Corso di Architettura degli Elaboratori e Laboratorio (F-N)

Circuiti aritmetici

Massimo Orazio Spata

Dipartimento di Matematica e Informatica

Addizionatore ad 1 bit

Per **SOMMARE** numeri binari ad 1 bit:

Figura 1.4 - Addizione di numeri a un bit

Il RIPORTO IN USCITA della cifre precedente viene assegnato come RIPORTO IN ENTRATA alla successiva

Addizionatore ad 1 bit

- •Un addizionatore tra due singoli bit può essere espresso da 2 funzioni logiche a tre ingressi (i due bit da sommare più il riporto in ingresso):
- La prima calcola la somma tra i bit ed il riporto in ingresso
- ·La seconda calcola il riporto in uscita
- Dalla tabella di verità si ricavano le espressioni logiche per somma e riporto in uscita

x_i	y_i	Riporto in ingresso c_i	Somma s_i	Riporto in uscita c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1.

$$\begin{split} s_i &= \overline{x_i} \overline{y_i} r_i + \overline{x_i} y_i \overline{c_i} + x_i \overline{y_i} \overline{c_i} + x_i y_i c_i = x_i \oplus y_i \oplus c_i \\ c_{i+1} &= x_i c_i + y_i c_i + x_i y_i \end{split}$$

Addizionatore completo (full adder)

- •Unendo assieme in un singolo circuito le reti logiche per le funzioni di somma e riporto in uscita si ottiene l'addizionatore completo
- L'addizionatore completo prende in ingresso i due bit da sommare e il riporto in entrata e rende in uscita somma e riporto in uscita

Addizionatore a propagazione di riporto

- •Collegando una catena di n addizionatori completi in modo da propagare il riporto si ottiene un circuito in grado di sommare numeri binari di n bit
- •Tale circuito è chiamato addizionatore a propagazione di riporto (ripple carry adder)

Trabocco

- L'addizione di due numeri in complemento a due corrisponde alla somma di due numeri binari naturali senza contare il riporto in uscita
- La sottrazione corrisponde ad un addizione complementando a due il sottraendo
- Bisogna però garantire che non avvenga trabocco
- Il calcolo del trabocco può essere espresso da una delle seguenti espressioni logiche:

$$trabocco = x_{n-1}y_{n-1}\bar{s}_{n-1} + \bar{x}_{n-1}\bar{y}_{n-1}s_{n-1}$$
$$trabocco = c_n \oplus c_{n-1}$$

Addizionatore algebrico a n bit

- •Una unità logica per addizione e sottrazione può essere ottenuta usando un addizionatore a propagazione di riporto
- •Si usa il bit OpType₀ per complementare a due il sottraendo in caso di sottrazione
- Nel caso $OpType_0 = 1$ si avrà un riporto in ingresso al bit meno significativo e il secondo addendo verrà complementato attraverso una catena di porte xor parallele $(y_n \oplus OpType_0)$
- Il trabocco viene calcolato come $c_n \oplus c_{n-1}$

Ritardi ripple carry adder

- Il ritardo totale di un circuito dipende dal ritardo del percorso più lento
- Assumiamo che ogni porta logica semplice introduce un ritardo fisso
- •Un Full Adder genera s_i dopo 1 ritardo di porta, mentre c_{i+1} dopo 2 ritardi di porta
- •Quindi in un Ripple Carry Adder a n bit il riporto \mathbf{c}_n viene generato in 2n ritardi di porta, mentre l'ultimo bit risultato \mathbf{s}_{n-1} viene generato dopo $\mathbf{2n}$ 1 ritardi di porta

Funzioni di generazione e propagazione

Il risultato di ciascun Full Adder dipende dal riporto calcolato dal Full Adder nella posizione anteriore:

$$s_i = x_i \oplus y_i \oplus c_i$$
 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

•Fattorizzando l'equazione del riporto si ottiene:

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i = x_i y_i + (x_i + y_i) c_i = G_i + P_i c_i$$

$$G_i = x_i y_i$$
 $P_i = x_i + y_i$

 \cdot G_i (funzione di generazione) e P_i (funzione di propagazione) dipendono solo dagli ingressi x_i e y_i e possono essere calcolati tutti in parallelo in 1 ritardo di porta

Parallelizzare il calcolo del riporto

È possibile calcolare i tutti ritardi c_i solo in funzione degli addendi X, Y e del riporto in ingresso c₀?

