# Homework 1

# Victor Ho

# September 2021

# Homework Problems

## Exercise 1

At  $n=1,1=\frac{1(1+1)}{2}=1$ , so the claim holds. Assume that the claim holds at n, so that  $1+2+\ldots+n=\frac{n(n+1)}{2}$ . We can then add n+1 to both sides to get  $1+2+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)$ , where we can simplify the right hand side into  $\frac{n(n+1)}{2}+\frac{2(n+1)}{2}$ . This further simplifies to  $\frac{n(n+1)+(2(n+1))}{2}$ , which finally simplifies to  $\frac{(n+2)(n+1)}{2}$ . Now we have  $1+2+\ldots+n+(n+1)=\frac{(n+2)(n+1)}{2}$ , which is the n+1 case, therefore the claim  $1+2+\ldots+n=\frac{n(n+1)}{2}$  is true for all  $n\in\mathbb{N}$ .

#### Exercise 2

First note that  $f(n)=1\leq 2^{1-1}=1, f(2)=2\leq 2^{2-1}=2, f(3)=3\leq 2^{3-1}=4, f(4)=1+2+3=6\leq 2^{4-1}=8,$  proving our base case. Then assume that  $f(n)\leq 2^{n-1}$  for all  $n\in\mathbb{N}$ . Note that f(n+1)=f(n)+f(n-1)+f(n-2), which is less than 2f(n) as  $f(n)+f(n-1)+f(n-2)\leq 2f(n)=f(n)+f(n-1)+f(n-2)+f(n-3).$  Then note that because of the assumption in our inductive step,  $f(n)\leq 2^{n-1},$  and if we multiply 2 to both sides, we get  $2(n)\leq 2^n$ . It follows that  $f(n+1)\leq 2f(n)\leq 2^n,$  which by the second order axiom implies that  $f(n+1)\leq 2^n,$  proving that  $f(n)\leq 2^{n-1}$  for all  $n\in\mathbb{N}.$ 

### Exercise 3

a. A has a bijection with itself as you can simply map every element on A to itself, therefore  $A \sim A$ .

b. Since  $A \sim B$ , they have a bijective function  $f: A \to B$ . Then whenever  $a \neq a'$ , then  $f(a) \neq f(a')$ , and the range of f is all of B. We can see that there is also a function  $f^{-1}: B \to A$  that is bijective, and it is the inverse of f. This is because when  $f(a) \neq f(a')$ , then  $f^{-1}(f(a)) \neq f^{-1}(f(a'))$  for  $f(a) \neq f(a')$ ,

proving that  $f^{-1}$  is injective. We can also see that it's surjective as f(a) is injective, meaning that every element in the set had a distinct output in B, and since  $f^{-1}$  converts those outputs back to the inputs, the range of  $f^{-1}$  will be all of A, proving that it's surjective. Therefore  $f^{-1}$  is bijective and  $B \sim A$ .

c. Since  $A \sim B$  they have a bijective function  $f:A \to B$ , and since  $B \sim C$ , they also have a bijective function  $g:B \to C$ . Let  $h:A \to C = g(f(n))$ . Assume towards a contradiction that h is not injective, so there exists h(a) = h(a') for a! = a'. This can be rewritten as g(f(a)) = g(f(a')). Since g is injective, g(f(a)) = g(f(a')) implies f(a) = f(a'), and since f is injective,  $f(a) = f(a') \to a = a'$ , contradicting our claim and proving that f is injective. f will also be injective as since f is surjective, then its range is all of f, and since f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f, which makes up the domain of f, and the range of f is all of f. Therefore since f is injective and surjective, it is bijective, meaning that there is a bijective function f.

## Exercise 4

A countable set, A, has a bijective function f with a set of natural numbers. Then let B be a subset of A. Since B is a subset of A, we'll be able to have a function g that maps values of B to values of A, and this function will be injective. Since the composition of injective functions is injective, f(g(a)) is injective, meaning that we can map any unique value of B to a unique natural number, which means that B is countable.

#### Exercise 5

a. Since a < b, and a, b are positive real numbers, by order axiom 04,  $a^2 < ab$ . Similarly,  $ab < b^2$ . Since  $a^2 < ab < b^2$ , by order axiom 02,  $a^2 < b^2$ .

b. Since a < b, and a, b are positive real numbers, we can simplify a < b into a - b < 0. This is the same as  $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) < 0$ . We can then divide both sides by  $(\sqrt{a} + \sqrt{b})$  to get  $\sqrt{a} - \sqrt{b} < 0$ , which simplifies to  $\sqrt{a} < \sqrt{b}$ .

# Exercise 6



When x < 0, y < 0, |x| = -x, |y| = -y, so x - x = y - y = 0. Therefore negative x, and negative y have a value of 0. When  $x < 0, y \ge 0, |x| = -x, |y| = y$ , so x - x = y + y which simplifies to 0 = 2y. Therefore negative x values have 0 y value. When  $x \ge 0, y < 0, |x| = x, |y| = -y$ , so x + x = y - y, which simplifies to 2x = 0, so negative y values have an x value of 0. When  $x \ge 0, y \ge 0, |x| = x, |y| = y$ , so x + x = y + y, which simplifies to 2x = 2y into x = y. So for positive x and y values, the graph has a slope of 1.

