AGÊNCIA DE VIAGENS

Desenho de Algoritmos | Grupo 122 | Entrega 2 | 03/06/2022

André Gabriel Correia Vieira - <u>up202004159@edu.fe.up.pt</u> Francisca Horta Guimarães - <u>up202004229@edu.fe.up.pt</u> Pedro Joaquim Alves Oliveira - <u>up202004324@edu.fc.up.pt</u>

PROBLEMA

Este projeto tem como objetivo implementar um sistema capaz de apoiar a gestão de pedidos para transporte de grupos de pessoas de um local de origem para um local de destino.

Para isso, as soluções algorítmicas a desenvolver devem ser o mais eficiente possível, utilizando para esse propósito, algoritmos abordados em contexto de sala de aula.

Para este projeto, pretende-se particularmente explorar os seguintes cenários:

Cenário I – grupos que não se separam

- I.I maximizar a dimensão do grupo e indicar um encaminhamento;
- 1.2 maximizar a dimensão do grupo e minimizar o número de transbordos.

Cenário 2 – grupos que podem separar-se

- 2.1 determinar um encaminhamento para um grupo, dada a sua dimensão;
- 2.2 corrigir um encaminhamento para que a dimensão do grupo possa aumentar;
- 2.3 determinar a dimensão máxima do grupo e um encaminhamento;
- 2.4 determinar quando é que o grupo se reuniria novamente no destino;
- 2.5 indicar o tempo máximo de espera e os locais em que haveria elementos que esperam esse tempo.

CENÁRIO I - FORMALIZAÇÃO

Este cenário processa deslocamento de grupos que não se separam e está dividido em duas alíneas com os seguintes objetivos:

- I.I maximizar a dimensão do grupo e indicar um encaminhamento;
- 1.2 maximizar a dimensão do grupo e minimizar o número de transbordos.

> 1.1:

Dados:

 $G = (V, A, \{s, t\}, c, d)$ - Grafo dirigido com um nó origem [s] (source) e um nó destino [t] (target) e com valores (capacidade [c] e duração [d]) nos ramos. (V - vértices [nodes]. A - adjacências [edges]).

Variáveis de Decisão:

c – capacidade máxima;list(path) – lista com os caminhos possíveis.

Maximizar a função objetivo:

Caminho com a capacidade máxima.

CENÁRIO I - FORMALIZAÇÃO

Este cenário processa deslocamento de grupos que não se separam e está dividido em duas alíneas com os seguintes objetivos:

- I.I maximizar a dimensão do grupo e indicar um encaminhamento;
- 1.2 maximizar a dimensão do grupo e minimizar o número de transbordos.

► 1.2:

Dados:

 $G = (V, A, \{s, t\}, c, d)$ - Grafo dirigido com um nó origem [s] (source) e um nó destino [t] (target) e com valores (capacidade [c] e duração [d]) nos ramos. (V - vértices [nodes]. A - adjacências [edges]).

Variáveis de Decisão:

c – capacidade máxima; layovers – número de transbordos list(path) – lista com os caminhos possíveis.

Maximizar a função objetivo:

Resultado pareto-ótimo maximizando a capacidade e minimizando o número de transbordos.

Sujeito às restrições:

layovers < max(layovers)

CENÁRIO I – ALGORITMOS RELEVANTES

Neste cenário baseamo-nos fortemente nos algoritmos de caminhos de capacidade máxima.

Utilizamos, para esse efeito, uma adaptação do <u>Algoritmo de Dijkstra</u> com recurso a uma <u>Heap de Máximo</u>, sendo a segunda alínea (1.2) uma variação da primeira (1.1), executada várias vezes diminuindo o número de transbordos a cada execução.

CENÁRIO I – ANÁLISE DE COMPLEXIDADE

- Complexidade Temporal:
 - l.l:

$$ightharpoonup T(N) = O((|V| + |A|) \log 2 |V|)$$

• 1.2:

$$\rightarrow$$
 T(N) = O(R(1.1)*(|V| + |A|) log2 |V|)

Sendo R(I.I) o resultado da I.I, ou seja o resultado da primeira execução da função pareto.

