AXIOMS AND THEOREMS

Name	Rule
Double Negation	$\neg \neg p = p$
Definition of false	$false = \neg true$
Negation of false	$\neg false = true$

Table 1: Equivalences for False / True and Double Negation

Name	Op	Rule	Op	Rule
Conmutativity	V	$p \vee q \equiv q \vee p$	\wedge	$p \wedge q \equiv q \wedge p$
Asociativity	V	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	^	$(p \land q) \land r \equiv p \land (q \land r)$
Identity	V	$p \vee false \equiv p$	\wedge	$p \wedge true \equiv p$
Dominance	V	$p \lor true \equiv true$	\wedge	$p \wedge false \equiv false$
Idempotence	V	$p \lor p \equiv p$	\wedge	$p \wedge p \equiv p$
Distributivity	V/A	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	^/ V	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
de Morgan	$\neg \lor$	$\neg (p \lor q) \equiv \neg p \land \neg q$	$\neg \wedge$	$\neg (p \land q) \equiv \neg p \lor \neg q$
Absorption	V/A	$p \lor (p \land q) \equiv p$	^/ V	$p \land (p \lor q) \equiv p$
Absorption-¬	V/A	$\neg p \lor (p \land q) \equiv \neg p \lor q$	^/ V	$\neg p \land (p \lor q) \equiv \neg p \land q$
Negation	V	$p \vee \neg p \equiv true$	^	$p \land \neg p \equiv false$

Table 2: Equivalences of \vee y of \wedge

Negation of \vee is called *Excluded Middle*. Negation of \wedge is called *Contradiction*.

Rule	Name
$p \Rightarrow q \equiv \neg p \lor q$	Definition of \Rightarrow
$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$	Contrapositive
$true \Rightarrow p \equiv p$	Left Identity of \Rightarrow
$p \Rightarrow false \equiv \neg p$	Right Negation of \Rightarrow
$false \Rightarrow p \equiv true$	Left False of \Rightarrow
$p \Rightarrow true \equiv true$	Right Zero of \Rightarrow
$p \Rightarrow p \equiv true$	Reflexivity \Rightarrow
$p \lor q \equiv \neg p \Rightarrow q$	Definition of \vee with \Rightarrow
$p \land q \equiv \neg(p \Rightarrow \neg q)$	Definition of \land with \Rightarrow
$\neg(p \Rightarrow q) \equiv p \land \neg q$	Negation of \Rightarrow
$(p \Rightarrow q) \land (p \Rightarrow r) \equiv (p \Rightarrow (q \land r))$	Left Distributivity \Rightarrow / \land
$(p \Rightarrow q) \lor (p \Rightarrow r) \equiv (p \Rightarrow (q \lor r))$	Left Distributivity \Rightarrow /\lor
$(p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q) \Rightarrow r$	Right Distributivity \Rightarrow / \land
$(p \Rightarrow r) \lor (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$	Right Distributivity \Rightarrow / \land
$p \Rightarrow (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$	Left Associativity of \Rightarrow

Table 3: \Rightarrow Equivalences

D 1	NT.
Rule	Name
$p \equiv q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$	Definition ₁ of \equiv
$p \not\equiv q \equiv \neg (p \equiv q)$	Definition ₁ $\not\equiv$
$p \equiv q \equiv (p \land q) \lor (\neg q \land \neg p)$	Definition ₂ of \equiv
$(p \equiv q) \equiv (q \equiv p)$	Commutativity of \equiv
$((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$	Associativity of ≡
$p \equiv p \equiv true$	Identity
$p \equiv \neg p \equiv false$	Definition ₂ of false
$\neg (p \equiv q) \equiv \neg p \equiv q$	$Negation_1 \equiv$
$\neg (p \equiv q) \equiv p \equiv \neg q$	$Negation_2 \equiv$
$p \equiv \neg q \equiv \neg p \equiv q$	$Negation_3 \equiv$
$p \not\equiv q \equiv (p \lor q) \land \neg (p \land q)$	Definition ₂ $\not\equiv$
$(p \not\equiv q) \equiv (q \not\equiv p)$	Commutativity of <i>≢</i>
$((p \not\equiv q) \not\equiv r) \equiv (p \not\equiv (q \not\equiv r))$	Associativity of <i>≢</i>
$r \lor (p \equiv q) \equiv (r \lor p) \equiv (r \lor q)$	Distrib \vee/\equiv
$r \wedge (p \equiv q) \equiv (r \wedge p) \equiv (r \wedge q) \equiv r$	Distrib \wedge/\equiv
$p \land q \equiv p \lor q \equiv p \equiv q$	Golden Rule

