	Trequalities
* Mar	kor Inequality:
	An upper bound to the por that the realization of a r.v. exceeds a given throshold.
	$P(X>c) \leq E[X]$
	Proof 6
	1 {x 7 = } + 1 {x < c } = 1
	E[X] = E[X.1]
<u> </u>	$= \mathbf{E}[X \cdot (1_{\{x \ge e3 + 1_{\{x < e3\}}\}}]$
U	$ X = E[X_{\{x \ge c3\}} + E[X_{\{x < c3\}}] > E[X_{\{x \ge c3\}}]$
	Note; $C.1\{x>c3 \leq x.1\{x>c3\}$ $C.1\{x>c4 \leq x.1\{x>c3\}$
	$=) \in [c.1_{\{x,z,c\}}] \leq \in [x.1_{\{x,z,c\}}]$
	$E[c, 1 \{x > c \}] = c E[1 \{x > c \}]$
	$= c l(x > c)$ $\Rightarrow c l(x > c) \leq t (x \cdot 1 \{x > c\})$

	Dis in like boar New
	Putting inequalities together
	$E[X] > E[X 1 \{x > c3]$
	E[x1{x203] > cP(x2e)
=	$\Rightarrow \frac{E[X]}{} \Rightarrow \angle I(X \Rightarrow c)$
	c /

*	Chebysher's Inequality
	An upper bound to the probability that the absolute deviation of a r.v. from its mean will exceed a given tweshold.
	$P(x-\mu \ge k) \le \frac{\sigma^2}{k^2}$

*	Jensen's Inequality
(•)	t X be r.v. lef g: R→R be a convex function st
	$\gamma = g(x)$ $ \in [g(x)] \ge g(\xi(x))$
(•)	of f'', g' is concave then:— $E[g(x)] \leq g(E[x])$
Et/	E[X] = 1 $E[ln(X)] < ln(E[X]) = ln(1) = 0$