SOC 3305

Lab 6

(Due in by 11:59 pm on Nov 29, 2018)

Please save your final work as lastname_lab6.doc (put your name on the title page) and email it to instructor. Please explain your results with your own words. (You must use Stata program to do this lab). Provide your Stata command for each question.

1. a. Please explain with your OWN words: F statistics, t statistics, and linear regression.

F-statistic: This is the statistic that you get once you conduct an F-test. An F-test tests the null hypothesis that all the coefficients of the independent variables in a regression model are equal to zero, meaning they have no effect on the dependent variable. If the F-statistic is less than or equal to .05, then you reject the null hypothesis that all the independent variable's coefficients are equal to zero, meaning they do have an impact on the dependent variable.

t-statistic: This is the statistic you get once you conduct a t-test. A t-test tests the null hypothesis that a particular independent variable's coefficient is equal to zero, meaning it does not have an impact on the dependent variable. If the t-statistic is less than or equal to .05 then you reject the null hypothesis, which means that the independent variable does have an impact on the dependent variable.

Linear Regression: This is done whenever you want to see the impact of one or more independent variables on a dependent variable. This model fives you both the F-statistic and the t-statistics of each independent variable.

b. Please explain the difference between F-statistics and t-statistics. Can both statistics be ever same? Why? (10)

The main difference between the two statistics is that the F-statistic tests all of the coefficients of the independent variables, with exemption of the constant, where as the t-statistic only tests one independent variable. There is only one way that both the F-statistic and the t-statistic can be the same. This is when you run a linear regression model with only one independent variable. This happens because the F-statistic tests all independent variables, and since there is only one independent variable, you will get the same result in the t-statistic because that is where you test only one independent variable.

2. Use Nations2.dta. See how life expectancy predicts average school years, GDP, child mortality and adolescence fertility to the model by using linear regression.

Command: regress life school gdp chldmort adfert

Source	SS	df	MS		er of ob:	s = =	178 337.70
Model	15635.6868	4	3908.92171		•	=	0.0000
Residual	2002.50296	173	11.5751616	-	uared	=	0.8865
				- Adj l	R-square	d =	0.8838
Total	17638.1898	177	99.6507898	Root	MSE	=	3.4022
	Г						
life	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
school	1442219	.1438604	-1.00	0.317	4281	693	.1397256
gdp	.0001338	.000023	5.81	0.000	.0000	884	.0001793
chldmort	1652258	.0091747	-18.01	0.000	1833	346	147117
adfert	.0041719	.0095542	0.44	0.663	0146	858	.0230297
_cons	75.70404	1.399551	54.09	0.000	72.94	164	78.46643

a. Report correlation and pairwise correlation (with .05 level of significance) tables and explain the difference if any.

Command for Correlation: correlate life school gdp chldmort adfert

	life	school	gdp	chldmort	adfert
life	1.0000				
school	0.7313	1.0000			
gdp	0.6062	0.5717	1.0000		
chldmort	-0.9294	-0.7724	-0.5160	1.0000	
adfert	-0.7424	-0.6798	-0.5121	0.7888	1.0000

Command for Pairwise Correlation: pwcorr life school gdp chldmort adfert

	life	school	gdp	chldmort	adfert
life	1.0000				
school	0.7252	1.0000			
gdp	0.6112	0.5733	1.0000		
chldmort	-0.9236	-0.7727	-0.5160	1.0000	
adfert	-0.7318	-0.6752	-0.5171	0.7774	1.0000

Interpretation: There are a few changes in some of the correlation coefficients, however they are not great differences that change the strength of the correlation.

b. Write formula and explain your result (F-statistics, t-statistics and significance levels). (Predicted Y)Yi=β0+β1x1+β2x2+β3x3+β4x4+e

Predicted Life= 75.7 + (-.144)(school) + (.0001)(gdp) + (-.165)(chldmort) + (.004)(adfert) + e

F-statistic: Since the F-statistic is less than 0.05, the null hypothesis is rejected, which means that all of the coefficients of the independent variables are not equal to zero, which then means they impact the dependent variable.

t-statistic: GDP and child mortality are the only independent variables that have a significant impact on the dependent variable, because the t-statistic is less than 0.05 for both. The other independent variables are greater than 0.05 so they have no significant impact on the dependent variable.

c. Transform gpd with natural logarithm ("In" function) and run the regression with it.

