Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2020/2021 Corso di Laurea in Ingegneria Fisica Quarto appello di Analisi 3, 5/7/2021 – Prof. I. FRAGALÀ

TEST 1. (8 punti)

Stabilire quali delle seguenti affermazioni sono vere per la successione di funzioni definite su $\mathbb{R}_+ = [0, +\infty)$ da:

$$f_n(x) := \begin{cases} n^{\alpha} & \text{if } x \in [0, \frac{1}{n}] \\ 0 & \text{if } x \ge \frac{1}{n} \end{cases}$$

dove α è un parametro reale positivo.

a. Per $\alpha > 1$, la successione è limitata in $L^1(\mathbb{R}_+)$.

FALSO:
$$||f_n||_{L^1} = n^{\alpha} \frac{1}{n} \to +\infty \text{ per } \alpha > 1$$

b. Per $\alpha < 1$, la successione ammette limite in $L^1(\mathbb{R}_+)$.

VERO:
$$||f_n||_{L^1} = n^{\alpha} \frac{1}{n} \to 0 \text{ per } \alpha < 1$$

c. Per $\alpha=1,$ la successione è limitata in $L^1(\mathbb{R}_+)$.

VERO:
$$||f_n||_{L^1} = n^{\alpha} \frac{1}{n} = 1$$
 per $\alpha = 1$

d. Per $\alpha = 1$, la successione ammette limite in $L^1(\mathbb{R}_+)$.

FALSO, poiché il limite puntuale q.o. è nullo, mentre a norma in $L^1(\mathbb{R}_+)$ è uguale a 1.

TEST 2. (8 punti)

Stabilire quali delle seguenti affermazioni sono vere, dove H è la funzione di Heavyside, e $\chi_{[-1,1]}$ è la funzione caratteristica dell'intervallo [-1,1]:

e. La trasformata di Fourier di $u(x) = x^2 e^{-2x} H(x)$ è puramente immaginaria

FALSO,
$$\widehat{u}(\xi) = \frac{2}{(2+i\xi)^3}$$

f. La trasformata di Fourier di $u(x)=x^2e^{-2x}H(x)$ è puramente reale

FALSO, vedi sopra

g. La trasformata di Fourier di $v(x)=(\sin x)\chi_{[-1,1]}(x)$ è puramente immaginaria

VERO,
$$\widehat{v}(\xi) = i \left[\frac{\sin(\xi+1)}{\xi+1} - \frac{\sin(\xi-1)}{\xi-1} \right]$$

h. La trasformata di Fourier di $v(x) = (\sin x)\chi_{[-1,1]}(x)$ è puramente reale

FALSO, vedi sopra

ESERCIZIO (10 punti) Si consideri la funzione di variabile complessa

$$f(z) = \frac{e^{iz}}{\sinh^2 z}.$$

Classificare le singolarità di f e calcolare l'integrale di f su $C_1(0) = \{e^{i\theta} : \theta \in [0, 2\pi]\}$

Soluzione. Il denominatore si annulla per $z_k = ik\pi$, al variare di $k \in \mathbb{Z}$. Si tratta di zeri del primo ordine per sinh z, dato che in essi la derivata $\cosh z$ vale $(-1)^k \neq 0$; sono quindi zeri del secondo ordine per $\sinh^2 z$; il numeratore non è mai nullo; quindi la funzione ha poli del secondo ordine in tutti i punti z_k . L'unica singolarità che cade all'interno di $C_1(0)$ è $z_0 = 0$. Calcoliamo quindi $\mathrm{Res}(f,0)$. Trattandosi di un polo del secondo ordine si ha

$$\operatorname{Res}(f,0) = D\left(\frac{e^{iz}z^2}{\sinh^2 z}\right)|_{z=0}.$$

Il calcolo della derivata fornisce:

$$D\Big(\frac{e^{iz}z^2}{\sinh^2z}\Big) = ie^{iz}\frac{z^2}{\sinh^2z} + e^{iz}\frac{2z\sinh^2z - 2z^2\sinh z\cosh z}{\sinh^4z}\,.$$

Nel limite per $z \to 0$, il primo addendo tende a i. Il secondo addendo, tolto il fattore e^{iz} che tende a 1, si può riscrivere agli effetti del limite come

$$\frac{2z \sinh z}{z^2} \frac{z + o(z^2) - z(1 + o(z))}{z^2} \sim \frac{o(z^2)}{z^2} \to 0 \,.$$

Quindi,

$$\operatorname{Res}(f,0) = i$$

e di conseguenza, per il teorema dei residui,

$$\int_{C_1(0)} f(z) \, dz = 2\pi i \cdot i = -2\pi \, .$$

TEORIA (6 punti)

i. Quale è una condizione sufficiente per una funzione $u \in L^1(\mathbb{R})$ affinché la sua trasformata di Fourier sia di classe $C^1(\mathbb{R})$? Fornire poi un esempio di una funzione u che soddisfa tale condizione.

Una condizione sufficiente è $xu \in L^1(\mathbb{R})$. Una funzione che la soddisfa è ad esempio $u(x) = e^{-x^2}$.

ii. Quale è la derivata distribuzionale della funzione u(x) = |x| + H(x), dove H è la funzione di Heavyside? Stabilire poi se la funzione u appartiene allo spazio $AC(\mathbb{R})$.

Poiché la derivata distribuzionale è lineare, si ha $u'(x) = \operatorname{sign}(x) + \delta_0$, dove sign è la funzione segno, mentre δ_0 è la delta di Dirac centrata nell'origine. Poiché tale distribuzione non appartiene a $L^1(\mathbb{R})$, la funzione u non appartiene allo spazio $AC(\mathbb{R})$.