Random Fourier Features for Kernel Ridge Regression

Approximation Bounds and Statistical Guarantees

Kailong Wang¹

¹Ph.D. of ECE Rutgers University University

ECE 539 HDP, May 3, 2023

Rutgers

Table of Contents

Motivation

Linear Classification with Non-linear Input

Consider a binary classification problem with non-linear (e.g. polynomial) samples. This is not separable with linear function.

samples. This is not separable with
$$(\text{e.g. }X = \begin{bmatrix} x_{1,1} \ x_{1,2} \\ x_{2,1} \ x_{2,2} \\ \vdots \\ x_{N,1} \ x_{N,2} \end{bmatrix} \in \mathbb{R}^{N \times 2}.)$$

Lifting

One idea is to **LIFT** the samples into a higher dimensional space in which the samples are linearly separable.

The Lifting function in this case is
$$\phi(X) = \begin{bmatrix} x_{1,1}^2 & x_{1,2}^2 & \sqrt{2}x_{1,1}x_{1,2} \\ x_{2,1}^2 & x_{2,2}^2 & \sqrt{2}x_{2,1}x_{2,2} \\ & \dots \\ x_{N,1}^2 & x_{N,2}^2 & \sqrt{2}x_{N,1}x_{N,2} \end{bmatrix}.$$

4 □ ト 4 圖 ト 4 圖 ト 4 圖

Kai Rutgers Random Fourier Features May 3, 2023

Curse of Dimensionality

Consider solving the above problem with *support vector machine* (SVM).

$$\mathcal{L}(\mathbf{w}, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m (x_n^{\mathsf{T}} x_m).$$

The w is the linear decision boundary and α is a vector of Lagrange multipliers.

Curse of Dimensionality

Consider solving the above problem with *support vector machine* (SVM).

$$\mathcal{L}(\mathbf{w}, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m (x_n^{\mathsf{T}} x_m).$$

The ${\bf w}$ is the linear decision boundary and α is a vector of Lagrange multipliers.

We need to use lifting function $\phi(X)$ to make the samples linearly separable. Specifically, we replace $(x_n^{\mathsf{T}} x_m)$ with $(\phi(x_n)^{\mathsf{T}} \phi(x_m))$.

$$\begin{split} \phi(x_n)^{\mathsf{T}}\phi(x_m) &= \left[x_{n,1}^2 \ x_{n,2}^2 \ \sqrt{2}x_{n,1}x_{n,2} \right] \left[x_{m,1}^2 \ x_{m,2}^2 \ \sqrt{2}x_{m,1}x_{m,2} \right]^{\mathsf{T}} \\ &= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1}x_{n,2}x_{m,1}x_{m,2} \end{split}$$

Curse of Dimensionality

Consider solving the above problem with *support vector machine* (SVM).

$$\mathcal{L}(\mathbf{w}, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m (x_n^{\mathsf{T}} x_m).$$

The ${\bf w}$ is the linear decision boundary and α is a vector of Lagrange multipliers.

We need to use lifting function $\phi(X)$ to make the samples linearly separable. Specifically, we replace $(x_n^{\mathsf{T}}x_m)$ with $(\phi(x_n)^{\mathsf{T}}\phi(x_m))$.

$$\begin{split} \phi(x_n)^{\mathsf{T}}\phi(x_m) &= \left[x_{n,1}^2 \ x_{n,2}^2 \ \sqrt{2}x_{n,1}x_{n,2} \right] \left[x_{m,1}^2 \ x_{m,2}^2 \ \sqrt{2}x_{m,1}x_{m,2} \right]^{\mathsf{T}} \\ &= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1}x_{n,2}x_{m,1}x_{m,2} \end{split}$$

Calculate the inner product in the \mathbb{R}^3 across all N pairs of samples is acceptable. However, the lifting function $\phi(X)$ is usually very high dimensional.

Kernel Trick

Consider the following derivation,

$$\begin{split} (x_n^\intercal x_m)^2 &= ([x_{n,1} \ x_{n,2}][x_{m,1} \ x_{m,2}]^\intercal)^2 \\ &= (x_{n,1} x_{m,1} + x_{n,2} x_{m,2})^2 \\ &= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2 x_{n,1} x_{n,2} x_{m,1} x_{m,2} \\ &= \phi(x_n)^\intercal \phi(x_m) \end{split}$$

Kernel Trick

Consider the following derivation,

$$(x_n^{\mathsf{T}} x_m)^2 = ([x_{n,1} \ x_{n,2}][x_{m,1} \ x_{m,2}]^{\mathsf{T}})^2$$

$$= (x_{n,1} x_{m,1} + x_{n,2} x_{m,2})^2$$

$$= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1} x_{n,2} x_{m,1} x_{m,2}$$

$$= \phi(x_n)^{\mathsf{T}} \phi(x_m)$$

Instead of computing inner product in the high dimensional space, we compute the inner product in the original space.

Kernel Trick

Consider the following derivation,

$$(x_n^{\mathsf{T}} x_m)^2 = ([x_{n,1} \ x_{n,2}][x_{m,1} \ x_{m,2}]^{\mathsf{T}})^2$$

$$= (x_{n,1} x_{m,1} + x_{n,2} x_{m,2})^2$$

$$= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1} x_{n,2} x_{m,1} x_{m,2}$$

$$= \phi(x_n)^{\mathsf{T}} \phi(x_m)$$

Instead of computing inner product in the high dimensional space, we compute the inner product in the original space.

The function

$$K(x_n, x_m) = (x_n^{\mathsf{T}} x_m)^2 = \phi(x_n)^{\mathsf{T}} \phi(x_m)$$

is called a kernel function.