•Espandendo iterativamente c_i fino ad arrivare a c_0 si ottiene un'equazione per c_{i+1} in funzione solo dei vari P, G e di c_0 :

$$c_{i+1} = G_i + P_i c_i = G_i + P_i (G_{i-1} + P_{i-1} c_{i-1}) = G_i + P_i G_{i-1} + P_i P_{i-1} c_{i-1}$$

$$c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_0 c_0$$

In questo modo ciascun riporto ci può essere calcolato in parallelo dopo 2 ritardi di porta

Cella di stadio da un bit

- •Si può modificare la cella di sommatore a 1 bit per dare in uscita anche le funzioni $G_i = x_i y_i$ e $P_i = x_i + y_i$
- .G; si ottiene con una porta AND con ingressi x; e y;
- .P_i si ottiene con una porta XOR con ingressi x_i e y_i
- •s_i si ottiene con due porte XOR annidate con ingressi x_i, y_i e c_i

Addizionatore con anticipo di riporto a 4 bit

- •Usando 4 celle da un bit è possibile realizzare un Addizionatore con anticipo di riporto a 4 bit
- Il blocco "Logica di anticipo del riporto" genera i riporti come segue:

$$\begin{aligned} & C_1 = G_0 + P_0 c_0 \\ & c_2 = G_1 + P_1 G_0 + P_1 P_0 c_0 \\ & c_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0 \\ & c_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 c_0 \end{aligned}$$

.c4 viene generato dopo 3 ritardi di porta, mentre il risu

Addizionatore con anticipo a 2 livelli

- •Con addizionatori con anticipo di riporto a più di 4 celle si incorre in valori di fan-in troppo elevati nelle porte di generazione dei riporti
- ·Una soluzione è replicare l'idea di anticipo di riporto su più livelli
- In un addizionatore a 4 bit si ha:

$$c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0 = G_k^I + P_k^Ic_0$$

$$G_k^I = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$$

$$P_k^I = P_3P_2P_1P_0$$

•Per ottenere un addizionatore da 16 bit con anticipo di riporto, si possono collegare 4 addizionatori a 4 bit con un blocco di anticipo di riporto che riceve in ingresso i vari G_k^l e P_k^l e genera in parallelo c_4 , c_8 , c_{12} e c_{16}

Addizionatore con anticipo di riporto a 16 bit

 Usando 4 addizionatori a 4 bit è possibile realizzare un Addizionatore con anticipo di riporto a 16 bit su due livelli

Il blocco "Logica di anticipo del riporto" genera i riporti come segue:

$$\begin{split} c_4 &= G_0^I + P_0^I c_0 \\ c_8 &= G_1^I + P_1^I G_0^I + P_1^I P_0^I c_0 \\ c_{12} &= G_2^I + P_2^I G_1^I + P_2^I P_1^I G_0^I + P_2^I P_1^I P_0^I c_0 \\ c_{16} &= G_3^I + P_3^I G_2^I + P_3^I P_2^I G_1^I + P_3^I P_2^I P_1^I G_0^I + P_3^I P_2^I P_1^I P_0^I C_0 \end{split}$$

.c16 viene generato dopo 5 ritardi di porta, mentre il risultato S dopo 8 ritardi di porta

Moltiplicazione numeri senza segno

- Il metodo imparato a scuola per eseguire la moltiplicazione di due numeri vale anche per i numeri in formato binario
- Si moltiplica ciascuna cifra del moltiplicatore per il moltiplicando e si sommano i risultati fatti scorrere di una posizione ogni cifra
- •Nel caso binario il Moltiplicando è moltiplicato solo per 0 o per 1
- Il prodotto di due numeri da n cifre è composto da 2n cifre