- Complexidade Espacial:
 - l.l:

$$> S(N) = O(1)$$

• 1.2:

$$> S(N) = O(1)$$

CENÁRIO I - AVALIAÇÃO EMPÍRICA

1.1:

1.2:

Azul – Datasets fornecidos

Amarelo – Datasets adicionais

CENÁRIO 2 - FORMALIZAÇÃO

Este cenário processa grupos que se podem separar e está dividido em cinco alíneas com os seguintes objetivos:

- 2.1 determinar um encaminhamento para um grupo, dada a sua dimensão;
- 2.2 corrigir um encaminhamento para que a dimensão do grupo possa aumentar;
- 2.3 determinar a dimensão máxima do grupo e um encaminhamento;
- 2.4 determinar quando é que o grupo se reuniria novamente no destino;
- 2.5 indicar o tempo máximo de espera e os locais em que haveria elementos que esperam esse tempo.

> 2.1 / 2.2 / 2.3 :

Dados:

 $G = (V, A, \{s, t\}, c, d)$ - Grafo dirigido com um nó origem [s] (source) e um nó destino [t] (target) e com valores (capacidade [c] e duração [d]) nos ramos. (V - vértices [nodes]. A - adjacências [edges]).

Variáveis de Decisão:

f – fluxo na rede

Maximizar a função objetivo:

$$|\mathbf{f}| = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

Sujeito às restrições:

```
f(u,v) = -f(v,u), para u, v \in V;

f(u,v) \le c(u,v), para u, v \in V; (fluxo não excede capacidade)

\sum_{v \in V} f(u,v) = 0, para u \in V \setminus \{s,t\}; (conservação do fluxo)
```

CENÁRIO 2 - FORMALIZAÇÃO

Este cenário processa grupos que se podem separar e está dividido em cinco alíneas com os seguintes objetivos:

- 2.1 determinar um encaminhamento para um grupo, dada a sua dimensão;
- 2.2 corrigir um encaminhamento para que a dimensão do grupo possa aumentar;
- 2.3 determinar a dimensão máxima do grupo e um encaminhamento;
- 2.4 determinar quando é que o grupo se reuniria novamente no destino;
- 2.5 indicar o tempo máximo de espera e os locais em que haveria elementos que esperam esse tempo.

> 2.4:

Dados:

 $G = (V, A, \{s, t\}, c, d)$ - Grafo dirigido com um nó origem [s] (source) e um nó destino [t] (target) e com valores (capacidade [c] e duração [d]) nos ramos. (V - vértices [nodes]. A - adjacências [edges]).

Variáveis de Decisão:

ES[V] – Duração mínima para a reunião do grupo.

Maximizar a função objetivo:

ESij = $max\{ ESki + Dki \mid (k, i) \in A \}$.

Sujeito às restrições:

Grau[V] = 0.

CENÁRIO 2 - FORMALIZAÇÃO

Este cenário processa grupos que se podem separar e está dividido em cinco alíneas com os seguintes objetivos:

- 2.1 determinar um encaminhamento para um grupo, dada a sua dimensão;
- 2.2 corrigir um encaminhamento para que a dimensão do grupo possa aumentar;
- 2.3 determinar a dimensão máxima do grupo e um encaminhamento;
- 2.4 determinar quando é que o grupo se reuniria novamente no destino;
- 2.5 indicar o tempo máximo de espera e os locais em que haveria elementos que esperam esse tempo.

> 2.5:

Dados:

 $G = (V, A, \{s, t\}, c, d)$ - Grafo dirigido com um nó origem [s] (source) e um nó destino [t] (target) e com valores (capacidade [c] e duração [d]) nos ramos. (V - vértices [nodes]. A - adjacências [edges]).

Variáveis de Decisão:

FL[V] – Folga livre em cada nó.

Maximizar a função objetivo:

FLij = $min\{ESjk \mid (j, k) \in A\} - ES[ij] + dij$

Sujeito às restrições:

- (ES[j]- (ES[ij] + dij)) > FL[j]
- FL[j] > 0;

CENÁRIO 2 – ALGORITMOS RELEVANTES

Neste cenário baseamo-nos fortemente nos algoritmos que resolvem problemas de fluxo máximo.

Para a realização das primeiras três alíneas deste cenário, considerámos o <u>Algoritmo de Ford-Fulkerson</u> com recurso ao <u>Algoritmo Breadth-First Search</u> (BFS) (implementação <u>Edmonds-Karp</u>). Usando o algoritmo BFS melhoramos a complexidade do nosso algoritmo visto que é escolhido sempre um caminho com um número mínimo de arestas.

Nas últimas duas alíneas utilizamos o método do <u>Caminho Crítico</u> mais propriamente usando a função "<u>earliestStart</u>" para a alínea 2.4.

