Методы оптимизации. Отчет по лабораторной работе №3

Работа выполнена группой:

Дзюба Мария M3235 Карасева Екатерина M3235 Рындина Валерия M3235 Цель работы: Изучить и реализовать методы решения СЛАУ. Провести исследование методов по различным характеристикам.

Задача 1.

- а) Постановка задачи
 Реализовать прямой метод решения СЛАУ на основе
 LU-разложения.
- b) Решение задачи:
 - Вычислительная схема метода: исходная задача: Ах = f
 преобразуем задачу в: Ux = y = L⁻¹f => LUx = f, где U это верхнедиагональная матрица, L это нижнедиагональная матрица.
 То есть матрицу А можно представить как A=LU, по следующим формулам:

L₁₁ = A₁₁
Vi om 2 go h

$$L_{ij} = A_{ij} - \sum_{k=1}^{j-1} L_{ik} \cdot U_{kj}$$
; $j = \overline{1, i-1}$
 $U_{ji} = \frac{1}{L_{jj}} [A_{ji} - \sum_{k=1}^{j-1} L_{jk} \cdot U_{ki}]$; $j = \overline{1, i-1}$
 $L_{ii} = A_{ii} - \sum_{k=1}^{i-1} L_{ik} \cdot U_{ki}$
 $U_{ii} = 1 \quad \forall i$

Итоговая задача в итоге преобразуется в систему уравнений:

$$Ax=f \ll L(ux)=f \ll Ly=f$$

Итоговая задача в итоге преобразуется в систему уравнений: Каждое из уравнений полученной системы легко решается обратным ходом метода Гаусса в контексте того, что матрицы U и L являются верхнедиагональными и нижнедиагональными.

- Пример решения задачи реализованным методом:
 - і. Условие задачи и начальные данные:

$$\begin{pmatrix} 8.0 & -3.0 & -4.0 \\ -2.0 & 5.0 & -3.0 \\ -1.0 & 0.0 & 1.0 \end{pmatrix} x = \begin{pmatrix} -10.0 \\ -1.0 \\ 2.0 \end{pmatrix}$$

$$ii.$$
 Численный ответ: x =
$$\begin{pmatrix} 1.000000000000000004 \\ 2.000000000000004 \\ 3.0000000000000004 \end{pmatrix}$$

Задача 2.

а) Постановка задачи:

Провести исследование реализованного метода на матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания (то есть оценить влияние увеличения числа обусловленности на точность решения). Для этого необходимо решить последовательность СЛАУ: Акхк = fk, k = 0, 1, 2, 3...

Для каждого k, для которого система $A_k x_k = f_k$ вычислительно разрешима, оценить погрешность найденного решения.

- b) Решение задачи:
 - Схема построения СЛАУ:
 матрицы Ак строятся следующим образом:

$$a_{ii} = \begin{cases} -\sum_{i \neq j} a_{ij}, & i > 1 \\ -\sum_{i \neq j} a_{ij} + 10^{-k}, & i = 1 \end{cases}$$

и $a_{ij} \in \{0, -1, -2, -3, -4\}$ выбираются достаточно произвольно, а правая часть f_k получается умножением матрицы A_k на вектор $x^* = \{1, 2, ... n\}$.

- Пример решения задачи реализованным методом: см пример в Задаче 1
- Исследования погрешностей найденного решения: см Приложение 1
- с) Вывод:

Влияние изменения диагонального преобладания становится очевидным если посмотреть на таблицы исследования: с увеличением числа обусловленности точность решения уменьшается, что особенно хорошо заметно при переходе от хорошо обусловленных матриц к плохо обусловленным. Также стоит отметить, что погрешность растет экспоненциально, так как число обусловленности приведенных матриц порядка 10-к

Задача 3.

а) Постановка задачи:

Провести исследования, аналогичные приведенным в Задаче 2, на матрицах Гильберта различной размерности k.

- b) Решение задачи:
 - Схема построения СЛАУ:
 матрицы Гильберта А_к строятся следующим образом:

$$a_{ij} = \frac{1}{i+j-1}, \ i, j = \overline{1,k}$$
.

правая часть f_k получается умножением матрицы A_k на вектор $x^* = (1, 2, ... k)$.

