CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

Dasapalli Immanuelu – Pragati Engineering College – CSE

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Example: Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

- Develop a machine learning model for Power System Fault Detection and Classification using the dataset provided. The model will analyze electrical measurements to swiftly and accurately identify different types of faults within a power distribution system. This classification mechanism will automate fault detection and support faster recovery actions, ultimately enhancing grid reliability.
- Key components:
- Data Collection: Use Kaggle containing fault scenarios and corresponding electrical phasor data.
- Preprocessing: Clean, normalize, and structure the data to ensure high-quality inputs for the model.
- Model Training: Train a classification model such as Decision Tree, Random Forest, or SVM tailored for fault category recognition.
- **Evaluation**: Assess the model using metrics like accuracy, precision, recall, and F1-score to validate its performance.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the rental bike prediction system. Here's a suggested structure for this section:

System requirements

IBM CLOUD

IBM Wastonx.ai studio for model development and deployment

IBM Cloud object storage for dataset handling

ALGORITHM & DEPLOYMENT

- In the Algorithm section, describe the machine learning algorithm chosen for predicting bike counts. Here's an example structure for this section:
- Algorithm Selection:
 We use a Random Forest Classifier (or optionally SVM) due to its high performance and robustness in fault type classification from electrical signal patterns.
- Data Input:
 Voltage, current, and phasor measurements from the system are used as input features.
- Training Process:
 Supervised learning is applied using labeled fault data, enabling the model to learn decision boundaries between fault types.
- Prediction Process:
 The trained model is deployed on IBM Watson Studio with an API endpoint that supports real-time fault detection and classification.
- Let me know if you'd like help drafting the deployment architecture or visualizing the data flow!

CONCLUSION

In conclusion, the integration of machine learning algorithms like **Random Forests**, **SVM**, or **ANNs** with real-time signal data significantly enhances fault detection and classification accuracy in power systems. By leveraging voltage/current measurements and advanced feature extraction techniques (e.g., Wavelet Transform), modern systems can swiftly identify fault types, minimize outages, and support automated recovery—making power grids smarter, safer, and more reliable.

FUTURE SCOPE

The future of fault detection lies in Al-powered smart grids that use deep learning models like CNNs and LSTMs for real-time fault prediction, adaptive response, and self-healing capabilities. Integration with IoT sensors, PMUs, and cloud-based analytics will enable scalable, automated, and ultra-fast fault management across modern power networks

REFERENCES

■ Fault detection and classification are critical for maintaining the stability and reliability of electrical power systems. When faults like line-to-ground (LG), line-to-line (LL), double line-to-ground (LLG), or three-phase faults (LLL) occur, rapid identification and isolation are essential to prevent cascading failures.

IBM CERTIFICATIONS

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Immanuelu Dasapalli

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 21, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/4fe56d5f-1502-4156-a64e-51cbfe2733c1

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Immanuelu Dasapalli

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 23 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

