

# Global United Technology Services Co., Ltd.

Report No.: GTSE15060113805

# **FCC REPORT**

**Applicant:** Shenzhen Awood Computer Technology Co., Ltd.

Address of Applicant: 8/F.Huichao technology Building, Jinhai Rd, Xixiang-Baoan

District, Shenzhen, China

**Equipment Under Test (EUT)** 

Product Name: Notebook Computer

Model No.: X1

FCC ID: 2AFLU-X1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2014

Date of sample receipt: July 20, 2015

**Date of Test:** July 21-30, 2015

Date of report issued: August 03, 2015

Test Result: PASS \*

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 2 Version

| Version No. | Date            | Description |
|-------------|-----------------|-------------|
| 00          | August 03, 2015 | Original    |
|             |                 |             |
|             |                 |             |
|             |                 |             |
|             |                 |             |

| Prepared By: | 5am.900          | Date: | August 03, 2015 |
|--------------|------------------|-------|-----------------|
|              | Project Engineer |       |                 |
|              | 1                |       |                 |

Check By: Date: August 03, 2015

Reviewer



# 3 Contents

|   |                   |                                                | Page |
|---|-------------------|------------------------------------------------|------|
| 1 | COV               | /ER PAGE                                       | 1    |
| 2 | VER               | RSION                                          | 2    |
|   |                   |                                                |      |
| 3 | CON               | NTENTS                                         | 3    |
| 4 | TES               | T SUMMARY                                      | 4    |
|   | 4.1               | MEASUREMENT UNCERTAINTY                        | 4    |
| 5 | GEN               | NERAL INFORMATION                              | 5    |
|   | 5.1               | CLIENT INFORMATION                             | 5    |
|   | 5.2               | GENERAL DESCRIPTION OF EUT                     |      |
|   | 5.3               | TEST MODE                                      |      |
|   | 5.4               | DESCRIPTION OF SUPPORT UNITS                   |      |
|   | 5.5               | TEST FACILITY                                  |      |
|   | 5.6               | TEST LOCATION                                  | 7    |
| 6 | TES               | T INSTRUMENTS LIST                             | 8    |
| 7 | TES               | T RESULTS AND MEASUREMENT DATA                 | 10   |
|   | 7.1               | ANTENNA REQUIREMENT                            |      |
|   | 7.2               | CONDUCTED EMISSIONS                            |      |
|   | 7.3               | CONDUCTED PEAK OUTPUT POWER                    |      |
|   | 7.4               | CHANNEL BANDWIDTH                              |      |
|   | 7.5               | POWER SPECTRAL DENSITY                         |      |
|   | 7.6               | BAND EDGES                                     |      |
|   | 7.6. <sup>-</sup> |                                                |      |
|   | 7.7.              | SPURIOUS EMISSION                              |      |
|   | 7.7.              | 1 Radiated Emission Method FREQUENCY STABILITY |      |
|   |                   |                                                |      |
| 8 | TES               | T SETUP PHOTO                                  | 59   |
| 9 | FUT               | CONSTRUCTIONAL DETAILS                         | 60   |



# 4 Test Summary

| Test Item                        | Section in CFR 47          | Result |
|----------------------------------|----------------------------|--------|
| Antenna requirement              | 15.203                     | Pass   |
| AC Power Line Conducted Emission | 15.207                     | Pass   |
| Conducted Peak Output Power      | 15.407(a)(3)               | Pass   |
| Channel Bandwidth                | 15.407(e)                  | Pass   |
| Power Spectral Density           | 15.407(a)(3)               | Pass   |
| Band Edge                        | 15.407(b)(4)               | Pass   |
| Spurious Emission                | 15.205/15.209/15.407(b)(4) | Pass   |
| Frequency Stability              | 15.407(g)                  | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

### 4.1 Measurement Uncertainty

| Test Item                           | Frequency Range                      | Measurement Uncertainty          | Notes   |
|-------------------------------------|--------------------------------------|----------------------------------|---------|
| Radiated Emission                   | 9kHz ~ 30MHz                         | ± 4.34dB                         | (1)     |
| Radiated Emission                   | 30MHz ~ 1000MHz                      | ± 4.24dB                         | (1)     |
| Radiated Emission                   | 1GHz ~ 40GHz                         | ± 4.68dB                         | (1)     |
| AC Power Line Conducted<br>Emission | 0.15MHz ~ 30MHz                      | ± 3.45dB                         | (1)     |
| Note (1): The measurement u         | ncertainty is for coverage factor of | of k=2 and a level of confidence | of 95%. |



# **5** General Information

# 5.1 Client Information

| Applicant:               | Shenzhen Awood Computer Technology Co., Ltd.                                                                                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | 8/F.Huichao technology Building, Jinhai Rd, Xixiang-Baoan District,<br>Shenzhen, China                                                                                                               |
| Manufacturer:            | Shenzhen Awood Computer Technology Co., Ltd.                                                                                                                                                         |
| Address of Manufacturer: | 8/F.Huichao technology Building, Jinhai Rd, Xixiang-Baoan District,<br>Shenzhen, China                                                                                                               |
| Factory:                 | SHENZHEN IEZO ELECTRONIC TECHNOLOGIES CO., LTD.                                                                                                                                                      |
| Address of Factory:      | 102 Room for F Buliding 1 Floor, 3 Floor, 2 Floor for Eest West, 4 Floor for East, 201 Room for E Buliding, New Wood Road 6th, New Wood Community, Pinghu Street, Longgang District, Shenzhen, China |

# 5.2 General Description of EUT

| Product Name:          | Notebook Computer                                                                       |
|------------------------|-----------------------------------------------------------------------------------------|
| Model No.:             | X1                                                                                      |
| Operation Frequency:   | 802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5745MHz ~ 5825MHz                      |
|                        | 802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 5755MHz ~ 5795MHz<br>802.11ac(HT80): 5775MHz |
| Channel numbers:       | 802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5                                      |
| Charmer numbers.       | 802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 2                                            |
|                        | 802.11ac(HT80): 1                                                                       |
| Channel bandwidth:     | 802.11a/802.11n(HT20)/802.11ac(HT20) : 20MHz                                            |
|                        | 802.11n(HT40)/802.11ac(HT40) : 40MHz                                                    |
|                        | 802.11ac(HT80): 80MHz                                                                   |
| Modulation technology: | 802.11a/802.11n(H20)/802.11n(H40)/802.11ac(HT20)/802.11ac(HT40)<br>/802.11ac(HT80):     |
|                        | Orthogonal Frequency Division Multiplexing (OFDM)                                       |
| Antenna Type:          | Integral Antenna                                                                        |
| Antenna gain:          | 0.85dBi for 5G band(declare by Applicant)                                               |
| Power supply:          | Adapter:                                                                                |
|                        | Model No.:HKA03619021-6C                                                                |
|                        | Input: AC 100~240V~50/60Hz 1.0A                                                         |
|                        | Output: DC 19.0V 2.1A                                                                   |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



|                         | Operation Frequency each of channel @ 5.8G Band |         |           |         |           |         |           |
|-------------------------|-------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|
| Channel                 | Frequency                                       | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 149                     | 5745MHz                                         | 153     | 5765MHz   | 155     | 5775MHz   | 157     | 5785MHz   |
| 161 5805MHz 165 5825MHz |                                                 |         |           |         |           |         |           |

### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

|                 |                                            | Frequency (MHz)                 |                |  |  |  |
|-----------------|--------------------------------------------|---------------------------------|----------------|--|--|--|
|                 |                                            | 5.8G Band                       |                |  |  |  |
| Test channel    | 802.11a<br>802.11n(HT20)<br>802.11ac(HT20) | 802.11n(HT40)<br>802.11ac(HT40) | 802.11ac(HT80) |  |  |  |
| Lowest channel  | 5745                                       | 5755                            |                |  |  |  |
| Middle channel  | 5785                                       |                                 | 5775           |  |  |  |
| Highest channel | 5825                                       | 5795                            |                |  |  |  |



### 5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode           | Data rate |
|----------------|-----------|
| 802.11a        | 6Mbps     |
| 802.11n(HT20)  | 6.5Mbps   |
| 802.11n(HT40)  | 13Mbps    |
| 802.11ac(HT20) | 6.5Mbps   |
| 802.11ac(HT40) | 13.5Mbps  |
| 802.11ac(HT80) | 29.3Mbps  |

### 5.4 Description of Support Units

None.

### 5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

### • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

### 5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960



# 6 Test Instruments list

| Rad  | Radiated Emission:                    |                                    |                           |                  |                        |                            |  |  |
|------|---------------------------------------|------------------------------------|---------------------------|------------------|------------------------|----------------------------|--|--|
| Item | Test Equipment                        | Manufacturer                       | Model No.                 | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber          | ZhongYu Electron                   | 9.2(L)*6.2(W)*<br>6.4(H)  | GTS250           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 2    | Control Room                          | ZhongYu Electron                   | 6.2(L)*2.5(W)*<br>2.4(H)  | GTS251           | N/A                    | N/A                        |  |  |
| 3    | EMI Test Receiver                     | Rohde & Schwarz                    | ESU26                     | GTS203           | June 30 2015           | June 29 2016               |  |  |
| 4    | Spectrum analyzer                     | Agilent                            | E4447A                    | GTS516           | June 30 2015           | June 29 2016               |  |  |
| 5    | Spectrum Analyzer                     | Agilent                            | E4440A                    | GTS533           | Nov. 19 2014           | Nov. 18 2015               |  |  |
| 6    | BiConiLog Antenna                     | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | VULB9163                  | GTS214           | Feb. 22 2015           | Feb. 21 2016               |  |  |
| 7    | Double -ridged<br>waveguide horn      | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | 9120D-829                 | GTS208           | June 30 2015           | June 29 2016               |  |  |
| 8    | Horn Antenna                          | ETS-LINDGREN                       | 3160                      | GTS217           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 9    | EMI Test Software                     | AUDIX                              | E3                        | N/A              | N/A                    | N/A                        |  |  |
| 10   | Coaxial Cable                         | GTS                                | N/A                       | GTS213           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 11   | Coaxial Cable                         | GTS                                | N/A                       | GTS211           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 12   | Coaxial cable                         | GTS                                | N/A                       | GTS210           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 13   | Coaxial Cable                         | GTS                                | N/A                       | GTS212           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 14   | Amplifier(100kHz-<br>3GHz)            | HP                                 | 8347A                     | GTS204           | June 30 2015           | June 29 2016               |  |  |
| 15   | Amplifier(2GHz-<br>20GHz)             | HP                                 | 8349B                     | GTS206           | June 30 2015           | June 29 2016               |  |  |
| 16   | Amplifier (18-40GHz)                  | MITEQ                              | AMF-6F-18004000-<br>29-8P | GTS534           | June 30 2015           | June 29 2016               |  |  |
| 17   | Band filter                           | Amindeon                           | 82346                     | GTS219           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 18   | Constant temperature and humidity box | Oregon Scientific                  | BA-888                    | GTS248           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 19   | D.C. Power Supply                     | Instek                             | PS-3030                   | GTS232           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 20   | Universal radio communication tester  | Rohde & Schwarz                    | CMU200                    | GTS235           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 21   | Splitter                              | Agilent                            | 11636B                    | GTS237           | Mar. 28 2015           | Mar. 27 2016               |  |  |
| 22   | Power Meter                           | Anritsu                            | ML2495A                   | GTS540           | June 30 2015           | June 29 2016               |  |  |
| 23   | Power Sensor                          | Anritsu                            | MA2411B                   | GTS541           | June 30 2015           | June 29 2016               |  |  |



| Con  | Conducted Emission:      |                                    |                      |                  |                        |                               |  |
|------|--------------------------|------------------------------------|----------------------|------------------|------------------------|-------------------------------|--|
| Item | Test Equipment           | Manufacturer                       | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due<br>date<br>(mm-dd-yy) |  |
| 1    | Shielding Room           | ZhongYu Electron                   | 7.0(L)x3.0(W)x3.0(H) | GTS264           | June 30 2015           | June 29 2016                  |  |
| 2    | <b>EMI Test Receiver</b> | Rohde & Schwarz                    | ESCS30               | GTS223           | June 30 2015           | June 29 2016                  |  |
| 3    | 10dB Pulse Limita        | Rohde & Schwarz                    | N/A                  | GTS224           | June 30 2015           | June 29 2016                  |  |
| 4    | Coaxial Switch           | ANRITSU CORP                       | MP59B                | GTS225           | June 30 2015           | June 29 2016                  |  |
| 5    | LISN                     | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | NSLK 8127            | GTS226           | June 30 2015           | June 29 2016                  |  |
| 6    | Coaxial Cable            | GTS                                | N/A                  | GTS227           | June 30 2015           | June 29 2016                  |  |
| 7    | EMI Test Software        | AUDIX                              | E3                   | N/A              | N/A                    | N/A                           |  |

| Ger  | General used equipment: |              |           |                  |                        |                               |  |  |
|------|-------------------------|--------------|-----------|------------------|------------------------|-------------------------------|--|--|
| Item | Test Equipment          | Manufacturer | Model No. | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due<br>date<br>(mm-dd-yy) |  |  |
| 1    | Barometer               | ChangChun    | DYM3      | GTS257           | July 07 2015           | July 06 2016                  |  |  |



### 7 Test results and Measurement Data

### 7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### E.U.T Antenna:

The antenna is Integral antenna. The best case gain of the antenna is 0.85dBi.



Directional Gain Calculations is below:

The same digital data are transmitted from the two antennas in a given symbol period, thus the antennas is categorization as correlated.

Accroding to KDB 662911 D01 Multiple Transmitter Output v02r01 Section F)2)a)(i), the Directional Gain = G<sub>ANT</sub> + 10log(2) dBi = 0.85 + 3.01 dBi = 3.86dBi.



