Mearsuring Power Spectrum

Siyi Zhao

Refers to the Chapter 7 of Donghui Jeong's thesis (Jeong, 2010).

Contents

1	fron	n simulations
	1.1	Distribute particles onto the regular grid
		1.1.1 3D Window functions
	1.2	Pk estimate
	1.3	Deconvolve window function
	1.4	Subtract shot noise

Notations

In this article, superscript 'g' means grid.

1 from simulations

1.1 Distribute particles onto the regular grid

If there are $N_{\rm p}$ particles in a simulation box, the particle number density is

$$n_{\rm p}(\mathbf{x}) = \sum_{i=1}^{N_{\rm p}} \delta^{\rm D}(\mathbf{x} - \mathbf{x}_i),\tag{1}$$

In order to apply the FFT, we have to assign the particle number density onto each point in the regular grid, called Particle Assignment Scheme $(PAS)^1$. To do this we define a *shape function*, $S(\mathbf{r})$, which describe how the particle mass distribute like a PSF. The three common choice of PAS is

- 1. the Nearest-Grid-Point (NGP): $S_{NGP}(\mathbf{r}) = \delta^{D}(\mathbf{r}), p = 1;$
- 2. the cloud-in-cell (CIC): $S_{\text{CIC}}(\mathbf{r}) = \mathcal{T}_H(\mathbf{r})$, as shown in Eq. 4; p = 2;
- 3. the Triangular-Shape-Cloud (TSC) scheme.

After the particles are distributed to \mathbf{r} , each point in the grid will occupy a value which is the intergral of the 'cell' around it, as

$$n^{\mathbf{g}}(\mathbf{x}^{\mathbf{g}}) = \sum_{i=1}^{N_{\mathbf{p}}} \int_{|\mathbf{x}_{j}' - \mathbf{x}_{j}^{\mathbf{g}}| < H/2} \frac{\mathrm{d}^{3} x'}{H^{3}} S(\mathbf{x}' - \mathbf{x}_{i}), \tag{2}$$

Using the top-hat function $\mathcal{T}(x)$ to represent the intergral space,

$$\mathcal{T}(x) = \begin{cases}
1, & \text{if } |x| < 1/2, \\
1/2, & \text{if } |x| = 1/2, \\
0, & \text{if otherwise.}
\end{cases}$$
(3)

¹Or called mass assignment scheme (MAS) in pylians.

Furthermore, normalize the top-hat function as

$$\mathcal{T}_{H}(x) \equiv \frac{1}{H} \mathcal{T}\left(\frac{x}{H}\right) = \begin{cases} 1/H, & \text{if } |x| < H/2, \\ 1/(2H), & \text{if } |x| = H/2, \\ 0, & \text{if otherwise,} \end{cases}$$
(4)

and the 3D top-hat function is $\mathcal{T}_H(\mathbf{x}) = \prod_{j=1}^3 \mathcal{T}_H(x_j)$.

Then the Eq. 2 can be written as

$$n^{\mathbf{g}}(\mathbf{x}^{\mathbf{g}}) = \sum_{i=1}^{N_{\mathbf{p}}} \int d^3 x' \, \mathcal{T}_H(\mathbf{x}' - \mathbf{x}^{\mathbf{g}}) S(\mathbf{x}' - \mathbf{x}_i). \tag{5}$$

Window function

The continuous number density field is $n(\mathbf{x})$, the number density in grid is a sampling of $n(\mathbf{x})$, we define a window function to describe the sampling progress as

$$n^{g}(\mathbf{x}^{g}) = \int_{V} d^{3}x' \, n(\mathbf{x}') W(\mathbf{x}^{g} - \mathbf{x}'). \tag{6}$$

The window function maps the continuous field to the grid field.

Here we assume $n(\mathbf{x}) = n_{\mathbf{p}}(\mathbf{x})$ since we are mearsure the power spectrum of the particle distribution. It will introduce some shot noise which will be discussed in (?).

Put Eq. 1 into Eq. 6, and compare with Eq. 5, we have

$$W(\mathbf{x}^{g} - \mathbf{x}_{i}) = \int d^{3}x' \, \mathcal{T}_{H}(\mathbf{x}' - \mathbf{x}^{g}) S(\mathbf{x}' - \mathbf{x}_{i}). \tag{7}$$

rewrite as

$$\mathbf{x}'' = \mathbf{x}^{g} - \mathbf{x}', \quad W(\mathbf{r}) = \int d^{3}x'' \, \mathcal{T}_{H}(\mathbf{x}'') S(\mathbf{r} - \mathbf{x}'').$$
 (8)

or

$$W = \mathcal{T}_H \otimes S. \tag{9}$$

to density contranst

The density contrast $\delta \equiv n/\bar{n} - 1$ is then

$$\delta^{g}(\mathbf{x}^{g}) = \int_{V} d^{3}x' \, \delta(\mathbf{x}') W(\mathbf{x}^{g} - \mathbf{x}'), \tag{10}$$

where we adopt that the window function is normalized as $\int_V d^3x W(\mathbf{x}) = 1$.

That is

$$\delta^{g}(\mathbf{x}^{g}) = [\delta \otimes W](\mathbf{x}^{g}). \tag{11}$$

After Fourier transformation, we have

$$\delta^{g}(\mathbf{k}^{g}) = \delta(\mathbf{k}^{g})W(\mathbf{k}^{g}). \tag{12}$$

1.1.1 3D Window functions

$$W(\mathbf{r}) = W(r_1)W(r_2)W(r_3),\tag{13}$$

$$W(\mathbf{k}) = \left[\operatorname{sinc}\left(\frac{\pi k_1}{2k_N}\right)\operatorname{sinc}\left(\frac{\pi k_2}{2k_N}\right)\operatorname{sinc}\left(\frac{\pi k_3}{2k_N}\right)\right]^p,\tag{14}$$

where $\operatorname{sinc}(x) = \frac{\sin x}{x}$.

1.2 Pk estimate

Direct Sampling

- 1.3 Deconvolve window function
- 1.4 Subtract shot noise

References

Jeong D., 2010, PhD thesis