DCC638 - Introdução à Lógica Computacional 2025.2

Lógica Proposicional: Aplicações, Equivalências

Área de Teoria DCC/UFMG

Aplicações da Lógica Proposicional

Aplicações da lógica proposicional: Introdução

- A lógica tem importantes aplicações na matemática, ciência da computação, e diversas outras disciplinas:
 - tradução de afirmações em linguagem natural, frequentemente ambíguas, para uma linguagem precisa,
 - 2 especificação de circuitos lógicos,
 - o solução de quebra-cabeças (o que é essencial para inteligência artificial),
 - automatização do processo de construção de demonstrações matemáticas,
 - **⑤** ...
- Nesta seção vamos exemplificar algumas destas aplicações práticas da lógica proposicional.

Traduzindo afirmações em linguagem natural

• Afirmações em linguagem natural são frequentemente ambíguas, o que pode causar problemas de comunicação.

 Traduzir afirmações em linguagem natural para proposições compostas remove a ambiguidade.

 Uma vez traduzidas para proposições lógicas, estas afirmações podem ser analisadas quanto ao seu valor de verdade.

Traduzindo afirmações em linguagem natural

• Exemplo 1 Seja a afirmação em linguagem natural:

"Você não pode andar na montanha russa se você tiver menos que 1,50m de altura, a menos que você tenha mais de 16 anos."

Podemos traduzí-la para uma proposição composta, usamos as seguintes proposições:

- q: "você pode andar na montanha russa",
- r: "você tem menos que 1,50m de altura",
- s: "você tem mais de 16 anos".

A afirmação em linguagem natural é, então, traduzida para:

$$(r \wedge \neg s) \rightarrow \neg q$$
.

(Note que esta não é a única maneira de representar esta afirmação.)

 Traduzir afirmações de linguagem natural para linguagem lógica é parte essencial da especificação de sistemas de hardware e software.

Exemplo 2 Expresse a especificação abaixo como uma proposição composta.

"A resposta automática não pode ser enviada quando o sistema de arquivos está cheio."

• Traduzir afirmações de linguagem natural para linguagem lógica é parte essencial da especificação de sistemas de hardware e software.

Exemplo 2 Expresse a especificação abaixo como uma proposição composta.

"A resposta automática não pode ser enviada quando o sistema de arquivos está cheio."

Solução. Podemos traduzir a especificação para uma proposição composta, usando as seguintes proposições:

- r: "a reposta automática pode ser enviada",
- c : "o sistema de arquivos está cheio".

• Traduzir afirmações de linguagem natural para linguagem lógica é parte essencial da especificação de sistemas de hardware e software.

Exemplo 2 Expresse a especificação abaixo como uma proposição composta.

"A resposta automática não pode ser enviada quando o sistema de arquivos está cheio."

Solução. Podemos traduzir a especificação para uma proposição composta, usando as seguintes proposições:

- r: "a reposta automática pode ser enviada",
- c : "o sistema de arquivos está cheio".

A especificação fica, então, traduzida para:

$$c \rightarrow \neg r$$
.

- Especificações de sistemas devem ser consistentes.
 - Não devem conter requisitos conflitantes.
 - Senão, seria possível derivar uma contradição.

Quando as especificações não são consistentes, não é possível desenvolver um sistema que satisfaça todos os requisitos.

- Exemplo 3 Determine se a seguinte especificação de sistema é consistente:
 - "A mensagem de diagnóstico é armazenada no buffer ou é retransmitida."
 - "A mensagem de diagnóstico não está armazenada no buffer."
 - "Se a mensagem de diagnóstico estiver armazenada no buffer, ela será retransmitida."

- Especificações de sistemas devem ser **consistentes**.
 - Não devem conter requisitos conflitantes.
 - Senão, seria possível derivar uma contradição.

Quando as especificações não são consistentes, não é possível desenvolver um sistema que satisfaça todos os requisitos.

- Exemplo 3 Determine se a seguinte especificação de sistema é consistente:
 - "A mensagem de diagnóstico é armazenada no buffer ou é retransmitida."
 - "A mensagem de diagnóstico não está armazenada no buffer."
 - "Se a mensagem de diagnóstico estiver armazenada no buffer, ela será retransmitida."

Solução. Para determinar se essas especificações são consistentes, primeiro vamos representar seus componentes como expressões lógicas:

- p : "A mensagem de diagnóstico é armazenada no buffer."
- q : "A mensagem de diagnóstico é retransmitida."

• Exemplo 3 (Continuação)

Assim, a especificação do sistema pode ser reescrita como:

 $ullet p ee q \qquad ullet \neg p \qquad ullet p
ightarrow q$

Podemos verificar se especificação é consistente com uma tabela da verdade que mostra se é possível satisfazer todos os três requisitos ao mesmo tempo.

