

INTRODUCTION SERVED INTROPULATION OF THE PROPERTY OF THE PROPE

Faculty of Information Technology
Ton Duc Thang University

August 2023

DIGITAL IMAGE

- An image is defined as a two-dimensional function, f(x, y)
 - x and y are spatial coordinates
 - the amplitude of f at any pair of coordinates (x, y) is called the **intensity** or gray level of the image at that point
 - ⇒ when x, y, and the intensity values of f are all *finite, discrete quantities*, we call the image a **digital image**
- A digital image can be represented by a two-dimensional array or matrix

The image size (height x width) is
$$M \times N$$

Every element of this matrix is called image element, picture element, or pixel.

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & f(0,2) & \dots & f(0,N-1) \\ f(1,0) & f(1,1) & f(1,2) & \dots & f(1,N-1) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ f(M-1,0) & f(M-1,1) & f(M-1,2) & \dots & f(M-1,N-1) \end{bmatrix}$$

(https://www.geeksforgeeks.org/)

DIGITAL IMAGE (ct)

- A digital image is composed of a finite number of elements, each of which has a particular location and value
 - These elements are called picture elements, image elements, or pixels. Pixel is the term used most widely to denote the elements of a digital image.

DIGITAL IMAGE PROCESSING

- Digital image processing (DIP) refers to processing digital images by means of a digital computer
- DIP is the use of algorithms and mathematical models to process and analyze digital images
 - to enhance the quality of images
 - to improve pictorial information for human interpretation
 - to extract meaningful information from images
 - to process image data for tasks such as storage, transmission, and extraction of pictorial information

DIGITAL IMAGE PROCESSING (ct)

- In this course, DIP mainly include the following steps:
 - Importing the input images
 - Analysing and manipulating the images
 - Output in which result can be altered images and/or extracted information

DIP – Related fields

- Computer Vision (CV) is a field whose ultimate goal is to use computers to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs
 - This area is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence
- CV is the field of artificial intelligence which focused on enabling computers and systems to process and derive information from visual data such as images and videos just as a human would
- CV uses many techniques and DIP is just one of them

Computer Vision (ct)

Examples: Self-Driving Cars, Augmented reality (AR) apps, Facial Recognition, Healthcare, ...

DIP - Related fields (ct)

- Computer graphics is the field that deals with the creation and manipulation of images using a computer
 - It involves using algorithms to generate and render images, as well as techniques for animation, 3D modeling, and visualization
- For example: computer art, computer aided drawing, object rendering, creating motion pictures /music video/television shows/cartoon animation films, ...

DIP - Related fields (ct)

DIP - Related fields (ct)

■ The continuum from Digital image processing to Computer vision can be broken up into low-, mid- and high-level processes

Low Level Process	Mid Level Process		High Level Process		
Input: Image Output: Image	Input: Image Output: Attributes		Input: Attributes Output: Understanding		
		ı			
Examples: Noise removal, image sharpening, contrast	Examples: Object recognition, segmentation	 	Examples: Scene understanding, autonomous navigation		

What is a Digital Image?

■ A digital image is a representation of a two-dimensional image as a finite set of digital values, called picture elements or pixels

What is a Digital Image? (ct)

- Pixel values typically represent gray levels, colours, intensities, ...
- Remember digitization implies that a digital image is an approximation of a real scene

What is a Digital Image? (ct)

						pixel				
	j					_				
	62	79	23	119	120	05	4	0		
i	10	10	9	62	12	78	34	0		
	10	58	197	46	46	0	0	48		
1	176	135	5	188	191	68	0	49		
	2	1	1	29	26	37	0	77		
	0	89	144	147	187	102	62	208		
	255	252	0	166	123	62	0	31		
	166	63	127	17	1	0	99	30		

IMAGE FORMATION

What the computer "sees" is just a grid of numbers.

Figure 1-1. To a computer, the car's side mirror is just a grid of numbers

Color model

- A color model is a specification of (1) a coordinate system, and (2) a subspace within that system, such that each color in the model is represented by a single point contained in that subspace
- Most color models in use today are oriented either toward hardware or toward applications
 - Grayscale (256 colors from black to white) model for reducing the required storage and computation
 - the RGB (red, green, blue) model for color monitors and a broad class of color video cameras
 - the CMY (cyan, magenta, yellow) and CMYK (cyan, magenta, yellow, black)
 models for color printing

Binary image: has only two intensity values or two colors, for ex., images with pixel values 0 and 255, representing black and white colours


```
[[ 0 0 0 ... 255 255 0]

[ 0 0 0 ... 255 255 255]

[ 0 0 0 ... 255 255 255]

...

[ 0 0 0 ... 0 0 0]

[ 0 0 0 ... 0 0 0]

[ 0 0 0 ... 0 0 0]
```


Binary image

Calculate the average intensity of a binary image.

image size 4×5

avgI =???
What does it mean?

