117536 - Projeto e Análise de Algoritmos

Prof. Flávio L. C. de Moura*

Projeto - 2019/2 (Turma B)

Introdução

A construção de programas corretos e eficientes é um ponto central na Ciência da Computação. Mas como garantir que um programa está correto? E como medir sua eficiência? Ao longo da primeira metade deste curso, vimos os formalismos teóricos necessários para medir a eficiência de um programa por meio da análise assintótica da função custo, parametrizada pelo tamanho n da entrada, que pode então ser classificada de acordo com algumas classes de complexidade. A correção de um programa, por sua vez, é estabelecida via uma série de propriedades que o programa deve satisfazer.

As provas em papel e lápis normalmente são suficientes para a análise de programas simples, mas podem esconder erros no caso de programas mais complexos. De fato, alguns exemplos famosos de erros envolvendo sistemas críticos incluem:

- Pentium FDIV: Um erro na construção da unidade de ponto flutuante do processador Pentium da Intel causou um prejuízo de aproximadamente 500 milhões de dólares para a empresa que se viu forçada a substituir os processadores que já estavam no mercado em 1994.
- Therac-25: Uma máquina de radioterapia controlada por computador causou a morte de pelo menos 6 pacientes entre 1985 e 1987 por overdose de radiação.
- 3. Ariane 5: Um foguete que custou aproximadamente 7 bilhões de dólares para ser construído explodiu no seu primeiro voo em 1996 devido ao reuso sem verificação apropriada de partes do código do seu predecessor.

Neste contexto, a utilização de métodos formais na construção de programas é cada vez mais comum:

^{*}contato@flaviomoura.mat.br

- 1. A Intel e AMD utilizam assistentes de provas na verificação de processadores.
- A Microsoft utiliza métodos formais na verificação de programas e drivers.
- 3. CompCert: Compilador C verificado em Coq.
- A AirBus e a NASA utilizam assistentes de provas na verificação de programas de aviação.
- A Toyota utiliza métodos formais na verificação de sistemas híbridos de controle.
- 6. A linha 14 do metrô de Paris é totalmente controlada por um programa de computador verificado formalmente.

Apesar da utilização cada vez mais frequente de métodos formais na construção de programas, esta não é uma tarefa fácil. Intuitivamente, um programa é correto se faz exatamente o que se propõe em tempo e espaço finitos. Por exemplo, um programa P que ordena listas de números naturais em ordem crescente é correto se, para qualquer lista l dada, o resultado retornado por P após um tempo finito é uma lista contendo exatamente os elementos de l ordenados de forma crescente.

Descrição do projeto

A proposta deste projeto é formalizar a complexidade de tempo no pior caso, e se possível, a correção de um algoritmo de sua preferência no assistente de provas PVS (http://pvs.csl.sri.com). Para os alunos que não têm experiência prévia com o PVS, sugerimos a formalização do algoritmo bubble sort ou merge sort a partir da formalização disponibilizada no GitHub como detalhado posteriormente.

Utilizaremos como exemplo, a formalização da correção e da complexidade de tempo de uma versão recursiva de *insertion sort*. Este exemplo será desenvolvido em detalhes durante as aulas. Neste caso, considerando que a lista vazia já está ordenada por definição, para ordenarmos listas não nulas, precisamos inserir o primeiro elemento de 1, denotado por car(1), na versão ordenada da cauda de 1, denotada por cdr(1):

```
insertion_sort(1): RECURSIVE list[nat] =
IF null?(1) THEN null ELSE
insert(car(1), insertion_sort(cdr(1)))
```

```
ENDIF
MEASURE length(1)
onde a função insert é definida por:

insert (x, 1): RECURSIVE list[nat] =
IF null?(1) THEN cons(x,null)
ELSIF x<= car(1) THEN cons(x,1)
ELSE cons(car(1), insert(x,cdr(1)))
ENDIF
MEASURE length(1)</pre>
```

