Lezione 17 – complessità di problemi

Lezione del 8/05/2024

Complessità di problemi e codifica

- Siamo pronti ad affrontare il paragrafo 7.5
- Ci eravamo riproposti di estendere ai problemi quello che abbiamo studiato relativamente alla complessità di linguaggi
- a patto, come abbiamo chiarito, di utilizzare codifiche ragionevoli per codificare le istanze dei problemi
- Resta da capire come trasformare un problema in un linguaggio!
- E se questa trasformazione è indolore
 - o se ci costringe a considerare qualche nuova questioncina...

Da problema a linguaggio

- Sia $\Gamma = \langle \mathfrak{I}_{\Gamma}, \mathfrak{I}_{\Gamma}, \mathfrak{I}_{\Gamma} \rangle$ un problema decisionale
- Osserviamo che l'insieme \mathfrak{T}_{Γ} delle istanze di Γ è partizionato in **due** sottoinsiemi:
 - $lue{r}$ l'insieme delle **istanze sì** ossia le istanze che verificano π_{Γ}
 - lacktriangle l'insieme delle **istanze no** ossia le istanze che non verificano π_{Γ}
- ▶ Şia $\chi: \mathfrak{I}_{\Gamma} \to \Sigma^*$ una codifica (ragionevole) per Γ.
- \not La codifica χ partiziona Σ^* in <u>tre</u> sottoinsiemi di parole:
 - l'insieme Y_Γ delle parole che codificano istanze sì di Γ;
 - l'insieme N_{Γ} delle parole che codificano istanze no di Γ;
 - ightharpoonup l'insieme delle parole che <u>non</u> codificano istanze di Γ.
- Il linguaggio associato a Γ mediante la codifica χ è il sottoinsieme $L_{\Gamma}(\chi)$ di Σ^* contenente le parole appartenenti a Y_{Γ} , ossia,

$$\mathsf{L}_{\Gamma}(\chi) = \big\{ \, \mathsf{x} \in \Sigma^* : \exists \, \, \mathsf{y} \in \, \mathfrak{T}_{\Gamma} \, \big[\, \mathsf{x} = \chi(\mathsf{y}) \land \pi_{\Gamma}(\mathsf{y}, \, \mathsf{S}_{\Gamma}(\mathsf{y}) \, \big) \, \big] \, \big\}.$$

Da problema a linguaggio

- Sia $\Gamma = \langle \mathfrak{F}_{\Gamma}, \mathfrak{F}_{\Gamma}, \pi_{\Gamma} \rangle$ un problema decisionale
- Il línguaggio associato a Γ mediante la codifica χ è il sottoinsieme $L_{\Gamma}(\chi)$ di Σ^* contenente le parole che codificano l'insieme Y_{Γ} , ossia,

$$L_{\Gamma}(\chi) = \{ x \in \Sigma^* : \exists y \in \mathfrak{F}_{\Gamma} [x = \chi(y) \land \pi_{\Gamma}(y, S_{\Gamma}(y))] \}.$$

- Dunque, decidere se una istanza y di Γ è una istanza sì corrisponde a decidere se x= χ (y) è contenuto in $L_{\Gamma}(\chi)$
- e, d'altro canto, data $x \in \Sigma^*$, per decidere se $x \in L_{\Gamma}(\chi)$ occorre:
 - decidere se x è la codifica di un'istanza y di Γ
 - \blacksquare e poi, in caso affermativo, decidere se il predicato $\pi_{\Gamma}(y, S_{\Gamma}(y))$ è soddisfatto

Complessità di un problema

- A questo punto, possiamo definire la complessità computazionale di un problema decisionale.
- **Definizione 7.3**: Sia Γ = $\langle \mathfrak{F}_{\Gamma}, \mathfrak{S}_{\Gamma}, \pi_{\Gamma} \rangle$ un problema decisionale e sia C una classe di complessità
 - data una funzione f totale e calcolabile
 - Arr C \in { DTIME[f(n)] , DSPACE[f(n)] , NTIME[f(n)] , NSPACE[f(n)] }
- Diciamo che

 $\Gamma \in C$ se esiste una codifica ragionevole $\chi : \mathfrak{F}_{\Gamma} \to \Sigma^*$ per Γ tale che $L_{\Gamma}(\chi) \in C$.

