6

Orthogonality and Least Squares

6.4

THE GRAM-SCHMIDT PROCESS

- Theorem 11: The Gram-Schmidt Process
- Given a basis $\{x_1, \ldots, x_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\begin{aligned} v_1 &= x_1 \\ v_2 &= x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 \\ v_3 &= x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2 \\ &\vdots \\ v_p &= xp - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} v_2 - \dots - \frac{x_p \cdot v_{p-1}}{v_{p-1}} v_{p-1} \end{aligned}$$

• Then $\{v_1, \ldots, v_p\}$ is an orthogonal basis for W. In addition

$$Span\{v_1, ..., v_k\} = Span\{x_1, ..., x_k\} \text{ for } 1 \le k \le p$$
 (1)

■ **Proof** For, let $W_k = \text{Span}\{x_1, \ldots, x_k\}$. Set $v_1 = x_1$, so that $\text{Span}\{v_1\} = \text{Span}\{x_1\}$. Suppose, for some k < p, we have constructed v_1, \ldots, v_k so that $\{v_1, \ldots, v_k\}$ is an orthogonal basis for W_k . Define

$$\mathbf{v}_{k+1} = \mathbf{x}_{k+1} - \text{proj}_{\mathbf{W}_{k}} \mathbf{x}_{k+1}$$
 (2)

- By Orthogonal Decomposition Theorem, v_{k+1} is orthogonal to W_k . Also, $v_{k+1} \neq 0$ because x_{k+1} is not in $W_k = \text{Span}\{x_1, \ldots, x_k\}$.
- Hence $\{v_1, \ldots, v_{k+1}\}$ is an orthogonal set of nonzero vectors in the (k + 1)-dimensional space W_{k+1} . By the Basis Theorem in Section 4.5, this set is an orthogonal basis for W_{k+1} . Hence $W_{k+1} = Span\{v_1, \ldots, v_{k+1}\}$. When k + 1 = p, the process stops.

EXAMPLE 2 Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Then $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is

clearly linearly independent and thus is a basis for a subspace W of \mathbb{R}^4 . Construct an orthogonal basis for W.

Let
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and $W_1 = \operatorname{Span}\{\mathbf{x}_1\} = \operatorname{Span}\{\mathbf{v}_1\}.$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \operatorname{proj}_{W_{1}} \mathbf{x}_{2}$$

$$= \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \qquad \text{Since } \mathbf{v}_{1} = \mathbf{x}_{1}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

For simplification, we can scale
$$\mathbf{v}_2$$
 $\mathbf{v}_2' = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ by a factor of 4

$$\operatorname{projection of}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} \operatorname{projection of}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{2}} \mathbf{v}_{3} = \begin{bmatrix} \mathbf{x}_{3} \cdot \mathbf{v}_{1} \\ \mathbf{v}_{1} \cdot \mathbf{v}_{1} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{3} \cdot \mathbf{v}_{2}' \\ \mathbf{v}_{2}' \cdot \mathbf{v}_{2}' \end{bmatrix} = \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \operatorname{proj}_{W_{2}} \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

ORTHONORMAL BASES

Example 3 Example 1 constructed the orthogonal basis

$$v_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

An orthonormal basis is

$$u_{1} = \frac{1}{\|v_{1}\|} v_{1} = \frac{1}{\sqrt{45}} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$$
$$u_{2} = \frac{1}{\|v_{2}\|} v_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- Theorem 12: The QR Factorization
- If *A* is an m*n matrix with linearly independent columns, then *A* can be factored as A = QR, where:
 - Q is an m*n matrix whose columns form an orthonormal basis for Col A and
 - − *R* is an *n***n* upper triangular invertible matrix with positive entries on its diagonal.

Proof The columns of A form a basis $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ for Col A. Construct an orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ for W = Col A with property (1) in Theorem 11. This basis may be constructed by e.g., the Gram-Schmidt process.

Let

$$Q = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_n]$$

For k = 1,..., n, \mathbf{x}_k is in Span $\{\mathbf{x}_1, ..., \mathbf{x}_k\}$ = Span $\{\mathbf{u}_1, ..., \mathbf{u}_k\}$. So there are constants, $r_{1k}, ..., r_{kk}$, such that

$$\mathbf{x}_k = r_{1k}\mathbf{u}_1 + \dots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \dots + 0 \cdot \mathbf{u}_n$$

- We may assume that $r_{kk} \ge 0$.
 - If $r_{kk} < 0$, multiply both r_{kk} and \mathbf{u}_k by -1
- This shows that \mathbf{x}_k is a linear combination of the columns of Q using as weights the entries in the vector:

$$\mathbf{r}_k = \begin{bmatrix} r_{1k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- That is, $\mathbf{x}_k = Q \mathbf{r}_k$ for $k = 1, \ldots, n$. Let $R = [\mathbf{r}_1 \ldots \mathbf{r}_n]$.
- Then

$$A = [\mathbf{x}_1 \dots \mathbf{x}_n] = [Q\mathbf{r}_1 \dots Q\mathbf{r}_n] = QR.$$

- The fact that *R* is invertible follows easily from the fact that the columns of *A* are linearly independent:
 - We form: $R \mathbf{v} = 0$, which gives: $QR \mathbf{v} = 0$, and $A\mathbf{v} = 0$.
 - Since columns of A are linearly independent, $A\mathbf{v} = 0$ yields $\mathbf{v} = 0$.
 - Therefore, from R \mathbf{v} = 0, we concluded that \mathbf{v} = 0, which means R is invertible.
- Since R is clearly upper triangular, its nonnegative diagonal entries must be positive.

- **Example 4**Find a QR factorization of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- Solution The columns of A are the vectors x_1 , x_2 , and x_3 in Example 2. An orthogonal basis for Col A = Span $\{x_1, x_2, x_3\}$ was found in that example:

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

To simplify the arithmetic that follows, scale v_3 by letting $v_3 = 3v_3$. Then normalize the three vectors to obtain u_1 , u_2 , and u_3 , and use these vectors as the columns of Q:

$$Q = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}.$$

■ By construction, the first k columns of Q are an orthonormal basis of Span $\{x_1, \ldots, x_k\}$.

• From the proof of Theorem 12, A = QR for some R. To find R, observe that $Q^TQ = I$, because the columns of Q are orthonormal. Hence

$$Q^T A = Q^T (QR) = IR = R$$

and

$$R = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -3/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} \\ 0 & -2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}$$