SCHOOL OF COMPUTING AND INFORMATION TECHNOLOGY

[Insert e-signature or type name]

INDIVIDUAL Assignment Coversheet

This form is to be completed by students submitting online copies of essays or assignments for a Faculty of the Arts, Social Sciences and Humanities subject for the School of Geography and Sustainable Communities, School of Education, and School of Health and Society.

PLAGIARISM	
someone else. The University of Wollongong has a strong policy aga	iarism is cheating by using the written ideas or submitted work of inst plagiarism. See Acknowledgement Practice/Plagiarism Prevention
Student Name: Jeslyn Ho Ka Yan	7-digit UOW ID: 8535383
Subject Code & Name: CSCI218	
Assignment Title: ASSESSED LAB 1 and 2 (NLP a	and Search Algo)
Tutorial Group: T02	
(T02, T03, T04, T05)	
Tutor's Name: Cher Lim	_
Assignment Due Date: <mark>24[™] FEB 2025</mark>	
DECLARATION	
* * *	have given fully documented references to the work of others, reviously been submitted for assessment in any formal course agiarism.
ACKNOWLEDGEMENT	
The marker of this assignment may, for the purpose of assess a copy to another member of academic staff. If required to d to the marker and acknowledge that the assessor of this assig a) Reproduce this assignment and provide a copy to another	o so, we will provide an electronic copy of this assignment gnment may, for the purpose of assessing this assignment:
b) Communicate a copy of this assignment to a plagiarism of copy of this assignment on its database for the purpose of fu	
Student Signature:	Date: 16 Feb 2025

Assessed Lab 1: NLP

(Label CLEARLY your answer to each question)

Answers:

1. Data Preparation & Feature Extraction

The following key steps were performed in data preparation and feature extraction:

- 1. Dataset Loading & Splitting
 - o The dataset is stored in **20 different folders**, each representing a topic.
 - o The document paths are collected and assigned labels based on their folder names.
 - The dataset is **split into training (75%) and testing (25%)**.

2. Text Preprocessing

- o **Tokenization:** Documents are split into words.
- o Metadata Removal: Unnecessary header information is removed.
- o Stopword Removal: Common words (e.g., "the", "is", "and") are filtered out.
- o **Punctuation & Digit Removal:** Non-alphabetic characters are eliminated.
- o **Lowercasing:** Words are converted to lowercase for consistency.

3. Feature Extraction using TF-IDF Vectorization

- Text is converted into a numerical representation using TfidfVectorizer() from sklearn.feature_extraction.text.
- o The top **5000 most frequent words** are selected as features.
- o fit_transform() is applied to X_train, and transform() is applied to X_test.

2. Classification Results

Multinomial Naïve Bayes Performance:

Test Accuracy: 86.4%Training Accuracy: 91.6%

Macro F1-score: 0.86Weighted F1-score: 0.86

Complement Naïve Bayes Performance:

• Test Accuracy: 100% (Overfitting Issue)

Precision, Recall, F1-score: All 1.00 across all classes

Explanation of Metrics

- Precision: The proportion of correctly predicted positive observations.
- **Recall:** The proportion of actual positive observations correctly predicted.
- **F1-Score:** The harmonic mean of precision and recall.
- Accuracy: The overall correctness of predictions.

3. Confusion Matrix & Class Overlap

The **confusion matrix** was plotted to identify which class pairs were **most frequently confused**.

Findings:

- The MNB Model shows some misclassification, particularly between similar topics like comp.sys.ibm.pc.hardware and comp.sys.mac.hardware.
- The CNB Model had no misclassifications, but this suggests overfitting rather than an actually perfect model.

4. Individual Class Accuracy

Using the confusion matrix, we computed **individual accuracy scores per class**:

Class	Accuracy (%)
alt.atheism	86%
comp.graphics	85%
comp.os.ms-windows.misc	83%
comp.sys.ibm.pc.hardware	80%
comp.sys.mac.hardware	92%
comp.windows.x	91%
misc.forsale	91%
rec.autos	90%
rec.motorcycles	96%
rec.sport.baseball	99%
rec.sport.hockey	97%
sci.crypt	94%
sci.electronics	85%
sci.med	85%
sci.space	88%
soc.religion.christian	98%
talk.politics.guns	90%
talk.politics.mideast	89%
talk.politics.misc	67%
talk.religion.misc	46%

Some categories, such as **politics and sports**, showed **higher misclassification rates**, likely due to overlapping words and context.

