

THE BRUCKLYN APARTMENTS . San-Carlos-Straße 4 . 91058 Erlangen . info@the-brucklyn.de . www.the-brucklyn.de

b) both (x) =
$$\frac{4 \ln h(x)}{\cos h(x)} = \frac{e^{x} - e^{-x}}{e^{x}} = \frac{2e^{x} - e^{-x}}{2e^{x}} = \frac{2e^{x} (A - e^{-2x})}{2e^{x} (A + e^{-2x})} = \frac{4 - \frac{1}{e^{3x}}}{4 + \frac{1}{e^{2x}}} = \frac{e^{2x} - e^{-x}}{e^{2x}} = \frac{2e^{x} (A - e^{-2x})}{2e^{x} (A + e^{-2x})} = \frac{4 - \frac{1}{e^{3x}}}{4 + \frac{1}{e^{2x}}} = \frac{e^{2x} - e^{-x}}{e^{2x} + A} = \frac{2e^{x} - e^{-x}}{e^{2x} + A} = \frac{1}{e^{2x} + A}$$

| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + \frac{1}{e^{2x}}} = \frac{4 - 0}{4 + 0} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + \frac{1}{e^{x}}} = \frac{1 - 0}{4 + 0} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{0 - 1}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{0 + 4} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = \frac{1 - 0}{1} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{x}}}{4 + 1} = 1$
| inn tank = $\lim_{x \to \infty} \frac{4 - \frac{1}{e^{$

I sin: C→ C sin(x tiy) = i sinh(y) cosx + cosh(y) sinx

sinh, cosh sind nicht beschrändt, cosx, sinx sind beschrändt.

Dus hodulit einer un beschrändten mit einer beschrändten Flut. ist unbeschrändt.

Die Addition tueier unb. Flut. ist ebenfælls unb. ⇒ sin: C→C ist unbexhrändt.

ol 7 Yumay

A 14 CI APARTMENTS
$A 14 y a $ $APARTMENTS$ $1 - x^2 > 0 $ $x^2 < 1$ $x^2 < 1$ $0 = -1 < x < 1$
$f(x) = \sqrt{1-x^2}$ $Of = -1 < x < 1$
$\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x) = \infty$
1-× 1-× 1-× 1-× 11-× 11-×
$\frac{1-x}{\sqrt{1-x^{2}}} = \frac{1-x}{(1-x)^{\frac{1}{2}}} = \frac{1-x}{((1+x)(1-x))^{\frac{1}{2}}} = \frac{1-x}{\sqrt{1+x^{2}}} = \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} = \frac{1-x^{2}}}{\sqrt{1-x^{2}}} = \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} = \frac{\sqrt{1-x^{2}}}$
$\lim_{x \to 1} f(x) = \lim_{x \to 1} \sqrt{1-x} = \frac{\sqrt{0}}{\sqrt{2}} = 0$
bjij Teil stade " Steti q (Lonstante und e-Flit.) -> x' = 0
$f(0) = 0 \qquad \lim_{x \to 0} f(x) = 0 \qquad \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^{x} + e^{x}}{e^{x}} = 0$
-> f stetig, weil f(x) -x(x') far x -> (x')
ii) "Teil stûde" sktig (s.o.) > x' =0
$f(0) = 0$ $f(x) = 0$ $(3-0.)$ $f(x) = \lim_{x \to 0} f(x) = \lim_{x \to 0} f(x) = 0$
$f(0) = 0 \lim_{x \to 0} f(x) = 0 (s - 0.) \lim_{x \to 0} f(x) = \lim_{x \to 0} e^{\frac{1+x}{x} - \frac{1}{x}} = \infty \neq 0$ $\Rightarrow f \text{ which slehy, weil } f(x) \rightarrow f(x') \text{for } x \to x'$
c) i lim \(\sigma^2 + \times + 1 \) - \(\times = \sqrt{0 + 0 + 1} \) - \(\times = \sqrt{1} = 1 \)
c) il $\lim_{x\to 0} \sqrt{x^2 + x + 1} - x = \sqrt{0 + 0 + 1} - 0 = \sqrt{1} = 1$ ii) $\lim_{x\to 0} \sqrt{x^2 + x + 1} - x = \lim_{x\to 0} \frac{x^2 + x + 1 - x^2}{\sqrt{x^2 + x + 1} + x} = \frac{1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{1 + 1}}$
iii) lim $\sqrt{x^2 + x + 1} - x = \lim_{x \to 1} \frac{1 + \frac{1}{x}}{1 + \frac{1}{x}} = \frac{1}{12} = \frac{1}{12}$
iv) lim & whather = is sin you the Hadren van TV immer o
iv) lim × Isin Tvxl = Qsin you Vielfahen von Tv immer o' v) lim × Isin Tvxl = 0
Vi) lim (05 × (01 ² x) Limes existint with, da Teil folgen mit verch. Grenzweiten existieren gg. 1 divergent
$x_{n}' = \frac{1}{n_{n} + \frac{n}{4}} \xrightarrow{n \to \infty} 0 = \sum_{n} \left(\left(x_{n}' \right) = \left(1 + \frac{1}{n_{n} + \frac{n}{4}} \right) \left(\left(o_{j} \left(2n + \frac{n}{2} \right) \right)^{2} = \sum_{n} \frac{1}{n^{2} + \frac{n}{4}} = 0 \right)$