A correção de insertion sort

Observe que a função insert é construída de forma a preservar a ordenação após a inserção. Este comportamento de insert pode ser representado por meio do seguinte lema:

```
insert_in_sorted_preserves_sort : LEMMA
FORALL (1: list[nat], x: nat):
    sorted?(1) IMPLIES sorted?(insert(x,1))
```

onde sorted? é o predicado que captura o fato de uma lista estar ordenada:

```
sorted?(1:list[nat]) : RECURSIVE boolean =
   CASES 1 OF
null: TRUE,
cons(h,t1): CASES t1 OF
   null: TRUE,
   cons(hh,tt1): (h <= hh) AND sorted?(t1)
   ENDCASES
  ENDCASES
  MEASURE length(1)</pre>
```

Parte da prova da correção deste algoritmo consiste em provar que insertion_sort gera uma lista ordenada para qualquer lista dada como entrada:

```
insertion_sort_sorts: LEMMA
    FORALL (1:list[nat]): sorted?(insertion_sort(1))
```

Este lema é provado por indução na estrutura da lista 1, via o comando (induct "1"). A prova é dividida em dois casos:

 No primeiro caso, a lista 1 é vazia e o resultado é imediato, dadas as definições de insertion_sort e sorted?. 2. No segundo caso, a lista 1 é não vazia, onde o primeiro elemento é denotado por car(1), e a cauda, isto é, todos os outros elementos exceto o primeiro, é denotada por cdr(1). Temos por hipótese de indução que sorted?(insertion_sort(cdr(1))), e precisamos mostrar que sorted?(insertion_sort(cons(car(1),cdr(1)))). Neste momento, podemos aplicar a definição de insertion_sort, via o comando (expand "insertion_sort"), obtendo sorted?(insert(car(1),insertion_sort(cdr(1))))

```
sorted?(insert(car(1),insertion_sort(cdr(1))))
como novo objetivo a ser provado, e concluímos com a aplicação do lema
insert_in_sorted_preserves_sort, via comando
(lemma "insert_in_sorted_preserves_sort").
```

A segunda parte da prova da correção consiste em provar que insertion_sort(1) gera como saída uma permutação de 1, mas esta etapa não será descrita aqui.

Análise assintótica do pior caso de Insertion Sort

Nesta seção veremos os passos necessários para provar que a complexidade de tempo de insertion_sort, no pior caso, é quadrática no tamanho da entrada. Para isto, utilizaremos a notação assintótica estudada no curso. Sabemos que, se f(n) e g(n) são funções dos naturais nos reais não-negativos, então dizemos que g(n) = O(f(n)), se existirem constantes positivas c e n_0 tais que

$$g(n) \le c. f(n), \forall n \ge n_0. \tag{1}$$

Em outras palavras, o conjunto O(f(n)) é definido por $\{g(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que } g(n) \leq c.f(n), \forall n \geq n_0\}$. A correspondente definição em PVS pode ser dada como a seguir:

```
Omicron( f : [nat -> nonneg_real ]) :
  setof [[nat -> nonneg_real]] =
  { g : [nat -> nonneg_real] |
   EXISTS ( c2 : nonneg_real, n0 : nat ) :
    FORALL (n : nat | n >= n0 ) : g(n) <= c2 * f(n)}</pre>
```

O tamanho da entrada é dado pelo número de elementos da lista a ser ordenada. Assim, queremos mostrar um lema da forma:

```
insertion_sort_is_quadratic: LEMMA
member(LAMBDA(n:nat): T_insertion_sort(1),
Omicron(LAMBDA(n:nat):length(1)^2))
```

onde T_insertion_sort(1) computa o número de comparações feitas por insertion_sort(1). Como construir a função T_insertion_sort(1)? Adicionaremos um contador à função insertion_sort como a seguir:

```
cinsertion_sort(1: list[nat]): RECURSIVE [list[nat],nat] =
IF null?(1) THEN (null,0)
    ELSE cinsert(car(1), cinsertion_sort(cdr(1)))
ENDIF
MEASURE length(1)
```