### 7.2 Conducted Emissions

| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                   | ,                        |                |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|--|--|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                              |                          |                |  |  |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                               |                          |                |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                       |                          |                |  |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, St                                                                                                                                                                                                                                       | weep time=auto           |                |  |  |  |
| Limit:                | Fraguera est represe (MILIF)                                                                                                                                                                                                                                  | dBuV)                    |                |  |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                         | Quasi-peak               | Average        |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                      | 66 to 56*                | 56 to 46*      |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                         | 56                       | 46             |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                          | 60                       | 50             |  |  |  |
|                       | * Decreases with the logarithn                                                                                                                                                                                                                                | n of the frequency.      |                |  |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                               |                          |                |  |  |  |
|                       | AUX Equipment  Test table/Insulation plane  Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m                                                                                                              | Filter — AC pow          | /er            |  |  |  |
| Test procedure:       | The E.U.T and simulators a<br>line impedance stabilization<br>50ohm/50uH coupling impe                                                                                                                                                                        | n network (L.I.S.N.). Th | nis provides a |  |  |  |
|                       | 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).                                    |                          |                |  |  |  |
|                       | 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. |                          |                |  |  |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                              |                          |                |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                              | 3                        |                |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                          |                          |                |  |  |  |



### Measurement data

Line:



Trace: 16

Site

: Shielded room : FCC PART15 CLASSB QP LISN-2013 LINE Condition

: 1138RF

Job No. Test mode : Wifi mode(5.8G)

Test Engineer: Song

|        | Freq   | Read<br>Level | Level | Cable<br>Loss F | LISN<br>factor | Limit<br>Line | Over<br>Limit | Remark  |
|--------|--------|---------------|-------|-----------------|----------------|---------------|---------------|---------|
|        | MHz    | dBuV          | dBuV  | dB -            | dB             | dBuV          | dB            |         |
| 1      | 0.150  | 58. 23        | 58.50 | 0.12            | 0.15           | 66.00         | -7.50         | -       |
| 2<br>3 | 0.150  | 41.96         | 42.23 | 0.12            | 0.15           |               |               | Average |
| 3      | 0.226  | 47.50         | 47.74 | 0.12            | 0.12           | 62.61         | -14.87        | QP      |
| 4      | 0.226  | 29.26         | 29.50 | 0.12            | 0.12           | 52.61         | -23.11        | Average |
| 4<br>5 | 0.300  | 38.40         | 38.61 | 0.10            | 0.11           | 60.24         | -21.63        | QP      |
| 6      | 0.300  | 15.86         | 16.07 | 0.10            | 0.11           | 50.24         | -34.17        | Average |
| 7      | 2.500  | 36.40         | 36.68 | 0.15            | 0.13           |               | -19.32        | _       |
| 8      | 2.500  | 24.12         | 24.40 | 0.15            | 0.13           | 46.00         | -21.60        | Average |
| 9      | 4.224  | 35.37         | 35.72 | 0.15            | 0.20           |               | -20.28        |         |
| 10     | 4.224  | 12.01         | 12.36 | 0.15            | 0.20           | 46.00         | -33.64        | Average |
| 11     | 16.839 | 36.67         | 37.32 | 0.22            | 0.43           |               | -22.68        |         |
| 12     | 16.839 | 25.02         | 25.67 | 0.22            | 0.43           |               |               | Àverage |



### Neutral:



Trace: 14

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 1138RF

Test mode : Wifi mode(5.8G)

Test Engineer: Song

|        | Freq   | Read<br>Level | Level | Cable<br>Loss I | LISN<br>Factor | Limit<br>Line | Over<br>Limit | Remark  |
|--------|--------|---------------|-------|-----------------|----------------|---------------|---------------|---------|
|        | MHz    | dBuV          | dBuV  | dB .            | dB             | dBuV          | dB            |         |
| 1      | 0.150  | 58.79         | 58.98 | 0.12            | 0.07           | 66.00         | -7.02         | QP      |
| 2      | 0.150  | 41.60         | 41.79 | 0.12            | 0.07           | 56.00         | -14.21        | Average |
| 3      | 0.223  | 47.07         | 47.25 | 0.12            | 0.06           | 62.70         | -15.45        | QP      |
| 4<br>5 | 0.223  | 27.88         | 28.06 | 0.12            | 0.06           | 52.70         | -24.64        | Average |
|        | 0.406  | 34.62         | 34.79 | 0.11            | 0.06           | 57.73         | -22.94        | QP      |
| 6      | 0.406  | 20.46         | 20.63 | 0.11            | 0.06           | 47.73         | -27.10        | Average |
| 7      | 0.505  | 31.63         | 31.80 | 0.11            | 0.06           | 56.00         | -24.20        | QP      |
| 8      | 0.505  | 19.33         | 19.50 | 0.11            | 0.06           | 46.00         | -26.50        | Average |
| 9      | 2.622  | 34.88         | 35.13 | 0.15            | 0.10           | 56.00         | -20.87        | QP      |
| 10     | 2.622  | 24.63         | 24.88 | 0.15            | 0.10           | 46.00         | -21.12        | Average |
| 11     | 16.398 | 40.45         | 41.04 | 0.22            | 0.37           | 60.00         | -18.96        | QP      |
| 12     | 16.398 | 31.59         | 32.18 | 0.22            | 0.37           | 50.00         | -17.82        | Average |

### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.



# 7.3 Conducted Peak Output Power

| Test Requirement: | FCC Part15 E Section 15.407(a)(3)                                             |  |  |  |
|-------------------|-------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01 |  |  |  |
| Limit:            | 30dBm                                                                         |  |  |  |
| Test setup:       | Power Meter  E.U.T  Non-Conducted Table  Ground Reference Plane               |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                              |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                              |  |  |  |
| Test results:     | Pass                                                                          |  |  |  |

### **Measurement Data**

### 5.8G Band

### 802.11a SISO mode: ANT1

| Test CH  | Peak Output Power (dBm) | Limit(dBm)     | Result |  |
|----------|-------------------------|----------------|--------|--|
| rest CIT | 802.11a (SISO)          | Lilliit(dbill) | Result |  |
| Lowest   | 15.72                   |                |        |  |
| Middle   | 15.87                   | 30.00          | Pass   |  |
| Highest  | 15.63                   |                |        |  |

### 802.11a SISO mode: ANT2

| Toot CH | Peak Output Power (dBm) | Limit/dDm) | Dogult |  |
|---------|-------------------------|------------|--------|--|
| Test CH | 802.11a (SISO)          | Limit(dBm) | Result |  |
| Lowest  | 15.84                   |            |        |  |
| Middle  | 15.74                   | 30.00      | Pass   |  |
| Highest | 16.00                   |            |        |  |



### 802.11n/802.11ac MIMO mode:

| Test<br>mode       | Channel   | Read Level (dBm) |       | Read Level<br>(mW) | Total Peak<br>Output Power<br>(mW) | Total Peak<br>Output Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|-----------|------------------|-------|--------------------|------------------------------------|-------------------------------------|----------------|--------|
|                    | Lowest    | ANT1             | 11.74 | 14.93              | 29.75                              | 14.74                               |                |        |
|                    | Lowest    | ANT2             | 11.71 | 14.83              | 29.15                              | 14.74                               |                |        |
| 802.11n            | Middle    | ANT1             | 11.73 | 14.89              | 29.58                              | 14.71                               |                |        |
| (HT20)<br>(MIMO)   | Middle    | ANT2             | 11.67 | 14.69              | 29.56                              | 14.71                               |                |        |
| ()                 | Lighoot   | ANT1             | 11.75 | 14.96              | 29.86                              | 14.75                               |                |        |
|                    | Highest   | ANT2             | 11.73 | 14.89              | 29.00                              | 14.75                               |                | Pass   |
|                    | Lowoot    | ANT1             | 11.64 | 14.59              | 29.11                              | 14.64                               |                |        |
|                    | Lowest    | ANT2             | 11.62 | 14.52              | 29.11                              | 14.64                               | 30             |        |
| 802.11a            | Middle    | ANT1             | 11.66 | 14.66              | 29.11                              | 14.64                               |                |        |
| c(HT20)<br>(MIMO)  |           | ANT2             | 11.60 | 14.45              | 29.11                              | 14.04                               |                |        |
| ()                 | Highest   | ANT1             | 11.63 | 14.55              | 29.04                              | 14.63                               |                |        |
|                    |           | ANT2             | 11.61 | 14.49              |                                    |                                     |                |        |
| 222.44             | Lowest    | ANT1             | 11.67 | 14.69              | 29.45                              | 14.69                               |                |        |
| 802.11n<br>(HT40)  |           | ANT2             | 11.69 | 14.76              | 29.43                              | 14.09                               | _              |        |
| (MIMO)             | Highest   | ANT1             | 11.76 | 15.00              | 29.92                              | 14.76                               |                |        |
| ()                 | riigiiest | ANT2             | 11.74 | 14.93              | 29.92                              | 14.70                               |                |        |
| 000.44             | Lowest    | ANT1             | 11.61 | 14.49              | 28.84                              | 14.60                               |                |        |
| 802.11a<br>c(HT40) | FOMESI    | ANT2             | 11.57 | 14.35              | 20.04                              | 14.00                               |                |        |
| (MIMO)             | Highest   | ANT1             | 11.65 | 14.62              | 29.14                              | 14.65                               |                |        |
| ()                 | riigiiest | ANT2             | 11.62 | 14.52              | Z3.14                              | 14.05                               | -              |        |
| 802.11a            | Middle    | ANT1             | 10.86 | 12.19              | 24.27                              | 13.85                               |                |        |
| c(HT80)<br>(MIMO)  | Middle    | ANT2             | 10.82 | 12.08              | ۲٦.۲۱                              | 13.85                               |                |        |



### 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 E Section 15.407(e)                                                |  |  |  |
|-------------------|-------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01 |  |  |  |
| Limit:            | >500KHz                                                                       |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane         |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                              |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                              |  |  |  |
| Test results:     | Pass                                                                          |  |  |  |

### **Measurement Data**



### Antenna 1:

|            | 5.8G Band |                   |                    |                   |                    |                    |                |        |
|------------|-----------|-------------------|--------------------|-------------------|--------------------|--------------------|----------------|--------|
| Toot       |           | l imit            |                    |                   |                    |                    |                |        |
| Test<br>CH | 802.11a   | 802.11n(H<br>T20) | 802.11ac(<br>HT20) | 802.11n(H<br>T40) | 802.11ac(<br>HT40) | 802.11ac(<br>HT80) | Limit<br>(KHz) | Result |
| Lowest     | 16.413    | 17.651            | 17.605             | 35.193            | 35.167             |                    |                |        |
| Middle     | 16.393    | 17.657            | 17.623             |                   |                    | 62.865             | >500           | Pass   |
| Highest    | 16.564    | 17.640            | 17.640             | 35.107            | 35.179             |                    |                |        |

### Antenna 2:

|            | 5.8G Band |                   |                    |                   |                    |                    |                |        |
|------------|-----------|-------------------|--------------------|-------------------|--------------------|--------------------|----------------|--------|
| Toot       |           | l imais           |                    |                   |                    |                    |                |        |
| Test<br>CH | 802.11a   | 802.11n(H<br>T20) | 802.11ac(<br>HT20) | 802.11n(H<br>T40) | 802.11ac(<br>HT40) | 802.11ac(<br>HT80) | Limit<br>(KHz) | Result |
| Lowest     | 16.379    | 17.608            | 17.573             | 35.068            | 35.052             |                    |                |        |
| Middle     | 16.410    | 17.629            | 17.638             |                   |                    | 75.079             | >500           | Pass   |
| Highest    | 16.355    | 17.640            | 17.641             | 35.096            | 33.949             |                    |                |        |

### Test plot as follows:



Test mode: 802.11a

# Antenna 1:

# Ref 20 dBm Atten 30 dB Peak Ref 20 dBm Atten 30 dB Ref 20 dBm Atten 30 dB Regeat Ref 20 dBm Atten 30 dB

### Lowest channel



### Middle channel



Highest channel

### Antenna 2:



### Lowest channel



### Middle channel



Highest channel



Test mode: 802.11n(HT20) @ 5.8G Band

### Antenna 1: Antenna 2:





### Lowest channel

Trig Free Meas Off Ch Frea 5.785 GHz Occupied Bandwidth Atten 30 dB Occupied BW ACP Multi Carrier Power •VBW 300 kHz Sween 2.88 ms (601 pts) Power Stat CCDF Occ BW % Pwr x dB Occupied Bandwidth 17.7167 MHz More 1 of 2 Transmit Freq Error

Lowest channel



# Middle channel



Middle channel



Highest channel



### Test mode: 802.11ac(HT20)

# Antenna 1:

### Meas Setup Avg Number Ch Freq 5.745 GH: Trig Fre Occupied Bandwidth Ava Mode Atten 30 dB <u>0n</u> Occ BW % Pwr OBW Span 30.0000000 MHz #VRU 300 kH≂ Occ BN % Pwr x dB Occupied Bandwidth 17.7772 MHz Optimize Ref Level Transmit Freq Error

### Antenna 2:



### Lowest channel



Lowest channel



# Middle channel



Middle channel



Highest channel Highest channel



Test mode: 802.11n(HT40) @ 5.8G Band

### Antenna 1: Antenna 2:



Lowest channel



Highest channel



Lowest channel



Highest channel



Test mode: 802.11ac(HT40)

### Antenna 1: Antenna 2:





### Lowest channel



Lowest channel



Highest channel

Highest channel



Test mode: 802.11ac(HT80)

# Antenna 1: Antenna 2:





Middle channel Middle channel



# 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 E Section 15.407(a)(3)                                             |  |  |  |
|-------------------|-------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01 |  |  |  |
| Limit:            | 30dBm                                                                         |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane         |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                              |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                              |  |  |  |
| Test results:     | Pass                                                                          |  |  |  |

### **Measurement Data**



### Antenna 1:

|            | 5.8G Band         |       |                           |       |       |       |               |      |  |  |  |  |  |
|------------|-------------------|-------|---------------------------|-------|-------|-------|---------------|------|--|--|--|--|--|
| Toot       |                   | Limit |                           |       |       |       |               |      |  |  |  |  |  |
| Test<br>CH | 802.11a<br>(SISO) |       | 802.11ac(H<br>T20) (MIMO) |       |       |       | (dBm/500kH Re |      |  |  |  |  |  |
| Lowest     | 1.51              | 0.93  | 1.76                      | -0.11 | -0.36 |       |               |      |  |  |  |  |  |
| Middle     | 1.49              | 1.54  | 1.38                      |       |       | -2.51 | 30.00         | Pass |  |  |  |  |  |
| Highest    | 1.31              | 1.08  | 0.71                      | -0.61 | -1.23 |       |               |      |  |  |  |  |  |

### Antenna 2:

|            | 5.8G Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |             |             |       |       |       |      |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-------------|-------|-------|-------|------|--|--|--|--|--|
| Toot       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Po   | wer Spectra | Density (dB | m)    |       | Limit |      |  |  |  |  |  |
| Test<br>CH | 802.11a   802.11n(HT   802.11ac(H   802.11n(HT   802.11ac(H   802.11ac(H   802.11ac(H   602.11ac(H   602.11ac |      |             |             |       |       |       |      |  |  |  |  |  |
| Lowest     | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.13 | 2.89        | -0.27       | -0.88 |       |       |      |  |  |  |  |  |
| Middle     | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.39 | 2.92        |             |       | -2.48 | 30.00 | Pass |  |  |  |  |  |
| Highest    | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.77 | 1.82        | -0.11       | -0.24 |       |       |      |  |  |  |  |  |

### Antenna 1 + Antenna 2:

| 7 111101111 | Antenna 1 · Antenna 2.                                                                                         |                              |      |      |      |       |       |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------|------------------------------|------|------|------|-------|-------|--|--|--|--|--|
|             | 5.8G Band                                                                                                      |                              |      |      |      |       |       |  |  |  |  |  |
| Tool        |                                                                                                                | Power Spectral Density (dBm) |      |      |      |       |       |  |  |  |  |  |
| Test<br>CH  | 802.11n(HT20) 802.11ac(HT20) 802.11n(HT40) 802.11ac(HT4 802.11ac(HT8 (MIMO) (MIMO) 0) (MIMO) 0) (MIMO) z) Resu |                              |      |      |      |       |       |  |  |  |  |  |
| Lowest      | 5.18                                                                                                           | 5.37                         | 2.82 | 2.40 |      |       |       |  |  |  |  |  |
| Middle      | 5.00                                                                                                           | 5.23                         |      |      | 0.52 | 30.00 | Pass  |  |  |  |  |  |
| Highes<br>t | 4.45                                                                                                           | 4.31                         | 2.66 | 2.30 |      | 55.00 | . 400 |  |  |  |  |  |



### Test plot as follows:

Test mode: 802.11a

### Antenna 1:



### Antenna 2:



### Lowest channel



Lowest channel



### Middle channel



Middle channel



Highest channel

Highest channel



Test mode: 802.11n(HT20) @ 5.8G Band

### Antenna 1: Antenna 2:





### Lowest channel



Lowest channel



### Middle channel



Middle channel



Highest channel

Highest channel



Test mode: 802.11ac(HT20)

### Antenna 1: Antenna 2:





### Lowest channel



Lowest channel



### Middle channel



Middle channel



Highest channel

Highest channel



R T

Peak Search

Test mode: 802.11n(HT40) @ 5.8G Band

### Antenna 1: Antenna 2:





Agilent

### Lowest channel



Lowest channel



Highest channel

Highest channel



R T

Peak Search

Test mode: 802.11ac(HT40)

### Antenna 1: Antenna 2:





Agilent

### Lowest channel



Lowest channel



Highest channel

Highest channel



Test mode: 802.11ac(HT80)

Antenna 1: Antenna 2:





