Maximum Likelihood Estimation

Maximum Likelihood Estimation

- For different pattern recognition tasks, we often find ourselves having to estimate parameters of a given model
- We have some samples of the data, and want to use them to estimate parameters of the model
- This happens in many pattern recognition applications, e.g.,
 - Regression analysis
 - Modeling Biometric score distributions
 - Logistic Regression
 - Time series analysis

Maximum Likelihood Estimation

- Assume we have data samples Y₁, Y₂,...,Y_n which are assumed to be independent and identically distributed (iid)
- Let Θ be the parameter which we seek to estimate
- Since Y₁, Y₂,...,Y_n are iid, the joint distribution of the entire sample can be expressed as:

$$p(y_1, y_2, ..., y_n | \Theta) = p(y_1 | \Theta) \times p(y_2 | \Theta) \times ... \times p(y_n | \Theta)$$

- The function $p(y_1, y_2, ..., y_n | \Theta)$ is called the likelihood function
- Given some observed data (e.g., $y_1=5, y_2=6, \dots, y_n=4$), maximum likelihood estimation leverages this function to find the most likely value of Θ

Likelihood Function

• $L(\Theta | y_1, y_2, ..., y_n) = p(y_1, y_2, ..., y_n | \Theta)$

is identical to a probability density function except that it is a function of the parameter Θ for the fixed values of $y_1, y_2, ..., y_n$ (a pdf is on the other hand a function of $y_1, y_2, ..., y_n$ for a fixed value of Θ

Example

- Recall the exponential distribution, $p(y|\lambda) = \lambda e^{-\lambda y}$ for y>0
- Suppose we hypothesize that the customer service waiting time at a call center follows this distribution
- Suppose we get one observation $y_1=2.0$ from a single customer. We can attempt to try to find the value of theta using this data
- We have: $L(\lambda | y = 2) = \lambda e^{-2\lambda}$

Example: How a single data point reduces our uncertainty about the parameters of $p(y|\lambda) = \lambda e^{-\lambda y}$

Likelihood function based on a single observation, y=2.0

What if we had more than just one sample

• Assume n=10; and the samples iid.

Data	Value
point	
y_1	2.0
y_2	1.2
y_3	4.8
y_4	1.0
y_5	3.8
y_6	0.7
y_7	0.3
y_8	0.2
y_9	4.5
y_{10}	1.5
$\overline{y} = 2.0$	

$$\begin{split} &L(\lambda|y_{1},\,y_{2},\,...,y_{10})\\ &=p(y_{1},y_{2},\,...,y_{10}|\lambda)\\ &=p(y_{1}|\lambda)\times p(y_{2}|\lambda)\times \cdots \times p(y_{10}|\lambda)\\ &=\lambda e^{-\lambda y_{1}}\times \lambda e^{-\lambda y_{2}}\times ...\times \lambda e^{-\lambda y_{10}}\\ &=\lambda^{10}e^{-\lambda y_{1}-\lambda y_{2}-\cdots -\lambda y_{10}}\\ &=\lambda^{10}e^{-\lambda\sum_{i=1}^{10}y_{i}}\\ &=\lambda^{10}e^{-\lambda\sum_{i=1}^{10}y_{i}}\\ &\text{But } \bar{y}=\frac{1}{10}\sum_{i=1}^{10}y_{i}\Rightarrow 10\bar{y}=\sum_{i=1}^{10}y_{i}\Rightarrow\\ &L(\lambda|y_{1},\,y_{2},\,...,y_{10})=\lambda^{10}e^{-10\lambda\bar{y}}\\ &L(\lambda|\bar{y}=2)=\lambda^{10}e^{-20\lambda} \end{split}$$

Likelihood estimates with more samples

- ✓ Vertical axis is likelihood
- \checkmark Horizontal axis is λ

Computing MLE

- Previous plots helped us visualize the behavior of the likelihood function as sample sizes increased.
- However in practice, we may not be able to graph the function that easily – often one has to deal with lots of parameters (both in terms of numbers and variety)

Options:

- Sometimes it is possible to use calculus to find the parameter value(s) which maximize the likelihood function
- Numerical methods can also be used to find the parameter values

Computing MLE

- To find the maxima, we could use $\frac{\partial L(\Theta \mid y_1, y_2, ..., y_n)}{\partial \Theta} = 0$
- However, often its much simpler to maximize the logarithm of the likelihood function instead.
 - Log-likelihood function: $LL(\Theta | y_1, y_2, ..., y_n) = \ln(L(\Theta | y_1, y_2, ..., y_n))$
- Reasons?
 - Density functions often complex -- have exponential terms
 - Log of product of likelihoods is a sum easier to deal with
 - Likelihood values tend to be too small –logarithm helps make them bigger and reduces the risk precision loss.

Does the Log-likelihood provide the same MLE?