- Vediamo ora con un esempio cosa occorre fare per decidere se $x \in L_{\Gamma}(\chi)$
 - e, quindi, da cosa è caratterizzata la complessità di un **problema**
 - e in cosa si differenzia lo studio della complessità di problemi dallo studio della complessità di linguaggi

Decidere un problema

- **Esempio 7.6**: Ricordiamo il problema 3SAT e la codifica χ_1
 - se X = $\{x_1, x_2, x_3\}$ e f = $c_1 \wedge c_2$ con $c_1 = x_1 \vee x_2 \vee x_3$ e $c_2 = x_1 \vee \neg x_2 \vee \neg x_3$ allora $\chi_1(X, f) = 444 \cdot 0.100 \cdot 2.0010 \cdot 2.0011 \cdot 3.0100 \cdot 2.1010 \cdot 2.1001$
 - che abbiamo visto essere una codifica ragionevole
- ▶ Allora, una parola $x \in \{0,1,2,3,4\}^*$ è in $L_{3SAT}(\chi_1)$ se sono verificati i due fatti seguenti.
 - ▶ 1) x deve essere la codifica secondo χ_1 di qualche coppia $\langle X, f \rangle$ istanza di 3SAT:
 - ad esempio, è facile verificare che 4021011103240111 non è la codifica di alcuna istanza
 - Se x non è una codifica valida, possiamo subito concludere che x ∉ L_{3SAT} (χ₁).
 - ▶ 2) Se x è la codifica secondo χ_1 di una istanza $\langle X, f \rangle$ di 3SAT, affinché $x \in L_{3SAT}(\chi_1)$ occorre che f sia soddisfacibile.
- ossia, come abbiamo visto, dati un problema Γ e una sua codifica ragionevole χ , per verificare che una parola sia in L $_{\Gamma}(\chi)$ occorre innanzi tutto verificare che essa sia la codifica di una istanza.

Il linguaggio delle istanze

- ▶ Dato un problema Γ ed una codifica ragionevole $\chi: \mathfrak{I}_{\Gamma} \to \Sigma^*$ per \mathfrak{I}_{Γ} ,
- lacktriangle definiamo il **linguaggio delle istanze di \Gamma**, ossia, il linguaggio

$$\chi(\mathfrak{F}_{\Gamma}) = \{ x \in \Sigma^* : \exists y \in \mathfrak{F}_{\Gamma} [x = \chi(y)] \}.$$

- OSSERVAZIONE:
 - $ightharpoonup \chi$ è una codifica di \mathfrak{I}_{Γ}
 - **p** quindi, se y,z $\in \mathfrak{I}_{\Gamma}$ sono due istanze di Γ con y \neq z, allora $\chi(y) \neq \chi(z)$
 - ightharpoonup quindi χ è una funzione invertibile
- ightharpoonup allora, possiamo definire il linguaggio $L_{\Gamma}(\chi)$ anche nella maniera seguente:

$$\mathsf{L}_{\Gamma}(\chi) = \{ \, \mathsf{x} \in \Sigma^* : \mathsf{x} \in \chi(\,\mathfrak{T}_{\Gamma}) \land \pi_{\Gamma}(\chi^{-1}(\,\mathsf{x})\,,\,\mathsf{S}_{\Gamma}(\chi^{-1}(\,\mathsf{x})\,) \,) \, \}$$

- Dunque, se, per decidere se una parola x appartiene a $L_{\Gamma}(\chi)$ dobbiamo anche verificare se x è effettivamente la codifica di un'istanza di Γ ,
- allora per definire la complessità del problema decisionale Γ occorre considerare anche la complessità di decidere il linguaggio $\chi(\mathfrak{T}_{\Gamma})$

