RAJSHAHI UNIVERSITY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Course Title: Sessional Based on CSE 4203

Course No: CSE 4204

LAB REPORT

Submitted by:

Name: Md. Mehedi Hasan

Roll:143036

Section: A

Date: 17/04/2019

Submitted to:

Prof. Dr. Md. Rabiul Islam
Head

Dept. of CSE, RUET

TABLE OF CONTENT

Serial No.	Title	Page no.
1	Nearest Neighbour Algorithm	3-6
2	Single Layer Perceptron Algorithm	7-11
3	Multilayer Perceptron (Back Propagation)	12-19
4	Kohonen Self-Organizing Network	20-23
5	Hopfield Network	24-26

Title: Nearest Neighbor Algorithm

Objectives:

- Classify unknown patterns
- > To make decision based on the shortest distance to the neighbouring class samples
- For handling rogue pattern, average distance is used instead of minimum distance

Theory:

The idea of Nearest Neighbour algorithm is simple. When an unknown data is presented to classify, the algorithm first finds the point from all the classes that are nearest from the data point.

$$(X) = closest(class1) - closest(class2)$$

Then find the point which has lowest distance among these data points. Distance is measured using Euclidean distance which is defined by the following equation:

$$d(X,Y)_{euc} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

There is an anomaly which is known as rogue pattern when a point is misclassified. Then all point near that point will also be misclassified as they are near that point even they should belong to other class. To avoid this anomaly, we use average distance instead of minimum distance from all the points of the classes. So, the effect of rogue points reduces and we get accurate results.

Methodology:

Let m be the number of training data samples. Let p be an unknown point.

- 1. Store the training samples in an array of data points arr[]. This means each element of this array represents a tuple (x, y).
- 2. For i=0 to m:

Calculate Euclidean Distance d(arr[i], p).

- 3. Make set S of K smallest distances obtained. Each of these distances correspond to an already classified data point.
- 4. Return the majority label among S.

Code:

#import needed packages import numpy as np import matplotlib.pyplot as plt	min_distance_from_class1 = dist1
import csv	min_distance_from_class2 = 999999
<pre>def loadDataSet(path): data = np.loadtxt(path, delimiter=',',skiprows=1) #load csv</pre>	for i in range(len2): #find the minimum euclidean distance data point from given point to every point
file without the header row sorted_data = sorted(data[:], key =	of class 2 dist2 = euclid_distance(class2[i],
lambda x: x[2]) #sort the data based on 3rd column i.e. class class1 = []	np.array((weight, height))) if(min_distance_from_class2 > dist2):
class2 = [] for i in range(len(sorted_data)): if(sorted_data[i][2] == 0):	min_distance_from_class2 = dist2
class1.append([sorted_data[i][0],	<pre>if(min_distance_from_class1 < min_distance_from_class2): #if the</pre>
sorted_data[i][1]]) #class 1 contains data with class label 0	point is closer to class 1 class1 = np.vstack((class1,
else: class2.append([sorted_data[i][0], sorted_data[i][1]]) #class 2 contains	np.array((weight, height)))) #append that unknown point to class 1 fig = plt.figure()
data with class label 1 return (np.array(class1), np.array(class2))	plt.plot(class1[:, 0], class1[:, 1], 'x') plt.plot(class2[:, 0], class2[:, 1], '*') plt.show()
def euclid_distance(x, y):	return 1 else:
return np.sqrt(np.sum((x-y)**2))	class2 = np.vstack((class2, np.array((weight, height)))) #append
def NearestNeighbor(weight, height): global class1	that unknown point to class 2 fig = plt.figure()
global class2 len1 = len(class1) len2 = len(class2)	plt.plot(class1[:, 0], class1[:, 1], 'x') plt.plot(class2[:, 0], class2[:, 1], '*') plt.show() return 2
min_distance_from_class1 = 999999	ifname=="main":
for i in range(len1): #find the minimum euclidean distance data	while(1): decision = input('Do you want to
point from given point to every point of class 1	proceed? Press y/n') if (decision == 'n' or decision ==
dist1 = euclid_distance(class1[i], np.array((weight, height)))	'N'): break woight = float/input/'Entor
<pre>if(min_distance_from_class1 > dist1):</pre>	weight = float(input('Enter Weight:'))

height = float(input('Enter Height:')) path = 'NNData.csv' (class1, class2) = loadDataSet(path) fig = plt.figure() plt.plot(class1[:, 0], class1[:, 1], 'x') plt.plot(class2[:, 0], class2[:, 1], '*') plt.plot(weight, height, '.') plt.show() x = NearestNeighbor(weight,height) print('Predicted Class is:'+str(x)) with open(path, 'a', newline=") as newFile: newFileWriter = csv.writer(newFile)

newFileWriter.writerow([weight, height, x-1])

Input:

Enter Weight:101 Enter Height:6.0

Output:

Predicted Class is:2

Code for handling roque pattern:

```
import numpy as np
import matplotlib.pyplot as plt
import csv
def loadDataSet(path):
  data = np.loadtxt(path,
delimiter=',',skiprows=1)
  sorted_data = sorted(data[:], key =
lambda x: x[2])
  class1 = []
  class2 = []
  for i in range(len(sorted_data)):
     if(sorted\_data[i][2] == 0):
class1.append([sorted_data[i][0],
sorted_data[i][1]])
    else:
class2.append([sorted_data[i][0],
sorted_data[i][1]])
  return (np.array(class1),
np.array(class2))
def euclid_distance(x, y):
  return np.sqrt(np.sum((x-y)**2))
def NearestNeighbor(weight, height):
  alobal class1
  global class2
  len1 = len(class1)
  len2 = len(class2)
  distance_from_class1 = 0
  for i in range(len1):
     distance_from_class1 +=
euclid_distance(class1[i],
np.array((weight, height)))
  distance_from_class2 = 0
  for i in range(len2):
     distance_from_class2 +=
euclid distance(class2[i].
np.array((weight, height)))
```

```
if(distance_from_class1/len1 <
distance_from_class2/len2):
     class1 = np.vstack((class1,
np.array((weight, height))))
     fig = plt.figure()
     plt.plot(class1[:, 0], class1[:, 1], 'x')
     plt.plot(class2[:, 0], class2[:, 1], '*')
     plt.show()
     return 1
  else:
     class2 = np.vstack((class2,
np.array((weight, height))))
     fig = plt.figure()
     plt.plot(class1[:, 0], class1[:, 1], 'x')
     plt.plot(class2[:, 0], class2[:, 1], '*')
     plt.show()
     return 2
if __name__=="__main__":
  while(1):
     decision = input('Do you want to
proceed? Press v/n')
     if (decision == 'n' or decision ==
'N'):
        break
     weight = float(input('Enter
Weight:'))
```



```
height = float(input('Enter
Height:'))
    path = 'NNData.csv'
     (class1, class2) =
loadDataSet(path)
     fig = plt.figure()
     plt.plot(class1[:, 0], class1[:, 1], 'x')
     plt.plot(class2[:, 0], class2[:, 1], '*')
     plt.plot(weight, height, '.')
     plt.show()
    x = NearestNeighbor(weight,
height)
     print('Predicted Class is:'+str(x))
    with open(path, 'a', newline=") as
newFile:
       newFileWriter =
csv.writer(newFile)
newFileWriter.writerow([weight,
height, x-1])
```

Input:

Enter Weight:100 Enter Height:6.2

Output:

Performance Analysis & Discussion:

If we use general nearest neighbour, it will be affected by outliers. It will produce incorrect predictions. If we use average distance instead of minimum distance, we would be able to solve the problem. Because averaging all the distance will give us more near results to actual mean without the outlier present

Title: Single Layer Perceptron Algorithm

Objectives:

- > Understanding the basic of biological neuron
- > Design a single layer perceptron that can classify binary data pattern

Theory:

A single layer perceptron is like a biological neuron that accumulates stimulation from dendrites and fires if the combined value is greater than the threshold value. There acts some weight factors in that accumulation process. If the weight of the stimulation is greater, it has higher impact on the neuron, if not, it has less impact on the output.

Fig 1: Single Layer Perceptron

Methodology:

- 1. Initialise weights and threshold
- 2. Present input and desired output
- 3. Calculate actual output

$$y(t) = f_h\left[\sum_{i=0}^n w_i(t)x_i(t)\right]$$

4. Adapt weights

$$= d(t) - y(t)$$

$$W_i(t + 1) = w_i + \eta x_i(t)$$

Where $0 \le \eta \le 1$, a positive gain term that controls adaptation rate.

Code:

#Code for perceptron learning #formula => Wi = Wi + ita*delta*Xi import numpy as np import matplotlib.pyplot as plt from numpy import binary_repr import time np.random.seed(7) #for reproducibility def genData(input_line): print('Input Lines: ' + str(input_line)) # no of bits in the input, 101 has 3 bits so 3 input line in perceptron number_of_elements =	no = round((len(inputs) * ratio)/2) no_test = round(len(inputs)/2) - no train_x= [] train_y= [] test_x= [] test_y= [] for i in range(0, no): train_x.append(inputs[i]) train_y.append(classes[i]) for i in range(no, no+no_test): test_x.append(inputs[i]) test_y.append(classes[i]) for i in range(round(len(inputs)/2),
pow(2,input_line) #total combination	no+round(len(inputs)/2)): train_x.append(inputs[i])
# Making inputs inputs = [] classes = []	train_y.append(classes[i]) for i in range(no+round(len(inputs)/2),
<pre>i = 0 for i in range(0,number_of_elements):</pre>	<pre>len(inputs)): test_x.append(inputs[i]) test_y.append(classes[i])</pre>
tmp = list(binary_repr(i,input_line))	return (train_x, train_y, test_x, test_y)
#params=value, length, this returns binary patterns for value of length	
if tmp[0]=='0': #if MSB is zero classes.append('0') #class label else: classes.append('1')	<pre>def predict(input_x, weights, threshold): #cumsum input_x with weights and comparing with threshold value</pre>
inputs.append(tmp) $i = i+1$	<pre>if float(np.dot(input_x, weights.T)) > threshold: return 1</pre>
<pre>inputs = np.array(inputs) classes = np.array(classes) return (inputs.astype(np.float), classes.astype(np.int)) #convert string into float and int</pre>	else: return 0
def split_dataset(inputs, classes, ratio): #split data with train data ratio=ratio	<pre>def train_perceptron(train_x, train_y, ita, threshold): no_of_input = len(train_x) #total no of data no_of_input_line = len(train_x[0])</pre>
split of the data will be like this: lets say total data 16, ratio = 0.8 train_x will be [0, 5) and [8, 13)	#input line no i.e. no of bits

