Qualitative Comparison

Andes Technology

Outline

- Preface Option A~E recap
- Fixes I/II/III Discussions
 - ☐ Analysis Program shared on GitHub
- Qualitative Comparison Based on
 - ☐ Restricted ACC Register Allocation
 - ☐ Theoretical Optimal Performance
- Charter Criteria (9+1) Comparison

Preface

- Based on 2023/10/16 Meeting Presentation https://github.com/riscv-admin/vector/tree/main/minutes/2023/2023-10-16
- Terminology: (reused from V-SIG Conventions)

$$C_{m \times n} = A_{m \times K} \times B_{K \times n}$$

• L: Let the architected space consist of 32 vector registers of size L words(32-bits)

Option A Recap

Option A: 1 Matrix per vector register

Option B Recap

Option B: 1 Matrix in 4 vector registers

- An L-word vector register holds a row of C
- 4 registers hold a $4 \times L$ panel of C
- 16 registers hold a 16 × L panel of C
- An L-word vector register holds a row of B
- "Some" combination of registers holds a column of A
- We compute $C_{16\times L} \leftarrow A_{16\times 1} \times B_{1\times L} + C_{16\times L}$
- Total of 16L multiply-adds
- Minimum time = Δ cycles
- Maximum computation rate $R = \frac{16L}{\Delta} = 4L$ madds/cycle
- This is the upper bound with 16 registers for C
- Total of L+16 words loaded $\binom{L+16}{\Delta}$ words/cycle)
- $\eta = \frac{16L}{L+16} = [\frac{16}{5}, 16)$ madds/word
- This works $\forall L \geq 4$ elements
- Single- and double-precision are compatible $\forall L \geq 8$

Option C Recap

Option C: Matrix as an element type

- We fix a λ and define a new "vector element type" a $\lambda \times \lambda$ matrix of words (e.g., $\lambda = 2$)
- A vector register of length L holds L/λ_2 of these matrices (e.g., $L=16, L/\lambda_2=4$)
- "Some" number of registers hold an $8\lambda \times \lambda$ panel of A ($8\lambda \times \lambda$ matrices)
- 2 registers hold a $\lambda \times {}^{2L}/_{\lambda}$ panel of **B** (${}^{2L}/_{\lambda^2}$ $\lambda \times \lambda$ matrices)
- 16 registers hold an $8\lambda \times {}^{2L}/_{\lambda}$ panel of C (16L words)
- We compute $C_{8\lambda \times^{2L}/\lambda} \leftarrow A_{8\lambda \times \lambda} \times B_{\lambda \times^{2L}/\lambda} + C_{8\lambda \times^{2L}/\lambda}$
- Total of $16L\lambda$ multiply-adds
- Minimum time = $\lambda\Delta$ cycles
- Maximum computation rate $R = \frac{16L}{\Delta} = 4L$ madds/cycle
- This is the upper bound with 16 registers for C
- Total of $2L + 8\lambda^2$ words loaded $(^{2L+8\lambda^2}/_{\lambda\Delta}$ words/cycle)
- $\eta = \frac{16L\lambda}{2L+8\lambda^2} = \left[\frac{8\lambda}{5}, 8\lambda\right)$ madds/word
- This works $\forall L \geq \lambda^2$ words
- Single- and double-precision are compatible $\forall L \geq 2\lambda^2$ words

Option D Recap

- Introduce 2 stream Source Matrix A and B
- Leverage the same design Matrix C as Option A

Option E: Architecture State Usages (1/)

- $C_{h imes rac{L}{h}}$ Single VRF choose h for achieving optimal Architecture State Usages , where h= $\sqrt{L_{min}}$ keeping C efficiently utilized
- \mathcal{O} $C'_{\frac{L}{h} \times \frac{L}{h}}$ ACC VRFs keep m = n as ACC square for achieving Optimal Computation Intensity
- ③ Near Optimal Compute Rate : $\widetilde{M}\widetilde{N}\left(\frac{L^2}{4*L_{min}}\right)^{\dagger}$

