CORRECTION CONTROLE CONTINU D'ELECTRONIQUE NUMERIQUE 1 INF 152 (2021)

Proposez Par: GROUPE GENIUS R

Par: Joël_yk

EXERCICE 01:

1 - Conversions

- 1) $(1110001)_2 = (71)_{16}$
- 2) $(100110110)_2 = (466)_8$
- 3) $(1101100110110)_2 = (1B36)_{16}$
- 4) $(47,75)_{10} = (1011111,11)_2$
- 5) $(145)_{10} = (221)_8$
- 6) $(287,99)_{10} = (11F,3A07DF)_{16}$

2~ Tableau

Décimal	Binaire	Hexadécimal	BCD
49	110001	31	01001001
105	1101001	69	000100000101
95	1011111	5F	10010101

EXERCICE 02:

Partie A:

1) Définition des entrées-sorties :

Réponse:

On a: Deux entrées x, y et deux sorties A et B x=0 si a+b <= 7 tonnes x=1 si a+b >= 7 tonnes y=0 si a>b y=1 si a<=b

2) Table de vérité:

X	y	A	В
0	0	1	1
0	1	1	1
1	0	0	1
1	1	1	0

3) Equation Logique : Nb →On utilise la deuxième forme normale (puisqu'on n'en a qu'un seul max terme pour les deux sorties):

$$A = \overline{x} + y \mid B = \overline{x} + \overline{y}$$

<u>4) Schéma Logique avec des Portes NAND:</u> Nb →On utilise le Théorème de De Morgan.

EXERCICE 03:

Partie A:

1) Equation simplifiée pour chaque table :

CAS DU CONVERTISSEUR DE CODE BINAIRE EN CODE GRAY

Comme les bits B_3 et G_3 sont identiques, la construction de cartes de Karnaugh n'est requise

CAS DU CONVERTISSEUR DE CODE GRAY EN CODE BINAIRE

2) Dessinons le Circuit Logique à l'aide de la Porte XOR a 2 entrées :

CAS DU CONVERTISSEUR DE CODE BINAIRE EN CODE GRAY

CAS DU CONVERTISSEUR DE CODE GRAY EN CODE BINAIRE