• Exemplo 3 (Continuação)

Assim, a especificação do sistema pode ser reescrita como:

$$ullet p ee q \qquad ullet \neg p \qquad ullet p
ightarrow q$$

Podemos verificar se especificação é consistente com uma tabela da verdade que mostra se é possível satisfazer todos os três requisitos ao mesmo tempo.

р	q	$p \lor q$	¬р	$\mathbf{p} ightarrow \mathbf{q}$
T	T	T	F	T
T	F	T	F	F
F	T	T	T	T
F	F	F	T	T

Note que a especificação do sistema é consistente, e ela é satisfeita quando p = F e q = T.

- Exemplo 4 Suponha que adicionemos à especificação do exemplo anterior o seguinte requisito:
 - "A mensagem de diagnóstico não é retransmitida."

Neste caso a especificação do sistema continua consistente?

- Exemplo 4 Suponha que adicionemos à especificação do exemplo anterior o seguinte requisito:
 - "A mensagem de diagnóstico não é retransmitida."

Neste caso a especificação do sistema continua consistente?

Solução. O novo requisito pode ser representado logicamente como $\neg q$, e a tabela da verdade atualizada é a seguinte.

р	q	$p \lor q$	¬р	$\mathbf{p} ightarrow \mathbf{q}$	$\neg q$
T	T	T	F	T	F
T	F	T	F	F	T
F	T	T	T	T	F
F	F	F	T	T	T

Pode-se notar que agora é impossível satisfazer todos os requisitos ao mesmo tempo e, portanto, a especificação do sistema é inconsistente.

Resolução de problemas e quebra-cabeças

• Exemplo 5 Considere uma ilha em que há apenas dois tipos de habitantes: cavaleiros, que só falam a verdade, e cavilosos, que só falam mentiras.

Você encontra duas pessoas, A e B.

A pessoa A diz:

"B só diz a verdade",

enquanto a pessoa B diz:

"A e eu somos pessoas de tipos diferentes".

Qual o tipo de A e o tipo de B?

Solução.

Dever de casa.

Equivalências Proposicionais

Equivalência de proposições: Introdução

• Um passo importante na resolução de muitos problemas é a substituição de uma afirmação por outra com mesmo valor de verdade.

• Como determinar se duas fórmulas tem sempre o mesmo valor de verdade?

- Duas fórmulas são equivalentes quando elas têm o mesmo valor para qualquer atribuição de suas variáveis.
 - Ou seja, para quaisquer valores que as proposições atômicas possam tomar.

Equivalência de proposições: Introdução

- Primeiro, vamos categorizar os tipos de fórmulas:
 - uma tautologia é uma expressão sempre verdadeira independentemente o valor de verdade das variáveis que nela aparecem;
 - uma contradição é uma expressão sempre falsa independentemente o valor de verdade das variáveis que nela aparecem;
 - uma contingência é uma expressão que não é nem uma tautologia, nem uma contradição.
- Exemplo 6 A tabela da verdade abaixo mostra que $(p \land \neg p)$ é uma contradição, enquanto a expressão $(p \lor \neg p)$ é uma tautologia.

р	¬р	p ∧ ¬ p	$\mathbf{p} \lor \neg \mathbf{p}$
T	F	F	T
F	T	F	T

• Duas fórmulas φ e ψ são **logicamente equivalentes** se $\varphi \leftrightarrow \psi$ é uma tautologia.

A notação $\varphi \equiv \psi$ denota que φ e ψ são logicamente equivalentes.

- ullet Uma maneira de determinar se $arphi\equiv\psi$ é usando tabelas da verdade.
- Exemplo 7 Mostre que p o q e $\neg p \lor q$ são logicamente equivalentes.

Solução.

Tabela da verdade para $p \rightarrow q$ e $\neg p \lor q$:

р	q	¬р	$\neg p \lor q$	$\mathbf{p} ightarrow \mathbf{q}$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Como a coluna correspondente a $p \rightarrow q$ e a coluna correspondente a $\neg p \lor q$ possuem sempre o mesmo valor de verdade, $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ é uma tautologia.

Logo $p \to q \equiv (\neg p \lor q)$.

• Exemplo 8 Mostre que $\neg(p \lor q)$ e $\neg p \land \neg q$ são logicamente equivalentes.

Solução. Tabela da verdade para $\neg(p \lor q)$ e $\neg p \land \neg q$:

р	q	$p \lor q$	$\neg (p \lor q)$	¬р	$\neg \mathbf{q}$	$\neg p \land \neg q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Uma vez que a coluna correspondente a $\neg(p \lor q)$ e a coluna correspondente a $\neg p \land \neg q$ possuem sempre o mesmo valor de verdade, $\neg(p \lor q) \leftrightarrow (\neg p \land \neg q)$ é uma tautologia.

