4. Крайни автомати. Регулярни езици

1. Детерминирани крайни автомати

Деф: Детерминиран краен автомат

Детерминиран краен автомат (ДКА) е петорка $\mathcal{A} = \langle \Sigma, Q, q_{start}, \delta, F \rangle$, където:

- о Σ е крайно множество от символи (азбука)
- *Q* е крайно множество от състояния
- \circ $\delta: Q \times \Sigma \to Q$ е тотална функция, която ще наричаме функция на преходите
- $\circ q_{start} \in Q$ е начално състояние
- \circ $F \subseteq Q$ е множество от финални състояния

Деф: Разпознаване

Нека $\alpha \in \Sigma^*$ е дума, където $\alpha = a_0 a_1 \dots a_{n-1}$. Казваме, че α се **разпознава** от автомата \mathcal{A} , ако съществува редица от състояние q_0, q_1, \dots, q_n , т.ч.

- $\circ \ \ q_0 = q_{start}$ начално състояние на автомата
- $\delta(q_i, a_i) = q_{i+1}$ за всяко i = 0, ..., n-1
- $\circ q_n \in F$

Казваме, че $\mathcal A$ разпознава езика L, ако $\mathcal A$ разпознава точно думите от L, т.е.

 $L = \{ \alpha \in \Sigma^* \mid \mathcal{A} \text{ разпознава } \alpha \}$, където:

- \circ L формален език над крайна азбука $\Sigma, L \subseteq \Sigma^*, \emptyset \subseteq \Sigma^*$
- \circ Σ^* изброимо безкраїйно множество от всички думи w над Σ
- \circ Дума над Σ крайна редица от символи от Σ

Тогава казваме, че езикът L е автоматен.

Деф: Разширена функция на преходите

Разширена функция на преходите δ^* : $Q \times \Sigma^* \to Q$ дефинирана за всяко $q \in Q$ и $a \in \Sigma^*$ по следния начин:

- \circ Ακο $\alpha = \varepsilon$, το $\delta^*(q, \varepsilon) \stackrel{\text{def}}{=} q$
- Ο Ακο $\alpha = \beta a$, το $\delta^*(q, \beta a) \stackrel{\text{def}}{=} \delta(\delta^*(q, \beta), a)$

Език на (разпознаван от) автомат \mathcal{A} обикновено означаваме с $\mathcal{L}(\mathcal{A}) \triangleq \{\alpha \in \Sigma^* \mid \delta^*(q_{start}, \alpha) \in F\}$. Казваме, че L е **автоматен**, ако $L = \mathcal{L}(\mathcal{A})$

2. Недетерминирани крайни автомати

Деф: Недетерминиран краен автомат

Недетерминиран краен автомат (НКА) е петорка $\mathcal{N} = \langle \Sigma, Q, Q_{start}, \Delta, F \rangle$, където:

- о Σ е крайно множество от символи (азбука)
- $\circ \ \ Q$ крайно множество от състояния
- \circ $\Delta: Q \times \Sigma \to \mathcal{P}(Q)$ е функция на преходите. Възможно е за двойка $(q,a) \in (Q,\Sigma)$: $\Delta(q,a) = \emptyset$
- $\circ \ \ Q_{start} \subseteq Q$ множество от начални състояния
- \circ $F \subseteq Q$ множество от финални състояния

Деф: Разширена функция на преходите

Разширена функция на преходите Δ^* : $\mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ дефинираме за произволно множество от състояния $R \subseteq Q$ и дума $\alpha \in \Sigma^*$ по следния начин:

- \circ Ακο $\alpha = \varepsilon$, το $\Delta^*(R, \varepsilon) \stackrel{\text{def}}{=} R$
- Ακο $\alpha = \beta a$, το $\Delta^*(R, \beta a) \stackrel{\text{def}}{=} \bigcup \{\Delta(p, a) \mid p \in \Delta^*(R, \beta)\}$

Деф: Език, разпознаван от недетерминиран краен автомат $\mathcal{L}(\mathcal{N}) \stackrel{\text{def}}{=} \{ w \in \Sigma^* \mid \Delta^*(Q_{start}, \omega) \cap F \neq \emptyset \}$

Деф: Стъпка

Релацията
$$\vdash_{\mathcal{N}}: Q \times \Sigma^* \to Q \times \Sigma^*$$
 е т.ч. $(q, a\beta) \vdash_{\mathcal{N}} (p, \beta)$ т.с.т.к. $p \in \Delta(q, a)$; $q_i \xrightarrow{a} q_i$ т.с.т.к. $p \in \Delta(q, a)$

Деф: Релацията $⊢_{N}^{*}$, определяща работата на автомата:

$$\vdash_{\mathcal{N}}^*: Q \times \Sigma^* \to Q \times \Sigma^*$$
 е т.ч. за $q, p \in Q$, $\alpha, \beta \in \Sigma^*: (q, \alpha\beta) \vdash_{\mathcal{N}}^* (p, \beta)$ т.с.т.к. $p \in \Delta^*(\{q\}, \alpha)$ $q \stackrel{\alpha}{\Rightarrow} p$ т.с.т.к. $p \in \Delta^*(\{q\}, \alpha)$

3. Представяне на всеки недетерминиран краен автомат с детерминиран

Твърдение 1: За всеки две думи $\alpha, \beta \in \Sigma^*$ и всяко $R \subseteq Q, \Delta^*(R, \alpha\beta) = \Delta^*(\Delta^*(R, \alpha), \beta)$

Доказва се с индукция по β

Теорема: (Рабин-Скот) За всеки НКА $\mathcal N$ съществува еквивалентен на него ДКА $\mathcal D$, т.е. $\mathcal L(\mathcal N) = \mathcal L(\mathcal D)$ Д-во:

Нека $\mathcal{N} = \langle \Sigma, Q, Q_{start}, \Delta, F \rangle$.