Middle channel Middle channel



# 7.6 Band edges

# 7.6.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section 15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:          | ANSI C63.10: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |
| Test Frequency Range: | 30MHz to 40GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lz, only worse o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ase is repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                       |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value                                                                                                                                                                                                                 |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                                                                                                                                  |  |  |
|                       | Above 1GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                                                                                                                                                                                                               |  |  |
| Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit (dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /m @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Value                                                                                                                                                                                                                 |  |  |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average                                                                                                                                                                                                               |  |  |
|                       | 71,5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OI IZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak                                                                                                                                                                                                                  |  |  |
| Test setup:           | Turn in Table 1.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Antenna To  Horn Antenn.  Spectrum Analyzer  Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |
| Test Procedure:       | the ground at determine the 2. The EUT was antenna, white tower.  3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-recesspecified Ball 6. If the emission the limit specified ball of the EUT where and the rotal the limit specified ball of the EUT where and the rotal the limit specified ball of the EUT where and the specified ball of the EUT where and the specified ball of the EUT where and the specified ball of the EUT where and found the worst case metals. | t a 3 meter came position of the set 3 meters a ch was mounted the mand of the termine was to the termine was to the termine of the termine o | aber. The tall highest race way from the don the top of the from one nations of the from 0 decreases as to Pear aximum Hole aximum Hole aximum Hole aximum Hole aximum Hole at Otherwise re-tested or specified ar are performing which is a re-tested or specified ar a sare performing which is a re-tested or specified ar and the from the f | ble was rotadiation. The interference of a variable of the field one antennal and was arranged hts from 1 mgrees to 360 at Detect Full discounting the emission one und then report of the control of the | le-height antenna  r meters above the I strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find unction and 10dB lower than d the peak values ions that did not sing peak, quasi- |  |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |  |  |

Measurement data:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 32 of 60



Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

802.11a SISO mode: ANT1

| Test mode: 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                     | 1a                                                            | Те                                                            | st channel:                                                                 | L                                                          | Lowest                                                |                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--|
| Peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                      |                                                                                     |                                                               | ,                                                             |                                                                             |                                                            |                                                       |                                                                 |  |
| Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Read<br>Level<br>(dBuV)                                                                                | Antenna<br>Factor<br>(dB/m)                                                         | Cable<br>Loss<br>(dB)                                         | Preamp<br>Factor<br>(dB)                                      | Level<br>(dBuV/m)                                                           | Limit Line<br>(dBuV/m)                                     | Over<br>Limit<br>(dB)                                 | Polarization                                                    |  |
| 5725.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.45                                                                                                  | 32.68                                                                               | 9.97                                                          | 23.86                                                         | 58.24                                                                       | 74.00                                                      | -15.76                                                | Horizontal                                                      |  |
| 5741.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.35                                                                                                  | 32.56                                                                               | 9.86                                                          | 23.85                                                         | 98.92                                                                       | N/A                                                        | N/A                                                   | Horizontal                                                      |  |
| 5725.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.36                                                                                                  | 32.68                                                                               | 9.97                                                          | 23.86                                                         | 60.15                                                                       | 74.00                                                      | -13.85                                                | Vertical                                                        |  |
| 5741.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.69                                                                                                  | 32.56                                                                               | 9.86                                                          | 23.85                                                         | 104.26                                                                      | N/A                                                        | N/A                                                   | Vertical                                                        |  |
| Average va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lue:                                                                                                   | <del>-</del>                                                                        |                                                               |                                                               |                                                                             |                                                            | -                                                     |                                                                 |  |
| Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Read<br>Level<br>(dBuV)                                                                                | Antenna<br>Factor<br>(dB/m)                                                         | Cable<br>Loss<br>(dB)                                         | Preamp<br>Factor<br>(dB)                                      | Level<br>(dBuV/m)                                                           | Limit Line<br>(dBuV/m)                                     | Over<br>Limit<br>(dB)                                 | Polarization                                                    |  |
| 5725.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.64                                                                                                  | 32.68                                                                               | 9.97                                                          | 23.86                                                         | 48.43                                                                       | 54.00                                                      | -5.57                                                 | Horizontal                                                      |  |
| 5741.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71.33                                                                                                  | 32.56                                                                               | 9.86                                                          | 23.85                                                         | 89.90                                                                       | N/A                                                        | N/A                                                   | Horizontal                                                      |  |
| 5725.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.68                                                                                                  | 32.68                                                                               | 9.97                                                          | 23.86                                                         | 49.47                                                                       | 54.00                                                      | -4.53                                                 | Vertical                                                        |  |
| 5741.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.92                                                                                                  | 32.56                                                                               | 9.86                                                          | 23.85                                                         | 95.49                                                                       | N/A                                                        | N/A                                                   | Vertical                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                     |                                                               |                                                               |                                                                             |                                                            |                                                       |                                                                 |  |
| Test mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | 802.1                                                                               | 1a                                                            | Te                                                            | st channel:                                                                 | ŀ                                                          | Highest                                               |                                                                 |  |
| Peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                      |                                                                                     |                                                               |                                                               |                                                                             |                                                            |                                                       |                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                     |                                                               |                                                               | •                                                                           |                                                            |                                                       |                                                                 |  |
| Frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Read<br>Level<br>(dBuV)                                                                                | Antenna<br>Factor<br>(dB/m)                                                         | Cable<br>Loss<br>(dB)                                         | Preamp<br>Factor<br>(dB)                                      | Level<br>(dBuV/m)                                                           | Limit Line<br>(dBuV/m)                                     | Over<br>Limit<br>(dB)                                 | Polarization                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level                                                                                                  | Factor                                                                              | Loss                                                          | Factor                                                        |                                                                             |                                                            | Limit                                                 | Polarization Horizontal                                         |  |
| (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Level<br>(dBuV)                                                                                        | Factor<br>(dB/m)                                                                    | Loss<br>(dB)                                                  | Factor<br>(dB)                                                | (dBuV/m)                                                                    | (dBuV/m)                                                   | Limit<br>(dB)                                         |                                                                 |  |
| (MHz)<br>5826.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level<br>(dBuV)<br>78.65                                                                               | Factor<br>(dB/m)<br>32.68                                                           | Loss<br>(dB)<br>9.97                                          | Factor<br>(dB)<br>23.86                                       | (dBuV/m)<br>97.44                                                           | (dBuV/m)<br>N/A                                            | Limit<br>(dB)<br>N/A                                  | Horizontal                                                      |  |
| (MHz)<br>5826.20<br>5850.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level<br>(dBuV)<br>78.65<br>38.12                                                                      | Factor<br>(dB/m)<br>32.68<br>32.70                                                  | Loss<br>(dB)<br>9.97<br>9.99                                  | Factor<br>(dB)<br>23.86<br>23.87                              | (dBuV/m)<br>97.44<br>56.94                                                  | (dBuV/m)<br>N/A<br>74.00                                   | Limit<br>(dB)<br>N/A<br>-17.06                        | Horizontal<br>Horizontal                                        |  |
| (MHz)<br>5826.20<br>5850.00<br>5826.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level<br>(dBuV)<br>78.65<br>38.12<br>85.35<br>40.54                                                    | Factor<br>(dB/m)<br>32.68<br>32.70<br>32.68                                         | Loss<br>(dB)<br>9.97<br>9.99<br>9.97                          | Factor (dB) 23.86 23.87 23.86                                 | (dBuV/m)<br>97.44<br>56.94<br>104.14                                        | (dBuV/m)<br>N/A<br>74.00<br>N/A                            | Limit (dB)  N/A  -17.06  N/A                          | Horizontal<br>Horizontal<br>Vertical                            |  |
| (MHz)<br>5826.20<br>5850.00<br>5826.20<br>5850.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Level<br>(dBuV)<br>78.65<br>38.12<br>85.35<br>40.54                                                    | Factor<br>(dB/m)<br>32.68<br>32.70<br>32.68                                         | Loss<br>(dB)<br>9.97<br>9.99<br>9.97                          | Factor (dB) 23.86 23.87 23.86                                 | (dBuV/m)<br>97.44<br>56.94<br>104.14                                        | (dBuV/m)<br>N/A<br>74.00<br>N/A                            | Limit (dB)  N/A  -17.06  N/A                          | Horizontal Horizontal Vertical                                  |  |
| (MHz)  5826.20  5850.00  5826.20  5850.00  Average va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Level<br>(dBuV)<br>78.65<br>38.12<br>85.35<br>40.54<br>Iue:<br>Read<br>Level                           | Factor<br>(dB/m)<br>32.68<br>32.70<br>32.68<br>32.70<br>Antenna<br>Factor           | Loss<br>(dB)<br>9.97<br>9.99<br>9.97<br>9.99<br>Cable<br>Loss | Factor (dB) 23.86 23.87 23.86 23.87 Preamp                    | (dBuV/m)<br>97.44<br>56.94<br>104.14<br>59.36                               | (dBuV/m)  N/A  74.00  N/A  74.00  Limit Line               | Limit (dB) N/A -17.06 N/A -14.64  Over Limit          | Horizontal Horizontal Vertical Vertical                         |  |
| (MHz)  5826.20  5850.00  5826.20  5850.00  Average va  Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level<br>(dBuV)<br>78.65<br>38.12<br>85.35<br>40.54<br>Iue:<br>Read<br>Level<br>(dBuV)                 | Factor<br>(dB/m)<br>32.68<br>32.70<br>32.68<br>32.70<br>Antenna<br>Factor<br>(dB/m) | Loss (dB) 9.97 9.99 9.97 9.99 Cable Loss (dB)                 | Factor (dB) 23.86 23.87 23.86 23.87 Preamp Factor (dB)        | (dBuV/m)<br>97.44<br>56.94<br>104.14<br>59.36<br>Level<br>(dBuV/m)          | (dBuV/m)  N/A  74.00  N/A  74.00  Limit Line (dBuV/m)      | Limit (dB) N/A -17.06 N/A -14.64  Over Limit (dB)     | Horizontal Horizontal Vertical Vertical Polarization            |  |
| (MHz)  5826.20  5850.00  5826.20  5850.00  Average value of the control of the co | Level<br>(dBuV)<br>78.65<br>38.12<br>85.35<br>40.54<br><b>Iue:</b><br>Read<br>Level<br>(dBuV)<br>70.36 | Factor (dB/m) 32.68 32.70 32.68 32.70  Antenna Factor (dB/m) 32.68                  | Loss (dB) 9.97 9.99 9.97 9.99  Cable Loss (dB) 9.97           | Factor (dB) 23.86 23.87 23.86 23.87  Preamp Factor (dB) 23.86 | (dBuV/m)<br>97.44<br>56.94<br>104.14<br>59.36<br>Level<br>(dBuV/m)<br>89.15 | (dBuV/m)  N/A  74.00  N/A  74.00  Limit Line (dBuV/m)  N/A | Limit (dB) N/A -17.06 N/A -14.64  Over Limit (dB) N/A | Horizontal Horizontal Vertical Vertical Polarization Horizontal |  |

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| 802.11a | SISO | mode: | ANT2 |
|---------|------|-------|------|
|---------|------|-------|------|

| Test mode:         | Test mode: 802.11a                     |                             |                       |                         | Test channel: |                        | Lowest   |              |
|--------------------|----------------------------------------|-----------------------------|-----------------------|-------------------------|---------------|------------------------|----------|--------------|
| Peak value         |                                        |                             |                       |                         |               |                        |          |              |
| Frequency<br>(MHz) | · · · I LEVEL I FACIOE I LOGG I FACIOE |                             | . I LEVEL             | Limit Line<br>(dBuV/m)  | I I imit      | Polarization           |          |              |
| 5725.00            | 39.95                                  | 32.68                       | 9.97                  | 23.86                   | 58.74         | 74.00                  | -15.26   | Horizontal   |
| 5741.35            | 81.02                                  | 32.56                       | 9.86                  | 23.85                   | 99.59         | N/A                    | N/A      | Horizontal   |
| 5725.00            | 41.90                                  | 32.68                       | 9.97                  | 23.86                   | 60.69         | 74.00                  | -13.31   | Vertical     |
| 5741.35            | 86.50                                  | 32.56                       | 9.86                  | 23.85                   | 105.07        | N/A                    | N/A      | Vertical     |
| Average va         | lue:                                   |                             |                       |                         |               |                        |          |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)                | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pream<br>Factor<br>(dB) | . 1 16/61     | Limit Line<br>(dBuV/m) | I I Imit | Polarization |
| 5725.00            | 30.00                                  | 32.68                       | 9.97                  | 23.86                   | 48.79         | 54.00                  | -5.21    | Horizontal   |
| 5741.35            | 71.74                                  | 32.56                       | 9.86                  | 23.85                   | 90.31         | N/A                    | N/A      | Horizontal   |
| 5725.00            | 31.08                                  | 32.68                       | 9.97                  | 23.86                   | 49.87         | 54.00                  | -4.13    | Vertical     |
| 5741.35            | 77.37                                  | 32.56                       | 9.86                  | 23.85                   | 95.94         | N/A                    | N/A      | Vertical     |
|                    |                                        |                             |                       |                         |               |                        |          |              |
| Test mode:         | Test mode: 802.11a                     |                             |                       | Test channel:           |               | Highest                |          |              |
| Peak value         |                                        |                             |                       |                         |               |                        |          |              |
| Frequency          | requency Read Antenna Cable Pream      |                             | · I level             | Limit Line              | Over          | Polarization           |          |              |

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 5826.20            | 79.37                   | 32.68                       | 9.97                  | 23.86                    | 98.16             | N/A                    | N/A                   | Horizontal   |
| 5850.00            | 38.68                   | 32.70                       | 9.99                  | 23.87                    | 57.50             | 74.00                  | -16.50                | Horizontal   |
| 5826.20            | 86.18                   | 32.68                       | 9.97                  | 23.86                    | 104.97            | N/A                    | N/A                   | Vertical     |
| 5850.00            | 41.20                   | 32.70                       | 9.99                  | 23.87                    | 60.02             | 74.00                  | -13.98                | Vertical     |

### Average value:

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 5826.20            | 70.80                   | 32.68                       | 9.97                  | 23.86                    | 89.59             | N/A                    | N/A                   | Horizontal   |
| 5850.00            | 28.82                   | 32.70                       | 9.99                  | 23.87                    | 47.64             | 54.00                  | -6.36                 | Horizontal   |
| 5826.20            | 76.50                   | 32.68                       | 9.97                  | 23.86                    | 95.29             | N/A                    | N/A                   | Vertical     |
| 5850.00            | 28.50                   | 32.70                       | 9.99                  | 23.87                    | 47.32             | 54.00                  | -6.68                 | Vertical     |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| 802  | 11n/8   | 02 11ac    | MIMO | mode: | ΔNT1.   | LANT2  |
|------|---------|------------|------|-------|---------|--------|
| OUZ. | 1 111/0 | JZ. I I ac |      | moue. | AIN 1 1 | TAIVIZ |

| Test mode:         |                                         | 802.1               | 1n(HT20) @                  | 5.8G Band              | ŀ                     | Tes          | t channel:        |                        | Lowest                |              |
|--------------------|-----------------------------------------|---------------------|-----------------------------|------------------------|-----------------------|--------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                                         |                     |                             |                        |                       |              |                   |                        |                       |              |
| Frequency<br>(MHz) | . , I I ENEL I ESCIUL I LUGG I ESCIUL I |                     | Level<br>(dBuV/m)           | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |                   |                        |                       |              |
| 5725.00            | 37                                      | .64                 | 32.68                       | 9.97                   | 23.8                  | 36           | 56.43             | 74.00                  | -17.57                | Horizontal   |
| 5742.19            | 77                                      | .85                 | 32.56                       | 9.86                   | 23.8                  | 35           | 96.42             | N/A                    | N/A                   | Horizontal   |
| 5725.00            | 40                                      | .45                 | 32.68                       | 9.97                   | 23.8                  | 36           | 59.24             | 74.00                  | -14.76                | Vertical     |
| 5742.19            | 84                                      | .25                 | 32.56                       | 9.86                   | 23.8                  | 35           | 102.82            | N/A                    | N/A                   | Vertical     |
| Average va         | lue:                                    |                     |                             |                        |                       |              |                   |                        |                       |              |
| Frequency<br>(MHz) | Le                                      | ead<br>evel<br>BuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB)  | Prea<br>Fac<br>(dE    | tor          | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5725.00            | 28                                      | .62                 | 32.68                       | 9.97                   | 23.8                  | 36           | 47.41             | 54.00                  | -6.59                 | Horizontal   |
| 5742.19            | 69                                      | .38                 | 32.56                       | 9.86                   | 23.8                  | 35           | 87.95             | N/A                    | N/A                   | Horizontal   |
| 5725.00            | 29                                      | .50                 | 32.68                       | 9.97                   | 23.8                  | 36           | 48.29             | 54.00                  | -5.71                 | Vertical     |
| 5742.19            | 5742.19 75.65 32.56 9.86                |                     |                             |                        | 23.8                  | 35           | 94.22             | N/A                    | N/A                   | Vertical     |
|                    |                                         | -                   |                             |                        |                       |              |                   |                        |                       |              |
| Test mode:         |                                         | 802.1               | 1n(HT20) @                  | 5.8G Band              | d                     | Tes          | t channel:        |                        | Highest               |              |
| Peak value:        | :                                       | -                   |                             | <del></del>            |                       |              |                   |                        |                       |              |

| I can value        | •                       |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5826.20            | 76.88                   | 32.68                       | 9.97                  | 23.86                    | 95.67             | N/A                    | N/A                   | Horizontal   |
| 5850.00            | 37.65                   | 32.70                       | 9.99                  | 23.87                    | 56.47             | 74.00                  | -17.53                | Horizontal   |
| 5826.20            | 84.59                   | 32.68                       | 9.97                  | 23.86                    | 103.38            | N/A                    | N/A                   | Vertical     |
| 5850.00            | 39.20                   | 32.70                       | 9.99                  | 23.87                    | 58.02             | 74.00                  | -15.98                | Vertical     |

