CSE215: Lecture 04 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 6, 2022

Things

- Attendance check. Consider sending me an email before class.
- TA: Wonbin Kim. Office hours: Monday to Thursday, 10hmidnight
- NEW: Anonymous feedback about this course:

https://forms.gle/BjkiAUSUc3Fet9Rn6

Previous lecture

- Truth table
- We use it for checking logical equivalence, tautology, contradiction

SBU 2021 Midterm-1

Problem 2. [5 points]

Check the logical equivalence of $((p \land q) \to r)$ and $((p \to r) \lor (q \to r))$.

A sharp comment from a students in the previous lecture

Conditional	p o q	p implies q if p , then q p only if q q if p
		p only if q
		q if p
		$\it q$, provided that $\it p$

Today's plan

- Equivalence laws
- Valid arguments

Commutative Law

Laws	Formula	Formula
Commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$

Give some equivalent statement forms for (p/\q) ∨ (s\/t)

Associative Law

Associative laws

$$(p \land q) \land r \equiv p \land (q \land r)$$

$$(p \land q) \land r \equiv p \land (q \land r) \qquad (p \lor q) \lor r \equiv p \lor (q \lor r)$$

Think about an equivalent forms for (p/\q) ∨ (s\/t)

Distributive Law

Distributive laws
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

- A bit like a * (b + c) = a * b + a * c
- Think about an equivalent forms for (p/\q) ∨ (s\/t)

Laws with "true" and "false"

Identity laws	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
Negation laws	$p \lor \sim p \equiv \mathbf{t}$	$p \land \sim p \equiv \mathbf{c}$
Uni. bound laws	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$

Double-negation Law

Double neg. law

$$\sim (\sim p) \equiv p$$

Idempotent Law

Idempotent laws $p \wedge p \equiv p$

$$p \wedge p \equiv p$$

$$p \lor p \equiv p$$

De Morgen Law

De Morgan's laws $\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$

- p = student A is from Korea
- q = student B is from Korea
- p ∧ q = Both student A and B are from Korea
- \sim (p \land q) = Either A is not from Korea, or B is not from Korea
- p V q = student A or student B is from Korea
- \sim (p \vee q) = ____

Absorption Law

Absorption laws $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

Equivalence laws

Laws	Formula	Formula
Commutative laws	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative laws	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
Distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Identity laws	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
Negation laws	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
Double neg. law	$\sim (\sim p) \equiv p$	
Idempotent laws	$p \wedge p \equiv p$	$p\vee p\equiv p$
Uni. bound laws	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
De Morgan's laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption laws	$p \vee (p \wedge q) \equiv p$	$p \land (p \lor q) \equiv p$
Negations	$\sim \mathbf{t} \equiv \mathbf{c}$	$\sim \mathbf{c} \equiv \mathbf{t}$

Exercise

Problem 3. [5 points]

Mention whether the following statements are true or false. Reasons are not needed.

- (a) [1 point] $p \lor \sim p \equiv \mathbf{c}$
- (b) [1 point] $p \lor (p \land q) \equiv p \land (p \lor q)$
- (c) [1 point] $\mathbf{c} \equiv p \vee \mathbf{t}$
- (d) [1 point] $p \wedge p \equiv p \vee p$
- (e) [1 point] $p \wedge \mathbf{c} \equiv \sim \mathbf{t}$

2021-Final

Exercise

Problem 2. [5 points]

Is conditional operator \rightarrow an associative operator? That is, is $(p \rightarrow q) \rightarrow r$ logically equivalent to $p \rightarrow (q \rightarrow r)$? Prove your answer.

- $(p->q)->r = (\sim p \lor q)->r = \sim (\sim p \lor q) \lor r = (p \land \sim q) \lor r$
- $p \rightarrow (q \rightarrow r) = p \lor (q \rightarrow r)$
- To show the two differ, consider r=false, ~q=false, p = false
- Alternatively, we could use a truth table

Break if T < 1h15 pm

Part 2. Valid arguments

Final, 2020-1

Problem 1. [5 points]

Determine if the following deduction rule is valid.

$$p \to (q \lor r)$$

$$\sim (p \to q)$$

$$\therefore r$$

What is a logical argument?

Definitions

- Logical argument. Sequence of statements aimed at demonstrating the truth of an assertion
- Conclusion. Last statement in an argument
- Premises. Last-but-one statements in an argument

If Premise₁ and Premise₂ and \cdots and Premise_m, then Conclusion.

What is a valid argument?

Definition

 An argument is valid if the conclusion follows necessarily from the premises

https://youglish.com/pronounce/%22Valid%20Argument%22/english/us?

- Every person will die
- Socrates is a person
- So, Socrates will die

- Congressmen/women own classified info
- Investors can take profit from classified info
- So, congressmen/women should not be allowed to actively do investment

Exercise: Valid or Not?

- All cups are blue
- Socrates is cup
- So, Socrates is blue

Valid or not?

Examples

Valid

 If Socrates is a man, then Socrates is mortal. Socrates is a man.

If p, then q. p.

Therefore, Socrates is mortal.

Therefore, q.

Invalid

If p, then q. If Socrates is a man, then Socrates is mortal. Therefore, p. Socrates is mortal.

Therefore, Socrates is a man.

Valid

• If Socrates is a man, then Socrates is mortal. If p_i then q_i $\sim q$. Socrates is not mortal. Therefore, $\sim p$.

Therefore, Socrates is not a man.

Invalid

 If Socrates is a man, then Socrates is mortal. If p, then q. $\sim p$. Socrates is not a man. Therefore, $\sim q$.

Therefore, Socrates is not mortal.

How to mathematically check if an argument is valid?

- Truth table
- Inference rules

Method 1: Truth table

- 1. Identify the premises and conclusion
- 2. Construct a truth table for premises and conclusion
- 3. A row of the truth table in which all the premises are true is called a critical row.
 - If there is a critical row in which the conclusion is false, then the argument is invalid. If the conclusion in every critical row is true, then the argument is valid.

Importantly, if there are no critical rows, then the arguments is considered valid

Example

Problem

• Determine the validity of the argument:

$$\begin{array}{l} p \rightarrow q \lor \sim r \\ q \rightarrow p \land r \\ \therefore p \rightarrow r \end{array}$$

$oxed{p}$	q	r	$\sim r$	$q \lor \sim r$	$p \wedge r$	$p \to q \lor \sim r$	$q \to p \wedge r$	$p \rightarrow r$
Т	Т	Т	F	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	F	Т	F	
Т	F	Т	F	F	Т	F	Т	
Т	F	F	Т	Т	F	Т	Т	F
F	Т	Т	F	Т	F	Т	F	
F	Т	F	Т	Т	F	Т	F	
F	F	Т	F	F	F	Т	Т	Т
F	F	F	Т	Т	F	Т	Т	Т

Exercise

Problem 1. [5 points]

Determine if the following deduction rule is valid.

$$\begin{array}{l} p \to (q \lor r) \\ \sim (p \to q) \\ \therefore r \end{array}$$

2020 Final-1

Summary

- Logical equivalence
- Valid arguments
- Check validity using truth tables

Thank you for your attention!