April 19, 2021

# The Battle of Neighborhoods

Comparison of neighbouring cities of US states.



Vishal Raj

IBM COURSERA CAPSTONE PROJECT

# Introduction

As we all know shopping, visiting a particular cuisine restaurant/fast-food joint or movie theatres gives many people a way to relax and entertain themselves. But due to unavailability or services that are far away, they have to travel long distances which results in exhaustion before even they can enjoy properly. Also, many stakeholders, realtors & business peoples are searching for many better ways to find out the best possible solution in searching of a profitable investment or projects. They are also interested in getting an idea about what could be the demand of the general public by seeing the unavailability or low competition in a particular business. Opening the right kind of business at the right place allows them to earn consistent profit without the worry of going into loss and at the end closing the business due to too much competition or no demand. It also profits the common people as now they will have the luxury to visit those places that are now in their vicinity without giving it much thought. Any business decision requires serious consideration and is lot more complicated than it seems. Thus, here we come with our best solution possible within our means.

#### **Business Problem**

The objective of this capstone project is to analyse and divide a group of similar cities into clusters of a given US state and also select the best locations of the cities of that state to open a new particular business. Using data science methodology and machine learning techniques like clustering, this project aims to provide solutions to answer the business question: In any of the US states which city would be best to open which business?

### Target audience

This project is particularly useful to stake holders, investors, realtors, property developers and other business people looking to open or invest in any particular business profile. According to Convergehub (2019) more than 50 percent of small enterprises fail in the very first year, and more than 95 percent of small startups fail within the first five years. And according to CB Insights (2019), the primary reason that new businesses fail is because of a lack of market demand. In fact, 42 percent of small businesses fail because of this reason.

## Data

#### To solve the problem, we will need the following data:

- List of US States and its neighbouring cities. This defines the scope of this project which is confined to USA.
- Latitude and Longitude coordinates of those neighbouring cities. This is required to plot the map and get the venue data.
- Venue data, all the top venues in any particular city. We will use this data to perform clustering of the neighbouring cities according to their similarity.

#### Source of data and methods to extract them:

This Britannica Encyclopedia page (<a href="https://www.britannica.com/topic/list-of-cities-and-towns-in-the-United-States-2023068">https://www.britannica.com/topic/list-of-cities-and-towns-in-the-United-States-2023068</a>) contains a list of all US states and their neighbouring cities. We will use web scraping techniques to extract the data from the webpage page, and transform that data into a CSV file for easy execution and uses. Then we will get the geographical coordinates of the neighbouring cities of any particular state using Python Geocoder package which will give us the latitude and longitude coordinates of the neighbouring cities.

After that, we will use Foursquare API to get the venue data for those cities. Foursquare has one of the largest databases of 105+ million places and is used by many developers. Foursquare API will provide many categories of the venue data, which we will later use to categorize the cities into similarities/dissimilarities in order to help us to solve the business problems put forward like what is the probability of making a profit of opening a business structure similar to another city when there is no availability of that business in the present city. This is a project that will make use of many data science skills, from web scraping (Britannica Encyclopedia), data cleaning & wrangling, working with Foursquare API, to map visualization (Folium) and machine learning (K-means clustering). In the next section, we will present the Methodology section where we will discuss the steps taken in this project, the data analysis that we did and the machine learning technique that was used.

# Methodology

At first, we need to get the list of all US states and their neighbouring cities. Fortunately, this list is available at the Britannica Encyclopedia page (https://www.britannica.com/topic/list-of-cities-and-towns-in-the-United-States-2023068). After that, we will do web scraping using Python requests & beautifulsoup packages to extract the list of neighbouring cities data. Then we will convert that into a DataFrame and CSV file for easy execution and use. We also need to get the geographical coordinates in the form of latitude and longitude of all the cities of the selected state (Here I have taken Alabama) in order to be able to use Foursquare API. To do so, we will use the Geocoder package that will allow us to convert address into geographical coordinates in the form of latitude and longitude.

|    | Neighborhood   | Latitude | Longitude |
|----|----------------|----------|-----------|
| 0  | Alexander City | 32.93884 | -85.95295 |
| 1  | Andalusia      | 31.32014 | -86.49449 |
| 2  | Anniston       | 33.65712 | -85.81891 |
| 3  | Athens         | 34.80450 | -86.97128 |
| 4  | Atmore         | 31.02526 | -87.49380 |
| 5  | Auburn         | 32.60829 | -85.48173 |
| 6  | Bessemer       | 33.40203 | -86.95399 |
| 7  | Birmingham     | 33.52068 | -86.81176 |
| 8  | Chickasaw      | 30.76461 | -88.07476 |
| 9  | Clanton        | 32.84085 | -86.63202 |
| 10 | Cullman        | 34.17437 | -86.84345 |

