CLASE 7 TECNOLOGÍA DE IMPLEMENTACIÓN

Mejoras del <u>REPERTORIO DE INSTRUCCIONES</u> (ISA)

- Aumento de la cantidad de memoria
- Aumento del número de registros de propósitos generales: disminución de los accesos a memoria.
- Registros de uso específico
- Mejora de la ALU: operaciones y tipos de datos
- Ampliación del repertorio de saltos condicionales: mejora en las bifurcaciones
- Loops: mejoras en las repeticiones
- Nuevos modos de direccionamiento y registros de uso específico: mejora en el acceso a los datos
- La pila: mejora en la implementación de subrutinas
- El sistema de entrada/salida, interrupciones

Mejoras de la <u>ORGANIZACIÓN</u> del procesador

Optimización del ciclo de instrucción. Paralelismo. Mayor productividad.

- Arquitectura Harvard
- Segmentación

CLASE DE HOY: mejoras en la <u>TECNOLOGÍA DE IMPLEMENTACIÓN</u> del procesador

• Tecnología CMOS de fabricación -> Tensión de alimentación, frecuencia máxima de operación, densidad, consumo de potencia, modos de bajo consumo, costo, disponibilidad, encapsulado

Principales aspectos relacionados con la tecnología de implementación

Tecnología CMOS de fabricación (xx nm process)

Fotolitografía, múltiples capas, costo, 6-8 semanas (nuevas 14/10/7 nm 15 semanas), fabs completamente automatizadas, clean-room, wafers, FOUPs, etc. - Wikipedia

https://www.youtube.com/watch?v=6OeYwfDkiH8 (TSMC 2021) https://www.youtube.com/watch?v=0wrsZog8qXq (2010)

Parámetros

Tensión de alimentación (rango)

Frecuencia máxima de operación (rango, dependiente de la tensión de operación)

Consumo de potencia (DMIPS/Watt, dependiente de la tensión)

Modos de bajo consumo

Densidad de transistores (tr/mm²)

Costo

Disponibilidad

Encapsulado

a. Prepare wafer

substrate

b. Apply photoresist
PR
oxide

c. Align photomask
glass
Cr
PR
oxide

d. Expose to UV light

glass
Cr

PR

oxide

substrate

e. Develop and remove photoresist exposed to UV light oxide

f. Etch exposed oxide
PR
oxide

g. Remove remaining photoresist

TECNOLOGÍA DE IMPLEMENTACIÓN

Evolución exponencial sostenida de las tecnologías que condicionan el diseño de un procesador:

- Circuitos integrados (densidad de transistores 50%/año)
- DRAM semiconductor (densidad celdas 40-60%/año)
- Almacenamiento (capacidad 100%/año)
- Networking (ancho de banda 50-60%/año)

La ISA debe sobrevivir a lo largo de ciclos de al menos 5 años (2 de diseño + 3-2 de producción).

Disco rígido de la IBM350 (1956, 5 MB)

https://ourworldindata.org/technological-progress

Moore's Law: The number of transistors on microchips has doubled every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Performance relativa a la VAX-11/780 (1978)

Crecimiento exponencial sostenido (1986-2002). Luego desaceleración (a pesar de que tanto la densidad de transistores como el resto de las tecnologías acompañaron). El aumento del número de transistores no repercute directamente en la performance. Depende de los avances en la organización del procesador. Límite en el frequency scaling.

http://drhart.ucoz.com/index/digital/0-117

VAX 11/780 (first two cabinet sections), shown with Unibus expansion cabinet (middle cabinet section), two tape drives, two RPO5 or RPO6 removable pack disk drives, a DECwriter printing terminal, and a VT52 CRT terminal.

2004 - El fin del "frequency scaling"

$$t=rac{N imes CPI}{f_{clock}}$$

Límite en la potencia disipada (que es proporcional a la frecuencia de operación).

$$P = f C V^2$$
 (70-100 W)

Sin embargo, a pesar de los problemas de potencia, la Ley de Moore se mantiene.

Evolución natural a múltiples núcleos o "parallel scaling".

