06/03/2020 Setting up the VBS · clicknf/clicknf.github.io Wiki

forked from 5g-empower/5g-empower.github.io

Setting up the VBS

Roberto Riggio edited this page on 18 Aug 2019 · 1 revision

Table of Contents

- 1. Hardware Requirements
- 2. Software Requirements
- 3. Compilation process
- 4. Configuration process
- 5. Start the VBS

Hardware Requirements

This guide assumes that you are deploying the eNodeB using our pre-patched version of the srsLTE software stack and that you have access to a standard LTE EPC, e.g. EURECOM OpenAirInterface EPC implementation.

For the machine running the eNB a Quad core PC (i5 or better) with at least 8 GM RAM will be needed together with a Software Defined Radio platform supported by srsLTE (e.g. the Ettus USRP B210).

The reference operating system for this guide is Ubuntu 18.04.

Software Requirements

The following commands will update the package repository and install some dependencies:

Compilation process

Download, compile, and install the EmPOWER protocol definition:

```
cd ~
git clone https://github.com/5g-empower/empower-enb-proto.git
cd empower-enb-proto
make
sudo make install
```

Download, compile, and install the EmPOWER protocol definition:

```
cd ~
git clone https://github.com/5g-empower/empower-enb-agent.git
cd empower-enb-agent
make
sudo make install
```

Download and compile the srsLTE code:

```
cd ~
git clone https://github.com/5g-empower/empower-srsLTE.git
cd empower-srsLTE
mkdir build
cd build
```

Pages 25

Getting Started

- Introduction
- Terminology
- Network Setup
- Setting up the WTP
- Setting up the CPP
- Setting up the VBS
- Setting up the EmPOWER Controller
- Setting up the Backhaul Controller

Using EmPOWER

Publications

Intent Based Networking

Introduction

Downloads

Pre-built WTP Firmwares

Developers

- REST API documentation
- Python API documentation
- Python API (WiFi/LVAP)
- Python API (LTE)
- Python API (Click/LVNF)

Tutorials

- Mobility Manager (WiFi)
- Mobility Manager (LTE)
- Service Function Chaining

Support

Mailing List

Acknowledgements

Acknowledgements

06/03/2020 Setting up the VBS · clicknf/clicknf.github.io Wiki

cmake ../

Clone this wiki locally

https://github.com/clic|

Configuration process

This tutorial assumes that you have an compatible EPC at your disposal. This could be either a commercial EPC or an open-source one. Please refer to your EPC provider for information about its configuration and usage.

Copy the example configuration files into the working directory:

- cd ~/empower-srsLTE
- cp srsenb/drb.conf.example build/srsenb/src/drb.conf
- cp srsenb/enb.conf.example build/srsenb/src/enb.conf
- cp srsenb/rr.conf.example build/srsenb/src/rr.conf
- cp srsenb/sib.conf.example build/srsenb/src/sib.conf

Leave all the configuration files unchanged with the exception of the enb.conf file which has to be edited in order to specify:

- the desired enb_id and cell_id
- the phy_cell_id compatible with the cell_id
- the TAC, MCC, and MNC as defined in the core network configuration
- the mme_addr pointing to the MME in the core network
- the gtp_bind_addr pointing to the local IP address used to reach the core network
- the number of resource blocks assigned to the cell (n_prb)
- the controller address (ctrl_addr) and port (ctrl_port, default 2210)

Start the VBS

Start the srsenb:

cd ~/empower-srsLTE/build/srsenb/src/
./srsenb enb.conf

https://github.com/clicknf/clicknf.github.io/wiki/Setting-up-the-VBS