Introduction to Computation Technologies in Deep Learning

Zhongbo Tian tianzhongbo@megvii.com

Megvii Inc.

March, 2019

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

Overview of a Deep Learning Framework MegBrain Architecture

Computation Graph

$$y = \operatorname{conv}(x, w) + b$$

Computation Graph

Graph Structure Variable

 Corresponding to a tensor with concrete numerical values during graph execution

Graph Structure Variable

- Corresponding to a tensor with concrete numerical values during graph execution
- Carrying some attributes:

DType Data type, like int8 and float32.

Graph Structure

- Corresponding to a tensor with concrete numerical values during graph execution
- Carrying some attributes:

```
DType Data type, like int8 and float32.
```

Shape Like (5, 3) for FC weight, (128, 512, 7, 7) for feature maps.

Example

Variable shape inference facilitates automatic weight initialization:

```
assert x.shape == (128, 50)
y = fully_connected(x, output_dim=100)
assert y.shape == (128, 100)
```

The weight matrix of this FullyConnected operator can be initialized to np.random.normal((50, 100)).

Graph Structure Operators & Edges

Operator

- \bullet Operators & variables form a bipartite graph
- Operators define the computation to be applied on input variables

Edge

- Data dependency: read input data
- Control dependency: require input operator to have finished

Operator Granularity

Trade-off between flexibility and ease-to-optimize

Category	Example	Advantage	Framework
Coarse-grained	y = BatchNorm(x)	Parsimony;	Caffe
		Easy	
		performance	
		tuning	
Fine-grained	$y = \frac{x - mean(x)}{std(x)}$	Flexibility	Theano

Operator Granularity

Trade-off between flexibility and ease-to-optimize

Category	Example	Advantage	Framework
Coarse-grained	y = BatchNorm(x)	Parsimony;	Caffe
		Easy	
		performance	
		tuning	
Fine-grained	$y = \frac{x - mean(x)}{std(x)}$	Flexibility	Theano

Our philosophy:

- Prefer flexibility: this can not be changed once the framework has been designed
- Utilize multi-level API for simplifying graph representation
- Speed can be continuously improved by graph optimizer

Representation

Straight-forward approach: each operator provides two methods: fprop and bprop.

```
inline Dtype Forward(const vector<Blob<Dtype>*>& bottom,
  const vector<Blob<Dtype>*>& top);

inline void Backward(const vector<Blob<Dtype>*>& top,
  const vector<bool>& propagate_down,
  const vector<Blob<Dtype>*>& bottom);
```

Straight-forward approach: each operator provides two methods: fprop and bprop.

Limitations

- Graph optimizer can not be uniformly applied on both forward and backward passes
- Difficult to implement gradient of gradient $\left(\frac{\partial f\left(\frac{\partial L}{\partial x}\right)}{\partial y}\right)$, in WGAN training ¹) or higher-order gradients $\left(\frac{\partial^2 L}{\partial x^2}\right)$.
- Difficult to modify/manipulate gradients (e.g. for low-bit training).

¹Ishaan Gulrajani et al. "Improved training of wasserstein gans". In: arXiv preprint arXiv:1704.00028 (2017).

Unified approach: extending the graph with operators computing gradients of specific variables, via the chain rule.

$$y_1, \cdots, y_m = f(x_1, \cdots, x_n)$$

Gradient operator g for f:

Unified approach: extending the graph with operators computing gradients of specific variables, via the chain rule.

$$y_1, \cdots, y_m = f(x_1, \cdots, x_n)$$

Gradient operator g for f:

$$\frac{\partial L}{\partial x_1}, \cdots, \frac{\partial L}{\partial x_n} = g\left(\frac{\partial L}{\partial y_1}, \cdots, \frac{\partial L}{\partial y_m}, x_1, \cdots, x_n, y_1, \cdots, y_m\right)$$

Auto Differentiation

Calculus 101: The Chain Rule

Mutable State

Enabling param updates to be expressed in graphs

Mutable State

Enabling param updates to be expressed in graphs

Note

 x and x_new share the underlying storage and should not be simultaneously read by one operator. Equivalently speaking, AddUpdate separates the graph.

