11/05/2023

DER - TEORÍA

- 1) Indique cuál de las siguientes afirmaciones es FALSA En un DER:
 - a) Los atributos compuestos se indican con una doble línea. (F)
 - b) La cardinalidad de una relación indica la cantidad de instancias de relación en las que puede participar una instancia de entidad. Por ejemplo, las cardinalidades de una relación binaria pueden ser: 1-1, 1-N, N-1 o N-N.
 - c) Las jerarquías de generalización deben contener un atributo discriminante que se coloca entre la entidad padre y las entidades hijas.
 - d) La clave de una entidad es el atributo (o conjunto de atributos) cuyo valor nunca puede repetirse y que identifican unívocamente a cada instancia de la entidad.
 - e) El grado de una relación es la cantidad de entidades que participan en dicha relación. Los grados posibles son: unaria, binaria o ternaria
- 2) Indique cuál de las siguientes afirmaciones es verdadera. En un DER:
 - a) Cuando existen 3 relaciones binarias vinculando a 3 entidades, las mismas siempre pueden reemplazarse por una ternaria. Por ejemplo:

b) Siempre que hay un ciclo indica que alguna de las relaciones es redundante y hay que eliminarla. Por ejemplo:

c) No es posible tener dos o más relaciones entre las mismas entidades. Por ejemplo:

- d) No pueden existir dos entidades con el mismo nombre. (V)
- e) No pueden existir dos atributos con el mismo nombre en distintas entidades

Primer Parcial DNI:	Nombre y Apellido:	TEMA 2
Universidad Nacional de	l a Matanza - Raso do datos	11/05/2023

- 3) Indique cuál de las siguientes afirmaciones es verdadera. Una Entidad Débil:
 - a) Es menos importante que las otras entidades que no son débiles
 - b) Siempre debe tener una clave parcial propia que se debe subrayar con línea punteada
 - c) Siempre tiene una única entidad fuerte
 - d) No puede relacionarse con otra entidad que también sea débil
 - e) Su clave está compuesta por al menos un atributo proveniente de otra entidad(V)

DER - PRÁCTICA

Dado el siguiente DER:

De acuerdo a lo modelado, indicar si las siguientes afirmaciones son verdaderas o falsas:

- 4) Con los datos que hay en el DER no es posible calcular el monto que debe abonar una persona al momento de una compra. (V)
- 5) No es posible conocer todos los tipos de ubicaciones que tiene un teatro. (F)
- 6) Para permitir que una persona pueda comprar muchas ubicaciones para una misma función de una obra de teatro, debo cambiar la cardinalidad existente en la relación ternaria "Compra". (F)
- 7) No se permite que una misma persona pueda comprar la misma ubicación en un mismo teatro para distintas funciones de la obra "Los Miserables". (F)

MR - TEORÍA

- 8) Indique cuál de las siguientes afirmaciones es verdadera. En el MR:
 - a) La cardinalidad de una instancia de relación es la cantidad de tuplas que posee.
 - b) El grado de una relación es la cantidad de atributos que posee.
 - c) Cada relación se compone de un nombre y una lista de atributos.
 - d) Todas las anteriores son verdaderas. (V)
 - e) Solo a y b son verdaderas.
- 9) Indique cuál de las siguientes afirmaciones es FALSA respecto al pasaje del DER al MR:
 - a) Los atributos calculables del DER, no se colocan en el MR.
 - b) Las relaciones unarias nunca generan una nueva relación en el MR, sea cual fuera su cardinalidad. (F)
 - c) Los atributos de las relación binarias de N a 1, se deben colocar en el MR en la relación que corresponde a la entidad que está del lado de la N, junto con la clave foránea correspondiente.
 - d) Las relaciones binarias con cardinalidad de 1 a N del DER no generan una relación en el MR.
 - e) Todas las relaciones ternarias del DER, sin importar su cardinalidad, generan siempre una nueva relación en el MR.

MR - PRÁCTICA

10) Dado el siguiente DER:

Indicar que MR se desprende del mismo. (Referencias PK, FK, PK+FK):

- a) A(a1, a2) B(b1,b2) C (a1,b1,c1,c2) D(d1,d2) E(e1,e2,d1,g1) F(e1,a1,f1)
- b) A(a1, a2) B(b1,b2) C (a1,b1,c1,c2) D(d1,d2) E(e1,e2,d1,g1) F(e1,a1,f1)
- c) A(a1, a2) B(b1,b2) C (a1,b1,c1,c2) D(d1,d2) E(e1,e2,d1,g1) F(e1,a1,f1)
- d) A(a1, a2) B(b1,b2) C (a1,b1,c1,c2) D(d1,d2) E(e1,e2) F(e1,a1,f1) G(d1, g1)
- e) Ninguna de las anteriores

