Introduction
First Principles Modeling
Nonlinear systems & linearization
System Identification

# Chapter 3: System Modeling

August 26, 2015

#### Introduction

We can derive the mathematical model of a dynamic system in **two ways** mainly:

- Physical Modeling:
   Applying the laws of physics, chemistry, thermodynamics,...
   Also called modeling from First Principles
  - Sometimes these are non-linear. Lots of methods of this course require linear systems. Therefore **linearization** is needed. e.g.  $\sin(\theta) \sim \theta, \theta \rightarrow 0$
- System identification or Empirical Modeling: Developing models from observed or collected data

## Main classes of System identification methods

White box modeling: based on first principles.

→ known equations (structure) & parameters (coefficients).

**Grey box identification**: first principles & experimentation.

 $\rightarrow$  known equations, unknown/uncertain parameters.

Black box identification: based on experimentation.

 $\rightarrow$  unknown equations & unknown parameters.

Most popular approaches are forms of black box identification.

# **Example 1: Mass-Spring System**



If spring is at rest at x = 0:

$$m \cdot \frac{d^2x}{dt^2} + k \cdot x = m \cdot g$$

# **Example 2: Mass-Spring Damped**



Force exerted by damper:  $F = b\dot{x}$ Differential equation can be found by writing force equilibrium and moment equilibrium around center of mass

# Example 3: Pendulum



Dynamic equilibrium:

$$I\ddot{\theta}(t) = -mg\frac{L}{2}\sin(\theta(t))$$
 with  $I = \frac{mL^2}{3}$ 

$$\ddot{\theta}(t) = -\frac{3g}{2L}\sin(\theta(t))$$

Small deviation of  $\theta(t)$ :

$$\ddot{\theta}(t) = -\frac{3g}{2L}\theta(t)$$

Solving the differential equation yields the general solution:

$$\theta(t) = A\cos(\omega_0 + \phi)$$
 with  $\omega_0 = \sqrt{\frac{3g}{2L}}$  and  $\phi$  &  $A$  to be determined with the initial condition

# Example 4: Inverted Pendulum



Analysis can be done with Newton like former example, but less tedious is using energy-methods (Lagrange)

# Example 5: RLC Circuit



Besides input  $v_{in}$ , two internal variables are needed to determine output  $\Rightarrow$  Second-order System

| Inputs | Ouputs           | Choosen States |
|--------|------------------|----------------|
| Vin    | V <sub>out</sub> | $V_2$          |
|        |                  | i              |

# Example 5: RLC Circuit

Equations for each component:

$$i=rac{V_{in}-V_1}{R}$$
 (Ohm's law)  $V_1-V_2=L\cdotrac{di}{dt}$  (Coil)  $i=C\cdotrac{dV_2}{dt}$  (Capacitor)

$$V_1 - V_2 = L \cdot \frac{dI}{dt}$$
 (Coil)

$$i = C \cdot \frac{dV_2}{dt}$$
 (Capacitor)



# Example 5: RLC Circuit

- Writing derivatives of state variables in function of state variables and inputs:  $\begin{cases} \frac{di}{dt} = \frac{V_1 V_2}{L} = \frac{V_{in} R \cdot i V_2}{L} \\ \frac{dV_2}{dt} = \frac{i}{C} \end{cases}$
- Writing output in function of state variables and inputs:  $V_{out} = V_1 V_2 = V_{in} Ri V_2$

#### State Space Representation

This yields the **State Space Representation** of the dynamic system. In Matrix form:

$$\begin{bmatrix} \frac{dV_2}{dt} \\ \frac{di}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix} \begin{bmatrix} V_2 \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} V_{in}$$
$$V_{out} = \begin{bmatrix} -1 & -R \end{bmatrix} \begin{bmatrix} V_2 \\ i \end{bmatrix} + V_{in}$$

## Force-Voltage Analogy





Let:

$$\begin{array}{ccc}
\mathsf{F} & \leftrightarrow & \\
\dot{x} & \leftrightarrow & \\
\mathsf{x} & \leftrightarrow & \\
\end{array}$$

## Force-Voltage Analogy

The analogy between the other quantities follows from comparing the physical laws.

