

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2018 - 1st Year Examination - Semester 2

IT2105 - Mathematics for Computing I
22nd September 2018
(TWO HOURS)

Important Instructions:

- The duration of the paper is 2 (two) hours.
- The medium of instruction and questions is English.
- The paper has 41 questions and 8 pages.
- All questions are of the MCQ (Multiple Choice Questions) type.
- All questions should be answered.
- Each question will have 5 (five) choices with **one or more** correct answers.
- All questions will carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (All the incorrect choices are marked & no correct choices are marked) to +1 (All the correct choices are marked & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper.
- If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.

Notations:

N - set of positive integers

Z – set of integers R – set of positive in \varnothing – (null) empty set

S – Universal set

R+- set of positive real numbers

1) Which of the following is/are correct?

- $\log_a 1 = 1$, for all $a \in \mathbb{N}$.
- $\log_a a = 1$, for all $a \in \mathbb{N}$.
- $\log_a \left(\frac{u}{v}\right) = \frac{\log_a u}{\log_a v}$, for all $u, v(\neq 0) \in \mathbb{R}^+, a \in \mathbb{N}$.
- (d) $log_a a = a$, for all $a \in N$.
- (e) $log_a 1 = 0$, for all $a \in \mathbb{N}$.

2)
$$\frac{9^{1/2} \times 2^2}{9^{3/2} \times 2^0}$$
 is equal to

- (a) 2
- (b) $\frac{4}{9}$
- (c) 1.
- (d) $\frac{2}{27}$
- (e) 4.

3)
$$3 + \log_4\left(\frac{1}{64}\right)$$
 is equal to

(a) log₄ 16.

- (b) 2 log₄ 4.
- (c) $4 \log_4 2$.

(d) 0.

(e) 1.

Suppose
$$A = \{(m, n) \mid m, n \in \mathbb{Z} \text{ and } n < m < n + 1\}$$
. Which of the following is/are true?

- (a) $A = \{(0,0)\}.$
- (b) $A=\emptyset$.
- (c) $A=\{\emptyset\}$.
- (d) $A = \{0\}$.
- (e) $A = \{ (n+1, n) \mid n \in Z \}.$

5) Let
$$A = \{(x, y) \mid x, y \in Z \text{ and } 2x + 3y = 13\}$$
 and $B = \{(x, y) \mid x, y \in Z \text{ and } 3x - 2y = 0\}.$

What is $A \cap B$?

- (a) $\{(2,3)\}$
- (b) $\{(3,2)\}$
- (c) Ø
- (d) $\{\emptyset\}$
- (e) (3,2)

6) Let A and B be non empty sets. Which of the following is/are correct?

(a) $A \cap (A \setminus B) \cap B^c = A \setminus B$

(b) $(A \cap (A \setminus B) \cap B^c = \emptyset$

(c) $(A\backslash B) \cap B = \emptyset$

(d) $A \setminus B \subseteq B$

(e) $A \setminus B \subseteq A$

7) Let A and B be two distinct non-empty sets. Which of the following is/are false?

(a) $A \subseteq A \cup B$

(b) $A \subset A$

(c) $A \subset A \cap B$ (d) $U^c = \emptyset$

(e) $A \subset \emptyset^c$

8) Consider the following Venn diagram.

Which of the following set(s) represent(s) by the shaded portion?

(a) $(A \cap B)^c \setminus (A \cap B \cap C)$.

(b) $A^c \cap (B \cup A)$.

(c) $(B \cup C)^c \cap A$.

(d) $(A \cap B \cap C)^c \setminus (A \cap C)$. (e) $(A \cap C) \setminus (A \cap B \cap C)$.

9) The sets A, B, C are such that $B \neq C$ and $A \setminus B = A \setminus C$. Which of the following is/are true?

(a) A=B.

(b) $A \cap B = A \cap C$.

(c) $A \cap C \subseteq B$.