5. Complement Naïve Bayes vs. Multinomial Naïve Bayes

Model	Precision	Recall	F1-Score	Accuracy
MultinomialNB	87%	86%	86%	86.4%
ComplementNB	100%	100%	100%	100%

Comparison & Findings

- ComplementNB performed too well, indicating overfitting.
- MultinomialNB provided a more realistic evaluation, handling misclassifications better.

Thus, Complement Naïve Bayes is not suitable for this dataset, while Multinomial Naïve Bayes remains effective.

Assessed Lab 2: Solving problems by search

(Label CLEARLY your answer to each question)

Answers: Complete the following table.

Algorithm	Explored	Solution path	Path cost	Execution
	states			Time
1. Breadth-First	4	[Sibiu, Arad, Zerind]	314	0.0004
Graph Search				
2. Depth-First Graph	10	[Bucharest, Pitesti, Craiova, Drobeta,	1019	0.0002
Search		Mehadia, Lugoj, Timisoara, Arad, Zerind]		
3. Uniform Cost	4	[Sibiu, Arad, Zerind]	314	0.0003
Search				
4. A* Search	4	[Sibiu, Arad, Zerind]	314	0.0005
5. Best-First Search	4	[Sibiu, Arad, Zerind]	314	0.0003
		-		

Analysis:

- 1. Algo #1 Breadth-First Graph Search
 - a. Queue type: FIFO (First-In-First-Out) queue
 - b. Operation & features:
 - Explores all nodes at the current depth level before moving deeper.
 - Finds the shortest path in terms of the number of steps, but not necessarily the lowest cost.
 - Explored 4 states and found the path [Sibiu, Arad, Zerind] with a cost of 314.
- 2. Algo #2 Depth-First Graph Search
 - a. Queue type: LIFO (Last-In-First-Out) stack
 - b. Operation & features:
 - Explores as deep as possible before backtracking.
 - Can get trapped in longer paths.
 - Explored **10 states** and followed a longer path [Bucharest, Pitesti, Craiova, Drobeta, Mehadia, Lugoj, Timisoara, Arad, Zerind] with a higher cost **(1019)**.
 - Fastest execution time (0.0002s) but inefficient due to backtracking.
- 3. Algo #3 Uniform Cost Search
 - a. Queue type: Priority queue sorted by path cost
 - b. Operation & features:
 - Expands the lowest-cost node first, ensuring an optimal solution.
 - Found the shortest-cost path [Sibiu, Arad, Zerind] with cost **314**, same as A*.
 - Execution time: 0.0003s.
- 4. Algo #4 A Search*
 - a. Queue type: Priority queue sorted by g(n) + h(n) (path cost + heuristic)
 - b. Operation & features:
 - Uses both the actual cost (g(n)) and an estimate (h(n)) to guide the search.
 - Found an optimal path [Sibiu, Arad, Zerind] with cost **314**.
 - Slightly **slower execution** (0.0005s) compared to UCS.

- 5. Algo #5 Best-First Search
 - a. Queue type: Priority queue sorted by heuristic value (h(n))
 - b. Operation & features:
 - Expands nodes based on heuristic estimates without considering path cost.
 - Found the path [Sibiu, Arad, Zerind] with cost **314**.
 - Execution time: 0.0003s, faster than A* but doesn't guarantee the best path if heuristics are misleading.

Any notable observations (optional):

- Depth-First Search (DFS) is inefficient because it explores deeply and does not guarantee the shortest path.
- Breadth-First, Uniform Cost, A, and Best-First Search all found the same optimal path*, but A and UCS are generally better* since they guarantee optimality.
- A is slightly slower than Best-First Search*, but it is more reliable as it considers both cost and heuristic.