Interactive Speaker Recognition

Применение обучения с подкреплением для решения задачи распознавания диктора

Вячеслав Головин Евгений Шуранов (руководитель)

Huawei CBG AI и ФКН ВШЭ СПб

10.05.2023

Задача: повышение точности систем верификации / идентификации диктора. Такая система может, например, быть использована для подтверждение личности на мобильных устройствах.

Требования к системе:

- короткие запросы (не раздражаем пользователя),
- разнообразные запросы (не боимся спуфинга),
- высокая точность (без комментариев).

Предлагаемое решение: использование RL-агента для выбора запрашиваемых слов.

Новизна дипломной работы:

- переход от идентификации к верификации,
- более гибкая система для выбора слов.

Interactive Speaker Recognition

Метод был предложен в статье A Machine of Few Words — Interactive Speaker Recognition with Reinforcement Learning, Mathieu Seurin et al., INTERSPEECH 2020, arXiv:2008.03127v1.

Важные особенности:

- Рассматривается только задача идентификации.
- Набор слов строго фиксирован.
- Разные нейронные сети для двух задач SR Module запроса слов (Enquirer) и идентификации диктора (Guesser).

Блок Guesser

Архитектура

Входные данные:

- эмбеддинги дикторов $G = [g_1; g_2; \dots g_K]$
- эмбеддинги слов $X = [x_1; x_2; ... x_T]$

Выходные данные:

ullet вероятности $\{P(g_i=g^*) \mid i=1..K\}$

Обозначения

К количество гостей / дикторов

Т количество запрашиваемых слов

Блок Guesser

Псевдокод 1 итерации обучения

Обозначения

```
К количество гостей / дикторов
```

- Т количество запрашиваемых слов
- V размер словаря число доступных для запроса слов

Блок Enquirer

Архитектура

Входные данные:

- среднее эмб. дикторов $\hat{g} = \frac{1}{K} \sum_{i=1}^{K} g_k$
- эмбеддинги слов $X = [x_1; x_2; ...; x_t]$

Выходные данные:

 вероятность выбрать каждое из слов

Обозначения

- К количество гостей / дикторов
- Т количество запрашиваемых слов
- t количество запрошенных слов, $0 \le t \le T$

Блок Enquirer

Псевдокод 1 эпизода ISR-игры

```
speaker_ids = speakers.sample(size=K)
G = voice_prints.get(speaker_ids)
target = randrange(0, K)
g_hat = G.mean(dim=0)
x_i = start_tensor
X = []
for i in range(T):
   probs = enquirer.forward(g_hat, x_i)
    if training:
        word_inds = multinomial(probs).sample()
    else:
        word_ind = argmax(probs)
   x i = word vocab.get(speaker=speaker ids[target], word=word ind)
   X.append(x_i)
prediction = guesser.predict(G, X)
reward = 1 if prediction == target else 0
```

Входные данные

Для обучения использовался датасет **TIMIT**:

- 630 дикторов из США, 8 акцентов;
- каждый диктор произносит 10 предложений: 8 уникальных и 2 общих.

В качестве эмбеддингов использовались x-vectors, полученные с помощью нейронной сети, обученной на аугментированных датасетах для распознавания диктора Switchboard, $Mixer\ 6$ и NIST.

- Эмбеддинги дикторов *g* получались с помощью усреднения эмбеддингов 8 уникальных предложений.
- Эмбеддинги слов x извлекались с помощью 2 общих предложений, т.е. сначала вырезались записи одиночных слов, которые затем пропускались через нейронную сеть.

Результаты из статьи

K=5 дикторов и T=3 слова

• RL-агент при выборе запрашиваемых слов учитывает контекст — он опережает не только случайного агента, но и эвристического, выбирающего из подмножества "лучших" слов.

Результаты из статьи

K=5 дикторов и T=3 слова

- RL-агент при выборе запрашиваемых слов учитывает контекст он опережает не только случайного агента, но и эвристического, выбирающего из подмножества "лучших" слов.
- Преимущество RL-агента невелико и проявляется только при небольшом числе запрашиваемых слов.

Воспроизведение результатов

Основная возникшая проблема — размерность эмбеддингов. В статье используются 128-мерные эмбеддинги, в то время как использованная для их извлечения нейросеть имеет только 512-мерные выходы.

Информации о способе понижения размерности в статье нет. При этом

Извлечение эмбеддингов

Цитата из статьи

We use MFCCs of dimension 20 with a frame-length of 25ms, mean-normalized over a sliding window of three seconds. We then process the MFCCs features through a pretrained X-Vector network to obtain a high quality voice embedding of fixed dimension 128 [...].

- У данной нейросети есть только 512-мерные выходы.
- При обучении нейросети в kaldi выходы нейросети подвергаются обработке вычитается среднее по всем дикторам и понижается размерность с помощью LDA.
- Мои попытки выполнять подобную постообработку с помощью sklearn / numpy заканчивались неудачей при обучении guesser отсутствовала генерализация.
- Итог: я использовал 512-мерные эмбеддинги, получаемые напрямую с выходов нейросети.

Обучение Guesser — первые результаты

K=5 дикторов и T=3 слова

Увеличение размерности эмбеддингов d со 128 до 512 позволило существенно улучшить точность (\sim 80% вместо 74.1% в оригинальной статье).

Обучение Enquirer — первые результаты

K=5 дикторов и T=3 слова

- Точность ниже, чем в статье (88.6%), но явно есть возможность её улучшить.
- Обучение с помощью PPO, награда R=1 выдается в том случае, когда в конце эпизода guesser правильно угадывает диктора.

Обучение Guesser — подбор гиперпараметров

K = 5 дикторов и T = 3 слова

Средняя награда (точность) на валидационной выборке:

		learning rate			
		1.00E-03	5.00E-04	1.00E-04	5.00E-04
batch size	20	73.6	78.0	89.0	88.3
	40	78.7	87.0	91.7	90.3
	80	80.6	89.8	93.0	92.4
	160	81.7	91.0	92.7	92.5

- Такая же точность достигается и на тестовой выборке.
- Обучение enquirer позволяет увеличить точность до 96%.

Дальнейшие планы

- Оптимизация гиперпараметров и доработка enquirer.
- Реализация эвристических агентов и сравнение их с нейросетевой моделью.
- Проведение экспериментов в более тяжёлых режимах (больше дикторов, меньше слов).
- Использование других эмбеддингов.
- Исследование робастности модели.
- Эксперименты с архитектурой enquirer / guesser.