	(Uledh
Name:	\$
Roll No.:	A Annual Williamship and Confine
Inviailator's Signature :	

CS/B.Tech/BT (O)/SEM-5/BT (CHE)-514/2012-13

2012 TRANSFER OPERATION – II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The diffusivity has the same dimension as
 - a) absolute viscosity
 - b) kinematic viscosity
 - c) density
 - d) concentrations.
- ii) According to the film theory the mass transfer coefficient is directly proportional to
 - a) $D_{AB}^{0.3}$

b) $D_{AB}^{0.5}$

c) D_{AB}

d) D_{AB}^2 .

5313(O) [Turn over

CS/B.Tech/BT (O)/SEM-5/BT (CHE)-514/2012-13

- iii) For distillation if the feed entered is cold liquid then the q value will be
 - a) q = 0

b) q = 1

c) q > 1.0

- d) q < 0.
- iv) Stripping column distillation means
 - a) feed to be distilled is supplied at an intermediate point of the column
 - b) feed is an azeotropic mixture
 - c) the feed to be distilled is supplied at the bottom of the collumn
 - d) feed to distilled is added to the top of the clumn.
- v) Relative volatility α_{AB} stands for
 - a) x_a/y_a

b) P_Bsat/PAsat

c) y_a/x_a

- d) $(y_A/x_A)/(y_B/x_B)$.
- vi) Which of the following operations does not involve leaching?
 - a) dissolving pharmaceuticals products from bark or roots
 - b) removing nicotine from water solution of kerosene
 - c) dissolving sugars from cells of beet
 - d) dissolving gold from ores.
- vii) Schmidt number in analogous to
 - a) Prandtl number
- b) Sherwood number
- c) Nusselt number
- d) Froude number.

- viii) Fenske equation is applicable for
 - a) Minimum reflux condition in distillation
 - b) total reflux condition in distillation
 - c) absorption, when equilibrium and operating lies are parallel
 - d) stripping.
- ix) Membrane used for reverse osmosis is
 - a) symmetric
- b) isotopic
- c) asymmetric
- d) semi-permeable.
- x) In azeotropic mixture, the equilibrium vapor composition is
 - a) more than liquid composition
 - b) less than liquid composition
 - c) same as liquid composition
 - d) none of these.
- xi) During drying of a solid, the lowest moisture content is denoted as
 - a) critical moisture content
 - b) equilibrium moisture content
 - c) free moisture content
 - d) bound moisture content.

(Short Answer Type Questions

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Deduce Rayleigh's equation for batch distillation operation 5
- 3. What is membrane fouling? How is it controlled?
- 4. Define the following
 - a) Free moisture
 - b) Bound moisture
 - c) Unbound moisture
 - d) Equilibrium moisture
 - e) Relative humidity.

5

- 5. Oxygen (A) is diffusing through carbon monoxide (B) under steady-state conditions, with the carbon monoxide nondiffusing. The total pressure is 1×10^5 N/m², and the temperature 0°C. The partial pressure of oxygen at two planes 2.0 mm apart is, respectively, 13000 and 6500 N/m². The diffusivity for the mixture is 1.87×10^{-5} m²/s. Calculate the rate of diffusion of oxygen in kmol/s, through each square meter of the two planes.
- 6. Describe the operating principle of reverse osmosis and its application in industry. 5

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define reflux ratio. Write down the basic assumptions of McCabe-Thiele method for calculations of number of ideal plates in a distillation operation.
 - b) A liquid feed at the boiling point of 400 kgmol/h containing 70 mol % benzene (A) and 30 mol % tolune (B) is fed to a stripping tower at 101.3kPa pressure. The battoms product flow is to be 60 kg mol/h containing only 10 mol % A and the rest B. Calculate the kgmol/h overhead vapor, its composition, and the number of theoretical steps required.

The equilibrium data for Benzene- Tolune system.

Mole fraction of Benzene at 101.325 k Pa

x_A	1.000	0.780	0.581	0.411	0.258	0.130	0
y_A	1.000	0.900	0.777	0.632	0.456	0.261	0

2 + 4 + 9

- 8. a) Describe Fick's first law.
 - b) Derive the expression of steady-state diffusion of A through nondiffusing B.
 - c) Describe briefly the types of solid diffusion.
 - d) Prove that $1/K_y \approx 1/k_y$ (In local overall Mass Transfer Coefficients). 2+3+5+5

- 9. a) Define Henry's law.
 - b) It is desired to absorb 90 % of the acetone in a gas containing 1.0 mol % acetone in air in a countercurrent stage tower. The total inlet gas flow to the tower is 30.0 kg mol/h, and the total inlet pure water flow to be used to absorb the acetone is 90 kgmol H20/h. The process is to operate isothermally at 300 K and a total pressure of 101.3Kpa. The equilibrium relation for the acetone (A) in the gas-liquid is $y_A = 2.53 x_A$. Determine the number of theoretical stages required for this separation. 2 + 13
- 10. a) Describe briefly the types of leaching equipment.
 - b) In a single stage leaching of soybean oil from flaked soybeans with hexane, 100kg of soybeans containing 20 wt% oil is leached with 100 kg of fresh hexane solvent. The value of N for the slurry underflow is essentially constant at 1.5kg insoluble solid/kg solution retained. Calculate the amounts and compositions of the overflow and the underflow slurry leaving the stage.

 6 + 9
- 11. a) A salt solution weighing 10000 kg with 30 wt% $\rm Na_2CO_3$ is cooled to 293 K. The salt crystallizes as the decahydrate. What will be the yield of $\rm Na_2CO_3$. 10 $\rm H_2O$ crystals if the solubility is 21.5 kg anhydrous $\rm Na_2CO_3/100$ kg of total water ? Do this for the following cases.
 - i) Assume that no water is evaporated.
 - ii) Assume that 3% of the total weight of the solution is lost by evaporation of water in cooling.

CS/B.Tech/BT (O)/SEM-5/BT (CHE)-514/2012-13

b) Calculate the flux and the rate of removal of urea at steady state in g/h from blood in a cuprophane membrane dialyzer at 37° C. The membrane is 0.025 mm thick and has an area of $2.0m^{2}$. The mass transfer coefficient on the blood side is estimated as k_{cl} = 1.25×10^{-5} m/s and that on the aqueous side is 3.33×10^{-5} m/s. The permeability of the membrane is 8.73×10^{-6} m/s. The concentration of urea in the blood is 0.02 g urea 100 mL and that in the dialyzing fluid will be assumed as 0.