Lecture 4: Random Variable, Part II

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

May 5, 2021

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

May 5, 2021 1 / 45 May 5, 2021 2 / 45

Roadmap

KAIST EE

Continuous RV and Probability Density Function

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

- Many cases when random variables have "continuous values", e.g., velocity of a car

A rv X is continuous if \exists a function f_X , called probability density function (PDF) $\mathbb{P}(X \in B) = \int_B f_X(x) dx,$ every subset $B \in \mathbb{R}$

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have continuous counterparts

•
$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

• $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

•
$$f_X(x) \geq 0$$
, $\int_{-\infty}^{\infty} f_X(x) dx = 0$

- $\mathbb{P}(a \leq X \leq a + \delta) \approx \left| f_X(a) \cdot \delta \right|$
- $\mathbb{P}(X=a)=0$

- $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{x}{b-a} dx = \frac{1}{b-a} \frac{b^2 a^2}{2} = \frac{b+a}{2}$
- $\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_a^b \frac{x^2}{b-a} dx = \frac{1}{b-a} \frac{b^3 a^3}{3} = \frac{a^2 + ab + b^2}{3}$
- $var[X] = \frac{a^2 + ab + b^2}{3} \frac{a^2 + 2ab + b^2}{4}$

L4(1)

May 5, 2021 5 / 45

L4(1)

May 5, 2021 6 / 45

Roadmap

KAIST EE

Cumulative Distribution Function (CDF)

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event {X \le x}
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

- Non-decreasing
- $F_X(x)$ tends to 1, as $x \to \infty$ and $F_X(x)$ tends to 0, as $x \to -\infty$
- If *X* is discrete,
 - $F_X(x)$ is a piecewise constant function of x.
 - $p_X(k) = F_X(k) F_X(k-1)$
- If X is continuous
 - $F_X(x)$ is a continuous function of x.
 - $F_X(x) = \int_{-\infty}^{x} f_X(t) dt$ and $f_X(x) = \frac{dF_X}{dx}(x)$

May 5, 2021 9 / 45

- Take a test three times, and your final score will be the maximum of test scores
- $X = \max\{X_1, X_2, X_3\}$, and $X_i \in \{1, 2, \dots, 10\}$ uniformly at random
- Question. $p_X(x)$?
- Approach 1: $\mathbb{P}(\max\{X_1, X_2, X_3\} = x)$?
- Approach 2

$$F_X(x) = \mathbb{P}(\max\{X_1, X_2, X_3\} \le x) = \mathbb{P}(X_1 \le x, X_2 \le x, X_3 \le x)$$
$$= \mathbb{P}(X_1 \le x) \cdot \mathbb{P}(X_2 \le x) \cdot \mathbb{P}(X_3 \le x) = \left(\frac{x}{10}\right)^3$$

Thus,

$$p_X(x) = \left(\frac{x}{10}\right)^3 - \left(\frac{x-1}{10}\right)^3, \quad x = 1, 2, \dots, 10$$

L4(2) L4(2) May 5, 2021 10 / 45

Roadmap

Exponential RV with parameter $\lambda > 0$

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

• A rv X is called exponential with λ . if

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

• (Check)
$$\mathbb{E}[X] = 1/\lambda$$
, $\mathbb{E}[X^2] = 2/\lambda^2$, $\text{var}[X] = 1/\lambda^2$

• $\mathbb{E}(X) = 1/\lambda$. Use integration by parts: $\int u dv = uv - \int v du$

$$\int_0^\infty x\lambda e^{-\lambda x} dx = \left(-xe^{-\lambda x}\right)\Big|_0^\infty + \int_0^\infty e^{-\lambda x} dx = 0 - \frac{e^{-\lambda x}}{\lambda}\Big|_0^\infty = \frac{1}{\lambda}$$

• $\mathbb{E}(X^2)$

L4(3)

$$\int_0^\infty x^2 \lambda e^{-\lambda x} dx = \left(-x^2 e^{-\lambda x}\right)\Big|_0^\infty + \int_0^\infty 2x e^{-\lambda x} dx = 0 + \frac{2}{\lambda} \mathbb{E}(X) = \frac{2}{\lambda^2}$$

• $\operatorname{var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{1}{\lambda^2}$

- $\mathbb{P}(X > x) = e^{-\lambda x}$
- Appropriate for modeling a waiting time until an incident of interest takes place
 - $\mathbb{P}(X > x)$: exponentially decays
 - message arriving at a computer, some equipment breaking down, a light bulb burning out, etc
- (Q) What is the discrete rv which models a waiting time? Geometric
- What is the relationship between exponential rv and geometric rv? We will see this relationship soon, but let's look at an example first.

