

Lecture 9: Named Entity Recognition and Coreference

- Information Extraction
- Named Entity Recognition (NER) and Evaluation
- Traditio Als Figure Project Exam Help
- Sequence Model for NER
- Coreference Resolution to the Corefe 5.
- 6. Coreference Model
- Coreference Evaluation WeChat: cstutorcs
- **Preview** 8.

Information Extraction

"The task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents"

Assignment Project Exam Help

Here are some questions..

- How to allow http://doi.orutouccom/he unstructured data
- How to extract clear, factual information
- How to put in Weenhald illy stebles from that allows further inferences to be made by computer algorithms

How to extract the structured clear, factual information

- Find and understand limited relevant parts of texts
- Gather information from many pieces of text
- Produce stricture presentation of relations (in the database sense) or a knowledge base

How to extract the structured clear, factual information

- Find and understand limited relevant parts of texts
- Gather information from many pieces of text
- Produce A stricture presentation of relations (in the database sense) or a knowledge base

Textual abstract: Summary for human

Structured information: Summary for machine

Information Extraction Pipeline with NLP

What is Named Entity Recognition?

"The subtask of information extraction that seeks to locate and classify named entity mentions in unstructured text into pre-defined categories such as the significant project and the significant codes, time expressions, quantities, monetary values, percentages, etc."

https://tutorcs.com

Why recognise Named Entities?

- Named entities to the indexed tinked off, etc.
- Sentiment can be attributed to companies or products
- A lot of relations are associations between named entities
- For question answering, answers are often named entities.

How to recognize Named Entities?

Identify and **classify** names in text

The United Silgnmenty Pinole Lyanns Leep Sydney Uni) is an Australian public research university in Sydney, Australia. Founded in 1850, it was Australia's first university and is regarded as one of the world's leading universities. (Wikipedia, University of Sydney)

WeChat: cstutorcs

Different types of named entity classes

Туре	Classes
3 class	Location, Person, Organization
4 class	Location, Person, Organization, Misc
7 class	Location, Person, Organization, Money, Percent, Date, Time

*classes can be different based on annotated dataset

How to recognize Named Entities?

Identify and **classify** names in text

Stanford CoreNLP 3.9.2 http://nlp.stanford.edu:8080/corenlp/process

How to evaluate the NER performance?

The goal: *predicting entities in a text*

*Standard evaluation is per entity, not per token

Assignment Project Exam Help

Caren Soyeon Han is working at Google at Sydney, Australia gold PER PER LUC LOC LOC Predicted O We Chat: CSTUTORCS

How to evaluate the NER performance? Precision and recall

How to evaluate the NER performance? Precision and recall

How to evaluate the NER performance?

The goal: *predicting entities in a text*

*Standard evaluation is per entity, not per token

Assignment Project Exam Help

Caren Soyeon Han is working at Google at Sydney, Australia gold PER PER LUC LOC LOC predicted O Wechat: cstutorcs LOC LOC

	correct	not correct
selected	True Positive	False Positive
	(TP)	(FP)
not selected	False Negative	True Negative
	(FN)	(TN)

How to evaluate the NER performance?

The goal: *predicting entities in a text*

*Standard evaluation is per entity, not per token

Assignment Project Exam Help

Caren Soyeon Han is working at Google at Sydney, Australia gold PER PER LUCS / LUC LOC LOC Predicted O Wechat: cstutorcs LOC

Precision and Recall are straightforward for text categorization or web search, where there is only one grain size (documents)

Quick Exercise: F measure Calculation

Let's calculate Precision, Recall, and F-measure together!

