数学分析题习课讲义

参考答案

Chapter 2

数列极限

2.1 数列极限的基本概念

2.1.1 思考题 pp.13.

- 1. 数列收敛有很多等价定义. 例如:
 - (1) 数列 $\{a_n\}$ 收敛于 $a \Longleftrightarrow \forall \varepsilon > 0, \exists N \in \mathbf{N}_+, \forall n \geqslant N, 成立 |a_n a| < \varepsilon;$
 - (2) 数列 $\{a_n\}$ 收敛于 $a \Longleftrightarrow \forall m \in \mathbb{N}_+, \exists N \in \mathbb{N}_+, \forall n > N, 成立 |a_n a| < 1/m;^1$
 - (3) 数列 $\{a_n\}$ 收敛于 $a \iff \forall \varepsilon > 0, \exists N \in \mathbf{N}_+, \forall n > N, 成立 |a_n a| < K\varepsilon$. 其中 $K \not\in \mathbb{N}_+$ 个与 ε 和 n 无关的正常数.

试证明以上定义与数列收敛等价.

证明. (1) \Rightarrow 取 $N = N_0 + 1$. \Leftarrow 显然.

(2) \Rightarrow 取 $\varepsilon = 1/m, m \in \mathbf{N}_+$. \Leftarrow 由于 $\lim_{m \to \infty} 1/m = 0$, 故存在 $M \in \mathbf{N}_+$, 当 m > M 时, $1/m < \varepsilon$. 选定 m, 使用定义, 存在 $N_0 \in \mathbf{N}_+$, $\forall n > N$, 有 $|a_n - a| < 1/m < \varepsilon$.

(3)
$$\Rightarrow$$
 \mathbb{R} $K = 1$. \Leftarrow \mathbb{R} $\varepsilon' = \varepsilon/K$, \mathbb{R} $\exists N \in \mathbb{N}_+, \forall n > N, |a_n - a| < K\varepsilon' = \varepsilon$. \Box

2. 问: 在数列收敛的定义中, N 是否是 ε 的函数?

答. 否. 对于任意的 ε , 存在一个 $N_0 \in \mathbb{N}_+$, 使得当 $n > N_0$ 时都有 $|a_n - a| < \varepsilon$, 而 $\forall N > N_0$ 都可以是符合定义的 N, 即每一个 ε 都可以对应无穷多个 N, 故不是.

3. 判断: 若 $\{a_n\}$ 收敛,则有 $\lim_{n\to\infty} (a_{n+1}-a_n)=0$ 和 $\lim_{n\to\infty} a_{n+1}/a_n=1$.

答. $\lim_{n\to\infty}(a_{n+1}-a_n)=0$. 对于任意给定的 $\varepsilon>0$, 存在 N>0, 当 n>N时有 $|a_n-a|<\varepsilon/2$, 从而 $|a_{n+1}-a|<\varepsilon/2$, 于是对于 n>N,

$$|a_{n+1} - a_n| \leqslant |a_{n+1} - a| + |a_n - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

¹有些像级数的 Weierstrass-M 判别法, 事实上也可以用 Cauchy 收敛准则给出一个和 Weierstrass-M 判别法类似的证明. 本条是所有二分法/三分法证明的基础.

 $\lim_{n\to\infty} a_{n+1}/a_n = 1. \ \text{ 第一反例 } \{(-1)^n 1/n\}, \ \text{ 显然 } \lim_{n\to\infty} (-1)^n 1/n = 0, \ \text{ 但}$

$$\lim_{n \to \infty} \frac{(-1)^{n+1} 1/(n+1)}{(-1)^n 1/n} = \lim_{n \to \infty} -1 \cdot \frac{n}{n+1} = -1.$$

4. 设收敛数列 $\{a_n\}$ 的每一项都是整数, 问: 该数列有什么特殊性质?

答. 从某一项开始后每一项均相同. 取 $\varepsilon = 1/2$, 则存在 $N \in \mathbb{N}_+$, 使对 n > N 有 $|a_{n+1} - a_n| < 1/2$, 注意到 $a_n \in \mathbb{Z}$, $n \in \mathbb{N}_+$, 知 $a_{n+1} = a_n$, $\forall n > N$.

- 5. 问: 收敛数列是否一定是单调数列? 无穷小量是否一定是单调数列?
 - 答. 均不一定. 如分别取 $\{a + (-1)^n 1/m\}$ (收敛但不单调) 和 $\{(-1)^n 1/n\}$ (无穷小量但不单调).
- 6. 2问: 正无穷大量数列是否一定单调增加? 无界数列是否一定为无穷大量?
 - 答. 均不一定. 如分别取 $\{n+2\sin n\}$ (正无穷大量但不单调) 和 $\{n\cdot\sin n\}$ (无界但非无穷大).
- 7. 问: 如果数列 $\{a_n\}$ 收敛于 a, 那么绝对值 $|a_n-a|$ 是否随着 n 的增加而单调减少趋于 0?
 - 答. 不一定. 如取 $\{a_n\}$ 为形如

 $1,1/2,1/3,1/6,1/4,1/8,1/12,\cdots,1/n,1/2n,\cdots,1/n(n-1),1/(n+1),\cdots$ 的数列, 由于 1/n 和 1/(n+1) 之间的所有项都严格小于 1/(n+1),于是 $\{a_n\}$ 的上控数列³

 $\{\overline{a_n}\}$ 为 $1,1/2,1/3,1/4,1/4,\cdots$,其中 1/n 连续出现了 n-3 次($n \ge 3$),显然 $\lim_{n\to\infty}\overline{a_n}=0$. 而全为正项的数列 $\{a_n\}$ 有一个子列 $\{1/n\}$ 收敛于 0,故

$$\underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = 0.$$

即 $\lim_{n \to \inf} a_n = 0$, 但显然 $\{|a_n|\}$ 并不单调.

- 8. 判断: 非负数列的极限是非负数, 正数列的极限是整数.
 - 答. 非负数列的极限是非负数. 反证法. 假设非负数列 $\{a_n\}$ 的极限为 A < 0, 则存在 $N \in \mathbb{N}_+$, 当 n > N 时有 $|a_n A| < -A/2$, 即当 n > N 时有 $3A/2 < a_n < A/2 < 0$, 与 $\{a_n\}$ 非负矛盾.

正数列的极限不一定为正数, 如取 $\{1/n\}$, 其极限为 0.

²原本的6题中,一个很小很小的量显然不是一个无穷小量,注意无穷小量是一个趋于零的极限过程即可.

³请结合数列的上下极限部分.

2.1.2练习题 pp.17.

1. 按极限定义证明:

(1)
$$\lim_{n \to \infty} \frac{3n^2}{n^2 - 4} = 3;$$
 (2) $\lim_{n \to \infty} \frac{\sin n}{n} = 0;$

(3)
$$\lim_{n \to \infty} (1+n)^{\frac{1}{n}} = 1;$$
 (4) $\lim_{n \to \infty} \frac{a^n}{n!} = 0.$

证明. 对于任何 $\varepsilon > 0$,

(1)
$$\mathbb{R} N = [\sqrt{12/\varepsilon + 4}] + 1$$
, $\stackrel{\text{def}}{=} n > N \mathbb{H}$, $|\frac{3n^2}{n^2 - 4} - 3| = \frac{12}{n^2 - 4} < \varepsilon$;

(2) 取
$$N = [1/\varepsilon]$$
, 当 $n > N$ 时, $|\frac{\sin n}{n} \leqslant \frac{1}{n} < \varepsilon$;

(3) 由于 $(1+n)^{\frac{1}{n}} > 1, \forall n \in \mathbf{N}_+,$ 故令 $y_n = (1+n)^{\frac{1}{n}} - 1 > 0, 有 n + 1 = (1+y_n)^n \ge 1$ $\frac{n(n-1)}{2}y_n^2$, हा

$$\sqrt[n]{n+1} - 1 = y_n \leqslant \sqrt{\frac{2(n+1)}{n(n-1)}}.$$

又由 $\lim_{n\to\infty}\frac{2(n+1)}{n(n-1)}$,故存在 $N\in\mathbf{N}_+$,使当 n>N 时有 $\frac{2(n+1)}{n(n-1)}<\varepsilon<1$,故当 n>N 时有

$$\sqrt[n]{n+1} - 1 = y_n \leqslant \sqrt{\frac{2(n+1)}{n(n-1)}} < \sqrt{\varepsilon} < \varepsilon;$$

(4) 若 $0 < a \le 1$, 显然取 $N = [\varepsilon] + 1$, 当 n > N 时

$$\frac{a^n}{n!} \leqslant \frac{1}{n} < \varepsilon.$$

若
$$a > 1$$
, 则存在 $k \in \mathbb{N}_+$ 使得 $k < a < k+1$, 于是
$$\frac{a^n}{n!} = \frac{a \cdot a \cdots a \cdot a \cdot a \cdot a \cdot a \cdot a}{n \cdot (n-1) \cdots (k+1)k(k-1) \cdots 2 \cdot 1} \leqslant \frac{a}{n} \frac{a \cdots a}{a \cdots a} \cdot \frac{a}{k} \frac{a}{k-1} \cdots \frac{a}{2} \frac{a}{1}.$$

注意上式中最后一项是一常数, 可记为 K, 取 $N=[aK/\varepsilon]+1$, 当 n>N 时有 $\frac{a^n}{n!}<$

2. 设 $a_n \geqslant 0, n \in \mathbb{N}_+$, 数列 $\{a_n\}$ 收敛于 a_n 则 $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a_n}$

证明.
$$|\sqrt{a_n} - \sqrt{a}| = \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \leqslant \frac{|a_n - a|}{\sqrt{a}}$$
. $\forall \varepsilon > 0$, 由 $\lim_{n \to \infty} a_n = a$, $\exists N \in \mathbf{N}_+$, 当 $n > N$ 时有 $|a_n - a| \leqslant \sqrt{a}\varepsilon$. 故当 $n > N$ 时, $|\sqrt{a_n} - \sqrt{a}| \leqslant \frac{|a_n - a|}{\sqrt{a}} < \varepsilon$,即 $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$.

3. 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$. 反之如何?

证明.
$$\forall \varepsilon > 0$$
, 由 $\lim_{n \to \infty} a_n = a$, $\exists N \in \mathbf{N}_+$, 当 $n > N$ 时有 $|a_n - a| < \varepsilon$. 故当 $n > N$ 时, $||a_n| - |a|| \le |a_n - a| < \varepsilon$, 即 $\lim_{n \to \infty} |a_n| = |a|$.

4. 4 设 a > 1, 证明 $\lim_{n \to \infty} \frac{\log_a n}{n} = 0$. (可以利用已知的极限 $\lim_{n \to \infty} \sqrt[n]{n} = 1$.)

⁴关于原先的 5 题, 完全可以使用相应函数极限的定义加上 Heine 定理证明, 并且本质没有任何不同.

证明.

$$\lim_{n \to \infty} \frac{\log_a n}{n} = \lim_{n \to \infty} \log_a n^{1/n} = \lim_{n \to \infty} \log_a 1 = 0.$$

其中第二个等号用到了 $\log_a x$ 的连续性.

2.2 收敛数列的基本性质

2.2.1 思考题 pp.18.

1. 设 $\{a_n\}$ 收敛而 $\{b_n\}$ 发散, 问: $\{a_n+b_n\}$ 和 $\{a_nb_n\}$ 的敛散性如何?

证明. $\{a_n + b_n\}$ 发散. 反证法. 假设 $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} (a_n + b_n) = A$, 则对于 $\forall \varepsilon > 0$, $\exists N_1, N_2 \in \mathbf{N}_+$, 当 $n > N_1$ 时, $|(a_n + b_n) - A| < \varepsilon/2$; 当 $n > N_2$ 时, $|a_n - a| < \varepsilon/2$. 令 $N = \max\{N_1, N_2\}$, 则当 n > N 时有

 $|b_n - (A - a)| = |[(a_n + b_n) - A] - (a_n - a)| \le |(a_n + b_n) - A| + |a_n - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$ 即 $\lim_{n \to \infty} b_n = A - a$,与 $\{b_n\}$ 发散矛盾.

 $\{a_nb_n\}$ 可能发散也可能收敛. 如取 $a_n = 1/n, b_n = n \sin n, \, \text{则} \, a_nb_n = \sin n, \, \{a_nb_n\} \, \text{发散};$ 取 $a_n = 1/n, b_n = (-1)^n, \, \text{则} \, a_nb_n = (-1)^n1/n, \, \{a_nb_n\} \, \text{收敛}.$

2. 设 $\{a_n\}$ 和 $\{b_n\}$ 都发散, 问: $\{a_n + b_n\}$ 和 $\{a_n b_n\}$ 的敛散性如何?

证明. $\{a_n + b_n\}$ 可能发散也可能收敛. 如取 $a_n = (-1)^n, b_n = (-1)^{n+1}$, 则 $a_n + b_n = 0$, $\{a_n + b_n\}$ 收敛; 取 $a_n = b_n = (-1)^n$, 则 $a_n + b_n = (-1)^n \cdot 2$, $\{a_n + b_n\}$ 发散.

 $\{a_nb_n\}$ 可能发散也可能收敛. 如取 $a_n = b_n = (-1)^n$, 则 $a_nb_n = 1$, $\{a_nb_n\}$ 收敛; 取 $a_n = (-1)^n$, $b_n = n$, 则 $a_nb_n = (-1)^n \cdot n$, $\{a_nb_n\}$ 发散.

3. 设 $a_n \leq b_n \leq c_n, n \in \mathbb{N}_+$, 已知 $\lim_{n \to \infty} (c_n - a_n) = 0$, 问: 数列 $\{b_n\}$ 是否收敛?

证明. $\{b_n\}$ 不一定收敛. 取一反例, $a_n = n, b_n = n + 1/2n, c_n = n + 1/n, n \in \mathbf{H}_+$, 则 $\lim_{n \to \infty} (c_n - a_n) = \lim_{n \to \infty} 1/n = 0$, 但显然 $\{b_n\}$ 发散.

4. 找出下列运算中的错误:

$$\lim_{n\to\infty}\left(\frac{1}{n+1}+\cdots+\frac{1}{2n}\right)=\lim_{n\to\infty}\frac{1}{n+1}+\cdots+\lim_{n\to\infty}\frac{1}{2n}=0.$$

证明.问题在于第二个等号,极限的四则运算法则之对于有限次的加减乘除(除法要求分母的数列不为零)成立,对于可列次的四则运算没有意义.

5. 设已知 $\{a_n\}$ 收敛于 a, 又对每个 n 有 $b < a_n < c$, 问: 是否成立 b < a < c?

证明. 不一定成立. 如取 $b = 0, c = 1, a_n = 1/n, n \in \mathbf{N}_+$,则有 $b < a_n < c, \forall n \in \mathbf{H}_+$,但 $a = \lim_{n \to \infty} a_n = 0$,故 a = c.

6. 设已知 $\{a_n\}$ 收敛于 a, 又有 $b \le a \le c$, 问: 是否存在 N, 使得当 n > N 时成立 $b \le a \le c$?

证明. 两次应用数列极限的保序性, 所得的正整数分别记为 N_1 和 N_2 , 则取 $N=\max\{N_1,N_2\}$, 当 n>N 时就有 $b_n\leqslant a_n\leqslant c_n$.

7. 设已知 $\lim_{n\to\infty} a_n = 0$, 问是否有 $\lim_{n\to\infty} (a_1 a_2 \cdots a_n) = 0$? 又问: 反之如何?

证明. 5 对于 $\varepsilon_0=1$,由 $\lim_{n\to\infty}a_n=0$ 知存在 $N\in {\bf N}_+$ 使得当 n>N 时有 $|a_n|<1$,记 $K=|a_1a_2\cdots a_N|$.对于 $\forall 0<\varepsilon<1$, $\exists N'\in {\bf N}_+$,当 n>N' 时有 $|a_n|<\varepsilon/K$.因此对于 $n>\max\{N,N'\}$, $|a_1a_2\cdots a_n|=K|a_{N+1}\cdots a_n|\leqslant K|a_n|< K\cdot\varepsilon/K=\varepsilon$,即 $\lim_{n\to\infty}(a_1a_2\cdots a_n)=0$.

2.2.2 练习题 pp.25.

1. 证明: $\{a_n\}$ 收敛的充分必要条件是 $\{a_{2k}\}$ 和 $\{a_{2k-1}\}$ 收敛于同一极限.

证明. 必要性. 设 $\lim_{n\to\infty} a_n = a$, 则对于 $\forall \varepsilon > 0$, $\exists N \in \mathbf{N}_+$, 当 n > N 时, $|a_n - a| < \varepsilon$. 当 k > N 时, 2k > 2k - 1 > N, 故当 k > N 时, $|a_{2k} - a| < \varepsilon$, $|a_{2k-1} - a| < \varepsilon$. 即 $\lim_{n\to\infty} a_{2k} = \lim_{n\to\infty} a_{2k-1} = a$.

充分性. 设 $\lim_{n\to\infty} a_{2k} = \lim_{n\to\infty} a_{2k-1} = a$, 则对于 $\forall \varepsilon > 0$, $\exists K_1 \in \mathbf{N}_+$, $\dot{\exists} k > K_1$ 时, $|a_{2k} - a| < \varepsilon$; $\exists K_2 \in \mathbf{N}_+$, $\dot{\exists} k > K_2$ 时, $|a_{2k-1} - a| < \varepsilon$. 取 $N = \max\{K_1, K_2\}$, 则当 n > N 时, $|a_n - a| < \varepsilon$.

- 2. 以下是可以应用夹逼定理的几个题.
 - (1) 给定 p 个正数 a_1, a_2, \cdots, a_p , 求 $\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \cdots + a_p^n}$;

(2)
$$\aleph x_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{(n+1)^2}}, n \in \mathbf{N}_+, \ \ \ \lim_{n \to \infty} x_n;$$

(4) 设 $\{a_n\}$ 为正数列, 并且已知它收敛于 a>0, 证明 $\lim_{n\to\infty} \sqrt[n]{a_n}=1$.

证明. (1) $\max_{1\leqslant k\leqslant p}a_k\leqslant \sqrt[n]{a_1^n+a_2^n+\cdots+a_p^n}\leqslant \sqrt[n]{n}\max_{1\leqslant k\leqslant p}a_k^n=\sqrt[n]{n}\max_{1\leqslant k\leqslant p}a_k\to \max_{1\leqslant k\leqslant p}a_k(n\to\infty)$, 故 $\lim_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_p^n}=\max_{1\leqslant k\leqslant p}a_k$;

$$(2) \ \frac{2n+1}{\sqrt{(n+1)^2}} \leqslant x_n \leqslant \frac{2n+1}{\sqrt{n^2+1}}, \ \lim_{n\to\infty} \frac{2n+1}{\sqrt{(n+1)^2}} = \lim_{n\to\infty} \frac{2n+1}{\sqrt{n^2+1}} = 2, \ \ \ \lim_{n\to\infty} x_n = 2;$$

(3)
$$\sqrt[n]{n \cdot 1/n} \leqslant a_n \leqslant \frac{1}{n} n \to 1 (n \to \infty), \text{ it } \lim_{n \to \infty} a_n = 1;$$

 $^{^5}$ 结合无穷级数的相关知识可以给出另一证明. 记 $u_n=a_1\cdots a_n$,由无穷级数的 d'Alembert 比值判别法, $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}a_{n+1}=0$,有无穷级数 $\sum\limits_{n=1}^\infty u_n$ 收敛,故 $\lim_{n\to\infty}u_n=0$.