Mutable State

Enabling param updates to be expressed in graphs

Note

- x and x_new share the underlying storage and should not be simultaneously read by one operator. Equivalently speaking, AddUpdate separates the graph.
- Readers of x must have finished (impl. by control dependency)

Symbolic Shape

Enabling computation involving tensor shapes

²Hai Dai Nguyen, Anh Duc Le, and Masaki Nakagawa. "Recognition of Online Handwritten Math Symbols Using Deep Neural Networks". In: *IEICE Trans. Inf.& Syst.* 99.12 (2016), pp. 3110–3118.

Symbolic Shape

Enabling computation involving tensor shapes

Example

Maxout¹:

y = x.reshape(x.shape[0], x.shape[1] // k, k).max(axis=2) where x.shape is also a symbol whose value is evaluated at runtime, so the computation adapts to different input shapes.

Symbolic Shape

Enabling computation involving tensor shapes

Example

Maxout¹:

```
y = x.reshape(x.shape[0], x.shape[1] // k, k).max(axis=2)
```

- Helps dealing with non-constant batch size or input image size
- Requires dynamic shape support: some shapes may remain unknown until graph execution

¹lan J Goodfellow et al. "Maxout networks". In: arXiv preprint arXiv:1302.4389 (2013).

Control Flow Operators

Towards universal computation (in theory)

Loop operator:

 $\verb|scan| in Theano, \verb|while_loop| in TensorFlow| and loop| in MegBrain.$

Control Flow Operators

Towards universal computation (in theory)

Loop operator:

scan in Theano, while_loop in TensorFlow and loop in MegBrain.

- With symbolic shapes and control flow operators, a computation graph is Turing-complete!
- Useful for RNN and iterative algorithms

Dynamic Computation Graph Ease of programming beyond Turing-completeness

Static Computation Graph

Unfamiliar programming model:

```
Stateless, functional: y = x.setsub[1:3](xs) rather than imperative: x[1:3] = xs
```

Dynamic Computation Graph Ease of programming beyond Turing-completeness

Static Computation Graph

- Unfamiliar programming model: Stateless, functional: y = x.setsub[1:3] (xs) rather than imperative: x[1:3] = xs
- **Difficult to debug**: code is written for graph contruction but tensor values can only be known during graph execution y = printop(y) rather than print(y)

Dynamic Computation Graph

Ease of programming beyond Turing-completeness

Dynamic Computation Graph

Implemented by eager evaluation:

```
while (a.dot(x) - I).max(). getvalue() > eps:
    x = x.dot(2 * I - a.dot(x))
print(grad(loss, x). getvalue())
```

Dynamic Computation Graph

Ease of programming beyond Turing-completeness

Dynamic Computation Graph

Implemented by eager evaluation:

```
while (a.dot(x) - I).max(). getvalue() > eps:
    x = x.dot(2 * I - a.dot(x))
print(grad(loss, x). getvalue()
```

• Auto differentiation: keep symbolic track of computation path

Dynamic Computation Graph

Ease of programming beyond Turing-completeness

Dynamic Computation Graph

Implemented by eager evaluation:

```
while (a.dot(x) - I).max(). getvalue() > eps:
    x = x.dot(2 * I - a.dot(x))
print(grad(loss, x). getvalue())
```

- Auto differentiation: keep symbolic track of computation path
- Drawbacks:
 - hard to optimize: lack of global information
 - hard to deploy: graph depends on code

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

Symbolic Computation

Execution & Optimization

Graph Execution

Separation of representation and execution allows abstraction of hardware details

• Map from variables to tensor values

Execution & Optimization

Graph Execution

Separation of representation and execution allows abstraction of hardware details

- Map from variables to tensor values
- Map from operators to kernels on some specific architecture

Graph Execution

Separation of representation and execution allows abstraction of hardware details

- Map from variables to tensor values
- Map from operators to kernels on some specific architecture
- Kernels are scheduled according to topological order

