Squeezing performance from pathology foundation models with chained hyperparameter searches

ATARAXIS

Joseph Cappadona¹, Ken Zeng¹, Carlos Fernandez-Granda^{1,2}, Jan Witowski¹, Yann LeCun^{2,3}, Krzysztof J. Geras^{1,2}

¹Ataraxis AI, ²New York University, ³Meta AI

Summary

SSL in digital pathology: SSL is well-suited for digital pathology, leveraging an abundance of unlabeled slides and addressing the scarcity of labeled patient data.

Study focus: Explore the effect of hyperparameter tuning on the downstream performance of models trained with DINOv2, moving beyond the standardized hyperparameter schedules and augmentation policies used in most studies.

Key Results

Chained hyperparameter searches can be an effective way to tune models in large hyperparameter search spaces.

Figure 1: We used this approach to train pathology foundation models with downstream performance on par with models trained on significantly more data.

Experiment Setup

Models: We train two ViT sizes,

- ViT-Small (21M)
- ViT-Large (303M)

SSL: We tune hyperparameters related to

- learning rate
- weight decay
- teacher temperature
- EMA momentum
- augmentation policy

Feature extraction:

 Slide-level tasks are evaluated using mean-pooled patch embeddings, reduced to 50 dimensions with PCA.

Main methodology: chaining hyperparameter searches

Figure 2: Successive hyperparameter searches are used to tune DINOv2 hyperparameters by optimizing performance on 16 patch-level tasks. In each successive step, either model size or dataset size is increased, and the hyperparameter search space is narrowed.

Additional results

Figure 4: Patch-level task performance used for early stopping and hyperparameter selection.

Figure 5: Patch-level performance is strongly correlated with slide-level performance.

Discussion

- Our work highlights the importance of hyperparameter tuning in SSL.
- The best tuned ViT-S performed only marginally worse than the best tuned ViT-L.
- Patch-level task suites can be used in lieu of slide-level task suites to save computation.
- Hyperparameters transfer reasonably well across model and dataset size.

