Sequence Listing

Baker, Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan 1.
Ferrara, Napoleone
Fong, Sherman
Gao, Wei-Qiang
Goddard, Audrey
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth J.
Pan, James
Paoni, Nicholas F.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> P2830P1C44
- <140> 10/015388
- <141> 2001-12-11
- <150> 60/098716
- <151> 1998-09-01
- <150> 60/098723
- <151> 1998-09-01
- <150> 60/098749
- <151> 1998-09-01
- <150> 60/098750
- <151> 1998-09-01
- <150> 60/098803
- <151> 1998-09-02
- <150> 60/098821
- <151> 1998-09-02
- <150> 60/098843
- <151> 1998-09-02
- <150> 60/099536
- <151> 1998-09-09
- <150> 60/099596
- <151> 1998-09-09
- <150> 60/099598
- <151> 1998-09-09
- <150> 60/099602
- <151> 1998-09-09

- <150> 60/099642
- <151> 1998-09-09
- <150> 60/099741
- <151> 1998-09-10
- <150> 60/099754
- <151> 1998-09-10
- <150> 60/099763
- <151> 1998-09-10
- <150> 60/099792
- <151> 1998-09-10
- <150> 60/099808
- <151> 1998-09-10
- <150> 60/099812
- <151> 1998-09-10
- <150> 60/099815
- <151> 1998-09-10
- <150> 60/099816
- <151> 1998-09-10
- <150> 60/100385
- <151> 1998-09-15
- <150> 60/100388
- <151> 1998-09-15
- <150> 60/100390
- <151> 1998-09-15
- <150> 60/100584
- <151> 1998-09-16
- <150> 60/100627
- <151> 1998-09-16
- <150> 60/100661
- <151> 1998-09-16
- <150> 60/100662
- <151> 1998-09-16
- <150> 60/100664 <151> 1998-09-16
- <150> 60/100683
- <151> 1998-09-17
- <150> 60/100684
- <151> 1998-09-17

- <150> 60/100710
- <151> 1998-09-17
- <150> 60/100711
- <151> 1998-09-17
- <150> 60/100848 <151> 1998-09-18
- <150> 60/100849
- <151> 1998-09-18
- <150> 60/100919
- <151> 1998-09-17
- <150> 60/100930
- <151> 1998-09-17
- <150> 60/101014
- <151> 1998-09-18
- <150> 60/101068
- <151> 1998-09-18
- <150> 60/101071
- <151> 1998-09-18
- <150> 60/101279
- <151> 1998-09-22
- <150> 60/101471
- <151> 1998-09-23
- <150> 60/101472
- <151> 1998-09-23
- <150> 60/101474
- <151> 1998-09-23
 - <150> 60/101475
 - <151> 1998-09-23
 - <150> 60/101476
 - <151> 1998-09-23
 - <150> 60/101477
 - <151> 1998-09-23
 - <150> 60/101479
 - <151> 1998-09-23
 - <150> 60/101738
 - <151> 1998-09-24
 - <150> 60/101741
 - <151> 1998-09-24

- <150> 60/101743
- <151> 1998-09-24
- <150> 60/101915
- <151> 1998-09-24
- <150> 60/101916
- <151> 1998-09-24
- <150> 60/102207
- <151> 1998-09-29
- <150> 60/102240
- <151> 1998-09-29
- <150> 60/102307
- <151> 1998-09-29
- <150> 60/102330
- <151> 1998-09-29
- <150> 60/102331
- <151> 1998-09-29
- <150> 60/102484
- <151> 1998-09-30
- <150> 60/102487
- <151> 1998-09-30
- <150> 60/102570
- <151> 1998-09-30
- <150> 60/102571
- <151> 1998-09-30
- <150> 60/102684
- <151> 1998-10-01
- <150> 60/102687
- <151> 1998-10-01
- <150> 60/102965
- <151> 1998-10-02
- <150> 60/103258
- <151> 1998-10-06
- <150> 60/103314
- <151> 1998-10-07
- <150> 60/103315
- <151> 1998-10-07
- <150> 60/103328
- <151> 1998-10-07

- <150> 60/103395
- <151> 1998-10-07
- <150> 60/103396
- <151> 1998-10-07
- <150> 60/103401
- <151> 1998-10-07
- <150> 60/103449
- <151> 1998-10-06
- <150> 60/103633
- <151> 1998-10-08
- <150> 60/103678
- <151> 1998-10-08
- <150> 60/103679
- <151> 1998-10-08
- <150> 60/103711
- <151> 1998-10-08
- <150> 60/104257
- <151> 1998-10-14
- <150> 60/104987
- <151> 1998-10-20
- <150> 60/105000
- <151> 1998-10-20
- <150> 60/105002
- <151> 1998-10-20
- <150> 60/105104
- <151> 1998-10-21
- <150> 60/105169
- <151> 1998-10-22
- <150> 60/105266
- <151> 1998-10-22
- <150> 60/105693
- <151> 1998-10-26
- <150> 60/105694
- <151> 1998-10-26
- <150> 60/105807
- <151> 1998-10-27
- <150> 60/105881
- <151> 1998-10-27

- <150> 60/105882
- <151> 1998-10-27
- <150> 60/106023
- <151> 1998-10-28
- <150> 60/106029
- <151> 1998-10-28
- <150> 60/106030
- <151> 1998-10-28
- <150> 60/106032
- <151> 1998-10-28
- <150> 60/106033
- <151> 1998-10-28
- <150> 60/106062
- <151> 1998-10-27
- <150> 60/106178
- <151> 1998-10-28
- <150> 60/106248
- <151> 1998-10-29
- <150> 60/106384
- <151> 1998-10-29
- <150> 60/108500
- <151> 1998-10-29
- <150> 60/106464
- <151> 1998-10-30
- <150> 60/106856
- <151> 1998-11-03
- <150> 60/106902
- <151> 1998-11-03
- <150> 60/106905
- <151> 1998-11-03
- <150> 60/106919
- <151> 1998-11-03
- <150> 60/106932
- <151> 1998-11-03
- <150> 60/106934
- <151> 1998-11-03
- <150> 60/107783
- <151> 1998-11-10

- <150> 60/108775
- <151> 1998-11-17
- <150> 60/108779
- <151> 1998-11-17
- <150> 60/108787
- <151> 1998-11-17
- <150> 60/108788
- <151> 1998-11-17
- <150> 60/108801
- <151> 1998-11-17
- <150> 60/108802
- <151> 1998-11-17
- <150> 60/108806
- <151> 1998-11-17
- <150> 60/108807
- <151> 1998-11-17
- <150> 60/108848
- <151> 1998-11-18
- <150> 60/108849
- <151> 1998-11-18
- <150> 60/108850
- <151> 1998-11-18
- <150> 60/108851
- <151> 1998-11-18
- <150> 60/108852
- <151> 1998-11-18
- <150> 60/108858
- <151> 1998-11-18
- <150> 60/108867
- <151> 1998-11-17
- <150> 60/108904
- <151> 1998-11-18
- <150> 60/108925
- <151> 1998-11-17
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/114223
- <151> 1998-12-30

- <150> 60/129674
- <151> 1999-04-16
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/144758
- <151> 1999-07-20
- <150> 60/145698
- <151> 1999-07-26
- <150> 60/162506
- <151> 1999-10-29
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/403297
- <151> 1999-10-18
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/946374
- <151> 2001-09-04
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/20111
- <151> 1999-09-01
- <150> PCT/US99/21194
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28551
- <151> 1999-12-02
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06

- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04342
- <151> 2000-02-18
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/13705
- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/23522
- <151> 2000-08-23
- <150> PCT/US00/30873
- <151> 2000-11-10
- <150> PCT/US00/30952
- <151> 2000-11-08
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/06666
- <151> 2001-03-01
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29

```
<150> PCT/US01/21735
<151> 2001-07-09
<160> 477
<210> 1
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
<210> 2
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41
<210> 3
<211> 1110
<212> DNA
<213> Homo sapiens
<400> 3
ccaatcgccc ggtgcggtgg tgcagggtct cgggctagtc atggcgtccc 50
cgtctcggag actgcagact aaaccagtca ttacttgttt caagagcgtt 100
ctgctaatct acacttttat tttctggatc actggcgtta tccttcttgc 150
agttggcatt tggggcaagg tgagcctgga gaattacttt tctcttttaa 200
atgagaaggc caccaatgtc cccttcgtgc tcattgctac tggtaccgtc 250
attattettt tgggcacett tggttgtttt getacetgee gagettetge 300
atggatgcta aaactgtatg caatgtttct gactctcgtt tttttggtcg 350
aactggtcgc tgccatcgta ggatttgttt tcagacatga gattaagaac 400
agctttaaga ataattatga gaaggctttg aagcagtata actctacagg 450
agattataga agccatgcag tagacaagat ccaaaatacg ttgcattgtt 500
gtggtgtcac cgattataga gattggacag atactaatta ttactcagaa 550
aaaggatttc ctaagagttg ctgtaaactt gaagattgta ctccacagag 600
```

```
agatgcagac aaagtaaaca atgaaggttg ttttataaag gtgatgacca 650
 ttatagagtc agaaatggga gtcgttgcag gaatttcctt tggagttgct 700
 tgcttccaac tgattggaat ctttctcgcc tactgccwct ctcgtgccat 750
 aacaaataac cagtatgaga tagtgtaacc caatgtatct gtgggcctat 800
 tectetetae etttaaggae atttagggte eeeetgtga attagaaagt 850
 tgcttggctg gagaactgac aacactactt actgatagac caaaaaacta 900
 caccagtagg ttgattcaat caagatgtat gtagacctaa aactacacca 950
 ataggctgat tcaatcaaga tccgtgctcg cagtgggctg attcaatcaa 1000
 gatgtatgtt tgctatgttc taagtccacc ttctatccca ttcatgttag 1050
 atcgttgaaa ccctgtatcc ctctgaaaca ctggaagagc tagtaaattg 1100
 taaatgaagt 1110
<210> 4
<211> 245
<212> PRT
<213> Homo sapiens
<220>
<221> sig peptide
<222> 1-42
<223> Signal Peptide
<220>
<221> TRANSMEM
<222> 19-42, 61-83, 92-114, 209-230
<223> Transmembrane Domains
<220>
<221> misc feature
<222> 69-80, 211-222
<223> Prokaryotic Membrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc feature
<222> 75-81, 78-84, 210-216, 214-220, 226-232
<223> N-Myristoylation Site.
<220>
<221> misc feature
<222> 134-138
<223> N-Glycosylation Site.
<220>
<221> misc feature
<222> 160-168, 160-169
<223> Tyrosine Kinase Phosphorylation Site.
```

<220> <221> unsure <222> 233 <223> unknown amino acid <400> 4 Met Ala Ser Pro Ser Arg Arg Leu Gln Thr Lys Pro Val Ile Thr Cys Phe Lys Ser Val Leu Leu Ile Tyr Thr Phe Ile Phe Trp Ile 25 Thr Gly Val Ile Leu Leu Ala Val Gly Ile Trp Gly Lys Val Ser Leu Glu Asn Tyr Phe Ser Leu Leu Asn Glu Lys Ala Thr Asn Val Pro Phe Val Leu Ile Ala Thr Gly Thr Val Ile Ile Leu Leu Gly Thr Phe Gly Cys Phe Ala Thr Cys Arg Ala Ser Ala Trp Met Leu Lys Leu Tyr Ala Met Phe Leu Thr Leu Val Phe Leu Val Glu Leu 95 100 Val Ala Ala Ile Val Gly Phe Val Phe Arg His Glu Ile Lys Asn 110 Ser Phe Lys Asn Asn Tyr Glu Lys Ala Leu Lys Gln Tyr Asn Ser Thr Gly Asp Tyr Arg Ser His Ala Val Asp Lys Ile Gln Asn Thr Leu His Cys Cys Gly Val Thr Asp Tyr Arg Asp Trp Thr Asp Thr Asn Tyr Tyr Ser Glu Lys Gly Phe Pro Lys Ser Cys Cys Lys Leu 175 Glu Asp Cys Thr Pro Gln Arg Asp Ala Asp Lys Val Asn Asn Glu 185 Gly Cys Phe Ile Lys Val Met Thr Ile Ile Glu Ser Glu Met Gly Val Val Ala Gly Ile Ser Phe Gly Val Ala Cys Phe Gln Leu Ile 215 Gly Ile Phe Leu Ala Tyr Cys Xaa Ser Arg Ala Ile Thr Asn Asn 235 230 Gln Tyr Glu Ile Val 245

<210> 5 <211> 1218 <212> DNA <213> Homo sapiens

ctatgatctt tattagag 1218

<400> 5 cccacgcgtc cggcgccgtg gcctcgcgtc catctttgcc gttctctcgg 50 acctgtcaca aaggagtcgc gccgccgccg ccgcccctc cctccggtgg 100 gcccgggagg tagagaaagt cagtgccaca gcccgaccgc gctgctctga 150 gccctgggca cgcggaacgg gagggagtct gagggttggg gacgtctgtg 200 agggaggga acagccgctc gagcctgggg cgggcggacc ggactggggc 250 cggggtaggc tctggaaagg gcccgggaga gaggtggcgt tggtcagaac 300 ctgagaaaca gccgagaggt tttccaccga ggcccgcgct tgagggatct 350 gaagaggttc ctagaagagg gtgttccctc tttcgggggt cctcaccaga 400 agaggttctt gggggtcgcc cttctgagga ggctgcggct aacagggccc 450 agaactgcca ttggatgtcc agaatcccct gtagttgata atgttgggaa 500 taagctctgc aactttcttt ggcattcagt tgttaaaaac aaataggatg 550 caaattcctc aactccaggt tatgaaaaca gtacttggaa aactgaaaac 600 tacctaaatg atcgtctttg gttgggccgt gttcttagcg agcagaagcc 650 ttggccaggg tctgttgttg actctcgaag agcacatagc ccacttccta 700 gggactggag gtgccgctac taccatgggt aattcctgta tctgccgaga 750 tgacagtgga acagatgaca gtgttgacac ccaacagcaa caggccgaga 800 acagtgcagt acccactgct gacacaagga gccaaccacg ggaccctgtt 850 cggccaccaa ggagggccg aggacctcat gagccaagga gaaagaaaca 900 aaatgtggat gggctagtgt tggacacact ggcagtaata cggactcttg 950 tagataagta agtatctgac tcacggtcac ctccagtgga atgaaaagtg 1000 ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050 ctcgccaagc cttgtgctca cagggcaaag gagaatattt taatgctccg 1100 ctgatggcag agtaaatgat aagatttgat gtttttgctt gctgtcatct 1150 actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaag 1200

```
<210> 6
  <211> 117
  <212> PRT
  <213> Homo sapiens
  <220>
  <221> sig_peptide
  <222> 1-16
  <223> Signal Peptide
  <220>
  <221> misc_feature
 <222> 18-24, 32-38, 34-40, 35-41, 51-57
 <223> N-Myristoylation Site.
 <220>
 <221> misc_feature
 <222> 22-26, 50-54, 113-117
 <223> Casein Kinase II Phosphorylation Site.
  Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu
                                        10
  Gly Gln Gly Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
                                        25
  Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile
                   35
                                       40
 Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln
                                                            60
 Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser
 Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro
                                       85
 His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu
 Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys
                 110
<210> 7
<211> 756
<212> DNA
<213> Homo sapiens
<400> 7
ggcacgaggc gctgtccacc cgggggcgtg ggagtgaggt accagattca 50
gcccatttgg ccccgacgcc tctgttctcg gaatccgggt gctgcggatt 100
gaggtcccgg ttcctaacgg actgcaagat ggaggaaggc gggaacctag 150
```

```
gaggcctgat taagatggtc catctactgg tcttgtcagg tgcctggggc 200
 atgcaaatgt gggtgacctt cgtctcaggc ttcctgcttt tccgaagcct 250
 teccegacat acetteggae tagtgeagag caaactette ceettetact 300
 tecacatete catgggetgt geetteatea acetetgeat ettggettea 350
 cagcatgctt gggctcagct cacattctgg gaggccagcc agctttacct 400
 gctgttcctg agccttacgc tggccactgt caacgcccgc tggctggaac 450
 cccgcaccac agctgccatg tgggccctgc aaaccgtgga gaaggagcga 500
 ggcctgggtg gggaggtacc aggcagccac cagggtcccg atccctaccg 550
 ccagctgcga gagaaggacc ccaagtacag tgctctccgc cagaatttct 600
 tecgetacea tgggetgtee tetetttgea atetgggetg egteetgage 650
 aatgggctct gtctcgctgg ccttgccctg gaaataagga gcctctagca 700
 aaaaaa 756
<210> 8
<211> 189
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-24
<223> Signal Peptide
<220>
<221> misc feature
<222> 4-10, 5-11, 47-53, 170-176, 176-182
<223> N-Myristoylation Site.
<220>
<221> misc_feature
<222> 44-85
<223> G-protein Coupled Receptors Proteins.
<220>
<221> misc feature
<222> 54-65
<223> Prokaryotic Mmembrane Lipoprotein Lipid Attachment Site.
<220>
<221> misc_feature
<222> 82-86
<223> Casein Kinase II Phosphorylation Site.
```

<220>

```
<221> TRANSMEM
<222> 86-103, 60-75
<223> Transmembrane Domain
<220>
<221> misc feature
<222> 144-151
<223> Tyrosine Kinase Phosphorylation Site.
<400> 8
Met Glu Glu Gly Gly Asn Leu Gly Gly Leu Ile Lys Met Val His
 Leu Leu Val Leu Ser Gly Ala Trp Gly Met Gln Met Trp Val Thr
 Phe Val Ser Gly Phe Leu Leu Phe Arg Ser Leu Pro Arg His Thr
 Phe Gly Leu Val Gln Ser Lys Leu Phe Pro Phe Tyr Phe His Ile
 Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile Leu Ala Ser Gln
 His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser Gln Leu Tyr
                  80
                                      85
 Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala Arg Trp
                  95
                                     100
 Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr Val
 Glu Lys Glu Arg Gly Leu Gly Gly Glu Val Pro Gly Ser His Gln
Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr
                                     145
 Ser Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser
                 155
                                     160
Leu Cys Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala
                 170
Gly Leu Ala Leu Glu Ile Arg Ser Leu
<210> 9
<211> 1508
<212> DNA
<213> Homo sapiens
<400> 9
```

aattcagatt ttaagcccat tctgcagtgg aatttcatga actagcaaga 50

ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacac 100 agggggaaaa atgctctttt gggtgctagg cctcctaatc ctctgtggtt 150 ttctgtggac tcgtaaagga aaactaaaga ttgaagacat cactgataag 200 tacattttta tcactggatg tgactcgggc tttggaaact tggcagccag 250 aacttttgat aaaaagggat ttcatgtaat cgctgcctgt ctgactgaat 300 caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350 cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400 gaagaaccaa gttggggaga aaggtctctg gggtctgatc aataatgctg 450 gtgttcccgg cgtgctggct cccactgact ggctgacact agaggactac 500 agagaaccta ttgaagtgaa cctgtttgga ctcatcagtg tgacactaaa 550 tatgetteet ttggteaaga aageteaagg gagagttatt aatgteteea 600 gtgttggagg tcgccttgca atcgttggag ggggctatac tccatccaaa 650 tatgcagtgg aaggtttcaa tgacagctta agacgggaca tgaaagcttt 700 tggtgtgcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750 cagatccagt aaaggtaatt gaaaaaaaac tcgccatttg ggagcagctg 800 tctccagaca tcaaacaaca atatggagaa ggttacattg aaaaaagtct 850 agacaaactg aaaggcaata aatcctatgt gaacatggac ctctctccgg 900 tggtagagtg catggaccac gctctaacaa gtctcttccc taagactcat 950 tatgccgctg gaaaagatgc caaaattttc tggatacctc tgtctcacat 1000 gccagcagct ttgcaagact ttttattgtt gaaacagaaa gcagagctgg 1050 ctaatcccaa ggcagtgtga ctcagctaac cacaaatgtc tcctccaggc 1100 tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcct 1150 tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200 agggagtece accategetg gtggtatece agggtecetg etcaagtttt 1250 ctttgaaaag gagggctgga atggtacatc acataggcaa gtcctgccct 1300 gtatttaggc tttgcctgct tggtgtgatg taagggaaat tgaaagactt 1350 gcccattcaa aatgatcttt accgtggcct gccccatgct tatggtcccc 1400 agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaatat 1450

```
<210> 10
<211> 319
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-17
<223> Signal Peptide
<220>
<221> misc feature
<222> 36-47, 108-113, 166-171,198-203, 207-212
<223> N-myristoylation Sites.
<220>
<221> misc feature
<222> 39-42
<223> Glycosaminoglycan Attachment Site.
<220>
<221> TRANSMEM
<222> 136-152
<223> Transmembrane Domain
<220>
<221> misc feature
<222> 161-163, 187-190 and 253-256
<223> N-glycosylation Sites.
<400> 10
 Met Leu Phe Trp Val Leu Gly Leu Leu Ile Leu Cys Gly Phe Leu
 Trp Thr Arg Lys Gly Lys Leu Lys Ile Glu Asp Ile Thr Asp Lys
 Tyr Ile Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Ala
 Ala Arg Thr Phe Asp Lys Lys Gly Phe His Val Ile Ala Ala Cys
                  50
 Leu Thr Glu Ser Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu
 Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val
                  80
Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly
                                     100
 Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala
```

aaaaaaa 1508

Pro	Thr	Asp	Trp	Leu 125	Thr	Leu	Glu	Asp	Tyr 130	Arg	Glu	Pro	Ile	Glu 135
Val	Asn	Leu	Phe	Gly 140	Leu	Ile	Ser	Val	Thr 145	Leu	Asn	Met	Leu	Pro 150
Leu	Val	Lys	Lys	Ala 155	Gln	Gly	Arg	Val	Ile 160	Asn	Val	Ser	Ser	Val 165
Gly	Gly	Arg	Leu	Ala 170	Ile	Val	Gly	Gly	Gly 175	Tyr	Thr	Pro	Ser	Lys 180
Tyr	Ala	Val	Glu	Gly 185	Phe	Asn	Asp	Ser	Leu 190	Arg	Arg	Asp	Met	Lys 195
Ala	Phe	Gly	Val	His 200	Val	Ser	Cys	Ile	Glu 205	Pro	Gly	Leu	Phe	Lys 210
Thr	Asn	Leu	Ala	Asp 215	Pro	Val	Lys	Val	Ile 220	Glu	Lys	Lys	Leu	Ala 225
Ile	Trp	Glu	Gln	Leu 230	Ser	Pro	Asp	Ile	Lys 235	Gln	Gln	Tyr	Gly	Glu 240
Gly	Tyr	Ile	Glu	Lys 245	Ser	Leu	Asp	Lys	Leu 250	Lys	Gly	Asn	Lys	Ser 255
Tyr	Val	Asn	Met	Asp 260	Leu	Ser	Pro	Val	Val 265	Glu	Cys	Met	Asp	His 270
Ala	Leu	Thr	Ser	Leu 275	Phe	Pro	Lys	Thr	His 280	Tyr	Ala	Ala	Gly	Lys 285
Asp	Ala	Lys	Ile	Phe 290	Trp	Ile	Pro	Leu	Ser 295	His	Met	Pro	Ala	Ala 300
Leu	Gln	Asp	Phe	Leu 305	Leu	Leu	Lys	Gln	Lys 310	Ala	Glu	Leu	Ala	Asn 315

Pro Lys Ala Val

<210> 11 <211> 2720

<212> DNA

<213> Homo sapines

<400> 11

gegggetgtt gaeggegetg egatggetge etgegaggge aggagaageg 50
gagetetegg tteeteteag teggaettee tgaegeegee agtgggeggg 100
geecettggg eegtegeeae eactgtagte atgtaeceae egeegeegee 150
geegeeteat egggaettea teteggtgae getgagettt ggegagaget 200

atgacaacag caagagttgg cggcggcgct cgtgctggag gaaatggaag 250 caactgtcga gattgcagcg gaatatgatt ctcttcctcc ttgcctttct 300 gcttttctgt ggactcctct tctacatcaa cttggctgac cattggaaag 350 ctctggcttt caggctagag gaagagcaga agatgaggcc agaaattgct 400 gggttaaaac cagcaaatcc acccgtctta ccagctcctc agaaggcgga 450 caccgaccct gagaacttac ctgagatttc gtcacagaag acacaaagac 500 acatccagcg gggaccacct cacctgcaga ttagaccccc aagccaagac 550 ctgaaggatg ggacccagga ggaggccaca aaaaggcaag aagcccctgt 600 ggateceege eeggaaggag ateegeagag gacagteate agetggaggg 650 gagcggtgat cgagcctgag cagggcaccg agctcccttc aagaagagca 700 gaagtgccca ccaagcctcc cctgccaccg gccaggacac agggcacacc 750 agtgcatctg aactatcgcc agaagggcgt gattgacgtc ttcctgcatg 800 catggaaagg ataccgcaag tttgcatggg gccatgacga gctgaagcct 850 gtgtccaggt ccttcagtga gtggtttggc ctcggtctca cactgatcga 900 cgcgctggac accatgtgga tcttgggtct gaggaaagaa tttgaggaag 950 ccaggaagtg ggtgtcgaag aagttacact ttgaaaagga cgtggacgtc 1000 aacctgtttg agagcacgat ccgcatcctg ggggggctcc tgagtgccta 1050 ccacctgtct ggggacagcc tcttcctgag gaaagctgag gattttggaa 1100 atoggotaat gootgootto agaacaccat coaagattoo ttactoggat 1150 gtgaacatcg gtactggagt tgcccacccg ccacggtgga cctccgacag 1200 cactgtggcc gaggtgacca gcattcagct ggagttccgg gagctctccc 1250 gtctcacagg ggataagaag tttcaggagg cagtggagaa ggtgacacag 1300 cacatccacg gcctgtctgg gaagaaggat gggctggtgc ccatgttcat 1350 caatacccac agtggcctct tcacccacct gggcgtattc acgctgggcg 1400 ccagggccga cagctactat gagtacctgc tgaagcagtg gatccagggc 1450 gggaagcagg agacacagct gctggaagac tacgtggaag ccatcgaggg 1500 tgtcagaacg cacctgctgc ggcactccga gcccagtaag ctcacctttg 1550 tgggggaget tgcccacggc cgcttcagtg ccaagatgga ccacctggtg 1600 tgcttcctgc cagggacgct ggctctgggc gtctaccacg gcctgcccgc 1650

```
cagccacatg gagctggccc aggagctcat ggagacttgt taccagatga 1700
 accggcagat ggagacgggg ctgagtcccg agatcgtgca cttcaacctt 1750
 tacccccage eggecegteg ggacgtggag gtcaagecag cagacaggea 1800
 caacctgctg cggccagaga ccgtggagag cctgttctac ctgtaccgcg 1850
 tcacagggga ccgcaaatac caggactggg gctgggagat tctgcagagc 1900
 ttcagccgat tcacacgggt cccctcgggt ggctattctt ccatcaacaa 1950
 tgtccaggat cctcagaagc ccgagcctag ggacaagatg gagagcttct 2000
 tcctggggga gacgctcaag tatctgttct tgctcttctc cgatgaccca 2050
 aacctgctca gcctggacgc ctacgtgttc aacaccgaag cccaccctct 2100
 gcctatctgg acccctgcct agggtggatg gctgctggtg tggggacttc 2150
 gggtgggcag aggcaccttg ctgggtctgt ggcattttcc aagggcccac 2200
 gtagcaccgg caaccgccaa gtggcccagg ctctgaactg gctctgggct 2250
 cctcctcgtc tctgctttaa tcaggacacc gtgaggacaa gtgaggccgt 2300
 cagtcttggt gtgatgcggg gtgggctggg ccgctggagc ctccgcctgc 2350
 ttcctccaga agacacgaat catgactcac gattgctgaa gcctgagcag 2400
 gtctctgtgg gccgaccaga ggggggcttc gaggtggtcc ctggtactgg 2450
 ggtgaccgag tggacagccc agggtgcagc tctgcccggg ctcgtgaagc 2500
 ctcagatgtc cccaatccaa gggtctggag gggctgccgt gactccagag 2550
 gcctgaggct ccagggctgg ctctggtgtt tacaagctgg actcagggat 2600
 cctcctggcc gccccgcagg gggcttggag ggctggacgg caagtccgtc 2650
 tagctcacgg gcccctccag tggaatgggt cttttcggtg gagataaaag 2700
ttgatttgct ctaaccgcaa 2720
<210> 12
<211> 699
<212> PRT
<213> Homo sapiens
<220>
<221> TRANSMEM
<222> 21-40 and 84-105
<223> Transmembrane Domain (type II)
```

Met Ala Ala Cys Glu Gly Arg Arg Ser Gly Ala Leu Gly Ser Ser

<400> 12

His Asp Glu Leu Lys Pro Val Ser Arg Ser Phe Ser Glu Trp Phe

Gly Leu Gly Leu Thr Leu Ile Asp Ala Leu Asp Thr Met Trp Ile

575 580 585 Glu Val Lys Pro Ala Asp Arg His Asn Leu Leu Arg Pro Glu Thr 590 595 Val Glu Ser Leu Phe Tyr Leu Tyr Arg Val Thr Gly Asp Arg Lys 610 Tyr Gln Asp Trp Gly Trp Glu Ile Leu Gln Ser Phe Ser Arg Phe Thr Arg Val Pro Ser Gly Gly Tyr Ser Ser Ile Asn Asn Val Gln Asp Pro Gln Lys Pro Glu Pro Arg Asp Lys Met Glu Ser Phe Phe 650 Leu Gly Glu Thr Leu Lys Tyr Leu Phe Leu Leu Phe Ser Asp Asp 665 Pro Asn Leu Leu Ser Leu Asp Ala Tyr Val Phe Asn Thr Glu Ala His Pro Leu Pro Ile Trp Thr Pro Ala <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 13 cgccagaagg gcgtgattga cgtc 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 14 ccatccttct tcccagacag gccg 24 <210> 15 <211> 44 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 15

<210> 16

<211> 1524

<212> DNA

<213> Homo sapiens

<400> 16

ggcgccgcgt aggcccggga ggccgggccg gccgggctgc gagcgcctgc 50 cccatgegec geogeetete egeaegatgt teccetegeg gaggaaageg 100 gcgcagctgc cctgggagga cggcaggtcc gggttgctct ccggcggcct 150 ccctcggaag tgttccgtct tccacctgtt cgtggcctgc ctctcgctgg 200 gcttcttctc cctactctgg ctgcagctca gctgctctgg ggacgtggcc 250 egggeagtea ggggaeaagg geaggagaee tegggeeete eeegtgeetg 300 cccccagag ccgcccctg agcactggga agaagacgca tcctggggcc 350 cccaccgcct ggcagtgctg gtgcccttcc gcgaacgctt cgaggagctc 400 ctggtcttcg tgccccacat gcgccgcttc ctgagcagga agaagatccg 450 gcaccacatc tacgtgctca accaggtgga ccacttcagg ttcaaccggg 500 cagcgctcat caacgtgggc ttcctggaga gcagcaacag cacggactac 550 attgccatgc acgacgttga cctgctccct ctcaacgagg agctggacta 600 tggctttcct gaggctgggc ccttccacgt ggcctccccg gagctccacc 650 ctctctacca ctacaagacc tatgtcggcg gcatcctgct gctctccaag 700 cagcactacc ggctgtgcaa tgggatgtcc aaccgcttct ggggctgggg 750 ccgcgaggac gacgagttct accggcgcat taagggagct gggctccagc 800 ttttccgccc ctcgggaatc acaactgggt acaagacatt tcgccacctg 850 catgacccag cctggcggaa gagggaccag aagcgcatcg cagctcaaaa 900 acaggagcag ttcaaggtgg acagggaggg aggcctgaac actgtgaagt 950 accatgtggc ttcccgcact gccctgtctg tgggcggggc cccctgcact 1000 gtcctcaaca tcatgttgga ctgtgacaag accgccacac cctggtgcac 1050 attcagctga gctggatgga cagtgaggaa gcctgtacct acaggccata 1100 ttgctcaggc tcaggacaag gcctcaggtc gtgggcccag ctctgacagg 1150 atgtggagtg gccaggacca agacagcaag ctacgcaatt gcagccaccc 1200 ggccgccaag gcaggcttgg gctgggccag gacacgtggg gtgcctggga 1250

```
cgggacccc cctgccttcc tgctcaccct actctgacct ccttcacgtg 1350
 cccaggcctg tgggtagtgg ggagggctga acaggacaac ctctcatcac 1400
 cctactctga cctccttcac gtgcccaggc ctgtgggtag tggggagggc 1450
 aaaaaaaaa aaaaaaaaa aaaa 1524
<210> 17
<211> 327
<212> PRT
<213> Homo sapiens
<220>
<221> sig peptide
<222> 1-42
<223> Signal peptide.
<220>
<221> misc_feature
<222> 19-25, 65-71, 247-253, 285-291, 303-310
<223> N-myristoylation site.
<220>
<221> misc feature
<222> 27-31
<223> cAMP- and cGMP-dependent protein kinase phosphorylation site.
<220>
<221> TRANSMEM
<222> 29-49
<223> Transmembrane domain (type II).
<220>
<221> misc_feature
<222> 154-158
<223> N-glycosylation site.
<220>
<221> misc feature
<222> 226-233
<223> Tyrosine kinase phosphorylation site.
<400> 17
Met Phe Pro Ser Arg Arg Lys Ala Ala Gln Leu Pro Trp Glu Asp
Gly Arg Ser Gly Leu Leu Ser Gly Gly Leu Pro Arg Lys Cys Ser
Val Phe His Leu Phe Val Ala Cys Leu Ser Leu Gly Phe Phe Ser
```

cgctgcttgc catgcacagt gatcagagag aggctggggt gtgtcctgtc 1300

Leu	Leu	Trp	Leu	Gln 50	Leu	Ser	Cys	Ser	Gly 55	Asp	Val	Ala	Arg	Ala 60
Val	Arg	Gly	Gln	Gly 65	Gln	Glu	Thr	Ser	Gly 70	Pro	Pro	Arg	Ala	Cys 75
Pro	Pro	Glu	Pro	Pro 80	Pro	Glu	His	Trp	Glu 85	Glu	Asp	Ala	Ser	Trp 90
Gly	Pro	His	Arg	Leu 95	Ala	Val	Leu	Val	Pro 100	Phe	Arg	Glu	Arg	Phe 105
Glu	Glu	Leu	Leu	Val 110	Phe	Val	Pro	His	Met 115	Arg	Arg	Phe	Leu	Ser 120
Arg	Lys	Lys	Ile	Arg 125	His	His	Ile	Tyr	Val 130	Leu	Asn	Gln	Val	Asp 135
His	Phe	Arg	Phe	Asn 140	Arg	Ala	Ala	Leu	Ile 145	Asn	Val	Gly	Phe	Leu 150
Glu	Ser	Ser	Asn	Ser 155	Thr	Asp	Tyr	Ile	Ala 160	Met	His	Asp	Val	Asp 165
Leu	Leu	Pro	Leu	Asn 170	Glu	Glu	Leu	Asp	Tyr 175	Gly	Phe	Pro	Glu	Ala 180
Gly	Pro	Phe	His	Val 185	Ala	Ser	Pro	Glu	Leu 190	His	Pro	Leu	Tyr	His 195
Tyr	Lys	Thr	Tyr	Val 200	Gly	Gly	Ile	Leu	Leu 205	Leu	Ser	Lys	Gln	His 210
Tyr	Arg	Leu	Cys	Asn 215	Gly	Met	Ser	Asn	Arg 220	Phe	Trp	Gly	Trp	Gly 225
Arg	Glu	Asp	Asp	Glu 230	Phe	Tyr	Arg	Arg	Ile 235	Lys	Gly	Ala	Gly	Leu 240
Gln	Leu	Phe	Arg	Pro 245	Ser	Gly	Ile	Thr	Thr 250	Gly	Tyr	Lys	Thr	Phe 255
Arg	His	Leu	His	Asp 260	Pro	Ala	Trp	Arg	Lys 265	Arg	Asp	Gln	Lys	Arg 270
Ile	Ala	Ala	Gln	Lys 275	Gln	Glu	Gln	Phe	Lys 280	Val	Asp	Arg	Glu	Gly 285
Gly	Leu	Asn	Thr	Val 290	Lys	Tyr	His	Val	Ala 295	Ser	Arg	Thr	Ala	Leu 300
Ser	Val	Gly	Gly	Ala 305	Pro	Cys	Thr	Val	Leu 310	Asn	Ile	Met	Leu	Asp 315
Cys	Asp	Lys	Thr	Ala 320	Thr	Pro	Trp	Cys	Thr 325	Phe	Ser			

```
<210> 18
<211> 23
<212> DNA
<<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 18
gcgaacgctt cgaggagtcc tgg 23
<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 19
gcagtgcggg aagccacatg gtac 24
<210> 20
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 20
cttcctgagc aggaagaaga tccggcacca catctacgtg ctcaac 46
<210> 21
<211> 494
<212> DNA
<213> Homo sapiens
<400> 21
 caatgtttgc ctatccacct cccccaagcc cctttaccta tgctgctgct 50
 aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100
 gactggtcgg tgcccagaaa gtctcttctg ccactgacgc ccccatcagg 150
 gattgggcct tctttccccc ttcctttctg tgtctcctgc ctcatcggcc 200
 tgccatgacc tgcagccaag cccagccccg tggggaaggg gagaaagtgg 250
 gggatggcta agaaagctgg gagataggga acagaagagg gtagtgggtg 300
 ggctaggggg gctgccttat ttaaagtggt tgtttatgat tcttatacta 350
 atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400
 cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataa 450
```

```
<210> 22
<211> 73
<212> PRT
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 1-15
<223> Signal peptide.
<220>
<221> misc feature
<222> 3-18
<223> Growth factor and cytokines receptors family.
<400> 22
Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser
Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Phe Pro Pro Ser
                 35
                                    40
Phe Leu Cys Leu Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln
                 50
Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly
<210> 23
<211> 2883
<212> DNA
<213> Homo sapiens
<400> 23
gggacccatg cggccgtgac ccccggctcc ctagaggccc agcgcagccg 50
cagcggacaa aggagcatgt ccgcgccggg gaaggcccgt cctccggccg 100
ccataaggct ccggtcgccg ctgqqcccgc qccgcgctcc tqcccqcccg 150
ggctccgggg cggcccgcta ggccagtgcg ccgccgctcg ccccgcaggc 200
cccggcccgc agcatggagc cacccggacg ccggcggggc cqcgccagc 250
cgccgctgtt gctgccgctc tcgctgttag cgctgctcgc gctgctggga 300
```

ggcggcggcg gcggcggcgc cgcggcgctg cccgccggct gcaagcacga 350

tgggcggccc cgaggggctg gcagggcggc gggcgccgcc gagggcaagg 400

tggtgtgcag cagcctggaa ctcgcgcagg tcctgcccc agatactctg 450

cccaaccgca cggtcaccct gattctgagt aacaataaga tatccgagct 500 gaagaatggc tcattttctg ggttaagtct ccttgaaaga ttggacctcc 550 gaaacaatct tattagtagt atagatccag gtgccttctg gggactgtca 600 tctctaaaaa gattggatct gacaaacaat cgaataggat gtctgaatgc 650 agacatattt cgaggactca ccaatctggt tcggctaaac ctttcgggga 700 atttgttttc ttcattatct caaggaactt ttgattatct tgcgtcatta 750 cggtctttgg aattccagac tgagtatctt ttgtgtgact gtaacatact 800 gtggatgcat cgctgggtaa aggagaagaa catcacggta cgggatacca 850 ggtgtgttta tcctaagtca ctgcaggccc aaccagtcac aggcgtgaag 900 caggagetgt tgacatgega eceteegett gaattgeegt etttetacat 950 gactccatct catcgccaag ttgtgtttga aggagacagc cttcctttcc 1000 agtgcatggc ttcatatatt gatcaggaca tgcaagtgtt gtggtatcag 1050 gatgggagaa tagttgaaac cgatgaatcg caaggtattt ttgttgaaaa 1100 gaacatgatt cacaactgct ccttgattgc aagtgcccta accatttcta 1150 atattcaggc tggatctact ggaaattggg gctgtcatgt ccagaccaaa 1200 cgtgggaata atacgaggac tgtggatatt gtggtattag agagttctgc 1250 acagtactgt cctccagaga gggtggtaaa caacaaaggt gacttcagat 1300 ggcccagaac attggcaggc attactgcat atctgcagtg tacgcggaac 1350 acccatggca gtgggatata tcccggaaac ccacaggatg agagaaaagc 1400 ttggcgcaga tgtgatagag gtggcttttg ggcagatgat gattattctc 1450 gctgtcagta tgcaaatgat gtcactagag ttctttatat gtttaatcag 1500 atgcccctca atcttaccaa tgccgtggca acagctcgac agttactggc 1550 ttacactgtg gaagcagcca acttttctga caaaatggat gttatatttg 1600 tggcagaaat gattgaaaaa tttggaagat ttaccaagga ggaaaaatca 1650 aaagagctag gtgacgtgat ggttgacatt gcaagtaaca tcatgttggc 1700 tgatgaacgt gtcctgtggc tggcgcagag ggaagctaaa gcctgcagta 1750 ggattgtgca gtgtcttcag cgcattgcta cctaccggct agccggtgga 1800 gctcacgttt attcaacata ttcacccaat attgctctgg aagcttatgt 1850

```
catcaagtct actggcttca cggggatgac ctgtaccgtg ttccagaaag 1900
tggcagcctc tgatcgtaca ggactttcgg attatgggag gcgggatcca 1950
gagggaaacc tggataagca gctgagcttt aagtgcaatg tttcaaatac 2000
attttcgagt ctggcactaa aggtatgtta cattctgcaa tcatttaaga 2050
ctatttacag ttaaattaga atgctccaaa tgttctgctt cgcaaaataa 2100
ccttattaaa agatttttt ttgcaggaag ataggtatta ttgcttttgc 2150
tactgtttta aagaaaacta accaggaaga actgcattac gactttcaag 2200
ggccctaggc attittgcct ttgattccct ttcttcacat aaaaatatca 2250
gaaattacat tttataactg cagtggtata aatgcaaata tactattgtt 2300
acatgtgaaa aaattttatt tgacttaaaa gtttatttat ttgtttttt 2350
gctcctgatt ttaagacaat aagatgtttt catgggcccc taaaagtatc 2400
atgageettt ggeactgege etgeeaagee tagtggagaa gteaaceetg 2450
agaccaggtg tttaatcaag caagctgtat atcaaaattt ttggcagaaa 2500
acacaaatat gtcatatatc tttttttaaa aaaagtattt cattgaagca 2550
agcaaaatga aagcattttt actgattttt aaaattggtg ctttagatat 2600
atttgactac actgtattga agcaaataga ggaggcacaa ctccagcacc 2650
ctaatggaac cacattttt tcacttagct ttctgtgggc atgtgtaatt 2700
gtattctctg cggtttttaa tctcacagta ctttatttct gtcttgtccc 2750
tcaataatat cacaaacaat attccagtca ttttaatggc tgcataataa 2800
ctgatccaac aggtgttagg tgttctggtt tagtgtgagc actcaataaa 2850
tattgaatga atgaacgaaa aaaaaaaaaa aaa 2883
```

```
<210> 24
<211> 616
<212> PRT
<213> Homo sapiens

<220>
<221> sig_peptide
<222> 1-33
<223> Signal peptide.

<220>
<221> TRANSMEM
<222> 13-40
<223> Transmembrane domain (type II).
```

<4000 Met 1		Pro	Pro	Gly 5	Arg	Arg	Arg	Gly	Arg 10	Ala	Gln	Pro	Pro	Leu 15
Leu	Leu	Pro	Leu	Ser 20	Leu	Leu	Ala	Leu	Leu 25	Ala	Leu	Leu	Gly	Gly 30
Gly	Gly	Gly	Gly	Gly 35	Ala	Ala	Ala	Leu	Pro 40	Ala	Gly	Cys	Lys	His 45
Asp	Gly	Arg	Pro	Arg 50	Gly	Ala	Gly	Arg	Ala 55	Ala	Gly	Ala	Ala	Ģlu 60
Gly	Lys	Val	Val	Cys 65	Ser	Ser	Leu	Glu	Leu 70	Ala	Gln	Val	Leu	Pro 75
Pro	Asp	Thr	Leu	Pro 80	Asn	Arg	Thr	Val	Thr 85	Leu	Ile	Leu	Ser	Asn 90
Asn	Lys	Ile	Ser	Glu 95	Leu	Lys	Asn	Gly	Ser 100	Phe	Ser	Gly	Leu	Ser 105
Leu	Leu	Glu	Arg	Leu 110	Asp	Leu	Arg	Asn	Asn 115	Leu	Ile	Ser	Ser	Ile 120
Asp	Pro	Gly	Ala	Phe 125	Trp	Gly	Leu	Ser	Ser 130	Leu	Lys	Arg	Leu [.]	Asp 135
Leu	Thr	Asn	Asn	Arg 140	Ile	Gly	Cys	Leu	Asn 145	Ala	Asp	Ile	Phe	Arg 150
Gly	Leu	Thr	Asn	Leu 155	Val	Arg	Leu	Asn	Leu 160	Ser	Gly	Asn	Leu	Phe 165
Ser	Ser	Leu	Ser	Gln 170	Gly	Thr	Phe	Asp	Tyr 175	Leu	Ala	Ser	Leu	Arg 180
Ser	Leu	Glu	Phe	Gln 185	Thr	Glu	Tyr	Leu	Leu 190	Суѕ	Asp	Cys	Asn	Ile 195
Leu	Trp	Met	His	Arg 200	Trp	Val	Lys	Glu	Lys 205	Asn	Ile	Thr	Val	Arg 210
Asp	Thr	Arg	Cys	Val 215	Tyr	Pro	Lys	Ser	Leu 220	Gln	Ala	Gln	Pro	Val 225
Thr	Gly	Val	Lys	Gln 230	Glu	Leu	Leu	Thr	Cys 235	Asp	Pro	Pro	Leu	Glu 240
Leu	Pro	Ser	Phe	Tyr 245	Met	Thr	Pro	Ser	His 250	Arg	Gln	Val	Val	Phe 255

Glu Gly Asp Ser Leu Pro Phe Gln Cys Met Ala Ser Tyr Ile Asp

Gln Asp Met Gln Val Leu Trp Tyr Gln Asp Gly Arg Ile Val Glu 275 280 285

265

260

Thr	Asp	Glu	Ser	Gln 290	Gly	Ile	Phe	Val	Glu 295	Lys	Asn	Met	Ile	His 300
Asn	Cys	Ser	Leu	Ile 305	Ala	Ser	Ala	Leu	Thr 310	Ile	Ser	Asn	Ile	Gln 315
Ala	Gly	Ser	Thr	Gly 320	Asn	Trp	Gly	Cys	His 325	Val	Gln	Thr	Lys	Arg 330
Gly	Asn	Asn	Thr	Arg 335	Thr	Val	Asp	Ile	Val 340	Val	Leu	Glu	Ser	Ser 345
Ala	Gln	Tyr	Cys	Pro 350	Pro	Glu	Arg	Val	Val 355	Asn	Asn	Lys	Gly	Asp 360
Phe	Arg	Trp	Pro	Arg 365	Thr	Leu	Ala	Gly	Ile 370	Thr	Ala	Tyr	Leu	Gln 375
Cys	Thr	Arg	Asn	Thr 380	His	Gly	Ser	Gly	Ile 385	Tyr	Pro	Gly	Asn	Pro 390
Gln	Asp	Glu	Arg	Lys 395	Ala	Trp	Arg	Arg	Cys 400	Asp	Arg	Gly	Gly	Phe 405
Trp	Ala	Asp	Asp	Asp 410	Tyr	Ser	Arg	Cys	Gln 415	Tyr	Ala	Asn	Asp	Val 420
Thr	Arg	Val	Leu	Tyr 425	Met	Phe	Asn	Gln	Met 430	Pro	Leu	Asn	Leu	Thr 435
Asn	Ala	Val	Ala	Thr 440	Ala	Arg	Gln	Leu	Leu 445	Ala	Tyr	Thr	Val	Glu 450
Ala	Ala	Asn	Phe	Ser 455	Asp	Lys	Met	Asp	Val 460	Ile	Phe	Val	Ala	Glu 465
Met	Ile	Glu	Lys	Phe 470	Gly	Arg	Phe	Thr	Lys 475	Glu	Glu	Lys	Ser	Lys 480
Glu	Leu	Gly	Asp	Val 485	Met	Val	Asp	Ile	Ala 490	Ser	Asn	Ile	Met	Leu 495
Ala	Asp	Glu	Arg	Val 500	Leu	Trp	Leu	Ala	Gln 505	Arg	Glu	Ala	Lys	Ala 510
Cys	Ser	Arg	Ile	Val 515	Gln	Суѕ	Leu	Gln	Arg 520	Ile	Ala	Thr	Tyr	Arg 525
Leu	Ala	Gly	Gly	Ala 530	His	Val	Tyr	Ser	Thr 535	Tyr	Ser	Pro	Asn	Ile 540
Ala	Leu	Glu	Ala	Tyr 545	Val	Ile	Lys	Ser	Thr 550	Gly	Phe	Thr	Gly	Met 555
Thr	Cys	Thr	Val	Phe 560	Gln	Lys	Val	Ala	Ala 565	Ser	Asp	Arg	Thr	Gly 570

```
Leu Ser Asp Tyr Gly Arg Arg Asp Pro Glu Gly Asn Leu Asp Lys
                 575
 Gln Leu Ser Phe Lys Cys Asn Val Ser Asn Thr Phe Ser Ser Leu
                                      595
 Ala Leu Lys Val Cys Tyr Ile Leu Gln Ser Phe Lys Thr Ile Tyr
                                      610
 Ser
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 25
 gaggactcac caatctggtt cggc 24
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
 aactggaaag gaaggctgtc tccc 24
<210> 27
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 27
 gtaaaggaga agaacatcac ggtacgggat accaggtgtg tttatcctaa 50
<210> 28
<211> 683
<212> DNA
<213> Homo sapiens
<400> 28
gcgtggggat gtctaggagc tcgaaggtgg tgctgggcct ctcggtgctg 50
ctgacggcgg ccacagtggc cggcgtacat gtgaagcagc agtgggacca 100
 gcagaggctt cgtgacggag ttatcagaga cattgagagg caaattcgga 150
```

aaaaagaaaa cattcgtctt ttgggagaac agattatttt gactgagcaa 200 cttgaagcag aaagagagaa gatgttattg gcaaaaggat ctcaaaaatc 250 atgacttgaa tgtgaaatat ctgttggaca gacaacacga gtttgtgtgt 300 gtgtgttgat ggagagtagc ttagtagtat cttcatcttt tttttggtc 350 actgtccttt taaacttgat caaataaagg acagtgggtc atataagtta 400 ctgctttcag ggtcccttat atctgaataa aggagtgtgg gcagacactt 450 tttggaagag tctgtctggg tgatcctggt agaagcccca ttagggtcac 500 tgtccagtgc ttagggttgt tactgagaag cactgccgag cttgtgagaa 550 ggaagggatg gatagtagca tccacctgag tagtctgatc agtcggcatg 600 atgacgaagc cacgagaaca tcgacctcag aaggactgga ggaaggtgaa 650 gtggagggag agacgctcct gatcgtcgaa tcc 683

<210> 29

<211> 81

<212> PRT

<213> Homo sapiens

<220>

<221> sig_peptide

<222> 1-21

<223> Signal peptide.

<400> 29

Met Ser Arg Ser Ser Lys Val Val Leu Gly Leu Ser Val Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Ala Ala Thr Val Ala Gly Val His Val Lys Gln Gln Trp Asp 20 25 30

Gln Gln Arg Leu Arg Asp Gly Val Ile Arg Asp Ile Glu Arg Gln
35 40 45

Ile Arg Lys Lys Glu Asn Ile Arg Leu Leu Gly Glu Gln Ile Ile 50 55 60

Leu Thr Glu Gln Leu Glu Ala Glu Arg Glu Lys Met Leu Leu Ala 65 70 75

Lys Gly Ser Gln Lys Ser 80

<210> 30

<211> 2128

<212> DNA

<213> Homo sapiens

<400> 30 ctgtcgtctt tgcttcagcc gcagtcgcca ctggctgcct gaggtgctct 50 tacagcctgt tccaagtgtg gcttaatccg tctccaccac cagatctttc 100 tccgtggatt cctctgctaa gaccgctgcc atgccagtga cggtaacccg 150 caccaccatc acaaccacca cgacgtcatc ttcgggcctg gggtccccca 200 tgatcgtggg gtcccctcgg gccctgacac agcccctggg tctccttcgc 250 ctgctgcagc tggtgtctac ctgcgtggcc ttctcgctgg tggctagcgt 300 gggcgcctgg acggggtcca tgggcaactg gtccatgttc acctggtgct 350 tetgettete egtgaceetg ateateetea tegtggaget gtgegggete 400 caggeceget teeecetgte ttggegeaac tteeecatea cettegeetg 450 ctatgeggee etettetgee teteggeete cateatetae eccaceacet 500 atgtccagtt cctgtcccac ggccgttcgc gggaccacgc catcgccgcc 550 accttcttct cctgcatcgc gtgtgtggct tacgccaccg aagtggcctg 600 gacccgggcc cggcccggcg agatcactgg ctatatggcc accgtacccg 650 ggctgctgaa ggtgctggag accttcgttg cctgcatcat cttcgcgttc 700 atcagcgacc ccaacctgta ccagcaccag ccggccctgg agtggtgcgt 750 ggcggtgtac gccatctgct tcatcctagc ggccatcgcc atcctgctga 800 acctggggga gtgcaccaac gtgctaccca tccccttccc cagcttcctg 850 tcggggctgg ccttgctgtc tgtcctcctc tatgccaccg cccttgttct 900 ctggccctc taccagttcg atgagaagta tggcggccag cctcggcgct 950 cgagagatgt aagctgcagc cgcagccatg cctactacgt gtgtgcctgg 1000 gaccgccgac tggctgtggc catcctgacg gccatcaacc tactggcgta 1050 tgtggctgac ctggtgcact ctgcccacct ggtttttgtc aaggtctaag 1100 actotoccaa gaggotoccg ttocototoc aacototttg ttottottgc 1150 ccgagttttc tttatggagt acttctttcc tccgcctttc ctctgttttc 1200 ctcttcctgt ctcccctccc tcccaccttt ttctttcctt cccaattcct 1250 tgcactctaa ccagttcttg gatgcatctt cttccttccc tttcctcttg 1300 ctgtttcctt cctgtgttgt tttgttgccc acatcctgtt ttcacccctg 1350 <210> 31

<211> 322

<212> PRT

<213> Homo sapiens

<400> 31

Met Pro Val Thr Val Thr Arg Thr Thr Ile Thr Thr Thr Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Ser Ser Gly Leu Gly Ser Pro Met Ile Val Gly Ser Pro Arg 20 25 30

Ala Leu Thr Gln Pro Leu Gly Leu Leu Arg Leu Leu Gln Leu Val

Ser Thr Cys Val Ala Phe Ser Leu Val Ala Ser Val Gly Ala Trp 50 55 60

Thr Gly Ser Met Gly Asn Trp Ser Met Phe Thr Trp Cys Phe Cys 65 70 75

Phe Ser Val Thr Leu Ile Ile Leu Ile Val Glu Leu Cys Gly Leu 80 85 90

Gln Ala Arg Phe Pro Leu Ser Trp Arg Asn Phe Pro Ile Thr Phe 95 100 105

Ala	Суѕ	Tyr	Ala	Ala 110	Leu	Phe	Cys	Leu	Ser 115	Ala	Ser	Ile	Ile	Tyr 120
Pro	Thr	Thr	Tyr	Val 125	Gln	Phe	Leu	Ser	His 130	Gly	Arg	Ser	Arg	Asp 135
His	Ala	Ile	Ala	Ala 140	Thr	Phe	Phe	Ser	Cys 145	Ile	Ala	Cys	Val	Ala 150
Tyr	Ala	Thr	Glu	Val 155	Ala	Trp	Thr	Arg	Ala 160	Arg	Pro	Gly	Glu	Ile 165
Thr	Gly	Tyr	Met	Ala 170	Thr	Val	Pro	Gly	Leu 175	Leu	Lys	Val	Leu	Glu 180
Thr	Phe	Val	Ala	Cys 185	Ile	Ile	Phe	Ala	Phe 190	Ile	Ser	Asp	Pro	Asn 195
Leu	Tyr	Gln	His	Gln 200	Pro	Ala	Leu	Glu	Trp 205	Cys	Val	Ala	Val	Tyr 210
Ala	Ile	Cys	Phe	Ile 215	Leu	Ala	Ala	Ile	Ala 220	Ile	Leu	Leu	Asn	Leu 225
Gly	Glu	Cys	Thr	Asn 230	Val	Leu	Pro	Ile	Pro 235	Phe	Pro	Ser	Phe	Leu 240
Ser	Gly	Leu	Ala	Leu 245	Leu	Ser	Val	Leu	Leu 250	Tyr	Ala	Thr	Ala	Leu 255
Val	Leu	Trp	Pro	Leu 260	Tyr	Gln	Phe	Asp	Glu 265	Lys	Tyr	Gly	Gly	Gln 270
Pro	Arg	Arg	Ser	Arg 275	Asp	Val	Ser	Cys	Ser 280	Arg	Ser	His	Ala	Tyr 285
Tyr	Val	Cys	Ala	Trp 290	Asp	Arg	Arg	Leu	Ala 295	Val	Ala	Ile	Leu	Thr 300
Ala	Ile	Asn	Leu	Leu 305	Ala	Tyr	Val	Ala	Asp 310	Leu	Val	His	Ser	Ala 315
His	Leu	Val	Phe	Val 320	Lys	Val								
<210														
<2112	> 368	30												

<211> 3680

<212> DNA

<213> Homo sapiens

<400> 32

gaacgtgcca ccatgcccag ctaatttttg tattttagt agagacgggg 50 tttcaccatg ttggccaggc tggtcttgaa ctcgtgacct catgatccgc 100 ${\tt tcacctcggc\ ctcccaaagt\ gctgggatta\ caggcatgag\ ccactgacgc\ 150}$

ctggccagcc tatgcatttt taagaaatta ttctgtatta ggtgctgtgc 200 taaacattgg gcactacagt gaccaaaaca gactgaattc cccaagagcc 250 aaagaccagt gagggagacc aacaagaaac aggaaatgca aaagagacca 300 ttattactca ctatgactaa gggtcacaaa tggggtacgt tgatggagag 350 tgatttgtta agagactaca gagggaggac agactaccaa gaggggggcc 400 aggaaagctc ctctgacgag gtggtatttc agcccaaact ggaagaatga 450 gaaagagcta gccagccatc agaatagtcc agaagagatg gggagcacta 500 cactcactac actttggcct gagaaaatag catgggattg gaggaggctg 550 ggggaacacc acttctgccg acctgggcag gaggcattga gggcttgaga 600 aagggcaatg gcagtagcag tagaaaggac agggtaggag cagggacttt 650 gcaggtggaa tcattaggtc ttatcaacag atatgggcaa gcaaagccag 700 gggagaattg atggtaatgc tgaggtttgg agccaggcta gatgggacag 750 tggtgggtga tgcaaaggaa agaggtcagg aagcagggcc agacgtgggg 800 agaaggtgtg ggggtttggt ttccatcttg ccgagtctgc cggaatgtgg 850 atgggaagac caagaggagg agcaaggggc agaggggaag ggaatcttaa 900 agaagtcctg gatgccacac tcttcttcct tcctcctctt ccctctcctc 950 agaggtetea etegtggtte tteattteet geeetgeete eateteetet 1000 gggtgctggg aaagtggagg attagctgaa gttttgcttc tcggggcctg 1050 tctgaatctc cattgctttc tgggaggaca taattcacct gtcctagctt 1100 cttatcatct tacatttccc tgtagccact gggacatatg tggtgttcct 1150 tcctagctcc tgtctcctcc tcatgccttt gctgggtatg ggcatgttag 1200 ggggaaggtc attgctgtca gaggggcact gactttctaa tggtgttacc 1250 caaggtgaat gttggagaca cagtcgcgat gctgcccaag tcccggcgag 1300 ccctaactat ccaggagate getgegetgg ccaggteete cetgeatggt 1350 atgcagecee teccatgttt etggeeactt tgteetttet eeteeegttt 1400 gcacatecet ttggaactgt tteetgtgag taeatgetgg ggteteeet 1450 ttcttccctt gctcaggtga atctcagccc cttctcccac ccaaaggttc 1500 acatggatee taactactge caccetteea ectecetgea ectgtgetee 1550 ctggcctggt cctttaccag gcttctccac cctcccctat ctccaggtat 1600

ttcccaggtg gtgaaggacc acgtgaccaa gcctaccgcc atggcccagg 1650 gccgagtggc tcacctcatt gagtggaagg gctggagcaa gccgagtgac 1700 tcacctgctg ccctggaatc agccttttcc tcctattcag acctcagcga 1750 gggcgaacaa gaggctcgct ttgcagcagg agtggctgag cagtttgcca 1800 tcgcggaagc caagctccga gcatggtctt cggtggatgg cgaggactcc 1850 actgatgact cctatgatga ggactttgct gggggaatgg acacagacat 1900 ggctgggcag ctgcccctgg ggccgcacct ccaggacctg ttcaccggcc 1950 accggttctc ccggcctgtg cgccagggct ccgtggagcc tgagagcgac 2000 tgctcacaga ccgtgtcccc agacaccctg tgctctagtc tgtgcagcct 2050 ggaggatggg ttgttgggct ccccggcccg gctggcctcc cagctgctgg 2100 gcgatgagct gcttctcgcc aaactgcccc ccagccggga aagtgccttc 2150 cgcagcctgg gcccactgga ggcccaggac tcactctaca actcgcccct 2200 cacagagtcc tgcctttccc ccgcggagga ggagccagcc ccctgcaagg 2250 actgccagcc actctgccca ccactaacgg gcagctggga acggcagcgg 2300 caagectetg acctggeete ttetggggtg gtgteettag atgaggatga 2350 ggcagagcca gaggaacagt gacccacatc atgcctggca gtggcatgca 2400 tcccccggct gctgccaggg gcagagcctc tgtgcccaag tgtgggctca 2450 aggeteceag cagageteca cageetagag ggeteetggg agegeteget 2500 tctccgttgt gtgttttgca tgaaagtgtt tggagaggag gcaggggctg 2550 ggctgggggc gcatgtcctg cccccactcc cggggcttgc cgggggttgc 2600 ccggggcctc tggggcatgg ctacagctgt ggcagacagt gatgttcatg 2650 ttcttaaaat gccacacaca catttcctcc tcggataatg tgaaccacta 2700 agggggttgt gactgggctg tgtgagggtg gggtgggagg gggcccagca 2750 acceccace etececatge etetetete tetgetttte tteteaette 2800 cgagtccatg tgcagtgctt gatagaatca ccccacctg gaggggctgg 2850 ctcctgccct cccggagcct atgggttgag ccgtccctca agggcccctg 2900 cccagctggg ctcgtgctgt gcttcattca cctctccatc gtctctaaat 2950 cttcctcttt tttcctaaag acagaaggtt tttggtctgt tttttcagtc 3000

ggatcttete ttetetggga ggetttggaa tgatgaaage atgtaceete 3050 caccetttte etggeeecet aatggggeet gggeeettte eeaaceeete 3100 ctaggatgtg egggeagtgt getggegeet cacageeage egggetgeee 3150 atteaegeag agetetetga gegggaggtg gaagaaagga tggetetggt 3200 tgeeacagag etgggaette atgteetet agagagggee acaagggge 3250 cacaggggtg geegggagtt gteagetgat geetgetgag aggeaggaat 3300 tgtgeeagtg agtgacagte atgagggagt gtetettett ggggaggaaa 3350 gaaggtagag eettetgte tgaatgaaag geeaaggeta cagtacaggg 3400 eeeegeeea geeagggtgt taatgeeeae gtagtggagg eetetggeag 3450 ateetgeatt ecaaggteae tggaetgtae gttttatgg ttgtgggaag 3550 geecaaggta agaacgaga ecaacgggea eaagettet ataataagt 3600 ggeteattag gtgtttattt tgttetattt aagaatttgt tttattaaat 3650 taatataaaa ateetttgtaa ateetetaaaa 3680

<210> 33

<211> 335

<212> PRT

<213> Homo sapiens

<400> 33

Met Phe Leu Ala Thr Leu Ser Phe Leu Leu Pro Phe Ala His Pro 1 5 10 15

Phe Gly Thr Val Ser Cys Glu Tyr Met Leu Gly Ser Pro Leu Ser 20 25 30

Ser Leu Ala Gln Val Asn Leu Ser Pro Phe Ser His Pro Lys Val 35 40 45

His Met Asp Pro Asn Tyr Cys His Pro Ser Thr Ser Leu His Leu 50 55 60

Cys Ser Leu Ala Trp Ser Phe Thr Arg Leu Leu His Pro Pro Leu 65 70 75

Ser Pro Gly Ile Ser Gln Val Val Lys Asp His Val Thr Lys Pro 80 85 90

Thr Ala Met Ala Gln Gly Arg Val Ala His Leu Ile Glu Trp Lys 95 100 105

Gly Trp Ser Lys Pro Ser Asp Ser Pro Ala Ala Leu Glu Ser Ala 110 115 120

Phe	Ser	Ser	Tyr	Ser 125	Asp	Leu	Ser	Glu	Gly 130	Glu	Gln	Glu	Ala	Arg 135
Phe	Ala	Ala	Gly	Val 140	Ala	Glu	Gln	Phe	Ala 145	Ile	Ala	Glu	Ala	Lys 150
Leu	Arg	Ala	Trp	Ser 155	Ser	Val	Asp	Gly	Glu 160	Asp	Ser	Thr	Asp	Asp 165
Ser	Tyr	Asp	Glu	Asp 170	Phe	Ala	Gly	Gly	Met 175	Asp	Thr	Asp	Met	Ala 180
Gly	Gln	Leu	Pro	Leu 185	Gly	Pro	His	Leu	Gln 190	Asp	Leu	Phe	Thr	Gly 195
His	Arg	Phe	Ser	Arg 200	Pro	Val	Arg	Gln	Gly 205	Ser	Val	Glu	Pro	Glu 210
Ser	Asp	Cys	Ser	Gln 215	Thr	Val	Ser	Pro	Asp 220	Thr	Leu	Cys	Ser	Ser 225
Leu	Cys	Ser	Leu	Glu 230	Asp	Gly	Leu	Leu	Gly 235	Ser	Pro	Ala	Arg	Leu 240
Ala	Ser	Gln	Leu	Leu 245	Gly	Asp	Glu	Leu	Leu 250	Leu	Ala	Lys	Leu	Pro 255
Pro	Ser	Arg	Glu	Ser 260	Ala	Phe	Arg	Ser	Leu 265	Gly	Pro	Leu	Glu	Ala 270
Gln	Asp	Ser	Leu	Tyr 275	Asn	Ser	Pro	Leu	Thr 280	Glu	Ser	Суѕ	Leu	Ser 285
Pro	Ala	Glu	Glu	Glu 290	Pro	Ala	Pro	Cys	Lys 295	Asp	Суз	Gln	Pro	Leu 300
Cys	Pro	Pro	Leu	Thr 305	Gly	Ser	Trp	Glu	Arg 310	Gln	Arg	Gln	Ala	Ser 315
Asp	Leu	Ala	Ser	Ser 320	Gly	Val	Val	Ser	Leu 325	Asp	Glu	Asp	Glu	Ala 330
Glu	Pro	Glu	Glu	Gln 335										
<2102 <2112 <2122 <2132	> 25 > DNA		cial	Sequ	ıence	è								
<220 <223		nthet	cic (oligo	onucl	leoti	ide p	orobe	9					
<4002 tgtd		tgt d	cca	gacti	cc to	gtcc	25							

```
<210> 35
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 35
 ctggatgcta atgtgtccag taaatgatcc ccttatcccg tcgcgatgct 50
<210> 36
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 36
 ttccactcaa tgaggtgagc cactc 25
<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 37
 ggcgagccct aactatccag gag 23
<210> 38
<211> 39
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 38
ggagatcgct gcgctggcca ggtcctccct gcatggtat 39
<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 39
ctgctgcaaa gcgagcctct tg 22
<210> 40
<211> 2084
```

<400> 40 ggttcctggg cgctctgtta cacaagcaag atacagccag ccccacctaa 50 ttttgtttcc ctggcaccct cctgctcagt gcgacattgt cacacttaac 100 ccatctqttt tctctaatgc acgacagatt cctttcagac aggacaactg 150 tgatatttca gttcctgatt gtaaatacct cctaagcctg aagcttctgt 200 tactagccat tgtgagcttc agtttcttca tctgcaaaat gggcataata 250 caatctattc ttgccacatc aagggattgt tattccttta aaaaaaaacc 300 aataccaaag aagcctacaa tgttggcctt agccaaaatt ctgttgattt 350 caacgttgtt ttattcactt ctatcgggga gccatggaaa agaaaatcaa 400 gacataaaca caacacagaa cattgcagaa gtttttaaaa caatggaaaa 450 taaacctatt tctttggaaa gtgaagcaaa cttaaactca gataaagaaa 500 atataaccac ctcaaatctc aaggegagtc attcccctcc tttgaatcta 550 cccaacaaca qccacggaat aacagatttc tccagtaact catcagcaga 600 gcattetttg ggcagtetaa aacceacate taccatttee acaageeete 650 ccttgatcca tagctttgtt tctaaagtgc cttggaatgc acctatagca 700 gatgaagatc ttttgcccat ctcagcacat cccaatgcta cacctgctct 750 gtcttcagaa aacttcactt ggtctttggt caatgacacc gtgaaaactc 800 ctgataacag ttccattaca gttagcatcc tctcttcaga accaacttct 850 ccatctgtga cccccttgat agtggaacca agtggatggc ttaccacaaa 900 cagtgatage tteactgggt ttacceetta teaagaaaaa acaactetae 950 agcctacctt aaaattcacc aataattcaa aactctttcc aaatacgtca 1000 gatccccaaa aagaaaatag aaatacagga atagtattcg gggccatttt 1050 aggtgctatt ctgggtgtct cattgcttac tcttgtgggc tacttgttgt 1100 gtggaaaaag gaaaacggat tcattttccc atcggcgact ttatgacgac 1150 agaaatgaac cagttctgcg attagacaat gcaccggaac cttatgatgt 1200 gagttttggg aattctagct actacaatcc aactttgaat gattcagcca 1250 tgccagaaag tgaagaaaat gcacgtgatg gcattcctat ggatgacata 1300 cctccacttc gtacttctgt atagaactaa cagcaaaaag gcgttaaaca 1350 gcaagtgtca tctacatcct agccttttga caaattcatc tttcaaaagg 1400
ttacacaaaa ttactgtcac gtggattttg tcaaggagaa tcataaaagc 1450
aggagaccag tagcagaaat gtagacagga tgtatcatcc aaaggtttc 1500
tttcttacaa tttttggcca tcctgaggca tttactaagt agccttaatt 1550
tgtattttag tagtatttc ttagtagaaa atatttgtgg aatcagataa 1600
aactaaaaga tttcaccatt acagccctgc ctcataacta aataataaaa 1650
attattccac caaaaaattc taaaacaatg aagatgactc tttactgctc 1700
tgcctgaagc cctagtacca taattcaaga ttgcattttc ttaaatgaaa 1750
attgaaaggg tgcttttaa agaaaatttg acttaaagct aaaaagagga 1800
catagcccag agttctgtt attgggaaat tgaggcaata gaaatgacag 1850
acctgtattc tagtacgtta taattttcta gatcagcaca cacatgatca 1900
gcccactgag ttatgaagct gacaatgact gcattcaacg gggccatggc 1950
aggaaagctg accctaccca ggaaagtaat agcttctta aaagtcttca 2000
aaggttttgg gaattttaac ttgtcttaat atatcttagg cttcaattat 2050
ttgggtgcct taaaaactca atgagaatca tggt 2084

<400> 41

Met Leu Ala Leu Ala Lys Ile Leu Leu Ile Ser Thr Leu Phe Tyr
1 5 10 15

Ser Leu Leu Ser Gly Ser His Gly Lys Glu Asn Gln Asp Ile Asn 20 25 30

Thr Thr Gln Asn Ile Ala Glu Val Phe Lys Thr Met Glu Asn Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Pro Ile Ser Leu Glu Ser Glu Ala Asn Leu Asn Ser Asp Lys Glu 50 55 60

Asn Ile Thr Thr Ser Asn Leu Lys Ala Ser His Ser Pro Pro Leu 65 70 75

Asn Leu Pro Asn Asn Ser His Gly Ile Thr Asp Phe Ser Ser Asn 80 85 90

Ser Ser Ala Glu His Ser Leu Gly Ser Leu Lys Pro Thr Ser Thr 95 100 105

<210> 41

<211> 334

<212> PRT

<213> Homo sapiens

Il€	e Se	r Th	r Se:	r Pro	Pro	Leu	ı Ile	e His	Ser 115		e Val	l Sei	C Lys	Val 120
Pro	Tr	o Ası	n Ala	a Pro 125	o Ile	e Ala	Asp	Glu	130	Leu	ı Leı	ı Pro) Ile	Ser 135
Ala	His	s Pro	o Asr	140	Thr	Pro	Ala	Leu	Ser 145		Glu	ı Asr	Phe	Thr 150
Trp	Sei	: Lei	ı Val	. Asn 155	Asp	Thr	Val	Lys	Thr 160	Pro	Asp	Asn	Ser	Ser 165
Ile	Thr	Val	. Ser	11e	Leu	Ser	Ser	Glu	Pro 175		Ser	Pro	Ser	Val 180
Thr	Pro	Leu	ılle	Val 185	Glu	Pro	Ser	Gly	Trp 190	Leu	Thr	Thr	Asn	Ser 195
Asp	Ser	Phe	Thr	Gly 200	Phe	Thr	Pro	Tyr	Gln 205	Glu	Lys	Thr	Thr	Leu 210
Gln	Pro	Thr	Leu	Lys 215	Phe	Thr	Asn	Asn	Ser 220	Lys	Leu	Phe	Pro	Asn 225
Thr	Ser	Asp	Pro	Gln 230	Lys	Glu	Asn	Arg	Asn 235	Thr	Gly	Ile	Val	Phe 240
Gly	Ala	Ile	Leu	Gly 245	Ala	Ile	Leu	Gly	Val 250	Ser	Leu	Leu	Thr	Leu 255
Val	Gly	Tyr	Leu	Leu 260	Cys	Gly	Lys	Arg	Lys 265	Thr	Asp	Ser	Phe	Ser 270
His	Arg	Arg	Leu	Tyr 275	Asp	Asp	Arg	Asn	Glu 280	Pro	Val	Leu	Arg	Leu 285
Asp	Asn	Ala	Pro	Glu 290	Pro	Tyr	Asp	Val	Ser 295	Phe	Gly	Asn	Ser	Ser 300
Tyr	Tyr	Asn	Pro	Thr 305	Leu	Asn	Asp	Ser	Ala 310	Met	Pro	Glu	Ser	Glu 315
Glu	Asn	Ala	Arg	Asp 320	Gly	Ile	Pro	Met	Asp 325	Asp	Ile	Pro	Pro	Leu 330
_		_												

<210> 42

<211> 1594

<212> DNA

<213> Homo sapiens

Arg Thr Ser Val

<400> 42

aacaggatct cctcttgcag tctgcagccc aggacgctga ttccagcagc 50

gccttaccgc gcagcccgaa gattcactat ggtgaaaatc gccttcaata 100 cccctaccgc cgtgcaaaag gaggaggcgc ggcaagacgt ggaggccctc 150 ctgagccgca cggtcagaac tcagatactg accggcaagg agctccgagt 200 tgccacccag gaaaaagagg gctcctctgg gagatgtatg cttactctct 250 taggcctttc attcatcttg gcaggactta ttgttggtgg agcctgcatt 300 tacaagtact tcatgcccaa gagcaccatt taccgtggag agatgtgctt 350 ttttgattct gaggatcctg caaattccct tcgtggagga gagcctaact 400 tectgeetgt gaetgaggag getgaeatte gtgaggatga caacattgea 450 atcattgatg tgcctgtccc cagtttctct gatagtgacc ctgcagcaat 500 tattcatgac tttgaaaagg gaatgactgc ttacctggac ttgttgctgg 550 ggaactgcta tctgatgccc ctcaatactt ctattgttat gcctccaaaa 600 aatctggtag agctctttgg caaactggcg agtggcagat atctgcctca 650 aacttatgtg gttcgagaag acctagttgc tgtggaggaa attcgtgatg 700 ttagtaacct tggcatcttt atttaccaac tttgcaataa cagaaagtcc 750 ttccgccttc gtcgcagaga cctcttgctg ggtttcaaca aacgtgccat 800 tgataaatgc tggaagatta gacacttccc caacgaattt attgttgaga 850 ccaagatctg tcaagagtaa gaggcaacag atagagtgtc cttggtaata 900 agaagtcaga gatttacaat atgactttaa cattaaggtt tatgggatac 950 tcaagatatt tactcatgca tttactctat tgcttatgct ttaaaaaaag 1000 gaaaaaaaa aaaactacta accactgcaa gctcttgtca aattttagtt 1050 taattggcat tgcttgtttt ttgaaactga aattacatga gtttcatttt 1100 ttctttgcat ttatagggtt tagatttctg aaagcagcat gaatatatca 1150 cctaacatcc tgacaataaa ttccatccgt tgttttttt gtttgtttgt 1200 tttttctttt cctttaagta agctctttat tcatcttatg gtggagcaat 1250 tttaaaattt gaaatatttt aaattgtttt tgaacttttt gtgtaaaata 1300 tatcagatct caacattgtt ggtttctttt gtttttcatt ttgtacaact 1350 ttcttgaatt tagaaattac atctttgcag ttctgttagg tgctctgtaa 1400 ttaacctgac ttatatgtga acaattttca tgagacagtc atttttaact 1450 aatgcagtga ttctttctca ctactatctg tattgtggaa tgcacaaaat 1500

CCCI	ata	ata a	aatt	ctac	CC C	atac	aaaa	a aa	aaaa	aaaa	aaaa	a 15	94	
<210; <211; <212; <213;	> 26: > PR'	Г	apie	ns										
<4002 Met 1		Lys	Ile	Ala 5	Phe	Asn	Thr	Pro	Thr 10	Ala	Val	Gln	Lys	Glu 15
Glu	Ala	Arg	Gln	Asp 20	Val	Glu	Ala	Leu	Leu 25	Ser	Arg	Thr	Val	Arg 30
Thr	Gln	Ile	Leu	Thr 35	Gly	Lys	Glu	Leu	Arg 40	Val	Ala	Thr	Gln	Glu 45
Lys	Glu	Gly	Ser	Ser 50	Gly	Arg	Cys	Met	Leu 55	Thr	Leu	Leu	Gly	Leu 60
Ser	Phe	Ile	Leu	Ala 65	Gly	Leu	Ile	Val	Gly 70	Gly	Ala	Cys	Ile	Tyr 75
Lys	Tyr	Phe	Met	Pro 80	Lys	Ser	Thr	Ile	Tyr 85	Arg	Gly	Glu	Met	Cys 90
Phe	Phe	Asp	Ser	Glu 95	Asp	Pro	Ala	Asn	Ser 100	Leu	Arg ,	Gly	Gly	Glu 105
Pro	Asn	Phe	Leu	Pro 110	Val	Thr	Glu	Glu	Ala 115	Asp	Ile	Arg	Glu	Asp 120
Asp	Asn	Ile	Ala	Ile 125	Ile	Asp	Val	Pro	Val 130	Pro	Ser	Phe	Ser	Asp 135
Ser	Asp	Pro	Ala	Ala 140	Ile	Ile	His	Asp	Phe 145	Glu	Lys	Gly	Met	Thr 150
Ala	Tyr	Leu	Asp	Leu 155	Leu	Leu	Gly	Asn	Cys 160	Tyr	Leu	Met	Pro	Leu 165
Asn	Thr	Ser	Ile	Val 170	Met	Pro	Pro	Lys	Asn 175	Leu	Val	Glu	Leu	Phe 180
Gly	Lys	Leu	Ala	Ser 185	Gly	Arg	Tyr	Leu	Pro 190	Gln	Thr	Tyr	Val	Val 195
Arg	Glu	Asp	Leu	Val 200	Ala	Val	Glu	Glu	Ile 205	Arg	Asp	Val	Ser	Asn 210
Leu	Gly	Ile	Phe	Ile 215	Tyr	Gln	Leu	Cys	Asn 220	Asn	Arg	Lys	Ser	Phe 225

Arg Leu Arg Arg Arg Asp Leu Leu Cly Phe Asn Lys Arg Ala

Ile Asp Lys Cys Trp Lys Ile Arg His Phe Pro Asn Glu Phe Ile 245 250 255

Val Glu Thr Lys Ile Cys Gln Glu 260

<210> 44

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 44

gaaagacacg acacagcagc ttgc 24

<210> 45

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 45

gggaactgct atctgatgcc 20

<210> 46

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

caggatetee tettgeagte tgeage 26

<210> 47

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

cttctcgaac cacataagtt tgaggcag 28

<210> 48

<211> 25

<212> DNA

<213> Artificial Sequence

<220> <223> Synthetic oligonucleotide probe

<400> 48 cacgatteec tecacageaa etggg 25

<210> 49 <211> 1969 <212> DNA

<213> Homo sapiens

<400> 49 ggaggaggga gggcgggcag gcgccagccc agagcagccc cgggcaccag 50 cacggactet etettecage ceaggtgeee eceaeteteg etecattegg 100 cgggagcacc cagtcctgta cgccaaggaa ctggtcctgg gggcaccatg 150 gtttcggcgg cagcccccag cctcctcatc cttctgttgc tgctgctggg 200 gtctgtgcct gctaccgacg cccgctctgt gcccctgaag gccacgttcc 250 tggaggatgt ggcgggtagt ggggaggccg agggctcgtc ggcctcctcc 300 ccgagcctcc cgccaccctg gaccccggcc ctcagcccca catcgatggg 350 gccccagccc acaaccctgg ggggcccatc accccccacc aacttcctgg 400 atgggatagt ggacttcttc cgccagtacg tgatgctgat tgctgtggtg 450 ggctccctgg cctttctgct gatgttcatc gtctgtgccg cggtcatcac 500 ccggcagaag cagaaggcct cggcctatta cccatcgtcc ttccccaaga 550 agaagtacgt ggaccagagt gaccgggccg ggggcccccg ggccttcagt 600 gaggtccccg acagagcccc cgacagcagg cccgaggaag ccctggattc 650 ctcccggcag ctccaggccg acatcttggc cgccacccag aacctcaagt 700 ccccaccag ggctgcactg ggcggtgggg acggagccag gatggtggag 750 ggcaggggcg cagaggaaga ggagaagggc agccaggagg gggaccagga 800 agtccaggga catggggtcc cagtggagac accagaggcg caggaggagc 850 cgtgctcagg ggtccttgag ggggctgtgg tggccggtga gggccaaggg 900 gagctggaag ggtctctctt gttagcccag gaagcccagg gaccagtggg 950 teceeeegaa ageeeetgtg ettgeageag tgteeaeeee agtgtetaae 1000 agtcctcccg ggctgccagc cctgactgtc gggcccccaa gtggtcacct 1050 ccccgtgtat gaaaaggcct tcagccctga ctgcttcctg acactccctc 1100

cttggcctcc ctgtggtgcc aatcccagca tgtgctgatt ctacagcagg 1150

cagaaatgct ggtccccggt gccccggagg aatcttacca agtgccatca 1200 teetteacet cageageece aaagggetae ateetacage acageteece 1250 tgacaaagtg agggagggca cgtgtccctg tgacagccag gataaaacat 1300 cccccaaagt gctgggatta caggcgtgag ccaccgtgcc cggcccaaac 1350 tactttttaa aacagctaca gggtaaaatc ctgcagcacc cactctggaa 1400 aatactgctc ttaattttcc tgaaggtggc cccctgtttc tagttggtcc 1450 aggattaggg atgtggggta tagggcattt aaatcctctc aagcgctctc 1500 caagcacccc cggcctgggg gtgagtttct catcccgcta ctgctgctgg 1550 gatcaggttg aatgaatgga actcttcctg tctggcctcc aaagcagcct 1600 agaagctgag gggctgtgtt tgaggggacc tccaccctgg ggaagtccga 1650 ggggctgggg aagggtttct gacgcccagc ctggagcagg ggggccctgg 1700 ccacccctg ttgctcacac attgtctggc agcctgtgtc cacaatattc 1750 gtcagtcctc gacagggagc ctgggctccg tcctgcttta gggaggctct 1800 ggcaggaggt cctctcccc atccctccat ctggggctcc cccaacctct 1850 gcacagetet ecaggtgetg agatataatg caccageaca ataaacettt 1900 attccggcct gaaaaaaaaa aaaaaaaaa aaaaaaaaa 1950 aaaaaaaaa aaaaaaaga 1969

<210> 50

<211> 283

<212> PRT

<213> Homo sapiens

<400> 50

Met Val Ser Ala Ala Ala Pro Ser Leu Leu Ile Leu Leu Leu 1 5 10 15

Leu Leu Gly Ser Val Pro Ala Thr Asp Ala Arg Ser Val Pro Leu 20 25 30

Lys Ala Thr Phe Leu Glu Asp Val Ala Gly Ser Gly Glu Ala Glu

Gly Ser Ser Ala Ser Ser Pro Ser Leu Pro Pro Pro Trp Thr Pro
50 55 60

Ala Leu Ser Pro Thr Ser Met Gly Pro Gln Pro Thr Thr Leu Gly
65 70 75

Gly Pro Ser Pro Pro Thr Asn Phe Leu Asp Gly Ile Val Asp Phe

Phe	Arg	Gln	Tyr	Val 95	Met	Leu	Ile	Ala	Val 100	Val	Gly	Ser	Leu	Ala 105
Phe	Leu	Leu	Met	Phe 110	Ile	Val	Cys	Ala	Ala 115	Val	Ile	Thr	Arg	Gln 120
Lys	Gln	Lys	Ala	Ser 125	Ala	Tyr	Tyr	Pro	Ser 130	Ser	Phe	Pro	Lys	Lys 135
Lys	Tyr	Val	Asp	Gln 140	Ser	Asp	Arg	Ala	Gly 145	Gly	Pro	Arg	Ala	Phe 150
Ser	Glu	Val	Pro	Asp 155	Arg	Ala	Pro	Asp	Ser 160	Arg	Pro	Glu	Glu	Ala 165
Leu	Asp	Ser	Ser	Arg 170	Gln	Leu	Gln	Ala	Asp 175	Ile	Leu	Ala	Ala	Thr 180
Gln	Asn	Leu	Lys	Ser 185	Pro	Thr	Arg	Ala	Ala 190	Leu	Gly	Gly	Gly	Asp 195
Gly	Ala	Arg	Met	Val 200	Glu	Gly	Arg	Gly	Ala 205	Glu	Glu	Glu	Glu	Lys 210
Gly	Ser	Gln	Glu	Gly 215	Asp	Gln	Glu	Val	Gln 220	Gly	His	Gly	Val	Pro 225
Val	Glu	Thr	Pro	Glu 230	Ala	Gln	Glu	Glu	Pro 235	Cys	Ser	Gly	Val	Leu 240
Glu	Gly	Ala	Val	Val 245	Ala	Gly	Glu	Gly	Gln 250	Gly	Glu	Leu	Glu	Gly 255
Ser	Leu	Leu	Leu	Ala 260	Gln	Glu	Ala	Gln	Gly 265	Pro	Val	Gly	Pro	Pro 270
Glu	Ser	Pro	Cys	Ala 275	Cys	Ser	Ser	Val	His 280	Pro	Ser	Val		

<210> 51

<211> 1734

<212> DNA

<213> Homo sapiens

<400> 51

gtggactctg agaagcccag gcagttgagg acaggagaga gaaggctgca 50 gacccagagg gagggaggac agggagtcgg aaggaggagg acagaggagg 100 gcacagagac gcagagcaag ggcggcaagg aggagaccct ggtgggagga 150 agacactctg gagagagag gggctgggca gagatgaagt tccaggggcc 200 cctggcctgc ctcctgctgg ccctctgcct gggcagtggg gaggctggcc 250

ccctgcagag cggagaggaa agcactggga caaatattgg ggaggccctt 300 ggacatggcc tgggagacgc cctgagcgaa ggggtgggaa aggccattgg 350 caaagaggcc ggagggcag ctggctctaa agtcagtgag gcccttggcc 400 aagggaccag agaagcagtt ggcactggag tcaggcaggt tccaggcttt 450 ggcgcagcag atgctttggg caacagggtc ggggaagcag cccatgctct 500 gggaaacact gggcacgaga ttggcagaca ggcagaagat gtcattcgac 550 acggagcaga tgctgtccgc ggctcctggc agggggtgcc tggccacagt 600 ggtgcttggg aaacttctgg aggccatggc atctttggct ctcaaggtgg 650 ccttggaggc cagggccagg gcaatcctgg aggtctgggg actccgtggg 700 tccacggata ccccggaaac tcagcaggca gctttggaat gaatcctcag 750 ggagctccct ggggtcaagg aggcaatgga gggccaccaa actttgggac 800 caacactcag ggagctgtgg cccagcctgg ctatggttca gtgagagcca 850 gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgga 900 ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950 cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000 gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050 agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100 tgagtcctcc tggggatcca gcaccggctc ctcctccggc aaccacggtg 1150 ggagcggcgg aggaaatgga cataaacccg ggtgtgaaaa gccagggaat 1200 gaagcccgcg ggagcgggga atctgggatt cagggcttca gaggacaggg 1250 agtttccagc aacatgaggg aaataagcaa agagggcaat cgcctccttg 1300 gaggetetgg agacaattat egggggeaag ggtegagetg gggeagtgga 1350 ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400 tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450 gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500 ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550 ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600

aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaa 1734

<2103 <2113 <2123 <2133	> 44(> PRT	r	apien	ns										
<4002 Met 1		Phe	Gln	Gly 5	Pro	Leu	Ala	Cys	Leu 10	Leu	Leu	Ala	Leu	Cys 15
Leu	Gly	Ser	Gly	Glu 20	Ala	Gly	Pro	Leu	Gln 25	Ser	Gly	Glu	Glu	Ser 30
Thr	Gly	Thr	Asn	Ile 35	Gly	Glu	Ala	Leu	Gly 40	His	Gly	Leu	Gly	Asp 45
Ala	Leu	Ser	Glu	Gly 50	Val	Gly	Lys	Ala	Ile 55	Gly	Lys	Glu	Ala	Gly 60
Gly	Ala	Ala	Gly	Ser 65	Lys	Val	Ser	Glu	Ala 70	Leu	Gly	Gln	Gly	Thr 75
Arg	Glu	Ala	Val	Gly 80	Thr	Gly	Val	Arg	Gln 85	Val	Pro	Gly	Phe	Gly 90
Ala	Ala	Asp	Ala	Leu 95	Gly	Asn	Arg	Val	Gly 100	Glu	Ala	Ala	His	Ala 105
Leu	Gly	Asn	Thr	Gly 110	His	Glu	Ile	Gly	Arg 115	Gln	Ala	Glu	Asp	Val 120
Ile	Arg	His	Gly	Ala 125	Asp	Ala	Val	Arg	Gly 130	Ser	Trp	Gln	Gly	Val 135
Pro	Gly	His	Ser	Gly 140	Ala	Trp	Glu	Thr	Ser 145	Gly	Gly	His	Gly	Ile 150
Phe	Gly	Ser	Gln	Gly 155	Gly	Leu	Gly	Gly	Gln 160	Gly	Gln	Gly	Asn	Pro 165
Gly	Gly	Leu	Gly	Thr 170	Pro	Trp	Val	His	Gly 175	Tyr	Pro	Gly	Asn	Ser 180
Ala	Gly	Ser	Phe	Gly 185	Met	Asn	Pro	Gln	Gly 190	Ala	Pro	Trp	Gly	Gln 195
Gly	Gly	Asn	Gly	Gly 200	Pro	Pro	Asn	Phe	Gly 205	Thr	Asn	Thr	Gln	Gly 210
Ala	Val	Ala	Gln	Pro 215	Gly	Tyr	Gly	Ser	Val 220	Arg	Ala	Ser	Asn	Gln 225
Asn	Glu	Gly	Cys	Thr 230	Asn	Pro	Pro	Pro	Ser 235	Gly	Ser	Gly	Gly	Gly 240

