Intégration - Résumé

October 25, 2023

THEVENET Louis

Table des matières

1.	Définitions et motivations	1
2.	Théorie de la mesure	2
	2.1. Applications mesurables	2
	2.2. Mesure et espaces mesurés	
	2.3. La mesure de Lebesgue	
	Au partiel (d'après le prof)	

1. Définitions et motivations

On veut étendre l'ensemble des fonctions intégrables

Définition 1.1: Tribu

E un ensemble et $A \in \mathcal{P}(E)$ une famille de parties de E. A est une **tribu** si :

- 1. $E \in \mathcal{A}$
- 2. \mathcal{A} est stable par passage au complémentaire
- 3. \mathcal{A} est stable par réunion dénombrable

Définition 1.2:

E un ensemble, \mathcal{A} une tribu sur E. (E,\mathcal{A}) est appelé **espace mesurable**

Définition 1.3: Tribu engendrée

Soit $\mathcal{C} \subset \mathcal{P}(E)$, on appelle **tribu engendrée** par \mathcal{C} , notée $\sigma(\mathcal{C})$, l'intersection des toutes les tribus contenant \mathcal{C}

Si (E,\mathcal{O}) est un espace topologique, $\sigma(\mathcal{O})=\sigma(\mathcal{F})\coloneqq\mathcal{B}(E)$, avec \mathcal{F} ensemble des fermés de E

On appelle $\mathcal{B}(E)$ la **tribu de Borel** de E

Théorème 1.1: Lemme de transport

Soit $f: E_1 \to E_2$ et une classe de parties E_2 , notée \mathcal{C} . Alors

$$\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C}))$$

Définition 1.4: Tribu trace

La tribu trace de $\mathcal{B}(E)$ sur X définie par $\operatorname{tr}(\mathcal{B}) = \{B \cap X \mid B \in \mathcal{B}(E)\}$ est la tribu engendrée par la topologie trace de \mathcal{O} sur X, i.e. par $\sigma(\operatorname{tr}(\mathcal{O}))$

2. Théorie de la mesure

2.1. Applications mesurables

Définition 2.1.1:

f est mesurable de (E_1, \mathcal{A}_1) dans (E_2, \mathcal{A}_2) si $f^{-1}(\mathcal{A}_2) \subset \mathcal{A}_1$ i.e.

$$\forall B \in \mathcal{A}_2, f^{-1}(B) = \{x \in E_1 \ | \ f(x) \in B\} \in \mathcal{A}_1$$

- Si E_1 et E_2 sont des espaces topologiques et \mathcal{A}_1 , \mathcal{A}_2 des tribus de Borel correspondantes, alors f est **borélienne**
- Si $(E_2, \mathcal{A}_2) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, on parle de fonctions **mesurables**

Théorème 2.1.1: Critères de mesurabilité

• \mathcal{C} une classe de parties d'un ensemble F, i.e. $\mathcal{C} \subset \mathcal{P}(F)$, $B := \sigma(\mathcal{C})$

$$f:(E,\mathcal{A})\to (F,\mathcal{B})$$
 mesurable $\Leftrightarrow f^{-1}(\mathcal{C})\subset \mathcal{A}$

- f_1, f_2 mesurables $\Rightarrow f_1 \circ f_2$ mesurable
- Si $\mathcal{A} = \mathcal{B}(E)$ et $\mathcal{B} = \mathcal{B}(F)$ tribus de Borel, f continue $\Rightarrow f$ mesurable
- $f:[a,b] \to \mathbb{R}$ cpm $(a < b \in \mathbb{R})$, alors f mesurable de $([a,b],\mathcal{B}([a,b]))$ dans $(\mathbb{R},\mathcal{B}(\mathbb{R}))$

Théorème 2.1.2: Limite d'une suite de fonction

 $(f_n)_n$ une suite de fonctions **mesurables** sur (E,\mathcal{A}) à valeurs dans $|(\mathbb{R})$

- 1. $\sup_{n} f_n$ et $\inf_{n} f_n$ sont **mesurables**
- $2. \ \lim_{n \to +\infty} \sup f_n = \lim_{n \to +\infty} \sup_{k \ge n} f_k \text{ et } \lim_{n \to +\infty} \inf f_n = \lim_{n \to +\infty} \sup_{k \ge n} f_k \text{ sont } \mathbf{mesurables}$
- 3. Si $(f_n)_n \xrightarrow[n \to \infty]{\mathcal{CS}} f$, alors f est **mesurable**

2.2. Mesure et espaces mesurés

Définition 2.2.1: Mesure

Soit (E, \mathcal{A}) un espace mesurable, on appelle **mesure** sur (E, \mathcal{A}) une application $\mu : \mathcal{A} \to |(\mathbb{R})_+ := \mathbb{R}_+ \cup \{+\infty\}$ telle que

- 1. $\mu(\emptyset) = 0$
- 2. $\forall A_1,A_2,...,A_n\in\mathcal{A}$ 2 à 2 disjoints : $\mu\bigg(\bigcup_n A_n\bigg)=\sum_n \mu(A_n)$ (σ -additivité)

Définition 2.2.2: Espace mesuré

Soit (E, \mathcal{A}) un espace mesurable et μ une mesure dessus.

On appelle Soit (E, \mathcal{A}, μ) espace mesuré.

Définition 2.2.3: Soit (E, \mathcal{A}) un espace mesurable. Une mesure μ est dite :

- 1. finie si $\mu(E) < +\infty$
- 2. de probabilité si $\mu(E) = 1$
- 3. σ -finie si

$$\exists {(A_n)}_n \in \mathcal{A}^{\mathbb{N}} \ | \ E = \bigcup_n A_n$$

et
$$\mu(A_n) < +\infty \forall n$$

Définition 2.2.4: Pour (E, \mathcal{A}, μ) un espace mesuré.

 $A \in \mathcal{A}$ est négligeable si $\mu(A) = 0$

2.3. La mesure de Lebesgue

Théorème 2.3.1: Mesure de Lebesgue (ou mesure de Borel-Lebesgue)

Il existe une **unique** mesure $\mathbf{mu}_{\mathbf{d}}$ sur les boréliens de \mathbb{R}^d telle que la mesure de tout pavé $\prod_{i=1}^d]a_i,b_{i[}$ est :

$$\mu_d \left(\bigcap_{i=1}^d]a_i, b_i[\right) = \prod_{i=1}^d (b_i - a_i)$$

Elle est appelée **mesure de Lebesgue** et notée μ si il n'y a pas d'ambiguïté sur la dimension.

3. Au partiel (d'après le prof)

- à l'examen, est-ce que l'indicatrice est mesurable pour un (E,\mathcal{A}) donné (voir exemple 2.2.1)