Pseudo code

Input: a binary image B with size $M \times N$ Output: average intensity avgI

$$avgI = 0$$

For
$$r = 1 \rightarrow M$$
:
For $c = 1 \rightarrow N$:
 $avgI = avgI + B[r, c]$

$$avgI = \frac{avgI}{M \times N}$$

Intensity of the pixel at r-th row and c-th column of the image B

Ex. 1

■ Write pseudo code to fill the border (black color and 2 pixels thickness) of a binary image.

Input sample

image size 6×7

Output sample

Ex. 2

■ Write pseudo code to fill the middle rows and columns (white color) of a binary image.

Input sample **Output sample** image size 6×7

Ex. 3

Write pseudo code to invert color (black to white and vice versa) of a binary image.

Input sample

image size 6×7

Output sample

■ Write pseudo code to draw one of six following images, and then count the number of white pixels in the image.

Initialize an image B with all Black color and size $M \times N$

$$\mathbf{B}(M \times N) = 0$$

Binary image - examples

- Grayscale image: has 8 bit COLOR FORMAT or 1 byte per pixel
 - It has 256 different colors, 0 stands for Black, and 255 stands for white, and 127 stands for gray
 - Each pixel is represented by an 8-bit integer number from 0 to 255


```
[[23 22 22 ... 79 78 68]

[22 21 22 ... 94 94 85]

[22 21 21 ... 92 93 87]

...

[54 50 46 ... 10 10 9]

[46 51 54 ... 10 10 10]

[59 62 62 ... 10 10 10]]
```


Ex. 5

Calculate the average intensity of the following grayscale image.

Ex. 6

■ Write pseudo code to change the pixels whose intensity values are smaller than 128 to black color and otherwise to white color.

Input sample

image size 4×5

Output sample

Grayscale image examples

Grayscale image examples

- Color image: has many different colors compared to grayscale one
 - Each pixel is represented by multiple 8-bit integer numbers from 0 to 255
 - Some popular color models: RGB, RGBA, CMYK, HSV, HSI, ...

- 24-bit RGB image: is a color image format with 2²⁴ colors
 - Each pixel is represented by three 8-bit integer numbers from 0 to 255


```
30]
           32]
                    1st row
           93]
           88]
 80
      61
           78]]
      17 30]
      16 29]
 26
      16 32]
                    2<sup>nd</sup> row
      82 114]
106
      82 112]
      74 102]]
      16 32]
           31]
      14
           32]
                    3<sup>rd</sup> row
      74 123]
      75 124]
      70 116]]
```

BAI HỌC TÓN ĐỰC THẮNG TỔN DỤC THANG UNIVERSITY

RGB image

- RGB uses additive color mixing, because it describes what kind of light needs to be emitted to produce a given color
- An RGB pixel is specified with three values (red, green, blue)
 - Each parameter "red", "green", or "blue" defines the intensity of the corresponding color with a value between 0 and 255

https://www.youtube.com/watch?v=KZ-

mEddsYqo

24-bit RGB image :

```
2 × 3 size
6 pixels
```


BGR order

BẠI HỌC TÔN ĐỰC THẮNG TÔN DỤC THANG UNIVERSITY

RGB image

■ Write a pseudo code to change Red color to White color, otherwise to Black color of an RGB image.

Pseudo code

Input: an RGB image B with size $M \times N$ Output: a color-modified image B

For
$$r = 1 \rightarrow M$$
:
For $c = 1 \rightarrow N$:
if $\textbf{\textit{B}}[r,c] == [255,0,0]$:
 $\textbf{\textit{B}}[r,c] = [255,255,255]$
else:
 $\textbf{\textit{B}}[r,c] = [0,0,0]$

Ex. 7

Calculate the average intensity of the following RGB image.

Grayscale & Color image

Links: [1]

Grayscale as single channels of multichannel color images

- Color images are often built of several stacked color channels
 - each of them representing value levels of the given channel
 - For example, RGB images are composed of three independent channels for red, green and blue primary color components

https://en.wikipedia.org/wiki/ Grayscale

Grayscale as single channels of multichannel color images (ct)

RGB to Grayscale

■ The lightness method $I = (\max(R, G, B) + \min(R, G, B)) / 2$

■ The luminosity method I = 0.21 R + 0.72 G + 0.07 B

https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/

ĐẠI HỌC TỔN ĐỰC THẮN TỚN DỰC THANG UNIVERSIT

Ex. 8

■ Write three pseudo codes to convert an RGB image to a grayscale one based on three corresponding conversion methods at the previous slide.

