Scale-free networks

Introduction to Network Science Carlos Castillo Topic 04

Contents

- Characteristics of scale-free networks
- Degree distribution of scale-free networks
- Distance distribution of scale-free networks

Sources

- Albert László Barabási: Network Science.
 Cambridge University Press, 2016.
 - Follows almost section-by-section chapter 04
- URLs cited in the footer of specific slides

nd.edu in 1998 (N=300K, L=1.5M) nd1998

http://networksciencebook.com/images/ch-04/video-4-1.mov

What the Web Graph has but random networks don't have

- Large "hubs"
 - Nodes with a very high degree
 - Very unlikely in a random (ER) graph
- We have already seen the Poisson distribution is a bad approximation of the observed degree distribution

Degree distributions in nd1998

A good approximation of degree in real networks

Straight descending line in log-log plot

$$\log p_k \sim -\gamma \log k$$
$$p_k \sim k^{-\gamma}$$

Parameter \(\colon \) is the exponent of the power law

A scale-free network is a network whose degree distribution follows a power law

Degree distributions in nd1998

What kind of values of gamma reduce the "long tail" of the power law?

Parenthesis: Pareto

• Italian economist Vilfredo Pareto in the 19th century noted 80% of money was earned by 20% of people

- More recently ...
 - 80 percent of links on the Web point to only 15 percent of pages;
 - 80 percent of citations go to only 38 percent of scientists;
 - 80 percent of links in Hollywood are to 30 percent of actors
- A debate that is still open: the wealth of the 1% and the 0.1%

In directed networks ...

- Each node has two degrees: k_{in} and k_{out}
- In general they may differ, hence

$$p_{kin} \sim k^{-\gamma_{in}}$$

 $p_{kout} \sim k^{-\gamma_{out}}$

• In nd1998, $Y_{in} \simeq 2.1$, $Y_{out} \simeq 2.4$

Formally (discrete)

$$p_k = Ck^{-\gamma}$$

$$\sum_{k=1}^{\infty} p_k = 1$$

$$C = \frac{1}{\sum_{k=1}^{\infty} k^{-\gamma}} = \frac{1}{\zeta(\gamma)}$$
 Riemann's zeta

This formalism assumes there are no nodes with degree zero

Formally (continuous)

$$p_k = Ck^{-\gamma}$$

$$\int_{k=k_{\min}}^{\infty} p_k = 1 \longrightarrow C = \frac{1}{\int_{k=k_{\min}}^{\infty} k^{-\gamma}} = (\gamma - 1)k_{\min}^{\gamma - 1}$$

$$p_k = (\gamma - 1)k_{\min}^{\gamma - 1}k^{-\gamma}$$

 k_{min} is the smaller degree found in the network

Comparing Poisson to power law

Comparing Poisson to power law

The natural cut-off of the degree

The largest hub cannot have more than N-1 connections

$$k_{\max} = k_{\min} N^{\frac{1}{\gamma - 1}}$$

Random vs scale-free networks

- A distribution has a "scale" if values are close to each other, for instance in a random network $\sigma_k = \langle k \rangle^{1/2}$
- Hence, most nodes are in the range $\langle k \rangle \pm \langle k \rangle^{1/2}$
- However in scale-free networks ...

Moments of degree distribution

$$\langle k^n \rangle = \int_{k_{\min}}^{k_{\max}} k^n p_k dk = C \frac{k_{\max}^{n-\gamma+1} - k_{\min}^{n-\gamma+1}}{n-\gamma+1}$$

$$C = (\gamma - 1)k_{\min}^{\gamma - 1}$$

$$\sigma_k^2 = \langle k^2 \rangle - \langle k \rangle^2$$

In a scale-free network

$$\langle k^2 \rangle = \int_{k_{\min}}^{k_{\max}} k^2 p_k dk = C \frac{k_{\max}^{3-\gamma} - k_{\min}^{3-\gamma}}{3-\gamma}$$

- This diverges as $k_{\mathrm{max}} \to \infty$ if $\gamma < 3$
- Hence there is no "typical" scale

$$\sigma_k^2 = \langle k^2 \rangle - \langle k \rangle^2$$

In a scale-free network

$$\langle k^2 \rangle = \int_{k_{\min}}^{k_{\max}} k^2 p_k dk = C \frac{k_{\max}^{3-\gamma} - k_{\min}^{3-\gamma}}{3-\gamma}$$

 What happens with the variance of the degree for networks with high max degree?

