Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Christian Hensel, Matthias Volk

Introduction to Model Checking (Summer Term 2018)

— Solution 11 (due 16th July) —

General Remarks

- The exercises are to be solved in groups of three students.
- You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by dropping them into the "Introduction to Model Checking" box at our chair before 12:00. Do not hand in your solutions via L2P or via e-mail.
- If a task asks you to justify your answer, an explanation of your reasoning is sufficient. If you are required to prove a statement, you need to give a *formal* proof.
- This is the last exercise sheet. If you have gained at least **90.5 points in total** (40% of 226), you are admitted to the exam. If you have gained at least **59 bonus points** (70% of 84), you get a 0.3 bonus on your grade for the exam.

Exercise 1^* (2 + 3 Points)

- (a) Give a transition system TS without terminal states that contains two states s_1 and s_2 such that $s_1 \not\equiv_{\text{LTL}} s_2$ and there is no LTL formula φ with $s_2 \models \varphi$ and $s_1 \not\models \varphi$.
- (b) Let TS_1 and TS_2 be transition systems over AP without terminal states such that $TS_1 \not\equiv_{CTL} TS_2$. Prove or disprove: there exists a CTL formula Φ over AP such that $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$.

Solution:

(a) Consider the following states s_1, s_2 in the transition system TS below.

It is $s_1 \not\equiv_{\text{LTL}} s_2$, because for $\psi = \Box \neg a$ we have $s_1 \models \psi$ but $s_2 \not\models \psi$.

We observe that $Traces(s_1) \subseteq Traces(s_2)$ (*). Let φ be an arbitrary LTL formula. Then

$$s_2 \models \varphi$$

$$\iff Traces(s_2) \subseteq Words(\varphi)$$

$$\stackrel{(*)}{\Longrightarrow} Traces(s_1) \subseteq Words(\varphi)$$

$$\implies s_1 \models \varphi$$

Consequently, there exists no LTL formula φ such that $s_2 \models \varphi$ and $s_1 \not\models \varphi$.

(b) We disprove the claim. Consider the transition systems $TS_1 = (S_1, Act_1, \rightarrow_1, S_0^1, AP, L_1)$ and $TS_2 = (S_2, Act_2, \rightarrow_2, S_0^2, AP, L_2)$ below.

First of all, $TS_1 \not\equiv_{CTL} TS_2$, because $TS_2 \models \forall \Box \neg a$ and $TS_1 \not\models \forall \Box \neg a$. Let Φ be an arbitrary CTL formula. Since $s_0 \sim t_0$, we have $s_0 \models_{CTL^*} \Phi \iff t_0 \models_{CTL^*} \Phi$. Then

$$TS_{1} \models \Phi$$

$$\iff \forall s \in S_{0}^{1} \cdot s \models \Phi$$

$$\implies s_{0} \models \Phi$$

$$\stackrel{s_{0} \sim t_{0}}{\iff} t_{0} \models \Phi$$

$$\stackrel{S_{0}^{2} = \{t_{0}\}}{\iff} \forall t \in S_{0}^{2} \cdot t \models \Phi$$

$$\iff TS_{2} \models \Phi$$

Consequently, there exists no CTL formula Φ such that $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$.

Exercise 2 (5 Points)

Consider the CTL*-formula (with derived operators) over $AP = \{a, b\}$

$$\Phi = \forall \Diamond \, \Box \, \exists \, \bigcirc \, (a \, \mathsf{U} \, \exists \Box \, b)$$

and the transition system TS outlined below:

Apply the CTL* Model Checking algorithm to compute $Sat(\Phi)$ and decide whether TS $\models \Phi$. *Hint:* You may infer the satisfaction sets for LTL formulas directly.

Solution: _

We consider the maximal proper state subformulas $Sub(\Phi)$:

- 1. $\Psi = a$: $Sat(a) = \{s_2, s_3, s_6, s_7\}$
- 2. $\Psi = b$: $Sat(b) = \{s_0, s_2, s_4, s_6, s_7\}$
- 3. $\Psi = \exists \Box b$:

The following equivalence is used to compute $Sat(\exists \Box b)$:

$$s \models_{\mathsf{CTL}^*} \exists \varphi \quad \Longleftrightarrow \quad s \models_{\mathsf{CTL}^*} \neg \forall \neg \varphi \quad \Longleftrightarrow \quad s \not\models_{\mathsf{CTL}^*} \forall \neg \varphi \quad \Longleftrightarrow \quad s \not\models_{\mathsf{LTL}} \neg \varphi$$

