Practical works $-n^{o}2$

Systems

- Reminder 1 Considering a sin function $x(t) = sin(2\pi ft)$ with f= 1Hz, when sampled with the sampling frequency f_s = 20 is equal to $x[n] = sin(2\pi \frac{f}{f_s}n)$. Plot both sin functions.
- Exercise 1 Causality
- 1.1 Considering the system defined by the equation $y_k = (x_k + x_{k+1})/2$, check its causality property by examining the response to the signal H(k-4) or step(4,N). When plotting, include the abscissa range [1:N].
- 1.2 Propose a modification to obtain a causal version and comment your observations.
- Exercise 2 Stability
- **2.1** Program the primitive (accumulator) operator prim(f) applied on the signal f of length N. The value of the vector returned by prim at the index k will correspond to F_k with $k \leq N$. Note $F_k = \sum_{q=-\infty}^k f_k$. Discuss on the result of the primitive operator applied to the signal H(k-4). Is the primitive operator stable?
- 2.2 What is the impulse response of the primitive operator (in the discrete domain)?
- **2.3** Test the stability of the system defined by the equation: $y_k = x_k + 2y_{k-1}$. Plot the impulse response.
- **2.4** Test the stability of the system defined by the equation: $y_k = x_k + y_{k-1}/3$. Plot the impulse response.

Comments your observations.

- ullet Exercise 3 Invariance and linearity
- **3.1** Define the following signals: $x_a = [000012345000000000]; x_b = [000000004321000000];$ Compute the responses y_a , y_b according to the equation $y = 3x_{k-1} 2x_k + x_{k+1}$
- **3.2** Prove the system defined by the previous equation is linear (and invariant).
- **3.3** Propose a nonlinear/noninvariant system.