Damping:

Resistance:



$$\begin{array}{ccc}
R & i \\
V & -
\end{array}$$

$$b \leftrightarrow R$$

# Force-Voltage Analogy

#### Spring:

$$\begin{array}{ccc}
 & & F = kx \\
 & \Rightarrow \frac{dF}{dt} = k \frac{dx}{dt}
\end{array}$$

#### Capacitor:



#### Newton:



$$F = m\ddot{x}$$
$$= m\frac{d\dot{x}}{dt}$$

Coil:

$$V = L \frac{di}{dt}$$

$$m \leftrightarrow L$$

# Example 6: Hoover dam

#### Define:

- Inflow of water: u(t)
- Current volume of water: x(t)
- Outflow of water: y(t)
- Water level: h(t)

Assume that 
$$x(t) = c_1 \cdot h(t)$$

What will happen when we open the gate?



# Example 6: Hoover dam

Outflow depends on height:

$$y(t) = c_2 \cdot h(t)$$

 The state of the system is defined by the contained volume of water:

$$\dot{x}(t) = u(t) - y(t) = u(t) - c_2 \cdot h(t)$$

• Thus a **State Space Representation** is, with  $c \triangleq \frac{c_2}{c_1}$ :

$$\dot{x}(t) = u(t) - c \cdot x(t)$$
$$y(t) = c \cdot x(t)$$



#### Nonlinear systems

In this course we focus on the linear state-space representation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases} \begin{cases} x[k+1] = Ax[k] + Bu[k], \\ y[k] = Cx[k] + Du[k]. \end{cases}$$

Most real life systems involve nonlinearity:

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)), \\ y(t) = g(x(t), u(t)), \end{cases}$$

where f and/or g contain some nonlinearity, such as:

- powers: e.g.  $\dot{x}(t) = Ax(t) + Bu(t) + \gamma u(t)^2$ ,
- interactions: e.g.  $\dot{x}(t) = Ax(t) + Bu(t) + \gamma x(t)u(t)$ ,
- clipping: e.g.  $\alpha \leq x(t) \leq \beta$ .

Nonlinear systems have (several) equilibrium points  $x_e$ ,  $u_e$ ,  $y_e$ :

$$\begin{cases} \dot{x}_e = f(x_e, u_e) = 0, \\ y_e = g(x_e, u_e). \end{cases}$$

Linearizing in the region of  $(x_e, u_e, y_e)$ :

$$x = x_e + \Delta x$$
,  $u = u_e + \Delta u$ ,  $y = y_e + \Delta y$ ,

with  $\Delta x$ ,  $\Delta u$  and  $\Delta y$  sufficiently small.

Linearizing is done via first order Taylor expansions.

Linearizing is done via **first order Taylor expansions**.

$$\begin{cases} \frac{dx}{dt} = \frac{d(x_e + \Delta x)}{dt} = \frac{d\Delta x}{dt} = f(x, u) = f(x_e + \Delta x, u_e + \Delta u), \\ y_e + \Delta y = g(x, u) = g(x_e + \Delta x, u_e + \Delta u). \end{cases}$$

We write the *vectors* x and u in their individual components to simplify interpretation:

$$\dot{x}_1 = f_1(x_1, ..., x_n, u_1, ..., u_l) 
\vdots 
\dot{x}_n = f_1(x_1, ..., x_n, u_1, ..., u_l) 
\dot{y}_1 = h_1(x_1, ..., x_n, u_1, ..., u_l) 
\vdots 
\dot{y}_l = h_l(x_1, ..., x_n, u_1, ..., u_l)$$

The first order Taylor expansion of f() around  $(x_e, u_e)$  is described by the **Jacobian Matrix**:

$$\frac{dx}{dt} = f(x_e, u_e) + \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} & \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_l} \\ \vdots & & & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} & \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_l} \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \\ \Delta u_1 \\ \vdots \\ \Delta u_l \end{bmatrix}$$

With the partial derivatives evaluated in  $x_e$  and  $u_e$   $f(x_e, u_e) = \frac{dx_e}{dt} = 0$  because we *choose*  $x_e$  and  $u_e$  to be equilibrium points

This can be split up in a contribution by the state x and the input u:

$$\frac{d\Delta x}{dt} = \underbrace{\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}}_{A} \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix} + \underbrace{\begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_l} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_l} \end{bmatrix}}_{B} \begin{bmatrix} \Delta u_1 \\ \vdots \\ \Delta u_l \end{bmatrix}$$

Similarly C & D can be constructed from the Jacobian Matrix of h(x, u)

### Example: decalcification plant

Used to reduce concentration of calcium hydroxide in water:

- chemical reaction:  $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
- reaction speed:  $r = c[Ca(OH)_2][CO_2]$
- rate of change of concentration:

$$\frac{d[Ca(OH)_2]}{dt} = \frac{k}{V} - \frac{r}{V},$$
$$\frac{d[CO_2]}{dt} = \frac{u}{V} - \frac{r}{V},$$

with inflow rates k and u in mol/s and tank volume V in L.

