Machine Learning: An Introduction

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

ML: From Rules to Data

Example: Activity Recognition

Example: Activity Recognition

Label = WALKING

Label = RUNNING

Label = BIKING

1111111111010011101 00111110101111110101 010111010101010101110 1010101010100111110

Label = GOLFING

Training and Testing

Training Phase

What is ML?

- Term "Machine Learning" coined by Arthur Samuel in 1959.
 - Samuel Checkers-playing Program
- Common definition (by Tom Mitchell)
 - Machine Learning is the study of computer algorithms that improve automatically through experience

More details

- Study of algorithms that
 - improve their performance P
 - o at some task T
 - with experience E
- Well-defined learning task: <P,T,E>

Task (T)

- Classification or Pattern Recognition
- Regression or Prediction
- Clustering
- Synthesis or Sampling
- Ranking
- Recommendation Systems
- Anomaly Detection
- Data Mining etc.

Performance (P)

- A quantitative measure to evaluate performance
 - Usually Task specific
- Classification

Performance (P)

- Regression
 - Error measure such as 'mean squared error'

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2.$$

Experience (E)

- Supervised Learning
 - Labelled data (Data, target value)
 - Target value could be category/class labels, real value, real vector, etc.
 - Classification, Regression
- Unsupervised Learning
 - Only data, no labels
 - Dimensionality Reduction, ICA, Clustering
- Reinforcement Learning
 - No examples, but a reward function
 - Payoff based on actions

An Incomplete History of Learning

- Turing Test (1950)
 - Machines do very poorly
- Rosenblatt's Perceptron (1960's)
 - Kick started the mathematical analysis of the learning process
 - Key idea behind Support Vector Machines (SVMs) and Neural Networks
- Construction of Fundamentals of Learning Theory (1960-70's)
 - Focus on generalization capability of learning machines
 - Performance on unseen data
 - Regularization for ill-posed problems
 - e.g., linear equations for ill-conditioned matrices

- Neural Networks (1980's)
 - Connectionism
 - Back-propagation [LeCun, `86]
 - o CNNs, RNNs
- SVMs (1990's)
 - Margin Maximization
 - Kernel Methods to handle non-linearity
- Deep Learning (>2006)
 - Hinton, Bengio, LeCun at forefront
 - Abstract Representations
- (>2012) Craziness!!

Most Amazing Milestones So Far

• 1997 – Deep Blue defeats world chess champion Garry Kasparov

Deep Blue IBM chess computer

Garry Kasparov World Chess Champion

- 2005 The DARPA Grand Challenge
- A \$2 million prized race for autonomous vehicles across 100+ kms off-road terrain in the desert.

Stanford Racing Team's leader Sebastian Thrun

Most Amazing Milestones So Far

- 2011 IBM Watson's Jeopardy! Victory
- The final tally was \$77,147 to Mr. Jennings's \$24,000 and Mr. Rutter's \$21,600.

- 2015 Machines "see" better than humans
- Largescale image recognition contest for classifying 50,000 high-resolution color images into 1,000 categories.
- The model is considered to have classified a given image correctly if the target label is one of the model's top 5 predictions.

Most Amazing Milestones So Far

- 2016 AlphaGo created by Deep Mind (now a Google subsidiary) defeated world Go champion Lee Sedol over five matches.
- There are over 100,000 possible opening moves in Go, compared to 400 in Chess, make the brute force approach impractical.

Recent Progress

- Google Search
- Computer Vision / Image Recognition
 - ImageNet
 - Convolutional Neural Networks
- Autonomous driving
- Speech Recognition
- Voice assistants
 - Apple's Siri, Microsoft's Cortana, Amazon's Echo
- Language Translation
 - Google Translate
 - Unsupervised Translation
- Game Playing / Deep Reinforcement Learning
 - AlphaGo

ML vs DL

Traditional Machine Learning

Requires handcrafted features

Deep Learning

Convolutional Neural Network (CNN)

End-to-end learning

Feature learning + Classification

Next Class

- Learning Problems and the Empirical Risk Minimization Framework
- Loss Functions for Classification and Regression
- Evaluation Metrics for Classification

References

1. Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning: DeepLearning.AI

