Время на тест: 2.0 сек

Ввод: input.txt Вывод: output.txt

Ограничение по памяти: 131 072 Kb

Куфический дирхем

Петр Васильевич Колошин всегда был коммуникабельным человеком и, соответственно, имел большое количество друзей. Как-то вечером, просматривая свою электронную почту, Петр Васильевич был приятно удивлен приглашением на юбилей своего студенческого друга Андрея Федоровича и сразу же принял положительное решение. Выяснив, что Андрей Федорович уже много лет увлекается коллекционированием старинных монет и охотится за средневековой серебряной монетой с названием "Куфический дирхем", Петр Васильевич решил непременно подарить эту монету.

Воспользовавшись Интернетом, Петр Васильевичу сумел узнать все ${\bf K}$ городов, где можно приобрести данную монету, а также ее стоимость в каждом из этих городов. Страна, в которой живут Петр Васильевич и Андрей Федорович, насчитывает N городов и М двусторонних автомобильных дорог, каждая из которых связывает два различных города государства. Известно, что Петр Васильевич живет в городе А, а Андрей Федорович - в городе В. Для каждой дороги Петр Васильевич вычислил стоимость проезда с учетом технических характеристик своего автомобиля. В целях экономии Петр Васильевич решил купить монету по пути из города А в город В. Другими словами, маршрут движения Петра Васильевича должен проходить через город, в котором он решит купить монету. Однако оказалось, что ехать через город, в котором монета стоит меньше всего, не всегда выгодно, так как выиграв в стоимости монеты, можно потерять гораздо больше в стоимости дороги и наоборот: Ваша задача - помочь Петру Васильевичу выбрать оптимальный маршрут и город \mathbb{Z} , где следует приобрести монету. Маршрут должен начинаться в городе А, заканчиваться в городе В и проходить через город Z. Стоимость данного маршрута должна быть минимальной. Под стоимостью маршрута будем понимать сумму количества денег, потраченных на дорогу и стоимость монеты в городе Z. Ниже приведен пример для N = 5, M = 7, A = 1, B = 4.

Рисунок 1. Визуализация второго примера.

Для данного примера K = 4, стоимость монеты обозначена сверху над кругом, обозначающим город. Оптимальный маршрут выделен красным иветом. Для данного примера Z = 3.

Входные данные:

Первая строка входного файла содержит три целых числа N, M и K ($2 \le N \le 5000$; $1 \le M \le 100000$; $1 \le K \le N$), где N - количество городов в стране, M - количество дорог, а K - количество городов, в которых продается искомая монета. Будем считать, что все города пронумерованы целыми числами от 1 до N.

Вторая строка входного файла содержит два целых числа A и B ($1 \le A$, $B \le N$; $A \le B$), где A - номер города, в котором живет Петр Васильевич, а B - номер города, в котором живет Андрей Федорович.

Третья строка содержит **K** пар целых чисел **Vi** и **Ci**($1 \le \text{Vi} \le \text{N}$; $1 \le \text{Ci} \le 10^9$), где **Vi** - это номер города, в котором можно приобрести искомую монету, а **Ci** - стоимость монеты в

соответствующем городе. Известно, что $Vi \neq Vj$, если $i \neq j$. Все числа в строке разделены одиночными пробелами.

Каждая последующая из **M** строк содержит три числа **Xi**, **Yi**, **Si** $(1 \le Xi, Yi \le N; Xi \ne Yi; 1 \le Si \le 10^5)$, где **Xi** и **Yi** - номера городов, связанных двусторонней дорогой, а **Si** - стоимость проезда по данной дороге. Не существует двух различных дорог, связывающих одни и те же города.

Выходные данные:

Единственная строка выходного файла должна содержать одно целое число - минимальную стоимость маршрута. Гарантируется, что решение существует.

input.txt	output.txt	Маршрут, город Z
3 3 2	20	{3, 2, 1}
3 1		Z=2
1 20 2 5		
1 2 7		
1 3 5		
2 3 8		
5 7 4	103	{1, 3, 5, 4}
1 4		Z=3
1 100 4 50 3 10 2 55		
1 2 10		
5 3 42		
1 3 30		
2 4 50		
3 4 70		
2 5 24		
4 5 21		
8 7 1	440	{1, 8, 2, 4, 5, 4, 2, 8,
1 6		6}
5 187		Z = 5
1 8 32		
8 6 39		
5 4 51		
1 4 101		
2 4 17		
3 7 46		
2 8 23		