Анализ данных 2

Пожилая саламандра

April 2020

1. Реализация решения

1.1. Функции и классы

- Класс OneStepLinReg наш линейный регрессор:
 - _*init*_() создает экземпляр класса;
 - fit() подбирает весовые коэффициенты;
 - predict() выдаёт предсказанные значения;
 - coef() выдаёт весовые коэффициенты;
 - $-\ display()$ отрисовка графика линейной регрессии.
- monthly_produced() строит графики количества произведенных мечей на основе данных;
- monthly_broken_metrics() вычисляет метрики (п. 2) для сломанных мечей;
- $monthly_stats()$ считает и строит графики вероятностей поломки в определенные месяца;
- $make_forecast()$ предсказывает вероятность поломки в следующем месяце;

1.2. Библиотеки

- NumPy;
- matplotlib;
- \bullet pandas;
- $\bullet \ sklearn.linear model.$

2. Результаты и выводы

Будут описаны в презентации.

3. Метрика

Наша метрика зависит от количества сломанных мечей и через сколько времени после изготовления мечей сломалось.

$$metric = \sum_{\mathbf{i} \in rows} \frac{Defects}{ReportDate - ProductDate + 1}; \tag{1}$$

$$metric = 100000/metric;$$
 (2)

Значение для Harpy.co : 67.01674940043944 Значение для Westeros.inc : 36.09248958259037

Чем больше метрика, тем качественнее мечи у компании.

4. Вклад участников

- Никита Денисов разработка кода
- *Андрей Ловягин* блокнот .ipynb
- Михаил Иванков README и презентация