# Reducing Reactive to Strong Bisimilarity Bachelor's thesis

Max Pohlmann

TU Berlin

June 8, 2021

















- labelled directed graph
- reactive system:
   behaviour depends on continuous interaction with environment
- e.g. a machine and a user















 $p \leftrightarrow q$  if and only if:

 $\forall \alpha, p' \text{ with } p \xrightarrow{\alpha} p'. \ \exists q' \text{ with } q \xrightarrow{\alpha} q' \text{ and } p' \leftrightarrow q', \text{ and } \forall \alpha, q' \text{ with } q \xrightarrow{\alpha} q'. \ \exists p' \text{ with } p \xrightarrow{\alpha} p' \text{ and } p' \leftrightarrow q'.$ 







 in each given moment, there is a fixed set of actions that the environment allows

- in each given moment, there is a fixed set of actions that the environment allows
- if a system state has a transition that is currently allowed, it will be performed immediately

- in each given moment, there is a fixed set of actions that the environment allows
- if a system state has a transition that is currently allowed, it will be performed immediately
- only when no non-time-out transition is allowed by the environment,
   a state may perform a t-transition







# Strong Reactive Bisimilarity



# Strong Reactive Bisimilarity



# Strong Reactive Bisimilarity

A strong reactive bisimulation is a symmetric relation

$$\mathcal{R} \subseteq (Proc \times P(A) \times Proc) \cup (Proc \times Proc),$$

such that, for all  $(p,q) \in \mathcal{R}$ :

- **1** if  $p \xrightarrow{\tau} p'$ , then there exists a q' such that  $q \xrightarrow{\tau} q'$  and  $(p', q') \in \mathcal{R}$ ,
- $(p,X,q) \in \mathcal{R} \text{ for all } X \subseteq A,$

and for all  $(p, X, q) \in \mathcal{R}$ :

- **3** if  $p \xrightarrow{a} p'$  with  $a \in X$ , then there exists a q' such that  $q \xrightarrow{a} q'$  and  $(p', q') \in \mathcal{R}$ ,
- **4** if  $p \xrightarrow{\tau} p'$ , then there exists a q' such that  $q \xrightarrow{\tau} q'$  and  $(p', X, q') \in \mathcal{R}$ ,
- if  $\mathcal{I}(p) \cap (X \cup \{\tau\}) = \emptyset$ , then  $(p,q) \in \mathcal{R}$ , and
- if  $\mathcal{I}(p) \cap (X \cup \{\tau\}) = \emptyset$  and  $p \xrightarrow{t} p'$ , then there exists a q' such that  $q \xrightarrow{t} q'$  and  $(p', X, q') \in \mathcal{R}$ .

$$(\mathcal{I}(p) := \{ \alpha \mid p \xrightarrow{\alpha} \land \alpha \neq t \})$$



```
For an LTS<sub>t</sub> \mathbb{T} with \mathbb{T} = (Proc, Act, \rightarrow), let \mathbb{T}_{\vartheta} be an LTS with \mathbb{T}_{\vartheta} = (Proc_{\vartheta}, Act_{\vartheta}, \rightarrow_{\vartheta}).
```

For an LTS<sub>t</sub> 
$$\mathbb{T}$$
 with  $\mathbb{T} = (Proc, Act, \rightarrow)$ , let  $\mathbb{T}_{\vartheta}$  be an LTS with  $\mathbb{T}_{\vartheta} = (Proc_{\vartheta}, Act_{\vartheta}, \rightarrow_{\vartheta})$ .

Goal: 
$$p \leftrightarrow_r q \iff \vartheta(p) \leftrightarrow \vartheta(q)$$
,

with  $p, q \in Proc$  and  $\vartheta(p), \vartheta(q) \in Proc_{\vartheta}$ .

```
For an LTS<sub>t</sub> \mathbb{T} with \mathbb{T} = (Proc, Act, \rightarrow), let \mathbb{T}_{\vartheta} be an LTS with \mathbb{T}_{\vartheta} = (Proc_{\vartheta}, Act_{\vartheta}, \rightarrow_{\vartheta}). Proc_{\vartheta} = \{\vartheta(p) \mid p \in Proc\} \cup \{\vartheta_X(p) \mid p \in Proc \land X \subseteq (Act \setminus \{\tau, t\})\}
```

```
For an LTS<sub>t</sub> \mathbb{T} with \mathbb{T} = (Proc, Act, \rightarrow), let \mathbb{T}_{\vartheta} be an LTS with \mathbb{T}_{\vartheta} = (Proc_{\vartheta}, Act_{\vartheta}, \rightarrow_{\vartheta}). Proc_{\vartheta} = \{\vartheta(p) \mid p \in Proc\} \cup \{\vartheta_X(p) \mid p \in Proc \land X \subseteq (Act \setminus \{\tau, t\})\}Act_{\vartheta} = Act \cup \{t_{\varepsilon}\} \cup \{\varepsilon_X \mid X \subseteq (Act \setminus \{\tau, t\})\}
```