Ще построим детерминиран краен автомат $\mathcal{D} = \langle \Sigma, Q', q_{start}, \delta, F' \rangle$, за който $\mathcal{L}(\mathcal{N}) = \mathcal{L}(\mathcal{D})$ по следния начин:

- $\circ \quad Q' \stackrel{\text{def}}{=} \{R \mid R \subseteq Q\}$
- \circ За произволна буква $a \in \Sigma$ и произволно $R \subseteq Q$:

$$\delta\left(\underbrace{R}_{\text{състояние}},\mathsf{a}\right)\stackrel{\mathrm{def}}{=}\Delta^*\left(\underbrace{R}_{\text{множество}},a\right)$$
 $\circ \ q_{start}\stackrel{\mathrm{def}}{=}\mathbb{Q}_{start}$
 $\circ \ F'\stackrel{\mathrm{def}}{=}\left\{R\in Q'\mid R\cap F\neq\emptyset\right\}$

Ще докажем, че за произволна дума α и произволно множество $R\subseteq Q$ е изпълнено следното равенство (*):

$$\Delta^*\left(\stackrel{R}{\underset{\text{множество}}{\mathcal{R}}}, \alpha\right) = \delta^*\left(\stackrel{R}{\underset{\text{състояние}}{\mathcal{R}}}, \alpha\right)$$

- \circ Ако $|\alpha|=0$, т.е. $\alpha=\varepsilon$, то от дефиницията на Δ^* и δ^* имаме, че за всяко $R\subseteq Q$ е изпълнено: $\Delta^*(R,\varepsilon) = R = \delta^*(R,\varepsilon)$
- И.П: Да приемем, че (*) е изпълнено за всички думи α с дължина n, т.е.

$$(\forall \alpha \in \Sigma^n)(\forall R \subseteq Q) \big[\Delta^*(R, \alpha) = \delta^*(R, \alpha) \big]$$

 \circ Нека α има дължина n+1, т.е. $\alpha=\beta a$, където $|\beta|=n$ и $a\in\Sigma$. Тогава

$$\delta^*(R,\beta\alpha) \underset{\text{Ha }\delta^*}{=} \delta\left(\delta^*(R,\beta\alpha)\right) \underset{\text{Sa }\beta}{=} \delta\left(\Delta^*(R,\beta),\alpha\right) \underset{\text{Ha }\delta}{=} \Delta^*(\Delta^*(R,\beta),\alpha) \underset{R \subseteq Q}{=} \Delta^*(R,\beta\alpha)$$

Доказахме равенството (*). Лесно се съобразява, че:

$$\omega \in \mathcal{L}(\mathcal{D}) \underset{\mathcal{L}(\mathcal{D})}{\Leftrightarrow} \delta^*(q_{start}, \omega) \in F' \underset{(*)}{\Leftrightarrow} \Delta^*(Q_{start}, \omega) \cap F \neq \emptyset \underset{\mathcal{L}(\mathcal{N})}{\Leftrightarrow} \omega \in \mathcal{L}(\mathcal{N})$$

4. Регулярни операции. Регулярни езици

Нека Σ е азбука.

Деф: Конкатенация на думи (индуктивна дефиниция)

- $\circ u = \varepsilon$, to $\varepsilon \cdot v = v \cdot \varepsilon = v$
- $\circ \ \ u = a_1 ... a_n \ u \ v = b_1 ... b_k$, to $u \cdot v = a_1 ... a_n b_1 ... b_k$

Деф: Конкатенация на езици ·

$$L_1,L_2\subseteq \Sigma^*$$
, то $L_1\cdot L_2=\left\{u\cdot v\mid \, u\in L_1\ \&\ v\in L_2\right\}$

Деф: Обединение ∪

$$L_1,L_2\subseteq \Sigma^*, \qquad L_1\cup L_2=\left\{u\mid u\in L_1\vee\ u\in L_2\right\}$$

Деф: Допълнение $\overline{}$: $L \subseteq \Sigma^*$, $\overline{L} = \Sigma^* \setminus L$

 $extit{Де} \mathcal{G}$: Нека $L \subseteq \Sigma^*$. Дефинираме $L^k = \underbrace{L \cdot L \cdot ... \cdot L}_{k}$ индуктивно:

- $\begin{array}{ccc} \circ & L^0 \stackrel{\text{def}}{=} \{ \varepsilon \} \\ \circ & L^{n+1} \stackrel{\text{def}}{=} \{ L^n \cdot L \} \end{array}$

Деф: Звезда на Клини *

Нека
$$L\subseteq \Sigma^*$$
. Тогава $L^*=\bigcup_{n\in\mathcal{N}}L^n$; $L^+=L\cdot L^*$

Деф: Регулярен език

Един език $L \subseteq \Sigma^*$ е **регулярен**, ако се получава от основните езици \emptyset ; $\{\epsilon\}$; $\{a\}$ за $a \in \Sigma$ С помощта на регулярните операции ∪, ⋅, ∗ приложени краен брой пъти.

 \circ (Ако L_1 и L_2 са регулярни езици, то и $L_1 \cup L_2$, $L_1 \cdot L_2$, L_1^* са регулярни езици)

5. Доказателство за затвореност на автоматните езици относно регулярните операции **Теорема**: Автоматните езици са затворени относно регулярните операции $(\cdot, \cup, *, \bar{\ })$ Д-во:

За всяка от операциите ще покажем как може да построим краен автомат, разпознаващ езика, конструиран чрез съответната операция.

