DNA Computing Based Encryption & Decryption Algorithm

ICT 4011 Natural Computing

Dept of Information and Communication Technology
Manipal Institute of Technology
Manipal -576104

22 October 2017 ₁

Requirement of DNA Encryption Algorithm

- 1. DNA Encoding of complete character set
- 2. Dynamic Encoding Table Generation
- 3. Unique sequence for encoding of every character of plaintext to DNA sequence
- 4. Robustness of Encoding
- 5. Biological Process Simulation
- 6. Dynamicity of Encryption Process

DNA Encryption-Decryption Algorithm

- 1. DNA Computing based Encoding Algorithm
- 2. DNA Computing based Encryption & Decryption Algorithm

DNA Encoding Table

	C	A	T	G
A	ACAT- a	AAAA - y	ATAA- W	AGAG - {
	ACTG- b	AATT-z	ATTT - X	AGTA - [
	ACCC- c	AACC - A	ATCG-Y	AGCG - }
	ACGA - d	AAGG-B	ATGC - Z	AGGG -]
T	TCAT-e	TAAT - C	TTAA - 0	TGAA -
	TCTG-f	TATG-D	TTTT-1	TGTT - \
	TCCG-g	TACC-E	TTCC-2	TGCG - +
	TCGT-h	TAGA-F	TTGG - 3	TGGC -=
C	CCAG-i	CAAT - G	CTAT-4	CGAA -
	CCTA-i	CATG-H	CTTG-5	CGTT
	CCCG-k	CACG-I	CTCC-6	CGCC -)
	CCGG-1	CAGT - J	CTGA - 7	CGGG-(
G	GCAA-m	GAAG- K	GTAT-8	GGAT - *
	GCTT-n	GATA-L	GTTG-9	GGTG - &
	GCCG-0	GACG-M	GTCG-<	GGCC - ^
	GCGC-p	GAGG-N	GTGT - >	GGGA - %
A	ACTC - q	AATA - O	ATTA - ,	AGTT - \$
	ACCG-r	AACG-P	ATCC	AGCC - #
T	TCTC-s	TATC - Q	TTTA - ?	TGTA - @
	TCCC-t	TACG-R	TTCG -/	TGCC -!
C	CCTT-u	CATC - S	CTTC -:	CGTA - ~
	CCCC-v	CACC-T	CTCG - ;	CGCG - '
G	GCTA - w	GATT - U	GTTC-"	GGTC - €
	GCCC - x	GACC - V	GTCC - '	GGCG - £

Encryption Process

- Generation of encoding table 1 & 2
- Plaintext converted into DNA sequence (Encoding table 1 & 2)
- 3. Multiple round functions are performed: (min 10 rounds)
 - a. DNA sequence XNOR with introns
 - b. DNA converted to mRNA (transcription process) T -> U
 - c. mRNA to tRNA (translation process) complement
 - d. tRNA to DNA (reverse transcription) U -> T
 - e. Right Shift the sequences
- 4. tRNA obtained is converted amino acids
- 5. The resultant protein sequence is the cipher text

