EECE 2322: Fundamentals of Digital Design and Computer Organization Lecture 2_1: Gates and Numbers

Xiaolin Xu Department of ECE Northeastern University

A few updates

- * 1, Turn to Zoom/online will be communicated ASAP
- * 2, Slides before class
 - However, not the finalized version due to Uncertainty + Hybrid
 - * So, only use them for reference
 - * I will update the final version after each lecture

Truth Table

- One line for each possible combination of input values
- * Shows the output value of the function for all possible input values
- * There are four possible combinations of 2 input variables

Truth Table:

X	Υ	Z=XY

Truth Table

Truth table for
$$F = X + YZ$$
:

___ variables

Number of rows in a truth table is ____.

There is only one way that a Boolean function can be represented in a truth table

From Truth Table to Digital Circuit

* General Truth Table Structure for a 3-Variable Logic Function, F(X,Y, Z)

Row	Х	Υ	Z	F
0	0	0	0	F(0,0,0)
1	0	0	1	F(0,0,1)
2	0	1	0	F(0,1,0)
3	0	1	1	F(0,1,1)
4	1	0	0	F(1,0,0)
5	1	0	1	F(1,0,1)
6	1	1	0	F(1,1,0)
7	1	1	1	F(1,1,1)

From Truth Table to Digital Circuit

* General Truth Table Structure for a 3-Variable Logic Function, F(X,Y, Z)

Row	X	Υ	Z	F	Row	Х	Υ	Z	F
0	0	0	0	F(0,0,0)	0	0	0	0	1
1	0	0	1	F(0,0,1)	1	0	0	1	0
2	0	1	0	F(0,1,0)	2	0	1	0	0
3	0	1	1	F(0,1,1)	3	0	1	1	1
4	1	0	0	F(1,0,0)	4	1	0	0	1
5	1	0	1	F(1,0,1)	5	1	0	1	0
6	1	1	0	F(1,1,0)	6	1	1	0	1
7	1	1	1	F(1,1,1)	7	1	1	1	1

Minterms and Maxterms for a 3-Variable Logic Function, F(X,Y, Z)

Row	Х	Υ	Z	F	Minterm	Maxterm
0	0	0	0	F(0,0,0)	X'·Y'·Z'	X + Y + Z
1	0	0	1	F(0,0,1)	X'.Y'.Z	X + Y + Z'
2	0	1	0	F(0,1,0)	$X' \cdot Y \cdot Z'$	X + Y' + Z
3	0	1	1	F(0,1,1)	X'.Y.Z	X + Y' + Z'
4	1	0	0	F(1,0,0)	$X \cdot Y' \cdot Z'$	X'+Y+Z
5	1	0	1	F(1,0,1)	X·Y'.Z	X'+Y+Z'
6	1	1	0	F(1,1,0)	$X \cdot Y \cdot Z'$	X'+Y'+Z
7	1	1	1	F(1,1,1)	$X \cdot Y \cdot Z$	X'+Y'+Z'

Minterms and Maxterms for a 3-Variable Logic Function, F(X,Y, Z)

Row	Х	Υ	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

$$F = \Sigma_{X,Y,Z}(0,3,4,6,7)$$

$$= X' \cdot Y' \cdot Z' + X' \cdot Y \cdot Z + X \cdot Y' \cdot Z' + X \cdot Y \cdot Z' + X \cdot Y \cdot Z$$

Minterms and Maxterms for a 3-Variable Logic Function, F(X,Y, Z)

Row	Х	Υ	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

$$F = \prod_{X,Y,Z} (1,2,5)$$

= $(X + Y + Z') \cdot (X + Y' + Z) \cdot (X' + Y + Z')$

Basic operator

Α	В	A•B
0	0	0
0	1	0
1	0	0
1	1	1

* OR

$$f(A,B) = A + B = A \cup B$$

$$A \longrightarrow A+B$$

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

One Input Logic Gate

- * Inverter
 - * F = X'

One Input Logic Gate

- * Inverter
 - * F = X'

- * Buffer
 - * F=X
 - * Primarily used to amplify an electrical signal
 - * To drive gates
 - * How to design it?

