પ્રશ્ન 1(અ) [3 ગુણ]

ઓહમના નિયમને તેની મર્યાદા અને ઉપયોગિતા સાથે સમજાવો.

જવાબ:

ટેબલ: ઓહમના નિયમનો સારાંશ

પાસું	นย์า
વિદ્યાન	વાહક દ્વારા પસાર થતો કરંટ વોલ્ટેજના સીધા પ્રમાણમાં હોય છે
સૂત્ર	$V = I \times R$
એકમો	V (વોલ્ટ), I (એમ્પિયર), R (ઓહ્ય)

મર્યાદાઓ:

- તાપમાન આદ્યારિત: તાપમાન સાથે અવરોધ બદલાય છે
- **બિન-રેખીય પદાર્થો**: સેમિકન્ડક્ટર, ડાયોડ પર લાગુ નહીં
- AC સર્કિટ: રિએક્ટિવ કોમ્પોનન્ટ્સ માટે બદલેલા સ્વરૂપની જરૂર

ઉપયોગિતા:

- સર્કિટ વિશ્લેષણ: અજાણા વોલ્ટેજ, કરંટ અથવા અવરોધની ગણતરી
- **પાવર ગણતરી**: P = V²/R, P = I²R

મેમરી ટ્રીક: "વોલ્ટેજ ઇઝ રિયલી ઇમ્પોર્ટન્ટ" (V = I × R)

પ્રશ્ન 1(બ) [4 ગુણ]

ફેરાડેના ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શનના નિયમને જરૂરી આકૃતિ સાથે સમજાવો.

જવાબ:

કેરાડેના નિયમો:

- પ્રથમ નિયમ: જ્યારે વાહક દ્વારા મેગ્નેટિક ફ્લક્સ બદલાય ત્યારે EMF પેદા થાય છે
- **બીજો નિયમ**: EMF નું મેગ્નિટ્યૂડ ફ્લક્સ ચેન્જના દર સમાન હોય છે

ગાણિતિક અભિવ્યક્તિ:

 $e = -N \times (d\Phi/dt)$

આકૃતિ:

ઉપયોગિતા:

• ટ્રાન્સફોર્મર: મ્યુચ્યુઅલ ઇન્ડક્શન સિદ્ધાંત

• જનરેટર: મિકેનિકલથી ઇલેક્ટ્રિકલ એનર્જી કન્વર્ઝન

• **ઇન્ડક્ટર**: સેલ્ફ-ઇન્ડ્યૂસ્ડ EMF કરંટ ચેન્જનો વિરોધ કરે છે

મેમરી ટ્રીક: "ફ્લક્સ ચેન્જ જનરેટ્સ EMF" (dΦ/dt = EMF)

પ્રશ્ન 1(ક) [7 ગુણ]

કિર્ચહોફના વોલ્ટેજના નિયમ અને કિર્ચહોફના કરંટના નિયમને જરૂરી આકૃતિ સાથે સમજાવો.

જવાબ:

ટેબલ: કિર્ચહોફના નિયમોની તુલના

નિયમ	વિદ્યાન	ગાણિતિક સ્વરૂપ	ઉપયોગ
KVL	બંધ લૂપમાં વોલ્ટેજનો સરવાળો = 0	ΣV = 0	સિરીઝ સર્કિટ
KCL	નોડ પર કરંટનો સરવાળો = 0	$\Sigma I = 0$	પેરેલલ સર્કિટ

KVL આકૃતિ:

KCL આકૃતિ:

મુખ્ય મુદ્દાઓ:

• KVL: બીજગણિતીય સરવાળો વોલ્ટેજ પોલેરિટી ધ્યાનમાં રાખે છે

• KCL: કરંટની દિશાઓ ધ્યાનમાં રાખે છે (આવતો વિ જતો)

• **ઉપયોગિતા**: સર્કિટ વિશ્લેષણ, અજાણા મૂલ્યો શોધવા

મેમરી ટ્રીક: "વોલ્ટેજ લૂપ્સ, કરંટ નોડ્સ" (KVL લૂપ માટે, KCL નોડ માટે)

પ્રશ્ન 1(ક અથવા) [7 ગુણ]

સ્ટેટિકલી ઇન્ડ્યૂસ્ડ EMF અને ડાયનેમિકલી ઇન્ડ્યૂસ્ડ EMF વચ્ચેનો તફાવત સમજાવો.

જવાબ:

ટેબલ: સ્ટેટિક વિ ડાયનેમિક EMF

પેરામીટર	સ્ટેટિકલી ઇન્ક્યૂસ્ડ EMF	ડાયનેમિકલી ઇન્ક્ય ૂસ ્ડ EMF
કારણ	બદલાતું મેગ્નેટિક ફ્રીલ્ડ	વાહક અને ફીલ્ડ વચ્ચે સંબંધિત ગતિ
ફીલ્ડ	સમય-બદલાતું, વાહક સ્થિર	સ્થિર ફીલ્ડ, વાહક ગતિશીલ
ઉદાહરણો	ટ્રાન્સફોર્મર, ઇન્ડક્ટર	જનરેટર, મોટર
સૂત્ર	$e = -N(d\Phi/dt)$	e = BLv
ઉપયોગિતા	AC સર્કિટ, પાવર સપ્લાય	પાવર જનરેશન, મોટર્સ

સ્ટેટિક EMF ના પ્રકારો:

• સેલ્ફ-ઇન્ક્યૂસ્ક: એક જ કોઇલ ફ્લક્સ ચેન્જ બનાવે અને અનુભવે છે

• મ્યુચ્યુઅલી ઇન્ક્યૂસ્ક: એક કોઇલ બીજી કોઇલને અસર કરે છે

ડાયનેમિક EMF ના પરિબળો:

• મેગ્નેટિક ફીલ્ડ સ્ટ્રેન્થ (B): ટેસ્લા

• કન્ડક્ટર લેન્થ (L): મીટર

• **વેલોસિટી (v)**: m/s

મેમરી ટ્રીક: "સ્ટેટિક સ્ટેઝ, ડાયનેમિક ડાન્સ" (સ્ટેટિક = સ્થિર, ડાયનેમિક = ગતિ)

પ્રશ્ન 2(અ) [3 ગુણ]

ટ્રાન્સફોર્મરમાં થતાં વિવિધ પ્રકારના લોસ સમજાવો.

