الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي دورة: 2016

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد و المتجانس $(D;ec{i}\,,ec{j}\,,ec{k}\,)$. نعتبر المستوبين (P') و (P') معادلتيهما على

x-2y+z-2=0 و 2x+y-z+1=0: الترتيب

- ا بيّن أنّ المستوبين (P) و (P') متقاطعان.
- d(M,(P)) = d(M,(P')): عيّن M(x;y;z) مجموعة النقط M(x;y;z) عين (2 $d\left(M,(P')
 ight)$ المسافة بين M والمستوي M والمستوي $d\left(M,(P')
 ight)$ المسافة بين $d\left(M,(P)
 ight)$
 - A(1;2;0) تحقق أنّ النقطة A(1;2;0) تتتمى إلى المجموعة (3).
 - 4 و H' المسقطان العموديان للنقطة A على المستويين H' و H' على الترتيب. (AH') و (AH) و (AH) و أ - جد تمثيلا وسيطيا لكل من المستقيمين
 - H' و H' و استنتج إحداثيات كل من النقطتين
 - . AHH' عيّن إحداثيات النقطة I منتصف القطعة [HH'] ثمّ احسب مساحة المثلث I

التمرين الثاني: (05 نقاط)

- . $f(x) = \sqrt{2x+8}$ بي: $[0;+\infty[$ المعرّفة على المجال على المجال f (I الدالة العددية المعرّفة على المنسوب إلى المعلم المتعامد والمتجانس (C)
 - $\lim_{x \to +\infty} f(x)$ | lim $\int_{-\infty}^{\infty} f(x) dx$
 - ب ادرس اتجاه تغیّر الدالة f ثمّ شکّل جدول تغیّراتها.
- معادلة له. y=x معادلة له. (C) مع المستقيم معادلة له.
 - (Δ) و (C) ارسم (3)
- $u_{n+1}=f\left(u_{n}
 ight)$ ، $u_{n}=0$ و من أجل كل عدد طبيعي المتتالية العددية المعرّفة بـ $u_{0}=0$
- 1) مثّل في الشكل السابق على محور الفواصل ، الحدود u_1 ، u_2 ، u_1 ، u_2 ، u_3 و ويا المثّل في الشكل السابق على محور الفواصل ، الحدود u_1 ، u_2 ، u_3 الحدود u_3 ، u_4 ، u_5 الحدود u_5 ، الحدو
 - 2) ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) و تقاربها.
 - $0 \le u_n < 4$ ، n عدد طبیعی أنّه من أجل كل عدد طبیعی (3
 - (u_n) ادرس اتجاه تغیّر المتتالیة
 - $4-u_{n+1} \leq \frac{1}{2}(4-u_n)$ ، n جـ بیّن أنّه من أجل كل عدد طبیعي
 - $4-u_n \le \frac{1}{2^n}(4-u_0)$: n عدد طبیعي عدد طبیعي ثمّ استنتج أنّه من أجل كل عدد طبیعي
 - د استنج u_n استنج

التمرين الثالث: (04,5 نقطة)

المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$. من أجل كل نقطة M من المستوي لاحقتها $z' = \frac{z-2}{z-1}$: z = z لاحقتها العدد المركب z' = z خيث z' = z

. z'=z : z المعادلة ذات المجهول $\mathbb C$ المعادلة ذات

 $\cdot z_2 = \overline{z_1}$ و $z_1 = 1 - i$ و $z_2 = z_1$ و النقطتان $z_1 = 1 - i$ و النقطتان $z_1 = 1 - i$

أ ـ اكتب $\frac{z_2}{z_1}$ على الشكل الأسي.

ب - بيّن أنّ النقطة B هي صورة للنقطة A بالدوران R الذي مركزه المبدأ O ، يُطلب تعيين زاوية له.

نضع $z \neq z$. نعتبر النقطتين z و D و C الترتيب. $z \neq z$

عيّن (Γ) مجموعة النقط M حيث M تنتمي إلى محور التراتيب ثم أنشئ (Γ) .

.2 ونسبته O التحاكي الذي مركزه المبدأ O ونسبته h

أ - عيّن طبيعة التحويل النقطى $S=h\circ R$ وعناصره المميّزة .

S اكتب العبارة المركبة للتحويل

S النقطي المجموعة Γ صورة Γ بالتحويل النقطي S

التمرين الرابع: (06,5 نقطة)

 $g\left(x\right)=x^{2}+1-\ln x$ بــِ: $\left[0;+\infty\right[$ بـــا المعرّفة على المجال $g\left(x\right)=x^{2}+1-\ln x$ بالدالة العددية المعرّفة على المجال

1) ادرس اتجاه تغيّر الدالة g.

