Homework 9

Problem 1. What is the expected number of trees with k vertices in $G \in \mathcal{G}(n, p)$?

Solution. According to Caley's formula, the number of different trees with k vertices is k^{k-2} . By the linearity of expectation, we have the expected number of trees with k vertices in $G \in \mathcal{G}(n,p)$ is $\binom{n}{k}k^{k-2}p^{k-1}$.

Problem 2. Show that, for constant $p \in (0,1)$, almost no graph in $\mathcal{G}(n,p)$ has a separating complete subgraph.

Solution. Let X be a separating subgraph of G and assume X separates two vertices u and v, then for any vertex $w \in V$, if $(u, w) \in E$ and $(w, v) \in E$, we have $w \in X$, $(u, w) \in X$ and $(w, v) \in X$. As n approaches ∞ , the number of vertices in X will also approaches ∞ . X is also a random graph, thus it has the property $P_{i,j}$, so it can not be a complete graph.

Problem 3. Show that if almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_1 and almost all $G \in \mathcal{G}(n, p)$ have a graph property \mathcal{P}_2 , then almost all $G \in \mathcal{G}(n, p)$ have both properties.

Solution. By definition, we know that the probability that G dose not have the property \mathcal{P}_1 tends to be 0 as n approaches ∞ , the same for \mathcal{P}_2 . Thus, the probability that G has neither of the two properties tends to be 0 as n approaches ∞ . The probability that G has both properties equals 1 minus the probability that G has neither of the two properties, thus it will tend to be 1 as n approaches ∞ .

Problem 4. Consider G(n, p) with $p = \frac{1}{3n}$.

1. Use the second moment method to show that with high probability there exists a simple path of length 10.

Solution. For any two different vertices i and j, we define

$$I_{ij} = \begin{cases} 1 & if \text{ there exists a path of length } 10 \text{ between i and j} \\ 0 & otherwise \end{cases}$$

Let $x = \sum_{i < j} I_{ij}$, then we have

$$E(x^{2}) = E(\sum_{i < j} I_{ij} \cdot \sum_{i < j} I_{ij})$$

$$= E(\sum_{i < j} I_{ij} \cdot \sum_{k < l} I_{kl})$$

$$= \sum_{i < j, k < l} E(I_{ij}I_{kl})$$

$$= \sum_{i < j, k < l} E(I_{ij}I_{kl}) + \sum_{\{i, j, k\}, i < j} E(I_{ij}I_{ik}) + \sum_{i < j} E(I_{ij}^{2})$$

$$= \binom{n}{4} \left(9! \binom{n-2}{9} p^{10}\right)^{2} + \binom{n}{3} \left(9! \binom{n-2}{9} p^{10}\right)^{2} + \binom{n}{2} \left(9! \binom{n-2}{9} p^{10}\right)^{2}$$

and $E(x) = E(\sum_{i < j} I_{ij}) = \sum_{i < j} E(I_{ij}) = 9! \binom{n}{2} \binom{n-2}{9} p^{10}$. Thus, $E^2(x) = \left(9! \binom{n}{2} \binom{n-2}{9} p^{10}\right)^2$ and we have $E(x^2) \le E^2(x)(1 + o(1))$. By second moment method, we know that with high probability there exists a simple path of length 10.

Problem 5. (Optional)

- 1. Prove that the threshold for the existence of cycles in $\mathcal{G}(n,p)$ is $p=\frac{1}{n}$.
- 2. Search the World Wide Web to find some real world graphs in machine readable form or data bases that could automatically be converted to graphs.
 - (a) Plot the degree distribution of each graph.
 - (b) Compute the average degree of each graph.
 - (c) Count the number of connected components of each size in each graph.
 - (d) Describe what you find.
- 3. Create a simulation (an animation) to show the evolution of the $\mathcal{G}(n,p)$ (Erdös-Rényi) random graph as its density p is gradually increased. Observe the phase transitions for trees of increasing orders, followed by the emergence of the giant component, etc.

Problem 6. (Optional)

Prove that 'the disappearance of isolated vertices in $\mathbf{G}(n,p)$ ' has a sharp threshold of $\frac{\ln n}{n}$.

Proof. We define that

$$I_i = \begin{cases} 1 & \text{if } v_i \text{ is an isolated vertex} \\ 0 & \text{else} \end{cases}$$

Let $x = \sum_{i=1}^{n} I_i$, by the linearity of expectation, we have $E(x) = n(1-p)^{n-1}$. Since we believe the threshold to be $\frac{\ln n}{n}$, consider $p = c \frac{\ln n}{n}$. Then, we have

$$\lim_{n \to \infty} E(x) = \lim_{n \to \infty} n(1 - c\frac{\ln n}{n})^n = \lim_{n \to \infty} ne^{-c\ln n} = \lim_{n \to \infty} n^{1-c}$$

If c > 1, E(x) tends to go to zero as n approaches infinity. By the first moment method, we have that almost all graphs have no isolated vertices. On the other hand, if c < 1, we have $E(x^2) = E(\sum_{i=1}^n I_i \cdot \sum_{i=1}^n I_i) = \sum_{i=1}^n E(I_i^2) + 2\sum_{i < j} E(I_iI_j)$. Since I_i equals 0 or 1, $I_i^2 = I_i$, thus we have

$$E(x^2) = E(x) + n(n-1)E(I_iI_j) = E(x) + n(n-1)(1-p)^{2(n-1)-1}$$

.

$$\frac{E(x^2)}{E^2(x)} = \frac{n(1-p)^{n-1} + n(n-1)(1-p)^{2(n-1)-1}}{n^2(1-p)^{2(n-1)}} = \frac{1}{n(1-p)^{n-1}} + \left(1 - \frac{1}{n}\right)\frac{1}{1-p}$$

For $p = c \frac{\ln n}{n}$ with c < 1, we have $\lim_{n \to \infty} \frac{E(x^2)}{E^2(x)} = 1 + o(1)$, thus by the second moment method, we have that almost all graphs have an isolated vertex. Thus, $\frac{\ln n}{n}$ is a sharp threshold for the disappearance of isolated vertices.