

LABORATÓRIO DE FÍSICA 1

CARLOS AUGUSTO SANTOS DE CARVALHO
GUILHERME MENEZES DE AZEVEDO
NÍCKOLAS FELIPE PAULINO SANTOS
ERLANDSON DA SILVA PESSOA JÚNIOR
BERNARDO SILVA LUZ

RELATÓRIO

Pêndulo Físico

Aracaju, Sergipe 23/04/2023

1. Introdução

O famigerado Pêndulo Físico, ou pêndulo composto, é qualquer pêndulo real. É um corpo rígido suspenso por um ponto O e que pode girar livremente sem atrito em torno desse ponto. [1]

Ele compreende uma vasta gama de situações reais, e não se sujeita às condições quase ideais definidas para o pêndulo simples. Sendo o pêndulo simples um caso especial, restrito a oscilações em um plano, do pêndulo físico. [2]

2. Objetivo

Estudar o movimento de um pêndulo físico e determinar a dependência entre o tempo do período de oscilação, o seu eixo de rotação e o seu centro de massa.

O propósito deste experimento é examinar e contrastar variáveis derivadas da análise mecânica de um pêndulo simples. Serão avaliados o período, ângulo de lançamento, comprimento da barra e relação com o Movimento Harmônico Simples (MHS). A partir disso, será possível determinar a aceleração da gravidade que afeta o objeto, e comparar os tempos medidos com o valor ideal. Além disso, o estudo será mais abrangente por meio da criação de gráficos cartesianos, o que permitirá alcançar o objetivo.

3. Materiais

Trena; Cronômetro digital; Barra metálica com vários orifícios; Transferidor; Suporte.

4. Procedimento

Métodos:

Realizamos a medição do comprimento da barra utilizando uma régua de incerteza instrumental de $(0,1\ cm)$, obtendo o valor de $(1,498\pm0,001)\ m$. Em seguida, medimos o ângulo de aproximadamente $(15\pm0,5)\ ^{\circ}$ graus. Para a coleta de dados, realizamos 5 medidas de tempo, com 3 oscilações por período, em diferentes distâncias da barra ao seu centro de massa. Todos os dados foram registrados em uma tabela, a qual será apresentada neste relatório. Com base nessas informações, foi construído um gráfico utilizando o software Sci-Davies, relacionando o período (T) em segundos com a distância do eixo de rotação ao centro de massa em metros.

- Representação das medidas: (média da grandeza ± incerteza) unidade da medida
- Valor médio da grandeza:

$$\bar{x} = \frac{1}{\eta} \cdot \sum_{i=1}^{n} x_i$$

• Desvio Padrão da grandeza:

$$D_p = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

• Incerteza do Valor Médio:

$$\sigma_a = \frac{D_p}{\sqrt{n}}$$

Incerteza Instrumental:

 $\sigma_b =$ Menor medição do instrumento

• Incerteza Absoluta:

$$\sigma_c = \sqrt{\sigma_a^2 + \sigma_b^2}$$

• Incerteza Relativa:

$$IR\% = \frac{\sigma_C}{\bar{x}} \times 100$$

• Erro:

Erro = valor médio - valor real

Propagação de Incertezas:

$$\sigma_f = \sqrt{\left(\frac{df}{da} \cdot \sigma_a\right)^2 + \left(\frac{df}{db} \cdot \sigma_b\right)^2 + \dots + \left(\frac{df}{dz} \cdot \sigma_z\right)^2}$$

Onde, o símbolo df/da representa a derivada parcial de f em relação a, ou seja, a derivada da função f quando apenas a é tomada como variável, e b, c, ..., z são consideradas constantes. E σa , σb , ..., σz são os desvios padrões da variável correspondente. [3]

5. Dados Coletados

	Dependência de T com I											
Ângulo(*) = 15,0* ± 0,5* (Manter fixo durante o experimento)												
	d (m)	σb em d (m)	Tempo (s)				t (s)	σa (s)	σb (s)	σc (s)	Resultado de t	
	u (III)	ob eni a (iii)	Medida 1	Medida 2	Medida 3	Medida 4	Medida 5	ι (5)	Ua (S)	00 (5)	oc (s)	nesuitado de t
d1	0,496	0,001	5,41	5,44	5,26	5,10	5,31	5,304	0,060548	0,01	0,061368	(5,30 ± 0,06)
d2	0,696	0,001	5,47	5,39	5,51	5,44	5,66	5,494	0,045891	0,01	0,046968	(5,49 ± 0,05)
d3	0,349	0,001	5,44	5,41	5,46	5,64	5,65	5,520	0,051672	0,01	0,052631	(5,52 ± 0,05)
d4	0,547	0,001	5,59	5,56	5,45	5,51	5,52	5,526	0,023791	0,01	0,025807	(5,53 ± 0,03)
d5	0,449	0,001	5,50	5,49	5,27	5,44	5,44	5,428	0,0414	0,01	0,042591	(5,43 ± 0,04)

Dados da Barra Metálica						
	Medida	σinstrumental				
Altura b (m)	1,498	0,001				
Largura a (m)	0,016	0,001				
k = (m ²)	0,187	0,002				

T (s)	σT (s)	Resultado de T			
1,77	0,02	(1,77 ± 0,02)			
1,83	0,02	(1,83 ± 0,02)			
1,84	0,02	(1,84 ± 0,02)			
1,84	0,01	(1,84 ± 0,01)			
1,81	0,01	(1,81 ± 0,01)			

Para calcular o período T (s) escrito na tabela foi feito $T=\frac{\bar{t}}{3}$, pois o tempo foi medido a partir de 3 oscilações e sua incerteza foi encontrada após aplicar a fórmula de propagação de incertezas na fórmula acima encontrando: $\sigma_T=\frac{\partial T}{\partial \bar{t}}\cdot\sigma_{\bar{t}}$ $\sigma_T=\frac{\sigma_{\bar{t}}}{3}$.