†: where \widetilde{M} , \widetilde{N} are reasonable implementation factor (see Appendix for details)

Option E: Architecture State Usages (2/)

	h	Option	Benefits	Note
	1	Close to Option B		(1) High architecture costs (VRF Register R/W ports) to achieve comparable computation capacity.
\sqrt{I}	L_{min}^{\dagger}	Option E	$(1)C_{h imes rac{L}{h}}$: h is optimal for high VRF Utilization efficiency $(2)C'_{rac{L}{h} imes rac{L}{h}}$: keep square for high compute intensity	
	\sqrt{L}	Close to Option A		(1) non-efficient utilization for VRFs when L is not square of integer. E.g. VLEN 256,1024

^{†:} L_{min} is a determined constant as minimal VLEN (assume VLEN 128, L=4 Words), L_{min} = 4 in this presentation.

Option E: Architecture State Usages (3/)

- Scalability Management for Vector Registers
- Efficient Outer Products are Formed with Portion Support for Source Matrix
- amm vd, vb, va, portion[†]
 - vd = va.px * vb
 - portion can be specified by arguments

†: Illustration of L=16, n= 4 cases of VLEN=512

2/12 IME Presentation Data ReCap

https://drive.google.com/file/d/1RC2RZwX8IJctRgNOlq78xojyPoqiF_q5/view

- 1. Fix I for Option A+D: "realistic" Compute Intensity
- 2. Fix II for Option C: "realistic" Alpha cross all VLENs
- Fix III for Option C: Compute Intensity Lemma cross all VLENs
- 4. Qualitative Comparison Based on
 - 1) Restricted ACC Register Allocation
 - 2) Theoretical Optimal Performance

Analysis Program

- Analysis Program is available on GitHub
 - https://github.com/CN-Ke/IME_Evaluation/tree/main

Fix I for Option A/D Architecture State Utilization Rate

VLEN	L (Words)	Option A+D:	ιχλ	Note	
		Preliminary λ	Realistic λ		
128	4	2	2		
256	8	2.83	2	(1) (2)	Arch. State Utilization Efficiency ~50% data reuse/compute intensity
512	16	4	4		
1024	32	5.66	5	(1) (2)	Arch. State Utilization Efficiency ~ 78% Poor data reuse/compute intensity
2048	64	8	8		

True Compute Intensity Considering Realistic λ (Analysis Program Updated)

Fix II for Option C "realistic" Alpha cross all VLENs

True Compute Intensity Considering Realistic Alpha (If follow the original lemma shown above)

Fix III for Option C Lemma cross all VLENs

					\widetilde{M}	\widetilde{N}						
VLEN	L	lambda	I /(lombdo ²)				В	ACC-C		compute		
						(VRF#)	lambda (VRF#		lambda	(VRF#)	(VRF#)	Intensity
128	4	2	1	4	4	4	4	16	24	4.00		
256	8	2	2	4	8	2	4	16	22	5.33		
512	16	2	4	2	8	2	8	16	20	8.00		
1024	32	2	8	1	8	2	16	16	19	10.67		
2048	64	2	16	1	16	1	16	16	18	16.00		

Total $\widetilde{M} * \lambda^2 + \widetilde{N} * L$ Words loaded

Computation Intensity =
$$\frac{\widetilde{M}*\lambda*\widetilde{N}*(\frac{L}{\lambda^2})*\lambda^2}{\widetilde{M}*\lambda^2+\widetilde{N}*L} = \frac{\widetilde{M}*\widetilde{N}*L*\lambda}{\widetilde{M}*\lambda^2+\widetilde{N}*L}$$

Fixed Compute Intensity for new lemma

Updated Qualitative Comparison

Based on Restricted ACC VRF by pre-determined half VRFs (16)