જવાબ:

ટેબલ: ટ્રાન્સફોર્મર લોસ

લોસનો પ્રકાર	કારણ	સ્થાન	લક્ષણો
આયર્ન લોસ	હિસ્ટેરેસિસ + એડી કરંટ	કોર	સ્થિર, ફ્રિક્વન્સી આધારિત
કોપર લોસ	I²R હીટિંગ	વાઇન્ડિંગ	લોડ સાથે બદલાતું
સ્ટ્રે લોસ	લીકેજ ફ્લક્સ	એકંદર	ન્યૂનતમ

આયર્ન લોસ:

• હિસ્ટેરેસિસ લોસ: મેગ્નેટિક ડોમેઇન રિવર્સલ એનર્જી

• એડી કરંટ લોસ: કોરમાં ફરતા કરંટ

કોપર લોસ:

• પ્રાઇમરી વાઇન્ડિંગ: I₁²R₁

• સેકન્ડરી વાઇન્ડિંગ: 1₂2R₂

મેમરી ટ્રીક: "આયર્ન કોર, કોપર કોઇલ" (મુખ્ય લોસનું સ્થાન)

પ્રશ્ન 2(બ) [4 ગુણ]

ટાન્સકોર્મરનો કાર્ય સિદ્ધાંત સમજાવો.

જવાબ:

કાર્ય સિદ્ધાંત:

સામાન્ય મેગ્નેટિક કોર દ્વારા પ્રાઇમરી અને સેકન્ડરી વાઇન્ડિંગ વચ્ચે **મ્યુચ્યુઅલ ઇલેક્ટ્રોમેગ્નેટિક ઇન્ડક્શન**.

આકૃતિ:

ઓપરેશન સ્ટેપ્સ:

• **સ્ટેપ 1**: પ્રાઇમરીમાં AC કરંટ બદલાતું ફ્લક્સ બનાવે છે

• સ્ટેપ 2: કલક્સ કોર દ્વારા સેકન્ડરી સાથે લિંક થાય છે

- **સ્ટેપ 3**: બદલાતું ફલક્સ સેકન્ડરીમાં EMF ઇન્ડ્યૂસ કરે છે
- **સ્ટેપ 4**: સેકન્ડરી EMF લોડ દ્વારા કરંટ ચલાવે છે

મુખ્ય સંબંધો:

- **વોલ્ટેજ રેશિયો**: $V_2/V_1 = N_2/N_1$
- કરંટ રેશિયો: |₁/|₂ = N₂/N₁

મેમરી ટ્રીક: "પ્રાઇમરી પ્રોક્યૂસ, સેકન્ડરી સપ્લાય" (એનર્જી ટ્રાન્સફરની દિશા)

પ્રશ્ન 2(ક) [7 ગુણ]

ટ્રાન્સફોર્મરનું EMF સૂત્ર તારવો.

જવાબ:

આપેલા પેરામીટર:

- N₁: પ્રાઇમરી ટર્ન્સ, N₂: સેકન્ડરી ટર્ન્સ
- Φ_m: મેક્સિમમ ફલક્સ, **f**: ફ્રિક્વન્સી

EMF ડેરિવેશન:

સ્ટેપ 1: ફલક્સ વેરિએશન

```
\Phi = \Phi_{\mathsf{m}} \sin(2\pi \mathsf{ft})
```

સ્ટેપ 2: ફલક્સ ચેન્જનો દર

```
d\Phi/dt = 2\pi f\Phi_m \cos(2\pi ft)
```

સ્ટેપ 3: મેક્સિમમ રેટ

```
(d\Phi/dt)_{max} = 2\pi f\Phi_m
```

સ્ટેપ 4: RMS EMF સૂત્ર

```
E_1 = 4.44 \times f \times N_1 \times \Phi_m
E_2 = 4.44 \times f \times N_2 \times \Phi_m
```

ટેબલ: EMF સૂત્રના ભાગો

ਮ ਰੀ ទ	પેરામીટર	એકમો
E	RMS EMF	વોલ્ટ
f	ફ્રિક્વન્સી	Hz
N	ટર્ન્સની સંખ્યા	-
Φ_{m}	મેક્સિમમ ફ્લક્સ	વેબર
4.44	ફોર્મ ફેક્ટર કોન્સ્ટન્ટ	-

ટ્રાન્સફોર્મેશન રેશિયો:

 $K = E_2/E_1 = N_2/N_1$

મેમરી ટ્રીક: "ફોર-ફોર્ટી-ફોર ફલક્સ ફોર્મ્યુલા" (4.44 ફેક્ટર)

પ્રશ્ન 2(અ અથવા) [3 ગુણ]

ટાન્સફોર્મરની ઉપયોગિતા સમજાવો.

જવાબ:

ટેબલ: ટ્રાન્સફોર્મર એપ્લિકેશન્સ

ઉપયોગિતા હેતુ		વોલ્ટેજ લેવલ
પાવર ટ્રાન્સમિશન	ટ ટ્રાન્સમિશન ટ્રાન્સમિશન લોસ ઘટાડવા	
ડિસ્ટ્રિબ્યુશન	ગ્રાહકો માટે સુરક્ષિત વોલ્ટેજ	સ્ટેપ-ડાઉન (230V)
આઇસોલેશન	ઇલેક્ટ્રિકલ આઇસોલેશન	1:1 રેશિયો
ઇલેક્ટ્રોનિક સર્કિટ	DC પાવર સપ્લાય	સ્ટેપ-ડાઉન

ઇન્ડસ્ટ્રિયલ એપ્લિકેશન્સ:

• વેલ્ડિંગ ટ્રાન્સફોર્મર: હાઇ કરંટ, લો વોલ્ટેજ

• ઇન્સ્ટ્રુમેન્ટ ટ્રાન્સફોર્મર: મેઝરમેન્ટ અને પ્રોટેક્શન

• ઓડિયો ટ્રાન્સફોર્મર: ઇમ્પીડન્સ મેચિંગ

મેમરી ટ્રીક: "પાવર ડિસ્ટ્રિબ્યુશન આઇસોલેશન ઇલેક્ટ્રોનિક્સ" (મુખ્ય એપ્લિકેશન વિસ્તારો)

પ્રશ્ન 2(બ અથવા) [4 ગુણ]

DC મોટર માટે બેક EMF અને ટોર્કનું સૂત્ર લખો.