NOTA: estrategia de bajar la tensión, deja afuera a los uC

En 2004 Intel cancela sus proyectos monoprocesador Tejas y Jayhawk (server), sucesores del Pentium 4, para reorientar su estrategia a las arquitecturas dual core. Ver: Wikipedia - Frequency Scaling https://en.wikipedia.org/wiki/Frequency_scaling

POSIBLES SOLUCIONES:

multiple cores on one die multiple dies in one package multiple packages in one system unit

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Fig. presents the main drivers that helped improve the performance of computing systems over the last three decades as well as the trends for the upcoming years. Clearly, frequency scaling was the main driver for improving performance until the mid-2000s. Since then, more complex technologies have been employed to increase the computational capacity of computing platforms, including more aggressive pipelining execution, superscalar execution, multicore architectures, single instruction, multiple data (SIMD) support, fused multiply-add (FMA) units, and chip multiprocessors (CMPs). The combination of hardware accelerators with many-core architectures is currently an important source of performance gains for emerging high-performance heterogeneous architectures accelerators, and we believe will continue to be prominent in the upcoming years.

https://www.embedded.com/design/real-time-and-performance/4459159/High-performance-embedded-computing----Target-architectures

Tecnología del proceso CMOS

La unidad de medida **era** ½ celda DRAM : "expected average half-pitch of a memory cell"

La inversión necesaria para sostener el crecimiento es cada vez mayor: Rock's Law (o segunda ley de Moore): el costo de una planta de fabricación se duplica cada 4 años

Un elemento más pequeño implica mayor cantidad de transistores disponibles, conmutación más rápida y menor potencia disipada.

LIMITE? gate 5 nm → tunneling CMOS -> FinFET (3D multigate, 10+nm)

Semiconductor device fabrication

MOSFET scaling (process nodes)

10 µm - 1971

6 µm - 1974

3 µm - 1977

1.5 µm - 1981

1 µm - 1984

800 nm - 1987

600 nm - 1990

350 nm - 1993

250 nm - 1996

180 nm - 1999

130 nm - 2001

90 nm - 2003

65 nm - 2005

45 nm - 2007

32 nm - 2009

22 nm - 2012

14 nm - 2014

10 nm - 2016

7 nm - 2018 5 nm - 2020

3 nm - 2020

Future

2 nm ~ 2024

2022

ATmega328

Intel Core i5

iPhone 12/13

Tecnología del proceso CMOS

Processor	Transistor count	Date of introduction	Process
Intel 4004	2,300	1971	10,000 nm
Core AVR	48,000	1993	350 nm
Apple A15	15,000,000,000	2021	5 nm

Tecnología de microcontroladores

¿Por qué los microcontroladores no utilizan la tecnología de punta?

- Los nuevos procesos requieren bajar la tensión de alimentación, lo cual no es conveniente para los microcontroladores que interactúan con periféricos.
- La mayor parte de la superficie de la pastilla la toman los pads de I/O y sus drivers. Hacer más fino el resto del chip no produce una mejora considerable.
- Costo: La fabricación de una máscara para un proceso de punta cuesta más de 1M, frente a 10K. Priorizan la variedad de productos.
- Velocidad de lectura de la memoria Flash.
- Emisión de ruido.

Una de las actuales fabs de Microchip fue utilizada en su momento para fabricar memorias de alta gama (Fujitsu). "The baseline N-well CMOS process is released on mature manufacturing lines that support 1.2, 0.9, 0.7, 0.5, 0.4 and 0.25 micron technologies"

Function	Transistor count	
MUX 2-input with TG	6	
MUX 4-input with TG	18	
NOT MUX 2-input	8	
MUX 4-input	24	
1-bit Adder full	28	
1-bit Adder–subtractor	48	
Latch, D gated	8	
Flip-flop, edge triggered dynamic D with reset	12	
8-bit multiplier	3,000	
16-bit multiplier	9,000	
32-bit multiplier	21,000	

Plantas de fabricación de semiconductores

Semiconductor fabrication plants (fab/foundry/pure-play) y diseñadores (fabless). Integrated device manufacturers (IDM), toman ambas ramas del negocio.

TSMC Taiwan Semiconductors (Taiwan) y Samsung Electronics (Corea del Sur) son los únicos fabricantes de semiconductores que han podido seguir el paso en esta década (sub 14 nm y 10 nm actualmente en producción). Intel (USA) y Global Foundries (USA) vienen atrás.

Ejemplo

Tecnología **GlobalFoundries** 130 nm https://www.globalfoundries.com/sites/default/files/product-briefs/pb-130glpee.pdf

Las dimensiones del transistor mínimo son las siguientes: largo del canal $L = 0.12 \mu m$ y ancho del canal $W = 0.16 \mu m$, tanto para los transistores nMOS como para los pMOS.

