# CHAPTER 2

# DC and AC Meters (part2)

#### PART 1 (DC)

- Introduction to DC meters
- D' Arsonval meter movement
- × DC ammeter
- DC voltmeter
- × DC ohmmeter

#### PART 2 (AC)

- Introduction to AC meters
- D' Arsonval meter movement (half-wave rectification)
- D' Arsonval meter movement (full-wave rectification)
- Loading effects of AC meter

### STRUCTURE FOR CHAP

# PART 2 – AC METERS (INTRO..)

- Several types of meter movements maybe used to measure AC current or voltage.
- The five principle meter movements used in ac instruments are listed in Table below:

| No | Meter Movement      | DC Use | AC Use               | Applications                       |
|----|---------------------|--------|----------------------|------------------------------------|
| 1  | Electro-dynamometer | YES    | YES                  | Standard meter, Wattmeter, etc     |
| 2  | Iron-Vane           | YES    | YES                  | Indicator applications, etc        |
| 3  | Electro-static      | YES    | YES                  | High voltage measurement.          |
| 4  | Thermocouple        | YES    | YES                  | Radio freq measurement             |
| 5  | D'Arsonval          | YES    | YES-w/<br>rectifiers | Voltage, currents, resistance, etc |

### SINE WAVEFORM



# IF THE DMM IS CONNECTED TO AC SOURCE?



# HOW TO MODIFY THE DMM TO BE AS AC METERS?

### Needs for rectification



- Convert AC source to DC source
- Most common rectification device is diode (a nonlinear device)
- **×** Two types of rectifier circuits:
  - > Half-Wave rectifier circuit
  - > Full-Wave rectifier circuit

D' ARSONVAL METER MOVEMENT (HALF-WAVE RECTIFICATION)

suppose we replace the 10-Vdc with 10Vrms...





# DMM (HALF-WAVE RECTIFICATION) CONT'D



#### Peak Value,

$$E_p = E_{rms} x \sqrt{2} = 1.414 E_{rms}$$

Average value, or DC value

$$E_{ave} = E_{dc} = \frac{E_p}{\pi} = 0.318 \ E_p = 0.45 E_{rms}$$

# DMM (HALF-WAVE RECTIFICATION) CONT'D

- Diode = Produces half sine wave across load resistor
- \* \* DC/Ave. Voltage -> The dc meter will only respond to the average value of ac sine wave.

#### Simple example:

- If we were to measure 10V DC, the meter will deflect which indicate 10V
- However, if we were to measure 10 V rms, the meter will deflect which indicate only 4.5V
- DC voltmeter = 4.5V (Meter read dc/average voltage only)
- Ac voltmeter is not sensitive as a dc voltmeter
- Approximately 45% as sensitive as a dc voltmeter

# DMM (HALF-WAVE RECTIFICATION) CONT'D

$$S_{ac} = 0.45S_{dc}$$

$$R_T = R_s + R_m = \frac{E_{DC}}{I_{DC}}$$

$$R_s = \frac{E_{DC}}{I_{DC/fs}} - R_m = \frac{0.45E_{rms}}{I_{dc/fs}} - R_m \quad \text{where } S = 1/I_{dc} (\Omega/V)$$

Therefore,

$$R_s = S \times 0.45 E_{rms} - R_m$$

In general, multiplier resistor (R<sub>s</sub>)

$$R_{s} = (S \times Range) - R_{m}$$

$$R_{s} = (S_{dc} \times Range_{dc}) - R_{m}$$

$$R_{s} = (S_{ac} \times Range_{ac}) - R_{m}$$

for DC

for AC

# **EXAMPLE 1**

Compute the value of  $R_s$  for a 10- $V_{rms}$  AC range on the voltmeter shown in Figure 1.

Given that  $E_{in} = 10V_{rms}$ ,  $I_{fs} = 1mA$ ,  $R_m = 300\Omega$ .



### **COMMERCIAL AC VOLTMETERS**



### COMMERCIAL AC VOLTMETERS (CONT'D)



#### R<sub>sh</sub>:

- increase current flow through D<sub>1</sub> during the +ve ½ cycle
- diode will be operating in linear region
- improve linearity of AC meter during measurement of low voltage, but further reduces the ac sensitivity

#### **D**<sub>2</sub>:

- +ve ½ cycle = no effect (Reverse-bias)
- -ve  $\frac{1}{2}$  cycle = provides an alternate path for reverse biased leakage current that would normally flow through meter movement and D<sub>1</sub>.

