Assignment 2

CS 310: Discrete Computational Structures University of Regina Department of Computer Science Fall 2018

Due date: October 10, 2018 at 1:30 pm

- 1. (10 points) Devise an algorithm to compute x^n , where x is a real number and n is an integer. [Hint: First give a procedure for computing x^n when n is non-negative by successive multiplication by x, starting with 1. Then extend this procedure, and use the fact that $x^{-n} = 1/x^n$ to compute x^n when n is negative.]
- 2. (10 points) Describe an algorithm for finding the smallest integer in a finite sequence of natural numbers.
- 3. (10 points) Specify the steps of an algorithm that locates an element in a list of increasing integers by successively splitting the list into four sublists of equal (or as close to equal as possible) size, and restricting the search to the appropriate piece.
- 4. (18 points) Determine whether each of these functions is $O(x^2)$.
 - (a) f(x) = 17x + 11
 - (b) $f(x) = x^2 + 1000$
 - (c) $f(x) = x \log x$
 - (d) $f(x) = x^4/2$
 - (e) $f(x) = 2^x$
 - (f) $f(x) = |x| \cdot \lceil x \rceil$
- 5. (4 points) Use the definition of "f(x) is O(g(x))" to show that $2^x + 17$ is $O(3^x)$.
- 6. (6 points) Show that $(x^3 + 2x)/(2x + 1)$ is $O(x^2)$.

- 7. (12 points) Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.
 - (a) $f(x) = 2x^2 + x^3 \log x$
 - (b) $f(x) = 3x^5 + (\log x)^4$
 - (c) $f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$
 - (d) $f(x) = (x^3 + 5\log x)/(x^4 + 1)$
- 8. (10 points) Arrange the function $(1.5)^n$, n^{100} , $(\log n)^3$, $\sqrt{n} \log n$, 10^n , $(n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big-O of the next function.
- 9. (10 points) Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ whenever n is a positive integer.
- 10. (10 points) Prove that for every positive integer n,

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2) = n(n+1)(n+2)(n+3)/4.$$