Ser	Ser	Asn	Ser	Gly 245	Gly	Gly	'Ser	Gly	/ Ser 250		Ser	: Gly	/ Ser	Ser 255
Gly	Ser	Gly	Ser	Asn 260	Gly	Asp	Asn	Asn	Asn 265		' Ser	Ser	Ser	Gly 270
Gly	Ser	Ser	Ser	Gly 275	Ser	Ser	Ser	Gly	Ser 280		Ser	Gly	Gly	Ser 285
Ser	Gly	Gly	Ser	Ser 290	Gly	Gly	Ser	Ser	Gly 295	Asn	Ser	Gly	Gly	Ser 300
Arg	Gly	Asp	Ser	Gly 305	Ser	Glu	Ser	Ser	Trp 310	Gly	Ser	Ser	Thr	Gly 315
Ser	Ser	Ser	Gly	Asn 320	His	Gly	Gly	Ser	Gly 325	Gly	Gly	Asn	Gly	His 330
Lys	Pro	Gly	Суѕ	Glu 335	Lys	Pro	Gly	Asn	Glu 340	Ala	Arg	Gly	Ser	Gly 345
Glu	Ser	Gly	Ile	Gln 350	Gly	Phe	Arg	Gly	Gln 355	Gly	Val	Ser	Ser	Asn 360
Met	Arg	Glu	Ile	Ser 365	Lys	Glu	Gly	Asn	Arg 370	Leu	Leu	Gly	Gly	Ser 375
Gly	Asp	Asn	Tyr	Arg 380	Gly	Gln	Gly	Ser	Ser 385	Trp	Gly	Ser	Gly	Gly 390
Gly	Asp	Ala	Val	Gly 395	Gly	Val	Asn	Thr	Val 400	Asn	Ser	Glu	Thr	Ser 405
Pro	Gly	Met	Phe	Asn 410	Phe	Asp	Thr	Phe	Trp 415	Lys	Asn	Phe	Lys	Ser 420
Lys :	Leu	Gly	Phe	Ile 425	Asn	Trp	Asp	Ala	Ile 430	Asn	Lys	Asp	Gln	Arg 435
Ser S	Ser.	Arg	Ile	Pro 440										
<210> <211> <212> <213>	358 DNA		pien	s										
<400> gaccg		cc to	ccgg	tcct	g ga	tgtg	cgga	ctc	tgct	gca	gcga	gggc	tg 5	0

gaccggtccc tccggtcctg gatgtgcgga ctctgctgca gcgagggctg 50 caggcccgcc gggcggtgct caccgtgccc tggctggtgg agtttctctc 100 ctttgctgac catgttgttc ccttgctgga atattaccgg gacatcttca 150 ctctcctgct gcgcctgcac cggagcttgg tgttgtcgca ggagagtgag 200 gggaagatgt gtttcctgaa caagctgctg ctacttgctg tcctgggctg 250

gcttttccag attcccacag tccctgagga cttgttcttt ctggaagagg 300 gtccctcata tgcctttgag gtggacacag tagccccaga gcatggcttg 350 gacaatgcgc ctgtggtgga ccagcagctg ctctacacct gctgccccta 400 catcggagag ctccggaaac tgctcgcttc gtgggtgtca ggcagtagtg 450 gacggagtgg gggcttcatg aggaaaatca cccccaccac taccaccagc 500 ctgggagccc agccttccca gaccagccag gggctgcagg cacagctcgc 550 ccaggccttt ttccacaacc agccgccctc cttgcgccgg accgtagagt 600 tcgtggcaga aagaattgga tcaaactgtg tcaaacatat caaggctaca 650 ctggtggcag atctggtgcg ccaggcagag tcacttctcc aagagcagct 700 ggtgacacag ggagaggaag ggggagaccc agcccagctg ttggagatct 750 tgtgttccca gctgtgccct cacggggccc aggcattggc cctggggcgg 800 gagttctgtc aaaggaagag ccctggggct gtgcgggcgc tgcttccaga 850 ggagaccceg gcagcegtte tgagcagtge agagaacatt getgtgggge 900° ttgcaacaga gaaagcctgt gcttggctgt cagccaacat cacagcactg 950 atcaggaggg aggtgaaagc agcagtgagt cgcacacttc gagcccaggg 1000 teetgaaeet getgeeeggg gggageggag gggetgetee egegeetgae 1050 gtgctctcct tggccgtggg gccacgggac cctgacgagg gagtctcccc 1100 agagcatctg gaacagctcc taggccagct gggccagacg ctgcggtgcc 1150 gccagttcct gtgcccacct gctgagcagc atctggcaaa gtgctctgtg 1200 gagttagett cecteetegt tgeagateaa atteetatee tagggeeece 1250 ggcacagtac aggctggaga gagggcaggc tcgaaggctt ctgcacatgc 1300 tgctttcctt gtggaaggaa gactttcagg ggccggttcc gctgcagctg 1350 ctgctgagcc caagaaatgt ggggcttctg gcagacacaa ggccaaggga 1400 gtgggacttg ctgctattct tgctacggga gctggtggag aagggtctga 1450 tgggacggat ggagatagag gcctgcctgg gcagcctcca ccaggcccag 1500 tggccagggg actttgctga agaattagca acactgtcta atctgtttct 1550 agccgagccc cacctgccag aaccccagct aagagcctgt gagttggtgc 1600 agccaaaccg gggcactgtg ctggcccaga gctagggctg agaagtggcc 1650

ctgccttggg cattgcacca gaaccctgga cccccgcctc acgaggaggc 1700 ccaagtgccc aatgcagacc ctcactggtt ggggtgtagc tgggtctaca 1750 gtcagacttc ctgctctaag ggtgtcactg cctggcatcc caccacgcga 1800 atcctagagg aaggagagtt ggcctgattt gggattatgg cagaaaagtc 1850 cagagatgcc agtcctggag tagaagaggt ggtgtttgtt tatctcttgg 1900 atactaaatg aaatgaggtg tgtgggcttg tcaacacaga attcaagcct 1950 catttgctat cccagcatct cttaaaactt tgtagtcttg gaattcatga 2000 cagaggcaaa tgactcctgc ttaacttatg aagaaagtta aaacatgaat 2050 cttgggagtc tacattttct tatcaccagg agctggactg ccatctcctt 2100 ataaatgcct aacacaggcc gggtctggtg gctcatgcct gtaatcccag 2150 cactttgaga ggcctgaggt cggcggactg cctgaggtca ggaattcaag 2200 accagectgg ccaacatgge aaaaccccat etetactaaa aataaaaaaa 2250 ttattagctg ggcatggtgg tgtgtgcctg taatcccagc tactcaggag 2300 gatgaggcag gagacctgct tgaacctgga ggtggaggtt gcagtgagcc 2350 gaggtcgcac cactgcactc cagtctgggt aacagagcga gactttctag 2400 aaaaagccta acaaacagat aaggtaggac tcaaccaact gaaacctgac 2450 tttccccctg taccttcagc ccctgtgcag gtagtaacct cttgagacct 2500 ctccctgacc agggaccaag cacagggcat ttagagcttt ttagaataaa 2550 ctggttttct ttaaaaaaaa aaaaaaaaa agggcggccg ccctttttt 2600 ttttattaaa attctcccca cacgatggct cctgcaatct gccacagctc 2700 tggggcgtgt cctgtaggga aaggccctgt tttccctgag gcggggctgg 2750 gcttgtccat gggtccgcgg agctggccgt gcttggcgcc ctggcgtgtg 2800 tetagetget tettgeeggg cacagagetg eggggtetgg gggeaceggg 2850 agctaagagc aggctctggt gcaggggtgg aggcctgtct cttaaccgac 2900 accetgaggt geteetgaga tgetgggtee accetgagtg geacggggag 2950 cagctgtggc cggtgctcct tcytaggcca gtcctgggga aactaagctc 3000 gggcccttct ttgcaaagac cgaggatggg gtgggtgtgg gggactcatg 3050 gggaatggcc tgaggagcta cgtgtgaaga gggcgccggt ttgttggctg 3100

cageggeetg gagegeetet eteetgagee teagttteee ttteegteta 3150
atgaagaaca tgeegteteg gtgteteagg getattagga ettgeeetea 3200
ggaagtggee ttggaegage gteatgttat ttteacaact gteetgegae 3250
gttggeetgg geacgteatg gaatggeeca tgteeetetg etgegtggae 3300
gtegeggteg ggagtgegea geeagaggeg gggeeagaeg tgegeetggg 3350
ggtgagggga ggegeeeegg gagggeetea eaggaagttg ggeteeegaa 3400
eeaceaggea gggegggete eegeegeege egeegeeaee aeegteeagg 3450
ggeeggtaga eaaagtggaa gtegegettg ggetegetge geageaggta 3500
geeettgatg eagtgeggea gegegtegte egeeagetgg aageagege 3550
egteeaceag eacgaacage eggtgeget 3580

<210> 54

<211> 280

<212> PRT

<213> Homo sapiens

<400> 54

Met Cys Phe Leu Asn Lys Leu Leu Leu Leu Ala Val Leu Gly Trp

1 5 10 15

Leu Phe Gln Ile Pro Thr Val Pro Glu Asp Leu Phe Phe Leu Glu
20 25 30

Glu Gly Pro Ser Tyr Ala Phe Glu Val Asp Thr Val Ala Pro Glu 35 40 45

His Gly Leu Asp Asn Ala Pro Val Val Asp Gln Gln Leu Leu Tyr
50 55 60

Thr Cys Cys Pro Tyr Ile Gly Glu Leu Arg Lys Leu Leu Ala Ser
65 70 75

Trp Val Ser Gly Ser Ser Gly Arg Ser Gly Gly Phe Met Arg Lys $80 \\ 85 \\ 90$

Ile Thr Pro Thr Thr Thr Ser Leu Gly Ala Gln Pro Ser Gln
95 100 105

Thr Ser Gln Gly Leu Gln Ala Gln Leu Ala Gln Ala Phe Phe His 110 115 120

Asn Gln Pro Pro Ser Leu Arg Arg Thr Val Glu Phe Val Ala Glu
125 130 135

Arg Ile Gly Ser Asn Cys Val Lys His Ile Lys Ala Thr Leu Val

Ala	Asp	Leu	Val	Arg 155	Gln	Ala	Glu	Ser	Leu 160	Leu	Gln	Glu	Gln	Leu 165
Val	Thr	Gln	Gly	Glu 170	Glu	Gly	Gly	Asp	Pro 175	Ala	Gln	Leu	Leu	Glu 180
Ile	Leu	Cys	Ser	Gln 185	Leu	Cys	Pro	His	Gly 190	Ala	Gln	Ala	Leu	Ala 195
Leu	Gly	Arg	Glu	Phe 200	Cys	Gln	Arg	Lys	Ser 205	Pro	Gly	Ala	Val	Arg 210
Ala	Leu	Leu	Pro	Glu 215	Glu	Thr	Pro	Ala	Ala 220	Val	Leu	Ser	Ser	Ala 225
Glu	Asn	Ile	Ala	Val 230	Gly	Leu	Ala	Thr	Glu 235	Lys	Ala	Cys	Ala	Trp 240
Leu	Ser	Ala	Asn	Ile 245	Thr	Ala	Leu	Ile	Arg 250	Arg	Glu	Val	Lys	Ala 255
Ala	Val	Ser	Arg	Thr 260	Leu	Arg	Ala	Gln	Gly 265	Pro	Glu	Pro	Ala	Ala 270
Arg	Gly	Glu	Arg	-	Gly	-		_	Ala 280					

<210> 55

<211> 2401

<212> DNA

<213> Homo sapiens

<400> 55

tecettgaca ggtetggtgg etggtteggg gtetaetgaa ggetgtettg 50 ateaggaaac tgaagactet etgettttge cacageagtt eetgeagett 100 cettgaggtg tgaaceeaca teeetgeeee eagggeeace tgeaggaege 150 egacacetae eecteageag aegeeggaga gaaatgagta geaacaaaga 200 geageggtea geagtgtteg tgateetett tgeeeteate aecateetea 250 teetetaeag eteeaacagt geeaatgagg tetteeatta eggeteeetg 300 eggggeegta geegeegaee tgteaacete aagaagtgga geateactga 350 eggetatgte eecatteteg geaacaagae aetgeeetet eggtgeeace 400 agtgtgat tgteageage teeageeace tgetgggeae eaagetggge 450 eetgagateg ageggetga gtgtacaate eggetgatg atgeaeceae 500 eaetggetae teagetgatg tgggeaacaa gaceaectae eggetegtgg 550 eecatteeag tgtgtteege gtgetgagga ggeeecaaga gtttgteaae 600

cggacccctg aaaccgtgtt catcttctgg gggcccccga gcaagatgca 650 gaageceeag ggeagecteg tgegtgtgat ceagegageg ggeetggtgt 700 tccccaacat ggaagcatat gccgtctctc ccggccgcat gcggcaattt 750 gacgacctct tccggggtga gacgggcaag gacagggaga agtctcattc 800 gtggttgagc acaggctggt ttaccatggt gatcgcggtg gagttgtgtg 850 accacgtgca tgtctatggc atggtccccc ccaactactg cagccagcgg 900 ccccgcctcc agcgcatgcc ctaccactac tacgagccca aggggccgga 950 cgaatgtgtc acctacatcc agaatgagca cagtcgcaag ggcaaccacc 1000 accgcttcat caccgagaaa agggtcttct catcgtgggc ccagctgtat 1050 ggcatcacct teteceacce etectggace taggecacce agectgtggg 1100 acctcaggag ggtcagagga gaagcagcct ccgcccagcc gctaggccag 1150 ggaccatctt ctggccaatc aaggcttgct ggagtgtctc ccagccaatc 1200 agggccttga ggaggatgta tcctccagcc aatcagggcc tggggaatct 1250 gttggcgaat cagggatttg ggagtctatg tggttaatca ggggtgtctt 1300 tcttgtgcag tcagggtctg cgcacagtca atcagggtag agggggtatt 1350 tctgagtcaa tctgaggcta aggacatgtc ctttcccatg aggccttggt 1400 tcagagcccc aggaatggac cccccaatca ctccccactc tgctgggata 1450 atggggtcct gtcccaagga gctgggaact tggtgttgcc ccctcaattt 1500 ccagcaccag aaagagagat tgtgtggggg tagaagctgt ctggaggccc 1550 ggccagagaa tttgtggggt tgtggaggtt gtgggggggg tggggaggtc 1600 ccagaggtgg gaggctggca tccaggtctt ggctctgccc tgagaccttg 1650 gacaaaccct teceeetete tgggeaeeet tetgeeeaca eeagttteea 1700 gtgcggagtc tgagaccctt tccacctccc ctacaagtgc cctcgggtct 1750 gtcctccccg tctggaccct cccagccact atcccttgct ggaaggctca 1800 gctctttggg gggtctgggg tgacctcccc acctcctgga aaactttagg 1850 gtatttttgc gcaaactcct tcagggttgg gggactctga aggaaacggg 1900 acaaaacctt aagctgtttt cttagcccct cagccagctg ccattagctt 1950 ggctcttaaa gggccaggcc tccttttctg ccctctagca gggaggtttt 2000 ccaactgttg gaggcgcctt tggggctgcc cctttgtctg gagtcactgg 2050

gggcttccga gggtctccct cgaccctctg tcgtcctggg atggctgtcg 2100 ggagctgtat cacctgggtt ctgtcccctg gctctgtatc aggcacttta 2150 ttaaagctgg gcctcagtgg ggtgtgtttg tctcctgctc ttctggagcc 2200 tggaaggaaa gggcttcagg aggaggctgt gaggctggag ggaccagatg 2250 gaggaggcca gcagctagcc attgcacact ggggtgatgg gtgggggggg 2300 tgactgcccc agacttggtt ttgtaatgat ttgtacagga ataaacacac 2350 a 2401

<210> 56

<211> 299

<212> PRT

<213> Homo sapiens

<400> 56

Met Ser Ser Asn Lys Glu Gln Arg Ser Ala Val Phe Val Ile Leu

Phe Ala Leu Ile Thr Ile Leu Ile Leu Tyr Ser Ser Asn Ser Ala

Asn Glu Val Phe His Tyr Gly Ser Leu Arg Gly Arg Ser Arg Arg

Pro Val Asn Leu Lys Lys Trp Ser Ile Thr Asp Gly Tyr Val Pro

Ile Leu Gly Asn Lys Thr Leu Pro Ser Arg Cys His Gln Cys Val

Ile Val Ser Ser Ser His Leu Leu Gly Thr Lys Leu Gly Pro

Glu Ile Glu Arg Ala Glu Cys Thr Ile Arg Met Asn Asp Ala Pro

Thr Thr Gly Tyr Ser Ala Asp Val Gly Asn Lys Thr Thr Tyr Arg 115

Val Val Ala His Ser Ser Val Phe Arg Val Leu Arg Arg Pro Gln 125

Glu Phe Val Asn Arg Thr Pro Glu Thr Val Phe Ile Phe Trp Gly 145

Pro Pro Ser Lys Met Gln Lys Pro Gln Gly Ser Leu Val Arg Val 155

Ile Gln Arg Ala Gly Leu Val Phe Pro Asn Met Glu Ala Tyr Ala

Val Ser Pro Gly Arg Met Arg Gln Phe Asp Asp Leu Phe Arg Gly 185 190 195

Glu Thr Gly Lys Asp Arg Glu Lys Ser His Ser Trp Leu Ser Thr 200 205 210

Gly Trp Phe Thr Met Val Ile Ala Val Glu Leu Cys Asp His Val 215 220 225

His Val Tyr Gly Met Val Pro Pro Asn Tyr Cys Ser Gln Arg Pro 230 235 240

Arg Leu Gln Arg Met Pro Tyr His Tyr Tyr Glu Pro Lys Gly Pro 245 250 255

Asp Glu Cys Val Thr Tyr Ile Gln Asn Glu His Ser Arg Lys Gly
260 265 270

Asn His His Arg Phe Ile Thr Glu Lys Arg Val Phe Ser Ser Trp 275 280 285

Ala Gln Leu Tyr Gly Ile Thr Phe Ser His Pro Ser Trp Thr 290 295

<210> 57

<211> 4277

<212> DNA

<213> Homo sapiens

<400> 57

gtttctcata gttggcgtct tctaaaggaa aaacactaaa atgaggaact 50 cagcggaccg ggagcgacgc agcttgaggg aagcatccct agctgttggc 100 gcagaggggc gaggctgaag ccgagtggcc cgaggtgtct gaggggctgg 150 ggcaaaggtg aaagagttc agaacaagct tcctggaacc catgacccat 200 gaagtcttgt cgacatttat accgtctgag ggtagcagct cgaaactaga 250 agaagtggag tgttgccagg gacggcagta tctctttgtg tgaccctggc 300 ggcctatggg acgttggctt cagacctttg tgatacacca tgctgcgtg 350 gacgatgacg gcgtggagag gaatgaggcc tgaggtcaca ctggcttgcc 400 tcctcctagc cacagcaggc tgctttgctg acttgaacga ggtccctcag 450 gtcaccgtcc agcctgcgtc caccgtccag aagcccggag gcactgtgat 500 cttgggctgc gtggtggaac ctccaaggat gaatgtaacc tggcgcctga 550 atggaaagga gctgaatggc tcggatgat ctctgggtgt cctcatcacc 600 cacgggaccc tcgtcatcac tgcccttaac aaccacactg tgggacggta 650

ccagtgtgtg gcccggatgc ctgcgggggc tgtggccagc gtgccagcca 700 ctgtgacact agccaatctc caggacttca agttagatgt gcagcacgtg 750 attgaagtgg atgagggaaa cacagcagtc attgcctgcc acctgcctga 800 gagccacccc aaagcccagg tccggtacag cgtcaaacaa gagtggctgg 850 aggeetecag aggtaactae etgateatge eetcagggaa eetceagatt 900 gtgaatgcca gccaggagga cgagggcatg tacaagtgtg cagcctacaa 950 cccagtgacc caggaagtga aaacctccgg ctccagcgac aggctacgtg 1000 tgcgccgctc caccgctgag gctgcccgca tcatctaccc cccagaggcc 1050 caaaccatca tcgtcaccaa aggccagagt ctcattctgg agtgtgtggc 1100 cagtggaatc ccaccccac gggtcacctg ggccaaggat gggtccagtg 1150 tcaccggcta caacaagacg cgcttcctgc tgagcaacct cctcatcgac 1200 accaccageg aggaggaete aggeacetae egetgeatgg eegacaatgg 1250 ggttgggcag cccggggcag cggtcatcct ctacaatgtc caggtgtttg 1300 aaccccctga ggtcaccatg gagctatccc agctggtcat cccctggggc 1350 cagagtgcca agettacetg tgaggtgcgt gggaacecee egeceteegt 1400 gctgtggctg aggaatgctg tgcccctcat ctccagccag cgcctccggc 1450 tctcccgcag ggccctgcgc gtgctcagca tggggcctga ggacgaaggc 1500 gtctaccagt gcatggccga gaacgaggtt gggagcgccc atgccgtagt 1550 ccagctgcgg acctccaggc caagcataac cccaaggcta tggcaggatg 1600 ctgagctggc tactggcaca cctcctgtat caccctccaa actcggcaac 1650 cctgagcaga tgctgagggg gcaaccggcg ctccccagac ccccaacgtc 1700 agtggggcct gcttccccga agtgtccagg agagaagggg cagggggctc 1750 ccgccgaggc tcccatcatc ctcagctcgc cccgcacctc caagacagac 1800 tcatatgaac tggtgtggcg gcctcggcat gagggcagtg gccgggcgcc 1850 aatcctctac tatgtggtga aacaccgcaa gcaggtcaca aattcctctg 1900 acgattggac catctctggc attccagcca accagcaccg cctgaccctc 1950 accagacttg accccgggag cttgtatgaa gtggagatgg cagcttacaa 2000 ctgtgcggga gagggccaga cagccatggt caccttccga actggacggc 2050

ggcccaaacc cgagatcatg gccagcaaag agcagcagat ccagagagac 2100 gaccetggag ceagteceea gageageage cageeagace aeggeegeet 2150 ctcccccca gaageteeeg acaggeeeae cateteeaeg geeteegaga 2200 cctcagtgta cgtgacctgg attccccgtg ggaatggtgg gttcccaatc 2250 cagtccttcc gtgtggagta caagaagcta aagaaagtgg gagactggat 2300 tetggecace agegecatee ecceategeg getgteegtg gagateaegg 2350 gcctagagaa aggcacctcc tacaagtttc gagtccgggc tctgaacatg 2400 ctgggggaga gcgagcccag cgccccctct cggccctacg tggtgtcggg 2450 ctacagcggt cgcgtgtacg agaggcccgt ggcaggtcct tatatcacct 2500 tcacggatgc ggtcaatgag accaccatca tgctcaagtg gatgtacatc 2550 ccagcaagta acaacaacac cccaatccat ggcttttata tctattatcg 2600 acccacagac agtgacaatg atagtgacta caagaaggat atggtggaag 2650 gggacaagta ctggcactcc atcagccacc tgcagccaga gacctcctac 2700 gacattaaga tgcagtgctt caatgaagga ggggagagcg agttcagcaa 2750 cgtgatgatc tgtgagacca aagctcggaa gtcttctggc cagcctggtc 2800 gactgccacc cccaactctg gccccaccac agccgcccct tcctgaaacc 2850 atagagegge eggtgggeae tggggeeatg gtggeteget eeagegaeet 2900 gccctatctg attgtcgggg tcgtcctggg ctccatcgtt ctcatcatcg 2950 teacetteat eccettetge ttgtggaggg eetggtetaa geaaaaacat 3000 acaacagacc tgggttttcc tcgaagtgcc cttccaccct cctgcccgta 3050 tactatggtg ccattgggag gactcccagg ccaccaggcc agtggacagc 3100 cctacctcag tggcatcagt ggacgggcct gtgctaatgg gatccacatg 3150 aatagggget geeetegge tgeagtggge taccegggea tgaageeeca 3200 geageactge ecaggegage tteageagea gagtgacaee ageageetge 3250 tgaggcagac ccatcttggc aatggatatg acccccaaag tcaccagatc 3300 acgaggggtc ccaagtctag cccggacgag ggctctttct tatacacact 3350 geoegaegae teeacteace agetgetgea geoecateae gaetgetgee 3400 aacgccagga gcagcctgct gctgtgggcc agtcaggggt gaggagagcc 3450 ecegacagte etgteetgga ageagtgtgg gaeeeteeat tteaeteagg 3500

gcccccatgc tgcttgggcc ttgtgccagt tgaagaggtg gacagtcctg 3550 actoctgcca agtgagtgga ggagactggt gtccccagca ccccgtaggg 3600 gcctacgtag gacaggaacc tggaatgcag ctctcccgg ggccactggt 3650 gcgtgtgtct tttgaaacac cacctctcac aatttaggca gaagctgata 3700 tcccagaaag actatatatt gtttttttt taaaaaaaaa agaagaaaaa 3750 agagacagag aaaattggta tttatttttc tattatagcc atatttatat 3800 atttatgcac ttgtaaataa atgtatatgt tttataattc tggagagaca 3850 taaggagtcc tacccgttga ggttggagag ggaaaataaa gaagctgcca 3900 cctaacagga gtcacccagg aaagcaccgc acaggctggc gcgggacaga 3950 ctcctaacct ggggcctctg cagtggcagg cgaggctgca ggaggcccac 4000 agataagctg gcaagaggaa ggatcccagg cacatggttc atcacgagca 4050 tgagggaaca gcaaggggca cggtatcaca gcctggagac acccacacag 4100 atggctggat ccggtgctac gggaaacatt ttcctaagat gcccatgaga 4150 acagaccaag atgtgtacag cactatgagc attaaaaaaac cttccagaat 4200 caataatccg tggcaacata tctctgtaaa aacaaacact gtaacttcta 4250 aataaatgtt tagtcttccc tgtaaaa 4277

<210> 58

<211> 1115

<212> PRT

<213> Homo sapiens

<400> 58

Met Leu Arg Gly Thr Met Thr Ala Trp Arg Gly Met Arg Pro Glu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Thr Leu Ala Cys Leu Leu Leu Ala Thr Ala Gly Cys Phe Ala 20 25 30

Asp Leu Asn Glu Val Pro Gln Val Thr Val Gln Pro Ala Ser Thr 35 40 45

Val Gln Lys Pro Gly Gly Thr Val Ile Leu Gly Cys Val Val Glu
50 55 60

Pro Pro Arg Met Asn Val Thr Trp Arg Leu Asn Gly Lys Glu Leu 65 70 75

Asn Gly Ser Asp Asp Ala Leu Gly Val Leu Ile Thr His Gly Thr 80 85 90

Leu	Val	Ile	Thr	Ala 95	Leu	Asn	Asn	His	Thr 100	Val	Gly	Arg	Tyr	Gln 105
Cys	Val	Ala	Arg	Met 110	Pro	Ala	Gly	Ala	Val 115	Ala	Ser	Val	Pro	Ala 120
Thr	Val	Thr	Leu	Ala 125	Asn	Leu	Gln	Asp	Phe 130	Lys	Leu	Asp	Val	Gln 135
His	Val	Ile	Glu	Val 140	Asp	Glu	Gly	Asn	Thr 145	Ala	Val	Ile	Ala	Cys 150
His	Leu	Pro	Glu	Ser 155	His	Pro	Lys	Ala	Gln 160	Val	Arg	Tyr	Ser	Val 165
Lys	Gln	Glu	Trp	Leu 170	Glu	Ala	Ser	Arg	Gly 175	Asn	Tyr	Leu	Ile	Met 180
Pro	Ser	Gly	Asn	Leu 185	Gln	Ile	Val	Asn	Ala 190	Ser	Gln	Glu	Asp	Glu 195
Gly	Met	Tyr	Lys	Cys 200	Ala	Ala	Tyr	Asn	Pro 205	Val	Thr	Gln	Glu	Val 210
Lys	Thr	Ser	Gly	Ser 215	Ser	Asp	Arg	Leu	Arg 220	Val	Arg	Arg	Ser	Thr 225
Ala	Glu	Ala	Ala	Arg 230	Ile	Ile	Tyr	Pro	Pro 235	Glu	Ala	Gln	Thr	Ile 240
Ile	Val	Thr	Lys	Gly 245	Gln	Ser	Leu	Ile	Leu 250	Glu	Cys	Val	Ala	Ser 255
Gly	Ile	Pro	Pro	Pro 260	Arg	Val	Thr	Trp	Ala 265	Lys	Asp	Gly	Ser	Ser 270
Val	Thr	Gly	Tyr	Asn 275	Lys	Thr	Arg	Phe	Leu 280	Leu	Ser	Asn	Leu	Leu 285
Ile	Asp	Thr	Thr	Ser 290	Glu	Glu	Asp	Ser	Gly 295	Thr	Tyr	Arg	Cys	Met 300
Ala	Asp	Asn	Gly	Val 305	Gly	Gln	Pro	Gly	Ala 310	Ala	Val	Ile	Leu	Tyr 315
Asn	Val	Gln	Val	Phe 320	Glu	Pro	Pro	Glu	Val 325	Thr	Met	Glu	Leu	Ser 330
Gln	Leu	Val	Ile	Pro 335	Trp	Gly	Gln	Ser	Ala 340	Lys	Leu	Thr	Cys	Glu 345
Val	Arg	Gly	Asn	Pro 350	Pro	Pro	Ser	Val	Leu 355	Trp	Leu	Arg	Asn	Ala 360
Val	Pro	Leu	Ile	Ser 365	Ser	Gln	Arg	Leu	Arg 370	Leu	Ser	Arg	Arg	Ala 375

Leu	Arg	Val	Leu	Ser 380	Met	Gly	Pro	Glu	Asp 385	Glu	Gly	Val	Tyr	Gln 390
Cys	Met	Ala	Glu	Asn 395	Glu	Val	Gly	Ser	Ala 400	His	Ala	Val	Val	Gln 405
Leu	Arg	Thr	Ser	Arg 410	Pro	Ser	Ile	Thr	Pro 415	Arg	Leu	Trp	Gln	Asp 420
Ala	Glu	Leu	Ala	Thr 425	Gly	Thr	Pro	Pro	Val 430	Ser	Pro	Ser	Lys	Leu 435
Gly	Asn	Pro	Glu	Gln 440	Met	Leu	Arg	Gly	Gln 445	Pro	Ala	Leu	Pro	Arg 450
Pro	Pro	Thr	Ser	Val 455	Gly	Pro	Ala	Ser	Pro 460	Lys	Cys	Pro	Gly	Glu 465
Lys	Gly	Gln	Gly	Ala 470	Pro	Ala	Glu	Ala	Pro 475	Ile	Ile	Leu	Ser	Ser 480
Pro	Arg	Thr	Ser	Lys 485	Thr	Asp	Ser	Tyr	Glu 490	Leu	Val	Trp	Arg	Pro 495
Arg	His	Glu	Gly	Ser 500	Gly	Arg	Ala	Pro	Ile 505	Leu	Tyr	Tyr	Val	Val 510
Lys	His	Arg	Lys	Gln 515	Val	Thr	Asn	Ser	Ser 520	Asp	Asp	Trp	Thr	Ile 525
Ser	Gly	Ile	Pro	Ala 530	Asn	Gln	His	Arg	Leu 535	Thr	Leu	Thr	Arg	Leu 540
Asp	Pro	Gly	Ser	Leu 545	Tyr	Glu	Val	Glu	Met 550	Ala	Ala	Tyr	Asn	Cys 555
Ala	Gly	Glu	Gly	Gln 560	Thr	Ala	Met	Val	Thr 565	Phe	Arg	Thr	Gly	Arg 570
Arg	Pro	Lys	Pro	Glu 575	Ile	Met	Ala	Ser	Lys 580	Glu	Gln	Gln	Ile	Gln 585
Arg	Asp	Asp	Pro	Gly 590	Ala	Ser	Pro	Gln	Ser 595	Ser	Ser	Gln	Pro	Asp 600
His	Gly	Arg	Leu	Ser 605	Pro	Pro	Glu	Ala	Pro 610	Asp	Arg	Pro	Thr	Ile 615
Ser	Thr	Ala	Ser	Glu 620	Thr	Ser	Val	Tyr	Val 625	Thr	Trp	Ile	Pro	Arg 630
Gly	Asn	Gly	Gly	Phe 635	Pro	Ile	Gln	Ser	Phe 640	Arg	Val	Glu	Tyr	Lys 645
Lys	Leu	Lys	Lys	Val 650	Gly	Asp	Trp	Ile	Leu 655	Ala	Thr	Ser	Ala	Ile 660

Pro	Pro	Ser	Arg	Leu 665	Ser	Val	Glu	Ile	Thr 670		Leu	Glu	Lys	Gly 675
Thr	Ser	Tyr	Lys	Phe 680	Arg	Val	Arg	Ala	Leu 685	Asn	Met	Leu	Gly	Glu 690
Ser	Glu	Pro	Ser	Ala 695	Pro	Ser	Arg	Pro	Tyr 700	Val	Val	Ser	Gly	Tyr 705
Ser	Gly	Arg	Val	Tyr 710	Glu	Arg	Pro	Val	Ala 715	Gly	Pro	Tyr	Ile	Thr 720
Phe	Thr	Asp	Ala	Val 725	Asn	Glu	Thr	Thr	Ile 730	Met	Leu	Lys	Trp	Met 735
Tyr	Ile	Pro	Ala	Ser 740	Asn	Asn	Asn	Thr	Pro 745	Ile	His	Gly	Phe	Tyr 750
Ile	Tyr	Tyr	Arg	Pro 755	Thr	Asp	Ser	Asp	Asn 760	Asp	Ser	Asp	Tyr	Lys 765
Lys	Asp	Met	Val	Glu 770	Gly	Asp	Lys	Tyr	Trp 775	His	Ser	Ile	Ser	His 780
Leu	Gln	Pro	Glu	Thr 785	Ser	Tyr	Asp	Ile	Lys 790	Met	Gln	Суѕ	Phe	Asn 795
Glu	Gly	Gly	Glu	Ser 800	Glu	Phe	Ser	Asn	Val 805	Met	Ile	Cys	Glu	Thr 810
Lys	Ala	Arg	Lys	Ser 815	Ser	Gly	Gln	Pro	Gly 820	Arg	Leu	Pro	Pro	Pro 825
Thr	Leu	Ala	Pro	Pro 830	Gln	Pro	Pro	Leu	Pro 835	Glu	Thr	Ile	Glu	Arg 840
Pro	Val	Gly	Thr	Gly 845	Ala	Met	Val	Ala	Arg 850	Ser	Ser	Asp	Leu	Pro 855
Tyr	Leu	Ile	Val	Gly 860	Val	Val	Leu	Gly	Ser 865	Ile	Val	Leu	Ile	Ile 870
Val	Thr	Phe	Ile	Pro 875	Phe	Cys	Leu	Trp	Arg 880	Ala	Trp	Ser	Lys	Gln 885
Lys	His	Thr	Thr	Asp 890	Leu	Gly	Phe	Pro	Arg 895	Ser	Ala	Leu	Pro	Pro 900
Ser	Cys	Pro	Tyr	Thr 905	Met	Val	Pro	Leu	Gly 910	Gly	Leu	Pro	Gly	His 915
Gln	Ala	Ser	Gly	Gln 920	Pro	Tyr	Leu	Ser	Gly 925	Ile	Ser	Gly	Arg	Ala 930
Cys	Ala	Asn	Gly	Ile 935	His	Met	Asn	Arg	Gly 940	Cys	Pro	Ser	Ala	Ala 945

```
Val Gly Tyr Pro Gly Met Lys Pro Gln Gln His Cys Pro Gly Glu
                 950
                                     955
 Leu Gln Gln Ser Asp Thr Ser Ser Leu Leu Arg Gln Thr His
                                     970
 Leu Gly Asn Gly Tyr Asp Pro Gln Ser His Gln Ile Thr Arg Gly
 Pro Lys Ser Ser Pro Asp Glu Gly Ser Phe Leu Tyr Thr Leu Pro
 Asp Asp Ser Thr His Gln Leu Leu Gln Pro His His Asp Cys Cys
                1010
 Gln Arg Gln Glu Gln Pro Ala Ala Val Gly Gln Ser Gly Val Arg
                1025
                                    1030
 Arg Ala Pro Asp Ser Pro Val Leu Glu Ala Val Trp Asp Pro Pro
                1040
                                    1045
 Phe His Ser Gly Pro Pro Cys Cys Leu Gly Leu Val Pro Val Glu
                1055
                                                         1065
 Glu Val Asp Ser Pro Asp Ser Cys Gln Val Ser Gly Gly Asp Trp
                                    1075
 Cys Pro Gln His Pro Val Gly Ala Tyr Val Gly Gln Glu Pro Gly
                                    1090
 Met Gln Leu Ser Pro Gly Pro Leu Val Arg Val Ser Phe Glu Thr
                1100
                                    1105
 Pro Pro Leu Thr Ile
                1115
<210> 59
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
gggaaacaca gcagtcattg cctgc 25
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
gcacacgtag cctgtcgctg gagc 24
```

```
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 61
caccccaaag cccaggtccg gtacagcgtc aaacaagagt gg 42
<210> 62
<211> 1661
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 678
<223> unknown base
<400> 62
cgggaggctg ggtcgtcatg atccggaccc cattgtcggc ctctgcccat 50
 cgcctgctcc tcccaggctc ccgcggccga cccccgcgca acatgcagcc 100
 cacgggccgc gagggttccc gcgcgctcag ccggcggtat ctgcggcgtc 150
 tgctgctcct gctactgctg ctgctgctgc ggcagcccgt aacccgcgcg 200
 gagaccacgc cgggcgcccc cagagccctc tccacgctgg gctcccccag 250
 cctcttcacc acgccgggtg tccccagcgc cctcactacc ccaggcctca 300
 ctacgccagg cacccccaaa accctggacc ttcggggtcg cgcgcaggcc 350
 ctgatgcgga gtttcccact cgtggacggc cacaatgacc tgccccaggt 400
 cctgagacag cgttacaaga atgtgcttca ggatgttaac ctgcgaaatt 450
 teagecatgg teagaceage etggacagge ttagagaegg cetegtgggt 500
gcccagttct ggtcagcctc cgtctcatgc cagtcccagg accagactgc 550
cgtgcgcctc gccctggagc agattgacct cattcaccgc atgtgtgcct 600
cctactctga actcgagctt gtgacctcag ctgaaggtct gaacagctct 650
caaaagctgg cctgcctcat tggcgtqnaq ggtqgtcact cactggacaq 700
cagcctctct gtgctgcgca gtttctatgt gctgggggtg cgctacctga 750
cacttacctt cacctgcagt acaccatggg cagagagttc caccaagttc 800
agacaccaca tgtacaccaa cgtcagcgga ttgacaagct ttggtgagaa 850
```

agtagtagag gagttgaacc gcctgggcat gatgatagat ttgtcctatg 900 catcggacac cttgataaga agggtcctgg aagtgtctca ggctcctgtg 950 atcttctccc actcagctgc cagagctgtg tgtgacaatt tgttgaatgt 1000 tcccgatgat atcctgcagc ttctgaagaa cggtggcatc gtgatggtga 1050 cactgtccat gggggtgctg cagtgcaacc tgcttgctaa cgtgtccact 1100 gtggcagatc actttgacca catcagggca gtcattggat ctgagttcat 1150 cgggattggt ggaaattatg acgggactgg ccggttccct caggggctgg 1200 aggatgtgtc cacataccca gtcctgatag aggagttgct gagtcgtasc 1250 tggagcgagg aagagcttca aggtgtcctt cgtggaaacc tgctgcgggt 1300 cttcagacaa gtggaaaagg tgagagagga gagcagggcg cagagccccg 1350 tggaggctga gtttccatat gggcaactga gcacatcctg ccactcccac 1400 ctcgtgcctc agaatggaca ccaggctact catctggagg tgaccaagca 1450 gccaaccaat cgggtcccct ggaggtcctc aaatgcctcc ccataccttg 1500 ttccaggcct tgtggctgct gccaccatcc caaccttcac ccagtggctc 1550 tgctgacaca gtcggtcccc gcagaggtca ctgtggcaaa gcctcacaaa 1600 gccccctctc ctagttcatt cacaagcata tgctgagaat aaacatgtta 1650 cacatggaaa a 1661

```
<210> 63
```

<220>

<221> unsure

<222> 196, 386

<223> unknown amino acid

<400> 63

Met Gln Pro Thr Gly Arg Glu Gly Ser Arg Ala Leu Ser Arg Arg
1 5 10 15

Gln Pro Val Thr Arg Ala Glu Thr Thr Pro Gly Ala Pro Arg Ala 35 40 45

Leu Ser Thr Leu Gly Ser Pro Ser Leu Phe Thr Thr Pro Gly Val
50 55 60

<211> 487

<212> PRT

<213> Homo sapiens

Pro	Ser	Ala	Leu	Tḥr 65	Thr	Pro	Gly	Leu	Thr 70	Thr	Pro	Gly	Thr	Pro 75
Lys	Thr	Leu	Asp	Leu 80	Arg	Gly	Arg	Ala	Gln 85	Ala	Leu	Met	Arg	Ser 90
Phe	Pro	Leu	Val	Asp 95	Gly	His	Asn	Asp	Leu 100	Pro	Gln	Val	Leu	Arg 105
Gln	Arg	Tyr	Lys	Asn 110	Val	Leu	Gln	Asp	Val 115	Asn	Leu	Arg	Asn	Phe 120
Ser	His	Gly	Gln	Thr 125	Ser	Leu	Asp	Arg	Leu 130	Arg	Asp	Gly	Leu	Val 135
Gly	Ala	Gln	Phe	Trp 140	Ser	Ala	Ser	Val	Ser 145	Cys	Gln	Ser	Gln	Asp 150
Gln	Thr	Ala	Val	Arg 155	Leu	Ala	Leu	Glu	Gln 160	Ile	Asp	Leu	Ile	His 165
Arg	Met	Суѕ	Ala	Ser 170	Tyr	Ser	Glu	Leu	Glu 175	Leu	Val	Thr	Ser	Ala 180
Glu	Gly	Leu	Asn	Ser 185	Ser	Gln	Lys	Leu	Ala 190	Суѕ	Leu	Ile	Gly	Val 195
Xaa	Gly	Gly	His	Ser 200	Leu	Asp	Ser	Ser	Leu 205	Ser	Val	Leu	Arg	Ser 210
Phe	Tyr	Val	Leu	Gly 215	Val	Arg	Tyr	Leu	Thr 220	Leu	Thr	Phe	Thr	Cys 225
Ser	Thr	Pro	Trp	Ala 230	Glu	Ser	Ser	Thr	Lys 235	Phe	Arg	His	His	Met 240
Tyr	Thr	Asn	Val	Ser 245	Gly	Leu	Thr	Ser	Phe 250	Gly	Glu	Lys	Val	Val 255
Glu	Glu	Leu	Asn	Arg 260	Leu	Gly	Met	Met	Ile 265	Asp	Leu	Ser	Tyr	Ala 270
Ser	Asp	Thr	Leu	Ile 275	Arg	Arg	Val	Leu	Glu 280	Val	Ser	Gln	Ala	Pro 285
Val	Ile	Phe	Ser	His 290	Ser	Ala	Ala	Arg	Ala 295	Val	Cys	Asp	Asn	Leu 300
Leu	Asn	Val	Pro	Asp 305	Asp	Ile	Leu	Gln	Leu 310	Leu	Lys	Asn	Gly	Gly 315
Ile	Val	Met	Val	Thr 320	Leu	Ser	Met	Gly	Val 325	Leu	Gln	Суѕ	Asn	Leu 330
Leu	Ala	Asn	Val	Ser 335	Thr	Val	Ala	Asp	His 340	Phe	Asp	His	Ile	Arg 345

```
Ala Val Ile Gly Ser Glu Phe Ile Gly Ile Gly Gly Asn Tyr Asp
                 350
 Gly Thr Gly Arg Phe Pro Gln Gly Leu Glu Asp Val Ser Thr Tyr
                                      370
 Pro Val Leu Ile Glu Glu Leu Leu Ser Arg Xaa Trp Ser Glu Glu
                 380
                                      385
 Glu Leu Gln Gly Val Leu Arg Gly Asn Leu Leu Arg Val Phe Arg
                                      400
 Gln Val Glu Lys Val Arg Glu Glu Ser Arg Ala Gln Ser Pro Val
                                      415
 Glu Ala Glu Phe Pro Tyr Gly Gln Leu Ser Thr Ser Cys His Ser
 His Leu Val Pro Gln Asn Gly His Gln Ala Thr His Leu Glu Val
 Thr Lys Gln Pro Thr Asn Arg Val Pro Trp Arg Ser Ser Asn Ala
                 455
                                      460
 Ser Pro Tyr Leu Val Pro Gly Leu Val Ala Ala Ala Thr Ile Pro
                 470
                                      475
 Thr Phe Thr Gln Trp Leu Cys
                 485
<210> 64
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 64
ccttcacctg cagtacacca tgggc 25
<210> 65
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 65
gtcacacaca gctctggcag ctgag 25
<210> 66
<211> 47
<212> DNA
<213> Artificial Sequence
```

<220> <223> Synthetic oligonucleotide probe <400> 66 ccaagttcag acaccacatg tacaccaacg tcagcggatt gacaagc 47 <210> 67 <211> 1564 <212> DNA <213> Homo sapiens <400> 67 tgctaggctc tgtcccacaa tgcacccgag agcaggagct gaaagcctct 50 aacacccaca gatccctcta tgactgcaat gtgaggtgtc cggctttgct 100 ggcccagcaa gcctgataag catgaagctc ttatctttgg tggctgtggt 150 cgggtgtttg ctggtgcccc cagctgaagc caacaagagt tctgaagata 200 tccggtgcaa atgcatctgt ccaccttata gaaacatcag tgggcacatt 250 tacaaccaga atgtatccca gaaggactgc aactgcctgc acgtggtgga 300 gcccatgcca gtgcctggcc atgacgtgga ggcctactgc ctgctgtgcg 350 agtgcaggta cgaggagcgc agcaccacca ccatcaaggt catcattgtc 400 atctacctgt ccgtggtggg tgccctgttg ctctacatgg ccttcctgat 450 gctggtggac cctctgatcc gaaagccgga tgcatacact gagcaactgc 500 acaatgagga ggagaatgag gatgctcgct ctatggcagc agctgctgca 550 tecetegggg gacecegage aaacacagte etggagegtg tggaaggtge 600 ccagcagcgg tggaagctgc aggtgcagga gcagcggaag acagtcttcg 650 atcggcacaa gatgctcagc tagatgggct ggtgggttg ggtcaaggcc 700 ccaacaccat ggctgccagc ttccaggctg gacaaagcag ggggctactt 750 ctcccttccc tcggttccag tcttcccttt aaaagcctgt ggcatttttc 800 ctccttctcc ctaactttag aaatgttgta cttggctatt ttgattaggg 850 aagagggatg tggtctctga tctctgttgt cttcttgggt ctttggggtt 900 gaagggaggg ggaaggcagg ccagaaggga atggagacat tcgaggcggc 950 ctcaggagtg gatgcgatct gtctctcctg gctccactct tgccgccttc 1000

cagetetgag tettgggaat gttgttaeee ttggaagata aagetgggte 1050

ttcaggaact cagtgtctgg gaggaaagca tggcccagca ttcagcatgt 1100

gttcctttct gcagtggttc ttatcaccac ctccctccca gccccggcgc 1150

ctcagcccca gccccagctc cagccctgag gacagctctg atgggagagc 1200
tgggccccct gagcccactg ggtcttcagg gtgcactgga agctggtgtt 1250
cgctgtcccc tgtgcacttc tcgcactggg gcatggagtg cccatgcata 1300
ctctgctgcc ggtcccctca cctgcacttg aggggtctgg gcagtccctc 1350
ctctccccag tgtccacagt cactgagcca gacggtcggt tggaacatga 1400
gactcgaggc tgagcgtgga tctgaacacc acagcccctg tacttgggtt 1450
gcctcttgtc cctgaacttc gttgtaccag tgcatggaga gaaaattttg 1500
tcctcttgtc ttagagttgt gtgtaaatca aggaagccat cattaaattg 1550
ttttatttct ctca 1564

<210> 68

<211> 183

<212> PRT

<213> Homo sapiens

<400> 68

Met Lys Leu Leu Ser Leu Val Ala Val Val Gly Cys Leu Leu Val 1 5 10 15

Pro Pro Ala Glu Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys
20 25 30

Cys Ile Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn 35 40 45

Gln Asn Val Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu
50 55 60

Pro Met Pro Val Pro Gly His Asp Val Glu Ala Tyr Cys Leu Leu 65 70 75

Cys Glu Cys Arg Tyr Glu Glu Arg Ser Thr Thr Thr Ile Lys Val 80 85 90

Ile Ile Val Ile Tyr Leu Ser Val Val Gly Ala Leu Leu Tyr 95 100 105

Met Ala Phe Leu Met Leu Val Asp Pro Leu Ile Arg Lys Pro Asp 110 115 120

Ala Tyr Thr Glu Gln Leu His Asn Glu Glu Glu Asn Glu Asp Ala 125 130 135

Arg Ser Met Ala Ala Ala Ala Ala Ser Leu Gly Gly Pro Arg Ala 140 145 150

Asn Thr Val Leu Glu Arg Val Glu Gly Ala Gln Gln Arg Trp Lys 155 160 165 Met Leu Ser

<210> 69

<211> 3170

<212> DNA

<213> Homo sapiens

<400> 69

agcgggtctc gcttgggttc cgctaatttc tgtcctgagg cgtgagactg 50 agttcatagg gtcctgggtc cccgaaccag gaagggttga gggaacacaa 100 tetgcaagee eccgegacee aagtgagggg eccegtgttg gggteeteee 150 tecetttgca tteceaecce teegggettt gegtetteet ggggaecece 200 tcgccgggag atggccgcgt tgatgcggag caaggattcg tcctgctgcc 250 tgctcctact ggccgcggtg ctgatggtgg agagctcaca gatcggcagt 300 tcgcgggcca aactcaactc catcaagtcc tctctgggcg gggagacgcc 350 tggtcaggcc gccaatcgat ctgcgggcat gtaccaagga ctggcattcg 400 gcggcagtaa gaagggcaaa aacctggggc aggcctaccc ttgtagcagt 450 gataaggagt gtgaagttgg gaggtattgc cacagtcccc accaaggatc 500 atcggcctgc atggtgtgtc ggagaaaaaa gaagcgctgc caccgagatg 550 gcatgtgctg ccccagtacc cgctgcaata atggcatctg tatcccagtt 600 actgaaagca tcttaacccc tcacatcccg gctctggatg gtactcggca 650 cagaqatcga aaccacggtc attactcaaa ccatgacttg ggatggcaga 700 atctaggaag accacact aagatgtcac atataaaagg gcatgaagga 750 gacccctgcc tacgatcatc agactgcatt gaagggtttt gctgtgctcg 800 tcatttctgg accaaaatct gcaaaccagt gctccatcag ggggaagtct 850 gtaccaaaca acgcaagaag ggttctcatg ggctggaaat tttccaqcqt 900 tgcgactgtg cgaagggcct gtcttgcaaa gtatggaaag atgccaccta 950 ctcctccaaa gccagactcc atgtgtgtca gaaaatttga tcaccattga 1000 ggaacatcat caattgcaga ctgtgaagtt gtgtatttaa tgcattatag 1050 catggtggaa aataaggttc agatgcagaa gaatggctaa aataagaaac 1100

gtgataagaa tatagatgat cacaaaaagg gagaaagaaa acatgaactg 1150 aatagattag aatgggtgac aaatgcagtg cagccagtgt ttccattatg 1200 caacttgtct atgtaaataa tgtacacatt tgtggaaaat gctattatta 1250 agagaacaag cacacagtgg aaattactga tgagtagcat gtgactttcc 1300 aagagtttag gttgtgctgg aggagaggtt tccttcagat tgctgattgc 1350 ttatacaaat aacctacatg ccagatttct attcaacgtt agagtttaac 1400 aaaatactcc tagaataact tgttatacaa taggttctaa aaataaaatt 1450 gctaaacaag aaatgaaaac atggagcatt gttaatttac aacagaaaat 1500 taccttttga tttgtaacac tacttctgct gttcaatcaa gagtcttggt 1550 agataagaaa aaaatcagtc aatatttcca aataattgca aaataatggc 1600 cagttgttta ggaaggcctt taggaagaca aataaataac aaacaaacag 1650 ccacaaatac tttttttca aaattttagt tttacctgta attaataaga 1700 actgatacaa gacaaaaaca gttccttcag attctacgga atgacagtat 1750 atctctcttt atcctatgtg attcctgctc tgaatgcatt atattttcca 1800 aactataccc ataaattgtg actagtaaaa tacttacaca gagcagaatt 1850 ttcacagatg gcaaaaaaat ttaaagatgt ccaatatatg tgggaaaaga 1900 gctaacagag agatcattat ttcttaaaga ttggccataa cctatatttt 1950 gatagaatta gattggtaaa tacatgtatt catacatact ctgtggtaat 2000 agagacttaa gctggatctg tactgcactg gagtaagcaa gaaaattggg 2050 aaaacttttt cgtttgttca ggttttggca acacatagat catatgtctg 2100 aggcacaagt tggctgttca tctttgaaac caggggatgc acagtctaaa 2150 tgaatatctg catgggattt gctatcataa tatttactat gcagatgaat 2200 tcagtgtgag gtcctgtgtc cgtactatcc tcaaattatt tattttatag 2250 tgctgagatc ctcaaataat ctcaatttca ggaggtttca caaaatgtac 2300 tcctgaagta gacagagtag tgaggtttca ttgccctcta taagcttctg 2350 actagccaat ggcatcatcc aattttcttc ccaaacctct gcagcatctg 2400 ctttattgcc aaagggctag tttcggtttt ctgcagccat tgcggttaaa 2450 aaatataagt aggataactt gtaaaacctg catattgcta atctatagac 2500 accacagttt ctaaattctt tgaaaccact ttactacttt ttttaaactt 2550

aactcagttc taaatacttt gtctgagca caaaacaata aaaggttatc 2600 ttatagtcgt gactttaaac ttttgtagac cacaattcac tttttagttt 2650 tctttactt aaatcccatc tgcagtctca aatttaagtt ctcccagtag 2700 agattgagtt tgagcctgta tatctattaa aaatttcaac ttcccacata 2750 tatttactaa gatgattaag acttacatt tctgcacagg tctgcaaaaa 2800 caaaaattat aaactagtcc atccaagaac caaagttgt ataaacaggt 2850 tgctataagc ttgtgaaatg aaaatggaac atttcaatca aacatttcct 2900 ataaaaacaat tattatatt acaatttggt ttctgcaata ttttcttat 2950 gtccaccctt ttaaaaaatta ttattgaag taatttatt acaggaaatg 3000 ttaatgagat gtatttctt atagagatat ttcttacaga aagctttgta 3050 gcagaatata tttgcagcta ttgacttgt aattaggaa aaatgtataa 3100 taagataaaa tctattaaat ttttccccc taaaaactga aaaaaaaaa 3150 aaaaaaaaaa aaaaaaaaa aaaaaaaaa 3170

<210> 70

<211> 259

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Ala Leu Met Arg Ser Lys Asp Ser Ser Cys Cys Leu Leu 1 5 10 15

Leu Leu Ala Ala Val Leu Met Val Glu Ser Ser Gln Ile Gly Ser $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Ser Arg Ala Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Gly Glu 35 40 45

Thr Pro Gly Gln Ala Ala Asn Arg Ser Ala Gly Met Tyr Gln Gly 50 55 60

Leu Ala Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gln Ala 65 70 75

Tyr Pro Cys Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys
80 85 90

His Ser Pro His Gln Gly Ser Ser Ala Cys Met Val Cys Arg Arg 95 100 105

Lys Lys Lys Arg Cys His Arg Asp Gly Met Cys Cys Pro Ser Thr 110 115 120

Arg Cys Asn Asn Gly Ile Cys Ile Pro Val Thr Glu Ser Ile Leu 125 130 135

Thr Pro His Ile Pro Ala Leu Asp Gly Thr Arg His Arg Asp Arg 140 145 150

Asn His Gly His Tyr Ser Asn His Asp Leu Gly Trp Gln Asn Leu 155 160 165

Gly Arg Pro His Thr Lys Met Ser His Ile Lys Gly His Glu Gly
170 175 180

Asp Pro Cys Leu Arg Ser Ser Asp Cys Ile Glu Gly Phe Cys Cys 185 190 195

Ala Arg His Phe Trp Thr Lys Ile Cys Lys Pro Val Leu His Gln
200 205 210

Gly Glu Val Cys Thr Lys Gln Arg Lys Lys Gly Ser His Gly Leu 215 220 225

Glu Ile Phe Gln Arg Cys Asp Cys Ala Lys Gly Leu Ser Cys Lys 230 235 240

Val Trp Lys Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His Val 245 250 255

Cys Gln Lys Ile

<210> 71

<211> 1809

<212> DNA

<213> Homo sapiens

<400> 71

totcaatoty organization gatecopicy accitytaat organization 50 tygoctocca aagtytygg attacaggeg tygagccaceg organization 100 acateacyti titaaaaatt gattiettea aatteatyge aaatatiice 150 citecettia actiettaty teagaatyag gaaggatage tygattiatt 200 tagteagtii teattycata gataatiit catyaayat titetaagti 250 atatiitaty aatteataty tittagatia tagytiitaa cataciityg 300 aaaataciig atyytiitaa aageettygg cagaaatiet gatiitya 350 gyattiyite tittateeee cititaaay cateegeet tygeteagya 400 titygaayage tigeaecace aaaaatygea aacateacea geteecaya 450 titygaccay tigaaayete organiityag oraniitya aecaceecaa 500 gtacacaya gaataytaca agteaeceta caactactae tietiggaac 550

ctcaagcccc caacatccca gtcctcagtc ctcagtcatc ttgacttcaa 600 atctcaacct gagccatccc cagttcttag ccagttgagc cagcgacaac 650 agcaccagag ccaggcagtc actgttcctc ctcctggttt ggagtccttt 700 ccttcccagg caaaacttcg agaatcaaca cctggagaca gtccctccac 750 tgtgaacaag cttttgcagc ttcccagcac gaccattgaa aatatctctg 800 tgtctgtcca ccagccacag cccaaacaca tcaaacttgc taagcggcgg 850 atacccccag cttctaagat cccagcttct gcagtggaaa tgcctggttc 900 agcagatgtc acaggattaa atgtgcagtt tggggctctg gaatttgggt 950 cagaaccttc tctctctgaa tttggatcag ctccaagcag tgaaaatagt 1000 aatcagattc ccatcagctt gtattcgaag tctttaagtg agcctttgaa 1050 tacatcttta tcaatgacca gtgcagtaca gaactccaca tatacaactt 1100 ccgtcattac ctcctgcagt ctgacaagct catcactgaa ttctgctagt 1150 ccagtagcaa tgtcttcctc ttatgaccag agttctgtgc ataacaggat 1200 cccataccaa agccctgtga gttcatcaga gtcagctcca ggaaccatca 1250 tgaatggaca tggtggtggt cgaagtcagc agacactaga cagtaagtat 1300 agcagcaagc tactcttgtc atggctggtg ccaaccaaac agaggaagag 1350 gatagctcac gtgatgtgga aaacaccagt tggtcaatgg ctcattcgtt 1400 aaaaagcagc ccttttgctt ttttgttttt ggaccaggtg ttggctgtgg 1450 tgttattaga aatgtcttaa ccacagcaag aaggaggtgg tggtctcata 1500 ttcttctgcc ctaatcagac tgcaccacaa gtgcagcata cagtatgcat 1550 tttaaagatg cttgggccag gcggggtggc tgatgcccat aatcccagtg 1600 ctttgggggg ccaaggcagg cagattgccc aagctcagga gtttgagacc 1650 accctgggca acatggtgaa actctgtctc tactaaaata cgaaaaacta 1700 gccgggtgtg gtggcggcgc gtgcctgtaa tcccagctac ttgggaggct 1750 gaggcacaag aatcgcttga gccagcttgg gctacaaagt gagactccgt 1800 ctgaaaaga 1809

<210> 72

<211> 363

<212> PRT

<213> Homo sapiens

<400	> 72													
		Phe	Lys	Ala 5	Leu	Gly	Arg	Asn	Ser 10	Val	Leu	Leu	Arg	Ile 15
Cys	Ser	Phe	Ile	Pro 20	Leu	Leu	Lys	Ser	Ser 25	Val	Leu	Gly	Ser	Gly 30
Phe	Gly	Glu	Leu	Ala 35	Pro	Pro	Lys	Met	Ala 40	Asn	Ile	Thr	Ser	Ser 45
Gln	Ile	Leu	Asp	Gln 50	Leu	Lys	Ala	Pro	Ser 55	Leu	Gly	Gln	Phe	Thr 60
Thr	Thr	Pro	Ser	Thr 65	Gln	Gln	Asn	Ser	Thr 70	Ser	His	Pro	Thr	Thr 75
Thr	Thr	Ser	Trp	Asp 80	Leu	Lys	Pro	Pro	Thr 85	Ser	Gln	Ser	Ser	Val 90
Leu	Ser	His	Leu	Asp 95	Phe	Lys	Ser	Gln	Pro 100	Glu	Pro	Ser	Pro	Val 105
Leu	Ser	Gln	Leu	Ser 110	Gln	Arg	Gln	Gln	His 115	Gln	Ser	Gln	Ala	Val 120
Thr	Val	Pro	Pro	Pro 125	Gly	Leu	Glu	Ser	Phe 130	Pro	Ser	Gln	Ala	Lys 135
Leu	Arg	Glu	Ser	Thr 140	Pro	Gly	Asp	Ser	Pro 145	Ser	Thr	Val	Asn	Lys 150
Leu	Leu	Gln	Leu	Pro 155	Ser	Thr	Thr	Ile	Glu 160	Asn	Ile	Ser	Val	Ser 165
Val	His	Gln	Pro	Gln 170	Pro	Lys	His	Ile	Lys 175	Leu	Ala	Lys	Arg	Arg 180
Ile	Pro	Pro	Ala	Ser 185	Lys	Ile	Pro	Ala	Ser 190	Ala	Val	Glu	Met	Pro 195
Gly	Ser	Ala	Asp	Val 200	Thr	Gly	Leu	Asn	Val 205	Gln	Phe	Gly	Ala	Leu 210
Glu	Phe	Gly	Ser	Glu 215	Pro	Ser	Leu	Ser	Glu 220	Phe	Gly	Ser	Ala	Pro 225
Ser	Ser	Glu	Asn	Ser 230	Asn	Gln	Ile	Pro	Ile 235	Ser	Leu	Tyr	Ser	Lys 240
Ser	Leu	Ser	Glu	Pro 245	Leu	Asn	Thr	Ser	Leu 250	Ser	Met	Thr	Ser	Ala 255
Val	Gln	Asn	Ser	Thr 260	Tyr	Thr	Thr	Ser	Val 265	Ile	Thr	Ser	Cys	Ser 270
Leu	Thr	Ser	Ser	Ser	Leu	Asn	Ser	Ala	Ser	Pro	Val	Ala	Met	Ser

275 280 285

Ser Ser Tyr Asp Gln Ser Ser Val His Asn Arg Ile Pro Tyr Gln 290 295 300

Ser Pro Val Ser Ser Ser Glu Ser Ala Pro Gly Thr Ile Met Asn 305 310 315

Gly His Gly Gly Gly Arg Ser Gln Gln Thr Leu Asp Ser Lys Tyr 320 325 330

Ser Ser Lys Leu Leu Ser Trp Leu Val Pro Thr Lys Gln Arg 335 340 345

Lys Arg Ile Ala His Val Met Trp Lys Thr Pro Val Gly Gln Trp 350 355 360

Leu Ile Arg

<210> 73

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 73

aattcatggc aaatatttcc cttccc 26

<210> 74

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 74

tggtaaactg gcccaaactc gg 22

<210> 75

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 75

ttaaagtcat ccgtccttgg ctcaggattt ggagagcttg caccaccaaa 50

<210> 76

<211> 1989

<212> DNA

<213> Homo sapiens

<400> 76 gccgagtggg acaaagcctg gggctgggcg ggggccatgg cgctgccatc 50 ccgaatcctg ctttggaaac ttgtgcttct gcagagctct gctgttctcc 100 tgcactcagc ggtggaggag acggacgcgg ggctgtacac ctgcaacctg 150 caccatcact actgccacct ctacgagage ctggccgtcc gcctggaggt 200 caccgacggc cccccggcca cccccgccta ctgggacggc gagaaggagg 250 tgctggcggt ggcgcgggc gcacccgcgc ttctgacctg cgtgaaccgc 300 gggcacgtgt ggaccgaccg gcacgtggag gaggctcaac aggtggtgca 350 ctgggaccgg cagccgccg gggtcccgca cgaccgcgcg gaccgcctgc 400 tggacctcta cgcgtcgggc gagcgccgcg cctacgggcc ccttttctg 450 cgcgaccgcg tggctgtggg cgcggatgcc tttgagcgcg gtgacttctc 500 actgcgtatc gagccgctgg aggtcgccga cgagggcacc tactcctgcc 550 acctgcacca ccattactgt ggcctgcacg aacgccgcgt cttccacctg 600 acggtcgccg aaccccacgc ggagccgccc ccccggggct ctccgggcaa 650 eggetecage caeageggeg ecceaggece agaceceaca etggegegeg 700 gccacaacgt catcaatgtc atcgtccccg agagccgagc ccacttcttc 750 cagcagetgg getaegtget ggeeaegetg etgetettea teetgetaet 800 ggtcactgtc ctcctggccg cccgcaggcg ccgcggaggc tacgaatact 850 cggaccagaa gtcgggaaag tcaaagggga aggatgttaa cttggcggag 900 ttcgctgtgg ctgcagggga ccagatgctt tacaggagtg aggacatcca 950 gctagattac aaaaacaaca teetgaagga gagggeggag etggeecaca 1000 gccccctgcc tgccaagtac atcgacctag acaaagggtt ccggaaggag 1050 aactgcaaat agggaggccc tgggctcctg gctgggccag cagctgcacc 1100 tetectgtet gtgeteeteg gggeatetee tgatgeteeg gggeteacee 1150 cccttccagc ggctggtccc gctttcctgg aatttggcct gggcgtatgc 1200 agaggccgcc tccacacccc tcccccaggg gcttggtggc agcatagccc 1250 ccaccctgc ggcctttgct cacgggtggc cctgcccacc cctggcacaa 1300 ccaaaatccc actgatgccc atcatgccct cagacccttc tgggctctgc 1350 ccgctggggg cctgaagaca ttcctggagg acactcccat cagaacctgg 1400 cagccccaaa actggggtca gcctcagggc aggagtccca ctcctccagg 1450 gctctgctcg tccggggctg ggagatgttc ctggaggagg acactcccat 1500 cagaacttgg cagccttgaa gttggggtca gcctcggcag gagtcccact 1550 cctcctgggg tgctgcctgc caccaagagc tccccacct gtaccaccat 1600 gtgggactcc aggcaccatc tgttctcccc agggacctgc tgacttgaat 1650 gccagccctt gctcctctgt gttgctttgg gccacctggg gctgcacccc 1700 ctgcccttc tctgccccat ccctacccta gccttgctct cagccacctt 1750 gatagtcact gggctccctg tgacttctga ccctgacacc cctcccttgg 1800 actctgcctg ggctggagtc tagggctggg gctacatttg gcttctgtac 1850 tggctgagga caggggaggg agtgaagttg gtttggggtg gcctgtgttg 1900 ccactctcag cacccacat ttgcatctgc tggtggacct gccaccatca 1950 caataaagtc cccatctgat ttttaaaaaa aaaaaaaaa 1989

<210> 77

<211> 341

<212> PRT

<213> Homo sapiens

<400> 77

Met Ala Leu Pro Ser Arg Ile Leu Leu Trp Lys Leu Val Leu Leu 1 5 10 15

Gln Ser Ser Ala Val Leu Leu His Ser Ala Val Glu Glu Thr Asp 20 25 30

Ala Gly Leu Tyr Thr Cys Asn Leu His His His Tyr Cys His Leu 35 40 45

Tyr Glu Ser Leu Ala Val Arg Leu Glu Val Thr Asp Gly Pro Pro 50 55 60

Ala Thr Pro Ala Tyr Trp Asp Gly Glu Lys Glu Val Leu Ala Val
65 70 75

Ala Arg Gly Ala Pro Ala Leu Leu Thr Cys Val Asn Arg Gly His
80 85 90

Val Trp Thr Asp Arg His Val Glu Glu Ala Gln Gln Val Val His 95 100 105

Trp Asp Arg Gln Pro Pro Gly Val Pro His Asp Arg Ala Asp Arg 110 115 120

Leu Leu Asp Leu Tyr Ala Ser Gly Glu Arg Arg Ala Tyr Gly Pro 125 130 135

Leu	Phe	Leu	Arg	Asp 140	Arg	Val	Ala	Val	Gly 145	Ala	Asp	Ala	Phe	Glu 150
Arg	Gly	Asp	Phe	Ser 155	Leu	Arg	Ile	Glu	Pro 160	Leu	Glu	Val	Ala	Asp 165
Glu	Gly	Thr	Tyr	Ser 170	Cys	His	Leu	His	His 175	His	Tyr	Cys	Gly	Leu 180
His	Glu	Arg	Arg	Val 185	Phe	His	Leu	Thr	Val 190	Ala	Glu	Pro	His	Ala 195
Glu	Pro	Pro	Pro	Arg 200	Gly	Ser	Pro	Gly	Asn 205	Gly	Ser	Ser	His	Ser 210
Gly	Ala	Pro	Gly	Pro 215	Asp	Pro	Thr	Leu	Ala 220	Arg	Gly	His	Asn	Val 225
Ile	Asn	Val	Ile	Val 230	Pro	Glu	Ser	Arg	Ala 235	His	Phe	Phe	Gln	Gln 240
Leu	Gly	Tyr	Val	Leu 245	Ala	Thr	Leu	Leu	Leu 250	Phe	Ile	Leu	Leu	Leu 255
Val	Thr	Val	Leu	Leu 260	Ala	Ala	Arg	Arg	Arg 265	Arg	Gly	Gly	Tyr	Glu 270
Tyr	Ser	Asp	Gln	Lys 275	Ser	Gly	Lys	Ser	Lys 280	Gly	Lys	Asp	Val	Asn 285
Leu	Ala	Glu	Phe	Ala 290	Val	Ala	Ala	Gly	Asp 295	Gln	Met	Leu	Tyr	Arg 300
Ser	Glu	Asp	Ile	Gln 305	Leu	Asp	Tyr	Lys	Asn 310	Asn	Ile	Leu	Lys	Glu 315
Arg	Ala	Glu	Leu	Ala 320	His	Ser	Pro	Leu	Pro 325	Ala	Lys	Tyr	Ile	Asp 330
Leu	Asp	Lys	Gly	Phe 335	Arg	Lys	Glu	Asn	Cys 340	Lys				

<210> 78

<211> 2243

<212> DNA

<213> Homo sapiens

<400> 78

cgccggaggc agcggcggcg tggcgcagcg gcgacatggc cgttgtctca 50 gaggacgact ttcagcacag ttcaaactcc acctacggaa ccacaagcag 100 cagtctccga gctgaccagg aggcactgct tgagaagctg ctggaccgcc 150 cgcccctgg cctgcagagg cccgaggacc gcttctgtgg cacatacatc 200

atcttcttca gcctgggcat tggcagtcta ctgccatgga acttctttat 250 cactgccaag gagtactgga tgttcaaact ccgcaactcc tccagcccag 300 ccaccgggga ggaccctgag ggctcagaca tcctgaacta ctttgagagc 350 taccttgccg ttgcctccac cgtgccctcc atgctgtgcc tggtggccaa 400 cttcctgctt gtcaacaggg ttgcagtcca catccgtgtc ctggcctcac 450 tgacggtcat cctggccatc ttcatggtga taactgcact ggtgaaggtg 500 gacacttcct cctggacccg tggttttttt gcggtcacca ttgtctgcat 550 ggtgatcctc agcggtgcct ccactgtctt cagcagcagc atctacggca 600 tgaccggctc ctttcctatg aggaactccc aagcactgat atcaggagga 650 gccatgggcg ggacggtcag cgccgtggcc tcattggtgg acttggctgc 700 atccagtgat gtgaggaaca gcgccctggc cttcttcctg acggccacca 750 tetteetegt getetgeatg ggaetetace tgetgetgte caggetggag 800 tatgccaggt actacatgag gcctgttctt gcggcccatg tgttttctgg 850 tgaagaggag cttccccagg actccctcag tgccccttcg gtggcctcca 900 gattcattga ttcccacaca ccccctctcc gccccatcct gaagaagacg 950 gccagcctgg gcttctgtgt cacctacgtc ttcttcatca ccagcctcat 1000 ctaccccgcc gtctgcacca acatcgagtc cctcaacaag ggctcgggct 1050 cactgtggac caccaagttt ttcatcccc tcactacctt cctcctgtac 1100 aactttgctg acctatgtgg ccggcagctc accgcctgga tccaggtgcc 1150 agggcccaac agcaaggcgc tcccagggtt cgtgctcctc cggacctgcc 1200 tcatccccct cttcgtgctc tgtaactacc agccccgcgt ccacctgaag 1250 actgtggtct tecagteega tgtgtaceee geacteetea geteeetget 1300 ggggctcagc aacggctacc tcagcaccct ggccctcctc tacgggccta 1350 agattgtgcc cagggagctg gctgaggcca cgggagtggt gatgtccttt 1400 tatgtgtgct tgggcttaac actgggctca gcctgctcta ccctcctggt 1450 gcacctcatc tagaagggag gacacaagga cattggtgct tcagagcctt 1500 tgaagatgag aagagagtgc aggagggctg ggggccatgg aggaaaggcc 1550 taaagtttca cttggggaca gagagcagag cacactcggg cctcatccct 1600 cccaagatgc cagtgagcca cgtccatgcc cattccgtgc aaggcagata 1650 ttccagtcat attaacagaa cactcctgag acagttgaag aagaaatagc 1700 acaaatcagg ggtactccct tcacagctga tggttaacat tccaccttct 1750 ttctagccct tcaaagatgc tgccagtgtt cgccctagag ttattacaaa 1800 gccagtgcca aaacccagcc atgggetett tgcaacctcc cagctgcgct 1850 cattccagct gacagcgaga tgcaagcaaa tgctcagctc tccttaccct 1900 gaaggggtct ccctggaatg gaagtcccct ggcatggtca gtcctcaggc 1950 ccaagactca agtgtgcaca gacccctgtg ttctgcgggt gaacaactgc 2000 ccactaacca gactggaaaa cccagaaaga tgggccttcc atgaatgctt 2050 cattccagag ggaccagagg gcctccctgt gcaagggatc aagcatgct 2100 ggcctgggtt ttcaaaaaaa gagggatcct catgacctgg tggtctatgg 2150 cctgggtcaa gatgagggtc tttcagtgtt cctgtttaca acatgtcaaa 2200 gccattggtt caagggcta ataaatactt gcgtattcaa aaa 2243

<210> 79

<211> 475

<212> PRT

<213> Homo sapiens

<400> 79

Met Ala Val Val Ser Glu Asp Asp Phe Gln His Ser Ser Asn Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Tyr Gly Thr Thr Ser Ser Ser Leu Arg Ala Asp Gln Glu Ala 20 25 30

Leu Leu Glu Lys Leu Leu Asp Arg Pro Pro Pro Gly Leu Gln Arg
35 40 45

Pro Glu Asp Arg Phe Cys Gly Thr Tyr Ile Ile Phe Phe Ser Leu
50 55 60

Gly Ile Gly Ser Leu Leu Pro Trp Asn Phe Phe Ile Thr Ala Lys
65 70 75

Glu Tyr Trp Met Phe Lys Leu Arg Asn Ser Ser Ser Pro Ala Thr $80 \hspace{1cm} 85 \hspace{1cm} 90$

Gly Glu Asp Pro Glu Gly Ser Asp Ile Leu Asn Tyr Phe Glu Ser 95 100 105

Tyr Leu Ala Val Ala Ser Thr Val Pro Ser Met Leu Cys Leu Val 110 115 120

Ala Asn Phe Leu Leu Val Asn Arg Val Ala Val His Ile Arg Val
125 130 135

Leu	Ala	Ser	Leu	Thr 140		Ile	Leu	Ala	Ile 145		Met	Val	Ile	Thr 150	
Ala	Leu	Val	Lys	Val 155		Thr	Ser	Ser	Trp 160		Arg	Gly	Phe	Phe 165	
Ala	Val	Thr	Ile	Val 170	Cys	Met	Val	Ile	Leu 175		Gly	Ala	Ser	Thr 180	
Val	Phe	Ser	Ser	Ser 185	Ile	Tyr	Gly	Met	Thr 190	Gly	Ser	Phe	Pro	Met 195	
Arg	Asn	Ser	Gln	Ala 200	Leu	Ile	Ser	Gly	Gly 205	Ala	Met	Gly	Gly	Thr 210	
Val	Ser	Ala	Val	Ala 215	Ser	Leu	Val	Asp	Leu 220	Ala	Ala	Ser	Ser	Asp 225	
Val	Arg	Asn	Ser	Ala 230	Leu	Ala	Phe	Phe	Leu 235	Thr	Ala	Thr	Ile	Phe 240	
				245		Leu			250					255	
Tyr	Ala	Arg	Tyr	Tyr 260	Met	Arg	Pro	Val	Leu 265	Ala	Ala	His	Val	Phe 270	
Ser	Gly	Glu	Glu	Glu 275	Leu	Pro	Gln	Asp	Ser 280	Leu	Ser	Ala	Pro	Ser 285	
Val	Ala	Ser	Arg	Phe 290	Ile	Asp	Ser	His	Thr 295	Pro	Pro	Leu	Arg	Pro 300	
Ile	Leu	Lys	Lys	Thr 305	Ala	Ser	Leu	Gly	Phe 310	Cys	Val	Thr	Tyr	Val 315	
				320		Ile			325					330	
				335		Ser			340				_	345	
				350		Phe			355					360	
				365		Ala			370					375	
				380		Phe			385					390	
				395		Asn			400					405	
Thr	Val	Val	Phe	Gln 410	Ser	Asp '	Val		Pro 415	Ala	Leu	Leu	Ser	Ser 420	

```
Leu Leu Gly Leu Ser Asn Gly Tyr Leu Ser Thr Leu Ala Leu Leu
                                      430
 Tyr Gly Pro Lys Ile Val Pro Arg Glu Leu Ala Glu Ala Thr Gly
                  440
                                      445
 Val Val Met Ser Phe Tyr Val Cys Leu Gly Leu Thr Leu Gly Ser
                  455
                                      460
 Ala Cys Ser Thr Leu Leu Val His Leu Ile
<210> 80
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 80
ttttgcggtc accattgtct gc 22
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 81
cgtaggtgac acagaagccc agg 23
<210> 82
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 82
tacggcatga ccggctcctt tcctatgagg aactcccagg cactgatat 49
<210> 83
<211> 1844
<212> DNA
<213> Homo sapiens
<400> 83
gacagtggag ggcagtggag aggaccgcgc tgtcctgctg tcaccaagag 50
ctggagacac catctcccac cgagagtcat ggccccattg gccctgcacc 100
teetegteet egteeceate eteeteagee tggtggeete ceaggactgg 150
```

aaggctgaac gcagccaaga ccccttcgag aaatgcatgc aggatcctga 200 ctatgagcag ctgctcaagg tggtgacctg ggggctcaat cggaccctga 250 agccccagag ggtgattgtg gttggcgctg gtgtggccgg gctggtggcc 300 gccaaggtgc tcagcgatgc tggacacaag gtcaccatcc tggaggcaga 350 taacaggatc gggggccgca tcttcaccta ccgggaccag aacacgggct 400 ggattgggga gctgggagcc atgcgcatgc ccagctctca caggatcctc 450 cacaagetet gecagggeet ggggeteaac etgaceaagt teacecagta 500 cgacaagaac acgtggacgg aggtgcacga agtgaagctg cgcaactatg 550 tggtggagaa ggtgcccgag aagctgggct acgccttgcg tccccaggaa 600 aagggccact cgcccgaaga catctaccag atggctctca accaggccct 650 caaagacctc aaggcactgg gctgcagaaa ggcgatgaag aagtttgaaa 700 ggcacacgct cttggaatat cttctcgggg aggggaacct gagccggccg 750 gccgtgcagc ttctgggaga cgtgatgtcc gaggatggct tcttctatct 800 cagettegee gaggeeetee gggeeeacag etgeeteage gacagaetee 850 agtacageeg categtgggt ggetgggaee tgetgeegeg egegetgetg 900 agctcgctgt ccgggcttgt gctgttgaac gcgcccgtgg tggcgatgac 950 ccagggaccg cacgatgtgc acgtgcagat cgagacctct cccccggcgc 1000 ggaatetgaa ggtgetgaag geegaegtgg tgetgetgae ggegagegga 1050 ccggcggtga agcgcatcac cttctcgccg ccgctgcccc gccacatgca 1100 ggaggcgctg cggaggctgc actacgtgcc ggccaccaag gtgttcctaa 1150 gcttccgcag gcccttctgg cgcgaggagc acattgaagg cggccactca 1200 aacaccgatc gecegtegeg catgatttte taecegeege egegegaggg 1250 cgcgctgctg ctggcctcgt acacgtggtc ggacgcggcg gcagcgttcg 1300 ccggcttgag ccgggaagag gcgttgcgct tggcgctcga cgacgtggcg 1350 gcattgcacg ggcctgtcgt gcgccagctc tgggacggca ccggcgtcgt 1400 caagegttgg geggaggaee ageaeageea gggtggettt gtggtaeage 1450 cgccggcgct ctggcaaacc gaaaaggatg actggacggt cccttatggc 1500 cgcatctact ttgccggcga gcacaccgcc tacccgcacg gctgggtgga 1550

<210> 84

<211> 567

<212> PRT

<213> Homo sapiens

<400> 84

Met Ala Pro Leu Ala Leu His Leu Leu Val Leu Val Pro Ile Leu
1 5 10 15

Leu Ser Leu Val Ala Ser Gln Asp Trp Lys Ala Glu Arg Ser Gln 20 25 30

Asp Pro Phe Glu Lys Cys Met Gln Asp Pro Asp Tyr Glu Gln Leu 35 40 45

Leu Lys Val Val Thr Trp Gly Leu Asn Arg Thr Leu Lys Pro Gln 50 55 60

Arg Val Ile Val Val Gly Ala Gly Val Ala Gly Leu Val Ala Ala 65 70 75

Lys Val Leu Ser Asp Ala Gly His Lys Val Thr Ile Leu Glu Ala 80 85 90

Asp Asn Arg Ile Gly Gly Arg Ile Phe Thr Tyr Arg Asp Gln Asn 95 100 105

Thr Gly Trp Ile Gly Glu Leu Gly Ala Met Arg Met Pro Ser Ser 110 115 120

His Arg Ile Leu His Lys Leu Cys Gln Gly Leu Gly Leu Asn Leu 125 130 135

Thr Lys Phe Thr Gln Tyr Asp Lys Asn Thr Trp Thr Glu Val His
140 145 150

Glu Val Lys Leu Arg Asn Tyr Val Val Glu Lys Val Pro Glu Lys 155 160 165

Leu Gly Tyr Ala Leu Arg Pro Gln Glu Lys Gly His Ser Pro Glu 170 175 180

Asp Ile Tyr Gln Met Ala Leu Asn Gln Ala Leu Lys Asp Leu Lys 185 190 195

Ala	Leu	Gly	Cys	Arg 200	Lys	Ala	Met	Lys	Lys 205	Phe	Glu	Arg	His	Thr 210
Leu	Leu	Glu	Tyr	Leu 215	Leu	Gly	Glu	Gly	Asn 220	Leu	Ser	Arg	Pro	Ala 225
Val	Gln	Leu	Leu	Gly 230	Asp	Val	Met	Ser	Glu 235	Asp	Gly	Phe	Phe	Tyr 240
Leu	Ser	Phe	Ala	Glu 245	Ala	Leu	Arg	Ala	His 250	Ser	Cys	Leu	Ser	Asp 255
Arg	Leu	Gln	Tyr	Ser 260	Arg	Ile	Val	Gly	Gly 265	Trp	Asp	Leu	Leu	Pro 270
Arg	Ala	Leu	Leu	Ser 275	Ser	Leu	Ser	Gly	Leu 280	Val	Leu	Leu	Asn	Ala 285
Pro	Val	Val	Ala	Met 290	Thr	Gln	Gly	Pro	His 295	Asp	Val	His	Val	Gln 300
Ile	Glu	Thr	Ser	Pro 305	Pro	Ala	Arg	Asn	Leu 310	Lys	Val	Leu	Lys	Ala 315
Asp	Val	Val	Leu	Leu 320	Thr	Ala	Ser	Gly	Pro 325	Ala	Val	Lys	Arg	Ile 330
Thr	Phe	Ser	Pro	Pro 335	Leu	Pro	Arg	His	Met 340	Gln	Glu	Ala	Leu	Arg 345
Arg	Leu	His	Tyr	Val 350	Pro	Ala	Thr	Lys	Val 355	Phe	Leu	Ser	Phe	Arg 360
Arg	Pro	Phe	Trp	Arg 365	Glu	Glu	His	Ile	Glu 370	Gly	Gly	His	Ser	Asn 375
Thr	Asp	Arg	Pro	Ser 380	Arg	Met	Ile	Phe	Tyr 385	Pro	Pro	Pro	Arg	Glu 390
Gly	Ala	Leu	Leu	Leu 395	Ala	Ser	Tyr	Thr	Trp 400	Ser	Asp	Ala	Ala	Ala 405
Ala	Phe	Ala	Gly	Leu 410	Ser	Arg	Glu	Glu	Ala 415	Leu	Arg	Leu	Ala	Leu 420
Asp	Asp	Val	Ala	Ala 425	Leu	His	Gly	Pro	Val 430	Val	Arg	Gln	Leu	Trp 435
Asp	Gly	Thr	Gly	Val 440	Val	Lys	Arg	Trp	Ala 445	Glu	Asp	Gln	His	Ser 450
Gln	Gly	Gly	Phe	Val 455	Val	Gln	Pro	Pro	Ala 460	Leu	Trp	Gln	Thr	Glu 465
Lys	Asp	Asp	Trp	Thr 470	Val	Pro	Tyr	Gly	Arg 475	Ile	Tyr	Phe	Ala	Gly 480

Glu His Thr Ala Tyr Pro His Gly Trp Val Glu Thr Ala Val Lys 485 490 495

Ser Ala Leu Arg Ala Ala Ile Lys Ile Asn Ser Arg Lys Gly Pro 500 505 510

Ala Ser Asp Thr Ala Ser Pro Glu Gly His Ala Ser Asp Met Glu
515 520 525

Gly Gln Gly His Val His Gly Val Ala Ser Ser Pro Ser His Asp 530 535 540

Leu Ala Lys Glu Glu Gly Ser His Pro Pro Val Gln Gly Gln Leu 545 550 555

Ser Leu Gln Asn Thr Thr His Thr Arg Thr Ser His 560 565

<210> 85

<211> 3316

<212> DNA

<213> Homo sapiens

<400> 85

ctgacatggc ctgactcggg acagctcaga gcagggcaga actggggaca 50 ctctgggccg gccttctgcc tgcatggacg ctctgaagcc accctgtctc 100 tggaggaacc acgagcgagg gaagaaggac agggactcgt gtggcaggaa 150 gaactcagag ccgggaagcc cccattcact agaagcactg agagatgcgg 200 ccccctcgca gggtctgaat ttcctgctgc tgttcacaaa gatgcttttt 250 atctttaact ttttgttttc cccacttccg accccggcgt tgatctgcat 300 cctgacattt ggagctgcca tcttcttgtg gctgatcacc agacctcaac 350 ccgtcttacc tcttcttgac ctgaacaatc agtctgtggg aattgaggga 400 ggagcacgga agggggtttc ccagaagaac aatgacctaa caagttgctg 450 cttctcagat gccaagacta tgtatgaggt tttccaaaga ggactcgctg 500 tgtctgacaa tgggccctgc ttgggatata gaaaaccaaa ccagccctac 550 agatggctat cttacaaaca ggtgtctgat agagcagagt acctgggttc 600 tctttgctca gaataggcca gagtggatca tctccgaatt ggcttgttac 700 acgtactcta tggtagctgt acctctgtat gacaccttgg gaccagaagc 750 catcgtacat attgtcaaca aggctgatat cgccatggtg atctgtgaca 800

caccccaaaa ggcattggtg ctgataggga atgtagagaa aggcttcacc 850

ccgagcctga aggtgatcat ccttatggac ccctttgatg atgacctgaa 900 gcaaagaggg gagaagagtg gaattgagat cttatcccta tatgatgctg 950 agaacctagg caaagagcac ttcagaaaac ctgtgcctcc tagcccagaa 1000 gacctgagcg tcatctgctt caccagtggg accacaggtg accccaaagg 1050 agccatgata acccatcaaa atattgtttc aaatgctgct gcctttctca 1100 aatgtgtgga gcatgcttat gagcccactc ctgatgatgt ggccatatcc 1150 tacctccctc tggctcatat gtttgagagg attgtacagg ctgttgtgta 1200 cagctgtgga gccagagttg gattcttcca aggggatatt cggttgctgg 1250 ctgacgacat gaagactttg aagcccacat tgtttcccgc ggtgcctcga 1300 ctccttaaca ggatctacga taaggtacaa aatgaggcca agacaccctt 1350 gaagaagttc ttgttgaagc tggctgtttc cagtaaattc aaagagcttc 1400 aaaagggtat catcaggcat gatagtttct gggacaagct catctttgca 1450 aagatccagg acagcctggg cggaagggtt cgtgtaattg tcactggagc 1500 tgcccccatg tccacttcag tcatgacatt cttccgggca gcaatgggat 1550 gtcaggtgta tgaagcttat ggtcaaacag aatgcacagg tggctgtaca 1600 tttacattac ctggggactg gacatcaggt cacgttgggg tgcccctggc 1650 ttgcaattac gtgaagctgg aagatgtggc tgacatgaac tactttacag 1700 tgaataatga aggagaggtc tgcatcaagg gtacaaacgt gttcaaagga 1750 tacctgaagg accctgagaa gacacaggaa gccctggaca gtgatggctg 1800 gcttcacaca ggagacattg gtcgctggct cccgaatgga actctgaaga 1850 tcatcgaccg taaaaagaac attttcaagc tggcccaagg agaatacatt 1900 gcaccagaga agatagaaaa tatctacaac aggagtcaac cagtgttaca 1950 aatttttgta cacggggaga gcttacggtc atccttagta ggagtggtgg 2000 ttcctgacac agatgtactt ccctcatttg cagccaagct tggggtgaag 2050 ggctcctttg aggaactgtg ccaaaaccaa gttgtaaggg aagccatttt 2100 agaagacttg cagaaaattg ggaaagaaag tggccttaaa acttttgaac 2150 aggtcaaagc catttttctt catccagagc cattttccat tgaaaatggg 2200 ctcttgacac caacattgaa agcaaagcga ggagagcttt ccaaatactt 2250

tcggacccaa attgacagcc tgtatgagca catccaggat taggataagg 2300 tacttaagta cctgccggcc cactgtgcac tgcttgtgag aaaatggatt 2350 aaaaactatt cttacatttg ttttgccttt cctcctattt ttttttaacc 2400 tgttaaactc taaagccata gcttttgttt tatattgaga catataatgt 2450 gtaaacttag ttcccaaata aatcaatcct gtctttccca tcttcqatqt 2500 tgctaatatt aaggcttcag ggctactttt atcaacatgc ctgtcttcaa 2550 gatcccagtt tatgttctgt gtccttcctc atgatttcca accttaatac 2600 tattagtaac cacaagttca agggtcaaag ggaccctctg tgccttcttc 2650 tttgttttgt gataaacata acttgccaac agtctctatg cttatttaca 2700 tcttctactg ttcaaactaa gagattttta aattctgaaa aactgcttac 2750 aattcatgtt ttctagccac tccacaaacc actaaaattt tagttttagc 2800 ctatcactca tgtcaatcat atctatgaga caaatgtctc cgatgctctt 2850 ctgcgtaaat taaattgtgt actgaaggga aaagtttgat cataccaaac 2900 atttcctaaa ctctctagtt agatatctga cttgggagta ttaaaaattg 2950 ggtctatgac atactgtcca aaaggaatgc tgttcttaaa gcattattta 3000 cagtaggaac tggggagtaa atctgttccc tacagtttgc tgctgagctg 3050 gaagctgtgg gggaaggagt tgacaggtgg gcccagtgaa cttttccagt 3100 aaatgaagca agcactgaat aaaaacctcc tgaactggga acaaagatct 3150 acaggcaagc aagatgccca cacaacaggc ttattttctg tgaaggaacc 3200 aactgatete ecceaecett ggattagagt teetgeteta eettaeceae 3250 agataacaca tgttgtttct acttgtaaat gtaaagtctt taaaataaac 3300 tattacagat aaaaaa 3316

<210> 86

<211> 739

<212> PRT

<213> Homo sapiens

<400> 86

Met Asp Ala Leu Lys Pro Pro Cys Leu Trp Arg Asn His Glu Arg
1 5 10 15

Gly Lys Lys Asp Arg Asp Ser Cys Gly Arg Lys Asn Ser Glu Pro 20 25 30

Gly Ser Pro His Ser Leu Glu Ala Leu Arg Asp Ala Ala Pro Ser

Gln	Glv	Leu	Asn	Phe	Len	Leu	Len	Phe	Thr	Lvs	Met	T.e.ii	Phe	Ile
				50					55					60
Phe	Asn	Phe	Leu	Phe 65	Ser	Pro	Leu	Pro	Thr 70	Pro	Ala	Leu	Ile	Cys 75
Ile	Leu	Thr	Phe	Gly 80	Ala	Ala	Ile	Phe	Leu 85	Trp	Leu	Ile	Thr	Arg 90
Pro	Gln	Pro	Val	Leu 95	Pro	Leu	Leu	Asp	Leu 100	Asn	Asn	Gln	Ser	Val 105
Gly	Ile	Glu	Gly	Gly 110	Ala	Arg	Lys	Gly	Val 115	Ser	Gln	Lys	Asn	Asn 120
Asp	Leu	Thr	Ser	Cys 125	Cys	Phe	Ser	Asp	Ala 130	Lys	Thr	Met	Tyr	Glu 135
Val	Phe	Gln	Arg	Gly 140	Leu	Ala	Val	Ser	Asp 145	Asn	Gly	Pro	Cys	Leu 150
Gly	Tyr	Arg	Lys	Pro 155	Asn	Gln	Pro	Tyr	Arg 160	Trp	Leu	Ser	Tyr	Lys 165
Gln	Val	Ser	Asp	Arg 170	Ala	Glu	Tyr	Leu	Gly 175	Ser	Cys	Leu	Leu	His 180
Lys	Gly	Tyr	Lys	Ser 185	Ser	Pro	Asp	Gln	Phe 190	Val	Gly	Ile	Phe	Ala 195
Gln	Asn	Arg	Pro	Glu 200	Trp	Ile	Ile	Ser	Glu 205	Leu	Ala	Cys	Tyr	Thr 210
Tyr	Ser	Met	Val	Ala 215	Val	Pro	Leu	Tyr	Asp 220	Thr	Leu	Gly	Pro	Glu 225
Ala	Ile	Val	His	Ile 230	Val	Asn	Lys	Ala	Asp 235	Ile	Ala	Met	Val	Ile 240
Cys	Asp	Thr	Pro	Gln 245	Lys	Ala	Leu	Val	Leu 250	Ile	Gly	Asn	Val	Glu 255
Lys	Gly	Phe	Thr	Pro 260	Ser	Leu	Lys	Val	Ile 265	Ile	Leu	Met	Asp	Pro 270
Phe	Asp	Asp	Asp	Leu 275	Lys	Gln	Arg	Gly	Glu 280	Lýs	Ser	Gly	Ile	Glu 285
Ile	Leu	Ser	Leu	Tyr 290	Asp	Ala	Glu	Asn	Leu 295	Gly	Lys	Glu	His	Phe 300
Arg	Lys	Pro	Val	Pro 305	Pro	Ser	Pro	Glu	Asp 310	Leu	Ser	Val	Ile	Cys 315
Phe	Thr	Ser	Gly	Thr	Thr	Gly	Asp	Pro	Lys	Gly	Ala	Met	Ile	Thr

