

Mikrocontrollertechnik

Labor 10: ADC 1

Vorbereitungsaufgaben

Autor: Richard Grünert

13.5.2020

1 Register für die Timergesteuerte AD-Wandlung

- P6DIR (Input Direction)
- P6SEL (Alternativfunktion: ADC)
- ADC12CTL0
 - SHT0x, SHT1x
 - REF2_5V
 - REFON
 - ADC120N
 - ENC Konfiguration
 - ADC12SC
- ADC12CTL1
 - SHP
 - SHSx
 - ADC12SSELx
 - CONSEQx Modusauswahl
 - CSTARTADDx
- ADC12MCTLx (conversion memory control register(s))
 - SREF0, SREF1, SREF2
 - INCHx (P6.3)
 - EOS
- ADC12IE
- TACTL Abtastperiodeneinstellung

2 Umrechnung des AD-Wertes in eine Spannung

Die Ermittlung des Spannungswertes eines gewandelten digitalen Wertes gelingt durch

$$U = AD_d \cdot LSB = AD_d \cdot \frac{FSR}{2^{12}}$$

Bei z.B. einer FSR von 5 V und einem gewandelten Wert von $AD_d = 4095_d = FFF_h$ erhält man eine Spannung von U = 4.9988 V

3 Einlesbarer Spannungsbereich

Bei Wandlung mit einem SAR-Wandler, an dessen DAC eine Referenzspannung von $U_{\text{ref}} = 2.5 \,\text{V}$ liegt, ist der gültig einlesbare Spannungsbereich auf diesen Referenzwert begrenzt, da der DAC eine maximale Spannung von U_{ref} an den Komparator rückkoppeln kann und der konvertierte Wert bei einer Eingangsspannung größer U_{ref} dann nur zu einem maximalen Wert 111111111111 gewandelt wird, welcher U_{ref} repräsentiert.