Алгебра Страница 31

11 Лекция 2.06

Доказательство критерия Бухбегера. $1 \to 2$. По определению $S(g_i, g_j) = m_{ij}g_i - m_{ji}g_j \in (g_1, ..., g_s)$. Тогда по лемме $N(m_{ij}g_i - m_{ji}g_j) = 0$.

$$2 \to 3$$
. $N(S(g_i, g_i)) = R(S(g_i, g_i)) = 0$.

 $3 \to 4$. Хотим показать, что $L = K[x_1, \dots, x_n]$. Так как L подпространство, достаточно доказать, что все одночлены лежат в L. Пусть не так. Тогда $S \subseteq M_n$ — те мономы, которые не лежат в L (то есть те, у которых нормальная форма не единственна). Тогда найдется минимальный лексикографически элемент $m \in S$ (так как по лемме Диксона убывающие цепочки конечны). Пусть $R_1(m), R_2(m)$ — разные нормальные формы. Рассмотрим первые операторы, которые мы применили к m, пусть это $R_t^m(m), R_p^m(m)$ соответственно. Но тогда $R_1(m) = N(R_t^m(m)), R_2(m) = N(R_p^m(m))$ (потому что m минимальный). Сейчас мы хотим найти такое R', что $R'(R_t^m(m)) = R'(R_p^m(m))$, тогда мы получим противоречие, поскольку $N(R_t^m(m)) = N(R_p^m(m))$. Во-первых, $m = u_t L(g_t) = u_p L(g_p)$. Пусть $u = (u_t, u_p)$. Тогда $R_t^m(m) - R_p^m(m) = (m - u_t g_t) - (m - u_p g_p) = u_p g_p - u_t g_t = u S(g_p, g_t)$. Но по условию 3 существует такой оператор R'', что $R''(S(g_p, g_t)) = 0$. Разложим его как $R'' = R_{i_q}^{v_q} \dots R_{i_1}^{v_1}$. Возьмем $R' = R_{i_q}^{uv_q} \dots R_{i_1}^{uv_1}$. Наконец $R'(uS(g_p, g_t)) = 0 = R'(R_p^m(m) - R_t^m(m)) \Rightarrow R'(R_p^m(m)) = R'(R_t^m(m))$. Тогда $m \in L$, противоречие.

 $4 \to 1$. Возьмем любой $f = h_1 g_1 + \dots + h_s g_s$. Хотим показать, что $\exists i : L(g_i) \mid L(f)$. Распишем

$$h = (h_{11}g_1 + \dots + h_{1k_1}g_s) + \dots + (h_{s1}g_1 + \dots + h_{1k_s}g_s)$$

Рассмотрим $R_i^{h_{ij}(g_i)}(h_{ij}g_i) = h_{ij}g_i - h_{ij}g_i = 0$. Тогда $n(h_{ij}g_i) = 0$. Так как $L = K[x_1, ..., x_n]$, справедливо $n(f) = N(h_{11}g_1) + \cdots + N(h_{sk_s}g_s) = n(h_{11}g_1) + \cdots + n(h_{sk_s}g_s) = 0$. Тогда найдется R: R(f) = 0. R(f) = R(L(f)) + R(f - L(f)). Так как L(f) под действием оператора остается таким же, R(L(f)) = L(f). Но R(f - L(f)) меньше L(f), поэтому $R(L(f)) + R(f - L(f)) \neq 0$, противоречие.

Пример. Возьмем идеал $I=(x_1^2+x_2,x_1^2+x_3)=(x_1^2+x_2,x_2-x_3)$. Проверим, является ли он базисом Гребнера. Рассмотрим $S(x_1^2+x_2,x_2-x_3)=x_2(x_1^2+x_2)-x_1^2(x_2-x_3)=x_2^2+x_1^2x_3\to x_2^2-x_2x_3\to 0$. Значит, является.

Алгоритм Бухбергера Начинаем с $\mathcal{F} = \{f_1, ..., f_k\}$ — какой-то набор многочленов. Хотим получить базис Гребнера $G = \{f_1, ..., f_k, f_{k+1}, ..., f_n\}$ того же самого идеала.

Шаг 1 Упорядочим пары сначала по правой границе, затем по левой.