Assignment Project Exam Help
$$P = ??$$
 $R = ??$
 $F_1 = ??$
 $F_1 = 2 *$

https://tutorcs.com

WeChat: cstutorcs

	correct	not correct
selected	2 (TP)	0 (FP)
not selected	1 (FN)	0 (TN)

Data for learning named entity

- Training counts joint frequencies in a corpus
- The more training data, the better
- Annotated so ingranamental Pard je retrievam Help

Corpora	Sourdettps://	tutores	Class T ype
muc-7	New York Times WeCha		per, org, loc, dates, times, money, percent https://aclweb.org/aclwiki/MUC-7_(State_of_the_art)
conll-03	Reuters	301k	per, org, loc, misc
bbn	Wall Street Journal	1174k	https://catalog.ldc.upenn.edu/docs/LDC2005T33/BBN- Types-Subtypes.html

Data for learning named entity

Models trained on one corpus perform poorly on others

	nment Project Exam Help					
train 1	muç https://futor	conll CS.COM	bbn			
muc	82.3	54.9	69.3			
conll	VeChat: cs	tuto¥68	60.2			
bnn	80.2	58.0	88.0			

CoNLL 2003 NER dataset

Performance measure: F = 2 * Precision * Recall / (Recall + Precision)

RANK	MODEL	F1 🕈	EXTRA TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	LUKE ASS18	94.3	ent Pr	Oject Exam Helpith Entity-aware Self-attention	O	∌	2020
2	ACE + document-context	ittps	s://tuto	Automated Concatenation of Embeddings for Structured Felicts. COM	O	∌	2020
3	Cross-sentence context (First)	93.74	×	Exploring Cross-sentence Contexts for Named Entity Recognition with BERT	0	Ð	2020
4	ACE	93.64	nat: C	Stute Oncate and of Embeddings for Structured Prediction	0	Ð	2020
5	CNN Large + fine-tune	93.5	~	Cloze-driven Pretraining of Self-attention Networks		Ð	2019
6	Biaffine-NER	93.5	×	Named Entity Recognition as Dependency Parsing	0	Ð	2020
7	GCDT + BERT-L	93.47	✓	GCDT: A Global Context Enhanced Deep Transition Architecture for Sequence Labeling	0	Ð	2019
8	I-DARTS + Flair	93.47	✓	Improved Differentiable Architecture Search for Language Modeling and Named Entity Recognition		∌	2019
9	CrossWeigh + Pooled Flair	93.43	×	CrossWeigh: Training Named Entity Tagger from Imperfect Annotations	0	∌	2019
10	LSTM- CRF+ELMo+BERT+Flair	93.38	✓	Neural Architectures for Nested NER through Linearization	0	∌	2019

Datasets for NER in English

The following table shows the list of datasets for English entity recognition.

	J			,
Dataset	Domain	License	Reference	
CONLL 2003	News	DUA	Sang and Meulder, 2003	
NIST-IEER	News	None	NIST 1999 IE-ER	
MUC-6	News C	signt	TEMPATEND DOMENTISM	ct Exam H
OntoNotes 5	Various	LDC	Weischedel et al., 2013	ot Emain II.
BBN	Various	LDC	Weischedel and Brunstein, 2005	
GMB-1.0.0	Various	Nor attr	S: "/tutores	com
GUM-3.1.0	Wiki	Several (*2)	Zeldes, 2016	.COIII
wikigold	Wikipedia	CC-BY 4.0	Balasuriya et al., 2009	
Ritter	Twitter	None //	Critthat cstu	torce
BTC	Twitter	CC-BY 4.0	Derczynski et al., 2016	LUIUS
WNUT17	Social media	CC-BY 4.0	Derczynski et al., 2017	
i2b2-2006	Medical	DUA	Uzuner et al., 2007	
i2b2-2014	Medical	DUA	Stubbs et al., 2015	
CADEC	Medical	CSIRO	Karimi et al., 2015	
AnEM	Anatomical	CC-BY-SA 3.0	Ohta et al., 2012	
MITRestaurant	Queries	None	Liu et al., 2013a	
MITMovie	Queries	None	Liu et al., 2013b	
MalwareTextDB	Malware	None	Lim et al., 2017	
re3d	Defense	Several (*1)	DSTL, 2017	DUA : Data Use Agreer
SEC-filings	Finance	CC-BY 3.0	Alvarado et al., 2015	LDC : Linguistic Data Co
Assembly	Robotics	X	Costa et al., 2017	CC-BY 4.0 : Creative Co

nent

nsortium

Commons Attribution 4.0

https://github.com/juand-r/entity-recognition-datasets

https://paperswithcode.com/task/named-entity-recognition-ner

Three standard approaches to NER

- Rule-based NER
 Traditional Approaches
- Classifier-based NER
- Sequent Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Rule-based NER