Amino Acid Table

Table.6. Amino acid Table

	GA	UA	AA	CA	CU	AU	UU	GU	GC	UC	AC	CC	CG	AG	UG	GG
CG	CGGA	CGUA	CGAA	CGCA	CGCU	CGAU	CGUU	CGGU	CGGC	CGUC	CGAC	CGCC	CGCG	CGAG	CGUG	CGGG
	-E1	- Q4	- G7	- HA	- A1	-R4	-N7	-DA	-L1	- K4	-M7	-FA	-S1	- U4	- W7	- YA
AG	AGGA	AGUA	AGAA	AGCA	AGCU	AGAU	AGUU	AGGU	AGGC	AGUC	AGAC	AGCC	AGCG	AGAG	AGUG	AGGG
	-E2	- Q5	- G8	- HB	-A2	-R5	-N8	- DB	-L2	- K5	- M8	-FB	- S2	- U5	- W8	- YB
UG	UGGA	UGUA	UGAA	UGCA	UGCU	UGAU	UGUU	UGGU	UGGC	UGUC	UGAC	UGCC	UGCG	UGAG	UGUG	UGGG
	- E3	- Q6	- G9	- HC	- A3	-R6	- N9	-DC	-L3	- K6	- M9	-FC	- S3	- U6	- W9	- YC
GG	GGGA	GGUA	GGAA	GGCA	GGCU	GGAU	GGUU	GGGU	GGGC	GGUC	GGAC	GGCC	GGCG	GGAG	GGUG	GGGG
	- E4	- Q7	- GA	- HD	- A4	-R7	-NA	- DD	-L4	- K7	-MA	-FD	- S4	- U7	- WA	- YD
GC	GCGA	GCUA	GCAA	GCCA	GCCU	GCAU	GCUU	GCGU-	GCGC	GCUC	GCAC	GCCC	GCCG	GCAG	GCUG	GCGG
	-E5	- Q8	- GB	- Il	- A5	- R8	- NB	C1	-L5	- K8	- MB	-P1	- S5	- U8	- WB	- V1
UC	UCGA	UCUA	UCAA	UCCA	UCCU	UCAU	UCUU	UCGU	UCGC	UCUC	UCAC	UCCC	UCCG	UCAG	UCUG	UCGG
	-E6	- Q9	- GC	- I2	- A6	-R9	-NC	- C2	-L6	- K9	-MC	- P2	-S6	- U9	- WC	- V2
AC	ACGA	ACUA	ACAA	ACCA	ACCU	ACAU	ACUU	ACGU	ACGC	ACUC	ACAC	ACCC-	ACCG	ACAG	ACUG	ACGG
	-E7	- QA	- GD	- I3	- A7	-RA	-ND	- C3	-L7	-KA	- MD	P3	-S7	- UA	- WD	- V3
CC	CCGA	CCUA	CCAA	CCCA	CCCU	CCAU	CCUU	CCGU	CCGC	CCUC	CCAC	CCCC	CCCG	CCAG	CCUG	CCGG
	-E8	– QB	-H1	- I4	- A8	-RB	-D1	- C4	-L8	- KB	-F1	- P4	- S8	- UB	- Y1	- V4
CU	CUGA	CUUA	CUAA	CUCA	CUCU	CUAU	CUUU	CUGU	CUGC	CUUC	CUAC	CUCC	CUCG	CUAG	CUUG	CUGG
	-E9	- QC	-H2	- I5	- A9	-RC	- D2	- C5	- L9	- KC	-F2	- P5	- S9	- UC	- Y2	- V5
AU	AUGA	AUUA	AUAA	AUCA	AUCU	AUAU	AUUU-	AUGU	AUGC	AUUC	AUAC	AUCC	AUCG	AUAG	AUUG	AUGG
	-EA	- QD	- H3	- I6	- AA	-RD	D3	- C6	-LA	- KD	- F3	- P6	-SA	- UD	- Y3	- V6
UU	UUGA	UUUA	UUAA	UUCA	UUCU	UUAU	UUUU	UUGU	UUGC	UUUC	UUAC	UUCC	UUCG	UUAG	UUUG	UUGG
	-EB	- G1	- H4	- I 7	- AB	-N1	- D4	- C7	-LB	-M1	- F4	- P7	- SB	- W1	- Y4	- V7
GU	GUGA	GUUA	GUAA	GUCA	GUCU	GUAU	GUUU	GUGU	GUGC	GUUC	GUAC	GUCC	GUCG	GUAG	GUUG	GUGG
	-EC	- G2	- H5	- IS	- AC	- N2	- D5	- C8	-LC	- M2	- F5	- P8	-SC	- W2	- Y5	- V8
GA	GAGA	GAUA	GAAA	GACA	GACU	GAAU	GAUU	GAGU	GAGC	GAUC	GAAC	GACC	GACG	GAAG	GAUG	GAGG
	-ED	- G3	- H6	- I9	- AD	-N3	- D6	- C9	-LD	-M3	- F6	- P9	- SD	- W3	- Y6	- V9
UA	UAGA	UAUA	UAAA	UACA	UACU	UAAU	UAUU	UAGU	UAGC	UAUC	UAAC	UACC	UACG	UAAG	UAUG	UAGG
	-Q1	- G4	- H7	- IA	-R1	-N4	- D7	- CA	- Kl	-M4	-F7	-PA	- U1	- W4	- Y7	- VA
AA	AAGA	AAUA	AAAA	AACA	AACU	AAAU	AAUU	AAGU	AAGC	AAUC	AAAC	AACC	AACG	AAAG	AAUG	AAGG
	- Q2	- G5	-H8	- IB	-R2	-N5	- D8	- CB	- K2	-M5	-F8	- PB	- U2	- W5	- Y8	- VB
CA	CAGA	CAUA	CAAA	CACA	CACU	CAAU-	CAUU	CAGU	CAGC	CAUC	CAAC	CACC	CACG	CAAG	CAUG	CAGG
	- Q3	- G6	- H9	- IC	-R3	N6	- D9	-CC	- K3	-M6	- F9	- PC	- U3	- W6	- Y9	- VC