Esempio 7.7

- Consideriamo un nuovo problema decisionale PHC (Percorso in Ciclo Hamiltoniano):
 - sia dato un particolare grafo non orientato G=(V,E)
 - Gè un grafo particolare: contiene un ciclo che passa una ed una sola volta per ciascuno dei suoi nodi (che si chiama ciclo hamiltoniano)
 - \blacksquare siano dati, inoltre, due suoi nodi u, $v \in V$;
 - si chiede di decidere se esiste in G un percorso che collega u a v.
- Formalizziamo il problema precedente mediante la tripla $\langle \mathfrak{T}_{PHC}, \mathfrak{S}_{PHC}, \pi_{PHC} \rangle$:
 - ¬
 S_{PHC} = { ⟨ G = (V,E), u, v ⟩ : G è un grafo non orientato Λ ∃ un ciclo c in G che passa una e una sola volta attraverso ciascun nodo di G Λ u, v ∈ V};
 - Arr $S_{PHC}(G,u,v) = \{ p : p \ e un percorso in G \};$
 - \blacksquare $\pi_{PHC}(G, \cup, \vee, S_{PHC}(G, \cup, \vee)) = \exists p \in S_{PHC}(G, \cup, \vee)$ che connette \cup a \vee .
- ATTENZIONE: Se sappiamo che un grafo contiene un ciclo che passa (una e una sola volta) attraverso tutti i nodi di G, allora, qualunque coppia di nodi u,v si consideri, una porzione di quel ciclo è un percorso da u a v
- Questo significa che ogni istanza del problema PHC è una istanza sì.

Linguaggio delle istanze e complessità

- Ogni istanza del problema PHC è una istanza sì.
- Quindi, indipendentemente dalla codifica utilizzata, decidere se una qualunque istanza del problema soddisfa il predicato del problema richiede costo costante.
- D'altra parte, data una qualunque codifica ragionevole (diciamo, binaria) χ per PHC, per decidere se una parola x ∈ {0,1}* è contenuta in L_{PHC}(χ), dobbiamo verificare
 - sia se x è la codifica di una istanza di PHC, ossia, di un grafo che contiene un ciclo che attraversa tutti i nodi una e una sola volta e di una coppia di suoi nodi,
 - sia se detto grafo contiene un percorso che connette i due nodi.
- Come vedremo, la prima di queste due verifiche (ossia decidere $\chi(\mathfrak{F}_{PHC})$) è un noto linguaggio NP-completo.
- **E**, quindi, concludiamo che $L_{PHC}(\chi)$ è NP-completo.
- Allora, anche se,
 - ▶ una volta assodato che una parola $x \in \{0,1\}^n$ è istanza di PHC,
- decidere se x soddisfa $\pi_{PHC}(G, u, v, S_{PHC}(G, u, v))$ ha costo costante
- non possiamo affermare che decidere PHC è un problema in P

- ightharpoonup Sia Σ un qualunque alfabeto (neanche a dirlo, finito)
- una (qualunque) codifica χ delle istanze di un problema decisionale Γ in parole di Σ^* induce una tri-partizione di Σ^* ossia, una partizione di Σ^* in tre sottoinsiemi:
 - l'insieme Y_{Γ} delle parole di Σ* che codificano istanze sì di Γ il linguaggio $L_{\Gamma}(\chi)$
 - l'insieme N_{Γ} delle parole di Σ^* che codificano istanze no di Γ
 - **p** parole di Σ* che non codificano istanze di Γ
- Ora, ricordiamo, dato un qualunque linguaggio $L \subseteq \Sigma^*$, il linguaggio complemento di $L \grave{e} : L^c = \Sigma^* L$
 - è così che lo avevamo definito!
- Perciò, secondo definizione, il linguaggio complemento di $L_{\Gamma}(\chi)$ è $(L_{\Gamma}(\chi))^c = \Sigma^* L_{\Gamma}(\chi)$
 - ossia, tutte le parole di $Σ^*$ che codificano istanze no di Γ e tutte le parole di $Σ^*$ che non codificano istanze di Γ
- Uhm...

