Patent Claims

1.	Method of generating defects in a lattice structure of a
	semiconductor material during thermal treatment of the
	material, in which the concentration and/or distribution of
	defects or vacancies are controlled as a function of a
	process gas atmosphere.

- 2. Method according to claim 1, characterized in that the defects are vacancies (empty lattice positions).
- 3. Method according to claim 1 or 2, characterized in that the defects are semiconductor- substrate atoms on interstitial lattice positions (self-interstitials).
- 4. Method according to one of the preceding claims, characterized in that the composition of the process gas is controlled.
- 5. Method according to one of the preceding claims, characterized in that the concentration of the process gas or of the process gas components is controlled.
- 6. Method according to one of the preceding claims, characterized in that the partial pressure of the process gas is controlled.
- 7. Method according to one of the preceding claims,

10

5

15

ngospatu net

20

5

10

15

20

	characterized in that the process gas includes a nitrogen-
	containing gas.
8.	Method according to claim 7, characterized in that the
	process gas includes NH ₃ .
9.	Method according to claim 7 or 8, characterized in that the
	process gas includes N ₂
10.	Method according one of the preceding claims, characterized
	in that the process gas contains no oxygen.
. 11.	Method according to one of the claims 1 to 9, characterized
	in that the process gas includes an oxygen-containing
	component.
12.	Method according to claim 11, characterized in that the
	oxygen-containing component includes N ₂ O, No, and/or H ₂ O.
13.	Method according to one of the preceding claims,
	characterized in that the temperature behavior of the thermal
	treatment is controlled in terms of time.
14.	Method according to one of the preceding claims,
	characterized in that the process gas atmosphere contains
	argon.
15.	Method according to one of the preceding claims,
	characterized in that an Si _x O _y N _z layer is produced upon the
	surface of the sem conductor.

- 21 -

			characterized in that prior to the thermal treatment a natural
	5		SiO ₂ layer is removed from the semiconductor surface.
		18.	Method according to claim 1, characterized in that a Si ₃ N ₄
			layer having a thickness of between 0 and 40 angstroms is
=			produced upon the semiconductor.
		19.	Method according to claim 7, characterized in that the NH ₃
	10		concentration is 0 to 10,000ppm.
The second street through the street through the	ŕ	20.	Method according to claim 19, characterized in that the NH ₃
			concentration is 2500 to 5,000ppm.
Non hall and I'v thus that		21.	Method according one of the preceding claims,
			characterized in that the thermal stress of the semiconductor
#	15		wafer is reduced to a minimum.
		22.	Method according to one of the preceding claims,
			characterized in that a distribution of foreign atoms within the
			semiconductor material is controlled via the distribution of the
			defects.
	20	23.	Method according to claim 22, characterized in that the
			foreign atoms/have at least one element of the following
			group of borom, phosphorus, As, Sb and In.

16.

17.

Method according to claim 15, characterized in that the

Method according to one ϕ f the preceding claims,

thickness of the layer is 0 to 20 angstroms.

- 22 -

5

10

- 24. Method according to one of the preceding claims, that the method is carried out on a semiconductor doped with foreign atoms.
- 25. Method according to one of the claims 1 to 23, characterized in that the method is carried out on a semiconductor that is to be doped.
- 26. Method according to claim 25, characterized in that the semiconductor is doped.
- 27. Method according to one of the preceding claims, characterized in that the semiconductor is doped by means of gas phase doping, implantation, and/or diffusion by out-diffusion into the semiconductor from a layer that contacts the semiconductor.

Add Ad7