1. Конкатенация

Нека L_1 и L_2 са произволни автоматни езици. Ще докажем, че $L_1 \cdot L_2$ също е автоматен. Нека \mathcal{A}_1 , \mathcal{A}_2 са ДКА, т.ч.

$$\circ$$
 $\mathcal{A}_1 = \langle \Sigma, Q_1, \delta_1, q'_{start}, F_1 \rangle$, където $\mathcal{L}(\mathcal{A}_1) = L_1$

$$\circ$$
 $\mathcal{A}_2 = \langle \Sigma, Q_2, \delta_2, q''_{start}, F_2 \rangle$, където $\mathcal{L}(\mathcal{A}_2) = L_2$

Ще дефинираме автомата $\mathcal{N} = \langle \Sigma, Q, Q_{start}, \Delta, F \rangle$, така че $\mathcal{L}(\mathcal{N}) = L_1 \cdot L_2 = \mathcal{L}(\mathcal{A}_1) \cdot \mathcal{L}(\mathcal{A}_2)$:

$$\circ \quad Q \ \stackrel{\scriptscriptstyle\rm def}{=} \ Q_1 \cup Q_2$$

$$\circ \quad Q_{start} \stackrel{\text{\tiny def}}{=} \left\{ q'_{start} \right\}$$

$$\circ$$
 $Q_{start} \stackrel{\text{def}}{=} \left\{ q'_{start} \right\}$ \circ $F \stackrel{\text{def}}{=} \left\{ F_1 \cup F_2, \text{ ако } q''_{start} \in F_2 \right\}$ F_2 , иначе

$$\diamond \ \Delta(q,a) \stackrel{\mathrm{def}}{=} \begin{cases} \{\delta_1(q,a)\}, & \text{ako } q \in Q_1 \setminus F_1 \& a \in \Sigma \\ \{\delta_1(q,a), \delta_2(q^{\prime\prime}_{start},a)\}, & \text{ako } q \in F_1\& a \in \Sigma \\ \{\delta_2(q,a)\}, & \text{ako } q \in Q_2 \& a \in \Sigma \end{cases}$$

Нека $\alpha \in \mathcal{L}(\mathcal{A}_1)$, $\beta \in \mathcal{L}(\mathcal{A}_2)$. Следователно

•
$$\left(q'_{start}, \alpha\right) \vdash_{\mathcal{A}_1}^* \left(q_1, \varepsilon\right)$$
 за някое $q_1 \in F_2$

•
$$\left(q'_{start}, \alpha\right) \vdash_{\mathcal{A}_1}^* \left(q_1, \varepsilon\right)$$
 за някое $q_1 \in F_1$
• $\left(q''_{start}, \alpha\right) \vdash_{\mathcal{A}_2}^* \left(q_2, \varepsilon\right)$ за някое $q_2 \in F_1$

От деф на НКА $\mathcal N$ имаме, че $\left(q'_{start}, lpha\right) \vdash_{\mathcal N}^* \left(q_1, arepsilon\right)$ за някое $q_1 \in F_1$

Ако:

■
$$\beta = \varepsilon$$
, то $q''_{start} \in F_2$, значи $F_1 \subseteq F$

■ $\beta = b\gamma$ за някое $\gamma \in \Sigma^*$, то имаме: $\left({q''}_{start}, b\gamma\right) \vdash_{\mathcal{A}_2} \left(q, \gamma\right) \vdash_{\mathcal{A}_2}^* \left(q_2, \varepsilon\right)$ за някое $q_2 \in F_2$, където $q = \delta_2(q''_{start}, b)$

От деф. на НКА $\mathcal N$ имаме, че $(q,\gamma) \vdash_{\mathcal N}^* (q_2,\varepsilon)$ за някое $q_2 \in F_2$ Също, $q \in \Delta(q_1, b)$, защото $q_1 \in F_1$, т.е. $(q_1, b\gamma) \vdash_{\mathcal{N}} (q, \gamma)$

Следователно
$$(q_1,\beta) \vdash_{\mathcal{N}}^* (q_2,\varepsilon)$$
 за някое $q_2 \in F_2$.
Получихме: $\left(q'_{\text{start}},\alpha\beta\right) \vdash_{\mathcal{N}}^* \left(q_1,\beta\right) \vdash_{\mathcal{N}}^* \left(q_2,\varepsilon\right)$ за някое $q_2 \in F_2$, т.е. $\alpha \cdot \beta \in \mathcal{L}(\mathcal{N})$

Сега ще докажем $\mathcal{L}(\mathcal{N}) \subseteq \mathcal{L}(\mathcal{A}_1) \cdot \mathcal{L}(\mathcal{A}_2)$

Нека $\omega \in \mathcal{L}(\mathcal{N})$, където $|\omega| = n$. Нека $\left(q_i\right)_{i=0}^n$ е редица от състояния, която описва приемащо изчисление на \mathcal{N} върху ω , следователно:

$$q_0 = q_{start}$$

•
$$q_{i+1} \in \Delta(q_i, \omega[i])$$
 sa $i < n$

 $q_n \in F$

Ако:

$$q_n \in F_1$$
, от деф. на \mathcal{N} , $\varepsilon \in \mathcal{L}(\mathcal{A}_2)$, $q_i \in Q_1$, за $i \in \{0, \dots, n\}$, следователно $\omega \in \mathcal{L}(\mathcal{A}_1)$

 $q_n \in F_2$, от деф на $\mathcal N$ не можем да преминем от състояние от Q_2 в състояние от Q_1 . Значи можем да разбием $\left(q_i\right)_{i=0}^n$ на непразни подредици:

$$\ \ \ \ \ \ \ \left(q_i
ight)_{i=0}^l$$
 - състоянията от Q_1 , $\left(\mathsf{q_i}
ight)_{i=l+1}^n$ - състоянията от Q_2