જવાબ:

બેક EMF સૂત્ર:

 $Eb = (\phi \times Z \times N \times P) / (60 \times A)$

સરળ સ્વરૂપ:

 $Eb = K \times \phi \times N$

ટોર્ક સૂત્ર:

 $T = (\phi \times Z \times Ia \times P) / (2\pi \times A)$

સરળ સ્વરૂપ:

 $T = K \times \phi \times Ia$

ટેબલ: પ્રતીકોની વ્યાખ્યા

ਮਰੀ ਤ	પેરામીટર	એકમો
Eb	બેક EMF	વોલ્ટ
Т	ટોર્ક	N-m
ф	ફલક્સ પર પોલ	વેબર
N	સ્પીડ	RPM
la	આર્મેચર કરંટ	એમ્પિયર
К	મોટર કોન્સ્ટન્ટ	-

મેમરી ટ્રીક: "બેક EMF વિરોધ કરે, ટોર્ક પ્રસ્તાવિત કરે" (EMF સપ્લાયનો વિરોધ, ટોર્ક રોટેશન ચલાવે)

પ્રશ્ન 2(ક અથવા) [7 ગુણ]

DC મોટરની રચના અને કાર્ય પદ્ધતિ આકૃતિ સાથે સમજાવો.

જવાબ:

રચનાના ભાગો:

ટેબલ: DC મોટરના પાર્ટ્સ

કોમ્પોનન્ટ	รเช้	મટીરિયલ
સ્ટેટર	મેગ્નેટિક ફીલ્ડ પ્રદાન કરે છે	કાસ્ટ આયર્ન/સ્ટીલ
રોટર/આર્મેચર	ફરતો ભાગ	સિલિકોન સ્ટીલ લેમિનેશન્સ
કોમ્યુટેટર	કરંટ દિશા બદલવા	કોપર સેગમેન્ટ્સ
બ્રશેસ	કરંટ સંગ્રહ	કાર્બન
ફીલ્ડ વાઇન્ડિંગ	ઇલેક્ટ્રોમેગ્નેટ	કોપર વાયર

રચના આકૃતિ:

કાર્ય સિદ્ધાંત:

- સ્ટેપ 1: આર્મેચર કન્ડક્ટર દ્વારા કરંટ પસાર થાય છે
- સ્ટેપ 2: મેગ્નેટિક ફીલ્ડ કરંટ સાથે ઇન્ટરેક્ટ થાય છે
- સ્ટેપ 3: ફ્લેમિંગના ડાબા હાથના નિયમ દ્વારા બળ પેદા થાય છે
- સ્ટેપ 4: કોમ્યુટેટર કરંટની દિશા બદલે છે
- સ્ટેપ 5: સતત રોટેશન જાળવાય છે

બળનું સૂત્ર:

```
F = B \times I \times L
```

મેમરી ટ્રીક: "કરંટ ક્રિએટ્સ સર્ક્યુલર મોશન" (કરંટ ઇન્ટરેક્શન રોટેશન પેદા કરે છે)

પ્રશ્ન 3(અ) [3 ગુણ]

ટ્રાન્સફોર્મરની રચના સમજાવો.

જવાબ:

ટેબલ: ટ્રાન્સફોર્મર કન્સ્ટ્રક્શન

કોમ્પોનન્ટ	મટીરિયલ	รเช้
કોર	સિલિકોન સ્ટીલ લેમિનેશન્સ	મેગ્નેટિક ફ્લક્સ પાથ
પ્રાઇમરી વાઇન્ડિંગ	કોપર/એલ્યુમિનિયમ	ઇનપુટ એનર્જી
સેકન્ડરી વાઇન્ડિંગ	કોપર/એલ્યુમિનિયમ	આઉટપુટ એનર્જી
ઇન્સ્યુલેશન	વાર્નિશ/પેપર	ઇલેક્ટ્રિકલ આઇસોલેશન
zisl	સ્ટીલ	ઓઇલ કન્ટેઇનમેન્ટ અને ફૂલિંગ

કોરના પ્રકારો:

• શેલ ટાઇપ: વાઇન્ડિંગ કોર દ્વારા ઘેરાયેલું

• ક્રોર ટાઇપ: કોર વાઇન્ડિંગ દ્વારા ઘેરાયેલો

કૂલિંગ મેથડ્સ:

• એર કૂલિંગ: નાના ટ્રાન્સફોર્મર

• **ઓઇલ ફૂલિંગ**: મોટા ટ્રાન્સફોર્મર રેડિએટર સાથે

મેમરી ટ્રીક: "કોર કેરીઝ કરંટ કેરફુલી" (કોર ડિઝાઇનનું મહત્વ)

પ્રશ્ન 3(બ) [4 ગુણ]

DC મોટરની ઉપયોગિતા સમજાવો.

જવાબ:

ટેબલ: DC મોટર એપ્લિકેશન્સ

મોટરનો પ્રકાર સ્પીડ લક્ષણ		ઉપયોગિતા
શન્ટ	સ્થિર સ્પીડ	ફેન, પંપ, લેથ
સિરીઝ	બદલાતી સ્પીડ	ટ્રેક્શન, ક્રેન
કમ્પાઉન્ડ	મધ્યમ વેરિએશન	એલિવેટર, કોમ્પ્રેસર

ઇન્ડસ્ટ્રિયલ એપ્લિકેશન્સ:

• **શન્ટ મોટર**: મશીન ટૂલ્સ જેને સ્થિર સ્પીડ જોઇએ

• સિરીઝ મોટર: ઇલેક્ટ્રિક વાહનો, ભારે લોડ સ્ટાર્ટિંગ

• કમ્પાઉન્ડ મોટર: રોલિંગ મિલ્સ, પંચ પ્રેસ

ફાયદાઓ:

• સરળ સ્પીડ કન્ટ્રોલ: વોલ્ટેજ/ફીલ્ડ કન્ટ્રોલ

• ઉચ્ચ સ્ટાર્ટિંગ ટોર્ક: સિરીઝ મોટર

• **રિવર્સિબલ ઓપરેશન**: ફીલ્ડ/આર્મેચર પોલેરિટી બદલો

મેમરી ટ્રીક: "શન્ટ સ્ટેઝ, સિરીઝ સ્પીડ્સ" (સ્પીડ લક્ષણો)

પ્રશ્ન 3(ક) [7 ગુણ]

DC મોટરના વિવિધ પ્રકાર સમજાવો.