- Пример решения задачи реализованным методом:
 - і. Условие задачи и начальные данные:

- Исследования погрешностей найденного решения: см Приложение 2
- с) Вывод:

По результатам исследования мы видим огромную погрешность, которая имеет тенденцию увеличиваться с возрастанием размерности матрицы. Это можно объяснить тем, что число обусловленность матрицы Гильберта размерности $\mathbf{k} \times \mathbf{k}$ возрастает как $O(\frac{(1+\sqrt{2})^{4k}}{\sqrt{k}}) \approx 21.86^k$, то есть возрастает экспоненциально, поэтому на таких плохо обусловленных задачах даже на маленьких размерностях метод получает ответ с большой погрешностью.

Задача 4.

а) Постановка задачи:

Реализовать метод Гаусса с выбором ведущего элемента для плотных матриц. Сравнить метод Гаусса по точности получаемого решения и по количеству действий с реализованным прямым методом LU-разложения.

- b) Решение задачи:
 - Вычислительная схема метода Гаусса: Выбираем столбец слева направо. В текущем столбце находим сточку, у который элемент в данном столбце наибольший, преобразуем этот элемент в единицу делением всей строки на его величину. Переносим эту строчку наверх. Затем обнуляем другие элементы текущего столбца для этого вычитаем из оставшихся строк выбранную строчку, умноженную на элемент, который хотим занулить. Проделываем эту операцию п раз, не затрагивая столбцы, которые мы уже обнулили, и строчки, которые уже были перенесены наверх.
 - Пример решения задачи реализованным методом:
 - і. Условие задачи и начальные данные:

$$\begin{pmatrix} 3.0 & -1.0 & -1.0 \\ -3.0 & 3.0 & 0.0 \\ 0.0 & -1.0 & 1.0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -2.0 \\ 3.0 \\ 1.0 \end{pmatrix}$$

$$ii.$$
 Численный ответ: $x = \begin{pmatrix} 1.0 \\ 2.0 \\ 3.0 \end{pmatrix}$

 Таблица сравнения метода Гаусса и прямого метода LU-разложения по точности получаемого решения и количеству действий: см Приложение 3.

- с) Вывод: Можно проследить, что оба метода имеют практически идентичные значения при подсчете погрешности, что говорит об равной точности. Но стоит отметить, что метод Гаусса производит в разы больше действий, чем метод LU-разложения. Но стоит отметить, что метод LU-разложения осложняется тем, что нам необходимо разложить матрицу на две, соответственно, лучше использовать этот метод, когда мы работаем с одной и той же матрицей много раз.
- d) Преимущества и недостатки прямых методов: Недостатки: изменение профиля матрицы при перестановке строк, потеря свойства разреженности. Преимущества: независимость методов от начального приближения.

Задача 5.

а) Постановка задачи:

Реализовать метод сопряженных градиентов для решения СЛАУ, матрица которых хранится в разреженном строчно-столбцовом формате и является симметричной.

• Подзадача 1

і. Описание подзадачи:

Протестировать разработанную программу. Для тестирования использовать матрицы небольшой размерности, при этом вектор правой части формировать умножением тестовой матрицы на заданный вектор.

• Решение подзадачи:

і. Вычислительная схема метода:

Пусть дана система линейных уравнений Ax = b, причём матрица системы - действительная матрица, обладающая свойством $A = A^T > 0$, т.е. это симметричная положительно определенная матрица. Тогда процесс решения СЛАУ можно представить как минимизацию следующего функционала:

$$(Ax, x) - 2(b, x) \rightarrow min$$

Для минимизации используется метод сопряженных градиентов.

Итерационный процесс:

Выбирается начальное приближение x^0 и полагается

$$r^0 = f - Ax^0, z^0 = r^0$$

Далее для k = 1, 2, ... производятся следующие вычисления:

$$a_k = \frac{(r^{k-1}, r^{k-1})}{(Az^{k-1}, z^{k-1})}$$

$$x^{k} = x^{k-1} + a_{k}z^{k-1}$$

$$r^k = r^{k-1} - a_k A z^{k-1}$$

$$\beta_k = \frac{(r^k, r^k)}{(r^{k-1}, r^{k-1})}$$

$$z^k = r^k + \beta_k z^{k-1}$$

где

 x^{0} – вектор начального приближения;

 x^{k} – вектор решения на k-й итерации;

 r^{k} – вектор невязки на k-й итерации;

 z^k – вектор спуска (сопряженное направление) на k-й итерации;

 a_k , β_k – коэффициенты

- іі. Пример решения задачи реализованным методом:
 - Условие задачи и входные данные:

$$\begin{pmatrix} 3.0 & -2.0 & 0.0 \\ 0.0 & 2.0 & -2.0 \\ -1.0 & -1.0 & 2.0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -1.0 \\ -2.0 \\ 3.0 \end{pmatrix}$$