- Perciò, secondo definizione, il linguaggio complemento di $L_{\Gamma}(\chi)$ è $(L_{\Gamma}(\chi))^c = \Sigma^* L$
 - ossia, tutte le parole di $Σ^*$ che codificano istanze no di Γ e tutte le parole di $Σ^*$ che non codificano istanze di Γ in
- Uhm... Ma siamo sicuri che questo è proprio ciò che corrisponde al complemento di un problema decisionale?
- In effetti, se pensiamo al complemento di un problema di decisione, quello che ci viene in mente sono le istanze del problema che non soddisfano il predicato
 - ad esempio, il problema 3SAT^c è l'insieme delle istanze (X,f) di 3SAT tali che f non è soddisfacibile
 - formalmente, 3SAT° = $\langle \mathfrak{I}_{3SAT}, \mathfrak{I}_{3SAT}, \neg \pi_{3SAT} \rangle$
- Perciò, il linguaggio che vogliamo associare al problema complemento di Γ non è $(L_{\Gamma}(\chi))^c = \Sigma^* L_{\Gamma}(\chi)$, bensì l'insieme N_{Γ} ,

$$L_{\Gamma^{\mathsf{C}}}(\chi) = \{ x \in \Sigma^* : x \in \chi(\mathfrak{F}_{\Gamma}) \land \neg \pi_{\Gamma}(\chi^{-1}(x), S_{\Gamma}(\chi^{-1}(x))) \}$$

ossia, formalmente (per gli interessati), $L_{\Gamma}c(\chi) = (L_{\Gamma}(\chi))^c - \chi^c(\mathfrak{F}_{\Gamma})$

- Dunque, il linguaggio che associamo al complemento di un problema decisionale Γ (codificato in Σ* secondo una codifica χ)
 non è (L_Γ(χ))^c = Σ* L_Γ(χ) ma L_Γc(χ)
- Ora, dato un linguaggio L ed una classe di complessità \mathcal{C} , noi sappiamo (per definizione) che se L $\in \mathcal{C}$ allora L^c \in co \mathcal{C}
- Perciò, dato un problema decisionale Γ (codificato in Σ^* secondo una codifica χ), noi sappiamo che se $L_{\Gamma}(\chi) \in \mathcal{C}$ allora $(L_{\Gamma}(\chi))^c \in \mathbf{co}\mathcal{C}$
- Bene.
- ▶ Ma, se sappiamo che se $L_{\Gamma}(\chi) \in \mathcal{C}$, cosa possiamo dire del linguaggio $L_{\Gamma^{c}}(\chi)$?
- Ossia: se sappiamo classificare (nell'ambito della complessità computazionale) un problema di decisione, sappiamo anche classificare il problema complemento???
- Prima di rispondere, vediamo un esempio

- Esempio 7.8: riprendiamo dall'esempio 7.7 il problema decisionale PHC: dato un grafo non orientato G=(V,E) che contiene un ciclo che passa una ed una sola volta per ciascuno dei suoi nodi, e dati due suoi nodi u, v ∈ V, si chiede di decidere se esiste in G un percorso che collega u a v.
- PHC è formalizzato mediante la tripla $\langle \mathfrak{T}_{PHC}, \mathfrak{S}_{PHC}, \pi_{PHC} \rangle$:
 - → \mathfrak{F}_{PHC} = { ⟨ G = (V,E), u, v ⟩ : G è un grafo non orientato Λ ∃ un ciclo c in G che passa una e una sola volta attraverso ciascun nodo di G Λ u,v ∈ V};
 - Arr $S_{PHC}(G,u,v) = \{ p : p \ e un percorso in G \};$
 - \blacksquare $\pi_{PHC}(G, \cup, \vee, S_{PHC}(G, \cup, \vee)) = \exists p \in S_{PHC}(G, \cup, \vee)$ che connette \cup a \vee .
- PHC^c è, allora:
 - dato un grafo non orientato G=(V,E) che contiene un ciclo che passa una ed una sola volta per ciascuno dei suoi nodi, e dati due suoi nodi u, v ∈ V;
 - si chiede di decidere se non esiste in G alcun percorso che collega u a v.
- lacktriangle ed è formalizzato mediante la tripla \langle \mathfrak{T}_{PHC} , \mathfrak{S}_{PHC} , \lnot π_{PHC} angle , con

 $\neg \pi_{PHC}(G, u, v, S_{PHC}(G, u, v)) = \mathbb{Z} p \in S_{PHC}(G, u, v)$ che connette u a v.