According to the LTL semantics, we have $Sat_{LTL}(\neg \Box b) = Sat_{LTL}(\Diamond \neg b) = \{s_0, s_1, s_2, s_3, s_5\}$. Then, $S \setminus Sat_{LTL}(\neg \Box b) = \{s_4, s_6, s_7\}$ is the satisfaction set $Sat_{CTL^*}(\exists \Box b)$:

$$Sat_{\mathrm{CTL}^*}(\exists \Box b) = \{s_4, s_6, s_7\}.$$

The labelling is extended by a fresh atomic proposition $a_{\exists \Box b}$ according to $Sat_{\text{CTL}^*}(\exists \Box b)$. The corresponding subformula $\exists \Box b$ of Φ is replaced by $a_{\exists \Box b}$.

4. $\Psi = \exists \bigcirc (a \cup a_{\exists \Box b})$:

The above equivalence for existentially quantified path formulas yields:

$$s \models_{\text{CTL}^*} \exists \bigcirc (a \cup a_{\exists \Box b}) \iff s \not\models_{\text{LTL}} \neg \bigcirc (a \cup a_{\exists \Box b}).$$

By the equivalence $\neg \bigcirc (a \cup a_{\exists \Box b}) \equiv \bigcirc \neg (a \cup a_{\exists \Box b})$, the satisfaction set of $\neg (a \cup a_{\exists \Box b})$ can be inferred:

$$Sat_{\mathrm{LTL}}\big(\neg(a \cup a_{\exists \Box b})\big) = \{s_0, s_1, s_2, s_5\}$$

$$Sat_{\mathrm{LTL}}\big(\bigcirc \neg(a \cup a_{\exists \Box b})\big) = \{s_0, s_2\}$$

$$Sat_{\mathrm{CTL}^*}\big(\exists \bigcirc (a \cup a_{\exists \Box b})\big) = S \setminus Sat_{\mathrm{LTL}}\big(\bigcirc \neg(a \cup a_{\exists \Box b})\big)$$

$$= S \setminus \{s_0, s_2\}$$

$$= \{s_1, s_3, s_4, s_5, s_6, s_7\}$$

The labelling is extended by a new atomic prop. $a_{\exists \bigcirc (a \cup a_{\exists \square b})}$ according to $Sat_{CTL^*}(\exists \bigcirc (a \cup a_{\exists \square b}))$. Again, the corresponding subformula Ψ of Φ is replaced by $a_{\exists \bigcirc (a \cup a_{\exists \square b})}$:

5. $\Psi = \forall \Diamond \Box a_{\exists \bigcirc (a \cup a_{\exists \Box b})}$:

In the case of universal quantification, we can directly apply the LTL-semantics:

$$Sat_{LTL}(\lozenge \square a_{\exists \cap (a \cup a_{\exists \cap b})}) = \{s_0, s_1, s_3, s_4, s_6, s_7\}.$$

Therefore, $Sat(\Phi) = Sat_{\text{CTL}^*}(\forall \Diamond \Box a_{\exists \bigcirc (a \cup a_{\exists \Box b})}) = \{s_0, s_1, s_3, s_4, s_6, s_7\}.$

Because of $s_5 \in S_0$, but $s_5 \notin Sat(\Phi)$, this yields TS $\not\models_{\text{CTL}^*} \Phi$.

Exercise 3 (2+2 Points)

Consider the following transition systems $TS_1, ..., TS_4$.

- (a) Which transition systems are trace equivalent? Justify your answers by either providing the set of traces or a counterexample trace.
- (b) Which transition systems are bisimulation equivalent? Justify your answers by either providing a bisimulation relation or a CTL formula that distinguishes the considered transition systems.

Solution:

(a) • $Traces(TS_1) \neq Traces(TS_2), Traces(TS_3), Traces(TS_4).$

Consider the trace

$$\pi := \{a\} \{a,b\} \{a\} \{b\}^{\omega}.$$

It is $\pi \in \mathit{Traces}(TS_2)$, $\mathit{Traces}(TS_3)$, $\mathit{Traces}(TS_4)$ but $\pi \not\in \mathit{Traces}(TS_1)$.

• $Traces(TS_2) = Traces(TS_3) = Traces(TS_4)$.