weights =	epoch = 0
np.random.rand(1,len(train_x[0]))	i = 0 # index for training
#initialize weight vector randomly	current_class = 0
print('Initial Weights', weights)	position1 = 0
epoch = 0	position2 = int(no_of_input/2)
i = 0 # index for training	class_1 = False
while(1):	while(1):
epoch = epoch + 1	epoch = epoch + 1
input_x = train_x[i] #take an	input_x = train_x[i] #take an
input	input
input_y = train_y[i]	input_y = train_y[i]
print("Input_x:", input_x)	print("\nlnput_x:", input_x)
print("Input_y:", input_y)	print("Input_y:", input_y)
predicted_y = predict(input_x,	predicted_y = predict(input_x,
weights, threshold) # predict the	weights, threshold) # predict the
output	output
print("Predicted_y:", predicted_y)	print("Predicted_y:", predicted_y)
delta = input_y - predicted_y	delta = input_y - predicted_y
#print(delta)	#print(delta)
weights = weights +	weights = weights +
np.multiply(ita * delta, input_x)	np.multiply(ita * delta, input_x)
#update weight	#update weight
if delta != 0: #if wrong	if delta != 0: #if wrong
prediction	prediction
i = 0 #start from begining with	if current_class == 0:
updated weight	i = position1 #start from
continue	begining with updated weight
else:	class_1 = False
i = i + 1 #else continue	else:
if i == no_of_input: #if no error	i = position2
occured with latest weights	class_1 = False
break #then stop training	continue
print('Final Weights', weights)	else:
print("Indt Weights", Weights) print("Total Steps:"+str(epoch))	i = i + 1 #else continue
return weights	if i == no_of_input and
return weights	
	class_1 == False:
dof train percentron?/train v train v	i = position1
def train_perceptron2(train_x, train_y,	elif i == no_of_input and
ita, threshold):	class_1 == True:
no_of_input = len(train_x) #total	break
no of data	elif i == position2: #if no error
no_of_input_line = len(train_x[0])	occured with latest weights
#input line no i.e. no of bits	class_1 = True
	current_class = 1
weights =	print('Final Weights', weights)
np.random.rand(1,len(train_x[0]))	print("Total Steps:"+str(epoch))
#initialize weight vector randomly	return weights
print('Initial Weights', weights)	

```
np.random.rand(1,len(train_x[0]))
def test_perceptron(weights,
threshold, test_x, test_y):
                                              #initialize weight vector randomly
  no_of_data = len(test_x)
  TP = 0
                                                   starting_time1 = time.time()
  TN = 0
                                                   trained_weights =
  FP = 0
                                              train_perceptron(train_x, train_y, ita,
  FN = 0
                                              threshold)
                                                   ending_time1 = time.time()
  for i in range(no_of_data):
    pred_y = predict(test_x[i],
                                                   starting_time2 = time.time()
weights, threshold)
                                                   trained_weights2 =
    print("X:",test_x[i])
                                              train_perceptron2(train_x, train_y, ita,
    print("Y:",test_y[i])
                                              threshold)
    print("Predicted:",pred_y)
                                                   ending_time2 = time.time()
    if pred_y == test_y[i] and pred_y
== 1:
                                                   print('\nTesting\n')
       TP = TP + 1
                                                   accuracy =
    elif pred_y == test_y[i] and
                                              test_perceptron(trained_weights,
pred_y == 0:
                                              threshold, test_x, test_y)
       TN = TN + 1
                                                   accuracy2 =
    elif pred_y != test_y[i] and
                                              test_perceptron(trained_weights2,
pred_y == 1:
                                              threshold, test_x, test_y)
       FP = FP + 1
                                                   #print('\nTime Required: ',
                                              ending_time - starting_time)
    else:
       FN = FN + 1
  accuracy = (TP +
                                              str(train_ratio)+'\t'+str(round(1 -
TN)/(TP+TN+FP+FN)
                                              train_ratio,
  print("Accuracy:"+str(accuracy))
                                              2))+'\t'+str(round(ending_time1 -
  return accuracy
                                              starting_time1,
                                              2))+'\t'+str(round(ending_time2 -
                                              starting_time2,
if __name__=="__main__":
                                              2))+'\t'+str(round(accuracy * 100,
  (inputs, classes) = genData(10)
                                              2))+'\t'+str(round(accuracy2 *
                                              100,2))+'\t\n'
  ans = []
                                                   ans.append(x)
  train_ratios = [0.9, 0.8, 0.7, 0.6, 0.5]
  for train_ratio in train_ratios:
                                              print('\t\tTime\t\tAccuracy')
    (train_x, train_y, test_x, test_y) =
                                              print('\nLearn\tTest\tAlgo(1)\tAlgo(2)\t
                                              Algo(1)\tAlgo(2)\n'
split_dataset(inputs, classes,
train_ratio)
                                              for i in ans:
    ita = np.random.random()
                                                print(i)
    threshold = np.random.random()
```

#weights =

Results:

If everything (weights, ita, k) is same:

		Time(in seconds)		e(in seconds) Accuracy (in %)	
Learn(%)	Test(%)	Algo(1)	Algo(2)	(Algo(1)	Algo(2)
90	10	4.57	12.68	100.0	100.0
80	20	2.94	2.95	100.0	100.0
70	30	2.15	4.35	100.0	100.0
60	40	1.99	3.66	100.0	100.0
50	50	1.8	2.84	99.8	99.8

If only Weights are different:

<u> </u>		Time(in seconds)		Accuracy (in %)	
Learn(%)	Test(%)	Algo(1)	Algo(2)	(Algo(1)	Algo(2)
90	10	6.33	4.44	100.0	100.0
80	20	3.71	3.78	100.0	100.0
70	30	4.81	6.91	100.0	100.0
60	40	3.55	5.25	99.02	100.0
50	50	3.97	8.11	88.67	91.41

Performance Analysis & Discussion:

When everything is same between them, first algorithm which iterates through the whole dataset at once, takes less time to minimize errors. Because, since it will only update it's weights when a wrong outcome occurs, and since there is only 2 classes, chances of wrong outcome is low. But if there is mistake in second class, weight update and further recalculation is done for that group at first which can lead to error for the other class of data.

When weights are different, the result is not straight forward, rather it is mixed up. At 50% and 60% train split, the accuracy of Algo(2) is higher than that of Algo(1). But most of the cases, Algo(1) beats Algo(2). And in 4 out of 5 times, Algo(1) takes less time than Algo(2) which follows same explanation as first case when everything is same between them.