				605					610					615
Asn	Ile	Tyr	Asn	Arg 620	Ser	Gln	Pro	Val	Leu 625	Gln	Ile	Phe	Val	His 630
Gly	Glu	Ser	Leu	Arg 635	Ser	Ser	Leu	Val	Gly 640	Val	Val	Val	Pro	Asp 645
Thr	Asp	Val	Leu	Pro 650	Ser	Phe	Ala	Ala	Lys 655	Leu	Gly	Val	Lys	Gly 660
Ser	Phe	Glu	Glu	Leu 665	Cys	Gln	Asn	Gln	Val 670	Val	Arg	Glu	Ala	Ile 675
Leu	Glu	Asp	Leu	Gln 680	Lys	Ile	Gly	Lys	Glu 685	Ser	Gly	Leu	Lys	Thr 690
Phe	Glu	Gln	Val	Lys 695	Ala	Ile	Phe	Leu	His 700	Pro	Glu	Pro	Phe	Ser 705
Ile	Glu	Asn	Gly	Leu 710	Leu	Thr	Pro	Thr	Leu 715	Lys	Ala	Lys	Arg	Gly 720
Glu	Leu	Ser	Lys	Tyr 725	Phe	Arg	Thr	Gln	Ile 730	Asp	Ser	Leu	Tyr	Glu 735

His Ile Gln Asp

<210> 87

<211> 2725

<212> DNA

<213> Homo sapiens

<400> 87

ggaggeggag gccggggga gccgggccga gcagtgaggg ccctagcggg 50
gcccgagcgg ggcccggggc ccctaagcca ttcctgaagt catgggctgg 100
ccaggacatt ggtgacccgc caatccggta tggacgactg gaagcccagc 150
cccctcatca agccctttgg ggctcggaag aagcggagct ggtaccttac 200
ctggaagtat aaactgacaa accagcgggc cctgcggaga ttctgtcaga 250
caggggccgt gctttcctg ctggtgactg tcattgtcaa tatcaagttg 300
atcctggaca ctcggcgagc catcagtgaa gccaatgaag acccagagcc 350
agagcaagac tatgatgagg ccctaggccg cctggagccc ccacggcgca 400
gaggcagtgg tccccggcgg gtcctggacg tagaggtgta ttcaagtcgc 450
agcaaagtat atgtggcagt ggatggcacc acggtgctgg aggatgaggc 500
ccgggagcag ggccggggca tccatgtcat tgtcctcaac caggccacgg 550

gccacgtgat ggcaaaacgt gtgtttgaca cgtactcacc tcatgaggat 600 gaggccatgg tgctattcct caacatggta gcgcccggcc gagtgctcat 650 ctgcactgtc aaggatgagg gctccttcca cctcaaggac acagccaagg 700 gacacatggg ccttcgtggg acgaaaagga ggtcctgtct tcggggagaa 800 acattctaag tcacctgccc tctcttcctg gggggaccca gtcctgctga 850 agacagatgt gccattgagc tcagcagaag aggcagagtg ccactgggca 900 gacacagage tgaacegteg eegeeggege ttetgeagea aagttgaggg 950 ctatggaagt gtatgcagct gcaaggaccc cacacccatc gagttcagcc 1000 ctgacccact cccagacaac aaggtcctca atgtgcctgt ggctgtcatt 1050 gcagggaacc gacccaatta cctgtacagg atgctgcgct ctctgctttc 1100 agcccagggg gtgtctcctc agatgataac agttttcatt gacggctact 1150 atgaggaacc catggatgtg gtggcactgt ttggtctgag gggcatccag 1200 catactecea teageateaa gaatgeeege gtgteteage actacaagge 1250 cagecteact gecaetttea acetgtttee ggaggeeaag tttgetgtgg 1300 ttctggaaga ggacctggac attgctgtgg attttttcag tttcctgagc 1350 caatccatcc acctactgga ggaggatgac agcctgtact gcatctctgc 1400 ctggaatgac caggggtatg aacacacggc tgaggaccca gcactactgt 1450 accgtgtgga gaccatgcct gggctgggct gggtgctcag gaggtccttg 1500 tacaaggagg agcttgagcc caagtggcct acaccggaaa agctctggga 1550 ttgggacatg tggatgcgga tgcctgaaca acgccggggc cgagagtgca 1600 tcatccctga cgtttcccga tcctaccact ttggcatcgt cggcctcaac 1650 atgaatggct actttcacga ggcctacttc aagaagcaca agttcaacac 1700 ggttccaggt gtccagctca ggaatgtgga cagtctgaag aaagaagctt 1750 atgaagtgga agttcacagg ctgctcagtg aggctgaggt tctggaccac 1800 agcaagaacc cttgtgaaga ctctttcctg ccagacacag agggccacac 1850 ctacgtggcc tttattcgaa tggagaaaga tgatgacttc accacctgga 1900 cccagcttgc caagtgcctc catatctggg acctggatgt gcgtggcaac 1950 catcggggcc tgtggagatt gtttcggaag aagaaccact tcctggtggt 2000

gggggtcccg gettcccct actagtgaa gaagccacc teagtcacc 2050
caatttteet ggagccacce ccaaaggagg agggagccc aggagccca 2100
gaacagacat gagacctcet ccaggaccet geggggetgg gtactgtgta 2150
cccccaggct ggctagccct tecetecate etgtaggatt ttgtagatge 2200
tggtaggggc tggggctacc ttgttttaa catgagactt aattactaac 2250
tecaagggga gggttcccct getecaacae eeegtteetg agttaaaagt 2300
ctatttattt actteettgt tggagaaggg caggaggata eetgggaate 2350
attacgatee etageagete ateetgeeet ttgaatacce teaettteea 2400
ggcetggete agaatetaae etattattg actgteetga gggeettgaa 2450
aacaggeega acetggaggg eeeggatte tttttggget ggaatgetge 2500
cetgagggtg gggetggete ttactcagga aactgetgtg eeeaacccat 2550
ggacaggeee agetgggeee cacatgetga cacagactea eteagagace 2600
cttagacact ggaccaggee teetetcage ettetetttg teeagattee 2650
caaagetgga taagttggte attgattaaa aaaggagaag eeetetggga 2700
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 2725

<210> 88

<211> 660

<212> PRT

<213> Homo sapiens

<400> 88

Met Asp Asp Trp Lys Pro Ser Pro Leu Ile Lys Pro Phe Gly Ala 1 5 10 15

Arg Lys Lys Arg Ser Trp Tyr Leu Thr Trp Lys Tyr Lys Leu Thr 20 25 30

Asn Gln Arg Ala Leu Arg Arg Phe Cys Gln Thr Gly Ala Val Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Phe Leu Leu Val Thr Val Ile Val Asn Ile Lys Leu Ile Leu Asp
50 55

Thr Arg Arg Ala Ile Ser Glu Ala Asn Glu Asp Pro Glu Pro Glu
65 7-0 75

Gln Asp Tyr Asp Glu Ala Leu Gly Arg Leu Glu Pro Pro Arg Arg 80 85 90

Arg Gly Ser Gly Pro Arg Arg Val Leu Asp Val Glu Val Tyr Ser 95 100 105

	Ser	Arg	Ser	Lys	Val 110	Tyr	Val	Ala	Val	Asp 115	Gly	Thr	Thr	Val	Leu 120
	Glu	Asp	Glu	Ala	Arg 125	Glu	Gln	Gly	Arg	Gly 130	Ile	His	Val	Ile	Val 135
	Leu	Asn	Gln	Ala	Thr 140	Gly	His	Val	Met	Ala 145	Lys	Arg	Val	Phe	Asp 150
	Thr	Tyr	Ser	Pro	His 155	Glu	Asp	Glu	Ala	Met 160	Val	Leu	Phe	Leu	Asn 165
	Met	Val	Ala	Pro	Gly 170	Arg	Val	Leu	Ile	Cys 175	Thr	Val	Lys	Asp	Glu 180
,	Gly	Ser	Phe	His	Leu 185	Lys	Asp	Thr	Ala	Lys 190	Ala	Leu	Leu	Arg	Ser 195
	Leu	Gly	Ser	Gln	Ala 200	Gly	Pro	Ala	Leu	Gly 205	Trp	Arg	Asp	Thr	Trp 210
	Ala	Phe	Val	Gly	Arg 215	Lys	Gly	Gly	Pro	Val 220	Phe	Gly	Glu	Lys	His 225
	Ser	Lys	Ser	Pro	Ala 230	Leu	Ser	Ser	Trp	Gly 235	Asp	Pro	Val	Leu	Leu 240
	Lys	Thr	Asp	Val	Pro 245	Leu	Ser	Ser	Ala	Glu 250	Glu	Ala	Glu	Cys	His 255
	Trp	Ala	Asp	Thr	Glu 260	Leu	Asn	Arg	Arg	Arg 265	Arg	Arg	Phe	Cys	Ser 270
	Lys	Val	Glu	Gly	Tyr 275	Gly	Ser	Val	Cys	Ser 280	Cys	Lys	Asp	Pro	Thr 285
	Pro	Ile	Glu	Phe	Ser 290	Pro	Asp	Pro	Leu	Pro 295	Asp	Asn	Lys	Val	Leu 300
	Asn	Val	Pro	Val	Ala 305	Val	Ile	Ala	Gly	Asn 310	Arg	Pro	Asn	Tyr	Leu 315
	Tyr	Arg	Met	Leu	Arg 320	Ser	Leu	Leu	Ser	Ala 325	Gln	Gly	Val	Ser	Pro 330
	Gln	Met	Ile	Thr	Val 335	Phe	Ile	Asp	Gly	Tyr 340	Tyr	Glu	Glu	Pro	Met 345
	Asp	Val	Val	Ala	Leu 350	Phe	Gly	Leu	Arg	Gly 355	Ile	Gln	His	Thr	Pro 360
	Ile	Ser	Ile	Lys	Asn 365	Ala	Arg	Val	Ser	Gln 370	His	Tyr	Lys	Ala	Ser 375
	Leu	Thr	Ala	Thr	Phe 380	Asn	Leu	Phe	Pro	Glu 385	Ala	Lys	Phe	Ala	Val 390

Va.	l Le	u Gl	u Gl	u Ası 39	e Lei	ı Asp) Ile	e Ala	a Va:		Ph	e Ph	e Se	r Phe 405
Lei	ı Se	r Gl	n Se:	r Ile 410	e His	s Leu	ı Lev	ı Glı	a Gli 415	a Asp) Ası	o Se:	r Lei	u Tyr 420
Суз	s Ile	e Se	r Ala	a Trp 425	Asr	a Asp	Gln	Gly	7 Tyı 430		ı His	s Thi	c Ala	a Glu 435
Asp	Pro	o Ala	a Leu	1 Let 440	ı Tyr	Arg	Val	Glu	Thr 445		Pro	Gly	/ Let	1 Gly 450
Trp	Va]	l Lei	ı Arç	455	Ser	Leu	Tyr	Lys	Glu 460	ı Glu	. Let	ı Glu	ı Pro	Lys 465
Trp	Pro	Thi	r Pro	Glu 470	Lys	Leu	Trp	Asp	Trp 475	Asp	Met	Trp	Met	Arg 480
Met	Pro	Glu	: Gln	Arg 485	Arg	Gly	Arg	Glu	Cys 490		Ile	Pro	Asp	Val 495
Ser	Arg	Ser	Tyr	His 500	Phe	Gly	Ile	Val	Gly 505	Leu	Asn	Met	Asn	Gly 510
Tyr	Phe	His	Glu	Ala 515	Tyr	Phe	Lys	Lys	His 520	Lys	Phe	Asn	Thr	Val 525
Pro	Gly	Val	Gln	Leu 530	Arg	Asn	Val	Asp	Ser 535	Leu	Lys	Lys	Glu	Ala 540
			Glu	545					550					555
			Lys	560					565					570
Glu	Gly	His	Thr	Tyr 575	Val	Ala	Phe	Ile	Arg 580	Met	Glu	Lys	Asp	Asp 585
			Thr	590					595					600
			Val	603					610					615
			Asn	020					625					630
			Lys	633					640					645
		Pro	Lys	Glu 650	Glu	Gly	Ala :	Pro	Gly 655	Ala	Pro	Glu	Gln	Thr 660
<210>	89													

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 89
gatggcaaaa cgtgtgtttg acacg 25
<210> 90
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 90
cctcaaccag gccacgggcc ac 22
<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 91
cccaggcaga gatgcagtac aggc 24
<210> 92
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 92
cctccagtag gtggatggat tggctc 26
<210> 93
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 93
ctcacctcat gaggatgagg ccatggtgct attcctcaac atggtag 47
<210> 94
<211> 3037
<212> DNA
<213> Homo sapiens
```

<400> 94 cggacgcgtg ggctgctggt gggaaggcct aaagaactgg aaagcccact 50 ctcttggaac caccacact gtttaaagaa cctaagcacc atttaaagcc 100 actggaaatt tgttgtctag tggttgtggg tgaataaagg agggcagaat 150 ggatgatttc atctccatta gcctgctgtc tctggctatg ttggtgggat 200 gttacgtggc cggaatcatt cccttggctg ttaatttctc agaggaacga 250 ctgaagctgg tgactgtttt gggtgctggc cttctctgtg gaactgctct 300 ggcagtcatc gtgcctgaag gagtacatgc cctttatgaa gatattcttg 350 agggaaaaca ccaccaagca agtgaaacac ataatgtgat tgcatcagac 400 aaagcagcag aaaaatcagt tgtccatgaa catgagcaca gccacgacca 450 cacacagetg catgeetata ttggtgttte cetegttetg ggettegttt 500 tcatgttgct ggtggaccag attggtaact cccatgtgca ttctactgac 550 gatccagaag cagcaaggtc tagcaattcc aaaatcacca ccacgctggg 600 tctggttgtc catgctgcag ctgatggtgt tgctttggga gcagcagcat 650 ctacttcaca gaccagtgtc cagttaattg tgtttgtggc aatcatgcta 700 cataaggcac cagctgcttt tggactggtt tccttcttga tgcatgctgg 750 cttagagcgg aatcgaatca gaaagcactt gctggtcttt gcattggcag 800 caccagttat gtccatggtg acatacttag gactgagtaa gagcagtaaa 850 gaagcccttt cagaggtgaa cgccacggga gtggccatgc ttttctctgc 900 cgggacattt ctttatgttg ccacagtaca tgtcctccct gaggtgggcg 950 gaatagggca cagccacaag cccgatgcca cgggagggag aggcctcagc 1000 cgcctggaag tggcagccct ggttctgggt tgcctcatcc ctctcatcct 1050 gtcagtagga caccagcatt aaatgttcaa ggtccagcct tggtccaggg 1100 ccgtttgcca tccagtgaga acagccggca cgtgacagct actcacttcc 1150 tcagtctctt gtctcacctt gcgcatctct acatgtattc ctagagtcca 1200 gaggggaggt gaggttaaaa cctgagtaat ggaaaagctt ttagagtaga 1250 aacacattta cgttgcagtt agctatagac atcccattgt gttatctttt 1300 aaaaggccct tgacattttg cgttttaata tttctcttaa ccctattctc 1350 agggaagatg gaatttagtt ttaaggaaaa gaggagaact tcatactcac 1400

aatgaaatag tgattatgaa aatacagtgt tctgtaatta agctatgtct 1450 ctttcttctt agtttagagg ctctgctact ttatccattg atttttaaca 1500 tggttcccac catgtaagac tggtgcttta gcatctatgc cacatgcgtt 1550 gatggaaggt catagcaccc actcacttag atgctaaagg tgattctagt 1600 taatctggga ttagggtcag gaaaatgata gcaagacaca ttgaaagctc 1650 tctttatact caaaagagat atccattgaa aagggatgtc tagagggatt 1700 taaacagctc ctttggcacg tgcctctctg aatccagcct gccattccat 1750 caaatggagc aggagaggtg ggaggagctt ctaaagaggt gactggtatt 1800 ttgtagcatt ccttgtcaag ttctcctttg cagaatacct gtctccacat 1850 tcctagagag gagccaagtt ctagtagttt cagttctagg ctttccttca 1900 agaacagtca gatcacaaag tgtctttgga aattaaggga tattaaattt 1950 taagtgattt ttggatggtt attgatatct ttgtagtagc tttttttaaa 2000 agactaccaa aatgtatggt tgtccttttt ttttgttttt tttttttta 2050 attatttctc ttagcagatc agcaatccct ctagggacct aaatactagg 2100 tcagctttgg cgacactgtg tcttctcaca taaccacctg tagcaagatg 2150 gatcataaat gagaagtgtt tgcctattga tttaaagctt attggaatca 2200 tgtctcttgt ctcttcgtct tttctttgct tttcttctaa cttttccctc 2250 tagcctctcc tcgccacaat ttgctgctta ctgctggtgt taatatttgt 2300 gtgggatgaa ttcttatcag gacaaccact tctcgaactg taataatgaa 2350 gataataata totttattot ttatocoott caaagaaatt acotttgtgt 2400 caaatgccgc tttgttgagc ccttaaaata ccacctcctc atgtgtaaat 2450 tgacacaatc actaatctgg taatttaaac aattgagata gcaaaagtgt 2500 ttaacagact aggataattt ttttttcata tttgccaaaa tttttgtaaa 2550 ccctgtcttg tcaaataagt gtataatatt gtattattaa tttatttta 2600 ctttctatac catttcaaaa cacattacac taagggggaa ccaagactag 2650 tttcttcagg gcagtggacg tagtagtttg taaaaacgtt ttctatgacg 2700 cataagctag catgcctatg atttatttcc ttcatgaatt tgtcactgga 2750 tcagcagctg tggaaataaa gcttgtgagc cctctgctgg ccacagtgag 2800

gaaagtagca caaataggat acagttgtat gtagtcattg gcaacaattg 2850 catacaattt tactaccaag agaaggtata gtatggaaag tccaaatgac 2900 ttccttgatt ggatgttaac agctgactgg tgtgagactt gaggtttcat 2950 ctagtccttc aaaactatat ggttgcctag attctctctg gaaactgact 3000 ttgtcaaata aatagcagat tgtagtgtca aaaaaaa 3037

<210> 95

<211> 307

<212> PRT

<213> Homo sapiens

<400> 95

Met Asp Asp Phe Ile Ser Ile Ser Leu Leu Ser Leu Ala Met Leu 1 5 10 15

Val Gly Cys Tyr Val Ala Gly Ile Ile Pro Leu Ala Val Asn Phe 20 25 30

Ser Glu Glu Arg Leu Lys Leu Val Thr Val Leu Gly Ala Gly Leu 35 40 45

Leu Cys Gly Thr Ala Leu Ala Val Ile Val Pro Glu Gly Val His
50 55 60

Ala Leu Tyr Glu Asp Ile Leu Glu Gly Lys His His Gln Ala Ser
65 70 75

Glu Thr His Asn Val Ile Ala Ser Asp Lys Ala Ala Glu Lys Ser 80 85 90

Val Val His Glu His Glu His Ser His Asp His Thr Gln Leu His
95 100 100

Ala Tyr Ile Gly Val Ser Leu Val Leu Gly Phe Val Phe Met Leu 110 115 120

Leu Val Asp Gln Ile Gly Asn Ser His Val His Ser Thr Asp Asp 125 130 135

Pro Glu Ala Ala Arg Ser Ser Asn Ser Lys Ile Thr Thr Leu 140 145 150

Gly Leu Val Val His Ala Ala Ala Asp Gly Val Ala Leu Gly Ala 155 160 165

Ala Ala Ser Thr Ser Gln Thr Ser Val Gln Leu Ile Val Phe Val
170 175 180

Ala Ile Met Leu His Lys Ala Pro Ala Ala Phe Gly Leu Val Ser 185 190 195

Phe Leu Met His Ala Gly Leu Glu Arg Asn Arg Ile Arg Lys His $200 \hspace{1cm} 205 \hspace{1cm} 210 \hspace{1cm}$

```
Leu Leu Val Phe Ala Leu Ala Ala Pro Val Met Ser Met Val Thr
 Tyr Leu Gly Leu Ser Lys Ser Ser Lys Glu Ala Leu Ser Glu Val
                 230
                                      235
                                                          240
 Asn Ala Thr Gly Val Ala Met Leu Phe Ser Ala Gly Thr Phe Leu
                                      250
 Tyr Val Ala Thr Val His Val Leu Pro Glu Val Gly Gly Ile Gly
                 260
 His Ser His Lys Pro Asp Ala Thr Gly Gly Arg Gly Leu Ser Arg
                 275
 Leu Glu Val Ala Ala Leu Val Leu Gly Cys Leu Ile Pro Leu Ile
                 290
 Leu Ser Val Gly His Gln His
<210> 96
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 96
 gttgtgggtg aataaaggag ggcag 25
<210> 97
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 97
 ctgtgctcat gttcatggac aactg 25
<210> 98
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 98
 ggatgatttc atctccatta gcctgctgtc tctgqctatg ttggtgggat 50
<210> 99
```

<211> 1429

<400> 99 gctcgaggcc ggcggcggcg ggagagcgac ccgggcggcc tcgtagcggg 50 gccccggatc cccgagtggc ggccggagcc tcgaaaagag attctcagcg 100 ctgattttga gatgatgggc ttgggaaacg ggcgtcgcag catgaagtcg 150 ccgcccctcg tgctggccgc cctggtggcc tgcatcatcg tcttgggctt 200 caactactgg attgcgagct cccggagcgt ggacctccag acacggatca 250 tggagctgga aggcagggtc cgcagggcgg ctgcagagag aggcgccgtg 300 gagctgaaga agaacgagtt ccagggagag ctggagaagc agcgggagca 350 gcttgacaaa atccagtcca gccacaactt ccagctggag agcgtcaaca 400 agctgtacca ggacgaaaag gcggttttgg tgaataacat caccacaggt 450 gagaggetea teegagtget geaagaeeag ttaaagaeee tgeagaggaa 500 ttacggcagg ctgcagcagg atgtcctcca gtttcagaag aaccagacca 550 acctggagag gaagttetee taegaeetga geeagtgeat eaateagatg 600 aaggaggtga aggaacagtg tgaggagcga atagaagagg tcaccaaaaa 650 ggggaatgaa gctgtagctt ccagagacct gagtgaaaac aacgaccaga 700 gacageaget ceaageeete agtgageete ageeeagget geaggeagea 750 ggcctgccac acacagaggt gccacaaggg aagggaaacg tgcttggtaa 800 cagcaagtcc cagacaccag cccccagttc cgaagtggtt ttggattcaa 850 agagacaagt tgagaaagag gaaaccaatg agatccaggt ggtgaatgag 900 gageeteaga gggaeagget geegeaggag eeaggeeggg ageaggtggt 950 ggaagacaga cctgtaggtg gaagaggctt cgggggagcc ggagaactgg 1000 gccagacccc acaggtgcag gctgccctgt cagtgagcca ggaaaatcca 1050 gagatggagg gccctgagcg agaccagctt gtcatccccg acggacagga 1100 ggaggagcag gaagctgccg gggaagggag aaaccagcag aaactgagag 1150 gagaagatga ctacaacatg gatgaaaatg aagcagaatc tgagacagac 1200 aagcaagcag ccctggcagg gaatgacaga aacatagatg tttttaatgt 1250 tgaagatcag aaaagagaca ccataaattt acttgatcag cgtgaaaagc 1300

ggaatcatac actctgaatt gaactggaat cacatatttc acaacagggc 1350

cgaagagatg actataaaat gttcatgagg gactgaatac tgaaaactgt 1400 gaaatgtact aaataaaatg tacatctga 1429

gaaa	atgt	act a	aaat	aaaat	tg ta	1429	9							
<2102 <2112 <2122 <2132	> 40: > PR'	1 T	apie	ns										
<4000 Met 1		0 Gly	Leu	Gly 5	Asn	Gly	Arg	Arg	Ser 10	Met	Lys	Ser	Pro	Pro 15
Leu	Val	Leu	Ala	Ala 20	Leu	Val	Ala	Cys	Ile 25	Ile	Val	Leu	Gly	Phe 30
Asn	Tyr	Trp	Ile	Ala 35	Ser	Ser	Arg	Ser	Val 40	Asp	Leu	Gln	Thr	Arg 45
Ile	Met	Glu	Leu	Glu 50	Gly	Arg	Val	Arg	Arg 55	Ala	Ala	Ala	Glu	Arg 60
Gly	Ala	Val	Glu	Leu 65	Lys	Lys	Asn	Glu	Phe 70	Gln	Gly	Glu	Leu	Glu 75
Lys	Gln	Arg	Glu	Gln 80	Leu	Asp	Lys	Ile	Gln 85	Ser	Ser	His	Asn	Phe 90
Gln	Leu	Glu	Ser	Val 95	Asn	Lys	Leu	Tyr	Gln 100	Asp	Glu	Lys	Ala	Val 105
Leu	Val	Asn	Asn	Ile 110	Thr	Thr	Gly	Glu	Arg 115	Leu	Ile	Arg	Val	Leu 120
Gln	Asp	Gln	Leu	Lys 125	Thr	Leu	Gln	Arg	Asn 130	Tyr	Gly	Arg	Leu	Gln 135
Gln	Asp	Val	Leu	Gln 140	Phe	Gln	Lys	Asn	Gln 145	Thr	Asn	Leu	Glu	Arg 150
Lys	Phe	Ser	Tyr	Asp 155	Leu	Ser	Gln	Cys	Ile 160	Asn	Gln	Met	Lys	Glu 165
Val	Lys	Glu	Gln	Cys 170	Glu	Glu	Arg	Ile	Glu 175	Glu	Val	Thr	Lys	Lys 180
Gly	Asn	Glu	Ala	Val 185	Ala	Ser	Arg	Asp	Leu 190	Ser	Glu	Asn	Asn	Asp 195
Gln	Arg	Gln	Gln	Leu 200	Gln	Ala	Leu	Ser	Glu 205	Pro	Gln	Pro	Arg	Leu 210
Gln	Ala	Ala	Gly	Leu 215	Pro	His	Thr	Glu	Val 220	Pro	Gln	Gly	Lys	Gly 225

Asn Val Leu Gly Asn Ser Lys Ser Gln Thr Pro Ala Pro Ser Ser

				230					235					240
Glu	Val	Val	Leu	Asp 245	Ser	Lys	Arg	Gln	Val 250	Glu	Lys	Glu	Glu	Thr 255
Asn	Glu	Ile	Gln	Val 260	Val	Asn	Glu	Glu	Pro 265	Gln	Arg	Asp	Arg	Leu 270
Pro	Gln	Glu	Pro	Gly 275	Arg	Glu	Gln	Val	Val 280	Glu	Asp	Arg	Pro	Val 285
Gly	Gly	Arg	Gly	Phe 290	Gly	Gly	Ala	Gly	Glu 295	Leu	Gly	Gln	Thr	Pro 300
Gln	Val	Gln	Ala	Ala 305	Leu	Ser	Val	Ser	Gln 310	Glu	Asn	Pro	Glu	Met 315
Glu	Gly	Pro	Glu	Arg 320	Asp	Gln	Leu	Val	Ile 325	Pro	Asp	Gly	Gln	Glu 330
Glu	Glu	Gln	Glu	Ala 335	Ala	Gly	Glu	Gly	Arg 340	Asn	Gln	Gln	Lys	Leu 345
Arg	Gly	Glu	Asp	Asp 350	Tyr	Asn	Met	Asp	Glu 355	Asn	Glu	Ala	Glu	Ser 360
Glu	Thr	Asp	Lys	Gln 365	Ala	Ala	Leu	Ala	Gly 370	Asn	Asp	Arg	Asn	Ile 375
Asp	Val	Phe	Asn	Val 380	Glu	Asp	Gln	Lys	Arg 385	Asp	Thr	Ile	Asn	Leu 390
Leu	Asp	Gln	Arg	Glu 395	Lys	Arg	Asn	His	Thr 400	Leu				
<210: <211: <212: <213:	> 36 > DN	71 A	apier	ns										
<400			acct	-caat	a tt	acto	cttcc	r tar	iccti	aaat	ctac	rttcc	ato!	50
							ccagt							
							caaga							
tgc	catg	ggg (gagco	caago	gg aa	acct	gggg	g cct	gct	ggat	ggct	tcc	cga :	200
ttt	cgc	ggg t	tgt	gttg	gt go	ctgat	agat	gct	ctg	gat	ttga	actto	cgc 2	250
cca	gece	cag d	catto	cacao	eg to	gccta	agaga	a gco	ctcct	gtc	tcc	ctaco	ect :	300
tcci	gggd	caa a	actaa	agcto	cc tt	gcag	gagga	tco	etgga	agat	tcag	gccc	cac :	350

catgcccggc tctaccgatc tcaggttgac cctcctacca ccaccatgca 400

gegeeteaag geceteacea etggeteact geetacettt attgatgetg 450 gtagtaactt cgccagccac gccatagtgg aagacaatct cattaagcag 500 ctcaccagtg caggaaggcg tgtagtcttc atgggagatg atacctggaa 550 agaccttttc cctggtgctt tctccaaagc tttcttcttc ccatccttca 600 atgtcagaga cctagacaca gtggacaatg gcatcctgga acacctctac 650 cccaccatgg acagtggtga atgggacgtg ctgattgctc acttcctggg 700 tgtggaccac tgtggccaca agcatggccc tcaccaccct gaaatggcca 750 agaaacttag ccagatggac caggtgatcc agggacttgt ggagcgtctg 800 gagaatgaca cactgctggt agtggctggg gaccatggga tgaccacaaa 850 tggagaccat ggaggggaca gtgagctgga ggtctcagct gctctctttc 900 tgtatagece cacageagte ttececagea ecceaceaga ggagecagag 950 gtgattcctc aagttagcct tgtgcccacg ctggccctgc tgctgggcct 1000 gcccatccca tttgggaata tcggggaagt gatggctgag ctattctcag 1050 ggggtgagga ctcccagccc cactcctctg ctttagccca agcctcagct 1100 ctccatctca atgctcagca ggtgtcccga tttcttcata cctactcagc 1150 tgctactcag gaccttcaag ctaaggagct tcatcagctg cagaacctct 1200 tetecaagge etetgetgae taccagtgge ttetecagag eeccaagggg 1250 gctgaggcga cactgccgac tgtgattgct gagctgcagc agttcctgcg 1300 gggagctcgg gccatgtgca tcgagtcttg ggctcgtttc tctctggtcc 1350 gcatggcggg gggtactgct ctcttggctg cttcctgctt tatctgcctg 1400 ctggcatctc agtgggcaat atccccaggc tttccattct gccctctact 1450 cctgacacct gtggcctggg gcctggttgg ggccatagcg tatgctggac 1500 tcctgggaac tattgagctg aagctagatc tagtgcttct aggggctgtg 1550 gctgcagtga gctcattcct cccttttctg tggaaagcct gggctggctg 1600 ggggtccaag aggcccctgg caaccctgtt tcccatccct gggcccgtcc 1650 tgttactcct gctgtttcgc ttggctgtgt tcttctctga tagttttgtt 1700 gtagctgagg ccagggccac ccccttcctt ttgggctcat tcatcctgct 1750 cctggttgtc cagcttcact gggagggcca gctgcttcca cctaagctac 1800 teacaatgee eegeettgge actteageea caacaaacee eecaeggeae 1850

aatggtgcat atgccctgag gcttggaatt gggttgcttt tatgtacaag 1900 gctagctggg ctttttcatc gttgccctga agagacacct gtttgccact 1950 cctctccctg gctgagtcct ctggcatcca tggtgggtgg tcgagccaag 2000 aatttatggt atggagcttg tgtggcggcg ctggtggccc tgttagctgc 2050 cgtgcgcttg tggcttcgcc gctatggtaa tctcaagagc cccgagccac 2100 ccatgctctt tgtgcgctgg ggactgcccc taatggcatt gggtactgct 2150 gcctactggg cattggcgtc gggggcagat gaggctcccc cccgtctccg 2200 ggtcctggtc tctggggcat ccatggtgct gcctcgggct gtagcagggc 2250 tggctgcttc agggctcgcg ctgctgctct ggaagcctgt gacagtgctg 2300 gtgaaggctg gggcaggcgc tccaaggacc aggactgtcc tcactccctt 2350 ctcaggcccc cccacttctc aagctgactt ggattatgtg gtccctcaaa 2400 tctaccgaca catgcaggag gagttccggg gccggttaga gaggaccaaa 2450 tctcagggtc ccctgactgt ggctgcttat cagttgggga gtgtctactc 2500 agetgetatg gteacagece teaccetgtt ggeetteeca ettetgetgt 2550 tgcatgcgga gcgcatcagc cttgtgttcc tgcttctgtt tctgcagagc 2600 ttccttctcc tacatctgct tgctgctggg atacccgtca ccacccctgg 2650 tccttttact gtgccatggc aggcagtctc ggcttgggcc ctcatggcca 2700 cacagacett etaeteeaca ggeeaceage etgtetttee ageeateeat 2750 tggcatgcag ccttcgtggg attcccagag ggtcatggct cctgtacttg 2800 gctgcctgct ttgctagtgg gagccaacac ctttgcctcc cacctcctct 2850 ttgcagtagg ttgcccactg ctcctgctct ggcctttcct gtgtgagagt 2900 caagggctgc ggaagagaca gcagccccca gggaatgaag ctgatgccag 2950 agtcagaccc gaggaggaag aggagccact gatggagatg cggctccggg 3000 atgcgcctca gcacttctat gcagcactgc tgcagctggg cctcaagtac 3050 ctctttatcc ttggtattca gattctggcc tgtgccttgg cagcctccat 3100 ccttcgcagg catctcatgg tctggaaagt gtttgcccct aagttcatat 3150 ttgaggctgt gggcttcatt gtgagcagcg tgggacttct cctgggcata 3200 gctttggtga tgagagtgga tggtgctgtg agctcctggt tcaggcagct 3250

atttetggcc cagcagaggt agcctagtct gtgattactg gcacttggct 3300 acagagagtg ctggagaaca gtgtagcctg gcctgtacag gtactggatg 3350 atctgcaaga caggctcagc catactctta ctatcatgca gccaggggcc 3400 gctgacatct aggacttcat tattctataa ttcaggacca cagtggagta 3450 tgatccctaa ctcctgattt ggatgcatct gagggacaag gggggcggtc 3500 tccgaagtgg aataaaatag gccgggcgtg gtgacttgca cctataatcc 3550 cagcactttg ggaggcagag gtgggaggat tgcttggtcc caggagttca 3600 agaccagcct gtggaacata acaagacccc gtctctacta tttaaaaaaa 3650 agtgtaataa aatgataata t 3671

<400> 102

Met Gln Lys Ala Ser Val Leu Leu Phe Leu Ala Trp Val Cys Phe 1 5 10 15

Leu Phe Tyr Ala Gly Ile Ala Leu Phe Thr Ser Gly Phe Leu Leu 20 25 30

Thr Arg Leu Glu Leu Thr Asn His Ser Ser Cys Gln Glu Pro Pro 35 40 45

Gly Pro Gly Ser Leu Pro Trp Gly Ser Gln Gly Lys Pro Gly Ala
50 55 60

Cys Trp Met Ala Ser Arg Phe Ser Arg Val Val Leu Val Leu Ile
65 70 75

Asp Ala Leu Arg Phe Asp Phe Ala Gln Pro Gln His Ser His Val 80 85 90

Pro Arg Glu Pro Pro Val Ser Leu Pro Phe Leu Gly Lys Leu Ser 95 100 105

Ser Leu Gln Arg Ile Leu Glu Ile Gln Pro His His Ala Arg Leu 110 115 120

Tyr Arg Ser Gln Val Asp Pro Pro Thr Thr Thr Met Gln Arg Leu 125 130 135

Lys Ala Leu Thr Thr Gly Ser Leu Pro Thr Phe Ile Asp Ala Gly
140 145 150

Ser Asn Phe Ala Ser His Ala Ile Val Glu Asp Asn Leu Ile Lys 155 160 165

<210> 102

<211> 1089

<212> PRT

<213> Homo sapiens

Gln	Leu	Thr	Ser	Ala 170	Gly	Arg	Arg	Val	Val 175	Phe	Met	Gly	Asp	Asp 180
Thr	Trp	Lys	Asp	Leu 185	Phe	Pro	Gly	Ala	Phe 190	Ser	Lys	Ala	Phe	Phe 195
Phe	Pro	Ser	Phe	Asn 200	Val	Arg	Asp	Leu	Asp 205	Thr	Val	Asp	Asn	Gly 210
Ile	Leu	Glu	His	Leu 215	Tyr	Pro	Thr	Met	Asp 220		Gly	Glu	Trp	Asp 225
Val	Leu	Ile	Ala	His 230	Phe	Leu	Gly	Val	Asp 235	His	Cys	Gly	His	Lys 240
His	Gly	Pro	His	His 245	Pro	Glu	Met	Ala	Lys 250	Lys	Leu	Ser	Gln	Met 255
Asp	Gln	Val	Ile	Gln 260	Gly	Leu	Val	Glu	Arg 265	Leu	Glu	Asn	Asp	Thr 270
Leu	Leu	Val	Val	Ala 275	Gly	Asp	His	Gly	Met 280	Thr	Thr	Asn	Gly	Asp 285
His	Gly	Gly	Asp	Ser 290	Glu	Leu	Glu	Val	Ser 295	Ala	Ala	Leu	Phe	Leu 300
Tyr	Ser	Pro	Thr	Ala 305	Val	Phe	Pro	Ser	Thr 310	Pro	Pro	Glu	Glu	Pro 315
Glu	Val	Ile	Pro	Gln 320	Val	Ser	Leu	Val	Pro 325	Thr	Leu	Ala	Leu	Leu 330
Leu	Gly	Leu	Pro	Ile 335	Pro	Phe	Gly	Asn	Ile 340	Gly	Glu	Val	Met	Ala 345
Glu	Leu	Phe	Ser	Gly 350	Gly	Glu	Asp	Ser	Gln 355	Pro	His	Ser	Ser	Ala 360
Leu	Ala	Gln	Ala	Ser 365	Ala	Leu	His	Leu	Asn 370	Ala	Gln	Gln	Val	Ser 375
Arg	Phe	Leu	His	Thr 380	Tyr	Ser	Ala	Ala	Thr 385	Gln	Asp	Leu	Gln	Ala 390
Lys	Glu	Leu	His	Gln 395	Leu	Gln	Asn	Leu	Phe 400	Ser	Lys	Ala	Ser	Ala 405
Asp	Tyr	Gln	Trp	Leu 410	Leu	Gln	Ser	Pro	Lys 415	Gly	Ala	Glu	Ala	Thr 420
Leu	Pro	Thr	Val	Ile 425	Ala	Glu	Leu	Gln	Gln 430	Phe	Leu	Arg	Gly	Ala 435
Arg	Ala	Met	Суѕ	Ile 440	Glu	Ser	Trp	Ala	Arg 445	Phe	Ser	Leu	Val	Arg 450

Met	Ala	Gly	Gly	Thr 455	Ala	Leu	Leu	Ala	Ala 460	Ser	Cys	Phe	Ile	Cys 465
Leu	Leu	Ala	Ser	Gln 470	Trp	Ala	Ile	Ser	Pro 475	Gly	Phe	Pro	Phe	Cys 480
Pro	Leu	Leu	Leu	Thr 485	Pro	Val	Ala	Trp	Gly 490	Leu	Val	Gly	Ala	Ile 495
Ala	Tyr	Ala	Gly	Leu 500	Leu	Gly	Thr	Ile	Glu 505	Leu	Lys	Leu	Asp	Leu 510
Val	Leu	Leu	Gly	Ala 515	Val	Ala	Ala	Val	Ser 520	Ser	Phe	Leu	Pro	Phe 525
Leu	Trp	Lys	Ala	Trp 530	Ala	Gly	Trp	Gly	Ser 535	Lys	Arg	Pro	Leu	Ala 540
Thr	Leu	Phe	Pro	Ile 545	Pro	Gly	Pro	Val	Leu 550	Leu	Leu	Leu	Leu	Phe 555
Arg	Leu	Ala	Val	Phe 560	Phe	Ser	Asp	Ser	Phe 565	Val	Val	Ala	Glu	Ala 570
Arg	Ala	Thr	Pro	Phe 575	Leu	Leu	Gly	Ser	Phe 580	Ile	Leu	Leu	Leu	Val 585
Val	Gln	Leu	His	Trp 590	Glu	Gly	Gln	Leu	Leu 595	Pro	Pro	Lys	Leu	Leu 600
Thr	Met	Pro	Arg	Leu 605	Gly	Thr	Ser	Ala	Thr 610	Thr	Asn	Pro	Pro	Arg 615
His	Asn	Gly	Ala	Tyr 620	Ala	Leu	Arg	Leu	Gly 625	Ile	Gly	Leu	Leu	Leu 630
Cys	Thr	Arg	Leu	Ala 635	Gly	Leu	Phe	His	Arg 640	Cys	Pro	Glu	Glu	Thr 645
Pro	Val	Cys	His	Ser 650	Ser	Pro	Trp	Leu	Ser 655	Pro	Leu	Ala	Ser	Met 660
Val	Gly	Gly	Arg	Ala 665	Lys	Asn	Leu	Trp	Tyr 670	Gly	Ala	Суѕ	Val	Ala 675
Ala	Leu	Val	Ala	Leu 680	Leu	Ala	Ala	Val	Arg 685	Leu	Trp	Leu	Arg	Arg 690
Tyr	Gly	Asn	Leu	Lys 695	Ser	Pro	Glu	Pro	Pro 700	Met	Leu	Phe	Val	Arg 705
Trp	Gly	Leu	Pro	Leu 710	Met	Ala	Leu	Gly	Thr 715	Ala	Ala	Tyr	Trp	Ala 720
Leu	Ala	Ser	Gly	Ala 725	Asp	Glu	Ala	Pro	Pro 730	Arg	Leu	Arg	Val	Leu 735

Val	Ser	Gly	Ala	Ser 740	Met	Val	Leu	Pro	Arg 745	Ala	Val	Ala	Gly	Leu 750
Ala	Ala	Ser	Gly	Leu 755	Ala	Leu	Leu	Leu	Trp 760	Lys	Pro	Val	Thr	Val 765
Leu	Val	Lys	Ala	Gly 770	Ala	Gly	Ala	Pro	Arg 775	Thr	Arg	Thr	Val	Leu 780
Thr	Pro	Phe	Ser	Gly 785	Pro	Pro	Thr	Ser	Gln 790	Ala	Asp	Leu	Asp	Tyr 795
Val	Val	Pro	Gln	Ile 800	Tyr	Arg	His	Met	Gln 805	Glu	Glu	Phe	Arg	Gly 810
Arg	Leu	Glu	Arg	Thr 815	Lys	Ser	Gln	Gly	Pro 820	Leu	Thr	Val	Ala	Ala 825
Tyr	Gln	Leu	Gly	Ser 830	Val	Tyr	Ser	Ala	Ala 835	Met	Val	Thr	Ala	Leu 840
Thr	Leu	Leu	Ala	Phe 845	Pro	Leu	Leu	Leu	Leu 850	His	Ala	Glu	Arg	Ile 855
Ser	Leu	Val	Phe	Leu 860	Leu	Leu	Phe	Leu	Gln 865	Ser	Phe	Leu	Leu	Leu 870
His	Leu	Leu	Ala	Ala 875	Gly	Ile	Pro	Val	Thr 880	Thr	Pro	Gly	Pro	Phe 885
Thr	Val	Pro	Trp	Gln 890	Ala	Val	Ser	Ala	Trp 895	Ala	Leu	Met	Ala	Thr 900
Gln	Thr	Phe	Tyr	Ser 905	Thr	Gly	His	Gln	Pro 910	Val	Phe	Pro	Ala	Ile 915
His	Trp	His	Ala	Ala 920	Phe	Val	Gly	Phe	Pro 925	Glu	Gly	His	Gly	Ser 930
Cys	Thr	Trp	Leu	Pro 935	Ala	Leu	Leu	Val	Gly 940	Ala	Asn	Thr	Phe	Ala 945
Ser	His	Leu	Leu	Phe 950	Ala	Val	Gly	Cys	Pro 955	Leu	Leu	Leu	Leu	Trp 960
Pro	Phe	Leu	Cys	Glu 965	Ser	Gln	Gly	Leu	Arg 970	Lys	Arg	Gln	Gln	Pro 975
Pro	Gly	Asn	Glu	Ala 980	Asp	Ala	Arg	Val	Arg 985	Pro	Glu	Glu	Glu	Glu 990
Glu	Pro	Leu	Met	Glu 995	Met	Arg	Leu		Asp 1000	Ala	Pro	Gln	His 1	Phe 1005
Tyr	Ala	Ala		Leu 1010	Gln	Leu	Gly		Lys 1015	Tyr	Leu	Phe	Ile	Leu 1020

Gly Ile Gln Ile Leu Ala Cys Ala Leu Ala Ala Ser Ile Leu Arg 1025 1030 1035

Arg His Leu Met Val Trp Lys Val Phe Ala Pro Lys Phe Ile Phe 1040 1045 1050

Glu Ala Val Gly Phe Ile Val Ser Ser Val Gly Leu Leu Gly 1055 1060 1065

Ile Ala Leu Val Met Arg Val Asp Gly Ala Val Ser Ser Trp Phe 1070 1075 1080

Arg Gln Leu Phe Leu Ala Gln Gln Arg 1085

<210> 103

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 103

tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50 gcagtteect gtgtetetgg tggtttgeet aaacetgcaa acateacett 100 cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150 ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200 cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250 tgacagctcc agagaagtgg aagagaaatc cagaagacct tcctgtttcc 300 atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 350 taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400 tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450 gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500 gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550 atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600 tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650 gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700 aaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750 atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800 ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850 aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900

gactetgaag aaaacaegga aggtaettet eteaceeage aagagteeet 950 cagcagaaca ataccccgg ataaaacagt cattgaatat gaatatgatg 1000 tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050 caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcgtt 1100 ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150 aagacttaga ccccctggcg caggagcaca cagactcgga ggaggggccg 1200 gaggaagage categacgae eetggtegae tgggateeee aaactggeag 1250 gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 1300 agccttctga gggggatggg ctcggagagg agggtcttct atctagactc 1350 tatgaggagc cggctccaga caggccacca ggagaaaatg aaacctatct 1400 catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450 gccaacactt ccttttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500 cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550 ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600 cgtgtgtgat tggttcatgc atgtaggtct cttaacaatg atggtgggcc 1650. tctggagtcc aggggctggc cggttgttct atgcagagaa agcagtcaat 1700 aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743

<210> 104

<211> 442

<212> PRT

<213> Homo sapiens

<400> 104

Met Ser Tyr Asn Gly Leu His Gln Arg Val Phe Lys Glu Leu Lys 1 5 10 15

Leu Leu Thr Leu Cys Ser Ile Ser Ser Gln Ile Gly Pro Pro Glu 20 25 30

Val Ala Leu Thr Thr Asp Glu Lys Ser Ile Ser Val Val Leu Thr 35 40 45

Ala Pro Glu Lys Trp Lys Arg Asn Pro Glu Asp Leu Pro Val Ser 50 55 60

Met Gln Gln Ile Tyr Ser Asn Leu Lys Tyr Asn Val Ser Val Leu 65 70 75

Asn Thr Lys Ser Asn Arg Thr Trp Ser Gln Cys Val Thr Asn His
80 85 90

Thr	Leu	Val	Leu	Thr 95	Trp	Leu	Glu	Pro	Asn 100	Thr	Leu	Tyr	Cys	Val 105
His	Val	Glu	Ser	Phe 110	Val	Pro	Gly	Pro	Pro 115	Arg	Arg	Ala	Gln	Pro 120
Ser	Glu	Lys	Gln	Cys 125	Ala	Arg	Thr	Leu	Lys 130	Asp	Gln	Ser	Ser	Glu 135
Phe	Lys	Ala	Lys	Ile 140	Ile	Phe	Trp	Tyr	Val 145	Leu	Pro	Ile	Ser	Ile 150
Thr	Val	Phe	Leu	Phe 155	Ser	Val	Met	Gly	Tyr 160	Ser	Ile	Tyr	Arg	Tyr 165
Ile	His	Val	Gly	Lys 170	Glu	Lys	His	Pro	Ala 175	Asn	Leu	Ile	Leu	Ile 180
Tyr	Gly	Asn	Glu	Phe 185	Asp	Lys	Arg	Phe	Phe 190	Val	Pro	Ala	Glu	Lys 195
Ile	Val	Ile	Asn	Phe 200	Ile	Thr	Leu	Asn	Ile 205	Ser	Asp	Asp	Ser	Lys 210
Ile	Ser	His	Gln	Asp 215	Met	Ser	Leu	Leu	Gly 220	Lys	Ser	Ser	Asp	Val 225
Ser	Ser	Leu	Asn	Asp 230	Pro	Gln	Pro	Ser	Gly 235	Asn	Leu	Arg	Pro	Pro 240
Gln	Glu	Glu	Glu	Glu 245	Val	Lys	His	Leu	Gly 250	Tyr	Ala	Ser	His	Leu 255
Met	Glu	Ile	Phe	Cys 260	Asp	Ser	Glu	Glu	Asn 265	Thr	Glu	Gly	Thr	Ser 270
Leu	Thr	Gln	Gln	Glu 275	Ser	Leu	Ser	Arg	Thr 280	Ile	Pro	Pro	Asp	Lys 285
Thr	Val	Ile	Glu	Tyr 290	Glu	Tyr	Asp	Val	Arg 295	Thr	Thr	Asp	Ile	Cys 300
Ala	Gly	Pro	Glu	Glu 305	Gln	Glu	Leu	Ser	Leu 310	Gln	Glu	Glu	Val	Ser 315
Thr	Gln	Gly	Thr	Leu 320	Leu	Glu	Ser	Gln	Ala 325	Ala	Leu	Ala	Val	Leu 330
Gly	Pro	Gln	Thr	Leu 335	Gln	Tyr	Ser	Tyr	Thr 340	Pro	Gln	Leu	Gln	Asp 345
Leu	Asp	Pro	Leu	Ala 350	Gln	Glu	His	Thr	Asp 355	Ser	Glu	Glu	Gly	Pro 360
Glu	Glu	Glu	Pro	Ser 365	Thr	Thr	Leu	Val	Asp 370	Trp	Asp	Pro	Gln	Thr 375

```
Gly Arg Leu Cys Ile Pro Ser Leu Ser Ser Phe Asp Gln Asp Ser
 Glu Gly Cys Glu Pro Ser Glu Gly Asp Gly Leu Gly Glu Gly
                                      400
 Leu Leu Ser Arg Leu Tyr Glu Glu Pro Ala Pro Asp Arg Pro Pro
                 410
 Gly Glu Asn Glu Thr Tyr Leu Met Gln Phe Met Glu Glu Trp Gly
Leu Tyr Val Gln Met Glu Asn
<210> 105
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 105
cgctgctgct gttgctcctg g 21
<210> 106
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 106
cagtgtgcca ggactttg 18
<210> 107
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 107
agtcgcaggc agcgttgg 18
<210> 108
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 108
ctcctccgag tctgtgtgct cctgc 25
<210> 109
<211> 51
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 109
ggacgggcag ttccctgtgt ctctggtggt ttgcctaaac ctgcaaacat 50
c 51
<210> 110
<211> 1114
<212> DNA
<213> Homo sapiens
<400> 110
 cggacgcgtg ggcggacgcg tgggcggacg cgtgggtctc tgcggggaga 50
cgccagcctg cgtctgccat ggggctcggg ttgaggggct ggggacgtcc 100
 tctgctgact gtggccaccg ccctgatgct gcccgtgaag ccccccgcag 150
gctcctgggg ggcccagatc atcgggggcc acgaggtgac cccccactcc 200
 aggccctaca tggcatccgt gcgcttcggg ggccaacatc actgcggagg 250
cttcctgctg cgagcccgct gggtggtctc ggccgcccac tgcttcagcc 300
acagagacct ccgcactggc ctggtggtgc tgggcgccca cgtcctgagt 350
actgcggagc ccacccagca ggtgtttggc atcgatgctc tcaccacgca 400
ccccgactac caccccatga cccacgccaa cgacatctgc ctgctgcggc 450
 tgaacggctc tgctgtcctg ggccctgcag tggggctgct gaggctgcca 500
gggagaaggg ccaggccccc cacagcgggg acacggtgcc gggtggctgg 550
ctggggcttc gtgtctgact ttgaggagct gccgcctgga ctgatggagg 600
ccaaggtccg agtgctggac ccggacgtct gcaacagctc ctggaagggc 650
cacctgacac ttaccatgct ctgcacccgc agtggggaca gccacagacg 700
gggcttctgc tcggccgact ccggagggcc cctggtgtgc aggaaccggg 750
ctcacggcct cgtttccttc tcgggcctct ggtgcggcga ccccaagacc 800
cccgacgtgt acacgcaggt gtccgccttt gtggcctgga tctgggacgt 850
ggttcggcgg agcagtcccc agcccggccc cctgcctggg accaccaggc 900
```

ccccaggaga agccgctga gccacaacct tgcggcatgc aaatgagatg 950 gccgctccag gcctggaatg ttccgtggct gggccccacg ggaagcctga 1000 tgttcagggt tggggtggga cgggcagcgg tggggcacac ccattccaca 1050 tgcaaagggc agaagcaaac ccagtaaaat gttaactgac aaaaaaaaa 1100 aaaaaaaaaa gaaa 1114

<210> 111

<211> 283

<212> PRT

<213> Homo sapiens

<400> 111

Met Gly Leu Gly Leu Arg Gly Trp Gly Arg Pro Leu Leu Thr Val 1 5 10 15

Ala Thr Ala Leu Met Leu Pro Val Lys Pro Pro Ala Gly Ser Trp 20 25 30

Gly Ala Gln Ile Ile Gly Gly His Glu Val Thr Pro His Ser Arg 35 40 45

Pro Tyr Met Ala Ser Val Arg Phe Gly Gly Gln His His Cys Gly
50 55 60

Gly Phe Leu Leu Arg Ala Arg Trp Val Val Ser Ala Ala His Cys
65 70 75

Phe Ser His Arg Asp Leu Arg Thr Gly Leu Val Val Leu Gly Ala 80 85 90

His Val Leu Ser Thr Ala Glu Pro Thr Gln Gln Val Phe Gly Ile $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105 \hspace{1.5cm}$

Asp Ala Leu Thr Thr His Pro Asp Tyr His Pro Met Thr His Ala 110 115 120

Asn Asp Ile Cys Leu Leu Arg Leu Asn Gly Ser Ala Val Leu Gly 125 130 135

Pro Ala Val Gly Leu Leu Arg Leu Pro Gly Arg Arg Ala Arg Pro
140 145 150

Pro Thr Ala Gly Thr Arg Cys Arg Val Ala Gly Trp Gly Phe Val 155 160 165

Ser Asp Phe Glu Glu Leu Pro Pro Gly Leu Met Glu Ala Lys Val 170 175 180

Arg Val Leu Asp Pro Asp Val Cys Asn Ser Ser Trp Lys Gly His
185 190 195

Leu Thr Leu Thr Met Leu Cys Thr Arg Ser Gly Asp Ser His Arg

200 205 210 Arg Gly Phe Cys Ser Ala Asp Ser Gly Gly Pro Leu Val Cys Arg 215 Asn Arg Ala His Gly Leu Val Ser Phe Ser Gly Leu Trp Cys Gly 230 235 Asp Pro Lys Thr Pro Asp Val Tyr Thr Gln Val Ser Ala Phe Val 250 Ala Trp Ile Trp Asp Val Val Arg Arg Ser Ser Pro Gln Pro Gly 260 270 Pro Leu Pro Gly Thr Thr Arg Pro Pro Gly Glu Ala Ala <210> 112 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 112 gacgtctgca acagctcctg gaag 24 <210> 113 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 113 cgagaaggaa acgaggccgt gag 23 <210> 114 <211> 44 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 114 tgacacttac catgctctgc acccgcagtg gggacagcca caga 44 <210> 115 <211> 1808 <212> DNA <213> Homo sapiens <400> 115 gagctaccca ggcggctggt gtgcagcaag ctccgcgccg actccggacg 50

cctgacgcct gacgcctgtc cccggcccgg catgagccgc tacctgctgc 100 cgctgtcggc gctgggcacg gtagcaggcg ccgccgtgct gctcaaggac 150 tatgtcaccg gtggggcttg ccccagcaag gccaccatcc ctgggaagac 200 ggtcatcgtg acggcgcca acacaggcat cgggaagcag accgccttgg 250 aactggccag gagaggaggc aacatcatcc tggcctgccg agacatggag 300 aagtgtgagg cggcagcaaa ggacatccgc ggggagaccc tcaatcacca 350 tgtcaacgcc cggcacctgg acttggcttc cctcaagtct atccgagagt 400 ttgcagcaaa gatcattgaa gaggaggagc gagtggacat tctaatcaac 450 aacgcgggtg tgatgcggtg cccccactgg accaccgagg acggcttcga 500 gatgcagttt ggcgttaacc acctgggtca ctttctcttg acaaacttgc 550 tgctggacaa gctgaaagcc tcagcccctt cgcggatcat caacctctcg 600 tccctggccc atgttgctgg gcacatagac tttgacgact tgaactggca 650 gacgaggaag tataacacca aagccgccta ctgccagagc aagctcgcca 700 tegteetett caccaaggag etgageegge ggetgeaagg etetggtgtg 750 actgtcaacg ccctgcaccc cggcgtggcc aggacagagc tgggcagaca 800 cacgggcatc catggctcca ccttctccag caccacactc gggcccatct 850 tctggctgct ggtcaagagc cccgagctgg ccgcccagcc cagcacatac 900 ctggccgtgg cggaggaact ggcggatgtt tccggaaagt acttcgatgg 950 actcaaacag aaggccccgg cccccgaggc tgaggatgag gaggtggccc 1000 ggaggctttg ggctgaaagt gcccgcctgg tgggcttaga ggctccctct 1050 gtgagggagc agccctccc cagataacct ctggagcaga tttgaaagcc 1100 aggatggcgc ctccagaccg aggacagctg tccgccatgc ccgcagcttc 1150 ctggcactac ctgagccggg agacccagga ctggcggccg ccatgcccgc 1200 agtaggttct agggggcggt gctggccgca gtggactggc ctgcaggtga 1250 gcactgcccc gggctctggc tggttccgtc tgctctgctg ccagcagggg 1300 agaggggcca tctgatgctt cccctgggaa tctaaactgg gaatggccga 1350 ggaggaaggg gctctgtgca cttgcaggcc acgtcaggag agccagcggt 1400 gcctgtcggg gagggttcca aggtgctccg tgaagagcat gggcaagttg 1450

tctgacactt ggtggattct tgggtccctg tgggaccttg tgcatgcatg 1500 gtcctctctg agccttggtt tcttcagcag tgagatgctc agaataactg 1550 ctgtctccca tgatggtgt gtacagcgag ctgttgtctg gctatggcat 1600 ggctgtgccg ggggtgtttg ctgagggctt cctgtgccag agcccagcca 1650 gagagcaggt gcaggtgtca tcccgagttc aggctctgca cggcatggag 1700 tgggaacccc accagctgct gctacaggac ctgggattgc ctgggactcc 1750 caccttccta tcaattctca tggtagtcca aactgcagac tctcaaactt 1800 gctcattt 1808

<210> 116

<211> 331

<212> PRT

<213> Homo sapiens

<400> 116

Met Ser Arg Tyr Leu Leu Pro Leu Ser Ala Leu Gly Thr Val Ala 1 5 10 15

Gly Ala Ala Val Leu Leu Lys Asp Tyr Val Thr Gly Gly Ala Cys 20 25 30

Pro Ser Lys Ala Thr Ile Pro Gly Lys Thr Val Ile Val Thr Gly
35 40 45

Ala Asn Thr Gly Ile Gly Lys Gln Thr Ala Leu Glu Leu Ala Arg $50 \,$ $55 \,$ $60 \,$

Arg Gly Gly Asn Ile Ile Leu Ala Cys Arg Asp Met Glu Lys Cys 65 70 75

Glu Ala Ala Lys Asp Ile Arg Gly Glu Thr Leu Asn His His 80 85 90

Val Asn Ala Arg His Leu Asp Leu Ala Ser Leu Lys Ser Ile Arg 95 100 105

Glu Phe Ala Ala Lys Ile Ile Glu Glu Glu Glu Arg Val Asp Ile 110 $$\rm 115$$

Leu Ile Asn Asn Ala Gly Val Met Arg Cys Pro His Trp Thr Thr 125 130 135

Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His Leu Gly His 140 145 150

Phe Leu Leu Thr Asn Leu Leu Leu Asp Lys Leu Lys Ala Ser Ala 155 160 165

Pro Ser Arg Ile Ile Asn Leu Ser Ser Leu Ala His Val Ala Gly
170 175 180

His Ile Asp Phe Asp Asp Leu Asn Trp Gln Thr Arg Lys Tyr Asn Thr Lys Ala Ala Tyr Cys Gln Ser Lys Leu Ala Ile Val Leu Phe Thr Lys Glu Leu Ser Arg Arg Leu Gln Gly Ser Gly Val Thr Val 215 Asn Ala Leu His Pro Gly Val Ala Arg Thr Glu Leu Gly Arg His 235 Thr Gly Ile His Gly Ser Thr Phe Ser Ser Thr Thr Leu Gly Pro 245 250 Ile Phe Trp Leu Leu Val Lys Ser Pro Glu Leu Ala Ala Gln Pro 260 265 Ser Thr Tyr Leu Ala Val Ala Glu Glu Leu Ala Asp Val Ser Gly Lys Tyr Phe Asp Gly Leu Lys Gln Lys Ala Pro Ala Pro Glu Ala Glu Asp Glu Glu Val Ala Arg Arg Leu Trp Ala Glu Ser Ala Arg 310 Leu Val Gly Leu Glu Ala Pro Ser Val Arg Glu Gln Pro Leu Pro

Arg

<210> 117 <211> 2249

<212> DNA

<213> Homo sapiens

<400> 117

gaagttegeg agegetggea tgtggteetg gggegeget ggeggegetg 50 ctggeggtge tggegetegg gacaggagae ceagaaaggg etgeggeteg 100 gggegaeaeg tteteggege tgaceagegt ggegegegee etggegeegg 150 agegeegget getggggetg etgaggeggt acetgegegg ggaggaggeg 200 eggetgeggg acetgaetag attetaegae aaggtaettt etttgeatga 250 ggatteaaea aceeetgtgg etaaceetet gettgeattt acteteatea 300 aaegeetgea gtetgaetgg aggaatgtgg tacatagtet ggaggeeagt 350 gagaacatee gagetetgaa ggatggetat gagaaggtgg ageaagaeet 400 teeageettt gaggaeettg aggageeage aagggeeetg atgeggetge 450

aggacgtgta catgctcaat gtgaaaggcc tggcccgagg tgtctttcag 500 agagtcactg gctctgccat cactgacctg tacagcccca aacggctctt 550 ttctctcaca ggggatgact gcttccaagt tggcaaggtg gcctatgaca 600 tgggggatta ttaccatgcc attccatggc tggaggaggc tgtcagtctc 650 ttccgaggat cttacggaga gtggaagaca gaggatgagg caagtctaga 700 agatgccttg gatcacttgg cctttgctta tttccgggca ggaaatgttt 750 cgtgtgccct cagcctctct cgggagtttc ttctctacag cccagataat 800 aagaggatgg ccaggaatgt cttgaaatat gaaaggctct tggcagagag 850 ccccaaccac gtggtagctg aggctgtcat ccagaggccc aatatacccc 900 acctgcagac cagagacacc tacgaggggc tatgtcagac cctgggttcc 950 cagcccactc tctaccagat ccctagcctc tactgttcct atgagaccaa 1000 ttccaacgcc tacctgctgc tccagcccat ccggaaggag gtcatccacc 1050 tggagcccta cattgctctc taccatgact tcgtcagtga ctcagaggct 1100 cagaaaatta gagaacttgc agaaccatgg ctacagaggt cagtggtggc 1150 atcaggggag aagcagttac aagtggagta ccgcatcagc aaaagtgcct 1200 ggctgaagga cactgttgac ccaaaactgg tgaccctcaa ccaccgcatt 1250 gctgccctca caggccttga tgtccggcct ccctatgcag agtatctgca 1300 ggtggtgaac tatggcatcg gaggacacta tgagcctcac tttgaccatg 1350 ctacgtcacc aagcagccc ctctacagaa tgaagtcagg aaaccgagtt 1400 gcaacattta tgatctatct gagctcggtg gaagctggag gagccacagc 1450 cttcatctat gccaacctca gcgtgcctgt ggttaggaat gcagcactgt 1500 tttggtggaa cctgcacagg agtggtgaag gggacagtga cacacttcat 1550 gctggctgtc ctgtcctggt gggagataag tgggtggcca acaagtggat 1600 acatgagtat ggacaggaat tccgcagacc ctgcagctcc agccctgaag 1650 actgaactgt tggcagagag aagctggtgg agtcctgtgg ctttccagag 1700 aagccaggag ccaaaagctg gggtaggaga ggagaaagca gagcagcctc 1750 ctggaagaag gccttgtcag ctttgtctgt gcctcgcaaa tcagaggcaa 1800 gggagaggtt gttaccaggg gacactgaga atgtacattt gatctgcccc 1850

<210> 118

<211> 544

<212> PRT

<213> Homo sapiens

<400> 118

Met Gly Pro Gly Ala Arg Leu Ala Ala Leu Leu Ala Val Leu Ala 1 5 10 15

Leu Gly Thr Gly Asp Pro Glu Arg Ala Ala Ala Arg Gly Asp Thr 20 25 30

Phe Ser Ala Leu Thr Ser Val Ala Arg Ala Leu Ala Pro Glu Arg 35 40 45

Arg Leu Leu Gly Leu Leu Arg Arg Tyr Leu Arg Gly Glu Glu Ala 50 55 60

Arg Leu Arg Asp Leu Thr Arg Phe Tyr Asp Lys Val Leu Ser Leu 65 70 75

His Glu Asp Ser Thr Thr Pro Val Ala Asn Pro Leu Leu Ala Phe $80 \\ \hspace{1.5cm} 85 \\ \hspace{1.5cm} 90$

Thr Leu Ile Lys Arg Leu Gln Ser Asp Trp Arg Asn Val Val His
95 100 105

Ser Leu Glu Ala Ser Glu Asn Ile Arg Ala Leu Lys Asp Gly Tyr 110 $$ 115 $$ 120

Glu Lys Val Glu Gln Asp Leu Pro Ala Phe Glu Asp Leu Glu Gly
125 130 135

Ala Ala Arg Ala Leu Met Arg Leu Gln Asp Val Tyr Met Leu Asn 140 145 150

Val Lys Gly Leu Ala Arg Gly Val Phe Gln Arg Val Thr Gly Ser

Ala Ile Thr Asp Leu Tyr Ser Pro Lys Arg Leu Phe Ser Leu Thr
170 175 180

Gly	Asp	Asp	Cys	Phe 185	Gln	Val	Gly	Lys	Val 190	Ala	Tyr	Asp	Met	Gly 195
Asp	Tyr	Tyr	His	Ala 200	Ile	Pro	Trp	Leu	Glu 205	Glu	Ala	Val	Ser	Leu 210
Phe	Arg	Gly	Ser	Tyr 215	Gly	Glu	Trp	Lys	Thr 220	Glu	Asp	Glu	Ala	Ser 225
Leu	Glu	Asp	Ala	Leu 230	Asp	His	Leu	Ala	Phe 235	Ala	Tyr	Phe	Arg	Ala 240
Gly	Asn	Val	Ser	Cys 245	Ala	Leu	Ser	Leu	Ser 250	Arg	Glu	Phe	Leu	Leu 255
Tyr	Ser	Pro	Asp	Asn 260	Lys	Arg	Met	Ala	Arg 265	Asn	Val	Leu	Lys	Tyr 270
Glu	Arg	Leu	Leu	Ala 275	Glu	Ser	Pro	Asn	His 280	Val	Val	Ala	Glu	Ala 285
Val	Ile	Gln	Arg	Pro 290	Asn	Ile	Pro	His	Leu 295	Gln	Thr	Arg	Asp	Thr 300
Tyr	Glu	Gly	Leu	Cys 305	Gln	Thr	Leu	Gly	Ser 310	Gln	Pro	Thr	Leu	Tyr 315
Gln	Ile	Pro	Ser	Leu 320	Tyr	Cys	Ser	Tyr	Glu 325	Thr	Asn	Ser	Asn	Ala 330
Tyr	Leu	Leu	Leu	Gln 335	Pro	Ile	Arg	Lys	Glu 340	Val	Ile	His	Leu	Glu 345
Pro	Tyr	Ile	Ala	Leu 350	Tyr	His	Asp	Phe	Val 355	Ser	Asp	Ser	Glu	Ala 360
Gln	Lys	Ile	Arg	Glu 365	Leu	Ala	Glu	Pro	Trp 370	Leu	Gln	Arg	Ser	Val 375
Val	Ala	Ser	Gly	Glu 380	Lys	Gln	Leu	Gln	Val 385	Glu	Tyr	Arg	Ile	Ser 390
Lys	Ser	Ala	Trp	Leu 395	Lys	Asp	Thr	Val	Asp 400	Pro	Lys	Leu	Val	Thr 405
Leu	Asn	His	Arg	Ile 410	Ala	Ala	Leu	Thr	Gly 415	Leu	Asp	Val	Arg	Pro 420
Pro	Tyr	Ala	Glu	Tyr 425	Leu	Gln	Val	Val	Asn 430	Tyr	Gly	Ile	Gly	Gly 435
His	Tyr	Glu	Pro	His 440	Phe	Asp	His	Ala	Thr 445	Ser	Pro	Ser	Ser	Pro 450
Leu	Tyr	Arg	Met	Lys 455	Ser	Gly	Asn	Arg	Val 460	Ala	Thr	Phe	Met	Ile 465

```
Tyr Leu Ser Ser Val Glu Ala Gly Gly Ala Thr Ala Phe Ile Tyr
                   470
  Ala Asn Leu Ser Val Pro Val Val Arg Asn Ala Ala Leu Phe Trp
                   485
                                       490
                                                            495
  Trp Asn Leu His Arg Ser Gly Glu Gly Asp Ser Asp Thr Leu His
                   500
  Ala Gly Cys Pro Val Leu Val Gly Asp Lys Trp Val Ala Asn Lys
                  515
                                       520
  Trp Ile His Glu Tyr Gly Gln Glu Phe Arg Arg Pro Cys Ser Ser
                  530
  Ser Pro Glu Asp
 <210> 119
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic oligonucleotide probe
<400> 119
 cgggacagga gacccagaaa ggg 23
<210> 120
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 120
 ggccaagtga tccaaggcat cttc 24
<210> 121
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 121
ctgcgggacc tgactagatt ctacgacaag gtactttctt tgcatgggg 49
<210> 122
<211> 1778
<212> DNA
<213> Homo sapiens
```

<400> 122 gagataggga gtctgggttt aagttcctgc tccatctcag gagcccctgc 50 tcccaccct aggaagccac cagactccac ggtgtggggc caatcaggtg 100 gaatcggccc tggcaggtgg ggccacgagc gctggctgag ggaccgagcc 150 ggagagecee ggageceeg taaceegege ggggagegee caggatgeeg 200 cgcggggact cggagcaggt gcgctactgc gcgcgcttct cctacctctg 250 gctcaagttt tcacttatca tctattccac cgtgttctgg ctgattgggg 300 ccctggtcct gtctgtgggc atctatgcag aggttgagcg gcagaaatat 350 aaaacccttg aaagtgcctt cctggctcca gccatcatcc tcatcctcct 400 gggcgtcgtc atgttcatgg tctccttcat tggtgtgctg gcgtccctcc 450 gtgacaacct gtaccttctc caagcattca tgtacatcct tgggatctgc 500 ctcatcatgg agctcattgg tggcgtggtg gccttgacct tccggaacca 550 gaccattgac ttcctgaacg acaacattcg aagaggaatt gagaactact 600 atgatgatet ggaetteaaa aacateatgg aetttgttea gaaaaagtte 650 aagtgctgtg gcggggagga ctaccgagat tggagcaaga atcagtacca 700 cgactgcagt gcccctggac ccctggcctg tggggtgccc tacacctgct 750 gcatcaggaa cacgacagaa gttgtcaaca ccatgtgtgg ctacaaaact 800 atcgacaagg agcgtttcag tgtgcaggat gtcatctacg tgcggggctg 850 caccaacgcc gtgatcatct ggttcatgga caactacacc atcatggcgt 900 gcatcetect gggcatectg ettecceagt teetgggggt getgetgaeg 950 ctgctgtaca tcacccgggt ggaggacatc atcatggagc actctgtcac 1000 tgatgggctc ctggggcccg gtgccaagcc cagcgtggag gcggcaggca 1050 cgggatgctg cttgtgctac cccaattagg gcccagcctg ccatggcagc 1100 tccaacaagg accgtctggg atagcacctc tcagtcaaca tcgtggggct 1150 ggacagggct gcggcccctc tgcccacact cagtactgac caaagccagg 1200 gctgtgtgtg cctgtgtgta ggtcccacgg cctctgcctc cccagggagc 1250 agagectggg cetecectaa gaggetttee eegaggeage tetggaatet 1300 gtgcccacct ggggcctggg gaacaaggcc ctcctttctc caggcctggg 1350 ctacagggga gggagagcct gaggctctgc tcagggccca tttcatctct 1400

ggcagtgcct tggcggtggt attcaaggca gttttgtagc acctgtaatt 1450 ggggagggg agtgtgccc tcggggcagg agggaagggc atctggggaa 1500 gggcaggagg gaagagctgt ccatgcagcc acgcccatgg ccaggttggc 1550 ctcttctcag cctcccaggt gccttgagcc ctcttgcaag ggcggctgct 1600 tccttgagcc tagtttttt ttacgtgatt tttgtaacat tcatttttt 1650 gtacagataa caggagttc tgactaatca aagctggtat ttccccgcat 1700 gtcttattct tgcccttccc ccaaccagtt tgttaatcaa acaataaaaa 1750 catgttttgt tttgtttta aaaaaaaa 1778

<210> 123

<211> 294

<212> PRT

<213> Homo sapiens

<400> 123

Met Pro Arg Gly Asp Ser Glu Gln Val Arg Tyr Cys Ala Arg Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Tyr Leu Trp Leu Lys Phe Ser Leu Ile Ile Tyr Ser Thr Val 20 25 30

Phe Trp Leu Ile Gly Ala Leu Val Leu Ser Val Gly Ile Tyr Ala 35 40 45

Glu Val Glu Arg Gln Lys Tyr Lys Thr Leu Glu Ser Ala Phe Leu
50 55 60

Val Ser Phe Ile Gly Val Leu Ala Ser Leu Arg Asp Asn Leu Tyr 80 85 90

Leu Leu Gln Ala Phe Met Tyr Ile Leu Gly Ile Cys Leu Ile Met 95 100 105

Glu Leu Ile Gly Gly Val Val Ala Leu Thr Phe Arg Asn Gln Thr

Ile Asp Phe Leu Asn Asp Asn Ile Arg Arg Gly Ile Glu Asn Tyr 125 130 135

Tyr Asp Asp Leu Asp Phe Lys Asn Ile Met Asp Phe Val Gln Lys 140 145 150

Lys Phe Lys Cys Cys Gly Gly Glu Asp Tyr Arg Asp Trp Ser Lys 155 160 165

Asn Gln Tyr His Asp Cys Ser Ala Pro Gly Pro Leu Ala Cys Gly

170 175 180

Val Pro Tyr Thr Cys Cys Ile Arg Asn Thr Thr Glu Val Val Asn 185 190 195

Thr Met Cys Gly Tyr Lys Thr Ile Asp Lys Glu Arg Phe Ser Val 200 205 210

Gln Asp Val Ile Tyr Val Arg Gly Cys Thr Asn Ala Val Ile Ile 215 220 225

Trp Phe Met Asp Asn Tyr Thr Ile Met Ala Cys Ile Leu Leu Gly
230 235 240

Ile Leu Leu Pro Gln Phe Leu Gly Val Leu Leu Thr Leu Leu Tyr
245 250 255

Ile Thr Arg Val Glu Asp Ile Ile Met Glu His Ser Val Thr Asp 260 265 270

Gly Leu Leu Gly Pro Gly Ala Lys Pro Ser Val Glu Ala Ala Gly 275 280 280

Thr Gly Cys Cys Leu Cys Tyr Pro Asn 290

<210> 124

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 124

atcatctatt ccaccgtgtt ctggc 25

<210> 125

<211> 25

<212> DNA

<213> Artificial Sequence

<220×

<223> Synthetic oligonucleotide probe

<400> 125

gacagagtgc tccatgatga tgtcc 25

<210> 126

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 126

<210> 127

<211> 1636

<212> DNA

<213> Homo sapiens

<400> 127

gaggagcggg ccgaggactc cagcgtgccc aggtctggca tcctgcactt 50 gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100 ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150 tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 200 agctgaagga ccacaacgcc accagcatcc tgcagcagct gccgctgctc 250 agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300 ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350 acatcctcca gctgcaggtg aagccctcgg ccaatgacca ggagctgcta 400 gtcaagatcc ccctggacat ggtggctgga ttcaacacgc ccctggtcaa 450 gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500 tggacaccag tgcaagtggc cccacccgcc tggtcctcag tgactgtgcc 550 accagccatg ggagcctgcg catccaactg ctgtataagc tctccttcct 600 ggtgaacgcc ttagctaagc aggtcatgaa cctcctagtg ccatccctgc 650 ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccttcaat 700 ggcatgtatg cagacctcct gcagctggtg aaggtgccca tttccctcag 750 cattgaccgt ctggagtttg accttctgta tcctgccatc aagggtgaca 800 ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaaggtg 850 accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900 caacatcccg ttcagcctca tcgtgagtca ggacgtggtg aaagctgcag 950 tggctgctgt gctctctcca gaagaattca tggtcctgtt ggactctgtg 1000 cttcctgaga gtgcccatcg gctgaagtca agcatcgggc tgatcaatga 1050 aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100 aggacactcc cgagtttttt atagaccaag gccatgccaa ggtggcccaa 1150 ctgatcgtgc tggaagtgtt tccctccagt gaagccctcc gccctttgtt 1200 caccetggge ategaageca geteggaage teagttttae accaaaggtg 1250 accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300 atgaactctg ggattggctg gttccaacct gatgttctga aaaacatcat 1350 cactgagatc atccactcca tcctgctgcc gaaccagaat ggcaaattaa 1400 gatctggggt cccagtgtca ttggtgaagg ccttgggatt cgaggcagct 1450 gagtcctcac tgaccaagga tgcccttgtg cttactccag cctccttgtg 1500 gaaacccagc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550 ggaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600 cctctctgca atcaataaac acttgcctgt gaaaaa 1636

<210> 128

<211> 484

<212> PRT

<213> Homo sapiens

<400> 128

Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala 1 5 10 15

Ala Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile
20 25 30

Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys
35 40 45

Asp His Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser
50 55 60

Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser 65 70 75

Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile 80 85 90

Thr Ala Asn Ile Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp 95 100 105

Gln Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe 110 115 120

Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr 125 130 135

Glu Ala Gln Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro \$140\$ \$145\$ \$150\$

Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu
155 160 165

Arg Ile Gln Leu Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu

				170					175					180
Ala	Lys	Gln	Val	Met 185	Asn	Leu	Leu	Val	Pro 190	Ser	Leu	Pro	Asn	Leu 195
Val	Lys	Asn	Gln	Leu 200	Cys	Pro	Val	Ile	Glu 205	Ala	Ser	Phe	Asn	Gly 210
Met	Tyr	Ala	Asp	Leu 215	Leu	Gln	Leu	Val	Lys 220	Val	Pro	Ile	Ser	Leu 225
Ser	Ile	Asp	Arg	Leu 230	Glu	Phe	Asp	Leu	Leu 235	Tyr	Pro	Ala	Ile	Lys 240
Gly	Asp	Thr	Ile	Gln 245	Leu	Tyr	Leu	Gly	Ala 250	Lys	Leu	Leu	Asp	Ser 255
Gln	Gly	Lys	Val	Thr 260	Lys	Trp	Phe	Asn	Asn 265	Ser	Ala	Ala	Ser	Leu 270
Thr	Met	Pro	Thr	Leu 275	Asp	Asn	Ile	Pro	Phe 280	Ser	Leu	Ile	Val	Ser 285
Gln	Asp	Val	Val	Lys 290	Ala	Ala	Val	Ala	Ala 295	Val	Leu	Ser	Pro	Glu 300
Glu	Phe	Met	Val	Leu 305	Leu	Asp	Ser	Val	Leu 310	Pro	Glu	Ser	Ala	His 315
Arg	Leu	Lys	Ser	Ser 320	Ile	Gly	Leu	Ile	Asn 325	Glu	Lys	Ala	Ala	Asp 330
Lys	Leu	Gly	Ser	Thr 335	Gln	Ile	Val	Lys	Ile 340	Leu	Thr	Gln	Asp	Thr 345
Pro	Glu	Dh.	D1-											
		Pne	Pne	350	Asp	Gln	Gly	His	Ala 355	Lys	Val	Ala	Gln	Leu 360
Ile				350	Asp				355					360
	Val	Leu	Glu	350 Val 365		Pro	Ser	Ser	355 Glu 370	Ala	Leu	Arg	Pro	360 Leu 375
Phe	Val Thr	Leu Leu	Glu Gly	350 Val 365 Ile 380	Phe	Pro Ala	Ser	Ser Ser	355 Glu 370 Glu 385	Ala	Leu Gln	Arg Phe	Pro Tyr	360 Leu 375 Thr 390
Phe Lys	Val Thr Gly	Leu Leu Asp	Glu Gly Gln	350 Val 365 Ile 380 Leu 395	Phe Glu	Pro Ala Leu	Ser Ser Asn	Ser Ser Leu	355 Glu 370 Glu 385 Asn 400	Ala Ala Asn	Leu Gln Ile	Arg Phe Ser	Pro Tyr Ser	360 Leu 375 Thr 390 Asp 405
Phe Lys Arg	Val Thr Gly Ile	Leu Leu Asp Gln	Glu Gly Gln Leu	350 Val 365 Ile 380 Leu 395 Met 410	Phe Glu Ile	Pro Ala Leu Ser	Ser Ser Asn	Ser Ser Leu	355 Glu 370 Glu 385 Asn 400 Gly 415	Ala Ala Asn Trp	Leu Gln Ile Phe	Arg Phe Ser Gln	Pro Tyr Ser Pro	360 Leu 375 Thr 390 Asp 405 Asp
Phe Lys Arg Val	Val Thr Gly Ile Leu	Leu Leu Asp Gln Lys	Glu Gly Gln Leu Asn	350 Val 365 Ile 380 Leu 395 Met 410 Ile 425	Phe Glu Ile Asn	Pro Ala Leu Ser	Ser Ser Asn Gly	Ser Ser Leu Ile	355 Glu 370 Glu 385 Asn 400 Gly 415 Ile 430	Ala Ala Asn Trp	Leu Gln Ile Phe Ser	Arg Phe Ser Gln	Pro Tyr Ser Pro Leu	360 Leu 375 Thr 390 Asp 405 Asp 420 Leu 435

455 460 465

Asp Ala Leu Val Leu Thr Pro Ala Ser Leu Trp Lys Pro Ser Ser 470 475 480

Pro Val Ser Gln

<210> 129

<211> 2213

<212> DNA

<213> Homo sapiens

<400> 129

gagcgaacat ggcagcgcgt tggcggtttt ggtgtgtctc tgtgaccatg 50 gtggtggcgc tgctcatcgt ttgcgacgtt ccctcagcct ctgcccaaag 100 ctaacaaaag acctgtaata agaatgaatg gagacaagtt ccgtcgcctt 200 gtgaaagccc caccgagaaa ttactccgtt atcgtcatgt tcactgctct 250 ccaactgcat agacagtgtg tcgtttgcaa gcaagctgat gaagaattcc 300 agatectgge aaacteetgg egatacteea gtgcatteac caacaggata 350 ttttttgcca tggtggattt tgatgaaggc tctgatgtat ttcagatgct 400 aaacatgaat tcagctccaa ctttcatcaa ctttcctgca aaagggaaac 450 ccaaacgggg tgatacatat gagttacagg tgcggggttt ttcagctgag 500 cagattgccc ggtggatcgc cgacagaact gatgtcaata ttagagtgat 550 tagaccccca aattatgctg gtccccttat gttgggattg cttttggctg 600 ttattggtgg acttgtgtat cttcgaagaa gtaatatgga atttctcttt 650 aataaaactg gatgggcttt tgcagctttg tgttttgtgc ttgctatgac 700 atctggtcaa atgtggaacc atataagagg accaccatat gcccataaga 750 atccccacac gggacatgtg aattatatcc atggaagcag tcaagcccag 800 tttgtagctg aaacacacat tgttcttctg tttaatggtg gagttacctt 850 aggaatggtg cttttatgtg aagctgctac ctctgacatg gatattggaa 900 agcgaaagat aatgtgtgtg gctggtattg gacttgttgt attattcttc 950 agttggatgc tctctatttt tagatctaaa tatcatggct acccatacag 1000 ctttctgatg agttaaaaag gtcccagaga tatatagaca ctggagtact 1050 ggaaattgaa aaacgaaaat cgtgtgtgtt tgaaaagaag aatgcaactt 1100

gtatattttg tattacctct ttttttcaag tgatttaaat agttaatcat 1150 ttaaccaaag aagatgtgta gtgccttaac aagcaatcct ctgtcaaaat 1200 ctgaggtatt tgaaaataat tatcctctta accttctctt cccagtgaac 1250 tttatggaac atttaattta gtacaattaa gtatattata aaaattgtaa 1300 aactactact ttgttttagt tagaacaaag ctcaaaacta ctttagttaa 1350 cttggtcatc tgattttata ttgccttatc caaagatggg gaaagtaagt 1400 cctgaccagg tgttcccaca tatgcctgtt acagataact acattaggaa 1450 ttcattctta gcttcttcat ctttgtgtgg atgtgtatac tttacgcatc 1500 tttccttttg agtagagaaa ttatgtgtgt catgtggtct tctgaaaatg 1550 gaacaccatt cttcagagca cacgtctagc cctcagcaag acagttgttt 1600 ctcctcctcc ttgcatattt cctactgcgc tccagcctga gtgatagagt 1650 gagactctgt ctcaaaaaaa agtatctcta aatacaggat tataatttct 1700 gcttgagtat ggtgttaact accttgtatt tagaaagatt tcagattcat 1750 tccatctcct tagttttctt ttaaggtgac ccatctgtga taaaaatata 1800 gcttagtgct aaaatcagtg taacttatac atggcctaaa atgtttctac 1850 aaattagagt ttgtcactta ttccatttgt acctaagaga aaaataggct 1900 cagttagaaa aggactccct ggccaggcgc agtgacttac gcctgtaatc 1950 tcagcacttt gggaggccaa ggcaggcaga tcacgaggtc aggagttcga 2000 gaccatcctg gccaacatgg tgaaaccccg tctctactaa aaatataaaa 2050 attagctggg tgtggtggca ggagcctgta atcccagcta cacaggaggc 2100 tgaggcacga gaatcacttg aactcaggag atggaggttt cagtgagccg 2150 agatcacgcc actgcactcc agcctggcaa cagagcgaga ctccatctca 2200 aaaaaaaaa aaa 2213

<210> 130

<211> 335

<212> PRT

<213> Homo sapiens

<400> 130

Met Ala Ala Arg Trp Arg Phe Trp Cys Val Ser Val Thr Met Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Ala Leu Leu Ile Val Cys Asp Val Pro Ser Ala Ser Ala Gln

Arg	Lys	Lys	Glu	Met 35	Val	Leu	Ser	Glu	Lys 40	Val	Ser	Gln	Leu	Met 45
Glu	Trp	Thr	Asn	Lys 50	Arg	Pro	Val	Ile	Arg 55	Met	Asn	Gly	Asp	Lys 60
Phe	Arg	Arg	Leu	Val 65	Lys	Ala	Pro	Pro	Arg 70	Asn	Tyr	Ser	Val	Ile 75
Val	Met	Phe	Thr	Ala 80	Leu	Gln	Leu	His	Arg 85	Gln	Суѕ	Val	Val	Cys 90
Lys	Gln	Ala	Asp	Glu 95	Glu	Phe	Gln	Ile	Leu 100	Ala	Asn	Ser	Trp	Arg 105
Tyr	Ser	Ser	Ala	Phe 110	Thr	Asn	Arg	Ile	Phe 115	Phe	Ala	Met	Val	Asp 120
Phe	Asp	Glu	Gly	Ser 125	Asp	Val	Phe	Gln	Met 130	Leu	Asn	Met	Asn	Ser 135
Ala	Pro	Thr	Phe	Ile 140	Asn	Phe	Pro	Ala	Lys 145	Gly	Lys	Pro	Lys	Arg 150
Gly	Asp	Thr	Tyr	Glu 155	Leu	Gln	Val	Arg	Gly 160	Phe	Ser	Ala	Glu	Glr 165
Ile	Ala	Arg	Trp	Ile 170	Ala	Asp	Arg	Thr	Asp 175	Val	Asn	Ile	Arg	Va] 180
Ile	Arg	Pro	Pro	Asn 185	Tyr	Ala	Gly	Pro	Leu 190	Met	Leu	Gly	Leu	Leu 195
Leu	Ala	Val	Ile	Gly 200	Gly	Leu	Val	Tyr	Leu 205	Arg	Arg	Ser	Asn	Met 210
Glu	Phe	Leu	Phe	Asn 215	Lys	Thr	Gly	Trp	Ala 220	Phe	Ala	Ala	Leu	Cys 225
Phe	Val	Leu	Ala	Met 230	Thr	Ser	Gly	Gln	Met 235	Trp	Asn	His	Ile	Arg 240
Gly	Pro	Pro	Tyr	Ala 245	His	Lys	Asn	Pro	His 250	Thr	Gly	His	Val	Asr 255
Tyr	Ile	His	Gly	Ser 260	Ser	Gln	Ala	Gln	Phe 265	Val	Ala	Glu	Thr	His 270
Ile	Val	Leu	Leu	Phe 275	Asn	Gly	Gly	Val	Thr 280	Leu	Gly	Met	Val	Let 285
Leu	Cys	Glu	Ala	Ala 290	Thr	Ser	Asp	Met	Asp 295	Ile	Gly	Lys	Arg	Lys 300
Tle	Met	Cve	Val	Δ1 =	Glv	Tlo	Glv	Len	U=1	V=1	Len	Phe	Phe	907

305 310 315

Trp Met Leu Ser Ile Phe Arg Ser Lys Tyr His Gly Tyr Pro Tyr 320 325 330

Ser Phe Leu Met Ser 335

<210> 131

<211> 2476

<212> DNA

<213> Homo sapiens

<400> 131

aagcaaccaa actgcaagct ttgggagttg ttcgctgtcc ctgccctgct 50 ctgctaggga gagaacgcca gagggaggcg gctggcccgg cggcaggctc 100 tcagaaccgc taccggcgat gctactgctg tgggtgtcgg tggtcgcagc 150 cttggcgctg gcggtactgg cccccggagc aggggagcag aggcggagag 200 cagccaaagc gcccaatgtg gtgctggtcg tgagcgactc cttcgatgga 250 aggttaacat ttcatccagg aagtcaggta gtgaaacttc cttttatcaa 300 ctttatgaag acacgtggga cttcctttct gaatgcctac acaaactctc 350 caatttgttg cccatcacgc gcagcaatgt ggagtggcct cttcactcac 400 ttaacagaat cttggaataa ttttaagggt ctagatccaa attatacaac 450 atggatggat gtcatggaga ggcatggcta ccgaacacag aaatttggga 500 aactggacta tacttcagga catcactcca ttagtaatcg tgtggaagcg 550 tggacaagag atgttgcttt cttactcaga caagaaggca ggcccatggt 600 taatcttatc cgtaacagga ctaaagtcag agtgatggaa agggattggc 650 agaatacaga caaagcagta aactggttaa gaaaggaagc aattaattac 700 actgaaccat ttgttattta cttgggatta aatttaccac acccttaccc 750 ttcaccatct tctggagaaa attttggatc ttcaacattt cacacatctc 800 tttattggct tgaaaaagtg tctcatgatg ccatcaaaat cccaaagtgg 850 tcacctttgt cagaaatgca ccctgtagat tattactctt cttatacaaa 900 aaactgcact ggaagattta caaaaaaaga aattaagaat attagagcat 950 tttattatgc tatgtgtgct gagacagatg ccatgcttgg tgaaattatt 1000 ttggcccttc atcaattaga tcttcttcag aaaactattg tcatatactc 1050 ctcagaccat ggagagctgg ccatggaaca tcgacagttt tataaaatga 1100

gcatgtacga ggctagtgca catgttccgc ttttgatgat gggaccagga 1150 attaaagccg gcctacaagt atcaaatgtg gtttctcttg tggatattta 1200 ccctaccatg cttgatattg ctggaattcc tctgcctcag aacctgagtg 1250 gatactcttt gttgccgtta tcatcagaaa catttaagaa tgaacataaa 1300 gtcaaaaacc tgcatccacc ctggattctg agtgaattcc atggatgtaa 1350tgtgaatgcc tccacctaca tgcttcgaac taaccactgg aaatatatag 1400 cctattcgga tggtgcatca atattgcctc aactctttga tctttcctcg 1450 gatccagatg aattaacaaa tgttgctgta aaatttccag aaattactta 1500 ttctttggat cagaagette attecattat aaactaceet aaagtttetg 1550 cttctgtcca ccagtataat aaagagcagt ttatcaagtg gaaacaaagt 1600 ataggacaga attattcaaa cgttatagca aatcttaggt ggcaccaaga 1650 ctggcagaag gaaccaagga agtatgaaaa tgcaattgat cagtggctta 1700 aaacccatat gaatccaaga gcagtttgaa caaaaagttt aaaaatagtg 1750 ttctagagat acatataaat atattacaag atcataatta tgtattttaa 1800 atgaaacagt tttaataatt accaagtttt ggccgggcac agtggctcac 1850 acctgtaatc ccaggacttt gggaggctga ggaaagcaga tcacaaggtc 1900 aagagattga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 1950 aaatacaaaa attagctggg cgcggtggtg cacacctata gtctcagcta 2000 ctcagaggct gaggcaggag gatcgcttga acccgggagg cagcagttgc 2050 agtgagctga gattgcgcca ctgtactcca gcctggcaac agagtgagac 2100 tgtgtcgcaa aaaaataaaa ataaaataat aataattacc aatttttcat 2150 tattttgtaa gaatgtagtg tattttaaga taaaatgcca atgattataa 2200 aatcacatat tttcaaaaat ggttattatt taggcctttg tacaatttct 2250 aacaatttag tggaagtatc aaaaggattg aagcaaatac tgtaacagtt 2300 atgttccttt aaataataga gaatataaaa tattgtaata atatgtatca 2350 taaaatagtt gtatgtgagc atttgatggt gaaaaaaaaa aaaaaaaaa 2400 aaaaaaaaa aaaaaaaaa aaaaaa 2476

