谓词逻辑的语法和语义

Wang-Zhou Dai

I 一阶逻辑的语法(syntax)

一阶逻辑语言

- 一阶逻辑语言 £ 包括:
 - I. 括号: "("和")";
 - 2.(命题)联词;
 - 3. 量词符号: ∀:
 - 4. 变元: v_1, v_2, \ldots ;
 - 5. 常元: c_1, c_2, \ldots ;
 - 6. 函数符号: f/n 表示 n 元函数;
 - 7. 谓词符号; P/n 表示 n 元谓词;
 - 等号(一种特殊的谓词)。

项 (Term)

- I. 每个常元是一个项;
- 2. 每个变元是一个项;
- 3. 如果 t_1, \ldots, t_n 是项,且 f 是一个 n 元函数符,那么 $f(t_1, \ldots, t_n)$ 也是项。

合式公式 (Well-formed formula)

- I. 如果 t_1, \ldots, t_n 是项,且 P 是一个 n 元谓词,那么 $P(t_1, \ldots, t_n)$ 是一个合式公式,特别地,我们称这种公式为"原子公式"。例如 = (t_1, t_2) 就是一个原子公式,一般记为 $t_1 = t_2$;
- 2. 如果 φ 和 ϕ 是合式公式, 那么 $(\neg \varphi)$ 和 $(\varphi \to \phi)$ 也是合式公式;
- 3. 如果 φ 是合式公式,而 v_i 是变元,那么 $\forall v_i \varphi$ 也是。
 - $\exists x \varphi \equiv \neg \forall x \neg \varphi$

2 一阶逻辑的语义 (semantics)

在 1927 年至 1929 年期间,塔斯基(Alfred Tarski, 1901-1983)在华沙大学的逻辑研讨会上证明了几个涉及后来被称为"语义学"的概念的结果,特别是关于结构中可定义性和"真"(truth)的概念。塔斯基在试图将研讨会中呈现的结果形式化时遇到了某些困难,这促使他寻找一个精确的语义学概念理论。塔斯基说:

"很明显,所有这些结果只有在接受[真] 句子的具体而精确的定义作为研究基础后,才能获得清晰的内容并得以准确地证明。"

结构 (structure)

- 一阶语言的一个结构 \(\mathbb{1} \) 是定义域包括非逻辑符号和量词符号的函数,并且满足以下条件:
 - I. 𝔄 给量词符号 ∀ 指定一个非空集 |𝔄|, 称做 𝔄 的**论域** (universe);
 - 2. 对每个 n-元谓词符号 P/n, $\mathfrak A$ 都指定一个n-元关系 $P^{\mathfrak A} \subseteq |\mathfrak A|^n$,即 $P^{\mathfrak A}$ 是由论域中 n-元组所组成的集合;
 - 3. 对每个常数符号 c , \mathfrak{A} 都指定论域中 $|\mathfrak{A}|$ 中的一个元素 $c^{\mathfrak{A}}$;
 - 4. 对每个 n-元函数符号 f/n, $\mathfrak A$ 都指定一个论域 $|\mathfrak A|$ 上的n-元函数 $f^{\mathfrak A}: |\mathfrak A|^n \mapsto |\mathfrak A|$ 。

注:关于"关系"和"函数"的介绍我们会在离散数学的后续课程中介绍。此外,由于结构 \(\mathbb{I}\) 中没有规定变元的解释,因此无法讨论含自由变元的公式的真值假。

变元赋值

令 \mathcal{V} 是一阶语言 \mathcal{L} 中所有**自由变元**的集合, \mathfrak{A} 是 \mathcal{L} 的结构,所谓**赋值** s 指的是任意由 \mathcal{V} 到 \mathfrak{A} 的论域上的函数 $s:\mathcal{V}\mapsto |\mathfrak{A}|_s$

解释 (interpretation)

有了结构 $\mathfrak A$ 和变元赋值函数 s,我们就可以对语言中本来"毫无意义"的字符串——合式公式 φ 进行解释,并尝试理解它是否为"真"。这里的定义是一阶逻辑真值理论的核心,它是由 Tarski 在 1933 年给出的。为简便起见这里不再给详细的数学定义,只给一个直观的讲解和一个简单的例子,更进一步的内容大家可以去搜寻相关资料,例如 https://plato.stanford.edu/entries/tarski-truth/.

