1. For function f(x) = 1/x, at $x_0 = 2$, find the truncation error for backward difference (h = 1, h = 0.1, h = 0.01, h = 0.001) and figure out the relationship of error with the order of h. (5 marks)

ANS: Derivative of 1/x is $-1/x^2$. So $f'(x) = -1/x^2$. f'(2) = -0.25Now using backward difference formula we find out derivative for each of the h value. And by subtracting the backward difference from the exact derivative at $x_0 = 2$ we find the truncation error.

h	Backward difference	Truncation error
1	-0.5	0.25
0.1	-0.2631578947368418	0.013157894736841813
0.01	-0.2512562814070307	0.0012562814070307127
0.001	-0.2501250625311924	0.00012506253119237698

We can see that the error is proportional to h^2 .

2. A rocket has been launched, and its velocities at different times are collected. From these data, the acceleration of the rocket, a(t) at t = 16sec is calculated numerically by using different methods (h=1) as shown in the table below:

Difference method	Forward	Backward	Central
a (t=20)	38.30383517015082	37.115963921706	37.70989954592841

Now, if the velocity of a rocket as function of time obey the equation below: where v is in m/s and t is in seconds,

$$v(t) = 1900 \ln(\frac{12 * 10^4}{12 * 10^4 - 2000t}) - 9.8t \tag{3}$$

find the truncation errors for the acceleration at t=20 sec for Forward, Backward and Central Difference methods. (4.5 marks)

ANS:

$$a(t) = 1900 * 2000 \frac{12 * 10^4 - 2000t}{(12 * 10^4 - 2000t)^2} - 9.8$$
 (4)

Following above equation, a(t = 20) = 37.7

Method	Truncation error
forward	-0.6038351701508162
backward	0.5840360782940053
central	-0.009899545928405473

2 (a)
$$f(m) = 0x - 500x$$
 [-2,2]
 $f(-1) = -28508$
 $f(0) = -3$
 $f(0) = 0.1492$
 $f(0) = 0$

$$\alpha = \pm \sqrt{9}, 5$$

$$\beta_{3} = \sqrt{9}, (n) = \frac{1}{2}(3x^{2} - 10n)$$

$$\beta_{1} = \begin{cases}
+4 & 0.710.7 \text{ M}; & \text{diverge} \\
10.07.10.7 > 1; & \text{diverge}
\end{cases}$$

$$\gamma_{2} = \sqrt{9} = \sqrt{9} = \sqrt{(n)} = \sqrt{(n^{2} - 5n)} \times 2 - (2x - 10)(2x - 5)$$

$$\gamma_{2} = \sqrt{9} = \sqrt{9} = \sqrt{1}; & \text{diverge}$$

$$\gamma_{2} = \sqrt{1}; & \text{diverge}$$

$$\gamma_{2} = \sqrt{1}; & \text{diverge}$$

$$\gamma_{3} = \sqrt{9}, (n) = \sqrt{1} = \sqrt{10}, (n) = \sqrt{10}$$

Set 2

	Α
Newton's Method	

K	Xk	f(Xk)
0	0	1.0000000
1	1.0000000	-1.8314635
2	-0.9005241	-0.1210904
3	-0.7161246	0.1104702
4	-0.7789272	0.0092690
5	-0.7853177	0.0001139
6	-0.7853982	0.0000000
7	-0.7853982	0.0000000

В

Aitken Acceleration

K	Xk	f(Xk)
0	0	1.0000000
1	1.0000000	-1.8314635
2	-0.9005241	-0.1210904
2(^)	0.3447653	0.1731555
3	0.3939619	-0.0046692
4	0.3926997	-0.0000024
4(^)	0.3927313	-0.0001191
5	0.3926991	0.0000000

Set 2 Question 4

a) $A = \begin{pmatrix} 1 & -3 & 4 \\ 2 & -5 & 6 \\ -3 & 3 & 4 \end{pmatrix}$, $det(A) = 4 \neq 0$. So, A is non-singular. Also, A is a square matrix. This system has unique solution.

b) Augmented matrix =
$$\begin{pmatrix} 1 & -3 & 4 & 3 \\ 2 & -5 & 6 & 6 \\ -3 & 3 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & -3 & 4 & 3 \\ 0 & 1 & -2 & 0 \\ 0 & -6 & 16 & 15 \end{pmatrix}$$
 [R2=R2-2R1, R3=R3+3R1] = $\begin{pmatrix} 1 & -3 & 4 & 3 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 4 & 15 \end{pmatrix}$ [R3=R3+6R2] = U

c) Back Substitution: $4 \times 3 = 15 \Rightarrow x3=15/4, x2 = 15/2, x1 = 45/2-12=21/2$

$$x1 = 21/2, x2 = 15/2, x3 = 15/4$$

$$P_1 = U_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} -230 \\ -30 \\ 260 \end{bmatrix}$$

$$q_1 = \frac{\rho_1}{1\rho_{11}} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$

$$P_2 = \begin{bmatrix} -230 \\ -30 \\ 260 \end{bmatrix}$$

$$R = Q^{T}A$$

$$= \begin{bmatrix} 0.577 & 0.677 & 0.677 \\ -0.660 & -0.086 & 0.746 \end{bmatrix} \begin{bmatrix} 1 & 500 \\ 1 & 700 \\ 1 & 990 \end{bmatrix}$$

$$R = \begin{bmatrix} 1.731 & 1263.63 \\ 0 & 348.34 \end{bmatrix}$$

$$R = Q^{T}b$$

$$\begin{bmatrix} 1.731 & 1263.63 \\ 0 & 348.34 \end{bmatrix} \begin{bmatrix} 0.577 & 0.577 \\ 0.577 & 0.577 \end{bmatrix}$$

$$\begin{bmatrix} 1.731 & 1263.63 \\ 0 & 348.34 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 0.577 & 0.577 & 0.577 \\ -0.660 & -0.086 & 0.746 \end{bmatrix} \begin{bmatrix} 120 \\ 180 \\ 200 \end{bmatrix}$$

$$\begin{bmatrix} 1.731 & 1263.63 \\ 0 & 348.34 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 288.5 \\ 54.52 \end{bmatrix}$$

$$\begin{bmatrix} 0_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 1.731 & 1263.63 \\ 0 & 348.34 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 288.5 \\ 54.52 \end{bmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 52.412 \\ 0.156 \end{bmatrix}$$

(c)
$$f(x) = 52.412 + 0.156 x$$

 $f(1800) = 52.412 + 0.156(1800)$
 $= 333.2$

* Find the integral of
$$f(x) = e^{x} + x$$

in interval $[1, 3]$

$$= (e^{x} + x) dx = \int_{0}^{3} e^{x} dx + \int_{0}^{3} x dx$$

$$= (e^{x})^{3} + (x^{2})^{3}$$

$$= (e^{3} - e^{4}) + [9 - \frac{1}{2}]$$

$$= (e^{3} - e^{4}) + [9 - \frac{1}{2}]$$

$$= 21.3672$$

* Find the newlt for m=3 using Newtoncotes composité.

when composite.

$$a = 1$$
, $b = 3$, $m = 3$, $h = 3\frac{-1}{3} = \frac{2}{3}$
 $x_0 = 1$
 $x_1 = x_1 + h = \frac{5}{3}$
 $x_3 = 3$

$$C_{1,3} = \frac{h}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + f(x_3) \right]$$

$$= \frac{1}{3} \left[e^0 + 2 \left(e^{5/3} + 5/3 \right) + 2 \left(e^{7/3} + 7/3 \right) + \left(e^3 + 3 \right) \right]$$

$$= \frac{21.09968}{21.0997}$$