• input u: inflow of  $CO_2$ , output:  $[Ca(OH)_2]$ 

## Nonlinear model and equilibrium point

Nonlinear model for the given reactor:

$$\begin{split} \frac{d[\textit{Ca}(\textit{OH})_2]}{dt} &= \frac{k}{V} - \frac{c}{V}[\textit{Ca}(\textit{OH})_2][\textit{CO}_2], \\ \frac{d[\textit{CO}_2]}{dt} &= \frac{u}{V} - \frac{c}{V}[\textit{Ca}(\textit{OH})_2][\textit{CO}_2], \\ y &= [\textit{Ca}(\textit{OH})_2], \end{split}$$

with two state variables:  $x_1 = [Ca(OH)_2]$  and  $x_2 = [CO_2]$ .

The equilibrium point  $(k_{eq}, u_{eq}, x_{1,eq}, x_{2,eq}, y_{eq})$  of this system is:

$$\begin{split} \frac{k_{eq}}{V} - \frac{c}{V}[\textit{Ca}(\textit{OH})_2]_{eq}[\textit{CO}_2]_{eq} &= 0, \\ \frac{u_{eq}}{V} - \frac{c}{V}[\textit{Ca}(\textit{OH})_2]_{eq}[\textit{CO}_2]_{eq} &= 0. \end{split}$$

## Linearization of the decalcification plant

For small deviations near the equilibrium:

$$\begin{split} \frac{d\Delta x_1}{dt} &= -\frac{c}{V}[CO_2]_{eq}\Delta x_1 - \frac{c}{V}[Ca(OH)_2]_{eq}\Delta x_2, \\ \frac{d\Delta x_2}{dt} &= -\frac{c}{V}[CO_2]_{eq}\Delta x_1 - \frac{c}{V}[Ca(OH)_2]_{eq}\Delta x_2 + \frac{\Delta u}{V}, \\ \Delta y &= \Delta x_1. \end{split}$$

The resulting linear state-space model is  $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$ 

$$\begin{bmatrix} \frac{d[Ca(OH)_2]}{dt} \\ \frac{d[CO_2]}{dt} \end{bmatrix} = - \begin{bmatrix} \frac{c}{V} [CO_2]_{eq} & \frac{c}{V} [Ca(OH)_2]_{eq} \\ \frac{c}{V} [CO_2]_{eq} & \frac{c}{V} [Ca(OH)_2]_{eq} \end{bmatrix} \begin{bmatrix} [Ca(OH)_2] \\ [CO_2] \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{V} \end{bmatrix} u(t)$$

$$v(t) = [Ca(OH)_2]$$

# Grey box identification: conceptual

Grey box identification starts from a known model structure but with unknown/uncertain parameters  $\leftrightarrow$  parametric statistics.

We assume linear, continuous time state space representation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$

**Given**: states, inputs, outputs and guesstimates of  $\tilde{A}$ ,  $\tilde{B}$ ,  $\tilde{C}$  &  $\tilde{D}$ . **Task**: estimate  $\hat{A}$ ,  $\hat{B}$ ,  $\hat{C}$  and  $\hat{D}$  adequately via experiments.

"All models are wrong, but some are useful." - George E. P. Box

### Linear regression

Consider input matrix  $\mathbf{X}$ , output vector  $\mathbf{y}$  and residuals  $\epsilon$ :

$$\mathbf{X}\theta = \mathbf{y} + \epsilon.$$

The parameter vector  $\theta$  must be estimated, given the observations.

