Network Optimization Chapter 2: Mathematical Tools

Yiyin Wang yiyinwang@sjtu.edu.cn Department of Automation Shanghai Jiao Tong University

Oct. 21, 2014

Acknowledgements

Slides borrow heavily from lectures by Stephen Boyd (Stanford) and Lieven Vandenberghe (UCLA)

Part 1: Fundamentals of convex optimization

- ▶ 2.1 Convex sets, convex functions, and convex problems
- ► 2.2 Duality

Lagrangian

Standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

variable $x \in \mathbb{R}^n$, domain D, optimal value p^* Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = D \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- Weighted sum of objective and constraint functions
- ▶ λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- \triangleright ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu)$$

$$= \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ, ν Lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$ proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in D} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} given $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

Dual function

- ▶ Lagrangian is $L(x, \nu) = x^T x + \nu^T (Ax b)$
- ▶ To minimize *L* over *x*, set gradient equal to zero:

$$\nabla_{x} L(x, \nu) = 2x + A^{T} \nu = 0 \to x = -(1/2)A^{T} \nu$$

Plug in x into L to obtain g:

$$g(\nu) = L(((-1/2)A^T\nu, \nu)) = -\frac{1}{4}\nu^T AA^T\nu - b^T\nu$$

a concave function of ν

Lower bound property: $p^* \ge -(1/4) \nu^T A A^T \nu_{c} - b_{c}^T \nu_{c}$ for all ν_{c} ν_{c}

Standard form LP

minimize
$$c^T x$$

subject to $Ax = b, x \succeq 0$

Dual function

Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$

= $-b^T \nu + (c + A^T \nu - \lambda)^T x$

L is affine in x, hence

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^{T} \nu & A^{T} \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

Lower bound property: $p^* \ge -b^T \nu$ if $A^T \nu + c \ge 0$

Two-way partitioning

minimize
$$x^T W x$$

subject to $x_i^2 = 1, i = 1, ..., n$

- \triangleright A nonconvex problem; feasible set contains 2^n discrete points
- ▶ Interpretation: partition $\{1, ..., n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets

Dual function
$$g(\nu) = \inf_{x} (x^{T} W x + \sum_{i} \nu_{i} (x_{i}^{2} - 1)) = \inf_{x} \left(x^{T} (W + \operatorname{diag}(\nu)) x - \mathbf{1}^{T} \right) \nu$$

$$= \begin{cases} -\mathbf{1}^{T} \nu & W + \operatorname{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) | A^T \nu - \lambda + c = 0\}$, hence concave

Lower bound property: $p^* \geq -\mathbf{1}^T \nu$ if $W + \operatorname{diag}(\nu) \succeq 0$

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \leq b, Cx = d$

Dual function

$$g(\lambda, \nu) = \inf_{\mathbf{x} \in \text{dom } f_0} \left(f_0(\mathbf{x}) + (A^T \lambda + C^T \nu)^T \mathbf{x} - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- ▶ Recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- ightharpoonup Simplifies derivation of dual if conjugate of f_0 is known

Example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \quad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succ 0$

- Find best lower bound on p^* , obtained from Lagrange dual function
- A convex optimization problem; optimal value denoted d*
- ▶ λ, ν are dual feasible if $\lambda \succeq 0, (\lambda, \nu) \in \text{dom } g$
- ▶ Often simplified by making implicit constraint $(\lambda, \nu) \in \text{dom } g$ explicit

Example: standard form LP and its dual

minimize
$$c^T x$$

subject to $Ax = b$
 $x \succeq 0$

maximize $-b^T \nu$
subject to $A^T \nu + c \succeq 0$

Weak and strong duality

Weak duality: $d^* \leq p^*$

- Always holds (for convex and nonconvex problems)
- Can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$\begin{array}{ll} \text{maximize} & -\mathbf{1}^T \nu \\ \text{subject to} & W + \text{diag}(\nu) \succeq 0 \end{array}$$

given a lower bound for the two-way partitioning problem

Strong duality: $d^* = p^*$

- ► Does not hold in general
- (Usually) holds for convex problems
- Conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

