

Introduction to Formal Methods

Lecture 2 Boolean Satisfiability (SAT) Solving Hossein Hojjat & Fatemeh Ghassemi

September 25, 2018

(Deductive) Formal Verification Steps

- 1. **Modeling:** Create a mathematical model of the system
 - A modeling error can introduce false bugs or mask real bugs
 - For many systems, this step can be done automatically
- 2. **Specification:** Specify the correctness properties in a formal language
 - Challenge to translate informal specifications into formal ones
 - Many languages: UML, CTL, PSL, Spec#, etc.
- 3. **Proof:** Prove that the model satisfies the specification
 - Use a theorem prover for generated conditions
 - SAT solving, SMT solving, resolution-based theorem proving, rewriting, interactive provers

1

Automatic Theorem Provers

- Many real-world verification efforts require human expertise to complete the proofs
- If a computer can do the proof automatically, this greatly improves the feasibility of formal verification
- Automatic theorem provers have improved significantly in recent years
 - Enables formal verification of larger and more complex systems
- In this lecture we will look at one of the techniques for automated theorem proving: SAT solvers

Project

- Boolean Satisfiability is a well-known NP-complete decision problem
 - First NP-complete problem (Cook, 1971)
- Many practical applications in different areas of computer science
 - e.g. SMT solving, Bounded model checking (will discuss later in this course)
- Your first project: implement SAT solver
- This lecture: an overview of two SAT-solving algorithms:
 - 1. Truth Tables
 - 2. DPLL Algorithm

Propositional Logic

Boolean variable: variable with two possible values: True or False

Boolean Formula

- True and False are Boolean formulas
- Any Boolean variable x is a Boolean formula
- ullet If ψ is a Boolean formula then $\overline{\psi}$ is a Boolean formula
- If ψ_1 and ψ_2 are Boolean formulas then $(\psi_1 \circ \psi_2)$ is a Boolean formula
 - $\bullet \ \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

Conjunctive Normal Form (CNF)

• Literal: Boolean variable or a negated Boolean variable

• Clause: Disjunction of literals

• CNF: (Conjunctive Normal Form) Conjunction of clauses

Example: CNF formula

$$(x_1 \lor x_2) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1})$$

• Boolean variables: $\{x_1, x_2, x_3\}$

 \bullet Literals: $\{x_1,\overline{x_1},x_2,\overline{x_2},x_3\}$

• Clauses: $\{(x_1\vee x_2),(x_1\vee \overline{x_2}\vee x_3),(\overline{x_1})\}$

Tseitin Transformation:

Efficient transformation of an arbitrary Boolean formula to a CNF formula

- 1. Build a derivation tree with variables as leaves
- 2. Introduce a fresh variable for every internal node
- 3. Encode the meaning of the fresh variables with clauses
- 4. Conjoin the root with all the encoding clauses

$$(\ell_1 \leftrightarrow (x \to \ell_2)) \land$$
$$(\ell_2 \leftrightarrow (y \land z)) \land$$
$$(\ell_1)$$

- 1. Build a derivation tree with variables as leaves
- 2. Introduce a fresh variable for every internal node
- 3. Encode the meaning of the fresh variables with clauses
- 4. Conjoin the root with all the encoding clauses

$$(\ell_1 \to (x \to \ell_2)) \land ((x \to \ell_2) \to \ell_1) \land$$
$$(\ell_2 \leftrightarrow (y \land z)) \land$$
$$(\ell_1)$$

- 1. Build a derivation tree with variables as leaves
- 2. Introduce a fresh variable for every internal node
- 3. Encode the meaning of the fresh variables with clauses
- 4. Conjoin the root with all the encoding clauses

$$(\overline{\ell_1} \vee \overline{x} \vee \ell_2) \wedge (x \vee \ell_1) \wedge (\ell_1 \vee \overline{\ell_2}) \wedge (\ell_2 \leftrightarrow (y \wedge z)) \wedge (\ell_1)$$

- 1. Build a derivation tree with variables as leaves
- 2. Introduce a fresh variable for every internal node
- 3. Encode the meaning of the fresh variables with clauses
- 4. Conjoin the root with all the encoding clauses

$$(\overline{\ell_1} \vee \overline{x} \vee \ell_2) \wedge (x \vee \ell_1) \wedge (\ell_1 \vee \overline{\ell_2}) \wedge (\overline{\ell_2} \vee y) \wedge (\overline{\ell_2} \vee z) \wedge (\overline{y} \vee \overline{z} \vee \ell_2) \wedge (\ell_1)$$

$$(\ell_1)$$

Satisfiability

 A truth assignment assigns a truth value (True or False) to each Boolean variable

