

CM12002 Computer Systems Architectures

Data Representation

Fabio Nemetz

There are only 10 types of people in the world: those who understand binary, and those who don't.

Data Representation

Summary

In this lecture:

- Numeration systems
- Converting between different numeration systems.

Data Representation

Computers are required to represent a variety of forms of data:

- Positive (or unsigned) integers.
- Signed Integers.
- Alphanumeric characters and strings.
- Real numbers.
- Program instructions.
- Addresses of memory locations and external devices.

Two-state representation

Electronic computers (*except the* ENIAC*) are based on *two-state* devices (transistors and logic gates).

Electronically, we need to distinguish only between, for example:

- voltage and no voltage, or
- current and no current, or
- switch on and switch off, or
- electrical pulse and no electrical pulse.

This can be related to a particular numeration system: the binary system.

Before we study the binary system, it is important to understand numeration systems in general.

All numeration systems are *representational*, i.e. a form of coding. Coding should be devised so that the system:

- has few symbols that are easy to remember;
- is unambiguous;
- is economical in use (or presentation);
- is a useful quantitative measure;
- can be easily manipulated, e.g. to perform arithmetic.
- The Roman system was a classic counter-example:
- XXIV + XCVI = ?
- 24 + 96 = 120

The decimal numeral system:

• Symbols: 0123456789

• Base: 10 (there are 10 symbols)

Decimal: from Latin decem (meaning 10)

But why do we use it?

Coincides with the number of fingers

In the decimal system, how do we represent numbers larger than 9? We use combinations of these digits:

$$352 = 300 + 50 + 2 =$$

$$3x100 + 5x10 + 2x1 =$$

$$3x10^{2} + 5x10^{1} + 2x10^{0}$$

We call it a positional notation.

Powers of 10		
100 = 1		
10 ¹ = 10		
$10^2 = 100$		
10 ³ = 1000 (thousand)		
104 = 10000		
105 = 100000		
10 ⁶ = 1000000 (million)		
107 = 10000000		
108 = 100000000		
10 ⁹ = 1000000000 (billion)		

Decimal notation: not the only way to represent numbers

- If we use 8 symbols (0, 1, 2, 3, 4, 5, 6, 7)
 - our new base is 8 (<u>octal</u> numeral system)
- If we use 2 symbols (0 and 1)
 - our new base is 2 (binary numeral system)

134₈ means 134 in base 8 (or in octal)

Convert 134₈ to decimal.

$$\frac{1}{1}$$
 \times 8² + $\frac{3}{1}$ \times 8¹ + $\frac{4}{1}$ \times 8⁰ = 64 + 24 + 4 = 92

1101, means 1101 in **base 2 (or in binary)**

Convert 1101₂ to decimal.

$$1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 8 + 4 + 0 + 1 = 13$$

1FCB₁₆ means 1FCB in base 16 (or in hexadecimal)

Convert $1FCB_{16}$ to decimal.

$$1 \times 16^3 + 15 \times 16^2 + 12 \times 16^1 + 11 \times 16^0 =$$

Hexadecimal	Decimal	
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
А	10	
В	11	
С	12	
D	13	
E	14	
F	15	

Binary System

Let's count in binary

Binary	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8

Decimal, Binary, Octal, Hexadecimal

Decimal number	Binary representation	Octal representation	Hexadecimal representation
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

There are only 10 types of people in the world: those who understand binary, and those who don't.

There are only 10_2 types of people in the world: those who understand binary, and those who don't.

There are only 10 types of people in the world: those who understand binary, those who don't and those who didn't expect this joke to be in base 3 ©

Why do Computer Scientists always confuse Halloween and Christmas?

Because Oct 31 = Dec 25

$$31_8 = 25_{10}$$

To be continued ...