Strong duality holds for a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

If it is strictly feasible, i.e.,

$$\exists x \in \text{int } D: \quad f_i(x) < 0, i = 1, \dots, m, Ax = b$$

- Also guarantees that the dual optimum is attained (if $p^* > -\infty$)
- ► Can be sharpened: e.g., can replace int D with relint D (interior relative to affine hull); linear inequalities do not need to hold with strict inequality
- There exist many other types of constraint qualifications

Inequality form LP

Primal problem

minimize
$$c^T x$$

subject to $Ax \leq b$

Dual function

$$g(\lambda) = \inf_{x} ((c + A^{T}\lambda)^{T}x - b^{T}\lambda) = \begin{cases} -b^{T}\lambda & A^{T}\lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Dual problem

maximize
$$-b^T \lambda$$

subject to $A^T \lambda + c = 0, \lambda \succeq 0$

- ▶ From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x}
- ▶ In fact, $p^* = d^*$ except when primal and dual are infeasible

Geometric interpretation

For simplicity, consider problem with one constraint $f_1(x) \leq 0$ Interpretation of dual function: $g(\lambda) = \inf_{u,t \in \mathcal{G}} (t + \lambda u)$, where $\mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$

- $ightharpoonup \lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to $\mathcal G$
- ▶ Hyperplane intersects t-axis at $t = g(\lambda)$

Complementary slackness

Assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*}) = \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x)$$

$$\leq f_{0}(x^{*})$$

$$(1)$$

Hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^* f_i(x^*) = 0$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_i^* > 0 \to f_i(x^*) = 0, \quad f_i(x^*) < 0 \to \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) conditions

The following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

1. Primal constraints:

$$f_i(x) \leq 0, i = 1, \ldots, m, h_i(x) = 0, i = 1, \ldots, p$$

- 2. Dual constraints: $\lambda \succeq 0$
- 3. Complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. Gradient of Lagrangian with respect to *x* vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

If strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

if $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- From complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- ▶ From the 4th condition (convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

Hence,
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$

If Slater's condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

- Recall that Slater implies strong duality, and dual optimum is attained
- ▶ Generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Example

Water-filling (assume $\alpha_i > 0$)

maximize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$
subject to
$$x \succeq 0, \mathbf{1}^{T} x = 1$$

KKT conditions:

Interpretation:

- n patches; level of patch i is at height α_i
- Flood area with unit amount of water
- ▶ Resulting level is $1/\nu^*$

Duality and problem reformulations

- Equivalent formulations of a problem can lead to very different duals
- ► Reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

Common reformulations

- Introduce new variables and equality constraints
- Make explicit constraints implicit or vice-versa
- ▶ Transform objective or constraint functions, e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

minimize
$$f_0(Ax + b)$$

▶ Dual function is constant:

$$g = \inf_{x} L(x) = \inf_{x} f_0(Ax + b) = p^*$$

We have strong duality, but dual is quite useless

Reformulated problem and its dual

minimize
$$f_0(y)$$
 maximize $b^T \nu - f_0^*(\nu)$
subject to $Ax + b - y = 0$ subject to $A^T \nu = 0$

Dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$
$$= \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Implicit constraints

LP with box constraints: primal and dual problem

minimize
$$c^T x$$
 maximize $-b^T \nu - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2$
subject to $Ax = b$ subject to $c + A^T \nu + \lambda_1 - \lambda_2 = 0$
 $-1 \le x \le 1$ $\lambda_1 \succeq 0, \lambda_2 \succeq 0$ (2)

Reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & -1 \le x \le 1\\ \infty & \text{otherwise} \end{cases}$$

subject to $Ax = b$

Dual function

$$g(\nu) = \inf_{-1 \le x \le 1} (c^T x + \nu^T (Ax - b))$$

= $-b^T \nu - ||A^T \nu + c||_1$

Dual problem: maximize $-b^T \nu - \|A^T \nu + c\|_{\mathbf{1}_{\square}}$

Summary

- Lagrange dual problem
- Weak and strong duality
- Geometric interpretation
- Optimality conditions
- Duality and problem reformulation