Санкт-Петербургский государственный университет

Кафедра системного программирования

Группа ТП.22Б07-мм

Экспериментальное исследование производительности алгоритма обхода графа в ширину

БУРАШНИКОВ Артем Максимович

Отчёт по учебной практике в форме «Эксперимент»

Научный руководитель: доцент кафедры информатики, к. ф.-м. н., С. В. Григорьев

Оглавление

Ві	Введение			
1.	Пос	становка задачи	4	
2.	Обз	вор предметной области	5	
	2.1.	Существующие исследования	5	
	2.2.	Обход в ширину в контексте линейной алгебры	6	
3.	Детали реализации			
	3.1.	Концепция алгоритма	11	
	3.2.	Параллелизм	12	
	3.3.	Реализация алгоритма на языке $F\#$	13	
4.	Эксперимент			
	4.1.	Характеристики оборудования	14	
	4.2.	Исследовательские вопросы	14	
	4.3.	Использованные метрики	15	
	4.4.	Набор данных	15	
	4.5.	Постановка эксперимента	16	
	4.6.	Анализ результатов	16	
За	клю	эчение	17	
Cı	Список литературы			

Введение

Использование такой абстракции как $\it граф$ для анализа и изучения различных форм реляционных данных имеет большое значение. Теоретические проблемы, существующие в областях применения, включают в себя определение и выявление значащих объектов, обнаружение аномалий, закономерностей или внезапных изменений, кластеризацию тесно связанных сущностей. Поиск в ширину (англ. — $\it Breadth$ - $\it First Search$, сокр. — $\it DFS$) и поиск в глубину (англ. — $\it Depth$ - $\it First Search$, сокр. — $\it DFS$) являются двумя основными алгоритмами для систематического исследование графов.

Для удовлетворения задач теоретического анализа в современных приложениях важна скорость вычислений. Одним из способов получить ускорение выступают параллельные вычисления, дающие выигрыш в производительности на современных многоядерных системах. Благодаря природе своей работы, алгоритм обхода в ширину естественным образом позволяёт внедрять в свою реализацию использование дополнительных потоков и ядер процессора. Таким образом, простота реализации, широкая область применения и возможность использования паралелльных вычислений делают BFS более популярным инструментом и объектом исследований, чем DFS.

1. Постановка задачи

Целью работы является провести экспериментальное исследование производительности обхода в ширину и ответить на следующие вопросы.

- 1. При каких параметрах графа выгоднее использовать параллельную версию алгоритма, а при каких последовательную?
- 2. Использование какого количества потоков даёт наибольший выигрыш в производительности и почему?

Для её выполнения были поставлены перечисленные ниже задачи.

- Реализовать параллельную и последовательную версии алгоритма обхода в ширину с использованием структур, подходящих для хранения в памяти компьютера разреженных матриц и векторов.
- Оценить влияние конкретных характеристик графа и количества используемых потоков на итоговую производительность BFS и найти критические величины этих параметров.

Выполнение поставленных задач позволит определить какая версия алгоритма (последовательная или параллельная) предпочтительнее к использованию при том или ином сценарии.

2. Обзор предметной области

Для проведения эксперимента необходимо ознакомиться с существующими работами, затрагивающими проблемы многопоточной реализации BFS. Кроме того, требуется рассмотреть преимущества использования абстрактных операций линейной алгебры в алгоритме обхода в ширину, отметив выбор подходящей структуры данных для хранения матриц и векторов, а также обратить внимание на особенности выбранного для реализации языка программирования.

2.1. Существующие исследования

Алгоритм обхода графа в ширину ввиду своей прикладной значимости был проанализирован в различном контексте в ряде исследовательских работ. Некоторые из них рассмотрены далее.

