingesetzt.

25 SDS-Gelelektrophorese:

Die elektrophoretische Auftrennung der Proteine erfolgte in einer Multigel-Long Elektrophoresekammer von Biometra mit einer denaturierenden, diskontinuierlichen 15% SDS-PAGE (Polyacrylamid Gelelektrophorese) nach Lämmli (Nature 277: 680-685, 1970). Dazu wurde zunächst ein Trenngel mit 1,5 mm Dicke gegossen: 7,5 ml Acrylamid/Bisacrylamid (30%, 0,9%), 3,8 ml 1,5 M Tris/HCl, pH 8,4, 150 µl 10% SDS, 3,3 ml Aqua bidest., 250 µl Ammoniumpersulfat (10%), 9 µl TEMED (N,N,N',N'-Tetramethylendiamin) und bis zum Auspolymerisieren mit 0,1%

SDS überschichtet. Danach wurde das Sammelgel gegossen: 0,83 µl Acrylamid/Bisacrylamid (30%/0,9%), 630 µl 1 M Tris/HCl, pH 6,8, 3,4 ml Aqua bidest., 50 µl 10% SDS, 50 µl 10% Ammoniumpersulfat, 5 µl TEMED.

5

Vor dem Auftrag auf das Gel wurden die Proteine mit einer entsprechenden Menge an 4fach Probenpuffer (200 mM Tris, pH 6,8, 4% SDS, 100 mM DTT (Dithiotreithol), 0,02% Bromphenolblau, 20% Glycerin) versetzt, für 5 min im Heizblock bei 100°C denaturiert, nach dem Abkühlen auf Eis kurz abzentrifugiert und auf das Gel aufgetragen. Pro Bahn wurde die gleichen Plasma- bzw. Proteinmengen eingesetzt (je 3µl Plasma bzw. 25 µg Gesamtprotein). Die Elektrophorese erfolgte wasergekühlt bei RT und konstant 50 V. Als Längenstandard wurde der Proteingelmarker von Bio-Rad (Kaleidoscope Prestained Standard) verwendet.

Western Blot und Immundetektion:

Der Transfer der Proteine vom SDS-PAGE auf eine PVDF (Polyvinylidifluorid)-Membran (Hybond-P, Amersham) erfolgte im semi-dry Verfahren nach Kyhse-Anderson (J. Biochem. Biophys. Methods 10: 203-210, 1984) bei RT und einer konstanten Stromstärke von 0,8 mA/cm² für 1,5 h. Als Transferpuffer wurde ein Tris/Glycin-Puffer eingesetzt (39 mM Glycin, 46 mM Tris, 0,1 % SDS und 20% Methanol). Zum Überprüfen des elektrophoretischen Transfers wurden sowohl die Gele nach dem Blotten als auch die Blotmembranen nach der Immundetektion mit Coomassie gefärbt (0,1% Coomassie G250, 45% Methanol, 10% Eisessig). Zum Absättigen unspezifischer Bindungen wurde die Blotmembran nach dem Transfer in 1% Magermilchpulver/PBS für 1h bei RT inkubiert. Danach wurde je dreimal für 3 min mit 0,1% Tween-20/PBS gewaschen. Alle nachfolgenden Antikörperinkubationen und Waschschrifte erfolgten in 0,1% Tween-20/ PBS. Die Inkubation mit dem Primärantikörper (goat anti-GFP, sc-5384, San-

ta Cruz Biotechnology) in einer Verdünnung von 1:1000 erfolgte für 1h bei RT. Danach wurde 3 x 5 min gewaschen und für 1h bei RT mit dem Sekundärantikörper (donkey anti-goat IgG Horseradish Peroxidase gelabelt, Santa Cruz Biotechnology) in einer Verdünnung von 1 : 10.000 inkubiert. Die Detektion erfolgte mit dem ECL-System von Amersham nach den Angaben des Herstellers.

In den Fig. 18 bis 20 ist die Inhibition der GFP-Expression nach intravenöser Injektion von spezifisch gegen GFP gerichteter dsRNA mit Immunperoxidase-Färbungen gegen GFP an 3 µm Paraffinschnitten dargestellt. Im Versuchsverlauf wurde gegen GFP gerichtete dsRNA mit einem doppelsträngigen Bereich von 22 Nukleotid-(nt)paaren ohne Überhänge an den 3'-Enden (D) und die entsprechende unspezifische Kontroll-dsRNA (B) sowie spezifisch gegen GFP gerichtete dsRNA mit einem 19 Nukleotidpaare umfassenden Doppelstrangbereich mit 2nt-Überhängen an den 3'-Enden (E) und die entsprechende unspezifische Kontroll-dsRNA (C) im 12 Stunden-Turnus über 5 Tage hinweg appliziert. (F) erhielt 1/50 der Dosis von Gruppe D. Als weitere Kontrolle wurden Tiere ohne dsRNA-Gabe (A) bzw. WT-Tiere untersucht. Die Fig. 18 zeigt die Inhibition der GFP-Expression in Nierenschnitten, Fig. 19 in Herz- und Fig. 20 in Pankreasgewebe. In den Fig. 21 bis 23 sind Western Blot-Analysen der GFP-Expression in Plasma und Geweben dargestellt. In der Fig. 21 ist die Inhibition der GFP-Expression im Plasma, in Fig. 22 in der Niere und in Fig. 23 in Herz gezeigt. In Fig. 23 sind Gesamtproteinisolate aus verschiedenen Tieren aufgetragen. Es wurden jeweils gleiche Gesamtproteinmengen pro Bahn aufgetragen. In den Tieren, denen unspezifische Kontroll-dsRNA verabreicht wurde (Tiere der Gruppen B und C), ist die GFP-Expression gegenüber Tieren, die keinerlei dsRNA erhielten, nicht reduziert. Tiere, die spezifisch gegen GFP gerichtete dsRNA mit 2nt-Überhängen an den 3'-Enden

beider Stränge und einen 19 Nukleotidpaare umfassenden Doppelstrangbereich erhielten, zeigten eine signifikant inhibierte GFP-Expression in den untersuchten Geweben (Herz, Niere, Pankreas und Blut), verglichen mit unbehandelten Tieren
5 (Fig. 18 bis 23). Bei den Tieren der Gruppen D und F, denen spezifisch gegen GFP gerichtete dsRNA mit glatten Enden und einem 22 Nukleotidpaare umfassenden Doppelstrangbereich appliziert wurde, zeigten nur jene Tiere, die die dsRNA in einer Dosis von 50 µg/kg Körpergewicht pro Tag erhielten, ei-
10 ne spezifische Inhibition der GFP-Expression, die allerdings weniger deutlich ausgeprägt war als die der Tiere in Gruppe E.

Die zusammenfassende Auswertung von GFP-Inhibition in den Ge-
webeschnitten und im Western Blot ergibt, dass die Inhibition
15 der GFP-Expression im Blut und in der Niere am stärksten ist
(Fig. 18, 21 und 22).

V. Hemmung der Genexpression des EGF-Rezeptors mit dsRNA
als therapeutischer Ansatz bei Krebsformen mit EGFR-
20 Überexpression oder EGFR-induzierter Proliferation:

Der Epidermal Growth Factor (=EGF)-Rezeptor (=EGFR) gehört zu den Rezeptor-Tyrosinkinasen, transmembranen Proteinen mit einer intrinsischen Tyrosinkinase-Aktivität, die an der Kon-
25 trolle einer Reihe von zellulären Prozessen wie Zellwachstum, Zelldifferenzierungen, migratorischen Prozessen oder der Zellvitalität beteiligt sind (Übersicht in: Van der Geer et al. 1994). Die Familie der EGFR besteht aus 4 Mitgliedern, EGFR (ErbB1), HER2 (ErbB2), HER3 (ErbB3) und HER4 (ErbB4) mit
30 einer transmembranen Domäne, einer cysteinreichen extrazellulären Domäne und einer intrazellulären katalytischen Domäne. Die Sequenz des EGFR, einem 170 kDa Protein, ist seit 1984 bekannt (Ullrich et al., 1984).

Aktiviert wird der EGFR durch Peptid-Wachstumsfaktoren wie EGF, TGF α (transforming growth factor), Amphiregulin, Beta-cellulin, HB-EGF (heparin-binding EGF-like growth factor) und Neureguline. Ligandenbindung induziert die Bildung von Homo- oder Heterodimeren mit nachfolgender Autophosphorylierung zytoplasmatischer Tyrosine (Ullrich & Schlessinger, 1990; Alroy & Yarden, 1997). Die phosphorylierten Aminosäuren bilden die Bindungsstellen für eine Vielzahl von Proteinen, die an den proximalen Schritten der Signalweiterleitung in einem komplexen Netzwerk beteiligt sind. Der EGFR ist an den verschiedensten Tumorerkrankungen beteiligt und damit ein geeignetes Target für therapeutische Ansätze (Huang & Harari, 1999). Die Mechanismen, die zu einer aberranten EGFR-Aktivierung führen, können auf Überexpression, Amplifikation, konstitutiver Aktivierung mutanter Rezeptor-Formen oder autokrinen Loops beruhen (Voldborg et al., 1997). Eine Überexpression des EGFR wurde für eine Reihe von Tumoren beschrieben, wie z.B. Brustkrebs (Walker & Dearing, 1999), Nicht-Klein-Lungenkarzinom (Fontanini et al., 1998), Pankreaskarzinom, Kolonkarzinom (Salomon et al., 1995) und Glioblastomen (Rieske et al., 1998). Insbesondere für maligne Glioblastome sind bisher keine effizienten und spezifischen Therapeutika verfügbar.

25 Ausführungsbeispiel:

Zum Nachweis der Wirksamkeit der dsRNA bei der spezifischen Inhibition der EGFR-Genexpression wurden U-87 MG-Zellen (humane Glioblastomzellen), ECCAC (European collection of animal cell culture) Nr. 89081402, verwendet, die mit spezifisch gegen den EGF-Rezeptor (Sequenzprotokoll SQ 51) gerichteten dsRNA transfiziert wurden. Nach ca. 72 Stunden Inkubation wurden die Zellen geerntet, Protein isoliert und im Western Blot Verfahren die EGFR-Expression untersucht.

Versuchsprotokoll:dsRNA-Synthese:

5 Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Anschließend erfolgte die Reini-
10 gung der rohen Syntheseprodukte mit Hilfe der HPLC. Verwendet wurde die Säule NucleoPac PA-100, 9x250 mm, der Fa. Dionex; als Niedersalz-Puffer 20 mM Tris, 10 mM NaClO₄, pH 6,8, 10% Acetonitril und als Hochsalz-Puffer 20 mM Tris, 400 mM NaClO₄, pH 6,8, 10% Acetonitril. Der Fluß betrug 3 ml/Minute.
15 Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Erhitzen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 80-90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur.

20

Aussaat der Zellen:

Alle Zellkulturarbeiten wurden unter sterilen Bedingungen in einer entsprechenden Werkbank (HS18, Hera Safe, Kendro, Heraeus) durchgeführt. Die Kultivierung der U-87 MG-Zellen
25 erfolgte im Brutschrank (CO₂-Inkubator T20, Hera cell, Kendro, Heraeus) bei 37°C, 5% CO₂ und gesättigter Luftfeuchtigkeit in DMEM (Dulbecco's modified eagle medium, Biochrom) mit 10% FCS (fetal calf serum, Biochrom), 2 mM L-Glutamin (Biochrom), 1 mM Natrium-Pyruvat (Biochrom), 1xNEAA (Non-
30 esstential Aminoacids, Biochrom) und Penicillin/Streptomycin (100 IE/100 µg/ml, Biochrom). Um die Zellen in der exponentiellen Wachstumsphase zu halten, wurden die Zellen alle 3 Tage passagiert. 24 Stunden vor der Applikation der dsRNA mittels Transfektion wurden die Zellen trypsinisiert (10x Trypsin/EDTA,

Biochrom, Deutschland) und mit einer Zelldichte von 5×10^5 Zellen/Vertiefung in einer 6-Well-Platte (6-Well Schalen, Labor Schubert & Weiss GmbH) in 1,5 ml Wachstumsmedium ausgesät.

5

Applikation der dsRNA in kultivierte U-87 MG-Zellen:

Die Applikation der dsRNA erfolgte mittels Transfektion mit dem OLIGOFECTAMINE™ Reagent (Life Technologies) gemäß den Angaben des Herstellers. Das Gesamt-Transfektionsvolumen betrug

10 1 ml. Zuerst wurde die dsRNA in serumfreiem Medium verdünnt:

Dazu wurden pro Well 0,5 µl einer 20 µM Stammlösung spezifisch gegen EGFR gerichteten dsRNA und 9,5 µl einer 20 µM Stammlösung unspezifischer dsRNA (K1A/K2B) mit 175 µl serumfreiem Medium verdünnt (200 nM dsRNA im Transfektionsansatz

15 bzw. 10 nM spezifische EGFR-dsRNA). Das OLIGOFECTAMINE™ Reagent wurde ebenfalls in serumfreien Medium verdünnt: pro Well 3 µl mit 12 µl Medium und danach 10 min bei Raumtemperatur

inkubiert. Danach wurde das verdünnte OLIGOFECTAMINE™ Reagent zu den in Medium verdünnten dsRNAs gegeben, gemischt und für

20 weitere 20 min bei RT inkubiert. Während der Inkubation wurde ein Mediumwechsel durchgeführt. Die Zellen wurden dazu 1 x mit 1 ml serumfreiem Medium gewaschen und mit 800 µl serumfreiem Medium bis zur Zugabe von dsRNA/OLIGOFECTAMINE™ Reagent weiter im Brutschrank inkubiert. Nach der Zugabe von 200 µl

25 dsRNA/OLIGOFECTAMINE™ Reagent pro Well wurden die Zellen bis zur Proteinisolierung weiter im Brutschrank inkubiert.

Proteinisolierung:

Ca. 72 Stunden nach der Transfektion wurden die Zellen geerntet und eine Proteinisolierung durchgeführt. Dazu wurde das Medium abgenommen und das Zellmonolayer 1 x mit PBS gewaschen. Nach Zugabe von 200 µl Proteinisolierungspuffer (1x Protease-Inhibitor „Complete“, Roche, 50 mM HEPES, pH 7,5,

150 mM NaCl, 1 mM EDTA, 2,5 mM EGTA, 10% Glyzerin, 0,1% Tween-20, 1 mM DTT, 10 mM β -Glycerinphosphat, 1 mM NaF, 0,1 mM Na₃VO₄) wurden die Zellen mit Hilfe eines Zellschabers abgelöst, 10 min auf Eis inkubiert, in ein Eppendorf-

- 5 Reaktionsgefäß überführt und bei -80°C für mindestens 30 min gelagert. Nach dem Auftauen wurde das Lysat für 10 sec mit einem Dispergierer (DIAx 900, Dispergierwerkzeug 6G, Heidolph-Instruments GmbH & Co KG, Schwabach) auf Stufe 3 homogenisiert, für 10 min auf Eis inkubiert und für 15 min bei
10 14.000xg, 4°C (3K30, Sigma) zentrifugiert. Mit dem Überstand wurde eine Proteinbestimmung nach Bradford mit dem Roti®- Nanoquant-System von Roth (Roth GmbH & Co., Karlsruhe) nach Angeben des Herstellers durchgeführt. Dazu wurden je 200 μ l Proteinlösung in geeigneter Verdünnung mit 800 μ l 1x Arbeits-
15 lösung gemischt und die Extinktion in Halbmikroküvetten bei 450 und 590 nm gegen Aqua dest. in einem Beckman-Spektralphotometer (DU 250) gemessen. Für die Eichgerade wurden entsprechende BSA-Verdünnungen verwendet (perliertes BSA, Sigma).

20

SDS-Gelelektrophorese:

Die elektrophoretische Auftrennung der Proteine erfolgte in einer Multigel-Long Elektrophoresekammer von Biometra mit einer denaturierenden, diskontinuierlichen 7,5% SDS-PAGE (Polyacrylamid Gelelektrophorese) nach Lämmli (Nature 277: 680-685, 1997). Dazu wurde zunächst ein Trenngel mit 1,5 mm Dicke gegossen: 3,75 ml Acrylamid/Bisacrylamid (30%, 0,9%), 3,8 ml 1 M Tris/HCl, pH 8,4, 150 μ l 10% SDS, 7,15 ml Aqua bidest., 150 μ l Ammoniumpersulfat (10%), 9 μ l TEMED (N,N,N',N' -Tetramethylendiamin) und bis zum Auspolymerisieren mit 0,1% SDS überschichtet. Danach wurde das Sammelgel gegossen: 0,83 ml Acrylamid/Bisacrylamid (30%/0,9%), 630 μ l 1 M Tris/HCl, pH 6,8, 3,4 ml Aqua bidest., 50 μ l 10% SDS, 50 μ l 10% Ammoniumpersulfat, 5 μ l TEMED.

Für den Auftrag auf das Gel wurden die Proteinproben 1:3 mit
4x Probenpuffer (200 mM Tris, pH 6,8, 4% SDS, 100 mM DTT
(Dithiotreithol), 0,02% Bromphenolblau, 20% Glycerin) ver-
5 setzt, für 5 min bei 100°C denaturiert, nach dem Abkühlen auf
Eis kurz abzentrifugiert und auf das Gel aufgetragen. Pro
Bahn wurden 35 µg Gesamtprotein aufgetragen. Der Gelauf er-
folgte wassergekühlt bei RT und konstant 50 V. Als Längen-
standard wurde der Kaleidoskop-Proteingelmarker (BioRad))
10 verwendet.

Western Blot und Immundetektion:

Der Transfer der Proteine vom SDS-PAGE auf eine PVDF (Polyve-
nyldifluorid)-Membran (Hybond-P, Amersham) erfolgte im semi-
dry Verfahren nach Kyhse-Anderson (J. Biochem. Biophys. Me-
thods 10: 203-210, 1984) bei RT und einer konstanten Strom-
stärke von 0,5 mA/cm² für 1,5 h. Als Transferpuffer wurden
verwendet: Kathodenpuffer (30 mM Tris, 40 mM Glycin, 10%
Methanol, 0,01% SDS; pH 9,4), Anodenpuffer I (300 mM Tris, pH
20 10,4, 10% Methanol) und Anodenpuffer II (30 mM Tris, pH 10,4,
10% Methanol). Vor dem Zusammensetzen des Blotstapels mit 3MM
Whatman-Papier (Schleicher & Schüll) wurden das Gel in Katho-
denpuffer und die PVDF-Membran (zuvor 30 sec in 100% Metha-
nol) in Anodenpuffer II inkubiert (5 min): 2 Lagen 3MM-Papier
25 (Anodenpuffer I), 1 Lage 3MM-Papier (Anodenpuffer II), PVDF-
Membran, Gel, 3 Lagen 3MM-Papier (Kathodenpuffer). Zum Über-
prüfen des elektrophoretischen Transfers wurden sowohl die
Gele nach dem Blotten als auch die Blotmembranen nach der Im-
mundetektion mit Coomassie gefärbt (0,1% Coomassie G250, 45%
30 Methanol, 10% Eisessig).

Die Blotmembran wurde nach dem Transfer in 1% Magermilchpul-
ver/PBS/0,1% Tween-20 für 1h bei RT inkubiert. Danach wurde
dreimal für 3 min mit 0,1% Tween-20/PBS gewaschen. Alle nach-

folgenden Antikörperinkubationen und Waschschriften erfolgten in 0,1% Tween-20/ PBS. Die Inkubation mit dem Primärantikörper (human EGFR extracellular domain, specific goat IgG, Cat-Nr. AF231, R&D Systems) erfolgte auf einem Schüttler für 2h bei RT in einer Konzentration von 1,5 µg/ml. Danach wurde 3 x 5 min gewaschen und für 1h bei RT mit dem Sekundärantikörper (donkey anti-goat IgG Horseradish Peroxidase gelabelt, Santa Cruz Biotechnology) inkubiert (1:10.000 verdünnt). Nach dem Waschen (3 x 3min in PBS/0,1% Tween-20) erfolgte sofort die Detektion mittels ECL-Reaktion (enhanced chemiluminescence): Zu 18 ml Aqua dest. wurden 200 µl Lösung A (250 mM Luminol, Roth, gelöst in DMSO), 89 µl Lösung B (90 mM p-Coumarsäure, Sigma, gelöst in DMSO) und 2 ml 30% H₂O₂-Lösung pipettiert. Je nach Membrangröße wurden 4-6 ml direkt auf die Membran pipettiert, 1 min bei RT inkubiert und danach sofort ein Röntgenfilm (Biomax MS, Kodak) aufgelegt.

Die hier verwendeten Sequenzen sind in der nachstehenden Tabelle 3 sowie in den Sequenzprotokollen SQ153, 157, 158, 168-173 wiedergegeben.

ES-7	SQ168 SQ169	(A) 5'- AACACCGCAGCAUGUCAAGAU -3' (B) 3'- UUUUGUGGCGUCGUACAGUUUC -5'	2-19-2
ES-8	SQ170 SQ171	(A) 5'- AAGUUAAAAAUUCCCGUCGCUAU -3' (B) 3'- CAAUUUUAGGGCAGCGAUAGU -5'	2⁵-19-2⁵
ES2A/ ES5B	SQ172 SQ173	(A) 5'- AGUGUGAUCCAAGCUGUCCCAA -3' (B) 3'- UUUCACACUAGGUUCGACAGGGUU -5'	0-22-2
K2	SQ157 SQ158	(A) 5'- ACAGGAUGAGGAUCGUUUCGCAUG -3' (B) 3'- UCUGUCCUACCUUAGCAAAGCGU -5'	2-22-2

K1A/ K2B	SQ153 SQ158	(A) (B)	5'- ACAGGAUGAGGAUCGUUUCGCA 3'- UCUGUCCUACUCCUAGCAAAGCGU	-3' -5'	0-22-2
---------------------	----------------	------------	--	------------	--------

Tabelle 3Inhibition der EGFR-Expression in U-87 MG Glioblastom-Zellen:

5 24 Stunden nach dem Aussäen der Zellen wurden diese mit 10 nM dsRNA wie angegeben (Oligofectamine) transfiziert. Nach 72 Stunden wurden die Zellen geerntet und Protein isoliert. Die Auftrennung der Proteine erfolgte im 7,5% SDS-PAGE. Pro Bahn wurden je 35 µg Gesamtprotein aufgetragen. In Fig. 24 ist die 10 entsprechende Western Blot-Analyse gezeigt, aus der hervorgeht, dass sich mit der spezifisch gegen das EGFR-Gen gerichteten dsRNA mit einem 2nt-Überhang am 3'-Ende des Antisinn-Strangs die EGFR-Expression nach Transfektion in U-87 MG-Zellen signifikant gegenüber den entsprechenden Kontrollen 15 inhibieren lässt. Diese Inhibition der Expression eines endogenen Gens durch spezifische dsRNA bestätigt somit die in Ausführungsbeispiel II angeführten Ergebnisse zur Inhibition der Expression eines nach transiente Transfektion in die Zelle eingebrachten artifiziellen Gens. Die durch ES-7 bzw. 20 ES-8 vermittelte Inhibition der EGFR-Expression ist deutlich geringer. Die in Fig. 24 verwendeten dsRNAs sind Tabelle 3 zu entnehmen.

25 VI. Hemmung der Expression des Multidrug resistance Gens 1 (MDR1) :

Versuchsprotokoll:

Der *in vitro* Nachweis für das Blockieren der MDR1-Expression 30 wurde in der Kolonkarzinom-Zelllinie LS174T (ATCC - American Type Culture Collection; Tom et al., 1976) durchgeführt. Von

dieser Zelllinie ist bekannt, daß die Expression von MDR1 durch Zugabe von Rifampicin zum Kulturmedium induzierbar ist (Geick et al., 2001). Transfektionen wurden mit verschiedenen käuflichen Transfektions-Kits (Lipofectamine, Oligofectamine, 5 beide Invitrogen; TransMessenger, Qiagen) durchgeführt, wobei der TransMessenger Transfektions-Kit sich als für diese Zelllinie am geeignetsten herausstellte.

Zur Durchführung der RNA-Interferenz-Experimente wurden 4 10 kurze doppelsträngige Ribonukleinsäuren R1-R4 eingesetzt, deren Sequenzen in Tabelle 4) gezeigt sind. Die Ribonukleinsäuren sind mit Abschnitten der kodierenden Sequenz von MDR1 (Sequenzprotokoll SQ 30) homolog. Die Sequenzen R1 - R3 bestehen aus einem 22-mer Sinn- und einem 24-mer Antisinn-Strang, 15 wobei der entstehende Doppelstrang am 3'-Ende des Antisinn-Stranges einen 2-Nukleotid-Überhang aufweist (0-22-2). Die Sequenz R4 entspricht R1, jedoch besteht sie aus einem 19-mer Doppelstrang mit je 2-Nukleotid-Überhängen an jedem 3'-Ende (2-19-2).

20

<u>Name</u>	<u>Sequenz-proto-koll-Nr.</u>	<u>Sequenz</u>	<u>Position in Datenbank#</u>
Seq	SQ141	5' - CCA UCU CGA AAA GAA GUU AAG A-3'	1320-1342
R1	SQ142	3' -UG GGU AGA GCU UUU CUU CAA UUC U-5'	1335-1318
Seq	SQ143	5' - UAU AGG UUC CAG GCU UGC UGU A-3'	2599-2621
R2	SQ152	3' -CG AUA UCC AAG GUC CGA ACG ACA U-5'	2621-2597
Seq	SQ144	5' - CCA GAG AAG GCC GCA CCU GCA U-3'	3778-3799
R3	SQ145	3' -UC GGU CUC UUC CGG CGU GGA CGU A-5'	3799-3776
Seq	SQ146	5' - CCA UCU CGA AAA GAA GUU AAG-3'	1320-1341
R4	SQ147	3' -UG GGU AGA GCU UUU CUU CAA U -5'	1339-1318

			<u>Position in Daten- bank-#</u>
K1A/	SQ153	5' - ACA GGA UGA GGA UCG UUU CGC A-3'	2829-2808
K2B	SQ158	3' -UC UGU CCU ACU CCU AGC AAA GCG U-5'	2808-2831

Tabelle 4

Die in Tabelle 4 gezeigten Sequenzen sind nochmals im Sequenzprotokoll als Sequenzen SQ141-147, 152, 153, 158 wieder-gegeben. Die dsRNAs wurden in einer Konzentration von 175 nM jeweils als doppelte Ansätze in die Zellen transfiziert, welche am Tag zuvor in 12-Loch-Platten à $3,8 \times 10^5$ Zellen/Vertiefung ausgesät wurden. Dazu wurden pro Transfektionsansatz 93,3 µl EC-R-Puffer (TransMessenger Kit, Qiagen, Hilden) mit 3,2 µl Enhancer-R vermenigt und danach 3,5 µl der jeweiligen 20 µM dsRNA zugegeben, gut gemischt und 5 Minuten bei Raumtemperatur inkubiert. Nach Zugabe von jeweils 6 µl TransMessenger Transfection Reagent wurden die Transfektionsansätze 10 Sekunden kräftig gemischt und 10 Minuten bei Raumtemperatur inkubiert. In der Zwischenzeit wurde das Medium von den Zellen abgesaugt, einmal mit PBS (Phosphate buffered saline) gewaschen und 200 µl frisches Medium ohne FCS pro Vertiefung auf die Zellen gegeben. Nach Ablauf der 10-minütigen Inkubationszeit wurden je 100 µl FCS-freies Medium zu den Transfektionsansätzen pipettiert, gemischt, und die Mischung tropfenweise zu den Zellen pipettiert (die dsRNA-Konzentration von 175 µM bzieht sich auf 400 µl Medium Gesamtvolumen). Die dsRNA/Trans-Messenger-Komplexe wurden 4 Stunden bei 37°C mit den Zellen in FCS-freiem Medium inkubiert. Danach wurde ein Mediumwechsel durchgeführt, wobei das frische Medium 10 µM Rifampicin und 10% FCS enthielt. Als

Kontrolle wurde eine unspezifische dsRNA-Sequenz, die keinerlei Homologie mit der MDR1-Gensequenz aufweist,eingesetzt (K) und eine MOCK-Transfektion durchgeführt, die alle Reagenzien außer dsRNA enthielt.

5

Die Zellen wurden nach 24, 48 und 72 Stunden geerntet und die Gesamt-RNA mit dem RNeasy-Mini-Kit von Qiagen extrahiert. 10 µg Gesamt-RNA jeder Probe wurden auf einem 1%igen Agarose-Formaldehyd-Gel elektrophoretisch aufgetrennt, auf eine Nylon-Membran geblottet und mit 5'-α³²P-dCTP random-markierten, spezifischen Sonden zuerst gegen MDR1 und nach dem Strippen des Blots gegen GAPDH als interne Kontrolle hybridisiert und auf Röntgenfilmen exponiert.

15 Die Röntgenfilme wurden digitalisiert (Image Master, VDS Pharmacia) und mit der Image-Quant-Software quantifiziert. Dabei wurde ein Abgleich der MDR1-spezifischen Banden mit den entsprechenden GAPDH-Banden durchgeführt.

20 Ergebnisse:

Die Fig. 25 und 26 zeigen Northern-Blots (Fig. 25a, 26a) mit quantitativer Auswertung der MDR1-spezifischen Banden nach Abgleich mit den entsprechenden GAPDH-Werten (Fig. 25b, 26b). Es konnte eine Reduktion der MDR1-mRNA um bis zu 55 % im Vergleich zur MOCK-Transfektion und um bis zu 45 % im Vergleich zur unspezifischen Kontroll-Transfektion beobachtet werden. Nach 48 h ist eine signifikante Reduktion des MDR1-mRNA-Niveaus mit den als R1, R2, R3 (Tabelle 4) bezeichneten dsRNA-Konstrukten erreicht worden. Mit den R4-dsRNA-Konstrukten wurde nach 48 h keine signifikante Reduktion gegenüber den Kontrollen beobachtet (Fig. 26a und 26b). Nach 74 h war eine deutlich stärkere Reduktion des MDR1-mRNA-Levels mit R1, R2 und R3 gegenüber den Kontrollen im Vergleich zu den 48 h-Werten zu beobachten (Fig. 25a und 25b).

Mit R4 konnte zu diesem Zeitpunkt ebenfalls eine signifikante Verringerung des MDR1-mRNA-Niveaus erzielt werden. Somit reduzieren die Konstrukte mit einem 2nt-Überhang am 3'-Ende des Antisinnstrangs und einem doppelsträngigen Bereich aus 22 Nukleotidpaaren, relativ unabhängig von dem jeweiligen zum MDR1-Gen homologen Sequenzbereich (nach 48 h; Fig. 26b) das MDR1-mRNA-Level effizienter als die Konstrukte mit mit 2nt-Überhängen an den 3'-Enden beider Stränge (Antisinn- und Sinnstrang) und einem Doppelstrangbereich von 19 Nukleotidpaaren. Die Ergebnisse bekräftigen damit die in Ausführungsbeispiel IV beschriebene Inhibition der EGFR-Genexpression durch spezifische dsRNAs nach Transfektion in U-87 MG-Zellen.

Die Transfektionseffizienz wurde in einem getrennten Experiment mit Hilfe eines Texas-Red-markierten DNA-Oligonukleotids (TexRed-A(GATC)₅T; ebenfalls 175 nM transfiziert) ermittelt (Fig. 27a, 27b; 400fache Vergrößerung, 48h nach Transfektion). Sie betrug etwa 50% auf der Grundlage der rot fluoreszierenden Zellen im Vergleich zur Gesamtzellzahl. Berücksichtigt man die Transfektionsrate der Zellen von etwa 50%, so liegt die beobachtete Verringerung des MDR1-mRNA-Niveaus um ca. 45-55% liegt (verglichen mit den Kontrollen), den Schluss nahe, dass in allen Zellen, die mit spezifischer dsRNA erfolgreich transfiziert werden konnten, die MDR1-mRNA nahezu vollständig und spezifisch abgebaut wurde.

Literatur:

Alroy I & Yarden Y (1997): The Erb signalling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Letters 410: 83-86.

Bass,B.L., 2000. Double-stranded RNA as a template for gene silencing. Cell 101, 235-238.

10

Bosher,J.M. and Labouesse,M., 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2, E31-E36.

15

Bradford MM (1976): Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.

20

Caplen,N.J., Fleenor,J., Fire,A., and Morgan,R.A., 2000. dsRNA-mediated gene silencing in cultured *Drosophila* cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105.

25

Clemens,J.C., Worby,C.A., Simonson-Leff,N., Muda,M., Mae-hama,T., Hemmings,B.A., and Dixon,J.E., 2000. Use of double-stranded RNA interference in *Drosophila* cell lines to dissect signal transduction pathways. Proc.Natl.Acad.Sci.USA 97, 6499-6503.

30

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fe-hrenbacher L, Wolter JM, Paton V, Shak S, Liebermann G & Slamon DJ (1999): Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that

has progressed after chemotherapy for metastatic disease.
Journal of Clinical Oncology 17: 2639-2648.

Ding,S.W., 2000. RNA silencing. Curr. Opin. Biotechnol. 11,
5 152-156.

Fire,A., Xu,S., Montgomery,M.K., Kostas,S.A., Driver,S.E.,
and Mello,C.C., 1998. Potent and specific genetic interfer-
ence by double-stranded RNA in *Caenorhabditis elegans*. Nature
10 391, 806-811.

Fire,A., 1999. RNA-triggered gene silencing. Trends Genet.
15, 358-363.

15 Freier,S.M., Kierzek,R., Jaeger,J.A., Sugimoto,N., Caruth-
ers,M.H., Neilson,T., and Turner,D.H., 1986. Improved free-
energy parameters for prediction of RNA duplex stability.
Proc. Natl. Acad. Sci. USA 83, 9373-9377 .

20 Geick, A., Eichelbaum, M., Burk, O. (2001). Nuclear receptor
response elements mediate induction of intestinal MDR1 by ri-
fampin. J. Biol. Chem. 276 (18), 14581-14587.

Fontanini G, De Laurentiis M, Vignati S, Chine S, Lucchi M,
25 Silvestri V, Mussi A, De Placido S, Tortora G, Bianco AR,
Gullick W, Angeletti CA, Bevilaqua G & Ciardiello F (1998):
Evaluation of epidermal growth factor-related growth factors
and receptors and of neoangiogenesis in completely resected
stage I-IIIA non-small-cell lung cancer: amphiregulin and mi-
30 crovessel count are independent prognostic factors of sur-
vival. Clinical Cancer Research 4: 241-249.

- Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* 404, 293-296.
- 5 Higgins, C.F. (1995). The ABC of channel regulation. *Cell*, 82, 693-696.
- Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1993): Generating green fluorescent mice by germline transmission of green fluorescent ES cells. *Mech. Dev.* 76: 79-90.
- 10 Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M & Nagy A (1998): Non-invasive sexing of preimplantation mammalian embryos. *Nature Genetics* 19: 220-222.
- 15 Kyhse-Anderson J (1984): Electroblotting of multiple gels: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. *J. Biochem. Biophys. Methods* 10: 203-210.
- 20 Lämmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 277: 680-685.
- 25 Loo, T.W., and Clarke, D.M. (1999) *Biochem. Cell Biol.* 77, 11-23.
- Huang SM & Harari PM (1999): Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. *Investigational New Drugs* 17: 259-269.
- 30 Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and

stability of the aminoacyl acceptor stem. Proc. Natl. Acad. Sci. USA 90 , 6199-6202.

5 Montgomery,M.K. and Fire,A., 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14, 255-258.

10 Montgomery,M.K., Xu,S., and Fire,A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in *Caenorhabditis elegans*. Proc. Natl. Acad. Sci. USA 95, 15502-15507.

15 Rieske P, Kordek R, Bartkowiak J, Debiec-Rychter M, Bienhat W & Liberski PP (1998) : A comparative study of epidermal growth factor (EGFR) and mdm2 gene amplification and protein immunoreactivity in human glioblastomas. Polish Journal of Pathology 49: 145-149.

20 Robert, J. (1999). Multidrug resistance in oncology: diagnostic and therapeutic approaches. Europ J Clin Invest 29, 536-545.

25 Stavrovskaya, A.A. (2000) Biochemistry (Moscow) 65 (1), 95-106.

Salomon DS, Brandt R, Ciardiello F & Normanno N (1995) : Epidermal growth factor related peptides and their receptors in human malignancies: Critical Reviews in Oncology and Haematology 19: 183-232.

30 Tom, B.H., Rutzky, L.P., Jakstys, M.M., Oyasu, R., Kaye, C.I., Kahan, B.D. (1976), In vitro, 12, 180-191.

Tsuruo, T., Iida, H., Tsukagoshi, S., Sakurai, Y. (1981). Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. *Cancer Res*, 41, 1967-72.

5

Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. *FEBS Lett.* 479, 79-82.

10

Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Liebermann TA, Schlessinger J et al. (1984): Human epidermal growth factor receptor cDNA sequences and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. *Nature* 309: 418-425.

15

Ullrich A & Schlessinger J (1990): Signal transduction by receptors with tyrosine kinase activity. *Cell* 61: 203-212.

20

Van der Geer P, Hunter T & Linberg RA (1994): Receptor protein-tyrosine kinases and their signal transduction pathways. Annual review in Cell Biology 10: 251-337.

25

Voldborg BR, Damstrup L, Spang-Thopmsen M & Poulsen HS (1997): Epidermal growth factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Annals of Oncology 8: 1197-1206.

30

Walker RA & Dearing SJ (1999): Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. *Breast Cancer Research Treatment* 53: 167-176.

Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., 2000.
RNAi: double-stranded RNA directs the ATP-dependent cleavage
of mRNA at 21 to 23 nucleotide intervals. *Cell* 101 , 25-33.

- 5 Zor T & Selinger Z (1996) : Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. *Anal. Biochem.* 236: 302-308.

Patentansprüche

1. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:

5

Einführen mindestens einer doppelsträngigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

10 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

15

und wobei die dsRNA zumindest an einem Ende (E1, E2) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

20 2. Verfahren nach Anspruch 1, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

25 3. Verfahren nach Anspruch 1 oder 2, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

4. Verfahren nach Anspruch 3, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

30 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eine entsprechend der dsRNA I nach einem der vorhergehenden Ansprüche ausgebildete weitere doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird,
5 wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein weiterer Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des
10 Zielgens ist.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.
15

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.
20

9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.

25 10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,
30 Cytokin-Gen, Id-Protein-Gen, Prionen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Ge-

ne von Proteinasen sowie Apoptose- und Zellzyklus-regulierenden Molekülen.

12. Verfahren nach einem der vorhergehenden Ansprüche, wobei
5 das Zielgen das MDR1-Gens ist.

13. Verfahren nach einem der vorhergehenden Ansprüche, wobei
als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus
zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnse-
10 quenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen
SQ141 - 173 verwendet wird.

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei
die Expression nach dem Prinzip der RNA-Interferenz gehemmt
15 wird.

15. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen in pathogenen Organismen, vorzugsweise in Plasmo-
dien, exprimiert wird.

20 16. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen Bestandteil eines Virus oder Viroids ist.

17. Verfahren nach Anspruch 16, wobei das Virus ein humanpa-
25 thogenes Virus oder Viroid ist.

18. Verfahren nach Anspruch 16, wobei das Virus oder Viroid
ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

30 19. Verfahren nach einem der vorhergehenden Ansprüche, wobei
ungepaarte Nukleotide durch Nukleosidthiophosphate substitu-
iert sind.

20. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende (E1, E2) der dsRNA I/II modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

5

21. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die komplementären Nukleotidpaare bewirkte Zusam- menhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

10

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechsel- wirkungen, vorzugsweise van-der-Waals- oder Stapelungswech- 15 selwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, 20 E2) gebildet ist.

24. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbin- 25 dungsgruppen gebildet wird, wobei die Verbindungsgruppen vor- zugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden be- 30 nutzte verzweigte Nukleotidanaloga gebildet wird.

26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloge gebildet wird.

27. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

5 28. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio-
nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-
acetyl-N'--(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psora-
10 len.

29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
15 E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

30. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
20 E2) befindliche Tripelhelix-Bindungen hergestellt wird.

31. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

25 32. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

30 33. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

34. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

5 35. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

10 36. Verfahren nach einem der vorhergehenden Ansprüche, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

15 37. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

20 38. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

25 39. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

40. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verab-
30 reicht wird.

41. Verwendung einer die doppelsträngigen Ribonukleinsäure (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle,

wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

10

42. Verwendung nach Anspruch 41, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

15

43. Verwendung nach Anspruch 41 oder 42, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

44. Verwendung nach Anspruch 43, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

20

45. Verwendung nach einem der Ansprüche 41 bis 44, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

25

46. Verwendung nach einem der Ansprüche 41 bis 45, wobei zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 41 bis 45 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird, wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen

30

Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Sinn-Strangs des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

47. Verwendung nach einem der Ansprüche 41 bis 47, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren 5 aufweist/en.

48. Verwendung nach einem der Ansprüche 41 bis 47, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

10

49. Verwendung nach einem der Ansprüche 41 bis 48, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.

15 50. Verwendung nach einem der Ansprüche 41 bis 49, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

51. Verwendung nach einem der Ansprüche 41 bis 50, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, 20 Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

25 52. Verwendung nach einem der Ansprüche 41 bis 51, wobei das Zielgen das MRD1-Gens ist.

30 53. Verwendung nach einem der Ansprüche 41 bis 52, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

54. Verwendung nach einem der Ansprüche 41 bis 53, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

5 55. Verwendung nach einem der Ansprüche 41 bis 54, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.

10 56. Verwendung nach einem der Ansprüche 41 bis 55, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

57. Verwendung nach Anspruch 56, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

15 58. Verwendung nach Anspruch 56, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

20 59. Verwendung nach einem der Ansprüche 41 bis 58, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

25 60. Verwendung nach einem der Ansprüche 41 bis 59, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

30 61. Verwendung nach einem der Ansprüche 41 bis 60, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

62. Verwendung nach einem der Ansprüche 41 bis 61, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwir-

kungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

63. Verwendung nach einem der Ansprüche 41 bis 62, wobei die
5 chemische Verknüpfung in der Nähe des einen Endes (E1, E2)
gebildet ist.

64. Verwendung nach einem der Ansprüche 41 bis 63, wobei die
chemische Verknüpfung mittels einer oder mehrerer Verbin-
10 dungsgruppen gebildet wird, wobei die Verbindungsgruppen vor-
zugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder
Oligoethylenglycol-Ketten sind.

65. Verwendung nach einem der Ansprüche 41 bis 64, wobei die
15 chemische Verknüpfung durch anstelle von Nukleotiden benutzte
verzweigte Nukleotidanaloga gebildet wird.

66. Verwendung nach einem der Ansprüche 41 bis 65, wobei die
chemische Verknüpfung durch Purinanaloge gebildet wird.

20 67. Verwendung nach einem der Ansprüche 41 bis 66, wobei die
chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

68. Verwendung nach einem der Ansprüche 41 bis 67, wobei zur
25 Herstellung der chemischen Verknüpfung mindestens eine der
folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle
Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-
(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

30 69. Verwendung nach einem der Ansprüche 41 bis 68, wobei die
chemische Verknüpfung durch in der Nähe der Enden (E1, E2)
des doppelsträngigen Bereichs angebrachte Thiophosphoryl-
Gruppen gebildet wird.

70. Verwendung nach einem der Ansprüche 41 bis 69, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

5 71. Verwendung nach einem der Ansprüche 41 bis 70, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

10 72. Verwendung nach einem der Ansprüche 41 bis 71, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

15 73. Verwendung nach einem der Ansprüche 41 bis 72, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

20 74. Verwendung nach einem der Ansprüche 41 bis 73, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

25 75. Verwendung nach einem der Ansprüche 41 bis 74, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

30 76. Verwendung nach einem der Ansprüche 41 bis 75, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

77. Verwendung nach einem der Ansprüche 41 bis 76, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

78. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

79. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

10 80. Verwendung nach einem der Ansprüche 41 bis 79, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

15 81. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

20 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist,

25 und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30

82. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

83. Medikament nach Anspruch 81 oder 82, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

84. Medikament nach Anspruch 83, wobei das glatte Ende (E1,
5 E2) das 5'-Ende des einen Strangs (as1) enthält.

85. Medikament nach einem der Ansprüche 81 bis 84, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

10

86. Medikament nach einem der Ansprüche 81 bis 85, enthaltend zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 81 bis 85 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II), wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

20

87. Medikament nach einem der Ansprüche 81 bis 86, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.

25

88. Medikament nach einem der Ansprüche 81 bis 87, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

30 89. Medikament nach einem der Ansprüche 81 bis 88, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

90. Medikament nach einem der Ansprüche 81 bis 89, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,

Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

91. Medikament nach einem der Ansprüche 81 bis 90, wobei das Zielgen das MRD1-Gen ist.

10

92. Medikament nach einem der Ansprüche 81 bis 91, wobei als dsRNA eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

15

93. Medikament nach einem der Ansprüche 81 bis 92, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

20

94. Medikament nach einem der Ansprüche 81 bis 93, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimierbar ist.

25

95. Medikament nach einem der Ansprüche 81 bis 94, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

96. Medikament nach Anspruch 95, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

30

97. Medikament nach Anspruch 95, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

98. Medikament nach einem der Ansprüche 81 bis 97, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

5 99. Medikament nach einem der Ansprüche 81 bis 98, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert ist, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

10 100. Medikament nach einem der Ansprüche 81 bis 99, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht ist.

15 101. Medikament nach einem der Ansprüche 81 bis 100, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet
20 ist.

102. Medikament nach einem der Ansprüche 81 bis 101, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

25 103. Medikament nach einem der Ansprüche 81 bis 102, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder
30 Oligoethylenglycol-Ketten sind.

104. Medikament nach einem der Ansprüche 81 bis 103, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet ist.

105. Medikament nach einem der Ansprüche 81 bis 104, wobei die chemische Verknüpfung durch Purinanaloge gebildet ist.

5 106. Medikament nach einem der Ansprüche 81 bis 105, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

10 107. Medikament nach einem der Ansprüche 81 bis 106, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoraleen.

15 108. Medikament nach einem der Ansprüche 81 bis 107, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.

20 109. Medikament nach einem der Ansprüche 81 bis 108, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.

25 110. Medikament nach einem der Ansprüche 81 bis 109, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen ist.

30 111. Medikament nach einem der Ansprüche 81 bis 110, wobei die dsRNA I an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist/sind.

112. Medikament nach einem der Ansprüche 81 bis 111, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

113. Medikament nach einem der Ansprüche 81 bis 112, wobei
5 das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-
Protein 2 (VP2) des Polyomavirus enthält.

114. Medikament nach einem der Ansprüche 81 bis 113, wobei
bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
10 Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
sidartigen Gebildes gewandt ist.

115. Medikament nach einem der Ansprüche 81 bis 114, wobei
der eine Strang (as1, as2) der dsRNA I zum primären oder pro-
15 zessierten RNA-Transkript des Zielgens komplementär ist.

116. Medikament nach einem der Ansprüche 81 bis 115, wobei
die Zelle eine Vertebratenzelle oder eine menschliche Zelle
ist.

20 117. Medikament nach einem der Ansprüche 81 bis 116, wobei
der erste (B1) und der zweite Bereich (B2) voneinander beab-
standet sind.

25 118. Medikament nach einem der Ansprüche 81 bis 117, wobei
die dsRNA in einer Menge von höchstens 5 mg pro Verabrei-
chungseinheit enthalten ist.

30 119. Medikament nach einem der Ansprüche 81 bis 118, wobei
die dsRNA in eine Pufferlösung aufgenommen ist.

120. Medikament nach einem der Ansprüche 81 bis 119, wobei
die dsRNA oral oder mittels Injektion oder Infusion intrave-
nös, intratumoral, inhalativ, intraperitoneal verabreichtbar
ist.

121. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:

5

Einführen mindestens einer doppelsträngigen Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

10 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

15

und wobei die dsRNA zumindest an einem Ende (E1, E2) der dsRNA I einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

20 122. Verfahren nach Anspruch 1, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

25 123. Verfahren nach Anspruch 1 oder 2, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

124. Verfahren nach Anspruch 3, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

30 125. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

126. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eine entsprechend der dsRNA I nach einem der vorhergehenden Ansprüche ausgebildete weitere doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird,
5 wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein weiterer Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des
10 Zielgens ist.

127. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.
15

128. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.
20

129. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabsichtigt sind.

25 130. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

131. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,
30 Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Ge-

ne von Proteinasen sowie Apoptose- und Zellzyklus-regulierenden Molekülen.

132. Verfahren nach einem der vorhergehenden Ansprüche, wobei
5 das Zielgen das MDR1-Gens ist.

133. Verfahren nach einem der vorhergehenden Ansprüche, wobei
als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus
zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnse-
10 quenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen
SQ141 - 173 verwendet wird.

134. Verfahren nach einem der vorhergehenden Ansprüche, wobei
die Expression nach dem Prinzip der RNA-Interferenz gehemmt
15 wird.

135. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen in pathogenen Organismen, vorzugsweise in Plasmo-
dien, exprimiert wird.

20 136. Verfahren nach einem der vorhergehenden Ansprüche, wobei
das Zielgen Bestandteil eines Virus oder Viroids ist.

25 137. Verfahren nach Anspruch 16, wobei das Virus ein humanpa-
thogenes Virus oder Viroid ist.

138. Verfahren nach Anspruch 16, wobei das Virus oder Viroid
ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

30 139. Verfahren nach einem der vorhergehenden Ansprüche, wobei
ungepaarte Nukleotide durch Nukleosidthiophosphate substitu-
iert sind.

140. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein Ende (E1, E2) der dsRNA I/II modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

5

141. Verfahren nach einem der vorhergehenden Ansprüche, wobei der durch die komplementären Nukleotidpaare bewirkte Zusam- menhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

10

142. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechsel- wirkungen, vorzugsweise van-der-Waals- oder Stapelungswech- 15 selwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

143. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, 20 E2) gebildet ist.

144. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbin- dungsgruppen gebildet wird, wobei die Verbindungsgruppen vor- 25 zugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

145. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden be- 30 nutzte verzweigte Nukleotidanaloge gebildet wird.

146. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloge gebildet wird.

147. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

5 148. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio-
nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-
acetyl-N'--(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psora-
10 len.

149. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
15 E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

150. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1,
20 E2) befindliche Tripelhelix-Bindungen hergestellt wird.

151. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

25 152. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

30 153. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

154. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

5 155. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

10 156. Verfahren nach einem der vorhergehenden Ansprüche, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

15 157. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

20 158. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

25 159. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

30 160. Verfahren nach einem der vorhergehenden Ansprüche, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

161. Verwendung einer die doppelsträngigen Ribonukleinsäure (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle,

wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

10

162. Verwendung nach Anspruch 41, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

15

163. Verwendung nach Anspruch 41 oder 42, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

164. Verwendung nach Anspruch 43, wobei das glatte Ende (E1, E2) das 5'-Ende des einen Strangs (as1) enthält.

20

165. Verwendung nach einem der Ansprüche 41 bis 44, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

25

166. Verwendung nach einem der Ansprüche 41 bis 45, wobei zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 41 bis 45 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II) in die Zelle eingeführt wird, wobei der eine Strang (as1) oder zumindest ein Abschnitt des einen

30

Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Sinn-Strangs des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

167. Verwendung nach einem der Ansprüche 41 bis 47, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren 5 aufweist/en.

168. Verwendung nach einem der Ansprüche 41 bis 47, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

10

169. Verwendung nach einem der Ansprüche 41 bis 48, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.

15

170. Verwendung nach einem der Ansprüche 41 bis 49, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

20

171. Verwendung nach einem der Ansprüche 41 bis 50, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsions-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

25

172. Verwendung nach einem der Ansprüche 41 bis 51, wobei das Zielgen das MRD1-Gens ist.

30

173. Verwendung nach einem der Ansprüche 41 bis 52, wobei als dsRNA I/II eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

174. Verwendung nach einem der Ansprüche 41 bis 53, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

5 175. Verwendung nach einem der Ansprüche 41 bis 54, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.

10 176. Verwendung nach einem der Ansprüche 41 bis 55, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

177. Verwendung nach Anspruch 56, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

15 178. Verwendung nach Anspruch 56, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

20 179. Verwendung nach einem der Ansprüche 41 bis 58, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

25 180. Verwendung nach einem der Ansprüche 41 bis 59, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert wird, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

30 181. Verwendung nach einem der Ansprüche 41 bis 60, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht wird.

182. Verwendung nach einem der Ansprüche 41 bis 61, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwir-

kungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

183. Verwendung nach einem der Ansprüche 41 bis 62, wobei die
5 chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

184. Verwendung nach einem der Ansprüche 41 bis 63, wobei die
10 chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Oligoethylenglycol-Ketten sind.

185. Verwendung nach einem der Ansprüche 41 bis 64, wobei die
15 chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.

186. Verwendung nach einem der Ansprüche 41 bis 65, wobei die
20 chemische Verknüpfung durch Purinanaloge gebildet wird.

187. Verwendung nach einem der Ansprüche 41 bis 66, wobei die
chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

188. Verwendung nach einem der Ansprüche 41 bis 67, wobei zur
25 Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

189. Verwendung nach einem der Ansprüche 41 bis 68, wobei die
30 chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

190. Verwendung nach einem der Ansprüche 41 bis 69, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

5 191. Verwendung nach einem der Ansprüche 41 bis 70, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen wird.

10 192. Verwendung nach einem der Ansprüche 41 bis 71, wobei die dsRNA I/II an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

15 193. Verwendung nach einem der Ansprüche 41 bis 72, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

20 194. Verwendung nach einem der Ansprüche 41 bis 73, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

25 195. Verwendung nach einem der Ansprüche 41 bis 74, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

30 196. Verwendung nach einem der Ansprüche 41 bis 75, wobei der eine Strang (as1, as2) der dsRNA I/II zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

197. Verwendung nach einem der Ansprüche 41 bis 76, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

198. Verwendung nach einem der Ansprüche 41 bis 77, wobei die dsRNA I/II in einer Menge von höchstens 5 mg je Kilogramm Körpergewicht pro Tag einem Säugetier, vorzugsweise einem Menschen, verabreicht wird.

5

199. Verwendung nach einem der Ansprüche 41 bis 78, wobei die dsRNA I/II zur Applikation in eine Pufferlösung aufgenommen ist.

10 200. Verwendung nach einem der Ansprüche 41 bis 79, wobei die dsRNA I/II oral oder mittels Injektion oder Infusion intravenös, intratumoral, inhalativ, intraperitoneal verabreicht wird.

15 201. Medikament zur Hemmung der Expression eines Zielgens in einer Zelle enthaltend eine doppelsträngige Ribonukleinsäure (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

20 wobei die dsRNA I eine doppelsträngige aus höchstens 49 aufeinander folgenden Nukleotidpaaren gebildete Struktur aufweist,

25 und wobei ein Strang (as1) oder zumindest ein Abschnitt des einen Strangs (as1) der doppelsträngigen Struktur komplementär zum Zielgen ist,

und wobei die dsRNA I zumindest am einen Ende (E1, E2) einen aus 1 bis 4 Nukleotiden gebildeten Überhang aufweist.

30.

202. Medikament nach Anspruch 81, wobei die dsRNA I den Überhang am 3'-Ende des einen Strangs (as1) und/oder am 3'-Ende des anderen Strangs (ss1) aufweist.

203. Medikament nach Anspruch 81 oder 82, wobei die dsRNA I an einem Ende (E1, E2) glatt ausgebildet ist.

204. Medikament nach Anspruch 83, wobei das glatte Ende (E1, 5 E2) das 5'-Ende des einen Strangs (as1) enthält.

205. Medikament nach einem der Ansprüche 81 bis 84, wobei der Überhang aus 1 bis 4 Nukleotiden, vorzugsweise 1 oder 2 Nukleotiden, gebildet ist.

10

206. Medikament nach einem der Ansprüche 81 bis 85, enthaltend zumindest eine weitere entsprechend der dsRNA I nach einem der Ansprüche 81 bis 85 ausgebildete doppelsträngige Ribonukleinsäure (dsRNA II), wobei der eine Strang (as1) oder 15 zumindest ein Abschnitt des einen Strangs (as1) der dsRNA I komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei der weitere Strang (as2) oder zumindest ein Abschnitt des weiteren Strangs (as2) der dsRNA II komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

20

207. Medikament nach einem der Ansprüche 81 bis 86, wobei die dsRNA I und/oder die dsRNA II eine Länge von weniger als 25, vorzugsweise 19 bis 23, aufeinander folgenden Nukleotidpaaren aufweist/en.

25

208. Medikament nach einem der Ansprüche 81 bis 87, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinander grenzen.

30 209. Medikament nach einem der Ansprüche 81 bis 88, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

210. Medikament nach einem der Ansprüche 81 bis 89, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen,

Cytokin-Gen, Id-Protein-Gen, Priongen, Gene von Angiogenese induzierenden Molekülen, von Adhäsons-Molekülen und von Zelloberflächenrezeptoren, Gene von Proteinen, die an metastasierenden und/oder invasiven Prozessen beteiligt sind, Gene von Proteininasen sowie von Apoptose- und Zellzyklusregulierende Molekülen.

