Polytech'Lille/GIS4

Fiche TP Régression linéaire : sélection de modèle C. Preda / A. Ehrhardt

L'objectif de ce TP est de mettre en œuvre sous R la sélection de modèles de régression linéaire. Le jeux de données considéré est décrit ci-dessous.

Description des jeux de données

donnees_cornell.xls

On trouve dans le livre de Michel Tenenhaus ([10] page 78) l'exemple suivant tiré de Cornell (1990). On cherche à connaître l'influence des proportions de sept composants sur l'indice d'octane moteur de douze différents mélanges d'essences. Les variables sont les suivantes :

- y : indice d'octane moteur
- $-x_1$: distillation directe (entre 0 et 0.21)
- $-x_2$: reformat (entre 0 et 0.62)
- $-x_3$: naphta de craquage thermique (entre 0 et 0.12)
- $-x_4$: naphta de craquage catalytique (entre 0 et 0.62)
- $-x_5$: polymère (entre 0 et 0.12)
- $-x_6$: alkylat (entre 0 et 0.74)
- $-x_7$: essence naturelle (entre 0 et 0.08)

Table 4.1 – Données Cornell

$\overline{\mathbf{x}_1}$	$\mathbf{x_2}$	х3	X4	\mathbf{x}_{5}	\mathbf{x}_{6}	X7	У
0	0,23	0	0	0	0,74	0,03	$\frac{1}{98,7}$
0	$0,\!1$	0	0	$0,\!12$	0,74	0,04	97,8
0	0	0	0,1	$0,\!12$	0,74	0, 04	96,6
0	$0,\!49$	0	0	$0,\!12$	$0,\!37$	$0,\!02$	92
0	0	0	$0,\!62$	$0,\!12$	0,18	0,08	86,6
0	0,62	0	0	0	$0,\!37$	$0,\!01$	91,2
$0,\!17$	$0,\!27$	0,1	$0,\!38$	0	0	0,08	81,9
$0,\!17$	$0,\!19$	0,1	$0,\!38$	$0,\!02$	0,06	0,08	83,1
$0,\!17$	$0,\!21$	0,1	$0,\!38$	0	0,06	0,08	$82,\!4$
$0,\!17$	$0,\!15$	0,1	$0,\!38$	$0,\!02$	$0,\!1$	0,08	83,2
$0,\!21$	$0,\!36$	$0,\!12$	$0,\!25$	0	0	$0,\!06$	81,4
0	0	0	$0,\!55$	0	$0,\!37$	0,08	88,1

On demande:

- 1. Réaliser les statistiques descriptives univariées et bivariées (y versus les autres variables)
- 2. Réaliser le modèle de régression linéaire entre y et toutes les autres variables (fonction R : lm). Que constatez vous ?
- 3. Puisque n =12 > p=7, il ne reste qu'à vérifier qu'il n'y a pas une relation entre les variables explicatives (multi-collinéarité). En effet, les variables X's représentent les taux de chaque composante dans l'essence. Du coup, la somme sur ligne doit faire 100%. Vérifier (fonction apply). Donc on n'a pas besoin de toutes les 7 variables puisque 6 suffisent ! On calculera aussi le déterminant de la matrice X^TX (voir cours). Utiliser la foction det en R.
- 4. One ne peut pas donc faire un modèle avec toutes les variables. Mais lesquelles éliminer ? On procédera à une sélection des variables. Explorez la fonction *regsubsets* du package « leaps »

```
m = lm(Y~., data = d)
summary(m)

library(leaps)
choix = regsubsets(Y~., int= T, nbest = 1, nvmax=7, method="exh", data = d)
res = summary(choix)
print(res)

#choix du meilleur modèle selon le critère BIC
plot(choix, scale="bic")
```

- 4-a) Quel est le meilleur modèle ? Combien de variables fait-il rentrer dans la régression ? Estimer ce modèle, analyser la validité et les performances du modèle complet (R², significativité coefficients).
- 4-b) quel est le meilleur modèle avec deux variables ?
- 5. Remplacer précédemment le critère BIC par le critère Cp, R^2 ajusté (adjr2) ou encore R^2 . (évidemment AIC donne le mêmes résultats que BIC à cause du lien entre les deux critères). Préciser pour chaque critère le meilleur modèle.
- 6. Les recherches précédentes étaient exhaustives. Cela pose un problème lorsque le nombre de variables est grand. Faisons une sélection de variables pas-à-pas.