NORMALIZACIÓN-TEORÍA

- 11) Indique cuál de las siguientes afirmaciones es FALSA.
 - a) Para que un esquema de relación pueda cumplir FNBC primero debe cumplir 1FN, 2FN y 3FN.
 - b) Las dependencias funcionales triviales no cumplen ninguna forma normal. (F)
 - c) Un esquema de relación cumple primera forma normal si todos sus atributos admiten únicamente valores atómicos (indivisibles).
 - d) La segunda forma normal se basa en el concepto de dependencia parcial.
 - e) La tercera forma normal se basa en el concepto de dependencia transitiva.
- 12) Cuál de las siguientes NO es un axioma de Armstrong o una regla derivada:

a) Asociación (NO)

- b) Descomposición
- c) Unión
- d) Transitividad
- e) Reflexividad
- 13) Indique cuál de las siguientes afirmaciones es FALSA.
 - a) Según la definición de dependencia funcional, se cumple que X -> Y, si para cualesquiera dos tuplas que tengan igual valor en Y entonces deberán tener necesariamente igual valor en X. (F)
 - b) Todo esquema de relación R tiene siempre al menos una Clave Candidata.
 - c) La dependencia XY -> Y es trivial
 - d) La parte izquierda de una dependencia funcional se llama determinante.
 - e) Toda clave es superclave.

Primer Parcial DNI: Universidad Nacional de La M	Nombre y Apellido:	TEMA 2 11/05/2023
Universidad Nacional de La M	ataliza - Base de datos	1 1/05/2025
14) Indique cuál de las siguientes a	firmaciones es verdadera.	
	e verificar si una descomposición tiene o no pérdida a que no tendremos pérdida de dependencias, pero	-
	no forma parte de ninguna clave candidata.	
	a que no tendremos pérdida de información ni de do de dependencias funcionales F, podemos asegurar das que F.	
15) Cuando un modelo de base de los siguientes NO es un problema c	datos no se encuentra normalizado, pueden surgir v le esos?	rarios problemas. ¿Cuál de
a) Anomalía de inserción <mark>b) Pérdida de seguridad (NO)</mark>		
c) Anomalía de eliminación		
d) Redundancia de datos		
e) Anomalía de actualización		
NORMALIZACIÓN - PRÁCTICA	4	
16)- Dado R (O,P,Q,R,S,T) y F = { ST	-> O ; O -> Q ; QS -> RO ; RPQ -> S ; Q -> P } La cantid	dad de claves candidatas de R es:
a) 2 b) 3 c) 4		
d) 5		
e) Ninguna de las anteriores		
17)- Dado R (O,P,Q,R,S,T) y F = { ST	-> O ; O -> Q ; QS -> RO ; RPQ -> S ; Q -> P } Un Fmin	posible de R es:
a) T->O; O->Q; QS->R; QS->O		
b) S->O; O->Q; S->R; RQ->S; C		
c) ST-> P; O->Q; QS->R; S->O;d) ST->O; O->Q; QS->R; QS->O		
e) Ninguna de las anteriores	7, NQ 23, Q 21	
10) 0 1 0 (0 0 0 0 0 7) 5 (0		
18)- Rado R (O,P,Q,R,S,T) y F = { S -: R2 (P,Q,S) y R3 (R,T) se cumple que	> O ; OP -> Q ; Q -> P ; P -> R } En la siguiente descom	iposicion de R en R1 (O,P,Q),
a) La descomposición es SIN pé		
	erdida de información. Erdida de información y esto se verifica a través del t	eorema de Heath.
c) La descomposición es CON p	<mark>érdida de información.</mark>	
d) La descomposición a simple	vista es incorrecta y no puede usarse Tableau para v	verificarlo.

- e) Ninguna de las anteriores
- 19) Dado: R (O,P,Q,R,S,T) y F { O->PQ ; Q->R ; S->T } Indicar en qué FN se encuentra R.
 - a) 1FN
 - b) 2FN
 - c) 3FN
 - d) FNBC
- 20) Rado: R (O,P,Q,R,S,T) y F { O->PQ ; Q->R ; S->T } Indicar cuál de las siguientes es una descomposición 3FN de R válida, en función al algoritmo visto en clase.
 - a) R1(OPQ) F1{O->P ; O->Q} / R2(QR) F2{Q->R} / R3(TS) F3 {T->S}
 - b) R1(OPQ) F1{O->PQ } / R2(QR) F2{Q->R} / R3(TS) F3 { } / R4(OS) F4 {OS->OS}
 - c) R1(OPQ) F1{O->P; O->Q} / R2(QR) F2{Q->R} / R3(OST) F3 {T->S}
 - d) R1(OPQ) F1{O->P; O->Q} / R2(QR) F2{Q->R} / R3(TS) F3 {S->T} / R4 (OS) F4 {}
 - e) Ninguna de las anteriores

17) d

18) c

R3 no tiene atributos en común con R1 y R2. Verificar perdida de info con Tableau.

19) a

 $CC = {OS}$

20) d

 $CC = {OS}$

TEMA 2

11/05/2023