 $g\left(x\right)>0$ ، $\left]0;+\infty\right[$ من المجال عدد حقيقي x من الجل كل عدد $g\left(\frac{\sqrt{2}}{2}\right)$ احسب (2

 $f(x) = \frac{\ln x}{x} + x - 1$ بالدالة العددية المعرّفة على المجال $0; +\infty$ إلى المعلم المتعامد والمتجانس $f(x) = \frac{\ln x}{x} + x - 1$ و $f(x) = \frac{\ln x}{x} + x - 1$ بالمعلم المتعامد والمتجانس و $f(x) = \frac{\ln x}{x} + x - 1$

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to \infty} f(x)$ احسب (1

. $f'(x) = \frac{g(x)}{x^2}$ ، $]0; +\infty[$ من المجال x من عدد حقیقی x من الحجال کل عدد x من الحجال تغیّرات الدالة x من الحجال تغیّرات الحجال

.1 اكتب معادلة للمماس (T) للمنحنى (C) في النقطة التي فاصلتها

هـادلة له. y=x-1 :معادلة له معادلة له معادلة له y=x-1 أ - بيّن أنّ y=x-1 معادلة له.

 $\cdot(\Delta)$ و (C) النسبي لـ ادرس الوضع النسبي لـ

(C) ارسم المستقيمين (T) و (Δ) ثمّ المنحنى (5).

معادلة له. y=mx-m عدد حقيقي. (Δ_m) المستقيم حيث m

أ - تحقّق أنّه من أجل كل عدد حقيقي m، النقطة A(1;0) تنتمي إلى المستقيم f(x) = mx - m عدد حلول المعادلة: m عدد القش بيانيا وحسب قيم الوسيط الحقيقي m عدد حلول المعادلة:

.]0;+ ∞ [على المجال]0;+ ∞ على المجال (7

ب - احسب I_n مساحة الحيَّزُ المستوي المحدّد بالمنحنى (C) ، المستقيم اللذين معادلتيهما: n>1 و x=n و x=n و x=1

جـ - عيّن أصغر عدد طبيعي n_0 بحيث إذا كان $n>n_0$ فإنّ : 2 فإنّ $n>n_0$ انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04,5 نقطة)

.B(3;12;-7) و A(5;-1;-2) نعتبر النقطتين A(5;-1;-2) و المتجانس A(5;12;-7) و الفضاء منسوب إلى المعلم المتعامد و المتجانس

.
$$\begin{cases} x=1+3k \\ y=1+2k \end{cases} ; \quad \left(k\in\mathbb{R}\right) :$$
 المستقيم المعرّف بالتمثيل الوسيطي التالي: (Δ

. الذي يشمل النقطة A و u(-2;1;1) شعاع توجيه له u(-2;1;1) أ) عيّن تمثيلا وسيطيا للمستقيم (Δ') الذي يشمل النقطة Δ'

ب) بيّن أنّ المستقيمين (Δ) و (Δ') متعامدان ، ثمّ تحقق أنّ النقطة C(1;1;0) نقطة تقاطعهما .

 (Δ') و (Δ) المستوي المعيّن بالمستقيمين (Δ) و (Δ)

أ) بيّن أنّ الشعاع n(2;11;-7) ناظمي للمستوي (P)، ثمّ جد معادلة ديكارتية له.

(P) بيّن أنّ النقطة C هي المسقط العمودي للنقطة B على المستوي C

$$\begin{cases} x=3-eta \ y=12+12lpha+9eta : y=12+12lpha+9eta : eta$$
 من الفضاء المعرفة بـ $M\left(x;y;z\right)$ مجموعة النقط α (3) $lpha=-7-6lpha-11eta$

. أ) أثبت أنّ المجموعة (P') هي مستوِ ثمّ تحقق أنّ y-2z-41=0 هي معادلة ديكارتية له

ب) عيّن إحداثيات D و E نقطتي تقاطع المستوي (P') مع المستقيمين (Δ) و (Δ') على الترتيب.

ج) احسب حجم رباعي الوجوه BCDE

التمرين الثاني: (04 نقاط)

. $f(x) = \frac{5x}{x+2}$ بــِ: $[0;+\infty[$ الدالة العددية المعرّفة على المجال $f(\mathbf{I})$

. $\lim_{\substack{x \to +\infty \\ y}} f(x)$ حسب (أ (1 الحسب اتجاه تغیّر الدالة f ثمّ شكّل جدول تغیّراتها.

. $f(x) \ge 0$: $[0;+\infty]$ من المجال عدد حقيقي x من عدد حقيقي (2

 $u_{n+1} = \frac{5u_n}{u_n+2}$ ، u_{n+2} على المعرّفة على الأول $u_0 = 1$ المتتالية العددية المعرّفة على $u_0 = 1$ بحدّها الأول $u_n = 1$

 $1 \le u_n \le 3$: n برهن بالتراجع أنه من أجل كل عدد طبيعي أ (1

ب) ادرس اتجاه تغیّر المتتالیة (u_n) ، ثمّ استتج أنها متقاربة .