- Entity references have internal and external language cues Mr. [per Scott Morrison] flew to [loc Beijing]
 - Assignment Project Exam Help
- Can recognise names using lists (or gazetteers):
 - Personal titlest typ syliss, tu for contcom
 - Given names: Scott, David, James

 - Corporate suffixes: & Co., Corp., Ltd. Organisations. Microsoft, IBM, Telstra
- and rules:
 - personal title $X \Rightarrow per$
 - X, location \Rightarrow loc or org
 - travel verb to $X \Rightarrow loc$
- Effectively regular expressions, PoS Tagger

Rule-based NER

- Determining which person holds what office in what organization
 - [person], [office] of [org]
 - Alighai graph territe-Procile and principal principal
 - - WHO appointed Tedros Adhanom as Director-General https://tutorcs.com
- Determining where an organization is located
 - [org] in [loc]
 - Google headquarters in California
 - [org] [loc] (division, branch, headquarters, etc.)
 - Google London headquarters

Statistical approaches are more portable

- Learn NER from annotated text
 - weights (≈ rules) calculated from the corpus
 - samArsshighterneintiffPerbjectegExterneinHelp
- Token-by-tokentelessification (with any machine learning)
- Each token may be hat: cstutorcs
 - not part of an entity (tag o)
 - beginning an entity (tag b-per, b-org, etc.)
 - continuing an entity (tag i-per, i-org, etc.)
- What about N-gram model?

Various features for statistical NER

Unigram	Mr.	Scott	Morrison	flew	to	Beijing
Lowercase unigram	mr.	scott	morrison	flew He	to	beijing
POS tag	nnp	nnp	nnp	vbd	to	nnp
length 1	ıttps:/	/tutor	c\$.com	4	2	7
In first-name gazetteer	no	yes	no	no	no	no
In location gazetteer	WeCh	at: cst	utorcs	no	no	yes
3-letter suffix	Mr.	ott	son	lew	-	ing
2-letter suffix	r.	tt	on	ew	to	ng
1-letter suffix		t	n	W	0	g
Tag predictions	0	B-per	l-per	0	0	B-loc

SY

Various features for statistical NER

Unigram	Mr.	Scott	Morrison	flew	to	Beijing
Lowercase unigram	mr.	scott t Proj	morrison	flew.	to	beijing
POS tag	nnp	nnp	nnp	vbd	to	nnp
length 1	ıttps:/	/tutoro	cs.com	4	2	7
In first-name gazetteer	no	yes	no	no	no	no
In location gazetteer	WeCh	at: cst	utorcs	no	no	yes
3-letter suffix	Mr.			lew	-	ing
2-letter suffix	r.			ew	to	ng
1-letter suffix	Input La	nyer -		W	0	g
Tag predictions	0			0	0	B-loc

Mr. Scott Morrison lives in Sydney --->

Predictive Model

---> O B-PER I-PER O O B-LOC

Traditional NER Approaches - Pros and Cons

Rule-based approaches

- Can be high-performing and efficient
- Requires signmente Project Exam Help
- Rely heavily on gazetteers that are always incomplete
- Are not robush to psi do the are are any ages

Statistical approaches Latistical approaches

- Require (expert-)annotated training data
- May identify unforeseen patterns
- Can still make use of gazetteers
- Are robust for experimentation with new features
- Are largely portable to new languages and domains

