

Fact: Joe Tritschler's children are ridic, especially his twins. You would think a task as simple as eating lunch would be pretty easy to accomplish in a timely manner; but alas, it often turns into what is known colloquially as a *goat rope*. (In fact, it sometimes resembles a literal one.) Over the course of a week, the time it takes them to achieve some degree of completion in this task was measured and the results presented below (all in minutes):

	Twin #1	Twin #2	
Sunday	37	18	
Monday	42	20	
Tuesday	29	31 23 39 30	
Wednesday	24		
Thursday	65		
Friday	82		
Saturday	26	28	

Because Joe Tritschler is an all-around great guy, he has computed sample parameters for you from this data: \bar{x}_1 = 43.57, s_1 = 21.93, \bar{x}_2 = 27, and s_2 = 7.257. Use them to test the following hypotheses on the difference in mean lunch-completion time using the p-value approach. State your final conclusion with regard to a significance level of α = 0.05. What does the data suggest about the difference in mean lunch-completion time between them?

 H_0 : $\mu_1 = \mu_2$ H_1 : $\mu_1 \neq \mu_2$

Population Variances assumed unequal

or need
$$V$$

$$\frac{S_{1}^{2}}{N_{1}} = \frac{21.93}{7} = 68.70 \qquad \frac{32}{112} = 7.257^{2} = 7.523^{2}$$

$$V = \frac{(68.70 + 7.523)^{2}}{68.70} + \frac{7.523^{2}}{6} = 7.293 \qquad (H)$$

$$Vound down to $V = 7$ degrees of freedom

$$V = \frac{43.57 - 27}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$$
From table: $V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$$
From table: $V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$$
From table: $V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$$
From table: $V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.898 \qquad (H)$$
From table: $V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.523}} = 1.895 \qquad (H)$$

$$V = \frac{1}{\sqrt{68.70 + 7.52$$$$

Turns out this is actually a perfect candidate for a *paired t-test*. Test the following hypotheses on the mean difference in lunch-completion time using a 95% confidence interval on μ_D . Note: you will need to compute sample parameters on mean difference; here is the data again for your convenience.

	Twin #1	Twin #2	
Sunday	37	18	19
Monday	42	20	22
Tuesday	29	31	-2
Wednesday	24	23	1
Thursday	65	39	26
Friday	82	30	52
Saturday	26	28	-2

$$s^{2} = \frac{\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}}{n-1}$$

 H_0 : $\mu_D = 0$ H_1 : $\mu_D \neq 0$

$$t_{\alpha/2, n-1} = t_{.025, 6} = 2.447$$

MD: d + talz, n-1 Sd/vn

16,57 + 2,447 . 19,63/07

$$-1.585 < MP < 34.73$$

(min.)

C.J. does contain zero (+1)

: fail to reject Ho

(again

Test the following hypotheses on the difference in population standard deviations of lunch-completion times using the fixed-significance-level approach at α = 0.05. What does the data suggest about the difference between the two twins?

$$H_0: \sigma_1 = \sigma_2$$

$$H_1: \sigma_1 \nearrow \sigma_2$$

$$\int_{0}^{2} \frac{S_{1}^{2}}{S_{2}^{2}} = \frac{21.93^{2}}{7.257^{2}} = 9.132$$

upper one-sided Hi;

o critical value is f_{K, n_1-1, n_2-1}

- data suggests more variability w/ #1 than #2