

PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

RELATÓRIO DO PROJETO: AGAMOTTO 16 BITS

ALUNOS:

Bruno Cesar Da Silva Claudino - 1201424425 Francys Nutefe Tsigbey - 201514401

> Novembro de 2018 Boa Vista/Roraima

PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

RELATÓRIO DO PROJETO: AGAMOTTO 16 BITS

Novembro de 2018 Boa Vista/Roraima

Resumo

Este trabalho aborda o desenvolvimento de um processador de 16 bits para a disciplina de Arquitetura e Organização de Computadores. O processador foi implementado usando a linguagem de descrição de hardware VHDL. E os testes executados foram feitos utilizandose waveforms geradas que simulam o comportamento do hardware descrito, estes mostram um pouco do funcionamento e performance do processador.

Sumário

1	\mathbf{Esp}	ecificaç	çao	6
	1.1	Platafo	orma de Desenvolvimento	6
	1.2	Conjur	nto de instruções	6
	1.3	Descri	ção do hardware	7
		1.3.1	ULA X16	8
		1.3.2	Banco de registradores	8
		1.3.3	Extensor de sinal 8x16	8
		1.3.4	Unidade de Controle	9
		1.3.5	Memória RAM	
		1.3.6	Memória ROM	10
		1.3.7	Multiplexidador 2x1	
		1.3.8	Multiplexidador 3x1	
		1.3.9	Multiplexidador 4x1	
		1.3.10	PC(Program Counter)	
			Registradores A e B	
			Registrador de dados da memória	
			Registrador de Instruções	
			Registrador de saída da ULA	
	1.4		ath	
2	Sim	ulações	s e Testes	21
3	Cor	nsiderac	cões Finais	21

Lista de Figuras

1	Plataforma de implementação	6
2	Extensor de sinal de 8 bits para 16 bits	Ć
3	Memória RAM	10
4	Multiplexador 2x1	12
5	Multiplexador 3x1	13
6	Program Counter	14
7	Registrador A	15
8	Registrador B	16
9	Registrador de dados de memória	17
10	Waveform do Registrador de dados de memória	18
11	Registrador instruções	19
12	Registrador de saída da ULA	20
13	Waveform do Registrador de saída da ULA	21

1 Especificação

O processador Agamotto 16 bits foi desenvolvido para a disciplina de arquitetura e organização de computadores da Universidade Federal de Roraima no semestre 2018.2. O Processador é uniciclo, ou seja, executa uma unica instrução por vez a cada ciclo de clock e as mesmas possuem 16 bits. Ele foi baseado na arquitetura MIPS, uma arquitetura de microprocessadores RISC desenvolvida pela MIPS Computer Systems.

1.1 Plataforma de Desenvolvimento

Para a implementação do processador Agamotto foi utilizado a IDE: Quartus Prime Versão 18.0 Lite Edition.

Figura 1: Plataforma de implementação.

1.2 Conjunto de instruções

O processador Agamotto possui 4 registradores: Zero, s0, s1, s2. Assim como 3 formatos de instruções de 16 bits cada. Instruções do tipo R, I, J seguem algumas considerações sobre as estruturas contidas nas instruções:

- Opcode: A operação básica a ser executada pelo processador, tradicionalmente chamado de código de operação;
- Reg1: O registrador contendo o primeiro operando fonte e adicionalmente para alguns tipos de instruções (ex. instruções do tipo R) é o registrador de destino;
- Reg2: O registrador contendo o segundo operando fonte;

Tipos de instruções:

• Formato do tipo R:Abrange instruções de operações aritméticas, tais como: soma, soma de imediatos, subtração e etc. E a divisão de bits é descrita a seguir: Formato para escrita de código:

Tipo de instrução	Reg1	Reg2
-------------------	------	------

Formato para escrita em código binário:

4 bits	6 bits	6 bits
15-12	11-6	5-0
Opcode	Reg1	Reg2

• Formato do tipo I: Abrange instruções de operações de carregamento e gravação de dados da memória, tais como: Load e Store. E a divisão de bits é descrita a seguir:

4 bits	4 bits	4 bits	4 bits
15-12 bits	11-8	7-4	3-0
Opcode	Reg1	Reg2	ADDRESS

• Formato do tipo J: Abrange instruções de operações de JUMP. E a divisão de bits é descrita a seguir:

4 bits	12 bits
15-12 bits	11-0
Opcode	Reg1

Descrição geral das instruções do processador Agamotto:

O campo de Opcode de cada instrução é de 4 bits, logo temos 15 opcodes disponíveis para identificação de instruções na UC, $2\ 4\ -1=15$.

