An efficient deep memory algorithm for computing fractional order operators

Steven Dorsher^a, Gary Bohannan^a

^aDepartment of Chemistry and Physics, Saint Cloud State University, Saint Cloud, Minnesota

Abstract

This paper outlines a method to achieve effective bandwidth of five or more decades in the approximation of a fractional order derivative. This constitutes an increase of two decades or more over current algorithms, such the Infinite Impulse Response (IIR) method based on continued fraction expansion, while demanding only slightly more computational steps and processor memory.

Keywords: fractional calculus, numerical methods, computational

efficiency

2010 MSC: 65Y02, 65Z02, 65Y04, 65Z04

1. Introduction

Interest in the application of the fractional calculus has been growing at an ever increasing rate. Of long term and continued interest is in the use of fractional order (FO) operators, such as integrators and differentiators, in motion control applications. [1] While wide bandwidth analog controllers have been successfully demonstrated [2], fractional order analog circuit elements are not generally available and the prototypes that have been demonstrated do not have the ability to be retuned for a specific desired phase. [3]

Unfortunately, the existing techniques for digital approximation of FO operators are limited in bandwidth to on the order of three and a half decades of frequency response while nonlinear effects in motion control systems can span five decades or more. This places a severe constraint on the design and implementation of digital FO controllers, i.e. how to set the sampling frequency to meet the high speed requirements necessitated by the Nyquist sampling rate while at the same time providing enough deep memory to get

Preprint submitted to Communications in Nonlinear Science and Numerical Simulation July 2, 2013

low offset error. Additionally, the infinite impulse response type of implementation cannot guarantee stability due to the limitations of finite precision arithmetic. See e.g. [4].

Given the current necessity to implement FO controls in digital form, it is desirable to obtain the most efficient algorithm to compute a fractional order operator while maximizing the numerical stability of the algorithm. Efficiency to be measured in both memory utilization and number of computations per time step. This paper outlines a computational method inspired by the Riemann-Liouville integral definition and the Grünwald summation formula. [5] The essential concept is the rescaling of time by successive accumulation of older data into increasing size bins for deeper memory.

Our motivation is two-fold. First to introduce the idea of "time scaling" for computations requiring coverage of very long time spans, and second to offer an algorithm that might be used in a microprocessor based control unit (mcu) requiring flat phase response over a wide bandwidth. One might wonder why the attempt at such extended bandwidth since integer order derivative and integral operator will typically either decimate or expand the amplitude beyond the range of analog to digital converters due to the $\omega^{\pm 1}$ scaling. Fractional order scaling is much "softer" in the sense that the magnitude scaling only goes as $\omega^{\pm \alpha}$ with $|\alpha| < 1$, allowing for effective operation over a much wider bandwidth.

Outline

- . We will first briefly describe the current state of the art in fractional order operator approximation and then describe a novel approach based on successive binning of older data.
 - Section 2 contains algorithm definitions.
 - Section 3 provides an analysis of the computational resources required for the larger versus the smaller number of memory registers stored.
 - Section 4 provides a description of the numerical simulation written to verify the algorithm described in Section 2.
 - Section 5 describes the amplitude and phase response of these algorithms for a large and small number of bins in the partition.

Figure 1: Let each division represent a single time step and each bar represent a bin, scaled such that the duration of a bin increases further back in time (toward the right). The value of the bin is the average of the input signal, the sine wave, at each point in time within that bin. There exists some oldest bin that responds sensitively to the input signal (in this figure, the second bin). If the time step and binning structure are held fixed, for lower frequencies, that oldest bin moves to older times (to the right). This illustrates the sensitivity of short bins at recent times to high frequencies and the sensitivity of long bins in the distant past to low frequencies. **modified**

2. Average Grunwald algorithm

changed section heading from Algorithm definitions to Average Grunwald algorithm We will be comparing our results with the Infinite Impulse Response (IIR) method based on the continued fraction expansion approximation to s^{α} . [4] Its benefits are that it has a flat phase response over approximately two and a half decades in phase for a 9th order expansion (10 registers of input signal memory). It would be desirable to find an algorithm with an even broader flat phase frequency bandwidth and with a comparably small amount of memory required. We take the Grünwald algorithm as a starting point. As the signal history retained in the Grünwald sum grows longer, the bandwidth of flat phase response grows broader; however, the memory required also increases with input signal history length. To reduce this memory requirement and retain a long signal history, we propose partitioning the input signal history into bins that are longer further into the past. The value of the binned input signal is represented by the average value of the input signal within that bin. The presence of short bins at recent times maintains sensitivity to high frequencies, while the inclusion of long bins at past times adds sensitivity to low frequencies that would not be present in a truncated Grünwald sum with the same number of terms. (See Figure 2).