PAI HỌC TÓN ĐỰC THẮNG TÓN DÚC THANG UNIVERSITY

Gray Among The RGB

- As a color's three red/green/blue numbers are equal, the color is a shade of gray
 - red=50 green=50 blue=50 is gray, without any bias towards red, green, or blue hue
 - red=75 green=50 blue=50 it would be a bit reddish
- Examples of gray colors in RGB:

red	green	blue	color
50	50	50	dark gray
120	120	120	medium gray
200	200	200	light gray
0	0	0	black
255	255	255	white

Gray Among The RGB (ct)

Grey color codes chart

Color	HTML / CSS Color Name	Hex Code #RRGGBB	Decimal Code (R,G,B)
	gainsboro	#DCDCDC	rgb(220,220,220)
	lightgray / lightgrey	#D3D3D3	rgb(211,211,211)
	silver	#C0C0C0	rgb(192,192,192)
	darkgray / darkgrey	#A9A9A9	rgb(169,169,169)
	gray / grey	#808080	rgb(128,128,128)
	dimgray / dimgrey	#696969	rgb(105,105,105)
	lightslategray / lightslategrey	#778899	rgb(119,136,153)
	slategray / slategrey	#708090	rgb(112,128,144)
	darkslategray / darkslategrey	#2F4F4F	rgb(47,79,79)
	black	#000000	rgb(0,0,0)

Red Liberty Example Problem

PAI Học Tổn Đức Thắng Tổn dục tháng university

- All pixels is in the red values:
 - the whole image looks red. The green and blue values are all zero. This image looks quite wrong.

• Write code to fix this image by copying the red value over to be used as the green and blue value. So for a pixel, if red is 27, set green and blue to also be 27.

red	green	blue
65	0	0
53	0	0
100	0	0
19	0	0
	0	0

PAI HỌC TÓN ĐỰC THẮNG TÓN DÚC THANG UNIVERSITY

RGB brightness

- Q: How to decide which pixel below is brightest? darkest?
 - The average combines and summarizes the three values into one number 0..255
 - The average shows how bright the pixel is, ignoring hue: 0 = totally dark,
 255=totally bright

	red	green	blue	average
				average = (red + green + blue) / 3
pixel-1	200	50	50	100 (medium bright)
pixel-2	0	75	75	50 (darkest)
pixel-3	100	250	250	200 (brightest)

https://web.stanford.edu/class/cs101/image-6-grayscale.html

Other color models

- CMY and CMYK (cyan, magenta, yellow, black) use subtractive color mixing, and are used in the printing process
 - When a surface coated with cyan pigment is illuminated with white light, no red light is reflected from the surface. That is, cyan subtracts red light from reflected white light.
 - When light falls on a pigment, that pigment absorbs part of the spectrum and reflects the rest, resulting in its color. An object that is green has only reflected green light and absorbed everything else.

This subtractive quality of pigments also means that mixing colors always

produces a darker color.

Other color models (ct)

- CMYK four-color printing
 - Equal amounts of cyan, magenta, and yellow should produce black. However, in real life, combining these pigments produces a muddy-colored black. To produce pure black, which is quite commonly used while printing, we add a fourth color black, to the pigment mixture.
 - In CMYK, higher values are associated with darker colors rather than lighter ones

https://www.geeksforgeeks.org/python-cmy-and-cmyk-color-models/

https://www.w3schools.com/colors/colors cmyk.asp

BAI HỌC TÓN ĐỰC THẮNG TÓN DÚC THANG UNIVERSITY

Other color models (ct)

- RGB & CMY conversions
 - White light minus red leaves cyan, green subtracted from white leaves magenta, and white minus blue returns yellow
 - All the values are represented on the scale of 0 to 100% or scale [0,1]

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- where all RGB color values have been normalized to the range [0,1]
- Light reflected from a surface coated with pure cyan does not contain red (that is, C = 1 R in the equation)
- Pure magenta does not reflect green, and pure yellow does not reflect blue

https://www.geeksforgeeks.org/python-cmy-and-cmyk-color-models/

Ex. 9

- Write a pseudo code to covert an image from RGB to CMY color space and vice versa.
- Manually convert the following RGB image to a CMY image:

BGR order

Other color models (ct)

- CMY to CMYK
- Step 1: K = min(C, M, Y)
- Step 2:

•
$$K = 1$$
: $C^* = M^* = Y^* = 0$
• $K \neq 1$:
$$\begin{cases} C^* = (C - K)/(1 - K) \\ M^* = (M - K)/(1 - K) \\ Y^* = (Y - K)/(1 - K) \end{cases}$$

C*, M*, Y* are belong to CMYK model

CMYK to CMY

$$\begin{cases} C = C^* \times (1 - K) + K \\ M = M^* \times (1 - K) + K \\ Y = Y^* \times (1 - K) + K \end{cases}$$

https://www.w3schools.com/colors/colors cmyk.asp

BAI Học Tôn Đức Thẳng Tôn dúc Thang University

Ex. 10

- Write a pseudo code to covert an image from RGB to CMYK color space.
- Manually convert the following RGB image to a CMYK image:

BAI HỌC TÓN ĐỰC THẮNG TỚN DỰC THANG UNIVERSITY

Other color models (ct)

- RGB, CMY, and other similar color models are not well suited for describing colors in terms that are practical for human interpretation
- When humans view a color object, we describe it by its hue, saturation, and brightness

Other color models (ct)

- Hue is a color attribute that describes a pure color (pure yellow, ...)
 - hue represents dominant color as perceived by an observer. Thus, when we call an object red, orange, or yellow, we are referring to its hue.

https://www.beachpainting.c om/blog/color-hue-tint-toneand-shade/

PAI HỌC TÓN ĐỰC THẮNG TÓN DÚC THANG UNIVERSITY

Other color models (ct)

- Saturation refers to the relative purity or the amount of white light mixed with a hue
- Saturation gives a measure of the degree to which a pure color is diluted by white light
- Saturation describes the intensity (purity) of the Hue
 - degree of saturation being inversely proportional to the amount of white light added
 - pure spectrum colors are fully saturated
 - colors such as pink (red and white) and lavender (violet and white) are less saturated
- A grayscale or black-and-white photo has no color saturation, while a full-color photo of a field of sunlit wildflowers might be extremely saturated

BAI HỌC TỚN ĐỰC THẮNG TỚN ĐÚC THANG UNIVERSITY

Other color models (ct)

- How saturation changes the feel of a photo?
 - Highly saturated photos can look artificial, so use saturation with care especially if you're going for a natural look
 - "It's rare to see pure colors in nature because ambient light makes colors less saturated," says photographer Heather Barnes. "That's why you have to be really careful in post to not overly saturate your color."

PAI HỌC TỔN ĐỰC THẮNG TỔN DỰC THANG UNIVERSITY

Other color models (ct)

- Brightness embodies the achromatic notion of intensity
- Brightness is the amount of white or black mixed in with the color. It's also calculated as a percentage value between 0% and 100%.
- Brightness is the perceived intensity of light coming from a screen

https://web.mst.edu/~rhall/web_design/color_mixing.html

BAI HỌC TÔN ĐỰC THẮNG TÔN DÚC THANG UNIVERSITY

Other color models (ct)

- Brightness: Perceived amount of light coming from a source
- Lightness: Perceived reflectance of a surface, for ex., white surface is light, black surface is dark
- In simplest terms, brightness is the appearance of luminance and lightness is the appearance of objects
 - Brightness: Describe the intensity of the light sources such as sun, candle,
 - Dark, dim, bright, dazzling...
 - Sensation depends on adaptation. The same source may produce different feeling at different time
 - Lightness : Describe the appearance of the surfaces:
 - Black, dark gray, light gray and white...
 - Do not depends on adaptation and illumination.

https://slideplayer.com/slide/5102224/

PAI Học Tổn đức thắng Tổn dúc thang university

Other color models (ct)

- HSV (hue, saturation, value), also known as HSB (hue, saturation, brightness) is often used by artists
 - it is often more natural to think about a color in terms of hue and saturation than in terms of additive or subtractive color components
 - It is the most accurate color model as long as the way humans perceive colors
 - HSV is a transformation of an RGB colorspace, and its components and colorimetry are relative to the RGB colorspace from which it was derived
 - HSV color space separates the luma and hue from the color information, thus
 HSV model is used in histogram equalization and color identification

https://www.geeksforgeeks.org/hsv-color-model-in-computer-graphics/

Other color models (ct)

- Hue represents the pure color, and ranges from 0 to 360 degrees
- Saturation: ranges from 0% to 100%
 - 100% saturation means that complete pure color is added
 - 0% saturation means no color is added, resulting in grayscale
- Value: represents the brightness, ranges from 0% to 100%

