Problem Sheet 8

Math40002, Analysis 1

- 1. Evaluate $\int_0^x \frac{1}{1+e^t} dt$. Does $\int_0^\infty \frac{1}{1+e^t} dt$ exist, and if so, what is it?
- 2. The prime number theorem says that the number $\pi(n)$ of primes between 1 and n is approximately $\int_{2}^{n} \frac{1}{\log(x)} dx$.
 - (a) Prove that this integral equals $\frac{n}{\log(n)} + \int_2^n \frac{1}{(\log x)^2} dx$, up to a constant which does not depend on n.
 - (b) Prove that there is a constant C > 0 such that $\int_2^n \frac{1}{(\log x)^2} dx < \frac{Cn}{(\log n)^2}$ for all sufficiently large n, by splitting the integral up into one with domain $[2, \sqrt{n}]$ and one with domain $[\sqrt{n}, n]$ and estimating each one separately.
- 3. Let $f:[0,\infty)\to [0,\infty)$ be uniformly continuous, and suppose that $\int_0^\infty f(x)\,dx$ exists.
 - (a) For each $\epsilon > 0$, prove that there is a $\delta > 0$ such that for all y > 0, if $f(y) \ge \epsilon$ then

$$\int_{y}^{y+\delta} f(t) dt \ge \frac{\epsilon \delta}{2}.$$

- (b) Prove that $\lim_{x\to\infty} f(x) = 0$.
- (c) Describe a continuous function $g:[0,\infty)\to[0,\infty)$ such that $\int_0^\infty g(x)\,dx$ exists but $\lim_{x\to\infty}g(x)$ does not. Can you make g differentiable as well?
- 4. Let $f:[a,b] \to \mathbb{R}$ be continuous and strictly monotone increasing, with continuous first derivative on (a,b). Evaluate $\int_{f(a)}^{f(b)} f^{-1}(x) dx$ in terms of $\int_a^b f(x) dx$, and draw a picture to explain your answer.
- 5. Use problem 4 to evaluate $\int_1^x \frac{\sqrt{t^2-1}}{t} dt$ for $x \ge 1$.
- 6. Let $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$.
 - (a) Prove that this improper integral converges for all t > 0. (In how many ways is it improper?)
 - (b) Compute $\Gamma(1)$.
 - (c) Prove that $\Gamma(n+1) = n\Gamma(n)$ for all integers $n \ge 1$, and deduce that $\Gamma(n+1) = n!$ for all $n \ge 0$.

1

- 7. (*) Let $f:[a,b]\to\mathbb{R}$ be continuous, with f''(x) continuous and bounded on (a,b).
 - (a) Use integration by parts twice to prove that

$$\int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(x) \, dx = \int_{a}^{b} f(x) \, dx - (b-a) \left(\frac{f(a) + f(b)}{2} \right).$$

(b) If $|f''(x)| \leq M$ for all $x \in (a, b)$, prove that

$$\left| \int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(x) \, dx \right| \le \frac{M(b-a)^{3}}{12}.$$

In other words, $\int_a^b f(x) dx$ is the area of the trapezium shown at right, up to an error of at most $\frac{M(b-a)^3}{12}$. (Hint: check that $(x-a)(x-b) \leq 0$ on [a,b], and compute that $\int_a^b (x-a)(x-b) dx = -\frac{(b-a)^3}{6}$.)

(c) Apply this to $f(x) = \log(x)$ to show that

$$\int_{1}^{n} \log(x) \, dx = \sum_{k=1}^{n-1} \left(\frac{\log(k) + \log(k+1)}{2} + e_k \right),$$

where $|e_k| \leq \frac{1}{12k^2}$ for all k.

(d) Evaluate both the integral and the sum from part (c) to show that there is some constant C > 0 such that

$$\left| \log(n!) - \log\left(\frac{n^{n+1/2}}{e^{n-1}}\right) \right| < C$$

for all n, or equivalently if $C_1 = e^{1-C}$ and $C_2 = e^{1+C}$ then

$$C_1\sqrt{n}\left(\frac{n}{e}\right)^n \le n! < C_2\sqrt{n}\left(\frac{n}{e}\right)^n.$$

2