Sequence Model (N to N)

ADV VERB DET NOUN NOUN Output: Part of Speech Assignment Project Exam Help

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

How is the weather today

Input: Text

Sequence Model

PER Assignment Project Exam Help Output: NE tag
Entity class or other(O)

https://tutorcs.com

Sequence 2 Sequence Learning

WeChat: cstutorcs

Scott Morrison is a prime minister of Australia

Input: Text

Encoding classes for sequence labeling

The IOB (short for inside, outside, beginning) is a common tagging format

- I- prefix before a tag indicates that the tag is inside a chunk.
- B- prefix before a tag indicates that the tag is the beginning of a chunk.
- An O tag indicates that a token belongs to no chunk (outside).

Encoding classes for sequence labeling

The IO and IOB (inside, outside, beginning) is a common tagging format

Assipsiahmtellat ParenjectolinxasmitliHelsp a student									
IO encoding						_			n+1
IOB encoding	B-hetet p	s:ø/t	utores	s.eem	I-PER	0	0	0	2n+1

We Chat: B-PER 1-PER 1-PER

IO encoding vs IOB encoding

- Computation Time?
- Efficiency?

Features for sequence labeling

Words

- Current word (essentially like a learned dictionary)
- Previous Anesti ventrent Project Exam Help

Other kinds of inflyred linguistic plassification

Part-of-speech tags

WeChat: cstutorcs

Label context

Previous (and perhaps next) label

N to N Sequence model

There are different NLP tasks that used N to N sequence model

Sequence Model (MEMM, CRF)

Sequence Inference for NER

For a Maximum Entropy Markov Model (MEMM), the classifier makes a single decision at a time, conditioned on evidence from observations and new profesion Exam Help

https://tutorcs.com Features

-2 WeGhat: cstutorcs -3 Scott Morrison lives Australia in NNNN **VBZ** IN NN

W ₀	in
W ₊₁	Australia
W ₋₁	lives
POS ₋₁	VBZ
POS ₋₂ -POS ₋₁	NN - VBZ
hasDigit?	0

Sequence Inference for NER

Named Entity Recognition

The goal: predicting named entity mentions in unstructured text into pre-defined categories such as the person names, organizations, locations

Assignment Project Exam Help

Caren Soyeon Han is working at Google at Sydney, Australia gold PER PER O O O ORG O LOC LOC predicted O O O O O ORG O LOC LOC

Named Entity Recognition with Bi-LSTM

We can easily apply Bi-LSTM (N to N Seq2Seq) Model to predict Named Entities

Assignment Project Exam Help

https://tutorcs.com

Named Entity Recognition with Bi-LSTM

We can easily apply Bi-LSTM (N to N Seq2Seq) Model to predict Named Entities

Assignmento Parojecte Exeamo Help

'I' cannot appear in the label of the first word. I-Per can only appear after B-Per.

I-Org can a sotappear on the tree of the secon

Named Entity Recognition with Bi-LSTM

We can easily apply Bi-LSTM (N to N Seq2Seq) Model to predict Named Entities

Assignmento Parojecte Exeamo Help

'I' cannot appear in the label of the first word. I-Per can only appear after B-Per.

I-Org can a sotappear on the tree of the secon

What if we teach the dependency between predicted entity names

Wait? What about HMM?

Hidden Markov Models (HMMs) are a class of probabilistic graphical model that allow us to predict a sequence of unknown (hidden) variables from a set of observed variables. Project Exam Help

to determine the observable event

Advanced HMM (MEMM or CRF)

- The CRF model has addressed the labeling bias issue and eliminated unreasonable hypotheses in HMM.
- MEMM Adopts glocal variance normalization, while FRE ladopts global variance normalization.

https://tutorcs.com

Conditional random field (CRF)

Advanced HMM (MEMM or CRF)

- The CRF model has addressed the labeling bias issue and eliminated unreasonable hypotheses in HMM.
- MEMM Adopts glocal variance normalization. While TRE ladopts global variance normalization.

https://tutorcs.com

Named Entity Recognition with Bi-LSTM with CRF

What if we put CRF on top of the Bi-LSTM model. By adding a CRF layer, the model can handle the dependency between predicted entity names

Assignment Project Exam Help

Remember?

