UNIVERSIDAD DE ORIENTE NÚCLEO ANZOÁTEGUI ESCUELA DE INGENIERÍA Y CIENCIAS APLICADAS DEPARTAMENTO DE COMPUTACIÓN LABORATORIO DE PROYECTOS DIGITALES AVANZADOS

Lectura de sensores y su visualización a través de una pantalla con la utilización de un rasberripy pico

Prof. Rene Cabrera Elaborado por:

Brazon Eulises

ABSTRACTO

En la presente practica indagaremos sobre el uso de distintos sensores con el uso del rasberripI pico, como realizar las respectivas conexiones y lecturas, con cada uno de los sensores utilizados, dependiendo del tipo de sensor a emplear, ya sea un sensor analógico o un sensor digital, posterior a ello se tomaran estos valores para ser procesados y mostrados a través de una pantalla, con ayuda de una librería que contiene una serie de instrucciones básicas que simplifican el proceso de desarrollo en el código empleado. Para el desarrollo del código se estará empleando microphyton.

OBJETIVOS

Objetivo General:

- Efectuar lectura de distintos sensores y poder visualizarlos a travez de una pantalla utilizando el rasberripi pico

Objetivos Específicos:

- Conectar un potenciómetro al rasberripy pico.
- Medir la temperatura a través de un sensor conectado al rasberripy pico.
- Configurar una fotorresistencia al rasberripy pico.
- Evaluar sensor de distancia de ultrasonido con el rasberripy pico.
- Implementar una pantalla en el rasberripy pico.

MATERIALES REQUERIDOS

- Potenciómetro (en este caso se unos uno de $10K\Omega$ / analógico).
- LM35 (sensor de temperatura / analógico).
- Fotorresistencia (sensor de luz / analógico).
- HC-SR04 (sensor de dustancia por ultrasonido / digital).
- Pantalla LCD TFT 1,8 pulgadas chip de control ST7735, de 128X160px.
- Rasberripy pico.
- Resistencia 1K Ω (1unidad) y 220 Ω (2unidades).
- Transistor 2N2222.
- Protoboard.
- Jumpers para la conexión.
- Alimentación 5V.
- Herramientas para la manipulación y testeo (multímetro, pinzas, entre otros).

DESCRIPCION DEL PROYECTO

Diagrama de Bloques: Primero observemos una visión general de los distintos componentes a utilizar y cómo van a estar interactuando en conjunto antes de pasar a los circuitos utilizados en cada uno de ellos.

Se conecto un **potenciómetro** de $10K\Omega$, este potenciómetro generara una señal que no debe variar su valor, a no ser, que se rote, ya sea en sentido horario o anti horario, para la lecturas de señales analógica el rasberripy pico cuenta con tres entrada ADC (Analog to Digital Converter), el GP28 es el utilizado en este caso, la señal recibida es procesada con ayuda del la librería machine.ADC, la cual nos ayuda en la conversión del voltaje que se está recibiendo en la entrada analógica del rasberripy pico (varía entre 0 a 3.3v), a un valor digital (en este caso de 16 Bits, que varía entre 0 y 65535), siendo este valor digital, el que entiende el rasberripy pico para realizar las operaciones necesarias.

Circuito Potenciómetro:

En la conexión del sensor de **temperatura LM35** se sigue un procedimiento similar, conectamos los pines de GND, alimentación y señal, con la acotación de que este sensor para poder funcionar necesita una entrada de voltaje de al menos 4 Voltios para funcionar, por lo que se procede a alimentar desde el pin 40 que nos suministra 5 Voltios proveniente del cable micro usb, para la lectura del sensor de temperatura se designó el GP26, la lectura obtenida de este sensor no representa directamente la medición de la temperatura, para ello, se hace necesario procesar la señal para hacer la conversión necesaria, dado que lo que estamos obteniendo a la entrada es un voltaje (el LM35 varia su conductividad en función de la temperatura), con el voltaje obtenido se puede calcular la temperatura aplicando un factor de conversión, este factor de conversión es proporcionado por el fabricante.

