Employee Absenteeism

Gautam Pai 24 December 2019

Contents

Introdu	uction	2
	Problem Statement	
1.2	Data	2
Metho	odology	4
	Pre Processing	
	Missing Value Analysis	
2.1.2	Feature Selection	8
	ısion	
3.1	Solutions of Problem Statement	15
Refere	nces	17

Chapter 1

Introduction

1.1 Problem Statement

XYZ is a courier company. As we appreciate that human capital plays an important role in collection, transportation and delivery. The company is passing through genuine issue of Absenteeism. The company has shared it dataset and requested to have an answer on the following areas:

What changes company should bring to reduce the number of absenteeism?

How much losses every month can we project in 2011 if same trend of absenteeism continues?

1.2 Data

Our task is to find out features that are contributing to more number of absentees as well as finding the trend in the number of absentees every month

Table 1.1: Employee Absenteeism Sample Data (Columns: 1-6)

	Reason for	Month of			Transportation
ID	absence	absence	Day of the week	Seasons	expense

4	19	6	2	3	246
10	22	6	2	3	361
11	10	6	3	3	246
10	23	6	5	3	291
13	10	6	6	3	246
12	11	6	2	3	179

Table 1.2: Employee Absenteeism Sample Data (Columns: 7-12)

Distance from Residence to			Work load		
Work	Service time	Age	Average/day	Hit target	Disciplinary failure
25	16		377,550	94	0
52	3	28	377,550	94	0
25	16	41	377,550	94	0
31	12	40	377,550	94	0
25	16		377,550	94	0
51	18	38	377,550	94	0

Table 1.3: Employee Absenteeism Sample Data (Columns: 13-18)

Education	Son	Social drinker	Social smoker	Pet	Weight
1	0	1	0	0	67
1	1	1	0	4	80
1	0	1	0	0	67
1	1	1	0	1	73
1	0	1	0	0	67
1	0	1	0	0	89

Table 1.4: Employee Absenteeism Sample Data (Columns: 19-21)

Height	Body mass index	Absenteeism time in hours
170		8
172	27	8
170	23	24
171	25	4
170	23	
170	31	8

As you can see in the table below we have the following 20 predictor variables

Table 1.5: Predictor Variables
S.No. Predictor

- 1 Individual identification (ID)
- 2 Reason for absence (ICD).
- 3 Month of absence
- 4 Day of the week
- 5 Seasons
- 6 Transportation expense
- 7 Distance from Residence to Work (kilometers)
- 8 Service time
- 9 Age
- 10 Work load Average/day
- 11 Hit target
- 12 Disciplinary failure
- 13 Education
- 14 Son
- 15 Social drinker
- 16 Social smoker
- 17 Pet
- 18 Weight
- 19 Height
- 20 Body mass index

Chapter 2

Methodology

2.1 Pre Processing

Any predictive modeling requires that we look at the data before we start modeling. However, in data mining terms *looking at data* refers to so much more than just looking. Looking at data refers to exploring the data, cleaning the data as well as visualizing the data through graphs and plots. This is often called as **Exploratory Data Analysis**. To start this process we will first try and look at the data types and then look at all the probability distributions of the variables. Most analysis like regression, require the data to be normally distributed. We can visualize that in a glance by looking at the probability distributions or probability density functions of the variable.

Figure 2.1: Histograms of all the variables in the dataset

From the above plots it looks like all the variables are discreate in nature. Also from the exploratory analysis, there were invalid data within 'Reason for absence' and 'Month of absence'. Since the variables were discrete in nature we tried to print the unique values of each variables.

2.1.1 Missing Value Analysis

In this stage we identify the missing values in each and every feature and gather the count of all the variables. Missing values can arise due to many reasons like business unable to capture the data due to privacy or error in capturing the data. Missing values are present as NA/NAN or empty values. The rule of thumb is if the missing values are more than 30%, it is advisable to drop that variable. If it is below to some percentage based on business scope, we can either drop those samples or else impute those values with either mean, median, knnimputation, random sampling imputation. In Fig 2.2, shows the missing value statistics for every variable.

There are 2 groups of variables present in the data. Ones related to employee and the others related to company.