211. Medikament nach einem der Ansprüche 81 bis 90, wobei das Zielgen das MRD1-Gen ist.

10

212. Medikament nach einem der Ansprüche 81 bis 91, wobei als dsRNA eine der Sequenzen SQ141 -173 bzw. ein aus zwei jeweils zusammengehörenden Antisinn- (as1/2) und Sinnsequenzen (ss1/2) kombiniertes dsRNA-Konstrukt der Sequenzen SQ141 - 173 verwendet wird.

15

213. Medikament nach einem der Ansprüche 81 bis 92, wobei die Expression nach dem Prinzip der RNA-Interferenz gehemmt wird.

20

214. Medikament nach einem der Ansprüche 81 bis 93, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimierbar ist.

25

215. Medikament nach einem der Ansprüche 81 bis 94, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

216. Medikament nach Anspruch 95, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

30

217. Medikament nach Anspruch 95, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

218. Medikament nach einem der Ansprüche 81 bis 97, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

5 219. Medikament nach einem der Ansprüche 81 bis 98, wobei zu mindest ein Ende (E1, E2) der dsRNA modifiziert ist, um einem Abbau in der Zelle oder einer Dissoziation in die Einzelstränge entgegenzuwirken.

10 220. Medikament nach einem der Ansprüche 81 bis 99, wobei der durch die komplementären Nukleotidpaare bewirkte Zusammenhalt der doppelsträngigen Struktur durch mindestens eine chemische Verknüpfung erhöht ist.

15 221. Medikament nach einem der Ansprüche 81 bis 100, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet
20 ist.

222. Medikament nach einem der Ansprüche 81 bis 101, wobei die chemische Verknüpfung in der Nähe des einen Endes (E1, E2) gebildet ist.

25 223. Medikament nach einem der Ansprüche 81 bis 102, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder
30 Oligoethylenglycol-Ketten sind.

224. Medikament nach einem der Ansprüche 81 bis 103, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

225. Medikament nach einem der Ansprüche 81 bis 104, wobei die chemische Verknüpfung durch Purinanaloga gebildet ist.

5 226. Medikament nach einem der Ansprüche 81 bis 105, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

10 227. Medikament nach einem der Ansprüche 81 bis 106, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktio-nelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'--(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psora-
len.

15 228. Medikament nach einem der Ansprüche 81 bis 107, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.

20 229. Medikament nach einem der Ansprüche 81 bis 108, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.

25 230. Medikament nach einem der Ansprüche 81 bis 109, wobei die dsRNA I/II in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen ist.

30 231. Medikament nach einem der Ansprüche 81 bis 110, wobei die dsRNA I an mindestens ein von einem Virus stammendes, da-von abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist/sind.

232. Medikament nach einem der Ansprüche 81 bis 111, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

233. Medikament nach einem der Ansprüche 81 bis 112, wobei
5 das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-
Protein 2 (VP2) des Polyomavirus enthält.

234. Medikament nach einem der Ansprüche 81 bis 113, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem
10 Hüllprotein die eine Seite zum Inneren des Kapsids oder kap-
sidartigen Gebildes gewandt ist.

235. Medikament nach einem der Ansprüche 81 bis 114, wobei
der eine Strang (as1, as2) der dsRNA I zum primären oder pro-
15 zessierten RNA-Transkript des Zielgens komplementär ist.

236. Medikament nach einem der Ansprüche 81 bis 115, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

20 237. Medikament nach einem der Ansprüche 81 bis 116, wobei der erste (B1) und der zweite Bereich (B2) voneinander beab-
standet sind.

25 238. Medikament nach einem der Ansprüche 81 bis 117, wobei die dsRNA in einer Menge von höchstens 5 mg pro Verabrei-
chungseinheit enthalten ist.

239. Medikament nach einem der Ansprüche 81 bis 118, wobei
30 die dsRNA in eine Pufferlösung aufgenommen ist.

240. Medikament nach einem der Ansprüche 81 bis 119, wobei die dsRNA oral oder mittels Injektion oder Infusion intrave-

nös, intratumoral, inhalativ, intraperitoneal verabreichbar ist.

Fig. 1a**Fig. 1b****Fig. 2**

2/20

Fig. 3

Fig. 4

3/20

Fig. 5

Fig. 6

4/20

Fig. 7

5/20

Fig. 8

6/20

Fig. 9

7/20

Fig. 10

Fig. 11

8/20

Fig. 12**Fig. 13****Fig. 14**

9/20

Fig. 15

Fig. 16

10/20

Fig. 17

11/20

Fig. 18

12/20

Fig. 19

13/20

Fig. 20

14/20

Fig. 21

Fig. 22

15/20

Fig. 23

Fig. 24

16/20

Fig. 25a

17/20

Fig. 25b

18/20

Fig. 26a

19/20

Fig. 26b

20/20

Fig. 27

SEQUENZPROTOKOLL

<110> Ribopharma AG

5 <120> Verfahren zur Hemmung der Expression
eines Zielgens

<130>

10 <140>
<141>

<160> 142

15 <170> PatentIn Ver. 2.1

<210> 1

<211> 2955

<212> DNA

20 <213> Homo sapiens

<300>

<302> Eph A1

<310> NM00532

25

<300>

<302> ephrin A1

<310> NM00532

30 <400> 1

atggagcggc gctggccccc ggggcttaggg ctgggtctgc tgctctgcgc cccgctgccc 60

ccggggggcgcc gcgccaagga agttactctg atggacacaaa gcaaggcaca gggagagctg 120

ggctggctgc tggatccccca aaaagatggg tggagtgaac agcaacagat actgaatggg 180

acacccctct acatgtacca ggactgccc atgcaaggac gcagagacac tgaccactgg 240

25 cttcgctcca attggatcta ccgcggggag gaggcttccc gcgtccacgt ggagctgcag 300

ttcacctgtc gggactgcaa gagtttccct gggggagccg ggcctctgg ctgcaaggag 360

accttcaacc ttctgtacat ggagagtgcac caggatgtgg gcattcagct ccgacggccc 420

ttgttccaga aggttaaccac gttggctgca gaccagacgt tcaccattcg agaccttgcg 480

tctggctcg tgaagctgaa tggggagcgc tgctctctgg gccgcctgac ccgcctgtgc 540

35 ctctacctcg ctttccaaa cccgggtgcc tgggtggccc tggtgtctgt ccgggtcttc 600

taccagcgt gtccctgagac cctgaatgac tggggccaaat tcccagacac tctgcctggc 660

cccgctgggt tggtggaaat ggcggggcacc tgcttgcggcc acgcgcggc cagccccagg 720

ccctcaggtg caccggcat gcactgcagc cctgatggcg agtggctggt gcctgttagga 780

40 cgggtgccact gtgagcctgg ctatgaggaa ggtggcagtgc ggcgaagcatg tggtgcctgc 840

cttagcggtc cttaccggat ggacatggac acacccatt gtctcacgtg ccccccaggcag 900

agcactgctg agtctgaggg ggcacccatc tgtacctgtg agagcggcca ttacagagct 960

cccgaaaaagg gcccccaagggt ggcacatgcaca ggtccccctt cggcccccgg aaacctgagc 1020

ttctctgctt caggactca gctctccctg cttggggaaat ccccacgcaga tacgggggg 1080

50 cggccaggatg tcagatacag tggagggtgt tcccagtgtc agggcacacgc acaggacggg 1140

ggggccctgcc agccctgtgg gttgggcgtg cacttctcgcc cggggggcccg ggcgcgtcacc 1200

acacctgcacatgtcataa tggccttggaa ctttatgcac actacacccat taatgtggaa 1260

gccccaaaat gagtgcacgg gttgggcgtc tctggccatc ctagcacatc agtgcacatc 1320

55 agcatggggc atgcacatgc acgtgcacgg cttgtctgtca gactgggtaa gaaagaaccg 1380

aggcaactag agtgcacatgc ggggggtcc cggcccccggaa cccctggggc gaacctgacc 1440

tatgagctgc acgtgcataa ccaggatgaa gaaacggatc accatgcacttgc agatgggtt 1500

60 gtcttgcataa cagacgtgc acgtgcacgg acatatacatgc ttagactgtcc aatgtgtacc 1560

ccactgggtc ctggcccttt ctccctgtat catgatgttc ggaccagccc accagtgtcc 1620

agggggccctga ctggaggaga gattgttagcc gtcacatcttgc ggctgtctgtc tggtgcagcc 1680

ttgctgtctg ggatctcgat tttccgggtcc aggagagccc agcggcagag gcagcagagg 1740

65 cactgtacccgc cgccacccat gttggatcgag aggacaagct gtgtgtaaat cttatgtgg 1800

acctccaggc atacgaggac cttgcacagg gagccttggaa ctttacccgg aggctggct 1860

aattttccctt cccggggatc tgcacccatc tggatcgatgg tggacactgt cataggagaa 1920

	ttcactaccg agatccatcc atcctgtgtc actcgccaga aggtgatcgg agcaggagag 1980
	tttggggagg tgtacaaggg catgctgaag acatcctcgg ggaagaagga ggtgccgg 2040
	gccatcaaga cgctgaaagc cggctacaca gagaagcgcg gagtggactt cctccggcag 2100
5	gccggcatca tggggcagtt cagccaccac aacatcatcc gcctagaggg cgtcatctcc 2160
	aaatacaagc ccatgatgat catcaactgag tacatggaga atggggccct ggacaagttc 2220
	cttcgggaga aggatggcga gttcagcgtg ctgcagctgg tggcatgtc gccccatc 2280
	gcagctggca tgaatgtaccc ggccaacatc aactatgtgc accgtgaccc ggctgcccgc 2340
	aacatcctcg tcaacagcaa cctggctcg aagggtctg actttggccct gtcccgctg 2400
10	ctggaggacg accccgaggc cacctacacc accagtggcg gcaagatccc catccgctgg 2460
	accgccccgg aggccatttc ctacccggaa ttcacctctg ccagcgacgt gtggagctt 2520
	ggcattgtca tggggaggt gatgacctat ggcgagcgcg cctactggaa gttgtccaac 2580
	cacgaggtga tgaagccat caatgatggc ttccggctcc ccacacccat ggactgcccc 2640
	tccgcacatc accagctcat gatgcagtgc tggcagcagg aecgtgcccgc cgcggccaaag 2700
15	ttcgctgaca tcgtcagcat cctggacaag ctcattcgtg cccctgactc cctcaagacc 2760
	ctggctgact ttgacccccc cgtgtctatc cggctccca gcacgagcgg ctcggagggg 2820
	gtgcccttc gcacgggtgc cgagtggctg gagttcatca agatgcagda gtatacggag 2880
	cactcatgg cggccggcta cactgccatc gagaaggtgg tgcatgac caacgacgac 2940
	atcaagagga ttggggtgcg gctgcccggc caccagaagc gcacgccta cagcctgctg 3000
20	ggactcaagg accaggtgaa cactgtgggg atccccatct ga 3042
	<210> 3
	<211> 2953
	<212> DNA
25	<213> Homo sapiens
	<300>
	<302> ephrin A3
	<310> NM005233
30	<400> 3
	atggattgtc agctctccat ctcctccctt ctcagctgct ctgttctcga cagttcggg 60
	gaactgatc cgccagccatc caatgaagtc aatctactgg attcaaaaac aattcaaggg 120
	gagctggctt ggtatcttta tccatcacat gggggaaag agatcgtgg tggatgtaa 180
35	cattacacac ccattcaggac ttaccagggt tgcaatgtca tggaccacag tcaaaaacat 240
	tggctgagaa caaactgggt ccccaagaa tcagctcaga agatttatgt ggagctcaag 300
	ttcactctac gagactgcaaa tagcattcca ttgggttagt gaaactgcaaa ggagacattc 360
	aacctgtact acatggagtc tggatgtatgat catgggtga aatttcgaga gcatcagttt 420
40	acaaaagattt acaccattgc agctgtgaa agtttcaactc aaatggatct tggggaccgt 480
	attctgaagc tcaacactga gattagagaa gtgggtcctg tcaacaagaa gggattttat 540
	ttggcatttc aagatgttgg tgcttgggtt gccttgggtt ctgtgagagt atacttcaaa 600
	aagtggccat ttacagtgaa gaatctgggt atgttccatc acacggatcc catggactcc 660
	cagtccctgg tgggggttagt aggggttggt gtcaacaattt caaggagga agatccctca 720
45	aggatgtact gcagttacaga agggcaatgg cttgtaccca ttggcaaggt ttcctgcaat 780
	gctggctatg aaaaaagagg ttttatgtgc caagcttgc gaccaggtt ctacaaggca 840
	ttggatggta atatgaagtg tgctaaatgc ccccttcaca gttctactca ggaagatgg 900
	tcaatgaact gcagggtgtga gaataattac ttccggccag acaaagaccc tccatccatg 960
	gcttgtaccc gacccatc ttccaccaaa aatgttatct ctaatataaa cgagacactca 1020
50	gttatacctgg actggagttt gccccctggac acaggaggcc gggaaagatgt taccttcaac 1080
	atcatatgtt aaaaatgtgg gtggatataaa aacacgtgtg agccatgcac cccaaatgtc 1140
	cgcttcctcc ctcgacagtt tggactcacc aacaccacgg tgacagtgcac agaccttctg 1200
	gcacataacta actacaccc ttgagattgtat gcccgttaatg ggggtcaga gctgagctcc 1260
	ccaccaagac agtttgcgtc ggtcagcatc acaactaatc aggctgctcc atcacctgtc 1320
55	ctgacgatc agaaaaatgtcg gacccatccaa aatagcatct ctttgtctgg gcaagaacac 1380
	gaaacatccat atggggatcat atggactac gaggtaatg ttaccatcatc tagctcaag 1440
	gaaacaaggat ataccatttc gagggtcaaaa ggcacaaatg ttaccatcatc tagctcaag 1500
	cctgacacta tatacgtatt ccaaatccga gccccaaacag ccgctggata tggggacgaa 1560
	agccgcaagt ttgagtttga aactagtccaa gactcttctt ccatctctgg tggatgtac 1620
60	caagtggctca tgatcgccat ttccagccgca gtagcaatta ttctcttac tggatgtac 1680
	tatgttttga ttggggatgtt ctgtggctat aagtcaaaaac atggggcaga tggaaaaaaga 1740
	tttcatttttgc gcaatggggca tttaaaaactt ccaggtctca ggacttatgt tgacccacat 1800
	acatatgaag accctacccaa agctgttcat gagtttgcac aggaatttggaa tgccaccaac 1860

	atataccattg	ataaaagttgt	tggagcagggt	gaatttggag	aggtgtgcag	tggtcgctta	1920
	aaacttcctt	caaaaaaaaaga	gatttcagt	gccataaaaa	ccctgaaagt	tggctacaca	1980
	gaaaagcaga	ggagagactt	cctgggagaa	gcaagcatta	tgggacagg	tgaccacccc	2040
	aatatcattc	gactggaagg	agttgttacc	aaaagtaagc	cagtttatgat	tgtcacagaa	2100
5	tacatggaga	atggttcctt	ggatagttc	ctacgtaaac	acgatgccca	gtttactgtc	2160
	attcagctag	tggggatgt	tcgaggggata	gcatctggca	tgaagtagct	gtcagacatg	2220
	ggctatgttc	accgagacct	cgctgctcg	aacatcttga	tcaacagtaa	cttgggtgt	2280
	aagggttctg	atttcgact	ttcgcgtgtc	ctggaggatg	acccagaagc	tgcttataca	2340
	acaagaggag	ggaagatccc	atcagggtt	acataccag	aagctatagc	ctaccgcaag	2400
10	ttcacgtcag	ccagcgatgt	atgggattt	gggattgttc	tctggggaggt	gatgtcttat	2460
	ggagagagac	catactggga	gatgtccaat	caggatgtaa	ttaaagctgt	agatgagggc	2520
	tatcgactgc	caccccccat	gactgccc	gctgccttgc	atcagctgt	gctgactgc	2580
	tggcagaaag	acaggaacaa	cagacccaag	tttgagcaga	ttgttagtat	tctggacaag	2640
15	cttatccgga	atccccggcag	cctgaagatc	atcaccagtg	cagccgcaag	gccatcaa	2700
	cttcttctgg	accaaagcaa	tgtggatatc	tctacettcc	gcacaacagg	tgactggctt	2760
	aatggtgtcc	ggacagcaca	ctgcaaggaa	atcttcacgg	gcgtggagta	cagttcttgt	2820
	gacacaatag	ccaagatttc	cacagatgac	atgaaaaagg	ttgggtgtcac	cgtggttggg	2880
	ccacagaaga	agatcatcag	tagcattaaa	gctctagaaa	cgcaatcaa	gaatggccc	2940
20	gttcccgtgt	aaa					2953
	<210>	4					
	<211>	2784					
	<212>	DNA					
25	<213>	Homo sapiens					
	<300>						
	<302>	ephrin A4					
	<310>	XM002578					
30	<400>	4					
	atggatgaaa	aaaatacacc	aatccgaacc	taccaagtgt	gcaatgtgat	ggaacccagc	60
	cagaataact	ggctacgaac	tgattggatc	acccgagaag	gggctcagag	ggtgtatatt	120
	gagattaaat	tcacctttag	ggactgcaat	agtcttccgg	gcgtcatgg	gacttgcaag	180
35	gagacgttta	acctgtacta	ctatgaatca	gacaacgaca	aagagcgtt	catcagagag	240
	aaccagttt	tcaaaattga	caccattgt	gctgatgaga	gcttcaccca	agtggacatt	300
	gggtacagaa	tcatgaagct	gaacacccgag	atccgggatg	tagggccatt	aagaaaaag	360
	gggttttacc	tggctttca	ggatgtgggg	gcctgcatcg	ccctggatc	agtcgtgt	420
40	ttctataaaaa	agtgtccact	cacagtccgc	aatctggccc	agtttctgt	caccatcaca	480
	ggggctgata	cgtctccct	ggtggaaagt	cgaggctcct	gtgtcaacaa	ctcagaagag	540
	aaagatgtgc	aaaaaatgt	ctgtggggca	gatggtaat	ggctggta	cattggcaac	600
	tgcctatgca	acgctggc	tgaggagcgg	agcggagaat	gccaagctg	caaatttgg	660
	tattacaagg	ctctctccac	ggatgccacc	tgtgccaatg	gcccacccca	cagctactct	720
45	gtctggaaag	gagccacctc	gtgcacccgt	gaccgaggct	ttttcagagc	tgacaaacgt	780
	gctgccttc	tgccttc	ccgtccacca	tctgtccccc	tgaacttgt	ttcaatgtc	840
	aacagagacat	ctgtgaactt	ggaatggagt	agccctcaga	atacagggtt	ccgcaggac	900
	atttcctata	atgtgtatg	caagaaatgt	ggagctgggt	acccccagcaa	gtgcgaccc	960
	tgtgaaatgt	gggtccacta	caccccacag	cagaatggct	tgaagaccac	caaagtctcc	1020
50	atcactgacc	tcctagctca	taccaattac	accttggaaa	tctggctgt	gaatggagtg	1080
	tccaaatata	accctaacc	agaccaatca	gtttctgtca	ctgtgaccac	caaccaagca	1140
	gcaccatcat	ccattgttt	ggtccaggct	aaagaagtca	caagatacag	tgtggactg	1200
	gcttggctgg	aaccagatcg	gcccaatgg	gtaatcttgg	aatatgaatg	caagtattat	1260
	gagaaggatc	agaatgagcg	aagctatcg	atagttcgga	cagctgccc	gaacacagat	1320
55	atcaaaggcc	tgaaccctct	cacttccat	gttttccacg	tgcgagccag	gacagcagct	1380
	ggctatggag	acttcgtgt	gccccttgg	gttacaacca	acacagtgc	ttcccgatc	1440
	atggagatgt	gggctaaatc	cacagtccct	ctgggtctcg	tctggggcag	tgtggctgt	1500
	gtggtaattt	tcatgtc	ttttgtcat	agccggagac	ggagataata	cagtaaagcc	1560
	aaacaagaag	cggatagaaga	gaaacattt	aatcaagggt	taagaacata	tgtggacccc	1620
60	tttacgtacg	aagatccaa	ccaagcagt	cgagatttt	ccaaagaaat	tgacgcattc	1680
	tgcattaaaga	ttgaaaaagt	tataggattt	ggtgaattt	gtgaggtat	cagttggcgt	1740
	ctcaaaagtgc	ctggcaagag	agagatctgt	gtggctatca	agactctgaa	agctggattat	1800
	acagacaaac	agaggagaga	cttcctgagt	qaggccagca	tcatggacca	gtttgaccat	1860

ccgaacatca ttcacttgga aggcggtggc actaaatgt aaccagtaat gatcataaca 1920
 gagtacatgg agaatggctc cttggatgca ttccctcaggaa aaaatgtatgg cagatttaca 1980
 gtcattcagc tgggtggcat gtttcgtggc attgggtctg ggatgaagta tttatctgat 2040
 atgagctatg tgcattcgtga tctggccgaa cggAACATCC tggtaacag caacttggtc 2100
 5 tgcaaaagtgt ctgattttgg catgtcccga gtgcggagg atgatccgga agcagcttac 2160
 accaccagggtt gttggcaagat tccttatccgg tggactgcgc cagaagcaat tgcctatcgt 2220
 aaattcacat cagcaagtga tttatggagc tatgaaatcg ttatgtggaa agtgtatgtcg 2280
 tacggggaga ggccttatttggatgtcc aatcaagatg tgattaaagc cattgaggaa 2340
 ggctatcggtt tacccttcc aatggactgc cccattgcgc tccaccagct gatgttagac 2400
 10 tgctggcaga aggagaggag cgacaggctt aaatttggc agattgtcaa catgttggac 2460
 aaactcatcc gcaaccccaa cagcttgaag aggacaggga cggagagctc cagacctaac 2520
 actgccttgtt tggatccaag ctccctgaa ttctctgctg ttgtatcaat gggcgattgg 2580
 ctccaggcataaaaaatggc ccggtataag gataacttca cagctgtgg ttataccaca 2640
 cttagggctgtt tgggtgcacgtt gaaccaggag gaccgtggaa gaattggat cacagccatc 2700
 15 acgcaccaga ataagatttt gaggcgtgtc caggcaatgc gaacccaaat gcagcagatg 2760
 cacggcagaa tggttccgtt ctga 2784

20 <210> 5
 <211> 2997
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> ephrin A7
 <310> XM004485

<400> 5
 atggtttttc aaactcggtt cccttcattttt gctacatctg gctgtccgc 60
 30 tttgcacaca caggggaggtt gcaggctgcg aaggaaatgt tactgctgaa ttctaaagca 120
 caacaaacatg agttggatgtt gatttcctt ccacccaaatg ggtggaaaga aatttagtgg 180
 ttggatgaga actatacccc gatacgaaca taccagggtt gccaagtcat ggagccccac 240
 caaaaacaact ggctgcggac taactggattt tccaaaggca atgcacaaaatg gattttgtt 300
 gaattgaaat tcaccctgatggattgtt aacttccgtt gactactggg aacttgcaag 360
 35 gaaacattta atttgtacta ttatgaaaca gactatgaca ctggcaggaa tataagagaa 420
 aacctctatg taaaaataga caccattgtt gcagatgaaa gttttaccca aggtgaccc 480
 ggtgaaagaa agatgtatggactt taacactgtt gtgagagaga ttggaccc 540
 ggattctatc ttgcctttca ggatgttaggg gcttgcatacg ctttgggtt tgcataatgt 600
 tactacaagaat agtgcgtgtt cattattgtt aacttagtcatc tctttccaga tacagtgtact 660
 40 ggttcagaat ttccctttt agtgcgtgtt cgaggacat gtgtcagacat tgcagaggaa 720
 gaagcggaaa acgccttccatg gatgcactgc agtgcagaat gagaatgggtt agtgcctt 780
 gggaaatgtt tctgaaatgc aggcttccatg caaaaaggaa acacttgcataatg accctgtggc 840
 cgtgggttctt acaagtcttc ctctcaatgtt cttcaatgtt ctcgtgttcc aacttcacatgt 900
 ttttctgata aagaaggctt ccctcaggatgtt gaatgtgaaatg atgggttataa cagggcttca 960
 45 tctgacccttccatcgttgc atgcacaagg cctccatctg caccacagaa ccttcatatcc 1020
 aacatcaacc aaaccacatgtt aagttggaa tggatcttc ctgcagacaa tggggaaaga 1080
 aacgtatgttca cctacacaat attgtgtt aatgtgtt cggatgtt gggagcaggaa cgaatgtgtt 1140
 ccctgtggaa gtaacattgg atacatgttcc cagcagactg gattagagaa taactatgtt 1200
 actgtcatgg acctgttgc ccacgttataat tttatgtt aatgtgttcaatg tggtaatgg 1260
 50 gtttctgact taaggccatc ccacgttataat tttatgtt aatgtgttcaatg tggtaatgg 1320
 gcagctccctt ccacgttgc tggatgtt aatgtgttcaatg tggtaatgg 1380
 ctttctgttccatcgttgc aggaaggccatc gatgttccatc cagaatgttcaatg 1440
 tacgagaaatg atcaaaaggaa acggacccatc tcaacatgtt aatgtgttcaatg 1500
 tccattaata atctgaaatccatcgttgc ttttccatcgttgc agtgcgttcaatg 1560
 55 gctgggttgc gaaatttacatcgttgc ttttccatcgttgc agtgcgttcaatg 1620
 aaaatgttttgc aagcttacatcgttgc ttttccatcgttgc agtgcgttcaatg 1680
 gttgtgttagt ctgggaccatcgttgc ttttccatcgttgc agtgcgttcaatg 1740
 aggactgtgttgc ttttccatcgttgc agtgcgttcaatg 1800
 aaatttccatcgttgc ttttccatcgttgc agtgcgttcaatg 1860
 60 gtccatcaat tcgccaaggatcgttgc ttttccatcgttgc agtgcgttcaatg 1920
 gcaggagaat ttttccatcgttgc agtgcgttcaatg 1980
 gcagtagccatcgttgc ttttccatcgttgc agtgcgttcaatg 2040

tggtaagcaa gcatcatggg gcagtttgc cacccaaatg ttgtccattt ggaagggtt 2100
 gttacaagag ggaaaccagt catgataga atagagttca tggaaaaatgg agccctagat 2160
 gcatttccta ggaaacatga tggcaattt acgtcattc agtttaggg aatgtgaga 2220
 ggaattgcgt ctggaatgag atatttggt gatatggat atgttcacag ggaccttgc 2280
 5 gctcgcaata ttcttgtcaa cagcaatctc gtttggaaatg tgcagattt tggcctgtcc 2340
 cgagttatag aggatgatcc agaagctgtc tataacaacta ctgggtggaaa aattccagta 2400
 aggtggacag caccggaaac cattccgtac cggaaattca catcagccag tgatgtatgg 2460
 agctatggaa tagtcatgtg ggaagttatg tcttatggag aaagacactt ttgggacatg 2520
 10 tcaaataatcaag atgttataaaa agcaatagaa gaagggttac gtttaccagg acccatggac 2580
 tgcccagctg gccttcacca gctaattgtt gattgttggc aaaaggagcg tgctgaaagg 2640
 cccaaaattt aacagatagt tggaaattcta gacaaaatga ttgcggaaaccc aaatagtctg 2700
 aaaactcccc tgggaaacttg tagtaggcac ataagccctc ttctggatca aaacactcct 2760
 gatttcaactt cctttgttc agttggagaa tggctacaaat ctatggatca gaaagat 2820
 15 aaagataatt tcacggcagc tggctacaaat tccctgtaat cagtagccag gatgactatt 2880
 gaggatgtga tgagtttagg gatcacactg gttggtcacaaaat catgagcagc 2940
 attcagacta tgagagcaca aatgtcatat ttacatggaa ctggcattca agtgtga 2997

20 <210> 6
 <211> 3217
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> ephrin A8
 <310> XM001921

30 <400> 6
 ncbsncvwrb mdnctdrtnng nmstrctrst tanmyymsar chbmdrtnnnc tdstrctrgn 60
 mstmmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsmdatv washtmantt 120
 hdbrandnkb arggnbankh msanshahar tntamymcsm bmrnarnvdn tnhmsansha 180
 hamrnaaccs snmrvsnmga tggcccccgc ccggggccgc ctgccccctg cgctctgggt 240
 cgtcacggcc gggggggccgg cggccacactg cgtgtccgcg ggcgcggccg aagtgaattt 300
 gctggacacg tcgaccatcc acggggactg gggctggctc acgtatccgg ctcatgggt 360
 35 ggactccatc aacggaggtgg acgagtcctt ccagccccatc cacacgtacc aggtttgc 420
 cgtcatgagc cccaaaccaga acaactggct ggcacgcgcg tgggtccccc gagacggcgc 480
 cccggcgcgtc tatgtctgaga tcaagtttac cctgcgcgc tgcaacacaga tgcctgggt 540
 gctggggcacc tgcaaggaga ctttcaactt ctactacactg gagtcggacc ggcacactggg 600
 ggccacgcaca caagaaaagcc agtttctcaa aatcgacacc attgcggccg acgagagett 660
 40 cacaggtgcc gaccttggtg tgcggcgctt caagtcac acggagggtgc gcagtgtggg 720
 tccccctcagc aagogcggct tctacctggc tccctcaggac atagggtctt gcctggccat 780
 cctctctctc cgcacatctact ataagaagtg ccctgccccatc gtgcgcacatc tggctgcctt 840
 ctcggaggca gtgacgggggg ccgactcgctc ctcaactgggtt gaggtgagggg gccagtgcg 900
 gccggactca gaggagccggg acacacccaa gatgtactgc agcgcggagg ggcagttggct 960
 45 cgtccccatc ggcaaatgcg tgcgcgtgc cggctacgcg gagcggccggg atgcctgtgt 1020
 ggcctgttag ctgggcttct acaagtcaac ccctggggac cagctgtgtt cccgtgc 1080
 tccccacagc cactccgcag ctccagccgc ccaagccctgc cactgtgacc tcagactacta 1140
 ccgtgcagcc ctggacccgc ctgcctcagc ctgcacccgg ccacccctgg caccagtgaa 1200
 50 cctgtatctcc agtgtgaatg ggacatcaat gactctggag tggggccctc ccctggaccc 1260
 aggtggccgc agtgacatca cttacaatgc cgtgtccgc cgctgc 1320
 cccgtgcggag gcatgtgggg ggggcaccccg ctttggccc cagcagacaa gcctgggtca 1380
 gggccacgcgt ctggggcca acctgtggc ccacatgaa tactcttctt ggtatcgaggc 1440
 55 cgtcaatggc gtgtccgacc tgagccccca gcccccccg gccgtgtgg tcaacatcac 1500
 cacgaacccag gcagccccgt cccaggtgtt ggtatccgtt caagagccgg cggggccagac 1560
 cagcgtctcg ctgctgtggc aggagcccg gcaagccgaac ggcacatcatc tggagttatg 1620
 gatcaagtac tacgagaagg acaaggat gcaagactac tccacccctca aggccgtcac 1680
 caccagagcc accgtctccg gcctcaagcc gggcacccgc tacgtgttcc aggtccgagc 1740
 cccgcacctca gcaggctgtg gccgccttcag ccaggccatg gagggtggaga cccggaaacc 1800
 60 cccggccccc tatgacacca ggaccattgt ctggatctgc ctgacgcctca tcacgggcct 1860
 ggtggtgctt ctgccttcgc tcatctgcaa gaagaggcac tgcgtggctaca gcaaggccctt 1920
 ccaggactcg gacgaggaga agatgcacta tcagaatggc caggcaccccc cacctgtctt 1980
 cctgcctctg catcaccctcc cggggaaagct cccagagccg cagttctatg cggaaacccca 2040

	cacctacgag	gagccaggcc	gggcgggccc	cagtttca	cgggagatcg	aggcccttag	2100
	gatccacatc	gagaaaatca	tcggctctgg	agactccggg	gaagtctgt	acgggaggct	2160
	gcgggtgcca	gggcagcggg	atgtgcccgt	ggccatcaag	gccctcaaag	ccggctacac	2220
5	ggagagacag	aggcgggact	tcctgagcga	ggcgtccatc	atggggcaat	tgcaccatcc	2280
	caacatcatc	cgcctcgagg	gtgtcgta	ccgtggccgc	ctggcaatga	ttgtgactga	2340
	gtacatggag	aacggctctc	tgagacacct	cctgaggacc	cacgacgggc	agttcaccat	2400
	catgcagctg	gtgggcatgc	tgagaggagt	gggtgcccgc	atgcgttacc	tctcagacct	2460
	gggctatgtc	cacccgagacc	ttggccgccc	caacgtctg	gttgcacaga	acctggctcg	2520
10	caagggtct	gacttcgggc	tctcacgggt	gctggaggac	gaccggatg	ctgcttacac	2580
	caccacgggc	ggaaagatcc	ccatccgctg	gacggcccc	gaggccatcg	ccttccgcac	2640
	cttctcctcg	gccagcgcac	tgtggagctt	ccggctggtc	atgtgggagg	tgctggccta	2700
	tggggagccg	ccctactgga	acatgaccaa	ccgggatgtc	atcagctctg	tggaggaggg	2760
15	gtaccgcctg	cccgaccca	ttggctgccc	ccacgcctg	caccagctca	tgctcgactg	2820
	ttggcacaag	gacccggcgc	agcggccctg	cttctccag	attgtcagtg	tcctcgatgc	2880
	gctcatccgc	agccctgaga	gtctcagggc	cacccgcaca	gtcagcagg	gcccacccccc	2940
	tgccttcgtc	cggagctgt	ttgacccctg	agggggcagc	gttggcggt	ggggcctcac	3000
	cgtgggggac	tggctggact	ccatccgcat	ggcccggtac	cgagaccact	tcgctgcggg	3060
	cggatactcc	tctctggca	tggtgctacg	catgaacgcc	caggacgtgc	gccccttggg	3120
20	catcaccctc	atggccacc	agaagaagat	cctggcagc	attcagacca	tgcggccca	3180
	gctgaccagc	acccaggggc	cccgccggca	cctctga			3217

	<210>	7
	<211>	1497
25	<212>	DNA
	<213>	Homo sapiens
	<300>	
30	<308>	U83508
	<300>	
	<302>	angiopoietin 2
	<310>	U83508

35	<400>	7					
	atgacagttt	tccttcctt	tgctttcctc	gctgccattc	tgactcacat	agggtgcagc	60
	aatcagcgc	gaagtccaga	aaacagtgg	agaagatata	accggattca	acatgggcaa	120
	tgtgcctaca	ctttcattct	tccagaacac	gatggcaact	gtcgtgagag	tacgacagac	180
40	cagtacaaca	caaacgcct	gcagagagat	gctccacacg	ttgaacccga	tttcttcc	240
	cagaaaactc	aacatctgga	acatgtgtat	gaaaattata	ctcagtggct	gaaaaaactt	300
	gagaattaca	ttgtggaaaa	catgaagtcg	gagatggccc	agatacagca	aatgcagtt	360
	cagaaccaca	cggctaccat	gttggagata	ggaaccagcc	tcctctctca	gactgcagag	420
	cagaccagaa	agtcgacaga	tgttgagacc	caggactata	atcaaacttc	tcgacttgag	480
45	atacagctc	tggagaattc	attatccacc	tacaagctag	agaagacact	tcttcaacag	540
	acaaatgaaa	tcttgaagat	ccatgaaaaaa	aacagtttat	tagaacataa	aatcttagaa	600
	atggaaaggaa	aacacaagga	agagttggac	accttaaagg	aagagaaaaga	gaaccttcaa	660
	ggcttggta	ctcgtaaac	atatataatc	caggagctgg	aaaagcaatt	aaacagagct	720
	accaccaaca	acagtgtcct	tcagaagcag	caactggagc	tgatggacac	agtccacaa	780
50	tttgtcaatc	tttgactaa	agaagggttt	ttactaaagg	gaggaaaaag	agaggaagag	840
	aaaccattta	gagactgtgc	agatgtat	caagctggtt	ttaataaaag	tggaatctac	900
	actatttata	ttaataat	gccagaaccc	aaaaagggtt	tttgcataat	ggatgtcaat	960
	ggggggaggtt	ggactgtaat	acaacatcgt	gaagatggaa	gtcttagattt	ccaaagaggc	1020
	tggaaaggaaat	ataaaatggg	ttttggaaat	ccctccgggt	aatattggct	ggggaatgag	1080
55	tttatttttg	ccattaccag	tcagaggcag	tacatgctaa	gaatttgagg	aatggactgg	1140
	gaagggaaacc	gaggcttattc	acagatgac	agattccaca	taggaaatga	aaagcaaaac	1200
	tataggttgt	atttaaaagg	tcacactgg	acagcaggaa	aacagagcag	cctgatctta	1260
	cacgggtgtc	atttcagcac	taaagatgt	gataatgaca	actgtatgt	caaatgtgcc	1320
	ctcatgttaa	caggaggatg	gtggttgtat	gcttggcc	cctccaaatct	aaatggaatg	1380
60	ttctatactg	cgggacaaaa	ccatggaaaa	ctgaatggga	taaagtggca	ctacttcaaa	1440
	ggcccccagg	actccttacg	ttccacaact	atgatgattc	gacctttaga	tttttga	1497

<210> 8
 <211> 3417
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <310> XM001924

10 <300>
 <302> Tie1

<400> 8
 atggctgtggc ggggtgcccccc tttcttgc cccatcccttc tcttggcttc tcatgtgggc 60
 gggggcggtgg acctgacgct gctggccaac ctgcggctca cggaccccca ggcgttcttc 120
 15 ctgacttgtcg tgtctgggggaa ggccggggcg gggaggggct cggacgcctg gggcccggcc 180
 etgtgtctgg agaaggacga ccgtatcggt cgacacccgc cccggccacc cctgcgcctg 240
 gggcgcaacg gttcgacca ggtcagcgtt cggggcttctt ccaagccctc ggacccctgt 300
 ggcgtcttctt cctgcgtggg cgggtctggg ggcggccgca cgcgcgtcat ctacgtgcac 360
 aacagccctg gagcccacct gttccagac aaggtcacac acactgtgaa caaagggtgac 420
 20 acccgctgtac tttctgcacg tgcacaaag gagaagcaga cagacgttat ctggaaagagc 480
 aacggatcct acttctacac cctggacttg catgaagccc aggtatggcg gttcctgctg 540
 cagctcccaa atgtcgagcc accatcgagc ggcatactaca gtgccactta cctggaaagcc 600
 agccccctgg gcagcgccctt ctttcggctc atcgtgcggg gttgtggggc tggcgctgg 660
 25 gggccagggc gtaccaagga gtgcccaggt tgccctacatg gagggtgtctg ccacgaccat 720
 gacggcgaaat gtgtatgccc ccctggcttc actggcaccc gctgtgaaca ggcctgcaga 780
 gagggccgtt ttgggcagag ctggccaggag cagtggccctg gcatatcagg ctgcggggc 840
 ctcaccccttctt gcctcccaa cccctatggc tgctcttgc tatctggctg gagaggaagc 900
 eagtgcgaag aagttgtgc ccctggctat tttggggctt attggccact ccagtggccag 960
 tgcagaatgt gtggcacttg tgaccgggtc agtgggtgtg tctggccctc tgggtggcat 1020
 30 ggagtgact gtgagaagtc agacccggatc ccccaagatcc tcaacatggc ctcagaactg 1080
 gagttcaact tagagacgat gccccggatc aactgtgcag ctgcaggaaa ccccttcccc 1140
 gtgcggggca gcatagagct acgcaagcca gacggcactg tgctcttgc caccaaggcc 1200
 attgtggagc cagagaagac cacagcttag ttcgagggtc cccgcttggc tcttgcggac 1260
 agtgggttct gggagtgcgg tgcgtccaca tctggccggc aagacagccg ggcgttcaag 1320
 35 gtcaatgtga aagtggcccccc cgtgcccctg gtcacccctc ggctccttgc caagcagagc 1380
 cggccagctt tggctcccccc gtcggctctg ttctctgggg atggaccat ctccactgtc 1440
 cgcctgcact accggggccca ggcacgttcc atggacttgtt ccgcattttt ggtggacccc 1500
 agtgagaacg tgacgttaat gaaacctggg cccaaagacag gatacgttgt tcgtgtgcag 1560
 ctgagccggc caggggaaagg aggaggagggg gctggggggc ctccacccat catgaccaca 1620
 40 gactgtcttgc agcctttgtt gcagccgtgg ttggagggtt ggcacatggc aggactgtac 1680
 cggctgcgag tgagctggc ttggcccttgc tgccggggc cacttggggc cgacggtttc 1740
 ctgtgcggc tggggacgg gacacggggg caggagccgc gggagaacgt ctcatcccc 1800
 caggcccgca ctggcccttgc gacgggactc acgcctggca cccactacca gctggatgtg 1860
 cagctctacc actgcacccctt cctggggcccg gcctggccccc ctgcacacgt gcttctgccc 1920
 45 cccagtgggc ctccagcccccc ccgcacaccc cccgcggcagg ccctctcaga ctccgagatc 1980
 cagctgacat ggaagcaccg ggaggctctg cctggggccaa tatccaagta cgttggag 2040
 gtgcagggttgg ctgggggtgc aggagaccca ctgtggatag acgtggacag gcctggagg 2100
 acaagcacca tcatccgtgg cctcaacggc agcacgcgtc acctcttccg catgcgggccc 2160
 50 agcattcagg ggctcggggca ctggagcaac acagtagaaag agtccacccat gggcaacggg 2220
 ctgcaggctg agggggccactt ccaagagacg cggggcagctg aagaggggctt ggatcagcag 2280
 ctgatcttgg cgggtgggggg ctccgtgtctt ggcaccccttgc tcaccatctt ggctggccctt 2340
 ttaaccctgg tgcacccatcg cagaagctgc ctgcacccatcg gacgcacccat caccatcc 2400
 tcaggctggc gggggggggccatccctgc ttcagctcg ggcacccatcg acttaccgg 2460
 55 cggccaaaaac tgcagccggc gcccctggac tacccaggatgc tagagtggga ggacatcacc 2520
 tttgaggacc tcatcggggaa gggggacttc ggcggggctca tccggggccat gatcaagaag 2580
 gacgggctga agatgaacgc agccatcaaa atgctgaaag agtacgttccctc tgaaaaatgac 2640
 catcgact ttgcgggaga actggaaagtt ctgtcataat tggggcatca ccccaacatc 2700
 atcaaccccttcc tggggcccttgc taagaaccga ggttacttgtt atatcgctat tgaatatgcc 2760
 ccctacggc acctgtctaga ttttctgggaaaagccggg tccttagagac tgaccctgt 2820
 60 tttgctcgag agcatgggac agcctctacc cttagctccc ggcagctgt ggcgttcc 2880
 agtgatgcgg ccaatggcat gcagttacctg agtgagaagc agttcatcca caggacccctg 2940
 gtcggccggaa atgtgctgggatggagaaac ctggcccttca agattgcaga cttcggccctt 3000

	tctcgaaaaa	aggaggttt	tgtgaagaag	acgatgggc	gtctccctgt	gcgcgtggatg	3060
	gccattgagt	ccctgaacta	cagtgtctat	accaccaaga	gtgatgtctg	gtcccttggg	3120
	gtccttcctt	gggagatagt	gagccttgg	ggtacaccct	actgtggcat	gacctgtgcc	3180
	gagctctatg	aaaagctgcc	ccagggtcac	cgcatggagc	agcctcgaaa	ctgtgacgat	3240
5	gaagtgtacg	agctgatg	tcagtgctgg	cgggaccgtc	cctatgagcg	acccccctt	3300
	gcccagat	cgctacagct	aggccgcatg	ctggaaagcca	gaaaggccta	tgtgaacatg	3360
	tcgctgttt	agaacttcac	ttacgcgggc	attgatgcca	cagctgagga	ggcctga	3417
10	<210> 9						
	<211> 3375						
	<212> DNA						
	<213> Homo sapiens						
15	<300>						
	<302> TEK						
	<310> L06139						
20	<400> 9						
	atggactt	tagccagctt	agtttctctgt	ggagtcagct	tgctcccttc	tggactgtg	60
	gaagggtgca	tggacttgat	cttgcataat	tccctacctc	ttgtatctg	tgctgaaaca	120
	tctctcac	gcattgcctc	ttgggtggcgc	ccccatgagc	ccatcacat	aggaagggac	180
	tttgaagct	taatgaacca	gcaccaggat	ccgcttggag	ttactcaaga	tgtgaccaga	240
25	aatggggcta	aaaaagttgt	tttggaaagaga	gaaaaggcta	gtaagatcaa	ttgtgtcttat	300
	ttctgtgaag	ggcgagttcg	aggagaggca	atcaggatac	gaaccatgaa	gatgcgtcaa	360
	caagcttcct	tccttaccagc	tactttaact	atgactgtgg	acaaggggaga	taacgtgaac	420
	atatcttca	aaaaggtatt	gattaaagaa	gaagatgcag	tgatttacaa	aaatggttcc	480
30	ttcatccatt	cagtgccttc	gcatgaagta	cctgatattc	tagaagtaca	cctgcctcat	540
	gctcagcccc	aggatgtctgg	agtgtactcg	gccaggtata	taggaggaaa	cctcttcacc	600
	tcggcccttca	ccagggtgtat	agtccggaga	tgtgaagccc	agaagggtggg	acctgaatgc	660
	aaccatctt	gtactgttt	tatgaacaaat	ggtgtctg	atgaagatac	tggagaatgc	720
	atttgcctc	ctgggtttat	gggaaggacg	tgtgagaagg	cttgcgtact	gcacacgtt	780
	ggcagaacct	gtaaaagaaag	gtgcagtgt	caagggat	gcaagttctt	tgtgttctgt	840
35	ctccctgacc	cctatgggt	tttgcgttgc	acaggctg	agggtctg	tgcaatgaa	900
	gcatgccacc	ctgggtttta	ccccggcagat	tgtaagctt	ggtgcagctg	caacaatggg	960
	gagatgtgt	atcgcttcca	aggatgtctc	tgctctccag	gatggcagg	gctccagtgt	1020
	gagagagaag	gcataccgag	gatgacccca	aagatagtgg	atttgcaga	tcatatagaa	1080
	gtaaacagtg	gtaaatttaa	tcccatattgc	aaagcttctg	gctggccgct	acctaactaat	1140
40	gaagaaatatg	ccctgggtgaa	gccggatggg	acagtgc	atccaaaaga	ctttaaccat	1200
	acggatcatt	tctcgttagc	catattcacc	atccaccgg	tcctccccc	tgactcagga	1260
	gtttgggtct	gcagtgtgaa	cacagtgg	gggatgg	aaaagccctt	caacatttct	1320
	gttaaagt	ttccaaagcc	cctgtatg	ccaaacgt	ttgacactgg	acataacttt	1380
45	gtctgtatca	acatcagctc	tgagccttac	tttggggat	gaccaatcaa	atccaaagaag	1440
	tttctataca	aacccgtttaa	tcaatgt	gcttgc	atattcaatg	gacaaatgag	1500
	atttgttacac	tcaatattt	ggaacctcg	acagaatatg	aactctgtgt	gcaactgg	1560
	cgtcggtgg	agggtgggg	agggcacat	ggacctgt	gacgttc	aacagctt	1620
	atcgga	ctccttccaag	aggtcttaat	ctcctgc	aaagtc	cactctaaat	1680
	ttgacctg	aaccaatatt	tccaa	gaagatgact	tttatgtt	agtggagaga	1740
50	aggctgtgc	aaaaaaagt	tca	aggcagaat	attaaagt	caggcaactt	1800
	ctacttaaca	acttacatcc	cagg	ggcag	tacgtgg	gacttcgt	1860
	gcccgagg	aatggagt	agatct	actt	gatgg	caacaccaag	1920
	caaccagaa	acatcaagat	tcc	acac	actt	tcttctt	1980
	atattggat	gttattctat	ttt	at	atcc	ttcttg	2040
55	gaagacc	acgtt	gaagataa	aat	cc	acaat	2100
	ggcctag	ctgaa	acat	cc	at	ccat	2160
	agcaaccc	cctt	ta	cc	at	ccat	2220
	ctcg	gg	at	cc	at	ccat	2280
	actgtgt	ttgg	tt	cc	at	ccat	2340
	atggccc	aa	tt	cc	at	ccat	2400
60	ctggcc	aa	tt	cc	at	ccat	2460
	tgaaatg	aca	tt	cc	at	ccat	2520
	ggcg	aa	tt	cc	at	ccat	2580

gcctccaaag atgatcacag ggactttgca ggagaactgg aagttcttgc taaaacttgg 2640
 caccatccaa acatcatcaa tctcttagga gcatgtgaac atcgaggccta cttgtacctg 2700
 gccattgagt acgcgccccca tggaaacacctt ctggacttcc ttgcgaagag ccgtgtctg 2760
 gagacggacc cagcatttgc cattgccaat agcaccgcgt ccacactgtc ctcccagcag 2820
 5 ctccttcaact tcgctgccga cgtggcccg ggcatggact acttgagcca aaaacagttt 2880
 atccacaggg atctggctgc cagaaacatt ttagtgttgaaaactatgt ggcaaaaata 2940
 gcagattttg gattgtcccg aggtcaagag gtgtacgtga aaaagacaat gggaggcctc 3000
 ccagtgcgtc ggatggccat cgagtcaactg aattacagtg tgtacacaaac caacagtgt 3060
 gtatggtctt atgggtgtt actatgggg attgttagct taggaggcac accctactgc 3120
 gggatgactt gtgcagaact ctacgagaag ctgccccagg gctacagact ggagaagccc 3180
 10 ctgaactgtg atgatgaggt gtatgatcta atgagacaat gctggcggga gaaggcttat 3240
 gagaggccat catttgcucca gatattgggt tccttaaaaca gaatgttaga ggagcggaaag 3300
 acctacgtga ataccoacgct ttatgagaag tttactttagt caggaatttga ctgttctgtc 3360
 15 gaagaagcgg cctag 3375

<210> 10
 <211> 2409
 <212> DNA
 20 <213> Homo sapiens
 <300>
 25 <300>
 <302> beta5 integrin
 <310> X53002

<400> 10
 ncbsncvwratgccgcgggc cccggcgccg ctgtacgcct gcctcctgg gctctgcgcg 60
 30 ctcctgcccc ggctcgcaagg tctcaacata tgcactagtg gaagtgcac ctcatgtgaa 120
 gaatgtctgc taatccaccc aaaatgtgcc tggtgctcca aagaggactt cggaaagccca 180
 cggtcateca cctctcggtg tgatctgagg gcaaaacctt tcaaaaatgg ctgtggagg 240
 gagatgaga gcccagccag cagcttccat gtcctgagga gcctgcccct cagcagcaag 300
 35 ggttcgggct ctgcaggctg gacgtcatt cagatgacac cacaggagat tgccgtgaac 360
 ctccggcccc gtgacaagac cacctccag ctacaggttt gccagggtga ggactatcct 420
 gtggacctgt actacctgat gacacttcc ctgtccatga aggatgactt ggacaatatc 480
 cggagcctgg gcaccaaact cgcggaggag atgaggaagc tcaccagcaa ctccgggtt 540
 ggatttgggt cttttgtga taaggacatc tctcccttct cttacacggc accgaggatc 600
 40 cagaccaatc cgtcatttgg ttacaagttt tttccaaatt gctcccctc ctttgggtt 660
 cggccatctgc tgccttcac agacagagtg gacagttca atgaggaagt tggaaaacag 720
 agggtgtccc ggaaccgaga tgccccttag gggggctttg atgcagtact ccaggcagcc 780
 gtctgcaagg agaagattgg ctggcgaaag gatgcactgc atttgctgtt gttcacaaca 840
 gatgtatgtc cccacatcgc attggatgg aaattgggag gcctgggtgca gccacacgat 900
 45 ggcctgccc accttgcacca ggcacacgg tacacagcat ccaacaggat ggactatcca 960
 tcccttgcct tgcttggaga gaaattggca gagaacaaca tcaacctcat ctttgcgtg 1020
 aaaaaaaaaacc attatatgtt tgcataagaat tttacgcctt tgatacctgg aacaacgggtg 1080
 gagatttttag atggagactc caaaaattt attcaactga ttattaatgc atacaatagt 1140
 atccggtcta aagtggagtt gtcagtctgg gatcagcctg aggtatctaa tctcttctt 1200
 50 actgctaccc gccaagatgg ggtatctat cctggtcaga ggaagtgtga gggctgtgag 1260
 attggggaca cggcatcttt tgaagtatca ttggaggccc gaaagctgtcc cagcagacac 1320
 acggagcatg tggggccctt gcccgggtt ggattccggg acagcctgga ggtgggggtc 1380
 acctacaact gcacgtgcgg ctgcagcgtt gggctggaaac ccaacagcgc caggtgcaac 1440
 gggagcgggaa cctatgtctg cggcctgtgt gagtgcagcc cggctactt gggcaccagg 1500
 55 tgcgagtgccc aggtggggaa gaaccagagc gtgtaccaga acctgtgcg ggaggcagag 1560
 ggcacagccac tgcgcagcgg ggcgtggggac tgcagctgca accagtgcctt ctgttccgag 1620
 agcgatgtt gcaagatcta tggggctttc tgcagatgtc acaacttcc ctgtgcccgg 1680
 aacaaggggag tccctgtctc aggccatggc gatgtcaactt gggggaaatg caagtgcct 1740
 gcagggttaca tggggacaa ctgtaaactgc tgcacagaca tcagcacatg cggggggcaga 1800
 gatggccaga tctgcagcga ggcgtggggac tgcgttctgtt ggcagtgccca atgcacggag 1860
 60 cccggggccctt tggggagat gtgtgagaag tgccccaccc gcccggatgc atgcacggacc 1920
 aagagagatt ggcgttgcgttgc cctgtgtctt cactctggaa aacctqacaa ccagacactgc 1980
 cacagccat tgcaggatga ggtgtatcaca tgggtggaca ccatcgtgaa agatgaccag 2040

<211> 3147
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> alpha v intergrin
 <310> NM0022210

