

Monitorização Wireless de Pessoas em Ambiente Doméstico

Márcio Luís Mendonça de Vasconcelos de Nóbrega

Dissertação para obtenção do Grau de Mestre em **Engenharia Electrotécnica e de Computadores**

	Júri
Presidente:	
Orientador:	Doutor Renato Jorge Caldeira Nunes
Co-Orientador: Vogais:	Doutor António Manuel Raminhos Cordeiro Grilo
· ·	

"Uma citação engraçada ou algo do género, se queres incluir uma. Caso não, comenta esta parte"

Agradecimentos

Obrigado ao Pedro Tomás, o autor original do template para LATEX (versão inglesa).

Resumo

O resumo.

Palavras Chave

Até seis, palavras, chave.

Abstract

Your abstract goes here.

Keywords

Up to, six, keywords.

1	Intro	odução	1
	1.1	Motivação	2
	1.2	Objectivos	2
	1.3	Principais Contribuições	2
	1.4	Organização da Dissertação	2
2	Esta	ado da Arte	3
	2.1	IEEE 802.15.4 e ZigBee	4
	2.2	Sensores Wireless	4
	2.3	Hardware Domótico Existente	4
	2.4	Algoritmo de Localização	4
3	Plat	aforma de Simulação	5
	3.1	Escolha da Framework	6
	3.2	Sensores Wireless	6
	3.3	Propagação e Decisão	6
	3.4	Obstáculos	6
4	Mod	delo Implementado	7
	4.1	Pressupostos e Estrutura	8
	4.2	Ficheiros XML de Configuração	8
	4.3	Network Layer	8
	4.4	Application Layer	8
5	Res	ultados	9
	5.1	Potência Recebida	10
	5.2	Criaçao dos RadioMaps e RadioMapClusters	10
	5.3	Localização	10
	5.4	Throuput	10
	5.5	Escalabilidade	10
6	Con	nclusões	11

_			-		,		
С	^	n	•	Δ		~	\sim
u	u	ш	ш	c	u	u	u

Lista de Figuras

Lista de Tabelas

Lista de Acrónimos

Introdução

1.1	Motivação	2
1.2	Objectivos	2
1.3	Principais Contribuições	2
1.4	Organização da Dissertação	2

1. Introdução

Um pequeno resumo do que se fala ao longo do capítulo e que será mais escrutinado quando passarmos às secções.

1.1 Motivação

Descrição da necessidade que leva a criar um sistema de monitorização em ambiente doméstico: idosos, pessoas com necessidades especiais, casa inteligente, comunicação bilateral entre casa e pessoas, etc

1.2 Objectivos

Descrição do Prof melhorada com objectivos bem explícitos

1.3 Principais Contribuições

Criação de solução que permite fazer a monitorização de pessoas em ambiente doméstico usando uma WSN; Criação de uma framework altamente customizável para simulação de vários cenários e aplicação de outros algoritmos de localização com melhor precisão; Análise da escalabilidade de um sistema num prédio com vários pisos.

1.4 Organização da Dissertação

Esta dissertação encontra-se organizada nos seguintes seis capítulos:

- 1. Introdução
- 2. Estado da Arte
- 3. Conclusões

O Capítulo 1 inclui a introdução ao projecto, assim como os seus objectivos, contribuições do trabalho desenvolvido e a presente explicação da organização da dissertação.

O Capítulo 2 ...

Finalmente, no Capítulo 6 são tiradas as conclusões do trabalho efectuado, fazendo-se também referências ao trabalho futuro que pode ser feito sobre o apresentado nesta dissertação.

2

Estado da Arte

2.1	IEEE 802.15.4 e ZigBee	4
2.2	Sensores Wireless	4
2.3	Hardware Domótico Existente	4
2.4	Algoritmo de Localização	4

Pequena introdução.

2.1 IEEE 802.15.4 e ZigBee

Tecnologia ZigBee 802.15.4 e protocolo de encaminhamento AODV;

2.2 Sensores Wireless

Sensores ZigBee disponíveis no mercado para o cumprimento dos objectivos;

2.3 Hardware Domótico Existente

Soluções de hardware domótico existente

2.4 Algoritmo de Localização

Diversas opções disponíveis. Vantagens e desvantagens; Tabela comparativa; Descrição matemática do HORUS; O esquema que eu vou usar difere na medida em que o cálculo é feito na base station e não no mobile node

3

Plataforma de Simulação

3.1	Escolha da Framework	
3.2	Sensores Wireless	
3.3	Propagação e Decisão	
3.4	Obstáculos	

3. Plataforma de Simulação

Pequena introdução.

3.1 Escolha da Framework

Diversas opções disponíveis; Vantagens e desvantagens de cada; Fundamentação da escolha

3.2 Sensores Wireless

Explicação das soluções existentes na simulação e a forma como se aplicam à realidade;

3.3 Propagação e Decisão

Explicação dos diversos modelos existentes e do escolhido

3.4 Obstáculos

Explicação da solução implementada e valores a utilizar

4

Modelo Implementado

4.1	Pressupostos e Estrutura	8
4.2	Ficheiros XML de Configuração	8
4.3	Network Layer	8
4.4	Application Layer	8

Pequena introdução.

4.1 Pressupostos e Estrutura

Limitações da framework que vão diferir da realidade; Explicação de todos os intervenientes no sistema: nós móveis, estáticos e de base; A forma como estão interligados; A forma como é feita a escalabilidade e distinção entre redes de andares diferentes; O tipo de nós presentes no sistema.

4.2 Ficheiros XML de Configuração

RadioMap; RadioMapClusters; Normal standard; Esquema com os diversos ficheiros;

4.3 Network Layer

Tipos de mensagens da camada Netw e fluxogramas como a forma como essas mensagens são tratadas por cada tipo de nó; Estruturas que fazem parte da camada Netw utilizadas; Exemplo com imagens do AODV a funcionar; NetwToApplicationInfo para transportar informação acerca da potência do sinal;

4.4 Application Layer

Explicação da mensagem HoHuT e a forma como é usada para transportar informação; Explicação do comportamento, por fluxograma, de cada um dos app layers da camada App;

5

Resultados

5.1	Potência Recebida
5.2	Criaçao dos RadioMaps e RadioMapClusters
5.3	Localização
5.4	Throuput
5.5	Escalabilidade

Pequena introdução.

5.1 Potência Recebida

Histogramas das potências recebidas para situacao parada, em movimento e com obstaculos; Correlação entre amostras

5.2 Criação dos RadioMaps e RadioMapClusters

Demonstração do caminho escolhido para construir os radiomaps e mobilidade utilizada

5.3 Localização

Analise dos erros de posicao; Analise do boost de performance por causa do uso de clusters; Análise do efeito do centro de massa e do time avg;

5.4 Throuput

Analise do throuput nos diversos casos de estudo Analise de pacotes perdidos

5.5 Escalabilidade

Analise do ponto em que e necessario adicionar mais uma baseStation Analise do sistema com mais que uma base station

Conclusões

^		,	
C_{Ω}	nt	ДΠ	n

6.1 Trabalho l	Futuro			1	12
----------------	--------	--	--	---	----

Pequena intrudução

6.1 Trabalho Futuro

Aquilo que se deveria ter feito mas não se fez por alguma razão. Eventuais evoluções ou melhorias ao trabalho feito. Possibilidade do sistema auto-construir o radioMap com base em nos estaticos que conhecem a sua posicao.

Apêndice 1