### Average value:

| 71101111101        |                         |                             |                       |                          |                   |                        |                       |              |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
| 5826.20            | 67.54                   | 32.68                       | 9.97                  | 23.86                    | 86.33             | N/A                    | N/A                   | Horizontal   |  |  |  |
| 5850.00            | 27.59                   | 32.70                       | 9.99                  | 23.87                    | 46.41             | 54.00                  | -7.59                 | Horizontal   |  |  |  |
| 5826.20            | 75.35                   | 32.68                       | 9.97                  | 23.86                    | 94.14             | N/A                    | N/A                   | Vertical     |  |  |  |
| 5850.00            | 28.12                   | 32.70                       | 9.99                  | 23.87                    | 46.94             | 54.00                  | -7.06                 | Vertical     |  |  |  |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test mode:         | 802.1                   | 1ac(HT20)                   |                       | Tes                      | t channel:        | 1                      | Lowest                |                                                    |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|----------------------------------------------------|--|--|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |                                                    |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization                                       |  |  |
| 5725.00            | 37.98                   | 32.68                       | 9.97                  | 23.86                    | 56.77             | 74.00                  | -17.23                | Horizontal                                         |  |  |
| 5742.19            | 77.42                   | 32.56                       | 9.86                  | 23.85                    | 95.99             | N/A                    | N/A                   | Horizontal                                         |  |  |
| 5725.00            | 39.32                   | 32.68                       | 9.97                  | 23.86                    | 58.11             | 74.00                  | -15.89                | Vertical                                           |  |  |
| 5742.19            | 84.05                   | 32.56                       | 9.86                  | 23.85                    | 102.62            | N/A                    | N/A                   | Vertical                                           |  |  |
| Average va         | Average value:          |                             |                       |                          |                   |                        |                       |                                                    |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization                                       |  |  |
| 5725.00            | 27.62                   | 32.68                       | 9.97                  | 23.86                    | 46.41             | 54.00                  | -7.59                 | Horizontal                                         |  |  |
| 5742.19            | 69.08                   | 32.56                       | 9.86                  | 23.85                    | 87.65             | N/A                    | N/A                   | Horizontal                                         |  |  |
| 5725.00            | 28.42                   | 32.68                       | 9.97                  | 23.86                    | 47.21             | 54.00                  | -6.79                 | Vertical                                           |  |  |
| 5742.19            | 75.36                   | 32.56                       | 9.86                  | 23.85                    | 93.93             | N/A                    | N/A                   | Vertical                                           |  |  |
|                    |                         |                             |                       |                          |                   |                        |                       |                                                    |  |  |
| Test mode:         |                         | 1ac(HT20)                   |                       | Tes                      | t channel:        |                        | Highest               |                                                    |  |  |
| Peak value         |                         | <u> </u>                    |                       | T                        | T                 |                        | T                     | <del>,                                      </del> |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization                                       |  |  |
| 5827.44            | 77.05                   | 32.68                       | 9.97                  | 23.86                    | 95.84             | N/A                    | N/A                   | Horizontal                                         |  |  |
| 5850.00            | 37.34                   | 32.74                       | 10.04                 | 23.87                    | 56.25             | 74.00                  | -17.75                | Horizontal                                         |  |  |
| 5827.44            | 83.61                   | 32.68                       | 9.97                  | 23.86                    | 102.40            | N/A                    | N/A                   | Vertical                                           |  |  |
| 5850.00            | 39.15                   | 32.74                       | 10.04                 | 23.87                    | 58.06             | 74.00                  | -15.94                | Vertical                                           |  |  |
| Average value:     |                         |                             |                       |                          |                   |                        |                       |                                                    |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization                                       |  |  |
| 5827.44            | 67.24                   | 32.68                       | 9.97                  | 23.86                    | 86.03             | N/A                    | N/A                   | Horizontal                                         |  |  |
| 5850.00            | 27.68                   | 32.74                       | 10.04                 | 23.87                    | 46.59             | 54.00                  | -7.41                 | Horizontal                                         |  |  |
| 5827.44            | 75.18                   | 32.68                       | 9.97                  | 23.86                    | 93.97             | N/A                    | N/A                   | Vertical                                           |  |  |
| 5850.00            | 28.34                   | 32.74                       | 10.04                 | 23.87                    | 47.25             | 54.00                  | -6.75                 | Vertical                                           |  |  |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test mode:         | 802.1                   | 1n(HT40) @                  | 5.8G Band             | l Tes                    | t channel:        | L                      | owest                 |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       | ·                        |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5725.00            | 38.02                   | 32.53                       | 9.83                  | 23.84                    | 56.54             | 74.00                  | -17.46                | Horizontal   |
| 5745.00            | 75.35                   | 32.56                       | 9.86                  | 23.85                    | 93.92             | N/A                    | N/A                   | Horizontal   |
| 5725.00            | 37.65                   | 32.53                       | 9.83                  | 23.84                    | 56.17             | 74.00                  | -17.83                | Vertical     |
| 5745.00            | 83.27                   | 32.56                       | 9.86                  | 23.85                    | 101.84            | N/A                    | N/A                   | Vertical     |
| Average va         | lue:                    |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5725.00            | 26.99                   | 32.53                       | 9.83                  | 23.84                    | 45.51             | 54.00                  | -8.49                 | Horizontal   |
| 5745.00            | 67.15                   | 32.56                       | 9.86                  | 23.85                    | 85.72             | N/A                    | N/A                   | Horizontal   |
| 5725.00            | 27.51                   | 32.53                       | 9.83                  | 23.84                    | 46.03             | 54.00                  | -7.97                 | Vertical     |
| 5745.00            | 74.82                   | 32.56                       | 9.86                  | 23.85                    | 93.39             | N/A                    | N/A                   | Vertical     |
|                    |                         |                             |                       | 1                        |                   |                        |                       |              |
| Test mode:         |                         | 1n(HT40) @                  | 5.8G Band             | I Tes                    | t channel:        | ŀ                      | Highest               |              |
| Peak value:        |                         | · .                         | 1                     |                          | 1                 |                        | _                     |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5784.88            | 79.84                   | 32.63                       | 9.90                  | 23.85                    | 98.52             | N/A                    | N/A                   | Horizontal   |
| 5850.00            | 38.62                   | 32.70                       | 9.99                  | 23.87                    | 57.44             | 74.00                  | -16.56                | Horizontal   |
| 5784.88            | 84.02                   | 32.63                       | 9.90                  | 23.85                    | 102.70            | N/A                    | N/A                   | Vertical     |
| 5850.00            | 42.50                   | 32.70                       | 9.99                  | 23.87                    | 61.32             | 74.00                  | -12.68                | Vertical     |
| Average va         |                         | 1                           |                       |                          | 1                 |                        |                       | 1            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 5784.88            | 70.65                   | 32.63                       | 9.90                  | 23.85                    | 89.33             | N/A                    | N/A                   | Horizontal   |
| 5850.00            | 27.65                   | 32.70                       | 9.99                  | 23.87                    | 46.47             | 54.00                  | -7.53                 | Horizontal   |
| 5784.88            | 73.04                   | 32.63                       | 9.90                  | 23.85                    | 91.72             | N/A                    | N/A                   | Vertical     |
| 5850.00            | 27.39                   | 32.70                       | 9.99                  | 23.87                    | 48.23             | 54.00                  | -5.77                 | Vertical     |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test mode:                                                                               | 802.1                                                                                           | 1ac(HT40)                                                                           |                                                    | Tes                                                                 | t channel:                                                                  |                                                                   | Lowest                                                      |                                                                            |  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Peak value:                                                                              | •                                                                                               |                                                                                     |                                                    |                                                                     |                                                                             |                                                                   |                                                             |                                                                            |  |
| Frequency<br>(MHz)                                                                       | Read<br>Level<br>(dBuV)                                                                         | Antenna<br>Factor<br>(dB/m)                                                         | Cable<br>Loss<br>(dB)                              | Preamp<br>Factor<br>(dB)                                            | Level<br>(dBuV/m)                                                           | Limit Line<br>(dBuV/m)                                            | Over<br>Limit<br>(dB)                                       | Polarization                                                               |  |
| 5725.00                                                                                  | 36.45                                                                                           | 32.53                                                                               | 9.83                                               | 23.84                                                               | 54.97                                                                       | 74.00                                                             | -19.03                                                      | Horizontal                                                                 |  |
| 5748.00                                                                                  | 76.90                                                                                           | 32.56                                                                               | 9.86                                               | 23.85                                                               | 95.47                                                                       | N/A                                                               | N/A                                                         | Horizontal                                                                 |  |
| 5725.00                                                                                  | 38.25                                                                                           | 32.53                                                                               | 9.83                                               | 23.84                                                               | 56.77                                                                       | 74.00                                                             | -17.23                                                      | Vertical                                                                   |  |
| 5748.00                                                                                  | 83.64                                                                                           | 32.56                                                                               | 9.86                                               | 23.85                                                               | 102.21                                                                      | N/A                                                               | N/A                                                         | Vertical                                                                   |  |
| Average va                                                                               | lue:                                                                                            |                                                                                     |                                                    |                                                                     |                                                                             |                                                                   |                                                             |                                                                            |  |
| Frequency<br>(MHz)                                                                       | Read<br>Level<br>(dBuV)                                                                         | Antenna<br>Factor<br>(dB/m)                                                         | Cable<br>Loss<br>(dB)                              | Preamp<br>Factor<br>(dB)                                            | Level<br>(dBuV/m)                                                           | Limit Line<br>(dBuV/m)                                            | Over<br>Limit<br>(dB)                                       | Polarization                                                               |  |
| 5725.00                                                                                  | 26.78                                                                                           | 32.53                                                                               | 9.83                                               | 23.84                                                               | 45.30                                                                       | 54.00                                                             | -8.70                                                       | Horizontal                                                                 |  |
| 5748.00                                                                                  | 68.26                                                                                           | 32.56                                                                               | 9.86                                               | 23.85                                                               | 86.83                                                                       | N/A                                                               | N/A                                                         | Horizontal                                                                 |  |
| 5725.00                                                                                  | 28.14                                                                                           | 32.53                                                                               | 9.83                                               | 23.84                                                               | 46.66                                                                       | 54.00                                                             | -7.34                                                       | Vertical                                                                   |  |
| 5748.00                                                                                  | 74.33                                                                                           | 32.56                                                                               | 9.86                                               | 23.85                                                               | 92.90                                                                       | N/A                                                               | N/A                                                         | Vertical                                                                   |  |
|                                                                                          | •                                                                                               |                                                                                     |                                                    |                                                                     |                                                                             |                                                                   |                                                             |                                                                            |  |
| Test mode:                                                                               | 802.1                                                                                           | 1ac(HT40)                                                                           |                                                    | Tes                                                                 | t channel:                                                                  |                                                                   | Highest                                                     |                                                                            |  |
| Peak value:                                                                              |                                                                                                 | 1                                                                                   |                                                    | 1                                                                   | •                                                                           |                                                                   | •                                                           | , ,                                                                        |  |
| Framus may                                                                               | D                                                                                               |                                                                                     |                                                    | D                                                                   |                                                                             |                                                                   |                                                             |                                                                            |  |
| Frequency<br>(MHz)                                                                       | Read<br>Level<br>(dBuV)                                                                         | Antenna<br>Factor<br>(dB/m)                                                         | Cable<br>Loss<br>(dB)                              | Preamp<br>Factor<br>(dB)                                            | Level<br>(dBuV/m)                                                           | Limit Line<br>(dBuV/m)                                            | Over<br>Limit<br>(dB)                                       | Polarization                                                               |  |
|                                                                                          | Level                                                                                           | Factor                                                                              | Loss                                               | Factor                                                              |                                                                             |                                                                   | Limit                                                       | Polarization Horizontal                                                    |  |
| (MHz)                                                                                    | Level<br>(dBuV)                                                                                 | Factor<br>(dB/m)                                                                    | Loss<br>(dB)                                       | Factor<br>(dB)                                                      | (dBuV/m)                                                                    | (dBuV/m)                                                          | Limit<br>(dB)                                               |                                                                            |  |
| (MHz)<br>5784.88                                                                         | Level<br>(dBuV)<br>78.64                                                                        | Factor<br>(dB/m)<br>32.63                                                           | Loss<br>(dB)<br>9.90                               | Factor<br>(dB)<br>23.85                                             | (dBuV/m)<br>97.32                                                           | (dBuV/m)<br>N/A                                                   | Limit<br>(dB)<br>N/A                                        | Horizontal                                                                 |  |
| (MHz)<br>5784.88<br>5850.00                                                              | Level<br>(dBuV)<br>78.64<br>37.20                                                               | Factor<br>(dB/m)<br>32.63<br>32.70                                                  | Loss<br>(dB)<br>9.90<br>9.99                       | Factor (dB) 23.85 23.87                                             | (dBuV/m)<br>97.32<br>56.02                                                  | (dBuV/m)<br>N/A<br>74.00                                          | Limit<br>(dB)<br>N/A<br>-17.98                              | Horizontal<br>Horizontal                                                   |  |
| (MHz)<br>5784.88<br>5850.00<br>5784.88                                                   | Level (dBuV) 78.64 37.20 83.45 40.09                                                            | Factor<br>(dB/m)<br>32.63<br>32.70<br>32.63                                         | Loss<br>(dB)<br>9.90<br>9.99<br>9.90               | Factor (dB) 23.85 23.87 23.85                                       | (dBuV/m)<br>97.32<br>56.02<br>102.13                                        | (dBuV/m)<br>N/A<br>74.00<br>N/A                                   | Limit (dB) N/A -17.98 N/A                                   | Horizontal Horizontal Vertical                                             |  |
| (MHz)<br>5784.88<br>5850.00<br>5784.88<br>5850.00                                        | Level (dBuV) 78.64 37.20 83.45 40.09                                                            | Factor<br>(dB/m)<br>32.63<br>32.70<br>32.63                                         | Loss<br>(dB)<br>9.90<br>9.99<br>9.90               | Factor (dB) 23.85 23.87 23.85                                       | (dBuV/m)<br>97.32<br>56.02<br>102.13                                        | (dBuV/m)<br>N/A<br>74.00<br>N/A                                   | Limit (dB) N/A -17.98 N/A                                   | Horizontal Horizontal Vertical                                             |  |
| (MHz)  5784.88  5850.00  5784.88  5850.00  Average va  Frequency                         | Level<br>(dBuV)<br>78.64<br>37.20<br>83.45<br>40.09<br>Iue:<br>Read<br>Level                    | Factor<br>(dB/m)<br>32.63<br>32.70<br>32.63<br>32.70<br>Antenna<br>Factor           | Loss (dB) 9.90 9.99 9.99 Cable Loss                | Factor (dB) 23.85 23.87 23.85 23.87 Preamp                          | (dBuV/m)<br>97.32<br>56.02<br>102.13<br>58.91                               | (dBuV/m)  N/A  74.00  N/A  74.00  Limit Line                      | Limit (dB) N/A -17.98 N/A -15.09  Over Limit                | Horizontal Horizontal Vertical Vertical                                    |  |
| (MHz)  5784.88  5850.00  5784.88  5850.00  Average va  Frequency (MHz)                   | Level<br>(dBuV)<br>78.64<br>37.20<br>83.45<br>40.09<br><b>lue:</b><br>Read<br>Level<br>(dBuV)   | Factor<br>(dB/m)<br>32.63<br>32.70<br>32.63<br>32.70<br>Antenna<br>Factor<br>(dB/m) | Loss (dB) 9.90 9.99 9.99 9.99 Cable Loss (dB)      | Factor (dB) 23.85 23.87 23.85 23.87  Preamp Factor (dB)             | (dBuV/m)<br>97.32<br>56.02<br>102.13<br>58.91<br>Level<br>(dBuV/m)          | (dBuV/m)  N/A  74.00  N/A  74.00  Limit Line (dBuV/m)             | Limit (dB) N/A -17.98 N/A -15.09  Over Limit (dB)           | Horizontal Horizontal Vertical Vertical Polarization                       |  |
| (MHz)  5784.88  5850.00  5784.88  5850.00  Average va  Frequency (MHz)  5784.88          | Level<br>(dBuV)<br>78.64<br>37.20<br>83.45<br>40.09<br>Iue:<br>Read<br>Level<br>(dBuV)<br>69.35 | Factor (dB/m) 32.63 32.70 32.63 32.70  Antenna Factor (dB/m) 32.63                  | Loss (dB) 9.90 9.99 9.99 Cable Loss (dB) 9.90      | Factor (dB) 23.85 23.87 23.85 23.87  Preamp Factor (dB) 23.85       | (dBuV/m)<br>97.32<br>56.02<br>102.13<br>58.91<br>Level<br>(dBuV/m)<br>88.03 | N/A 74.00 N/A 74.00 Limit Line (dBuV/m) N/A                       | Limit (dB) N/A -17.98 N/A -15.09  Over Limit (dB) N/A       | Horizontal Horizontal Vertical Vertical Polarization Horizontal            |  |
| (MHz)  5784.88  5850.00  5784.88  5850.00  Average va  Frequency (MHz)  5784.88  5850.00 | Level (dBuV) 78.64 37.20 83.45 40.09  Iue:  Read Level (dBuV) 69.35 27.65                       | Factor (dB/m) 32.63 32.70 32.63 32.70  Antenna Factor (dB/m) 32.63 32.70            | Loss (dB) 9.90 9.99 9.99 Cable Loss (dB) 9.90 9.99 | Factor (dB) 23.85 23.87 23.85 23.87  Preamp Factor (dB) 23.85 23.87 | (dBuV/m) 97.32 56.02 102.13 58.91  Level (dBuV/m) 88.03 46.47               | (dBuV/m)  N/A  74.00  N/A  74.00  Limit Line (dBuV/m)  N/A  54.00 | Limit (dB) N/A -17.98 N/A -15.09  Over Limit (dB) N/A -7.53 | Horizontal Horizontal Vertical Vertical Polarization Horizontal Horizontal |  |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test mode:         | 802.1                   | 1ac(HT80)                   | Test channel:         |                          |                   |                        | Middle                |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Peak value         |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5725.00            | 36.45                   | 32.53                       | 9.83                  | 23.84                    | 54.97             | 74.00                  | -19.03                | Horizontal   |  |
| 5771.88            | 76.88                   | 32.61                       | 9.88                  | 23.85                    | 95.52             | N/A                    | N/A                   | Horizontal   |  |
| 5850.00            | 36.08                   | 32.70                       | 9.99                  | 23.87                    | 54.90             | 74.00                  | -19.10                | Horizontal   |  |
| 5725.00            | 37.68                   | 32.53                       | 9.83                  | 23.84                    | 56.20             | 74.00                  | -17.80                | Vertical     |  |
| 5771.88            | 82.48                   | 32.61                       | 9.88                  | 23.85                    | 101.12            | N/A                    | N/A                   | Vertical     |  |
| 5850.00            | 36.10                   | 32.70                       | 9.99                  | 23.87                    | 54.92             | 74.00                  | -19.08                | Vertical     |  |
| Average va         | lue:                    |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 5725.00            | 26.56                   | 32.53                       | 9.83                  | 23.84                    | 45.08             | 54.00                  | -8.92                 | Horizontal   |  |
| 5771.88            | 67.65                   | 32.61                       | 9.88                  | 23.85                    | 86.29             | N/A                    | N/A                   | Horizontal   |  |
| 5850.00            | 26.18                   | 32.70                       | 9.99                  | 23.87                    | 45.00             | 54.00                  | -9.00                 | Horizontal   |  |
| 5725.00            | 27.60                   | 32.53                       | 9.83                  | 23.84                    | 46.12             | 54.00                  | -7.88                 | Vertical     |  |
| 5771.88            | 73.08                   | 32.61                       | 9.88                  | 23.85                    | 91.72             | N/A                    | N/A                   | Vertical     |  |
| 5850.00            | 27.15                   | 32.70                       | 9.99                  | 23.87                    | 45.97             | 54.00                  | -8.03                 | Vertical     |  |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 7.7 Spurious Emission

