Advanced Mathematics – WS2021 – Lab 6 – ODE (again)

Submission is for next Monday, December the 21th! Do your best! @ Good luck!

Exercise 1 – Substitution and Wronskian

Let y_1 and y_2 be two solutions of (1.1) y'' + p(x)y' + q(x)y = 0.

- a- prove that $\frac{dW}{dx} = -p(x)W$ where $W(y_1, y_2)$ is the Wronskian.
- b- prove that if p(x) = 0 then $W(y_1, y_2)$ is always a constant.
- c- verify b- by direct calculation for $y'' + k^2y = 0$ with $k \neq 0$ whose general solution is $y_1 = c_1 sinkx + c_2 coskx$.

Now, take (1.2) y'' - 2y' + y = 0 with a given solution $y_1 = e^x$.

- d- find a second solution y_2 to (1.2) putting $y_2 = ue^x$ and determining u(x) by substitution into the ODE.
- e- find a second solution y_2 to (1.2) by determining first $W(y_1, y_2)$ using a-.
- f- what is the most general form for y_2 ?

Exercise 2 - Set-up an ODE

Given a linear differential equation of second order in the form Ay'' + By' + y = 0.

Verify that the choice of 2 linear independent solutions $y_1 = x^a$ and $y_2 = x^b$ with $a, b \in \mathbb{C}$ leads necessarily to an Euler-Cauchy differential equation. Express the coefficients depending on (a, b, x).

Hint: Cramer's rule might lead to an elegant and compact solution.;)

Exercise 3 – Horner scheme on Matlab

In case of constant coefficients, the procedure can be extended to higher order differential equations, which requires the roots of a polynomial $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ with degree n. Implement the *Horner scheme*

and note down the solution of the differential equation

$$2y'''' + 4y''' - 34y'' - 36y' + 144y = 0$$

• function call: horner (an, x0) with the coefficient vector an = $[a_n, a_{n-1}, ..., a_0]$ and the guess x0 for the root