 $\begin{pmatrix} 3.0 & -2.0 & 0.0 \\ 0.0 & 2.0 & -2.0 \\ -1.0 & -1.0 & 2.0 \end{pmatrix}$ $\mathbf{x} = \begin{pmatrix} -1.0 \\ -2.0 \\ 3.0 \end{pmatrix}$ Численный ответ: $\mathbf{x} = \begin{pmatrix} 2.511565757928056 \\ 4.0417918952583465 \\ -0.6074106448456962 \end{pmatrix}$

Подзадача 2

і. Описание подзадачи

Провести исследование реализованного метода на матрице с диагональным преобладанием, построенной следующим образом:

$$a_{ii} = \begin{cases} -\sum_{i \neq j} a_{ij}, & i > 1 \\ -\sum_{i \neq j} a_{ij} + 1, & i = 1, \end{cases}$$

и $a_{ij} \in \{0, -1, -2, -3, -4\}$ выбираются достаточно произвольно, а правая часть fk получается умножением матрицы A_k на вектор $x^* = (1, ... n)$. Для каждого полученного решения с помощью невязки и погрешности оценить число обусловленности

іі. Решение подзадачи:

Таблица исследования приведена в Приложении 4 ііі. Вывод.

Можно заметить, что при больших n количество итераций довольно мало – на порядки меньше, чем n. A также отметим, что относительная погрешность почти константна.

• Подзадача 3

і. Описание подзадачи:

Провести аналогичные подзадаче 2 исследования на матрице с обратным знаком внедиагональных элементов.

іі. Решение подзадачи:

Таблица исследования приведена в Приложении 5

ііі. Вывод:

Аналогично предыдущей подзадаче – число итераций много меньше n и относительная погрешность константна, но меньше, чем в предыдущей подзадаче.

• Подзадачи 4

і. Описание подзадачи:

Повторить аналогичные подзадаче 2 исследования для плотной матрицы Гильберта для различных размерностей.

іі. Решение подзадачи:

Таблица исследования приведена в Приложении 6

ііі. Вывод:

По таблицам исследования можно заметить, что метод сопряженных градиентов лучше справляется с примерами плохо обусловленных матриц, чем методы, исследуемые выше. Ранее было замечено, что погрешность растет экспоненциально, но здесь можно сделать вывод, что относительная погрешность примерно остается константой, а абсолютная растет линейно при росте n.

b) Вывод:

Метод сопряженных градиентов демонстрирует оптимальный результат при работе как с хорошо, так и с плохо обусловленными задачами. Однако стоит отметить, что если матрица исходной задачи не была симметричной, то использование метода осложняется тем, что сперва нужно симметризовать матрицу.

Задача 6.

- а) Постановка задачи:
 - I. Для разработанного программного кода в отчете привести код основных модулей, диаграмму классов, сделать текстовое описание.
- b) Решение задачи
 - Код основных модулей и текстовое описание представлены по ссылке https://github.com/MariaDziuba/metopt3.
 Диаграмма классов приведена в Приложение 7.