<400> 12

10	atggcttttc	cgcgcggcg	acggctgcgc	ctcgtcccc	gccccctccc	gcttcttctc	60
	tcgggactcc	tgctacctct	gtgccgcgc	ttcaacctag	acgtggacag	tcctgcccag	120
	tactctggcc	ccgagggaaag	ttacttcggc	ttcggcgtgg	atttcttctg	gcccagcgcg	180
	tcttcccgaa	tgtttcttct	cgtgggagct	cccaaaggcaa	acaccaccca	gcctgggatt	240
15	gtggaaaggag	ggcaggctc	caaatgtgac	tggcttctta	ccggccgggt	ccagccaatt	300
	gaattttagt	caacaggcaa	tagagattat	gccaaggatg	atccatttgg	attnaagtcc	360
	catcagtgtt	ttggagcata	tgtgaggtcg	aaacaggata	aaattttggc	ctgtgcccc	420
	ttgttaccatt	ggagaactga	gatgaaaacag	gagcgagac	ctgtggaaat	atgtttctt	480
	caagatggaa	caaagactgt	tgagttatgt	ccatgttagat	cacaagatata	tgatgtgtat	540
20	ggacaggat	tttgtcaagg	aggattcago	attgatttta	ctaaagctga	cagagtactt	600
	cttgggtggc	ctggtagctt	ttattggcaa	ggtcagctt	tttcggatca	agtggcagaa	660
	atcgtatcta	aatacgcaccc	caatgtttac	agcatcaagt	ataataacca	attagcaact	720
	cggaactgcac	aagctatttt	tgatgacagc	tattttgggtt	attctgtgg	tgtcgagat	780
	ttcaatgggt	atggcataga	tgactttgtt	tcaggagttc	caagagcagc	aaggacttt	840
25	ggaatggttt	atatttatga	tgggaaagaac	atgtcctcct	tatacaattt	tactggcgag	900
	cagatggctg	catatttcgg	attttctgt	gctgccactg	acattaatgg	agatgattat	960
	gcagatgtgt	ttatggagc	acctctcttc	atggatctgt	gctctgtatgg	caaactccaa	1020
	gagggtgggc	aggctctcgt	gtctctacag	agagcttcag	gagacttcca	gacgacaaag	1080
30	ctgaatggat	ttgaggtctt	tgcacggttt	ggcagtgcca	tagctcttt	gggagatctg	1140
	gaccaggatg	gttcaatga	tatttgcatt	gctgtccat	atgggggtga	agataaaaaaa	1200
	ggaattgttt	atatcttcaa	tggaaagatca	acagcgttga	acgcagttcc	atctcaaattc	1260
	tttgaaggggc	agtgggctgc	tcgaagcatg	ccaccaagct	ttggcttattc	aatgaaagga	1320
	gccacagata	tagacaaaaaa	tggatattca	gacttaattt	taggagctt	ttgtgttagat	1380
	cgagctatct	tatacaggggc	cagaccagtt	atcactgtaa	atgctggtct	tgaagtgtac	1440
35	cctagcattt	taaatcaaga	caataaaaacc	tgctcactgc	ctggAACAGC	tctcaaagtt	1500
	tcctgttttta	atgttaggtt	ctgtttaaag	gcagatggca	aaggagtact	tcccaggaaa	1560
	cttaatttcc	agggtgaact	tcttttggat	aaactcaagc	aaaagggagc	aattcgcacg	1620
	gcactgtttc	tctacagcag	gtccccaagt	cactccaaga	acatgactat	ttcaaggggg	1680
40	ggactgtatgc	agtgtgagga	attgatagcg	tatctgcggg	atgaatctga	atttagagac	1740
	aaactcactc	caattactat	ttttagatggaa	tatcggttgg	attatagaaac	agctgtgtat	1800
	acaacaggct	tgcaaccat	tcttaaccag	ttcacgcctg	ctaaccattag	tcgacaggct	1860
	cacattctac	ttgactgtgg	tgaagacaat	gtctgttttt	ccaaagcttga	agtttctgt	1920
	gatagtgtatc	aaaagaagat	ctatattggg	gatgacaacc	ctctgacatt	gattgtttaag	1980
45	gctcagaatc	aaggagaagg	tgcctacgaa	gctgagcttca	tcgtttccat	tccactgcag	2040
	qctgatttca	tcgggggtgt	ccgaaacaat	gaaggcttag	caagacttcc	ctgtgcattt	2100
	aagacagaaa	accaaactcg	ccaggtggta	tgtgacctt	gaaacccaat	gaaggcttga	2160
	actcaactct	tagctggct	tcttttcaat	gtgcaccagc	agtcagagat	ggataacttct	2220
50	gtgaaatttg	acttacaaat	ccaaagctca	aatcttattt	acaaagtaag	cccagttgt	2280
	tctcacaatag	tttgatcttgc	tgttttagct	gcagttgaga	taagaggagt	ctcgagtcc	2340
	gatcatatatc	ttcttccat	tccaaacttgg	gagcacaagg	agaaccctga	gactgaagaa	2400
55	gatgttgggc	cagtgttca	gcacatctat	gagctgagaa	acaatggtcc	aagttcattt	2460
	agcaaggccaa	tgctccat	tcagttggct	tacaaatata	ataataaacac	tctgttgtat	2520
	atccttcattt	atgatattga	tggaccaat	aactgcactt	catagatgtt	gatcaaccct	2580
	tttggaaattt	agatctcatc	tttgaccaata	actaaaaaga	atgacacgtt	tgccggccaa	2640
60	ggtgagcggg	accatctcat	cactaaggccg	gatcttgcctt	tcagtgttgg	agatatttac	2700
	actttgggtt	gtggagttgc	tcagtgttgc	aagattgtct	gccaaggatgg	gagatttagac	2760
	agaggaaaaga	gtcaatctt	gtacgtttaa	tcattactgt	ggactgttgc	ttttatgtat	2820
	aaagaaaaatc	agaatcatcc	ctattctctg	aagtctgttgc	cttcattttaa	tgtcatagag	2880
	tttccttata	agaatcttcc	aatttggggat	atcaccatct	ccacatttgt	taccactaat	2940
	gtcacctggg	gcattcagcc	agcgcacccat	cctgtgcctt	tgtgggtat	catttttagca	3000
	gttcttagcag	gatttttgct	actggcttgc	ttggatattt	taatgttacag	gatggggctt	3060
	tttaaacggg	tccggccacc	tcaagaagaa	caagaaagg	agcagcttca	accttcatgaa	3120
	aatgggtgaag	gaaactcaga	aactttaa				3147

5 <210> 13
 <211> 402
 <212> DNA
 <213> Homo sapiens
 .
 10 <300>
 <302> CaSm (cancer associated SM-like oncogene)
 <310> AF000177
 .
 15 <400> 13
 atgaactata tgcctggcac cgccagcctc atcgaggaca ttgacaaaaaa gcacttggtt 60
 ctgttcgag atggaaggac acttataggc ttttaagaa gcattgatca atttgc当地 120
 ttatgtctac atcagactgt ggagcgtatt catgtggca aaaaatacgg tgatattcct 180
 cgaggaggatt ttgtggtag agaggaaaat gtggcctac taggagaaaat agacttggaa 240
 aaggagagtg acacaccctt ccagcaagta tccattgaag aaattctaga agaacaaaagg 300
 gtggaacagc agacccaagct ggaagcagag aagttgaaag tgcaggccct gaaggaccga 360
 ggtctttcca ttcctcgagc agatactttt gatgacttactt aa 402
 20
 .
 25 <210> 14
 <211> 1923
 <212> DNA
 <213> Homo sapiens
 .
 30 <300>
 <302> c-myb
 <310> NM005375
 .
 35 <400> 14
 atggccccaa gaccccccga cagcatatat agcagtgacg aggatgtatga ggacttttag 60
 atgtgtgacc atgactatga tggctgcctt cccaaatctg gaaagcgtca cttggggaaa 120
 acaagggtgga cccgggaaga ggtgaaaaaa ctgaagaagc tgggtggaaaca gaatggaaaca 180
 40 gatgactgga aagtatttgc caattatctc cggaaatcgaa cagatgtgca gtgc当地 240
 cggatggcaga aagtactaaa ccctgagctc atcaagggtc cttggaccac agaagaagat 300
 cagagagtgta tagagcttgc acagaaaatac ggtccggaaac gttggctgt tatttgc当地 360
 cacttaaagg ggagaatttgg aaaacaatgtt agggagaggtt ggcataaaccac cttgaatcca 420
 gaagtttggaa aaaccccttc gacagaagggaa agatgtatccatggaaaca ggc当地 480
 45 agactggggaa acagatgggc agaaatcgca aagctactgc ctggacgaaac tgataatgtc 540
 atcaagaacc actggaaatttca tacaatgcgtt cggaaaggatc aacagggaaatgg ttatctgc当地 600
 gagtttccaa aagccagccca gccagcgtt gccc当地 660
 atgggttttgc ctcaggctcc gcctacatgtt caactccctt ccactggccca gccc当地 720
 aacaacgactt attcttatttccatggaaataatgcgtt aatgttccatggaaacttgc当地 780
 50 taccctgttag cggttacatgtt aatatagtc aatgttccctt agccagctgc cgc当地 840
 cagagacactt ataatgtatggaa agacccttgcg aaggaaaaggaa gaataaaaggaa attagaatttgc当地 900
 ctcctaatgtt caaccggagaa tgagcttggaa ggacacggggatc tgcttacac accagaaccac 960
 acatgcactt accccgggtt gcacacggccacc accatttgcgg accacaccac accctcatgg 1020
 gacagtgcac ctgtttccctt tttggggagaa caccacttca cttccatctt gccc当地 1080
 55 cctggctcc taccttgcgaa aagccgcctcg ccagcaagggtt gcatgtatgtt ccaccagg 1140
 accattctgg ataatgttggaa gaaccccttgcg aaacacttca atttatagat 1200
 ttttttttttgc accattccatggaa aacttgcacttggaaatggatc ttctttaact 1260
 tccacccccc tcattggatc caaatttgcgtt gtttacacccatccatggatc agaccagact 1320
 gtgaaaacttcaaaaatggaaaatggatc tactgttttgcg agaaccggccatc ttttgc当地 1380
 60 gaaagcttc caagaacttcc tacaccatccaa aacatgcac ttgc当地 1440
 tacgggtcccc tgaagatgtt accttgcgtt ccctcttcatc tagttagaaga tctgc当地 1500
 gtgatcaaaatggatcttgcg tgaatcttgcg ttttttttgcg agtttcaaga aatggccatc 1560
 cccttacttgcg agaaaatccaa acaagggatc gatctccaa ctgatccatggatc agggaaaacttcc 1620
 ttctgtctac accactggatc agggggatc gatcttgcgtt ccactgttccatc gc当地 1680
 cctgtgc当地 1740
 gatgaagatcgcg ttttttttgcg agtgc当地 1800
 ttgc当地 1860

acatcttcca gtcaagctcg taaaatacgtg aatgcattct cagccggac gctggtcatg 1920
tga 1923

5 <210> 15
<211> 544
<212> DNA
<213> Homo sapiens

10 <300>
<302> c-myc
<310> J00120

<400> 15
15 gacccccc gag ctgtgctgct cgccggcc accggccggc cccggccgtc cctggctccc 60
ctcctgcctc gagaaggca gggatctca gaggttgcc gggaaaaaga acggagggag 120
ggatcgctc gatataaaa gccggtttc ggggtttat ctaactcgct gtagtaattc 180
cagcgagagg cagagggagc gagcggggccg ccggctaggg tggaaagagcc gggcgagcag 240
agctgcgtc gggcgctct gggaaaggag atccggagcg aatagggggc ttgcgcctcg 300
20 gcccagccct cccgctgate ccccaagccag cggccgc aa cccttgcgc atccacgaaa 360
ctttggccat agcagcgggc gggcacttg cactggaact tacaacaccc gagcaaggac 420
gcgactctcc cgacgcgggg aggctattct gcccattgg ggacacttcc ccgcgcgtgc 480
caggaccgcg ttctctgaaa ggctctcctt gcagctgctt agacgctgga ttttttcgg 540
gtag 544

25 <210> 16
<211> 618
<212> DNA
30 <213> Homo sapiens

<300>
<302> ephrin-A1
<310> NM004428

<400> 16
35 atggagttcc tctggggccc tctcttgggt ctgtgctgca gtctggccgc tgctgatcgc 60
cacaccgtct tctgaaacag ttcaaattcc aagtccgg aatggggacta caccatacat 120
gtgcagctga atgactacgt ggacatcatc tgccgcact atgaagatca ctctgtggca 180
40 gacgctgcca tggagcagta catactgtac ctggggagc atgaggagta ccagctgtgc 240
cagccccagt ccaaggacca agtccgctgg cagtcaacc ggcccgatgc caagcatggc 300
ccggagaagc tgtctgagaa gttccagcgc ttccacaccc tcaccctgg caaggagttc 360
aaagaaggac acagctacta ctacatctcc aaaccatcc accagcatga agaccgctgc 420
ttgaggttga aggtgactgt cagtggccaa atcactcaca gtcctcaggc ccatgtcaat 480
45 ccacaggaga agagacttgc agcagatgac ccagagggtgc gggttctaca tagcatcggt 540
cacagtgcgtc cccacgcct ttcccactt gcctggactg tgctgctcct tccacttctg 600
ctgctgcaaa ccccgta 618

50 <210> 17
<211> 642
<212> DNA
<213> Homo sapiens

55 <400> 17
atggcgcccg cgccagcgccc gctgctcccg ctgctgctcc tgctgttacc gctggccgc 60
ccgccttcg cgccgcggc ggacgccc cgcgcctaact cggaccgtca cgccgtctac 120
tggaaaccgca gcaacccag gttccacgca ggcgggggg acgacggccg gggctacacg 180
gtggaggtga gcatcaatga ctacctggac atctactgcc cgcactatgg ggcggccgtc 240
60 ccgcggcccg agcgcgttgc gcactacgtg ctgtacatgg tcaacggcga gggccacgccc 300
tcctgcgacc accggccagcg cggcttcaag cgctggaggt gcaacccggcc cgccggcc 360
ggggggccgc tcaagtttcc ggagaagtgc cagctttca cgcccttctc cttggcttc 420

gagttccggc ccggccacga gtattactac atctctgcc a cgcctccaa tgctgtggac 480
cggccctgcc tgcgactgaa ggtgtacgtg cggccgacca acgagaccct gtacgaggct 540
cctgagcca tcttaccagg caataactcg tgttagcagcc cggcggctg cgcctcttc 600
ctcagcacca tccccgtgct ctggaccctc ctgggttccct ag 642

5

<210> 18
<211> 717
<212> DNA
10 <213> Homo sapiens

<300>
<302> ephrin-A3
<310> XM001787

15

<400> 18
atggcggccg ctcgcgtgct gctgctgtgc ctgctcgcc c cgtgccgct gctgccgctg 60
ctggcccaag ggcccggagg ggcgctggga aaccggcatg cggtgtactg gaacagctcc 120
aaccagcacc tgcgcgaga gggctacacc gtgcaggta acgtgaacga ctatctggat 180
20 attactgcc cgcactacaa cagctcggg gtggggcccg gggcgggacc gggggccgga 240
ggcggggcag agcagtacgt gctgtacatg gtgagccgca acggctaccc cacctgcaac 300
gccagccagg gcttcaagcg ctgggagtg aaccggccgc acgccccgca cagccccatc 360
aagttctcg agaagttcca ggcgtacagc gccttctctc tgggctacga gttccacgccc 420
25 ggcacacgt actactacat ctccacgccc actcacaacc tgcactggaa gtgtctgagg 480
atgaagggtg tcgtctgtc cgcctccaca tcgcactccg gggagaagcc ggtccccact 540
ctcccccagt tcaccatggg ccccaataatg aagatcaacg tgctggaaga ctttgaggga 600
gagaaccctc aggtgccccaa gcttggaaag agcatcagcg ggaccagccc caaacgggaa 660
cacctcccc tggccgtggg catgccttc ttccatga cgttcttggc ctccctag 717

30

<210> 19
<211> 606
<212> DNA
35 <213> Homo sapiens

<300>
<302> ephrin-A3
<310> XM001784

40

<400> 19
atgcggctgc tgccctgtc gcgactgtc ctctggccg cgttcctcg ctccctctg 60
cgcgggggct ccagccctcg ccacgtatgc tactggaaact ccagtaaccc caggttgcctt 120
cgaggagaacg ccgtgggtgga gctgggcctc aacgattacc tagacattgt ctgccccac 180
tacgaaggcc caggcccccc tgagggcccc gagacgtttt ctttgcataat ggtggactgg 240
45 ccaggctatg agtcctgcca ggcagaggcc cccggggcct acaagcgtc ggtgtgcctc 300
ctgccccttg gccatgttca attctcagag aagattcagc gcttcacacc cttctccctc 360
ggctttagt tcttacctgg agagacttac tactacatct cggtgcaccc tccagagagt 420
tctggccagt gcttggggct ccaggtgtct gtctgctgca aggagaggaa gtctgagtca 480
50 gcccacatctg ttggggcccc tggagagagt ggcacatcag ggtggcggagg gggggacact 540
cccagcccccc tctgtctctt gctattactg ctgcttctga ttcttcgtct tctgcgaatt 600
ctgtga 606

55

<210> 20
<211> 687
<212> DNA
<213> Homo sapiens

<300>

60

<302> ephrin-A5
<310> NM001962

<400> 20
atgttgcacg tggagatgtt gacgctggtg tttctgggtgc tctggatgtg tgtgttcagc 60
caggaccgg gctccaaggc cgctcgccac cgctacgctg tctactggaa cagcagcaac 120
cccagattcc agaggggtga ctaccatatt gatgtctgtt tcaatgacta cctggatgtt 180
5 ttctgccctc actatgagga ctccgtccca gaagataaga ctgagcgtta tgtctctac 240
atggtaact ttgatggcta cagtgcctgc gaccacactt ccaaagggtt caagagatgg 300
gaatgttaacc ggcctcaactc tccaaatggc ccgcgtgaatgt tctctgaaaa attccagctc 360
ttcactccct tttctcttagg atttgaattt aggccaggcc gagaatattt ctacatctcc 420
tctgcaatcc cagataatgg aagaagggtcc tgtctaaagc tcaaagtctt tgtgagacca 480
10 acaaataatgt gtataaaac tataagggttt catgatcgatg ttttgcgtt taacgacaaa 540
gtagaaaatt cattagaacc agcagatgac accgtacatg agtcagccga gccatcccc 600
ggcgagaacg cggcacaaac accaaggata cccagccgccc ttttggcaat cctactgttc 660
ctcctggcga tgcttttgcattatag 687

15 <210> 21
<211> 2955
<212> DNA
<213> Homo sapiens

20 <400> 21
atggccctgg attatctact actgctccctc ctggcatccg cagtggctgc gatggaagaa 60
acgttaatgg acaccagaac ggctactgca gagctggct ggacggccaa tcctgcgtcc 120
25 ggggtggaaag aagtcaatgg ctacgtgaa aacctgaaca ccatccgcac ctaccagggt 180
tgcaatgtct tcgagccaa ccagaacaat tggctgctca ccacccat caaccggccg 240
ggggcccatc gcacatctac acagatgcgc ttcactgtga gagactgcag cagcctccct 300
aatgtcccaag gatcctgca ggagacccctc aacttgtatt atatgagac tgactctgtc 360
attgcccacca agaagtcaatgg ctctggctt gaggcccccctt acctcaaagt agacaccatt 420
30 gctgcagatg agagcttctc ccaggtggac tttggggaa ggctgttggaa ggttaaacaca 480
gaagtcaatgg gctttggcc tcttactcgg aatggtttt acctcgctt tcaggattat 540
ggagcctgta tgtctttctt ttctgtccgt gtcttcttca aaaagtgtcc cagcattgtg 600
caaaattttt cagttttcc agagactatg acaggggcag agagcacatc tctggtgatt 660
gctcgccggca catgcattcc caacgcagag gaagtggacg tgcccatcaaa actctactgc 720
aacggggatg gggatggat ggtgccttatt gggcgtatgc cctgcaagcc tggctatgag 780
35 cctgagaaca gcgtggcatg caaggcttgc cctgcaggga cattcaaggc cagccaggaa 840
gctgaaggt gctcccactg cccctccaaac agccgcctcc ctgcagaggc gtctcccatc 900
tgacacccgtc ggaccggta ttaccggcgc gactttgacc ctccagaatgt ggcatgcact 960
agcgtcccat caggtccccc caatgttattt tccatgtca atgagacgtc catcattctg 1020
40 gagttggacc ctccaaaggga gacaggtggg cgggatgtg tgacctacaa catcatctgc 1080
aaaaagtggc gggcggaccc cccaggactgc tcccgctgtg acgacaatgt ggagttgtg 1140
cccaggcgc tgggcctgac ggagtccgc gtctccatca gcaaggctgtg gcccacacc 1200
ccctacacct ttgacatcca ggccatcaaa ggagtctcca gcaagagtcc ttccccccca 1260
cagcacgtt ctgtcaacat caccacaaac caagccggcc cctccaccgt tcccatcatg 1320
caccaagtca gtgcactat gaggagcatc acctgtcat ggcacagcc ggaggcagccc 1380
45 aatggcatca tcctggacta tgagatccgg tactatgaga aggaacacaa tgagttcaac 1440
tcctccatgg ccaggagtca gaccaacaca gcaaggattt atgggctgatg gcctggcatg 1500
gtatatgtgg tacaggtgcg tgccgcact gttgtggct acggcaatgt cagttggcaag 1560
atgtcttcc agactctgac tgacgtatgat tacaagtgcg agctgaggaa gcagctgccc 1620
ctgattgtg gctcgccgcg ggccgggggtc gtgttcgttg tgccttgggt ggcacatctc 1680
50 atcgctctgta gcaggaaacg ggcttatacg aaaggaggctg tgcacagcga taagtcac 1740
cattacagca caggccgagg ctccccaggg atgaagatct acattgtggcc cttcaactat 1800
gaggatcca acgaatgtt cccggagtt gccaaggaga ttgtatgtt ttttgtgaaa 1860
attgaagagg tcatcgccgc agggggatgtt ggagaatgtt acaaggggcg tttgaaaactg 1920
55 ccaggcaaga gggaaatcta cgtggccatc aagaccctga aggcagggtt ctcggagaag 1980
cagcgtcgcc acttctgag tgaggcgcgc atcatggcc agttcgacca tcctaaccatc 2040
attcgccctgg aggggtgtgtt caccacatc cggcctgtca tgatcatcactc aggttcatg 2100
gagaatggtg cattggattt tttccctcagg caaaatgacg ggcagttcactc cgtgtatcc 2160
cttgcgggtt tgctcaggccatc catcgctgtt ggcgtatgtt acctggctgtt gatgttattat 2220
60 gtgcacccggg acctggctgc taggaacatt ctggcaaca gtaacctgggt gtgcacccgt 2280
tccgactttt gcctctcccg ctacccatc gatgacacactt cagatccac ctacaccaggc 2340
tccttggag ggaagatccc tttgtgatgtt acagctccag aggcacatcgc ctaccgcaag 2400
ttcacttcac ccagcgacgt ttggagctt gggatgtca tttgtggaaatgtt catgtcattt 2460

ggagagagac cctattggga tatgtccaac caagatgtca tcaatgccat cgagcaggac 2520
 taccggctgc ccccacccat ggactgtcca gctgctcac accagctcat gctggactgt 2580
 tggcagaagg accgaaacag cggccccgg tttgcggaga ttgtcaaacac cctagataag 2640
 atgatccgga accccggcaag tctcaagact gtggcaacca tcaccggcggt gccttccag 2700
 5 cccctgctcg accgcctccat cccagacttc acggccctta ccaccgtgga tgactggctc 2760
 agcgcacatca aaatggtcca gtacaggac agcttctca ctgctggctt cacccctc 2820
 cagctggtca cccagatgac atcagaagac ctccctgagaa taggcatacac cttggcaggc 2880
 catcagaaga agatcctgaa cagcattcat tctatgaggg tccagataag tcagtcacca 2940
 acggcaatgg catga 2955
 10
 <210> 22
 <211> 3168
 <212> DNA
 15 <213> Homo sapiens
 <400> 22
 atggctctgc ggaggctggg ggccgcgcgtc ctgctgctgc cgctgctcgc cgccgtggaa 60
 gaaacgcta tggactccac tacagcgaact gctgagctgg gctggatggt gcacccctca 120
 20 tcagggtggg aagaggttag tggctacgat gagaacatga acacgatccg cacgtaccag 180
 gtgtgcacacg tggtagtgc aagccagaac aactggctac ggaccaagtt tattccggcgc 240
 cgtggcgccc accgcattca cgtggagatg aagtttcggt tgctgtactg cagcagcatc 300
 cccagcgtgc ctggctctg caaggagacc ttcaacctctt attactatga ggctgacttt 360
 25 gactcggcca ccaagacctt ccccaacttgg atggagaatc catgggtgaa ggtggataacc 420
 attgcagccg acgagagctt ctcccaggtg gacctgggtg gccgcgtcat gaaaatcaac 480
 accgagggtgc ggagcttcgg acctgtgtcc cgacgcggct tctacctggc cttccaggac 540
 tatggcggtc gcatgtccct catgcggcgtg cgtgttttccat accgcgaatg ccccccgcattc 600
 atccagaatg ggcgcattttt ccaggaaacc ctgtcggggg ctgagagcac atcgtgggtg 660
 30 gctggccggg gcacgtgcac gcggcaatgcg gaagagggtgg atgttccat caagctctac 720
 tgtaacgggg acggcgagt gctggcgcc atcggcggtt gcatgtgcaaa agcaggcttc 780
 gaggccgttg agaatggcac cgtctggccat ggttgtccat ctggactt caaggccaaac 840
 caaggggatg aggctgtac ccactgtccc atcaacagcc ggaccacttc tgaagggggcc 900
 accaactgtg tctggcccaa tggctactac agacgagacc tggacccctt ggacatgccc 960
 tgcacaacca tccccctccgc gccccaggtt gtgatttcca gtgtcaatga gacccctc 1020
 35 atgctggagt ggacccctcc cccgcactcc ggaggcccgag aggacctgtt ctacaacatc 1080
 atctgcaaga gctgtggctc gggccggggtt gcctgcaccc gctgcggggaa caatgtacag 1140
 tacgcaccac gccagctagg cctgaccggg ccacgcattt acatcgttgc cctgtggcc 1200
 cacacccagt acacccttgcgatccaggtt gtgaacggcg ttactgacca gagcccttc 1260
 40 tcgcctcaatc tgcctctgtt gacatcacc accaaccagg cagctccatc ggcagtgtcc 1320
 atcatgcaccc aggtgagccg caccgtggac agcattaccc tgcgtgggtc ccagccagac 1380
 cagcccaatg gcggtatccctt ggactatgag ctgcgtact atgagaaggatc gtcagttag 1440
 tacaacgcac cagccataaa aagccccacc aacacggtca ccgtgcggg cctcaaagcc 1500
 ggcgcacatc atgtttccat ggtgcgggg ccgcacgtgg cggctacagg ggcgtacagg 1560
 45 ggcaagatgt actttccagac catgacagaaa gcccggatcc agacaaatgcg ccaggagaag 1620
 ttgccactca tcatggctc ctcggccgtt ggcctggct tcctcatttc tgcgtttgtc 1680
 atcgccatcg tgcgttacatc acgggggttt gaggctgtgtc actcggatca cacggacaag 1740
 ctgcaacactt acaccagtgg ccacatgacc ccaggcatga agatctacat cgatcccttc 1800
 acctacgggg accccaacgcg ggcagtgcgg gatgttgcac agggaaatttgc catccctgt 1860
 50 gtcaaaatttgcg agcagggttatc gggagcagggg gatgttggcg aggtctgcac tggccacactg 1920
 aagctgcccac gcaagagaga gatctttgtt gccatcaaga cgctcaatgc gggctacacg 1980
 gagaaggcgcg gcccggactt cctgagcggaa gcctccatca tggccaggatc cgaccatccc 2040
 aacgtcatcc acctggaggg tgcgtgtacc aagacgcacatc ctgtgtatcatc catcaccgag 2100
 ttcatggaga atggctccctt ctccggcaaa acgtggggca gttcacatgc 2160
 atccagctgg tggggcatgtc tcggggatccatc gcaatgttgc tgaatgttgc acgttgcacatg 2220
 55 aactatgttc accgtgacccatc ggctggccgc aacatcctcg tcaacagcaaa cctgtctgc 2280
 aagggtgtcg actttgggtt ctcacgtttt cttagggacatc atacatcaga ccccaacatc 2340
 accagtgcggccatc tggggcgaaa gatccccatc cgctggacatc ccccgaaacgc catccatgc 2400
 cggaaatgtca cctccggccatc tgatgtgtgg agctacggca ttgtcatgtg ggaggtgtatc 2460
 tcctatgggg agcggccatc ctggggatccatc accaaccagg atgtaatcaaa tgccattgtg 2520
 60 caggactatc ggctggccacc gcccggactt gcccggatcc gcccggatcc acgtatgtc 2580
 gactgttggc agaaggacccg caaccacccgg cccaaatgtc gccaaatgtt caacacgcata 2640
 gacaagatga tccgcaatcc caacagccatc aaaggccatgg cgcccttc tctgtggcatc 2700

aacctgccgc tgctggaccg cacgatcccc gactacacca gctttaacac ggtggacgag 2760
 tggctggagg ccatcaagat ggggcagtac aaggagagct tcgccaatgc cggcttcacc 2820
 tcctttgacg tcgtgtctca gatgatgatg gaggacattc tccgggttgg ggtcaacttg 2880
 gctggccacc agaaaaaaat cctgaacagt atccaggtga tgcgggcgca gatgaaccag 2940
 5 attcagtctg tggagggcca gccactcgcc aggaggccac gggccacggg aagaaccaag 3000
 cggtgcgc caccgacgt caccaagaaa acatgcaact caaacgcacgg aaaaaaaaaag 3060
 ggaatggaaa aaaagaaaaac agatcctggg agggggcggg aaataacaagg aatattttt 3120
 aagaggatt ctcatagga aagcaatgac tgttttgcg gggataa 3168

10 <210> 23
 <211> 2997
 <212> DNA
 <213> Homo sapiens

15 <400> 23
 atggccagag cccgcccccc gccgcccgcg tcgcccgcg cggggcttct gccgctgctc 60
 cctccgctgc tgctgtgcc gctgctgctg ctgcccgcg gctggaaagag 120
 accctcatgg acacaaaatg gtaacatctg gagttggcgt ggacatctca tccagaaagt 180
 20 gggtggaaag aggtgagtgg ctacgatgag gccatgaatc ccatccgcac ataccaggtg 240
 tgtaatgtgc gcgagtcaag ccagaacaac tggcttcgca cggggttcat ctggcggcgg 300
 gatgtgcagc gggctcacgt ggagctcaag ttcaactgtgc gtgactgcaa cagcatcccc 360
 aacatccccg gctctcgcaa ggagaccttc aacctttct actacgaggg tgacagcgat 420
 25 gtggcctcag ctcctccccc cttctggatg gagaacccct acgtgaaagt ggacaccatt 480
 gcaaccatg agagcttctc gggctggat gcccggctg tcaacaccaa ggtgcgcagc 540
 tttggccac tttccaaggc tggcttctac ctggcttcc aggaccagg cgccctgcattg 600
 30 tgcgtcatct ccgtgcgcg cttctacaag aagtgtgcat ccaccacccg aggcttcgca 660
 ctcttcccg agacccctcac tggggggggag cccacctcgc tggtcattgc tcctggcacc 720
 tgcatcccta acgcccgtgg ggtgtcggtg ccactcaagc tctactgcaa cggcgatggg 780
 gagtggatgg tgcctgtggg tgcctgcacc tggccaccc gccatgaggg agtcgccaag 840
 gagtcccaatg gcccggcttcc tccccctgg agctacaagg cgaaggagg agagggggccc 900
 tgcctcccat gtccccccaa cagccgtacc acctcccccag cggccagcat ctgcacctgc 960
 cacaataact tctaccgtgc agactcggac tctgcggaca gtgcctgtac caccgtgcca 1020
 tctccacccca gaggtgtgat ctccaatgtg aatgaaaacct cactgatctt cgagtggagt 1080
 35 gagcccccggg acctgggtgt cggggatgac ctccctgtaca atgtcatctg caagaagtgc 1140
 catggggctg gaggggcctc acgctgtctca cgctgtgatg acaacgtgga gtttgtgcct 1200
 cggcagctgg gcctgtcgg gccccgggtc cacaccagcc atctgtctgc ccacacgcgc 1260
 tacaccttg aggtgcaggc ggtcaacggt gtctcggca agagccctt gcccctcgt 1320
 40 tatgcggccg tgaatatcac cacaaaccag gtcgccccgt ctgaagtgcc cacactacgc 1380
 ctgcacagca gtcaggcag cagcctcacc ctatcctggg caccggccaga gggggccaaac 1440
 ggagtcatcc tggactacga gatgaagtg tttgagaaga gcgaggccat cgccctccaca 1500
 gtgaccagcc agatgaaact cgtgcagctg gacgggctc ggctgtacgc cgcstatgtg 1560
 gtccagggttcc gtgcggccac agtagctgg tatggggcgtt acaggccccc tggcgagttt 1620
 45 gagaccacaa gtgagagagg ctctggggcc cagcagctcc aggaggcagtt tcccctcatc 1680
 gtgggctccg ctacagctgg gttgtcttc gtggggctg tcgtggatcat cgctatcgtc 1740
 tgcctcagga agcagcgcaca cggctctgtat tcggagatca cggagaagct gcagcagtgac 1800
 attgctctg gaatgaaggt ttatattgac ctttttacct acgaggaccc taatgaggct 1860
 gttcgggagt ttgccaagga gatcgacgtg tcctcgatca agatcgagga ggtgatcgga 1920
 50 gctggggaaat ttggggaaat gtgcgttgtt cgactgaaac agcctggccg ccgagaggtg 1980
 tttgtggcca tcaagacgct gaagggtggc tacaccgaga ggcagcggcg ggacttccta 2040
 agcgaggcct ccatcatggg tcagtttcat caccggata taatccggtt cgaggccgtg 2100
 gtcaccaaaa gtcggccagt tatgatccctc actgagttca tggaaaaactg cgccctggac 2160
 tccttcctcc ggctcaacga tgggcagttc acggctatcc agctgggtgg catgttgcgg 2220
 55 ggcattgtcg cccggcatcaa gtaccctgtcc gagatgaact atgtgcaccc cgacctggct 2280
 gtcgcacaca tccttgtcaa cagcaacctt gtcgaaatg ttcctcgatctt tggcctctcc 2340
 cgcttcctgg aggatgaccc ctccgatctt acctacacca gttccctggg cggaaagatc 2400
 cccatccgct ggactgcccc agaggccata gcctatcgga agttcaacttc tgctagtgtat 2460
 gtctggagct acggaaattgt catgtggag gtcatgagct atggagagccg accctactgg 2520
 gacatgagca accaggatgt catcaatgcc gtggagccgg attaccggct gcccaccacc 2580
 60 atggactgtc ccacagcact gcaccagctc atgtggact gtcgggtgcg ggaccggAAC 2640
 ctcaggccca aattctccca gattgtcaat accctggaca agtcatccg caatgctgcc 2700
 agcctcaagg tcattgccag cgctcagttt ggcattgtcactt agccccccttcc ggaccgcacg 2760

gtcccaagatt acacaacattt caccgacagtt ggtgattggc tggatgccat caagatgggg 2820
 cggtaacagg agagatcgct cagtgcgggg tttgcacatctt ttgacactgtt ggcccagatg 2880
 acggcagaag acctgtccg tattggggtc accctggccg gccaccagaa gaagatcctg 2940
 agcagttatcc aggacatgct gctcagatg aaccagacgc tgcctgtca ggtctga 2997

5

<210> 24

<211> 2964

<212> DNA

10 <213> Homo sapiens

<400> 24

atggagctcc ggggtgctgct ctgtgggct tcgttggccg cagcttttga agagaccctg 60

ctgaacacaa aattggaaac tgctatcgta aagtgggtga cattccctca ggtggacggg 120

15 cagtgggagg aactgagccg cctggatgag gaacacgaca gctgtgcgcac ctacgaagtg 180

tgtgaagtgc agcgtccccccc gggccaggcc cactggcttc gcacagggtt ggtccacgg 240

cggggcgcgc tccacgtgtc ggccacgcgct cgcttacca tgctcgatgtt cctgtccctg 300

cctcggtctg ggcgtctctg caaggagacc ttcaccgtct tctactatga gagcgatgctg 360

20 gacacggcca cggccctcac gccagcctgg atggagaacc cttacatcaa ggtggacacg 420

gtggccgccc agcatctcac ccggaaagccg cctggggccg aggccaccgg gaagggtaat 480

gtcaagacgc tgcgtctggg accgctcagc aaggctggct tctacctggc cttccaggac 540

caggggtcct gcatggccct gctatccctg caccttttctt acaaaaatgt cgcccaagctg 600

actgtgaacc tgactcgatt cccggagact gtgcctcggtt agctgggtt gcccgtggcc 660

25 ggttagctgctg tgggtggatgc cgtccccccc cctggcccca gccccagctt ctactgcccgt 720

gaggatggcc agtggggccga acagccggta acgggctgca gctgtgtcc ggggttcgag 780

gcagctgagg ggaacaccaa gtgcgcggcc tggcccagg gcacccatcaa gcccctgtca 840

ggagaagggc ctcgcgcaggcc atgcccaggcc aatagccact ctaacaccat tggatctgca 900

gtctgcctg gccgcgtcg gacttcccg gcacgcacag accccccgggg tgccacctgc 960

30 accacccttc ttccgcctcc gcggagcgtt gtttccgc tgaacggctc ctcctgcac 1020

ctggaatgga gtgcggccctt ggagtctgtt gggccagagg accctcaccta cgccctccgc 1080

tgccgggagt gccgaccctgg aggctcctgt ggcgcctgcg ggggagactt gacttttgc 1140

cccgcccccc gggacctggg gggacccctgg gtgggtgtt gagggtctacg tccggacttc 1200

acctataact ttgaggtcac tgcattgaaac ggggtatctt ctttagccac gggggccgtc 1260

ccatitgagc ctgtcaatgt caccactgac cgagaggta ctcctgcagt gtctgacatc 1320

35 cgggtgacgc ggtcctcacc cagcagctt agcctggctt gggctgtttcc cccggccaccc 1380

agtggggcgtt ggctggacta cgaggtaaaa taccatgaga agggcgcggca ggggtcccagc 1440

agcgtgcgtt tcctgaagac gtcagaaaaac cgggcagagc tgcgggggtt gaagcgggg 1500

gccagctacc tgggtcaggt acgggcccgc tctgaggccg getacggggcc cttcggccag 1560

40 gaacatcaca gccagacccaa actggatgag agcggagggtt ggcggggccca gctggccctg 1620

attgcgggca cggcagctgtt ggggtgttcc ctggctcttgg tggtcattttt ggtcgcagtt 1680

ctctgcctca ggaagcagagc caatggggaa gaaggagaatc attcggacaaa acacggacag 1740

tatctcatcg gacatggtaa taaggctctac atcgcaccctt tcactttatga agaccctaata 1800

gaggctgtga gggaaatttgc aaaagagatc gatgtctctt acgtcaagat tgaagaggtg 1860

attgggtcag gtgagtttgg cgagggtgtc cggggccggc tcaaggccccc agggaaagaag 1920

45 gagagctgtg tggcaatcaa gaccctgaag ggtggctaca cggagccggca gcggcgtgag 1980

tttctgagcg aggctccat catggccag ttcgagcacc ccaatatcat ccgcctggag 2040

ggcgtggtca ccaacagcat gcccgtcatg attctcacag agttcatgga gaacggcc 2100

ctggactctt tcctgcggct aaacgacgga cagttcacag tcatccagtt cgtggccatg 2160

50 ctgcggggca tcgcctcggtt catgcgttac ctggccgaga tgagctactt ccacccgagac 2220

ctggctgtcc gcaacatctt agtcaacagc aacctcgctt gcaaaatgtt tgactttggc 2280

cttcccgat tcctggagga gaactttcc gatcccacat acacggatc cctggggagga 2340

aagattccca tccgatggc tgccccgggg gccattgttcc tccggaaatgtt cacttccggcc 2400

55 agtgatgcct ggaggtacgg gattgtatgttggagggttga tggcatttttttggagggcc 2460

tactgggaca tgagcaatca ggacgtatc aatgccattt aacaggacta ccggctgccc 2520

ccgccccccag actgtccccac ctccctccac cagctcatgc tggactgttgc gcagaaaagac 2580

cgaaatgccc ggcccccgtt ccccccagggtt gtcagccccc tggacaagat gatccggaaac 2640

cccgccaggcc tcaaaatcggtt ggcccccgggg aatggccgggg cctcacaccc tctcctggac 2700

cagccgcaggcc tcactactc agcttttggc tctgtggccg agtggcttcg ggccatcaaa 2760

60 atgggaagat acgaagcccg tttcgcagcc gctgcttttgc tgccttcga gtcgttcagc 2820

cagatctctg ctgaggaccc gtcctcgatc ggagtcaactc tggccggacca ccagaagaaa 2880

atcttggcca gtgtccagca catgaagtc caggccaagg cgggaacccc ggggtgggaca 2940

ggaggaccgg cccacgcagta ctga 2964

5 <210> 25
 <211> 1041
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> ephrin-B1
 <310> NM004429

15 <400> 25
 atggctcggc ctgggcagcg ttggctcggc aagtggcttg tggcgtatgg cgtgtggcg 60
 ctgtgcccggc tcgccccacacc gctggccaag aacctggagc ccgtatccctg gagctccctc 120
 aaccccaagt tcctgagttt gaagggtttt gtatctatc cggaaaattgg agacaagctg 180
 gacatcatct gccccccgagc agaaggcaggg cggccctatg agtactacaa gctgtacctg 240
 gtgcggccctg agcaggcagc tgccgttagc acagttctcg accccaacgt gttggtcacc 300
 tgcaataggc cagagcagga aatacgtttt accatcaagt tccaggagtt cagccccaaac 360
 tacatgggc tggagttcaa gaagcaccat gattactaca ttacctaacc atccaatgg 420
 20 agcctggagg ggctggaaaa cggggaggcc ggtgtgtgcc gcacacgcac catgaagatc 480
 atcatgaagg ttggcaaga tcccaatgtc gtgacgcctg agcagctgac taccagccagg 540
 cccagcaagg aggccagacaa cactgtcaag atggccacac aggcccctgg tagtcggggc 600
 tccctgggtt actctgtatgg caagcatgag actgtgaacc aggaagagaa gagtggccca 660
 25 ggtcaagtgg ggggcagcag cggggaccctt gatgggttt tcaactccaa ggtggattt 720
 ttgcggctg tcgggtccgg ttgcgtcattc ttctgtctca tcatcatctt cctgacggtc 780
 ctactactga agtacgc当地 gccgcaccgc aagcacacac agcagcgggc ggctccctc 840
 tcgctc当地 gccctggccag tcccaagggg ggcagttggca cagcgggcac cgagccca 900
 gacatcatca ttcccttacg gactacagag aacaactact gcccccacta tgagaagg 960
 30 agtggggact acgggcaccc tgcgtacatc gtccaaagaga tgccggccca gagccggcg 1020
 aacatctact acaaggctcg a 1041

35 <210> 26
 <211> 1002
 <212> DNA
 <213> Homo sapiens

40 <300>

45 <400> 26
 atggctgtga gaagggactc cgtgtggaaat tactgctggg gtgttttgc ggttttatgc 60
 agaactgcga tttccaaatc gatagtttta gagcctatct attggaaattc ctcgaactcc 120
 aaatttctac ctggacaagg actggactta tacccacaga taggagacaa attggatatt 180
 atttgccca aagtggactc taaaaactgtt ggccagttatg aatattataa agtttatatg 240
 gttgataaaag accaagcaga cagatgcact attaagaagg aaaataccccc tctccctcaac 300
 50 tggccaaac cagaccaaga tatccaaattt accatcaagt ttcagaattt cagccctaacc 360
 ctctggggtc tgaatttca gaagaacaaa gattattaca ttatctac atcaaatggg 420
 tctttggagg gcctggataa ccaggaggga ggggtgtgcc agacaagagc catgaagatc 480
 ctcatgaaag ttggacaaga tgcaagttct gctggatcaa ccaggaataa agatccaaaca 540
 55 agacgtccag aactagaagc tggtaaaaaat ggaagaaggat cggacaacaag tccctttgt 600
 aaacccaaatc cagggttctag cacagacggc aacagcggc gacattcggy gaacaacatc 660
 ctcgggtccg aagtggcattt attgcagggtt attgcttcag gatgcattt cttcatcg 720
 atcatcatca cgctgggtt cctttgtct aagtaccggta ggagacacag gaagcactcg 780
 cccgagcaca cgaccacgc gtcgctcagc acactggcca caccacaacg cagcggcaac 840
 60 aacaacggct cagagccca gtgacatttac atcccgctaa ggactgcccga cagcgtcttc 900
 tgccctcaact acgagaaggt cagcggcgcac tacgggcacc cgggtgtacat cgtccaggag 960
 atgccccccgc agagccggc gaacatttac tacaaggatc ga 1002

<213> Homo sapiens

<400> 27

5	atggggccccc cccattctgg gccggggggc gtgcgagtcg gggccctgtc gctgctggg 60 gttttggggc tggtgtctgg gtcagcccg gaggctgtct actggaaactc ggcgaataag 120 aggttccagg cagagggtgg ttatgtgtc tacccctaga tcggggaccg gctagacctg 180 ctctgcccccc gggcccgcc tccctggccct cactcctctc ctaattatga gttctacaag 240 ctgtacctgg taggggggtgc tcagggccgg cgctgtgagg cacccctgc cccaaacctc 300 cttctcaccc ttgtatcgccc agacctggat ctccgcttca ccatcaagg ccaggagtt 360
10	agccctaatac tctggggcca cgagttccgc tcgcaccacg attactacat cattgccaca 420 tcggatggga cccgggaggg cctggagagc ctgcaggggag gtgtgtgcct aaccagaggc 480 atgaagggtgc ttctccgagt gggacaaaatg ccccgaggag gggctgtccc ccgaaaacct 540 gtgtctgaaa tgcccatgga aagagaccga gggcagccc acagcctgga gcctggaaag 600 gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgtcga aggccccctg 660
15	ccccctccca gcatgcctgc agtggctggg gcagcagggg ggctggcgtc gctcttgctg 720 ggcgtggcag gggctggggg tgccatgtt tggcggagac gggggccaa gccttcggag 780 agtgcgccacc ctggctctgg ctccctcggtt agggggagggt ctctgggcct ggggggttgg 840 ggtggatgg gacccctgggaa ggctgagctg ggggagctg ggatagctc gcgggggtggc 900 ggggctgcag atccccctt ctgcggccac tatgagaagg tgagtggtga ctatggccat 960
20	cctgtgtata tcgtgcagga tggggccccc cagagccctc caaacatcta ctacaaggta 1020 tga 1023

<210> 28

25 <211> 3399

<212> DNA

<213> Homo sapiens

<300>

30	<302> telomerase reverse transcriptase <310> AF015950
----	--

<400> 28

35	atgcgcgcgc ctcccccgtg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60 gtgctgccgc tggcacgtt cgtgcggcgc ctggggccccc agggctggcg gctgggtcag 120 cgggggacc cggggcttt ccgcgcgtc gtggcccaat gcctgggtgt cgtccccctgg 180 gacgcacggc cgcggggccgc cgcggggccctt ttccgcagg tgcctgcct gaaggagctg 240 gtggcccgag tgctgcagag gctgtgcgag cgcggcgcga agaacgtgtc ggccttcggc 300 ttcgcgtcgc tggacggggc cgcggggggc ccccccgggg ccgttaccac cagcgtgcgc 360
40	agctacctgc ccaacacggc gaccgacgca ctgcgggggaa gggggggcgtg ggggtctgtc 420 ctgcgcgcgc tggcgacgca cgtgcgtgtt cacctgtcgc cgcgtgcgc gctctttgtg 480 ctggtggtcgc ccagtcgcgc ctaccagggt tgcggggccgc cgtgtacca gctcggcgct 540 gcaactcaggc cccggggccc gccacacgtc agtgacccca gaggcgtt gggatgcgaa 600 cgggccttggaa accatagcgt cagggaggccc ggggtccccc tgggccttgcg agccccgggt 660
45	gcgaggaggc gcggggggcag tgccagccgc agtctgcgt tgcccaagag gcccaggcgt 720 ggcgctgccct ctgagccggc gcggacgcgc gttgggcagg ggtccctggc ccacccgggc 780 aggacgcgtg gaccgagtga ccgtgggttc tgcgtgggtt cacctgcaccc accccggcggaa 840 gaagccaccc tttggaggg tgcgtctctt ggcacgcgc actcccaaccc atccgtggc 900 cgccagcacc acggggggccccc cccatccaca tgcggccac cacgtccctg ggacacgcct 960
50	tgtccccccgg tgcgtccgcg gaccaagcac ttccctact cctcaggcga caaggaggcag 1020 ctgcggccct ctttctact cagctctctg aggcccagcc tgactggcgc tcggaggctc 1080 gtggagacca tctttctggg ttccaggccc tggatgcgc gggactcccg caggttggccc 1140 cgccctgcggcc agcgactctgc gcaaatgcgg cccctgtttc tggagctgtc tggaaaccac 1200 gcccgggttgc cctcgggggt gtcctcaag acgcactgcg cgcgtgcgc tgcgttcacc 1260
55	ccagcaggcc gttgtctgtgc cccggggaaag ccccaagggtt cttgtggcgc ccccgaggag 1320 gaggacacacag ccccccgtcg cttgggtgcag ctgcgcgc accacacgcg cccctggcag 1380 gtgtacggct tcgtgcgggc ctgcgtgcgc cggctggcgc ccccaaggctt ctggggctcc 1440 aggcacaacgc aacggccgtt cctcaggaaac accaagaatg tcatctccctt gggaaagcat 1500 gccaagctct cgctgcagga gctgcgtgg aagatgagcg tgcgggactg cgcttggctg 1560
60	cgcaggagcc caggggttgg ctgtgttccg gccgcagagc accgtctgcg tgaggagatc 1620 ctggccaagt tcttcactg gctgtatggat gtgtacgtcg tgcggactg caggtctttc 1680 tttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1740

	tggagcaagt	tgcaaaggcat	tggaatcaga	cagcaattga	agagggtgc	gctgcgggag	1800
	ctgtcggaag	cagaggttcag	gcagcatcg	gaagccaggc	ccgcctgtct	gacgtccaga	1860
	ctccgcttca	tccccaaagcc	tgacgggctg	cggccgatttgc	tgaacatgttgc	ctacgtcg	1920
	ggagccagaa	cgtttccgcag	agaaaagagg	gccgagcg	tcacctcg	ggtaaggca	1980
5	ctgttcagcg	tgctcaacta	cgagcggg	cggccccc	gcctccttgg	cgcctctgt	2040
	ctgggcctgg	acgatatcca	cagggcctgg	cgcaccc	tgctcg	gcgggccc	2100
	gaccgcggc	ctgagctgt	cattgtcaag	gtggatgt	cgggcgcgt	cgacaccatc	2160
	ccccaggaca	ggctcacgg	ggtcatcg	agcatcatca	aacccc	cacgtactgc	2220
	gtgcgtcggt	atgcgttgtt	ccagaagg	gccatgg	acgtccg	ggccttcaag	2280
10	agccacgtct	ctacccgtac	agaccc	ccgtacatgc	gacagt	ggctcac	2340
	caggagacca	gcccgtg	ggatgg	gtcatcg	agagct	cctaatg	2400
	gccagcagt	gccttcgt	cgttcc	cgatcg	gtccac	cgtgcgc	2460
	aggggcaagt	cctacgttca	gtgccagg	atcccg	gtccat	ctccac	2520
	ctctgcagcc	tgtgtacgg	cgacatgg	aacaag	ttgcgg	tcggcgg	2580
15	gggcgtctcc	tgcgtttgtt	ggatgtt	ttgtgt	cacct	caccac	2640
	aaaaccc	tcaaggaccc	ggtcc	gtcc	atggct	gttgaactt	2700
	cgaaagacag	tggtaactt	ccctgt	tagaa	gacgagg	tgggtgg	2760
	cagatgc	cccacgg	attccc	tgcc	tgctgg	ccggacc	2820
	gaggtgcaga	gcgactactc	cagctat	tgcc	tcagag	tctcac	2880
20	aaccgcgg	tcaaggctgg	gagga	acatg	ctttgg	cttgcgg	2940
	aagtgtcaca	gcctgttct	ggattt	gcag	tccagac	gtgcacca	3000
	atctacaaga	tcctctgt	gcaggcgt	agg	catgtgt	gcagtc	3060
	tttcatcagc	aagttggaa	gaaccc	caca	ttttcct	gcgtcat	3120
25	tccctctgt	actccatc	gaaagcc	aa	tgtcg	ggccaagg	3180
	gccgcgg	ctctgc	cgaggcc	ctgt	gccacca	attctg	3240
	aagctgactc	gacaccgt	cac	cttgc	gacagcc	3300	
	acgcagctg	gtcggaaag	cccggg	acgt	ccctgg	cgcagcc	3360
	ccggcactg	cctcagactt	caagacc	at	gtgact		3399
30	<210>	29					
	<211>	567					
	<212>	DNA					
	<213>	Homo sapiens					
35	<300>						
	<302>	K-ras					
	<310>	M54968					
40	<400>	29					
	atgactgaat	ataaaactt	gttagtt	gcttgg	taggca	tgccttgc	60
	atacagctaa	ttcagaat	ttttgtgg	aatatgt	caacaat	ggatcc	120
	aggaagcaag	tagtaatt	tggagaa	acc	tgtctt	atattct	180
	caagaggagt	acagt	gagggacc	tacatg	ctgggg	cttttt	240
45	gtatttgc	taataata	taatcatt	gaagat	accattat	agaacaa	300
	aaaagagtta	aggact	atgtac	atggcct	taggaata	atgtgat	360
	ccttctagaa	cagt	acac	aaaacagg	caggact	caagaag	420
	tttattgaaa	catcag	acaagac	ggt	ttgtat	atgcctt	480
50	cgagaaatc	aaaaacata	agaaaagat	agcaagat	gtaaaagaa	aaaaagaag	540
	tcaaagacaa	agtgt	tatgt				567
	<210>	30					
55	<211>	3840					
	<212>	DNA					
	<213>	Homo sapiens					
60	<300>						
	<302>	mdr-1					
	<310>	AF016535					
	<400>	30					

	atggatcttg	aaggggaccg	caatggagga	gcaaagaaga	agaactttt	taaactgaac	60
	aataaaagt	aaaaagataa	gaaggaaaag	aaaccaactg	tcagtgtatt	ttcaatgttt	120
	cgctattcaa	attggcttga	caagttgtat	atgggttgtt	gaactttgc	tgccatcatc	180
	catggggctg	gacttctct	catgatgctg	gtgtttggag	aatgacaga	tatcttgca	240
5	aatgcaggaa	atttagaaga	tctgatgtca	aacatcacta	atagaagtga	tatcaatgtat	300
	acagggttct	tcatgaatct	ggaggaagac	atgaccagg	atgccttatta	ttacagtgg	360
	attgggtctg	gggtgctgg	tgctgcttac	attcagg	cattttgg	cctggcagct	420
	ggaagacaaa	tacacaaaat	tagaaaacag	tttttcatg	ctataatcg	acaggagata	480
	ggctggttt	atgtgcacga	tgttggggag	cttaacaccc	gacttacaga	tgatgtctcc	540
10	aaagattaatg	aaagaatttg	tgacaaaattt	ggaatgttct	ttcgtcaat	ggcaacattt	600
	ttcactgggt	ttatagtagg	atttacacgt	ggtttggaa	taacccttgt	gattttggcc	660
	atcagtccct	ttcttggact	gtcagctgt	gtctggc	agatactatc	ttcatttact	720
	gataaagaac	tcttagcgta	tgcaaaagct	ggagcagtag	ctgaagagg	cttggcagca	780
15	attagaactg	tgattgcatt	tgaggacaaa	aagaaagaac	ttgaaaggta	caacaaaat	840
	ttagaagaag	ctaaaagaat	tgggataaaag	aaagcttata	cagccaat	ttctataggt	900
	gctgctttcc	tgctgatcta	tgcatcttat	gctctggc	tctggat	gaccac	960
	gtcctctca	ggaaatattt	tattggacaa	gtactcact	tattttctgt	attaattggg	1020
	gcttttagt	ttggacaggc	atctccaagc	attgaagcat	ttgcaat	aagaggagca	1080
20	gcttatgaaa	tcttaaagat	aattgataat	aagccaagta	ttgacagct	ttcgaagagt	1140
	gggcacaac	agataat	taagggaaaat	tttgaattca	gaaatgttca	tttcagttac	1200
	ccatctcgaa	aagaat	taatgttgc	ggtctgaacc	tgaaggtgc	gagtggcag	1260
	acgggtggccc	ttgttggaaa	cagtggctgt	ggggagagca	caacagt	gtgtgtc	1320
	aggctctatg	acccacaga	ggggatggc	agtgttgc	gacaggat	taggaccata	1380
25	aatgttaagg	ttctacggg	aatattttgtt	gtgggtgc	aggaac	attgttgc	1440
	accacgatag	ctgaaaacat	tcgctatggc	cgtgaaaat	tcaccat	tgagattgag	1500
	aaagctgtca	aggaagccaa	tgccat	tttacat	aactgc	taaatttgac	1560
	accctggtt	gagagagagg	ggcccagtt	agtggggc	agaagcag	gatgccatt	1620
	gcacgtgccc	ttgttcgca	ccccaaagatc	ctcctgctt	atgaggcc	gtcagc	1680
30	gacacagaaa	gcgaagcagt	gtttcagg	gctctggata	aggccagaa	aggtcggacc	1740
	accattgt	tagctcatcg	tttgcata	tttgcata	ctgacgt	cgctgg	1800
	gatgatggag	tcattgtt	gaaaggaaaat	catgat	tcata	gaaaggcatt	1860
	tacttcaaac	ttgtcacaat	gcagacagca	gaaatgt	ttgaattt	aatgtc	1920
	gatgaatcca	aaagt	aaatgttgc	gaaatgtt	caatgtt	aatgttcc	1980
35	ctaataagaa	aaagatcaac	tcgttaggt	gtccgtt	cacaagcc	agacagaa	2040
	cttagtacca	aaagggtct	gtatgtt	atacc	tttcc	gaggattat	2100
	aagctaaatt	taactgaat	gccttatttt	tttgc	tattttgt	cattataat	2160
	ggaggcctgc	aaccagatt	tgcaataata	tttcaaa	ttatagg	tttacaaga	2220
	attgtatgt	ctgaaaacaaa	acgacagaat	agtaactt	tttca	tttctag	2280
	cttggattt	tttctttt	tacattttt	tttgc	ttcacattt	caaagctt	2340
40	gagatcctca	ccaagcggct	ccgatacat	gtttccgat	ccatgtc	acaggatgt	2400
	agttggttt	atgaccctaa	aaacaccat	ggagcatt	ctaccagg	cgccaaat	2460
	gctgctcaag	ttaaaggggc	tatagg	aggcttgc	taattacca	aatatagca	2520
	aatcttggg	caggataat	tatatcctt	atctat	gcaacta	actgttact	2580
	ttagcaattt	tacccat	tgcaat	ggagttgtt	aatgtt	gtgtctt	2640
45	caagcactg	aagataagaa	agaacttagaa	ggtgcgg	agatcgt	tgaagcaat	2700
	aaaaatcc	gaaccgtt	ttcttt	caggac	atgttgc	tatgtat	2760
	cagagtttgc	aggta	cagaactt	tttgc	cacat	tgaattt	2820
	ttttccttca	cccagg	catgtt	tttgc	gtatgtt	gtttgg	2880
	tacttgg	cacataaact	catgat	gaggat	tttgc	ttcagct	2940
50	gtcttgg	ccatggccgt	ggggca	agttcattt	tttgc	tgccaaagcc	3000
	aaaatatcag	cagcc	catcat	attgtttt	tttgc	tgacagct	3060
	agcacggaa	gcct	gaacacat	gaaggaa	tttgc	tgaagtt	3120
	ttcaactatc	ccacc	ggacat	gtgtt	tttgc	ggaggt	3180
	aagg	cgctgg	gttggc	agtgg	tttgc	agtggtcc	3240
55	ctcctgg	gtt	acat	ggaa	tttgc	caaagaaata	3300
	aagcgactg	atgtt	cgat	gttgg	tttgc	ggagccat	3360
	ctgtt	gcac	ttgt	gat	tttgc	gggtgtgt	3420
	caggaa	agg	ttgt	ggagg	tttgc	cgagtc	3480
	cataataat	atag	actt	ggagg	tttgc	tggc	3540
60	caacgcattt	ccat	tgcc	tttgc	tttgc	tttgc	3600
	gccacgtc	ctct	ggata	agg	tttgc	ggacaaagcc	3660
	aqaqaaqqq	qcac	ttgt	gttgc	tttgc	gaatgc	3720

ttaatagtgg tggcagagtc aaggagcatg gcacgcataa gcagctgtctg 3780
gcacagaaaag gcatctattt ttcaatggtc agtgtccagg ctggaaacaaa gcgccagtga 3840

