

TEMPORAL AGGREGATION

For Voluminous Trace Visualization

AFP 10 - 12th June 2014

Damien DosimontGuillaume Huard
Jean-Marc Vincent

Inria, Grenoble University first.last@imag.fr

How an Internet Provider Loses a

Customer

RECORDING A STREAMING WITH A SET-TOP BOX

- → A customer wants to see the last episode of Game of Throne on his TV
- → Unfortunately, the episode is released the morning
- → So, he decides to record the streaming on a hard drive thanks to his set-top box
- → Eventually, he watches the episode just after the work
- \rightarrow But...

Time Aggregation

THE VIDEO

Play

ST MICROELECTRONICS' TS RECORD USE CASE

- → HD video streaming : big quantity of data transmitted through the network
- → Data stored in **IP buffers**, waiting to be sent to the disk
- → sys_write() function send the data to the disk every 100 ms
- → The **kernel flushes** the disk cache every 5000 ms

Trace Visualization Issues

HOW TO DEBUG OUR APPLICATION?

Tracing

Collect information about the application behavior

- → Structure ·
 - → hardware components (machines, cores, dedicated hardware)
 - → software components (processes, threads, system, middlewares)
- → **Timestamped events**: function calls, synchronization, communications, CPU load, memory utilization etc.

Visualization

Statistics, Gantt chart, call graphs etc.

STATISTICS

Use case

EXAMPLE OF GANTT CHART

VISUALIZATION ISSUES

- → **Statistics** are not able to show temporal perturbations
- → Traces are huge (we have worked with traces up to 200 million events)
- → Traditional temporal visualization does not respect Shneiderman methodology Overview first, zoom and filter, then, get details-on-demand
- → Some tools propose aggregation techniques but they do not convey **meaning** to the user

EXAMPLE OF GANTT CHART ISSUES

OUR PROPOSAL: OCELOTL

Use case

A temporal aggregation technique that provides an overview over time

- → We use a meaningful aggregation algorithm that gathers temporal parts of the trace where the behavior is similar
- → The user chooses the aggregation strength
- → He is aware of the information loss
- → He can interact
- → We manage up to 200 million events

TS Record Analysis

EXAMPLE OF OCELOTL VISUALIZATION

Temporal Aggregation Technique

LAMARCHE-PERRIN: BUILD A MACROSCOPIC MODEL

AGGREGATION METHODOLOGY

- → Determine the dimension(s) to aggregate: time
- → Define a microscopic model: time slices with associated values
- → Constrain the aggregation: only consecutive parts
- → Choose a criterion that triggers the aggregation: information and complexity
- → Build an algorithm to provide a partition of the system

INFORMATION LOSS: KL DIVERGENCE

Use case

COMPLEXITY REDUCTION: SHANNON ENTROPY

Use case

$$gain_X = \rho_X \log_2 - \rho_X \sum_{x \in X} \rho_x \log_2 \rho_x$$

COMPROMISE: PIC

$$pIC_X = p gain_X - (1 - p) loss_X$$

AGGREGATION ALGORITHM

Microscopic Model

Quality Measures X2 (Loss, Gain)

0123			
012	123		
01	12	23	
0	1	2	3

pIC for a given p

Best Cuts: select the highest pIC

Result:

BUILD THE TRACE MICROSCOPIC MODEL

And so on...

COMPUTE THE QUALITIES

	0123				
	012	123			
=	01	12	23		
	0	1	2	3	

0123				
012	123			
01	12	23		+
0	1	2	3	

Red State Quality Measures

IRQ Red State Quality Measures

Process 1 Red State Quality Measures

0123			
012	123		
01	12	23	
0	1	2	3

	0123			
	012	123		
=	01	12	23	
	0	1	2	3

	0123				
	012	123			
+	01	12	23		+
	0	1	2	3	

Green State Quality Measures IRQ Green State Quality Measures Process 1 Green State Quality Measures

0123

0123			
012	123		
01	12	23	
0	1	2	3

Quality Measures

REPRESENT THE AGGREGATES

TS Record Analysis

MICROSCOPIC DESCRIPTION

MACROSCOPIC DESCRIPTION

MESOSCOPIC DESCRIPTION

FOCUS ON AN AREA

Use case

REPEAT THE AGGREGATION PROCESS

FIND THE BUG WITH THE GANTT CHART

ANALYSIS CONCLUSION

→ During the flush, the cache is locked, and sys_write() is blocked

Problem

Writing on a USB disk is **slow**, IP buffers are often **overflowed**

Solution

Linux configuration: Wake up the flush according to the data quantity

OCELOTL APPLIED ON A PARALLEL APPLICATION TRACE

Grid'5000 Rennes, 64 Cores, NASBP CG, class C

CONCLUSION

- → **Shneiderman** methodology respected
- → Experiences show the ability to understand the **temporal** behavior
- → We found why the episode of Game of Throne was not recorded correctly ;-)
- → Able to work with 200 million events (theoretically, no limit)
- → Satisfying algorithm and interaction performance

CURRENT WORK: SPATIO TEMPORAL AGGREGATION

Use case

