simple and multiple regression of the phenotype

Model specification

```
basic.model <- ANC ~ 1
full.model <- ANC ~ sex + site + dose</pre>
```

PGRNseq GWAS

Simple Regression

```
seq.reg.results <- mlreg(basic.model, seq.geno, trait="gaussian")
qqunif(seq.reg.results[,"P1df"])
title('PGRNseq Simple Linear Regression GWAS')</pre>
```

Multiple Regression

```
seq.reg.results <- mlreg(full.model, seq.geno, trait="gaussian")
qqunif(seq.reg.results[,"P1df"])
title('PGRNseq Multiple Linear Regression GWAS')</pre>
```

Exome chip GWAS

Simple Regression

```
exome.reg.results <- mlreg(basic.model, exome.geno, trait="gaussian")
qqunif(exome.reg.results[,"P1df"])
title('Exome chip Simple Linear Regression GWAS')</pre>
```

Multiple Regression

```
exome.reg.results <- mlreg(full.model, exome.geno, trait="gaussian")
qqunif(seq.reg.results[,"P1df"])
title('Exome Chip Multiple Linear Regression')</pre>
```

PGRNseq Simple Linear Regression GWAS

Figure 1: plot of chunk seq_simple_regression

PGRNseq Multiple Linear Regression GWAS

Figure 2: plot of chunk seq_multiple_regression

Exome chip Simple Linear Regression GWAS

Figure 3: plot of chunk exome_simple_regression

Exome Chip Multiple Linear Regression

Figure 4: plot of chunk exome_multiple_regression

Known signals