5 <210> 31
 <211> 1318
 <212> DNA
 <213> Homo sapiens

 10 <300>
 <302> UPAR (urokinase-type plasminogen activator receptor)
 <310> XM009232

 15 <400> 31
 atgggtcacc cggcgctgct ggcgctgctg ctgctgctcc acacccgtt cccagcccttc 60
 tggggcctgc ggtgcatgca gtgtaaagacc aacggggatt gccgtgtgaa agagtgcgcc 120
 ctgggacagg acctctgcag gaccacgatc gtgcgttgtt gggaaagaagg aagaagagctg 180
 gagctgtgg agaaaagctg taccactca gagaagacca acaggaccct gagctatcg 240
 actggcttg agatcaccag ctttaccggag gttgtgtgtt ggtagactt gtgcaaccag 300
 ggcaactctg gcccggctgt cacctattcc cgaaggccgtt acctcgaatg catttcctgt 360
 ggctcatca g acatgagctg tgagaggggc cggcaccaga gcctgcgtt ccgcagccct 420
 gaagaacagt gcctggatgt ggtgacccac tggatccagg aaggtgaaga agggcgtcca 480
 aaggatgacc gccaccccg tggctgtggc tacctccccg gtcgcccggg ctccaatgg 540
 ttccacaaca acgacacccctt ccacttcctg aaatgtgca acaccaccaa atgcaacgag 600
 ggcccaatcc tggagcttga aaatctgccc cagaatggcc gccagtgta cagctgcaag 660
 gggaaacagca cccatggatg ctccctctgaa gagactttcc tcattgtactg ccgaggcccc 720
 atgaatcaat gtctggtagc caccggcact cacgaaccga aaaaccaaaatgtaatgtt 780
 agaggctgtg caaccggcctc aatgtgccaat catgcccacc tgggtgacgc cttcagcatg 840
 aaccacattt atgtcttcctg ctgtactaaa agtggctgtt accacccaggatcgtt 900
 cagtaccgcg gtggggctgc ttctcagctt gggccctgccc atctcagctt caccatcacc 960
 ctgctaataatg cttggccagact gtggggaggc actcttcctt gacactaaatcgtt 1020
 cctctctgccc ctggctggat ccgggggacc ctttgcctt tccctcggtt cccagcccta 1080
 cagacttgcgt gtgtgacccctc aggccagttt gccgacccctt ctggggcctca gtttcccaag 1140
 ctatgaaaatcgtt agctatctca caaagttgtt tgaagcagaa gagaaaatgtt ggagggaggc 1200
 cgtggggccaa tgggagagactt ctgttttattttaatattgtt tgccgctgtt gtgtgtt 1260
 tattaatttttatttcatattttaatatttttata aagattttgtt accagtgg 1318

 40 <210> 32
 <211> 636
 <212> DNA
 <213> Homo sapiens

 45 <300>
 <302> Bak
 <310> U16811

 50 <400> 32
 atggcttcgg ggcaaggccc aggtcctccc aggcaggaggat gggagagcc tgccctgccc 60
 tctgtttctg aggaggaggat agcccaaggac acaggaggagg ttttccgcag ctacttttt 120
 taccgcacatc agcagaaaca ggaggctgaa ggggtggctg cccctgccc cccagagatg 180
 gtcacccatc ctctgcaacc tagcagcacc atggggcagg tgggacggca gtcgcccattc 240
 atcgccggacg acatcaaccgc acgttatgttcc tcagacttcc agaccatgtt gcagcacctg 300
 cagcccaacgg cagagaatgc ctatgttcc ttccaccaaga ttgcccacccatc cctgttttag 360
 55 agtggcatca attggggccg tgggtggctt ctctgggtt tgggttacccatc ttcgtttcc 420
 cactgttacc acatggccatc gactgggttcc ctggccagg tgaccggctt cgtgtcgac 480
 ttcatgttgc atcaactgttcc tggccgggttgg attgcacaca ggggtggctt ggtggcagcc 540
 ctgaaatgtt gcaatgttcc catcctgttcc gtgttgggtt ttctgggtt ggttctgtt 600
 ggccagtttgc tggtaatgttcc aatcttcaaa tcatgtt 636

 60 <210> 33

<211> 579
<212> DNA
<213> *Homo sapiens*

5 <300>
 <302> Bax alpha
 <310> L22473
 <400> 33
 atggacgggt ccggggagca gcccagaggc ggggggccc ccagctctga gcagatcatg 60
 aagacagggg ccctttgtc tcagggtttc atccaggatc ggcaggcg aatggggggg 120
 gaggcaccccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgac 180
 gagtgtctca agcgcattcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gccgcgggtt acacagactc ccccgagag gtcttttcc gatggcgcgc tgacatgtt 300
 tctgacggca acttcaactg gggccgggtt gtccgcctt tctactttgc cagcaaactg 360
 gtgctcaagg ccctgtgcac caaggtgccc gaactgatca gaaccatcat gggctggaca 420
 ttggacttcc tccgggagcg gctgttggc tggatccaag accagggtgg ttgggacggc 480
 ctcccttcctt actttggac gcccacgtgg cagaccgtga ccatctttgt ggccgggagt 540
 ctcaccggctt cgctcaccat ctgaaagaag atgggctga 579
 <210> 34
 <211> 657
 <212> DNA
 <213> Homo sapiens
 <300>
 <302> Bax beta
 <310> L22474
 <400> 34
 atggacgggt ccggggagca gcccagaggc ggggggccc ccagctctga gcagatcatg 60
 aagacagggg ccctttgtc tcagggtttc atccaggatc ggcaggcg aatggggggg 120
 gaggcaccccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgac 180
 gagtgtctca agcgcattcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gccgcgggtt acacagactc ccccgagag gtcttttcc gatggcgcgc tgacatgtt 300
 tctgacggca acttcaactg gggccgggtt gtccgcctt tctactttgc cagcaaactg 360
 gtgctcaagg ccctgtgcac caaggtgccc gaactgatca gaaccatcat gggctggaca 420
 ttggacttcc tccgggagcg gctgttggc tggatccaag accagggtgg ttgggatgaga 480
 ctccctcaagg ctccctcaaccc ccaccacccgc gcccctacca ccgcggctgc cccaccgtcc 540
 ctggggggcccg ccactcctct gggaccctgg gccttctgga gcaggtcaca gtggtgccct 600
 ctcggggggatct tcagatcatc agatgtggtc tataatgcgt ttcccttacg tgtctga 657
 <210> 35
 <211> 432
 <212> DNA
 <213> Homo sapiens
 <300>
 <302> Bax delta
 <310> U19599
 <400> 35
 atggacgggt ccggggagca gcccagaggc ggggggccc ccagctctga gcagatcatg 60
 aagacagggg ccctttgtc tcagggatg attgcgcgg tgacacaga ctccccccga 120
 gaggtctttt tccgagttgc agctgacatg ttttctgac gcaacttcaa ctggggccgg 180
 gttgtcgccc ttttctactt tgccagacaa ctgggtctca aggcctgtgt caccaagggt 240
 ccggaaactga tcagaaccat catgggctgg acattggact tctccggga gccgtgttg 300
 ggctggatcc aagaccaggg tggttggac ggcctccctt cctactttgg gacgcccacg 360
 tgccagaccc tgaccatctt tggccgggaa tgctcaccg cctcgctcac catctgaaag 420
 aagatcqgqct qa 432

	catgaggaaaa tgagagaaaat gtttacacac agaaatggcc ttgtgaaaaaa gggtaaagaa 480
	caaaaacacac agcgaagctt ttttcctcaga atgaagtgtt ccctaactag ccgaggaaga 540
	actatgaaca taaagtctgc aacatggaa gtattgcact gcacaggcca cattcacgtt 600
	tatgataccca acagtaacca acctcagtgt gggtataaga aaccacctat gacctgctt 660
5	gtgctgattt gtgaacccat tcctcaccca tcaaataattt aatttcctt agatagcaag 720
	actttcctca gtcgacacag cctggatatg aaattttctt attgtatgtt aagaattacc 780
	gaattgtatgg gatatgagcc agaagaactt tttaggcgcct caatttatgtt atattatcat 840
	gttttgact ctgatcatct gacccaaact catcatgata tgtttactaa aggacaagtc 900
	accacaggac agtacaggat gcttgcacaa agagggttat agttctgggt tgaactcaa 960
10	gcaactgtca tatataaacac caagaatttc caaccacatg gattgtatgt tggtaattac 1020
	gttgtgatgtt gtattattca gcacgacttg attttctccc ttcaacaaac agaatgtgtc 1080
	cttaaacccgg ttgaatcttc agatatgaaa atgactcagc tattcacccaa agttgaatca 1140
	gaagatacaa gtagccttcc tgacaaactt aagaaggAAC ctgatgctt aacttgctg 1200
15	ccccccagccg ctggagacac aatcatatctt ttagatttttgc gagcaacacg cacagaaact 1260
	gatgaccagc aacttggagga agtaccatata tataatgtatg taatgctccc ctcacccaaac 1320
	aaaaaaattac agaatataaaa ttggcaatg tctccattac ccaccgctg aacgccaag 1380
	ccacttcgaa gtagtgcgtt ccctgcactc aatcaagaag ttgcattaaa attagaacca 1440
	aatccagagt cactgaaact ttcttttacc atgccccaga ttcaggatca gacacctagt 1500
20	ccttccatgttgg gaagcacttag acaaaggttca cctgagccta atagtcccag tgaattttgt 1560
	ttttatgtgg atagtatgtt ggtcaatgaa ttcaatgttgg aatttgtttaga aaaactttt 1620
	gctgaagaca cagaagcaaa gaacccattt tctacttcagg acacagattt agacttggag 1680
	atgttagctc ccttatatccc aatggatgtt gacttccagg tacgttccctt cgatcagttg 1740
	tcaccattttt aaagcagttc cgcaaggccct gaaagcgcac gtcctcaaaag cacagttaca 1800
25	gtattccagc agactcaaat acaagaacact actgtatgtt ccaccactac cactgccacc 1860
	actgtatgtt taaaaacagt gacaaaagac cgtatggaaac acattaaaat attgattgca 1920
	tctccatctc ctaccacat acataaaagaa actactatgtt ccacatcatc accatataaga 1980
	gataactcaaa gtcggacagc ctcaccaaaac agagcaggaa aaggagtcat agaacagaca 2040
	aaaaaaatctc atccaagaag ccctaacgtt ttatgttgc ttgttgc ttttgatgttca aagaactaca 2100
30	gttccctgagg aagaactaaa tccaaagata cttagcttgc agaatgttca gagaaagcga 2160
	aaaaatggaaac atgtatgttcc acttttttccaa gcagtaggaaat ttggaaacatc attacagcg 2220
	ccagacgatc atgcagctac tacatcactt tcttggaaac gtgttaaaagg atgcacatct 2280
	agtgaacaga atggaatggaa gcaaaagaca attatgtttaa taccctctgtt ttttagcatgt 2340
	agactgttgg ggcaatcaat ggtatggaaat ggattaccac agctgaccac agtgcaccat 2400
35	gaagtttaatg ctccatataca aggccagcaga aacctactgc aggggtgaaga attactcaga 2460
	qctttcqatc aqfttaactq a 2481

40 <210> 39
<211> 481
<212> DNA
<213> Homo sapiens

45 <300>
<302> ID1
<310> X77956

50 <400> 39
atgaaaagtgc ccagtggcag caccgccacc gccgcgcggg gccccagctg cgcgctgaag 60
gccggcaaga cagcgagcgg tgcgggcgag gtgggtcgct gtctgtctga gcagagcgtg 120
gccatctcgc gctqccgggg cgccggggcg cgccctgcctg ccctgctgga cgagcagcag 180
gtaaaacgtgc tgctctacga catgaacggc tgttactcac gcctcaaggaa gctggtgccc 240
accctggccc agaaccgcaa ggtgagcaag gtggagattc tccagcacgt catcgactac 300
atcagggacc ttcaaggtaa gctgaactcg gaatccgaag ttgggacccc cggggccga 360
55 gggctgcggg tccgggctcc gctcagcacc ctcaacggcg agatcagcgc cctgacggcc 420
gaggcggcat gcgttccctgc ggacgatcgc atcttgtgtc gctgaatggtaaaaaaaaaaaaaa 480
a

60 <210> 40
<211> 110
<212> DNA
<213> Homo sapiens

5 <400> 40
tgaaaaggcattt cagtcgggtt aggtccatttt ggaaaaacatgg cctgttggacc caccgcctgg 60
gcatctccca gagaaaacc cccgtggatg acctgtatgg cctgtgttaaa 110

10 <210> 41
<211> 486
<212> DNA
<213> Homo sapiens

15 <300>
<302> ID4
<310> Y07958

20 <400> 41
atgaaggcggtt tgagccccgtt ggcggccctgtt ggccgcgttgggg cgccgtcggtt ctgcggcggtt 60
ggggagctgg cgcgtcggtt cctggccgtt cacggccaca gcctgggtgg ctccgcagcc 120
gcccggcggtt cggcgccgtt agcgcgtgtt aaggccggccg aggccggcggtt cgacgagccg 180
gcccgtgtgtt tgcagtgcgtt tatgaacgtt tgctatagtt ccgtcggtggat gctgggtggcc 240
25 accatcccgcc ccaacaagaaa agtcagcaaa gtggagatcc tgcagcacgtt tatcgtactac 300
atccctggacc tgcagctggc gctggagacg caccggccccc tgctgaggcc gccaccaccc 360
cccgccggcgcc cacaccaccc ggccgggacc tgcagccgtt ccgtcggtggat gaccggctcc 420
actgcgtca acaccgaccc ggccggcggtt gtgaacaaggc agggcgacacg cattctgtgc 480
cgctga 486

30 <210> 42
<211> 462
<212> DNA
35 <213> Homo sapiens

<300>
<302> IGF1
<310> NM000618

40 <400> 42
atggggaaaaaa tcagcagtctt tccaacccaa ttatttaagt gctgtttttt tgatttcttg 60
aaggtaaga tgcacaccat gtccctctgtt catcttttccat acctggggat gtgcctgtcc 120
accttcacca gctctggccac ggctggaccg gagacgtctt gccccggctgtt gctgggtggat 180
45 gctcttcagt tcgtgtgtgg agacaggggc tttttttca acaagcccaac agggatgtggc 240
tccagcagttt ccggggcgcc tcagacagggtt atcgtggatg agtgctgtt ccggagactgt 300
gatctaaggaa ggctggagat gtattgcgtt cccctcaaggc ctgccaaggcc agctcgctct 360
gtccgtgcctt agcgcacac ccgttccatggcc aagacccaga aggaagtaca tttgaagaac 420
50 gcaaggtagag ggagtgcagg aaacaagaac tacaggatgtt ag 462

<210> 43
<211> 591
<212> DNA
55 <213> Homo sapiens

<300>
<302> PDGFA
<310> NM002607

60 <400> 43
atgaggaccc tggcttgccct gctgtccctt ggctggggat acctcgccca tgttctggcc 60

gaggaagccg agatcccccg cgaggtgatc gagaggctgg cccgcagtca gatccacagc 120
 atccgggacc tccagcgact cctggagata gactccgtag ggagttagga ttcttggac 180
 accagcctga gagtcacgg ggtccacgcc actaagcatg tgcccggaaa gcggccctg 240
 cccattcggaa ggaagagaag catcgagggaa gctgtccccg ctgtctgcaa gaccaggacg 300
 5 gtcatttacg agattcctcg gagtcaaggc gaccccacgt ccggccaacctt cctgatctgg 360
 ccccccgtgcg tggaggtgaa acgctgcacc ggctgctgca acacgagcag tgtcaagtgc 420
 cagccctccc gcgtccacca ccgcagcgtc aagggtggca aggtggaaata cgtcaggaag 480
 aagccaaat taaaagaagt ccaggtgagg ttagaggago atttggatgt cgcctgcgcg 540
 accacaagcc tgaatccgga ttatcggaa gaggacacgg atgtgaggta a 591
 10

<210> 44
 <211> 528
 <212> DNA
 15 <213> Homo sapiens

<300>
 <302> PDGFRA
 <310> XM003568

20 <400> 44
 atggccaagc ctgaccacgc taccagtcaa gtctacgaga tcatggtaa atgctggAAC 60
 agtgagccgg agaagagacc ctccctttac cacctgagtg agattgtgaa gaatctgctg 120
 cctggacaat ataaaaagag ttatgaaaaaa attcacctgg acttcctgaa gagtgaccat 180
 25 cctgtctgtgg cacgcacatgcg tggactca gacaatgcac acattgggtt cacctacaaa 240
 aacgaggaaag acaagctgaa ggactggggag ggtggctctgg atgagcagag actgagcgt 300
 gacagtggct acatcattcc tctgcctgac attgaccctgt tccctggaaa ggaggacctg 360
 ggcaagagaga acagacacagc ctgcacacc tctgaagaga gtgcattga gacgggttcc 420
 30 agcagtccatc ccttcatcaa gagagaggac gagaccattg aagacatgca catgatggat 480
 gacatcgcca tagactcttc agacctggtaa gaagacagct tcctgtaa 528

<210> 45
 <211> 1911
 35 <212> DNA
 <213> Homo sapiens

<300>
 <302> PDGFRB
 40 <310> XM003790

<400> 45
 atgcggcttc cgggtgcgat gccagctctg gcccctaag gcgagctgct gttgtgtct 60
 45 ctcctgttac ttctggaaacc acagatctt cagggcctgg tcgtcacacc cccggggcca 120
 gagctgtcc tcaatgtctc cagcaccttc gttctgaccc gtcgggttc agctccgggt 180
 gtgtggggaaac ggatgtccca ggagccccca cagggaaatgg ccaaggccca ggatggcacc 240
 ttctccagcg tgcacact gaccaaccc actgggtctg acacgggaga atactttgc 300
 accccacaatg actccctgtgg actggagacc gatgagcggaa acggctcta catctttgtg 360
 ccagatccca ccgtgggctt cttccctaat gatggcgagg aactattcat ctttctcacg 420
 50 gaaataactaag agatcacatt tccatggca gtaacagacc cacagctggt ggtgacactg 480
 cacgagaaga aaggggacgt tgcactgct gtccttatacgttccaaacgg tggctttct 540
 ggtatctttg aggacagaag ctatgtcgtc aaaacccacca ttggggacacgg gggagggtggat 600
 tctgtatgctt actatgtcta cagactccgg tgcacatccca tcaacgtctc tgcataacgca 660
 55 gtgcagactg tggccgcacca ggggtggaaac atcaccctca tgcattgtt gatcggaat 720
 gaggtggtca acttcgagtg gacataccccc cgccaaagaaaa gtggggcggtt ggtggagccg 780
 gtgactgact tccttggaa tatgccttac cacatccgctt ccatcctgca catccccagt 840
 gccgagttttag aagactcggtt gacccatacc tgcaatgtga cggagagtgtt gaatgaccat 900
 caggatgaaa aggccatcaa catcaccgtt gttgagagcg gtcacgtcg gtcctggaa 960
 60 gaggtgggca cactacaatt tgctgagctg catcgagcc ggcacactgca ggttagtggc 1020
 gaggccttacc caccggccac tggccctgtgg ttccaaagaca accgcacccctt gggcgactcc 1080
 agcgctggcg aaatcgccctt gtcacgcgc aacgtgtcg agacccggta tgcataacgca 1140
 otgacacttgg ttcgcgtgaa ggtggcagag gtcggccactt acaccatgcg ggccttccat 1200

gaggatgctg aggtccagct ctccttccag ctacagatca atgtccctgt ccgagtgctg 1260
 gagctaagtg agagccaccc tgacagtggg gaacagacag tccgctgtcg tggccggggc 1320
 atgcccccagc cgaacatcat ctggctgtcc tgcagagacc tcaaaaagggtg tccacgttag 1380
 ctggcccca cgctgctggg gaacagttcc gaagaggaga gccagctgg aactaacgtg 1440
 5 acgtactggg aggaggagca ggagtttagt gtggtagca cactgcgtct gcagcacgtg 1500
 gatcgccac tgcgtgtcg ctgcacgtg cgcaacgtg tggccaggaa cacgcaggag 1560
 gtcacgtgg tgccacactc ctggccctt aaggtaggtgg tgcgtctcgtc catctggcc 1620
 ctggtggtgc tcaccatcat ctcccttatac atccatcatca tgctttggca gaagaagcca 1680
 10 cgtagcaga tccgatggaa ggtgatttagt tctgtgagct ctgacggcca tgagtagatc 1740
 tacgtggacc ccatgcagct gcccstatgac tccacgtggg agctggcccg 1800
 gtgctgggac gcaccctcg 1860
 ggcctgagcc atttcaagc cccaatgaaa gtggccgtca aaaatgctta a 1911

15 <210> 46
 <211> 1176
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> TGFbeta1
 <310> NM000660

<400> 46

25 atgccccccct ccgggctgctg gctgctggcc ctgctgtac cgctgctgtg gctactgggt 60
 ctgacgcctg gccccccggc cgccggacta tccacctgca agactatcgca catggagctg 120
 gtgaagcggg agcgcacatcgca ggccatccgc ggccagatcc tgcgttcaagct gcccgtcgcc 180
 agccccccca gccaggggggg ggtggccggcc ggcccgctgc ccggggccgt gtcgcctgt 240
 tacaacagca cccgcgaccg ggtggccgggg gagagtgcag aaccggagcc cgaggctgtg 300
 30 gcccactact acgcacaaggaa ggtcacccgc gtgctaattgg tggaaaaccca caacgaaatc 360
 tatgacaagt tcaagcagag tacacacacg atatatatgt tcttcaacac atcagagctc 420
 cgagaagccg tacatgtacc cgtgttgc tcccccggcag agctgcgtct gctgaggagg 480
 ctcaagttaa aagtggagca gcacgtggag ctgtaccaga aatacagcaa caattcctgg 540
 cgataacctca gcaaccggct gctggcaccc agcgaactcgca cagagtgggtt atctttgtat 600
 35 gtcacccggag ttgtcgccca gtggtagc cgtggggggg aaattggaggg ctttgcctt 660
 agcgccccact gtcctgtga cagcaggat aacacactgc aagtggacat caacgggttc 720
 actaccggcc gccgagggtga cctggccacc attcatggca tgaaccggcc tttctgtctt 780
 ctcatggcca ccccgctggc gaggggcccg catctgc当地 gctccggca cccgcgagcc 840
 ctggacacca actattgtt cagctccacg gagaagaact gctgcgtcg gcagctgtac 900
 40 attgacttcc gcaaggactt cggctggaa tggatccacg agcccaagggtt ctaccatgcc 960
 aacttctgccc tggccctg cccctacatt tggagccctgg acacgcagta cagcaagggtc 1020
 ctggccctgt acaaccagca taaccggggc gcctggccgg cggcgctgtg cgtggcccg 1080
 gcgctggagc cgctgcccatt cgtgtactac gtggccggca agcccaagggt ggagcagctg 1140
 tccaacatga tcgtcgctc ctgcaagtgc agctga 1176

45 <210> 47
 <211> 1245
 <212> DNA
 <213> Homo sapiens

<300>
 <302> TGFbeta2
 <310> NM003238

55 <400> 47

atgcactact gtgtgctgag cgctttctg atccatgcata tggtcacggc cgccgtcagc 60
 ctgtctacat gcagcacact cgatatggac cagttcatgc gcaagaggat cgaggcgatc 120
 cgcggccaga tcctgagcaa gctgaagctc accagtcccc cagaagacta tcctgagccc 180
 60 gaggaagtcc cccggaggat gatttccatc tacaacagca ccaggactt gctccaggag 240
 aaggcgagcc ggaggggccggc cgcctgctgc cgcgagagga ggcacgaaaga gtactacgcc 300
 aaggaggtt acaaaataga catgcggccc ttcttccctt ccgaaaaatgc catcccgccc 360

	actttctaca gaccctactt cagaattgtt cgatttgacg ttcagcaat ggagaagaat 420
	gcttccaaatt tggtgaaaagc agagttcaga gtcttcgtt tgcagaaccc aaaaggccaga 480
	gtgcctgaac aacggattga gctatatcag attctcaagt ccaaagatt aacatctcca 540
5	acccagcgct acatcgacag caaagtgtg aaaacaagag cagaaggcga atggctctcc 600
	ttcgatgtaa ctgatgtgt tcatgaatgg cttcaccata aagacaggaa cctgggattt 660
	aaaataaagt tacactgtcc ctgctgcact tttgtaccat ctaataatta catcatccca 720
	aataaaaagt aagaactaga agcaagatt gcaggtattt atggcaccc tcacatatacc 780
	agtggtgatc agaaaaactat aaagtccact agaaaaaaa acagtgggaa gaccccacat 840
10	ctcctgctaa tgttattgcc ctcctacaga cttgagtcac aacagaccaa ccggcggaag 900
	aagcgtgctt tggtgcggc ctattgttt agaaatgtgc aggataattt ctgcctacgt 960
	ccactttaca ttgatttcaa gagggatcta gggtgaaaat ggatacacga acccaaagg 1020
	tacaatgcctt acttctgtgc tggagcatgc ccgtattttt ggagttcaga cactcagcac 1080
	agcagggtcc tgagcttata taataccata aatccagaag catctgcttc tccttgctgc 1140
15	gtgtccccaaat ttttagaacc tctaaccatt ctctactaca ttggcaaaac acccaagatt 1200
	gaacagcttt ctaatatgtat tgtaaagtct tgcaaatgca gctaa 1245
	<210> 48
20	<211> 1239
	<212> DNA
	<213> Homo sapiens
	<300>
25	<302> TGFbeta3
	<310> XM007417
	<400> 48
	atgaagatgc acttgccaaag ggctctgggt gtcctggccc tgctgaactt tgccacggc 60
	agcctctctc tgcacttgc caccacccgt gacttcggcc acatcaagaa gaagagggtg 120
30	gaagccatata ggggacagat cttgagcaag ctcaggctca ccagcccccc tgagccaaacg 180
	gtgatgaccc acgtccccctt tcagggtccgc gcccatttaca acagcaccccg ggagctgctg 240
	gaggagatgc atggggagag ggaggaaggc tgcacccagg aaaacacccga gtcggaaatac 300
	tatgccaatggaaatccataa attcgacatg atccaggggc tggcggagca caacgaactg 360
	gctgtctgcc ctaaaggaat tacctccaaag gtttccgtt tcaatgtgtc ctcagtggag 420
35	aaaaatagaa ccaaccttatt ccgagcagaa ttccgggtct tgccgggtgcc caaccccg 480
	tctaagcgaa atgagcagag gatcgagctc ttccagatcc ttccggccaga tgagcacatt 540
	gcccaaacacgc gctatatcggttggcaagaat ctgcccacac ggggcaactgc cgagtggtctg 600
	tcctttgtat tcactgacac tgcgtgttgc tggctgttgc gaaagagatgc caacttaggt 660
40	ctagaaatca gcatttactgttccatgtc acctttcagc ocaatggaga tatccctggaa 720
	aacatttcacg aggtgatggaa aatcaaattt aaaggcgtgg acaatggaga tgaccatggc 780
	cgtggagatc tggggcgctt caagaagcg aaggatcacc acaaccctca tctaattcctc 840
	atgatgatcc ccccacaccg gtcgacaaac ccggggccagg ggggtcagag gaagaagcgg 900
45	gctttggaca ccaattactgttcccgcaac ttggaggaga actgtgttgc ggcctccctc 960
	tacattgact tccgacagga tctgggtctt aagtgggtcc atgaacctaa gggctactat 1020
	gccaaacttct gtcaggcccc ttgcccatac ctccgcgtt cagacacaaac ccacacgc 1080
	gtgctgggac tgtacaacac tctgaaccctt gaagcatctg ctgcgttgc ctgcgtgccc 1140
	caggacctgg agccctgtac catccgtac tatgttggaa ggaccccaa agtggagcag 1200
	ctctccaaaca tggtggtgaa gtcttgcataa tgttagctga 1239
50	<210> 49
	<211> 1704
	<212> DNA
	<213> Homo sapiens
55	<300>
	<302> TGFbetaR2
	<310> XM003094
60	<400> 49
	atgggtcgccc ggctgctcag gggcctgtgg ccgctgcaca tcgtcctgtg gacgcgtatc 60
	gccagcacga tcccacccga cgttcagaag tcgggttata acgacatgtat agtcaactgac 120

aacaacggtg cagtcaagtt tccacaactg tgtaaaatttt gtgatgttag attttccacc 180
 tgtgacaacc agaaaatcctg catgagcaac tgccatca cctccatctg tgagaagcca 240
 caggaagtgt ctgtggctgt atggagaaag aatgacgaga acataaacact agagacagtt 300
 tgccatgacc ccaagctccc ctaccatgac tttatctgg aagatgtgc ttctccaaag 360
 5 tgcattatga aggaaaaaaaaaa aaaggccttgt gagactttct tcattgtgtc ctgttagctct 420
 gatgagtgca atgacaacat catcttctca gaagaatata acaccagcaa tcctgacttg 480
 ttgcttagtca tatttcaagt gacaggcatc agcctctgc caccactggg agttgccata 540
 tctgtcatca tcatttctca ctgctaccgc gttaaccggc agcagaagct gagttcaacc 600
 tggaaacccg gcaagacgca gaagctcatg gagttcagcg agcactgtgc catcatcctg 660
 10 gaagatgacc gctctgacat cagctccacg tgcgttcaaca acatcaacca caacacagag 720
 ctgctgcca ttgagctgga caccctggg gggaaaggtc gctttgtca ggtctataag 780
 gccaagctga agcagaacac ttcagagcag tttgagacag tggcagtc gatcttccc 840
 tatgaggagt atgcctcttg gaagacagag aaggacatct tcctcagacat caatctgaag 900
 catgagaaca tactccagtt cctgacggct gaggagcggg agacggagtt gggaaaacaa 960
 15 tactggctga tcaccgcctt ccacgccaag ggcaacctac aggactac gacgccccat 1020
 gtcatcagtt gggaggacct ggcgaagctg ggcagctccc tcgccccggg gattgtcac 1080
 ctccacagtg atcacactcc atgtgggggg ccaagatgc ccatcgtgca caggacactc 1140
 aagagctcca atatcctcgt gaagaacgac ctaacctgct gcctgtgtg ctttggcctt 1200
 tccctgcgtc tggaccctac tctgtctgtg gatgacctgg ctaacagtgg gcagggggg 1260
 20 actgcaagat acatggctcc agaagtccta gaatccagga tqaatttggg gaatgttgag 1320
 tccttcaagc agaccgatgt ctactccatg gctctggc tctgggaaat gacatctcgc 1380
 tgtaatgcag tgggagaagt aaaagattat ggcctccat ttgggttccaa ggtgcgggag 1440
 caccctgtg tcgaaagcat gaaggacaac gtgttgagag atcgaggcgc accagaaatt 1500
 25 cccagcttc ggctcaacca ccaggccatc cagatgtgt gtgagacggt gactgagtgc 1560
 tgggaccacg acccagaggc ccgtctcaca gcccagtgtg tggcagaacg cttcagttag 1620
 ctggagcatc tggacaggct ctcggggagg agctgctcg aggagaagat tcctgaagac 1680
 ggctccctaa acactaccaa atag 1704

30 <210> 50
 <211> 609
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> TGFbeta3
 <310> XM001924

<400> 50

40 atgtctcatt acaccattat tgagaataatt tgccttaaag atgaatctgt gaaattctac 60
 agtcccaaga gactgcactt tcctatcccg caagctgaca tggataagaa gcgattcgc 120
 tttgtcttca agcctgtctt caacacctca ctgctttc tacagtgtgta gctgacgctg 180
 tgtaacgaaa tggagaagca ccccccagaag ttgcctaagt gtgtgcctcc tgacgaagcc 240
 tgcacccctc tggacgcctc gataatctgg gccatgatgc agaataagaa gacgttact 300
 45 aagcccttg ctgtgatcca ccatgaaagca gaatctaaag aaaaagggtcc aagcatgaag 360
 gaaccaaattt caatttctcc accaatttcc catggcttgg acaccctaac cgtgatggc 420
 attgcgtttc cagcctttgt gatcgagca ctccgtacgg gggcccttggt gtacatctat 480
 tctcacacag gggagacagc aggaaggcag caagtccttca cttcccccggc agcctcgaa 540
 aacagcagtg ctgcccacag catcgccagc acgcagagca cgccattgctc cagcagcagc 600
 50 acggccctag 609

<210> 51
 <211> 3633
 <212> DNA
 <213> Homo sapiens

<300>
 <302> EGFR
 <310> X00588

<400> 51

	atgcgaccct	ccgggacggc	cggggcagcg	ctccctggcgc	tgctggctgc	gctctgccc	60
	gcgagtcggg	ctctggagga	aaagaaaagt	tgccaaaggca	cgagtaacaa	gctcacgcag	120
	ttgggcacct	ttgaagatca	tttctcagc	ctccagagga	tgttcaataa	ctgtgaggtg	180
5	gtccctggga	atttggaaat	tacctatgt	cagaggaatt	atgtacttgc	cttcttaaag	240
	accatccagg	aggtggctgg	ttatgtccctc	attggcctca	acacagtgg	gcgaattcct	300
	ttggaaaaacc	tgcagatcat	cagaggaat	atgtactacg	aaaattccta	tgccttagca	360
	gtcttatcta	actatgatgc	aaataaaaacc	ggactgaagg	agctgccccat	gagaaatitta	420
	cagggaaatcc	tgcatggcgc	cgtgcgggtc	agcaacaacc	ctgcccgtg	caacgtggag	480
10	agcatccagt	ggcgggacat	agtcaagcgt	gactttctca	gcaacatgtc	gatggacttc	540
	cagaaccacc	tgggcagctg	ccaaaagtgt	gatccaagct	gtcccaatgg	gagctgctgg	600
	ggtgtcaggag	aggagaactg	ccagaaaactg	accaaataatca	tctgtgccca	gcagtgctcc	660
	gggcgcgtgcc	gtggcaagtc	ccccagtgc	tgctgccaca	accagtgtgc	tgcaggctgc	720
	acaggcccccc	gggagagcga	ctgcctggc	tgccgcaaataat	tccgagacga	agccacgtgc	780
15	aaggacacact	gccccccact	aatgtctcac	aaccccacca	cgtaccagat	ggatgtgaac	840
	cccgaggggca	aatacagctt	ttgtgccacc	tgcgtaaga	agtgtccccg	taattatgtg	900
	gtgacagatc	acggcgtcgt	cgtccgagcc	tgtggggccg	acagctatga	gatggaggaa	960
	gacggcggtcc	gcaagtgtaa	gaagtgtcga	gggccttgc	gcaaagtgt	taacggaaata	1020
	ggtattgggt	attttaaaga	ctcactctcc	ataaaatgtca	cgaaatattaa	acacttcaaa	1080
20	aactgcacct	ccatcagtgg	cgatctccac	atcctgcccgg	tggcatttag	gggtgactcc	1140
	ttcacacata	ctccctcctc	ggatccacag	gaactggata	ttctgaaaac	cgtaaaggaa	1200
	atcacaggg	ttttgctgtat	tcaggccttg	cctgaaaaca	ggacggact	ccatgcctt	1260
	gagaacctag	aaatcatacg	cgccaggacc	aagcaacatg	gtcagtttc	tcttcgcagtc	1320
	gtcagcctga	acataacatc	cttgggattt	cgctccctca	aggagataag	tgatggagat	1380
25	gtgataattt	cagggaaacaa	aaatttgc	tatgcaaata	caataaaactg	aaaaaaaactg	1440
	tttgggacct	ccggtcagaa	aacccaaatt	ataagcaaca	gaggtgaaaa	cagctgcaag	1500
	gccacaggcc	aggctgtcca	tgccttgc	tcccccgg	gctgctgggg	cccgaggccc	1560
	agggactgcg	tctcttgc	gaatgtcagc	cgaggcaggg	aatgcgtg	caagtgcaag	1620
	cttctggagg	gtgagccaag	ggagtttgc	gagaactctg	atgcataca	gtgccaccca	1680
30	gagtgcgtc	ctcaggccat	gaacatcacc	tgcacaggac	ggggaccaga	caactgtatc	1740
	cagtgtc	actacattga	oggccccac	tgcgtcaaga	ctgtggccgg	aggagtcat	1800
	ggagaaaaaca	acacccttgt	ctgaaagtac	gcagacccg	ccatgtgt	ccacccgtgc	1860
	catccaaact	gcacctacgg	atgcactgg	ccaggcttgc	aaggctgtcc	aacgaatggg	1920
	cctaagatcc	cgccatcg	cactggatg	gtggggccc	tcctcttgc	gctgggtgt	1980
35	ccctgggg	tcggcctt	atgcgaaagg	cgccacatcg	ttcggaaagg	cacgctgccc	2040
	aggctgtc	aggagaggga	gcttgcggag	cctcttacac	ccagtgaga	agctccaaac	2100
	caagctct	tgaggatctt	gaaggaaact	gaattcaaaa	agatcaaagt	gctgggctcc	2160
	ggtgcgttgc	gcacgggt	taagggactc	tggatcccag	aaggctgaaa	agttaaaatt	2220
	cccgtcgcta	tcaaggaatt	aagagaagca	acatctccga	aagccaaacaa	ggaaatccctc	2280
40	gatgaagcct	acgtgatggc	cagctgtggc	aaccccccacg	tgtgcgcct	gctgggcattc	2340
	tgcctcacct	ccaccgtgc	actcatcacc	cagctcatgc	ccttcggct	cctcctggac	2400
	tatgtccgg	aacacaaaga	caatattggc	tcccagtacc	tgctcaact	gtgtgtgcag	2460
	atcgaaagg	gcatgaaact	cttggaggac	cgtcgttgc	tgcacccg	cctggcagcc	2520
	aggaacgtac	tggtaaaaac	accgcagcat	gtcaagatca	cagattttg	gtggccaaa	2580
45	ctgctgggt	cggaaagagaa	agaataccat	gcagaaggag	gcaaagtgc	tatcaagtgg	2640
	atggcattgg	aatcaatttt	acacagaatc	tataccacc	agagtgtat	ctggagctac	2700
	gggggtgaccc	tttgggagtt	gatgacctt	ggatcca	cata	aatccctg	2760
	agcgagatct	cctccatcct	ggagaaaagg	gaacgcctc	ctcagccacc	catatgtacc	2820
	atcgatgtct	acatgatcat	ggtcaagtgc	tggatgatag	acgcagatag	tcgccc	2880
50	ttccctgt	tgatcatcg	attctccaa	atggcccg	accccccacg	ctacc	2940
	attcagggg	atgaaagaat	gcat	tttgc	actccaaact	ctaccgt	3000
	ctgtatggat	aagaagacat	ggacgacgt	gtggat	cccg	catcccacag	3060
	caggccttct	tcagcagccc	ctccacgtc	cgact	ccccc	tctgagtg	3120
	accagcaaca	attccaccgt	ggcttgcatt	gat	ccat	ctgtccc	3180
55	aaggaaagaca	gttttgc	cgat	ccat	ccat	gactgaggac	3240
	agcatagacg	acac	ccat	ccat	ccat	ccat	3300
	cccgctggct	ctgtgc	ccat	ccat	ccat	ccat	3360
	agagacccac	actacc	cccccac	act	ccccc	act	3420
	actgtccacg	ccac	ccat	ccat	ccat	ccat	3480
60	ggcagccacc	aaattagcct	ggaca	ccat	ccat	ccat	3540
	gccaagccaa	atggc	ccat	ccat	ccat	ccat	3600
	gcgc	ccat	ccat	ccat	ccat	ccat	3633

<210> 52
 <211> 3768
 <212> DNA
 5 <213> Homo sapiens

 <300>
 <302> ERBB2
 <310> NM004448

 10 <400> 52
 atggagctgg cgcccttgtg ccgctgggg ctcctcctcg ccctcttgcc cccggagcc 60
 gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcggag 120
 acccacctgg acatgctccg ccacctctac cagggtgtcc aggtgggtgca gggaaacctg 180
 15 gaactcacct acctgcccac caatgccagc ctgtctttcc tgcaggatat ccaggagggtg 240
 cagggtctacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
 attgtgcgag gcaccctagct ctttggggac aactatgccc tggccgtgtc agacaatgga 360
 gaccggctgaa acaataccac ccctgtcaca ggggcctccc caggaggcct gcgaggctg 420
 cagcttcgaaa gcctcacaga gatcttggaaa ggagggtct tgatccagcg gaacccccag 480
 20 ctctgtctacc aggacacgat ttgtgtggaa gacatcttcc acaagaaca 540
 ctcacactgaa tagacaccaa cgcgtctcgg gcctgcccacc cctgttctcc gatgtgtaa 600
 ggtcccggt gctggggaga gagttctgaa gattgtcaga gcctgtacgg cactgtctgt 660
 gccgggtggcgt gtgcccgtgaa caaggggcga ctgcccactg actgtgtcaca tgagcagtgt 720
 gtcggccgt gCACGGGCCC caagcactct gactgcccgg ctcgcctcca cttcaaccac 780
 25 agtggcatct gtgagctgca ctgcccagcc ctggtcaccc acaacacaga cacgtttgag 840
 tccatgccccca atccccgggg ccggtataaca ttccggccca gctgtgtgac tgcctgtccc 900
 tacaactacc ttctacggaa cgtgggatcc tgacccctcg tctgccccct gcacaaccaa 960
 gaggtgacag cagaggatgg aacacagcgg tgtgagaagt gcagcaagcc ctgtggccga 1020
 gtgtgctatg gtctgggcat ggagcacttg cgagaggtga gggcagttac cagtgc当地 1080
 30 atccaggagt ttgtctggctg caagaagatc ttggggagcc tggcattttc gcccggagagc 1140
 tttgtatgggg acccagcctc caacactgccc cgcgtccagc cagagcactg ccaagtgttt 1200
 gagactctgg aagagatcac aggttaccta tacatctcg catggccgga cagctgc当地 1260
 gacccatcgcc tcttcocagaa cctgcaagta atccggggac gaattctgca caatggcc 1320
 35 tactcgtgta ccctgcaagg gctggggcatc agtggctgg ggctgcgc当地 actgaggaa 1380
 ctggggcagt gactggccct catccacccat aacacccacc tctgttctg gcacacgggt 1440
 ccctgggacc agcttctcg gaaccccgac caagctctgc tccacactgc caacccggca 1500
 gaggacgagt gtgtggcga gggctgggg tgccaccagc tgcggccctg agggcactgc 1560
 tggggtccag ggcccaccca gtgtgtcaac tgacccactg tccctgggg ccaggagtg 1620
 40 gtggaggaat gccgagact gcaaggggctc cccaggggagt atgtgaatgc caggactgt 1680
 ttggccgtgcc accctgagtg tcagccccag aatggctcg tgacctgttt tggaccggag 1740
 gctgaccagt gtgtggctg tgcccaactat aaggaccctc cttctgc当地 gcccggctgc 1800
 cccagcggtg taaaaacctga cctctctac atgcccattt ggaagttcc agatgaggag 1860
 ggccatgccc agccctgccc catcaactgc acccactctt gtgtggaccc ggtgacaag 1920
 45 ggctgtccccc ccggcagag agccggccct ctgacgttca tgcgttctgc ogtggttggc 1980
 attctctgtgg tcgtgttctt ggggtggc tttggggatcc tcatcaagcg acggcaggcag 2040
 aagatccggg agtacacgat gggggagactg ctgcaggaaa cggagctgtt ggaggcgtc 2100
 acaccttagcc gagcgatgcc caaccaggcg cagatgc当地 gacggactgt 2160
 aggaagggtga aggtgttgg atctggctgtt tttggggatcc tctacaaggaa catctggatc 2220
 cctgtatgggg agaatgtgaa aattccaggc gccatcaaag tqttgaggga aaacacatcc 2280
 50 cccaaagcca acaaagaaaat ctttagacgaa gcatacgtga tggctgggtt gggctccccc 2340
 tatgtctccc gccttctggg catctgcctg acatccacgg tgcagctgtt gacacagctt 2400
 atgcccattt gctgcctt agaccatgtc cggggaaaacc ggggacgc当地 gggctccccc 2460
 gacctgtga actgggttat gcagattgcc aaggggatga gctacctgga ggtgtgc当地 2520
 ctcgtacaca gggacttggc cgctcgaaac gtgtgttca agagtc当地 ccatgtcaaa 2580
 55 attacagact tcgggctggc tcggctgtcg gacattgacg agacagagta ccatgtcgat 2640
 gggggcaagg tgcccatcaa gtggatggcg ctggagttca ttctccggc当地 ggggttccacc 2700
 caccaggatgt atgtgtggat ttatgtgttgc actgtgtgtt gctgtatgac ttttggggcc 2760
 aaacccatcc agggatgtccca agccccggggat acctctgacc tqttggggaaa gggggaggcgg 2820
 ctgcccagc ccccatctg caccattgtat gtctacatgaa tcatgtgttcaaa atgttggatgt 2880
 60 attgactctg aatgtcgcc aagattccgg gatgtgttgc ctgaatttctt cccatgtggcc 2940
 agggacccccc agcgctttgt ggtcatccag aatgaggact tggggccagc cagtc当地 3000
 gacagcacct tctaccgctc actgtgtggag gacgtatgaca tggggggactt ggtgtatgtt 3060

gaggagtatc tggtaaaaaa gcagggcttc ttctgtccag accctgcccc gggcgctggg 3120
 ggcatggcc accacaggca ccgcagctca tctaccaggaa gtggcggtgg ggacctgaca 3180
 ctagggtctgg agccctctga agaggaggcc cccaggtctc cactggcacc ctccgaaggg 3240
 gctggctcgg atgtatttga tggtgaccctg ggaatggggg cagccaaggg gctgcaaagc 3300
 5 cttccccacac atgaccccaag ccctctacag cggtacagtg aggaccccac agtacccctg 3360
 ccctctgaga ctgtatggcta cggtggccccc ctgacactgca gccccccagcc tgaatatgtg 3420
 aaccagccag atgttccggcc ccagccccct tcgcggccag agggccctct gcctgctgcc 3480
 cgacctgtcg gtgcactct ggaaaggggcc aagactctct ccccaggaa gaatggggtc 3540
 10 gtcaaagacg ttttgcctt tgggggtgcc gtggagaacc ccgagtagttt gacaccccaag 3600
 ggaggagctg cccctcagcc ccaccctct cctgccttca gcccagccctt cgacaacccctc 3660
 tattactggg accaggaccc accagagcgg ggggctccac ccagcacctt caaagggaca 3720
 cttacggcag agaaccctaga gtacctgggt ctggacgtgc cagtgtga 3768

15 <210> 53
 <211> 1986
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> ERBB3
 <310> XM006723

<400> 53
 25 atgcacaact tcagtgtttt ttccaatttg acaaccattt gaggcagaag cctctacaac 60
 cggggctctt cattgttcat catagaatgtca catctctggg ctcccgatcc 120
 ctgaaggaaa ttatgtctgg gcttatctat ataagtgcctt ataggcagct ctgttaccac 180
 cactctttga actggaccaa ggtgttccgg gggcctacgg aagagcactt agacatcaag 240
 cataatcgcc cgccagaga ctgcgtggca gaggccaaag ttttgtgaccc actgtgctcc 300
 30 tctggggat gctggggccc aggccctgtt cagtgcttgc cctgtcgaaa ttatagccga 360
 ggaggtgtt gtgtgacccca ctgcaactttt ctgaatgggg agcctcgaga atttgccat 420
 gaggccgaat gcttctctgg ccaccggaa tgccaaaccctt tggagggcac tgccacatgc 480
 aatggcttgg gctctgatac ttgtgttcaaa ttgttccattt ttcgagatgg gcccactgt 540
 gtgagcagct gccccatgg agtccctaggt gccaaggggcc caatctacaa gtacccagat 600
 35 gttcagaatg aatgtcgcc ctgcctatgag aactgcaccc aggggtgtaa aggaccagag 660
 cttcaagact gtttaggaca aacactgggt ctgatcgcc aaaccatct gacaatggct 720
 ttgacagtgta tagcaggatt ggttagtattt ttcatgtatgc tggcgccac ttttctctac 780
 tggcggtggc gccggattca gaataaaaagg gctatgaggc gatactttgg acgggggtgag 840
 agcatagagc ctctggaccc cagtgagaaag gctaaacaaag tcttggccag aatcttcaaa 900
 40 gagacagagc taaggaaatg taaaatgtt ggctcggtt tttttggaaac ttttgtcaca 960
 ggagtgttgg tccctgggg tgaatcaatc aagattccatg tctgcattaa agtcatggag 1020
 gacaagagtg gacggcagag ttttcaagttt gtgacagatc atatgtctggc cattggcagc 1080
 ctggaccatg cccacattgtt aaggctgtcg ggactatgccc cagggtcatc tctgcagctt 1140
 gtcactcaat atttgccctt ggggttctcg ctggatcatg tgagacaaca cgggggggca 1200
 45 ctggggccac agctgtgttcaactgggaa gtacaaattt gcaaggaaatgtt gtaatccctt 1260
 gaggaacatg gtatgttgcata tagaaacctt gctggccggaa acgtgttactt caatgcaccc 1320
 agtcagggttc aggttggcaga ttttgggtgtt gctgacactgc tgccttctga tgataagcag 1380
 ctgctataca gtgaggccaa gactccaattt aagtggatgg cccttgagag tatccacttt 1440
 gggaaataca cacaccagag tgatgtctgg agctatgggtt tgacagtttgg ggagttgtat 1500
 50 accttcgggg cagagcccta tgcagggtca cgattggctt aagtccacca cctgttagag 1560
 aaggggggagc ggttggcaca gccccagatc tgcacaattt atgtcttacat ggtatggcc 1620
 aagtgttgg tggatgtatgc gaaacatttca aagaacttgc caatggatgttcc 1680
 accaggatgg cccgagaccc accacgggtt ctggatctaa agagagagag tggggcttgg 1740
 atagccccctt ggccagagcc ccattgttgc acaaacaaga agcttagaggg agtagagctt 1800
 55 gagccagaaac tagacctaga ccttagactt gaaaggcagg aggacaacctt ggcaaccacc 1860
 acactgggttcc ccccttcag ccttaccaggat ggaacacttta atcggccacgg tggggccac 1920
 agccttttaa gtccatcatc tggatatacatg cccatgaacc agggtaatct tggggttttt 1980
 ctttag 1986

60 <210> 54
 <211> 1437

<300>
<302> FGF11
<310> XM008660

5 <400> 56
 aatggccggcg ctggccagta gcctgatccg gcagaagcgg gaggtccgcg agccccgggg 60
 cagccggccg gtgtccgcgc agcggcgcgt gtgtccccgc ggcaccaagt cccttgcga 120
 gaaggagctc ctcatcctgc tgtccaaggt ggcactgtgc ggggggcggc cgcgcggcc 180
 ggaccgcggc cggagcctc agctcaaagg catcgacc aaactgttct gcccggagg 240
 tttctacctc caggcgaatc ccgcggaaag catccaggc accccagagg ataccagctc 300
 ctcacccac ttcaacctga tccctgtggg ctcctgtgt gtcaccatcc agagcgc当地 360
 gctgggtcac tacatggcca tgaatgctga gggactgctc tacagttcgc cgcatattc 420
 agctgagtgt cgctttaagg agtgtgtctt tgagaattac tacgtcctgt acgcctctgc 480
 tctctaccgc cagcgtcggt ctggccgggc ctggtagcc ggcctggaca aggaggcc 540
 ggtcatgaag gaaaaccgag ttaagaagac caaggcagct gcccactttc tgcccaagct 600
 cctggaggta gccatgtacc aggagccttc tctccacagt gtcggggagg cctcccttc 660
 cagtcggccctt gccccctga 679

 20 <210> 57
 <211> 732
 <212> DNA
 <213> Homo sapiens

 25 <300>
 <302> FGF12
 <310> NM021032

 30 <400> 57
 atggctgcgg cgatagccag ctccattgatc cggcagaagc ggcaggcgg ggagtccaaac 60
 agcgaccgag tgcggccctc caagcgccgc tccagccccca gcaaaagacgg ggcctccctg 120
 tgcgagaggc acgtccctcg ggtgttcagc aaagtgcgt tctgcagcgg cgc当地 180
 ccgggtggggc ggagaccaga accccagctc aaagggattt tgacaagggtt attcagccag 240
 cagggatact tcctgcagat gcacccagat ggtaccattt atgggaccaa ggacgaaaac 300
 agcgactaca ctctcttcaa tctaattccc gtggccctgc gtgttagtggc catccaaagg 360
 gtgaaggctt gctcttatgt ggccatgaat ggtgaaggct atctctacaa ttcagatgtt 420
 ttcactccag aatgcaaattt caaggaatct gtgtttgaaa actactatgt gatctattct 480
 tccacactgt accggccagca agaatcagggc cgagcttggt ttctggact caataaagaa 540
 ggtcaaaatattt tgaaggggaa cagagtgaag aaaaccaagc cctcatcaca ttttgcaccg 600
 aaaccttattt aagtgtgtat gtacagagaa ccatcgctac atgaaaattgg agaaaaacaa 660
 gggcgttcaa gggaaaatgtt tggAACACCA accatgaatg gaggcaaaatg tggtaatcaa 720
 gattcaacat ag 732

 45 <210> 58
 <211> 738
 <212> DNA
 <213> Homo sapiens

 50 <300>
 <302> FGF13
 <310> XM010269

 55 <400> 58
 atggccggcg ctatgccag ctgcgtcattc cgtcagaaga ggcaagcccc cgagcgc当地 60
 aaatccaaacg cctgcaagtg tgcgcgcgc cccagcaaa gcaagaccag ctgcgcacaaa 120
 aacaaggtaa atgttttc cccgggtcaaa ctcttcggct ccaagaaggag ggc当地 180
 agaccagagc ctcagcttaa gggtatagtt accaagctat acagccgaca aggctaccac 240
 ttgcagctgc aggcggatgg aaccattgtt ggcacccaaatg atgaggacag cacttacact 300
 ctgtttaaacc tcatccctgt gggctgcga gtggggcta tccaaaggatg tcaaaaaac 360
 ctgtacttgg caatgaacag tgagggataac ttgtacaccc tggaaactttt cacacactgag 420
 tgcaaaattca aagaatcagt gtttggaaaat tattatgtga catattcattc aatgatataac 480

cgtcagcgc agtcaggccg agggtgttat ctgggtctga acaaagaagg agagatcatg 540
aaaggcaacc atgtgaagaa gaacaaggct gcagctcatt ttctgcctaa accactgaaa 600
gtggccatgt acaaggagcc atcaactgcac gatctcacgg agttctcccg atctggaaagc 660
gggaccccaa ccaagagcag aagtgtctt ggctgtctga acggaggcaa atccatgagc 720
5 cacaatgaat caacgtag 738

<210> 59
<211> 624
10 <212> DNA
<213> Homo sapiens

<300>
<302> FGF16
15 <310> NM003868

<400> 59
atggcagagg tggggggcgt ctgcgcctcc ttggactggg atctacacgg ctctccctcg 60
tctctgggaa acgtgcgcctt agctgactcc ccaggtttcc tgaacgagcg cctggccaa 120
20 atcgagggga agctgcagcg tggctcaccc acagacttgc cccacctgaa ggggatcctg 180
cggcgccgccc agctctactg ccgcaccggc ttccacctgg agatcttccc caacggcagc 240
gtgcacggga cccggccacga ccacagccgc ttcgaaatcc tggagtttat cagcctggct 300
gtggggctga tcagcatccg gggagtggac tctggcctgt accttagaat gaatgagcga 360
25 ggagaactct atgggtcgaa gaaactcaca cgtgaatgtg ttttccggga acagttgaa 420
gaaaacttgt acaacaccta tgccctcaacc ttgtacaaac attcggactc agagagacag 480
tattacgtgg ccctgaacaa agatggctca ccccgaggag gatacaggac taaaacgacac 540
cagaaattca ctcactttt acccaggcct gtatgcctt ctaagttgcc ctccatgtcc 600
agagacctct ttcaactatag gtaa 624

