1. [10%] General Al Knowledge

For each of the statements below, fill in the box T if the statement is always and unconditionally true, or fill in the box F if it is always false, sometimes false, or just does not make sense.

. 6

- a) If A is one of B's k-nearest-neighbors for a given value of k, then B must be one of A's k-nearest-neighbors.
- b) SVM can only classify data that is linearly separable.
- c) Assuming Boolean attributes, the depth of a decision tree, built using common algorithms such as ID3 (Iterative Dichotomiser 3), can never be larger than the number of training examples.
- d) Every Boolean function can be represented by some Bayesian retwork.
- e) Naive Bayes is a linear classifier.
- f) A Markov process is a random process in which the future is independent of the present, given the past.
- g) A single perceptron cannot compute the XOR function.
- h) For reinforcement learning, we need to know the transition probabilities between states before we start.
- i) In supervised learning, the examples given to the learner are not labeled.
- j) A perceptron is guaranteed to learn a given linearly separable function within a finite number of training steps.

2. [20%] Bayesian Networks

In the network below, the Boolean variables have the semantics: B: Brilliant, H: Honest, L: LotsOfFriends, Q: Qualified, E: Elected.

2A. [6%] Which of these, if any, are asserted by the structure of the network (leaving aside the conditional probability tables (CPTs))?

1.	P(B, L) = P(B) P(L)
2.	P(E Q, L) = P(E Q, L, H)
3.	P(Q B, H) = P(Q B, H, L)

2B. [7%] Calculate the value of P(B+, H+, L-, Q+, E-). Show your work.

2C. [7%] Calculate the probability that a candidate is brilliant or not given that she is honest, does not have lots of friends, and gets elected. That is, calculate P(B | H+, L-, E+). Show your work. (You need to give both P(B+ | H+, L-, E+) and P(B- | H+, L-, E+))

3. [23%] Decision Tree Learning

You are given the task of learning to classify first names by gender. You are given a list of names labeled as female (F) or male (M) and you want to learn a classifier based on decision tree learning.

For a given name, let us define **L** as its length, **V** as its number of vowels and **C** as its number of consonants. We will consider that A-E-I-O-U-Y are vowels. The other letters are consonants.

You decide to use the following features to predict the classes:

- EndInVowel: The name ends in a vowel.
- V ≥ C: The name has more vowels than consonants.
- L ≥ 5: The name contains 5 letters or more.

Γ	Name		Feature		Gender
		EndInVowel	V≥C	L≥5	
\star	Annie	Yes	Yes	Yes	(F)
	Brad	No	No	No	M
	Carl	No	No	No	M
▲ [Daisy	Ves	Yes	Voc	F
	Eleanor	No	Yes		
	Fernando	Yes	No	Yes	(M)
	Gary	Yes	Yes	No	(M)
	Hans	No	No	No	M
	Isis	No	Yes	No	F
	Jerry	Yes	No	Yes	(M)

With 4 Female names and 6 Male names, the entropy of the decision in bits is 0.97.

3A. [8%] Consider the following decision trees, splitting on (EndInVowel), $(V \ge C)$, $(L \ge 5)$. The $(L \ge 5)$ tree has been filled out. Complete the values for the other features, including entropy.

3B. [6%] Calculate the information gain for splitting on each of the 3 features. Show formulas and steps clearly.

3C. [2%] Which attribute should you split on first? Justify your answer.

3D. [7%] For the second level of the tree, you decide to use the following rule:

- split on attribute (V ≥ C) if it was not split on first
- split on attribute (L ≥ 5) otherwise

Draw the entire decision tree.

4. [17%] Markov Decision Process

Consider the 6-state Markov Decision process below. The goals with rewards are in state S4 and S5. At each state, the possible transitions are **deterministic** and indicated by the arrows. You get a reward of R_4 =27 if you get to the goal S4 and a reward of R_5 =12 if you get to the goal S5.

4A. [7%] Consider a discount factor of $\gamma = 2/3$. On the figure below, show the optimal value V* for each state and the arrows corresponding to the set of optimal actions.

4B. [5%] What values of γ would result in a different optimal action in S2? Indicate which policy action changes.

4C. [5%] In this question, you consider only states S5 and S6. The transition is no longer deterministic. When going to S5 from S6, you have a probability p of succeeding and a probability 1-p of tripping, and staying in state S6. What is the optimal value V* at state S6 if the discount factor $\gamma = 2/3$ and p = 1/4?

5. [20%] Neural Networks

可数型

ur	A. [4%] How many weights does a 2-layer feed-forward neural network with 5 input nits, 3 hidden units and 2 output units contain, including the biases (dummy input eights)? Show your work.	

5B. [4%] True or False.

- The back-propagation algorithm, when run until a minimum error is achieved, always converges to the same set of weights no matter what the initial set of weights is.
- When choosing between two different neural network structures, we should always prefer the one with the lower error on the training set.

<u>5C. [12%]</u> Consider the neural network built out of units with real-valued inputs X_1 ... X_n , where the unit output Y is given by

$$Y = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))}$$

Here we will explore the expressiveness of neural nets, by examining their ability to represent Boolean functions. Here the inputs X_i will be 0 or 1. The output Y will be real-valued, ranging anywhere between 0 and 1. We will interpret Y as a Boolean value by interpreting it to be a Boolean 1 if Y > 0.5, and interpreting it to be 0 otherwise.

The figure for $\frac{1}{1+e^{-x}}$ is:

Give 3 weights for a single unit with two inputs X_1 and X_2 , that implements the logical OR function $Y = X_1 \vee X_2$ and the logical AND function $Y = X_1 \wedge X_2$, respectively.

Functions	v ₀	W ₁	W_2
Logical OR function	. /		
$Y = X_1 \vee X_2$			
Logical AND function			
$Y = X_1 \wedge X_2$			

%] Al Applications.

- 1. [2%] Which statement is true about cognitive architectures?
- a. A cognitive architecture is a hypothesis about the fixed structures that provide a mind.
- A cognitive architecture tries to yield intelligent behavior in complex environments.
- A generically cognitive architecture spans both the creation of artificial intelligence and the modeling of natural intelligence, at a suitable level of abstraction.
- d. All of the above
- e. None of the above
- 2. [2%] In the task of randomly assigning air marshals to flights using game theory, which argument allows us to use an incremental strategy for scaling-up?
 - a. The support set size is small: most variables are 0.
 - The full rewards matrix is sparse.
 - c. The computation can be parallelized.
 - d. All of the above
 - e. None of the above
- 3. [2%] Which method can be used to solve a problem in which the utility function is not known?
 - Reinforcement learning
 - b. Markov Decision Process
 - c. Perceptron learning
 - d. All of the above
 - e. None of the above
- 4. [2%] In Natural Language Processing, which of these algorithms takes advantage of grammars to represent sentences as trees?
 - a. Conditional Random Field (CRF)
 - b. Cocke-Younger-Kasami (CYK)
 - Hidden Markov Models (HMM)
 - d. All of the above
 - e. None of the above
- 5. [2%] In the minimax algorithm, which of the following is the most unrealistic in practice?
 - a. The knowledge of the utility values for the terminal states
 - b. The generation of the whole game tree
 - c. The assumption that the players are rational
 - d. All of the above
 - e. None of the above