# 7.7.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Se                          | ection 15.209, | Part 15E Se   | ection 15.40                                                                                         | 07(b)(4)         |  |  |  |  |  |
|-----------------------|------------------------------------------|----------------|---------------|------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Test Method:          | ANSI C63.10:201                          | 13             |               |                                                                                                      |                  |  |  |  |  |  |
| Test Frequency Range: | 30MHz to 40GHz                           | ·              |               |                                                                                                      |                  |  |  |  |  |  |
| Test site:            | Measurement Dis                          | stance: 3m     |               |                                                                                                      |                  |  |  |  |  |  |
| Receiver setup:       | Frequency                                | Detector       | RBW           | VBW                                                                                                  | Value            |  |  |  |  |  |
|                       | 30MHz-1GHz                               | Quasi-peak     | 120KHz        | 300KHz                                                                                               | Quasi-peak Value |  |  |  |  |  |
|                       | Above 1GHz                               | Peak           | 1MHz          | 3MHz                                                                                                 | Peak Value       |  |  |  |  |  |
|                       | Above IGHZ                               | Peak           | 1MHz          | 3MHz                                                                                                 | Average Value    |  |  |  |  |  |
| Limit:                | Frequen                                  | /m @3m)        | Remark        |                                                                                                      |                  |  |  |  |  |  |
|                       | 30MHz-88                                 |                | 40.0          |                                                                                                      | Quasi-peak Value |  |  |  |  |  |
|                       | 88MHz-216                                |                | 43.5          |                                                                                                      | Quasi-peak Value |  |  |  |  |  |
|                       | 216MHz-96                                |                | 46.0          |                                                                                                      | Quasi-peak Value |  |  |  |  |  |
|                       | 960MHz-1                                 |                | 54.0          |                                                                                                      | Quasi-peak Value |  |  |  |  |  |
|                       | Frequen                                  |                | Limit (dBn    |                                                                                                      | Remark           |  |  |  |  |  |
| Test setup:           | Above 1GHz -27.0 Peak Value              |                |               |                                                                                                      |                  |  |  |  |  |  |
|                       | Turn Table  Turn Table  Turn Table  1.5. | 4m             |               | Antenna Towe Search Antenna RF Test Receiver  Antenna Towe Horn Antenna Spectrum Analyzer  Amplifier |                  |  |  |  |  |  |
| Task Day and James    | 4 The SUT                                |                | 4             | - 41: / 1.1 · ·                                                                                      | (0.0 o f l       |  |  |  |  |  |
| Test Procedure:       | 1. The EUT was                           | placed on the  | top of a rota | ating table (                                                                                        | (U.8m for below  |  |  |  |  |  |

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building,

No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



|                   | 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                                                                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                            |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                       |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                    |
|                   | The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                              |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. |
|                   | 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.                                                                                                                                                            |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                      |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                      |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                  |

#### Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.



#### **Measurement Data**

#### ■ Below 1GHz

Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 37.55              | 34.24                   | 14.96                       | 0.64                  | 30.06                    | 19.78             | 40.00                  | -20.22                | Vertical     |
| 56.20              | 31.93                   | 14.93                       | 0.83                  | 29.95                    | 17.74             | 40.00                  | -22.26                | Vertical     |
| 100.23             | 39.41                   | 15.11                       | 1.19                  | 29.70                    | 26.01             | 43.50                  | -17.49                | Vertical     |
| 218.31             | 32.93                   | 13.13                       | 1.95                  | 29.38                    | 18.63             | 46.00                  | -27.37                | Vertical     |
| 423.54             | 24.15                   | 17.49                       | 2.96                  | 29.45                    | 15.15             | 46.00                  | -30.85                | Vertical     |
| 768.75             | 23.83                   | 21.68                       | 4.35                  | 29.20                    | 20.66             | 46.00                  | -25.34                | Vertical     |
| 47.66              | 26.68                   | 15.39                       | 0.75                  | 30.01                    | 12.81             | 40.00                  | -27.19                | Horizontal   |
| 69.36              | 26.93                   | 10.92                       | 0.94                  | 29.86                    | 8.93              | 40.00                  | -31.07                | Horizontal   |
| 100.23             | 35.42                   | 15.11                       | 1.19                  | 29.70                    | 22.02             | 43.50                  | -21.48                | Horizontal   |
| 145.35             | 37.48                   | 10.23                       | 1.54                  | 29.43                    | 19.82             | 43.50                  | -23.68                | Horizontal   |
| 225.31             | 34.76                   | 13.41                       | 1.99                  | 29.44                    | 20.72             | 46.00                  | -25.28                | Horizontal   |
| 724 26             | 24 14                   | 21 10                       | 4 18                  | 29 20                    | 20.22             | 46 00                  | -25 78                | Horizontal   |



# ■ Above 1GHz

802.11a SISO mode: ANT1

| Test mode:      | Test mode:         |                  | 802.11a |                  | channel:          | lowest      |          |
|-----------------|--------------------|------------------|---------|------------------|-------------------|-------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level | Factor  | Measure<br>Level | Limit<br>(dBuV/m) | Margin (dB) | Detector |
| V               | 11510.00           | 26.52            | 21.64   | 48.16            | 54(Note3)         | -5.84       | PK       |
| V               | 17265.00           | 24.25            | 21.80   | 46.05            | 54(Note3)         | -7.95       | PK       |
| Н               | 11510.00           | 24.32            | 21.83   | 46.15            | 54(Note3)         | -7.85       | PK       |
| Н               | 17265.00           | 23.20            | 21.67   | 44.87            | 54(Note3)         | -9.13       | PK       |

| Test mode:      | est mode: 802.11a  |                  |        | Test             | channel:          | Middle      | Middle   |  |  |
|-----------------|--------------------|------------------|--------|------------------|-------------------|-------------|----------|--|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level | Factor | Measure<br>Level | Limit<br>(dBuV/m) | Margin (dB) | Detector |  |  |
| V               | 11570.00           | 25.30            | 21.64  | 46.94            | 54(Note3)         | -7.06       | PK       |  |  |
| V               | 17355.00           | 23.29            | 21.80  | 45.09            | 54(Note3)         | -8.91       | PK       |  |  |
| Н               | 11570.00           | 22.80            | 21.83  | 44.63            | 54(Note3)         | -9.37       | PK       |  |  |
| Н               | 17355.00           | 22.05            | 21.67  | 43.72            | 54(Note3)         | -10.28      | PK       |  |  |

| Test mode:      |                    | 802.11a          |        |                  | channel:          | Highest     | Highest  |  |
|-----------------|--------------------|------------------|--------|------------------|-------------------|-------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level | Factor | Measure<br>Level | Limit<br>(dBuV/m) | Margin (dB) | Detector |  |
| V               | 11650.00           | 24.79            | 21.64  | 46.43            | 54(Note3)         | -7.57       | PK       |  |
| V               | 17475.00           | 22.87            | 21.80  | 44.67            | 54(Note3)         | -9.33       | PK       |  |
| Н               | 11650.00           | 22.73            | 21.83  | 44.56            | 54(Note3)         | -9.44       | PK       |  |
| Н               | 17475.00           | 21.72            | 21.67  | 43.39            | 54(Note3)         | -10.61      | PK       |  |



# 802.11a SISO mode: ANT2

| Test mode:      | node: 802.11a      |                  | Test channel: |                  | lowest            |                |          |
|-----------------|--------------------|------------------|---------------|------------------|-------------------|----------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level | Factor        | Measure<br>Level | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| V               | 11510.00           | 26.71            | 21.64         | 48.35            | 54(Note3)         | -5.65          | PK       |
| V               | 17265.00           | 24.51            | 21.80         | 46.31            | 54(Note3)         | -7.69          | PK       |
| Н               | 11510.00           | 24.56            | 21.64         | 46.20            | 54(Note3)         | -7.80          | PK       |
| Н               | 17265.00           | 23.42            | 21.80         | 45.22            | 54(Note3)         | ) -8.78        | PK       |

| Test mode: 802.11a |                    | Test channel     | :      | Middle           |                   |                |          |
|--------------------|--------------------|------------------|--------|------------------|-------------------|----------------|----------|
| Antenna<br>Pol.    | Frequency<br>(MHz) | Reading<br>Level | Factor | Measure<br>Level | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| V                  | 11570.00           | 25.60            | 21.67  | 47.27            | 54(Note3)         | -6.73          | PK       |
| V                  | 17355.00           | 23.57            | 21.83  | 45.40            | 54(Note3)         | -8.60          | PK       |
| Н                  | 11570.00           | 23.04            | 21.67  | 44.71            | 54(Note3)         | -9.29          | PK       |
| Н                  | 17355.00           | 22.40            | 21.83  | 44.23            | 54(Note3)         | -9.77          | PK       |

| Test mode:      |                    | 802.11a          |        | Test channel:    |                   | Highest        |          |  |
|-----------------|--------------------|------------------|--------|------------------|-------------------|----------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level | Factor | Measure<br>Level | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |  |
| V               | 11650.00           | 25.00            | 21.64  | 46.64            | 54(Note3)         | -7.36          | PK       |  |
| V               | 17475.00           | 23.10            | 22.16  | 45.26            | 54(Note3)         | -8.74          | PK       |  |
| Н               | 11650.00           | 22.94            | 21.64  | 44.58            | 54(Note3)         | -9.42          | PK       |  |
| Н               | 17475.00           | 22.02            | 22.16  | 44.18            | 54(Note3)         | -9.82          | PK       |  |



#### 802.11ac MIMO mode: ANT1+ANT2

| Test mode:      | 802.11ad           | 802.11ac(HT40)   |        | Test channel:    |                   | Lowest         |          |
|-----------------|--------------------|------------------|--------|------------------|-------------------|----------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level | Factor | Measure<br>Level | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| V               | 11510.00           | 26.52            | 21.67  | 48.19            | 54(Note3)         | -5.81          | PK       |
| V               | 17265.00           | 24.25            | 21.83  | 46.08            | 54(Note3)         | -7.92          | PK       |
| Н               | 11510.00           | 24.32            | 21.67  | 45.99            | 54(Note3)         | -8.01          | PK       |
| Н               | 17265.00           | 23.20            | 21.83  | 45.03            | 54(Note3)         | -8.97          | PK       |

| Test mode:      | est mode: 802.11ac(HT40) |                  |        | Test channel: Highes |                   | Highest        |          |
|-----------------|--------------------------|------------------|--------|----------------------|-------------------|----------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz)       | Reading<br>Level | Factor | Measure<br>Level     | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| V               | 11590.00                 | 28.60            | 21.67  | 50.27                | 54(Note3)         | -3.73          | PK       |
| V               | 17385.00                 | 26.29            | 21.83  | 48.12                | 54(Note3)         | -5.88          | PK       |
| Н               | 11590.00                 | 26.45            | 21.67  | 48.12                | 54(Note3)         | -5.88          | PK       |
| Н               | 17385.00                 | 25.27            | 21.83  | 47.10                | 54(Note3)         | -6.90          | PK       |

| Test mode:      | est mode: 802.11ac(HT80) |                  |        | Test channel:    |                   | Middle         |          |
|-----------------|--------------------------|------------------|--------|------------------|-------------------|----------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz)       | Reading<br>Level | Factor | Measure<br>Level | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector |
| V               | 11550.00                 | 25.46            | 21.65  | 47.11            | 54(Note3)         | -6.89          | PK       |
| V               | 17325.00                 | 23.42            | 21.81  | 45.23            | 54(Note3)         | -8.77          | PK       |
| Н               | 11550.00                 | 23.56            | 21.65  | 45.21            | 54(Note3)         | -8.79          | PK       |
| Н               | 17325.00                 | 22.36            | 21.81  | 44.17            | 54(Note3)         | -9.83          | PK       |

# Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.



