Probabilistic graphical models: Introduction and general information

Simon Lacoste-Julien, INRIA/ENS Francis Bach, INRIA/ENS Guillaume Obozinski, ENPC

M2 MVA 2015-2016

Structured problems in HD

Sequence modelling

How to model the distribution of DNA sequences of length k?

- Naive model $\rightarrow 4^n 1$ parameters
- Indépendant model $\rightarrow 3n$ parameters

First order Markov chain:

Second order Markov chain:

Number of parameters $\mathcal{O}(n)$ for chains of length n.

Models for speech processing

- Speech modelled by a sequence of unobserved phonemes
- For each phoneme a random sound is produced following a distribution which characterizes the phoneme

Hidden Markov Model: HMM (Modèle de Markov caché)

→ Latent variable models

Modelling image structures

Markov Random Field (Champ de Markov caché)

Original image

Segmentation

→ oriented graphical model vs non oriented

Anaesthesia alarm (Beinlich et al., 1989)

"The ALARM Monitoring system"

CVP central venous pressure **PCWP** pulmonary capillary wedge pressure HIST history TPR total peripheral resistance BP blood pressure CO cardiac output HRRP heart rate / blood pressure. **HREK** heart rate measured by an EKG monitor HRSA heart rate / oxygen saturation. PAP pulmonary artery pressure. SA₀₂ arterial oxygen saturation. FIO2 fraction of inspired oxygen. PRSS breathing pressure. FCO2 expelled CO2. MINV minimum volume. MVS minimum volume set HYP hypovolemia LVF left ventricular failure APL anaphylaxis ANES insufficient anesthesia/analgesia. **PMB** pulmonary embolus INT intubation KINK kinked tube DISC disconnection LVV left ventricular end-diastolic volume STKV stroke volume CCHI catecholamine **ERLO** error low output HR heart rate. FRCA electrocauter SHNT shunt PVS pulmonary venous oxygen saturation ACO2 arterial CO2 VALV pulmonary alveoli ventilation VLNG lung ventilation

ventilation tube

ventilation machine

VTUR

Probabilistic model

$$p(x_1, x_2, ..., x_9) = f_{12}(x_1, x_2) f_{23}(x_2, x_3) f_{34}(x_3, x_4) f_{45}(x_4, x_5) ...$$

$$f_{56}(x_5, x_6) f_{37}(x_3, x_7) f_{678}(x_6, x_7, x_8) f_{9}(x_9)$$

Abstact models vs concrete ones

Abstracts models

- Linear regression
- Logistic regression
- Mixture model
- Principal Component Analysis
- Canonical Correlation Analysis
- Independent Component analysis
- LDA (Multinomiale PCA)
- Naive Bayes Classifier
- Mixture of experts

Concrete Models

- Markov chains
- HMM
- Tree-structured models
- Double HMMs
- Oriented acyclic models
- Markov Random Fields
- Star models
- Constellation Model

Operations on graphical models

Probabilistic inference

Computing a marginal distr. $p(x_i)$ ou $p(x_i|x_1 = 3, x_7 = 0)$

Decoding (MAP inference)

What is the most likely instance?

$$\operatorname{argmax}_{z} p(z|x)$$

Learning (or Estimation)

Soit
$$p(x; \theta) = \frac{1}{Z(\theta)} \prod_C \psi(x_C, \theta_C)$$
, we want to find

$$\operatorname{argmax}_{\theta} \prod_{i=1}^{n} p(x^{(i)}; \theta) = \operatorname{argmax}_{\theta} \frac{1}{Z(\theta)} \prod_{i=1}^{n} \prod_{C} \psi(x_{C}^{(i)}, \theta_{C})$$

Course outline

Lecture 1
 Introduction
 Maximum likelihood
 Linear regression
 Logistic regression
 Generative classification (Fisher discriminant)

Lecture 2
 K-means
 EM
 Gaussian mixtures
 Graph Theoretic aspects

Lecture 3
 Unoriented graphical models
 Oriented graphical models

Lecture 4
 Exponential families
 Information Theory

Lecture 5
 Gaussian Variables
 Factorial Analysis

Lecture 6
 Sum-product algorithm
 HMM

Lecture 7
 Approximate inference

• Lecture 8
Approximate inference

Lecture 9
 Bayesian methods
 Model selection

General information

- Every Wed 9am-12pm amphi Curie until Dec 2.
- Except Nov 11 : no lecture
- Grading :
 - Homework 1 (15%)
 - Homework 2 (15%)
 - Homework 3 (15%)
 - Exam (25%)
 - Project (30%)

• Programming :

- All Hwk+ Project involve programming
- You may choose the programming language you want
- We recommend you choose a vector oriented PL such as Python, R Matlab.

Polycopié :

 The course will be based on the book in preparation of Michael Jordan (UC Berkeley).

Scribes :

 For some lectures, the students are encouraged to volunteer as scribes to contribute to the lecture notes.

To start: models with 1 and 2 nodes...

Regression and classification

Mixture models

