

Linear and Discrete Optimization

Linear programming

► Example

Softdrink production

(1000	A \	В	PR OFIT
•	SPAING	3 6	8 Q	100 C HT
•	NEBSI	6e	40	125 CHT

Goal: Naximize Profit!

Quitz: (an we produce 500l of spring ond 400l of Websi ?

Ö 🖔

USRGE Of A: 3.5 +4.6 = 15+24 = 39

The optimization problem

Usage of A and B and profit per 100/:

	Α	В	Profit
Spring	31	81	100 CHF
Nebsi	61	41	125 CHF

- On Stock: 30/ of A and 44/ of B
- Capacity of barrels: Spring 5001, Nebsi 4001

Feasible production plans

max.
$$100 \cdot x_1 + 125 \cdot x_2$$

s.t.: $3 \cdot x_1 + 6 \cdot x_2 \le 30$
 $8 \cdot x_1 + 4 \cdot x_2 \le 44$
 $x_1 \le 5$
 $x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \ge 0$

$$\beta = 775 \times \begin{cases} 2(x_{1}, x_{2}) \in \mathbb{R}^{2} : \lambda 00 \cdot x_{1} + \lambda 25 \cdot x_{2} = 775 \end{cases}$$

$$\beta = 500$$

$$\beta = 250$$

$$\beta = 250$$

$$\begin{cases} 2 \times 4 + x_{2} = 14 & 1 \times 2 \\ x_{1} + 2 \cdot x_{2} = 40 & 2 \end{cases}$$

$$\begin{cases} 2 \times 4 + x_{2} = 14 & 1 \times 2 \\ x_{1} + 2 \cdot x_{2} = 10 & 2 \end{cases}$$

$$\begin{cases} 2 \times 4 + x_{2} = 14 & 1 \times 2 \\ x_{1} + 2 \cdot x_{2} = 10 & 2 \end{cases}$$

$$\begin{cases} 2 \times 4 + x_{2} = 11 \\ -3 \times 4 & 2 = 11 \end{cases}$$

$$\begin{cases} 2 \times 4 + x_{2} = 11 \\ -3 \times 4 & 2 = 11 \end{cases}$$