L4(3) May 5, 2021 14 / 45

Example

KAIST EE

May 5, 2021 13 / 45

Geometric vs. Exponential (1)

A very small meteorite first lands anywhere in Korea

- Time of landing is modeled as an exponential rv with mean 10 days
- The current time is midnight. What is the probability that a meteorite first lands some time between 6 a.m. and 6 p.m. of the first day?

 VIDEO PAUSE
- (Solution)
 - $\mathbb{E}(X) = 1/\lambda = 10$. Thus, $\lambda = \frac{1}{10}$.
 - \circ 6 a.m. from midnight = 1/4 day, 6 p.m. from midnight = 3/4 day

$$\mathbb{P}(1/4 \le X \le 3/4) = \mathbb{P}(X \ge 1/4) - \mathbb{P}(X \ge 3/4) = e^{-1/40} - e^{-3/40} = 0.0476$$

- Models a system evolution over time: Continuous time vs. Discrete time.
 - Example. Customer arrivals at my shop
 - Modeling 1: Every 30 minute I record the number of customers for each 30-min window
 - Modeling 2: I record the exact time of each customer's arrival
 - $^{\circ}$ In modeling 1, every 10 minute? every 1 minute? every 1 sec? every 0.0000001 sec?
- In many cases, continuous case is some type of limit of its corresponding discrete
 case.
- Can we mathematically describe how geometric and exponential rvs meet each other in the limit?

- 'slot' is one unit time, e.g., 1 hour, 30 mins, 1 min, 10 sec, etc.
- Continuous system = Discrete system with
 - infinitely many slots whose duration is infinitely small.
 - success probability p over one slot decreases to 0 in the limit
- Given $X^{exp} \sim \exp(\lambda)$, let us construct a geometric RV X_{δ}^{geo}
 - Set the length of a slot to be δ , which is a parameter.
 - \circ Set the success probability p_δ over a slot to be $p_\delta=1-e^{-\lambda\delta}$ (this looks magical, whose secrete will be uncovered soon)
 - $\circ \ \mathbb{P}(X_{\delta}^{geo} \leq n) = 1 (1 p_{\delta})^n = 1 e^{-\lambda \delta n}$

L4(3) May 5, 2021 17 / 45

- Note that $\mathbb{P}(X^{exp} \le x) = 1 e^{-\lambda x}$. Then, when $x = n\delta, \ n = 1, 2, \dots$ $\mathbb{P}(X^{exp} \le x) = 1 e^{-\lambda \delta n} = \mathbb{P}(X^{geo}_{s} \le n)$
- If we choose sufficiently small δ , the slot length \downarrow and $p_{\delta}\downarrow$

$$\mathbb{P}(X_{\delta}^{geo} \leq n) \xrightarrow{\delta \to 0} \mathbb{P}(X^{exp} \leq x), \, x = n\delta$$

L4(3) May 5, 2021 18 / 45

Roadmap

KAIST EE

Normal: PDF, Expectation, Variance

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

• Standard Normal $\mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$
- var[X] = 1

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- $\mathbb{E}[X] = \mu$
- $\operatorname{var}[X] = \sigma^2$

- PDF's normalization property: $\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}{\rm e}^{-(x-\mu)^2/2\sigma^2}dx=1$
 - A little bit boring :-). See Problem 14 at pp 189.
- Expectation
 - $f_X(x)$ is symmetric in terms of $x = \mu$. Thus, we should have $\mathbb{E}(X) = \mu$.
- Variance

$$var(X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} (x - \mu)^2 e^{-(x - \mu)^2/2\sigma^2} dx \stackrel{y = \frac{x - \mu}{\sigma}}{=} \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^2 e^{-y^2/2} dy$$
$$= \frac{\sigma^2}{\sqrt{2\pi}} (-ye^{-y^2/2}) \Big|_{-\infty}^{\infty} + \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dy = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dy = \sigma^2$$

$$\int u dv = uv - \int v du$$
: $u = y$ and $dv = ye^{-y^2/2} \rightarrow du = dy$ and $v = -e^{-y^2/2}$

L4(4) May 5, 2021 21 / 45

• Linear transformation preserves normality (we will verify this in Lecture 5)

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then for $a \neq 0$ and b , $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Thus, every normal rv can be standardized

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $\left| \begin{array}{c} Y = rac{\mathsf{X} - \mu}{\sigma} \end{array} \right| \sim \mathcal{N}(0, 1)$

• Thus, we can make the table which records the following CDF values:

$$\Phi(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Y < y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

L4(4) May 5, 2021 22 / 45

Example

KAIST EE

May 5, 2021

23 / 45

Normal RVs: Why Important?