Title: Backpropagation Neural Network Algorithm

Objectives:

- Solve complex problems like XOR problem that were unsolvable by single layer perceptron algorithm
- Classify multiple classes of data

Theory:

Back propagation is one of the most important achievement in the field of artificial neural network. It solved many problems which were previously insolvable by single layer neural network for example: XOR problem. This algorithm created huge attraction towards this field.

It is more complex than single layer neural network. At first, we present an input to the network. It produces random output. There is an error function that calculates the difference between the networks current output and the current desired output. To learn successfully we want to minimise the error gradually. To achieve this, weight and thresholds of the neuron of the layers are adjusted by the algorithm. Generalised delta rule calculates this error and back propagating the error to the previous layers (hence the name!).

Methodology:

<u>Back-Propagation Neural Network</u> <u>Algorithm</u>

values for each PE (processing element) with minimum random numbers.

Fig. 1: Three layer neural network

The first step is initializes the weight vectors Wij and W_{ik} and the threshold

In second step, the network provides the input patterns and the desired respective output patterns.

In third step, the input patterns are connected to the hidden PEs through the weights W_{ij} . In the hidden layer, each PE computed the weighted sum according to the equation,

$$net_{aj} = \sum W_{ij}O_{ai}$$
 (1

Where Oai is the input of unit i for pattern number a. The threshold of each PE was then added to its weighted sum to obtain the activation active (j) of that PE i.e.

$$activ_{i} = net_{ai} + uh_{i}$$
 (2)

Where uh_j is the hidden threshold weights for j^{th} PEs. This activation determined whether the output of the respective PE was either 1 or 0 (fires or not) by using a sigmoid function,

$$O_{ai} = 1/(1 + e^{-k_1 * activ_j})$$
 (3)

Where k_1 is called the spread factors, these O_{aj} were then served as the input to the output computation. Signal O_{aj} were then fan out to the output layer according to the relation,

$$net_{ak} = \sum W_{jk} O_{aj}$$
 (4)

And the output threshold weight uo_k for k^{th} output PEs was added to it to find out the activation $activo_k$

$$activo_k = net_{ak} + uo_i$$
 (5)

The actual output O_{ak} was computed using the same sigmoid function which was

$$O_{ak} = 1/(1 + e^{-k_1 * activo_k})$$
 (6)

Here another spread factor k_2 has been employed for the output units.

In the second stages, after computing the feed-forward propagation, an error was computed by comparing the output O_{ak} with the respective target t_{ak} , i.e.

$$\delta_{ak} = t_{ak} - O_{ak}$$
 (7)

This error was then used to adjust the weights vector W_{jk} using the equation,

$$\Delta W_{ik} = \eta_2 k_2 \delta_{ak} O_{ai} O_{ak} (1 - O_{ak}) \quad (8)$$

Where $\int_{-\infty}^{\infty} (activo_k) = k_2 O_{ak} (1 - O_{ak})$, the derivation of sigmoid function.

The weight vector W_{jk} was then adjusted to

$$W_{jk} = W_{jk} + \Delta W_{jk} \qquad (9)$$

For the threshold weight of the output PE, similar equation was employed,

$$\Delta u o_k = \eta_2 k_2 \delta_{ak} O_{ak} (1 - O_{ak}) \quad ^{(10)}$$

and the new threshold weight equaled as,

$$U_{ok} = U_{ok} + \Delta U_{ok} \quad (11)$$

In the next step, this error and the adjusted weight vector W_{jk} were feedback to the hidden layer adjust the weight vector W_{ij} and threshold weight uh_{j} . In this layer, the weight vector W_{ij} was computed by using equation,

$$\Delta W_{ij} = \eta_1 k_1 O_{ai} O_{aj} (1 - O_{aj}) \sum \delta_{ak} W_{jk}$$
 (12)

Where $\int_{-\infty}^{\infty} (activh_j) = k_1 O_{aj} (1 - O_{aj})$. The weight W_{ij} was then adjusted to

$$W_{ii} = W_{ii} + \Delta W_{ii} \tag{13}$$

For the threshold weights of the hidden PEs, similar equation was employed,

$$\Delta u h_{j} = \eta_{1} k_{1} O_{aj} (1 - O_{aj}) \sum \delta_{ak} W_{jl}$$
 (14)

and the new threshold were calculated

$$uh_j = uh_j + \Delta uh_j$$
 (15)

Calculating Errors:

After getting the output from the output layer, we calculate the error according to the targeted output in the following error calculating formula,

$$Error_a = 0.5 \sum (t_{ak} - o_{ak})^2$$
 (16)

Code:

#Code for Multi Layer Perceptron learning import numpy as np import matplotlib.pyplot as plt from numpy import binary_repr import random

def find_class(num, class_range):
 """returns the class by taking binary
input,
 converting it into decimal and

converting it into decimal and finding the index of map from which th wdecimal is lower."" number = ".join(map(str, num)) given = int(number, 2) for i in range(len(class_range)): if given <= class_range[i]: return i

def genData(input_line, nb_classes):

```
"""Generates binary numbers and
class labels. Number of binary
number = 2 ^ input_line"""
  print('Input Lines: ' + str(input_line))
# no of bits in the input, 101 has 3 bits
so 3 input line in perceptron\n",
  number_of_elements =
pow(2,input_line) #total
combination\n",
  nb_output_nodes =
int(np.log2(nb_classes))
  class difference =
int(number_of_elements /
nb classes)
  class_range = {}
  i = 0
  for i in range(class_difference-1,
number_of_elements,
class_difference):
    class_range[j] = i
    j = j + 1
  # Making inputs\n",
  inputs = []
  classes = []
  i = 0
  for i in
range(0,number_of_elements, 1):
    tmp =
list(binary_repr(i,input_line))
#params=value, length, this returns
binary patterns for value of length\n",
classes.append(list(binary_repr(find_c
lass(tmp,
class_range),nb_output_nodes)))
    inputs.append(tmp)
    i = i+1
  inputs = np.array(inputs)
  classes = np.array(classes)
  return (inputs.astype(np.float),
classes.astype(np.int)) #convert string
into float and int"
```