Table 4: Equivalence Laws for \equiv

	I
Rule	Name
$ \begin{array}{ c c } \hline X = Y \\ \hline E[z := X] \\ \hline E[z := Y] \\ \hline \end{array} $	Leibniz
$\frac{p}{p \Rightarrow q}$	Modus ponens
$ \begin{array}{c} \neg q \\ p \Rightarrow q \\ \hline \neg p \end{array} $	Modus tollens
$ \begin{array}{c} p \Rightarrow q \\ q \Rightarrow r \\ \hline p \Rightarrow r \end{array} $	Transitivity
$\begin{array}{c c} p \lor q \\ \neg q \\ \hline p \end{array}$	Disjunctive Syllogism
$\frac{p}{p \vee q}$	Addition
$\frac{p \wedge q}{p}$	Simplification
$\frac{p}{q}$	Conjunction
$\frac{p \vee q}{\neg p \vee r}$ $q \vee r$	Resolution

Table 5: Rules of Inference 1

Rule	Name
$\frac{p \equiv q}{p \Rightarrow q}$	\equiv Simplification ₁
$p \equiv q$ $q \Rightarrow p$	\equiv Simplification ₂
$p \equiv q$ $\neg p \Rightarrow \neg q$	\equiv Simplification ₃
$p \equiv q$ $\neg q \Rightarrow \neg p$	\equiv Simplification ₄
$p \equiv q \over q$	$\equiv \mathrm{Deduction}_1$
$\frac{q}{p \equiv q}$	$\equiv \mathrm{Deduction}_2$
$ \begin{array}{c} \neg p \\ p \equiv q \\ \neg q \end{array} $	\equiv Deduction ₃
$ \begin{array}{c} \neg q \\ p \equiv q \\ \neg p \end{array} $	\equiv Deduction ₃

Table 6: Rules of Inference 2

Name	Rule	
Substitution	$\frac{true}{(\star x R:S)[z:=E]=(\star x R[z:=E]:S[z:=E])} \text{x doesn't appear in z, nor in E}$	
Replace in Range	$\frac{(\forall x : P = Q)}{(\star x R[z := P]: S)}$ $\frac{(\star x R[z := Q]: S)}{(\star x R[z := Q]: S)}$	
Replace in Body	$\frac{(\forall x R : P = Q)}{(\star x R : S[z := P])}$ $\frac{(\star x R : S[z := Q])}{(\star x R : S[z := Q])}$	

Table 7: Substitutions in Quantified Expressions

Name	Rule
Empty (false) range	$(\star x false:S) = u$
One-point rule	$(\star x x = E:S) = S[x := E]$
Distributivity	$(\star x P:Q)\star(\star x P:R)=(\star x P:Q\star R)$
Range split	$(\star \ x \ R:P) \star (\star \ x \ S:P) = (\star \ x \ R \lor S:P) \star (\star \ x \ R \land S:P)$
Disjunctive range split	$\neg (R \land S) \Rightarrow (\star \ x \ R : P) \star (\star \ x \ S : P) = (\star \ x \ R \lor S : P)$
Idempotent range split (* idempotent)	$(\star \ x \mid R:P) \star (\star \ x \mid S:P) = (\star \ x \mid R \lor S:P)$
Interchange of dummies (y doesn't appear in R; x doesn't appear in Q)	$(\star x R:(\star y Q:E)) = (\star y Q:(\star x R:E))$
Nesting (y doesn't appear in R)	$(\star x, y R \land Q : E) = (\oplus x R : (\oplus y Q : E))$
Dummy renaming (y doesn't appear in R nor in E)	$(\star x R : E) = (\star y R[x := y] : E[x := y])$
Change of dummy (y doesn't appear in R nor in E; f has an inverse function)	$(\star x R : E) = (\star y R[x := f.y] : E[x := f.y])$

