Homework 2 - Advanced LP & Network Flow Models Adv. Analytics and Metaheuristics

Daniel Carpenter and Christopher Ferguson

February 2022

Contents

1	- Pı	roblem 1	2
	1.1	Problems a and b	2
	1.2	Mathematical Formulation	2
2	- Pı	roblem 2	5
3	- Pı	roblem 3	6
	3.1	Model Overview	6
	3.2	Mathematical Formulation	7
	3.3	Code and Output	8
4	- Pı	roblem 4	10
	4.1	Model Overview	10
	4.2	Mathematical Formulation	12
	4.3	Code and Output	13

1.1 Problems a and b

- 11 -	A Section 1 and 1 at 1		and the second second second
Problem 1	(a): Calculating the	Upper Bound to	r the Raisin Product

Total Raisins Calculated	1,240,000
Less Raisin Dedicated Portion to Grade A	(930,000)
Grade B Portion Implied*	310,000
Total Grade B Available	5,270,000
% Grade B Used Towards Raisins, i.e. tier 8	5.88%

Interpretation and Assumptions:

Fruit Cost (Pounds * Wt. Avg. Cost)

*There must be 5.88% (Total of 310,000) of grade B's total supply that are For raisins, this implies that 25% of the raisin production will stem from Grad For juice, this implies that 75% of the juice production will stem from Grad Note 100% Grade B used for Jelly.

Problem 1(b): Calculate the Fruit Cost seen in Table 3

	С	ost per	
Grade	- 1	Pound	
Grade A	\$	0.45	<- noted in ta
Grade B	\$	0.25	

Pounds per Product	6.5	14.0
0/ President	dawa of Cardon	
Grade A	kdown of Grades	25.09
Grade B	25.0%	75.09
Weighted Avg. Cost per Pound	\$ 0.40 \$	0.30

• Below shows how we get to the answer of Problems a and b

1.2 Mathematical Formulation

1.2.1 Sets

Set Name	Description
\overline{FRUIT}	Fruit grade levels of grapes, which are Grade A and
PRODUCTS	Grade B grapes Types of products to be sold, which are Raisins, Juice, and Jelly

1.2.2 Parameters

Parameter Name	Description
$amountOfFruit_f$	Tons of fruit grade $(f \in FRUIT)$ available to use

Parameter Name	Description
$\overline{avgGradeOfFruit_f}$	Avg. point quality of fruit grade $(f \in FRUIT)$
$productLimit_p$	Upper bound of production of product $(p \in PRODUCTS)$ in tons
$poundsPerProduct_p$	The amount of pounds associated with a single unit of product $(p \in PRODUCTS)$
$contrToProfit_p$	The contribution to profit per ton of product $(p \in PRODUCTS)$
$netProfit_p$	The net profit (net of OH allocation) per ton of product $(p \in PRODUCTS)$
$productGradeLimit_p$	Requirement of mean point quality of a product $(p \in PRODUCTS)$

1.2.3 Decision Variables

Variable Name	Description
$produce_{f,p}$	The tons of products $(p \in PRODUCTS)$ to be produced by fruit grade $(f \in FRUIT)$
$grade_p$	The point quality of each product $(p \in PRODUCTS)$ created

1.2.4 Objective Function

 $Maximize\ Net_Profit: \sum_{f \in FRUIT, p \in PRODUCTS} produce_{f,p} \times netProfit_p$

1.2.5 Constraints

C1: For each fruit grade $(f \in FRUIT)$, the tons of products produced $(p \in PRODUCTS)$ must be equal to tons of fruit provided

$$maxTons: \sum_{p \in PRODUCTS} produce_{f,p} = amountOfFruit_f, \ \forall \ f \in FRUIT$$

C2: For each product produced $(p \in PRODUCTS)$, limit the number of tons produced to \leq to the demanded (product tons)

$$demand: \sum_{f \in FRUIT} produce_{f,p} \leq productLimit_p, \ \forall \ p \in PRODUCTS$$

C3: Cannot produce Jelly using Grade A

$$noGradeAJelly: produce_{f,p} = 0, \ for \ f \in Grade A, \ for \ p \in Jelly$$

CX: Non-negativity constraints, and max point quality is 10

produce
$$f,p \ge 0$$
, $\forall f \in FRUIT$, $\forall p \in PRODUCTS$

$$0 \le grade_p \le 10, \ \forall \ f \in FRUIT, \ \forall \ p \in PRODUCTS$$

3.1 Model Overview

3.1.1 Assumptions and Calculations for Network Flow Diagram

- Below shows how we decided to balance the network with supply and dummy nodes
- In order to obtain a balanced network (i.e. supply equals demand), we must allow for all possible routes to have enough supply.
- Excess supply allowed on certain days is captured by dummy nodes so that the business does not actually produce the tires.

