RECAP: SURROGATES & GP

FOR STRUCTURAL ESTIMATION AND UNCERTAINTY QUANTIFICATION

University of Geneva March 25th, 2025

https://github.com/sischei/Deep_Learning_Geneva_2025

Simon Scheidegger simon.scheidegger@unil.ch

Unil

I. Confronting Models to data

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3885021

- Contemporary models very rich (many endogenous states, exogenous states, strong non-linearities, lots of parameters,...).
- Expensive to compute.
- Consequently, economists are often forced to sacrifice certain features of the model in order to reduce model dimensionality.
 - estimate only a partial set of parameters while prefixing the others.
 - estimate the model only once using the full sample.
- The high computational costs limit a researcher's ability to carry out a variety of important model analyses.
- Model estimation, calibration, and uncertainty quantification can be daunting numerical tasks
 - → because of the need to perform sometimes hundreds of thousands of model evaluations to obtain converging estimates of the relevant parameters and converging statistics
 - (see, e.g., Fernández-Villaverde, Rubio-Ramrez, and Schorfheide, 2016; Fernandez-Villaverde and Guerrn-Quintana, 2020; Iskhakov, Rust, and Schjerning, 2020; Igami, 2020, among others).

Surrogate Models: 21st Century "Lookup Table"

The basic idea

- Replace the economic model with a surrogate!
- Consider a model

$$f: \mathbb{R}^m \to \mathbb{R}^k = f(\Omega_t, H_t | \Theta) = y_t$$

- where Ω_t is a vector of dimension ω containing the observable states
- H_t is a vector of dimension h comprising the hidden states
- Θ is a vector of dimension θ containing model parameters
- y_t is a vector of dimension k comprising the predicted quantities of interest (such as simulated moments, social cost of carbon in a given year, etc.)

The basic idea (II)

The problem is that $f(\cdot)$ can be computationally costly, so we wish to construct a cheap to evaluate surrogate, i.e., a Neural Network that replaces the "true" function $f(\cdot)$:

$$\hat{f}(\Omega_t, H_t, \Theta) = \hat{f}(X_t) = y_t$$

We introduce parameters as pseudo-state variables (cf. Norets (2012), Scheidegger & Bilionis (2019))

$$X_t = [\Omega_t, H_t, \Theta]^T$$
.

- Solve model only once, as a function of X_t (global solution) e.g. by using Deep Learning, e.g., by DEQN.
- For reasonable parameter ranges, you may have to use "expert knowledge".

Why (deep) surrogate?

Why (deep) surrogate?

Some remarks

Deep surrogate is different from standard ML:

- Compared to other methods, deep neural networks are more hungry for data.
- The cost of producing a large training sample should be an important consideration.
- Unlike in standard ML, we know the true model ⇒ unlimited data (only limited by
- computational resources); essentially no errors.
- Double descent: Use a large number of epochs
 - → Stephenson and Lee (2021); Nakkiran et al., (2021)

Once trained, the deep surrogate

- is highly accurate;
- is cheaper to use by orders of magnitude; makes the gradients readily available;
- is easy to store (for 10^6 parameters 20 MB vs. $\sim 10^6$ GB when using Cartesian grid).

Pay the cost upfront; use it for free later.

- High quality surrogates can be shared with and build on by a community.
- Deep surrogates for workhorse quantitative economic and financial models.

Static data

https://github.com/DeepSurrogate/OptionPricing

Deep Surrogate for Asset Pricing

The figure above the implied volatility surface of the Bates model with Double Jump Exponential generated with QuantLib (left) and the Deep-Surrogate (right)

Example: DEQN with pseudo-states

- Let's have a look at a stochastic growth-model with parameters as pseudo-states.
- Code: day2/code/DEQN_production_code/stochastic_growth_pseudostates
 - → Solutions can be used to generate to simulate moments, and other quantities of interest.

II. DEQN surrogate

The planner's problem is

$$\max_{C_t, K_{t+1}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t b_t \frac{C_t^{1-\tau} - 1}{1 - \tau},$$
 (1)

subject to the resource constraint

$$C_t = A_t K_t^{\alpha} + (1 - \delta)K_t - K_{t+1} \text{ (multiplier } \beta^t b_t \mu_t \text{)}$$
 (2)

and the irreversability condition

$$K_{t+1} - (1 - \delta)K_t \ge 0$$
 (multiplier $\beta^t b_t \lambda_t$). (3)

