

MULTIMEDIA

UNIVERSITY

STUDENT ID NO

--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

EEL1166 – CIRCUIT THEORY

(All Sections / Groups)

14 OCTOBER 2017
02:30 p.m. - 04:30 p.m.
(2 Hours)

INSTRUCTION TO STUDENTS

1. This Question paper consists of 6 pages including cover page and appendix with 4 Questions only.
2. Attempt **ALL FOUR** questions. All questions carry equal marks and the distribution of the marks for each question is given.
3. Please print all your answers in the answer Booklet provided.

QUESTION 1

(a) A bilateral network is shown in Figure Q1(a). Assume that the current flowing through the $25\ \Omega$ resistor is 4 A. Find the value of V_x by using T to π network.

[10 marks]

Figure Q1(a)

(b) Find the power absorbed in the $8\ \Omega$ resistor in Figure Q1(b) using superposition theorem.

[15 marks]

Figure Q1(b)

Continued ...

QUESTION 2

(a) For the circuit shown in Figure Q2(a).

Figure Q2(a)

- (i) State the essential nodes of the circuit. [3 marks]
- (ii) Convert the unknown voltage source, V_x branch to current source. [3 marks]
- (iii) Based on part 2(a)(ii), calculate the node voltages, V_a , V_b and V_c using nodal analysis if $V_x = 2V$. [8 marks]

(b) Consider the periodic signal, Y defined by the equations:

$$Y(t) = \begin{cases} t, & 0 < t \leq 2 \\ 4 - t, & 2 < t \leq 6 \text{ and } Y(t) = Y(t - 8) \\ -8 + t, & 6 < t \leq 8 \end{cases}$$

- (i) Explain why $Y(t)$ is a periodic, but not an aperiodic signal. [2 marks]
- (ii) Draw the signal waveform and label clearly the x-axis and y-axis. [3 marks]
- (iii) Find the period, rms value and crest factor of Y . [6 marks]

Continued ...

QUESTION 3

(a) Apply phasor analysis to evaluate what of $v(t)$:
 $v(t) = 110 \cos(20t + 30^\circ) - 220 \cos(20t + 45^\circ) \text{ V}$

[7 marks]

(b) In the circuit of Figure Q3 (b), determine the phasor of $i_s(t)$. Calculate the average power delivered by the voltage source $v_s(t)$.

[12 marks]

Figure Q3 (b)

(c) A parallel RLC circuit has resonance at $f_o = 400 \text{ Hz}$, has a Q factor of 50 at f_o , and a resistive branch of 100Ω . Determine the values of L and C in the other two branches.

[6 marks]

Continued ...

QUESTION 4

(a) A parallel LR circuit is shown in Figure Q4(a). Given that $R_S = 8\Omega$, $R_1 = 24\Omega$, $R_2 = 8\Omega$ and $L = 7H$, determine the inductance current (i_L) for time $t > 0$ and $t < 0$.
[10 marks]

Figure Q4(a)

(b) A series RLC circuit has $R = 100\Omega$ and $C = 3 \text{ mF}$. Determine the value of L that will make the RLC circuit.

(i) critically damped [5 marks]
(ii) over damped [2 marks]

(c) Design a source free parallel RLC circuit that has the characteristic equation of $s^2 + 600s + 10^6 = 0$, assuming $R = 22\text{k}\Omega$.

[8 marks]

End of Paper

Appendix

Parameter	Series RLC network	Parallel RLC network
Input impedance Z_{in}	$R_s + j\omega L_s + \frac{1}{j\omega C_s}$	$\left(\frac{1}{R_p} + \frac{1}{j\omega L_p} + j\omega C_p \right)^{-1}$
Resonance frequency	$\omega_o = \frac{1}{\sqrt{L_s C_s}}$	$\omega_o = \frac{1}{\sqrt{L_p C_p}}$
Quality factor, Q at resonance frequency	$Q_s = \frac{\omega_o L_s}{R_s} = \frac{1}{\omega_o R_s C_s}$	$Q_p = \frac{R_p}{\omega_o L_p} = \omega_o R_p C_p$
Bandwidth BW (note that this is just an approximation)	$\frac{\omega_o}{Q_s}$	$\frac{\omega_o}{Q_p}$