# Exercise 7

If we square both sides, we get  $xy \leq \frac{(x+y)(x+y)}{2} = \frac{x^2+y^2+2xy}{2}$ . We can then multiply both sides by 2 to get  $2xy \leq x^2+y^2+2xy$ . Since  $x \geq 0$  and  $y \geq 0$ , it follows that  $x^2 \geq 0$  and  $y^2 \geq 0$ , which means  $2xy \leq 2xy+x^2+y^2$ .

## Exercise 8

a. First note that since in 5b we have shown  $\sqrt{a} < \sqrt{b}$  if a < b, we can take  $x^2$  as a, and 9 as b. Therefore since  $x^2 \le 9$ , we have  $x \le 3$ . Now we have  $x \ge 0$ 

and  $x \leq 3$ . Since  $0, 3 \in \mathbb{R}$ , we have inf(E) = 0 and sup(E) = 3.

b. Note that  $\frac{4n+5}{n+1}$  for  $n \in \mathbb{N}$  is actually a decreasing function. Therefore the smallest value for n in  $\mathbb{N}$  will result in sup(E). Since  $\frac{4(1)+5}{1+1} = \frac{9}{2}$ , we have  $sup(E) = \frac{9}{2}$ . I will claim that 4 is the infimum. First note that 4 is a lower bound, as  $\frac{4n+5}{n+1} < 4$  is a contradiction as  $\frac{4n+5}{n+1} < 4$  implies 4n+5 < 4(n+1) which implies 4n+5 < 4n+4, which is wrong as  $n \in \mathbb{N}$ . Now let x = inf(E). We know that either x < 4, x = 4, or x > 4.  $x \not< 4$ , as otherwise it wouldn't be the infimum since 4 is a lower bound. If x > 4, then x - 4 > 0. We can then use AP, with x - 4 for x, and 5 - x for y. Therefore by AP  $\exists n \in \mathbb{N}$  such that n(x-4) > 5 - x. This can be simplified to xn - 4n > 5 - x to xn + x > 4n + 5 to x(n+1) > 4n + 5 to finally  $x > \frac{4n+5}{n+1}$ . This is a contradiction as we assumed x is the infimum of E. Therefore it has to be the case that x = 4, so inf(E) = 4.

# Writing problems

#### Exercise 9

Let us assume that there is an bijective function,  $f:A\to P(A)$ . Let  $C:=\{x:x\in A,x\not\in f(x)\}\subseteq A$ . Since  $C\in A$  implies  $C\in P(A)$ , and f is a bijection, there must be some  $y\in A$  such that f(y)=C. There are then two possibilities,  $y\in C$ , or  $y\not\in C$ . If  $y\in C$ , then by the definition of  $C,y\not\in f(y)$ , but since f(y)=C this implies  $y\not\in C$ , so we have a contradiction. If  $y\not\in C$ , then by the definition of  $C,y\in f(y)$ , but since f(y)=C, this implies  $y\in C$ , so we have a contradiction. Therefore there is no bijection between A and A0, so  $A\neq P(A)$ 0. Since we have shown that a set has no bijection with its power set, it also follows that the set of all natural numbers,  $\mathbb{N}$ , has no bijection with its power set, A1, which means that A2, is not countable.

#### Exercise 10

a. Let  $a = \sup(E)$ , by the definition of supremum, for all  $x \in E$ ,  $a \ge x$ . Therefore we have  $x \le a, \forall x \in E$ . Since r > 0, by order axioms, we have  $rx \le ar, \forall x \in E$ , so ar is an upper bound for rE. Let  $y = \sup(rE)$ . Therefore we have  $rx \le y, \forall x \in E$ . Since r > 0, we can multiply both sides by  $\frac{1}{r}$  to get  $x \le \frac{y}{r}, \forall x \in E$ , so  $\frac{y}{r}$  is an upper bound for E. We want to show that ar = y. Since  $a, y, r \in \mathbb{R}$ , we have either ar > y, ar < y, ar = y. ar < y is impossible as y is the supremum, and y is an upper bound of y. Assume y is an upper bound of y. Therefore since y is an upper bound of y. Therefore it has to be the case that y is y is y.

b. Let  $a = \sup(E)$ , by the definition of supremum, for all  $x \in E$ ,  $a \ge x$ . Therefore we have  $x \le a, \forall x \in E$ . Since  $r \in \mathbb{R}$ , by order axioms, we have

 $r+x\leq r+a, \forall x\in E,$  so r+a is an upper bound for r+E. Let y=sup(r+E). Therefore we have  $r+x\leq y, \forall x\in E.$  Since  $r\in mathbb{R}$ , we can add -r to both sides to get  $x\leq y-r, \forall x\in E,$  so y-r is an upper bound for E. We want to show that r+a=y. Since  $a,r,r\in\mathbb{R}$ , we have either r+a>y, r+a=y, or r+a< y. r+a< y is impossible as y=sup(r+E), and r+a is an upper bound of r+E. Assume that r+a>y. Therefore since  $r\in\mathbb{R},$  r+a-r>y-r, or a>y-r. However this is impossible as a=sup(E), and y-r is an upper bound of E. Therefore it has to be the case that r+a=y, so r+sup(E)=sup(r+E).