www.th-owl.de	Exercise - DSS	DSS-ex6-1
	Discrete Signals and Systems	18.01.2020
Prof. Dr. Uwe Meier	Applications	Page 1

Problem 1 Determine the location of the notch frequency of the FIR notch filter given by

$$H(z) = 1 + \sqrt{2} \cdot z^{-1} + z^{-2}$$
.

Compute the response to the input signal $x[n] = \cos(n \cdot \pi/4)$.

Problem 2 Design a first-order highpass filter with a normalized 3-dB cutoff frequency at 0.25 radian/sample.

Problem 3 Show that the causal FIR transfer function

$$H(z) = \frac{1}{1+\alpha} \cdot (1+\alpha \cdot z^{-1}); \ \alpha > 0$$

is a bounded-real (BR) function.

Problem 4 The frequency response of a causal digital filter is given

$$H(z) = 1 - 2 \cdot z^{-1} + 3 \cdot z^{-2} - 3 \cdot z^{-4} + 2 \cdot z^{-5} - z^{-6}$$
.

Determine the magnitude and phase responses.

Problem 5 A causal LTI FIR discrete-time system is characterized by an impulse response

$$h[n] = a_1 \cdot \delta[n] + a_2 \cdot \delta[n-1] + a_3 \cdot \delta[n-2] + a_4 \cdot \delta[n-3] + a_5 \cdot \delta[n-4] + a_6 \cdot \delta[n-5].$$

For what values of the impulse response samples will its frequency response have a constant group delay?

Problem 6 A type-II real-coefficient FIR filter (symmetric impulse response, N odd) with the transfer function H(z) has the following zeros: $z_1 = 1$, $z_2 = -1$, $z_3 = 0.5$, $z_4 = 0.8 + j$.

- a) Determine the locations of the remaining zeros of H(z) having the lowest order.
- b) Determine the transfer function of the filter.

Problem 7 Estimate the order and the group delay of a linear-phase lowpass FIR filter with the following specifications: passband edge $f_{pass} = 1.8$ kHz, stopband edge $f_{stop} = 2$ kHz, peak passband ripple $a_{pass} = 0.1$ dB, minimum stopband attenuation $a_{stop} = 35$ dB, and sampling rate $f_s = 12$ kHz.

Problem 8 Estimate the order of a linear-phase bandpass FIR filter with the following specifications: passband edges $f_{\text{pass},1} = 0.35 \text{ kHz}$ and $f_{\text{pass},2} = 1 \text{ kHz}$, stopband edges $f_{\text{stop},1} = 0.3 \text{ kHz}$ and $f_{\text{stop},2} = 1.1 \text{ kHz}$, passband ripple $\delta_{\text{pass}} = 0.002$, stopband ripple $\delta_{\text{stop}} = 0.01$, and sampling rate $f_{\text{s}} = 10 \text{ kHz}$.

Answers

Problem 1

$$\Omega_0 = 0.75 \cdot \pi = 135^{\circ}$$
$$y[n] = 2 \cdot \sqrt{2} \cdot \cos((n-1) \cdot \pi/4)$$

Problem 2

$$H(z) = \frac{0.8884 \cdot (1 - z^{-1})}{1 - 0.7767 \cdot z^{-1}}$$

Problem 3

Problem 4

$$\widetilde{H}(\Omega) = 6 \cdot \sin(\Omega) - 4 \cdot \sin(2 \cdot \Omega) + 2 \cdot \sin(3 \cdot \Omega)$$
$$\varphi(\Omega) = -3 \cdot \Omega \pm \frac{\pi}{2}$$

Problem 5

$$a_1 = a_6, a_2 = a_5, a_3 = a_4$$

or
 $a_1 = -a_6, a_2 = -a_5, a_3 = -a_4$

Problem 6

a)
$$z_5 = 1$$
, $z_6 = 2$, $z_7 = 0.8 - j$, $z_8 = 0.488 - j \cdot 0.610$, $z_9 = 0.488 + j \cdot 0.610$,
b) $H(z) = \prod_{i=1}^{9} (1 - z_i \cdot z^{-1})$

Problem 7

Kaiser: order \approx 99, group delay \approx 4.13 ms Bellanger: order \approx 108, group delay \approx 4.5 ms

Problem 8

Kaiser: order ≈ 466