

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

Curso TÉCNICO EM DESENVOLVIMENTO DE SISTEMAS

Tema do Trabalho

João Alexandre da Silva Pereira

Sorocaba Novembro – 2024

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

João Alexandre da Silva Pereira

Plataforma de Streaming de Música

Breve relatório sobre Plataforma de Streaming de Música

Sorocaba Novembro – 2024

HISTÓRICO DE VERSÕES

Data	Versão	Descrição	Autor
11/11/2024	1.0	Iniciação do relatório, e conclusão do relatório	João Alexandre

SUMÁRIO

INTRODUÇÃO	. 4
1. Bancos de Dados Relacionais (MySQL)	
1.1. Usuários	
1.2. Playlists e Músicas:	. 5
1.3. Transições financeiras:	. 5
2. Bancos de Dados Não-Relacionais (MongoDB)	. 6
Os bancos de dados não-relacionais, como MongoDB, são ideais para dados	
semiestruturados e não estruturados, com uma abordagem mais flexível que dispensa a	ı
necessidade de um esquema fixo. MongoDB é orientado a documentos, o que facilita a	a
adaptação a grandes volumes de dados complexos e variados. Na plataforma, o	
MongoDB será usado para:	. 6
2.1. Histórico de reprodução:	
2.2. Feedbacks dos usuários:	
2.3. Interações de suporte:	. 6
Criação de tabelas no mySQL	. 6
CONCLUSÃO	. 7
3. Diagramas Erro! Indicador não definid	lo.
LISTA DE TABELAS	. 9

Plataforma de Streaming de Música

INTRODUÇÃO

A seleção de bancos de dados é essencial para plataformas de streaming de música que lidam com grandes quantidades de dados estruturados e não estruturados , como informações do usuário , listas de reprodução, histórico de produção e feedback. As características dos bancos de dados relacionais e não relacionais são comparadas neste relatório, que dá suporte à escolha do MySQL para dados estruturados e do MongoDB para dados não estruturados , oferecendo uma solução confiável e adaptável .

Bancos de Dados Relacionais (MySQL)

Bancos de dados bancos relacionais são recomendados para informações estruturadas que exigem alta consistência e transações seguras. são recomendados para informações estruturadas que exigem alta consistência e transações seguras. O MySQL adere ao o modelo relacional que é baseado no uso de tabelas conectadas por chaves primárias e secundárias. É perfeito para armazenar dados que exigem integridade e relacionamento entre entidades. modelo, que é baseado no uso de tabelas conectadas por chaves primárias e secundárias. É perfeito para armazenar dados que exigem integridade e relacionamento entre entidades. Na plataforma, plataforma de streaming, MySQL serão usado para:

Usuários

Informações detalhadas como nome, e-mail e data de nascimento, que exigem consistência e integridade de dados.

Playlists e Músicas:

Relacionamentos entre playlists e músicas, armazenados de forma organizada para fácil consulta e controle.

Transições financeiras:

Dados sobre assinaturas e pagamentos, que precisam de segurança e consistência em operações financeiras.

A escolha do MySQL é justificada pela sua aderência ao modelo ACID (Atomicidade, Consistência, Isolamento, Durabilidade), que garante segurança e confiabilidade em transações, especialmente importante para dados financeiros.

Bancos de Dados Não-Relacionais (MongoDB)

Os bancos de dados não-relacionais, como MongoDB, são ideais para dados semiestruturados e não estruturados, com uma abordagem mais flexível que dispensa a necessidade de um esquema fixo. MongoDB é orientado a documentos, o que facilita a adaptação a grandes volumes de dados complexos e variados. Na plataforma, o MongoDB será usado para:

Histórico de reprodução:

Com registros frequentes de reprodução, é necessário um banco de dados que permita flexibilidade no armazenamento e consulta de dados com diferentes atributos e estruturas.

Feedbacks dos usuários:

Avaliações e comentários dos usuários sobre músicas e playlists são armazenados de forma ágil, possibilitando consultas rápidas.

Interações de suporte:

Dados das interações com o suporte ao cliente, como tickets e chats, variam em estrutura e exigem um armazenamento mais flexível.

O MongoDB permite a escalabilidade horizontal, sendo adequado para grandes volumes de dados e acessos intensos. Além disso, oferece flexibilidade para armazenar e consultar dados variados, sendo a escolha ideal para o histórico de uso e interações não estruturadas.

Criação de tabelas no mySQL

```
create table Usuarios (
   id_usuario int primary key,
   nome varchar(100),
   email varchar(100) unique,
   data_nascimento date
);

create table Playlists (
   id_playlist int primary key,
```

```
id_usuario int,
  nome_playlist varchar(100),
  FOREIGN KEY (id usuario) REFERENCES Usuarios(id usuario)
);
create table Musicas (
  id musica int primary key,
  nome_musica varchar(100),
  artista varchar(100)
);
create table Playlists_Musicas (
  id_playlist int,
  id_musica int,
       primary key (id_playlist, id_musica),
  foreign key (id_playlist) references Playlists(id_playlist),
  foreign key (id_musica) references Musicas(id_musica)
);
create table Transacoes (
  id_transacao int primary key,
  id usuario int,
  valor decimal(10, 2),
  data_transacao date,
  foreign key (id_usuario) references Usuarios(id_usuario)
);
```

CONCLUSÃO

A integração entre MySQL e MongoDB permite que a plataforma de streaming de música atenda tanto aos requisitos de integridade e consistência dos dados estruturados quanto à flexibilidade e escalabilidade para dados não estruturados. Esta solução híbrida garante que o sistema consiga lidar com o aumento da complexidade e volume de dados, otimizando a experiência dos usuários e viabilizando análises mais detalhadas sobre comportamento e preferências musicais.

DIAGRAMAS

LISTA DE TABELAS

TABELA 1 – Tabelas sobre o app de musicas