Optimizing by Graph Transformation

• Expression simplifying: $x+1-2+x \Rightarrow 2x-1$

Optimizing by Graph Transformation

- Expression simplifying: $x+1-2+x \Rightarrow 2x-1$
- Operation reordering according to shapes tensors: x and y scalars: a and b
 x + a + y + b ⇒ a + b + x + y

Optimizing by Graph Transformation

- Expression simplifying: $x+1-2+x \Rightarrow 2x-1$
- Operation reordering according to shapes tensors: x and y scalars: a and b x+a+y+b ⇒ a+b+x+y
- Operator fusion: $x \cdot y + z \Rightarrow \text{fma}(x, y, z)$
 - static fusion: predefined fusion rules
 - dynamic fusion: Just-in-time compilation (JIT) for actual
 - dynamic fusion: Just-in-time compilation (JII) for actual computation graph

Runtime Memory Management

 Baseline: reference counting + some classical memory allocator

Runtime Memory Management

- Baseline: reference counting + some classical memory allocator
- Readonly forwarding: reuse input storage for operators like reshape and subtensor
- Writable forwarding (a.k.a. inplace operation): overwrite input storage
 - Caution: must ensure no other readers exist (i.e. refcnt equals 1)

Sublinear Memory Trade time for memory

Observation

- Long-term dependency for gradient computing consumes lots of memory.
- Assume $x_{i+1} = \text{conv}(x_i, w_i)$, then x_{i+1} can only be discarded after $\frac{\partial L}{\partial w_i}$ and $\frac{\partial L}{\partial x_i}$ have been computed.

Sublinear Memory Trade time for memory

Observation

- Long-term dependency for gradient computing consumes lots of memory.
- Assume $x_{i+1} = \text{conv}(x_i, w_i)$, then x_{i+1} can only be discarded after $\frac{\partial L}{\partial w_i}$ and $\frac{\partial L}{\partial x_i}$ have been computed.

Sublinear Memory Trade time for memory

Observation

- Long-term dependency for gradient computing consumes lots of memory.
- Assume $x_{i+1} = \text{conv}(x_i, w_i)$, then x_{i+1} can only be discarded after $\frac{\partial L}{\partial w_i}$ and $\frac{\partial L}{\partial x_i}$ have been computed.

Method

- Split the sequence into blocks consisting of consecutive operators and keep only the first variable in any block
- Recompute internal values in a block when gradient is needed
- In the above example, discard x_{km+j} for all 0 < j < m and recompute them when needed.

Execution & Optimization

Sublinear Memory Trade time for memory

Reduce memory usage to $O(\sqrt{n})$ with extra O(n) time cost in the ideal case.

For a graph with 10000 convolutions and their gradients:

comp_node	alloc	upper_bound
gpu0:0	15624.37MiB(16383336448bytes)	31889.13MiB(204.10%)
comp_node	alloc	upper_bound
gpu0:0	173.03MiB(181430784bytes)	47251.78MiB(27309.08%)

Note: this idea is also published in².

²Tianqi Chen et al. "Training deep nets with sublinear memory cost". In: arXiv preprint arXiv:1604.06174 (2016).

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

CPU Computation

Instruction: The Hardware/Software Interface What is a program?

CPU Computation

Modern CPU Technologies

Instr. No.	Pipeline Stage						
1	IF	ID	EX	мем	WB		
2		IF	ID	EX	МЕМ	WB	
3			IF	ID	EX	мем	WB
4				IF	ID	EX	мем
5					IF	ID	EX
Clock Cvcle	1	2	3	4	5	6	7

- Pipeline ³
- Superpipelining increases stage number and simplifies each stage
- Superscalar dispatches multiple instructions to implement instruction-level parallelism
- Out-of-order execution executes according to availability of input data rather than original program order

Memory Hierarchy

CPU Computation

RAM Implementation

Static Random-Access Memory (SRAM)

Advantages:

- Fast
- 2 Low power consumption
- No refresh circuit

Image from https://en.wikipedia.org/wiki/Static_random-access_memory

RAM Implementation

Dynamic Random-Access Memory (DRAM)

Advantages:

- High density
- Cheap

Refresh: periodically read blocks and write back.

