

मोतीलाल नेहरू राष्ट्रीय प्रौद्योगिकी संस्थान इलाहाबाद प्रयागराज-211004 [भारत]

Motilal Nehru National Institute of Technology Allahabad Prayagraj-211004 [India]

Department of Mathematics Mid Semester (Odd) Examination 2022-23

Programme Name: B. Tech. Course Code: MA11101

Branch:.....

Duration: 90 Minutes

Semester: I

Course Name: Mathematics I

Student Reg. No.:

20223035

Max. Marks.: 20

Instructions: (i) Attempt all the questions. Marks are indicated on write side.

(ii) Attempt each part of a question in continuation.

			Marks
Q1	a	State and prove Lagrange's Mean Value theorem. Discuss the geometrical interpretation of it.	2
	b	Using Cauchy Mean Value theorem, show that $\frac{2 \log_e x}{2 \sin^{-1} x - \pi} < \frac{\sqrt{1 - x^2}}{x}$.	2
Q2	a	Define ε - δ definition of continuity of a function of two variables $f: D \subset R^2 \to R$. Using ε - δ definition, discuss the continuity of the function	2
		$f(x,y) = \begin{cases} \frac{x^2 + y^2}{3 + \sin x}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases} \text{ at } (0,0).$	
	Ь	Define the differentiability of function of two variables $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ at the point (x,y) . Check the differentiability of the function	2
		$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0), \end{cases} \text{ at } (0,0).$	
Q3	a	Show that for the function $f(x,y) = \begin{cases} \frac{y(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0), \end{cases}$	2
	1	$y_{xy}(0,0) + y_{yx}(0,0)$.	
	1 1	If $u = sin^{-1} \sqrt{\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}}$, then show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12} \right)$.	2
24	3	If $xyz - u = 0$, $x^2 + y^2 + z^2 - v = 0$, and $x + y + z - w = 0$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.	2
		Obtain a quadratic Taylor's series approximation to the function $f(x, y) = cosx cosy$ about the point $(0,0)$. Also, estimate the maximum absolute error in the region $ x < 0.2$, $ y < 0.1$.	3
.5	a	The temperature T at any point (x, y, z) in space is given by $T(x, y, z) = kxyz^2$, where k is a positive constant. Find the highest temperature on the surface of the sphere $x^2 + y^2 + z^2 = a^2$.	3