Boolean Satisfiability Problem:

- Given a Boolean formula find:
- Variable assignment such that the formula evaluates to **True** (Satisfiable)
- Prove that no such assignment exists (Unsatisfiable)

SAT Solver:

- Program to decide whether a given Boolean formula instance is satisfiable or unsatisfiable
- Usually takes input in Conjunctive Normal Form (CNF)

•
$$(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$$

- $(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{T}, x_3 \to \mathbf{F}\}$

- $(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{T}, x_3 \to \mathbf{F}\}$

•
$$(x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2})$$

- $(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{T}, x_3 \to \mathbf{F}\}$
- $(x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2})$
- Unsatisfiable

- $(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{T}, x_3 \to \mathbf{F}\}$
- $(x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2})$
- Unsatisfiable

•
$$(\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2})$$

- $(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{T}, x_3 \to \mathbf{F}\}$
- $(x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2})$
- Unsatisfiable

- $(\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2})$
- Unsatisfiable

- $(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{T}, x_3 \to \mathbf{F}\}$
- $(x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2})$
- Unsatisfiable

- $(\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2})$
- Unsatisfiable

• $(\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})$

- $(x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_1 \vee x_3) \wedge (\overline{x_1})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{T}, x_3 \to \mathbf{F}\}$
- $(x_1 \lor x_2) \land (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_2})$
- Unsatisfiable

- $(\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2})$
- Unsatisfiable

- $(\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})$
- Satisfiable: $\phi = \{x_1 \to \mathbf{F}, x_2 \to \mathbf{F}, x_3 \to \mathbf{F}\}$

Example: Equivalence Verification

$$x \mid \overline{x}$$
 \mathbf{F}
 \mathbf{T}

$$egin{array}{c|cccc} x_2 & x_1 & x_1 \lor x_2 \\ \hline F & F & F \\ \hline F & T & \\ \hline T & F & \\ \hline T & T & \\ \hline \end{array}$$

$$\begin{array}{c|cc}
x & \overline{x} \\
\hline
\mathbf{F} & \mathbf{T} \\
\mathbf{T} & \mathbf{F}
\end{array}$$

$$\begin{array}{c|cc}
x & \overline{x} \\
\hline
\mathbf{F} & \mathbf{T} \\
\mathbf{T} & \mathbf{F}
\end{array}$$

$$\begin{array}{c|c|c|c} x_2 & x_1 & x_1 \lor x_2 \\ \hline F & F \\ F & T \\ T & F \\ T & T \\ \end{array}$$

$$\begin{array}{c|cc}
x & \overline{x} \\
\hline
\mathbf{F} & \mathbf{T} \\
\mathbf{T} & \mathbf{F}
\end{array}$$

x_2	x_1	$x_1 \wedge x_2$
\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
${f T}$	\mathbf{F}	\mathbf{F}
${f T}$	\mathbf{T}	${f T}$

x_2	x_1	$x_1 \lor x_2$
\mathbf{F}	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	\mathbf{T}
${f T}$	\mathbf{F}	\mathbf{T}
${f T}$	\mathbf{T}	\mathbf{T}

x_3	x_2	x_1	x_2	\wedge	$(x_1$	\vee	$\overline{x_3}$)
\mathbf{F}	\mathbf{F}	\mathbf{F}					
\mathbf{F}	\mathbf{F}	\mathbf{T}					
\mathbf{F}	\mathbf{T}	\mathbf{F}					
\mathbf{F}	\mathbf{T}	\mathbf{T}					
${f T}$	\mathbf{F}	\mathbf{F}					
${f T}$	\mathbf{F}	\mathbf{T}					
${f T}$	\mathbf{T}	\mathbf{F}					
${f T}$	\mathbf{T}	\mathbf{T}					
		'					

x_3	x_2	x_1	x_2	\wedge	$(x_1$	\vee	$\overline{x_3}$)
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}		\mathbf{F}		
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}		${f T}$		
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}		\mathbf{F}		
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}		${f T}$		
${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}		\mathbf{F}		
${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}		${f T}$		
${f T}$	\mathbf{T}	F	\mathbf{T}		\mathbf{F}		
${f T}$	\mathbf{T}	\mathbf{T}	\mathbf{T}		${f T}$		
		'					