(d) $A \cap B \subseteq C$.

(e) A=C.

10) Let p and q be two atomic propositions. Which of the following is/are a contradiction(s)?

(a) $p \vee \sim q$.

(b) $p \wedge q \rightarrow p \vee q$.

(c) $p \wedge (q \wedge \sim q)$.

(d) $p \lor (q \lor \sim q)$.

(e) ($p \wedge q \rightarrow p \vee q$) $\vee \sim q$.

11) Which of the following pairs of propositions is/are equivalent?

(a) $(p \rightarrow q)$, $\sim (\sim p \land q)$.

(b) $(p \rightarrow q)$, $(\sim q \rightarrow \sim p)$. (c) $(p \land q)$, $\sim (\sim p \land q)$.

(d) $(p \rightarrow q)$, $(\sim p \rightarrow \sim q)$..

(e) $(p \wedge q)$, $(\sim p \vee \sim q)$.

12) Consider the following truth table of the proposition Q with three propositional variables p, q and r

p	q	r	Q
T	T	T	T
T	T	F	F
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	T
F	F	F	T

Which of the following gives Q?

```
 \begin{array}{ll} \text{(a) } (\sim p \wedge \sim q \wedge r) \vee (\sim p \wedge q \wedge r) \vee (p \wedge \sim q \wedge r). \\ \text{(b) } (\sim p \vee \sim q \vee r) \wedge (\sim p \vee q \vee r) \wedge (p \vee \sim q \vee r). \\ \text{(c) } (p \wedge q \wedge \sim r) \vee (p \wedge \sim r) \vee (\sim p \wedge q \wedge \sim r). \\ \text{(e) } (p \vee q) \rightarrow r. \end{array}
```

13) Which of the following proposition(s) is/are equivalent to $(p \land q) \Rightarrow r$?

```
 \begin{array}{ll} (a) \sim r \rightarrow (p \wedge q). & (b) \sim r \rightarrow \sim (p \wedge q). & (c) \sim r \rightarrow (p \vee q). \\ (d) \sim r \rightarrow \sim (p \vee q). & (e) \sim r \rightarrow \sim p \vee \sim q. \end{array}
```

Suppose A and B are two sets and $A \subseteq B$. Which of the following is/are true?

```
(a) \forall x \ (\sim(x \in A) \lor (x \in B)). (b) \forall x \ (x \in B \to x \in A). (c) \forall x \ (x \in A \to x \in B). (d) \exists x \ (x \in A \to x \in B). (e) \exists x \ (\sim(x \in A) \lor (x \in B)).
```

15) Suppose A and B are two sets and A=B. Which of the following is/are true?

```
 \begin{array}{ll} \hbox{ (a) } (A \subseteq B) \land \neg (\forall x \ (x \in B \Rightarrow x \in A) \ ). \\ \hbox{ (c). } (A \subseteq B) \land \neg (\forall x \ (x \in A \Rightarrow x \in B) \ ). \\ \hbox{ (e) } \forall x \ (x \in B \Leftrightarrow x \in A). \end{array}
```

Which of the following arguments is/are **invalid**?

If p(x,y) is a predicate defined on the set D and $(\forall x \forall y p(x,y))$ is false, which of the following **must** be true?

```
(a) (\exists x \exists y \ p(x,y)) is true.
```

- (b) $(\exists x \exists y \ p(x,y))$ is false.
- (c) \sim ($\exists x \exists y \ p(x,y)$) is true.
- (d) \sim ($\exists x \exists y \ p(x,y)$) is false.
- (e) \sim ($\forall x \forall y p(x,y)$) is true.

Let $D=\{x_1, x_2, x_3,..., x_n\}$. If p(x) is a predicate defined on the set D and $\exists x \ p(x)$ is false, which of the following **must** be true?

```
(a) (\forall x \sim p(x)) is true..
```

- (b) \sim ($\exists x \ p(x)$) is false.
- (c) \sim ($\exists x p(x)$) is true.
- (d) $(\forall x p(x))$ is false.
- (e) $(\forall x p(x))$ is true.