Na alínea 2.5 reutilizamos a função "earliestStart" para, desta vez, calcular a Folga Livre.

CENÁRIO 2 – ANÁLISE DE COMPLEXIDADE

- Complexidade Temporal:
 - 2.1 / 2.2 / 2.3 \rightarrow T(N) = O ($|V| \times |A|^2$);
 - 2.4 / 2.5 \rightarrow T(N) = O($|V| \times |A|$);
- Complexidade Espacial:
 - 2.1 / 2.2 / 2.3 \Rightarrow S(N) = O($|V|^2$);
 - 2.4 / 2.5> S(N) = O(|V|);

CENÁRIO 2 - AVALIAÇÃO EMPÍRICA

• 2.1/2.2/2.3:

número de vértices (N) e o número de ramos (R)				
Dias (N/R)	segundos	nanossegundos		
1 (50/136)	0.0169748	16974800		
2 (50/136)	0.0394224	39422400		
3 (300/1417)	0.0775512	77551200		
4 (300/1417)	0.0823532	82353200		
5 (1000/7533)	0.1217627	121762700		
6 (1000/7533)	0.0945124	94512400		
7 (90/257)	0.0384314	38431400		
8 (90/257)	0.0112093	11209300		
9 (5000/49487)	1.2761803	1276180300		
10 (5000/49487)	1.4796682	1479668200		

número de vértices (N) e o número de ramos (R)			
Dias (N/R)	segundos	nanossegundos	
11 (4/7)	0.0173413	17341300	
12 (6/8)	0.0143643	14364300	
13 (9/15)	0.0122545	12254500	
14 (6/9)	0.0040171	4017100	
15 (6/9)	0.0035624	3562400	
16 (6/8)	0.0037259	3725900	
17 (4/5)	0.0033912	3391200	
18 (6/8)	0.0035812	3581200	
19 (6/7)	0.0028089	2808900	
20 (6/9)	0.0045066	4506600	
	•		

CENÁRIO 2 - AVALIAÇÃO EMPÍRICA

• 2.4:

número de vértices (N) e o número de ramos (R)				
Dias (N/R)	segundos	nanossegundos		
1 (50/136)	0.0020009	2000900		
2 (50/136)	0.0020112	2011200		
3 (300/1417)	0.00523	5230000		
4 (300/1417)	0.0052875	5287500		
5 (1000/7533)	0.0172393	17239300		
6 (1000/7533)	0.0175172	17517200		
7 (90/257)	0.0021587	2158700		
8 (90/257)	0.0023738	2373800		
9 (5000/49487)	0.1070063	107006300		
10 (5000/49487)	0.1071891	107189100		

Azul – Datasets fornecidos

• 2.5:

namero de vertices (14) e o namero de ramos (14)			
segundos	nanossegundos		
0.0097313	9731300		
0.0088853	8885300		
0.0180378	18037800		
0.0181509	18150900		
0.0351847	35184700		
0.0344331	34433100		
0.0028793	2879300		
0.0092258	9225800		
0.1426397	142639700		
0.1426761	142676100		
	segundos 0.0097313 0.0088853 0.0180378 0.0181509 0.0351847 0.0344331 0.0028793 0.0092258 0.1426397	segundos nanossegundos 0.0097313 9731300 0.0088853 8885300 0.0180378 18037800 0.0181509 18150900 0.0351847 35184700 0.0344331 34433100 0.0028793 2879300 0.0092258 9225800 0.1426397 142639700	

número de vértices (N) e o número de ramos (R)

SOLUÇÃO ALGORÍTMICA A DESTACAR

Destacamos a solução algorítmica utilizada na alínea 1.2 ("<u>pareto</u>") porque achamos que foi uma boa e eficiente adaptação do algoritmo utilizado na alínea 1.1, reutilizando a maioria do seu código, acrescentando apenas uma contagem de transbordos para calcular um máximo que diminui em cada chamada de forma a encontrar as soluções pareto-ótimas.

Destacamos também a solução algorítmica utilizada nas alíneas 2.1-2.3 dada a sua relevância e peso na totalidade do projeto e importância no estudo de algoritmos.

CONCLUSÃO

Principais Dificuldades Encontradas

- Interpretação dos objetivos para algumas das alíneas do projeto;
- Melhorar a forma de implementação de alguns algoritmos;
- Utilização das formulas matemáticas para função objetivo.

Esforço de Cada Elemento do Grupo

André Vieira: 30%

Francisca Guimarães: 40%

Pedro Oliveira: 30%