x_3	x_2	x_1	x_2	\wedge (x_1)	\vee	$\overline{x_3}$)
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}		${f T}$
${f F}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$		${f T}$
${f F}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}		${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$		${f T}$
${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f F}$		\mathbf{F}
${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$		\mathbf{F}
${f T}$	\mathbf{T}	F	\mathbf{T}	\mathbf{F}		\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$		\mathbf{F}

x_3	x_2	x_1	x_2	\wedge	$(x_1$	\vee	$\overline{x_3}$)
\mathbf{F}	\mathbf{F}	F	\mathbf{F}		\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}		${f T}$	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}		\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}		${f T}$	${f T}$	${f T}$
${f T}$	\mathbf{F}	F	\mathbf{F}		\mathbf{F}	\mathbf{F}	\mathbf{F}
${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}		${f T}$	${f T}$	\mathbf{F}
${f T}$	\mathbf{T}	F	\mathbf{T}		\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}		\mathbf{T}	\mathbf{T}	\mathbf{F}

x_3	x_2	x_1	x_2	\wedge	$(x_1$	\vee	$\overline{x_3}$)
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f F}$	${f T}$	${f T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	${f T}$	${f T}$
${f T}$	\mathbf{F}	F	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	\mathbf{F}
${f T}$	\mathbf{T}	F	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
${f T}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$	\mathbf{T}	\mathbf{F}

Tabulate values of Boolean formula for all possible values of its Boolean variables

x_3	x_2	x_1	x_2	\wedge	$(x_1$	\vee	$\overline{x_3}$)
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$
${f F}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f T}$
${f F}$	\mathbf{T}	\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{F}	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	${f T}$	${f T}$
${f T}$	\mathbf{F}						
${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	\mathbf{F}
${f T}$	\mathbf{T}	F	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
${f T}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	${f T}$	\mathbf{F}

Algorithm

- To check whether a Boolean formula α is satisfiable, form the truth table for α :
- ullet If there is a row in which ${f T}$ appears as the value for lpha, then lpha is satisfiable
- Otherwise, α is unsatisfiable

• What is the complexity of the truth table algorithm?

- What is the complexity of the truth table algorithm?
- ullet 2ⁿ where n is the number of Boolean variables

- What is the complexity of the truth table algorithm?
- ullet 2ⁿ where n is the number of Boolean variables
- Can we do better?

- What is the complexity of the truth table algorithm?
- ullet 2ⁿ where n is the number of Boolean variables
- Can we do better?
- SAT was the first problem shown to be NP-complete
- In worst case, we need to spend the exponential time
- However, we can use heuristics to solve many formulas faster
- Modern SAT solvers are extremely fast most of the time!

Search Tree

- Binary search tree: at each node Boolean variable is set to a value
- SAT solver performs backtrack search in the tree

Search Tree

- Partial Truth Assignment: assignment to a <u>subset</u> of the Boolean variables
- Search algorithm gradually fills out a partial assignment until:
 - find a satisfying full assignment (if any)
 - backtrack to another partial assignment

$$x_2 \wedge (x_1 \vee \overline{x_3})$$

Search Tree

We can use heuristics to prune the search tree

Search Tree

We can use heuristics to prune the search tree

Heuristic: Early termination

- A clause becomes T when one of its literals is T
 - e.g. if x_2 is $\mathbf T$ then $(\overline{x_1} \vee x_2 \vee \overline{x_3})$ is $\mathbf T$
- \bullet A formula becomes F if any of its clauses is F
 - e.g. if x_2 is ${\bf F}$ then $x_2 \wedge (x_1 \vee \overline{x_3})$ is ${\bf F}$

During the search if the partial assignment:

- Makes a literal T then: simplify the formula by removing all the clauses that have that literal
- Makes a clause F then: stop the search and backtrack

Heuristic: Pure Variables

- Pure variable: always appears with the same "sign" in all clauses
- e.g., in the three clauses $(x_1 \lor x_2) \land (\overline{x_3} \lor x_1) \land (\overline{x_2} \lor \overline{x_3})$ x_1 and x_3 are pure, x_2 is impure
- ullet Make literals with pure symbols ${f T}$ for satisfiability
- Let x_1 and $\overline{x_3}$ be both ${\bf T}$ in example above