В работе [6] отмечается, что производительность BFS в значительной мере зависит от топологии подаваемого на вход графа. Ся Инлун (Xia Yinglong) и Празанна Виктор (Prasanna Viktor) показали, что в случае большого количества итераций алгоритма при малых количествах вершин/ребер между итерациями (то есть малом количестве вершин во фронте на каждой итерации) параллельная версия терпит снижение производительности из-за накладных расходов на создание параллельных задач.

Кроме того, в исследовании [4] Вират Агарвал (Virat Agarwal) и другие продемонстрировали, что последовательная версия алгоритма в некоторых ситуациях оказывается предпочтительнее не оптимизированной параллельной ввиду большой задержки работы с памятью и высокой вычислительной стоимостью её синхронизации.

Упомянутые авторы находят решение проблем оптимизации в тонкой настройке взаимодействия с общей памятью в используемой архитектуре или применении адаптивных алгоритмов, способных динамически контролировать количество используемых потоков во время исполнения.

Анализируя представленные работы, можно с высокой точностью прогнозировать зависимости между параметрами входных данных, вы-

бранной архитектурой и ожидаемой производительностью используемой реализации обхода в ширину. Данное экспериментальное исследование будет посвящено выявлению таких зависимостей для алгоритма BFS, реализованного с применением методов линейной алгебры, что существенным образом влияет не только на сам алгоритм, но и на внутреннее представление графа в памяти компьютера, в связи с чем полученные результаты могут представлять особый интерес.

2.2. Обход в ширину в контексте линейной алгебры

Для эффективного представления и манипулирования графовыми структурами можно использовать матрицы и вектора. Рассмотрим теоретические основы такой абстракции и её преимущества.

2.2.1. GraphBlas

Набор операций, которые могут быть применены к матрицам и векторам для выполнения различных графовых алгоритмов (таких как обходы, поиск путей, кластеризация и др.) заложен в *GraphBlas* [2] ¹.

Это инициитива, нацеленная на создание стандартизованного интерфейса для разработки графовых алгоритмов. Её целью является обеспечение высокой производительности и переносимости для широкого спектра решений, работающих с различными графовыми структурами.

Пользователю предоставляется спецификация, определяющая абстрактное умножение матрицы на вектор, сложение векторов и умножение матрицы на матрицу. Описанная семантика и требования для интерфейса позволяют создавать собственные реализации на различных языках программирования и для различных аппаратных платформ.

2.2.2. Представление графа в памяти компьютера

Нужно отметить, что реальные графы сильно разреженны, но в то же время обладают сравнительно большим количеством вершин. Плотность

 $^{^{1}}$ Форум, посвещенный стандарту GraphBlas. Дата посещения: 23.05.2023

графа (англ. — density) можно вычислить по формуле:

$$density = \frac{2 \cdot |E|}{|V| \cdot (|V| - 1)},\tag{1}$$

где |E| — количество рёбер, а |V| — количество вершин. Разреженными можно считать графы со значением плотности < 10%. В то время как на практике в основном встречаются сильно разреженные графы со значением density <<< 2%.

Хранить такие данные в виде двумерных таблиц не является эффективным решением, поэтому используют специальные структуры. Рассмотрим некоторые из них.

• Список смежности

Это один из наиболее простых и эффективных способов хранения разреженных графов. Для каждой вершины выделяется список ее соседей. Это может быть реализовано с помощью массива списков, где каждый элемент массива представляет вершину, а связанный список содержит соседей этой вершины.

• Матрица смежности

В матрице смежности каждый элемент указывает наличие или отсутствие ребра между двумя вершинами. В случае разреженных графов, где большая часть элементов матрицы будет нулевыми, может быть эффективно использована разреженная матрица, где хранятся только ненулевые значения.

• Список ребер

Вместо хранения информации о соседних вершинах можно хранить список всех ребер графа. Каждое ребро тогда представляется парой вершин, которые оно соединяет. Этот подход эффективен для определенных операций, таких как перебор всех ребер.

