Ответы к заданиям

Nº	Ответ
задания	
13	влево
19	7, 14
22	$(0.150 \pm 0.005) \text{ mm}$

Физика. 11 класс. Вариант ФИ10402

Ответы к заданиям

No	Ответ
задания	
13	вверх
19	6, 7
22	(0.180 ± 0.003) mm

Критерии оценивания заданий с развёрнутым ответом

Длительность светового дня — это время, в течение которого из-за горизонта «высовывается» хотя бы малая часть солнечного диска. Эта величина рассчитывается для каждой точки на поверхности Земли и приводится в астрономических справочниках и календарях. Однако наблюдаемая длительность светового дня немного превышает теоретическую — табличную. Объясните, руководствуясь известными физическими законами и закономерностями, почему это происходит.

Возможное решение

- 1. В вакууме солнечные лучи распространяются прямолинейно со скоростью света, причём абсолютный показатель преломления n=1.
- 2. У атмосферного воздуха показатель преломления $n_{\rm B}$ немного больше единицы, и с ростом высоты над поверхностью Земли он постепенно уменьшается, стремясь к единице.
- 3. На «границе дня и ночи» в каждой точке Земли солнечные лучи «скользят» параллельно горизонтальной поверхности (синус угла падения α в вакууме равен единице) и, попадая в атмосферу, испытывают, согласно закону преломления света, отклонение, постепенно «загибаясь» вниз, к земле: $n\sin\alpha = 1 = n_{\rm B}\sin\beta$. Поскольку $n_{\rm B} > 1$, то $\sin\beta < 1$, и угол преломления $\beta < \pi/2$.
- 4. Солнечные лучи, таким образом, «загибаются» за горизонт, и кусочек Солнца вечером можно видеть дольше, а утром Солнце появляется раньше, чем в отсутствие атмосферы и преломления света в ней. Это и приводит к увеличению наблюдаемой продолжительности дня.

Ответ: явление связано с преломлением солнечных лучей в атмосфере Земли

Критерии оценивания выполнения задания	Баллы
Приведено полное правильное решение, включающее	3
правильный ответ (в данном случае: указано, что явление	
связано с преломлением солнечных лучей в атмосфере Земли) и	
исчерпывающие верные рассуждения с прямым указанием	
наблюдаемых явлений и закономерностей (в данном случае:	
использование закона преломления света на границе атмосферы	
Земли для «скользящих» лучей)	
Дан правильный ответ, и приведено объяснение, но в решении	2
имеются один или несколько из следующих недостатков.	
В объяснении не указано или не используется одно из физических	
явлений, свойств, определений или один из законов (формул),	
необходимых для полного верного объяснения. (Утверждение,	
лежащее в основе объяснения, не подкреплено соответствующим	
законом, свойством, явлением, определением и т. п.)	

Физика. 11 класс. Вариант ФИ10401	2
И (ИЛИ)	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но в них содержится один логический недочёт. И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения (не	
зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ)	
В решении имеется неточность в указании на одно из физических явлений, свойств, определений, законов (формул), необходимых для полного верного объяснения	
Представлено решение, соответствующее одному из следующих	1
случаев.	
Дан правильный ответ на вопрос задания, и приведено	
объяснение, но в нём не указаны два явления или физических	
закона, необходимых для полного верного объяснения.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, направленные на	
получение ответа на вопрос задания, не доведены до конца.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, приводящие	
к ответу, содержат ошибки.	
ИЛИ	
Указаны не все необходимые для объяснения явления и законы,	
закономерности, но имеются верные рассуждения, направленные	
на решение задачи	

Все случаи решения, которые не соответствуют вышеуказанным 0 критериям выставления оценок в 1, 2, 3 балла Максимальный балл

На горизонтальной шероховатои плос... (коэффициент трения равен μ) покоятся два k томая массой m на расстоянии Lстенкой лёгкой нерастянутой горизонтальной

29

пружиной жёсткостью k (см. рисунок). Левому грузу сообщили в некоторый момент начальную скорость V_0 в направлении правого, после чего грузы испытали абсолютно упругое лобовое столкновение. На какое расстояние lсместится после столкновения правый груз?