The Lagrangian takes the form

$$\max_{C_t, K_{t+1}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t b_t \left\{ \frac{C_t^{1-\tau} - 1}{1-\tau} + \mu_t \left[A_t K_t^{\alpha} + (1-\delta)K_t - K_{t+1} - C_t \right] + \lambda_t \left(K_{t+1} - (1-\delta)K_t \right) \right\}. \tag{4}$$

The Kuhn-Tucker conditions take the form:

$$(C_t)$$
: $0 = C_t^{-\tau} - \mu_t$ (5)

$$(K_{t+1})$$
: $0 = -\mu_t + \lambda_t + \beta \mathbb{E}_t \left\{ \frac{b_{t+1}}{b_t} \left(\mu_{t+1} \left[\alpha A_{t+1} K_{t+1}^{\alpha-1} + (1-\delta) \right] - \lambda_{t+1} (1-\delta) \right) \right\}$ (6)

$$(CS)$$
: $0 = \lambda_t [K_{t+1} - (1 - \delta)K_t]$. (7)

Define $d_t = b_t/b_{t-1}$. We assume that the exogenous shock processes evolve according to

$$\ln A_t = (1 - \rho_A) \ln A_* + \rho_a \ln A_{t-1} + \sigma_a \epsilon_{a,t} \qquad (8)$$

$$\ln d_t = \rho_d \ln d_{t-1} + \sigma_d \epsilon_{d,t}. \qquad (9)$$

Gaussian Process Regression

http://www.gaussianprocess.org/gpml/

Recall: Aim of Regression

- Given some (potential) noisy observations of a dependent variable at certain values of the independent variable x, what is our best estimate of the dependent variable y at a new value, x.?
- Let *f* denote an (unknown) function which maps inputs x to outputs

$$f:X \rightarrow Y$$

- Modeling a function f means mathematically representing the relation between inputs and outputs.
- Often times, the shape of the underlying function might be unknown, the function can be hard to
 evaluate, or other requirements might complicate the process of information acquisition.

<u>Observations</u> → <u>Interpolation</u>

We have 3 observations at x_i for $f(x_i)$

- → Given the data pairs $D = \{ (x_1,f_1), (x_2,f_2), (x_3,f_3) \}$
- → want to find/learn the function that describes the data, i.e., for a "new" x*, we want to know what f(x*) would be!

Observations → Interpolation (II)

We assume that f's (the height) are Gaussian distributed, with zero – mean and some covariance matrix K.

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \sim N \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{11}, K_{12}, K_{13} \\ K_{21}, K_{22}, K_{23} \\ K_{31}, K_{32}, K_{33} \end{bmatrix}$$

Note: f_1 and f_2 should probably be more correlated, as they are nearby (compared to f_1 and f_3).

- $_{\rightarrow}$ The prior mean function μ reflects the expected function value at input x: $\mu(x) = \mathbb{E}(f(x))$
- \rightarrow It is often set to 0.

Observations → Interpolation (II)

We assume that f's (the height) are Gaussian distributed, with zero – mean and some covariance matrix K.

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \sim N \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{11}, K_{12}, K_{13} \\ K_{21}, K_{22}, K_{23} \\ K_{31}, K_{32}, K_{33} \end{bmatrix}$$

Note: f_1 and f_2 should probably be more correlated, as they are nearby (compared to f_1 and f_3), e.g.,

$$\sim N egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$$
 , $egin{bmatrix} 1,0.7,0.2 \ 0.7,1,0.6 \ 0.2,0.6,1 \end{bmatrix}$

$$\kappa(x, x') = \sigma_f^2 \exp(-\frac{1}{2\ell^2}(x - x')^2)$$

 σ_f^2 – controls vertical variation.

 ℓ - controls horizontal length scale.

<u>Observations</u> → Interpolation (III)

Given data D = { $(x_1,f_1), (x_2,f_2), (x_3,f_3)$ } $\rightarrow f(x^*) = f_*$?

- \rightarrow Assume f $\sim N(0, K(\cdot, \cdot))$
- \rightarrow Assume f(x*) ~ N(0, K(x*,x*))

3d-Covariance K from the training data

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_* \end{pmatrix} \sim N \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} K_{11}, K_{12}, K_{13}, K_{1*} \\ K_{21}, K_{22}, K_{23}, K_{2*} \\ K_{31}, K_{32}, K_{33}, K_{3*} \\ K_{*1}, K_{*2}, K_{*3}, K_{**} \end{bmatrix}$$

- → Joint distribution over f and f*.
- → We need the conditional of f_{*} given f.
- → In this example, we "cut" in 3 dimensions.
- → What is left is a 1-dimensional Gaussian, i.e., the Gaussian for f.

