Отчёт по лабораторной работе №1

Установка и Конфигурация ОС на Виртуальную Машину

Вакутайпа Милдред

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выполнение дополнительной работы	14
5	Ответы на контрольные вопросы	17
6	Выводы	19
Список литературы		20

Список иллюстраций

3.1	Оптический диск	6
3.2	Объем оперативнной памяти	7
3.3	Жетский диск	7
3.4	Итог	8
3.5	Носители	8
3.6	Запуск машины	9
3.7	Выбор языка	9
3.8	Окно настроек	10
3.9	Отключение kdump	10
	• •	10
3.11	Выбор окружения	11
	1	11
		12
3.14	Проверка носителей	12
3.15	Окно выбора пользователя	13
4.1	Версия ядра Linux	14
4.2	Частота процессора	14
4.3	Модель процессора	14
4.4	Объем доступной оперативной памяти	14
4.5	Тип гипервизора	15
4.6	Тип файловой системы	15
4.7	Последовательность монтирования файловых систем	16

1 Цель работы

Приобретение практических навыков установки операционной системы на виртуальную машину.

2 Задание

- 1. Установить и настроить Rocky Linux.
- 2. Найти следующую информацию:
 - 1. Версия Linux
 - 2. Частота процессора
 - 3. Модель процессора
 - 4. Объем доступной оперативной памяти
 - 5. Тип обнаруженного гипервизора
 - 6. Тип файловой системы корневого раздела
 - 7. Последовательность монтирования файловых систем

3 Выполнение лабораторной работы

В приложнии VirtualBox создаю новую виртуальную машину. Указываю имя виртуальной машины и добавляю оптический диск.

Рис. 3.1: Оптический диск

Указываю объем памяти и создаю виртуальнный жетский диск.

Рис. 3.2: Объем оперативнной памяти

Рис. 3.3: Жетский диск

Соглашаюсь с поставленными настройками.

Рис. 3.4: Итог

Проверяю подключения диска в носителях образ.

Рис. 3.5: Носители

Запускаю машину и устанавливаю систему.

Рис. 3.6: Запуск машины

Выбираю язык установки.

Рис. 3.7: Выбор языка

Выбираю место установки, отключаю kdump, создаю пользователя (администратор) и устанавливаю пароль для администратора.

Рис. 3.8: Окно настроек

Рис. 3.9: Отключение kdump

Рис. 3.10: Создание пользователя

Выбираю окружение сервер с GUI и средства разработки в дополнительном программном обеспечении.

Рис. 3.11: Выбор окружения

Указываю имя узла.

Рис. 3.12: Выбор сети

Затем устанавливаю систему.

Рис. 3.13: Установка

После завершения установки образ диска пропадет из носителей.

Рис. 3.14: Проверка носителей

При запуске виртуальной машины появляется окно выбора пользователя.

Рис. 3.15: Окно выбора пользователя

4 Выполнение дополнительной работы

Запускаю в терминале: dmesg | grep -i "Linux version", чтобы получить информацию о ядра.

```
mwakutaipa@mwakutaipa:~—less Q ≡ ×
[ 0.000000] Linux version 5.14.0-362.8.1.el9_3.x86_64 (mockbuild@iad1-prod-build001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2), GN
```

Рис. 4.1: Версия ядра Linux

dmesg | grep -i "detected", чтобы получить информацию о процессоре.

```
[mwakutaipa@mwakutaipa ~]$ dmesg | grep -i "Detected"
[ 0.000000] Hypervisor <mark>detected</mark>: KVM
[ 0.000039] tsc: <mark>Detected</mark> 1497.188 MHz processor
```

Рис. 4.2: Частота процессора

dmesg | grep -i "CPU", чтобы получить информацию о модели процессора.

Рис. 4.3: Модель процессора

dmesg | grep -i "memory", чтобы получить информацию о памяти.

```
[ 0.124192] Memory: 260860K/2096696K available (16384K kernel code, 5596K rwd ata, 11444K roadata, 3824K init, 18424K bss, 157928K reserved, 0K cma-reserved)
```

Рис. 4.4: Объем доступной оперативной памяти

dmesg | grep -i "detected", чтобы получить информацию о гипервизоре.

```
[mwakutaipa@mwakutaipa ~]$ dmesg | grep -i "Detected"
[ 0.000000] Hypervisor <mark>detected:</mark> KVM
```

Рис. 4.5: Тип гипервизора

sudo fdisk -l, чтобы получить информацию о файловой системе корневого раздела.

```
mwakutaipa@mwakutaipa:~ Q ≡ x

[mwakutaipa@mwakutaipa ~]$ sudo fdisk -l
[sudo] password for mwakutaipa:

Disk /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectors

Disk model: VBOX HARDDISK

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xedfc4876

Device Boot Start End Sectors Size Id Type

/dev/sda1 * 2048 2099199 2097152 16 83 Linux
/dev/sda2 2099200 41943039 39843840 196 8e Linux LVM

Disk /dev/mapper/rl_vbox-root: 17 GiB, 18249416704 bytes, 35643392 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

[mwakutaipa@mwakutaipa ~]$
```

Рис. 4.6: Тип файловой системы

dmesg | grep -i "mount", чтобы получить информацию о монтировании файловых систем.

```
[mwakutaipa@mwakutaipa ~]$ dmesg | grep -i "Mount"
[ 0.451824] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, line ar)
[ 0.451847] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
[ 33.081028] XFS (dm-0): Mounting V5 Filesystem
[ 33.868437] XFS (dm-0): Ending clean mount
[ 45.220207] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 45.337653] systemd[1]: Mounting Huge Pages File System...
[ 45.439336] systemd[1]: Mounting Bosix Message Queue File System...
[ 45.519512] systemd[1]: Mounting Kernel Debug File System...
[ 45.536616] systemd[1]: Mounting Kernel Trace File System...
[ 46.71473] systemd[1]: Starting Remount Root and Kernel File Systems...
[ 46.729998] systemd[1]: Mounting V5 Filesystem
[ 73.114957] XFS (sdal): Mounting V5 Filesystem
[ 79.159548] XFS (sdal): Ending clean mount
```

Рис. 4.7: Последовательность монтирования файловых систем

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: —help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выводы

Я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

::: :::