

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 401/12, 207/16, 213/82, A61K 31/44		A1	(11) International Publication Number: WO 99/62901 (43) International Publication Date: 9 December 1999 (09.12.99)
<p>(21) International Application Number: PCT/GB99/01741</p> <p>(22) International Filing Date: 3 June 1999 (03.06.99)</p> <p>(30) Priority Data: 9811969.6 3 June 1998 (03.06.98) GB</p> <p>(71) Applicant (<i>for all designated States except US</i>): CELLTECH THERAPEUTICS LIMITED [GB/GB]; 216 Bath Road, Slough, Berkshire SL1 4EN (GB).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): HEAD, John, Clifford [GB/GB]; 4 Dorchester Close, Maidenhead, Berkshire SL6 6RX (GB). WARRELOW, Graham, John [GB/GB]; Oakside, 4 Wieland Road, Northwood, Middlesex HA6 3QU (GB). PORTER, John, Robert [GB/GB]; 5 Farm Place, Henton, Chinnor, Oxfordshire OX9 4AD (GB). ARCHIBALD, Sarah, Catherine [GB/GB]; 5 College Glen, Maidenhead, Berkshire SL6 6BL (GB).</p> <p>(74) Agent: MERCER, Christopher, Paul; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i></p>	
<p>(54) Title: AROMATIC AMINE DERIVATIVES AS PHARMACEUTICAL AGENTS</p> <p style="text-align: center;"> $\begin{array}{c} R^1(Alk^1)(L^1)^n-Az-(Alk^2)_m \\ \quad \quad \quad \\ \quad \quad \quad C(R^4)-R^5 \\ \quad \quad \quad \\ \quad \quad \quad R \end{array} \quad (1)$ </p> <p>(57) Abstract</p> <p>Aromatic amines of formula (1) are described: wherein Az is an optionally substituted monocyclic six-membered nitrogen-containing aromatic group; L¹ is a linker atom or group; R is a carboxylic acid or a derivative thereof; and R⁵ is a group -L²(CH₂)_nR⁶ in which L² is a -N(R⁷)CO- or -N(R⁷)CS- group. The compounds are able to inhibit the binding of α_4 integrins to their ligands and are of use in the prophylaxis and treatment of immune or inflammatory disorders.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon			PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

AROMATIC AMINE DERIVATIVES AS PHARMACEUTICAL AGENTS

This invention relates to a series of aromatic amine derivatives, to
5 compositions containing them, to processes for their preparation, and to
their use in medicine.

Over the last few years it has become increasingly clear that the physical
interaction of inflammatory leukocytes with each other and other cells of
10 the body plays an important role in regulating immune and inflammatory
responses [Springer, T A. *Nature*, 346, 425, (1990); Springer, T. A. *Cell*
76, 301, (1994)]. Many of these interactions are mediated by specific cell
surface molecules collectively referred to as cell adhesion molecules.

15 The adhesion molecules have been sub-divided into different groups on
the basis of their structure. One family of adhesion molecules which is
believed to play a particularly important role in regulating immune and
inflammatory responses is the integrin family. This family of cell surface
glycoproteins has a typical non-covalently linked heterodimer structure. At
20 least 14 different integrin alpha chains and 8 different integrin beta chains
have been identified [Sonnenberg, A. *Current Topics in Microbiology and
Immunology*, 184, 7, (1993)]. The members of the family are typically
named according to their heterodimer composition although trivial
nomenclature is widespread in this field. Thus the integrin termed $\alpha 4\beta 1$
25 consists of the integrin alpha 4 chain associated with the integrin beta 1
chain, but is also widely referred to as Very Late Antigen 4 or VLA4. Not
all of the potential pairings of integrin alpha and beta chains have yet been
observed in nature and the integrin family has been subdivided into a
number of subgroups based on the pairings that have been recognised
30 [Sonnenberg, A. *ibid*].

The importance of cell adhesion molecules in human leukocyte function
has been further highlighted by a genetic deficiency disease called
Leukocyte Adhesion Deficiency (LAD) in which one of the families of
35 leukocyte integrins is not expressed [Marlin, S. D. *et al* *J. Exp. Med.* 164,
855 (1986)]. Patients with this disease have a reduced ability to recruit

leukocytes to inflammatory sites and suffer recurrent infections which in extreme cases may be fatal.

The potential to modify adhesion molecule function in such a way as to beneficially modulate immune and inflammatory responses has been extensively investigated in animal models using specific monoclonal antibodies that block various functions of these molecules [e.g. Issekutz, T. B. J. Immunol. 3394, (1992); Li, Z. *et al* Am. J. Physiol. 263, L723, (1992); Binns, R. M. *et al* J. Immunol. 157, 4094, (1996)]. A number of monoclonal antibodies which block adhesion molecule function are currently being investigated for their therapeutic potential in human disease.

One particular integrin subgroup of interest involves the $\alpha 4$ chain which can pair with two different beta chains $\beta 1$ and $\beta 7$ [Sonnenberg, A. *ibid*]. The $\alpha 4\beta 1$ pairing occurs on many circulating leukocytes (for example lymphocytes, monocytes and eosinophils) although it is absent or only present at low levels on circulating neutrophils. $\alpha 4\beta 1$ binds to an adhesion molecule (Vascular Cell Adhesion Molecule-1 also known as VCAM-1) frequently up-regulated on endothelial cells at sites of inflammation [Osborne, L. Cell, 62, 3, (1990)]. The molecule has also been shown to bind to at least three sites in the matrix molecule fibronectin [Humphries, M. J. *et al*. Ciba Foundation Symposium, 189, 177, (1995)]. Based on data obtained with monoclonal antibodies in animal models it is believed that the interaction between $\alpha 4\beta 1$ and ligands on other cells and the extracellular matrix plays an important role in leukocyte migration and activation [Yednock, T. A. *et al*, Nature, 356, 63, (1992); Podolsky, D. K. *et al*. J. Clin. Invest. 92, 373, (1993); Abraham, W. M. *et al*. J. Clin. Invest. 93, 776, (1994)].

The integrin generated by the pairing of $\alpha 4$ and $\beta 7$ has been termed LPAM-1 [Holzmann, B and Weissman, I. EMBO J. 8, 1735, (1989)] and like $\alpha 4\beta 1$, binds to VCAM-1 and fibronectin. In addition, $\alpha 4\beta 7$ binds to an adhesion molecule believed to be involved in the homing of leukocytes to mucosal tissue termed MAdCAM-1 [Berlin, C. *et al*, Cell, 74, 185, (1993)]. The interaction between $\alpha 4\beta 7$ and MAdCAM-1 may also be important at

sites of inflammation outside of mucosal tissue [Yang, X-D. *et al.*, PNAS, 91, 12604 (1994)].

Regions of the peptide sequence recognised by $\alpha 4\beta 1$ and $\alpha 4\beta 7$ when they bind to their ligands have been identified. $\alpha 4\beta 1$ seems to recognise LDV, IDA or REDV peptide sequences in fibronectin and a QIDSP sequence in VCAM-1 [Humphries, M. J. *et al.*, *ibid*] whilst $\alpha 4\beta 7$ recognises a LDT sequence in MAdCAM-1 [Briskin, M. J. *et al.*, J. Immunol. 156, 719, (1996)]. There have been several reports of inhibitors of these interactions being designed from modifications of these short peptide sequences [Cardarelli, P. M. *et al.* J. Biol. Chem. 269, 18668, (1994); Shroff, H. N. Bioorganic. Med. Chem. Lett. 6, 2495, (1996); Vanderslice, P. J. Immunol. 158, 1710, (1997)]. It has also been reported that a short peptide sequence derived from the $\alpha 4\beta 1$ binding site in fibronectin can inhibit a contact hypersensitivity reaction in a trinitrochlorobenzene sensitised mouse [Ferguson, T. A. *et al.*, PNAS 88, 8072, (1991)].

Since the alpha 4 subgroup of integrins are predominantly expressed on leukocytes inhibition of their ligand binding functions can be expected to be beneficial in a number of immune or inflammatory disease states. However, because of the ubiquitous distribution and wide range of functions performed by other members of the integrin family it is very important to be able to identify selective inhibitors of the alpha 4 subgroup.

We have now found a group of compounds which are potent and selective inhibitors of the binding of $\alpha 4$ integrins to their ligands. Members of the group are able to inhibit the binding of $\alpha 4$ integrins such as $\alpha 4\beta 1$ and/or $\alpha 4\beta 7$ to their ligands at concentrations at which they generally have no or minimal inhibitory action on α integrins of other subgroups. The compounds are thus of use in medicine, for example in the prophylaxis and treatment of immune or inflammatory disorders as described hereinafter.

Thus according to one aspect of the invention we provide a compound of formula (1)

wherein

- 5 Az is an optionally substituted monocyclic six-membered nitrogen-containing aromatic group;
- R¹ is a hydrogen atom or an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;
- 10 Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain;
- L¹ is a linker atom or group;
- r and s is each zero or an integer 1;
- Alk² is a straight or branched alkylene chain;
- m is zero or an integer 1;
- 15 R⁴ is a hydrogen atom or a methyl group;
- R⁵ is a group -L²(CH₂)_tR⁶ in which L² is a -N(R⁷)CO- [where R⁷ is a hydrogen atom or a straight or branched alkyl group] or -N(R⁷)CS- group, t is zero or the integer 1, and R⁶ is an optionally substituted aliphatic, heteroaliphatic, cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;
- 20 R is a carboxylic acid (-CO₂H) or a derivative thereof;
- and the salts, solvates and hydrates thereof.

It will be appreciated that compounds of formula (1) may have one or more chiral centres. Where one or more chiral centres is present, enantiomers or diastereomers may exist, and the invention is to be understood to extend to all such enantiomers, diasteromers and mixtures thereof, including racemates. Formula (1) and the formulae hereinafter are intended to represent all individual isomers and mixtures thereof, unless stated or shown otherwise.

Six-membered nitrogen-containing aromatic groups represented by the group Az in compounds of the invention include pyridyl, pyrimidinyl,

pyridazinyl, pyrazinyl, 1,3,5-triazinyl, 1,2,4-triazinyl and 1,2,3-triazinyl groups. Generally, each of said groups may be linked to the remainder of the compound of formula (1) through any available carbon atom in the ring represented by Az. Where desired, one or two additional substituents may be present on each Az group, for example one or two halogen atoms and/or straight or branched alkyl, haloalkyl, alkoxy, haloalkoxy, hydroxyl or nitro groups.

When the optional substituent on Az is an alkyl group it may be for example a straight or branched C₁₋₆alkyl group such as a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl group. Alkoxy groups optionally present on Az include straight or branched C₁₋₆alkoxy groups such as methoxy or ethoxy groups. Halogen atoms include for example fluorine, chlorine, bromine or iodine atoms. When the optional substituent on Az is a haloalkyl or haloalkoxy group it may be for example a haloC₁₋₆alkyl or haloC₁₋₆alkoxy group containing one, two or three halogen atoms selected from fluorine, chlorine, bromine or iodine atoms. Particular examples of groups of this type include -CF₃, -OCF₃, -CCl₃, -OCCl₃, -CHF₂, -OCHF₂, -CHCl₂, -OCHCl₂, -CH₂F, -OCH₂F, -CH₂Cl and -OCH₂Cl groups.

In the compounds of formula (1), derivatives of the carboxylic acid group R include carboxylic acid esters and amides. Particular esters and amides include those -CO₂Alk⁵, -CONH₂, -CONHR¹² and -CON[R¹²]₂ groups described below in relation to the group R⁶.

