Greedy Algorithms: Grouping Children

Michael Levin

Higher School of Economics

Algorithmic Design and Techniques Algorithms and Data Structures

Outline

1 The Problem

2 Naive Algorithm

3 Efficient Algorithm

Many children came to a celebration. Organize them into the minimum possible number of groups such that the age of any two children in the same group differ by at most one year.

Outline

1 The Problem

2 Naive Algorithm

3 Efficient Algorithm

MinGroups(C)

 $m \leftarrow \text{len}(C)$

 $C = G_1 \cup G_2 \cup \cdots \cup G_k$:

good ← true for i from 1 to k:

 $m \leftarrow \min(m, k)$

if good:

return *m*

 $good \leftarrow false$

if $\max(G_i) - \min(G_i) > 1$:

for each partition into groups

Running time

Lemma

The number of operations in MinGroups(C) is at least 2^n , where n is the number of children in C.

Consider just partitions in two groups

- Consider just partitions in two groups
- $C = G_1 \cup G_2$

- Consider just partitions in two groups
- $C = G_1 \cup G_2$
- For each $G_1 \subset C$, $G_2 = C \setminus G_1$

- Consider just partitions in two groups
- $C = G_1 \cup G_2$
- For each $G_1 \subset C$, $G_2 = C \setminus G_1$
- Size of *C* is *n*

- Consider just partitions in two groups
- $C = G_1 \cup G_2$
- For each $G_1 \subset C$, $G_2 = C \setminus G_1$
- Size of *C* is *n*
- Each item can be included or excluded from G_1

- Consider just partitions in two groups
- $C = G_1 \cup G_2$
- For each $G_1 \subset C$, $G_2 = C \setminus G_1$
- Size of *C* is *n*
- Each item can be included or excluded from G_1
- There are 2^n different G_1

- Consider just partitions in two groups
- $C = G_1 \cup G_2$
- For each $G_1 \subset C$, $G_2 = C \setminus G_1$
- Size of *C* is *n*
- **Each** item can be included or excluded from G_1
 - There are 2^n different G_1
 - Thus, at least 2^n operations

Naive algorithm works in time $\Omega(2^n)$

- Naive algorithm works in time $\Omega(2^n)$
- For n = 50 it is at least

$$2^{50} = 1125899906842624$$

operations!

- Naive algorithm works in time $\Omega(2^n)$
- For n = 50 it is at least

$$2^{50} = 1125899906842624$$

operations!

We will improve this significantly

Outline

1 The Problem

2 Naive Algorithm

3 Efficient Algorithm

Covering points by segments

Input: A set of *n* points $x_1, \ldots, x_n \in \mathbb{R}$.

Output: The minimum number of segments of unit length needed to cover all the points.

Example

Example

Example


```
Assume x_1 < x_2 < \ldots < x_n
PointsCoverSorted(x_1, \ldots, x_n)
```

$$R \leftarrow \{\}, i \leftarrow 1$$
while $i \leq n$:
 $[\ell, r] \leftarrow [x_i, x_i + 1]$

 $i \leftarrow i + 1$ while i < n and $x_i < r$:

 $i \leftarrow i + 1$

return R

 $R \leftarrow R \cup \{[\ell, r]\}$

The running time of PointsCoverSorted is O(n).

The running time of PointsCoverSorted is O(n).

Proof

 \bullet *i* changes from 1 to *n*

The running time of PointsCoverSorted is O(n).

- \bullet *i* changes from 1 to *n*
 - For each i, at most 1 new segment

The running time of PointsCoverSorted is O(n).

- *i* changes from 1 to *n*
 - \blacksquare For each i, at most 1 new segment
 - Overall, running time is O(n)

■ PointsCoverSorted works in O(n) time

- PointsCoverSorted works in O(n) time
- Sort $\{x_1, x_2, \dots, x_n\}$, then call PointsCoverSorted

- PointsCoverSorted works in O(n) time
- Sort $\{x_1, x_2, \dots, x_n\}$, then call PointsCoverSorted
- Soon you'll learn to sort in $O(n \log n)$

- PointsCoverSorted works in O(n) time
- Sort $\{x_1, x_2, \dots, x_n\}$, then call PointsCoverSorted
- Soon you'll learn to sort in $O(n \log n)$
- Sort + PointsCoverSorted is $O(n \log n)$

• Straightforward solution is $\Omega(2^n)$

- Straightforward solution is $\Omega(2^n)$
- Very long for n = 50

- Straightforward solution is $\Omega(2^n)$
- Very long for n = 50
- Sort + greedy is $O(n \log n)$

- Straightforward solution is $\Omega(2^n)$
- Very long for n = 50
- Sort + greedy is $O(n \log n)$
- Fast for $n = 10\ 000\ 000$

- Straightforward solution is $\Omega(2^n)$
- Very long for n = 50
- Sort + greedy is $O(n \log n)$
- Fast for $n = 10\ 000\ 000$
- Huge improvement!

Conclusion

- Straightforward solution is exponential
- Important to reformulate the problem in mathematical terms
- Safe move is to cover leftmost point
- Sort in $O(n \log n)$ + greedy in O(n)