ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Курс «Информатика», семестр 1, семинары

Постановка задачи

Задана линейная функция L от переменных (*x*1, *x*2,..., *xn*). **L**(*x*1, *x*2,..., *xn*) называется **целевой функцией**.

Задача:

найти экстремум (максимум или минимум) целевой функции при условии, что переменные удовлетворяют системе линейных равенств и/или неравенств.

$$L = x_1c_1 + x_2c_2 + \dots + x_nc_n \rightarrow max/min$$

при условии:

$$\sum_{i=1}^{n} a_{i,j} x_j \le b_i, i = 1, 2, \dots, k$$

 c_i , b_i , $a_{i,j}$ — заданные константы

Типовые задачи

Задача о диете

Составить план производства кормов для животных при условии, что:

- существуют n различных рецептур $g_1, g_2, ..., g_n$;
- используются m видов компонентов $r_1, r_2, \dots r_m;$
- известны цены реализации товаров c_1, c_2, \dots, c_n , произведённых по каждой из рецептур;
- заданы запасы компонентов b_1, b_2, \dots, b_m .

Необходимо определить количество товаров x_1, x_2, \dots, x_n , при котором достигается максимальное значение целевой функции $L = x_1c_1 + x_2c_2 + \dots + x_nc_n \to max$

Типовые задачи

Рецептуры задаются Матрицей производства (Технологической матрицей):

	g ₁	g_2	 g _n
r ₁	a ₁₁	a ₁₂	a _{1n}
r_2	a ₂₁	a ₂₂	 a _{2n}
r _m	a _{m1}	a _{m2}	 a _{mn}

$$L = x_1c_1 + x_2c_2 + \dots + x_nc_n \to max$$

$$\sum_{j=1}^{n} a_{i,j}x_j \le b_i, \quad i = 1, 2, \dots, m$$

$$x_1, x_2, \dots, x_n \ge 0$$

Основной и канонический вид задачи линейного программирования

Основной вид задачи линейного программирования

$$L = x_1 c_1 + x_2 c_2 + \dots + x_n c_n \to max$$

$$\sum_{j=1}^{n} a_{i,j} x_j \le b_i, i = 1, 2, \dots, k$$

$$x_1, x_2, \dots, x_n \ge 0$$

Канонический вид задачи линейного программирования

$$L = x_1c_1 + x_2c_2 + \dots + x_nc_n \to max$$

$$\sum_{j=1}^{n} a_{i,j}x_j = b_i, i = 1, 2, \dots, k$$

$$x_1, x_2, \dots, x_n \ge 0$$

Приведение задачи минимизации к задаче максимизации

$$L = x_1c_1 + x_2c_2 + \dots + x_nc_n \to min$$

$$L = -x_1c_1 - x_2c_2 - \dots - x_nc_n \to max$$

Приведение задачи к каноническому виду

Исходная

$$L = 2x_1 + x_2 + 5 x_3 \rightarrow min$$

$$\begin{cases} x_1 & -7x_2 & 4x_3 & \leq 11 \\ 2x_1 & 9x_2 & x_1 \geq 0 - 1x_3 & \geq 7 \\ x_1 \geq 0 & x_2 \geq 0 & x_3 \geq 0 \end{cases}$$

<u>Основной вид</u>

$$L = -2x_1 - x_2 - 5 x_3 \to max$$

$$\begin{cases} x_1 & -7x_2 & 4x_3 \leq 11 \\ -2x_1 & -9x_2 & 1x_3 \leq -7 \\ x_1 \geq 0 & x_2 \geq 0 & x_3 \geq 0 \end{cases}$$

Канонический вид

$$L = -2x_1 - x_2 - 5 x_3 \rightarrow max$$

$$\begin{cases} x_1 & -7x_2 & 4x_3 & x_4 & = 11 \\ -2x_1 & -9x_2 & 1x_3 & x_5 & = -7 \\ x_1 \ge 0 & x_2 \ge 0 & x_3 \ge 0 & x_4 \ge 0 & x_5 \ge 0 \end{cases}$$

Разновидности допустимых множеств решений

- 1. Допустимое множество решений пусто. Задача решений не имеет
- 2. Допустимое множество решений выпуклый ограниченный многогранник. Задача имеет одно или бесконечно много решений.
- 3. Допустимое множество выпуклое неограниченное многогранное множество. Задача решений не имеет.