Alk² in the compounds of the invention may be for example a straight or branched C₁₋₃alkylene chain. Particular examples include -CH₂-, -CH(CH₃)- and -(CH₂)₂-.

When in the compounds of the invention L¹ is present as a linker atom or group it may be any divalent linking atom or group. Particular examples include -O- or -S- atoms or -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁸)- [where R⁸ is a hydrogen atom or an optionally substituted straight or branched alkyl group], -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸)-, -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)₂N(R⁸)-, -N(R⁸)S(O)₂-, -N(R⁸)CSN(R⁸)-, or

-N(R⁸)SO₂N(R⁸)- groups. Where the linker group contains two R⁸ substituents, these may be the same or different.

- When Alk¹ and/or R⁶ in compounds of formula (1) is an optionally substituted aliphatic chain it may be an optionally substituted C₁₋₁₀ aliphatic chain. Particular examples include optionally substituted straight or branched chain C₁₋₆ alkylene, C₂₋₆ alkenylene, or C₂₋₆ alkynylene chains.
- 10 Heteroaliphatic chains represented by Alk¹ and/or R⁶ include the aliphatic chains just described but with each chain additionally containing one, two, three or four heteroatoms or heteroatom-containing groups. Particular heteroatoms or groups include atoms or groups L³ where L³ is as defined above for L¹ when L¹ is a linker atom or group. Each L³ atom or group 15 may interrupt the aliphatic chain, or may be positioned at its terminal carbon atom to connect the chain to an adjoining atom or group.
- Particular examples of aliphatic chains represented by Alk¹ and R⁶ include optionally substituted -CH₂-, -CH₂CH₂-, -CH(CH₃)-, -C(CH₃)₂-, 20 -(CH₂)₂CH₂-, -CH(CH₃)CH₂-, -(CH₂)₃CH₂-, -CH(CH₃)CH₂CH₂-, -CH₂CH(CH₃)CH₂-, -C(CH₃)₂CH₂-, -(CH₂)₄CH₂-, -(CH₂)₅CH₂-, -CHCH-, -CHCHCH₂-, -CH₂CHCH-, -CHCHCH₂CH₂-, -CH₂CHCHCH₂-, -(CH₂)₂CHCH-, -CC-, -CCCH₂-, -CH₂CC-, -CCCH₂CH₂-, -CH₂CCCH₂-, or 25 -(CH₂)₂CC- chains. Where appropriate each of said chains may be optionally interrupted by one or two atoms and/or groups L³ to form an optionally substituted heteroaliphatic chain. Particular examples include optionally substituted -L³CH₂-, -CH₂L³CH₂-, -L³(CH₂)₂-, -CH₂L³(CH₂)₂-, -(CH₂)₂L³CH₂-, -L³(CH₂)₃- and -(CH₂)₂L³(CH₂)₂- chains.
- 30 The optional substituents which may be present on aliphatic or heteroaliphatic chains represented by Alk¹ and R⁶ include one, two, three or more substituents where each substituent may be the same or different and is selected from halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, or C₁₋₆alkoxy, e.g. methoxy or ethoxy, thiol, C₁₋₆alkylthio 35 e.g. methylthio or ethylthio, amino or substituted amino groups. Substituted amino groups include -NHR⁹ and -N(R⁹)₂ groups where R⁹ is

a straight or branched alkyl group. Where two R⁹ groups are present these may be the same or different. Particular examples of substituted chains represented by Alk¹ include those specific chains just described substituted by one, two, or three halogen atoms such as fluorine atoms, for 5 example chains of the type -CH(CF₃)-, -C(CF₃)₂- -CH₂CH(CF₃)-, -CH₂C(CF₃)₂-, -CH(CF₃)- and -C(CF₃)₂CH₂.

Optionally substituted cycloaliphatic groups represented by R¹ and/or R⁶ in compounds of the invention include optionally substituted C₃-10 10 cycloaliphatic groups. Particular examples include optionally substituted C₃-10 cycloalkyl, e.g. C₃-7 cycloalkyl or C₃-10 cycloalkenyl, e.g C₃-7 cycloalkenylgroups.

Optionally substituted heterocycloaliphatic groups represented by R¹ 15 and/or R⁶ include optionally substituted C₃-10heterocycloaliphatic groups. Particular examples include optionally substituted C₃-10heterocycloalkyl, e.g. C₃-7 heterocycloalkyl, or C₃-10heterocycloalkenyl, e.g. C₃-7 heterocycloalkenyl groups, each of said groups containing one, two, three or four heteroatoms or heteroatom-containing groups L³ as just defined.

20 Optionally substituted polycycloaliphatic groups represented by R¹ and/or R⁶ include optionally substituted C₇-10 bi- or tricycloalkyl or C₇-10bi- or tricycloalkenyl groups. Optionally substituted polyheterocycloaliphatic groups represented by R¹ and/or R⁶ include the optionally substituted 25 polycycloalkyl groups just described, but with each group additionally containing one, two, three or four L³ atoms or groups.

Particular examples of R¹ and R⁷ cycloaliphatic, polycycloaliphatic, 30 heterocycloaliphatic and polyheterocycloaliphatic groups include optionally substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 2-cyclobuten-1-yl, 2-cyclopenten-1-yl, 3-cyclopenten-1-yl, adamantyl, norbornyl, norbornenyl, tetrahydrofuranyl, pyrrolidine, e.g. 2- or 3-pyrrolinyl, pyrrolidinyl, pyrrolidinone, oxazolidinyl, oxazolidinone, dioxolanyl, e.g. 1,3-dioxolanyl, imidazolinyl, e.g. 2-imidazolinyl, imidazolidinyl, pyrazolinyl, e.g. 35 2-pyrazolinyl, pyrazolidinyl, pyranyl, e.g. 2- or 4-pyranyl, piperidinyl, piperidinone, 1,4-dioxanyl, morpholinyl, morpholinone, 1,4-dithianyl,

thiomorpholinyl, piperazinyl, 1,3,5-trithianyl, oxazinyl, e.g. 2H-1,3-, 6H-1,3-, 6H-1,2-, 2H-1,2- or 4H-1,4- oxazinyl, 1,2,5-oxathiazinyl, isoxazinyl, e.g. o- or p-isoxazinyl, oxathiazinyl, e.g. 1,2,5 or 1,2,6-oxathiazinyl, or 1,3,5,-oxadiazinyl groups.

5

- The optional substituents which may be present on the R¹ and R⁶ cycloaliphatic, polycycloaliphatic, heterocycloaliphatic or polyheterocycloaliphatic groups include one, two, three or more substituents each selected from halogen atoms, e.g. fluorine, chlorine, bromine or iodine atoms, or
- 10 C₁-6alkyl, e.g. methyl or ethyl, haloC₁-6alkyl, e.g. halomethyl or haloethyl such as difluoromethyl or trifluoromethyl, optionally substituted by hydroxyl, e.g. -C(OH)(CF₃)₂, C₁-6alkoxy, e.g. methoxy or ethoxy, haloC₁-6alkoxy, e.g. halomethoxy or haloethoxy such as difluoromethoxy or trifluoromethoxy, thiol, C₁-6alkylthio e.g. methylthio or ethylthio, or
- 15 -(Alk)_vR⁹ groups in which Alk is a straight or branched C₁-3alkylene chain, v is zero or an integer 1 and R⁹ is a -OH, -SH, -N(R^{8a})₂, -CN, -CO₂R^{8a}, -NO₂, -CON(R^{8a})₂, -CSN(R^{8a})₂, -COR^{8a}, -CSN(R^{8a})₂, -N(R^{8a})COR^{8a}, -N(R^{8a})CSR^{8a}, -SO₂N(R^{8a})₂, -N(R^{8a})SO₂R^{8a}, -N(R^{8a})CON(R^{8a})₂, -N(R^{8a})CSN(R^{8a}) or -N(R^{8a})SO₂N(R^{8a})₂ group in which R^{8a} is an atom or
- 20 group as defined herein for R⁸. Additionally, when R⁶ is a heterocycloaliphatic group containing one or more nitrogen atoms each nitrogen atom may be optionally substituted by a group -(L⁴)_p(Alk³)_qR¹⁰ in which L⁴ is -C(O)-, -C(O)O-, -C(S)-, -S(O)₂-, -CON(R⁸)-, -CSN(R⁸)-, -SON(R⁸)- or SO₂N(R⁸)-; p is zero or an integer 1; Alk³ is an optionally substituted aliphatic or heteroaliphatic chain; q is zero or an integer 1; and R¹⁰ is a hydrogen atom or an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group.
- 25
- 30 Optionally substituted aliphatic or heteroaliphatic chains represented by Alk³ include those optionally substituted chains described above for Alk¹.

- Cycloaliphatic, heterocycloaliphatic, polycycloaliphatic or polyheterocycloaliphatic groups represented by R¹⁰ include those groups just described for R¹ and R⁶. Optional substituents which may be present on these

groups include those described above in relation to Alk¹ aliphatic and heteroaliphatic chains.

- 5 Optionally substituted aromatic or heteroaromatic groups represented by R¹⁰ include those aromatic and heteroaromatic groups generally and specifically described below for R¹ and/or R⁶.

In the compounds of formula (1), optionally substituted aromatic groups represented by the groups R¹, R⁶ and/or R¹⁰ include for example 10 optionally substituted monocyclic or bicyclic fused ring C₆-12 aromatic groups, such as optionally substituted phenyl, 1- or 2-naphthyl, 1- or 2-tetrahydronaphthyl, indanyl or indenyl groups .

- 15 Optionally substituted heteroaromatic groups, represented by the groups R¹, R⁶ and/or R¹⁰ in compounds of formula (1) include for example optionally substituted C₁-9 heteroaromatic groups containing for example one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms. In general, the heteroaromatic groups may be for example monocyclic or bicyclic fused ring heteroaromatic groups. 20 Monocyclic heteroaromatic groups include for example five- or six-membered heteroaromatic groups containing one, two, three or four heteroatoms selected from oxygen, sulphur or nitrogen atoms. Bicyclic heteroaromatic groups include for example nine- to thirteen-membered fused-ring heteroaromatic groups containing one, two or more 25 heteroatoms selected from oxygen, sulphur or nitrogen atoms.