# 7.8 Frequency stability

| Test Requirement: | FCC Part15 C Section 15.407(g)                                                                                                                                                                        |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013, FCC Part 2.1055                                                                                                                                                                     |  |  |  |  |
| Limit:            | Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified |  |  |  |  |
| Test Procedure:   | The EUT was setup to ANSI C63.4, 2014; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.                                                                                            |  |  |  |  |
| Test setup:       | Spectrum analyzer  FUT  Variable Power Supply  Note: Measurement setup for testing on Antenna connector                                                                                               |  |  |  |  |
| Test Instruments: | Refer to section 5.10 for details                                                                                                                                                                     |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                      |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                  |  |  |  |  |



# Measurement data:

#### ANT:1

|                       | 802.11a                          |                 |                 |                 |                 |  |  |  |  |
|-----------------------|----------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|                       | Frequency stability versus Temp. |                 |                 |                 |                 |  |  |  |  |
| Power Supply: DC 3.7V |                                  |                 |                 |                 |                 |  |  |  |  |
| Tomp                  | Operating                        | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Temp.<br>(°C)         | Frequency                        | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| ( C)                  | (MHz)                            | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|                       | 5745                             | 5744.9877       | 5744.9883       | 5744.9892       | 5744.9897       |  |  |  |  |
| -30                   | 5785                             | 5784.9880       | 5784.9886       | 5784.9895       | 5784.9900       |  |  |  |  |
|                       | 5825                             | 5824.9884       | 5824.9889       | 5824.9898       | 5824.9903       |  |  |  |  |
|                       | 5745                             | 5744.9887       | 5744.9892       | 5744.9901       | 5744.9906       |  |  |  |  |
| -20                   | 5785                             | 5784.9890       | 5784.9896       | 5784.9904       | 5784.9909       |  |  |  |  |
|                       | 5825                             | 5824.9894       | 5824.9899       | 5824.9907       | 5824.9911       |  |  |  |  |
|                       | 5745                             | 5744.9897       | 5744.9902       | 5744.9909       | 5744.9914       |  |  |  |  |
| -10                   | 5785                             | 5784.9900       | 5784.9904       | 5784.9912       | 5784.9916       |  |  |  |  |
|                       | 5825                             | 5824.9903       | 5824.9907       | 5824.9915       | 5824.9919       |  |  |  |  |
|                       | 5745                             | 5744.9905       | 5744.9910       | 5744.9917       | 5744.9921       |  |  |  |  |
| 0                     | 5785                             | 5784.9908       | 5784.9913       | 5784.9919       | 5784.9924       |  |  |  |  |
|                       | 5825                             | 5824.9911       | 5824.9915       | 5824.9922       | 5824.9926       |  |  |  |  |
|                       | 5745                             | 5744.9880       | 5744.9886       | 5744.9895       | 5744.9900       |  |  |  |  |
| 10                    | 5785                             | 5784.9884       | 5784.9889       | 5784.9898       | 5784.9903       |  |  |  |  |
|                       | 5825                             | 5824.9887       | 5824.9892       | 5824.9901       | 5824.9906       |  |  |  |  |
|                       | 5745                             | 5744.9890       | 5744.9896       | 5744.9904       | 5744.9909       |  |  |  |  |
| 20                    | 5785                             | 5784.9893       | 5784.9899       | 5784.9907       | 5784.9911       |  |  |  |  |
|                       | 5825                             | 5824.9897       | 5824.9902       | 5824.9909       | 5824.9914       |  |  |  |  |
|                       | 5745                             | 5744.9900       | 5744.9904       | 5744.9912       | 5744.9916       |  |  |  |  |
| 30                    | 5785                             | 5784.9903       | 5784.9907       | 5784.9914       | 5784.9919       |  |  |  |  |
|                       | 5825                             | 5824.9905       | 5824.9910       | 5824.9917       | 5824.9921       |  |  |  |  |
|                       | 5745                             | 5744.9908       | 5744.9913       | 5744.9919       | 5744.9923       |  |  |  |  |
| 40                    | 5785                             | 5784.9911       | 5784.9915       | 5784.9922       | 5784.9926       |  |  |  |  |
|                       | 5825                             | 5824.9913       | 5824.9918       | 5824.9924       | 5824.9928       |  |  |  |  |
|                       | 5745                             | 5744.9875       | 5744.9881       | 5744.9891       | 5744.9896       |  |  |  |  |
| 50                    | 5785                             | 5784.9879       | 5784.9885       | 5784.9894       | 5784.9899       |  |  |  |  |
|                       | 5825                             | 5824.9883       | 5824.9888       | 5824.9897       | 5824.9902       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |  |
|        | 5745                               | 5744.9883       | 5744.9889       | 5744.9898       | 5744.9903       |  |  |  |  |  |
| 3.3    | 5785                               | 5784.9886       | 5784.9891       | 5784.9900       | 5784.9905       |  |  |  |  |  |
|        | 5825                               | 5824.9888       | 5824.9893       | 5824.9902       | 5824.9907       |  |  |  |  |  |
|        | 5745                               | 5744.9890       | 5744.9895       | 5744.9904       | 5744.9909       |  |  |  |  |  |
| 3.7    | 5785                               | 5784.9892       | 5784.9897       | 5784.9906       | 5784.9910       |  |  |  |  |  |
|        | 5825                               | 5824.9894       | 5824.9899       | 5824.9907       | 5824.9912       |  |  |  |  |  |
|        | 5745                               | 5744.9897       | 5744.9901       | 5744.9909       | 5744.9914       |  |  |  |  |  |
| 4.1    | 5785                               | 5784.9899       | 5784.9903       | 5784.9911       | 5784.9916       |  |  |  |  |  |
|        | 5825                               | 5824.9901       | 5824.9905       | 5824.9913       | 5824.9917       |  |  |  |  |  |

Page 47 of 60



|       | 802.11n(HT20)                    |                 |                 |                 |                 |  |  |  |  |
|-------|----------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|       | Frequency stability versus Temp. |                 |                 |                 |                 |  |  |  |  |
|       | Power Supply: DC 3.7V            |                 |                 |                 |                 |  |  |  |  |
| Tomp  | Operating                        | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Temp. | Frequency                        | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|       | 5745                             | 5744.9881       | 5744.9886       | 5744.9895       | 5744.9901       |  |  |  |  |
| -30   | 5785                             | 5784.9884       | 5784.9890       | 5784.9898       | 5784.9903       |  |  |  |  |
|       | 5825                             | 5824.9887       | 5824.9893       | 5824.9901       | 5824.9906       |  |  |  |  |
|       | 5745                             | 5744.9891       | 5744.9896       | 5744.9904       | 5744.9909       |  |  |  |  |
| -20   | 5785                             | 5784.9894       | 5784.9899       | 5784.9907       | 5784.9912       |  |  |  |  |
|       | 5825                             | 5824.9897       | 5824.9902       | 5824.9910       | 5824.9914       |  |  |  |  |
|       | 5745                             | 5744.9900       | 5744.9905       | 5744.9912       | 5744.9917       |  |  |  |  |
| -10   | 5785                             | 5784.9903       | 5784.9908       | 5784.9915       | 5784.9919       |  |  |  |  |
|       | 5825                             | 5824.9906       | 5824.9910       | 5824.9917       | 5824.9922       |  |  |  |  |
|       | 5745                             | 5744.9908       | 5744.9913       | 5744.9920       | 5744.9924       |  |  |  |  |
| 0     | 5785                             | 5784.9911       | 5784.9915       | 5784.9922       | 5784.9926       |  |  |  |  |
|       | 5825                             | 5824.9914       | 5824.9918       | 5824.9924       | 5824.9928       |  |  |  |  |
|       | 5745                             | 5744.9884       | 5744.9890       | 5744.9898       | 5744.9903       |  |  |  |  |
| 10    | 5785                             | 5784.9887       | 5784.9893       | 5784.9901       | 5784.9906       |  |  |  |  |
|       | 5825                             | 5824.9891       | 5824.9896       | 5824.9904       | 5824.9909       |  |  |  |  |
|       | 5745                             | 5744.9894       | 5744.9899       | 5744.9907       | 5744.9912       |  |  |  |  |
| 20    | 5785                             | 5784.9897       | 5784.9902       | 5784.9910       | 5784.9914       |  |  |  |  |
|       | 5825                             | 5824.9900       | 5824.9905       | 5824.9912       | 5824.9917       |  |  |  |  |
|       | 5745                             | 5744.9903       | 5744.9907       | 5744.9915       | 5744.9919       |  |  |  |  |
| 30    | 5785                             | 5784.9906       | 5784.9910       | 5784.9917       | 5784.9921       |  |  |  |  |
|       | 5825                             | 5824.9908       | 5824.9913       | 5824.9920       | 5824.9924       |  |  |  |  |
| _     | 5745                             | 5744.9911       | 5744.9915       | 5744.9922       | 5744.9926       |  |  |  |  |
| 40    | 5785                             | 5784.9914       | 5784.9918       | 5784.9924       | 5784.9928       |  |  |  |  |
|       | 5825                             | 5824.9916       | 5824.9920       | 5824.9926       | 5824.9930       |  |  |  |  |
|       | 5745                             | 5744.9879       | 5744.9885       | 5744.9894       | 5744.9900       |  |  |  |  |
| 50    | 5785                             | 5784.9883       | 5784.9889       | 5784.9897       | 5784.9903       |  |  |  |  |
|       | 5825                             | 5824.9886       | 5824.9892       | 5824.9900       | 5824.9905       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|        | 5745                               | 5744.9881       | 5744.9887       | 5744.9896       | 5744.9901       |  |  |  |  |
| 3.3    | 5785                               | 5784.9884       | 5784.9889       | 5784.9898       | 5784.9903       |  |  |  |  |
|        | 5825                               | 5824.9886       | 5824.9891       | 5824.9900       | 5824.9905       |  |  |  |  |
|        | 5745                               | 5744.9888       | 5744.9894       | 5744.9902       | 5744.9907       |  |  |  |  |
| 3.7    | 5785                               | 5784.9890       | 5784.9896       | 5784.9904       | 5784.9909       |  |  |  |  |
|        | 5825                               | 5824.9893       | 5824.9898       | 5824.9906       | 5824.9911       |  |  |  |  |
|        | 5745                               | 5744.9895       | 5744.9900       | 5744.9908       | 5744.9912       |  |  |  |  |
| 4.1    | 5785                               | 5784.9897       | 5784.9902       | 5784.9909       | 5784.9914       |  |  |  |  |
|        | 5825                               | 5824.9899       | 5824.9904       | 5824.9911       | 5824.9916       |  |  |  |  |



|       | 802.11ac(HT20)                   |                 |                 |                 |                 |  |  |  |  |
|-------|----------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|       | Frequency stability versus Temp. |                 |                 |                 |                 |  |  |  |  |
|       | Power Supply: DC 3.7V            |                 |                 |                 |                 |  |  |  |  |
| Tomn  | Operating                        | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Temp. | Frequency                        | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|       | 5745                             | 5744.9869       | 5744.9875       | 5744.9885       | 5744.9891       |  |  |  |  |
| -30   | 5785                             | 5784.9872       | 5784.9879       | 5784.9888       | 5784.9894       |  |  |  |  |
|       | 5825                             | 5824.9876       | 5824.9882       | 5824.9891       | 5824.9897       |  |  |  |  |
|       | 5745                             | 5744.9880       | 5744.9886       | 5744.9895       | 5744.9900       |  |  |  |  |
| -20   | 5785                             | 5784.9883       | 5784.9889       | 5784.9898       | 5784.9903       |  |  |  |  |
|       | 5825                             | 5824.9887       | 5824.9892       | 5824.9901       | 5824.9906       |  |  |  |  |
|       | 5745                             | 5744.9890       | 5744.9895       | 5744.9904       | 5744.9908       |  |  |  |  |
| -10   | 5785                             | 5784.9893       | 5784.9898       | 5784.9906       | 5784.9911       |  |  |  |  |
|       | 5825                             | 5824.9896       | 5824.9901       | 5824.9909       | 5824.9914       |  |  |  |  |
|       | 5745                             | 5744.9899       | 5744.9904       | 5744.9912       | 5744.9916       |  |  |  |  |
| 0     | 5785                             | 5784.9902       | 5784.9907       | 5784.9914       | 5784.9919       |  |  |  |  |
|       | 5825                             | 5824.9905       | 5824.9910       | 5824.9917       | 5824.9921       |  |  |  |  |
|       | 5745                             | 5744.9872       | 5744.9878       | 5744.9888       | 5744.9894       |  |  |  |  |
| 10    | 5785                             | 5784.9876       | 5784.9882       | 5784.9891       | 5784.9897       |  |  |  |  |
|       | 5825                             | 5824.9880       | 5824.9885       | 5824.9894       | 5824.9900       |  |  |  |  |
|       | 5745                             | 5744.9883       | 5744.9889       | 5744.9898       | 5744.9903       |  |  |  |  |
| 20    | 5785                             | 5784.9887       | 5784.9892       | 5784.9901       | 5784.9906       |  |  |  |  |
|       | 5825                             | 5824.9890       | 5824.9895       | 5824.9903       | 5824.9908       |  |  |  |  |
|       | 5745                             | 5744.9893       | 5744.9898       | 5744.9906       | 5744.9911       |  |  |  |  |
| 30    | 5785                             | 5784.9896       | 5784.9901       | 5784.9909       | 5784.9914       |  |  |  |  |
|       | 5825                             | 5824.9899       | 5824.9904       | 5824.9912       | 5824.9916       |  |  |  |  |
|       | 5745                             | 5744.9902       | 5744.9907       | 5744.9914       | 5744.9919       |  |  |  |  |
| 40    | 5785                             | 5784.9905       | 5784.9910       | 5784.9917       | 5784.9921       |  |  |  |  |
|       | 5825                             | 5824.9908       | 5824.9912       | 5824.9919       | 5824.9923       |  |  |  |  |
|       | 5745                             | 5744.9867       | 5744.9874       | 5744.9884       | 5744.9890       |  |  |  |  |
| 50    | 5785                             | 5784.9871       | 5784.9877       | 5784.9887       | 5784.9893       |  |  |  |  |
|       | 5825                             | 5824.9875       | 5824.9881       | 5824.9890       | 5824.9896       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |  |
|        | 5745                               | 5744.9885       | 5744.9891       | 5744.9900       | 5744.9905       |  |  |  |  |  |
| 3.3    | 5785                               | 5784.9888       | 5784.9893       | 5784.9901       | 5784.9906       |  |  |  |  |  |
|        | 5825                               | 5824.9890       | 5824.9895       | 5824.9903       | 5824.9908       |  |  |  |  |  |
|        | 5745                               | 5744.9892       | 5744.9897       | 5744.9905       | 5744.9910       |  |  |  |  |  |
| 3.7    | 5785                               | 5784.9894       | 5784.9899       | 5784.9907       | 5784.9912       |  |  |  |  |  |
|        | 5825                               | 5824.9896       | 5824.9901       | 5824.9909       | 5824.9914       |  |  |  |  |  |
|        | 5745                               | 5744.9898       | 5744.9903       | 5744.9911       | 5744.9915       |  |  |  |  |  |
| 4.1    | 5785                               | 5784.9900       | 5784.9905       | 5784.9913       | 5784.9917       |  |  |  |  |  |
|        | 5825                               | 5824.9902       | 5824.9907       | 5824.9914       | 5824.9919       |  |  |  |  |  |



