This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CLAIMS

What is claimed is:

10

5

- 1. A method of quantifying the degree of fusion of a layer comprising the following steps with no specified order, unless order is implicit in the step itself:
- (a) reflecting a laser beam off the exposed surface of the layer to produce a reflected laser beam;
- 5 (b) acquiring the reflected laser beam with a sensor and determining the value of a characteristic of the reflected laser beam;
 - (c) determining a value based on the characteristic of the reflected beam that correlates to degree of fusion of the layer; and
 - (d) correlating the value based on the characteristic of the reflected beam to the degree of fusion of the layer.
 - 2. The method of quantifying the degree of fusion of the layer of claim 1, further comprising the step (e) of determining the value of the characteristic of the laser beam reflecting the laser beam off the exposed surface of the layer having a known degree of fusion;
 - wherein the value based on the characteristic of the reflected beam that correlates to degree of fusion of the layer of step (c) is the value of the characteristic of the acquired reflected beam of step (b); and

wherein the step of correlating the value based on the characteristic of the reflected beam to the degree of fusion of the layer of step (d) comprises comparing:

the value based on the characteristic of the reflected beam of step (c) and

10

15

20

25

the value of the characteristic of the laser beam being reflected off the exposed surface of the layer having a known degree of fusion of step (f).

3. The method of quantifying the degree of fusion of the layer of claim 1, further comprising the step (f) of determining the value of the characteristic of the laser beam being reflected off the exposed surface of a plurality of layers having different known degrees of fusion, and plotting a graph of the known degree of fusion versus the value of the characteristic of the laser beam being reflected off the exposed surface of the layer having different known degree of fusion;

wherein the value based on the characteristic of the reflected beam that correlates to degree of fusion of the layer of step (c) is the value of the characteristic of the acquired reflected beam of step (b); and

wherein the step of correlating the value based on the characteristic of the reflected beam to the degree of fusion of the layer of step (d) comprises entering the graph with the value based on the characteristic of the reflected beam of step (c) and determining the degree of fusion of the layer.

4. The method of quantifying the degree of fusion of the layer of claim 1, wherein the characteristic of the reflected laser beam of step (b) is the wavefront of the laser beam.

- 5. The method of quantifying the degree of fusion of the layer of claim 4, wherein step (d) comprises correlating the wavefront distortion to the degree of fusion of the layer.
- 6. The method of quantifying the degree of fusion of the layer of claim 1, wherein the characteristic of the reflected laser beam of step (b) is an intensity profile characteristic of the reflected laser beam.
- 7. The method of quantifying the degree of fusion of the layer of claim 6, wherein the intensity profile characteristic of the reflected laser beam is the total intensity of the reflected laser beam.
- 8. The method of quantifying the degree of fusion of the layer of claim 1, wherein step (d) comprises comparing the value of the characteristic of the reflected laser beam of step (b) to a set of characteristic values corresponding to a known set of fusion values.
- 9. The method of quantifying the degree of fusion of the layer of claim 1, wherein the layer is transparent.
- 10. The method of quantifying the degree of fusion of the layer of claim 1, wherein the layer is translucent or opaque.

- 11. The method of quantifying the degree of fusion of the layer of claim 1, wherein the method is continuous.
- 12. The method of quantifying the degree of fusion of the layer of claim 1, wherein the layer is a polymeric material overlying a substrate.
- 13. The method of quantifying the degree of fusion of the layer of claim12, wherein the layer is transparent or translucent.
- 14. The method of quantifying the degree of fusion of the layer of claim 13, wherein the substrate comprises a printed pattern and an edge portion that is free of the printed pattern, and wherein the laser beam is reflected off the edge portion.
- 15. The method of quantifying the degree of fusion of the layer of claim 13, wherein the method is continuous.
- 16. An apparatus for quantifying the degree of fusion of a layer30 comprising:
 - a laser generator for projecting an initial laser beam unto the layer;
 - a sensor for receiving a laser beam reflected off the layer; and
 - a computer operatively connected to the sensor for determining the degree of fusion of the layer.

- 17. The apparatus for quantifying the degree of fusion of the layer of claim 16, wherein the sensor is a wavefront-sensitive sensor.
- 18. The apparatus for quantifying the degree of fusion of the layer of claim 17, further comprising a beam expander operatively placed between the wavefront-sensitive senor and the layer.
- 19. The apparatus for quantifying the degree of fusion of the layer of claim 16, wherein the sensor is an intensity profile sensitive sensor.

35

40

20. A method of controlling the degree of fusion of a polymer layer comprising:

reflecting a laser beam off the polymer layer to produce a reflected laser beam; acquiring the reflected laser beam and determining the value of a characteristic of the reflected laser beam;

comparing the value of the determined reflected characteristic with a value corresponding to the target minimum fusion; and

adjusting the fusion processing conditions.

- The method of claim 20, wherein the value of the target minimumfusion is determined by the steps comprising:
 - preparing a series of layer samples that have been fused at various temperature conditions;

determining the value of the reflected characteristics of the film samples by
reflecting a laser beam off the samples to produce a reflected laser beam and

determining the value of the characteristic of the reflected laser beam;
selecting a minimum desired degree of fusion of the film samples; and
selecting the corresponding reflected characteristic as a minimum target value.

- 22. The method of claim 21, wherein the layer comprises a polyvinyl chloride plastisol.
- 23. The method of claim 20, wherein the laser beam is reflected off the surface of the polymer layer near the edge of the polymer layer.