der split_dataset(inputs, classes,	nb_input = len(Oai)
ratio): #split data with train data	#step 1
ratio=ratio\n",	#initializing random weights
no = round((len(inputs) * ratio)/2)	w_ij =
#0-40 data	np.random.random((nb_hidden_layer
	_node,nb_input_layer_node))
no_test = round(len(inputs)/2) - no	'
#last 40-50 data	w_jk =
train_x= []	np.random.random((nb_output_layer
train_y= []	_node,nb_hidden_layer_node))
test_x= []	print("weight ij:",w_ij)
test_y= []	print("weight jk",w_jk)
for i in range(0, no):	
train_x.append(inputs[i])	#initializing random threshold
train_y.append(classes[i])	values
for i in range(no, no+no_test):	uh_j =
test_x.append(inputs[i])	np.random.random(nb_hidden_layer
	•
test_y.append(classes[i])	_node)
for i in range(round(len(inputs)/2),	uo_k =
no+round(len(inputs)/2)):	np.random.random(nb_output_layer_
train_x.append(inputs[i])	node)
train_y.append(classes[i])	print("threshold uhj",uh_j)
for i in	print("threshold uok",uo_k)
range(no+round(len(inputs)/2),	
len(inputs)):	k1= np.random.random()
test_x.append(inputs[i])	k2= np.random.random()
test_y.append(classes[i])	print ("k1",k1)
1001_j.upporta(0100000[1])	print("k2",k2)
return (np.array(train_x),	print(KZ ,KZ)
· · · · · · · · · · · · · · · · · · ·	ita1 na randona randona()
np.array(train_y), np.array(test_x),	ita1 = np.random.random()
np.array(test_y))	ita2 = np.random.random()
	print("ita1",ita1)
def sigmoid(k, x):	print ("ita2", ita2)
return (1/(1+np.exp(-k*x)))	
	active = []
def error(x, y):	pos = 0
z = sum(list([(i-j)**2 for i,j in zip(x,	epoch = 0
y)])) #like bitwise operation	count = 0
z = 0.5 * z	while(1):
return z	print("\nEpoch:
retain z	"+str(int(epoch/nb_input)))
doftrain norcentron/Oai Tal	·
def train_perceptron(Oai, Tak,	print("Input:", Oai[pos])
nb_hidden):	net = []
np.random.seed(1)	k = 0
nb_input_layer_node = len(Oai[0])	for m in
nb_hidden_layer_node =	range(nb_hidden_layer_node):
nb_hidden	
nb_output_layer_node =	net.append(float(np.dot(Oai[pos],
len(Tak[0])	w_ij[k].T)))

k = k + 1	
	tmpx = np.array([i*j for i,j in
active = net + uh_j	zip(Oak, tmpy)])
	tmpz = np.array([i*j for i,j in
Oaj = []	zip(tmpx, delta)])
for i in	del_uok = ita2 * k2 *tmpz
range(nb_hidden_layer_node):	$uo_k = uo_k + del_uok$
Oaj.append(sigmoid(k1,	
active[i]))	sum_del_w = []
NETak = []	m = 0
k = 0	for j in delta:
for m in	sum_del_w.append(sum([i*j
range(nb_output_layer_node):	for i in w_jk[m]]))
NIET I	m = m + 1
NETak.append(float(np.dot(Oaj,	tmpy1 = list(1-np.array(Oaj))
w_jk[k].T)))	tmpx1 = np.array([i*j for i,j in
k = k + 1	zip(tmpy1, Oaj)])
activek= NETak + uo_k	4 0
n	tmpz1 = []
Oak = []	for i in
for i in	range(nb_hidden_layer_node):
range(nb_output_layer_node):	tmpz1.append(sum([tmpx1[i]*j
Oak.append(sigmoid(k2,	forjin sum_del_w]))
activek[i]))	dal ii ita1 * l.1 *
delta = Tak[pos] - Oak	del_w_ij = ita1 * k1 *
print("Predicted Output:",Oak)	np.array(tmpz1)
print("Actual output", Tak[pos])	dal w ii 1 – II
Error = error(Tak[pos], Oak)	del_w_ij_1 = [] for j in del_w_ij:
print("Error"+str(Error) + "\n")	for i in
print(Litor +str(Litor) + (it)	range(nb_input_layer_node):
tmpy = list(1-np.array(Oak))	range(nb_input_tayer_node).
tmpx=[i*j for i,j in zip(tmpy, Oak)]	del_w_ij_1.append(Oai[pos][i] * j)
tmpz = np.array([i*j for i,j in	#del_w_ij_1 = np.array([i*j for i,j
zip(tmpx, delta)])	in zip(Oai[pos], del_w_ij)])
$del_{w_jk} = ita2 * k2$	
del_w_jk = ttd2	$w_i = w_i +$
$del_{w_jk_1} = del_{w_jk_2} + del_{w_jk_3}$ $del_{w_jk_1} = []$	np.reshape(del_w_ij_1,
	(nb_hidden_layer_node,nb_input_lay
for j in del_w_jk:	er_node))
for i in	C1_110dC//
range(nb_hidden_layer_node):	del_uhj = del_w_ij
del_w_jk_1.append(Oaj[i]*j)	pos = pos + 1
a.ojappoa(o.oj;., j,	if(pos == nb_input):
$w_i = w_i + $	pos = 0
np.reshape(del_w_jk_1,	1
(nb_output_layer_node,nb_hidden_la	epoch = epoch + 1
yer_node)) # editing	if(round(Error, 2) <= 0.10):
<u> </u>	• • • • •

```
if(count == nb_input - 1):
                                                     k = k + 1
         break
       else:
                                                  activek= NETak + uo_k
         count = count + 1
                                                  Oak = []
                                                  for i in
    else:
       pos = 0
                                              range(nb_output_layer_node):
                                                     Oak.append(sigmoid(k2,
       count = 0
                                              activek[i]))
  return (w_ij, w_jk, uh_j, uo_k, k1,
k2, nb_hidden_layer_node, epoch)
                                                  print("Predicted Output:",Oak)
                                                  print("Actual output", Tak[pos])
                                                  Error = error(Tak[pos], Oak)
def test_perceptron(Oai, Tak, w_ij,
w_jk, uh_j, uo_k, k1, k2,
                                                  print("Error"+str(Error) + "\n")
nb_hidden_layer_node):
                                                  e.append(Error)
  nb_{input} = len(Oai)
                                                return e
  nb_output_layer_node =
len(Tak[0])
                                             if __name__=="__main__":
  e = []
                                                nb\_of\_line = 5
  for pos in range(nb_input):
                                                nb_classes = 4
    print("Input:", Oai[pos])
                                                nb_hidden = 5
    net = []
                                                (inputs, classes) =
    k = 0
                                              genData(nb_of_line, nb_classes)
    for m in
range(nb_hidden_layer_node):
                                                train_ratio = 0.8
                                                (train_x, train_y, test_x, test_y) =
net.append(float(np.dot(Oai[pos],
                                              split_dataset(inputs, classes,
w_ij[k].T)))
                                              train_ratio)
       k = k + 1
                                                #step 2
                                                (w_ij, w_jk, uh_j, uo_k, k1, k2,
    active = net + uh_j
                                              nb_hidden_layer_node) =
                                              train_perceptron(train_x, train_y,
    Oaj = []
                                              nb_hidden)
    for i in
                                                print("Testing\n")
                                                e = test_perceptron(test_x, test_y,
range(nb_hidden_layer_node):
       Oaj.append(sigmoid(k1,
                                              w_ij, w_jk, uh_j, uo_k, k1, k2,
                                              nb_hidden_layer_node)
active[i]))
                                                e = np.array(e)
                                                print('Average Error: ', np.mean(e))
    NETak = []
    k = 0
                                                print('Standard deviation', np.std(e))
    for m in
range(nb_output_layer_node):
NETak.append(float(np.dot(Oaj,
w_jk[k].T)))
```

