Deep Learning

ISTD 50.035 Computer Vision

Acknowledgement: Some images are from various sources: UCF, Stanford cs231n, etc.

Linear Classifier

$$s = f(x; W, b) = Wx + b$$

Shorthand notation

$$s = [W \ b][x \ 1]^T$$

$$W \quad x$$

Input
$$x$$
: (D+1)x1

Weight W: Kx(D+1)

Score s:Kx1

Input *x*: (D+1)x1
$$s = f(x; W) = Wx$$

Rather insufficient to predict the class of x

- High dimensional input
- Highly nonlinear classification function

Classification

Classification function for image is complex, non-linear

$$y = F(x)$$
 $x =$
 $y = 1, 2, ... \text{ or K (class index)}$

Given data points (training examples)

$$y_i = F(x_i)$$

- Able to generalize to unseen example
- Our goal is to learn a good approximation of F(x)
- Deep neural network: a class of function with large capacity to provide this approximation
 - With certain parameters learned in training

Stacking linear classifiers

• Stacking linear classifiers to improve representational power (to approximate F(x))

$$s_1 = W_1 x$$
 Still linear, $W = W_2 W_1$ $s_2 = W_2 s_1$

Stacking linear classifiers

• Stacking linear classifiers to improve representational power (to approximate F(x))

$$s_1 = W_1 x$$
$$s_2 = W_2 s_1$$

Still linear, $W = W_2 W_1$

Add non-linearity between layers (stages)

$$s_1 = W_1 x$$
$$s_2 = W_2 \sigma(s_1)$$

Can approximate any continuous function F(x)

- Activation function is applied elementwise
- Sigmoid:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Neural network: collection of neurons
 - Connected in an acyclic graph
 - Output of a neuron can be input of another

$$s_1 = W_1 x$$
$$s_2 = W_2 \sigma(s_1)$$

Linear classifier with activation as input

A neuron

Neuron: a computational unit, take input x, output:

$$\sigma(\sum_{i} w_{i} x_{i} + b)$$

Activation (Sigmoid) function is applied elementwise

- Neural network: collection of neurons
 - Connected in an acyclic graph
 - Output of a neuron can be input of another

- Hidden layer: values are not observed in the training set
- Output layer: no activation

2-layer NN: 1 hidden, 1 output layer

3-layer NN: 2 hidden, 1 output layer

Artificial neural network (ANN) Multi-layer perceptrons (MLP)

- Hidden layer: values are not observed in the training set
- Output layer: no activation

Artificial neural network (ANN) Multi-layer perceptrons (MLP)

A simple neural network

Activation function

Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Easy to compute gradient:

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

- -Incorporate non-linear
- -Limit the output range (or additional normalization)
- -Decision / probabilistic interpretation
 - -Detect feature or not
 - -Biological neuron: to fire or not

Activation function

Hyperbolic tangent

Rectified linear unit (ReLU)

$$f(z) = tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

f(z) = max(0, z)

NN as a function approximation

 NN with one hidden layer can approximate any continuous function F(x)

Classification function in our case

In practice, NN with multiple hidden layers performs better