【一化基础大合集】【选必一 热效应】【考点精华】4 反应热重难点题型(中档)

能量图像+盖斯定律综合

(2020·全国I卷) 硫酸是一种重要的基本化工产品,接触法制硫酸生产中的关键工序是

V2O5(s)与 SO2(g)反应生成 VOSO4(s)和 V2O4(s)的热化学方程式为____。

燃烧热+盖斯定律综合

已知 \wedge $(g) + H_2(g) \rightarrow CH_3CH_2CH_3(g)$ $\Delta H = -157 \text{ kJ} \cdot \text{mol}^{-1}$

已知环丙烷(g)的燃烧热 $\Delta H = -2~092~~k \ | \cdot mol^{-1}$, 丙烷(g)的燃烧热 $\Delta H = -2~220~~k \ | \cdot mol^{-1}$

1 mol 液态水蒸发为气态水的焓变 $\Delta H = +44 \text{ kJ} \cdot \text{mol}^{-1}$,则 2 mol 氢气完全燃烧生成气态水的 ΔH 为 (

A. $-658 \text{ kJ} \cdot \text{mol}^{-1}$

B. $-482 \text{ kJ} \cdot \text{mol}^{-1}$

C. $-329 \text{ kJ} \cdot \text{mol}^{-1}$ D. $-285 \text{ kJ} \cdot \text{mol}^{-1}$

利用键能计算反应热

(2021 浙江 1 月选考) 已知共价键的键能与热化学方程式信息如下表:

共价键	н-н	Н-О
键能/(kJ·mol ⁻¹)	436	463
热化学方程式	$2H_2(g) + O_2(g) = 2H_2O(g)$	g) $\Delta H = -482 \text{kJ} \cdot \text{mol}^{-1}$

则 2O(g)=O₂(g)的ΔH为 (

A. 428 kJ·mol⁻¹ B. -428 kJ·mol⁻¹ C. 498 kJ·mol⁻¹ D. -498 kJ·mol⁻¹

盖斯定律+利用反应热计算键能

(2021 海南高考) 碳及其化合物间的转化广泛存在于自然界及人类的生产和生活中。

已知 25°C, 100 kPa 时:

①1 mol 葡萄糖[C₆H₁₂O₆(s)]完全燃烧生成CO₂(g)和H₂O(1),放出 2804kJ 热量。

$$(2) CO(g) + \frac{1}{2} O_2(g) = CO_2(g) \quad \Delta H = -283 \text{ kJ} \cdot \text{mol}^{-1}$$

回答问题:

(1)25°C时, CO_{2(g)} 与 H₂O_(l)经光合作用生成葡萄糖 [C₆H₁₂O₆(s)]和 O_{2(g)}的热化学方程式为

(2)25°C, 100kPa 时, 气态分子断开 1 mol 化学键的焓变称为键焓。

已知O=O、C=O键的键焓分别为495 kJ·mol⁻¹、799 kJ·mol⁻¹,

CO2(g) 分子中碳氧键的键焓为_____kJ·mol·1。

利用燃烧热的AH 计算反应热

(2020 全国II卷节选)天然气的主要成分为 CH4, 一般还含有 C2H6 等烃类,

是重要的燃料和化工原料。乙烷在一定条件可发生如下反应: $C_2H_6(g)=C_2H_4(g)+H_2(g)$ ΔH ,

相关物质的燃烧热数据如下表所示:

物质	$C_2H_6(g)$	$C_2H_4(g)$	$H_2(g)$
燃烧热 ΔH/(kJ·mol ⁻¹)	-1560	-1411	-286

 $\Delta H = kJ \cdot mol^{-1}$

利用燃烧热计算反应热

(2021 河北高考) 大气中的二氧化碳主要来自于煤、石油及其他含碳化合物的燃烧。

已知 25℃时, 相关物质的燃烧热数据如表:

物质	H ₂ (g)	C(石墨, s)	C ₆ H ₆ (1)
燃烧热△H(kJ•mol-1)	-285.8	-393.5	-3267.5

则 25°C时 H₂(g)和 C(石墨, s)生成 C₆H₆(1)的热化学方程式为

①C(石墨, s)+ $O_2(g)$ = $CO_2(g)$ $\Delta H_1 = -393.5 \text{kJ·mol·l}$,

 $2H_2(g) + \frac{1}{2}O_2(g) = H_2O(1) \Delta H_2 = -285.8 \text{kJ} \cdot \text{mol}^{-1}$

 $3C_6H_6(l) + \frac{15}{2}O_2(g) = 6CO_2(g) + 6H_2O(l) \Delta H_3 = -3267.5 \text{kJ} \cdot \text{mol}^{-1}$,

根据盖斯定律, $[①×12+②×6]×\frac{1}{2}$ 一③得反应:

6C(石墨, s)+3H₂(g)= C₆H₆(l), ΔH =[(-393.5kJ·mol⁻¹)×12+(-285.8kJ·mol⁻¹)×6]× $\frac{1}{2}$ -(-3267.5kJ·mol⁻¹)=49.1kJ·mol⁻¹

标准摩尔生成焓题型

已知:在标准压力下,由最稳定的单质生成 1 mol 某物质反应的焓变为该物质的标准摩尔生成焓,用 $\Delta_f H_m^\theta$ 表示,稳定单质的标准摩尔生成焓为 0。如表是一些物质的标准摩尔生成焓:

化合物	葡萄糖	正丁烷	异丁烷	H ₂ O(1)	CO ₂
$\Delta_{\mathrm{f}}\mathrm{H}^{\mathrm{e}}_{\mathrm{m}}$ /(kJ·mol ⁻¹)	-1259.8	- 125	-132	- 285.8	-393.5

②光合作用反应原理: $6CO_2(g) + 6H_2O(l) = C_6H_{12}O_6(s) + 6O_2(g) \Delta H = ____kJ \cdot mol^{-1}$