- Formalizzato il problema precedente mediante la tripla $\langle \mathfrak{S}_{PHC}, \mathsf{S}_{PHC}, \neg \pi_{PHC} \rangle$:
 - → \mathfrak{F}_{PHC} = { ⟨ G = (V,E), u, v ⟩ : G è un grafo non orientato Λ ∃ un ciclo c in G che passa una e una sola volta attraverso ciascun nodo di G Λ u,v ∈ V};
 - ightharpoonup $S_{PHC}(G,u,v) = \{ p : p \(\dot{e} \) un percorso in <math>G \);$
 - $\neg \pi_{PHC}(G, \cup, \vee, S_{PHC}(G, \cup, \vee)) = \cancel{\exists} p \in S_{PHC}(G, \cup, \vee)$ che connette \cup a \vee .
- Data una qualunque codifica ragionevole χ per PHC^c, per decidere se una parola x è contenuta in L_{PHC}c(χ), dobbiamo verificare
 - se x è la codifica di una istanza di PHC^C, ossia, di un grafo che contiene un ciclo che attraversa tutti i nodi una e una sola volta, e di una coppia di suoi nodi,
 - e se detto grafo non contiene percorsi che connettono i due nodi.
- Come abbiamo visto,
 - la verifica che x sia effettivamente la codifica di un'istanza di PHC è un problema NPcompleto
 - verificare se una qualunque istanza del problema soddisfa il predicato del problema richiede costo costante – perché nessuna istanza soddisfa il predicato!
- E, quindi, concludiamo (ad occhio) che PHC^c è NP-completo.

- Riassumiamo:
- il problema PHC è NP-completo
- e il suo complemento PHC^c è anch'esso NP-completo.

İ

- Quindi parrebbe che non possiamo trasportare ai problemi decisionali la teoria della complessità che abbiamo sviluppato per i linguaggi.
- E questo perché la complessità di un problema decisionale dipende anche dalla complessità di decidere il linguaggio delle istanze
- Ma se la decisione del linguaggio delle istanze richiede "poche risorse"
- Possiamo trasferire tutto ciò che abbiamo studiato relativamente alla complessità dei linguaggi alla complessità dei problemi decisionali
- Come mostra il prossimo teorema

Il ruolo del linguaggio delle istanze

- **Teorema 7.1**: Sia $\Gamma = \langle \mathfrak{F}_{\Gamma}, \mathfrak{S}_{\Gamma}, \pi_{\Gamma} \rangle$ un problema decisionale e sia $\chi : \mathfrak{F}_{\Gamma} \to \Sigma^*$ una sua codifica ragionevole. Se $\chi(\mathfrak{F}_{\Gamma}) \in P$, allora valgono le seguenti implicazioni:
 - 1) se $L_{\Gamma}(\chi) \in NP$ allora $L_{\Gamma^c}(\chi) \in coNP$
 - 2) se $L_{\Gamma}(\chi)$ ∈ NEXPTIME allora $L_{\Gamma^{c}}(\chi)$ ∈ coNEXPTIME

Dimostriamo il Teorema 7.1 nel caso 1)

Teorema 7.1 – caso 1)

- Se $\chi(\mathfrak{F}_{\Gamma}) \in \mathbf{P}$, allora esistono una macchina deterministica T ed un intero h tali che, per ogni $x \in \Sigma^*$, T decide se $x \in \chi(\mathfrak{F}_{\Gamma})$ e dtime(T,x) $\in O(|x|^h)$.
- Se $L_{\Gamma}(\chi) \in NP$, allora esistono una macchina non deterministica NT ed un intero k tali che, per ogni $x \in L_{\Gamma}(\chi)$, NT accetta x e ntime(NT, x) $\in O(|x|^k)$.
- Combinando T e NT, costruiamo una nuova macchina non deterministica NT_0 che accetta il linguaggio complemento di $L_{\Gamma^c}(\chi)$, ossia, che accetta $(L_{\Gamma^c}(\chi))^c$
- Due domande sorgono spontanee:
- PRIMA DOMANDA: ma che ce ne importa di accettare $(L_{\Gamma^c}(\chi))^c$?
 - Beh, se riusciamo a mostrare che possiamo accettare $(L_{\Gamma^c}(\chi))^c$ in tempo non deterministico polinomiale, allora $(L_{\Gamma^c}(\chi))^c$ è in NP e, dunque, $L_{\Gamma^c}(\chi) \in conP$.
- ightharpoonup SECONDA DOMANDA: quali parole troviamo in $(L_{\Gamma^c}(\chi))^c$?
 - Poiché in $L_{\Gamma^c}(\chi)$ troviamo parole che codificano istanze no di Γ , allora in $(L_{\Gamma^c}(\chi))^c$ troviamo
 - a) parole che non codificano istanze di Γ
 - $lue{}$ b) parole che codificano istanze sì di Γ , ossia, parole che appartengono a $L_{\Gamma}(\chi)$

