מטלת מנחה 12 - אינפי 1

 $\lim_{n\to\infty} \sqrt{\frac{4n+1}{n}} = 2$ א. טענה:

 $:\epsilon, N$ הוכחה בלשון

יהי n>N ואז לכל $N=\lfloor \frac{1}{\epsilon}+1 \rfloor$ טבעי:

$$|\sqrt{\frac{4n+1}{n}} - 2| = |(\sqrt{\frac{4n+1}{n}} - 2) \frac{\sqrt{\frac{4n+1}{n}} + 2}{\sqrt{\frac{4n+1}{n}} + 2}| =$$

$$= \frac{1}{(1)} |\frac{\frac{4n+1}{n} - 4}{\sqrt{\frac{4n+1}{n}} + 2}| = |\frac{\frac{4n+1-4n}{n}}{\sqrt{\frac{4n+1}{n}} + 2}| = \frac{|\frac{1}{n}|}{|\sqrt{\frac{4n+1}{n}} + 2|} =$$

$$= \frac{\frac{1}{n}}{\sqrt{\frac{4n+1}{n}} + 2} \le \frac{1}{(3)} \frac{1}{2} < \frac{1}{n} < \frac{1}{(4)} \frac{1}{n} < \frac{1}{(5)} \frac{1}{N} < \frac{1}{(6)} \in$$

:מעברים

- $(a b)(a + b) = a^2 b^2$ לפי נוסחאת הכפל המקוצר (1)
- . טבעי ולכן n>0 מנה של מספרים חיוביים. (2)

 $\sqrt{rac{4n+1}{n}}+2\geq 2>0$ מכנה: תוצאת שורש היא תמיד אי-שלילית, נוסיף 2 ונקבל

- ע"י הקטנת המכנה או אי-שינויו (חיסור המספר האי-שלילי $\sqrt{\frac{4n+1}{n}}$), הגדלנו את (3) הביטוי או שלא שינינו אותו.
 - (4) כאמור, $0 > \frac{1}{n}$ ולכן אם נכפול ב $\frac{1}{2}$ נקבל $0 > \frac{1}{2} \cdot \frac{1}{n}$ נוסיף ונקבל $\frac{1}{n} > 0$ כאמור, $\frac{1}{n} > \frac{1}{2} \cdot \frac{1}{n}$
 - n>N מתקיים, מהדרת (5)
- $\frac{1}{N} < \epsilon$ על כן , $\frac{1}{\epsilon} = (\frac{1}{\epsilon} + 1) 1 < [\frac{1}{\epsilon} + 1] = N$,(1.64), על כן (6)
 - $_{,L}$ ממשי ומספר ממשי ב1. הגדרה: לכל סדרה לכל

 $|a_n-L| \geq \epsilon$ טבעי המקיים n>N טבעי קיים אכל אם כך פרים $\epsilon>0$ כך שלכל גם $\lim_{n \to \infty} a_n \neq L$

 (a_n) לכל סדרה (ב2. הגדרה:

- כלומר . $\lim_{n \to \infty} \, a_n \neq L$ מתקיים ב
 $L \in \mathbb{R}$ אם לכל אם הסדרה הסדרה

 $.|a_n-L|\geq \epsilon$ טבעי המקיים n>Nטבעי קיים אלכל פר קיים קיים לכל בר כך שלכל א כך שלכל ל

. מתבדרת $a_n = \frac{{{{(-1)}^n}n + 1}}{{n + 2}}$ מתבדרת.

 $:\epsilon$, N הוכחה בלשון

:יהי או לכל N טבעי $\epsilon = \frac{1}{2}$ נבחר . $L \in \mathbb{R}$

:ומתקיים n=2N>N נבחר L<0

$$|a_n - L| = \left| \frac{(-1)^n n + 1}{n+2} - L \right| =$$

$$= \underset{(1)}{(1)} \left| \frac{n+1}{n+2} - L \right| = \underset{(2)}{(2)} \frac{n+1}{n+2} - L > \underset{(3)}{(3)} \frac{n+1}{n+2} > \underset{(4)}{(4)} \frac{1}{2} = \epsilon$$

