线性代数 作业 3

2025年2月25日

1 基础题

本次作业中的矩阵均为实矩阵.

题 1. 计算矩阵乘法:

1.
$$\begin{bmatrix} 1 & 4 & 7 & 9 \\ -3 & 3 & 8 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 6 & 7 \\ 9 & -2 & 0 \\ 11 & -1 & -3 \\ 1 & 0 & 0 \end{bmatrix};$$

$$2. \begin{bmatrix} X & 1 & 0 \\ X^2 + X & 2 & 0 \\ 0 & X & X - 1 \end{bmatrix} \begin{bmatrix} -1 & X & -X \\ 8 & -X - 2 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

3.
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} (\theta, \varphi \in \mathbb{R}).$$

4.
$$\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}^6 . (为什么?)$$

题 2. 设矩阵 A, B 的行数相等. 证明: 存在矩阵 X 使得 AX = B 当且仅当 rank(A) = rank((A, B)). (其中 (A, B) 表示将两个矩阵拼接得到的矩阵.)

题 3. 设有 n 个矩阵 $A^{(1)}, \dots, A^{(n)}$ (注意, 此处上标不是乘方), 其大小未知, 但满足乘积 $P = A^{(1)}A^{(2)} \dots A^{(n)}$ 有意义. 记 $A^{(k)}$ 的第 i 行第 j 个元素为 $a_{ij}^{(k)}$, P 的第 i 行第 j 个元素为 p_{ij} . 请用 $a_{ij}^{(k)}$ 表示 p_{ij} .

提示:答案并不复杂. n=2 时的答案为

$$p_{ij} = \sum_{k} a_{ik}^{(1)} a_{kj}^{(2)}.$$

题 4. 设 G = (V, E) 是一个图, 顶点集 $V = \{1, 2, \dots, n\}$. n 阶矩阵 A 是 G 的邻接矩阵, 即 A 的元素 a_{ij} 等于顶点 i, j 之间边的数量.

证明 A^k 的第 i 行第 j 个元素等于 i, j 之间长度为 k 的道路的数量. (所谓 i, j 之间长度为 k 的道路,是指 V 的一列元素 $i = v_0, v_1, \cdots, v_k = j$ 和 E 的一列元素 e_1, \cdots, e_k , 满足 e_h 的顶点为 v_{h-1}, v_h .)

提示: 使用问题 3的结果.

题 5. 证明:与所有 n 阶方阵均可交换的 n 阶方阵必为纯量方阵,即形如 $\lambda I_n, \lambda \in \mathbb{R}$.

题 6. 对 $n \times n$ 矩阵 $X = (x_{ij})_{1 < i,j < n}$, 定义其"迹"为

$$tr(X) = x_{11} + x_{22} + \dots + x_{nn}.$$

- 1. 设 A 是 $m \times n$ 矩阵, B 是 $n \times m$ 矩阵, 证明 tr(AB) = tr(BA).
- 2. 证明不存在 $n \times n$ 的矩阵 A, B 使得 $AB BA = I_n$.