Stringhe e relazioni

Andrea Canale

December 19, 2024

Contents

1	\mathbf{Seq}	uenze e parole	2
2	Nui	mero di Gödel	2
3	Ope	erazioni su parole	2
	3.1	Monoidi	3
4	\mathbf{Seq}	uenze	3
5	Cla	ssificazione di sequenza	3
	5.1	Sequenze crescenti	3
	5.2	Sequenza decrescenti	4
	5.3	Sequenza non crescenti	4
	5.4	Sequenza non decrescenti	4
6 Sottosequenze		tosequenze	4
	6.1	Sottosequenze note	4
7	Rel	azione	4
8	\mathbf{Pro}	prietà delle relazioni	4
	8.1	Relazioni riflessive	4
	8.2	Relazioni transitive	5

	8.3	Relazioni simmetriche	5
	8.4	Relazioni antisimmetriche	5
9	Rela	azioni d'ordine/totali	5
10	Chi	asura transitiva	6
11	Rela	zioni d'equivalenza	6
12	Con	gruenza	6

1 Sequenze e parole

Dato un alfabeto di simboli, possiamo formare una parola cioè una sequenza di simboli.

Ad esempio: $A = \{la, sul, tetto, gatta\}$ formerà la parola "la gatta sul tetto".

L'insieme di tutte le parole che si possono formare sull'alfabeto A viene indicato come A^* .

Questo insieme è infinito perchè possiamo sempre aggiungere un simbolo ad un parola.

2 Numero di Gödel

Per un alfabeto generico A, finito o numerabile:

- $\bullet\,$ Numeriamo i simboli $ka\;\forall a\in A$
- \bullet Ogni parola $a_1,...,a_n$ diventa il numero: $2^{ka_1}\cdot 3^{ka_2}\cdot 5^{ka_3}\cdot ...\cdot p_n^{ka_n}$

Dove p_n è un numero primo.

Il numero che otteniamo da questa moltiplicazione è detto numero di Gödel

3 Operazioni su parole

L'insieme delle parole A^* ha due operazioni:

• Inversione: $w \to W^r$, ad esempio felice^r = ecilef

• Concatenazione: $w_1, w_2 \to w_1 w_2$, ad esempio: $w_1 = \text{abra } w_2 = \text{cadabra } w_1 w_2 = \text{abracadabra}$

Notiamo che l'insieme A^* è un **monoide** cioè una struttura algebrica simile ad un gruppo che non ha un inverso.

Questo perchè, per la concatenazione vale l'associatività e ha come elemento neutro λ cioè la parola vuota che non cambia il risultato della concatenazione.

Inoltre, per il monoide A^* esiste la funzione lunghezza che ritorna la lunghezza di una parola. Questa funzione è un **omomorfismo**.

3.1 Monoidi

Un monoide M è una struttura algebrica che rispetta 3 proprietà:

- $a*b \in M$
- Vale l'associatività
- Esiste un elemento neutro

Un gruppo è un monoide dotato d'inverso

4 Sequenze

Una sequenza è una funzione dove il dominio è sottoinsieme degli interi.

Viene indicata come S(n) dove n è il numero massimo nel dominio

La sua cardinalità è n!.

Le stringhe sono sequenze formate da un alfabeto di partenza.

5 Classificazione di sequenza

5.1 Sequenze crescenti

Una sequenza è crescente se: s(n) < s(n+1) < s(n+2)

5.2 Sequenza decrescenti

Una sequenza è decrescente se: s(n) > s(n+1) > s(n+2)

5.3 Sequenza non crescenti

Una sequenza è non crescente se: i < j e $S_i \ge S_j$

5.4 Sequenza non decrescenti

Una sequenza è non decrescente se: i < j e $S_i \le S_j$

6 Sottosequenze

Data una sequenza, una sottosequenza è un sottoinsieme di quella sequenza.

Ad esempio:

Sequenza $A = \{a, a, b, c, q\}$

Si possono ottenere le seguenti sottosequenze: $\{\{a,b\},\{b,c\},\{b,q\},...\}$

6.1 Sottosequenze note

Una sequenza di soli numeri può essere scritta come: $[n] = \{1, ..., n\}$

Una famiglia d'insiemi di lunghezza n
 può essere scritta come: \mathbb{A}^n

7 Relazione

Una relazione binaria tra un insieme X e un insieme Y è l'insieme dei prodotti cartesiano tra X e Y. Denotiamo l'insieme delle relazioni con R.

8 Proprietà delle relazioni

8.1 Relazioni riflessive

Una relazione è riflessiva se esiste $(x, x) \in R \ \forall x \in X \ dove \ R$ è la relazione XxY

8.2 Relazioni transitive

Una relazione è transitiva se vale $(x,y) \in R$ e $(y,z) \in R$, allora $(x,z) \in R$ $\forall x,y,z \in R$

8.3 Relazioni simmetriche

Una relazione è simmetrica se $(x,y) \in R$ e $(y,x) \in R$ $\forall x,y \in R$

8.4 Relazioni antisimmetriche

Una relazione è antisimmetrica se $x \neq y$ allora $(x, y) \notin R$ oppure $(y, x) \notin R$, allora y non è in relazione con x.

Notiamo che se x = y, la relazione si considera antisimmetrica.

Ad esempio:

 $S = \{(0,0), (1,1), (2,2), (3,3)\}$ è antisimmetrica perchè $\forall x,y \in S, \, x = y$

9 Relazioni d'ordine/totali

Una relazione è definita d'ordine se valgono tre proprietà:

- Transitiva
- Riflessiva
- \bullet Antisimmetrica

Esempi di relazioni d'ordine:

- P(x) rispetto all'inclusione
- $\bullet \ \leq \, \mathrm{su} \, \, \mathbb{N}$
- Su \mathbb{Z} , x|y

10 Chiusura transitiva

Data una relazione binaria R, definitiamo la chiusura transitiva $R^{'}=T(r)$ come la più piccola relazione transitiva e riflessiva che contiene R

$$R^{'}=\bigcap\{S|S$$
 è riflessiva e transitiva , $R\subset S\}$

11 Relazioni d'equivalenza

Una relazione di equivalenza è una relazione che soddisfa 3 proprietà:

- è riflessiva
- $\bullet\,$ è transitiva
- $\bullet\,$ è simmetrica

12 Congruenza

Una congruenza su X è una relazione di equivalenza che mette in relazione due insiemi.