Short-term Hands-on Supplementary Course on C Programming

SESSION 5: Array Operations

KARTHIK D NIVEDHITHA D

Time: 6:30 - 8:00 PM Date: 30 May 2022 Location: Online

Agenda

- 1. Administrative Instructions
- 2. Time Complexity
- 3. Searching:
 - a. Linear Search
 - b. Binary Search
- 4. Sorting:
 - a. Bubble Sort
 - b. Selection
 - c. Insertion Sort
 - d. Merge Sort
- 5. Tutorial: Insertion Sort
- 6. Next Session

Administrative Instructions

- Please fill out the feedback form will be shared in the chat
- Join us on Microsoft Teams,
 Team Code: rzlaicv

Computational Complexity

How does one go about analyzing programs to compare how the program behaves as it scales? E.g., let's look at a **vectorMax()** function:

```
int vectorMax(int v[]
    int currentMax = v[0]:
    int n = sizeof(v)/sizeof(v[0]);
    for (int i=1; i < n; i++){
         if (currentMax < v[i]) {</pre>
             currentMax = v[i];
    return currentMax;
```


How will estimate time efficiency?

If we want to see how this algorithm behaves as n changes, we could do the following:

- 1. Code the algorithm in C
- Determine, for each instruction of the compiled program the time needed to execute that instruction (need assembly language)
- 3. Determine the number of times each instruction is executed when the program is run.
- 4. Sum up all the times we calculated to get a running time.

...might work, but it is complicated, especially for today's machines that optimize everything "under the hood." (and reading assembly code takes a certain patience)


```
0x0000000010014adf0 <+0>: push
                                 %rbp
0x0000000010014adf1 <+1>: mov
                                 %rsp,%rbp
0x0000000010014adf4 <+4>: sub
                                 $8x20,%rsp
0x0000000010014adf8 <+8>: xor
                                 %esi,%esi
0x0000000010014adfa <+10>: mov
                                 %rdi,-0x8(%rbp)
0x0000000010014adfe <+14>: mov
                                 -Bx8(%rbp),%rdi
0x000000010014ae02 <+18>: callq 0x10014aea0 <std::_1::basic_ostream<char, std::_1::char_traits<char> >::operator<<(long)+32>
0x0000000010014ae07 <+23>: mov
                                 (%rax),%esi
0x0000000010014ae09 <+25>: mov
                                 %esi,-0xc(%rbp)
0x0000000010014ae0c <+28>: mov
                                 -0x8(%rbp),%rdi
                                 0x10014afb0 <std:: 1::basic ostream<char, std:: 1::char traits<char> >::operator<<(long)+304>
0x0000000010014ae10 <+32>: callo
0x0000000010014ae15 <+37>: mov
                                 %eax,-0x10(%rbp)
0x0000000010014ae18 <+40>: movl
                                 50x1,-0x14(%rbp)
0x0000000010014ae1f <+47>: mov
                                 -8x14(%rbp),%eax
0x0000000010014ae22 <+50>: cmp
                                 -0x10(%rbp),%eax
                                 0x10014ae6c <vectorMax(Vector<int>&)+124>
0x0000000010014ae25 <+53>: jge
0x0000000010014ae2b <+59>; mov
                                 -0xc(%rbp),%eax
                                 -0x8(%rbp),%rdi
0x0000000010014ae2e <+62>: mov
0x0000000010014ae32 <+66>: mov
                                 -0x14(%rbp),%esi
0x0000000010014ae35 <+69>: mov
                                 %eax,-0x18(%rbp)
0x000000010014ae38 <+72>: callq 0x10014aea0 <std::_1::basic_ostream<char, std::_1::char_traits<char> >::operator<<(long)+32>
0x0000000010014ae3d <+77>: mov
                                 -0x18(%rbp),%esi
0x0000000010014ae40 <+80>: cmp
                                 (%rax),%esi
0x0000000010014ae42 <+82>: jge
                                 0x10014ae59 <vectorMax(Vector<int>&)+105>
                                 -0x8(%rbp),%rdi
0x0000000010014ae48 <+88>: mov
0x0000000010014ae4c <+92>: mov
                                 -0x14(%rbp),%esi
0x0000000010014ae4f <+95>: callo
                                 0x10014aea0 <std:: 1::basic ostream<char, std:: 1::char traits<char> >::operator<<(long)+32>
0x0000000010014ae54 <+100>:
                             mov
                                    (%rax),%esi
0x0000000010014ae56 <+102>:
                                    %esi,-0xc(%rbp)
                             mov
0x0000000010014ae59 <+105>:
                                    0x10014ae5e <vectorMax(Vector<int>&)+110>
                             impg
0x0000000010014ae5e <+110>:
                             nov
                                    -0x14(%rbp),%eax
0x0000000010014ae61 <+113>:
                             add
                                    $0x1,%eax
0x0000000010014ae64 <+116>:
                             nov
                                    %eax,-0x14(%rbp)
                                    0x10014aelf <vectorMax(Vector<int>&)+47>
0x0000000010014ae67 <+119>:
                             impg
0x00000000010014ae6c <+124>:
                             mov
                                    -0xc(%rbp),%eax
0x0000000010014ae6f <+127>:
                             add
                                    $0x20,%rsp
0x0000000010014ae73 <+131>:
                             DOD
                                    %rbp
0x0000000010014ae74 <+132>:
                             reta
```