- Particular examples of heteroaromatic groups of these types include 30 optionally substituted pyrrolyl, furyl, thienyl, imidazolyl, N-methylimidazolyl, N-ethylimidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazole, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,3,5-triazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, benzofuryl, [2,3-dihydro]benzofuryl, isobenzofuryl, benzothienyl, benzo-triazolyl, indolyl, isoindolyl, benzimidazolyl, imidazo[1,2-a]pyridyl, 35 benzothiazolyl, benzoxazolyl, benzopyranyl, [3,4-dihydro]benzopyranyl, quinazolinyl, naphthyridinyl, pyrido[3,4-b]pyridyl, pyrido[3,2-b]pyridyl,

- pyrido[4,3-b]pyridyl, quinolinyl, isoquinolinyl, tetrazolyl, 5,6,7,8-tetrahydroquinolinyl, 5,6,7,8-tetrahydroisoquinolinyl, and imidyl, e.g. succinimidyl, phthalimidyl, or naphthalimidyl such as 1,8-naphthalimidyl.
- Optional substituents which may be present on the aromatic or heteroaromatic groups represented by R¹ include one, two, three or more of the substituents just described for R¹ cycloaliphatic groups.
- Optional substituents which may be present on the aromatic or heteroaromatic groups represented by R¹, R⁶ and/or R¹⁰ include one, two, three or more substituents, each selected from an atom or group R¹¹ in which R¹¹ is -R^{11a} or -Alk⁴(R^{11a})_m, where R^{11a} is a halogen atom, or an amino (-NH₂), substituted amino, nitro, cyano, amidino, hydroxyl (-OH), substituted hydroxyl, formyl, carboxyl (-CO₂H), esterified carboxyl, thiol (-SH), substituted thiol, -COR¹² [where R¹² is an -Alk⁴(R^{11a})_m, aryl or heteroaryl group], -CSR¹², -SO₃H, -SO₂R¹², -SO₂NH₂, -SO₂NHR¹², SO₂N(R¹²)₂, -CONH₂, -CSNH₂, -CONHR¹², -CSNHR¹², -CON[R¹²]₂, -CSN(R¹²)₂, -N(R⁸)SO₂R¹², -N(SO₂R¹²)₂, -N(R⁸)SO₂NH₂, -N(R⁸)SO₂NHR¹², -N(R⁸)SO₂N(R¹²)₂, -N(R⁸)COR¹², -N(R⁸)CON(R¹²)₂, -N(R⁸)CSN(R¹²)₂, -N(R⁸)CSR¹², -N(R⁸)C(O)OR¹², -SO₂NHet¹ [where Het¹ is an optionally substituted C₅-7cyclicamino group optionally containing one or more other -O- or -S- atoms or -N(R⁸)-, -C(O)- or -C(S)- groups], -CONHet¹, -CSNHet¹, -N(R⁸)SO₂NHet¹, -N(R⁸)CONHet¹, -N(R⁸)CSNHet¹, -SO₂N(R⁸)Het² [where Het² is an optionally substituted monocyclic C₅-7carbocyclic group optionally containing one or more -O- or -S- atoms or -N(R⁸)-, -C(O)- or -C(S)- groups], -CON(R⁸)Het², -CSN(R⁸)Het², -N(R⁸)CON(R⁸)Het², -N(R⁸)CSN(R⁸)Het², aryl or heteroaryl group; Alk⁴ is a straight or branched C₁-6alkylene, C₂-6alkenylene or C₂-6alkynylene chain, optionally interrupted by one, two or three -O- or -S- atoms or -S(O)_n [where n is an integer 1 or 2] or -N(R¹³)- groups [where R¹³ is a hydrogen atom or C₁-6alkyl, e.g. methyl or ethyl group]; and m is zero or an integer 1, 2 or 3. It will be appreciated that when two R⁸ or R¹² groups are present in one of the above substituents, the R⁸ or R¹² groups may be the same or different.
- When in the group -Alk⁴(R^{11a})_m m is an integer 1, 2 or 3, it is to be understood that the substituent or substituents R^{11a} may be present on

any suitable carbon atom in -Alk⁴. Where more than one R^{11a} substituent is present these may be the same or different and may be present on the same or different atom in -Alk⁴. Clearly, when m is zero and no substituent R^{11a} is present the alkylene, alkenylene or alkynylene chain 5 represented by Alk⁴ becomes an alkyl, alkenyl or alkynyl group.

When R^{11a} is a substituted amino group it may be for example a group -NHR¹² [where R¹² is as defined above] or a group -N(R¹²)₂ wherein each R¹² group is the same or different.

10 When R^{11a} is a halogen atom it may be for example a fluorine, chlorine, bromine, or iodine atom.

15 When R^{11a} is a substituted hydroxyl or substituted thiol group it may be for example a group -OR¹² or a -SR¹² or -SC(=NH)NH₂ group respectively.

Esterified carboxyl groups represented by the group R^{11a} include groups of formula -CO₂Alk⁵ wherein Alk⁵ is a straight or branched, optionally substituted C₁₋₈alkyl group such as a methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl or t-butyl group; a C₆₋₁₂arylC₁₋₈alkyl group such as an 20 optionally substituted benzyl, phenylethyl, phenylpropyl, 1-naphthylmethyl or 2-naphthylmethyl group; a C₆₋₁₂aryl group such as an optionally substituted phenyl, 1-naphthyl or 2-naphthyl group; a C₆₋₁₂aryloxyC₁₋₈alkyl group such as an optionally substituted phenoxyethyl, phenoxyethyl, 25 1-naphthoxyethyl, or 2-naphthoxyethyl group; an optionally substituted C₁₋₈alkanoyloxyC₁₋₈alkyl group, such as a pivaloyloxyethyl, propionyloxyethyl or propionyloxypropyl group; or a C₆₋₁₂aroyloxyC₁₋₈alkyl group such as an optionally substituted benzoyloxyethyl or benzoyloxypropyl group. Optional substituents present on the Alk⁵ group include R^{11a} 30 substituents described above.

When Alk⁴ is present in or as a substituent it may be for example a methylene, ethylene, n-propylene, i-propylene, n-butylene, i-butylene, s-butylene, t-butylene, ethylene, 2-propenylene, 2-butene, 3-butene, 35 ethynylene, 2-propynylene, 2-butynylene or 3-butynylene

chain, optionally interrupted by one, two, or three -O- or -S-, atoms or -S(O)-, -S(O)₂- or -N(R⁸)- groups.

Aryl or heteroaryl groups represented by the groups R^{11a} or R¹² include
5 mono- or bicyclic optionally substituted C₆-12 aromatic or C₁-9 heteroaromatic groups as described above for the group R⁶. The aromatic and heteroaromatic groups may be attached to the remainder of the compound of formula (1) by any carbon or hetero e.g. nitrogen atom as appropriate.

10 When -NHet¹ or -Het² forms part of a substituent R¹¹ each may be for example an optionally substituted pyrrolidinyl, pyrazolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, piperidinyl or thiazolidinyl group. Additionally Het² may represent for example, an optionally substituted cyclopentyl or
15 cyclohexyl group. Optional substituents which may be present on -NHet¹ or -Het² include those substituents described above in relation to Alk¹ chains.

Particularly useful atoms or groups represented by R¹¹ include fluorine,
20 chlorine, bromine or iodine atoms, or C₁-6alkyl, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl or t-butyl, optionally substituted phenyl, pyridyl, pyrrolyl, furyl, thiazolyl, or thienyl, C₁-6alkylamino, e.g. methylamino or ethylamino, C₁-6hydroxyalkyl, e.g. hydroxymethyl or hydroxyethyl, carboxyC₁-6alkyl, e.g. carboxyethyl, C₁-6alkylthio e.g. methylthio or ethylthio, carboxyC₁-6alkylthio, e.g. carboxymethylthio, 2-carboxyethylthio or 3-carboxypropylthio, C₁-6alkoxy, e.g. methoxy or ethoxy, hydroxyC₁-6alkoxy, e.g. 2-hydroxyethoxy, optionally substituted phenoxy, pyridyloxy, thiazolyoxy, phenylthio or pyridylthio, C₅-7cycloalkoxy, e.g. cyclopentyloxy, haloC₁-6alkyl, e.g. trifluoromethyl, haloC₁-6alkoxy, e.g. trifluoromethoxy, C₁-6alkylamino, e.g. methylamino or ethylamino, amino (-NH₂), aminoC₁-6alkyl, e.g. aminomethyl or aminoethyl, C₁-6dialkylamino, e.g. dimethylamino or diethylamino, C₁-6alkylaminoC₁-6alkyl, e.g. ethylaminoethyl, C₁-6dialkylaminoC₁-6alkyl, e.g. diethylaminoethyl, aminoC₁-6alkoxy, e.g. aminoethoxy, C₁-6alkylaminoC₁-6alkoxy, e.g. methylaminoethoxy, C₁-6dialkylaminoC₁-6alkoxy, e.g. dimethylaminoethoxy, diethylaminoethoxy, isopropylaminoethoxy, or dimethylaminopropoxy, imido, such as

phthalimido or naphthalimido, e.g. 1,8-naphthalimido, nitro, cyano, amidino, hydroxyl (-OH), formyl [HC(O)-], carboxyl (-CO₂H), -CO₂Alk⁶ [where Alk⁶ is as defined above], C₁₋₆ alkanoyl e.g. acetyl, optionally substituted benzoyl, thiol (-SH), thioC₁₋₆alkyl, e.g. thiomethyl or thioethyl, 5 -SC(=NH)NH₂, sulphonyl (-SO₃H), C₁₋₆alkylsulphonyl, e.g. methylsulphonyl, aminosulphonyl (-SO₂NH₂), C₁₋₆alkylaminosulphonyl, e.g. methylaminosulphonyl or ethylaminosulphonyl, C₁₋₆dialkylaminosulphonyl, e.g. dimethylaminosulphonyl or diethylaminosulphonyl, phenylaminosulphonyl, carboxamido (-CONH₂), C₁₋₆alkylaminocarbonyl, e.g. methylaminocarbonyl or ethylaminocarbonyl, C₁₋₆dialkylaminocarbonyl, e.g. dimethylaminocarbonyl or diethylaminocarbonyl, aminoC₁₋₆alkylaminocarbonyl, e.g. aminoethylaminocarbonyl, C₁₋₆dialkylaminoC₁₋₆alkylaminocarbonyl, e.g. diethylaminoethylaminocarbonyl, aminocarbonylamino, C₁₋₆alkylaminocarbonylamino, e.g. methylaminocarbonylamino or ethylamino- 10 carbonylamino, C₁₋₆dialkylaminocarbonylamino, e.g. dimethylaminocarbonylamino or diethylaminocarbonylamino, C₁₋₆alkylaminocabonylC₁₋₆alkylamino, e.g. methylaminocabonylmethylamino, aminothiocarbonylamino, C₁₋₆alkylaminothiocarbonylamino, e.g. methylaminothiocarbonylamino or ethylaminothiocarbonylamino, C₁₋₆dialkylaminothiocarbonyl- 15 amino, e.g. dimethylaminothiocarbonylamino or diethylaminothiocarbonylamino, C₁₋₆alkylaminothiocarbonylC₁₋₆alkylamino, e.g. ethylaminothiocarbonylmethylamino, -CONHC(=NH)NH₂, C₁₋₆alkylsulphonylamino, e.g. methylsulphonylamino or ethylsulphonylamino, C₁₋₆dialkylsulphonylamino, e.g. dimethylsulphonylamino or diethylsulphonylamino, optionally 20 substituted phenylsulphonylamino, aminosulphonylamino (-NHSO₂NH₂), C₁₋₆alkylaminosulphonylamino, e.g. methylaminosulphonyl-amino or ethylaminosulphonylamino, C₁₋₆dialkylaminosulphonylamino, e.g. dimethylaminosulphonylamino or diethylaminosulphonylamino, optionally substituted morpholinesulphonylamino or morpholinesulphonylC₁₋₆alkylamino, 25 optionally substituted phenylaminosulphonylamino, C₁₋₆alkanoylamino, e.g. acetylamino, aminoC₁₋₆alkanoylamino e.g. aminoacetylamino, C₁₋₆dialkylaminoC₁₋₆alkanoylamino, e.g. dimethylaminoacetylamino, C₁₋₆alkanoylaminoC₁₋₆alkyl, e.g. acetylaminomethyl, C₁₋₆alkanoylaminoC₁₋₆alkylamino, e.g. acetamidoethylamino, C₁₋₆alkoxycarbonylamino, e.g. 30 methoxycarbonylamino, ethoxycarbonylamino or t-butoxycarbonylamino or optionally substituted benzyloxy, pyridylmethoxy, thiazolylmethoxy,

benzyloxycarbonylamino, benzyloxycarbonylaminoC₁-6alkyl e.g. benzyl-oxy carbonylaminoethyl, benzothio, pyridylmethylthio or thiazolylmethylthio groups.

