Exercises – Probability and Inference

Bootcamp 2023

August 18, 2023

1 Exercise 1: Normal Distribution and Moments

Let $X \sim N(0, 1)$.

- (a) Give the pdf for the distribution of X^2 .
- (b) Give an expression for $\mathbb{E}[X^k]$ for all odd k.
- (c) Let $Y = X^2$. Calculate $Cov(X, X^2)$.
- (d) The moment generating function of X is defined as $M_X(t) = \mathbb{E}[e^{tX}]$ for all $t \in \mathbb{R}$. Using integrals, find the closed form expression for $M_X(t)$.
- (e) Let $Z \sim N(\mu, \sigma^2)$. Using part (d), find $M_Z(t) = \mathbb{E}[e^{tZ}]$ for all t.
- (f) **Optional Challenge:** Assume $\sigma^2 = 1$, so $Z \sim N(\mu, 1)$. The characteristic function of Z is defined as $\phi_Z(t) = \mathbb{E}[e^{itZ}]$, where $i = \sqrt{-1}$. Fortunately, $\phi_Z(t) = M_Z(it)$. Find an unbiased estimator for $(-1)^{\mu}$. Hint: you may find Euler's Identity to be helpful here, which is $e^{i\pi} = -1$.

2 Exercise 2: Classic Transformations of Continuous Random Variables

Let $X_1 \sim Gamma(a, \xi)$ and $X_2 \sim Gamma(b, \xi)$, where $a, b, \xi > 0$ and $X_1 \perp \!\!\! \perp X_2$. For each problem, give the pdf (don't forget the support) and the name of the distribution.

- (a) What is the distribution of $W = \frac{X_1}{X_1 + X_2}$?
- (b) Set a = b = 1. For $\lambda > 0$, what is the distribution of $Y = -\frac{1}{\lambda} \log W$?
- (c) What is the distribution of $Z = Y^{1/\alpha}$ for $\alpha > 0$?
- (d) Let $U_1 \sim \chi_{\nu_1}^2$ and $U_2 \sim \chi_{\nu_2}^2$ with $U_1 \perp \!\!\! \perp U_2$. Show that $F = \frac{U_1/\nu_1}{U_2/\nu_2}$ has an F_{ν_1,ν_2} distribution.
- (e) Let X be a continuous random variable with support \mathbb{R} with cdf $F_X(x)$. What is the distribution of $V = F_X(X)$?

3 Exercise 3: Fun with Exponentials

Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} Exp(\lambda)$.

- (a) What is the distribution of $X_{(1)} = \min(X_1, ..., X_n)$?
- (b) Derive the moment generating function for X_i .
- (c) What is the distribution of $Y = \sum_{i=1}^{n} X_i$?
- (d) Let $W \sim Poisson(\mu)$, $X \sim Exp(\lambda)$, $X \perp \!\!\! \perp W$. Is Z = X W continuous, discrete, or neither?
- (e) Give an expression for P(Z < z) for $z \in \mathbb{R}$.
- (f) Optional Challenge: Let n=2. Show that $T_1=\min(X_1,X_2)$ and $T_2=X_1-X_2$ are independent.

4 Exercise 4: Heavy Tailed Distributions

Let $X_1, X_2 \stackrel{\text{iid}}{\sim} N(0, 1), W \sim \chi_{\nu}^2, W \perp \!\!\! \perp X_1, X_2.$

- (a) What is the distribution of $Y = \frac{X_1}{X_2}$? What is $\mathbb{E}[Y]$?
- (b) What is the distribution of $T = \frac{X_1}{\sqrt{W/\nu}}$?
- (c) Show that $T \stackrel{d}{=} Y$ if $\nu = 1$. That is, $\frac{X_1}{X_2} \stackrel{d}{=} \frac{X_1}{\sqrt{W}}$. Conceptually, why does this make sense?

5 Exercise 5: Large Sample Theory

- (a) Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} Exp(1)$. Let $M_n = \max(X_1, ..., X_n)$. Find the limiting distribution (you can just state the CDF) of $M_n \log(n)$.
- (b) Let $X_1, ..., X_n$ be *iid* continuous random variables with pdf f and $\mathbb{E}[X_i] = \mu < \infty$. Let g be another pdf (with the same support as f). Show that

$$W_n = \frac{\sum_{i=1}^n X_i}{\sum_{i=1}^n g(X_i)/f(X_i)} \stackrel{p}{\to} \mu$$

as $n \to \infty$.

- (c) Let $f(x|\theta_1, \theta_2) = \frac{1}{\theta_2} \exp(-\frac{x-\theta_1}{\theta_2})$, $x \ge \theta_1$, $\theta_1 \in \mathbb{R}$, $\theta_2 > 0$. Find the maximum likelihood estimators for θ_1 , θ_2 .
- (d) **Optional Challenge:** Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} Cauchy(0, 1)$. What is the distribution of $\frac{1}{n} \sum_{i=1}^n X_i$? Hint: this requires the CF of the standard Cauchy distribution, which is $\phi(t) = \exp(-|t|)$. This is a nice counterexample for when the L_1 requirement of the Central Limit Theorem does not hold.

6 Exercise 6: True or False Questions

For each statement, provide a short answer or proof to why it is true or false.

- (a) For a random variable X, the moment generating function $M_X(t)$ exists (i.e., is finite) for all $t \in \mathbb{R}$.
- (b) Let $X \sim N(0,1)$. Then $Y = \mathbb{1}(X > 0) \sim Bernoulli(1/2)$.
- (c) If X and Y are two random variables such that $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$, then the pair (X, Y) has a joint normal distribution.
- (d) If X and Y are two independent random variables such that $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$, then the pair (X, Y) has a joint normal distribution.
- (e) If X and Y are two normally distributed random variables that are uncorrelated, then they are independent.
- (f) If X and Y are jointly normal random variables that are uncorrelated, then they are independent.
- (g) Let X be a discrete random variable and $g: \mathbb{R} \to \mathbb{R}$ be some (well-defined) function. Then Y = g(X) is discrete.
- (h) Let X be a continuous random variable and $g: \mathbb{R} \to \mathbb{R}$ be some function. Then Y = g(X) is continuous.