(4) 取
$$\varepsilon = a/2 > 0$$
, 由 $\lim_{n \to \infty} a_n = a$, $\exists N \in \mathbf{N}_+$, 当 $n > N$ 时, $|a_n - a| < a/2$, 即当 $n > N$ 时 $a/2 < a_n < 3a/2$. 同时开 n 次根号,有 $\sqrt[n]{a/2} < \sqrt[n]{a} < \sqrt[n]{3a/2}$, $\forall n > N$. 由于 $\lim_{n \to \infty} \sqrt[n]{a/2} = \lim_{n \to \infty} \sqrt[n]{3a/2} = 1$, 故 $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$.

3. 求以下极限:

(1)
$$\lim_{n\to\infty} (1+x)(1+x^2)\cdots(1+x^{2^n})$$
, $\sharp \psi |x| < 1$;

(2)
$$\lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \cdots \left(1 - \frac{1}{n^2} \right);$$

(3)
$$\lim_{n \to \infty} \left(1 - \frac{1}{1+2} \right) \left(1 - \frac{1}{1+2+3} \right) \cdots \left(1 - \frac{1}{1+2+\cdots+n} \right);$$

(4)
$$\lim_{n \to \infty} \left(\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} \right);$$

$$\begin{array}{ll} (5) & \lim_{n \to \infty} \sum\limits_{k=1}^n \frac{1}{k(k+1)\cdots(k+\nu)}, \; \sharp \, \forall \; \nu \in \mathbf{N}_+, \nu > 1. \\ & (最后两个题是 \lim\limits_{n \to \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} \right) \; \text{的推广.}) \end{array}$$

延明. (1)
$$(1+x)(1+x^2)\cdots(1+x^{2^n}) = \frac{(1+x)(1-x)(1+x^2)\cdots(1+x^{2^n})}{1-x}$$

$$= \frac{(1-x^2)(1+x^2)\cdots(1+x^{2^n})}{1-x}$$

$$= \cdots = \frac{1-x^{2^{n+1}}}{1-x} \to \frac{1}{1-x} \ (n \to \infty)$$

$$(2) \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 + \frac{1}{3}\right) \cdots \left(1 - \frac{1}{n}\right) \left(1 + \frac{1}{n}\right)$$

$$= \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdots \frac{n-1}{n} \cdot \frac{n+1}{n}$$

$$= \frac{1}{2} \frac{n+1}{n} \to \frac{1}{2} \ (n \to \infty)$$

$$(3) \left(1 - \frac{1}{1+2}\right) \left(1 - \frac{1}{1+2+3}\right) \cdots \left(1 - \frac{1}{1+2+\dots+n}\right) = \frac{2}{1+2} \cdot \frac{2+3}{1+2+3} \cdots \frac{2+\dots+n}{1+2+\dots+n}$$

$$= \frac{1 \cdot 4}{2 \cdot 3} \cdot \frac{2 \cdot 5}{3 \cdot 4} \cdots \frac{(n-1)(n+2)}{n(n+1)}$$

$$= \frac{2!(n-1)!(n+2)!}{3!n!(n+1)!}$$

$$= \frac{n+2}{3n} \to \frac{1}{3} \ (n \to \infty)$$

$$(4) \quad \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n(n+1)(n+2)}$$

$$= \frac{1}{2} \left[\left(\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right) + \left(\frac{1}{2 \cdot 3} - \frac{1}{3 \cdot 4} \right) + \dots + \left(\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right) \right]$$

$$= \frac{1}{4} - \frac{1}{2(n+1)(n+2)} \to \frac{1}{4} (n \to \infty)$$

$$(5) \sum_{k=1}^{n} \frac{1}{k(k+1)\cdots(k+\nu)} = \sum_{k=1}^{n} \frac{1}{\nu} \left(\frac{1}{k(k+1)\cdots(k+\nu-1)} - \frac{1}{(k+1)(k+2)\cdots(k+\nu)} \right)$$
$$= \frac{1}{\nu} \left(\frac{1}{1 \cdot 2 \cdot \dots \cdot \nu} - \frac{1}{(n+1)(n+2)\cdots(n+\nu)} \right) \to \frac{1}{\nu \cdot \nu!} (n \to \infty)$$

4. 设 $s_n = a + 3a^2 + \dots + (2n-1)a^n$, |a| < 1, 求 $\{a_m\}$ 的极限. (试计算 $s_n - as_n$.)

证明.

$$S_n = a + 3a^2 + \dots + (2n-1)a^n;$$

 $aS_n = a^2 + \dots + (2n-3)a^n + (2n-1)a^{n+1}.$

上面两式相减,有

$$(1-a)S_n = a + 2(a^2 + a^3 + \dots + a^n) - (2n-1)a^{n+1} = \frac{a(1+a)}{1-a} - (2n-1)a^{n+1} - \frac{2a^{n+1}}{1-a}.$$
故
$$S_n = \frac{a(1+a)}{(1-a)^2} - \frac{1}{1-a}\left((2n-1)a^{n+1} + \frac{2a^{n+1}}{1-a}\right) \to \frac{a(1+a)}{(1-a)^2} \ (n \to \infty).$$

5. 设正数列 $\{x_n\}$ 收敛, 极限大于 0, 证明: 这个数列有正下界, 但在数列中不一定有最小数.

证明. 设 $\lim_{n\to\infty} x_n = A > 0$, 则对 $\varepsilon = A/2 > 0$, $\exists N \in \mathbf{N}_+$, 当 n > N 时, $|x_n - A| < A/2$, 即当 n > N 时, $x_n > A/2$, 记 $M = \max\{x_1, x_2, \cdots, x_N, A/2\}$, 则 $x_n \geqslant M, \forall n \in \mathbf{N}_+$, 即 $M \in \{x_n\}$ 的一个正的下界.

举一个无最小数的例子:
$$x_n = 1 + 1/n, n \in \mathbf{N}_+$$
.

6. 证明: 若有 $\lim_{n\to\infty} a_n = +\infty$, 则在数列 $\{a_n\}$ 中一定有最小数.

证明. 任取 $k \in \mathbb{N}_+$, 对于 a_k , $\exists N \in \mathbb{N}$, 当 n > N 时有 $a_n > a_k$. 取 $a = \min\{a_1, a_2, \dots, a_N, a_k\}$, 则 $a \leq a_n$, $\forall n \in \mathbb{N}_+$, 同时 $a \notin \{a_n\}$ 中的某一项, 故 $a \notin \{a_n\}$ 中的最小数.

7. 证明: 无界数列至少有一个子列是确定符号的无穷大量.

证明. 设 $\{x_n\}$ 是无界数列,不妨设其无上界,即对任意 M > 0, $\exists n \in \mathbb{N}_+$ 使得 $x_n > M$. 对于 $M_1 = 1$, $\exists n_1 \in \mathbb{N}_+$, 使得 $x_{n_1} > 1$;

对于 $M_2 = 2$, $\exists n_2 \in \mathbf{N}_+, n_2 > n_1$, 使得 $x_{n_2} > 2$, 断言这样的 n_2 是可以找到的, 否则 $\forall n > n_1, x_n \leq M_2$, 与 $\{x_n\}$ 无界矛盾;

假设已经找出了 x_{n_k} ,使得 $x_{n_k} > x_{n_{k-1}}$, $x_{n_k} > M_k = k$,则对于 $M_{k+1} = k+1$, $\exists n_{k+1} \in \mathbb{N}_+$, $n_{k+1} > n_k$,使得 $x_{n_{k+1}} > k+1$,断言这样的 n_{k+1} 是可以找到的,否则 $\forall n > n_k$, $x_n \leq M_{k+1}$,与 $\{x_n\}$ 无界矛盾。由数学归纳法可知找出了数列 $\{x_{n_k}\}$ 使得 $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$, $x_{n_k} > k$, $k \in \mathbb{N}_+$ 。这说明 $\{x_{n_k}\}$ 是 $\{x_n\}$ 的子列,并且 $\{x_{n_k}\}$ 是正的无穷大量。同理若 $\{x_n\}$ 无下界时可找到一个子列是负的无穷大量。

8. 证明: 数列 {tan n} 发散.

证明.

$$|\tan(n+1) - \tan n| = \left| \frac{\sin(n+1)}{\cos(n+1)} - \frac{\sin n}{\cos n} \right|$$

$$= \left| \frac{\sin(n+1)\cos n - \cos(n+1)\sin n}{\cos(n+1)\cos n} \right|$$

$$= \left| \frac{\sin 1}{\cos(n+1)\cos n} \right|$$

$$\ge \sin 1, \forall n \in \mathbf{N}.$$

这说明 $\exists \varepsilon_0 = \sin 1, \forall N \in \mathbf{N}_+, \exists n > N$ 使得 $|\tan(n+1) - \tan n| \ge \sin 1 > 0$. 由 Cauchy 收敛准则知, $\{\tan n\}$ 发散.

9. 设数列 $\{S_n\}$ 的定义为

$$S_n = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}, n \in \mathbf{N}_+.$$

证明: $\{S_n\}$ 在以下两种情况均发散: $(1)p \leq 0$; (2)0 .

证明. 当 $p \leq 0$ 时, $S_{n+1} - S_n = \frac{1}{n^p} = \begin{cases} 1, & p = 0; \\ n^{-p}, & p < 0. \end{cases}$ 由 Cauchy 收敛准则知 $\{S_n\}$ 发散.

当 $0 时,对于 <math>\forall n \in \mathbf{N}_+$, $\exists k \in \mathbf{N}_+$ 使得 $2^k < n < 2^{k+1}$,故 $S_n \geqslant S_{2^k} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{2^{kp}}$ $\geqslant 1 + \frac{1}{2^p} + \left(\frac{1}{3^p} + \frac{1}{4^p}\right) \dots + \left(\frac{1}{(2^{k-1}+1)^p} + \frac{1}{(2^{k-1}+2)^p} \dots + \frac{1}{2^{kp}}\right)$ $\geqslant 1 + \frac{1}{2^p} + \frac{2}{4^p} + \dots + \frac{2^{k-1}}{2^{kp}}$ $= 1 + \frac{1}{2}(2^{1-p} + 2^{2(1-p)} + \dots + 2^{k(1-p)})$ $= 1 + \frac{2^{1-p}}{2} \frac{2^{k(1-p)} - 1}{2^{1-p} - 1} \to +\infty \ (n \to \infty)$

故 $\{S_n\}$ 发散.

2.3 单调数列

2.3.1 练习题 pp.30.

1. 若 $\{x_n\}$ 单调,则 $\{|x_n|\}$ 至少从某项开始后单调. 又问: 反之如何?

证明. 不妨设 $\{x_n\}$ 单增.

若 $x_n \leq 0, n = 1, 2, \dots,$ 则 $\{|x_n|\}$ 是单调递减数列;

若 $\exists n_0$ 使得 $x_{n_0} > 0$,则在集合 $\{x_1, x_2, \dots, x_{n_0}\}$ 中必可找出 n_1 使得 $x_{n_1} < 0 < x_{n_1+1}$,于 是 $x_n > 0$, $\forall n > n_1$,又由于 $\{x_n\}$ 单调递增,知 $\{|x_n|\}$ 从 n_1 项后单调递增.

反之不成立. 举一反例, $x_n = (-1)^n n, n \in \mathbf{N}_+$, 则易知 $\{|x_n\}$ 单调递增, 但 $\{x_n\}$ 在任意项之后都不单调.

2. 设 $\{a_n\}$ 单调增加, $\{b_n\}$ 单调减少,且有 $\lim_{n\to\infty}(a_n-b_n)=0$. 证明: $\{a_n\}$ 和 $\{b_n\}$ 都收敛,且 极限相等.

证明. $\{a_n - b_n\}$ 收敛从而有界,即 $\exists M > 0, \forall n \in \mathbb{N}_+, |a_n - b_n| \leqslant M$. 特别有 $a_n \leqslant b_n + M, \forall n \in \mathbb{N}_+$. 由于 $\{b_n\}$ 单调减少, $a_n \leqslant b_1 + M, \forall n \in \mathbb{N}_+$,即 $\{a_n\}$ 单调增加有上界 $b_1 + M$,故 $\{a_n'\}$ 收敛. 同理可知 $\{b_n\}$ 单调减少有下界 $a_1 - M$,故 $\{b_n\}$ 也收敛. 由极限的 四则运算法则, $\lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - b_n) = 0$,故 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

3. 按照极限的定义证明: 单调增加有上界的数列的极限不小于数列的任何一项, 单调减少有下界的数列的极限不大于数列极限的任何一项.

证明. 设 $\{x_n\}$ 是单调增加有上界的数列, 由单调有界原理, $\{x_n\}$ 收敛, 记 $\lim_{n\to\infty} x_n = a$. 若 $\exists n_0 \in \mathbf{N}_+$ 使得 $x_{n_0} > a$, 则由 $\{x_n\}$ 单调增加知 $\forall n \in \mathbf{N}_+, n > n_0, x_n \geqslant x_{n_0} > a$. 对于 $\varepsilon_0 = \frac{x_{n_0} - a}{2} > 0, x_n - a \geqslant x_{n_0} - a > \varepsilon$, 这与 $\lim_{n\to\infty} x_n = a$ 矛盾.

设 $\{y_n\}$ 是单调减少有下界的数列,则 $\{-y_n\}$ 是单调增加有上界的数列,由单调有界原理,若 $\lim_{n\to\infty} y_n = b$,则 $\lim_{n\to\infty} -y_n = -b$. 由前可知, $\forall n \in \mathbf{N}_+, -y_n \leqslant -b$,即 $\forall n \in \mathbf{N}_+, y_n \geqslant b$.

4. 设 $x_n = \frac{2}{3} \cdot \frac{3}{5} \cdots \frac{n+1}{2n+1}, n \in \mathbb{N}_+, 求数列 \{x_n\}$ 的极限.

证明. 易知 $\forall n \in \mathbf{N}_+, x_n > 0$, 且 $\frac{x_n}{x_{n-1}} = \frac{n+1}{2n+1} < 1$, $\forall n \in \mathbf{N}_+$. $\{x_n\}$ 单调递减有下界,故极限存在,设为 a,在递推式 $x_n = \frac{n+1}{2n+1} x_{n-1}$ 两边令 $n \to \infty$,有 a = a/2,故 a = 0 或 1. 由 3 题可知,a 不大于 $\{x_n\}$ 的任意一项,故 $\lim_{n \to \infty} x_n = a$.

5. 设 $a_n = \frac{10}{1} \cdot \frac{11}{3} \cdots \frac{n+9}{2n-1}, n \in \mathbb{N}_+, 求数列 \{a_n\}$ 的极限.

证明. 易知 $\forall n \in \mathbf{N}_+, a_n > 0$,且 $\frac{x_n}{x_{n-1}} = \frac{n+9}{2n-1} < 1$, $\forall n \in \mathbf{N}_+, n > 10$. $\{x_n\}$ 从第 11 项 起单调递减有下界,故极限存在,设为 a,在递推式 $x_n = \frac{n+9}{2n-1} x_{n-1}$ 两边令 $n \to \infty$,有 a = a/2,故 a = 0 或 1. 同上题推理有 $\lim_{n \to \infty} a_n = 0$.

6. 在例题 2.2.6 的基础上证明: 当 p>1 时数列 $\{S_n\}$ 收敛, 其中 $S_n=1+\frac{1}{2^p}+\frac{1}{3^p}+\cdots+\frac{1}{n^p}, n\in \mathbf{N}_+.$

证明. 对于 $\forall n \in \mathbb{N}_+, \exists k \in \mathbb{N}_+$ 使得 $2^{k-1} < n < 2^k$, 故

$$S_n \leqslant S_{2^k - 1} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{(2^n - 1)^p}$$

$$\leqslant 1 + \left(\frac{1}{2^p} + \frac{1}{2^p}\right) + \dots + \left(\frac{1}{(2^{k-1})^p} + \frac{1}{(2^{k-1})^p} \dots + \frac{1}{(2^{k-1})^p}\right)$$

$$= 1 + 2^{1-p} + 2^{2(1-p)} + \dots + 2^{(k-1)(1-p)}$$

$$= \frac{1 - 2^{k(1-p)}}{1 - 2^{1-p}} \leqslant \frac{1}{1 - 2^{1-p}}$$

这表明 $\{S_n\}$ 有界, 又显然 $\{S_n\}$ 单调递增, 故由单调有界原理知 $\{S_n\}$ 收敛.

7. 设 $0 < x_0 < \frac{\pi}{2}, x_n = \sin x_{n-1}, n \in \mathbf{N}_+,$ 证明: $\{x_n\}$ 收敛, 并求其极限.

证明. $\sin x < x, \forall x \in (0, \frac{\pi}{2}, \text{ 故由数学归纳法易知 } x_n = \sin x_{n-1} < x_{n-1}, n = 1, 2, \cdots, 即 \{x_n\}$ 单调递减; 又由 $x_0 > 0$ 易知 $x_n > 0, n = 1, 2, \cdots, 即 0 是 \{x_n\}$ 的下界. 由单调有界原理, $\{x_n\}$ 收敛. 设 $\lim_{n \to \infty} x_n = \xi$, 在 $x_n = \sin x_{n-1}$ 两边令 $n \to \infty$, 注意 $\sin x$ 是其定义域上的连续函数, 由 Heine 定理及极限的保序性, $\xi = \sin \xi, \xi \in [0, \pi/2]$, 故 $\xi = 0$.

8. 设
$$a_n = \left[\frac{(2n-1)!!}{(2n)!!}\right]^2, n \in \mathbb{N}_+,$$
 证明: $\{a_n\}$ 收敛于 0.
$$(观察 \ a_n = \left(\frac{1\cdot 3}{2\cdot 2}\right)\left(\frac{3\cdot 5}{4\cdot 4}\right)\cdots\left(\frac{(2n-3)(2n-1)}{(2n-2)(2n-2)}\right)\left(\frac{2n-1}{(2n)^2}\right).)$$

证明.

$$0 \leqslant a_n = \left(\frac{1 \cdot 3}{2 \cdot 2}\right) \left(\frac{3 \cdot 5}{4 \cdot 4}\right) \cdots \left(\frac{(2n-3)(2n-1)}{(2n-2)(2n-2)}\right) \left(\frac{2n-1}{(2n)^2}\right).$$

由平均值不等式可知 $(2n-3)(2n-1) \leqslant \left(\frac{(2n-3)+(2n-1)}{2}\right)^2 = (2n-2)^2$, 即 $\frac{(2n-3)(2n-1)}{(2n-2)(2n-2)} \leqslant$

1, 于是
$$0 \le a_n \le \frac{2n-1}{4n^2} \to 0 \ (n \to \infty)$$
. 故由夹逼定理知 $\lim_{n \to \infty} a_n = 0$.

9. 设
$$a_n = \left[\frac{(2n)!!}{(2n-1)!!}\right]^2 \cdot \frac{1}{2n+1}, n \in \mathbb{N}_+$$
, 证明: $\{a_n\}$ 收敛. (方法与上一题类似. 在学了积分学后将于命题 11.4.1 中求出上述数列的极限为 $\frac{\pi}{2}$. 这就是 Wallis 公式.)