Opcode	Nome	Formato	Breve Descrição	Exemplo
0000	ADD	R	Soma	$\mathbf{add} \$S0,\$S1 \text{ , ou seja, } \$S0 := \$S0 + \$S1$
0001	ADDI	R	Soma Imediata	$\mathbf{addi} \;\$\mathrm{S0,1} \;, \mathrm{ou} \; \mathrm{seja,} \;\$\mathrm{S0} := \$\mathrm{S0+1}$
0010	SUB	R	Subtração	$\mathbf{sub} \$S0,\$S1 \text{ , ou seja, } \$S0 := \$S0-\$S1$
0011	SUBI	R	Subtração Imediata	$\mathbf{sub} \$ \mathrm{S}0,1$, ou seja, $\$ \mathrm{S}0 := \$ \mathrm{S}0$ -1
0100	MULT	R	Multiplicação	$\mathbf{mult} \$S0,\$S1 , \text{ ou seja, } \$S0 := \$S0*\$S1$
0101	BEQ	I	Branch Equal	beq \$S0,1
0110	BNE	I	Branch Not Equal	bne \$S0,1
0111	LW	I	Load	lw \$S0,\$S1
1000	SW	I	Store	sw \$S0,\$S1
1001	JUMP	J	Jump	jump L1

1.3 Descrição do hardware

Nesta seção são descritos os componentes do hardware que compõem o processador Agamotto, incluindo uma descrição de suas funcionalidades, valores de entrada e saída e testes dos componentes.

1.3.1 ULA X16

O componente ULAx16 (Unidade Lógica Aritmética) tem como principal objetivo efe- tuar as principais operações aritméticas, dentre elas: soma, subtração, divisão e multiplica- ção. Adicionalmente o ULA X16 efetua operações de comparação de valor como maior ou igual, menor ou igual, somente maior, menor ou igual. O componente ULA X16 recebe como entrada três valores: A – dado de 16 bits para operação; B - dado de 16 bits para operação e UALOp – identificador da operação que será realizada de 4bits. A ULA X16 também possui três saídas: ZERO – identificador de resultado (1bit) para instruções de branch (1 se verdade e 0 caso contrário).

1.3.2 Banco de registradores

O componente Banco tem a função de ler e armazenar os valores em registradores sendo 4 no total. Sendo eles \$ZERO, \$S1, \$S2, \$S3, o \$ZERO tem um valor constante 0, usado para fazer comparações, e mover valores para outros registradores. Os registradores \$S1 ate \$s3 são para armazenamentos de valores calculados ou carregados da memória.

Sinais de entrada:

- Clock: Recebe o clock do sistema.
- DadoEscrito(15..0): Dado que sera escrito no registrador.
- EscReg:Flag de sinal que aciona a escrita no registrador.
- RegEscrito1(1..0):Recebe o endereço do registrador a ser escrito.
- RegLido1(1..0):Recebe o endereço do registrador a ser lido.
- RegLido2(1..0):Recebe o endereço do registrador a ser lido.

Sinais de saída:

- RegLido1(15..0): Recebe o valor lido para do primeiro registrador.
- RegLido2(15..0):Recebe o valor lido do segundo registrador.

1.3.3 Extensor de sinal 8x16

O componente extensor de sinal tem como funcao fazer a extensão de bits necessários completando os bits mais significados com 0's. No caso esse extensor é de 8 bits para 16 bits.

Sinais de entrada:

• Entrada(7..0): Recebe o valor a ser extendido o sinal.

Sinais de saída:

• Saida(15..0): Recebe o valor com sinal extendido de 8 para 16 bits.

Page 1 of 1

Revision: ProcessadorAgamotto

Figura 2: Extensor de sinal de 8 bits para 16 bits.

1.3.4 Unidade de Controle

O componente (Ucontrol), tem como função o controle da execução de instruções através da ativação das flags necessárias em cada etapa de execução. É ele quem gerencia e controla todo o caminho de dados do Processador.

1.3.5 Memória RAM

O componente Memória RAM é uma memoria de Dados, onde está localizada todos os operandos que podem ser utilizados por instruções. A memoria RAM pode ser utilizada por instruções de Load ou Store. **Sinais de entrada:**

- Clock: Recebe o clock do sistema.
- endereco(15..0): Recebe o endereço onde encontra-se o operando.
- Edata(15..0): Recebe o dado a ser colocado na memoria.
- escmemoria: Flag que ativa a escrita na memoria.

Sinais de saída:

• Sdata(15..0):Recebe a saída com o valor operando buscado na memoria.

Figura 3: Memória RAM

1.3.6 Memória ROM

 ${\rm O}$ componente Memória ROM é utilizada para armazenar as instruções a serem executadas.

Sinais de entrada:

• endereco(15..0): Recebe o endereço da instrução.

