1. Write a pois.prob() function that computes P(X=x), $P(X \neq x)$, P(X < x), $P(X \leq x)$, P(X > x), and $P(X \geq x)$. Enable the user to specify the rate parameter λ .

```
pois.prob <- function(x, lambda, type){</pre>
  if(type == "="){
    #pmf of x
    prob = dpois(x, lambda)
  else if(type == "!="){
   prob = 1 - dpois(x, lambda)
  else if(type == "<"){
    #cdf of x-1
   prob = ppois(x-1, lambda)
  else if(type == "<="){
    #cdf of x
   prob = ppois(x, lambda)
  else if(type == ">"){
   #1 - cdf of x
prob = 1 - ppois(x, lambda)
  else if(type == ">="){
   #1 - cdf of x-1
prob = 1 - ppois(x-1, lambda)
  else{
   print("Invalid input. Please enter a valid operator for the 'type' parameter.")
    return(0)
  return(prob)
```

2. Write a beta.prob() function that computes P(X = x), $P(X \neq x)$, P(X < x), $P(X \leq x)$, P(X > x), and $P(X \geq x)$ for a beta distribution. Enable the user to specify the shape parameters α and β .

```
beta.prob <- function(x, alpha, beta, type){</pre>
  if(type == "="){
   #For a continuous distribution, probability is zero at any given point
   prob = 0
  else if(type == "!="){
   #The compliment of "="
   prob = 1
  else if(type == "<" | type == "<="){
   #These two operators are equivalent for continuous distributions
   prob = pbeta(x, alpha, beta)
  else if(type == ">" | type == ">="){
   #These two operators are equivalent for continuous distributions
   prob = 1 - pbeta(x, alpha, beta)
   print("Invalid input. Please enter a valid operator for the 'type' parameter.")
   return(0)
  return(prob)
```