Нека
$$\omega_1 = \omega[:l]$$
 и $\omega_2 = \omega[l:]$.
$$(q_0, \omega) \vdash_{\mathcal{N}}^* (q_l, \omega[l:]) \vdash_{\mathcal{N}} (q_{l+1}, \omega[l+1:]) \vdash_{\mathcal{N}}^* (q_n, \varepsilon)$$

От деф на \mathcal{N} :

- $\circ \ \left(q_i\right)_{i=0}^t$ описва приемащо изчисление на \mathcal{A}_1 върху ω_1
- \circ От $q_{l+1} \in \Delta(q_l, a_l)$, то $q_l \in F_1$ и $\delta_2\left({q''}_{start}, a_l\right) = q_{l+1}$

$$\begin{split} & (\mathbf{q}_0, \boldsymbol{\omega}_1) \vdash_{\mathcal{A}_1}^* (q_l, \boldsymbol{\varepsilon}). \ \text{Ot} \ q_0 = {q'}_{start} \ \mathbf{u} \ q_t \in \mathit{F}_1, \ \text{To} \ \boldsymbol{\omega}_1 \in \mathit{\mathcal{L}} \big(\mathcal{A}_1\big) \\ & \left({q''}_{start}, \boldsymbol{\omega}_2\right) \vdash_{\mathcal{A}_2}^* \big(q_n, \boldsymbol{\varepsilon}\big). \ \text{Ot} \ q_n \in \mathit{F}_2, \ \text{To} \ \boldsymbol{\omega}_2 \in \mathit{\mathcal{L}} \big(\mathcal{A}_2\big) \Rightarrow \boldsymbol{\omega} \in \mathit{\mathcal{L}} \big(\mathcal{A}_1\big) \cdot \mathit{\mathcal{L}} \big(\mathcal{A}_2\big) \end{split}$$

1. Обединение

Нека L_1 и L_2 са произволни автоматни езици. Ще докажем, че $L_1 \cup L_2$ също е автоматен. Нека \mathcal{A}_1 , \mathcal{A}_2 са ДКА, т.ч.

- \circ $\mathcal{A}_1 = \langle \Sigma, Q_1, \delta_1, S_1, F_1 \rangle$, където $\mathcal{L}(\mathcal{A}_1) = L_1$
- \circ $\mathcal{A}_2 = \langle \Sigma, Q_2, \delta_2, S_2, F_2 \rangle$, където $\mathcal{L}(\mathcal{A}_2) = L_2$

Ще дефинираме автомата $\mathcal{N} = \langle \Sigma, Q, Q_{start}, \Delta, F \rangle$,

така че $\mathcal{L}(\mathcal{N}) = L_1 \cup L_2 = \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$:

- $\circ \quad Q_{start} = \{S_1, S_2\}$
- $\circ \quad Q \stackrel{\text{def}}{=} Q_1 \cup Q_2$
- $\circ \quad F \stackrel{\text{def}}{=} F_1 \cup F_2$
- \circ $\Deltaig(q,aig) \stackrel{ ext{def}}{=} ig\{ \delta_1(q,a) \},$ ако $q \in Q_1$ и $a \in \Sigma$ $\{ \delta_2(q,a) \},$ ако $q \in Q_2$ и $a \in \Sigma$

Д-во:

Нека $\omega \in L_1 \cup L_2 \Rightarrow \omega \in L_1$ и/или $\omega \in L_2$. Индукция по ω :

- $\circ \quad \omega = \varepsilon \Rightarrow \begin{cases} S_1 \in F_1 \Rightarrow \omega \in L_1 \\ S_2 \in F_2 \Rightarrow \omega \in L_2 \end{cases}$
- $\circ \omega = au, a \in \Sigma, u \in \Sigma^*$
 - $\omega \in L_1$, след. $(S_1, au) \vdash_{\mathcal{A}_1} (q, u) \vdash_{\mathcal{A}_1}^* (f, \varepsilon), f \in F_1$ Ho същите състояния ги има и в \mathcal{N} ,т.е. (S_1, au) $\vdash_{\mathcal{N}} (q, u)$ $\vdash_{\mathcal{N}}^* (f, \varepsilon)$, $f \in F_1 \subseteq F$ Така $ω = au \in \mathcal{L}(\mathcal{N})$
 - $ω ∈ L_2$, аналогично

Нека $\omega \in \mathcal{L}(\mathcal{N})$. Индукция по ω :

- \circ $\omega = \varepsilon$, значи $Q_{start} \cap F \neq \emptyset$. Нека $S \in Q_{start} \cap F$, $F = F_1 \cup F_2$ $\Rightarrow S \in F_1 \vee S \in F_2 \Rightarrow \omega \in L_1 \vee \omega \in L_2 \Rightarrow \omega \in L_1 \cup L_2$
- $\circ \ \omega = au, a \in \Sigma, u \in \Sigma^*$
 - $\omega \in \mathcal{L}(\mathcal{N}) \Rightarrow (S, au) \vdash_{\mathcal{N}} (q, u) \vdash_{\mathcal{N}}^{*} (f, \varepsilon)$, за някое $S \in Q_{start}, f \in F$
 - Ако $q \in Q_1$, то $(S_1, au) \vdash_{\mathcal{A}_1} (q, u) \vdash_{\mathcal{A}_1}^* (f, \varepsilon), f \in F_1$, $\omega \in L_1$
 - Ако $q \in Q_2$ аналогично

2. Звезда на Клини

Нека $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$ е НКА, разпознаващ езика L.