જવાબ:

ટેબલ: DC મોટર વર્ગીકરણ

явіз	ફીલ્ડ કનેક્શન	સ્પીડ-ટોર્ક	ઉપયોગિતા
શન્ટ	આર્મેચરને સમાંતર	સ્થિર સ્પીડ, નીયો સ્ટાર્ટિંગ ટોર્ક	ફેન, પંપ
સિરીઝ	આર્મેચર સાથે સિરીઝ	બદલાતી સ્પીડ, ઉચ્ચ સ્ટાર્ટિંગ ટોર્ક	ડ્રેક્શન
કમ્પાઉન્ડ	સિરીઝ અને શન્ટ બંને	મધ્યમ લક્ષણો	સામાન્ય હેતુ

શન્ટ મોટર આકૃતિ:

લક્ષણો:

• શન્ટ: સ્પીડ ∝ (V - IaRa)/φ

• **સિરીઝ**: ઉચ્ચ સ્ટાર્ટિંગ ટોર્ક, સ્પીડ લોડ સાથે બદલાય છે

• કમ્પાઉન્ડ: બંને પ્રકારના ફાયદાઓ સંયોજિત

સ્પીડ કન્ટ્રોલ મેથડ્સ:

• આર્મેચર કન્ટ્રોલ: આર્મેચર વોલ્ટેજ બદલો

• ફીલ્ડ કન્ટ્રોલ: ફીલ્ડ કરંટ બદલો

• રેઝિસ્ટન્સ કન્ટ્રોલ: બાહ્ય રેઝિસ્ટન્સ ઉમેરો

મેમરી ટ્રીક: "શન્ટ સ્ટેડી, સિરીઝ સ્ટ્રોંગ, કમ્પાઉન્ડ કમ્બાઇન્ડ" (મુખ્ય લક્ષણો)

પ્રશ્ન 3(અ અથવા) [3 ગુણ]

ટ્રાન્સફોર્મરનો ટ્રાન્સફોર્મેશન રેશિયો સમજાવો.

જવાબ:

વ્યાખ્યા:

ટ્રાન્સફોર્મેશન રેશિયો (K) એ સેકન્ડરી અને પ્રાઇમરી વોલ્ટેજ અથવા ટર્ન્સનો રેશિયો છે.

ગાણિતિક અભિવ્યક્તિ:

$$K = N_2/N_1 = E_2/E_1 = V_2/V_1$$

ટેબલ: ટ્રાન્સફોર્મેશન રેશિયોના પ્રકારો

રેશિયો	หลเร	વોલ્ટેજ ચેન્જ	ઉપયોગિતા
K > 1	સ્ટેપ-અપ	વધારે છે	પાવર ટ્રાન્સમિશન
K < 1	સ્ટેપ-ડાઉન	ઘટાડે છે	ડિસ્ટ્રિબ્યુશન
K = 1	આઇસોલેશન	સમાન	સુરક્ષા આઇસોલેશન

કરંટ સંબંધ:

$$I_1/I_2 = N_2/N_1 = K$$

પાવર સંબંધ:

મેમરી ટ્રીક: "ટર્ન્સ ટેલ ટ્રાન્સફોર્મેશન" (ટર્ન્સ રેશિયો વોલ્ટેજ રેશિયો નક્કી કરે છે)

પ્રશ્ન 3(બ અથવા) [4 ગુણ]

ઓટો ટ્રાન્સફોર્મરની ઉપયોગિતા સમજાવો.

જવાબ:

ટેબલ: ઓટો ટ્રાન્સફોર્મર એપ્લિકેશન્સ

ઉપયોગિતા	ફાયદો	વોલ્ટેજ રેન્જ
મોટર સ્ટાર્ટિંગ	સ્ટાર્ટિંગ કરંટ ઘટાડે છે	રેટેડનો 50-80%
વોલ્ટેજ રેગ્યુલેશન	બારીક વોલ્ટેજ એડજસ્ટમેન્ટ	±10% વેરિએશન
લેબોરેટરી	વેરિએબલ વોલ્ટેજ સોર્સ	ઇનપુટનો 0-110%
પાવર સિસ્ટમ	ઇકોનોમિક ટ્રાન્સમિશન	નજીકના વોલ્ટેજ રેશિયો

ફાયદાઓ:

• ઇકોનોમી: ઓછું કોપર અને આયર્ન જરૂરી

• એફિશિયન્સી: બે-વાઇન્ડિંગ ટ્રાન્સફોર્મર કરતાં વધારે

• સાઇઝ: કોમ્પેક્ટ ડિઝાઇન

• રેગ્યુલેશન: બેહતર વોલ્ટેજ રેગ્યુલેશન

મર્યાદાઓ:

• આઇસોલેશન નથી: સામાન્ય ઇલેક્ટ્રિકલ કનેક્શન

• સુરક્ષા: વધારે ફોલ્ટ કરંટ

મેમરી ટ્રીક: "ઓટો એડજસ્ટ્સ એડવાન્ટેજિયસલી" (ઓટોમેટિક વોલ્ટેજ એડજસ્ટમેન્ટ ફાયદો)

પ્રશ્ન 3(ક અથવા) [7 ગુણ]

DC શન્ટ મોટર માટે સ્પીડ કન્ટ્રોલ કરવાની રીતો સમજાવો.

જવાબ:

ટેબલ: સ્પીડ કન્ટ્રોલ મેથડ્સ

મેથડ	રેન્જ	એફિશિયન્સી	ઉપયોગિતા
આર્મેચર કન્ટ્રોલ	રેટેડ સ્પીડથી નીચે	ઉચ્ચ	પ્રિસાઇઝ સ્પીડ કન્ટ્રોલ
ફીલ્ડ કન્ટ્રોલ	રેટેડ સ્પીડથી ઉપર	ઉચ્ચ	કોન્સ્ટન્ટ પાવર ડ્રાઇવ્સ
રેઝિસ્ટન્સ કન્ટ્રોલ	રેટેડ સ્પીડથી નીયે	નીથી	સરળ એપ્લિકેશન્સ

આર્મેચર કન્ટ્રોલ આકૃતિ:

સ્પીડ સૂત્રો:

• **आर्भेथर इन्ट्रोल**: N ≈ (V - laRa)/ф

• ફીલ્ડ કન્ટ્રોલ: N ∝ V/ф

• रेञिस्टन्स इन्ट्रो**ल**: N ∝ (V - Ia(Ra + Rext))/ф

આધુનિક મેથડ્સ:

• **યોપર કન્ટ્રોલ**: PWM વોલ્ટેજ કન્ટ્રોલ

• વોર્ડ-લિયોનાર્ડ સિસ્ટમ: મોટર-જનરેટર સેટ

• **ઇલેક્ટ્રોનિક કન્ટ્રોલ**: થાઇરિસ્ટર/IGBT ડ્રાઇવ્સ

લક્ષણો:

• સ્મૂથ કન્ટ્રોલ: સ્ટેપલેસ સ્પીડ વેરિએશન

• એફિશિયન્સી: આર્મેચર કન્ટ્રોલ સૌથી એફિશિયન્ટ

• કોસ્ટ: ફીલ્ડ કન્ટ્રોલ ઇકોનોમિકલ

મેમરી ટ્રીક: "આર્મેચર એક્યુરેટ, ફીલ્ડ ફાસ્ટ, રેઝિસ્ટન્સ રફ" (કન્ટ્રોલ લક્ષણો)

પ્રશ્ન 4(અ) [3 ગુણ]

અલ્ટરનેટિંગ EMF નું વેક્ટર નિરૂપણ સમજાવો.

જવાબ:

વેક્ટર રિપ્રેઝન્ટેશન:

અલ્ટરનેટિંગ EMF ને સ્થિર મેગ્નિટ્યૂડ અને એંગ્યુલર વેલોસિટી સાથે ફરતા વેક્ટર (ફેઝર) તરીકે દર્શાવી શકાય છે.

ગાણિતિક સ્વરૂપ:

$$e = Em sin(\omega t + \phi)$$

આકૃતિ:

ટેબલ: વેક્ટર પેરામીટર

પેરામીટર	ਮ ਰੀ ទ	એકમો	વર્ણન
મેગ્નિટ્યૂડ	Em	વોલ્ટ	મેક્સિમમ EMF
એંગ્યુલર વેલોસિટી	ω	rad/s	રોટેશન સ્પીડ
ફેઝ એંગલ	ф	ડિગ્રી	પ્રારંભિક ફેઝ
ફિક્યન્સી	f = ω/2π	Hz	સાઇકલ પર સેકન્ડ

ફાયદાઓ:

• વિઝ્યુઅલ રિપ્રેઝન્ટેશન: ફેઝ સંબંધો સમજવા સરળ

• ગાણિતિક સરળીકરણ: જટિલ ગણતરીઓ સરળ બનાવે છે

મેમરી ટ્રીક: "વેક્ટર્સ વિઝ્યુઅલાઇઝ વોલ્ટેજ વેરિએશન" (ફેઝર રિપ્રેઝન્ટેશન ફાયદાઓ)

પ્રશ્ન 4(બ) [4 ગુણ]

અલ્ટરનેટિંગ કરંટના સંદર્ભમાં નીચેના પદોની વ્યાખ્યા આપો: RMS વેલ્યુ, એવરેજ વેલ્યુ, ફ્રિક્વન્સી, ટાઇમ પિરિયડ

જવાબ:

ટેબલ: AC પેરામીટર વ્યાખ્યા

чε	વ્યાખ્યા	સૂત્ર	એકમો
RMS વેલ્યુ	સમાન હીટિંગ પેદા કરતો અસરકારક મૂલ્ય	lm/√2	એમ્પિયર
એવરેજ વેલ્યુ	અર્ધ સાઇકલ પર સરેરાશ મૂલ્ય	2lm/π	એમ્પિયર
ફિક્વન્સી	સેકન્ડ દીઠ સાઇકલની સંખ્યા	f = 1/T	Hz
ટાઇમ પિરિયડ	એક સંપૂર્ણ સાઇકલ માટેનો સમય	T = 1/f	સેકન્ડ

ગાણિતિક સંબંધો:

• ફોર્મ ફેક્ટર: RMS/Average = π/2√2 = 1.11

• **ਪੀ**s ફેક્ટર: Peak/RMS = √2 = 1.414

• **અંગ્યુલર ફિક્વન્સી**: ω = 2πf

પ્રેક્ટિકલ વેલ્યુઝ:

• RMS કરંટ: પાવર ગણતરીઓ માટે વપરાય છે

• **એવરેજ કરંટ**: DC સમકક્ષ માટે વપરાય છે

• ફ્રિક્વન્સી: 50 Hz (ભારત), 60 Hz (યુએસએ)

મેમરી ટ્રીક: "રિયલી મીન સ્ક્વેર, એવરેજ ફ્રિક્વન્સી ટાઇમ" (મુખ્ય AC પેરામીટર)

પ્રશ્ન 4(ક) [7 ગુણ]

સ્ટાર જોડાણમાં લાઇન વોલ્ટેજ અને ફેઇઝ વોલ્ટેજ તથા લાઇન કરંટ અને ફેઇઝ કરંટ વચ્ચેનો સંબંધ દર્શાવતા સૂત્ર તારવો.

જવાબ:

સ્ટાર કનેક્શન આકૃતિ:

વોલ્ટેજ સંબંધો:

ફેઝ વોલ્ટેજ: VR, VY, VB (ન્યુટ્રલ સંદર્ભે) **લાઇન વોલ્ટેજ:** VRY, VYB, VBR (લાઇન વચ્ચે)

કેઝર વિશ્લેષણ:

$$VRY = VR - VY$$

બેલેન્સ્ડ સિસ્ટમ માટે:

- ફેઝ વોલ્ટેજ મેગ્નિટ્યૂડમાં સમાન: VR = VY = VB = Vph
- ફેઝ ડિફરન્સ = 120°

વેક્ટર એડિશન:

ફેઝર ડાયાગ્રામ અને કોસાઇન નિયમનો ઉપયોગ કરીને:

$$VL = \sqrt{(Vph^2 + Vph^2 - 2Vph \cdot Vph \cdot cos(120^\circ))}$$

$$VL = \sqrt{(2Vph^2 + Vph^2)} = \sqrt{3} \times Vph$$

અંતિમ સંબંધો:

ટેબલ: સ્ટાર કનેક્શન સંબંધો

પેરામીટર	સંબંધ
લાઇન વોલ્ટેજ	VL = √3 × Vph
લાઇન કરંટ	IL = Iph
પાવર	$P = \sqrt{3} \times VL \times IL \times cos\phi$

કરંટ સંબંધો:

સ્ટાર કનેક્શનમાં, લાઇન કરંટ ફેઝ કરંટ સમાન હોય છે:

$$IL = Iph$$

મેમરી ટ્રીક: "સ્ટાર સ્કેલ્સ વોલ્ટેજ, સેમ કરંટ" (વોલ્ટેજ માટે √3 ફેક્ટર, કરંટ અપરિવર્તિત)

પ્રશ્ન 4(અ અથવા) [3 ગુણ]

અલ્ટરનેટિંગ કરંટનું વેક્ટર નિરૂપણ સમજાવો.