Logo,
$$\neg(p \lor q) \equiv \neg p \land \neg q$$
.

A equivalência que demonstramos é uma das **Leis de De Morgan**:

Leis de De Morgan

$$\neg(p \lor q) \equiv \neg p \land \neg q$$
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Exemplo 9 Mostre que $p \lor (q \land r)$ e $(p \lor q) \land (p \lor r)$ são logicamente equivalentes.

Solução. Tabela da verdade para $p \lor (q \land r)$ e $(p \lor q) \land (p \lor r)$:

р	q	r	q∧r	$\mathbf{p}\vee(\mathbf{q}\wedge\mathbf{r})$	$p \lor q$	p∨r	$(p \vee q) \wedge (p \vee r)$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

Como as colunas correspondentes a $p \lor (q \land r)$ e $(p \lor q) \land (p \lor r)$ possuem sempre o mesmo valor de verdade, $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.

A equivalência que demonstramos é a lei da distributividade da disjunção sobre a conjunção.

• Algumas equivalências lógicas importantes:

Nome	Equivalência
Leis de identidade	$ \begin{array}{ccc} p \wedge T &\equiv p \\ p \vee F &\equiv p \end{array} $
Leis de dominância	$ \begin{array}{ccc} p \wedge F & \equiv F \\ p \vee T & \equiv T \end{array} $
Leis de idempotência	$ \begin{array}{ccc} p \wedge p &\equiv p \\ p \vee p &\equiv p \end{array} $
Lei da dupla negação	$\neg(\neg p) \equiv p$
Leis de comutatividade	$\begin{array}{ccc} p \wedge q & \equiv & q \wedge p \\ p \vee q & \equiv & q \vee p \end{array}$
Leis de associatividade	$ \begin{array}{ccc} (p \wedge q) \wedge r & \equiv & p \wedge (q \wedge r) \\ (p \vee q) \vee r & \equiv & p \vee (q \vee r) \end{array} $
Leis de distributividade	$\begin{array}{c} p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r) \end{array}$
Leis de De Morgan	$ \begin{array}{ccc} \neg(p \land q) &\equiv \neg p \lor \neg q \\ \neg(p \lor q) &\equiv \neg p \land \neg q \end{array} $
Leis de absorção	$egin{array}{ll} egin{array}{ll} etaee (p\wedge q)&\equiv &p\ p\wedge (pee q)&\equiv &p \end{array}$
Leis da negação	$ \begin{array}{ccc} p \wedge \neg p & \equiv & F \\ p \vee \neg p & \equiv & T \end{array} $

 Equivalências lógicas envolvendo proposições condicionais:

Equivalências
$p o q \equiv \neg p \lor q$
$p o q \equiv \neg q o \neg p$
$p \lor q \equiv \neg p \to q$
$p \wedge q \equiv \neg (p \rightarrow \neg q)$
$ eg(p o q) \equiv p \wedge eg q$
$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

• Equivalências lógicas envolvendo proposições bicondicionais:

Equivalências		
$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$		
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$		
$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$		
$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$		

Usos das Leis de De Morgan

A lei

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

diz que a negação da disjunção é a conjunção das negações.

Exemplo 10 Use as Leis de De Morgan para negar a proposição:

"Danilo vai assistir a Star Wars ou vai assistir a O Senhor dos Anéis."

Usos das Leis de De Morgan

A lei

$$\neg(p\vee q) \equiv \neg p \wedge \neg q$$

diz que a negação da disjunção é a conjunção das negações.

Exemplo 10 Use as Leis de De Morgan para negar a proposição:

"Danilo vai assistir a Star Wars ou vai assistir a O Senhor dos Anéis."

Solução. Esta proposição pode ser escrita como $p \lor q$, onde $p \not\in$ "Danilo vai assistir a Star Wars", e $q \not\in$ "Danilo vai assistir a O Senhor dos Anéis".

Pela lei de De Morgan, a negação é $\neg(p \lor q) \equiv \neg p \land \neg q$, que se traduz em

"Danilo não vai assistir a Star Wars e nem vai assistir a O Senhor dos Anéis."

Lógica Proposicional: Aplicações, Equivalências

Usos das Leis de De Morgan

• A lei de De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

diz que a negação da conjunção é a disjunção das negações.

Exemplo 11 Use as Leis de De Morgan para negar a proposição:

"Estela tem um celular e um computador."

Solução. Esta proposição pode ser escrita como $p \land q$, onde p é "Estela tem um celular", e q é "Estela tem um computador".

Pelas Leis de De Morgan, a negação é $\neg(p \land q) \equiv \neg p \lor \neg q$, que se traduz em

"Estela não tem um celular ou ela não tem um computador."

Lógica Proposicional: Aplicações, Equivalências

• A tabela de verdade de uma fórmula com n variáveis tem 2^n linhas.