There must be disadvantages...

Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \in \mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} \subseteq \mathbb{R}$. Consider Kernel Ridge Regression (KRR), with $\phi(\mathcal{X}) \subseteq \mathbb{R}^k$, where $k \to \infty$

$$\mathcal{L}(\mathbf{w}, \lambda) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n}^{N} (y_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))^2 + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$

Solving it with Lagrange multipliers α , which is the solution of

$$\mathbf{L} \wedge (\mathbf{K} + \lambda \mathbf{I}_k) \alpha = \mathbf{y},$$

requires $\Theta(k^3)$ time and $\Theta(k^2)$ memory. Here $\mathbf{K} \in \mathbb{R}^{k \times k}$ is the kernel matrix or Gram matrix defined by $\mathbf{K}_{nm} \equiv K(\mathbf{x}_n, \mathbf{x}_m)$.

There must be disadvantages...

Given training data $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N) \in \mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} \subseteq \mathbb{R}$. Consider Kernel Ridge Regression (KRR), with $\phi(\mathcal{X}) \subseteq \mathbb{R}^k$, where $k \to \infty$

$$\mathcal{L}(\mathbf{w}, \lambda) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n}^{N} (y_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))^2 + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$

Solving it with Lagrange multipliers α , which is the solution of

$$\mathbf{L} \wedge \mathbf{0} (\mathbf{K} + \lambda \mathbf{I}_k) \alpha = \mathbf{y},$$

requires $\Theta(k^3)$ time and $\Theta(k^2)$ memory. Here $\mathbf{K} \in \mathbb{R}^{k \times k}$ is the kernel matrix or Gram matrix defined by $\mathbf{K}_{nm} \equiv K(\mathbf{x}_n, \mathbf{x}_m)$.

Intuition: Can we find a kernel function which lifts \mathcal{X} to \mathbb{R}^s , where $d < s \ll k$, while not sacrifices model performance?

May 3, 2023

Kai Random Fourier Features Rutgers

Some Prerequisites

Shift Invariant Kernel (Radial Basis Kernel (RBK))

A kernel function $K(\mathbf{x_n}, \mathbf{x_m})$ is called **shift invariant** if it can be written as $K(\mathbf{x_n}, \mathbf{x_m}) = g(\mathbf{x_n} - \mathbf{x_m})$ for some function $g(\cdot)$ (e.g. $K_{Gaussian}(\mathbf{x_n}, \mathbf{x_m}) = \exp(-\gamma \|\mathbf{x_n} - \mathbf{x_m}\|_2^2)$).

Mercer's Theorem

A continuous function $K(\mathbf{x_n}, \mathbf{x_m})$ is a valid kernel function if and only if the kernel matrix \mathbf{K} is **positive definite**.

Bochner's Theorem

A continuous function $g(\cdot)$ is **positive definite** if and only if it is the Fourier transform of a non-negative measure.

Random Fourier Features

Conclusion

A continuous **shift invariant** kernel $K(\mathbf{x_n}, \mathbf{x_m})$, which is **positive definite** (Mercer's Theorem), is the Fourier transform of a non-negative measure $p(\cdot)$.

$$\phi(\mathbf{x_n})^{\mathsf{T}}\phi(\mathbf{x_m}) = K(\mathbf{x_n}, \mathbf{x_m}) = K(\mathbf{x_n} - \mathbf{x_m})$$
(1)

$$= \int_{\mathbb{R}^s} p(\omega) \exp(i\omega^{\mathsf{T}} (\mathbf{x_n} - \mathbf{x_m})) d\omega$$
 (2)

$$= \mathbb{E}_{\omega}[\xi(\mathbf{x_n})\xi(\mathbf{x_m})^*] \tag{3}$$

Here $\xi(\mathbf{x}) = \exp(i\omega^{\mathsf{T}}\mathbf{x}) = \begin{bmatrix} \cos(\omega^{\mathsf{T}}\mathbf{x}) \\ \sin(\omega^{\mathsf{T}}\mathbf{x}) \end{bmatrix}$ and hence $\xi(\mathbf{x_n})\xi(\mathbf{x_m})^*$ is an unbiased estimator of $K(\mathbf{x_n}, \mathbf{x_m})$.

Algorithm

Since both the $p(\cdot)$ and $K(\Delta)$ are real-valued, we can replace $\xi(\mathbf{x})$ with $z_{\omega}(\mathbf{x}) = [\sqrt{2}\cos(\omega^{\mathsf{T}}\mathbf{x} + b)]$ where ω is drawn from $p(\omega)$ and b is uniformly drawn from $[0, 2\pi]$. Then (3) becomes $\mathbb{E}_{\omega}[z(\mathbf{x_n})z(\mathbf{x_m})^{\mathsf{T}}]$

Random Fourier Features

Algorithm 1 An algorithm with caption

Require: $n \ge 0$

Ensure: $y = x^n$

1:
$$y \leftarrow 1$$

2:
$$X \leftarrow x$$

3:
$$N \leftarrow n$$

4: while
$$N \neq 0$$
 do

5: **if**
$$N$$
 is even **then**

6:
$$X \leftarrow X \times X$$

7:
$$N \leftarrow \frac{N}{2}$$

else if
$$N$$
 is odd then

9:
$$y \leftarrow y \times X$$

10:
$$N \leftarrow N-1$$

10 / 11

▶ This is a comment.

8.

Two-column slide

This is a subtitle

This is a text in first column.

$$E = mc^2$$

First item ℓ Second item This text will be in the second column and on a second thought this is a nice looking layout in some cases.

