TP: Piles électrochimiques

Pour mon TP piles de ce vendredi, je compte faire :

Objectifs:

- Réaliser différentes piles électrochimiques.
- Tracer et interpréter la caractéristique intensité tension d'une pile.
- Étudier la variation de la force électromotrice avec :
 - · la nature des couples,
 - leur activité.
- Mettre en œuvre le principe de la pile de concentration.

Capacités mises en œuvre :

- ☐ Réaliser une pile et étudier son fonctionnement.
- ☐ Mesurer une tension.
- ☐ Mesurer l'intensité d'un courant.

Matériel :

- lames de $Zn_{(s)}$ et $Cu_{(s)}$, pont salin réalisé par une solution de KCl dans gel agar-agar, électrode de référence;
- solutions de Cu²⁺ et Zn²⁺ à 1,000(5) mol·L⁻¹, solution molaire de NaOH
 ⁸ à manipuler avec gants et lunettes, solution saturée de NaCl:
- fiole de 100 mL, pipette jaugée de 10 mL;
- papier filtre ou essuie-tout, papier pH; papier de verre;
- câbles banane et pinces croco, voltmètre numérique, boite à décade de résistances, diode électroluminescente (LED)
- logiciel Scidavis, feuille de calcul python ou autre...

Données:

Propriétés rédox

couple	$Cu^{2+}/Cu_{(s)}$	$H_2O/H_{2(g)}$	$\mathrm{Zn^{2+}/Zn_{(s)}}$
$E^{\circ}(\mathcal{O}x/\mathcal{R}ed)$	0,337V	0V	-0,772V

Potentiel des électrodes de référence à 25°C

- $E_r\left(\mathrm{Hg_{(1)}/Hg_2Cl_{2(s)}}\right) = 0.244\,\mathrm{V}$ (décroît de 0,003 V quand θ croît de 5°C),
- $E_r(Ag_{(s)}/AgCl_{(s)}) = 0.199 \text{ V (décroît de } 0.005 \text{ V quand } \theta \text{ croît de } 5^{\circ}\text{C)}$

On veillera à décaper rapidement les lames de $Zn_{(s)}$ si elles présentent des signes d'oxydation (ie si elles sont noircies).

I Pile voltaïque

On dispose de deux lames de deux métaux différents : $Zn_{(s)}$ et $Cu_{(s)}$ et d'une saumure (solution de NaCl saturée).

Manipulations:

- Proposer un montage permettant de réaliser une pile.
- Mesurer sa force électromotrice U_{Volta}.
- Associer plusieurs piles pour réussir à allumer une LED.

Questions:

- Déterminer les réactions se produisant sur chacune des électrodes.
- Interpréter la force électromotrice U_{Volta} à l'aide des potentiels standard.
- Quelle force électromotrice mesure-t-on si on utilise deux électrodes de Zn? Que peut-on en déduire sur la facilité avec laquelle la réduction de l'eau en H_{2(e)} s'effectue selon la nature de l'électrode.

II Pile Daniell

Cette pile utilise de nouveau des électrodes de $\mathrm{Cu}_{(s)}$ et $\mathrm{Zn}_{(s)}$, chacune en contact avec une solution de sulfate du cation correspondant; respectivement $\mathrm{Cu}^{2+}/\mathrm{SO}_4^{2-}$ et $\mathrm{Zn}^{2+}/\mathrm{SO}_4^{2-}$ aux concentrations c_{Cu} et c_{Zn} . Elle utilise l'oxydation de $\mathrm{Zn}_{(s)}$ et la réduction de Cu^{2+} .

II.1 Générateur électrique

Manipulations:

- Proposer un montage permettant de réaliser une pile, et de mesurer la tension à ses bornes U_{Daniell} en fonction du courant I qu'elle débite à l'aide d'un voltmètre et d'une boite à décades de résistances.
- Relever les valeurs de U_{Daniell} en fonction de I.

Exploitation:

- Tracer la courbe U_{Daniell}(I). En déduire la force électromotrice de la pile et sa résistance interne r_{Daniell}.
- Interpréter la valeur de $U_{Daniell}$ à l'aide de la formule de Nernst.
- Quelle serait la puissance maximale que pourrait délivrer cette pile?

Dans toute la suite, les piles seront étudiées en circuit ouvert.

Par ailleurs, on veillera à rincer à l'eau distillée le pont salin et les électrodes à chaque changement de solution.

II.2 Réalisation d'une pile de concentration

On forme une pile utilisant les mêmes couples dans chaque $\frac{1}{2}$ -pile mais à des activités différentes.

Manipulations:

- Réaliser la pile $\left(Cu_{(s)}|Cu^{2+}||Cu^{2+}|Cu_{(s)}\right)$ en utilisant la même solution de sulfate de cuivre à la concentration c_{Cu} et vérifier la valeur de sa force électromotrice.
- Remplacer la solution dans une des ½-pile par une solution saturée en hydroxyde de cuivre Cu(OH)_{2(s)} de pH élevé, supérieur à 9.
- Mesurer la nouvelle force électromotrice.

Exploitation:

- Justifier la polarité de la pile ainsi formée.
- Mesurer au papier pH la valeur du pH de la solution après l'avoir filtrée. Utiliser la formule de Nernst pour déterminer la valeur du produit de solubilité de la réaction :

$$Cu^{2+} + 2OH^{-} \rightleftharpoons Cu(OH)_{2(s)}$$
 K_s.

II.3 Vérification de la formule de Nernst 🔿

Manipulations:

- Préparer des versions diluées d'un facteur 10 des solutions de Cu²⁺ et Zn²⁺ dans la solution de KCl. On ne dilue pas dans l'eau pour garder la même force ionique que dans les solutions concentrées initiales.
- Mesurer les valeurs de la force électromotrice $U_{Daniell}$ pour différentes valeurs du rapport. $R = \left \lceil Cu^{2+} \right \rceil / \left \lceil Zn^{2+} \right \rceil$
- On pourra rajouter des points supplémentaires en utilisant les solutions diluées à 1 · 10⁻² mol·L⁻¹ également disponibles.

Exploitation:

- Tracer la courbe de $U_{Daniell}$ en fonction de $\log(R)$.
- Mesurer la valeur de sa pente et comparer au modèle de la formule de Nernst.