Machine Learning

Convolutional Neural Network

Indian Institute of Information Technology
Sri City, Chittoor

This Class

- Neural Network and Image
 - Dimensionality
 - Local relationship

- Convolutional Neural Network (CNN)
 - Convolution Layer
 - Non-linearity Layer
 - Pooling Layer
 - Fully Connected Layer
 - Classification Layer
- ImageNet Challenge
 - Progress
 - Human Level Performance

Neural Networks

Source: http://cs231n.github.io

How to apply NN over Image?

Problems ?

Problems:

High dimensionality

Local relationship

Problems:

Solution?

High dimensionality

Local relationship

Problems:

High dimensionality

Local relationship

Solution:

Convolutional Neural Network

Convolutional Neural Networks

Also known as

```
CNN,
ConvNet,
DCN
```

- CNN = a multi-layer neural network with
 - 1. Local connectivity
 - 2. Weight sharing

CNN: Local Connectivity

Hidden layer

Input layer

Global connectivity

Local connectivity

- # input units (neurons): 7
- # hidden units: 3

CNN: Local Connectivity

Hidden layer

Input layer

Global connectivity

Local connectivity

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Global connectivity: ?
 - Local connectivity: ?

CNN: Local Connectivity

Hidden layer

Input layer

Global connectivity

Local connectivity

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Global connectivity: $3 \times 7 = 21$
 - Local connectivity: $3 \times 3 = 9$

CNN: Weight Sharing

Hidden layer

Input layer

Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3

CNN: Weight Sharing

Hidden layer

Input layer

Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing: ?
 - With weight sharing : ?

CNN: Weight Sharing

Hidden layer

Input layer

Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing: 3 x 3 = 9
 - With weight sharing: $3 \times 1 = 3$

Convolutional Neural Networks

Source: cs231n, Stanford University

Layers used to build ConvNets

Input Layer (Input image)

Convolutional Layer

Non-linearity Layer (such as Sigmoid, Tanh, ReLU, PReLU, ELU, Swish, etc.)

Pooling Layer (such as Max Pooling, Average Pooling, etc.)

Fully-Connected Layer

Classification Layer (Softmax, etc.)

32 × 32 × 3 Image -> preserve spatial structure

 $32 \times 32 \times 3$ Image

5×5×3 Filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Handling multiple input channels

 $32 \times 32 \times 3$ Image

A single value

the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. 5*5*3 = 75dimensional dot product + bias)

$$\mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$$

Handling multiple output maps

Handling multiple output maps

Handling multiple output maps

Multilayer Convolution

Any Convolution Layer

- Local connectivity
- Weight sharing
- Handling multiple input channels
- Handling multiple output maps

Image credit: A. Karpathy

7×7 input (spatially) assume 3×3 filter applied with **stride 2**

7 × 7 input (spatially) assume 3 × 3 filter applied with **stride 2**

7 × 7 input (spatially) assume 3 × 3 filter applied with **stride 2**

→ 3×3 output

7 × 7 input (spatially) assume 3 × 3 filter applied with **stride 3**

7 × 7 input (spatially) assume 3 × 3 filter applied with **stride 3**

doesn't fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Output size (N - F) / stride + 1

N e.g. N = 7, F = 3
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Source: cs231n, Stanford University

In practice: common to zero pad

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

e.g. input 7×7 (spatially)3×3 filter, applied with stride 1pad with 1 pixel border

What is the output dimension?

In practice: common to zero pad

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

e.g. input 7×7 (spatially)3×3 filter, applied with stride 1pad with 1 pixel border

7×7 Output

In practice: common to zero pad

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

e.g. input 7×7 (spatially)
3×3 filter, applied with stride 1
pad with 1 pixel border

7×7 Output

in general, common to see CONV layers with stride 1, filters of size F × F, and zero-padding with (F-1)/2. (will preserve size spatially) e.g.

 $F = 3 \Rightarrow zero pad with 1$

 $F = 5 \Rightarrow zero pad with 2$

 $F = 7 \Rightarrow zero pad with 3$

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

each filter has

5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = **760**

Summary. To summarize, the Conv Layer:

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - \circ their spatial extent F,
 - \circ the stride S,
 - \circ the amount of zero padding P.
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.

Convolution as feature extraction

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Source: cs231n, Stanford University

Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Source: cs231n, Stanford University

Max Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling Layer

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires two hyperparameters:
 - \circ their spatial extent F,
 - \circ the stride S,
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$\circ H_2 = (H_1 - F)/S + 1$$

$$D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Fully Connected Layer

Connect every neuron in one layer to every neuron in another layer

Same as the traditional multi-layer perceptron neural

network

Image Source: machinethink.net

Fully Connected Layer

Connect every neuron in one layer to every neuron in another layer

Same as the traditional multi-layer perceptron neural

network

No. of Neurons (Last FC) = No. of classes

Image Source: machinethink.net

Loss/Classification Layer

 SVM Classifier (SVM Loss/Hinge Loss/Maxmargin Loss)

 Softmax Classifier (Softmax Loss/Crossentropy Loss)

Non-linearity Layer

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

A typical CNN structure

ImageNet Challenge

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon MTurk
- Challenge: 1.2 million training images, 1000 classes

ImageNet Challenge

- Images gathered from Internet
- Human labels via Amazon MTurk
- ralleng (1.2 million training ages, 1000 classes

Progress on ImageNet Challenge

ImageNet Image Classification Top5 Error

Progress on ImageNet Challenge

Best Non-ConvNet in 2012: 26.2%

Things to remember

- Neural network and Image
 - Neuroscience, Perceptron, Problems due to High Dimensionality and Local Relationship
- Convolutional neural network (CNN)
 - Convolution Layer,
 - Nonlinearity Layer,
 - Pooling Layer,
 - Fully Connected Layer,
 - Loss/Classification Layer
- Progress on ImageNet challenge
 - Latest SENet, Winner 2017

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - D. Lowe
 - A. Bobick
 - S. Lazebnik
 - K. Grauman
 - R. Zaleski
 - Antonio Torralba
 - Rob Fergus
 - Leibe
 - And many more

Next Class

Training Aspects of CNN

- Activation Functions
- Dataset Preparation
- Data Preprocessing
- Weight Initialization
- Optimization Methods
- Learning Rate
- Transfer Learning
- Generalization