જવાબ:

વેક્ટર રિપ્રેઝન્ટેશન:

AC કરંટને મેગ્નિટ્યૂડ અને ફેઝ એંગલ સાથે ફરતા ફેઝર તરીકે દર્શાવાય છે.

ગાણિતિક અભિવ્યક્તિ:

$$i = Im sin(\omega t + \phi)$$

ફેઝર ડાયાગ્રામ:

ટેબલ: કરંટ વેક્ટર એલિમેન્ટ્સ

એલિમેન્ટ	ਮ ਰੀ ទ	વર્ણન
મેગ્નિટ્યૂડ	lm	પીક કરંટ વેલ્યુ
ફेઝ	ф	લીડિંગ/લેગિંગ એંગલ
એંગ્યુલર વેલોસિટી	ω	રોટેશન સ્પીડ
RMS વેલ્યુ	I = Im/√2	અસરકારક કરંટ

ઉપયોગિતા:

• સર્કિટ વિશ્લેષણ: વોલ્ટેજ અને કરંટ વચ્ચે ફેઝ સંબંધો

• પાવર ગણતરીઓ: રિયલ અને રિએક્ટિવ પાવર કોમ્પોનન્ટ્સ

મેમરી ટ્રીક: "કરંટ સર્કલ્સ કન્ટિન્યુઅસલી" (ફરતા ફેઝર કન્સેપ્ટ)

પ્રશ્ન 4(બ અથવા) [4 ગુણ]

અલ્ટરનેટિંગ કરંટના સંદર્ભમાં નીચેના પદોની વ્યાખ્યા આપો: ફોર્મ ફેક્ટર, પીક ફેક્ટર, કોણીય વેગ, એમ્પ્લિટ્યૂડ

જવાબ:

ટેબલ: AC કરંટ પેરામીટર

чε	વ્યાખ્યા	સૂત્ર	સામાન્ય મૂલ્ય
ફોર્મ ફેક્ટર	RMS/Average વેલ્યુ રેશિયો	Irms/lavg	1.11 (સાઇન વેવ)
પીક ફેક્ટર	Peak/RMS વેલ્યુ રેશિયો	lm/lrms	1.414 (સાઇન વેવ)
એંગ્યુલર વેલોસિટી	ફેઝ ચેન્જનો દર	ω = 2πf	314 rad/s (50Hz)
એમ્પ્લિટ્યૂડ	મેક્સિમમ ઇન્સ્ટન્ટેનિયસ વેલ્યુ	lm	પીક કરંટ

ગાણિતિક સંબંધો:

• ફોર્મ ફેક્ટર: વેવફોર્મ શેપ દર્શાવે છે

• પીક ફેક્ટર: ક્રેસ્ટ ફેક્ટર દર્શાવે છે

• અંગ્યુલર વેલોસિટી: ફ્રિક્વન્સી અને ફેઝ લિંક કરે છે

• **એમ્પ્લિટ્યૂડ**: RMS અને એવરેજ વેલ્યુઝ નક્કી કરે છે

પ્રેક્ટિકલ મહત્વ:

• ડિઝાઇન વિચારણાઓ: ઇન્સ્યુલેશન માટે પીક ફેક્ટર

• વેવફોર્મ વિશ્લેષણ: ડિસ્ટોર્શન માટે ફોર્મ ફેક્ટર

• સિંક્રોનાઇઝેશન: ટાઇમિંગ માટે એંગ્યુલર વેલોસિટી

મેમરી ટ્રીક: "ફોર્મ પીક એંગ્યુલર એમ્પ્લિટ્યૂડ" (ચાર મુખ્ય ફેક્ટર)

પ્રશ્ન 4(ક અથવા) [7 ગુણ]

ડેલ્ટા જોડાણમાં લાઇન વોલ્ટેજ અને ફેઇઝ વોલ્ટેજ તથા લાઇન કરંટ અને ફેઇઝ કરંટ વચ્ચેનો સંબંધ દર્શાવતા સૂત્ર તારવો.

જવાબ:

ડેલ્ટા કનેક્શન આકૃતિ:

વોલ્ટેજ સંબંધો:

ડેલ્ટા કનેક્શનમાં, લાઇન વોલ્ટેજ ફેઝ વોલ્ટેજ સમાન હોય છે:

$$VL = Vph$$

કરંટ વિશ્લેષણ:

દરેક લાઇન કરંટ બે ફેઝ કરંટનો વેક્ટર સમ છે.

લાઇન કરંટ IA માટે:

ફેઝર વિશ્લેષણ:

બેલેન્સ્ડ સિસ્ટમ માટે ફેઝ કરંટ મેગ્નિટ્યૂડમાં સમાન:

- IAB = ICA = ICB = Iph
- કરંટ વચ્ચે ફેઝ ડિફરન્સ = 120°

વેક્ટર સબટ્રેક્શન:

$$IA = IAB - ICA = IAB - (-ICA)$$

ફેઝર ડાયાગ્રામનો ઉપયોગ કરીને:

$$IL = \sqrt{(Iph^2 + Iph^2 - 2Iph \cdot Iph \cdot cos(60^\circ))}$$

$$IL = \sqrt{(2Iph^2 - Iph^2)} = \sqrt{3} \times Iph$$

અંતિમ સંબંધો:

ટેબલ: ડેલ્ટા કનેક્શન સંબંધો

પેરામીટર	સંબંધ
લાઇન વોલ્ટેજ	VL = Vph
લાઇન કરંટ	IL = √3 × Iph
પાવર	$P = \sqrt{3} \times VL \times IL \times cos\phi$

મેમરી ટ્રીક: "ડેલ્ટા ડબલ્સ કરંટ, સેમ વોલ્ટેજ" (કરંટ માટે √3 ફેક્ટર, વોલ્ટેજ અપરિવર્તિત)

પ્રશ્ન 5(અ) [3 ગુણ]

શુદ્ધ અવરોધ ધરાવતા પરિપથ માંથી અલ્ટરનેટિંગ કરંટની વર્તણૂક જરૂરી આકૃતિ અને વેવફોર્મ સાથે સમજાવો.

