Angular Gap: Reducing the Uncertainty of Image Difficulty through Model Calibration

Bohua Peng¹

Mobarakol Islam ¹

Mei Tu²

1. Imperial College London

Imperial College London

Samsung Research

Outline

- Motivation
- Angular Gap framework
- Image difficulty estimator
- Curricula for domain adaptation
- Experiments
- Conclusion

Motivation

Capturing image difficulty & designing curricula for unsupervised domain adaptation

Source Target

Motivation

Memorization

Motivation

Learning with a curriculum to improve model generalization

How to represent image difficulty?

• Hyperspherical Learning (Liu, et al 2017), Angular Visual Hardness (Chen, 2020)

$$W \in \mathbb{R}^{F \times C}$$

$$W^{T_{x_i}}$$

$$W^{T_{x_i}}$$

$$W^{W_{y_i}}$$

$$X_i \in \mathbb{R}^F$$

$$S \in \mathbb{R}^{N \times C}$$

$$X_i \in \mathbb{R}^F$$

$$S \in \mathbb{R}^{N \times C}$$

$$X_i \in \mathbb{R}^F$$

$$X_i \in \mathbb{R}^F$$

$$X_i \in \mathbb{R}^F$$

$$X_i \in \mathbb{R}^{N \times C}$$

$$X_i \in \mathbb{R}^F$$

$$X_i \in \mathbb{R}^{N \times C}$$

$$X_i \in \mathbb{R}^F$$

$$X_i \in \mathbb{R}^{N \times C}$$

$$X_i \in \mathbb{R}^F$$

$$X_i \in \mathbb{R}^N \times C$$

$$X_i \in \mathbb{R}^N \times C$$

How to reduce uncertainty in difficulty estimation?

• Uncertain difficulty scores will ruin curriculum learning.

Main research questions:

- 1. How to properly define image difficulty?
- 2. Will calibration techniques reduce uncertainty and improve downstream tasks with curriculum learning?
- 3. Can we automatically find a curriculum for domain adaptation tasks?

Angular Gap based curriculum learning

2. Multilevel model calibration

3. Find the curriculum d_s for distributional shift

Reducing cross-domain discrepancy with a curriculum for CST (Hong Liu, etc 2021)

Experiments

- HSF datasets (limited resource)
 - o CIFAR10-H (Battleday, etc 2020)
 - ImageNetV2 (BenjaminRecht, etc 2019)

- Domain adaptation datasets
 - Office31 (Saenko, etc 2010)
 - VisDA2017 (Peng, etc 2017)

- ➤ Intrinsic Evaluation
 - Spearman rank correlation analysis (Charles Spearman)
 - Kendall Tau correlation analysis (<u>Maurice Kendall</u> 1938)
 - Expected Calibration Error (ECE)
- > Extrinsic Evaluation
 - classification accuracy on CIFAR10
 - Performance on domain adaptation

Evaluation

Table 1. Correlation analysis of example difficulties and HSF on CIFAR 10-H.

Performance of corresponding curriculum learning.

Methods	Spearman's rank	Kendall's Tau	ECE	Top-5 acc.	Top-1 acc.
Maximum Confidence	0.266 ± 0.006	0.148 ± 0.004	11.3±0.2	94.5±0.3	74.8±2.1
Maximum Confidence _{TS}	0.273 ± 0.004	0.145 ± 0.004	9.1 ± 0.2	94.5 ± 0.3	75.3 ± 2.1
Classfication Margin[39]	0.279 ± 0.006	0.142 ± 0.004	11.3 ± 0.2	94.6 ± 0.3	75.3 ± 2.0
Classfication Margin _{TS}	0.283 ± 0.006	0.242 ± 0.004	9.0 ± 0.2	94.9 ± 0.3	75.7 ± 1.3
MC-Dropout[10]	0.256 ± 0.007	0.176 ± 0.006	9.4 ± 0.4	95.7 ± 0.3	77.0 ± 0.5
AVH[5]	0.368 ± 0.006	0.258 ± 0.004	8.2 ± 0.2	98.2 ± 0.3	81.2 ± 1.0
. AVH _{Global}	0.376 ± 0.003	0.263 ± 0.003	7.5 ± 0.2	98.6 ± 0.2	81.3 ± 0.7
$AVH_{Class-wise}$	0.377 ± 0.003	0.265 ± 0.002	7.4±0.2	98.6 ± 0.2	81.4 ± 0.6
Forgetting Events[39]	0.260 ± 0.003	0.187 ± 0.002	11.5±0.5	98.0 ± 0.4	78.9 ± 1.2
C-score[18]	0.316 ± 0.001	0.243 ± 0.001	9.8 ± 0.3	99.0±0.1	82.4±0.4
Prediction Depth[1]	0.290±0.001	0.183 ± 0.001	9.8±0.3	98.5±0.2	81.2±0.4
Angular Gap (Ours)	0.378±0.003	0.265±0.003	8.2±0.2	98.6±0.2	82.0±0.6
Angular Gap _{Global}	0.382 ± 0.003	0.268 ± 0.002	7.5 ± 0.2	98.8±0.2	82.3±0.4
Angular Gap _{Class-wise}	0.384±0.002	0.269 ± 0.002	7.4±0.2	98.9±0.2	82.4±0.4

Evaluation

Table 2: Accuracy (%) for sythetic-to-real on VisDA2017

Method	Acc.	Method	Acc.
DANN[11]	55.3	CBST[46]	76.4
DAN[27]	61.1	CRST[47]	78.1
MSTN[43]	65.0	FixMatch[38]	76.7
JAN[28]	65.7	CST[25]	79.9
DSAN[45]	74.8	FixBi[29]	<u>87.2</u>
Curricular DSAN	75.4	Curricular CST	88.1

Why does calibrated Angular Gap work?

Model calibration reduces the uncertainty and improves robustness of image difficulty estimation.

Angular Gap uses trustworthy similarities

(b) Class-wise calibration with FN

Conclusion

- We propose Angular Gap to estimate image difficulty and reduce its uncertainty with class-wise calibration.
- Our results benefit from feature normalization of hyperspherical learning.
- We build an Angular Gap based curriculum with CST for UDA.
- Model calibration benefits image difficulty estimation. Simply scaling up the model leads to unstable difficulty estimation.

Thank you