Respuesta en Frecuencia Teoría de Circuitos III

Oscar Perpiñán Lamigueiro

Noviembre 2018

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

uncion de ransferencia

Diagrama de Bode

Función de Transferencia

Diagrama de Bode

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

ransferencia

Diagrama de Bode

iltros

Respuesta en Frecuencia

La respuesta en frecuencia de un circuito es la variación del comportamiento del circuito a los cambios de la frecuencia de alimentación.

- Hasta ahora hemos analizado circuitos alimentados por generadores con frecuencia constante.
- El análisis de la respuesta en frecuencia consiste en variar la frecuencia de alimentación y estudiar la respuesta.
- Este análisis se realiza en régimen permanente con señales sinusoidales.

Función de Transferencia

Diagrama de Bode

Función de Transferencia

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

Funciones de Transferencia

► Ganancia de Tensión

$$H(s) = \frac{V_o(s)}{V_i(s)}$$

▶ Ganancia de Corriente

$$\mathbf{H}(\mathbf{s}) = \frac{\mathbf{I_o}(\mathbf{s})}{\mathbf{I_i}(\mathbf{s})}$$

Impedancia de Transferencia

$$H(s) = \frac{V_o(s)}{I_i(s)}$$

Admitancia de Transferencia

$$H(s) = rac{I_o(s)}{V_i(s)}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

Polos y Ceros

División de Polinomios

$$\mathbf{H}(\mathbf{s})|_{\mathbf{s}=j\omega} = \frac{\mathbf{N}(\mathbf{s})}{\mathbf{D}(\mathbf{s})} = K \frac{(\mathbf{s}-z_1)(\mathbf{s}-z_2)\dots(\mathbf{s}-z_m)}{(\mathbf{s}-p_1)(\mathbf{s}-p_2)\dots(\mathbf{s}-p_n)}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

La función de transferencia es un fasor

 Evaluamos la función de transferencia en el eje imaginario:

$$|\mathbf{H}(\mathbf{s})|_{\mathbf{s}=j\omega} = \mathbf{H}(\omega)$$

Dado que estamos en régimen permanente sinusoidal es un fasor con módulo y ángulo:

$$\mathbf{H}(\omega) = H/\phi$$

► Tanto el módulo como el ángulo varían con la frecuencia:

$$\mathbf{H}(\omega) \Rightarrow \begin{cases} |\mathbf{H}(\omega)| \\ \phi(\omega) \end{cases}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

Interpretación Geométrica

Cada uno de los factores de $\mathbf{H}(\mathbf{s})|_{\mathbf{s}=j\omega}$ es un número complejo que conecta un cero/polo con el eje imaginario.

$$\mathbf{H}(\omega) = \frac{j\omega - \mathbf{z_1}}{(j\omega - \mathbf{p_1}) \cdot (j\omega - \mathbf{p_2})} \xrightarrow{j\omega} \omega_x$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

Interpretación Geométrica: cero simple

$$\mathbf{H}(\omega) = K \cdot (j\omega - \mathbf{z_1})$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

Interpretación Geométrica: polo simple

$$\mathbf{H}(\omega) = \frac{K}{j\omega - \mathbf{p_1}}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

Ejercicios Recomendados

- ► AS: Ejemplo 14.2.
- **E**xámenes:
 - ► Feb 2004 (a), Jun 2013 (a)
 - ► Sep 2007 (a), Feb 2005 (a), Feb 2010 (a)
 - Nov 2014 (a), Sep 2005 (a), Sep 2006 (a).

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Transferencia

Diagrama de Bode

Función de Transferencia

Diagrama de Bode

- Un diagrama de Bode representa de forma aproximada la magnitud y la fase de la función de transferencia.
- ► Son gráficos semilogarítmicos:
 - Magnitud en decibelios frente al logaritmo de la frecuencia/pulsación.
 - ► Fase en radianes/grados frente al logaritmo de la frecuencia/pulsación.

Oscar Perpiñán Lamigueiro

Introducción

^zunción de Transferencia

Diagrama de Bode

Repaso de logaritmos

Propiedades

$$\log P_1 \cdot P_2 = \log P_1 + \log P_2$$
$$\log \frac{P_1}{P_2} = \log P_1 - \log P_2$$
$$\log P^n = n \cdot \log P$$

Valores útiles

$$log 1 = 0 log 2 = 0.30103
log 10 = 1 log $\frac{1}{2} = -0.30103$$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

anción de ansferencia

Diagrama de Bode

ultros

Decibelio

El **decibelio** (dB) se emplea para medir la ganancia de potencia o la ratio de dos niveles de potencia:

$$G_{dB} = 10 \log G = 10 \log \frac{P_2}{P_1}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

