

### **B4** - Mathematics

B-MAT-400

# 202unsold

Statistics for Selling Suit Stock





## 202unsold

binary name: 202unsold

language: everything working on "the dump"

compilation: when necessary, via Makefile, including re, clean and fclean

rules



• The totality of your source files, except all useless files (binary, temp files, obj files,...), must be included in your delivery.

• All the bonus files (including a potential specific Makefile) should be in a directory named *bonus*.

• Error messages have to be written on the error output, and the program should then exit with the 84 error code (O if there is no error).

Once a year, a suit-seller gets rid of their unsold stock, selling separately jackets and trousers, at \$10, \$20, \$30, \$40 and \$50. They'd like to know how much each piece of clothing is likely to yield (expected value and variance).

They gave their statistician friend a mission: to deduce from their past results the probability to sell a \$x jacket and \$y trousers together. It appears that the probability is defined by the following formula (a and b being integers greater than 50, depending on the economic climate):

$$\frac{(a-x)(b-y)}{(5a-150)(5b-150)}$$

Let's call X, Y and Z, respectively, the random variables that represent "the price of a sold jacket", "the price of sold trousers" and "the price of a sold suit". Given the values of a and b, your software must print:

- an array summing up the joint law of (X, Y), and the marginal laws of X and Y,
- an array summing up the law of Z,
- expected values and variances of X, Y and Z.

#### **USAGE**





#### **EXAMPLES**

| $\nabla$                | Terminal - |          |           |       |       |       |  |       |       |
|-------------------------|------------|----------|-----------|-------|-------|-------|--|-------|-------|
| $\sim$ /B-MA $^{\circ}$ | T-400> .   | /202unsc | old 60 70 | )     |       |       |  |       |       |
|                         |            |          |           |       |       |       |  |       |       |
|                         |            |          |           | X=40  |       | Y law |  |       |       |
| Y=10                    | 0.100      | 0.080    | 0.060     | 0.040 | 0.020 | 0.300 |  |       |       |
| Y=20                    | 0.083      | 0.067    | 0.050     | 0.033 | 0.017 | 0.250 |  |       |       |
| Y=30                    | 0.067      | 0.053    | 0.040     | 0.027 | 0.013 | 0.200 |  |       |       |
| Y = 40                  | 0.050      | 0.040    | 0.030     | 0.020 | 0.010 | 0.150 |  |       |       |
| Y=50                    | 0.033      | 0.027    | 0.020     | 0.013 | 0.007 | 0.100 |  |       |       |
| X law                   |            | 0.267    |           | 0.133 |       |       |  |       |       |
| <br>z                   |            |          |           | 50    | 60    |       |  | 90    | 100   |
| p(Z=z)                  |            |          |           |       | 0.167 |       |  | 0.023 | 0.007 |
| expected value of X:    |            |          |           |       |       |       |  |       |       |
| variance of X:          |            |          |           |       |       |       |  |       |       |
| expected value of Y:    |            |          |           |       |       |       |  |       |       |
| variance of Y:          |            |          |           |       |       |       |  |       |       |
| expected value of Z:    |            |          |           |       |       |       |  |       |       |
| variance of Z:          |            |          |           |       |       |       |  |       |       |



Don't worry too much about tabulations in the printing format.

