

Part A

Maths

Stationary Points 2ii

Stationary Points 2ii

Find the coordinates of the stationary points on the curve $y=x^3-3x^2+4$. Enter the x and y
coordinates of the stationary point with the greatest x coordinate.

Enter the *x*-coordinate:

Find coordinate

The following symbols may be useful: $\boldsymbol{\boldsymbol{x}}$

Enter the y-coordinate:

The following symbols may be useful: y

Part B Stationary point

Determine whether the stationary point whose coordinates you entered is a maximum point or a minimum point.

Maximum
Minimum
Inconclusive

${\bf Part \ C} \qquad {\bf Range \ of} \ x$

What form doe then find a and	es your answer take? Choose from the list below, where a and b are constants and $a < b$, and $a < b$.
$\bigcirc x < a$	
$\bigcirc x \leq a$	
$\bigcirc x > a$	
$\bigcirc x \geq a$	
\bigcirc $a < x <$	< b
$\bigcirc a \leq x \leq$	$\leq b$
$\bigcirc x < a \ o$	r $x>b$
$x \leq a$ o	r $x \geq b$
Write down the	$oldsymbol{e}$ value of a .
	e value of b (or if your chosen form has no b , write "n").
The following symbols m	ay be useful: n

For which range of values of x does $x^3 - 3x^2 + 4$ decrease as x increases?

Used with permission from UCLES, A level, January 2006, Paper 4721, Question 6

Maths

Maxima and Minima: Problems 2i

Maxima and Minima: Problems 2i

A particle P moving in a straight line has velocity v m s⁻¹ at time t s after passing through a fixed point O. It is given that $v=3.2-0.2t^2$ for $0 \le t \le 5$. Calculate

Part A t at rest

the time (t seconds) at which P is at instantaneous rest.

Part B Acceleration

the acceleration of *P* when it is at instantaneous rest.

Part C Greatest distance

the greatest distance of P from O (to 3 significant figures).

Used with permission from UCLES, A Level, June 2015, Paper 4721, Question 9.

Maths

Maxima and Minima: Problems 2ii

Maxima and Minima: Problems 2ii

A curve has equation $y = 3x^3 - 7x + \frac{2}{x}$

Part A Verify stationary point

Verify the curve has a stationary point when x = 1.

More practice questions?

Part B Nature of stationary point

Determine the nature of this stationary point.

Neither/inconclusive

Minimum

Maximum

Part C Tangent to curve

The tangent to the curve at this stationary point meets the y-axis at the point Q. Find the y-coordinate of Q.

Used with permission from UCLES, A Level, June 2014, Paper 4721, Question 8.

<u>Home</u> Maths Calculus Differentiation Minimising the area

Minimising the area

A rectangular cuboid has a base with sides of length a and b and a height c. Its volume V and height c are fixed. By following the steps below find expressions in terms of V and c for the values of a and b which will minimise the surface area a of the cuboid, find an expression for this minimum surface area and check that this is indeed a minimum.

Part A Volume V and surface area A

Write down the equation for the volume V of the rectangular cuboid in terms of a,b and a	Write	down	the e	guation	for the	volume	V	of the	rectangular	cuboid	in	terms	of	a.	b an	dc
--	-------	------	-------	---------	---------	--------	---	--------	-------------	--------	----	-------	----	----	-------	----

The following symbols may be useful: V, a, b, c

Write down the equation for the area A of the rectangular cuboid in terms of a, b and c.

The following symbols may be useful: A , $\,$ a , $\,$ b , $\,$ c

From your equation for V deduce an expression for b in terms of V, a and c. Hence, by substitution, obtain an equation for A in terms of V, a and c.

The following symbols may be useful: A, $\,$ V, $\,$ a, $\,$ c

The following symbols may be useful: V , $\ \ c$

Find, in terms of V and c, the expression for b corresponding to this value of a.

The following symbols may be useful: V, $\ c$

Part C The minimum area

Find an expression for the minimum area in terms of V and c.