The traces are

$$Traces(TS_{2}) := \left\{ \left(\{a\} \{a,b\}^{+} \right)^{*} \{a\} \{b\}^{\omega}, \left(\{a\} \{a,b\}^{+} \right)^{+} \emptyset^{\omega}, \left(\{a\} \{a,b\}^{+} \right)^{\omega}, \left(\{a\} \{a,b\}^{+} \right)^{\omega}, \left(\{a\} \{a,b\}^{+} \right)^{\omega} \{a\} \{a,b\}^{\omega} \right\} \right\}$$

(b) • $TS_1 \nsim TS_2, TS_3, TS_4$.

A distinguishing formula is

$$\Phi_1 = \exists \bigcirc (a \land b \land \exists \bigcirc (a \land \neg b)).$$

Then $TS_1 \not\models_{CTL} \Phi_1$ but $TS_2, TS_3, TS_4 \models_{CTL} \Phi_1$.

• $TS_2 \not\sim TS_3, TS_4$.

A distinguishing formula is

$$\Phi_2 = \exists \bigcirc (a \land b \land \forall \bigcirc (\neg a \land \neg b)).$$

Then $TS_2 \models_{CTL} \Phi_2$ but $TS_3, TS_4 \not\models_{CTL} \Phi_2$.

• $TS_3 \sim TS_4$.

A bisimulation relation $\mathcal{R} \subseteq S_3 \times S_4$ is

$$\mathcal{R} := \Big\{ (s_0, s_0), (s_0, s_4), (s_1, s_1), (s_2, s_2), (s_2, s_3), (s_3, s_5) \Big\}.$$

Exercise 4 (3+3 Points)

Consider the transition system TS over $AP = \{a, b\}$ outlined below:

- (a) Determine the bisimulation equivalence \sim_{TS} and depict the bisimulation quotient system TS/\sim .
- (b) For each bisimulation equivalence class C, provide a CTL formula Φ_C that holds only in the states in C.

Solution:

(a) The bisimulation equivalence classes are depicted in the following (indicated by color):

The bisimulation relation $\mathcal{R}\subseteq S\times S$ is given as

$$\mathcal{R} := \left\{ (s_2, s_3), (s_2, s_7), (s_2, s_8), (s_2, s_{10}), (s_3, s_2), (s_3, s_7), (s_3, s_8), (s_3, s_{10}), \\ (s_7, s_2), (s_7, s_3), (s_7, s_8), (s_7, s_{10}), (s_8, s_2), (s_8, s_3), (s_8, s_7), (s_8, s_{10}), \\ (s_{10}, s_2), (s_{10}, s_3), (s_{10}, s_7), (s_{10}, s_8), \\ (s_6, s_9), (s_6, s_{11}), (s_9, s_6), (s_9, s_{11}), (s_{11}, s_6), (s_{11}, s_9) \right\} \cup \mathcal{I}$$

where $\mathcal{I} := \{(s, s) \mid s \in S\}$ is the identity relation.

Correspondingly, the bisimulation quotient system TS/\sim can be constructed as follows:

(b) Formulae that characterize the equivalence classes are:

$$\Phi_{[s_0]} = \neg a \wedge \neg b \wedge \exists \bigcirc \ \exists \bigcirc \ \neg a$$

$$\begin{split} &\Phi_{[s_0]} = \neg a \wedge \neg b \wedge \exists \bigcirc \exists \bigcirc \neg a \\ &\Phi_{[s_1]} = a \wedge \neg b \wedge \exists \bigcirc (\neg a \wedge \neg b) \\ &\Phi_{[s_4]} = a \wedge b \wedge \exists \bigcirc (\neg a \wedge \neg b) \end{split}$$

$$\Phi_{[s_4]} = a \wedge b \wedge \exists \bigcirc (\neg a \wedge \neg b)$$

$$\begin{split} &\Phi_{[s_5]} = \neg a \wedge \neg b \wedge (\forall \bigcirc \forall \bigcirc a) \\ &\Phi_{[s_6]} = a \wedge \neg b \wedge \forall \bigcirc (a \wedge b) \\ &\Phi_{[s_2]} = a \wedge b \wedge \forall \bigcirc a \end{split}$$

$$\Phi_{[s_6]} = a \land \neg b \land \forall \bigcirc (a \land b)$$

$$\Phi_{[s_2]} = a \wedge b \wedge \forall \bigcirc a$$