Algorithm Analysis: Primitive Operations

Instead of those complex steps, we can define *primitive* operations for our C code.

- Assigning a value to a variable
- Calling a function
- Arithmetic (e.g., adding two numbers)
- Comparing two numbers
- Indexing into a Vector
- Returning from a function

We assign "1 operation" to each step. We are trying to gather data so we can compare this to other algorithms.


```
int vectorMax( int v[]
          int currentMax = v[0];
                                                 executed once (2 ops)
                                                 executed once (2 ops)
          int n = sizeof(v)/sizeof(v[0]);
          for (int_i=1; i < n; i++){
                                                  executed n-1 times
executed
                                                      (2*(n-1) \text{ ops}))
                ex. n times (n ops)
once (1 op)
               if (currentMax < v[i])_{</pre>
                                                         ex. n-1 times (2*(n-1) ops)
                     currentMax = v[i];
                                                          ex. at most n-1 times
                                                        (2*(n-1) ops), but as few as
                                                              zero times
          return currentMax;
                                          ex. once (1 op)
```


Summary:

Primitive operations for **vectorMax()**:

at least:
$$2+2+1+n+4*(n-1)+1=5n+2$$

at most:
$$2 + 2 + 1 + n + 6 * (n - 1) + 1 = 7n$$

i.e., if there are n items in the Vector, there are between 5n+2 operations and 7n operations completed in the function.

Do we really need this much detail? Nope!

Let's simplify: we want a "big picture" approach.

It is enough to know that vectorMax() grows

linearly proportionally to n

In other words, as the number of elements increases, the algorithm has to do proportionally more work, and that relationship is linear. 8x more elements? 8x more work.

Algorithm Analysis: Big-O

Dirty little trick for figuring out Big-O: look at the number of steps you calculated, throw out all the constants, find the "biggest factor" and that's your answer:

$$5n + 2$$
 is $O(n)$

Why? Because constants are not important at this level of understanding.

Algorithm Analysis: Big-O

We will care about the following functions that appear often in data structures:

constant	logarithmic	linear	n log n	quadratic	polynomial (other than n²)	exponential
0(1)	O(log n)	O(n)	O(n log n)	O(n²)	$O(n^k)$ $(k \ge 1)$	O(a ⁿ) (a>1)

When you are deciding what Big-O is for an algorithm or function, simplify until you reach one of these functions, and you will have your answer.

