Combinação linear de vectores

Definição [1.8]: Combinação linear de elementos de um conjunto

Seja S = $\{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\} \subset \mathbb{R}^n$. Um elemento $\vec{x} \in \mathbb{R}^n$ diz-se uma *combinação linear* dos vectores do conjunto S, se existir um conjunto de escalares $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$, tais que

$$\vec{x} = \lambda_1 \vec{s}_1 + \lambda_2 \vec{s}_2 + \dots + \lambda_k \vec{s}_k = \sum_{i=1}^k \lambda_i \vec{s}_i$$

- Convém realçar o seguinte:
 - i) Os escalares $\lambda_1, \lambda_2, ..., \lambda_k$ designam-se coeficientes da combinação linear;
 - ii) Diz-se que o vector \vec{x} é combinação linear de $\vec{s}_1, \vec{s}_2, ..., \vec{s}_k$ por intermédio (ou por meio) dos escalares (ou dos coeficientes) $\lambda_1, \lambda_2, ..., \lambda_k$, ou, ainda, que o vector \vec{x} é gerado pelo conjunto S;
 - iii) O vector nulo será sempre combinação linear dos elementos de qualquer subconjunto não vazio de \mathbb{R}^n , isto é, qualquer subconjunto não vazio de \mathbb{R}^n gera sempre o vector nulo.

Exemplo 4 [1.37]: Seja $S_1 = \{\vec{a}_1, \vec{a}_2\} = \{(1,1,1), (1,-3,-1)\} \subset \mathbb{R}^3$. Verifique se os vectores $\vec{a}_3 = (1,-1,0)$ e $\vec{a}_4 = (2,-1,1)$ são combinações lineares dos elementos de S_1 .

Solução: Apenas o vector $\vec{a}_3=(1,-1,0)$ é gerado pelo conjunto S_1 , ou seja, $\vec{a}_3=\frac{1}{2}\vec{a}_1+\frac{1}{2}\vec{a}_2$; no caso do vector $\vec{a}_4=(2,-1,1)$ o sistema de equações lineares é impossível.

• Pretende-se definir o conjunto de todos os vectores de \mathbb{R}^n que são combinação linear dos elementos de $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\} \subset \mathbb{R}^n$, ou ainda, que são gerados por S.

Teorema [1.10]: O conjunto de todas as combinações lineares dos vectores que constituem o subconjunto $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\} \subset \mathbb{R}^n$ é um *subespaço linear* do espaço \mathbb{R}^n .

Definição: Subespaço gerado por um conjunto de vectores

Designa-se por *subespaço gerado por* $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\} \subset \mathbb{R}^n$, representando-se por L(S), ao conjunto de todas as combinações lineares dos elementos que constituem S, isto é,

$$L(S) = \left\{ \vec{x} \in \mathbb{R}^n : \vec{x} = \sum_{i=1}^k \lambda_i \vec{s}_i , \lambda_i \in \mathbb{R} \right\} \subseteq \mathbb{R}^n$$

- Convém realçar o seguinte:
 - i) O conjunto S é designado por *conjunto gerador* de L(S);
 - ii) Diz-se que conjunto S gera o subespaço L(S), ou, ainda, que o subespaço L(S) \acute{e} gerado pelo conjunto S;
 - iii) $L(S) \subseteq \mathbb{R}^n \in \vec{0} \in L(S)$;
 - iv) Como é óbvio, qualquer elemento do conjunto S pertence a L(S);
 - v) Qualquer combinação linear de elementos do subespaço L(S) pertence, ainda, a L(S);
 - vi) Convenciona-se que o subespaço gerado pelo conjunto vazio é o vector nulo, ou seja, $L\{\ \} = L(\emptyset) = \{\vec{0}\}\ .$

• Pretende-se obter o subespaço $L(S) \subseteq \mathbb{R}^n$ gerado pelo conjunto

$$S = \{\vec{s}_1, \vec{s}_2, \dots, \vec{s}_k\}$$

Considerando o vector genérico $\vec{x} = (x_1, x_2, x_3, ..., x_n) \in \mathbb{R}^n$ resolva-se o seguinte problema

$$\lambda_1 \vec{s}_1 + \lambda_2 \vec{s}_2 + \ldots + \lambda_k \vec{s}_k = \vec{x}$$

de que resulta um sistema de n equações lineares a k incógnitas, $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$ (os *coeficientes da combinação linear*), obtendo-se uma das seguintes situações:

a) Sistema impossível:

O vector $\vec{x} = (x_1, x_2, x_3, ..., x_n)$ não é gerado pelo conjunto S, isto é,

$$\vec{x} = (x_1, x_2, x_3, ..., x_n) \notin L(S)$$

b) Sistema possível:

O vector $\vec{x} = (x_1, x_2, x_3, ..., x_n)$ é *gerado* pelo conjunto S, isto é,

$$\vec{x} = (x_1, x_2, x_3, ..., x_n) \in L(S)$$

i) Sistema possível e determinado:

O vector $\vec{x} = (x_1, x_2, x_3, ..., x_n)$ é gerado de forma única pelo conjunto S – o sistema é verificado para um e um só conjunto de valores para as incógnitas $\lambda_1, \lambda_2, ..., \lambda_k$.