Qualitative Comparison for Optimal Performance

- Analysis Based on Reasonable Realizations According to
 - ☐ Realistic Alpha/Lambda/h Architecture Parameters
 - ☐General VLENs supported by RVV
 - \square Feasible VRF Resource \widetilde{M} , \widetilde{N} Unrolling/Grouping

Qualitative Comparison: Theoretical Performance

Metrics for MAC Performance/uArch Cost

- Consider General Scenario for Int8 Convolutions Performance for
 - ① baseline uArch resources(restriction): 3R/1W VRF Port
 - ② reasonable Int8 MAC bound ~ 8*L†
- All options' GOPS Performance can be derived as

Option	A/D	В	С	Е	500 -	A/D GOPS B GOPS
MAC/Cycle	$4*\lambda*\lambda^2$ $=4*\lambda^3$	L	$4 \cdot \lambda \cdot \lambda \cdot \lambda \cdot (\frac{L}{\lambda^2})$ $= 4 * \lambda * L$	$4 \cdot h \cdot h \cdot (\frac{L}{h})$ $= 4 * h * L$	Per 3R/1W)	C GOPS E GOPS
					erfomance(GOPS P	
	Performance sources (E.g	e Explicitly re p. RF Ports)	estricted by		MAC Per - 0	
†: 8L from cu Core/VPU at		ogy feasible re	ealization (Eg. (General		10 20 30 40 50 60 L(Words)

Charter Criteria Discussion

- Based on proposing Matrix-TG \rightarrow 9 explicitly guide-lines
- Suggest to add Metrics for Performance/uArch Cost

No.	Guides	Option A	Option B	Option C	Option D	Option E
1	VLEN agnostic at binary level	Not Disclosed while L!=λ ²	To Be Discussed (seems support?)		Not Disclosed while L!=λ ²	(1) Source Compliant(2) Binary Compliant for vmul/fused ISA
2	Deterministic Result (FMAC rounding/ordering)	Shall support	Shall support	Shall support	Shall support	Support if finalized
3	Re-producible result with plain scalar/vector	Shall support	Shall support	Shall support	Shall support	Support (BIT TRUE test)
4	Near peak (~90%) performance for GEMM kernels is possible					GEMM kernels Near Peak U-rate
5	Higher (~2X) performance than vector					Over (>3X) enhancement than RVV
6	Maximization computation intensity for GEMM kernels					GEMM kernels Near Peak U-rate
7	Minimization additional architecture state	None new state	None new state	None new state	Not Support (New Streaming buffer for A/B)	None new state (not considering ZOB)
8	Live-migration with larger vector registers	Not Support for different lambda	To Be Discussed (seems support?)	Not Support for different vector element type	Not Support for different lambda	Under Working (AMM 2.0)
9	Proper Support for packing/reformat data	May Need Additional handling while $L!=\lambda^2$	Support (No additional interleaving/shuffle required)	Support (No additional interleaving/shuffle required)	May Need Additional handling while L!=λ ²	Support (No additional interleaving/shuffle required)
10	Metrics for Performance/uArch cost (Suggest to consider)	Feasible uArch cost(VRF R/W) for Specific MAC Performance	High uArch cost(VRF R/W) for MAC Performance [†]	feasible uArch cost(VRF R/W) for MAC Performance	Feasible uArch cost(VRF R/W) for MAC Performance	Feasible uArch cost(VRF R/W) for MAC Performance

Appendix

Option E: Theoretical Performance Revisit

• \widetilde{M} , \widetilde{N} Denotes Reasonable Unrolling Parameters

Metrics for MAC Performance vs. uArch Cost

• Single Instruction Required VRF R/W Resources (Cycle) for specific MAC Performance

VRF RW Ports	Option A	Option B	Option C	Option D	Option E	Note
3R/1W	256	16	128	additional Streaming buffer		References VLEN 512,int8,128MAC/cycle
4R/2W	512	32	256	R/W Port Required	256	
6R/4W	1024	64	512		512	
10R/8W	2048	128	1024		1024	

