Resignation Case Study

Shilpa

Business problem

- Company ABC noted 16% high performer attrition. This is more than ~2x market voluntary turn
- Goal To construct a resignation prediction model to enable the business reduce their regrettable attrition

Market vs Internal

Source: Mercer

'Trends and drivers of workforce turnover survey' 2015

Datasets

File name	Description
data_dictionary	Definition of all variables available for study
employee_survey_data	Employee survey inputs
manager_survey_data	Manager survey inputs
general_data	Employee descriptive variables and attrition
in_time	Employee clock-in times
out_time	Employee clock-out times

Feature Engineering

Preliminary EDA + Feature engineering (1 of 4)

Raw

fig 2. Time datasets transformation

Transformed

Preliminary EDA + Feature engineering (2 of 4)

<u>Findings</u>

- 1. Wide dataset layout with recorded work times per workday per employee for 2015
- Missing data in dataset corresponding to public holidays or employee leaves
- Standard hours in general_dataset can be compared with average actual employee work time to signal over or under work

Preliminary EDA + Feature engineering (3 of 4)

<u>Findings</u>

- Missing feature RelationshipSatisfaction, compared to data dictionary
- 2. Features with missing values (fig 3) attributed to <1% of data distribution a. Ordinal + Continuous features
- 3. Non-variance features EmployeeCount, Over18, StandardHours (fig 4)
- 4. Imbalanced distribution on response variable, attrition (*fig 1*)
- 5. Ordinal features Education & all features in survey datasets

Preliminary EDA + Feature engineering (4 of 4)

	fig 3. Features with missing						
col	num_missing	pct_missing					
EnvironmentSatisfaction	25	0.567					
JobSatisfaction	20	0.454					
WorkLifeBalance	38	0.862					
NumCompaniesWorked	19	0.431					
TotalWorkingYears	9	0.204					

fig 4. Non-variance features
non_variance_cols:
EmployeeCount 1
Over18 1
StandardHours 1

Baseline Model

Pycaret model training Best model selection based on F1 metric Train-validation diagnostics **Test** evaluation

Baseline resignation prediction model (1 of 3)

Metric	Split	Value	Fig
\\ coursey	Train (10 folds)	0.97	5.1
Accuracy	Test (holdout)	0.96	5.2
F1 (Since response is	Train (10 folds)	0.911	5.1
imbalanced)	Test (holdout)	0.86	5.2
Precision (Since	Train (10 folds)	1.0	E 1
response is imbalanced)	Test (holdout)	1.0	5.4
Optimum probability threshold	Train	0.53	5.3

Baseline resignation prediction model (2 of 3)

fig 5.1. Best model avg 10-fold CV metrics

Baseline resignation prediction model (3 of 3)

Feature Selection

Strategy

Statistical feature selection EDA (1 of 2): Categorical

Feature selection

- Top features highly affecting response MaritalStatus, EnvironmentSatisfaction, JobSatisfaction, EducationField, WorkLifeBalance & JobRole based on p-value <0.05 (fig 6)
- 2. Attrition insights for above features (fig 7):
 - High% resignees were single, scored poorly in employee survey, had a HR education background and worked as a Research Director

Statistical feature selection EDA (2 of 2): Categorical

fig 7. Attrition insights - top categorical features

Attrition	No	Yes	Yes_pct	Attrition	No	Yes	Yes_pct	Attrition	No	Yes	Yes_pct	Attrition	No	Yes	Yes_pct
MaritalStatus				Environment Satisfaction	l I			JobSatisfaction				WorkLifeBalance			
Divorced	768	79	9.327037	1	562	191	25.365206	1	596	174	22.597403	1	143	65	31.250000
Married	1541	225	12.740657	2	646	115	15.111695	2	619	124	16.689098	2	767	157	16.991342
Single	940	322	25.515055	3	1035	163	13.606010	3	974	189	16.251075	3	2005	330	14.132762
				4	1006	157	13.499570	4	1060	139	11.592994	4	334	74	18.137255
				Association No.	V	. V-				v					

