CP 476 Internet Computing

Instructor: Masoomeh Rudafshani

Internet Architecture

Agenda

- Internet protocols
- TCP/IP
- Application layer
- WWW vs Internet

Internet Protocols

- A design philosophy and architecture
 - Expressed in a set of protocols
- Protocol
 - Standard for data communication
- Adopt and absorb new technologies
 - A new technology just needs to know which protocols to work with

application
transport
network
link
physical

Internet suites / TCP/IP suites

- Groups of protocols designed to work together to send data across Internet
- Major protocols: TCP/IP
- TCP/IP suites are open protocol:
 - Available to be freely used by anybody anywhere without having to pay a company or pay the licensing fee
 - new protocols can be freely developed as new technologies are developed to allow those new technologies to access the larger network as well.
 - Define in RFC
 - TCP protocol: https://tools.ietf.org/html/rfc793
 - IP protocol: https://tools.ietf.org/html/rfc791

Internet Protocol suite

- Application
 - Supporting Network applications
- Transport
 - Process-to-process data transfer
- Network
 - Routings of datagram from source to destination
- Link
 - Data transfer between neighboring network elements
 - Ethernet, 802.111
- Physical: bits on wire

How the layers work together?

- Encapsulation/De-capsulation
 - Transport Layer
 - Break up the data into smaller unit (segments)
 - MTU is used to determine the size of each segment of data
 - Passes the segments it generates down to the network layer
 - Network Layer
 - Adds a new header to help it finds its destination.
 - The segment becomes packet
 - Data link layer
 - Adds another header
 - containing the physical address of the next node along the network
 - The packet becomes frame
 - Error correction information at the end (trailer)
 - Physical Layer
 - Takes the frame and encodes it into ones and zeroes to be transmitted across the media

transport network

link

physical

Network layers: Encapsulation

application

transport

network

link

physical

Data TCP/UDP header Segment Data Port address TCP/UDP header IP Header Packet Segment Data IP Address Port address TCP/UDP header Frame Header IP Header Frame Packet Segment Data MAC Address IP Address Port address

Protocol Data Unit

Data

Segment

Packet

Frames

Bits

Encapsulation / Decapsulation

Packet analysis Tools

Application Layer

- Defines the protocols, services, and processes that allow both programs and users to interface with the network.
- Implements specific communications for each kind of program
- Application architecture
 - Client-server architecture
 - Server:
 - always-on host
 - permanent IP address
 - data centers for scaling
 - o Clients:
 - communicate with server
 - may be intermittently connected
 - may have dynamic IP addresses
 - do not communicate directly with each other

Transport Control Protocol (TCP)

- A connection-oriented protocol
- Responsible for process-to-process communication
- Reliability
- Reliable transport service between two application programs
- Multiplexing: multiple programs using the same IP address
 - Source IP, destination IP, source port, source destination
- Flow control
 - A sender is not overwhelming a receiver by sending packets faster than it can consume
- How is a process identified? Port number + ip address

TCP segment

- Source port
 - Chosen by client TCP process
- Destination port
 - Well known or chosen by server TCP process
- Sequence number
 - Initial seq number for first byte of data

source port #					dest port #		
sequence number							
acknowledgement number							
head len	not used	UAP	RS	F	receive window		
checksum				Urg data pointer			
options (variable length)							

application data (variable length)

Internet Protocol (IP)

- protocol for host-to-host datagram transmission
- Routing function
- Every node on the internet has a unique numeric address:
 - o 174.129.14.120
 - IPV4: 32 bits binary number: four numbers separated by periods
 - Provide for more than 4 billion unique addresses
 - Each number may range between 0 and 255.

Internet Protocol (IP)

- Every node on the internet has a unique numeric address:
 - o IPV6: 128 bits binary number
 - Eight four-character numbers (each represente 16 bits)
 - 2607:f8b0:400b:808::2002
 - 2607:fea8:1ce0:afb:ad4:cff:fe0c:b043
 - Provides over 340 undecillion unique addresses, That's more than enough for every grain of sand on Earth to have its own IP address.

Internet Protocol (IP)

- Find your internet IP address?
 - Whatismyip.com
 - Find your local ip address:
 - In a terminal type Ifconfig (linux/MAC) / ipconfig (windows)

IP datagram

- TTL
 - time to live
 - Every hop decrements it
 - Drop packet if value=0
- Checksum

0

head. type of len service		length						
dentifier	flgs	fragment offset						
upper layer	header checksum							
32 bit source IP address								
32 bit destination IP address								
options (if any)								
data (variable length, typically a TCP or UDP segment)								
	service lentifier upper layer bit source it destinat options di (variab typical	service lentifier flgs upper layer bit source IP a it destination If options (if ar data (variable leitypically a						

Domain Name System (DNS)

- A set of servers that converts domain names names to IP addresses
 - hostname to IP address translation.
 - o canonical, alias names
- -dig: DNS Lookup utility
- dig <u>www.wlu.ca</u> 216.249.48.130
- dig google.com 172.217.0.14

traceroute

- A utility that records the exact path of a data packet on its way to destination
- -traceroute goolegle.com
 - Tracert (windows)
- Delay measurement

Taken from [1]

Some network commands

- -ping :To verify that your TCP/IP network services are operating correctly
- -netstat
 - To display status information about the network interfaces on the host machine: netstat -a
- -ifconfig: to display the local interface configuration
- -traceroute
 - To display the routers that are passed through to reach the destination
 - Traceroute "ip address or domain name"
- -dig
 - To find the ip address of a given host name

Internet vs WWW

- Web uses one of the protocols that runs on the internet: http
 - There are several other protocols telnet, mailto, etc.