证明.

$$a_n = \left[\frac{(2n)!!}{(2n-1)!!}\right]^2 \cdot \frac{1}{2n+1} = \left(\frac{2 \cdot 4 \cdot 6 \cdots 2n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}\right)^2 \cdot \frac{1}{2n+1}$$
$$= \left(\frac{2}{1^2}\right) \left(\frac{2 \cdot 4}{3^2}\right) \left(\frac{4 \cdot 6}{5^2}\right) \cdots \left(\frac{(2n-2)(2n)}{(2n-1)^2}\right) \cdot \frac{2n}{2n+1} \leqslant 2.$$

其中用到了基本不等式 $(2n-2)(2n) \leqslant \left(\frac{(2n-2)+(2n)}{2}\right)^2 = (2n-1)^2$, 即 $\frac{(2n-2)(2n)}{(2n-1)^2} \leqslant 1$, 于是 $\{a_n\}$ 有上界; 又由

$$\frac{a_n}{a_{n-1}} = \left(\frac{2n}{2n-1}\right)^2 \frac{2n-1}{2n+1} = \frac{4n^2}{4n^2-1} \geqslant 1.$$

故 $\{a_n\}$ 单调增加. 由单调有界原理知 $\{a_n\}$ 收敛.

10. 下列数列中, 哪些是单调的?

(1)
$$\left\{\frac{1}{1+n^2}\right\}$$
; (2) $\{\sin n\}$; (3) $\{\sqrt[n]{n!}\}$.

证明. (1)
$$\frac{a_n}{a_{n-1}} = \frac{1 + (n-1)^2}{1 + n^2} \leqslant 1$$
, 故 $\{a_n\}$ 单调减少;

- (2) 由于 $\{\sin n\}$ 有界, 若其单调, 则 $\{\sin n\}$ 收敛, 而已知其发散, 故不单调;
- (3) 由于 $n! < (n+1)^n$, 故 $(n!)^{n+1} < (n!)^n (n+1)^n$, 不等式两边开 n(n+1) 次根号, 就有 $\sqrt[n]{n!} < \sqrt[n+1]{n!} \cdot (n+1) = \sqrt[n+1]{(n+1)!}$,

故
$$\{\sqrt[n]{n!}\}$$
 单调增加.

11. 证明: 单调数列 $\{a_n\}$ 收敛的充分必要条件是它有一个收敛子列.

证明. 必要性. 若 $\{a_n\}$ 收敛, 则其任意子列 $\{a_{n_k}\}$ 均收敛.

充分性. 不妨设 $\{a_n\}$ 单调增加, 则其任意子列也单调增加. 设 $\lim_{n\to\infty} x_{n_k} = a$. 则由 3 可知, $\forall k \in \mathbf{N}_+, a_{n_k} \leq a$. 若 $\{a_n\}$ 无上界, 则存在 $n_0 \in \mathbf{N}_+$ 使得 $x_{n_0} > a$, 从而对于充分大的 $k \in \mathbf{N}_+$,有 $a_{n_k} \geq a_{n_0} > a$. 这与 $a_{n_k} \leq a$, $\forall k \in \mathbf{N}_+$ 矛盾. 故 $\{a_n\}$ 有上界. 从而由单调有界原理, $\{a_n\}$ 收敛.

12. 对每个自然数 n, 用 x_n 表示方程 $x + x^2 + \dots + x^n = 1$ 在闭区间 [0,1] 中的根.⁶ 求 $\lim_{n \to \infty} x_n$.

证明. 令 $f_n(x) = x + x^2 + \dots + x^n$, 则 $f'_n(x) = 1 + 2x + \dots + nx^{n-1} > 0$, $\forall x > 0$. 注意 $f_n(0) = 0$, $f_n(1) = n \ge 1$, $\forall n \in \mathbf{N}_+$, 故由 $f_n(x)$ 的单调性及连续函数的介值定理知, $f_n(x)$ 的零点在 [0,1] 上存在唯一.

$$f_n(x_n) = f_{n+1}(x_{n+1}) = f_n(x_{n+1}) + x_{n+1}^{n+1} \geqslant f_n(x_{n+1}), \forall n \in \mathbf{N}_+,$$

由 $f_n(x)$ 的单调性易知 $x_n \ge x_{n+1}, n \in \mathbb{N}_+$,故 $\{x_n\}$ 单调有界,从而收敛.记 $\lim_{n \to \infty} x_n = \xi$,在 $1 = f_n(x_n) = x_n + x_n^2 + \dots + x_n^n = \frac{x_n(1 - x_n^n)}{1 - x_n}$ 的两侧取极限,有 $1 = 2\xi - \lim_{n \to \infty} x_n^{n+1}$. 注意到 $0 \le x_n^{n+1} \le x_2^{n+1} \to 0 \ (n \to \infty)$,故 $\xi = 1/2$,即 $\lim_{n \to \infty} x_n = 1/2$.

2.4 Cauchy 命题与 Stolz 定理

2.4.1 思考题 pp.35.

若在这三个命题的条件中将极限值 l 改为不带符号的无穷大量 ∞ ,则结论不成立.请读者举出反例.

⁶事实上, 这里需要使用函数的单调性及连续性证明方程的根在闭区间 [0,1] 中存在唯一.

2.4.2 练习题 pp.37.

1. 误
$$\lim_{n\to\infty} x_n = +\infty$$
, 证明: $\lim_{n\to\infty} \frac{x_1 + x_2 + \dots + x_n}{n} = +\infty$.

证明. 对于 $\forall M>0$,由 $\lim_{n\to\infty}x_n=+\infty$,知存在 $N_1\in \mathbf{N}_+$ 使当 $n>N_1$ 时有 $x_n>3M$,于 是

$$\frac{x_1 + x_2 + \dots + x_n}{n} = \frac{x_1 + x_2 + \dots + x_{N_1}}{n} + \frac{x_{N_1+1} + x_{N_1+2} + \dots + x_n}{n}$$

$$> \frac{x_1 + x_2 + \dots + x_{N_1}}{n} + \frac{n - N_1}{n} \cdot 3M$$

由于 $\frac{x_1 + x_2 + \dots + x_{N_1}}{n} \to 0$, $\frac{n - N_1}{n} \to 1$ $(n \to \infty)$ 故存在 N_2 **N**₊ 使当 $n > N_2$ 时, $\frac{x_1 + x_2 + \dots + x_{N_1}}{n} > -M/2$ 且 $\frac{n - N_1}{n} > 1/2$. 于是当 $n > N = \max\{N_1, N_2\}$ 时, $\frac{x_1 + x_2 + \dots + x_n}{n} > 3M/2 - M/2 = M.$

2. 设 $\{x_n\}$ 单调增加, $\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a$, 证明: $\{x_n\}$ 收敛于 a.

 $\rightarrow x_{n_0} - a > 0 \ (n \to \infty)$

证明. 断言 $\forall n \in \mathbf{N}_+, x_n \leqslant a$. 否则存在 $n_0 \mathbf{N}_+$ 使得 $x_{n_0} > a$, 不妨设 $x_{n_0-1} \leqslant a < x_{n_0}$, 则 $\frac{x_1 + x_2 + \dots + x_n}{n} - a = \frac{(x_1 - a) + (x_2 - a) + (x_n - a)}{n}$ $\geqslant \frac{(x_1 - a) + (x_2 - a) + \dots + (x_{n_0-1} - a)}{n} + \frac{(n - n_0 + 1)(x_{n_0} - a)}{n}$ $= x_{n_0} - a + \frac{(x_1 - a) + (x_2 - a) + \dots + (x_{n_0-1} - a) - (n_0 - 1)(x_{n_0} - a)}{n}$

与
$$\lim_{n\to\infty}\frac{x_1+x_2+\cdots+x_n}{n}=0$$
 矛盾. 故 $\frac{x_1+x_2+\cdots+x_n}{n}\leqslant x_n\leqslant a, \forall n\in \mathbf{N}_+,$ 由夹逼定理知 $\lim_{n\to\infty}x_n=a.$

3. 设 $\{a_{2k-1}\}$ 收敛于 a, $\{a_{2k-1}\}$ 收敛于 b, 其 $a \neq b$, 求 $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n}$. (注意: 虽然数列 $\{a_n\}$ 发散, 但前 n 项的算术平均值所组成的数列仍可以有极限. 7 一个典型例子就是 $\{(-1)^n\}$.)

证明. 记 $y_n = \frac{a_1 + a_2 + \dots + a_n}{n}$,则由 Cauchy 命题,有 $y_{2n} = \frac{1}{2} \left(\frac{a_1 + a_3 + \dots + a_{2n-1}}{n} + \frac{a_2 + a_4 + \dots + a_{2n}}{n} \right) \to \frac{a+b}{2},$ $y_{2n+1} = \frac{n+1}{2n+1} \left(\frac{a_1 + a_3 + \dots + a_{2n+1}}{n+1} + \frac{n}{n+1} \frac{a_2 + a_4 + \dots + a_{2n}}{n} \right) \to \frac{a+b}{2}, \quad n \to \infty.$ 即 $\lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} y_{2n+1} = \frac{a+b}{2}$,由 pp.25. 1. 知 $\lim_{n \to \infty} a_1 + a_2 + \dots + a_n n = \frac{a+b}{2}$.

4. 若
$$\lim_{n\to\infty}(a_n-a_{n-1})=d$$
, 证明: $\lim_{n\to\infty}\frac{a_n}{n}=d$. (本题可以说是 Cauchy 命题的另一种形式, 也很有用.)

⁷这里可以和级数的 Cesàro 求和结合起来看.

证明. 定义
$$^8a_0=0$$
, 记 $y_n=a_n-a_{n-1}, n=1,2,\cdots$, 则由 Cauchy 命题可知 $\lim_{n\to\infty}\frac{y_1+y_2+\cdots+y_n}{n}=d$, 即 $\lim_{n\to\infty}\frac{a_n}{n}=d$.

5. 设 $\{a_n\}$ 为正数列, 且收敛于 A, 证明: $\lim_{n\to\infty} (a_1a_2\cdots a_n)^{\frac{1}{n}} = A$. (本题与 Cauchy 命题的关系是明显的.)

证明. 由基本不等式知,

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \leqslant (a_1 a_2 \dots a_n)^{\frac{1}{n}} \leqslant \frac{a_1 + a_2 + \dots + a_n}{n}, \forall n \in \mathbf{N}_+.$$

若 A = 0, 则 $0 \leqslant (a_1 a_2 \cdots a_n)^{\frac{1}{n}} \leqslant \frac{a_1 + a_2 + \cdots + a_n}{n}$, 由 Cauchy 命题知, $\lim_{n \to \infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = 0$. 故由夹逼定理知 $\lim_{n \to \infty} (a_1 a_2 \cdots a_n)^{\frac{1}{n}} = 0$.

若 A > 0, 则 $\lim_{n \to \infty} \frac{1}{a} = \frac{1}{A}$, 由 Cauchy 命题知

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = \frac{1}{\frac{1}{A}} = A,$$

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

故由夹逼定理知, $\lim_{n\to\infty} (a_1 a_2 \cdots a_n)^{\frac{1}{n}} = A$.

6. 设 $\{a_n\}$ 为正数列, 且存在极限 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$, 证明: $\lim_{n\to\infty}\sqrt[n]{a_n}=l$. (本题对类型为 $\{\sqrt[n]{a_n}\}$ 的极限问题很有用, 可以说是例题 2.1.2 的一个发展. 这个结果在无穷级数的研究中也很重要. 9)

证明. 定义 $a_0 = 0$, 则 $\sqrt[n]{a_n} = \sqrt[n]{\frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_1}{a_0}}$, $\forall n \in \mathbf{N}_+$. $\{a_n\}$ 是正数列, 故 $\left\{\frac{a_n}{a_{n-a}}\right\}$ 也是正数列. 由 5 可知

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_1}{a_0}} = \lim_{n \to \infty} \frac{a_n}{a_{n-1}} = l.$$

7. 设 $\lim_{n \to \infty} (x_n - x_{n-2}) = 0$, 证明: $\lim_{n \to \infty} \frac{x_n}{n} = 0$.

证明. 定义 $x_{-1}=x_0=0$,并记 $a_n=x_n-x_{n-2}, n=1,2,\cdots$. 由 $\lim_{n\to\infty}a_n=0$ 知 $\lim_{n\to\infty}a_{2n}=0$ 由 Cauchy 命题知,

$$\lim_{n \to \infty} \frac{x_{2n}}{2n} = \lim_{n \to \infty} \frac{n}{2n} \frac{x_{2n}}{n} = \lim_{n \to \infty} \frac{n}{2n} \frac{a_2 + a_4 + \dots + a_{2n}}{n} = 0.$$

同理有

$$\lim_{n \to \infty} \frac{x_{2n-1}}{2n-1} = \lim_{n \to \infty} \frac{n}{2n-1} \frac{x_{2n-1}}{n} = \lim_{n \to \infty} \frac{n}{2n-1} \frac{a_1 + a_3 + \dots + a_{2n-1}}{n} = 0.$$
 故由 pp.25. 1. 知 $\lim_{n \to \infty} \frac{x_n}{n} = 0$.

⁸这里定义的合理性在于任意改变数列的有限项, 数列的敛散性不变, 并且若其收敛, 其极限值不变.

 $^{^9}$ 参见正项级数的比值判别法(d'Alembert)和根值判别法(Cauchy),我们有:前者有效时后者一定有效,但反之不成立,如 $\sum_{n=1}^{\infty} 2^{-n-(-1)^n}$.

8. 读
$$\lim_{n \to \infty} (x_n - x_{n-2}) = 0$$
, 证明: $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = 0$.

证明. 定义
$$x_{-1} = x_0 = 0$$
, 并记 $a_n = x_n - x_{n-2}, n = 1, 2, \cdots$. 由 Cauchy 命题知,
$$\lim_{n \to \infty} \frac{x_n + x_{n-1}}{n} = \lim_{n \to \infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = \lim_{n \to \infty} a_n = 0.$$
 由 7 知,
$$\lim_{n \to \infty} \frac{x_n}{n} = 0.$$
 故
$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = \lim_{n \to \infty} \frac{x_n + x_{n+1}}{n} - \frac{2(n-1)}{n} \frac{x_{n-1}}{n-1} = 0.$$

9. 设数列 $\{a_n\}$ 满足条件 $0 < a_1 < 1$ 和 $a_{n+1} = a_n(1-a_n)$, 证明: $\lim_{n \to \infty} na_n = 1$.

证明. 由于 $0 < a_1 < 1, a_{n+1} = a_n(1 - a_n)$, 故

$$0 < a_2 = a_1(1 - a_1) \le \left(\frac{a_1 + (1 - a_1)}{2}\right)^2 = \frac{1}{4} < 1,$$

归纳地可以得到 $\forall n \in \mathbb{N}_+, 0 < a_n < 1$. 由 $\frac{a_{n+1}}{a_n} = 1 - a_n < 1$,知 $\{a_n\}$ 单调减少有下界,故其收敛. 设 $\lim_{n \to \infty} a_n = a$,在递推式 $a_{n+1} = a_n(1 - a_n)$ 两侧令 $n \to \infty$,就有 a = a(1 - a),故 $\lim_{n \to \infty} a_n = 0$.

又由 $a_{n+1} = a_n(1 - a_n)$, 同时取倒数就有

$$\frac{1}{a_{n+1}} = \frac{1}{a_n(1-a_n)} = \frac{1}{a_n} + \frac{1}{1-a_n},$$
故 $\lim_{n \to \infty} \frac{1}{a_{n+1}} - \frac{1}{a_n} = \lim_{n \to \infty} \frac{1}{1-a_n} = 1$. 由 Cauchy 命题可知 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-1} \left(\frac{1}{a_{k+1}} - \frac{1}{a_k} \right) = 1$, 即 $\lim_{n \to \infty} \left(\frac{1}{na_n} - \frac{1}{na_1} \right) = 1$. 于是就有 $\lim_{n \to \infty} \frac{1}{na_n} = 1$, 故 $\lim_{n \to \infty} na_n = 1$.

10.
$$\not\equiv \lim_{n\to\infty} a_n = \alpha$$
, $\lim_{n\to\infty} b_n = \beta$, 证明: $\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = \alpha\beta$.

证明. 10 当 $\beta=0$ 时,由于 $\lim_{n\to\infty}a_n=\alpha$,故存在 M>0 使得 $|a_n|\leqslant M, n=1,2,\cdots$;对于 $\forall \varepsilon>0$,由 $\lim_{n\to\infty}b_n=0$, $\exists N_1\in \mathbf{N}_+$ 使得当 $n>N_1$ 时, $|b_n|\leqslant \varepsilon/2M$,于是

$$\left|\frac{a_1b_n+a_2b_{n-1}+\dots+a_nb_1}{n}\right|\leqslant M\cdot\frac{|b_1|+|b_2|+\dots+|b_{N_1}|}{n}+M\cdot\frac{n-N_1}{n}\frac{\varepsilon}{2M}.$$

对于常数 $M' = M \cdot (|b_1| + |b_2| + \dots + |b_{N_1}|)$, 存在 $N_2 \in \mathbf{N}_+$ 使得当 $n > N_2$ 时, $\frac{M'}{n} < \varepsilon/2$. 故当 $n > \max\{N_1, N_2\}$ 时,

$$\left|\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}\right||\leqslant M\cdot\frac{|b_1|+|b_2|+\cdots+|b_{N_1}|}{n}+M\cdot\frac{n-N_1}{n}\frac{\varepsilon}{2M}<\varepsilon/2+\varepsilon/2=\varepsilon.$$

$$\lim_{n\to\infty}\frac{a_1b_n+a_2b_{n-1}+\cdots+a_nb_1}{n}=0.$$

当 $\beta \neq 0$ 时,由 $\lim_{n \to \infty} b_n = \beta$ 知 $\lim_{n \to \infty} (b_n - \beta) = 0$.故有

$$\lim_{n \to \infty} \frac{a_1(b_n - \beta) + a_2(b_{n-1} - \beta) + \dots + a_n(b_1 - \beta)}{n} = 0.$$

 $^{^{10}}$ 本题的证明方法可以用于一切类似 Teoplitz 定理(pp. 58. 10.)的极限证明, 事实上 Teoplitz 定理也能类似给出证明.

肛

$$\lim_{n \to \infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n} = \lim_{n \to \infty} \frac{a_1 (b_n - \beta) + a_2 (b_{n-1} - \beta) + \dots + a_n (b_1 - \beta)}{n} + \lim_{n \to \infty} \beta \frac{a_1 + a_2 + \dots + a_n}{n}$$
$$= 0 + \beta \alpha = \alpha \beta.$$

2.5 自然对数的底 e 和 Euler 常数 γ

2.5.1 练习题 pp.45.

1. 计算下列极限:

$$(1) \ \lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n; \qquad (2) \ \lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^n;$$

(3)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n;$$
 (4) $\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{n^2};$

(5)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^n$$
; (6) $\lim_{n \to \infty} \left(1 + \frac{1}{n} + \frac{1}{n^2} \right)^n$.

(在计算中可以应用 2.1.5 小节的题 5 中有关连续性的结果. 但是要请读者注意, 在现阶段如下的做法是缺乏依据的 (以题 (3) 为例):

$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n = \lim_{n \to \infty} \left[\left(1 + \frac{2}{n} \right)^{\frac{n}{2}} \right]^2 = e^2.$$

证明.

$$(1) \lim_{n\to\infty} \left(\frac{n}{n-1}\right)^n = \lim_{n\to\infty} \frac{n}{n-1} \left(1 + \frac{1}{n-1}\right)^{n-1} = \mathbf{e}, \ \text{th} \lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{\mathbf{e}};$$

(2)
$$\lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^n = \lim_{n \to \infty} \sqrt{\left(1 + \frac{1}{2n} \right)^{2n}} = \sqrt{e};$$

(3)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n \left(1 + \frac{1}{n} \right)^n$$

= $\lim_{n \to \infty} \frac{n+1}{n+2} \left(1 + \frac{1}{n+1} \right)^{n+1} \left(1 + \frac{1}{n} \right)^n = e^2;$

$$(4) \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{n^2} = \lim_{n \to \infty} \left(\frac{n}{n-1} \right)^{-n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n-1} \right)^{-(n-1)\frac{n^2}{n-1}} = 0;$$

(5)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^{n^2 \cdot \frac{1}{n}} = e^0 = 1;$$

(6)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} + \frac{1}{n^2} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} + \frac{1}{n^2} \right)^{\frac{n^2}{n+1} \cdot \frac{n+1}{n}} = e.$$

2. 设
$$x \in \mathbb{N}_+$$
, 证明: $\frac{k}{n+k} < \ln\left(1 + \frac{k}{n}\right) < \frac{k}{n}$.

