HOJA DE EJERCICIOS. PARTE III: PROBLEMAS CON RESTRICCIONES

1. Consideremos el problema

$$\begin{cases} \text{Minimizar en } (x_1, x_2) & f(x_1, x_2) = -2x_1 + x_2 \\ \text{Sujeto a} & x_1 + x_2 - 3 = 0 \\ & (x_1, x_2) \in X = \{(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)\} \end{cases}$$

Se pide:

- a) Comprueba que $(x_1, x_2) = (2, 1)$ es la solución de dicho problema.
- b) Comprueba que la función dual $\Theta(\lambda)$ viene dada por

$$\begin{cases}
-4 + 5\lambda, & \lambda \le -1 \\
-8 + \lambda, & -1 \le \lambda \le 2 \\
-3\lambda, & \lambda \ge 2
\end{cases}$$

- c) Calcula la solución del problema dual y el duality group
- 2. Ejercicio para entrega. En este ejercicio estudiaremos una versión sencilla del problema de clasificación con máquinas de vector soporte. Consideremos un conjunto de datos con sólo dos datos

$$X = \{(-1, -, 1; -1), (1, 1; 1)\}$$

donde las dos primeras componentes de cada uno de los vectores anteriores representa sus características, y la tercera componente sirve para clasificar dicho dato dentro de dos clases y = +1 e y = -1. Supongamos que el hiperplano de separación de las dos clases de datos se escribe como

$$x_1 + x_2 x + x_3 y = 0$$

Se pide:

a) Demuestra que el problema de clasificación con SVD para estos datos se formula como

$$(Primal) \begin{cases} \text{Minimizar en } (x_1, x_2, x_3) & f(x_1, x_2, x_3) = \frac{1}{2}(x_2^2 + x_3^2) \\ \text{Sujeto a} & -x_1 + x_2 + x_3 \ge 1 \\ & x_1 + x_2 + x_3 \ge 1 \end{cases}$$

- b) Escribe el problema (Primal) en su forma estándar y demuestra que se satisfacen las condiciones de convexidad adecuadas para que dicho problema sea equivalente a su dual, el cual calcularemos a continuación.
- c) Demuestra que el problema dual asociado a (Primal) viene dado por

$$(Dual) \begin{cases} \text{Maximizar} & \Theta(\mu) = -4\mu^2 + 2\mu \\ \text{Sujeto a} & \mu \geq 0 \end{cases}$$

d) Resuelve el problema dual anterior e infiere de ello que la solución del problema original es $x_1 = 0, x_2 = x_3 = \frac{1}{2}$.

1

3. Consideremos el problema

$$(Primal) \begin{cases} \text{Minimizar en } (x_1, x_2) & f(x_1, x_2) = x_1 + x_2 + \frac{1}{2}(x_1^2 + x_2^2) \\ \text{Sujeto a} & x_1 + x_2 \ge 1 \end{cases}$$

Se pide:

- a) Escribe y resuelve las condiciones necesarias de optimalidad de Karush-Kuhn-Tucker de problema anterior.
- b) Deduce que el problema dual asociado al primal anterior viene dado por

$$(Dual) \begin{cases} \text{Maximizar} & \Theta(\mu) = -\mu^2 + 3\mu - 1 \\ \text{Sujeto a} & \mu \ge 0 \end{cases}$$

- c) Resuelve el problema dual anterior e infiere de ello que la solución del problema original es $x_1 = x_2 = \frac{1}{2}$.
- 4. Consideremos el problema

Minimizar en
$$(x_1, x_2)$$
 $f(x_1, x_2) = x_2$
Sujeto a $x_1 \ge 1$
 $x_1^2 + x_2^2 \le 1$

Se pide:

- a) Comprueba que $x_1 = 1$, $x_2 = 0$ es solución del problema anterior.
- b) Comprueba que la función dual viene dada por

$$\Theta(\mu) = \mu - \sqrt{1 - \mu^2}.$$

- c) Calcula $\sup\{\Theta(\mu): \mu \geq 0\}$ y deduce de ello que el problema dual no tiene solución. Razona a qué es debido esto. Indicación: comprueba que no se cumple alguna de las hipótesis del teorema de dualidad fuerte.
- 5. Consideremos al problema de complementariedad lineal asociado a los datos siguientes:

$$M = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}, \quad q = (1, 1)^{\mathsf{T}}.$$

Escribe las 4 matrices complementarias, dibuja los 4 conos complementarios, y deduce de ello que el problema

$$\begin{cases} \omega - Mz = q \\ \omega, z \ge 0 \\ \omega_j \cdot z_j = 0, \quad 1 \le j \le 2 \end{cases}$$

tiene 4 soluciones y calcúlalas.

6. Utiliza el algoritmo de Lemke para resolver el problema de complementariedad lineal asociado a los datos

$$M = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad q = (1, -1)^{\mathsf{T}}.$$

2

7. El problema de la distancia mínima. Sea K la región poligonal que aparece en la Figura 1 y fijemos el punto $P_0 = (-2, -1)$. Nos planteamos de encontrar el punto de K que está más cerca de P_0 , en la distancia Euclídea usual.