Input:

Number of Input Line = 5 Number of classes = 4 Number of hidden layer node = 5 Train ratio = 0.8 k1 0.2804439920644052 k2 0.7892793284514885 ita1 0.10322600657764203 ita2 0.44789352617590517

Output:

```
weight ij: [
4.17022005e-017.20324493e-011.14374817e-043.02332573e-011.46755891e-
011
    9.23385948e-02
                      1.86260211e-01
                                        3.45560727e-01
                                                           3.96767474e-01
5.38816734e-01]
[4.19194514e-01 6.85219500e-01 2.04452250e-01 8.78117436e-01 2.73875932e-
02]
    6.70467510e-01
                     4.17304802e-01
                                        5.58689828e-01
                                                          1.40386939e-01
1.98101489e-01l
    8.00744569e-01 9.68261576e-01 3.13424178e-01
                                                          6.92322616e-01
8.76389152e-01]
weight jk [
[ 0.89460666 0.08504421 0.03905478 0.16983042 0.8781425 ]
[ 0.09834683 0.42110763 0.95788953 0.53316528 0.69187711]
threshold uhj [ 0.31551563 0.68650093 0.83462567 0.01828828 0.75014431]
threshold uok [ 0.98886109 0.74816565]
k1 0.2804439920644052
k2 0.7892793284514885
ita1 0.10322600657764203
ita2 0.44789352617590517
Testing
Input: [0. 1. 1. 0. 1.]
Predicted Output: [0.033543612782787141, 0.98915139655846018]
Actual output [0 1]
Error0.000621433077577
Input: [0. 1. 1. 1. 0.]
Predicted Output: [0.033559540507953262, 0.98912195272445091]
Actual output [0 1]
Error0.000622287335817
Input: [0. 1. 1. 1. 1.]
```

Predicted Output: [0.033476912514069979, 0.98926900432783749]

Actual output [0 1] Error0.000617928969795

Input: [1. 1. 1. 0. 1.]

Predicted Output: [0.75182543047209016, 0.85861462071103589]

Actual output [1 1] Error0.0407902212185

Input: [1. 1. 1. 1. 0.]

Predicted Output: [0.75644429509802502, 0.86054559017869992]

Actual output [1 1] Error0.0393834569045

Input: [1. 1. 1. 1. 1.]

Predicted Output: [0.72016826471599615, 0.86711838123123997]

Actual output [1 1] Error0.0479816623393

Average Error: 0.0216694983076

Standard 0.0212167035652

Steps: 3778

Performance Analysis & Discussion:

Back propagation neural net takes input and calculates an output. If the output is not the same as desired or the error is not less than 10% then the algorithm continues with the same input. If less than 10% error is encountered, the algorithm moves on with the next input line. At last, the weights of the hidden layer and output layer along with the thresholds value of the nodes of hidden and output layers are saved and used during testing phase

Title: Kohonen Self-Organising Network

Objectives:

- Study of an unsupervised neural network
- Map input patterns into output grid

Theory:

Kohonen self-organising network is an unsupervised neural network algorithm that finds the common features among input patterns. The learning algorithm organizes the nodes in the grid into local neighbourhood that acts as a feature classifiers on the input data. The topographic map is autonomously organized by a cyclic process by comparing input patterns to vectors stored at each node. No training response is specified for any input.