. $v_n = 1 - \frac{3}{n}$: كما يلي كما المتتالية العددية المعرّفة على \mathbb{N} كما يلي (2

. v_0 أن رحمن أنّ (v_n) متتالية هندسية أساسها $\frac{2}{5}$ ، يطلب حساب حدها الأول

n بدلالة u_n عبارة v_n ثم استنتج عبارة n بدلالة ب

 (u_n) احسب نهایة المتتالیة (ج

. $S_n = \frac{1}{u_0} + \frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_n}$: حيث $S_n = \frac{1}{u_1} + \frac{1}{u_2} + \dots + \frac{1}{u_n}$ (3)

التمرين الثالث: (04,5 نقطة)

. $\left(z - \frac{\sqrt{3}}{2} - \frac{1}{2}i\right)\left(z^2 + \sqrt{3}z + 1\right) = 0$: المعادلة : \mathbb{C} المعادلة : $(1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i)\left(z^2 + \sqrt{3}z + 1\right) = 0$

ك المستوي المركب منسوب إلى المعلم المتعامد و المتجانس B ، A ، O ، O نقط المستوي التي (2

$$z_{C} = \overline{z_{B}}$$
 و $z_{B} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ ، $z_{A} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ و $z_{C} = \overline{z_{B}}$ و $z_{B} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$

- أ) اكتب z_A ، z_B ، و z_B ، الشكل الأسي .
- ب) بيّن أنّه يوجد تشابه مباشر S مركزه B ويحوّل النقطة C إلى النقطة A يطلب تعيين عناصره المميزة.
 - 3) أ) عيّن لاحقة النقطة D حتى يكون الرباعي ABCD متوازي أضلاع ، ثمّ حدّد بدقة طبيعته.
- . z عيّن z مجموعة النقط z ذات الملاحقة z والتي تحقق z والتي تحقق z عيّن z هو مرافق
 - \mathbb{R} جين (Γ) مجموعة النقط M ذات اللاحقة z والتي تحقق z والتي تحقق z عندما α يتغير على α دات اللاحقة α دات

التمرين الرابع: (07 نقاط)

- . $g(x)=1+(x^2+x-1)e^{-x}$ بـ: $\mathbb R$ بـن المعرّفة على $g(\mathbf I)$
 - . $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$ احسب (1)
 - ب) ادرس اتجاه تغيّر الدالة g ، ثمّ شكّل جدول تغيّراتها .
- . $-1,52 < \alpha < -1,51$: مين أنّ للمعادلة g(x) = 0 حلّين في \mathbb{R} ، أحدهما معدوم والآخر α حيث g(x) = 0 على \mathbb{R} على \mathbb{R}
- و في الدالة العددية المعرّفة على \mathbb{R} بـ: \mathbb{R} بـ: \mathbb{R} و $f(x) = -x + (x^2 + 3x + 2)e^{-x}$ الدالة العددية المعرّفة على $f(0;\vec{i},\vec{j})$ بـ المستوي المنسوب إلى المعلم المتعامد و المتجانس $O(\vec{i},\vec{j})$ (وحدة الطول $O(\vec{i},\vec{j})$) وحدة الطول على المعلم المتعامد و المتجانس والمتعامد و المتعامد و المت
 - . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (أ (1
 - ب). f'(x) = -g(x)، x عدد حقيقي عدد حقيقي). f'(x) = -g(x)
 - . ($f(\alpha) \approx 0.38$ نأخذ) ، \mathbb{R} على على الدالة f على الدالة على الدالة على الدالة على الدالة الدالة على الدالة الدا
 - . ایسیا ، ثمّ فسّر النتیجة هندسیا ، $\lim_{h \to 0} \frac{f(\alpha+h) f(\alpha)}{h}$: د) عیّن دون حساب
 - . $+\infty$ عند (C_f) مستقيم مقارب مائل المنحنى y=-x عند Δ عند (2) أي بيّن أنّ المستقيم (Δ
 - . (Δ) ادرس وضعية المنحنى (C_f) بالنسبة للمستقيم
 - ج) بيّن أنّ للمنحنى $\left(C_{f}
 ight)$ نقطتي انعطاف يطلب تعيين إحداثييهما.
 - . $[-2;+\infty[$ ارسم (Δ) و (C_f) على المجال (Δ)
 - (m-x) $e^x+(x^2+3x+2)=0$: على المجال أوسيط الحقيقي m عدد وإشارة حلول المعادلة m-x. m=1
 - . $H(x) = (ax^2 + bx + c)e^{-x}$ و h(x) = x + f(x) بـ: \mathbb{R} بـ: $h(x) = ax^2 + bx + c$
 - . $\mathbb R$ على الأعداد الحقيقية a ، b ، a و b ، a على الدالة أصلية للدالة b ، a على (1
 - (2) أ) احسب التكامل التالي : $A(\lambda) = \int_0^{\lambda} h(x) dx$ حيث λ عدد حقيقي موجب تماما وفسّر النتيجة هندسيا.
 - $\lim_{\lambda \to +\infty} A(\lambda)$ ب) احسب