- Para n grande, é ineficiente construir a tabela da verdade. Por exemplo:
 - Quanto n = 3, temos $2^n = 8$

② Quando n = 10, temos $2^n = 1024$

 Uma alternativa é utilizar equivalências lógicas já conhecidas para derivar novas equivalências lógicas.

• Exemplo 12 Mostre que $\neg(p \to q)$ e $p \land \neg q$ são logicamente equivalentes.

$$\neg(p \rightarrow q) \equiv$$

• Exemplo 12 Mostre que $\neg(p \to q)$ e $p \land \neg q$ são logicamente equivalentes.

$$\neg(p
ightarrow q) \ \equiv \neg(\neg p \lor q)$$
 (pela tabela de equiv. de condicionais)

• Exemplo 12 Mostre que $\neg(p \to q)$ e $p \land \neg q$ são logicamente equivalentes.

$$\neg(p \to q) \equiv \neg(\neg p \lor q)$$
 (pela tabela de equiv. de condicionais)
$$\equiv \neg(\neg p) \land \neg q$$
 (pelas Leis de De Morgan)

ullet Exemplo 12 Mostre que $\neg(p o q)$ e $p \wedge \neg q$ são logicamente equivalentes.

Solução.

$$egin{aligned}
\neg(p
ightarrow q) &\equiv \neg(\neg p \lor q) & ext{(pela tabela de equiv. de condicionais)} \\
&\equiv \neg(\neg p) \land \neg q & ext{(pelas Leis de De Morgan)} \\
&\equiv p \land \neg q & ext{(pela lei da dupla negação)}
\end{aligned}$$

Note a intuição por trás dessa equivalência: dizer que uma implicação é falsa $(\neg(p \rightarrow q))$ é o mesmo que dizer que sua hipótese é verdadeira mas sua conclusão é falsa $(p \land \neg q)$.

• Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

$$\neg(p \lor (\neg p \land q)) \equiv$$

• Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

$$\neg(p \lor (\neg p \land q)) \ \equiv \neg p \land \neg(\neg p \land q) \qquad \qquad \text{(pelas Leis de De Morgan)}$$

• Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q)$$
 (pelas Leis de De Morgan)
$$\equiv \neg p \land (\neg(\neg p) \lor \neg q)$$
 (pelas Leis de De Morgan)

Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q)$$
 (pelas Leis de De Morgan)
$$\equiv \neg p \land (\neg(\neg p) \lor \neg q)$$
 (pelas Leis de De Morgan)
$$\equiv \neg p \land (p \lor \neg q)$$
 (pela lei da dupla negação)

• Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

• Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

• Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q) \qquad \text{(pelas Leis de De Morgan)}$$

$$\equiv \neg p \land (\neg(\neg p) \lor \neg q) \qquad \text{(pelas Leis de De Morgan)}$$

$$\equiv \neg p \land (p \lor \neg q) \qquad \text{(pela lei da dupla negação)}$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{(pela lei da distributividade)}$$

$$\equiv F \lor (\neg p \land \neg q) \qquad \text{(porque } \neg p \land p \equiv F)$$

$$\equiv (\neg p \land \neg q) \lor F \qquad \text{(pela lei da comutatividade)}$$

Exemplo 13 Mostre que $\neg(p \lor (\neg p \land q))$ e $\neg p \land \neg q$ são logicamente equivalentes.

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q) \qquad \text{(pelas Leis de De Morgan)}$$

$$\equiv \neg p \land (\neg(\neg p) \lor \neg q) \qquad \text{(pelas Leis de De Morgan)}$$

$$\equiv \neg p \land (p \lor \neg q) \qquad \text{(pela lei da dupla negação)}$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{(pela lei da distributividade)}$$

$$\equiv F \lor (\neg p \land \neg q) \qquad \text{(porque } \neg p \land p \equiv F)$$

$$\equiv (\neg p \land \neg q) \lor F \qquad \text{(pela lei da comutatividade)}$$

$$\equiv \neg p \land \neg q \qquad \text{(pela lei de identidade)}$$

ullet Exemplo 14 Mostre que $(p \wedge q) o (p ee q)$ é uma tautologia.

Solução.

$$\begin{array}{ll} (p \wedge q) \rightarrow (p \vee q) & \equiv \neg (p \wedge q) \vee (p \vee q) & \text{(equivalência de condicionais)} \\ & \equiv (\neg p \vee \neg q) \vee (p \vee q) & \text{(pela Leis de De Morgan)} \\ & \equiv (\neg p \vee p) \vee (\neg q \vee q) & \text{(comutatividade e associatividade)} \\ & \equiv T \vee T & \text{(pela lei de negação)} \\ & \equiv T & \text{(pela lei de dominância)} \end{array}$$

Lógica Proposicional: Aplicações, Equivalências