Regression Trees

Regression Trees

Regression Trees

- ➤ The tree will search for all combination of predictors and cutoff value to decide the best split
- In Regression tree, the best split is the split that minimizes

$$\sum_{i:\mathbf{x}_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:\mathbf{x}_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$
RSS of obs. in left branch
RSS of obs. in right branch

 $\blacktriangleright \ \hat{y}_{R_1}$ and \hat{y}_{R_2} are the means of the responses falling in to the left branch and right branch, respectively.

Sum Square Errors of this Regission tree.

×	/ /	I (the provids)	Savored errors
1/2	39	3.95	$(3.95 - 3.9)^2$
a	. '	295	(395 - 4)2
	9.0	2.7	(3.55 - 3.4)
-1	5.6	5.>>	
}	٦ ۶. ۶	3.55	(355 - 3.5)
		l	

SSE = .01

Example

X_1	X_2	Y
1	0	1.2
2	1	2.1
3	2	1.5
4	1	3.0
2	2	2.0
1	1	1.6

Using the RSS to decide the best split among

- ▶ Split 1: Region 1 $X_1 < 4$, Region 2 $X_1 \ge 4$
- lacksquare Split 2: Region 1 $X_2 < 2$, Region 2 $X_2 \ge 2$

Example

	X_1	X_2	Y
	1	0	1.2
	2	1	2.1
-	3	2	1.5
)	4	1	3.0
2	2	2	2.0
2 2	1	1	1.6

Using the RSS to decide the best split among

- Split 1: Region 1 $X_1 < 4$, Region 2 $X_1 \ge 4$
- ▶ Split 2: Region 1 X_2 < 2, Region 2 X_2 ≥ 2

$$RSS = SSE = \frac{2(4-\hat{q})^2}{branch 1} + \frac{2(4-\hat{q})^2}{branch 2}$$

$$= (3-3.6)^{2} + (1.2-1.(8)^{2} + (2.1-1.(8)^{2} + (1.5-1.(8)^{2} + (2.0-1.(9)^{2} + (1.6-1.68)^{2})^{2}$$

SSE = $(1.5 - 1.75)^{2} + (2.6 - 1.75)^{2} + (1.2 - 1.975)^{2} + (2.1 - 1.975)^{2} + (3.6 - 1.975)^{2}$

right branch

SSE = 1-9325

Example

X_1	X_2	Y
1	0	1.2
2	1	2.1
3	2	1.5
4	1	3.0
2	2	2.0
1	1	1.6

Using the RSS to decide the best split among

- ▶ Split 1: Region 1 $X_1 < 4$, Region 2 $X_1 \ge 4$
- lacksquare Split 2: Region 1 $X_2 < 2$, Region 2 $X_2 \ge 2$

R² uf A on training is positive but on testing is negative

(Back to the example)

Let colarlate the R of this model | split

SSE of the Scheller model = \(\frac{7}{4} - \frac{7}{4} \)

$$\frac{7}{9} = \frac{1.2 + 2.1 + 1.5 + 3.0 + 2.0 + 1.6}{6} = 1.9$$

SSE of
$$\overline{7} = (1.2 - 1.9)^{2} + (2.1 - 1.9)^{2} + (1.5 - 1.9)^{2} + (3.0 - 1.9)^{2} + (2 - 1$$

$$\mathbb{R}^2 = 1 - \frac{54t}{2} = 726.$$