Fig 1: Kohonen Network

Methodology:

- 1. Initialize network
 - Define $W_{ij}(t)$ (0<= i <= n-1) to be the weight from input I to node j at time t. Inintialize the network from the n inputs to the nodes to small randor values. Set the initial radius of the neighbourhood around node j, Nj (0) to be large
- 2. Present Input Present Input $x_0(t)$, $x_1(t)$, $x_2(t)$ $x_{n-1}(t)$ where $x_i(t)$ is the input to node I at time
- 3. Calculate distances

Calculate the distance d_i between the input and each output node j given by

$$d_j = \sum_{i=0}^{n-1} (x_i(t) - w_{ij}(t))^2$$

4. Select minimum distance

Designate the output node with minimum d_j to be j*

5. Update weights

Update weights for node j* and its neighbors defined by the neighbourhood soze $N_{j^*}(t)$. New weights are

```
W_{ij}(t+1) = w_{ij}(t) + \eta(t)(x_i(t) - w_{ij}(t)) \label{eq:wij} For j in N<sub>i*</sub>(t), 0 <=i <= n-1
```

The term $\eta(t)$ is the gain term. Its value is between 0 and 1 inclusive.

6. Repeat by going to 2.

Code:

```
#Code for kohonen neural network
                                                no_test = round(len(inputs)/2) - no
import numpy as np
                                                train_x= []
import matplotlib.pyplot as plt
                                                test_x = []
from numpy import binary_repr
                                                for i in range(0, no):
import random
                                                   train_x.append(inputs[i])
                                                for i in range(no, no+no_test):
np.random.seed(100)
                                                   test_x.append(inputs[i])
                                                for i in range(round(len(inputs)/2),
def genData(input_line):
  print('Input Lines: ' + str(input_line))
                                              no+round(len(inputs)/2)):
# no of bits in the input, 101 has 3 bits
                                                   train_x.append(inputs[i])
so 3 input line in perceptron\n",
                                                for i in
  number_of_elements =
                                              range(no+round(len(inputs)/2),
pow(2,input_line) #total
                                              len(inputs)):
combination\n",
                                                   test_x.append(inputs[i])
                                                return (np.array(train_x),
                                              np.array(test_x))
  # Making inputs\n",
  inputs = []
                                              def calculate_distance(x, w):
                                                return sum((x-w)**2)
  i = 0
  for i in
range(0,number_of_elements, 1):
                                              def train_kohonen(x, output_class):
                                                nb_input = len(x) #total input
    tmp =
list(binary_repr(i,input_line))
                                                nb_{input_layer_node} = len(x[0])
#params=value, length, this returns
                                              #number of input layer node
binary patterns for value of length\n",
    inputs.append(tmp)
                                              np.random.random((output_class,
    i = i+1
                                              nb_input_layer_node)) #weights
                                                final_W = []
  inputs = np.array(inputs)
  return (inputs.astype(np.float))
                                                distance = [[0, 0]] for i in
#convert string into float and int"
                                              range(output_class)]
def split_dataset(inputs, ratio): #split
                                                N = 3 #initial radius
data with train data ratio=ratio\n",
                                                ita = np.random.random() #gain
  no = round((len(inputs) * ratio)/2)
                                              term
```

```
i = 0
                                                  nb\_of\_line = 5
  flaq = False
                                                  nb_hidden = 5
                                                  inputs = genData(nb_of_line)
  k = 0
  while True:
     if i == nb_input:
                                                  train_ratio = 0.8
                                                  (train_x, test_x) =
       break
     for j in range(output_class):
                                               split_dataset(inputs,train_ratio)
       distance[j][0] =
                                                  (final_W, output_class, ita) =
calculate_distance(x[i], W[j])
       distance[j][1] = j
                                               train_kohonen(train_x, nb_hidden)
     dist =
                                                  k = 0
                                                  for i, j in final_W:
sorted(distance, key=lambda l:l[0])
                                                     print('Pattern:',train_x[k],
     #update weights
                                                'Predicted:', j)
     for j in range(N):
                                                    k = k + 1
       W[dist[j][1]] = W[dist[j][1]] +
                                                  print('\nTesting\n')
ita*(x[i]-W[dist[j][1]])#dist[j][1] will give
                                                  test_kohonen(test_x, final_W,
index with lowest distance
                                                output_class, ita)
     if flag == True:
       i = i + 1 # next sample
                                                Input:
       flag = False #resetting flag
                                                No of input line = 5
       N = 3 #reset neighbor
                                                No of output grid node = 5
                                               Train ratio = 0.8
       final_W.append([W[dist[0][1]],
dist[0][1]])
       continue
                                                Output:
                                                Pattern: [ 0. 0. 0. 0. 0.] Predicted: 3
     N = round(N - ita * N)
                                                Pattern: [ 0. 0. 0. 0. 1.] Predicted: 1
     if N == 1:
                                                Pattern: [ 0. 0. 0. 1. 0.] Predicted: 0
                                                Pattern: [ 0. 0. 0. 1. 1.] Predicted: 1
       flag = True
  return (final_W, output_class, ita)
                                                Pattern: [ 0. 0. 1. 0. 0.] Predicted: 2
                                                Pattern: [ 0. 0. 1. 0. 1.] Predicted: 2
def test_kohonen(x, W, output_class,
                                                Pattern: [ 0. 0. 1. 1. 0.] Predicted: 0
ita):
                                                Pattern: [ 0. 0. 1. 1. 1.] Predicted: 4
                                                Pattern: [ 0. 1. 0. 0. 0.] Predicted: 3
  nb_{input} = len(x)
  distance = [[0, 0]] for i in
                                                Pattern: [ 0. 1. 0. 0. 1.] Predicted: 1
                                                Pattern: [ 0. 1. 0. 1. 0.] Predicted: 0
range(output_class)]
                                                Pattern: [ 0. 1. 0. 1. 1.] Predicted: 1
                                                Pattern: [ 0. 1. 1. 0. 0.] Predicted: 0
  for i in range(nb_input):
     for j in range(output_class):
                                                Pattern: [1. 0. 0. 0. 0.] Predicted: 2
          distance[i][0] =
                                                Pattern: [1. 0. 0. 0. 1.] Predicted: 2
calculate_distance(x[i], W[i][0])
                                                Pattern: [1. 0. 0. 1. 0.] Predicted: 3
          distance[j][1] = j
                                                Pattern: [1. 0. 0. 1. 1.] Predicted: 2
                                                Pattern: [1. 0. 1. 0. 0.] Predicted: 3
     dist =
                                                Pattern: [1. 0. 1. 0. 1.] Predicted: 0
sorted(distance, key=lambda l:l[0])
     print('Pattern:', x[i], 'Predicted:',
                                                Pattern: [1. 0. 1. 1. 0.] Predicted: 2
                                                Pattern: [1. 0. 1. 1.] Predicted: 0
dist[0][1])
                                                Pattern: [1. 1. 0. 0. 0.] Predicted: 1
if __name__=="__main__":
                                               Pattern: [1. 1. 0. 0. 1.] Predicted: 1
```