Circuito moltiplicatore sequenziale

La moltiplicazione di numeri senza segno può essere realizzata sequenzialmente usando solo un Addizionatore a n bit e due registri a scorrimento

•Ad ogni cilclo, l'Addizionatore effettua la somma tra il Moltiplicando (o un array di zeri) e un prodotto parziale fatto scorrere a destra di una posizione

I due registri a scorrimento contengono:

Inizialmente: Registro A = 0 e Registro Q = Moltiplicatore

.Alla fine: Registro A || Registro Q = Prodotto

Circuito moltiplicatore sequenziale

•Algoritmo:

$$A = 0$$

Q = Moltiplicatore

M = Moltiplicando

Per n cicli:

se
$$q_0 = 1$$
:

$$A = A + M$$

altrimenti:

$$A = A + 0$$

c = riporto

c || A || Q scorrono verso destra di una posizione

Dopo n cicli i due registri A || Q concatenati conterranno il Prodotto finale

Moltiplicazione di numeri con segno

- •Per moltiplicare numeri con segno in complemento a 2 bisogna apportare delle modifiche all'algoritmo di moltiplicazione
- Soluzione diretta:
- .Moltiplicatore positivo: si procede normalmente
- .Moltiplicando positivo: si procede normalmente
- .Moltiplicando negativo: Bisogna estendere il segno quando si riporta il moltiplicando in tabella (in figura)
- .Moltiplicatore negativo: si fa il complemento a 2 di Moltiplicando e Moltiplicatore per ritornare al caso di Moltiplicatore positivo
- Soluzione più generale ed efficiente:
- .Algoritmo di Booth

Algoritmo di Booth

- •Nell'algoritmo di Booth si ricodifica il Moltiplicatore come somma e sottrazione di potenze di 2
- •Caso semplice in cui il Moltiplicatore contiene una sequenza contigua di 1:

$$\cdot Q = 0011110 = 0100000 + 11111110 = 0100000 - 0000010 = 2^5 - 2^1$$

$$.P = M * Q = M * 2^5 + M * -2^1 = M * 2^5 + -M * 2^1$$

- Il prodotto è uguale al moltiplicando fatto scorrere di 5 posizioni a sinistra + il complemento a due del moltiplicando fatto scorrere di 1 posizione a sinistra
- •Generalizzabile per qualsiasi Moltiplicatore:

$$.P = -M * 2^8 + M * 2^6 + -M * 2^3 + M * 2^2 + -M * 2^0$$

Ricodifica bit-pair

L'algoritmo di Booth può essere usato per ottenere una ricodifica più efficiente

La ricodifica bit-pair raggruppa in coppie i bit del moltiplicatore ricodificato con Booth

Ciascuna coppia di bit del moltiplicatore viene riscritta come un singolo coefficiente da moltiplicare al moltiplicando:

$$(+1, -1) \rightarrow 2M - M \rightarrow 1 * M \rightarrow (0, +1)$$

 $(-1, +1) \rightarrow -2M + M \rightarrow -1 * M \rightarrow (0, -1)$
 $(+1, 0) \rightarrow 2M + 0M \rightarrow 2 * M \rightarrow (0, +2)$
Ecc..

In questo modo il numero di addizioni da eseguire durante la moltiplicazione viene dimezzato

(a) Esempio di ricodifica bit-pair derivata da ricodifica di Booth

Coppia del moltip		Bit del moltiplicatore sulla destra	Versione del moltiplicando selezionata in posizione i
<i>i</i> + 1	i	i-1	
0	0	0	$0 \times M$
0	0	1	+1 × M
0	1	0	+1 × M
0	1	1	+2 × M
1	0	0	-2 × M
1	0	1	-1 × M
1	1	0	$-1 \times M$
1	1	1	$0 \times M$

(b) Tabella delle selezioni di versione del moltiplicando

Divisione di interi

•Anche per la divisione di interi prendiamo come esempio l'algoritmo imparato a scuola:

1. Si allinea il divisore con il dividendo a partire da sinistra

2.Si controlla se il divisore è contenuto nel dividendo e nel caso si calcola la divisione parziale tra le cifre allineate:

•si aggiunge il risultato al quoziente

Si trascrive il resto in basso e gli si aggiunge la prossima cifra del dividendo

3.Si allinea il divisore e si riprende dal punto 2

21	10101
3) 274 26	1101) 100010010
26	_1101
14	10000
13	1101
1	1110
	1101
	1

Divisione con ripristino

- Il circuito sequenziale per la divisione può essere realizzato con un registro (M), 2 shift register (A e Q) e un addizionatore a n+1 bit
- •Eseguire n volte i seguenti 3 passi:
- .Fare scorrere A e Q a sinistra di una posizione
- .Sottrarre M da A e porre il risultato in A
- Se il segno di A è 1, porre q_0 a 0 e sommare M ad A; altrimenti, porre q_0 a 1
- All'inizio M contiene il Divisore, A contiene 0
 e Q contiene il Dividendo
- •Alla fine A contiene il Resto e Q contiene il Quoziente

Divisione senza ripristino

- L'algoritmo di divisione può essere semplificato eliminando il passo di ripristino
- L'algoritmo senza ripristino si divide in due stadi:
- .Stadio 1: Eseguire n volte i seguenti 2 passi
- Se il segno di A è 0, fare scorrere A e Q a sinistra di una posizione e sottrarre M da A; altrimenti, fare scorrere A e Q a sinistra di una posizione e sommare M ad A
- .Se il segno di A è 0, porre q_0 a 1; altrimenti, porre q_0 a 0
- .Stadio 2: passi:
- .Se il segno di A è 1, sommare M ad A

Numeri a virgola mobile

Un numero binario in virgola mobile può quindi essere rappresentato:

- •Un **SEGNO** s per il numero
- •La MANTISSA m (bit significativi escluso il bit più significativo)
- •Un **ESPONENTE** *e* con segno in base 2

Valore rappresentato = ± 1 , $m \times 2^e$

Formato precisione singola (32 bit)

Standard IEEE 754 numeri 32 bit

Valori speciali: e' = 0, e' = 255

Intervallo esponente: $-126 \le e \le 127$

Fattore di scala nell'intervallo: [2⁻¹²⁶, 2¹²⁷]

Formato precisione doppia (64 bit)

Standard IEEE 754 numeri 64 bit

Valori speciali: **e'** = **0**, **e'** = **2047**

Intervallo esponente: $-1022 \le e \le 1023$

Fattore di scala nell'intervallo: [2⁻¹⁰²², 2¹⁰²³]

Valori speciali

Alcuni valori dell'esponente sono speciali:

$$\cdot e' = 0$$
, $m = 0$ rappresenta lo 0 esatto

$$\cdot$$
e' = 255(2047), m = 0 rappresenta l'infinito ∞

$$\cdot e' = 0$$
, $m \neq 0$ rappresenta la forma non normale

$$\cdot e' = 255(2047), m \neq 0$$
 rappresenta Not a Number NaN

Algoritmo di addizione/sottrazione algebrica

- 1. Scegli il numero con esponente più piccolo e fai scorrere la sua mantissa a destra di un numero di passi uguale alla differenza degli esponenti
- 2. Poni l'esponente del risultato uguale all'esponente più grande
- 3. Addiziona i fattori interi (1 | Mantissa) tenendo conto del segno
- 4. Se il numero risultante non è in forma normale, normalizzalo

Algoritmo di moltiplicazione algebrica

- 1. Addiziona gli esponenti dei fattori e togli 127 alla somma, ottenendo l'esponente provvisorio del prodotto
- 2. Moltiplica i fattori interi dei fattori ottenendo segno e fattore intero provvisorio del prodotto
- 3. Se il numero risultante non è in forma normale, normalizzalo

Algoritmo di divisione algebrica

- 1. Sottrai l'esponente del divisore dall'esponente del dividendo e aggiungi 127 alla differenza, ottenendo l'esponente provvisorio del rapporto
- 2. Calcola il quoziente del fattore intero del dividendo rispetto a quello del divisore, ottenendo segno e fattore intero provvisorio del rapporto
- 3. Se il numero risultante non è in forma normale, normalizzalo