

# MATEMÁTICA DISCRETA

Prof. Sebastião Marcelo

Relações



# Relação:

O conceito de relação está muito

associado ao conceito formal de relação.

- Estatura das pessoas
- Igualdade
- Lista de contatos
- Conjunto de países





# Relações:

Podemos definir uma **relação** como sendo a existência de determinadas conexões entre "pares ordenados" assumindo uma determinada ordem.





# Relações:

Uma relação R do conjunto A para o conjunto B definida como:  $R: A \rightarrow B$  de pares ordenados de elementos a e b, sendo definida como: (a, b).





# Relações:

Pares ordenados de elementos a e b, sendo definida como: (a, b).

Um par ordenado onde a é o primeiro elemento e b o segundo elemento.





Para os pares ordenados, onde podemos

particularizar: (a, b) = (c, d)



Quando:

Logo:

A menos que:



#### Produto de Cartesiano:

Considerando dois conjuntos quaisquer  $A \in B$ .

O conjunto de todos os pares ordenados (a, b),

onde,  $a \in A \in b \in B$ ,

é chamado de produto ou produto

cartesiano de A por B.





#### Produto de Cartesiano:

Onde podemos escrever o produto

cartesiano como sendo:

$$A \times B = \{(a,b) \mid a \in A \ e \ b \in B\}$$



### Exemplo 1:

Podemos ter a representação do conjunto



 $R^2 = R \times R$ , como sendo o conjunto de pares ordenados de números reais, onde teremos um ponto P, que representa um par ordenado (a,b) de números reais, sendo  $R^2$  frequentemente chamado de **plano cartesiano**.

#### Exemplo 2:

Sejam: 
$$A = \{1, 2\}$$
 e  $B = \{a, b, c\}$ .



Determine:  $A \times B e B \times A$ .



### Exemplo 2:

Sejam:  $A = \{1, 2\}$  e  $B = \{a, b, c\}$ .

Determine:  $A \times A e B \times B$ .







Exemplo 3:

Sejam:  $A = \{1, 2\}$  e  $B = \{a, b, c\}$ .

Determine o número de elementos de:

 $A \times B$ ,  $A \times A \in B \times B$ 





Exemplo 4: Sejam:  $A = \{1, 2\}$  e  $B = \{a, b, c\}$ .

$$A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$$

Representação gráfica do conjunto.





# Relações:

Se R é uma relação de A em B, R:  $A \rightarrow B$  então R é um subconjunto de pares ordenados, de tal forma que a relação R é um subconjunto de  $A \times B$ .

Se R é uma relação de A em A, então R é um subconjunto de  $A^2 = A \times A$ .



# Relações:

Para cada par  $a \in A$  e  $b \in B$ , duas afirmações são verdadeiras:

•  $(a, b) \in R$ ; dizemos que  $a \notin R$ -relacionado com b,



•  $(a, b) \notin R$ ; dizemos que  $a \ n\tilde{a}o \ \acute{e} \ R$ -relacionado com b,



# Relações:

Se R é uma relação de A em B, então R é um subconjunto de pares ordenados, de tal forma que a relação R é um subconjunto de  $A \times B$ .



# Relações:

O *domínio* de uma relação *R* será o conjunto de todos os primeiros elementos dessa relação, ou seja, em um produto cartesiano os primeiros elementos do par ordenado.



# Relações:

A *imagem* de uma relação *R* será o conjunto de todos os segundos elementos dessa relação, ou seja, em um produto cartesiano os segundos elementos do par ordenado.



Exemplo 5: Sejam: 
$$A = \{1, 2, 3\}$$
 e  $B = \{x, y, z\}$ ,  
E seja  $R = \{(1, y), (1, z), (3, y)\}$ .

Onde R é uma relação de A em B, uma vez que R é um subconjunto de A x B.



Determinar o Domínio e a Imagem de R.



### Exemplo 6:

Sejam:  $A = \{ovos, leite, milho\}$  e  $B = \{vacas, cabras, galinhas\}$ .

Onde R é uma relação de A em B, por  $(a,b) \in R$ , quando a for produzido por b.



# Relação Inversa:

Seja R uma relação qualquer de um conjunto de A para um conjunto B.

A inversa de R, escrita como  $R^{-1}$ , é a relação de B em A que consiste nos pares ordenados, que tem sua ordem invertida, e pertencem a R.



### Exemplo 7:

Sejam: 
$$A = \{1, 2, 3\}$$
 e  $B = \{x, y, z\}$ .

A inversa de  $R = \{(1, y), (1, z), (3, y)\}.$ 



é:



### Representação das Relações:

Considere uma relação S sobre o conjunto

**R** dos números reais.



S consiste em todos os pares ordenados de números reais que satisfazem a equação



# Exemplo 8:

Representar a equação:  $x^2 + y^2 = 25$ 







Representação das Relações:

Grafo Orientado de Relação sobre

**Conjuntos** 

Quando temos setas dos elementos de *x* relacionados aos elementos de *y*, sempre que *x* estiver relacionado com *y*.

Chamamos de **Grafo orientado** da relação

### Exemplo 9:

Qual o grafo orientado da relação R sobre  $A = \{1, 2, 3, 4\}$ .

$$R = \{(1,2),(2,2),(2,4),(3,2),(3,4),(4,1),(4,3)\}$$





### Composição das Relações:

Sejam A, B e C conjuntos, e sejam R uma relação de A para B e S uma relação de B para C.