<u>Interpolation</u> → <u>Noiseless GPR</u>

(see, e.g., Rasmussen & Williams (2006), with references therein)

Prior GP

Posterior GP

Training set: $D = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\}$

$$\begin{pmatrix} \mathbf{f} \\ \mathbf{f}_* \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu}_* \end{pmatrix}, \begin{pmatrix} \mathbf{K} & \mathbf{K}_* \\ \mathbf{K}_*^T & \mathbf{K}_{**} \end{pmatrix} \right) \quad \begin{array}{rcl} p(\mathbf{f}_* | \mathbf{X}_*, \mathbf{X}, \mathbf{f}) & = & \mathcal{N}(\mathbf{f}_* | \boldsymbol{\mu}_*, \boldsymbol{\Sigma}_*) \\ \boldsymbol{\mu}_* & = & \boldsymbol{\mu}(\mathbf{X}_*) + \mathbf{K}_*^T \mathbf{K}^{-1} (\mathbf{f} - \boldsymbol{\mu}(\mathbf{X})) \\ \boldsymbol{\Sigma}_* & = & \mathbf{K}_{**} - \mathbf{K}_*^T \mathbf{K}^{-1} \mathbf{K}_* \\ \end{array}$$

- $_ o$ predictive mean $\; \mu_* = \mathbb{E}(f_*)$
- → Confidence Intervals! Where we have data, we have high confidence in our predictions. Where we do not have data, we cannot be to confident about our predictions.

GPR with noisy data (II)

- In this case (presence of noise), the model is not required to interpolate the data, but it must come "close" to the observed data.
- The covariance of the observed noisy responses is

$$\operatorname{cov}\left[y_p,y_q\right] = \kappa(\mathbf{x}_p,\mathbf{x}_q) + \sigma_y^2 \delta_{pq}$$
 where $\delta_{pq} = \mathbb{I}(p=q)$

 The second matrix is diagonal because we assumed the noise terms were independently added to each observation.

The GPR with noisy data (III)

 The joint density of the observed data and the latent, noise-free function on the test points is given by

- where we are assuming the mean is zero, for notational simplicity.
- Hence the posterior predictive density is

$$p(\mathbf{f}_*|\mathbf{X}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{f}_*|\boldsymbol{\mu}_*, \boldsymbol{\Sigma}_*)$$

$$\boldsymbol{\mu}_* = \mathbf{K}_*^T \mathbf{K}_y^{-1} \mathbf{y}$$

$$\boldsymbol{\Sigma}_* = \mathbf{K}_{**} - \mathbf{K}_*^T \mathbf{K}_y^{-1} \mathbf{K}_*$$

Prediction at a single test point

In the case of a single test input, this simplifies as follows

$$p(f_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(f_*|\mathbf{k}_*^T \mathbf{K}_y^{-1} \mathbf{y}, k_{**} - \mathbf{k}_*^T \mathbf{K}_y^{-1} \mathbf{k}_*)$$

where
$$\mathbf{k}_* = [\kappa(\mathbf{x}_*, \mathbf{x}_1), \dots, \kappa(\mathbf{x}_*, \mathbf{x}_N)]$$

and where
$$k_{**} = \kappa(\mathbf{x}_*, \mathbf{x}_*)$$
 (=1)

Again, we can write the posterior mean as expansion of basis functions

$$\overline{f}_* = \mathbf{k}_*^T \mathbf{K}_y^{-1} \mathbf{y} = \sum_{i=1}^N \alpha_i \kappa(\mathbf{x}_i, \mathbf{x}_*) \quad \text{where } \boldsymbol{\alpha} = \mathbf{K}_y^{-1} \mathbf{y}$$
from training data

Some Plots

cf. demo/1d_gp_example.ipynb

- Even in the regions where you have data, there is still uncertainty.
- In the noise-free version of GPR, the uncertainty is 0 at observation points.
- But we still have the same properties as before: where we have data, we are more certain compared to the case where we have no data.

Noise improves numerical stability

- It is common to use small noise even if there is not any in the data.
- Cholesky fails when covariance is close to being semipositive definite.
- Adding a small noise improves numerical stability.
- It is known as the "jitter" or as the "nugget" in this case.

"Learning" the kernel parameters

- To estimate the kernel parameters, we could use exhaustive search over a discrete grid of values, with validation loss as an objective, but this can be quite slow.
- Here we consider an empirical Bayes approach, which will allow us to use continuous optimization methods, which are much faster.
- In particular, we will maximize the marginal likelihood.

Example

lectures/day4/code/01_recap_week1.ipynb