- 5 Where desired, two R¹¹ substituents may be linked together to form a cyclic group such as a cyclic ether, e.g. a C₁-6alkylenedioxy group such as methylenedioxy or ethylenedioxy.

It will be appreciated that where two or more R¹¹ substituents are present,
10 these need not necessarily be the same atoms and/or groups. In general, the substituent(s) may be present at any available ring position in the aromatic or heteroaromatic group represented by R¹, R⁶ and/or R¹⁰.

Straight or branched alkyl groups represented by R⁷, R⁸ and/or R⁹ in
15 compounds of the invention include straight or branched C₁-6alkyl e.g. C₁-3alkyl groups such as methyl or ethyl groups. Each R⁸ group may be optionally substituted, for example by one or more atoms or groups of the types described previously as optional Alk¹ substituents.

20 The presence of certain substituents in the compounds of formula (1) may enable salts of the compounds to be formed. Suitable salts include pharmaceutically acceptable salts, for example acid addition salts derived from inorganic or organic acids, and salts derived from inorganic and organic bases.

25 Acid addition salts include hydrochlorides, hydrobromides, hydroiodides, alkylsulphonates, e.g. methanesulphonates, ethanesulphonates, or isethionates, arylsulphonates, e.g. p-toluenesulphonates, besylates or napsylates, phosphates, sulphates, hydrogen sulphates, acetates,
30 trifluoroacetates, propionates, citrates, maleates, fumarates, malonates, succinates, lactates, oxalates, tartrates and benzoates.

35 Salts derived from inorganic or organic bases include alkali metal salts such as sodium or potassium salts, alkaline earth metal salts such as magnesium or calcium salts, and organic amine salts such as morpholine, piperidine, dimethylamine or diethylamine salts.

Particularly useful salts of compounds according to the invention include pharmaceutically acceptable salts, especially acid addition pharmaceutically acceptable salts.

5

Generally in the compounds of the invention the group R is preferably a -CO₂H group.

Alk² in compounds of formula (1) is preferably a -CH₂- chain and m is
10 preferably an integer 1.

R⁴ in compounds of the invention is preferably a hydrogen atom.

In general in compounds of formula (1) -(Alk¹)_r(L¹)_s- is preferably -CH₂O-,
15 -S(O)₂O- or -CON(R⁸)-, particularly -CONH-.

The group R¹ in compounds of formula (1) is preferably an optionally substituted aromatic or heteroaromatic group. Particularly useful groups of these types include optionally substituted phenyl, pyridyl or pyrimidinyl
20 groups. Particularly useful substituents include one or two R¹¹ atoms or groups as generally or particularly described herein. Especially useful substituents of this type include one or two halogen atoms or alkyl, alkoxy, haloalkyl, or haloalkoxy groups as described herein.

25 The group Az in the compounds according to the invention may in particular be an optionally substituted pyridyl group.

Thus, one particular class of compounds of the invention may have the formula (1a):

30

where R¹, Alk¹, r, L¹, s, Alk², m, R, R⁴ and R⁵ are as defined for formula (1) and R² and R³, which may be the same or different, is each a hydrogen or halogen atom or a straight or branched alkyl, haloalkyl, alkoxy, haloalkoxy, hydroxyl or nitro group; and the salts, solvates and
5 hydrates thereof.

Particular halogen atoms, alkyl, haloalkyl, alkoxy or haloalkoxy groups represented by R² and/or R³ include those atoms and groups described previously in relation to optional Az substituents.

10

One particular class of compounds of formula (1a) is that wherein the R¹(Alk¹)_r(L¹)_s group is present at the 5-position of the pyridyl ring as shown.

15

Particularly useful classes of compounds of formula (1) and (1a) are those wherein R⁵ is a -NHCOR⁶ or -NHCSR⁶ group.

In general in compounds according to the invention R⁶ may especially be an optionally substituted cycloaliphatic, heterocycloaliphatic, aromatic or
20 heteroaromatic group as defined herein. Particularly useful groups of this type include optionally substituted C₅-7heterocycloaliphatic, especially optionally substituted pyrrolidinyl or thiazolidinyl, optionally substituted phenyl and optionally substituted C₅-7heteroaromatic, especially optionally substituted pyridyl groups. Optional substituents on these groups include
25 in particular R¹¹ atoms or groups where the group is an aromatic or heteroaromatic group and -(L⁴)_p(Alk³)_qR¹⁰ groups as described earlier where the group is a nitrogen-containing heterocycloaliphatic group such as a pyrrolidinyl or thiazolidinyl group. Particularly useful -(L⁴)_p(Alk³)_qR¹⁰ groups include those in which L³ is a -CO- group. Alk³ in these groups is
30 preferably present (i.e. q is preferably an integer 1) and in particular is a -CH₂-chain. Compounds of this type in which R¹⁰ is a hydrogen atom or an optionally substituted aromatic or heteroaromatic group, especially an optionally substituted phenyl, pyridyl or imidazolyl group are particularly preferred.

35

Particularly useful compounds according to the invention are:

- N-(N'-Acetyl-D-thioproline)-2-amino-3-[5-(2,6-dichlorobenzyloxy)-pyrid-2-y]propanoic acid;*
- N-(N'-Acetyl-D-thioproline)-2-amino-3-(5-benzenesulphonyloxy)pyrid-2-yl)propanoic acid;*
- 5 2-[*N*-(2-Chloropyrid-3-oyl)-amino]-3-[*N'*-(dichlorobenzoyl)-6-amino-pyrid-3-yl]propionic acid;
- and the salts, solvates and hydrates thereof

Compounds according to the invention are potent and selective inhibitors
10 of the binding of $\alpha 4$ integrins to their ligands. The ability of the compounds
to act in this way may be simply determined by employing tests such as
those described in the Examples hereinafter.

The compounds are of use in modulating cell adhesion and in particular
15 are of use in the prophylaxis and treatment of diseases or disorders
involving inflammation in which the extravasation of leukocytes plays a
role. The invention extends to such uses and to the use of the compounds
for preparing a medicament for treating these diseases and disorders.
Particular diseases or disorders of this type include inflammatory arthritis
20 such as rheumatoid arthritis vasculitis or polydermatomyositis, multiple
sclerosis, allograft rejection, diabetes, inflammatory dermatoses such as
psoriasis or dermatitis, asthma and inflammatory bowel disease.

For the prophylaxis or treatment of disease the compounds according to
25 the invention may be administered as pharmaceutical compositions, and
according to a further aspect of the invention we provide a pharmaceutical
composition which comprises a compound of formula (1) together with one
or more pharmaceutically acceptable carriers, excipients or diluents.

30 Pharmaceutical compositions according to the invention may take a form
suitable for oral, buccal, parenteral, nasal, topical or rectal administration,
or a form suitable for administration by inhalation or insufflation.

For oral administration, the pharmaceutical compositions may take the
35 form of, for example, tablets, lozenges or capsules prepared by
conventional means with pharmaceutically acceptable excipients such as

- binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium 5 glycollate); or wetting agents (e.g. sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations 10 may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles and preservatives. The preparations may also contain buffer salts, flavouring, colouring and sweetening agents as appropriate.
- 15 Preparations for oral administration may be suitably formulated to give controlled release of the active compound.

For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

- 20 The compounds for formula (1) may be formulated for parenteral administration by injection e.g. by bolus injection or infusion. Formulations for injection may be presented in unit dosage form, e.g. in glass ampoule or multi dose containers, e.g. glass vials. The compositions for injection 25 may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.
- 30 In addition to the formulations described above, the compounds of formula (1) may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation or by intramuscular injection.

For nasal administration or administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of suitable propellant, e.g. dichlorodifluoromethane, trichloro-
5 fluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the
10 active ingredient. The pack or dispensing device may be accompanied by instructions for administration.

The quantity of a compound of the invention required for the prophylaxis or treatment of a particular condition will vary depending on the compound
15 chosen, and the condition of the patient to be treated. In general, however, daily dosages may range from around 100ng/kg to 100mg/kg e.g. around 0.01mg/kg to 40mg/kg body weight for oral or buccal administration, from around 10ng/kg to 50mg/kg body weight for parenteral administration and around 0.05mg to around 1000mg e.g. around 0.5mg
20 to around 1000mg for nasal administration or administration by inhalation or insufflation.

The compounds of the invention may be prepared by a number of processes as generally described below and more specifically in the
25 Examples hereinafter. In the following process description, the symbols R, R¹-R⁵, L¹, Az, Alk¹, Alk², m, r and s when used in the formulae depicted are to be understood to represent those groups described above in relation to formula (1) unless otherwise indicated. In the reactions described below, it may be necessary to protect reactive functional groups,
30 for example hydroxy, amino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Conventional protecting groups may be used in accordance with standard practice [see, for example, Green, T. W. in "Protective Groups in Organic Synthesis", John Wiley and Sons, 1991]. In some
35 instances, deprotection may be the final step in the synthesis of a compound of formula (1) and the processes according to the invention

described hereinafter are to be understood to extend to such removal of protecting groups.

- Thus according to a further aspect of the invention, a compound of formula 5 (1) in which R is a -CO₂H group may be obtained by hydrolysis of an ester of formula (2):

- 10 where R^a is an alkyl group, for example a C₁-6alkyl group such as a methyl or ethyl group.

The hydrolysis may be performed using either an acid or a base depending on the nature of R^a, for example an organic acid such as 15 trifluoroacetic acid or an inorganic base such as lithium hydroxide optionally in an aqueous organic solvent such as an amide, e.g. a substituted amide such as dimethylformamide, an ether, e.g. a cyclic ether such as tetrahydrofuran or dioxane or an alcohol, e.g. methanol at around ambient temperature. Where desired, mixtures of such solvents may be 20 used.

Esters of formula (2) in which R⁵ is a -N(R⁷)CO(CH₂)_lR⁶ group may be prepared by coupling an amine of formula (3):

25

or a salt thereof with an acid R⁶(CH₂)_lCO₂H or an active derivative thereof. Active derivatives of acids include anhydrides, esters and halides.

- The coupling reaction may be performed using standard conditions for reactions of this type. Thus for example the reaction may be carried out in a solvent, for example an inert organic solvent such as an amide, e.g. a substituted amide such as dimethylformamide, an ether, e.g. a cyclic ether
- 5 such as tetrahydrofuran, or a halogenated hydrocarbon, such as dichloromethane, at a low temperature, e.g. around -30°C to around ambient temperature, optionally in the presence of a base, e.g. an organic base such as an amine, e.g. triethylamine, pyridine, or dimethylaminopyridine, or a cyclic amine, such as N-methylmorpholine.
- 10 Where an acid $R^6(CH_2)_lCO_2H$ is used, the reaction may additionally be performed in the presence of a condensing agent, for example a diimide such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide or N,N'-dicyclohexylcarbodiimide, advantageously in the presence of a catalyst such as a
- 15 N-hydroxy compound e.g. a N-hydroxytriazole such as 1-hydroxybenzotriazole. Alternatively, the acid may be reacted with a chloroformate, for example ethylchloroformate, prior to reaction with the amine of formula (2).
- 20 Esters of formula (2) in which R^5 is a $-N(R^7)CS(CH_2)_lR^6$ group may be prepared by treating a corresponding ester in which R^5 is a $-N(R^7)CO(CH_2)_lR^6$ group with a thiation reagent, such as Lawesson's Reagent, in an anhydrous solvent, for example a cyclic ether such as tetrahydrofuran, at an elevated temperature such as the reflux
- 25 temperature.
- This reaction may not be particularly suitable with starting materials in which other carbonyl groups are present, for example in L¹ and/or R⁶, and which might undesirably participate in the reaction. To avoid this the
- 30 reaction with the thiation reagent may be performed earlier in the synthesis of the compound of the invention with an intermediate in which other carbonyl groups are absent and any required carbonyl groups then subsequently introduced by for example acylation as generally described hereinafter.