30 <210> 60
<211> 651
<212> DNA
<213> Homo sapiens

35 <300>
<302> FGF17
<310> XM005316

40 <400> 60
atgggagccg cccgcctgct gccccaccc tcactgtgt tacagctgct gatttctctgc 60
tgtcaaaactc agggggagaa tcacccgtct cctaattttt accagtagt gagggaccag 120
ggcgccatga ccgaccagct gagcaggccg cagatccgog agtaccaact ctacagcagg 180
45 accagtggca agcacgtgca ggtcaccggc cgtcgcatct ccggccaccgc cgaggacggc 240
aacaagtttgc ccaagctcat agtggagacg gacacgtttg gcagccgggt tcgcataaaa 300
ggggctgaga gtgagaagta catctgtatg aacaagaggg gcaagctcat cgggaagccc 360
agcgggaaga gcaaagactg cgtgttacag gagatcgtgc tggagaacaa ctatacggcc 420
50 ttccagaacg cccggcacga gggctggttc atggccttca cgcggcaggg gcggccccgc 480
caggcttccc gcaggcccca gaaccagcgc gagggccact tcatcaagcg cctctaccaa 540
gcccagctgc cttttcccaa ccacgcccag aagcagaagc agttcgagtt tgtgggctcc 600
gcccccaccc gccggacccaa gcgacacccgg cggccccccagc ccctcacgtg 651

55 <210> 61
<211> 624
<212> DNA
<213> Homo sapiens

<300>
<302> FGF18
60 <310> AF075292

<400> 61
 atgttattcag cgccctccgc ctgcacttgc ctgtgtttac acttcctgct gctgtgcttc 60
 caggtaggg tgctgggtgc cgaggagaac gtggacttcc gcattccacgt ggagaaccag 120
 accggggctc gggacgatgt gagccgtaag cagctgeggc tgtaccagct ctacagccgg 180
 5 accagtggaa aacacatcca ggtcctggc cgcaaggatca gtgcccgcgg cgaggatggg 240
 gacaagtatg cccagctcct agtggagaca gacacccctcg gtatcaagt ccggatcaag 300
 ggcaaggaga cggaaattcta cctgtgcatg aaccgcaaag gcaagcttgt gggaaagccc 360
 gatggcacca gcaaggagtg tgtgttcatc gagaaggttc tggagaacaa ctacacggcc 420
 10 ctgatgtcgg ctaagtaactc cggctggtac gtgggcttca ccaagaagggg gcggccgcgg 480
 aaggggccca agacccggga gaaccagcag gacgtgcatt tcatgaagcg ctaccccaag 540
 gggcagccgg agcttcagaa gcccttcaag tacacgacgg tgaccaagag gtcccgctgg 600
 atccggccca cacaccctgc ctag 624

15 <210> 62
 <211> 651
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF19
 <310> AF110400

<400> 62
 25 atgcggagcg ggtgtgtggt ggtccacgta tggatcctgg cggcctctg gctggccgtg 60
 gccggggcggc ccctcgccctt ctcggacgcg gggccccacg tgcactacgg ctggggcgac 120
 cccatccggc tgcgccaccc tgcacacccctc ggccccccacg ggctctccag ctgcttcctg 180
 cgcacatccgtc cgcacggcgt cgtggactgc ggcggggcc agagcgcgcg cagtttgctg 240
 30 gagatcaagg cagtcgcctc ggggaccgtg gccatcaagg gctgtgcacag cgtgcggta 300
 ctctgcattgg ggcgcgacgg caagatgcag gggctgcctc agtactcgcg ggaagactgt 360
 getttcgagg aggagatccg cccagatgca tacaatgtgt accgatccga gaagcaccgc 420
 ctcccggtct ccctgagcag tgccaaaacag cggcagctgt acaagaacag aggctttctt 480
 ccactctctc atttccctgcc catgctgccc atggtcccag aggagcctga ggacctcagg 540
 35 ggcacttgg aatctgacat gttctcttgc cccctggaga cgcacagcat ggaccattt 600
 gggcttgta cccggacttggaa ggccgtgagg agtcccagct ttgagaagta a 651

<210> 63
 <211> 468
 40 <212> DNA
 <213> Homo sapiens

<400> 63
 45 atggctgaag gggaaatcac cacccatcaca gccctgaccg agaagtttaa tctgcctcca 60
 gggaaattaca agaagccaa actccctctac tgttagcaacg gggggccactt cctgaggatc 120
 ttcccgatg gcacagtggc tgggacaagg gacaggagcg accagcacat tcagctgcag 180
 ctcagtgcgg aaagcgtggg ggaggtgtat ataaagagta ccgagactgg ccagactttg 240
 gccatggaca cccgacgggct tttatacggc tcacagacac caaatgagga atgtttgttc 300
 ctggaaaggc tggaggagaa ccattacaac acctatatat ccaagaagca tgcagagaag 360
 50 aattggtttgc ttggcctcaa gaagaatggg agctgcaaacc gcgggtcctcg gactcactat 420
 ggccagaaag caatcttgc tctccccctg ccagtcctt ctgattaa 468

<210> 64
 <211> 636
 <212> DNA
 <213> Homo sapiens

<300>
 60 <302> FGF20
 <310> NM019851

<400> 64
atggctccct tagccgaagt cgggggctt ctggcgccc tggagggctt gggccagcag 60
gtgggttcgc atttcctgtt gcctcctgcc ggggagcggc cgccgctgtc gggcgagcgc 120
aggagcggcgg cggagcggag cgccccgcggc gggccggggg ctgcgcagct ggccgcacctg 180
5 cacggcatcc tgcggccggc gcagctctat tgccgcaccg gcttccacct gcagatccctg 240
cccgacggca gcgtgcaggg caccggcag gaccacagcc tcttcggtat cttgaaattc 300
atcagtgtgg cagtggact ggtcagtatt agaggtgtgg acatgggtct ctatcttgg 360
atgaatgaca aaggagaact ctatggatca gagaaactta ctccgaatg catctttagg 420
gagcagttg aagagaactg gtataaacacc tattcatcta acatatataa acatggagac 480
10 actggccgca ggtatttgt ggcacttaac aaagacggaa ctccaagaga tggcgccagg 540
tccaagaggc atcagaaatt tacacatttc ttacctagac cagtggatcc agaaagagtt 600
ccagaattgt acaaggacct actgatgtac acttga 636

15 <210> 65
<211> 630
<212> DNA
<213> Homo sapiens

20 <300>
<302> FGF21
<310> XM009100

<400> 65
25 atggactcgg acgagaccgg gttcagacac tcaggactgt gggtttctgt gctggctgg 60
tttctgtgg gacccgtccca ggcacacccc atccctgact ccagtcctt cctgcaattc 120
ggggggccaag tccggcagcg gtacccctac acagatgtg cccagcagac agaagccac 180
ctggagatca gggaggatgg gacgggtggg ggcgctgctg accagagccc cgaaagtctc 240
30 ctgcagctga aaggccttcaa gccggggatg attcaaattct tgggagttca gacatccagg 300
ttcctgtggc agcggccaga tggggccctg tatggatcgc tccacttga ccctgaggcc 360
tgcagcttcc gggagctgct tcttgaggac ggataacaatg tttaccatgc cgaagccac 420
ggccctccgc tgcacctgccc agggaaacaag tccccacacc gggaccctgc accccgagga 480
ccagctcgct tcctgcccact accaggccctg. ccccccgcac tcccgagggcc accccgaaatc 540
35 ctggcccccc agccccccga tggggctcc tcggaccctc tgagcatgtt gggaccttcc 600
cagggccgaa gccccagcta cgcttcctga 630

<210> 66
40 <211> 513
<212> DNA
<213> Homo sapiens

<300>
45 <302> FGF22
<310> XM009271

<400> 66
50 atgcgcggcc gcctgtggct gggcctggcc tggctgtgc tggcgccggc gccggacgcc 60
gcggggAACCC cgagcgcgtc gcggggaccc cgccagtcacc cgcaccttggc gggcgacgtg 120
cgctggccgc gccttcttc ctccactcac ttcttcctgc gcgtggatcc cggccggccgc 180
gtgcaggccca cccgtgtggcg ccacggccag gacagcatcc tggagatccg ctctgtacac 240
gtggggcgctg tggcatcaa agcagtgtcc tcaggcttct acgtggccat gaaccggccgg 300
55 ggccgcctct acgggtcgcc actctacacc gtggactgca gttccggga ggcacatcgaa 360
gagaacggcc acaacaccta cgcctcacag cgctggccgc gccggccca gcccattttc 420
ctggcgctgg acaggagggg gggggccccc ccaggccgc ggacggcccg gtaccacctg 480
tccggccact tcctgcccgt ctggtctcc tga 513

<210> 67
60 <211> 621
<212> DNA
<213> Homo sapiens

<300>
<302> FGF4
<310> NM002007

5 <400> 67
atgtcggggc ccgggacggc cgccgttagcg ctgctcccg cggtcctgct ggccttgctg 60
gcgcctggg cggggcgagg gggcgccgccc gcaccactg caccacaacgg cacgctggag 120
gccgagctgg agcggccgtg ggagagccctg gtggcgctct cttggcgccg cctggcggtg 180
10 gcagcgcagc ccaaggaggc ggccgtccag agcggcgccg gcaactacct gctgggcattc 240
aaggcgctgc ggcgctcta ctgcaacgtg ggcacatcggt tccacacttca ggcgtcccc 300
gacggccgca tcggcgccgc gcacgcggac acccgacaca gcctgctggaa gctctcgccc 360
gtggagcggg gcgtgggtgag catcttcggc gtggccagcc gtttcttctgt ggccatgagg 420
agcaaggcca agctctatgg ctcgccttc ttccacgtg agtgcacgtt caaggagatt 480
15 ctcccttcca acaactacaa cgcctacgag tcctacaagt accccggcat gttcatcgcc 540
ctgagcaaga atggaaagac aagaagggg aaccgagtgta cgcacccat gaaggtcacc 600
cacttcctcc ccagctgtg a 621

20 <210> 68
<211> 597
<212> DNA
<213> Homo sapiens

25 <300>
<302> FGF6
<310> NM020996

<400> 68
30 atgtcccggg gagcaggacg tctgcaggc acgctgtggg ctctcgcttt cctaggcatc 60
ctagtggca tgggtgtgcc ctgcctgca ggcacccgtg ccaacaacac gctgtggac 120
tcgaggggct gggcacccct gctgtccagg tctcgccggg ggctagctgg agagattgcc 180
ggggtaact gggaaagtgg ctatttggtg gggatcaagg ggcagcggag gctctactgc 240
aacgtggca tcggcttca cctccaggtg ctcccgacg gccggatcag cgggacccac 300
35 gaggagaacc cctacagccct gctggaaatt tccactgtgg agcgaggcgt ggtgagtctc 360
tttggagtga gaagtgcctt ctgcgttgcc atgaacagta aaggaagatt gtacgcaacg 420
cccagcttcc aagaagaatg caagttcaga gaaaccctcc tgcccaacaa ttacaatgcc 480
tacgagttagt acttgtacca agggacctac attgcctga gcaaatacgg acgggtaaag 540
cggggcagca aggtgtcccc gatcatgact gtcactcatt tccttccag gatctaa 597
40

<210> 69
<211> 150
<212> DNA
45 <213> Homo sapiens

<300>
<302> FGF7
<310> XM007559

50 <400> 69
atgtcttggc aatgcacttc atacacaatg actaatctat actgtgtatga tttgactcaa 60
aaggagaaaa gaaatttatgt agtttcaat tctgattcct attcaccttt tgtttatgaa 120
tggaaaagctt tgtcaaaaat atacatataa 150

55 <210> 70
<211> 628
<212> DNA
60 <213> Homo sapiens

<300>

<302> FGF9
<310> XM007105

<400> 70

5	gatggctccc ttaggtgaag ttgggaacta tttcggtgtc caggatgcgg taccgttgg 60
	gaatgtgccg gtgttgcgg tggacagccc ggaaaaatgtt aatgtaccacc tgggtcagtc 120
	cgaaggcagg gggctccca ggggacccgc agtcaacggac ttggatcatt taaagggat 180
	tctcaggccc aggcagctat actgcaggac tggattcac ttagaaatct tccccaatgg 240
	tactatccag ggaaccagga aagaccacag ccgatttggc attctggaaat ttatcagtat 300
10	agcagtgggc ctggtcagca ttgcaggcgt ggacagtggc ctctacctcg ggatgaatga 360
	gaagggggag ctgtatggat cagaaaaact aacccaagag tggatattca gagaacagtt 420
	cgaagaaaac tggtataata cgtactcatc aaacctatat aagcacgtgg acactggaa 480
	gcgataactat gttgcattaa ataaagatgg gaccccgaga gaagggacta ggactaaacg 540
15	gcaccagaaa ttcacacatt tttaccttag accagtggac cccgacaaag tacctgaact 600
	gtataaggat attctaagcc aaagttga 628

<210> 71

<211> 2469

20	<212> DNA
	<213> Homo sapiens

<300>

<302> FGFR1

25	<310> NM000604
----	----------------

<400> 71

30	atgtggagct ggaagtgcct cctttctgg gctgtgctgg tcacagccac actctgcacc 60
	gctaggccgt ccccgacattt gcctgaacaa gcccgccctt ggggagcccc tggtaagt 120
	gagtccttcc tggccaccc cgggtacccctt ctgcacccctt gctgtcggtt gcccggacat 180
	gtgcagagca tcaactggctt gccccggacgggtt gtgcacgtgg cggaaagccaa ccgcacccgc 240
	atcacagggg aggaggtggat ggtgcaggac tccgtgccc cagactccgg cctctatgtt 300
	tgcgtAACCA gcagccccctt gggcagtgac accacctact tctccgtcaa tggttcagat 360
	gctctccctt cctcgagga tgatgtat gatgtactt cctttcaga ggagaaagaa 420
35	acagataaca ccaaaccaaa ccgtatgcctt gtagctccat attggacatc cccagaaaag 480
	atggaaaaga aattgcatttc agtgcggctt gccaagacag tgaagttcaa atgccttcc 540
	agtggggaccc caaacccac actgcgttcc ttgaaaaatg gcaaaagaatt caaacctgac 600
	cacagaatgtt gaggatcaa ggtcggttat gccaccttggat gcatcataat ggactctgtt 660
40	gtgccccttg acaaggggcaa ttacaccttc agtggagccgg tcccttcacc ggcccatctt gcaagcagg 720
	cacacatacc agctggatgtt gttggagccgg tcccttcacc ggcccatctt gcaagcagg 780
	ttgcccgcctt acaaaaacatg gggccctgggtt agcaacgtgg agttcatgtt taagggttac 840
	agtgcacccgc agccgcacat ccagtggctt aagcacatcg aggtgaatgg gagcaagatt 900
	ggccccagaca acctgccttgc tggccagatc ttgaaagactt ctggagttaa taccaccgac 960
45	aaagagatgg aggtgcttca cttaaagaaat gtctcccttggat aggacgcagg ggagttatcg 1020
	tgcttggccgg gtaactctat cggactcttc catcaacttcg catggtttgc cgttctggaa 1080
	gcccttggaaat agaggccggc agtgtatggcc tggccctgtt acctggagat catcatctt 1140
	tgcacagggg ctttccatcat tccctgcattt gttgggttgc tcatcgttca caagatgtt 1200
	agtggatcca agaagagtgtt cttccacagc cagatggctt tgcacaatgtt ggccaaagagc 1260
50	atccctcttcg gcagacatgtt aacagtgtt gctgtacttca gtgcattccat gaactctggg 1320
	gttcttcttcg ttccggccatc acggctcttc tccatgttggat ctcccatgtt agcagggggtc 1380
	tctggatgtt agcttcccgatc agaccccttcg tggggacttgc ctggggacac agtggcttca 1440
	ggcaaaacccc tggggaggggg ctgtttttttt cagggtgttgc tggcagagggc tatecggttgc 1500
	gacaaggaca aacccaacccgt tggatccaaat gttgttgc tggggatgttgc tggcagagggc 1560
55	acagagaaatg acttgtcaga cttgtatcttca gaaatggatg tggatgttgc tggcagagggc 1620
	cataagaata tcatcaacccgt gctggggggcc tgcacgcagg atggatccctt gtatgttcatc 1680
	gtggagttatg cttccaaaggccatc caaccccttcg gaggatgttgc aggccggag gccccccagg 1740
	cttggatactt gctacaacccgt cagccacaaat ccagaggaggc agtctccctt caaggacatc 1800
	gtgtcccttcgtt cttaccatgtt gggccggaggc atggatgttgc tggcccttcaaa gaatgttcatc 1860
60	caccgagacc tggcagccatc gaaatgttgc tggacagagg acaatgttgc tggcagagggc 1920
	gactttggcc tgcacgcaggcatttccatc atccgtacttca ataaaaagac aaccaacccgc 1980
	cgactgcctt gtaatgttgc tggcagccatc gttttttttt accggatcttca caccaccagg 2040
	agtgtatgtt ggttttttttgc ggtgttgc tggcagatcttca ttttttttttccatc 2100

taccgggtg tgcctgtgga ggaactttc aagctgctga aggagggtca ccgcattggac 2160
 aagcccgatg actgcaccaa cgagctgtac atgatgtatgc gggactgctg gcatgcagt 2220
 ccctcacaga gaccaccc ttcaagcagctg gtggaaagacc tggaccgcat cgtggcctt 2280
 acctccaacc aggagtacctt ggacctgtcc atgccttgg accagtactc ccccgattt 2340
 5 cccgacaccc ggagctctac gtgtccctca ggggaggatt ccgttcttc tcatgagccg 2400
 ctgcccagg agccctgcct gccccgacac ccagcccagc ttgccaatgg cggactcaaa 2460
 cggcgctga 2469

10 <210> 72
 <211> 2409
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> FGFR4
 <310> XM003910

<400> 72

20 atgcggctgc tgctggccct gttgggggtc ctgctgagtg tgcctggggc tccagtctt 60
 tccctggagg cctctgagga agtggagctt gagccctgac tggctcccaag cctggaggcag 120
 caagagcagg agctgacagt agcccttggg cagccgtgc ggctgtctg tggcgccgt 180
 gaggctgggtg gccactggta caaggaggc agtgcctgg cacctgtctg ccgtgtacgg 240
 ggctggaggg gcccctaga gattgccagc ttccctacctg aggtatgtctg ccgttacctc 300
 25 tgcctggcac gaggctccat gatgtccctg cagaatctca ctttgcattac aggtgactcc 360
 ttgacctcca gcaacgtatga tgaggaccac aagtccata gggacctctc gaataggcac 420
 agttacccccc agcaagcacc ctactggac caccggcagc gcatggagaa gaaactgcac 480
 gcagttaccccg cggggAACAC cgtcaagttc cgctgtccag ctgcaggcaca cccacgccc 540
 accatccgtt ggctttagga tggacaggcc ttccatgggg agaaccgcatt tggaggcatt 600
 30 cggctgcggc atcagcactg gagtctctg atggagagcg tggtgccctc ggaccgcggc 660
 acatacacctt gcctggtaga gaaacgtctg ggcagcatcc gttataacta cctgttagat 720
 gtgctggagc ggtcccccgc cccggccatc ctgcaggccg ggctcccgcc caacaccaca 780
 gccgtgggtt gcagcgacgt ggagctgtctg tgcaagggtt acagcgatgc ccagccccc 840
 atccagtggc tgaagcacat cgtcatcaac ggcagcagct tcggagccga cggttccccc 900
 35 tatgtgcaag tccctaaagac tgcagacatc aatagcttag aggtggaggt cctgtacctg 960
 cggaaacgtgt cagccgagga cgcaggcgag tacacctgac tgcaggcaca ttccatcgcc 1020
 ctctccatcc agtctgcctg gtcacgggtg ctgcaggagg aggacccac atggaccgca 1080
 gcagcgcccg aggccaggta tacggacatc atccctgtacg cgctgggctc cctggcctt 1140
 gctgtgtcc tgctgtgtcc caggctgtat cgaggccagg cgctccacgg cggccacccc 1200
 40 cggcccccgg ccactgtgc gaaagcttcc cgcttccctc tggcccgaca gttctccctc 1260
 gagtcaggtt ctccggcaa gtcagatca tccctggatc gaggctgtcg tctctctcc 1320
 agcggccccc ctttgctcgc cggccctcgat agtctagatc tacctctcga cccactatgg 1380
 gagttccccc gggacaggct ggtgcttggg aagccctag gcgagggtcg ctttgccag 1440
 gtatgtacgtt cagaggccctt tggcatggac cctggccggc ctgaccaagc cagactgt 1500
 45 gccgtcaaga tgctcaaaga caacgcctt gacaaggacc tggccgaccc ggtctcgag 1560
 atggagggtt tgaagctgtat cggccgacac aagaacatca tcaacctgtt tgggtctgc 1620
 accccaggaag gggccctgtt cgtgtatgtt gatgtgcggc ccaaggaaa cctgcgggag 1680
 ttccctgcggg cccggccccc cccaggccccc gacccgttcc cgcacggtcc tcggagcagt 1740
 gagggggccgc tctcccttcc agtccctggc ttctgtccctt accaggttgc cccggaggat 1800
 50 cagtatctgg agtcccgaa gtgtatccac cgggacccctt ctgcggccaa tgggtgtgg 1860
 actgaggaca atgtgtatgaa gattgtgtac tttgggtctgg cccggggcgat ccaccacatt 1920
 gactatata agaaaaccatg caacggccgc ctgtgtatgc aatggatggc gcccggaggcc 1980
 ttgtttgacc ggggttacac acaccagatg gacgtgttgc ttgtttggat cctgttatgg 2040
 gagatcttca ccctcgccggg ctcccccgtt cctggcatcc cgggtggagga gctgtttctcg 2100
 55 ctgctgcggg agggacatcg gatggaccga ccccccacact gccccccaga gctgtacggg 2160
 ctgatgcgtt agtgcgtggca cgcaggcgccc tcccaagaggc ctacccatca cagactgtgt 2220
 gaggcgctgg acaagggttcc gctggccgtc tctgaggaggat acctcgaccc cccgcgttcc 2280
 ttccggaccctt attccccctt tgggtgggac gccagcagca cctgtccctc cagcgattct 2340
 gtcttcagcc acgacccccc gccattggga tccagcttccct tcccttcgg gtctgggtg 2400
 60 cagacatga 2409

<210> 73
 <211> 1695
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <302> MT2MMP
 <310> D86331

10 <400> 73
 atgaagcggc cccgctgtgg ggtgccagac cagttcgaaa tacgagtgaa agccaacctg 60
 cggcggcgtc ggaagcgcta cgcccaccg gggagaaatg gaaacaacca ccatctgacc 120
 ttttagcatcc agaactacac ggagaagtgg ggctgttacc actcgatgg ggcgggtgc 180
 agggcccttc gcgtgtggg gcaaggccacg cccctggctt ccaggaggt gccctatgag 240
 15 gacatccggc tgccggcaca gaaggaggcc gacatcatgg tactcttgc ctctggcttc 300
 cacggcgcaca gtcggccgtt tgatggcacc ggtggcttgc tggcccacgc ctatttccct 360
 ggcggccggcc taggggggca caccattt gacgcagatg aggccttgac cttctccagc 420
 actgacctgc atggaaaacaa cctcttcctg gtggcagtgc atgagctggg ccacgcgc 480
 gggctggagc actccagcaa ccccaatggc atcatggcgc cgttctacca gtggaaaggac 540
 20 gttgacaact tcaagctgcc cgaggacgat ctccgtggca tccagcagct ctacggtaacc 600
 ccagacggc agccacagcc taccctggcct ctccccactg tgacgcccacg gcccggcaggc 660
 cggcctgacc accggccggcc cccggctccc cagccaccac ccccaagggtgg gaagccagag 720
 cggcccccacaa agccggggccc cccagttccag ccccgagcca cagagcggcc cgaccaggat 780
 gggcccaaca tctgcgacgg ggactttgac acagtggcca tgcttcggg ggagatgttc 840
 25 gtgttcaagg ggcgtgttgt ctggcgagtc cggcacaaacc gcgttctggca caactatccc 900
 atgccccatcg ggcacttctg ggcgtgttgtc cccgggtgaca tcagtgtgc ctacgagcgc 960
 caagacggc gttttgtctt ttccaaaggt gaccgtact ggctctttcg agaagcgaac 1020
 ctggagcccg gctaccacca ggcgtgtacc agctatggcc tgggcatccc ctatgaccgc 1080
 attgacacgg ccatctggt ggagccccaca ggccacaccc tctttttcca agaggacagg 1140
 30 tactggcgt tcaacggagga gacacagcgt ggagaccctg ggtaccccaa gcccacatcgt 1200
 gtctggcagg ggatccctgc ctccccctaaa gggcccttcc tgagcaatgca cgcagccatc 1260
 acctacttct acaagggcac caaatactgg aaattcgaca atgagcgcct gggatggag 1320
 cccggctacc ccaagtccat cttgcgggac ttcatggct gccaggagaca cgtggagcca 1380
 35 gggcccccgtt ggcccgacgt ggccggccgg cccttcaacc cccacggggg tgcagagccc 1440
 gggccggaca ggcgcagaggg cgacgtgggg gatggggatg gggactttgg ggccgggggtc 1500
 aacaaggaca gggccagccg cgtgtgtgtt cagatggagg aggtggcacg gacggtgaac 1560
 gtgggtatgg tgctggtgcc actgctgtgc ctgctctgc ttctgggcct cacctacgc 1620
 ctgggtgcaga tgcagcgcaa gggtgcgcac cgtgtctgc tttactgcac ggcgtcgctg 1680
 caggagtggg tctga 1695

40
 <210> 74
 <211> 1824
 <212> DNA
 <213> Homo sapiens
 45 <300>
 <302> MT3MMP
 <310> D85511

50 <400> 74
 atgatcttac tcacattcag cactggaaa cggttggatt tcgtgcata tcgggggtg 60
 tttttcttgc aaaccttgc ttggattta tgcgtacatg tctgcggac ggagcagtat 120
 ttcaatgtgg aggtttgggtt acaaaaatgc ggctaccctt caccgactga ccccaagaatg 180
 55 tcagtgctgc gctctgcaga gaccatgcac tctgccttag ctgccatgca gcagttctat 240
 ggcattaaca tgacaggaaa agtggacaga aacacaattt actggatgaa gaagcccgaa 300
 tgcgggttac ctgaccagac aagaggtagc tccaaatttc atattcgtcg aaagcgatata 360
 gcattgacag gacagaaatg gcagcacaag cacatcactt acagtataaaa gaacgtaact 420
 caaaaatgtt gagaccctga gactcgatgg gctattcgcc gtgccttgc tgcgtggcag 480
 60 aatgttaactc ctctgacatt tgaagaaggcc cctacatgtt aatttagaaaa tggcaaacgt 540
 gatgtggata taaccattat ttttgcattt ggtttccatg gggacagctc tccctttgat 600
 ggagagggag gatTTTGGC acatgcctac ttccctggac caggaatttgg aggagatacc 660

	cattttgact	cagatggagcc	atggacacata	ggaaatccta	atcatgtatgg	aatatgactta	720
	tttctttag	cagtccatga	actgggacat	gctctgggat	tggagcattc	caatgacccc	780
	actgccatca	tggctccatt	ttaccagtac	atggaaacag	acaacttcaa	actacctaata	840
	gatgatttac	agggcatcca	gaagatata	ggtccacctg	acaagattcc	tccacctaca	900
5	agacctctac	cgacagtgc	cccacaccgc	tctattcctc	cggtcgaccc	aaggaaaaat	960
	gacaggccaa	aacctccctcg	gcctccaacc	ggcagacccct	cctatcccg	agccaaaccc	1020
	aacatctgt	atgggaactt	taacactcta	gctattctc	gtcgtgagat	gtttgtttc	1080
	aaggaccagt	ggtttggcg	agtgagaaac	aacagggtga	tggtatggata	cccaatgcaa	1140
10	attacttact	tctggcgggg	cttgcctcct	agtatcgatg	cagtttatg	aaatagcgac	1200
	ggaaattttt	tgttctttaa	aggtaacaaa	tattgggtgt	tcaaggatac	aactcttcaa	1260
	cctggttacc	ctcatgactt	gataaccctt	ggaagtggaa	ttccccctca	tggttattgt	1320
	tcagccattt	ggtgggagga	cgtcgggaaa	accttattct	tcaagggaga	cagatattgg	1380
	agatataatgt	aagaatgaa	aacaatggac	cctggctatc	ccaagccaa	cacagtctgg	1440
15	aaaggatcc	ctgaatctcc	ttagggagca	tttgtacaca	aagaaaaatgg	ctttacgtat	1500
	ttctacaaag	gaaaggagta	ttggaaattt	aacaacccaga	tactcaagt	agaacatgg	1560
	tatccaagat	ccatccctaa	ggatttttagt	ggctgtatgg	gaccaacaga	cagagttaaa	1620
	gaaggacaca	gccccaccaga	tgatgttagac	attgtcatca	aactggacaa	cacagcccagc	1680
	actgtgaaag	ccatagctat	tgtcattccc	tgcatcttgg	cottatgcct	ccttggatttgc	1740
20	gtttacactg	tgttccagtt	caagaggaaa	ggaacacccc	gccacataact	gtactgtaaa	1800
	cgctctatgc	aaqagtgggt	qtqa				1824

25 <210> 75
 <211> 1818
 <212> DNA
 <213> Homo sapiens
 30 <300>
 <302> MT4MMP
 <310> AB021225
 35 <400> 75
 atgcggccgc ggcgacggcc gggaccggc cggccggccc cagggcccg actctcgccg 60
 ctgccgtgc tgccgtgcc gctgtgtcg ctgctggcgc tggggaccgg cgggggctgc 120
 gccgcggg aacccgcg ggcgccccg gacccgtggc tggggatgtga gtggctaagc 180
 aggttcggtt acctgccccc ggctgaccgg acaacaggcc agctgcagac gcaagaggag 240
 ctgtctaagg ccatcacagc catgcagcag ttgggtggcc tggaggccac cggcatctg 300
 gacgaggcca ccctggccct gatgaaaacc ccacgtgtc ccctggccaga cctccctgtc 360
 ctgaccaggc ctcgcaggag acgcccaggc ccagggccca ccaagtggaa caagaggaac 420
 40 ctgtcggtga gggtcggac gttcccacgg gactcaccac tggggcacca cacggcggt 480
 gcactcatgt actacccctt caaggtctgg agcgacattt cggcccttggaa cttccacgag 540
 gtggccggca gcacccggc catccagatc gacttctcca aggccgacca taacgacggc 600
 tacccttctcg acggccggcg gcaccgtgcc cacggcttct tccccggccca ccaccacacc 660
 gccgggtata cccacttaa ccatgacgag gcctggaccc tccgttcttggaa ggttcccgat 720
 45 gggatggacc tgtttgcgt ggtgtccac gagtttggcc aegccatttg gtttaagccat 780
 gtggccgtcg cacaacttccat catgcggccg tactaccagg gcccgggtggg tgaccgtcg 840
 cgctacgggc tcccttacga ggacaagggtg cgcgtctggc agctgtacgg tggccggag 900
 tctgtgtctc ccacggcgca gcccggaggag cctcccttgc tgccggagcc cccagacaac 960
 cggtccagcg cccggcccgaa gaggacgtg ccccacagat gcagactca ctttgcgcg 1020
 50 gtggcccaga tccgggtgtaa agcttttttc ttcaaaggca agtacttctg gcccggctcg 1080
 cgggaccggc acctgggtgtc cttgcagccg gcacagatgc accgttctg gccccggctg 1140
 cccgctgcacc tggacagcgt gacgcccgtg tacgagcgca ccagcgacca caagatgtc 1200
 ttctttaaag gagacaggta ctgggtgttc aaggacaata acgttagagga aggatacccg 1260
 55 cggcccgctt ccgacttccat cttcccgctt ggcggcatcg acgtgtccctt ctcctggcc 1320
 cacaatgaca ggacttattt cttaaggac cagctgtact ggcgtacca tgaccacacg 1380
 aggccatgg accccggcta cccggcccg agccccctgt ggagggggtt ccccgacacg 1440
 ctggacacgc ccatcgctg gtccgacgtt gccttactt tttccgttgc ccaggagatc 1500
 tggaaagtgc tggatggcga gctggagggtt gcacccgggtt acccacatgc cacggcccg 1560
 60 gactggctgg tggatggaga ctcacaggcc gatggatctg tggctgcggg cgtggacgcg 1620
 gcagaggggc cccggccccc tccaggacaa catgaccaga ggcgtcggg ggacgggtac 1680
 gaggtctgtt catgcacccctc tggggcatcc tctccccccgg gggccccccagg cccactgggt 1740
 gtcggccacca tgctgtgtt gtcggccca ctgtcaccagg ggcggctgtt gacagcgcc 1800

caggccctga cgctatga

1818

	acagtggcca	ccatgcgtaa	gccccgctgc	tccctgcctg	acgtgctggg	ggtggcgaaa	300
	ctggtcaggc	ggcgctgccc	gtacgctctg	agcggcagcg	tgtggaaagaa	gcgaaccctg	360
	acatggaggg	tacgttccctt	cccccagagc	tcccagctga	gccaggagac	cgtgcgggtc	420
5	ctcatgagct	atgcctgtat	ggcctggggc	atggagtcag	gcctcacatt	tcatgaggtg	480
	gattcccccc	agggccagga	gccccgacate	ctcatcgact	ttgcccgcgc	cttcaccagg	540
	gacagctacc	ccttcgacgg	gttggggggc	accctagccc	atgccttctt	ccctggggag	600
	caccccatct	ccggggacac	tcactttgac	gatgaggaga	cctggacttt	tgggtcaaaa	660
	gacggcgagg	ggacccgacct	gtttgccgtg	gctgtccatg	agtttgccca	cgccctgggc	720
10	ctggggccact	cctcagcccc	caactccatt	atgaggccct	tctaccaggg	tccggggcgc	780
	gaccctgaca	agtaccgcct	gtctcaggat	gaccgcgatg	gcctgcagca	actctatggg	840
	aaggcgcccc	aaacccata	tgacaagccc	acaaggaaac	ccctggctcc	tccgccccag	900
	ccccccggcct	cgccccacaca	cagcccatcc	ttccccatcc	ctgatcgatg	tgagggcaat	960
	tttgacgcca	tcgccaacat	cogaggggaa	actttttct	tcaaaggccc	ctgggtctgg	1020
15	cgcctccagc	cctccggaca	gctgggtgtc	ccgcgaccgg	cacggctgca	ccgcttctgg	1080
	gaggggctgc	ccgcggcagg	gaggggtggt	caggccgcct	atgctggca	ccgagacggc	1140
	cgaaatctcc	tcttagcgg	gccccagttc	tgggtgttcc	aggaccggca	gctggaggggc	1200
	ggggcgcggc	cgctcacgg	gctggggctg	ccccggggag	aggaggtgga	cgccgtgttc	1260
	tcgtggccac	agaacgggaa	gacctacctg	gtccgcggcc	ggcagtaact	gctacgac	1320
20	gaggcggcgg	cgcgccccga	ccccggctac	cctcgcgacc	tgagcctctg	ggaaggcgcg	1380
	ccccccctccc	ctgacgatgt	caccgtcagc	aacgcaggtg	acacctactt	cttcaagggc	1440
	ccccactact	ggcgcttccc	caagaacagc	atcaagaccg	agccggacgc	cccccagccc	1500
	atggggccca	actggctgga	ctgccccggc	ccgagctctg	gtccccggcgc	cccccaggccc	1560
	cccaaagcga	cccccggtgc	cgaaacctgc	gattgtca	gctggatcaa	ccaggccgca	1620
25	ggacgttggc	ctgctccat	cccgctgctc	ctcttgcctt	tgctgggtgg	gggtgttagcc	1680
	tcccgctga						1689

<210> 78
 <211> 1749
 30 <212> DNA
 <213> Homo sapiens

<300>
 <302> MTMMP
 35 <310> X90925

	<400> 78						
	atgtctcccg	ccccaaagacc	ctcccggtgt	ctcctgcctc	ccctgctcac	gctcgccacc	60
	gcgctcgcc	ccctcggtc	ggcccaaagc	agcagctca	gccccgaaagc	ctggctacag	120
40	caatatggct	acctgcctcc	cgggggaccc	cgtacccaca	cacagcgctc	accccaagtca	180
	ctctcagcgg	ccatcgctgc	catgcagaag	ttttacggct	tgcaagtaac	aggcaaaagct	240
	gatgcagaca	ccatgaaggcc	catgaggcgc	ccccgatgtg	gtgttccaga	caagtttggg	300
	gctgagatca	aggccaatgt	togaaggaaag	cgctacgcca	tccagggtct	caaattggcaa	360
	cataatgaaa	tcactttctg	catccagaat	tacaccccca	aggtggggcga	gtatgccaca	420
45	tacgaggcca	ttcgcaaggc	gttccgcgtg	tggagagatg	ccacacact	gctcgccgc	480
	gaggtgcctt	atgcctacat	cgctgagggc	catgagaagc	aggccgacat	catgatctc	540
	tttgcgagg	gttccatgg	cgacagcactg	cccttcgatg	gtgagggcgg	cttcctggcc	600
	catgcctact	tcccaggccc	caacattgga	ggagacaccc	actttgactc	tcccgagcct	660
50	tggactgtca	ggaatgagga	tctgaatgga	aatgacatct	tcctgggtgc	tgtgcacgag	720
	ctggggccatg	ccctggggct	cgagcattcc	agtgacccct	cgcccatcat	ggcacccctt	780
	taccagtgg	tggacacgg	gaattttgt	ctgcccgtat	atgaccgcgc	gggcacatccag	840
	caactttatg	gggggtggatc	agggttccccc	accaagatgc	ccctctaacc	caggactacc	900
	tcccggccct	ctgttccatg	taaaccctaa	aacccaccc	atggggcccaa	catctgtgac	960
55	gggaacttig	acaccgtgg	catgtccga	ggggagatgt	ttgttcttca	ggagcgctgg	1020
	ttctggcggt	tgaggataaa	ccaatgtat	gatggatacc	caatggccat	tggccagttc	1080
	ttggcgggggc	tgcctgcgtc	catcaacact	gcctacgaga	gaaaggatgg	caaattcgtc	1140
	ttcttcaaa	gagacaagca	ttgggtgttt	gatggaggcgt	ccctggaaacc	tggctacccc	1200
	aagcacat	aggagctgg	ccgaggggctg	cctaccgaca	agattgtatc	tgctctcttc	1260
60	tggatgccc	atggaaagac	ctacttctc	cgtggaaaca	agtactaccg	tttcaacgaa	1320
	gagctcagg	cagtggatag	cgagtaaaaa	aagaacatca	aagtctggg	agggatccct	1380
	gagtctccca	gagggtcatt	catgggcagc	gatgaagtct	tcacttactt	ctacaagggg	1440
	aacaaatact	ggaaattcaa	caaccagaag	ctgaaggtag	aaccgggcta	ccccaaagcc	1500

5 gccctgaggg actggatggg ctgcccacatcg ggaggccggc cgatggaggg gactgaggag 1560
 gagacggagg tgatcatcat tgaggtggac gaggaggcg gcggggcggt gagcgcggct 1620
 gccgtggtgc tgccccgtgct gctgctgctc ctgggtgtgg cgggtggcct tgcagtcttc 1680
 ttcttcagac gccatgggac ccccaggcga ctgctctact gccagegttc cctgtggac 1740
 aaggctctga 1749

10 <210> 79
 <211> 744
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> FGF1
 <310> XM003647

20 <400> 79
 atggccgcgg ccatcgctag cggcttgcattc cgccagaagc ggcaggcgcgg ggagcagcac 60
 tgggaccggc cgtctccagc caggaggcg agcagccccca gcaagaacccg cgggctctgc 120
 aacggcaacc tggtgatataat cttctccaaa gtgcgcatct tcggcctcaa gaagcgcagg 180
 ttgcggcgcc aagatccccca gctcaagggtt atagtgacca gtttatattt caggcaaggc 240
 tactacttgc aaatgcaccc ctagggagct ctcgcatttgc ccaaggatga cagcactaat 300
 tctacacttca accagtggaa ctacgtgttgc ttgcgcatttcca gggagtgaaa 360
 acagggttgtt atataccat gaatggagaa gtttaccttct accccatcaga acttttacc 420
 cctgaatgca agtttaaaga atctgtttttt gaaaattattt atgtaatcta ctcatccatg 480
 ttgtacagac aacaggaaatc tggtagagcc tggtttttgg gattaaataa ggaaggggcaa 540
 gctatgaaag ggaacagagttt aaagaaaaacc aaaccagcag ctcattttctt acccaagcc 600
 ttggaaatgtt ccatgttaccg agaaccatct ttgcgtatgtt ttggggaaac ggtcccgaag 660
 cctggggtaa cggccaaatggaa aagcacaatgtt gctgttgcattttaatgtatgg aggcaaaacca 720
 gtcacacaaga gtaagacaac atag 744

35 <210> 80
 <211> 468
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> FGF2
 <310> NM002006

45 <400> 80
 atggcagccgg ggagcatcac cacgctgccc gcatttgcgg aggatggccgg cagccggcgcc 60
 ttcggcccg gcaacttcaa ggaccccaag cggctgtact gcaaaaacgg gggcttcttc 120
 ctgcgcacatcc accccgcacgg ccgcgttgc ggggtccggg agaagagcga ccctcacatc 180
 aagctacaac ttcaagcaga agagagagga gttgtgtcta tcaaaggagt gtgtgctaac 240
 cgttacctgg ctatgaagga agatggaaat ttactggctt ctaaatgtgt tacggatgag 300
 tggtttcttt ttgaacgattt ggaatctaataaactacaata cttaccggtc aaggaaataac 360
 accagttgtt atgtggactt gaaacgaactt gggcagtata aacttggatc caaaacagga 420
 octggccaga aagctataact ttttcttccatgtgttgcata agagctga 468

55 <210> 81
 <211> 756
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> FGF23
 <310> NM020638

<400> 81

atgttgggg cccgcctcag gctctgggtc tgcctttgt gcagcgctg cagcatgagc 60
 gtcctcagag cctatccaa tgcctccca ctgcctggct ccagctgggg tggcctgatc 120
 cacctgtaca cagcacacgc caggaacacgc taccacctgc agatccacaa gaatggccat 180
 gtggatggcc cacccatca gaccatctac agtgcctgt tgatcgatc agaggatgtct 240
 5 ggctttgtgg tgattacagg tgcgtatgagc agaagatacc tgcgtatgaa ttccagggc 300
 aacattttg gatcacacta ttccgaccgg gagaactgca gttccaaca ccagacgctg 360
 gaaaacgggt acgacgtcta cactctct cagtatcact tcctgggtcag tctggccgg 420
 10 gcgaagagag ctttcctgcc aggcatgaac ccaccccgta actcccagg cctgtccgg 480
 aggaacgaga tccccctaat tcaattcaac acccccatac cacggcgga caccggagc 540
 gccgaggacg actcgagcg ggacccctg aacgtgtca agcccccggc ccggatgacc 600
 ccggcccccgg cctcctgttc acaggagctc ccgagcgccg aggacaacag cccgatggcc 660
 agtgaccat taggggtggc taggggcgtt cgagtgaaca cgcacgttgg gggAACGGGC 720
 ccggaaggct gcccggctt cgccaaagttc atctag 756

15 <210> 82
 <211> 720
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF3
 <310> NM005247

25 <400> 82
 atggggcctaa tctggctgtc actgctcagc ctgcgtggagc ccggctggcc cgcaagcgccc 60
 cctggggcgc ggttgcggcg cgatgcgggc ggccgtggcg gcgtctacga gcaccttggc 120
 gggggcccccc ggcggccaa gctctactgc gccacaaatc accacctca gctgcaccccg 180
 30 agcggcccgcg tcaacggcag cttggagaaac agcgcctaca gtatgttgc gataacggca 240
 gtggagggtgg gcatattgtgc catcagggtt ctcttctccg ggcggtaactt ggccatgaac 300
 aagaggggac gactctatgc ttccggagcac tacagcgccg agtgcgagggt tttggagcgg 360
 atccacgagc tgggtataaa tacgtatgcc tcccggtgtt accggacgggt gtcttagtacg 420
 cctggggccccc gccggcagcc cagcgcccgag agactgtggt acgtgtctgtt gaacggcaag 480
 35 ggccggccccc gcaggggctt caagacccgc cgcacacaga agtcccccgtt gttcctgccc 540
 cgcgtgttgg accacaggga ccacgagatg gtgcggcagc tacagagtgg gctgcccaga 600
 cccctggta agggggtcca gccccgacgg cggcgccaga agcagagccc ggataaacctg 660
 gagccctctc acgttcaggc ttccgagactg ggctcccaac gggaggccag tgcgcactag 720

40 <210> 83
 <211> 807
 <212> DNA
 <213> Homo sapiens

45 <300>
 <302> FGF5
 <310> NM004464

<400> 83
 50 atgagcttgtt ctttccttcctt cttcccttc ttcagccacc tgatcctcag cgcctgggt 60
 cacggggaga agcgcttcgc ccccaaaggaa caacccggac ccgtgtccac tgataggaac 120
 ctataggctt ccagcagcagc acagagcagc agtagcgcta ttttttcctt ttctgcctcc 180
 ttccctcccg cagttctctt gggcagccaa ggaagtggct tggagcagag cagttccag 240
 tggagccctt cggggcgcgg gaccggcagc ctctactgca gatggggcat cggttccat 300
 55 ctgcagatct accccggatgg caaaatgtcaat ggatcccacg aagccaatat gttaagtgtt 360
 ttggaaatat ttgcgtgttc tcaaggggattt gtaggaatac gaggagttt cagcaacaaa 420
 ttttttagcga tgtcaaaaaaa aggaaaaactc catgcagatg ccaagttcac agatgactgc 480
 aagttcaggg agcggtttca agaaaaatagc tataataccat atgcctcagc aatacataga 540
 actgaaaaaa cagggcggga gtggatgtt gccctgaata aaagaggaaa agccaaacgaa 600
 60 ggggtgcagcc cccgggttaa accccagcat atctctaccc attttcttcc aagattcaag 660
 cagtcggagc agccagaact ttctttcagc gttactgttc ctgaaaagaa aaatccaccc 720
 agccctatca agtcaaagat tcccccttctt cgcacccctcgaa aaaataccaa ctcagtgaaa 780

tacagactca agtttcgctt tggataaa

807

5 <210> 84
 <211> 649
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> FGF8
 <310> NM006119

15 <400> 84
 atgggcagcc cccgctccgc gctgagctgc ctgctgttgc acttgctggc cctctgcctc 60
 caagcccagg taactgttca gtccctcacct aattttacac agcatgtgag ggagccagagc 120
 ctgggtacgg atcagcttag ccggccgcctc atccggaccc accaactcta cagccgcacc 180
 agcgaaaagc acgtgcaggc cctggccaaac aagcgcatac acgccccatggc agaggacggc 240
 gacccttcg caaagctcat cgtggagacg gacacctttg gaagcagaatg tcgagtccga 300
 ggagccgaga cgggcctcta catctgcata aacaagaagg ggaagctgat cgccaaagagc 360
 20 aacggcaaaag gcaaggactg cgtcttcacg gagattgtgc tggagaacaa ctacacagcg 420
 ctgcagaatg ccaagatcga gggctggatc atggccctca cccgcacagg cggccccccgc 480
 aagggttcca agacgcggca gcaccagcgt gaggttccat tcatgaagcg gctggcccccgg 540
 ggccaccaca ccaccgagca gaggctgcgc ttgcagttcc tcaactaccc gccccttcacg 600
 25 cgcagcctgc gcggcagcca gaggacttgg gccccggaaac cccgataagg 649

30 <210> 85
 <211> 2466
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> FGFR2
 <310> NM000141

40 <400> 85
 atggtcagct ggggtcgttt catctgcctg gtcgtggtca ccatggcaac cttgtccctg 60
 gccccggccct cttcagttt agttgaggat accacattag agccagaaga gccaccaacc 120
 aaataccaaa tctctcaacc agaagtgtac gtggctgcgc caggggagtc gctagaggtg 180
 cgctgcctgt tgaaagatgc cgccgtgatc agttggacta aggatgggggt gcacttgggg 240
 cccaacaata ggacagtgtt tattggggag tacttgcaga taaagggcgc cacgcctaga 300
 gactccggcc tctatgttg tactgccagt aggactgttag acagtgaac ttgttacttc 360
 atggtaatg tcacagatgc catctcatcc ggagatgtatc aggtatgcac cgtatgtgcg 420
 gaagattttg tcagtgagaa cagtaacaaac aagagagcatacatacgac caacacagaa 480
 45 aagatggaaa agcggttcca tgctgtgcgc gggccaaac ctgtcaagtt tgctgtccca 540
 gccggggggg acccaatgcc aaccatgcgg tgggtaaaa acgggaaagg gtttaaggcag 600
 gagcatcgca ttggaggctt aaggttacg aaccacact ggagccat tatgaaagt 660
 gtggtcccat ctgacaaggaa aattataacc tttgtgggttgg agaatgaata cgggtccatc 720
 aatcacacgt accacctggc ttgtgtggag cgatgcctc accggcccat cctccaagcc 780
 50 ggactgcggg caaatgcctc cacagtggc ggaggagacg tagagttgt ctgcaagggtt 840
 tacagtgtatc cccagccccatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 900
 tacggggcccg acgggctgccc ttttccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 960
 gacaaagaga ttgaggttctt ctatattccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1020
 55 acgtgttttttccatccatgggatccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1080
 ccagcgccctg gaagagaaaa ggagattaca gttttccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1140
 tactgtcatgggatccatccatgggatccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1200
 aaaaacacgca ccaagaagcc agacttcaggc agccacccgg ttttccatccatgggatccatccatggg atcaacgcacg tggaaaagaa 1260
 cgtatcccccc tgcggagaca gtttccatccatgggatccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1320
 60 aacaccccccgc ttgtgaggat aacaacacgc ctctcttcaa cggcagacac ccccatgtcg 1380
 gcaggggtct ccgagttatgc acattccatgggatccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1440
 ctgacactgg gcaaggccctt gggagaagg ttttccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1500
 gtggaaatttgc acaaagacaa gcccaaggag gtttccatccatgggatccatccatggg atcaacgcacg tggaaaagaa cggcagtaaa 1560

	gatgatgcga cagagaaaaga cctttctgtat ctgggtgtcag agatggagat gatgaagatg	1620
	attgggaaaac acaagaatat cataaatctt cttggagccct gcacacagga tgggcctctc	1680
	tatgtcatag ttgagtatgc ctctaaaggc aacctcccgag aataacctcg agccccggagg	1740
	ccacccggga tggagttactc ctatgacatt aaccgtgttc ctgaggagca gatgacccctc	1800
5	aaggactttgg tgtcatgcac ctaccagctg gccagaggca tggagttactt ggcttcccaa	1860
	aaatgttattc atcgagattt agcagccaga aatgttttgg taacagaaaa caatgtgtatg	1920
	aaaatagcag actttggact cgccagagat atcaacaata tagactattt caaaaagacc	1980
	accaatgggc ggcttccagt caagtggatg gctccagaag ccctgtttga tagagtatac	2040
	actcatcaga gtgtatgtctg gtcccttcggg gtgttaatgt gggagatctt cacttaggg	2100
10	ggctcgccct acccagggat tccctgtggag gaacttttta agctgtgtgaa ggaaggacac	2160
	agaatggata agccagccaa ctgcaccaac gaactgttaca tgatgtatgg ggactgttgg	2220
	catgcagtgc cctcccaagag accaacaatgtc aagcgttgg tagaagactt ggatcgaatt	2280
	ctcaacttca caaccaatga ggaataacttg gacccatggg aacctctcga acagattttc	2340
	cctagttacc ctgacacaag aagttcttgt tcttcaggag atgattctgt tttttctcca	2400
15	gaccccatgc cttacgaacc atgccttcct cagtatccac acataaaacgg cagtgttaaa	2460
	acatga	2466

20	<210> 86 <211> 2421 <212> DNA <213> Homo sapiens
25	<300> <302> FGFR3 <310> NM000142
30	<400> 86 atggggcgccc ctgcctgcgc cctcgcgctc tgcgtggccg tggccatcgt ggccggcgcc 60 tcctcggagt ctttggggac ggagcagcgc gtcgtgggc gagcggcaga agtcccggc 120 ccagagcccg gccagcagga gcagttggc ttccggcagcg gggatgttgt ggagctgaga 180 tgtccccccgc ccgggggtgg tcccatgggg cccactgtct gggtaaaggaa tggcacaggg 240 ctggtgccct cggagcgtgt cttgggtggg ccccaagcggc tgcaggtgt gaatgcctcc 300 cacgaggact ccggggcccta cagctggccc cagcggctca cgcagcgcgt actgtgccac 360 ttcagtgtgc gggtgacaga cgctccatcc tcggagatg acgaagacgg ggaggacgag 420 gctgaggaca cagggtgtga cacagggggc cttacttggg cacggcccgaa gcggatggac 480 aagaagctgc tggccgtgcc ggccgccaac accgtccgtc tccgtgtccc agccgtggc 540 aaccggactc cttccatctc ctgggtgaag aacggcaggg agttccggg cgagcaccgc 600 attggaggca tcaagctgcg gcatcagcag tggagcctgg tcatggaaag cgtgggtccc 660 tcggaccgcg gcaactacac ctgcgtcgtg gagaacaagt tggcagcat ccggcagacg 720 tacacgctgg acgtgctggg ggcgtccccc caccggccca tcctgcaggg ggggctgccc 780 gccaaccaga cggcggtgt gggcagcgcac gtggagttcc actgcaaggt gtacagtgc 840 gcacagccccc acatccatgt gtciaagcgtc gtggagggtga acggcagcaa ggtggcccg 900 gacggcacac cttacgttac cgtgtcaaa acggggggc ctaaacaccac cgacaaggag 960 ctagagggttc tctcccttgca caacgtcacc tttgaggacg cggggagata cacctgcct 1020 gcgggcaatt ctattgggtt ttctcatcac tctgcgtggc tgggtgtgt gcgcggcag 1080 gaggagctgg tggaggctga cgaggcgggc agtgtgtatg caggcatctt cagctacggg 1140 gtgggcttct tcctgttcat cttgggtggg gggctgtgt gcgtctgcgc cttgcgcagc 1200 ccccccaaga aaggcctggg ctcccccaacc gtgcacaaga tctcccgctt cccgctcaag 1260 cgacagggtgt ccctggagtc caacgcgtcc atgagctcca acacaccact ggtgcgcatc 1320 gcaaggctgt ctcagggggaa gggcccccaag ctggccaatg totccgagct cgagctgcct 1380 ggccgacccca aatggggact gtctcgggcc cggctgaccc tgggcaagcc ctttggggag 1440 ggctgttgcg gccagggtgg catggcggag gccatcgca ttgacaaggaa ccggccgc 1500 aaggcctgtca ccgtagccgt gaagatgtcg aaagacgtg caactgacaa ggacctgtcg 1560 gacctgggtgt ctgagatggaa gatgtgaag atgatcgaaa aacacaaaaa catcatcaac 1620 ctgtctggcg cctgcacgcg gggggggccc ctgtacgtgc tgggtggagta cgcggccaag 1680 ggttaacctgc gggaggttct gggggcgccgg cggccccccgg gcctggacta ctccctgcag 1740 acctgcacgc cggccggagga gcagctcacc ttcaaggacc tggtgtcctg tgcctaccag 1800 gtggcccgcc gcatggagta cttggcctcc tcaaggatgc tccacaggaa cctggtcgcc 1860 cgcaatgtgc tggtgaccga ggacaacgtt atgaagatcg cagacttcgg gctggcccg 1920 gacgtgcaca acctcgacta ctacaagaag acaaccaacg gccggctgcc cgtgaagtgg 1980 atqgqgcctg aqgccttqtt tqaccqagtq tacactcacc agagtgaacgt ctgggtcctt 2040
35	
40	
45	
50	
55	
60	

ggggtcctgc tctgggagat cttcacgctg gggggctccc cgtacccccc catccctgtg 2100
 gaggagctct tcaagctgct gaaggagggc caccgcatgg acaagcccg caactgcaca 2160
 cacgacctgt acatgatcat gcgggagtgc tggcatgccg cgccctccca gaggcccacc 2220
 ttcaagcagc tggtggagga cctggaccgt gtccttaccg tgacgtccac cgacgagta 2280
 5 ctggacctgt cggcgccctt cgagcagtac tccccgggtg gccaggacac ccccgactcc 2340
 agctccctca gggacgactc cgttttggc cacgacctgc tgccccccgc cccacccagc 2400
 agtgggggct cgccgacgtg a 2421