જવાબ:

સર્કિટ આકૃતિ:

વેવફોર્મ:

ટેબલ: રેઝિસ્ટર દ્વારા AC

પેરામીટર	સંબંધ	ફેઝ
ઓહમનો નિયમ	V = IR	સમાન ફેઝ
પાવર	$P = VI = I^2R$	હંમેશા પોઝિટિવ
ઇમ્પીડન્સ	Z = R	શુદ્ધ રેઝિસ્ટિવ

લક્ષણો:

• કરંટ અને વોલ્ટેજ સમાન ફેઝમાં: કોઈ ફેઝ ડિફરન્સ નથી

• **પાવર વપરાશ**: સતત પાવર ડિસિપેશન

• **રેઝિસ્ટન્સ અપરિવર્તિત**: DC વેલ્યુ સમાન

મેમરી ટ્રીક: "રેઝિસ્ટર રિફ્યુઝ ફેઝ શિફ્ટ" (કોઈ ફેઝ ડિફરન્સ નથી)

પ્રશ્ન 5(બ) [4 ગુણ]

અલ્ટરનેટિંગ કરંટના સંદર્ભમાં નીચેના પદોની વ્યાખ્યા આપો: ઇમ્પીડન્સ, ફેઝ એંગલ, પાવર ફેક્ટર, રિએક્ટિવ પાવર

જવાબ:

ટેબલ: AC સર્કિટ પેરામીટર

чε	વ્યાખ્યા	સૂત્ર	એકમો
ઇમ્પીડન્સ	AC કરંટનો કુલ વિરોધ	$Z = \sqrt{(R^2 + X^2)}$	ઓંસ
ફેઝ એંગલ	V અને l વચ્ચેનો કોણ	$\phi = \tan^{-1}(X/R)$	ડિગ્રી
પાવર ફેક્ટર	ફેઝ એંગલનો કોસાઇન	PF = cosφ = R/Z	-
રિએક્ટિવ પાવર	રિએક્ટિવ કોમ્પોનન્ટમાં પાવર	Q = VI sinφ	VAR

પાવર સંબંધો:

• **એક્ટિવ પાવર**: P = VI cosφ (વોટ)

• રિએક્ટિવ પાવર: Q = VI sinφ (VAR)

• એપેરન્ટ પાવર: S = VI (VA)

પાવર ત્રિકોણ:

$$S^2 = P^2 + Q^2$$

પ્રેક્ટિકલ મહત્વ:

• ઉચ્ચ પાવર ફેક્ટર: કાર્યક્ષમ પાવર ઉપયોગ

• નીચો પાવર ફેક્ટર: સમાન પાવર માટે વધારે કરંટ

• રિએક્ટિવ પાવર: કોઈ નેટ એનર્જી ટ્રાન્સફર નથી

મેમરી ટ્રીક: "ઇમ્પીડન્સ ફેઝ પાવર ક્વાડ્રેચર" (ચાર મુખ્ય AC પેરામીટર)

પ્રશ્ન 5(ક) [7 ગુણ]

જુદા જુદા પ્રકારના પ્રોટેક્ટિવ ડિવાઇસના નામ લખો અને કોઈ પણ એક પ્રોટેક્ટિવ ડિવાઇસની રચના તથા કાર્ય વિસ્તારથી સમજાવો.

જવાબ:

ટેબલ: પ્રોટેક્ટિવ ડિવાઇસ

ડિવાઇસ	પ્રોટેક્શન વિરુદ્ધ	ઉપયોગિતા
ફ્યુ ઝ	ઓવરકરંટ	લો/મિડિયમ વોલ્ટેજ
МСВ	ઓવરલોડ, શોર્ટ સર્કિટ	ઘરેલું/કોમર્શિયલ
ELCB	અર્થ લીકેજ	સુરક્ષા પ્રોટેક્શન
રિલે	વિવિધ ફોલ્ટ	ઇન્ડસ્ટ્રિયલ સિસ્ટમ
સર્જ એરેસ્ટર	ઓવરવોલ્ટેજ	ટ્રાન્સમિશન લાઇન

MCB (મિનિએચર સર્કિટ બ્રેકર) - વિગતવાર સમજૂતી:

રથના:

કોમ્પોનન્ટ્સ:

• ફિક્સ્ડ અને મૂર્વિંગ કોન્ટેક્ટ્સ: કરંટ વહન કરતા ભાગો

• બાઇમેટાલિક સ્ટ્રિપ: થર્મલ પ્રોટેક્શન

• ઇલેક્ટ્રોમેગ્નેટિક કોઇલ: મેગ્નેટિક પ્રોટેક્શન

• આ**ર્ક કવેન્ચિંગ ચેમ્બર**: આર્ક એક્સ્ટિન્કશન

• ઓપરેટિંગ મેકેનિઝમ: મેન્યુઅલ/ઓટોમેટિક ઓપરેશન

કાર્ય સિદ્ધાંત:

ઓવરલોડ પ્રોટેક્શન:

• કરંટ બાઇમેટાલિક સ્ટ્રિપ ગરમ કરે છે

• સ્ટ્રિપ વળે છે અને ટ્રિપ મેકેનિઝમ ઓપરેટ કરે છે

• ટેમ્પરરી ઓવરલોડ્સ વિરુદ્ધ પ્રોટેક્શન માટે ટાઇમ-ડિલે લક્ષણ

શોર્ટ સર્કિટ પ્રોટેક્શન:

• ઉચ્ચ ફોલ્ટ કરંટ મજબૂત મેગ્નેટિક ફીલ્ડ બનાવે છે

• ઇલેક્ટ્રોમેગ્નેટિક ફોર્સ ટ્રિપ મેકેનિઝમ ઓપરેટ કરે છે

• સુરક્ષા માટે ઇન્સ્ટન્ટેનિયસ ઓપરેશન

કાયદાઓ:

• પુનઃઉપયોગ: ફોલ્ટ ક્લિયરન્સ પછી રીસેટ

• વિશ્વસનીય ઓપરેશન: ડ્યુઅલ પ્રોટેક્શન મેકેનિઝમ

• સરળ મેન્ટેનન્સ: સુલભ કોન્ટેક્ટ્સ

મેમરી ટ્રીક: "MCB મેગ્નેટિકલી કન્ટ્રોલ્સ બોથ" (થર્મલ અને મેગ્નેટિક પ્રોટેક્શન)

પ્રશ્ન 5(અ અથવા) [3 ગુણ]

શુદ્ધ ઇન્ડક્ટર ધરાવતા પરિપથ માંથી અલ્ટરનેટિંગ કરંટની વર્તણૂક સમજાવો.

