Single and Pipelined Datapaths (10pts)

2. Assume that the execution time of individual steps of an instruction execution are like below:

IF	ID	EX	MEM	WB
100ps	120ps	220ps	300ps	120ps

a. If you design a single-cycle processor with the above latency information, what is the clock latency?

b. If you design a five-stage pipelined processor with the above latency information, what is the clock latency?

Single-cycle MIPS Architecture (10pts)

1. Assume that core components of single-cycle processor (shown below) have the following latencies:

I-Mem	Adder	Mux	ALU	Regs Rd/Wr	D-Mem	Sign-Extend	Shift-Left-2
40ps	50ps	20ps	100ps	80ps/60ps	200ps	20ps	20ps

Single-cycle processor data path:

Suppose that this data path executes only two types of instruction:

sub \$rd, \$rs, \$rt

What would be the clock period to correctly execute the two instructions on the above single-cycle processor? Assume that PC register doesn't take any latency (i.e. Propagating a new PC value to I-Cache/I-Mem doesn't take any cycle).

40 ps
$$$1d.80 ps$$

 $wux + \mu w = 20 + 100 = 120 ps$
 $wux + \omega r = 20 + 60 = 80 ps$
That = $40 + 90 + 120 + 80 = 320 ps$

I Mem = 40 ps
$$Mux + Aw = 20 + 100 = 120$$

For the input at \$18 = 80 ps $mux + wr = 20 + 60 = 80$
Latly for 0 mem = 200 ps $0 + 120 = 520$

520 > 320 :. Clock Period = 520 ps