1. Теоретическая часть

1.1 Функция и поиск направления:

Минимизируемая функция:

$$f_t = t\left(rac{1}{2}||Ax-b||^2 + \lambda \left\langle 1_n,u
ight
angle
ight) - \sum_{i=1}^n \left(\ln\left(u_i+x_i
ight) + \ln\left(u_i-x_i
ight)
ight)$$

Градиент:

$$egin{aligned} rac{\partial f_t}{\partial x} &= t \left(A^T A x - \langle b, A
angle
ight) - \left(rac{1}{u+x} - rac{1}{u-x}
ight) \ rac{\partial f_t}{\partial u} &= t \lambda - \left(rac{1}{u+x} + rac{1}{u-x}
ight) \end{aligned}$$

Гессиан:

$$egin{aligned} rac{\partial^2 f_t}{\partial x^2} &= t A^T A + diag \left(rac{1}{\left(u + x
ight)^2} + rac{1}{\left(u - x
ight)^2}
ight) \ rac{\partial^2 f_t}{\partial x \partial u} &= rac{\partial^2 f_t}{\partial u \partial x} = diag \left(rac{1}{\left(u + x
ight)^2} - rac{1}{\left(u - x
ight)^2}
ight) \ rac{\partial^2 f_t}{\partial u^2} &= diag \left(rac{1}{\left(u + x
ight)^2} + rac{1}{\left(u - x
ight)^2}
ight) \end{aligned}$$

Будем искать направление, решая систему уравнений:

$$egin{pmatrix} rac{\partial^2 f_t}{\partial x^2} & rac{\partial^2 f_t}{\partial u \partial x} \ rac{\partial^2 f_t}{\partial x \partial u} & rac{\partial^2 f_t}{\partial u^2} \end{pmatrix} egin{pmatrix} d^x \ d^u \end{pmatrix} = - egin{pmatrix} rac{\partial f_t}{\partial x} \ rac{\partial f_t}{\partial u} \end{pmatrix}$$

С помощью разложения Холецкого.

1.2 Максимальная длина шага lpha

Вывод полностью повторяет вывод, приведенный в условии задания. Остается подставить в него границы, возникающие в задаче:

$$g_{i}\left(x
ight)=-\left\langle e_{i}+e_{n+i},x
ight
angle$$

$$g_{n+i}\left(x
ight)=\left\langle e_{i}-e_{n+i},x
ight
angle$$

при всех $i=1\dots n$. Здесь e_j - вектор длины 2n, состоящий из 0 с 1 на j-ой позиции. Таким образом:

$$egin{aligned} lpha_1^{ ext{max}} &= \min_{i \in I_1} rac{-x_i - u_i}{d_i^x + d_i^u}, I_1 = \{1 \leq i \leq n : -d_i^x - d_i^u > 0\} \ &lpha_2^{ ext{max}} &= \min_{i \in I_2} -rac{x_i - u_i}{d_i^x - d_i^u}, I_2 = \{1 \leq i \leq n : d_i^x - d_i^u > 0\} \ &lpha_0 &= \min\{1, hetalpha_1^{ ext{max}}, hetalpha_2^{ ext{max}}\} \end{aligned}$$

2. Эксперименты

2.1 Исследование чувствительности метода к выбору γ и ϵ_{inner}

Матрица A и вектор b берутся из датасета **w8a**. Начальный вектор x_0 выбирается случайно из равномерного распределения на [0;1], так как смысл LASSO в том, чтобы уменьшить координаты вектора x. А вектор u_0 выбирается равным 1_n , чтобы выполнить условия на границу в методе барьеров. Коэффициент регуляризации $\lambda = 1/m$

Полученные графики:

1.

Вывод: при больших γ метод сходится быстрее как по итерациям, так и по времени работы. При высокой внутренней точности методу требуется меньше итераций для схождения, но это увеличивает временные затраты на внутренние итерации и не гарантирует ускорения сходимости всего метода.

2.2 Исследование поведения метода для различных значений размера выборки, размерности пространства и коэффициента регуляризации.

Для исследования зависимости поведения метода от λ использован датасет **w8a**. Для исследования зависимости от n,m использованы случайно сгенерированные данные. Полученные графики:

4.

3.

Вывод: скорость сходимости метода сильно зависит от размерности пространства и мало от числа обучающих примеров. По графику зависимости от λ видно, что при маленьких λ метод быстро достигает точности 10^{-3} , а потом медленно доходит до желаемой точности. При больших же λ метод сходится

почти с одинаковой скоростью. При этом время достижения желаемой точности 10^{-5} практически не различается для всех рассмотренных λ .