Cada período terá as seguintes Incertezas relativas:

1° Período:
$$(1,77 \pm 0,02)$$
 s $\rightarrow \left(\frac{0,02}{1,77}\right) \approx 0,01129 \approx 1,129\%$.
2° Período: $(1,83 \pm 0,02)$ s $\rightarrow \left(\frac{0,02}{1,83}\right) \approx 0,01092 \approx 1,092\%$.
3° Período: $(1,84 \pm 0,02)$ s $\rightarrow \left(\frac{0,02}{1,84}\right) \approx 0,01086 \approx 1,086\%$.
4° Período: $(1,84 \pm 0,01)$ s $\rightarrow \left(\frac{0,01}{1,84}\right) \approx 0,005437 \approx 0,5437\%$.
5° Período: $(1,81 \pm 0,01)$ s $\rightarrow \left(\frac{0,01}{1,81}\right) \approx 0,005524 \approx 0,5524\%$.

Para Calcular a constante K foi aplicada a fórmula: $k = \frac{a^2 + b^2}{12}$, sendo a o comprimento da barra metálica e b a largura da mesma. Sua incerteza foi calculada a partir da fórmula de propagação de incertezas da seguinte

forma:
$$\sigma_k = \sqrt{\left(\frac{\partial k}{\partial a} \cdot \sigma_a\right)^2 + \left(\frac{\partial k}{\partial b} \cdot \sigma_b\right)^2}$$
 $\sigma_k = \sqrt{\left(\frac{2 \cdot a \cdot \sigma_a}{12}\right)^2 + \left(\frac{2 \cdot b \cdot \sigma_b}{12}\right)^2}$

 $\sigma_k=0.002~m^2$ e terá uma incerteza relativa de $\left(\frac{0.002}{0.187}\right)\approx 0.010695$ $\approx 1.0695\%$.

6. Cálculo dos Valores Médios e Incertezas

Calculamos os valores médios dos 5 tempos para cada medida de distância, logo depois calculamos o desvio padrão para cada valor médio e encontramos enfim a Incerteza Estatística (σ_a) e com a Incerteza Instrumental (σ_b) encontramos a Incerteza do valor Médio (σ_c) e suas respectivas Incertezas Relativas. Os cálculos não serão mostrados, pois provamos em outros relatórios que sabemos realizar os mesmos.

7. Gráfico no Sci-Davies T (s) versus d (m)

.....

[sábado, 22 de abril de 2023 18:37:00 Hora oficial do Brasil Plot: "Graph1"]

Non-linear fit of dataset: Table 1_T (s), using function: 2*3.1415926*sqrt((0.187 + x*x)/(g*x))

Y standard errors: Unknown

Scaled Levenberg-Marquardt algorithm with tolerance = 0,0001

From x = 0.349 to x = 0.696

g = 10,696680038101 + /-0,208703878949292

.....

Chi^2 = 0,00628994701919184 R^2 = 0,999619462220013

Iterations = 6 Status = success

.....

O valor da Gravidade encontrada foi de (10,7 ± 0,2) m/s² e com incerteza relativa de $\left(\frac{0,2}{10.7}\right)\approx 0,01869\approx 1,869\%$.

8. Conclusão

Portanto, por meio dos equipamentos laborais, foram feitas medições da largura, comprimento e período do pêndulo. E, assim, com as informações coletados foi possível montar o gráfico do período (T) em relação a distância do centro de massa ao eixo de rotação (d) e, também, calcular o valor de "k" - que é o momento de inércia em relação ao centro de massa - que o resultado obtido foi de 0,187 m² com uma incerteza de $0,002 \text{ m}^2$, ou seja, o valor de k = $(0,187 \pm 0,002) \text{ m}^2$. Além disso, foi possível estimar o valor da gravidade (g), que tivemos o resultado de 10,7 m/s² com a incerteza de 0,2 m/s², nesse sentido, a partir do experimento determinamos que $g = (10.7 \pm 0.2) \text{ m/s}^2$. Assim, tudo isso foi possível por intermédio de fórmulas e cálculos do pêndulo físico, bem como o uso do Software Sci-Davis, o qual foi posto os resultados de T e d em um gráfico, e com ele estimamos o valor de g. Com os valores calculados conseguimos saber o erro absoluto e relativo da gravidade, a qual consideramos o valor de referência como 9,8 m/s², desse jeito, erro absoluto = 0,9 m/s² e o erro relativo = 9,2% Porém, é importante ressaltar que as incertezas dos instrumentos e interferências externas devem ser consideradas na análise. Dessa forma, o grupo adquiriu conhecimentos sobre o movimento do pêndulo físico, ademais, reforçou nosso entendimento sobre cálculo de incertezas e sua propagação.

9. Referências

- [1] Antônio Roque, O Pêndulo Físico, disponível em: https://edisciplinas.usp.br/mod/resource/view.php?id=2823114 acesso em 04/04/2023.
- [2] UFBA, Pêndulo Físico e Pêndulos Simples Acoplados, disponível em: http://www2.fis.ufba.br/dfg/fis2/Pendulo_fisico.pdf, acesso em 04/04/2023.
- [3] Propagação de Incerteza, disponível em: https://www.fep.if.usp.br/~fisfoto/guias/roteiro_incertezas_2015.pdf, acesso em 17/02/2023.