# Composição das Relações:

Então, R e S originam uma relação de A para C denotada por  $R \circ S$ 



A relação  $R \circ S$  é dita composição de  $R \in S$ ; é algumas veze escrita por RS

### Exemplo 10:

Sejam: 
$$A = \{1, 2, 3, 4\}$$
  $e$   $B = \{a, b, c, d\}$ ,  $C = \{x, y, z\}$ , e

Seja: 
$$R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$$

$$S = \{(b, x), (b, z), (c, y), (d, z)\}.$$



Qual a Relação composição **R** • **S**.



### Exemplo 10:

Sejam: 
$$A = \{1, 2, 3, 4\}$$
  $e$   $B = \{a, b, c, d\}$ ,  $C = \{x, y, z\}$ , e

Seja: 
$$\mathbf{R} = \{(1, a), (2, d), (3, a), (3, b), (3, d)\},\$$

$$S = \{(b, x), (b, z), (c, y), (d, z)\}$$



Temos o seguinte diagrama de flechas de R e S.



### Composição de Relações e Matrizes

Há outra maneira de determinar  $\mathbf{R} \circ \mathbf{S}$ 

Sejam  $M_R$  e  $M_S$ , respectivamente,



Então temos:

$$R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$$



### Composição de Relações e Matrizes

Há outra maneira de determinar  $\mathbf{R} \circ \mathbf{S}$ 

Sejam  $M_R$  e  $M_S$ , respectivamente,



Então temos:

$$S = \{(b, x), (b, z), (c, y), (d, z)\}$$



Composição de Relações e Matrizes

Se multiplicarmos  $M_R$  por  $M_S$ , obtemos seguinte matriz:



### Tipos de Relações

Há alguns tipos de relações importantes:

Relações Reflexivas;

Relações Simétricas;

Relações Transitivas.



### Relações Reflexivas

Uma relação R em um conjunto A é reflexiva se aRa para todo,  $a \in A$ , isto é,

se  $(a, a) \in R$  para todo  $a \in A$ 

Portanto, R não é reflexiva se existe um

 $a \in A \ tal \ que \ (a,a) \notin R$ .



# Exemplo 11:

Considere as seguintes relações em um conjunto

$$A = \{ 1, 2, 3, 4 \}.$$

$$R = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$$

$$S = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

$$T = \{(1,3), (2,1)\}$$

 $V = \emptyset$ , relação vazia

 $U = A \times A$ , relação universal

Determinar quais das relações são reflexivas.





### Relações Simétricas

Uma relação R em um conjunto A é simétrica se aRb implica bRa, isto é, se  $(a,b) \in R$ , implica  $(b,a) \in R$ .

Logo, R não é simétrica se existe  $a, b \in A$  $(a, b) \in R$  mas  $(b, a) \notin R$ .



### Exemplo 12:

Considere as seguintes relações em um conjunto

$$A = \{ 1, 2, 3, 4 \}.$$

$$R = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$$

$$S = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

$$T = \{(1,3), (2,1)\}$$

 $V = \emptyset$ , relação vazia

 $U = A \times A$ , relação universal

Determinar quais das relações são simétricas.





### Relações Transitivas

Uma relação R em um conjunto A é transitiva se aRb e bRa, implicam aRc isto é, sempre que (a,b) e (b,c)  $\in R$ , então (a,c)  $\in R$ .

Logo, R não é transitiva se existem  $a, b, c \in A$  de tal forma que (a, b) e  $(b, c) \in R$  mas  $(a, c) \notin R$ .

# Exemplo 13:

Considere as seguintes relações em um conjunto

$$A = \{ 1, 2, 3, 4 \}.$$

$$R = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$$

 $S = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$ 

$$T = \{(1,3), (2,1)\}$$

 $V = \emptyset$ , relação vazia

 $U = A \times A$ , relação universal

Determinar quais das relações são transitivas.





#### Relação de Equivalência

Seja um conjunto S não vazio.





### Exemplo 14: Relação de Equivalência

$$R = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$$

$$S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$$
  
 $U = A \times A$ , relação universal

$$T = \{(1,3), (2,1)\}$$
  $V = \emptyset$ , relação vazia



### Exemplo 15:

Sejam 
$$A = \{ 2, 3, 4, 5 \} e B = \{ 3, 4, 5, 6, 10 \}.$$

Para cada uma das seguintes relações determine:

- Os elementos (pares) da relação,
- Determine o conjunto domínio,



- Determine o conjunto imagem,
- Representação gráfica (plano cartesiano).

$$R_1 = \{(x, y) \in A \times B \mid x \in divisivel por y\}$$

$$R_2 = \{(x, y) \in A \times B \mid x \cdot y = 12\}$$

$$R_3 = \{(x, y) \in A \times B \mid x = y + 1\}$$

$$R_4 = \{(x, y) \in A \times B \mid x \leq y\}$$



### Exemplo 16:

Considere a relação  $R = \{ (1,3), (1,4), (3,2), (3,4) \}$  sobre  $A = \{ 1,2,3,4 \}$ .

- a) Encontre a Matriz  $M_R$  de R.
- b) Encontre o Domínio e a imagem de R.



- c) Encontre  $R^{-1}$ .
- d) Esboce o grafo orientado de R.
- e) Determine a relação composição  $R \circ R$ .
- f) Encontre  $R \circ R^{-1}$ .
- g) Encontre  $R^{-1} \circ R$ .

