

CSC380: Principles of Data Science

Course wrap-up 2

Xinchen Yu

Announcements

- Final exam
 - Time: Dec 13, 3:30 5:30pm
 - Location: C E Chavez Bldg, Rm 111 (same room)
 - - one letter size cheat sheet, you can use double sides
 - calculator (not necessary)
- Fill out SCS (https://scsonline.oia.arizona.edu/) if 80% responses, will add 5 points to the homework with lowest grade (63% right now).

Announcements

- Grades on D2L are available by this Friday.
- Final project
 - Due this Friday by 11:59 pm
 - Evaluate on test set (1,086 instances)
- Final exam practice questions out on D2L->Content

Predictive Modeling and Classification

How to construct a decision tree

- Assign all training instances to the root of the tree. Set current node to root node.
- For each feature:
 - a. Partition all data instances at the node by the value of the feature.
 - b. Compute the accuracy from the partitioning.
- Identify feature that results in the highest accuracy. Set this feature to be the splitting criterion at the current node.

Prereqs Lecturer 1 HasLabs					
Rating	Easy?	M?	Sys?	Thy?	Morning?
+2	у	У	n	у	n
+2	у	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	у	y	n	n	n
+1	у	y	n	y	n
+1	n	y	n	y	n
О	n	n	n	n	у
O	у	n	n	y	y
O	n	y	n	y	n
0	у	y	y	y	y
-1	у	y	y	n	У
-1	n	n	y	y	n
-1	n	n	y	n	У
-1	у	n	y	n	У
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	у	n	y	n	n
-2	у	n	y	n	y

Decision tree: accuracy

Suppose we place the node HasTakenPrereqs at the root. Set the prediction at each leaf node as the majority vote.

What is the train set accuracy now?

$$\frac{9}{20} \cdot \frac{6}{9} + \frac{11}{20} \cdot \frac{9}{11} = \frac{15}{20} = 0.75$$

No need to split if the leaf is pure (all data have same labels)

Decision tree: accuracy

What is the train set accuracy now?

$$\frac{9}{20} \cdot \frac{6}{9} + \frac{11}{20} \cdot \frac{9}{11} = \frac{15}{20} = 0.75$$

Accuracy for two groups:

- Prereqs = yes (11): 9/11
- Prereqs = no (9): 6/9

For the 11 people prereqs = y, use the majority vote label **like** (9 like, 2 dislike).

Predicted label for 11 people is **like**, 9 people are correctly predicted.

KNN

- Select the number K of the neighbors
- Calculate the Euclidean distance of K number of neighbors
- Take the K nearest neighbors as per the calculated Euclidean distance.
- Among these k neighbors, count the number of the data points in each category.
- Assign the new data points to that category for which the number of the neighbor is maximum.

Naïve Bayes

Training Data:

Person	height (feet)	weight (lbs)	foot size(inches)
male	6	180	12
male	5.92 (5'11")	190	11
male	5.58 (5'7")	170	12
male	5.92 (5'11")	165	10
female	5	100	6
female	5.5 (5'6")	150	8
female	5.42 (5'5")	130	7
female 5.75 (5'9")		150	9

Task: Observe features $x_1, ..., x_D$ and predict class label $y \in \{1, ..., C\}$

Naïve Bayes Model: Treat features as conditionally independent given class label,

$$p(x,y) = p(y)p(x|y) = p(y) \prod_{d=1}^{D} p(x_d | y)$$
build individual models for these

To classify a given instance x: Bayes rule!

$$p(y = c \mid x) = \frac{p(y = c)p(x \mid y = c)}{p(x)}$$

Key concept in Naïve Bayes

$$p(x,y) = p(y)p(x|y) = p(y) \prod_{d=1}^{D} p(x_d \mid y)$$
Class prior distribution Class conditional distribution

Given one data point, it has 4 features (input), and the label is 0 (output)

$$p(x_1, x_2, x_3, x_4, y = 0) = p(y = 0) \cdot p(x_1, x_2, x_3, x_4 | y = 0)$$
$$= p(y = 0) \cdot p(x_1 | y = 0) \cdot p(x_2 | y = 0) \cdot p(x_3 | y = 0) \cdot p(x_4 | y = 0)$$

Example: Naïve Bayes with Bernoulli Features

$$j: feature, \ c: label, \ i: data$$
 y x_1 x_2 $y \sim Categorical(\pi_c): \ p(y=c) = \pi_c$ 1 0 1 $p(y=1) = \pi_1$ $p(y=2) = \pi_2$ 3 1 0 $p(y=3) = \pi_3 = 1 - \pi_1 - \pi_2$ 3 1 1 0 $x|y \sim Bernoulli(\theta_{jc}): \ p(x|y) = \theta_{jc}^x (1 - \theta_{jc})^{1-x}$ 2 0 0 $p(y=3) = 1 \sim Bernoulli(\theta_{j=1,c=1})$ $p(y=1) \sim Bernoulli(\theta_{j=1,c=2})$ $p(y=1) \sim Bernoulli(\theta_{j=1,c=3})$ $p(y=1) \sim Bernoulli(\theta_{j=1,c=$

Q: how many parameters?

