

Sistemas Gráficos e Interacção

Ép	poca de Recurso 2018-02-00		
N.º	Nome		
Co	ção da prova: 75 minutos ção de cada pergunta: assinalada com parêntesis rectos untas de escolha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta		
Pa	e Teórica 2	:0%	
a.	2.5] Qual a dimensão em bytes de um <i>frame buffer</i> RGBA de 1024 x 1024 x 16 bits?		
	i. 0.5 Megabyteii. 1 Megabyteiii. 2 Megabyteiv. Nenhuma das anteriores		
b.	2.5] Qual das seguintes matrizes representa em coordenadas homogéneas o ponto (2, -3, 4)?		
	 i. [2.0, -3.0, 4.0, 0.0]^T ii. [4.0, -6.0, 8.0, 1.0]^T iii. [8.0, -12.0, 16.0, 4.0]^T iv. Nenhuma das anteriores 		
c.	2.5] Qual das seguintes transformações compostas é rígida?		
	 i. glTranslated(1.0, 2.0, 3.0); glScaled(-1.0, -2.0, -3.0); ii. glRotated(0.0, 0.0, 0.0, 1.0); glScaled(0.0, 0.0, -1.0); iii. glScaled(1.0, 2.0, 4.0); glScaled(1.0, 0.5, 0.25); iv. Nenhuma das anteriores 		
d.	2.5] Considere o objecto delimitado pela superfície descrita pela equação $x^2 + y^2 + z^2 - 1$ 0. O ponto de coordenadas (0.4, 0.6, 0.8) encontra-se	1 =	
	 i. No interior do objecto ii. Na fronteira do objecto iii. No exterior do objecto iv. Nenhuma das anteriores 		

- e. [2.5] Qual a representação associada ao objecto referido na alínea anterior?
 - i. Paramétrica
 - ii. Implícita
 - iii. CSG
 - iv. Nenhuma das anteriores
- f. [2.5] Uma forma de determinar o vector normal a um polígono planar consiste em
 - i. Calcular o produto escalar dos vectores definidos por duas arestas do polígono e dividir o resultado obtido pelo somatório dos comprimentos dos vectores
 - ii. Projectar o polígono nos planos OYZ, OZX e OXY e calcular as áreas dos polígonos resultantes; as componentes da normal serão proporcionais a estes valores
 - iii. As respostas i. e ii.
 - iv. Nenhuma das anteriores
- g. [2.5] Em OpenGL um objecto muito polido pode ser simulado usando um material
 - i. Que reflecte significativamente a componente de luz difusa
 - ii. Com uma elevada componente de emissão
 - iii. Com um coeficiente de especularidade elevado
 - iv. Nenhuma das anteriores
- h. [2.5] No mapeamento de texturas em OpenGL, o processo de filtragem designado por GL_NEAREST_MIPMAP_LINEAR
 - i. Escolhe o texel que mais se aproxima do centro do pixel no mipmap que melhor se adequa ao contexto de minificação existente
 - ii. Calcula uma média pesada da matriz de 2 x 2 texels que mais se aproxima do centro do pixel no mipmap que melhor se adequa ao contexto de minificação existente
 - iii. Escolhe o texel que mais se aproxima do centro do pixel em cada um dos dois mipmaps que melhor se adequam ao contexto de minificação existente; em seguida, efectua uma interpolação linear destes dois valores
 - iv. Calcula uma média pesada da matriz de 2 x 2 texels que mais se aproxima do centro do pixel em cada um dos dois *mipmaps* que melhor se adequam ao contexto de minificação existente; em seguida efectua uma interpolação linear destes dois valores

Sistemas Gráficos e Interacção

Época de Recurso	2018-02-06
N.ºNome	
Parte Teórico-Prática	30%
Resolução: No próprio enunciado Perguntas de escolha múltipla: cada resposta in Nota: Em todas as perguntas, a menos que algo por omissão	correcta desconta 1/3 do valor da pergunta seja dito em contrário, assuma a posição da câmara
a. [3.0] Aplique a textura apresentada na Figuapresentado na Figura 2.	ura 1 a um quadrado, de modo a ficar com o aspecto
Figura 1	Figura 2 v2
	v0 v1
<pre>glTexCoord2f(,); glVertex3fv(v0); glTexCoord2f(,); glVertex3fv(v1); glTexCoord2f(,); glVertex3fv(v2); glTexCoord2f(,); glVertex3fv(v3);</pre>	

b. [3.0] Pretende-se modelar um terreno a partir de uma matriz que contém o valor da cota em vários pontos do terreno. Que tipo de polígonos e qual das primitivas de desenho do OpenGL serão mais indicados para fazer a modelação?

Tipo de polígonos:	
Primitiva de desenho:	

c. [3.0] Considerando as definições por omissão do OpenGL, pretende-se definir a normal para o quadrilátero desenhado pelo seguinte extracto de código. Qual a normal unitária perpendicular ao quadrilátero?

Nota: Pode usar funções trigonométricas com ângulos expressos em graus ou em radianos.


```
glBegin(GL_QUADS);
    glNormal3f(___, ___, ___);
    glVertex3f(1, 0, 0);
    glVertex3f(1, 0, 1);
    glVertex3f(0, 1, 1);
    glVertex3f(0, 1, 0);
glEnd();
```

d. [3.0] Pretende-se simular uma câmara montada num helicóptero a olhar directamente para baixo. O up da câmara está alinhado com a direcção em que o helicóptero segue. A posição do helicóptero é dada por modelo.x, modelo.y e modelo.z, e a direcção em que o helicóptero está a seguir é dada por modelo.dir. Complete a instrução seguinte de modo a obter o resultado pretendido, considerando como eixo vertical o eixo dos Z (positivo para cima).

gluLookAt	(<i>'</i>	_′
			·	_′
	·	·	·	_);

e. Considere o objecto representado na Figura 3 e a existência da função caixa() que desenha um cubo com 1 unidade de lado, centrado na origem.

As dimensões dos elementos são Lx, Ax e Px, em que x designa o nome do elemento.

Considere que:

- O elemento A se desloca linearmente sobre o plano XZ;
- O elemento B roda em torno do ponto médio do topo do elemento A;
- O elemento C roda em torno do ponto indicado em relação ao elemento B;
- O elemento D roda em torno do **seu centro**, em relação ao elemento C.

i. **[4.0]** Construa a árvore de cena do objecto apresentado na Figura 3. Não se esqueça de colocar as transformações que garantam o movimento dos elementos A, B, C e D.

Sistemas Gráficos e Interacção

Época	de Recurso 2018-02-0
V .º	Nome
ii.	[4.0] Pretende-se controlar a rotação dos elementos B e C com as teclas do curso (GLUT_KEY_UP e GLUT_KEY_DOWN). Quando o ângulo do elemento B aumenta,
	ângulo do elemento C diminui na mesma quantidade. Complete o código que se segue par implementar o controlo do movimento pretendido, directamente no callbac
	glutSpecialFunc(). Considere que os limites de rotação do elemento B sã 0°(horizontal) e 90°(vertical). Use as constantes e variáveis que entender relevantes.
V	oid SpecialKey(int key, int x, int y)
{	

	Isep	Engenharia do Porto	
	-		
_			
_			
_			
_			
_			
_			
_			