上海交通大学2009-2010学年第一学期《矩阵理论》试卷

姓名	学号	矩阵理	星论分班号	成绩
4	云试卷共五道大题, 总	分100分. 其中 A* 表	表示矩阵 A 的共享	扼转置.
一. 单项选择	泽 题(每题 3 分, 共 15 分	分)		
	上的两个子空间 $(x, y, z)^T \in \mathbb{R}^3 \mid x + y$	$+z=0\}, W=\{(x, y) \in \{(x, y) \in X\}$	$(x,y,z)^T \in \mathbb{R}^3 \mid x$	$= y = \frac{z}{-2} \}.$
,	$-\dim U = ($ $)$	(C) 9	(D) a	
	(B) 1		(D) 3	
甲. $(U+W)$ 乙. $(U+W)$ 丙. $(U\cap W)$	是欧氏空间 V 的两个 \exists C	一至间. 给出下列四个	个等工:	
	(B) 甲与丁	(C) 乙与丙	(D) Z	与丁
3. 设两个4	阶矩阵 A 与 B 的最小	·多项式分别为(x -	$(x-1)^2(x-2) =$	$(x-1)(x-2)^2$,则矩
	\)	, (, , ,	
$(A)(x-1)^2$	(x-2) (B) $(x-1)$	$(x-2)^2$ (C) (3)	$(x-1)^2(x-2)^2$	(D) $(x-1)^3(x-2)^3$
	阶可逆矩阵, $ ho(A)$ 是其 $=1/\ A\ $ (B) $\ A^5$, ,
5. 设 n 阶矩	阵 $A = (a_{ij})$ 的特征值	与奇异值分别为 λ_1	$,\cdots,\lambda_n \ni s_1,\cdots$	\cdots, s_n , 则必有()
$(A)\sum_{i=1}^{n} \lambda_{i} =$	$=\sum_{i=1}^{n} s_{i} $	(B) $\sum_{i=1}^{n} \lambda_i ^2$	$\lambda_i ^2 = \sum_{i=1}^n s_i ^2$	
<i>i</i> =1	<i>i</i> =1	i=1	<i>i</i> =1	
$(C) \sum_{i=1}^{\infty} \lambda_i $	$=\sum_{i,j=1}^{n} a_{ij} ^2$	$(D) \sum_{i=1}^{n} s $	$ s_i ^2 = \sum_{i,j=1}^n a_{ij} ^2$	
二. 填空题(每题 3 分, 共 15 分)			
6. 设 (x,y,z)	$T \in \mathbb{R}^3, \sigma((x, y, z)^T)$	$=(2x-y,2x)^T,$ \mathbb{N}	σ关于标准基-标	标准基的矩阵为
7.线性方程	组 $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$:	$=\left(egin{array}{c} b_1 \ b_2 \end{array} ight)$ 的最小范	数的最小二乘船	译为 .
8. 设 $A=\frac{1}{3}$	$\begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}$,贝	川正交变換 $x \mapsto Ax$	的旋转轴上的单	位向量为
9. 设 A 为 3	阶矩阵, $e^{At} = \begin{pmatrix} e^t \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} te^t & te^t \\ e^t & 0 \\ 0 & e^t \end{pmatrix}$,则矩阵	$\lambda E-A$ 的初等	因子为
10. 设 A 是利	$k h r \ge 1$ 的 n 阶正交	投影矩阵, $B = E -$	$\cos A$, 则 B 的特	

- 三. 计算题(每题15分, 共60分)
- 11. 设 $V = \mathbb{R}[x]_n$ 是次数小于n 的全体实系数多项式构成的实线性空间. 定义V 上的线性变换 σ 如下:

$$\sigma: f(x) \mapsto xf'(x) - f(x), \quad \forall f(x) \in V.$$

- (1) 求σ的特征值与特征向量;
- (2) 求 σ 的核空间 $Ker(\sigma)$ 与像空间 $Im(\sigma)$ 的各一组基;
- (3) 判断 $V = \text{Ker}(\sigma) \oplus \text{Im}(\sigma)$ 是否成立? 说明理由.

- 12. 设 $V = \mathbb{R}^2$ 是实线性空间, $(x,y)^T \in V$, $e_1 = (1,0)^T$, $e_2 = (0,1)^T$.
- (1) 求 V 上的一个内积 (\bullet , \bullet) 使得向量组 e_1 , e_1 + e_2 是一组标准正交基;
- (2) 在该内积下, 计算 e_2 与 $e_1 e_2$ 的长度;
- (3) 设 σ 是V的一个等距变换, $\sigma(e_1) = e_1 + e_2$. 求 $\sigma((x,y)^T)$? 这样的等距变换唯一吗?

$$13. \ \ \mathcal{U} A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

- (1) 求 A 的 Jordan 标准形 J (不必计算变换矩阵 P);
- (2) 设 $n \ge 3$, 计算 $A^n A^{n-2}$ 与 $A^2 E$;

14. 设 $A \in \mathbb{C}^{n \times n}$ 的秩为 r > 0, A 的奇异值分解为 $A = U \operatorname{diag}(s_1, ..., s_r, 0, ..., 0) V^*$, 其中 $s_1 > \cdots > s_r$, $U = (u_1, \cdots, u_n), V = (v_1, \cdots, v_n)$ 是两个酉矩阵, $u_i, v_i \in \mathbb{C}^n, 1 \leq i \leq n$. 设矩阵 $B = \begin{pmatrix} A \\ A \end{pmatrix}$.

- (1) 求 B 的奇异值分解;
- (2) 求 B^*B 的谱分解;
- (3) 求 B*B 的 Moore-Penrose 广义逆.

- 四.证明题(每题10分,共10分)
- 15. 设 σ 是 \mathbb{C}^6 上的线性变换, 其特征多项式为 $(\lambda-1)(\lambda-2)^2(\lambda-3)^3$. 证明:
- (1) 存在 σ 的三个不变子空间 U_i ,使得 $\dim U_i=i,\ i=1,2,3,\ \mathbb{L}\,\mathbb{C}^6=U_1\oplus U_2\oplus U_3;$
- (2)对任意有限维线性空间上的线性变换,推广(1)中的结论.