Heuristic: Unit Propagation

- Unit Clause: only one literal in the clause, e.g. (x_1)
- The only literal in a unit clause must be T
- ullet e.g., x_1 must be ${f T}$ in example above
- ullet Also includes clauses where all but one literal is ${f F}$
- e.g. $(x_1 \lor x_2 \lor x_3)$ where x_2 and x_3 are ${\bf F}$
- Unit Propagation (a.k.a "Boolean Constraint Propagation" or BCP): the key component in modern SAT solvers
- Iteratively apply unit propagation until there is no unit clause

Exercise

Apply unit propagation to the following formula:

$$(x_1) \wedge (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x_2}) \wedge (x_1 \vee x_4 \vee x_5) \wedge (\overline{x_3} \vee x_5)$$

Exercise

Apply unit propagation to the following formula:

$$(x_1) \wedge (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x_2}) \wedge (x_1 \vee x_4 \vee x_5) \wedge (\overline{x_3} \vee x_5)$$

 $x_1 = \mathbf{True}$

$$(x_2 \vee x_3) \wedge (\overline{x_2}) \wedge (\overline{x_3} \vee x_5)$$

 $x_2 = \mathbf{False}$

$$(x_3) \wedge (\overline{x_3} \vee x_5)$$

 $x_3 =$ True

 (x_5)

 $x_5 = \mathbf{True}$

16

- DPLL: popular complete satisfiability checking algorithms
 - There are incomplete approaches such as stochastic search as well
- Davis-Putnam procedure was introduced in 1960 by Martin Davis and Hilary Putnam
- Two years later, Martin Davis, George Logemann, and Donald W.
 Loveland introduced a refined version of the algorithm
- Nowadays, the later version of the algorithm is often referred to as DPLL procedure
 - Davis Putnam Logemann Loveland procedure

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- Apply pure literal rule
- If ϕ is satisfied (empty), return **SAT**
- Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL $(\phi \wedge \overline{x})$

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- Apply pure literal rule
- If ϕ is satisfied (empty), return **SAT**
- Select decision variable x
 - If DPLL $(\phi \wedge x) = SAT$ return SAT
 - return DPLL $(\phi \wedge \overline{x})$

Example:

$$\begin{array}{c} x_1 \vee x_2 \\ x_1 \vee \overline{x_2} \\ \hline x_1 \vee x_3 \vee x_4 \\ \hline x_1 \vee \overline{x_3} \vee x_4 \\ \hline x_1 \vee \overline{x_4} \\ \hline x_1 \vee \overline{x_4} \\ \hline x_1 \vee x_4 \vee x_5 \end{array}$$

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- → Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL $(\phi \wedge \overline{x})$

Example:

$$x_1 \lor x_2$$

$$x_1 \lor \overline{x_2}$$

$$\overline{x_1} \lor x_3 \lor x_4$$

$$\overline{x_1} \lor \overline{x_3} \lor x_4$$

$$\overline{x_1} \lor \overline{x_4}$$

$$\overline{x_1} \lor x_4 \lor x_5$$

(Pure Literal Rule)

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- → Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If DPLL $(\phi \wedge x) = SAT$ return SAT
 - return DPLL $(\phi \wedge \overline{x})$

Example:

$$x_1 \lor x_2$$

$$x_1 \lor \overline{x_2}$$

$$\overline{x_1} \lor x_3 \lor x_4$$

$$\overline{x_1} \lor \overline{x_3} \lor x_4$$

$$\overline{x_1} \lor \overline{x_4}$$

(Pure Literal Rule)

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- Apply pure literal rule
- If ϕ is satisfied (empty), return **SAT**
- Select decision variable x
- If DPLL $(\phi \land x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

$$\begin{array}{l} x_1 \vee x_2 \\ x_1 \vee \overline{x_2} \\ \overline{x_1} \vee x_3 \vee x_4 \\ \overline{x_1} \vee \overline{x_3} \vee x_4 \\ \overline{x_1} \vee \overline{x_4} \\ \end{array}$$

(Select x_4)

$\mathsf{DPLL}(\phi)$:

- → Apply unit propagation
 - If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If DPLL $(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

 $x_1 \lor x_2 \\ x_1 \lor \overline{x_2}$

 $\overline{x_1}$

(Select x_4) (Unit Propagation)

$\mathsf{DPLL}(\phi)$:

- → Apply unit propagation
 - If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

$$\frac{x_1 \vee x_2}{x_1 \vee \overline{x_2}}$$

(Select x_4) (Unit Propagation) (Unit Propagation)

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- $\rightarrow \bullet$ If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

 $\frac{x_1 \lor x_2}{x_2}$ Conflict!

