

CHPC & NITHECS CODING SUMMER SCHOOL Probability & Statistics Numerical Data & Regression

paul j. van staden (PhD)
Department of Statistics
University of Pretoria

NUMERICAL DATA & REGRESSION

EXAMPLE: Arachnophobia

- In a study on arachnophobia (the fear of spiders), 24 arachnophobes (persons fearing spiders) had to interact with spiders of different sizes.
- During each interaction, the level of anxiety of the arachnophobe was measured through galvanic skin response (GSR).

EXAMPLE adapted from:

Field, A. (2009). Discovering Statistics using SPSS (and sex and drugs and rock 'n' roll), SAGE Publications Ltd, London, UK.

• Consider the following two variables for i = 1, 2, ..., 24:

 y_i : The GSR measurement for the level of anxiety of the i^{th} arachnophobe.

 x_i : The size of the spider in centimeters (cm) for the i^{th} arachnophobe.

Calculate the correlation coefficient between the sizes of the spiders and the GSR measurements.

$$r = 0.89$$

Characteristics of the correlation coefficient:

- \bullet r is only a measure of <u>LINEAR</u> dependence.
- $-1 \le r \le 1$
- $\bullet \quad r_{x,y} = r_{y,x}$
- r is independent of the units and the scale in which x and y are measured.
- If x and y are independent, then r = 0.
- But if r = 0, then x and y are not necessarily independent.
- \bullet r cannot be used to describe cause-and-effect relationships.

- Correlation analysis vs regression analysis:
 - With <u>CORRELATION ANALYSIS</u> the strength of the linear relation between two variables is measured.
 - With <u>REGRESSION ANALYSIS</u> the population mean value of the response variable is estimated in terms of known values of the explanatory variable.

Simple linear regression model

Population regression line:

$$y_i = \beta_0 + \beta_1 x_i$$

- *x*: explanatory or predictor variable
- *y*: response variable
- β_0 : intercept parameter which gives the mean value of y for x = 0
- β_1 : slope parameter which gives the change in the mean value of y for a unit increase in the value of x

Sample regression line:

$$\widehat{y}_i = b_0 + b_1 x_i$$

 \hat{y} : estimator of the mean value of y for a given value of x

 b_0 : point estimate of the intercept parameter β_0

 b_1 : point estimate of the slope parameter β_1

Fit a linear regression model using the sizes of the spiders to explain the GSR measurements.

$$\widehat{y}_i = 3.5 + 2.8 x_i$$

Interpret the parameter estimates.

$$b_0 = 3.5$$

The mean GSR measurement for a spider of 0 cm is 3.5.

$$b_1 = 2.8$$

If the size of the spider that the arachnophobe has to interact with is increased by 1 cm, the mean GSR measurement will increase by 2.8.

Predicted values and residuals

Fitted regression line:

$$\widehat{y}_i = b_0 + b_1 x_i$$

• Difference between the observed and the predicted values of the response variable:

$$e_i = y_i - \widehat{y}_i$$

- y_i : observed value of the response variable
- \hat{y}_i : predicted value of the response variable
- e_i: residual

Predict the GSR measurement for Nosnow Cannotski who had to interact with a spider of 13 cm and calculate the corresponding residual.

$$\widehat{y}_5 = 3.5 + 2.8 x_5$$
 (note that $x_5 = 13$)
= 3.5 + 2.8 × 13
= 39.9

$$e_5 = y_5 - \hat{y}_5$$

= 35 - 39.9
= -4.9

Since $e_5 < 0$, the GSR measurement of Nosnow Cannotski is OVERESTIMATED by the fitted regression model.

- Least squares regression line
 - We want the residuals to be as small as possible.
 - Sum of the residuals:

 $\sum e_i = 0$: cannot minimize this sum...

• Sum of the absolute residuals:

 $\sum |e_i|$: mathematically possible but practically not helpful to minimize this sum...

Sum of the squared residuals:

 $\sum e_i^2$: minimizing this sum gives the <u>LEAST SQUARES</u>
<u>REGRESSION LINE</u>

• Total variation: $\sum (y_i - \overline{y})^2$

- Explained variation: $\sum (\hat{y}_i \overline{y})^2$
- Unexplained variation: $\sum (y_i \hat{y}_i)^2 = \sum e_i^2$
- Percentage of the total variation in the response variable explained by the fitted regression line:

$$R^{2} = \frac{\sum (\widehat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum (y_{i} - \widehat{y}_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

• $0 \le R^2 \le 1$

• Calculate and interpret R^2 for the fitted regression line.

$$R^2 = 0.8$$

80% of the variation in the GSR measurements is explained by the fitted regression line with the sizes of spiders as explanatory variable.

