Workflow for well characterisation

Исходные данные- скважина Cooba-1

Импорт данных:

Загрузка скважинных данных

Загрузка каротажных данных

Анализзрелости:

Шаг 1: Моделирование отражающей способности витринита(vitrinitereflectance)

Исходные данные:

Таблица

Layer	Top [m]	Base [m]	Thick. [m]	Eroded [m]	Depo. from [Ma]	Depo. to [Ma]	Froded from [Ma]	Eroded to [Ma]	Lithology	PSE	TOC [%]	Kinetic	HI mgHC/gTOC
surficial to bulldog shale inclusive	0	1649	1649		120.00	0.00			SILTSTONE	Overburden Rock			
Cadna-owie formation	1649	1716	67		135.00	120.00			SILTSTONE	Overburden Rock			
Mooga Formation: murta member	1716	1765	49		139.00	135.00			SILTSTONE	Overburden Rock			
Mooga formation: Namur sandstone member	1765	1847	82		162.00	139.00			Sandstone (typical)	Reservoir Rock			
Westbourne formation	1847	1931	84		161.00	151.00			SAND&SILT	Overburden Rock			
Adori sandstone	1931	2001	70		162.00	161.00			Sandstone (typical)	Reservoir Rock			
Birkhead formation	2001	2061	60		170.00	162.00			SAND&SILT	Overburden Rock			
Huttone sandstone	2061	2271	210		190.00	168.00			SAND&SILT	Overburden Rock			
Poolowanna formation	2271	2325	54		200.00	190.00			SAND&SILT	Overburden Rock			
Napamerri group	2325	2542	217		250.00	230.00			SAND&SILT	Overburden Rock			
Toolachee formation	2542	2593	51		255.00	250.00			SAND&SILT	Overburden Rock			
Daralangie formation	2593	2683	90	90	261.00	260.00	260.00	255.00	SILTshaly	Overburden Rock			
Epsilon formation	2683	2739	56		263.00	261.00			SHALE&SILT	Source Rock	4.00	Pepper&Corvi(1995)_TII(B)	142.00
Murtree shale	2739	2770	31		264.00	263.00			SHALE&SILT	Source Rock	3.00	Pepper&Corvi(1995)_TIII-IV(F)	71.00
Patchawarra formation	2770	3156	386		286.00	261.00			SHALEcoal	none			
Tirrawarra sandstone	3156	3197	41		289.00	284.00			SANDSTONE	Reservoir Rock			
Merrimelia Formation	3197	3264	67		291.00	286.00			Sandstone (typical)	Reservoir Rock			
						291.00							

Задание функций для теплового потока и изменения температур

Действия: 1Д бассейновое моделирование

Результат: кривая отражающей способности витринита

АнализТОС:

IIIar 1:Calculation of LogR of all Resistivity logs

<u>Исходные данные:</u>каротажная кривая сопротивления (LLD)

Результат: логарифм кривой сопротивления

Шаг 2:CreatingCross-PlotLogRvs.Sonic (DT)

Исходные данные:

Данные кривой сопротивления,

Каротажная кривая акустики

Результат:

Кросс плот (ось X- сопротивление, ось Y- акустика)

Шаг3:Determine low Resistivity Shale line

Данные: кросс плот

Действия: определить линию тренда для не сланцевых коллекторов

Результат:коэффициентыв ит

IIIar4:Calculate new Sonic (pseudo-sonic DtR) from Shale line [DtR=b-m*LogR]

Данные:

Логарифм кривой сопротивления

Коэффициенты b&m

Действия: рассчитать кривую по формуле DtR=b-m*LogR

<u>Результат</u>: криваяDtR

Шаг5:Overlay pseudo-sonic (DtR) over sonic

Данные:

Кривая DtR

Кривая Dt

Действия: наложить кривые друг на друга

Результат: наложенныекривые

Шаг6:Highlight crossover of pseudo-sonic with DT

Данные:

Наложенные кривые

Действия: выделить область различий кривых

Результат: выделенные зоны

Шаг7:Calculation TOC from resistivity data

Данные:

RESD = deep resistivity in any zone (ohm-m)

RESDbase = deep resistivity baseline in non-source rock (ohm-m)

DTC = compressional; sonic log reading in any zone (usec/ft)

DTCbase = sonic baseline in non-source rock (usec/ft)

LOM = level of organic maturity (unities)

TOCs = total organic carbon from Passey method (weight fraction)

Действия:

 Рассчитать по формулам следующие кривые

 LogR = log (RESD / RESDbase) - 2.5 * (DTC – DTCbase)

 TOCs = (logR * 10^ (0.297 – 0.1688 * LOM))

 Результат:

 Кривая ТОС

Выделение потенциальных зон

- 1. Overlying DT under non-shale DT
- 2. TOC > 2 %
- 3. Mature Rocks, Vitrinite reflectance>1 %