

XPDNet for brain multi-coil MRI reconstruction

Zaccharie Ramzi (zaccharie.ramzi@inria.fr) supervised by Philippe Ciuciu and Jean-Luc Starck

What is MRI?

MRI = Magnetic Resonance Imaging

The (idealized) inverse problem

 $\forall j,$

 F_{Ω}

 $S_j x$

 y_j

Masked 2D Fourier Transform, **well-defined** in the fastMRI case

The "periodic" mask, known but specific to each acquisition, part of the input

The sensitivity maps, unknown and specific to each acquisition

The anatomical image, the **output** of our reconstruction

The k-space measurements for all coils, part of the **input** to our reconstruction (complex-valued)

Where is the room for learning?

Optimization algorithm parameters, such as **step sizes** or **iterates merging**, can be learned

Noise model data consistency distance, usually set to be AWGN, we can learn the equivalent of its gradient

Sensitivity maps can be computed using 11-SPIRiT, but we can learn how to **refine them**

Prior term usually set by hand, we can learn the equivalent of its **proximity operator**

Outline

- 1. Cross domain learning
- 2. Measurement operator refinement
- 3. Proximity operator learning
- 4. Data consistency learning

Outline

- 1. Cross domain learning
- 2. Measurement operator refinement
- 3. Proximity operator learning
- 4. Data consistency learning

Cross-domain learning

Key intuitive idea: <u>Alternate</u> the corrections between image domain and k-space, "comparing" the original k-space measurements with the current iterate's k-space measurements.

Tool for that: <u>unrolling</u> optimisation algorithms.

Current k-space measurements

Cross-domain learning - unrolling PDHG [1]

PD-net unrolls the PDHG, where the data consistency is a (learned) residual

Outline

- 1. Cross domain learning
- 2. Measurement operator refinement
- 3. Proximity operator learning
- Data consistency learning

Sensitivity maps refinement [2]

Outline

- 1. Cross domain learning
- 2. Measurement operator refinement
- 3. Proximity operator learning
- Data consistency learning

Proximity operator architecture [3]

Outline

- 1. Cross domain learning
- 2. Measurement operator refinement
- 3. Proximity operator learning
- 4. Data consistency learning

Data consistency learning

I didn't use it during the challenge... No good reason (I thought memory was going to be an issue).

$$egin{array}{lll} x_{n+1} &=& x_n \; + \; \epsilon_n \; (F_\Omega S)^H (F_\Omega S \; x_n \; - \; y) \ x_{n+1} &=& \mathrm{prox}_{\epsilon_n R} \left(x_{n+1}
ight) \end{array}$$

Data

We use the fastMRI dataset [4], which is composed of:

• 4469 train volumes (1.2 Tb), 1378 volumes, 558 test volumes (unknown ground truth)

Input data is generated retrospectively

Training details

- Data scaling by 10⁶ (not grid-searched)
- RAdam optimizer (with default params.), learning rate of 10⁻⁴ [5]
- Total number of steps 446.9k (= 100 epochs x 4469 volumes) => 1 week on V100 for 155.5M params.
- Batch size of 1 (we select one slice at random during each epoch)
- Training is done separately for Accel. factor 4 and 8, then the network is fine-tuned per-contrast
- Loss is a compound L1-MSSIM as advised in [6]

2020 fastMRI challenge - AF4 quantitative podium

2020 fastMRI challenge - AF8 quantitative podium

2020 fastMRI challenge - qualitative podium [7]

Team	Rank	Artifacts	Sharpness	CNR
4X Track AIRS Medical Neurospin ATB	1.36 ± 0.64 1.94 ± 0.86 2.22 ± 0.87	1.53 ± 0.70 1.81 ± 1.01 1.75 ± 0.97	1.53 ± 0.51 1.72 ± 0.66 1.97 ± 0.65	1.53 ± 0.51 1.75 ± 0.84 1.86 ± 0.80
8X Track AIRS Medical Neurospin ATB	1.28 ± 0.64 2.25 ± 0.77 2.28 ± 0.70	1.67 ± 0.68 1.86 ± 0.83 1.92 ± 0.94	1.89 ± 0.75 2.72 ± 0.81 2.56 ± 0.77	1.94 ± 0.75 2.28 ± 0.81 2.42 ± 0.84

Qualitative validation results - T2 - R4

Qualitative validation results - T2 - R8

Qualitative validation results - T1 - R4

Qualitative validation results - T1 - R8

Qualitative validation results - T1POST - R4

Qualitative validation results - T1POST - R8

Qualitative validation results - FLAIR - R4

Qualitative validation results - FLAIR - R8

Why I am only second?

What winners did better than me:

- Unclear feature multi-domain learning
- 3D Post-processing (main network is 2D)
- Distributed training (4 GPUs)

Conclusion and future steps

Conclusion

- XPDNet is more than just prior learning: it can learn the unrolled optim.
 structure, the measurements operator and the noise model.
- Using this, we achieve 2nd spot in the fastMRI 2020 challenge.

Next steps

- Implement the missing bits (DC learning, post-processing, better/longer training, multi-domain learning)
- Full 3D using model parallelism
- Implicit Deep Learning

Acknowledgements and code

Code is available in TensorFlow on GitHub: github.com/zaccharieramzi/fastmri-reproducible-benchmark

Thanks to the French Institute of development and resources in scientific computing (IDRIS) for allowing the use of a supercluster (Jean Zay) of V100 GPUs.

Don't hesitate to ask me questions about Jean Zay or refer to the <u>user's doc!</u>

Thank you!

Questions?

Robustness - generalization to OOD-prospective

Brain acquired on a Siemens scanner:

- different resolution
- different orientation
- different field strength
- different AF
- presents a cerebellum
- prospective acquisition