We see that Height, Weight, Body mass index, Education, Transportation Expense, Son, Social Smoker, Age, Service Time are related to employee attributes and the other attributes like Month of absence, Workload average/day, Hit target, absentee hours are related to workplace attributes. The strategy is to group the similar looking observations coming under above 2 groups and try to impute the missing values using the median statistics. The missing values are imputed in the order of highest missing value features.

index	percentage
Body mass index	4.189189
Absenteeism time in hours	2.972973
Height	1.891892
Work load Average/day	1.351351
Education	1.351351
Transportation expense	0.945946
Son	0.810811
Disciplinary failure	0.810811
Hit target	0.810811
Social smoker	0.540541
Age	0.405405
Reason for absence	0.405405
Service time	0.405405
Distance from Residence to Work	0.405405
Social drinker	0.405405
Pet	0.270270
Weight	0.135135
Month of absence	0.135135
0	0 000000

Figure 2.2: Missing value percentages of all the variables in the dataset

2.1.2 Feature Selection

We need to assess the importance of each predictor variable in our analysis. There is a possibility that many variables in our analysis are not significant enough to explain the variance in the target. Since we have all categorical variables we decided to go with chi square analysis. Once we get significant lower p-values for a variable we will perform a frequency counts for that variable and consider only the values which are in higher frequency (90% quantile). After one iteration we drop that feature from the dataset along with the features that are not significant (higher p-values). We get to a reduced set of variables that will enable the major reasons for employee absenteeism.

In Chi-Square, we select 2 hypothesis

- i) H0: Variables are independent of each other
- ii) H1: Variables are not independent of each other

If the p-value statistics between our target variable and the predictor variable are <0.05, we reject the null hypothesis, claiming that the variance in the target is contributed by the relevant predictor variable.

1st Iteration

Fig 2.3 shows the chi square tests for all the variables wrt the target variable. We see that the p-values are less for 'Reason for absence' and 'Disciplinary failure' variables. We get the frequency statistics of these variables and then plot as shown below. We see that the major frequencies contributing to absentees are reasons 23, 27, 28 i.e. medical consultation, physiotheraphy and dental consultation.

Chi Sq test for features	ID
889.2453819016475	
3.815031774677936e-11	
Chi Sq test for features	Reason for absence
1656.032873284991	
1.1805219347568775e-122	
Chi Sq test for features	Month of absence
359.71824497828754	
2.8944754330752625e-09	
Chi Sq test for features	Day of the week
103.87669508720488	
0.008287792011308939	
Chi Sq test for features	Seasons
122.5974320111169	
3.0053076994296445e-07	
Chi Sq test for features	Transportation expense
697.0521607127151	·
9.406544679138365e-17	
Chi Sq test for features	Distance from Residence to Work
721.8301626052225	
6.626733002732717e-17	
Chi Sq test for features	Service time
415.04671629021135	
3.1920877098617734e-05	
Chi Sq test for features	Age
592.5256190584283	7.50
1.0231171439551832e-11	
Chi Sq test for features	Work load Average/day
960.8794673589287	Work Toda Average, day
4.611084344149994e-13	
Chi Sq test for features	Hit target
311.5771325961067	nic target
2.1957618620549616e-05	
Chi Sq test for features	Disciplinary failure
531.3246434435844	Discipilliary raffure
2.670951153834707e-101	
Chi Sq test for features	Education
37.16679804314187	Education
0.9609122922050121	Carr
Chi Sq test for features	Son
161.97098572180235	
7.040447791252274e-09	Casial dainten
Chi Sq test for features	Social drinker
40.02404101447068	
0.0020715847836446314	
The Ca tast for footunes	Costal emokan

Figure 2.3: Chi Square analysis of 1st iteration

2nd Iteration

Chi Sq test for features	ID
332.12499465433973	
6.269475251322483e-07	
Chi Sq test for features	Month of absence
142.29129722332132	
0.00022175251549340464	
Chi Sq test for features	Day of the week
34.704861371063146	
0.3402020386876126	
Chi Sq test for features	Seasons
64.8447952055207	
1.2826957190186773e-05	
Chi Sq test for features	Transportation expense
247.69397736079668	·
1.6038659403946965e-08	
Chi Sq test for features	Distance from Residence to Work
265.13558001976423	
3.389668904893843e-07	
Chi Sq test for features	Service time
218.2666068694327	
1.1492810417805194e-06	
Chi Sq test for features	Age
242.81609988283606	
3.992498695754827e-06	
Chi Sq test for features	Work load Average/day
398.42892972840764	
4.070080102567428e-06	
Chi Sq test for features	Hit target
168.86593903122395	
6.381792655333278e-06	
Chi Sq test for features	Son
124.47161226449576	
7.628603607064547e-13	
Chi Sq test for features	Social drinker
18.027111754333465	
0.021024141460881326	
Chi Sq test for features	Pet
32.544233040452454	
0.4399935549519931	
Chi Sq test for features	Weight
264.71097198879613	8
1.719527161186957e-05	
Chi Sq test for features	Height
207.87315521620843	11626116
3.103467557585875e-10	
Chi Sq test for features	Body mass index
134.629689302162	Desy made index
0.07151888246125382	
0110115	**

