Group 4 - Deep Learning

Joshua Temple, Jill Check, Julia Zheng, Joy Li, Carlos Pimentel, Paige Durant, Dan Dick, Sarah McGuire

HRT 841 December 8th, 2022

Workflow

DataLoader

```
array([[[0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 3, 5, \ldots, 1, 1, 1]],
       [[0, 0, 1, \ldots, 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 1, 3, \ldots, 1, 1, 1]],
       [[0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, ..., 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1]],
       [[0, 0, 0, ..., 3, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
        [0, 0, 0, \ldots, 1, 1, 1],
         [0, 0, 0, \ldots, 1, 1, 1]]
```

Group 2

Metadata Data labels

Group 3

ETC arrays

Combine Data

Iterate through files
Combine labels and ETC arrays

Process for DataLoader

Reshape ETC arrays
 Convert arrays to Tensors
 Load Tensors into TensorDatasets
 Load Dataset into DataLoader

Visualization of Reshaped ETC Arrays

Convolutional Neural Network (CNN) examples

1. Setup and loading data

```
▼ 1.1 Install dependencies and setup

                                                                         小业岛目
  [5] pip install tensorflow tensorflow-qpu opency-python matplotlib
       import tensorflow as tf
       import os
       import cv2
       import imphdr
       from matplotlib import pyplot as plt
       import numpy as np
       # Deep Learning Model
       from tensorflow.keras.models import Sequential
       from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
       # Model Evaluation
       from tensorflow.keras.metrics import Precision, Recall, BinaryAccuracy
       # Saving the model
       from tensorflow.keras.models import load model
```

```
▼ 1.2 Load Data

       #Known data directory, this directory has to have all data sorted. Class 1
       # images on a directory, class 2 images in another directory and so on.
       data dir = 'path to data directory'
  [ ] # Code line to know which classes 'data dir' has inside
       os.listdir(data dir)
  [ ] # Code line to automatically indicate the code the data directory and how big
       # the batches of images will be
       # tf.keras.utils.image dataset from directory?? can help to check other dataset
       # parameters
       data = tf.keras.utils.image_dataset_from_directory('path_to_data_directory',
                                                          batch size = 15)
  [ ] # Visual representation of the data set
       data iterator = data.as numpy iterator()
       batch = data iterator.next()
  [ ] # Visual representation of the data set
       fig, ax = plt.subplots(ncols=8, figsize = (20,20))
       for idx, img in enumerate(batch[0][:8]):
         ax[idx].imshow(img.astype(int))
         ax[idx].title.set_text(batch[1][idx])
```

2. Image Preprocessing

```
▼ 2.1 Scale Images
  [ ] # Scaling the image means that the pixels that had a numerical value between
       # 0 and 255, now will have a value between 0 and 1 in order to facilitate the
       # calculus.
       data = data.map(lambda x,y: (x/255, y))
  1 # Proof that he max value is 1
       batch[0].max()
  1 # Proof that he min value is 0
       batch[0].min()
  [ ] # Visual representation of the scaled data
       scaled iterator = data.as numpy iterator()
       batch = scaled iterator.next()
  fig, ax = plt.subplots(ncols=8, figsize = (20,20))
       for idx, img in enumerate(batch[0][:8]):
         ax[idx].imshow(img)
         ax[idx].title.set text(batch[1][idx])
```

```
▼ 2.2 Split Data
  [ ] # This will let us know how many batches we have
       # A batch can be seen as an array that contains info of given quantity of images
       # (this quantity was given in the 3rd code line of '1.2 Load Data')
       len(data)
  [ ] # Define the # of batches that will be used for training (~70% of data)
       train size = int(len(data)*.7)
       train size
  [ ] # Define the # of batches that will be used for validation (~20% of data)
       val size = int(len(data)*.2)+1
       val size
  [ ] # Define the # of batches that will be used for testing (~10% of data)
       test_size = int(len(data)*.1)+1
       test size
  [ ] # Sorting data
       train = data.take(train size)
       val = data.skip(train size).take(val size)
       test = data.skip(train size + val size).take(test size)
```

