Data Structures - 67109 Exercise 2

Due: 27/03/2019

Question 1

Let $T: \mathbb{N} \to \mathbb{R}^+$ and write an expression for the tightest upper asymptotic bound of T(n) you can find (i.e. a function $g: \mathbb{N} \to \mathbb{R}^+$ such that T(n) = O(g(n))) and prove its correctness by induction for the following cases. Assume for all of these T(1) = 1:

1.
$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

2.
$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

3. Explain the logic for the correctness of the bound, without a formal proof: $T(n) = 2T\left(\left\lfloor \frac{n}{5}\right\rfloor\right) + 3T\left(\left\lfloor \frac{n}{10}\right\rfloor\right) + n$ (Hint: use the fact that $\sum_{i=0}^{\infty} x^i$ converges for |x| < 1)

Question 2

Find Θ bounds for the following recurrence relations (in any way you'd like), prove your answers:

1.
$$T(n) = 2T(\lfloor n/4 \rfloor) + \sqrt{n}$$

2.
$$T(n) = 2T(|n/4|) + n^{0.51}$$

3.
$$T(n) = \sqrt{2}T(|n/2|) + \log n$$

4.
$$T(n) = 16T(\lfloor n/4 \rfloor) + n!$$

5.
$$T(n) = 14T(\lfloor n/2 \rfloor) + 50n^3 + 4n^2 - 1$$

Question 3

Let $f, g : \mathbb{N} \to \mathbb{R}_{>0}$. Prove or give a counterexample:

$$1.\ 10log\left(n\right)+10\in\Theta\left(log\left(n\right)\right)$$

2. Assume
$$f \in O\left(g\right)$$
, then there exists $c > 0$ s.t. $\forall n \in \mathbb{N}$ $f\left(n\right) \leq c \cdot g\left(n\right)$

3. Assume
$$f \in o(g)$$
, then $f \notin \Theta(g)$

Question 4

Write down the recurrence relations to each one of the following algorithms. Find and prove (in any way you'd like) Θ bounds for the Min algorithm and O bound for the Fib algorithm:

Algorithm 1 Min(A[1:n])

- 1. If n==1: return A[1]
- 2. return $\min\{A[1], \min(A[2:n])\}$

Algorithm 2 Max(A[1:n])

- 1. If n==1: return A[1]
- 2. return $\max\{\operatorname{Max}(A[1:\frac{n}{2}]), \operatorname{Max}(A[\frac{n}{2}:n])\}$

Algorithm 3 Fib(n)

- 1. If n==1 or n==2: return 1
- 2. return Fib(n-1)+Fib(n-2)

Algorithm 4 Power1(x,n)

- 1. If n==0: return 1
- 2. return $x \cdot Power1(x,n-1)$

Algorithm 5 Power2(x,n)

- 1. If n==0: return 1
- 2. If n%2 == 0:
 - return Power2 $(x^2, \frac{n}{2})$
- 3. else:
 - return $x \cdot \text{Power2}(x^2, \frac{n-1}{2})$

Question 5

Recall the MergeSort you have seen in class:

Algorithm 6 MergeSort(arr)

- 1. if arr.length == 1 return arr
- 2. $m \leftarrow \lfloor (arr.length 1)/2 \rfloor$
- 3. first half \leftarrow MergeSort(arr[0 : m])
- 4. second half \leftarrow MergeSort(arr[m+1 : arr.length])
- 5. return Merge(first half, second half)

Algorithm 7 Merge(arr1, arr2)

- 1. result \leftarrow new array of size (arr1.length + arr2.length) initialized with zeros
- 2. $i \leftarrow 0, j \leftarrow 0$
- 3. while i < arr1.length or j < arr2.length
 - (a) if i==arr1.length
 - $\bullet \ \operatorname{result}[i+j] \leftarrow \operatorname{arr2}[j]$
 - $j \leftarrow j+1$
 - (b) else if j==arr2.length or arr1[i] < arr2[j]
 - $result[i+j] \leftarrow arr1[i]$
 - \bullet i \leftarrow i+1
 - (c) else
 - $result[i+j] \leftarrow arr2[j]$
 - $j \leftarrow j+1$
- 4. return result

Prove its correctness. When proving the correctness of the Merge(arr1, arr2) routine - define and use a loop invariant.