Figure 2.4: Chi Square analysis of 2nd iteration

Fig 2.4, shows the chi square statistics of 2^{nd} iteration with more significant and less significant variables dropped from 1^{st} iteration and with a reduced dataset. From this analysis we find that the more significant variables are Son and Height. While plotting the frequency distribution of both these variables we find that candidates with number of Son equal to 0 or 1 are contributing to more number of absentees. Also the Height values in 170 or 171 are contributing to more number of absentees.

3rd Iteration

Fig 2.5, shows the chi square statistics for variables after removing the more/least significant variables from the earlier 2 iterations. We found that 'Work load Average/day' and 'Seasons' has very low p-values compared to other variables. We pick those variables and find their frequencies as below.

Chi Sq test for features	
0.0024469776330491608 Chi Sq test for features	Seasons
62.58652529673983	
2.7310607157995167e-05 Chi Sq test for features 94.05365786096962	Transportation expense
<pre>0.13481098400624203 Chi Sq test for features</pre>	Distance from Residence to Work
<pre>0.15270320074873878 Chi Sq test for features</pre>	Service time
0.22768907060147142 Chi Sq test for features 104.9306895868834 0.2503704055396815	Age
Chi Sq test for features	Work load Average/day
2.4346970652230627e-06 Chi Sq test for features	Hit target
Chi Sq test for features	Social drinker
Chi Sq test for features	Weight

Figure 2.5: Chi Square analysis of 3rd iteration

We find the following values for 'Work load Average/day' had more frequencies than other values

308593.0 264249.0 222196.0 251818.0

Also Season 2 (Autumn) contributed to more number of absentees than other seasons

4th Iteration

Fig 2.6, shows the chi-square statistics of the last iteration, we had filtered many variables in the earlier iteration and this iteration we had only least significant variables within the dataset. We found in this iteration that 'Hit target' has a least p-value compared to other predictors.

Chi Sq test for features	ID
75.46066636851522	
0.08607643619703208	
Chi Sq test for features	Month of absence
18.547700161130894	
0.42015756388824266	
Chi Sq test for features	Hit target
110.0194055944056	
2.0035204983634793e-09	
Chi Sq test for features	Weight
75.4606663685152	
0.08607643619703223	

Figure 2.6: Chi Square analysis of 4th iteration

We then plot the frequency plot for Hit target as below and the values within Hit target of 95,96,97,99 contributed to more number of absentees.

Chapter 3

Conclusion

3.1 Solutions of Problem Statement

3.1.1 What changes company should bring to reduce the number of absenteeism?

Solution:

In our case of Employee Absenteeism Data, we found that the significant reasons used by employees are related to consultation and physiotheraphy. The company can arrange for inhouse regular health checkup to their employees.

Employees with less than 2 Son's are having more absentees than others, which gives indication that employees with no children will not have to deal with school days of their children and they will go on leave as they like. For employees with 1 Son considering Son of small age, employee could have availed more leaves to look after their children. It would be better if company could provide day care facility to their children nearby. It was observed that Autumn season contributed to more number of absentees. The company could warn their employees to not take more leaves during autumn. Also company could reduce the Hit targets to less than 95, to avoid more number of absences.

3.1.2 How much losses every month can we project in 2011 if same trend of absenteeism continues? Solution:

The year 2011 does not explain anything within the problem statement or the data. If the same trend of absenteeism continues, then the total losses for a profile consisting of month, workload average, Hit target is as shown in the graph below. Employees are absent the most in the month of March with Work load of 222196 and Hit target of 99, with total Absenteeism hours equal to 357 hours. Employees are absent the least in the month of Septemeber with WorkLoad 261756 and Hit target of 87, with total Absenteeism hours equal to 41.

References

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. *An Introduction to Statistical Learning*. Vol. 6. Springer.

Wickham, Hadley. 2009. *Ggplot2: Elegant Graphics for Data Analysis*. Springer Science & Business Media.