POS Tagging: with HMM

Assignment P

		N	V	М
	Emma	4/9	0	0
	John	2/9	0	0
	Will	1/9	0	3/4
•	Pin 🔸	2/9	1/4	0
,	1°Car 1	201	⊢bX	2141
	Meet	0	2/4	0
	Pat	0	1/4	0

	N	v	М	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
He	44	0	0	0
М	1/4	3/4	0	0

Johnttps://tutoresecom Will

Greedy Inference

- Greedy inference:
 - We just start at the left, and use our classifier at each position to assign a label
 - The Assifier can depend Provious talking desis product as observed data
- Advantages:
 - Fast, no extra memory requirements Very easy to implement

 - With rich features including observations to the right, it may perform quite well
- DisadvantageWeChat: cstutorcs
 - Greedy. We make commit errors we cannot recover from

Beam Inference

- Beam inference:
 - At each position keep the top k complete sequences.
 - Extendesi pengganin pendielway Exam Help
 - The extensions compete for the k slots at the next position.
- Advantages:
 - Fast; beam sizes of 3-5 are almost as good as exact inference in many cases.
 - Easy to implement (no dynamic programming required).
- DisadvantageWeChat: cstutorcs
 - Inexact: the globally best sequence can fall off the beam.

Viterbi Inference

- Viterbi inference:
 - Dynamic programming or memorisation.
 - Requires singly window of Pato in the new Apast Market are relevant).
- Advantage:
 - Exact: the global best sequence is returned.
- Disadvantage:
 - Harder to implement long-distance state-state interactions
 WeChat: cstutorcs

Viterbi Algorithm

	N	v	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	M	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

Assignment Project Exam Help John will Pin Will

https://tutorcs.com

	N	v	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
М	1/4	3/4	0	0

	N	v	М
Emma	Emma 4/9		0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

	N	v	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

	N	v	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

	N	v	М	
Emma	4/9	0	0	
John	2/9	0	0	
Will	1/9	0	3/4	
Pin	2/9	1/4	0	
Can	0	0	1/4	
Meet	0	2/4	0	
Pat	0	1/4	0	