Ще построим НКА
$$\mathcal{N} = \langle \Sigma, Q, \Delta, S, F \rangle$$
, т.ч. $\mathcal{L}(\mathcal{N}) = (\mathcal{L}(\mathcal{A}))^+$:
$$\circ \quad \Delta(q, a) \stackrel{\text{def}}{=} \begin{cases} \{\delta(q, a)\}, & \text{ako } q \notin F \\ \{\delta(q, a), \delta(S, a)\}, & \text{ako } q \in F \end{cases}$$

- $\circ \ \omega = \varepsilon \Rightarrow S \in F \Rightarrow \omega \in \mathcal{L}(\mathcal{N})$
- $\circ \quad \omega \neq \varepsilon, \omega = u_1 \dots u_n, u_i \in \mathcal{L}(\mathcal{A}), i = 1, \dots, n, \quad u_i = a_i v_i, \quad i = 1, \dots, n$ $(S, a_1v_1u_2 ... u_n) \vdash_{\mathcal{N}} (q_0, v_1u_2 ... u_n) \vdash_{\mathcal{N}}^* (f_0, u_2 ... u_n) \vdash_{\mathcal{N}} ... \vdash_{\mathcal{N}}^* (f_n, \varepsilon)$ T.e. $\omega = a_1 v_1 a_2 v_2 \dots a_n v_n \in \mathcal{L}(\mathcal{N})$

Нека $ω \in \mathcal{L}(\mathcal{N})$

- $\circ \omega = \varepsilon, \quad S \in F \Rightarrow \omega \in \mathcal{L}(\mathcal{A}) \subseteq (\mathcal{L}(\mathcal{A}))^{+}$
- $\circ \quad \omega = a_0 u_0 a_1 u_1 \dots a_n u_n,$ $\left(S,a_0u_0a_1u_1\dots a_nu_n\right)\vdash_{\mathcal{N}}\left(q_0,u_0a_1u_1\dots a_nu_n\right)\vdash_{\mathcal{N}}^*\left(f_0,a_1u_1\dots a_nu_n\right)\vdash_{\mathcal{N}}\dots\vdash_{\mathcal{N}}^*\left(f_n,\varepsilon\right)$ $q_i \in \Delta(f_{i-1}, a_i), \ i \geq 1$ - нови преходи за $\mathcal N$ Имаме, че $(S, a_i u_i) \vdash_{\mathcal{A}} (S, u_i) \vdash_{\mathcal{A}}^* f_i, \ f_i \in F \Rightarrow a_i u_i \in L$, за $i \in \{0, ..., n\}$ Значи $\omega \in L^+ = (\mathcal{L}(\mathcal{A}))^+$

Построихме НКА, който разпознава $(\mathcal{L}(\mathcal{A}))^{\dagger}$. Следният автомат разпознава езика $\{\varepsilon\}$:

От вече доказаната затвореност относно обединението, имаме че $\{\varepsilon\} \cup L^+ = L^*$ също е автоматен

4. Допълнение

Нека $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$ е ДКА (**тотален**), разпознаващ езика L.

Крайният автомат
$$\mathcal{N} = \langle \Sigma, Q, \Delta, S, Q \setminus F \rangle$$
 е т.ч. $\mathcal{L}(\mathcal{N}) = \overline{\mathcal{L}(\mathcal{A})} = \overline{L} = \Sigma^* \setminus L$

Нека
$$\omega \in \mathcal{L}(\mathcal{A})$$
, значи $(S, \omega) \vdash_{\mathcal{A}}^* (f, \varepsilon)$ и $f \in F$, т.е. $(S, \omega) \vdash_{\mathcal{N}}^* (f, \varepsilon)$ и $f \notin Q \setminus F \Rightarrow \omega \notin \mathcal{L}(\mathcal{N})$

Нека
$$\omega \notin \mathcal{L}(\mathcal{A})$$
, т.е. $(S,\omega) \vdash_{\mathcal{A}}^* (q,\varepsilon)$, $q \notin F$, значи $q \in Q \setminus F \Rightarrow (S,\omega) \vdash_{\mathcal{N}}^* (q,\varepsilon) \Rightarrow \omega \in \mathcal{L}(\mathcal{N})$ $\Rightarrow \omega \notin \mathcal{L}(\mathcal{A}) \Leftrightarrow \omega \in \mathcal{L}(\mathcal{N})$

Останалите операции като сечение, разлика могат да се изразят, използвайки вече доказаните и следователно имаме затвореност и относно тях.

4. Теорема на Клини

Теорема: (Клини) L е регулярен $\Leftrightarrow L$ е автоматен Д-во:

> \Rightarrow ДКА разпознават \emptyset , $\{\varepsilon\}$ и всеки език, съставен от една буква. Доказахме, че са затворени относно регулярните операции. Следователно всеки регулярен език се разпознава от краен автомат.

 \Leftarrow Нека $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$ е ДКА. Ще конструираме регулярен език L, т.ч. $L = \mathcal{L}(\mathcal{A})$ Нека $Q = \{q_0, \dots, q_{n-1}\}$ е изброяване на състоянията и $S = q_0$.

Нека L(i,j,k) е множеството от думи, които могат да се разпознаят от $\mathcal A$ по път, започващ от q_i и завършващ в q_i , като междинните състояния имат индекси < k

Тогава за
$$n=|Q|$$
, имаме $L(i,j,n)=\left\{\alpha\in\Sigma^*\mid\delta^*(q_i,\alpha)=q_J\right\}$. Така
$$\mathcal{L}(\mathcal{A})=\bigcup\left\{L(0,j,n)\mid q_j\in F\right\}=\bigcup_{q_j\in F}L(0,j,n)$$

Нека $P(k) = (\forall i < n) (\forall j < n) [L(i,j,k)]$ е регулярен С индукция по k ще докажем, че $(\forall k \leq n)P(k)$:

- \circ Нека k=0, $q_i,q_i\in Q$ произволни.
 - i = j, to $L(i, j, 0) = \{\varepsilon\} \cup \{a \in \Sigma \mid \delta(q_i, a) = q_j\}$
 - $i \neq j$, to $L(i,j,0) = \left\{ a \in \Sigma \mid \delta(q_i,a) = q_j \right\}$

L(i, j, 0) - краен език, следователно е регулярен

- \circ ИП: Нека е в сила: $(\forall i < n)(\forall j < n)[L(i,j,k)]$ е регулярен]
- \circ Стъпка: Ще докажем P(k+1):

Нека
$$\alpha \in L(i,j,k+1)$$
, $\alpha = a_1 a_2 \dots a_s$, $a_i \in \Sigma$, $i=1,\dots,s$

Нека $q_{l_1},q_{l_2},\ldots,q_{l_{s-1}}\in Q$ са т.ч. $q_i\overset{a_1}{\to}q_{l_1}\overset{a_2}{\to}q_{l_2}\overset{a_3}{\to}\ldots\overset{a_{s-1}}{\to}q_{l_{s-1}}\overset{a_s}{\to}q_j$

- $q_k \in q_{l_1}, q_{l_2}, \dots, q_{l_{s-1}}$. Нека q_k се среща m пъти и нека $\alpha = \alpha_1 \alpha_2 \dots \alpha_{m+1}$ т.ч.

$$q_i \stackrel{\alpha_1}{\Rightarrow} q_k \stackrel{\alpha_2}{\Rightarrow} q_k \to \cdots \to q_k \to \cdots \to q_k \stackrel{\alpha_{m+1}}{\Longrightarrow} q_i$$

За всяко $l=1,\ldots,m+1,q_k$ не е вътрешно състояние за изчислението на α_l , т.е. индексите на всички вътрешни състояния са < k.

Значи
$$\alpha_1 \in L(i,k,k)$$
, $\alpha_l \in L(k,k,k)$ за $l=2,...,m$ и $\alpha_{m+1} \in L(k,j,k)$ $\Rightarrow \alpha \in L(i,k,k) \cdot L(k,k,k)^{m-1} \cdot L(k,j,k)$

Това разсъждение е за произволно m, значи ако q_k се среща между вътрешните състояния на изчислението на α , то

$$\alpha \in L(i, k, k) \cdot L(k, k, k)^* \cdot L(k, j, k)$$

$$\Rightarrow L(i,j,k+1) \subseteq L(i,j,k) \cup L(i,k,k) \cdot L(k,k,k)^* \cdot L(k,j,k)$$

Имаме и обратното включване от определението на L(i, j, k).

От ИП всички компоненти отдясно са регулярни езици, композирани чрез регулярни операции, следователно L(i, j, k + 1) също е регулярен език.

$$\Rightarrow$$
 $(\forall i, j, < |Q|)(\forall k \le |Q|)$

5. Формулировка и доказателство на лемата разрастване за регулярни езици (uvw-лема)

Лема: Лема за покачването

Нека L е безкраен регулярен език. $\exists p \in \mathbb{N}, p \geq 1$, т.ч. $\forall \alpha \in L$, т.ч. $|\alpha| \geq p$:

 $\exists u, v, w \in \Sigma^* : \alpha = uvw$ и

- 1. $v \neq \varepsilon \ (|v| \ge 1)$
- 2. $|uv| \leq p$
- 3. $(\forall n \in \mathbb{N})[uv^n w \in L]$

Д-во:

Нека L е регулярен език, следователно е и автоматен. Нека $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$ е т.ч. $L = \mathcal{L}(\mathcal{A})$ и нека p=|Q|. Нека $\alpha\in L$, $\alpha=a_1a_2\dots a_k$ и $k\geq p$. $S\stackrel{a_1}{\to}q_1\stackrel{a_2}{\to}q_2\dots\stackrel{a_p}{\to}q_p\dots\stackrel{a_k}{\to}q_k$

$$S \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \dots \xrightarrow{a_p} q_p \dots \xrightarrow{a_k} q_k$$

Да разгледаме първите р стъпки. Нека бележим $q_0\coloneqq S$. Имаме, че |Q|=p, а в $q_0\overset{a_1}{\to}q_1\overset{a_2}{\to}q_2\ldots\overset{a_p}{\to}q_p$

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \dots \xrightarrow{a_p} q_p$$

Участват p+1 състояния q_0,q_1,\dots,q_p , то по принципа на Дирихле съществуват числа i,j за които $0 \le i < j \le p$ и $q_i = q_j$. Нека разделим α на три части:

$$\underbrace{a_1\dots a_i}_u\underbrace{a_{i+1}\dots a_j}_v\underbrace{a_{j+1}\dots a_k}_w$$
 Имаме, че $|v|\geq 1$ и $|uv|=j\leq p$

$$\left(q_0,uvw\right)\vdash_{\mathcal{A}}^*\left(q_i,vw\right)\vdash_{\mathcal{A}}^*\left(q_j,w\right)\vdash_{\mathcal{A}}^*\left(q_k,\varepsilon\right)$$

За
$$n=0$$
: Думата $uv^0w=uw\in L$, от $q_i=q_j$ имаме: $q_0\underbrace{\overset{a_1}{\to}q_1\ldots\overset{a_i}{\to}}_{U}q_i\underbrace{\overset{a_{j+1}}{\to}q_{j+1}\ldots\overset{a_k}{\to}}_{U}q_k\in F$

