EECS 489 Discussion 7

Annoucements

- Assignment 3 is out
- Please compile/test inside the VM
 - macOS g++ can't compile the example code

Agenda

- UDP intro
- UDP programming
- Problem sets

UDP Basics

- User Datagram Protocol: best effort delivery
 - Connectionless: no handshake; support multicasting
 - Unreliable: (Fast)
 - Stateless: no connection states such as send/recv buffering, congestion-control parameters, or seq numbers. (Scalable)

UDP: control flow

UDP: socket()

Create a UDP socket

```
int socket(int domain, int type, int protocol);
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
```

UDP: sendto()

Send data to destination

UDP: recvfrom()

Receive data from a socket

Demo

Demo of UDP using nc/wireshark

Q1 Forwarding Table

Consider a datagram network using 32-bit addressing. Suppose a router has 4 links (0-3), and packets are to be forwarded as follows:

Destination Address Range	Link Interface
11100000 00000000 00000000 00000000 through	0
11100000 00111111 11111111 11111111	
11100000 01000000 00000000 00000000 through	1
11100000 01000000 11111111 11111111	
11100000 01000001 00000000 00000000 through	2
11100001 01111111 11111111 11111111	
otherwise	3

Provide a forwarding table that has 5 entries using longest prefix matching.

Q1 Forwarding Table

Consider a datagram network using 32-bit addressing. Suppose a router has 4 links (0-3), and packets are to be forwarded as follows:

Destination Address Range	Link Interface
11100000 00000000 00000000 00000000 through	0
11100000 00 111111 11111111 11111111	
11100000 01000000 00000000 00000000 through	1
11100000 01000000 11111111 11111111	
11100000 01000001 00000000 000000000 through	2
1110000 1 01111111 11111111 11111111	
otherwise	3

Provide a forwarding table that has 5 entries using longest prefix matching.

Q1 Forwarding Table

Destination Address Range	Link Interface
11100000 00 (/10)	0
11100000 01000000 (/16)	1
11100000 (/8)	2
11100001 0 (/9)	2
otherwise	3

Q2 Forwarding Table

Consider a datagram network using 8-bit addressing. Suppose a router using longest prefix matching has the following table:

Prefix Match	Link Interface
00	0
010	1
011	2
10	2
11	3

Complete the table by providing the correct address ranges for each link

Q2 Forwarding Table

Prefix Match	Link Interface	Range
00	0	0000 0000 to 0011 1111 (63)
010	1	0100 0000 (64) to 0101 1111 (95)
011	2	0110 0000 (96) to 0111 1111 (127)
10	2	1000 0000 (128) to 1011 1111 (191)
11	3	1100 0000 (192) to 1111 1111 (255)