:מעברים

- $(-1)^n = 1$ לפי הבחירה, n זוגי ולכן (1
- (2) המנה $\frac{n+1}{n+2}$ היא מנה של שני מספרים חיוביים n+1,n+2>n>0 המנה של שני מספרים חיוביים, L<0 , נקבל את אי-השוויון בחיסור מספר שלילי L<0, נקבל את אי-השוויון ובפרט לפי טרנזיטיביות L<00.
 - (2) לפי אי השוויון במעבר (2).
 - n>0 לפי הבחירה, n טבעי ולכן (4) לפי הבחירה, נוסיף לאי-השוויון (n+1)=2n+2>n+2 ונקבל (n+1)=2n+2>n+2 כעת, נוכל לחלק ב n+2>n>0 וב

:ומתקיים $max\{2N+1,5\}$ נבחר $L \ge 0$

$$|a_n - L| = \left| \frac{(-1)^n n + 1}{n + 2} - L \right| =$$

$$= {\binom{-n+1}{n+2}} - L| = {\binom{-n+1}{n+2}} - L| = \frac{1}{n+2} + \frac{n-1}{n+2} > \frac{1}{n+2} > \frac{1}{2} = \epsilon$$

:מעברים

- $.(-1)^n = -1$ לפי הבחירה, n אי-זוגי ולכן (5)
- לפי הבחירה, $1 \geq n$ ולכן $1 \leq -1$ נוסיף $1 \leq n$ לאי-השוויון ונקבל $-n \leq -1$ ולכן $1 \leq n \leq n$ לפי הבחירה, $1 \leq n \leq n$ לכן, $-n+1 \leq -1$ היא מנה של מספר שלילי ומספר חיובי ולכן $\frac{-n+1}{n+2} < 0$ לכן, המנה $\frac{-n+1}{n+2} < 0$ היא מנה של מספר שלילי ומספר אי-שלילי -1 נקבל את אי-השוויון -1 בחיסור מספר אי-שלילי -1 נקבל את אי-השוויון -1 בפרט לפי טרנזיטיביות -1 ובפרט לפי טרנזיטיביות -1 ולכן -1 ולכן לאי-השוויון -1 ולכן מספר אי-שלילי שלי מספר אי-שלילי -1 ולכן מספר אי-שלילי מספר אי-שלילי -1 ולכן מספר אי-שלילי מספר אי-שלילי -1 ולכן מספר אי-שלילי מספר אי-שלילי ומספר ו
 - $n\geq 5>4$ לפי הבחירה, לפי הבחירה, $n\geq 5>4$ ונקבל (7) לפי הבחירה, נוסיף לאי-השוויון (n-2) ונקבל (n-2) ונקבל (n-2) בעת, נוכל לחלק ב (n+2) ב(n+2) וב2 ונקבל לחלק ב (n+2)

שאלה 2

$$\lim_{n\to\infty}\sqrt{n^2+\left(-\right.1\right)^n}-n$$
 א. חישוב:

:פתרון: נסמן $a_n = \sqrt{n^2 + (-1)^n} - n$ ונחשב

$$a_n = (\sqrt{n^2 + (-1)^n} - n) \cdot \frac{\sqrt{n^2 + (-1)^n} + n}{\sqrt{n^2 + (-1)^n} + n} = \frac{n^2 + (-1)^n - n^2}{\sqrt{n^2 + (-1)^n} + n} = \frac{(-1)^n}{\sqrt{n^2 + (-1)^n} + n}$$

כעת,

$$|a_n| = \frac{|(-1)^n|}{|\sqrt{n^2 + (-1)^n + n}|} = \frac{1}{\sqrt{n^2 + (-1)^n + n}} \to \frac{1}{n \to \infty_{(2)}} = \frac{1}{\|\infty^n\|} = 0$$

:מעברים

$$|\left(-1\right)^{n}|=|\pm1|=1$$
 מונה: (1) מכנה: $\sqrt{n^{2}+\left(-1\right)^{n}}+n\geq n>0$

$$\sqrt{n^2 + (-1)^n} + n \ge n$$
 טבעי טבעי (2) כאמור, לכל

$$\displaystyle \lim_{n \to \infty} \sqrt{n^2 + \left(-\ 1\right)^n} + n = \infty$$
 מתקיים 2.45 מתקיים ולכן לפי $\displaystyle \lim_{n \to \infty} n = \infty$ 2.37 לפי

סך הכל, לפי אריתמטיקה של גבולות עבור המכנה שגבולו אינו אפס ניתן לחשב את גבול המנה.