 $[\]lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n^2}$,显然也可以用本题的方法计算,但结果为一个无穷大量.

证明. 由 pp.38 **命题 2.5.1** 中的不等式 $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ 两边取对数, 可以得到不等式

$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}.$$

注意到

$$\ln\left(1+\frac{k}{n}\right) = \ln\left(\frac{n+k}{n}\right)$$

$$= \ln\left(\frac{n+k}{n+k-1} \cdot \frac{n+k-1}{n+k-1} \cdots \frac{n+1}{n}\right)$$

$$= \ln\left(1+\frac{1}{n+k-1}\right) + \ln\left(1+\frac{1}{n+k-2}\right) + \dots + \ln\left(1+\frac{1}{n}\right),$$

就有

$$\frac{k}{n+k} < \frac{1}{n+k} + \frac{1}{n+k-1} + \dots + \frac{1}{n+1} < \ln\left(1 + \frac{k}{n}\right) < \frac{1}{n+k-1} + \frac{1}{n+k-2} + \dots + \frac{1}{n} < \frac{k}{n}.$$

3.
$$\not \stackrel{\text{lim}}{\underset{n\to\infty}{\longrightarrow}} \left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right)$$
.

证明. 记
$$x_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \cdots \left(1 + \frac{n}{n^2}\right), y_n = \ln x_n, n \in \mathbb{N}_+$$
. 则由上题有
$$y_n < \frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2} = \frac{n(n+1)}{2n^2} \to \frac{1}{2} \ (n \to \infty),$$

$$y_n > \frac{1}{n^2+1} + \frac{2}{n^2+2} + \cdots + \frac{n}{n^2+n} > \frac{1}{n^2+n} + \frac{2}{n^2+n} + \cdots + \frac{n}{n^2+n} = \frac{1}{2}.$$
 故 $\lim_{n \to \infty} y_n = \frac{1}{2}$, 即 $\lim_{n \to \infty} x_n = \sqrt{e}$.

4.
12
 设 $\{p_n\}$ 是正数列, 且 $p_n \to +\infty$. 计算 $\lim_{n \to \infty} \left(1 + \frac{1}{p_n}\right)^{p_n}$.

证明. 对于任意
$$n \in \mathbf{N}_+$$
, 有 $[p_n] \leqslant p_n < [p_n] + 1$, $\frac{1}{[p_n] + 1} \leqslant \frac{1}{[p_n]}$, 因此

$$\left(1 + \frac{1}{[p_n] + 1}\right)^{[p_n]} < \left(1 + \frac{1}{p_n}\right)^{p_n} < \left(1 + \frac{1}{[p_n]}\right)^{[p_n] + 1}$$

由于 $\lim_{n\to\infty}\left(1+\frac{1}{n+1}\right)^n=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n+1}=\mathrm{e},$ 即对于任意给定的 $\varepsilon>0,$ 存在 $N\in\mathbf{N}_+,$ 使得当 n>N 时有

$$\left| \left(1 + \frac{1}{n+1} \right)^n - \mathbf{e} \right| < \varepsilon \, \mathbb{H} \cdot \left| \left(1 + \frac{1}{n} \right)^{n+1} - \mathbf{e} \right| < \varepsilon.$$

特别地, 当 n > N 时有

$$\left(1 + \frac{1}{n+1}\right)^n > e - \varepsilon \ \mathbb{H} \left(1 + \frac{1}{n}\right)^{n+1} < e + \varepsilon.$$

 $^{^{12}}$ 本题的结果与 Heine 定理结合就给出了一个 $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$ 的证明.

由于 $\lim_{n\to\infty} p_n = +\infty$, 对于 N>0, 存在 $M\in \mathbb{N}_+$ 使得 n>M 时, $[p_n]>N$, 于是当 n>M 时, 就有

$$\mathbf{e} - \varepsilon < \left(1 + \frac{1}{[p_n] + 1}\right)^{[p_n]} < \left(1 + \frac{1}{p_n}\right)^{p_n} < \left(1 + \frac{1}{[p_n]}\right)^{[p_n] + 1} < \mathbf{e} + \varepsilon.$$
即当 $n > M$ 时 $\left|\left(1 + \frac{1}{p_n}\right)^{p_n} - e\right| < \varepsilon$,所以 $\lim_{n \to \infty} \left(1 + \frac{1}{p_n}\right)^{p_n} = \mathbf{e}$.

5. $\not \stackrel{1}{\underset{n\to\infty}{\downarrow}} \frac{n!2^n}{n^n}$.

证明.

6. 求极限
$$\lim_{n\to\infty} \frac{\ln n}{1+\frac{1}{2}+\cdots+\frac{1}{n}}$$
.

证明. 由 Stolz 定理, 有

$$\lim_{n \to \infty} \frac{\ln n}{1 + \frac{1}{2} + \dots + \frac{1}{n}} = \lim_{n \to \infty} \frac{\ln n + 1 - \ln n}{\frac{1}{n+1}} = \lim_{n \to \infty} \ln \left(1 + \frac{1}{n} \right)^{n+1} = e.$$

7. 证明: $\left(\frac{n+1}{e}\right)^n < n! < e\left(\frac{n+1}{e}\right)^{n+1}$. $\binom{14}{e}$ 由此又可以得到 $\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}=e.$)

证明. 数学归纳法.

(1)
$$n = 1$$
 时,由于 $2 < e < 4$,故有 $\frac{2}{e} < 1 < \frac{4}{e} = e \cdot \left(\frac{2}{e}\right)^2$,即 $n = 1$ 时成立.

(2) 假设对于 n 时成立, 即

$$\left(\frac{n+1}{e}\right)^n < n! < e\left(\frac{n+1}{e}\right)^{n+1}.$$

则对于n+1时,

$$(n+1)! < (n+1) \cdot e\left(\frac{n+1}{e}\right)^{n+1} = e^2 \left(\frac{n+2}{e}\right)^{n+2} \left(\frac{n+1}{n+2}\right)^{n+2} < e\left(\frac{n+2}{e}\right)^{n+2},$$
$$> (n+1) \cdot \left(\frac{n+1}{e}\right)^n = e\left(\frac{n+2}{e}\right)^{n+1} \left(\frac{n+1}{n+2}\right)^{n+1} > \left(\frac{n+2}{e}\right)^{n+1}.$$

这里用到了

$$\left(\frac{n+2}{n+1}\right)^{n+1} < e < \left(\frac{n+2}{n+1}\right)^{n+2}.$$

由数学归纳法可知

$$\left(\frac{n+1}{\mathrm{e}}\right)^n < n! < \mathrm{e}\left(\frac{n+1}{\mathrm{e}}\right)^{n+1}.$$

对于 $n \in \mathbb{N}_+$ 恒成立.

 $^{^{13}}$ 事实上,对于通项带有 a^n 项的数列,可以尽情利用 Cauchy 根值判别法或者 d'Alembert 比值判别法. 如果记 $a_n=\frac{n!2^n}{n^n}$,则 $\lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\frac{2\sqrt[n]{n!}}{n}=\frac{2}{\mathrm{e}}<1$,故 $\sum\limits_{n=1}^{\infty}a_n<+\infty$,从而 $\lim_{n\to\infty}a_n=0$.

¹⁴只需应用本题及夹逼准则即可.

8. 设
$$S_n = 1 + 2^2 + 3^3 + \dots + n^n, n \in \mathbb{N}_+$$
. 证明: 对 $n \geqslant 2$ 成立不等式
$$n^n \left(1 + \frac{1}{4(n-1)} \right) \leqslant S_n \leqslant n^n \left(1 + \frac{2}{\mathrm{e}(n-1)} \right).$$

证明. 数学归纳法.

(1)
$$n = 2$$
 时, $2^2 \left(1 + \frac{1}{4(2-1)} \right) = 5 = S_2 < 2^2 \left(1 + \frac{2}{e(2-1)} \right)$, 即 $n = 2$ 时成立.

(2) 假设对于 n 时成立, 即

$$n^{n}\left(1+\frac{1}{4(n-1)}\right) \leqslant S_{n} \leqslant n^{n}\left(1+\frac{2}{\mathrm{e}(n-1)}\right).$$

则对于 n+1 时,

$$S_{n+1} = S_n + (n+1)^{n+1} < n^n \left(1 + \frac{2}{e(n-1)} \right) + (n+1)^{n+1}$$

$$= (n+1)^{n+1} \left(1 + \frac{n^n}{(n+1)^{n+1}} \left(1 + \frac{2}{e(n-1)} \right) \right)$$

$$< (n+1)^{n+1} \left(1 + \frac{2}{n} \left(\frac{n}{n+1} \right)^{n+1} \right)$$

$$< (n+1)^{n+1} \left(1 + \frac{2}{en} \right),$$

$$S_{n+1} = S_n + (n+1)^{n+1} > n^n \left(1 + \frac{1}{4(n-1)} \right) + (n+1)^{n+1}$$

$$= (n+1)^{n+1} \left(1 + \frac{n^n}{(n+1)^{n+1}} \left(1 + \frac{1}{4(n-1)} \right) \right)$$

$$\geqslant (n+1)^{n+1} \left(1 + \frac{1}{n} \left(\frac{n}{n+1} \right)^{n+1} \right)$$

$$\geqslant (n+1)^{n+1} \left(1 + \frac{1}{4n} \right).$$

这里用到了

$$e < \left(\frac{n}{n+1}\right)^{n+1} \leqslant 4.$$

由数学归纳法可知

$$n^n \left(1 + \frac{1}{4(n-1)}\right) \leqslant S_n \leqslant n^n \left(1 + \frac{2}{e(n-1)}\right)$$

对于 $n \ge 2$ 恒成立.

9. 设有 $a_1=1, a_n=n(a_{n-1}+1), n=2,3,\cdots,$ 叉设 $x_n=\prod\limits_{k=1}^n\left(1+\frac{1}{a_k}\right), n\in \mathbf{N}_+,$ 求数列 $\{x_n\}$ 的极限.

证明. 对于 $n \in \mathbb{N}_+$, 有

$$x_n = \prod_{k=1}^n \left(1 + \frac{1}{a_k} \right) = \frac{a_1 + 1}{a_1} \cdot \frac{a_2 + 1}{a_2} \cdot \dots \cdot \frac{a_n + 1}{a_n}$$

$$= \frac{a_2}{2a_1} \cdot \frac{a_3}{3a_2} \cdot \dots \cdot \frac{a_{n+1}}{(n+1)a_n}$$

$$= \frac{a_{n+1}}{(n+1)!}$$

$$= \frac{(n+1)(a_n+1)}{(n+1)!}$$

$$= \frac{1}{n!} + \frac{a_n}{n!}$$

$$\dots$$

$$= \frac{1}{n!} + \dots + \frac{1}{2!} + \frac{a_2}{2!}$$

$$= \frac{1}{n!} + \dots + \frac{1}{2!} + \frac{2(a_1 + 1)}{2!}$$

$$= \frac{1}{n!} + \dots + \frac{1}{2!} + 1 + 1.$$

即 $x_n = \sum_{k=0}^n \frac{1}{k!}, n \in \mathbf{N}_+$. 故 $\lim_{n \to \infty} x_n = \mathbf{e}$.

2.6 由迭代生成的数列

2.6.1 练习题 pp.52

在以下各题中均可使用几何方法,或做出几何解释.

1. (1)
$$\aleph a > 0, x_1 = \sqrt{a}, x_{n+1} = \sqrt{a+x_n}, n \in \mathbf{N}_+, \ \ \lim_{n \to \infty} x_n;$$

(2) if
$$a > 0, x_1 = \sqrt{a}, x_{n+1} = \sqrt{ax_n}, n \in \mathbf{N}_+, \ \stackrel{?}{\not \sim} \lim_{n \to \infty} x_n.$$

(这两题外形相似, 都可用本节方法解决. 但题 (2) 有更简单的直接解法.)

2.7 对于教学的建议

2.7.1 第一组参考题

1. 设 $\{a_{2k-1}\}, \{a_{2k}\}, \{a_{3k}\}$ 都收敛, 证明: $\{a_n\}$ 收敛.

证明. 取子数列 $\{a_{3k}\}$ 奇数项和偶数项所排成的子列 $\{a_{6k-3}\}$ 和 $\{a_{6k}\}$, 它们均为同一收敛数列的子列, 故均收敛且极限相等. 注意到, $\{a_{6k-3}\}$ 也是收敛数列 $\{a_{2k-1}\}$ 的一个子列, $\{a_{6k}\}$ 也是收敛数列 $\{a_{2k}\}$ 的一个子列, 从而

$$\lim_{k\to\infty}a_{2k-1}=\lim_{k\to\infty}a_{6k-3}=\lim_{k\to\infty}a_{6k}=\lim_{k\to\infty}a_{2k}.$$
即 $\{a_{2k-1}\},\{a_{2k}\}$ 收敛到相同的极限, 故由 pp.25 1 知 $\{a_n\}$ 收敛.

2. 设 $\{a_n\}$ 有界, 且满足条件 $a_n \leq a_{n+2}, a_n \leq a_{n+3}, n \in \mathbb{N}_+$, 证明: $\{a_n\}$ 收敛.

证明. 由题意, 有

$$a_1 \leqslant a_3 \leqslant \cdots \leqslant a_{2k-1} \leqslant \cdots;$$

 $a_2 \leqslant a_4 \leqslant \cdots \leqslant a_{2k} \leqslant \cdots;$
 $a_3 \leqslant a_6 \leqslant \cdots \leqslant a_{3k} \leqslant \cdots.$

即数列 $\{a_{2k-1}\},\{a_{2k}\},\{a_{3k}\}$ 均单调,注意到 $\{a_n\}$ 有界,故均收敛.由 1.知 $\{a_n\}$ 收敛.

3. 设 $\{a_n + a_{n+1}\}$ 和 $\{a_n + a_{n+2}\}$ 都收敛, 证明: $\{a_n\}$ 收敛.

证明. 令
$$\lim_{n\to\infty}(a_n+a_{n+1})=A, \ \lim_{n\to\infty}(a_n+a_{n+2})=B.$$
 则由极限的四则运算有,
$$\lim_{n\to\infty}(a_{n+1}-a_n)=\lim_{n\to\infty}(a_{n+2}-a_{n+1})=B-A,$$

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+1}=\frac{B-A+A}{2}=\frac{B}{2}.$$

4. 设数列 $\{a_n\}$ 收敛于 0, 有存在极限 $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=a$. 证明: $a\leqslant 1$.

证明. 反证法. 若 a>1, 则对于 $\varepsilon=\frac{a-1}{2}>0$, 由于 $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=a$, 则存在 $N_1\in \mathbf{N}_+$ 使 当 $n>N_1$ 时有

$$\left| \frac{a_{n+1}}{a_n} \right| > a - \varepsilon = \frac{1+a}{2} > 1.$$

要使极限 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ 存在,则对于 $N_1 > 0$,存在 $N > N_1, N \in \mathbb{N}_+$ 使得 $a_N \neq 0$. 因此,

$$|a_n| = \left| a_N \cdot \frac{a_{N+1}}{a_N} \cdots \frac{a_n}{a_{n-1}} \right| > |a_N| \cdot \left(\frac{1+a}{2} \right)^{n-N} \to +\infty.$$

$$- \lim_{n \to \infty} a_n = 0 \, \mathcal{F} \text{fi.} \qquad \Box$$

5.
$$a_n = \sum_{k=1}^n \left(\sqrt{1 + \frac{k}{n^2}} - 1 \right), n \in \mathbb{N}_+.$$
 if $\lim_{n \to \infty} a_n$.

证明. 对
$$k=1,\cdots,n$$
, 有 $\sqrt{1+\frac{k}{n^2}}-1=\frac{k}{n^2\left(\sqrt{1+\frac{k}{n^2}}+1\right)}$, 并且
$$\sum_{k=1}^n\frac{k}{n^2\left(\sqrt{1+\frac{n}{n^2}}+1\right)}\leqslant \sum_{k=1}^n\frac{k}{n^2\left(\sqrt{1+\frac{k}{n^2}}+1\right)}\leqslant \sum_{k=1}^n\frac{k}{n^2\left(\sqrt{1+\frac{1}{n^2}}+1\right)}.$$

注意当 $n \to \infty$ 时,

$$\sum_{k=1}^{n} \frac{k}{n^2 \left(\sqrt{1 + \frac{n}{n^2}} + 1\right)} = \frac{n(n+1)}{2n^2 \left(\sqrt{1 + \frac{1}{n}} + 1\right)} \to \frac{1}{4};$$

$$\sum_{k=1}^{n} \frac{k}{n^2 \left(\sqrt{1 + \frac{1}{n^2}} + 1\right)} = \frac{n(n+1)}{2n^2 \left(\sqrt{1 + \frac{1}{n^2}} + 1\right)} \to \frac{1}{4}.$$

故由夹逼准则知 $\lim_{n\to\infty} a_n = \frac{1}{4}$.

6. 用 p(n) 表示能整除 n 的素数的个数,证明: $\lim_{n\to\infty}\frac{p(n)}{n}=0$.

证明. 由于 $\forall p$ 是素数, $p \geqslant 2$, 对于 n 的素因子分解 $n = p_1^{r(1)} p_2^{r(2)} \cdots p_{p(n)}^{r(p(n))}$, 显然有 $n \geqslant 2^{p(n)}$, 故

$$0 \leqslant \frac{p(n)}{n} \leqslant \frac{\ln n}{n \ln 2} \to 0 \ (n \to \infty).$$

故由夹逼准则知 $\lim_{n\to\infty} \frac{p(n)}{n} = 0.$

7. 设 a_0, a_1, \dots, a_p 是 p+1 个给定的数, 且满足条件 $a_0 + a_1 + \dots + a_p = 0$. 求 $\lim_{n \to \infty} (a_0 \sqrt{n} + a_1 \sqrt{n+1} + \dots + a_p \sqrt{n+p})$.

证明. 由
$$a_0 + a_1 + \dots + a_p = 0$$
 知 $a_0 = -(a_1 + \dots + a_p)$,故
$$a_0\sqrt{n} + a_1\sqrt{n+1} + \dots + a_p\sqrt{n+p} = a_1(\sqrt{n+1} - \sqrt{n}) + \dots + a_p(\sqrt{n+p} - n)$$
$$= a_1\frac{1}{\sqrt{n+1} + \sqrt{n}} + \dots + a_p + \frac{p}{\sqrt{n+p} + \sqrt{n}}$$
$$\rightarrow 0 \ (n \to \infty).$$

8. 证明: 当 0 < k < 1 时, $\lim_{n \to \infty} [(1+n)^k - n^k] = 0$.

证明.

$$0 \le (1+n)^k - n^k \le n^k \left[\left(1 + \frac{1}{n} \right)^k - 1 \right] \le n^k \left[\left(1 + \frac{1}{n} \right) - 1 \right] = \frac{1}{n^{1-k}} \to 0.$$

- 9. (1) 设 $\{x_n\}$ 收敛. 令 $y_n = n(x_n x_{n-1}), n \in \mathbb{N}_+$, 问 $\{y_n\}$ 是否收敛?
 - (2) 在上一小题中, 若 $\{y_n\}$ 也收敛, 证明: $\{y_n\}$ 收敛于零.

