Assignment 2

Course: DSAA, Monsoon 2017 @IIITS

Name: Dash Subhadeep

Roll no. 201601021

I. QUANTIZATION OF A DISCRETE SIGNAL

Matlab Code:

```
1. clc
2. clear all
3. close all
4. %%
5. N = 5;
6. Fs = 5;
7. T = 1 / Fs;
8. n = 0: 0.1: N * 2 * pi;
9. x = sin(n);
10. figure;
11. subplot(3, 1, 1);
12.stem(n, x, 'LineWidth', 2);
13. set(gca, 'Box', 'on', ...,
14.
          'FontSize', 12, ...,
          'FontWeight', 'bold', ...,
15.
          'LineWidth', 1.5, ...,
16.
          'Color', [0.95 0.95 0.95], ...,
17.
          'XGrid', 'off', ..., 'YGrid', 'off');
18.
19.
20.xlabel('index n');
21. ylabel('sine');
22. subplot(3, 1, 2);
23. stem(n, 0.25 * round(x / 0.25), 'LineWidth', 2);
24. set(gca, 'Box', 'on', ...,
25.
          'FontSize', 12, ...,
          'FontWeight', 'bold', ...,
26.
27.
          'LineWidth', 1.5, ...,
28.
          'Color', [0.95 0.95 0.95], ...,
          'XGrid', 'off', ..., 'YGrid', 'off');
29.
30.
31.xlabel('index n');
32.ylabel('sine');
33. subplot(3, 1, 3);
34. stem(n, x - 0.25 * round(x / 0.25), 'LineWidth', 2);
35.set(gca, 'Box', 'on', ...,
36.
          'FontSize', 12, ...,
37.
           'FontWeight', 'bold', ...,
           'LineWidth', 1.5, ...,
38.
          'Color', [0.95 0.95 0.95], ...,
39.
          'XGrid', 'off', ..., 'YGrid', 'off');
40.
41.
42.xlabel('index n');
43.ylabel('quantization error');
```


Discussion:

- 1. The first graph is the original discrete sine signal x[n] which is quantised using the formula $x_q[n] = \Delta\left[\frac{x[n]}{\Delta}\right]$, where Δ is the interval used for quantisation.
- 2. We observe that the obtained quantised signal is quite like the original signal barring a few changes.
- 3. We have taken $\Delta=0.25$, so we observe that the quantization error ranges between $\frac{\Delta}{2}$ and $-\frac{\Delta}{2}$ i.e. 0.125 and -0.125.
- 4. Therefore, we have managed to attain the quantisation error by subtracting the original signal from the quantised signal.

II. SIGNAL TRANSFORMATION

a) Unit Step Signal

Matlab Code for function of Unit Step Signal:

```
1. function myUnitSignal(p, q)
2. t = -10: 0.001: 10;
3. x = zeros(size(t));
4. for i = 1: length(t);
5. m = p * t(i) + q;
6. if m > 0 x(i) = 1;
7. end;
8. end;
9. figure;
10. plot(t, x);
11. xlabel('time');
```

```
12. ylabel('value');
13. ylim([-0.5, 1.5]);
```

Matlab Code for the transformations of Unit Step Signal as required in this question making use of the previous function:

```
    clc;
    clear all;
    close all;
    %
    myUnitSignal(1, -3);
    myUnitSignal(-1, 3);
    myUnitSignal(1, 4);
```

Results:

i) First Transformation (u(t-3)):

ii) Second Transformation (u(3 – t)):

iii) Third transformation (u(t + 4)):

Discussion:

- 1. In the first transformation, we delay the unit signal by 3 steps to obtain u(t-3).
- 2. In the second transformation, we advance the unit signal by 3 steps and reverse the newly obtained signal to obtain u(3 t).
- 3. In the third transformation, we advance the unit signal by 4 steps to obtain the desired signal.

b) Ramp Signal:

Matlab code for function of Ramp Signal:

```
1. function myRampSignal(p, q)
2. t = -10: 0.001: 10;
3. x = zeros(size(t));
4. for i = 1: length(t) m = p * t(i) + q;
5. if m > 0 x(i) = m;
6. end;
7. end;
8. figure;
9. plot(t, x);
10. xlabel('time');
11. ylabel('values');
```

Matlab Code for the transformations of Unit Step Signal as required in this question making use of the previous function:

```
    clc;
    clear all;
    close all;
    %%
    myRampSignal(1, -4);
    myRampSignal(-1, 4);
    myRampSignal(-2, 1);
```

i) First transformation (r(t – 4)):

ii) Second transformation (r(4 – t)):

iii) Third transformation (r(1 – 2t)):

- 1. In the first case, we are delaying the ramp signal by 4 steps, so that it starts from 4 instead of 0 to obtain r(t 4).
- 2. In the next case, the first signal is reversed to obtain r(4 t).
- 3. In the last transformation, we are delaying the signal by 1, reversing the signal and scaling it by $\frac{1}{2}$ to obtain r(1-2t).
- c) Sine wave signal shifting:

Matlab code for both delay and advance of sine waves by t0:

```
1. clc;
2. close all;
3. clear all;
4. %%
5. t = 0: 0.001: 3;
6. t0 = 1 / 3;
7. w0 = 2 * pi;
8. x = sin(w0 * (t - t0));
9. subplot(2, 1, 1);
10. plot(t, x);
11. xlabel('time index');
12. ylabel('sin');
13. x = sin(w0 * (t + t0));
14. subplot(2, 1, 2);
15. plot(t, x);
16. xlabel('time index');
17. ylabel('sin');
```

Results:

- 1. As per the given question, $sin(\Omega_0 t)$ is the given signal.
- 2. When we plot the graphs corresponding to $sin(\Omega_0(t-t_0))$ and $sin(\Omega_0(t+t_0))$, we observe a phase difference of $-\Omega_0t_0$ and Ω_0t_0 in the sine graphs obtained.
- 3. Here the assumed values are $\Omega_0=2\pi$ and $t_0=\frac{1}{3}$.

Given analog signal plot and transformation

Matlab Code for the given analog signal:

```
1. function mySignal(q, p) a = (-4 - p) / q;
2. b = (4 - p) / q;
3. if (a > b) temp = a;
4. a = b;

    b = temp;
    end;

7. x = a: 0.001: b;
8. for i = 1: length(x)
9. m = p + q * x(i);
10. if (m <= -4) \mid | (m >= (3))
11. y(i) = 0;
12. elseif m >= (-4) \&\& m <= (-2)
13. y(i) = 0;
14. elseif m >= (-2) \&\& m <= (-1)
15. y(i) = 1;
16. elseif m >= (-1) \&\& m <= (0)
17. y(i) = (-m - 1);
18. elseif m >= (0) \&\& m <= (1)
19. y(i) = (m - 1);
20. elseif m >= (1) && m <= (2)
21. y(i) = 2;
22. elseif m >= (2) \&\& m <= (3)
23. y(i) = -m + 3;
24. end;
25. end;
26. figure;
27. plot(x, y);
28. xlabel('t index');
29. ylabel('values');
```

Matlab Codes for the transformed signals:

```
1. clc;
2. clear all;
3. close all;
4. %%
5. mySignal(1, 0);
6. mySignal(1, -1);
7. mySignal(1, 1);
8. mySignal(2, -3);
9. mySignal(-2, 1);
```

Original Plot:

i) First Transformation (x(t-1)):

ii) Second Transformation (x(t + 1)):

iii) Third Transformation(x(2t - 3)):

iv) Fourth Transformation(x(1 – 2t)):

- 1. Even in this case, we have created a function for the graph given.
- 2. So, when we give the parameters of the coefficient of t and the constant as arguments to the function, it plots the graph automatically, without much human effort.
- 3. Only the graphs with negative coefficients of t are reversed which can be seen in the fourth transformation.
- 4. In first two cases, it's just shifting and in the next two cases both shifting and scaling occurs.
- d) Given discrete signal plot and transformation

Matlab Code for the given discrete signals:

```
    function myDiscreteSignal(q, p)

2. a = (-4 - p) / q;
3. b = (4 - p) / q;
4. if (a > b)
5. temp = a;
6. a = b;
7. b = temp;
8. end;
9. t = a - 1: 1 / abs(q): b + 1;
10. x = zeros(size(t));
11. for i = 1: length(t);
12. m = q * t(i) + p;
13. if m == -3
14. x(i) = 2;
15. elseif m == -2
16. x(i) = 1;
17. elseif m == -1
18. x(i) = -1;
19. elseif m == 0
20. x(i) = -0.5;
21. elseif m == 1
22. x(i) = 1;
23. elseif m >= 2 && m <= 4
24. x(i) = 2;
25. end;
26. end;
27. figure;
28. stem(t, x);
29. xlabel('n index');
30. ylabel('values');
```

Matlab Codes for the given transformed signals:

```
    clc;
    clear all;
    close all;
    %
    myDiscreteSignal(1, 0);
    myDiscreteSignal(1, -1);
    myDiscreteSignal(1, 2);
    myDiscreteSignal(-1, 2);
    myDiscreteSignal(-2, 1);
    myDiscreteSignal(2, 3);
```

Original Plot:

i) First Transformation (x[n-1]):

ii) Second Transformation(x[n + 2]):

iii) Third Transformation (x[2 - n]):

iv) Fourth Transformation (x[1 – 2n]):

v) Fifth Transformation (x[2n + 3]):

- 1. The given irregular discrete signal is initially plotted by creating a function for it.
- 2. The same procedure is followed for reversing, shifting and scaling in each case as done earlier.
- 3. We send the parameters of coefficient of the time in the function and the constant as arguments into the function and hence the transformed graph plot is done.

Final Discussion:

- 1. From this assignment, we have learnt transforming signals by shifting, scaling and reversing.
- 2. We have learnt quantising a discrete sine signal and hence have plotted the quantisation error.

****Thanks for Reading****