Если задача линейного программирования имеет хотя бы один оптимальный план, то его следует искать среди вершин допустимого множества решений.

Графический метод решения задачи линейного программирования

Задача

$$L = 3x_1 + 4x_2 \to min/max$$

$$\begin{cases} -x_1 & x_2 \leq 3 \\ 5x_1 & 3x_2 \leq 97 \\ x_1 & 7x_2 \geq 74 \\ x_1 \geq 0 & x_2 \geq 0 \end{cases}$$

Симплекс-метод

- 1. Задача должна быть представлена в каноническом виде.
- 2. В каждом из равенств присутствует **одна** базисная переменная, взятая с единичным коэффициентом, а в других равенствах её нет.

$\frac{\Pi P U M E P}{L = 3x_1 + 4x_2 + 6x_3 \rightarrow max}$ $\begin{cases} 2x_1 & 5x_2 & 2x_3 \leq 12 \\ 7x_1 & 1x_2 & 2x_3 \leq 18 \\ x_1 \geq 0 & x_2 \geq 0 & x_3 \geq 0 \end{cases}$

х4, х5 – базисные переменные

Симплекс-таблица

Базис	x_1	 x_n	x_{n+1}	 x_{n+m}	Свободные члены	Симплекс- отношения
x_{n+1}	$a_{1,1}$	 $a_{1,n}$	1	 0		
		 		 •••		
x_{n+m}	$a_{m,1}$	$a_{m,n}$	0	 1		
	-c1	 -c _n	0	 0		

т – количество базисных переменных

Симплекс-таблица для примера

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_4	2	5	2	1	0	12	
x_5	7	1	2	0	1	18	
	-3	-4	-6	0	0		

Опорный план: $\bar{x}^0 = (0, 0, 0, 12, 18)$

Условие оптимальности: если в последней строке симплекс-таблицы все элементы **неотрицательны**, то соответствующий опорный план является оптимальным.

Алгоритм симплекс-метода

- 1. В последней строке симплекс-таблицы выбирается наименьший отрицательный элемент. Столбец, соответствующий этому элементу, называется *ведущим*. Он определяет переменную, которая будет введена в базис на данном этапе. В примере переменная *x*3.
- Вычисляют отношения свободных членов к элементам ведущего столбца (симплекс-отношение): θ1=12/2=6, θ1=18/2=9. Находят наименьшее неотрицательное из этих симплекс-отношений. Оно соответствует ведущей строке, которая определяет переменную, выводимую из базиса.
 В примере переменная x4. (Если все симплекс-отношения окажутся отрицательными, то задача не имеет решений).

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_4	2	5	2	1	0	12	6
<i>x</i> ₅	7	1	2	0	1	18	9
	-3	-4	-6	0	0		

На пересечении ведущей строки и ведущего столбца находится ведущий элемент.

Алгоритм симплекс-метода

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_3	?	?	1	?	0	?	
x_5	?	?	0	?	1	?	
	?	?	0	?	0		

3) Элементы ведущей строки, за исключением симплекс-отношения, делим на ведущий элемент.

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_3	1	2.5	1	0.5	0	6	
<i>x</i> ₅	?	?	0	?	1	?	
	?	?	0	?	0		

Алгоритм симплекс-метода

4) Оставшиеся элементы симплекс-таблицы вычисляются по правилу прямоугольника: мысленно чертим прямоугольник, одна вершина которого совпадает с разрешающим элементом, а другая - с элементом, образ которого ищется (две другие вершины называются дополняющими); Искомый элемент будет равен соответствующему элементу текущей таблицы минус дробь, в знаменателе которой стоит разрешающий элемент, а в числителе - произведение элементов дополняющих вершин.

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_3	1	2.5	1	0.5	0	6	
x_5	5	-4	0	-1	1	6	
	3	11	0	3	0		

Новый опорный план: $\bar{x}^0 = (0, 0, 6, 0, 6)$

Оптимальное решение: x = (0, 0, 6);

Оптимальное значение целевой функции: L=3*0 + 4*0 + 6*6 =36