Figura 1: Problema de la distancia mínima

El problema puede formularse de la siguiente forma¹:

$$\begin{cases} \text{Minimizar} & f(\lambda_1, \dots, \lambda_4) = (\lambda_1 + 4\lambda_2 + 5\lambda_3 + 5\lambda_4 - (-2))^2 + (\lambda_1 + 2\lambda_3 + 4\lambda_4 - (-1)^2) \\ \text{Sujeto a} & \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1 \\ & \lambda_j \ge 0, \quad 1 \le j \le 4 \end{cases}$$

Se pide:

a) Utiliza la sustitución $\lambda_4 = 1 - \lambda_1 - \lambda_2 - \lambda_3$ para comprobar que el problema anterior se puede reescribir como el problema cuadrático siguiente:

(PQ)
$$\begin{cases} \text{Minimizar} & (-66, -54, -20)\lambda + \frac{1}{2}\lambda^{\mathsf{T}} \begin{bmatrix} 34 & 16 & 4\\ 16 & 34 & 16\\ 4 & 16 & 8 \end{bmatrix} \lambda \\ \text{Sujeto a} & -\lambda_1 - \lambda_2 - \lambda_3 \ge 1\\ & \lambda_j \ge 0, \quad 1 \le j \le 3 \end{cases}$$
 (1)

donde
$$\lambda = (\lambda_1, \lambda_2, \lambda_3)^{\mathsf{T}}$$
.

$$\lambda_1 = \frac{\text{área del triángulo } PP_1P_2}{\text{área del triángulo } P_1P_2P_3}, \quad \lambda_2 = \frac{\text{área del triángulo } PP_2P_3}{\text{área del triángulo } P_1P_2P_3}, \quad \lambda_3 = \frac{\text{área del triángulo } PP_1P_3}{\text{área del triángulo } PP_1P_2P_3}$$

¹El vector $(\lambda_1, \dots, \lambda_4)$ representa un punto de K y surge del Teorema de representación de un conjunto poliédrico. Para el caso sencillo en que K es un triángulo, $(\lambda_1, \lambda_2, \lambda_3)$ son las coordenadas baricéntricas, que se calculan del siguiente modo: si $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ $P_3 = (x_3, y_3)$ son los vértices de un triángulo y P = (x, y) es un punto del triángulo, entonces las coordenadas baricéntricas de P son:

b) Comprueba que el problema (1) es equivalente al problema de complementariedad lineal

$$(PCL) \begin{cases} \omega - Mz = q \\ \omega, z \ge 0 \\ \omega_j \cdot z_j = 0, \quad 1 \le j \le 4 \end{cases}$$
 (2)

donde, siguiendo la notación de clase,

$$\omega = (y, v_1, v_2, v_3)^{\mathsf{T}}, \quad z = (y, \lambda_1, \lambda_2, \lambda_3)^{\mathsf{T}}, \quad q = (1, -66, -54, -20)^{\mathsf{T}}$$

y

$$M = \begin{bmatrix} 0 & -1 & -1 & -1 \\ 1 & 34 & 16 & 4 \\ 1 & 16 & 34 & 16 \\ 1 & 4 & 16 & 8 \end{bmatrix}.$$

- c) Resuelve el problema (2) en Python mediante el algoritmo de Lemke y usando el módulo lemkelep.
- 8. Consideremos el problema de optimización cuadrática siguiente:

(PQ)
$$\begin{cases} \text{Minimizar} & f(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2) + x_1 + x_2 \\ \text{Sujeto a} & x_1 + x_2 \ge 1 \\ & x_1, x_2 \ge 0 \end{cases}$$

Se pide:

a) Comprueba que el problema de complementariedad lineal asociado es el correspondiente al sistema:

(PCL)
$$\begin{bmatrix} y \\ v_1 \\ v_2 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

- b) Resuelve por el método de Lemke en Python, y usando el módulo lemkelep, el problema (PCL) anterior.
- 9. Consideremos el problema de optimización cuadrática siguiente:

(PQ)
$$\begin{cases} \text{Minimizar} & f(x_1, x_2) = 23x_1^2 + 5x_1x_2 + 4x_2^2 + 3x_1 + 5x_2 + 8 \\ \text{Sujeto a} & x_1 - x_2 - 3 \ge 0 \\ & -4x_1 - 5x_2 \le 13 \\ & 8x_1 + 14x_2 \ge -9 \\ & x_1, x_2 \ge 0 \end{cases}$$

Se pide:

- a) Estudia la convexidad del problema.
- b) Escribe las ecuaciones de Karush-Kuhn-Tucker y el problema de complementariedad lineal asociados.
- c) Resuelve el método de Lemke en Python, y usando el módulo de lemkelep, el problema de complementariedad lineal.