انتهى الموضوع الثاني

العلامة		من المراكبة
مجموع	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التمرين الأوّل: (04 نقاط)
	0,75	(P') شعاع ناظمي لـ (P) ، $(1;-2;1)$ ، شعاع ناظمي للمستوي $\overrightarrow{n_{(P)}}(1;-2;1)$ شعاع ناظمي للمستوي (P')
		و $\overrightarrow{n_{(P')}}$ و $\overrightarrow{n_{(P')}}$ غير مرتبطين خطيا ومنه P و P و P يتقاطعان وفق مستقيم.
	0,50	أي $\frac{ 2x+y-z+1 }{\sqrt{4+1+1}} = \frac{ x-2y+z-2 }{\sqrt{1+4+1}}$ أي $d(M,(P)) = d(M,(P'))$ (2
	0,50	ومنه $ x+3y-2z+3=0 $ ومنه $ 2x+y-z+1 = x-2y+z-2 $
		$3x-y-1=0$ و $x+3y-2z+3=0$ مجموعة النقط (Γ) هي إتحاد مستويين معادلتيهما
	0,25	$A \in (\Gamma)$ ومنه $d(A,(P)) = d(A,(P')) = \frac{5}{\sqrt{6}}$ أو $3x_A - y_A - 1 = 0$ (A(1;2;0) (3)
		$\int x = t' + 1 \qquad \qquad \int x = 2t + 1$
	0,50	$(AH'): \{ y = -2t' + 2 \ (t' \in \mathbb{R}) \ : \ (AH): \{ y = t + 2 \ (t \in \mathbb{R}) \ . \ (4) \}$
04	,	z=t' $z=-t$
		(تقبل آي تمثيلات وسيطيه صحيحه) .
	0.1	$H\left(-rac{2}{3};rac{7}{6};rac{5}{6} ight)$ و منه $t=-rac{5}{6}$ نجد نعوّض في معادلة $t=-rac{5}{6}$ نجد
	01	$H'\left(\frac{11}{6}; \frac{1}{3}; \frac{5}{6}\right)$ نعوّض في معادلة (P') : نجد $t' = \frac{5}{6}$ و منه
	0.25	
	0,25	$I\left(\frac{7}{12}; \frac{3}{4}; \frac{5}{6}\right)$ (5
		$S_{AHH'}=rac{1}{2}(HH' imes AI)(u.a)$ المثلث AHH' متساوي الساقين $AHH'=AH'$ ومنه
	0,75	$AI = \frac{5\sqrt{14}}{12}$: و منه $\overrightarrow{AI} \left(-\frac{5}{12}; -\frac{5}{4}; \frac{5}{6} \right)$ $HH' = \frac{5\sqrt{10}}{6}$ $\overrightarrow{HH'} \left(\frac{15}{6}; -\frac{5}{6}; 0 \right)$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\cdot S_{AHH}$ = $\frac{25}{72}\sqrt{35}(u.a)$ وبالتالي
		التمرين الثاني: (05 نقاط)
	0,25	$\lim_{x \to +\infty} f(x) = +\infty \text{if (1 (I)}$
	0.25	$[0;+\infty[$ ب. من أجل كل $(x)=\frac{1}{\sqrt{2x+8}}$ ، $x\in[0;+\infty[$ باذن f متزایدة تماما علی
02	0,25 0,25	√ =·· · · ·
		. <u>جدول التغيّرات:</u>
	0,25	$\begin{cases} x^2 - 2x - 8 = 0 \\ x \ge 0 \end{cases} \begin{cases} \sqrt{2x + 8} = x \\ x \ge 0 \end{cases} \begin{cases} y = f(x) \\ y = x \end{cases} $ (2)
	, -	$A\left(4;4 ight)$ مع $A\left(4;4 ight)$ هي: $A\left(4;4 ight)$ مع $A\left(4;4 ight)$ هي: $A\left(4;4 ight)$ مع $A\left(4;4 ight)$
	0,50	$:(\Delta)$ و $(C_f$) رسم (3
	0,50	. تمثیل الحدود u_0 ، u_1 ، u_2 ، u_2 ، u_1 ، u_0 تمثیل الحدود (1 (II