n	k	∥ x*-x _k ∥	\parallel x*-x _k \parallel / \parallel x* \parallel
15	0	0.00000000000041	0.0000000000000117
15	1	0.0000000000057	0.0000000000000161
15	2	0.0000000000303	0.0000000000000861
15	3	0.00000000008434	0.000000000023951
15	4	0.00000000020212	0.000000000057399
15	5	0.00000000326162	0.0000000000926237
15	6	0.00000001528084	0.0000000004339467
65	0	0.000000000000021	0.00000000000000007
65	1	0.0000000001720	0.000000000000562
65	2	0.0000000002563	0.0000000000000837
65	3	0.00000000048441	0.000000000015828
65	4	0.00000003175205	0.0000000001037488
65	5	0.00000002630400	0.0000000000859475
65	6	0.00000001616883	0.000000000528311
115	0	0.00000000000255	0.0000000000000036
115	1	0.0000000001385	0.0000000000000193
115	2	0.00000000091658	0.000000000012790
115	3	0.00000000548645	0.000000000076557
115	4	0.00000004558477	0.000000000636080
115	5	0.00000008716376	0.000000001216263
115	6	0.00001275237923	0.0000000177943832
165	0	0.0000000000680	0.000000000000055
165	1	0.0000000013185	0.000000000001073
165	2	0.0000000137880	0.000000000011217
165	3	0.00000000670192	0.000000000054521
165	4	0.00000006883962	0.000000000560021
165	5	0.00000025185766	0.0000000002048900
165	6	0.00000143245093	0.0000000011653204
215	0	0.00000000001254	0.00000000000000069
215	1	0.00000000018244	0.0000000000000999
215	2	0.00000000042157	0.0000000000002308
215	3	0.00000002272447	0.0000000000124418
215	4	0.00000055434033	0.0000000003035061
215	5	0.00000317557055	0.0000000017386519

215	6	0.00000680995161	0.0000000037285066
265	0	0.00000000002078	0.0000000000000083
265	1	0.00000000078908	0.0000000000003159
265	2	0.00000000940523	0.000000000037656
265	3	0.00000003259960	0.000000000130520
265	4	0.00000169197672	0.0000000006774215
265	5	0.00000652602387	0.0000000026128427
265	6	0.00000300238652	0.0000000012020740
315	0	0.00000000002109	0.0000000000000065
315	1	0.0000000012349	0.000000000000382
315	2	0.00000000822502	0.0000000000025421
315	3	0.00000005291591	0.000000000163549
315	4	0.00000075180849	0.0000000002323643
315	5	0.00001171868421	0.0000000036219377
315	6	0.00011939986708	0.0000000369033652
365	0	0.0000000005412	0.000000000000134
365	1	0.0000000024717	0.0000000000000613
365	2	0.00000002459916	0.0000000000060975
365	3	0.00000019482658	0.0000000000482923
365	4	0.00000024109461	0.000000000597609
365	5	0.00001216054094	0.0000000030142749
365	6	0.00007707991131	0.0000000191060614
415	0	0.00000000020281	0.0000000000000415
415	1	0.0000000138560	0.0000000000002834
415	2	0.00000000689983	0.000000000014111
415	3	0.00000008095069	0.000000000165548
415	4	0.00000211298840	0.0000000004321172
415	5	0.00001241771684	0.0000000025394879
415	6	0.00002550153320	0.0000000052151967
465	0	0.0000000002396	0.00000000000000041
465	1	0.00000000281374	0.000000000004852
465	2	0.00000002278490	0.000000000039294
465	3	0.00000003673907	0.000000000063359
465	4	0.00000146534128	0.0000000002527087
465	5	0.00000332743770	0.0000000005738406

465	6	0.00032426557451	0.0000000559219355
515	0	0.0000000012941	0.0000000000000192
515	1	0.00000000094176	0.000000000001394
515	2	0.00000001431519	0.0000000000021184
515	3	0.00000061581156	0.0000000000911309
515	4	0.00000588208640	0.0000000008704608
515	5	0.00006842920693	0.0000000101264992
515	6	0.00021179568571	0.0000000313425940
565	0	0.00000000028672	0.0000000000000369
565	1	0.00000000288284	0.0000000000003713
565	2	0.00000006890086	0.0000000000088743
565	3	0.00000100517666	0.0000000001294656
565	4	0.00000597622684	0.0000000007697310
565	5	0.00000876836455	0.0000000011293550
565	6	0.00073509193712	0.0000000946789739
615	0	0.00000000040747	0.0000000000000462
615	1	0.00000000200415	0.0000000000002273
615	2	0.00000004505048	0.0000000000051100
615	3	0.00000024487622	0.0000000000277757
615	4	0.00000473857480	0.0000000005374851
615	5	0.00009132824521	0.0000000103591423
615	6	0.00160280387454	0.0000001818021724
665	0	0.0000000005899	0.0000000000000000000000000000000000000
665	1	0.00000000181798	0.0000000000001834
665	2	0.00000010982234	0.000000000110797
665	3	0.00000031550361	0.0000000000318305
665	4	0.00000544870217	0.0000000005497076
665	5	0.00001021666573	0.0000000010307369
665	6	0.00013246921032	0.0000000133645275
715	0	0.0000000051016	0.0000000000000462
715	1	0.00000000742138	0.00000000000006716
715	2	0.00000003401057	0.000000000030779
715	3	0.00000086380646	0.0000000000781741
715	4	0.00000975922102	0.0000000008832048
715	5	0.00010151526471	0.0000000091870827
715	6	0.00000103384741	0.000000000935627

