Predlog projekta: Automatsko prepoznavanje koraka folklornog plesa

1. Naziv teme

Automatsko prepoznavanje koraka folklornog plesa pomoću metoda mašinskog učenja i računarskog vida.

2. Definicija problema

Cilj projekta je razvijanje sistema zasnovanog na mašinskom učenju koji može automatski prepoznati i klasifikovati pojedinačne plesne korake na osnovu video-zapisa izvođenja folklornog koraka ili obrasca. Osnovna ideja je kreirati model koji detektuje obrasce u pokretima tela i dodeljuje im odgovarajuće klase. U prvoj fazi akcenat će biti na prepoznavanju osnovnih koraka, dok je sledeća vizija proširenje modela na prepoznavanje kompletnih kola.

3. Motivacija za problem koji se rešava

Automatsko prepoznavanje pokreta predstavlja interdisciplinarni izazov sa širokom primenom u sportu, fitnesu, medicini, obrazovanju i umetnosti. U kontekstu folklora, ovaj projekat ima višestruke prednosti:

- Edukacija: Omogućava plesačima i učenicima dobijanje instant povratne informacije o ispravnosti koraka. Pored toga, pruža detaljno razložene obrasce i pokrete koje dodatno olakšavaju igračima učenje novog koraka, ili spleta koraka.
- Očuvanje kulture: Pruža mogućnost digitalnog arhiviranja tradicionalnih plesova i stvaranja baze znanja za buduće generacije.
- Analiza performansi: Koreografi i instruktori mogu koristiti rezultate analize za unapređenje tehnike izvođača i objektivnu evaluaciju rada.

4. Skup podataka

Pošto ne postoji javno dostupan označen skup podataka specifičan za srpski folklor, neophodno je kreirati originalni dataset. Dataset će sadržati video-zapise izvođenja osnovnih koraka (npr. skok, trčeći korak, podkok...), koje će izvoditi ista osoba u kontrolisanim uslovima. Svaki video biće obeležen prema tipu koraka, a iz njega će se izdvojiti najmanje 1000 frejmova po kategoriji. Iz svakog frejma ekstrahovaće se koordinate ključnih tačaka tela pomoću MediaPipe biblioteke, što čini atributni prostor podataka. Ciljno obeležje dataset-a su nazivi koraka, a u kasnijim fazama i kompletnog kola.

5. Način pretprocesiranja podataka

Podaci će biti obrađeni u više faza:

- Ekstrakcija frejmova: Video zapisi će se podeliti na pojedinačne slike.
- Detekcija ključnih tačaka: Pomoću MediaPipe Pose alata dobiće se koordinate 33 tačke tela.
- Normalizacija: Koordinate će biti normalizovane radi uklanjanja zavisnosti od udaljenosti od kamere.
- Sekvencijalizacija: Frejmovi će se grupisati u sekvence koje predstavljaju jedan korak, što je ključno za rad rekurentnih mreža.

6. Metodologija

Projekat se realizuje kroz dve glavne faze:

- 1. Prepoznavanje pojedinačnih koraka:
- Ulaz: Sekvence koordinata ključnih tačaka.
- Model: LSTM mreža trenirana da klasifikuje tip koraka.
- Izlaz: Naziv koraka.
- 2. Prepoznavanje celih kola:
- Ulaz: Niz prepoznatih koraka iz prve faze.
- Model: Sekvencijalna mreža (LSTM ili slična) koja uči obrasce koreografija.
- Izlaz: Naziv kola (npr. 'Užičko kolo').

7. Način evaluacije

Dataset će biti podeljen na tri dela: 70% za treniranje, 15% za validaciju i 15% za testiranje. Performanse će se meriti pomoću tačnosti (accuracy) i dodatno analizirati kroz matricu konfuzije, koja daje detaljniji uvid u greške po klasama. U kasnijim fazama mogu se koristiti i dodatne metrike poput precision, recall i F1-score, posebno u scenarijima neravnomerne zastupljenosti klasa.

8. Tehnologije

Za realizaciju projekta koristiće se:

- Programski jezik: Python

Računarski vid: OpenCV, MediaPipe
Obrada podataka: NumPy, Pandas
Mašinsko učenje: TensorFlow/Keras
Vizualizacija: Matplotlib, Seaborn

9. Relevantna literatura

1. MediaPipe Pose Documentation:

https://developers.google.com/mediapipe/solutions/vision/pose landmarker

- 2. Pose Estimation using Deep Learning: A Survey: https://arxiv.org/abs/2103.00392
- 3. Introduction to LSTM networks: https://colah.github.io/posts/2015-08-Understanding-LSTMs/