2.1. Modified Grünwald

The Grünwald form of the fractional integral can be written [5]

$${}_{0}D_{t}^{\alpha}f(t) = \lim_{N \to \infty} \left(\frac{t}{N_{t}}\right)^{-\alpha} \sum_{j=0}^{N_{t}-1} w_{j}x_{j}$$

$$\tag{1}$$

where f(t) is the input signal at time t, the jth value of the input signal history is $x_j = f\left(t - \frac{j\Delta t}{N_t}\right)$, and the jth Grünwald weight is

$$w_j = \frac{\Gamma(j-\alpha)}{\Gamma(j+1)\Gamma(-\alpha)}. (2)$$

To include more distant history at low computational cost, we modify the Grünwald sum of Equation 1 by partitioning its history into N_b bins. In each bin k, the input signal history x_j is represented by its average value over that bin, X_k .

Since we make the assumption that each value is well represented by its average within a bin, we can define a value for the "bin coefficient" by summing the Grünwald coefficients within that bin.

$$W_k = \sum_{j=p_{k-1}+1}^{p_k} w_j (3)$$

where w_j is summed from the lowest index of the input data history within bin k to the highest index p_k within that bin. Define

$$N_h = p_{N_b} = \sum_{k=0}^{N_b} b_k \tag{4}$$

for later reference.

With these definitions, the modified Grünwald differ-integral can be written

$$_{0}D_{t}^{\alpha}f(t) = (\Delta t)^{-\alpha} \sum_{k=0}^{N_{b}} \bar{W}_{k}X_{k}$$
 (5)

where Δt is the interval between time samples. There is an additional factor that goes into \bar{W} that will be discussed in Section 2.2. Note that in the average Grúnwald algorithm, N_h plays the role of the last virtual time element

Figure 2: When the input data x_0 is read, virtual data elements with bin average values X_k are shifted from the kth to the (k+1)th bin. The first n-1 bins are at capacity, but the nth bin gains one data point. The bin averages are updated to value X'_k through a weighted average.

to effectively enter the modified summation, rather than N_t . Here, N_t plays the role of the number of time steps that have occurred since the algorithm started to run.

2.2. Updating the average history

When a new input data element is read, the history is updated. The new data element is shifted into the first bin through a weighted average. Since data elements represent time steps, they should be incompressible—when one element is shifted into a bin, another virtual element should be shifted out of that bin if the bin is full. It shifts into the next bin, and pushes a virtual element out of that one, until a bin which is partially full or empty is reached. To update the average data stored in the bins, we take the weighted average obtained by adding one virtual element from the (k-1)th bin to the b_k elements in the kth bin. This process is illustrated in Figure 2.2.

modified: bins to bin, new generalized definition During start-up, it will be necessary to consider a bin that has some set size b_k , but is not filled to that capacity. In that case, it is the current occupation number c_k of that bin that enters the calculation. The algorithm for updating bins can be stated generally if the occupation number of the kth bin is defined to be c_k . In that case, $c_k = b_k$ for all the bins more recent than the bin that is in the process of filling. No updating occurs for older bins.

If the kth bin initially contains c_k elements, updating the history either

leaves c_k ($c'_k = c_k = b_k$) or increments the number of elements in the bin such that $c'_k = c_k + 1$ if the bin is not yet at capacity. Either way, the updated average of the value of the kth bin, X'_k , is given by

$$X_k' = \frac{c_k' - 1}{c_k'} X_k + \frac{1}{c_k'} X_{k-1}.$$
 (6)

where X_{-1} is taken to be x_0 , the input data that has just been read.

