Seminarska naloga Dataset A8

Filip Koprivec

Fakulteta za matematiko in fiziko

Junij 2018

Število vzorcev

Število opažanj je 299, kar se zdi dokaj blizu $300 = 12 * 25 \implies$ na časovno vrsto glejmo kot na letni proces.

Očiten je naraščajoči trend, prav tako se zdi, da so odmiki od trenda vedno bolj izraziti.

(a) Časovna vrsta

Očiten je naraščajoči trend, prav tako se zdi, da so odmiki od trenda vedno bolj izraziti. Poskusimo z logaritmiranjem.

Očiten je naraščajoči trend, prav tako se zdi, da so odmiki od trenda vedno bolj izraziti. Poskusimo z logaritmiranjem. Naraščajoči trend ostane, bolj izrazito je čudno dogajanje okoli 130 opažanja. Nadaljujemo z logaritmirano vrsto.

(b) Logaritmirana ČV

Diferenciiramo

Preostanek izgleda stacionarno, problematična špica je nekoliko manj izrazita (a še vedno jasno vidna). Kpss in adf test potrdita/ne zavrneta stacionarnosti.

Slika 2: Vrsta z odstranjanim trendom

Sezonalnost

Poglejmo si frekvenčni spekter.

Slika 3: Periodogrami

Sezonalnost

Poglejmo si frekvenčni spekter. Izrazit enoletni spekter, mogoče tudi manjša nihanja kasneje.

Slika 3: Periodogrami

Odstranjevanje sezonalnisti

Poskusimo z letno in polletno frekvenco.

	Model 1
(Intercept)	0.0170
	(0.0157)
tsData.lg.d.t	-0.0007
	(0.0010)
tsData.lg.d.sin	-0.0312^{*}
	(0.0105)
tsData.lg.d.cos	-0.0026
	(0.0105)
N	298
R ²	0.0308
adj. R ²	0.0209
Resid. sd	0.1277

	Model 2
(Intercept)	0.0167
	(0.0156)
tsData.lg.d.t	-0.0007
	(0.0010)
tsData.lg.d.sin	-0.0311*
	(0.0104)
tsData.lg.d.cos	-0.0027
	(0.0104)
tsData.lg.d.sin2	0.0125
	(0.0104)
tsData.lg.d.cos2	0.0183
	(0.0104)
N	298
R ²	0.0455
adj. R ²	0.0292
Resid. sd	0.1272
C.	11

Standardna napaka v oklepajih * označuje značilnost pri p < 0.05

Standardna napaka v oklepajih * označuje značilnost pri *p* < 0.05

Tabela 1: Rezultati linearne predikcije

Odstranjevanje sezonalnisti

Poskusimo z letno in polletno frekvenco. Vzamemo letno frekvenco.

	Model 1
(Intercept)	0.0170
	(0.0157)
tsData.lg.d.t	-0.0007
	(0.0010)
tsData.lg.d.sin	-0.0312^*
	(0.0105)
tsData.lg.d.cos	-0.0026
	(0.0105)
N	298
R ²	0.0308
adj. R ²	0.0209
Resid. sd	0.1277

Standar	dna n	apaka	v ok	lepajih
				p < 0.05

	Model 2	
(Intercept)	0.0167	
	(0.0156)	
tsData.lg.d.t	-0.0007	
	(0.0010)	
tsData.lg.d.sin	-0.0311*	
	(0.0104)	
tsData.lg.d.cos	-0.0027	
	(0.0104)	
tsData.lg.d.sin2	0.0125	
	(0.0104)	
tsData.lg.d.cos2	0.0183	
	(0.0104)	
N	298	
R ²	0.0455	
adj. R ²	0.0292	
Resid. sd	0.1272	

Standardna napaka v oklepajih * označuje značilnost pri p < 0.05

Tabela 1: Rezultati linearne predikcije

Odstranimo letni trend

Residuali ne izgledajo dosti drugače, stacionarnost potrdita oba testa.

Slika 4: Residuali odstranitve trigonometričnega trenda

Mogoče MA(2)

Yule-Walker

Pričakovano slab, ponudi nam AR(11).

ARMA(p,q)

Najboljši ponujen rezultat je ARMA(0,2) (aic=-490.4205), dobro se obnaša tudi ARMA(1,2) (aic=-490.1268), vzamemo enostavnejši model, ki je tudi smiseln glede na graf acf.

	ARMA(0,2)
(Intercept)	-0.0001
	(0.0012)
ma1	-0.6445
	(0.0607)
ma2	-0.1545
	(0.0658)
σ^2 estimated	0.01103
log <i>L</i>	248.21
aic	-490.42
Standardna nap	aka v oklepajih

Tabela 2: MA(2) aproksimacija

Slika 6: Residuali MA(2) aproksimacije

Residuali izgledajo kot beli šum, moti nas zgolj že prej omenjena irregularnost. Normalnost je problematična.

Slika 7: Robna porazdelitev residualov

Ideja

Vzemimo zgolj časovno vrsto, ki sledi skoku (od 130 naprej).

Slika 8: Robna porazdelitev zadnjega dela residualov

Ideja

Vzemimo zgolj časovno vrsto, ki sledi skoku (od 130 naprej). Izgleda bolje. Lahko govorimo o normalnosti.

Slika 8: Robna porazdelitev zadnjega dela residualov

Inverzi transformacij

Vzamemo napovedni interval, in na vsakem krajišču opravimo inverz preprocesiranja. Trigonometrični trend |> kumulativne vsote (z dodatkom začetnega člena) |> exp

Slika 9: 90% interval zaupanja za naslednjo vrednost

$$\varphi_1 = -0.6445, \varphi_2 = -0.1545$$

Aproksimacija $\varphi_1:\overline{\varphi_1}=-0.6513$, sd =0.0583. Aproksimacija $\varphi_2:\overline{\varphi_2}=-0.1601$, sd =0.0598.

(a)
$$\varphi_1$$
 , $N = 10000$

(b)
$$\varphi_2$$
 , $N = 10000$