XV Powiatowe Zawody Matematyczne – 13 listopada 2017 r.

ETAP I (ZADANIA OTWARTE) WERSJA A

Zadanie 1 (3 punkty)

Wykaż, że wartość wyrażenia a^{-b} jest liczbą wymierną, jeżeli: $a = \sqrt[3]{54} - \sqrt[3]{2}$ oraz b jest cyfrą jedności liczby 3^{2017} .

Zadanie 2 (3 punkty)

Kwadrat o boku $\sqrt{18}$ podzielono prostymi wychodzącymi z jednego wierzchołka na trzy figury o równych polach. Oblicz obwody tych figur.

Zadanie 3 (3 punkty)

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego mianownika, to otrzymamy $\frac{5}{8}$, a jeżeli do licznika i mianownika dodamy 2, to otrzymamy $\frac{1}{2}$. Wyznacz ten ułamek.

Zadanie 4 (3 punkty)

Jeżeli dane są długości boków a,b,c trójkąta, to można obliczyć jego pole P_T , korzystając ze wzoru Herona (Heron z Aleksandrii, I wiek n.e.):

$$P_{T} = \sqrt{p(p-a)(p-b)(p-c)}$$

gdzie $p = \frac{a+b+c}{2}$ jest połową obwodu trójkąta.

- a) Wykaż, że pole trójkąta o bokach 6, 8, $2\sqrt{13}$ wynosi $12\sqrt{3}$;
- b) Oblicz długość wysokości poprowadzonej na najkrótszy bok tego trójkąta;
- c) Wyznacz miarę kąta między bokami tego trójkąta o długości 6 i 8.

Zadanie 5 (3 punkty)

W sześcianie o krawędzi 6 połączono odcinkami środki sąsiednich ścian. Utworzone w ten sposób odcinki są krawędziami pewnego ośmiościanu. Oblicz jego objętość.

Życzymy powodzenia ©