# **EXAMPLE 2**

In the  $\frac{1}{2}$  wave rectifier shown below, D1 and D2 have an average forward resistance of  $50\Omega$  and are assumed to have an infinite resistance in reverse biased. Calculate the following:

- (a) R<sub>s</sub> value
- (b) S<sub>dc</sub>
- $(c) S_{ac}$

Given that  $E_{in} = 10 \text{-V}_{rms}$ ,  $R_{sh} = 200\Omega$ ,  $I_{fs} = 100\mu\text{A}$ ,  $R_m = 200\Omega$ 



# D' ARSONVAL METER MOVEMENT (FULL-WAVE RECTIFICATION)



- Full-wave has higher sensitivity rating
- Change the input waveform from +ve & -ve to only +ve

# DMM FULL-WAVE RECTIFICATION (CONT'D)



Figure 1. Full wave rectifier circuit diagram

#### **POSITIVE CYCLE**

#### **NEGATIVE CYCLE**





(Diode Ideal, R=0)

(Diode Ideal, R=0)

$$E_{in} = V_{Rs} + V_{Rm}$$

$$E_{in} = V_{Rs} + V_{Rm}$$

### DWINEFULL-WAVE RECTIFICATEON (CONT'D)

### DMM FULL-WAVE RECTIFICATION (CONT'D)

Peak Value,

 $E_p = E_{rms} \sqrt{2}$ 

Average value, or DC value,

 $E_{avg} = \frac{2E_p}{\pi} = \frac{2(\sqrt{2})E_{rms}}{\pi} = 0.9xE_{rms}$ 

AC Sensitivity,

 $S_{ac} = 0.9S_{dc}$ 

DC Sensitivity,

 $S_{dc} = \frac{R_T}{Range_{dc}} = \frac{1}{I_T}$ 

Total Resistance of AC voltmeter,

$$R_T = \frac{E_{dc}}{I_T} = S_{ac} \times Range_{ac}$$

# **EXAMPLE 3**



Compute the value of the multiplier resistor for a 10-V rms range on the voltmeter shown above. Let  $E_{in}$  = 10Vrms,  $I_{fs}$ =1mA,  $R_m$ =500 $\Omega$ 

## LOADING EFFECTS OF AC METER

Sensitivity AC < Sensitivity DC

#### Therefore

Loading Effects AC > Loading Effect DC ----Range<sub>dc</sub>=10 V, Range<sub>ac</sub>=10 Vrms



# REFRESH LOADING EFFECT

(DC VOLTMETER)

Actual value of E<sub>2</sub>, 
$$E_{R2}$$
,  $actual = \frac{R_2}{R_1 + R_2} (E_{dc}) = 10V$ 

DC voltmeter, 
$$S_{dc} = \frac{1}{I_{fs}} = \frac{1}{100 \mu A} = 10 \frac{k\Omega}{V}$$

$$R_T = S_{dc} x Range_{dc} = 10 \frac{k\Omega}{V} x 10V = 100 k\Omega$$

$$E_{R2}$$
, DCvolumeter  $= \frac{R_T \| R_2}{\left( R_T \| R_2 \right) + R_1} (20V) = 9.52V$ 

HALF-WAVE **FULL-WAVE** 

$$S_{hw} = 0.45 S_{dc} = 4.5 \frac{k\Omega}{V}$$

$$R_T = S_{hw} x Range_{dc} = 4.5 \frac{k\Omega}{V} x 10V = 45k\Omega$$

$$E_{R2}$$
, Halfwave =  $\frac{R_T \| R_2}{(R_1 \| R_2) + R_1} (E_{dc}) = 9.0V$ 

$$S_{fw} = 0.9S_{dc} = 9.0 \frac{k\Omega}{V}$$

$$R_T = S_w x Range_{dc} = 4.5 \frac{k\Omega}{V} x 10V = 45k\Omega$$

$$E_{R2}$$
, FullWave  $=\frac{R_T \| R_2}{(R \| R) + R} (E_{de}) = 9.47V$ 

# $E_{R2},_{HalfWave} = \frac{R_T \| R_2}{(R_T \| R_2) + R_1} (E_{dc}) = 9.0V \qquad E_{R2},_{FullWave} = \frac{R_T \| R_2}{(R_T \| R_2) + R_1} (E_{dc}) = 9.47V$ **LOADING EFFECTS OF AC METER**

### SENSITIVITY AC < SENSITIVITY DC

$$S_{hw} = 0.45 S_{dc} = 4.5 \frac{k\Omega}{V}$$

$$S_{dc} = \frac{1}{I_{fs}} = \frac{1}{100 \mu A} = 10 \frac{k\Omega}{V}$$

$$S_{fw} = 0.9 S_{dc} = 9.0 \frac{k\Omega}{V}$$

# **EXAMPLE 4**

- a) Determine the reading obtained with a
   DC voltmeter at R<sub>B</sub> when the switch is set at point B.
- b) Determine the reading at the same R<sub>B</sub> using ½ wave and Full wave rectifier AC meter respectively when the switch is set at point A.



Given that Ifs =  $100-\mu A$  and set at 10-V dc or rms range.

# END OF PART 2