	N	V	М	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0


```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path ssignment Project Exam Help
for each state s from 1 to N do
                                                      ; initialization step
     viterbi[s,1] \leftarrow \pi_1 * b_s(o_1) / tutorcs.com
backpointer[s,1] https://tutorcs.com
for each time step t from \overline{2} to T do
                                                      ; recursion step
  for each state s from 1 to N do
     viterbi[s,t] 

maxvecbilitati] cstutorcs
     backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


What if there is a language that do not have any annotation? NER in Low Resource Language

Current State of the Art model: Han et al. 2019 from Usyd NLP Research Group

TASK	DATASET	MODEL	METRIC NAME	METRIC VALUE	GLOBAL RANK	COMPARE
Low Resource Named Entity Recognition	CONLL 2003 Dutch	Low Resource Named Entity Recognition using Contextual Word Representation and Neural Cross-Lingual Knowledge Transfer	F1 score	75.10	# 1	See all
Low Resource Named Entity Recognition	CONLL 2003 German	Low Resource Named Entity Recognition using Contextual Word Representation and Neural Cross-Lingual Knowledge Transfer	F1 score	58.63	#1	See all
Low Resource Named Entity Recognition	Conll 2003 Spanish	Low Resource Named Entity Recognition using Contextual Word Representation and Neural Cross-Lingual Knowledge Transfer	F1 score	75.34	# 1	See all
Low Resource Named Entity Recognition	Uyghur Unsequestered Set	Low Resource Named Entity Recognition using Contextual Word Representation and Neural Cross-Lingual Knowledge Transfer	F1 score	42.88	# 1	See all

NER and Coreference Resolution

NER only produces a list of entities in a text.

 "I voted for Scott because he was most aligned with my values" Assignment Project Exam Help

Then, How to trace it?
https://tutorcs.com

Coreference Resolution is the task of finding all expressions that refer to the same entiry matie stutors

- "I voted for Scott because he was most aligned with my values"
 - Scott ← he
 - $I \leftarrow my$

What is Coreference Resolution?

Finding all mentions that refer to the same entity

Assignment Project Exam Help

Donald Trump said he considered nominating Ivanka Trump to be president of the World Bank numbers,"

What is Coreference Resolution?

Finding all mentions that refer to the same entity

Assignment Project Exam Help

Donald Trump said he considered nominating Ivanka Trump to be president of the World Bank netpuse / thetovers good with numbers,"

What is Coreference Resolution?

Finding all mentions that refer to the same entity

Assignment Project Exam Help

Donald said he considered nominating Ivanka Trump to be president of the

World Bank because to be with the world Bank because the world Bank because to be with the world Bank becaus

How to conduct Coreference Resolution?

1. Detect the mentions

* Mention: span of text referring to same entity Assignment Project Exam Help

• Pronouns https://tutorcs.com e.g. I, your, it, she, him, etc.

- Named entities
- e.g. people, places, organisation etc.
- Noun phrases
 e.g. a cat, a big fat dog, etc.

The difficulty in coreference resolution

Detect the mentions

* Mention: span of text referring to same entity Assignment Project Exam Help

- Tricky mentions...https://tutorcs.comIt was very interesting
- No staff

WeChat: cstutorcs
The best university in Australia

How to handle this tricky mentions? Classifiers!

How to conduct Coreference Resolution?

1. Detect the mentions

Donald Trump said he considered nominating Ivanka Trump to be president ASSIGNMENT Project Exam Help of the World Bank because "she is very good with numbers,"

https://tutorcs.com

2. Cluster the mention at: cstutorcs

Donald Trump said he considered nominating Ivanka Trump to be president of the World Bank because "she is very good with numbers,"

How to cluster the mentions and find the coreference

Coreference

It occurs when two or more expressions in a text refer to the same person or Aissignment Project Exam Help

• "Donald Trump is a president of the United States. Trump was born and rais poting the light of the United States. Trump was born and rais poting the light of the United States. Trump was

Anaphora WeChat: cstutorcs

The use of a word referring back to a word used earlier in a text or conversation. Mostly noun phrases

- a word (anaphor) refers to another word (antecedent)