证明. (1) $\{y_n\}$ 不一定收敛,举一反例: 令 $x_n = 1 - \frac{1}{2} + \cdots + (-1)^{n+1} \frac{1}{n}$. 首先证明其收敛: 15 注意

$$x_{2n} = \left(1 - \frac{1}{2}\right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{2n}\right) = x_{2(n-1)} + \left(\frac{1}{2n - 1} - \frac{1}{2n}\right) \geqslant x_{2(n-1)};$$

$$x_{2n} = 1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \dots - \left(\frac{1}{2n - 2} - \frac{1}{2n - 1}\right) - \frac{1}{2n} \leqslant 1.$$

故 $\{x_{2n}\}$ 收敛, 记其极限为 A, 则由于 $x_{2n} = x_{2n-1} - \frac{1}{2n}$, 在等号两边令 $n \to \infty$, 有 $\{x_{2n-1}\}$ 也收敛于 A. 故 $\{x_n\}$ 收敛, 且 $\lim_{n \to \infty} x_n = A$.

而
$$y_n = n(x_n - x_{n-1}) = n \cdot (-1)^{n+1} \frac{1}{n} = (-1)^{n+1}$$
 显然发散.

¹⁵这里所用的方法事实上就是交错级数的 Leibniz 判别法.

(2) 若 $\{y_n\}$ 收敛, 设其极限为 B, 则由 Stolz 定理, 有

$$\lim_{n\to\infty}\frac{x_n}{1+\frac{1}{2}+\cdots+\frac{1}{n}}=\lim_{n\to\infty}\frac{x_n-x_{n-1}}{\frac{1}{n}}=\lim_{n\to\infty}y_n=B.$$
 注意 $\{x_n\}$ 收敛因而有界, $1+\frac{1}{2}+\cdots+\frac{1}{n}$ 是无穷大量, 故 $B=\lim_{n\to\infty}\frac{x_n}{1+\frac{1}{2}+\cdots+\frac{1}{n}}=0,$ 即 $\lim_{n\to\infty}y_n=0.$

- 10. (1) 设正数列 $\{a_n\}$ 满足条件 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 0$, 证明: $\{a_n\}$ 是无穷大量.
 - (2) 设正数列 $\{a_n\}$ 满足条件 $\lim_{n\to\infty}\frac{a_n}{a_{n+1}+a_{n+2}}=0$, 证明: $\{a_n\}$ 无界.
 - 证明. (1) 注意 $\{a_n\}$ 是正数列, 故只需证明 $\left\{\frac{1}{a_n}\right\}$ 是无穷小量. 记 $b_n = \frac{1}{a_n}$, 由 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 0$ 可知 $\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = 0$. 故对于 $\forall 0 < \varepsilon < 1$, 存在 $N \in \mathbb{N}_+$ 使当 n > N 时, $\left|\frac{b_{n+1}}{b_n}\right| < \varepsilon$. 则 $|b_n| = \left|b_{N+1} \frac{b_{N+2}}{b_{N+1}} \cdots \frac{b_n}{b_{n-1}}\right| \leqslant |b_{N+1}| \varepsilon^{n-N-1} \to 0.$
 - (2) 反证法. 若 $\{a_n\}$ 有界. 由 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}+a_{n+2}} = 0$,则对于 $\varepsilon = \frac{1}{2}$,存在 $N \in \mathbb{N}_+$,当 n > N 时有 $\frac{a_n}{a_{n+1}+a_{n+2}} < \frac{1}{2}$,即当 n > N 时有 $2a_n < a_{n+1}+a_{n+2}$. 断言 n > N 时有 $a_n < a_{n+1}$ 或 $a_n < a_{n+2}$: 否则存在 $n_0 > N$, $a_{n_0} \geqslant a_{n_0+1}, a_{n_0} \geqslant a_{n_0+2}$,即 $2a_{n_0} \geqslant a_{n_0+1} + a_{n_0+2}$,矛盾.
 - (a) 若 $a_n < a_{n+1}, \forall n > N$. 则 $\{a_n\}$ 收敛,设其极限为 α ,则显然 $\alpha > 0$. 故 $\lim_{n \to \infty} \frac{a_n}{a_{n+1} + a_{n+2}} = \frac{\alpha}{\alpha + \alpha} = \frac{1}{2} > 0;$
 - (b) 若 $a_n < a_{n+2}, \forall n > N$. 则 $\{a_{2n-1}\}, \{a_{2n}\}$ 收敛,设其极限分别为 α, β ,则显然 $\alpha, \beta > 0$. 故 $\lim_{n \to \infty} \frac{a_n}{a_{n+1} + a_{n+2}} = \lim_{n \to \infty} \frac{a_{2n}}{a_{2n+1} + a_{2n+2}} = \frac{\beta}{\alpha + \beta} > 0$.

均与
$$\lim_{n \to \infty} \frac{a_n}{a_{n+1} + a_{n+2}} = 0$$
 矛盾.

11. 证明: $\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n$, 其中右边的不等式当 $n \ge 6$ 时成立.

证明. 数学归纳法.

左边.

- (a) $n = 1 \text{ ff}, \frac{1}{3} < 1;$
- (b) 假设 $\left(\frac{n}{3}\right)^n < n!$, 则

$$(n+1)! = n!(n+1) > \left(\frac{n}{3}\right)^n(n+1) > \left(\frac{n \cdot \frac{n}{3} + (n+1)}{n+1}\right)^{n+1} = \left(\frac{n^2 + 3n + 3}{3(n+1)}\right)^{n+1} > \left(\frac{n+1}{3}\right)^{n+1}.$$

右边.

(a)
$$n = 6$$
 时, $6! = 720 < 729 = 3^6$;

(b) 假设
$$n! < \left(\frac{n}{2}\right)^n$$
, 则

$$(n+1)! = n!(n+1) < \left(\frac{n}{2}\right)^n (n+1) < \left(\frac{n+1}{2}\right)^n,$$

其中最后一个不等号成立当且仅当 $\left(1+\frac{1}{n}\right)^n>2$,而由于 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 严格单调递增,故

$$\left(1 + \frac{1}{n}\right)^n > 1 + \frac{1}{1} = 2.$$

12. 证明:
$$\left(\frac{n}{e}\right)^n < n! < e\left(\frac{n}{2}\right)^n$$
.

证明. 数学归纳法.

左边.

(a)
$$n = 1$$
 $\forall f, \frac{1}{e} < 1;$

(b) 假设
$$\left(\frac{n}{e}\right)^n < n!$$
, 则

$$(n+1)! = n!(n+1) > \left(\frac{n}{e}\right)^n (n+1) > \left(\frac{n^2 + (n+1)e}{e(n+1)}\right)^{n+1} > \left(\frac{n^2 + 2n + 1}{e(n+1)}\right)^{n+1} = \left(\frac{n+1}{e}\right)^{n+1}.$$

右边.

(a)
$$n = 1$$
 $\exists t, 1 < \frac{e}{2};$

(b) 假设
$$n! < e\left(\frac{n}{2}\right)^n$$
, 则

$$(n+1)! = n!(n+1) < e\left(\frac{n}{2}\right)^n (n+1) < e\left(\frac{n+1}{2}\right)^{n+1}.$$

其中最后一个不等式成立当且仅当 $\left(1+\frac{1}{n}\right)^n>2$,而由于 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 严格单调递增,故

$$\left(1 + \frac{1}{n}\right)^n > 1 + \frac{1}{1} = 2.$$

13. (对于命题 2.5.4 的改进) 证明:

(1) 当 n ≥ 2 时成立

$$1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+\frac{1}{n!n}=3-\frac{1}{2!1\cdot 2}-cdots-\frac{1}{n!(n-1)n};$$

(2)
$$e = 3 - \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{(k+2)!(k+1)(k+2)};$$

(3) 用
$$\sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{n!n}$$
 计算 e 要比不加上最后一项好得多.

证明. (1) 数学归纳法. 记等式左边为 a_n , 则

$$a_{n+1} - a_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)!(n+1)} - \frac{1}{n!n} = -\frac{1}{n!(n+1)n} + \frac{1}{(n+1)!(n+1)} = -\frac{1}{(n+1)!(n+1)n}.$$

注意 n=2 时

$$a_2 = 1 + 1 + \frac{1}{2!} + \frac{1}{2!2} = \frac{11}{4} = 3 - \frac{1}{2! \cdot 1 \cdot 2}$$

等式成立. 假设

$$a_n = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{n!n} = 3 - \frac{1}{2!1 \cdot 2} - cdots - \frac{1}{n!(n-1)n}$$

则

$$a_{n+1} = a_n + (a_{n+1} - a_n) = 3 - \frac{1}{2!1 \cdot 2} - cdots - \frac{1}{n!(n-1)n} - \frac{1}{(n+1)!(n+1)n}.$$

(2)

14. 设
$$a_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}, n \in \mathbb{N}_+,$$
 证明: $\{a_n\}$ 收敛.

证明.

$$a_{n+1} - a_n = \frac{1}{\sqrt{n+1}} - 2\sqrt{n+1} + 2\sqrt{n} = \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n+1} + \sqrt{n}} < 0.$$
注意 $\frac{1}{\sqrt{n}} > \frac{2}{\sqrt{n} + \sqrt{n+1}} = 2(\sqrt{n+1} - \sqrt{n}),$

$$a_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}$$

$$> 2(\sqrt{2} - \sqrt{1}) + \dots + 2(\sqrt{n+1} - \sqrt{n}) - 2\sqrt{n}$$

$$= 2\sqrt{n+1} - 2\sqrt{n} - 2$$

$$> -2.$$

15. 设已知存在极限 $\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n}$, 证明: $\lim_{n\to\infty} \frac{a_n}{n} = 0$.

证明. 不妨设
$$\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n} = A$$
, 则当 $n\to\infty$ 时,
$$\frac{a_n}{n} = \frac{a_1+a_2+\cdots+a_n}{n} - \frac{a_1+a_2+\cdots+a_{n-1}}{n-1} \cdot \frac{n-1}{n} \to A - A = 0.$$

16. 证明: $\lim_{n \to \infty} (n!)^{1/n^2} = 1$.

证明. 由 pp. 56. 11. 知, 当
$$n$$
 充分大时, 有 $\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n$. 于是
$$\left(\frac{n}{3}\right)^{1/n} = \left(\frac{n}{3}\right)^{n \cdot 1/n^2} < (n!)^{1/n^2} < \left(\frac{n}{2}\right)^{n \cdot 1/n^2} = \left(\frac{n}{2}\right)^{1/n}.$$

注意

$$\left(\frac{n}{2}\right)^{1/n} = \sqrt[n]{\frac{1}{2}} \cdot \sqrt[n]{n} \to 1;$$

$$\left(\frac{n}{3}\right)^{1/n} = \sqrt[n]{\frac{1}{3}} \cdot \sqrt[n]{n} \to 1, \ (n \to \infty).$$

17. 设对每个 n 有 $x_n < 1$ 和 $(1-x_n)x_{n+1} \ge \frac{1}{4}$, 证明 $\{x_n\}$ 收敛, 并求其极限.

证明. 由 $(1-x_n)x_{n+1} \geqslant \frac{1}{4}$ 和 $x_n < 1$, 可知 $0 < x_n < 1, \forall n \in \mathbb{N}_+$. 由基本不等式,

$$\frac{1}{4} \leqslant (1 - x_n)x_{n+1} < \left(\frac{(1 - x_n + x_{n+1})}{2}\right)^2 = \frac{[(1 - x_n) + x_{n+1}]^2}{4}.$$

即 $[(1-x_n)+x_{n+1}]^2>1$,由于 $(1-x_n)$ 和 x_{n+1} 均为正数,故 $(1-x_n)+x_{n+1}>1$,即 $x_{n+1}-x_n>0$. 于是 $\{x_n\}$ 单调增加有上界,故 $\{x_n\}$ 收敛. 令 $\lim_{n\to\infty}x_n=\xi$. 在不等式 $\frac{1}{4}\leqslant (1-x_n)x_{n-1}$ 两边令 $n\to\infty$,

$$\frac{1}{4}\leqslant (1-\xi)\xi\leqslant \frac{[(1-\xi)+\xi]^2}{4}=\frac{1}{4}.$$
故 $\xi=\frac{1}{2}.$

18. 设 $a_1 = b, a_2 = c$, 在 $n \ge 3$ 时 a_n 由 $a_n = \frac{a_{n-1} + a_{n-2}}{2}$ 定义. 求 $\lim_{n \to \infty} a_n$.

证明. 不妨令 $b \leq c$. 则

$$a_3 = \frac{a_1 + a_2}{2} \in [a_1, a_2]$$
$$a_4 = \frac{a_2 + a_3}{6} [a_3, a_2]$$

...,

由数学归纳法易知对于 $\forall n \in \mathbf{N}_+$, 有

$$a_1 \leqslant a_3 \leqslant \cdots \leqslant a_{2n-1} \leqslant a_{2n} \leqslant \cdots \leqslant a_4 \leqslant a_2.$$

故 $\{a_{2n-1}\}$ 单调增加有上界, $\{a_{2n}\}$ 单调递减有下界. 分别令 $\lim_{n\to\infty}a_{2n-1}=\xi$, $\lim_{n\to\infty}a_{2n}=\eta$, 则在递推式 $a_n=\frac{a_{n-1}+a_{n-2}}{2}$ 两边令 $n\to\infty$, 易知 $\xi=\eta$. 故由 pp. 25. 1. 可知 $\{x_n\}$ 收敛. 注意

$$a_n + \frac{a_{n-1}}{2} = \frac{a_{n-1} + a_{n-2}}{2} + \frac{a_{n-1}}{2} = a_{n-1} + \frac{a_{n-1}}{2},$$

反复使用就有

$$a_n + \frac{a_{n+1}}{2} = a_{n-1} + \frac{a_{n-1}}{2} = \dots = a_2 + \frac{a_1}{2} = \frac{2c+b}{2}.$$

$$\Leftrightarrow n \to \infty, \ \vec{\pi} \ \frac{3\xi}{2} = \frac{2c+b}{2}, \ \mathbb{P} \lim_{n \to \infty} x_n = \xi = \frac{2c+b}{3}.$$

19. 设 a,b,c 是三个给定的实数. 令 $a_1=a,b_1=b,c_1=c$, 并以递推公式定义 $a_{n+1}=\frac{b_n+c_n}{2},b_{n+1}=\frac{c_n+a_n}{2},c_n=\frac{a_n+b_n}{2},n\in\mathbf{N}_+.$ 求这三个数列的极限.

证明. 注意对于 $\forall n \in \mathbf{N}_+$,

$$a_{n+2} = \frac{b_{n+1} + c_{n+1}}{2} = \frac{c_n + a_n}{4} + \frac{a_n + b_n}{4} = \frac{a_n}{2} + \frac{b_n + c_n}{4} = \frac{a_{n+1} + a_n}{2}.$$
同理有 $b_{n+2} = \frac{b_{n+1} + b_n}{2}$, $c_{n+2} = \frac{c_{n+1} + c_n}{2}$, $\forall n \in \mathbf{N}_+$. 由 p. 56. 18. 知 $\{a_n\}, \{b_n\}, \{c_n\}$

均收敛,且

$$\lim_{n \to \infty} a_n = \frac{a_1 + 2a_2}{3} = \frac{a_1}{3} + \frac{b_1 + c_1}{3} = \frac{a + b + c}{3};$$

$$\lim_{n \to \infty} b_n = \frac{b_1 + 2b_2}{3} = \frac{b_1}{3} + \frac{c_1 + a_1}{3} = \frac{a + b + c}{3};$$

$$\lim_{n \to \infty} c_n = \frac{c_1 + 2c_2}{3} = \frac{c_1}{3} + \frac{a_1 + b_1}{3} = \frac{a + b + c}{3}.$$

- 20. (1) 设 $a_1 > b_1 > 0$, $a_{n+1} = \frac{2a_nb_n}{a_n + b_n}$, $b_{n+1} = \sqrt{a_{n+1}b_n}$, $n \in \mathbb{N}_+$, 证明: $\{a_n\}$ 和 $\{b_n\}$ 收敛于同一极限.
 - (2) 在 $a_1=2\sqrt{3},b_1=3$ 时,证明上述极限等于单位圆的半周长 π . (这里可以利用极限 $\lim_{n\to\infty}n\sin\frac{\pi}{n}=\pi$.)

(注意本题与例题 2.3.5 完全不同. 实际上这就是计算圆周率的 Archimedes-刘徽 方法的迭代形式. 在 (2) 中的两个数列就是 $\{a_n\}$ 和 $\{b_n\}$ 就是单位圆的外切和内接正多边形的半周长(请求出边数与 n 的关系).)

证明. (1) 注意 $b_1 < a_2 < a_1$, $b_1 < b_2 < a_2 < a_1$. 利用数学归纳法可以证明, 对于 $\forall n \in \mathbf{N}_+$, 有

$$b_1 < b_2 < \dots < b_n < a_n < \dots < a_2 < a_1.$$

故 $\{a_n\}$, $\{b_n\}$ 均收敛. 令其极限分别为 α , β . 由基本不等式, 显然又有

$$\sqrt{a_{n+1}b_n} = b_{n+1} < a_{n+1} = \frac{2a_nb_n}{a_n + b_n} < \sqrt{a_nb_n}.$$

(2) 容易知道, 单位圆的外切 n 边形的半周长为 $n \tan \frac{\pi}{n}$, 内接 n 边形的半周长为 $n \sin \frac{\pi}{n}$. 并且, 若记 $\alpha_n = n \tan \frac{\pi}{n}$, $\beta_n = n \sin \frac{\pi}{n}$, 则

$$\frac{2\alpha_n\beta_n}{\alpha_n+\beta_n} = \frac{2\left(n\tan\frac{\pi}{n}\right)\left(n\sin\frac{\pi}{n}\right)}{\left(n\tan\frac{\pi}{n}\right)\left(n\sin\frac{\pi}{n}\right)} = 2n\frac{\sin\frac{\pi}{n}}{1+\cos\frac{\pi}{n}} = 2n\tan\frac{\pi}{2n} = \alpha_{2n};$$

$$\sqrt{\alpha_{2n}\beta_n} = \sqrt{\left(2n\tan\frac{\pi}{2n}\right)\left(n\sin\frac{\pi}{n}\right)} = \sqrt{\left(2n\sin\frac{\pi}{2n}\cos\frac{\pi}{2n}\tan\frac{\pi}{2n}\right)^2} = 2n\sin\frac{\pi}{n} = \beta_{2n}.$$

并且
$$a_1 = 2\sqrt{3} = 6\tan\frac{\pi}{6} = \alpha_6, \ b_1 = 3 = 6\sin\frac{\pi}{6} = \beta_6$$
,故用数学归纳法容易证明,
$$a_n = \alpha_{6n}, b_n = \beta_{6n}.$$

又由于当
$$0 < x < \frac{\pi}{2}$$
 时, 有 $\sin x < x < \tan x$ (pp. 7. 命题 1.3.6), 故

$$\pi = n \cdot \frac{\pi}{n} > n \sin \frac{\pi}{n} > \pi \cos \frac{\pi}{n} \to \pi.$$

即 $\lim_{n\to\infty} n \sin \frac{\pi}{n} = \pi$. 于是 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \lim_{n\to\infty} \alpha_{6n} = \lim_{n\to\infty} (6n) \sin \frac{\pi}{6n} = \pi$.