- * Inverter
 - * Smallest digital circuit: 2 transistors

Truth Table

- One line for each possible combination of input values
- * Shows the output value of the function for all possible input values

* There are four possible combinations of 2 input variables

- * Basic operator
 - * NAND

$$f(A,B) = \overline{A \cdot B} = \overline{A \cap B}$$

$$A \longrightarrow B$$

$$B \longrightarrow A \cdot B$$

Α	В	A•B
0	0	1
0	1	1
1	0	1
1	1	0

* NOR

$$f(A,B) = \overline{A+B} = \overline{A \cup B}$$

$$A \longrightarrow B$$

$$B \longrightarrow B$$

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

- Basic operator
 - * XOR
 - The most common operator in security and crypto
 - * Equal 1 and 0: obfuscation

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

* DeMorgan's theorem

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

- * Representation of the function to be realized
- * Sum of Products representation
 - * Sum of minterms

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + AB\overline{C}$$

- Product of Sums representation
 - Product of maxterms

$$F = (A + B + C) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

* NAND

* NOR

* Multi-input NOR

* The general design scheme

CMOS 2-Input NAND Gate

* (A) Circuit Diagram; (B) Function Table; (C) Logic Symbol

(b)	Α	В	Q1	Q2	Q3	Q4	Z
		LOW HIGH					
	HIGH	LOW	on	off	off	on	HIGH
	HIGH	HIGH	on	OTT	on	OTT	LOW

Ζ

А — В —

(C)

Switch Model for CMOS 2-Input NAND Gate

* (A) Both Inputs LOW; (B) One Input HIGH; (C) Both Inputs HIGH

Switching-Algebra Theorems with One Variable

(T1)
$$X + 0 = X$$
(T1D) $X \cdot 1 = X$ (Identities)(T2) $X + 1 = 1$ (T2D) $X \cdot 0 = 0$ (Null elements)(T3) $X + X = X$ (T3D) $X \cdot X = X$ (Idempotency)(T4) $(X')' = X$ (Involution)(T5) $X + X' = 1$ (T5D) $X \cdot X' = 0$ (Complements)

Switching-Algebra Theorems with Two or Three Variables

(T6)	X + Y = Y + X	(T6D)	$X \cdot Y = Y \cdot X$	(Commutativity)
(T7)	(X+Y)+Z=X+(Y+Z)	(T7D)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$	(Associativity)
(T8)	$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$	(T8D)	$(X+Y)\cdot (X+Z) = X+Y\cdot Z$	(Distributivity)
(T9)	$X + X \cdot Y = X$	(T9D)	$X \cdot (X + Y) = X$	(Covering)
(T10)	$X \cdot Y + X \cdot Y' = X$	(T10D)	$(X + Y) \cdot (X + Y') = X$	(Combining)
(T11)	$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$			(Consensus)
(T11')	$(X+Y)\cdot (X'+Z)\cdot (Y+Z)=(X+Y)\cdot (X'+Z)$			

DeMorgan's Laws

$$\overline{(a \cdot b)} = \overline{a} + \overline{b}$$

 $\overline{(a + b)} = \overline{a} \cdot \overline{b}$

- Replace AND with OR and OR with AND
- Remove complement from the entire expression and place over each variable instead
- These laws are duals of one another

DeMorgan's Laws in Pictures

Equivalent Circuits According to DeMorgan's Theorem

* (A) AND-NOT; (B) NOT-OR; (C) Logic Symbol for a NAND Gate; (D) Equivalent Symbol for a NAND Gate

(d)
$$X \longrightarrow Z = X' + Y'$$

Equivalent Circuits According to DeMorgan's Theorem

* (A) OR-NOT; (B) NOT-AND; (C) Logic Symbol for a NOR Gate; (D) Equivalent Symbol for a NOR Gate

(b)
$$X \longrightarrow Z = X' \cdot Y'$$

(d)
$$X \longrightarrow Z = X' \cdot Y'$$

Gates can Have More than Two Inputs

Some Quick Rules

- An n-input AND gate has
 - * output 1 when ALL inputs are 1
 - output 0 when ANY input is 0
- * An n-input OR gate has
 - * output 1 when ANY input is 1
 - * output 0 when ALL inputs are 0

A 3-Input, 1-Output Logic Circuit