- "<u>Donald Trump</u> is a president of the United States. Before entering politics, <u>he</u> was a businessman and television personality"

antecedent anaphor

Coreference vs Anaphora

WeChat: cstutorcs

Anaphora

Not all anaphoric relations are coreferential

- 1. Not all noun phrases have reference
- Every student like his speech
- No studos i ignimente Project Exam Help
- 2. Not all anaphoria relations are conferential (bridging anaphora)
- I attended the meeting yesterday. The presentation was awesome! WeChat: cstutorcs

cataphora

I almost stepped on it. It was a big snake...

How to Cluster Mentions?

After detecting this all mentions in a text, we need to cluster them!

Assignment Project Exam Help

Ivanka

Donald

he

her

she

https://tutorcs.com

WeChat: cstutorcs

Ivanka was happy that **Donald** said he considered nominating her because she is very good with numbers

How to Cluster Mentions?

After detecting this all mentions in a text, we need to cluster them!

Assignment Project Exam Help

Ivanka

https://tutorcs.com

Donald

WeChat: cstutores

he

Ivanka was happy that **Donald** said he considered nominating her because she is very good with numbers

her

Gold cluster 1

Gold cluster 2

she

How to Cluster Mentions?

• Train a binary classifier that assigns every pair of mentions a probability of being coreferent: $p(m_i, m_i)$

Mention Pair Training

- N mentions in a document
- $y_{ij} = 1$ if mentions m_i and m_j are coreferent, -1 if otherwise
- Just transumment Porojechtropyalos Hooks a bit different because it is binary classification)

$$J = -\underbrace{\sum_{i=2}^{\text{https://tutorcs.com}}}_{i}$$

$$j=1$$
Coreferent mentions pairs should get high probability, others should get low probability

Iterate through Iterate through candidate mentions antecedents (previously occurring mentions)

Mention Pair Testing

- Coreference resolution is a clustering task, but we are only scoring pairs of mentions... what to do?
- Pick so As the shole (etg. 105) each boda an elerence links between mention pairs where p(mi, mj) is above the threshold

Mention Pair Testing

- Pick some threshold (e.g., 0.5) and add coreference links between mention pairs where $p(m_i, m_i)$ is above the threshold
- Take the transative transature to jetothe Expansion by the last transature to jetothe by the last trans

Mention Pair Testing: Issue

- Assume that we have a long document with the following mentions
- Michael... he ... his ... him ... <several paragraphs>
- · won Anssignament Preject Exam Help

Mention Ranking

- Assign each mention its highest scoring candidate antecedent according to the model
- Dummy NA mention allows model to decline linking the current mention to anything (singleton or first mention)

Mention Ranking

- Assign each mention its highest scoring candidate antecedent according to the model
- Dummy NA mention allows model to decline linking the current mention to anything (singleton or first mention)

Mention Ranking

- Assign each mention its highest scoring candidate antecedent according to the model
- Dummy NA mention allows model to decline linking the current mention to anything (singleton bracket)

Mention Ranking

- Assign each mention its highest scoring candidate antecedent according to the model
- Dummy NA mention allows model to decline linking the current mention 1818 1911 Ingleton branching mention

NA

Ivanka

Donald

he

her

she

https://tutorcs.com

What can be the best antecedent for she?

WeChat: cstutorcs Apply a softmax over the scores for candidate antecedents so probabilities sum to 1

- p(NA, she) = 0.1
- p(Donald, she) = 0.1 coreference link
- p(he, she) = 0.1
- p(her, she) = 0.2

• p(Ivanka, she) = 0.5 only add highest scoring

Coreference Models: Training

- The current mention m_j should be linked to any one of the candidate antecedents it's coreferent with.
- Mather Ascalgy maximize tros jo cota bixto: m Help

Coreference Models: Training

- The current mention m_j should be linked to any one of the candidate antecedents it's coreferent with.
- Mather Assaigmas intz Ptros jo obabixto: m Help

The model could produce 0.9 probability for one of the correct antecedents and low probability for everything else

Mention Ranking Models: Test Time

 Similar to mention-pair model except each mention is assigned only one antecedent

Assignment Project Exam Help

https://tutorcs.com

How do we compute the probabilities?

WeChat: cstutorcs

- Non-neural statistical classifier
- Simple neural network
