1. На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что дорога CD длиннее дороги EF. Определите сумму длин дорог AB и AG

	П1	П2	П3	П4	П5	П6	П7	П8
П1		17					32	
П2	17						29	13
П3				16	12		33	
П4			16				28	
П5			12				38	
П6							25	15
П7	32	29	33	28	38	25		30
П8		13				15	30	

2. Логическая функция F задаётся выражением ($x \equiv (w \lor y)$) $\lor ((w \to z) \land (y \to w))$. Дан частично заполненный фрагмент, содержащий **неповторяющиеся** строки таблицы истинности функции F. Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.

Переменная 1	Переменная 2	Переменная 3	Переменная 4	Функция
???	???	???	???	F
1			1	0
			1	0
1		1		0

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

Переменная 1	Переменная 2	Функция	
???	???	F	
0	1	0	

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

3. В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Задание 3

Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите общую стоимость продуктов, поставленных за указанный период с мелькомбината в магазины Заречного района.

В ответе запишите целое число — найденную общую стоимость в рублях.

4. Для кодирования некоторой последовательности, состоящей из букв Л, М, Н, П, Р, решили использовать неравномерный двоичный код, удовлетворяющий условию, что никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Для букв Л, М, Н использовали соответственно кодовые слова 00, 01, 11. Для двух оставшихся букв П и Р — кодовые слова неизвестны.

Укажите кратчайшее возможное кодовое слово для буквы П, при котором код будет удовлетворять указанному условию. Если таких кодов несколько, укажите код с наименьшим числовым значением.

- 5. На вход алгоритма подаётся натуральное число *N*. Алгоритм строит по нему новое число *R* следующим образом.
- 1. Строится двоичная запись числа N.
- 2. Далее эта запись обрабатывается по следующему правилу:
- а) если сумма цифр в двоичной записи числа чётная, то к этой записи справа дописывается 0, а затем два левых разряда заменяются на 10;
- б) если сумма цифр в двоичной записи числа нечётная, то к этой записи справа дописывается 1, а затем два левых разряда заменяются на 11.

Полученная таким образом запись является двоичной записью искомого числа R.

Например, для исходного числа $6_{10} = 110_2$ результатом является число $1000_2 = 8_{10}$, а для исходного числа $4_{10} = 100_2$ результатом является число $1101_2 = 13_{10}$.

Укажите минимальное число N, после обработки которого с помощью этого алгоритма получается число R, большее 40. В ответе запишите это число в десятичной системе счисления.

6. Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись

Повтори k [Команда1 Команда2 ... Команда S]

означает, что последовательность из S команд повторится $\mathbf k$ раз. Черепахе был дан для исполнения следующий алгоритм:

Повтори 4 [Вперёд 7 Направо 90 Вперёд 8 Направо 90]

Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. *Точки на линии учитывать не следует.*

- 7. На снимок размером 1200 на 1024 пикселей в памяти выделено не более 1000 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.
- **8.** Руслан составляет 5-буквенные коды из букв Р, У, С, Л, А, Н. Каждая допустимая гласная буква может входить в код не более одного раза. Сколько кодов может составить Руслан?
- **9.** Электронная таблица содержит результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите, сколько раз за время измерений результат очередного измерения оказывался ниже результата предыдущего на 2 и более градусов.

Задание 9

10. С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «всё» или «Всё» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «всё» учитывать не следует. В ответе укажите только число.

Задание 10

11. При регистрации на сервере каждый пользователь получает уникальный персональный код, состоящий из 19 символов, каждый из которых может быть одной из 26 заглавных латинских букв или одной из 10 цифр. При этом в базе данных сервера формируется запись, содержащая этот код и дополнительную информацию о пользователе. Для представления кода используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством битов, а для кода в целом выделяется минимально возможное целое количество байт.

Для хранения данных о 40 пользователях потребовалось 2800 байт. Сколько байт выделено для хранения дополнительной информации об одном пользователе? В ответе запишите только целое число — количество байтов.

12. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды **заменить** (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б) нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

```
Цикл
  ПОКА условие
    последовательность команд
  КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
  ЕСЛИ условие
    ТО команда1
  КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
  ЕСЛИ условие
    ТО команда1
    ИНАЧЕ команда2
  КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для Редактора:
НАЧАЛО
ПОКА нашлось (111)
  заменить (111, 2)
  заменить (222, 11)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой выше программы к строке, состоящей из 77 единиц?

13. На рисунке — схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, ЛПо каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Л?

- 14. Значение выражения $36^7 + 6^{19} 18$ записали в системе счисления с основанием 6. Сколько цифр 5 содержится в этой записи?
- 15. Для какого наибольшего целого неотрицательного числа A выражение

$$(x \cdot y < 100) \ V \ (y \ge A) \ V \ (x > A)$$

тождественно истинно, т. е. принимает значение 1 при любых целых неотрицательных х и у?

16. Последовательность чисел Люка задается рекуррентным соотношением:

F(1) = 2

F(2) = 1

F(n) = F(n-2) + F(n-1), при n > 2, где n — натуральное число.

Чему равно восьмое число в последовательности Люка?

В ответе запишите только натуральное число.

17. Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых хотя бы один из двух элементов делится на 3 и хотя бы один из двух элементов меньше среднего арифметического всех чётных элементов последовательности. В ответе запишите два числа: сначала количество найденных пар, а затем — максимальную сумму элементов таких пар.

Задание 17

Например, в последовательности (3 8 9 4) есть две подходящие пары: (3 8) и (9 4), в ответе для этой последовательности надо записать числа 2 и 13.

Ответ:		

18. Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

<u>Задание 18</u>

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером $N \times N$, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 39 или больше камней.

В начальный момент в куче было S камней, $1 \le S \le 38$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение *S*, когда такая ситуация возможна.

20. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 39 или больше камней.

В начальный момент в куче было S камней, $1 \le S \le 38$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

- Петя не может выиграть за один ход;
- Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 39 или больше камней.

В начальный момент в куче было S камней, $1 \le S \le 38$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
- 22. В файле <u>22_5.xlsx</u> содержится информация о совокупности *N* вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) A
1	4	0
2	3	0
3	1	1;2
4	7	3

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4+1=5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5+7=12 мс.

23. Исполнитель РазДваТри преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2
- 3. Прибавить 3

Первая команда увеличивает число на экране на 1, вторая умножает его на 2, третья увеличивает на 3.

Программа для исполнителя РазДваТри — это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 3 в число 16 и при этом траектория вычислений не содержит чисел 6 и 12?

Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 312 при исходном числе 6 траектория будет состоять из чисел 9, 10, 20.

24. Текстовый файл содержит только буквы A, C, D, F, O. Определите максимальное количество идущих подряд групп символов вида

согласная + согласная + гласная.

Задание 24

25.

Найдите 5 чисел больших 500000, таких, что среди их делителей есть число, оканчивающееся на 8, при этом этот делитель не равен 8 и самому числу. В качестве ответа приведите 5 наименьших чисел, соответствующих условию.

Формат вывода: для каждого из 5 таких найденных чисел в отдельной строке сначала выводится само число, затем минимальный делитель, оканчивающийся на 8, не равный 8 и самому числу.

Ответ:	

26. Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.

По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.

Входные данные.

Задание 26

В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 3000). В следующих Nстроках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.

И ма I Ma

запишите в ответе два числа: сначала наиоольшее число пользователеи, чьи фаилы могут оыть помещены в архив, затем
максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файль
максимально возможного числа пользователей.
Пример входного файла:
100 4
80
30
50
40
При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух
файлов 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для
приведённого примера:
2 50
Ответ:
27. Набор данных состоит из нечётного количества пар натуральных чисел. Необходимо выбрать из каждой пары ровно
одно число так, чтобы чётность суммы выбранных чисел совпадала с чётностью большинства выбранных чисел и при этом
сумма выбранных чисел была как можно меньше. Определите минимальную сумму, которую можно получить при таком

OI выборе. Гарантируется, что удовлетворяющий условиям выбор возможен. Входные данные.

> Файл А Файл В

Первая строка входного файла содержит число N — общее количество пар в наборе. Каждая из следующих N строк содержит два натуральных числа, не превышающих 10 000.

Пример входного файла:

5

15 8

5 11

63

72 9 14

Для указанных данных надо выбрать числа 8, 5, 3, 2 и 9. Большинство из них нечётны, сумма выбранных чисел равна 27 и тоже нечётна. В ответе надо записать число 27.

Вам даны два входных файла (А и В), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.

Предупреждение: для обработки файла B не следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.

Ответ:	