# Math for the Social Sciences Module - Young Researchers Fellowship

Lecture 2 - Equation Systems and Graphing

Daniel Sánchez Pazmiño

Laboratorio de Investigación para el Desarrollo del Ecuador

2024

## **Equation systems**

- A set of of equations that share the same variables is called an equation system.
- For example:

$$x + y = 3 \tag{1}$$

$$2x - y = 1 \tag{2}$$

- Because both (1) and (2) share x and y, they form an equation system.
- lacktriangle We usually want to *solve* the system, i.e., find the values of x and y that satisfy both equations.

### Solving equation systems

- There are several methods to solve equation systems.
  - Substitution
  - Elimination
  - Graphing
  - Matrices (we will see this later)
- Substitution is typically the most "mechanical" method.
  - Express one variable in terms of the other and substitute in the other equation.
- Elimination is more algebraic.
  - Add or subtract the equations to eliminate one variable.
  - Might involve multiplying one or both equations by a constant.

## Solving the example system

■ Let's solve the example system:

$$x + y = 3$$
$$2x - y = 1$$

- We can solve this system by substitution.
  - $\blacksquare$  From (1), we have y = 3 x.
  - Substitute this into (2):

$$2x - (3 - x) = 1$$

 $\blacksquare$  Solve for x and then substitute back to find y.

## The Cartesian plane

- The Cartesian plane is a two-dimensional space where we can plot points.
- It is formed by two perpendicular lines, the *x-axis* and the *y-axis*.
- The point where the axes intersect is called the *origin*.
- The axes divide the plane into four *quadrants*.

## The Cartesian plane



## Plotting points

- $\blacksquare$  To plot a point, we use an ordered pair (x,y).
  - lacksquare x is the distance from the y-axis.
  - lacksquare y is the distance from the x-axis.
- For example, the point (2,3) is 2 units to the right and 3 units up from the origin. See below:



### Linear equations

- The equations we've seen so far are *linear* equations.
  - They represent straight lines in the Cartesian plane.
- Linear equations can be written in the form y = mx + b.
  - lacksquare m is the *slope* of the line.
  - b is the y-intercept.

## The Slope

- The ratio of the vertical change to the horizontal change.
  - It tells us how steep the line is.
  - The bigger the slope, the steeper the line.
- Requires two points (call them  $P_1$  and  $P_2$ ) on the line, with coordinates  $(x_1, y_1)$  and  $(x_2, y_2)$ .



about to use y=mx+b to figure out the slope of the line you just crossed

Figure 1: A meme

#### Intercepts

- The *y-intercept* is the point where the line crosses the y-axis.
  - This happens when x = 0.
  - lacksquare So, we set x=0 in the equation and solve for y.
  - In the equation y = mx + b, the y-intercept is (0, b).
- The *x-intercept* is the point where the line crosses the *x*-axis.
  - This happens when y = 0.
  - So, we set y = 0 in the equation and solve for x.

## Graphing linear equations

- To graph a linear equation, we need to find two points on the line.
  - The easiest points are the intercepts.
  - We can also use the slope to find a second point.
- Example: graph the line y = 2x + 1.
  - It might be useful to draw a table of values.

| x  | y  |
|----|----|
| 0  | 1  |
| 1  | 3  |
| -1 | -1 |

# Graphing the line



Figure 2: Plot of the equation y = 2x + 1

## Upward-sloping and downward-sloping lines

- If m > 0, the line is "upward-sloping" or increasing.
  - $\blacksquare$  As x increases, y also increases.
- If m < 0, the line is "downward-sloping" or decreasing.
  - $\blacksquare$  As x increases, y decreases.



Figure 3: Upward-sloping and downward-sloping lines

## Properties of slopes

- If m = 0, the line is horizontal.
  - lacktriangledown y does not change as x changes.
- If  $m = \infty$ , the line is vertical.
  - $\blacksquare$  x does not change as y changes.
- If m = 1, the line has a 45-degree angle.
- Lines with the same slope are parallel.
- Lines with slopes that multiply to -1 are perpendicular.
  - $\blacksquare$  This means that  $m_1 \cdot m_2 = -1,$  or that  $m_1 = -\frac{1}{m_2}$  (the negative reciprocal).

## How to find the equation of a line

- $\blacksquare$  If you know the slope m and a point  $(x_1,y_1)$  on the line, you can use the point-slope form:
  - $y y_1 = m(x x_1)$
- 2 If you know two points  $(x_1,y_1)$  and  $(x_2,y_2)$  on the line, you can use the slope formula to find m and then use y=mx+b to find b.
- If you know the slope m and the y-intercept b, you can use y=mx+b directly (this is the slope-intercept or point-slope form).

## Graphing equation systems

- To solve an equation system graphically, we graph both equations and find the point where they intersect.
- The point of intersection is the solution to the system.
- Example: graph the system

$$x + y = 3$$

$$2x - y = 1$$

## Graphing the system



Figure 4: Graph of the system

## Systems with no solutions

- Sometimes, the lines are parallel and do not intersect.
  - This means that the system has no solution.
- How can we tell if two lines are parallel?
  - They have the same slope.
  - lacktriangle The coefficients of x and y in the equations are proportional.

## Systems with infinite solutions

- Sometimes, the lines coincide and intersect at every point.
  - This means that the system has infinite solutions.
- How can we tell if two lines coincide?
  - They have the same slope and the same *y*-intercept.
  - lacktriangle The coefficients of x and y in the equations are proportional, and the constants are equal.

# Graphic representations - systems with no solutions



Figure 5: Graph of a system with no solutions

## Graphic representations - systems with infinite solutions