- More advanced model using LSTMs, attention

How do we compute the probabilities?

End to End Model (Lee at al., 2017)

- Current state-of-the-art model for coreference resolution (before 2019) Assignment Project Exam Help

 Mention ranking model
- Improvementa ques simple de de forward NN
 - Use an LSTM
 - Use attention (will learn about this in Lecture 10)
 - Do mention detection and coreference end-to-end
 - No mention detection step

End to End Model (Lee at al., 2017)

 First embed the words in the document using a word embedding matrix and a character-level embedding

End to End Model (Lee at al., 2017)

Then run a bidirectional LSTM over the document

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector

General, General Electric, General Electric said, ... Electric, Electrid said,... will all get its own vector representation

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector

Span Representation:
$$m{g}_i = [m{x}^*_{ ext{START}(i)}, m{x}^*_{ ext{END}(i)}, \hat{m{x}}_i, \phi(i)]$$

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector. For example, for "the postal service"

Span Representation:
$$m{g}_i = [m{x}^*_{ ext{START}(i)}, m{x}^*_{ ext{END}(i)}, \hat{m{x}}_i, \phi(i)]$$

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector. For example, for "the postal service"

Assignment Project Exam Help

Span Representation: $m{g}_i = [m{x}^*_{\mathrm{START}(i)}, m{x}^*_{\mathrm{END}(i)}, \hat{m{x}}_i, \phi(i)]$

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector. For example, for "the postal service"

Assignment Project Exam Help

Span Representation: $m{g}_i = [m{x}^*_{\mathtt{START}(i)}, m{x}^*_{\mathtt{END}(i)}, \hat{m{x}}_i, \phi(i)]$

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector. For example, for "the postal service"

Assignment Project Exam Help

Span Representation: $m{g}_i = [m{x}^*_{ ext{START}(i)}, m{x}^*_{ ext{END}(i)}, \hat{m{x}}_i, \hat{m{\phi}}(i)]$

End to End Model (Lee at al., 2017)

 Next, represent each span of text i going from START(i) to END(i) as a vector.

How to evaluate coreference?

There are different types of metrics available for evaluating coreference, such as B-CUBED, MUC, CEAF, LEA, BLANC, or Often report the average oversetent pretient pretient Exam Help

Predicted Cluster 2 Predicted Cluster 2

Actual clusters

Gold cluster 1

Gold cluster 2

How to evaluate coreference?

Let's evaluate with B-CUBED metrics

Compute Precision and Recall for each mention.
 Assignment Project Exam Help

Predicted Olygters1.//tutorcs.comPredicted Cluster 2

Actual clusters

Gold cluster 1

Gold cluster 2

How to evaluate coreference?

Let's evaluate with B-CUBED metrics

- Compute precision and recall for each mention.
- · Averagetseigenmeent Project Exam Help

Predicted Cluster 2 Predicted Cluster 2

Actual clusters

Gold cluster 1

Gold cluster 2

Performance Comparison

OntoNotes dataset: ~3000 documents labeled by humans

English and Chinese data

Model	Approach	English	Chinese
Lee et al. (2010) https:/	Rule-based system tutores.com	~55	~50
Chen & Ng (2012)	Non-neural machine	54.5	57.6
[CoNLL 2012 Chinese winner]	learning models.		
Fernandes (2012)		60.7	51.6
[CoNLL 2012 English winner]			
Wiseman et al. (2015)	Neural mention ranker	63.3	_
Lee et al. (2017)	Neural mention ranker (end-	67.2	
	to-end style)		
UsydNLP (2019)	Neural mention ranker with lemma cross validation	74.87	

Preview: Week 10

Attention and Reading Comprehension

Preview: Week 11

Transformer and Machine Translation

Reference for this lecture

- Deng, L., & Liu, Y. (Eds.). (2018). Deep Learning in Natural Language Processing. Springer.
- Rao, D., & McMahan, B. (2019). Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning. "O'Reilly Media, Inc.".
- Manning, C.A. Manning, C.D. & Schüller H. (1999). Foundations of statistical natural language processing. MIT press. ASSIGNMENT Project EXAM HE D
- Manning, C 2018, Natural Language Processing with Deep Learning, lecture notes, Stanford University
- Li, J., Galley, M., Brondttp, Sao/tutor, CS(200) Moversity-promoting objective function for neural conversation models. arXiv preprint arXiv:1510.03055.
- Jiang, S., & de Rijke, M. (2018). Why are Sequence-to-Sequence Models So Dull? Understanding the Low-Diversity Problem of Charlests. at King reprint at Ying 1809, 91,944.
- Liu, C. W., Lowe, R., Serban, I. V., Noseworthy, M., Charlin, L., & Pineau, J. (2016). How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023.