За n = 2: Думата $uv^2w = uvvw$ ∈ L, защото:

$$q_0 \underbrace{\overset{a_1}{\underset{u}{\longrightarrow}} q_1 \ldots \overset{a_i}{\longrightarrow} q_i}_{u} \underbrace{\overset{a_{i+1}}{\underset{v}{\longrightarrow}} q_{i+1} \ldots \overset{a_j}{\longrightarrow}}_{v} \underbrace{q_j}_{q_i} \underbrace{\overset{a_{i+1}}{\underset{v}{\longrightarrow}} q_{i+1} \ldots \overset{a_j}{\longrightarrow}}_{q_j} \underbrace{q_j}_{u} \underbrace{\overset{a_{j+1}}{\underset{w}{\longrightarrow}} q_{j+1} \ldots \overset{a_k}{\longrightarrow}}_{w} q_k \in F$$

$$q_0 \underbrace{\overset{a_1}{\underset{u}{\longrightarrow}} q_1 \overset{a_{i+1}}{\underset{u}{\longrightarrow}} q_i \underbrace{\overset{a_{i+1}}{\underset{v}{\longrightarrow}} q_{i+1} \overset{a_{j}}{\underset{v}{\longrightarrow}} q_i \underbrace{\overset{a_{j+1}}{\underset{v}{\longrightarrow}} q_i \cdots q_i}_{v}}_{n \text{ ITETM}} \underbrace{\overset{a_{j}}{\underset{v}{\longrightarrow}} q_i \cdots q_i}_{u} \underbrace{\overset{a_{j+1}}{\underset{w}{\longrightarrow}} q_{j+1} \overset{a_{k}}{\underset{w}{\longrightarrow}} q_k}$$

Така за всяко естествено число n е изпълнено $uv^nw \in L$.

6. Примери за нерегулярни езици

1. $L = \{a^n b^n \mid n \ge 0\}$

Допускаме, че е регулярен, по лемата ⇒

 $\exists p \in \mathbb{N}: \forall \alpha \in L: |\alpha| \geq p$, to $\exists u, v, w \in \Sigma^*: \alpha = uvw, |v| \geq 1$, $|uv| \leq p$ if $uv^k w \in L, k \in \mathbb{N}$ Нека $\alpha = a^p b^p$, от $|uv| \le p$, то $uv = a^i$, $i \in \{1, ..., p\}$. Тогава $uw \in L$ по лемата, но $a^{p-i}b^p \notin L$. Противоречие

2.
$$L = \{a^n b^k \mid n < k\}$$

Чупи се с $\alpha = a^p b^{p+1}$ и $n = 2$.

7. Формулировка и доказателство на теоремата на Майхил-Нероуд

Деф: Еквивалентни думи в език и автомат (релация на Майхил-Хероуд)

Нека $L \subseteq \Sigma^*$ е език и $u, v \in \Sigma^*$.

Казваме, че u и v са еквивалентни спрямо L ($u \approx_L v$) т.с.т.к. $\forall x \in \Sigma^* [ux \in L \Leftrightarrow vx \in L]$. Нека $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$, т.ч. ДКА.

Казваме, че u и v са еквивалентни спрямо $\mathcal{A}(u \sim_{\mathcal{A}} v)$, ако $\delta^*(S, u) = \delta^*(S, v)$ $pprox_L$ и $\sim_{\mathcal{A}}$ са релация на еквивалентност. Бележим с $[x]_{pprox_L}$ класовете на еквив. породени от $x \in \Sigma^*$

Деф: Автомат на Майхил-Нероуд

За даден език L, дефинираме автоматът на Майхил-Нероуд $M_L = \left\langle \Sigma, Q_{M_L}, \delta_{M_L}, S_{M_L}, F_{M_L} \right\rangle$ по следния

- $\circ \ Q_{M_I} \stackrel{\text{def}}{=} \{ [\alpha]_L \mid \alpha \in \Sigma^* \}$
- $\circ \ \delta_{M_L}ig([lpha]_L$, b $ig) \stackrel{ ext{def}}{=} [lpha b]_L$ за всяка $lpha \in \Sigma^*$ и $b \in \Sigma$
- $\circ \ S_{M_L} \stackrel{\text{\tiny def}}{=} [\varepsilon]_L$
- $\circ F_{M_L} \stackrel{\text{def}}{=} \{ [\alpha]_L \mid [\alpha]_L \subseteq L \}$

Твърдение: Нека L е език. За всеки $\alpha, \beta \in \Sigma^*, x \in \Sigma$ е изпълнено:

$$\alpha \approx_L \beta \Rightarrow \alpha x \approx_L \beta x$$

Д-во:

$$\alpha \approx_L \beta \Rightarrow (\forall z \in \Sigma^*) \big(\alpha z \in L \Leftrightarrow \beta z \in L \big) \Rightarrow (\forall xz \in \Sigma^*) \big(\alpha(xz) \in L \Leftrightarrow \beta(xz) \in L \big)$$
$$\Rightarrow (\forall x \in \Sigma^*) \big(\forall z \in \Sigma^* \big) \big((\alpha x) z \in L \Leftrightarrow (\beta x) z \in L \big) \Rightarrow (\forall x \in \Sigma) \big(\alpha x \approx_L \beta x \big)$$

Твърдение: δ_{M_L} е добре дефинирано: $\delta_{M_L}^*ig([lpha]_L$, $etaig) = ig[lphaetaig]_L$, lpha, eta $\in \Sigma^*$

Д-во:

Индукция по β :

$$\circ \quad \beta = \varepsilon \colon \quad \delta_{M_L}^*([\alpha]_L, \varepsilon) = [\alpha]_L = [\alpha \varepsilon]_L$$

$$\circ \quad \beta = b\beta_1: \quad \delta_{M_L}^* \big([\alpha]_L \,, b\beta_1 \big) = \delta_{M_L}^* \Big(\delta_{M_L} \big([\alpha]_L \,, b \big) \,, \beta_1 \Big) = \quad \delta_{M_L}^* \big([\alpha b]_L \,, \beta \big) \stackrel{\text{MII}}{=} \big[\alpha b\beta_1 \big] = \big[\alpha \beta \big]$$

