بِسْمِ للهِ رُحْفَنِ رُحِيْمَ

Data Sitructures Nutumn - 2017

1.00 (a)

The votepes at the votedy at out jest data istructures:

- 1) Under istanding the purpose and the theory. Find the way
- (i) Follow the logic of the data structure.
- (ii) Implement the algorithm proporty.
- (i) Solve the problem with data estructure.

W='XYZST'

The initial voubrothings at W are

χ

YX

XYZ

XYZSI

XYZST

Y

YZ

YZS

YZST

Z ZS ZST

S

ST

T

The initial voulestrings are:

X, XY, XYZ, XYZS, XYZST.

C=3+1+2+3+1+2+3+1+2+3+1+2+3+1+2 +3+1+2+3+1+2=42 (Ann.)

(ii) there are 40-3+1=38 vollows sids WK, we have

(cbab) = cbabcbabcbabcbabcbabcbabcbabcbabcbab

C = 1 + 1 + 3 = .5. (Ans.).

 $\frac{2n0}{(a)}$ (i) The number of elements in xxx is $L_1 = 10 - (-10) + 1 = 21$.

" " YYY is $L_2 = 1985 - 1935 + 1 = 51$.

" " ZZZ is $L_3 = 35 - 0 + 1 = 36$.

(ii) The stoomula is LOC (YYY) = Base (YYY) + w (K-LB)

LOC (YYY [1942]) = 400 + 4 (1942 - 1935) = 428

LOC (YYY [1977]) = 400 + 4 (1977 - 1935) = 568.

- 1 Set n=25, EVNUM=0, ODNUM=0.
- @ Repeat book = 1 to k = n.

IN (A[K] 00 2 = 0)

Set EVNUM = EVNUM + 1

a. He se send charges she was be

Eclose Set ODNUM = ODNUM + 1

- 3 Write! EVNUM, ODNUM.
- 4 Exit.

FOR ITEM = 40

(c)

(i) Initially, BEG = 1 and END = 13, Hence

MID = [(+13)/2] = 7

DATA [MID] = 55

(ii) Since 40<55, END well change its value by END=MID-1=6 Then MID = [(1+6)/2] = 3

DATA [MID] = 30

(iii) Since 40>30, BEG will change its value by BEG=MID+1=4 MID = [(4+6)/2] = 5 Then,

DATA[MID] = 40

We have found ITEM in Location LOC = MID = 5.

FOR ITEM = 85

(i) Initially, BEG = 1 and END=13, MID=7, DATA[MID]=55

(ii) Since 85>55, BEG will change its value by BEG=MID+1=8 MID=[(8+13)/2]=10 thon

DATA [MID] = 77

(ii) Since 85>77, BEG will change its value by BEG=MID+1=11 MID = [(11+13)/2] = 12 Then,

DATA[MID] = 88

(iv) Since 85<88, END will change its value by END = MID-1 = 11

MID= (11+11)/2 = 11

DATA [MID] = 80

€ Since 85 > 80, BEG will change its value by BEG = MID +1=12 AND BEGLYEND homce ITEM doesn't excist in DATA.

Sparse matrices! Matrices with a relatively high proportion of zero entries are called opense matrices.

	2 00000	21	in the same	
)		ó
	London, Benlin, Rom	e, Paris,)	t
	ondon Berlin, Rome , P		1	2
	ondon, Cerlin, Rome,			
3 * [ondon, Berlin, Rome	·—	, 5	3
4 * L	ondon, Berlin, Rom	e. Madrid,_	. , 🤇	,
* La	ondon, Berlin, Rome,	Madrid More	.	K 10
			4	3
* Lo	don, Berlin, Rome	, Mednid,	- {-	8
) If th	e stock operation	pop (stock, It	EM) dele	les Lo
				1.1
the	STACK WIII	be empty	u	2
the	STACK WIII	be empty	3	Ø Ø
the	41.6 -41.	be empty	u	9
the	STACK WIII	be empty	3	0 14 17
the	10	be empty	3	
the	1/G = 1/1 1/G = 1/1	be empty		31
the	10	be empty		31
the	10	be empty		31
the	10	be empty		31

Here Top=3, Stack: 5,2,3, __,__

(i) Call POP (STACK, ItemA)

Item A = 3

App = 2 , Stack: 5, 2, -, -, -, -

Call POP (STACK, ItemB)

Item B = 2

Jop=1, Stock: 5, -, -, -, -, -

Call Push (STACK, ItemB+2)

dop=2, Stack: 5, 4, -, -, -, -

Call Push (STACK, 8)

Stack: 5, 4, 8, __, __,

Call Push (STACK, ItemA + ItemB)

top=4, Stack ! 5, 4, 8, 5, -, -

(i) Pop and Print is Istem

Out put! 5,1,8,5. 5,8,4,5.

3(c)

SY.	mbo Scaned	STACK	C. 0000010
140	(Skart)	(Expression P
1	(((
2	((((
3	Α	-(((-	A
٩	+	(((+	A
5	В	(((+	AB ·
6)	((AB+
7	/	((/	AB+
8	D.	((/	AB+D -
9	>	(AB+D/
ָט	1	(1	AB+D/
1	((1)	AB+D/
2	((↑ ((AB+D/
3	E /	(↑((AB+D/E
14	-	(↑((-	AG+D/E
5	F	(↑((-	AB+D/EF
6)	(<u>↑</u> (AB+D/EF-
Ŧ	*	(1(*	AB+D/EF-&
3	G	(1)(*	AB+D/EF-G -
2)	(^	AB+D/EF-61*
0		(Fre)	AB+D/EF-61*1

4) b) The bubble sont algo in, written below,

- 1). Repeat steps 2 and 3 fin K=1 to n-1
- 2). Set PTR=1

9

- 3). Repeat while PTR <= N-K
- (a) If DATA[PTR] > DATA[PTR+1]

 Introchange DATA[PTR] and DATA[PTR+]
 - (5) Set PTR := PTR+1
- D. Exi+.

number of Interchange the

Dy

Symbol	Stack
3	3
5	3,5
+	8
6	8,6
4	8,6,4
_	8,2
*	16
4	16,4
1	16,4,1
-	16,3
2	16,3,2
1	16,9
	25