After gathering the data, we will put the data into a pandas DataFrame and then visualize the neighbouring cities in a map using Folium package with the coordinates superimposed on top. This allows us to perform a sanity check to make sure that the geographical coordinates data returned by Geocoder are correctly plotted in the state of Alabama. Following visual was obtained from the DataFrame:



State of Alabama

Next, we will use Foursquare API to get the top 1400 venues that are within a radius of 15 KMs. (You can change the limit of venues & radius according to your preferences.) We need to register a Foursquare Developer Account in order to obtain the Foursquare Credentials. We then make API calls to Foursquare passing in the geographical coordinates of the neighbourhoods in a Python loop. Foursquare will return the venue data in JSON format and we will extract the venue name, venue category, venue latitude & longitude and distance. Here is a head of the list Venue names, categories, latitude & longitude information from Foursquare API.

|    | Neighborhood   | Latitude | Longitude | VenueName                        | Distance | VenueLatitude | VenueLongitude | VenueCategory           |
|----|----------------|----------|-----------|----------------------------------|----------|---------------|----------------|-------------------------|
| 0  | Alexander City | 32.93884 | -85.95295 | JR's Sports Bar & Grill          | 607      | 32.944276     | -85.952404     | American Restaurant     |
| 1  | Alexander City | 32.93884 | -85.95295 | La Posada Mexican Grill          | 1729     | 32.926987     | -85.964910     | Mexican Restaurant      |
| 2  | Alexander City | 32.93884 | -85.95295 | Ruby Tuesday                     | 1786     | 32.923797     | -85.959622     | American Restaurant     |
| 3  | Alexander City | 32.93884 | -85.95295 | Wind Creek State Park Campground | 9625     | 32.855093     | -85.927328     | Campground              |
| 4  | Alexander City | 32.93884 | -85.95295 | MAPCO Mart                       | 2509     | 32.916299     | -85.952386     | Gas Station             |
| 5  | Alexander City | 32.93884 | -85.95295 | Anytime Fitness                  | 717      | 32.945230     | -85.953960     | Gym / Fitness Center    |
| 6  | Alexander City | 32.93884 | -85.95295 | Dollar General                   | 961      | 32.931278     | -85.947983     | Discount Store          |
| 7  | Alexander City | 32.93884 | -85.95295 | Wind Creek State Park            | 9541     | 32.856710     | -85.923739     | State / Provincial Park |
| 8  | Alexander City | 32.93884 | -85.95295 | Jim Bob's                        | 1090     | 32.929910     | -85.948142     | American Restaurant     |
| 9  | Alexander City | 32.93884 | -85.95295 | Subway                           | 2193     | 32.919853     | -85.959221     | Sandwich Place          |
| 10 | Alexander City | 32.93884 | -85.95295 | Dairy Oueen Grill & Chill        | 1726     | 32.933872     | -85.970458     | Ice Cream Shop          |

With this data, we can now check how many venues were returned for each neighbouring city of the selected state. (Alabama here) and examine how many unique categories can be curated from all the returned venues. (In this case 218). Then, we will sort the DataFrame and assign a venue number to each unique venue for plotting purposes & also to see which venue category is present how much in any particular state. We will also define a colour scheme for different venue categories to be plotted on the map. Following visual was obtained after that:



Here we can see that each venue category has different number & colour. (You can distinguish the points in zoomed-in map)

We can also view this illustration for a separate city just by repeating the above methods for a specific city i.e., examining the unique venue categories, sorting and then forming a DataFrame with unique venue number. Here I took an example of 'Birmingham'. Following visual will be obtained:

|    | Neighborhood | Latitude | Longitude | VenueName                        | Distance | VenueLatitude | VenueLongitude | VenueCategory       | VenueNumber |
|----|--------------|----------|-----------|----------------------------------|----------|---------------|----------------|---------------------|-------------|
| 66 | Birmingham   | 33.52068 | -86.81176 | Newk's Express Cafe              | 1910     | 33.507419     | -86.798701     | American Restaurant | 0           |
| 46 | Birmingham   | 33.52068 | -86.81176 | Galley & Garden                  | 2924     | 33.501173     | -86.790663     | American Restaurant | 0           |
| 50 | Birmingham   | 33.52068 | -86.81176 | Jack Brown's Beer & Burger Joint | 2410     | 33.511413     | -86.788280     | American Restaurant | 0           |
| 22 | Birmingham   | 33.52068 | -86.81176 | Pies & Pints                     | 1326     | 33.511170     | -86.803148     | American Restaurant | 0           |
| 0  | Birmingham   | 33.52068 | -86.81176 | Birmingham Museum Of Art         | 220      | 33.522311     | -86.810409     | Art Museum          | 1           |



Birmingham, Alabama

We can also check the number of venues returned for each city and plot them to see which city have more popular venues and by how much.



