

An Asynchronous Parameter Server for Spark

Rolf Jagerman
University of Amsterdam

Deep Learning

Factorization Machines

https://github.com/MLnick/glint-fm

Topic Modeling (LDA)

Tourism	Video games	Javascript	Biology
hotel	allianc	write	tag
local	hord	docum	protein
car	euro	var	hypothet
holidai	warcraft	return	gene
area	wow	prop	cytoplasm
golf	gold	function	prk
wed	warhamm	subset	locu

SPARK SUMMIT EUROPE 2016

Problem

Model size exceeds memory of a single machine!

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Spark Worker

- A machine learning framework
- Distributes a model over multiple machines
- Offers two operations:
 - Pull: query parts of the model
 - Push: update parts of the model

Parameter Server

Machine learning update equation:

$$w_i \leftarrow w_i + \Delta$$

- (Stochastic) gradient descent
- Collapsed Gibbs sampling for topic modeling

Parameter Server

Machine learning update equation:

$$W_i \leftarrow W_i + \Delta$$

- (Stochastic) gradient descent
- Collapsed Gibbs sampling for topic modeling
- Aggregate push updates via addition (+)

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Parameter Server

Parameter Server

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Parameter Server

Parameter Server

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Parameter Server

Parameter Server

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Parameter Server

Parameter Server

Spark Worker

Spark Worker

Spark Worker

Spark Worker

Parameter Server

Parameter Server

Demo

Task

- LDA topic modeling
- 1,000 topics
- 27TB data set (ClueWeb12)

Setup

- 30 Spark workers (16 CPU cores each)
- 3.7TB RAM total
- Interconnected over 10Gb/s ethernet

Approach

- Glint for model storage (billions of parameters)
- LDA approximation algorithm for runtime improvements
- A small loss in model quality is acceptable

Comparing three methods:

- 1. Glint LDA
- 2. MLLib EM LDA
- 3. MLLib Online LDA

Perplexity (topic model quality)

Data (GB)	# Topics
50	20
100	20
150	20
200	20
200	40
200	60
200	80

Glint	MLLib EM	MLLib Online
6,108	-1.3%	+0.4%
5,731	-5.4%	-4.6%
5,427	-10.7%	-8.2%
6,021	-5.1%	+4.0%
5,813	+1.2%	-1.3%
5,520	+4.8%	-5.5%
5,861	+6.8%	-0.5%

Runtime (minutes)

Data (GB)	# Topics
50	20
100	20
150	20
200	20
200	40
200	60
200	80

Glint	MLLib EM	MLLib Online
6.3	9.7	16.3
7.1	14.2	17.8
8.9	14.1	19.6
10.8	22.3	21.5
11.9	23.7	57.5
13.4	32.4	131.0
14.7	34.4	233.2

Shuffle Write (GB)

Data (GB)	# Topics
50	20
100	20
150	20
200	20
200	40
200	60
200	80

Glint	MLLib EM	MLLib Online
	3.3	
	4.6	
No	5.5	No
Shuffle	6.2	Shuffle
Write	12.1	Write
	18.0	
	23.9	

 MLLib could not scale beyond 200GB or 100 topics due to task and job failures

 Glint can compute a topic model on the full 27TB with 1,000 topics

Conclusion

- Glint is a parameter server for Spark
- Machine learning for very large models
- Asynchrony enables highly flexible threading
- Extremely easy to use
- Outperforms MLLib on LDA topic modeling

Future work

- Better fault tolerance (using Chord/DHT)
- User defined functions for aggregation
- Support for sparse models
- Implementing other algorithms
 - Deep learning
 - Linear models

THANK YOU

