$\Sigma_{\psi_1\dots\psi_n}^*=\{w\in\Sigma^*\mid\psi_1\left(w\right)\wedge\ldots\wedge\psi_n\left(w\right)\}$ אזי Σ^* אזי $\psi_1\dots\psi_n$ פרידיקטים על בפית ויהי Σ^* אלפבית ויהי Σ^* אלפבית יהיו Σ^* פרידיקטים על ברידיקטים על יהי Σ^* אלפבית יהיו Σ^* אלפבית יהיו Σ^* פרידיקטים על ברידיקטים על Σ^* ותהיינה ווהיינה Σ^* פונקציות אזי Σ^* ברידיקטים על Σ^* וווהיינה וויהי Σ^* פונקציות אזי Σ^*

 Σ תחום של טיפוס נתונים מופשט: יהי $\left(\Sigma_{\psi_1...\psi_n}^*,f_1\dots f_m
ight)$ טיפוס נתונים מופשט אזי

 $(\psi_1\dots\psi_n)$ אקסיומות של טיפוס נתונים מופשט: יהי יהי $(\Sigma^*_{\psi_1\dots\psi_n},f_1\dots f_m)$ טיפוס נתונים מופשט אזי אובייקטים של טיפוס נתונים מופשט: יהי $(\Sigma^*_{\psi_1\dots\psi_n},f_1\dots f_m)$ טיפוס נתונים מופשט אזי אובייקטים של טיפוס נתונים מופשט: יהי

A עבור ששייך לקבוצת האובייקטים של $a\in A$ עבור אזי נסמן אזי נסמן מופשט אזי נסמן איזי מיפוס עבור והי

 $\{f_1\dots f_m\}$ טיפוס נתונים מופשט אזי $\{\Sigma^*_{\psi_1\dots\psi_n},f_1\dots f_m\}$ טיפוס נתונים מופשט אזי יהי A טיפוס נתונים מופשט ותהא A פונקציה של A אזי ותהא A טיפוס נתונים מופשט ותהא A

 $A\left(
ight) = arepsilon$ אובייקט של A אזי נאמר כי A הינה פונקציה באשר arepsilon אובייקט של A אובייקט של אובייקט של אובייקט של אובייקט מופשט עבורו

באשר List $=(\Sigma^*, \mathsf{Length}, \mathsf{Retrieve}, \mathsf{Insert}, \mathsf{Delete})$ באשר באלפבית אזי הי Σ אלפבית אזי

- $x\in \Sigma^n$ ולכל ולכל Length (x) n מוגדרת כך בחקth (x) מוגדרת מוגדרת מוגדרת בחשל בחקל.
- $i\in[n]$ ולכל $x\in\Sigma^n$ לכל $n\in\mathbb{N}$ לכל Retrieve ($x,i)=x_i$ מוגדרת כך מוגדרת ($x_i=x_i$ מוגדרת איבר: $x_i=x_i$ ולכל Retrieve ($x_i=x_i$ מוגדרת ב
- לכל Insert $(x,i,\sigma)=\langle x_1\dots x_{i-1},\sigma,x_i\dots x_n\rangle$ מוגדרת כך וnsert : $\bigcup_{n=0}^{\infty}\left(\Sigma^n\times[n+1]\times\Sigma\right)\to\Sigma^*$ לכל $i\in[n+1]$ לכל $i\in[n+1]$ לכל $i\in\mathbb{N}$
- Delete $(x,i)=(\langle x_1\dots x_{i-1},x_{i+1}\dots x_n\rangle\,,x_i)$ מחיקת איבר: $\bigcup_{n=0}^\infty (\Sigma^n\times [n]) o (\Sigma^*\times \Sigma) o i$ מחיקת איבר: $i\in [n]$ ולכל $i\in \mathbb{N}$