Возможное решение

- 1. Согласно закону изменения механической энергии, перед столкновением левый груз будет иметь скорость V и кинетическую энергию, равную разности своей начальной кинетической энергии и суммы потенциальной энергии растянутой на расстояние L лёгкой пружины и работы против силы трения скольжения: $\frac{mV^2}{2} = \frac{mV_0^2}{2} \frac{kL^2}{2} \mu mgL > 0.$ Здесь использованы выражения для кинетической энергии груза, потенциальной энергии растянутой пружины, закон Амонтона–Кулона для силы сухого трения и равенство силы нормального давления груза на плоскость весу груза.
- 2. При абсолютно упругом лобовом столкновении одинаковых грузов, как следует из законов сохранения механической энергии и импульса, грузы обмениваются скоростями: левый останавливается, а правый приобретает скорость V и кинетическую энергию $\frac{mV^2}{2}$.
- 3. При дальнейшем скольжении правого груза эта энергия расходуется на работу против силы трения: $\frac{mV^2}{2} = \mu mgl \text{ , откуда с учётом выражения для}$ $\frac{mV^2}{2} \quad \text{получаем, что} \quad l = \frac{mV_0^2 kL^2 2\mu mgL}{2\mu mg}. \quad \text{Полученный ответ}$ справедлив при выполнении условия $\frac{mV_0^2}{2} > \frac{kL^2}{2} + \mu mgL \text{ , которое}$ заведомо справедливо потому, что, согласно условию задачи, грузы сталкиваются.

Ответ: $l = \frac{mV_0^2 - kL^2 - 2\mu mgL}{2\mu mg}$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: законы изменения	
и сохранения механической энергии и импульса, выражение для	
энергии упругой деформации пружины, закон Амонтона-Кулона	
для силы сухого трения и выражение для работы против этой	
силы);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений,	
используемых в условии задачи, и стандартных обозначений	
величин, используемых при написании физических законов);	

[
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными	
вычислениями);	
IV) представлен правильный ответ с указанием единиц	
измерения искомой величины	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	_
преобразования. Но имеются один или несколько из следующих	
недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения (не	
зачёркнуты; не заключены в скобки, рамку и т.п.).	
И (ИЛИ)	
В необходимых математических преобразованиях или вычисле-	
ниях допущены ошибки, и (или) в математических преобразова-	
ниях/вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо и достаточно	
для решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул,	
необходимая для решения данной задачи (или утверждение,	
лежащее в основе решения), но присутствуют логически верные	
преобразования с имеющимися формулами, направленные на	
решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения	
данной задачи (или в утверждении, лежащем в основе решения),	
данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные	
преобразования с имеющимися формулами, направленные на	
решение задачи	
	0
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

Многие сельские дома отапливаются в настоящее время при помощи электрообогревателей, что обходится достаточно дорого. совершаемая электрическим током работа A превращается в равное ей количество теплоты Q, и батареи отопления нагреваются до температуры $T_1 = 60$ °C. Однако расходы можно значительно снизить, если использовать эту работу A для перекачки теплоты $Q_{\text{хол.}}$ от внешнего теплового резервуара, имеющего температуру $T_2 = 0$ °C (например, от незамерзающего зимой пруда), к батареям, выделяя в них количество теплоты $Q_{\text{нагр}}$. Во сколько раз nпри этом количество теплоты $Q_{\text{нагр.}}$ превышает Q = A, если перекачивающее теплоту устройство работает по идеальному циклу Карно, запущенному в обратном направлении, а температура батарей остаётся равной T_1 ? Считайте, что в идеальной тепловой машине все процессы обратимые, так что при запуске её в обратном направлении знаки всех энергетических вкладов (работы и количеств теплоты) просто поменяются, а соотношения между ними останутся прежними.

Возможное решение

- 1. Согласно первому закону термодинамики, $A = Q_{\text{нагр.}} Q_{\text{хол.}}$ Здесь мы считаем все величины положительными, а знаки разных вкладов учитываем при написании уравнений.
- 2. Согласно второму закону термодинамики, КПД идеальной тепловой машины, работающей по циклу Карно, $\eta = 1 Q_{\text{хол.}}/Q_{\text{нагр.}} = 1 T_2/T_1$, откуда $Q_{\text{нагр.}} = Q_{\text{хол.}}T_1/T_2$, где $Q_{\text{хол.}} = Q_{\text{нагр.}} A$.
- 3. В идеальной тепловой машине все процессы обратимые. Как указано в условии задачи, при запуске её в обратном направлении знаки всех энергетических вкладов просто поменяются, а соотношения между ними останутся прежними. В частности, из написанных уравнений следует, что $Q_{\text{нагр.}} = AT_1/(T_1 T_2)$.
- 4. Окончательно получаем: $n = Q_{\text{нагр.}}/A = T_1/(T_1 T_2) = 333/60 = 5,55$. Это очень выгодно по сравнению с простыми электрообогревателями, КПД которых равен единице!