Pattern: [1. 1. 0. 1. 0.] Predicted: 2
Pattern: [1. 1. 0. 1. 1.] Predicted: 1
Pattern: [1. 1. 0. 1. 1.] Predicted: 1
Pattern: [1. 1. 1. 0. 0.] Predicted: 2
Pattern: [1. 1. 1. 0.] Predicted: 4
Pattern: [1. 1. 1. 1.] Predicted: 1

Testing

Pattern: [0. 1. 1. 0. 1.] Predicted: 0 Pattern: [0. 1. 1. 1. 0.] Predicted: 4

Performance Analysis & Discussion:

Kohonen takes an input pattern, calculates the distance and takes the node with shortest distance as the response of that input pattern. Kohonen then save the weight vectors for that node along with the node number. These are used during testing phase. That is what we have seen in the output of the network.

Title: Hopfield Network

Objectives:

- Converting unknown patterns into a learned pattern
- Recovering known pattern from noisy pattern.

Theory:

Hopfield Network is a fully connected, symmetrically weighted network. It is a fully connected mesh network. Every node is connected to all the other nodes except itself.

Fig 1: Hopfield Network

It uses bipolar inputs generally, but can work with binary inputs too. The input and output nodes are the same. It calculates the required weights first and then input is applied. So, there is no separate training phase for this network.

Methodology:

1. Assign connection weights

$$w_{ij} = \begin{cases} \sum_{s=0}^{M-1} x_i(s) x_j(s), & i! = j \\ 0, & i = j, 0 \le i, j \le M - 1 \end{cases}$$

Where w_{ij} is the connection weight between node i and node j, and $x_i(s)$ is the element of node I of the exemplar pattern for class s. The threshold value of the nodes are zero.

2. Initialize with unknown pattern

$$U_i(0) = x_i \ 0 <= i <= N-1$$

3. Iterate until convergence

$$U_{i}(t+1) = f_{h} \left[\sum_{j=0}^{N-1} w_{ij} u_{j}(t) \right] 0 \le j \le N-1$$

The function f_h is a hard limiting non linearity, the step function. Repeat the iteration until the outputs from the nodes remain unchanged.

Code:

```
#Code for Hopfield neural network
                                                      return False
import numpy as np
                                                 return True
import matplotlib.pyplot as plt
from numpy import binary_repr
                                              def hopfield(x):
                                                 nb\_node = len(x[0])
import random
from sklearn.model_selection import
                                                 w = np.zeros((nb_node, nb_node))
train_test_split
                                                 for i in range(nb_node):
import pandas as pd
                                                   for j in range(nb_node):
np.random.seed(100)
                                                      if i is not j:
                                                        w[i][i] = multiply(x, i, j)
def multiply(x, i, j):
                                                 print(w)
  ans = 0
                                                 return w
  for k in range(len(x)):
     ans += x[k][i] * x[k][j]
                                              def test_hopfield(x, w):
  return ans
                                                 nb\_node = len(x[0])
                                                 for i in range(len(x)):
def hard_limiting_threshold(x):
                                                   print('\nFor input: ', x[i])
  #print(x)
                                                   miu = x[i]
  if x \le 0:
                                                   while True:
     return -1.0
                                                      tmp = miu
  else:
                                                      miu = n_multiply(w, miu,
     return 1.0
                                              nb_node)
                                                      if match(miu, tmp):
                                                        print('Predicted',miu)
def n_multiply(w, miu, nb_node):
  ans = []
                                                        break
  for i in range(nb_node):
                                              if __name__=="__main__":
ans.append(hard_limiting_threshold(
                                                 train = pd.read_csv('Train-
np.dot(np.array(w[i]).T,
                                              Data.csv').values
                                                 test = pd.read_csv('Train-
np.array(miu))))
  return ans
                                              Data.csv').values
def match(a, b):
                                                 w = hopfield(train)
  for i in range(len(a)):
                                                 test_hopfield(test, w)
     if round(a[i]) != round(b[i]):
```

Input:

Two csv file containing 60 bits input patterns and test patterns.

Output:

Weights:

```
Predicted [-1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -
1.0, -1.0, -1.0, 1.0, -1.0, -1.0]
For input: [-1 -1 1 -1 -1 -1 -1 11111 -
11-1-11-1-11-1-1-1-1-1
111111111-11-1
Predicted [-1.0, -1.0, 1.0, -1.0, -1.0, -
1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0,
1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0,
1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0,
1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, 1.0, -
1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, -1.0, 1.0, 1.0]
```

Performance Analysis & Discussion:

Hopfield network calculates weight and then take unknown pattern and tries to make it as similar as a learned input pattern. It iterates until convergence is reached.