```
<210> 132
<211> 536
<212> PRT
<213> Homo sapiens
<400> 132
Met Leu Leu Trp Val Ser Val Val Ala Ala Leu Ala Leu Ala
Val Leu Ala Pro Gly Ala Gly Glu Gln Arg Arg Arg Ala Ala Lys
Ala Pro Asn Val Val Leu Val Val Ser Asp Ser Phe Asp Gly Arg
Leu Thr Phe His Pro Gly Ser Gln Val Val Lys Leu Pro Phe Ile
Asn Phe Met Lys Thr Arg Gly Thr Ser Phe Leu Asn Ala Tyr Thr
Asn Ser Pro Ile Cys Cys Pro Ser Arg Ala Ala Met Trp Ser Gly
Leu Phe Thr His Leu Thr Glu Ser Trp Asn Asn Phe Lys Gly Leu
                                     100
Asp Pro Asn Tyr Thr Trp Met Asp Val Met Glu Arg His Gly
                                     115
Tyr Arg Thr Gln Lys Phe Gly Lys Leu Asp Tyr Thr Ser Gly His
His Ser Ile Ser Asn Arg Val Glu Ala Trp Thr Arg Asp Val Ala
Phe Leu Leu Arg Gln Glu Gly Arg Pro Met Val Asn Leu Ile Arg
                 155
Asn Arg Thr Lys Val Arg Val Met Glu Arg Asp Trp Gln Asn Thr
                 170
Asp Lys Ala Val Asn Trp Leu Arg Lys Glu Ala Ile Asn Tyr Thr
                                     190
Glu Pro Phe Val Ile Tyr Leu Gly Leu Asn Leu Pro His Pro Tyr
Pro Ser Pro Ser Ser Gly Glu Asn Phe Gly Ser Ser Thr Phe His
Thr Ser Leu Tyr Trp Leu Glu Lys Val Ser His Asp Ala Ile Lys
                 230
Ile Pro Lys Trp Ser Pro Leu Ser Glu Met His Pro Val Asp Tyr
                 245
                                     250
                                                         255
```

Tyr	Ser	Ser	Tyr	Thr 260	Lys	Asn	Cys	Thr	Gly 265	Arg	Phe	Thr	Lys	Lys 270
Glu	Ile	Lys	Asn	Ile 275	Arg	Ala	Phe	Tyr	Tyr 280	Ala	Met	Cys	Ala	Glu 285
Thr	Asp	Ala	Met	Leu 290	Gly	Glu	Ile	Ile	Leu 295	Ala	Leu	His	Gln	Leu 300
Asp	Leu	Leu	Gln	Lys 305	Thr	Ile	Val	Ile	Tyr 310	Ser	Ser	Asp	His	Gly 315
Glu	Leu	Ala	Met	Glu 320	His	Arg	Gln	Phe	Tyr 325	Lys	Met	Ser	Met	Tyr 330
Glu	Ala	Ser	Ala	His 335	Val	Pro	Leu	Leu	Met 340	Met	Gly	Pro	Gly	Ile 345
Lys	Ala	Gly	Leu	Gln 350	Val	Ser	Asn	Val	Val 355	Ser	Leu	Val	Asp	Ile 360
Tyr	Pro	Thr	Met	Leu 365	Asp	Ile	Ala	Gly	Ile 370	Pro	Leu	Pro	Gln	Asn 375
Leu	Ser	Gly	Tyr	Ser 380	Leu	Leu	Pro	Leu	Ser 385	Ser	Glu	Thr	Phe	Lys 390
Asn	Glu	His	Lys	Val 395	Lys	Asn	Leu	His	Pro 400	Pro	Trp	Ile	Leu	Ser 405
Glu	Phe	His	Gly	Cys 410	Asn	Val	Asn	Ala	Ser 415	Thr	Tyr	Met	Leu	Arg 420
Thr	Asn	His	Trp	Lys 425	Tyr	Ile	Ala	Tyr	Ser 430	Asp	Gly	Ala	Ser	Ile 435
Leu	Pro	Gln	Leu	Phe 440	Asp	Leu	Ser	Ser	Asp 445	Pro	Asp	Glu	Leu	Thr 450
Asn	Val	Ala	Val	Lys 455	Phe	Pro	Glu	Ile	Thr 460	Tyr	Ser	Leu	Asp	Gln 465
Lys	Leu	His	Ser	Ile 470	Ile	Asn	Tyr	Pro	Lys 475	Val	Ser	Ala	Ser	Val 480
His	Gln	Tyr	Asn	Lys 485	Glu	Gln	Phe	Ile	Lys 490	Trp	Lys	Gln	Ser	Ile 495
Gly	Gln	Asn	Tyr	Ser 500	Asn	Val	Ile	Ala	Asn 505	Leu	Arg	Trp	His	Gln 510
Asp	Trp	Gln	Lys	Glu 515	Pro	Arg	Lys	Tyr	Glu 520	Asn	Ala	Ile	Asp	Gln 525
Trp	Leu	Lys	Thr	His 530	Met	Asn	Pro	Arg	Ala 535	Val				

<210> 133 <211> 1475 <212> DNA <213> Homo sapiens

<400> 133

gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50 tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100 gcttctactg agaggtctgc catggcctct cttggcctcc aacttgtggg 150 ctacatccta ggccttctgg ggcttttggg cacactggtt gccatgctgc 200 tccccagctg gaaaacaagt tcttatgtcg gtgccagcat tgtgacagca 250 gttggcttct ccaagggcct ctggatggaa tgtgccacac acagcacagg 300 catcacccag tgtgacatct atagcaccct tctgggcctg cccgctgaca 350 tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcctccctg 400 gcctgcatta tctctgtggt gggcatgaga tgcacagtct tctgccagga 450 atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500 ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550 ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600 tggagaggct ctttacttgg gcattatttc ttccctgttc tccctgatag 650 ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700 tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750 gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800 cagggtatgt gtgaagaacc aggggccaga gctgggggt ggctgggtct 850 gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900 actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950 ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000 attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050 gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100 agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150 ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200 ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250 gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaagcttc 1300 cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350 actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400 tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450 gcagcctggg acatttaaaa aaata 1475

<210> 134

<211> 230

<212> PRT

<213> Homo sapiens

<400> 134

Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu
1 5 10 15

Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp
20 25 30

Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly 35 40 45

Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly 50 55 60

Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala 65 70 75

Asp Ile Gln Ala Ala Gln Ala Met Met Val Thr Ser Ser Ala Ile 80 85 90

Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr 95 100 105

Val Phe Cys Gln Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala 110 115 120

Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro 125 130 135

Val Ala Trp Asn Leu His Gly Ile Leu Arg Asp Phe Tyr Ser Pro 140 145 150

Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr
155 160 165

Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile 170 175 180

Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr
185 190 195

Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg 200 205 210 Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser 215 220 225

Leu Thr Gly Tyr Val

<210> 135

<211> 610

<212> DNA

<213> Homo sapiens

<400> 135

geactgetge tgteccatea getgetetga agetecatgg tgeecagaat 50 ettegeteet gettatgtgt cagtetgtet cetectettg tgteeaaggg 100 aagteatege teecegetgge teagaaceat ggetgtgeea geeggeaeee 150 aggtgtggag acaagateta caacecettg gageagtget gttacaatga 200 egeeategtg teeetgageg agaecegeea atgtggteee eectgeaeet 250 tetggeeetg etttgagete tgetgtettg atteetttgg eeteacaaae 300 gattttgttg tgaagetgaa ggtteagggt gtgaatteee agtgeeaete 350 ateteceate teeagtaaat gtgaaageag aagaegttt eeetgagaag 400 acatagaaag aaaateaaet tteactaagg eateteagaa acataggeta 450 aggtaatatg tgtaceagta gagaageetg aggaatttae aaaatgatge 500 ageteeaage cattgtatgg eeeatgggg agaetgatgg gacatggaga 550 atgacagtag attateagga aataaataaa gtggtttte caatgtacae 600 acetgtaaaa 610

<210> 136

<211> 119

<212> PRT

<213> Homo sapiens

<400> 136

Met Val Pro Arg Ile Phe Ala Pro Ala Tyr Val Ser Val Cys Leu 1 5 10 15

Leu Leu Cys Pro Arg Glu Val Ile Ala Pro Ala Gly Ser Glu 20 25 30

Pro Trp Leu Cys Gln Pro Ala Pro Arg Cys Gly Asp Lys Ile Tyr
35 40 45

Asn Pro Leu Glu Gln Cys Cys Tyr Asn Asp Ala Ile Val Ser Leu 50 55 60

Ser Glu Thr Arg Gln Cys Gly Pro Pro Cys Thr Phe Trp Pro Cys

65 70 75

Phe Glu Leu Cys Cys Leu Asp Ser Phe Gly Leu Thr Asn Asp Phe 80 85 90

Val Val Lys Leu Lys Val Gln Gly Val Asn Ser Gln Cys His Ser 95 100 105

Ser Pro Ile Ser Ser Lys Cys Glu Ser Arg Arg Phe Pro 110 115

<210> 137

<211> 771

<212> DNA

<213> Homo sapiens

<400> 137

ctccactgca accacccaga gccatggctc cccgaggctg catcgtagct 50 gtctttgcca ttttctgcat ctccaggctc ctctgctcac acggagcccc 100 agtggccccc atgactcctt acctgatgct gtgccagcca cacaagagat 150 gtggggacaa gttctacgac cccctgcagc actgttgcta tgatgatgcc 200 gtcgtgccct tggccaggac ccagacgtgt ggaaactgca ccttcagagt 250 ctgctttgag cagtgctgcc cctggacctt catggtgaag ctgataaacc 300 agaactgcga ctcagcccgg acctcggatg acaggctttg tcgcagtgtc 350 agctaatgga acatcagggg aacgatgact cctggattct ccttcctggg 400 tgggcctgga gaaagaggct ggtgttacct gagatctggg atgctgagtg 450 gctgtttggg ggccagagaa acacacactc aactgcccac ttcattctgt 500 gacctgtctg aggcccaccc tgcagctgcc ctgaggaggc ccacaggtcc 550 ccttctagaa ttctggacag catgagatgc gtgtgctgat gggggcccag 600 ggactctgaa ccctcctgat gacccctatg gccaacatca acccggcacc 650 accccaagge tggctgggga accettcace ettetgtgag attttecate 700 atctcaagtt ctcttctatc caggagcaaa gcacaggatc ataataaatt 750 tatgtacttt ataaatgaaa a 771

<210> 138

<211> 110

<212> PRT

<213> Homo sapiens

<400> 138

Met Ala Pro Arg Gly Cys Ile Val Ala Val Phe Ala Ile Phe Cys
1 5 10 15

Ile Ser Arg Leu Cys Ser His Gly Ala Pro Val Ala Pro Met 20 25 30

Thr Pro Tyr Leu Met Leu Cys Gln Pro His Lys Arg Cys Gly Asp 35 40 45

Lys Phe Tyr Asp Pro Leu Gln His Cys Cys Tyr Asp Asp Ala Val 50 55 60

Val Pro Leu Ala Arg Thr Gln Thr Cys Gly Asn Cys Thr Phe Arg
65 70 75

Val Cys Phe Glu Gln Cys Cys Pro Trp Thr Phe Met Val Lys Leu 80 85 90

Ile Asn Gln Asn Cys Asp Ser Ala Arg Thr Ser Asp Asp Arg Leu 95 100 105

Cys Arg Ser Val Ser 110

<210> 139

<211> 2044

<212> DNA

<213> Homo sapiens

<400> 139

gggggggggg geetggaga ggetteeeeg egeeggeege gteeegeeg 100
cteeeeggea ceagaagtte etetgeggg egeggeege gteeeggeege 150
ceeaeggee teggaggeege eggeggege eatgggege 150
ceeaeggeee tggaggeegg eagetggege tggggateee tgetettege 200
tetetteetg getgegteee taggteeggt ggeageette aaggtegeea 250
cgeegtatte eetgtatgte tgteeegagg ggeagaaegt eaceeteaee 300
tgeaggetet tgggeeetgt ggacaaaggg eacgatgtga eettetaeaa 350
gaegtggtae egeagetega ggggegaggt geagaeetge teagagegee 400
ggeeeateeg eaaeeteaeg tteeaggaee tteaeetgea ecatggagge 450
caceaggetg ceaaeaeeag eeaegaeetg geteageee aegggetgga 500
gteggeetee gaeeaeeag geaaettete eateaeeatg egeaaeetga 550
ceetgetgga tageggeet taetgetgee tggtggtga gateaggeae 600
caceaetegg ageaeaaggt eeatggtge atggagetge aggtgeagae 650
aggeaaaagat geaeeateea aetgtgtggt gtaeeeatee teeteeeagg 700
atagtgaaaa cateaegget geageeetgg etagggtge etgeategta 750

ggaateetet geeteeeet cateetgete etggtetaca ageaaaggea 800 ggcagcctcc aaccgccgtg cccaggagct ggtgcggatg gacagcaaca 850 ttcaagggat tgaaaacccc ggctttgaag cctcaccacc tgcccagggg 900 atacccgagg ccaaagtcag gcacccctg tcctatgtgg cccagcggca 950 gccttctgag tctgggcggc atctgctttc ggagcccagc accccctgt 1000 ctcctccagg ccccggagac gtcttcttcc catccctgga ccctgtccct 1050 gactetecaa aetttgaggt catetageee agetggggga cagtgggetg 1100 ttgtggctgg gtctggggca ggtgcatttg agccagggct ggctctgtga 1150 gtggcctcct tggcctcggc cctggttccc tccctcctgc tctgggctca 1200 gatactgtga catcccagaa gcccagcccc tcaacccctc tggatgctac 1250 atggggatgc tggacggctc agcccctgtt ccaaggattt tggggtgctg 1300 agattetece etagagaeet gaaatteaee agetacagat gecaaatgae 1350 ttacatctta agaagtctca gaacgtccag cccttcagca gctctcgttc 1400 tgagacatga gccttgggat gtggcagcat cagtgggaca agatggacac 1450 tgggccaccc tcccaggcac cagacacagg gcacggtgga gagacttctc 1500 ccccgtggcc gccttggctc ccccgttttg cccgaggctg ctcttctgtc 1550 agactteete tttgtaceae agtggetetg gggeeaggee tgeetgeeea 1600 ctggccatcg ccaccttccc cagctgcctc ctaccagcag tttctctgaa 1650 gatctgtcaa caggttaagt caatctgggg cttccactgc ctgcattcca 1700 gtccccagag cttggtggtc ccgaaacggg aagtacatat tggggcatgg 1750 tggcctccgt gagcaaatgg tgtcttgggc aatctgaggc caggacagat 1800 gttgccccac ccactggaga tggtgctgag ggaggtgggt ggggccttct 1850 gggaaggtga gtggagaggg gcacctgccc cccgccctcc ccatccccta 1900 ctcccactgc tcagcgcggg ccattgcaag ggtgccacac aatgtcttgt 1950 ccaccctggg acacttctga gtatgaagcg ggatgctatt aaaaactaca 2000 tggggaaaaa aaaaaaaaa aaaaaaaaa aaga 2044

<210> 140

<211> 311

<212> PRT

<213> Homo sapiens

<400> 140 Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp Gly Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro Glu Gly Gln Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val Asp Lys Gly His Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser Ser Arg Gly Glu Val Gln Thr Cys Ser Glu Arg Arg Pro Ile Arg Asn Leu Thr Phe Gln Asp Leu His Leu His His Gly Gly His Gln 100 Ala Ala Asn Thr Ser His Asp Leu Ala Gln Arg His Gly Leu Glu 110 120 Ser Ala Ser Asp His His Gly Asn Phe Ser Ile Thr Met Arg Asn Leu Thr Leu Leu Asp Ser Gly Leu Tyr Cys Cys Leu Val Val Glu Ile Arg His His Ser Glu His Arg Val His Gly Ala Met Glu 155 165 Leu Gln Val Gln Thr Gly Lys Asp Ala Pro Ser Asn Cys Val Val 175 Tyr Pro Ser Ser Ser Gln Asp Ser Glu Asn Ile Thr Ala Ala Ala Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys Leu Pro Leu Ile Leu Leu Val Tyr Lys Gln Arg Gln Ala Ala Ser Asn Arg 220 Arg Ala Gln Glu Leu Val Arg Met Asp Ser Asn Ile Gln Gly Ile 230 Glu Asn Pro Gly Phe Glu Ala Ser Pro Pro Ala Gln Gly Ile Pro Glu Ala Lys Val Arg His Pro Leu Ser Tyr Val Ala Gln Arg Gln

Pro Ser Glu Ser Gly Arg His Leu Leu Ser Glu Pro Ser Thr Pro

275 280 285

Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp 290 295 300

Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile 305 310

<210> 141

<211> 1732

<212> DNA

<213> Homo sapiens

<400> 141

cccacgegte egegeetete eettetgetg gacetteett egteteteea 50 tetetecete ettteeege gttetettte eacetttete ttetteeeae 100 cttagacctc ccttcctgcc ctcctttcct gcccaccgct gcttcctggc 150 cetteteega eecegeteta geageagace teetggggte tgtgggttga 200 totgtggccc ctgtgcctcc gtgtcctttt cgtctccctt cctcccgact 250 ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300 gagggteete teeteettge tgggaetege getgetetgg tteeceetgg 350 actoccacgo togagocogo coagacatgt totgootttt coatgggaag 400 agatactccc ccggcgagag ctggcacccc tacttggagc cacaaggcct 450 gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500 accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550 cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600 ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650 agatetteag tgeceatgag etgtteeect eeegeetgee caaceagtgt 700 gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750 ccccqaacca ggctgcccag cacccctccc actgccagac tcctgctgcc 800 aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850 cagtegetee atggggtgag acatecteag gatecatgtt ceagtgatge 900 tgggagaaag agaggcccgg gcaccccagc ccccactggc ctcagcgccc 950 ctctgagctt catccctcgc cacttcagac ccaagggagc aggcagcaca 1000 actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050 cgggaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100 <210> 142

<211> 451

<212> PRT

<213> Homo sapiens

<400> 142

Met Val Pro Glu Val Arg Val Leu Ser Ser Leu Leu Gly Leu Ala 1 5 10

Leu Leu Trp Phe Pro Leu Asp Ser His Ala Arg Ala Arg Pro Asp 20 25 30

Met Phe Cys Leu Phe His Gly Lys Arg Tyr Ser Pro Gly Glu Ser 35 40 45

Trp His Pro Tyr Leu Glu Pro Gln Gly Leu Met Tyr Cys Leu Arg
50 55 60

Cys Thr Cys Ser Glu Gly Ala His Val Ser Cys Tyr Arg Leu His
65 70 75

Cys Pro Pro Val His Cys Pro Gln Pro Val Thr Glu Pro Gln Gln 80 85 90

Cys Cys Pro Lys Cys Val Glu Pro His Thr Pro Ser Gly Leu Arg $95\,$ 100 $\,$ 105

Ala Pro Pro Lys Ser Cys Gln His Asn Gly Thr Met Tyr Gln His
110 115 120

Gly	Glu	Ile	Phe	Ser 125	Ala	His	Glu	Leu	Phe 130	Pro	Ser	Arg	Leu	Pro 135
Asn	Gln	Cys	Val	Leu 140	Cys	Ser	Cys	Thr	Glu 145	Gly	Gln	Ile	Tyr	Cys 150
Gly	Leu	Thr	Thr	Cys 155	Pro	Glu	Pro	Gly	Cys 160	Pro	Ala	Pro	Leu	Pro 165
Leu	Pro	Asp	Ser	Cys 170	Cys	Gln	Ala	Суѕ	Lys 175	Asp	Glu	Ala	Ser	Glu 180
Gln	Ser	Asp	Glu	Glu 185	Asp	Ser	Val	Gln	Ser 190	Leu	His	Gly	Val	Arg 195
His	Pro	Gln	Asp	Pro 200	Cys	Ser	Ser	Asp	Ala 205	Gly	Arg	Lys	Arg	Gly 210
Pro	Gly	Thr	Pro	Ala 215	Pro	Thr	Gly	Leu	Ser 220	Ala	Pro	Leu	Ser	Phe 225
Ile	Pro	Arg	His	Phe 230	Arg	Pro	Lys	Gly	Ala 235	Gly	Ser	Thr	Thr	Val 240
Lys	Ile	Val	Leu	Lys 245	Glu	Lys	His	Lys	Lys 250	Ala	Cys	Val	His	Gly 255
Gly	Lys	Thr	Tyr	Ser 260	His	Gly	Glu	Val	Trp 265	His	Pro	Ala	Phe	Arg 270
Ala	Phe	Gly	Pro	Leu 275	Pro	Cys	Ile	Leu	Cys 280	Thr	Cys	Glu	Asp	Gly 285
Arg	Gln	Asp	Суѕ	Gln 290	Arg	Val	Thr	Суѕ	Pro 295	Thr	Glu	Tyr	Pro	Cys 300
Arg	His	Pro	Glu	Lys 305	Val	Ala	Gly	Lys	Cys 310	Cys	Lys	Ile	Cys	Pro 315
Glu	Asp	Lys	Ala	Asp 320	Pro	Gly	His	Ser	Glu 325	Ile	Ser	Ser	Thr	Arg 330
Cys	Pro	Lys	Ala	Pro 335	Gly	Arg	Val	Leu	Val 340	His	Thr	Ser	Val	Ser 345
Pro	Ser	Pro	Asp	Asn 350	Leu	Arg	Arg	Phe	Ala 355	Leu	Glu	His	Glu	Ala 360
Ser	Asp	Leu	Val	Glu 365	Ile	Tyr	Leu	Trp	Lys 370	Leu	Val	Lys	Asp	Glu 375
Glu	Thr	Glu	Ala	Gln 380	Arg	Gly	Glu	Val	Pro 385	Gly	Pro	Arg	Pro	His 390
Ser	Gln	Asn	Leu	Pro 395	Leu	Asp	Ser	Asp	Gln 400	Glu	Ser	Gln	Glu	Ala 405

Arg Leu Pro Glu Arg Gly Thr Ala Leu Pro Thr Ala Arg Trp Pro 410 415 420

Pro Arg Arg Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala 425 430 435

Glu Gly His Gly Gln Ser Arg Gln Ser Asp Gln Asp Ile Thr Lys 440 445 450

Thr

<210> 143

<211> 693

<212> DNA

<213> Homo sapiens

<400> 143

<210> 144

<211> 93

<212> PRT

<213> Homo sapiens

<400> 144

Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly
1 5 10 15

Ala Gly Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro
20 25 30

Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln 35 40 45

Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu 50 55 60

Leu Ala Thr Leu Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala 65 70 75

Trp Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Ser Gly 80 85 90

Arg Ser Pro

<210> 145

<211> 1883

<212> DNA

<213> Homo sapiens

<400> 145

caggagagaa ggcaccgccc ccaccccgcc tccaaagcta accctcgggc 50 ttgaggggaa gaggctgact gtacgttcct tctactctgg caccactctc 100 caggetgeca tggggeccag caecectete eteatettgt teettttgte 150 atggtcggga cccctccaag gacagcagca ccaccttgtg gagtacatgg 200 aacgccgact agctgcttta gaggaacggc tggcccagtg ccaggaccag 250 agtagtcggc atgctgctga gctgcgggac ttcaagaaca agatgctgcc 300 actgctggag gtggcagaga aggagcggga ggcactcaga actgaggccg 350 acaccatctc cgggagagtg gatcgtctgg agcgggaggt agactatctg 400 gagacccaga acccagctct gccctgtgta gagtttgatg agaaggtgac 450 tggaggccct gggaccaaag gcaagggaag aaggaatgag aagtacgata 500 tggtgacaga ctgtggctac acaatctctc aagtgagatc aatgaagatt 550 ctgaagcgat ttggtggccc agctggtcta tggaccaagg atccactggg 600 gcaaacagag aagatctacg tgttagatgg gacacagaat gacacagcct 650 ttgtcttccc aaggetgegt gacttcaccc ttgccatggc tgcccggaaa 700 getteeegag teegggtgee etteeeetgg gtaggeacag ggeagetggt 750 atatggtggc tttctttatt ttgctcggag gcctcctgga agacctggtg 800 gaggtggtga gatggagaac actttgcagc taatcaaatt ccacctggca 850 aaccgaacag tggtggacag ctcagtattc ccagcagagg ggctgatccc 900

cccctacggc ttgacagcag acacctacat cgacctggta gctgatgagg 950 aaggtctttg ggctgtctat gccacccggg aggatgacag gcacttgtgt 1000 ctggccaagt tagatccaca gacactggac acagagcagc agtgggacac 1050 accatgtccc agagagaatg ctgaggctgc ctttgtcatc tgtgggaccc 1100 tctatgtcgt ctataacacc cgtcctgcca gtcgggcccg catccagtgc 1150 tcctttgatg ccagcggcac cctgacccct gaacgggcag cactccctta 1200 ttttccccgc agatatggtg cccatgccag cctccgctat aacccccgag 1250 aacgccagct ctatgcctgg gatgatggct accagattgt ctataagctg 1300 gagatgagga agaaagagga ggaggtttga ggagctagcc ttgttttttg 1350 catctttctc actcccatac atttatatta tatccccact aaatttcttg 1400 ttcctcattc ttcaaatgtg ggccagttgt ggctcaaatc ctctatattt 1450 ttagccaatg gcaatcaaat tettteaget cetttgttte atacggaact 1500 ccagatcctg agtaatcctt ttagagcccg aagagtcaaa accctcaatg 1550 ttccctcctg ctctcctgcc ccatgtcaac aaatttcagg ctaaggatgc 1600 cccagaccca gggctctaac cttgtatgcg ggcaggccca gggagcaggc 1650 agcagtgttc ttcccctcag agtgacttgg ggagggagaa ataggaggag 1700 acgtccaget etgteetete tteeteacte etecetteag tgteetgagg 1750 aacaggactt tctccacatt gttttgtatt gcaacatttt gcattaaaag 1800 aaaaaaaaaa aaaaaaaaaa aaa 1883

<210> 146

<211> 406

<212> PRT

<213> Homo sapiens

<400> 146

Met Gly Pro Ser Thr Pro Leu Leu Ile Leu Phe Leu Leu Ser Trp
1 5 10 15

Ser Gly Pro Leu Gln Gly Gln Gln His His Leu Val Glu Tyr Met 20 25 30

Glu Arg Arg Leu Ala Ala Leu Glu Glu Arg Leu Ala Gln Cys Gln 35 40 45

Asp Gln Ser Ser Arg His Ala Ala Glu Leu Arg Asp Phe Lys Asn

Lys	Met	Leu	Pro	Leu 65	Leu	Glu	Val	Ala	Glu 70	Lys	Glu	Arg	Glu	Ala 75
Leu	Arg	Thr	Glu	Ala 80	Asp	Thr	Ile	Ser	Gly 85	Arg	Val	Asp	Arg	Leu 90
Glu	Arg	Glu	Val	Asp 95	Tyr	Leu	Glu	Thr	Gln 100	Asn	Pro	Ala	Leu	Pro 105
Cys	Val	Glu	Phe	Asp 110	Glu	Lys	Val	Thr	Gly 115	Gly	Pro	Gly	Thr	Lys 120
Gly	Lys	Gly	Arg	Arg 125	Asn	Glu	Lys	Tyr	Asp 130	Met	Val	Thr	Asp	Cys 135
Gly	Tyr	Thr	Ile	Ser 140	Gl'n	Val	Arg	Ser	Met 145	Lys	Ile	Leu	Lys	Arg 150
Phe	Gly	Gly	Pro	Ala 155	Gly	Leu	Trp	Thr	Lys 160	Asp	Pro	Leu	Gly	Gln 165
Thr	Glu	Lys	Ile	Tyr 170	Val	Leu	Asp	Gly	Thr 175	Gln	Asn	Asp	Thr	Ala 180
Phe	Val	Phe	Pro	Arg 185	Leu	Arg	Asp	Phe	Thr 190	Leu	Ala	Met	Ala	Ala 195
Arg	Lys	Ala	Ser	Arg 200	Val	Arg	Val	Pro	Phe 205	Pro	Trp	Val	Gly	Thr 210
Gly	Gln	Leu	Val	Tyr 215	Gly	Gly	Phe	Leu	Tyr 220	Phe	Ala	Arg	Arg	Pro 225
Pro	Gly	Arg	Pro	Gly 230	Gly	Gly	Gly	Glu	Met 235	Glu	Asn	Thr	Leu	Gln 240
Leu	Ile	Lys	Phe	His 245	Leu	Ala	Asn	Arg	Thr 250	Val	Val	Asp	Ser	Ser 255
Val	Phe	Pro	Ala	Glu 260	Gly	Leu	Ile	Pro	Pro 265	Tyr	Gly	Leu	Thr	Ala 270
Asp	Thr	Tyr	Ile	Asp 275	Leu	Val	Ala	Asp	Glu 280	Glu	Gly	Leu	Trp	Ala 285
Val	Tyr	Ala	Thr	Arg 290	Glu	Asp	Asp	Arg	His 295	Leu	Cys	Leu	Ala	Lys 300
Leu	Asp	Pro	Gln	Thr 305	Leu	Asp	Thr	Glu	Gln 310	Gln	Trp	Asp	Thr	Pro 315
Cys	Pro	Arg	Glu	Asn 320	Ala	Glu	Ala	Ala	Phe 325	Val	Ile	Cys	Gly	Thr 330
Leu	Tyr	Val	Val	Tyr	Asn	Thr	Arg	Pro	Ala	Ser	Arg	Ala	Arg	Ile

335 340 345

Gln Cys Ser Phe Asp Ala Ser Gly Thr Leu Thr Pro Glu Arg Ala 350 355 360

Ala Leu Pro Tyr Phe Pro Arg Arg Tyr Gly Ala His Ala Ser Leu 365 370 375

Arg Tyr Asn Pro Arg Glu Arg Gln Leu Tyr Ala Trp Asp Asp Gly 380 385 390

Tyr Gln Ile Val Tyr Lys Leu Glu Met Arg Lys Lys Glu Glu Glu 395 400 405

Val

<210> 147

<211> 2052

<212> DNA

<213> Homo sapiens

<400> 147

gacagetgtg tetegatgga gtagactete agaacagege agtttgeeet 50 ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100 gttctcctct tctctctaat ccatccgtca cctctcctgt catccgtttc 150 catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200 ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250 gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 300 gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350 aggggccagt tctctagcgt ggtccacctc tacagggacg ggaaggacca 400 gccatttatg cagatgccac agtatcaagg caggacaaaa ctggtgaagg 450 attctattgc ggaggggcgc atctctctga ggctggaaaa cattactgtg 500 ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550 gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600 tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650 tcgggctggt tcccccggcc cacagcgaag tggaaaggtc cacaaggaca 700 ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750 atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800 tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850

aggagatacc tttttcgagc ctatatcgtg gcacctggct accaaagtac 900 tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950 ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000 aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050 tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100 aaaactgtaa cccatagaaa agctccccag gaggtgcctc actctgagaa 1150 gagatttaca aggaagagtg tggtggcttc tcagagtttc caagcaggga 1200 aacattactq qqaqqtqqac qqaqqacaca ataaaaqqtq qcqcqtqqqa 1250 gtgtgccggg atgatgtgga caggaggaag gagtacgtga ctttgtctcc 1300 cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350 cattaaatcc ccgttttatc agcgtcttcc ccaggacccc acctacaaaa 1400 ataggggtct tcctggacta tgagtgtggg accatctcct tcttcaacat 1450 aaatgaccag tcccttattt ataccctgac atgtcggttt gaaggcttat 1500 tgaggcccta cattgagtat ccgtcctata atgagcaaaa tggaactccc 1550 atagtcatct gcccagtcac ccaggaatca gagaaagagg cctcttggca 1600 aagggeetet geaateceag agacaageaa cagtgagtee teeteacagg 1650 caaccacgcc cttcctcccc aggggtgaaa tgtaggatga atcacatccc 1700 acattettet ttagggatat taaggtetet eteceagate caaagteeeg 1750 cagcagccgg ccaaggtggc ttccagatga agggggactg gcctgtccac 1800 atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850 cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900 ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950 tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000 acagagtgta tcctaatggt ttgttcatta tattacactt tcagtaaaaa 2050 aa 2052

Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Lys Leu Gly

<210> 148

<211> 500

<212> PRT

<213> Homo sapiens

<400> 148

Ser Gly Gln Trp Gln Val Phe Gly Pro Asp Lys Pro Val Gln Ala Leu Val Gly Glu Asp Ala Ala Phe Ser Cys Phe Leu Ser Pro Lys 35 Thr Asn Ala Glu Ala Met Glu Val Arg Phe Phe Arg Gly Gln Phe 50 Ser Ser Val Val His Leu Tyr Arg Asp Gly Lys Asp Gln Pro Phe Met Gln Met Pro Gln Tyr Gln Gly Arg Thr Lys Leu Val Lys Asp Ser Ile Ala Glu Gly Arg Ile Ser Leu Arg Leu Glu Asn Ile Thr Val Leu Asp Ala Gly Leu Tyr Gly Cys Arg Ile Ser Ser Gln Ser Tyr Tyr Gln Lys Ala Ile Trp Glu Leu Gln Val Ser Ala Leu Gly 125 130 Ser Val Pro Leu Ile Ser Ile Thr Gly Tyr Val Asp Arg Asp Ile Gln Leu Cys Gln Ser Ser Gly Trp Phe Pro Arg Pro Thr Ala 155 Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Thr Asp Ser Arg 170 175 180 Thr Asn Arg Asp Met His Gly Leu Phe Asp Val Glu Ile Ser Leu 185 Thr Val Gln Glu Asn Ala Gly Ser Ile Ser Cys Ser Met Arg His 200 210 Ala His Leu Ser Arg Glu Val Glu Ser Arg Val Gln Ile Gly Asp 215 Thr Phe Phe Glu Pro Ile Ser Trp His Leu Ala Thr Lys Val Leu 230 Gly Ile Leu Cys Cys Gly Leu Phe Phe Gly Ile Val Gly Leu Lys 245 250 255 Ile Phe Phe Ser Lys Phe Gln Trp Lys Ile Gln Ala Glu Leu Asp 265 Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys 275 280 285 His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys

Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro

Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro 305 310 315

Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val 320 325 330

Val Ala Ser Gln Ser Phe Gln Ala Gly Lys His Tyr Trp Glu Val 335 340 345

Asp Gly Gly His Asn Lys Arg Trp Arg Val Gly Val Cys Arg Asp 350 355 360

Asp Val Asp Arg Arg Lys Glu Tyr Val Thr Leu Ser Pro Asp His 365 370 375

Gly Tyr Trp Val Leu Arg Leu Asn Gly Glu His Leu Tyr Phe Thr 380 385 390

Leu Asn Pro Arg Phe Ile Ser Val Phe Pro Arg Thr Pro Pro Thr 395 400 405

Lys Ile Gly Val Phe Leu Asp Tyr Glu Cys Gly Thr Ile Ser Phe 410 415 420

Phe Asn Ile Asn Asp Gln Ser Leu Ile Tyr Thr Leu Thr Cys Arg
425 430 435

Phe Glu Gly Leu Leu Arg Pro Tyr Ile Glu Tyr Pro Ser Tyr Asn 440 445 450

Glu Gln Asn Gly Thr Pro Ile Val Ile Cys Pro Val Thr Gln Glu 455 460 465

Ser Glu Lys Glu Ala Ser Trp Gln Arg Ala Ser Ala Ile Pro Glu 470 475 480

Thr Ser Asn Ser Glu Ser Ser Ser Gln Ala Thr Thr Pro Phe Leu 485 490 495

Pro Arg Gly Glu Met 500

<210> 149

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 149

gcgtggtcca cctctacagg gacg 24

<210> 150

<211> 23

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 150
 ggaactgacc cagtgctgac acc 23
<210> 151
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 151
 gcagatgcca cagtatcaag gcaggacaaa actggtgaag gattc 45
<210> 152
<211> 2294
<212> DNA
<213> Homo sapiens
<400> 152
 gcgatggtgc gcccggtggc ggtggcggcg gcggttgcgg aggcttcctt 50
ggtcggattg caacgaggag aagatgactg accaaccgac tggctgaatg 100
aatgaatggc ggagccgagc gcgccatgag gagcctgccg agcctgggcg 150
geetegeect gttgtgetge geegeegeeg eegeegeegt egeeteagee 200
gcctcggcgg ggaatgtcac cggtggcggc ggggccgcgg ggcaggtgga 250
cgcgtcgccg ggccccgggt tgcggggcga gcccagccac cccttcccta 300
gggcgacggc tcccacggcc caggccccga ggaccgggcc cccgcgcgcc 350
acceptccacc gacccctggc tgcgacttct ccagcccagt ccccggagac 400
cacccctctt tgggcgactg ctggaccctc ttccaccacc tttcaggcgc 450
cgctcggccc ctcgccgacc acccctccgg cggcggaacg cacttcgacc 500
acctctcagg cgccgaccag acccgcgccg accacccttt cgacgaccac 550
tggcccggcg ccgaccaccc ctgtagcgac caccgtaccg gcgcccacga 600
ctccccggac cccgaccccc gatctcccca gcagcagcaa cagcagcgtc 650
ctccccaccc cacctgccac cgaggccccc tcttcgcctc ctccagagta 700
tgtatgtaac tgctctgtgg ttggaagcct gaatgtgaat cgctgcaacc 750
agaccacagg gcagtgtgag tgtcggccag gttatcaggg gcttcactgt 800
```

gaaacctgca aagagggctt ttacctaaat tacacttctg ggctctgtca 850 gccatgtgac tgtagtccac atggagctct cagcataccg tgcaacaggt 900 aagcaacaga gggtggaact gaagtttatt ttattttagc aagggaaaaa 950 aaaaggctgc tactctcaag gaccatactg gtttaaacaa aggaggatga 1000 gggtcataga tttacaaaat attttatata cttttattct cttactttat 1050 atgttatatt taatgtcagg atttaaaaac atctaattta ctgatttagt 1100 tcttcaaaag cactagagtc gccaattttt ctctgggata atttctgtaa 1150 atttcatggg aaaaaattat tgaagaataa atctgctttc tggaagggct 1200 ttcaggcatg aaacctgcta ggaggtttag aaatgttctt atgtttatta 1250 atataccatt ggagtttgag gaaatttgtt gtttggttta tttttctctc 1300 taatcaaaat totacatttg tttotttgga catotaaago ttaacctggg 1350 ggtaccctaa tttatttaac tagtggtaag tagactggtt ttactctatt 1400 taccagtaca tttttgagac caaaagtaga ttaagcagga attatcttta 1450 aactattatg ttatttggag gtaatttaat ctagtggaat aatgtactgt 1500 tatctaagca tttgccttgt actgcactga aagtaattat tctttgacct 1550 tatgtgaggc acttggcttt ttgtggaccc caagtcaaaa aactgaagag 1600 acagtattaa ataatgaaaa aaataatgac aggttatact cagtgtaacc 1650 tgggtataac ccaagatetg etgecaetta egagetgtgt teettgggea 1700 agtaatttcc tttcactgag cttgtttctt ctcaaggttg ttgtgaagat 1750 taaatgagtt gatatatata aaatgcctag cacatgtcac tcaataaatt 1800 ctggtttgtt ttaatttcaa aggaatatta tggactgaaa tgagagaaca 1850 tgttttaaga acttttagct ccttgacaaa gaagtgcttt atactttagc 1900 actaaatatt ttaaatgctt tataaatgat attatactgt tatggaatat 1950 tgtatcatat tgtagtttat taaaaatgta gaagaggctg ggcgcggtgg 2000 ctcacgcctg taatcctagc actttgggag gccaaggcgg gtggatcact 2050 tgaggccagg agttctagat gagcctggcc agcacagtga aaccccgtct 2100 ctactaaaaa tacaaacaaa ttagctgggc gtggtggcac acacctgtag 2150 teccagetae tegggagget gaggeaggag aateggttga accegggagg 2200

<210> 153 <211> 258 <212> PRT <213> Homo sapiens														
<400 Met 1			Leu	Pro 5	Ser	Leu	Gly	Gly	Leu 10	Ala	Leu	Leu	Cys	Cys 15
Ala	Ala	Ala	Ala	Ala 20	Ala	Val	Ala	Ser	Ala 25	Ala	Ser	Ala	Gly	Asn 30
Val	Thr	Gly	Gly	Gly 35	Gly	Ala	Ala	Gly	Gln 40	Val	Asp	Ala	Ser	Pro 45
Gly	Pro	Gly	Leu	Arg 50	Gly	Glu	Pro	Ser	His 55	Pro	Phe	Pro	Arg	Ala 60
Thr	Ala	Pro	Thr	Ala 65	Gln	Ala	Pro	Arg	Thr 70	Gly	Pro	Pro	Arg	Ala 75
Thr	Val	His	Arg	Pro 80	Leu	Ala	Ala	Thr	Ser 85	Pro	Ala	Gln	Ser	Pro 90
Glu	Thr	Thr	Pro	Leu 95	Trp	Ala	Thr	Ala	Gly 100	Pro	Ser	Ser	Thr	Thr 105
Phe	Gln	Ala	Pro	Leu 110	Gly	Pro	Ser	Pro	Thr 115	Thr	Pro	Pro	Ala	Ala 120
Glu	Arg	Thr	Ser	Thr 125	Thr	Ser	Gln	Ala	Pro 130	Thr	Arg	Pro	Ala	Pro 135
Thr	Thr	Leu	Ser	Thr 140	Thr	Thr	Gly	Pro	Ala 145	Pro	Thr	Thr	Pro	Val 150
Ala	Thr	Thr	Val	Pro 155	Ala	Pro	Thr	Thr	Pro 160	Arg	Thr	Pro	Thr	Pro 165
Asp	Leu	Pro	Ser	Ser 170	Ser	Asn	Ser	Ser	Val 175	Leu	Pro	Thr	Pro	Pro 180
Ala	Thr	Glu	Ala	Pro 185	Ser	Ser	Pro	Pro	Pro 190	Glu	Tyr	Val	Cys	Asn 195
Cys	Ser	Val	Val	Gly 200	Ser	Leu	Asn	Val	Asn 205	Arg	Cys	Asn	Gln	Thr 210
Thr	Gly	Gln	Cys	Glu 215	Cys	Arg	Pro	Gly	Tyr 220	Gln	Gly	Leu	His	Cys 225
Glu	Thr	Cys	Lys	Glu 230	Gly	Phe	Tyr	Leu	Asn 235	Tyr	Thr	Ser	Gly	Leu 240

```
Cys Gln Pro Cys Asp Cys Ser Pro His Gly Ala Leu Ser Ile Pro
                  245
                                      250
 Cys Asn Arg
<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 154
 aactgctctg tggttggaag cctg 24
<210> 155
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 155
 cagtcacatg gctgacagac ccac 24
<210> 156
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 156
aggttatcag gggcttcact gtgaaacctg caaagagg 38
<210> 157
<211> 689
<212> DNA
<213> Homo sapiens
<400> 157
 tgcggcgcag tgtagacctg ggaggatggg cggcctgctg ctggctgctt 50
 ttctggcttt ggtctcggtg cccagggccc aggccgtgtg gttgggaaga 100
 ctggaccctg agcagcttct tgggccctgg tacgtgcttg cggtggcctc 150
 ccgggaaaag ggctttgcca tggagaagga catgaagaac gtcgtggggg 200
 tggtggtgac cctcactcca gaaaacaacc tgcggacgct gtcctctcag 250
 cacgggctgg gagggtgtga ccagagtgtc atggacctga taaagcgaaa 300
```

ctccggatgg gtgtttgaga atccctcaat aggcgtgctg gagctctggg 350
tgctggccac caacttcaga gactatgcca tcatcttcac tcagctggag 400
ttcggggacg agcccttcaa caccgtggag ctgtacagtc tgacggagac 450
agccagccag gaggccatgg ggctcttcac caagtggagc aggagcctgg 500
gcttcctgtc acagtagcag gcccagctgc agaaggacct cacctgtgct 550
cacaagatcc ttctgtgagt gctgcgtccc cagtagggat ggcgcccaca 600
gggtcctgtg acctcggca gtgtccaccc acctcgctca gcggctcccg 650
gggcccagca ccagctcaga ataaagcgat tccacagca 689

<210> 158

<211> 163

<212> PRT

<213> Homo sapiens

<400> 158

Met Gly Gly Leu Leu Leu Ala Ala Phe Leu Ala Leu Val Ser Val 1 5 10 15

Pro Arg Ala Gln Ala Val Trp Leu Gly Arg Leu Asp Pro Glu Gln 20 25 30

Leu Leu Gly Pro Trp Tyr Val Leu Ala Val Ala Ser Arg Glu Lys 35 40 45

Gly Phe Ala Met Glu Lys Asp Met Lys Asn Val Val Gly Val Val
50 55 60

Val Thr Leu Thr Pro Glu Asn Asn Leu Arg Thr Leu Ser Ser Gln 65 70 . 75

His Gly Leu Gly Gly Cys Asp Gln Ser Val Met Asp Leu Ile Lys $80 \\ 85 \\ 90$

Arg Asn Ser Gly Trp Val Phe Glu Asn Pro Ser Ile Gly Val Leu 95 100 105

Glu Leu Trp Val Leu Ala Thr Asn Phe Arg Asp Tyr Ala Ile Ile 110 115 120

Phe Thr Gln Leu Glu Phe Gly Asp Glu Pro Phe Asn Thr Val Glu 125 130 135

Leu Tyr Ser Leu Thr Glu Thr Ala Ser Gln Glu Ala Met Gly Leu 140 145 150

Phe Thr Lys Trp Ser Arg Ser Leu Gly Phe Leu Ser Gln 155 <211> 1665 <212> DNA

<213> Homo sapiens

<400> 159

aacagacgtt ccctcgcggc cctggcacct ctaaccccag acatgctgct 50 gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100 gtaaactgct gacgatgcag agttccgtga cggtgcagga aggcctgtgt 150 gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200 tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250 aggatgetee agtggeeaca aacaacceag etegggeagt gtgggaggag 300 actegggace gattecacet cettggggac ceacatacea agaattgeac 350 cctgagcatc agagatgcca gaagaagtga tgcggggaga tacttctttc 400 gtatggagaa aggaagtata aaatggaatt ataaacatca ccggctctct 450 gtgaatgtga cagcettgae ceacaggeee aacateetea teecaggeae 500 cctggagtcc ggctgccccc agaatctgac ctgctctgtg ccctgggcct 550 gtgagcaggg gacacccct atgatetect ggatagggae etecgtgtee 600 cccctggacc cctccaccac ccgctcctcg gtgctcaccc tcatcccaca 650 gccccaggac catggcacca gcctcacctg tcaggtgacc ttccctgggg 700 ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750 cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800 cttgggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850 tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900 ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaacccggg 950 ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000 gcagagetea gaaccetete ggeteteage aggtetacet gaacgtetee 1050 ctgcagagca aagccacatc aggagtgact cagggggtgg tcgggggggc 1100 tggagccaca gccctggtct tcctgtcctt ctgcgtcatc ttcgttgtag 1150 tgaggtcctg caggaagaaa tcggcaaggc cagcagcggg cgtgggagat 1200 acgggcatag aggatgcaaa cgctgtcagg ggttcagcct ctcaggggcc 1250 cctgactgaa ccttgggcag aagacagtcc cccagaccag cctcccccag 1300

agettecaga tggtgaagee ttgggaeteg eggggaeagg aggeeaetga 1400 cacegagtae teggagetea agateeaeag atgagaaaet geagagaete 1450 accetgattg agggateae geeceteeag geaagggaga agteagagge 1500 tgattettgt agaattaaea geeceteaaeg tgatgageta tgataaeaet 1550 atgaattatg tgeagagtga aaageaeaea ggetttagag teaaagtate 1600 teaaaeetga ateeaeaetg tgeeceteet tttatttt taaetaaaag 1650 acagaeaaat teeta 1665

<210> 160

<211> 463

<212> PRT

<213> Homo sapiens

<400> 160

Met Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala 1 5 10 15

Glu Gly Gln Thr Ser Lys Leu Leu Thr Met Gln Ser Ser Val Thr 20 25 30

Val Gln Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr 35 40 45

Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val Val His Gly Tyr
50 55 60

Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala Pro Val Ala 65 70 75

Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg 80 85 90

Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser 95 100 105

Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg
110 115 120

Met Glu Lys Gly Ser Ile Lys Trp Asn Tyr Lys His His Arg Leu 125 130 135

Ser Val Asn Val Thr Ala Leu Thr His Arg Pro Asn Ile Leu Ile 140 145 150

Pro Gly Thr Leu Glu Ser Gly Cys Pro Gln Asn Leu Thr Cys Ser 155 160 165

Val Pro Trp Ala Cys Glu Gln Gly Thr Pro Pro Met Ile Ser Trp 170 175 180

Ile	Gly	Thr	Ser	Val 185	Ser	Pro	Leu	Asp	Pro 190	Ser	Thr	Thr	Arg	Ser 195
Ser	Val	Leu	Thr	Leu 200	Ile	Pro	Gln	Pro	Gln 205	Asp	His	Gly	Thr	Ser 210
Leu	Thr	Cys	Gln	Val 215	Thr	Phe	Pro	Gly	Ala 220	Ser	Val	Thr	Thr	Asn 225
Lys	Thr	Val	His	Leu 230	Asn	Val	Ser	Tyr	Pro 235	Pro	Gln	Asn	Leu	Thr 240
Met	Thr	Val	Phe	Gln 245	Gly	Asp	Gly	Thr	Val 250	Ser	Thr	Val	Leu	Gly 255
Asn	Gly	Ser	Ser	Leu 260	Ser	Leu	Pro	Glu	Gly 265	Gln	Ser	Leu	Arg	Leu 270
Val	Cys	Ala	Val	Asp 275	Ala	Val	Asp	Ser	Asn 280	Pro	Pro	Ala	Arg	Leu 285
Ser	Leu	Ser	Trp	Arg 290	Gly	Leu	Thr	Leu	Cys 295	Pro	Ser	Gln	Pro	Ser 300
Asn	Pro	Gly	Val	Leu 305	Glu	Leu	Pro	Trp	Val 310	His	Leu	Arg	Asp	Ala 315
Ala	Glu	Phe	Thr	Cys 320	Arg	Ala	Gln	Asn	Pro 325	Leu	Gly	Ser	Gln	Gln 330
Val	Tyr	Leu	Asn	Val 335	Ser	Leu	Gln	Ser	Lys 340	Ala	Thr	Ser	Gly	Val 345
Thr	Gln	Gly	Val	Val 350	Gly	Gly	Ala	Gly	Ala 355	Thr	Ala	Leu	Val	Phe 360
Leu	Ser	Phe	Cys	Val 365	Ile	Phe	Val	Val	Val 370	Arg	Ser	Cys	Arg	Lys 375
Lys	Ser	Ala	Arg	Pro 380	Ala	Ala	Gly	Val	Gly 385	Asp	Thr	Gly	Ile	Glu 390
Asp	Ala	Asn	Ala	Val 395	Arg	Gly	Ser	Ala	Ser 400	Gln	Gly	Pro	Leu	Thr 405
Glu	Pro	Trp	Ala	Glu 410	Asp	Ser	Pro	Pro	Asp 415	Gln	Pro	Pro	Pro	Ala 420
Ser	Ala	Arg	Ser	Ser 425	Val	Gly	Glu	Gly	Glu 430	Leu	Gln	Tyr	Ala	Ser 435
Leu	Ser	Phe	Gln	Met 440	Val	Lys	Pro	Trp	Asp 445	Ser	Arg	Gly	Gln	Glu 450
Ala	Thr	Asp	Thr	Glu 455	Tyr	Ser	Glu	Ile	Lys 460	Ile	His	Arg		

```
<210> 161
<211> 739
<212> DNA
<213> Homo sapiens
<400> 161
 gacgcccagt gacctgccga ggtcggcagc acagagctct ggagatgaag 50
 accetgitee tgggtgteac geteggeetg geegetgeec tgteetteac 100
 cctggaggag gaggatatca cagggacctg gtacgtgaag gccatggtgg 150
 tcgataagga ctttccggag gacaggaggc ccaggaaggt gtccccagtg 200
 aaggtgacag ccctgggcgg tgggaagttg gaagccacgt tcaccttcat 250
 gagggaggat cggtgcatcc agaagaaaat cctgatgcgg aagacggagg 300
 agcctggcaa atacagcgcc tatgggggca ggaagctcat gtacctgcag 350
 gagctgccca ggagggacca ctacatcttt tactgcaaag accagcacca 400
 tgggggcctg ctccacatgg gaaagcttgt gggtaggaat tctgatacca 450
accgggaggc cctggaagaa tttaagaaat tggtgcagcg caagggactc 500
 tcggaggagg acattttcac gcccctgcag acgggaagct gcgttcccga 550
acactaggca gcccccgggt ctgcacctcc agagcccacc ctaccaccag 600
acacagagee eggaceacet ggacetaece tecageeatg accetteeet 650
aaaaaaaaaa aaaaaaaaa aaaaaaaaa 739
<210> 162
<211> 170
<212> PRT
<213> Homo sapiens
<400> 162
Met Lys Thr Leu Phe Leu Gly Val Thr Leu Gly Leu Ala Ala Ala
                                                       15
Leu Ser Phe Thr Leu Glu Glu Glu Asp Ile Thr Gly Thr Trp Tyr
                                    25
Val Lys Ala Met Val Val Asp Lys Asp Phe Pro Glu Asp Arg Arg
                                                       45
Pro Arg Lys Val Ser Pro Val Lys Val Thr Ala Leu Gly Gly Gly
                                                       60
```

Lys Leu Glu Ala Thr Phe Thr Phe Met Arg Glu Asp Arg Cys Ile

65

```
Gln Lys Lys Ile Leu Met Arg Lys Thr Glu Glu Pro Gly Lys Tyr
 Ser Ala Tyr Gly Gly Arg Lys Leu Met Tyr Leu Gln Glu Leu Pro
                   95
 Arg Arg Asp His Tyr Ile Phe Tyr Cys Lys Asp Gln His His Gly
 Gly Leu Leu His Met Gly Lys Leu Val Gly Arg Asn Ser Asp Thr
                  125
 Asn Arg Glu Ala Leu Glu Glu Phe Lys Lys Leu Val Gln Arg Lys
                  140
 Gly Leu Ser Glu Glu Asp Ile Phe Thr Pro Leu Gln Thr Gly Ser
                                      160
 Cys Val Pro Glu His
                  170
<210> 163
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 163
 ggagatgaag accetqttcc tg 22
<210> 164
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 164
 ggagatgaag accetgttcc tgggtg 26
<210> 165
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 165
gtcctccgga aagtccttat c 21
<210> 166
<211> 25
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 166
 gcctagtgtt cgggaacgca gcttc 25
<210> 167
<211> 50.
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 167
cagggacctg gtacgtgaag gccatggtgg tcgataagga ctttccggaq 50
<210> 168
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 168
ctgtccttca ccctggagga ggaggatatc acagggacct ggtac 45
<210> 169
<211> 1204
<212> DNA
<213> Homo sapiens
<400> 169
 gttccgcaga tgcagaggtt gaggtggctg cgggactgga agtcatcggg 50
cagaggtete acageageea aggaacetgg ggeeegetee teceeetee 100
 aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 150
gtagggggag agaccaggat catcaagggg ttcgagtgca agcctcactc 200
ccagccctgg caggcagccc tgttcgagaa gacgcggcta ctctgtgggg 250
cgacgctcat cgccccaga tggctcctga cagcagccca ctgcctcaag 300
ccccgctaca tagttcacct ggggcagcac aacctccaga aggaggaggg 350
ctgtgagcag acccggacag ccactgagtc cttccccac cccggcttca 400
acaacagcct ccccaacaaa gaccaccgca atgacatcat gctggtgaag 450
atggcatcgc cagtctccat cacctgggct gtgcgacccc tcaccctctc 500
```

<210> 170

<211> 250

<212> PRT

<213> Homo sapiens

<400> 170

Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu 1 5 10 15

Val Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro 20 25 30

His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu
35 40 45

Leu Cys Gly Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala
50 55 60

Ala His Cys Leu Lys Pro Arg Tyr Ile Val His Leu Gly Gln His
65 70 75

Asn Leu Gln Lys Glu Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr 80 85 90

Glu Ser Phe Pro His Pro Gly Phe Asn Asn Ser Leu Pro Asn Lys 95 100 105

```
Asp His Arg Asn Asp Ile Met Leu Val Lys Met Ala Ser Pro Val
                 110
                                      115
 Ser Ile Thr Trp Ala Val Arg Pro Leu Thr Leu Ser Ser Arg Cys
                                      130
 Val Thr Ala Gly Thr Ser Cys Leu Ile Ser Gly Trp Gly Ser Thr
                 140
 Ser Ser Pro Gln Leu Arg Leu Pro His Thr Leu Arg Cys Ala Asn
 Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn Ala Tyr Pro Gly
                 170
                                      175
                                                          180
 Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln Glu Gly Gly
                 185
                                      190
 Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asn
 Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys Ala
                 215
                                      220
 Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val
                 230
                                      235
 Asp Trp Ile Gln Glu Thr Met Lys Asn Asn
                 245
<210> 171
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 171
 ggctgcggga ctggaagtca tcggg 25
<210> 172
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 172
ctccaggcca tgaggattct gcag 24
<210> 173
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 173
 cctctggtct gtaaccag 18
<210> 174
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 174
tctgtgatgt tgccggggta ggcg 24
<210> 175
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 175
cgtgtagaca ccaggctttc gggtg 25
<210> 176
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 176
cccttgatga tcctggtc 18
<210> 177
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 177
aggccatgag gattctgcag ttaatcctgc ttgctctggc aacagggctt 50
<210> 178
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 178
gagagaccag gatcatcaag gggttcgagt gcaagcctca ctc 43
<210> 179
<211> 907
<212> DNA
<213> Homo sapiens
<400> 179
gagcagtgtt ctgctggagc cgatgccaaa aaccatgcat ttcttattca 50
gattcattgt tttcttttat ctgtggggcc tttttactgc tcagagacaa 100
aagaaagagg agagcaccga agaagtgaaa atagaagttt tgcatcgtcc 150
agaaaactgc tctaagacaa gcaagaaggg agacctacta aatgcccatt 200
atgacggcta cctggctaaa gacggctcga aattctactg cagccggaca 250
caaaatgaag gccaccccaa atggtttgtt cttggtgttg ggcaagtcat 300
aaaaggccta gacattgcta tgacagatat gtgccctgga gaaaagcgaa 350
aagtagttat accccttca tttgcatacg gaaaggaagg ctatgcagaa 400
ggcaagattc caccggatgc tacattgatt tttgagattg aactttatgc 450
 tgtgaccaaa ggaccacgga gcattgagac atttaaacaa atagacatgg 500
 acaatgacag gcagctctct aaagccgaga taaacctcta cttgcaaagg 550
gaatttgaaa aagatgagaa gccacgtgac aagtcatatc aggatgcagt 600
tttagaagat atttttaaga agaatgacca tgatggtgat ggcttcattt 650
ctcccaagga atacaatgta taccaacacg atgaactata gcatatttgt 700
atttctactt tttttttta gctatttact gtactttatg tataaaacaa 750
agtcactttt ctccaagttg tatttgctat ttttccccta tgagaagata 800
ttttgatctc cccaatacat tgattttggt ataataaatg tgaggctgtt 850
aaaaaaa 907
<210> 180
<211> 222
<212> PRT
<213> Homo sapiens
```

Met Pro Lys Thr Met His Phe Leu Phe Arg Phe Ile Val Phe Phe

<400> 180

1

```
Tyr Leu Trp Gly Leu Phe Thr Ala Gln Arg Gln Lys Lys Glu Glu
 Ser Thr Glu Glu Val Lys Ile Glu Val Leu His Arg Pro Glu Asn
 Cys Ser Lys Thr Ser Lys Lys Gly Asp Leu Leu Asn Ala His Tyr
 Asp Gly Tyr Leu Ala Lys Asp Gly Ser Lys Phe Tyr Cys Ser Arg
 Thr Gln Asn Glu Gly His Pro Lys Trp Phe Val Leu Gly Val Gly
                                       85
 Gln Val Ile Lys Gly Leu Asp Ile Ala Met Thr Asp Met Cys Pro
                                      100
                                                          105
 Gly Glu Lys Arg Lys Val Val Ile Pro Pro Ser Phe Ala Tyr Gly
                                      115
 Lys Glu Gly Tyr Ala Glu Gly Lys Ile Pro Pro Asp Ala Thr Leu
                 125
                                      130
                                                          135
 Ile Phe Glu Ile Glu Leu Tyr Ala Val Thr Lys Gly Pro Arg Ser
 Ile Glu Thr Phe Lys Gln Ile Asp Met Asp Asn Asp Arg Gln Leu
                                      160
 Ser Lys Ala Glu Ile Asn Leu Tyr Leu Gln Arg Glu Phe Glu Lys
                 170
                                                          180
 Asp Glu Lys Pro Arg Asp Lys Ser Tyr Gln Asp Ala Val Leu Glu
 Asp Ile Phe Lys Lys Asn Asp His Asp Gly Asp Gly Phe Ile Ser
                 200
                                      205
 Pro Lys Glu Tyr Asn Val Tyr Gln His Asp Glu Leu
                 215
<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 181
gtgttctgct ggagccgatg cc 22
```

<210> 182 <211> 18 <212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 182
 gacatggaca atgacagg 18
<210> 183
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 183
cctttcagga tgtaggag 18
<210> 184
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 184
 gatgtctgcc accccaag 18
<210> 185
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 185
 gcatcctgat atgacttgtc acgtggc 27
<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 186
 tacaagaggg aagaggagtt gcac 24
<210> 187
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 187
 gcccattatg acggctacct ggctaaagac ggctcgaaat tctactgcag 50
cc 52
<210> 188
<211> 573
<212> DNA
<213> Homo sapiens
<400> 188
 cagaaatgca gggaccattg cttcttccag gcctctgctt tctqctgagc 50
 ctctttggag ctgtgactca gaaaaccaaa acttcctgtg ctaagtgccc 100
 cccaaatgct tcctgtgtca ataacactca ctgcacctgc aaccatggat 150
 atacttctgg atctgggcag aaactattca cattcccctt ggagacatgt 200
 aacgccaggc atggtggctc gcgcctgtaa tcccagttct ttgggaagcc 250
 aaggcaggtg gatcacctga ggtcaggagt ttgagaccag cctggccaac 300
 atagtgaaac cccgtgtcta ctaaaaatac aaaaatcagc cgggcgtggt 350
 ggtgcatgcc tgcaatccca gttactcggg aggctgaggc aggagaatcg 400
 cttgaactca ggaggcagaa gttgcagtga acccagatcc tgccattgca 450
 ctccagcatg gatgacagag caagactccg tctcaaaaag aaaagatagt 500
 ttcttgtttc atttcgcgac tgccctctca gtgtttcctg ggatcccctc 550
ccaaataaag tacttatatt ctc 573
<210> 189
<211> 74
<212> PRT
<213> Homo sapiens
<400> 189
Met Gln Gly Pro Leu Leu Pro Gly Leu Cys Phe Leu Leu Ser
  1
                                                          15
Leu Phe Gly Ala Val Thr Gln Lys Thr Lys Thr Ser Cys Ala Lys
Cys Pro Pro Asn Ala Ser Cys Val Asn Asn Thr His Cys Thr Cys
                  35
                                                          45
                                      40
Asn His Gly Tyr Thr Ser Gly Ser Gly Gln Lys Leu Phe Thr Phe
```

Pro Leu Glu Thr Cys Asn Ala Arg His Gly Gly Ser Arg Leu

65

60

```
<210> 190
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 190
agggaccatt gcttcttcca ggcc 24
<210> 191
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 191
cgttacatgt ctccaagggg aatg 24
<210> 192
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 192
cctgtgctaa gtgcccccca aatgcttcct gtgtcaataa cactcactgc 50
<210> 193
<211> 1091
<212> DNA
<213> Homo sapiens
<400> 193
 caaqcaqqtc atccccttgq tgaccttcaa agagaagcag agagggcaga 50
 ggtgggggc acagggaaag ggtgacctct gagattcccc ttttccccca 100
 gactttggaa gtgacccacc atggggctca gcatcttttt gctcctgtgt 150
 gttcttgggc tcagccaggc agccacaccg aagattttca atggcactga 200
 gtgtgggcgt aactcacagc cgtggcaggt ggggctgttt gagggcacca 250
 gcctgcgctg cgggggtgtc cttattgacc acaggtgggt cctcacagcg 300
 geteactgca geggeageag gtactgggtg egectggggg aacacageet 350
 cagccagctc gactggaccg agcagatccg gcacagcggc ttctctgtga 400
 cccatcccgg ctacctggga gcctcgacga gccacgagca cgacctccgg 450
```

<400> 194

Met Gly Leu Ser Ile Phe Leu Leu Cys Val Leu Gly Leu Ser 1 5 10 15

Gln Ala Ala Thr Pro Lys Ile Phe Asn Gly Thr Glu Cys Gly Arg 20 25 30

Asn Ser Gln Pro Trp Gln Val Gly Leu Phe Glu Gly Thr Ser Leu
35 40 45

Arg Cys Gly Gly Val Leu Ile Asp His Arg Trp Val Leu Thr Ala
50 55 60

Ala His Cys Ser Gly Ser Arg Tyr Trp Val Arg Leu Gly Glu His
65 70 75

Ser Leu Ser Gln Leu Asp Trp Thr Glu Gln Ile Arg His Ser Gly 80 85 90

Phe Ser Val Thr His Pro Gly Tyr Leu Gly Ala Ser Thr Ser His 95 100 105

Glu His Asp Leu Arg Leu Leu Arg Leu Arg Leu Pro Val Arg Val
110 115 120

<210> 194

<211> 248

<212> PRT

<213> Homo sapiens

Thr Ser Ser Val Gln Pro Leu Pro Leu Pro Asn Asp Cys Ala Thr 125 130 135

Ala Gly Thr Glu Cys His Val Ser Gly Trp Gly Ile Thr Asn His 140 145 150

Pro Arg Asn Pro Phe Pro Asp Leu Leu Gln Cys Leu Asn Leu Ser 155 160 165

Ile Val Ser His Ala Thr Cys His Gly Val Tyr Pro Gly Arg Ile 170 175 180

Thr Ser Asn Met Val Cys Ala Gly Gly Val Pro Gly Gln Asp Ala 185 190 195

Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Gly Gly Val Leu 200 205 210

Gln Gly Leu Val Ser Trp Gly Ser Val Gly Pro Cys Gly Gln Asp 215 220 225

Gly Ile Pro Gly Val Tyr Thr Tyr Ile Cys Lys Tyr Val Asp Trp 230 235 240

Ile Arg Met Ile Met Arg Asn Asn 245

<210> 195

<211> 1485

<212> DNA

<213> Homo sapiens

<400> 195

geggecacae geagetagee ggagecegga ceaggegeet gtgeeteete 50
etegteeete geegegteeg egaageetgg ageeggeggg ageeeggege 100
tegecatgte gggegagete ageaacaggt tecaaggagg gaaggegtte 150
ggettgetea aageeeggea ggagaggagg etggeegaga teaaeeggga 200
gtttetgtgt gaceagaagt acagtgatga agagaacett ecagaaaage 250
teacageett caaagagaag tacatggagt ttgacetgaa caatgaagge 300
gagattgace tgatgtett aaagaggatg atggagaage ttggtgeec 350
caagacecae etggagatga agaagatgat etcagaggtg acaggaggg 400
teagtgacae tatateetae egagaetttg tgaacatgat getgggaaa 450
eggteggetg teeteaagtt agteatgatg tttgaaggaa aageeaacga 500
gageageece aageeagttg geeeeetee agagagagae attgetagee 550
tgeeetgagg aceeegeetg gaeteeeeag eetteeeae ceatacetee 600

ctcccgatct tgctgccctt cttgacacac tgtgatctct ctctctca 650 tttgtttggt cattgagggt ttgtttgtgt tttcatcaat gtctttgtaa 700 agcacaaatt atctgcctta aaggggctct gggtcgggga atcctgagcc 750 ttgggtcccc tccctcttt cttccctcct tccccgctcc ctgtgcagaa 800 gggctgatat caaaccaaaa actagagggg gcagggccag ggcagggagg 850 cttccagcct gtgttcccct cacttggagg aaccagcact ctccatcctt 900 tcagaaagtc tccaagccaa gttcaggctc actgacctgg ctctgacgag 950 gaccccaggc cactctgaga agaccttgga gtagggacaa ggctgcaggg 1000 cctctttcgg gtttccttgg acagtgccat ggttccagtg ctctggtgtc 1050 acccaggaca cagccactcg gggccccgct gccccagctg atccccactc 1100 gcttggcatt gggagccctt caagaaggta ccagaaggaa ccctccagtc 1200 ctgctctctg gccacacctg tgcaggcagc tgagaggcag cgtgcagccc 1250 tactgtccct tactggggca gcagagggct tcggaggcag aagtgaggcc 1300 tggggtttgg ggggaaaggt cagctcagtg ctgttccacc ttttagggag 1350 gatactgagg ggaccaggat gggagaatga ggagtaaaat gctcacggca 1400 aagtcagcag cactggtaag ccaagactga gaaatacaag gttgcttgtc 1450 tgaccccaat ctgcttgaaa aaaaaaaaa aaaaa 1485

```
<210> 196
```

<211> 150

<212> PRT

<213> Homo sapiens

<400> 196

Met Ser Gly Glu Leu Ser Asn Arg Phe Gln Gly Gly Lys Ala Phe 1 5 10 15

Gly Leu Leu Lys Ala Arg Gln Glu Arg Arg Leu Ala Glu Ile Asn $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Arg Glu Phe Leu Cys Asp Gln Lys Tyr Ser Asp Glu Glu Asn Leu 35 40 45

Pro Glu Lys Leu Thr Ala Phe Lys Glu Lys Tyr Met Glu Phe Asp 50 55 60

Leu Asn Asn Glu Gly Glu Ile Asp Leu Met Ser Leu Lys Arg Met
65 70 75

Met Glu Lys Leu Gly Val Pro Lys Thr His Leu Glu Met Lys Lys 80 85 90

Met Ile Ser Glu Val Thr Gly Gly Val Ser Asp Thr Ile Ser Tyr 95 100 105

Arg Asp Phe Val Asn Met Met Leu Gly Lys Arg Ser Ala Val Leu 110 115 120

Lys Leu Val Met Met Phe Glu Gly Lys Ala Asn Glu Ser Ser Pro 125 130 135

Lys Pro Val Gly Pro Pro Pro Glu Arg Asp Ile Ala Ser Leu Pro 140 145 150

<210> 197

<211> 4842

<212> DNA

<213> Homo sapiens

<400> 197

cgcgctcccc gcgcgcctcc tcgggctcca cgcgtcttqc cccqcaqaqq 50 cagecteete caggageggg geeetgeaca ecatggeece egggtgggea 100 ggggtcggcg ccgccgtgcg cgcccgcctg gcgctggcct tggcgctggc 150 gagcgtcctg agtgggcctc cagccgtcgc ctgccccacc aagtgtacct 200 gctccgctgc cagcgtggac tgccacgggc tgggcctccg cgcggttcct 250 cggggcatcc cccgcaacgc tgagcgcctt gacctggaca gaaataatat 300 caccaggate accaagatgg acttegetgg geteaagaac etecgagtet 350 tgcatctgga agacaaccag gtcagcgtca tcgagagagg cgccttccag 400 gacctgaagc agctagagcg actgcgcctg aacaagaata agctgcaagt 450 ccttccagaa ttgcttttcc agagcacgcc gaagctcacc agactagatt 500 tgagtgaaaa ccagatccag gggatcccga ggaaggcgtt ccgcggcatc 550 accgatgtga agaacctgca actggacaac aaccacatca gctgcattga 600 agatggagcc ttccgagcgc tgcgcgattt ggagatcctt accctcaaca 650 acaacaacat cagtcgcatc ctggtcacca gcttcaacca catgccgaag 700 atccgaactc tgcgcctcca ctccaaccac ctctactgcg actgccacct 750 ggcctggctc tcggattggc tgcgacagcg acggacagtt ggccagttca 800 cactetgcat ggctcetgtg catttgaggg gcttcaacgt ggcggatgtg 850 cagaagaagg agtacgtgtg cccagcccc cactcgqagc ccccatcctq 900

caatgccaac tccatctcct gcccttcgcc ctgcacgtgc agcaataaca 950 tcgtggactg tcgaggaaag ggcttgatgg agattcctgc caacttgccg 1000 gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 1050 tgcaggagcc ttcacccagt acaagaaact gaagcgaata gacatcagca 1100 agaatcagat atcggatatt gctccagatg ccttccaggg cctgaaatca 1150 ctcacatcgc tggtcctgta tgggaacaag atcaccgaga ttgccaaggg 1200 actgtttgat gggctggtgt ccctacagct gctcctcctc aatgccaaca 1250 agatcaactg cctgcgggtg aacacgtttc aggacctgca gaacctcaac 1300 ttgctctccc tgtatgacaa caagctgcag accatcagca aggggctctt 1350 cgcccctctg cagtccatcc agacactcca cttagcccaa aacccatttg 1400 tgtgcgactg ccacttgaag tggctggccg actacctcca ggacaacccc 1450 atcgagacaa geggggeeeg etgeageage eegegeegae tegeeaacaa 1500 gegeateage cagateaaga geaagaagtt eegetgetea ggeteegagg 1550 attaccgcag caggttcagc agcgagtgct tcatggacct cgtgtgcccc 1600 gagaagtgtc gctgtgaggg cacgattgtg gactgctcca accagaagct 1650 ggtccgcatc ccaagccacc tccctgaata tgtcaccgac ctgcgactga 1700 atgacaatga ggtatctgtt ctggaggcca ctggcatctt caagaagttg 1750 cccaacctgc ggaaaataaa tctgagtaac aataagatca aggaggtgcg 1800 agagggagct ttcgatggag cagccagcgt gcaggagctg atgctgacag 1850 ggaaccagct ggagaccgtg cacgggcgcg tgttccgtgg cctcagtggc 1900 ctcaaaacct tgatgctgag gagtaacttg atcagctgtg tgagtaatga 1950 cacctttgcc ggcctgagtt cggtgagact gctgtccctc tatgacaatc 2000 ggatcaccac catcacccct ggggccttca ccacgcttgt ctccctgtcc 2050 accataaacc tcctgtccaa ccccttcaac tgcaactgcc acctggcctg 2100 gctcggcaag tggttgagga agaggcggat cgtcagtggg aaccctaggt 2150 gccagaagcc atttttcctc aaggagattc ccatccagga tgtggccatc 2200 caggacttca cctgtgatgg caacgaggag agtagctgcc agctgagccc 2250 gcgctgcccg gagcagtgca cctgtatgga gacagtggtg cgatgcagca 2300 acaaggggct ccgcgccctc cccagaggca tgcccaagga tgtgaccgag 2350

ctgtacctgg aaggaaacca cctaacagcc gtgcccagag agctgtccgc 2400 cctccgacac ctgacgctta ttgacctgag caacaacagc atcagcatgc 2450 tgaccaatta caccttcagt aacatgtctc acctctccac tctgatcctg 2500 agetacaace ggetgaggtg cateceegte caegeettea aegggetgeg 2550 gtccctgcga gtgctaaccc tccatggcaa tgacatttcc agcgttcctg 2600 aaggeteett caacgacete acatetettt eecatetgge getgggaace 2650 aacccactcc actgtgactg cagtcttcgg tggctgtcgg agtgggtgaa 2700 ggcggggtac aaggagcctg gcatcgcccg ctgcagtagc cctgagccca 2750 tggctgacag gctcctgctc accaccccaa cccaccgctt ccagtgcaaa 2800 gggccagtgg acatcaacat tgtggccaaa tgcaatgcct gcctctccag 2850 cccgtgcaag aataacggga catgcaccca ggaccctgtg gagctgtacc 2900 gctgtgcctg cccctacagc tacaagggca aggactgcac tgtgcccatc 2950 aacacctgca tccagaaccc ctgtcagcat ggaggcacct gccacctgag 3000 tgacagccac aaggatgggt tcagctgctc ctgccctctg ggctttgagg 3050 ggcagcggtg tgagatcaac ccagatgact gtgaggacaa cgactgcgaa 3100 aacaatgcca cctgcgtgga cgggatcaac aactacgtgt gtatctgtcc 3150 gcctaactac acaggtgagc tatgcgacga ggtgattgac cactgtgtgc 3200 ctgagctgaa cctctgtcag catgaggcca agtgcatccc cctggacaaa 3250 ggattcaget gegagtgtgt eeetggetae agegggaage tetgtgagae 3300 agacaatgat gactgtgtgg cccacaagtg ccgccacggg gcccagtgcg 3350 tggacacaat caatggctac acatgcacct gcccccaggg cttcagtgga 3400 cccttctgtg aacaccccc acccatggtc ctactgcaga ccagcccatg 3450 cgaccagtac gagtgccaga acggggccca gtgcatcgtg gtgcagcagg 3500 ageceacetg eegetgeeca ceaggetteg eeggeeceag atgegagaag 3550 ctcatcactg tcaacttcgt gggcaaagac tcctacgtgg aactggcctc 3600 cgccaaggtc cgaccccagg ccaacatete cetgcaggtg gccaetgaca 3650 aggacaacgg catcettete tacaaaggag acaatgacee cetggcactg 3700 gagetgtace agggeeacgt geggetggte tatgaeagee tgagtteece 3750 tccaaccaca gtgtacagtg tggagacagt gaatgatggg cagtttcaca 3800 gtgtggagct ggtgacgcta aaccagaccc tgaacctagt agtggacaaa 3850 ggaactccaa agagcctggg gaagctccag aagcagccag cagtgggcat 3900 caacaqcece etetacettq qaqqcatece cacetecace qqeetetecq 3950 ccttqcqcca qqqcacqqac cqqcctctaq qcqqcttcca cqqatqcatc 4000 catgaggtgc gcatcaacaa cgagctgcag gacttcaagg ccctcccacc 4050 acagtecetg ggggtgteae caggetgeaa gteetgeaee gtgtgeaage 4100 acggcctgtg ccgctccgtg gagaaggaca gcgtggtgtg cgagtgccgc 4150 ccaggctgga ccggcccact ctgcgaccag gaggcccggg acccctgcct 4200 cggccacaga tgccaccatg gaaaatgtgt ggcaactggg acctcataca 4250 tgtgcaagtg tgccgagggc tatggagggg acttgtgtga caacaagaat 4300 gactetgeca atgeetgete ageetteaag tgteaceatg ggeagtgeca 4350 catctcagac caaggggage cctactgcct gtgccagecc ggctttageg 4400 gcqaqcactq ccaacaaqaq aatccqtqcc tqqqacaaqt aqtccqaqaq 4450 gtgatccgcc gccagaaagg ttatgcatca tgtgccacag cctccaaggt 4500 gcccatcatg gaatgtcgtg ggggctgtgg gccccagtgc tgccagccca 4550 cccgcagcaa gcggcggaaa tacgtcttcc agtgcacgga cggctcctcg 4600 tttgtagaag aggtggagag acacttagag tgcggctgcc tcgcgtgttc 4650 ctaagecect geogeetge etgecaecte teggaeteca gettgatgga 4700 gttgggacag ccatgtggga ccccctggtg attcagcatg aaggaaatga 4750 agctggagag gaaggtaaag aagaagagaa tattaagtat attgtaaaat 4800

Met Ala Pro Gly Trp Ala Gly Val Gly Ala Ala Val Arg Ala Arg
1 5 10 15

Leu Ala Leu Ala Leu Ala Ser Val Leu Ser Gly Pro Pro 20 25 30

Ala Val Ala Cys Pro Thr Lys Cys Thr Cys Ser Ala Ala Ser Val

<210> 198

<211> 1523

<212> PRT

<213> Homo sapiens

<400> 198

Asp	Cys	His	Gly	Leu 50	Gly	Leu	Arg	Ala	Val 55	Pro	Arg	Gly	Ile	Pro 60
Arg	Asn	Ala	Glu	Arg 65	Leu	Asp	Leu	Asp	Arg 70	Asn	Asn	Ile	Thr	Arg 75
Ile	Thr	Lys	Met	Asp 80	Phe	Ala	Gly	Leu	Lys 85	Asn	Leu	Arg	Val	Let 90
His	Leu	Glu	Asp	Asn 95	Gln	Val	Ser	Val	Ile 100	Glu	Arg	Gly	Ala	Phe 105
Gln	Asp	Leu	Lys	Gln 110	Leu	Glu	Arg	Leu	Arg 115	Leu	Asn	Lys	Asn	Lys 120
Leu	Gln	Val	Leu	Pro 125	Glu	Leu	Leu	Phe	Gln 130	Ser	Thr	Pro	Lys	Leu 135
Thr	Arg	Leu	Asp	Leu 140	Ser	Glu	Asn	Gln	Ile 145	Gln	Gly	Ile	Pro	Arg 150
Lys	Ala	Phe	Arg	Gly 155	Ile	Thr	Asp	Val	Lys 160	Asn	Leu	Gln	Leu	Asp 165
Asn	Asn	His	Ile	Ser 170	Cys	Ile	Glu	Asp	Gly 175	Ala	Phe	Arg	Ala	Let 180
Arg	Asp	Leu	Glu	Ile 185	Leu	Thr	Leu	Asn	Asn 190	Asn	Asn	Ile	Ser	Arg 195
Ile	Leu	Val	Thr	Ser 200	Phe	Asn	His	Met	Pro 205	Lys	Ile	Arg	Thr	Leu 210
Arg	Leu	His	Ser	Asn 215	His	Leu	Tyr	Cys	Asp 220	Cys	His	Leu	Ala	Trp 225
Leu	Ser	Asp	Trp	Leu 230	Arg	Gln	Arg	Arg	Thr 235	Val	Gly	Gln	Phe	Thr 240
Leu	Cys	Met	Ala	Pro 245	Val	His	Leu	Arg	Gly 250	Phe	Asn	Val	Ala	Asp 255
Val	Gln	Lys	Lys	Glu 260	Tyr	Val	Cys	Pro	Ala 265	Pro	His	Ser	Glu	Pro 270
Pro	Ser	Cys	Asn	Ala 275	Asn	Ser	Ile	Ser	Cys 280	Pro	Ser	Pro	Cys	Thr 285
Cys	Ser	Asn	Asn	Ile 290	Val	Asp	Cys	Arg	Gly 295	Lys	Gly	Leu	Met	Glu 300
Ile	Pro	Ala	Asn	Leu 305	Pro	Glu	Gly	Ile	Val 310	Glu	Ile	Arg	Leu	Glu 315
G]n	Asn	Ser	I۱۵	Lvs	Ala	Ile	Pro	Ala	Glv	Ala	Ph≏	Thr	Gln	Tvr

	890		895	900
His Arg Phe	Gln Cys Lys 905	Gly Pro Val	Asp Ile Asn Ile 910	Val Ala 915
Lys Cys Asn	Ala Cys Leu 920	Ser Ser Pro	Cys Lys Asn Asn 925	Gly Thr 930
Cys Thr Gln	Asp Pro Val 935	Glu Leu Tyr	Arg Cys Ala Cys 940	Pro Tyr 945
Ser Tyr Lys	Gly Lys Asp 950	Cys Thr Val	Pro Ile Asn Thr 955	Cys Ile 960
Gln Asn Pro	Cys Gln His 965	Gly Gly Thr	Cys His Leu Ser 970	Asp Ser 975
His Lys Asp	Gly Phe Ser 980	Cys Ser Cys	Pro Leu Gly Phe 985	Glu Gly 990
Gln Arg Cys	Glu Ile Asn 995		Cys Glu Asp Asn 1000	Asp Cys 1005
Glu Asn Asn	Ala Thr Cys 1010		Ile Asn Asn Tyr 1015	Val Cys 1020
Ile Cys Pro	Pro Asn Tyr 1025		Leu Cys Asp Glu 1030	Val Ile 1035
Asp His Cys	Val Pro Glu 1040		Cys Gln His Glu 1045	Ala Lys 1050
Cys Ile Pro	Leu Asp Lys 1055		Cys Glu Cys Val 1060	Pro Gly 1065
Tyr Ser Gly	Lys Leu Cys 1070		Asn Asp Asp Cys 1075	Val Ala 1080
His Lys Cys	Arg His Gly 1085		Val Asp Thr Ile 1090	Asn Gly 1095
Tyr Thr Cys	Thr Cys Pro 1100		Ser Gly Pro Phe 1105	Cys Glu 1110
His Pro Pro	Pro Met Val 1115		Thr Ser Pro Cys 1120	Asp Gln 1125
Tyr Glu Cys	Gln Asn Gly 1130		Ile Val Val Gln 1135	Gln Glu 1140
Pro Thr Cys	Arg Cys Pro 1145		Ala Gly Pro Arg 1150	Cys Glu 1155
Lys Leu Ile	Thr Val Asn 1160		Lys Asp Ser Tyr 1165	Val Glu 1170
Leu Ala Ser	Ala Lys Val	Arg Pro Gln	Ala Asn Ile Ser	Leu Gln

Val Ala Thr Asp Lys Asp Asn Gly Ile Leu Leu Tyr Lys Gly Asp Asn Asp Pro Leu Ala Leu Glu Leu Tyr Gln Gly His Val Arg Leu Val Tyr Asp Ser Leu Ser Ser Pro Pro Thr Thr Val Tyr Ser Val Glu Thr Val Asn Asp Gly Gln Phe His Ser Val Glu Leu Val Thr Leu Asn Gln Thr Leu Asn Leu Val Val Asp Lys Gly Thr Pro Lys Ser Leu Gly Lys Leu Gln Lys Gln Pro Ala Val Gly Ile Asn Ser Pro Leu Tyr Leu Gly Gly Ile Pro Thr Ser Thr Gly Leu Ser Ala Leu Arg Gln Gly Thr Asp Arg Pro Leu Gly Gly Phe His Gly Cys Ile His Glu Val Arg Ile Asn Asn Glu Leu Gln Asp Phe Lys Ala Leu Pro Pro Gln Ser Leu Gly Val Ser Pro Gly Cys Lys Ser Cys Thr Val Cys Lys His Gly Leu Cys Arg Ser Val Glu Lys Asp Ser Val Val Cys Glu Cys Arg Pro Gly Trp Thr Gly Pro Leu Cys Asp Gln Glu Ala Arg Asp Pro Cys Leu Gly His Arg Cys His His Gly Lys Cys Val Ala Thr Gly Thr Ser Tyr Met Cys Lys Cys Ala Glu Gly Tyr Gly Gly Asp Leu Cys Asp Asn Lys Asn Asp Ser Ala Asn Ala Cys Ser Ala Phe Lys Cys His His Gly Gln Cys His Ile Ser Asp Gln Gly Glu Pro Tyr Cys Leu Cys Gln Pro Gly Phe Ser Gly Glu His Cys Gln Gln Glu Asn Pro Cys Leu Gly Gln Val Val Arg Glu Val Ile Arg Arg Gln Lys Gly Tyr Ala Ser Cys Ala Thr Ala

1460 1465 1470

Ser Lys Val Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Pro Gln 1475 1480 1485

Cys Cys Gln Pro Thr Arg Ser Lys Arg Arg Lys Tyr Val Phe Gln 1490 1495 1500

Cys Thr Asp Gly Ser Ser Phe Val Glu Glu Val Glu Arg His Leu 1505 1510 1515

Glu Cys Gly Cys Leu Ala Cys Ser 1520

<210> 199

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 199

atggagattc ctgccaactt gccg 24

<210> 200

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 200

ttgttggcat tgaggaggag cagc 24

<210> 201

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 201

gagggcatcg tcgaaatacg cctagaacag aactccatca aagccatccc 50

<210> 202

<211> 753

<212> DNA

<213> Homo sapiens

<400> 202

ggatgcagga cgctcccctg agctgcctgt caccgactag gtggagcagt 50

gtttcttccg cagactcaac tgagaagtca gcctctgggg caggcaccag 100

gaatetgeet titeagttet gteteeggea ggetttgagg atgaaggetg 150
egggeattet gaeeeteatt ggetgeetgg teacaggege egggteeaaa 200
atetacacte gttgeaaact ggeaaaaata ttetegaggg etggeetgga 250
caattactgg ggetteagee ttggaaactg gatetgeatg geatattatg 300
agageggeta caacaccaca geeeegaegg teetggatga eggeageate 350
gaetatggea tetteeagat eaacagette gegtggtgea gaegeggaaa 400
getgaaggag aacaaccact geeatgtege etgeteagee ttgateactg 450
atgaeeteae agatgeaatt atetgtgeea ggaaaattgt taaagagaca 500
caaggaatga actattggea aggetggaag aacaattgt gaggeagaga 550
cetgteegag tggaaaaaag getgtgaggt tteetaaact ggaactggae 600
ceaggatget ttgeageae geeetaggat ttgeagtgaa tgteeaaatg 650
cetgtgteat ettgteeegt tteeteeaa tatteettet caaacttgga 700
gagggaaaat taagetatae ttttaagaaa ataaatatt ceatttaaat 750
gte 753

<210> 203

<211> 148

<212> PRT

<213> Homo sapiens

<400> 203

Met Lys Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr 1 5 10 15

Gly Ala Glu Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile 20 25 30

Phe Ser Arg Ala Gly Leu Asp Asn Tyr Trp Gly Phe Ser Leu Gly
35 40 45

Asn Trp Ile Cys Met Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr 50 55 60

Ala Pro Thr Val Leu Asp Asp Gly Ser Ile Asp Tyr Gly Ile Phe
65 70 75

Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg Gly Lys Leu Lys Glu 80 85 90

Asn Asn His Cys His Val Ala Cys Ser Ala Leu Ile Thr Asp Asp 95 100 105

Leu Thr Asp Ala Ile Ile Cys Ala Arg Lys Ile Val Lys Glu Thr 110 115 120

```
Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys Glu Gly
 Arg Asp Leu Ser Glu Trp Lys Lys Gly Cys Glu Val Ser
<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 204
 gcaggctttg aggatgaagg ctgc 24
<210> 205
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 205
 ctcattggct gcctggtcac aggc 24
<210> 206
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 206
ccagtcggac aggtctctcc cctc 24
<210> 207
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 207
tcagtgacca aggctgagca ggcg 24
<210> 208
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 208
 ctacactcgt tgcaaactgg caaaaatatt ctcgagggct ggcctgg 47
<210> 209
<211> 1648
<212> DNA
<213> Homo sapiens
<400> .209
 caggccattt gcatcccact gtccttgtgt tcggagccag gccacaccgt 50
cctcagcagt gtcatgtgtt aaaaacgcca agctgaatat atcatgcccc 100
tattaaaact tgtacatggc tccccattgg tttttggaga aaagttcaag 150
ctttttacct tggtgtctgc ctgtatccca gtgttcaggc tggctagacg 200
gcggaagaag atcctatttt actgtcactt cccagatctg cttctcacca 250
agagagattc ttttcttaaa cgactataca gggccccaat tgactggata 300
gaggaataca ccacaggcat ggcagactgc atcttagtca acagccagtt 350
cacagetget gtttttaagg aaacattcaa gteeetgtet cacatagace 400
ctgatgtcct ctatccatct ctaaatgtca ccagctttga ctcagttgtt 450
cctgaaaaagc tggatgacct agtccccaag gggaaaaaat tcctgctgct 500
ctccatcaac agatacgaaa ggaagaaaaa tctgactttg gcactggaag 550
ccctagtaca gctgcgtgga agattgacat cccaagattg ggagagggtt 600
catctgatcg tggcaggtgg ttatgacgag agagtcctgg agaatgtgga 650
acattatcag gaattgaaga aaatggtcca acagtccgac cttggccagt 700
atgtgacctt cttgaggtct ttctcagaca aacagaaaat ctccctcctc 750
cacagetgea egtgtgtget ttacacacea ageaatgage aetttggeat 800
tgtccctctg gaagccatgt acatgcagtg cccagtcatt gctgttaatt 850
cgggtggacc cttggagtcc attgaccaca gtgtcacagg gtttctgtgt 900
gagcctgacc cggtgcactt ctcagaagca atagaaaagt tcatccgtga 950
accttcctta aaagccacca tgggcctggc tggaagagcc agagtgaagg 1000
aaaaattttc ccctgaagca tttacagaac agctctaccg atatgttacc 1050
aaactgctgg tataatcaga ttgtttttaa gatctccatt aatgtcattt 1100
ttatggattg tagacccagt tttgaaacca aaaaagaaac ctagaatcta 1150
```

atgcagaaga gatctttaa aaaataaact tgagtcttga atgtgagcca 1200 ctttcctata taccacacct ccctgtccac ttttcagaaa aaccatgtct 1250 tttatgctat aatcattcca aattttgcca gtgttaagtt acaaatgtgg 1300 tgtcattcca tgttcagcag agtatttaa ttatatttc tcgggattat 1350 tgctcttctg tctataaatt ttgaatgata ctgtgcctta attggtttc 1400 atagtttaag tgtgtatcat tatcaaagtt gattaatttg gcttcatagt 1450 ataatgagag cagggctatt gtagttccca gattcaatcc accgaagtgt 1500 tcactgtcat ctgttaggga attttttaa gataatttg tgcctggatc 1550 catagcgaga gtgctctgta tttttttaa gataatttg atttttgcac 1600 actgagatat aataaaaggt gtttatcata aaaaaaaaa aaaaaaaa 1648

<400> 210

Met Pro Leu Lys Leu Val His Gly Ser Pro Leu Val Phe Gly
1 5 10 15

Glu Lys Phe Lys Leu Phe Thr Leu Val Ser Ala Cys Ile Pro Val
20 25 30

Phe Arg Leu Ala Arg Arg Lys Lys Ile Leu Phe Tyr Cys His 35 40 45

Phe Pro Asp Leu Leu Thr Lys Arg Asp Ser Phe Leu Lys Arg 50 55 60

Leu Tyr Arg Ala Pro Ile Asp Trp Ile Glu Glu Tyr Thr Thr Gly
65 70 75

Met Ala Asp Cys Ile Leu Val Asn Ser Gln Phe Thr Ala Ala Val 80 85 90

Phe Lys Glu Thr Phe Lys Ser Leu Ser His Ile Asp Pro Asp Val 95 100 105

Leu Tyr Pro Ser Leu Asn Val Thr Ser Phe Asp Ser Val Val Pro 110 115 120

Glu Lys Leu Asp Asp Leu Val Pro Lys Gly Lys Lys Phe Leu Leu 125 130 135

Leu Ser Ile Asn Arg Tyr Glu Arg Lys Lys Asn Leu Thr Leu Ala 140 145 150

Leu Glu Ala Leu Val Gln Leu Arg Gly Arg Leu Thr Ser Gln Asp

<210> 210

<211> 323

<212> PRT

<213> Homo sapiens

155 160 165 Trp Glu Arg Val His Leu Ile Val Ala Gly Gly Tyr Asp Glu Arg 170 175 Val Leu Glu Asn Val Glu His Tyr Gln Glu Leu Lys Lys Met Val 185 Gln Gln Ser Asp Leu Gly Gln Tyr Val Thr Phe Leu Arg Ser Phe 200 205 Ser Asp Lys Gln Lys Ile Ser Leu Leu His Ser Cys Thr Cys Val 215 Leu Tyr Thr Pro Ser Asn Glu His Phe Gly Ile Val Pro Leu Glu 230 235 Ala Met Tyr Met Gln Cys Pro Val Ile Ala Val Asn Ser Gly Gly 245 250 255 Pro Leu Glu Ser Ile Asp His Ser Val Thr Gly Phe Leu Cys Glu 260 265 Pro Asp Pro Val His Phe Ser Glu Ala Ile Glu Lys Phe Ile Arg 275 280 Glu Pro Ser Leu Lys Ala Thr Met Gly Leu Ala Gly Arg Ala Arg 290 295 300 Val Lys Glu Lys Phe Ser Pro Glu Ala Phe Thr Glu Gln Leu Tyr 305 310 Arg Tyr Val Thr Lys Leu Leu Val 320 <212> DNA

<210> 211

<211> 1554

<213> Homo sapiens

<400> 211

gactacgccg atccgagacg tggctccctg ggcggcagaa ccatgttgga 50 cttcgcgatc ttcgccgtta ccttcttgct ggcgttggtg ggagccgtgc 100 tctacctcta tccggcttcc agacaagctg caggaattcc agggattact 150 ccaactgaag aaaaagatgg taatcttcca gatattgtga atagtggaag 200 tttgcatgag ttcctggtta atttgcatga gagatatggg cctgtggtct 250 ccttctggtt tggcaggcgc ctcgtggtta gtttgggcac tgttgatgta 300 ctgaagcagc atatcaatcc caataagaca tcggaccctt ttgaaaccat 350 gctgaagtca ttattaaggt atcaatctgg tggtggcagt gtgagtgaaa 400