Dense Numerical Computation

CPU Computation

Cache Hierarchy

A hierarchical design for better trade-off between memory capacity and latency.

eDRAM Based Cache

Image from

https://www.anandtech.com/show/9582/intel-skylake-mobile-desktop-launch-architecture-analysis/5

CPU Computation

Cache Hierarchy

A hierarchical design for better trade-off between memory capacity and latency.

Core i7 Xeon 5500 Series

L1 hit	\sim 4 cycles
L2 hit	~ 10 cycles
L3 hit line unshared	\sim 40 cycles
L3 hit, shared line in another core	\sim 65 cycles
L3 hit, modified in another core	\sim 75 cycles
Remote L3	$\sim 100-300$ cycles
Local DRAM	$\sim 60~\text{ns}$
Remote DRAM	\sim 100 ns

source:

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Cache line

CPU Computation

```
tag data block flag bits (valid, dirty)
```

Indexing

```
tag (40bit) index (6bit) block offset (6bit)
```

Cache line

```
tag data block flag bits (valid, dirty)
```

Indexing

```
tag (40bit) index (6bit) block offset (6bit)
```

Associativity
 Number of different tags to be kept under the same index

Cache line

tag data block flag bits (valid, dirty)

Indexing

tag (40bit) index (6bit) block offset (6bit)

- Associativity
 Number of different tags to be kept under the same index
- VIPT Addressing Virtually indexed, physically tagged (VIPT)
 - Solve aliasing problem
 - Simultaneous cache and TLB lookup

Interesting reading: http://igoro.com/archive/
gallery-of-processor-cache-effects/

Example

```
$ grep -m1 name /proc/cpuinfo
model name : Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
$ cat /sys/devices/system/cpu/cpu0/cache/index0/{size,ways_of_associativity,coherency_line_size}}
32K
8
64
```

- block offset: log₂ 64 = 6bit
- index: $\log_2(32 \text{KiB}/64 \text{B}/8) = 6 \text{bit}$
- tag: 52 6 6 = 40bit (48-bit virtual memory and 52-bit physical memory)

Note that *block offset* and *index* together take 12 bits, which is equal to page size (4KiB), so VIPT can be easily implemented.

SIMD

Single instruction, multiple data

Store multiple data items in one register and process them in a single instruction.

Calculation of theoretical FLOPS⁴

$$FLOPS = f \cdot w \cdot IPC$$

f : frequency

w : SIMD width (number of floats per register)

IPC: SIMD instructions per cycle

⁴floating point operations per second

CPU Computation

Single instruction, multiple data

Example

Intel® CPUs usually have IPC = 2. However if FMA is supported, IPC should be counted as 4 since 2 FMA instructions is essentially 4 floating point operations.

of Cores 28
Processor Base Frequency 2.50 GHz
Max Turbo Frequency 3.80 GHz
of AVX-512 FMA Units 2

$$FLOPS = 3.8 Gcyc/s \times 4 instr/cyc \times 16 float/instr$$

= 243.2 GFLOPS
 $FLOPS \quad TOT = FLOPS \times 28 = 6.8 TFLOPS$

⁴ data available at

A MatMul Example

```
void matmul(float *a, float *b, float *c, int n) {
    for (int i = 0; i < n; ++ i) {
        for (int j = 0; j < n; ++ j) {
            float sum = 0;
            for (int k = 0; k < n; ++ k) {
                sum += a[i * n + k] * b[k * n + j];
            }
            c[i * n + j] = sum;
```

A MatMul Example

```
void matmul(float *a, float *b, float *c, int n) {
    for (int i = 0; i < n; ++ i) {
        for (int j = 0; j < n; ++ j) {
            float sum = 0;
            for (int k = 0; k < n; ++ k) {
                sum += a[i * n + k] * b[k * n + j];
            }
            c[i * n + j] = sum;
```

Swap the loops on j and k

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

Introduction to Computation Technologies in Deep Learning

Dense Numerical Computation
Other Computation Devices

NVIDIA GPU

A single instruction, multiple thread architecture

Image from⁵

⁵Marco Nobile et al. "cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems". In: 9 (Mar. 2014), e91963.

