Relatório

Bruno Carvalho Silva Ribeiro

1 Requisitos da tarefa

1.1 Tarefa 1

- n = 200 vs n = 1000 Bayesiana
- Tabelas n=200 e n=1000
- Gráfico plotrix

1.2 Tarefa 2

- n = 200
- Bayesiano vs frequentista
- Tabelas bayes x Frequentista

1.3 Tarefa 3

- Desbalanceamento de x[,2] (covariável \boldsymbol{x}_1) Bayesiana
- n = 200 prob = 0.5 e n = 200 prob = 0.1

1.4 Tarefa 4

- Usar a mesma matriz X e os mesmos valores reais
- n = 200
- link logit vs link probit
- tabelas logit vs probit
- plotrix logit vs probit

Table 1: Tabelas com resumo das configurações de cada cenário simulado

Índice na lista	Tamanho da amostra	Probabilidade de Sucesso	É link logit?
1	200	0.5	\sin
2	1000	0.5	\sin
3	200	0.1	\sin
4	200	0.5	não

A tabela abaixo mostra a configuração de como foram gerados os dados para os cenários que usaremos nas tarefas.

Vale ressaltar que a probabilidade de sucesso dessa tabela se refere a covariável x_1 ou, no R, a segunda coluna da matriz de covariáveis (x[,2]), uma vez que ela foi gerada de uma distribuição bernoulli.

2 Panorama geral das estimações bayesianas

Table 2: Tabelas com as estimações dos 4 cenários de estudo

	(a) Tamanho de amostra 200							(b) Tamanho de amostra 1000							
	true	mean	median	s.d.	HPD_inf	HPD_sup	Amplitude		true	mean	median	s.d.	HPD_inf	HPD_sup	Amplitude
beta0	1.5	1.5381	1.5278	0.2863	1.0181	2.1401	1.1220	beta0	1.5	1.2586	1.2570	0.1172	1.0298	1.4775	0.4477
beta1	0.5	0.2558	0.2556	0.3888	-0.5161	1.0021	1.5182	beta1	0.5	0.6575	0.6545	0.1797	0.3142	1.0093	0.6950
beta2	-0.5	-1.3068	-1.3161	0.3517	-1.9568	-0.5844	1.3724	beta2	-0.5	-0.6021	-0.6005	0.1444	-0.8812	-0.3167	0.5645
beta3	1.0	0.9274	0.9236	0.3460	0.3043	1.6981	1.3937	beta3	1.0	1.0313	1.0224	0.1563	0.7312	1.3336	0.6025
beta4	-1.0	-0.8458	-0.8532	0.3658	-1.5743	-0.1553	1.4191	beta4	-1.0	-0.8299	-0.8288	0.1470	-1.1115	-0.5444	0.5671
Deta4	1.0	0.0400	0.0002	0.0000	-101-0	0.2000									
Deta4						prob =	0.1		(d) Tam	anho	de am	ostra 20	00 probi	t
Deta4							0.1 Amplitude		(d	.) Tam	anho median	de am	ostra 20	00 probi	t Amplitude
beta4	(c)]	Taman	ho de	amos	tra 200	prob =		beta0	(
	(c) T	Taman _{mean}	ho de	amos	tra 200	prob =	Amplitude	beta0 beta1	true	mean	median	s.d.	HPD_inf	HPD_sup	Amplitude
beta0	(c) T	Taman mean 1.3245	ho de median 1.3245	s.d. 0.1966	tra 200 HPD_inf 0.9450	prob = HPD_sup 1.7008	Amplitude 0.7558		true	mean 1.5794	median	s.d. 0.2230	HPD_inf 1.1280	HPD_sup 1.9812	Amplitude 0.8533
beta0 beta1	true 1.5 0.5	mean 1.3245 0.0924	ho de median 1.3245 0.0616	s.d. 0.1966 0.7552	tra 200 HPD_inf 0.9450 -1.3376	prob = HPD_sup 1.7008 1.5234	Amplitude 0.7558 2.8610	beta1	true 1.5 0.5	mean 1.5794 0.1007	median 1.5745 0.0982	s.d. 0.2230 0.2810	HPD_inf 1.1280 -0.4395	HPD_sup 1.9812 0.6419	Amplitude 0.8533 1.0814

3 Comparação: Bayesiana vs frequentista

Na comparação que se segue, faremos usando n=200. O intuito é verificar o quão próxima a estimação pelo método bayesiano se encontra do clássico frequentista

Table 3: Tabelas com as estimações dos 4 cenários de estudo

(a) Método Bayesiano

	true	mean	median	s.d.	HPD_inf	HPD_sup	Amplitude
beta0	1.5	1.5381	1.5278	0.2863	1.0181	2.1401	1.1220
beta1	0.5	0.2558	0.2556	0.3888	-0.5161	1.0021	1.5182
beta2	-0.5	-1.3068	-1.3161	0.3517	-1.9568	-0.5844	1.3724
beta3	1.0	0.9274	0.9236	0.3460	0.3043	1.6981	1.3937
beta4	-1.0	-0.8458	-0.8532	0.3658	-1.5743	-0.1553	1.4191

(b) Método Bayesiano

	Estimate	Std. Error	z value	$\Pr(> z)$	IC_inf	IC_sup	Amplitude
beta0	1.4890	0.2835	5.2524	0.0000	0.9334038	2.0446903	1.111287
beta1	0.2585	0.3944	0.6554	0.5122	-0.5145081	1.0315173	1.546025
beta2	-1.2798	0.3487	-3.6697	0.0002	-1.9633173	-0.5962622	1.367055
beta3	0.9005	0.3472	2.5936	0.0095	0.2199989	1.5810668	1.361068
beta4	-0.8154	0.3558	-2.2915	0.0219	-1.5127978	-0.1179688	1.394829

4 Gráficos

Figure 1: Estudo do efeito do tamanho amostral na qualidade da estimação bayesiana

Figure 2: Comparação baysino vs frequentista

Figure 3: Estudo do desbalanceamento da covariável x1 pelo método bayesiano

Figure 4: Comparação logit vs probit pelo método bayesiano

5 Observações

Eu achei muito estranho na Table 2 o fato de que para β_0 q
 quando usamos n = 200 a estimação foi de 1.5381 enquanto que, ao aumentarmos o tamanho da amostra para n = 1000, a estimação, apenas para esse parâmetro, piorou passando a valrer 1.2586. Inicialmente, pensei que poderia ser um problema no código stan porém, conforme é possível ver nas observações 1 e 2 abaixo, quando eu coloco um tamanho amostral muito grande, de n = 10000, as cadeias seguem a lei de, ao aumentar o tamanho da amostra, a qualidade da estimação melhora. O que poderia estar causando esse erro?

- Observação 1
- Observação 2

A função pmap funciona da seguinte maneira: ela combina os parâmetros elemento a elemento. Desse modo, na primeira posição, ela irá pegar o elemento na posição 1 das listas n, prob_X2, logit e efetuar a computação. Desse modo, tem-se gera_bayes(n = 200, prob_X2 = 0.5, logit = TRUE), gera bayes(n = 1000, prob X2 = 0.5, logit = TRUE) e assim sucessivamente.