જવાલ:

આપેલ: L ઇન્ડક્ટન્સ સાથે શુદ્ધ ઇન્ડક્ટર, લાગુ વોલ્ટેજ v = Vm sin(ωt)

વોલ્ટેજ-કરંટ સંબંધ:

 $v = L \times (di/dt)$

લાગુ વોલ્ટેજ સબસ્ટિટ્યૂટ કરીને:

```
Vm \sin(\omega t) = L \times (di/dt)
```

ઇન્ટીગ્રેશન:

```
di = (Vm/L) \sin(\omega t) dt
i = -(Vm/\omega L) \cos(\omega t) + C
```

સ્ટેડી સ્ટેટમાં, C = 0:

```
i = -(Vm/\omega L) \cos(\omega t)

i = (Vm/\omega L) \sin(\omega t - 90^\circ)
```

ટેબલ: શુદ્ધ ઇન્ડક્ટર લક્ષણો

પેરામીટર	મૂલ્ય	ફેઝ સંબંધ
કરંટ એમ્પ્લિટ્યૂડ	Im = Vm/ωL	કરંટ વોલ્ટેજથી 90° પાછળ
ઇન્ડક્ટિવ રિએક્ટન્સ	$XL = \omega L = 2\pi f L$	ફ્રિક્વન્સી આધારિત
પાવર	P = 0 (એવર્જ)	કોઈ નેટ પાવર વપરાશ નથી

મેમરી ટ્રીક: "ઇન્ડક્ટર ઇમ્પીડ્સ, કરંટ લેગ્સ" (XL કરંટનો વિરોધ, 90° લેગ)

પ્રશ્ન 5(બ અથવા) [4 ગુણ]

AC સર્કિટમાં પાવર અને પાવર ટ્રાયએંગલ સમજાવો.

જવાબ:

પાવરના પ્રકારો:

ટેબલ: AC પાવર કોમ્પોનન્ટ્સ

પાવરનો પ્રકાર	ਮੁ <mark>ਗੀ</mark> ਤ	સૂત્ર	એકમો	વર્ણન
એક્ટિવ પાવર	Р	VI cosφ	વોટ	ઉપયોગી પાવર
રિએક્ટિવ પાવર	Q	VI sinφ	VAR	પરિભ્રમણ પાવર
એપેરન્ટ પાવર	S	VI	VA	કુલ પાવર

પાવર ત્રિકોણ:

ગાણિતિક સંબંધો:

```
S^2 = P^2 + Q^2
Power Factor = P/S = \cos \phi
```

મહત્વ:

• એક્ટિવ પાવર: ઉપયોગી કાર્ય કરે છે (હીટિંગ, મિકેનિકલ)

• રિએક્ટિવ પાવર: મેગ્નેટિક/ઇલેક્ટ્રિક ફીલ્ડ જાળવે છે

• પાવર ફેક્ટર: કાર્યક્ષમતા સૂચક

મેમરી ટ્રીક: "પાવર ટ્રાયઅંગલ: પ્લીઝ ક્વાલિફાય સ્ટુડન્ટ્સ" (P, Q, S કોમ્પોનન્ટ્સ)

પ્રશ્ન 5(ક અથવા) [7 ગુણ]

એક લેમ્પને એક જગ્યાએથી કન્ટ્રોલ કરવો તેમજ દાદર માટેનું વાયરિંગ ડાયાગ્રામ સાથે સમજાવો.

જવાબ:

1. એક જગ્યાએથી લેમ્પ કન્ટ્રોલ:

સર્કિટ આકૃતિ:

કોમ્પોનન્ટ્સ:

- SPST સ્વિચ: સિંગલ પોલ, સિંગલ થ્રો
- લાઇવ વાયર કન્ટ્રોલ: સુરક્ષા માટે સ્વિય લાઇવ વાયરમાં
- સરળ ઓન/ઓફ: બેસિક કન્ટ્રોલ મેકેનિઝમ
- 2. સીડીનું વાયરિંગ (ટુ-વે કન્ટ્રોલ):

સર્કિટ આકૃતિ:

ટેબલ: સીડીના કન્ટ્રોલ માટે સ્વિચ પોઝિશન

ડ1 પોઝિશન	S2 પોઝિશન	લેમ્પ સ્ટેટસ
ઉપર	ઉપર	ચાલુ
ઉપર	નીચે	બંધ
નીચે	ઉપર	ાં ધ
નીચે	નીચે	ચાલુ

કાર્ય સિદ્ધાંત:

• **બે-દિશા સ્વિચ**: SPDT (સિંગલ પોલ ડબલ થ્રો)

• ક્રોમન ટર્મિનલ: લાઇવ અને લેમ્પ સાથે જોડાયેલું

• સ્ટ્રેપર્સ: સ્વિયો વચ્ચે લિંક

• ટોગલ એક્શન: કોઈ પણ સ્વિય લેમ્પ કન્ટ્રોલ કરી શકે છે

ઉપયોગિતા:

• સીડીની લાઇટિંગ: ઉપર અને નીચેથી કન્ટ્રોલ

• **લાંબા કોરિડોર**: બંને છેડેથી કન્ટ્રોલ

• બેડરૂમ લાઇટિંગ: બેડ અને દરવાજાથી કન્ટ્રોલ

કાયદાઓ:

• સુવિધા: અનેક સ્થળોએથી કન્ટ્રોલ

• એનર્જી સેવિંગ: સરળ સ્વિચિંગ વેસ્ટેજ ઘટાડે છે

• સુરક્ષા: અંધારામાં ચાલવાની જરૂર નથી

ઇન્સ્ટોલેશન પોઇન્ટ્સ:

• યોગ્ય અર્થિંગ: તમામ મેટલ પાર્ટ્સ અર્થ કરેલા

• કેબલ રેટિંગ: પર્યાપ્ત કરંટ કેપેસિટી

• સ્વિચ ઊંચાઈ: ફ્લોરથી સ્ટાન્ડર્ડ 4 ફૂટ

મેમરી ટ્રીક: "ટુ-વે ટોગલ્સ, ટુ પ્લેસિસ" (બે સ્વિચ, બે સ્થળો)