Fiche de synthèse : Quantificateurs logiques

Benjamin L'Huillier

1 Les deux quantificateurs fondamentaux

Remarque 1.1: Propriété logique

Une propriété est une phrase mathématique contenant une variable, comme par exemple : $x^2 \ge 0$. Lorsqu'on remplace x par une valeur, on obtient une affirmation qui est soit vraie, soit fausse.

Definition 1.1: Quantificateurs

- Le quantificateur universel s'écrit :

$$\forall x \in E, \quad P(x)$$

et se lit : « pour tout x dans E, la propriété P(x) est vraie ».

• Le quantificateur existentiel s'écrit :

$$\exists x \in E \text{ tel que } P(x)$$

et se lit : « il existe un x dans E tel que P(x) soit vraie ».

Remarque 1.2: Quantificateurs et raisonnement

Dans une démonstration :

- Pour prouver une phrase avec \forall , il faut montrer que la propriété est vraie pour tous les cas possibles.
- Pour prouver une phrase avec ∃, il suffit de donner un exemple où la propriété est vraie.

2 Exemples de quantificateurs dans différents contextes

Example 2.1: Fonction carrée

- $\forall x \in \mathbb{R}, \quad x^2 \ge 0$
- $\exists x \in \mathbb{R}$ tel que $x^2 = 4$

Example 2.2: Trigonométrie

- $\forall x \in \mathbb{R}$, $\cos^2(x) + \sin^2(x) = 1$
- $\exists x \in [0, 2\pi]$ tel que $\cos(x) = 0$

Example 2.3: Probabilités

- $\forall A \text{ événement}, \quad 0 \leq P(A) \leq 1$
- $\exists A$ tel que P(A) = 1 (événement certain)
- $\exists A, B$ tels que $P(A \cup B) \neq P(A) + P(B)$ (si A et B ne sont pas disjoints)

Example 2.4: Fonctions dérivées

- $\forall x \in \mathbb{R}$, la dérivée de $f(x) = x^2$ est f'(x) = 2x
- $\exists x \in [0,1]$ tel que f'(x) = 1

Propriété 2.1: Négation des quantificateurs

- La négation de « **pour tout** $x \in E$, P(x) » est :
 - « Il existe $x \in E$ tel que la propriété P(x) n'est pas vraie »
- La négation de « il existe $x \in E$ tel que P(x) » est :
 - « Pour tout $x \in E$, la propriété P(x) n'est pas vraie »

Example 2.5: Négation en contexte

• $\forall x \in \mathbb{R}, \ x^2 \ge 1$

Sa négation est :

« Il existe un réel x tel que $x^2 < 1$ »

• $\exists x \in [0, 2\pi]$ tel que $\cos(x) = 2$

Sa négation est:

« Pour tout $x \in [0, 2\pi]$, $\cos(x) \neq 2$ »

Remarque 2.1: Comment montrer qu'une affirmation est fausse?

- Pour montrer qu'une phrase de la forme : « Pour tout $x \in E$, P(x) » est **fausse**, il suffit de trouver **un contre-exemple** (un $x_0 \in E$ pour lequel $P(x_0)$ est fausse).
- Pour montrer qu'une phrase de la forme : « Il existe $x \in E$ tel que P(x) » est **fausse**, il faut montrer que pour **tout** $x \in E$, la propriété P(x) est fausse.

Example 2.6: Vérification d'une négation

- Exemple 1 (quantificateur universel): L'affirmation « Pour tout $x \in \mathbb{R}$, $x^2 > x$ » est fausse. Il suffit de trouver un contre-exemple: x = 0 convient car $0^2 = 0 \ge 0$.
- Exemple 2 (quantificateur existentiel) : L'affirmation « Il existe $x \in [0, \pi]$ tel que $\cos(x) > 1$ » est fausse. Pour le prouver, on montre que pour tout $x \in [0, \pi]$, on a $\cos(x) \le 1$. En effet, la fonction cosinus est toujours inférieure ou égale à 1 sur \mathbb{R} .

À retenir

- $\sqrt{\forall x}$, il faut vérifier que la propriété est vraie pour **tout** x
-
 $\checkmark \; \exists \, x,$ il suffit de trouver un seul x qui vérifie la propriété
- \checkmark Ces outils permettent d'exprimer des lois générales et des contre-exemples
- \nearrow Pour réfuter $\forall x, P(x)$, il **ne faut pas** tout tester ! \checkmark Il suffit de trouver un **contre-exemple** x_0 tel que $P(x_0)$ est fausse
- \nearrow Pour réfuter $\exists x$ tel que P(x), il **ne suffit pas** d'un exemple où P(x) est fausse \checkmark Il faut montrer que pour **tout** x, P(x) est fausse