Near-Field Radiative Heat Transfer Between Two $\alpha - MoO_3$ Biaxial Crystals

GROUP - 9

Vinit Doke Kaushik Singirikonda Shourish Khade Parth Shrivastava

PH202: Waves, Oscillations and Optics

Overview

Introduction

Material Characteristics

Setup

Phonon Tunelling Probability

Reflection Matrix

Heatmaps

NFRHF

Heat Flux Variation

Conclusion

Introduction

- ▶ What is Near Field Heat Transfer?
- ▶ What are *HPPs* and *HSPhPs*?
- Anisotropy and How it affects the system?

Material Characteristics

Principal Relative Permittivity Components (Lorentz Model)

$$\epsilon_m = \epsilon_{\infty,m} \left(1 + \frac{\omega_{LO,m}^2 - \omega_{TO,m}^2}{\omega_{TO,m}^2 - \omega^2 - j\omega\Gamma_m} \right), \ m = x, y, z$$

► Restrahlen Bands

Experimental Setup

Rotated Permittivity Tensor

$$\begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix} \epsilon \begin{pmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$\xi(\omega, \beta, \phi)$: Phonon Tunelling Probability

- \blacktriangleright ξ is the Energy Transmission Coefficient/ Phonon tunneling Probability
- ▶ If $\beta < k_0$ (Propagating waves):

$$\xi(\omega,\beta,\phi) = Tr[(I - R_2^{\dagger}R_2)D(I - R_1^{\dagger}R_1)D^{\dagger}]$$

▶ If $\beta > k_0$ (Evanescent waves):

$$\xi(\omega,\beta,\phi) = Tr[(R_2^{\dagger}-R_2)D(R_1-R_1^{\dagger})D^{\dagger}]e^{-2|k|d}$$

Reflection Matrix

► The Fresnel Coefficient Matrix

$$R_{1,2} = \begin{pmatrix} r_{ss}^{1,2} & r_{sp}^{1,2} \\ r_{ps}^{1,2} & r_{pp}^{1,2} \end{pmatrix}$$

- ► Coefficients obtained using the Modified 4 × 4 transfer matrix method.
- $D = (I R_1 R_2 e^{2jkd})^{-1}$

Heatmaps

Figure: Result Comparison

More Heatmaps

Near-Field Radiative Heat Flux

Radiative Heat Flux:

$$Q = \frac{1}{8\pi^3} \int_0^\infty [\Theta(\omega, T_1) - \Theta(\omega, T_2)] d\omega \int_0^{2\pi} \int_0^\infty \xi(\omega, \beta, \phi) \beta d\beta d\phi$$

► Mean Energy of Planck Oscillator:

$$\Theta(\omega, T) = \frac{\hbar \omega}{e^{\frac{\hbar \omega}{kT}} - 1}$$

Variation of NFRHF with Gap Width, d

Variation of NFRHF with Relative Rotation Angle, γ

Variation of NFRHF with Angular Frequency, ω

Conclusion

- ► Enhanced Heat Flux in the near field regime
- NFRHF modulation by changing the relative rotation angle
- Ways to manipulate near-field radiative transfer between anisotropic materials

Contributions

- ► Restrahlen Bands plot done by Vinit
- ► Figuring out the methodology and math of 4 × 4 matrix and studying theory of HPPs and HSPhPs was done by Kaushik and Parth
- Implementation of ξ function and plotting of heat maps done by Kaushik, Parth and Vinit
- Implementation of Heat Flux function done by Shourish and Vinit
- Plotting of Variation of Heat flux with γ, d, ω done by Shourish