O conjunto S é linearmente independente

ii) Sistema possível e indeterminado:

O vector $\vec{x} = (x_1, x_2, x_3, ..., x_n)$ é gerado de forma não única pelo conjunto S – o sistema é verificado para uma infinidade de conjuntos de valores para as incógnitas $\lambda_1, \lambda_2, ..., \lambda_k$.

O conjunto S é linearmente dependente

Exemplo 5 [1.40]: Determine o subespaço $L(S_1) \subseteq \mathbb{R}^3$ gerado pelo conjunto $S_1 = \{\vec{a}_1, \vec{a}_2\} = \{(1,1,1), (1,-3,-1)\} \subset \mathbb{R}^3$ e verifique que $\vec{a}_3 = (1,-1,0) \in L(S_1)$ e $\vec{a}_4 = (2,-1,1) \notin L(S_1)$ (ver **exemplo 4**).

Solução: O sistema de equações lineares

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 = \vec{x} = (x_1, x_2, x_3)$$

é possível e determinado, obtendo-se

$$L(S_1) = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \ : \ x_2 = -x_1 + 2x_3 \right\} = \left\{ (x_1, -x_1 + 2x_3, x_3) \in \mathbb{R}^3 \right\} \subset \mathbb{R}^3$$

O conjunto S_1 gera de forma única o subespaço $L(S_1)$.

Exemplo 6 [1.43]: Determine o subespaço $L(S_2) \subseteq \mathbb{R}^3$ gerado pelo conjunto $S_2 = \{\vec{a}_5, \vec{a}_6\} = \{(2,0,1), (0,2,1)\} \subset \mathbb{R}^3$.

Solução: O sistema de equações lineares

$$\alpha_1 \vec{a}_5 + \alpha_2 \vec{a}_6 = \vec{x} = (x_1, x_2, x_3)$$

é possível e determinado, obtendo-se

$$L(S_2) = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \ : \ x_2 = -x_1 + 2x_3 \right\} = \left\{ (x_1, -x_1 + 2x_3, x_3) \in \mathbb{R}^3 \right\} \subset \mathbb{R}^3$$

ou seja,

$$L(S_2) = L(S_1)$$

O conjunto S_2 gera de forma única o subespaço $L(S_2) = L(S_1)$.

Exemplo 7 [1.44]: Seja $S_3 = \{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = \{(1,1,1), (1,-3,-1), (1,-1,0)\} \subset \mathbb{R}^3$ um conjunto de vectores que resultou do conjunto S_1 (ver **exemplo 5**) pela inclusão do vector $\vec{a}_3 = (1,-1,0) \in L(S_1)$. Obtenha o subespaço $L(S_3) \subseteq \mathbb{R}^3$.

Solução: Neste caso, o sistema de equações lineares

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \lambda_3 \vec{a}_3 = \vec{x} = (x_1, x_2, x_3)$$

é possível e indeterminado, obtendo-se

$$L(S_3) = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_2 = -x_1 + 2x_3 \right\} = \left\{ (x_1, -x_1 + 2x_3, x_3) \in \mathbb{R}^3 \right\} \subset \mathbb{R}^3$$

ou seja,

$$L(S_3) = L(S_2) = L(S_1)$$

O conjunto S_3 gera de forma não única o subespaço $L(S_3) = L(S_1)$.

Dependência e independência linear de vectores

O subespaço

$$L(S_1) = \{(x_1, -x_1 + 2x_3, x_3) \in \mathbb{R}^3\} \subset \mathbb{R}^3$$

pode ser gerado por variados conjuntos de vectores do espaço \mathbb{R}^3 ; por exemplo, os conjuntos

$$\begin{split} S_1 &= \left\{\vec{a}_1, \vec{a}_2\right\} = \left\{(1,1,1), (1,-3,-1)\right\} \subset \mathbb{R}^3 \\ S_2 &= \left\{\vec{a}_5, \vec{a}_6\right\} = \left\{(2,0,1), (0,2,1)\right\} \subset \mathbb{R}^3 \\ S_3 &= \left\{\vec{a}_1, \vec{a}_2, \vec{a}_3\right\} = \left\{(1,1,1), (1,-3,-1), (1,-1,0)\right\} \subset \mathbb{R}^3 \end{split}$$

- O subespaço $L(S_1) \subset \mathbb{R}^3$ pode ser gerado por variados conjuntos de vectores do espaço \mathbb{R}^3 , ainda que de formas distintas:
 - i) De forma única: pelos conjuntos S_1 e S_2 ;
 - ii) De forma não única: pelo conjunto S_3 .

