Logik I Übungsblatt 3

Sei \mathcal{L} eine Sprache und \mathcal{A} und \mathcal{B} zwei \mathcal{L} -Strukturen.

Ein \mathcal{L} -Homomorphismus h von \mathcal{A} nach \mathcal{B} ist eine Abbildung $h:A\to B$, so dass für jedes $n\in\mathbb{N}$ und jedes n-stellige Relationssymbol $R\in\mathcal{L}$, jedes n-stellige Funktionssymbol $f\in\mathcal{L}$ und jedes Konstantensymbol $c\in\mathcal{L}$ gilt:

- a) $(a_1, \dots, a_n) \in R^{\mathcal{A}}$ impliziert dass $(h(a_1), \dots, h(a_n)) \in R^{\mathcal{B}}$
- b) $h(f^{\mathcal{A}}(a_1, \dots, a_n)) = f^{\mathcal{B}}(h(a_1), \dots, h(a_n))$
- c) $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$

Eine \mathcal{L} -Formel φ heißt positiv existentiell wenn man sie induktiv aus atomaren Formeln mittels \wedge , \vee und dem Existenzquantor \exists bilden kann.

Aufgabe 1. Sei h ein Homomorphismus von \mathcal{A} nach \mathcal{B} , sei φ eine positive existentielle \mathcal{L} -Formel und β eine beliebige A-Belegung.

Zeigen Sie, dass $\mathcal{A} \vDash \varphi[\beta]$ impliziert dass $\mathcal{B} \vDash \varphi[h \circ \beta]$.

Eine \mathcal{L} -Formel heißt atomar, wenn sie die Form $t_1 \doteq t_2$ oder $Rt_1 \cdots t_n$ hat, für \mathcal{L} -Terme t_i und $R \in \mathcal{L}$ n-stelliges Relationsymbol. Zwei \mathcal{L} -Formeln φ und ψ heißen logisch equivalent (kurz $\varphi \sim \psi$), wenn $\varphi \leftrightarrow \psi$ allgemeingültig ist.

Aufgabe 2.

a) Zu jeder quantorenfreien \mathcal{L} -Formeln φ existiert eine logisch äquivalente Formel φ_{DNF} in disjunktiver Normalform (DNF), also

$$\varphi_{DNF} = (\varphi_{1,1} \wedge \cdots \wedge \varphi_{1,n_1}) \vee \cdots \vee (\varphi_{l,1} \wedge \cdots \wedge \varphi_{l,n_l})$$

und eine logisch äquivalente Formel φ_{KNF} in konjunktiver Normalform (KNF), also

$$\varphi_{KNF} = (\varphi_{1,1} \vee \cdots \vee \varphi_{1,n_1}) \wedge \cdots \wedge (\varphi_{l,1} \vee \cdots \vee \varphi_{l,n_l})$$

mit atomaren oder negiert atomaren $\varphi_{i,j}$.

b) Zu jeder \mathcal{L} -Formel φ existiert eine logische äquivalente Formel φ_{PNF} in pränexer Normalform; das heißt:

$$\varphi_{PNF} = Q_1 x_1 \cdots Q_n x_n \psi$$

wobei $Q_i \in \{ \forall, \exists \}$ und ψ quantorenfrei (also ohne Einschränkung in DNF oder KNF) ist.

Üben Sie das Umformen in pränexe Normalform (mit quantorenfreiem Teil in DNF und KNF) anhand der Formel $\neg(\neg \forall x (Rx \lor \exists z \ fx = z) \lor \forall x (Px \to Pz))$.

(Bitte wenden.)

Aufgabe 3. Beweisen Sie die Beweisbarkeit von den folgenden Formeln im Hilbertkalkül (ohne Benutzung des Gödelschen Vollständigkeitssatzes, mit Benutzung der abgleiteten Regeln):

- a) $\exists v_0 Rv_0v_1 \rightarrow \exists v_2 Rv_2v_1$
- b) $\exists v_0 \neg Rv_0 f v_0 \lor \exists v_1 Rcv_1$

Aufgabe 4. Sei $\mathcal{R} = (\mathbb{R}, 0, 1, +, -, \cdot, <, f)$ mit einem einstelligem Funktionssymbol f. Angenommen, es gilt $f^{\mathcal{A}}(0) = 0$. Sei $\mathcal{R}^* = (R^*, 0, 1, +, -, \cdot, <, f)$ zu \mathcal{R} elementar äquivalent und *nicht archimedisch*, das heißt, dass es in R^* Elemente gibt, die größer sind als jede natürliche Zahl¹. Ein Element $x \in R^*$ heißt *infinitesimal*, falls $-\frac{1}{n} < x < \frac{1}{n}$ für alle positiven natürlichen Zahlen n gilt.

Zeigen Sie, dass $f^{\mathcal{R}}$ genau dann stetig bei $0^{\mathcal{R}}$ ist, wenn für alle infinitesimalen $x \in R^*$ auch $f^{\mathcal{R}^*}(x)$ infinitesimal ist.

 $^{^1}$ Die Existenz eines solchen \mathcal{R}^* folgt aus dem Kompaktheitssatz.