Ensemble methods

Random Forest

Ensemble methods

- Use multiple models to obtain better predictive performance
- Combine multiple learners to produce a strong learner
- Typically much more computation, since you are training multiple learners
- Typically combine multiple fast learners (like decision trees)
- Tend to overfit
- Tend to get better results since there is deliberately introduced significant diversity among models

Bagging: Bootstrap aggregating

- Each model in the ensemble votes with equal weight
- Train each model with a random training set

Boosting

- Incremental
- Build new models that try to do better on previous model's mis-classifications
 - Can get better accuracy
 - Tends to overfit
- Adaboost is canonical boosting algorithm

Random forest

- Random forest (or random forests) is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees.
- The term came from **random decision forests** that was first proposed by Tin Kam Ho of Bell Labs in 1995.
- The method combines Breiman's "bagging" idea and the random selection of features.

Decision trees

- Decision trees are individual learners that are combined. They are one
 of the most popular learning methods commonly used for data
 exploration.
- One type of decision tree is called CART... classification and regression tree.
- CART ... greedy, top-down binary, recursive partitioning, that divides feature space into sets of disjoint rectangular regions.
 - Regions should be pure wrt response variable
 - Simple model is fit in each region majority vote for classification, constant value for regression.

Decision tress involve greedy, recursive partitioning.

Simple dataset with two predictors

ТІ	PE	Response
1.0	M2	good
2.0	M1	bad
4.5	M5	?

Greedy, recursive partitioning along TI and PE

Features and Advantages

The advantages of random forest are:

- It is one of the most accurate learning algorithms available. For many data sets, it produces a highly accurate classifier.
- It runs efficiently on large databases.
- It can handle thousands of input variables without variable deletion.
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
- It has methods for balancing error in class population unbalanced data sets.
- Generated forests can be saved for future use on other data.