# Bluetooth Low Energy (Bluetooth Smart)



#### References

- [1] Specification Core Version 4.0: http://www.bluetooth.org/Technical/Specifications/adopted.htm
- [2] wikipedia, "Bluetooth", March 2012, <a href="http://de.wikipedia.org/wiki/Bluetooth">http://de.wikipedia.org/wiki/Bluetooth</a>
- [3] wikipedia, "Bluetooth", March 2012, http://en.wikipedia.org/wiki/Bluetooth
- [4] online training (registration required): https://www.bluetooth.org/events/training/lowenergytraining.htm

#### Introduction



[3] "Bluetooth Low Energy (BLE), previously known as WiBree, is a subset to Bluetooth v4.0 with an entirely new protocol stack for rapid build-up of simple links. As an alternative to the Bluetooth standard protocols that were introduced in Bluetooth v1.0 to v3.0, it is aimed at very low power applications running off a coin cell. Chip designs allow for two types of implementation, dual-mode, single-mode .... The provisional names Wibree and Bluetooth ULP (Ultra Low Power) were abandoned and the BLE name was used for a while. In late 2011, new logos "Bluetooth Smart Ready" for hosts and "Bluetooth Smart" for sensors were introduced as the general-public face of BLE.

In a single mode implementation the low energy protocol stack is implemented solely. CSR, Nordic and TI (and EM) have released single mode Bluetooth low energy solutions.

In a dual-mode implementation, Bluetooth low energy functionality is integrated into an existing Classic Bluetooth controller. Currently (2011-03) the following semiconductor companies have announced the availability of chips meeting the standard: Atheros, CSR, Broadcom and TI. The compliant architecture shares all of Classic Bluetooth's existing radio and functionality resulting in a negligible cost increase compared to Classic Bluetooth.

Cost-reduced single-mode chips, which enable highly integrated and compact devices, feature a lightweight Link Layer providing ultra-low power idle mode operation, simple device discovery, and reliable point-to-multipoint data transfer with advanced power-save and secure encrypted connections at the lowest possible cost."

# **Introduction: Overview**

[1], Volume 1, Part A, Chapter 1.2, pp. 20-22



LE devices may fulfill the entire communication in the case of **unidirectional or broadcast communication** using advertising events.



Figure 1.3: Advertising Events

- 1) Advertiser transmits advertising packets on up to 3 advertising channels.
- 2 Scanners receive advertising without the intention to connect to the advertiser.
- 3 Scanner may make a scan request to the advertiser to get "more information"
- 4 Advertiser "periodically" restarts an advertising event
- 6 Advertiser may end the advertising event at any time during the event.

#### **Introduction: Overview**

[1], Volume 1, Part A, Chapter 1.2, pp. 20-22



LE devices may use advertising events to establish pair-wise bi-directional communication using data channels.



Figure 1.4: Connection Events

- 1 Advertiser sends connectable advertising packets
- 2 Initiator sends a connection request (and advertiser accepts it)
- 3 connection is established (initiator => master M, advertiser => slave S)
- 4 connection events are used to send data packets between M and S (alternating)
  M initiates the beginning of each connection event and can stop it at any time.
  (Adaptive) frequency hopping is used over 37 data channels.





# **Radio Specification**

[1], Volume 6, Part A



#### **Frequency Bands and Channel Arrangement**

| Regulatory Range | RF Channels          |    |
|------------------|----------------------|----|
| 2.400-2.4835 GHz | f=2402+k*2 MHz, k=0, | 39 |

40 RF channels with 2 MHz spacing

#### **Transmission Power**

| Minimum Output Power | Maximum Output Power |
|----------------------|----------------------|
| 0.01 mW (-20 dBm)    | 10 mW (+10 dBm)      |

single mode Bluetooth Smart chip typ. has max. output power of 0 dBm less output power to optimize power consumption or reduce interference

## **Radio Specification**

[1], Volume 6, Part A



## Modulation: GFSK (Gaussian Frequency Shift Keying)

BT = 0.5, symbol rate: 1 MSps, gross air bit rate: 1 Mbps



# **Receiver Sensitivity**

<= -70 dBm to achieve a BER = 0.1%

Example: Rx sensitivity of Nordic nRF8001 (slave) < - 85 dBm, which is slightly better than Rx sensitivity of Bluetooth BR/EDR products e.g. -84 dBm of ConnectBlue's Bluetooth Serial Port Adapter OBS411





## **Link Layer**

[1], Volume 6, Part B



# Advertising physical channel uses 3 RF channels

for discovering devices, initiating a connection and broadcasting data

## Data physical channel uses up to 37 RF channels

for communication between connected devices

| RF Channel | RF Center<br>Frequency | Channel Type        | Data<br>Channel<br>Index | Advertising<br>Channel<br>Index |
|------------|------------------------|---------------------|--------------------------|---------------------------------|
| 0          | 2402 MHz               | Advertising channel |                          | 37                              |
| 1          | 2404 MHz               | Data channel        | 0                        |                                 |
| 2          | 2406 MHz               | Data channel        | 1                        |                                 |
|            |                        | Data channels       |                          |                                 |
| 11         | 2424 MHz               | Data channel        | 10                       |                                 |
| 12         | 2426 MHz               | Advertising channel |                          | 38                              |
| 13         | 2428 MHz               | Data channel        | 11                       |                                 |
| 14         | 2430 MHz               | Data channel        | 12                       |                                 |
|            |                        | Data channels       |                          |                                 |
| 38         | 2478 MHz               | Data channel        | 36                       |                                 |
| 39         | 2480 MHz               | Advertising channel |                          | 39                              |

Table 1.2: Mapping of RF Channel to Data Channel Index and Advertising Channel Index

## **Link Layer**

[1], Volume 6, Part B



# One packet format for both advertising channel and data channel

| LSB       |                | Packet Data Unit | MSB        |  |
|-----------|----------------|------------------|------------|--|
| Preamble  | Access Address | PDU              | CRC        |  |
| (1 octet) | (4 octets)     | (2 to 39 octets) | (3 octets) |  |

**Preamble** for frequency synchronization, symbol timing estimation, and Automatic Gain Control (AGC) training

**Access Address** fixed for advertising channel packets and random for data channel packets (and different for link layer connections)

## **Advertising Channel PDU**











[1], Volume 6, Part B



## **Device Filtering**

The set of devices that the Link Layer uses for device filtering is called the **White List**.

The White List is configured by the Host and is used by the Link Layer to filter *advertisers*, *scanners* or *initiators*.

This allows the Host to configure the Link Layer to act on a request without awakening the Host.