العلامة		
مجموع	مجزأة	عناصر الاجابة (الموضوع الأوّل)
	0.25	التخمين: نلاحظ $u_1 < u_1 < u_1 < u_2 < u_3$ إذن يبدو أنّ المتتالية (u_n) متزايدة تماما وأنها متقاربة (2
	0,25	وتتقارب نحو العدد 4.
		$0 \le u_0 < 4$ ومنه $u_0 = 0$ أ. لدينا (3
	0,75	$0 \le 2\sqrt{2} \le u_{n+1} < 4$ نفرض أنّ $0 \le u_n < 4$ و منه $0 \le u_n < 4$ أي $0 \le u_n < 4$
		أي $0 \le u_{n+1} < 4$ وهذا هو المطلوب.
	0,50	$u_{n+1} - u_n = \sqrt{2u_n + 8} - u_n = \frac{(4 - u_n)(u_n + 2)}{\sqrt{2u_n + 8} + u_n}$ ، $\mathbb N$ بما أن
		وعليه فالمتتالية (u_n) متزايدة تماما. $u_{n+1}-u_n>0$ فإن $0\leq u_n<4$
		$4-u_{n+1}=4-\sqrt{2u_n+8}=rac{2(4-u_n)}{4+\sqrt{2u_n+8}}$ ، $n\in\mathbb{N}$ خـ . من أجل كل
03	0,50	$4-u_{n+1} \leq rac{2\left(4-u_{n} ight)}{4}$ إذن $rac{1}{4+\sqrt{2u_{n}+8}} \leq rac{1}{4}$ ومنه $4+\sqrt{2u_{n}+8} \geq 4$
		. ▼ · · ·
		$4-u_{n+1} \leq \frac{1}{2}(4-u_n)$ ، $n \in \mathbb{N}$ و بالتالي: من أجل كل
		الضرب طرف إلى $4-u_n \le \frac{1}{2}(4-u_{n-1})$: ··· : $4-u_2 \le \frac{1}{2}(4-u_1)$: $4-u_1 \le \frac{1}{2}(4-u_0)$
	0,50	$(4-u_1)(4-u_2)(4-u_n) \le \left(\frac{1}{2}\right)^n (4-u_0)(4-u_1)(4-u_{n-1})$ طرف نجد:
		. (تقبل أيّ طريقة أخرى) $4-u_n \leq \frac{1}{2^n} (4-u_0)$
	0,50	1 1
		رن $\lim_{n \to +\infty} \frac{1}{2^n} (4 - u_0)$ ، $n \in \mathbb{N}$ ومن أجل كل $\lim_{n \to +\infty} \frac{1}{2^n} (4 - u_0) = 0$ (ع
		$\lim_{n \to +\infty} u_n = 4$ أي $\lim_{n \to +\infty} (4 - u_n) = 0$ التمرين الثالث: ($04,5$ نقطة)
	0,75	$z \neq 1$ معناه $z = z$ معناه $z = z + z$ معناه $z = z + z$
02,75		$z_2 = 1 + i$ ، $z_1 = 1 - i$ و $\Delta = (2i)^2$ ؛ $z \neq 1$ مع $z \neq 1$ مع $z \neq 1$ مع $z \neq 1$
	0,75	$\frac{z_2}{1+i} - \frac{\sqrt{2}e^{i\frac{\pi}{4}}}{1+i} - e^{i\frac{\pi}{2}}$
	0,75	$\frac{z_2}{z_1} = \frac{1+i}{1-i} = \frac{\sqrt{2}e^{i\frac{\pi}{4}}}{\sqrt{2}e^{-i\frac{\pi}{4}}} = e^{i\frac{\pi}{2}} \text{i (2)}$
	0.50	
	0,50	ب - $\frac{z_2}{z_1} = e^{i\frac{\pi}{2}}$ الدوران الذي مركزه O و $\frac{\pi}{2}$ زاوية له. (تُقبل أي طريقة أخرى).
	0,50	$(k \in \mathbb{Z}) \cdot \left(\overrightarrow{DM}; \overrightarrow{CM}\right) = \frac{\pi}{2} + k\pi \cdot \arg\left(z'\right) = \arg\left(\frac{z - z_C}{z - z_D}\right) = \frac{\pi}{2} + k\pi : z' \neq 0 (3)$
		M=C اَو $z'=0$ اَي $z=2$ و $M=C$ النام $Z=0$ النام
	0.25	النَّانَ (Γ) مُجموعة النقط M هي الدائرة التي قطرها $[CD]$ باستثناء النقطة D . (تُقبل أي طريقة أخرى). النشاء المجموعة (Γ) :
	0,25	إنساء المجموعة (1).