Command to Transform: generate loggdp= ln(gdp)

Command for Regression: regress life school gdp chldmort adfert loggdp

Source	SS	df	MS	Numb	er of obs	, =	178
				F(5,	172)	=	269.62
Model	15642.4196	5	3128.48391	Prob	> F	=	0.0000
Residual	1995.77024	172	11.6033153	R-sq	uared	=	0.8868
				Adj	R-squared	. =	0.8836
Total	17638.1898	177	99.6507898	Root	MSE	=	3.4064
'	ı						
life	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
school	1847652	.1535547	-1.20	0.231	48785	95	.118329
gdp	.0001106	.0000382	2.89	0.004	.00003	52	.000186
chldmort	1616093	.0103403	-15.63	0.000	18201	.95	1411991
adfert	.0036516	.0095901	0.38	0.704	01527	79	.0225811
loggdp	. 4367957	.5734215	0.76	0.447	69505	36	1.568645
_cons	72.34118	4.631775	15.62	0.000	63.198	74	81.48362

d. Come up with the reduced model to predict schooling and report the formula with coefficients. (30 pts)

3. Use shuttle.dta and generate new variable "dist" that shows the distress level and make "distress" dummy (binary, dichotomous) variable. Then run logit regression and report coefficients as well as likelihood of having any distress as increase on date by a day. Would you let Challenger take off? Why? (20)

Commands to Make it Binary: generate dist=distress and replace dist=1 if distress==2 Command to Run Regression: logit dist date

Logistic regre	Number of obs			=	23		
				LR chi2	(1)	=	4.81
				Prob > 0	chi2	=	0.0283
Log likelihood	= -12.991096	5		Pseudo l	R2	=	0.1561
dist	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
date	.0020907	.0010703	1.95	0.051	-6.946	-06	.0041884

Command to Determine Distress: display exp(.002907) and display 1.0029112-1

9.517253

-18.13116

cons

These give me the number .0029*100= 0.29%

0.057

-36.78463

.5223142

Interpretation: As a day increases, there is a 0.29% increase in distress, therefore, it is relatively safe to send the Challenger off because there is little distress added each day.

-1.91

4. a. With your OWN words please explain logistic regression and multinomial logistic regression.

A **logistic regression** is the same as a linear regression, with a small difference. A logistic regression model shows the impact of one or more independent variables on one dependent variable, which is considered to be binary.

A **Multinomial Logistic Regression** is when you do a logistic regression, but when there are more than 2 options. So if you want to run a model to figure out how political affiliation impacts belief in global warming, you would create dummy variables, which there would be more than 2.

b. What is the difference between "logit" and "logistic" Stata command? (10)

In Stata, the **logit** command runs a regression for binary variables, and reports the independent variables as odd-coefficients whereas the **logistic** command reports the independent variables as odd-ratios.

Use Granit2011_6.dta. Generate new dummy variable called "lessice" from "warmice". 0
for the ones who believe less ice on the Artic compared to last 30 years and 1 for all
others.

Commands to Create Dummy Variables: generate less=0 and replace less=1 if warmice!=1

a. Run a logistic regression by using these variables: age, sex, educ, party and warmop2.

Command: logit less age sex educ party warmop2

```
Iteration 0:    log likelihood = -286.18868
Iteration 1:    log likelihood = -259.15094
Iteration 2:    log likelihood = -258.3257
Iteration 3:    log likelihood = -258.323
Iteration 4:    log likelihood = -258.323
```

Logistic regressio	n	Number of obs	=	486
		LR chi2(5)	=	55.73
		Prob > chi2	=	0.0000
Log likelihood =	-258.323	Pseudo R2	=	0.0974

less	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	.0002321	.0067182	0.03	0.972	0129354	.0133995
sex	1238605	.2199695	-0.56	0.573	5549927	.3072717
educ	2587727	.1037827	-2.49	0.013	4621831	0553622
party	.355585	.1311894	2.71	0.007	.0984586	.6127114
warmop2	9980062	.2375625	-4.20	0.000	-1.46362	5323923
_cons	5108925	.5897664	-0.87	0.386	-1.666813	.6450284

- b. Report your codes, coefficients and also your likelihood percentages.
 - Age codes: display exp(.0002321) and display (1.0002-1)*100 = 0.02%
 - Sex codes: display exp(-.1238605) and display (0.8835-1)*100 = -11.65%
 - Education codes: display exp(-.25877) and display (0.772-1)*100 = -22.8%
 - Party codes: display exp(.3556) and display (1.427-1)*100 = 42.7%
 - Warmop2 codes: display exp(-.998) and display (0.3686-1)*100 = -63.14%
- c. Explain your findings and age, sex, educ, party and warmop2 changes likelihood in one's belief? (30)
 - Age: As age goes up by one unit, the belief in less ice increases by 0.02%.
 - Sex: As sex changes by one unit, the belief in less ice decreases by 11.65%.
 - **Education:** As education increases one unit, the belief in less ice decreases by 22.8%.
 - **Party:** As party increases by unit, the belief in less ice increases by 42.7%.
 - **Warmop2:** As the unit increases on the belief that global warming is human caused, the belief in less ice decreases by 63.13%.