- Annual snowfall X is modeled as $\mathcal{N}(60,20^2)$. What is the probability that this year's snowfall is at least 80 inches?
- $Y = \frac{X-60}{20}$.

$$\mathbb{P}(X \ge 80) = \mathbb{P}(Y \ge \frac{80 - 60}{20})$$
$$= \mathbb{P}(Y \ge 1) = 1 - \Phi(1)$$
$$= 1 - 0.8413 = 0.1587$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517	
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549	
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319	
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916	
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936	
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952	
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981	
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986	

- Central limit theorem
 - One of the most remarkable findings in the probability theory
 - Sum of any random variables ≈ Normal random variable
- Modeling aggregate noise with many small, independent noise terms
- · Convenient analytical properties, allowing closed forms in many cases
- Highly popular in communication and machine learning areas

L4(4) May 5, 2021 24 / 45

⁰Central limit theorem: 중심극한정리

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

Two continuous rvs are jointly continuous if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy,$$

1. The joint PDF is used to calculate probabilities

$$\mathbb{P}\Big[(X,Y)\in B\Big]=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

Our particular interest: $B = \{(x, y) \mid a \le x \le b, c \le y \le d\}$

L4(5)

May 5, 2021 25 / 45

L4(5)

May 5, 2021 26 / 45

Continuous: Joint PDF and CDF (2)

Continuous: Conditional PDF given an event

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

4. A function g(X, Y) of X and Y defines a new random variable, and

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

- * Conditional PDF, given an event A
- $f_X(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta)$ • $f_{X|A}(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta|A)$
- $\mathbb{P}(X \in B) = \int_B f_X(x) dx$ $\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx$
- $\int f_{X|A}(x)dx = 1$

* Conditional PDF, given $\{X \in C\}$

$$f_{X|\{X\in C\}}(x)\cdot\delta\approx \mathbb{P}(x\leq X\leq x+\delta|X\in C)$$

$$f_{X|\{X\in C\}}(x) = \begin{cases} 0, & \text{if } x \notin C\\ \frac{f_X(x)}{\mathbb{P}(X\in C)}, & \text{if } x \in C \end{cases}$$

(Q) In the discrete, we consider the event $\{X = x\}$, not $\{X \in B\}$. Why?

Notation: A is an event, but B and C is a subset that includes the possible values which can be taken by the rv X. Sorry for the confusion, if any.

Continuous: Conditional Expectation

Exponential RV: Memoryless

 $A = \left\{ \frac{a+b}{2} \le X \le b \right\}$

- $\mathbb{E}[X] = \int x f_X(x) dx$ $\mathbb{E}[X|A] = \int x f_{X|A}(x) dx$
- $\mathbb{E}[g(X)] = \int g(x) f_X(x) dx$ $\mathbb{E}[g(X)|A] = \int g(x) f_{X|A}(x) dx$

$$\mathbb{E}[X|A] = \int_{(a+b)/2}^{b} x \frac{2}{b-a} dx = \frac{a}{4} + \frac{3b}{4}$$

$$\mathbb{E}[X^{2}|A] = \int_{(a+b)/2}^{b} x^{2} \frac{2}{b-a} dx =$$

- Remember: Exponential rv is a continuous counterpart of geometric rv.
- Thus, expected to be memoryless. Remember the definition?

Definition. A random variable X is called memoryless if, for any $n, m \ge 0$, $\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$

• Proof. Note that the exponential rv's CCDF $\mathbb{P}(X > x) = e^{-\lambda x}$. Then,

$$\mathbb{P}(X>n+m|X>m)=\frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>m)}=\frac{e^{-\lambda(n+m)}}{e^{-\lambda m}}=e^{-\lambda n}=\mathbb{P}(X>n)$$

L4(5)

May 5, 2021 29 / 45

L4(5)

May 5, 2021 30 / 45

Example: Train Arrival

Partition of Ω into A_1, A_2, A_3, \dots

* Discrete case

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i)$$
$$= \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

* Continuous case

Total Probability Theorem

$$f_X(x) = \sum_i \mathbb{P}(A_i) f_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_i \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

• The train's arrival every quarter hour (0, 15min, 30min, 45min).