```
accacatgag gaaaaaattg tatgaaaatg gtgtgactga ttctctgaag 450
agtaactttg ccctcctcct aaagctttca gaagaattat tagataaatg 500
getetectae ceagagaece ageaegtgee ceteageeag catatgettg 550
gttttgctat gaagtctgtt acacagatgg taatgggtag tacatttgaa 600
gatgatcagg aagtcattcg cttccagaag aatcatggca cagtttggtc 650
tgagattgga aaaggctttc tagatgggtc acttgataaa aacatgactc 700
ggaaaaaaca atatgaagat gccctcatgc aactggagtc tgttttaagg 750
aacatcataa aagaacgaaa aggaaggaac ttcagtcaac atattttcat 800
tgactcctta gtacaaggga accttaatga ccaacagatc ctagaagaca 850
gtatgatatt ttctctgqcc agttqcataa taactqcaaa attqtqtacc 900
tgggcaatct gttttttaac cacctctgaa gaagttcaaa aaaaattata 950
tgaagagata aaccaagttt ttggaaatgg tcctgttact ccagagaaaa 1000
ttgagcagct cagatattgt cagcatgtgc tttgtgaaac tgttcgaact 1050
gccaaactga ctccagtttc tgcccagctt caagatattg aaggaaaaat 1100
tgaccgattt attattccta gagagaccct cgtcctttat gcccttggtg 1150
tggtacttca ggatcctaat acttggccat ctccacacaa gtttgatcca 1200
gatcggtttg atgatgaatt agtaatgaaa actttttcct cacttggatt 1250
ctcaggcaca caggagtgtc cagagttgag gtttgcatat atggtgacca 1300
cagtacttct tagtgtattg gtgaagagac tqcacctact ttctqtqqaq 1350
ggacaggtta ttgaaacaaa gtatgaactg gtaacatcat caagggaaga 1400
agcttggatc actgtctcaa agagatatta aaattttata catttaaaat 1450
cattgttaaa ttgattgagg aaaacaacca tttaaaaaaa atctatgttg 1500
aatcctttta taaaccagta tcactttgta atataaacac ctatttgtac 1550
ttaa 1554
```

<210> 212

<211> 462

<212> PRT

<213> Homo sapiens

<400> 212

Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu 1 5 10 15

Val	Gly	Ala	Val	Leu 20	Tyr	Leu	Tyr	Pro	Ala 25	Ser	Arg	Gln	Ala	Ala 30
Gly	Ile	Pro	Gly	Ile 35	Thr	Pro	Thr	Glu	Glu 40	Lys	Asp	Gly	Asn	Leu 45
Pro	Asp	Ile	Val	Asn 50	Ser	Gly	Ser	Leu	His 55	Glu	Phe	Leu	Val	Asn 60
Leu	His	Glu	Arg	Tyr 65	Gly	Pro	Val	Val	Ser 70	Phe	Trp	Phe	Gly	Arg 75
Arg	Leu	Val	Val	Ser 80	Leu	Gly	Thr	Val	Asp 85	Val	Leu	Lys	Gln	His 90
Ile	Asn	Pro	Asn	Lys 95	Thr	Ser	Asp	Pro	Phe 100	Glu	Thr	Met	Leu	Lys 105
Ser	Leu	Leu	Arg	Tyr 110	Gln	Ser	Gly	Gly	Gly 115	Ser	Val	Ser	Glu	Asn 120
His	Met	Arg	Lys	Lys 125	Leu	Tyr	Glu	Asn	Gly 130	Val	Thr	Asp	Ser	Leu 135
Lys	Ser	Asn	Phe	Ala 140	Leu	Leu	Leu	Lys	Leu 145	Ser	Glu	Glu	Leu	Leu 150
Asp	Lys	Trp	Leu	Ser 155	Tyr	Pro	Glu	Thr	Gln 160	His	Val	Pro	Leu	Ser 165
Gln	His	Met	Leu	Gly 170	Phe	Ala	Met	Lys	Ser 175	Val	Thr	Gln	Met	Val 180
Met	Gly	Ser	Thr	Phe 185	Glu	Asp	Asp	Gln	Glu 190	Val	Ile	Arg	Phe	Gln 195
Lys	Asn	His	Gly	Thr 200	Val	Trp	Ser	Glu	Ile 205	Gly	Lys	Gly	Phe	Leu 210
Asp	Gly	Ser	Leu	Asp 215	Lys	Asn	Met	Thr	Arg 220	Lys	Lys	Gln	Tyr	Glu 225
Asp	Ala	Leu	Met	Gln 230	Leu	Glu	Ser	Val	Leu 235	Arg	Asn	Ile	Ile	Lys 240
Glu	Arg	Lys	Gly	Arg 245	Asn	Phe	Ser	Gln	His 250	Ile	Phe	Ile	Asp	Ser 255
Leu	Val	Gln	Gly	Asn 260	Leu	Asn	Asp	Gln	Gln 265	Ile	Leu	Glu	Asp	Ser 270
Met	Ile	Phe	Ser	Leu 275	Ala	Ser	Cys	Ile	Ile 280	Thr	Ala	Lys	Leu	Cys 285
Thr	Trp	Ala	Ile	Cys 290	Phe	Leu	Thr	Thr	Ser 295	Glu	Glu	Val	Gln	Lys 300

Lys Leu Tyr Glu Glu Ile Asn Gln Val Phe Gly Asn Gly Pro Val 305 Thr Pro Glu Lys Ile Glu Gln Leu Arg Tyr Cys Gln His Val Leu 320 325 Cys Glu Thr Val Arg Thr Ala Lys Leu Thr Pro Val Ser Ala Gln 335 340 Leu Gln Asp Ile Glu Gly Lys Ile Asp Arg Phe Ile Ile Pro Arg 350 355 Glu Thr Leu Val Leu Tyr Ala Leu Gly Val Val Leu Gln Asp Pro 365 370 Asn Thr Trp Pro Ser Pro His Lys Phe Asp Pro Asp Arg Phe Asp 380 385 390 Asp Glu Leu Val Met Lys Thr Phe Ser Ser Leu Gly Phe Ser Gly 395 400 Thr Gln Glu Cys Pro Glu Leu Arg Phe Ala Tyr Met Val Thr Thr 410 415 420 Val Leu Leu Ser Val Leu Val Lys Arg Leu His Leu Leu Ser Val 430 Glu Gly Gln Val Ile Glu Thr Lys Tyr Glu Leu Val Thr Ser Ser 440 445 Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg Tyr 455

<210> 213

<211> 759

<212> DNA

<213> Homo sapiens

<400> 213

ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tctctgaact 50
tccagcctca gagaccgccg cccttgtccc cgagggccat gggccgggtc 100
tcagggcttg tgccctctcg cttcctgacg ctcctggcgc atctggtggt 150
cgtcatcacc ttattctggt cccgggacag caacatacag gcctgcctgc 200
ctctcacgtt cacccccgag gagtatgaca agcaggacat tcagctggtg 250
gccgcgctct ctgtcaccct gggcctcttt gcagtggagc tggccggttt 300
cctctcagga gtctccatgt tcaacagcac ccagagcctc atctccattg 350
gggctcactg tagtgcatcc gtggccctgt ccttcttcat attcgagcgt 400
tgggagtgca ctacgtattg gtacattttt gtcttctgca gtgcccttcc 450

```
agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaqa 500
 aaccettetg attacettea tgaegggaac etaaggaega ageetacagg 550
 ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600
 ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650
 tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700
 tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750
 aaaaaaaaa 759
<210> 214
<211> 140
<212> PRT
<213> Homo sapiens
<400> 214
 Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu
 Leu Ala His Leu Val Val Val Ile Thr Leu Phe Trp Ser Arg Asp
                  20
                                      25
 Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu
                                      40
                                                           45
 Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
 Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val
                                                           75
 Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile Gly Ala His
 Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp
 Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu
                 110
                                                          120
 Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu
                 125
                                     130
Lys Lys Pro Phe
                 140
<210> 215
<211> 697
<212> DNA
<213> Homo sapiens
```

<400> 215 teceggacee tgeegeeetg ceactatgte eegeegetet atgetgettg 50

cetgggetet ecceageete ettegaeteg gageggetea ggaagaeagaa 100 gaeeeggeet getgeageee eatagtgeee eggaaeegagt ggaaggeeet 150 ggeateagag tgegeeeage acetgageet geeettaeege tatgtggtgg 200 tategeeega atgtgeagea agetgeaaea ecceeegeete gtgeeageag 250 eaggeeegga atgtgeagea etaeeaeatg aagaeaetgg getggtgega 300 egtggggetae aaetteetga ttggagaaga egggetegta taeegaggee 350 gtggeeggaa etteaeegga geeeaeteag gteaettatg gaaeeeeatg 400 teeattggea teagetteat gggeaaetae atggateegg tgeeeaeee 450 eeaggeeate egggeeege agggeteaea aeaeteetee ggeeetgaa tgggeeegg 500 gageeetgaa gteeaaetat gtgeteaaaa gaeaeeeggaa tgtgeagegt 550 aeaeteetee eeetgaggee etgetgatee geaeeeeatt eeteeetee 650 eatggeeaaa aaeeeeeetg teteettete eaataaagat gtagete 697

<400> 216

Met	Ser	Arg	Arg	Ser	Met	Leu	Leu	Ala	Trp	Ala	Leu	Pro	Ser	Leu
1				5					10					15

Leu Arg Leu Gly Ala Ala Gl
n Glu Thr Glu Asp Pro Ala Cys Cys 20 $\,$ 25 $\,$ 30

Ser Pro Ile Val Pro Arg Asn Glu Trp Lys Ala Leu Ala Ser Glu
$$35$$
 40 45

Tyr Glu Gly Arg Gly Trp Asn Phe Thr Gly Ala His Ser Gly His
$$110$$
 115 120

<210> 216

<211> 196

<212> PRT

<213> Homo sapiens

Leu Trp Asn Pro Met Ser Ile Gly Ile Ser Phe Met Gly Asn Tyr 135

Met Asp Arg Val Pro Thr Pro Gln Ala Ile Arg Ala Ala Gln Gly 150

Leu Leu Ala Cys Gly Val Ala Gln Gly Ala Leu Arg Ser Asn Tyr 165

Val Leu Lys Gly His Arg Asp Val Gln Arg Thr Leu Ser Pro Gly 170

Asn Gln Leu Tyr His Leu Ile Gln Asn Trp Pro His Tyr Arg Ser 195

Pro

<210> 217

<211> 1871

<212> DNA

<213> Homo sapiens

<400> 217

ctgggacccc gaaaagagaa ggggagagcg aggggacgag agcggaggag 50 gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100 tctatctggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 150 cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 200 geggggeeac ateteaceta agtecegeec catggeeaat tecaetetee 250 tagggctgct ggccccgcct ggggaggctt ggggcattct tgggcagccc 300 cccaaccgcc cgaaccacag cccccaccc tcagccaagg tgaagaaaat 350 ctttggctgg ggcgacttct actccaacat caagacggtg gccctgaacc 400 tgctcgtcac agggaagatt gtggaccatg gcaatgggac cttcagcgtc 450 cacttccaac acaatgccac aggccaggga aacatctcca tcagcctcgt 500 gcccccagt aaagctgtag agttccacca ggaacagcag atcttcatcg 550 aagccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600 qaacqqqqcc qccqqacctc qctttqcacc cacqacccaq ccaaqatctq 650 ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccct 700 tcaaagtcgt ctgtgtctac atcqccttct acagcacgga ctatcgqctg 750 gtccagaagg tgtgcccaga ttacaactac catagtgata ccccctacta 800

ggacaggcct gcccatgcag gagaccatct ggacaccggg cagggaaggg 900 gttgggcctc aggcagggag gggggtggag acgaggagat gccaagtggg 950 gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000 aacctgaagc tgtggagtga ctagatcaca ggagcactgg aggaggagtg 1050 ggctctctgt gcagcctcac agggctttgc cacggagcca cagagagatg 1100 ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150 gtcatgggag gaagctaagc ccttggttct tgccatcctg aggaaagata 1200 gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250 atggatggct gagagggctt cctaggagcc aqtcaqcaqq qtqqqqqqqq 1300 gccagaggag ctctccagcc ctgcctagtg ggcgccctga gccccttgtc 1350 gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400 gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450 ttccctcttc tgccagtact ccccctgtac cacccattgc tgatggcaca 1500 cccatcctta agctaagaca ggacgattgt ggtcctccca cactaaggcc 1550 acageceate egegtgetgt gtgteeetet tecaceceaa eeeetgetgg 1600 ctcctctggg agcatccatg tcccggagag gggtccctca acagtcagcc 1650 tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 1700 gcagcgggca cgggtggggc ggggccgggc cgcagagcat gtgctggatc 1750 tgttctgtgt gtctgtctgt gggtgggggg aggggaggga agtcttgtga 1800 aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850 aataaagctt gccccggggc a 1871

```
<210> 218
```

<400> 218

Met Gln Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gln Gly Ser 1 5 10 15

Leu Tyr Leu Val Ile Cys Gly Gln Asp Asp Gly Pro Pro Gly Ser
20 25 30

Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gln Pro Arg Pro Arg
35 40 45

<211> 252

<212> PRT

<213> Homo sapiens

Val	Pro	Arg	Lys	Arg 50	Gly	His	Ile	Ser	Pro 55		Ser	Arg	Pro	Met 60
Ala	Asn	Ser	Thr	Leu 65	Leu	Gly	Leu	Leu	Ala 70		Pro	Gly	Glu	Ala 75
Trp	Gly	Ile	Leu	Gly 80	Gln	Pro	Pro	Asn	Arg 85	Pro	Asn	His	Ser	Pro 90
Pro	Pro	Ser	Ala	Lys 95	Val	Lys	Lys	Ile	Phe 100	Gly	Trp	Gly	Asp	Phe 105
Tyr	Ser	Asn	Ile	Lys 110	Thr	Val	Ala	Leu	Asn 115	Leu	Leu	Val	Thr	Gly 120
Lys	Ile	Val	Asp	His 125	Gly	Asn	Gly	Thr	Phe 130	Ser	Val	His	Phe	Gln 135
His	Asn	Ala	Thr	Gly 140	Gln	Gly	Asn	Ile	Ser 145	Ile	Ser	Leu	Val	Pro 150
Pro	Ser	Lys	Ala	Val 155	Glu	Phe	His	Gln	Glu 160	Gln	Gln	Ile	Phe	Ile 165
Glu	Ala	Lys	Ala	Ser 170	Lys	Ile	Phe	Asn	Cys 175	Arg	Met	Glu	Trp	Glu 180
Lys	Val	Glu	Arg	Gly 185	Arg	Arg	Thr	Ser	Leu 190	Cys	Thr	His	Asp	Pro 195
Ala	Lys	Ile	Cys	Ser 200	Arg	Asp	His	Ala	Gln 205	Ser	Ser	Ala	Thr	Trp 210
Ser	Cys	Ser	Gln	Pro 215	Phe	Lys	Val	Val	Cys 220	Val	Tyr	Ile	Ala	Phe 225
Tyr	Ser	Thr	Asp	Tyr 230	Arg	Leu	Val	Gln	Lys 235	Val	Cys	Pro	Asp	Tyr 240
Asn	Tyr	His	Ser	Asp 245	Thr	Pro	Tyr	Tyr	Pro 250	Ser	Gly			
210> 219 211> 2065														

- <212> DNA
- <213> Homo sapiens
- <400> 219
- gtgaatgtga gggtttgatg actttcagat gtctaggaac cagagtgggt 50 gcaggggccc caggcagggc tgattcttgg gcggaggaga gtagggtaaa 100 gggttctgca tgagctcctt aaaggacaaa ggtaacagag ccagcgagag 150 agctcgaggg gagactttga cttcaagcca cagaattggt ggaagtgtgc 200

gcgccgccgc cgccgtcgct cctgcagcgc tgtcgaccta gccgctagca 250 tettecegag cacegggate eeggggtagg aggegaegeg ggegageace 300 agegecagee ggetgegget geceaeaegg etcaceatgg geteegggeg 350 ccgggcgctg tccgcggtgc cggccgtgct gctggtcctc acgctgccgg 400 ggctgcccgt ctgggcacag aacgacacgg agcccatcgt gctggagggc 450 aagtgtctgg tggtgtgcga ctcgaacccg gccacggact ccaagggctc 500 ctcttcctcc ccgctgggga tatcggtccg ggcggccaac tccaaggtcg 550 ccttctcggc ggtgcggagc accaaccacg agccatccga gatgagcaac 600 aagacgcgca tcatttactt cgatcagatc ctggtgaatg tgggtaattt 650 tttcacattg gagtctgtct ttgtagcacc aagaaaagga atttacagtt 700 tcagttttca cgtgattaaa gtctaccaga gccaaactat ccaggttaac 750 ttgatgttaa atggaaaacc agtaatatct gcctttgcgg gggacaaaga 800 tgttactcgt gaagctgcca cgaatggtgt cctgctctac ctagataaag 850 aggataaggt ttacctaaaa ctggagaaag gtaatttggt tggaggctgg 900 cagtattcca cgttttctgg ctttctggtg ttccccctat aggattcaat 950 ttctccatga tgttcatcca ggtgagggat gacccactcc tgagttattg 1000 gaagatcatt ttttcatcat tggattgatg tcttttattg gtttctcatg 1050 ggtggatatg gattctaagg attctagcct gtctgaacca atacaaaatt 1100 tcacagatta tttgtgtgtg tctgtttcag tatatttgga ttgggactct 1150 aagcagataa tacctatgct taaatgtaac agtcaaaagc tgtctgcaag 1200 acttattctg aatttcattt cctgggatta ctgaattagt tacagatgtg 1250 gaattttatt tgtttagttt taaaagactg gcaaccaggt ctaaggatta 1300 gaaaactcta aagttctgac ttcaatcaac ggttagtgtg atactgccaa 1350 agaactgtat actgtgttaa tatattgatt atatttgttt ttattccttt 1400 ggaattagtt tgtttggttc ttgtaaaaaa cttggatttt ttttttcagt 1450 aactggtatt atgttttctc ttaaaataag gtaatgaatg gcttgcccac 1500 aaatttacct tgactacgat atcatcgaca tgacttctct caaaaaaaaa 1550 gaatgcttca tagttgtatt ttaattgtat atgtgaaaga gtcatatttt 1600 ccaagttata ttttctaaga agaagaatag atcataaatc tgacaaggaa 1650

aaagttgctt acccaaaatc taagtgctca atccctgagc ctcagcaaaa 1700 cagctcccct ccgagggaaa tcttatactt tattgctcaa ctttaattaa 1750 aatgattgat aataaccact ttattaaaaa cctaaggttt ttttttttc 1800 cgtagacatg accactttat taactggtgg tgggatgctg ttgtttctaa 1850 ttatacctat ttttcaaggc ttctgttgta tttgaagtat catctggttt 1900 tgccttaact ctttaaattg tatatatta tctgtttagc taatattaaa 1950 ttcaaatac ccatatctaa atttagtgca atatcttgtc ttttgtatag 2000 gtcatatgaa ttcataaaat tatttatgtc tgttatagaa taaagattaa 2050 tatatgttaa aaaaa 2065

<210> 220

<211> 201

<212> PRT

<213> Homo sapiens

<400> 220

Met Gly Ser Gly Arg Arg Ala Leu Ser Ala Val Pro Ala Val Leu 1 5 10 15

Leu Val Leu Thr Leu Pro Gly Leu Pro Val Trp Ala Gln Asn Asp
20 25 30

Thr Glu Pro Ile Val Leu Glu Gly Lys Cys Leu Val Val Cys Asp 35 40 45

Ser Asn Pro Ala Thr Asp Ser Lys Gly Ser Ser Ser Pro Leu
50 55 60

Gly Ile Ser Val Arg Ala Ala Asn Ser Lys Val Ala Phe Ser Ala 65 70 75

Val Arg Ser Thr Asn His Glu Pro Ser Glu Met Ser Asn Lys Thr 80 85 90

Arg Ile Ile Tyr Phe Asp Gln Ile Leu Val Asn Val Gly Asn Phe 95 100 105

Phe Thr Leu Glu Ser Val Phe Val Ala Pro Arg Lys Gly Ile Tyr 110 115 120

Ser Phe Ser Phe His Val Ile Lys Val Tyr Gln Ser Gln Thr Ile 125 130 135

Gln Val Asn Leu Met Leu Asn Gly Lys Pro Val Ile Ser Ala Phe 140 . 145 150

Ala Gly Asp Lys Asp Val Thr Arg Glu Ala Ala Thr Asn Gly Val 155 160 165

```
Leu Leu Tyr Leu Asp Lys Glu Asp Lys Val Tyr Leu Lys Leu Glu
                 170
 Lys Gly Asn Leu Val Gly Gly Trp Gln Tyr Ser Thr Phe Ser Gly
                 185
                                      190
 Phe Leu Val Phe Pro Leu
                 200
<210> 221
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 221
 acggctcacc atgggctccg 20
<210> 222
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 222
aggaagagga gcccttggag tccg 24
<210> 223
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 223
 cgtgctggag ggcaagtgtc tggtggtgtg cgactcgaac 40
<210> 224
<211> 902
<212> DNA
<213> Homo sapiens
<400> 224
 cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50
 gggcctgcgc tcgcccttta tgtcttcacc atcgccatcg agccgttgcg 100
 tatcatcttc ctcatcgccg gagctttctt ctggttggtg tctctactga 150
 tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 200
```

<210> 225

<211> 257

<212> PRT

<213> Homo sapiens

<400> 225

Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly 1 5 10 15

Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Ile Glu Pro Leu 20 25 30

Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser 35 40 45

Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile 50 55 60

Asp Asn Lys Asp Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly
65 70 75

Ala Phe Val Ser Val Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr 80 85 90

Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn 95 100 105

Pro	Gly	Glu	Thr	Ala 110	Pro	Ser	Met	Arg	Leu 115	Leu	Ala	Tyr	Val	Ser 120
Gly	Leu	Gly	Phe	Gly 125	Ile	Met	Ser	Gly	Val 130	Phe	Ser	Phe	Val	Asn 135
Thr	Leu	Ser	Asp	Ser 140	Leu	Gly	Pro	Gly	Thr 145	Val	Gly	Ile	His	Gly 150
Asp	Ser	Pro	Gln	Phe 155	Phe	Leu	Tyr	Ser	Ala 160	Phe	Met	Thr	Leu	Val 165
Ile	Ile	Leu	Leu	His 170	Val	Phe	Trp	Gly	Ile 175	Val	Phe	Phe	Asp	Gly 180
Cys	Glu	Lys	Lys	Lys 185	Trp	Gly	Ile	Leu	Leu 190	Ile	Val	Leu	Leu	Thr 195
His	Leu	Leu	Val	Ser 200	Ala	Gln	Thr	Phe	Ile 205	Ser	Ser	Tyr	Tyr	Gly 210
Ile	Asn	Leu	Ala	Ser 215	Ala	Phe	Ile	Ile	Leu 220	Val	Leu	Met	Gly	Thr 225
Trp	Ala	Phe	Leu	Ala 230	Ala	Gly	Gly	Ser	Cys 235	Arg	Ser	Leu	Lys	Leu 240
Cys	Leu	Leu	Cys	Gln 245	Asp	Lys	Asn	Phe	Leu 250	Leu	Tyr	Asn	Gln	Arg 255

Ser Arg

<210> 226

<211> 3939

<212> DNA

<213> Homo sapiens

<400> 226

cggcaaccag ccgccgccac caccgctgcc actgccgccc tgccggggcc 50
atgttcgctc tgggcttgcc cttcttggtg ctcttggtgg cctcggtcga 100
gagccatctg ggggttctgg ggcccaagaa cgtctcgcag aaagacgccg 150
agtttgagcg cacctacgtg gacgaggtca acagcgagct ggtcaacatc 200
tacaccttca accatactgt gacccgcaac aggacagagg gcgtgcgtgt 250
gtctgtgaac gtcctgaaca agcagaagg ggcgccgttg ctgtttgtgg 300
tccgccagaa ggaggctgtg gtgtccttcc aggtgcccct aatcctgcga 350
gggatgtttc agcgcaagta cctctaccaa aaagtggaac gaaccctgtg 400
tcagccccc accaagaatg agtcggagat tcagttcttc tacgtggatg 450

tgtccaccct gtcaccagtc aacaccacat accageteeg ggtcageege 500 atggacgatt ttgtgctcag gactggggag cagttcagct tcaataccac 550 agcagcacag ccccagtact tcaagtatga gttccctgaa ggcgtggact 600 eggtaattgt caaggtgace tecaacaagg cetteecetg etcagteate 650 tccattcagg atgtgctgtg tcctgtctat gacctggaca acaacgtagc 700 cttcatcggc atgtaccaga cgatgaccaa gaaggcggcc atcaccgtac 750 agcgcaaaga cttccccagc aacagctttt atgtggtggt ggtggtgaag 800 accgaagacc aagcctgcgg gggctccctg cctttctacc ccttcgcaga 850 agatgaaccg gtcgatcaag ggcaccgcca gaaaaccctg tcagtgctgg 900 tgtctcaagc agtcacgtct gaggcatacg tcagtgggat gctcttttgc 950 ctgggtatat ttctctcctt ttacctgctg accgtcctcc tggcctgctg 1000 ggagaactgg aggcagaaga agaagaccct gctggtggcc attgaccgag 1050 cctgcccaga aagcggtcac cctcgagtcc tggctgattc ttttcctggc 1100 agttcccctt atgagggtta caactatggc tcctttgaga atgtttctgg 1150 atctaccgat ggtctggttg acagcgctgg cactggggac ctctcttacg 1200 gttaccaggg ccgctccttt gaacctgtag gtactcggcc ccgagtggac 1250 tecatgaget etgtggagga ggatgaetae gaeacattga eegacatega 1300 ttccgacaag aatgtcattc gcaccaagca atacctctat gtggctgacc 1350 tggcacggaa ggacaagcgt gttctgcgga aaaagtacca gatctacttc 1400 tggaacattg ccaccattgc tgtcttctat gcccttcctg tggtgcagct 1450 ggtgatcacc taccagacgg tggtgaatgt cacagggaat caggacatct 1500 gctactacaa cttcctctgc gcccacccac tgggcaatct cagcgccttc 1550 aacaacatcc tcagcaacct ggggtacatc ctgctggggc tgcttttcct 1600 geteateate etgeaaeggg agateaaeea caacegggee etgetgegea 1650 atgacetetg tgeeetggaa tgtgggatee ceaaacaett tgggetttte 1700 tacgccatgg gcacagccct gatgatggag gggctgctca gtgcttgcta 1750 tcatgtgtgc cccaactata ccaatttcca gtttgacaca tcgttcatgt 1800 acatgatege eggactetge atgetgaage tetaceagaa geggeaeeeg 1850 gacatcaacg ccagcgccta cagtgcctac gcctgcctgg ccattgtcat 1900

cttcttctct gtgctgggcg tggtctttgg caaagggaac acggcgttct 1950 ggatcgtctt ctccatcatt cacatcatcg ccaccctgct cctcagcacg 2000 cagetetatt acatgggeeg gtggaaactg gaetegggga tetteegeeg 2050 catectecae gtgetetaea eagactgeat eeggeagtge agegggeege 2100 tetaegtgga eegeatggtg etgetggtea tgggeaaegt cateaaetgg 2150 tegetggetg cetatggget tateatgege eccaatgatt tegetteeta 2200 cttgttggcc attggcatct gcaacctgct cctttacttc gccttctaca 2250 teateatgaa geteeggagt ggggagagga teaageteat eeceetgete 2300 tgcatcgttt gcacctccgt ggtctggggc ttcgcgctct tcttcttctt 2350 ccagggactc agcacctggc agaaaacccc tgcagagtcg agggagcaca 2400 accgggactg catecteete gaettetttg acgaecaega catetggeae 2450 tteeteteet ceategeeat gttegggtee tteetggtgt tgetgaeact 2500 ggatgacgac ctggatactg tgcagcggga caagatctat gtcttctagc 2550 aggagetggg ecettegett caceteaagg ggeeetgage teetttgtgt 2600 catagaccgg tcactctgtc gtgctgtggg gatgagtccc agcaccgctg 2650 cccagcactg gatggcagca ggacagccag gtctagctta ggcttggcct 2700 gggacagcca tggggtggca tggaaccttg cagctgccct ctgccgagga 2750 gcaggcctgc tcccctggaa cccccagatg ttggccaaat tgctgctttc 2800 ttctcagtgt tggggccttc catgggcccc tgtcctttgg ctctccattt 2850 gtccctttgc aagaggaagg atggaaggga caccctcccc atttcatgcc 2900 ttgcattttg cccgtcctcc tccccacaat gccccagcct gggacctaag 2950 gcctcttttt cctcccatac tcccactcca gggcctagtc tggggcctga 3000 atctctgtcc tgtatcaggg ccccagttct ctttgggctg tccctggctg 3050 ccatcactgc ccattccagt cagccaggat ggatgggggt atgagatttt 3100 gggggttggc cagctggtgc cagacttttg gtgctaaggc ctgcaagggg 3150 cctggggcag tgcgtattct cttccctctg acctgtgctc agggctggct 3200 ctttagcaat gcgctcagcc caatttgaga accgccttct gattcaagag 3250 gctgaattca gaggtcacct cttcatccca tcagctccca gactgatgcc 3300

agcaccagga ctggagggag aagcgcetca cecettecet teettette 3350
caggceetta gtettgeeaa acceeagetg gtggeettte agtgeeattg 3400
acactgeeca agaatgteea ggggeaaagg agggatgata cagagtteag 3450
ceegttetge etceacaget gtgggeaeee cagtgeetae ettagaaagg 3500
ggetteagga agggatgtge tgttteeete taegtgeeca gteetageet 3550
cgetetagga eccagggetg gettetaagt tteegteeag tetteaggea 3600
agttetgtgt tagteatgea cacacatace tatgaaacet tggagtttae 3650
aaagaattge eccagetetg ggeaeeetgg eeaeeetggt eettggatee 3700
cettegtee acetggteea eeeeagatge tgaggatggg ggageteagg 3750
cggggeetet getttgggga tgggaatgtg tttteteee aaaettgttt 3800
ttatagetet gettgaaggg etgggagatg aggtgggtet ggatettte 3850
teagagegte teeatgetat ggttgeattt eegttteta tgaatgaatt 3900
tgcatteaat aaacaaccag acteaaaaaa aaaaaaaaa 3939

<210> 227

<211> 832

<212> PRT

<213> Homo sapiens

<400> 227

Met Phe Ala Leu Gly Leu Pro Phe Leu Val Leu Leu Val Ala Ser 1 5 10 15

Val Glu Ser His Leu Gly Val Leu Gly Pro Lys Asn Val Ser Gln
20 25 30

Lys Asp Ala Glu Phe Glu Arg Thr Tyr Val Asp Glu Val Asn Ser 35 40 45

Glu Leu Val Asn Ile Tyr Thr Phe Asn His Thr Val Thr Arg Asn 50 55 60

Arg Thr Glu Gly Val Arg Val Ser Val Asn Val Leu Asn Lys Gln 65 70 75

Lys Gly Ala Pro Leu Leu Phe Val Val Arg Gln Lys Glu Ala Val 80 85 90

Val Ser Phe Gln Val Pro Leu Ile Leu Arg Gly Met Phe Gln Arg 95 100 105

Lys Tyr Leu Tyr Gln Lys Val Glu Arg Thr Leu Cys Gln Pro Pro 110 115 120

Thr Lys Asn Glu Ser Glu Ile Gln Phe Phe Tyr Val Asp Val Ser

Leu Leu Val Met Gly Asn Val Ile Asn Trp Ser Leu Ala Ala Tyr

695 700 705 Gly Leu Ile Met Arg Pro Asn Asp Phe Ala Ser Tyr Leu Leu Ala 715 Ile Gly Ile Cys Asn Leu Leu Tyr Phe Ala Phe Tyr Ile Ile Met Lys Leu Arg Ser Gly Glu Arg Ile Lys Leu Ile Pro Leu Leu Cys Ile Val Cys Thr Ser Val Val Trp Gly Phe Ala Leu Phe Phe Phe Phe Gln Gly Leu Ser Thr Trp Gln Lys Thr Pro Ala Glu Ser Arg Glu His Asn Arg Asp Cys Ile Leu Leu Asp Phe Phe Asp Asp 790 His Asp Ile Trp His Phe Leu Ser Ser Ile Ala Met Phe Gly Ser 800 805 Phe Leu Val Leu Leu Thr Leu Asp Asp Leu Asp Thr Val Gln 815 820 Arg Asp Lys Ile Tyr Val Phe

<210> 228

<211> 2848

<212> DNA

<213> Homo sapiens

<400> 228

getcaagtge cetgeettge eccaeceage ceageetgge cagageeece 50 tggagaagga gctctcttct tgcttggcag ctggaccaag ggagccagtc 100 ttgggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150 getttgtgtc tecgteeccc aggetetecc caaggeecag cetgeagage 200 tgtctgtgga agttccagaa aactatggtg gaaatttccc tttatacctg 250 accaagttgc cgctgccccg tgagggggct gaaggccaga tcgtgctgtc 300 aggggactca ggcaaggcaa ctgagggccc atttgctatg gatccagatt 350 ctggcttcct gctggtgacc agggccctgg accgagagga gcaggcagag 400 taccagctac aggtcaccct ggagatgcag gatggacatg tcttgtgggg 450 tccacagcct gtgcttgtgc acgtgaagga tgagaatgac caggtgcccc 500 atttctctca agccatctac agagctcggc tgagccgggg taccaggcct 550

ggcatcccct tcctcttcct tgaggcttca gaccgggatg agccaggcac 600 cttccccaga catgttccag ctggagcctc ggctgggggc tctggccctc 700 agccccaagg ggagcaccag ccttgaccac gccctggaga ggacctacca 750 gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800 ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850 gagectatee acetggeaga gaateteaaa gteetataee egeaceaeat 900 ggcccaggta cactggagtg ggggtgatgt gcactatcac ctggagagcc 950 atccccggg accctttgaa gtgaatgcag agggaaacct ctacgtgacc 1000 agagagetgg acagagaage ceaggetgag tacetgetee aggtgeggge 1050 tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100 tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150 acagtcagca tccctgagct cagtccacca ggtactgaag tgactagact 1200 gtcagcagag gatgcagatg cccccggctc ccccaattcc cacgttgtgt 1250 atcagctcct gagccctgag cctgaggatg gggtagaggg gagagccttc 1300 caggtggacc ccacttcagg cagtgtgacg ctgggggtgc tcccactccg 1350 agcaggccag aacatcctgc ttctggtgct ggccatggac ctggcaggcg 1400 cagagggtgg cttcagcagc acgtgtgaag tcgaagtcgc agtcacagat 1450 atcaatgate acgeeectga gtteateact teccagattg ggeetataag 1500 cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550 ttgatgctga cctcgagccc gccttccgcc tcatggattt tgccattgag 1600 aggggagaca cagaagggac ttttggcctg gattgggagc cagactctgg 1650 gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 1700 gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750 ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800 gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccca 1850 tcagtgcccc agccggctct ttcctgctga ccatccagcc ctccgacccc 1900 atcagccgaa ccctcaggtt ctccctagtc aatgactcag agggctggct 1950 ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2000

gcgcccagcc tggggacacc tacacggtgc ttgtggaggc ccaggataca 2050 gccctgactc ttgcccctgt gccctcccaa tacctctgca caccccgcca 2100 agaccatggc ttgatcgtga gtggacccag caaggacccc gatctggcca 2150 gtgggcacgg tccctacagc ttcacccttg gtcccaaccc cacggtgcaa 2200 cgggattggc gcctccagac tctcaatggt tcccatgcct acctcacctt 2250 ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtggtggtca 2300 gccacaatgc ccagatgtgg cagctcctgg ttcgagtgat cgtgtgtcgc 2350 tgcaacgtgg aggggcagtg catgcgcaag gtgggccgca tgaagggcat 2400 gcccacqaaq ctgtcgqcaq tqggcatcct tgtaqgcacc ctggtagcaa 2450 taggaatctt cctcatcctc attttcaccc actggaccat gtcaaggaag 2500 aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550 aatggcccag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600 tcccctggga gagagcccag cacccaagat ccagcagggg acaggacaga 2650 gtagaagccc ctccatctgc cctggggtgg aggcaccatc accatcacca 2700 ggcatgtctg cagagectgg acaccaactt tatggactge ccatgggagt 2750 gctccaaatg tcagggtgtt tgcccaataa taaagcccca gagaactggg 2800

<210> 229

<211> 807

<212> PRT

<213> Homo sapiens

<400> 229

Met Val Pro Ala Trp Leu Trp Leu Leu Cys Val Ser Val Pro Gln
1 5 10 15

Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro
20 25 30

Glu Asn Tyr Gly Gly Asn Phe Pro Leu Tyr Leu Thr Lys Leu Pro
35 40 45

Leu Pro Arg Glu Gly Ala Glu Gly Gln Ile Val Leu Ser Gly Asp 50 55 60

Ser Gly Lys Ala Thr Glu Gly Pro Phe Ala Met Asp Pro Asp Ser 65 70 75

Gly Phe Leu Leu Val Thr Arg Ala Leu Asp Arg Glu Glu Gln Ala

Glu	Tyr	Gln	Leu	Gln 95	Val	Thr	Leu	Glu	Met 100	Gln	Asp	Gly	His	Val 105
Leu	Trp	Gly	Pro	Gln 110	Pro	Val	Leu	Val	His 115	Val	Lys	Asp	Glu	Asn 120
Asp	Gln	Val	Pro	His 125	Phe	Ser	Gln	Ala	Ile 130	Tyr	Arg	Ala	Arg	Leu 135
Ser	Arg	Gly	Thr	Arg 140	Pro	Gly	Ile	Pro	Phe 145	Leu	Phe	Leu	Glu	Ala 150
Ser	qzA	Arg	Asp	Glu 155	Pro	Gly	Thr	Ala	Asn 160	Ser	Asp	Leu	Arg	Phe 165
His	Ile	Leu	Ser	Gln 170	Ala	Pro	Ala	Gln	Pro 175	Ser	Pro	Asp	Met	Phe 180
Gln	Leu	Glu	Pro	Arg 185	Leu	Gly	Ala	Leu	Ala 190	Leu	Ser	Pro	Lys	Gly 195
Ser	Thr	Ser	Leu	Asp 200	His	Ala	Leu	Glu	Arg 205	Thr	Tyr	Gln	Leu	Leu 210
Val	Gln	Val	Lys	Asp 215	Met	Gly	Asp	Gln	Ala 220	Ser	Gly	His	Gln	Ala 225
Thr	Ala	Thr	Val	Glu 230	Val	Ser	Ile	Ile	Glu 235	Ser	Thr	Trp	Val	Ser 240
Leu	Glu	Pro	Ile	His 245	Leu	Ala	Glu	Asn	Leu 250	Lys	Val	Leu	Tyr	Pro 255
His	His	Met	Ala	Gln 260	Val	His	Trp	Ser	Gly 265	Gly	Asp	Val	His	Tyr 270
His	Leu	Glu	Ser	His 275	Pro	Pro	Gly	Pro	Phe 280	Glu	Val	Asn	Ala	Glu 285
Gly	Asn	Leu	Tyr	Val 290	Thr	Arg	Glu	Leu	Asp 295	Arg	Glu	Ala	Gln	Ala 300
Glu	Tyr	Leu	Leu	Gln 305	Val	Arg	Ala	Gln	Asn 310	Ser	His	Gly	Glu	Asp 315
Tyr	Ala	Ala	Pro	Leu 320	Glu	Leu	His	Val	Leu 325	Val	Met	Asp	Glu	Asn 330
Asp	Asn	Val	Pro	Ile 335	Cys	Pro	Pro	Arg	Asp 340	Pro	Thr	Val	Ser	Ile 345
Pro	Glu	Leu	Ser	Pro 350	Pro	Gly	Thr	Glu	Val 355	Thr	Arg	Leu	Ser	Ala 360
Glu	Asp	Ala	Asp	Ala	Pro	Gly	Ser	Pro	Asn	Ser	His	Val	Val	Tyr

Gln	Leu	Leu	Ser	Pro 380	Glu	Pro	Glu	Asp	Gly 385	Val	Glu	Gly	Arg	Ala 390
Phe	Gln	Val	Asp	Pro 395	Thr	Ser	Gly	Ser	Val 400	Thr	Leu	Gly	Val	Leu 405
Pro	Leu	Arg	Ala	Gly 410	Gln	Asn	Ile	Leu	Leu 415	Leu	Val	Leu	Ala	Met 420
Asp	Leu	Ala	Gly	Ala 425	Glu	Gly	Gly	Phe	Ser 430	Ser	Thr	Cys	Glu	Val 435
Glu	Val	Ala	Val	Thr 440	Asp	Ile	Asn	Asp	His 445	Ala	Pro	Glu	Phe	Ile 450
Thr	Ser	Gln	Ile	Gly 455	Pro	Ile	Ser	Leu	Pro 460	Glu	Asp	Val	Glu	Pro 465
Gly	Thr	Leu	Val	Ala 470	Met	Leu	Thr	Ala	Ile 475	Asp	Ala	Asp	Leu	Glu 480
Pro	Ala	Phe	Arg	Leu 485	Met	Asp	Phe	Ala	Ile 490	Glu	Arg	Gly	Asp	Thr 495
Glu	Gly	Thr	Phe	Gly 500	Leu	Asp	Trp	Glu	Pro 505	Asp	Ser	Gly	His	Val 510
Arg	Leu	Arg	Leu	Cys 515	Lys	Asn	Leu	Ser	Tyr 520	Glu	Ala	Ala	Pro	Ser 525
His	Glu	Val	Val	Val 530	Val	Val	Gln	Ser	Val 535	Ala	Lys	Leu	Val	Gly 540
Pro	Gly	Pro	Gly	Pro 545	Gly	Ala	Thr	Ala	Thr 550	Val	Thr	Val	Leu	Val 555
Glu	Arg	Val	Met	Pro 560	Pro	Pro	Lys	Leu	Asp 565	Gln	Glu	Ser	Tyr	Glu 570
Ala	Ser	Val	Pro	Ile 575	Ser	Ala	Pro	Ala	Gly 580	Ser	Phe	Leu	Leu	Thr 585
Ile	Gln	Pro	Ser	Asp 590	Pro	Ile	Ser	Arg	Thr 595	Leu	Arg	Phe	Ser	Leu 600
Val	Asn	Asp	Ser	Glu 605	Gly	Trp	Leu	Суз	Ile 610	Glu	Lys	Phe	Ser	Gly 615
Glu	Val	His	Thr	Ala 620	Gln	Ser	Leu	Gln	Gly 625	Ala	Gln	Pro	Gly	Asp 630
Thr	Tyr	Thr	Val	Leu 635	Val	Glu	Ala	Gln	Asp 640	Thr	Ala	Leu	Thr	Leu 645
Ala	Pro	Val	Pro	Ser	Gln	Tvr	Len	Cvs	Thr	Pro	Ara	Gln	Asp	His

650 655 660 Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser 665 670 Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val Gln Arg Asp Trp Arg Leu Gln Thr Leu Asn Gly Ser His Ala Tyr Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile Pro Val Val Val Ser His Asn Ala Gln Met Trp Gln Leu Leu Val 730 Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gln Cys Met Arg 745 Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp 790 Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val 800 <210> 230 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe cgccttaccg cgcagcccga agattcacta tggtgaaaat cgccttcaat 50 <210> 231 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 231 cctgagctgt aaccccactc cagg 24 <210> 232 <211> 23 <212> DNA

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 232 agagtctgtc ccagctatct tgt 23 <210> 233 <211> 2786 <212> DNA <213> Homo sapiens <400> 233 ccggggacat gaggtggata ctgttcattq qqqcccttat tqgqtccaqc 50 atctgtggcc aagaaaaatt ttttggggac caagttttga ggattaatgt 100 cagaaatgga gacgagatca gcaaattgag tcaactagtg aattcaaaca 150 acttgaagct caatttctgg aaatctccct cctccttcaa tcggcctgtg 200 gatgtcctgg tcccatctgt cagtctgcag gcatttaaat ccttcctgag 250 atcccagggc ttagagtacg cagtgacaat tgaggacctg caggcccttt 300 tagacaatga agatgatgaa atgcaacaca atgaagggca agaacggagc 350 agtaataact tcaactacgg ggcttaccat tccctggaag ctatttacca 400 cgagatggac aacattgccg cagactttcc tgacctggcg aggagggtga 450 agattggaca ttcgtttgaa aaccggccga tgtatgtact gaagttcagc 500 actgggaaag gcgtgaggcg gccggccgtt tggctgaatg caggcatcca 550 ttcccgagag tggatctccc aggccactgc aatctggacg gcaaggaaga 600 ttgtatctga ttaccagagg gatccagcta tcacctccat cttggagaaa 650 atggatattt tettgttgee tgtggeeaat eetgatggat atgtgtatae 700 tcaaactcaa aaccgattat ggaggaagac gcggtcccga aatcctggaa 750 gctcctgcat tggtgctgac ccaaatagaa actggaacgc tagttttgca 800 ggaaagggag ccagcgacaa cccttgctcc gaagtgtacc atggacccca 850 cgccaattcg gaagtggagg tgaaatcagt ggtagatttc atccaaaaac 900 atgggaattt caagggcttc atcgacctgc acagctactc gcagctgctg 950 atgtatccat atgggtactc agtcaaaaag gccccagatg ccgaggaact 1000 cgacaaggtg gcgaggcttg cggccaaagc tctqqcttct gtgtcqgqca 1050 ctgagtacca agtgggtccc acctgcacca ctgtctatcc agctagcggg 1100

agcagcateg actgggegta tgacaaegge atcaaatttg cattcacatt 1150 tgagttgaga gataccggga cctatggctt cctcctgcca gctaaccaga 1200 tcatccccac tgcagaggag acgtggctgg ggctgaagac catcatggag 1250 atttgtaccc acacgtgcac gcactgaggc cattgttaaa ggagctcttt 1350 cctacctgtg tgagtcagag ccctctgggt ttgtggagca cacaggcctg 1400 cocctotoca gocagotoco tggagtogtg tgtoctggcg gtgtocotgc 1450 aagaactggt tetgecagee tgeteaattt tggteetget gtttttgatg 1500 agcettttgt etgtttetee ttecaccetg etggetggge ggetgeacte 1550 agcatcaccc cttcctgggt ggcatgtctc tctctacctc atttttagaa 1600 ccaaagaaca tctgagatga ttctctaccc tcatccacat ctagccaagc 1650 cagtgacctt gctctggtgg cactgtggga gacaccactt gtctttaggt 1700 gggtctcaaa gatgatgtag aatttccttt aatttctcgc agtcttcctg 1750 gaaaatattt teetttgage ageaaatett gtagggatat eagtgaaggt 1800 eteteetee eteeteteet gtttttttt tttttgagae agagttttge 1850 tcttgttgcc caggctggag tgtgatggct cgatcttggc tcaccacaac 1900 ctctgcctcc tgggttcaag caattctcct gcctcagcct cttgagtagc 1950 ttggtttata ggcgcatgcc accatgcctg gctaattttg tgtttttagt 2000 agagacaggg tttctccatg ttggtcaggc tggtctcaaa ctcccaacct 2050 caggtgatct gccctccttg gcctcccaga gtgctgggat tacaggtgtg 2100 agccactgtg ccgggcccgt cccctccttt tttaggcctg aatacaaagt 2150 agaagatcac tttccttcac tgtgctgaga atttctagat actacagttc 2200 ttactcctct cttccctttg ttattcagtg tgaccaggat ggcgggaggg 2250 gatctgtgtc actgtaggta ctgtgcccag gaaggctggg tgaagtgacc 2300 atctaaattg caggatggtg aaattatccc catctgtcct aatgggctta 2350 cctcctcttt gccttttgaa ctcacttcaa agatctaggc ctcatcttac 2400 aggtcctaaa tcactcatct ggcctggata atctcactgc cctggcacat 2450 teceattigt getgiggigt atcetgigt teetigiest ggittigigi 2500

<210> 234 <211> 421

<212> PRT

<213> Homo sapiens

<400> 234

Met Arg Trp Ile Leu Phe Ile Gly Ala Leu Ile Gly Ser Ser Ile
1 5 10 15

Cys Gly Gln Glu Lys Phe Phe Gly Asp Gln Val Leu Arg Ile Asn 20 25 30

Val Arg Asn Gly Asp Glu Ile Ser Lys Leu Ser Gln Leu Val Asn 35 40 45

Ser Asn Asn Leu Lys Leu Asn Phe Trp Lys Ser Pro Ser Ser Phe 50 55 60

Asn Arg Pro Val Asp Val Leu Val Pro Ser Val Ser Leu Gln Ala 65 70 75

Phe Lys Ser Phe Leu Arg Ser Gln Gly Leu Glu Tyr Ala Val Thr 80 85 90

Ile Glu Asp Leu Gln Ala Leu Leu Asp Asn Glu Asp Asp Glu Met
95 100 105

Gln His Asn Glu Gly Gln Glu Arg Ser Ser Asn Asn Phe Asn Tyr 110 115 120

Gly Ala Tyr His Ser Leu Glu Ala Ile Tyr His Glu Met Asp Asn 125 130 135

Ile Ala Asp Phe Pro Asp Leu Ala Arg Arg Val Lys Ile Gly
140 145 150

His Ser Phe Glu Asn Arg Pro Met Tyr Val Leu Lys Phe Ser Thr 155 160 165

Gly Lys Gly Val Arg Arg Pro Ala Val Trp Leu Asn Ala Gly Ile 170 175 180

His Ser Arg Glu Trp Ile Ser Gln Ala Thr Ala Ile Trp Thr Ala 185 190 195

Arg	Lys	Ile	Val	Ser 200	Asp	Tyr	Gln	Arg	Asp 205	Pro	Ala	Ile	Thr	Ser 210
Ile	Leu	Glu	Lys	Met 215	Asp	Ile	Phe	Leu	Leu 220	Pro	Val	Ala	Asn	Pro 225
Asp	Gly	Tyr	Val	Tyr 230	Thr	Gln	Thr	Gln	Asn 235	Arg	Leu	Trp	Arg	Lys 240
Thr	Arg	Ser	Arg	Asn 245	Pro	Gly	Ser	Ser	Cys 250	Ile	Gly	Ala	Asp	Pro 255
Asn	Arg	Asn	Trp	Asn 260	Ala	Ser	Phe	Ala	Gly 265	Lys	Gly	Ala	Ser	Asp 270
Asn	Pro	Cys	Ser	Glu 275	Val	Tyr	His	Gly	Pro 280	His	Ala	Asn	Ser	Glu 285
Val	Glu	Val	Lys	Ser 290	Val	Val	Asp	Phe	Ile 295	Gln	Lys	His	Gly	Asn 300
Phe	Lys	Gly	Phe	Ile 305	Asp	Leu	His	Ser	Tyr 310	Ser	Gln	Leu	Leu	Met 315
Tyr	Pro	Tyr	Gly	Tyr 320	Ser	Val	Lys	Lys	Ala 325	Pro	Asp	Ala	Glu	Glu 330
Leu	Asp	Lys	Val	Ala 335	Arg	Leu	Ala	Ala	Lys 340	Ala	Leu	Ala	Ser	Val 345
Ser	Gly	Thr	Glu	Tyr 350	Gln	Val	Gly	Pro	Thr 355	Cys	Thr	Thr	Val	Tyr 360
Pro	Ala	Ser	Gly	Ser 365	Ser	Ile	Asp	Trp	Ala 370	Tyr	Asp	Asn	Gly	Ile 375
Lys	Phe	Ala	Phe	Thr 380	Phe	Glu	Leu	Arg	Asp 385	Thr	Gly	Thr	Tyr	Gly 390
Phe	Leu	Leu	Pro	Ala 395	Asn	Gln	Ile	Ile	Pro 400	Thr	Ala	Glu	Glu	Thr 405
Trp	Leu	Gly	Leu	Lys 410	Thr	Ile	Met	Glu	His 415	Val	Arg	Asp	Asn	Leu 420
Т														

Tyr

<210> 235

<211> 1743

<212> DNA

<213> Homo sapiens

<400> 235

caaccatgca aggacagggc aggagaagag gaacctgcaa agacatattt 50

tgttccaaaa tggcatctta cctttatgga gtactctttg ctgttggcct 100

ctgtgctcca atctactgtg tgtccccggc caatgccccc agtgcatacc 150 cccgcccttc ctccacaaag agcacccctg cctcacaggt gtattccctc 200 aacaccgact ttgccttccg cctataccgc aggctggttt tggagacccc 250 gagtcagaac atcttcttct cccctgtgag tgtctccact tccctggcca 300 tgctctccct tggggcccac tcagtcacca agacccagat tctccagggc 350 ctgggcttca acctcacaca cacaccagag tctgccatcc accagggctt 400 ccagcacctg gttcactcac tgactgttcc cagcaaagac ctgaccttga 450 agatgggaag tgccctcttc gtcaagaagg agctgcagct gcaggcaaat 500 ttcttgggca atgtcaagag gctgtatgaa gcagaagtct tttctacaga 550 tttctccaac ccctccattg cccaggcgag gatcaacagc catgtgaaaa 600 agaagaccca agggaaggtt gtagacataa tccaaggcct tgaccttctg 650 acggccatgg ttctggtgaa tcacattttc tttaaagcca agtgggagaa 700 gccctttcac cttgaatata caagaaagaa cttcccattc ctggtgggcg 750 agcaggtcac tgtgcaagtc cccatgatgc accagaaaga gcagttcgct 800 tttggggtgg atacagagct gaactgcttt gtgctgcaga tggattacaa 850 gggagatgcc gtggccttct ttgtcctccc tagcaagggc aagatgaggc 900 aactggaaca ggccttgtca gccagaacac tgataaagtg gagccactca 950 ctccagaaaa ggtggataga ggtgttcatc cccagatttt ccatttctgc 1000 ctcctacaat ctggaaacca tcctcccgaa gatgggcatc caaaatgcct 1050 ttgacaaaaa tgctgatttt tctggaattg caaagagaga ctccctgcag 1100 gtttctaaag caacccacaa ggctgtgctg gatgtcagtg aagagggcac 1150 tgaggccaca gcagctacca ccaccaagtt catagtccga tcgaaggatg 1200 gtccctctta cttcactgtc tccttcaata ggaccttcct gatgatgatt 1250 acaaataaag ccacagacgg tattctcttt ctagggaaag tggaaaatcc 1300 cactaaatcc taggtgggaa atggcctgtt aactgatggc acattgctaa 1350 tgaccccagt ggagctggat tcgctggcag ggatgccact tccaaggctc 1450 aatcaccaaa ccatcaacag ggaccccagt cacaagccaa cacccattaa 1500

ccccagtcag tgcccttttc cacaaattct cccaggtaac tagcttcatg 1550 ggatgttgct gggttaccat atttccattc cttggggctc ccaggaatgg 1600 aaatacgcca acccaggtta ggcacctcta ttgcagaatt acaataacac 1650 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 1743 <210> 236 <211> 417

<212> PRT

<213> Homo sapiens

<400> 236

Met Ala Ser Tyr Leu Tyr Gly Val Leu Phe Ala Val Gly Leu Cys

Ala Pro Ile Tyr Cys Val Ser Pro Ala Asn Ala Pro Ser Ala Tyr 20 30

Pro Arg Pro Ser Ser Thr Lys Ser Thr Pro Ala Ser Gln Val Tyr

Ser Leu Asn Thr Asp Phe Ala Phe Arg Leu Tyr Arg Arg Leu Val 50

Leu Glu Thr Pro Ser Gln Asn Ile Phe Phe Ser Pro Val Ser Val 65

Ser Thr Ser Leu Ala Met Leu Ser Leu Gly Ala His Ser Val Thr

Lys Thr Gln Ile Leu Gln Gly Leu Gly Phe Asn Leu Thr His Thr 95 100

Pro Glu Ser Ala Ile His Gln Gly Phe Gln His Leu Val His Ser 110 115

Leu Thr Val Pro Ser Lys Asp Leu Thr Leu Lys Met Gly Ser Ala 130

Leu Phe Val Lys Lys Glu Leu Gln Leu Gln Ala Asn Phe Leu Gly 140 145 150

Asn Val Lys Arg Leu Tyr Glu Ala Glu Val Phe Ser Thr Asp Phe

Ser Asn Pro Ser Ile Ala Gln Ala Arg Ile Asn Ser His Val Lys 170 175

Lys Lys Thr Gln Gly Lys Val Val Asp Ile Ile Gln Gly Leu Asp 185 195

Leu Leu Thr Ala Met Val Leu Val Asn His Ile Phe Phe Lys Ala 200

Lys Trp Glu Lys Pro Phe His Leu Glu Tyr Thr Arg Lys Asn Phe Pro Phe Leu Val Gly Glu Gln Val Thr Val Gln Val Pro Met Met His Gln Lys Glu Gln Phe Ala Phe Gly Val Asp Thr Glu Leu Asn Cys Phe Val Leu Gln Met Asp Tyr Lys Gly Asp Ala Val Ala Phe 260 Phe Val Leu Pro Ser Lys Gly Lys Met Arg Gln Leu Glu Gln Ala 275 Leu Ser Ala Arg Thr Leu Ile Lys Trp Ser His Ser Leu Gln Lys 295 Arg Trp Ile Glu Val Phe Ile Pro Arg Phe Ser Ile Ser Ala Ser 310 Tyr Asn Leu Glu Thr Ile Leu Pro Lys Met Gly Ile Gln Asn Ala Phe Asp Lys Asn Ala Asp Phe Ser Gly Ile Ala Lys Arg Asp Ser Leu Gln Val Ser Lys Ala Thr His Lys Ala Val Leu Asp Val Ser 350 Glu Glu Gly Thr Glu Ala Thr Ala Ala Thr Thr Thr Lys Phe Ile Val Arg Ser Lys Asp Gly Pro Ser Tyr Phe Thr Val Ser Phe Asn 385 Arg Thr Phe Leu Met Met Ile Thr Asn Lys Ala Thr Asp Gly Ile 395 400 Leu Phe Leu Gly Lys Val Glu Asn Pro Thr Lys Ser 410 <210> 237 <211> 23 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe caaccatgca aggacagggc agg 23

<210> 238 <211> 47 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 238
ctttgctgtt ggcctctgtg ctcccaacca tgcaaggaca gggcagg 47
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 239
tgactcgggg tctccaaaac cagc 24
<210> 240
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 240
ggtataggcg gaaggcaaag tcgg 24
<210> 241
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
ggcatcttac ctttatggag tactctttgc tqttggcctc tgtgctcc 48
<210> 242
<211> 2436
<212> DNA
<213> Homo sapiens
<400> 242
ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50
agctgcccac gcctgagtcc aagattcttc ccaggaacac aaacgtagga 100
gacccacgct cctggaagca ccagccttta tctcttcacc ttcaagtccc 150
ctttctcaag aatcctctgt tctttgccct ctaaagtctt ggtacatcta 200
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgcag 250
```

aaaggaaatg ttctccttat gtttggtcta ctattgcatt tagaagctgc 300 aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350 tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400 agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450 ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500 gcacagccac caactctgag ttcagcacag cgtccagtgg gatcagcata 550 gccaccaact ctgagtccag cacaacctcc agtggggcca gcacagccac 600 caactctgag tccagcacac cctccagtgg ggccagcaca gtcaccaact 650 ctgggtccag tgtgacctcc agtggagcca gcactgccac caactctgag 700 tccagcacag tgtccagtag ggccagcact gccaccaact ctgagtctag 750 cacactetee agtggggeea geacageeae caactetgae teeageacaa 800 cctccagtgg ggctagcaca gccaccaact ctgagtccag cacaacctcc 850 agtggggcca gcacagccac caactctgag tccagcacag tgtccagtag 900 ggccagcact gccaccaact ctgagtccag cacaacctcc agtggggcca 950 gcacagccac caactetgag tecagaacga cetecaatgg ggetggcaca 1000 gccaccaact ctgagtccag cacgacctcc agtggggcca gcacagccac 1050 caactetgae tecageacag tgtecagtgg ggecageact gecaecaact 1100 ctgagtccag cacgacctcc agtggggcca gcacagccac caactctgag 1150 tccagcacga cctccagtgg ggctagcaca gccaccaact ctgactccag 1200 cacaacctcc agtggggccg gcacagccac caactctgag tccagcacag 1250 tgtccagtgg gatcagcaca gtcaccaatt ctgagtccag cacaccctcc 1300 agtggggcca acacagccac caactctgag tccagtacga cctccagtgg 1350 ggccaacaca gccaccaact ctgagtccag cacagtgtcc agtggggcca 1400 gcactgccac caactctgag tccagcacaa cctccagtgg ggtcagcaca 1450 gccaccaact ctgagtccag cacaacctcc agtggggcta gcacagccac 1500 caactctgac tccagcacaa cctccagtga ggccagcaca gccaccaact 1550 ctgagtctag cacagtgtcc agtgggatca gcacagtcac caattctgag 1600 tccagcacaa cctccagtgg ggccaacaca gccaccaact ctgggtccag 1650 tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700

<210> 243

<211> 596

<212> PRT

<213> Homo sapiens

<400> 243

Met Lys Met Gln Lys Gly Asn Val Leu Leu Met Phe Gly Leu Leu 1 5 10 15

Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser 20 25 30

Ala Asn Thr Gly Ser Ser Val Ile Ser Ser Gly Ala Ser Thr Ala
35 40 45

Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Val Ser Thr Ala
50 55 60

Thr Ile Ser Gly Ser Ser Val Thr Ser Asn Gly Val Ser Ile Val
65 70 75

Thr Asn Ser Glu Phe His Thr Thr Ser Ser Gly Ile Ser Thr Ala 80 85 90

Thr Asn Ser Glu Phe Ser Thr Ala Ser Ser Gly Ile Ser Ile Ala 95 100 105

Thr	Asn	Ser	Glu	Ser 110	Ser	Thr	Thr	Ser	Ser 115	Gly	Ala	Ser	Thr	Ala 120	
Thr	Asn	Ser	Glu	Ser 125	Ser	Thr	Pro	Ser	Ser 130	Gly	Ala	Ser	Thr	Val 135 .	
Thr	Asn	Ser	Gly	Ser 140	Ser	Val	Thr	Ser	Ser 145	Gly	Ala	Ser	Thr	Ala 150	
Thr	Asn	Ser	Glu	Ser 155	Ser	Thr	Val	Ser	Ser 160	Arg	Ala	Ser	Thr	Ala 165	
Thr	Asn	Ser	Glu	Ser 170	Ser	Thr	Leu	Ser	Ser 175	Gly	Ala	Ser	Thr	Ala 180	
Thr	Asn	Ser	Asp	Ser 185	Ser	Thr	Thr	Ser	Ser 190	Gly	Ala	Ser	Thr	Ala 195	
Thr	Asn	Ser	Glu	Ser 200	Ser	Thr	Thr	Ser	Ser 205	Gly	Ala	Ser	Thr	Ala 210	
Thr	Asn	Ser	Glu	Ser 215	Ser	Thr	Val	Ser	Ser 220	Arg	Ala	Ser	Thr	Ala 225	
Thr	Asn	Ser	Glu	Ser 230	Ser	Thr	Thr	Ser	Ser 235	Gly	Ala	Ser	Thr	Ala 240	
Thr	Asn	Ser	Glu	Ser 245	Arg	Thr	Thr	Ser	Asn 250	Gly	Ala	Gly	Thr	Ala 255	
Thr	Asn	Ser	Glu	Ser 260	Ser	Thr	Thr	Ser	Ser 265	Gly	Ala	Ser	Thr	Ala 270	
Thr	Asn	Ser	Asp	Ser 275	Ser	Thr	Val	Ser	Ser 280	Gly	Ala	Ser	Thr	Ala 285	
Thr	Asn	Ser	Glu	Ser 290	Ser	Thr	Thr	Ser	Ser 295	Gly	Ala	Ser	Thr	Ala 300	
Thr	Asn	Ser	Glu	Ser 305	Ser	Thr	Thr	Ser	Ser 310	Gly	Ala	Ser	Thr	Ala 315	
Thr	Asn	Ser	Asp	Ser 320	Ser	Thr	Thr	Ser	Ser 325	Gly	Ala	Gly	Thr	Ala 330	
Thr	Asn	Ser	Glu	Ser 335	Ser	Thr	Val	Ser	Ser 340	Gly	Ile	Ser	Thr	Val 345	
Thr	Asn	Ser	Glu	Ser 350	Ser	Thr	Pro	Ser	Ser 355	Gly	Ala	Asn	Thr	Ala 360	
Thr	Asn	Ser	Glu	Ser 365	Ser	Thr	Thr	Ser	Ser 370	Gly	Ala	Asn	Thr	Ala 375	
Thr	Asn	Ser	Glu	Ser 380	Ser	Thr	Val	Ser	Ser 385	Gly	Ala	Ser	Thr	Ala 390	

.

```
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Val Ser Thr Ala
                  395
 Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
                  410
 Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Glu Ala Ser Thr Ala
                  425
 Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val
                  440
 Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala
                  455
 Thr Asn Ser Gly Ser Ser Val Thr Ser Ala Gly Ser Gly Thr Ala
                 470
 Ala Leu Thr Gly Met His Thr Thr Ser His Ser Ala Ser Thr Ala
                  485
                                      490
 Val Ser Glu Ala Lys Pro Gly Gly Ser Leu Val Pro Trp Glu Ile
                 500
                                      505
 Phe Leu Ile Thr Leu Val Ser Val Val Ala Ala Val Gly Leu Phe
                 515
                                      520
 Ala Gly Leu Phe Phe Cys Val Arg Asn Ser Leu Ser Leu Arg Asn
                 530
                                      535
 Thr Phe Asn Thr Ala Val Tyr His Pro His Gly Leu Asn His Gly
                                      550
 Leu Gly Pro Gly Pro Gly Gly Asn His Gly Ala Pro His Arg Pro
                 560
                                      565
 Arg Trp Ser Pro Asn Trp Phe Trp Arg Arg Pro Val Ser Ser Ile
                 575
                                      580
                                                          585
 Ala Met Glu Met Ser Gly Arg Asn Ser Gly Pro
                 590
<210> 244
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
gaagcaccag cctttatctc ttcacc 26
```

<210> 245 <211> 24 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 245
gtcagagttg gtggctgtgc tagc 24
<210> 246
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 246
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgc 48
<210> 247
<211> 957
<212> DNA
<213> Homo sapiens
<400> 247
gggagagag ataaatagca gcgtggcttc cctggctcct ctctgcatcc 50
ttcccgacct tcccagcaat atgcatcttg cacgtctggt cggctcctgc 100
tccctccttc tgctactggg ggccctgtct ggatgggcgg ccagcgatga 150
ccccattgag aaggtcattg aagggatcaa ccgagggctg agcaatgcag 200
agagagaggt gggcaaggcc ctggatggca tcaacagtgg aatcacgcat 250
gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 300
ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca 350
tggacaaggt tgcccatgag atcaaccatg gtattggaca agcaggaaag 400
gaagcagaga agcttggcca tggggtcaac aacgctgctg gacaggccgg 450
gaaggaagca gacaaagcgg tccaagggtt ccacactggg gtccaccagg 500
ctgggaagga agcagagaaa cttggccaag gggtcaacca tgctgctgac 550
caggctggaa aggaagtgga gaagcttggc caaggtgccc accatgctgc 600
tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag 650
ccagcaagga ggccaaccag ctgctgaatg gcaaccatca aagcggatct 700
tccagccatc aaggagggc cacaaccacg ccgttagcct ctggggcctc 750
agtcaacacg cctttcatca accttcccgc cctgtggagg agcgtcgcca 800
```

acatcatgcc ctaaactggc atccggcctt gctgggagaa taatgtcgcc 850 gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900 tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga 950 tacacca 957

<210> 248

<211> 247

<212> PRT

<213> Homo sapiens

<400> 248

Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu 1 5 10 15

Leu Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu 20 25 30

Lys Val Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg 35 40 45

Glu Val Gly Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His 50 55 60

Ala Gly Arg Glu Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met 65 70 75

Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val Gln Gly Leu 80 85 90

Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His Gly Ile 95 100 105

Gly Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val Asn 110 115 120

Asn Ala Ala Gly Gln Ala Gly Lys Glu Ala Asp Lys Ala Val Gln 125 130 135

Gly Phe His Thr Gly Val His Gln Ala Gly Lys Glu Ala Glu Lys 140 145 150

Leu Gly Gln Gly Val Asn His Ala Ala Asp Gln Ala Gly Lys Glu 155 160 165

Val Glu Lys Leu Gly Gln Gly Ala His His Ala Ala Gly Gln Ala 170 175 180

Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn Gln Ala Ser 185 190 195

Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser Gly Ser 200 205 210

Ser Ser His Gln Gly Gly Ala Thr Thr Pro Leu Ala Ser Gly

215 220 225

Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg 230 235 240

Ser Val Ala Asn Ile Met Pro 245

<210> 249

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 249

caatatgcat cttgcacgtc tgg 23

<210> 250

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 250

aagcttetet getteettte etge 24

<210> 251

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 251

tgaccccatt gagaaggtca ttgaagggat caaccgaggg ctg 43

<210> 252

<211> 3781

<212> DNA

<213> Homo sapiens

<400> 252

ctccgggtcc ccaggggctg cgccgggccg gcctggcaag ggggacgagt 50
cagtggacac tccaggaaga gcggccccgc ggggggcgat gaccgtgcgc 100
tgaccctgac tcactccagg tccggaggcg ggggcccccg gggggcgactcg 150
ggggcggacc gcggggcgga gctgccgcc gtgagtccgg ccgagccacc 200

tgagcccgag ccgcgggaca ccgtcgctcc tgctctccga atgctgcgca 250

ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccg 300 cctcggccac cgctgctgct gctcctgctg ctgctgctcc tgctgcagcc 350 gccgcctccg acctgggcgc tcagcccccg gatcagcctg cctctgggct 400 ctgaagagcg gccattcctc agattcgaag ctgaacacat ctccaactac 450 acagecette tgetgageag ggatggeagg accetgtacg tgggtgeteg 500 agaggeeete tttgeaetea gtageaacet cagetteetg ceaggegggg 550 agtaccagga gctgctttgg ggtgcagacg cagagaagaa acagcagtgc 600 agcttcaagg gcaaggaccc acagcgcgac tgtcaaaact acatcaagat 650 cctcctgccg ctcagcggca gtcacctgtt cacctgtggc acagcagcct 700 tcagccccat gtgtacctac atcaacatgg agaacttcac cctggcaagg 750 gacgagaagg ggaatgtcct cctggaagat ggcaagggcc gttgtccctt 800 cgacccgaat ttcaagtcca ctgccctggt ggttgatggc gagctctaca 850 ctggaacagt cagcagcttc caagggaatg acccggccat ctcgcggagc 900 caaagcette geeceaceaa gaeegagage teeeteaact ggetgeaaga 950 cccagctttt gtggcctcag cctacattcc tgagagcctg ggcagcttgc 1000 aaggcgatga tgacaagatc tactttttct tcagcgagac tggccaggaa 1050 tttgagttct ttgagaacac cattgtgtcc cgcattgccc gcatctgcaa 1100 gggcgatgag ggtggagagc gggtgctaca gcagcgctgg acctccttcc 1150 tcaaggccca gctgctgtgc tcacggcccg acgatggctt ccccttcaac 1200 gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga 1250 caccetttte tatggggtet teaetteeca gtggcacagg ggaactacag 1300 aaggetetge egtetgtgte tteacaatga aggatgtgea gagagtette 1350 agcggcctct acaaggaggt gaaccgtgag acacagcagt ggtacaccgt 1400 gacccacccg gtgcccacac cccggcctgg agcgtgcatc accaacagtg 1450 cccgggaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1500 aactteetea aggaceaett eetgatggae gggeaggtee gaageegeat 1550 gctgctgctg cagccccagg ctcgctacca gcgcgtggct gtacaccgcg 1600 tccctggcct gcaccacacc tacgatgtcc tcttcctggg cactggtgac 1650 ggccggctcc acaaggcagt gagcgtgggc ccccgggtgc acatcattga 1700

ggagetgeag atetteteat egggaeagee egtgeagaat etgeteetgg 1750 acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1800 gtgcccatgg ccaactgcag cctgtaccgg agctgtgggg actgcctcct 1850 cgcccgggac ccctactgtg cttggagcgg ctccagctgc aagcacgtca 1900 gcctctacca gcctcagctg gccaccaggc cgtggatcca ggacatcgag 1950 ggagccagcg ccaaggacct ttgcagcgcg tcttcggttg tgtccccgtc 2000 ttttgtacca acaggggaga agccatgtga gcaagtccag ttccagccca 2050 acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 2100 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt 2150 gctacccact ggggacctgc tgctggtggg cacccaacag ctgggggagt 2200 tccagtgctg gtcactagag gagggcttcc agcagctggt agccagctac 2250 tgcccagagg tggtggagga cggggtggca gaccaaacag atgagggtgg 2300 cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca ccagctggtg 2350 gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2400 atgtgcacgc tetttgtgct ggeegtgetg etcecagttt tattettget 2450 ctaccggcac cggaacagca tgaaagtctt cctgaagcag ggggaatgtg 2500 ccagcgtgca ccccaagacc tgccctgtgg tgctgccccc tgagacccgc 2550 ccactcaacg gcctagggcc ccctagcacc ccgctcgatc accgagggta 2600 ccagtccctg tcagacagcc ccccgggggc ccgagtcttc actgagtcag 2650 agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2700 tgccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt 2750 gtgagagetg acttecagag gacgetgece tggetteagg ggetgtgaat 2800 gctcggagag ggtcaactgg acctcccctc cgctctgctc ttcgtggaac 2850 acgaccgtgg tgcccggccc ttgggagcct tggagccagc tggcctgctg 2900 ctctccagtc aagtagcgaa gctcctacca cccagacacc caaacagccg 2950 tggccccaga ggtcctggcc aaatatgggg gcctgcctag gttggtggaa 3000 cagtgctcct tatgtaaact gagccctttg tttaaaaaac aattccaaat 3050 gtgaaactag aatgagaggg aagagatagc atggcatgca gcacacacgg 3100

ttgctgaga cagagttgga aaccctcacc aactggcetc ttcaccttcc 3200
acattatccc gctgccaccg gctgccctgt ctcactgcag attcaggacc 3250
agcttgggct gcgtcctgt tgccttgcca gtcagccgag gatgtagttg 3300
ttgctgacgt cgtccacca cctcagggac cagagggcta ggttggcact 3350
gcggccctca ccaggtcctg ggctcggacc caactcctgg acctttccag 3400
cctgtatcag gctgtgcca cacgagagga cagcggagc tcaggagaga 3450
tttcgtgaca atgtacgcct ttccctcaga attcagggac gagactgtcg 3500
cctgccttcc tccgttgttg cgtgagacc cgtgtgcccc ttcccaccat 3550
atccaccctc gctccatct tgaactcaaa cacgaggaac taactgcacc 3600
ctggtcctct ccccagtccc cagttcacc tccatcctc accttcctc 3650
actctaaggg atatcaacac tgcccagcac aggggccctg aatttatgtg 3700
gttttatac atttttaat aagatgcact ttatgtcatt ttttaataaa 3750
gtctgaagaa ttactgttta aaaaaaaaaa a 3781

<210> 253

<211> 837

<212> PRT

<213> Homo sapiens

<400> 253

Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro 1 5 10 15

Trp Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu 20 25 30

Leu Leu Leu Leu Gln Pro Pro Pro Pro Thr Trp Ala Leu Ser 35 40 45

Pro Arg Ile Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu
50 55 60

Arg Phe Glu Ala Glu His Ile Ser Asn Tyr Thr Ala Leu Leu 65 70 75

Ser Arg Asp Gly Arg Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu 80 85 90

Phe Ala Leu Ser Ser Asn Leu Ser Phe Leu Pro Gly Gly Glu Tyr 95 100 105

Gln Glu Leu Leu Trp Gly Ala Asp Ala Glu Lys Lys Gln Gln Cys 110 115 120

Ser	Phe	Lys	Gly	Lys 125	Asp	Pro	Gln	Arg	Asp 130	Суѕ	Gln	Asn	Tyr	Ile 135
Lys	Ile	Leu	Leu	Pro 140	Leu	Ser	Gly	Ser	His 145	Leu	Phe	Thr	Cys	Gly 150
Thr	Ala	Ala	Phe	Ser 155	Pro	Met	Суѕ	Thr	Tyr 160	Ile	Asn	Met	Glu	Asn 165
Phe	Thr	Leu	Ala	Arg 170	Asp	Glu	Lys	Gly	Asn 175	Val	Leu	Leu	Glu	Asp 180
Gly	Lys	Gly	Arg	Cys 185	Pro	Phe	Asp	Pro	Asn 190	Phe	Lys	Ser	Thr	Ala 195
Leu	Val	Val	Asp	Gly 200	Glu	Leu	Tyr	Thr	Gly 205	Thr	Val	Ser	Ser	Phe 210
Gln	Gly	Asn	Asp	Pro 215	Ala	Ile	Ser	Arg	Ser 220	Gln	Ser	Leu	Arg	Pro 225
Thr	Lys	Thr	Glu	Ser 230	Ser	Leu	Asn	Trp	Leu 235	Gln	Asp	Pro	Ala	Phe 240
Val	Ala	Ser	Ala	Tyr 245	Ile	Pro	Glu	Ser	Leu 250	Gly	Ser	Leu	Gln	Gly 255
Asp	Asp	Asp	Lys	Ile 260	Tyr	Phe	Phe	Phe	Ser 265	Glu	Thr	Gly	Gln	Glu 270
Phe	Glu	Phe	Phe	Glu 275	Asn	Thr	Ile	Val	Ser 280	Arg	Ile	Ala	Arg	Ile 285
Cys	Lys	Gly	Asp	Glu 290	Gly	Gly	Glu	Arg	Val 295	Leu	Gln	Gln	Arg	Trp 300
Thr	Ser	Phe	Leu	Lys 305	Ala	Gln	Leu	Leu	Cys 310	Ser	Arg	Pro	Asp	Asp 315
Gly	Phe	Pro	Phe	Asn 320	Val	Leu	Gln	Asp	Val 325	Phe	Thr	Leu	Ser	Pro 330
Ser	Pro	Gln	Asp	Trp 335	Arg	Asp	Thr	Leu	Phe 340	Tyr	Gly	Val	Phe	Thr 345
Ser	Gln	Trp	His	Arg 350	Gly	Thr	Thr	Glu	Gly 355	Ser	Ala	Val	Суѕ	Val 360
Phe	Thr	Met	Lys	Asp 365	Val	Gln	Arg	Val	Phe 370	Ser	Gly	Leu	Tyr	Lys 375
Glu	Val	Asn	Arg	Glu 380	Thr	Gln	Gln	Trp	Tyr 385	Thr	Val	Thr	His	Pro 390
Val	Pro	Thr	Pro	Arg 395	Pro	Gly	Ala	Cys	Ile 400	Thr	Asn	Ser	Ala	Arg 405

.

Glu	Arg	Lys	Ile	Asn 410	Ser	Ser	Leu	Gln	Leu 415	Pro	Asp	Arg	Val	Leu 420
Asn	Phe	Leu	Lys	Asp 425	His	Phe	Leu	Met	Asp 430	Gly	Gln	Val	Arg	Ser 435
Arg	Met	Leu	Leu	Leu 440	Gln	Pro	Gln	Ala	Arg 445	Tyr	Gln	Arg	Val	Ala 450
Val	His	Arg	Val	Pro 455	Gly	Leu	His	His	Thr 460	Tyr	Asp	Val	Leu	Phe 465
Leu	Gly	Thr	Gly	Asp 470	Gly	Arg	Leu	His	Lys 475	Ala	Val	Ser	Val	Gly 480
Pro	Arg	Val	His	Ile 485	Ile	Glu	Glu	Leu	Gln 490	Ile	Phe	Ser	Ser	Gly 495
Gln	Pro	Val	Gln	Asn 500	Leu	Leu	Leu	Asp	Thr 505	His	Arg	Gly	Leu	Leu 510
Tyr	Ala	Ala	Ser	His 515	Ser	Gly	Val	Val	Gln 520	Val	Pro	Met	Ala	Asn 525
Суѕ	Ser	Leu	Tyr	Arg 530	Ser	Cys	Gly	Asp	Cys 535	Leu	Leu	Ala	Arg	Asp 540
Pro	Tyr	Cys	Ala	Trp 545	Ser	Gly	Ser	Ser	Cys 550	Lys	His	Val	Ser	Leu 555
Tyr	Gln	Pro	Gln	Leu 560	Ala	Thr	Arg	Pro	Trp 565	Ile	Gln	Asp	Ile	Glu 570
Gly	Ala	Ser	Ala	Lys 575	Asp	Leu	Cys	Ser	Ala 580	Ser	Ser	Val	Val	Ser 585
Pro	Ser	Phe	Val	Pro 590	Thr	Gly	Glu	Lys	Pro 595	Cys	Glu	Gln	Val	Gln 600
Phe	Gln	Pro	Asn	Thr 605	Val	Asn	Thr	Leu	Ala 610	Cys	Pro	Leu	Leu	Ser 615
Asn	Leu	Ala	Thr	Arg 620	Leu	Trp	Leu	Arg	Asn 625	Gly	Ala	Pro	Val	Asn 630
Ala	Ser	Ala	Ser	Cys 635	His	Val	Leu	Pro	Thr 640	Gly	Asp	Leu	Leu	Leu 645
Val	Gly	Thr	Gln	Gln 650	Leu	Gly	Glu	Phe	Gln 655	Cys	Trp	Ser	Leu	Glu 660
Glu	Gly	Phe	Gln	Gln 665	Leu	Val	Ala	Ser	Tyr 670	Cys	Pro	Glu	Val	Val 675
Glu	Asp	Gly	Val	Ala 680	Asp	Gln	Thr	Asp	Glu 685	Gly	Gly	Ser	Val	Pro 690

Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly Lys Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val Met Cys Thr Leu Phe Val Leu Ala Val Leu Pro Val Leu Phe 730 Leu Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln Gly Glu Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu Pro Pro Glu Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr 775 Pro Leu Asp His Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro Gly Ala Arg Val Phe Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile Gln Asp Ser Phe Val Glu Val Ser Pro Val Cys Pro Arg Pro Arg 815 820 Val Arg Leu Gly Ser Glu Ile Arg Asp Ser Val Val <210> 254 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 254 agcccgtgca gaatctgctc ctgg 24 <210> 255 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 255 tgaagccagg gcagcgtcct ctgg 24 <210> 256 <211> 18 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 256
 gtacaggctg cagttggc 18
<210> 257
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 257
 agaagccatg tgagcaagtc cagttccagc ccaacacagt g 41
<210> 258
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 258
 gagctgcaga tcttctcatc gggacagccc gtgcagaatc tgctc 45
<210> 259
<211> 4563
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 3635
<223> unknown base
<400> 259
ctaagccgga ggatgtgcag ctgcggcggc ggcgccggct acgaagagga 50
 cggggacagg cgccgtgcga accgagccca gccagccgga ggacgcgggc 100
 agggcgggac gggagcccgg actcgtctgc cgccgccgtc gtcgccgtcg 150
 tgccggcccc gcgtccccgc gcgcgagcgg gaggagccgc cgccacctcg 200
 cgcccgagcc gccgctagcg cgcgccgggc atggtcccct cttaaaggcg 250
 caggccgcgg cggcgggggc gggtgtgcgg aacaaagcgc cggcgcgggg 300
cctgcgggcg gctcgggggc cgcgatgggc gcggcgggcc cgcggcggcg 350
gcggcgctgc ccgggccggg cctcgcggcg ctaggcggg ctggcctccg 400
tgggcggggg cagcgggctg agggcgcgcg gagcctgcgg cggcggcggc 450
```

ggcggcggcg gcggcccggc gggcggagcg gcgcgggcat ggccgcgcgc 500 ggccggcgcg cctggctcag cgtgctgctc gggctcgtcc tgggcttcgt 550 gctggcctcg cggctcgtcc tgccccgggc ttccgagctg aagcgagcgg 600 geceaeggeg cegegeeage eeegaggget geeggteegg geaggeggeg 650 gcttcccagg ccggcgggc gcgcggcgat gcgcgcgggg cgcagctctg 700 gccgcccggc tcggacccag atggcggccc gcgcgacagg aactttctct 750 tcgtgggagt catgaccgcc cagaaatacc tgcagactcg ggccgtggcc 800 gcctacagaa catggtccaa gacaattcct gggaaagttc agttcttctc 850 aagtgagggt tetgacacat etgtaceaat teeagtagtg eeactaeggg 900 gtgtggacga ctcctacccg ccccagaaga agtccttcat gatgctcaag 950 tacatgcacg accactactt ggacaagtat gaatggttta tgagagcaga 1000 tgatgacgtg tacatcaaag gagaccgtct ggagaacttc ctgaggagtt 1050 tgaacagcag cgagcccctc tttcttgggc agacaggcct gggcaccacg 1100 gaagaaatgg gaaaactggc cctggagcct ggtgagaact tctgcatggg 1150 ggggcctggc gtgatcatga gccgggaggt gcttcggaga atggtgccgc 1200 acattggcaa gtgtctccgg gagatgtaca ccacccatga ggacgtggag 1250 gtgggaaggt gtgtccggag gtttgcaggg gtgcagtgtg tctggtctta 1300 tgagatgcgg cagctttttt atgagaatta cgagcagaac aaaaaggggt 1350 acattagaga tetecataae agtaaaatte accaagetat cacattacae 1400 cccaacaaaa acccacccta ccagtacagg ctccacagct acatgctgag 1450 ccgcaagata tccgagctcc gccatcgcac aatacagctg caccgcgaaa 1500 ttgtcctgat gagcaaatac agcaacacag aaattcataa agaggacctc 1550 cagctgggaa teceteete etteatgagg ttteageece gecagegaga 1600 ggagattctg gaatgggagt ttctgactgg aaaatacttg tattcggcag 1650 ttgacggcca gccccctcga agaggaatgg actccgccca gagggaagcc 1700 ttggacgaca ttgtcatgca ggtcatggag atgatcaatg ccaacgccaa 1750 gaccagaggg cgcatcattg acttcaaaga gatccagtac ggctaccgcc 1800 gggtgaaccc catgtatggg gctgagtaca tcctggacct gctgcttctg 1850

tacaaaaagc acaaagggaa gaaaatgacg gtccctgtga ggaggcacgc 1900 gtatttacag cagactttca gcaaaatcca gtttgtggag catgaggagc 1950 tggatgcaca agagttggcc aagagaatca atcaggaatc tggatccttg 2000 tcctttctct caaactccct gaagaagctc gtcccctttc agctccctgg 2050 gtcgaagagt gagcacaaag aacccaaaga taaaaagata aacatactga 2100 ttcctttgtc tgggcgtttc gacatgtttg tgagatttat gggaaacttt 2150 gagaagacgt gtcttatccc caatcagaac gtcaagctcg tggttctgct 2200 tttcaattct gactccaacc ctgacaaggc caaacaagtt gaactgatga 2250 gagattaccg cattaagtac cctaaagccg acatgcagat tttgcctgtg 2300 tctggagagt tttcaagagc cctggccctg gaagtaggat cctcccagtt 2350 taacaatgaa totttgctct tottctgcga cgtcgacctc gtgtttacta 2400 cagaattcct tcagcgatgt cgagcaaata cagttctggg ccaacaaata 2450 tattttccaa tcatcttcag ccagtatgac ccaaagattg tttatagtgg 2500 gaaagttccc agtgacaacc attttgcctt tactcagaaa actggcttct 2550 ggagaaacta tgggtttggc atcacgtgta tttataaggg agatcttgtc 2600 cgagtgggtg gctttgatgt ttccatccaa ggctgggggc tggaggatgt 2650 ggaccttttc aacaaggttg tccaggcagg tttgaagacg tttaggagcc 2700 aggaagtagg agtagtccac gtccaccatc ctgtcttttg tgatcccaat 2750 cttgacccca aacagtacaa aatgtgcttg gggtccaaag catcgaccta 2800 tgggtccacc cagcagctgg ctgagatgtg gctggaaaaa aatgatccaa 2850 gttacagtaa aagcagcaat aataatggct cagtgaggac agcctaatgt 2900 ccagctttgc tggaaaagac gtttttaatt atctaattta tttttcaaaa 2950 attttttgta tgatcagttt ttgaagtccg tatacaagga tatattttac 3000 aagtggtttt cttacatagg actcctttaa gattgagctt tctgaacaag 3050 aaggtgatca gtgtttgcct ttgaacacat cttcttgctg aacattatgt 3100 agcagacctg cttaactttg acttgaaatg tacctgatga acaaaacttt 3150 tttaaaaaaa tgttttcttt tgagaccctt tgctccagtc ctatggcaga 3200 aaacgtgaac attcctgcaa agtattattg taacaaaaca ctgtaactct 3250 ggtaaatgtt ctgttgtgat tgttaacatt ccacagattc taccttttgt 3300

gttttgtttt tttttttac aattgtttta aagccatttc atgttccagt 3350 tgtaagataa ggaaatgtga taatagctgt ttcatcattg tcttcaggag 3400 agetttecag agttgateat tteeteteat ggtaetetge teageatgge 3450 cacgtaggtt ttttgtttgt tttgttttgt tctttttttg agacggagtc 3500 tcactctgtt acccaggctg gaatgcagtg gcgcaatctt ggctcacttt 3550 aacctccact tccctggttc aagcaattcc cctgcctttg cctcccgagt 3600 agctgggatt acaggcacac accaccacgc ccagntagtt tttttgtatt 3650 tttagtagag acggggtttc accatgcaag cccagctggc cacgtaggtt 3700 ttaaagcaag gggcgtgaag aaggcacagt gaggtatgtg gctgttctcg 3750 tggtagttca ttcggcctaa atagacctgg cattaaattt caagaaggat 3800 ttggcatttt ctcttcttga cccttctctt taaagggtaa aatattaatg 3850 tttagaatga caaagatgaa ttattacaat aaatctgatg tacacagact 3900 gaaacataca cacatacacc ctaatcaaaa cgttggggaa aaatgtattt 3950 ggttttgttc ctttcatcct gtctgtgtta tgtgggtgga gatggttttc 4000 attetteat tactgttttg ttttateett tgtatetgaa atacetttaa 4050 tttatttaat atctgttgtt cagagetetg ceatttettg agtacetgtt 4100 agttagtatt atttatgtgt atcgggagtg tgtttagtct gttttatttg 4150 cagtaaaccg atctccaaag atttcctttt ggaaacgctt tttcccctcc 4200 ttaattttta tattccttac tgttttacta aatattaagt gttctttgac 4250 aattttggtg ctcatgtgtt ttggggacaa aagtgaaatg aatctgtcat 4300 tataccagaa agttaaattc tcagatcaaa tgtgccttaa taaatttgtt 4350 ttcatttaga tttcaaacag tgatagactt gccattttaa tacacgtcat 4400 tggagggctg cgtatttgta aatagcctga tgctcatttg gaaaaataaa 4450 ccagtgaaca atattttct attgtacttt tcgaaccatt ttgtctcatt 4500 attcctgttt tagctgaaga attgtattac atttggagag taaaaaactt 4550 aaacacgaaa aaa 4563