Decibelio

Suponiendo $R_1 = R_2$, también se emplea para medir la ganancia de tensión/corriente:

$$G_{dB} = 10\log\frac{V_2^2}{V_1^2} = 20\log\frac{V_2}{V_1}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

iltros

Ganancia unidad

$$G = 1 \Rightarrow \left\{ \begin{array}{c} P_1 = P_2 \\ V_1 = V_2 \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} G_{dB} = 10\log\frac{P_2}{P1} = 0\,\mathrm{dB} \\ G_{dB} = 20\log\frac{V_2}{V1} = 0\,\mathrm{dB} \end{array} \right\}$$

▶ Potencia Mitad

$$P_{2} = \frac{P_{1}}{2} \Rightarrow \left\{ \begin{array}{c} G = \frac{1}{2} \\ V_{2} = \frac{V_{1}}{\sqrt{2}} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} G_{dB} = 10 \log \frac{P_{2}}{P1} = -3 \, dB \\ G_{dB} = 20 \log \frac{V_{2}}{V_{1}} = -3 \, dB \end{array} \right\}$$

► Reescribimos **H**(**s**) de forma normalizada

$$\mathbf{H}(\mathbf{s})|_{\mathbf{s}=j\omega} = K \frac{(1+\mathbf{s}/\omega_{z1}) \cdot (1+\mathbf{s}/\omega_{z2}) \dots (1+\mathbf{s}/\omega_{zm})}{(1+\mathbf{s}/\omega_{p1}) \cdot (1+\mathbf{s}/\omega_{p2}) \dots (1+\mathbf{s}/\omega_{pn})}$$

Módulo

$$|\mathbf{H}(\omega)| = K \frac{|1+j\omega/\omega_{z1}| \cdot |1+j\omega/\omega_{z2}| \dots |1+j\omega/\omega_{zm}|}{|1+j\omega/\omega_{p1}| \cdot |1+j\omega/\omega_{p2}| \dots |1+j\omega/\omega_{pn}|}$$

Ángulo

$$\phi(\omega) = \operatorname{atan}(\omega/\omega_{z1}) + \operatorname{atan}(\omega/\omega_{z2}) + \ldots + \operatorname{atan}(\omega/\omega_{zm}) - \left(\operatorname{atan}(\omega/\omega_{p1}) + \operatorname{atan}(\omega/\omega_{p2}) + \ldots + \operatorname{atan}(\omega/\omega_{pn})\right)$$

Construcción del Diagrama de Bode

- Al aplicar logaritmos a la expresión de la amplitud los productos se convierten en sumas.
- La estrategia de construcción consiste en analizar la contribución de cada cero/polo por separado y sumar para obtener el resultado global.

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

Construcción del Diagrama de Bode

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Fransferencia

Diagrama de Bode

iltros

Posibilidades

- ► Término constante: *K*
- ightharpoonup Cero/Polo en el origen: $j\omega$
- ightharpoonup Cero/Polo simple: $1 + j\omega/\omega_c$
- Cero/Polo múltiple (raíces reales repetidas): $(1 + j\omega/\omega_c)^N$
- ► Cero/Polo cuadrático (raíces complejas conjugadas): $1 (\omega/\omega_0)^2 + j2\zeta\omega/\omega_0$

Término Constante

 $20 \log_{10} K$

$$\mathbf{H}(\omega) = K \Rightarrow \begin{cases} |\mathbf{H}(\omega)| = 20 \log |K| \\ \phi(\omega) = \begin{cases} 0^{\circ} & si \quad K > 0 \\ 180^{\circ} & si \quad K < 0 \end{cases}$$

< 0°

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

Cero en el origen*

$$\mathbf{H}(\omega) = j\omega \Rightarrow \begin{cases} |\mathbf{H}(\omega)| = 20 \log \omega \\ \phi(\omega) = 90^{\circ} \end{cases}$$

Década: rango de frecuencias comprendido entre ω_1 y $10 \cdot \omega_1$.

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

^{*}Atención: el origen $\omega=0$ no se representa en una escala logarítmica.

Polo en el origen

$$\mathbf{H}(\omega) = \frac{1}{j\omega} \Rightarrow \begin{cases} |\mathbf{H}(\omega)| = -20\log\omega\\ \phi(\omega) = -90^{\circ} \end{cases}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

ransferencia

Diagrama de Bode

Cero simple

$$\begin{split} \mathbf{H}(\omega) &= 1 + j\frac{\omega}{\omega_{z}} \Rightarrow \begin{cases} |\mathbf{H}(\omega)| = 20\log\sqrt{1 + \left(\frac{\omega}{\omega_{z}}\right)^{2}} \\ \phi(\omega) &= \operatorname{atan}\left(\frac{\omega}{\omega_{z}}\right) \end{cases} \\ |\mathbf{H}(\omega)| &= \begin{cases} 20\log 1 = 0, \quad \omega \to 0 \\ 20\log\frac{\omega}{\omega_{z}}, \quad \omega \gg \omega_{z} \end{cases} \\ \phi(\omega) &= \begin{cases} 0^{\circ}, \quad \omega \leq 0.1\omega_{z} \\ 45^{\circ}, \quad \omega = \omega_{z} \\ 90^{\circ}, \quad \omega \geq 10\omega_{z} \end{cases} \end{split}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