765	0	0.00000000099788	0.00000000000000816
765	1	0.00000000281930	0.0000000000002306
765	2	0.00000000761303	0.0000000000006226
765	3	0.00000092163940	0.0000000000753709
765	4	0.00000585440923	0.0000000004787690
765	5	0.00003020160485	0.0000000024698635
765	6	0.00023100572938	0.0000000188914668
815	0	0.0000000051656	0.000000000000384
815	1	0.00000001147072	0.0000000000008531
815	2	0.00000003118130	0.0000000000023191
815	3	0.00000095593851	0.0000000000710976
815	4	0.00000354051570	0.0000000002633245
815	5	0.00005051949545	0.0000000037573683
815	6	0.00007212227745	0.0000000053640670
865	0	0.00000000068211	0.0000000000000464
865	1	0.00000000067548	0.0000000000000459
865	2	0.00000008507996	0.000000000057875
865	3	0.00000018195599	0.000000000123773
865	4	0.00000200825079	0.000000001366086
865	5	0.00020816918328	0.0000000141604329
865	6	0.00133220860892	0.0000000906217255
915	0	0.0000000032051	0.00000000000000200
915	1	0.00000000459518	0.000000000002873
915	2	0.00000005691750	0.000000000035589
915	3	0.00000190393055	0.000000001190486
915	4	0.00000169704060	0.0000000001061122
915	5	0.00001797393749	0.0000000011238708
915	6	0.00154895355386	0.0000000968526626
965	0	0.00000000042900	0.0000000000000248
965	1	0.00000001542176	0.0000000000008904
965	2	0.00000012976675	0.0000000000074920
965	3	0.00000015464663	0.0000000000089284
965	4	0.00000412742179	0.0000000002382929
965	5	0.00000063015891	0.000000000363816
965	6	0.00165748873057	0.0000000956935911

k	x*-x _k	x*-x _k / x*
15	259.34702409835910	7.3649605756710880
65	138608.33465152525000	452.8982857727000400
115	480884.82686606730000	671.0158746239665000
165	407861.52801675803000	331.8015069409954000
215	529199304.93860960000000	289741.1300883682000000
265	1217835.28193678520000	487.5881712617839000
315	1899092.17478458440000	586.9595480051802000
365	6324345.04523482200000	1567.6370459255056000
415	7934297.63299700600000	1622.6052895938808000
465	8623516.60969150300000	1487.1875946023906000
515	17515928.09579663400000	2592.0953974573117000
565	45953484.61965941000000	5918.7545803334660000
615	5178358772.21829500000000	587368.7287011959000000
665	18485528.51850561400000	1864.9643404870762000
715	34617424.90895326400000	3132.8603414938966000
765	32909091.27558392700000	2691.2795889795890000
815	38791488.16819092000000	2885.1021991187830000
865	30235416.16499347600000	2056.7241245410550000
915	168870439.23620066000000	10559.0975511652210000
965	66272180.27241713600000	3826.1635228599716000

S - количество действий.