		<u> </u>				
VRF RW Ports	Option A	Option B	Option C	Option D	Option E	Note
3R/1W	32	8	64	Streaming buffer	64	References VLEN 256,int8,64MAC/cycle
4R/2W	64	16	128	R/W Port	128	
6R/4W	128	32	256	Required	256	
10R/8W	256	64	512		512	

Option A: Optimal Performance Revisit

 \widetilde{M} \widetilde{N}

SRC-A (VRF#)	SRC-B (VRF#)	ACC-C (VRF#)	Ultized (VRF#)	lamda	compute Intensity
1	15	15	31	4	3.75
2	10	20	32	4	6.67
3	7	21	31	4	8.40
4	5	20	29	4	8.89
5	4	20	29	4	8.89
6	3	18	27	4	8.00
7	3	21	31	4	8.40
8	2	16	26	4	6.40
9	2	18	29	4	6.55
10	2	20	32	4	6.67
11	1	11	23	4	3.67
12	1	12	25	4	3.69
13	1	13	27	4	3.71
14	1	14	29	4	3.73
15	1	15	31	4	3.75

[†]Illustration by lambda = 4 where VLEN = 512

• Total $(\widetilde{M} + \widetilde{N}) * \lambda^2$ Words loaded

• Computation Intensity = $\frac{(\widetilde{M}*\widetilde{N})*\lambda^3}{(\widetilde{M}+\widetilde{N})*\lambda^2} = \frac{(\widetilde{M}*\widetilde{N})*\lambda}{(\widetilde{M}+\widetilde{N})}$

Theoretical Performance Could be Achieved

Option B: Optimal Performance Revisit

• Total $\widetilde{A_{4x1}} + \widetilde{N} * L$ Words loaded

• Computation Intensity = $\frac{(\widetilde{A_{4x1}} * \widetilde{N}) * L}{\widetilde{A_{4x1}} + \widetilde{N} * L}$

Option B(optimal) Option B(restrict) 16 compute intensity(MAC/Words) 14 12 10 8 6 10 50 20 30 40 60 L(Words)

Theoretical Performance Could be Achieved

• Refer Metrics for

 $\frac{MAC\ Performace}{uArch\ cost}$

Option C: Theoretical Performance Revisit

\sim	~
М	Λ
IVI	1 V

VLEN	L	lambda	7 1/1 1 1 4		A lambda	SRC-B (VRF#)		ACC-C (VRF#)		compute Intensity
128	4	2	1	5	5	4	4	20	29	4.44
256	8	2	2	3	6	4	8	24	31	6.86
512	16	2	4	2	8	3	12	24	29	9.60
1024	32	2	8	1	8	3	24	24	28	12.00
2048	64	2	16	1	16	1	16	16	18	16.00

• Total $\widetilde{M} * \lambda^2 + \widetilde{N} * L$ Words loaded

• Computation Intensity =
$$\frac{\widetilde{M}*\lambda*\widetilde{N}*\left(\frac{L}{\lambda^{2}}\right)*\lambda^{2}}{\widetilde{M}*\widetilde{N}*L*\lambda} = \frac{\widetilde{M}*\widetilde{N}*L*\lambda}{\widetilde{M}*\lambda^{2}+\widetilde{N}*L}$$

Theoretical Performance Could be Achieved

Option E: Theoretical Performance Revisit

• Total $(\widetilde{M} + \widetilde{N}) * L$ Words loaded

• Computation Intensity = $\frac{\widetilde{M}\widetilde{N}\left(\frac{L}{\sqrt{L_{min}}}\right)^{2}*\sqrt{L_{min}}}{\widetilde{(M}+\widetilde{N})L} = \frac{\widetilde{M}\widetilde{N}L}{\sqrt{L_{min}}\widetilde{(M}+\widetilde{N})}$

Theoretical Performance Could be Achieved See Reference in Appendex