BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION

FIRST SEMESTER 2016-2017

Course Handout Part II

Date: 01/08/2016

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F464

Course Title : Machine Learning

Instructor-in-charge: NAVNEET GOYAL (goel@)

Catalog Description

Machine Learning is an exciting sub-area of Artificial Intelligence which deals with designing machines which can learn and improve their performance from examples/experience. This course introduces the student to the key algorithms and theory that forms the core of machine learning. The course will cover the major approaches to learning namely, supervised, unsupervised, and reinforcement leaning. The course emphasizes various techniques, which have become feasible with increased computational power and our ability to produce and capture huge volumes of data. The topics covered in the course include regression, decision trees, support vector machines, artificial neural networks, Bayesian techniques, Hidden Markov models, genetic algorithms etc. Some advanced topics like active & deep learning will also be covered.

Text Books:

Tom M. Mitchell, Machine Learning, The McGraw-Hill Companies, Inc. International Edition 1997.

Reference Books:

- 1. Christopher M. Bhisop, Pattern Recognition & Machine Learning, Springer, 2006.
- 2. Introduction to Machine Learning, N. J. Nilson, Stanford, Available online at author's website. http://robotics.stanford.edu/people/nilsson/mlbook.html
- 3. Machine Learning, Neural and Statistical Classification, D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds), Ellis Horwood publishers, available online at http://www.amsta.leeds.ac.uk/~charles/statlog/

LECTURE PLAN

Topic	Topic Details	Lecture #	Chapter
			Reference
Overview	Introduction to Machine Learning	1	Ch. 1
High-dimensional data &	High-dimensional data and associated	2	R1 – Ch.1
Curse of Dimensionality	problems		
Preliminaries	Probability theory	Self Study	R1 – Ch.2,
	Decision theory		Appendix C
	Information theory		
	Linear Algebra		
Some important	MAP Hypothesis	3-5	Ch.6 + class
principles/concepts/algori	• Minimum Description Length (MDL)		notes + R1
thms	r · · · · · · · · · · · · · · · · · · ·		Appendix E

	 principle Expectation Maximization (EM)		
	PCA & SVD		
Linear models for		6-8	R1 – Ch. 3
Regression	• Linear basis function models	0-8	K1 – CII. 3
	Bayesian linear regression	0.10	D.4. G1. 4
Linear models for	 Discriminant Functions 	9-12	R1 – Ch. 4
Classification	 Probabilistic Generative Classifiers Probabilistic Discriminative Classifiers 		
Bayesian Learning Techniques	Bayes optimal classifierGibbs AlgorithmNaïve Bayes Classifier	13-14	Ch. 6
Non-linear Models & Model Selection	Decision TreesEnsemble Classifiers	15-21	• Ch. 3
	 Neural Networks Multilayer Perceptron Network training Error back-propagation 		• Ch. 4 R1 – Ch. 5
	 Instance-based Learning K-NN Case-based Reasoning 		• Ch. 8
Margin/Kernel Based Approaches	Support Vector Machines	22-24	Class Notes + R1 – Ch. 7
Graphical Models	Bayesian Belief NetworksHidden Markov Models	25-28	Ch. 6 + Class Notes
Unsupervised Learning	 Mixture Models K-means Clustering Self-organized Maps (SOM) 	29-30	Ch. 6 R1 – Ch. 9
Genetic Algorithms	Hypothesis space searchGenetic programmingModels of evaluation & learning	31-32	Ch. 9
Reinforcement Learning	 Q Learning Non-deterministic rewards & actions Temporal difference learning Generalization 	33-34	Ch. 13
Advanced Topics	Active LearningDeep LearningMetric Learning	35-38	Class Notes
Application Examples	Speech RecognitionImage Retrieval	39-40	Class Notes
Big Data Challenges	Machine Learning for Big Data	41-42	Class Notes

Evaluation Scheme:

Component	Duration	Weig	Date (Time)
		htage	
Midsem Test (Closed Book)	90 Mins.	30%	8/10 2:00 - 3:30 PM
Assignments (02)	Take Home	30%	TBA
Comprehensive Exam (partly open)	3 Hours	40%	14/12 FN

Notices: All notices shall be displayed on NALANDA

Chamber Consultation Hour: M, W 6.00 to 6.30 pm (6121-K, NAB) Makeup Policy: To be granted only in case of serious illness or emergency.

Instructor-in-charge BITS F464