Digital Logic Design

Sung-Soo Lim

Today's Topic

카르노맵 최적화를 체계적으로 수행하기

Terminology

- Literal
 - 변수가 나타나는 형태
- Implicant
 - 리터럴의 곱의 형태
 - 카르노맵에서는 써클로 표현
- Prime implicant
 - 더 이상 확장할 수 없는 Implicant
 - _ 더 이상 확장할 수 없는 써클

Terminology

- Essential prime implicant
 - -해당 함수를 만족시키기 위해 반드시 필요한 Prime Implicant
 - -모든 EPI (Essential prime implicant)는 꼭 포함해야 함
 - -Non-EPI는 포함될 수도 있고 포함되지 않을 수도 있음

4 prime implicants

2 essential prime implicants

Terminology

- Cover
 - -F=1을 만족시키는 모든 써클의 집합
 - 해당 함수를 구현할 수 있는 방법
- Cost
 - Number of gates + number of inputs
 - Ignore complement (NOT)

$$cost = 4 + 10 = 14$$

Cover 1: G = a'b' + ac + ab

K-Map 최적화 절차

- (1) 모든 prime implicant를 생성
- (2) EPI를 모두 찾는다
- (3) EPI만으로 F=1을 만족?
 - -Yes were done!
 - -No − Non-EPI 중에서 선택하여 Complete Cover를 만들 수 있는 PI들을 찾아냄

K-Map Optimization Example (1)

Cover:

e.p.i: x'z, xz'

Cover 1:

e.p.i: x'z, xz', y'z'

cost = 13

Cover 2:

e.p.i: x'z, xz', x'y'

cost = 13

-/

K-Map Optimization Example (2)

Cover: e.p.i: a'b'

K-Map Optimization Example (2)

ab cd	00	01	11	10
00	1	1	1	1
01	0	0	1	0
11	0	0	1	1
10	0	0	0	1

Cover: e.p.i: a'b'

K-Map Optimization Example (2)

Cover:

e.p.i: a'b'

Cover 1 (cost = 20) F = a'b' + a'cd + abc + b'cd' Cover 2 (cost = 15) F = a'b' + bcd + acd'

K-Map for SOP vs. POS

- K-maps 표현 방법은 sum-of-products과 직접적으로 연관
- Product-of-sums 표현과 K-map의 관계는?

Sum-of-products F = a'b' + abc

Product-of-sums F = (a+b')(b'+c)(a'+b)

Don't Care

- Don't Care 입력
 - -해당 입력에 대한 출력은 시스템 구현에 전혀 영향이 없음
 - i.e. input condition can never occur
 - -K-map에서 'X'로 표시
 - -최적화에 활용

abc = 000 and abc = 111 are unused inputs

а	b	С	Z
0	0	0	Х
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	Х

minimization

enables better

Don't Care Input 활용하기

- Don't care 출력은 최적화에 유리한 방향으로 '0' 또는 '1'로 가정한다.
 - -X 를 포함하는 경우는 최적화에 꼭 필요한 경우에만
 - -다른 X는 절대 포함하지 않는다

Good use of don't cares

Unnecessary use of don't cares; results in extra term

Example – Using Don't Care

Minimize:

- -F = a'bc' + abc' + a'b'c
- -Given don't cares: a'bc, abc

$$F = a'c + b$$

Using Don't Cares

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1 0	1 1 0 X
0	1	0	0	0
0 0 0	1	0	1 0	X
	1	1	0	1 1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	1 0	1 X
1	0	1	1 0	X
1	1	0	0	X
1	1	0	1 0	X
1	1	1	0	X
1	1	1	1	X

Using Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0 0		0
0 0 0 0 0 0 0 1 1 1 1 1	0		1 0	1
0	0	1 1 0	1	1
0	1	0	0	0
0	1	0		X
0	1	1	1 0	1
0	1	1 1 0	1	1
1	0		1 0	1
1	0	0	1	1
1	0	1	0	X
1	0	1		X
1	1	1 0	1 0	X
1	1	0	1	X
	1	1	0	1 0 1 1 0 X 1 1 1 X X X X X X X X X
1	1	1	1	X

Υ				
CDA	B 00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	X	X

Using Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0 0	0	0		0
0	0	1	1 0	
0	0	1	1	1
0	1	1 0	1 0	0
0 0 0 0	1 1	0	1	1 0 X 1 1 1 X X X
0	1	1	0	1
0	1	1	1	1
1	1 0	0	1 0	1
1	0	0	1 0	1
1	0	1	0	X
1	0		1	X
1	1	1 0	1 0	X
1	1 1	0	1	X
1	1	1	0	X
1	1	1	1	X

$$Y = A + \overline{B}\overline{D} + C$$

Example – Using Don't Care (2)

Switch with 5 positions

- position 1, xyz = 001
- position 2, xyz = 010
- position 3, xyz = 011
- position 4, xyz = 100
- position 5, xyz = 101

Want circuit that

- Outputs 1 when switch is in position 2, 3, or 4
- Outputs 0 when switch is in position 1 or 5
- Note that we never use some input combinations
 - 000, 110, 111

With don't cares: F = y + z'

Multiple Output Circuits

- 여러 출력이 필요한 회로 (사실상 대부분의 회로)
 - -Seven-segment display
- MO (Multiple-Output) 회로를 최적화하는 기본 원리는?
 - -게이트 수를 줄여라!!

Seven Segment Display

$$a = \frac{w'x'y'z'}{w'x'y'z'} + w'x'yz' + \frac{w'x'yz}{w'x'yz} + \frac{w'xy'z}{w'xyz'} + \frac{w'xyz}{w'xyz'} + \frac{wx'y'z'}{w'x'y'z'} + \frac{wx'y'z'}{w'x'yz'} + \frac{w'x'y'z'}{w'x'yz'} + \frac{w'x'y'z'}{w'x'y'z'} + \frac{w'x'y'z'}{w'x'y'z'} + \frac{w'x'y'z'}{w'x'y'z'} + \frac{w'x'y'z'}{w'x'y'z'} + \frac{w'x'y'z'}{$$

TYTT

Multiple Output Circuits 사례 (2)

- 다중 출력 K-maps 에서 비용 최적화
 - -로컬 최적화 vs. 글로벌 최적화
 - -공유 가능한 회로를 찾아라

Multiple Output Circuits 사례 (3)

x1'x2x3

nothing to combine

Multiple Output Circuits 사례 (3)

• 어떻게든 공유 가능한 회로를 찾아내기

Multiple Output Circuits Solutions 비교

cost = 6 + 17 = 23

누가 이런 최적화를 수행해야 하나?

소프트웨어 도구!!

추가로 알아야 하는 논리 게이트

- XOR gate exclusive OR
 - 두 입력이 다를 때 True
 - 입력이 3개 이상일 때에는?
- XNOR gate complementing XOR gate
 - 입력이 3개 이상일 때에는?

а	b	F
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

а	b	F
0	0	' 1
0	1	0
1	0	0
1	1	1