2.43 לפי כלל "1 חלקי אינסוף", משפט (3)

. כעת, לפי שאלה 2.20, וסיימנו. $\lim_{n \to \infty} a_n = 0 \Leftrightarrow \lim_{n \to \infty} |a_n| = 0$,2.20 כעת,

 $\lim_{n\to\infty} \frac{3n^3-2n^6-1}{n^4-\pi n^5+5n}$ ב. חישוב:

פתרון: נחשב:

$$\frac{3n^{3}-2n^{6}-1}{n^{4}-\pi n^{5}+5n} = \frac{n^{6}}{n^{5}} \cdot \frac{3(\frac{1}{n})^{3}-2-(\frac{1}{n})^{6}}{(\frac{1}{n})^{2}-\pi+5(\frac{1}{n})^{4}} = n \cdot \frac{3(\frac{1}{n})^{3}-2-(\frac{1}{n})^{6}}{(\frac{1}{n})^{2}-\pi+5(\frac{1}{n})^{4}} \rightarrow_{n\to\infty} \text{"∞"} \cdot \frac{3\cdot0^{3}-2-0^{6}}{0^{2}-\pi+5\cdot0^{4}} = \\ = \text{"∞"} \cdot \frac{-2}{-\pi} = \text{"∞"} \cdot \frac{2}{\pi} = \text{(2)}$$

:מעברים

(1) גבול הטור ($\frac{1}{n}$) לפי 2.37, וגבול הטור ($\frac{1}{n}$) לפי (1)

 $0^2 - \pi + 5 \cdot 0^4 = -\pi \neq 0$ סה"כ לפי אריתמטיקה של גבולות, כאשר מכנה המנה

(2) לפי 2.43, כלל "אינסוף כפול מספר חיובי".

$$\lim_{n\to\infty} \frac{\lfloor \sqrt{3}n^2 \rfloor}{n^4}$$
 ג. חישוב:

$$a_n=0, c_n=rac{\sqrt{3}}{n^2}, b_n=rac{|\sqrt{3}n^2|}{n^4}$$
 פתרון: נסמן

נשים לב כי לכל n טבעי:

$$a_n=0<_{(1)}rac{|\sqrt{3}n^2|}{n^4}\leq_{(2)}rac{\sqrt{3}n^2}{n^4}=rac{\sqrt{3}}{n^2}=c_n$$
 , $\lim_{n o\infty}a_n=0$ ברור ש

 $c_n=\sqrt{3}\cdot(rac{1}{n})^2 o _{n o\infty}\sqrt{3}\cdot0^2=0$ מתקיים 2.10 אריתמטיקה של גבולות בולות אבולות מתקיים $\lim_{n o\infty}b_n=0$ מתקיים $a_n\leq b_n\leq c_n$ וסיימנו.

מעברים:

$$\lfloor \sqrt{3}n^2 \rfloor \geq \lfloor \sqrt{3} \rfloor = 1 > 0$$
 ובהתאם $\sqrt{3}n^2 \geq \sqrt{3}$, לכן $n^2 \geq 1$ (1) $\frac{\lfloor \sqrt{3}n^2 \rfloor}{n^4} > 0$ מנה של מספרים חיוביים ומתקיים לכן $\frac{\lfloor \sqrt{3}n^2 \rfloor}{n^4}$

(2) לפי תכונות החלק השלם (1.64)

$$\lim_{n\to\infty} \sqrt[n]{rac{1\cdot 3\cdot 5\cdot ...\cdot (2n-1)}{2\cdot 4\cdot 6\cdot ...\cdot (2n)}}$$
 ד. חישוב:

 $a_n>0$ נשים לב כי $a_n>0$ לכל $a_n>0$ נשים . $a_n=\frac{2n-1}{2n}$ נסמן :פתרון: נסמן . $a_n=\frac{2n-1}{2n}$ נסמן . $a_n=\frac{2n-1}{2n}$

:מתקיים , $c_n = \sqrt[n]{\prod\limits_{i=1}^n a_i}$,מתקיים של הסדרה, ממוצעים הממוצעים ההנדסיים אז עבור

$$c_n = \sqrt[n]{\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n}} = \sqrt[n]{\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}}$$

גבול הסדרה $a_{..}$ הוא, לפי החישוב הבא:

$$a_n = \frac{n}{n} \cdot \frac{2 - \frac{1}{n}}{2} = \frac{2 - \frac{1}{n}}{2} \to \frac{2 - 0}{n \to \infty}$$

. וסיימנו. $\lim_{n \to \infty} \sqrt[n]{\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}} = \lim_{n \to \infty} c_n = \lim_{n \to \infty} a_n = 1$ וסיימנו. (מעברים:

.2.10 של גבולות עבור מנה בה גבול המכנה $0 \neq 2$, ומשפט (1)

328197462 14.07.2022

שאלה 3

 $\lim_{n\to\infty} a_n b_n = \infty$ כך ש כך $(a_n), (b_n)$ יהיו

 $\lim_{n \to \infty} b_n = \infty$ או $\lim_{n \to \infty} a_n = \infty$ אז חיוביים, אז (a_n) , איברי כל איברי ((a_n) , איברי ((a_n)), איברי

הפרכה: הטענה לא נכונה עבור הסדרות:

$$a_n = \begin{cases} n & \text{n is odd} \\ 1 & \text{n is even} \end{cases} \qquad b_n = \begin{cases} 1 & \text{n is odd} \\ n & \text{n is even} \end{cases}$$

, $\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} n = \infty$ ברור שכל איברי (a_n), (b_n) חיוביים, ולפי

אבל אn=2N>Nטבעי קיים אלכל א לכל מבור בור לוא לכל היים אוא לכל ווה $\lim_{n\to\infty}\,a_n\neq\,\infty$

אי n=2N+1>N באופן דומה, באופן היים $\lim_{n\to\infty}b_n
eq \infty$, באופן דומה. באופן מומה, באופן מומה, מ

וסיימנו. על כן אף אחת מהסדרות אינה שואפת אינסוף וסיימנו. $b_n=\,1\,<\,2\,=\,M$ זוגי כך ש

. חיוביים (b_n) חיוברים כל איברים (a_n) חיוביים, אז כמעט כל איברים ב. **טענה:** אם כמעט כל איברי

 $b_n \leq 0$ טבעי קיים א כך שn > N כך שלילה שלכל מניח בשלילה שלכל

 $a_n>0$ מתקיים $n>N_{_1}$ לפי ההנחה קיים $N_{_1}$ טבעי כך שלכל

 $.a_{_{n}}b_{_{n}}<\,0\,<\,M$ עך כך א $n\,>\,max\{N,N_{_{1}}\}$ יהי טבעי קיים אז לכל לכל $M\,>\,0$ יהי .

 $(a_{_{n}}b_{_{n}}>M$ מתקיים אחרות, לא מתקיימת הטענה (כמעט לכל מתקיים אחרות, לא

!! בסתירה לנתון $\displaystyle \lim_{n \to \infty} a_n b_n = \infty$ בסתירה לנתון

. $\lim_{n\to\infty} b_n \neq 0$ ג. טענה:

 $a_n = n^2$, $b_n = \frac{1}{n}$ הפרכה: הטענה לא נכונה עבור

, $a_nb_n=n^2\cdot\frac{1}{n}=n$ לפי משפט 2.37, אבל לפי משפט 2.10 ו $\lim_{n\to\infty}b_n=0$

 $.b_{_{n}} \neq \ 0$ מתקיים n > N טבעי כך שלכל א סענה: קיים א

 $b_n = 0$ כך ש n > N טבעי קיים אלכל שלילה בשלילה בשלילה אוניח הוכחה: נניח

 $a_n b_n = a_n \cdot 0 = 0$ כך ש n > N טבעי קיים n > N

 $a_n b_n = 0 < M$ כך ש n > N טבעי קיים M > 0 יהי לכל M

 $.a_{_{n}}b_{_{n}}>M$ יתקיים n>N טבעי כך שלכל ולפי ולכן ההנחה מ $\lim_{_{n}\to\infty}a_{_{n}}b_{_{n}}=\infty$ יתקיים אבל לפי סתירה! ולכן הטענה נכונה.