Otbet: $n = T_1/(T_1 - T_2) = 5,55$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: первый и второй	
законы термодинамики, выражения для КПД теплового	
двигателя и идеального теплового двигателя – цикла Карно);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений,	
используемых в условии задачи, и стандартных обозначений	

величин, используемых при написании физических законов); III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ)	2
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на	1
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	-
Максимальный балл	3

Найдите заряд q конденсатора ёмкостью C=5 мкФ в цепи, схема которой изображена на рисунке. Сопротивления резисторов равны $R_1=2$ Ом, $R_2=3$ Ом, $R_3=1$ Ом, $R_4=2,5$ Ом, источник постоянного напряжения идеальный, U=4 В.

Возможное решение

Эта задача решается значительно проще не в общем виде, а при последовательной подстановке числовых данных в промежуточных расчетах.

- 1. Резисторы R_1 и R_3 , соединённые последовательно, включены параллельно резистору R_2 , и весь этот участок соединён последовательно с резистором R_4 . Полное сопротивление цепи, подключённой к источнику, по формулам для последовательного и параллельного соединения резисторов равно $R = R_2(R_1 + R_3)/(R_1 + R_2 + R_3) + R_4 = 4$ Ом.
- 2. Постоянный ток через конденсатор не идёт, а его заряд определяется напряжением U_C на нём: $q = CU_C$, где U_C равно сумме падений напряжения на резисторах R_3 и R_4 .
- 3. В соответствии с законами Ома для участка цепи и для полной цепи через R_4 течёт ток I=U/R=1 A, создающий на нём падение напряжения $U_4=IR_4=2.5$ B.
- 4. Падение напряжения на резисторе R_3 равно $U_3 = I_3 R_3$, причём в соответствии с отношением сопротивлений R_2 и $R_1 + R_3$, соединённых параллельно, делится на части полный ток $I = I_2 + I_3$. Поскольку $I_2R_2 = I_3(R_2 + R_3)$, получаем $I_3 = IR_2/(R_1 + R_2 + R_3) = 0,5$ А и $U_3 = I_3R_3 = 0,5$ В.
- 5. Таким образом, $U_C = U_3 + U_4 = 3$ В и $q = CU_C = 15$ мкКл.

Ответ: q = 15 мкКл

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: правила расчёта	
сопротивления для параллельного и последовательного	
соединения проводников, законы Ома для полной цепи и для	
участка цепи, связь напряжения и заряда конденсатора);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений,	
используемых в условии задачи, и стандартных обозначений	
величин, используемых при написании физических законов);	
III) проведены необходимые математические преобразования и	

расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ с указанием единиц	
измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ) В необходимых математических преобразованиях или вычислениях	2
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги. И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи	1
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	0
Максимальный балл	3

Для межпланетных полётов в космосе предлагают использовать «солнечный парус» — большое зеркало, расположенное перпендикулярно солнечным лучам. При их отражении от этого зеркала возникает сила в направлении падающих лучей, которая может ускорять космический корабль. Оцените эту силу F при следующих предположениях: площадь полностью отражающего свет зеркала равна $S = 1000 \text{ m}^2$, а солнечная постоянная в месте нахождения корабля с зеркалом $C = 1,5 \text{ кВт/м}^2$. Солнечная постоянная — это энергия фотонов, падающих в единицу времени на единицу площади поверхности, перпендикулярной лучам света от Солнца.

Возможное решение

- 1. Согласно определению солнечной постоянной, C = nEc, где n- концентрация фотонов, c- скорость света в вакууме, а E- энергия одного фотона.
- 2. Поскольку связь энергии E и импульса p фотона имеет вид E = pc, то $C = npc \cdot c$, откуда плотность потока импульса фотонов (то есть импульс, приносимый фотонами за единицу времени к единице площади) равна npc = C/c.
- 3. Согласно второму закону Ньютона, сила равна скорости изменения импульса всех фотонов, падающих за единицу времени на площадь S, то есть $npc \cdot S$.
- 4. Поскольку зеркало полностью отражает свет, то импульс каждого фотона изменяется на 2p, и F=2CS/c=0.01 H.