SAMSUNG

Tamaño de la pastilla (die size)

Además del límite en la potencia máxima disipada (~70W)

- Yield del wafer (rendimiento, cuántos fallan y desperdicio)
- Encapsulado (número de patas)

Tamaño de la oblea (wafer size)

Effect of Die Size on Yield

Dramatic decrease in yield with larger dies

Yield = (Number of Good Dies) / (Total Number of Dies)

Yield =
$$\frac{1}{(1 + (\text{Defect per area} \times \text{Die area} / 2))^2}$$

Die Cost = (Wafer Cost) / (Dies per Wafer × Yield)

A15 Bionic	15,000,000,000	2021	Apple	5 nm
Virtex-7	6,800,000,000	2011	Xilinx	28 nm
GK110 Kepler	7,080,000,000	2012	NVIDIA	28 nm 561 m
Xeon Phi	5,000,000,000	2012	Intel	22 nm
ARM Cortex-A9	26,000,000	2007	ARM	
Core 2 Duo	291,000,000	2006	Intel	65 nm 143 mr
Itanium 2 Cell	592,000,000 241,000,000	2004 2006	Intel IBM	130 nm 432 m 90 nm 221 m
Pentium 4	42,000,000	2000	Intel	180 nm 217 mr
Pentium II Pentium III	7,500,000 9,500,000	1997 1999	Intel Intel	0.35 µm 195 mr 0.25 µm 128 mr
ARM 7	600,000	1994	ARM	
Intel 80486 Pentium	1,180,235 3,100,000	1989 1993	Intel Intel	1 μm 173 mr 0.8 μm 294 mr
Intel 80286 Intel 80386	134,000 275,000	1982 1985	Intel Intel	1.5 μm 49 mm 1.5 μm 104 mr
Motorola 68000	68,000	1979	Motorola	4 μm 44 mm
Intel 8088	29,000	1979	Intel	3 μm 33 mm
Intel 8086	29,000	1978	Intel	3 µm 33 mm

EJEMPLO Sumador segmentado en Punto Flotante 23347 transistores

COMPLETAR LA TABLA CON uC MÁS COMUNES

Consolas de juego

4ta Generación	5ta Generación	6ta Generación	7ma Generación	8va Generación
1990	1995	2000	2005	2013
16b	32b	64b	128b	64b
Sega Génesis Motorola 68000	Sega Saturn Hitachi SupeH RISC	Sega Dreamcast Hitachi SuperH RISC		
Super Nintendo WDC W65C816	Nintendo 64 MIPS R4200	Nintendo Gamecube POWER Gekko	Nintendo Wii POWER Broadway	Nintendo Wii U POWER7
	PlayStation MIPS 3000	PlayStation II Emotion Eng. (MIPS)	PlayStation III POWER Cell	PlayStation 4 AMD Jaguar x86-64 AMD Radeon
		Xbox Pentium III	Xbox 360 POWER Xenon	Xbox One AMD Jaguarx86-64 AMD Radeon
Cartridge	CD	DVD	Bluray	Bluray/Internet
		Ethernet	WiFi	Gigabit Ethernet
	PII/PowerPC	PIII/PIV/AMD K7	Core/AMD64	Athlon

Intervalo 15' A continuación: introducción a la arquitectura AVR

Microcontroladores ATMEL ATtiny/ATmega

AVR CPU

- Clock
- Memoria Flash (programa)
- Memoria DRAM (datos)
- Modulos de entrada/salida
 - \circ I/O ports
 - Interfaces de comunicación
 - Temporizadores/contadores
 - o ADC, etc.
- Single supply, low cost, low power

AVR: https://microchipdeveloper.com/8avr:start

PIC: https://microchipdeveloper.com/8bit:start

AVRfreaks forum https://www.avrfreaks.net/

Modos de direccionamiento: inmediato, directo e indirecto

Immediate Addressing: andi r16, \$0F (el operando viene de la instrucción)

Register Direct Addressing: and r16, r0 (el operando viene de un registro)

in r25, PINA (el operando viene de i/o)

Data Direct Addressing: lds r5, \$F123 (la dirección está en la instrucción)

Indirect Addressing: ld r11, X (la dirección está guardada en un puntero)

with displacement: std Y+10, r14
with Pre-decrement: std -Y, r14
with Post-increment std Y+, r14

Direct Register Addressing

Direct Data Addressing

Data Indirect with Displacement

Arquitectura **AVR**®

REPERTORIO DE INSTRUCCIONES

32 registros de 8 bits, ALU de 8 bits enteros, load/store tipo (0,2).
IO mapeada en memoria.
Dir. 16 bits (registros dobles) y pila.
126 instrucciones, 7 modos de direccionamiento, interrupciones.

Implementación

ATmega328

ORGANIZACIÓN

Harvard (datos de 8 bits, instrucciones de 16 bits).
Segmentación en dos etapas (F-E).

TECNOLOGÍA

130 nm, core 48,000 tr, SMD plástico, 3.3V, 16 MHz. 32K FLASH, 2K SRAM