Amino-Acid Table Generation

- Generation of 2 DNA sequences randomly (4 DNA alphabets)
 Ex: ATCG, GTAC
- 2. Converting sequences into mRNA
- 3. Assigning 2 mRNA row-wise and column-wise in 4x4 matrix

Table.4. Amino Acid Table											
A	U	C	G								
GA	GU	GC	GG								
UA	UU	UC	UG								
AA	AU	AC	AG								
CA	CU	CC	CG								

- 4. The 4x4 matrix extended to 16x16
- 5. Amino acids divided into four groups
- 6. 24 possible collating sequences, Using any one of the sequence

Amino-Acid Table Generation

	GA	UA	AA	CA	CU	AU	UU	GU	GC	UC	AC	CC	CG	AG	UG	GG
CG	CGGA	CGUA	CGAA	CGCA	CGCU	CGAU	CGUU	CGGU	CGGC	CGUC	CGAC	CGCC	CGCG	CGAG	CGUG	CGGG
AG	AGGA	AGUA	AGAA	AGCA	AGCU	AGAU	AGUU	AGGU	AGGC	AGUC	AGAC	AGCC	AGCG	AGAG	AGUG	AGGG
UG	UGGA	UGUA	UGAA	UGCA	UGCU	UGAU	UGUU	UGGU	UGGC	UGUC	UGAC	UGCC	UGCG	UGAG	UGUG	UGGG
GG	GGGA	GGUA	GGAA	GGCA	GGCU	GGAU	GGUU	GGGU	GGGC	GGUC	GGAC	GGCC	GGCG	GGAG	GGUG	GGGG
GC	GCGA	GCUA	GCAA	GCCA	GCCU	GCAU	GCUU	GCGU	GCGC	GCUC	GCAC	GCCC	GCCG	GCAG	GCUG	GCGG
UC	UCGA	UCUA	UCAA	UCCA	UCCU	UCAU	UCUU	UCGU	UCGC	UCUC	UCAC	UCCC	UCCG	UCAG	UCUG	UCGG
AC	ACGA	ACUA	ACAA	ACCA	ACCU	ACAU	ACUU	ACGU	ACGC	ACUC	ACAC	ACCC	ACCG	ACAG	ACUG	ACGG
CC	CCGA	CCUA	CCAA	CCCA	CCCU	CCAU	CCUU	CCGU	CCGC	CCUC	CCAC	CCCC	CCCG	CCAG	CCUG	CCGG
CU	CUGA	CUUA	CUAA	CUCA	CUCU	CUAU	CUUU	CUGU	CUGC	CUUC	CUAC	CUCC	CUCG	CUAG	CUUG	CUGG
AU	AUGA	AUUA	AUAA	AUCA	AUCU	AUAU	AUUU	AUGU	AUGC	AUUC	AUAC	AUCC	AUCG	AUAG	AUUG	AUGG
UU	UUGA	UUUA	UUAA	UUCA	UUCU	UUAU	טטטט	UUGU	UUGC	UUUC	UUAC	UUCC	UUCG	UUAG	UUUG	UUGG
GU	GUGA	GUUA	GUAA	GUCA	GUCU	GUAU	GUUU	GUGU	GUGC	GUUC	GUAC	GUCC	GUCG	GUAG	GUUG	GUGG
GA	GAGA	GAUA	GAAA	GACA	GACU	GAAU	GAUU	GAGU	GAGC	GAUC	GAAC	GACC	GACG	GAAG	GAUG	GAGG
UA	UAGA	UAUA	UAAA	UACA	UACU	UAAU	UAUU	UAGU	UAGC	UAUC	UAAC	UACC	UACG	UAAG	UAUG	UAGG
AA	AAGA	AAUA	AAAA	AACA	AACU	AAAU	AAUU	AAGU	AAGC	AAUC	AAAC	AACC	AACG	AAAG	AAUG	AAGG
CA	CAGA	CAUA	CAAA	CACA	CACU	CAAU	CAUU	CAGU	CAGC	CAUC	CAAC	CACC	CACG	CAAG	CAUG	CAGG