|       | 802.11n(HT40)                    |                 |                     |                 |                 |  |  |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |  |  |
|       |                                  | Pov             | wer Supply: DC 3.7V |                 |                 |  |  |  |  |
| Tomp  | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |  |  |
| Temp. | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| -30   | 5755                             | 5754.9863       | 5754.9869           | 5754.9880       | 5754.9886       |  |  |  |  |
| -30   | 5795                             | 5794.9867       | 5794.9873           | 5794.9883       | 5794.9889       |  |  |  |  |
| -20   | 5755                             | 5754.9871       | 5754.9877           | 5754.9886       | 5754.9892       |  |  |  |  |
| -20   | 5795                             | 5794.9874       | 5794.9880           | 5794.9890       | 5794.9895       |  |  |  |  |
| 10    | 5755                             | 5754.9878       | 5754.9884           | 5754.9893       | 5754.9898       |  |  |  |  |
| -10   | 5795                             | 5794.9882       | 5794.9887           | 5794.9896       | 5794.9901       |  |  |  |  |
| 0     | 5755                             | 5754.9885       | 5754.9891           | 5754.9899       | 5754.9904       |  |  |  |  |
| 0     | 5795                             | 5794.9888       | 5794.9894           | 5794.9902       | 5794.9907       |  |  |  |  |
| 10    | 5755                             | 5754.9892       | 5754.9897           | 5754.9905       | 5754.9910       |  |  |  |  |
| 10    | 5795                             | 5794.9895       | 5794.9900           | 5794.9908       | 5794.9912       |  |  |  |  |
| 20    | 5755                             | 5754.9898       | 5754.9903           | 5754.9910       | 5754.9915       |  |  |  |  |
| 20    | 5795                             | 5794.9901       | 5794.9906           | 5794.9913       | 5794.9917       |  |  |  |  |
| 20    | 5755                             | 5754.9867       | 5754.9873           | 5754.9883       | 5754.9889       |  |  |  |  |
| 30    | 5795                             | 5794.9870       | 5794.9877           | 5794.9886       | 5794.9892       |  |  |  |  |
| 40    | 5755                             | 5754.9874       | 5754.9880           | 5754.9890       | 5754.9895       |  |  |  |  |
| 40    | 5795                             | 5794.9878       | 5794.9884           | 5794.9893       | 5794.9898       |  |  |  |  |
| F0    | 5755                             | 5754.9881       | 5754.9887           | 5754.9896       | 5754.9901       |  |  |  |  |
| 50    | 5795                             | 5794.9885       | 5794.9890           | 5794.9899       | 5794.9904       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |  |
| 3.3    | 5755                               | 5754.9883       | 5754.9889       | 5754.9898       | 5754.9903       |  |  |  |  |  |
| 3.3    | 5795                               | 5794.9886       | 5794.9891       | 5794.9900       | 5794.9905       |  |  |  |  |  |
| 2.7    | 5755                               | 5754.9888       | 5754.9893       | 5754.9902       | 5754.9907       |  |  |  |  |  |
| 3.7    | 5795                               | 5794.9890       | 5794.9895       | 5794.9904       | 5794.9909       |  |  |  |  |  |
| 4.1    | 5755                               | 5754.9892       | 5754.9897       | 5754.9906       | 5754.9910       |  |  |  |  |  |
| 4.1    | 5795                               | 5794.9894       | 5794.9899       | 5794.9907       | 5794.9912       |  |  |  |  |  |



|       | 802.11ac(HT40)                   |                 |                     |                 |                 |  |  |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |  |  |
|       |                                  | Pov             | wer Supply: DC 3.7V |                 |                 |  |  |  |  |
| Temp. | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |  |  |
|       | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| 20    | 5755                             | 5754.9857       | 5754.9864           | 5754.9874       | 5754.9881       |  |  |  |  |
| -30   | 5795                             | 5794.9861       | 5794.9868           | 5794.9878       | 5794.9884       |  |  |  |  |
| 20    | 5755                             | 5754.9865       | 5754.9871           | 5754.9882       | 5754.9888       |  |  |  |  |
| -20   | 5795                             | 5794.9869       | 5794.9875           | 5794.9885       | 5794.9891       |  |  |  |  |
| 10    | 5755                             | 5754.9873       | 5754.9879           | 5754.9888       | 5754.9894       |  |  |  |  |
| -10   | 5795                             | 5794.9876       | 5794.9882           | 5794.9892       | 5794.9897       |  |  |  |  |
| 0     | 5755                             | 5754.9880       | 5754.9886           | 5754.9895       | 5754.9900       |  |  |  |  |
| 0     | 5795                             | 5794.9884       | 5794.9889           | 5794.9898       | 5794.9903       |  |  |  |  |
| 10    | 5755                             | 5754.9887       | 5754.9892           | 5754.9901       | 5754.9906       |  |  |  |  |
| 10    | 5795                             | 5794.9890       | 5794.9895           | 5794.9904       | 5794.9909       |  |  |  |  |
| 20    | 5755                             | 5754.9893       | 5754.9898           | 5754.9906       | 5754.9911       |  |  |  |  |
| 20    | 5795                             | 5794.9896       | 5794.9901           | 5794.9909       | 5794.9914       |  |  |  |  |
| 20    | 5755                             | 5754.9861       | 5754.9867           | 5754.9878       | 5754.9884       |  |  |  |  |
| 30    | 5795                             | 5794.9865       | 5794.9871           | 5794.9881       | 5794.9887       |  |  |  |  |
| 40    | 5755                             | 5754.9869       | 5754.9875           | 5754.9885       | 5754.9891       |  |  |  |  |
| 40    | 5795                             | 5794.9873       | 5794.9879           | 5794.9888       | 5794.9894       |  |  |  |  |
| 50    | 5755                             | 5754.9876       | 5754.9882           | 5754.9891       | 5754.9897       |  |  |  |  |
| 50    | 5795                             | 5794.9880       | 5794.9886           | 5794.9895       | 5794.9900       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| 3.3    | 5755                               | 5754.9881       | 5754.9887       | 5754.9896       | 5754.9901       |  |  |  |  |
| 3.3    | 5795                               | 5794.9884       | 5794.9889       | 5794.9898       | 5794.9903       |  |  |  |  |
| 2.7    | 5755                               | 5754.9886       | 5754.9891       | 5754.9900       | 5754.9905       |  |  |  |  |
| 3.7    | 5795                               | 5794.9888       | 5794.9894       | 5794.9902       | 5794.9907       |  |  |  |  |
| 4.4    | 5755                               | 5754.9890       | 5754.9896       | 5754.9904       | 5754.9909       |  |  |  |  |
| 4.1    | 5795                               | 5794.9893       | 5794.9898       | 5794.9906       | 5794.9911       |  |  |  |  |



|       | 802.11ac(HT80)                   |                 |                     |                 |                 |  |  |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |  |  |
|       |                                  | Pov             | wer Supply: DC 3.7V |                 |                 |  |  |  |  |
| Tomp  | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |  |  |
| Temp. | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| -30   | 5775                             | 5774.9857       | 5774.9864           | 5774.9874       | 5774.9881       |  |  |  |  |
| -20   | 5775                             | 5774.9861       | 5774.9868           | 5774.9878       | 5774.9884       |  |  |  |  |
| -10   | 5775                             | 5774.9865       | 5774.9871           | 5774.9882       | 5774.9888       |  |  |  |  |
| 0     | 5775                             | 5774.9869       | 5774.9875           | 5774.9885       | 5774.9891       |  |  |  |  |
| 10    | 5775                             | 5774.9873       | 5774.9879           | 5774.9888       | 5774.9894       |  |  |  |  |
| 20    | 5775                             | 5774.9876       | 5774.9882           | 5774.9892       | 5774.9897       |  |  |  |  |
| 30    | 5775                             | 5774.9880       | 5774.9886           | 5774.9895       | 5774.9900       |  |  |  |  |
| 40    | 5775                             | 5774.9884       | 5774.9889           | 5774.9898       | 5774.9903       |  |  |  |  |
| 50    | 5775                             | 5774.9887       | 5774.9892           | 5774.9901       | 5774.9906       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |  |
| 3.3    | 5775                               | 5774.9891       | 5774.9897       | 5774.9905       | 5774.9910       |  |  |  |  |  |
| 3.7    | 5775                               | 5774.9894       | 5774.9899       | 5774.9907       | 5774.9911       |  |  |  |  |  |
| 4.1    | 5775                               | 5774.9896       | 5774.9901       | 5774.9909       | 5774.9913       |  |  |  |  |  |

No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# ANT:2

| 802.11a |                                  |                 |                 |                 |                 |  |  |  |  |
|---------|----------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|         | Frequency stability versus Temp. |                 |                 |                 |                 |  |  |  |  |
|         | Power Supply: DC 3.7V            |                 |                 |                 |                 |  |  |  |  |
| Temp.   | Operating                        | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| (°C)    | Frequency                        | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| ( 0)    | (MHz)                            | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|         | 5745                             | 5744.9873       | 5744.9879       | 5744.9888       | 5744.9894       |  |  |  |  |
| -30     | 5785                             | 5784.9876       | 5784.9882       | 5784.9892       | 5784.9897       |  |  |  |  |
|         | 5825                             | 5824.9880       | 5824.9886       | 5824.9895       | 5824.9900       |  |  |  |  |
|         | 5745                             | 5744.9883       | 5744.9889       | 5744.9898       | 5744.9903       |  |  |  |  |
| -20     | 5785                             | 5784.9887       | 5784.9892       | 5784.9901       | 5784.9906       |  |  |  |  |
| -20     | 5825                             | 5824.9890       | 5824.9895       | 5824.9904       | 5824.9909       |  |  |  |  |
|         | 5745                             | 5744.9893       | 5744.9898       | 5744.9906       | 5744.9911       |  |  |  |  |
| -10     | 5785                             | 5784.9896       | 5784.9901       | 5784.9909       | 5784.9914       |  |  |  |  |
|         | 5825                             | 5824.9899       | 5824.9904       | 5824.9912       | 5824.9916       |  |  |  |  |
|         | 5745                             | 5744.9902       | 5744.9907       | 5744.9914       | 5744.9919       |  |  |  |  |
| 0       | 5785                             | 5784.9905       | 5784.9910       | 5784.9917       | 5784.9921       |  |  |  |  |
|         | 5825                             | 5824.9908       | 5824.9912       | 5824.9919       | 5824.9923       |  |  |  |  |
|         | 5745                             | 5744.9876       | 5744.9882       | 5744.9891       | 5744.9897       |  |  |  |  |
| 10      | 5785                             | 5784.9880       | 5784.9886       | 5784.9895       | 5784.9900       |  |  |  |  |
|         | 5825                             | 5824.9883       | 5824.9889       | 5824.9898       | 5824.9903       |  |  |  |  |
|         | 5745                             | 5744.9887       | 5744.9892       | 5744.9901       | 5744.9906       |  |  |  |  |
| 20      | 5785                             | 5784.9890       | 5784.9895       | 5784.9904       | 5784.9908       |  |  |  |  |
|         | 5825                             | 5824.9893       | 5824.9898       | 5824.9906       | 5824.9911       |  |  |  |  |
|         | 5745                             | 5744.9896       | 5744.9901       | 5744.9909       | 5744.9914       |  |  |  |  |
| 30      | 5785                             | 5784.9899       | 5784.9904       | 5784.9912       | 5784.9916       |  |  |  |  |
|         | 5825                             | 5824.9902       | 5824.9907       | 5824.9914       | 5824.9919       |  |  |  |  |
|         | 5745                             | 5744.9905       | 5744.9910       | 5744.9917       | 5744.9921       |  |  |  |  |
| 40      | 5785                             | 5784.9908       | 5784.9912       | 5784.9919       | 5784.9923       |  |  |  |  |
|         | 5825                             | 5824.9911       | 5824.9915       | 5824.9922       | 5824.9926       |  |  |  |  |
|         | 5745                             | 5744.9871       | 5744.9878       | 5744.9887       | 5744.9893       |  |  |  |  |
| 50      | 5785                             | 5784.9875       | 5784.9881       | 5784.9890       | 5784.9896       |  |  |  |  |
|         | 5825                             | 5824.9879       | 5824.9885       | 5824.9894       | 5824.9899       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|        | 5745                               | 5744.9877       | 5744.9883       | 5744.9892       | 5744.9898       |  |  |  |  |
| 3.3    | 5785                               | 5784.9880       | 5784.9886       | 5784.9895       | 5784.9900       |  |  |  |  |
|        | 5825                               | 5824.9882       | 5824.9888       | 5824.9897       | 5824.9902       |  |  |  |  |
|        | 5745                               | 5744.9884       | 5744.9890       | 5744.9899       | 5744.9904       |  |  |  |  |
| 3.7    | 5785                               | 5784.9887       | 5784.9892       | 5784.9901       | 5784.9906       |  |  |  |  |
|        | 5825                               | 5824.9889       | 5824.9894       | 5824.9903       | 5824.9908       |  |  |  |  |
|        | 5745                               | 5744.9891       | 5744.9896       | 5744.9905       | 5744.9909       |  |  |  |  |
| 4.1    | 5785                               | 5784.9893       | 5784.9898       | 5784.9906       | 5784.9911       |  |  |  |  |
|        | 5825                               | 5824.9895       | 5824.9900       | 5824.9908       | 5824.9913       |  |  |  |  |



|       | 802.11n(HT20)                    |                 |                     |                 |                 |  |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |  |
|       |                                  |                 | wer Supply: DC 3.7V |                 |                 |  |  |  |
| Танан | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |  |
|       | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |  |
| ( )   | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |  |
|       | 5745                             | 5744.9863       | 5744.9869           | 5744.9880       | 5744.9886       |  |  |  |
| -30   | 5785                             | 5784.9867       | 5784.9873           | 5784.9883       | 5784.9889       |  |  |  |
|       | 5825                             | 5824.9871       | 5824.9877           | 5824.9886       | 5824.9892       |  |  |  |
|       | 5745                             | 5744.9874       | 5744.9880           | 5744.9890       | 5744.9895       |  |  |  |
| -20   | 5785                             | 5784.9878       | 5784.9884           | 5784.9893       | 5784.9898       |  |  |  |
|       | 5825                             | 5824.9882       | 5824.9887           | 5824.9896       | 5824.9901       |  |  |  |
|       | 5745                             | 5744.9885       | 5744.9891           | 5744.9899       | 5744.9904       |  |  |  |
| -10   | 5785                             | 5784.9888       | 5784.9894           | 5784.9902       | 5784.9907       |  |  |  |
|       | 5825                             | 5824.9892       | 5824.9897           | 5824.9905       | 5824.9910       |  |  |  |
|       | 5745                             | 5744.9895       | 5744.9900           | 5744.9908       | 5744.9912       |  |  |  |
| 0     | 5785                             | 5784.9898       | 5784.9903           | 5784.9910       | 5784.9915       |  |  |  |
|       | 5825                             | 5824.9901       | 5824.9906           | 5824.9913       | 5824.9917       |  |  |  |
|       | 5745                             | 5744.9867       | 5744.9873           | 5744.9883       | 5744.9889       |  |  |  |
| 10    | 5785                             | 5784.9870       | 5784.9877           | 5784.9886       | 5784.9892       |  |  |  |
|       | 5825                             | 5824.9874       | 5824.9880           | 5824.9890       | 5824.9895       |  |  |  |
|       | 5745                             | 5744.9878       | 5744.9884           | 5744.9893       | 5744.9898       |  |  |  |
| 20    | 5785                             | 5784.9881       | 5784.9887           | 5784.9896       | 5784.9901       |  |  |  |
|       | 5825                             | 5824.9885       | 5824.9890           | 5824.9899       | 5824.9904       |  |  |  |
|       | 5745                             | 5744.9888       | 5744.9894           | 5744.9902       | 5744.9907       |  |  |  |
| 30    | 5785                             | 5784.9892       | 5784.9897           | 5784.9905       | 5784.9910       |  |  |  |
|       | 5825                             | 5824.9895       | 5824.9900           | 5824.9908       | 5824.9912       |  |  |  |
|       | 5745                             | 5744.9898       | 5744.9903           | 5744.9910       | 5744.9915       |  |  |  |
| 40    | 5785                             | 5784.9901       | 5784.9905           | 5784.9913       | 5784.9917       |  |  |  |
|       | 5825                             | 5824.9904       | 5824.9908           | 5824.9915       | 5824.9920       |  |  |  |
|       | 5745                             | 5744.9861       | 5744.9868           | 5744.9878       | 5744.9885       |  |  |  |
| 50    | 5785                             | 5784.9865       | 5784.9872           | 5784.9882       | 5784.9888       |  |  |  |
|       | 5825                             | 5824.9869       | 5824.9876           | 5824.9885       | 5824.9891       |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|        | 5745                               | 5744.9889       | 5744.9895       | 5744.9903       | 5744.9908       |  |  |  |  |
| 3.3    | 5785                               | 5784.9892       | 5784.9897       | 5784.9905       | 5784.9910       |  |  |  |  |
|        | 5825                               | 5824.9894       | 5824.9899       | 5824.9907       | 5824.9912       |  |  |  |  |
|        | 5745                               | 5744.9896       | 5744.9901       | 5744.9909       | 5744.9913       |  |  |  |  |
| 3.7    | 5785                               | 5784.9898       | 5784.9903       | 5784.9910       | 5784.9915       |  |  |  |  |
|        | 5825                               | 5824.9900       | 5824.9905       | 5824.9912       | 5824.9917       |  |  |  |  |
|        | 5745                               | 5744.9902       | 5744.9907       | 5744.9914       | 5744.9918       |  |  |  |  |
| 4.1    | 5785                               | 5784.9904       | 5784.9908       | 5784.9916       | 5784.9920       |  |  |  |  |
|        | 5825                               | 5824.9906       | 5824.9910       | 5824.9917       | 5824.9921       |  |  |  |  |