NVIDIA GPU

A single instruction, multiple thread architecture

```
__global__ void add(float *a, float *b, float *c, int n) {
   int id = blockIdx.x*blockDim.x+threadIdx.x;
   if (id < n)
        c[id] = a[id] + b[id];
}</pre>
```

- Memory Coalescing
 Adjacent threads access adjacent memories simultaneously
- Parallelism
 Divide the total work among many tiny threads

NVIDIA GPU

A single instruction, multiple thread architecture

Tesla V100 for NVLink @ 300W

- 15.7*TFLOPS* for single-precision
- 125 TFLOPS for half-precision

Tesla T4 @ 75W

- 130T INT8
- 260T INT4

The Trend

- On cloud: high density computation
 e.g. Google TPU 3.0 pods are claimed to achieve 100PFLOPS
- On edge: low precision
 e.g. int8 in cDSP supported by Qualcomm's SNPE
- Automatic kernel tuning & generation
 An active research area. Typical projects include Halide⁵,
 TVM⁶ and TensorComprehension⁷

⁷https://facebookresearch.github.io/TensorComprehensions/

⁵http://halide-lang.org/

⁶http://tvmlang.org/

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

Computation & Memory Gap Unbalanced Development of Processor and Memory

Graph from⁸

⁸Carlos Carvalho. "The gap between processor and memory speeds". In:

Challenges from NN Architecture Computation-sparse structure seems to be beneficial.

Architecture	Computation	Memory
Small kernel	$\frac{k2^2}{k1^2}$	Param $\frac{k1^2}{k2^2}$
Large stride	$\frac{1}{s^2}$	Output $\frac{1}{s^2}$
Group/depthwise conv	$\frac{1}{g^2}$	Param $\frac{1}{g}$
Shuffle/concat	0	1

Computation & Memory Gap

Roofline Model

A visualization method to characterize computation/memory

Performance P (FLOPS) is approximately a function of arithmetic intensity I (FLOP/byte) for a particular architecture⁹.

Naïve Roofline

$$P = \min \left\{ \begin{array}{l} \pi \\ \beta \times I \end{array} \right.$$

where π is the peak computing performance and β is the peak bandwidth.

Roofline Model

A visualization method to characterize computation/memory

Image from https://en.wikipedia.org/wiki/Roofline_model

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

Communication System: Single Node

- PCI-e: connection between GPUs, network adaptors and others
 - Switches may be needed
 - 985 MiB/s each PCI-e 3.0 lane
 - LGA-2011 socket: 40 lanes
- NVLink: GPU interconnect by NVIDIA

Communication System: LAN

Image from http://www.just2good.co.uk/tcpipStack.php

• Ethernet: 10M to 100G, latency 100 - 20 μ s

• InfiniBand: 2.5 to 250G, latency 5 - 0.5 μ s

RDMA Remote Direct Memory Access

Bypass the TCP/IP stack and free CPU from handling packets.

RDMA

Remote Direct Memory Access

Bypass the TCP/IP stack and free CPU from handling packets.

- RoCE: RDMA over Converged Ethernet
- InfiniBand: RDMA supported
- NVIDIA GPUDirect: RDMA between GPUs

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

$$L(\{d_0, d_1\}, W) = \alpha_0 L(\{d_0\}, W) + \alpha_1 L(\{d_1\}, W)$$

$$L(\{d_0, d_1\}, W) = \alpha_0 L(\{d_0\}, W) + \alpha_1 L(\{d_1\}, W)$$

$$L(\{d_0, d_1\}, W) = \alpha_0 L(\{d_0\}, W) + \alpha_1 L(\{d_1\}, W)$$

$$L(\{d_0, d_1\}, W) = \alpha_0 L(\{d_0\}, W) + \alpha_1 L(\{d_1\}, W)$$

Each worker has an outdated local copy of params and updates central param storage asynchronously. Friendly for parallel speedup.

