声明:本试卷仅凭记忆整理,可能不尽准确。本人绝对未在考试中实施任何作弊行为,也绝对未在考试结束后将试卷、草稿纸带出考场。

哈尔滨工业大学(深圳)2022 学年秋季学期

电路 IB 试题(A)(回忆版本)

说明:本次考试为闭卷考试,考试时间为120分钟,总分80分。

注意行为规范 遵守考场纪律

一、填空题(每题2分,满分10分)

1.	均匀传输线上总电压是正向行	法电压和反向行波电压的	(和/差),	总电流是正向行
波	电流和反向行波电流的	(和/差)。		

- **2.** 网络图论中,一个基本回路是指一个_____(单树支/单连支)回路,其方向规定为_____ 的方向。
- 3. 对于一个二端口网络,用 A 参数表达的二端口网络互易条件为______,对称条件为
- **4.** 正弦交流磁路中,若励磁电压为工频 220V,则在 100 匝线圈中产生的磁通最大值为 ________,相位______(超前/滞后)电压 90°。
- **5.** 图 1 所示恒定磁通磁路,截面积为 S 的铁心中开有一窄气隙。在磁通势不变的条件下,若将气隙长度减小,则回路中的磁通将______(减小/增大)(不计漏磁及边缘效应)。

二、单项选择题(每题3分,满分12分)

1. 图 2 所示二端口网络的阻抗参数矩阵为 $\begin{bmatrix} j3 & j6 \\ j6 & j6 \end{bmatrix}$ Ω ,则电阻 R_L 吸收功率为()

(A) 3W (B) 5W (C) 8W (D) 9W

- 2. 下列说法不正确的是()
 - (A) 当实际电路尺寸远小于其工作频率下的电磁波波长时,可视为集中参数电路
 - (B) 当终端反射系数为1时,负载与传输线匹配
 - (C) 高频正弦交流作用下, 即当 $\omega L_0 >> R_0$, $\omega L_0 >> G_0$ 时, 均匀线可视为无损线
 - (D) 二端口的输入端等效阻抗与二端口的参数及所接负载都有关
- 3. 图 3 所示无损线的波阻抗分别为 $Z_{c1}=60\Omega$, $Z_{c2}=100\Omega$,则为使两段线上都不出现反射 波,所接负载 Z₁、Z₂分别为(

- (A) 60Ω , 100Ω
- (B) 60Ω , 150Ω (C) 100Ω , 60Ω (D) 150Ω , 100Ω
- **4.** 用终端短路的无损线来等效电感 $L=5\times10^{-6}$ H,无损线波阻抗为 500Ω,线上波长 $\lambda=$ 30m,则所需无损线的最短长度为()
 - (A) 2.7m
- (B) 2m
- (C) 3.7m
- (D) 2.5m

三、计算题(每题8分,满分40分。应有必要计算过程)

- **1.** 设某网络的基本回路矩阵为 $\mathbf{B} = \begin{bmatrix} 0 & -1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$
 - ① 若如已知连支电流 $i_4 = 4A$, $i_5 = 5A$, $i_6 = 6A$, 求树支电流。
 - ② 若已知树支电压 $u_1 = 1V$, $u_2 = 2V$, $u_3 = 3V$, 求连支电压。
 - ③ 画出该网络的图。
- 2. 图 4 所示电路, U_S =6V, R_S =1 Ω ,时变电流源 i_S = 0.5 $\cos(\omega t)$ A ,用小信号分析法求电压 u

与电流 i。非线性电阻电压电流函数关系为 $i = \begin{cases} u^2, u > 0 \\ 0, u < 0 \end{cases}$ (u 单位为 V, i 单位为 A)

3. 图 5 所示电路中网络 N_2 的导纳参数矩阵为 $\mathbf{Y} = \begin{bmatrix} 1.5 & -3.5 \\ -0.5 & 1.5 \end{bmatrix}$ S ,求复合二端口 N 的传输参数矩阵。

4. 设图 6 所示无损线长为 17m,波阻抗 $Z_c=150\Omega$, u_s 为正弦电压源。传输线上的行波波长 $\lambda=8\mathrm{m}$,电容的容抗 $|X_c|=150\Omega$ 。试求传输线上电流始终为零的点距终端的距离。

5. 图 7 所示恒定磁通磁路中,长度尺寸单位为 mm。铁心平均厚度为 60mm,励磁线圈匝数为 1000,铁心未饱和,其相对磁导率为 μ_r =500。若要在气隙中形成 9×10⁻⁴Wb 的磁通,需加多大的励磁电流?(真空磁导率 μ_0 =4 π ×10⁻⁷H/m,不计漏磁,但考虑气隙边缘效应)

四、计算题(每题9分,满分18分。应有必要计算过程)

1. 图 8 所示电路中二端口 N 的传输参数矩阵为 $A = \begin{bmatrix} 1 & 6\Omega \\ \frac{2}{3}S & 2 \end{bmatrix}$, t = 0 时开关闭合,求电压 u_2 。

- **2.** 图 9 所示分布参数电路,1–3、1′–3′、2–3、2′–3′ 间接有无损均匀传输线,线长为 l_1 = 25m, l_2 = 12.5m,波阻抗 Z_{c1} = 100Ω, Z_{c2} = 50Ω, $R_{\rm S}$ = 25Ω, $u_{\rm S}$ = 100 $\sqrt{2}\cos(\omega t)$ V,1–1′ 间接有集中 参数电容,容抗 X_C = -200Ω,线上工作频率为 f=3×10⁶Hz。(波速可视为光速)
 - (1) 求始端电流 *i(t)*; (2) 求1-1'端电压 *u*₁和电流 *i*₁。