10 <210> 87
 <211> 2102
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> HGF
 <310> E08541

20 <400> 87
 atgcagaggg acaaaggaaa agaagaaaata caattcatga attcaaaaaaa tcagcaaaga 60
 ctaccctaat caaaatagat ccagcactga agataaaaaac caaaaaaaaagt aataactgcag 120
 accaatgtgc taatagatgt acttagaata aaggacttcc attcaacttgc aaggctttt 180
 ttttgataa agcaagaaaa caatgcctt gttcccccctt caatagcatg tcaagtggag 240
 25 tgaaaaaaaaga atttggccat gaatttgacc tctatgaaaaa caaagactac attagaaaact 300
 gcatcattgg taaaggacgc agctacaagg gaacagtatc tatcaactaag agtggcatca 360
 aatgtcagcc ctggagttcc atgataaccac acgaacacag cttttgcct tcgagctatc 420
 gggtaaaga cctacaggaa aactactgtc gaaatcccg aggggaagaa gggggaccct 480
 ggttttcac aagcaatcca gaggtacgct acgaagtctg tgacattctt cagtgttcag 540
 aagttgaatg catgacctgc aatggggaga gttatcgagg totcatggat catacagaat 600
 30 caggcaagat ttgtcagegc ttggatcattc agacaccaca cggcacaaa ttcttcgcctg 660
 aaagatatacc cgacaaggc ttgtatgata attatggccg caatcccgat ggccagccga 720
 ggccatgggt ctatacttt gaccctcaca cccgctggga gtactgtgc attaaaacat 780
 ggcgtgacaa tactatgaat gacactgtatc ttcccttggg aacaactgaa tgcattcaag 840
 35 gtcaaggaga aggctacagg ggcactgtca ataccatttgaatggaaatccatgatc 900
 gttgggattc tcagtatcct cacgagcatg acatgactcc tggaaaatttc aagtgcagg 960
 acctacgaga aaattactgc cggaaatccag atgggtctga atcaccctgg tggtttacca 1020
 ctgatccaaa catccgagtt ggctactgtc cccaaattcc aactgtatc atgtcacatg 1080
 gacaagattt ttatcgtggg aatggcaaaa attatatggg caacttatcc caaacaagat 1140
 40 ctggactaac atgttcaatg ttggacaaga acatggaaga cttacatcgt catatcttct 1200
 gggaaaccaga tgcaagtaag ctgaatgaga attactggccg aatccagat gatgatgctc 1260
 atggaccctg gtgtacacg gggaaatccac tcatttcctt ggttatttgc cctatttctc 1320
 gttgtgaagg tgataccaca cctacaatag tcaattttaga ccatcccgta atatcttgc 1380
 caaaaaggaa acaatgcga gttgtaaatg ggattccaaac acgaacaaaac ataggatgga 1440
 tggtagttt gagatacaga aataaacatc tctggggagg atcattgtataaaggaggtt 1500
 45 gggttcttac tgccacgacat gtttccctt ctcgagactt gaaagattat gaagcttgc 1560
 ttggaaattca tgatgtccac ggaagaggag atgagaaatg caaacaggtt ctcattgtt 1620
 cccagctggt atatggccctt gaaaggatcag atctgggttt aatgaagctt gccaggcctg 1680
 ctgtccctggg tgattttgtt agtacgattt atttacctaa ttatggatgc acaattcctg 1740
 aaaagaccag ttgcagtgtt tatggctggg gctacactgg attgatcaac tatgatggcc 1800
 50 tattacgagt ggcacatctc tatataatgg gaaatgagaa atgcagccag catcatcgag 1860
 ggaaggtgac tctgaatgag tctgaaatat gtgctggggc tggaaaagattt ggatcaggac 1920
 catgtgaggg ggattatggt ggcccacttg tttgtgagca acataaaaatg agaatggttc 1980
 ttgggtgtcat tgttccctggc cgtggatgtt ccattccaaa tcgtcctgtt atttttgtcc 2040
 gagtagcata ttatgcaaaa tggatcacaca aaatttattt aacatataag gtaccacagt 2100
 55 ca 2102

60 <210> 88
 <211> 360
 <212> DNA
 <213> Homo sapiens

<300>
<302> ID3
<310> XM001539

5 <400> 88
atgaaggcgc tgagcccggt gcgccgctgc tacgaggcgg tttgtgcct gtcggAACgc 60
agtctggcca tcgccccgggg ccgagggaaag ggccccggcag ctgaggagcc gctgagctt 120
ctggacgaca tgaaccactg ctactcccgc ctgccccggaaac ttgttacccgg agtcccggaa 180
ggcactcagc tttagccaggt ggaaatccca cagcgcgtca tcgactacat tctcgacctg 240
10 caggttagtcc tggccggagcc agccccctgga ccccccgtatg gccccccaccc tcccatccag 300
acagccgagc tcactccggaa acttgtcatc tccaacgaca aaaggagctt ttgccactga 360

15 <210> 89
<211> 743
<212> DNA
<213> Homo sapiens

20 <300>
<302> IGF2
<310> NM000612

<400> 89
atgggaatcc caatggggaa gtcgatgctg gtgcttctca ctttcttggc cttcgccctcg 60
25 tgctgcattcg ctgttacccg ccccaactggag accctgtcg gggggagact ggtggacacc 120
ctccaggatcg tctgtgggggaa cccggcgttcc tacttcggca gggccggcaag ccgtgtgagc 180
cgtcgcagcc gtggcatcgat tgaggagtgc tggttccggca gctgtgaccc ggccttcctg 240
gagacgtact gtgetacccccc cgccaaatgtcc gagaggggacg ttgtcgacccc tccgaccgtg 300
30 cttccggaca acttcccccag ataccccggtt ggcaagttct tccaaatatga cacctggaaag 360
cagtccaccc agccgcgtcg cagggggctcg cctggccctcc tgcgtgcccgg ccgggggtcac 420
gtgctgcaca aggagctcgaa ggccgttcagg gaggccaaac gtcaccgtcc cctgattgtt 480
ctacccaccc aagaccccgcc acacggggggc gcccccccccag agatggccag caatcgaaag 540
tgagcaaacat tgccgcaagt ctgcagcccg ggcacccat cctgcagcct cctctgacc 600
acggacgtt ccacatcggtt ccacatccggaa aatctctcggtt tccacacgtcc ccctggggct 660
35 ttcctgacc cagttcccggtt gccccggctc cccgaaaacag gctactctcc tccggccct 720
ccatcggtt gaggaagcac agc 743

40 <210> 90
<211> 7476
<212> DNA
<213> Homo sapiens

45 <300>
<302> IGF2R
<310> NM000876

<400> 90
atggggggccg ccgcggcccg gagccccccac ctggggcccg cggccggcccg ccgcggcccg 60
50 cgctctctgc tcctgtgcac gctgtgtcg ctgcgtcg ccccggggtc caccggcc 120
caggccgccc cgttcccgat gctgtcaat tatacatggg aagctgttga taccaaaaat 180
aatgtactttt ataaaaatcaa catctgtgaa agtgtggata ttgtccagtg cggggccatca 240
agtgtgtttt gtatgcacga cttgaagaca cgcacttac attcagtgg tgactctgtt 300
ttgagaagtgc aacccagatc ttcctggaa ttcaacacaa cagtgtgtt tgaccagcaa 360
55 ggcacaaaatc acagagtcca gaggcaggatt gccttccgtt gtggggaaaac cctggaaact 420
cctgaatttg taactgcaac agaatgtgtt cactactttt agtggaggac cactgcagcc 480
tgcaagaaatc acatatttaa agcaaaataag gaggtgcattt gctatgtttt tgatgaagag 540
ttgaggaagc atgatctcaa tcctctgtt aagcttagtg ttgtccactt ggtggatgac 600
tccgatcccg acactctctt attcatcaat gttttagag acatagacac actacgagac 660
60 ccagggttccac agctgcgggc ctgtcccccc ggcactgccc cctgcctgtt aagaggacac 720
caggcgtttt atgttggcca gccccggggac ggactgaagc ttgtgcgcaaa ggacaggctt 780
gtcctgagtt acgtgaggga agaggcaggaa aagcttagact ttgtgtatgg tcacagccct 840

	gcgggtgacta	ttacattttgt	ttgcccgtcg	gagcggagag	aggggcaccat	tcccaaactc	900
	acagctaaat	ccaactgccc	ctatgaaatt	gagtggatta	ctgagttatgc	ctgccccaca	960
	gattacctgg	aaagtaaaaac	ttgttctctg	agcggcgagc	agcaggatgt	ctccatagac	1020
	ctcacaccac	ttgcccagag	cgaggttca	tcctataattt	cagatggaaa	agaatatttg	1080
5	ttttattttga	atgtctgtgg	agaaaactgaa	atacagtct	gtaataaaaa	acaagctgca	1140
	gtttgccaag	tgaaaaaagag	cgataccct	caagtc当地	cagcaggaa	ataccacaat	1200
	cagaccctcc	gatattcgga	ttggagaccc	accttggat	attttggagg	tgatgaatgc	1260
	agctcagggt	ttcagcggat	gagcgtcata	aactttgag	gcaataaaaac	cgccaggtaac	1320
	gatggggaaat	gaactctgt	attcacaagg	gaggttact	gcacacttac	cttcacatgg	1380
10	gacacggaaat	acgcctgtt	taaggagaag	gaagaccc	tctgcgggtc	caccgcagg	1440
	aagaagcgt	atgacccgtc	cgcgctggc	cgccatgcag	aaccagagca	gaattgggg	1500
	gctgtggat	gcagtcagac	gaaaaacagag	aagaagcatt	ttttcattaa	tatttgtcac	1560
	agagtgcgtc	aggaaggcaa	ggcacgagg	tgtcccgagg	acgcggcagt	gtgtgcagt	1620
15	gataaaaaatg	gaagtaaaaa	tctggggaaa	tttatttcct	ctcccatgaa	agagaaaagga	1680
	aacattcaac	tctcttattc	agatgggtat	gatttggtc	atggcaagaa	aattaaaaact	1740
	aatatcacac	ttgtatgcaa	gccagggtat	ctggaaaagt	caccagtgtt	gagaacttct	1800
	ggggaaaggcg	gttgctttta	tgagttttag	ttgcgcacag	ctgcggccctg	tgtgtgtct	1860
20	aagacagaag	gggagaaactg	cacggctctt	gactcccagg	cagggtttc	ttttgactta	1920
	tcacctctca	caaagaaaaaa	ttgtgcctat	aaagttgaga	caaagaagta	tgacttttat	1980
	ataaaatgtgt	gtggcccggt	gtctgtgagc	ccctgtcagc	cagactcagg	agcctgcccag	2040
	gtggcaaaaaa	gtgtatgagaa	gacttggaa	ttgggtctga	gtatgcgaa	gctttcatat	2100
25	tatgtggga	tgatccaact	gaactacaga	ggcggcacac	cttataacaa	tgaardacac	2160
	acaccgagag	ctacgctcat	cacccctctc	tgtgatcgag	acgcgggagt	gggcttccct	2220
	gaatatcagg	aagaggataa	ctccacctac	aacttccgg	gttacaccag	ctatgcctgc	2280
	ccggaggagagc	ccctggaatg	cgtgtgacc	gaccctcca	cgctggagca	gtacgacctc	2340
30	tccagtctgg	caaaatctga	aggtggcctt	ggaggaaact	ggtatgccc	ggacaactca	2400
	ggggAACATG	tcacgtggag	gaaataactac	attaacgtgt	gtcggccct	gaatccagt	2460
	ccgggctgca	accgatatgc	atcggcttc	catgtgaagt	atgaaaaaaga	tcagggctcc	2520
	ttcactgaag	ttgtttccat	catgtacttgc	ggaatggcaa	agaccggccc	gtgtgttgag	2580
35	gacagcggca	gcctcccttct	gaaatacgtg	aatgggtcgg	cctgcaccac	cagcgatggc	2640
	agacagacca	catataccac	gaggatccat	ctcgctgtc	ccaggggcag	gtcgaacagc	2700
	caccccatct	tttctctcaa	ctggggagtgt	gtggtcagtt	tcctgtggaa	cacagaggct	2760
	gcctgtccca	ttcagacaac	gacggatata	gaccaggctt	gtcttataag	ggatcccaac	2820
40	agtggatttg	ttttaatct	taatccgt	aacagttcgc	aaggatataa	cgtctgtgg	2880
	attgggaaga	tttttatgtt	taatgtctgc	ggcacaatgc	ctgtgtgtt	gaccatctgt	2940
	ggaaaaacctg	tttctggctg	tgagggcagaa	acccaaaactg	aagagctcaa	gaattggaaag	3000
	ccagcaaggc	cagtccgaat	tgagaaaaagc	ctccagctgt	ccacagagg	cttcatact	3060
45	ctgacctaca	aaggccctct	ctctgcctaa	ggtaccgctg	atgctttat	cgtcgcctt	3120
	ttttgcaatg	atgatgtttt	ctcagggccc	ctcaatttcc	tgcataaaga	tatcgact	3180
	gggcaaggga	tccggaaacac	ttacttttag	tttggaaaccg	cggtggctg	tgttcccttct	3240
	ccagtggtact	gccaagtcc	cgacctggct	ggaaaatgagt	acgacctgac	tggccctaagc	3300
50	acagtctagg	aaccttggac	ggctgttgc	acctctgtcg	atggggagaaa	gaggacttcc	3360
	tatttgagcg	tttgcataatcc	tctcccttac	attcttggat	ggcaggggcag	cgccagttggg	3420
	tcttgccttag	tgtcagaagg	caatagctgg	aatctgggt	ttgttgcagat	gagttcccaa	3480
55	ggccggcggca	atggatctt	gaggatcat	tatgtcaacg	gtgacaagg	tggaaaccag	3540
	cgcttctcca	ccaggatcac	ttttggatgt	gctcagat	cgggctcacc	agcatttcag	3600
	cttcaggatg	gttgcataat	ctgttggat	tggagaact	tggaaaggct	tcccgttgc	3660
	agagtggaag	gggacaaactg	tgaggtgaaa	gacccaaggc	atggcaactt	gtatgacact	3720
60	aagccccctgg	gcctcaacga	caccatcgt	agcgtggcg	aatacactt	ttacttccgg	3780
	gtctgtggga	agcttcc	agacgtctgc	cccacaagt	acaagtccaa	ggtggctcc	3840
	tcatgtcagg	aaaagcggga	accgcagg	tttcacaaa	tggcagg	cctgactcag	3900
	aagctaactt	atgaaaaatgg	cttgcataat	atgaacttca	cgggggggga	cacttgcct	3960
	aaggtttatac	agcgtccac	agccatctt	ttctactgt	acggcggc	ccagcggcca	4020
	gtatccat	aggagactt	agatttgtt	tacttgttt	agtggcga	gcagatgtcc	4080
55	tgcccaccc	tcgatctgc	tgaatgttca	ttcaaaatgt	gggctggca	ctccctc	4140
	cttcgtccc	tgtcaggat	cagtgcataac	ttggaaagcc	tcactgg	ggggaccccg	4200
	gagctacc	tcataatgt	ctgcataact	ctggcccc	aggttgtcc	tgagccgt	4260
	cctccagaag	cagccgcgt	tttgcgtgg	ggcttcaac	ccgtgaaact	ccggcagggt	4320
	agggacggac	ctcagtgag	agatggcata	attgtcc	aatacgtt	tggcactt	4380
60	tgtccagat	ggattcgaa	aaagtcaacc	accatccgat	tcacccgt	cgagagccaa	4440
	gtgaactcca	ggcccatgtt	catcagcggc	gtggaggact	gtgagta	acac	4500
	cccacagcca	cagccgttcc	catgaagaaqc	aacgagcat	atgactgc	ggtcaccaac	4560

	ccaagcacag	gacacctgtt	tgatctgagc	tccttaagt	gcaggggcggg	attcacagct	4620
5	gcttacagcg	agaagggggtt	ggtttacatg	agcatctgt	gggagaatga	aaactgcct	4680
	cctggcgtgg	gggcctgttt	tggacagacc	aggattagcg	tgggcaaggc	caacaagagg	4740
	ctgagatacg	tggaccagg	cctgcagctg	gtgtacaagg	atgggtcccc	ttgtccctcc	4800
	aaatccggcc	tgagctataa	gagtgtgatc	agtttctgt	gcaggcctga	ggccggccca	4860
	accaataggc	ccatgtctat	ctcccgtggac	aagcagacat	gcactctt	tttctcttgg	4920
	cacacgcgc	tggcctgcga	gcaagcgacc	aatgttccg	tgaggaatgg	aagctctatt	4980
10	gttacttgt	ctcccttat	tcatcgact	ggtggttatg	aggcttatga	tgagagttag	5040
	gatgtgcct	ccgataccaa	ccctgattt	tacatcaata	tttgcagcc	actaaatccc	5100
	atgcacgcag	tgccctgtcc	tgccggagcc	gctgtgtc	aagtcttat	tgatggtccc	5160
	cccatagata	tcggccgggt	agcaggacca	ccaatactca	atccaatagc	aatagagatt	5220
	tacttgaatt	ttgaaagcag	tactcttgc	ttagcggaca	agcatttcaa	ctacacctcg	5280
	ctcatcgct	ttcaactgtaa	gagagggtgt	agcatggaa	cgccctaagct	gttaaggacc	5340
15	agcgagtgcg	actttgtgtt	cgaatggggag	actcctgtcg	tctgtcctga	tgaagtgagg	5400
	atggatgggt	gtaccctgac	agatgagcag	ctcccttata	gottcaactt	gtccagcctt	5460
	tccacgagca	cccttaaggt	gactcgcgac	tcgcgcaccc	acagcgttgg	ggtgtgcacc	5520
	tttgcagtcg	ggccagaaca	aggaggctgt	aaggacggag	gagtcgtct	gtctcaggc	5580
20	accaaggggg	catcccttgg	acggctgcaa	tcaatgaaac	tggattacag	gcaccaggat	5640
	gaagcggctg	ttttaagttt	cgtgaatgtt	gatcgttgcc	ctccagaaaac	cgatgacggc	5700
	gtccctgtt	tcttccccctt	catattcaat	ggaaagagct	acgaggagtg	catcatagag	5760
	agcagggcga	agctgtgggt	tagcacaact	gcggactacg	acagagacca	cgagtgggc	5820
	ttctgcagac	actcaaacag	ctaccggaca	tccagcatca	tatthaagtg	tgatgaagat	5880
	gaggacattt	ggagggccaca	agtcttcagt	gaagtgcgt	ggtgtgtatgt	gacatttgag	5940
25	tggaaaaaacaa	aagtgttgc	ccctccaaag	aagtggagct	gcaaattcgt	ccagaaacac	6000
	aaaacactcg	acctcgccgt	gtctccctt	ctcaggccgtt	cctggccctt	gttcacaaac	6060
	ggagtctcg	actatataaa	tctgtggccag	aaaatataa	aaggggccctt	gggctctt	6120
	gaaagggcca	gcatttgcag	aaggaccaca	actggtgac	ttccaggctt	gggactcg	6180
	cacacgcaga	agctgggtgt	cataggtgac	aaagtgttgc	tcacgtactc	caaaggttat	6240
30	ccgtgtgggt	gaaataagac	cgcacatcctt	gtgatagaat	tgacctgtac	aaagacggtg	6300
	ggcagacact	catcaagag	gtttgatatac	gacagtc	tttactactt	cagctggac	6360
	tcccgggctg	cctgcgcgt	gaagcctcag	gaggtgcaga	ttgtgaatgg	gaccatcacc	6420
	aaccctataa	atggcaagag	cttcagccct	ggagatattt	attttaagct	gttcagagcc	6480
	tctggggaca	tgaggaccaa	ttgggacaac	tacctgtatg	agatccaact	ttcctccatc	6540
35	acaagctcca	gaaaccggc	gtgctctgaa	gccacatata	gccaggtgaa	gcccaacgt	6600
	cagcacttca	gtcgaaaagt	tggaacactt	gacaagacca	agtactactt	tcaagacggc	6660
	gatctcgat	tcgtgtttgc	ctcttcctt	aagtgcggaa	aggataagac	caagtctgtt	6720
	tcttccacca	tcttcttcca	ctgtgaccct	ctgggtggagg	acggggatccc	cgagttcagt	6780
	cacgagactg	ccgactgc	gtacctctt	tcttgtaca	cctcagccgt	gtgtctctgt	6840
40	gggggtgggt	ttgacagcga	gaatcccggg	gacgacggggc	agatgcacaa	ggggctgtca	6900
	gaacggagcc	aggcgtcgg	cgccgtgtc	agcctgtc	ttgtggcgct	cacctgtc	6960
	ctgctggccc	tgtgtctca	caagaaggag	aggaggggaaa	cagtgataag	taagctgacc	7020
	acttgcgtt	ggagaagttc	caacgtgtt	tacaaataact	caaagggtaa	taaggaagaa	7080
	gagacagat	agaatgaaaac	agagtgctg	atggaaagaga	tccagcttcc	tcctccacgg	7140
	cagggaaagg	aagggcagga	gaacggccat	attaccacca	agtca	gttca	7200
45	ttccctgcatt	gggatgacca	ggacagtgt	gatgagggtt	tgaccatccc	agaggtgaaa	7260
	gttacttcgg	gcagggggagc	ttggggcagag	agctcccacc	cagtgagaaa	cgcacagagc	7320
	aatgcccttc	aggagcgtt	ggacgataag	gtggggctt	tcaggggtt	gaaggcggagg	7380
	aaaggaaagt	ccagctctgc	acagcagaag	acagttagct	ccaccaagct	ggtgtccctt	7440
50	catgacgaca	gcgacgagga	ccttttacac	atctga			7476
	<210>	91					
	<211>	4104					
	<212>	DNA					
55	<213>	Homo sapiens					
	<300>						
	<302>	IGF1R					
	<310>	NM000875					
60	<400>	91					
	atgaagtctg	gctccggagg	agggtcccc	acctcgctgt	gggggctt	ttttctctcc	60

gccgcgctct cgctctggcc gacgagtgga gaaatctcg gGCCAGGcat cgacatccgc 120
 aacgactatc agcagctgaa ggcgcctggag aactgcacgg tgatcgaggg ctacccatc 180
 atcctgctca tctccaaggc cgaggactac cgcaactacc gttccccaa gtcacggc 240
 attaccgagt acttgctgtc gtcccggatg gtcgcctcg agagcctcg agaccttcc 300
 5 cccaacctca cggcataccg cggctggaaa ctcttctaca actacgcctt ggtcatcttc 360
 gagatgacca atctcaagga tattgggctt tacaacctga ggaacattac tcggggggcc 420
 atcaggattg agaaaaatgc tgacctctgt tacctctca ctgtggactg gtccctgatc 480
 ctggatgccc tgtccaataa ctacattgtg gggataaagc ccccaaagga atgtggggac 540
 ctgtgtccag ggaccatgga ggagaagccg atgtgtgaga agaccaccaat caacaatgag 600
 10 tacaactacc gctgtggac cacaaaccgc tgccagaaaa tgtgccaag cacgtgtggg 660
 aagcggggt gcaccgagaa caatgagtgc tgccaccccg agtgcctggg cagctgcagc 720
 ggcgcctgaca acgacacggc ctgtgttagt tgccgcact actactatgc cggtgtctgt 780
 gtgcctgcct gcccggccaa cacctacagg ttggggctt ggcgtgtgt ggaccgtgac 840
 ttctgcgcca acatcttcag cggcggagac agcactccg aggggtttgt gatccacgac 900
 15 ggcgagtca tgcaggatg cccctgggc ttcatccgca acggcagcga gacatgtac 960
 tgcattccctt gtgaagggtcc ttgcccgaag gtctgtgagg aagaaaaagaa aacaaagacc 1020
 attgattctg ttacttctgc ttagatgtc caagatgca ccatttca gggcaatttg 1080
 ctcatattaaca tccgacgggg gaataacatt gcttcagagc tggagaactt catgggctc 1140
 atcgaggtgg tgacgggcta cgtgaagatc cgccattctc atgccttggc tcccttgc 1200
 20 ttccctaaaaa acctcgccct catccttaga gaggagcgc tagaaggaaa ttactccttc 1260
 tacgtcctcg acaaccagaa cttgcagcaa ctgtggact gggaccaccc caacctgacc 1320
 atcaaaggcag gggaaatgtt ctttgcattt aatcccaat tatgtgtttc cgaattttac 1380
 cgcatggagg aagtacggg gactaaaggc cgccaaagca aaggggacat aaacaccagg 1440
 aacaacgggg agagacgcctc ctgtgaaagt gacgtcctgc atttcacccctc caccaccacg 1500
 25 tcgaagaatc gcacatcatcat aacctggcac cggtaaccgc cccctgacta caggatctc 1560
 atcagcttca cggtttacta caaggaagca ccctttaaga atgtcacaga gtatgtggg 1620
 caggatgct ggggctccaa cagctggAAC atgggtggacg tggacctccc gcccaacaag 1680
 gacgtggacg cccgcatctt actacatggg ctgaaggccct ggactcagta cggctttac 1740
 gtcaaggctg tgaccctcac catggtgagg aacgaccata tccgtggggc caagagttag 1800
 30 atcttgtaca ttgcacccaa tgcttcagg ctttccattt ctttggacgt tcttcagca 1860
 tcgaactctt ctttcagtt aatctgtgaa tggacccctc cctctctgcc caacggcaac 1920
 ctgagttact acattgtgctt ctggcagccg cagcctcagg acggctactt ttacccgcac 1980
 aattactgtt ccaaaagacaa aatccccatc aggaagtatg ccgacggcac catgcacatt 2040
 gaggaggctc cagagaaccc caagacttagt gtgtgtggg gggagaaagg gcctgtgc 2100
 35 gcctgccccca aaactgaagc cgagaaggcag gccgagaagg aggaggctga ataccgcaaa 2160
 gtctttgaga atttctcgca caactccatc ttctggccca gacctgaaag gaagcggaga 2220
 gatgtcatgc aagtggccaa caccaccatg tccagccgaa gcaggaacac cacggccgca 2280
 gacacctaca acatcaccgc cccggaaagag ctggagacag agtacccttt ctttgagagc 2340
 40 agagtggata acaaggagag aactgtcatt tctaaccctt ggcctttcac attgtaccgc 2400
 atcgatatacc acagtcgca ccacggactt gagaactctgg gtcgcacgcgctc 2460
 gtctttgeaa ggactgtcc cgcagaagga gcagatgaca ttctggggcc agtgcactgg 2520
 gagccaaggc ctgaaaactc catcttttta aagtggccgg aacctgagaa tcccaatgg 2580
 ttgattctaa tttatgtaaaataaaatcgaa tcacaaggatgg aggatcaggg agaatgtgt 2640
 tccagacagg aatacaggaa gtatggaggg gccaagctaa accggctaaa cccggggac 2700
 45 tacacagccc ggattcaggc cacatcttc tctggaaatg ggtcggtggac agatccctgt 2760
 ttcttctatg tccaggccaa aacaggatatt gaaaacttca tccatctgtat catgcctctg 2820
 cccgtcgctg tcctgttgc cgtggggagg ttgggtgatta tgctgtacgt ctccataga 2880
 aagagaaaata acacggactt gggaaatggc gtgtgtatg cctctgtgaa cccggactac 2940
 ttcagcgctg ctgtatgttgc cgttcctgtat gatggggagg tggctcggga gaagatcacc 3000
 50 atgagccggg aacttggca ggggtcggtt gggatggctt atgagggatgt tgccaaagggt 3060
 gtgggtgaaag atgaacatgc aaccagatgt gccattaaa cagtgaacga gggccgcaac 3120
 atgcgtgaga ggatgtggatgt tctcaacgaa gcttctgtga tgaaggatgtt caattgtcac 3180
 catgtgggtt gattgtggg tttgtgtgtcc caaggccgc acacactgtt catcatggaa 3240
 ctgtatgtacac gggccatctt caaaatgtt ctccggcttc tgaggccaga aatggagaat 3300
 55 aatccatgtcc tagcacctcc aaggctgagc aagatgattt agatggccgg agagatgtca 3360
 gacggcatgg catacctcaa cgccaaatag ttctggccaca gagaccttgc tgccggaaat 3420
 tgcgtggtag ccgaagatgtt cacagtccaa atcgagatgtt ttggatgtac gcgagatata 3480
 tatgagacag actattaccg gaaaggagggc aaagggtgtcc tggccgtgtcc ctggatgtct 3540
 cctgagttcc tcaaggatgg agtcttcacc acttactcgg acgtctggc ttcgggggtc 3600
 60 gtcctctggg agatcgccac actggccgag cagccctacc agggcttgc caacggacaa 3660
 gtccttcgct tcgtcatggc gggccggctt ctggacaagc cagacaactg tccgtacatg 3720
 ctgtttgaac tttatgtggcag tataacccca agatggggcc ttccttcctg 3780

gagatcatca gcagcatcaa agaggagatg gagcctggct tccgggaggt ctccttctac 3840
 tacagcgagg agaacaagct gccc gagccg gaggagctgg acctggagcc agagaacatg 3900
 gagagcgccc ccctggaccc ctcggcctcc tcgtcctccc tgccactgcc cgacagacac 3960
 5 tcaggacaca aggccgagaa cggccccggc cctgggggtgc tggtcctccg cgccagcttc 4020
 gacgagagac agccttacgc ccacatgaac gggggccgca agaacgagcg ggccttgcgg 4080
 ctgccccagt ctgcacactg ctga 4104

10 <210> 92
 <211> 726
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PDGFB
 <310> NM002608

20 <400> 92
 atgaatcgct gctggcgct cttcctgtct ctctgctgct acctgcgtct ggtcagcgcc 60
 gagggggacc ccattcccgaa ggagctttat gagatgctga gtgaccactc gatccgctcc 120
 tttgtatgatc tccaacgcct gtcgacgga gaccccgag aggaagatgg ggccgagttg 180
 gacctgaaca tgacccgctc ccactctgaa ggcgagctgg agagcttggc tcgtggaaga 240
 aggagccctgg gttccctgac cattgctgag cccggccatga tcgcccgggtt caagacgcgc 300
 25 accggagggtt tcgagatctc cccggccctc atagacccgca ccaacgccaa cttcctgggt 360
 tggccgcctt gtgtggaggt gcagcgctgc tccggctgct gcaacaaccc caacgtgcag 420
 tgccgccttccc cccaggtgca gtcgcgact gtccaggta gaaagatgca gattgtgcgg 480
 aagaagccaa tcttttaagaa ggcacgggtt acgcttggaaag accacctggc atgcaagtgt 540
 gagacagttgg cagctgcacg gcctgtgacc cgaagcccg ggggttccca ggagcagcga 600
 30 gccaaaaacgc cccaaactcg ggtgaccatt cggacgggtt gacttgcgg gccccccaag 660
 ggcaagcacc gggaaattcaa gcacacgcat gacaagacgg cactgaagga gacccttgg 720
 gccttag 726

35 <210> 93
 <211> 1512
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> TGFbetaR1
 <310> NM004612

45 <400> 93
 atggaggccg cggtcgctgc tccgcgtccc cggctgctcc tcctcgtgtt ggcggccggcg 60
 gggccggccg cggccggcgt gtcggccggg ggcacggcgt tacagtgttt ctgcacactc 120
 tgtacaaaag acaattttac ttgtgtgaca gatgggtctt gctttgtctc tgtcacagag 180
 accacagaca aagtataca caacagcatg tgtatagctg aaattgactt aattcctcga 240
 gataggccgt ttgtatgtgc accctcttca aaaactgggt ctgtgactac aacatattgc 300
 50 tgcatttcagg accattgcaaa taaaatagaa cttccaaacta ctgtaaagt atcacctggc 360
 ottgttccttg tggacttggc agctgtcatt gctggaccag tggcttcgtt ctgcatttc 420
 ctcatgttga tggcttatat ctgccacaaac cgcactgtca ttcaccatcg agtgc当地 480
 gaagaggacc cttcatttgc tgcgcctttt atttcaggagg gtactacgtt gaaagactt 540
 atttatgat tgacaacgtc aggttctggc tcagggttac cattgtttgt tcagagaaca 600
 attgcgagaa ctattgtttt acaagaaaag gtcgatggg agaaggtttgg 660

55 55 agaggaaaat ggcggggaga agaagtgtt gttaaagat ttcctctgt agaagaacgt 720
 tgggttcc gtgaggcaga gatttatcaa actgtaatgt tacgtcatgtt aaacatcctg 780
 ggattttatag cagcagacaa taaagacaat ggtacttggc ctcagctctg gttgggttca 840
 gattatcatg agcatggatc ctttttgc tttttttttt gatacacaatg tactgtggaa 900
 ggaatgataa aactgtctt gtcacggccg agcggctttt cccatcttca catggagatt 960
 60 gttggtaccc aaggaaagcc agccattgtt catagagatt tgaaatcaa gaatatctt 1020
 gttaaagaaga atgaaacttg ctgtatttgc gacttaggac tggcagttttt acatgattca 1080
 gccacagata ccattgtat tgccttccaaac cacagagtgg gaacaaaaaaag gtacatggcc 1140

	acttgcaggaa	cagtagcagt	caaaaatgttg	aaagaaggag	caacacacacag	tgagccatcgaa	2640
	gctctcatgt	ctgaactcaa	gatccctatt	catattggtc	accatctcaa	tgtggtaaac	2700
	cttcttaggtg	cctgtaccaa	gccaggaggg	ccactcatgg	tgattgtgga	attctgcaa	2760
	tttggaaacc	tgtccactta	cctgaggagc	aagagaaatg	aatttgtccc	ctacaagacc	2820
5	aaaggggcac	gattccgtca	agggaaagac	tacgttggag	caatccctgt	ggatctgaaa	2880
	cggcgcttgg	acagcatcac	cagtagccag	agctcagcca	gctctggatt	tgtggaggag	2940
	aagtccctca	gtgatgtaga	agaagaggaa	gctctgtgaag	atctgtataa	ggacttcctg	3000
	accttggagc	atctcatctg	ttatcagctt	caagtggcta	agggcatgga	gttcttggca	3060
	tgcgcgaaatg	gtatccacag	ggacctggcg	gcacgaaata	tctctttatc	ggagaagaac	3120
10	gtgtttaaaa	tctgtgactt	tggcttggcc	cggatattt	ataaaagatcc	agattatgtc	3180
	agaaaaaggag	atgctcgcc	ccctttgaaa	tggatggccc	cagaaacaat	tittgacaga	3240
	gtgtacaccaa	tccagagtga	cgtctgttct	tttgggtgttt	tgctgtggga	aatattttcc	3300
	tttaggtgctt	ctccatatatcc	ttgggttaaag	attgtatgaa	aattttgtatg	gcgattgaaa	3360
	gaaggaacta	aatgaggggc	ccctgattat	actacaccag	aatatgtacca	gaccatgctg	3420
15	gactgctggc	acggggagcc	cagtcagaga	cccacgtttt	cagagttgtt	ggaacatttg	3480
	ggaaatctct	tgcaagctaa	tgctcagcag	gatggcaaaag	actacattgt	tcttccgata	3540
	tcaagactt	tgagcatgga	agaggattct	ggactctctc	tgccttacctc	acctgtttcc	3600
	tgtatggagg	aggaggaagt	atgtgaccccc	aaattttcatt	atgacaacac	agcaggaatc	3660
	agtcaagtatc	tgcagaacacg	taagcgaaag	agccggcctg	tgagtgtaaa	aacatttgaa	3720
20	gatatccctgt	tagagaacc	agaagttaaa	gtaatccccag	atgacaacca	gacggacagt	3780
	ggtatggttc	ttgcctcaga	agagctgaaa	acttttggaa	acagaaccaa	attatctcca	3840
	tcttttgggt	gaatggtgcc	cagcaaaacg	agggagtctg	tggcatctga	aggctcaaa	3900
	cagacaagcgc	gctaccagtc	cgatccatcac	tccgatgaca	cagacaccac	cgtgtactcc	3960
25	agtgaggaag	cagaactttt	aaagctgata	gagattggag	tgcaaaacccgg	tagcacagcc	4020
	cagattctcc	agcctgactc	gggg				4044

<210> 95
<211> 4017
<212> DNA
<213> Homo sapiens

35 <300>
 <302> Flt1
 <310> AF063657

<400>	95	atggtcagct	actgggacac	cggggtcctg	ctgtgcgcgc	tgctcagctg	tctgcttctc	60
40		acaggatcta	gttcagggttc	aaaattaaaaa	gatccgtgaac	tgagtttaaa	aggcacccag	120
		cacatcatgc	aaggcaggcca	gacactgcat	ctccaatgca	ggggggaaagc	agcccataaaa	180
		tggtcttgc	ctgaaatggt	gagtaaggaa	agcgaaaaggc	tgagcataac	taaatctgcc	240
45		tgtgaaagaa	atggccaaaca	attctgcagt	actttAACCT	tgaacacagc	tcaagcaaac	300
		cacactggct	tctacagctg	caaatatcta	gctgtaccta	cttcaaagaa	gaaggaaaca	360
		gaatctgcaa	tctatataat	tattagtgtat	acaggttagac	ctttcgtaga	gatgtacagt	420
		gaaatccccg	aaattataca	catgactgaa	ggaaggggagc	tcgtcattttc	ctgccccgggtt	480
50		acgtcaccta	acatcaactgt	tactttaaaaa	aagtttccac	ttgacacttt	gatccctgtat	540
		ggaaaacgca	taatctggga	cagttagaaag	ggcttcatca	tatcaaatgc	aacgtacaaa	600
		gaaatagggc	ttctgacctg	tgaagcaaca	gtcaatgggc	atttgtataa	gacaaactat	660
55		ctcacacatc	gacaaaccaa	tacaatcata	gatgtccaaa	taagcacacc	acgcccagtc	720
		aaattactta	gaggccatac	tcttgcctc	aattgtactg	ctaccactcc	cttgaacacg	780
		agagttcaaa	tgacctggag	ttaccctgtat	aaaaaaaata	agagagcttc	cgtaaggcga	840
		cgaattgacc	aaagcaattc	ccatgccaac	atattctaca	gtgttcttac	tattgacaaa	900
60		atgcagaaca	aagacaaagg	actttataact	tgtcggtaa	ggagtggacc	atcattcaaa	960
		tctgttaaca	cctcagtgc	tatatatgtat	aaagcattca	tcactgtgaa	acatcgaaaa	1020
		cagcagggtgc	ttgaaacccgt	agctggcaag	cggcttacc	ggctcttat	gaaagtgtaaag	1080
		gcatttccct	cggccgaagt	tgtatggtta	aaagatgggt	tacctgcgcac	tgagaaatct	1140
		gctcgcttatt	tgactcgtgg	ctactcggtt	attatcaagg	acgtaaactgt	agaggatgca	1200
		ggaaattata	caatctgtt	gagcataaaaa	cagtcaaatg	tgtttaaaaaa	cctcactgc	1260
		actctaattt	tcaatgtgaa	accccaagatt	tacgaaaaagg	cgtgtcatac	gttccagac	1320
		ccggctctct	acccactggg	cagcagacaa	atcctgactt	gtaccgcata	tggtatccct	1380
		caacctacaa	tcaagtggtt	ctggcaccccc	tgtaaaccata	atcattccga	agcaagggtgt	1440
		gacttttgtt	ccaataatga	agagtcctt	atcctggatg	ctgacagcaa	catggggaaac	1500

	agaattgaga	gcatacactca	gcgcatggca	ataatagaag	aaaagaataaa	gatggctagc	1560
	accttggtt	tggctgactc	tagaatttc	ggaatctaca	tttgcatacg	ttccaataaa	1620
	gttggactg	tgggaagaaa	cataagctt	tatatcacag	atgtccaaa	tgggttcat	1680
	gttaacttgg	aaaaaatgcc	gacggaaagg	gaggacctga	aactgtcttg	cacagttaac	1740
5	aagttcttat	acagagacgt	tacttggatt	ttactgcgg	cagttaataaa	cagaacaatg	1800
	cactacagta	ttagcaagca	aaaaatggcc	atcactaagg	agcactccat	cactcttaat	1860
	cttaccatca	tgaatgtttc	cctgcaagat	tcaggcacct	atgcctgcag	agccaggaat	1920
	gtatacacag	gggaagaaaat	cctccagaag	aaagaaatta	caatcagaga	tcaggaagca	1980
	ccataacctc	tgcgaaacct	cagtgtcac	acagtggca	tcagcagttc	caccacttta	2040
10	gactgtcatg	ctaattgtgt	ccccgagcc	cagatcactt	ggttttaaaaaa	caaccacaaa	2100
	ataacaacaag	agcctggaat	tattttagga	ccaggaagca	gcacgctgtt	tattgaaaaga	2160
	gtcacagaag	aggatgaagg	tgtctatcac	tgcaaagcca	ccaaccagaa	gggctctgt	2220
	gaaagttca	cataacctac	tgttcaagg	acctcggaca	agtctaatct	ggagctgatc	2280
15	actctaacaat	gcacccgtgt	ggctgcgact	ctcttctggc	tccttattaac	cctcttatac	2340
	cgaaaaatga	aaaggcttcc	ttctgaaata	aagactgact	acctatcaat	tataatggac	2400
	ccagatgaag	ttccttgg	tgagcagtgt	gagcgcgtcc	ctttagtgc	cagcaagtgg	2460
	gagtttgc	gggagagact	taaactgggc	aaatcaactt	gaagaggggc	ttttgaaaaa	2520
	gtggttcaag	catcagcatt	tggcattaag	aaatcaccta	cgtgcggac	tgtggctgt	2580
	aaaatgtca	aagagggggc	cacggccagc	gagtaaaag	ctctgatgac	tgagctaaaa	2640
20	atcttgacc	acatctggca	ccatctgaa	gtggtaacc	tgctgggagc	ctgccaacag	2700
	caaggagg	ctctgtatgt	gattttgaa	tactgaaat	atggaaatct	ctccaactac	2760
	ctcaagagca	aacgtgactt	attttttctc	aacaaggat	cagcactaca	catggacgt	2820
	aagaaagaaa	aaatggagcc	aggcctggaa	caaggaaga	aaccaagact	agatagcgtc	2880
25	accagcagcg	aaagcttgc	gagctccggc	tttcaggaag	ataaaagtot	gagtgtatgt	2940
	gaggaagagg	aggattctga	cggtttctac	aaggagccc	tcactatgg	agatctgatt	3000
	tcttacagtt	ttcaagtggc	cagaggcatt	gagttctgt	cttccagaaa	gtgcattcat	3060
	cgggacctgg	cagcgagaaa	cattcttta	tctgagaaca	acgtggtga	gatttgtat	3120
	tttggcctt	cccgggatat	ttataagaac	cccgattatg	tgagaaaagg	agataactcg	3180
30	cttcctctga	aatggatggc	tcctgaatct	atctttgaca	aaatctacag	caccaagago	3240
	gacgtgttgt	tttacggagt	attgtctgtt	gaaatcttct	ccttaggtgg	gtctccatac	3300
	ccaggagtac	aatatggatga	ggacttttgc	agtcgcctga	gggaaggcat	gaggatgaga	3360
	gctcctgagt	actctactcc	tgaatatctat	cagatcatgc	tggactgctg	gcacagagac	3420
35	caaaaagaaa	ggccaagat	tgcagaactt	gtggaaaaac	taggtgattt	gttcaagca	3480
	aatgtacaaac	aggatgttaa	agactacatc	ccaatcaatg	ccatactgac	agggaaatagt	3540
	gggttcat	actcaactcc	tgccttctc	gaggactt	tcaaggaaaag	tatttcagtt	3600
	ccgaagttt	attcaggaag	ctctgatgat	gtcagatatg	taaatgcattt	caagttcatg	3660
	agcctggaaa	gaatcaaaac	ctttgaagaa	cttttaccga	atgccacctc	catgtttat	3720
	gactaccagg	gcgacagcg	cactctgtt	gcctctccc	tgctgaagcg	cttcacctgg	3780
40	actgacagca	aacccaaggc	ctcgctcaag	attgacttga	gagtaaccag	taaaagtaag	3840
	gagtcggggc	tgtctgatgt	cagcaggccc	agtttctg	attccagctg	tgggcacgtc	3900
	agcgaaggca	agcgcagg	cacctacgac	cacgctgac	tggaaaggaa	aatcgctgc	3960
	tgctccccgc	ccccagacta	caactcggtt	gtcctgtact	ccacccacc	catctag	4017
45	<211>	96					
	<211>	3897					
	<212>	DNA					
	<213>	Homo sapiens					
50	<300>						
	<302>	Flt4					
	<310>	XM003852					
	<400>	96					
55	atgcagcggg	gcccgcgcgt	gtgcctgoga	ctgtggctt	gcctgggact	cctggacggc	60
	ctgggtgg	gtctactccat	gaccccccgg	accttgaaca	tcacggggaa	gtcacacgtc	120
	atcgacaccc	gtgacagcct	gtccatctcc	tgcaggggac	agcacccccct	cgagtgggt	180
	tggccagg	ctcaggaggc	ggcagccacc	ggagacaagg	acagcgagg	cacgggggt	240
60	gtgcgagact	gcgaggccac	agacgcgg	ccctactgc	aggtgttgc	gctgcacgag	300
	gtacatgcoa	acgacacagg	cagctacgtc	tgctactaca	agtatcatcaa	ggcacgcac	360
	gagggcacoa	cgccgcgg	ctcctacgt	ttcgtgagag	actttgagca	gccattcatac	420
	aacaaggcctt	acacqctt	qgtcaacagg	aaggacqcca	tgtgggtqcc	ctgtctgtgt	480

	tccatccccg	gcctcaatgt	cacgctgcgc	tcgcaaagct	cggtgctgtg	gccagacggg	540
	caggagggtgg	tgtgggatga	coggcggggc	atgctgtgt	ccacgcccact	gctgcacgt	600
	gccctgtacc	tgcagtgcga	gaccacctgg	ggagaccagg	acttccttc	caacccttc	660
5	ctggtgacaa	tcacaggcaa	c gagactat	gacatccaggc	tgttggccaa	gaagtgcgtg	720
	gagctgctgg	tagggagaa	gctggtcctg	aactgcaccg	tgtgggctga	gtttaactca	780
	ggtgtcacct	ttgactggga	ctaccccagg	aagcaggcag	agcggggtaa	gtgggtgccc	840
	gagcgacgct	cccagcagac	ccacacagaa	ctctccagca	tcctgaccat	ccacaacgtc	900
10	agccagcacg	acctgggctc	gtatgtgtc	aaggccaaca	acggcatcca	gcatattcgg	960
	gagagcaccg	aggtcattgt	gcatgaaaat	cccttcatca	gctgcgagtg	gctcaaagga	1020
	cccatccctgg	aggccacggc	aggagacgag	ctggtaaagc	tgcccgtgaa	gctggcagcg	1080
	taccccccgc	ccgagttcca	gtggtaacaag	gatggaaagg	cactgtccgg	gcccacagt	1140
	ccacatgccc	tggtgctcaa	ggagggtgaca	gaggccagca	caggcaccta	caccctcgcc	1200
15	ctgtggaact	ccgctgctgg	cctgaggcgc	aacatcagcc	tggagctggt	ggtgaatgtg	1260
	cccccccaaa	tacatgagaa	ggaggccctcc	tcccccagca	tctactcgcg	tcacagccgc	1320
	caggccctca	cctgcacggc	ctacgggggt	ccccctcctc	tcagcatcca	gtggcactgg	1380
	cgccccctgg	cacctgcaa	gatgttggc	cagegtatgc	tccgggggcg	gcagcagcaa	1440
	gacctcatgc	cacagtgcgg	tgactggagg	gctgtgaccg	cgccaggatgc	cgtgaacccc	1500
	atcgagagcc	tggacacctg	gaccgagtt	gtggaggggaa	agaataagac	tgtgagcaag	1560
20	ctggtgatcc	agaatgcaa	cgtgtctgcc	atgtacaagt	gtgtggctc	caacaagggt	1620
	ggccaggatg	agcggctcat	ctacttctat	gtgaccacca	tcccccacgg	cttcaccatc	1680
	gaatccaagc	catcccgagga	gtactagag	ggccagccgg	tgctccttag	ctgccaagcc	1740
	gacagctaca	agtacgagca	tctgcgttgg	tacccctca	acctgtccac	gctgcacgt	1800
	gcccacggg	acccgcttct	gctcgactgc	aagaacgtgc	atctgttgc	caccctctg	1860
25	gcccgcagcc	tggaggaggt	ggcacctggg	gctgcacccgg	ccacgcgtc	cctgagtatc	1920
	ccccgcgtcg	cgcccgagca	cgaggggccac	tatgtgtgcg	aagtgcaga	ccggcgcagc	1980
	catgacaagc	actgcccacaa	gaagtacccgt	tcggtgacgg	cccttggaaagc	ccctcggtc	2040
	acgcagaact	tgaccgacct	cctgggtgaa	gtgagcact	cgctggagat	gcagtgttt	2100
	gtggccggag	cgcacgcgca	cagcatcg	tggtaaaag	acgagagggt	gctggaggaa	2160
30	aagtctggg	tcgacttggc	ggacttccaa	cagaagctga	gcatccaggc	cgtgcgcgag	2220
	gaggatgcgg	gacgttatct	gtgcagcgt	tgcacacgca	agggtctcg	caactcctcc	2280
	gccagcgtgg	ccgttggaaagg	ctcccgaggat	aaggcagca	tggagatcg	gatccttgc	2340
	ggtacccggc	tcatcgctgt	cttcttctgg	gtcctcctcc	tcctcatctt	ctgttaacatg	2400
	aggaggccgg	cccacgcaga	catcaagacg	ggctacctgt	ccatcatcat	ggaccccggg	2460
35	gaggtgcctc	tggaggagca	atgcgaatac	ctgtcttacg	atgccagcca	gtgggaattc	2520
	ccccgagagc	ggctgcaccc	ggggagagt	ctcgctacg	gccccttcgg	gaagggtgg	2580
	gaaggcctcg	ctttcggcat	ccacaagggc	agcagctgt	acaccgtggc	cgtaaaaatg	2640
	ctgaaagagg	gcccacggc	cagcgagcag	cgccgcgtga	tgtcgagact	caagatcctc	2700
40	attcacatcg	gcaaccaccc	caacgtggc	aaccttctcg	gggcgtgcac	caagccgcag	2760
	ggcccccctca	tggtgatctg	ggagttctgc	aagtacggca	accttccaa	cttcctgc	2820
	gccaagcggg	acgccttcag	ccccctgcgc	gagaagtctc	ccgagcagcg	ccggacgttc	2880
	cgcgcctatgg	tggagctcgc	caggctggat	cgaggcggc	cgggggagcg	cgacagggtc	2940
	ctcttcgcgc	ggttctcgaa	gaccgaggggc	ggaggcgaggc	gggttctcc	agacccaagaa	3000
	gctgaggacc	tgtgctgag	cccgctgacc	atggaaagatc	ttgtctgtca	cagttccag	3060
45	gtggccagag	ggatggagtt	cctggcttcc	cgaaaagtgc	tccacagaga	cctggctgt	3120
	cggaaacattc	tgctgtcgga	aagcgacgt	gtgaagatct	gtgactttgg	ccttgcgg	3180
	gacatctaca	aagaccccg	ctacgtccgc	aaggcagtg	cccggtctcc	cctgaagtgg	3240
	atggccctcg	aaagcatctt	cgacaagggt	tacaccacgc	agagtgcac	gtggtcctt	3300
	gggggtgctc	tctggagat	tttctctctg	ggggcctccc	cttaccctgg	gttgcagatc	3360
50	aatgaggagt	tctgccagcg	gctgagagac	ggcacaaggaa	tgaggggccc	ggagctggcc	3420
	actcccccca	tacggccat	catgtgtga	tgctggtccg	gagaccccaa	ggcgagac	3480
	gcatttctgg	agctggtgg	gatcctgggg	gacctgtcc	agggcagggg	cctgcaagag	3540
	gaagaggagg	tctgcatggc	cccgccgc	tctcagatc	cagaaggagg	cagttctcg	3600
	cagggtgtcca	ccatggccct	acacatcgcc	caggctgac	ctggaggac	cccgccaa	3660
55	ctgcagcgcc	acaggctggc	cggcaggat	tacaactggg	tgtcccttcc	cggggtgcctg	3720
	gccagagggg	ctgagacccg	tggttccccc	aggatgaaga	catttgagga	attccccatg	3780
	accccaacga	cctacaaagg	ctctgtggac	aaccagacag	acagtgggat	ggtgtggcc	3840
	tcggaggagt	ttgagcagat	agagagcagg	catagacaag	aaagcggctt	caggtag	3897
60	<210>	97					
	<211>	4071					
	<212>	DNA					

<213> Homo sapiens

ttaggtgctt ctccatatcc tggggtaaaag attgatgaag aattttgttag gcgattgaaa 3360
 gaaggaacta gaatgagggc ccctgattat actacaccag aaatgtacca gaccatgctg 3420
 gactgctggc acggggagcc cagtcagaga cccacgtttt cagagttgtt ggaacatttg 3480
 ggaaatctt tgcaagctaa tgctcagcag gatggcaaag actacatgtt tcttccgata 3540
 5 tcagagactt tgagcatgga agaggattct ggactcttc tgcctaccc acctgtttcc 3600
 tgtatggagg aggaggaagt atgtgacccc aaattccatt atgacaacac agcaggaatc 3660
 agtcagtata tgcagaacag taagcgaaag agccggctg tgagtgtaaa aacattgaa 3720
 gatatcccgt tagaagaacc agaagtaaaa gtaatcccag atgacaacca gacggacagt 3780
 ggtatggttc ttgcctcaga agagctgaaa acttggaaag acagaaccaa attatctcca 3840
 10 tctttgggt gaatgggtgcc cagcaaaagc agggagtctg tggcatctga aggctcaaac 3900
 cagacaagcg gctaccagtc cggatatacac tccgatgaca cagacaccac cgtgtactcc 3960
 agtgaggaag cagaactttt aaagctgata gagattggag tgcaaaccgg tagcacagcc 4020
 cagattctcc agcctgactc ggggaccaca ctgagcttc ctccatgttta a 4071

15 <210> 98
 <211> 1410
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> MMP1
 <310> M13509

25 <400> 98
 atgcacagct ttccctccact gctgctgctg ctgttctggg gtgtgggttc tcacagcttc 60
 ccagcgactc tagaaacaca agagcaagat gtggacttag tccagaaaata cctggaaaaaa 120
 tactacaacc tgaagaatga tggggggcaaa gttggaaaagc ggagaaaatag tggcccaagt 180
 gttggaaaat tgaagcaaat gcaggaattt tttgggtctga aagtgactgg gaaaccagat 240
 30 gctgaaaccc tgaaggtgat gaaagcagccc agatgtggag tgcctgatgtt ggctcagttt 300
 gtcctactg agggaaaaccc tcgctgggag caaacacatc tgaggtacag gattggaaaat 360
 tacacgcccc agttgccaag agcagatgtg gaccatgcca ttgagaaaagc cttccaactc 420
 tggagtaatg tcacacacctt gacattcacc aaggctctg agggtaaagc agacatcatg 480
 atatcttttgc tcaaggggaga tcatggggac aactctcctt ttgatggacc tggagggaaat 540
 35 cttgctcatg ctttcaacc agggccaggt attggggggg atgctcattt tgatgaagat 600
 gaaaggtgga ccaacaattt cagagagtac aacttacatc gtgttgcggc tcataactc 660
 ggcattctc ttggactctc ccattctact gatatcgaaa ctttgatgtt ccctagctac 720
 accttcagtg gtgatgttca gctagctcag gatgacattt atggcatcca agccatatat 780
 40 ggacggttccc aaaatccctgt ccagccccatc gggccacaaa ccccaaaaagc gtgtgacagt 840
 aagctaactt ttgtatgttat aactacgatt cggggagaag tgatgttttt taaaagacaga 900
 ttctacatgc gcacaaaatcc cttctaccgg gaagttgagc tcaattttcat ttctgttttc 960
 tggccacaaaatc tgccaaatgg gtttgaagct gtttacgat ttgcccacag agatgaagtc 1020
 cggtttttca aaggaaataa gtactgggtt gttcaggggac agaatgtgtt acacggatac 1080
 cccaaaggaca tctacagctc ctttggcttc cctagaactg tgaagcatat cgatgctgct 1140
 45 ctttctgagg aaaacactgg aaaaacctac ttctttgtt ctaacaaaata ctggaggtat 1200
 gatgaatata aacgatctat ggtatccaatg tatccaaaaa tgatagcaca tgactttcct 1260
 ggaattggcc acaaaggatg tgcagttttc atgaaagatg gatttttcta tttctttcat 1320
 ggaacaagac aatacaaatt tgatcctaaa acgaagagaa ttttgactct ccagaaagct 1380
 aatagctggt tcaactgctc gaaaaatttga 1410

