- 1. A monopolist can produce at a constant average (and marginal) cost AC = MC = 5. The market demand curve is Q = 53-P.
- (1) Calculate the monopolist's profit-maximizing price and output, and (1) Salculate its profit. (2) Assume that a
 - (2) Assume that a second vendor joins the market. The output of the first manufacturer is Q_1 , and the output of the second manufacturer is Q_2 . Market demand function is now $Q_1 + Q_2 = 53 - P$. The second manufacturer has the same cost as the first manufacturer. Calculate the profit of each manufacturer (as a function of Q_1 and Q_2).
 - (3) Find the "response curve" of each manufacturer. (Assume that each firm chooses its profit-maximizing production level, when its competitor's output is given).
 - (4) Calculate Cournot equilibrium. What is the market price? What is the profit of each manufacturer? (That is, calculate the value of Q_1 , Q_2 , P, and the profit of each manufacturer based on question (2) and (3))
 - (5) Now there are N manufacturers in this industry, each has the same cost AC = MC = 5. Find Cournot equilibrium. How many products each manufacturer will produce? What will the market price be? And how much profits each manufacturer will make? Also, prove that when N becomes larger, the market price is close to the price under perfect competition.
 - 2. Consider the Bertrand duopoly model with homogeneous products. Suppose that the quantity that consumers demand from i is a-p_i when $p_i < p_i$, 0 when $p_i > p_j$, and $(a - p_i)/2$ when $p_i = p_j$. Suppose also that there are no fixed costs and that marginal costs are constant at c, where c < a. Show that if the firms choose prices simultaneously, then the unique Nash equilibrium is that both firms charge the price c.
 - 3. The game being played is the one shown below; call this the "true" game

		l	- -		R	
1	Т	6,	3	0,	9	
	В	3,	3	3,	0	

Player 1 knows that she is playing this game, while Player 2 is uncertain as to whether she is playing this game or a different game, shown below, where the payoffs of Player 1 are different:

-				2				
			_	L		R		
		1	Т	0,	3	3,	9	
		·	В	3,	3	0,	0	
Tα	Tb	7	a B) b	Bat	_ ช	Ba	J
	ก		2	0. [7 7	- ·)	2

一纯策略的纳什均衡

混合策略的纳什约衡不考虑

For convenience, refer to the "true game" as the game where Player 1 is of type b and the "different game" as the game where Player 1 is of type a.

Suppose that Player 2 assigns probability $\frac{2}{3}$ to Player 1 being of type a and

probability $\frac{1}{3}$ to Player 1 being of type b. Find a Nash equilibrium.

古法党 4. Consider a Cournot duopoly operating in a market with inverse demand *P*(Q) = a - Q, where $Q = q_1 + q_2$ is the aggregate quantity on the market. Both firms High have total costs $c_i(q_i) = cq_i$, but demand is uncertain: it is high $(a = a_H)$ with probability θ and low ($a = a_L$) with probability $1-\theta$. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All of this is common knowledge. The two firms simultaneously choose quantities. What are the strategy spaces for the two firms? Make assumptions concerning a_H , a_L , θ , and c such that all equilibrium quantities are positive. What is the Bayesian Nash equilibrium of this game?

> 5. The following static game of complete information (Matching Pennies) has no pure-strategy Nash equilibrium but has one mixed-strategy Nash equilibrium: each player plays H with probability $\frac{1}{2}$.

		2			
		н т			
1	Н	1,	-1	-1,	1
	Т	-1,	1	1,	-1

Provide a pure-strategy Bayesian Nash equilibrium of a corresponding game of incomplete information such that as incomplete information disappears, the players' behavior in the Bayesian Nash equilibrium approaches their behavior in the mixed-strategy Nash equilibrium in the original game of complete information.

Hint: Consider the following Bayesian game in which t_1 and t_2 are independently and uniformly distributed on [0, x]. of incomplete information such that as incomplete information disappears, the

firm 1. 先确定 firm 2 后确定、2知道1的产量、

门先求均衡-2)求序贯博弈均衡,

答:(1). 均衡时 Q能: Q1+Q2.

 $P = \alpha - b(Q_1, tQ_2).$

Π, = [α-b(Q1+Q2).- C1]·Q1.

 $\pi_1 = .[Q - b(Q_1 + Q_2) - C_2]Q_2$.

0M2 =

2) 序贯博弈.

先考忘firm2. 得Q1= Q1和abC

将风格常数代入原式 求确系得见

由于2知1的高息,所以2页知1在进口时的自己的最优奖。那也就是说对于给定的贝都有一个最优的Q1.那么1.那么1.也可以把2的产量也知道),就能算了.

 $\theta \in [0,1]$. $\theta \in [0,1]$.