. $\lim_{n \to \infty} \, a_n = \, \infty$ אז , $\lim_{n \to \infty} \, b_n = \, 5$ ה. טענה: אם

הוכחה: לכל n טבעי, אם $b_n \neq 0$ מתקיים $a_n = \frac{a_n b_n}{b_n}$ מתקיים $b_n \neq 0$ מתקיים לכל n לכן

. מתקבלת מהסדרה $\frac{a_n b_n}{b}$ על ידי שינוי מספר סופי של איברים a_n

$$\lim_{n\to\infty}\,a_n=\lim_{n\to\infty}\,\frac{a_nb_n}{b_n}\,,2.44$$
לכן, לפי ההנחות $b_n=5\,\neq\,0$ ו ו $\lim_{n\to\infty}\,a_nb_n=\infty$

 $\frac{1}{\sqrt{5}}$ עבור 2.43 עבור 2.43 מספר חיובי" במשפט 2.43 עבור

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{a_n b_n}{b_n} = \frac{\|\infty\|}{5} = \infty$$

 $\lim_{n\to\infty} a_n = \infty$ אז אכל מעט לכל $a_n > b_n$ ו. טענה: אם

$$a_n = \frac{-1}{n}, b_n = -n$$
 הפרכה: הטענה לא נכונה עבור

$$a_n b_n = (-n) \cdot \frac{-1}{n} = n \rightarrow_{n \rightarrow \infty} \infty$$
 ,2.37 לפי משפט

n < n מתקיים n > 1 ובפרט לפי טרנזיטיביות n > 1 כמו כן, לכל

 $a_n > b_n$ כמעט לכל הלכל ב(פול ב $a_n > b_n$ כלומר כלות אחקיים תn > 1 נכפול בלכל (-1

$$!a_n=-1\cdot rac{1}{n}
ightarrow_{n o\infty}-1\cdot 0=0
eq \infty$$
 בל לפי אריתמטיקה של גבולות + 2.10

 $\lim_{n \to \infty} a_n = \infty$ אז אז אם $a_n > b_n > 0$ כמעט לכל

.
$$\lim_{n \to \infty} \, a_n = \, \infty$$
 אז א , $\lim_{n \to \infty} \, a_n^{\,\, 2} = \, \infty$ כמעט לכל $a_n > 0$ אז מענת עזר: אם

. ממשיM>0 יהי שענת העזר: יהי ממשי

 $\left|a_{_{n}}\right|^{2}>M^{2}$ מתקיים n>N טבעי כך שלכל

 $a_{_{n}}>0$ מתקיים $n>N_{_{2}}$ טבעי כך שלכל $N_{_{2}}$ מתקיים לפי כמו כן, לפי ההנחה קיים

 $.|a_{_{n}}|>|M|$ ולכן ולכן $a_{_{n}}^{^{\;2}}>M^{^{2}}$ מתקיים n>Nלכל וא $N=\max\{N_{_{1}},N_{_{2}}\}$ נבחר נבחר

. וסיימנו $a_n > M$ מתקיים $M, a_n > 0$ מאחר ו

.n מעט לכל במעט מרנזיטיביות, פמעט לכל לפי הוכחת הטענה: לפי טרנזיטיביות,

 $a_n^{\ 2}>a_n^{\ b}$ כמעט לכל $a_n^{\ 2}$

.
$$\lim_{n \to \infty} \, a_n^{\ 2} = \infty$$
 , $\lim_{n \to \infty} \, a_n b_n = \infty$ עבור הנתון 2.45 לכן משפט

. וסיימנו $\lim_{n \to \infty} a_n = \infty$ וסיימנו