A função insertion_sort com um contador, aqui denotada por cinsertion_sort, recebe uma lista de naturais como argumento, e retorna um par cujo primeiro elemento é a versão ordenada da lista original, e o segundo elemento é um natural que corresponde ao número de comparações realizadas para ordenar a lista dada. Desta forma, T_insertion_sort(1) é dada por cinsertion_sort(1) '2. Assim, se a lista de entrada é vazia então a saída é o par (null,0), ou seja, foram realizadas 0 comparações para ordenar a lista de entrada. Quando a lista 1 é não vazia, então cinsertion_sort vai inserir o primeiro elemento de 1 na versão ordenada da cauda via a função cinsert que corresponde à função de inserção com um contador:

```
cinsert (x, lc): RECURSIVE [list[nat],nat] =
IF null?(lc'1) THEN (cons(x,lc'1),lc'2)
ELSIF x <= car(lc'1) THEN (cons(x,lc'1), lc'2 + 1)
ELSE LET lcaux = cinsert(x,(cdr(lc'1),lc'2)) IN
(cons(car(lc'1), lcaux'1), lc'2 + 1)
ENDIF
MEASURE length(lc'1)</pre>
```

A função cinsert recebe uma par contendo um número natural x e um par 1c contendo uma lista e um natural, respectivamente representados por lc'1 e lc'2, e retorna um par contendo a nova lista obtida após a inserção do novo elemento x, e o contador 1c'2 que corresponde ao número de comparações realizadas até então. Desta forma, se lc'1 é a lista vazia então obtemos (cons(x,lc'1),lc'2), isto é, a lista unitária contendo apenas o elemento x, e o número 1c'2 de comparações realizadas. Se 1c'1 não for vazia, então precisamos comparar x com o primeiro elemento da lista. Se x for menor ou igual a car(lc'1) então retornamos o par (cons(x,lc'1), lc'2 + 1), i.e. inserimos x antes da primeira posição de lc'1, e incrementamos o contador em 1. Caso contrário, ou seja, quando x é estritamente maior do que car(lc'1) então denotamos por lcaux o par contendo a lista resultante da inserção de x em cdr(lc'1) e o número de comparações feitas até este ponto. O resultado neste subcaso é dado por (cons(car(lc'1), lcaux'1), lc'2 + 1), ou seja, a lista resultante tem car(lc'1) como primeiro elemento, e cauda lcaux'1, e o número de comparações é incrementado em 1.

Para provarmos o lema insertion_sort_is_quadratic precisamos estabelecer uma cota superior para o número de comparações acumuladas no contador:

```
cinsertion_bound_on_comparisons: LEMMA
cinsertion_sort(1)'2 <= ((length(1))^2 + length(1))/2</pre>
```

Outros lemas adicionais podem ser necessários para a conclusão da prova de insertion_sort_is_quadratic, mas faremos este trabalho durante as próximas aulas. Também é importante mostrar a equivalência entre as funções insertion_sort (resp. insert) e cinsertion_sort (resp. cinsert), por exemplo.

Etapas do projeto

O trabalho, que possui duas etapas, poderá ser realizado individualmente ou em duplas. Os grupos deverão ser formados no GitHub a partir do link

https://classroom.github.com/g/8yyzdBL0

Os grupos podem ser formados até [2019-10-08 Ter 23:00].

Formalização do algoritmo (Peso 6.0)

Nesta etapa os grupos devem construir a formalização da correção e complexidade temporal do algoritmo selecionado. Os arquivos PVS relacionados com a formalização devem estar disponíveis no repositório do GitHub até $[2019-12-05\ Qui\ 23:59]$.

Relatório (Peso 4.0)

Cada grupo de trabalho devera entregar um relatório inédito em formato pdf, preferencialmente em LATEXaté o dia [2019-12-05 Qui 23:59]. O arquivo pdf do relatório também deverá estar no repositório GitHub.

Referências

- [AdM17] M. Ayala-Rincón and F. L. C. de Moura. Applied Logic for Computer Scientists Computational Deduction and Formal Proofs. Undergraduate Topics in Computer Science. Springer, 2017.
- [BvG99] S. Baase and A. van Gelder. Computer Algorithms | Introduction to Design and Analysis. Addison-Wesley, 1999.
- [CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. MIT Electrical Engineering and Computer Science Series. MIT press, second edition, 2001.
- [Knu73] D. E. Knuth. Sorting and Searching, volume Volume 3 of The Art of Computer Programming. Reading, Massachusetts: Addison-Wesley, 1973. Also, 2nd edition, 1998.
- [Lev12] A. Levitin. Introduction to the Design & Analysis of Algorithms. Pearson, third edition, 2012.