- Definitions:
 - **Positive definite**: A symmetric matrix A is positive definite iff $\vec{x}^T A \vec{x} > 0$ for all $\vec{x} \neq \vec{0}$.
 - Positive semi-definite: A symmetric matrix A is positive semi-definite iff $\vec{x}^T A \vec{x} \ge 0$ for all \vec{x} .
 - Likewise for **negative definite** and **negative semi-definite**
- Eigenvalues:
 - A is positive definite iff all eigenvalues λ_i of A are positive, i.e. $\lambda_i > 0$.
 - A is positive semi-definite iff all eigenvalues λ_i of A are non-negative, i.e. $\lambda_i \geq 0$.
- Gram matrix: A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite iff it is Gram matrix of n linearly independent vectors. Similarly, a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite iff it is a Gram matrix for some set of n vectors.
 - The Gram matrix A of a set of vectors $x_1, ..., x_n \in \mathbb{R}^m$ is $A_{ij} = \langle \vec{x}_i, \vec{x}_j \rangle$.
 - Similarly, A has linearly independent columns iff A^TA is positive definite. A^TA is positive semi-definite for any A.
- Sylvester's criterion: A symmetric matrix A is positive definite iff all leading principle minors of A are positive.
 - The k leading principle minor is the $k \times k$ submatrix of A anchored at the top-left of A.
- A positive definite matrix is always invertible, and its inverse is also positive definite.
- A matrix A is positive semi-definite iff there is a positive semi-definite B such that BB = A, where B is unique. In other words, A has a unique square root.
- Probability: A matrix is positive semi-definite if it is the covariance matrix of a multivariate distribution.