• Компактные структуры данных

Например, CSR (Compressed Sparse Row) и CSC (Compressed Sparse Column), которые оптимизируют использование памяти для разреженных графов, сохраняя при помощи массивов информацию о

вершинах, ребрах и их связях, и позволяют эффективно выполнять операции над разреженными графами.

Каждый метод имеет свои преимущества и недостатки с точки зрения памяти и производительности. Для сильно разреженных графов, которые были использованы для исследования BFS, в контексте линейной алгебры их представление лучше всего подходит в виде матрицы смежности. Более того, поскольку большинство значений у таких матриц равно нулю, для их хранения целесообрано использовать дополнительную структуру данных, абстракцией над которой выступают вектора и матрицы.

2.2.3. Деревья квадрантов

Деревъя квадрантов (англ. — Quadtree) являются рекурсивной структурой данных, широко используемой для эффективного хранения и обработки разреженных матриц. Возможность представлять их компактным образом делает такие деревья ценным инструментом для оптимизации использования памяти.

Quadtree строится на основе деления матрицы смежности графа на четыре равные части (квадранта) и рекурсивного применения этого деления ко всем четырем дочерним квадрантам. Каждый такой квадрант может быть представлен в виде узла дерева, а в листьях хранится информация об объектах или данных, находящихся в соответствующем квадранте. Это позволяет эффективно представлять разреженные данные, так как области без объектов могут быть сохранены в упрощенной форме. На рисунке 1 представлена четверка узлов, образующих квадрант. Нумерацию и обозначение квадрантов принято вести слева направо, сверху вниз: (I) NW — North-West, (II) NE — North-East, (III) SW — South-West, (IV) SE — South-East

На рисунке 2 продемонстирована ситуация, в которой на некотором уровне квадрант имеет всего один значащий узел, остальные элементы матрицы являются незначащими (в нашем случае для них использовано обозначение None).

Рис. 1: Схематичное изображение одного из узлов дерева квадрантов и его потомков

Рис. 2: Схематичное изображение узла дерева квадрантов только с одним потомков

Применение None для обозначения нулевых элементов не является случайным. Далее будут рассмотренны языковые особенности, позволившие естестевным образом внедрить обозаченные ранее абстракции и структуры

2.2.4. Языковые особенности F#

Option — это тип-контейнер, который может либо содержать значение определенного типа, либо быть пустым (None). Такое представление незначащих элементов очень удобно по нескольким причинам.

• Естественное выражение отсутствия значения

Деревья квадрантов могут иметь узлы, которые не содержат никаких данных или не имеют потомков. Использование типа Option позволяет явно на это указать, делая код более читабельным.

• Удобный матчинг (англ. — pattern-matching)

Эта особенность языка позволяет легко обрабатывать различные случаи, встречающиеся в узлах деревьев.

• Безопасность типов

Использование Option обеспечивает статическую проверку типов. Например, компилятор предотвратит ошибки, связанные с попыткой обращения к значению там, где его нет.

3. Детали реализации

3.1. Концепция алгоритма

Основной принцип состоит в том, что применение операции умножения вектора на матрицу, определенной в GraphBlas, является переходом от одних вершин графа к другим по инцидентным этим вершинам рёбрам. В свою очередь вектора представлены в виде двоичного дерева, а матрицы — в виде дерева квадрантов. Такое представление удобно не только для хранения разреженных структур в памяти, но и для внедрения параллелизма. Рассмотрим конкретные шаги алгоритма.

- Шаг 1. Создается матрица смежности, соответствующая данному графу. В нашем случае по матрице смежности, представленной как список координат, строится дерево квадрантов, причем использование F# позволяет естественно выражать отсутствующие рёбра и отсутствующие метки через тип Option. Значения в ячейках матрицы заполняются значениями на соответствующих рёбрах графа.
- Шаг 2. Задаются два вектора.
 - 1. Фронт: вектор, в котором каждый индекс соответствует вершине графа, а значения указывают на текущие просматриваемые вершины. Отсутствие вершины в текущем фронте обозначается как Option None.
 - 2. Результирующий вектор, который при инициализации совпадает с фронтом а в процессе работы алгоритма аккумулирует промежуточные результаты (например, длину минимального пути).
- **Шаг 3**. Выполняется умножение вектора состояний на матрицу смежности. В качестве поэлементных операций сложения и умножения используются логические ИЛИ и И. После каждого умножения на результирующий вектор применяется маска, чтобы алгоритм

не обрабатывал уже посещенные вершины. Результатом итерации является новый фронт и обновленный результирующий вектор.