<210> 260

<211> 802

<212> PRT

<213> Homo sapiens

<400> 260 Met Ala Ala Arg Gly Arg Arg Ala Trp Leu Ser Val Leu Leu Gly Leu Val Leu Gly Phe Val Leu Ala Ser Arg Leu Val Leu Pro Arg Ala Ser Glu Leu Lys Arg Ala Gly Pro Arg Arg Arg Ala Ser Pro 35 Glu Gly Cys Arg Ser Gly Gln Ala Ala Ser Gln Ala Gly Gly Ala Arg Gly Asp Ala Arg Gly Ala Gln Leu Trp Pro Pro Gly Ser Asp Pro Asp Gly Gly Pro Arg Asp Arg Asn Phe Leu Phe Val Gly Val Met Thr Ala Gln Lys Tyr Leu Gln Thr Arg Ala Val Ala Ala Tyr Arg Thr Trp Ser Lys Thr Ile Pro Gly Lys Val Gln Phe Phe 110 Ser Ser Glu Gly Ser Asp Thr Ser Val Pro Ile Pro Val Val Pro 125 Leu Arg Gly Val Asp Asp Ser Tyr Pro Pro Gln Lys Lys Ser Phe Met Met Leu Lys Tyr Met His Asp His Tyr Leu Asp Lys Tyr Glu 155 Trp Phe Met Arg Ala Asp Asp Val Tyr Ile Lys Gly Asp Arg Leu Glu Asn Phe Leu Arg Ser Leu Asn Ser Ser Glu Pro Leu Phe 185 Leu Gly Gln Thr Gly Leu Gly Thr Thr Glu Glu Met Gly Lys Leu 200 210 Ala Leu Glu Pro Gly Glu Asn Phe Cys Met Gly Gly Pro Gly Val Ile Met Ser Arg Glu Val Leu Arg Arg Met Val Pro His Ile Gly 235 Lys Cys Leu Arg Glu Met Tyr Thr Thr His Glu Asp Val Glu Val 245 250 255 Gly Arg Cys Val Arg Arg Phe Ala Gly Val Gln Cys Val Trp Ser 270

Tyr Glu Met Arg Gln Leu Phe Tyr Glu Asn Tyr Glu Gln Asn Lys

				275					280					285
Lys	Gly	Tyr	Ile	Arg 290	Asp	Leu	His	Asn	Ser 295	Lys	Ile	His	Gln	Ala 300
Ile	Thr	Leu	His	Pro 305	Asn	Lys	Asn	Pro	Pro 310	Tyr	Gln	Tyr	Arg	Leu 315
His	Ser	Tyr	Met	Leu 320	Ser	Arg	Lys	Ile	Ser 325	Glu	Leu	Arg	His	Arg 330
Thr	Ile	Gln	Leu	His 335	Arg	Glu	Ile	Val	Leu 340	Met	Ser	Lys	Tyr	Ser 345
Asn	Thr	Glu	Ile	His 350	Lys	Glu	Asp	Leu	Gln 355	Leu	Gly	Ile	Pro	Pro 360
Ser	Phe	Met	Arg	Phe 365	Gln	Pro	Arg	Gln	Arg 370	Glu	Glu	Ile	Leu	Glu 375
Trp	Glu	Phe	Leu	Thr 380	Gly	Lys	Tyr	Leu	Tyr 385	Ser	Ala	Val	Asp	Gly 390
Gln	Pro	Pro	Arg	Arg 395	Gly	Met	Asp	Ser	Ala 400	Gln	Arg	Glu	Ala	Leu 405
Asp	Asp	Ile	Val	Met 410	Gln	Val	Met	Glu	Met 415	Ile	Asn	Ala	Asn	Ala 420
Lys	Thr	Arg	Gly	Arg 425	Ile	Ile	Asp	Phe	Lys 430	Glu	Ile	Gln	Tyr	Gly 435
Tyr	Arg	Arg	Val	Asn 440	Pro	Met	Tyr	Gly	Ala 445	Glu	Tyr	Ile	Leu	Asp 450
Leu	Leu	Leu	Leu	Tyr 455	Lys	Lys	His	Lys	Gly 460	Lys	Lys	Met	Thr	Val 465
Pro	Val	Arg	Arg	His 470	Ala	Tyr	Leu	Gln	Gln 475	Thr	Phe	Ser	Lys	Ile 480
Gln	Phe	Val	Glu	His 485	Glu	Glu	Leu	Asp	Ala 490	Gln	Glu	Leu	Ala	Lys 495
Arg	Ile	Asn	Gln	Glu 500	Ser	Gly	Ser	Leu	Ser 505	Phe	Leu	Ser	Asn	Ser 510
Leu	Lys	Lys	Leu	Val 515	Pro	Phe	Gln	Leu	Pro 520	Gly	Ser	Lys	Ser	Glu 525
His	Lys	Glu	Pro	Lys 530	Asp	Lys	Lys	Ile	Asn 535	Ile	Leu	Ile	Pro	Leu 540
Ser	Gly	Arg	Phe	Asp 545	Met	Phe	Val	Arg	Phe 550	Met	Gly	Asn	Phe	Glu 555
Lys	Thr	Cys	Leu	Ile	Pro	Asn	Gln	Asn	Val	Lys	Leu	Val	Val	Leu

560 565		570
Leu Phe Asn Ser Asp Ser Asn Pro Asp Lys Ala Lys 575 580	Gln Val	Glu 585
Leu Met Arg Asp Tyr Arg Ile Lys Tyr Pro Lys Ala 590 595	Asp Met	Gln 600
Ile Leu Pro Val Ser Gly Glu Phe Ser Arg Ala Leu 605 610	Ala Leu	Glu 615
Val Gly Ser Ser Gln Phe Asn Asn Glu Ser Leu Leu 620 625	Phe Phe	Cys 630
Asp Val Asp Leu Val Phe Thr Thr Glu Phe Leu Gln 635 640	Arg Cys	Arg 645
Ala Asn Thr Val Leu Gly Gln Gln Ile Tyr Phe Pro 650 655	Ile Ile	Phe 660
Ser Gln Tyr Asp Pro Lys Ile Val Tyr Ser Gly Lys 665 670	Val Pro	Ser 675
Asp Asn His Phe Ala Phe Thr Gln Lys Thr Gly Phe 680 685	Trp Arg	Asn 690
Tyr Gly Phe Gly Ile Thr Cys Ile Tyr Lys Gly Asp 695 700	Leu Val	Arg 705
Val Gly Gly Phe Asp Val Ser Ile Gln Gly Trp Gly 710 715	Leu Glu	Asp 720
Val Asp Leu Phe Asn Lys Val Val Gln Ala Gly Leu 725 730	Lys Thr	Phe 735
Arg Ser Gln Glu Val Gly Val Val His Val His His 740 745	Pro Val	Phe 750
Cys Asp Pro Asn Leu Asp Pro Lys Gln Tyr Lys Met 755 760	Cys Leu	Gly 765
Ser Lys Ala Ser Thr Tyr Gly Ser Thr Gln Gln Leu 770 775	Ala Glu	Met 780
Trp Leu Glu Lys Asn Asp Pro Ser Tyr Ser Lys Ser 785 790	Ser Asn	Asn 795
Asn Gly Ser Val Arg Thr Ala 800		
<210> 261		
<211> 24		

<212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

```
<400> 261
  gtgccactac ggggtgtgga cgac 24
 <210> 262
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
<400> 262
  tcccatttct tccgtggtgc ccag 24
 <210> 263
 <211> 46
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 263
  ccagaagaag tccttcatga tgctcaagta catgcacgac cactac 46
 <210> 264
 <211> 1419
 <212> DNA
 <213> Homo sapiens
 <400> 264
 ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc 50
  tgacaccttc cctttcggcc ttgaggttcc cagcctggtg gccccaggac 100
 gttccggtcg catggcagag tgctacggac gacgcctatg aagcccttag 150
 tccttctagt tgcgcttttg ctatggcctt cgtctgtgcc ggcttatccg 200
 agcataactg tgacacctga tgaagagcaa aacttgaatc attatataca 250
 agttttagag aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 300
 agaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggga 350
 tcaaaattta aggagctagt tacacatgga gacgcttcaa ctgagaatga 400
 tgttttaacc aatcctatca gtgaagaaac tacaactttc cctacaggag 450
 gcttcacacc ggaaatagga aagaaaaaac acacggaaag taccccattc 500
 tggtcgatca aaccaaacaa tgtttccatt gttttgcatg cagaggaacc 550
 ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600
 aaactgaggc accaagaatg ttgccagttg ttactgaatc atctacaagt 650
```

ccatatgtta cctcatacaa gtcacctgtc accactttag ataagagcac 700 tggcattgag atctctacag aatcagaaga tgttcctcag ctctcaggtg 750 aaactgcgat agaaaaaccc gaagagtttg gaaagcaccc agagagttgg 800 aataatgatg acattttgaa aaaaatttta gatattaatt cacaagtgca 850 acaggcactt cttagtgaca ccagcaaccc agcatataga gaagatattg 900 aagcetetaa agateaceta aaacgaagee ttgetetage ageageagea 950 gaacataaat taaaaacaat gtataagtcc cagttattgc cagtaggacg 1000 aacaagtaat aaaattgatg acatcgaaac tgttattaac atgctgtgta 1050 attctagatc taaactctat gaatatttag atattaaatg tgttccacca 1100 gagatgagag aaaaagctgc tacagtattc aatacattaa aaaatatgtg 1150 tagatcaagg agagtcacag ccttattaaa agtttattaa acaataatat 1200 aaaaatttta aacctacttg atattccata acaaagctga tttaagcaaa 1250 ctgcattttt tcacaggaga aataatcata ttcgtaattt caaaagttgt 1300 ataaaaatat tttctattgt agttcaaatg tgccaacatc tttatgtgtc 1350 atgtgttatg aacaattttc atatgcacta aaaacctaat ttaaaataaa 1400 attttggttc aggaaaaaa 1419

<210> 265

<211> 350

<212> PRT

<213> Homo sapiens

<400> 265

Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Leu Trp Pro Ser 1 5 10 15

Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Gln Asn Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg
35 40 45

Ser Val Pro Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser 50 55 60

Pro Lys His Val Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys 65 70 75

Glu Leu Val Thr His Gly Asp Ala Ser Thr Glu Asn Asp Val Leu 80 85 90

Thr	Asn	Pro	Ile	Ser 95	Glu	Glu	Thr	Thr	Thr 100	Phe	Pro	Thr	Gly	Gly 105
Phe	Thr	Pro	Glu	Ile 110	Gly	Lys	Lys	Lys	His 115	Thr	Glu	Ser	Thr	Pro 120
Phe	Trp	Ser	Ile	Lys 125	Pro	Asn	Asn	Val	Ser 130	Ile	Val	Leu	His	Ala 135
Glu	Glu	Pro	Tyr	Ile 140	Glu	Asn	Glu	Glu	Pro 145	Glu	Pro	Glu	Pro	Glu 150
Pro	Ala	Ala	Lys	Gln 155	Thr	Glu	Ala	Pro	Arg 160	Met	Leu	Pro	Val	Val 165
Thr	Glu	Ser	Ser	Thr 170	Ser	Pro	Tyr	Val	Thr 175	Ser	Tyr	Lys	Ser	Pro 180
Val	Thr	Thr	Leu	Asp 185	Lys	Ser	Thr	Gly	Ile 190	Glu	Ile	Ser	Thr	Glu 195
Ser	Glu	Asp	Val	Pro 200	Gln	Leu	Ser	Gly	Glu 205	Thr	Ala	Ile	Glu	Lys 210
Pro	Glu	Glu	Phe	Gly 215	Lys	His	Pro	Glu	Ser 220	Trp	Asn	Asn	Asp	Asp 225
Ile	Leu	Lys	Lys	Ile 230	Leu	Asp	Ile	Asn	Ser 235	Gln	Val	Gln	Gln	Ala 240
Leu	Leu	Ser	Asp	Thr 245	Ser	Asn	Pro	Ala	Tyr 250	Arg	Glu	Asp	Ile	Glu 255
Ala	Ser	Lys	Asp	His 260	Leu	Lys	Arg	Ser	Leu 265	Ala	Leu	Ala	Ala	Ala 270
Ala	Glu	His	Lys	Leu 275	Lys	Thr	Met	Tyr	Lys 280	Ser	Gln	Leu	Leu	Pro 285
Val	Gly	Arg	Thr	Ser 290	Asn	Lys	Ile	Asp	Asp 295	Ile	Glu	Thr	Val	Ile 300
Asn	Met	Leu	Cys	Asn 305	Ser	Arg	Ser	Lys	Leu 310	Tyr	Glu	Tyr	Leu	Asp 315
Ile	Lys	Cys	Val	Pro 320	Pro	Glu	Met	Arg	Glu 325	Lys	Ala	Ala	Thr	Val 330
Phe	Asn	Thr	Leu	Lys 335	Asn	Met	Cys	Arg	Ser 340	Arg	Arg	Val	Thr	Ala 345
Leu	Leu	Lys	Val	Tyr 350										
<210°	> 266	5												

<210> 266 <211> 2403

<212> DNA

<400> 266 cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50 acagetggcc tgacetecaa ateatecate cacecetget gteatetgtt 100 ttcatagtgt gagatcaacc cacaggaata tccatggctt ttgtgctcat 150 tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 200 gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250 tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 300 caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350 gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400 gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450 ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500 aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550 atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600 ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac 650 aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700 gatgtggaga tctccattat agtccaggaa aatgctggga gcatattgtg 750 ttccatccac cttgctgagc agagtcatga ggtggaatcc aaggtattga 800 taggagagac gtttttccag ccctcacctt ggcgcctggc ttctatttta 850 ctcgggttac tctgtggtgc cctgtgtggt gttgtcatgg ggatgataat 900 tgttttcttc aaatccaaag ggaaaatcca ggcggaactg gactggagaa 950 gaaagcacgg acaggcagaa ttgagagacg cccggaaaca cgcagtggag 1000 gtgactctgg atccagagac ggctcacccg aagctctgcg tttctgatct 1050 gaaaactgta acccatagaa aagctcccca ggaggtgcct cactctgaga 1100 agagatttac aaggaagagt gtggtggctt ctcagggttt ccaagcaggg 1150 agacattact gggaggtgga cgtgggacaa aatgtagggt ggtatgtggg 1200 agtgtgtcgg gatgacgtag acagggggaa gaacaatgtg actttgtctc 1250 ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300 acattcaatc cccattttat cagcctcccc cccagcaccc ctcctacacg 1350

agtaggggtc ttcctggact atgagggtgg gaccatctcc ttcttcaata 1400 caaatgacca gtcccttatt tataccctgc tgacatgtca gtttgaaggc 1450 ttgttgagac cctatatcca gcatgcgatg tatgacgagg aaaaggggac 1500 tcccatattc atatgtccag tgtcctgggg atgagacaga gaagaccctg 1550. cttaaagggc cccacaccac agacccagac acagccaagg gagagtgctc 1600 ccgacaggtg gccccagctt cctctccgga gcctgcgcac agagagtcac 1650 gccccccact ctcctttagg gagctgaggt tcttctgccc tgagccctgc 1700 agcagcggca gtcacagctt ccagatgagg ggggattggc ctgaccctgt 1750 gggagtcaga agccatggct gccctgaagt ggggacggaa tagactcaca 1800 ttaggtttag tttgtgaaaa ctccatccag ctaagcgatc ttgaacaagt 1850 cacaacctcc caggeteete atttgetagt cacggacagt gatteetgee 1900 tcacaggtga agattaaaga gacaacgaat gtgaatcatg cttgcaggtt 1950 tgagggcaca gtgtttgcta atgatgtgtt tttatattat acattttccc 2000 accataaact ctgtttgctt attccacatt aatttacttt tctctatacc 2050 aaatcaccca tggaatagtt attgaacacc tgctttgtga ggctcaaaga 2100 ataaagagga ggtaggattt ttcactgatt ctataagccc agcattacct 2150 gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200 gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250 caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300 ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350 gtaattcagc acattaataa agtaaaaaag aaaaccataa aaaaaaaaa 2400 aaa 2403

<210> 267

<211> 466

<212> PRT

<213> Homo sapiens

<400> 267

Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val 1 5 10 15

Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala 20 25 30

Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu

Thr	Ser	Ala	Glu	Ala 50	Met	Glu	Val	Arg	Phe 55	Phe	Arg	Asn	Gln	Phe 60
His	Ala	Val	Val	His 65	Leu	Tyr	Arg	Asp	Gly 70	Glu	Asp	Trp	Glu	Ser 75
Lys	Gln	Met	Pro	Gln 80	Tyr	Arg	Gly	Arg	Thr 85	Glu	Phe	Val	Lys	Asp 90
Ser	Ile	Ala	Gly	Gly 95	Arg	Val	Ser	Leu	Arg 100	Leu	Lys	Asn	Ile	Thr 105
Pro	Ser	Asp	Ile	Gly 110	Leu	Tyr	Gly	Cys	Trp 115	Phe	Ser	Ser	Gln	Ile 120
Tyr	Asp	Glu	Glu	Ala 125	Thr	Trp	Glu	Leu	Arg 130	Val	Ala	Ala	Leu	Gl _y 135
Ser	Leu	Pro	Leu	Ile 140	Ser	Ile	Val	Gly	Tyr 145	Val	Asp	Gly	Gly	Ile 150
Gln	Leu	Leu	Cys	Leu 155	Ser	Ser	Gly	Trp	Phe 160	Pro	Gln	Pro	Thr	Ala 165
Lys	Trp	Lys	Gly	Pro 170	Gln	Gly	Gln	Asp	Leu 175	Ser	Ser	Asp	Ser	Arc 180
Ala	Asn	Ala	Asp	Gly 185	Tyr	Ser	Leu	Tyr	Asp 190	Val	Glu	Ile	Ser	Ile 195
Ile	Val	Gln	Glu	Asn 200	Ala	Gly	Ser	Ile	Leu 205	Cys	Ser	Ile	His	Leu 210
Ala	Glu	Gln	Ser	His 215	Glu	Val	Glu	Ser	Lys 220	Val	Leu	Ile	Gly	Glu 225
Thr	Phe	Phe	Gln	Pro 230	Ser	Pro	Trp	Arg	Leu 235	Ala	Ser	Ile	Leu	Leu 240
Gly	Leu	Leu	Суѕ	Gly 245	Ala	Leu	Cys	Gly	Val 250	Val	Met	Gly	Met	11e 255
Ile	Val	Phe	Phe	Lys 260	Ser	Lys	Gly	Lys	Ile 265	Gln	Ala	Glu	Leu	Asp 270
Trp	Arg	Arg	Lys	His 275	Gly	Gln	Ala	Glu	Leu 280	Arg	Asp	Ala	Arg	Lys 285
His	Ala	Val	Glu	Val 290	Thr	Leu	Asp	Pro	Glu 295	Thr	Ala	His	Pro	Lys 300
Leu	Суѕ	Val	Ser	Asp 305	Leu	Lys	Thr	Val	Thr 310	His	Arg	Lys	Ala	Pro 315
G] n	G) 11	Val	Pro	His	Ser	G) 11	Lvs	Ara	Phe	Thr	Ara	Lvs	Ser	۷a۱

ValAlaSerGlnGlyPheGlnAlaGlyArgHisTyrTrpGluValAspValGlyGlyAspTrpTyrValGlyValCysArgAspAspValAspArgGlyLysAsnAsnValThrLeuSerProAsnAsnGlyTyrTrpValLeuArgLeuThrThrGluHisLeuTyrPheThrPheAsnProHisPheIleSerLeuProProSerThrProProProThr405

Arg Val Gly Val Phe Leu Asp Tyr Glu Gly Gly Thr Ile Ser Phe 410 415 420

Phe Asn Thr Asn Asp Gln Ser Leu Ile Tyr Thr Leu Leu Thr Cys 425 430 435

Gln Phe Glu Gly Leu Leu Arg Pro Tyr Ile Gln His Ala Met Tyr 440 445 450

Asp Glu Glu Lys Gly Thr Pro Ile Phe Ile Cys Pro Val Ser Trp 455 460 465

Gly

<210> 268

<211> 2103

<212> DNA

<213> Homo sapiens

<400> 268

tggtgagggc taggaaaaga gtttgttggg aaccctgggt tatcggcctc 100 gtcatcttca tatccctgat tgtcctggca gtgtgcattg gactcactgt 150 tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 200 tgtcatttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250 aacaattta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 300 attttataaa tctccattaa gggaagaatt tgtcaagtct caggttatca 350 agttcagtca acagaagcat gaagtgtgg ctcatatgct gttgatttgt 400 agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450 tgttttacat gaaaagctgc aagatgctgt aggaccccct aaagtagatc 500

ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550 ctaaaccatt gctgcggaac acgaagaagt aaaactctag gtcagagtct 600 caggatcgtt ggtgggacag aagtagaaga gggtgaatgg ccctggcagg 650 ctagcctgca gtgggatggg agtcatcgct gtggagcaac cttaattaat 700 gccacatggc ttgtgagtgc tgctcactgt tttacaacat ataagaaccc 750 tgccagatgg actgcttcct ttggagtaac aataaaacct tcgaaaatga 800 aacggggtct ccggagaata attgtccatg aaaaatacaa acacccatca 850 catgactatg atatttctct tgcagagctt tctagccctg ttccctacac 900 aaatgcagta catagagttt gtctccctga tgcatcctat gagtttcaac 950 caggtgatgt gatgtttgtg acaggatttg gagcactgaa aaatgatggt 1000 tacagtcaaa atcatcttcg acaagcacag gtgactctca tagacgctac 1050 aacttgcaat gaacctcaag cttacaatga cgccataact cctagaatgt 1100 tatgtgctgg ctccttagaa ggaaaaacag atgcatgcca gggtgactct 1150 ggaggaccac tggttagttc agatgctaga gatatctggt accttgctgg 1200 aatagtgagc tggggagatg aatgtgcgaa acccaacaag cctggtgttt 1250 atactagagt tacggccttg cgggactgga ttacttcaaa aactggtatc 1300 taagagacaa aagcctcatg gaacagataa cattttttt tgttttttgg 1350 gtgtggaggc catttttaga gatacagaat tggagaagac ttgcaaaaca 1400 gctagatttg actgatctca ataaactgtt tgcttgatgc atgtattttc 1450 ttcccagctc tgttccgcac gtaagcatcc tgcttctgcc agatcaactc 1500 tgtcatctgt gagcaatagt tgaaacttta tgtacataga gaaatagata 1550 atacaatatt acattacagc ctgtattcat ttgttctcta gaagttttgt 1600 cagaattttg acttgttgac ataaatttgt aatgcatata tacaatttga 1650 agcacteett ttetteagtt ceteagetee teteatttea gcaaatatee 1700 attttcaagg tgcagaacaa ggagtgaaag aaaatataag aagaaaaaa 1750 tcccctacat tttattggca cagaaaagta ttaggtgttt ttcttagtgg 1800 aatattagaa atgatcatat tcattatgaa aggtcaagca aagacagcag 1850 aataccaatc acttcatcat ttaggaagta tgggaactaa gttaaggaag 1900

atgataaatg tgaagaagat tctqtttttt tgtqacctat aataattata 2000 caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatatttat 2050 ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100 cca 2103 <210> 269 <211> 423 <212> PRT <213> Homo sapiens <400> 269 Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu 115 Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp 125 Lys Ile Val Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile 160 Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr 170 Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly

Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln

200

tccagaaaga agccaagata tatccttatt ttcatttcca aacaactact 1950

Trp	Asp	Gly	Ser	His 215	Arg	Суз	Gly	Ala	Thr 220	Leu	Ile	Asn	Ala	Thr 225
Trp	Leu	Val	Ser	Ala 230	Ala	His	Cys	Phe	Thr 235	Thr	Tyr	Lys	Asn	Pro 240
Ala	Arg	Trp	Thr	Ala 245	Ser	Phe	Gly	Val	Thr 250	Ile	Lys	Pro	Ser	Lys 255
Met	Lys	Arg	Gly	Leu 260	Arg	Arg	Ile	Ile	Val 265	His	Glu	Lys	Tyr	Lys 270
His	Pro	Ser	His	Asp 275	Tyr	Asp	Ile	Ser	Leu 280	Ala	Glu	Leu	Ser	Ser 285
Pro	Val	Pro	Tyr	Thr 290	Asn	Ala	Val	His	Arg 295	Val	Суѕ	Leu	Pro	Asp 300
Ala	Ser	Tyr	Glu	Phe 305	Gln	Pro	Gly	Asp	Val 310	Met	Phe	Val	Thr	Gly 315
Phe	Gly	Ala	Leu	Lys 320	Asn	Asp	Gly	Tyr	Ser 325	Gln	Asn	His	Leu	Arg 330
Gln	Ala	Gln	Val	Thr 335	Leu	Ile	Asp	Ala	Thr 340	Thr	Суѕ	Asn	Glu	Pro 345
Gln	Ala	Tyr	Asn	Asp 350	Ala	Ile	Thr	Pro	Arg 355	Met	Leu	Суѕ	Ala	Gly 360
Ser	Leu	Glu	Gly	Lys 365	Thr	Asp	Ala	Cys	Gln 370	Gly	Asp	Ser	Gly	Gly 375
Pro	Leu	Val	Ser	Ser 380	Asp	Ala	Arg	Asp	Ile 385	Trp	Tyr	Leu	Ala	Gly 390
Ile	Val	Ser	Trp	Gly 395	Asp	Glu	Cys	Ala	Lys 400	Pro	Asn	Lys	Pro	Gly 405
Val	Tyr	Thr	Arg	Val 410	Thr	Ala	Leu	Arg	Asp 415	Trp	Ile	Thr	Ser	Lys 420
Thr	Gly	Ile												

<210> 270

<211> 1170

<212> DNA

<213> Homo sapiens

<400> 270

gtcgaaggtt ataaaagctt ccagccaaac ggcattgaag ttgaagatac 50 aacctgacag cacagcctga gatcttgggg atccctcagc ctaacaccca 100 cagacgtcag ctggtggatt cccgctgcat caaggcctac ccactgtctc 150

catgctgggc tctccctgcc ttctgtggct cctggccgtg accttcttgg 200 ttcccagagc tcagcccttg gcccctcaag actttgaaga agaggaggca 250 gatgagactg agacggcgtg gccgcctttg ccggctgtcc cctgcgacta 300 cgaccactgc cgacacctgc aggtgccctg caaggagcta cagagggtcg 350 ggccggcggc ctgcctgtgc ccaggactct ccagccccgc ccagccgccc 400 gaccegeege geatgggaga agtgegeatt geggeegaag agggeegege 450 agtggtccac tggtgtgccc ccttctcccc ggtcctccac tactggctgc 500 tgctttggga cggcagcgag gctgcgcaga aggggccccc gctgaacqct 550 acggtccgca gagccgaact gaaggggctg aagccagggg gcatttatgt 600 cgtttgcgta gtggccgcta acgaggccgg ggcaagccgc gtqccccagg 650 ctggaggaga gggcctcgag ggggccgaca tccctgcctt cgggccttgc 700 agccgccttg cggtgccgcc caacccccgc actctggtcc acgcggccgt 750 cggggtgggc acggccctgg ccctqctaaq ctqtqccqcc ctqqtqtqqc 800 acttctgcct gcgcgatcgc tggggctgcc cgcgccgagc cgccgcccga 850 gccgcagggg cgctctgaaa ggggcctggg ggcatctcgg gcacagacag 900 ccccacctgg ggcgctcagc ctggcccccg ggaaagagga aaacccgctg 950 cctccaggga gggctggacg gcgagctggg agccagcccc aggctccagg 1000 gccacggcgg agtcatggtt ctcaggactg agcgcttgtt taggtccggt 1050 acttggcgct ttgtttcctg gctgaggtct gggaaggaat agaaaggggc 1100 ccccaatttt tttttaagcg gccagataat aaataatgta acctttgcgg 1150 ttaaaaaaaa aaaaaaaaa 1170

<210> 271

<211> 238

<212> PRT

<213> Homo sapiens

<400> 271

Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe
1 5 10 15

Leu Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu
20 25 30

Glu Glu Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala
35 40 45

Val	Pro	Суѕ	Asp	Tyr 50	Asp	His	Cys	Arg	His 55	Leu	Gln	Val	Pro	Cys 60
Lys	Glu	Leu	Gln	Arg 65	Val	Gly	Pro	Ala	Ala 70	Cys	Leu	Суѕ	Pro	Gly 75
Leu	Ser	Ser	Pro	Ala 80	Gln	Pro	Pro	Asp	Pro 85	Pro	Arg	Met	Gly	Glu 90
Val	Arg	Ile	Ala	Ala 95	Glu	Glu	Gly	Arg	Ala 100	Val	Val	His	Trp	Cys 105
Ala	Pro	Phe	Ser	Pro 110	Val	Leu	His	Tyr	Trp 115	Leu	Leu	Leu	Trp	Asp 120
Gly	Ser	Glu	Ala	Ala 125	Gln	Lys	Gly	Pro	Pro 130	Leu	Asn	Ala	Thr	Val 135
Arg	Arg	Ala	Glu	Leu 140	Lys	Gly	Leu	Lys	Pro 145	Gly	Gly	Ile	Tyr	Val 150
Val	Cys	Val	Val	Ala 155	Ala	Asn	Glu	Ala	Gly 160	Ala	Ser	Arg	Val	Pro 165
Gln	Ala	Gly	Gly	Glu 170	Gly	Leu	Glu	Gly	Ala 175	Asp	Ile	Pro	Ala	Phe 180
Gly	Pro	Cys	Ser	Arg 185	Leu	Ala	Val	Pro	Pro 190	Asn	Pro	Arg	Thr	Leu 195
Val	His	Ala	Ala	Val 200	Gly	Val	Gly	Thr	Ala 205	Leu	Ala	Leu	Leu	Ser 210
Cys	Ala	Ala	Leu	Val 215	Trp	His	Phe	Cys	Leu 220	Arg	Asp	Arg	Trp	Gly 225
Cys	Pro	Arg	Arg	Ala 230	Ala	Ala	Arg	Ala	Ala 235	Gly	Ala	Leu		
<210	> 27')												
\ZIU.														

<211> 2397

<212> DNA

<213> Homo sapiens

<400> 272

agagaaagaa gcgtctccag ctgaagccaa tgcagccctc cggctctccg 50 cgaagaagtt ccctgccccg atgagccccc gccgtgcgtc cccgactatc 100 cccaggcggg cgtggggcac cgggcccagc gccgacgatc gctgccgttt 150 tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 200 gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250 acgccctcaa tctgctcttt tggttaatgt ccatcagtgt gttggcagtt 300

tctgcttgga tgagggacta cctaaataat gttctcactt taactgcaga 350 aacgagggta gaggaagcag tcattttgac ttactttcct gtggttcatc 400 cggtcatgat tgctgtttgc tgtttcctta tcattgtggg gatgttagga 450 tattgtggaa cggtgaaaag aaatctgttg cttcttgcat ggtactttgg 500 aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550 atgaacagga acttatggtt ccagtacaat ggtcagatat ggtcactttg 600 aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650 tgcttggaat ttttttcaga gagagtttaa gtgctgtgga gtagtatatt 700 tcactgactg gttggaaatg acagagatgg actggccccc agattcctgc 750 tgtgttagag aattcccagg atgttccaaa caggcccacc aggaagatct 800 cagtgacctt tatcaagagg gttgtgggaa gaaaatgtat tcctttttga 850 gaggaaccaa.acaactgcag gtgctgaggt ttctgggaat ctccattggg 900 gtgacacaaa tcctggccat gattctcacc attactctgc tctgggctct 950 gtattatgat agaagggagc ctgggacaga ccaaatgatg tccttgaaga 1000 atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050 agectgteaa gaatetttga acacacatee atggeaaaca getttaatae 1100 acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150 caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtgttt 1200 cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaagcata 1250 tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcataagtc 1300 accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350 acceaetgtg tageetgtgt atgaetttta etgaacacag ttatgttttg 1400 aggcagcatg gtttgattag catttccgca tccatgcaaa cgagtcacat 1450 atggtgggac tggagccata gtaaaggttg atttacttct accaactagt 1500 atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550 acttttatta ctcagcgatc tattcttctg atgctaaata aattatatat 1600 cagaaaactt tcaatattgg tgactaccta aatgtgattt ttgctggtta 1650 ctaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700

tcgattcagga tttttgat ataagtctgt gttaaatctg tataatcag 1750
tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800
ttgtcctgta tagcatcatt attttagcc tttcctgtta ataaagcttt 1850
actattctgt cctgggctta tattacacat ataactgtta tttaaatact 1900
taaccactaa ttttgaaaat taccagtgtg atacatagga atcattattc 1950
agaatgtagt ctggtcttta ggaagtatta ataagaaaat ttgcacataa 2000
cttagttgat tcagaaagga cttgtatgct gttttctcc caaatgaaga 2050
ctctttttga cactaaacac tttttaaaaa gcttatcttt gccttccca 2100
aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150
ttctttttc ccagaaaaat gcttgtagga atcattaaaa catgtgacaa 2200
tttagagatt ctttgttta tttcactgat taatatactg tggcaaatta 2250
cacagattat taaattttt tacaagagta tagtatatt atttgaaatg 2300
ggaaaagtgc atttactgt attttgtga ttttgttat ttctcagaat 2350
atggaaaagaa aattaaaatg tgtcaataaa tattttctag agagtaa 2397

<210> 273

<211> 305

<212> PRT

<213> Homo sapiens

<400> 273

Met Ala Arg Glu Asp Ser Val Lys Cys Leu Arg Cys Leu Leu Tyr 1 5 10 15

Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala 20 25 30

Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu 35 40 45

Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe 50 55 60

Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile 65 70 75

Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu 80 85 90

Leu Leu Leu Ala Trp Tyr Phe Gly Ser Leu Leu Val Ile Phe Cys 95 100 105

Val Glu Leu Ala Cys Gly Val Trp Thr Tyr Glu Gln Glu Leu Met 110 115 120

Val	l Pro	o Val	l Glr	125	Ser	: Asp	o Met	: Val	1 Thr	Leu	Lys	: Ala	Arg	Met 135
Thi	Asr	туг	Gl3	Leu 140	Pro	Arç	ј Туг	: Arg	Trp 145	Leu	Thr	His	Ala	Trp 150
Asr	Phe	Phe	Gln	Arg 155	Glu	Phe	Lys	Cys	Cys 160	Gly	Val	Val	Tyr	Phe 165
Thr	Asp	Trp	Leu	Glu 170	Met	Thr	Glu	Met	Asp 175	Trp	Pro	Pro	Asp	Ser 180
Cys	Cys	Val	Arg	Glu 185	Phe	Pro	Gly	Cys	Ser 190	Lys	Gln	Ala	His	Gln 195
Glu	Asp	Leu	Ser	Asp 200	Leu	Tyr	Gln	Glu	Gly 205	Cys	Gly	Lys	Lys	Met 210
Tyr	Ser	Phe	Leu	Arg 215	Gly	Thr	Lys	Gln	Leu 220	Gln	Val	Leu	Arg	Phe 225
Leu	Gly	Ile	Ser	Ile 230	Gly	Val	Thr	Gln	Ile 235	Leu	Ala	Met	Ile	Leu 240
Thr	Ile	Thr	Leu	Leu 245	Trp	Ala	Leu	Tyr	Tyr 250	Asp	Arg	Arg	Glu	Pro 255
Gly	Thr	Asp	Gln	Met 260	Met	Ser	Leu	Lys	Asn 265	Asp	Asn	Ser	Gln	His 270
Leu	Ser	Cys	Pro	Ser 275	Val	Glu	Leu	Leu	Lys 280	Pro	Ser	Leu	Ser i	Arg 285
Ile	Phe	Glu	His	Thr 290	Ser	Met	Ala	Asn	Ser 295	Phe 1	Asn '	Thr	His I	Phe 300
Glu	Met	Glu	Glu	Leu 305										
<210> <211> <212> <213>	206: DNA		piens	3										
<400>														
gaga	gaggo	ca go	cagct	tgct	cag	ıcgga	caa	ggat	gctg	igg c	gtga	ıggga	ıc 50	
caag														
ttct														
							-					, y	- 13	J

cttggggtga caatctcagc tccaggctac agggagaccg ggaggatcac 200

agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250

cgatgtcaaa cccctgcgca aaccccgtat ccccatggag accttcagaa 300

aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350 attgtggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400 cgggcagcct ctccacttca tcccgaggaa gcagctgtgt gacggagagc 450 tggactgtcc cttgggggag gacgaggagc actgtgtcaa gagcttcccc 500 gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550 ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttcgacaact 600 tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650 gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700 aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750 gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800 ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850 ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900 acceceactg ggteeteacg geageceact getteaggaa acatacegat 950 gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000 atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050 ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100 tcaggcacag tcaggcccat ctgtctgccc ttctttgatg aggagctcac 1150 tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 1200 gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250 agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350 acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400 atcgttagct ggggctatgg ctgcgggggc ccgagcaccc caggagtata 1450 caccaaggtc tcagcctatc tcaactggat ctacaatgtc tggaaggctg 1500 agctgtaatg ctgctgcccc tttgcagtgc tgggagccgc ttccttcctg 1550 ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600 ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650 ggcctcaatt cctgtaagag accetcgcag cccagaggcg cccagaggaa 1700

gtcagcagcc ctagctcggc cacacttggt gctccagca tcccaggagg 1750
agacacagcc cactgaacaa ggtctcaggg gtattgctaa gccaagaagg 1800
aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850
tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900
tcttcaccca tccccaagcc tactagagca agaaaccagt tgtaatataa 1950
aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000
gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050
caaaaaaaaa aaa 2063

<210> 275

<211> 432

<212> PRT

<213> Homo sapiens

<400> 275

Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp 1 5 10 15

Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg 20 25 30

Lys Val Gly Ile Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser 35 40 45

Ile Ile Ile Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr
50 55 60

Tyr Phe Leu Cys Gly Gln Pro Leu His Phe Ile Pro Arg Lys Gln
65 70 75

Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu 80 85 90

His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg 95 100 105

Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr 110 115 120

Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu 125 130 135

Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu 140 145 150

Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn 155 160 165

Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser

Gl	y Se	r Le	u Val	l Sei 185	Let	ı His	s Cys	5 Le	u Ala 190	a Cys	s Gly	, Lys	Sei	Leu 195
Ly	s Th	r Pr	o Ar	y Val 200	. Val	l Gly	/ Gly	/ Glu	a Gli 205		a Ser	· Val	. Asp	Ser 210
Tr	o Pro	o Tr	o Glr	Val 215	. Ser	: Ile	Glr	туг	Asp 220		Gln	His	Val	. Cys 225
Gl	y Gl	y Sei	r Ile	230	Asp	Pro	His	Trp	Val 235		Thr	Ala	Ala	His 240
Cys	s Ph∈	e Aro	g Lys	His 245	Thr	Asp	Val	Phe	250	Trp	Lys	Val	Arg	Ala 255
Gl	/ Ser	: Asp	Lys	Leu 260	Gly	Ser	Phe	Pro	Ser 265		Ala	Val	Ala	Lys 270
Ile	: Ile	e Ile	e Ile	Glu 275	Phe	Asn	Pro	Met	Tyr 280		Lys	Asp	Asn	Asp 285
Ile	: Ala	Leu	Met	Lys 290	Leu	Gln	Phe	Pro	Leu 295	Thr	Phe	Ser	Gly	Thr 300
Val	Arg	Pro	Ile	Cys 305	Leu	Pro	Phe	Phe	Asp 310	Glu	Glu	Leu	Thr	Pro 315
Ala	Thr	Pro	Leu	Trp 320	Ile	Ile	Gly	Trp	Gly 325	Phe	Thr	Lys	Gln	Asn 330
Gly	Gly	Lys	Met	Ser 335	Asp	Ile	Leu	Leu	Gln 340	Ala	Ser	Val	Gln	Val 345
Ile	Asp	Ser	Thr	Arg 350	Cys	Asn	Ala	Asp	Asp 355	Ala	Tyr	Gln	Gly	Glu 360
Val	Thr	Glu	Lys	Met 365	Met	Cys	Ala	Gly	Ile 370	Pro	Glu	Gly	Gly	Val 375
Asp	Thr	Cys	Gln	Gly 380	Asp	Ser	Gly	Gly	Pro 385	Leu	Met	Tyr	Gln	Ser 390
Asp	Gln	Trp	His	Val 395	Val	Gly	Ile	Val	Ser 400	Trp	Gly	Tyr	Gly	Cys 405
Gly	Gly	Pro	Ser	Thr 410	Pro	Gly	Val	Tyr	Thr 415	Lys	Val	Ser	Ala	Tyr 420
Leu	Asn	Trp	Ile	Tyr 425	Asn	Val	Trp		Ala 430	Glu	Leu			
210	276													

<210> 276 <211> 3143 <212> DNA <213> Homo sapiens

<400> 276 gggctgaggc actgagagac cggaaagcct ggcattccag agggagggaa 50 acgcagcggc atccccaggc tccagagctc cctggtgaca gtctgtggct 100 gagcatggcc ctcccagccc tgggcctgga cccctggagc ctcctgggcc 150 ttttcctctt ccaactgctt cagctgctgc tgccgacgac gaccgcgggg 200 ggaggcgggc aggggcccat gcccagggtc agatactatg caggggatga 250 acgtagggca cttagcttct tccaccagaa gggcctccag gattttgaca 300 ctctgctcct gagtggtgat ggaaatactc tctacgtggg ggctcgagaa 350 gccattctgg ccttggatat ccaggatcca ggggtcccca ggctaaagaa 400 catgataccg tggccagcca gtgacagaaa aaagagtgaa tgtgccttta 450 agaagaagag caatgagaca cagtgtttca acttcatccg tgtcctggtt 500 tettacaatg teacceatet etacacetge ggeacetteg cetteagece 550 tgcttgtacc ttcattgaac ttcaagattc ctacctgttg cccatctcgg 600 aggacaaggt catggaggga aaaggccaaa gcccctttga ccccgctcac 650 aagcatacgg ctgtcttggt ggatgggatg ctctattctg gtactatgaa 700 caactteetg ggeagtgage ceatectgat gegeacactg ggateceage 750 ctgtcctcaa gaccgacaac ttcctccgct ggctgcatca tgacgcctcc 800 tttgtggcag ccatcccttc gacccaggtc gtctacttct tcttcgagga 850 gacagecage gagtttgact tetttgagag getecacaea tegegggtgg 900 ctagagtctg caagaatgac gtgggcggcg aaaagctgct gcagaagaag 950 tggaccacct tcctgaaggc ccagctgctc tgcacccagc cggggcagct 1000 gcccttcaac gtcatccgcc acgcggtcct gctccccgcc gattctccca 1050 cagctcccca catctacgca gtcttcacct cccagtggca ggttggcggg 1100 accaggaget etgeggtttg tgeettetet etettggaca ttgaacgtgt 1150 ctttaagggg aaatacaaag agttgaacaa agaaacttca cgctggacta 1200 cttatagggg ccctgagacc aacccccggc caggcagttg ctcagtgggc 1250 ccctcctctg ataaggccct gaccttcatg aaggaccatt tcctgatgga 1300 tgagcaagtg gtggggacgc ccctgctggt gaaatctggc gtggagtata 1350 cacggettge agtggagaca geecagggee ttgatgggea cagecatett 1400 gtcatgtacc tgggaaccac cacagggtcg ctccacaagg ctgtggtaag 1450 tggggacagc agtgctcatc tggtggaaga gattcagctg ttccctgacc 1500 ctgaacctgt tcgcaacctg cagctggccc ccacccaggg tgcagtgttt 1550 gtaggettet caggaggtgt etggagggtg eccegageca actgtagtgt 1600 ctatgagage tgtgtggaet gtgteettge eegggaeeee caetgtgeet 1650 gggaccetga gteecgaace tgttgeetee tgtetgeece caacetgaae 1700 tcctggaagc aggacatgga gcgggggaac ccagagtggg catgtgccag 1750 tggccccatg agcaggagcc ttcggcctca gagccgcccg caaatcatta 1800 aagaagteet ggetgteece aactecatee tggageteee etgeececae 1850 ctgtcagcct tggcctctta ttattggagt catggcccag cagcagtccc 1900 agaagcctct tccactgtct acaatggctc cctcttgctg atagtgcagg 1950 atggagttgg gggtctctac cagtgctggg caactgagaa tggcttttca 2000 taccetgtga tetectactg ggtggacage caggaccaga ecetggeet 2050 ggatcctgaa ctggcaggca tcccccggga gcatgtgaag gtcccgttga 2100 ccagggtcag tggtggggcc gccctggctg cccagcagtc ctactggccc 2150 cactttgtca ctgtcactgt cctctttgcc ttagtgcttt caggagccct 2200 catcatcctc gtggcctccc cattgagagc actccgggct cggggcaagg 2250 ttcagggctg tgagaccctg cgccctgggg agaaggcccc gttaagcaga 2300 gagcaacacc tocagtotoc caaggaatgc aggacototg coagtgatgt 2350 ggacgctgac aacaactgcc taggcactga ggtagcttaa actctaggca 2400 caggccgggg ctgcggtgca ggcacctggc catgctggct gggcggccca 2450 agcacagccc tgactaggat gacagcagca caaaagacca cctttctccc 2500 ctgagaggag cttctgctac tctgcatcac tgatgacact cagcagggtg 2550 atgcacagca gtctgcctcc cctatgggac tcccttctac caagcacatg 2600 agctctctaa cagggtgggg gctaccccca gacctgctcc tacactgata 2650 ttgaagaacc tggagaggat ccttcagttc tggccattcc agggaccctc 2700 cagaaacaca gtgtttcaag agaccctaaa aaacctgcct gtcccaggac 2750 cctatggtaa tgaacaccaa acatctaaac aatcatatgc taacatgcca 2800 ctcctggaaa ctccactctg aagctgccgc tttggacacc aacactccct 2850

tctcccaggg tcatgcaggg atctgctcc tcctgcttcc cttaccagtc 2900 gtgcaccgct gactcccagg aagtctttcc tgaagtctga ccacctttct 2950 tcttgcttca gttggggcag actctgatcc cttctgccct ggcagaatgg 3000 caggggtaat ctgagccttc ttcactcctt taccctagct gaccccttca 3050 cctctccccc tcccttttcc tttgttttgg gattcagaaa actgcttgtc 3100 agagactgtt tatttttat taaaaatata aggcttaaaa aaa 3143

<210> 277

<211> 761

<212> PRT

<213> Homo sapiens

<400> 277

Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly
1 5 10 15

Leu Phe Leu Phe Gln Leu Leu Gln Leu Leu Pro Thr Thr Thr 20 25 30

Ala Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr
35 40 45

Ala Gly Asp Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly
50 55 60

Leu Gln Asp Phe Asp Thr Leu Leu Leu Ser Gly Asp Gly Asn Thr
65 70 75

Leu Tyr Val Gly Ala Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln $80 \\ 85 \\ 90$

Asp Pro Gly Val Pro Arg Leu Lys Asn Met Ile Pro Trp Pro Ala 95 100 105

Ser Asp Arg Lys Lys Ser Glu Cys Ala Phe Lys Lys Lys Ser Asn 110 115 120

Glu Thr Gln Cys Phe Asn Phe Ile Arg Val Leu Val Ser Tyr Asn 125 130 135

Val Thr His Leu Tyr Thr Cys Gly Thr Phe Ala Phe Ser Pro Ala 140 145 150

Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr Leu Leu Pro Ile Ser 155 160 165

Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser Pro Phe Asp Pro 170 175 180

Ala His Lys His Thr Ala Val Leu Val Asp Gly Met Leu Tyr Ser 185 190 195

Gly	Thr	Met	Asn	Asn 200	Phe	Leu	Gly	Ser	Glu 205	Pro	Ile	Leu	Met	Arg 210
Thr	Leu	Gly	Ser	Gln 215	Pro	Val	Leu	Lys	Thr 220	Asp	Asn	Phe	Leu	Arg 225
Trp	Leu	His	His	Asp 230	Ala	Ser	Phe	Val	Ala 235	Ala	Ile	Pro	Ser	Thr 240
Gln	Val	Val	Tyr	Phe 245	Phe	Phe	Glu	Glu	Thr 250	Ala	Ser	Glu	Phe	Asp 255
Phe	Phe	Glu	Arg	Leu 260	His	Thr	Ser	Arg	Val 265	Ala	Arg	Val	Cys	Lys 270
Asn	Asp	Val	Gly	Gly 275	Glu	Lys	Leu	Leu	Gln 280	Lys	Lys	Trp	Thr	Thr 285
Phe	Leu	Lys	Ala	Gln 290	Leu	Leu	Cys	Thr	Gln 295	Pro	Gly	Gln	Leu	Pro 300
Phe	Asn	Val	Ile	Arg 305	His	Ala	Val	Leu	Leu 310	Pro	Ala	Asp	Ser	Pro 315
Thr	Ala	Pro	His	Ile 320	Tyr	Ala	Val	Phe	Thr 325	Ser	Gln	Trp	Gln	Val 330
Gly	Gly	Thr	Arg	Ser 335	Ser	Ala	Val	Cys	Ala 340	Phe	Ser	Leu	Leu	Asp 345
Ile	Glu	Arg	Val	Phe 350	Lys	Gly	Lys	Tyr	Lys 355	Glu	Leu	Asn	Lys	Glu 360
Thr	Ser	Arg	Trp	Thr 365	Thr	Tyr	Arg	Gly	Pro 370	Glu	Thr	Asn	Pro	Arg 375
Pro	Gly	Ser	Cys	Ser 380	Val	Gly	Pro	Ser	Ser 385	Asp	Lys	Ala	Leu	Thr 390
Phe	Met	Lys	Asp	His 395	Phe	Leu	Met	Asp	Glu 400	Gln	Val	Val	Gly	Thr 405
Pro	Leu	Leu	Val	Lys 410	Ser	Gly	Val	Glu	Tyr 415	Thr	Arg	Leu	Ala	Val 420
Glu	Thr	Ala	Gln	Gly 425	Leu	Asp	Gly	His	Ser 430	His	Leu	Val	Met	Tyr 435
Leu	Gly	Thr	Thr	Thr 440	Gly	Ser	Leu	His	Lys 445	Ala	Val	Val	Ser	Gly 450
Asp	Ser	Ser	Ala	His 455	Leu	Val	Glu	Glu	Ile 460	Gln	Leu	Phe	Pro	Asp 465
Pro	Glu	Pro	Val	Arg 470	Asn	Leu	Gln	Leu	Ala 475	Pro	Thr	Gln	Gly	Ala 480

Val	Phe	Val	Gly	Phe 485	Ser	Gly	Gly	Val	Trp 490	Arg	Val	Pro	Arg	Ala 495
Asn	Cys	Ser	Val	Tyr 500	Glu	Ser	Суѕ	Val	Asp 505	Cys	Val	Leu	Ala	Arg 510
Asp	Pro	His	Cys	Ala 515	Trp	Asp	Pro	Glu	Ser 520	Arg	Thr	Суз	Суѕ	Leu 525
Leu	Ser	Ala	Pro	Asn 530	Leu	Asn	Ser	Trp	Lys 535	Gln	Asp	Met	Glu	Arg 540
Gly	Asn	Pro	Glu	Trp 545	Ala	Суѕ	Ala	Ser	Gly 550	Pro	Met	Ser	Arg	Ser 555
Leu	Arg	Pro	Gln	Ser 560	Arg	Pro	Gln	Ile	Ile 565	Lys	Glu	Val	Leu	Ala 570
Val	Pro	Asn	Ser	Ile 575	Leu	Glu	Leu	Pro	Cys 580	Pro	His	Leu	Ser	Ala 585
Leu	Ala	Ser	Tyr	Tyr 590	Trp	Ser	His	Gly	Pro 595	Ala	Ala	Val	Pro	Glu 600
Ala	Ser	Ser	Thr	Val 605	Tyr	Asn	Gly	Ser	Leu 610	Leu	Leu	Ile	Val	Gln 615
Asp	Gly	Val	Gly	Gly 620	Leu	Tyr	Gln	Cys	Trp 625	Ala	Thr	Glu	Asn	Gly 630
Phe	Ser	Tyr	Pro	Val 635	Ile	Ser	Tyr	Trp	Val 640	Asp	Ser	Gln	Asp	Gln 645
Thr	Leu	Ala	Leu	Asp 650	Pro	Glu	Leu	Ala	Gly 655	Ile	Pro	Arg	Glu	His 660
Val	Lys	Val	Pro	Leu 665	Thr	Arg	Val	Ser	Gly 670	Gly	Ala	Ala	Leu	Ala 675
Ala	Gln	Gln	Ser	Tyr 680	Trp	Pro	His	Phe	Val 685	Thr	Val	Thr	Val	Leu 690
Phe	Ala	Leu	Val	Leu 695	Ser	Gly	Ala	Leu	Ile 700	Ile	Leu	Val	Ala	Ser 705
Pro	Leu	Arg	Ala	Leu 710	Arg	Ala	Arg	Gly	Lys 715	Val	Gln	Gly	Cys	Glu 720
Thr	Leu	Arg	Pro	Gly 725	Glu	Lys	Ala	Pro	Leu 730	Ser	Arg	Glu	Gln	His 735
Leu	Gln	Ser	Pro	Lys 740	Glu	Cys	Arg	Thr	Ser 745	Ala	Ser	Asp	Val	Asp 750
Ala	Asp	Asn	Asn	Cys 755	Leu	Gly	Thr	Glu	Val 760	Ala				

```
<210> 278
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 278
ctgctggtga aatctggcgt ggag 24
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 279
gtctggtcct ggctgtccac ccag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 280
catcttgtca tgtacctggg aaccaccaca gggtcgctcc acaag 45
<210> 281
<211> 2320
<212> DNA
<213> Homo sapiens
<400> 281
agggteeett ageegggege agggegegea geeeaggetg agateegegg 50
cttccgtaga agtgagcatg gctgggcagc gagtgcttct tctagtgggc 100
 ttccttctcc ctggggtcct gctctcagag gctgccaaaa tcctgacaat 150
 atctacagta ggtggaagcc attatctact gatggaccgg gtttctcaga 200
 ttcttcaaga tcacggtcat aatgtcacca tgcttaacca caaaagaggt 250
 ccttttatgc cagattttaa aaaggaagaa aaatcatatc aagttatcag 300
 ttggcttgca cctgaagatc atcaaagaga atttaaaaag agttttgatt 350
 tctttctgga agaaacttta ggtggcagag gaaaatttga aaacttatta 400
 aatgttctag aatacttggc gttgcagtgc agtcattttt taaatagaaa 450
```

ggatatcatg gattccttaa agaatgagaa cttcgacatg gtgatagttg 500 aaacttttga ctactgtcct ttcctgattg ctgagaagct tgggaagcca 550 tttgtggcca ttctttccac ttcattcggc tctttggaat ttgggctacc 600 aatccccttg tcttatgttc cagtattccg ttccttgctg actgatcaca 650 tggacttctg gggccgagtg aagaattttc tgatgttctt tagtttctgc 700 aggaggcaac agcacatgca gtctacattt gacaacacca tcaaggaaca 750 tttcacagaa ggctctaggc cagttttgtc tcatcttcta ctgaaagcag 800 agttgtggtt cattaactct gactttgcct ttgattttgc tcgacctctg 850 cttcccaaca ctgtttatgt tggaggcttg atggaaaaac ctattaaacc 900 agtaccacaa gacttggaga acttcattgc caagtttggg gactctggtt 950 ttgtccttgt gaccttgggc tccatggtga acacctgtca gaatccggaa 1000 atcttcaagg agatgaacaa tgcctttgct cacctacccc aaggggtgat 1050 atggaagtgt cagtgttctc attggcccaa agatgtccac ctggctgcaa 1100 atgtgaaaat tgtggactgg cttcctcaga gtgacctcct ggctcaccca 1150 agcatccgtc tgtttgtcac ccacggcggg cagaatagca taatggaggc 1200 catccagcat ggtgtgccca tggtggggat ccctctcttt ggagaccagc 1250 ctgaaaacat ggtccgagta gaagccaaaa agtttggtgt ttctattcag 1300 ttaaagaagc tcaaggcaga gacattggct cttaagatga aacaaatcat 1350 ggaagacaag agatacaagt ccgcggcagt ggctgccagt gtcatcctgc 1400 gctcccaccc gctcagcccc acacagcggc tggtgggctg gattgaccac 1450 gtcctccaga cagggggcgc gacgcacctc aagccctatg tctttcagca 1500 gccctggcat gagcagtacc tgttcgacgt ttttgtgttt ctgctggggc 1550 tcactctggg gactctatgg ctttgtggga agctgctggg catggctgtc 1600 tggtggctgc gtggggccag aaaggtgaag gagacataag gccaggtgca 1650 gccttggcgg ggtctgtttg gtgggcgatg tcaccatttc tagggagctt 1700 cccactagtt ctggcagccc cattctctag tccttctagt tatctcctgt 1750 tttcttgaag aacaggaaaa atggccaaaa atcatccttt ccacttgcta 1800 attttgctac aaattcatcc ttactagctc ctgcctgcta gcagaaatct 1850

ttccagtcct cttgtcctcc tttgtttgcc atcagcaagg gctatgctgt 1900 gattctgtct ctgagtgact tggaccactg accetcagat ttccagcctt 1950 aaaatccacc ttccttctca tgcgcctctc cgaatcacac cctgactctt 2000 ccagcctcca tgtccagacc tagtcagcct ctctcactcc tgcccctact 2050 atctatcatg gaataacatc caagaaagac accttgcata ttctttcagt 2100 ttctgttttg ttctcccaca tattctcttc aatgctcagg aagcctgccc 2150 tgtgcttgag agttcagggc cggacacagg ctcacaggtc tccacattgg 2200 gtccctgtct ctggtgccca cagtgagctc cttcttggct gagcaggcat 2250 ggagactgta ggtttccaga tttcctgaaa aataaaagtt tacagcgtta 2300 tctctcccca acctcactaa 2320

<210> 282

<211> 523

<212> PRT

<213> Homo sapiens

<400> 282

Met Ala Gly Gln Arg Val Leu Leu Leu Val Gly Phe Leu Leu Pro 1 5 10 15

Gly Val Leu Ser Glu Ala Ala Lys Ile Leu Thr Ile Ser Thr 20 25 30

Val Gly Gly Ser His Tyr Leu Leu Met Asp Arg Val Ser Gln Ile 35 40 45

Leu Gln Asp His Gly His Asn Val Thr Met Leu Asn His Lys Arg $50 \,$ $55 \,$ $60 \,$

Gly Pro Phe Met Pro Asp Phe Lys Lys Glu Glu Lys Ser Tyr Gln
65 70 75

Val Ile Ser Trp Leu Ala Pro Glu Asp His Gln Arg Glu Phe Lys 80 85 90

Lys Ser Phe Asp Phe Phe Leu Glu Glu Thr Leu Gly Gly Arg Gly 95 100 105

Lys Phe Glu Asn Leu Leu Asn Val Leu Glu Tyr Leu Ala Leu Gln
110 115 120

Cys Ser His Phe Leu Asn Arg Lys Asp Ile Met Asp Ser Leu Lys 125 130 135

Asn Glu Asn Phe Asp Met Val Ile Val Glu Thr Phe Asp Tyr Cys 140 145 150

Pro Phe Leu Ile Ala Glu Lys Leu Gly Lys Pro Phe Val Ala Ile

Ala Ala Val Ala Ala Ser Val Ile Leu Arg Ser His Pro Leu Ser

Pro Thr Gln Arg Leu Val Gly Trp Ile Asp His Val Leu Gln Thr 455 460 465

Gly Gly Ala Thr His Leu Lys Pro Tyr Val Phe Gln Gln Pro Trp
470 475 480

His Glu Gln Tyr Leu Phe Asp Val Phe Val Phe Leu Leu Gly Leu 485 490 495

Thr Leu Gly Thr Leu Trp Leu Cys Gly Lys Leu Leu Gly Met Ala 500 505 510

Val Trp Trp Leu Arg Gly Ala Arg Lys Val Lys Glu Thr 515 520

<210> 283

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 283
tgcctttgct cacctacccc aagg 24

<210> 284

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 284

tcaggctggt ctccaaagag aggg 24

<210> 285

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 285

cccaaagatg tccacctggc tgcaaatgtg aaaattgtgg actgg 45

<210> 286

<211> 2340

<212> DNA

<213> Homo sapiens

<400> 286

gggctgttga tttgtggggg attttgaaga gaggaggaat aggaggaagg 50

ggttgagggg ctgcctctgg catatgcaca cactcacaca ttctgtcaca 100 cccgtcacac acacatacca tgttctccat cccccaggt ccagccctca 150 gtgctgtccc atccagcagg gctaccctga agctctggct gcagccctcc 200 cgtccagtgg gcaggcggct tcatccctcc tttctctccc aaagcccaac 250 tgctgtcact gcatgctctg ccaaggagga gggaactgca gtgacagcag 300 gagtaagagt gggaggcagg acagagctgg gacacaggta tggagagggg 350 gttcagcgag cctagagagg gcagactatc agggtgccgg cggtgagaat 400 ccagggagag gagcggaaac agaagaggg cagaagaccg gggcacttgt 450 gggttgcaga gcccctcagc catgttggga gccaagccac actggctacc 500 aggtccccta cacagtcccg ggctgccctt ggttctggtg cttctggccc 550 tgggggccgg gtgggcccag gaggggtcag agcccgtcct gctggagggg 600 gagtgcctgg tggtctgtga gcctggccga gctgctgcag gggggcccgg 650 gggagcagcc ctgggagagg caccccctgg gcgagtggca tttgctgcgg 700 tccgaagcca ccaccatgag ccagcagggg aaaccggcaa tggcaccagt 750 ggggccatct acttcgacca ggtcctggtg aacgagggcg gtggctttga 800 ccgggcctct ggctccttcg tagcccctgt ccggggtgtc tacagcttcc 850 ggttccatgt ggtgaaggtg tacaaccgcc aaactgtcca ggtgagcctg 900 atgctgaaca cgtggcctgt catctcagcc tttgccaatg atcctgacgt 950 gacccgggag gcagccacca gctctgtgct actgcccttg gaccctgggg 1000 accgagtgtc tctgcgcctg cgtcggggga atctactggg tggttggaaa 1050 tactcaagtt tctctggctt cctcatcttc cctctctgag gacccaagtc 1100 tttcaagcac aagaatccag cccctgacaa ctttcttctg ccctctcttg 1150 ccccagaaac agcagaggca ggagagagac tccctctggc tcctatccca 1200 cctctttgca tgggaccctg tgccaaacac ccaagtttaa gagaagagta 1250 gagetgtgge atetecagae caggeettte cacceacea cececagtta 1300 ccctcccagc cacctgctgc atctgttcct gcctgcagcc ctaggatcag 1350 ggcaaggttt ggcaagaagg aagatctgca ctactttgcg gcctctgctc 1400 ctccggttcc cccaccccag cttcctgctc aatgctgatc agggacaggt 1450

ggcgcaggtg agcctgacag gccccacag gagcccagat ggacaagcct 1500 cagcgtaccc tgcaggcttc ttcctgtgag gaaagccagc atcacggatc 1550 tcagccagca ccgtcagaag ctgagccagc accgtatggg ctagggtggg 1600 aggctcagcc acaggcagaa gggtgggaag ggcctggagt ctgtggctgg 1650 tgaggaagga aggaggtgt attgtctaga ctgaacatgg tacacattct 1700 gcatgtatag cagagcagcc agcaggtagc aatcctggct gtccttctat 1750 gctggatccc agatggactc tggcccttac ctccccacct gagattaggg 1800 tgagtgtgtt tgctctggct gagagcagag ctgagagcag gtatacagag 1850 ctggaagtgg accatggaaa acatcgataa ccatgcatcc tcttgcttgg 1900 ccacctcctg aaactgctcc acctttgaag tttgaacttt agtccctcca 1950 cactetgact getgeeteet teeteecage teteteactg agttatette 2000 actgtacetg ttecageata tececaetat etetettet eetgatetgt 2050 gctgtcttat tctcctcctt aggcttccta ttacctggga ttccatgatt 2100 catteettea gaccetetee tgccagtatg ctaaaccete cetetetet 2150 tcttatcccg ctgtcccatt ggcccagcct ggatgaatct atcaataaaa 2200 caactagaga atggtggtca gtgagacact atagaattac taaggagaag 2250 atgcctctgg agtttggatc gggtgttaca ggtacaagta ggtatgttgc 2300 agaggaaaat aaatatcaaa ctgtatacta aaattaaaaa 2340

<210> 287

<211> 205

<212> PRT

<213> Homo sapiens

<400> 287

Met Leu Gly Ala Lys Pro His Trp Leu Pro Gly Pro Leu His Ser 1 5 10 15

Pro Gly Leu Pro Leu Val Leu Val Leu Leu Ala Leu Gly Ala Gly
20 25 30

Trp Ala Gln Glu Gly Ser Glu Pro Val Leu Leu Glu Gly Glu Cys 35 40 45

Leu Val Val Cys Glu Pro Gly Arg Ala Ala Ala Gly Gly Pro Gly

Gly Ala Ala Leu Gly Glu Ala Pro Pro Gly Arg Val Ala Phe Ala

```
Ala Val Arg Ser His His Glu Pro Ala Gly Glu Thr Gly Asn
 Gly Thr Ser Gly Ala Ile Tyr Phe Asp Gln Val Leu Val Asn Glu
 Gly Gly Gly Phe Asp Arg Ala Ser Gly Ser Phe Val Ala Pro Val
 Arg Gly Val Tyr Ser Phe Arg Phe His Val Val Lys Val Tyr Asn
                                      130
 Arg Gln Thr Val Gln Val Ser Leu Met Leu Asn Thr Trp Pro Val
                                     145
 Ile Ser Ala Phe Ala Asn Asp Pro Asp Val Thr Arg Glu Ala Ala
                 155
                                     160
 Thr Ser Ser Val Leu Leu Pro Leu Asp Pro Gly Asp Arg Val Ser
                 170
 Leu Arg Leu Arg Arg Gly Asn Leu Leu Gly Gly Trp Lys Tyr Ser
                 185
                                     190
 Ser Phe Ser Gly Phe Leu Ile Phe Pro Leu
                 200
                                     205
<210> 288
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 288
aggcagccac cagctctgtg ctac 24
<210> 289
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 289
cagagagga agatgaggaa gccagag 27
<210> 290
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 290 ctgtgctact gcccttggac cctggggacc gagtgtctct gc 42

<210> 291 <211> 1570

<212> DNA

<213> Homo sapiens

<400> 291

gctgtttctc tcgcgccacc actggccgcc ggccgcagct ccaggtgtcc 50 tagccgccca gcctcgacgc cgtcccggga cccctgtgct ctgcgcgaag 100 ccctggcccc gggggccggg gcatgggcca ggggcgcggg gtgaagcggc 150 ttcccgcggg gccgtgactg ggcgggcttc agccatgaag accctcatag 200 ccgcctactc cggggtcctg cgcggcgagc gtcaggccga ggctgaccgg 250 agccageget ctcaeggagg acctgegetg tegegegagg ggtetgggag 300 atggggcact ggatccagca tcctctccgc cctccaggac ctcttctctg 350 tcacctggct caataggtcc aaggtggaaa agcagctaca ggtcatctca 400 gtgctccagt gggtcctgtc cttccttgta ctgggagtgg cctgcagtgc 450 catcctcatg tacatattct gcactgattg ctggctcatc gctgtgctct 500 acttcacttg gctggtgttt gactggaaca cacccaagaa aggtggcagg 550 aggtcacagt gggtccgaaa ctgggctgtg tggcgctact ttcgagacta 600 ctttcccatc cagctggtga agacacacaa cctgctgacc accaggaact 650 atatetttgg ataceaecee catggtatea tgggeetggg tgeettetge 700 aacttcagca cagaggccac agaagtgagc aagaagttcc caggcatacg 750 gccttacctg gctacactgg caggcaactt ccgaatgcct gtgttgaggg 800 agtacctgat gtctggaggt atctgccctg tcagccggga caccatagac 850 tatttgcttt caaagaatgg gagtggcaat gctatcatca tcgtggtcgg 900 gggtgcggct gagtctctga gctccatgcc tggcaagaat gcagtcaccc 950 tgcggaaccg caagggcttt gtgaaactgg ccctgcgtca tggagctgac 1000 ctggttccca tctactcctt tggagagaat gaagtgtaca agcaggtgat 1050 cttcgaggag ggctcctggg gccgatgggt ccagaagaag ttccagaaat 1100 acattggttt cgccccatgc atcttccatg gtcgaggcct cttctcctcc 1150 gacacctggg ggctggtgcc ctactccaag cccatcacca ctgttgtggg 1200

<210> 292

<211> 388

<212> PRT

<213> Homo sapiens

<400> 292

Met Lys Thr Leu Ile Ala Ala Tyr Ser Gly Val Leu Arg Gly Glu
1 5 10 15

Arg Gln Ala Glu Ala Asp Arg Ser Gln Arg Ser His Gly Gly Pro
20 25 30

Ala Leu Ser Arg Glu Gly Ser Gly Arg Trp Gly Thr Gly Ser Ser 35 40 45

Ile Leu Ser Ala Leu Gln Asp Leu Phe Ser Val Thr Trp Leu Asn 50 55 60

Arg Ser Lys Val Glu Lys Gln Leu Gln Val Ile Ser Val Leu Gln
65 70 75

Trp Val Leu Ser Phe Leu Val Leu Gly Val Ala Cys Ser Ala Ile 80 85 90

Leu Met Tyr Ile Phe Cys Thr Asp Cys Trp Leu Ile Ala Val Leu 95 100 105

Tyr Phe Thr Trp Leu Val Phe Asp Trp Asn Thr Pro Lys Lys Gly 110 115 120

Gly Arg Arg Ser Gln Trp Val Arg Asn Trp Ala Val Trp Arg Tyr 125 130 135

Phe Arg Asp Tyr Phe Pro Ile Gln Leu Val Lys Thr His Asn Leu 140 145 150

Leu Thr Thr Arg Asn Tyr Ile Phe Gly Tyr His Pro His Gly Ile
155 160 165

Met Gly Leu Gly Ala Phe Cys Asn Phe Ser Thr Glu Ala Thr Glu 170 175 180

```
Val Ser Lys Lys Phe Pro Gly Ile Arg Pro Tyr Leu Ala Thr Leu
                 185
                                      190
 Ala Gly Asn Phe Arg Met Pro Val Leu Arg Glu Tyr Leu Met Ser
                 200
                                      205
 Gly Gly Ile Cys Pro Val Ser Arg Asp Thr Ile Asp Tyr Leu Leu
                 215
                                      220
 Ser Lys Asn Gly Ser Gly Asn Ala Ile Ile Ile Val Val Gly Gly
                                      235
 Ala Ala Glu Ser Leu Ser Ser Met Pro Gly Lys Asn Ala Val Thr
                 245
                                      250
 Leu Arg Asn Arg Lys Gly Phe Val Lys Leu Ala Leu Arg His Gly
                                      265
 Ala Asp Leu Val Pro Ile Tyr Ser Phe Gly Glu Asn Glu Val Tyr
 Lys Gln Val Ile Phe Glu Glu Gly Ser Trp Gly Arg Trp Val Gln
                 290
 Lys Lys Phe Gln Lys Tyr Ile Gly Phe Ala Pro Cys Ile Phe His
                 305
 Gly Arg Gly Leu Phe Ser Ser Asp Thr Trp Gly Leu Val Pro Tyr
                 320
 Ser Lys Pro Ile Thr Thr Val Val Gly Glu Pro Ile Thr Ile Pro
                 335
                                      340
 Lys Leu Glu His Pro Thr Gln Gln Asp Ile Asp Leu Tyr His Thr
                 350
                                      355
                                                          360
 Met Tyr Met Glu Ala Leu Val Lys Leu Phe Asp Lys His Lys Thr
                 365
                                      370
 Lys Phe Gly Leu Pro Glu Thr Glu Val Leu Glu Val Asn
                 380
                                      385
<210> 293
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
gctgacctgg ttcccatcta ctcc 24
<210> 294
```

<211> 24 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 294
cccacagaca cccatgacac ttcc 24
<210> 295
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 295
aagaatgaat tgtacaaagc aggtgatctt cgaggagggc tcctggggcc 50
<210> 296
<211> 3060
<212> DNA
<213> Homo sapiens
<400> 296
gggcggcggg atgggggcg gggcggcgg gcgccgcact cgctgaggcc 50
ccgacgcagg gccgggccgg gcccagggcc gaggagcgcg gcggccagag 100
 cggggccgcg gaggcgacgc cggggacgcc cgcgcgacga gcaggtggcg 150
 gcggctgcag gcttgtccag ccggaagccc tgagggcagc tgttcccact 200
 ggctctgctg accttgtgcc ttggacggct gtcctcagcg aggggccgtg 250
caccegetce tgageagege catgggeetg etggeettee tgaagaeeca 300
 gttcgtgctg cacctgctgg tcgqctttqt cttcgtqqtq agtqqtctgq 350
 tcatcaactt cgtccagctg tgcacgctgg cgctctggcc ggtcagcaag 400
 cagctctacc gccgcctcaa ctgccgcctc gcctactcac tctggagcca 450
 actggtcatg ctgctggagt ggtggtcctg cacggagtgt acactgttca 500
cggaccaggc cacggtagag cgctttggga aggagcacgc agtcatcatc 550
ctcaaccaca acttcgagat cgacttcctc tgtgggtgga ccatgtgtga 600
gcgcttcgga gtgctgggga gctccaaggt cctcgctaag aaggagctgc 650
tctacgtgcc cctcatcggc tggacgtggt actttctgga gattgtgttc 700
tgcaagcgga agtgggagga ggaccgggac accgtggtcg aagggctgag 750
gcgcctgtcg gactaccccg agtacatgtg gtttctcctg tactgcgagg 800
```

ggacgcgctt cacggagacc aagcaccgcg ttagcatgga ggtggcggct 850 gctaaggggc ttcctgtcct caagtaccac ctgctgccgc ggaccaaggg 900 cttcaccacc gcagtcaagt gcctccgggg gacagtcgca gctgtctatg 950 atgtaaccct gaacttcaga ggaaacaaga acccgtccct gctggggatc 1000 ctctacggga agaagtacga ggcggacatg tgcgtgagga gatttcctct 1050 ggaagacatc ccgctggatg aaaaggaagc agctcagtgg cttcataaac 1100 tgtaccagga gaaggacgcg ctccaggaga tatataatca gaagggcatg 1150 tttccagggg agcagtttaa gcctgcccgg aggccgtgga ccctcctgaa 1200 cttcctgtcc tgggccacca ttctcctgtc tcccctcttc agttttgtct 1250 tgggcgtctt tgccagcgga tcacctctcc tgatcctgac tttcttgggg 1300 tttgtgggag cagcttcctt tggagttcgc agactgatag gagaatcgct 1350 tgaacctggg aggtggagat tgcagtgagc tgagatggca tcactgtact 1400 ccagcctagg caacagagca agactcagtc tcaaaaaaaa aaaaaaacaa 1450 aaaaacccca gaaattctgg agttgaactg tgtagttact gacatgaaaa 1500 attcactaga ggctgaacag cagatttgag caggcagaaa aaaatcagca 1550 agcttgaaga tggtaccttg agatttttca ggctaatgaa aaaagaatga 1600 aggaaaatta acagcctcag agacccatgg tgcaccgtca cacaaatcaa 1650 catatgcatg atgagagtcc cagaaggaga ggagagaaag ggtcagaaag 1700 aatggccaca agctgatgaa aaacagtaac ctacccactc aggaagctca 1750 gtgaactcca atgaggatga atatcagaga tccacaccta gatatttcat 1800 aatcaaagtg tcaaatgaca aagaatcttg aaagcagcaa gagatgagca 1850 acttatcttg ttcaaaggat ctttgatcag attaacagct catttctcct 1900 cagaaatcat gggagccagg agatagtggg atgaacactg ttgaaggcaa 1950 aaccttcaac tgtaattatt ggacttttga gtcttagatg gtcctgacct 2000 ctttgtcttc agggacagtt tttcaattta atccctaata acaattagtc 2050 aagcttcctt gacctgtagg aaggcctgtc tttaggccgg gcacagtggc 2100 ttacacctgt aatcccagca ctttgggagg cccagacggg tggatcattt 2150 ggggtcaggc tgatctcaaa ctcctgagtt caggtgatct gcccgcctca 2200 gcctcccaaa gtgttgtgat tgcaggcgtg agccactgcg cctggccgga 2250 atttcttttt aaggetgaat gatgggggcc aggeacgatg geteaegeet 2300 gtgatcccaa gtagcttgga ttgtaaacat gcaccaccat gcctggctaa 2350 tttttgtatt tttagtagag acgtgttagc caggctggtc tcgatctcct 2400 gacctcaagt gaccacctgc ctcagcctcc caaagtactg ggattacagg 2450 cgtgagccac tgtgcctggc cttgagcatc ttgtgatgtg cttattggcc 2500 atttgtatat cttctatctt ctttggggaa atgtctgttc aagtcctttg 2550 ttgttctgtt gcccaggctg gagtacagtg gcacagtctt ggctcactgc 2650 agcctcgacc tcctgggctg cagtgatcct cccacctcag cctcccttgt 2700 agctgtattt ttttgtattt tgtattttgt agctgtagtt tttgtatttt 2750 ttgtggagac agcatttcac catgatgccc aggctggtct tgaactcctg 2800 ageteaagtg atetgeetge tteageetee caaagtgetg ggattacaga 2850 catgagecae tgeacetgge aaacteecaa aatteaacae acacacacaa 2900 aaaaccacct gattcaaaat gggcagaggg gccgggtgtg gccccaacta 2950 ccagggagac tgaagtggga ggatcgcttg ggcatgagaa gtcgaggctg 3000 cagtgagtcg aggttgtgcg actgcattcc agcctggaca acagagtgag 3050 accetgtete 3060

<210> 297

<211> 368

<212> PRT

<213> Homo sapiens

<400> 297

Met Gly Leu Leu Ala Phe Leu Lys Thr Gln Phe Val Leu His Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Val Gly Phe Val Phe Val Val Ser Gly Leu Val Ile Asn Phe
20 25 30

Val Gln Leu Cys Thr Leu Ala Leu Trp Pro Val Ser Lys Gln Leu 35 40 45

Tyr Arg Arg Leu Asn Cys Arg Leu Ala Tyr Ser Leu Trp Ser Gln 50 55 60

Leu Val Met Leu Leu Glu Trp Trp Ser Cys Thr Glu Cys Thr Leu 65 70 75

Phe Thr Asp Gln Ala Thr Val Glu Arg Phe Gly Lys Glu His Ala

Val	Ile	: Ile	e Leu	Asn 95		Asn	Ph∈	: Glu	Ile 100	Asp	Phe	e Leu	Cys	Gly 105
Trp	Thr	Met	Cys	Glu 110	Arg	Phe	Gly	Val	Leu 115	Gly	' Ser	Ser	Lys	Val 120
Leu	Ala	Lys	Lys	Glu 125	Leu	Leu	Tyr	Val	Pro 130	Leu	Ile	Gly	Trp	Thr 135
Trp	Tyr	Phe	. Leu	Glu 140	Ile	Val	Phe	Cys	Lys 145	Arg	Lys	Trp	Glu	Glu 150
Asp	Arg	Asp	Thr	Val 155	Val	Glu	Gly	Leu	Arg 160	Arg	Leu	Ser	Asp	Туг 165
Pro	Glu	Tyr	Met	Trp 170	Phe	Leu	Leu	Tyr	Cys 175	Glu	Gly	Thr	Arg	Phe 180
Thr	Glu	Thr	Lys	His 185	Arg	Val	Ser	Met	Glu 190	Val	Ala	Ala	Ala	Lys 195
Gly	Leu	Pro	Val	Leu 200	Lys	Tyr	His	Leu	Leu 205	Pro	Arg	Thr	Lys	Gly 210
Phe	Thr	Thr	Ala	Val 215	Lys	Cys	Leu	Arg	Gly 220	Thr	Val	Ala	Ala	Val 225
Tyr	Asp	Val	Thr	Leu 230	Asn	Phe	Arg	Gly	Asn 235	Lys	Asn	Pro	Ser	Leu 240
				Tyr 245					250					255
				Leu 260					265					270
				His 275					280					285
				Gln 290					295					300
				Pro 305					310					Ala 315
				Ser 320					325					Phe 330
				Pro 335					340					345
				Phe 350				Arg	Leu 355	Ile	Gly	Glu	Ser	Leu 360
ilu	Pro	Glv	Ara	Trn	Ara	T.011	Cln							

```
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 298
cttcctctgt gggtggacca tgtg 24
<210> 299
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 299
gccacctcca tgctaacgcg g 21
<210> 300
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 300
ccaaggtcct cgctaagaag gagctgctct acgtgcccct catcg 45
<210> 301
<211> 1334
<212> DNA
<213> Homo sapiens
<400> 301
gatattettt atttttaaga atetgaagta etatgeatea eteeeteeaa 50
 tgtcctgggg cagccaccag gcatattcat ctttgtgtgt gtttttcttt 100
 tgctttagca ctggggcact tcttgcttat ttctttggta ggaaaggggc 150
 tcagtttgtc ttgtggggtt ggtggcaggc aggccggctt acgcctgata 200
cggccctggg ttagaaggga agggaagata aacttttata caaatgggga 250
 tagctggggt ctgagacctg cttcctcagt aaaattcctg ggatctgcct 300
 ataccttctt ttctctaacc tggcataccc tgcttaaagc ctctcagggc 350
 ttctctctgt tcttaggatc aaagtattta gagctacaag agccctcatg 400
```

gtctggcccc tgccccctg gccagcttca ttgtacatgt ggtgttctct 450 tgtcgttcct gtaatgtggt atgccatggg gtctttgcac aagcctttcc 500 tetttggetg gacactgtte ectgeeece ceatactett ectaettaat 550 atgtagtcat cctgcagatt tcaattctaa catcattttc tccagggatc 600 ctggcctgac agaatctcat cttgtttaat gctctcataa gaccacttgt 650 ttcccttttg cagcacttgc cactcagttg tatctttatg tgcgtttgtg 700 gttgtatggg ttgtgtctgt tccccagaat gcccagctct gagctgcgtg 750 agggtcaagg gcattgctgt gcctgccagg tatagtgcct acatgtggtg 800 ggtgctcatg ttttagagac taaatggagg aggagatgag gaaaagattg 850 aaatctctca gttcaccaga tggtgtaggg cccagcattg taaattcaca 900 cgttgactgt gcttgtgaat tatctgggga tgcaggtcct gattcagtag 950 gcccaggttg ggcatctcta acaaactccc acgtgatgct gatgctggtc 1000 ctatgaacta tactaaatag taagaatcta tggagccagg ctgggcatgg 1050 tggctcacac ctatgatccc agcactttgg gaggctgagg caggctgatc 1100 acctggagtc aggatttcaa gactagcctg gccaacatgg tggaacccca 1150 tctgtactaa aaatacacaa attagctggg catggtggca catgcctgta 1200 gtcccagcta cttgggaggc tgaagcaaga gaatcgcttg aacctgggag 1250 gcggaggttg cagtgagccg agatcaggcc actgtattcc aaccagggtg 1300 acagagtgag actctatgtc caaaaaaaaa aaaa 1334

```
<210> 302
```

<400> 302

Met His His Ser Leu Gln Cys Pro Gly Ala Ala Thr Arg His Ile 1 5 10 15

His Leu Cys Val Cys Phe Ser Phe Ala Leu Ala Leu Gly His Phe 20 25 30

Leu Leu Ile Ser Leu Val Gly Lys Gly Leu Ser Leu Ser Cys Gly
35 40 45

Val Gly Gly Arg Gln Ala Gly Leu Arg Leu Ile Arg Pro Trp Val
50 55 60

Arg Arg Glu Gly Lys Ile Asn Phe Tyr Thr Asn Gly Asp Ser Trp

<211> 143

<212> PRT

<213> Homo sapiens

65 70 75

Gly Leu Arg Pro Ala Ser Ser Val Lys Phe Leu Gly Ser Ala Tyr 80 85 90

Thr Phe Phe Ser Leu Thr Trp His Thr Leu Leu Lys Ala Ser Gln 95 100 105

Gly Phe Ser Leu Phe Leu Gly Ser Lys Tyr Leu Glu Leu Gln Glu 110 115 120

Pro Ser Trp Ser Gly Pro Cys Pro Pro Gly Gln Leu His Cys Thr 125 130 135

Cys Gly Val Leu Leu Ser Phe Leu 140

<210> 303

<211> 1768

<212> DNA

<213> Homo sapiens

<400> 303

ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc 50 aaggtgctgt gattataggt gtaagccacc gtgtctggcc tctgaacaac 100 tttttcagca actaaaaaag ccacaggagt tgaactgcta ggattctgac 150 tatgctgtgg tggctagtgc tcctactcct acctacatta aaatctgttt 200 tttgttctct tgtaactagc ctttaccttc ctaacacaga ggatctgtca 250 ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300 ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc 350 ctctcgctgg agcagtgccc tcaccaactg tctcacgtct ggaggcactg 400 actogggcag tgcaggtagc tgagcctctt ggtagctgcg gctttcaagg 450 tgggccttgc cctggccgta gaagggattg acaagcccga agatttcata 500 ggcgatggct cccactgccc aggcatcagc cttgctgtag tcaatcactg 550 ccctggggcc aggacggcc gtggacacct gctcagaagc agtgggtgag 600 acatcacgct gcccgcccat ctaacctttt catgtcctgc acatcacctg 650 atccatgggc taatctgaac tctgtcccaa ggaacccaga gcttgagtga 700 gctgtggctc agacccagaa ggggtctgct tagaccacct ggtttatgtg 750 acaggacttg cattctcctg gaacatgagg gaacgccgga ggaaagcaaa 800 gtggcaggga aggaacttgt gccaaattat gggtcagaaa agatggaggt 850

gttgggttat cacaaggcat cgagtctcct gcattcagtg gacatgtggg 900 ggaagggetg ccgatggege atgacacact cgggaeteae etetggggee 950 atcagacage egttteegee eegateeaeg taceagetge tgaagggeaa 1000 ctgcaggccg atgctctcat cagccaggca gcagccaaaa tctgcgatca 1050 ccagccaggg gcagccgtct gggaaggagc aagcaaagtg accatttctc 1100 ctcccctcct tccctctgag aggccctcct atgtccctac taaagccacc 1150 agcaagacat agctgacagg ggctaatggc tcagtgttgg cccaggaggt 1200 cagcaaggcc tgagagctga tcagaagggc ctgctgtgcg aacacggaaa 1250 tgcctccagt aagcacaggc tgcaaaatcc ccaggcaaag gactgtgtgg 1300 ctcaatttaa atcatgttct agtaattgga gctgtcccca agaccaaagg 1350 agctagaget tggttcaaat gateteeaag ggeeettata eeceaggaga 1400 ctttgatttg aatttgaaac cccaaatcca aacctaagaa ccaggtgcat 1450 taagaatcag ttattgccgg gtgtggtggc ctgtaatgcc aacattttgg 1500 gaggccgagg cgggtagatc acctgaggtc aggagttcaa gaccagcctg 1550 gccaacatgg tgaaacccct gtctctacta aaaatacaaa aaaactagcc 1600 aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650 gagaattact tgaacctggg aggtgaagga ggctgagaca ggagaatcac 1700 ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750 aattatggtt atttgtaa 1768

```
<210> 304
```

<400> 304

Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser 1 5 10 15

Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu 20 25 30

Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly
35 40 45

Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly 50 55 60

Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro

<211> 109

<212> PRT

<213> Homo sapiens

65 70 75

Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala 80 85 90

Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly 95 100 105

Arg Arg Arg Asp

<210> 305

<211> 989

<212> DNA

<213> Homo sapiens

<400> 305

gcgggcccgc gagtccgaga cctgtcccag gagctccagc tcacgtgacc 50 tgtcactgcc tcccgccgcc tcctgcccgc gccatgaccc agccggtgcc 100 ccggctctcc gtgcccgccg cgctggccct gggctcagcc gcactgggcg 150 ccgccttcgc cactggcctc ttcctgggga ggcggtgccc cccatggcga 200 ggccggcgag agcagtgcct gcttcccccc gaggacagcc gcctgtggca 250 gtatcttctg agccgctcca tgcgggagca cccggcgctg cgaagcctga 300 ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag 350 caggcccage tettggccaa cetggegegg etcatecagg ccaagaagge 400 gctggacctg ggcaccttca cgggctactc cgccctggcc ctggccctgg 450 cgctgcccgc ggacgggcgc gtggtgacct gcgaggtgga cgcgcagccc 500 ccggagctgg gacggcccct gtggaggcag gccgaggcgg agcacaagat 550 cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600 cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag 650 aactgctccg cctactacga gcgctgcctg cagctgctgc gacccggagg 700 catectegee gteeteagag teetgtggeg egggaaggtg etgeaacete 750 cgaaagggga cgtggcggcc gagtgtgtgc gaaacctaaa cgaacgcatc 800 cggcgggacg tcagggtcta catcagcctc ctgcccctgg gcgatggact 850 caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900 gagggttgcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa 950 ataaagtggg gctgggacac aaaaaaaaaa aaaaaaaa 989

```
<210> 306
<211> 262
<212> PRT
<213> Homo sapiens
<400> 306
Met Thr Gln Pro Val Pro Arg Leu Ser Val Pro Ala Ala Leu Ala
Leu Gly Ser Ala Ala Leu Gly Ala Ala Phe Ala Thr Gly Leu Phe
Leu Gly Arg Arg Cys Pro Pro Trp Arg Gly Arg Arg Glu Gln Cys
                  35
Leu Leu Pro Pro Glu Asp Ser Arg Leu Trp Gln Tyr Leu Leu Ser
Arg Ser Met Arg Glu His Pro Ala Leu Arg Ser Leu Arg Leu Leu
Thr Leu Glu Gln Pro Gln Gly Asp Ser Met Met Thr Cys Glu Gln
Ala Gln Leu Leu Ala Asn Leu Ala Arg Leu Ile Gln Ala Lys Lys
                                     100
Ala Leu Asp Leu Gly Thr Phe Thr Gly Tyr Ser Ala Leu Ala Leu
                110
                                     115
Ala Leu Ala Leu Pro Ala Asp Gly Arg Val Val Thr Cys Glu Val
                                     130
Asp Ala Gln Pro Pro Glu Leu Gly Arg Pro Leu Trp Arg Gln Ala
                                     145
Glu Ala Glu His Lys Ile Asp Leu Arg Leu Lys Pro Ala Leu Glu
                155
                                     160
Thr Leu Asp Glu Leu Leu Ala Ala Gly Glu Ala Gly Thr Phe Asp
                170
                                     175
                                                         180
Val Ala Val Val Asp Ala Asp Lys Glu Asn Cys Ser Ala Tyr Tyr
Glu Arg Cys Leu Gln Leu Leu Arg Pro Gly Gly Ile Leu Ala Val
                200
                                                         210
Leu Arg Val Leu Trp Arg Gly Lys Val Leu Gln Pro Pro Lys Gly
                215
                                     220
Asp Val Ala Ala Glu Cys Val Arg Asn Leu Asn Glu Arg Ile Arg
                                     235
Arg Asp Val Arg Val Tyr Ile Ser Leu Leu Pro Leu Gly Asp Gly
                245
                                     250
                                                         255
```

Leu Thr Leu Ala Phe Lys Ile 260

<210> 307 <211> 2272 <212> DNA <213> Homo sapiens

<400> 307

ccgccgccgc agccgctacc gccgctgcag ccgctttccg cggcctgggc 50 ctctcgccgt cagcatgcca cacgccttca agcccgggga cttggtgttc 100 gctaagatga agggctaccc tcactggcct gccaggatcg acgacatcgc 150 ggatggcgcc gtgaagcccc cacccaacaa gtaccccatc tttttctttg 200 gcacacacga aacagccttc ctgggaccca aggacctgtt cccctacgac 250 aaatgtaaag acaagtacgg gaagcccaac aagaggaaag gcttcaatga 300 agggctgtgg gagatccaga acaaccccca cgccagctac agcgcccctc 350 cgccagtgag ctcctccgac agcgaggccc ccgaggccaa ccccgccgac 400 ggcagtgacg ctgacgagga cgatgaggac cggggggtca tggccgtcac 450 ageggtaacc gecacagetg ceagegacag gatggagage gacteagact 500 cagacaagag tagcgacaac agtggcctga agaggaagac gcctgcgcta 550 aagatgtcgg tctcgaaacg agcccgaaag gcctccagcg acctggatca 600 ggccagcgtg tccccatccg aagaggagaa ctcggaaagc tcatctgagt 650 cggagaagac cagcgaccag gacttcacac ctgagaagaa agcagcggtc 700 cgggcgccac ggaggggccc tctgggggga cggaaaaaaa agaaggcgcc 750 gtcagcctcc gactccgact ccaaggccga ttcggacggg gccaagcctg 800 ageoggtgge catggeggg teggegteet effecteet theeteetee 850 tecteegact ecgatgtgte tgtgaagaag ceteegaggg geaggaagee 900 agcggagaag cctctcccga agccgcgagg gcggaaaccg aagcctgaac 950 ggcctccgtc cagctccagc agtgacagtg acagcgacga ggtggaccgc 1000 atcagtgagt ggaagcggcg ggacgaggcg cggaggcgcg agctggaggc 1050 ccggcggcgg cgagagcagg aggaggagct gcggcgcctg cgggagcagg 1100 agaaggagga gaaggagcgg aggcggagc gggccgaccg cggggaggct 1150 gagcggggca gcggcggcag cagcggggac gagctcaggg aggacgatga 1200

gcccgtcaag aagcggggac gcaagggccg gggccggggt cccccgtcct 1250 cctctgactc cgagcccgag gccgagctgg agagagaggc caagaaatca 1300 gcgaagaagc cgcagtcctc aagcacagag cccgccagga aacctggcca 1350 gaaggagaag aqagtqcqqc ccqaqqaqaa qcaacaaqcc aaqcccqtqa 1400 aggtggagcg gacccggaag cggtccgagg gcttctcgat ggacaggaag 1450 gtagagaaga agaaagagcc ctccgtggag gagaagctgc agaagctgca 1500 cagtgagatc aagtttgccc taaaggtcga cagcccggac gtgaagaggt 1550 gcctgaatgc cctagaggag ctgggaaccc tgcaggtgac ctctcagatc 1600 ctccagaaga acacagacgt ggtggccacc ttgaagaaga ttcgccgtta 1650 caaagcgaac aaggacgtaa tggagaaggc agcagaagtc tatacccggc 1700 tcaagtcgcg ggtcctcggc ccaaagatcg aggcggtgca gaaagtgaac 1750 aaggctggga tggagaagga gaaggccgag gagaagctgg ccggggagga 1800 gctggccggg gaggaggccc cccaggagaa ggcggaggac aagcccagca 1850 ecgatetete agecceagtg aatggegagg ceacateaca gaagggggag 1900 agcgcagagg acaaggagca cgaggagggt cgggactcgg aggaggggcc 1950 aaggtgtggc tcctctgaag acctgcacga cagcgtacgg gagggtcccg 2000 acctggacag gcctgggagc gaccggcagg agcgcgagag ggcacggggg 2050 gactcggagg ccctggacga ggagagctga qccqcqqca qccaqqcca 2100 geoccegoec gageteagge tgeocctete etteccegge tegcaggaga 2150 gcagagcaga gaactgtggg gaacgctgtg ctgtttgtat ttgttccctt 2200 gggttttttt ttcctgccta atttctgtga tttccaacca acatgaaatg 2250 actataaacg gttttttaat ga 2272