Here, we can see that how some popular cities reached the limit of venues(100). On the other hand; Marion, Tuskegee, Demopolis, Greenville, Talladega, Selma, Atmore, Alexander City, Andalusia are below 40 venues in our given coordinates with Latitude and Longitude.

# **Analysis**

Now, we will analyse each neighbouring city by grouping the rows by neighbouring city and taking the mean of the frequency of occurrence of each venue category. By doing so, we are also preparing the data for use in clustering. Also, here we can check percentage existence of any particular category of venue in all the cities of the selected state. For example, Seafood Restaurants.

|   | Neighborhoods  | Seafood Restaurant |
|---|----------------|--------------------|
| 0 | Alexander City | 0.027027           |
| 1 | Andalusia      | 0.026316           |
| 2 | Anniston       | 0.014286           |
| 3 | Athens         | 0.033898           |
| 4 | Atmore         | 0.027027           |

Now, lets create a table which shows list of top 10 venue categories for each neighbouring city.

|   | Neighborhoods     | 1st Most<br>Common Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue | 4th Most<br>Common Venue | 5th Most<br>Common Venue | 6th Most<br>Common Venue | 7th Most<br>Common Venue | 8th Most<br>Common Venue | 9th Most Common<br>Venue      | 10th Most<br>Common Venue |
|---|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|---------------------------|
| 0 | Alexander<br>City | American<br>Restaurant   | Fast Food<br>Restaurant  | Gas Station              | Grocery Store            | Pizza Place              | Discount<br>Store        | Fried Chicken<br>Joint   | АТМ                      | Campground                    | Mexican<br>Restaurant     |
| 1 | Andalusia         | Discount<br>Store        | Fast Food<br>Restaurant  | Pharmacy                 | Sandwich<br>Place        | American<br>Restaurant   | Pizza Place              | Fried Chicken<br>Joint   | Japanese<br>Restaurant   | Construction &<br>Landscaping | Post Office               |
| 2 | Anniston          | Fast Food<br>Restaurant  | Discount<br>Store        | Pharmacy                 | Burger Joint             | Gas Station              | Hote1                    | Grocery Store            | Department<br>Store      | Baseball Field                | Sandwich<br>Place         |
| 3 | Athens            | Discount<br>Store        | Fast Food<br>Restaurant  | American<br>Restaurant   | Mexican<br>Restaurant    | Grocery Store            | Pharmacy                 | BBQ Joint                | Seafood<br>Restaurant    | Sandwich Place                | Pizza Place               |
| 4 | Atmore            | Fast Food<br>Restaurant  | Grocery Store            | Hotel                    | Fried Chicken<br>Joint   | Intersection             | American<br>Restaurant   | Discount<br>Store        | Sandwich<br>Place        | Buffet                        | Breakfast<br>Spot         |

Lastly, we will perform clustering of the neighbouring cities with similar common venue categories by using **K-means algorithm**. It is one of the simplest and popular unsupervised machine learning algorithms and is particularly suited to solve the problem for this project. We will cluster the neighbouring cities into 5 clusters based on their similarities. The results will allow us to identify which city is similar to which city. Based on this, it will help us to answer the question "In any of the US states which city would be best to open which business?" according to the presence or absence of a certain category of a venue.

|   | Neighborhood      | Latitude | Longitude | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue |
|---|-------------------|----------|-----------|-------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|
| 0 | Alexander<br>City | 32.93884 | -85.95295 | 2                 | American<br>Restaurant      | Fast Food<br>Restaurant     | Gas<br>Station              | Grocery<br>Store            | Discount<br>Store           | Fried<br>Chicken<br>Joint   | Pizza<br>Place              | Campground                  | Mexican<br>Restaurant       | Breakfast<br>Spot            |
| 1 | Andalusia         | 31.32014 | -86.49449 | 1                 | Discount<br>Store           | Fast Food<br>Restaurant     | Sandwich<br>Place           | Pharmacy                    | American<br>Restaurant      | Post<br>Office              | Fried<br>Chicken<br>Joint   | Pizza<br>Place              | Pet<br>Service              | Seafood<br>Restaurant        |
| 2 | Anniston          | 33.65712 | -85.81891 | 1                 | Discount<br>Store           | Fast Food<br>Restaurant     | Pharmacy                    | Gas<br>Station              | National<br>Park            | Department<br>Store         | Sandwich<br>Place           | Grocery<br>Store            | BBQ Joint                   | Chinese<br>Restaurant        |
| 3 | Athens            | 34.80450 | -86.97128 | 1                 | Discount<br>Store           | American<br>Restaurant      | Fast Food<br>Restaurant     | BBQ Joint                   | Mexican<br>Restaurant       | Pharmacy                    | Grocery<br>Store            | Donut Shop                  | Seafood<br>Restaurant       | Hotel                        |
| 4 | Atmore            | 31.02526 | -87.49380 | 2                 | Fast Food<br>Restaurant     | Grocery<br>Store            | Discount<br>Store           | Fried<br>Chicken<br>Joint   | Sandwich<br>Place           | Buffet                      | Café                        | Border<br>Crossing          | Seafood<br>Restaurant       | Spa                          |

Here is my merged table with cluster labels for each neighbouring city.