• Natural log is a monotonically increasing function of its argument, so if $a_1>a_2$ then $\ln(a_1)>\ln(a_2)$

```
• Thus: L(\Theta_1|y_1, y_2, ..., y_n) > L(\Theta_2|y_1, y_2, ..., y_n) is equivalent to ln(L(\Theta_1|y_1, y_2, ..., y_n)) > ln(L(\Theta_2|y_1, y_2, ..., y_n))
```

So we are free to maximize the log-likelihood function

Does Log-likelihood provide the same MLE?

Coin Toss Example

- Problem: We have a coin, and want to estimate its bias whats the probability it lands on heads/tails?
- Let $P(Heads) = \theta$ and $P(Tails) = 1 \theta$. Assume we toss the coin 12 times and obtain: HHHHHHHHHHHHH.
- $L(\theta) = \theta^{10}(1-\theta)^2 = \theta^{10}(1-2\theta+\theta^2) = \theta^{10}-2\theta^{11}+\theta^{12}$
- If we maximize the likelihood directly:

$$\frac{d}{d\theta}L(\theta) = 10\theta^9 - 22\theta^{10} + 12\theta^{11}$$

$$\frac{d}{d\theta}L(\theta) = 0 \Rightarrow 10\theta^9 - 22\theta^{10} + 12\theta^{11} = 0 \Rightarrow \theta^9(10 - 22\theta + 12\theta^2) = 0$$

• $\Rightarrow \theta = 0, \theta = 1, \theta = \frac{10}{12}$. Further evaluation of each turning point confirms $\theta = \frac{10}{12}$

Example: Coin Toss

$$L(L(\theta)) = \ln(L(\theta)) = \ln(\theta^{10}(1 - \theta)^2)$$
$$= 10\ln\theta + 2\ln(1 - \theta)$$
$$\frac{d(L(L(\theta)))}{\theta} = \frac{10}{\theta} - \frac{2}{1 - \theta}$$

$$\frac{d(L(L(\theta)))}{d\theta} = 0$$

$$\Rightarrow 10(1 - \theta) - 2\theta = 0 \Rightarrow \theta = \frac{10}{12}$$

General Case of binary valued rv

- Assume a binary valued r.v X having: $P(X = 1) = \theta$ and $P(X = 0) = 1 \theta$
- $L(\theta) = \theta^x (1 \theta)^y$ if we observe x ones and y zeros.
- $ln(L(\theta)) = xln(\theta) + yln(1 \theta)$
- $\bullet \frac{\partial L(\theta)}{\partial \theta} = \frac{x}{\theta} + \frac{-1.y.}{(1-\theta)}$
- $\frac{\partial L(\theta)}{\partial \theta} = 0 \Rightarrow \frac{x}{\theta} + \frac{-1.y.}{(1-\theta)} = 0 \Rightarrow x(1-\theta) y\theta = 0$
- $\Rightarrow x \theta(x + y) = 0 \Rightarrow \theta = \frac{x}{x + y}$

MLE for Univariate Gaussian

- Gaussian pdf: $P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

• If we have received N samples
$$x_1, x_2, ..., x_N$$

$$L(\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x_1 - \mu)^2}{2\sigma^2}} \times \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x_2 - \mu)^2}{2\sigma^2}} \times ... \times \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x_N - \mu)^2}{2\sigma^2}}$$

$$= \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

MLE for Univariate Gaussian

$$ln(L(\mu,\sigma)) = \ln\left(\prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}\right) = \sum_{i=1}^{N} \ln\left(\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}\right)$$

$$= K + \sum_{i=1}^{N} (-\log\sigma - \frac{(x_i - \mu)^2}{2\sigma^2})$$

$$\frac{\partial}{\partial \mu} ln(L(\mu,\sigma)) = \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0 \Rightarrow \sum_{i=1}^{N} (x_i - \mu) = 0 \Rightarrow -N\mu + \sum_{i=1}^{N} (x_i) = 0$$

MLE for Univariate Gaussian

$$-N\mu + \sum_{i=1}^{N} (x_i) = 0 \Rightarrow N\mu = \sum_{i=1}^{N} x_i$$
$$\Rightarrow \mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i = \bar{x}$$

• Recall:
$$ln(L(\mu, \sigma)) = K + \sum_{i=1}^{N} (-\log \sigma - \frac{(x_i - \mu)^2}{2\sigma^2})$$