Model Selection and Evaluation

Tuning hyperparameters

K-fold cross validation

- Randomly partition train set S into K disjoint sets; call them fold₁, ..., fold_K
- For each hyperparameter $h \in \{1, ..., H\}$
 - For each $k \in \{1, ..., K\}$
 - train \hat{f}_k^h with $S \setminus \text{fold}_k$
 - measure error rate $e_{h,k}$ of \hat{f}_k^h on fold_k
 - Compute the average error of the above: $\widehat{err}^h = \frac{1}{K} \sum_{k=1}^K e_{h,k}$
- Choose $\hat{h} = \arg\min_{h} \widehat{err}^{h}$
- Train \hat{f}^* using S (all the training points) with hyperparameter h
- Finally, evaluate \hat{f}^* on test set to estimate its future performance.

Use when (1) the dataset is small (2) ML algorithm's retraining time complexity is low (e.g., kNN)

5-fold cross validation

Evaluating Classifiers - Precision

PREDICTED

	POSITIVE	NEGATIVE
POSITIVES	TRUE POSITIVES	FALSE NEGATIVES
NEGATIVE	FALSE POSITIVES	TRUE NEGATIVES

Precision: dividing the true positives by anything that was predicted as a positive.

Evaluating Classifiers - Recall

PREDICTED

	INLUIGILD				
	POSITIVE	NEGATIVE			
POSITIVES	TRUE POSITIVES	FALSE NEGATIVES			
NEGATIVE	FALSE POSITIVES	TRUE NEGATIVES			

Recall (or True Positive Rate): dividing the true positives by anything that should have been predicted as positive.

Evaluating Classifiers

F1 score symmetrically represents both precision and recall in one metric.

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{ ext{tp}}{ ext{tp} + rac{1}{2}(ext{fp} + ext{fn})}$$

- This is the harmonic mean of precision and recall
 - harmonic_mean(x,y)

$$\frac{1}{\frac{1}{2}(\frac{1}{x}+\frac{1}{y})}$$

• Gives equal importance to precision and recall – F1 may not be best when you care about one more than the other (e.g., in medical tests we care about recall)

Linear Models

Linear Regression

Regression Learn a function that predicts outputs from inputs,

$$y = f(x)$$

Outputs y are real-valued

Linear Regression As the name suggests, uses a *linear function*:

$$y = w^T x + b$$

$$w^T x \coloneqq \sum_{d=1}^D w_d x_d$$

Fitting Linear Regression

Intuition Find a line that is as close as possible to every training data point

The distance from each point to the line is the **residual**

Let's find w that will minimize the residual!

Least Squares Solution

Functional Find a line that minimizes the sum of squared residuals!

Given:
$$\{(x^{(i)}, y^{(i)})\}_{i=1}^{m}$$

Compute:
 $w^* = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^T x^{(i)})^2$

Least squares regression

Least Squares: Higher Dimensions

Least squares can also be written more $\|x\| := \sqrt{x \cdot x}$. compactly,

$$\|oldsymbol{x}\| := \sqrt{oldsymbol{x} \cdot oldsymbol{x}}.$$

$$\min_{w} \sum_{i=1}^{N} (y^{(i)} - w^{T} x^{(i)})^{2} = \|\mathbf{y} - \mathbf{X} w\|^{2}$$

Some slightly more advanced linear algebra gives us a solution,

$$w = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Ordinary Least Squares (OLS) solution OLS solution has less residual

Regularized Least Squares

Ordinary least-squares (OLS) estimation (no regularizer),

$$w^{\text{OLS}} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2}$$

L2 norm:
$$||w|| = \sqrt{\sum_{d=1}^{D} w_d^2}$$

L1 norm: $||w||_1 = \sum_{d=1}^{D} |w_d|$

L2-regularized Least-Squares (Ridge)