. מענה: יהי אלפבית אזי List אלפבית אלפבית יהי Σ

הגדרה: יהי Σ אלפבית אזי

- $x \in \text{List}$ לכל RetrieveFirst (x) = Retrieve (x, 1) מוגדרת כך RetrieveFirst : List $x \in \text{List}$ לכל קבלת איבר ראשון:
- לכל בוst איבר (x,σ) = List.Insert (x,σ) מוגדרת כך וnsertFirst : (List $\times \Sigma$) \to List לכל $x \in L$ ist לכל
- $x \in ext{List}$ בוst לכל DeleteFirst $(x) = ext{List}$.Delete (x,1) מוגדרת כך DeleteFirst : List $ext{List} \times \Sigma$ ולכל $x \in ext{List}$
 - $x \in \mathrm{List}$ לכל RetrieveLast $(x) = \mathrm{List}$. Retrieve $(x, \mathrm{List}.\mathrm{Length}\,(x))$ מוגדרת כך RetrieveLast : List איבר אחרון:
- לכל InsertLast $(x,\sigma)=$ List.Insert (x, List.Length $(x)+1,\sigma)$ מוגדרת כך InsertLast : (List $\times \Sigma) \to$ List $\times \Sigma$ בולכל $\times \sigma \in \Sigma$ ולכל $\times \sigma \in \Sigma$ ולכל $\times \sigma \in \Sigma$
- $x \in \text{List}$ לכל DeleteLast (x) = List.Delete(x, List.Length(x)) מחיקת איבר אחרון: DeleteLast : List $\to (\text{List} \times \Sigma)$ מחיקת איבר אחרון: $\sigma \in \Sigma$
- $n\in\mathbb{N}$ לכל Search $(x,\sigma)=\left\{egin{array}{ll} \min\{i\in[n]|x_i=\sigma\} & \exists i\in[n].x_i=\sigma \\ -1 & \mathrm{else} \end{array}
 ight.$ מוגדרת כך Search : $(\mathrm{List}\times\Sigma)\to\mathbb{N}\cup\{-1\}$ לכל $x\in\Sigma^n$ ולכל $x\in\Sigma^n$
- Plant $(x,i,y)=\langle x_1\dots x_{i-1},y,x_i\dots x_n\rangle$ מוגדרת כך Plant : $\bigcup_{n=0}^\infty \left(\Sigma^n\times [n+1]\times \mathrm{List}\right) o \mathrm{List}$: $x\in\Sigma^n$ מוגדרת כך $x\in\Sigma^n$ לכל $x\in\Sigma^n$ לכל לכל תולב הוספת
- Plant $(x,i)=\left(\left\langle x_1\dots x_{i-1}\right\rangle,\left\langle x_i\dots x_n\right\rangle\right)$ מוגדרת כך מוגדרת כך $\bigcup_{n=0}^{\infty}\left(\Sigma^n\times[n+1]\right) o \left(\text{List}\times\text{List}\right)$ לכל $x\in\Sigma^n$ לכל $n\in\mathbb{N}$

A איפוס מופשט: יהי א טיפוס נתונים מופשט אזי מיפוס מופשט: יהי א מימוש של טיפוס מופשט: יהי

אזי $M\in\mathbb{N}$ יהי מערך: יהי אזי הגדרה מימוש רשימה הגדרה

```
class List (M, a_1, \ldots, a_n):

if M \geq n then Error

self.Array \leftarrow [a_1, \ldots, a_n, -, \ldots, -] // The array is of fixed size M

self.MaxLen \leftarrow M

self.Length \leftarrow n

function Retrieve (L, i):

return L.Array[i - 1]
```

```
\begin{array}{l} \text{function Insert}(L,i,\sigma) \text{:} \\ & \text{if L.Length} = \text{L.MaxLen then Error} \\ & \text{for } j \leftarrow [L.Length-1,\dots,i-1] \text{ do} \\ & \mid \text{L.Array}[j+1] \leftarrow \text{L.Array}[j] \\ & \text{end} \\ & \text{L.Array}[i-1] \leftarrow \sigma \\ & \text{L.Length} \leftarrow \text{L.Length} + 1 \\ \\ & \text{function Delete}(L,i) \text{:} \\ & \text{for } j \leftarrow [L.Length-1,\dots,i] \text{ do} \\ & \mid \text{L.Array}[j-1] \leftarrow \text{L.Array}[j] \\ & \text{end} \\ & \text{L.Length} \leftarrow \text{L.Length} - 1 \\ \end{array}
```

. אזי מימוש של הינו מערך בעזרת רשימה אזי מימוש של אזי מימוש של אזי יהי $M\in\mathbb{N}$

טענה: יהי מערך מערך רשימה הממומשת ותהא ותהא $M\in\mathbb{N}$ יהי

- $\mathcal{O}\left(1\right)$ אזי זמן ריצה פעל סיבוכיות אמי אזי ווויט אזי אזי $i\in\left[\mathrm{List.Length}\left(L\right)\right]$ יהי •
- $\mathcal{O}\left(n-i+1
 ight)$ אזי ווהפר בעל סיבוכיות בעל אזי וויהי וויהי וויהי וויהי $\sigma\in\Sigma$ ויהי וויהי $i\in[ext{List.Length}\,(L)+1]$
 - $\mathcal{O}\left(n-i+1
 ight)$ אזי אמן ריצה Delete (L,i) אזי ווער אזי $i\in\left[\mathrm{List.Length}\left(L
 ight)
 ight]$ יהי

מסקנה: יהי או ותהא ותהא Lותהא ותהא אוי יהי יהי יהי מסקנה:

- $.\mathcal{O}\left(n
 ight)$ אזי זמן סיבוכיות בעל ווsertFirst (L,σ) אזי $\sigma\in\Sigma$ יהי
 - $\mathcal{O}\left(n\right)$ בעל סיבוכיות זמן בעל DeleteFirst (L) •
- $\mathcal{.O}\left(1\right)$ אזי זמן סיבוכיות בעל וחsertLast (L,σ) אזי $\sigma\in\Sigma$ יהי
 - $\mathcal{.O}\left(1\right)$ בעל סיבוכיות אמן בעל DeleteLast (L)