3

1

2

3

1

2

1

2

3

>

1

2

3

5

6

7 8

WHAT IS CLAIMED IS:

A	thermal	transfer	system	comprising:

a container for receiving a medium;

a structure positioned in said container;

a first heat exchange member at least partially coupled to an interior surface of said container;

a second heat exchange member at least partially coupled to said structure wherein a portion of said first heat exchange member is placed in close proximity to a portion of said second heat exchange member to aid formation of a thermal transfer bridge that improves conduction of heat into or out of the medium.

- 2. A thermal transfer system as in claim 1 wherein:
 a heating or cooling device is coupled to and provides heating or cooling of said container.
- 3. A thermal transfer system as in claim 1 wherein:
 a heating or cooling device is coupled to and provides heating or cooling of said structure positioned inside said container.
- 4. A thermal transfer system as in claim 1 wherein:

 a heating or cooling device is coupled to and provides heating or cooling of said structure and said container.
- 5. A thermal transfer system as in claim 1 wherein: there is a plurality of heat exchange members.
- 6. A thermal transfer system as in claim 1, further comprising:
 a removable liner configured to cover at least a portion of said first heat exchange member.

1	7. A thermal transfer system as in claim 1, further comprising:
2	a removable liner configured to cover at least a portion of said second
3	heat exchange member.
1	8. A thermal transfer system as in claim 1, further comprising:
2	a removable liner configured to cover at least a portion of said first
3	heat exchange member and said second heat exchange member.
1	9. A thermal transfer system as in claim 1 wherein:
2	a volume of said container is in the range from substantially 1 liter to
3	250 liters.
1	10. A thermal transfer system as in claim 1 wherein:
2	a volume of said container is in the range from substantially 250 liter to
3	10,000 liters.
1	11. A thermal transfer system as in claim 1 wherein:
2	a distal end of said first heat exchange member contacts at least a
3	portion of a distal end of said second heat exchange member.
1	12. A thermal transfer system as in claim 1 wherein:
2	a distance between said distal end of said first heat exchange member
3	and a distal end of said second heat exchange member is a non-contacting
4	distance not greater than one inch.
1	13. A thermal transfer system as in claim 1 wherein:
2	the container comprises a jacket defining an interstitial space
3	positioned between the jacket and a wall of the container for receiving a flow
	l l

4	of a cooling fluid said jacked further including a plurality of spiral baffles for
5	enhancing thermal exchange between said fluid and said container.
1	14. A thermal transfer system as in claim 1 wherein:
2	said medium is substantially uniformly heated or cooled.
•	15 Ada la la costi de calcina l'arbancina
1	15. A thermal transfer system as in claim 1 wherein:
2	said medium is heated or cooled in substantially one direction relative
3	to said structure.
1	16. A thermal transfer system as in claim 1 wherein:
2	said heat exchange members are positioned to induce a thermal
3	gradient in said medium such that said thermal gradient is in a predetermined
4	direction.
1	17. A thermal transfer system as in claim 1 wherein:
2	said medium is heated or cooled in a predetermined direction.
1	18. A thermal transfer system as in claim 1 wherein:
2	said medium is heated or cooled such that the thermal gradient is in a
3	predetermined direction.
1	19. A thermal transfer system as in claim 1 wherein:
2	said medium is heated or cooled at a predetermined rate.
1	20. A thermal transfer system as in claim 1 wherein:
2	said medium is heated or cooled such that the thermal gradient is in a
3	predetermined direction and said heating or cooling occurs at a predetermined
4	rate.

1	21.	A thermal transfer system as in claim 1 wherein:
2		said medium is a biopharmaceutical product.
1	22.	A thermal transfer system as in claim 1 wherein:
2		said container has a nonporous bottom.
1	23.	A thermal transfer system as in claim 1 wherein:
2		said container has nonporous walls.
1	24.	A thermal transfer system as in claim 1 wherein:
2		said container has a top.
1	25.	A thermal transfer system as in claim 1 wherein:
2		said container has a nonporous top.
1	26.	A thermal transfer system as in claim 1 wherein:
2		a portion of said first heat exchange member is configured to improve
3	the the	ermal transport of said thermal transfer bridge.
	VIII VIII	
1	27.	A thermal transfer system as in claim 1 wherein:
2		a portion of said second heat exchange member is configured to
3	impro	ve the thermal transport of said thermal transfer bridge.
	mpro	\(\frac{1}{2}\)
1	28.	A thermal transfer system as in claim 1 wherein:
2		a portion of said first heat exchange member is configured to improve
3.	the th	ermal transport of said thermal transfer bridge and a portion of said
4		d heat exchange member is configured to improve the thermal transport
5	or sale	d thermal transfer bridge.
	22	
1	29.	A thermal transfer system as in claim 1 wherein:

2		said second fleat exchange member is placed at all end of said structure
	30.	A thermal transfer system as in claim1 wherein:
		a heat exchange fluid flows within the structure.
1	31.	A thermal transfer system as in claim 1 wherein:
2		a heat exchange fluid flows within the first heat exchange member.
3	32.	A thermal transfer system as in claim 1 wherein:
4		an interior portion of the first heat exchange member has baffles.
1	33.	A thermal transfer system as in claim 1 wherein:
2		the first heat exchange member is configured to maximize an area of a
3	surface	e of the heat exchange member that is in contact with the medium.
1	34.	A thermal transfer system as in claim 1 wherein:
2		a heat exchange extension is at least partially coupled to the first heat
3	exchar	nge member.
1	35.	A thermal transfer system as in claim 1 wherein:
2		the medium includes protiens.

Odd By