Teorema 7.1 – caso 1)

- Se $\chi(\mathfrak{F}_{\Gamma}) \in \mathbf{P}$, allora esistono una macchina deterministica T ed un intero h tali che, per ogni $x \in \Sigma^*$, T decide se $x \in \chi(\mathfrak{F}_{\Gamma})$ e dtime(T,x) $\in O(|x|^h)$.
- Se $L_{\Gamma}(\chi) \in NP$, allora esistono una macchina non deterministica NT ed un intero k tali che, per ogni $x \in L_{\Gamma}(\chi)$, NT accetta x e ntime(NT, x) $\in O(|x|^k)$.
- Combinando T e NT, costruiamo una nuova macchina non deterministica NT_0 che accetta il linguaggio complemento di $L_{\Gamma^c}(\chi)$, ossia, che accetta $(L_{\Gamma^c}(\chi))^c$
- \blacksquare NT₀ opera in due fasi: con input x $\in \Sigma^*$,
 - Fase1. Simula la computazione T(x): se T(x) termina nello stato di rigetto, allora NT₀ termina nello stato di accettazione, altrimenti ha inizio la Fase 2.
 - Fase 2. Simula la computazione NT(x): se NT(x) accetta allora NT₀ accetta
- NT₀(x) accetta quando x $\notin \chi(\mathfrak{I}_{\Gamma})$ oppure x \in L_Γ(χ), cioè
- ▶ $NT_0(x)$ accetta se e soltanto se x appartiene a $(L_{\Gamma^c}(\chi))^c$
- Inoltre, è semplice verificare che ntime(NT_{0} ,x) $\in O(|x|^{max\{h,k\}})$.
- Quindi: $(L_{\Gamma^c}(\chi))^c$ è in NP, e dunque $L_{\Gamma^c}(\chi) \in conP$.

Le assunzioni di lavoro

- Non è ragionevole che sia più complesso decidere se una parola è istanza di un problema, che decidere se una istanza di quel problema è una istanza sì
 - come avviene negli esempi 7.7 e 7.8
- perché la difficoltà nel risolvere un problema non dovrebbe essere nel riconoscere che i dati che ci vengono forniti siano effettivamente dati del nostro problema, ma nel trovare una soluzione (o nel verificare che una soluzione esiste) ad una data istanza del problema.
- Per questa ragione, da ora in avanti assumeremo sempre che
 - lacktriangle per ogni problema di decisione Γ e per ogni sua codifica ragionevole χ
- il linguaggio delle istanze sia in P, ossia $\chi(\mathfrak{I}_{\Gamma}) \in P$
- Questo significa che, ad esempio, la formalizzazione del problema PHC sarà:
 - **▶** $\mathfrak{I}_{PHC} = \{ \langle G = (V,E), \cup, \vee \rangle : G \text{ è un grafo non orientato } \Lambda \cup, \vee \in V \};$
 - $ightharpoonup S_{PHC}(G,u,v) = \{ p : p \hat{e} un percorso in G \};$
 - $\pi_{PHC}(G,u,v,S_{PHC}(G,u,v))$ = ∃ un ciclo c in G che passa una e una sola volta attraverso ciascun nodo di G Λ ∃ p ∈ $S_{PHC}(G,u,v)$ che connette u a v.
- ossia, sposteremo nel predicato tutte le proprietà che devono essere soddisfatte dai dati che costituiscono l'istanza