Série de révision n°1

Exercice n°1

- 1. On considère la fonction h définie sur $[0, +\infty[$ par $h(x) = xe^x e^x + 1.$
 - (a) Montrer que $\forall x \in [0, +\infty[, h(x) = \int_0^x te^t dt]$.
 - (b) Montrer que $\forall x \geq 0, \frac{1}{2}x^2 \leq h(x) \leq \frac{1}{2}x^2e^x$.
 - (c) En déduire $\lim_{x\to 0^+} \frac{h(x)}{x^2}$.
- 2. On considère la fonction f définie sur $[0, +\infty[$ par $f(x) = e^{\sqrt{x}} (e+1)\sqrt{x}$. On désigne par (C) sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.
 - (a) Vérifier que $\forall x > 0$, $\frac{f(x)-1}{x} = \frac{e^{\sqrt{x}}-1}{\sqrt{x}} \frac{h(\sqrt{x})}{x} \frac{e}{\sqrt{x}}$.
 - (b) Montrer alors que $\lim_{x\to 0^+}\frac{f(x)-1}{x}=-\infty.$ Interpréter.
 - (c) Calculer $\lim_{x\to+\infty} f(x)$ et $\lim_{x\to+\infty} \frac{f(x)}{x}$. Interpréter.
- 3. (a) Dresser le tableau de variation de f.
 - (b) Montrer que l'équation f(x)=0 admet exactement deux solutions α et β . Vérifier que $0<\alpha<1<(\ln^2(e+1))<\beta$.
 - (c) On pose pour x > 0, $\mu(x) = \frac{e^{\sqrt{x}}}{\sqrt{x}}$. Montrer que $f(x) = 0 \iff \mu(x) = e + 1$.
 - (d) Dans la feuille annexe, on a tracé dans le repère orthonormé (O, \vec{i}, \vec{j}) la courbe (C_{μ}) de la fonction μ . Construire dans le repère (O, \vec{i}, \vec{j}) la courbe (C) (on prendra $\ln(e+1) \approx 1.31$).
- 4. Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe (\mathcal{C}) , l'axe des abscisses et les droites d'équations $x = \alpha$ et $x = \beta$.
 - (a) Montrer que $\int_{\alpha}^{\beta} e^{\sqrt{t}} dt = 2(e^{\sqrt{\beta}}(\sqrt{\beta} 1) e^{\sqrt{\alpha}}(\sqrt{\alpha} 1)).$
 - (b) En déduire la valeur de A.

On donne ci-dessous, le tableau de variation de la fonction f_n pour tout $n \in \mathbb{N}$ définie par: $f_n(x) = e^{\sqrt{x}} - (e + \frac{1}{n})\sqrt{x}$.

Tableau de variation de $f_n(x)$

x	0	$\ln^2(e+\frac{1}{n})$	$+\infty$
Signe de $f'_n(x)$	+	_	+
Variation de f_n	1	$1 - (e + \frac{1}{n}) \ln(e + \frac{1}{n})$	$+\infty$

- 1. (a) Montrer que $f_n(\ln^2(e+\frac{1}{n})) < 0$.
 - (b) Montrer que l'équation $f_n(x)=0$ admet exactement deux solutions α_n et β_n . Vérifier que $0<\alpha_n<1<\ln^2(e+\frac{1}{n})<\beta_n$.
- 2. (a) Montrer que $f_{n+1}(\alpha_n) < 0$ et que $f_{n+1}(\beta_n) > 0$.
 - (b) En déduire que la suite (α_n) est strictement croissante et la suite (β_n) est strictement décroissante.
- 3. (a) Montrer que les restrictions μ_1 et μ_2 de μ respectivement à $I_1 = [0, 1]$ et $I_2 = [1, +\infty[$ réalisent des bijections de I_1 et I_2 sur des intervalles que l'on déterminera.