Determine Supply and Dummy Allocation								
		Incoming	Potential Supply	Dummy Allocation				
Day	Demand (d)	Arcs (in)	in*d	$d_{day-1} + d_{day-2}$				
1	-320	3	960	0				
2	-240	3	720	-320				
3	-400	2	800	-560				
4	-520	1	520	-640				

3.1.2 Network Flow Diagram

3.2 Mathematical Formulation

3.2.1 Sets, Parameters, Decision Vars

Set Name	Description
\overline{NODES}	Set of all nodes in above network flow diagram:
p1 p2 p3 p4	Number of tires to purchase on day $\in (1-4)$
n1 n2 n3 n4	Number of tires to reshape using the <i>normal</i> service on day \in (1-4)
q1 q2 q3 q4	Number of tires to reshape using the $quick$ service on day $\in (1-4)$
d1 d2 d3 d4	Demand of tires on each day $\in (1-4)$
dum2 dum3 dum4	Dummy nodes to balance excess supply for days 2 3 and $4 \in (2-4)$. Do not need one for day 1 since purchasing

The set A is a set of arcs, e.g. (i,j) for $i \in N, j \in N$ each of which may carry flow of a commodity

Decision variable: x_{ij} determines the units of flow on arc (i, j)

Arc(i,j)

- cost c_{ij} per unit of flow on arc (i,j)
- ullet upper bound on flow of u_{ij} (capacity)
- lower bound on flow of ℓ_{ij} (usually 0)

3.2.2 Objective, and Constraints

$$\begin{array}{l} \text{minimize } \sum_{(i,j)\in A} c_{ij} x_{ij} \\ \text{subject to } \sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i \quad \forall i\in N \\ \\ l_{ij} \leq x_{ij} \leq u_{ij} \qquad \quad \forall (i,j)\in A \end{array}$$

• Upper and lower bounds use to direct the flow of tires from *purchasing* to *quick* or *normal* service

3.3 Code and Output

3.3.1 Model: group12_HW2_p3.mod

- Used mcnfp.txt from course website and renamed to group12_HW2_p3.mod.
- Added data group12_HW2_p3.dat; solve; and display x;

3.3.2 Data: group12_HW2_p3.dat

Data Continued:

```
[p1, d1] 600
[p2, d2] 600
[p3, d3] 600
[q2, d2]
[q3, d3] 250
[q4, d4] 250
[n3, d3] 95
[n4, d4]
[p1, q2]
[p1, n3]
[p2, q3]
[p2, n4]
[p3, q4] 1
[p2, dum2]
[p3, dum3]
[p4, dum4]
[q2, dum2]
[q3, dum3]
[q4, dum4] 0
[n3, dum3] 0
[n4, dum4] 0
```

3.3.3 Output

- Total minimized cost: 396,720
- Interpretation of the tires purchased on each day:
 - 1. 320 tires purchased
 - 2. 240 tires reshaped with Quick Service from previous day
 - 3. 80 Reshaped with quick service from previous day. 320 tires used from reshaping via Normal service from day 1.
 - 4. 280 Reshaped with quick service from previous day. 240 tires used from reshaping via Normal service from day 2.

```
ampl: model 'C:\Users\daniel.carpenter\OneDrive - the Chickasaw Na CPLEX 20.1.0.0: optimal solution; objective 396720 1 dual simplex iterations (0 in phase I) x [*,*] (tr) : n3 n4 p1 p2 p3 p4 q2 q3 q4 :=
                                       p1
320
d1
                                                        0
                                                                                         240
d2
d3
d4
                                                                    0
                                                                                                       80
               320
                                                                                                                  280
                           240
                                                    240
                                                                                           80
dum2
                                                                400
dum3
                  0
                                                                                                     160
                                                                             520
                                                                                                                  120
dum4
                                        320
n3
n4
                                                    240
                                       320
                                                    240
                                                                400
```