Ответ: $F = 2CS / c = 1.0 \cdot 10^{-2} \text{ H}.$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: выражения для	
плотности потока энергии фотонов, связи энергии и импульса	
фотона, а также второй закон Ньютона в импульсной	
формулировке);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений,	
используемых в условии задачи, и стандартных обозначений	
величин, используемых при написании физических законов);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными	
вычислениями);	
IV) представлен правильный ответ с указанием единиц	
измерения искомой величины	

Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены опинбки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ) Отсутствует пункт IV, или в нём допущена ошибка Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена опибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла Максимальный балл 3		
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ) Отсутствует пункт IV, или в нём допущена ошибка Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи Все случаи решения, которые не соответствуют вышеуказанным окритериям выставления оценок в 1, 2, 3 балла	физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.).	2
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги. И (ИЛИ)	
критериям выставления оценок в 1, 2, 3 балла	Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на	1
Максимальный балл 3		0
	Максимальный балл	3

Критерии оценивания заданий с развёрнутым ответом

Время восхода и заката Солнца рассчитывается для каждой точки на поверхности Земли и приводится в астрономических справочниках и календарях. Однако наблюдаемые времена немного отличаются от теоретических – табличных: Солнце встаёт чуть раньше, а заходит чуть позже, увеличивая длительность светового дня. Объясните, руководствуясь известными физическими законами и закономерностями, почему это происходит.

Возможное решение

- 1. В вакууме солнечные лучи распространяются прямолинейно со скоростью света, причём абсолютный показатель преломления n = 1.
- 2. У атмосферного воздуха показатель преломления $n_{\rm B}$ немного больше единицы, и с ростом высоты над поверхностью Земли он постепенно уменьшается, стремясь к единице.
- 3. На «границе дня и ночи» в каждой точке Земли солнечные лучи «скользят» параллельно горизонтальной поверхности (синус угла падения α в вакууме равен единице) и, попадая в атмосферу, испытывают, согласно закону преломления света, отклонение, постепенно «загибаясь» вниз, к земле: $n\sin\alpha = 1 = n_{\rm B}\sin\beta$. Поскольку $n_{\rm B} > 1$, то $\sin\beta < 1$ и угол преломления $\beta < \pi/2$.
- **4.** Солнечные лучи, таким образом, «загибаются» за горизонт, и кусочек Солнца вечером можно видеть дольше, а утром Солнце появляется раньше, чем в отсутствие атмосферы и преломления света в ней. Это и приводит к увеличению наблюдаемой продолжительности дня.

Ответ: явление связано с преломлением солнечных лучей в атмосфере Земли

Критерии оценивания выполнения задания	Баллы
Приведено полное правильное решение, включающее	3
правильный ответ (в данном случае: указано, что явление	
связано с преломлением солнечных лучей в атмосфере Земли) и	
исчерпывающие верные рассуждения с прямым указанием	
наблюдаемых явлений и закономерностей (в данном случае:	
использование закона преломления света на границе атмосферы	
Земли для «скользящих» лучей)	
Дан правильный ответ, и приведено объяснение, но в решении	2
имеются один или несколько из следующих недостатков.	
В объяснении не указано или не используется одно из физических	
явлений, свойств, определений или один из законов (формул),	
необходимых для полного верного объяснения. (Утверждение,	
лежащее в основе объяснения, не подкреплено соответствующим	
законом, свойством, явлением, определением и т. п.)	

И (ИЛИ) Указаны все необходимые для объяснения явления и законы,	
закономерности, но в них содержится один логический недочёт. И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ)	
В решении имеется неточность в указании на одно из физических явлений, свойств, определений, законов (формул), необходимых для полного верного объяснения	
Представлено решение, соответствующее <u>одному</u> из следующих случаев.	1
Дан правильный ответ на вопрос задания, и приведено	
объяснение, но в нём не указаны два явления или физических	
закона, необходимых для полного верного объяснения. ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, направленные на	
получение ответа на вопрос задания, не доведены до конца. ИЛИ	
Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, приводящие	
к ответу, содержат ошибки.	
ИЛИ	
Указаны не все необходимые для объяснения явления и законы,	
закономерности, но имеются верные рассуждения, направленные	
на решение задачи	_
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	0
Максимальный балл	3

На горизонтальной шероховатой плоскости покоятся два одинаковых груза массой m на расстоянии L друг от друга, один из которых соединён со стенкой лёгкой нерастянутой

29

горизонтальной пружиной жёсткостью k (см. рисунок). Левому грузу сообщили в некоторый момент начальную скорость V_0 в направлении правого, после чего они испытали абсолютно упругое лобовое столкновение, и правый груз после него сместился на расстояние l. Чему равен коэффициент трения μ грузов о плоскость?