1

- (b) Vérifier que $\forall n \in \mathbb{N}^*, \ \mu_1(\alpha_n) = e + \frac{1}{n}$. En déduire $\lim_{n \to +\infty} \alpha_n$.
- (c) Vérifier que $\forall n \in \mathbb{N}^*, \, \mu_2^{-1} \circ \mu_1(\alpha_n) = \beta_n$. En déduire $\lim_{n \to +\infty} \beta_n$.

Exercice n°2 Soit p un nombre premier tel que $p \geq 5$.

1. Montrer que $p^2 \equiv 1 \pmod{3}$.

- 2. (a) Montrer qu'il existe un entier naturel q tel que $p^2 1 \equiv 4q(q+1)$.
 - (b) En déduire que $p^2 \equiv 1 \pmod{8}$.
- 3. En utilisant le lemme de Gauss, montrer que $p^2 \equiv 1 \pmod{24}$.
- 4. Soit a un entier naturel tel que a et 24 sont premiers entre eux.
 - (a) Montrer que $a^2 \equiv 1 \pmod{24}$.
 - (b) Déterminer le reste modulo 24 de 883².
 - (c) Existe-t-il des entiers naturels a_1, a_2, \ldots, a_{83} tels que pour tout $k \in \{1, 2, 3, \ldots, 83\}$, a_k et 24 sont premiers entre eux et $\sum_{k=1}^{83} a_k^2 = 883$?
- 5. Soit le couple $(x,y) \in \mathbb{N}^* \times \mathbb{N}^*$ solution de l'équation (E): $p^x + y^{p-1} = 883$.
 - (a) Montrer que p < 883.
 - (b) Montrer que p ne divise pas y.
 - (c) Montrer que $y^{p-1} \equiv 1 \pmod{p}$, puis en déduire que p divise 882.
 - (d) Déterminer p.
 - (e) Déterminer alors les couples $(x,y) \in \mathbb{N}^* \times \mathbb{N}^*$ qui vérifient (E): $p^x + y^{p-1} = 883$.

Exercice n°3 Le plan est orienté dans le sens direct. Soit OBC un triangle équilatéral direct inscrit dans le cercle (C) de centre O. A est le symétrique de C par rapport à O. J et K sont les points diamétralement opposés respectivement à B et C.

- 1. Déterminer la nature et les éléments caractéristiques de $R = S_{(OJ)} \circ S_{(OK)}$.
- 2. Soit T la translation de vecteur \vec{OB} . Déterminer la droite Δ telle que $T = S_{\Delta} \circ S_{(OZ)}$.
- 3. Montrer que $T \circ R$ est la rotation de centre K et d'angle $-\frac{\pi}{3}$.
- 4. Soit E le point tel que $\vec{CE} = \vec{BO}$.
 - (a) Montrer que ABE est équilatéral de centre O.
 - (b) On considère une isométrie du plan qui transforme A en C et O en B. On pose $g=t_{\vec{BO}}\circ f$.
 - i. Déterminer g(O) et g(A).
 - ii. Montrer que g est soit la symétrie orthogonale d'axe (OB) soit la rotation de centre O d'angle $-\frac{2\pi}{3}$.
 - iii. Caractériser alors les isométries f du plan qui transforment A en C et O en B.
- 5. On pose $h=t_{\vec{OB}}\circ S_{(OB)}$ et $r=R(K,-\frac{2\pi}{3}).$
 - (a) Déterminer h(M).
 - (b) En déduire l'ensemble des points M du plan tels que h(M) = r(M).

Exercice n°4 On considère la fonction F définie sur \mathbb{R} par $F(x) = \int_0^x e^{-t^2} dt$. **A)**

- 1. Justifier l'existence de F(x) sur \mathbb{R} .
- 2. Étudier le sens de variation de F et montrer que F est impaire.
- 3. (a) Vérifier que $\forall t \in [1, +\infty[: e^{-t^2} \le e^{-2t}]$. En déduire que $\forall x \ge 2: F(x) \le \frac{1}{2e^4} + \int_0^2 e^{-t^2} dt$.
 - (b) Prouver que $\forall x \ge 2 : F(x) \le \frac{1}{2e^4} + \int_0^2 e^{-t^2} dt$.
- 4. Montrer que F est majorée sur \mathbb{R} et $\lim_{x\to\pm\infty} F(x)=L$.
- 5. Soit f la fonction définie sur \mathbb{R} par $f(x) = \int_0^{\frac{\pi}{2}} e^{-x^2 \sin^2 t} dt$.

