Teste de Software

Estimativas, Medidas, Métricas e Indicadores em Gestão de Processo de Teste

Prof. Lesandro Ponciano

Departamento de Engenharia de Software e Sistemas de Informação (DES)

Objetivos da Aula

- Contextualizar estimativas em Gestão de Processo de Teste
- Discutir dimensões do processo, do software, do software de teste
- Analisar e contextualizar medidas, métricas e indicadores

Teste de Software

Padrão IEEE 829-2008

Estimativas

- Uma estimativa é um parecer sobre uma situação baseado nas evidências existentes
- Para obter evidências
 - Histórico de medições da organização
 - Modelos matemáticos e/ou empíricos
- Estimativas não são exatas, há incertezas
 - Ex.: Estimamos que seria necessário implementar 16 casos de teste, mas foram necessário 40 casos de teste
 - Subestimar versus superestimar

Pontos de Função | Pontos de Teste

Prof. Lesandro Ponciano - PUC Minas

Métrica, Medida e Indicador

- Medida
 - Quantificação de dados em relação a um padrão
 - Ex.: tempo, distância
- Métrica
 - Composição de uma mais mais medidas que é atribuída a um atributo
 - Ex.: mutation score
- Indicador
 - Variável que interpreta uma métrica
 - Ex: mutation score > x pode indicar que o software é de qualidade

Goal, Question, Metric (GQM)

- Metas (Objetivo), questão é métrica
- É uma forma sistematizada de se definir métricas
- Exemplo:
 - G: Desenvolver software com qualidade.
 - Q: O software está bem testado?
 - M:
 - M1: Cobertura de caminhos dos testes
 - M2: Mutation score

Diversos Objetivos

- 1) Aumentar a capacidade de encontrar defeitos...
- 2) Melhorar a qualidade do código do sistema ...
- 3) Melhorar a qualidade do código de teste do sistema ...
- 4) Monitorar a automação de teste de software ...
- 5) Aumentar a detecção de defeitos gerados por mudança...
- 6) Aumentar a extensão de testes no sistema...
- 7) Diminuir o esforço necessário para criação de teste no sistema...

Métricas e Indicadores: Software

- Métricas de coesão
 - fatia de dados (data slices)
 - Aglutinação (stickness)
- Métricas de acoplamento
 - Número de módulos chamados (fan-out)
 - Número de módulos que chamam o módulo em consideração (fan-in)
- Métricas de complexidade
 - Complexidade ciclomática

Métricas e Indicadores: Testes

- Abrangência
 - Cobertura (comandos, decisões, condições, caminhos)
 - Fator de Teste = Nº Linha dos testes / Nº Linhas do sistema
 - Mutation score
- Necessidade de refatorar a suíte de testes
 - Número de asserções por método
 - Replicação do código dos testes
- Tempo de execução dos testes

Métricas e Indicadores: Processo

- Total de Defeitos Detectados (DD)
 - defeitos encontrados durante as fases de teste
- Total de Defeitos Removidos (DR)
 - defeitos efetivamente consertados pela equipe
- Total de Falhas Encontradas pelo Usuário (FU)
 - falhas detectadas pelo usuário durante o uso
- Eficácia na Detecção de Defeitos
 - DD / (DD+FU) x 100

Indicadores de Defeitos

Úteis ao planejamento e avaliação da estratégia de testes

- Origem dos defeitos
 - Requisitos
 - Projeto
 - Codificação
 - Implantação
 - Documentação
 - Manutenção

Análise de métricas em todas as atividades do processo podem gerar indicadores de defeitos

Atividade de Fixação

- Qual a importância de métricas em Teste de Software?
- Dê exemplo de como avaliar se um processo de teste está tendo sucesso?
- Como estimar o esforço que será necessário para testar o sistema a ser desenvolvido?

Referências

- Pressman, Roger, and Bruce Maxim. Engenharia de Software-8^a Edição. McGraw Hill Brasil, 2016.
- Paulo Cheque. Métricas para Testes Automatizados.
 http://ccsl.ime.usp.br/agilcoop/files/TestesAutomatizados-5-2-Metricas-AgilCoop-Verao2009.pdf
- IEEE Standard for Software and System Test Documentation (Padrão IEEE 829-2008). Disponível em: https://standards.ieee.org/standard/829-2008.html Acesso em: 08 jan. 2020
- A Comparative Study of Three Test Effort Estimation Methods.
 https://pdfs.semanticscholar.org/1a62/5819fbc6ed029b194cbc91be9f16033c309 e.pdf
- Van Veenendaal, E. P. W. M., and Ton Dekkers. "Test point analysis: a method for test estimation." Project control for software quality: proceedings of the combined 10th European Software Control and Metrics conference and the 2nd SCOPE conference on software product evaluation, April 27-29, 1999, Herstmonceux, England. Shaker-Verlag, 1999.