|      | 802.11ac(HT20)                   |                 |                 |                 |                 |  |  |  |  |
|------|----------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|      | Frequency stability versus Temp. |                 |                 |                 |                 |  |  |  |  |
|      | Power Supply: DC 3.7V            |                 |                 |                 |                 |  |  |  |  |
| Tomp | Operating                        | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
|      | Frequency                        | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| ( C) | (MHz)                            | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|      | 5745                             | 5744.9867       | 5744.9873       | 5744.9883       | 5744.9889       |  |  |  |  |
| -30  | 5785                             | 5784.9871       | 5784.9877       | 5784.9886       | 5784.9892       |  |  |  |  |
|      | 5825                             | 5824.9874       | 5824.9880       | 5824.9890       | 5824.9895       |  |  |  |  |
|      | 5745                             | 5744.9878       | 5744.9884       | 5744.9893       | 5744.9898       |  |  |  |  |
| -20  | 5785                             | 5784.9882       | 5784.9887       | 5784.9896       | 5784.9901       |  |  |  |  |
|      | 5825                             | 5824.9885       | 5824.9890       | 5824.9899       | 5824.9904       |  |  |  |  |
|      | 5745                             | 5744.9888       | 5744.9894       | 5744.9902       | 5744.9907       |  |  |  |  |
| -10  | 5785                             | 5784.9892       | 5784.9897       | 5784.9905       | 5784.9910       |  |  |  |  |
|      | 5825                             | 5824.9895       | 5824.9900       | 5824.9908       | 5824.9912       |  |  |  |  |
|      | 5745                             | 5744.9898       | 5744.9903       | 5744.9910       | 5744.9915       |  |  |  |  |
| 0    | 5785                             | 5784.9901       | 5784.9906       | 5784.9913       | 5784.9917       |  |  |  |  |
|      | 5825                             | 5824.9904       | 5824.9908       | 5824.9916       | 5824.9920       |  |  |  |  |
|      | 5745                             | 5744.9870       | 5744.9877       | 5744.9886       | 5744.9892       |  |  |  |  |
| 10   | 5785                             | 5784.9874       | 5784.9880       | 5784.9890       | 5784.9895       |  |  |  |  |
|      | 5825                             | 5824.9878       | 5824.9884       | 5824.9893       | 5824.9898       |  |  |  |  |
|      | 5745                             | 5744.9881       | 5744.9887       | 5744.9896       | 5744.9901       |  |  |  |  |
| 20   | 5785                             | 5784.9885       | 5784.9890       | 5784.9899       | 5784.9904       |  |  |  |  |
|      | 5825                             | 5824.9888       | 5824.9894       | 5824.9902       | 5824.9907       |  |  |  |  |
|      | 5745                             | 5744.9892       | 5744.9897       | 5744.9905       | 5744.9910       |  |  |  |  |
| 30   | 5785                             | 5784.9895       | 5784.9900       | 5784.9908       | 5784.9912       |  |  |  |  |
|      | 5825                             | 5824.9898       | 5824.9903       | 5824.9910       | 5824.9915       |  |  |  |  |
|      | 5745                             | 5744.9901       | 5744.9905       | 5744.9913       | 5744.9917       |  |  |  |  |
| 40   | 5785                             | 5784.9904       | 5784.9908       | 5784.9915       | 5784.9920       |  |  |  |  |
|      | 5825                             | 5824.9906       | 5824.9911       | 5824.9918       | 5824.9922       |  |  |  |  |
|      | 5745                             | 5744.9865       | 5744.9872       | 5744.9882       | 5744.9888       |  |  |  |  |
| 50   | 5785                             | 5784.9869       | 5784.9876       | 5784.9885       | 5784.9891       |  |  |  |  |
|      | 5825                             | 5824.9873       | 5824.9879       | 5824.9889       | 5824.9894       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|        | 5745                               | 5744.9894       | 5744.9899       | 5744.9907       | 5744.9911       |  |  |  |  |
| 3.3    | 5785                               | 5784.9896       | 5784.9901       | 5784.9908       | 5784.9913       |  |  |  |  |
|        | 5825                               | 5824.9898       | 5824.9903       | 5824.9910       | 5824.9915       |  |  |  |  |
|        | 5745                               | 5744.9900       | 5744.9904       | 5744.9912       | 5744.9916       |  |  |  |  |
| 3.7    | 5785                               | 5784.9902       | 5784.9906       | 5784.9914       | 5784.9918       |  |  |  |  |
|        | 5825                               | 5824.9904       | 5824.9908       | 5824.9915       | 5824.9920       |  |  |  |  |
|        | 5745                               | 5744.9905       | 5744.9910       | 5744.9917       | 5744.9921       |  |  |  |  |
| 4.1    | 5785                               | 5784.9907       | 5784.9912       | 5784.9919       | 5784.9923       |  |  |  |  |
|        | 5825                               | 5824.9909       | 5824.9913       | 5824.9920       | 5824.9924       |  |  |  |  |



|       | 802.11n(HT40)                    |                 |                     |                 |                 |  |  |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |  |  |
|       |                                  | Pov             | wer Supply: DC 3.7V |                 |                 |  |  |  |  |
| Tomp  | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |  |  |
| Temp. | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| -30   | 5755                             | 5754.9877       | 5754.9883           | 5754.9892       | 5754.9897       |  |  |  |  |
| -30   | 5795                             | 5794.9880       | 5794.9886           | 5794.9895       | 5794.9900       |  |  |  |  |
| -20   | 5755                             | 5754.9884       | 5754.9889           | 5754.9898       | 5754.9903       |  |  |  |  |
| -20   | 5795                             | 5794.9887       | 5794.9892           | 5794.9901       | 5794.9906       |  |  |  |  |
| -10   | 5755                             | 5754.9890       | 5754.9896           | 5754.9904       | 5754.9909       |  |  |  |  |
| -10   | 5795                             | 5794.9894       | 5794.9899           | 5794.9907       | 5794.9911       |  |  |  |  |
| 0     | 5755                             | 5754.9897       | 5754.9902           | 5754.9909       | 5754.9914       |  |  |  |  |
| U     | 5795                             | 5794.9900       | 5794.9904           | 5794.9912       | 5794.9916       |  |  |  |  |
| 10    | 5755                             | 5754.9903       | 5754.9907           | 5754.9915       | 5754.9919       |  |  |  |  |
| 10    | 5795                             | 5794.9905       | 5794.9910           | 5794.9917       | 5794.9921       |  |  |  |  |
| 20    | 5755                             | 5754.9908       | 5754.9913           | 5754.9919       | 5754.9924       |  |  |  |  |
| 20    | 5795                             | 5794.9911       | 5794.9915           | 5794.9922       | 5794.9926       |  |  |  |  |
| 30    | 5755                             | 5754.9880       | 5754.9886           | 5754.9895       | 5754.9900       |  |  |  |  |
| 30    | 5795                             | 5794.9884       | 5794.9889           | 5794.9898       | 5794.9903       |  |  |  |  |
| 40    | 5755                             | 5754.9887       | 5754.9892           | 5754.9901       | 5754.9906       |  |  |  |  |
| 40    | 5795                             | 5794.9890       | 5794.9896           | 5794.9904       | 5794.9909       |  |  |  |  |
| 50    | 5755                             | 5754.9893       | 5754.9899           | 5754.9907       | 5754.9911       |  |  |  |  |
| 50    | 5795                             | 5794.9897       | 5794.9902           | 5794.9909       | 5794.9914       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (VDC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| 3.3    | 5755                               | 5754.9885       | 5754.9891       | 5754.9900       | 5754.9905       |  |  |  |  |
| 3.3    | 5795                               | 5794.9888       | 5794.9893       | 5794.9901       | 5794.9906       |  |  |  |  |
| 2.7    | 5755                               | 5754.9890       | 5754.9895       | 5754.9903       | 5754.9908       |  |  |  |  |
| 3.7    | 5795                               | 5794.9892       | 5794.9897       | 5794.9905       | 5794.9910       |  |  |  |  |
| 4.1    | 5755                               | 5754.9894       | 5754.9899       | 5754.9907       | 5754.9912       |  |  |  |  |
| 4.1    | 5795                               | 5794.9896       | 5794.9901       | 5794.9909       | 5794.9914       |  |  |  |  |



| 802.11ac(HT40)                   |                       |                 |                 |                 |                 |  |  |
|----------------------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Frequency stability versus Temp. |                       |                 |                 |                 |                 |  |  |
|                                  | Power Supply: DC 3.7V |                 |                 |                 |                 |  |  |
| Temp.                            | Operating             | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |
|                                  | Frequency             | Measured        | Measured        | Measured        | Measured        |  |  |
| (°C)                             | (MHz)                 | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |
| -30                              | 5755                  | 5754.9875       | 5754.9881       | 5754.9890       | 5754.9896       |  |  |
| -30                              | 5795                  | 5794.9878       | 5794.9884       | 5794.9893       | 5794.9899       |  |  |
| 20                               | 5755                  | 5754.9882       | 5754.9887       | 5754.9896       | 5754.9902       |  |  |
| -20                              | 5795                  | 5794.9885       | 5794.9891       | 5794.9899       | 5794.9904       |  |  |
| 40                               | 5755                  | 5754.9889       | 5754.9894       | 5754.9902       | 5754.9907       |  |  |
| -10                              | 5795                  | 5794.9892       | 5794.9897       | 5794.9905       | 5794.9910       |  |  |
| 0                                | 5755                  | 5754.9895       | 5754.9900       | 5754.9908       | 5754.9913       |  |  |
| 0                                | 5795                  | 5794.9898       | 5794.9903       | 5794.9911       | 5794.9915       |  |  |
| 10                               | 5755                  | 5754.9901       | 5754.9906       | 5754.9913       | 5754.9918       |  |  |
| 10                               | 5795                  | 5794.9904       | 5794.9909       | 5794.9916       | 5794.9920       |  |  |
| 20                               | 5755                  | 5754.9907       | 5754.9911       | 5754.9918       | 5754.9922       |  |  |
| 20                               | 5795                  | 5794.9909       | 5794.9914       | 5794.9921       | 5794.9925       |  |  |
| 20                               | 5755                  | 5754.9878       | 5754.9884       | 5754.9893       | 5754.9899       |  |  |
| 30                               | 5795                  | 5794.9882       | 5794.9887       | 5794.9896       | 5794.9902       |  |  |
| 40                               | 5755                  | 5754.9885       | 5754.9891       | 5754.9899       | 5754.9904       |  |  |
| 40                               | 5795                  | 5794.9889       | 5794.9894       | 5794.9902       | 5794.9907       |  |  |
| 50                               | 5755                  | 5754.9892       | 5754.9897       | 5754.9905       | 5754.9910       |  |  |
|                                  | 5795                  | 5794.9895       | 5794.9900       | 5794.9908       | 5794.9912       |  |  |

| Frequency stability versus Voltage |           |                 |                 |                 |                 |  |
|------------------------------------|-----------|-----------------|-----------------|-----------------|-----------------|--|
| Temperature: 25°C                  |           |                 |                 |                 |                 |  |
| Power                              | Operating | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |
| Supply                             | Frequency | Measured        | Measured        | Measured        | Measured        |  |
| (VDC)                              | (MHz)     | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |
| 3.3                                | 5755      | 5754.9891       | 5754.9897       | 5754.9905       | 5754.9910       |  |
|                                    | 5795      | 5794.9894       | 5794.9899       | 5794.9907       | 5794.9911       |  |
| 3.7                                | 5755      | 5754.9896       | 5754.9901       | 5754.9909       | 5754.9913       |  |
|                                    | 5795      | 5794.9898       | 5794.9903       | 5794.9910       | 5794.9915       |  |
| 4.1                                | 5755      | 5754.9900       | 5754.9905       | 5754.9912       | 5754.9917       |  |
|                                    | 5795      | 5794.9902       | 5794.9906       | 5794.9914       | 5794.9918       |  |



| 802.11ac(HT80)                   |                       |                 |                 |                 |                 |  |  |
|----------------------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Frequency stability versus Temp. |                       |                 |                 |                 |                 |  |  |
|                                  | Power Supply: DC 3.7V |                 |                 |                 |                 |  |  |
| Tomp                             | Operating             | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |
| Temp.                            | Frequency             | Measured        | Measured        | Measured        | Measured        |  |  |
| (°C)                             | (MHz)                 | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |
| -30                              | 5775                  | 5774.9855       | 5774.9862       | 5774.9873       | 5774.9879       |  |  |
| -20                              | 5775                  | 5774.9859       | 5774.9866       | 5774.9876       | 5774.9883       |  |  |
| -10                              | 5775                  | 5774.9863       | 5774.9870       | 5774.9880       | 5774.9886       |  |  |
| 0                                | 5775                  | 5774.9867       | 5774.9873       | 5774.9883       | 5774.9889       |  |  |
| 10                               | 5775                  | 5774.9871       | 5774.9877       | 5774.9887       | 5774.9893       |  |  |
| 20                               | 5775                  | 5774.9875       | 5774.9881       | 5774.9890       | 5774.9896       |  |  |
| 30                               | 5775                  | 5774.9878       | 5774.9884       | 5774.9893       | 5774.9899       |  |  |
| 40                               | 5775                  | 5774.9882       | 5774.9888       | 5774.9896       | 5774.9902       |  |  |
| 50                               | 5775                  | 5774.9885       | 5774.9891       | 5774.9899       | 5774.9905       |  |  |

| Frequency stability versus Voltage |           |                 |                 |                 |                 |  |
|------------------------------------|-----------|-----------------|-----------------|-----------------|-----------------|--|
| Temperature: 25°C                  |           |                 |                 |                 |                 |  |
| Power                              | Operating | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |
| Supply                             | Frequency | Measured        | Measured        | Measured        | Measured        |  |
| (VDC)                              | (MHz)     | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |
| 3.3                                | 5775      | 5774.9887       | 5774.9893       | 5774.9901       | 5774.9906       |  |
| 3.7                                | 5775      | 5774.9890       | 5774.9895       | 5774.9903       | 5774.9908       |  |
| 4.1                                | 5775      | 5774.9892       | 5774.9897       | 5774.9905       | 5774.9910       |  |



# 8 Test Setup Photo

Radiated Emission







# Conducted Emission



# 9 EUT Constructional Details

Reference to the test report No. GTSE15060113801

----END-----