Mathematical Methods for Engineers (MathEng) EXAM

12th February 2010

Duration: 2 hrs, calculators permitted, no documents ATTEMPT ALL QUESTIONS – ANSWER IN ENGLISH

There are 10 questions and 80 marks in this exam paper. You should attempt all questions.

1	Perform an 1	I DII dec	omnosition	for the fo	llowing	matriv A	and us	a it ta	colve Ar	- h	where.
1.	remonnan an		omposition	101 the 10.	nowing	mau ix A	and us	e ii io	SOLVE HY	$-\nu$	where.

$$A = \begin{bmatrix} 2 & 2 \\ 4 & 9 \end{bmatrix}$$
 and $b = \begin{bmatrix} 8 \\ 21 \end{bmatrix}$.

What could be the advantage of solving the system in this way rather than by Gaussian elimination?

[5 marks]

- 2. Complete the following and explain your answers:
 - (a) The eigenvalues of a 2×2 projection matrix are ___ and ___.
 - (b) The eigenvalues of a 2×2 reflection matrix are ___ and ___.

[5 marks]

3. Determine the singular value decomposition (SVD) of the matrix *A* and orthonormal bases for all four of its subspaces.

$$A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$

[10 marks]

 Determine the energy or power in the following signals (if defined) and hence or otherwise state whether they are energy or power signals.

$$x_1(t) = \sin(2\pi t)$$
 and $x_2(t) = \exp(-t)$

[5 marks]

5. By graphical time convolution, sketch the system output corresponding to the input signal x(t) and the system impulse response h(t) illustrated in Figure Q6.

[5 marks]

Figure Q6

6. Sketch and describe example impulse responses for systems with pole positions illustrated in the s-planes of Figure Q7 (a) and (b).

Figure Q7

[5 marks]

7. Sketch Bode plots of the magnitude and phase responses for a systems with transfer function:

$$H(s) = \frac{10(s+100)}{s^2 + 2s + 100}$$

[10 marks]

8. A sequence where $x(n) = 0.2^n$, for $n \ge 0$, is applied to a digital filter with the following difference equation:

$$y(n) = 0.5y(n-1) + x(n)$$

Use transform techniques to develop an expression for the system transfer function H(z) and for the output sequence y(n).

[10 marks]

Using suitable illustrations, describe the effects of sampling and rectangular windowing on a
continuous-time sine wave and its Fourier transform. You should briefly discuss the effects of
resolution and leakage in your answer.

[10 marks]

10. Two random variables X and Y have the joint probability density function (PDF) given by:

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-m_X}{\sigma_X}\right)^2 - 2\rho \left(\frac{x-m_X}{\sigma_X}\right) \left(\frac{y-m_Y}{\sigma_Y}\right) + \left(\frac{y-m_Y}{\sigma_Y}\right)^2 \right] \right\}$$

(a) Determine the two marginal PDFs $f_X(x)$ and $f_Y(y)$.

Hint: The term within the exponential may be rewritten as:

$$-\frac{1}{2(1-\rho^2)\sigma_Y^2}\left[y-m_Y-\rho\frac{\sigma_Y}{\sigma_X}(x-m_X)\right]^2+\left(\frac{x-m_X}{\sigma_X}\right)^2$$

- (b) Show that *X* and *Y* are independent when $\rho = 0$.
- (c) Show that ρ is the correlation coefficient of X and Y.

[15 marks]

Table of selected Laplace transforms

$x(t) (t \ge 0)$	X(s)
$\delta(t)$	1
$\delta(t-\alpha)$	$\exp(-\alpha s)$
1 (unit step)	$\frac{1}{s}$
t (unit ramp)	$\frac{1}{s^2}$
$\exp(-\alpha t)$	$\frac{1}{s+\alpha}$
$t \exp(-\alpha t)$	$\frac{1}{(s+\alpha)^2}$
sin(\alpha t)	$\frac{1}{s^2 + \alpha^2}$
$\cos(\alpha t)$	$\frac{s}{s^2 + \alpha^2}$
$e^{-\alpha t}\sin(\omega t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-\alpha t}\cos(\omega t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

Table of selected z-transforms

$x(n) (n \ge 0)$	X(z)
$\delta(n)$ unit pulse	1
$\delta(n-m)$	z^{-m}
1 (unit step)	$\frac{z}{z-1}$
n (unit ramp)	$\frac{z}{(z-1)^2}$
$\exp(-\alpha n)$	$\frac{z}{(z-e^{-\alpha})}$
$n \exp(-\alpha n)$	$\frac{e^{-\alpha}z}{(z-e^{-\alpha})^2}$
$\sin(\beta n)$	$\frac{z\sin(\beta)}{z^2 - 2z\cos(\beta) + 1}$
$\cos(\beta n)$	$\frac{z^2 - z\cos(\beta)}{z^2 - 2z\cos(\beta) + 1}$
$e^{-\alpha n}\sin(\beta n)$	$\frac{ze^{-\alpha}\sin(\beta)}{z^2 - 2ze^{-\alpha}\cos(\beta) + e^{-2\alpha}}$
$e^{-\alpha n}\cos(\beta n)$	$\frac{z^2 - ze^{-\alpha}\cos(\beta)}{z^2 - 2ze^{-\alpha}\cos(\beta) + e^{-2\alpha}}$

Fourier series and transforms

Fourier series – periodic and continuous in time, discrete in frequency

$$x(t) = \sum_{n=-\infty}^{+\infty} X_n \exp(jn\omega_0 t)$$

$$X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp(-jn\omega_0 t) dt$$

Fourier transform – continuous in time, continuous in frequency

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega \qquad X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

Discrete-time Fourier transform – discrete in time, continuous and periodic in frequency

$$x(n\Delta t) = \frac{\Delta t}{2\pi} \int_{-\pi/\Delta t}^{\pi/\Delta t} X(\omega) \exp(jn\Delta t\omega) d\omega \qquad X(\omega) = \sum_{n=-\infty}^{\infty} x(n\Delta t) \exp(-j\omega n\Delta t)$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n\Delta t) \exp(-j\omega n\Delta t)$$

Discrete Fourier transform – discrete and periodic in time and in frequency

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \exp\left(\frac{jnk2\pi}{N}\right)$$

$$X(k) = \sum_{n=0}^{N-1} x(n) \exp\left(\frac{-jnk2\pi}{N}\right)$$