Reduced Residues and Euler's phi

Reading

• Section 9.2

Practice Problems

9.2 1, 3, 4, 5, 8, 10, 11, 18, 21, 22

Notes

Reduced Residues

 \bar{a} is a reduced residue if gcd(a, n) = 1.

Reduced residues are also called "units". The set of all reduced residues is some times denoted by \mathbb{Z}_n^* .

Euler's phi function is: $\phi(n) = \text{the number of reduced residues modulo } n$, i.e. the size of \mathbb{Z}_n^* .

This is well defined: If $\bar{a} = \bar{b}$ and $\gcd(a, n) = 1$, then it is also the case that $\gcd(b, n) = 1$. To see this, note that b = a + nk for some integer k. And we already know $\gcd(a + nk, n) = \gcd(a, n)$.

What are the reduced residues in \mathbb{Z}_{10} , \mathbb{Z}_{12} , \mathbb{Z}_{15} ?

Here is a crucial property of reduced residues:

If \bar{a} and \bar{b} are two reduced residues in \mathbb{Z}_n , then their product $\bar{a} \cdot \bar{b}$ is also a reduced residue.

In other words the set \mathbb{Z}_n^* of residues is closed under the operation of multiplication. And as we also know, all elements there also have inverses.

In algebraic systems language, we say that \mathbb{Z}_n^* is a **group** under multiplication.

Some standard results about Euler's phi function:

- If p is prime, then $\phi(p) = p 1$.
- If p is prime and a > 0 then $\phi(p^a) = (p-1)p^{a-1}$.
- If p, q are distinct primes, then $\phi(pq) = (p-1)(q-1)$.
- In general if m, n are relatively prime, then $\phi(mn) = \phi(m)\phi(n)$.
- If $p_1, p_2, \dots p_k$ are distinct primes and $a_1, a_2, \dots a_k$ are nonnegative, then:

$$\phi(p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}) = (p_1 - 1)p_1^{a_1 - 1}\cdots (p_k - 1)p_k^{a_k - 1}$$