Image from⁹

⁹ Jeffrey Dean et al. "Large scale distributed deep networks". In: NIPS. 2012, pp. 1223–1231.

Asynchronous SGD Difficulties

ASGD is not equivalent to SGD and it is hard to tune due to noisy gradients. Many works exist on analyzing convergence and improving performance¹⁰¹¹¹².

Image from 13

¹⁰Xiangru Lian et al. "Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization". In: *NIPS*. 2015, pp. 2737–2745.

¹¹Wei Zhang et al. "Staleness-aware async-SGD for Distributed Deep Learning". In: *IJCAI*. 2016, pp. 2350–2356.

¹²Sixin Zhang, Anna E Choromanska, and Yann LeCun. "Deep learning with elastic averaging SGD". In: *NIPS*. 2015, pp. 685–693.

¹³ Jianmin Chen et al. "Revisiting distributed synchronous SGD". In: *arXiv* preprint *arXiv*:1604.00981 (2016).

Synchronous SGD

Reduce communication by compressing gradients¹⁴

$$Q_s(v_i) = \|\mathbf{v}\|_2 \cdot \operatorname{sgn}(v_i) \cdot \xi_i(\mathbf{v}, s)$$

¹⁴Ryota Tomioka and Milan Vojnovic. "QSGD: Communication-Efficient Stochastic Gradient Descent, with Applications to Training Neural Networks".

Synchronous SGD

Handle straggling workers by backup workers¹⁵

Use N + b workers but only receive gradients from any N of them and do not wait for the slowest b workers.

¹⁵ Jianmin Chen et al. "Revisiting distributed synchronous SGD". In: arXiv preprint arXiv:1604.00981 (2016).

Synchronous SGD

Ensure accuracy by careful hyperparam tuning

8192 minibatch size on 256 GPUs¹⁶

$$\hat{\eta} = k\eta$$
 $m = rac{\eta_{t+1}}{\eta_t}$

32K minibatch size with LARS¹⁷

$$\lambda' = \eta \times \frac{\|w'\|}{\|\Delta L(w')\|}$$

¹⁶Priya Goyal et al. "Accurate, Large Minibatch SGD: Training ImageNet in

¹ Hour". In: arXiv preprint arXiv:1706.02677 (2017).

¹⁷Yang You, Igor Gitman, and Boris Ginsburg. "Large batch training of convolutional networks". In: arXiv preprint arXiv:1708.03888 (2017).

- Symbolic Computation
 - Representation
 - Execution & Optimization
- Dense Numerical Computation
 - CPU Computation
 - Other Computation Devices
 - Computation & Memory Gap
- 3 Distributed Computation
 - System
 - Optimization Algorithms
 - Communication Algorithms

MPI Primitives

Collective communication routines in MPI are common in distributed DL

Assume message size K and number of workers N

- Reduce to a worker (assume W_{N-1} here): W_i sends to W_{i+1} at step i; communication per worker is N
- Broadcast from a worker: as above

Assume message size K and number of workers N

- Reduce to a worker (assume W_{N-1} here): W_i sends to W_{i+1} at step i; communication per worker is N
- Broadcast from a worker: as above
- AllReduce:
 - **1** Split the message into *N* parts
 - 2 Reduce the *i*th part to W_i ; all reductions run in parallel
 - Broadcast each reduced part to all workers in parallel

Communication cost for each worker is $2(N-1)\frac{K}{N}$, independent of N.

More details and discussions are given in 18 19.

¹⁸Rajeev Thakur, Rolf Rabenseifner, and William Gropp. "Optimization of collective communication operations in MPICH". In: *The International Journal of High Performance Computing Applications* 19.1 (2005), pp. 49–66.

Communication Algorithms

step 0: init				
worker:a	a0	al	a2	a3
worker:b	ь0	b1	b2	b3
worker:c	c0	c1	c2	c3
worker:d	d0	d1	d2	d3

Communication Algorithms

Communication Algorithms

Communication Algorithms

Thanks!

Questions and feedback are welcome:)