Let the two predicates p(x) and q(x) be defined as p(x): x < -2 and q(x): x > +2 where $x \in R$.

Which of the following propositions is/are **false**?

(a)
$$\exists x \sim (p(x) \vee q(x))$$

(b)
$$(\forall x \ p(x)) \lor (\forall x \ q(x))$$

(c)
$$\forall x (p(x) \lor q(x))$$

(d)
$$(\exists x \ p(x)) \land (\exists x \ q(x))$$

(e)
$$(\exists x \ p(x)) \lor (\exists x \ q(x))$$

20) Which set(s) of the following statements is/are consistent?

(a)
$$p \vee \sim q$$
, $\sim p$, $\sim q$.

(b)
$$p \vee q$$
, $\sim p$, $\sim q$.

(c)
$$\sim p \vee \sim q$$
, p, q.

(d)
$$p \wedge q$$
, $\sim p$, q .

(e)
$$\sim p \land \sim q, \sim p, \sim q$$
.

21) If $x \in \mathbb{N}$, which of the following is/are true?

(a)
$$\forall x (x^2 + x \ge 2 \land x^2 \ge 1)$$
.

(b)
$$\forall x (x^2 + x > 2 \lor x^2 \ge 1)$$
.

(c)
$$\forall x (x^2 + x > 2 \lor x^2 > 1)$$
.

(d)
$$(\forall x \ x^2 + x > 2) \lor (\forall x \ x^2 > 1)$$
.

(e)
$$(\forall x \ x^2 + x > 2) \lor (\forall x \ x^2 \ge 1)$$
.

Let $A=\{a,b\}$ and $B=\{3,8\}$. Which of the following is/are true?.

(a)
$$A \times B = \{(3, a), (8, a), (3, b), (8, b)\}.$$

(b)
$$A \times B = \{(a,3), (b,8), (a,8), (b,3)\}.$$

(c)
$$A \times B = \{(a, 3), (a, 8), (b, 3), (b, 8)\}.$$

(d)
$$A \times B = \{(x, y) | x \in A, y \in B\}.$$

(e)
$$A \times B = B \times A$$
.

```
Question 23 - 27 are based on the following relations.
                      \mu = \{ (a, b) | a \le b \land a, b \in Z \}
                      \pi = \{ (a, b) | a \ge b \land a, b \in Z \}
                      \theta = \{ (a, b) | a^2 = b^2 \land a, b \in Z \}
                     \sigma = (a, b) | b = a + 2 \wedge a, b \in \mathbb{Z} 
23)
           Which of the following define the relation \mu \cap \pi?
             (a) \{(a, b) | a, b \in Z\}
                                                                         (b) \{(a, b) | a, b \in Z \land a = b \}
             (c) \{(a, a) | a \in Z \}
                                                                        (d) \{(a, b) | a, b \in Z \land (a < b) \lor (a > b) \}
             (e) Z x Z
24)
           Which of the following define the relation \theta o \sigma?
             (a) \{(a,b)| a,b \in \mathbb{Z}, b=a^2+2 \}.
                                                         (b) \{(a,b)| a,b \in \mathbb{Z}, b=(a+2)^2 \}.
                                                                                                     (c) \{(a,b)| a,b \in \mathbb{Z}, b=(a-2)^2 \}.
                                                         (e) \{(a,b)| a,b \in \mathbb{Z}, b^2=a^2-2 \}.
             (d) \{(a,b)| a,b \in \mathbb{Z}, b=a^2-2 \}.
           Which of the following relation(s) is/are Reflexive?
25)
             (a) \mu
                                      (b) \pi
                                                              (c) \theta
                                                                                      (d) \sigma
                                                                                                                (e) \mu \cap \pi
26)
           Which of the following relation(s) is/are Symmetric?
             (a) \mu
                                      (b) \pi
                                                              (c) \theta
                                                                                      (d) \sigma
                                                                                                                (e) \mu \cap \pi
27)
           |5|_{\sigma} is equal to
            (a) { 25 }.
                                    (b) \{(5,b) \mid b=5+2 \land b \in Z \}.
                                                                                  (c) { 7 }.
                                                                                                       (d) { 3 }.
                                                                                                                             (e) \{ (5,7) \}.
           Suppose \rho is a relation, and D(\rho) and R(\rho) are domain and range of \rho respectively. Which of the
28)
           following is/are true?
             (a) D(\rho)={ x \mid \exists y \in R(\rho), (y,x) \in \rho }.
             (b) D(\rho)={ y \mid \exists x \in R(\rho) \ (x,y) \in \rho }.
             (c) D(\rho)={ x \mid \exists y \in R(\rho) \ (x,y) \in \rho }.
             (d) D(\rho)={ y \mid \exists x \in R(\rho) \ (y,x) \in \rho }.
            (e) D(\rho)={ x \mid \forall y \in R(\rho) \ (x,y) \in \rho }.
```