- Your arrival $\sim \mathcal{U}(7:10, 7:30)$ am.
- What is the PDF of waiting time for the first train?
- X : your arrival time, Y : waiting time.
- The value of X makes a different waiting time. So, consider two events:

$$A = \{7:10 \le X \le 7:15\}$$

$$B = \{7:15 \le X \le 7:30\}$$

 $f_Y(y) = \mathbb{P}(A)f_{Y|A}(y) + \mathbb{P}(B)f_{Y|B}(y)$

$$f_Y(y) = \frac{1}{4} \frac{1}{5} + \frac{3}{4} \frac{1}{15} = \frac{1}{10}, \text{ for } 0 \le y \le 5$$

$$f_Y(y) = \frac{1}{4}0 + \frac{3}{4}\frac{1}{15} = \frac{1}{20}, \text{ for } 5 < y \le 15$$

•
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

• Multiplication rule.

$$f_{X,Y}(x,y) = f_Y(y) \cdot f_{X|Y}(x|y) = f_X(x)f_{Y|X}(y|x)$$

• Total prob./exp. theorem.

$$f_X(x) = \int_{-\infty}^{\infty} f_Y(y) f_{X|Y}(x|y) dy$$

$$\mathbb{E}[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}[X|Y = y] dy$$

Independence

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
, for all x and y

May 5, 2021 33 / 45

(Prob 21 at pp. 191)

- Break a stick of length / twice
- first break at $Y \sim \mathcal{U}[0, I]$
- second break at $X \sim \mathcal{U}[0, Y]$
- (a) joint PDF $f_{X,Y}(x,y)$?

$$f_Y(y) = \frac{1}{l}, \quad 0 \le y \le 1$$
$$f_{X|Y}(x|y) = \frac{1}{y}, \quad 0 \le x \le y$$

Using $f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$,

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{l} \cdot \frac{1}{y}, & 0 \le x \le y \le l, \\ 0, & \text{otherwise} \end{cases}$$

(b) marginal PDF $f_X(x)$?

$$f_X(x) = \int f_{X,Y}(x,y)dy = \int_x^l \frac{1}{ly}dy$$
$$= \frac{1}{l}\ln(l/x), \quad 0 \le x \le l$$

May 5, 2021 34 / 45

Example: Stick-breaking (2)

(c) Evaluate $\mathbb{E}(X)$, using $f_X(x)$

L4(5)

$$\mathbb{E}(X) = \int_0^l x f_X(x) dx = \int_0^l \frac{x}{l} \ln(l/x) dx$$
$$= \frac{l}{4}$$

(d) Evaluate $\mathbb{E}(X)$, using $X = Y \cdot (X/Y)$

If $Y \perp \!\!\! \perp X/Y$, it becomes easy, but true? Yes, because whatever Y is, the fraction X/Y does not depend on it.

$$\mathbb{E}(X) = \mathbb{E}(Y)\mathbb{E}(X/Y) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

KAIST EE

Roadmap

(e) Evaluate $\mathbb{E}(X)$, using TET

$$0\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}[X|Y = y] dy$$
$$= \int_{0}^{1} \frac{1}{I} \mathbb{E}[X|Y = y] dy = \int_{0}^{1} \frac{1}{I} \frac{y}{2} dy = \frac{1}{4}$$

 Message. There are many ways to rearch our goal. Of crucial importance is how to find the best way!

- (1) Continuous Random Variable and PDF (Probability Density Function)
- (2) CDF (Cumulative Distribution Function)
- (3) Exponential RVs
- (4) Gaussian (Normal) RVs
- (5) Continuous RVs: Joint, Conditioning, and Independence
- (6) Bayes' rule for RVs

 $^{^0\}mathcal{U}[a,b]$: continuous uniform random variable over the interval [a,b]

- X: state/cause/original value $\to Y$: result/resulting action/noisy measurement
- Given: $\mathbb{P}(X)$ and $\mathbb{P}(Y|X)$ (cause \to result)
- Inference: $\mathbb{P}(X|Y)$?