Statistical feature selection EDA (1 of 2): Continuous

Feature selection

- Continuous features with statistically significant correlation to response - Age, Time: Max, Median, Mean, YearswithCurrmanager, YearsAtCompany, TotalWorkingYears, Time: Delta-to-Std, YearsSinceLastPromotion, NumCompaniesWorked & MonthlyIncome (fig 8)
- 2. Time features that correlated to each other, dropped based on statistical significance Median, Mean & Delta-to-Std (fig 9)

Statistical feature selection EDA (2 of 2): Continuous

Model
Post feature selection +
Hyperparameter tuning

Top categorical features

Top continuous features

tuning

Feature selected resignation prediction model (1 of 4)

Compare to Baseline model

10 fold F1 SD: 0.03

Feature selected resignation prediction model (2 of 4)

Feature selected resignation prediction model (3 of 4)

Feature selected resignation prediction model (4 of 4): Hyperparameter tuning fig 11. Hyperparameter tuned

 0.9724
 0.9672
 0.8794
 0.9501
 0.9127
 0.8963
 0.8977

 0.0141
 0.0240
 0.0560
 0.0435
 0.0447
 0.0529
 0.0522

tuned et = classification.tune model(et, optimize='F1', n iter = 1000)

	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС				
0	0.9301	0.9036	0.7778	0.7955	0.7865	0.7448	0.7448				
1	0.9449	0.9703	0.8444	0.8261	0.8352	0.8021	0.8021				
2	0.9852	0.9960	0.9545	0.9545	0.9545	0.9457	0.9457				
3	0.9410	0.9611	0.8409	0.8043	0.8222	0.7868	0.7871				
4	0.9631	0.9628	0.9091	0.8696	0.8889	0.8668	0.8671				
5	0.9594	0.9714	0.8667	0.8864	0.8764	0.8521	0.8522				
6	0.9410	0.9664	0.8444	0.8085	0.8261	0.7906	0.7908				
7	0.9631	0.9594	0.8222	0.9487	0.8810	0.8593	0.8623				
8	0.9299	0.9294	0.8444	0.7600	0.8000	0.7576	0.7592				
9	0.9631	0.9932	0.9556	0.8431	0.8958	0.8735	0.8760				
Mean	0.9521	0.9613	0.8660	0.8497	0.8567	0.8279	0.8287				

0.0167 0.0261 0.0543 0.0615 0.0488 0.0589 0.0590

xgb = classification.create_model('xgboost')
tuned_xgb = classification.tune_model(xgb, optimize='F1', n_iter = 1000)

	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС			fig 12	Hypern	arameter	tun
0	0.9485	0.9178	0.7556	0.9189	0.8293	0.7993	0.8046			_		trics (xgb)	
1	0.9669	0.9866	0.8667	0.9286	0.8966	0.8769	0.8776			model	testille	ti ics (xgb)	
2	0.9852	0.9941	0.9318	0.9762	0.9535	0.9447	0.9451		prec	ision	recall	f1-score	su
3	0.9815	0.9580	0.9091	0.9756	0.9412	0.9303	0.9311						
4	0.9815	0.9482	0.9091	0.9756	0.9412	0.9303	0.9311	No		0.97	0.86	0.91	
5	0.9668	0.9665	0.8667	0.9286	0.8966	0.8768	0.8775	Yes		0.55	0.84	0.66	
6	0.9742	0.9813	0.8667	0.9750	0.9176	0.9024	0.9046	accuracy				0.86	
7	0.9779	0.9764	0.8667	1.0000	0.9286	0.9156	0.9188	macro avg		0.76	0.85	0.79	
8	0.9483	0.9443	0.8444	0.8444	0.8444	0.8135	0.8135	weighted avg		0.90	0.86	0.87	
9	0.9926	0.9983	0.9778	0.9778	0.9778	0.9734	0.9734						

model 10-fold CV avg metrics

Summary

Highlights

Strong baseline model

- 91% F1_score
- 100% Precision

- Highly predictive model constructed with feature engineering and auto-ML library Pycaret
- Further feature selection, hyperparameters tuning improved model marginally

Clarifications

- Missing feature
- Attrition ambiguity

Explorations

- Model based missing value imputation
- Exit interview comments
- Survey comments

- No resignation dates
- Employee worktimes are recorded throughout 2015

- Exploring Iterative imputer to estimate feature with missing values based on other influencing features
- Remodeling with missed feature
- NLP: analyzing exit interview & survey comments to understand resignee archetypes

Thank You!