Sinais de saída:

• data(15..0):Saida com a instrução buscada em memoria.Recebe a saída com o valor operando buscado na memória.

1.3.7 Multiplexidador 2x1

O componente multiplexador serve como um IF ou seja, dependo do seletor ele seleciona determinada operação a ser executada dentre as possiveis.

Sinais de entrada:

- \bullet A(15..0): Recebe a primeira opção que é selecionada caso o seletor seja 0.
- \bullet B(15..0): Recebe a segunda opção que é selecionada caso o seletor seja 1.
- Seletor: recebe da unidade de controle um valor para ser selecionado.

Sinais de saída:

• Saida(15..0):Recebe o valor da opção selecionada.

Figura 4: Multiplexador 2x1

1.3.8 Multiplexidador 3x1

Sinais de entrada:

- \bullet A(15..0): Recebe a primeira opção que é selecionada caso o seletor seja 00.
- \bullet B(15..0): Recebe a segunda opção que é selecionada caso o seletor seja 01.
- \bullet C(15..0): Recebe a terceira opção que é selecionada caso o seletor seja 10.
- Seletor(1..0): recebe da unidade de controle um valor para ser selecionado.

Sinais de saída:

• Saida(15..0):Recebe o valor da opção selecionada.

Figura 5: Multiplexador 3x1

1.3.9 Multiplexidador 4x1

Sinais de entrada:

- \bullet A(15..0): Recebe a primeira opção que é selecionada caso o seletor seja 00.
- \bullet B(15..0): Recebe a segunda opção que é selecionada caso o seletor seja 01.
- \bullet C(15..0): Recebe a terceira opção que é selecionada caso o seletor seja 10.
- \bullet D(15..0): Recebe a terceira opção que é selecionada caso o seletor seja 11.
- \bullet Seletor(1..0): recebe da unidade de controle um valor para ser selecionado.

Sinais de saída:

• Saida(15..0):Recebe o valor da opção selecionada.

1.3.10 PC(Program Counter)

O componente PC é responsável por armazenar o endereço da instrução que está em execução. Sinais de entrada:

- Clock: Recebe o clock de sistema.
- InputOR: Flag de ativação do PC, sendo recebido da unidade de controle.
- InputPC(15..0): O endereço da próxima instrução a ser executada.

Sinais de saída:

• Output(15..0):Recebe o endereço instrução atual.

Figura 6: Program Counter

1.3.11 Registradores A e B

O componente Registrador A e B servem para armazenar o valores que foram lidos do banco de registradores. E garantem que eles não irão se perder com a mudança do Clock.

Page 1 of 1 Revision: ProcessadorAgamotto

Figura 7: Registrador A.

Page 1 of 1

Revision: ProcessadorAgamotto

Figura 8: Registrador B.

1.3.12 Registrador de dados da memória

O registrador de dados da memoria registra o valor do operando buscado em memoria e garante que o mesmo não irá se perder na mudança de ciclo de clock. **Sinais de entrada:**

- Clock: Recebe o clock de sistema.
- Input(15..0): Recebe o dado que foi buscado na memoria de dados.

Sinais de saída:

• Output(15..0):Saída do valor lido da memoria.

Figura 9: Registrador de dados de memória.

Figura 10: Waveform do Registrador de dados de memória.

1.3.13 Registrador de Instruções

O componente registrador de instruções tem como objetivo salvar a instrução e decodificar a mesma, em opcode, registrador1 e registrador2.

- Clock: Recebe o clock de sistema.
- Input(15..0): Recebe a instrução vinda da memoria de instruções.
- Sinal:Flag que ativa a decodificação da instrução no registrador.

Sinais de saída:

- output OPCODE(3..0):Recebe o opcode para enviar a unidade de controle.
- output r1:Recebe o endereco do registrador1.
- output r2:Recebe o endereco do registrador2.

Figura 11: Registrador instruções.

1.3.14 Registrador de saída da ULA

O componente registrador saida da ULA recebe o resultado da ULA.

Figura 12: Registrador de saída da ULA.

Figura 13: Waveform do Registrador de saída da ULA.

1.4 Datapath

É a conexão entre as unidades funcionais formando um único caminho de dados e acrescentando uma unidade de controle responsável pelo gerenciamento das ações que serão realizadas para diferentes classes de instruções.

2 Simulações e Testes

O processador Agamotto foi implementado e testado todos os componentes, porém a ultima fase de testes não pode ser realizada, portanto, não abordaremos o teste final do processador, ficando para um outro momento fazermos o teste final.

3 Considerações Finais

A execução deste projeto foi árdua, porém foi possível colocar em pratica os conhecimentos adquiridos ao longo das aulas lecionadas.