Let f be a 1-1 function and $x_1, x_2 \in D(f)$. Which of the following is/are true?.

(a) $\forall x_1, \forall x_2 \ (f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$ (b) $\forall x_1, \forall x_2 \ (x_1 = x_2 \Rightarrow f(x_1) = f(x_2)).$ (c) $\forall x_1, \forall x_2 \ (x_1 \neq x_2 \lor f(x_1) = f(x_2)).$ (d) $\forall x_1, \forall x_2 \ (x_1 \neq x_2 \lor f(x_1) \neq f(x_2)).$ (e) $\forall x_1, \forall x_2 \ (f(x_1) \neq f(x_2) \lor x_1 = x_2).$

29)

(a) f(1) = 10 f(2)			
(c) $f(1)=7, f(1)$	f(2)=10, f(3)=10. =8, $f(2)=9, f(3)=10.$	(b) $f(1)=8$, $f(2)=6$ (d) $f(1)=8$, $f(2)=6$	•
(e) $f(1)=1$, $f(2)$			
	1 function. Which of the	following is/are true a	bout its inverse function
(a) f^{-1} is 1-1.	.	(b) $D(f^{-1})=R(f)$.	
(c) $R(f^{-1})=D(f)$ (e) $R(f^{-1})=R(f)$		(d) $D(f^{-1})=D(f)$	•
	f and g be defined by f	f(x) = 2x and g(x) = 2x	-1 where $x \in \mathbb{R}$. Then
(f o g)(x) is equal	•	(11) =11 4114 8 (11) =11	
(a) $4x + 1$	(b) $4x + 2$	(c) $4(x+1)$	(d) $2(2x+1)$
(e) $4(x-1)$	(0) 1% 2	(c) 1(x + 1)	(u) 2 (2x + 1)
How many words are together? 9!×4!	can be made from the lette		
(a) $\frac{9! \times 4!}{2! \times 2! \times 2!}$.	(b) $\frac{9!}{2! \times 2!}$		c) $\frac{6! \times 4!}{2! \times 2! \times 2!}$
$(d) \frac{9!}{6!}$	(e) 6!	^2:	2:^2:^2:
Give the number of	of ways of making a neckla	ace using ten beads with	different colours.
(a) 10 C ₉ .	(b) $^{10}P_{9}$.	(c) $\frac{10!}{2}$
(d) ${}^{9}P_{2}$.	9!		2
	(e) = .		

