Examen de Teoría de Percepción - Segundo Parcial ETSINF, Universitat Politécnica de Valéncia, Junio de 2021

Apellidos:	Nombre:		
Profesor: □Jorge Civera □Carlos Martínez			
Cuestiones (1.5 puntos, 30 minutos, sin apunto	es)		
Indicar cuál de las siguientes fórmulas se corres unidimensional de parámetro p siendo x una vari	-	distribución	Bernoulli
$A) p(x) = p^{1-x}$			
B) $p(x) = (1-p)^{1-x}p^x$			
C) $p(x) = p^x (1-p)^x$			
D) $p(x) = p^x (1-p)^{x-1}$			

- Dado un problema de clasificación en un espacio tridimensional en tres clases equiprobables, con probabilidades condicionadas gaussianas de parámetros $\mu_A = (-1 \ 3 \ -2)$, $\mu_B = (1 - 1 \ 2)$ y $\mu_C = (0 \ 0 \ 1)$, con $\Sigma = I$ común, el vector $\mathbf{x} = (1 \ 1 \ 0)$ se clasificaría en la clase (Nota: $c^*(\mathbf{x}) = \arg\max_c \mu_c^t \Sigma^{-1} \mathbf{x} + \log P(c) - \frac{1}{2} \mu_c^t \Sigma^{-1} \mu_c$):
 - A) A
 - B) B
 - C) C
 - D) Hay empate

Dado el siguiente conjunto de muestras en $\{0,1\}^4$:

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6
$\overline{x_{n1}}$	0	1	1	1	1	1
x_{n2}	1	0	1	1	0	1
x_{n3}	0	0	1	1	1	1
x_{n4}	1	0	1	1	1	1
С	A	A	A	В	В	В

la estimación de los parámetros por máxima verosimilitud de distribuciones Bernouilli daría como resultado:

A)
$$\mathbf{p}_{A} = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right), \ \mathbf{p}_{B} = \left(\frac{3}{3}, \frac{2}{3}, \frac{3}{3}, \frac{3}{3}\right)$$
B) $\mathbf{p}_{A} = \left(\frac{2}{4}, \frac{1}{4}, \frac{4}{4}\right), \ \mathbf{p}_{B} = \left(\frac{4}{4}, \frac{3}{4}, \frac{4}{4}\right)$
C) $\mathbf{p}_{A} = \left(\frac{5}{6}, \frac{4}{6}, \frac{4}{6}, \frac{5}{6}\right), \ \mathbf{p}_{B} = \left(\frac{1}{6}, \frac{2}{6}, \frac{2}{6}, \frac{1}{6}\right)$
D) $\mathbf{p}_{A} = \left(\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right), \ \mathbf{p}_{B} = \left(\frac{3}{11}, \frac{2}{11}, \frac{3}{11}, \frac{3}{11}\right)$

B)
$$\mathbf{p}_A = \begin{pmatrix} \frac{2}{4} & \frac{1}{4} & \frac{4}{4} \end{pmatrix}, \ \mathbf{p}_B = \begin{pmatrix} \frac{4}{4} & \frac{3}{4} & \frac{4}{4} \end{pmatrix}$$

C)
$$\mathbf{p}_A = (\frac{5445}{6666}), \mathbf{p}_B = (\frac{1221}{6666})$$

D)
$$\mathbf{p}_A = \begin{pmatrix} 2 & 2 & 1 & 2 \\ 7 & 7 & 7 & 7 \end{pmatrix}, \ \mathbf{p}_B = \begin{pmatrix} 3 & 2 & 3 & 3 \\ 11 & 11 & 11 & 11 \end{pmatrix}$$

Dada la distribución multinomial con parámetro $\mathbf{p} = \left(\frac{1}{10} \frac{7}{10} \ 0 \ \frac{2}{10}\right)$, al aplicar suavizado por descuento absoluto y posterior <i>backoff</i> usando $\epsilon = \frac{1}{20}$ y la distribución uniforme, ¿qué afirmación es correcta respecto al parámetro suavizado resultante?	
 A) La componente que inicialmente tiene mayor valor no se ve alterada B) Las componentes que originalmente no son nulas no se ven alteradas C) La componente de menor valor sigue siendo la misma que inicialmente tenía menor valor 	
D) La componente de menor valor resultante no es la misma que en el original	
Dada la función Kernel $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^t \mathbf{y})^2$, la matriz Gramm para el par de muestras $\mathbf{x} = (1\ 1)^t$ y $\mathbf{y} = (-1\ 1)^t$ es:	
 A) Una matriz diagonal B) La matriz identidad C) La matriz nula D) Una matriz no simétrica 	
Si se tienen un par de kernels $K_1(\mathbf{x}, \mathbf{y})$ y $K_2(\mathbf{x}, \mathbf{y})$, ¿cuál de las siguientes combinaciones sería un kernel?	
A) $K_1(\mathbf{x}, \mathbf{y}) - K_2(\mathbf{x}, \mathbf{y})$ B) $K_1(\mathbf{x}, \mathbf{y}) + K_2(\mathbf{x}, \mathbf{y})^{-1}$ C) $K_1(\mathbf{x}, \mathbf{y}) \cdot K_2(\mathbf{x}, \mathbf{y})$ D) $K_1(\mathbf{x}, \mathbf{y}) \cdot K_2(\mathbf{x}, \mathbf{y})^{-1}$	
A la hora de combinar reducciones de dimensión por PCA seguida por LDA hay que tener en cuenta que:	
 A) PCA tiene su dimensión destino limitada por el número de muestras B) La dimensión final está restringida por el número de clases C) Sólo debe hacerse cuando las clases son originalmente linealmente separables D) La dimensión intermedia está restringida por el número de clases 	
Las fuentes de error en clasificación sobre las que puede actuar la combinación de clasificadores son:	
 A) Ruido y varianza B) Sesgo y ruido C) Sesgo, ruido y varianza D) Sesgo y varianza 	