1 Question de cours

Notion d'écoulement parfait et de couche limite. Conséquences sur les conditions aux limites.

2 Navigation à voile

1. Soit un fluide parfait incompressible s'écoulant en régime permanent dans un tube de section constante, présentant un coude d'angle θ et disposé horizontalement. En appliquant la conservation de la quantité de mouvement au système constitué par le fluide situé à l'instant t entre les sections A_1B_1 et A_2B_2 , qui se trouve à l'instant t+dt entre les sections C_1D_1 et C_2D_2 , montrer que la résultante des forces que le fluide exerce sur les parois du fait de son mouvement s'exprime par $\vec{F}_{\text{fluide}\to\text{paroi}} = \frac{dm}{dt}(\vec{v}_1 - \vec{v}_2)$. Puis, exprimer le débit massique $\frac{dm}{dt}$ en fonction de ρ masse volumique du fluide, S section de la conduite et $v = ||\vec{v}_1|| = ||\vec{v}_2||$ norme de la vitesse. En déduire la norme de la force en fonction de ρ , S, v et $\sin\frac{\theta}{2}$ et préciser avec soin sa direction.

2. Un voilier se déplace à la vitesse $\vec{v_B}$ par rapport à la mer; on supposera le vecteur vitesse $\vec{v_B}$ porté par l'axe du bateau, la dérive étant négligeable du fait de la présence d'une quille (voilier de type monocoque). Soit $\vec{v_0}$ la vitesse du vent par rapport à la mer, venant de la direction repérée par l'angle β . Déterminer la vitesse \vec{v} du vent par rapport au voilier appelé vent apparent; on précisera sa norme et sa direction notée α . Application numérique: $v_B = 4 \,\mathrm{m \cdot s^{-1}}$, $v_0 = 25 \,\mathrm{m \cdot s^{-1}}$, $\beta = 60^{\circ}$.

3. La grand'voile est un contour plan défini par le mât et la bôme; elle est placée dans l'écoulement apparent de l'air qui la

crée comme le coude de la question 1; le lest est supposé suffisant pour que le mât reste quasiment vertical, soit α la direction du vent apparent de vitesse \vec{v} et φ l'angle que forme la direction du vent apparent avec le plan du contour de la voile; soit Σ l'aire du contour plan. Exprimer la composante F_x .

- 4. Montrer que pour chaque direction α du vent apparent, un réglage optimal de l'angle φ est possible; soit φ_0 cette valeur, calculer φ_0 en fonction de α et donner la courbe $X(\alpha, \varphi_0)$ en fonction de α .
- 5. Calculer numériquement la force maximum F_{xM} avec les valeurs suivantes: $\Sigma = 20\,\mathrm{m}^2,\ v = 30\,\mathrm{m}\cdot\mathrm{s}^{-1},\ \alpha = 90^\circ$ et $\rho = 1, 3\,\mathrm{kg}\cdot\mathrm{m}^{-3}$.

Correction