Hue (in degree)	Color
0-60	Red
60-120	Yellow
120-180	Green
180-240	Cyan
240-300	Blue
300-360	Magenta

https://colorpicker.me/#ff00aa

Other color models (ct)

RGB to HSV

- 1. Divide r, g, b by 255
- 2. Compute cmax, cmin, difference
- 3. Hue calculation:
 - if cmax and cmin are equal, then h = 0
 - if cmax equal r then compute h = (60 * ((g b) / diff) + 360) % 360
 - if cmax equal g then compute h = (60 * ((b − r) / diff) + 120) % 360
 - if cmax equal b then compute h = (60 * ((r − g) / diff) + 240) % 360
- 4. Saturation computation:
 - if cmax = 0, then s = 0
 - if cmax does not equal 0 then compute s = (diff/cmax)*100
- 5. Value computation :
 - v = cmax*100

https://www.geeksforgeeks.org/program-change-rgb-color-model-hsv-color-model/

■ Manually convert the following RGB image to a HSV image:

BAI HỌC TÓN ĐỰC THẮNG TỔN DỰC THANG UNIVERSITY

Other color models (ct)

HSL (hue, saturation, lightness/luminance), also known as HLS or HSI (hue, saturation, intensity) is quite similar to HSV, with "lightness" replacing "brightness"

Examples: Image Enhancement

One of the most common uses of DIP techniques: improve quality, remove noise etc

Examples: The Hubble Telescope

- Launched in 1990 the Hubble telescope can take images of very distant objects
- However, an incorrect mirror made many of Hubble's images useless
- Image processing techniques were used to fix this

Wide Field Planetary Camera 1

Wide Field Planetary Camera 2

Examples: Artistic Effects

■ Artistic effects are used to make images more visually appealing, to add special effects and to make composite images

Examples: Medicine

- Take slice from MRI scan of canine heart, and find boundaries between types of tissue
 - Image with gray levels representing tissue density
 - Use a suitable filter to highlight edges

Original MRI Image of a Dog Heart

Edge Detection Image

Examples: GIS

- Geographic Information Systems
 - Digital image processing techniques are used extensively to manipulate satellite imagery
 - Terrain classification
 - Meteorology

Examples: GIS (ct)

PAI HỌC TÓN ĐỰC THẮNG TỔN DỤC THANG UNIVERSITY

- Night-Time Lights of the World data set
 - Global inventory of human settlement
 - Not hard to imagine the kind of analysis that might be done using this data

Examples: Industrial Inspection

■ Human operators are expensive, slow and

unreliable

- Make machines do the job instead
- Industrial vision systems are used in all kinds of industries
- Can we trust them?

Examples: PCB Inspection

- Printed Circuit Board (PCB) inspection
 - Machine inspection is used to determine that all components are present and that all solder joints are acceptable
 - Both conventional imaging and x-ray imaging are used

Examples: Law Enforcement

- Image processing techniques are used extensively by law enforcers
 - Number plate recognition for speed cameras/automated toll systems
 - Fingerprint recognition
 - Enhancement of CCTV images

Examples: HCI

- Try to make human computer interfaces more natural
 - Face recognition
 - Gesture recognition

Key Stages in Digital Image Processing

Key Stages in Digital Image Processing: Image Aquisition

Key Stages in Digital Image Processing: Image Enhancement

Key Stages in Digital Image Processing: Image Restoration

Key Stages in Digital Image Processing: Morphological Processing

Key Stages in Digital Image Processing: Segmentation

Key Stages in Digital Image Processing Object Recognition

Key Stages in Digital Image Processing:Representation & Description

Key Stages in Digital Image Processing Colour Image Processing

References

- Rafael C. Gonzalez, Richard E. Woods, [2018], Digital image processing, 4th edition, Pearson.
- https://www.geeksforgeeks.org/digital-image-processing-basics/
- https://www.tutorialspoint.com/dip/index.htm
- https://www.linkedin.com/pulse/what-computer-vision-explanationtypes-examples-neil-sahota-%E8%90%A8%E5%86%A0%E5%86%9B-/
- https://www.geeksforgeeks.org/difference-between-imageprocessing-and-computer-vision/
- https://www.tutorialspoint.com/dip/computer vision and graphics.ht
 m
- https://www.tutorialspoint.com/dip/grayscale to rgb conversion.htm

References (ct)

https://web.stanford.edu/class/cs101/image-6-grayscale.html