For an LTS<sub>t</sub>  $\mathbb{T}$  with  $\mathbb{T} = (Proc, Act, \rightarrow)$ , let  $\mathbb{T}_{\vartheta}$  be an LTS with  $\mathbb{T}_{\vartheta} = (Proc_{\vartheta}, Act_{\vartheta}, \rightarrow_{\vartheta})$ .

$$(1) \frac{1}{\vartheta(p) \xrightarrow{\varepsilon_{X}} \vartheta_{X}(p)} X \subseteq A \qquad (2) \frac{p \xrightarrow{\tau} p'}{\vartheta(p) \xrightarrow{\tau} \vartheta(p')}$$

$$(3) \frac{p \xrightarrow{\varphi} \text{ for all } \alpha \in X \cup \{\tau\}}{\vartheta_{X}(p) \xrightarrow{t_{\varepsilon}} \vartheta(p)}$$

$$(4) \frac{p \xrightarrow{a} p'}{\vartheta_{X}(p) \xrightarrow{a} \vartheta(p')} a \in X \qquad (5) \frac{p \xrightarrow{\tau} p'}{\vartheta_{X}(p) \xrightarrow{\tau} \vartheta(p')}$$

$$(6) \frac{p \xrightarrow{\varphi} \text{ for all } \alpha \in X \cup \{\tau\} \quad p \xrightarrow{t} p'}{\vartheta_{X}(p) \xrightarrow{t} \vartheta_{X}(p')}$$





$$(1) \xrightarrow{\vartheta(p) \xrightarrow{\varepsilon_{X}} \vartheta_{X}(p)} X \subseteq A$$



(3) 
$$\xrightarrow{p \xrightarrow{\alpha} \text{ for all } \alpha \in X \cup \{\tau\}} \frac{\theta_X(p) \xrightarrow{t_{\varepsilon}} \theta_{\vartheta} \theta(p)}{\theta_X(p) \xrightarrow{t_{\varepsilon}} \theta_{\vartheta} \theta(p)}$$



(6) 
$$\xrightarrow{p \xrightarrow{\alpha} \text{ for all } \alpha \in X \cup \{\tau\}} \xrightarrow{p \xrightarrow{t} p'} \theta_X(p) \xrightarrow{t} \theta_X(p')$$



$$(4) \xrightarrow{p \xrightarrow{a} p'} a \in X$$



$$(5) \frac{p \xrightarrow{\tau} p'}{\vartheta_X(p) \xrightarrow{\tau} \vartheta_X(p')}$$



$$(2) \frac{p \xrightarrow{\tau} p'}{\vartheta(p) \xrightarrow{\tau}_{\vartheta} \vartheta(p')}$$

#### Theorem

For an LTS<sub>t</sub>  $\mathbb{T}$  with  $\mathbb{T} = (Proc, Act, \rightarrow)$ , let  $\mathbb{T}_{\vartheta}$  be an LTS with  $\mathbb{T}_{\vartheta} = (Proc_{\vartheta}, Act_{\vartheta}, \rightarrow_{\vartheta})$  defined as above.

Then we have, for all  $p, q \in Proc$ :

$$p \leftrightarrow_r q \iff \vartheta(p) \leftrightarrow \vartheta(q),$$

$$p \leftrightarrow_r^X q \iff \vartheta_X(p) \leftrightarrow \vartheta_X(q).$$



$$\varphi ::= tt \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \langle \alpha \rangle \varphi$$

$$\varphi ::= \mathsf{tt} \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \langle \alpha \rangle \varphi$$



$$\varphi ::= tt \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \langle \alpha \rangle \varphi$$



$$\varphi ::= \mathsf{tt} \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \langle \alpha \rangle \varphi$$



$$\varphi ::= tt \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \langle \alpha \rangle \varphi$$



$$\varphi ::= tt \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \langle \alpha \rangle \varphi$$



