課題1デーブルデータ

高松 周平

- ひとまず適当にSGDClassifierで分類をを行ってみました
- scikit-learnのサイト[1]で紹介されているフローチャートに従って手法を選びました。

- 結果は

CV of train : 0.3646056767403385

CV of test : 0.3646033234942299

となり、線形な手法であるからか精度は低いように感じました。

問1参考サイト

- 参考にしたサイトは多くありますが、すべてを写経したわけではなく自分なりに書き直しています。
- https://scikitlearn.org/stable/tutorial/machine_learning_map/index.html
- https://qiita.com/yut-nagase/items/6c2bc025e7eaa7493f89

有用な特徴量だけ捉える

In [9]: ▶ covtype_df.describe().T

Out[9]:

count mean Cover_Type 581012.0 2.051471 1.396504 2.0 Elevation 581012.0 2959.365301 279.984734 1859.0 2809.0 2996.0 Aspect 581012.0 155.656807 111.913721 0.0 127.0 14.103704 Slope 581012.0 7.488242 0.0 9.0 13.0 Horizontal_Distance_To_Hydrology 581012.0 269.428217 212.549356 384.0 1397.0 0.0 Vertical_Distance_To_Hydrology 581012.0 58.295232 -173.0 46.418855 7.0 Horizontal Distance To Roadways 581012.0 2350.146611 1559.254870 0.0 1106.0 1997.0 3328.0 7117.0 Hillshade 9am 581012.0 212.146049 26.769889 218.0 231.0 254.0 Hillshade_Noon 581012.0 223.318716 19.768697 0.0 213.0 226.0 237.0 254.0 Hillshade 3pm 581012.0 142.528263 38.274529 0.0 119.0 143.0 254.0 Horizontal_Distance_To_Fire_Points 581012.0 1324.195210 1980.291226 0.448865 Wilderness_Area_0 581012.0 0.497379 Wilderness Area 1 581012.0 0.051434 0.220882 0.0 0.0 0.0 0.0 Wilderness_Area_2 581012.0 0.436074 0.495897 0.0 0.0 Wilderness_Area_3 581012.0 0.063627 0.244087 0.0 0.0 0.0 Soil_Type_0 581012.0 0.005217 0.072039 0.0 0.0 0.0 1.0 Soil_Type_1 581012.0 0.012952 0.113066 0.0 0.0 0.0 0.0 Soil_Type_2 581012.0 0.008301 0.090731 0.0 0.0 Soil_Type_3 581012.0 0.021335 0.144499 0.0 0.0 0.0 Soil_Type_4 581012.0 0.002749 0.052356 1.0 0.0 0.0 0.0 Soil_Type_5 581012.0 0.011316 0.105775 0.0 0.0 1.0 Soil Type 6 581012.0 0.000181 0.013442

- データの中身の分析を行いました。
- Wilderness_Area_0以降のデータはtrue or false の二値であり、One-Hot Vectorであるとわかりました。

- それ以外のデータでの相関係数のヒートマップ をプロットしました。
- 目的の変数とひときわ強い相関のあるパラメー タはパット見ありませんでした

- 相関係数とソートすることで相関係数の強いパラメータを確認しました。

	>	> >		>
[21]: N	covtype_df.corr().unstack().sort_	values().drop_duplicates()		
Out [21]:	Wilderness_Area_0	Wilderness_Area_2	-0.793593	
	Hillshade_3pm	Hillshade_9am	-0.780296	
	Wilderness_Area_3	Elevation	-0.619374	
	Hillshade_9am	Aspect	-0.579273	
	Slope	Hillshade_Noon	-0.526911	
	Soil_Type_28	Wilderness_Area_O	0.550549	
	Hillshade_3pm	Hillshade_Noon	0.594274	
	Horizontal_Distance_To_Hydrology	Vertical_Distance_To_Hydrology	0.606236	
	Hillshade_3pm	Aspect	0.646944	
	Cover_Type	Cover_Type	1.000000	
	Length: 1486, dtype: float64			

- One-Hot Vectorの三種類のパラメータをプロットしてみました。
- ほぼfalseであるパラメータもあることが確認できました。

- One-Hot Vectorの三種類のパラメータをプロットしてみました。
- ほぼfalseであるパラメータもあることが確認できました。

- 規格化を行いました

Out [33]:

	Cover_Type	Elevation	Aspect	Slope	$Horizontal_Distance_To_Hydrology$	Vertical_Distance_To_Hydrology	Horizontal_Distance_To_Roadways	Hi
0	5	-1.297805	-0.935157	-1.482820	-0.053767	-0.796273	-1.180146	
1	5	-1.319235	-0.890480	-1.616363	-0.270188	-0.899197	-1.257106	
2	2	-0.554907	-0.148836	-0.681563	-0.006719	0.318742	0.532212	
3	2	-0.622768	-0.005869	0.520322	-0.129044	1.227908	0.474492	
4	5	-1.301377	-0.988770	-1.616363	-0.547771	-0.813427	-1.256464	
581007	3	-2.012130	-0.023740	0.787408	-0.867697	-0.504653	-1.437962	
581008	3	-2.029988	-0.032675	0.653865	-0.952383	-0.590424	-1.446299	
581009	3	-2.047847	0.029873	0.386780	-0.985317	-0.676194	-1.449506	
581010	3	-2.054990	0.128163	0.119694	-0.985317	-0.710502	-1.449506	
581011	3	-2.058562	0.083486	-0.147392	-0.985317	-0.727656	-1.464256	

581012 rows x 55 columns

- ロジスティック回帰を行いました。
- 結果は

CV of train: 0.6629045478895632

CV of test: 0.6633563677357728

- となり比較的高い予測精度となりました。

- ロジスティック回帰を行いました。
- なおmaxのイテレーションは500回としましたが、頭打ちだったようです。

- 結果は

CV of train: 0.6629045478895632

CV of test: 0.6633563677357728

- となり比較的高い予測精度となりました。

- シンプルなMLPを用いて予測を行いました。
- 結果は

 00400010101_1

Non-trainable params: 0

Layer (type)	Output Shape	Param #
dense_5 (Dense)	(None, 54)	2970
dense_6 (Dense)	(None, 48)	2640
dense_7 (Dense)	(None, 32)	1568
dense_8 (Dense)	(None, 16)	528
dense_9 (Dense)	(None, 8)	136

0.82 0.80 0.78 0.76 0.74 0.72 -0.70 20 40 60 80 100

CV of test: 0.8213729421787733

- となり割と高い予測精度となりました。

問2参考サイト

- 参考にしたサイトは多くありますが、すべてを写経したわけではなく自分なりに書き直しています。
- https://www.kaggle.com/code/mdriponmiah/eda-and-datavisualization-for-beginners
- https://www.kaggle.com/code/devanshiipatel/forest-covertype-classification