1^{ère}spe

1. 0.6×4

2. Affirmation :

Le point $A(-3\,;\,12)$ appartient à la parabole d'équation $y=x^2+3$

□ Vrai □ Faux

3. Développer et réduire l'expression (x-3)(2x+1).

- 4. $1+\frac{1}{3}$
- **5.** 20 % de 70
- **6.** Écriture décimale de $\frac{3}{4}$
- 7. Multiplier une quantité par 0.84 revient à la diminuer de : . . . %
- **8.** (u_n) est une suite géométrique telle que $u_0=4$ et $u_1=-28$ La raison de cette suite est : . . .
- 9. Compléter par deux entiers consécutifs :

$$\dots < \sqrt{34} < \dots$$

- **10.** Solution de l'équation 3x + 1 = 8
- **11.** Compléter.

$$\frac{18\pi}{7} = 2\pi + \dots$$

- **12.** Factoriser $(2x-3)^2 2(2x-3)$.
- 13. Déterminer l'équation réduite de la droite (AB).

- **14.** Soit la suite (u_n) définie par $u_0=4$ et pour $n\in\mathbb{N}$, $u_{n+1}=-3u_n+4$. $u_2=\ldots$
- **15.** $P(A \cap B) = 0.2$

$$P(A) = 0.3 ; P(B) = 0.5$$

A et B sont indépendants.

□ Vrai □ Faux

16. Le discriminant du trinôme $x^2 - 4x + 1$ est ...

- 17. Un sportif court 3 500 m en 15 min. Quelle est sa vitesse en km/h?
- **18.** $f(x) = \frac{1}{2}x^2 + 8x 1$ $f'(x) = \dots$
- **19.** Solutions de (x-9)(x+3) < 0
- **20.** Soit $f:x\longmapsto (x-4)(x+10)$ La représentation graphique \mathcal{C}_f a pour axe de symétrie la droite d'équation :

 $\square \ x = 3 \qquad \square \ x = 4 \qquad \square \ x = -3$

NOM, Prénom :

Date: vendredi 14/03/2025

1. On peut calculer ainsi :

$$0.6 \times 4 = 0.1 \times 6 \times 4$$

= 0.1×24
= 2.4

2. Le point A est sur la parabole si son ordonnée est égale à l'image de son abscisse.

$$f(-3) = (-3)^2 + 3$$
$$= 12$$

Le point A est bien sur la parabole.

L'affirmation est VraiE

3.
$$(x-3)(2x+1) = 2x^2 + x - 6x - 3$$

= $2x^2 - 5x - 3$

Le terme en x^2 vient de $x \times 2x = 2x^2$.

Le terme en x vient de la somme de $x \times 1$ et de $-3 \times 2x$.

Le terme constant vient de $-3 \times 1 = -3$.

$$1 + \frac{1}{3} = \frac{1 \times 3}{3} + \frac{1}{3}$$
4.
$$= \frac{3}{3} + \frac{1}{3}$$

$$= \frac{4}{3}$$

5.
$$20 \%$$
 de $70 = 14$
Prendre 20% de 70 revient à prendre $2 \times 10 \%$ de 70 .

Comme 10% de 70 vaut 7 (pour prendre 10% d'une quantité, on la divise par 10), alors 20 % de $70 = 2 \times 7 = 14$.

6.
$$\frac{3}{4} = 0.75$$

- 7. Comme 0.84 1 = -0.16, multiplier par 0.84 revient à diminuer de **16** %.
- 8. La raison de la suite est donnée par le quotient $\frac{u_1}{u_0} = \frac{-28}{4} = -7$.
- **9.** Comme 25 < 34 < 36, alors $5 < \sqrt{34} < 6$.
- 10. On procède par étapes successives :

On commence par isoler 3x dans le membre de gauche en retranchant 1 dans chacun des membres, puis on divise par 3 pour obtenir la solution:

$$3x + 1 = 8$$

$$3x = 8 - 1$$

$$3x = 7$$

$$x = \frac{7}{3}$$

La solution de l'équation est : 🐈.

11.
$$\frac{18\pi}{7} = \frac{14\pi}{7} + \frac{4\pi}{7}$$
$$= 2\pi + \frac{4\pi}{7}$$

12.
$$(2x-3)$$
 est un facteur commun.

$$(2x-3)^2 - 2(2x-3) = (2x-3)((2x-3)-2)$$
$$= (2x-3)(2x-5)$$

13. En utilisant les deux points A et B, on détermine le coefficient directeur

$$m$$
 de la droite :

$$m = \frac{y_B - y_A}{x_B - x_A} = -\frac{2}{3}.$$

L' ordonnée à l'origine est -1, ainsi l'équation réduite de la droite est

$$y = -\frac{2}{3}x - 1.$$

14. On calcule d'abord u_1 :

$$u_1 = -3 \times u_0 + 4$$

$$u_1 = -3 \times 4 + 4$$

$$= -8$$

On obtient donc pour u_2 :

$$u_2 = -3 \times u_1 + 4$$

$$u_2 = -3 \times (-8) + 4$$

$$=28$$

15. A et B sont indépendants si
$$P(A \cap B) = P(A) \times P(B)$$
.

Comme:

$$P(A) \times P(B) = 0.3 \times 0.5$$

$$= 0.15$$

$$P(A \cap B) \neq P(A) \times P(B)$$
.

Les événements A et B ne sont donc pas indépendants.

L'affirmation est FAUSSE.

16.
$$\Delta = b^2 - 4ac$$
 avec $a = 1$, $b = -4$ et $c = 1$.

$$\Delta = (-4)^2 - 4 \times 1 \times 1$$

$$= 12$$

17. En 1 heure, il parcourt 4 fois plus de distance qu'en 15 minutes, soit $4 \times 3\,500 = 14\,000$ m.

Sa vitesse est donc 14 km/h.

18. On détermine la fonction dérivée :

$$f'(x) = \frac{1}{2} \times 2x - 1$$
$$= x + 8$$

19. (x-9)(x+3) est l'expression factorisée d'une fonction polynôme du second degré de la forme $a(x-x_1)(x-x_2)$.

Les racines sont $x_1 = 9$ et $x_2 = -3$.

Le polynôme est du signe de a=1 (donc positif) sauf entre ses racines. L'ensemble solution est donc :]-3; 9[.

20. Les racines de ce polynôme du second degré sont $x_1=4$ et $x_2=-10$. L'axe de symétrie est donné par la moyenne des racines : $x=\frac{x_1+x_2}{2}$,

soit
$$x = \frac{4 + (-10)}{2}$$
, c'est-à-dire $x = -3$.