$$f_n = \frac{n \cdot v}{2 \cdot I} \tag{1}$$

- grob die Resonanzfrequenzen vermessen
- danach an den Resonanzfrequenzen mit deutlich mehr Messpunkten messen

Messung der Schallgeschwindigkeit über Variation der Resonanzfrequenzen
- Aufbau und Durchführung

Aufbau

Durchführung

Abbildung: Grobe Vermessung der Resonanzfrequenzen - die deutlich ausgeprägten Peaks werden später genauer untersucht.

Durchführung

Abbildung: genaue Vermessung der Peaks an einer Beispiel Messung

Rohdaten

vermutete Res F	400	800	1200	1600	2000	2400
Peak I	416.0	822.5	1210.0	1608.0	2031.1	2433.4
<i>asym_r</i> Peak I	417.0	826.8	1212.6	1629.6	2041.4	2443.7
<i>asym₁</i> Peak I	404.9	798.2	1190.0	1573.9	2019.3	2425.5
Peak II	420.7	822.1	1210.9	1620.0	2037.2	2446.7
<i>asym_r</i> Peak II	423.0	836.4	1216.5	1631.3	2047.8	2467.3
asym _l Peak II	404.3	797.5	1194.0	1612.3	2013.8	2421.3
Peak III	416.1	800.1	1210.0	1612.0	2019.4	2433.4
asym _r Peak III	419.3	820.1	1223.0	1628.2	2029.3	2439.2
asym _i Peak III	405.0	791.5	1195.7	1608.0	2019.4	2425.5

Tabelle: Vermessung der Resonanzfrequenzen, wobei $asym_r$ und $asym_l$ die asymmetrische Peakvermessung in Cassy (alle Angaben in Hz)

Transformation der Rohdaten

verm Res F	400	800	1200	1600	2000	2400
M	412.92	812.80	1206.97	1614.70	2030.07	2437.33
$\sigma_{ar{M}}$	6.94	16.00	11.16	18.21	10.90	14.32

Tabelle: Mittelwerte und deren Fehler (alle Angaben in Hz)

Transformation der Rohdaten

Abbildung: Lineare Regression, die Steigung gibt $\frac{v_{Schall}}{2 \cdot L}$ zurück, $\frac{\chi^2}{f} = 0.43$

Auswertung der Transformation

Abbildung: Residuenplot (Werte-Fit), zeigt Güte der Anpassung

Fehlerrechnung und Ergebnis

$$\sigma_{\rm v} = \sqrt{f_{\rm R}^2 \cdot \sigma_{\lambda}^2 + \lambda^2 \cdot \sigma_{\rm f}^2} \tag{2}$$

mit

$$\sigma_{\lambda} = \sigma_{\bar{M}} \cdot \sqrt{2} \tag{3}$$

 \bar{M} und $\sigma_{\bar{M}}$ haben wir erhalten durch:

$$\bar{M} = \frac{\sum_{i=1}^{N} X_i}{N} \tag{4}$$

und

$$\sigma_{\bar{M}} = \frac{\sqrt{\frac{\sum_{i=1}^{N} (X_i - \bar{M})^2}{N - 1}}}{\sqrt{N}} \tag{5}$$

Nach der Korrektur erhalten wir einen Wert für v von

$$v = 343.46 \pm 2.08 \frac{m}{s} \tag{6}$$

Fazit

- lacktriangle unser Wert: 343.46 \pm 2.08 $\frac{m}{s}$
- Literaturwert: $v_{lit} = 343 \frac{m}{s}$
- ⇒ 0.58% Abweichung
- Güte unserer Anpassung: $\frac{\chi^2}{f} = 0.43$