Algorithm Analysis: Big-O

constant	logarithmic	linear	n log n	quadratic	polynomial (other than n²)	exponential
0(1)	O(log n)	O(n)	O(n log n)	O(n²)	$O(n^k)$ $(k \ge 1)$	O(a") (a>1)

Practice: what is Big-O for this function?

$$20n^3 + 10n \log n + 5$$

Answer: O(n3)

First, strip the constants: $n^3 + n \log n$ Then, find the biggest factor: n^3

Rule of Sums

Sequential Segments

Sum Rule

Suppose $T_1(n)$ is O(f(n)) and $T_2(n)$ is O(g(n)), then T(n) is $O(\max(f(n),g(n)))$

Rule of Products

Iteration

```
. . . Program Segment
```

 $T_1(n)$

$$T(n) = T_1(n) \times T_2(n)$$

executed $T_2(n)$ times

Product Rule

Suppose $T_1(n)$ is O(f(n)) and $T_2(n)$ is O(g(n)), then T(n) is O(f(n)g(n))

Algorithm Analysis: Nested Loops

In general, we don't like O(n2) behavior! Why?

As an example: let's say an O(n²) function takes 5 seconds for a container with 100 elements. How much time would it take if we had 1000 elements?

500 seconds! This is because 10x more elements is (102)x more time!

Algorithm Analysis: Nested Loops

```
int nestedLoop1(int n) {
         int result = 0;
         for (int i=0;i<n;i++) {
                  for (int j=0;j<n;j++) {</pre>
                           for (int k=0; k< n; k++)
                                    result++;
         return result;
```

What would the complexity be of a 3-nested loop?

Big-O Complexity Chart

Searching

Searching for an element in a 1D array!!!

KARTHIK!!!!!!!

CONCEPT DIAGRAM

Array of 10 Digits [6,8,17,21,24,45,59,63,76,89] Find Data = 59

Note SORTED ARRAY A BINARY SEARCH DOES NOT WORK ON UN-SORTED DATA

Applicable Cases of Search in each iteration:

- Data = Mid Value
- Data < Mid Value
- Data > Mid Value

every iteration.

Multiple iterations are run as per the applicable cases to find the data in the sorted array

greater than 24

1st Iteration Left = I Right = r **Array Values** Index 5 7 Note 63 21 24 59 Array Values correspond to the To find the middle of the index values. array the following MID formulae is applied Middle = (l+r)/2, which 2nd Iteration 3rd Iteration 4th Iteration is 4 The iterations continue 5 6 6 9 and data keeps on 45 59 76 89 59 63 decreasing in same manner until 59 is found 18 Mid Now, right becomes Mid-Note Now 5 is both 1, which is 7-1 = 6, because The Lower Half of the array You have to find the Mid at Left and Mid data is less than 63 is dropped because 59 is

Binary Search

Array Sorting Algorithms

Algorithm	Time Comp	olexity	Space Complexity	
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	$\theta(n \log(n))$	O(n^2)	0(log(n))
Mergesort	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	0(n)
Timsort	Ω(n)	Θ(n log(n))	O(n log(n))	O(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	$\theta(n \log(n))$	O(n log(n))	0(1)
Bubble Sort	Ω(n)	Θ(n^2)	O(n^2)	0(1)
Insertion Sort	Ω(n)	Θ(n^2)	O(n^2)	0(1)
Selection Sort	Ω(n^2)	Θ(n^2)	O(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	$\Theta(n \log(n))$	O(n^2)	O(n)
Shell Sort	$\Omega(n \log(n))$	$\theta(n(\log(n))^2)$	O(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	O(n^2)	O(n)
Radix Sort	$\Omega(nk)$	0(nk)	0(nk)	0(n+k)
Counting Sort	Ω(n+k)	Θ(n+k)	0(n+k)	0(k)
Cubesort	$\Omega(n)$	$\theta(n \log(n))$	O(n log(n))	0(n)

Bubble Sort

6 5 3 1 8 7 2 4

Selection Sort

Yellow is smallest number found Blue is current item Green is sorted list

Insertion Sort

Merge Sort: Tutorial

6 5 3 1 8 7 2 4

Next Session

POINTERS!!!

Any Questions