Backtrack
$$\longrightarrow$$
 (Select x_4)
(Unit Propagation)
(Unit Propagation)

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- Apply pure literal rule
- If ϕ is satisfied (empty), return **SAT**
- Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL $(\phi \wedge \overline{x})$

Example:

$$\begin{array}{l} x_1 \vee x_2 \\ x_1 \vee \overline{x_2} \\ \overline{x_1} \vee x_3 \vee x_4 \\ \overline{x_1} \vee \overline{x_3} \vee x_4 \\ \overline{x_1} \vee \overline{x_4} \\ \hline{x_4} \end{array}$$

(Select $\overline{x_4}$)

$\mathsf{DPLL}(\phi)$:

- → Apply unit propagation
 - If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

 $x_1 \lor x_2$ $x_1 \lor \overline{x_2}$ $\overline{x_1} \lor x_3$ $\overline{x_1} \lor \overline{x_3}$

(Select $\overline{x_4}$) (Unit Propagation)

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- Apply pure literal rule
- If ϕ is satisfied (empty), return **SAT**
- Select decision variable x
- If DPLL $(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

 $x_1 \vee x_2$

 $x_1 \vee \overline{x_2}$

 $\frac{\overline{x_1} \vee x_3}{\overline{x_1} \vee \overline{x_3}}$

 x_1

(Select $\overline{x_4}$) (Unit Propagation) (Select x_1)

$\mathsf{DPLL}(\phi)$:

- → Apply unit propagation
 - If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

 $\frac{\overline{x_1} \vee x_3}{\overline{x_1} \vee \overline{x_3}}$

(Select $\overline{x_4}$) (Unit Propagation) (Select x_1) (Unit Propagation)₁₈

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- $\rightarrow \bullet$ If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

Example:

 $\frac{\overline{x_1} \vee x_3}{\overline{x_2} \vee \overline{x_2}}$ Conflict!

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
- Apply pure literal rule
- If ϕ is satisfied (empty), return **SAT**
- Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL $(\phi \wedge \overline{x})$

```
x_1 \lor x_2
x_1 \lor \overline{x_2}
\overline{x_1} \lor x_3
\overline{x_1} \lor \overline{x_3}
\overline{x_1} \lor \overline{x_3}
```

(Select $\overline{x_4}$) (Unit Propagation) (Select $\overline{x_1}$)

$\mathsf{DPLL}(\phi)$:

- → Apply unit propagation
 - If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL($\phi \wedge \overline{x}$)

 $\frac{x_1 \vee x_2}{x_1 \vee \overline{x_2}}$

 $\begin{array}{l} \text{(Select } \overline{x_4}\text{)} \\ \text{(Unit Propagation)} \\ \text{(Select } \overline{x_1}\text{)} \\ \text{(Unit Propagation)}_{18} \end{array}$

$\mathsf{DPLL}(\phi)$:

- Apply unit propagation
- $\rightarrow \bullet$ If $\{x, \overline{x}\} \in \mathsf{clauses}(\phi)$ for some x, return **UNSAT**
 - Apply pure literal rule
 - If ϕ is satisfied (empty), return **SAT**
 - Select decision variable x
 - If $DPLL(\phi \wedge x) = SAT$ return SAT
 - return DPLL $(\phi \wedge \overline{x})$

Nowhere to backtrack to now, DPLL returns UNSAT

Conflict!

(Select $\overline{x_4}$) (Unit Propagation) (Select $\overline{x_1}$) (Unit Propagation) 18

Modern SAT Solvers

CDCL = conflict-driven clause learning

- Smart unit-clause preference
- Deterministic and randomized search restarts
- Boolean constraint propagation using lazy data structures
- Conflict-based adaptive branching
- ...

Key Tools: GRASP (1996); Chaff (2001)

Current Capacity: millions of variables

Competition:

- International SAT Solver Competition
- http://www.satcompetition.org/

Speed-up of 2012 Solver over other Solvers

from Moshe Vardi

https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

SAT Solver Comparison

(Daniel Le Berre)