Возможное решение

- 1. Согласно закону изменения механической энергии, перед столкновением левый груз будет иметь скорость V и кинетическую энергию, равную разности своей начальной кинетической энергии и суммы потенциальной энергии растянутой на расстояние L лёгкой пружины и работы против силы трения скольжения: $\frac{mV^2}{2} = \frac{mV_0^2}{2} \frac{kL^2}{2} \mu mgL$. Здесь использованы выражения для кинетической энергии груза, потенциальной энергии растянутой пружины, закон Амонтона–Кулона для силы сухого трения и равенство силы нормального давления груза на плоскость весу груза.
- 2. При абсолютно упругом лобовом столкновении одинаковых грузов, как следует из законов сохранения механической энергии и импульса, грузы обмениваются скоростями: левый останавливается, а правый приобретает скорость V и кинетическую энергию $\frac{mV^2}{2}$.
- 3. При дальнейшем скольжении правого груза эта энергия расходуется на работу против силы трения: $\frac{mV^2}{2}=\mu mgl$, откуда с учётом выражения для $\frac{mV^2}{2}$ получаем, что $\mu=\frac{mV_0^2-kL^2}{2mg(L+l)}$. Полученный ответ справедлив при выполнении условия $\frac{mV_0^2}{2}>\frac{kL^2}{2}$, которое заведомо справедливо потому, что, согласно условию задачи, грузы сталкиваются.

Ответ: $\mu = \frac{mV_0^2 - kL^2}{2mg(L+l)}$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: законы изменения	
и сохранения механической энергии и импульса, выражение для	
энергии упругой деформации пружины, закон Амонтона-Кулона	
для силы сухого трения и выражение для работы против этой	
силы);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений,	
используемых в условии задачи, и стандартных обозначений	
величин, используемых при написании физических законов);	

III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными	
вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.	2
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги. И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи	1
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	0
Максимальный балл	3
таксимальный балл	J

Многие дачные дома отапливаются в настоящее время при помощи электрообогревателей, что обходится достаточно дорого. При этом совершаемая электрическим током работа A превращается в равное ей количество теплоты Q, и батареи отопления нагреваются до температуры $T_1 = 50~{\rm ^{\circ}C}$. Однако расходы можно значительно снизить, если использовать эту работу A для перекачки теплоты $Q_{\rm хол.}$ от внешнего теплового резервуара, имеющего температуру $T_2 = 4~{\rm ^{\circ}C}$ (например, от дна незамерзающего зимой пруда), к батареям, выделяя в них количество теплоты $Q_{\rm нагр.}$ Во сколько раз n при этом количество теплоты $Q_{\rm нагр.}$ превышает Q = A, если перекачивающее теплоту устройство работает по идеальному циклу Карно, запущенному в обратном направлении, а температура батарей остаётся равной T_1 ? Считайте, что в идеальной тепловой машине все процессы обратимые, так что при запуске её в обратном направлении знаки всех энергетических вкладов (работы и количеств теплоты) просто поменяются, а соотношения между ними останутся прежними.

Возможное решение

- 1. Согласно первому закону термодинамики, $A = Q_{\text{нагр}} Q_{\text{хол}}$. Здесь мы считаем все величины положительными, а знаки разных вкладов учитываем при написании уравнений.
- 2. Согласно второму закону термодинамики, КПД идеальной тепловой машины, работающей по циклу Карно, $\eta = 1 Q_{\text{хол.}}/Q_{\text{нагр.}} = 1 T_2/T_1$, откуда $Q_{\text{нагр.}} = Q_{\text{хол.}} T_1/T_2$, где $Q_{\text{хол.}} = Q_{\text{нагр.}} A$.
- 3. В идеальной тепловой машине все процессы обратимые. Как указано в условии задачи, при запуске её в обратном направлении знаки всех энергетических вкладов просто поменяются, а соотношения между ними останутся прежними. В частности, из написанных уравнений следует, что $Q_{\text{нагр.}} = AT_1/(T_1 T_2)$.
- 4. Окончательно получаем: $n = Q_{\text{нагр.}}/A = T_1/(T_1 T_2) = 323/46 \approx 7$. Это очень выгодно по сравнению с простыми электрообогревателями, КПД которых равен единице!