		LU-разложение			метод Гаусса		
n	k	x*-x _k	x*-x _k / x*	S	x*-x _k	x*-x _k / x*	S
15	0	0.000000000000041	0.0000000000000117	224	0.000000000000042	0.0000000000000118	1450
15	3	0.00000000008434	0.0000000000023951	221	0.00000000008434	0.0000000000023951	1450
15	6	0.00000001528084	0.0000000004339467	223	0.00000001528084	0.0000000004339466	1450
115	0	0.00000000000255	0.0000000000000036	13192	0.00000000000241	0.0000000000000034	526700
115	3	0.00000000548645	0.0000000000076557	13195	0.00000000548631	0.0000000000076555	526700
115	6	0.00001275237923	0.0000000177943832	13193	0.00001275237921	0.0000000177943832	526700
215	0	0.00000000001254	0.0000000000000069	46182	0.0000000001260	0.0000000000000069	3381950
215	3	0.00000002272447	0.000000000124418	46181	0.00000002272454	0.000000000124419	3381950
215	6	0.00000680995161	0.0000000037285066	46172	0.00000680995165	0.0000000037285066	3381950
315	0	0.00000000002109	0.0000000000000065	99144	0.00000000002112	0.0000000000000065	10567200
315	3	0.00000005291591	0.000000000163549	99162	0.00000005291565	0.000000000163548	10567200
315	6	0.00011939986708	0.0000000369033652	99142	0.00011939986775	0.0000000369033654	10567200
415	0	0.00000000020281	0.0000000000000415	172114	0.00000000020291	0.0000000000000415	24082450
415	3	0.00000008095069	0.000000000165548	172124	0.00000008095050	0.000000000165548	24082450
415	6	0.00002550153320	0.0000000052151967	172128	0.00002550153368	0.0000000052151968	24082450
515	0	0.00000000012941	0.0000000000000192	265096	0.00000000012927	0.0000000000000191	45927700
515	3	0.00000061581156	0.0000000000911309	265101	0.00000061581017	0.0000000000911307	45927700
515	6	0.00021179568571	0.0000000313425940	265091	0.00021179568557	0.0000000313425939	45927700
615	0	0.00000000040747	0.0000000000000462	378063	0.00000000040681	0.0000000000000461	78102950
615	3	0.00000024487622	0.0000000000277757	378077	0.00000024487553	0.0000000000277756	78102950
615	6	0.00160280387454	0.0000001818021724	378063	0.00160280387375	0.0000001818021723	78102950
715	0	0.00000000051016	0.0000000000000462	511059	0.00000000051008	0.0000000000000462	122608200
715	3	0.00000086380646	0.0000000000781741	511046	0.00000086380606	0.0000000000781740	122608200
715	6	0.00000103384741	0.000000000935627	511027	0.00000103384952	0.000000000935629	122608200
815	0	0.00000000051656	0.000000000000384	664021	0.00000000051843	0.000000000000386	181443450
815	3	0.00000095593851	0.0000000000710976	664057	0.00000095593740	0.0000000000710975	181443450
815	6	0.00007212227745	0.0000000053640670	664033	0.00007212227885	0.0000000053640671	181443450
915	0	0.0000000032051	0.0000000000000000000000000000000000000	837015	0.0000000032103	0.0000000000000000000000000000000000000	256608700
915	3	0.00000190393055	0.0000000001190486	836945	0.00000190393183	0.0000000001190487	256608700
915	6	0.00154895355386	0.0000000968526626	836995	0.00154895355634	0.0000000968526628	256608700

n	iter	$\ x^* - x^k\ $	$\frac{\parallel x^* - x^k \parallel}{\parallel x^* \parallel}$	cond(A)
15	499	0.000028652491	0.000000813676	1.8827062
50	499	0.000241491970	0.000001165595	1.2197750
200	74	0.001859437426	0.000001134415	1.3748306
500	49	0.007409915377	0.000001146220	1.6653173
1000	51	0.020973409778	0.000001147900	1.7256524
2000	76	0.059122820810	0.000001144479	1.7472275
5000	277	0.233987837801	0.000001146130	1.7649603
10000	769	0.190815454588	0.000001144027	1.6772481
100000	912	0.270850324567	0.000001145283	1.7602211

n	iter	$\ x^*-x^k\ $	$\frac{\parallel x^* - x^k \parallel}{\parallel x^* \parallel}$	cond(A)
15	499	0.004457925	0.00000126597	1.587788
50	499	0.025130571	0.00000121296	1.392519
200	24	0.144696635	0.00000088277	1.175443
500	19	0.534903802	0.00000082743	1.134510
1000	20	1.504756470	0.00000082357	1.125866
2000	21	4.193945571	0.00000081185	1.120621
5000	21	16.534110769	0.00000080988	1.118112
10000	36	33.612346007	0.00000088742	1.347584
100000	52	458.231680217	0.00000089370	1.600114

n	iter	$\ x^*-x^k\ $	$\ x^*-x^k\ $	cond(A)
			${\ x^*\ }$	
15	24	0.003370	0.000096	20391171203.742350
50	40	0.021094	0.000102	12895964506.532433
200	89	0.094734	0.000058	7358859782.145118
500	107	0.459367	0.000071	11301831242.305489
1000	142	1.044254	0.000057	6279638633.168895

