Cálculo Avanzado - 1er cuatrimestre 2013 Soluciones del primer parcial

1) Sea $A = \{(a_n) \subseteq \mathbb{Q} : (a_n) \text{ es eventualmente aritmética}\}$. Vamos a probar que $\#A = \aleph_0$, escribiéndolo como una unión numerable de conjuntos de cardinal \aleph_0 .

Para cada $k \in \mathbb{N}$, sea A_k el conjunto de las sucesiones que son aritméticas a partir del término k, esto es:

$$A_k = \{(a_n) \subseteq \mathbb{Q} : \exists d \in \mathbb{Q} \text{ tal que } a_{n+1} - a_n = d \ \forall n \ge k \}.$$

Es claro entonces, por la definición de A, que $A = \bigcup_{k \in \mathbb{N}} A_k$. Luego, para resolver el ejercicio basta probar que $\#A_k = \aleph_0$ para todo $k \in \mathbb{N}$. Consideremos la función $f: A_k \to \mathbb{Q}^{k+1}$ definida por

$$f((a_n)) = (a_1, \dots, a_k, a_{k+1} - a_k).$$

Esta función es inyectiva, pues una sucesión de A_k queda completamente determinada por el valor que toman sus primeras k coordenadas y la diferencia entre las coordenadas (k+1)-ésima y k-ésima, que es el d de la definición. Veamos que también es sobreyectiva. Dada una (k+1)-upla de números racionales $(q_1, \ldots, q_k, q_{k+1})$, llamamos $d = q_{k+1}$ y consideramos la sucesión $(q_1, \ldots, q_k, q_k + d, q_k + 2d, q_k + 3d, \ldots)$. Es fácil verificar que la sucesión así definida está en A_k , y su imagen por f es precisamente $(q_1, \ldots, q_k, q_{k+1})$. En conclusión, f es biyectiva, y por lo tanto $\#A_k = \#\mathbb{Q}^{k+1} = \aleph_0$, pues es producto finito de conjuntos de cardinal \aleph_0 . Esto concluye la solución. \blacksquare

2) a) Probemos que d es una métrica en X. Notemos que si $f,g\in X$, entonces $1\in\{x\in[0,1]:f(y)=g(y)\text{ para todo }y\in[x,1]\}\subset[0,1]$. Luego, d(f,g) está bien definido y $d(f,g)\in[0,1]$. Es claro que d(f,g)=d(g,f). Supongamos que d(f,g)=0 y notemos

$$A=\{x\in [0,1]: f(y)=g(y) \text{ para todo } y\in [x,1]\}.$$

Como ínf A = 0, tomamos una sucesión $(x_n)_{n \in \mathbb{N}} \subset A$, tal que $x_n \searrow 0$, i.e, $(x_n) \in A$ es una sucesión decreciente de números reales positivos que converge a 0. Como $x_n \in A$, tenemos que f y g coinciden en el intervalo $[x_n, 1]$. Luego, f y g coinciden en $(0, 1] = \bigcup_n [x_n, 1]$. Además, como f y g son funciones continuas tenemos que

$$f(0) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(0).$$

Por lo tanto, f = g como queríamos ver.

Tomemos ahora $f, g, h \in X$. Queremos ver que $d(f,g) \leq d(f,h) + d(h,g)$. Si $d(f,g) \leq d(f,h)$, es trivial. Supongamos entonces que d(f,g) > d(f,h) y veamos que se tiene que d(f,g) = d(h,g). Sea α tal que $d(f,h) \leq \alpha < d(f,g)$ y f = h en $[\alpha,1]$. Fijemos $\varepsilon > 0$. Tenemos que f = g en $[d(f,g) + \varepsilon,1]$. Luego, como $\alpha < d(f,g) + \varepsilon$, obtenemos que h = g en $[d(f,g) + \varepsilon,1]$. Entonces $d(h,g) \leq d(f,g) + \varepsilon$ para cualquier $\varepsilon > 0$. Por lo tanto $d(h,g) \leq d(f,g)$. Si d(h,g) < d(f,g), tomamos β tal que $d(h,g) \leq \beta < d(f,g)$ y h = g en $[\beta,1]$. Entonces, si notamos $\gamma = \max\{\alpha,\beta\}$, tenemos que $\gamma < d(f,g)$ y f = g en $[\gamma,1]$. Lo que es una contradicción, que proviene de suponer que d(h,g) < d(f,g). Luego d(h,g) = d(f,g), y la desigualdad triangular se cumple trivialmente.

b) Para ver que ninguna de las funciones identidad es continua, basta que ver que $B^d(f,r)$ no es abierta para d_∞ y que $B^{d_\infty}(f,r)$ no es abierta para d, para $f\in X$ y r>0 convenientes. Dibujamos bocetos de los conjuntos $B^d(f,r)$ y $B^{d_\infty}(f,r)$, para f(x)=1-x y r=0,4.