直观上说, $(\mathfrak{A},s) \models \varphi$ 的含义如下: 先把符号串中的谓词符号、函数符号、常数符号等按照结构 \mathfrak{A} 的规定来解释,把量词的论域限制在 $|\mathfrak{A}|$ 上,把自由变元 x 解释称它的赋值 s(x),从而把公式 φ 翻译成一个关于结构 \mathcal{A} 的命题。利用我们关于 \mathfrak{A} 的知识,判断 φ 为真。

例如,固定一个语言 $\mathcal{L}=\{+,\cdot,=,0,1\}$ (想一想,哪些是常元?谓词?函数?它们应该如何解释?)。考察一阶语句 $\varphi\equiv \forall x\,(x\cdot x\neq 1+1)$,就它本身而言,它只是一个字符串,到现在位置尚不具有任何意义。只有当固定好一个 \mathcal{L} 的结构时,才能决定它的真假。就 φ 而言,它在有理数域 $\mathbb Q$ 中为"真",在实数域 $\mathbb R$ 中为"假",至于为什么这样,则是我们关于数学的知识告诉我们的。

3 语义蕴涵与语法蕴涵

有了上面的讨论,我们现在可以讨论一阶逻辑中的语义蕴涵和语法蕴涵。直观上来看,二者的区别如下:

- 语义蕴涵指在某些结构(甚至任意结构)下,公式之间关于"真"的一种蕴涵关系;
- **语法蕴涵**指在某个形式系统(如自然演绎系统、希尔伯特系统等)中,公式之间存在的一种推导(证明) 关系,与结构——即符号串背后的语义——无关。

二者的数学定义如下。

语义蕴涵 (logically implies)

令 Γ 是一个公式集,且 φ 为一个公式。则称 Γ 语义蕴涵(逻辑蕴涵) φ ,记作 $\Gamma \models \varphi$,如果对每一个结构 $\mathfrak A$ 和每个赋值函数 $s:V\to |\mathfrak A|$,都有:如果 $\mathfrak A$ 和 s 满足 Γ 中所有公式(令 Γ 为真),则 $\mathfrak A$ 和 s 也满足 φ (令 φ 为真)。

注 I: 对于命题逻辑而言,其真值往往不太依赖于"结构"的定义,而更直接地依赖于每个命题的真值(即真值表)。因此,在命题逻辑里的重言蕴涵(语义蕴涵)" $\Gamma \models \varphi$ "可以简单地理解为"所有令 Γ 为真的真值表项,必然令 φ 为真"。当" \models "左边为空时," $\models \varphi$ "表示"无论什么结构和变元赋值"(无论什么真值表项)下, φ 恒为真,即它是一个重言式。

注 2: 对于每个一阶逻辑系统都去研究其语义结构实在太复杂,因此逻辑学家们提出了一种叫"Herbrand Structure"的结构,将关于结构的"真"简化为关于一阶逻辑中所有实例化项(ground terms,即不含变元的项)的讨论。关于 Herbrand Universe(它的论域)和 Herbrand Base(它的所有谓词关系)的介绍见:https://en.wikipedia.org/wiki/Herbrand_structure.

语法蕴涵 (proves)

 Γ \vdash α 表示从 Γ 到 α 存在一个推演(或者叫做"证明"),当且仅当存在一个有穷公式序列

$$\alpha_1, \alpha_2, \ldots, \alpha_n$$

满足 $\alpha_n = \alpha$, 并且对所有 $i \leq n$:

- I. $\alpha_i \in \Gamma \cup \Lambda$, 其中 Λ 为系统中的公理; 或者
- 2. 存在 j,k < i , α_i 是从 α_j 和 α_k 中由分离规则得到的(即 $\alpha_k \equiv \alpha_j \to \alpha_i$)。

4 完全性(completeness)和可靠性(soundness)

理解了"⊨"和"⊢"的意义后,我们能够更方便地理解数理逻辑里最重要的两个命题。

完全性

如果 $\Gamma \models \varphi$ 则 $\Gamma \vdash \varphi$ 。

可靠性

如果 $\Gamma \vdash \varphi$ 则 $\Gamma \models \varphi$ 。