During start-up, the partially full bin also factors into the Grünwald weights. To handle the bin that is partially full, we weight the binned Grünwald weights by the ratio of the bin occupation number c_k to its capacity b_k ,

$$\bar{W}_k = \frac{c_k W_k}{b_k}. (7)$$

3. Computational efficiency

The computational efficiency of each algorithm concerns both the memory used by the algorithm and the number of computational steps required for the algorithm to execute, which is a measure of the speed. To characterize the operational efficiency of a digital fractor operating as a circuit element in real time, the quantities of interest are the memory or number of processor steps *per time step*.

There are three phases of the computation that factor into the computational cost of the binned Grünwald algorithm: initialization (including summing the binned Grünwald weights), updating the average values of the stored history in the bins as new input data is read, and summing the modified Grünwald differ-integral.

During initialization, several things must happen. The array defining the binning structure, b_k , must be set. The history of the input signal must be zeroed and the first output must be set to zero. Most significantly, the binned weights must be calculated for the chosen binning structure.

The time it takes to calculate or set b_k is moderately dependent upon the details of the binning structure chosen. However, any binning structure will have a processing time that scales as N_b , the number of memory storage bins, rather than N_h , the history capacity, because N_b is the number of bins that must be set. On the other hand, since each of the N_h individual Grünwald weights must be summed, the time for initialization of the weights scales as N_h . Typical values of N_h are of order 1,000 to 10^6 . Typical values of N_b are 10 to 26. Since $N_h >> N_b$, the bulk of the initialization process occurs during the computation of the weights and the rest of the initialization process may be neglected. The time for initialization as a whole scales as N_h .

By the very design of the algorithm, there is no need to store the full Grünwald weights. The largest arrays that need to be stored are the binned weights and the bin capacity, each of which has size N_b . As a result, memory scales as N_b rather than N_h . Equation 3 gives the algorithm for the calculation of the bin weights. The following recursion formula for Grünwald weights can be used to iterate w_j to a new value with each time step. In the jth time step, w_j has the value

$$w_j = \frac{j - 1 - \alpha}{j} w_{j-1}. \tag{8}$$

In the implementation of an algorithm for initialization of the weights, individual Günwald weights w_j need not be stored in an array after calculation. These individual weights can be summed immediately into the corresponding bin weights W_k according to Equation 3, at which time the value of w_j may be safely overwritten with w_{j+1} in order to minimize the amount of memory required such that it may be possible to later migrate the code to an mcu.

When new input data is read, the time required to update the binned history values scales as at most N_b because there are N_b bins that must be updated. Equation 6 may be used as the basis for an algorithm to accomplish this goal. Care must be taken to account for the filling of the bins until the approximation reaches steady-state.

This time a memory saving and speed enhancing opportunity is available. Since only one bin can be filling at a time and the rest must be either full $(c_k = b_k)$ or empty $(c_k = 0)$, the full array of N_b occupancy numbers c_k need not be stored. Instead, it is sufficient to store the index of the bin that is filling, $k_{filling}$ and its occupancy, $c_{filling}$. These unfilled bins with $k > k_{filling}$ and $c_k = 0$ are not updated when a new input signal value is read into the history. With this approach, the algorithm becomes

$$X_k' = \frac{c_{filling} - 1}{c_{filling}} X_k + \frac{1}{c_{filling}} X_{k-1} \tag{9}$$

for $k < k_{filling}$ and

$$X_k' = \frac{b_k - 1}{b_k} X_k + \frac{1}{b_k} X_{k-1} \tag{10}$$

for $k = k_{filling}$ with no shift occurring for $k > k_{filling}$ since there are no elements in those bins. Since no computation occurs for $k > k_{filling}$, the updating algorithm truly scales as $k_{filling}$ per time step, which is at most N_b . above modified: scales as $k_{filling}$

While it is possible to achieve a memory savings by storing only $c_{filling}$ and $k_{filling}$, in the C++ code reported in this paper, the full array of c_k is stored. This does not impact the memory scaling of the updating algorithm. Updating the stored bin history values scales as N_b in memory because the largest arrays that need to be stored are the binned average values, the bin capacity, and the bin occupancy, each of size N_b .

paragraph added However, we do implement the speed enhancing aspect of the algorithm. In the code reported in this paper, the calculation is truncated at $k_{filling}$ rather than looping over the full N_b bins to obtain the $k_{filling}$ scaling in time.

