Calculation	Set 1	Set 2	Set 3	Marks
$V_{DS}=V_{GS}-V_{TH}$	0.7V	0.6V	0.8V	1
I_D	1.47mA	1mA	3.55mA	1
V_{DD}	1.8025V	1.1V	1.688V	1

Solution of Set 2 question

RD= 500.
$$\Omega$$
 $\omega |_{L^{2}} 10/0.18$, $V_{WS}=IV$, $V_{TH}^{2} 0.4V$

For M, not to enter touche region, $V_{DS} > V_{WS}-V_{TH}$
 $\Rightarrow V_{DS} > 1-0.4 = 0.6V$

also, $V_{DS} = V_{DD}-I_{D}R_{D}-O$

with V_{DS} and $V_{DS} = V_{DD}-I_{D}R_{D}$

to be excluded before finding $V_{DS} = V_{DS} = V_{DS}$
 $V_{DS} = V_{DS} = V_{DS} = V_{DS} = V_{DS}$
 $V_{DS} = V_{DS} = V_{DS}$

Q2.

Calculation	Set 1	Set 2	Set 3	Marks
V_{DD}	2V	1V	1.8V	1.5
I_{ss}	0.44mA	0.04mA	0.036mA	1.5

Solution of Set 2 question

Q3.

Calculation	Set 1	Set 2	Set 3	Marks
R _{out}	$R_D + \frac{1}{gm2} \ r_{03}$	$R_D + \frac{1}{gm2}$	$^{1}/_{gm2}$	0.5
A_{V}	$g_{m1}\left(R_D + \frac{1}{gm2} \ r_{03}\right)$	$g_{m1}\left(R_D\right.\\ \left.+\frac{1}{gm2}\right)$	$\frac{R_1 \ ^{1}/g_{m1}}{R_s + R_1 \ ^{1}/g_{m1}} \frac{g_{m1}}{g_{m2}}$	1
R _{out}	R_{D}	$\frac{1}{g_{m2}}$	R_D	0.5
A_{V}	$\frac{R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$	$\frac{1/g_{m2}}{\frac{1}{g_{m1}} + \frac{1}{g_{m3}}}$	$\frac{R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$	1

Q4.

Calculation	Set 1	Set 2	Set 3	Marks
Gm	0.77 mA/V	1mA/V	1mA/V	1.5
W/L	5.92 (~6)	8.33 (~9)	8.33 (~9)	1.5

Solution of Set 2 question

Calculation	Set 1	Set 2	Set 3	Marks
I_D	1mA	1mA	1.67mA	0.5
$V_{DS}=V_{GS}-V_{TH}$	0.85V	0.6V	0.5V	0.5
W/L	27.68	55.55	133.6	1
R_1	21.42kΩ	45kΩ	86.956kΩ	1
R_2	300kΩ	90kΩ	117.66kΩ	1

Solution of Set 2 question

Of Vas = 200mV
$$I_0 R_f = 200mV$$
 $I_D = \frac{200m}{20052} = 10000$
 $V_D = \frac{1}{1000} = \frac{1}$

Q6.

Calculation	Set 1	Set 2	Set 3	Marks
V_{GS1}	0.7V	0.8V	0.7V	0.5
$V_{\mathrm{DS1\;min}}$	0.3V	0.3V	0.3V	0.5
V_{Smin}	0.3 V	0.3V	0.3V	0.5
V_{GS2max}	1.5V	1.5V	1.5V	0.5
W/L	4.13	5	4.13	1
Voltage gain	3.67	3.33	3.69	1

Solution of Set 2 question