- (a) Montrer que $\forall x \geq 0 : 0 \leq f(x) \leq \frac{\pi}{2} e^{-x^2}$. Calculer $\lim_{x \to +\infty} f(x)$.
- (b) Dresser le tableau de variation de f et donner l'allure de la courbe C_F .

B)

- 1. On pose $x \in \mathbb{R}$ et $\forall t \in]-\frac{\pi}{2}, \frac{\pi}{2}[, g(t) = f(x \tan t).$
 - (a) Montrer que g est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ et que $g'(t)=\frac{x}{\cos^2 t}e^{-x^2\tan^2 t}.$
 - (b) En déduire que $\forall x \in \mathbb{R} : f(x) = x \int_0^{\frac{\pi}{2}} \frac{e^{-x^2 \tan^2 t}}{\cos^2 t} dt$.
- 2. On admettant que f est dérivable sur \mathbb{R} et que $f'(x) = -\int_0^{\frac{\pi}{2}} \frac{e^{-x^2 \tan^2 t}}{\cos^2 t} dt$. Montrer que $\forall x \in \mathbb{R}$: $(f(x^2))' = -2xe^{-x^2}F(x)$.
- 3. Soit $h(x) = f(x) + (F(x))^2 \ \forall x \in \mathbb{R}$. Montrer alors que h est constante et calculer cette constante.
- 4. En déduire que $\forall x \in \mathbb{R} : f(x) = (\int_0^x e^{-t^2} dt)^2$.
- C) On pose pour $n \ge 0$, $u_n = \int_0^x t^n e^{-t^2} dt$ et $\vartheta_n = \lim_{x \to +\infty} u_n$.
- 1. Vérifier que $\vartheta_0 = \frac{\sqrt{\pi}}{2}$.
- 2. (a) Montrer que $\forall n \geq 2 : \vartheta_n = \frac{n-1}{2} \vartheta_{n-2}$.
 - (b) En déduire que $\vartheta_n\vartheta_{n+1}=\frac{n!\sqrt{\pi}}{2^{n+1}\cdot n}$.
 - (c) Déterminer alors les termes ϑ_1 et ϑ_3 de la suite (ϑ_n) .

Exercice n°5 On considère dans \mathbb{C} l'équation $(E_m): mz^2 - 2i(6-m)z + 8(2-\overline{m}) = 0$. Soit $m \in \mathbb{C}^*$ tel que |m| = 2.

1. Résoudre dans \mathbb{C} l'équation (E_m) .

Le plan \mathcal{P} est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On donne les points A, M, N et P d'affixes respectives: $z_A = i, z_M = m, z_N = 2i\overline{m}$ et $z_P = 4\overline{m} - 2i$.

- 1. On pose $m = 2e^{i\theta}$ avec $\theta \in [0, 2\pi[$.
 - (a) Écrire z_P sous forme exponentielle.
 - (b) Montrer que les points A, N et P ne sont pas alignés.
 - (c) Existe-t-il une position de m pour laquelle le triangle ANP est rectangle en A?
 - (d) Montrer que $MN^2=4(5-4\sin(2\theta))$. Déterminer la valeur de θ pour laquelle MN est minimale.
- 2. Soit $f: \mathcal{P} \to \mathcal{P}$ définie par $M(z) \mapsto M'(z')$ tel que $z' = i\overline{z} 2i$.
 - (a) Montrer que f est une isométrie du plan.
 - (b) Déterminer l'ensemble des points invariants par f. En déduire que f est une symétrie orthogonale.
 - (c) Déterminer alors l'ensemble des points M lorsque m varie.

Annexe Ex 1