•
$$\frac{\partial}{\partial \sigma} ln(L(\mu, \sigma)) = \sum_{i=1}^{N} \left(-\frac{1}{\sigma} + \frac{(x_i - \mu)^2}{\sigma^3}\right) = 0$$

$$\bullet \Rightarrow \frac{-N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 = 0 \Rightarrow N\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\sigma_{ML}^2 = \frac{\sum_{i=1}^{N} (x_i - \mu_{ML})^2}{N}$$

$$\sigma_{ML}^2 = \frac{\sum_{i=1}^{N} (x_i - \mu_{ML})^2}{N}$$

Biasness of Gaussian MLE Estimators -- Mean

- μ_{ML} is unbiased if $E(\mu_{ML})=\mu$
- Recall: $\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i = \bar{x}$
- $E(\mu_{ML}) = E(\bar{x}) = E(\frac{1}{N}\sum_{i=1}^{N} x_i) = \frac{1}{N}E(\sum_{i=1}^{N} x_i)$
- $\bullet = \frac{1}{N} \left(\sum_{i=1}^{N} E(x_i) \right)$
- For iid samples, $E(x_i) = E(x)$
- $\Rightarrow E(\mu_{ML}) = \frac{1}{N} \left(\sum_{i=1}^{N} (E(x)) \right) = \frac{1}{N} . N. E(x)$
- $\bullet = E(x) = \mu$

Biasness of Gaussian MLE Estimators -- Variance

• σ_{ML}^2 is unbiased if $E(\sigma_{ML}^2) = \sigma^2$;

$$E(\sigma_{ML}^2) = E\left(\frac{\sum_{i=1}^{N} (x_i - \mu_{ML})^2}{N}\right) = \frac{1}{N} E\left(\sum_{i=1}^{N} (x_i - \mu_{ML})^2\right)$$

• Recall μ_{ML} =sample mean, \bar{x} .

$$\Rightarrow \sum_{i=1}^{N} (x_i - \bar{x})^2 = \sum_{i=1}^{N} (x_i^2 - 2x_i \bar{x} + \bar{x}^2) = N\bar{x}^2 - 2N\bar{x}\bar{x} + \sum_{i=1}^{N} x_i^2$$

Previous expression is after manipulating two terms in the summation using $\sum_{i=1}^{N} \bar{x}^2 = N \, \bar{x}^2$ and $N\bar{x} = \sum_{i=1}^{N} x_i$. Substituting the expression back into $E(\sigma_{ML}^2)$:

$$\Rightarrow E(\sigma_{ML}^2) = \frac{1}{N} E(N\bar{x}^2 - 2N\bar{x}^2 + \sum_{i=1}^{N} x_i^2)$$

Biasness of Gaussian MLE Estimators

$$E(\sigma_{ML}^{2}) = \frac{1}{N} E\left(N\bar{x}^{2} - 2N\bar{x}^{2} + \sum_{i=1}^{N} x_{i}^{2}\right) = \frac{1}{N} E\left(\sum_{i=1}^{N} x_{i}^{2}\right) - E(\bar{x}^{2})$$

$$\Rightarrow E(\sigma_{ML}^{2}) = \frac{1}{N} \sum_{i=1}^{N} E(x_{i}^{2}) - E(\bar{x}^{2})$$

Recall standard formulae for variance:

$$\sigma^{2} = E(x^{2}) - \mu^{2} \text{ and } E(\bar{x}^{2}) - \mu^{2} = Var(\bar{x}) = \frac{\sigma^{2}}{N}$$

$$\Rightarrow E(\sigma_{ML}^{2}) = \frac{1}{N} \left(\sum_{i=1}^{N} (\sigma^{2} + \mu^{2}) \right) - \left(\frac{\sigma^{2}}{N} + \mu^{2} \right) = \frac{1}{N} (N\sigma^{2} + N\mu^{2}) - \frac{\sigma^{2}}{N} - \mu^{2}$$

Biasness of Gaussian MLE Estimators

•
$$E(\sigma_{ML}^2) = \frac{1}{N}(N\sigma^2 + N\mu^2) - \frac{\sigma^2}{N} - \mu^2 = \sigma^2 + \mu^2 - \frac{\sigma^2}{N} - \mu^2$$

•
$$E(\sigma_{ML}^2) = \sigma^2 - \frac{\sigma^2}{N} = \sigma^2 \frac{(N-1)}{N}$$

Any observations on biasness of the MLE estimator for variance ?

Gaussian MLE Estimators – Correcting the Bias in σ_{ML}^2

Since
$$E(\sigma_{ML}^2) = \sigma^2 - \frac{\sigma^2}{N} = \sigma^2 \frac{(N-1)}{N}$$
,
 $\Rightarrow E(\frac{N}{N-1}.\sigma_{ML}^2) = \sigma^2 \frac{(N-1)}{N}.\frac{N}{N-1} = \sigma^2$
Recall $\sigma_{ML}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{ML})^2$
 $\frac{N}{N-1}.\sigma_{ML}^2 = \frac{N}{N-1}.\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{ML})^2 = \frac{1}{(N-1)} \sum_{i=1}^{N} (x_i - \mu_{ML})^2$