العلامة		عناصر الإجابة (الموضوع الأوّل)
مجموع	مجزأة	عاصر الإجاب (الموصوح الأول)
	0.50	S أ - $h\circ S=h\circ R$ ؛ h تحاك مركزه O نسبته S و R دوران مركزه O زاويته σ إذن
	0,50	التشابه المباشر الذي مركزه O ، نسبته 2 و زاويته $rac{\pi}{2}$.
01,75	0,25	$z'=2iz$ اُي $z'=2e^{irac{\pi}{2}}z$ - ب
	0,75	جـ - $S(\Gamma)=S(\Gamma)$ باستثناء النقطة ' D حيث جـ - $S(\Gamma)=S(\Gamma)$ باستثناء النقطة ' D
		$Z'=S(C)$ و $Z'=S(D)=C'=S(C)$ أي $Z_{C'}=4i$ و $Z_{C'}=4i$. (تُقبل أي طريقة أخرى).
	0,25	- إنشاء (۲). نتر دانا (۲۵۰ تا تا)
		التمرين الرابع: (06,5 نقطة) 2 - 2 - 1
	0,50	$o = \frac{\sqrt{2}}{2} + \infty$ علی $g'(x)$ علی $g'(x) = \frac{2x^2 - 1}{x}$ (1 (I
	0,25	$\sqrt[n]{\frac{\sqrt{2}}{2}};+\infty$ الدالة g متناقصة تماما على $\sqrt[n]{\frac{\sqrt{2}}{2}}$.
	0,5	g(x) > 0 بنن $g(x) > g(x) > g(x)$
	0,50	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to +\infty} f(x) = -\infty (1 \text{ (II)})$
	0,25	$f'(x) = \frac{1 - \ln x}{x^2} + 1 = \frac{g(x)}{x^2}$ ، $x \in]0; +\infty[$ أ. من أجل كل $f'(x) = \frac{1 - \ln x}{x^2}$
	0,25	(x) > 0 هي إشارة $g(x) = g(x)$ على $g(x) = 0$: إذن من أُجل كل x من $g(x) = 0$: إثارة $g(x) = 0$
	0,25	ب. جدول تغیّر ات الدالة f .
	0,25	(T): y=2x-2: معادلة المماس لـ (C) عند النقطة التي فاصلتها 1 هي $(C): y=2x-2:$
06	0,25	(Δ) أ. $(C)=\lim_{x o +\infty}rac{\ln x}{x}=0$ إذن المنحنى (C) يقبل مستقيما مقاربا $f(x)-(x-1)=\lim_{x o +\infty}rac{\ln x}{x}=0$ عند (C) معادلة له $(C)=x-1$ عند (C)
	0,50	ب. وضعية (C) بالنسبة إلى (Δ) : إشارة $\frac{\ln x}{x}$ إشارة $f(x)-(x-1)=\frac{\ln x}{x}$ و الوضعية
	0,75	رسم المستقيمين (T) ، (Δ) و المنحنى (C)
	0,25	$0 = m \times 1 - m$ أي $y_A = mx_A - m$ أ (6
		$Aig(1;0ig)$ ب . المناقشة بيانيا نمن أجل كل m من $\mathbb R$ ، المستقيم نو المعانلة $y=mx-m$ بشمل النقطة
		(Δ) معامل توجیهه m و Δ معامل توجیهه Δ معامل توجیهه Δ معامل معامل توجیهه Δ
	0,50	اذا كان $1 \leq m \leq 1$ فإنّ المعادلة تقبل حلا وحيداً.
		او $m>2$ أو $m>2$ أو $m>2$ فإنّ المعادلة تقبل حلين متمايزين ($m>2$ أو $m>2$ أو $m=2$ إذا كان $m=2$ فإنّ المعادلة تقبل حلا مضاعفا (هو $m=2$).
	0,25	$m=2$ على المجال $m=2$ $m=2$ أ. الدالة: $x\mapsto \frac{\ln x}{x}$ هي أصلية للدالة $x\mapsto \frac{\ln x}{x}$ على المجال $m=2$
	0,75	$I_n = \left(\frac{1}{2}(\ln n)^2\right)u.a : \int_{n}^{\infty} I_n = \int_{n}^{\infty} (f(x) - (x-1))dx u.a = \int_{n}^{\infty} \frac{\ln x}{x} dx u.a - \int_{n}^{\infty} \frac{\ln x}{x} dx u.a = \int_{n}^{\infty} \frac{\ln x}{x} dx$