The amines of formula (3) may be obtained from simpler, known compounds by one or more standard synthetic methods employing substitution, oxidation, reduction or cleavage reactions. Particular substitution approaches include conventional alkylation, arylation, 5 heteroarylation, acylation, thioacetylation, halogenation, sulphonylation, nitration, formylation and coupling procedures. It will be appreciated that these methods may also be used to obtain or modify other compounds of formulae (1) and (2) where appropriate functional groups exist in these compounds. Additionally, although many of the acid intermediates 10 $R^6(CH_2)_tCO_2H$ for use in the coupling reaction described above are known, other desired acids can be derived therefrom using these standard synthetic methods.

Thus, for example compounds of formulae (1), (2) and (3) and acids 15 $R^6(CH_2)_tCO_2H$ may be prepared by alkylation, arylation or heteroarylation. In one example compounds containing a L^1H or L^4H group may be alkylated or arylated using a reagent $R^1(Alk^1)_rX$, or $R^{10}(Alk^3)_qX$ in which X is a leaving atom or group such as a halogen atom, e.g. a fluorine, bromine, iodine or chlorine atom or a sulphonyloxy group such as an 20 alkylsulphonyloxy, e.g. trifluoromethylsulphonyloxy or arylsulphonyloxy, e.g. p-toluenesulphonyloxy group.

The alkylation or arylation reaction may be carried out in the presence of a base such as a carbonate, e.g. caesium or potassium carbonate, an 25 alkoxide, e.g. potassium t-butoxide, or a hydride, e.g. sodium hydride, in a dipolar aprotic solvent such as an amide, e.g. a substituted amide such as dimethylformamide or an ether, e.g. a cyclic ether such as tetrahydrofuran.

30 In a second example, intermediate amines of formula (3) may be prepared by alkylation of a glycinate, for example N-(diphenylmethylene)glycinate with a halide $R^1(Alk^1)_r(L^1)_sAzCH_2Hal$ (where Hal is a halogen atom such as a bromine or iodine atom) in the presence of a strong base, for example a hindered, non-nucleophilic base such as lithium diisopropylamide in a 35 solvent such as an ether, e.g. a cyclic ether such as tetrahydrofuran at a low temperature e.g. around -70°C. The intermediate halide starting

materials for this process are either known compounds or may be prepared from readily available compounds using methods analogous to the preparation of the known starting materials [see for example Myers, A.G. and Gleason, J.L., *J.Org. Chem.* (1996), 61, 813-815].

5

In another example, compounds of formulae (1), (2) and (3) containing a L^1H group (where L^1 is for example a $-NH-$ group) and acids $R^6(CH_2)_lCO_2H$ may be functionalised by acylation or thioacetylation, for example by reaction with a reagent $R^1(Alk^1)_rL^1X$, [wherein L^1 is a $-C(O)-$,
10 $-C(S)-$, $-N(R^8)C(O)$ or $-N(R^8)C(S)-$ group], $R^{10}(Alk^3)_qCOX$ or
 $R^{10}(Alk^3)_qNHCOX$ in the presence of a base, such as a hydride, e.g. sodium hydride or an amine, e.g. triethylamine or N-methylmorpholine, in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane or carbon tetrachloride or an amide, e.g. dimethyl-formamide, at for example
15 ambient temperature, or by reaction with $R^1(Alk^1)_rCO_2H$ or $R^{10}(Alk^3)_qCO_2H$ or an activated derivative thereof, for example as described above for the preparation of esters of formula (2).

In a further example a compound may be obtained by sulphonylation of a
20 compound where $R^1(Alk^1)_r(L^1)_s$ is an $-OH$ group by reaction with a reagent $R^1(Alk^1)_rL^1Hal$ [in which L^1 is $-S(O)-$ or $-SO_2-$ and Hal is a halogen atom such as a chlorine atom] in the presence of a base, for example an inorganic base such as sodium hydride in a solvent such as an amide, e.g. a substituted amide such as dimethylformamide at for example ambient
25 temperature.

In another example, a compound where $R^1(Alk^1)_r(L^1)_s$ is a $-L^1H$ group, may be coupled with a reagent R^1OH (where R^1 is other than a hydrogen atom) or R^1Alk^1OH in a solvent such as tetrahydrofuran in the presence of
30 a phosphine, e.g. triphenylphosphine and an activator such as diethyl, diisopropyl- or dimethylazodicarboxylate to yield a compound containing a $R^1(Alk^1)_rO-$ group.

In a further example, ester groups $-CO_2Alk^5$ in the compounds may be
35 converted to the corresponding acid $[-CO_2H]$ by acid- or base-catalysed

hydrolysis depending on the nature of the group Alk^5 using the reactants and conditions described above for the hydrolysis of esters of formula (2).

- In another example, $-\text{OR}^{12}$ groups [where R^{12} represents an alkyl group such as methyl group] in compounds of formulae (1) or (2) may be cleaved to the corresponding alcohol $-\text{OH}$ by reaction with boron tribromide in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane at a low temperature, e.g. around -78°C .
- 5 10 15 20 25 30 35
- Alcohol $[-\text{OH}]$ groups may also be obtained by hydrogenation of a corresponding $-\text{OCH}_2\text{R}^{12}$ group (where R^{12} is an aryl group) using a metal catalyst, for example palladium on a support such as carbon in a solvent such as ethanol in the presence of ammonium formate, cyclohexadiene or hydrogen, from around ambient to the reflux temperature. In another example, $-\text{OH}$ groups may be generated from the corresponding ester $[-\text{CO}_2\text{Alk}^5]$ or aldehyde $[-\text{CHO}]$ by reduction, using for example a complex metal hydride such as lithium aluminium hydride or sodium borohydride in a solvent such as methanol.
- Aminosulphonylamino $[-\text{NHSO}_2\text{NH}_2]$ groups in the compounds may be obtained, in another example, by reaction of a corresponding amine $[-\text{NH}_2]$ with sulphamide in the presence of an organic base such as pyridine at an elevated temperature, e.g. the reflux temperature.
- In a further example amine $(-\text{NH}_2)$ groups may be alkylated using a reductive alkylation process employing an aldehyde and a borohydride, for example sodium triacetoxyborohydride or sodium cyanoborohydride, in a solvent such as a halogenated hydrocarbon, e.g. dichloromethane, a ketone such as acetone, or an alcohol, e.g. ethanol, where necessary in the presence of an acid such as acetic acid at around ambient temperature.
- In a further example, amine $[-\text{NH}_2]$ groups in compounds of formulae (1) or (2) may be obtained by hydrolysis from a corresponding imide by reaction with hydrazine in a solvent such as an alcohol, e.g. ethanol at ambient temperature.

In another example, a nitro [-NO₂] group may be reduced to an amine [-NH₂], for example by catalytic hydrogenation using for example hydrogen in the presence of a metal catalyst, for example palladium on a support
5 such as carbon in a solvent such as an ether, e.g. tetrahydrofuran or an alcohol e.g. methanol, or by chemical reduction using for example a metal, e.g. tin or iron, in the presence of an acid such as hydrochloric acid.

Aromatic halogen substituents in the compounds may be subjected to
10 halogen-metal exchange with a base, for example a lithium base such as n-butyl or t-butyl lithium, optionally at a low temperature, e.g. around -78°C, in a solvent such as tetrahydrofuran and then quenched with an electrophile to introduce a desired substituent. Thus, for example, a formyl group may be introduced by using dimethylformamide as the electrophile;
15 a thiomethyl group may be introduced by using dimethyldisulphide as the electrophile.

In another example, sulphur atoms in the compounds, for example when present in a linker group L¹ or L³ may be oxidised to the corresponding
20 sulfoxide or sulphone using an oxidising agent such as a peroxy acid, e.g. 3-chloroperoxybenzoic acid, in an inert solvent such as a halogenated hydrocarbon, e.g. dichloromethane, at around ambient temperature.

N-oxides of compounds of formula (1) may be prepared for example by
25 oxidation of the corresponding nitrogen base using an oxidising agent such as hydrogen peroxide in the presence of an acid such as acetic acid, at an elevated temperature, for example around 70°C to 80°C, or alternatively by reaction with a peracid such as peracetic acid in a solvent, e.g. dichloromethane, at ambient temperature.

30 Salts of compounds of formula (1) may be prepared by reaction of a compound of formula (1) with an appropriate base in a suitable solvent or mixture of solvents e.g. an organic solvent such as an ether e.g. diethylether, or an alcohol, e.g. ethanol using conventional procedures.

Where it is desired to obtain a particular enantiomer of a compound of formula (1) this may be produced from a corresponding mixture of enantiomers using any suitable conventional procedure for resolving enantiomers.

5

Thus for example diastereomeric derivatives, e.g. salts, may be produced by reaction of a mixture of enantiomers of formula (1) e.g. a racemate, and an appropriate chiral compound, e.g. a chiral base. The diastereomers may then be separated by any convenient means, for example by 10 crystallisation and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt.

In another resolution process a racemate of formula (1) may be separated using chiral High Performance Liquid Chromatography. Alternatively, if 15 desired a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above.

The following Examples illustrate the invention. All temperatures are in °C. All ^1H nmr data is at 300MHz and at 300°K unless otherwise stated.

20 The following abbreviations are used:

EDC	- 1-(3-dimethylaminopropyl)3-ethycarbodiimide;	
DMF	- dimethylformamide;	DMSO - dimethylsulphoxide;
HOBT	- 1-hydroxybenzotriazole;	THF - tetrahydrofuran;
DCM	- dichloromethane;	MeOH - methanol;
25 LDA	- lithium diisopropylamide	EtOAc - ethyl acetate;
NMM	- N-methylmorpholine;	EtOH - ethanol;
pyr	- pyridine;	Ar - aryl;
Me	- methyl;	thiopro - thioproline;
Et ₂ O	- diethyl ether	

30

INTERMEDIATE 1

Ethyl N-(diphenylmethylene)-2-amino-3-(5-benzenesulphonyloxy-pyrid-2-yl)propionate

A solution of ethyl N-(diphenylmethylene)glycinate (1.71g, 6.40mmol) in dry THF (10ml) was added to a stirred solution of LDA (2M in heptane/ 35 THF/ethylbenzene, 3.20ml, 6.40mmol) in dry THF (10ml) at -70° under

nitrogen. After stirring at this temperature for 0.75h, a solution of 5-benzenesulphonyloxy-2-bromomethyl-pyridine [2.00g, 6.01mmol; prepared as described by Myers et al, J.Org.Chem. (1996), 61, 813] in dry THF (10ml) was added. The reaction mixture was stirred at -70° for 1h then at room temperature for 18h. The reaction was quenched with water (10ml) then partitioned between EtOAc (70ml) and brine (30ml). The phases were separated and the aqueous phase re-extracted with EtOAc (2 x 40ml). The combined organic extracts were washed with brine (10ml), dried (Na_2SO_4) and evaporated *in vacuo* to afford the crude product as a dark oil. Purification by flash chromatography (silica, 60% to 75% Et_2O /hexane; applied as DCM solution) afforded the title compound as a tan-coloured solid (2.25g, 72%). δH (CDCl_3) 8.02 (1H, d, J 2.8Hz, pyr-H(6), 7.72 (2H, d, J ~8Hz, ortho-Ar-H), 7.59 (1H, t, J ~8Hz, para-Ar-H), 7.50 (2H, dd, J 8.4, 1.4Hz, phenyl-H), 7.40-7.27 (8H, ms, Ar and phenyl-H), 7.19 (1H, dd, J 8.5, 2.8Hz, pyr-H(4)), 7.11 (1H, d, J 8.5Hz, pyr-H(3)), 6.67 (2H, br d, J ~8Hz, phenyl-H), 4.50 (1H, dd, J 9, 4.6Hz, $\text{CH}-\alpha$), 4.24-4.10 (2H, sym.m. CH_2CH_3), 3.50-3.33 (2H, m, pyr- CH_2), 1.24 (3H, t, J 7.2Hz, CH_2CH_3); m/z (ESI) 515 (MH^+).