4.1 Model Overview

4.1.1 Assumptions and Calculations for Network Flow Diagram

- Goal of below tables are to put all data on a per unit of product basis
- Need to be on per unit basis so that we can effectively minimize the cost
- Color of tables correspond to the network nodes on the next page

Labor, Manufacturing, and Transportation Cost Calculations for Arcs

Labor (Cost per Unit Output and Total Supply Available)							
Cost per Unit Output					Total Labor	TTL Product	
Type Person		per Person Cost / Unit		Avail	Supply		
Specialist	\$	2,000	12	\$	166.67	100	1,200
Generalist	\$	1,700	10	\$	170.00	200	2,000

Cost of Transportation						
Scranton, PA Utica, NY Stamford, CT						
Per Person		300		250		275
Per Unit of Product (trans. Cost / unit output by type)						
Specialist	\$	25.00	\$	20.83	\$	22.92
Generalist	\$	30.00	\$	25.00	\$	27.50

Cost of Transportation + Labor per Unit of Output						
	Scr	anton, PA	U	tica, NY	Sta	mford, CT
Specialist	\$	191.67	\$	187.50	\$	189.58
Generalist	\$	200.00	\$	195.00	\$	197.50

icranton, PA Utica, NY Stamford, CT 191.67,0,←) (187.50,0,←) (189.58,0,←) 200.00,0,←) (195.00,0,←) (197.50,0,←)

Plant Production Limits						
	Base	ОТ	OT Mult			
Scranton	505	100	1.5			
Utica	465	100	1.5			
Stamford	570	100	1.5			

Manufacturing and Transportation Costs						
Manufacture Goggle Facebloo				ceblock		
Scranton	\$	90	\$	8	\$	15
Utica	\$	105	\$	14	\$	18
Stamford	\$	115	\$	24	\$	20

Man. + Trans Cost				
Go	oggle	Fac	eblock	
\$	98	\$	105	
\$	119	\$	123	
\$	139	\$	135	

4.1.2 Network Flow Diagram

4.2 Mathematical Formulation

4.2.1 Sets, Parameters, Decision Vars

Set Name	Description
\overline{NODES}	Set of all nodes in above network flow diagram:
Specialist, Generalist	The two types of Supply of Labor
ScranMult1x, UticaMult1x,	Passed through if did not use overtime
StamMult1x	
ScranMultOT, UticaMultOT,	Passed through if did use overtime
StamMultOT	
Scranton, Utica, Stamford	Transshipment nodes which are the plants
dumPlant, dumBus	Dummy nodes that account for excess supply from
	unbalanced supply from labor nodes

The set A is a set of arcs, e.g. (i,j) for $i \in N, j \in N$ each of which may carry flow of a commodity

Decision variable: x_{ij} determines the units of flow on arc (i, j)

Arc(i,j)

- cost c_{ij} per unit of flow on arc (i, j)
- upper bound on flow of u_{ij} (capacity)
- lower bound on flow of ℓ_{ij} (usually 0)

4.2.2 Objective, and Constraints

$$\begin{aligned} & \text{minimize } \sum_{(i,j) \in A} c_{ij} x_{ij} \\ & \text{subject to } \sum_{j:(i,j) \in A} x_{ij} - \sum_{j:(j,i) \in A} x_{ji} = b_i \quad \forall i \in N \\ & l_{ij} \leq x_{ij} \leq u_{ij} \qquad \forall (i,j) \in A \end{aligned}$$

• Upper and lower bounds use to direct the flow of the product

4.3 Code and Output

4.3.1 Model: group12_HW2_p4.mod

- Used mcnfp.txt from course website and renamed to group12 HW2 p4.mod.
- Added data group12_HW2_p4.dat; solve; and display x;

4.3.2 Data: group12_HW2_p4.dat

```
set ARCS :=
                       (Specialist, *) ScranMult1x UticaMult1x StamMult1x
(Generalist, *) ScranMult1x UticaMult1x StamMult1x
(ScranMult1x, *) Scranton dumPlant
(UticaMult1x, *) Utica dumPlant
(StamMult1x, *) Stamford dumPlant
                   (Specialist, *) ScranMultOT UticaMultOT StamMultOT (Generalist, *) ScranMultOT UticaMultOT StamMultOT (ScranMultOT,*) Scranton dumPlant (UticaMultOT,*) Utica dumPlant (StamMultOT, *) Stamford dumPlant
                     # Plants to demanders and dumBus for un
(Scranton, *) Goggle Faceblock dumBus
(Utica, *) Goggle Faceblock dumBus
(Stamford, *) Goggle Faceblock dumBus
             # Transshippment (Plants or OT Multiplier)
ScranMult1x 0 # Not using OT
             UticaMult1x 0
              StamMult1x 0
              ScranMultOT 0 # Using OT
             UticaMultOT 0
             StamMultOT 0
              Scranton 0 # Plant Arrival
             Utica
              Stamford 0
```