Твърдение: $\mathcal{L}(M_L) = L$

Д-во:

$$\omega \in \mathcal{L}\big(M_L\big) \Leftrightarrow \delta_{M_L}^*\big([\varepsilon]_L\,,\omega\big) \in \big\{[\omega]_L \mid \omega \in L\big\} \Leftrightarrow [\omega]_L \in \big\{[\omega]_L \mid \omega \in L\big\} \Leftrightarrow \omega \in L$$

Твърдение: Ако L е регулярен език и $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$, т.ч. $\mathcal{L}(\mathcal{A}) = L$ и $u, v \in \Sigma^*$ то:

$$u \sim_{\mathcal{A}} v \Rightarrow u \approx_{L=\mathcal{L}(\mathcal{A})} v \quad \Big(\forall \omega \in \Sigma^* \quad [\omega]_{\sim_{\mathcal{A}}} \subseteq [\omega]_L \Big)$$

Д-во:

Нека
$$u \sim_{\mathcal{A}} v$$
, значи $\delta^*(S,u) = \delta^*(S,v)$ $\Rightarrow \forall z \in \Sigma^* \colon \ \delta^*(S,uz) = \delta^*(\delta^*(S,u),z) = \delta^*(\delta^*(S,v),z) = \delta^*(S,vz) = q$ $q \in F \Rightarrow uz \in L$ и $vz \in L$, също $q \notin F \Rightarrow uz \notin L$ и $vz \notin L$

$$(uz \in L \Leftrightarrow vz \in L) \Rightarrow u \approx_L v$$

Значи $\sim_{\mathcal{A}}$ прецизира $pprox_L$. Следствие е, че $\left|\sim_{\mathcal{A}}\right| \geq \left|pprox_L\right|$

Теорема: (Майхил-Нероуд)

Един език L е регулярен т.т.к. M_L има краен брой състояния. Освен това, M_L е минимален ДКА за L Д-во:

Да допуснем, че L е регулярен и $|\{[\alpha]_L \mid \alpha \in \Sigma^*\}| = \infty$

От L - регулярен \Rightarrow \exists ДКА $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$, т.ч. $\mathcal{L}(\mathcal{A}) = \mathsf{L}$

Имаме, че $\sim_{\mathcal{A}}$ прецизира $\approx_L \Rightarrow |\mathsf{Q}| \geq |\sim_{\mathcal{A}}| \geq |\approx_L| = \infty$. Противоречие

Но горната закономерност важи за всички ДКА, разпознаващи L. Следователно M_L е ДКА с наймалък брой състояния.

Обратно, ако $|M_L| < \infty$, то той разпознава език $L \Rightarrow L$ е регулярен.

8. Алгоритъм за конструиране на минимален краен детерминиран тотален автомат, еквивалентен на даден ДКА

Нека $\mathcal{A} = \langle \Sigma, Q, \delta, S, F \rangle$ е ДКА.

Деф:

$$\mathcal{L}_{\mathcal{A}}(q) = \{ \omega \in \Sigma^* \mid \delta^*(q, \omega) \in F \}$$

$$\mathcal{L}_{\mathcal{A}}^n(q) = \{ \omega \in \Sigma^* \mid |\omega| \le n \& \delta^*(q, \omega) \in F \}$$

$$p \equiv_{\mathcal{A}} q \stackrel{def}{\iff} \mathcal{L}_{\mathcal{A}}(p) = \mathcal{L}_{\mathcal{A}}(q)$$

$$p \equiv_{\mathcal{A}}^{n} q \stackrel{def}{\Longleftrightarrow} \mathcal{L}_{\mathcal{A}}^{n}(p) = \mathcal{L}_{\mathcal{A}}^{n}(q)$$

Тогава $\mathcal{L}_{\mathcal{A}}(S) = \mathcal{L}(\mathcal{A})$. Релациите $\equiv_{\mathcal{A}}^n$ са апроксимация на $\equiv_{\mathcal{A}}$.

За всяко n, $\equiv_{\mathcal{A}}^n$ е по-груба от $\equiv_{\mathcal{A}}^{n+1}$. Алгоритъмът ни строи $\equiv_{\mathcal{A}}^n$, докато не срещнем n, т.ч. $\equiv_{\mathcal{A}}^n = \equiv_{\mathcal{A}}^{n+1}$. Тогава ще имаме, че $\equiv_{\mathcal{A}}^n = \equiv_{\mathcal{A}}$

$$p \equiv_{\mathcal{A}}^{n+1} q \iff p \equiv_{\mathcal{A}}^{n} q \& (\forall a \in \Sigma) \left(\delta \left(p, a \right) \equiv_{\mathcal{A}}^{n} \delta \left(q, a \right) \right)$$

- 1. За $\equiv^0_{\mathcal{A}}$, класовете на еквивалентност са F и $Q \setminus F$. 2. Нека предположим, че сме открили класовете за еквивалентност за $\equiv^n_{\mathcal{A}}$. Тогава $\forall p,q \in Q: \quad p \equiv_{\mathcal{A}}^{n+1} q \Leftrightarrow p \equiv_{\mathcal{A}}^{n} q \& \forall a \in \Sigma \left(\delta(p,a) \equiv_{\mathcal{A}}^{n} \delta(q,a)\right)$. По този начин разбираме дали две състояния отиват в един и същ клас или не и така конструираме $\equiv_{\mathcal{A}}^{n+1}$
- 3. Продължаваме така, докато не получим $\equiv_{\mathcal{A}}^n = \equiv_{\mathcal{A}}^{n+1}$.

Алгоритъмът е краен, защото на всяка стъпка броят на класовете на еквивалентност се увеличава поне с 1, а не може да има повече класове на еквивалентност от състояния на D.