$$p \vDash \langle a \rangle tt \wedge \neg (\langle b \rangle tt)$$



$$\langle a \rangle (\neg (\langle b \rangle tt))$$



$$\langle a \rangle (\neg (\langle b \rangle tt))$$
  
 $\langle a \rangle (\dots)$ 



$$\langle a \rangle (\neg (\langle b \rangle tt))$$
  
 $\neg (\langle b \rangle tt)$ 



$$\langle a \rangle (\neg (\langle b \rangle tt))$$

$$\neg(\langle b\rangle tt)$$
  $\not$ 



$$p \not\models \langle a \rangle (\neg (\langle b \rangle tt))$$



$$p \vDash \langle X \rangle \varphi$$

$$p \vDash \langle X \rangle \varphi$$
$$p \vDash \langle t \rangle_X \varphi$$

$$p \models \langle X \rangle \varphi$$

$$p \models_X \varphi$$

$$\begin{array}{lll} p \vDash \bigwedge_{i \in I} \varphi_{i} & \text{if} & \forall i \in I. \ p \vDash \varphi_{i} \\ p \vDash \neg \varphi & \text{if} & p \not\vDash \varphi \\ p \vDash \langle \alpha \rangle \varphi & \text{with} \ \alpha \in A \cup \{\tau\} & \text{if} & \exists p'. \ p \xrightarrow{\alpha} p' \wedge p' \vDash \varphi \\ p \vDash \langle X \rangle \varphi & \text{with} \ X \subseteq A & \text{if} & \mathcal{I}(p) \cap (X \cup \{\tau\}) = \emptyset \wedge \\ & \exists p'. \ p \xrightarrow{t} p' \wedge p' \vDash_{X} \varphi \end{array}$$

$$\begin{array}{ll} p \vDash_{X} \bigwedge_{i \in I} \varphi_{i} & \text{if} & \forall i \in I. \ p \vDash_{X} \varphi_{i} \\ p \vDash_{X} \neg \varphi & \text{if} & p \not\vDash_{X} \varphi \\ p \vDash_{X} \langle \alpha \rangle \varphi & \text{with} \ a \in A & \text{if} \ a \in X \wedge \exists p'. \ p \xrightarrow{a} p' \wedge p' \vDash \varphi \\ p \vDash_{X} \langle \tau \rangle \varphi & \text{if} & \exists p'. \ p \xrightarrow{\tau} p' \wedge p' \vDash_{X} \varphi \end{array}$$

$$\begin{array}{ll} p \vDash_{X} \varphi & \text{if} & \mathcal{I}(p) \cap (X \cup \{\tau\}) = \emptyset \wedge p \vDash \varphi \end{array}$$

$$(\mathcal{I}(p) := \{ \alpha \mid p \xrightarrow{\alpha} \land \alpha \neq t \})$$



Goal: 
$$\sigma$$
: (HML<sub>t</sub> formulas)  $\longrightarrow$  (HML formulas), such that:

$$p \vDash \varphi \iff \vartheta(p) \vDash \sigma(\varphi)$$

Let  $\sigma: (HML_t \text{ formulas}) \longrightarrow (HML \text{ formulas})$  be recursively defined by

$$\sigma(\bigwedge_{i\in I}\varphi_{i}) = \bigwedge_{i\in I}\sigma(\varphi_{i})$$

$$\sigma(\neg\varphi) = \neg\sigma(\varphi)$$

$$\sigma(\langle \tau \rangle \varphi) = \langle \tau \rangle \sigma(\varphi)$$

$$\sigma(\langle \alpha \rangle \varphi) = \langle \alpha \rangle \sigma(\varphi) \vee$$

$$\langle \varepsilon_{A} \rangle \langle \alpha \rangle \sigma(\varphi) \vee$$

$$\langle t_{\varepsilon} \rangle \langle \varepsilon_{A} \rangle \langle \alpha \rangle \sigma(\varphi) \qquad \text{if } \alpha \in A$$

$$\sigma(\langle \alpha \rangle \varphi) = \text{ff} \qquad \text{if } \alpha \notin A \cup \{\tau\}$$

$$\sigma(\langle X \rangle \varphi) = \langle \varepsilon_{X} \rangle \langle t \rangle \sigma(\varphi) \vee$$

$$\langle t_{\varepsilon} \rangle \langle \varepsilon_{X} \rangle \langle t \rangle \sigma(\varphi) \qquad \text{if } X \subseteq A$$

$$\sigma(\langle X \rangle \varphi) = \text{ff} \qquad \text{if } X \not\subseteq A$$

#### Theorem

For some LTS<sub>t</sub>  $\mathbb{T}$ , let  $\mathbb{T}_{\vartheta}$  and  $\sigma$  be defined as above. Then, for all  $p \in Proc$  and  $\varphi : HML_t$  formulas, we have:

$$p \vDash \varphi \iff \vartheta(p) \vDash \sigma(\varphi),$$
$$p \vDash_X \varphi \iff \vartheta_X(p) \vDash \sigma(\varphi).$$

#### That's all, folks!



#### Main Resource:

van Glabbeek, Rob. "Reactive Bisimulation Semantics for a Process Algebra with Time-Outs." arXiv preprint arXiv:2008.11499 (2020).

#### My Thesis on GitHub:

https://github.com/maxpohlmann