Шаг 3 повторяется до тех пор, пока не будут достигнуты требуемые условия остановки. Например, все вершины станут исследованы или произойдет выполнение определенного условия.

3.2. Параллелизм

Благодаря рекуррентной природе деревьев, являющихся в нашем случае внутренним представлением векторов и матриц, реализованный алгоритм естественным образом поддаётся распараллеливанию. В листинге 1 представлен псевдокод с использованием абстрактных операций линейной алгебры. Минимальными единицами такой операции являются вектор размера 1×2 и матрица размера 2×2, что на каждой итерации позволяет использовать до четырех потоков для разделения вычислений между ними.

$$\begin{bmatrix} a_{11} & a_{12} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \times b_{11} + a_{12} \times b_{21} \\ a_{11} \times b_{12} + a_{12} \times b_{22} \end{bmatrix}$$

Элементы матрицы — поддеревья, поэтому вычисление элемента $a_{is} \times b_{sj}$ является рекурсивным вызовом на соответствующем поддереве. В представленной работе операция умножения над минимальными единицами разбивается на два потока: один из потоков отвечает за вычисление значения в первой строке результирующего вектора, а другой поток — за вычисление во второй. Такой подход выбран потому, что использовавшееся для постановки экспериментов оборудование имеет небольшое количество физических и виртуальных ядер процессора. Кроме того, при необходимости увеличить количество потоков на вход в BFS передаётся целый положительный параметр parallelLevel, величина которого уменьшается с каждым вызовом тела функции, в результате чего производятся дополнительные асинхронные вычисления на следующем уровне рекурсии. Этот передаваемый аргумент позволяет точно контролировать степень распараллеливания.

Листинг 1 Псевдокод параллельного алгоритма обхода в ширину с использованием методов линейной алгебры

```
1 function BFS (parallelLevel, startingVertices, adjacencyMatrix):
 2
 3
      matrix := makeSparseMatrix from adjacencyMatrix
 4
 5
      frontier := makeSparseVector from startVertices
 6
 7
      result := frontier
 8
 9
      def recursive function inner (frontier, result, counter):
10
           if frontier.IsEmpty then
11
               return result
12
           else
13
               newFrontier :=
                   call multiplyVectorByMatrix (parallelLevel, frontier, matrix)
14
15
16
               newFrontier :=
                   call applyMask (result, newFrontier)
17
18
19
               newResult :=
20
                   call updateResult (count, result, newFrontier)
21
22
               newCounter := counter + 1
23
               call inner (newFrontier, newResult, newCounter)
24
25
       call inner (frontier, result, 1)
26
27 end function
```

3.3. Реализация алгоритма на языке F#

Ниже приведены ссылки на варианты исполнения обозначенных алгоритмов.

- \bullet Обход в ширину на языке $F#^2$.
- ullet Умножения вектора на матрицу как абстракция над операциями над деревьями 3

Отметим, что обе функции поддерживают как последовательное, так и параллельное исполнение.