Шаг 2 Берем $(i, j): S(f_1, f_2) \rightarrow N(S(f_1, f_2))$. Возможно 2 случая:

- 1. Если $N(S(f_1, f_2)) = 0$, то алгоритм заканчивается.
- 2. Иначе считаем $f_{k+1}=N(S(f_1,f_2))$. Перейдем к шагу 1 с набором $\{f_1,\dots,f_{k+1}\}$.

Факт 6. Если у многочленов взаимно простые старшие члены, то они редуцируются к 0.

Предложение 11. Алгоритм закончится за конечное число шагов и приведет к базису Гребнера.

Алгебра Страница 32

Доказательство. От противного, пусть не останавливается. Пусть $f_1, ..., f_k, f_{k+1}, ...$. Но тогда мы знаем, что $\forall p > k : L(f_r) \nmid L(f_p)$ при r < p. Но получаем противоречие с леммой Диксона, поскольку тогда получаем бесконечно убывающую цепочку.

Теперь докажем, что идеал не изменится. Это очевидно, поскольку $f_{k+1} \in (f_1, \dots, f_k) \Rightarrow (f_1, \dots, f_k) = (f_1, \dots, f_{k+1}).$

И наконец покажем, почему мы получим базис Гребнера. Пусть $f_p = N(S(f_i, f_j))$ добавлен. Тогда $S(f_i, f_j) \to 0$. Действительно, $R_p^{L(f_p)}(N(S(f_i, f_j))) = f_p - f_p = 0$. Тогда по пункту 3 из критерия Бухбергера это базис Гребнера.

Определение 63. *Базис Гребнера* $\{g_1, \dots, g_s\}$ *называется минимальным, если выполнено 3 условия:*

- 1. $\forall i = 1, ..., s$ старший коэф g_i не равен 1.
- 2. $L(g_i) \nmid L(g_i) \text{ npu } i \neq j$.
- 3. $\forall i = 1, ..., s$ любой не старший член g_i является G-нормальным.

Утверждается, что из любого базиса Гребнера можно сделать минимальный. Старший коэффициент исправляется легко. Если $\exists i, j \ (i \neq j) : L(g_i) \mid L(g_j)$, то просто выбросим g_j . Идеал от этого не изменится \Rightarrow базис Гребнера останется валидным. А для третьего пункта просто редуцируем нестаршие члены к нормальной форме.

Теорема 16. $\forall I \subseteq K[x_1,...,x_n]$ минимальный базис Гребнера существует и единственен (считаем, что лексикографический порядок переменных фиксирован).

Доказательство. Существование уже доказано (привели алгоритм). Докажем единственность. Пусть $G = \{g_1, \dots, g_s\}$, $H = \{h_1, \dots, h_k\}$ — два минимальных базиса Гребнера. Сначала покажем, что s = k и с $L(g_i) = L(h_i)$ с точностью до перенумерации. По условию, $\forall i \exists j : L(g_j) \mid L(g_i)$. Также $\exists p : L(g_p) = L(g_i)$. Тогда $\forall i : L(g_p) \mid L(g_i)$. Но тогда p = i, следовательно можно поставить в соответствие $L(h_j) = L(g_i)$.

Теперь покажем, что они просто совпадают. Пусть не так, $\exists i:h_i\neq g_i$. Тогда $0\neq h_i-g_i\Rightarrow L(h_i-g_j)$ это один из нестарших членов h_i или g_j . Но $h_i-g_j\in I$. По определению базиса Гребнера $L(g_t)\mid L(h_i-g_j)$. \square

Применение базисов Гребнера

- 1. Проверка на принадлежность $f \in (f_1, ..., f_k)$. Строим базис Гребнера $(f_1, ..., f_k)$ и находим $N_G(f)$. Если $N_G(f) = 0$, то принадлежит, иначе нет.
- 2. Даны 2 идеала $I_1=(f_1,\dots,f_k), I_2=(h_1,\dots,h_s).$ Хотим проверить, совпадают ли они. Здесь нужно просто посчитать минимальные базисы Гребнера для I_1,I_2 и сравнить их. Можно также проверить, что $\forall i: f_i \in (h_1,\dots,h_s).$