2.7.2 第二组参考题

1. 设
$$a_n = \sqrt{1 + \sqrt{2 + \dots + \sqrt{n}}}, n \in \mathbb{N}_+,$$
 证明: $\{a_n\}$ 收敛.

2. 证明: 对于每个自然数
$$n$$
 成立不等式 $\left(1 + \frac{1}{n}\right)^n > \sum_{k=0}^n \frac{1}{k!} - \frac{e}{2n}$.

- 3. 求极限 $\lim_{n\to\infty} n\sin 2\pi n!e$.
- 4. 记 $S_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathbb{N}_+$. 用 K_n 表示使 $S_k \ge n$ 的最小下标, 求极限 $\lim_{n \to \infty} \frac{K_{n+1}}{K_n}$.
- 5. $\mbox{if } x_n = \frac{1}{n^2} \sum_{k=0}^n \binom{n}{k}, n \in \mathbb{N}_+, \ \mbox{$\not =$} \lim_{n \to \infty} x_n.$
- 6. 将二项式系数 $\binom{n}{0}$, $\binom{n}{1}$, \cdots , $\binom{n}{n}$ 的算术平均值和几何平均值分别记为 A_n 和 G_n . 证明: $\binom{1}{n \to \infty} \sqrt[n]{A_n} = 2$; $\binom{2}{n \to \infty} \sqrt[n]{G_n} = \sqrt{e}$.
- 7. 设 $A_n = \sum_{k=1}^n a_k, n \in \mathbb{N}_+,$ 数列 $\{a_n\}$ 收敛. 又有一个单调增加的正数数列 $\{p_n\}$, 且为无穷 大量. 证明: $\lim_{n \to \infty} \frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_n} = 0.$
- 8. 设 $\{a_n\}$ 满足 $\lim_{n\to\infty} (a_n \sum_{i=1}^n a_i^2) = 1$, 证明: $\lim_{n\to\infty} \sqrt[3]{3n} a_n = 1$.
- 9. 设数列 $\{u_n\}_{n\geqslant 0}$ 对每个非负整数 n 满足条件

$$u_n = \lim_{m \to \infty} (u_{n+1}^2 + u_{n+2}^2 + \dots + u_{n+m}^2),$$

证明: 若存在有限极限 $\lim_{n\to\infty}(u_1+u_2+\cdots+u_n)$, 则只能是每个 $u_n=0$.

- 10. (Teoplitz 定理) 设对 $n,k \in \mathbb{N}_+$ 有 $t_{nk} \geqslant 0$. 又有 $\sum_{k=1}^n t_{nk} = 1, \lim_{n \to \infty} t_{nk} = 0$. 若已知 $\lim_{n \to \infty} a_n = a$, 定义 $x_n = \sum_{k=1}^n t_{nk} a_k$. 证明: $\lim_{n \to \infty} x_n = a$. (几种变形: (1) 将条件 $\sum_{k=1}^n t_{nk} = 1$ 改为 $\lim_{n \to \infty} \sum_{k=1}^n t_{nk} = 1$; (2) 不要求 t_{nk} 非负,将 (1) 中条件 $\sum_{k=1}^n t_{nk} = 1$ 改为存在 M > 0,使得对每个 n,成立不等式 $\sum_{k=1}^n |t_{nk}| \leqslant M$. 则结论对于 a = 0 仍成立。)
- 11. 用 Teoplitz 定理导出 Stolz 定理.
- 12. 设 $0 < \lambda < 1$, $\{a_n\}$ 收敛于 a. 证明:

$$\lim_{n \to \infty} (a_n + \lambda a_{n-1} + \lambda^2 a_{n-2} + \dots + \lambda^n a_0) = \frac{a}{1 - \lambda}.$$

13. 设 $\lim_{n \to \infty} x_n = 0$, 并且存在常数 K 使得 $|y_1| + |y_2| + \cdots + |y_n| \leq K$ 对每个 n 成立. 令 $z_n = x_1 y_n + x_2 y_{n-1} + \cdots + x_n y_1, n \in \mathbf{N}_+$, 证明: $\lim_{n \to \infty} z_n = 0$. (从本体的条件已可推出 $\lim_{n \to \infty} y_n = 0$. 但是可以举出例子说明仅有条件 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$ 不能得到

$$\lim_{n \to \infty} x_1 y_n + x_2 y_{n-1} + \dots + x_n y_1 = 0.$$

Chapter 3

实数系的基本定理

3.1 确界的概念和确界存在定理

- 3.1.1 练习题 pp.69.
 - 1. 试证明确界的唯一性.
 - 2. 设对每个 $x \in A$ 成立 x < a. 问: 在 $\sup A < a$ 和 $\sup A \leqslant a$ 中哪个是对的?
 - 3. 设数集 A 以 β 为上界,又有数列 $\{x_n\} \subset A$ 和 $\lim_{n \to \infty} x_n = \beta$. 证明: $\beta = \sup A$.
 - 4. 求下列数集的上确界和下确界:

$$(1) \ \{x \in \mathbf{Q} | x > 0\}; \qquad \qquad (2) \ \{y | y = x^2, x \in (-\frac{1}{2}, 1)\};$$

(3)
$$\left\{ \left(1 + \frac{1}{n} \right)^n | n \in \mathbf{N}_+ \right\}; \quad (4) \{ n e^{-n} | n \in \mathbf{N}_+ \};$$

(5)
$$\{\arctan x | x \in (-\infty, \infty)\};$$
 (6) $\{(-1)^n + \frac{1}{n}(-1)^{n+1} | n \in \mathbf{N}_+\};$

(7)
$$\{1 + n\sin\frac{n\pi}{2} | n \in \mathbf{N}_+\}.$$

- 5. 证明:
 - (1) $\sup\{x_n + y_n\} \leq \sup\{x_n\} + \sup\{y_n\};$
 - (2) $\int \{x_n + y_n\} \geqslant \inf\{x_n\} + \inf\{x_n\}.$
- 6. 设有两个数集 A 和 B, 且对数集 A 中的任何一个数 x 和数集中的任何一个数 y 成立不等式 $x \le y$. 证明: $\sup A \le \inf B$.
- 7. 设数集 A 有上界, 数集 $B = \{x + c | x \in A\}$, 其中 c 是一个常数. 证明:

$$\sup B = \sup A + c, \inf B = \inf A + c.$$

8. 设 A, B 是两个有上界的数集,又有数集 $C \subset \{x+y|x\in A, y\in B\}$,则 $\sup C \leqslant \sup A + \sup B$. 举出严格成立不等号的例子.

9. 设 A, B 是两个有上界的数集,又有数集 $C \supset \{x+y|x\in A, y\in B\}$,则 $\sup C \geqslant \sup A + \sup B$. 举出严格成立不等号的例子.

(合并以上两题可见, 当且仅当 $C = \{x + y | x \in A, y \in B\}$ 时成立 $\sup C = \sup A + \sup B$.)

3.2 闭区间套定理

3.2.1 练习题 pp. 72.

- 1. 如果数列是 $\{(-1)^n\}$, 开始的区间是 [-1,1]. 试用例题 3.2.2 中的方法具体找出一个闭区间套和相应的收敛子列. 又问: 你能否用这样的方法在这个例子中找出 3 个收敛子列?
- 2. 如果区间套定理中的闭区间套改为开区间套 $\{(a_n,b_n)\}$, 其他条件不变, 则可以举出例子说明结论不成立.
- 3. 如 $\{(a_n, b_n)\}$ 为开区间套,数列 $\{a_n\}$ 严格单调增加,数列 $\{b_n\}$ 严格单调减少,又满足条件 $a_n < b_n, n \in \mathbb{N}_+$, 证明: $\bigcap_{n=1}^{\infty} (a_n, b_n) \neq \emptyset$.
- 4. 用闭区间套定理证明确界存在定理.
- 5. 用闭区间套定理证明单调有界数列的收敛定理.

3.3 凝聚定理

3.3.1 练习题 pp. 74.

1. 对于给定的数列 $\{x_n\}$ 和数 a, 证明: 在 a 的每个邻域中有数列 $\{x_n\}$ 的无穷多项的充分必要条件是, a 是数列 $\{x_n\}$ 的某个子列的极限.

证明. 充分性. 若 a 是数列 $\{x_n\}$ 的某个子数列 $\{x_{n_k}\}$ 的极限, 即对于任意 $\varepsilon > 0$, 存在 $K \in \mathbb{N}_+$, 当 k > K 时, 有

$$|x_{n_k} - a| < \varepsilon$$
.

即当 k > K 时, $x_{n_k} \in B(a, \varepsilon)$.

必要性. 按照下列方式去寻找一个收敛于 a 的子列.

- (1) 取 $\varepsilon_1 = 1$, $B(a, \varepsilon_1)$ 含有 $\{x_n\}$ 的无穷多项, 任取其一记为 x_{n_1} ;
- (2) 取 $\varepsilon_2 = \frac{1}{2}$, $B(a, \varepsilon_2)$ 含有 $\{x_n\}$ 的无穷多项因而也含有 $\{x_n\}_{n>n_1}$ 的无穷多项, 任取其一记为 x_{n_2} ;
- (3) 若 x_{n_k} 已经取定,取 $\varepsilon_{k+1}=\frac{1}{k+1}$, $B(a,\varepsilon_{k+1})$ 含有 $\{x_n\}_{n>n_k}$ 的无穷多项,任取其一记为 x_{n+1} .

由数学归纳法, 找出了一个子列 $\{x_{n_k}\}$, 满足 $x_{n_k} \in B(a,1/k)$. 对于任意给定的 $\varepsilon > 0$, 存在 $K \in \mathbb{N}_+$ 使得 $\frac{1}{K} < \varepsilon \leqslant \frac{1}{K-1}$, 从而当 k > K 时,

$$|x_{n_k} - a| = \frac{1}{k} < \frac{1}{K} < \varepsilon.$$

2. 证明: 有界数列发散的充分必要条件是存在两个收敛于不同极限的子列.

证明. 充分性. 若 $\{x_{n_l}\}$ 和 $\{x_{n_m}\}$ 是有界数列 $\{x_n\}$ 的两个收敛子列, 并且 $\lim_{\substack{l\to\infty\\ m\to\infty}} x_{n_l} = A$, $\lim_{\substack{m\to\infty\\ N+,}} x_{n_m} = B$, $A\neq B$. 若 $\{x_n\}$ 收敛, 不妨设其极限为 ξ . 则对于任意给定的 $\varepsilon>0$, 存在 $N\in \mathbf{N}_+$, 当 n>N 时 $|x_n-\xi|<\varepsilon$. 注意对于任意 n, 均有 $l_n\geqslant n, m_n\geqslant n$, 因此当 l>N 时有

$$|x_{n_l} - \xi| < \varepsilon$$
.

由极限的唯一性可知 $\xi = A$; 同理可以证明 $\xi = B$. 与 $A \neq B$ 矛盾.

必要性. 若有界数列 $\{x_n\}$ 发散. 由 Weierstrass 定理, 存在一个收敛子列 $\{x_{n_l}\}$, 记其极限为 A. 由于 $\{x_n\}$ 不收敛于 A, 故存在 $\varepsilon_0 > 0$, 对于任意 N > 0, 存在 n > N 使得 $|x_n - A| \ge \varepsilon$.

对于 $N_1 = 1$, 存在 $k_1 > N_1$ 使得 $|x_{k_1} - A| \ge \varepsilon_0$;

对于 $N_2 = k_1$, 存在 $k_2 > N_2$ 使得 $|x_{k_2} - A| \ge \varepsilon_0$;

若 x_{k_n} 已经取定, 对于 $N_{n+1} = k_n$, 存在 $k_{n+1} > N_{k+1}$ 使得 $|x_{k_{n+1}} - A| \ge \varepsilon_0$.

由数学归纳法, 找出了一个有界数列 $\{x_n\}$ 的子列 $\{x_{k_n}\}$, 因而仍是有界数列, 由 Weierstrass 定理, 存在一个收敛子列, 记为 $\{x_{n_m}\}$. 注意对于 $\forall m \in \mathbf{N}_+, |x_{n_m} - A| \geqslant \varepsilon_0$, 故 $\lim_{m \to \infty} x_{n_m} \neq A$. 从而 $\{x_{n_l}\}$ 和 $\{x_{n_m}\}$ 是 $\{x_n\}$ 的收敛于不同极限的两个子列.

3. 证明: 若 $\{x_n\}$ 无界, 但不是无穷大量, 则存在两个子列, 其中一个子列收敛, 另一个子列是无穷大量.

证明. 不妨设 $\{x_n\}$ 无上界. 由 pp. 73. 例题 3.3.2 可知存在一个 $\{x_n\}$ 的收敛子列. 由于 $\{x_n\}$ 无上界, 知对于任意给定的 M>0, 存在 n 使得 $x_n>M$. 按照下列方式去寻找一个无穷大量子列.

- (2) 断言 $\{x_n\}_{n>n_1}$ 仍无上界,否则 $\{x_n\}$ 有上界 $M+\sum\limits_{k=1}^{n_1}|x_k|$. 取 $M_2=2$,存在 n_2 使得 $n_2>n_1,x_{n_2}>M_2$.
- (3) 若 x_{n_k} 已经取定,同理 $\{x_n\}_{n>n_k}$ 无上界. 取 $M_{k+1} = k+1$,存在 n_{k+1} 使得 $n_{k+1} > n_k, x_{n_k} > M_k$.

由数学归纳法, 找出了一个子列 $\{x_{n_k}\}$ 使得 $x_{n_k} > k$. 对于任意 M > 0, 存在 $K \in \mathbb{N}_+$, 使得 $K - 1 \leq M < K$. 于是当 k > K 时, $x_{n_k} > k > M$, 即 $\{x_{n_k}\}$ 是无穷大量.

4. 用凝聚定理证明单调有界数列的收敛定理.

3.4 Cauchy 收敛准则

3.4.1 练习题 pp. 79.

- 1. 满足以下条件的数列 $\{x_n\}$ 是否一定是基本数列? 若回答是, 请作出证明; 若回答不一定是, 请举出反例:
 - (1) 对每个 $\varepsilon > 0$, 存在N, 当n > N时, 成立 $|x_n x_N| < \varepsilon$;
 - (2) 对所有 $n, p \in \mathbb{N}_+$ 成立不等式 $|x_{n+p} x_n| \leq \frac{p}{n}$;
 - (3) 对所有 $n, p \in \mathbb{N}_+$ 成立不等式 $|x_{n+p} x_n| \leq \frac{p}{n^2}$;
 - (4) 对每个自然数 p 成立 $\lim_{n\to\infty} (x_n x_{n+p}) = 0$.
- 2. 用对偶法则于数列收敛的 Cauchy 收敛准则, 以正面方式写出数列发散的充分必要条件.
- 3. 证明以下数列为基本数列, 因此都是收敛数列.

(1)
$$a_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}, n \in \mathbf{N}_+;$$

(2)
$$b_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + (-1)^{n-1} \frac{1}{n}, n \in \mathbf{N}_+;$$

(3)
$$a_n = \frac{\sin 2x}{2(2 + \sin 2x)} + \frac{\sin 3x}{3(3 + \sin 3x)} + \dots + \frac{\sin nx}{n(n + \sin nx)}, n \in \mathbf{N}_+.$$

- 4. 设 $a_n = \sin 1 + \frac{\sin 2}{2!} + \dots + \frac{\sin n}{n!}, n \in \mathbb{N}_+,$ 证明: (1) 数列 $\{a_n\}$ 有界, 但不单调; (2) $\{a_n\}$ 收敛.
- 5. 设从某个数列 $\{a_n\}$ 定义 $x_n = \sum_{k=1}^n a_k, y_n = \sum_{k=1}^n |a_k|, n \in \mathbb{N}_+, 若数列 <math>\{y_n\}$ 收敛, 证明 $\{x_n\}$ 也收敛.

(本题可以看成是上一题和例题 3.4.1 的推广.)

- 7. 天文学中的 Kepler 方程 $x-q\sin x=a(0< q<1)$ 是一个超越方程, 没有求根公式. 求近似解的一个方法是通过迭代. 取定 x_1 , 然后用递推公式 $x_{n+1}=q\sin x_n+a, n\in \mathbf{N}_+$. 证明这个方法的正确性.

3.5 覆盖定理

3.5.1 练习题 pp. 83.

- 1. 对开区间 (0,1) 构造一个开覆盖, 使得它的每一个有限子集都不能覆盖 (0,1).
- 2. 用闭区间套定理证明覆盖定理.
- 3. 用覆盖定理证明闭区间套定理.
- 4. 用覆盖定理证明凝聚定理.

5. 试对于例题 3.5.2 的证明举出两个具体例子, 即 (1) 数集 A 无上界; (2) A 有上界, 且有 $b < \xi = \sup A$ 和 $\xi \notin A$.

3.6 数列的上极限和下极限

3.7 对于教学的建议

3.7.1 第一组参考题

- 1. 证明: 数列有界的充分必要条件是它的每个子列有收敛子列.
- 2. 证明: 数列收敛的充分必要条件是存在一个数a, 使数列的每个子列有收敛到a 的子列.
- 3. 证明:在有界闭区间上的无界函数一定在这个区间的某一点的每一个领域中无界.又问: 在开区间上的无界函数是否有与此类似的性质?
- 4. 设函数 f 在区间 (a,b) 上定义, 对区间 (a,b) 的每一个点 ξ , 存在 $\xi > 0$, 当 $x \in (\xi \delta, \xi + \delta) \cap (a,b)$ 时, 如 $x < \xi$, 则 $f(x) < \xi$, 如 $x > \xi$, 则 $f(x) > f(\xi)$. 证明: 函数 f 在 (a,b) 上严格单调增加.
- 5. 试用上下极限的工具证明 Stolz 定理.
- 6. 设 $\{x_n\}$, $\{y_n\}$ 时正数列. 在以下乘积均有意义时证明:

$$\underline{\lim}_{n\to\infty} x_n \, \underline{\lim}_{n\to\infty} y_n \leqslant \underline{\lim}_{n\to\infty} (x_n y_n) \leqslant \underline{\lim}_{n\to\infty} x_n \, \overline{\lim}_{n\to\infty} y_n \leqslant \overline{\lim}_{n\to\infty} (x_n y_n) \leqslant \overline{\lim}_{n\to\infty} x_n \, \overline{\lim}_{n\to\infty} y_n.$$

- 7. 设 $\{x_n\}$ 为正数列. 用上下极限证明: 若 $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = l$, 则 $\lim_{n\to\infty} \sqrt[n]{x_n} = l$.
- 8. 若对于数列 $\{x_n\}$ 的每个子列 $\{a_{n_k}\}$ 都有 $\lim_{k\to\infty} \frac{a_{n_1}+a_{n_2}+\cdots+a_{n_k}}{k}=a$, 证明: $\lim_{n\to\infty} a_n=a$.
- 9. 设 $\{x_n\}$ 为正数列, 证明: $\overline{\lim}_{n\to\infty} n\left(\frac{1+x_{n+1}}{x_n}-1\right)\geqslant 1$.
- 10. 设 $\{x_n\}$ 为正数列, 证明: $\overline{\lim}_{n\to\infty} \left(\frac{x_1+x_{n+1}}{x_n}\right)^n \geqslant e$.