العلامة		عناد الأمانة (الممضوع الثاني
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0,50	0,50	$I_n>2$ فإنّ $n>n_0$ بحيث إذا كان $n>n_0$ فإنّ المخر قيمة لـ
0,50	0,50	$n_0=8$: أي $n>e^2$ وعليه أصغر قيمة لـ أ $n>0$ هي $n>0$
		التمرين الأول: (04,5 نقطة)
	0.50	$\begin{cases} x = 5 - 2t \\ 1 \end{cases}$
	0,50	(Δ') : $\begin{cases} y=-1+t; (t\in\mathbb{R}): \omega \in (\Delta') \ z=-2+t \end{cases}$ هو (Δ') هو (Δ')
	01	\cdot $C(1;1;0):$ حيث $(\Delta)\cap(\Delta')=\{C\}$ ، $(\Delta)\perp(\Delta')$ نبين أنّ
	0,50	$\vec{n}\perp\vec{v}$ نبيّن أنّ $(2;11;-7)$ ناظمي له (P) يكفي أن نبيّن أنّ $(2;11;-7)$ نبيّن أنّ
	0,50	، $2x+11y-7z-13=0$: هي (P) هي
04,5	0,50	. $\overrightarrow{BC}(2;11;-7)=\overrightarrow{n}$ و $C\in (P)$ الدينا (P) الدينا (P) العمودي لـ $C\in (P)$ العمودي لـ $C\in (P)$
04,5	0,50	(تُقبل أيّ طريقة أخرى صحيحة).
		$B(3;12;-7)$ مي مستو: المستوي (P') مزود بالمعلم $(B;\overrightarrow{w},\overrightarrow{v})$ حيث (P') هي مستو: المستوي
	0,50	و $\overrightarrow{V}(0;12;-6)$ و $\overrightarrow{V}(-1;9;-11)$ و الشعاعين \overrightarrow{W} و \overrightarrow{V} غير مرتبطين خطيا ، معادلة
		-13x + y + 2z + 41 = 0 المستوي (P') هي:
	0,50	$.E(3;0;-1)$ و $D(4;3;4)$ حيث: $D(4;3;4)$ و $P')\cap(\Delta')=\{E\}$ و $P'\cap(\Delta)=\{D\}$
	0.50	. $V_{BCDE} = \frac{1}{3}S_{CDE} \times CB = \frac{1}{6} \times CD \times CE \times CB : BCDE$ ج) حجم رباعي الوجوه
	0,50	ن که کاری کاری کاری کاری کاری کاری کاری کاری
		التمرين الثاني: (04 نقاط)
	0,25	$\lim_{x \to +\infty} f(x) = 5 (1 - 1) (1$
	0,25	
	,	$[0;\infty+]$ ب. $f'(x) = f'(x) = 0$ و منه $f'(x) > 0$ أي $f(x) = \frac{10}{(x+2)^2}$
	0,25	جدول تغيّرات الدالة f
	0,25	$f(x) \ge 0$ ، $[0; \infty + [0, \infty]]$ ، من أجل كل x من x من أجل كل أنّ: من أجل كل أنّاء من أجل كل أنّاء من أجل كال كال أنّاء من أجل كال كال كال كال كال كال كال كال كال كا
	0,5	$1 \le u_n \le 3$ ، n عدد طبیعي التراجع أنه من أجل كل عدد طبیعي - 1 (II) البرهان بالتراجع أنه من أجل كل عدد البيعي
03,5	0,25	ب. دراسة اتجاه تغيّر المنتالية (u_n) . لدينا (u_n) . لدينا $u_{n+1}-u_n=rac{-u_n(u_n-3)}{u_n+2}$ ومنه المنتالية
	0,25	u_n+2 u_n+2 متزايدة على $\mathbb N$ بما أنّ (u_n) متزايدة ومحدودة من الأعلى فهي متقاربة. (u_n)
	0,50	$v_0=-2$ ، $q=rac{2}{5}$. البرهان أنّ (v_n) متتالية هندسية أساسها
	0,75	$u_n = \frac{3}{1 + 2\left(\frac{2}{5}\right)^n}$ ، $v_n = -2\left(\frac{2}{5}\right)^n : n$ ب. من أجل كل عدد طبيعي
	U, /5	$1+2\left(\frac{2}{5}\right)$
	0,25	$\lim_{n \to +\infty} u_n = 3 \Rightarrow$

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0,50	0,50	$S_{n} = \frac{1}{u_{0}} + \frac{1}{u_{1}} + \frac{1}{u_{2}} + \dots + \frac{1}{u_{n}} = \frac{1}{3} \left[(1+1+\dots+1) - (v_{0}+v_{1}+\dots+v_{n}) \right] : S_{n} - 3$ $S_{n} = \frac{1}{u_{0}} + \frac{1}{u_{1}} + \frac{1}{u_{2}} + \dots + \frac{1}{u_{n}} = \frac{1}{3} \left[(1+1+\dots+1) - (v_{0}+v_{1}+\dots+v_{n}) \right] : S_{n} - 3$ $S_{n} = \frac{1}{u_{0}} + \frac{1}{u_{1}} + \frac{1}{u_{2}} + \dots + \frac{1}{u_{n}} = \frac{1}{3} \left[(1+1+\dots+1) - (v_{0}+v_{1}+\dots+v_{n}) \right] : S_{n} - 3$
		$S_n = rac{1}{3} \left[(n+1) + rac{10}{3} \left(1 - \left(rac{2}{5} ight)^{n+1} ight) ight] :$ ومنه $S_n = rac{1}{3} \left[(n+1) - \left(v_0 rac{1-q^{n+1}}{1-q} ight) ight]$ ومنه
		التمرين الثالث: (04,5 نقطة)
	0,75	$z_3 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ ، $z_2 = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ ، $z_1 = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$ هي: \mathbb{C} هي: -1
	0,75	$z_A=e^{irac{7\pi}{6}}$ ، $z_A=e^{irac{5\pi}{6}}$ ، $z_A=e^{irac{\pi}{6}}$: يان أنّه، يوجد نشابه مباشر $z_A=z_B=i\sqrt{3}(z_C-z_B)$ الدينا $z_A=z_B=i\sqrt{3}(z_C-z_B)$
	0,25	. $z_A-z_B=i\sqrt{3}\left(z_C-z_B\right)$ لب) نبیان أنّه، یوجد تشابه مباشر S :لدینا
04,5	0,75	$z'-z_B=i\sqrt{3}(z-z_B)$: نسبة التشابه المباشر z هي $\sqrt{3}$ وزاويته $\frac{\pi}{2}$ صيغته المركبة هي
	0,75	الرباعي $ABCD$ مستطيل. $z_D = \frac{\sqrt{3}}{2} - \frac{1}{2}i$ ومنه: $z_D - z_C = z_A - z_B$ الرباعي $z_D - z_C = z_A - z_B$
	0,50	$ z-z_A =\left \overline{z-z_C} ight $ ب) تعيين المجموعة (E) الدينا: $ z-z_A =\left \overline{z}-z_B ight $ تكافئ
		$[AC]$ وتكافئ $ z-z_A = z-z_C $ ومنه $ AC =M$ وعليه (E) هي المستقيم المحوري لـ $ z-z_A = z-z_C $
	0,75	ج) المجوعة Γ هي دائرة مركزها B و نصف قطرها لدينا 3 : النقطة A تتتمي إلى B لأنّ A A لأنّ A
		التمرين الرابع : (07 نقاط)
	0,50	. $\lim_{x \to +\infty} g(x) = 1$ e $\lim_{x \to -\infty} g(x) = +\infty$ e $\int_{-1}^{\infty} (1 - 1) dx$
		$g'(x) \le 0$: ومنه $g'(x) = (-x^2 + x + 2)e^{-x}$ ومنه $g'(x) = (-x^2 + x + 2)e^{-x}$ ومنه
	0.1	أجل $x \in [-1;2]$ و هذا يعني أنّ الدالة $x \in [-1;2]$ من أجل $x \in [-1;2]$ و هذا يعني أنّ الدالة
	01	متناقصة تماماً على كل من المجالين $\left[1-;\infty-\right]$ و $\left[2;+\infty\right]$ ومتزايدة تماماً على $\left[2;-1,2\right]$.
		جدول التغيّرات للدالة g .
		: حيث والآخر $lpha$ عين أنّ المعادلة $g(x)\!=\!0$ تقبل حلّين في $lpha$ ، أحدهما معدوم والآخر $=0$
04	0,75	. (مبرهنة القيم المتوسطة) . $-1,52 < lpha < -1,51$
	0,25	$x\in [lpha;0]$ ب) استنتاج إشارة $g(x)=0$ على $g(x)=0$ من أجل استنتاج إشارة $g(x)=0$
		$x \in]-\infty; \alpha] \cup [0; +\infty[$ من أجل $g(x) \ge 0$
	0,50	$\lim_{x \to +\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty (\hat{1} - 1 - II)$
	0,25	f'(x) = -g(x)، x عدد حقیقی بین أنه ، من أجل كل عدد حقیقی
	0,25	\mathbb{R} على \mathbb{R} . \mathbb{R} على \mathbb{R} جدول تغيّرات الدالة \mathbb{R} على \mathbb{R} .
	0,25 0,25	د) تعييّن (C_f) يقبل مماسا ، $\lim_{h \to 0} \frac{f(\alpha+h) - f(\alpha)}{h} = f'(\alpha) = 0$ يقبل مماسا ، النتيجة المنحنى
	, -	عند النقطة ذات الفاصلة $lpha$ معامل توجيهه معدوم (يوازي حامل محور الفواصل) .

