

Appendix A. SAR Plots of System Verification

The plots for system verification are shown as follows.

Report Format Version 5.0.0 Issued Date : Dec. 14, 2012

Report No. : SA121012C09

Revision: R01

System Check H835 121201

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: H835_1201 Medium parameters used: f = 835 MHz; $\sigma = 0.896$ mho/m; $\varepsilon_r = 42.43$; $\rho = 1000$

Date: 2012/12/21

 kg/m^3

Ambient Temperature: 21.5°C; Liquid Temperature: 20.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN3801; ConvF(8.71, 8.71, 8.71); Calibrated: 2012/06/22;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2012/07/19
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1127
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.18 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.684 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.730 mW/g

SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.63 mW/gMaximum value of SAR (measured) = 3.17 W/kg

System Check H835 121202

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: H835_1202 Medium parameters used: f = 835 MHz; $\sigma = 0.906$ mho/m; $\varepsilon_r = 42.387$; $\rho =$

Date: 2012/12/22

 1000 kg/m^3

Ambient Temperature: 21.6°C; Liquid Temperature: 20.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(8.89, 8.89, 8.89); Calibrated: 2012/10/26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1485
- Measurement SW: DASY52, Version 52.8 (3); SEMCAD X Version 14.6.7 (6848)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.11 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.477 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.07 W/kg

System Check H835 121204

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: H835_1426 Medium parameters used: f = 835 MHz; $\sigma = 0.897$ mho/m; $\varepsilon_r = 41.95$; $\rho = 1000$

Date: 2012/14/26

kg/m³

Ambient Temperature: 21.6°C; Liquid Temperature: 20.4°C

DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(9.8, 9.8, 9.8); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: TP:1653
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.01 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.508 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.584 mW/g

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.55 mW/gMaximum value of SAR (measured) = 3.01 W/kg

System Check H1900 121202

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d022

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: H1900_1202 Medium parameters used: f = 1900 MHz; $\sigma = 1.422$ mho/m; $\varepsilon_r = 40.423$; $\rho = 1.422$ mho/m; $\varepsilon_r =$

Date: 2012/12/02

 1000 kg/m^3

Ambient Temperature: 21.7°C; Liquid Temperature: 20.7°C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(7.61, 7.61, 7.61); Calibrated: 2012/10/26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1485
- Measurement SW: DASY52, Version 52.8 (3); SEMCAD X Version 14.6.7 (6848)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.1 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 100.9 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 9.58 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.8 W/kg

System Check H1900 121203

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: H1900_1203 Medium parameters used: f = 1900 MHz; $\sigma = 1.412$ mho/m; $\varepsilon_r = 40.293$; $\rho = 1.412$ mho/m; $\varepsilon_r = 40.293$; $\varepsilon_$

Date: 2012/12/03

 1000 kg/m^3

Ambient Temperature: 21.8°C; Liquid Temperature: 21.0°C

DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(8.13, 8.13, 8.13); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2012/08/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1485
- Measurement SW: DASY52, Version 52.8 (3); SEMCAD X Version 14.6.7 (6848)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 9.51 W/kg; SAR(10 g) = 4.85 W/kg Maximum value of SAR (measured) = 13.6 W/kg

System Check H1900 121204

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: H1900_1426 Medium parameters used: f = 1900 MHz; $\sigma = 1.426$ mho/m; $\varepsilon_r = 40.405$; $\rho = 1.426$ mho/m; $\varepsilon_r = 40.405$

Date: 2012/14/26

 1000 kg/m^3

Ambient Temperature: 21.6°C; Liquid Temperature: 20.2°C

DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(8.13, 8.13, 8.13); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: TP:1653
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.5 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 99.797 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.779 mW/g

SAR(1 g) = 9.42 mW/g; SAR(10 g) = 4.81 mW/gMaximum value of SAR (measured) = 13.5 W/kg

System Check H2450 121203

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: H2450_1203 Medium parameters used: f = 2450 MHz; $\sigma = 1.865$ mho/m; $\varepsilon_r = 40.834$; $\rho =$

Date: 2012/12/03

 1000 kg/m^3

Ambient Temperature: 21.7°C; Liquid Temperature: 20.9°C

DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(7.28, 7.28, 7.28); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2012/08/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1485
- Measurement SW: DASY52, Version 52.8 (3); SEMCAD X Version 14.6.7 (6848)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 22.9 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 108.7 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.21 W/kgMaximum value of SAR (measured) = 21.0 W/kg

System Check H2450 121204

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: H2450_1204 Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 40.258$; $\rho =$

Date: 2012/12/04

 1000 kg/m^3

Ambient Temperature: 21.6°C; Liquid Temperature: 20.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(7.28, 7.28, 7.28); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: TP:1653
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 22.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 108.1 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.898 mW/g

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.16 mW/g

Maximum value of SAR (measured) = 20.4 W/kg

System Check_B835_121023

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: B835_1023 Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$

Date: 2012/10/23

kg/m³

Ambient Temperature: 21.9°C; Liquid Temperature: 20.9°C

DASY4 Configuration:

- Probe: EX3DV4 SN3578; ConvF(8.45, 8.45, 8.45); Calibrated: 2012/06/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2012/07/19
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1654
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.05 mW/g

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.8 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 3.03 mW/g

System Check_B1900_121023

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: B1900_1023 Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 52.8$; $\rho = 1000$

Date: 2012/10/23

kg/m³

Ambient Temperature: 21.8°C; Liquid Temperature: 20.7°C

DASY4 Configuration:

- Probe: EX3DV4 SN3578; ConvF(6.69, 6.69, 6.69); Calibrated: 2012/06/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2012/07/19
- Phantom: SAM Phantom_Left; Type: SAM V4.0; Serial: TP 1652
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 14.9 mW/g

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 99.4 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 14.7 mW/g

System Check_B1900_121031

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: B1900_1031 Medium parameters used: f = 1900 MHz; $\sigma = 1.545$ mho/m; $\varepsilon_r = 51.143$; $\rho = 1.545$ mho/m; $\varepsilon_r = 51.143$; $\rho = 1.545$ mho/m; $\varepsilon_r =$

Date: 2012/10/31

 1000 kg/m^3

Ambient Temperature: 21.4°C; Liquid Temperature: 20.3°C

DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(8.07, 8.07, 8.07); Calibrated: 2012/02/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2012/08/23
- Phantom: SAM Phantom_Front; Type: SAM V4.0; Serial: TP 1127
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.5 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 93.909 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.388 mW/g SAR(1 g) = 9.29 mW/g; SAR(10 g) = 4.87 mW/g Maximum value of SAR (measured) = 13.1 W/kg

System Check_B2450_121027

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: B2450_1027 Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$

Date: 2012/10/27

 kg/m^3

Ambient Temperature: 21.5°C; Liquid Temperature: 20.5°C

DASY4 Configuration:

- Probe: EX3DV4 SN3578; ConvF(6.43, 6.43, 6.43); Calibrated: 2012/06/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2012/07/19
- Phantom: SAM Phantom_Left; Type: SAM V4.0; Serial: TP 1652
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 20.5 mW/g

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 100.9 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.9 mW/g

Maximum value of SAR (measured) = 19.3 mW/g