-		pered 1, 2, 3 40, of magnitude (y ₁ < y ₂ <		
(a) ${}^{29}C_2$. ${}^{10}C_3$ (d) ${}^{29}C_2/{}^{40}$		(b) 30 C ₂ . 10 C ₂ / 40 C ₅ . (e) 30 C ₃ . 10 C ₂ / 40 C ₅		/ ⁴⁰ C ₅ .
If A and B and P($\overline{A} \cap B$) is:	re two events such	that $P(A \cup B) = 3/4$,	$P(A \cap B) = 1/4, \ F$	$P(\overline{A}) = 2/3$, then
(a) 1/2	(b) 3/8	(c) 5/8	(d) 5/12 (e	e) 1/12
Let A and B events A and		that $P(\overline{A \cup B}) = 1/6$	$5, P(A \cap B) = 1/4,$	$P(\overline{A}) = 1/4.$
events A and (a) mutually	B are:	dependent.	$5, \ \mathrm{P}(\mathrm{A} \cap \mathrm{B}) = 1/4,$	$P(\overline{A}) = 1/4.$
(a) mutually (b) equally	B are:	dependent.	$5, P(A \cap B) = 1/4,$	$P(\overline{A}) = 1/4.$
(a) mutually (b) equally (c) equally (d) independent	B are: y exclusive and individually but not indesting likely and mutually dent and mutually	dependent. ependent. y exclusive. exclusive.	5, $P(A \cap B) = 1/4$	$P(\overline{A}) = 1/4.$
(a) mutually (b) equally (c) equally (d) independent	B are: y exclusive and included likely but not indesting likely and mutually dent and mutually dent but not equal	dependent. ependent. y exclusive. exclusive. ly likely.		
(a) mutually (b) equally (c) equally (d) independent (e) independent (e) For k = 1, 2, 4	B are: y exclusive and included likely but not inderest likely and mutually dent and mutually dent but not equal the bag Bk contains	dependent. ependent. y exclusive. exclusive. ly likely. ains k red marbles an	d (k + 1) white mark	oles. Let the pr
(a) mutually (b) equally (c) equally (d) independent (e) independent (e) for k = 1, 2, and of selecting to	y exclusive and inclikely but not indelikely and mutually dent and mutually dent but not equal and the bag B _k contains B ₁ , B ₂ , B ₃ responses	dependent. ependent. ey exclusive. exclusive. ly likely. eains k red marbles an ectively be $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$.	d (k + 1) white mark A bag is selected at	oles. Let the prandom and a r
(a) mutually (b) equally (c) equally (d) independent (e) independent (e) independent (for k = 1, 2, 2) (of selecting by drawn from in	y exclusive and included likely but not indelikely and mutually dent and mutually dent but not equal as, the bag B _k containing B ₁ , B ₂ , B ₃ respect. If a red marble in	dependent. spendent. y exclusive. exclusive. ly likely. ains k red marbles an ectively be $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$. s drawn, then probab	d (k + 1) white mark A bag is selected at solility that it has com	oles. Let the pr random and a r e from bag B ₂
(a) mutually (b) equally (c) equally (d) independent (e) independent (e) for k = 1, 2, and of selecting to	y exclusive and inclikely but not indelikely and mutually dent and mutually dent but not equal and the bag B _k contains B ₁ , B ₂ , B ₃ responses	dependent. ependent. ey exclusive. exclusive. ly likely. eains k red marbles an ectively be $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$.	d (k + 1) white mark A bag is selected at	oles. Let the pr random and a r e from bag B ₂
(a) mutually (b) equally (c) equally (d) independed independent (e) independent (of selecting begins of the selecting begins of the selection	y exclusive and included likely but not indelikely and mutually dent and mutually dent but not equal as, the bag B _k containing B ₁ , B ₂ , B ₃ respect. If a red marble in	dependent. spendent. y exclusive. exclusive. ly likely. ains k red marbles an ectively be $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$. s drawn, then probab	d (k + 1) white mark A bag is selected at solility that it has com	oles. Let the pr

Six boys and six girls sit in a row at random. Then the probability that six boys sit together is:

37)