

18205 - MATEMÁTICAS

Información de la asignatura

Código - Nombre: 18205 - MATEMÁTICAS **Titulación:** 531 - Graduado/a en Bioquímica

Centro: 104 - Facultad de Ciencias

Curso Académico: 2021/22

1. Detalles de la asignatura

1.1. Materia

Matemáticas.

1.2. Carácter

Formación básica

1.3. Nivel

Grado (MECES 2)

1.4. Curso

1

1.5. Semestre

Primer semestre

1.6. Número de créditos ECTS

6.0

1.7. Idioma

Español. Se emplea también inglés en material docente.

1.8. Requisitos previos

Ninguno.

1.9. Recomendaciones

Es muy recomendable haber cursado las Matemáticas del Bachillerato de Ciencias.

1.10. Requisitos mínimos de asistencia

La asistencia a clase es muy recomendable.

1.11. Coordinador/a de la asignatura

Código Seguro de Verificación:	Fecha:	22/04/2022
Firmado por:	Esta guía docente no estará firmada mediante CSV hasta el cierre de actas	
Url de Verificación:	Página:	1/4

1.12. Competencias y resultados del aprendizaje

1.12.1. Competencias

COMPETENCIAS GENERALES:

CG2.- Saber resolver cuestiones y problemas en el ámbito de las Biociencias Moleculares utilizando el método científico.

CG3.- Adquirir la capacidad de interpretar datos relevantes dentro del área de la Bioquímica y Biología Molecular, así como de extraer conclusiones y reflexionar críticamente sobre las mismas en distintos temas relevantes en el ámbito de las Biociencias Moleculares

CG5.- Haber desarrollado las habilidades de aprendizaje necesarias para emprender estudios posteriores de especialización con un alto grado de autonomía en el ámbito de las Biociencias Moleculares.

COMPETENCIAS ESPECÍFICAS:

CE1.- Entender las bases físicas y químicas de los procesos biológicos a nivel celular y molecular y conocer las herramientas empleadas para investigarlas y adquirir las habilidades matemáticas, estadísticas e informáticas para obtener, analizar e interpretar datos de sistemas biológicos.

COMPETENCIAS TRANSVERSALES:

CT1.- Capacidad de razonamiento crítico y autocrítico.

CT5.- Capacidad para aplicar los principios del método científico.

1.12.2. Resultados de aprendizaje

- Dominar las técnicas matemáticas básicas que se utilizan en la modelización y análisis de problemas de las ciencias experimentales y, de manera especial, en Bioquímica.
- Aprender a formular problemas aplicados.
- Aprender a analizar e interpretar correctamente los resultados obtenidos.

1.12.3. Objetivos de la asignatura

El objetivo de esta asignatura es conseguir, a través de la metodología docente empleada y las actividades formativas desarrolladas a lo largo del curso, que el estudiante, al finalizar el mismo sea capaz de conseguir los resultados del aprendizaje.

1.13. Contenidos del programa

1. FUNCIONES DE UNA VARIABLE

- 1.1. Funciones elementales: racionales, exponencial y logarítmica.
- 1.2. Derivación y representación gráfica de funciones: máximos y mínimos, concavidad, comportamiento asintótico.
- 1.3. Aproximación de funciones: el polinomio de Taylor.
- 1.4. Formulación de modelos de evolución con crecimientos lineal y exponencial.
- 2. INTEGRALES Y APLICACIONES
- 2.1. Técnicas básicas de integración: cambio de variable, integración por partes, funciones racionales.
- 2.2.Aplicaciones de la integral definida: cálculos de áreas y probabilidades, tamaño de poblaciones a partir de sus tasas de crecimiento.
- 2.3. Aproximación numérica: regla de Simpson.
- 2.4. Formulación de modelos con ecuaciones diferenciales y técnicas de resolución.
- 3. ÁLGEBRA LINEAL y DINÁMICA DE POBLACIONES
- 3.1. Matrices y cálculo matricial.
- 3.2. Autovalores y autovectores: significado en los modelos de evolución.
- 3.3. Formulación matricial de modelos de evolución y procesos de Márkov: resolución y comportamiento a largo plazo.
- 4. FUNCIONES DE VARIAS VARIABLES
- 4.1. Representación gráfica. Conjuntos de nivel.
- 4.2. Derivadas parciales, máximos y mínimos, problemas de optimización.