Otbet: $n = T_1/(T_1 - T_2) = 7$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: первый и второй	
законы термодинамики, выражения для КПД теплового	
двигателя и идеального теплового двигателя – цикла Карно);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	

задачи, и стандартных обозначений величин, используемых при написании физических законов); III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ)	2
Отсутствует пункт IV, или в нём допущена ошибка	1
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла <i>Максимальный балл</i>	3

Найдите заряд q конденсатора ёмкостью C=10 мкФ в цепи, схема которой изображена на рисунке. Сопротивления резисторов равны $R_1=1$ Ом, $R_2=4$ Ом, $R_3=3$ Ом, $R_4=2$ Ом, источник постоянного напряжения идеальный, U=6 В.

Возможное решение

Эта задача решается значительно проще не в общем виде, а при последовательной подстановке числовых данных в промежуточных расчётах.

- 1. Резисторы R_1 и R_3 , соединённые последовательно, включены параллельно резистору R_2 , и весь этот участок соединён последовательно с резистором R_4 . Полное сопротивление цепи, подключённой к источнику, по формулам для последовательного и параллельного соединения резисторов равно $R = R_2(R_1 + R_3)/(R_1 + R_2 + R_3) + R_4 = 4$ Ом.
- 2. Постоянный ток через конденсатор не идёт, а его заряд определяется напряжением U_C на нём: $q = CU_C$, где U_C равно сумме падений напряжения на резисторах R_3 и R_4 .
- 3. В соответствии с законами Ома для участка цепи и для полной цепи через R_4 течёт ток I = U/R = 1,5 А, создающий на нём падение напряжения $U_4 = IR_4 = 3$ В.
- 4. Падение напряжения на резисторе R_3 равно $U_3 = I_3 R_3$, причём в соответствии с отношением сопротивлений R_2 и $R_1 + R_3$, соединённых параллельно, делится на части полный ток $I = I_2 + I_3$. Поскольку $I_2R_2 = I_3(R_1 + R_3)$, получаем $I_3 = IR_2/(R_1 + R_2 + R_3) = 0,75$ А и $U_3 = I_3R_3 = 2,25$ В.
- 5. Таким образом, $U_C = U_3 + U_4 = 5,25 \text{ B}$ и $q = CU_C = 52,5$ мкКл.

Ответ: q = 52,5 мкКл

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: правила расчёта	
сопротивления для параллельного и последовательного	
соединения проводников, законы Ома для полной цепи и для	
участка цепи, связь напряжения и заряда конденсатора);	
II) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений,	
используемых в условии задачи, и стандартных обозначений	
величин, используемых при написании физических законов);	

III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными	
вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги. И (ИЛИ) Отсутствует пункт IV, или в нём допущена ошибка	2
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи	1
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	0
Максимальный балл	3

Для межпланетных полётов в космосе предлагают использовать «солнечный парус» — большое зеркало, расположенное перпендикулярно солнечным лучам. При их отражении от этого зеркала возникает сила в направлении падающих лучей, которая может ускорять космический корабль. Оцените эту силу F при следующих предположениях: площадь полностью отражающего свет зеркала равна $S=30~000~{\rm M}^2$, а солнечная постоянная в месте нахождения корабля с зеркалом $C=1,0~{\rm kBT/m}^2$. Солнечная постоянная — это энергия фотонов, падающих в единицу времени на единицу площади поверхности, перпендикулярной лучам света от Солнца.

Возможное решение

- 1. Согласно определению солнечной постоянной, C = nEc, где n- концентрация фотонов, c- скорость света в вакууме, а E- энергия одного фотона.
- 2. Поскольку связь энергии E и импульса p фотона имеет вид E = pc, то $C = npc \cdot c$, откуда плотность потока импульса фотонов (то есть импульс, приносимый фотонами за единицу времени к единице площади) равна npc = C/c.
- 3. Согласно второму закону Ньютона, сила равна скорости изменения импульса всех фотонов, падающих за единицу времени на площадь S, то есть $npc \cdot S$.
- 4. Поскольку зеркало полностью отражает свет, то импульс каждого фотона изменяется на 2p, и F = 2CS/c = 0.2 H.

Ответ: F = 2CS/c = 0.2 H

Критерии оценивания выполнения задания	Баллы
Критерии оценивания выполнения задания Приведено полное решение, включающее следующие элементы: I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: выражения для плотности потока энергии фотонов, связи энергии и импульса фотона, а также второй закон Ньютона в импульсной формулировке); II) описаны все вновь вводимые в решении буквенные	Баллы 3
обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вычислениями);	

IV) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.). И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги. И (ИЛИ)	2
Отсутствует пункт IV, или в нём допущена ошибка	1
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи	1
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла	0
Максимальный балл	3