20 **INTERMEDIATE 2**

Ethyl 2-amino-3-(5-benzenesulphonyloxy)pyrid-2-yl)propionate

A solution of Intermediate 1 (1.9g, 3.7mmol) in 10% aqueous HCl (5ml) and ethanol (120ml) was stirred at room temperature for 1.5h. Most of the solvent was removed *in vacuo* and the residue partitioned between half-saturated aqueous NaHCO_3 (50ml) and EtOAc (80ml). The phases were separated and the aqueous layer re-extracted with EtOAc (4 x 40ml) and evaporated *in vacuo*. The obtained yellow oil was chromatographed (silica; EtOAc) to afford the title compound as a colourless oil (1.15g, 78%). δH (CDCl_3) 8.04 (1H, d, J 2.8Hz, pyr-H(6)), 7.80 (2H, d, J ~8Hz, ortho-Ar-H), 7.65 (1H, t, J ~8Hz, para-Ar-H), 7.51 (2H, t, J ~8Hz, meta-Ar-H), 7.31 (1H, dd, J 8.5, 2.8Hz, pyr-H(3)), 7.12 (1H, dd, J 8.5Hz, pyr-H(3)), 4.10 (2H, q, J 7.1Hz, CH_2CH_3), 3.86 (1H, dd, J 7.9, 4.9Hz, $\text{CH}-\alpha$), 3.19 (1H, dd, J 14.4, 4.9Hz, pyr- CH_AH_B), 2.99 (1H, dd, J 14.4, 7.9Hz, pyr- CH_AH_B), 1.66 (2H, br s, NH_2), 1.17 (3H, t, J 7.1Hz, CH_2CH_3); m/z (ESI) 351 (MH^+).

INTERMEDIATE 3Ethyl N,N-Di-(2,6-dichlorobenzoyl)-6-amino-pyridine-3-carboxylate

2,6-Dichlorobenzoylchloride (7.5g, 5.2ml, 26.1mmol) was added to a stirred slution of ethyl 6-aminonicotinate (4.0g, 24.1mmol) and NMM (3.65g, 3.97ml, 36.13mmol) in dry DCM (60ml) and stirred at room temperature for 5 days. The phases were separated and the aqueous layer re-extracted with DCM (2 x 50ml). The combined organic extracts were washed with saturated aqueous NaHCO₃ (40ml) and brine (20ml), dried (MgSO₄) and evaporated *in vacuo* to afford the crude product as a mixture of the mono-benzoylated and di-benzoylated products. Chromatography (silica; 0.5—>1.5% EtOH/DCM) afforded the less polar title compound as a pale yellow viscous oil (6.3g, 51%). δH (CDCl₃) 8.97 (1H, d, with fine coupling), 8.31 (1H, d, J 8.2Hz with fine coupling), 7.72 (1H, d, J 8.2Hz), 7.40-7.00 (6H, broad symmetric peak), 4.37 (2H, q, J 7.2Hz) and 1.37 (3H, t, J 7.2Hz); m/z (ESI, 60V), 511 (MH⁺).

INTERMEDIATE 4N,N-Di-(2,6-Dichlorobenzoyl)-6-amino-3-(hydroxymethyl)pyridine

Lithium aluminium hydride (1M in THF, 5.66ml, 22.54mmol of hydride) was added dropwise to a stirred ice-bath cooled solution of Intermediate 3 (5.25g, 10.54mmol) in dry THF (60ml) and stirred under nitrogen for 1h. The reaction was quenched with EtOAc (5ml) and partitioned between 10% aqueous NH₄Cl (60ml) and EtOAc (100ml). The phases were separated and the aqueous layer re-extracted with EtOAc (2 x 50ml). The combined organic extracts were washed with brine (20ml), dried (Na₂SO₄) and evaporated *in vacuo*. The obtained yellow foam was chromatographed (silica; 2—>4% MeOH/DCM) affording the title compound as a white foam (4.98g). δH (CDCl₃) 8.32 (1H, d, J 2.3Hz), 7.71 (1H, dd, J 8.1, 2.3Hz), 7.62 (1H, d, J 8.1Hz), 7.50-6.95 (6H, broad peak), 4.63 (2H, d, J 5.3Hz) and 2.09 (1H, J 5.7Hz); m/z (ESI, 60V), 469 (MH⁺).

INTERMEDIATE 5N,N-(Dichlorobenzoyl)-6-amino-3-chloromethyl-pyridine

Hydrogen chloride gas was bubbled through a stirred solution of Intermediate 4 (2.5g, 5.30mmol) in dry DCM (50ml) for 15 seconds. Thionyl chloride (525μl, 858mg, 7.21mmol) was added and the reaction

- stirred for 2h at room temperature. The volatiles were removed *in vacuo* and the residue partitioned between saturated aqueous NaHCO₃ (40ml) and DCM (75ml). The phases were separated and the aqueous layer re-extracted with DCM (2 x 20ml). The combined organic extracts were
5 washed with brine (15ml), dried (Na₂SO₄) and evaporated *in vacuo* to afford the title compound as a white foam (2.33g, 90%) δH (CDCl₃) 8.37 (1H, d, \downarrow 2.3Hz), 7.75 (1H, dd, \downarrow 8.2, 2.3Hz), 7.64 (1H, d, \downarrow 8.2Hz), 7.48-
6.92 (6H, broad peak) and 4.49 (2H, s). *m/z* (ESI, 60V), 487 (MH⁺).

10 **INTERMEDIATE 6**
Ethyl N-(diphenylmethylene)-2-amino-3-[N,N-(dichlorobenzoyl)-6-
amino-pyrid-3-yl]propionate
LDA (2M in heptane/THF/ethylbenzene, 2.59ml, 5.18mmol) was added to a stirred solution of ethyl (N-diphenylmethylene)glycinate (1.32g,
15 4.94mmol) in dry THF (20ml) at -70° and stirred at this temperature under N₂ for 0.75h. A solution of Intermediate 5 (2.30g, 4.70mmol) in dry THF (20ml) was added, and the reaction mixture stirred at -70° for 0.5h and at room temperature for 6h. The reaction was partitioned between EtOAc (60ml) and water (40ml). The phases were separated and the aqueous
20 phase re-extracted with EtOAc (2 x 30ml). The combined organic extracts were washed with brine (10ml), dried (Na₂SO₄) and evaporated *in vacuo* to afford a dull yellow oil. Chromatography (silica; 50% Et₂O/hexane; applied in DCM) afforded the title compound as a pale yellow foam (1.47g, 41%) δH (CDCl₃) 8.16 (1H, d, \downarrow 1.9Hz), 7.56-6.50 (18H, various m's), 4.16
25 (1H, obscured m), 4.15 (2H, q, \downarrow 7.1Hz) and 1.25 (3H, t, \downarrow 7.1Hz); *m/z* (ESI, 60V) 718 (MH⁺).

INTERMEDIATE 7**Ethyl-2-amino-3-[N,N-dichlorobenzoyl]-6-amino-pyrid-3-yl]propionate**

- 30 A solution of Intermediate 6 (1.40g) and ethanol (50ml) was stirred at room temperature for 1h. The volume of reaction mixture was reduced *in vacuo* by about half neutralized with solid NaHCO₃, then evaporated *in vacuo* to near dryness. The residue was partitioned between EtOAc(70ml) and water (40ml), the phases separated and the aqueous layer re-extracted
35 with EtOAc (2 x 40ml). The combined organic extracts were washed with brine (10ml), dried (Na₂SO₄) and evaporated *in vacuo* The obtained

yellow oil was chromatographed (silica; 3% MeOH/DCM) to afford the title compound as a white foam (0.87g, 81%). δ H (CDCl_3) 8.23 (1H, s), 7.57 (1H s), 7.56 (1H, s), 7.48-6.92 (6H, broad peak), 4.11 (2H, q, \downarrow 7.1Hz), 3.60 (1H, dd, \downarrow 7.4, 5.6Hz), 2.96 (1H, dd, \downarrow 13.8, 5.6 Hz), 2.81 (1H, dd, \downarrow 13.8, 7.4Hz), 1.31 (2H, br s) and 1.23 (3H, \downarrow 7.1HZ); m/z (ESI, 60V) 554 (MH^+).

INTERMEDIATE 8

Ethyl 2-amino-3-[N-(dichlorobenzoyl)-6-amino-pyrid-3-yl]propionate

10 Sodium metal (61mg, 2.65mmol) was added to anhydrous ethanol (20ml) and stirred under N_2 for 0.5h. Intermediate 7 (490mg, 0.88mmol) was added and the reaction mixture heated under reflux for 6h. The volatiles were removed *in vacuo* and the residue treated with EtOH (50ml). HCl gas was bubbled through for a short time and the reaction mixture allowed
15 to stand at room temperature for 18h. The volatiles were removed *in vacuo* and the residue partitioned between EtOAc (70ml) and saturated aqueous NaHCO_3 (30ml). The phases were separated and the aqueous layer re-extracted with ethyl acetate (2 x 30ml). The combined organic extracts were washed with brine (10ml), dried (Na_2SO_4), and evaporated *in vacuo*.
20 The crude product was chromatographed (silica; 5% MeOH/DCM) affording the title compound as a white foam (240mg, 71%). δ H (CDCl_3) 9.75 (1H, s), 8.33 (1H, d, \downarrow 5.4Hz), 7.62-7.60 (2H, m's), 7.35-7.30 (3H, m's), 4.17 (2H, q, \downarrow 7.2Hz), 3.60 (1H, dd, \downarrow 7.6, 6.4Hz), 2.93 (1H, dd, \downarrow 13.8, 6.4Hz), 2.72 (1H, dd, \downarrow 13.8, 7.6Hz), 1.55 (2H, br s) and 1.26 (3H, t, \downarrow 7.2Hz); m/z (ESI, 60V) 382 (MH^+).