One of my aim was also to show the number of top 3 venues information for each city for more deep study purposes like how many of a particular top venue is present in that particular city thus proving, that venue category is profitable there and is it too many to open more of that or can more of that business be opened there. Thus, I grouped each city by the number of top 3 venues and I combined those information in Top 3 venues column.

|   | Neighborhood   | Top 3 Venues                                                     |
|---|----------------|------------------------------------------------------------------|
| 0 | Alexander City | 4 American Restaurant, 4 Fast Food Restaurant, 3 Gas Station     |
| 1 | Andalusia      | 5 Discount Store, 4 Fast Food Restaurant, 3 Pharmacy             |
| 2 | Anniston       | 5 Discount Store, 5 Fast Food Restaurant, 3 Gas Station          |
| 3 | Athens         | 11 Discount Store, 4 American Restaurant, 4 Fast Food Restaurant |
| 4 | Atmore         | 6 Fast Food Restaurant, 3 Grocery Store, 2 Buffet                |
| 5 | Auburn         | 7 American Restaurant, 5 Grocery Store, 5 Sandwich Place         |
| 6 | Bessemer       | 8 Grocery Store, 7 Fast Food Restaurant, 4 American Restaurant   |
| 7 | Birmingham     | 6 Brewery, 5 Coffee Shop, 5 Hotel                                |
| 8 | Chickasaw      | 7 Grocery Store, 6 Coffee Shop, 6 Mexican Restaurant             |
| 9 | Clanton        | 4 Discount Store, 4 Fast Food Restaurant, 3 Burger Joint         |
|   |                |                                                                  |

Cities and their number of Top 3 Venues

# Results

The results from the k-means clustering shows that we can categorize the cities into 5 clusters having similar venue categories. The results of the clustering are visualized in the map below with cluster 1 in red colour, cluster 2 in purple colour, cluster 3 in light blue colour, cluster 4 in mint green colour and cluster 5 in yellow colour.



K-Means Clustering of similar cities

We can also estimate the number of 1st Most Common Venue, 2nd Most Common Venue & 3rd Most Common Venue in each cluster. Thus, we can create a bar chart which may help us to find which venue is concentrated in which cluster.



Graph 1



Graph 2



Graph 3

### Discussion

As we get our observations from the map in Results section, most of the neighbouring cities are concentrated into cluster 2 & 5. On the other hand, cluster 1 & 3 have only two cities each whereas cluster 4 is quite unique with only 1 city. We can also observe here from the graphs that cluster 5 is missing or have very low 'Discount Store' & 'Fast Food Restaurant'. This represents a great opportunity to open or invest in these categories of venues in cluster 5 cities or vice-versa we can observe that cluster 2 is missing on or have low number of 'Coffee Shops' as compared from cluster 5 thus creating also a great opportunity to open or invest in that category. From another perspective, the results also shows that the oversupply of 'Discount Store' & 'Fast Food Restaurant' are present in the cluster 2 cities. Property developers with unique selling propositions will stand out moreover they will face no or less competition if they go forward with the above-mentioned opportunity. Therefore, this project recommends property developers to capitalize on these findings to open or invest in any business category in a particular city or area. Moreover, property developers or investors should be wary if they want to open 'Discount Store' in cluster 1 cities. This can also benefit people wanting to move to a new place and if they have a particular need for a venue like say 'Discount Store' for an economic friendly stay, then they can move to cluster 2 cities. Also, we can compare all the cities of the state as how they are similar or dissimilar. Thus, the battle between them.

## Conclusion

In this study, I analysed the similarities & dissimilarities between the cities of a particular state. I identified the different categories of venues and sorted them. Then by means of graphical representation & k-means clustering, I categorized different cities into cluster groups. The model will help many stakeholders & business people to predict the profit for opening a particular business in a particular area or also, if they should open that particular business or not. People are turning to big cities to start a business or work. They can achieve better outcomes through their access to the platforms where such information is provided. And, not only for investors but also city managers can manage the city more regularly by using similar data analysis types or platforms.