Table 8: Laws of Quantification

 \star is a commutative, associative operator, with an identity, u. We assume each quantification is defined.

Rule	Name
$(\forall x R \lor Q : P) \equiv ((\forall x R : P) \land (\forall x Q : P))$	Range split \forall
$(\exists x R \lor Q : P) \equiv ((\exists x R : P) \lor (\exists x Q : P))$	Range split \exists
$(\forall x R : Q \land P) \equiv ((\forall x R : Q) \land (\forall x R : P))$	Distributivity \forall
$(\exists x R : Q \lor P) \equiv ((\exists x R : Q) \lor (\exists x R : P))$	Distributivity ∃
x doesn't appear in P: $(\forall x R : Q \lor P) \equiv (\forall x R : Q) \lor P$	Distributivity \vee/\forall
x doesn't appear in P: $(\exists x R : Q \land P) \equiv (\exists x R : Q) \land P$	Distributivity ∧/∃
$(\forall x R : P) \equiv (\forall x : R \Rightarrow P)$	Trading-∀
$(\exists x R : P) \equiv \neg(\forall x R : \neg P)$	Generalized de Morgan
$(\forall x R : P) \equiv \neg(\exists x R : \neg P)$	Generalized de Morgan ₂
$\neg(\forall x R:P) \equiv (\exists x R:\neg P)$	Generalized de Morgan ₃
$\neg(\exists x R : P) \equiv (\forall x R : \neg P)$	Generalized de Morgan ₄
$(\exists x R : P) \equiv (\exists x : R \land P)$	Trading-∃
$(\exists x R \land Q : P) \equiv (\exists x R : Q \land P)$	Trading- \exists_1
$(\forall x R \land Q : P) \equiv (\forall x R : Q \Rightarrow P)$	Trading- \forall_1
$(\forall x Q : R \Rightarrow P) \equiv (\forall x R : Q \Rightarrow P)$	Trading- \forall_2

Table 9: Equivalences for quantified logic expressions

Name	Rule	Condition
Universal Intantiation	$\frac{(\forall x :P)}{P[x:=c]}$	Any c
Universal Generalization	$\frac{P[x := c]}{(\forall x :P)}$	for any c
Existential Instantiation	$\frac{(\exists x : P)}{P[x := \hat{c}]}$	\hat{c} is a specific value that makes P true
Existential Generalization	$\frac{P[x := c]}{(\exists x : P)}$	c a value that makes P true
Universal Modus Ponens	$\frac{(\forall x P : Q)}{P[x := c]}$ $Q[x := c]$	Any c
Universal Modus Tollens	$\frac{(\forall x P : Q)}{\neg Q[x := c]}$ $\frac{\neg P[x := c]}{\neg P[x := c]}$	Any c
Universal Instantiation ₂	$\frac{(\forall x R : P)}{R[x := c] \Rightarrow P[x := c]}$	Any c
Universal Generalization ₂	$R[x := c] \Rightarrow P[x := c]$ $(\forall x R : P)$	c is an arbitrary element
Existential Instantiation ₂	$\frac{(\exists x R : P)}{R[x := \hat{c}] \land P[x := \hat{c}]}$	\hat{c} a particular element that makes P and Q trues
Existential Generalization ₂	$\frac{R[x := c] \land P[x := c]}{(\exists x R : P)}$	c any element that makes R and C true

Table 10: Inference rules for quantified expressions