3.1 Deep learning model (architecture design)

[] # Define the type of model # Sequential means that there is just one kind of input and only one output model = Sequential() [] # tf.keras.layers?? Manual to the different kind of layer [] # Architecture design model.add(Conv2D(16, (3,3), 1, activation='relu', input shape = (256,256,3))) model.add(MaxPooling2D()) # 16 is the number of filters # (3,3) size of the filter # 1 means that the convolution will go trhoug every single part of the image model.add(Conv2D(32, (3,3), 1, activation = 'relu')) model.add(MaxPooling2D()) model.add(Conv2D(16, (3,3), 1, activation = 'relu')) model.add(MaxPooling2D()) model.add(Flatten()) model.add(Dense(256, activation = 'relu')) model.add(Dense(1, activation = 'sigmoid')) # I used sigmoid because it is a binomial CNN so the sigmoid activation function # works well for binary classification because it just has two outputs, 0 or 1 # This code line allows to compile the CNN but it is intended to work for binary # classification model.compile('adam', loss = tf.losses.BinaryCrossentropy(), metrics = ['accuracy'])

Training and validation

```
▼ 3.2 Training the CNN

  [ ] # Establish directory for callbacks
      logdir = 'path to logs directory'
       tensorboard callback = tf.keras.callbacks.TensorBoard(log dir=logdir)
  [ ] # Fit the model
      # Set # of epochs
       hist = model.fit(train, epochs = 100, validation data = val,
                        callbacks = [tensorboard callback])

▼ 3.3 Training and validation Performance

  [ ] #Visual representation of the training and validation loss performance
       fig = plt.figure()
       plt.plot(hist.history['loss'], color = 'teal', label = 'loss in training')
       plt.plot(hist.history['val_loss'], color = 'orange', label = 'loss in validation')
       fig.suptitle('loss', fontsize = 20)
       plt.legend(loc = "upper left")
       plt.show()
  [ ] #Visual representation of the training and validation accuracy performance
       fig = plt.figure()
       plt.plot(hist.history['accuracy'], color = 'teal', label = 'Accuracy in training')
       plt.plot(hist.history['val accuracy'], color = 'orange', label = 'Accuracy in validation')
       fig.suptitle('Accuracy', fontsize = 20)
       plt.legend(loc = "lower right")
       plt.show()
```


4. Making predictions

```
▼ 4 Making predictions

  [ ] # I suggest that for this part, we can use images that haven't been part of any
       # of the datasets (training, validation and test) they could be new images.
       # Load the new image and visualize it
       img = cv2.imread('path to image which is going to be predicted')
       plt.imshow(img)
       plt.show()
  [ ] # Resize the new image
       resize = tf.image.resize(img, (256,256))
       plt.imshow(resize.numpy().astype(int))
       plt.show()
  [ ] # Scale and pass the image trhoug the CNN
       yhat = model.predict(np.expand dims(resize/255, 0))
  [ ] # print the final value (this value is the one requiered for the classification)
      yhat
  [ ] # I used a sigmoidal function so all the values below 0.5 will become 0 (class 1)
       # and all the values higher than 0.5 will become 1 (class 2)
      if yhat > 0.5:
         print(f'It is predicted to be class 2')
       else:
         print(f'It is predicted to be class 1')
```


Next Steps for the CNN

- Build a CNN that can handle 3D data (hyper-cylinder or hyper-sphere)
- Decide how many convolutional and pooling layers to use
 - Also consider: activation functions, kernel size, stride
- Test model with a sample of random proteins
- Train and optimize the CNN
- May need to tweak ECT data depending on model accuracy and compute time

Reflections on the Project

- Would combine groups 3 and 4 because deep learning requires data from group 3 before CNNs can be constructed.
- Learned general process of CNN-no time to optimize one.
- Practiced working on collaborative programming (w/ GitHub).