1.14. Referencias de consulta

La referencia básica de consulta para este curso es:

- O. Neuhauser, Matemáticas para Ciencias (2ª ed.), Editorial Pearson, 2004.
- O J. De la Horra, Modelos Matemáticos para Ciencias Experimentales, Díaz de Santos, 2018.
- Luis E. Solá Conde, Introducción a los Métodos Matemáticos en Biología y Ciencias Ambientales. Paraninfo, 2016.

Código Seguro de Verificación:		Fecha:	22/04/2022
Firmado por:	Esta guía docente no estará firmada mediante CSV hasta el cierre de actas		
Url de Verificación:		Página:	2/4

2.1. Presencialidad

	#horas
Porcentaje de actividades presenciales (mínimo 33% del total)	63
Porcentaje de actividades no presenciales	97

2.2. Relación de actividades formativas

Actividades presenciales	Nº horas
Clases teóricas en aula	42
Seminarios	
Clases prácticas en aula	14
Prácticas clínicas	
Prácticas con medios informáticos	
Prácticas de campo	
Prácticas de laboratorio	
Prácticas externas y/o practicum	
Trabajos académicamente dirigidos	
Tutorías	
Exámenes	3
Evaluación continua	4

Para esta asignatura se proponen cuatro horas semanales de enseñanza presencial, y cuatro horas de estudio por parte del alumno.

La enseñanza presencial se estructurará de la siguiente forma:

- 3 horas/semana.- Se dedicarán a clases teóricas, desarrollándose los conceptos y herramientas básicos de la asignatura que se aplicarán en la resolución de ejercicios.
- 1 hora/semana.- Se dedicará a clases prácticas en el aula para realizar diversas actividades, que podrán incluir: resolución de ejercicios en la pizarra por parte de alumnos, tutorías en grupo, prácticas con programas informáticos, realización de controles intermedios y test de evaluación continua, clases de repaso o recuperación,?

Estas actividades se complementan con tutorías individuales a petición del alumno.

3. Sistemas de evaluación y porcentaje en la calificación final

3.1. Convocatoria ordinaria

Los resultados del aprendizaje relacionados con las competencias enumeradas anteriormente serán evaluados como sigue. Durante el curso se realizarán controles de aprendizaje, que supondrán entre un 30% y un 50% de la calificación final. El

Al final del curso se efectuará una evaluación final. Su objetivo fundamental es incentivar la comprensión global de la asignatura. Supondrá un mínimo del 50% y un máximo del 70%. El valor concreto se especificará al inicio del curso.

La evaluación final servirá también para evaluar los contenidos previos, y podrá dar lugar a la superación de la asignatura.

Los alumnos que no se presenten a la evaluación final serán calificados como ?No evaluados?.

3.1.1. Relación actividades de evaluación

valor concreto se especificará al comienzo del curso.

Actividad de evaluación	%
Examen final (máximo 70% de la calificación final o el porcentaje que figure en la memoria)	Mínimo 50 Máximo 70
_Evaluación continua	Mínimo 30 Máximo 50

3.2. Convocatoria extraordinaria

La calificación en la convocatoria extraordinaria será la obtenida en la prueba específica realizada en la fecha marcada en el calendario académico.

3.2.1. Relación actividades de evaluación

Código Seguro de Verificación:	Fech	cha:	22/04/2022
Firmado por:	Esta guía docente no estará firmada mediante CSV hasta el cierre de actas		
Url de Verificación:	Pági	igina.	3/4

4. Cronograma orientativo

El cronograma propuesto para esta asignatura es el siguiente:

El tiempo dedicado a la docencia se utilizará para la exposición de conceptos y técnicas y su asimilación por parte de los alumnos, siguiendo el esquema indicado en el apartado de Métodos Docentes.

El tiempo aproximado dedicado a cada uno de los 4 grandes epígrafes de la asignatura es el siguiente:

FUNCIONES DE UNA VARIABLE: Se desarrollará durante 5 semanas (aprox.).

INTEGRACIÓN: Se desarrollará durante 4 semanas (aprox.).

ÁLGEBRA LINEAL y DINÁMICA DE POBLACIONES: Se desarrollará durante 4 semanas (aprox.).

FUNCIONES DE VARIAS VARIABLES: Se desarrollará durante 2 semanas (aprox.).

Código Seguro de Verificación:	Feci	echa:	22/04/2022
Firmado por:	Esta guía docente no estará firmada mediante CSV hasta el cierre de actas		
Url de Verificación:	Ράσ	ágina:	4/4