Problem Set 1: Rotations EECS C 106A/C206A, Fall 2019

Due: Monday, September 9, 2019 at 11:59 PM on Gradescope

Multiple Rotation Matrices

- a) You are given the rotation matrices: R_{AB} , R_{CB} . Write the expression for R_{CA} .
- b) You are given the rotation matrices: R_{AB} , R_{CA} . Write the expression for R_{BC} .
- c) You are given the rotation matrices: R_{AB} , R_{BC} . Write the expression for R_{AA} .
- d) You are given the rotation matrices: R_{AB}^{-1} , R_{BC}^{T} . Write the expression for R_{AC} .

Euler Angles

Consider two initially coincident reference frames, A and B. Frame B is then rotated about the Z axis by $\pi/4$ radians.

- a) Sketch the coordinate frames A and B after the rotation.
- b) Write the rotation matrix R_{AB} that will take a point from the B frame and represent it in the A frame.
- c) Write the rotation matrix R_{BA} .
- d) What are the coordinates in frame A of a point with coordinates $p_B = [0, 0, 1]^T$ given with respect to frame B?
- e) What are the coordinates in frame B of a point with coordinates $p_A = [0, 0, 1]^T$ given with respect to frame A?

Multiple Euler Angles

A frame is rotated first about the Z axis by angle $\frac{\pi}{2}$, then about the Y axis by an angle of $\frac{\pi}{2}$, then about the mobile X axis an angle of $\frac{\pi}{2}$.

- a) Draw the frame before and after the rotation. Label all axes.
- b) Write the composite rotation matrix.

A frame is rotated first about the Z axis by angle $\frac{\pi}{2}$, then about the original Y axis by an angle of $\frac{\pi}{2}$, then about the original X axis an angle of $\frac{\pi}{2}$.

- c) Draw the frame before and after the rotation. Label all axes.
- d) Write the composite rotation matrix.

Properties of Rotations

Determine which of the following transformation matrix below is a valid rotation matrix. Justify your answer

1

a)
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
,

c)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
,

$$\text{a)} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad \qquad \text{b)} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \qquad \qquad \text{c)} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad \qquad \text{d)} \begin{bmatrix} \frac{1}{2} & \sqrt{2} \\ -\sqrt{2} & 0 \end{bmatrix}$$

5 Axis Angle Notation

- 1. Use the Rodrigues formula to show that a rotation of θ radians about the Y axis results in the same rotation matrix as the Euler Y equation.
- 2. Use the Rodrigues formula to find the rotation matrix for a rotation of $\frac{\pi}{4}$ about the axis given by the vector [1,2,3].

6 Rotation Matrices in Action

Open HW1.zip. Inside, you should find two files: HW1.py and parking_path.mat. HW1.py reads the parallel parking path stored in parking_path.mat and displays it. However, there's a problem. HW1.py doesn't take the car's orientation into consideration when plotting, so nothing looks right.

Figure 1: Cars can't move like this!

Edit the script to take this into account, and submit the corrected plot with your homework solution.