Polo simple

$$\mathbf{H}(\omega) = \frac{1}{1 + j\frac{\omega}{\omega_p}} \Rightarrow \begin{cases} |\mathbf{H}(\omega)| = -20\log\sqrt{1 + \left(\frac{\omega}{\omega_p}\right)^2} \\ \phi(\omega) = -\operatorname{atan}(\frac{\omega}{\omega_p}) \end{cases}$$
$$|\mathbf{H}(\omega)| = \begin{cases} -20\log 1 = 0, \quad \omega \to 0 \\ -20\log\frac{\omega}{\omega_p}, \quad \omega \gg \omega_p \end{cases}$$
$$\phi(\omega) = \begin{cases} 0^{\circ}, \quad \omega \leq 0.1\omega_p \\ -45^{\circ}, \quad \omega = \omega_p \\ -90^{\circ}, \quad \omega \geq 10\omega_p \end{cases}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

Cero cuadrático

Sea $\mathbf{H}(\mathbf{s})|_{\mathbf{s}=j\omega} = \mathbf{s}^2 + 2\alpha\mathbf{s} + \omega_0^2$, con $\alpha < \omega_0$. Usando $\zeta = \alpha/\omega_0 < 1$ y normalizando:

$$\mathbf{H}(\omega) = 1 + j2\zeta \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2$$

$$|\mathbf{H}(\omega)| = \begin{cases} 20\log 1 = 0, & \omega \to 0\\ 40\log(\omega/\omega_0), & \omega \gg \omega_0 \end{cases}$$

$$\phi(\omega) = \operatorname{atan} \frac{2\zeta\omega/\omega_0}{1 - \omega^2/\omega_0^2} \begin{cases} 0^{\circ}, & \omega \le 0.1\omega_0\\ 90^{\circ}, & \omega = \omega_0\\ 180^{\circ}, & \omega \ge 10\omega_0 \end{cases}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Fransferencia

Diagrama de Bode

Polo cuadrático

$$\mathbf{H}(\omega) = \frac{1}{1 + j2\zeta \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$$
$$|\mathbf{H}(\omega)| = \begin{cases} -20\log 1 = 0, & \omega \to 0\\ -40\log(\omega/\omega_0), & \omega \gg \omega_0 \end{cases}$$

$$\phi(\omega) = -\operatorname{atan} \frac{2\zeta\omega/\omega_0}{1 - \omega^2/\omega_0^2} \begin{cases} 0^{\circ}, & \omega \leq 0.1\omega_0 \\ -90^{\circ}, & \omega = \omega_0 \\ -180^{\circ}, & \omega \geq 10\omega_0 \end{cases}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Fransferencia

Diagrama de Bode

Ejercicios Recomendados

- ► AS: ejemplos 14.3, 14.4, 14.5, 14.6.
- Exámenes:
 - ► Feb 2004 (b), Jun 2013 (b)
 - ► Sep 2007 (b), Feb 2005 (b), Feb 2010 (b)
 - Nov 2014 (b), Sep 2005 (b), Sep 2006 (b).

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

Función de Transferencia

Diagrama de Bode

Filtro Paso Bajo

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

runción de ransferencia

Diagrama de Bode

Filtro Paso Alto

|H(0)| = 0 $|H(\omega_c)| = 1/\sqrt{2}$

 $|H(\infty)|=1$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Filtro Paso Banda

$$|H(\omega < \omega_1)| = 0$$

$$|H(\omega_1 < \omega < \omega_2)| = 1$$

$$|H(\omega > \omega_2)| = 0$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

Función de Fransferencia

Diagrama de Bode

Filtro Banda Eliminada

$$|H(\omega < \omega_1)| = 1$$

$$|H(\omega_1 < \omega < \omega_2)| = 0$$

$$|H(\omega > \omega_2)| = 1$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

runción de ransferencia

Diagrama de Bode

Ejemplo: circuito RC

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

runción de ransferencia

Diagrama de Bode

Ejemplo: circuito RL

$$H(s) = \frac{U_L(s)}{E_g(s)} \Rightarrow |H(\omega)| = \frac{\omega/\omega_\text{c}}{\sqrt{1+(\omega/\omega_\text{c})^2}}$$

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

unción de ransferencia

Diagrama de Bode

Circuitos para practicar

Respuesta en Frecuencia

Oscar Perpiñán Lamigueiro

Introducción

anción de ansferencia

Diagrama de Bode