3.7.2 第二组参考题

- 1. 证明: 对于 \mathbf{R} 中的任何两个正数 a,b, 如有 0 < a < b, 则存在一个自然数 n 使得 na > b. (这个结论称为 Archimedes 原理或公理.)
- 2. 设有两个非空实数 A 和 B, 满足条件: (1) $\mathbf{R} = A \cup B$; (2) 在 A 的每一个数都小于 B 中的每一个数. 证明: 或者 A 有最大数而 B 无最小数, 或者 B 有最小数而 A 无最大数. (这就是 Dedekind 的连续性定理或公理,它与实数系的每一个基本定理等价.)
- 3. 证明: 将实数 \mathbf{R} 分成两个非空集合 A 和 B, 则或者 A 中有数列收敛于 B 中的点, 或者 B 中有数列收敛于 A 中的点.

(这个结论称为实数的连通性, 它与实数系的每一个基本定理等价.)

4. 试用压缩映射原理证明数列

$$\sqrt{7}, \sqrt{7-\sqrt{7}}, \sqrt{7-\sqrt{7+\sqrt{7}}}, \sqrt{7-\sqrt{7+\sqrt{7-\sqrt{7}}}}, \cdots$$

收敛,并计算其极限.

- 5. 若对于每个数列 $\{y_n\}$ 成立 $\overline{\lim}_{n\to\infty}(x_n+y_n)=\overline{\lim}_{n\to\infty}x_n+\overline{\lim}_{n\to\infty}y_n$, 证明数列 $\{x_n\}$ 收敛.
- 6. (1) 设 $\{x_n\}$ 为正数列, 且 $\varliminf_{n \to \infty} x_n = 0$. 证明: 存在无限多个 n, 使成立

$$x_n < x_k, k = 1, 2, \cdots, n - 1.$$

- (2) 设 $\{x_n\}$ 为正数列, 且有正下界, 证明: $\overline{\lim}_{n\to\infty} \frac{x_{n+1}}{x_n} \geqslant 1$.
- 7. 设 $y_n = px_n + qx_{n+1}, n \in \mathbb{N}_+,$ 其中 |p| < |q|. 证明: 若 $\{y_n\}$ 收敛, 则 $\{x_n\}$ 也收敛.
- 8. 设 $\{x_n\}$ 有界, 且 $\lim_{n\to\infty} (x_{2n} + 2x_n) = A$. 证明: $\{x_n\}$ 收敛, 并求其极限.
- 9. 设 $x_n = \sin n, n \in \mathbb{N}_+$, 证明数列 $\{x_n\}$ 的极限点集合为 [-1,1].
- 10. 设 $\{x_n\}$ 有界,且 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$. 将 $\{x_n\}$ 的下极限和上极限分别记为 l 和 L. 证明:在区间 [l,L] 中的每一个点都是数列 $\{x_n\}$ 的极限点.

Chapter 4

函数极限

4.1 函数极限的定义

4.1.1 思考题 pp. 98.

1. 以下几种叙述能否作为函数极限 $\lim_{x\to a} f(x) = A$ 的定义?

(1)
$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in O_{\delta}(a) - \{a\}, 成立 |f(x) - A| \leqslant \varepsilon;$$

(2)
$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in O_{\delta}(a) - \{a\}, 成立 |f(x) - A| < k\varepsilon;$$

$$(3) \ \forall n \in \mathbf{N}_+, \exists \delta > 0, \forall x \in O_{\delta}(a) - \{a\}, \ \mathring{\mathbb{A}} \stackrel{\dot{\mathbf{z}}}{=} |f(x) - A| < \frac{1}{n};$$

(4)
$$\forall \varepsilon > 0, \exists n, \forall x \in O_{\frac{1}{n}}(a) - a, 成立 |f(x) - A| < \varepsilon.$$

解答, 均可以, 只需验证各项均与函数极限的定义等价即可,

$$(1) \Rightarrow \forall \varepsilon > 0, \frac{\varepsilon}{2} > 0, \exists \delta > 0, \forall x \in O_{\delta}(a) - \{a\}, 成立 |f(x) - A| \leqslant \frac{\varepsilon}{2} < \varepsilon.$$

 (2)
 (2)
 (3)
 (4)
 (4)
 (5)
 (6)
 (7)
 (7)
 (8)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (9)
 (

(2) 注意对于
$$\forall \varepsilon > 0$$
, 有 $k\varepsilon > 0$, $\frac{\varepsilon}{k} > 0$ 即可.

(3) ⇒ 由于
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
,故对于 $\forall \varepsilon > 0$, $\exists n_0 \in \mathbf{N}_+$ 使得 $\frac{1}{n} < \varepsilon$. 对于 n_0 , $\exists \delta > 0$, $\forall x \in O_\delta(a) - \{a\}$,成立 $|f(x) - A| < \frac{1}{n_0} < \varepsilon$. $\Leftrightarrow \mathbb{R} \varepsilon = \frac{1}{n}$ 即可.

$$(4) \Rightarrow \mathbb{R} \delta = \frac{1}{n} \text{ 即可.}$$

$$\Leftarrow 由于 \lim_{n \to \infty} \frac{1}{n} = 0, \text{ 故对于 } \forall \delta > 0, \exists n_0 \in \mathbb{N}_+ \text{ 使得 } \frac{1}{n} < \delta. \quad \forall \varepsilon > 0, \exists \delta > 0, \forall x \in O_{\delta}(a) - \{a\}, \text{ 成立 } |f(x) - A| < \varepsilon. \text{ 取合适的 } n_0 \text{ 使得 } \frac{1}{n_0} < \delta, \text{ 则对于 } \forall x \in O_{\frac{1}{n}}(a) - \{a\} \subset O_{\delta}(a) - \{a\}, \text{ 成立 } |f(x) - A| < \varepsilon.$$

2. 以下几种叙述能否作为函数极限 $\lim_{x\to a} f(x) = A$ 的定义?

(1)
$$\exists \delta > 0, \forall \varepsilon > 0, \forall x \in O_{\delta}(a) - \{a\}, 成立 |f(x) - A| < \varepsilon;$$

- (2) $\forall \delta > 0, \exists \varepsilon > 0, \forall x \in O_{\delta}(a) \{a\}, 成立 |f(x) A| < \varepsilon;$
- (3) 当x充分靠近a时, f(x)越来越接近A.

解答. 均可举出反例来说明与函数极限的定义不等价.

- (1) 描述了函数 $f(x) \equiv A, \forall x \in O_{\delta}(a) \{a\};$
- (2) 对于有界函数恒成立;
- (3) 对于函数 $f(x) = x \sin x, A = 0, f(x) \equiv A, \forall x \in O_{\delta}(a) \{a\}$ 均不成立.
- 3. 用对偶法则给出: (1) "f(x) 在点 a 不收敛于 A"的正面描述; (2) "f(x) 在点 a 处没有极 限"的正面描述.

解答. (1) $\exists \varepsilon > 0, \forall \delta > 0, \exists x \in O_{\delta}(a) - \{a\}, 成立 |f(x) - A| \ge \varepsilon$.

- (2) $\forall A, \exists \varepsilon > 0, \forall \delta > 0, \exists x \in O_{\delta}(a) \{a\}, 成立 |f(x) A| \geqslant \varepsilon.$
- 4. 怎样用正面方式叙述以下否等性概念:

 - (1) $\lim_{x \to \infty} f(x) \neq A;$ (2) $\lim_{x \to -\infty} f(x) \neq A;$

 - (3) $\lim_{x \to a} f(x) \neq \infty;$ (4) $\lim_{x \to a^{-}} f(x) \neq A;$
 - (5) $\lim_{x \to a^+} f(x) \neq +\infty.$

解答. (1) $\exists \varepsilon > 0, \forall M > 0, \exists |x| > M,$ 成立 $|f(x) - A| \ge \varepsilon$;

- (2) $\exists \varepsilon > 0, \forall M > 0, \exists x < -M, 成立 |f(x) A| \geqslant \varepsilon;$
- (3) $\exists M > 0, \forall \delta > 0, \exists x \in O_{\delta}(a) \{a\}, 成立 |f(x)| \leq M;$
- (4) $\exists \varepsilon > 0, \forall \delta > 0, \exists a \delta < x < a, 成立 |f(x) A| \geqslant \varepsilon;$
- (5) $\exists M > 0, \forall \delta > 0, \exists a < x < a + \delta, 成立 f(x) \leq M.$

4.1.2 练习题 pp. 102.

以下各题要求按照函数极限的定义来做.

1. 证明:
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = 1$$
.

证明. 注意
$$\frac{\sqrt{1+x}-\sqrt{1-x}}{x}=\frac{2}{\sqrt{1-x}+\sqrt{1+x}},$$
 对于 $|x|<\frac{1}{4},$
$$\left|\frac{\sqrt{1+x}-\sqrt{1-x}}{x}-1\right|=\left|\frac{2}{\sqrt{1-x}+\sqrt{1+x}}-1\right|$$

$$\leqslant \frac{1}{\sqrt{1+x}+\sqrt{1-x}}\cdot\left(|1-\sqrt{1+x}|+|1-\sqrt{1-x}\right)$$

$$=\frac{1}{\sqrt{1+x}+\sqrt{1-x}}\cdot\left(\frac{|x|}{1+\sqrt{1+x}}+\frac{|x|}{1+\sqrt{1-x}}\right)$$

$$\leqslant \frac{2|x|}{\sqrt{1+x}+\sqrt{1-x}}$$

$$<\frac{2\sqrt{3}}{2}|x|.$$

对于任意给定的 $\varepsilon > 0$,取 $\delta = \min\left\{\frac{1}{4}, \frac{\sqrt{3}\varepsilon}{2}\varepsilon\right\}$,则当 $0 < |x| < \delta$ 时, $\left|\frac{\sqrt{1+x} - \sqrt{1-x}}{x} - 1\right| < \frac{2\sqrt{3}}{3}|x| < \frac{2\sqrt{3}}{3}\frac{\sqrt{3}}{2}\varepsilon = \varepsilon.$

2. 证明: $\lim_{x \to 1} \frac{x^2 + x - 2}{x(x^2 - 3x + 2)} = -3.$

证明. 注意当 $x \neq 1$ 时, $\frac{x^2+x-2}{x(x^2-3x+2)} = \frac{(x+2)(x-1)}{x(x-1)(x-2)} = \frac{x+2}{x(x-2)}$, 故对于 $0 < |x| < \frac{1}{2}$,

$$\left| \frac{x^2 + x - 2}{x(x^2 - 3x + 2)} + 3 \right| = \left| \frac{x + 2}{x(x - 2)} + 3 \right|$$

$$= \left| \frac{(3x - 2)(x - 1)}{x(x - 2)} \right|$$

$$\leq \left| \frac{3x - 2}{x(x - 2)} \right| |x - 1|$$

$$< \frac{5}{2} \frac{1}{|x(x - 2)|} |x - 1|$$

$$< \frac{5}{2} \cdot 2|x - 1|$$

$$= 5|x - 1|.$$

对于任意给定的 $\varepsilon > 0$,取 $\delta = \min\left\{\frac{1}{2}, \frac{\varepsilon}{5}\right\}$,则当 $0 < |x| < \delta$ 时, $\left|\frac{x^2 + x - 2}{x(x^2 - 3x + 2)} + 3\right| < 5|x - 1| < 5 \cdot \frac{\varepsilon}{5} = \varepsilon.$

3. 证明: $\lim_{x \to +\infty} \frac{x+1}{x^2 - x} = 0.$

证明. 注意当 $x\neq 1$ 时, $\frac{x+1}{x^2-x}=\frac{x+1}{x(x+1)}=\frac{1}{x}$. 故对于任意给定的 $\varepsilon>0$,取 $M=\frac{1}{\varepsilon}$,当 x>M 时,

$$\left| \frac{x+1}{x^2 - x} \right| = \frac{1}{x} < \varepsilon.$$

4. 当 a 取什么数值时, $\lim_{x\to -1} \frac{x^3 - ax^2 - x + 4}{x+1}$ 存在? 此时极限为何?

解答. 极限存在当且仅当 x^3-ax^2-x+4 含有一个 (x+1) 的因子, 即 x=-1 是 $x^3-ax^2-x+4=0$ 的根. 故 -1-a+1+4=0, 故 a=4. 代入 a=4, 有

$$\lim_{x \to -1} \frac{x^3 - 4x^2 - x + 4}{x + 1} = \lim_{x \to -1} (x - 4)(x - 1) = 10.$$

5. $\not x \ a, b$, $\not \in \lim_{x \to 2} \frac{x^2 + ax + b}{x^2 - x - 2} = 2$.

解答. 注意 $x^2-x-2=(x-2)(x+1)$, 故 $\lim_{x\to 2}\frac{x^2+ax+b}{x^2-x-2}=2$ 当且仅当 x=-4,x=2 是 $x^2+ax+b=0$ 的两个根, 代入就有

$$\begin{cases} 16 - 4a + b = 0, \\ 4 + 2a + b = 0. \end{cases} \Rightarrow \begin{cases} a = 2, \\ b = -8. \end{cases}$$

6. 问: 使得 $\lim_{x\to 0^+} \frac{a+\sin\frac{1}{x}}{x} = \pm \infty$ 的参数 a 是什么?

解答. 当 $a \ge 1$ 时, $\lim_{x \to 0^+} \frac{a + \sin \frac{1}{x}}{x} = +\infty$;

$$\stackrel{\text{"}}{=} a \leqslant -1$$
 时, $\lim_{x \to 0^+} \frac{a + \sin\frac{1}{x}}{x} = -\infty;$

当
$$-1 < a < 1$$
 时, $\frac{a + \sin \frac{1}{x}}{x}$ 是符号不定的无穷大量.

7. 证明: $\lim_{x\to a} \ln x = \ln a$, 其中 a > 0.

证明. 对于任意给定的 $\varepsilon > 0$,

$$|\ln x - \ln a| < \varepsilon \Leftrightarrow \ln a - \varepsilon < \ln x < \ln a + \varepsilon$$

$$\Leftrightarrow ae^{-\varepsilon} < x < ae^{\varepsilon}$$

$$\Leftrightarrow a(e^{-\varepsilon} - 1) < x - a < a(e^{\varepsilon} - 1)$$

$$\Leftrightarrow -a(1 - e^{-\varepsilon}) < x - a < a(e^{\varepsilon} - 1).$$

注意 $a(1-e^{-\varepsilon}), a(e^{\varepsilon}-1) > 0$,故取 $\delta = \min\{a(1-e^{-\varepsilon}), a(e^{\varepsilon}-1)\}$,则当 $0 < |x-a| < \delta$ 时有 $|\ln x - \ln a| < \varepsilon$.

8. 证明: $\lim_{x\to a} e^x = e^a$.

证明. 对于任意给定的 $\varepsilon > 0$.

$$|e^{x} - e^{a}| < \varepsilon \Leftrightarrow e^{a} - \varepsilon < e^{x} < e^{a} + \varepsilon$$

$$\Leftrightarrow 1 - \varepsilon e^{-a} < e^{x-a} < 1 + \varepsilon e^{-a}$$

$$\Leftrightarrow \ln(1 - \varepsilon e^{-a}) < x - a < \ln(1 + \varepsilon e^{-a}).$$

注意 $-\ln(1-\varepsilon e^{-a}), \ln(1+\varepsilon e^{-a}) > 0$,故取 $\delta = \min\{-\ln(1-\varepsilon e^{-a}), \ln(1+\varepsilon e^{-a})\}$,则当 $0 < |x-a| < \delta$ 时有 $|e^x - e^a| < \varepsilon$.

9. 证明 $\lim_{x\to 0} f(x)$ 与 $\lim_{x\to 0} f(x^3)$ 同时存在或不存在, 而当它们存在时必相等. 1

证明. 容易证明: $\lim_{x\to 0} \sqrt[3]{x} = \lim_{x\to 0} x^3 = 0$. 若 $\lim_{x\to 0} f(x) = A$, 则

- (a) 对于任意给定的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $0 < |x| < \delta$ 时, $|f(x) A| < \varepsilon$;
- (b) 对于任意给定的 $\delta > 0$, 存在 $\eta > 0$, 使得当 $0 < |x| < \eta$ 时, $|x^3| < \varepsilon$.

注意 $x \neq 0$ 时, $x^3 \neq 0$, 故当 $0 < |x| < \eta$ 时, $0 < |x^3| < \delta$, 从而当 $0 < |x| < \eta$ 时有 $|f(x^3) - A| < \varepsilon.$

若 $\lim_{x\to 0} f(x^3) = A$, 则

- (a) 对于任意给定的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $0 < |x| < \delta$ 时, $|f(x^3) A| < \varepsilon$;
- (b) 对于任意给定的 $\delta > 0$, 存在 $\eta > 0$, 使得当 $0 < |x| < \eta$ 时, $|\sqrt[3]{x}| < \delta$.

注意 $x \neq 0$ 时, $\sqrt[3]{x} \neq 0$, 故当 $0 < |x| < \eta$ 时, $0 < |\sqrt[3]{x}| < \delta$, 从而当 $0 < |x| < \eta$ 时有 $|f(x) - A| = |f((\sqrt[3]{x})^3) - A| < \varepsilon.$

这就证明了 $\lim_{x\to 0} f(x)$ 与 $\lim_{x\to 0} f(x^3)$ 同时存在或不存在, 而当它们存在时必相等.

10. 问 $\lim_{x\to 0} f(x)$ 与 $\lim_{x\to 0} f(x^2)$ 是否一定同时存在或不存在?

解答. 不一定. 主要问题在于 $\sqrt{x^2} \neq x$. 如取 $f(x) = \operatorname{sgn} x$. ²

11. 证明: 如下定义的 Dirichlet 函数

$$D(x) = \begin{cases} 1, & x \text{ 是有理数,} \\ 0, & x \text{ 是无理数.} \end{cases}$$

在每一点都没有极限.

方法一. $\forall x_0 \in (-\infty, +\infty)$,若极限 $\lim_{\substack{x \to x_0 \\ x \to x_0}} D(x)$ 存在,则只有可能是 0 或 1(否则对于任意 $A \neq 0, 1$,显然无论 δ 多么小都存在 $x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 使得 $|D(x) - A| > \min\{|1 - A|, |A|\}$ 。). 对于任意 $\delta > 0$,存在有理数 $\xi \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 使得 $|D(\xi) - 0| > \frac{1}{2}$;存在无理数 $\eta \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 使得 $|D(\eta) - 1| > \frac{1}{2}$.故 D(x) 在 $\forall x_0 \in (-\infty, +\infty)$ 都没有极限.

方法二. $\forall x_0 \in (-\infty, +\infty)$, 给定 $\varepsilon < 1$, 对于任意 $\delta > 0$, 存在有理数 ξ 和无理数 $\eta \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 使得 $|D(\xi) - D(\eta)| = 1 > \varepsilon$. 由 Cauchy 收敛准则知 D(x) 在 $\forall x_0 \in (-\infty, +\infty)$ 都没有极限.

¹本题事实上就是在证明复合函数的极限定理.

 $^{^{2}}$ 事实上类似于 9., 可以证明有 $\lim_{x\to 0} f(x^{2}) \equiv \lim_{x\to 0^{+}} f(x)$.

方法三. $\forall x_0 \in (-\infty, +\infty)$,由于有理数集 **Q** 和无理数集 **Q**^C 均在 **R** 中稠密,取有理数列 $\{\xi_n\}$ 和无理数列 $\{\eta\}$ 使得 $\lim_{n\to\infty} \xi_n = \lim_{n\to\infty} \eta_n = x_0$. 但 $\lim_{n\to\infty} D(\xi_n) = 1 \neq 0 = \lim_{n\to\infty} \eta_n$. 由 Heine 定理知 D(x) 在 $\forall x_0 \in (-\infty, +\infty)$ 都没有极限.

