CS3110 Formal Language and Automata

Tingting Chen
Computer Science
Cal Poly Pomona

Prove a Language is Not Regular

- How can we prove that a language L is not regular?
 - Prove that there is no DFA that accepts
 - This is not easy to prove...

Solution: the pumping Lemma!

The pigeonhole principle

The "pigeonhole principle" states that if n + 1 items are placed into n pigeonholes, then at least 1 pigeonhole must end up with more than 1 item in it.

In set notation:

```
if f: A → B
|A| = n + 1
|B| = n
then f cannot be one-to-one
```

The pigeonhole principle and DFAs

Example: a DFA with 4 states

In walks of some strings, no state is repeated

a

aa

aab

The pigeonhole principle and DFAs

 In walks of some strings, at least a state is repeated

aabb

bbaa

The string w has length |w|≥4

abbabb

abbbabbabb...

In General

For any DFA:

If String w has length ≥ number of states, then a state q must be repeated in the walk of w

- Take an infinite regular language L, there exists a DFA that accepts L.
- Assume the DFA has m states.
- Take a string w ∈ L, if string w has length
 |w| ≥ m, then from the pigeonhole principle,
 a state is repeated in the walk w.

Let q be the first state repeated once in the walk of w.

- There must be cycle around q, the walk of the cycle is y.
- Write w=xyz

- w = xyz
- Observations:
 - $-|xy| \le m$ (the number of states in the DFA)
 - -|y|>=1.

- Strings xz, xyz, xyyz, xyyyz,... are accepted.
- In general, xyⁱz is accepted, i = 0, 1, 2, ...

The Pumping Lemma – Formally

- Given an infinite regular language L
- There exists an integer m
- For any string w ∈ L, with length |w| ≥ m
- we can write w=xyz
- with $|xy| \le m$ and $|y| \ge 1$,
- such that $xy^iz \in L$, i=0, 1, 2...

The Pumping Lemma – Application

- Example: Prove that the language $L = \{a^nb^n \mid n \ge 0\}$ is not regular.
- The proof is by contradiction, and using pumping lemma
- If L is regular, it must be accepted by some DFA.
- Let m be the number of states of the DFA and consider some $w \in L$ such that $|w| \ge m$.

The Pumping Lemma – Application

- Example: Prove that the language $L = \{a^nb^n \mid n \ge 0\}$ is not regular.
- By the pumping lemma, we can split w into three pieces, w = xyz, such that for any $i \ge 0$, the string xyⁱz is in L.
- So let $w = a^m b^m$. (since n can be any non-negative integer)
- Because $|xy| \le m$, y must consist of all a's.
- But then xy²z will contain more a's than b's. It cannot be accepted.
- This is a contradiction.

Exercise

Prove that L={ww^R, w \in {a,b}*} is not regular.