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,50	$:(C_f)$ تبیان أنّ (Δ) مستقیم مقار بمائل لـ (C_f) تبیان أنّ (Δ) مستقیم مقار بمائل انس (Δ) تبیان أنّ (Δ)
		$\lim_{x \to +\infty} \left(f\left(x\right) + x \right) = \lim_{x \to +\infty} \left(x^2 + 3x + 2 \right) e^{-x} = 0$
		Bigl(-2;2igr) ب $Aigl(-1;1igr)$ و $Aigl(-2;2igr)$ عند النقطتين وراسة الوضعية النسبية:
	0,25	$x\in]-\infty;-2]$ و (Δ) يقع فوق (Δ) من اجل $(\Delta)=[-1:+\infty[$ من اجل $(\Delta)=[-1:+\infty[$ من اجل $(\Delta)=[-1:+\infty[$
		$x \in [-2;-1]$ أجل
	0,50	ج) تبيّان أنّ المنحنى $\left(C_f ight)$ يقبل نقطتي انعطاف يطلب تعيين إحداثيتاهما.
02		لدينا : $g''(x) = 0$ و منه $g''(x) = 0$ من أجل $x = -1$ و بالتالي $f''(x) = 0$
		$\cdot C\!\left(2;-2+rac{12}{e^2} ight)$ و $A\!\left(-1;1 ight)$ يقبل نقطتي انعطاف هما: $A\!\left(-1;1 ight)$ و
03	0,50	. $[-2;+\infty[$ على المجال (C_f) على المجال ا
	0,50	$f(x) = -m$ تكافئ $(m-x)e^x + (x^2 + 3x + 2) = 0$ تكافئ هـ) المناقشة البيانية الدينا
	0,25	$H(x) = (-x^2 - 5x - 7)e^{-x}$ ومنه $H'(x) = h(x)$ الدينا: \mathbb{R} ندينا π الدينا π
		$A(\lambda) = \int_0^{\lambda} h(x)dx = \left[H(x)\right]_0^{\lambda} = \left(-\lambda^2 - 5\lambda - 7\right)e^{-\lambda} + 7 = -2$
	0,25	، (C_f) والمستقيمات: (C_f) والمستقيمات: النتيجة $A(\lambda)$
	+	$\cdot x = 0$ و $x = \lambda$
	0,25	$\lim_{\lambda \to +\infty} A(\lambda) = 7$