The two real-time operation stages, updating and differ-integrating, together require less than 400 flops for 26 bins of history. For 26 bins, less than 100 memory registers are required. Initialization, on the other hand, is very resource-consuming. N_h may be larger than a million and still not fill 26 bins. Initialization therefore may require more than a million flops.

The binned Grünwald algorithm may be written in terms of either the number of elements per bin, b_k , or in terms of the maximum time step p_k included within each bin (see Equation 3). While we explain our algorithms in terms of b_k in this paper, the results derived from our C++ code were obtained using the p_k method.

INCLUDE ACTUAL TIMING MEASUREMENTS

4. Validation methods

While the algorithms described in Section 2 are ultimately intended for use in a digital fractor, in order to characterize their frequency response we have simulated them in C++ on a personal computer. The relative phase as a function of frequency is based upon the fractional derivative or integral of sinusoidal inputs, sweeping from low frequency to high frequency in logarithmic steps. Relative phase is reconstructed by curve fitting (adapted from Numerical Recipes in C [6]), using the last half of the output signal to the

Figure 3: Zero crossings of a 0.5 order derivative of a sine wave input signal at long times relative to the period. From this the reconstructed phase can be verified using the knowledge that the frequency of this sine wave was 0.7924 Hz. Reconstructed and zero-crossing phases are shown in Table 4. In this plot, the duration was 10.0 s and there were 1000 time steps. There were 10 terms in the IIR and 10 bins in all binned Grünwald approximations. A variety of binning methods were used: truncated simple Grünwald (GL), linearly increasing bin sizes (LIN), bin sizes increasing as a square (SQ), exponentially increasing bin sizes (EXP), and bin sizes following a Fibonacci rule (FIB).

sine and cosine components of a sinusoidal signal with the same frequency as the input signal. From that, phase and amplitude are calculated.

To verify phase accuracy, we examine the phase shift of a single crossing in the time domain for an input frequency of 0.7924 Hz (Figures 3). Table 4 shows a comparison of reconstructed phases using the sinusoidal fit method and phases obtained from Figure 3 by measuring the phase difference in a single zero-crossing. The results demonstrate that the reconstructed phases are accurate when the output phase is within about ten degrees of the expected phase. Since we are interested in the deviations of the phase from the expected phase by about ten degrees, this should be sufficient. Transients may account for the remainder of the discrepancy in phase in the cases where the single crossing phase and the fit phase differ more dramatically.

The simulation has successfully been run for up to 1,000,000 time steps, limited primarily by memory considerations due to the storage necessary for phase and amplitude reconstruction. At this long simulation duration, amplitudes and phases over six decades in frequency are obtained.

Name	Reconstructed (degrees)	Zero-crossing (degrees)
IIR40	45.0	45 ± 2
GL	44.2	41 ± 2
GL26	23.0	32 ± 2
LIN26	46.1	41 ± 2
SQ26	44.4	41 ± 2
EXP26	42.1	41 ± 2
FIB26	43.0	41 ± 2

Table 1: Phases reconstructed through sinusoidal fits and phases approximated through single zero-crossings of a single frequency (0.7924 Hz) based upon Figure 3, with an expected phase of 45° .

5. Results

In a typical instance of the current state of the art algorithm, the Infinite Impulse Response (IIR), the expansion depends upon the last ten elements in the input signal history [4]. To make a fair comparison between fractional derivative or integral algorithms, it we examine the average Grünwald algorithm with ten bins of input signal history, such that the history memory requirement is the same. Figure 5 contains a bode plot for a fractional derivative of order $\alpha=0.5$ with ten history registers. Compared to the IIR10, the average Grünwald with an exponential binning structure (EXP10) has approximately a factor of three gain in constant-phase bandwidth with a ten degree variation allowance.

The performance of the average Grünwald algorithm improves dramatically with a small increase in the number of input signal history bins. Computational limitations were the driving reason behind the choice of the maximal number of input history registers. It was not feasible to run the simulation for more than 10^6 time steps due to limitations in phase and amplitude reconstruction. Since the exponential binning structure (EXP) scales most rapidly with history depth, it set the limit on the number of bins that would fill during this number of time steps. Since $\log_2(10^6) \approx 20$, 20 bins of input signal history were included for all average Grünwald binning structures. Figure 5 compare 20 history memory registers of the CFE to 20 history memory registers of the average Grünwald, for a variety of binning strategies. For both fractional derivatives and integrals there is a gain in the constant phase bandwidth of 2 to 2.5 decades with a variation of ten degrees allowed.