50 <210> 99
 <211> 1743
 <212> DNA
 <213> Homo sapiens

<300>
 <302> MMP10
 <310> XM006269

60 <400> 99
 aaagaaggta agggcagtga gaatgatgca tcttgattt cttgtgttgt tttgtctgcc 60

agtctgctc gcctatcc tcagtgggc agcaaaagag gaggactcca acaaggatct 120
 tgcccagcaa tacctagaaa agtactacaa cctcgaaaag gatgtgaaac agtttagaag 180
 aaaggacagt aatctcattg taaaaaaaaat ccaaggaatg cagaagttcc ttgggttgg 240
 ggtgacaggg aagctagaca ctgacactct ggaggtgatg cgcaagccca ggtgtggagt 300
 5 tcctgacgtt ggtcaacttc gtcctttcc tggcatgccg aagtggagga aaaccaccc 360
 tacatacagg attgtgaatt atacaccaga ttgccaaga gatgctgtt attctgcct 420
 tgagaaaagt ctgaaagtct gggagggat gactccactc acattctcca ggctgtatga 480
 aggagagggct gatataatga tctctttgc agttaaagaa catggagact ttactctt 540
 tgatggccca ggacacagtt tggctcatgc ctaccaccc ggacctggc tttatggaga 600
 10 tatttcacttt gatgtatgtg aaaaatggac agaagatgca tcaggcacca atttattcct 660
 cggtgctgtt catgaacttg gccactccct ggggtcttt cactcagccca acactgaagc 720
 tttgtatgtac ccactctaca actcattcac agagctcgcc cagttccggc ttgcgaaga 780
 tgatgtgaat ggcattcagt ctctctacgg acctccccct gcctctactg aggaacccct 840
 ggtgcccaca aaatctgtt cttcgggatc tgagatgcca gccaagtggtg atccctgttt 900
 15 gtccttcgtat gccatcagca ctctgagggg agaatatctg ttctttaaag acagatattt 960
 ttggcgaaga tcccattggaa accctgaaacc tgaatttcat tgatgttctg cattttggcc 1020
 ctctcttcata tcatattttgg atgctgcata tgaagtttaac agcaggagca ccgtttttat 1080
 ttttaaagga aatgagttct gggccatcag agggaaatgag gtacaagcag gttatccaag 1140
 20 aggcatccat accctgggtt ttccctccaaac cataaggaaa attgtatgcag ctgtttctga 1200
 caaggaaaaag aagaaaacat acttcttgc agcggacaaa tactggagat ttgtatgaaaa 1260
 tagccagtcc atggagcaag gcttccctag actaatagct gatgactttc caggagttga 1320
 gcctaagggtt gatgtgttat tacaggcatt tggattttc tacttcttca gtggatcatc 1380
 acagtttgag tttgacccca atgccaggat ggtgacacac atattaaaga gtaacagctg 1440
 25 gttacattgc taggcgagat agggggaaaga cagatatggg tgtttttaat aaatctaata 1500
 attatttcata taatgttatta tgagccaaaa tggtaattt ttccctgcatt ttctgtact 1560
 gaagaagatg agccttgcag atatctgat gtgtcatgaa gaatgtttct ggaattcttc 1620
 acttgctttt gaattgcact gaacagaatt aagaataact catgtcaat aggtgagaga 1680
 atgttattttc atagatgtgt tattacttcc tcaataaaaa gttttatttt gggcctgttc 1740
 ctt 1743
 30
 <210> 100
 <211> 1467
 <212> DNA
 35 <213> Homo sapiens
 <300>
 <302> MMP11
 <310> XM009873
 40 <400> 100
 atggctccgg ccgcctggct ccgcagcgcc gcccgcgcg ccctcctgcc cccgatgctg 60
 ctgctgctgc tccagccgca gcccgtctg gccccggctc tggccgcggc cgccaccac 120
 ctccatgcgg agaggagggg gccacagccc tggcatgcag ccctgcggc tagccggca 180
 cctgccccctg ccacgcagga agccccccgg cctgcgcagca gcctcaggcc tccccgtgt 240
 ggcgtgcccc acccatctga tgggctgaat gcccgcacc gacagaagag gttcgtgctt 300
 tctggcgggc gctgggagaa gacggaccc acctacagga tccttcggc cccatggcag 360
 ttggtgcaagg agcagggtgcg gcagacgtg gcagaggccc taaaggtatg gagcgtgtg 420
 acgccactca cctttactga ggtgcacgg ggcgtgctg acatcatgtat cgacttcgccc 480
 45 aggtactggc atggggacga cctgcccgtt gatgggcctg ggggcattctt ggcctatgca 540
 ttcttccccca agactcaccg agaagggggat gtccacttcg actatgtatgac gacctggact 600
 atcggggatc accaggccac agacgcgtc cagggtgcag cccatgaaat tggccacgtg 660
 ctggggctgc agcacacaac agcagccaaag gcccgtatgt ccgccttcata caccttcgc 720
 taccctactga gtctcagccc agatgactgc agggcggtt aacacctata tggccagccc 780
 55 tggcccactg tcacccctcag gaccccaaggcc ctggggccccc aggctggat agacaccaat 840
 gagattgcac cgctggagcc agacgcccccg ccagatgcct gtgaggccctc ctggacgcgc 900
 gtctccacca tccgaggcga gctcttttc ttcaagcgg gctttgtgt ggcctccgt 960
 gggggccagc tgcagccccc ctaccagca ttggcctctc gccactggca gggactgccc 1020
 60 agccctgtgg acgctgcctt cgaggatgcc cagggccaca ttgggttctt ccaaggtgt 1080
 cagtaactggg tgtacgcagg taaaagcca gtccctggcc ccgcacccct caccgagctg 1140
 ggcctggta ggtttcccggtt ccattgtgttcc ttgggtctggg gtcccgagaa gaacaagatc 1200
 tacttcttc gaggcaggga ctactggcgtt ttccacccca gcacccggcg ttagacagt 1260

tttatgtatg atgaaacctg gacaagtatc tccaaaggct acaacttgg 660
 gcgcatgagt tcggccactc ctttaggtttt gaccactcca aggaccctgg agcactcatg 720
 ttccctatct acacccatcac cggccaaaagc cactttatgc ttccatgtga cgatgtacaa 780
 gggatccatg ctcttatgg tccaggagat gaagacccc accctaaaca tccaaaaacg 840
 5 ccagacaaat gtgacccttc cttatccccctt gatgccattt ccagtctccg aggagaaaca 900
 atgatctta aagacagatt cttctggcgc ctgcatttc acgcagggttg tgcggagctg 960
 ttttaacga aatcatttt gccagaacct cccaaaccgtt ttgatgctgc atatgagcac 1020
 ccttctcatg acctcatctt catcttcaga ggtagaaaaat tttgggctt taatggttat 1080
 gacattctgg aagggttatcc caaaaaataa tctgaactgg gtctccaaa agaagttaa 1140
 10 aagataagtg cagctgtca ctttgaggat acaggcaaga ctctcctgtt ctcaggaaac 1200
 caggtctgga gatatgtga tactaaccat attatggata aagactatcc gagactataa 1260
 gaagaagact tcccaggaat tggtgataaa gtatgtctg tctatgagaa aaatggttat 1320
 atctatccc tcaacggacc catacagttt gaatacagca tctggagtaa ccgtattgtt 1380
 cgcgtcatgc cagcaaattt cattttgtgg tgttaa 1416
 15

<210> 103
 <211> 1749
 <212> DNA
 20 <213> Homo sapiens

<300>
 <302> MMP14
 <310> NM004995

25 <400> 103
 atgtctcccg ccccaagacc ccccccgttgc ctcctgtctcc ccctgtctcac gctcggcacc 60
 gcgctcgctc ccctcggctc ggcccaaaagc agcagcttca gccccgaagc ctggctacag 120
 caaatggct acctgttcc cggggaccta cgtaccacaca cacagcgttc accccagtc 180
 30 ctctcagccgg ccatcgctgc catgcagaag ttttacgggt tgcaagtaac aggccaaagct 240
 gatgcagaca ccatacgaggc catgaggcgc ccccgatgtg gtgttccaga caagtttggg 300
 gctgagatca aggccaatgt tcgaaggaag cgctacgcca tccagggtct caaatggca 360
 cataatggaa tcactttctg catccagaat tacaccccca aggtggggcga gtatgccaca 420
 tacgaggcga ttgcgaaggc gttccgcgtg tggagagatg ccacaccact ggcgttccgc 480
 35 gaggtgcct atgcctacat ccgtgagggc catgagaagc aggccgacat catgtatctc 540
 tttgccgagg gcttccatgg cgacagcacg cccttcgtatg gtgagggcgg cttcttggcc 600
 catgcctact tcccaggccc caacatttggg ggagacaccc actttgactc tgccagccct 660
 tggactgtca ggaatgagga tctgaatggg aatgacatct tcctgttggc tgcacgag 720
 40 ctggggccatg ccctggggct cgagcattcc agtgcacccct cggccatcat ggcaccctt 780
 taccagtggg tggcacacggg gaatttttg ctgcccgtatg atgaccggcgg gggcatccag 840
 caactttatgggtggatc agggttccccc accaagatgc cccctcaacc caggactacc 900
 tcccggccctt ctgttccatg taaaacccaaa aaccccacct atggggccaa catctgtgac 960
 gggactttt acaccgtggc catgctccga ggggagatgt ttgttctcaa ggagcgttgg 1020
 ttctggccggg tgaggaataa ccaagtatg gatggatacc caatggccat tggccagttc 1080
 45 tggccggggcc tgcctgtctc catcaacact gcctacgaga ggaaggatgg caaattcgtc 1140
 ttcttcaaaatg gagacaagca ttgggtgtt gatgaggcgt ccctggaaacc tggcttaccc 1200
 aagcacattnn aggacgtggg ccgagggtct cctaccgaca agattgtatgc tgcttcttc 1260
 tggatgcccata tggaaagac ctacttcttc cgtgaaacaca agtactaccg tttcaacgaa 1320
 gagctcaggg cagtggatag cgagtacccc aagaacatca aagtctggg agggatccct 1380
 50 gagtcctccca gaggttcatt catgggcacg gatgaagtct tcacttactt ctacaagggg 1440
 aacaaataact gggaaattcaa caaccagaag ctgaaaggtag aaccggggcta ccccaagtca 1500
 gcccgtgggg actgtatggg ctggccatcg ggaggccggc cggatgggg gactgaggag 1560
 gagacggagg tgatcatcat tgagggtggac gaggaggcggc gccccgggg gaggcggct 1620
 55 gcccgtggctc tgccctgtctc gctgctgtcc ctgggtctgg cggtggccct tgcgttcttc 1680
 ttcttcaagac gccatggggc ccccaaggcga ctgcttactt gccagcgttc cctgttggc 1740
 aagggtctga 1749

60 <210> 104
 <211> 2010
 <212> DNA
 <213> Homo sapiens

<300>
<302> MMP15
<310> NM002428

5	<400>	104
0	atgggcagcg accccgagcgc gcccggacgg ccggggcttgg a cgggcagccct cctcggcgac	60
	cgggaggagg cggcgccggcc gggactgctg ccgtctgtcc tgggtcttct gggctgcctg	120
	ggccttggcg tagcggccga agacgcggag gtccatgccg agaactggct gggctttat	180
	ggctacctgc ctcagccccag cgcctatatg tccaccatgc gtccgcggca gatcttgcc	240
	tccggccctt cagagatgca ggcgttctac gggatcccgc tcaccgggtg gctcgacgaa	300
	gagaccaagg agtggatgaa gggcccccgc tgggggggtc cagaccaggat cgggttacga	360
	gtggaaaggcca acctcgccgc gctcgaaag cgctacggcc tcaccgggag gaagtggaa	420
	aaccaccatc tgaccttag catccagaac tacacggaga a tggggctg gtaccaatcg	480
	atggaggcgg tgcgcaggc cttccgcgtg tgggagcagg ccacggccct ggtctttccag	540
	gagggtccct atgaggacat cggctgcgg cgacagaagg aggccgacat catggtaatc	600
	tttgcctctg gttccacgg cgacagctcg cctgttgcgt qacccgggtgg ctttctggcc	660
	cacgcctatt tccctggccc cggcctaggc ggggacaccc attttgacgc agatgagccc	720
	tggaccttct ccagcaactga cctgcgttgg aacaacctct tcctgggtgg agtgcata	780
	ctggggccacg cgctggggct ggagcaactcc agcaacccca atgccatcat ggcgcgttc	840
	taccagtgg aaggacgttga caacttcaag ctggccgagg acgtatctccg tggcatccag	900
	cagctctacg gtaccccgaga cggtcagcca cagcttaccc agcctctccc cactgtgacg	960
	ccacggggcc caggccggcc tgaccacccgg cccggccggc cttcccgagcc accacccca	1020
	ggttggaaagc cagagccggc cccaaaggccg ggccccccag tccagggcccg agccacagag	1080
	cggcccgacc agtatggccc caacatctgc gacggggact ttgacacagt ggcctatgtt	1140
	cgcggggaga tggtcgtgtt caaggggccgc tggttctggc gagtcggcga caacgcgtc	1200
	ctggacaact atcccatgcc catcgccgac ttctggcggt gtcgtcccg tgacatcagt	1260
	gctgcctacg agcgccaaga cggtcgtttt gtcttttca aagggtgaccg ctactgctc	1320
	tttcgagaag cgaaccttgg gcccggctac ccacagccgc tgaccagcta tggcctggc	1380
	atcccctatg accgcattga cacggccatc tggtgggagc ccacaggcca caccttcttc	1440
	ttccaagagg acaggtactg gcgttcaac gaggagacac agcgtggaga ccctgggtac	1500
	ccaaagccca tcagtgtctg gcaggggatc ctcgcctccc ctaaaaggggc ttccctgagc	1560
	aatgcacgcag cctacaccta ctcttacaag ggcaccaaatt actggaaatt cgacaatgag	1620
	cgcctggga tggagccgg ctaccccaat tccatctgc gggacttcat gggctggcag	1680
	gaggacgtgg agccaggccc ccgatggccc gacgtggccc ggcggccctt caaccccccac	1740
	gggggtgcag a cccgggggc ggacagcgcga gaggcgcacg tggggatgg gatggggac	1800
	tttggggccg gggtaacaa ggacgggggc agccgcgtgg tggtcagat ggaggagggt	1860
	gcacggacgg tgaacgttgt gatgggtctg gtgcactgc tgctgtgtct ctgcgttctg	1920
	ggcctcacct acgcgcgttgt qcagatgcag cgcaagggtg cggcacgtgt cctgctttac	1980
0	tgcaagcgct cgctgcagga gtgggttgtga	2010

<210> 105
<211> 1824
<212> DNA
<213> *Homo sapiens*

50 <300>
 <302> MMP16
 <310> NM005941

<400> 105	atgatcttac tcacattcag cactggaga cggttggatt tcgtgcata ttccgggggtg 60
	tttttcttgc aaaccttgct ttggattttt tgcgtacag tctgcggaa ggagcagtat 120
55	ttcaatgtgg aggttgggtt acaaaggatc ggctacccctt caccgactga ccccaagaatg 180
	tcaagtgtgc gctctgcaga gaccatgcag tctgccttag ctgcctatgca gcagttctat 240
	ggcatttaaca tgacaggaaa agtggacaca aacacaattt actggatgaa gaagccccga 300
	tgcggtgtac ctgaccagac aagaggatgc tccaaatttc attatcgctcg aaaggcgat 360
60	gcattgcacg gacaggaaatg gcacgcacaaag cacatctt acagtataaa gaacgtaaact 420
	ccaaaaagtag gagacccctga gactcgtaaa gctattcgcc gtgccttgg tgcgtggcag 480
	aatgttaactc ctctgacatt tgaagaagtt ccctacagtg aatttagaaaa tggcaaacgt 540
	gatgtggata taaccattat ttttgcata ggtttccatg gggacagctc tcccttqat 600

ggagagggag gattttggc acatgcctac ttccctggac caggaatttg aggagatacc 660
 catttgact cagatgagcc atggacatcta ggaatccta atcatgatgg aaatgactta 720
 tttctttag cagtccatga actggacat gctctggat tggagcattc caatgacc 780
 actgccatca tggctcatt ttaccgtac atggaaacag acaacttcaa actaccta 840
 5 gatgatttac agggcatcca gaaaatatat ggtccacctg acaagattcc tccacctaca 900
 agacctctac cgacagtgcc cccacaccgc tctattcctc oggctgaccc aaggaaaaat 960
 gacaggccaa aacccctcg gcctccaacc ggcagaccct cctatcccg agccaaaccc 1020
 aacatctgtg atggaaactt taacactcta gctattcctc gtcgtgagat gtttgtt 1080
 aaggaccagt ggtttggcg agtgagaaac aacagggta tggatggata cccaatgcaa 1140
 10 attacttaact tctggcgggg ctgcctcct agtatcgatg cagtttatga aaatagcgac 1200
 gggatatttgc tgttcttaa aggtAACAA tattgggtgt tcaaggatAC aactcttcaa 1260
 cctggttacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggatttgat 1320
 tcagccattt ggtgggagga cgtcgccggaaa acctatttct tcaagggaga cagatattgg 1380
 agatatagtg aagaatgaa aacaatggac cctggctatc ccaagccat cacagtctgg 1440
 15 aaaggatgcc ctgaatctcc tcagggagca ttgtacaca aagaaaaatgg cttaacgtat 1500
 ttctacaaag gaaaggatgc ttggaaatcc aacaaccaga tactcaaggt agaacctgg 1560
 catccaagat ccatcctcaa ggatTTATG ggctgtatg gaccaacaga cagatTTAA 1620
 gaaggacaca gccaccaga tgatgttagac attgtcatca aactggacaa cacagccagc 1680
 20 actgtgaaag ccatacgat tgcattccc tgcatttgg cttatgcct ctttgtattg 1740
 gtttacactg tgttccagtt caagaggaaa ggaacacccccc gccacatact gtactgtaaa 1800
 cgctctatgc aagagtgggt gtga 1824

25 <210> 106
 <211> 1560
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> MMP17
 <310> NM004141

<400> 106
 atgcagcagt ttggtggcct ggaggccacc ggcatcctgg acgaggccac cctggccctg 60
 35 atgaaaaccc cactgtgtc cttgcctgtcc tgaccctggc tcgcaggaga 120
 cgccaggctc cagccccccac caagtggAAC aagagGAACC tggctgtggAG ggtccggacg 180
 ttcccacggg actcaccact ggggcacgcAC acgggtgcgtg cactcatgtA ctacgcctc 240
 aaggctgtgA ggcacattgc gcccctgtAAC ttccacgggTggcggggcAG caccgcgc 300
 atccagatcg acttctccaa ggccgaccat aacgacggct accccttgcA cggccccggc 360
 40 ggcacctgtgg cccacgcctt ctccccggc caccacaca cggccggggA caccactt 420
 gacgatgcacg aggctggac ctccgcgtcc tggatgccc acggggatggA cctgtttgcA 480
 gtggctgtcc acgatTTGGG ccacgcctt gggttaAGCC atgtggccgc tgcacactcc 540
 atcatgcggc cgtactacca gggcccggtg ggtgacccgc tgcgttacgg gtccttctac 600
 gaggacaagg tgccgtctg gtagctgtac ggtgtgggg agtctgtgtc tcccacggcg 660
 45 cagcccgagg agcctccctt gtcggggag cccccagaca accgggtccag cggcccgccc 720
 aggaaggacg tgccccacag atgcagact cactttgacg cgggtggccca gatccgggggt 780
 gaagctttct ttttcaaagg caagtacttc tggcggtgtA cgcgggaccc gcacctgggt 840
 tccctgcagc cggcacagat gcaccgcctc tggcggggcc tggcgctgca cctggacagc 900
 gtggacgcgc tgcgttacgg caccagcgcAC cacaagatcg tcttcttAA aggagacagg 960
 50 tactgggtgt tcaaggacaa taacgttagAG gaaggatacc cgcgcggccgt ctccgacttc 1020
 agcctccccc ctggcggtat ctagcgtgtc ttcttctggg cccacaatgA caggacttat 1080
 ttcttttaagg accagctgtA ctggcggtac gatgaccata cggaggcacat ggaccccgcc 1140
 taccggccccc agagccccctt gttgggggggt gtcccgacca cgtcgacca cgcctatgcgc 1200
 55 tggtccgacg gtgcctcttA cttcttccgt ggccaggaggACTggaaatgt gctggatggc 1260
 gagctggagg tggcaccggg gtacccacag tccacggccc gggactggct ggtgtgtggA 1320
 gactcacagg ccgatggatc tgcgttacgg ggtggcgacg cggcagaggG gccccggcc 1380
 cctccaggac aacatgacca gagccgtctg gaggacgggt acgaggcttg ctcatgcacc 1440
 tctggggcat cctctccccc gggggcccca gcccacttgg tggctgcccAC catgtgtctg 1500
 60 ctgcgtccgc cactgtcacc aggcgcctg tggacagcgg cccaggccct gacgtatga 1560

<210> 107

<211> 1983
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> MMP2
 <310> NM004530

<400> 107

10 atggaggcgc taatggccc gggcgcgctc acgggtcccc tgagggcgct ctgtctcctg 60
 ggctgcctgc tgagccacgc cgccgcccgg ccgtcgccca tcatcaagtt ccccgccat 120
 gtcgccccca aaacggacaa agagttggca gtgcaataacc tgaacaccc ttatggctgc 180
 cccaaggaga gctgcaaccc ttttgtgcg aaggacacac taaaagaagat gcagaagttc 240
 tttggactgc cccagacagg tgatcttgac cagaataccca tcgagaccat gcggaaagcca 300
 15 cgctgcggca acccagatgt ggcacactac aacttctcc ctgcgaagcc caagtgggac 360
 aagaaccaga tcacatcacatg gatcatggc tacacacccctg atctggaccc agagacagt 420
 gatgatgcct ttgctcgtgc cttccaagtc tggagcgtat tgacccact gcggtttct 480
 cgaatccatg atggagaggc agacatcatg atcaactttg gccgctggga gcatggcgat 540
 ggataccctt ttgacggtaa ggacggactc ctggctcatg cttcgccccc aggacttgt 600
 20 gttggggggag actcccattt tgatgacgat gagctatggc cttggggaga aggccaagt 660
 gtccgtgtga agtatggcaa cgccgatggg gtagtactgca agttccctt cttgttcaat 720
 ggcaaggagt acaacagctg cactgatact ggcgcagcg atggcttcct ctgggtgcct 780
 accacctaaccatgactttgagaa ggtatggcaag tacgcttct gttccatgaa agccctgttc 840
 accatggggcg gcaacgctga aggacagccc tgcaagttt cattccgcctt ccagggcaca 900
 25 tcctatgaca gctgcaccac tgagggccgc acggatggct accgctggg cggcaccact 960
 gaggactacg acccgacaa gaagtatggc ttctgcctg agaccgcatt gtccactgtt 1020
 ggtgggaact cagaagggtgc cccctgtgc ttccccttca ctttctggg caacaaatat 1080
 gagagctgca ccagcgcggg ccgcagtgtac ggaagatgt ggtgtgcac cacagccaa 1140
 tacgatgacg accgcaagtg gggcttctgc cttgaccaag ggtacagctt gttctcgtg 1200
 30 gcagccccacg agttggcca cgccatgggg ctggagact cccaaagaccc tggggccctg 1260
 atggcaccca tttacaccta caccacaaac ttccgtctgt cccaggatga catcaagggc 1320
 attcaggagc tctatggggc ctctcctgac attgaccttgc gcaccggccc cacccccaca 1380
 ctggggccctg tcactcctgaa gatctgcaaa caggacattt gatctgttgc catcgctcag 1440
 atccgtggtg agatcttctt cttcaaggac cggttcattt ggcggactgt gacgccacgt 1500
 35 gacaagccca tggggccctt gctggtgccc acattctggc ctgagctccc gaaaaagatt 1560
 gatgcggtat acgaggcccc acaggaggag aaggctgtgt tctttgcagg gaatgaatac 1620
 tggatctact cagccagcac cctggagcga ggttacccca agccactgac cagcctggg 1680
 ctggcccccctg atgtccagcg agtggatggc gcctttaact ggagaaaaaa caagaagaca 1740
 tacatctttg ctggagacaa attctggaga tacaatgggg tgaagaagaa aatggatcct 1800
 40 ggctttccca agtcctatgc agatgcctgg aatggccatcc cgcataaccc ggtggccgtc 1860
 gtggacctgc agggccgggg tcacagctac ttcttcaagg gtgccttattt cctgaagctg 1920
 gagaaccaaa gtctgaagag cgtgaagtt ggaagcatca aatccgactg gctaggctgc 1980
 tga 1983

45 <210> 108
 <211> 1434
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> MMP2
 <310> XM006271

55 <300>
 <302> MMP3
 <310> XM006271

<400> 108

60 atgaagagtc ttccaaatcct actgttgcgtg tgcgtggcag tttgctcagc ctatccattt 60
 gatggagctg caaggggtga ggacaccacgc atgaaccccttgc ttccagaaata tctagaaaaac 120
 tactacgacc tcgaaaaaaa tgtgaacacag tttgttagga gaaaggacacag tggccctgtt 180

	gttaaaaaaaaaa	tccgagaaaat	gcagaagttc	cttggattgg	agggtacggg	gaagctggac	240
	tccgacactc	tggaggtgat	gogcaagccc	agggtgtggag	ttcctgacgt	tggttacttc	300
	agaaccttcc	ctggcatccc	gaagtggagg	aaaacccacc	ttacatacag	gatttgtaat	360
	tatacaccag	atttgccaaa	agatgctgtt	gattctgctg	ttgagaaaagc	tctgaaagtc	420
5	tgggaaagagg	tgactccact	cacattctcc	aggctgtatg	aaggagaggc	tgatataatg	480
	atctcttttgc	cagtttagaga	acatggagac	ttttaccctt	ttgatggacc	tgaaatgtt	540
	ttggcccatg	cctatgcccc	ttggccaggg	attaatggag	atgcccactt	tgatgtatgat	600
	gaacaatgga	caaaggatac	aacagggacc	aatttatttc	tcgttgctgc	tcatgaaatt	660
	ggccactccc	ttggtctctt	tcactcagcc	aacactgaag	ctttgatgta	cccaactctat	720
10	cactcactca	cagacctgac	tccgttccgc	ctgtctcaag	atgatataaa	tggcattcag	780
	tccctctatg	gacccccc	tgactccct	gagacccccc	ttgttacccac	ggaacctgtc	840
	cctccagaac	ctgggacgccc	agccaaactgt	gatcctgtt	ttgttacccac	tgctgtcagc	900
	actctgaggc	gagaatccct	gatctttaaa	gacaggcact	ttttggcgaa	atccctcagg	960
	aagcttgaac	ctgaatttca	tttgcattct	tcattttggc	catcttccc	ttcaggcgtg	1020
15	gatggcgcatt	atgaagttac	tagcaaggac	ctcggttca	tttttaaagg	aaatcaattc	1080
	ttggccatca	ggggaaatga	ggtacgagct	ggatacccaa	gaggcatcca	cacccttagt	1140
	ttccctccaa	ccgtgaggaa	aatcgatgca	gccatttctg	ataaggaaaa	gaacaaaaca	1200
	tatttctttg	tagaggacaa	atactggaga	tttgcatttt	agagaaaattc	catggagcc	1260
	ggcttccca	agcaaatagc	tgaagacttt	ccagggattg	actcaaagat	tgatgtatg	1320
20	tttgaagaat	ttgggttctt	ttatttctt	actggatctt	cacagttgga	gtttgaccca	1380
	aatgcaaaaga	aagtgcacaca	cactttgaag	agtaacacgt	ggcttaattt	ttga	1434

25 <210> 109
<211> 1404
<212> DNA
<213> Homo sapiens

30 <300>
 <302> MMP8
 <310> NM002424

60 <210> 110
<211> 2124
<212> DNA

<213> Homo sapiens

<300>

<302> MMP9

5 <310> XM009491

<400> 110

atgagcctt ggcagccccct ggtccctgggt ctccctgggtc tgggctgtcg ctttgctgcc 60

cccagacaga gccagtccac ctttgtgtc tccttcggag acctgagaac caatctcacc 120

10 gacaggcaga tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg 180

cgtggagagt cgaatctct ggggcctgcg ctgtgttc tccagaagca actgtccctg 240

ccc gagaccg gtgagctgga tagcgcacg ctgaaggcca tgcgaacccc acgggtgcggg 300

gtcccagacc tggcagatt ccaaaccctt gagggcggacc tcaagtggca ccaccacaac 360

atcacctatt ggatccaaaa otactcgaa gacttgcgc gggcggttat tgacgacgccc 420

15 tttgcccgcg ctttcgact gtggagcgcg gtgacgcgc tcaccc tac tcgcgtgtac 480

agccgggacg cagacatcg catccagtt ggtgtcgccg agcacggaga cgggtatccc 540

ttcgacggga aggacgggct cttgcacac gccttcctc ctggccccc cattcaggga 600

gacgcccatt tcgcacatga cgagtgtgg tccctggca agggcgtcg gtttcaact 660

cggtttggaa acgcagatgg cgcggcctgc cacttccct tcatttcga gggccgctcc 720

20 tactctgcgc gcaccaccga cggtcgcctc gacggcttgc cttgggtcag taccacggcc 780

aactacgaca ccgacgaccg gtttggctc tgcccccagcg agagactcta caccaggac 840

ggcaatctgt atggaaaacc ctgcaggattt ccattcatct tccaaggcca atccactcc 900

gcctgcacca cggacggctg ctccgacggc taccgctgtt ggcgcaccac cgccaaactac 960

gaccgggaca agcttctggg ttctgcctcg acccgagctg actcgacggt gatggggggc 1020

25 aactcggccgg gggagctgtg cgtttccccc ttcaacttcc tgggttaagg gtaactcgacc 1080

tgtaccagcg agggccgcgg agatgggcgc ctctgtgcg ctaccaccc gaaccttgac 1140

agcgacaaga agtggggctt ctgcccggac caaggataca gtttgcctt cgtggccggc 1200

catgagttcg gccacgcgcg gggcttagat catttcctcg tggccggaggc gtcatgtac 1260

cctatgtacc gtttactga gggggccccccc ttgcataagg acgacgtgaa tggcatccgg 1320

30 cacctctatg gtcctcgccc tgaacactgag ccacggcctc caaccaccc cacacccgc 1380

cccacggcctc ccccgacggc ctgcctccacc ggaccccca ctgtccacc ctcagagcgc 1440

cccacagctg gccccacagg tccccccctca gtcggccccc cagggtcccc cactgctggc 1500

ccttctacgg ccactactgt gcctttagt ccgggtggacg atgcctgcaa cgtgaacatc 1560

tgcacgcga tggggagat tgggaacccag ctgtatttgc tcaaggatgg gaagtaactgg 1620

35 cgattctctg agggcagggg gagccggccg cagggccccc tccttatcgc cgacaagtgg 1680

cccgcgctgc cccgcaagct ggactcggtc tttgaggagc ggctctccaa gaagctttc 1740

ttcttctctg ggcggccaggt gtgggtgtac acaggcgcgt cgggtgtgg cccgaggcgt 1800

ctggacaaga tgggcctggg agccgacgtg gcccagggtga cggggccct cgggagtggc 1860

40 aggggaaaga tgcgtctgtt cagcggccgg cgcctctggc ggttcgacgt gaaggcgcag 1920

atggtggatc cccggagcgc cagcgaggtg gacccgatgt tccccggggc gccttggac 1980

acgcacgacg tttccacta ccgagagaaa gcctatttc gccaggaccc cttctactgg 2040

cgcgtgaggc cccggaggtg gttgaacccag gtggaccaag tggctacgt gacctatgac 2100

atcctgcagt gcccggatc octag 2124

45

<210> 111

<211> 2019

<212> DNA

50 <213> Homo sapiens

<300>

<302> PKC alpha

<310> NM002737

55 <400> 111

atggctgacg tttcccccggg caacgactcc acggcgtctc aggacgtggc caaccgcttc 60

gcccccaaa gggcgctgag gcagaagaac gtgcacgagg tgaaggacca caaatttcattc 120

gcgcgttct tcaagcagcc cacccctctgc agccactgca ccgacttcat ctgggggttt 180

60 gggaaacaag gcttccagtg ccaagtttgc tgggtgtgg tccacaagag gtgcgtatc 240

tttgttactt tttccgtcc ggggtcggtt aaggaccccg acactgtatc cccaggagc 300

aaggcacaagt tcaaaatcca cacttacgga agcccccaccc tctgcgtatca ctgtgggtca 360

ctgcgtatc gacttatcca tcaaggatc aaatgtgaca cctgcgtatc gacgtttc 420

aagcaatgcg tcatcaatgt ccccagccctc tgccgaatgg atcacactga gaagaggggg 480
 cggatttacc taaaggctga gggtgctgtat gaaaagctcc atgtcacagt acgagatgca 540
 aaaaatctaa tccctatggc tccaaacggg cttagatgc cttatgtgaa gcttggaaactt 600
 attcctgatc ccaagaatga aagcaagaa aaaacaaaaa ccattccgtc cacactaaat 660
 5 ccgcagtggat atgagtcctt tacattcaaa ttgaaacctt cagacaaaga ccgacgactg 720
 tctgttagaaa tctgggactg ggatcgaaaca acaaggaatg acttcatggg atccctttcc 780
 tttggagttt cgagactgtat gaagatgcgg gccagtggat ggtacaagg gcttaacc 840
 gaagaagggtg agtactacaa cgtacccatt ccggaaagggg acgaggaagg aaacatggaa 900
 ctcaggcaga aattcgagaa agccaaactt ggccctgtc gcaacaaagt catcagtccc 960
 10 tctgaagaca ggaacaacc ttccaacaac cttgaccgag taaaactcac ggacttcaat 1020
 ttccatggg tggggaaaa ggggagttt ggaaagggtgat tgcttgcgaa caggaaggdc 1080
 acagaagaac tgtatgcaat caaaatctg aagaaggatg tgggtattca ggtatgtac 1140
 gtggagtgcg ccatggtaga aaagcgagtc ttggccctgc ttgacaaacc cccgttctg 1200
 acgcagctgc actctctgtt ccagacagt gatccgtgt acttcgtcat ggaatatgtc 1260
 15 aacggggggg acctcatgtt ccacattcgat caagtaggaa aatttaagg accacaagca 1320
 gtattctatc cggcagatgat tccatcgga ttgttcttcc ttcataaaag aggaatcat 1380
 tatagggatc tgaagtttaga taacgtcatg tgggtattcgat aaggacatataaaattgct 1440
 gactttgggatc tggcaaggg acacatgtat gatggagtca cgaccaggac cttctgtgg 1500
 20 actccagatt atatcgcccc agagataatc gtttatcgc cgtatggaa atctgtggac 1560
 tggggggcct atggcgtcct gttgtatgaa atgcttgcgg ggcagccctcc atttgatgg 1620
 gaagatgaag acgagctatt tcagtctatc atggagcaca acgtttccat tccaaaatcc 1680
 ttgtccaaagg aggctgtttc tatctgcataa ggactgtatgatgatccaaacaccc agccaagcgg 1740
 ctgggctgtg ggcctgaggg ggagaggac gtgagagagc atgccttccat ccggaggatc 1800
 25 gactttggggaa aactggagaa cagggagatc cagccaccat tcaagcccaa agtgtgtggc 1860
 aaaggagcag agaactttga caagttctc acacgaggac agcccgatc aacaccac 1920
 gatcagctgg ttatgtctaa catagaccat tctgatggat aagggttctc gtatgtcaac 1980
 ccccaagtttgc tgcacccat cttacagatg gcagatgatg 2019

30 <210> 112
 <211> 2022
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> PKC beta
 <310> X07109

<400> 112

40 atggctgacc cggctgcggg gcccgcggc agcgagggcg aggagagcac cgtgcgttc 60
 gcccgcggc gcccgcgttgc gcaagaacat gtcatgagg tcaagaacca caaattcacc 120
 gcccgcgttgc tcaagcagcc cacattctgc agccactgca ccgacttcat ctggggcttc 180
 gggaaaggcagg gattccatgtt ccaagtttgc tgcttgcgg tgcacaaggat gtcgcattgaa 240
 tttgtcacat tctctgtccc tggcgttgc aagggtccatg cctccgtatgatcccccgc 300
 45 aaacacaatgtt ttaagatcca cacgtactcc agccccacgt tttgtgatc ctgtgggtca 360
 ctgctgtatg gactcatcca ccaggggatg aaatgtatc cctgcattatgat gaatgtgcac 420
 aagcgctgatc tgatgaatgt tcccagccat tggcgttgc accacacggatc ggcgcgcggc 480
 cgcatctaca tccaggccca catcgacagg gacgtcctca ttgtcctgtt aagagatgt 540
 aaaaacatgtt tacatatggc ccccaatggc ctgtcagatc cctacgtaaa actgaaactg 600
 50 attcccgatc cccaaatgtt gaccaaacatg aagacccaaa ccatcaatg ctccctcaac 660
 cctgatgttgc atgagacatt tagatgttgc ctgaaagatat cggacaaaaga cagaagactg 720
 tcagatgttgc tttggatgtt gggatgttgc acgaggatg acttcatgttgc atctttgtcc 780
 ttggggatgtt ctgaatttca gaaggccatgtt gttgatggat ggtttatgtt actgagccat 840
 gacggaaaggcg agtacttcaat tggcgttgc ccaccagaatg gaaatgtggc caatgtggaa 900
 55 ctgcggcaga aatttggatg ggccaaatgtt agtcaggaa ccaaggtccc ggaagaaaag 960
 acgaccaaca ctgtctccaa atttgacaaatgtt aatgtcaaca gagaccggat gaaactgacc 1020
 gattttaact tcctaattgtt gctggggaaa ggcagctttg gcaaggtcat gctttcagaa 1080
 cggaaaaggca cagatgtatgtt ctatgttgc aagatccatgtt gaaaggacatgtt gatgtatccaa 1140
 gatgtatgttgc tggagtgacat tgggtggat gacgggtgtt tggccctgc tggaaaggccg 1200
 60 cccttcctgtt cccagcttcaat cttctgttgc cagaccatgtt accgcctgtt ctttgc 1260
 gagtacgttgc atggggggatc cctcatgttgc aatgtcgccg gttcaaggatg 1320
 ccccatgttgc tattttacgc tgcagaaattt gccatcggtt tggatgttccat acagatgttgc 1380

	ggcatcattt accgtgaccc aaaacttgac aacgtgatgc tcgattctga gggcacacatc 1440
	aagattgccg attttggcat gtgttaaggaa aacatctggg atgggggtgac aaccacgaca 1500
	ttctgtggca ctccagacta catcgcccc gagataattg cttatcagcc ctatggaaag 1560
	tccgtggatt ggtggcatt tggagtccctg ctgtatgaaa tggtggctgg gcaggcaccc 1620
5	tttgaagggg aggatgaaga tgaactcttc caatccatca tggAACACAA cgtagcctat 1680
	cccaagtcta tgtccaagga agctgtggc atctgcaaag ggctgtatgac caaacaccca 1740
	ggcaaacgtc tgggttgtgg acctgaaggc gaacgtgata tcaaagagca tgcattttc 1800
	cggtatattg attggggagaa acttgaacgc aaagagatcc agccccctta taagccaaaa 1860
	gcttgtggc gaaatgctga aaacttcgac cgattttca cccgcccattcc accagtctta 1920
10	acacctcccg accaggaagt catcaggaat attgaccaat cagaattcga aggattttcc 1980
	tttggtaact ctgaattttt aaaacccgaa gtcaagagct aa 2022
15	<210> 113
	<211> 2031
	<212> DNA
	<213> Homo sapiens
20	<300>
	<302> PKC delta
	<310> NM006254
	<400> 113
25	atggcgcgcgt tcctgcgcatt cgccttcaac tcctatgagc tgggtccct gcagggcggag 60
	gacgaggcga accagccctt ctgtgccgtg aagatgaagg aggcgctcag cacagagcgt 120
	gggaaaacac tgggtgcagaa gaagccgacc atgtatcctg agtggaaagtc gacgttcgtat 180
	gcccacatct atgagggggcg cgtcatccag attgtgctaa tgcgggcagc agaggagcca 240
	gtgtctgagg tgaccgtggg tgggtcggtg ctggccgagc gtcgcaagaa gaacaatggc 300
	aaggctgagt tctggctggc ctcgcagct caggccaaagg tggtgatgtc tggtcgtat 360
30	ttcctggagg acgtggattt caaacaatct atgcgcagtgc aggacgagc caagttccca 420
	acgtgaacc gccgcggagc catcaaaacag gccaaaatcc actacatcaa gaacatgag 480
	tttgcgcctt ccttttttgg gcaacccacc ttctgttctg tggcggaaaga ctttgtctgg 540
	ggcctcaaca agcaaggctt caaatgcggg caatgtaaacg ctgcgcattca caagaaatgc 600
	atcgacaaaga tcatcgccag atgcactggc accgcggccca acagccggga cactatattc 660
35	cagaaagaaat gcttcaacat cgacatgcgc accgcgttca aggttccacaa ctacatgagc 720
	cccaccttct gtgaccactg cggcggccgtt ctctggggac tggtaagaca gggattaaag 780
	tgtgaagact gcccgcattttt gtcgcacccat aaatgcgggg agaagggtggc caacactctgc 840
	ggcatcaacc agaagctttt ggctgaggccc ttgaaccaag tcacccagag agcctcccg 900
	agatcagact cagcccttc agagcctgtt gggatatacc agggtttgcga gaagaagacc 960
40	ggagttgtcg gggaggacat gcaagacaac agtgggaccc acggcaagat ctggggggc 1020
	agcagcaagt gcaacatcaa caacttcattt ttccacaaagg tgggtggccaa aggcaagttc 1080
	ggaaagggtgc tgcttggaga gctgaaggcc agaggagagt actctgcattt caaggccctc 1140
	aagaaggatg tggtcctgtat cgacgcgcac gtggagtgtca ccatgggttgc aagcgggtg 1200
	ctgacactt ccgcagagaa tccctttctc accccacccatca tctgcaccc ccagaccaag 1260
45	gaccacactt tctttgtat ggagttccctc aacgggggggg acctgtatgtt ccacatccag 1320
	gacaaaggcc gctttgaact ctaccgtggcc acgtttttatg cgcgtatgtt aatgtgttgc 1380
	ctgcagttt tacacagcaa gggcatcatt tacagggacc taaaactgttcaatgtgtctg 1440
	ttggaccggg atggccacat caagattggc gactttgggat tggcggaaaga gaacatattt 1500
	ggggagagcc gggccagcac ttctgcggc accccctgact atatgccttcc tgagatccta 1560
50	cagggccttgc agtacacatt ctctgtggac tgggtgttctt tgggggtct tctgtacgag 1620
	atgctcatgt gccagtcctt cttccatgtt gatgtatgggg atgaactttt cggatccatc 1680
	cgtgtggaca cgccacatta tccccgcgtt atcaccaagg agtccaagg catctggag 1740
	aagctttttt aaagggaacc aaccaagagg ctggaaatgtt cggggaaacat caaaatccac 1800
55	cccttcttca agaccataaa ctggactctg ctggaaaagc ggagggttgc gcccacccctt 1860
	aggccccaaat tgaagtccacc cagagactac agtaactttt accaggagtt cctgaacgag 1920
	aggcgccgccc tctccatcag cgacaagaac ctcatcgact ccatggacca gtctgcattc 1980
	gctggctttt cttttgtgaa ccccaatttc gagcacccatcc tggaaagatgg a 2031
60	<210> 114
	<211> 2049
	<212> DNA

<213> Homo sapiens

<300>
<302> PKC eta
<310> NM006255

<400>	114	atgtcgctcg	gcaccatgaa	gttcaatggc	tatttgaggg	tccgcacatcg	tgaggcagt	60
10	gggctgcagg	ccaccggctg	gtccctgcgc	cactcgctct	tcaagaaggg	ccaccagctg	120	
	ctggaccctt	atctgacggt	gagcgtggac	caggtgcgcg	tgggccagac	cagcaccaag	180	
	cagaagacca	acaaacccac	gtacaacgag	gagtttgcg	ctaacgtcac	cgacggcggc	240	
	cacctcgagt	tggccgttct	ccacgagacc	cccctgggc	acgacttcgt	ggccaactgc	300	
15	accctcgagt	tccagagact	cgtccggcag	accggcgcct	cgacacccct	cgagggttgg	360	
	gtggatctcg	agccagaggg	aaaatgtt	gtggtaataa	cccttacccg	gagtttact	420	
	gaagactact	tccagagaga	ccggatcttc	aaacatttt	ccaggaagcg	ccaaagggt	480	
	atgcgaaggc	gagtccacca	gatcaatgg	cacaagttca	tggccacgt	tctgaggcag	540	
	cccacctact	gctctactg	cagggagtt	atctggggag	tggttgggaa	acagggttat	600	
	cagtgccaag	tgtcacctg	tgtcgccat	aaacgtgcc	atcatcta	tgttacagcc	660	
20	tgtacttgcc	aaaacaatat	taacaaagt	gattcaaaga	ttgcagaaca	gaggttccgg	720	
	atcaacatcc	cacacaagtt	cagcatccac	aactacaaag	tgccaacatt	ctgcgatcac	780	
	tgtggctcac	tgctctgggg	aataatgcga	caaggactic	agtgtaaaat	atgtaaaatg	840	
	aatgtgcata	ttcgatgtca	agcgaacgt	gccccctaact	gtggggtaaa	tgcggtggaa	900	
	cttgccaaga	ccctggcagg	gatgggtctc	caaccggaa	atatttctcc	aacctcgaaa	960	
25	ctcgtttcca	gatcgaccct	aagagcag	ggaaaggaga	gcagcaaaaga	aggaaatggg	1020	
	attgggggtt	attcttccaa	ccgacttgg	atcgacaact	ttgagttcat	ccgagtgttg	1080	
	gggaaggggg	gttttgggg	gggtgtgt	gcaagagtaa	aaagaaacagg	agacacttctat	1140	
	gctgtgaagg	tgctgaagaa	ggacgtgtt	ctgctggatg	atgtatgtga	atgcaccatg	1200	
	accgagaaaa	ggatctgtc	tctggcccg	aatcacccct	tcctcactca	gttggcttcg	1260	
30	tgttttcaga	cccccgatcg	tctgttttt	gtgatggagt	ttgtgaatgg	gggtgacttg	1320	
	atgttccaca	ttcagaagtc	tcgtcggtt	gatgaagcac	gagctcgctt	ctatgctgca	1380	
	gaaatcattt	cggctctcat	gttcctccat	gataaaggaa	tcatctata	agatctgaaa	1440	
	ctggacaatgt	tcctgttgg	ccacgagggt	cactgtaaac	ttggcagactt	cggaatgtgc	1500	
	aaggagggg	tttgcataatgg	tgtcaccacg	gccacatct	gtggcacgccc	agactatatc	1560	
35	gttccagaga	tcctccagg	aatgtctgtac	gggcctgcag	tagactgg	ggcaatgggc	1620	
	gtgttgtctct	atgagatgt	ctgtggtcac	ggcccttttg	aggcagagaa	tgaagatgac	1680	
	ctctttgggg	ccatactgaa	tgatgggtt	gtctaccctt	cctgggtctca	tgaagatgtcc	1740	
	acagggtatcc	taaaatctt	catgaccaag	aacccacca	tgcggttgg	cagctgtact	1800	
	cagggaggcc	agcacccat	ctttagacat	cctttttttt	agggaaatcga	ctggcccag	1860	
40	ctgaaccatc	gccaataga	accgccttt	agacccagaa	tcaatcccg	agaagatgtc	1920	
	agtaattttg	accctgactt	cataaaggaa	gagccagttt	taactccat	tgatgaggga	1980	
	catcttccaa	tgattaacca	ggatgagttt	agaaactttt	cctatgtgtc	tccagaattt	2040	
	caaccatag						2049	

45 <210> 115
<211> 948
<212> DNA
<213> Homo sapiens

50 <300>
<302> PKC epsilon
<310> XM002370

55	<400> 115	atgttggcag aactcaaggg caaagatgaa gtatatgctg tgaaggtctt aaagaaggac 60 gtcatccccc agatgatgta cgtggactgc acaatgacag agaagaggat ttggctctg 120 gcacggaaac acccgtaacct tacccaactc tactgctgt tccagaccaa ggaccgcctc 180 tttttcgtca tggaatatgt aaatgggta gacccatgt ttcatgatca ggcctcccg 240 aaattcgcag acgcctcgatc acggttctat gctgcagagg tcacatcgcc cctcatgtt 300 60 ctccaccaggc atggatcat ctacaggat ttgaaactgg acaacatcc tctggatgca 360 gaaggtcaact gcaagctggc tgacttcggg atgtgcaagg aaggatttot gaatgggttg 420 acgaccacca cgttctgtgg gactccgtac tacatagctc ctgagatcc gcaggagttg 480
----	-----------	--

gagtatggcc cctccgtgga ctggtgggcc ctgggggtgc tgatgtacga gatgatggct 540
 ggacagcctc ccttgaggc cgacaatgag gacgacctat ttgagtccat cctccatgac 600
 gacgtgctgt acccagtctg gtcagcaag gaggctgtca gcatcttcaa agctttcatg 660
 acgaagaatc cccacaagcg cctgggctgt gtggcatcgc agaatggcga ggacgcccattc 720
 5 aagcagcacc cattcttcaa agagattgac tgggtgctcc tggagcagaa gaagatcaag 780
 ccacccttca aaccacgcat taaaaccaa agagacgtca ataatttta ccaagacttt 840
 acccggaaag agccgtact cacccttgc gacgaagaa ttgtaaagca gatcaaccag 900
 gaggaattca aaggtttctc ctacttttgtt gaagacctga tgccctgta 948

10 <210> 116
 <211> 1764
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PKC iota
 <310> NM002740

20 <400> 116
 atgtccccaca cggtcgcagg cggcgccagc ggggaccatt cccaccaggc cgggggtgaaa 60
 gcctactacc gcggggatata catgataaca catttgaac cttccatctc ctttggggc 120
 ctttgcatacg aggttcgaga catgtgttct tttgacaacg aacagctt caccatgaaa 180
 tggatagatg aggaaggaga cccgtgtaca gtatcatctc agttggagtt agaagaagcc 240
 25 ttttagacttt atgagctaaa caaggattct gaactcttga ttcatgtgtt cccttgcgt 300
 ccagaacgtc ctggatgcc ttgtccagga gaagataaaat ccatctaccg tagaggtgca 360
 cgccgctgga gaaagcttta ttgtccaaat ggcacactt tccaagccaa gcgttcaac 420
 aggcgctgtc actgtgccat ctgcacagac cgaatatggg gacttggacg ccaaggat 480
 aagtgcatac actgcaaaact ttgggttcat aagaagtgc ataaactgt cacaattgaa 540
 30 tggggcggc attcttgc acaggaacca gtgatgccc tggatcagtc atccatgcat 600
 tctgaccatc cacagacagt aattccatataatccatcgttgc tttggatcaa 660
 gttggtaag aaaaagaggc aatgaacacc agggaaaatg gcaaagcttc atccagtcta 720
 ggtcttcagg attttgattt gctccgggtt ataggaagag gaagttatgc caaagtactg 780
 ttgggtcgat taaaaaaaaac agatcgatt tatgcaatga aagttgtgaa aaaagagctt 840
 35 gttaatgatg atgaggatataatgggtt cagacagaga agcatgtgtt tgaggcaggca 900
 tccaatcatc ctttccctgt tgggctgtcat tcttgcatttcc agacagaaaag cagattgttc 960
 tttgttatacg agtatacgaaa tggaggagac ctaatgtttc atatgcagcg acaaagaaaa 1020
 cttccgtcaag aacatgccag attttactct gcagaaatca gtctagcatt aaattatctt 1080
 catgagcgag ggataattttta tagagattt aactggaca atgtattact ggactctgaa 1140
 40 ggccacatc aactcaactga ctacggcatg tgtaaggaag gattacggcc aggagataca 1200
 accagcacct tctgtggtac tcctaattac attgtccctg aaattttaaag aggagaagat 1260
 tatggtttca gtgttgactg gtgggctttt ggagtgctca tgtttgagat gatggcaggaa 1320
 aggttccat tttgtatgttgggatgtcc gataaccctg accagaacac agaggattat 1380
 ctcttccaaat ttattttggaaaacaaat cgcataaccac gttctctgtc tgtaaaagct 1440
 45 gcaagtgttc tgaagagttt tcttaataag gaccctaagg aacgattggg ttgtcatcct 1500
 caaacaggat ttgtgtatataatccatcgc tggggatcc gaaatgttgc ttgggatatg 1560
 atggagcaaa aacaggtggt acctccctt aaaccaaata ttctggggaa atttggttt 1620
 gacaacttttgc atttcagtt tactaatgaa cctgtccagc tcactccaga tgacgatgac 1680
 attgtgagga agattgtca gtctgaattt gaaggttttgc agtataatcaa tcctcttttgc 1740
 50 atgtctgcag aagaatgtgt ctga 1764

<210> 117
 <211> 2451
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> PKC mu
 <310> XM007234

60 <400> 117

	atgttatgata	agatcctgct	tttcgcacat	gaccctaccc	ctgaaaacat	ccttcagctg	60
	gtgaaagccgg	ccagtatat	ccaggaaggc	gatcttattt	aagtggctt	gtcagcttcc	120
	gccaccttt	aagactttca	gattcgccc	cacgtctct	ttgttcatcc	atacagagct	180
5	ccagctttct	gtgatcaact	tggagaaat	ctgtggggc	tggtagtca	aggcttaaa	240
	tgtgaagggt	gtggctgaa	ttaccataag	agatgtgc	ttaaaatacc	caacaattgc	300
	agcgggtgtga	ggcggagaag	gctctcaa	gttccctca	ctggggtc	caccatccgc	360
	acatcatctg	ctgaactctc	tacaagtgc	cctgtatg	cccttctgca	aaaatcacca	420
	tcagagtcgt	ttatggtc	agagaagagg	tcaattctc	aatcatacat	tggacgacca	480
10	attcacctt	acaagat	ttttgtctaa	gtttaaagtgc	cgcacacatt	tgtcatccac	540
	tcctacaccc	ggcccacagt	tgcccgat	tgcaagaagc	ttctgaaggg	gcttttcagg	600
	cagggcttgc	agtgc	ttgcagattc	aactgcata	aacgttgc	accgaaagta	660
	ccaaacaact	gccttggcga	agtgaccatt	aatggagatt	tgcttagccc	tggggcagag	720
	tctgatgtgg	tcatggaaga	agggagtgt	gacaatgata	gtgaaaggaa	cagtggc	780
15	atggatgata	tggaagaagc	aatggtccaa	gatgcagaga	tggcaatggc	agagtgc	840
	aacgacagt	gcfagatgca	agatccagac	ccagaccac	aggacgc	cagaaccatc	900
	agtccatcaa	caagcaacaa	tatcccact	atgagggt	tgcagtctgt	caaacacac	960
	aaggagaaaa	gcagcacagt	catgaaagaa	ggatggatgg	tccactacac	cagcaaggac	1020
	acgctgcgga	aacggcacta	ttggagat	gatagcaat	gtattacct	ctttcagaat	1080
20	gacacaggaa	gcagactacta	caagggaaat	cctttatctg	aaattttgc	tctggaacca	1140
	gtaaaaactt	cagcttaat	tcctaattgg	gccatctc	attgttgc	aatcactacg	1200
	gcaaatgttag	tgtattatgt	gggagaaaa	gtgttcaatc	cttccagccc	atcaccaat	1260
	aacagtgttc	tcaccagg	cggttgtgc	gatgtggca	ggatgtgg	gatagccatc	1320
	cagcatgccc	ttatgcccgt	cattccaa	ggctcc	tgggtacagg	aaccaacttg	1380
25	cacagagata	tctctgtgag	tat	tcaattg	agattcaaga	aaatgtggac	1440
	atcagcacag	tat	tttctgtat	gaagtactgg	gttctggaca	gttggaaatt	1500
	gtttatggag	gaaaacatcg	taaaacagga	agagatgt	ctattaaaat	cattgacaaa	1560
	ttacgattc	caacaaaaca	agaaagccag	cttcgtat	agg	tctacagaac	1620
	cttcatcacc	ctgggtgtgt	aaatttgg	tgtatgttt	agacgc	aagagtgtt	1680
	gttggatgg	aaaaactcca	tggagacat	ctggaaatg	tctgtcaag	tgaaaaggc	1740
30	aggttgc	agcacataac	gaagtttta	attactc	tactcgtgc	tttgcggcac	1800
	cttcatttta	aaaatatcg	tca	tgtgc	cttcaac	aaaatgtt	1860
	gctgatc	ttc	cttca	gaaactt	ttgcccggat	cattggagag	1920
	aagtcttcc	ggaggtc	gg	tttgc	cttgc	gg	1980
35	aacaagg	gtc	tttgc	tttgc	tttgc	tttgc	2040
	ctaagcggca	cattccatt	taatg	aaat	tttgc	tttgc	2100
	gcttcatgt	atccacaaa	tcc	tttgc	tttgc	tttgc	2160
	aacaatttgc	tgca	tttgc	tttgc	tttgc	tttgc	2220
	ccttggctac	aggactatca	gac	tttgc	tttgc	tttgc	2280
40	gagcgctaca	tcacccatg	aat	tttgc	tttgc	tttgc	2340
	gggctgc	acc	tttgc	tttgc	tttgc	tttgc	2400
	actgaagaaa	cagaaatgaa	agcc	tttgc	tttgc	tttgc	2451

