

Cabantog, Dexter J.
Cardenas, Erron V.
De Jesus, Justine G.
Estrella, Ace V.

Mira, Vernon Gabrielle SM.

Free Elective (FEL 401)

lr. Jayson M. Victoriano

01 - Introduction

Real-World Problem

Libraries need to optimize staffing and resource allocation based on daily visitor traffic.

Why It Matters

Misallocation can lead to:

- Overstaffing → Wasted operational costs
- Understaffing → Poor customer service and lost opportunities

have your friends, but that's the difference of

you. Would you like a beauty

Stakeholders / Beneficiaries

- Library Visitors
- Operational staff
- Library Heads

the time. R be with each idn't want . Horrible sat in Am

1 know, Mam. Sorry. You weren't fusing but I'm done And how did it happen?" I was running, I told you. his not like you to fall, you're such a general grant when and I were your age we were falling all the come one mink it's because your dad calls now a gramman to the second Her mother's look was so food and www. Her mother's look was so food and www. for her hand, 'Thanks, Mam, the said was the I was so exhausted out there was a summer of the second out there was a summer of the second out Honestly they're like young believe to like children at all. When I then when the

01 - Introduction

Project Goal

Use clustering to categorize weekdays into high, medium, and low traffic groups to support smarter staffing and operational decisions.

02 - Use Case Definition - Traffic-Based Staffing Optimization

Background & Context

- Library Visitor traffic fluctuates daily, but manual analysis is:
 - Time-consuming (human bias, inefficiency).
 - Reactive (vs. proactive planning).

Machine Learning Approach

- Type: Unsupervised Learning (Clustering)
- Input: Historical daily traffic data (e.g., visitor counts, time slots).
- Output: Weekdays
 grouped into clusters
 based on similar traffic
 patterns.

02 - Use Case Definition - Traffic-Based Staffing Optimization

Expected Outcomes

- 1. Labeled Clusters:
 - High-Traffic Tuesday
 - Medium-Traffic Thursday
 - Low-Traffic Monday
- 2. Actionable Insights:
 - Allocate 30% more staff on High-Traffic days.
 - Reduce inventory orders for Low-Traffic clusters.

03 - Dataset Overview

Source & Size

- Source: Internal company data (e.g., CRM, entry logs).
- Records: 231 days (e.g., ~1 year of weekday data).

04 - Data Processing

Handling Missing Values & Duplicates:

No missing or duplicate rows found

Addance militare ngle va thing. Chem go tayare in the control of t

Feature Selection/Engineering:

Converted Date to datetime format as needed

Encoding Categorical Variables:

Applied appropriate encoding methods for categorical data

Normalization/ Standardization:

Scaled data if necessary for clustering

Train-Test Split:

Not required for unsupervised learning, but held out recent data for validation

05 - Exploratory Data Analysis (EDA)

Key Findings:

- Tuesdays have 40% higher average visitor traffic than Fridays
- Clear weekly seasonality with midweek peaks (Tuesday–Wednesday)

06 - Model Selection

Chosen Algorithm: K-Means Clustering

 Optimal K=3 determined via the Elbow Method (balances precision and simplicity).

Why K-Means?

- Interpretable for business use
- Handles numeric features well
- Computationally efficient

07 - Model Training & Tuning

Performance Metric:

- Inertia (Within-Cluster Sum of Squares)
- Silhouette Score to assess cluster separation

Cross-Validation:

Not applicable for unsupervised learning

Hyperparameter Tuning:

Used Elbow Method to determine optimal number of clusters (K=3)

08 - Results & Evaluation

Key Insights

- High-Traffic Days:
 - Tuesday (30 occurrences) and Wednesday (29) dominate.
 - Action: Allocate 40% more staff/resources.
- Low-Traffic Days:
 - o Monday (20 occurrences) is most common.
 - Action: Reduce staffing by 25%

CLUSTER	AVG. VISITORS	LABEL	KEY DAYS
O	32	low traffic	Monday (20 occurrences)
1	112	medium traffic	Thursday, Friday
2	183	high traffic	Tuesday (30 occurances)

Cluster Profiles

09 - Visitor Count Forecast

The forecast for the next 7 weekdays was done using ARIMA model based on historical data

DATE	PREDICTED VISITORS	
2024-12-24	108 visitors	
2024-12-25	108 visitors	
2024-12-26	108 visitors	
2024-12-27	97 visitors	
2024-12-30	102 visitors	
2024-12-31	108 visitors	
2025-01-01	108 visitors	

10- Discussion & Insights

Key Findings

- Unexpected Insight:
 - Mondays are consistently low-traffic (despite weekend proximity).
 - Possible Reason: Visitors prioritize early-weekdays for services.

Limitations

- ! Holidays/Events:
- Model doesn't account for holidays or promotions (future work: integrate calendar data).

- **✓** Bias Check:
 - Confirmed equal gender distribution across clusters (no demographic skew).

! Temporal Scope:

It's not like you to fall, yo and I were your age we were fa

for her hand, "Thanks, Mam," the week men had I was so exhausted out there was a super s

like children at all. When I would when the

have your friends, but that's the differences

you. Would you like a keep

mink it's because your dad calls now a promote the second

Her mother's look was so food and warm that the second and warm that the second and the second a

Honestly they're like young below to the state of the sta

• Data limited to 1 year (may miss longterm trends).

11 - Conclusion & Recommendations

Immediate Actions

- Increase staff allocation by 25% on Tuesdays and Wednesdays
- Launch targeted promotions on Fridays to boost low traffic

Future Work

- Incorporate weather and event data to refine clustering
- Deep dive into time-series forecasting for a more accurate daily traffic prediction