Veamos que $B^{d_{\infty}}(f,r)$ no es abierto para d. Dado $\delta > 0$, podemos construir una función continua $g \in X$ que coincida con f en el intervalo $[\delta/2,1]$ y

- g(0) > 0 sea suficientemente grande. Luego, $g \notin B^{d_{\infty}}(f,r)$ y $g \in B^{d}(f,\delta)$. Es decir, que $B^{d_{\infty}}(f,r)$ no contiene una bola para d centrada en f. Similarmente, dado $\delta > 0$, podemos construir una función continua $h \in X$
- Similarmente, dado $\delta > 0$, podemos construir una función continua $h \in X$ que solamente coincida con f en 1 y pertenezca a $B^{d_{\infty}}(f,\delta)$. Luego, $h \notin B^d(f,r)$ y $h \in B^{d_{\infty}}(f,\delta)$. Es decir, que $B^d(f,r)$ no contiene una bola para d_{∞} centrada en f.
- 3) Notemos que si $F \subseteq X$ es un conjunto abierto y cerrado a la vez y S es un conjunto conexo, entonces $S \cap F$ es un subconjunto abierto y cerrado a la vez en S, así que o es vacío o es igual a S. Entonces si $S \cap F \neq \emptyset$, tiene que ser $S \subseteq F$.

En particular, como la componente conexa de x es conexa y su intersección con cualquier conjunto abierto y cerrado a la vez que contiene a x es no vacía (porque contiene a x), se deduce que está contenida en la intersección de todos los subconjuntos de X que contienen a x y son a la vez abiertos y cerrados.

La igualdad no vale, lo vimos en el ejercicio 10 de la práctica 3. Más concretamente, si $A_n = \{\frac{1}{n}\} \times [0,1]$ y $X = \bigcup_{n \in \mathbb{N}} A_n \cup \{(0,0),(0,1)\}$ entonces $\{(0,0)\}$ y $\{(0,1)\}$ son componentes conexas de X, pero si $B \subset X$ es abierto y cerrado en X entonces $\{(0,0),(0,1)\} \subset B$ o $\{(0,0),(0,1)\} \cap B = \emptyset$.

4) Notemos que las f_n convergen puntualmente a la función idénticamente nula. Vamos a demostrar que la convergencia es uniforme.

Como g es continua en [0,1], es acotada. Sea M>0 tal que $|g(x)|\leq M$ para todo $x\in[0,1]$.

Como g(1) = 0, dado $\varepsilon > 0$ existe $\delta > 0$ tal que $|g(x)| < \varepsilon$ para todo $x \in (1 - \delta, 1]$. Tomemos un $n_0 \in \mathbb{N}$ tal que $(1 - \delta)^{n_0} < \frac{\varepsilon}{M}$. Entonces, para todo $n \ge n_0$ tenemos que:

Si $x \in [0, 1 - \delta]$, entonces $|f_n(x)| = x^n |g(x)| \le (1 - \delta)^n M < \varepsilon$.

Si $x \in (1 - \delta, 1]$, entonces $|f_n(x)| = x^n |g(x)| \le |g(x)| < \varepsilon$.

En síntesis, dado $\varepsilon > 0$ pudimos encontrar $n_0 \in \mathbb{N}$ tal que $\sup_{x \in [0,1]} |f_n(x)| \le \varepsilon$

para todo $n \ge n_0$. Luego, f_n converge uniformemente a 0, como queríamos probar. \blacksquare

5) Supongamos que (X, d') es completo.

Sea $\{x_n\}$ una sucesión de Cauchy en (X, d), es decir que dado $\varepsilon_0 > 0$, existe $n_0 \in \mathbb{N}$ tal que si $m, n \geq n_0$ entonces $d(x_m, x_n) < \varepsilon_0/c_2$. Pero entonces $d'(x_n, x_m) \leq c_2 d(x_n, x_m) < \varepsilon_0$ para todo $n, m \geq n_0$, o sea que $\{x_n\}$ es de Cauchy en (X, d'). Entonces $x_n \to x$ en (X, d') (porque es completo).

Veamos que $x_n \to x$ también en (X, d). Como $x_n \to x$ en (X, d'), para cada $\varepsilon > 0$ existe $k_0 \in \mathbb{N}$ tal que $d'(x_k, x) < c_1 \varepsilon$ para todo $k \ge k_0$. Pero entonces

 $d(x_k,x) \le d'(x_k,x)/c_1 < \varepsilon$ para todo $k \ge k_0$, o sea que $x_n \to x$ en (X,d). La otra implicación es análoga.

No se puede concluir lo mismo si solamente pedimos que las métricas d y d' sean topológicamente equivalentes, lo vimos en el ejercicio 5 iv) de la práctica 3. Más concretamente, la métrica $d'(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$ es topológicamente equivalente a la métrica usual d(x,y) = |x-y| en \mathbb{R} , pero \mathbb{R} no es completo con la métrica d'.