12. 试举出一个在区间 $(-\infty, +\infty)$ 上定义的函数, 使得它在点 x=1 处有极限, 但在区间的其他点都没有极限. ³

解答. 取 f(x) = (x-1)D(x). 对于 $\forall x_0 \neq 1$, 易知 f(x) 在 x_0 处没有极限; 对于 $x_0 = 1$, $\forall \varepsilon > 0$, 取 $\delta = \varepsilon$, 则当 $0 < |x-1| < \delta$ 时,

$$|f(x)| = |x - 1||D(x)| \le |x - 1| < \delta = \varepsilon.$$

13. 证明: 若 f 为周期函数, 且 $\lim_{x\to +\infty} f(x) = 0$, 则 $f(x) \equiv 0$.

证明. 反证法. 若 $f(x) \neq 0$,即存在 x_0 使得 $f(x_0) \neq 0$,不妨设 $f(x_0) > 0$. 假设 $T \in F(x)$ 的周期,即 $f(x+T) \equiv f(x)$. 对于 $\varepsilon = \frac{f(x_0)}{2} > 0$, $\forall M > 0$,由 Archimedes 公理,存在 $n \in \mathbb{N}_+$ 使得 $x_0 + nT > M$,故

$$|f(x_0 + nT)| = f(x_0) > \frac{f(x_0)}{2} = \varepsilon.$$

$$\lim_{x \to +\infty} f(x) \neq 0.$$

14. 证明: 任何非常值的周期函数不可能是有理分式函数.

证明. 反证法. 对于周期为T的有理分式函数 $\frac{P(x)}{Q(x)}$ 的次数分类讨论:

- (1) 若 $\partial P(x) < \partial Q(x)$: $\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = 0$, 由 13. 知 $\frac{P(x)}{Q(x)} \equiv 0$;
- (2) 若 $\partial P(x)=\partial Q(x)$: $\lim_{x\to +\infty}\frac{P(x)}{Q(x)}=C$ 为一非零常数,由 13. 知周期函数 $\frac{P(x)}{Q(x)}-C\equiv 0$,即 $\frac{P(x)}{Q(x)}\equiv C$;
- (3) 若 $\partial P(x) > \partial Q(x)$: $\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \pm \infty$ 为一确定符号的无穷大量,不妨设为正无穷 大量. 对于 $\forall x_0$,取单调增加趋于 $+ \infty$ 的数列 $\{x_0 + nT\}$,显然 $\lim_{n \to \infty} \frac{P(x_0 + nT)}{Q(x_0 + nT)} = \frac{P(x_0)}{Q(x_0)} < + \infty$.

4.2 函数极限的基本性质

4.2.1 思考题 pp. 107.

1. 试就 $\lim_{x\to +\infty}f(x)=A$ 和 $\lim_{x\to a^+}f(x)=A$ 两类极限叙述极限的唯一性定理、局部有界性定理、局部保号性定理、比较定理、夹逼定理、Heine 归结原理和 Cauchy 收敛准则.

 $^{^{3}}$ 同理, 若要求举例仅在 x=a 处可微的函数, 就是 $(x-a)^{2}D(x)$.

- 2. 回答下述有关四则极限运算法则方面的问题:
 - (1) 若 $\lim_{x \to a} [f(x) + g(x)]$ 存在, 则当 x 趋于 a 时在 f(x) 和 g(x) 的敛散性之间有何联系?
 - (2) 若 $\lim_{x\to a} f(x)$ 存在, $\lim_{x\to a} g(x)$ 不存在, 则 $\lim_{x\to a} f(x)g(x)$ 是否存在?
 - 解答. (1) f(x), g(x) 同敛散. 利用四则运算可以证明, 若 f(x), g(x) 之一收敛, 则另一也必 然收敛.
 - (2) 不一定. 容易举出不存在例,存在例可取 $f(x) = x a, g(x) = \frac{1}{x a}$, 则 $f(x)g(x) \equiv$
- 3. 找出以下运算中的错误:

(1)
$$\lim_{x \to 2} \frac{x-2}{\sin \frac{1}{x-2}} = \frac{\lim_{x \to 2} (x-2)}{\lim_{x \to 2} \sin \frac{1}{x-2}} = \frac{0}{\lim_{x \to 2} \sin \frac{1}{x-2}} = 0.$$

(2) $\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{x \to \infty} \frac{1}{x} \cdot \lim_{x \to \infty} \sin x = 0 \cdot \lim_{x \to \infty} \sin x = 0.$

证明. 均在未验证极限存在就直接使用极限的四则运算: $\lim_{x\to 2} \sin \frac{1}{x-2}$ 和 $\lim_{x\to \infty} \sin x$ 均不存 在. П

4. 对于极限的加法运算法则做出两个证明: (1) 用函数极限定义: (2) 用 Heine 归结原理.

证明一. 由 $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$ 知对于任意给定的 $\varepsilon > 0$, 存在 $\delta_1 > 0$, 当 $0 < |x - x_0| < \delta_1$ 时有 $|f(x) - A| < \frac{\varepsilon}{2}$; 存在 $\delta_1 > 0$, 当 $0 < |x - x_0| < \delta_2$ 时有 $|g(x) - B| < \frac{\varepsilon}{2}$. 故当 $0 < |x - x_0| < \min\{\delta_1, \delta_2\}$ 时

$$|(f(x)+g(x))-(A+B)|\leqslant |f(x)-A|+|g(x)-B|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

$$\lim_{x\to x_0}[f(x)+g(x)]=A+B.$$

证明二. 由 $\lim_{x\to x_0}f(x)=A$, $\lim_{x\to x_0}g(x)=B$ 知对于任意 $\{x_n\}$, 若 $\lim_{n\to\infty}x_n=x_0$, 则 $\lim_{n\to\infty}f(x_n)=A$, $\lim_{n\to\infty}g(x_n)=B$. 由数列极限的加法运算法则, $\lim_{n\to\infty}f(x_n)+g(x_n)=A+B$, 由 Heine 归 结原理知 $\lim_{x \to x_0} f(x) + g(x) = A + B$.

练习题 pp. 109. 4.2.2

1. 证明:

$$\begin{array}{ll} (1) & \lim_{x \to +\infty} \frac{x^k}{a^x} = 0 \ (a > 1, k > 0); & (2) & \lim_{x \to +\infty} \frac{\ln x}{x^k} = 0 \ (k > 0); \\ (3) & \lim_{x \to \infty} \sqrt[x]{a} = 1 \ (a > 0); & (4) & \lim_{x \to +\infty} \sqrt[x]{x} = 1. \end{array}$$

(3)
$$\lim_{x \to \infty} \sqrt[x]{a} = 1 \ (a > 0);$$
 (4) $\lim_{x \to +\infty} \sqrt[x]{x} = 1$

证明. (1) 注意 $[x] \le x < [x] + 1$, 因此

$$\frac{1}{a} \frac{[x]^k}{a^{[x]}} \leqslant \frac{x^k}{a^x} \leqslant a \frac{([x]+1)^k}{a^{[x]+1}}.$$

注意 $\lim_{n\to\infty}\frac{n^k}{a^x}=0$,即对于任意给定的 $\varepsilon>0$,存在 $N\in\mathbf{N}_+$,当 n>N 时有 $\frac{n^k}{a^n}<\varepsilon$.当 x>N+1 时, $[x]\geqslant N+1>N$.故

$$\frac{([x]+1)^k}{a^{[x]+1}}<\varepsilon, \frac{[x]^k}{a^{[x]}}<\varepsilon.$$

从而 $\lim_{x \to +\infty} \frac{1}{a} \frac{[x]^k}{a^{[x]}} = \lim_{x \to +\infty} a \frac{([x]+1)^k}{a^{[x]+1}} = 0$,故由夹逼准则知 $\lim_{x \to +\infty} \frac{x^k}{a^x} = 0$.

(2) 做变量替换 $y = \ln x$,

$$\lim_{x \to +\infty} \frac{\ln x}{x^k} = \lim_{y \to +\infty} \frac{y}{\mathrm{e}^{ky}} = \lim_{y \to +\infty} \frac{1}{k} \frac{y}{\mathrm{e}^y} = 0.$$

(3)
$$\lim_{x \to \infty} \sqrt[x]{a} = \lim_{x \to \infty} e^{\frac{\ln a}{x}} = e^0 = 1.$$

(4)
$$\lim_{x \to +\infty} \sqrt[x]{x} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = e^0 = 1.$$

$$2. \not \stackrel{\text{lim}}{\not \longrightarrow} \frac{\sqrt{1+y^3}}{\sqrt{y^2+y^3}+y}.$$

证明. 分子分母同时除以 $y^{\frac{3}{2}}$,

$$\lim_{y \to +\infty} \frac{\sqrt{1+y^3}}{\sqrt{y^2+y^3}+y} = \lim_{y \to +\infty} \frac{\sqrt{1+\frac{1}{y^3}}}{\sqrt{1+\frac{1}{y}+\frac{1}{\sqrt{y}}}} = 1.$$

3.
$$\ \mbox{$\rlap/$} \lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x - 1}{x + 2}}.$$

证明.

$$\lim_{x\to +\infty} \left(\frac{x^2-1}{x^2+1}\right)^{\frac{x-1}{x+2}} = \left(\lim_{x\to +\infty} \frac{x^2-1}{x^2+1}\right)^{\lim_{x\to +\infty} \frac{x-1}{x+2}} = 1.$$

4. 求 $\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$, 其中 n 为正整数.

证明.

$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{x} = \lim_{x \to 0} \frac{1}{(\sqrt[n]{1+x})^{n-1} + (\sqrt[n]{1+x})^{n-2} + \dots + \sqrt[n]{1+x} + 1} = \frac{1}{n}. \quad \Box$$

$$5. \ \not \mathbb{X} \lim_{x \to 0} \frac{f(x)}{x} = l, b \neq 0, \not \mathbb{X} \lim_{x \to 0} \frac{f(bx)}{x}.$$

证明.

$$\lim_{x \to 0} \frac{f(bx)}{x} = \lim_{x \to 0} b \cdot \frac{f(bx)}{bx} \xrightarrow{\underline{y = bx}} \lim_{y \to 0} b \cdot \frac{f(y)}{y} = bl.$$

6. 证明: $\lim_{x\to 0} \frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{\sin x} = 1.$

证明.

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sin x} = \lim_{x \to 0} \frac{2 \sin x}{\sin x (\sqrt{1 + \sin x} + \sqrt{1 - \sin x})} = 1.$$

7. 证明: 在区间 $(a, +\infty)$ 上单调有界函数 f 一定存在极限 $\lim_{x \to +\infty} f(x)$.

证明. 对于任意单调增加的正无穷大数列 $\{x_n\} \subset (a, +\infty)$,由 f 在 $(a, +\infty)$ 上单调有界,知 $\{f(x_n)\}$ 单调有界从而收敛. 由 $\{x_n\}$ 的任意性,从 Heine 归结原理可知极限 $\lim_{x\to +\infty} f(x)$ 存在.

8. 设 f(x) 在区间 (a,b) 上为单调增加函数,且存在一个数列 $\{x_n\} \subset (a,b)$,使得 $\lim_{n\to\infty} x_n = b$, $\lim_{n\to\infty} f(x_n) = A$. 证明: (1) f 在区间 (a,b) 上以 A 为上界; (2) $\lim_{x\to b} = A$.

证明. 断言对于 $\forall n \in \mathbf{N}_+, f(x_n) \leq A$. 否则存在 $n_0 \in \mathbf{N}_+$ 使得 $f(x_{n_0}) > A$, 对于 $\forall n > n_0$, f 在 (a,b) 上单调增加,故 $f(x_n) - A \geq f(x_{n_0}) - A$, 与 $\lim_{n \to \infty} f(x_n) = A$ 矛盾. 对于 $\forall x \in (a,b), \varepsilon' = b - x > 0$, 存在 $N' \in \mathbf{N}_+$ 使得当 n > N' 时有 $|x_n - b| < b - x$, 即 $x_n > x$. 于是 $f(x) \leq f(x_n) \leq A$, 即 f 在区间 (a,b) 上以 A 为上界.

对于任意给定的 $\varepsilon > 0$,由于 $\lim_{n \to \infty} f(x_n) = A$,存在 $N \in \mathbb{N}_+$ 使得 $|f(x_n) - A| < \varepsilon$,即当 n > N 时 $f(x_n) > A - \varepsilon$. 固定 n > N,令 $\delta = \frac{b - x_n}{2}$,则当 $b - \delta < x < b$ 时, $x > x_n$,由于 f 在 (a,b) 上单调增加以 A 为上界,有

$$A - \varepsilon < f(x_n) \le f(x) < A < A + \varepsilon.$$

9. 设 $\lim_{x\to +\infty}f(x)=A>0$. 证明: 对每个 $c\in(0,A)$, 存在 M>0, 当 x>M 时, 成立 f(x)>c. (这是对于极限类型为 $\lim_{x\to +\infty}f(x)$ 的保号性定理.)

证明. 令 $\varepsilon=A-c>0$,由 $\lim_{x\to +\infty}f(x)=A$,存在 M>0 使得当 x>M 时有 $|f(x)-A|<\varepsilon=A-c$,即当 x>M 时 f(x)>A+(c-A)=c.

10. 设 $f(a^-) < f(a^+)$. 证明: 存在 $\delta > 0$, 当 $x \in (a - \delta, a)$ 和 $y \in (a, a + \delta)$ 时, 成立 f(x) < f(y).

证明. 对于 $\varepsilon = \frac{f(a^+) - f(a^-)}{2} > 0$, 存在 $\delta_1 > 0$, 当 $a - \delta_1 < x < a$ 时, $|f(x) - f(a^-)| < \varepsilon$, 即 $f(x) < f(a^-) + \varepsilon$; 存在 $\delta_2 > 0$, 当 $a < y < a + \delta_2$ 时, $|f(y) - f(a^+)| < \varepsilon$, 即 $f(y) > f(a^+) - \varepsilon$. 令 $\delta = \min\{\delta_1, \delta_2\}$ 则当 $a - \delta < x < a < y < a + \delta$ 时, 有

$$f(x) < f(a^{-}) + \varepsilon = \frac{f(a^{-}) + f(a^{+})}{2} = f(a^{+}) - \varepsilon < f(y).$$

11. 试用 Heine 归结原理证明单调函数的单侧极限存在定理.

(这里先要将 Heine 归结原理 (命题 4.2.3) 推广到单侧极限. 注意这时在条件中的数列可限于单侧数列.)

两个重要极限 4.3

4.3.1 练习题 pp. 114.

1. 计算以下极限:

(1)
$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \arctan x\right)^x$$
; (2) $\lim_{x \to \frac{\pi}{2}^-} (\sin x)^{\tan x}$;

(3)
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1}\right)^{x^2};$$
 (4) $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\frac{\pi}{2} - x};$ (5) $\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x^3};$ (6) $\lim_{x \to 1} (1 - x) \tan \left(\frac{\pi}{2}x\right).$

(5)
$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x^3}$$
; (6) $\lim_{x \to 1} (1 - x) \tan \left(\frac{\pi}{2}x\right)$.

解答. (1)
$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \arctan x - 1 \right)$$
$$= \lim_{x \to +\infty} \left[1 + \left(\frac{2}{\pi} \arctan x - 1 \right) \right] \frac{\frac{2}{\pi} \arctan x - 1}{\pi}$$
$$= \exp \left[\lim_{x \to +\infty} x \left(\frac{2}{\pi} \arctan x - 1 \right) \right]$$
$$= e^{-2/\pi}.$$

(2)
$$\lim_{x \to \frac{\pi}{2}^{-}} (\sin x)^{\tan x} = \lim_{x \to \frac{\pi}{2}^{-}} [1 + (\sin x - 1)] \frac{\tan x (\sin x - 1)}{\sin x - 1}$$
$$= \exp\left[\lim_{x \to \frac{\pi}{2}^{-}} \tan x (\sin x - 1)\right]$$
$$= e^{0} = 1.$$

(3)
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{x^2} = \lim_{x \to \infty} \left(1 - \frac{2}{x^2 + 1} \right)^{-\frac{x^2 + 1}{2} \frac{-2x^2}{x^2 + 1}}$$
$$= \exp\left[\lim_{x \to \infty} -\frac{2x^2}{x^2 + 1} \right]$$
$$= e^{-2}.$$

(4)
$$\lim_{x \to \frac{\pi}{2}^{-}} (\cos x)^{\frac{\pi}{2} - x} = \lim_{x \to \frac{\pi}{2}^{-}} [1 + (\cos x - 1)] \frac{(\cos x - 1)(\frac{\pi}{2} - x)}{\cos x - 1}$$
$$= \exp[(\cos x - 1)(\frac{\pi}{2} - x)]$$
$$= e^{0} = 1.$$

(5)
$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x^3} = \lim_{x \to 0} \frac{2\sin x}{x} \cdot \frac{\cos x - 1}{x^2} = 2 \cdot -\frac{1}{2} = -1.$$

$$(6) \lim_{x \to 1} (1-x) \tan\left(\frac{\pi}{2}x\right) \xrightarrow{y=x-1} \lim_{y \to 0} -y \tan\left(\frac{\pi}{2}(y+1)\right)$$

$$= \lim_{y \to 0} y \cot\left(\frac{\pi}{2}x\right)$$

$$\frac{z=\frac{\pi}{2}y}{z \to 0} \lim_{z \to 0} \frac{2}{\pi} \frac{z}{\sin z} \cos z$$

$$= \frac{\pi}{2} \cdot 1 \cdot 1 = \frac{\pi}{2}.$$

2. 注意以下两个"不等式"并求出正确值:

(1)
$$\lim_{x \to +\infty} \frac{\sin x}{x} \neq 1$$
; (2) $\lim_{x \to +\infty} (1+x)^{\frac{1}{x}} \neq e$.

解答. (1)
$$\lim_{x \to +\infty} \frac{\sin x}{x} = 0;$$

(2)
$$\lim_{x \to +\infty} (1+x)^{\frac{1}{x}} = \lim_{x \to +\infty} (1+x)^{\frac{1}{x+1} \cdot \frac{x+1}{x}} = 1^1 = 1.$$

3. 设
$$a>0, b>0$$
, 求极限 $\lim_{n\to\infty}\left(\frac{\sqrt[n]{a}+\sqrt[n]{b}}{2}\right)^n$. (本题是数列极限问题, 但现在可以用函数极限知识来解决.)

证明. 转化为函数极限 $\lim_{x\to 0} \left(\frac{a^x+b^x}{2}\right)^{\frac{1}{x}}$.

$$\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}} = \lim_{x \to 0} \left(1 + \frac{a^x + b^x - 2}{2} \right)^{\frac{2}{a^x + b^x - 2} \cdot \frac{a^x + b^x - 2}{2x}}$$

$$= \exp\left(\lim_{x \to 0} \frac{a^x + b^x - 2}{2x} \right)$$

$$= \exp\left(\frac{\ln a + \ln b}{2} \right)$$

$$= \sqrt{ab}.$$

证明.

$$\lim_{x \to 0} \left[\frac{a_1^x + a_2^x + \dots + a_n^x}{n} \right]^{\frac{1}{x}}$$

5. 计算极限 $\lim_{n \to \infty} \prod_{k=1}^n \cos \frac{x}{2^k}$, 并证明 Viète 公式

$$\frac{\pi}{2} = \frac{1}{\sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \cdots}}.$$

(这是数学家 Viète 在 1593 年发表的. 它是数学史上第一次用无穷乘积来表示一个数, 同时也是对于圆周率 π 的认识上的重大突破.)