Definição [1.11]: Independência linear

O conjunto de vectores $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ do espaço \mathbb{R}^n diz-se *linearmente* independente, se gerar de forma única o vector nulo, ou seja, se

$$\lambda_1 \vec{s}_1 + \lambda_2 \vec{s}_2 + \ldots + \lambda_k \vec{s}_k = \sum_{i=1}^k \lambda_i \vec{s}_i = \vec{0} \implies \lambda_1 = \lambda_2 = \ldots = \lambda_k = 0$$

(combinação linear trivialmente nula). Neste caso diz-se, ainda, que os vectores do conjunto S são linearmente independentes.

Definição [1.12]: Dependência linear

O conjunto de vectores $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ do espaço \mathbb{R}^n diz-se *linearmente* dependente, se gerar de forma não única o vector nulo, ou seja, se existir um conjunto de escalares $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$ não todos nulos, tal que

$$\lambda_1 \vec{s}_1 + \lambda_2 \vec{s}_2 + \ldots + \lambda_k \vec{s}_k = \sum_{i=1}^k \lambda_i \vec{s}_i = \vec{0}$$

Neste caso diz-se, ainda, que os *vectores* do conjunto S são *linearmente* dependentes.

• Convenciona-se que conjunto vazio é linearmente independente.

Teorema [1.12]: O conjunto de vectores $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ do espaço \mathbb{R}^n gera de forma única qualquer vector $\vec{x} \in L(S)$, se e só se gerar de forma única o vector nulo.

Relativamente ao subespaço

$$L(S_1) = \{(x_1, -x_1 + 2x_3, x_3) \in \mathbb{R}^3\} \subset \mathbb{R}^3$$

obtido nos exemplos 5, 6 e 7 pode-se concluir o seguinte:

- i) $S_1 = \{\vec{a}_1, \vec{a}_2\} = \{(1,1,1), (1,-3,-1)\}$ gera $L(S_1)$ de forma única, logo é linearmente independente.
- ii) $S_2 = \{\vec{a}_5, \vec{a}_6\} = \{(2,0,1), (0,2,1)\}$ gera $L(S_1)$ de forma única, logo é linearmente independente.
- iii) $S_3 = \{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = \{(1,1,1), (1,-3,-1), (1,-1,0)\}$ gera $L(S_1)$ de forma não única, logo é linearmente dependente.

• No espaço \mathbb{R}^n , o conjunto dos *vectores coordenados unitários* $\mathsf{E} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \dots, \vec{e}_n\} = \{(1,0,0,\dots,0), (0,1,0,\dots,0), (0,0,1,\dots,0), \dots, (0,0,0,\dots,1)\}$ é *linearmente independente*.

Teorema [1.13]: O conjunto de vectores $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ do espaço \mathbb{R}^n é *linearmente dependente*, se um dos seus elementos for o vector nulo.

Teorema [1.14]: No espaço \mathbb{R}^n , qualquer conjunto constituído por um único vector não nulo é *linearmente independente*.

Teorema [1.16]: O conjunto de vectores $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ do espaço \mathbb{R}^n é *linearmente dependente*, se um dos seus elementos for combinação linear dos restantes.

Teorema [1.17]: O conjunto de vectores $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ do espaço \mathbb{R}^n é *linearmente dependente*, se dois dos seus elementos forem múltiplos.

Teorema [1.18]: No espaço \mathbb{R}^n , qualquer conjunto constituído por dois vectores não nulos e não paralelos é *linearmente independente*.

Teorema [1.15]: Sejam S e T dois conjuntos não vazios de vectores do espaço \mathbb{R}^n , tais que T \subseteq S. Verifica-se:

- i) Se T é *linearmente dependente*, então S é também *linearmente dependente*.
- ii) Se S é *linearmente independente*, então T é também *linearmente independente*.

Teorema [1.19]: Seja $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ um conjunto *linearmente independente*, formado por k vectores do espaço \mathbb{R}^n e seja L(S) o subespaço de \mathbb{R}^n gerado (*de forma única*) por S. Então qualquer conjunto de k+1 vectores de L(S) é *linearmente dependente*.