Data Continued:

```
F group12_HW2_p4.mod M
                                   F group12_HW2_p4.dat M ●
              dumPlant
              Goggle
                                -1000
              Faceblock
  61
              dumBus
                                                               1 u:=
               [Specialist, ScranMult1x] 191.67 . . # Supply -> Mult
              [Specialist, UticaMult1x] 191.07 . . . [Specialist, UticaMult1x] 187.5 . . . [Specialist, StamMult1x] 189.58 . . . [Generalist, ScranMult1x] 200 . . . [Generalist, UticaMult1x] 195 . . . [Generalist, StamMult1x] 197.5 . .
               [ScranMult1x, Scranton]
               [UticaMult1x, Utica]
               [StamMult1x, Stamford]
               [ScranMult1x, dumPlant]
               [UticaMult1x, dumPlant]
  79
               [StamMult1x, dumPlant]
              [Specialist, ScranMultOT] 191.67 . . # Supply -> Mult
[Specialist, UticaMultOT] 187.5 . .
[Specialist, StamMultOT] 189.58 . .
[Generalist, ScranMultOT] 200 . .
[Generalist, UticaMultOT] 195 . .
[Generalist, StamMultOT] 197.5 . .
               [UticaMultOT, Utica]
                                                      1.5
                                                                      100 # Mult -> Plant
               [ScranMultOT, Scranton]
               [StamMultOT, Stamford]
  91
               [ScranMultOT, dumPlant]
               [UticaMultOT, dumPlant]
 93
               [StamMultOT, dumPlant]
              [Scranton,
                               Goggle]
               [Scranton,
                                Faceblock]
  98
               [Scranton,
                                dumBus]
               [Utica,
                                Goggle]
                               Faceblock]
               [Utica,
 101
                               dumBus]
               [Utica,
               [Stamford, Goggle]
               [Stamford,
                                Faceblock]
104
               [Stamford,
                               dumBus]
```

4.3.3 Output

- Total minimized cost: \$806,192.95
- Scranton, Utica, and Stamford produce 0, 430, and 170 units of product for **Faceblock**, respectively.
- Scranton, Utica, and Stamford produce 605, 0, and 395 units of product for **Goggle**, respectively.
- All possible products produced (using a portion of the available regular and overtime hours). 200 products produced by Specialists using OT, and 100 from generalists using OT.

```
ampl: model 'C:\Users\daniel.carpenter\OneDrive - the Chickasaw Nation\Documents\GitHu
amp1: model C:\Users\daniel.carpenter\OneDrive - the
CPLEX 20.1.0.0: optimal solution; objective 806192.95
13 dual simplex iterations (0 in phase I)
x [*,*] (tr)
# $1 = Generalist
# $2 = ScranMult1x
# $3 = ScranMultOT
# $4 - Scranton
   $4 = Scranton
   $5 = Specialist
   $6 = StamMult1x
   $7 = StamMultOT
# $8 = Stamford
# $10 = UticaMult1x
# $11 = UticaMultOT
                       $1
                                $2
                                          $3
                                                   $4
                                                            $5
                                                                     $6
                                                                              $7
                                                                                        $8
                                                                                             Utica
                                                                                                          $10
                                                                                                                    $11 :=
                                                      0
                                                                                       430
Faceblock 

                                                                                                 170
Goggle
ScranMult1x
                                                   605
                                                                                          0
                                                                                                 395
                                                            505
                          0
ScranMult0T
                          0
                                                            100
                                505
                                          100
Scranton
                                                            495
StamMult1x
StamMult0T
                          0
                                                            100
                                                                     570
                                                                              100
Stamford
                                                                                                           465
Utica
                                                                                                                     100
                                                               0
UticaMult1x
                      1825
                       100
UticaMult0T
                                                               0
                                                      0
                                                                                        240
                                                                                                   0
dumBus
                                                                                                                       0
                                                                        0
dumPlant
                                   0
                                            0
                                                                                 0
                                                                                                          1360
```