Amino-Acid Table Generation

A group – (A1, A2, A3, A4, A5, A6, A7, A8, A9, AA, AB, AC, AD, R1, R2, R3, R4, R5, R6, R7, R8, R9, RA, RB, RC, RD, N1, N2, N3, N4, N5, N6, N7, N8, N9, NA, NB, NC, ND, D1, D2, D3, D4, D5, D6, D7, D8, D9, DA, DB, DC, DD, C1, C2, C3, C4, C5, C6, C7, C8, C9, CA, CB, CC)

U group – (E1, E2, E3, E4, E5, E6, E7, E8, E9, EA, EB, EC, ED, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, QA, QB, QC, QD, G1, G2, G3, G4, G5, G6, G7, G8, G9, GA, GB, GC, GD, H1, H2, H3, H4, H5, H6, H7, H8, H9, HA, HB, HC, HD, I1, I2, I3, I4, I5, I6, I7, I8, I9, IA, IB, IC)

C group – (L1, L2, L3, L4, L5, L6, L7, L8, L9, LA, LB, LC,LD,K1, K2, K3, K4, K5, K6, K7, K8, K9, KA, KB, KC, KD, M1, M2, M3, M4, M5, M6, M7, M8, M9, MA, MB, MC,MD,F1, F2, F3, F4, F5, F6, F7, F8, F9, FA, FB, FC, FD, P1, P2, P3, P4, P5, P6, P7, P8, P9, PA, PB, PC)

G group – (S1, S2, S3, S4, S5, S6, S7, S8, S9, SA, SB, SC, SD, T1, T2, T3, T4, T5, T6, T7, T8, T9, TA, TB, TC, TD, W1, W2, W3, W4, W5, W6, W7, W8, W9, WA, WB, WC,WD, Y1,Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, YA, YB, YC,YD,V1,V2, V3, V4, V5, V6, V7, V8, V9, VA, VB, VC)