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda ||w||^{2}$$

Convention: Just saying 'RLS' means L2-RLS

L1-regularized Least-Squares (LASSO) LASSO: Least Absolute Shrinkage and Selection Operator

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda ||w||_{1}$$

Logistic Regression

Model:

$$y \sim \text{Bernoulli}(p = \sigma(w^{T}x))$$

Train: compute the MLE \widehat{w}

Test: Given test point x^* compute

$$y^* = \arg \max_{v \in \{-1,1\}} p(y = v \mid x^*; \widehat{w})$$

Equivalent to $y^* = \mathbf{I}\{\widehat{w}^{\mathsf{T}}x^* \geq 0\}$

Nonlinear Models

Separating Hyperplane

A hyperplane h(x) splits the original d-dimensional space into two half-spaces. If the input dataset is linearly separable:

$$y = \begin{cases} +1 & \text{if } h(\mathbf{x}) > 0 \\ -1 & \text{if } h(\mathbf{x}) < 0 \end{cases}$$

Example:

$$h(x) = x_1 + 2x_2 - 4$$

Q: label for (0, 3)?

A: +1

Margin and Support Vectors

Over all the n points, the *margin* of the linear classifier is the minimum distance of a point from the separating hyperplane:

$$\delta^* = \min_{\mathbf{x}_i} \left\{ \frac{y_i(\mathbf{w}^T \mathbf{x}_i + b)}{\|\mathbf{w}\|} \right\}$$

All the points that achieve this minimum distance are called *support vectors*.

$$\delta^* = \frac{y^*(\mathbf{w}^T \mathbf{x}^* + b)}{\|\mathbf{w}\|}$$

Max-Margin Classifier (Linear Separable Case)

For training data $\{(x^{(i)},y^{(i)})\}_{i=1}^m$, a classifier $f(x)=w^{\rm T}x+b$ with 0 train error will satisfy

$$y^{(i)}f\big(x^{(i)}\big) = y^{(i)}\big(w^{\top}x^{(i)} + b\big) > 0$$

↓ negative margin when misclassifying it!

The distance for $(x^{(i)}, y^{(i)})$ to separating hyperplane

$$\frac{y^{(i)}(w^{\top}x^{(i)} + b)}{\|w\|}$$

The margin of a classifier f(x) is

$$\min_{i} \frac{y^{(i)}(w^{\top}x^{(i)} + b)}{\|w\|}$$

Find f that maximize margin

$$\arg \max_{w,b} \min_{i} \frac{y^{(i)}(w^{T}x^{(i)} + b)}{\|w\|}$$

Canonical Hyperplane

Way to solve this issue:

• Choose the scalar s such that the absolute distance of a *support vector* from the hyperplane is 1.

$$sy^*(\mathbf{w}^T\mathbf{x}^* + b) = 1$$

$$s = \frac{1}{y^*(\mathbf{w}^T\mathbf{x}^* + b)} = \frac{1}{y^*h(\mathbf{x}^*)}$$

$$y_i \ (\mathbf{w}^T\mathbf{x}_i + b) \ge 1, \text{ for all points } \mathbf{x}_i \in \mathbf{D}$$

$$arg \max_{w,b} \min_{i} \frac{y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b)}{\|w\|}$$

Margin:
$$\delta^* = \frac{1}{\|\mathbf{w}\|}$$

Max margin:
$$h^* = \arg \max_h \left\{ \delta_h^* \right\} = \arg \max_{\mathbf{w}, b} \left\{ \frac{1}{\|\mathbf{w}\|} \right\}$$

NN: Feedforward Procedure

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

 $784 \times 16 + 16 \times 16 + 16 \times 10$ weights 16 + 16 + 10 biases

13,002

Each parameter has some impact on the output...need to train all these parameters simultaneously to have a good prediction accuracy

Clustering

k-means clustering

Input: k: num. of clusters, $S = \{x_1, ..., x_n\}$

[Initialize] Pick $c_1, ..., c_k$ as randomly selected points from S (see next slides for alternatives)

For t=1,2,...,max_iter

- [Assignments] $\forall x \in S$, $a_t(x) = \arg\min_{j \in [k]} ||x c_j||_2^2$
- If $t \neq 1$ AND $a_t(x) = a_{t-1}(x), \forall x \in S$
 - break
- [Centroids] $\forall j \in [k], c_j \leftarrow \text{average}(\{x \in S: a_t(x) = j\})$

Output: $c_1, ..., c_k$ and $\{a_t(x_i)\}_{i \in [n]}$