Algoritmo para LM35:

Circuito LM35:

Ahora, para configurar una **fotorresistencia** (resistencia que varía su resistencia en función de la luz percibida), es necesario aplicar un divisor de voltaje para poder generar la señal analogica que necesitamos, para conectarlo a uno de los pines ADC que posee el rasberripy pico, en este caso se utilizó el GP27, esto se logra aplicando una resistencia en serie a la fotorresistencia (se uso una resistencia de 220Ω), esto es necesario solo si solo poseemos la fotorresistencia por si sola, pero existen módulos que integran esta resistencia en el circuito impreso, esta conexiones queda mejor referenciado en el Circuito de la Fotorresistencia.

Algoritmo Fotorresistencia:

Circuito Fotorresistencia:

Todos los sensores utilizados hasta ahora, trabajan con señales analógicas, a continuación se evaluara un sensor digital, el **sensor de distancia de ultrasonido HC-SR04**, este sensor nos ayuda a evaluar la distancia de un objeto, cuenta un transmisor que emite un sonido a una alta frecuencia, que no puede ser percibido por el oído humano, esta onda transmitida rebota con el objeto que se encuentre frente y con el uso un receptor que capta este sonido a alta frecuencia, obtenemos el tiempo que tarda entre que se envía la señal y el tiempo en que se recibió, lo que nos ayuda para posteriormente calcular la distancia que recorrió la onda.

En la programación de los pines digitales se emplea la librería machine. Pin que nos ayuda a indicar si el pin será empleado como entrada o como salida, para el caso del transmisor se crea un pin de salida, y para el caso del receptor se crea un pin de entrada, una acotación importante es que este sensor trabaja con 5 v, y su señal generada por el receptor también es de 5V, es necesario reducir este voltaje a los 3.3 V que utiliza el rasberripy pico, para ello tenemos varias opciones, como el uso de una resistencia, un divisor de tensión, o como en este caso, un transistor junto a una a dos resistencias.

Algoritmo sensor de distancia ultrasonico HC-SR04:

- El trigger es la señal para activar el transmisor, se uso el GP15
- El echo es la señal que se activa cuando el sonido es recibido, se usó el GP14.
- La fórmula empleada está basada en la velocidad del sonido.

Circuito Algoritmo sensor de distancia ultrasonico HC-SR04:

Luego de tener una serie de datos que podemos obtener de diferente sensores, cada uno con sus respectivas conexiones y procesamiento de la señal para poder interpretar los datos, se necesita contar con una forma de visualizarlos, para ello se implementa una **pantalla LCD** TFT 1.8 pulgadas, chip de control ST7735, con una resolución de 128x160px. En su manipulación es necesario contar la librería para este modelo en particular, que nos brinda una serie de instrucciones básicas para poder imprimir estos datos en pantalla enfocándonos en el desarrollo de la lógica del programa en lugar de preocuparnos en la manipulación de pixel por pixel de la pantalla.

Adicional al uso de la librería para la pantalla ST7735 se hace uso de la librería machine.SPI, que es un protocolo de comunicación serial que emplea la pantalla para recibir la información.

Algoritmo general en el uso de la pantalla ST7735:

Circuito pantalla ST7735:

Todos estos Elementos fueron utilizados en conjunto en un mismo circuito, el **codigo** empleado para el respectivo para su funcionamiento, además de una seria de imágenes y video del circuito en funcionamiento, se encuentra disponible en mi **repositorio personal**:

https://github.com/EulisesBrazon/sensors_and_display

Proyectos Referenciales:

Clase N° 6.1, Raspberry Pi Pico "MicroPython" (Sensor de temperatura LM35).

Recuperado de: https://youtu.be/d11pck6qrzc

Medir Distancia con Sensor Ultrasónico Raspberry Pi Pico y Lectura en Pantalla Oled con Micropython. Recuperado de: https://youtu.be/u30R9aXTTx8

Raspberry PI Pico + St7735 + Micropython. Recuperado de: https://youtu.be/Xs78cCnkDVw