A common estimation approach is ordinary least squares (OLS):

$$\begin{aligned} (\mathbf{X}^T \mathbf{X}) \hat{\theta}_{OLS} &= \mathbf{X}^T \mathbf{y}, \\ \hat{\theta}_{OLS} &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}. \end{aligned}$$

The OLS estimate minimizes the sum-of-squares of errors, i.e.:

$$\hat{\theta}_{OLS} = \arg\min_{\theta} \sum_{i=1}^{N} (y(i) - \sum_{j=1}^{d} X(i,j)\theta(j))^{2}$$

# Linear regression with ordinary least squares



#### Maximum likelihood estimation

The maximum likelihood estimate  $\hat{\theta}_{ML}$  is the parameter vector that maximizes the likelihood  $\mathcal{L}(\cdot)$  of observing the (known) outputs  $\mathbf{y}$ , given the (known) inputs  $\mathbf{X}$ :

$$\hat{\theta}_{\textit{ML}} = \argmax_{\boldsymbol{\theta}} \mathcal{L} \big( \mathbf{y}, \mathbf{X} \boldsymbol{\mid} \boldsymbol{\theta} \big)$$

For some structures, ML estimate can be obtained in closed form.

**Example**: least squares estimators are the maximum likelihood estimators if the associated residuals  $\epsilon$  are normally distributed.

# Maximum a posteriori (MAP) estimation

Bayesian: maximum likelihood estimation with a *prior*  $p(\theta)$ .

→ MAP estimation is a regularization of ML estimation

Bayes' theorem: 
$$P(A \mid B) = P(B \mid A) \cdot P(A) / P(B)$$
.

If a prior distribution  $p(\cdot)$  is available for  $\theta$ , then the posterior distribution for  $\theta$  becomes:

$$heta \mapsto \mathcal{L}( heta \mid \mathbf{y}, \mathbf{X}) = rac{\mathcal{L}(\mathbf{y}, \mathbf{X} \mid heta) p( heta)}{\int_{artheta} \mathcal{L}(\mathbf{y}, \mathbf{X} \mid artheta) p(artheta) dartheta}.$$

The MAP estimate is the mode of the posterior distribution of  $\theta$ :

$$\hat{ heta}_{MAP} = rg\max_{ heta} \mathcal{L}(\mathbf{y}, \mathbf{X} \mid heta) p( heta).$$

## Errors-in-variables approach

Additionally accounts for measurement errors in inputs. ↔ standard regression only accounts for errors in *outputs* 

Typically described via *latent variables*:

$$\begin{cases} x = x^* + \eta, \\ y = y^* + \epsilon, \\ y^* = g(x^* \mid \theta), \end{cases}$$

with x, y the observed inputs, outputs and latent variables  $x^*$ ,  $y^*$ . **Assumption**: latent variables  $x^*$  and  $y^*$  exist which follow the true functional relationship  $g(\cdot)$ .

**Task**: estimate  $\theta$ .

#### Black box identification

Start from unknown equations & unknown parameters.

→ related to machine learning and nonparametric statistics.

If we assume a linear state space system:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases} \begin{cases} x[k+1] = Ax[k] + Bu[k], \\ y[k] = Cx[k] + Du[k]. \end{cases}$$

Black box identification deals with:

- unknown states, both in number & physical interpretation
   → dimensions of A, B & C unknown
- unknown parameters (values in A, B, C, D)

#### Time series: Santa Fe laser



### Modelling the Santa Fe laser

This laser can be treated as an autonomous discrete time system:

$$\begin{cases} x[k+1] = f(x[k-N+1], \dots, x[k]), \\ y[k] = x[k]. \end{cases}$$

The output depends on the past N states & no inputs.

 $\rightarrow$  how large is  $N? \rightarrow$  unknown structure

Treat it as a regression problem with N inputs:  $y = f(X_1, \dots, X_N)$ .

- $\rightarrow$  lets say linear, i.e.  $y = \mathbf{X}\theta \rightarrow \mathbf{unknown}$  parameters  $\theta \in \mathbb{R}^N$ .
- ightarrow for given N, we can estimate heta via grey box methods.

Nonlinear models can be obtained via machine learning methods.

ightarrow neural networks, support vector machine, random forest, ...

# Predictions of a least-squares support vector machine



#### Predictions of an artificial neural network



## Neural network: biological



Image taken from http://www.extremetech.com/wp-content/uploads/2013/09/340.jpg.

## Structure of a single neuron



 $Image\ taken\ from\ http://en.wikipedia.org/wiki/File:Blausen\_0657\_MultipolarNeuron.png.$ 

#### Neural network: artificial

