Guided Tour of Machine Learning in Finance

Regularization, validation set, and hyper-parameters

Igor Halperin

NYU Tandon School of Engineering, 2017

Regularization

Recall that we minimize MSE_{train} , though want in fact to minimize MSE_{test} . The idea of regularization is to modify the objective function of minimization of MSE_{train} so that MSE_{test} has a smaller variance:

Regularization

Recall that we minimize MSE_{train} , though want in fact to minimize MSE_{test} . The idea of regularization is to modify the objective function of minimization of MSE_{train} so that MSE_{test} has a smaller variance:

Popular choices for the **regularizer**:

•
$$L_2$$
 regularization $\Omega(\mathbf{W}) = \mathbf{W}^T \mathbf{W} = ||\mathbf{W}||_2$

Penalizes large weights

•
$$L_1$$
 regularization $\Omega(\mathbf{W}) = \sum_i |W_i| = ||\mathbf{W}||_1$

Enforces a sparse solution

• Entropy regularization
$$\Omega(\mathbf{W}) = \sum_i W_i \log W_i$$
 $(W_i \ge 0, \sum_i W_i = 1)$ Motivated by Bayesian statistics

- **Hyperparameters** are any quantitative features of ML models that are not directly optimized by minimizing in-sample loss such as MSE_{train}
- Hyperparameters control model capacity

- **Hyperparameters** are any quantitative features of ML models that are not directly optimized by minimizing in-sample loss such as MSE_{train}
- Hyperparameters control model capacity
- Examples of hyperparameters:
 - ◆ Degree of a polynomial regression (linear, quadratic, cubic, etc.)
 - lacktriangle Regularization parameter λ
 - ◆ Number of levels in a decision tree
 - ◆ Number of layers and nodes per layer in neural networks
 - ◆ Learning rate
 - **♦** ...

- **Hyperparameters** are any quantitative features of ML models that are not directly optimized by minimizing in-sample loss such as MSE_{train}
- Hyperparameters control model capacity
- Examples of hyperparameters:
 - ◆ Degree of a polynomial regression (linear, quadratic, cubic, etc.)
 - lacktriangle Regularization parameter λ
 - ♦ Number of levels in a decision tree
 - ◆ Number of layers and nodes per layer in neural networks
 - ◆ Learning rate
 - **♦** ...
- How to choose hyperparameters:
 - ◆ Split a training set into training and **validation** sets (e.g. as 80:20)

- **Hyperparameters** are any quantitative features of ML models that are not directly optimized by minimizing in-sample loss such as MSE_{train}
- Hyperparameters control model capacity
- Examples of hyperparameters:
 - ◆ Degree of a polynomial regression (linear, quadratic, cubic, etc.)
 - lacktriangle Regularization parameter λ
 - ◆ Number of levels in a decision tree
 - ◆ Number of layers and nodes per layer in neural networks
 - ◆ Learning rate
 - **♦** ...
- How to choose hyperparameters:
 - ◆ Split a training set into training and **validation** sets (e.g. as 80:20)
 - ◆ Use cross-validation

Cross-validation

- Assume we are given N samples, but N is small, so setting aside a fixed test set is problematic.
- We want to use all samples for training!
- This is achieved using cross-validation:

Cross-validation

- Assume we are given N samples, but N is small, so setting aside a fixed test set is problematic.
- We want to use all samples for training!
- This is achieved using cross-validation:

Cross-validation

- Assume we are given N samples, but N is small, so setting aside a fixed test set is problematic.
- We want to use all samples for training!
- This is achieved using cross-validation:

Special cases:

- K=1: no test sub-set!
- K= N: leave-on-out cross-validation

Summary: Supervised Learning diagram

General diagram for training supervised learning algorithms