EXAMPLE 1

Ethyl N-(*N'*-acetyl-*D*-thioproline)-2-amino-3-(5-benzenesulphonyloxy-pyrid-2-yl)propionate

30 HOBT (570mg, 4.22mmol), *N*-acetyl-*D*-thioproline (682mg, 3.90mmol) and EDC (750mg, 3.90mmol) were added sequentially to a stirred solution of Intermediate 2 (1.24g, 3.54mmol) in dry DMF (20ml) and stirred at room temperature for 2h. The solvent was removed *in vacuo* and the residue partitioned between EtOAc (75ml) and 10% aqueous Na_2CO_3 (40ml). The
35 phases were separated and the aqueous phase re-extracted with EtOAc (2 x 50ml). The combined organic extracts were washed with brine (10ml),

dried (Na_2SO_4) and evaporated *in vacuo*. The obtained oil was chromatographed (silica, 3 - 5% methanol/DCM) to afford the title compound as a near colourless glass (1.46g, 81%). δH (CDCl_3 ; approx: 1:1 mixture of diastereoisomers and rotameric species): 8.4-8.35, 8.1-
5 8.02, 7.81-7.76, 7.71-7.45, 7.42-7.25 and 7.15-7.08 (9H, m's, CONH, pyr-H and Aryl-H), 5.10-4.31 (4H, ms, α -CH₂x2 and NCH₂S), 4.15-4.01 (2H, m, CH₂CH₃), 3.41-3.02 (4H, m, CH₂-pyr and CH₂S), 2.13, 2.10, 2.08 and 1.95 (3H, singlets, NCOMe) and 1.12 (3H, m, CH₂CH₃); m/z (ESI) 508 (MH⁺).

10

EXAMPLE 2

N-(N'-Acetyl-D-thioproline)-2-amino-3-(5-hydroxypyrid-2-yl)propanoic acid

The compound of Example 1 (1.2g, 2.4mmol) was treated with a solution of LiOH.H₂O (220mg, 5.2mmol) in dioxan (10ml), water (10ml) and methanol (5ml), and stirred at room temperature for 3.5h. The reaction mixture was acidified with acetic acid and the volatiles removed *in vacuo*. The residue was chromatographed [silica; DCM (120 - 100), methanol (20), acetic acid (3), H₂O (2)] affording the title compound (580mg, 72%, slightly contaminated with benzenesulphonic acid). δH (d⁶ - DMSO; spectrum shows an approximate 1:1 mixture of diastereoisomers and rotameric species): 8.29, 8.09, 7.98 and 7.83 (1H, doublets, CONH), 7.98 (1H, br s, pyr-H (6)), 7.02 (2H, br s, pyr-H (3 and 4)), 4.88-4.67 (2H, br m, CH₂thiopro and NCH_AH_BS), 4.49-4.18 (2H, ms, CH₂-pyr and NCH_AH_BS), 3.37-2.82 (2H, br m, CCH₂S and CH₂-pyr) and 2.05, 1.88, 1.87 and 1.85 (3H, singlets, NCOMe); m/z (ESI) 340 (MH⁺).

EXAMPLE 3

N-(N'-Acetyl-D-thioproline)-2-amino-3-[5-(2,6-dichlorobenzylxy)-pyrid-2-yl]propanoic acid

A mixture of the compound of Example 2 (450mg, 1.33mmol), 2,6-dichlorobenzyl bromide (669mg, 2.78mmol) and cesium carbonate (1.34g, 4.11mmol) in dry DMF (10ml) was stirred at room temperature for 6h. The volatiles were removed *in vacuo* and the residue partitioned between EtOAc (70ml) and water (50ml). The phases were separated and the aqueous layer re-extracted with EtOAc (2 x 50ml). The combined

organic extracts were washed with brine (20ml), dried (Na_2SO_4) and evaporated *in vacuo*. The obtained oil was chromatographed (silica; EtOAc) to afford the di-O-alkylated intermediate as a mixture of two diastereoisomers and as a colourless viscous oil (227mg, 26%). This
5 material was treated with a solution of LiOH. H_2O (17mg, 0.41mmol) in dioxan (4ml), water (3ml) and methanol (2ml) at room temperature for 1h. After adding a few drops of acetic acid, the volatiles were removed *in vacuo*. The residue was chromatographed [silica, DCM (200), methanol (20), acetic acid (3), H_2O (2)] to afford the product as a colourless oil.
10 Freeze-drying from aqueous methanol afforded the title compound as a white amorphous solid (130mg, 76%). δH (d^6 -DMSO, 390K) (approximately 1:1 mixture of diastereoisomers) 8.27 (1H, d, J 2.5Hz, pyr-H (6)), 7.88 (1H, br d, J ~8Hz, CONH), 7.52-7.39 (4H, ms, pyr-H and Ar-H), 7.21 (1H, dd, J 8.5, 2.5Hz, pyr-H (4)), 5.34 (2H, s, CH_2O), 4.81 (1H, dd, J 7.4, 3.8Hz, $\text{CH}\alpha$ -thiopro), 4.77 and 4.74 (1H, overlapping doublets, J 9.3Hz, SHAHBN), 4.69 (1H, br m, $\text{CH}\alpha$ -CH₂pyr), 4.37 and 4.34 (1H, overlapping doublets, J 9.3Hz, SHAHBN), 3.30-3.07 (3H, ms, CH₂pyr and CHAHBS), 3.04 (1H, dd, J 11.5, 3.8Hz, CHAHBS) and 1.99 and 1.98 (3H, singlets, NCOMe); m/z (ESI) 498 and 500 (MH^+). Found: C, 49.86; H, 4.20; N, 8.33. $\text{C}_{21}\text{H}_{21}\text{Cl}_2\text{N}_3\text{O}_5\text{S}$.0.4 H_2O requires C, 49.89; H, 4.35; N, 8.31%.

EXAMPLE 4

N-(N'-Acetyl-D-thioproline)-2-amino-3-(5-benzenesulphonyloxy)pyrid-2-vl)propanoic acid
25 The compound of Example 1 (400mg, 0.79mmol) was treated with a solution of LiOH. H_2O (36mg, 0.86mmol) in dioxan (4ml), H_2O (3ml) and ethanol (2ml) for 1.5h at room temperature. A few drops of acetic acid were added and the volatiles removed *in vacuo*. The residue was
30 chromatographed [silica; DCM (200), methane (20), acetic acid (3), H_2O (2)] to afford the product as a colourless oil. This was freeze-dried from aqueous methanol to afford the title compound as a white amorphous solid (240mg, 64%). δH (d^6 -DMSO, 390K; approximately 1:1 mixture of diastereoisomers) 8.17 (1H, singlet with fine couplings, pyr-H (6)), 7.90-7.79
35 (4H, ms, Ar-H and NHCO), 7.68 (2H, apparent J ~8Hz, Ar-H), 7.43 (1H, dd, J 8.6, 2.8Hz, pyr-H (4)), 7.30 (1H, dd, J 8.6, 3.2Hz, pyr-H (3)), 4.79

(1H, overlapping m, CH_αCH_{pyr}), 4.75 (1H, apparent J ~9Hz, NCH_AH_BS), 4.68 (1H, overlapping m, CH_αthiopro), 4.38 (1H, apparent J ~9Hz, NCH_AH_BS), 3.33-2.98 (4H, ms, CH₂pyr and CCH₂S) and 1.99 and 1.98 (3H, singlets, NCO_{Me}); *m/z* (ESI) 480 (MH⁺); Found: C, 48.33; H, 4.30; 5 N, 8.34. C₂₀H₂₁N₃O₇S₂.H₂O requires C, 48.28; H, 4.66; N, 8.45%.

EXAMPLE 5

Ethyl 2-[N-(2-chloropyrid-3-oyl)-amino]-3-[N'-(dichlorobenzoyl)-6-amino-pyrid-3-yl]propionate

10 2-Chloronicotinoyl chloride (110mg, 0.63mmol) was added to a stirred solution of Intermediate 8 (240mg, 0.63mmol) and pyridine (50mg, 50μl, 0.63mmol) in dry DCM (5ml), and the reaction stirred under nitrogen for 2h. The reaction mixture was partitioned between DCM (100ml) and saturated aqueous NaHCO₃ (10ml). The phases were separated and the organic 15 layer washed with brine (5ml), dried (Na₂SO₄) and evaporated *in vacuo*. The obtained white foam was chromatographed (silica, 2% MeOH/DCM) affording the title compound as a white amorphous solid (145mg, 44%) δH (CDCl₃) 9.79 (1H, s), 8.35 (1H, dd, J 4.8, 2.0Hz), 8.23 (1H, d, J 8.5Hz), 7.96 (1H, d, J 8.0Hz), 7.91 (1H, dd, J 7.6, 2.0Hz), 7.37 (1H, dd, J 8.5, 2.3Hz), 7.34-7.21 (5H, m), 5.05 (1H, symmetrical m), 4.02 (2H, q, J 7.1Hz), 20 3.11-2.95 (2H, m) and 1.24 (3H, t, J 7.1Hz); *m/z* (ESI, 60V), 521 (MH⁺).

EXAMPLE 6

2-[N-(2-Chloropyrid-3-oyl)-amino]-3-[N'-(dichlorobenzoyl)-6-amino-pyrid-3-yl]propionic acid

25 The compound of Example 5 (135mg, 0.26mmol) was treated with a solution of LiOH.H₂O (23mg, 0.55mmol) in dioxane (2ml), methanol (1ml) and water (2ml) at room temperature for 2h. A few drops of acetic acid were added and the volatiles removed *in vacuo*. The residue was treated 30 with water and the obtained white solid collected by filtration, water-washed and sucked dry, affording the title compound as a white powder (101mg, 80%). δH (d⁶-DMSO) 11.16 (1H, s), 8.98 (1H, d, J 8.2Hz), 8.45 (1H, dd, J 4.8, 1.9Hz), 8.26 (1H, d, J 1.9Hz), 8.14 (1H, d, J 8.5Hz), 7.79 (1H, dd, J 8.5, 2.2Hz), 7.71 (1H, dd, J 7.5, 1.9Hz), 7.57-7.42 (4H, m's), 4.71- 35 4.63 (1H, symmetrical m), 3.20 (1H, dd, J 14.1, 4.8Hz) and 2.98 (1H, dd, J 14.1, 9.8Hz); *m/z* (ESI, 60V) 493 (MH⁺).

- The following assays can be used to demonstrate the potency and selectivity of the compounds according to the invention. In each of these assays an IC₅₀ value was determined for each test compound and
- 5 represents the concentration of compound necessary to achieve 50% inhibition of cell adhesion where 100% = adhesion assessed in the absence of the test compound and 0% = absorbance in wells that did not receive cells.
- 10 $\alpha_4\beta_1$ Integrin-dependent Jurkat cell adhesion to VCAM-Ig
96 well NUNC plates were coated with F(ab)₂ fragment goat anti-human IgG Fc_γ-specific antibody [Jackson Immuno Research 109-006-098: 100 µl at 2 µg/ml in 0.1M NaHCO₃, pH 8.4], overnight at 4°. The plates were washed (3x) in phosphate-buffered saline (PBS) and then blocked for 1h in
- 15 PBS/1% BSA at room temperature on a rocking platform. After washing (3x in PBS) 9 ng/ml of purified 2d VCAM-Ig diluted in PBS/1% BSA was added and the plates left for 60 minutes at room temperature on a rocking platform. The plates were washed (3x in PBS) and the assay then performed at 37° for 30 min in a total volume of 200 µl containing 2.5 x 10⁵
- 20 Jurkat cells in the presence or absence of titrated test compounds.

Each plate was washed (2x) with medium and the adherent cells were fixed with 100µl methanol for 10 minutes followed by another wash. 100µl 0.25% Rose Bengal (Sigma R4507) in PBS was added for 5 minutes at

25 room temperature and the plates washed (3x) in PBS. 100µl 50% (v/v) ethanol in PBS was added and the plates left for 60min after which the absorbance (570nm) was measured.