The specific limitations encountered in generating Figure 5 would not be

Figure 4: Magnitude and phase as a function of frequency for 10 registers of binned (SQ10, EXP10, FIB10) or unbinned (GL10, IIR10) input signal history. GL is the full Grünwald calculation, for the entire input signal history prior to that time.

present during runtime on a microcontroller unit (mcu) because there would be no need to store and manipulate the entire past output signal history. However, other limitations might be encountered. We found that it became difficult to initialize the weights in finite time for more than 26 bins, for instance. Some less well motivated partitioning schemes (not reported here) appeared to go numerically unstable at a lower number of bins, as well.

6. Conclusions

In order to access deep memory while simultaneously conserving computational resources, we have modified the Grünwald algorithm by partitioning it into bins. In these bins, only the average input signal values and summed Grünwald weights are stored—the individual values are discarded to conserve memory and to make the computation more efficient. We have implemented this algorithm in C++ on a desktop computer.

Numerical simulations demonstrate that the average Grünwald algorithm achieves an improvement of about a factor of 3 in constant phase bandwidth $(\pm 10^{\circ})$ in a fair comparison to the state-of-the-art algorithm, the Infinite Impulse Response (IIR), with its most commonly used input signal history depth (10 steps). Allowing the number of bins to be limited by the number of time steps our simulation could handle, the average Grünwald algorithm still makes a 2 to 2.5 decade constant phase bandwidth improvement over the IIR with only 20 binned input signal history registers.

Furthermore, during runtime, the number of flops per time step and the memory required both scale as N_b , the number of bins, which we have tested

at 10 to 20. There is a one time initialization cost where the number of flops scales as N_h , the total number of historical time steps stored within the bins, which may be on the order of millions. Exponential binning strategies performed well at any number of bins.

I rewrote this. Is it right? Beyond the additional bandwidth, the average Grunwald algorithm has a second advantage over the IIR algorithm. Commonly a low-pass filter is used to prevent aliasing. The broad roll-off in phase of the average Grunwald algorithm at high frequencies would allow the Nyquist frequency to be set high when chosing an oversampling region, minimally truncating the bandwidth with the low-pass filter. Alternatively a lower order filter could be chosen, minimally disrupting the phase response. This is in contrast to the sharp plumet in phase of the IIR algorithm at high frequencies, which causes aliasing unless the highest half decade in frequency is filtered.

The ultimate goal of this work is to prepare the algorithm to be used in an mcu. Currently average Grünwald algorithm has been implemented as a numerical integration and differentiation package in C++. Our continuing goal will be to package it for an mcu and use it as a control element in a mechanical environment.

Acknowledgments

Thanks to Chad Bohannan for his contributions to the C++ code base and for his thoughts on computational efficiency. The authors also thank Saint Cloud State University for the use of computational resources.

References

- [1] Luo Y, Chen YQ. Fractional Order Motion Controls. Chichester, West Sussex: John Wiley & Sons; 2013.
- [2] Bohannan G. Analog fractional order controller in temperature and motor control applications. Journal of Vibration and Control 2008;14(9-10):1487–98.
- [3] Monje CA, Chen Y, Vinagre BM, Xue D, Feliu V. Fractional-order Systems and Controls: Fundamentals and Applications, a monograph in the Advances in Industrial Control Series. Berlin: Springer; 2010.

- [4] Chen YQ, Vinagre BM, Podlubny I. Continued fraction expansion approaches to discretizing fractional order derivatives an expository review. Nonlinear dynamics 2004;38:155–70.
- [5] Oldham K, Spanier J. The Fractional Calculus. New York: Academic Press; 1974.
- [6] Press WH, Teukolsky SA, Vetterling WT, Flattery BP. Numerical Recipes in C: The art of Scientific Computing. Second ed.; Cambridge University Press; 1992.

Figure 5: Bode plots for the IIR algorithm with 40 input signal history registers and the average Grünwald algorithm with 20 input signal history bins for $\alpha=0.5,0.3,-0.3,$ and -0.5.