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

$$= p_Y(y)p_{X|Y}(x|y)$$

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{p_Y(y)}$$

$$p_Y(y) = \sum_{x'} p_X(x')p_{Y|X}(y|x')$$

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$$

$$= f_Y(y)f_{X|Y}(x|y)$$

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$f_Y(y) = \int f_X(x')f_{Y|X}(y|x')dx'$$

- A light bulb $Y \sim \exp(\lambda)$. However, there are some quality control problems. So, the parameter λ of Y is actually a random variable, denoted by Λ , which is $\Lambda \sim \mathcal{U}[1,3/2]$. We test a light bulb and record its lifetime.
- Question. What can we say about the underlying paramter λ ? In other words, what is $f_{\Lambda|Y}(\lambda|y)$?
- $f_{\Lambda}(\lambda) = 2$ for $1 \le \lambda \le 3/2$ and $f_{Y|\Lambda}(y|\lambda) = pdf$ of $exp(\lambda)$. Then, the inference about the parameter given the lifetime of a light bulb is:

$$f_{\Lambda|Y}(\lambda|y) = \frac{f_{\Lambda}(\lambda)f_{Y|\Lambda}(y|\lambda)}{\int_{-\infty}^{\infty} f_{\Lambda}(t)f_{Y|\Lambda}(y|t)dt}$$

L4(6)

May 5, 2021 37 / 45

L4(6)

May 5, 2021 38 / 45

Using Bayes Rule for Parameter Learning

Bayes Rule for Mixed Case

- X: parameter → Y: result of my model
- Given: $\mathbb{P}(X)$ and $\mathbb{P}(Y|X)$ (parameter \to model)
- Inference: $\mathbb{P}(X|Y)$? Probabilistic feature of the parameter given the result of the model?

Example.

- 1. Light bulb's lifetime $Y \sim \exp(\lambda)$. Given the lifetime y, the modified belief about λ ?
- 2. Romeo and Juliet start dating, but Romeo will be late by a random variable $Y \sim \mathcal{U}[0, \theta]$. Given the time of being late y, the modified belief about θ ?

K: discrete, Y: continuous

• Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• $f_{Y|K}(y|k) = f_{Y|A}(y)$, where $A = \{K = k\}$

• Inference of Y given K

$$f_{Y|K}(y|k) = \frac{f_{Y}(y)p_{K|Y}(k|y)}{p_{K}(k)}$$
$$p_{K}(k) = \int f_{Y}(y')p_{K|Y}(k|y')dy'$$

• Wait! $p_{K|Y}(k|y)$? Well-defined?

$$p_{K|Y}(k|y) = \frac{\mathbb{P}(K=k, Y=y)}{\mathbb{P}(Y=y)} = \frac{0}{0}$$

• For small δ (in other words, taking the limit as $\delta \to 0$).

Let
$$A = \{K = k\}.$$

$$\frac{p_{K|Y}(k|y)}{\approx} \mathbb{P}(A|y \leq Y \leq y + \delta) \\
= \frac{\mathbb{P}(A)\mathbb{P}(y \leq Y \leq y + \delta|A)}{\mathbb{P}(y \leq Y \leq y + \delta)} \\
\approx \frac{\mathbb{P}(A)f_{Y|A}(y)\delta}{f_{Y}(y)\delta} \\
= \frac{\mathbb{P}(A)f_{Y|A}(y)}{f_{Y}(y)}$$

L4(6) May 5, 2021 41 / 45

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

- K: -1, +1, original signal, equally likely. $p_K(1) = 1/2, p_K(-1) = 1/2$.
- Y: measured signal with Gaussian noise, Y = K + W, $W \sim \mathcal{N}(0,1)$
- Your received signal = 0.7. What's your guess about the original signal? +1
- Your received signal = -0.2. What's your guess about the original signal? -1
- Your intuition: If positive received signal, +1. If negative received signal, -1. How can we mathematically verify this?

Example: Signal Detection (2)

KAIST EE

May 5, 2021

42 / 45

• $Y|\{K=1\} \sim \mathcal{N}(1,1)$ and $Y|\{K=-1\} \sim \mathcal{N}(-1,1)$. (Remind: linear transformation preserves normality.)

$$f_{Y|K}(y|k) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1$$

$$f_{Y}(y) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y+1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-1)^2}$$
 (from TPT)

• Probability that K = 1, given Y = y? After some algebra,

$$p_{K|Y}(1|y) = \frac{1}{1 + e^{-2y}}$$

- If y > 0, the inference probability for K = 1 exceeds $\frac{1}{2}$. So, original signal = 1.
- \circ Similarly, compute $p_{K|Y}(-1|y)$ and then do the inference

Questions?

L4(6)

L4(6)

44 / 45

Review Questions

- 1) What is PDF and CDF?
- 2) Why do we need CDF?
- 3) What are joint/marginal/conditional PDFs?
- 4) Explain memorylessness of exponential random variables.
- 5) Explain the version of Bayes' rule for continuous and mixed random variables.

L4(6) May 5, 2021 45 / 45