Appendix 5

A.T. Tredennick, A.R. Kleinhesselink, J.B. Taylor & P.B. Adler

"Consistent ecosystem functional response across precipitation extremes in a sagebrush steppe"

Peerl

Section A5.1 Characterizing Extreme Precipitation Amounts

Following the proposed methods of Lemoine et al. (2016), we calculated quantiles from the empirical distribution of growing season precipitation at Dubios, ID. We chose the 1% quantile to be indicative of extreme dry conditions (drought) and the 99% quantile to be indicative of extreme wet conditions (irrigation). The data consist of 91 yearly records, which we assume are approximately normally distributed for these purposes. The R code below shows our procedure, and Fig. A5-1 shows the results.

```
library(tidyverse)
  library(dplyr)
  weather <- read.csv("../data/weather/dubois_station_weather_01092018.csv") %>%
     dplyr::select(DATE, PRCP) %>%
    dplyr::rename("date" = DATE, "precip" = PRCP) %>%
     separate(date, into = c("year", "month", "day"), sep = "-") %>%
    mutate(precip = ifelse(is.na(precip), 0, precip)) %>% # set missing station data to 0
    mutate(year = as.numeric(year)) %>%
    group_by(year) %>%
     summarise(annual_precip = sum(precip))
              <- mean(weather$annual_precip)</pre>
  mean_ppt
   quants_ppt <- quantile(weather sannual_precip, probs = c(0.01,0.99))
  quants_ppt[1]/mean_ppt*100 # percent of mean ppt for drought
            1%
12
  ##
  ## 50.05341
  quants_ppt[2]/mean_ppt*100 # percent of mean ppt for irrigation
           99%
  ##
  ## 176.7063
  ggplot(weather, aes(x=annual_precip))+
     geom_histogram(bins=20, color="dodgerblue", fill="dodgerblue", aes(y=..density..))+
     geom_line(stat="density", color="blue")+
```


Figure A5-1 Density of the empirical distribution of growing season precipitation at Dubois, ID. Dashed vertical lines show the 1% and 99% quantiles, assuming a normal distribution.

```
geom_vline(aes(xintercept=quants_ppt[1]), linetype=2)+
geom_vline(aes(xintercept=quants_ppt[2]), linetype=2)+
ylab("Density")+
xlab("Growing Season Precipitation (mm)")+
theme_bw()+
theme(panel.grid.minor = element_blank())
```

6 References

- Lemoine, N. P., J. Sheffield, J. S. Dukes, A. K. Knapp, and M. D. Smith. 2016. Terrestrial
- Precipitation Analysis (TPA): A resource for characterizing long-term precipitation regimes and
- extremes. Methods in Ecology and Evolution 7:1396–1401.