Exemplo 8 [1.52]: Relativamente ao conjunto *linearmente independente* do **exemplo 5**, $S_1 = \{\vec{a}_1, \vec{a}_2\} = \{(1,1,1), (1,-3,-1)\} \subset \mathbb{R}^3$, conclua que qualquer um dos seguintes conjuntos é *linearmente dependente*:

$$\begin{split} S_3 = & \left\{ (1,1,1), (1,-3,-1), (1,-1,0) \right\}, \ S_4 = \left\{ (1,1,1), (2,0,1), (0,4,2) \right\} \\ S_5 = & \left\{ (2,4,3), (1,-5,-2), (-2,6,2) \right\}, \ S_6 = & \left\{ (1,1,1), (2,0,1), (1,-1,0), (0,4,2) \right\} \\ S_7 = & \left\{ (1,1,1), (2,0,1), (0,4,2), (2,4,3), (-2,6,2) \right\} \end{split}$$

Solução: Os conjuntos S_3 , S_4 e S_5 são constituídos por 3 vectores do subespaço gerado pelo conjunto S_1 ,

$$L(S_1) = \left\{ (x_1, -x_1 + 2x_3, x_3) \in \mathbb{R}^3 \right\} \subset \mathbb{R}^3$$

Os conjuntos S_6 e S_7 são formados por 4 vectores do subespaço $L(S_1)$.

Teorema [1.20]: Seja $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ um conjunto *linearmente independente* do espaço \mathbb{R}^n , que gera (*de forma única*) o subespaço L(S). Se \vec{s}_{k+1} é um vector do espaço \mathbb{R}^n tal que $\vec{s}_{k+1} \notin L(S)$, então o conjunto $S_1 = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k, \vec{s}_{k+1}\}$ é *linearmente independente*.

Exemplo 9 [1.53]: Seja o conjunto $S_1 = \{\vec{a}_1, \vec{a}_2\} = \{(1,1,1), (1,-3,-1)\} \subset \mathbb{R}^3$ que gera *de forma única* (S_1 é *linearmente independente*) o subespaço

$$L(S_1) = \{(x_1, -x_1 + 2x_3, x_3) \in \mathbb{R}^3\} \subset \mathbb{R}^3$$

Mostre que o conjunto de vectores

$$S_8 = {\vec{a}_1, \vec{a}_2, \vec{a}_4} = {(1,1,1), (1,-3,-1), (2,-1,1)} \subset \mathbb{R}^3$$

é *linearmente independente* e determine o subespaço de \mathbb{R}^3 gerado pelo conjunto S_8 , $L(S_8) \subseteq \mathbb{R}^3$.

Solução: O conjunto S_8 é *linearmente independente*, já que gera de forma única o vector nulo. Em alternativa, o conjunto S_8 é *linearmente independente*, já que $\vec{a}_4 = (2,-1,1) \notin L(S_1)$. O subespaço gerado pelo conjunto S_8 é

$$L(S_8) = \mathbb{R}^3$$

Teorema [1.21]: Sejam os conjuntos $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ e $S_1 = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k, \vec{s}_{k+1}\}$ do espaço \mathbb{R}^n , em que $\vec{s}_{k+1} \notin L(S)$. Então $L(S) \subset L(S_1)$.

Exemplo 10: No espaço \mathbb{R}^2 , o subespaço gerado pelo conjunto dos *vectores coordenados unitários*

$$\mathsf{E} = \left\{ \vec{i}, \vec{j} \right\} = \left\{ (1,0), (0,1) \right\}$$

é

$$L(\mathsf{E}) = \mathbb{R}^2$$

Exemplo 11: No espaço \mathbb{R}^3 , o subespaço gerado pelo conjunto dos *vectores coordenados unitários*

$$\mathsf{E} = \left\{ \vec{i}, \vec{j}, \vec{k} \right\} = \left\{ (1,0,0), (0,1,0), (0,0,1) \right\}$$

é

$$L(\mathsf{E}) = \mathbb{R}^3$$

Exemplo 12: No espaço \mathbb{R}^n , o subespaço gerado pelo conjunto dos *vectores coordenados unitários*

$$\mathsf{E} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \dots, \vec{e}_n\} = \{(1,0,0,\dots,0), (0,1,0,\dots,0), (0,0,1,\dots,0), \dots, (0,0,0,\dots,1)\}$$

é

$$L(\mathsf{E}) = \mathbb{R}^n$$

J.A.T.B.