# ELEX 7660: Digital System Design Composite Video Encoder with SPI Interface Proposal

Matthew Knight, Cole Harkness

2017-01-31

# **Abstract**

# Main Objective

The main objective of this project is to generate a black and white composite video signal that will drive a Cathode Ray Tube (CRT) television. The composite

# **Secondary Objectives**

#### Framerate Control

The framerate for a CRT is roughly 30Hz while the shutter rate for most video cameras is 24Hz. When filming a CRT screen, slightly more than one frame will be displayed in the time that the image is captured on the camera, this results in a sweeping, white bar that will appear on the television when viewing the film. This is undesireable.

Many prosumer and professional cameras have an output signal called HSYNC. This signal will be used to trigger the composite video encoder so that only one frame is written to the television during one shutter period. In theory this will remove any erronous artifacts that would normally be seen in the video.

## Sound Synthesizer

Adding to the SPI interface, we could add commands that trigger pre-generated sound "bites" which would play in conjunction with pong. These sounds could either be programmed to the encoder through SPI, and saved into RAM or hardcoded into ROM. A DAC would then be needed to drive a speaker. Sound information and playing would be modeled after some standard, possibly something like WAV.

### Open MSP430 Synthesis

On Opencores.com an open source IP of the MSP430 core can be downloaded for synthesis in an FGPA. To cut back on the hardware used in the project, we can put this core on our FPGA and program pong onto it. This also adds some complexity as the ADC on the evaluation board would need to be interfaced to the system.

## Colour

The colour component of a composite signal is transmitted through the phase and angle modulation of a 3.58 MHz carrier. In order to generate this signal we would need to employ a parallel DAC instead of our cheap, lopsided, but inexpensive resistor divider DAC. Additionally we would need to come up with some sort of simplified colour encoding, perhaps keeping the number of colours to 8 - at most 256.