The following symbols may be useful: V, $\ c$

Part D Check that the area is a minimum

Find, at the value of a deduced in Part B, an expression in terms of V and c for the second derivative of A with respect to a; convince yourself that the value of the second derivative indicates that the value of A is a minimum at this point.

The following symbols may be useful: V, c

Created for isaacphysics.org by Julia Riley

Maths

Stationary Points 4ii

Stationary Points 4ii

Part A Find coordinates
Find the coordinates of the stationary point on the curve $y=x^4+32x$. Enter the x and y coordinates below.
Enter x coordinate:
The following symbols may be useful: x
Enter y coordinate:
The following symbols may be useful: y
Part B Maxima or Minima
Determine whether this stationary point is a maximum or a minimum.
Minimum
Maximum
Part C Range of x
For what range of values of x does x^4+32x increase as x increases? Give your answer in the form of an inequality.
The following symbols may be useful: <, <=, >, >=, \times

Maths

Maxima and Minima: Problems 1i

Maxima and Minima: Problems 1i

A cuboid has an volume of exactly $8 \,\mathrm{m}^3$. The base of the cuboid is a square with side length x metres. The surface area of the cuboid is $A \,\mathrm{m}^2$.

Part A Find expression for A

Show that A can be expressed in the form $ax^2+\frac{b}{x}$, where a and b are constants, and find this expression.

The following symbols may be useful: x

Part B Find $\frac{\mathrm{d}A}{\mathrm{d}x}$

Find $\frac{\mathrm{d}A}{\mathrm{d}x}$.

The following symbols may be useful: x

Part C Find minimum

Find the value of x which gives the smallest surface area of the cuboid.

The following symbols may be useful: x

Used with permission from UCLES, A level, June 2006, Paper 4721, Question 8.

Maths

Stationary Points 1ii

Stationary Points 1ii

The curve $y = x^3 - kx^2 + x - 3$ has two stationary points.

Part A Differentiate

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

The following symbols may be useful: $k\,\text{,}\ \ \, x$

Part B Find k

Given that there is a stationary point when x=1, find the value of k.

The following symbols may be useful: \boldsymbol{k}

Part C Differentiate twice

Find $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.

The following symbols may be useful: x

Hence determine whether the stationary point is a minimum or a maximum.

Maximum

Minimum

Used with permission from UCLES, A Level, June 2009, Paper 4721, Question 10.

Maths

Stationary Points 1i

Stationary Points 1i

Part A Find stationary points

Find the coordinates of the stationary points on the curve $y=2x^3-3x^2-12x-7$. Enter the x and	$id\ y$
coordinates of the stationary point with the largest x coordinate.	

Enter the x coordinate:

The following symbols may be useful: $\boldsymbol{\boldsymbol{x}}$

Enter the y coordinate:

The following symbols may be useful: y

Part B Nature of stationary points

Determine whether each stationary point is a minimum or maximum point. Identify the nature of the stationary point whose coordinates you have entered in Part A.

Maximum
Maximum

Minimum

Part C Expand and simplify

Expand and simplify $(x+1)^2(2x-7)$.

The following symbols may be useful: \boldsymbol{x}

Part D Sketch

The following symbols may be useful: \boldsymbol{y}

Used with permission from UCLES, A Level, Paper 4721 specimen, Question 8.

Maths

Maxima and Minima: Problems 1ii

Maxima and Minima: Problems 1ii

Figure 1: The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length $20\,$ metres, is used to form the remaining three sides. The width of the enclosure is x metres, and the area of the enclosure is x metres.

Part A Express as equation

Show that A can be expressed in the form $px-qx^2$, and find this expression.

The following symbols may be useful: \boldsymbol{x}

Part B Use differentiation

Use differentiation to find the maximum value of A.

The following symbols may be useful: A

Used with permission from UCLES, A Level, June 2007, Paper 4721, Question 5.