Example: nd1998

$$k_{\rm in} = 4.60 \pm 1546$$

In general, the average degree is not very informative in scale-free networks

Real network examples

Network	N	L	(k)	$\langle k_{in}^2 \rangle$	$\langle k_{out}^2 \rangle$	$\langle k^2 \rangle$	Y in	Yout	Y
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*
www	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-
Protein Interactions	2,018	2,930	2.90	-	-	32.3	-	-	2.89*-

Real network examples

When you don't observe the scale-free property

- In general, when there is a limit to k_{max}
- Out-degree in some social networks
- Materials networks

Distance distributions: simulation results

Scale-free networks of increasing size, $\langle k \rangle = 3$

Average distance

Depends on Y and N

$$\langle d \rangle = \begin{cases} \text{const.} & \text{if } \gamma = 2 \\ \log \log \mathbf{N} & \text{if } 2 < \gamma < 3 \\ \log \mathbf{N}/\log \log \mathbf{N} & \text{if } \gamma = 3 \\ \log \mathbf{N} & \text{if } \gamma > 3 \end{cases}$$
 Same as in ER graphs

Average distance and N

Anomalous regime $\gamma=2$

Ultra-small world $2 < \gamma < 3$

- Average distance follows log(log(N))
- Example (humans):

$$N \approx 7 \times 10^9$$
 $\log N \approx 22.66$
 $\log \log N \approx 3.12$

Small world $\gamma > 3$

- Average distance follows log(N)
- Similar to ER graphs where it followed log(N)/log(<k>)

The degree distribution exponent plays an important role

When $\gamma > 3$

- In this case it is hard to distinguish this case from an ER graph
- In most real complex networks (but not all)

$$2 < \gamma < 3$$

When $\gamma > 3$

• Remember
$$k_{ ext{max}} = k_{ ext{min}} N^{rac{1}{\gamma-1}}$$
 $N = \left(rac{k_{ ext{max}}}{k_{ ext{min}}}
ight)^{\gamma-1}$

- Observing the scale-free properties requires that $k_{max} >> k_{min}$, e.g. $k_{max} = 10 k_{min}$
- Then if $\gamma = 5, N > 10^{8}$
- Hence we won't find many such networks

Examples

Exercise [B. 2016, Ex. 4.10.2] "Friendship Paradox"

- Remember p_k is the probability that a node has k "friends"
- If we randomly select a link, the probability that a node at any end of the link has k friends is q_k = C k p_k where C is a normalization factor
 - (a) Find C (the sum of q_k must be 1)

Exercise [B. 2016, Ex. 4.10.2] "Friendship Paradox"

- If we randomly select a link, the probability that a node at any end of the link has k friends is q_k = C k p_k where C is a normalization factor
 - (b) q_k is also the prob. that a randomly chosen node has a neighbor of degree k; find its average

Exercise [B. 2016, Ex. 4.10.2] "Friendship Paradox"

(c-d) Compute the expected number of friends of a neighbor of a randomly chosen node; compare with the expected number of friends of a randomly chosen node when

$$N = 10000$$

$$\gamma = 2.3$$

$$\langle k^n \rangle = C \frac{k_{\text{max}}^{n-\gamma+1} - k_{\text{min}}^{n-\gamma+1}}{n-\gamma+1}$$

$$k_{\text{min}} = 1$$

$$C = (\gamma - 1)k_{\text{min}}^{\gamma-1}$$

$$k_{\text{max}} = 1000$$

Code


```
def degree moment(kmin, kmax, moment, gamma):
    C = (gamma-1.0)*(kmin**(gamma-1.0))
    numerator = (kmax**(moment-gamma+1.0) - kmin**(moment-gamma+1.0))
    denominator = (moment-gamma+1.0)
    return C * numerator / denominator
kavg = degree moment(kmin=1, kmax=1000, moment=1, gamma=2.3)
print(kavg)
3.787798988222529
ksqavg = degree moment(kmin=1, kmax=1000, moment=2, gamma=2.3)
print(ksqavg)
231.94329076177414
print(ksqavg / kavg)
```

61.23431879119234

An example of friendship paradox

- Pick a random airport on Earth
 - Most likely it will be a small airport
- However, no matter how small it is, it will have flights to big airports
- On average those airports will have much larger degree

Summary

Things to remember

- Definition of scale-free
- Power law
- Regimes of distance and connectivity
- The friendship paradox

Practice on your own

- Remember the regimes of a graph given <k>
 (It's useful to know this by heart)
- Estimate degree distributions and distance distributions for some graphs
- Apply the friendship paradox to some graphs