Math-19 Homework #1

1. Let:

P := 0 is a positive number

 $Q := 2 \ge 2$

 $R := \forall n, m \in \mathbb{N}, n+m \in \mathbb{N}$

Determine whether the following compound statement is true or false:

P and Q and R or P and not Q and R or not P and Q and R

Start by rewriting the statement with parentheses to show operation order, then substitute the truth value for each individual statement, and then show the stepwise evaluation to the final result.

- 2. There is a theorem called DeMorgan's Theorem that helps us negate complex logical statements.
 - (a) Consider the statement "not (A and B)". We know (A and B) is false whenever either A, B, or both are false, so not (A and B) = (not A) or (not B). Find a similar result for not (A or B).
 - (b) Remember that $\forall x, P(x)$ can be viewed as a big compound AND statement. Since it will be false whenever there exists an x value for which P(x) is false, we can conclude that: not $(\forall x, P(x)) = \exists x, (not\ P(x))$. Find a similar result for not $(\exists x, P(x))$.
- 3. Classify each of the listed numbers by putting an 'X' in the appropriate columns (Hint: some numbers will be in more than one set).

	N	W	\mathbb{Z}	Q	$\mathbb{R} - \mathbb{Q}$	\mathbb{R}
0						
$\frac{4}{2}$						
-3						
1.036						
$10.14\overline{23}$						
$\sqrt{2}$					-	
$-\pi$						

- 4. Decimal to rational form conversion.
 - (a) Convert $0.14\overline{23}$ to rational form.
 - (b) Show that $0.\overline{1}=\frac{1}{9}$. If this is so, then $\frac{2}{9}$ should equal $0.\overline{2},\frac{3}{9}$ should equal $0.\overline{3}$, and so on until $\frac{8}{9}$ should equal $0.\overline{8}$. So, what does $0.\overline{9}$ equal? Show that this is so by converting $0.\overline{9}$ to rational form.

5. Let:

$$A =$$
the set of all positive numbers

$$B = \{x \in \mathbb{R} | -3 < x \le 3\}$$

Represent each set in interval notation and graph each set on separate real number lines. Determine $A \cup B$, $A \cap B$, and A - B, showing the results in both interval notation and graph form.

6. Solve by finding the LCM:

$$\frac{3}{8} + \frac{2}{9} - \frac{1}{12}$$

Show the prime factorization for each denominator and how you used the prime factorizations to determine the LCM.

7. Simplify completely:

$$\frac{\frac{5}{6} - \left(\frac{1}{2} + \frac{2}{3}\right)}{\frac{1}{10} + \frac{3}{15}}$$

- 8. Prove: $\forall a \in \mathbb{R} \{0\}$, the multiplicative inverse a^{-1} is unique.
- 9. Prove: $\forall a,b \in \mathbb{R}, a(-b) = -(ab)$. You are only allowed to use the properties in the box on page 3 and properties 1 and 2 in the box on page 4. Make sure that your proof is syntactically complete, with a justification for each step.
- 10. Prove: $\forall a,b \in \mathbb{R}, |a-b| = |b-a|$ using the properties up to and including those in the box at the top of page 9. Make sure that your proof is syntactically complete, with a justification for each step. Do *not* just justify this based on the definition of distance.