<210> 308

<211> 671

<212> PRT

<213> Homo sapiens

<400> 308

Met Pro His Ala Phe Lys Pro Gly Asp Leu Val Phe Ala Lys Met
1 5 10 15

Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Asp Ile Ala Asp 20 25 30

Gly Ala Val Lys Pro Pro Pro Asn Lys Tyr Pro Ile Phe Phe

Gly	Thr	His	Glu	Thr 50	Ala	Phe	Leu	Gly	Pro 55	Lys	Asp	Leu	Phe	Pro 60
Tyr	Asp	Lys	Cys	Lys 65	Asp	Lys	Tyr	Gly	Lys 70	Pro	Asn	Lys	Arg	Lys 75
Gly	Phe	Asn	Glu	Gly 80	Leu	Trp	Glu	Ile	Gln 85	Asn	Asn	Pro	His	Ala 90
Ser	Tyr	Ser	Ala	Pro 95	Pro	Pro	Val	Ser	Ser 100	Ser	Asp	Ser	Glu	Ala 105
Pro	Glu	Ala	Asn	Pro 110	Ala	Asp	Gly	Ser	Asp 115	Ala	Asp	Glu	Asp	Asp 120
Glu	Asp	Arg	Gly	Val 125	Met	Ala	Val	Thr	Ala 130	Val	Thr	Ala	Thr	Ala 135
Ala	Ser	Asp	Arg	Met 140	Glu	Ser	Asp	Ser	Asp 145	Ser	Asp	Lys	Ser	Ser 150
Asp	Asn	Ser	Gly	Leu 155	Lys	Arg	Lys	Thr	Pro 160	Ala	Leu	Lys	Met	Ser 165
Val	Ser	Lys	Arg	Ala 170	Arg	Lys	Ala	Ser	Ser 175	Asp	Leu	Asp	Gln	Ala 180
Ser	Val	Ser	Pro	Ser 185	Glu	Glu	Glu	Asn	Ser 190	Glu	Ser	Ser	Ser	Glu 195
Ser	Glu	Lys	Thr	Ser 200	Asp	Gln	Asp	Phe	Thr 205	Pro	Glu	Lys	Lys	Ala 210
Ala	Val	Arg	Ala	Pro 215	Arg	Arg	Gly	Pro	Leu 220	Gly	Gly	Arg	Lys	Lys 225
Lys	Lys	Ala	Pro	Ser 230	Ala	Ser	Asp	Ser	Asp 235	Ser	Lys	Ala	Asp	Ser 240
Asp	Gly	Ala	Lys	Pro 245	Glu	Pro	Val	Ala	Met 250	Ala	Arg	Ser	Ala	Ser 255
Ser	Ser	Ser	Ser	Ser 260	Ser	Ser	Ser	Ser	Asp 265	Ser	Asp	Val	Ser	Val 270
Lys	Lys	Pro	Pro	Arg 275	Gly	Arg	Lys	Pro	Ala 280	Glu	Lys	Pro	Leu	Pro 285
Lys	Pro	Arg	Gly	Arg 290	Lys	Pro	Lys	Pro	Glu 295	Arg	Pro	Pro	Ser	Ser 300
Ser	Ser	Ser	Asp	Ser 305	Asp	Ser	Asp	Glu	Val 310	Asp	Arg	Ile	Ser	Glu 315
Tro	Lvs	Ara	Ara	Asp	Glu	Ala	Ara	Ara	Ara	Glu	Len	Glu	Ala	Ara

Arg	y Arg	g Arç	g Glu	335		ı Glu	Glu	Leu	Arg 340		Leu	a Arg	g Glu	Gln 345
Glu	ı Lys	s Glu	ı Glu	Lys 350		Arg	Arg	Arg	Glu 355		Ala	ı Asp	Arg	g Gly 360
Glu	ı Ala	Glu	Arg	Gly 365		Gly	Gly	Ser	Ser 370	Gly	Asp	Glu	Leu	Arg 375
Glu	Asp	Asp	Glu	Pro 380	Val	Lys	Lys	Arg	Gly 385	Arg	Lys	Gly	' Arg	Gly 390
Arg	ßly	Pro	Pro	Ser 395	Ser	Ser	Asp	Ser	Glu 400	Pro	Glu	Ala	Glu	Leu 405
Glu	Arg	Glu	Ala	Lys 410	Lys	Ser	Ala	Lys	Lys 415	Pro	Gln	Ser	Ser	Ser 420
Thr	Glu	Pro	Ala	Arg 425	Lys	Pro	Gly	Gln	Lys 430	Glu	Lys	Arg	Val	Arg 435
Pro	Glu	Glu	Lys	Gln 440	Gln	Ala	Lys	Pro	Val 445	Lys	Val	Glu	Arg	Thr 450
Arg	Lys	Arg	Ser	Glu 455	Gly	Phe	Ser	Met	Asp 460	Arg	Lys	Val	Glu	Lys 465
				Ser 470					475					480
		•		Ala 485					490					495
Cys	Leu	Asn	Ala	Leu 500	Glu	Glu	Leu	Gly	Thr 505	Leu	Gln	Val	Thr	Ser 510
Gln	Ile	Leu	Gln	Lys 515	Asn	Thr	Asp	Val	Val 520	Ala	Thr	Leu	Lys	Lys 525
				Lys 530					535					Ala 540
				Arg 545					550					Ile 555
				Lys 560					565					570
				Leu 575					580					585
				Ala 590					595					600
Pro	Val	Asn	Gly	Glu	Ala	Thr	Ser	Gln	Lys	Gly	Glu	Ser	Ala	Glu

605 610 615

Asp Lys Glu His Glu Glu Gly Arg Asp Ser Glu Glu Gly Pro Arg 620 625 630

Cys Gly Ser Ser Glu Asp Leu His Asp Ser Val Arg Glu Gly Pro $635 \hspace{1.5cm} 640 \hspace{1.5cm} 645$

Asp Leu Asp Arg Pro Gly Ser Asp Arg Gln Glu Arg Glu Arg Ala 650 655 660

Arg Gly Asp Ser Glu Ala Leu Asp Glu Glu Ser 665 670

<210> 309

<211> 3871

<212> DNA

<213> Homo sapiens

<400> 309

gttggttctc ctggatcttc accttaccaa ctgcagatct tgggactcat 50 cagcctcaat aattatatta aattaacacc atttgaaaga gaacattgtt 100 ttcatcatga atgctaataa agatgaaaga cttaaagcca gaagccaaga 150 ttttcacctt tttcctgctt tgatgatgct aagcatgacc atgttgtttc 200 ttccagtcac tggcactttg aagcaaaata ttccaagact caagctaacc 250 tacaaagact tgctgctttc aaatagctgt attccctttt tgggttcatc 300 agaaggactg gattttcaaa ctcttctctt agatgaggaa agaggcaggc 350 tgctcttggg agccaaagac cacatctttc tactcagtct ggttgactta 400 aacaaaaatt ttaagaagat ttattggcct gctgcaaagg aacgggtgga 450 attatgtaaa ttagctggga aagatgccaa tacagaatgt gcaaatttca 500 tcagagtact tcagccctat aacaaaactc acatatatgt gtgtggaact 550 ggagcatttc atccaatatg tgggtatatt gatcttggag tctacaagga 600 ggatattata ttcaaactag acacacataa tttggagtct ggcagactga 650 aatgtccttt cgatcctcag cagccttttg cttcagtaat gacagatgag 700 tacctctact ctggaacage ttctgatttc cttggcaaag atactgcatt 750 cactcgatcc cttgggccta ctcatgacca ccactacatc agaactgaca 800 tttcagagca ctactggctc aatggagcaa aatttattgg aactttcttc 850 ataccagaca cctacaatcc agatgatgat aaaatatatt tcttctttcg 900 tgaatcatct caagaaggca gtacctccga taaaaccatc ctttctcgag 950

ttggaagagt ttgtaagaat gatgtaggag gacaacgcag cctgataaac 1000 aagtggacga cttttcttaa ggccagactg atttgctcaa ttcctggaag 1050 tgatggggca gatacttact ttgatgagct tcaagatatt tatttactcc 1100 ccacaagaga tgaaagaaat cctgtagtat atggagtctt tactacaacc 1150 agetecatet teaaaggete tgetgtttgt gtgtatagea tggetgaeat 1200 cagagcagtt tttaatggtc catatgctca taaggaaagt gcagaccatc 1250 gttgggtgca gtatgatggg agaatteett atecaeggee tggtacatgt 1300 ccaagcaaaa cctatgaccc actgattaag tccacccgag attttccaga 1350 tgatgtcatc agtttcataa agcggcactc tgtgatgtat aagtccgtat 1400 acccagttgc aggaggacca acgttcaaga gaatcaatgt ggattacaga 1450 ctgacacaga tagtggtgga tcatgtcatt gcagaagatg gccagtacga 1500 tgtaatgttt cttggaacag acattggaac tgtcctcaaa gttgtcagca 1550 tttcaaagga aaagtggaat atggaagagg tagtgctgga ggagttgcag 1600 atattcaagc actcatcaat catcttgaac atggaattgt ctctgaagca 1650 gcaacaattg tacattggtt cccgagatgg attagttcag ctctccttgc 1700 acagatgcga cacttatggg aaagcttgcg cagactgttg tcttgccaga 1750 gacccctact gtgcctggga tggaaatgca tgctctcgat atgctcctac 1800 ttctaaaagg agagctagac gccaagatgt aaaatatggc gacccaatca 1850 cccagtgctg ggacatcgaa gacagcatta gtcatgaaac tgctgatgaa 1900 aaggtgattt ttggcattga atttaactca acctttctgg aatgtatacc 1950 taaatcccaa caagcaacta ttaaatggta tatccagagg tcaggggatg 2000 agcatcgaga ggagttgaag cccgatgaaa gaatcatcaa aacggaatat 2050 gggctactga ttcgaagttt gcagaagaag gattctggga tgtattactg 2100 caaagcccag gagcacactt tcatccacac catagtgaag ctgactttga 2150 atgtcattga gaatgaacag atggaaaata cccagagggc agagcatgag 2200 gaggggcagg tcaaggatct attggctgag tcacggttga gatacaaaga 2250 ctacatccaa atccttagca gcccaaactt cagcctcgac cagtactgcg 2300 aacagatgtg gcacagggag aagcggagac agagaaacaa ggggggccca 2350

aagtggaagc acatgcagga aatgaagaag aaacgaaatc gaagacatca 2400 cagagacctg gatgagctcc ctagagctgt agccacgtag ttttctactt 2450 aatttaaaga aaagaattcc ttacctataa aaacattgcc ttctgttttg 2500 tatatccctt atagtaattc ataaatgctt cccatggagt tttgctaagg 2550 cacaagacaa taatctgaat aagacaatat gtgatgaata taagaaaggg 2600 caaaaaattc atttgaacca gttttccaag aacaaatctt gcacaagcaa 2650 agtataagaa ttatcctaaa aatagggggt ttacagttgt aaatgtttta 2700 tgttttgagt tttggaattt attgtcatgt aaatagttga gctaagcaag 2750 ccccgaattt gatagtgtat aaggtgcttt attccctcga atgtccatta 2800 agcatggaat ttaccatgca gttgtgctat gttcttatga acagatatat 2850 cattectatt gagaaccage tacettgtgg tagggaataa gaggteagae 2900 acaaattaag acaactccca ttatcaacag gaactttctc agtgagccat 2950 tcactcctgg agaatggtat aggaatttgg agaggtgcat tatttctttc 3000 tggccactgg ggttaaattt agtgtactac aacattgatt tactgaaggg 3050 cactaatgtt tcccccagga tttctattga ctagtcagga gtaacaggtt 3100 cacagagaga agttggtgct tagttatgtg ttttttagag tatatactaa 3150 gctctacagg gacagaatgc ttaataaata ctttaataag atatgggaaa 3200 atattttaat aaaacaagga aaacataatg atgtataatg catcctgatg 3250 ggaaggcatg cagatgggat ttgttagaag acagaaggaa agacagccat 3300 aaattctggc tttggggaaa actcatatcc ccatgaaaag gaagaacaat 3350 cacaaataaa gtgagagtaa tgtaatggag ctcttttcac tagggtataa 3400 gtagctgcca atttgtaatt catctgttaa aaaaaatcta gattataaca 3450 aactgctagc aaaatctgag gaaacataaa ttcttctgaa gaatcatagg 3500 aagagtagac attttattta taaccaatga tatttcagta tatattttct 3550 ctcttttaaa aaatatttat catactctgt atattatttc tttttactgc 3600 ctttattctc tcctgtatat tggattttgt gattatattt gagtgaatag 3650 gagaaaacaa tatataacac acagagaatt aagaaaatga catttctggg 3700 gagtggggat atatatttgt tgaataacag aacgagtgta aaattttaac 3750 aacggaaagg gttaaattaa ctctttgaca tcttcactca accttttctc 3800

attgctgagt taatctgttg taattgtagt attgtttttg taatttaaca 3850 ataaataagc ctgctacatg t 3871

<210> 310

<211> 777

<212> PRT

<213> Homo sapiens

<400> 310

- Met Asn Ala Asn Lys Asp Glu Arg Leu Lys Ala Arg Ser Gln Asp
- Phe His Leu Phe Pro Ala Leu Met Met Leu Ser Met Thr Met Leu 20 25 30
- Phe Leu Pro Val Thr Gly Thr Leu Lys Gln Asn Ile Pro Arg Leu 35 40 45
- Lys Leu Thr Tyr Lys Asp Leu Leu Ser Asn Ser Cys Ile Pro
 50 55 60
- Phe Leu Gly Ser Ser Glu Gly Leu Asp Phe Gln Thr Leu Leu 65 70 75
- Asp Glu Glu Arg Gly Arg Leu Leu Leu Gly Ala Lys Asp His Ile 80 85 90
- Phe Leu Leu Ser Leu Val Asp Leu Asn Lys Asn Phe Lys Lys Ile 95 100 105
- Tyr Trp Pro Ala Ala Lys Glu Arg Val Glu Leu Cys Lys Leu Ala 110 115 120
- Gly Lys Asp Ala Asn Thr Glu Cys Ala Asn Phe Ile Arg Val Leu 125 130 135
- Gln Pro Tyr Asn Lys Thr His Ile Tyr Val Cys Gly Thr Gly Ala 140 145 150
- Phe His Pro Ile Cys Gly Tyr Ile Asp Leu Gly Val Tyr Lys Glu 155 160 165
- Asp Ile Ile Phe Lys Leu Asp Thr His Asn Leu Glu Ser Gly Arg 170 175 180
- Leu Lys Cys Pro Phe Asp Pro Gln Gln Pro Phe Ala Ser Val Met 185 190 195
- Thr Asp Glu Tyr Leu Tyr Ser Gly Thr Ala Ser Asp Phe Leu Gly 200 205 210
- Lys Asp Thr Ala Phe Thr Arg Ser Leu Gly Pro Thr His Asp His 215 220 225
- His Tyr Ile Arg Thr Asp Ile Ser Glu His Tyr Trp Leu Asn Gly

				515					520					525
Leu	Val	Gln	Leu	Ser 530	Leu	His	Arg	Cys	Asp 535	Thr	Tyr	Gly	Lys	Ala 540
Cys	Ala	Asp	Cys	Cys 545	Leu	Ala	Arg	Asp	Pro 550	Tyr	Cys	Ala	Trp	Asp 555
Gly	Asn	Ala	Cys	Ser 560	Arg	Tyr	Ala	Pro	Thr 565	Ser	Lys	Arg	Arg	Ala 570
Arg	Arg	Gln	Asp	Val 575	Lys	Tyr	Gly	Asp	Pro 580	Ile	Thr	Gln	Cys	Trp 585
Asp	Ile	Glu	Asp	Ser 590	Ile	Ser	His	Glu	Thr 595	Ala	Asp	Glu	Lys	Val 600
Ile	Phe	Gly	Ile	Glu 605	Phe	Asn	Ser	Thr	Phe 610	Leu	Glu	Cys	Ile	Pro 615
Lys	Ser	Gln	Gln	Ala 620	Thr	Ile	Lys	Trp	Tyr 625	Ile	Gln	Arg	Ser	Gly 630
Asp	Glu	His	Arg	Glu 635	Glu	Leu	Lys	Pro	Asp 640	Glu	Arg	Ile	Ile	Lys 645
Thr	Glu	Tyr	Gly	Leu 650	Leu	Ile	Arg	Ser	Leu 655	Gln	Lys	Lys	Asp	Ser 660
Gly	Met	Tyr	Tyr	Cys 665	Lys	Ala	Gln	Glu	His 670	Thr	Phe	Ile	His	Thr 675
Ile	Val	Lys	Leu	Thr 680	Leu	Asn	Val	Ile	Glu 685	Asn	Glu	Gln	Met	Glu 690
Asn	Thr	Gln	Arg	Ala 695	Glu	His	Glu	Glu	Gly 700	Gln	Val	Lys	Asp	Leu 705
Leu	Ala	Glu	Ser	Arg 710	Leu	Arg	Tyr	Lys	Asp 715	Tyr	Ile	Gln	Ile	Leu 720
Ser	Ser	Pro	Asn	Phe 725	Ser	Leu	Asp	Gln	Tyr 730	Cys	Glu	Gln	Met	Trp 735
His	Arg	Glu	Lys	Arg 740	Arg	Gln	Arg	Asn	Lys 745	Gly	Gly	Pro	Lys	Trp 750
Lys	His	Met	Gln	Glu 755	Met	Lys	Lys	Lys	Arg 760	Asn	Arg	Arg	His	His 765
Arg	Asp	Leu	Asp	Glu 770	Leu	Pro	Arg	Ala	Val 775	Ala	Thr			
<210	> 311	l												

<210> 311 <211> 25

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 311
caacgcagcc gtgataaaca agtgg 25
<210> 312
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 312
gcttggacat gtaccaggcc gtgg 24
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 313
ggccagactg atttgctcaa ttcctggaag tgatggggca gatac 45
<210> 314
<211> 3934
<212> DNA
<213> Homo sapiens
<400> 314
ccctgacctc cctgagccac actgagctgg aagccgcaga ggtcatcctg 50
gagcatgccc accgcgggga gcagacaacc tcccaggtaa gctgggagca 100
ctcagcagtt tcagccagca gggactgatc aggtgtgtgt cctggagtgg 200
ggagcagaag gcgtggctgg caagagtggc ctggagaaag aggttcagcg 250
cttgaccagc cgagctgccc gtgactacaa gatccagaac catgggcatc 300
gggtgaggtg ggggggcaca ggtgtcatgt gcaccttctt gtctcagcaa 350
gaagagctga gagaggggat cttggagcca ttgagggtgt catggagcta 400
cagaggggag ggaaaggtat tttaaggtaa cagtgtggca caatagttaa 450
gagcacagtt tttggagcta gaccgacata ggttcaaatt ctcttctgtt 500
gcttcctagt tctgtagccc caggtaaggg agtgacttaa cctctctgga 550
```

cttcaatttc ctcatcacta aagtagggcc aataatagca cccacctcat 600 agggaagatt aaatgacata atgtatgtga tgcaactagc aaagtaccag 650 tcccatagta agtcatgccc cacagtattt ccacccaccc ctgttctctg 700 ccttcccaac caggtactgc aacgactgga gcagaggcgg cagcaggctt 750 cagageggga ggetecaage atagaacaga ggttacagga agtgegagag 800 agcatccgcc gggcacaggt gagccaggtg aagggggctg cccggctggc 850 cctgctgcag ggggctggct tagatgtgga gcgctggctg aagccagcca 900 tgacccaggc ccaggatgag gtggagcagg agcggcggct cagtgaggct 950 eggetgteec agagggaeet etetecaace getgaggatg etgagettte 1000 tgactttgag gaatgtgagg agacgggaga gctctttgag gagcctgccc 1050 cccaagccct ggccacgagg gccctcccct gccctgcaca cgtggtattt 1100 cgctatcagg cagggcgtga ggatgagctg acaatcacgg agggtgagtg 1150 gctggaggtc atagaggagg gagatgctga cgaatgggtc aaggctcgga 1200 accagcacgg cgaggtaggc tttgtccctg agcgatatct caacttcccg 1250 gacctetece teccagagag cagecaagae agtgacaate eetgegggge 1300 agageceaca geatteetgg caeaggeeet gtacagetae aceggaeaga 1350 gtgcagagga gctgagcttc cctgaggggg cactcatccg tctgctgccc 1400 cgggcccaag atggagtaga tgacggcttc tggaggggag aatttggggg 1450 ccgtgttggg gtcttcccct ccctgctggt ggaagagctg cttggccccc 1500 cagggccacc tgaactctct gaccctgaac agatgctgcc gtccccttct 1550 ceteceaget tetececace tgeacetace tetgtgttgg atgggecece 1600 tgcacctgtc ctgcctgggg acaaagccct ggacttccct gggttcctgg 1650 acatgatgge acctegacte aggeegatge gtecaceace tececegeeg 1700 gctaaagccc cggatcctgg ccacccagat cccctcacct gaaggccagg 1750 gaagccttga cccccagtga tgctgctgtc cctatcttca agctgtcaga 1800 ccacaccatc aatgatccag agcaacacag ccaaaaagctg gaatcgccct 1850 tatttccacc ctcacctcca agggtggaaa cttgcccctt cccatttcta 1900 gagetggaac ceacteettt tttteceatt gttetateat etetaggace 1950 ggaactacta ccttctcttc tgtcatgacc ctatctaggg tggtgaaatg 2000

cctgaaatct ctggggctgg aaaccatcca tcaaggtctc tagtagttct 2050 ggcccacctc tttccccacc ctggctccat gacccacccc actctggatg 2100 ccagggtcac tggggttggg ctggggagag gaacaggcct tgggaatcag 2150 gagctggagc caggatgcga agcagctgta atggtctgag cggatttatt 2200 gacaatgaat aaagggcacg aaggccaggc cagggcctgg gcctcttgtg 2250 ctaagagggc agggggccta cggtgctatt gctttagggg cccaccacgg 2300 gcaggggcct gctcccagct gccacgctct atcatatgga gcgaggtgtt 2350 ggggaaggcg gggcaggcag cctgttgcag gcaggggaag gagaagagac 2400 tgaggggctg tgacctctcc tgaggccccc agcctgagac tgtgcaactc 2450 caggtggaag tagagctggt ccctcagctg gggggcagtg ctgtccagtg 2500 gaggggaggg ctttcacgcc cacccacccc ctggccctgc cagctggtag 2550 tccatcagca caatgaagga gacttggaga agaggaagaa taacactgtt 2600 gcttcctgtt caagctgtgt ccagcttttc ccctggggct ccaggacctt 2650 ccctacctcc accaccaaac caagggattt atagcaaagg ctaagcctgc 2700 agtttactct gggggttcag ggagccgaaa ggcttaaata gtttaagtag 2750 gtgatgggaa gatgagatta cctcatttag ggctcaggca gactcacctc 2800 acatactece tgetecetgt ggtagagaca eetgagagaa aggggagggg 2850 tcaacaatga gagaccagga gtaggtccta tcagtgcccc ccagagtaga 2900 gagcaataag agcccagccc agtgcagtcc cggctgtgtt ttcctacctg 2950 gtgatcagaa gtgtctggtt tgcttggctg cccatttgcc tcttgagtgg 3000 gcagccctgg gcttgggccc ctccctccgg ccctcagtgt tggctctgca 3050 gaagetetgg ggtteeette aagtgeaega ggggttagge tgetgteeet 3100 gagtcctcca ttctgtactg gggggctggc taggacctgg ggctgtggcc 3150 teteaggggg cageetetee atggeaggea teeetgeett gggetgeeet 3200 cccccagacc cctgaccacc ccctgggtcc tgtcccccac cagagcccca 3250 gctcctgtct gtgggggagc catcacggtg ttcgtgcagt ccatagcgct 3300 tctcaatgtg tgtcacccgg aacctgggag gggagggaac actggggttt 3350 aggaccacaa ctcagaggct gettggccct cccctctgac cagggacatc 3400

<210> 315

<211> 370

<212> PRT

<213> Homo sapiens

<400> 315

Met Gln Leu Ala Lys Tyr Gln Ser His Ser Lys Ser Cys Pro Thr 1 5 10 15

Val Phe Pro Pro Thr Pro Val Leu Cys Leu Pro Asn Gln Val Leu 20 25 30

Gln Arg Leu Glu Gln Arg Arg Gln Gln Ala Ser Glu Arg Glu Ala 35 40 45

Pro Ser Ile Glu Gln Arg Leu Gln Glu Val Arg Glu Ser Ile Arg 50 55 60

Arg Ala Gln Val Ser Gln Val Lys Gly Ala Ala Arg Leu Ala Leu 65 70 75

Leu Gln Gly Ala Gly Leu Asp Val Glu Arg Trp Leu Lys Pro Ala 80 85 90

Met Thr Gln Ala Gln Asp Glu Val Glu Gln Glu Arg Arg Leu Ser 95 100 105

Glu Ala Arg Leu Ser Gln Arg Asp Leu Ser Pro Thr Ala Glu Asp 110 115 120

Ala Glu Leu Ser Asp Phe Glu Glu Cys Glu Glu Thr Gly Glu Leu 125 130 135

Phe Glu Glu Pro Ala Pro Gln Ala Leu Ala Thr Arg Ala Leu Pro

Cys	Pro	Ala	His	Val 155	Val	Phe	Arg	Tyr	Gln 160	Ala	Gly	Arg	Glu	Asp 165
Glu	Leu	Thr	Ile	Thr 170	Glu	Gly	Glu	Trp	Leu 175	Glu	Val	Ile	Glu	Glu 180
Gly	Asp	Ala	Asp	Glu 185	Trp	Val	Lys	Ala	Arg 190	Asn	Gln	His	Gly	Glu 195
Val	Gly	Phe	Val	Pro 200	Glu	Arg	Tyr.	Leu	Asn 205	Phe	Pro	Asp	Leu	Ser 210
Leu	Pro	Glu	Ser	Ser 215	Gln	Asp	Ser	Asp	Asn 220	Pro	Cys	Gly	Ala	Glu 225
Pro	Thr	Ala	Phe	Leu 230	Ala	Gln	Ala	Leu	Tyr 235	Ser	Tyr	Thr	Gly	Gln 240
Ser	Ala	Glu	Glu	Leu 245	Ser	Phe	Pro	Glu	Gly 250	Ala	Leu	Ile	Arg	Leu 255
Leu	Pro	Arg	Ala	Gln 260	Asp	Gly	Val	Asp	Asp 265	Gly	Phe	Trp	Arg	Gly 270
Glu	Phe	Gly	Gly	Arg 275	Val	Gly	Val	Phe	Pro 280	Ser	Leu	Leu	Val	Glu 285
Glu	Leu	Leu	Gly	Pro 290	Pro	Gly	Pro	Pro	Glu 295	Leu	Ser	Asp	Pro	Glu 300
Gln	Met	Leu	Pro	Ser 305	Pro	Ser	Pro	Pro	Ser 310	Phe	Ser	Pro	Pro	Ala 315
Pro	Thr	Ser	Val	Leu 320	Asp	Gly	Pro	Pro	Ala 325	Pro	Val	Leu	Pro	Gly 330
Asp	Lys	Ala	Leu	Asp 335	Phe	Pro	Gly	Phe	Leu 340	Asp	Met	Met	Ala	Pro 345
Arg	Leu	Arg	Pro	Met 350	Arg	Pro	Pro	Pro	Pro 355	Pro	Pro	Ala	Lys	Ala 360
Pro	Asp	Pro	Gly	His 365	Pro	Asp	Pro	Leu	Thr 370					
		-												

<210> 316

cacagggaga cccacagaca catatgcacg agagagacag aggaggaaag 50
agacagagac aaaggcacag cggaagaagg cagagacagg gcaggcacag 100
aagcggccca gacagagtcc tacagaggga gaggccagag aagctgcaga 150

<211> 4407

<212> DNA

<213> Homo sapiens

<400> 316

agacacaggc agggagagac aaagatccag gaaaggaggg ctcaggagga 200 gagtttggag aagccagacc cctgggcacc tctcccaagc ccaaggacta 250 agttttctcc atttccttta acggtcctca gcccttctga aaactttgcc 300 tetgacettg geaggagtee aageeeceag getacagaga ggagetttee 350 aaagctaggg tgtggaggac ttggtgccct agacggcctc agtccctccc 400 agctgcagta ccagtgccat gtcccagaca ggctcgcatc ccgggagggg 450 cttggcaggg cgctggctgt ggggagccca accctgcctc ctgctcccca 500 ttgtgccgct ctcctggctg gtgtggctgc ttctgctact gctggcctct 550 ctcctgccct cagcccggct ggccagcccc ctcccccggg aggaggagat 600 cgtgtttcca gagaagctca acggcagcgt cctgcctggc tcgggcgccc 650 ctgccaggct gttgtgccgc ttgcaggcct ttggggagac gctgctacta 700 gagctggagc aggactccgg tgtgcaggtc gaggggctga cagtgcagta 750 cctgggccag gcgcctgagc tgctgggtgg agcagagcct ggcacctacc 800 tgactggcac catcaatgga gatccggagt cggtggcatc tctgcactgg 850 gatgggggag ccctgttagg cgtgttacaa tatcgggggg ctgaactcca 900 cctccagccc ctggagggag gcacccctaa ctctgctggg ggacctgggg 950 ctcacatect acgceggaag agteetgeea geggteaagg teccatgtge 1000 aacgtcaagg ctcctcttgg aagccccagc cccagacccc gaagagccaa 1050 gcgctttgct tcactgagta gatttgtgga gacactggtg gtggcagatg 1100 acaagatggc cgcattccac ggtgcggggc taaagcgcta cctgctaaca 1150 gtgatggcag cagcagccaa ggccttcaag cacccaagca tccgcaatcc 1200 tgtcagcttg gtggtgactc ggctagtgat cctggggtca ggcgaggagg 1250 ggccccaagt ggggcccagt gctgcccaga ccctgcgcag cttctgtgcc 1300 tggcagcggg gcctcaacac ccctgaggac tcgggccctg accactttga 1350 cacagecatt etgtttacce gteaggacet gtgtggagte tecaettgeg 1400 acacgctggg tatggctgat gtgggcaccg tctgtgaccc ggctcggagc 1450 tgtgccattg tggaggatga tgggctccag tcagccttca ctgctgctca 1500 tgaactgggt catgtettea acatgeteea tgacaactee aageeatgea 1550

tcagtttgaa tgggcctttg agcacctctc gccatgtcat ggcccctgtg 1600 atggctcatg tggatcctga ggagccctgg tccccctgca gtgcccgctt 1650 catcactgac ttcctggaca atggctatgg gcactgtctc ttagacaaac 1700 cagaggetee attgeatetg cetgtgaett teeetggeaa ggaetatgat 1750 gctgaccgcc agtgccagct gaccttcggg cccgactcac gccattgtcc 1800 acagctgccg ccgccctgtg ctgccctctg gtgctctggc cacctcaatg 1850 gccatgccat gtgccagacc aaacactcgc cctgggccga tggcacaccc 1900 tgcgggcccg cacaggcctg catgggtggt cgctgcctcc acatggacca 1950 gctccaggac ttcaatattc cacaggctgg tggctggggt ccttggggac 2000 catggggtga ctgctctcgg acctgtgggg gtggtgtcca gttctcctcc 2050 cgagactgca cgaggcctgt cccccggaat ggtggcaagt actgtgaggg 2100 ccgccgtacc cgcttccgct cctgcaacac tgaggactgc ccaactggct 2150 cagecetgae etteegegag gageagtgtg etgeetacaa eeacegeace 2200 gacctettea agagetteee agggeeeatg gactgggtte etegetaeae 2250 aggegtggee ecceaggace agtgeaaact cacetgeeag geeegggeae 2300 tgggctacta ctatgtgctg gagccacggg tggtagatgg gaccccctgt 2350 tecceggaea getecteggt etgtgtecag ggeegatgea tecatgetgg 2400 ctgtgatcgc atcattggct ccaagaagaa gtttgacaag tgcatggtgt 2450 gcggagggga cggttctggt tgcagcaagc agtcaggctc cttcaggaaa 2500 ttcaggtacg gatacaacaa tgtggtcact atccccgcgg gggccaccca 2550 cattettgte eggeageagg gaaaceetgg ecaceggage atetaettgg 2600 ccctgaagct gccagatggc tcctatgccc tcaatggtga atacacgctg 2650 atgccctccc ccacagatgt ggtactgcct ggggcagtca gcttgcgcta 2700 cagcggggcc actgcagcct cagagacact gtcaggccat gggccactgg 2750 cccagcettt gacactgcaa gtectagtgg etggcaacce ecaggacaca 2800 cgcctccgat acagcttctt cgtgccccgg ccgacccctt caacgccacg 2850 ccccactccc caggactggc tgcaccgaag agcacagatt ctggagatcc 2900 ttcggcggcg cccctgggcg ggcaggaaat aacctcacta tcccggctgc 2950 cctttctggg caccggggcc tcggacttag ctgggagaaa gagagagctt 3000

ctgttgctgc ctcatgctaa gactcagtgg ggaggggctg tgggcgtgag 3050 acctgcccct cctctctgcc ctaatgcgca ggctggccct gccctggttt 3100 cctgccctgg gaggcagtga tgggttagtg gatggaaggg gctgacagac 3150 agccctccat ctaaactgcc ccctctgccc tgcgggtcac aggagggagg 3200 gggaaggcag ggagggcctg ggccccagtt gtatttattt agtatttatt 3250 cacttttatt tagcaccagg gaaggggaca aggactaggg tcctggggaa 3300 cctgacccct gacccctcat agccctcacc ctggggctag gaaatccagg 3350 gtggtggtga taggtataag tggtgtgtgt atgcgtgtgt gtgtgtgtgt 3400 gaaaatgtgt gtgtgcttat gtatgaggta caacctgttc tgctttcctc 3450 ttcctgaatt ttattttttg ggaaaagaaa agtcaagggt agggtgggcc 3500 ttcagggagt gagggattat ctttttttt ttttctttct ttctttcttt 3550 tttttttttg agacagaatc tcgctctgtc gcccaggctg gagtgcaatg 3600 gcacaatete ggeteaetge atecteegee teeegggtte aagtgattet 3650 catgcctcag cctcctgagt agctgggatt acaggctcct gccaccacgc 3700 ccagctaatt tttgttttgt tttgtttgga gacagagtct cgctattgtc 3750 accagggetg gaatgattte ageteactge aacettegee acctgggtte 3800 cagcaattct cctgcctcag cctcccgagt agctgagatt ataggcacct 3850 accaccacgc ccggctaatt tttgtatttt tagtagagac ggggtttcac 3900 catgttggcc aggctggtct cgaactcctg accttaggtg atccactcgc 3950 cttcatctcc caaagtgctg ggattacagg cgtgagccac cgtgcctggc 4000 cacgcccaac taatttttgt atttttagta gagacagggt ttcaccatgt 4050 tggccaggct gctcttgaac tcctgacctc aggtaatcga cctgcctcgg 4100 cctcccaaag tgctgggatt acaggtgtga gccaccacgc ccggtacata 4150 ttttttaaat tgaattctac tatttatgtg atccttttgg agtcagacag 4200 atgtggttgc atcctaactc catgtctctg agcattagat ttctcatttg 4250 ccaataataa tacctccctt agaagtttgt tgtgaggatt aaataatgta 4300

<210> 317

<211> 837

<212> PRT

<213> Homo sapiens

<400> 317

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg
1 5 10 15

Trp Leu Trp Gly Ala Gln Pro Cys Leu Leu Pro Ile Val Pro 20 25 30

Leu Ser Trp Leu Val Trp Leu Leu Leu Leu Leu Leu Ala Ser Leu 35 40 45

Leu Pro Ser Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu 50 55 60

Ile Val Phe Pro Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser 65 70 75

Gly Ala Pro Ala Arg Leu Cys Arg Leu Gln Ala Phe Gly Glu 80 85 90

Thr Leu Leu Glu Leu Glu Gln Asp Ser Gly Val Gln Val Glu
95 100 105

Gly Leu Thr Val Gln Tyr Leu Gly Gln Ala Pro Glu Leu Leu Gly
110 115 120

Gly Ala Glu Pro Gly Thr Tyr Leu Thr Gly Thr Ile Asn Gly Asp 125 130 135

Pro Glu Ser Val Ala Ser Leu His Trp Asp Gly Gly Ala Leu Leu 140 145 150

Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu His Leu Gln Pro Leu 155 160 165

Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro Gly Ala His Ile 170 175 180

Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro Met Cys Asn 185 190 195

Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg Ala 200 205 210

Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val
215 220 225

Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Lys Ala Phe Lys His

				245					250					255
Pro	Ser	Ile	Arg	Asn 260		Val	Ser	Leu	Val 265		Thr	Arg	Leu	Val 270
Ile	Leu	Gly	Ser	Gly 275	Glu	Glu	Gly	Pro	Gln 280		Gly	Pro	Ser	Ala 285
Ala	Gln	Thr	Leu	Arg 290	Ser	Phe	Cys	Ala	Trp 295	Gln	Arg	Gly	Leu	Asn 300
Thr	Pro	Glu	Asp	Ser 305	Gly	Pro	Asp	His	Phe 310	Asp	Thr	Ala	Ile	Leu 315
Phe	Thr	Arg	Gln	Asp 320	Leu	Cys	Gly	Val	Ser 325	Thr	Cys	Asp	Thr	Leu 330
Gly	Met	Ala	Asp	Val 335	Gly	Thr	Val	Cys	Asp 340	Pro	Ala	Arg	Ser	Cys 345
Ala	Ile	Val	Glu	Asp 350	Asp	Gly	Leu	Gln	Ser 355	Ala	Phe	Thr	Ala	Ala 360
His	Glu	Leu	Gly	His 365	Val	Phe	Asn	Met	Leu 370	His	Asp	Asn	Ser	Lys 375
Pro	Cys	Ile	Ser	Leu 380	Asn	Gly	Pro	Leu	Ser 385	Thr	Ser	Arg	His	Val 390
Met	Ala	Pro	Val	Met 395	Ala	His	Val	Asp	Pro 400	Glu	Glu	Pro	Trp	Ser 405
Pro	Cys	Ser	Ala	Arg 410	Phe	Ile	Thr	Asp	Phe 415	Leu	Asp	Asn	Gly	Tyr 420
Gly	His	Cys	Leu	Leu 425	Asp	Lys	Pro	Glu	Ala 430	Pro	Leu	His	Leu	Pro 435
Val	Thr	Phe	Pro	Gly 440	Lys	Asp	Tyr	Asp	Ala 445	Asp	Arg	Gln	Cys	Gln 450
Leu	Thr	Phe	Gly	Pro 455	Asp	Ser	Arg	His	Cys 460	Pro	Gln	Leu	Pro	Pro 465
Pro	Суѕ	Ala	Ala	Leu 470	Trp	Cys	Ser	Gly	His 475	Leu	Asn	Gly	His	Ala 480
Met	Cys	Gln		Lys 485	His	Ser	Pro	Trp	Ala 490	Asp	Gly	Thr	Pro	Cys 495
Gly	Pro	Ala		Ala 500	Cys	Met	Gly	Gly	Arg 505	Cys	Leu	His	Met	Asp 510
				515					520				Gly	525
Trp	Gly	Pro	Trp	Gly	Asp	Cys	Ser	Arg	Thr	Cys	Gly	Gly	Gly	Val

				530					535					540
Gln	Phe	Ser	Ser	Arg 545	Asp	Cys	Thr	Arg	Pro 550	Val	Pro	Arg	Asn	Gly 555
Gly	Lys	Tyr	Cys	Glu 560	Gly	Arg	Arg	Thr	Arg 565	Phe	Arg	Ser	Cys	Asn 570
Thr	Glu	Asp	Cys	Pro 575	Thr	Gly	Ser	Ala	Leu 580	Thr	Phe	Arg	Glu	Glu 585
Gln	Cys	Ala	Ala	Tyr 590	Asn	His	Arg	Thr	Asp 595	Leu	Phe	Lys	Ser	Phe 600
Pro	Gly	Pro	Met	Asp 605	Trp	Val	Pro	Arg	Tyr 610	Thr	Gly	Val	Ala	Pro 615
Gln	Asp	Gln	Суѕ	Lys 620	Leu	Thr	Cys	Gln	Ala 625	Arg	Ala	Leu	Gly	Tyr 630
Tyr	Tyr	Val	Leu	Glu 635	Pro	Arg	Val	Val	Asp 640	Gly	Thr	Pro	Суѕ	Ser 645
Pro	Ąsp	Ser	Ser	Ser 650	Val	Суѕ	Val	Gln	Gly 655	Arg	Cys	Ile	His	Ala 660
Gly	Суз	Asp	Arg	Ile 665	Ile	Gly	Ser	Lys	Lys 670	Lys	Phe	Asp	Lys	Cys 675
Met	Val	Cys	Gly	Gly 680	Asp	Gly	Ser	Gly	Cys 685	Ser	Lys	Gln	Ser	Gly 690
Ser	Phe	Arg	Lys	Phe 695	Arg	Tyr	Gly	Tyr	Asn 700	Asn	Val	Val	Thr	Ile 705
Pro	Ala	Gly	Ala	Thr 710	His	Ile	Leu	Val	Arg 715	Gln	Gln	Gly	Asn	Pro 720
Gly	His	Arg	Ser	Ile 725	Tyr	Leu	Ala	Leu	Lys 730	Leu	Pro	Asp	Gly	Ser 735
Tyr	Ala	Leu	Asn	Gly 740	Glu	Tyr	Thr	Leu	Met 745	Pro	Ser	Pro	Thr	Asp 750
Val	Val	Leu	Pro	Gly 755	Ala	Val	Ser	Leu	Arg 760	Tyr	Ser	Gly	Ala	Thr 765
Ala	Ala	Ser	Glu	Thr 770	Leu	Ser	Gly	His	Gly 775	Pro	Leu	Ala	Gln	Pro 780
Leu	Thr	Leu	Gln	Val 785	Leu	Val	Ala	Gly	Asn 790	Pro	Gln	Asp	Thr	Arg 795
Leu	Arg	Tyr	Ser	Phe 800	Phe	Val	Pro	Arg	Pro 805	Thr	Pro	Ser	Thr	Pro 810
Arg	Pro	Thr	Pro	Gln	Asp	Trp	Leu	His	Arg	Arg	Ala	Gln	Ile	Leu

```
Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys
                 830
<210> 318
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 318
 ccctgaagct gccagatggc tcc 23
<210> 319
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 319
ctgtgctctt cggtgcagcc agtc 24
<210> 320
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 320
ccacagatgt ggtactgcct ggggcagtca gcttgcgcta cag 43
<210> 321
<211> 1197
<212> DNA
<213> Homo sapiens
<400> 321
cagcagtggt ctctcagtcc tctcaaagca aggaaagagt actgtgtgct 50
gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100
ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150
 ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200
gggggagcaa gcacttctgg ccggaggtac ccaaaaaaagc ctatgacatg 250
```

gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300

tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350

aaacattgga agtgcacgac tttaaaaacg gatacactgg catctacttc 400 gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450 attttctgaa ccagaagag aaatagatga gaatgaagaa attaccacaa 500 ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550 aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600 gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650 actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 700 gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750 gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800 atactgaaaa tggaatagaa tttgatccca tgctggatga gagaggttat 850 tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900 acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950 tcatctgtcg tgtcatcatg ccttgtaact ggtgggtggc ccgcatgctg 1000 gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050 atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100 cccctggtag ccagctctcc agaattactt gtaggtaatt cctctctca 1150

<400> 322

Met Ala Lys Asn Pro Pro Glu Asn Cys Glu Asp Cys His Ile Leu
1 5 10 15

Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys 20 25 30

Ile Cys Gly Leu Val Phe Gly Ile Leu Ala Leu Thr Leu Ile Val 35 40 45

Leu Phe Trp Gly Ser Lys His Phe Trp Pro Glu Val Pro Lys Lys 50 55 60

Ala Tyr Asp Met Glu His Thr Phe Tyr Ser Asn Gly Glu Lys Lys
65 70 75

Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe

<210> 322

<211> 317

<212> PRT

<213> Homo sapiens

80 85 90

Arg Ser Gly Asn Gly Thr Asp Glu Thr Leu Glu Val His Asp Phe 100 Lys Asn Gly Tyr Thr Gly Ile Tyr Phe Val Gly Leu Gln Lys Cys 115 Phe Ile Lys Thr Gln Ile Lys Val Ile Pro Glu Phe Ser Glu Pro 130 Glu Glu Glu Ile Asp Glu Asn Glu Glu Ile Thr Thr Phe Phe 145 Glu Gln Ser Val Ile Trp Val Pro Ala Glu Lys Pro Ile Glu Asn Arg Asp Phe Leu Lys Asn Ser Lys Ile Leu Glu Ile Cys Asp Asn 170 Val Thr Met Tyr Trp Ile Asn Pro Thr Leu Ile Ser Val Ser Glu 185 Leu Gln Asp Phe Glu Glu Glu Glu Glu Asp Leu His Phe Pro Ala 200 Asn Glu Lys Lys Gly Ile Glu Gln Asn Glu Gln Trp Val Val Pro 215 Gln Val Lys Val Glu Lys Thr Arg His Ala Arg Gln Ala Ser Glu 230 235 Glu Glu Leu Pro Ile Asn Asp Tyr Thr Glu Asn Gly Ile Glu Phe 245 250 Asp Pro Met Leu Asp Glu Arg Gly Tyr Cys Cys Ile Tyr Cys Arg 260 270 Arg Gly Asn Arg Tyr Cys Arg Arg Val Cys Glu Pro Leu Leu Gly Tyr Tyr Pro Tyr Pro Tyr Cys Tyr Gln Gly Gly Arg Val Ile Cys 300 Arg Val Ile Met Pro Cys Asn Trp Trp Val Ala Arg Met Leu Gly 305 310 315

Arg Val

gcggaactgg ctccggctgg cacctgagga gcggcgtgac cccgagggcc 50

<210> 323

<211> 1174

<212> DNA

<213> Homo sapiens

<400> 323

```
cagggagetg eceggetgge etaggeagge ageegeacea tggecageae 100
ggccgtgcag cttctgggct tcctgctcag cttcctgggc atggtgggca 150
cgttgatcac caccatcctg ccgcactggc ggaggacagc gcacgtgggc 200
accaacatcc tcacggccgt gtcctacctg aaagggctct ggatggagtg 250
tgtgtggcac agcacaggca tctaccagtg ccagatctac cgatccctgc 300
tggcgctgcc ccaagacctc caggctgccc gcgccctcat ggtcatctcc 350
tgcctgctct cgggcatagc ctgcgcctgc gccgtcatcg ggatgaagtg 400
cacgcgctgc gccaagggca cacccgccaa gaccaccttt gccatcctcg 450
geggeaccet etteateetg geeggeetee tgtgeatggt ggeegtetee 500
tggaccacca acgacgtggt gcagaacttc tacaacccgc tgctgcccag 550
cggcatgaag tttgagattg gccaggccct gtacctgggc ttcatctcct 600
cgtccctctc gctcattggt ggcaccctgc tttgcctgtc ctgccaggac 650
gaggcaccet acaggcceta ccaggccecg cccagggcca ccacgaccac 700
tgcaaacacc gcacctgcct accagccacc agctgcctac aaagacaatc 750
gggccccctc agtgacctcg gccacgcaca gcgggtacag gctgaacgac 800
tacgtgtgag tccccacagc ctgcttctcc cctgggctgc tgtgggctgg 850
gtccccggcg ggactgtcaa tggaggcagg ggttccagca caaagtttac 900
ttctgggcaa tttttgtatc caaggaaata atgtgaatgc gaggaaatgt 950
ctttagagca cagggacaga gggggaaata agaggaggag aaagctctct 1000
ataccaaaga ctgaaaaaaa aaatcctgtc tgtttttgta tttattatat 1050
atatttatgt gggtgatttg ataacaagtt taatataaag tgacttggga 1100
gtttggtcag tggggttggt ttgtgatcca ggaataaacc ttgcggatgt 1150
ggctgtttat gaaaaaaaaa aaaa 1174
```

- <210> 324
- <211> 239
- <212> PRT
- <213> Homo sapiens

<400> 324

Met Ala Ser Thr Ala Val Gln Leu Leu Gly Phe Leu Leu Ser Phe 1 5 10 15

Leu Gly Met Val Gly Thr Leu Ile Thr Thr Ile Leu Pro His Trp

Arg	Arg	Thr	Ala	His 35	Val	Gly	Thr	Asn	Ile 40	Leu	Thr	Ala	Val	Ser 45
Tyr	Leu	Lys	Gly	Leu 50	Trp	Met	Glu	Cys	Val 55	Trp	His	Ser	Thr	Gly 60
Ile	Tyr	Gln	Cys	Gln 65	Ile	Tyr	Arg	Ser	Leu 70	Leu	Ala	Leu	Pro	Gln 75
Asp	Leu	Gln	Ala	Ala 80	Arg	Ala	Leu	Met	Val 85	Ile	Ser	Cys	Leu	Leu 90
Ser	Gly	Ile	Ala	Cys 95	Ala	Cys	Ala	Val	Ile 100	Gly	Met	Lys	Cys	Thr 105
Arg	Cys	Ala	Lys	Gly 110	Thr	Pro	Ala	Lys	Thr 115	Thr	Phe	Ala	Ile	Leu 120
Gly	Gly	Thr	Leu	Phe 125	Ile	Leu	Ala	Gly	Leu 130	Leu	Cys	Met	Val	Ala 135
Val	Ser	Trp	Thr	Thr 140	Asn	Asp	Val	Val	Gln 145	Asn	Phe	Tyr	Asn	Pro 150
Leu	Leu	Pro	Ser	Gly 155	Met	Lys	Phe	Glu	Ile 160	Gly	Gln	Ala	Leu	Tyr 165
Leu	Gly	Phe	Ile	Ser 170	Ser	Ser	Leu	Ser	Leu 175	Ile	Gly	Gly	Thr	Leu 180
Leu	Cys	Leu	Ser	Cys 185	Gln	Asp	Glu	Ala	Pro 190	Tyr	Arg	Pro	Tyr	Gln 195
Ala	Pro	Pro	Arg	Ala 200	Thr	Thr	Thr	Thr	Ala 205	Asn	Thr	Ala	Pro	Ala 210
Tyr	Gln	Pro	Pro	Ala 215	Ala	Tyr	Lys	Asp	Asn 220	Arg	Ala	Pro	Ser	Val 225
Thr	Ser	Ala	Thr	His 230	Ser	Gly	Tyr	Arg	Leu 235	Asn	Asp	Tyr	Val	
<210>	> 325	5												
	010													

<211> 2121

<212> DNA

<213> Homo sapiens

<400> 325

gageteeect caggagegeg ttagetteac acetteggea geaggaggge 50 ggcagcttct cgcaggcggc agggcgggcg gccaggatca tgtccaccac 100 cacatgccaa gtggtggcgt tcctcctgtc catcctgggg ctggccggct 150 gcatcgcggc caccgggatg gacatgtgga gcacccagga cctgtacgac 200 aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt 250 gaggcagagt tcaggcttca ccgaatgcag gccctatttc accatcctgg 300 gacttccagc catgctgcag gcagtgcgag ccctgatgat cgtaggcatc 350 gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400 ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct 450 ccgggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct 500 gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550 gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat 600 ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650 gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac 700 caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca 750 agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac 800 aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta 850 tccttccaag cacgactatg tgtaatgctc taagacctct cagcacgggc 900 ggaagaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950 atttcttctt gcttttgact cacagctgga agttagaaaa gcctcgattt 1000 catctttgga gaggccaaat ggtcttagcc tcagtctctg tctctaaata 1050 ttccaccata aaacagctga gttatttatg aattagaggc tatagctcac 1100 attttcaatc ctctatttct ttttttaaat ataactttct actctgatga 1150 gagaatgtgg ttttaatctc tctctcacat tttgatgatt tagacagact 1200 ccccctcttc ctcctagtca ataaacccat tgatgatcta tttcccagct 1250 tatccccaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300 ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa 1350 cacttactga agaagaagca ataagagaaa gatatttgta atctctccag 1400 agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500 tottattaca gcaacaccat totaggagtt tootgagete tocactggag 1550 tcctctttct gtcgcgggtc agaaattgtc cctagatgaa tgagaaaatt 1600

attititha attiaagice taaatatagi taaaataaat aatgittiag 1650 taaaatgata cactatete gigaaatage eteaeceeta eatgiggata 1700 gaaggaaatg aaaaaataat tgettigaca tigictatat ggtaettigi 1750 aaagteatge tiaagtacaa atteeatgaa aageteaeae etgiaateet 1800 ageaettigg gaggetgagg aggaaggate actigageee agaagtiega 1850 gaetageetg ggeaacatgg agaageeetg teteaeaa atacagagag 1900 aaaaaateag eeagteatgg tigicaataee etgiaagtee ageatteegg 1950 gaggetgagg tigigaggate actigageee aggaggitig gggetgeagt 2000 gageeatgat eacaceaetg eacteeagee aggigaeata gegagateet 2050 gtetaaaaaa ataaaaaata aataatggaa eacageaagt eetaggaagt 2100 aggitaaaae taattetta a 2121

```
<210> 326
```

<400> 326

Met Ser Thr Thr Cys Gln Val Val Ala Phe Leu Leu Ser Ile 1 5 10 15

Leu Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp 20 25 30

Ser Thr Gln Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gln
35 40 45

Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe 50 55 60

Thr Glu Cys Arg Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met
65 70 75

Leu Gl
n Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly
 $80 \hspace{1.5cm} 85 \hspace{1.5cm} 90 \hspace{1.5cm}$

Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg 95 100 105

Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr
110 115 120

Ser Gly Ile Met Phe Ile Val Ser Gly Leu Cys Ala Ile Ala Gly 125 130 135

Val Ser Val Phe Ala Asn Met Leu Val Thr Asn Phe Trp Met Ser 140 145 150

<211> 261

<212> PRT

<213> Homo sapiens

Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gln Thr Val 155 160 165

Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val 170 175 180

Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala 185 190 195

Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser 200 205 210

Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe 215 220 225

Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile 230 235 240

Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro $245 \hspace{1cm} 250 \hspace{1cm} 255 \hspace{1cm}$

Ser Lys His Asp Tyr Val 260

<210> 327

<211> 2010

<212> DNA

<213> Homo sapiens

<400> 327

ggaaaaactg ttctcttctg tggcacagag aaccetgett caaagcagaa 50 gtagcagttc cggagtccag ctggctaaaa ctcatcccag aggataatgg 100 caacccatge cttagaaate getgggetgt ttcttggtgg tgttggaatg 150 gtgggcacag tggctgtcac tgtcatgcct cagtggagag tgtcggcctt 200 cattgaaaac aacatcgtgg tttttgaaaa cttctgggaa ggactgtgga 250 tgaattgcgt gaggcaggct aacatcagga tgcagtgcaa aatctatgat 300 tccctgctgg ctctttctcc ggacctacag gcagccagag gactgatgtg 350 tgctgctcc gtgatgtcct tcttggctt catgatggcc atcettggca 400 tgaaatgcac caggtgcacg ggggacaatg agaaggtgaa ggctcacatt 450 ctgctgacgg ctggaatcat cttcatcatc acgggcatgg tggtgctcat 500 ccctgtgagc tgggttgcca atgccatcat cagagatttc tataactcaa 550 tagtgaatgt tgcccaaaaa cgtgagcttg gagagctctgt tctgctgct 650

tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700 atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750 tactccagaa gtcagtatgt gtagttgtgt atgttttttt aactttacta 800 taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850 caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900 actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950 tattaaaccc aatgetttga ttgttctaga aagtatagta atttgttttc 1000 taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050 tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100 tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150 tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 1200 actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250 ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 1300 gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350 tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400 atcctcttct cccagaggct ttttttttct tgtgtattaa attaacattt 1450 ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500 agggctatac tcagaagaaa gataaaagtg tgatctaaga aaaagtgatg 1550 gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600 gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650 gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700 tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750 cctttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800 atttttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850 ttttactaaa atctgtaaat actgtatttt tctgtttatt ccaaatttga 1900 tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950 aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000 ttttctaatt 2010

<211> 225 <212> PRT <213> Homo sapiens <400> 328 Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gln Trp Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gln Ala Asn Ile Arg Met Gln Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro Asp Leu Gln Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn Ser Ile Val Asn Val Ala Gln Lys Arg Glu Leu Gly Glu Ala Leu 155 160 Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala 170 175 Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gln Lys Ser Tyr His Thr Gly Lys Lys Ser Pro Ser Val Tyr Ser Arg Ser Gln Tyr Val 215 <210> 329 <211> 1315 <212> DNA <213> Homo sapiens

<400> 329

tcgccatggc ctctgccgga atgcagatcc tgggagtcgt cctgacactg 50

ctgggctggg tgaatggcct ggtctcctgt gccctgccca tgtggaaggt 100 gaccgctttc atcggcaaca gcatcgtggt ggcccaggtg gtgtgggagg 150 gcctgtggat gtcctgcgtg gtgcagagca ccggccagat gcagtgcaag 200 gtgtacgact cactgctggc gctgccacag gacctgcagg ctgcacgtgc 250 cctctgtgtc atcgccctcc ttgtggccct gttcggcttg ctggtctacc 300 ttgctggggc caagtgtacc acctgtgtgg aggagaagga ttccaaggcc 350 cgcctggtgc tcacctctgg gattgtcttt gtcatctcag gggtcctgac 400 gctaatcccc gtgtgctgga cggcgcatgc catcatccgg gacttctata 450 accecetggt ggetgaggee caaaageggg agetggggge etecetetae 500 ttgggctggg cggcctcagg ccttttgttg ctgggtgggg ggttgctgtg 550 ctgcacttgc ccctcggggg ggtcccaggg ccccagccat tacatggccc 600 gctactcaac atctgcccct gccatctctc ggggggccctc tgagtaccct 650 accaagaatt acgtctgacg tggaggggaa tgggggctcc gctggcgcta 700 gagccatcca gaagtggcag tgcccaacag ctttgggatg ggttcgtacc 750 ttttgtttct gcctcctgct atttttcttt tgactgagga tatttaaaat 800 tcatttgaaa actgagccaa ggtgttgact cagactctca cttaggctct 850 gctgtttctc accettggat gatggagcca aagaggggat gctttgagat 900 tctggatctt gacatgccca tcttagaagc cagtcaagct atggaactaa 950 tgcggaggct gcttgctgtg ctggctttgc aacaagacag actgtcccca 1000 agagtteetg etgetgetgg gggetggget teectagatg teactggaca 1050 gctgcccccc atcctactca ggtctctgga gctcctctct tcacccctgg 1100 aaaaacaaat catctgttaa caaaggactg cccacctccg gaacttctga 1150 cctctgtttc ctccgtcctg ataagacgtc cacccccag ggccaggtcc 1200 cagetatgta gaccecegee eccaceteca acaetgeace ettetgeeet 1250 gccccctcg tctcaccccc tttacactca catttttatc aaataaagca 1300 tgttttgtta gtgca 1315

<210> 330

<211> 220

<212> PRT

<213> Homo sapiens

<400> 330 Met Ala Ser Ala Gly Met Gln Ile Leu Gly Val Val Leu Thr Leu Leu Gly Trp Val Asn Gly Leu Val Ser Cys Ala Leu Pro Met Trp Lys Val Thr Ala Phe Ile Gly Asn Ser Ile Val Val Ala Gln Val Val Trp Glu Gly Leu Trp Met Ser Cys Val Val Gln Ser Thr Gly Gln Met Gln Cys Lys Val Tyr Asp Ser Leu Leu Ala Leu Pro Gln Asp Leu Gln Ala Ala Arg Ala Leu Cys Val Ile Ala Leu Leu Val Ala Leu Phe Gly Leu Leu Val Tyr Leu Ala Gly Ala Lys Cys Thr 100 Thr Cys Val Glu Glu Lys Asp Ser Lys Ala Arg Leu Val Leu Thr 115 Ser Gly Ile Val Phe Val Ile Ser Gly Val Leu Thr Leu Ile Pro Val Cys Trp Thr Ala His Ala Ile Ile Arg Asp Phe Tyr Asn Pro Leu Val Ala Glu Ala Gln Lys Arg Glu Leu Gly Ala Ser Leu Tyr 155 Leu Gly Trp Ala Ala Ser Gly Leu Leu Leu Gly Gly Gly Leu Leu Cys Cys Thr Cys Pro Ser Gly Gly Ser Gln Gly Pro Ser His Tyr Met Ala Arg Tyr Ser Thr Ser Ala Pro Ala Ile Ser Arg Gly 200 Pro Ser Glu Tyr Pro Thr Lys Asn Tyr Val 215 <210> 331 <211> 1160 <212> DNA

<213> Homo sapiens

<400> 331

gccaaggaga acatcatcaa agacttctct agactcaaaa ggcttccacg 50

ttctacatct tgagcatctt ctaccactcc gaattgaacc agtcttcaaa 100

gtaaaggcaa tggcatttta tcccttgcaa attgctgggc tggttcttgg 150 gttccttggc atggtggga ctcttgccac aaccettctg cctcagtggt 200 ggagtatcag cttttqttqg cagcaacatt attqtctttg agaggctctg 250 ggaagggctc tggatgaatt gcatccgaca agccagggtc cggttgcaat 300 gcaagttcta tagctccttg ttggctctcc cgcctgccct ggaaacagcc 350 cgggccctca tgtgtgtggc tgttgctctc tccttgatcg ccctgcttat 400 tggcatctgt ggcatgaagc aggtccagtg cacaggctct aacgagaggg 450 ccaaagcata ccttctggga acttcaggag tcctcttcat cctgacgggt 500 atcttcgttc tgattccggt gagctggaca gccaatataa tcatcagaga 550 tttctacaac ccaqccatcc acataqqtca qaaacqaqaq ctqqqaqcaq 600 cacttttcct tggctgggca agcgctgctg tcctcttcat tggagggggt 650 ctgctttgtg gattttgctg ctgcaacaga aagaagcaag ggtacagata 700 tccagtgcct ggctaccgtg tgccacacac agataagcga agaaatacga 750 caatgcttag taagacctcc accagttatg tctaatgcct ccttttggct 800 ccaagtatgg actatggtca atgtttttta taaagtcctg ctagaaactg 850 taagtatgtg aggcaggaga acttgcttta tgtctagatt tacattgata 900 cgaaagtttc aatttgttac tggtggtagg aatgaaaatg acttacttgg 950 acattctgac ttcaggtgta ttaaatgcat tgactattgt tggacccaat 1000 cgctgctcca attttcatat tctaaattca agtataccca taatcattag 1050 caagtgtaca atgatggact acttattact ttttgaccat catgtattat 1100 ctgataagaa tctaaagttg aaattgatat tctataacaa taaaacatat 1150 acctattcta 1160

<210> 332

<211> 173

<212> PRT

<213> Homo sapiens

<400> 332

Met Asn Cys Ile Arg Gln Ala Arg Val Arg Leu Gln Cys Lys Phe
1 5 10 15

Tyr Ser Ser Leu Leu Ala Leu Pro Pro Ala Leu Glu Thr Ala Arg 20 25 30

Ala Leu Met Cys Val Ala Val Ala Leu Ser Leu Ile Ala Leu Leu

Ile Gly Ile Cys Gly Met Lys Gln Val Gln Cys Thr Gly Ser Asn $50\,$ $55\,$ 60

Glu Arg Ala Lys Ala Tyr Leu Leu Gly Thr Ser Gly Val Leu Phe
65 70 75

Ile Leu Thr Gly Ile Phe Val Leu Ile Pro Val Ser Trp Thr Ala $80 \hspace{1cm} 85 \hspace{1cm} 90$

Asn Ile Ile Ile Arg Asp Phe Tyr Asn Pro Ala Ile His Ile Gly
95 100 105

Gln Lys Arg Glu Leu Gly Ala Ala Leu Phe Leu Gly Trp Ala Ser 110 115 120

Ala Ala Val Leu Phe Ile Gly Gly Gly Leu Leu Cys Gly Phe Cys 125 130 135

Cys Cys Asn Arg Lys Lys Gln Gly Tyr Arg Tyr Pro Val Pro Gly
140 145 150

Tyr Arg Val Pro His Thr Asp Lys Arg Arg Asn Thr Thr Met Leu 155 160 165

Ser Lys Thr Ser Thr Ser Tyr Val

<210> 333

<211> 535

<212> DNA

<213> Homo sapiens

<400> 333

agtgacaatc tcagagcagc ttctacacca cagccatttc cagcatgaag 50 atcactgggg gtctccttct gctctgtaca gtggtctatt tctgtagcag 100 ctcagaagct gctagtctgt ctccaaaaaa agtggactgc agcatttaca 150 agaagtatcc agtggtggcc atcccctgcc ccatcacata cctaccagtt 200 tgtgggttctg actacatcac ctatgggaat gaatgtcact tgtgtaccga 250 gagcttgaaa agtaatggaa gagttcagtt tcttcacgat ggaagttgct 300 aaattctcca tggacataga gagaaaggaa tgatattctc atcatcatct 350 tcatcatccc aggctctgac tgagtttctt tcagttttac tgatgtctg 400 ggtgggggac agagccagat tcagagtaat cttgactgaa tggagaaagt 450 ttctgtgcta cccctacaaa cccatgcctc actgacagac cagcatttt 500 tttttaacac gtcaataaaa aaataatctc ccaga 535

```
<210> 334
```

<211> 85

<212> PRT

<213> Homo sapiens

<400> 334

Met Lys Ile Thr Gly Gly Leu Leu Leu Cys Thr Val Val Tyr 1 5 10 15

Phe Cys Ser Ser Ser Glu Ala Ala Ser Leu Ser Pro Lys Lys Val $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Asp Cys Ser Ile Tyr Lys Lys Tyr Pro Val Val Ala Ile Pro Cys 35 40 45

Pro Ile Thr Tyr Leu Pro Val Cys Gly Ser Asp Tyr Ile Thr Tyr
50 55 60

Gly Asn Glu Cys His Leu Cys Thr Glu Ser Leu Lys Ser Asn Gly
65 70 75

Arg Val Gln Phe Leu His Asp Gly Ser Cys 80 85

<210> 335

<211> 742

<212> DNA

<213> Homo sapiens

<400> 335

cccgcgcccg gttctcctc gcagcacctc gaagtgcgcc cctcgccctc 50 ctgctcgcgc cccgccgca tggctgcctc ccccgcgcgg cctgctgtcc 100 tggccctgac cgggctggcg ctgctcctgc tcctgtgctg gggcccaggt 150 ggcataagtg gaaataaact caagctgatg cttcaaaaac gagaagcacc 200 tgttccaact aagactaaag tggccgttga tgagaataaa gccaaagaat 250 tccttggcag cctgaagcgc cagaagcggc agctgtgga ccggactcgg 300 cccgaggtgc agcagtggta ccagcagttt ctctacatgg gctttgatga 350 agcgaaattt gaagatgaca tcacctattg gcttaacaga gatcgaaatg 400 gacatgaata ctatggcgat tactaccaac gtcactatga tgaagactct 450 gcaattggtc cccggagccc ctacggcttt aggcatggag ccagcgtcaa 500 ctacgatgac tactaaccat gacttgccac acgctgtaca agaagcaaat 550 agcgattctc ttcatgtatc tcctaatgcc ttacactact tggtttctga 600 tttgctctat ttcagcagat cttttctacc tactttgtgt gatcaaaaaa 650 gaagaggttaa aacaacacat gtaaatgcct tttgatatt catgggaatg 700

cctctcattt aaaaatagaa ataaagcatt ttgttaaaaa ga 742

```
<210> 336
<211> 148
<212> PRT
<213> Homo sapiens
<400> 336
Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly
Leu Ala Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser
Gly Asn Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val
Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu
 Phe Leu Gly Ser Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg
Thr Arg Pro Glu Val Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met
                  80
Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu
                                     100
Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gln
Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr
Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr
                 140
<210> 337
<211> 1310
<212> DNA
<213> Homo sapiens
<400> 337
cggctcgagc ccgcccggaa gtgcccgagg ggccgcgatg gagctggggg 50
agccgggcgc tcggtagcgc ggcgggcaag gcaggcgcca tgaccctgat 100
tgaaggggtg ggtgatgagg tgaccgtcct tttctcggtg cttgcctgcc 150
```

ttctggtgct ggcccttgcc tgggtctcaa cgcacaccqc tgaggqcgqq 200

gacccactgc cccagccgtc agggacccca acgccatccc agcccagcgc 250

agccatggca gctaccgaca gcatgagagg ggaggcccca ggggcagaga 300

```
cccccagcct gagacacaga ggtcaagctg cacagccaga gcccagcacg 350
gggttcacag caacaccgcc agccccggac tccccgcagg agcccctcgt 400
gctacggctg aaattcctca atgattcaga gcaggtggcc agggcctggc 450
cccacgacac cattggctcc ttgaaaagga cccagtttcc cggccgggaa 500
caqcaqqtqc qactcatcta ccaagggcag ctgctaggcg acgacaccca 550
gaccetggge ageetteace teecteecaa etgegttete caetgeeacg 600
tgtccacgag agtcggtccc ccaaatcccc cctgcccgcc ggggtccgag 650
cccggcccct ccgggctgga aatcggcagc ctgctgctgc ccctgctgct 700
cctgctgttg ctgctgctct ggtactgcca gatccagtac cggcccttct 750
tteccetgae egecaetetg ggeetggeeg getteaecet geteeteagt 800
ctcctggcct ttgccatgta ccgcccgtag tgcctccgcg ggcgcttggc 850
agegtegeeg geceeteegg acettgetee eegegeegeg gegggagetg 900
ctgcctgccc aggcccgcct ctccggcctg cctcttcccg ctgccctgga 950
geccageeet gegeegeaga ggaeteeegg gaetggegga ggeeeegeee 1000
tgcgaccgcc ggggctcggg gccacctccc ggggctgctg aacctcagcc 1050
cgcactggga gtgggctcct cggggtcggg catctgctgt cgctgcctcg 1100
gccccgggca gagccgggcc gccccggggg cccgtcttag tgttctgccg 1150
gaggacccag ccgcctccaa tccctgacag ctccttgggc tgagttgggg 1200
acgccaggtc ggtgggaggc tggtgaaggg gagcggggag gggcagagga 1250
gttccccgga acccgtgcag attaaagtaa ctgtgaagtt ttaaaaaaaa 1300
aaaaaaaaa 1310
```

```
<210> 338
```

<400> 338

Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser 20 25 30

Thr His Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly
35 40 45

<211> 246

<212> PRT

<213> Homo sapiens

Thr	Pro	Thr	Pro	Ser 50	Gln	Pro	Ser	Ala	Ala 55	Met	Ala	Ala	Thr	Asp 60
Ser	Met	Arg	Gly	Glu 65	Ala	Pro	Gly	Ala	Glu 70	Thr	Pro	Ser	Leu	Arg 75
His	Arg	Gly	Gln	Ala 80	Ala	Gln	Pro	Glu	Pro 85	Ser	Thr	Gly	Phe	Thr 90
Ala	Thr	Pro	Pro	Ala 95	Pro	Asp	Ser	Pro	Gln 100	Glu	Pro	Leu	Val	Leu 105
Arg	Leu	Lys	Phe	Leu 110	Asn	Asp	Ser	Glu	Gln 115	Val	Ala	Arg	Ala	Trp 120
Pro	His	Asp	Thr	Ile 125	Gly	Ser	Leu	Lys	Arg 130	Thr	Gln	Phe	Pro	Gly 135
Arg	Glu	Gln	Gln	Val 140	Arg	Leu	Ile	Tyr	Gln 145	Gly	Gln	Leu	Leu	Gly 150
Asp	Asp	Thr	Gln	Thr 155	Leu	Gly	Ser	Leu	His 160	Leu	Pro	Pro	Asn	Cys 165
Val	Leu	His	Cys	His 170	Val	Ser	Thr	Arg	Val 175	Gly	Pro	Pro	Asn	Pro 180
Pro	Cys	Pro	Pro	Gly 185	Ser	Glu	Pro	Gly	Pro 190	Ser	Gly	Leu	Glu	Ile 195
Gly	Ser	Leu	Leu	Leu 200	Pro	Leu	Leu	Leu	Leu 205	Leu	Leu	Leu	Leu	Leu 210
Trp	Tyr	Cys	Gln	Ile 215	Gln	Tyr	Arg	Pro	Phe 220	Phe	Pro	Leu	Thr	Ala 225
Thr	Leu	Gly	Leu	Ala 230	Gly	Phe	Thr	Leu	Leu 235	Leu	Ser	Leu	Leu	Ala 240
Phe	Ala	Met	Tyr	Arg 245	Pro									

<210> 339

<211> 849

<212> DNA

<213> Homo sapiens

<400> 339

gagattggaa acagccaggt tggagcagtg agtgagtaag gaaacctggc 50
tgccctctcc agattcccca ggctctcaga gaagatcagc agaaagtctg 100
caagacccta agaaccatca gccctcagct gcacctcctc ccctccaagg 150
atgacaaagg cgctactcat ctatttggtc agcagctttc ttgccctaaa 200
tcaggccagc ctcatcagtc gctgtgactt ggcccaggtg ctgcagctgg 250

aggacttgga tgggtttgag ggttactccc tgagtgactg gctgtgcctg 300 gcttttgtgg aaagcaagtt caacatatca aagataaatg aaaatgcgga 350 tggaagcttt gactatggcc tcttccagat caacagccac tactggtgca 400 acgattataa gagttactcg gaaaaccttt gccacgtaga ctgtcaagat 450 ctgctgaatc ccaaccttct tgcaggcatc cactgcgcaa aaaggattgt 500 gtccggagca cgggggatga acaactgggt agaatggagg ttgcactgtt 550 caggccggcc actctcctac tggctgacag gatgccgcct gagatgaaac 600 agggtgcggg tgcaccgtgg agtcattcca agactcctgt cctcactcag 650 ggattcttca tttcttctc ctactgcctc cacttcatgt tatttcttc 700 ccttcccatt tacaactaaa actgaccaga gccccaggaa taaatggttt 750 tcttggcttc ctccttactc ccatctggac ccagtccct ggttcctgtc 800 tgttatttgt aaactgagga ccacaataaa gaaatcttta tatttatcg 849

<210> 340

<211> 148

<212> PRT

<213> Homo sapiens

<400> 340

Met Thr Lys Ala Leu Leu Ile Tyr Leu Val Ser Ser Phe Leu Ala 1 5 10 15

Leu Asn Gln Ala Ser Leu Ile Ser Arg Cys Asp Leu Ala Gln Val $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Gl
n Leu Glu Asp Leu Asp Gly Phe Glu Gly Tyr Ser Leu Ser
 35 40 45

Asp Trp Leu Cys Leu Ala Phe Val Glu Ser Lys Phe Asn Ile Ser 50 55 60

Lys Ile Asn Glu Asn Ala Asp Gly Ser Phe Asp Tyr Gly Leu Phe 65 70 75

Gln Ile Asn Ser His Tyr Trp Cys Asn Asp Tyr Lys Ser Tyr Ser 80 85 90

Glu Asn Leu Cys His Val Asp Cys Gln Asp Leu Leu Asn Pro Asn 95 100 105

Leu Leu Ala Gly Ile His Cys Ala Lys Arg Ile Val Ser Gly Ala 110 115 120

Arg Gly Met Asn Asn Trp Val Glu Trp Arg Leu His Cys Ser Gly
125 130 135

```
Arg Pro Leu Ser Tyr Trp Leu Thr Gly Cys Arg Leu Arg
                 140
<210> 341
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 341
ccctccaagg atgacaaagg cgc 23
<210> 342
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 342
 ggtcagcagc tttcttgccc taaatcagg 29
<210> 343
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 343
atctcaggcg gcatcctgtc agcc 24
<210> 344
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 344
gtggatgcct gcaagaaggt tggg 24
<210> 345
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 345
```

- <210> 346 <211> 2575
- <212> DNA
- <213> Homo sapiens

<400> 346

tctgacctga ctggaagcgt ccaaagaggg acggctgtca gccctgcttg 50 actgagaacc caccagctca tcccagacac ctcatagcaa cctatttata 100 caaaggggga aagaaacacc tgagcagaat ggaatcatta ttttttccc 150 gtgaatgggc tttcagaagg caattaaaga aatccactca gagaggactt 250 ggggtgaaac ttgggtcctg tggttttctg attgtaagtg gaagcaggtc 300 ttgcacacgc tgttggcaaa tgtcaggacc aggttaagtg actggcagaa 350 aaacttccag gtggaacaag caacccatgt tctgctgcaa gcttgaagga 400 gcctggagcg ggagaaagct aacttgaaca tgacctgttg catttggcaa 450 gttctagcaa catgctccta aggaagcgat acaggcacag accatgcaga 500 ctccagttcc tcctgctgct cctgatgctg ggatgcgtcc tgatgatggt 550 ggcgatgttg caccetecee accaeacet geaceagact gteacagece 600 aagccagcaa gcacagccct gaagccaggt accgcctgga ctttggggaa 650 tcccaggatt gggtactgga agctgaggat gagggtgaag agtacagccc 700 tctggagggc ctgccaccct ttatctcact gcgggaggat cagctgctgg 750 tggccgtggc cttaccccag gccagaagga accagagcca gggcaggaga 800 ggtgggagct accgcctcat caagcagcca aggaggcagg ataaggaagc 850 cccaaagagg gactgggggg ctgatgagga cggggaggtg tctgaagaag 900 aggagttgac cccgttcagc ctggacccac gtggcctcca ggaggcactc 950 agtgcccgca tccccctcca gagggctctg cccgaggtgc ggcacccact 1000 gtgtctgcag cagcacctc aggacagcct gcccacagcc agcgtcatcc 1050 tctgtttcca tgatgaggcc tggtccactc tcctgcggac tgtacacagc 1100 atcctcgaca cagtgcccag ggccttcctg aaggagatca tcctcgtgga 1150 cgacctcagc cagcaaggac aactcaagtc tgctctcagc gaatatgtgg 1200 ccaggctgga gggggtgaag ttactcagga gcaacaagag gctgggtgcc 1250

atcagggccc ggatgctggg ggccaccaga gccaccgggg atgtgctcgt 1300 cttcatggat gcccactgcg agtgccaccc aggctggctg gagcccctcc 1350 tcagcagaat agctggtgac aggagccgag tggtatctcc ggtgatagat 1400 gtgattgact ggaagacttt ccagtattac ccctcaaagg acctgcagcg 1450 tggggtgttg gactggaagc tggatttcca ctgggaacct ttgccagagc 1500 atgtgaggaa ggccctccag tcccccataa gccccatcag gagccctgtg 1550 gtgcccggag aggtggtggc catggacaga cattacttcc aaaacactgg 1600 agcgtatgac tctcttatgt cgctgcgagg tggtgaaaac ctcgaactgt 1650 ctttcaaggc ctggctctgt ggtggctctg ttgaaatcct tccctgctct 1700 cgggtaggac acatetacca aaatcaggat teccatteee eeeteqacca 1750 ggaggccacc ctgaggaaca gggttcgcat tgctgagacc tggctggggt 1800 cattcaaaga aaccttctac aagcatagcc cagaggcctt ctccttgagc 1850 aaggetgaga agecagaetg catggaaege ttgeagetge aaaggagaet 1900 gggttgtcgg acattccact ggtttctggc taatgtctac cctgagctgt 1950 acccatctga acccaggece agtttetetg gaaageteea caacactgga 2000 cttgggctct gtgcagactg ccaggcagaa ggggacatcc tgggctgtcc 2050 catggtgttg gctccttgca gtgacagccg gcagcaacag tacctgcagc 2100 acaccagcag gaaggagatt cactttggca gcccacagca cctgtgcttt 2150 gctgtcaggc aggagcaggt gattcttcag aactgcacgg aggaaggcct 2200 ggccatccac cagcagcact gggacttcca ggagaatggg atgattgtcc 2250 acattette tgggaaatge atggaagetg tggtgeaaga aaacaataaa 2300 gatttgtacc tgcgtccgtg tgatggaaaa gcccgccagc agtggcgatt 2350 tgaccagata aatgctgtgg atgaacgatg aatgtcaatg tcagaaggaa 2400 aagagaattt tggccatcaa aatccagctc caagtgaacg taaagagctt 2450 atatatttca tgaagctgat ccttttgtgt gtgtgctcct tgtgttagga 2500 gagaaaaaag ctctatgaaa gaatatagga agtttctcct tttcacacct 2550 tatttcattg actgctggct gctta 2575

<210> 347

<211> 639

<4	0	0>	34	7

Met Lei	Leu Arg	Lys Arg	Tyr	Arg	His	Arg	Pro	Cys	Arg	Leu	Gln
1		5				10		_	_		15

Ala	Thr	Arg	Ala	Thr 275	Gly	Asp	Val	Leu	Val 280	Phe	Met	Asp	Ala	His 285
Cys	Glu	Cys	His	Pro 290	Gly	Trp	Leu	Glu	Pro 295	Leu	Leu	Ser	Arg	Ile 300
Ala	Gly	Asp	Arg	Ser 305	Arg	Val	Val	Ser	Pro 310	Val	Ile	Asp	Val	Ile 315
Asp	Trp	Lys	Thr	Phe 320	Gln	Tyr	Tyr	Pro	Ser 325	Lys	Asp	Leu	Gln	Arg 330
Gly	Val	Leu	Asp	Trp 335	Lys	Leu	Asp	Phe	His 340	Trp	Glu	Pro	Leu	Pro 345
Glu	His	Val	Arg	Lys 350	Ala	Leu	Gln	Ser	Pro 355	Ile	Ser	Pro	Ile	Arg 360
Ser	Pro	Val	Val	Pro 365	Gly	Glu	Val	Val	Ala 370	Met	Asp	Arg	His	Tyr 375
Phe	Gln	Asn	Thr	Gly 380	Ala	Tyr	Asp	Ser	Leu 385	Met	Ser	Leu	Arg	Gly 390
Gly	Glu	Asn	Leu	Glu 395	Leu	Ser	Phe	Lys	Ala 400	Trp	Leu	Cys	Gly	Gly 405
Ser	Val	Glu	Ile	Leu 410	Pro	Cys	Ser	Arg	Val 415	Gly	His	Ile	Tyr	Gln 420
Asn	Gln	Asp	Ser	His 425	Ser	Pro	Leu	Asp	Gln 430	Glu	Ala	Thr	Leu	Arg 435
Asn	Arg	Val	Arg	Ile 440	Ala	Glu	Thr	Trp	Leu 445	Gly	Ser	Phe	Lys	Glu 450
Thr	Phe	Tyr	Lys	His 455	Ser	Pro	Glu	Ala	Phe 460	Ser	Leu	Ser	Lys	Ala 465
Glu	Lys	Pro	Asp	Cys 470	Met	Glu	Arg	Leu	Gln 475	Leu	Gln	Arg	Arg	Leu 480
Gly	Cys	Arg	Thr	Phe 485	His	Trp	Phe	Leu	Ala 490	Asn	Val	Tyr	Pro	Glu 495
Leu	Tyr	Pro	Ser	Glu 500	Pro	Arg	Pro	Ser	Phe 505	Ser	Gly	Lys	Leu	His 510
Asn	Thr	Gly	Leu	Gly 515	Leu	Cys	Ala	Asp	Cys 520	Gln	Ala	Glu	Gly	Asp 525
Ile	Leu	Gly	Cys	Pro 530	Met	Val	Leu	Ala	Pro 535	Cys	Ser	Asp	Ser	Arg 540
Gln	Gln	Gln	Tyr	Leu 545	Gln	His	Thr	Ser	Arg 550	Lys	Glu	Ile	His	Phe 555

```
Gly Ser Pro Gln His Leu Cys Phe Ala Val Arg Gln Glu Gln Val
                 560
                                      565
 Ile Leu Gln Asn Cys Thr Glu Glu Gly Leu Ala Ile His Gln Gln
                 575
                                      580
 His Trp Asp Phe Gln Glu Asn Gly Met Ile Val His Ile Leu Ser
                 590
                                      595
 Gly Lys Cys Met Glu Ala Val Val Gln Glu Asn Asn Lys Asp Leu
                 605
                                      610
 Tyr Leu Arg Pro Cys Asp Gly Lys Ala Arg Gln Gln Trp Arg Phe
                 620
                                      625
                                                           630
 Asp Gln Ile Asn Ala Val Asp Glu Arg
                 635
<210> 348
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 348
 ggagaggtgg tggccatgga cag 23
<210> 349
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 349
ctgtcactgc aaggagccaa cacc 24
<210> 350
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 350
tatgtcgctg cgaggtggtg aaaacctcga actgtctttc aaggc 45
<210> 351
<211> 2524
<212> DNA
<213> Homo sapiens
```

<400> 351 cgccaagcat gcagtaaagg ctgaaaatct gggtcacagc tgaggaagac 50 ctcagacatg gagtccagga tgtggcctgc gctgctgctg tcccacctcc 100 tecetetetg gecaetgetg ttgetgeece teceaecgee tgeteaggge 150 tetteatect eccetegaac eccaceagee ecageeegee eccegtgtge 200 caggggaggc ccctcggccc cacgtcatgt gtgcgtgtgg gagcgagcac 250 ctccaccaag ccgatctcct cgggtcccaa gatcacgtcg gcaagtcctg 300 cctggcactg caccccage caccccatea ggetttgagg aggggccgcc 350 ctcatcccaa tacccctggg ctatcgtgtg gggtcccacc gtgtctcgag 400 aggatggagg ggaccccaac tctgccaatc ccggatttct ggactatggt 450 tttgcagccc ctcatgggct cgcaacccca caccccaact cagactccat 500 gcgaggtgat ggagatgggc ttatccttgg agaggcacct gccaccctgc 550 ggccattcct gttcgggggc cgtggggaag gtgtggaccc ccagctctat 600 gtcacaatta ccatctccat catcattgtt ctcgtggcca ctggcatcat 650 cttcaagttc tgctgggacc gcagccagaa gcgacgcaga ccctcagggc 700 agcaaggtgc cctgaggcag gaggagagcc agcagccact gacagacctg 750 tccccggctg gagtcactgt gctgggggcc ttcgggggact cacctacccc 800 cacccctgac catgaggagc cccgaggggg accccggcct gggatgcccc 850 accccaaggg ggctccagcc ttccagttga accggtgagg gcaggggcaa 900 tgggatggga gggcaaagag ggaaggcaac ttaggtcttc agagctgggg 950 tgggggtgcc ctctggatgg gtagtgagga ggcaggcgtg gcctcccaca 1000 gcccctggcc ctcccaaggg ggctggacca gctcctctct gggaggcacc 1050 cttccttctc ccagtctctc aggatctgtg tcctattctc tgctgcccat 1100 aactccaact ctgccctctt tggttttttc tcatgccacc ttgtctaaga 1150 caactctgcc ctcttaacct tgattccccc tctttgtctt gaacttcccc 1200 ttctattctg gcctacccct tggttcctga ctgtgccctt tccctcttcc 1250 tctcaggatt cccctggtga atctgtgatg cccccaatgt tggggtgcag 1300 ccaagcagga ggccaagggg ccggcacagc ccccatccca ctgagggtgg 1350 ggcagctgtg gggagctggg gccacagggg ctcctggctc ctgccccttg 1400

cacaccacco ggaacactco coagocccac gggcaatcot atotgotogo 1450 cctcctgcag gtgggggcct cacatatctg tgacttcggg tccctgtccc 1500 caccettgtg cactcacatg aaagcettge acactcacct ccaccttcac 1550 aggecattig cacacgetee tgeaccetet eccepteeat accgeteege 1600 tcagctgact ctcatgttct ctcgtctcac atttgcactc tctccttccc 1650 acattetgtg ctcagetcae teagtggtca gegttteetg caeaetttae 1700 ctctcatgtg cgtttcccgg cctgatgttg tggtggtgt cggcgtgctc 1750 actetetece teatgaacae ceaeceaeet egttteegea geeeetgegt 1800 gctgctccag aggtgggtgg gaggtgagct gggggctcct tqqqccctca 1850 tcggtcatgg tctcgtccca ttccacacca tttgtttctc tgtctcccca 1900 tectacteca aggatgeegg cateaceetg agggeteece ettgggaatg 1950 gggtagtgag gccccagact tcacccccag cccactgcta aaatctgttt 2000 tctgacagat gggttttggg gagtcgcctg ctgcactaca tgagaaaggg 2050 acteceattt gecetteeet tteteetaea gteeettttg tettgtetgt 2100 cctggctgtc tgtgtgtgt ccattctctg gacttcagag ccccctgagc 2150 cagtoctocc ttoccagoot cootttgggo ctocctaact ccacctaggo 2200 tgccagggac cggagtcagc tggttcaagg ccatcgggag ctctgcctcc 2250 aagtetacce tteeetteee ggaeteeete etgteeeete ettteeteee 2300 teetteette cacteteett cettttgett eeetgeeett teeceeteet 2350 caggitette ecteettete aetggittit ecaeetteet ecteeette 2400 ttccctggct cctaggctgt gatatatatt tttgtattat ctctttcttc 2450 ttcttgtggt gatcatcttg aattactgtg ggatgtaagt ttcaaaattt 2500 tcaaataaag cctttgcaag ataa 2524

<210> 352

<211> 243

<212> PRT

<213> Homo sapiens

<400> 352

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala
20 25 30

Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu 115 Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 130 Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln 170 Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser 190 Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp 200 Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu 235 240

Leu Pro Lys

<210> 353

<211> 480

<212> DNA

<213> Homo sapiens

<400> 353

gttaaccage gcagteetee gtgegteeeg eeegeegetg eeeteactee 50 eggeeaggat ggeateetgt etggeeetge geatggeget getgetggte 100 teeggggtte tggeeeetge ggtgeteaca gaegatgtte cacaggagee 150

cgtgcccacg ctgtggaacg agccggccga gctgccgtcg ggagaaggcc 200 ccgtggagag caccagcccc ggccgggagc ccgtggacac cggtccccca 250 gcccccaccg tcgcgccagg acccgaggac agcaccgcgc aggagcggct 300 ggaccagggc ggcgggtcgc tggggcccgg cgctatcgcg gccatcgtga 350 tegeegeect getggeeace tgegtggtge tggegetegt ggtegtegeg 400 ctgagaaagt tttctgcctc ctgaagcgaa taaaggggcc gcgcccggcc 450 gcggcgcac tcggcaaaaa aaaaaaaaa 480 <210> 354 <211> 121 <212> PRT <213> Homo sapiens <400> 354 Met Ala Ser Cys Leu Ala Leu Arg Met Ala Leu Leu Leu Val Ser 10 Gly Val Leu Ala Pro Ala Val Leu Thr Asp Asp Val Pro Gln Glu 20 Pro Val Pro Thr Leu Trp Asn Glu Pro Ala Glu Leu Pro Ser Gly 35 40 Glu Gly Pro Val Glu Ser Thr Ser Pro Gly Arg Glu Pro Val Asp 55

Thr Gly Pro Pro Ala Pro Thr Val Ala Pro Gly Pro Glu Asp Ser

Thr Ala Gln Glu Arg Leu Asp Gln Gly Gly Ser Leu Gly Pro 80 85 90

Gly Ala Ile Ala Ala Ile Val Ile Ala Ala Leu Leu Ala Thr Cys 105

Val Val Leu Ala Leu Val Val Val Ala Leu Arg Lys Phe Ser Ala 110 120

Ser

<210> 355

<211> 2134

<212> DNA

<213> Homo sapiens

<400> 355

ggccgttggt tggtgcgcgg ctgaagggtg tggcgcgagc agcgtcgttg 50

gttggccggc ggcgggccgg gacgggcatg gccctgctgc tgtgcctggt 100

gtgcctgacg gcggcgctgg cccacggctg tctgcactgc cacagcaact 150 tetecaagaa gtteteette taeegeeace atgtgaactt caagteetgg 200 tgggtgggcg acateceegt gteaggggcg etgeteaeeg aetggagega 250 cgacacgatg aaggagetge acetggeeat ceeegceaag ateaceeggg 300 agaagctgga ccaagtggcg acagcagtgt accagatgat ggatcagctg 350 taccagggga agatgtactt ccccgggtat ttccccaacg agctgcgaaa 400 catcttccgg gagcaggtgc acctcatcca gaacgccatc atcgaaaggc 450 acctggcacc aggcagctgg ggaggaggc agctctccag ggagggaccc 500 ageetageae etgaaggate aatgeeatea eecegegggg aceteeceta 550 agtagecece agaggegetg ggagtgttge cacegeeete eeetgaagtt 600 tgctccatct cacgetgggg gtcaacctgg ggacccette ceteegggee 650 atggacacac atacatgaaa accaggccgc atcgactgtc agcaccgctg 700 tggcatcttc cagtacgaga ccatctcctg caacaactgc acagactcgc 750 acgtcgcctg ctttggctat aactgcgagt agggctcagg catcacaccc 800 accegtgeea gggeeetact gteeetgggg teeeaggete teettggagg 850 gggctccccg ccttccacct ggctgtcatc gggtagggcg gggccgtggg 900 ttcaggggcg caccacttcc aagcctgtgt cccacaggtc ctcggcgcag 950 tggaagtcag ctgtccaggg cctcctgaac tacataaata actggcacaa 1000 gtaagtcccc tcctcaaacc aacacaggca gtgtgtgtat gtgagcacct 1050 cgtgggtgag tatgtgtggg gcacaggctg gctccctcag ctcccacgtc 1100 ctagaggggc tcccgaggag gtggaacctc aacccagctc tgcgcaggag 1150 gcggctgcag tccttttctc cctcaaaggt ctccgaccct cagctggagg 1200 cgggcatctt tcctaaaggg tccccatagg gtctggttcc accccatccc 1250 aggtctgtgg tcagagcctg ggagggttcc ctacgatggt taggggtgcc 1300 ccatggaggg gctgactgcc ccacattgcc tttcagacag gacacgagca 1350 tgaggtaagg ccgccctgac ctggacttca gggggagggg gtaaagggag 1400 agaggagggg ggctaggggg tcctctagat cagtgggggc actgcaggtg 1450 gggctctccc tatacctggg acacctgctg gatgtcacct ctgcaaccac 1500

acccatgtgg tggtttcatg aacagaccac gctcctctge cttctcctgg 1550 cctgggacac acagagccac cccggccttg tgagtgaccc agagaaggga 1600 ggcctcggga gaagggtgc tcgtaagcca acaccagcgt gccgcggcct 1650 gcacaccctt cggacatccc aggcacgagg gtgtcgtgga tgtggccaca 1700 cataggacca cacgtcccag ctgggaggag aggcctgggg cccccaggga 1750 gggaggcagg gggtgggga catggagagc tgaggcagcc tcgtctcccc 1800 gcagcctggt atcgccagc ttaaggtgt tggagcccc acacttggcc 1850 aacctgacct tggaagatgc tgctgagtg ctcaagcagc actgacagca 1900 gctgggcctg ccccagggca acgtggggg ggaggccc acccaggac 1900 gctgggcctg ccccagggca acgtggggg ggagactcag ctggacagcc 1950 cctgcctgtc actctggacc tgggctgctg ctgcctcagg accccctctc 2000 cgaccccgga cagagctgag ctggccaggg ccaggagggc gggagggagg 2050 gaatgggggt gggctgtgc cagcatcagc gcctgggcag gtccgcagag 2100 ctgcgggatg tgattaaagt ccctgatgt tctc 2134

<210> 356

<211> 157

<212> PRT

<213> Homo sapiens

<400> 356

Met Ala Leu Leu Cys Leu Val Cys Leu Thr Ala Ala Leu Ala 1 5 10 15

His Gly Cys Leu His Cys His Ser Asn Phe Ser Lys Lys Phe Ser 20 25 30

Phe Tyr Arg His His Val Asn Phe Lys Ser Trp Trp Val Gly Asp 35 40 45

Ile Pro Val Ser Gly Ala Leu Leu Thr Asp Trp Ser Asp Asp Thr
50 55 60

Met Lys Glu Leu His Leu Ala Ile Pro Ala Lys Ile Thr Arg Glu 65 70 75

Lys Leu Asp Gln Val Ala Thr Ala Val Tyr Gln Met Met Asp Gln 80 85 90

Leu Tyr Gln Gly Lys Met Tyr Phe Pro Gly Tyr Phe Pro Asn Glu 95 100 105

Leu Arg Asn Ile Phe Arg Glu Gln Val His Leu Ile Gln Asn Ala 110 115 120

Ile Ile Glu Arg His Leu Ala Pro Gly Ser Trp Gly Gly Gln

125 130 135

Leu Ser Arg Glu Gly Pro Ser Leu Ala Pro Glu Gly Ser Met Pro 140 145 150

Ser Pro Arg Gly Asp Leu Pro 155

<210> 357

<211> 1536

<212> DNA

<213> Homo sapiens

<400> 357

agcaggagca ggagagggac aatggaagct gccccgtcca ggttcatgtt 50 cctcttattt ctcctcacgt gtgagctggc tgcagaagtt gctgcagaag 100 ttgagaaatc ctcagatggt cctggtgctg cccaggaacc cacgtggctc 150 acagatgtcc cagctgccat ggaattcatt gctgccactg aggtggctgt 200 cataggette ttecaggatt tagaaatace ageagtgeee atactecata 250 gcatggtgca aaaattccca ggcgtgtcat ttgggatcag cactgattct 300 gaggttctga cacactacaa catcactggg aacaccatct gcctctttcg 350 cctggtagac aatgaacaac tgaatttaga ggacgaagac attgaaagca 400 ttgatgccac caaattgagc cgtttcattg agatcaacag cctccacatg 450 gtgacagagt acaaccctgt gactgtgatt gggttattca acagcgtaat 500 tcagattcat ctcctcctga taatgaacaa ggcctcccca gagtatgaag 550 agaacatgca cagataccag aaggcagcca agctcttcca ggggaagatt 600 ctctttattc tggtggacag tggtatgaaa gaaaatggga aggtgatatc 650 atttttcaaa ctaaaggagt ctcaactgcc agctttggca atttaccaga 700 ctctagatga cgagtgggat acactgccca cagcagaagt ttccgtagag 750 catgtgcaaa acttttgtga tggattccta agtggaaaat tgttgaaaga 800 aaatcgtgaa tcagaaggaa agactccaaa ggtggaactc tgacttctcc 850 ttggaactac atatggccaa gtatctactt tatgcaaagt aaaaaggcac 900 aactcaaatc tcagagacac taaacaacag gatcactagg cctgccaacc 950 acacacaca gcacgtgcac acacgcacgc acgcgtgcac acacacacgc 1000 gcacacacac acacacacag agetteattt cetgtettaa aatetegttt 1050 tctcttcttc cttctttaa atttcatatc ctcactccct atccaatttc 1100

cttcttatcg tgcattcata ctctgtaage ccatctgtaa cacacctaga 1150
tcaaggettt aagagactca ctgtgatgee tetatgaaag agaggeatte 1200
ctagagaaag attgtteeaa tttgteattt aatateaagt ttgtataetg 1250
cacatgaett acacacaaca tagtteetge tetttaagg ttacetaagg 1300
gttgaaacte tacettett cataageaca tgteegtete tgaeteagga 1350
teaaaaacca aaggatggtt ttaaacacet ttgtgaaatt gtettttge 1400
cagaagttaa aggetgtete caagteeetg aacteageag aaatagacea 1450
tgtgaaaact ecatgettgg ttageatete caacteeeta tgtaaatcaa 1500
caacctgeat aataaataaa aggeaateat gttata 1536

<210> 358

<211> 273

<212> PRT

<213> Homo sapiens

<400> 358

Met Glu Ala Ala Pro Ser Arg Phe Met Phe Leu Leu Phe Leu Leu 1 5 10 15

Thr Cys Glu Leu Ala Ala Glu Val Ala Ala Glu Val Glu Lys Ser 20 25 30

Ser Asp Gly Pro Gly Ala Ala Gln Glu Pro Thr Trp Leu Thr Asp 35 40 45

Val Pro Ala Ala Met Glu Phe Ile Ala Ala Thr Glu Val Ala Val 50 55 60

Ile Gly Phe Phe Gln Asp Leu Glu Ile Pro Ala Val Pro Ile Leu 65 70 75

His Ser Met Val Gln Lys Phe Pro Gly Val Ser Phe Gly Ile Ser 80 85 90

Thr Asp Ser Glu Val Leu Thr His Tyr Asn Ile Thr Gly Asn Thr 95 100 105

Ile Cys Leu Phe Arg Leu Val Asp Asn Glu Gln Leu Asn Leu Glu 110 115 120

Asp Glu Asp Ile Glu Ser Ile Asp Ala Thr Lys Leu Ser Arg Phe 125 130 135

Ile Glu Ile Asn Ser Leu His Met Val Thr Glu Tyr Asn Pro Val 140 145 150

Thr Val Ile Gly Leu Phe Asn Ser Val Ile Gln Ile His Leu Leu 155 160 165