- $\alpha_4\beta_7$ Integrin-dependent JY cell adhesion to MAdCAM-Ig
- 30 This assay was performed in the same manner as the $\alpha_4\beta_1$ assay except that MAdCAM-Ig (150ng/ml) was used in place of 2d VCAM-Ig and a sub-line of the β-lympho blastoid cell-line JY was used in place of Jurkat cells. The IC₅₀ value for each test compound was determined as described in the $\alpha_4\beta_1$ integrin assay.

- 35 $\alpha_5\beta_1$ Integrin-dependent K562 cell adhesion to fibronectin

- 96 well tissue culture plates were coated with human plasma fibronectin (Sigma F0895) at 5 μ g/ml in phosphate-buffered saline (PBS) for 2 hr at 37°C. The plates were washed (3x in PBS) and then blocked for 1h in 100 μ l PBS/1% BSA at room temperature on a rocking platform. The 5 blocked plates were washed (3x in PBS) and the assay then performed at 37°C in a total volume of 200 μ l containing 2.5x 10⁵ K562 cells, phorbol-12-myristate-13-acetate at 10ng/ml, and in the presence or absence of titrated test compounds. Incubation time was 30 minutes. Each plate was fixed and stained as described in the $\alpha_4\beta_1$ assay above.
- 10 $\alpha_m\beta_2$ -dependent human polymorphonuclear neutrophils adhesion to plastic
- 96 well tissue culture plates were coated with RPMI 1640/10% FCS for 2h at 37°C. 2 x 10⁵ freshly isolated human venous polymorphonuclear 15 neutrophils (PMN) were added to the wells in a total volume of 200 μ l in the presence of 10ng/ml phorbol-12-myristate-13-acetate, and in the presence or absence of test compounds, and incubated for 20min at 37°C followed by 30min at room temperature. The plates were washed in medium and 100 μ l 0.1% (w/v) HMB (hexadecyl trimethyl ammonium bromide, Sigma 20 H5882) in 0.05M potassium phosphate buffer, pH 6.0 added to each well. The plates were then left on a rocker at room temperature for 60 min. Endogenous peroxidase activity was then assessed using tetramethyl benzidine (TMB) as follows: PMN lysate samples mixed with 0.22% H₂O₂ (Sigma) and 50 μ g/ml TMB (Boehringer Mannheim) in 0.1M sodium 25 acetate/citrate buffer, pH 6.0 and absorbance measured at 630nm.

$\alpha_{IIb}\beta_3$ -dependent human platelet aggregation

- Human platelet aggregation was assessed using impedance aggregation on the Chronolog Whole Blood Lumiaggregometer. Human platelet-rich 30 plasma (PRP) was obtained by spinning fresh human venous blood anticoagulated with 0.38% (v/v) tri-sodium citrate at 220xg for 10 min and diluted to a cell density of 6 x 10⁸/ml in autologous plasma. Cuvettes contained equal volumes of PRP and filtered Tyrode's buffer (g/liter: NaCl 8.0; MgCl₂.H₂O 0.427; CaCl₂ 0.2; KCl 0.2; D-glucose 1.0; NaHCO₃ 1.0; 35 NaHPO₄.2H₂O 0.065). Aggregation was monitored following addition of 2.5 μ M ADP (Sigma) in the presence or absence of inhibitors.

In the above assays the compounds of the invention generally have IC₅₀ values in the $\alpha_4\beta_1$ and $\alpha_4\beta_7$ assays of 1 μM and below. In the other assays featuring α integrins of other subgroups the same compounds had
5 IC₅₀ values of 50 μM and above thus demonstrating the potency and selectivity of their action against α_4 integrins.

CLAIMS

1. A compound of formula (1):

wherein

Az is an optionally substituted monocyclic six-membered nitrogen-containing aromatic group;

10 R¹ is a hydrogen atom or an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;

Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain;

L¹ is a linker atom or group;

15 r and s is each zero or an integer 1;

Alk² is a straight or branched alkylene chain;

m is zero or an integer 1;

R⁴ is a hydrogen atom or a methyl group;

20 R⁵ is a group -L²(CH₂)_tR⁶ in which L² is a -N(R⁷)CO- [where R⁷ is a hydrogen atom or a straight or branched alkyl group] or -N(R⁷)CS-group, t is zero or the integer 1, and R⁶ is an optionally substituted aliphatic, heteroaliphatic, cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;

25 R is a carboxylic acid (-CO₂H) or a derivative thereof; and the salts, solvates and hydrates thereof.

2. A compound according to Claim 1 wherein R is a -CO₂H group.

30 3. A compound according to Claim 1 or Claim 2 wherein Alk² is a -CH₂- chain, m is an integer 1 and R⁴ is a hydrogen atom.

4. A compound according to any one of Claim 1 to Claim 3 wherein -(Alk¹)_r(L¹)_s- is a -CH₂O-, -S(O)₂O- or -CON(R⁸)- group where R⁸ is a hydrogen atom or an optionally substituted straight or branched alkyl group.
5
5. A compound according to Claim 4 wherein -(Alk¹)_r(L¹)_s- is a -CONH-group.
6. A compound according to any one of Claim 1 to Claim 5 wherein R¹ is an optionally substituted aromatic or heteroaromatic group
10
7. A compound according to Claim 6 wherein R¹ is an optionally substituted phenyl, pyridyl or pyrimidinyl group.
- 15 8. A compound according to any one of Claim 1 to Claim 7 wherein Az is an optionally substituted pyridyl group.
9. A compound according to any one of Claim 1 to Claim 8 wherein R⁵ is a -NHCOR⁶ or -NHCSR⁶ group.
20
10. A compound according to any one of the preceding Claims wherein R⁶ is an optionally substituted cycloaliphatic, heterocycloaliphatic, aromatic or heteroaromatic group.
- 25 11. A compound according to Claim 10 wherein R⁶ is an optionally substituted pyrrolidinyl, thiazolidinyl, phenyl or pyridyl group.
12. A compound which is
30 N-(N'-Acetyl-D-thioproline)-2-amino-3-[5-(2,6-dichlorobenzyloxy)-pyrid-2-yl]propanoic acid;
N-(N'-Acetyl-D-thioproline)-2-amino-3-(5-benzenesulphonyloxy)pyrid-2-yl)propanoic acid;
2-[N-(2-Chloropyrid-3-oyl)-amino]-3-[N'-(dichlorobenzoyl)-6-amino-pyrid-3-yl]propionic acid.
35 and the salts, solvates and hydrates thereof.

13. A pharmaceutical composition comprising a compound of formula (1):

5 wherein

Az is an optionally substituted monocyclic six-membered nitrogen-containing aromatic group;

10 R¹ is a hydrogen atom or an optionally substituted cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;

Alk¹ is an optionally substituted aliphatic or heteroaliphatic chain;

L¹ is a linker atom or group;

r and s is each zero or an integer 1;

Alk² is a straight or branched alkylene chain;

15 m is zero or an integer 1;

R⁴ is a hydrogen atom or a methyl group;

20 R⁵ is a group -L²(CH₂)_tR⁶ in which L² is a -N(R⁷)CO- [where R⁷ is a hydrogen atom or a straight or branched alkyl group] or -N(R⁷)CS-group, t is zero or the integer 1, and R⁶ is an optionally substituted aliphatic, heteroaliphatic, cycloaliphatic, polycycloaliphatic, heterocycloaliphatic, polyheterocycloaliphatic, aromatic or 25 heteroaromatic group;

R is a carboxylic acid (-CO₂H) or a derivative thereof; and the salts, solvates and hydrates thereof;

together with one or more pharmaceutically acceptable carriers, excipients or diluents.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 99/01741

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07D401/12 C07D207/16 C07D213/82 A61K31/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	WO 99 10312 A (HOFFMANN LA ROCHE) 4 March 1999 (1999-03-04) claims 1,35,38-42 ---	1,13
X, P	WO 98 58902 A (TANABE SEIYAKU CO ;YAMAGISHI MASAFUMI (JP); TEEGARDEN BRADLEY (US)) 30 December 1998 (1998-12-30) claims; example 254 ---	1-7,9, 10,13
X, P	WO 98 53814 A (HAGMANN WILLIAM K ;MUMFORD RICHARD A (US); KEVIN NANCY J (US); MAC) 3 December 1998 (1998-12-03) claims 15,18-20 ---	1,13
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

29 July 1999

Date of mailing of the international search report

13/08/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Bosma, P

INTERNATIONAL SEARCH REPORT

Int'l. Application No

PCT/GB 99/01741

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	WO 98 42662 A (NOVARTIS ERFINDUNGEN VERWALTUNG ; NOVARTIS AG (CH)) 1 October 1998 (1998-10-01) claims 1,9; examples 16,70 ---	1,2,8-11
A	US 5 260 277 A (MCKENZIE THOMAS C) 9 November 1993 (1993-11-09) the whole document ---	1,13
X	EP 0 144 230 A (PFIZER LTD ; PFIZER (PA)) 12 June 1985 (1985-06-12) example 5 (7) ---	1-4,6-11
X	B.J. WHITLOCK ET AL.: "Structure and synthesis of lathyrine" JOURNAL OF ORGANIC CHEMISTRY., vol. 30, - 1965 pages 115-118, XP002110766 AMERICAN CHEMICAL SOCIETY. EASTON., US ISSN: 0022-3263 preparation of benzoyl derivative of lathyrine page 116 ---	1
X	O.E. SCHULTZ ET AL : "Analogos of nucleic acid bases as antimetabolites" ARZNEIMITTEL FORSCHUNG. DRUG RESEARCH., vol. 17, no. 8, 1967, pages 1060-1064, XP002110767 EDITIO CANTOR. AULENDORF., DE ISSN: 0004-4172 compound VIII ---	1,4,6,7, 9
X	CHEMICAL ABSTRACTS, vol. 86, no. 25, 20 June 1977 (1977-06-20) Columbus, Ohio, US; abstract no. 190438, HARRIS, ROGER L. N. ET AL: "Potential wool growth inhibitors. 2(1H)-Pyridone analogs of mimosine" XP002110769 abstract -& CHEMICAL ABSTRACTS 10TH COLLECTIVE INDEX., page 8154F XP002110768 AMERICAN CHEMICAL SOCIETY. COLUMBUS., US ISSN: 0097-6474 CAS RN 62812-03-7: alpha-acetylamino-2-ethoxy-4-pyridine-propanoic acid, ethyl ester & AUST. J. CHEM. (1977), 30(3), 649-55 , --- -/-	1-4,6-9

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 99/01741

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>CHEMICAL ABSTRACTS, vol. 54, no. 11, 1960 Columbus, Ohio, US; abstract no. 11021g, YOSHIYA NOIKE: "Synthesis of quinolizine derivatives." XP002110770 see VIIa and Benzyl analog of VIII abstract & YAKUGAKU ZASSHI, vol. 79, pages 1514-1518, -----</p>	1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/GB 99/01741

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Present claims 1-11 and 13 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out completely for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds covered by claims 4, 5 and 12. Claim 13 has also been searched in relation to the same pharmaceutical use (see present abstract). The remaining claims have been searched partially.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 99/01741

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9910312 A	04-03-1999	AU	9262098 A	16-03-1999
WO 9858902 A	30-12-1998	AU	8163398 A	04-01-1999
WO 9853814 A	03-12-1998	NONE		
WO 9842662 A	01-10-1998	AU	7037298 A	20-10-1998
US 5260277 A	09-11-1993	NONE		
EP 0144230 A	12-06-1985	AT CA DK GR IE JP US	55393 T 1263499 A 581684 A 81149 A 57648 B 60155194 A 4562197 A	15-08-1990 28-11-1989 18-06-1985 03-04-1985 10-02-1993 15-08-1985 31-12-1985