²Это сноска

³

4. Эксперимент

4.1. Характеристики оборудования

Оборудование, на котором были поставлены описанные далее эксперименты, обладает следующими характеристиками:

Операционная система

Operating System: Ubuntu 22.04.2 LTS

CPU

Architecture: x86_64

Model name: AMD Ryzen 5 4500U with Radeon Graphics

Thread(s) per core: 1
Core(s) per socket: 6
Socket(s): 1

CPU max MHz: 2375,0000 CPU min MHz: 1400,0000

RAM

Total (MB): 9351

4.2. Исследовательские вопросы

Анализ поставленных задач позволил выдвинуть следующие гипотезы:

RQ1

Ожидается, что в параллельной версии алгоритма обхода в ширину производительность будет значительно превышать последовательную версию на сильно разреженных неориентированных графах, потому что

в таких графах большинство вершин имеют небольшую степень, что позволит эффективно распределить работу между потоками и уменьшить накладные расходы на синхронизацию. Таким образом, параллельная версия должна продемонстрировать ощутимое ускорение.

RQ2

Предполагается существование оптимального количества потоков в параллельной версии алгоритма, которое приведет к наибольшему выигрышу в производительности за счет эффективного использования доступных ресурсов вычислительной системы.

4.3. Использованные метрики

Для исследования RQ1 решено замерять ускорение (Speedup) параллельной версии алгоритма относительно последовательной со следующим набором контролируемых параметров:

- количество вершин в графе;
- плотность графа;
- количество используемых потоков.

Для поиска оптимального значения, обозначенного в RQ2, будет проанализировано среднее время работы параллельной версии алгоритма на сильно разреженных графах с использованием разного количества потоков: 1, 2, 4, 8, 16. Кроме того, зафиксируем распределение памяти и нагрузку на потоки во время исполнения. Все замеры будут выполнены с использованием библиотеки для измерения производительности BenchmarkDotNet [1], разрабатываемой и поддерживаемой для платформы .NET.

4.4. Набор данных

Для фиксации исследуемых величин были выбраны TODO различных разреженных квадратных матриц из коллекции университета Фло-

риды [5]. Плотные матрицы было решено генерировать. Необходимо учесть, чтобы матрица смежности графа заполнялась значениями меток равномерно по всей площади двумерной сетки, потому как группировка ребёр вокруг определенного квадранта матрицы может привести к нежелательным последствиям из-за особенности внутреннего представления матриц в виде деревьев. Для генерации матрицы смежности создавалась двумерная таблица, необходимое количество случайно выбранных ячеек которой заполнялось различными значениями. Функция выбирала ячейки с равномерным распределением.

Информация о выбранных данных представлена в таблице 1. Для обозначения числа ненулевых элементов используется аббревиатура *Nnz*. В таблице приведено название матрицы (при наличии — официальное), количество строк, количество ненулевых элементов, отношение ненулевых элементов к числу всех возможных элементов (разреженность).

Таблица 1: Разреженные матричные данные

Матрица Количество строк R Nnz	$M \mid \mathrm{Nnz}/R^2$
--	---------------------------

4.5. Постановка эксперимента

4.6. Анализ результатов

Заключение

Список литературы

- [1] BenchmarkDotNet. 0.13.4. URL: https://benchmarkdotnet.org/ (дата обращения: 15.05.2023).
- [2] Mathematical foundations of the GraphBLAS / J. Kepner, P. Aaltonen, D. Bader et al. // 2016 IEEE High Performance Extreme Computing Conference (HPEC). — 2016. — P. 1–9.
- [3] Newman M. E. J., Watts D. J., Strogatz S. H. Random graph models of social networks // Proceedings of the National Academy of Sciences.— 2002.—Vol. 99, no. suppl_1.—P. 2566–2572.—https://www.pnas.org/doi/pdf/10.1073/pnas.012582999.
- [4] Scalable Graph Exploration on Multicore Processors / Virat Agarwal, Fabrizio Petrini, Davide Pasetto, David A. Bader. 2010.
- [5] T. Davis. The SuiteSparse Matrix Collection (the University of Florida Sparse Matrix Collection). 2020. URL: https://sparse.tamu.edu (дата обращения: 15.05.2023).
- [6] Xia Yinglong, Prasanna Viktor K. Topologically adaptive parallel breadth-first search on multicore processors.—2009.