```
Leu Ile Met Asn Lys Ala Ser Pro Glu Tyr Glu Glu Asn Met His
Arg Tyr Gln Lys Ala Ala Lys Leu Phe Gln Gly Lys Ile Leu Phe
 Ile Leu Val Asp Ser Gly Met Lys Glu Asn Gly Lys Val Ile Ser
                                      205
 Phe Phe Lys Leu Lys Glu Ser Gln Leu Pro Ala Leu Ala Ile Tyr
                 215
                                     220
 Gln Thr Leu Asp Asp Glu Trp Asp Thr Leu Pro Thr Ala Glu Val
 Ser Val Glu His Val Gln Asn Phe Cys Asp Gly Phe Leu Ser Gly
 Lys Leu Leu Lys Glu Asn Arg Glu Ser Glu Gly Lys Thr Pro Lys
Val Glu Leu
<210> 359
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 359
ccagcagtgc ccatactcca tagc 24
<210> 360
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 360
tgacgagtgg gatacactgc 20
<210> 361
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 361
 gctctacgga aacttctgct gtgg 24
```

```
<210> 362
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 362
attcccaggc gtgtcatttg ggatcagcac tgattctgag gttctgacac 50
<210> 363
<211> 1777
<212> DNA
<213> Homo sapiens
<400> 363
 ggagagccgc ggctgggacc ggagtgggga gcgcggcgtg gaggtgccac 50
ccggcgcggg tggcggagag atcagaagcc tcttccccaa gccgagccaa 100
 cctcagcggg gacccgggct cagggacgcg gcggcggcgg cggcgactgc 150
 agtggctgga cgatggcagc gtccgccgga gccggggcgg tgattgcagc 200
 cccagacage eggegetgge tgtggteggt getggeggeg gegettggge 250
 tcttgacagc tggagtatca gccttggaag tatatacgcc aaaagaaatc 300
 ttcgtggcaa atggtacaca agggaagctg acctgcaagt tcaagtctac 350
 tagtacgact ggcgggttga cctcagtctc ctggagcttc cagccagagg 400
 gggccgacac tactgtgtcg tttttccact actcccaagg gcaagtgtac 450
 cttgggaatt atccaccatt taaagacaga atcagctggg ctggagacct 500
 tgacaagaaa gatgcatcaa tcaacataga aaatatgcag tttatacaca 550
 atggcaccta tatctgtgat gtcaaaaacc ctcctgacat cgttgtccag 600
 cctggacaca ttaggctcta tgtcgtagaa aaagagaatt tgcctgtgtt 650
 tccagtttgg gtagtggtgg gcatagttac tgctgtggtc ctaggtctca 700
 ctctgctcat cagcatgatt ctggctgtcc tctatagaag gaaaaactct 750
 aaacgggatt acactggctg cagtacatca gagagtttgt caccagttaa 800
 gcaggctcct cggaagtccc cctccgacac tgagggtctt gtaaagagtc 850
 tgccttctgg atctcaccag ggcccagtca tatatgcaca gttagaccac 900
 teeggeggae ateacagtga caagattaae aagteagagt etgtggtgta 950
```

tgcggatatc cgaaagaatt aagagaatac ctagaacata tcctcagcaa 1000

gaaacaaaac caaactggac tctcgtgcag aaaatgtagc ccattaccac 1050 atgtagcett ggagacccag gcaaggacaa gtacacgtgt actcacagag 1100 ggagagaaag atgtgtacaa aggatatgta taaatattct atttagtcat 1150 cctgatatga ggagccagtg ttgcatgatg aaaagatggt atgattctac 1200 atatgtaccc attgtcttgc tgtttttgta ctttcttttc aggtcattta 1250 caattgggag atttcagaaa cattcctttc accatcattt agaaatggtt 1300 tgccttaatg gagacaatag cagatcctgt agtatttcca gtagacatgg 1350 ccttttaatc taagggctta agactgatta gtcttagcat ttactgtagt 1400 tggaggatgg agatgctatg atggaagcat acccagggtg gcctttagca 1450 cagtatcagt accatttatt tgtctgccgc ttttaaaaaa tacccattgg 1500 ctatgccact tgaaaacaat ttgagaagtt tttttgaagt ttttctcact 1550 aaaatatggg gcaattgtta gccttacatg ttgtgtagac ttactttaag 1600 tttgcaccct tgaaatgtgt catatcaatt tctggattca taatagcaag 1650 attagcaaag gataaatgcc gaaggtcact tcattctgga cacagttgga 1700 tcaatactga ttaagtagaa aatccaagct ttgcttgaga acttttgtaa 1750 cgtggagagt aaaaagtatc ggtttta 1777

<210> 364

<211> 269

<212> PRT

<213> Homo sapiens

<400> 364

Met Ala Ala Ser Ala Gly Ala Gly Ala Val Ile Ala Ala Pro Asp 1 5 10 15

Ser Arg Arg Trp Leu Trp Ser Val Leu Ala Ala Ala Leu Gly Leu 20 25 30

Leu Thr Ala Gly Val Ser Ala Leu Glu Val Tyr Thr Pro Lys Glu 35 40 45

Ile Phe Val Ala Asn Gly Thr Gln Gly Lys Leu Thr Cys Lys Phe 50 55 60

Lys Ser Thr Ser Thr Thr Gly Gly Leu Thr Ser Val Ser Trp Ser 65 70 75

Phe Gln Pro Glu Gly Ala Asp Thr Thr Val Ser Phe Phe His Tyr

Ser	Gln	Gly	Gln	Val 95	Tyr	Leu	Gly	Asn	Tyr 100	Pro	Pro	Phe	Lys	Asp 105
Arg	Ile	Ser	Trp	Ala 110	Gly	Asp	Leu	Asp	Lys 115	Lys	Asp	Ala	Ser	Ile 120
Asn	Ile	Glu	Asn	Met 125	Gln	Phe	Ile	His	Asn 130	Gly	Thr	Tyr	Ile	Cys 135
Asp	Val	Lys	Asn	Pro 140	Pro	Asp	Ile	Val	Val 145	Gln	Pro	Gly	His	Ile 150
Arg	Leu	Tyr	Val	Val 155	Glu	Lys	Glu	Asn	Leu 160	Pro	Val	Phe	Pro	Val 165
Trp	Val	Val	Val	Gly 170	Ile	Val	Thr	Ala	Val 175	Val	Leu	Gly	Leu	Thr 180
Leu	Leu	Ile	Ser	Met 185	Ile	Leu	Ala	Val	Leu 190	Tyr	Arg	Arg	Lys	Asn 195
Ser	Lys	Arg	Asp	Tyr 200	Thr	Gly	Cys	Ser	Thr 205	Ser	Glu	Ser	Leu	Ser 210
Pro	Val	Lys	Gln	Ala 215	Pro	Arg	Lys	Ser	Pro 220	Ser	Asp	Thr	Glu	Gly 225
Leu	Val	Lys	Ser	Leu 230	Pro	Ser	Gly	Ser	His 235	Gln	Gly	Pro	Val	Ile 240
Tyr	Ala	Gln	Leu	Asp 245	His	Ser	Gly	Gly	His 250	His	Ser	Asp	Lys	Ile 255
Asn	Lys	Ser	Glu	Ser 260	Val	Val	Tyr	Ala	Asp 265	Ile	Arg	Lys	Asn	
<210														

<211> 1321

<212> DNA

<213> Homo sapiens

<400> 365

gccggctgtg cagagacgcc atgtaccggc tcctgtcagc agtgactgcc 50 cgggctgccg cccccggggg cttggcctca agctgcggac gacgcggggt 100 ccatcagege geegggetge egectetegg ccaeggetgg gtegggggee 150 tcgggctggg gctggggctg gcgctcgggg tgaagctggc aggtgggctg 200 aggggcgcgg ccccggcgca gtcccccgcg gcccccgacc ctgaggcgtc 250 gcctctggcc gagccgccac aggagcagtc cctcgccccg tggtctccgc 300 agaccccggc gccgccctgc tccaggtgct tcgccagagc catcgagagc 350 agccgcgacc tgctgcacag gatcaaggat gaggtgggcg caccgggcat 400

agtggttgga gtttctgtag atggaaaaga agtctggtca gaaggtttag 450 gttatgctga tgttgagaac cgtgtaccat gtaaaccaga gacagttatg 500 cgaattgcta gcatcagcaa aagtctcacc atggttgctc ttgccaaatt 550 gtgggaagca gggaaactgg atcttgatat tccagtacaa cattatgttc 600 ccgaattccc agaaaaagaa tatgaaggtg aaaaggtttc tgtcacaaca 650 agattactga tttcccattt aagtggaatt cgtcattatg aaaaggacat 700 aaaaaaggtg aaagaagaga aagcttataa agccttgaag atgatgaaag 750 agaatgttgc atttgagcaa gaaaaagaag gcaaaagtaa tgaaaagaat 800 gattttacta aatttaaaac agagcaggag aatgaagcca aatgccggaa 850 ttcaaaacct ggcaagaaaa agaatgattt tgaacaaggc gaattatatt 900 tgagagaaaa gtttgaaaat tcaattgaat ccctaagatt atttaaaaat 950 gatcctttgt tcttcaaacc tggtagtcag tttttgtatt caacttttgg 1000 ctatacccta ctggcagcca tagtagagag agcttcagga tgtaaatatt 1050 tggactatat gcagaaaata ttccatgact tggatatgct gacgactgtg 1100 caggaagaaa acgagccagt gatttacaat agagcaaggt aaatgaatac 1150 cttctgctgt gtctagctat atcgcatctt aacactattt tattaattaa 1200 aagtcaaatt ttctttgttt ccattccaaa atcaacctgc cacattttgg 1250 gagcttttct acatgtctgt tttctcatct gtaaagtgaa ggaagtaaaa 1300 catgtttata aagtaaaaaa a 1321

<210> 366

<211> 373

<212> PRT

<213> Homo sapiens

<400> 366

Met Tyr Arg Leu Leu Ser Ala Val Thr Ala Arg Ala Ala Pro 1 5 10 15

Gly Gly Leu Ala Ser Ser Cys Gly Arg Arg Gly Val His Gln Arg 20 25 30

Ala Gly Leu Pro Pro Leu Gly His Gly Trp Val Gly Gly Leu Gly 35 40 45

Leu Gly Leu Gly Leu Ala Leu Gly Val Lys Leu Ala Gly Gly Leu
50 55

Arg	Gly	Ala	Ala	Pro 65	Ala	Gln	Ser	Pro	Ala 70	Ala	Pro	Asp	Pro	Glu 75
Ala	Ser	Pro	Leu	Ala 80	Glu	Pro	Pro	Gln	Glu 85	Gln	Ser	Leu	Ala	Pro 90
Trp	Ser	Pro	Gln	Thr 95	Pro	Ala	Pro	Pro	Cys 100	Ser	Arg	Cys	Phe	Ala 105
Arg	Ala	Ile	Glu	Ser 110	Ser	Arg	Asp	Leu	Leu 115	His	Arg	Ile	Lys	Asp 120
Glu	Val	Gly	Ala	Pro 125	Gly	Ile	Val	Val	Gly 130	Val	Ser	Val	Asp	Gly 135
				140	Glu				145					150
				155	Pro				160					165
				170	Met				175					180
_			-	185	Asp _				190					195
				200	Tyr				205					210
				215	His				220					225
_			_	230	Lys			-	235	-	_			240
				245	Val				250					255
				260	Asp				265					270
				275	Arg				280					285
				290	Glu				295				•	300
				305	Arg				310					315
				320	Phe				325					330
Leu	Ala	Ala	ile	Val 335	Glu	Arg	Ala	Ser	Gly 340	Cys	гуs	Tyr	Leu	345

```
Tyr Met Gln Lys Ile Phe His Asp Leu Asp Met Leu Thr Thr Val
                  350
                                       355
 Gln Glu Glu Asn Glu Pro Val Ile Tyr Asn Arg Ala Arg
                  365
<210> 367
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 367
 tggaaaagaa gtctggtcag aaggtttagg 30
<210> 368
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 368
 catttggctt cattctcctg ctctg 25
<210> 369
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 369
 aaaacctcag aacaactcat tttgcacc 28
<210> 370
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 370
gtctcaccat ggttgctctt gccaaattgt gggaagcagg g 41
<210> 371
<211> 1150
<212> DNA
<213> Homo sapiens
<400> 371
gtgacactat agaagagcta tgacgtcgca tgcacgcgta cgtaagctcg 50
```

gaattcggct cgaggctggt gggaagaagc cgagatggcg gcagccagcg 100 ctggggcaac ccggctgctc ctgctcttgc tgatggcggt agcagcgccc 150 agtcgagccc ggggcagcgg ctgccgggcc gggactggtg cgcgaggggc 200 tggggcggaa ggtcgagagg gcgaggcctg tggcacggtg gggctgctgc 250 tggagcactc atttgagatc gatgacagtg ccaacttccg gaagcggggc 300 tcactgctct ggaaccagca ggatggtacc ttgtccctgt cacagcggca 350 gctcagcgag gaggagcggg gccgactccg ggatgtggca gccctgaatg 400 gcctgtaccg ggtccggatc ccaaggcgac ccggggccct ggatggcctg 450 gaagetggtg getatgtete eteetttgte eetgegtget eeetggtgga 500 gtcgcacctg tcggaccagc tgaccctgca cgtggatgtg gccggcaacg 550 tggtgggcgt gtcggtggtg acgcaccccg ggggctgccg gggccatgag 600 gtggaggacg tggacctgga gctgttcaac acctcggtgc agctgcagcc 650 gcccaccaca gccccaggcc ctgagacggc ggccttcatt gagcgcctgg 700 agatggaaca ggcccagaag gccaagaacc cccaggagca gaagtccttc 750 ttcgccaaat actggatgta catcattccc gtcgtcctgt tcctcatgat 800 gtcaggagcg ccagacaccg ggggccaggg tgggggtggg ggtgggggtg 850 gtggtggggg tagtggcctt tgctgtgtgc caccetecet gtaagtetat 900 ttaaaaaacat cgacgataca ttgaaatgtg tgaacgtttt gaaaagctac 950 agcttccagc agccaaaagc aactgttgtt ttggcaagac ggtcctgatg 1000 tacaagettg attgaaattc actgeteact tgatacgtta ttcagaaacc 1050 caaggaatgg ctgtccccat cctcatgtgg ctgtgtggag ctcagctgtg 1100 ttgtgtggca gtttattaaa ctgtccccca gatcgacacg caaaaaaaaa 1150

Leu Met Ala Val Ala Ala Pro Ser Arg Ala Arg Gly Ser Gly Cys

<210> 372

<211> 269

<212> PRT

<213> Homo sapiens

<400> 372

Met Ala Ala Ala Ser Ala Gly Ala Thr Arg Leu Leu Leu Leu 1 5 10 15

Arg	Ala	Gly	Thr	Gly 35	Ala	Arg	Gly	Ala	Gly 40	Ala	Glu	Gly	Arg	Glu 45
Gly	Glu	Ala	Cys	Gly 50	Thr	Val	Gly	Leu	Leu 55	Leu	Glu	His	Ser	Phe 60
Glu	Ile	Asp	Asp	Ser 65	Ala	Asn	Phe	Arg	Lys 70	Arg	Gly	Ser	Leu	Leu 75
Trp	Asn	Gln	Gln	Asp 80	Gly	Thr	Leu	Ser	Leu 85	Ser	Gln	Arg	Gln	Leu 90
Ser	Glu	Glu	Glu	Arg 95	Gly	Arg	Leu	Arg	Asp 100	Val	Ala	Ala	Leu	Asn 105
Gly	Leu	Tyr	Arg	Val 110	Arg	Ile	Pro	Arg	Arg 115	Pro	Gly	Ala	Leu	Asp 120
Gly	Leu	Glu	Ala	Gly 125	Gly	Tyr	Val	Ser	Ser 130	Phe	Val	Pro	Ala	Cys 135
Ser	Leu	Val	Glu	Ser 140	His	Leu	Ser	Asp	Gln 145	Leu	Thr	Leu	His	Val 150
Asp	Val	Ala	Gly	Asn 155	Val	Val	Gly	Val	Ser 160	Val	Val	Thr	His	Pro 165
Gly	Gly	Суѕ	Arg	Gly 170	His	Glu	Val	Glu	Asp 175	Val	Asp	Leu	Glu	Leu 180
Phe	Asn	Thr	Ser	Val 185	Gln	Leu	Gln	Pro	Pro 190	Thr	Thr	Ala	Pro	Gly 195
Pro	Glu	Thr	Ala	Ala 200	Phe	Ile	Glu	Arg	Leu 205	Glu	Met	Glu	Gln	Ala 210
Gln	Lys	Ala	Lys	Asn 215	Pro	Gln	Glu	Gln	Lys 220	Ser	Phe	Phe	Ala	Lys 225
Tyr	Trp	Met	Tyr	Ile 230	Ile	Pro	Val	Val	Leu 235	Phe	Leu	Met	Met	Ser 240
Gly	Ala	Pro	Asp	Thr 245	Gly	Gly	Gln	Gly	Gly 250	Gly	Gly	Gly	Gly	Gly 255
Gly	Gly	Gly	Gly	Ser 260	Gly	Leu	Суѕ	Суѕ	Val 265	Pro	Pro	Ser	Leu	
<210:														
~ < 1 1.	- 1/	-												

<400> 373

ggagcgctgc tggaacccga gccggagccg gagccacagc ggggagggtg 50 gcctggcggc ctggagccgg acgtgtccgg ggcgtccccg cagaccgggg 100

<212> DNA

<213> Homo sapiens

cagcaggtcg tccgggggcc caccatgctg gtgactgcct accttgcttt 150 tgtaggcctc ctggcctcct gcctggggct ggaactgtca agatgccggg 200 ctaaaccccc tggaagggcc tgcagcaatc cctccttcct tcggtttcaa 250 ctggacttct atcaggtcta cttcctggcc ctggcagctg attggcttca 300 ggccccctac ctctataaac tctaccagca ttactacttc ctggaaggtc 350 aaattgccat cetetatgte tgtggcettg cetetacagt cetetttgge 400 ctagtggcct cctcccttgt ggattggctg ggtcgcaaga attcttgtgt 450 cctcttctcc ctgacttact cactatgctg cttaaccaaa ctctctcaag 500 actactttgt gctgctagtg gggcgagcac ttggtgggct gtccacagcc 550 ctgctcttct cagccttcga ggcctggtat atccatgagc acgtggaacg 600 gcatgacttc cctgctgagt ggatcccagc tacctttgct cgagctgcct 650 tctggaacca tgtgctggct gtagtggcag gtgtggcagc tgaggctgta 700 gccagctgga tagggctggg gcctgtagcg ccctttgtgg ctgccatccc 750 tctcctggct ctggcagggg ccttggccct tcgaaactgg ggggagaact 800 atgaccggca gcgtgccttc tcaaggacct gtgctggagg cctgcgctgc 850 ctcctgtcgg accgccgcgt gctgctgctg ggcaccatac aagctctatt 900 tgagagtgtc atcttcatct ttgtcttcct ctggacacct gtgctggacc 950 cacacggggc ccctctgggc attatcttct ccagcttcat ggcagccagc 1000 ctgcttggct cttccctgta ccgtatcgcc acctccaaga ggtaccacct 1050 tcagcccatg cacctgctgt cccttgctgt gctcatcgtc gtcttctctc 1100 tcttcatgtt gactttctct accagcccag gccaggagag tccggtggag 1150 tccttcatag cctttctact tattgagttg gcttgtggat tatactttcc 1200 cagcatgage ttectaegga gaaaggtgat eeetgagaca gageaggetg 1250 gtgtactcaa ctggttccgg gtacctctgc actcactggc ttgcctaggg 1300 ctccttgtcc tccatgacag tgatcgaaaa acaggcactc ggaatatgtt 1350 cagcatttgc tctgctgtca tggtgatggc tctgctggca gtggtgggac 1400 tcttcaccgt ggtaaggcat gatgctgagc tgcgggtacc ttcacctact 1450 gaggagccct atgcccctga gctgtaaccc cactccagga caagatagct 1500 gggacagact cttgaattcc agctatccgg gattgtacag atctctctgt 1550 gactgacttt gtgactgtcc tgtggtttct cctgccattg ctttgtgttt 1600 gggaggacat gatggggtg atggactgga aagaaggtgc caaaagttcc 1650 ctctgtgtta ctcccattta gaaaataaac acttttaaat gatcaaaaaa 1700 aaaaaa 1706

<210> 374

<211> 450

<212> PRT

<213> Homo sapiens

<400> 374

Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser 1 5 10 15

Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly
20 25 30

Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe
35 40 45

Tyr Gln Val Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gln Ala 50 55 60

Pro Tyr Leu Tyr Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly
65 70 75

Gln Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu 80 85 90

Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys 95 100 105

Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu
110 115 120

Thr Lys Leu Ser Gln Asp Tyr Phe Val Leu Leu Val Gly Arg Ala 125 130 135

Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala 140 145 150

Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu
155 160 165

Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val 170 175 180

Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp
185 190 195

Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu 200 205 210

Leu	Ala	Leu	Ala	Gly 215	Ala	Leu	Ala	Leu	Arg 220	Asn	Trp	Gly	Glu	Asn 225
Tyr	Asp	Arg	Gln	Arg 230	Ala	Phe	Ser	Arg	Thr 235	Суѕ	Ala	Gly	Gly	Leu 240
Arg	Cys	Leu	Leu	Ser 245	Asp	Arg	Arg	Val	Leu 250	Leu	Leu	Gly	Thr	Ile 255
Gln	Ala	Leu	Phe	Glu 260	Ser	Val	Ile	Phe	Ile 265	Phe	Val	Phe	Leu	Trp 270
Thr	Pro	Val	Leu	Asp 275	Pro	His	Gly	Ala	Pro 280	Leu	Gly	Ile	Ile	Phe 285
Ser	Ser	Phe	Met	Ala 290	Ala	Ser	Leu	Leu	Gly 295	Ser	Ser	Leu	Tyr	Arg 300
Ile	Ala	Thr	Ser	Lys 305	Arg	Tyr	His	Leu	Gln 310	Pro	Met	His	Leu	Leu 315
Ser	Leu	Ala	Val	Leu 320	Ile	Val	Val	Phe	Ser 325	Leu	Phe	Met	Leu	Thr 330
Phe	Ser	Thr	Ser	Pro 335	Gly	Gln	Glu	Ser	Pro 340	Val	Glu	Ser	Phe	Ile 345
Ala	Phe	Leu	Leu	Ile 350	Glu	Leu	Ala	Cys	Gly 355	Leu	Tyr	Phe	Pro	Ser 360
Met	Ser	Phe	Leu	Arg 365	Arg	Lys	Val	Ile	Pro 370	Glu	Thr	Glu	Gln	Ala 375
Gly	Val	Leu	Asn	Trp 380	Phe	Arg	Val	Pro	Leu 385	His	Ser	Leu	Ala	Cys 390
Leu	Gly	Leu	Leu	Val 395	Leu	His	Asp	Ser	Asp 400	Arg	Lys	Thr	Gly	Thr 405
Arg	Asn	Met	Phe	Ser 410	Ile	Cys	Ser	Ala	Val 415	Met	Val	Met	Ala	Leu 420
Leu	Ala	Val	Val	Gly 425	Leu	Phe	Thr	Val	Val 430	Arg	His	Asp	Ala	Glu 435
Leu	Arg	Val	Pro	Ser 440	Pro	Thr	Glu	Glu	Pro 445	Tyr	Ala	Pro	Glu	Leu 450
	> 37! > 10!													

gcgacgcgcg gcggggcggc gagaggaaac gcggcgccgg gccgggcccg 50

<211> 1098 <212> DNA

<213> Homo sapiens

<400> 375

gccctggaga tggtccccgg cgccgcgggc tggtgttgtc tcgtgctctg 100 gctccccqcq tqcqtcqcqq cccacqqctt ccqtatccat qattatttqt 150 actttcaagt gctgagtcct ggggacattc gatacatctt cacagccaca 200 cctgccaagg actttggtgg tatctttcac acaaggtatg agcagattca 250 ccttgtcccc gctgaacctc cagaggcctg cggggaactc agcaacggtt 300 tcttcatcca ggaccagatt gctctggtgg agagggggg ctgctccttc 350 ctctccaaga ctcgggtggt ccaggagcac ggcgggcggg cggtgatcat 400 ctctgacaac gcagttgaca atgacagctt ctacgtggag atgatccagg 450 acagtaccca gcgcacagct gacatccccg ccctcttcct gctcggccga 500 gacggctaca tgatccgccg ctctctggaa cagcatgggc tgccatgggc 550 catcatttcc atcccagtca atgtcaccag catccccacc tttgagctgc 600 tgcaaccgcc ctggaccttc tggtagaaga gtttgtccca cattccagcc 650 ataagtgact ctgagctggg aaggggaaac ccaggaattt tgctacttgg 700 aatttggaga tagcatctgg ggacaagtgg agccaggtag aggaaaaggg 750 cccagggccc ccaagggtgt ctcatgctac aagaagaggc aagagacagg 850 ccccagggct tctggctaga acccgaaaca aaaggagctg aaggcaggtg 900 gcctgagage catctgtgac ctgtcacact cacctggctc cagcctcccc 950 tacccagggt ctctgcacag tgaccttcac agcagttgtt ggagtggttt 1000 aaagagctgg tgtttgggga ctcaataaac cctcactgac tttttagcaa 1050 taaagcttct catcagggtt gcaaaaaaaa aaaaaaaaa aaaaaaaa 1098

<210> 376

<211> 188

<212> PRT

<213> Homo sapiens

<400> 376

Met Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu 1 5 10 15

Pro Ala Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu
20 25 30

Tyr Phe Gln Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr
35 40 45

Ala Thr Pro Ala Lys Asp Phe Gly Gly Ile Phe His Thr Arg Tyr 50 55 60

Glu Gln Ile His Leu Val Pro Ala Glu Pro Pro Glu Ala Cys Gly
65 70 75

Glu Leu Ser Asn Gly Phe Phe Ile Gln Asp Gln Ile Ala Leu Val $80\,$ $85\,$ 90

Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys Thr Arg Val Val Gln 95 100 105

Glu His Gly Gly Arg Ala Val Ile Ile Ser Asp Asn Ala Val Asp 110 115 120

Asn Asp Ser Phe Tyr Val Glu Met Ile Gln Asp Ser Thr Gln Arg 125 130 135

Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu Gly Arg Asp Gly Tyr
140 145 150

Met Ile Arg Arg Ser Leu Glu Gln His Gly Leu Pro Trp Ala Ile 155 160 165

Ile Ser Ile Pro Val Asn Val Thr Ser Ile Pro Thr Phe Glu Leu 170 175 180

Leu Gln Pro Pro Trp Thr Phe Trp
185

<210> 377

<211> 496

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 396

<223> unknown base

<400> 377

tetgeeteea etgetetgt etgggateat ggaacttgea etgetgtgt 50 ggetggtggt gatggetggt gtgatteeaa teeagggegg gateetgaae 100 etgaacaaga tggteaagea agtgaetggg aaaatgeeea teeteeteeta 150 etggeeetae ggetgteaet geggaetagg tggeagagge caacceaaag 200 atgeeaegga etggtgetge eagaeeeatg aetgetgeta tgaeeaeetg 250 aagaeeeagg ggtgeggeat etacaaggae aacaacaaaa geageataea 300 ttgtatggat ttateteaae getattgtt aatggetgt tttaatgtga 350 teetatetgga aaatgaggae teegaataaa aagetattae tawttnaaaa 400

<210> 378 <211> 116 <212> PRT <213> Homo sapiens <400> 378 Met Glu Leu Ala Leu Leu Cys Gly Leu Val Val Met Ala Gly Val Ile Pro Ile Gln Gly Gly Ile Leu Asn Leu Asn Lys Met Val Lys Gln Val Thr Gly Lys Met Pro Ile Leu Ser Tyr Trp Pro Tyr Gly Cys His Cys Gly Leu Gly Gly Arg Gly Gln Pro Lys Asp Ala Thr Asp Trp Cys Cys Gln Thr His Asp Cys Cys Tyr Asp His Leu Lys Thr Gln Gly Cys Gly Ile Tyr Lys Asp Asn Asn Lys Ser Ser Ile His Cys Met Asp Leu Ser Gln Arg Tyr Cys Leu Met Ala Val Phe Asn Val Ile Tyr Leu Glu Asn Glu Asp Ser Glu 110 <210> 379 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 379 ctgcctccac tgctctgtgc tggg 24 <210> 380 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 380 cagagcagtg gatgttcccc tggg 24

<210> 381

```
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 381
ctgaacaaga tggtcaagca agtgactggg aaaatgccca tcctc 45
<210> 382
<211> 764
<212> DNA
<213> Homo sapiens
<400> 382
 ctcgcttctt ccttctggat gggggcccag ggggcccagg agagtataaa 50
 ggcgatgtgg agggtgcccg gcacaaccag acgcccagtc acaggcgaga 100
 gccctgggat gcaccggcca gaggccatgc tgctgctgct cacgcttgcc 150
 ctcctggggg gccccacctg ggcagggaag atgtatggcc ctggaggagg 200
 caagtatttc agcaccactg aagactacga ccatgaaatc acagggctgc 250
 gggtgtctgt aggtcttctc ctggtgaaaa gtgtccaggt gaaacttgga 300
 gactcctggg acgtgaaact gggagcctta ggtgggaata cccaggaagt 350
 caccetgeag ceaggegaat acateacaaa agtetttgte geetteeaag 400
 ctttcctccg gggtatggtc atgtacacca gcaaggaccg ctatttctat 450
 tttgggaagc ttgatggcca gatctcctct gcctacccca gccaagaggg 500
 gcaggtgctg gtgggcatct atggccagta tcaactcctt ggcatcaaga 550
 gcattggctt tgaatggaat tatccactag aggagccgac cactgagcca 600
 ccagttaatc tcacatactc agcaaactca cccgtgggtc gctagggtgg 650
 ggtatggggc catccgagct gaggccatct gtgtggtggt ggctgatggt 700
 actggagtaa ctgagtcggg acgctgaatc tgaatccacc aataaataaa 750
gcttctgcag aaaa 764
<210> 383
<211> 178
<212> PRT
<213> Homo sapiens
<400> 383
Met His Arg Pro Glu Ala Met Leu Leu Leu Leu Thr Leu Ala Leu
```

Leu Gly Gly Pro Thr Trp Ala Gly Lys Met Tyr Gly Pro Gly Gly 30

Gly Lys Tyr Phe Ser Thr Thr Glu Asp Tyr Asp His Glu Ile Thr 35

Gly Leu Arg Val Ser Val Gly Leu Leu Leu Val Lys Ser Val Gln

Val Lys Leu Gly Asp Ser Trp Asp Val Lys Leu Gly Ala Leu Gly
65 70 75

Gly Asn Thr Gln Glu Val Thr Leu Gln Pro Gly Glu Tyr Ile Thr 80 85 90

Lys Val Phe Val Ala Phe Gln Ala Phe Leu Arg Gly Met Val Met 95 100 105

Tyr Thr Ser Lys Asp Arg Tyr Phe Tyr Phe Gly Lys Leu Asp Gly
110 115 120

Gln Ile Ser Ser Ala Tyr Pro Ser Gln Glu Gly Gln Val Leu Val 125 130 135

Gly Ile Tyr Gly Gln Tyr Gln Leu Leu Gly Ile Lys Ser Ile Gly
140 145 150

Phe Glu Trp Asn Tyr Pro Leu Glu Glu Pro Thr Thr Glu Pro Pro 155 160 165

Val Asn Leu Thr Tyr Ser Ala Asn Ser Pro Val Gly Arg 170 175

<210> 384

<211> 2379

<212> DNA

<213> Homo sapiens

<400> 384

getgagegtg tgegeggtae ggggetetee tgeettetgg getecaaege 50 agetetgtgg etgaaetggg tgeteateae gggaaetget gggetatgga 100 atacagatgt ggcageteag gtageeceaa attgeetgga agaatacate 150 atgttteg ataagaagaa attgtaggat eeagttttt ttttaaeege 200 eeeeteeea eeeeeaaa aaaetgtaaa gatgeaaaaa egtaatatee 250 atgaagatee tattaeetag gaagattttg atgttteget gegaatgegg 300 tgttgggatt tatttgttet tggagtgte tgegtggetg geaaagaata 350 atgteeaaa ateggteeat eteceaaggg gteeaatttt tetteetggg 400 tgteagegag eeetgaeetea etaeagtgea getgaeaggg getgteatge 450

aactggcccc taagccaaag caaaagacct aaggacgacc tttgaacaat 500 acaaaggatg ggtttcaatg taattaggct actgagcgga tcagctgtag 550 cactggttat agccccact gtcttactga caatgctttc ttctgccgaa 600 cgaggatgcc ctaagggctg taggtgtgaa ggcaaaatgg tatattgtga 650 atctcagaaa ttacaggaga taccctcaag tatatctgct ggttgcttag 700 gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750 aaagggetea accageteae etggetatae ettgaeeata accatateag 800 caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850 ttcttagttc caatagaatc tcctattttc ttaacaatac cttcagacct 900 gtgacaaatt tacggaactt ggatctgtcc tataatcagc tgcattctct 950 gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000 ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050 aacctggaac ttttggacct gggatataac cggatccgaa gtttagccag 1100 gaatgtettt getggeatga teagaeteaa agaaetteae etggageaea 1150 atcaattttc caagctcaac ctggcccttt ttccaaggtt ggtcagcctt 1200 cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250 gtcctggacc tggagctcct tacaaaggct tgatttatca ggcaatgaga 1300 tcgaagcttt cagtggaccc agtgttttcc agtgtgtccc gaatctgcag 1350 cgcctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400 ggattcttgg atatccctca atgacatcag tcttgctggg aatatatggg 1450 aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500 ggtctaaggg agaatacaat tatctgtgcc agtcccaaag agctgcaagg 1550 agtaaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600 ctacagagag gtttgatctg gccagggctc tcccaaagcc gacgtttaag 1650 cccaagetee ecaggeegaa geatgagage aaaceceett tgeceeegae 1700 ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750 tctctttcca taaaatcatc gcgggcagcg tggcgctttt cctgtccgtg 1800 ctcgtcatcc tgctggttat ctacgtgtca tggaagcggt accctgcgag 1850 catgaagcag ctgcagcagc gctccctcat gcgaaggcac aggaaaaaga 1900

aaagacagtc cctaaagcaa atgactccca gcacccagga attttatgta 1950 gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatgggac 2000 gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050 ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100 ttgaactctg gtgactatca agggaacgcg atgcccccc tccccttccc 2150 tctccctcc actttggtgg caagatcctt ccttgtccgt tttagtgcat 2200 tcataatact ggtcatttc ctctcataca taatcaaccc attgaaattt 2250 aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300 ttgtataaga ccctttactg attccattaa tgtcgcattt gttttaagat 2350 aaaacttctt tcataggtaa aaaaaaaaa 2379

<210> 385

<211> 513

<212> PRT

<213> Homo sapiens

<400> 385

Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala 1 5 10 15

Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala 20 25 30

Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val 35 40 45

Tyr Cys Glu Ser Gln Lys Leu Gln Glu Ile Pro Ser Ser Ile Ser 50 55 60

Ala Gly Cys Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Gln Lys
65 70 75

Leu Lys Tyr Asn Gln Phe Lys Gly Leu Asn Gln Leu Thr Trp Leu 80 85 90

Tyr Leu Asp His Asn His Ile Ser Asn Ile Asp Glu Asn Ala Phe 95 100 105

Asn Gly Ile Arg Arg Leu Lys Glu Leu Ile Leu Ser Ser Asn Arg 110 115 120

Ile Ser Tyr Phe Leu Asn Asn Thr Phe Arg Pro Val Thr Asn Leu 125 130 135

Arg Asn Leu Asp Leu Ser Tyr Asn Gln Leu His Ser Leu Gly Ser 140 145 150

Glu	Gln	Phe	Arg	Gly 155	Leu	Arg	Lys	Leu	Leu 160	Ser	Leu	His	Leu	Arg 165
Ser	Asn	Ser	Leu	Arg 170	Thr	Ile	Pro	Val	Arg 175	Ile	Phe	Gln	Asp	Cys 180
Arg	Asn	Leu	Glu	Leu 185	Leu	Asp	Leu	Gly	Tyr 190	Asn	Arg	Ile	Arg	Ser 195
Leu	Ala	Arg	Asn	Val 200	Phe	Ala	Gly	Met	Ile 205	Arg	Leu	Lys	Glu	Leu 210
His	Leu	Glu	His	Asn 215	Gln	Phe	Ser	Lys	Leu 220	Asn	Leu	Ala	Leu	Phe 225
Pro	Arg	Leu	Val	Ser 230	Leu	Gln	Asn	Leu	Tyr 235	Leu	Gln	Trp	Asn	Lys 240
Ile	Ser	Val	Ile	Gly 245	Gln	Thr	Met	Ser	Trp 250	Thr	Trp	Ser	Ser	Leu 255
Gln	Arg	Leu	Asp	Leu 260	Ser	Gly	Asn	Glu	Ile 265	Glu	Ala	Phe	Ser	Gly 270
Pro	Ser	Val	Phe	Gln 275	Суѕ	Val	Pro	Asn	Leu 280	Gln	Arg	Leu	Asn	Leu 285
Asp	Ser	Asn	Lys	Leu 290	Thr	Phe	Ile	Gly	Gln 295	Glu	Ile	Leu	Asp	Ser 300
Trp	Ile	Ser	Leu	Asn 305	Asp	Ile	Ser	Leu	Ala 310	Gly	Asn	Ile	Trp	Glu 315
Cys	Ser	Arg	Asn	Ile 320	Cys	Ser	Leu	Val	Asn 325	Trp	Leu	Lys	Ser	Phe 330
Lys	Gly	Leu	Arg	Glu 335	Asn	Thr	Ile	Ile	Cys 340	Ala	Ser	Pro	Lys	Glu 345
Leu	Gln	Gly	Val	Asn 350	Val	Ile	Asp	Ala	Val 355	Lys	Asn	Tyr	Ser	11e 360
Cys	Gly	Lys	Ser	Thr 365	Thr	Glu	Arg	Phe	Asp 370	Leu	Ala	Arg	Ala	Leu 375
Pro	Lys	Pro	Thr	Phe 380	Lys	Pro	Lys	Leu	Pro 385	Arg	Pro	Lys	His	Glu 390
Ser	Lys	Pro	Pro	Leu 395	Pro	Pro	Thr	Val	Gly 400	Ala	Thr	Glu	Pro	Gly 405
Pro	Glu	Thr	Asp	Ala 410	Asp	Ala	Glu	His	Ile 415	Ser	Phe	His	Lys	Ile 420
Ile	Ala	Gly	Ser	Val 425	Ala	Leu	Phe	Leu	Ser 430	Val	Leu	Val	Ile	Leu 435

```
Leu Val Ile Tyr Val Ser Trp Lys Arg Tyr Pro Ala Ser Met Lys
                 440
 Gln Leu Gln Gln Arg Ser Leu Met Arg Arg His Arg Lys Lys
                                      460
 Arg Gln Ser Leu Lys Gln Met Thr Pro Ser Thr Gln Glu Phe Tyr
                                      475
                 470
 Val Asp Tyr Lys Pro Thr Asn Thr Glu Thr Ser Glu Met Leu Leu
                                      490
                 485
 Asn Gly Thr Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu
 Cys Glu Val
<210> 386
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 386
 ctgggatctg aacagtttcg gggc 24
<210> 387
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
ggtccccagg acatggtctg tccc 24
<210> 388
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 388
gctgagttta catttacggt ctaactccct gagaaccatc cctgtgcg 48
<210> 389
<211> 1449
<212> DNA
<213> Homo sapiens
```

<400> 389

agttctgaga aagaaggaaa taaacacagg caccaaacca ctatcctaag 50 ttgactgtcc tttaaatatg tcaagatcca gacttttcag tgtcacctca 100 gcgatctcaa cgatagggat cttgtgtttg ccgctattcc agttggtgct 150 ctcggaccta ccatgcgaag aagatgaaat gtgtgtaaat tataatgacc 200 aacaccctaa tggctggtat atctggatcc tcctgctgct ggttttggtg 250 gcagetette tetgtggage tgtggteete tgeeteeagt getggetgag 300 gagaccccga attgattctc acaggcgcac catggcagtt tttgctgttg 350 gagacttgga ctctatttat gggacagaag cagctgtgag tccaactgtt 400 ggaattcacc ttcaaactca aacccctgac ctatatcctg ttcctgctcc 450 atgttttggc cctttaggct ccccacctcc atatgaagaa attgtaaaaa 500 caacctgatt ttaggtgtgg attatcaatt taaagtatta acgacatctg 550 taattccaaa acatcaaatt taggaatagt tatttcagtt gttggaaatg 600 tccagagatc tattcatata gtctgaggaa ggacaattcg acaaaagaat 650 ggatgttgga aaaaattttg gtcatggaga tgtttaaata gtaaagtagc 700 aggettttga tgtgtcactg etgtateata ettttatget acacaaccaa 750 attaatgctt ctccactagt atccaaacag gcaacaatta ggtgctggaa 800 gtagtttcca tcacatttag gactccactg cagtatacag cacaccattt 850 tctgctttaa actctttcct agcatggggt ccataaaaat tattataatt 900 taacaatago ccaagoogag aatocaacat gtocagaaco agaaccagaa 950 agatagtatt tgaatgaagg tgaggggaga gagtaggaaa aagaaaagtt 1000 tggagttgaa gggtaaagga taaatgaaga ggaaaaggaa aagattacaa 1050 gtctcagcaa aaacaagagg ttttatgccc caacctgaag aggaagaaat 1100 tgtagataga aggtgaagga gattgctgaa gatatagagc acatataatg 1150 ccaacacggg gagaaaagaa aatttcccct tttacagtaa tqaatqtgqc 1200 ctccatagtc catagtgttt ctctggagcc tcagggcttg gcatttattg 1250 cagcatcatg ctaagaacct tcggcatagg tatctgttcc catgaggact 1300 gcagaagtag caatgagaca tetteaagtg geattttgge agtggeeate 1350 agcaggggga cagacaaaaa catccatcac agatgacata tgatcttcag 1400 ctgacaaatt tgttgaacaa aacaataaac atcaatagat atctaaaaa 1449

```
<210> 390
<211> 146
<212> PRT
<213> Homo sapiens
<400> 390
 Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr
 Ile Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp
 Leu Pro Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln
 His Pro Asn Gly Trp Tyr Ile Trp Ile Leu Leu Leu Val Leu
 Val Ala Ala Leu Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys
 Trp Leu Arg Arg Pro Arg Ile Asp Ser His Arg Arg Thr Met Ala
 Val Phe Ala Val Gly Asp Leu Asp Ser Ile Tyr Gly Thr Glu Ala
 Ala Val Ser Pro Thr Val Gly Ile His Leu Gln Thr Gln Thr Pro
 Asp Leu Tyr Pro Val Pro Ala Pro Cys Phe Gly Pro Leu Gly Ser
                                     130
 Pro Pro Pro Tyr Glu Glu Ile Val Lys Thr Thr
<210> 391
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 391
cttttcagtg tcacctcagc gatctc 26
<210> 392
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

<400> 392

```
ccaaaacatg gagcaggaac agg 23
```

- <210> 393
 <211> 47
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 393
 ccagttggtg ctctcggacc taccatgcga agaagatgaa atgtgtg 47
- <210> 394 <211> 2340 <212> DNA
- <213> Homo sapiens
- <400> 394 gagcggagta aaatctccac aagctgggaa caaacctcgt cccaactccc 50 acceaecgge gttteteeag etegatetgg aggetgette geeagtgtgg 100 gacgcagctg acgcccgctt attagctctc gctgcgtcgc cccggctcag 150 aagctccgtg gcggcggcga ccgtgacgag aagcccacgg ccagctcagt 200 tctcttctac tttgggagag agagaaagtc agatgcccct tttaaactcc 250 ctcttcaaaa ctcatctcct gggtgactga gttaatagag tggatacaac 300 cttgctgaag atgaagaata tacaatattg aggatatttt tttcttttt 350 ttttcaagtc ttgatttgtg gcttacctca agttaccatt tttcagtcaa 400 gtctgtttgt ttgcttcttc agaaatgttt tttacaatct caagaaaaaa 450 tatgtcccag aaattgagtt tactgttgct tgtatttgga ctcatttggg 500 gattgatgtt actgcactat acttttcaac aaccaagaca tcaaagcagt 550 gtcaagttac gtgagcaaat actagactta agcaaaagat atgttaaagc 600 tetageagag gaaaataaga acacagtgga tgtegagaac ggtgetteta 650 tggcaggata tgcggatctg aaaagaacaa ttgctgtcct tctggatgac 700 attttgcaac gattggtgaa gctggagaac aaagttgact atattgttgt 750 gaatggctca gcagccaaca ccaccaatgg tactagtggg aatttggtgc 800 cagtaaccac aaataaaaga acgaatgtct cgggcagtat cagatagcag 850 ttgaaaatca ccttgtgctg ctccatccac tgtggattat atcctatggc 900 agaaaagctt tataattgct ggcttaggac agagcaatac tttacaataa 950

aagctctaca cattttcaag gagtatgctg gattcatgga actctaattc 1000 tgtacataaa aattttaaag ttatttgttt gctttcaggc aagtctgttc 1050 aatgctgtac tatgtcctta aagagaattt ggtaacttgg ttgatgtggt 1100 aagcagatag gtgagttttg tataaatctt ttgtgtttga gatcaagctg 1150 aaatgaaaac actgaaaaac atggattcat ttctataaca catttattta 1200 agtatataac acgttttttg gacaagtgaa gaatgtttaa tcattctgtc 1250 atttgttctc aatagatgta actgttagac tacggctatt tgaaaaaatg 1300 tgcttattgt actatatttt gttattccaa ttatgagcag agaaaggaaa 1350 tataatgttg aaaataatgt tttgaaatca tgacccaaag aatgtattga 1400 tttqcactat ccttcaqaat aactqaaqqt taattattqt atatttttaa 1450 aaattacact tataagagta taatcttgaa atgggtagca gccactgtcc 1500 attacctatc qtaaacattq qqqcaattta ataacaqcat taaaataqtt 1550 gtaaactcta atcttatact tattgaagaa taaaagatat ttttatgatg 1600 agaqtaacaa taaaqtattc atgatttttc acatacatga atgttcattt 1650 aaaagtttaa tootttgagt gtotatgota toaggaaago acattattto 1700 catatttggg ttaattttgc ttttattata ttggtctagg aggaagggac 1750 tttggagaat ggaactcttg aggactttag ccaggtgtat ataataaagg 1800 taagagtatc ctttatgaaa ttttgaattt gtataacaga tgcattagat 1900 attcatttta tataatggcc acttaaaata agaacattta aaatataaac 1950 tatgaagatt gactatcttt tcaggaaaaa agctgtatat agcacaggga 2000 accetaatet tgggtaatte tagtataaaa caaattatae ttttatttaa 2050 atttcccttg tagcaaatct aattgccaca tggtgcccta tatttcatag 2100 tatttattct ctatagtaac tgcttaagtg cagctagctt ctagatttag 2150 actatataga atttagatat tgtattgttc gtcattataa tatgctacca 2200 catgtagcaa taattacaat attttattaa aataaatatg tgaaatattg 2250 acctttatgt gaagaaatta attatatgcc attgccaggt 2340

<211> 140

<212> PRT

<213> Homo sapiens

<400> 395

Met Phe Phe Thr Ile Ser Arg Lys Asn Met Ser Gln Lys Leu Ser 1 5 10 15

Leu Leu Leu Val Phe Gly Leu Ile Trp Gly Leu Met Leu Leu 20 25 30

His Tyr Thr Phe Gln Gln Pro Arg His Gln Ser Ser Val Lys Leu 35 40 45

Arg Glu Gln Ile Leu Asp Leu Ser Lys Arg Tyr Val Lys Ala Leu 50 55 60

Ala Glu Glu Asn Lys Asn Thr Val Asp Val Glu Asn Gly Ala Ser
65 70 75

Met Ala Gly Tyr Ala Asp Leu Lys Arg Thr Ile Ala Val Leu Leu 80 85 90

Asp Asp Ile Leu Gln Arg Leu Val Lys Leu Glu Asn Lys Val Asp 95 100 105

Tyr Ile Val Val Asn Gly Ser Ala Ala Asn Thr Thr Asn Gly Thr
110 115 120

Ser Gly Asn Leu Val Pro Val Thr Thr Asn Lys Arg Thr Asn Val 125 130 135

Ser Gly Ser Ile Arg

<210> 396

<211> 2639

<212> DNA

<213> Homo sapiens

<400> 396

cgcggccggg ccgccgggt gagcgtgccg aggcggctgt ggcgcaggct 50
tccagcccc accatgccgt ggcccctgct gctgctgctg gccgtgagtg 100
gggcccagac aacccggcca tgcttccccg ggtgccaatg cgaggtggag 150
accttcggcc ttttcgacag cttcagcctg actcgggtgg attgtagcgg 200
cctgggccc cacatcatgc cggtgcccat ccctctggac acagcccact 250
tggacctgtc ctccaaccgg ctggagatgg tgaatgagtc ggtgttggcg 300
gggccgggct acacgacgtt ggctggcctg gatctcagcc acaacctgct 350
caccagcatc tcacccactg ccttctcccg ccttcgctac ctggagtcgc 400

ttgacctcag ccacaatggc ctgacagccc tgccagccga gagcttcacc 450 ageteaceee tgagegaegt gaacettage cacaaceage teegggaggt 500 ctcagtgtct gccttcacga cgcacagtca gggccgggca ctacacgtgg 550 acctctccca caacctcatt caccgcctcg tgccccaccc cacgagggcc 600 ggcctgcctg cgcccaccat tcagagcctg aacctggcct ggaaccggct 650 ccatgccgtg cccaacctcc gagacttgcc cctgcgctac ctgagcctgg 700 atgggaaccc tctagctgtc attggtccgg gtgccttcgc ggggctggga 750 ggccttacac acctgtctct ggccagcctg cagaggctcc ctgagctggc 800 geocagtgge tteegtgage tacegggeet geaggteetg gacetgtegg 850 gcaaccccaa gcttaactgg gcaggagctg aggtgttttc aggcctgagc 900 teectgeagg agetggaeet ttegggeaee aacetggtge eeetgeetga 950 ggcgctgctc ctccacctcc cggcactgca gagcgtcagc gtgggccagg 1000 atgtgcggtg ccggcgcctg gtgcgggagg gcacctaccc ccggaggcct 1050 ggctccagcc ccaaggtgcc cctgcactgc gtagacaccc gggaatctgc 1100 tgccaggggc cccaccatct tgtgacaaat ggtgtggccc agggccacat 1150 aacagactgc tgtcctgggc tgcctcaggt cccgagtaac ttatgttcaa 1200 tgtgccaaca ccagtgggga gcccgcaggc ctatgtggca gcgtcaccac 1250 aggagttgtg ggcctaggag aggctttgga cctgggagcc acacctagga 1300 gcaaagtctc accepttgt ctacgttgct tececaaace atgageagag 1350 ggacttcgat gccaaaccag actcgggtcc cctcctgctt cccttcccca 1400 cttatccccc aagtgccttc cctcatgcct gggccggcct gacccgcaat 1450 gggcagaggg tgggtgggac cccctgctgc agggcagagt tcaggtccac 1500 tgggctgagt gtccccttgg gcccatggcc cagtcactca ggggcgagtt 1550 tettttetaa catageeett tetttgeeat gaggeeatga ggeeegette 1600 atccttttct atttccctag aaccttaatg gtagaaggaa ttgcaaagaa 1650 tcaagtccac ccttctcatg tgacagatgg ggaaactgag gccttgagaa 1700 ggaaaaaggc taatctaagt teetgeggge agtggeatga etggageaca 1750 gcctcctgcc tcccagcccg gacccaatgc actttcttgt ctcctctaat 1800 aagccccacc ctccccgcct gggctcccct tgctgccctt gcctgttccc 1850

cattagcaca ggagtagcag cagcaggaca ggcaagagcc tcacaagtgg 1900 gactctgggc ctctgaccag ctgtgcggca tgggctaagt cactctgccc 1950 ttcggagcct ctggaagctt agggcacatt ggttccagcc tagccagttt 2000 ctcaccetgg gttggggtcc cccagcatcc agactggaaa cctacccatt 2050 ttcccctgag catcctctag atgctgcccc aaggagttgc tgcagttctg 2100 gagecteate tggetgggat etceaagggg ecteetggat teagteceea 2150 ctggccctga gcacgacagc ccttcttacc ctcccaggaa tgccgtgaaa 2200 ggagacaagg totgoogac coatgtotat gototacccc cagggcagca 2250 tctcagcttc cgaaccctgg gctgtttcct tagtcttcat tttataaaag 2300 ttgttgcctt tttaacggag tgtcactttc aaccggcctc ccctacccct 2350 gctggccggg gatggagaca tgtcatttgt aaaagcagaa aaaggttgca 2400 tttgttcact tttgtaatat tgtcctgggc ctgtgttggg gtgttggggg 2450 aagctgggca tcagtggcca catgggcatc aggggctggc cccacagaga 2500 ccccacaggg cagtgagete tgtetteeec cacetgeeta geccateate 2550 tatctaaccg gtccttgatt taataaacac tataaaaggt ttaaaaaaaa 2600 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2639

<210> 397

<211> 353

<212> PRT

<213> Homo sapiens

<400> 397

Met Pro Trp Pro Leu Leu Leu Leu Leu Ala Val Ser Gly Ala Gln
1 5 10 15

Thr Thr Arg Pro Cys Phe Pro Gly Cys Gln Cys Glu Val Glu Thr
20 25 30

Phe Gly Leu Phe Asp Ser Phe Ser Leu Thr Arg Val Asp Cys Ser 35 40 45

Gly Leu Gly Pro His Ile Met Pro Val Pro Ile Pro Leu Asp Thr 50 55 60

Ala His Leu Asp Leu Ser Ser Asn Arg Leu Glu Met Val Asn Glu 65 70 75

Ser Val Leu Ala Gly Pro Gly Tyr Thr Thr Leu Ala Gly Leu Asp 80 85 90

	Leu	Ser	His	Asn	Leu 95	Leu	Thr	Ser	Ile	Ser 100	Pro	Thr	Ala	Phe	Ser 105
	Arg	Leu	Arg	Tyr	Leu 110	Glu	Ser	Leu	Asp	Leu 115	Ser	His	Asn	Gly	Leu 120
	Thr	Ala	Leu	Pro	Ala 125	Glu	Ser	Phe	Thr	Ser 130	Ser	Pro	Leu	Ser	Asp 135
	Val	Asn	Leu	Ser	His 140	Asn	Gln	Leu	Arg	Glu 145	Val	Ser	Val	Ser	Ala 150
	Phe	Thr	Thr	His	Ser 155	G1n	Gly	Arg	Ala	Leu 160	His	Val	Asp	Leu	Ser 165
	His	Asn	Leu	Ile	His 170	Arg	Leu	Val	Pro	His 175	Pro	Thr	Arg	Ala	Gly 180
	Leu	Pro	Ala	Pro	Thr 185	Ile	Gln	Ser	Leu	Asn 190	Leu	Ala	Trp	Asn	Arg 195
	Leu	His	Ala	Val	Pro 200	Asn	Leu	Arg	Asp	Leu 205	Pro	Leu	Arg	Tyr	Leu 210
	Ser	Leu	Asp	Gly	Asn 215	Pro	Leu	Ala	Val	Ile 220	Gly	Pro	Gly	Ala	Phe 225
	Ala	Gly	Leu	Gly	Gly 230	Leu	Thr	His	Leu	Ser 235	Leu	Ala	Ser	Leu	Gln 240
	Arg	Leu	Pro	Glu	Leu 245	Ala	Pro	Ser	Gly	Phe 250	Arg	Glu	Leu	Pro	Gly 255
	Leu	Gln	Val	Leu	Asp 260	Leu	Ser	Gly	Asn	Pro 265	Lys	Leu	Asn	Trp	Ala 270
	Gly	Ala	Glu	Val	Phe 275	Ser	Gly	Leu	Ser	Ser 280	Leu	Gln	Glu	Leu	Asp 285
	Leu	Ser	Gly	Thr	Asn 290	Leu	Val	Pro	Leu	Pro 295	Glu	Ala	Leu	Leu	Leu 300
	His	Leu	Pro	Ala	Leu 305	Gln	Ser	Val	Ser	Val 310	Gly	Gln	Asp	Val	Arg 315
	Cys	Arg	Arg	Leu	Val 320	Arg	Glu	Gly	Thr	Tyr 325	Pro	Arg	Arg	Pro	Gly 330
	Ser	Ser	Pro	Lys	Val 335	Pro	Leu	His	Cys	Val 340	Asp	Thr	Arg	Glu	Ser 345
	Ala	Ala	Arg	Gly	Pro 350	Thr	Ile	Leu							
_	210	. 200)												

<210> 398 <211> 23 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
ccctgccagc cgagagette acc 23
<210> 399
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 399
ggttggtgcc cgaaaggtcc agc 23
<210> 400
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 400
caaccccaag cttaactggg caggagctga ggtgttttca ggcc 44
<210> 401
<211> 1571
<212> DNA
<213> Homo sapiens
<400> 401
gatggcgcag ccacagette tgtgagatte gatttetece cagtteecet 50
gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100
gaggetatat gegteaatte eecaaaacaa gttttgacat tteeeetgaa 150
atgtcattct ctatctattc actgcaagtg cctgctgttc caggccttac 200
ctgctgggca ctaacggcgg agccaggatg gggacagaat aaaggagcca 250
cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
ttctcttcac gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350
tttcaggcct aagatgaaag cctctagtct tgccttcagc cttctctctg 400
ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
ttgggaagct gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500
ttctgagata cggggcagtg tgcaagccaa agatggaaac attgacatca 550
```

gaatcttaag gaggactgag tctttgcaag acacaaagcc tgcgaatcga 600 tgctgcctcc tgcgccattt gctaagactc tatctggaca gggtatttaa 650 aaactaccag acccetgace attatactet eeggaagate ageageeteg 700 ccaatteett tettaceate aagaaggace teeggetete teatgeeeae 750 atgacatgcc attgtgggga ggaagcaatg aagaaataca gccagattct 800 gagtcacttt qaaaagctqq aacctcagqc aqcaqttqtq aaqqctttqq 850 gggaactaga cattcttctg caatggatgg aggagacaga ataggaggaa 900 agtgatgctg ctgctaagaa tattcqaggt caaqagctcc agtcttcaat 950 acctgcagag gaggcatgac cccaaaccac catctcttta ctgtactagt 1000 cttgtgctgg tcacagtgta tcttatttat gcattacttg cttccttgca 1050 tgattgtctt tatgcatccc caatcttaat tgagaccata cttgtataag 1100 atttttgtaa tatctttctg ctattggata tatttattag ttaatatatt 1150 tatttattt ttgctattta atgtatttat ttttttactt ggacatgaaa 1200 ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250 gtatttttat acagtaaaaa aaaaaaacct tgtaaattct aqaaqagtgg 1300 ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350 gatgctctgt gagatatttg aaattgaacc aatgactact taggatggt 1400 tgtggaataa gttttgatgt ggaattgcac atctacctta caattactga 1450 ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500 aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550 ccaaaaaaa aaaaaaaaa a 1571

```
<210> 402
```

<400> 402

Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met

1 5 10 15

Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu
20 25 30

Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys
35 40 45

<211> 261

<212> PRT

<213> Homo sapiens

Gly Ala Thr Thr Cys Ala Thr Asn Ser His Ser Asp Ser Glu Leu 50 Arg Pro Glu Ile Phe Ser Ser Arg Glu Ala Trp Gln Phe Phe Leu 65 Leu Leu Trp Ser Pro Asp Phe Arg Pro Lys Met Lys Ala Ser Ser Leu Ala Phe Ser Leu Leu Ser Ala Ala Phe Tyr Leu Leu Trp Thr 95 100 Pro Ser Thr Gly Leu Lys Thr Leu Asn Leu Gly Ser Cys Val Ile Ala Thr Asn Leu Gln Glu Ile Arg Asn Gly Phe Ser Glu Ile Arg Gly Ser Val Gln Ala Lys Asp Gly Asn Ile Asp Ile Arg Ile Leu Arg Arg Thr Glu Ser Leu Gln Asp Thr Lys Pro Ala Asn Arg Cys 160 Cys Leu Leu Arg His Leu Leu Arg Leu Tyr Leu Asp Arg Val Phe 170 175 Lys Asn Tyr Gln Thr Pro Asp His Tyr Thr Leu Arg Lys Ile Ser 185 190 Ser Leu Ala Asn Ser Phe Leu Thr Ile Lys Lys Asp Leu Arg Leu Ser His Ala His Met Thr Cys His Cys Gly Glu Glu Ala Met Lys 220 225 Lys Tyr Ser Gln Ile Leu Ser His Phe Glu Lys Leu Glu Pro Gln 230 Ala Ala Val Val Lys Ala Leu Gly Glu Leu Asp Ile Leu Leu Gln 250 Trp Met Glu Glu Thr Glu 260 <210> 403 <211> 28 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe

<400> 403

ctcctgtggt ctccagattt caggccta 28

<210> 404 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 404 agtcctcctt aagattctga tgtcaa 26 <210> 405 <211> 998 <212> DNA <213> Homo sapiens <400> 405 ccgttatcgt cttgcgctac tgctgaatgt ccgtcccgga ggaggaggag 50 aggettttgc cgctgaccca gagatggccc cgagcgagca aattectact 100 gtccggctgc gcggctaccg tggccgagct agcaaccttt cccctggatc 150 tcacaaaaac tcgactccaa atgcaaggag aagcagctct tgctcggttg 200 ggagacggtg caagagaatc tgccccctat aggggaatgg tgcgcacagc 250 cctagggatc attgaagagg aaggctttct aaagctttgg caaggagtga 300 caccegocat ttacagacac gtagtgtatt ctggaggtcg aatggtcaca 350 tatgaacatc tccgagaggt tgtgtttggc aaaagtgaag atgagcatta 400 tcccctttgg aaatcagtca ttggagggat gatggctggt gttattggcc 450 agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500 ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550 tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600 gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650 accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700 ggacaatatc atgactcacg gtttatcaag tttatgttct ggactggtag 750 cttctattct gggaacacca gccgatgtca tcaaaagcag aataatgaat 800 caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850 ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900 gctttttacc atcttggctg agaatgaccc cttggtcaat ggtgttctgg 950 cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998

<211> 323 <212> PRT <213> Homo sapiens <400> 406 Met Ser Val Pro Glu Glu Glu Glu Arg Leu Leu Pro Leu Thr Gln Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr Arg Leu Gln Met Gln Gly Glu Ala Ala Leu Ala Arg Leu Gly Asp Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Arg Thr Ala Leu Gly Ile Ile Glu Glu Glu Gly Phe Leu Lys Leu Trp Gln Gly Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Lys Ser 115 Glu Asp Glu His Tyr Pro Leu Trp Lys Ser Val Ile Gly Gly Met Met Ala Gly Val Ile Gly Gln Phe Leu Ala Asn Pro Thr Asp Leu Val Lys Val Gln Met Gln Met Glu Gly Lys Arg Lys Leu Glu Gly Lys Pro Leu Arg Phe Arg Gly Val His His Ala Phe Ala Lys Ile 170 Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp Ala Gly Trp Val Pro Asn Ile Gln Arg Ala Ala Leu Val Asn Met Gly Asp Leu Thr Thr 200 Tyr Asp Thr Val Lys His Tyr Leu Val Leu Asn Thr Pro Leu Glu 220 Asp Asn Ile Met Thr His Gly Leu Ser Ser Leu Cys Ser Gly Leu Val Ala Ser Ile Leu Gly Thr Pro Ala Asp Val Ile Lys Ser Arg

<210> 406

```
Ile Met Asn Gln Pro Arg Asp Lys Gln Gly Arg Gly Leu Leu Tyr
Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala Val Gln Gly Glu Gly
                 275
 Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro Ser Trp Leu Arg Met
                 290
Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg
                 305
                                     310
Glu Met Ser Gly Val Ser Pro Phe
                 320
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
cgcggatccc gttatcgtct tgcgctactg c 31
<210> 408
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
gcggaattct taaaatggac tgactccact catc 34
<210> 409
<211> 1487
<212> DNA
<213> Homo sapiens
<400> 409
cggacgcgtg ggcgcgggac gccggcaggg ttgtggcgca gcagtctcct 50
tcctgcgcgc gcgcctgaag tcggcgtggg cgtttgagga agctgggata 100
cagcatttaa tgaaaaattt atgcttaaga agtaaaaatg gcaggcttcc 150
 tagataattt tcgttggcca gaatgtgaat gtattgactg gagtgagaga 200
agaaatgctg tggcatctgt tgtcgcaggt atattgtttt ttacaggctg 250
gtggataatg attgatgcag ctgtggtgta tcctaagcca gaacagttga 300
 accatgcctt tcacacatgt ggtgtatttt ccacattggc tttcttcatg 350
```

ataaatgctg tatccaatgc tcaggtgaga ggtgatagct atgaaagcgg 400 ctgtttagga agaacaggtg ctcgagtttg gcttttcatt ggtttcatgt 450 tgatgtttgg gtcacttatt gcttccatgt ggattctttt tggtgcatat 500 qttacccaaa atactgatqt ttatccggga ctagctqtqt tttttcaaaa 550 tgcacttata ttttttagca ctctgatcta caaatttgga agaaccgaaq 600 agctatggac ctgagatcac ttcttaagtc acattttcct tttgttatat 650 tctgtttgta gataggtttt ttatctctca gtacacattg ccaaatggag 700 tagattgtac attaaatgtt ttgtttcttt acatttttat gttctgagtt 750 ttgaaatagt tttatgaaat ttctttattt ttcattgcat agactgttaa 800 tatgtatata atacaagact atatgaattg gataatgagt atcagttttt 850 tattcctgag atttagaact tgatctactc cctgagccag ggttacatca 900 tcttgtcatt ttagaagtaa ccactcttgt ctctctggct gggcacggtg 950 gctcatgcct gtaatcccag cactttggga ggccgaggcg ggccgattgc 1000 ttgaggtcaa gtgtttgaga ccagcctggc caacatggcg aaaccccatc 1050 tactaaaaat acaaaaatta gccaggcatg gtggtgggtg cctgtaatcc 1100 cagctacctg ggaggctgag gcaggagaat cgcttgaacc cggggggcag 1150 aggttgcagt gagctgagtt tgcgccactg cactctagcc tgqqqqaqaa 1200 agtgaaactc cctctcaaaa aaaagaccac tctcagtatc tctgatttct 1250 gaagatgtac aaaaaaatat agcttcatat atctggaatg agcactgagc 1300 cataaaaggt tttcagcaag ttgtaactta ttttggccta aaaatgaggt 1350 ttttttggta aagaaaaat atttgttctt atgtattgaa gaagtgtact 1400 tttatataat gatttttaa atgcccaaag gactagtttg aaagcttctt 1450 ttaaaaagaa ttcctctaat atgactttat gtgagaa 1487

<210> 410

<211> 158

<212> PRT

<213> Homo sapiens

<400> 410

Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys 1 5 10 15

Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala
20 25 30

```
Gly Ile Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala
Val Val Tyr Pro Lys Pro Glu Gln Leu Asn His Ala Phe His Thr
Cys Gly Val Phe Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val
 Ser Asn Ala Gln Val Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu
Gly Arg Thr Gly Ala Arg Val Trp Leu Phe Ile Gly Phe Met Leu
Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala
                 110
                                     115
 Tyr Val Thr Gln Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe
                 125
 Phe Gln Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe
                                     145
                 140
Gly Arg Thr Glu Glu Leu Trp Thr
<210> 411
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
gtttgaggaa gctgggatac 20
<210> 412
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 412
ccaaactcga gcacctgttc 20
<210> 413
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

<400> 413
atggcaggct tcctagataa ttttcgttgg ccagaatgtg 40

<210> 414 <211> 1337 <212> DNA

<213> Homo sapiens

<400> 414

gttgatggca aacttcctca aaggagggc agagcctgcg cagggcagga 50 geagetggee cactggegge eegeaacaet eegteteace etetgggeee 100 actgcatcta gaggagggcc gtctgtgagg ccactacccc tccagcaact 150 gggaggtggg actgtcagaa gctggcccag ggtggtggtc agctgggtca 200 gggacctacg gcacctgctg gaccacctcg ccttctccat cgaagcaggg 250 aagtgggagc ctcgagccct cgggtggaag ctgaccccaa gccacccttc 300 acctggacag gatgagagtg tcaggtgtgc ttcgcctcct ggccctcatc 350 tttgccatag tcacgacatg gatgtttatt cgaagctaca tgagcttcag 400 catgaaaacc atccgtctgc cacgctggct ggcagcctcg cccaccaagg 450 agatccaggt taaaaagtac aagtgtggcc tcatcaagcc ctgcccagcc 500 aactactttg cgtttaaaat ctgcagtggg gccgccaacg tcgtgggccc 550 tactatgtgc tttgaagacc gcatgatcat gagtcctgtg aaaaacaatg 600 tgggcagagg cctaaacatc gccctggtga atggaaccac gggagctgtg 650 ctgggacaga aggcatttga catgtactct ggagatgtta tgcacctagt 700 gaaattcctt aaagaaattc cggggggtgc actggtgctg gtggcctcct 750 acgacgatcc agggaccaaa atgaacgatg aaagcaggaa actcttctct 800 gacttgggga gttcctacgc aaaacaactg ggcttccggg acagctgggt 850 cttcatagga gccaaagacc tcaggggtaa aagccccttt gagcagttct 900 taaagaacag cccagacaca aacaaatacg agggatggcc agagctgctg 950 gagatggagg gctgcatgcc.cccgaagcca ttttagggtg gctgtggctc 1000 ttcctcagcc aggggcctga agaagctcct gcctgactta ggagtcagag 1050 cccggcaggg gctgaggagg aggagcaggg ggtgctgcgt ggaaggtgct 1100 gcaggtcctt gcacgctgtg tcgcgcctct cctcctcgga aacagaaccc 1150 tcccacagca catcctaccc ggaagaccag cctcagaggg tccttctgga 1200 accagctgtc tgtggagaga atggggtgct ttcgtcaggg actgctgacg 1250 gctggtcctg aggaaggaca aactgcccag acttgagccc aattaaattt 1300 tatttttgct ggttttgaaa aaaaaaaaa aaaaaaa 1337

<210> 415

<211> 224

<212> PRT

<213> Homo sapiens

<400> 415

Met Arg Val Ser Gly Val Leu Arg Leu Leu Ala Leu Ile Phe Ala 1 5 10 15

Ile Val Thr Trp Met Phe Ile Arg Ser Tyr Met Ser Phe Ser 20 25 30

Met Lys Thr Ile Arg Leu Pro Arg Trp Leu Ala Ala Ser Pro Thr
35 40 45

Lys Glu Ile Gln Val Lys Lys Tyr Lys Cys Gly Leu Ile Lys Pro 50 55 60

Cys Pro Ala Asn Tyr Phe Ala Phe Lys Ile Cys Ser Gly Ala Ala 65 70 75

Asn Val Val Gly Pro Thr Met Cys Phe Glu Asp Arg Met Ile Met 80 85 90

Ser Pro Val Lys Asn Asn Val Gly Arg Gly Leu Asn Ile Ala Leu 95 100 105

Val Asn Gly Thr Thr Gly Ala Val Leu Gly Gln Lys Ala Phe Asp 110 115 120

Met Tyr Ser Gly Asp Val Met His Leu Val Lys Phe Leu Lys Glu 125 130 135

Ile Pro Gly Gly Ala Leu Val Leu Val Ala Ser Tyr Asp Asp Pro 140 145 150

Gly Thr Lys Met Asn Asp Glu Ser Arg Lys Leu Phe Ser Asp Leu
155 160 160

Gly Ser Ser Tyr Ala Lys Gln Leu Gly Phe Arg Asp Ser Trp Val 170 175

Phe Ile Gly Ala Lys Asp Leu Arg Gly Lys Ser Pro Phe Glu Gln 185 190 195

Phe Leu Lys Asn Ser Pro Asp Thr Asn Lys Tyr Glu Gly Trp Pro 200 205 210

Glu Leu Leu Glu Met Glu Gly Cys Met Pro Pro Lys Pro Phe 215 220

```
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 416
gccatagtca cgacatggat g 21
<210> 417
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 417
ggatggccag agctgctg 18
<210> 418
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
aaagtacaag tgtggcctca tcaagc 26
<210> 419
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
tctgactcct aagtcaggca ggag 24
<210> 420
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 420
atteteteca cagacagetg gttc 24
<210> 421
```

<211> 46 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 421 gtacaagtgt ggcctcatca agccctgccc agccaactac tttgcg 46 <210> 422 <211> 1701 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 1528 <223> unknown base <400> 422 gagactgcag agggagataa agagagagg caaagaggca gcaagagatt 50 tgtcctgggg atccagaaac ccatgatacc ctactgaaca ccgaatcccc 100 tggaagccca cagagacaga gacagcaaga gaagcagaga taaatacact 150 cacgccagga getegetege tetetetete teteteteae teeteeetee 200 ctctctctct gcctgtccta gtcctctagt cctcaaattc ccagtcccct 250 geaccectte etgggaeact atgttgttet eegeceteet getggaggtg 300 atttggatcc tggctgcaga tgggggtcaa cactggacgt atgagggccc 350 acatggtcag gaccattggc cagcctctta ccctgagtgt ggaaacaatg 400 cccagtcgcc catcgatatt cagacagaca gtgtgacatt tgaccctgat 450 ttgcctgctc tgcagcccca cggatatgac cagcctggca ccgagccttt 500 ggacctgcac aacaatggcc acacagtgca actctctctg ccctctaccc 550 tgtatctggg tggacttccc cgaaaatatg tagctgccca gctccacctg 600 cactggggtc agaaaggatc cccagggggg tcagaacacc agatcaacag 650 tgaagccaca tttgcagagc tccacattgt acattatgac tctgattcct 700 atgacagett gagtgagget getgagagge etcagggeet ggetgteetg 750 ggcatcctaa ttgaggtggg tgagactaag aatatagctt atgaacacat 800 tctgagtcac ttgcatgaag tcaggcataa agatcagaag acctcagtgc 850 ctcccttcaa cctaagagag ctgctcccca aacagctggg gcagtacttc 900

cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950 gacagttttt tatagaaggt cccagatttc aatggaacag ctggaaaagc 1000 ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050 cagaactacc gagcccttca gcctctcaat cagcgcatgg tctttgcttc 1100 tttcatccaa gcaggatcct cgtataccac aggtgaaatg ctgagtctag 1150 gtgtaggaat cttggttggc tgtctctgcc ttctcctggc tgtttatttc 1200 attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtggt 1250 cttcacctca gcacaagcca cgactgaggc ataaattcct tctcagatac 1300 catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350 gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400 cetteceetg gacatetett agagaggaat ggacceagge tgteatteea 1450 ggaagaactg cagagcette ageeteteea aacatgtagg aggaaatgag 1500 gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550 gaagtttggg atatacccca aagtcctcta cccctcact tttatggccc 1600 tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650 gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700

<210> 423

t 1701

<211> 337

<212> PRT

<213> Homo sapiens

<400> 423

Met Leu Phe Ser Ala Leu Leu Glu Val Ile Trp Ile Leu Ala 1 5 10 15

Ala Asp Gly Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln 20 . 25 30

Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln 35 40 45

Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp 50 55 60

Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu 65 70 75

Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu 80 85 90

Pro	Ser	Thr	Leu	Tyr 95	Leu	Gly	Gly	Leu	Pro 100	Arg	Lys	Tyr	Val	Ala 105
Ala	Gln	Leu	His	Leu 110	His	Trp	Gly	Gln	Lys 115	Gly	Ser	Pro	Gly	Gly 120
Ser	Glu	His	Gln	Ile 125	Asn	Ser	Glu	Ala	Thr 130	Phe	Ala	Glu	Leu	His 135
Ile	Val	His	Tyr	Asp 140	Ser	Asp	Ser	Tyr	Asp 145	Ser	Leu	Ser	Glu	Ala 150
Ala	Glu	Arg	Pro	Gln 155	Gly	Leu	Ala	Val	Leu 160	Gly	Ile	Leu	Ile	Glu 165
Val	Gly	Glu	Thr	Lys 170	Asn	Ile	Ala	Tyr	Glu 175	His	Ile	Leu	Ser	His 180
Leu	His	Glu	Val	Arg 185	His	Lys	Asp	Gln	Lys 190	Thr	Ser	Val	Pro	Pro 195
Phe	Asn	Leu	Arg	Glu 200	Leu	Leu	Pro	Lys	Gln 205	Leu	Gly	Gln	Tyr	Phe 210
Arg	Tyr	Asn	Gly	Ser 215	Leu	Thr	Thr	Pro	Pro 220	Cys	Tyr	Gln	Ser	Val 225
Leu	Trp	Thr	Val	Phe 230	Tyr	Arg	Arg	Ser	Gln 235	Ile	Ser	Met	Glu	Gln 240
Leu	Glu	Lys	Leu	Gln 245	Gly	Thr	Leu	Phe	Ser 250	Thr	Glu	Glu	Glu	Pro 255
Ser	Lys	Leu	Leu	Val 260	Gln	Asn	Tyr	Arg	Ala 265	Leu	Gln	Pro	Leu	Asn 270
Gln	Arg	Met	Val	Phe 275	Ala	Ser	Phe	Ile	Gln 280	Ala	Gly	Ser	Ser	Tyr 285
Thr	Thr	Gly	Glu	Met 290	Leu	Ser	Leu	Gly	Val 295	Gly	Ile	Leu	Val	Gly 300
Cys	Leu	Cys	Leu	Leu 305	Leu	Ala	Val	Tyr	Phe 310	Ile	Ala	Arg	Lys	Ile 315
Arg	Lys	Lys	Arg	Leu 320	Glu	Asn	Arg	Lys	Ser 325	Val	Val	Phe	Thr	Ser 330
Ala	Gln	Ala	Thr	Thr 335	Glu	Ala								

<210> 424

<211> 18

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 424
gtaaagtcgc tggccagc 18
<210> 425
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 425
cccgatctgc ctgctgta 18
<210> 426
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 426
ctgcactgta tggccattat tgtg 24
<210> 427
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
cagaaaccca tgatacccta ctgaacaccg aatcccctgg aagcc 45
<210> 428
<211> 1073
<212> DNA
<213> Homo sapiens
<400> 428
 aatttttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50
 acattttgcc tcgtggaccc aaaggtagca atctgaaaca tgaggagtac 100
 gattctactg ttttgtcttc taggatcaac tcggtcatta ccacagctca 150
 aacctgcttt gggactccct cccacaaaac tggctccgga tcagggaaca 200
 ctaccaaacc aacagcagtc aaatcaggtc tttccttctt taagtctgat 250
 accattaaca cagatgctca cactggggcc agatctgcat ctgttaaatc 300
```

ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350 gggttgaatg tacaacagca actgcaccca catgtgttac caatttttgt 400 cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450 aaatcttcac gagcctcatc atccattcct tgttcccggg aggcatcctg 500 cccaccagtc aggcagggc taatccagat gtccaggatg gaagccttcc 550 agcaggagga gcaggtgtaa atcctgccac ccagggaacc ccagcaggcc 600 gcctcccaac tcccagtggc acagatgacg actttgcagt gaccacccct 650 gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700 agcaaatgga attcagtaag ctgtttcaaa ttttttcaac taagctgcct 750 cgaatttggt gatacatgtg aatctttatc attgattata ttatggaata 800 gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850 gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900 cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950 tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000 aaaaaaaaa aaaaaaaaa aaa 1073

<210> 429

<211> 209

<212> PRT

<213> Homo sapiens

<400> 429

Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg 1 5 10 15

Ser Leu Pro Gln Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys 20 25 30

Leu Ala Pro Asp Gln Gly Thr Leu Pro Asn Gln Gln Gln Ser Asn 35 40 45

Gln Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gln Met Leu
50 55 60

Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met 65 70 75

Thr Pro Gly Thr Gln Thr His Pro Leu Thr Leu Gly Gly Leu Asn 80 85 90

Val Gln Gln Leu His Pro His Val Leu Pro Ile Phe Val Thr

Gln Leu Gly Ala Gln Gly Thr Ile Leu Ser Ser Glu Glu Leu Pro \$110\$ \$120\$

Gln Ile Phe Thr Ser Leu Ile Ile His Ser Leu Phe Pro Gly Gly
125 130 135

Ile Leu Pro Thr Ser Gln Ala Gly Ala Asn Pro Asp Val Gln Asp 140 145 150

Gly Ser Leu Pro Ala Gly Gly Ala Gly Val Asn Pro Ala Thr Gln
155 160 165

Gly Thr Pro Ala Gly Arg Leu Pro Thr Pro Ser Gly Thr Asp Asp 170 175 180

Asp Phe Ala Val Thr Thr Pro Ala Gly Ile Gln Arg Ser Thr His
185 190 190

Ala Ile Glu Glu Ala Thr Thr Glu Ser Ala Asn Gly Ile Gln
200 205

<210> 430

<211> 1257

<212> DNA

<213> Homo Sapien

<400> 430

ggagagaggc gcgaggtga aaggcgcatt gatgcagct gcggcggcct 50 cggagccggg cggagccaga cgctgaccac gttcctctcc tcggtctcct 100 ccgcctccag ctccggcgt cccggcagcc gggagccatg cgaccccagg 150 gccccgccgc ctcccgcag cggctccgcg gcctcctgct gctcctgct 200 ctgcagctgc ccggccgtc gagcgctct gagatcccca aggggaagca 250 aaaggcgcag ctccggcaga gggaggtggt ggacctgtat aatggaatgt 300 gcttacaagg gccagcaga gtgcctggtc gagacggaag ccctggggcc 350 aatgttattc cgggtacacc tgggatccca ggtcggatg gattcaaagg 400 agaaaagggg gaatgtctga gggaaagctt tgaggagtcc tggacaccca 450 actacaagca gtgtcatga agttcattga attatggcat agtcttagg 550 agtttgtc agtggctac tcggctaaa atgcagaat gcatctaag 550 agtttgttc agtggctcac tcggctaaa atgcagaaat gcatcttcc 650 attgaagcta taatttatt ggaccaagga agccctgaaa tgaattcaac 700

aattaatatt catcgcactt cttctgtgga aggactttgt gaaggaattg 750 gtgctggatt agtggatgtt gctatctggg ttggcacttg ttcagattac 800 ccaaaaggag atgcttctac tggatggaat tcagtttctc gcatcattat 850 tgaaggaacta ccaaaataaa tgctttaatt ttcatttgct acctctttt 900 ttattatgcc ttggaatggt tcacttaaat gacattttaa ataagtttat 950 gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000 tgattcaca ctgttttaa atctagcatt attcattttg cttcaatcaa 1050 aagtggttc aatattttt ttagttggtt agaatactt cttcatagtc 1100 acattctcc aacctataat ttggaatatt gttgtggtct tttgttttt 1150 ctcttagtat agcatttta aaaaaatata aaagctacca atctttgtac 1200 aatttgtaaa tgttaagaat ttttttata tctgttaaat aaaaattatt 1250 tccaaca 1257

<210> 431

<211> 243

<212> PRT

<213> Homo Sapien

<400> 431

Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15

Leu Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala 20 25 30

Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg
35 40 45

Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
50 55 60

Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro 65 70 75

Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys 80 85 90

Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn 95 100 105

Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu
110 115 120

Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser 125 130 135

```
Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg
Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu
                                     160
                 155
Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln
                                     175
Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser
                                     190
                 185
Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp
Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp
Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Glu Glu
                 230
                                     235
Leu Pro Lys
<210> 432
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 432
aggacttgcc ctcaggaa 18
<210> 433
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 433
cgcaggacag ttgtgaaaat a 21
<210> 434
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 434
atgacgctcg tccaaggcca c 21
```

```
<210> 435
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 435
cccacctgta ccaccatgt 19
<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 436
 actocaggca ccatctgttc tccc 24
<210> 437
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 437
aagggctggc attcaagtc 19
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 438
tgacctggca aaggaagaa 19
<210> 439
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 439
cagccaccct ccagtccaag g 21
<210> 440
<211> 19
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 440
gggtcgtgtt ttggagaga 19
<210> 441
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 441
ctggccctca gagcaccaat 20
<210> 442
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 442
tcctccatca cttcccctag ctcca 25
<210> 443
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 443
ctggcaggag ttaaagttcc aaga 24
<210> 444
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 444
aaaggacacc gggatgtg 18
<210> 445
<211> 26
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 445
 agcgtacact ctctccaggc aaccag 26
<210> 446
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 446
 caattctgga tgaggtggta ga 22
<210> 447
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 447
caggactgag cgcttgttta 20
<210> 448
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 448
caaagegeea agtaceggae c 21
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 449
ccagacetea gecaggaa 18
<210> 450
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
 <400> 450
  ccctagctga ccccttca 18
 <210> 451
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 451
 tctgacaagc agttttctga atc 23
 <210> 452
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 452
 ctctcccct cccttttcct ttgttt 26
<210> 453
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 453
 ctctggtgcc cacagtga 18
<210> 454
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 454
 ccatgcctgc tcagccaaga a 21
<210> 455
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 455
 caggaaatct ggaaacctac agt 23
<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 456
 ccttgaaaag gacccagttt 20
<210> 457
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 457
 atgagtcgca cctgctgttc cc 22
<210> 458
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 458
 tagcagctgc ccttggta 18
<210> 459
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 459
aacagcaggt gcgactcatc ta 22
<210> 460
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 460
 tgctaggcga cgacacccag acc 23
```

1

```
<210> 461
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 461
tggacacgtg gcagtgga 18
<210> 462
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 462
tcatggtctc gtcccattc 19
<210> 463
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 463
caccatttgt ttctctgtct ccccatc 27
<210> 464
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 464
ccggcatcct tggagtag 18
<210> 465
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 465
tccccattag cacaggagta 20
<210> 466
```

```
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 466
 aggetettge etgteetget get 23
<210> 467
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
gcccagagtc ccacttgt 18
<210> 468
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 468
actgctccgc ctactacga 19
<210> 469
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 469
 aggcatcctc gccgtcctca 20
<210> 470
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 470
 aaggccaagg tgagtccat 19
<210> 471
<211> 20
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 471
cgagtgtgtg cgaaacctaa 20
<210> 472
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 472
tcagggtcta catcagcctc ctgc 24
<210> 473
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 473
aaggccaagg tgagtccat 19
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 474
cctactgagg agccctatgc 20
<210> 475
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 475
tccaggtgga ccccacttca gg 22
<210> 476
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Synthetic oligonucleotide probe ,'
 <400> 476
  gggaggctta taggcccaat ctgg 24
 <210> 477
 <211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 477
 ggcttcagca gcacgtgtga agtcgaagtc gcagtcacag atatcaatga 50
-230-
-1-
```