

Departamento de Ciência da Computação Arquitetura de Processadores Digitais

- Álgebra booleana
- Portas lógicas
- Tabela verdade

Lógica Digital

- Importância
- "0" e "1"

74LS00 12 11 10 9 8 74LS00 1 2 3 4 5 6 7

- Dígitos de uma base (binária)
- Estados ligado/desligado, condições falso/verdadeiro, opções A ou B, etc.
- Baixa e alta tensão elétrica
- Um circuito lógico pode ser representado por uma caixa preta

Lógica Digital

Combinacional

- Saída só depende dos sinais de entrada
- Descrita por uma tabela verdade
 - lista todas as combinações possíveis das entradas e as saídas resultantes
 - Se há n entradas, há 2ⁿ possíveis combinações

Sequencial

 Saída depende das entradas e também dos seus valores passados (memória)

Tabela Verdade

- Especifica os valores de saída para todos os valores de entrada
- Podem descrever qualquer função lógica combinacional

	Entradas			Saídas			
A	В	C	D	Ē	F		
0	0	0	0	0	0		
0	0	1	1	0	0		
0	1	0	1	0	0		
0	1	1	1	1	0		
1	0	0	1	0	0		
1	0	1	1	1	0		
1	1	0	1	1	0		
1	1	1	1	0	1		

Lógica Digital

Χ	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Álgebra Booleana

- Álgebra para os circuitos lógicos
- Todas as variáveis possuem valores 0 ou 1
- Operadores:
 - OR (+)
 - AND (.)
 - NOT (barra)
- Leis:
 - Identidade, zero e um, inversas
 - Comutativas, associativas, distributivas
 - DeMorgan

Funções lógicas básicas

(A simbologia pode ser diferente em outros livros!)

(a)
$$\frac{X}{Y}$$
 $\frac{X \text{ AND } Y}{X \cdot Y}$

(b)
$$\frac{X}{Y}$$
 $X OR Y$ $X + Y$

(c)	X	1	NOT X
1-1		\sim	X

:	X	Υ	X AND Y
	0	0	0
	0	1	0
	1	0	0
	1	1	1
	-		

X	NOT X
0	1
1	0

Funções lógicas básicas

Χ	Υ	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

Х	Υ	X NOR Y
0	0	1
0	1	0
1	0	0
1	1	0

Temporização, timming

Axiomas

$$X = 0 \text{ se } X \# 1$$

$$X = 1 \text{ se } X \# 0$$

Se
$$X = 1$$
, então $X' = 0$

$$1 + 1 = 1$$

$$0.0 = 0$$

$$1.1 = 1$$

$$0 + 0 = 0$$

$$0.1 = 1.0 = 0$$

$$1 + 0 = 0 + 1 = 1$$

Teoremas

(T1)
$$X + 0 = X$$
(T1') $X \cdot 1 = X$ (Identities)(T2) $X + 1 = 1$ (T2') $X \cdot 0 = 0$ (Null elements)(T3) $X + X = X$ (T3') $X \cdot X = X$ (Idempotency)(T4) $(X')' = X$ (Involution)(T5) $X + X' = 1$ (T5') $X \cdot X' = 0$ (Complements)

$$\begin{array}{lll} (T12) & \mathsf{X} + \mathsf{X} + \dots + \mathsf{X} = \mathsf{X} \\ (T12') & \mathsf{X} \cdot \mathsf{X} \cdot \dots \cdot \mathsf{X} = \mathsf{X} \\ (T13) & (\mathsf{X}_1 \cdot \mathsf{X}_2 \cdot \dots \cdot \mathsf{X}_n)' = \mathsf{X}_1' + \mathsf{X}_2' + \dots + \mathsf{X}_n' \\ (T13') & (\mathsf{X}_1 + \mathsf{X}_2 + \dots + \mathsf{X}_n)' = \mathsf{X}_1' \cdot \mathsf{X}_2' \cdot \dots \cdot \mathsf{X}_n' \\ (T14) & [\mathsf{F}(\mathsf{X}_1, \mathsf{X}_2, \dots, \mathsf{X}_n + , \cdot)]' = \mathsf{F}(\mathsf{X}_1', \mathsf{X}_2', \dots, \mathsf{X}_n', \cdot, +) \\ (T15) & \mathsf{F}(\mathsf{X}_1, \mathsf{X}_2, \dots, \mathsf{X}_n) = \mathsf{X}_1 \cdot \mathsf{F}(\mathsf{1} \mathsf{X}_2, \dots, \mathsf{X}_n) + \mathsf{X}_1' \cdot \mathsf{F}(\mathsf{0}, \mathsf{X}_2, \dots, \mathsf{X}_n) \\ (T15') & \mathsf{F}(\mathsf{X}_1, \mathsf{X}_2, \dots, \mathsf{X}_n) = [\mathsf{X}_1 + \mathsf{F}(\mathsf{0}, \mathsf{X}_2, \dots, \mathsf{X}_n)] \cdot [\mathsf{X}_1' + \mathsf{F}(\mathsf{1}, \mathsf{X}_2, \dots, \mathsf{X}_n)] \end{array}$$
 (Shannon's expansion theorems)

DeMorgan

$$(d) \qquad X \longrightarrow Z = X' + Y'$$

Formas de obter a função de saída

- -Tabela verdade ou
- -Expressões

Tabela verdade

Expressões

Exemplo

Exercício em Sala:

Obtenha as expressões lógicas e as tabelas verdade:

Porta NOR

		OR		NOR	
Α	В	A + B		A + B	
0	0	0		1	
0	1	1		0	
1	0	1		0	
1	1	1		0	
	(c)				

Porta NAND

			AND	NAND
Α	В		AB	AB
0	0		0	1
0	1		0	1
4	0		0	1
1	1		1	0

(c)

Com NANDs e NORs

$$F = [((W \cdot X')' \cdot Y)' + (W' + X + Y')' + (W + Z)']'$$

$$= ((W' + X)' + Y')' \cdot (W \cdot X' \cdot Y)' \cdot (W' \cdot Z')'$$

$$= ((W \cdot X')' \cdot Y) \cdot (W' + X + Y') \cdot (W + Z)$$

$$= ((W' + X) \cdot Y) \cdot (W' + X + Y') \cdot (W + Z)$$

Universalidade das NAND

Com portas NAND é possível implementar várias funções lógicas

Universalidade das NOR

Fig. 3-30 Portas NOR podem ser usadas para implementar qualquer função booleana.

Chips eletrônicos

Exemplo Ilustrativo

Alarme de nível de água: acusa tanque cheio

(Não se preocupe em conhecer os componentes eletrônicos!)