45 <210> 118
 <211> 2673
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> PKC nu
 <310> NM005813

55 <400> 118
 atgtctgaa ataattcccc tccatcagcc cagaagtctg tattaccac agctattcc 60
 gctgtgttc cagctgttc tccgtgttca agtcttaaga cgggactctc tgcccactc 120
 tctaattggaa gcttcagtgc accatca

	caaggactga	aatgtgaagg	ctgtggatta	aattaccata	aacgatgtgc	cttcaagatt	600
	ccaaataact	gtagtggagt	aagaagagaga	cgtctgtcaa	atgtatctt	accaggaccc	660
	ggcctctcag	ttccaagacc	cctacagcct	gaatatgtag	cccttcccag	tgaagagtca	720
5	catgtccacc	aggaaccaag	taagagaatt	ccttcttgaa	gtggtecccc	aatctggatg	780
	aaaaagatgg	taatgtgcag	agtgaaaagtt	ccacacacat	ttgtctgtca	ctcttacacc	840
	cgtcccacga	tatgtcagta	ctgcaagcgg	ttactgaaag	gcctcttcg	ccaaggaatg	900
	cagtgtaaag	attgcaaatt	caactgcct	aaacgctgt	catcaaaaat	accaagagac	960
10	tgccttggag	aggttacttt	caatggagaa	ccttccagtc	tggaaacaga	tacagatata	1020
	ccaatggata	ttgacaataa	tgacataaaat	agtgatagta	gtcggggtt	ggatgacaca	1080
	gaagagccat	caccccccaga	agataagatg	ttcttcttgg	atccatctga	tctcgatgt	1140
	gaaagagatg	aagaagccgt	taaaacaatc	agtccatcaa	caagcaataa	tattccgcta	1200
15	atgagggtt	tacaatccat	caagcacaca	aagaggaaga	gcagcacaat	ggtgaaggaa	1260
	gggtggatgg	tccattacac	cagcagggt	aacctgagaa	agaggcatta	ttggagactt	1320
	gacagcaaat	gtctaacatt	atttcagaat	gaatctggat	caaagtatta	taaggaaatt	1380
20	ccacttttcag	aaattctccg	catatctca	ccacgagatt	tcacaaacat	ttcacaaggc	1440
	agcaatccac	actgttttga	aatcattact	gatactatgg	tatacttcgt	tgggagaac	1500
	aatggggaca	gtctcataaa	ttctgttctt	gtgccactg	gagttggact	tgatgttagca	1560
	cagagctggg	aaaaagcaat	tcgccaagcc	ctcatgcctg	ttactcctca	agcaagtgtt	1620
25	tgcacttctc	cagggcaagg	gaaagatcac	aaagattttg	ctacaagtat	ctctgtatct	1680
	aattgtcaga	ttcaggagaa	tgtggatatac	agtactgttt	accagatctt	tgcagatgag	1740
	gtgcttgggtt	caggccagtt	tggcatcggt	tatggaggaa	aacatagaaaa	gactgggagg	1800
	gatgtggcta	ttaaagtaat	tgataagatg	agattcccc	caaaaacaaga	aagtcaactc	1860
	cgtaatgaag	tggcttatttt	acagaatttg	caccatcctg	ggattgtaaa	cctggaatgt	1920
30	atgtttgaaa	ccccagaacg	agtctttgt	gtaatggaaa	agctgcattg	agatatgttg	1980
	gaaatgattc	tatccagtga	gaaaagtccg	cttccagaac	gaattactaa	attcatggtc	2040
	acacagatac	tttgtgcctt	gaggaatctg	cattttaaga	atattgtgca	ctgtgattt	2100
	aaggccagaa	atgtgctgct	tgcattcagca	gagccattc	ctcagggtgaa	gctgtgtgac	2160
	tttggattt	cacgcatcat	tggtgaaaag	tcattcagga	gatctgtgtt	aggaactcca	2220
35	gcatacttag	ccctcgtaaat	tctccggagc	aaaggttaca	accgttccct	agatatgtgg	2280
	tcagtgggag	ttatcatcta	tgtgagcctc	agtggcacat	ttccctttaa	tgaggatgaa	2340
	gatataaaatg	accaaatacc	aaatgctca	tttatgtacc	caccaaatacc	atggagagaa	2400
	atttctgggt	aagcaattga	tctgataaaac	aatctgcctt	aagtgaagat	gagaaaaacgt	2460
	tacagtgtt	acaaatctct	tagtcatccc	tggctacagg	actatcagac	ttggcttgac	2520
40	cttagagaat	ttgaaaactcg	cattggagaa	cgttacatta	cacatgaaag	tgatgtatgt	2580
	cgctggggaa	tacatgcata	cacacataac	cttgataacc	caaagcactt	cattatggct	2640
	cctaattccag	atgatatggaa	agaagatcct	taa			2673

<210> 119
 40 <211> 2121
 <212> DNA
 <213> Homo sapiens

<300>
 45 <302> PKC tau
 <310> NM006257

	<400> 119						
50	atgtccat	ttcttcggat	tggcttgc	aactttgact	gcgggtcctg	ccagtcttgc	60
	cagggcagg	ctgttaacc	ttactgtgt	gtgtcgta	aagagtatgt	cgaatcagag	120
	aacggggcaga	tgtatatacc	aaaaaaggct	accatgtacc	caccctggaa	cagcactttt	180
	gatggccat	tcaacaagg	aagagtcatg	cagatcattt	tggaaaggca	aaacgtggac	240
	ctcatctcg	aaaccaccgt	ggagctctac	tcgttgc	agaggtgcag	gaagaacaac	300
55	ggaaagacag	aaatatggtt	agagctgaaa	cctcaaggcc	aatgtctaat	aatgtcaaga	360
	tactttctgg	aaatgatgt	cacaaaaggac	atgaatgaat	tttgagacgga	aggcttctt	420
	gctttgcata	agcgccgggg	tgccatcaag	caggcaaaagg	tccaccacgt	caagtgcac	480
	gagttca	ccacccctt	cccacagccc	acattttgt	ctgtctggca	cgagttgtc	540
	tggggcctg	acaaacagg	ctaccatgtc	cgacaatgc	atgcagcaat	tcacaagaag	600
60	tgtattgata	aaagtatagc	aaagtgcaca	ggatcagct	tcaatagccg	agaaaccatg	660
	ttccacaagg	agagattcaa	aattgacatg	ccacacagat	ttaaagtcta	caattacaag	720
	agccccgac	tctgtgaaca	ctgtgggacc	ctgtgttggg	gactggcag	gcaaggactc	780
	aagtgtatgt	catgtggcat	gaatgtgc	catagatgcc	agacaaagg	ggccaaacctt	840

	tgtggcataa accagaagct aatggctgaa gcgctggcca tgattgagag cactcaacag 900
	gctcgctgct taagagatac tgaacagatc ttcaagagaag gtccgggttga aattggcttc 960
	ccatgctcca tcaaaaatga agcaaggccg ccatgtttac cgacaccggg aaaaagagag 1020
5	cctcaggcga tttcctggga gtctccgtg gatgaggtgg ataaaatgtg ccatcttcca 1080
	gaacctgAAC tgaacaaaga aagaccatct ctgcagatta aactaaaaat tgaggatttt 1140
	atcttgacaca aaatgttggg gaaaggaagt ttggcaagg tcttcctggc agaattcaag 1200
	aaaaccaaatc aatttttcgc aataaaaggcc ttaaaagaaag atgtggttt gatggacgat 1260
	gatgtttagt gcacgatggt agagaagaga gttcttcct tggcctggga gcatccgttt 1320
	ctgacgcaca tttttgtac attccagacc aagggaaaacc tctttttgt gatggagttac 1380
10	ctcaacggag gggacttaat gtaccacatc caaagctgcc acaagttcga ccttccaga 1440
	gcgacgttt atgtctgctga aatcatttt ggtctgcagt tccttcattc caaaggaata 1500
	gtctacaggg acctgaagct agataacatc ctgttagaca aagatggaca tatcaagatc 1560
	gcccattttt gaatgtgaa ggagaacatg tttaggagatg ccaagacgaa taccttctgt 1620
15	gggacacctg actacatcgc cccagagatc ttgctgggtc agaaatacaa ccactctgtg 1680
	gactggtgtt cttccggggt tctccttat gaaatgtga ttggtcagtc gccttccac 1740
	gggcaggatg aggaggagct ttccactcc atccgcatgg acaatccctt ttacccacgg 1800
	tggctggaga aggaagcaaa ggaccttctg gtgaagctt tcgtgcgaga acctgagaag 1860
	aggctggcg tgaggggaga catccggcag cacccttgc ttccggagat caactgggg 1920
20	gaacttgaac ggaaggatg tgaccaccc ttccggccga aagtgaaatc accatttgac 1980
	tgcagcaatt tcgacaaaga attcttaaac gagaagcccc ggctgtcatt tgccgacaga 2040
	gcactgatca acagcatggc ccagaatatg ttcccttcat gaacccccc 2100
	atggagcggc tgatatcctg a 2121
25	<210> 120
	<211> 1779
	<212> DNA
	<213> Homo sapiens
30	<300>
	<302> PKC zeta
	<310> NM2744
	<400> 120
35	atgcccagca ggaccgaccc caagatggaa gggagcggcg gccgcgtccg cctcaaggcg 60
	cattacgggg gggacatctt catcaccagc gtggacgccc ccacgacattt cgaggagctc 120
	tgtgaggaag tgagagacat gtgtcgtctg caccagcagc acccgctcac cctcaagtgg 180
	gtggacagcg aaggtgaccc ttgcacgggt tcctcccaaga tggagctggta agaggctttc 240
	cgcctggccc gtcagtgcag ggatgaaggc ctcatcattt atgttttccc gagcaccctt 300
40	gagcagccgtg gcctgcccattt tccgggagaa gacaaatcta tctaccgcgg gggagccaga 360
	agatggagga agctgttaccg tgccaaacggc cacccttcc aagccaagcg cttaaacagg 420
	agagctgtact gcggtcagtg cagcggaggg atatggggcc tcgcggagca aggctacagg 480
	tgcataact gcaaaactgt ggtccataatg cgctgcccac gcctgtccct gctgacctgc 540
	aggaagcata tggattttgtt catgccttcc caagagccctc cagtagacga caagaacgag 600
45	gacgcccggacc ttcccttccga ggagacagat ggaattgtttt acatttcctc atcccgaaag 660
	catgacagca ttaaagacga ctcggaggac cttaaagccag ttatcgatgg gatggatgg 720
	atcaaaaatct ctcaaggggct tgggctgcag gactttgacc taatcagatg catccggcgc 780
	gggagctacg ccaagggttct cctgggtgcgg ttgaagaaga atgaccaaatttacgccc 840
	aaagtgggtga agaaaagagct ggtgcattt gacgaggata ttgactgggt acagacagag 900
50	aagcacgtgt ttgagcaggc atccagcaac cccttcctgg tcggattaca ctccctgtttc 960
	cagacgacaa gtcgttgtt cctggtcattt gatgtacgtca acggcggggg cctgtatgttc 1020
	cacatgcaga ggcagaggaa gctcccttagt gaggacggcc ggttctacgc ggccgagatc 1080
	tgcatacgccc tcaacttccct gcacggagg gggatcatct acaggacatc gaagctggac 1140
	aacgtccctcc tggatgcggc cggggccatc aagctcacag actacggcat gtgcaaggaa 1200
55	ggcctggggcc ctgggtgacac aacggacatc ttctggggaa ccccgaaatc catcgcccc 1260
	gaaatcctgc gggggaggaa gtacgggttc agcgtggact ggtggggctt gggagtcctc 1320
	atgtttgaga tgatggccgg ggcgtccccctt ttcgacatca tcaccgacaa cccggacatg 1380
	aacacagagg actacccctt ccaagtgtatc ctggagaagc ccacccggat ccccccgttc 1440
	ctgtccgtca aagctccca tggttttaaa ggattttaa ataaggaccc caaagagagg 1500
60	ctcggtcgcc ggccacagac tggatttttt gacatcaatg cccacgcgtt cttccgcagc 1560
	atagactggg acttgctgga gaagaagcag ggcgtccctc cattccagcc acagatcaca 1620
	gacgactacg gtctggacaa ctttgacacca cagttcacca gcgagccccgt gcaactgtgacc 1680

ccagacgatg aggatgccat aaagaggatc gaccagtca agttcgaagg ctttgagtat 1740
atcaaccat tattgtgtc caccgaggag tcggtgtga 1779

5 <210> 121
<211> 576
<212> DNA
<213> Homo sapiens

10 <300>
<302> VEGF
<310> NM003376

<400> 121
15 atgaacttc tgctgtctt ggtgcattgg agcattgcct tgctgctcta cctccaccat 60
gccaagtggt cccaggctgc acccatggca gaaggaggag ggcagaatca tcacgaagt 120
gtgaagtca tggatgtcta tcagcgcagc tactgccatc caatcgagac cctgggtggac 180
atcttccagg agtaccctga tgagatcgag tacatcttca agccatcctg tgtgcccctg 240
atgcgatgcg ggggctgctg caatgacgag ggcttgagg gtgtgccac tgaggagtcc 300
20 aacatcacca tgcagattat gcggatcaaa cctcaccbaag gccagcacat aggagagatg 360
agcttcctac agcacaacaa atgtgaatgc agaccaaaga aagatagagc aagacaagaa 420
aatccctgtg ggccttgctc agagcggaga aagcatttg ttgtacaaga tccgcagacg 480
tgtaaaatgtt cctgcaaaaa cacagactcg cgttgcaagg cgaggcagct tgagttaaac 540
gaacgtactt gcagatgtga caagccgagg cggtga 576

25

<210> 122
<211> 624
<212> DNA
30 <213> Homo sapiens

<300>
<302> VEGF B
<310> NM003377

35 <400> 122
atgagccctc tgctccgccc cctgctgctc gcccactcc tgcagctggc ccccgccccag 60
gccccctgtct cccagcctga tgccccctggc caccagagga aagtgggtgc atggatagat 120
gtgtataactc ggcgtacac 180
40 atgggcaccc tggccaaaca gctgggtggc agtgcgtga ctgtgcagcg ctgtgggtggc 240
tgctccctg acgtggccct ggagtgtgtg cccactggc agcaccaagt ccggatgcag 300
atccctatga tccggatccc gagcagtca gtcggggaga tgcggcttggaa agaacacagc 360
cagtgtgaat gcagactaa aaaaaaggac agtgcgtga agccagacag ggctgccact 420
45 cccaccacc gtcggccagcc ccgttctgtt cggggctggg actctgcacc cggagcaccc 480
tccccagctg acatcaccctc tccccactccca gccccaggcc cctctgcacc cgtgcaccc 540
agcaccacca ggcgcctgac ccccgaccc gcccggccg ctgcccacgc cgacgttcc 600
tccggttggca agggcggggc tttag 624

50 <210> 123
<211> 1260
<212> DNA
<213> Homo sapiens

55 <300>
<302> VEGF C
<310> NM005429

<400> 123
60 atgcacttgc tgggcttctt ctctgtggcg tttctctgc tgcggctgc gctgtcccg 60
ggtcctcgcg aggcccccgc cgccgcgcgc gccttcgagt ccggactcga cctctcgac 120
gcccggccg acgcggggcga ggccacggct tatgcaagca aagatctgga ggagcagtta 180

cggctgtgtt ccagtgtaga tgaactcatg actgtactct acccagaata ttggaaaatg 240
 tacaagtgtc agctaaggaa aggaggctgg caacataaca gagaacaggc caacctcaac 300
 tcaaggacag aagagactat aaaatttgc gcagcacatt ataatacaga gatcttgaaa 360
 agtatttgata atgagtggag aaagactcaa tgcatgccac gggaggtgtg tataaatgtg 420
 5 gggaggagt ttggagtgcg gacaaacacc ttctttaaac ctccatgtgt gtccgtctac 480
 agatgtgggg gttgtgcaaa tagtgagggg ctgcagtgc tgaacaccag cacgagctac 540
 ctcagcaaga cgttatttga aattacagtg ctcctctc aaggccccaa accagtaaca 600
 atcagtttg ccaatcacac ttccgtccca tgcatgtcta aactggatgt ttacagacaa 660
 gttcattcca ttatttagacg ttccctgcga gcaacactac cacagtgtca ggcaagcgaac 720
 10 aagactgtcc ccaccaatta catgtggaaat aatcacatct gcagatgcct ggctcaggaa 780
 gattttatgt ttcctcgga tgctggagat gactcaacag atggattccca tgacatctgt 840
 ggacccaaaca aggagctgga tgaagagacc tgcgtgtg tctgcagagc ggggttcgg 900
 cctgccagct gtggacccca caaagaacta gacagaaact catgccagtg tgctgtaaa 960
 15 aacaaactct tccccagccca atgtggggcc aaccgagaat ttgatgaaaa cacatgccag 1020
 tgtgtatgtt aaagaacctg ccccagaaat caacccctaa atcctggaaa atgtgcctgt 1080
 gaatgtacag aaagtccaca gaaatgctt taaaaggaa agaagttcca ccaccaaaca 1140
 tgcagctgtt acagacggcc atgtacgaac cgccagaagg ctgtgagcc aggatttca 1200
 tatagtgaag aagtgtgtcg ttgtgtccct tcataatttga aaagaccaca aatgagctaa 1260
 20
 <210> 124
 <211> 1074
 <212> DNA
 <213> Homo sapiens
 25
 <300>
 <302> VEGF D
 <310> AJ000185
 30 <400> 124
 atattcaaaa tgtacagaga gtgggttagt gtgaatgttt tcatgtatgtt gtacgtccag 60
 ctgggtcagg gtcaggtaa tgaacatgga ccagtgaagc gatcatctca gtccacattt 120
 35 gaacgatctg aacagcagat cagggtctgt tctagtttg aggaactact tcgaattact 180
 cactctgagg actggaaagct gtggagatgc aggctgaggc tcaaaaggattt taccatgt 240
 gactctcgct cagcatccca tgggttccact aggtttcg 300
 acactaaaag ttatacatgtt aagaatggcaa agaactcagt gcagccctag agaaaacgtgc 360
 40 gtggaggtgg ccagtgagct ggggaagagt accaacaat tcttcaggcc cccttgtgtg 420
 aacgtgttcc gatgtgggtt ctgttgcattt 480
 acctcgatata tttccaaaca gtcattttttagt atatcagtgc ctttgacatc agtacactgaa 540
 ttagtgcctt taaaaggatgttcaatcataca ggttgtaagt gtttgcac 600
 45 catccataact caatttatcatg aagatccatc cagatccctt aagaagatcg ctgttccat 660
 tccaaagaaac tctgtccat tgcattgttca tgggatagca acaaattgtt 720
 caggaggaaa atccacttgc tggaaacagaaa gaccactctc atctccaggaa accagctctc 780
 tggggccac acatgtgtt tgcgtgttgc ctttgcgtgtt 840
 cccaaagatc taatccagca ccccaaaaac tgcgtgttgc ttgatgttgc 900
 gagacactgtt gccagaagca caagcttattt cacccttgcac 960
 tggccctttc ataccagacc atgtgcattt ggcaaaacacatgtgc 1020
 tttccaaagg agaaaaaggcc tggccaggccc cccacacagcc gaaagaatcc ttga 1074
 50
 <210> 125
 <211> 1314
 <212> DNA
 <213> Homo sapiens
 55
 <300>
 <302> E2F
 <310> M96577
 60 <400> 125
 atggccttgg ccggggccccc tgcggggcgcc ccatgcgcgc cggcgcttgg 60
 gggggccggcc cgctcgccgtt gtcgcactcc tcgcagatcg tcatcatctc cggccgcgc 120

	gacgcccgcc	ccccggccggc	tcccaccggc	cccgccggcgc	ccgcccggcc	ccccctgcgac	180
	cctgacactgc	tgcttttcgc	cacaccggcag	gcccggccggc	ccacaccccg	tgcggccggc	240
	cccgccgtcg	ggccggccggc	ggtgaaggcgg	aggctggacc	tggaaacttga	ccatcatgtac	300
	ctggccgaga	gcagtggggcc	agctcggggc	agaggccggc	atccagggaaa	aggtgtgaaaa	360
5	cccccggggg	agaagtcacg	ctatgagacc	tcactgaatc	tgaccaccaa	gcgcttcctg	420
	gagctgctga	gccactcggc	tgacgggtgc	gtcgacactga	actgggctgc	cgaggtgctg	480
	aagggtcaga	agcggcgcat	ctatgacatc	accaacgtcc	ttgagggcat	ccagctcatt	540
	gccaagaagt	ccaagaacca	catccagttgg	ctggggcagcc	acaccacagt	gggcgtcgcc	600
	ggacggcttg	aggggttgac	ccaggacctc	cgacagctgc	aggagagcga	gcagcagctg	660
10	gaccacactga	tgaatatctg	tactacggcag	ctgcgcctgc	tctccgagga	cactgacagc	720
	cagcgcctgg	cctacgtgac	gtgtcaggac	cttcgttagca	ttgcagaccc	tgcagagcag	780
	atggtttatgg	tgatcaaaggc	ccctccttgag	acccagctcc	aaggccgtgga	ctcttcggag	840
	aactttcaga	tctcccttaa	gagccaaacaa	ggccccgatcg	atgttttct	gtgccttgag	900
	gagaccgtag	gtggggatcag	cccttggggaa	accccatccc	aggaggtcac	ttcttgaggag	960
15	gagaacagggg	ccactgtactc	tgccaccata	gtgtcaccac	caccatcate	tccccctca	1020
	tccctcaccac	cagatcccgag	ccagtctcta	ctcagcctgg	agcaagaacc	gctgttgtcc	1080
	cgatggggca	gcctggggcc	tccctgtggac	gaggaccggc	tgtccccgct	ggtgccggcc	1140
	gactcgctcc	tggagcatgt	ggggggaggac	ttctccggcc	tcctccctga	ggagttcatc	1200
	agcctttccc	caccccacga	ggccctcgac	taccacttcg	gcctcgagga	gggcgaggcc	1260
20	atcaqaqacc	tcttcqactg	tgactttqqq	qaccctcaccc	cccttqgatt	ctqa	1314

```
25 <210> 126
      <211> 166
      <212> DNA
      <213> Human papillomavirus

      <300>
      <302> EBER-1
30  <310> Jo2078

      <400> 126
ggacctacgc tgccctagag gttttgctag ggaggagacg tttgtggctg tagccacccg 60
tccccgggtac aagtcccggg ttgtgaggac ggtgtctgtg ttgttcttcc cagactctgc 120
35  ttctgtccgt cttcggtaaa gtaccagctg gtggccgcgt tgttttt 166
```

40 <210> 127
 <211> 172
 <212> DNA
 <213> Hepatitis C virus

45 <300>
 <302> EBER-2
 <310> J02078

50 <400> 127
ggacagccgt tgccctagtg gtttcggaca caccgccaac gctcagtgcg gtgctaccga 60
cccgagggtca agtccccgggg gaggagaaga gaggcttccc gccttagagca tttgaagtc 120
55 aggattctct aatccctctg ggagaagggtt attcggttgc tccgctattt tt 172

55 <210> 128
<211> 651
<212> DNA
<213> Hepatitis C virus

60 <300>
 <302> NS2
 <310> AJ238799

 <400> 128

atggaccggg agatggcagc atcgtgcgga ggcgcggg 60
 accttgcac cgcaactataa gctgttcctc gctaggctca tatgggttt acaatatttt 120
 atcaccaggg ccgaggcaca cttgcaagtg tggatcccccc ccctcaacgt tcgggggggc 180
 cgcgatgcgg tcatcttcct cacgtgcgca atccacccag agctaattt taccatcacc 240
 5 aaaatcttcg tcgcctactt cgggtccactc atgggtctcc aggctggat aaccaaagtg 300
 ccgtacttcg tgccgcaca cgggctcatt cgtgcattgc tgctggtgcg gaaggttgct 360
 gggggtcatt atgtccaaat ggctctcatg aagtggccg cactgacagg tacgtacgtt 420
 tatgaccatc tcacccact gcgggactgg gcccacgcgg gcctacgaga cttgcgggt 480
 10 gcagttgagc ccgtcgtctt ctctgatatg gagaccaagg ttatcacctg gggggcagac 540
 accgcggcgt gtggggacat catctgggc ctgcccgtct ccgccccgag ggggagggag 600
 atacatctgg gaccggcaga cagcctgaa gggcagggtt ggcgactcct c 651

<210> 129
 15 <211> 161
 <212> DNA
 <213> Hepatitis C virus

<300>
 20 <302> NS4A
 <310> AJ238799

<400> 129
 25 gcacctgggt gctggtaggc ggagtcctag cagctctggc cgcgtattgc ctgacaacag 60
 gcagcgtggc cattgtggc aggatcatct tgtccggaaa gccggccatc attccgaca 120
 gggaaagtctt ttaccggag ttcgatgaga tggaaagtgc c 161

<210> 130
 30 <211> 783
 <212> DNA
 <213> Hepatitis C virus

<300>
 35 <302> NS4B
 <310> AJ238799

<400> 130
 40 gcctcacacc tcccttacat cgaacaggga atgcagctcg ccgaacaatt caaacagaag 60
 gcaatcggt tgctgcaaaac agccaccaag caagcggagg ctgctgctcc cgtggggaa 120
 tccaagtggc ggaccctcg agccttctgg gcgaagcata tgtggatatt catcagcggg 180
 atacaattt tagcaggctt gtccactctg cctggcaacc cgcgtatgc atcactgt 240
 gcattcacag cctctatcac cagcccgctc accacccaac ataccctctt gtttaacatc 300
 ctgggggat ggtggccgc ccaacttgc cctcccagcg ctgcttctgc tttcgtaggc 360
 45 gcccgcacatcg ctggagcggc tggtggcagc ataggcctt ggaagggtgc tttggatatt 420
 ttggcagggtt atggagcagg ggtggcagc ggcgtcgatgg ctttaaggt catgagcggc 480
 gagatgcctt ccaccgagga cctggtaac ctactccctg ctatcctctc ccctggcc 540
 ctatcgatcg ggtcgatgtc cgcagcgtata ctgcgtcgcc acgtggggccc aggggagggg 600
 50 gctgtgcagt ggtatgaccc gctgatagcg ttgcgttcgc gggtaacca cgtctccccc 660
 acgcactatg tgcctgagag cgcgcgtgcgac gcacgtgtca ctcaatctt ctctgtt 720
 accatcaccc agctgctgaa gaggcttac cagttggatca acggggactg ctccacgcca 780
 tgc 783

55 <210> 131
 <211> 1341
 <212> DNA
 <213> Hepatitis C virus

60 <300>
 <302> NS5A
 <310> AJ238799

<400> 131

5	tccggctgt ggctaagaga ttttggat tggatatgca cggtgttgc tgatttcaag 60
	acctggctcc agtccaagct cctgccgca ttgcgggag tccccttctt ctcatgtcaa 120
	cgtgggtaca agggagtctg gcggggcgc ggcacatgc aaaccacctg cccatgtgga 180
	gcacagatca cggacatgt gaaaaacggt tccatgagga tcgtggggcc taggacctgt 240
	agtaaacacgt ggcatgaaac attccccatt aacgcgtaca ccacggggcc ctgcacgccc 300
	tccccggcgc caaatttattc tagggcgctg tgggggtgg ctgctgagga gtacgtggag 360
10	gttacgcggg tgggggattt ccactacgtg acggcatga ccactgacaa cgtaaagtgc 420
	ccgtgtcagg ttccggccccc cgaattcttc acagaagtgg atggggtgcg gttgcacagg 480
	tacgctccag cgtgcaaacc cctcctacgg gaggagggtca cattcctgtt cgggctcaat 540
	caataacctgg ttgggtcaca gctccatgc gagcccgaaac cggacgttagc agtgcact 600
	tccatgctca ccgacccctc ccacattacg gcgagacgg ctaagcgtag gctgccagg 660
15	ggatctcccc cctccttggc cagctcatca gctagccagc tgtctgcgcc ttccttgaag 720
	gcaacatgca ctaccctgtca tgactcccg gacgtgacc tcatcgaggc caacctcctg 780
	tggccgcagg agatggggg gaacatcacc cgcgtggagt cagaaaataa ggtagtaatt 840
	ttggacttctt tcgagccgct ccaagcggag gaggatgaga gggaaagtatc cggtccggcg 900
	gagatcctgc ggagggtccag gaaattccct ctagcgatgc ccataatggc acgccccgat 960
20	tacaaccctc cactgttaga gtcttggaaag gaccggact acgtccctcc agtgtacac 1020
	gggtgtccat tgccgcctgc caaggccctt ccgataccac ctccacggag gaagaggacg 1080
	gttgcctgtt cagaatctac cgtgtcttct gccttggcg agtcgcacaa aaagaccttc 1140
	ggcagctcgg aatcgctggc cgtcgacacg ggcacggcaa cggcctctcc tgaccagccc 1200
	tccgacgacg ggcacggggg atccgacgtt gagtcgtact cctccatgac ccccttgag 1260
25	ggggagccgg gggatcccgta tctcagcgac gggctttggt ctaccgtaa cgaggaggct 1320
	agtgaggacg tcgtctgtc c 1341

<210> 132

<211> 1772

30 <212> DNA

<213> Hepatitis C virus

<300>

<302> NS5B

35 <310> AJ238799

<400> 132

40	tcgatgtcct acacatggac aggcccccgt atcacgccc tgcgtgcgg gaaaaccaag 60
	ctgcccatac atgcaactgag caactcttgc ctccgtcacc acaacttggt ctatgctaca 120
	acatctcgca gcgcagaaggcgt gcggcagaag aagggtcacct ttgacagact gcaggtcctg 180
	gacgaccact accggggacgt gctcaaggag atgaaggcga agggtccac agttaaggct 240
	aaacttcttat ccgtggagga agcctgtaa ctgacggccc cacattcggc cagatctaaa 300
	tttggctatg ggccaaaggaa ctggccggaa ctatccagca ggcgttggc ccacatccgc 360
45	tccgtgtgaa aggacttgc ggaagacact gagacaccaa ttgacaccac catcatggca 420
	aaaaatgagg ttttctgcgt ccaaccagag aaggggggcc gcaagccacg tcgccttatac 480
	gtattcccaag atttgggggt tcgtgtgtc gagaaaaatgg cccttacga tgggtctcc 540
	accctccctc aggccgtat gggctttca tacggattcc aataactctcc tggacagcgg 600
	gtcgagttcc tggtaatgc ctggaaagcg aagaaatgcc ctatggcctt cgcatatgac 660
50	acccgctgtt ttgactcaac ggtcaactgag aatgacatcc gtgttgagga gtcaatctac 720
	caatgttggc acttggccccc cgaagccaga caggccataa ggtcgctcac agagcggctt 780
	tacatcgggg gccccctgac taattctaaa gggcagaact gcggtatcg ccgggtccgc 840
	gcgagcgggt tactgacgac cagctgcgt aataccctca catgttactt gaaggccgct 900
	gcggcctgtc gagctgcgaa gtcctcggac tgcacgtgc tcgtatgcgg agacgacctt 960
55	gtcgatgtatc gtgaaaggcgc ggggacccaa gaggacggg cggacgttacg ggccttacg 1020
	gaggctatga ctagatactc tgccccccctt ggggacccgc ccaaaccaga atacgacttg 1080
	gagttgataa catcatgtc ctccaaatgtc tcagtcgcgc acgtatgcata tggcaaaagg 1140
	gtgtactatc tcaccctgtca cccccaccacc ccccttgcgc gggctgcgtt ggagacagct 1200
	agacacactc cagtcaattc ctggcttaggc aacatcatca tggatgcgcc caccttgcgg 1260
60	gcaaggatga tcctgtatgac tcatttcttc tccatccctc tagctcagga acaacttgaa 1320
	aaagccctag attgtcagat ctacggggcc tggtaactcca ttgagccact tgacctac 1380
	cagatcatc aacgactcca tggccttagc gcattttcac tccatagtta ctctccaggt 1440
	gagatcaata gggtggcttc atgcctcagg aaacttgggg taccggccctt gcgagtcgtt 1500

agacatcgaa ccagaagtgt ccgcgctagg ctactgtccc agggggggag ggctgccact 1560
 tgtggcaagt acctcttcaa ctgggcagta aggaccaagc tcaaactcac tccaatcccg 1620
 gctgcgtccc agttggattt atccagctgg ttctgtgtc gttacagccg gggagacata 1680
 tatacacaggc tgtctcggtc ccgacccccc tggttcatgt ggtgcctact cctactttct 1740
 5 gtaggggttag gcatctatct actccccaaac cg 1772

<210> 133
 <211> 1892
 10 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> NS3
 15 <310> AJ238799

<400> 133
 cgcctattac ggcctactcc caacagacgc gaggcctact tggctgcata atcactagcc 60
 tcacaggccg ggacaggaac caggtcgagg gggaggtcca agtggctcc accgcaacac 120
 20 aatcttcctt ggcgacctgc gtcaatggcg tgtgttggac tgtctatcat ggtgccgct 180
 caaagaccct tgccggccca aaggggccaa tcacccaaat gtacaccaat gtggaccagg 240
 acctcgtcgg ctggcaagcg ccccccgggg cgcgttccctt gacaccatgc acctgcggca 300
 gctcggaacct ttacttggtc acgaggcatg ccgtatgtcat tccggtgccg cggggggcg 360
 acagcagggg gacgcctactc tccccccaggc ccgttccctt tttgaaggc tcttcggcg 420
 25 gtccactgtc ctgccttcgg gggcacgcgtg tggcatctt tcggctgccc gtgtgcaccc 480
 gaggggttgc gaaggcggtg gactttgtac cgcgtcgagtc tatggaaacc actatgcgg 540
 ccccggtctt cacggacaac tcgtccctc cggcgttacc gcagacattc caggtggccc 600
 atctacacgc ccctactgtt agccggcaaga gcactaaggc gcccggctgog tatgcagccc 660
 30 aagggtataa ggtgttggc ctgaaccctt ccgtcgccgc caccctaggt ttctggcg 720
 atatgtctaa ggcacatgtt atcgaccctt acatcagaac cggggtaagg accatcacca 780
 cgggtgcccc catcacgtac tccacctatg gcaagtttct tgccgacggg gttgtctg 840
 ggggccccca tgacatcata atatgtatg agtgcactc aactgactcg accactatcc 900
 tgggcatttcg cacagtctt gaccaagccg agacggctgg agcgcgactc gtcgtgctcg 960
 35 ccaccgctac gcctccggga tcggtcaccc tgccacatcc aaacatcgag gaggtggctc 1020
 tgtccagcac tggagaaatc ccctttatg gcaaagccat ccccatcgag accatcaagg 1080
 gggggaggca cctcattttc tgccattcca agaagaaatg tgatgagctc gccgcaagc 1140
 tgtccggcct cggactcaat gctgttagcat attaccgggg cttttagtgcatac 1200
 caactagccg agacgttattt gtcgttagcaa cggacgtctt aatgacggc tttaccggcg 1260
 40 atttcgactc agtgtatcgac tgcaatacat gtgtcaccctt gacagtgcac ttctggctgg 1320
 acccgaccctt caccatttgc acgacgacccg tgccacaaga cgcgggtgtca cgctcgcagc 1380
 ggcgaggcag gactggtagg ggcaggatgg gcatttacag gtttgtact ccaggagaac 1440
 ggcctctggg catgttgcatttcccttgcgtcgatgt ctatgacgcgc ggctgtgtt 1500
 ggtacgagctt caccggccg gacacccgtt taggttgcg ggcttaccta aacacaccag 1560
 45 ggttggccgtt ctgcaggac catctggagt tctggagag cgtctttaca ggcctcacc 1620
 acatagacgc ccatttcttgc tcccagacta agcaggccgg agacaacttc ccctacctgg 1680
 tagcatacca ggctacggtg tgcccccaggc ctcaggctcc acctccatcg tgggaccaaa 1740
 tgtggaaatgt tctcatacgg ctaaaggccta cgctgcacgg gccaacgcctt ctgcgttata 1800
 ggctggggagc cgttaaaaac gaggttacta ccacacaccc cataacccaa tacatcatgg 1860
 50 catgcatttc ggcgtacccgtt gaggttgcgtca cg 1892

<210> 134
 <211> 822
 <212> DNA
 55 <213> Homo sapiens

<300>
 <302> stmn cell factor
 <310> M59964

60 <400> 134
 atgaagaaga cacaaacttg gattctcaact tgcatttatac ttctagctgtc cctatttaat 60

ccttcgtca aaactgaagg gatctgcagg aatcggtgta ctaataatgt aaaagacgtc 120
 actaaattgg tggcaaatct tccaaaagac tacatgataa ccctcaaata tgccccggg 180
 atggatgtt tgccaagtca ttgttgata agcgagatgg tagtacaatt gtcagacagc 240
 ttgactgatc tictggacaa gtttcaaat atttctgaag gcttgagtaa ttattccatc 300
 5 atagacaaac ttgtgaatat agtcgatgac ttgtggagt gctgtcaaaga aaactcatct 360
 aaggatctaa aaaaatcatt caagagccca gaaccaggc tccttactcc tgaagaattc 420
 tttagaattt ttaatagatc cattgatgcc ttcaaggact ttgttagtggc atctgaaact 480
 agtattgtg tgggttctt aacattaagt cctgagaaag attccagagt cagtgtcaca 540
 aaaccatcta ttgttccccc ttgtgcagcc agctccctta ggaatgacaaag cagtagcagt 600
 10 aataggaagg cccaaaatcc ccctggagac tccagctac actgggcagc catggcattt 660
 ccagcattgt ttcttttat aattggcttt gctttggag cttataactg gaagaagaga 720
 cagccaagtc ttacaagggc agttgaaaat atacaatta atgaagagga taatgagata 780
 agtatgtgc aagagaaaaga gagagagttt caagaagtgt aa 822
 15
 <210> 135
 <211> 483
 <212> DNA
 <213> Homo sapiens
 20
 <300>
 <302> TGFalpha
 <310> AF123238
 25 <400> 135
 atggtccccct cggctggaca gtcgcccctg ttgcgtctgg gtattgtgtt ggctgcgtgc 60
 caggccttgg agaacagcac gtccccgctg agtgcagacc cgcccggtggc tgcagcagt 120
 gtgtcccttgg ttaatgactg cccagattcc cacactcagt tctgtttcca tggAACCTGC 180
 aggtttttgg tgcaggagga caagccagca tgcgtctggc attctgggtt cgttgggtca 240
 30 cgctgtgagc atgcggaccc ctggccctg gtggctgcca gccagaagaa gcaggccatc 300
 accgccttgg tggtgttctc catcggtggcc ctggctgtcc ttatcatcac atgtgtgtc 360
 atacactgtc gccagggtccg aaaacactgt gagtggtgtcc gggccctcat ctgcccgcac 420
 gagaagccca gcgcctcttca gaagggaaga accgcttgcg gccactcaga aacagtggtc 480
 tga 483
 35
 <210> 136
 <211> 1071
 <212> DNA
 <213> Homo sapiens
 40
 <300>
 <302> GD3 synthase
 <310> NM003034
 45 <400> 136
 atgagccccct gcgggcggggc cggcgacaaa acgtccagag gggccatggc tgcgtggcg 60
 tggaaattcc cgccgaccccg gctgcccattt ggagccagtg ccctctgtgt cgtggccctc 120
 tttggctct acatcttccc cgtctaccgg ctgcccacg agaaagagat cgtcaggggg 180
 50 gtgtgtcaac agggcacggc gtggaggagg aaccagaccc cggccagagg gttcaggaaa 240
 caaatggaaag actgctgtcga ccctgcccattt ctctttgtca tgactaaaat gaattcccc 300
 atggggaaaga gcatgtggta tgacggggag ttttataact cattcaccat tgacaattca 360
 acttactctc tcttccacca ggcaacccca ttccagctgc cattgaagaa atgcgcggcg 420
 gtggggaaatg gtgggattct gaagaagagt ggctgtggcc gtcaaataga tgaagaaat 480
 55 tttgtcatgc gatgcataatct ccctcccttgc tcaagtgaat acactaaagg tttgtgtatcc 540
 aaaagtcaatg tagtgacacgc taatcccagc ataattcgcc aaagggtttca gaaccttcg 600
 tgggtccagaa agacattttgg gacaaacatgg aacatcttata accacaggta catctcatatc 660
 cttccctttt ctatgaagac aggaacacagg ccattttga gggtttattt tacactgtca 720
 gatgttgggtt ccaatcaaaaatggtccaaatggc gcaacccca actttctgcg tagcattgg 780
 60 aagttctggaa aaagttagagg aatccatgccc aagcgcctgt ccacaggact ttttctggc 840
 agcgcagctc tgggtctctg tgaagaggtt gccatctatg gcttctggcc tttctctgtc 900
 aatatgcattt gacgccccat caqccaccac tactatgaca acgtcttacc ttttctggc 960

ttccatgccatggccagga atttctccaa ctctggtatac ttcataaaaat cggtgcactg 1020
agaatgcagc tggacccatgtgaagataacc tcactccagcccaacttctta g 1071

5 <210> 137
 <211> 744
 <212> DNA
 <213> Homo sapiens
 10 <300>
 <302> FGF14
 <310> NM004115
 <400> 137
 15 atggccgcgg ccatcgctag cggcttgatc cgccagaagg ggcaggcgcg ggagcagcac 60
 tgggaccgcg cgtctgccag caggaggcgg agcaggccca gcaagaaccg cgggctctgc 120
 aacggcaacc tggtgatata ctctccaaa gtgcgcatct tcggcctcaa gaagcgcagg 180
 ttgcggcgc aagatccccca gctcaagggt atagtgacca gtttatattt caggcaaggc 240
 tactacttgc aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300
 20 tctacactct tcaacctcat accagtggga ctacgtgtt ttgcctatcca gggagtgaaa 360
 acagggttgt atatagccat gaatggagaa gtttacctct acccatcaga acttttacc 420
 cctgaatgca agtttaaaga atctgtttt gaaaattatt atgtaatcta ctcatccatg 480
 ttgtacagac aacaggaaatc tggtagagcc tggtttttgg gattaaataa ggaaggcga 540
 25 gctatgaaag ggaacagagt aaagaaaacc aaaccacgc ctcattttct acccaagcca 600
 ttggaaagtgtt ccatgttaccg agaaccatct ttgcatgtat ttggggaaac ggtcccgaag 660
 cctggggtaa cgccaagtaa aagcacaagt gcgtctgcaa taatgaatgg aggcaaacc 720
 gtcaacaaga gtaagacaac atag 744
 30 <210> 138
 <211> 1503
 <212> DNA
 <213> Human immunodeficiency virus
 35 <300>
 <302> gag (HIV)
 <310> NC001802
 <400> 138
 40 atgggtgcga gagcgtcagt attaagcggg ggagaattag atcgatggga aaaaattcgg 60
 ttaaggccag ggggaaagaa aaaataataa ttaaaacata tagatgggc aagcaggag 120
 ctagaacatc tcgcgttta tcctggcctg ttagaaacat cagaaggctg tagacaaa 180
 ctggcagacg tacaaccatc ctttcagaca ggtatcagaag aacttagatc attatataat 240
 acatgtacaa ccctcttattt tgcgtatcaa aggatagaga taaaagcacac caaggaagct 300
 45 ttagacaaga tagagaaaga gcaaaaacaaa agtaagaaaa aagcacacgc agcagcagct 360
 gacacaggac acagcaatca ggtcagccaa aattacccta tagtgcagaa catccagggg 420
 caaaatggta atcaggccat atcacctaga actttaaatg catggtaaa agtagtagaa 480
 gagaaggctt tcagcccaga agtgcatacc atgttttcag cattatcaga aggagccacc 540
 50 ccacaagatt taaacaccat gctaaacaca gtggggggac atcaagcgc catgcaaattg 600
 ttaaaagaga ccatcaatga ggaagctgca gaatggata gagtgcatcc agtgcatgc 660
 gggcctattt caccaggcca gatgagagaa ccaaggggaa gtgcacatgc aggaactact 720
 agtacccttc aggaacaaat aggatggatg acaaataatc cacctatccc agtaggagaa 780
 attataaaa gatggataat cctgggatata aataaaatag taagaatgtat tagccctacc 840
 55 agcattctgg acataagaca aggaccaaag gaaccctta gagactatgt agaccgggtc 900
 tataaaactc taagagccga gcaagcttca caggaggtaa aaaattggat gacagaaacc 960
 ttgttggtc aaaatgcga cccagattgt aagactattt taaaagcattt gggaccagcg 1020
 gctacactag aagaatgtat gacagcatgt cagggttag gaggacccgg ccataaggca 1080
 agagtttttg ctgaagcaat ggcacatgtt acaaatttcg ctaccataat gatgcagaga 1140
 60 ggcacatttt ggaaccaaag aaagattgtt aagtgtttca attgtggcaa agaaggcgc 1200
 acagccagaa attgcaggcc cccttaggaaa aagggtgtt gggaaatgtgg aaaggaaagg 1260
 caccatgtat aagattgtat tgagagacag gctaattttt tagggaagat ctggccttcc 1320
 tacaaggaa ggcacggaa ttttcttcgtt agcagacccatg acccaacacqcccccaccaaa 1380

gagagcttca ggtctgggt agagacaaca actccccctc agaaggcagga gccgatagac 1440
aaggaactgt atcccttaac ttcccctcagg tcactctttg gcaacgaccc ctgcgtcacaa 1500
taa 1503

5
<210> 139
<211> 1101
<212> DNA
<213> Human immunodeficiency virus

10
<300>
<302> TARBP2
<310> NM004178

15 <400> 139
atgagtgaag aggagcaagg ctccggcaact accacgggct gcgggctgcc tagtatagag 60
caaatgtcg cggccaaccc aggcaagacc ccgatcagcc ttctgcagga gtatgggacc 120
agaataggaa agacgcctgt gtacgacccctt ctcaaagccg agggccaagc ccaccagcct 180
aatttcacat tccgggtcac cggtggcgcac accagctgca ctggtcaggg ccccagcaag 240
20 aaggcagcca agcacaaggc agctgagggt gcccctaaac acctcaaagg ggggagcatg 300
ctggagccgg ccctggagga cagcagtctt ttttctcccc tagactcttc actgcctgag 360
gacattccgg ttttactgc tgcagcagct gctacccctg ttccatctgt agtcctaacc 420
aggagccccc ccatggaact gcagccccct gtctccctc agcagtctga gtgcaacccc 480
gttggtgctc tgcaggagct ggtggtgcag aaaggctggc gttggccgga gtacacagtg 540
25 acccaggagt ctgggccagc ccaccgc当地 gaattcacca tgacctgtcg agtggagcgt 600
ttcattgaga ttgggagtgg cacttccaaa aaattggcaa agcggaatgc ggccggccaaa 660
atgctgttc gagtgcacac ggtgcctctg gatgcccggg atggcaatga ggtggagcct 720
gatgatgacc acttctccat tgggtgggc ttccgcctgg atggcttctcg aaaccggggc 780
30 ccaggtgca cctgggatc tctacgaaat tcagtaggag agaagatctc gtccctccgc 840
agttgctccc tgggtcccctt ggtggccctg ggcctgcct gtcggcgtgt ctcagtgag 900
ctctctgagg agcaggccctt tcacgtcagc tacctggata ttgaggagct gagcctgagt 960
ggactctggc agtgcctggt ggaactgtcc acccagccgg ccactgtgtc tcatggctct 1020
gcaaccacca gggagggcagc ccgtggtag gctggccgccc gtgcctgca gtacctcaag 1080
atcatggcag gcagcaagt a 1101

35
<210> 140
<211> 219
<212> DNA
<213> Human immunodeficiency virus

40
<300>
<302> TAT (HIV)
<310> U44023

45 <400> 140
atggagccag tagatcctag cctagagccc tggaagcatc caggaagtca gcctaagact 60
gcttgtacca cttgttattg taaagagtgt tgcttcatt gccaagtttgc tttcataaca 120
aaaggcttag gcatctccta tggcaggaag aagcggagac agcgcacgaag aactcctcaa 180
50 ggtcatcaga ctaatcaagt ttctctatca aagcactaa 219

55 <210> 141
<211> 22
<212> RNA
<213> Künstliche Sequenz

60 <220>
<223> Beschreibung der künstlichen Sequenz: Sense-Strang
(R1A) einer dsRNA, die homolog zur MDR-1-Sequenz
ist

<400> 141
ccaucucgaa aagaaguuaa ga 22

5 <210> 142
<211> 24
<212> RNA
<213> Künstliche Sequenz

10 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R1B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

15 <400> 142
ucuuuaacuuc uuuucgagau ggg 24

20 <210> 143
<211> 22
<212> RNA
<213> Künstliche Sequenz

25 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(R2A) einer dsRNA, die homolog zur MDR-1- Sequenz
ist

30 <400> 143
uauagguucc aggcuugcug ua 22

35 <210> 144
<211> 22
<212> RNA
<213> Künstliche Sequenz

40 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(R3A) einer dsRNA, die homolog zur Sequenz des MDR
1-Gens ist

45 <400> 144
ccagagaagg ccgcaccugc au 22

50 <210> 145
<211> 24
<212> RNA
<213> Künstliche Sequenz

55 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R3B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

60 <400> 145
augcaggugc ggccuucucu ggc 24

<210> 146
<211> 21

<212> RNA
<213> Künstliche Sequenz

5 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(R4A) einer dsRNA, die homolog zur MDR-1-Sequenz
ist

10 <400> 146
ccaucucgaa aagaaguuaa g 21

15 <210> 147
<211> 21
<212> RNA
<213> Künstliche Sequenz

20 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (R4B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

25 <400> 147
uaacuucuuu ucgagaauggg u 21

30 <210> 148
<211> 22
<212> RNA
<213> Künstliche Sequenz

35 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(S1A) einer dsRNA, die homolog zur YFP- bzw.
GFP-Sequenz ist

40 <400> 148
ccacaugaag cagcacgacu uc 22

45 <210> 149
<211> 22
<212> RNA
<213> Künstliche Sequenz

50 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S1B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

55 <400> 149
gaagucgugc ugcuucaugu gg 22

55 <210> 150
<211> 21
<212> RNA
<213> Künstliche Sequenz

60 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S7A) einer dsRNA, die homolog

zur YFP- bzw. GFP-Sequenz ist

<400> 150

ccacauagaag cagcacgacu u

21'

5

<210> 151

<211> 21

<212> RNA

10 <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:

antisense-Strang (S7B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

15

<400> 151

gucgugcugc uucauguggu c

21

20

<210> 152

<211> 24

<212> RNA

25 <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:

antisense-Strang (R2B) einer dsRNA, die
komplementär zur MDR-1-Sequenz ist

30

<400> 152

uacagcaagc cuggaaccua uagc

24

35

<210> 153

<211> 22

<212> RNA

<213> Künstliche Sequenz

40

<220>

<223> Beschreibung der künstlichen Sequenz: sense-Strang
(K1A) einer dsRNA, die homolog zur 5`-UTR der
Neomycin-Sequenz ist

45

<400> 153

acaggaugag gaucguuuucg ca

22

50

<210> 154

<211> 22

<212> RNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (K1B) einer dsRNA, die
komplementär zur 5`-UTR der Neomycin-Sequenz ist

60

<400> 154

ugcgaaacga uccucauccu gu

22

- <210> 155
- <211> 21
- <212> RNA
- <213> Künstliche Sequenz

5

- <220>
- <223> Beschreibung der künstlichen Sequenz: sense-Strang
(K3A) einer dsRNA, die homolog zur 5`-UTR der
Neomycin-Sequenz ist

10 <400> 155
gauqagggauw quuuucqcaug a 21

15 <210> 156
<211> 21
<212> RNA
<213> Künstliche Sequenz

20 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (K3B) einer dsRNA, die
komplementär zur 5'-UTR der Neomycin-Sequenz ist

25 <400> 156
auqcqaaacq auccucaucc u 21

30 <210> 157
<211> 24
<212> RNA
<213> Künstliche Sequenz

<220>
35 <223> Beschreibung der künstlichen Sequenz: sense-Strang
(K2A) einer dsRNA, die homolog zur 5'-UTR der
Neomycin-Sequenz ist

40 <400> 157
acaggaugag gaucguuuucg caug 24

45 <210> 158
<211> 24
<212> RNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz:
50 antisense-Strang (K2B) einer dsRNA, die
komplementär zur 5'-UTR der Neomycin-Sequenz ist

<400> 158
ugcgaaacga uccuauccu gucu 24

<210> 159
<211> 24
<212> RNA
60 <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S4B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

5 <400> 159
gaagucgugc ugcuucaugu ggucc 24

10 <210> 160
<211> 24
<212> RNA
<213> Künstliche Sequenz

15 <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
(PKC1 A) einer dsRNA, die homolog zur
Proteinkinase C-Sequenz ist

20 <400> 160
cuucuccggcc ucacaccgcu gcaa 24

25 <210> 161
<211> 22
<212> RNA
<213> Künstliche Sequenz

30 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (PKC2 B) einer dsRNA, die
komplementär zur Proteinkinase C-Sequenz ist

35 <400> 161
gcagcgugug gaggcgaga ag 22

40 <210> 162
<211> 21
<212> RNA
<213> Künstliche Sequenz

45 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S12B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

50 <400> 162
aagucgugcu gcuucaugug g 21

55 <210> 163
<211> 23
<212> RNA
<213> Künstliche Sequenz

60 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (S11B) einer dsRNA, die
komplementär zur YFP- bzw. GFP-Sequenz ist

<400> 163
aagucgugcu gcuucaugug gucc 23

5 <210> 164
 <211> 20
 <212> RNA
 <213> Künstliche Sequenz

10 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (S13A) einer dsRNA, die homolog zur YFP- bzw.
 GFP-Sequenz ist

15 <400> 164
 ccacaugaag cagcacgacu 20

20 <210> 165
 <211> 22
 <212> RNA
 <213> Künstliche Sequenz

25 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (S13B) einer dsRNA, die
 komplementär zur YFP- bzw. GFP-Sequenz ist

30 <400> 165
 agucgugcug cuucaugugg uc 22

35 <210> 166
 <211> 20
 <212> RNA
 <213> Künstliche Sequenz

40 <220>
 <223> Beschreibung der künstlichen Sequenz:
 antisense-Strang (S14B) einer dsRNA, die
 komplementär zur YFP- bzw. GFP-Sequenz ist

45 <400> 166
 agucgugcug cuucaugugg 20

46 '

45 <210> 167
 <211> 24
 <212> RNA
 <213> Künstliche Sequenz

50 <220>
 <223> Beschreibung der künstlichen Sequenz: sense-Strang
 (S4A) einer dsRNA, die homolog zur YFP- bzw.
 GFP-Sequenz ist

55 <400> 167
 ccacaugaag cagcacgacu uuuu 24

60 <210> 168
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz

```

<220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
      (ES-7A) einer dsRNA, die homolog zur humanen
      EGFR-Sequenz ist

5      <400> 168
         aacaccgcag caugucaaga u
                                         21

10     <210> 169
<211> 21
<212> RNA
<213> Künstliche Sequenz
15     <220>
<223> Beschreibung der künstlichen Sequenz:
      antisense-Strang (ES-7B) einer dsRNA, die
      komplementär zur humanen EGFR-Sequenz ist
20     <400> 169
         cuugacaugc ugcgguguuu u
                                         21

25     <210> 170
<211> 22
<212> RNA
<213> Künstliche Sequenz
30     <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
      (ES-8A) einer dsRNA, die homolog zur humanen
      EGFR-Sequenz ist
35     <400> 170
         aaguuaaaaau ucccgucgcu au
                                         22

40     <210> 171
<211> 22
<212> RNA
<213> Künstliche Sequenz
45     <220>
<223> Beschreibung der künstlichen Sequenz:
      antisense-Strang (ES-8B) einer dsRNA, die
      komplementär zur humanen EGFR-Sequenz ist
50     <400> 171
         ugauagcgcac gggaaauuuua ac
                                         22

55     <210> 172
<211> 22
<212> RNA
<213> Künstliche Sequenz
60     <220>
<223> Beschreibung der künstlichen Sequenz: sense-Strang
      (ES-2A) einer dsRNA, die homolog zur humanen
      EGFR-Sequenz ist

```

<400> 172
agugugaucc aagcuguccc aa

22

- 5 <210> 173
<211> 24
<212> RNA
<213> Künstliche Sequenz
- 10 <220>
<223> Beschreibung der künstlichen Sequenz:
antisense-Strang (ES-5B) einer dsRNA, die
komplementär zur humanen EGFR-Sequenz ist
- 15 <400> 173
uugggacagc uuggaucaca cuuu

24