Amino Acid Table

Table.6. Amino acid Table

	GA	UA	AA	CA	CU	AU	UU	GU	GC	UC	AC	CC	CG	AG	UG	GG
CG	CGGA	CGUA	CGAA	CGCA	CGCU	CGAU	CGUU	CGGU	CGGC	CGUC	CGAC	CGCC	CGCG	CGAG	CGUG	CGGG
	-E1	- Q4	- G7	- HA	- A1	-R4	-N7	- DA	-L1	- K4	-M7	-FA	-S1	- U4	- W7	- YA
AG	AGGA	AGUA	AGAA	AGCA	AGCU	AGAU	AGUU	AGGU	AGGC	AGUC	AGAC	AGCC	AGCG	AGAG	AGUG	AGGG
	-E2	- Q5	- G8	- HB	- A2	- R5	-N8	- DB	-L2	- K5	-M8	-FB	- S2	- U5	- W8	- YB
UG	UGGA	UGUA	UGAA	UGCA	UGCU	UGAU	UGUU	UGGU	UGGC	UGUC	UGAC	UGCC	UGCG	UGAG	UGUG	UGGG
	-E3	- Q6	- G9	- HC	- A3	-R6	- N9	-DC	-L3	– K6	-M9	-FC	- S3	- U6	- W9	- YC
GG	GGGA	GGUA	GGAA	GGCA	GGCU	GGAU	GGUU	GGGU	GGGC	GGUC	GGAC	GGCC	GGCG	GGAG	GGUG	GGGG
	- E4	- Q7	- GA	- HD	- A4	-R7	-NA	- DD	-L4	- K7	-MA	-FD	- S4	- U7	- WA	- YD
GC	GCGA	GCUA	GCAA	GCCA	GCCU	GCAU	GCUU	GCGU-	GCGC	GCUC	GCAC	GCCC	GCCG	GCAG	GCUG	GCGG
	-E5	- Q8	- GB	- Il	- A5	- R8	- NB	Cl	-L5	- K8	- MB	-P1	- S5	- U8	- WB	- V1
UC	UCGA	UCUA	UCAA	UCCA	UCCU	UCAU	UCUU	UCGU	UCGC	UCUC	UCAC	UCCC	UCCG	UCAG	UCUG	UCGG
	-E6	- Q9	- GC	- I2	- A6	-R9	-NC	- C2	-L6	- K9	-MC	- P2	- S6	- U9	- WC	- V2
AC	ACGA	ACUA	ACAA	ACCA	ACCU	ACAU	ACUU	ACGU	ACGC	ACUC	ACAC	ACCC-	ACCG	ACAG	ACUG	ACGG
	- E7	- QA	- GD	- I3	- A7	-RA	-ND	- C3	-L7	-KA	-MD	P3	- S7	- UA	- WD	- V3
CC	CCGA	CCUA	CCAA	CCCA	CCCU	CCAU	CCUU	CCGU	CCGC	CCUC	CCAC	CCCC	CCCG	CCAG	CCUG	CCGG
	-E8	– QB	-H1	- I4	- A8	-RB	-D1	- C4	-L8	- KB	-F1	-P4	- S8	- UB	- Y1	- V4
CU	CUGA	CUUA	CUAA	CUCA	CUCU	CUAU	CUUU	CUGU	CUGC	CUUC	CUAC	CUCC	CUCG	CUAG	CUUG	CUGG
	-E9	- QC	-H2	- I5	- A9	-RC	- D2	- C5	-L9	- KC	-F2	- P5	- S9	- UC	- Y2	- V5
AU	AUGA	AUUA	AUAA	AUCA	AUCU	AUAU	AUUU-	AUGU	AUGC	AUUC	AUAC	AUCC	AUCG	AUAG	AUUG	AUGG
	-EA	- QD	-H3	- I6	- AA	-RD	D3	- C6	-LA	- KD	- F3	- P6	-SA	- UD	- Y3	- V6
UU	UUGA	UUUA	UUAA	UUCA	UUCU	UUAU	UUUU	UUGU	UUGC	UUUC	UUAC	UUCC	UUCG	UUAG	UUUG	UUGG
	- EB	- G1	- H4	- I7	- AB	-N1	- D4	- C7	-LB	-M1	-F4	- P7	- SB	- W1	- Y4	- V7
GU	GUGA	GUUA	GUAA	GUCA	GUCU	GUAU	GUUU	GUGU	GUGC	GUUC	GUAC	GUCC	GUCG	GUAG	GUUG	GUGG
	-EC	- G2	-H5	- I8	- AC	- N2	- D5	- C8	-LC	-M2	- F5	- P8	-SC	- W2	- Y5	- V8
GA	GAGA	GAUA	GAAA	GACA	GACU	GAAU	GAUU	GAGU	GAGC	GAUC	GAAC	GACC	GACG	GAAG	GAUG	GAGG
	-ED	- G3	-H6	- I9	- AD	-N3	-D6	- C9	-LD	-M3	- F6	– P9	- SD	- W3	- Y6	- V9
UA	UAGA	UAUA	UAAA	UACA	UACU	UAAU	UAUU	UAGU	UAGC	UAUC	UAAC	UACC	UACG	UAAG	UAUG	UAGG
	-Q1	- G4	- H7	- IA	-R1	-N4	- D7	- CA	-Kl	-M4	- F7	-PA	- U1	- W4	- Y7	- VA
AA	AAGA	AAUA	AAAA	AACA	AACU	AAAU	AAUU	AAGU	AAGC	AAUC	AAAC	AACC	AACG	AAAG	AAUG	AAGG
	- Q2	- G5	-H8	- IB	- R2	-N5	-D8	- CB	- K2	-M5	-F8	- PB	- U2	- W5	- Y8	- VB
CA	CAGA	CAUA	CAAA	CACA	CACU	CAAU-	CAUU	CAGU	CAGC	CAUC	CAAC	CACC	CACG	CAAG	CAUG	CAGG
	- Q3	- G6	- H9	- IC	-R3	N6	- D9	-CC	- K3	-M6	-F9	- PC	- U3	- W6	- Y9	- VC

Decryption Process

- 1. Generation of encoding table 1 & 2
- 2. Cipher text of protein sequence divided into 2 halves
- 3. Protein sequences converted to tRNA using amino acid table
- 4. tRNA converted to mRNA (Reverse Translation) Complement
- 5. mRNA converted to DNA (Reverse Transcription) U -> T
- 6. Multiple round functions are performed:
 - a. DNA sequence XNOR with introns
 - b. Left Shift the sequences
 - c. DNA converted to mRNA (Transcription) T -> U
 - d. mRNA to tRNA (translation process) complement
 - e. tRNA to DNA (reverse transcription) U -> T
- 4. DNA transformed with introns
- 5. Transformed DNA converted to plaintext and merged

References

UbaidurRahman, N. H., Balamurugan, C., & Mariappan, R. (2015). A novel DNA computing based encryption and decryption algorithm. Procedia Computer Science, 46, 463-475.