۱- الف) برای سیگنال پیوسته x(t) = 3u(t+1) - 3u(t-5)، چگالی طیف انرژی را یکبار با استفاده از تعریف و یکبار با استفاده از تابع خودهمبستگی این سیگنال بدست آورید.

برای سیگنال گسسته [n-2]+2u[n-2]+2u[n-2]+2u[n-4]، چگالی طیف توان را با استفاده از تابع خودهمبستگی این سیگنال بدست آورید.

 $x_1[n] = x(nT_{s1})$ یک بیمار از یک فیلتر پائین گذر عبور کرده و سپس یک بار با پریود T_{s1} نمونهبرداری شده و سیگنال $T_{s1} = x(nT_{s1})$ ساخته می شود. یک قطعه N_1 نقطه ای از سیگنال $N_1 = x_1[n] = x(nT_{s2})$ ساخته می شود. یک قطعه N_1 نقطه ای از سیگنال $N_1 = x_1[n]$ نقطه ای از سیگنال $N_1 = x_1[n]$ را انتخاب کرده و $N_1 = x_1[n]$ نقطه ای آن را $N_1 = x_1[n]$ می نامیم. $N_1 = x_1[n]$ آن را $N_2 = x_1[n]$ آن را را آل

الف) حداقل مقدار N_1 برحسب $X_1[k]$ چقدر باشد تا باند آلفا (۸ تا ۱۳ هرتز) با حداقل ۲ نمونه در $X_1[k]$ مشخص شده باشد؟

ب) فرض کنید: $X_1[k]$ مقدار $X_1[k]$ و $X_1[k]$ ، آنگاه مقدار $X_1[54] = \sqrt{2} - j$. اگر $X_1[k]$ ، آنگاه مقدار $X_1[k]$ و $X_1[k]$ و $X_1[k]$ در خود نقاطی معلوم است و این مقدار چقدر است؟

پ) فرض کنید: $X_1[1050] = \sqrt{2} - j$ ، اگر $f_{s1} = 400$. $f_{s2} = 600$ یسگنال EEG در چه فرض کنید: $X_1[1050] = \sqrt{2} - j$ ، مؤلفه های سیگنال فرض کنید.

ت) فرض کنید: $X_1[k]$ و مقادیر $X_2[l]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ و مقادیر $X_2[l]$ متناظر با باند دلتا $X_2[l]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ متناظر با باند دلتا $X_2[l]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ متناظر با باند دلتا $X_2[l]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ و مقادیر $X_1[k]$ و مقادیر $X_1[k]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ و مقادیر $X_1[k]$ و مقادیر $X_1[k]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ و مقادیر $X_1[k]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ متناظر با باند دلتا $X_1[k]$ و مقادیر $X_1[k]$ و مقدد $X_1[k]$ و م

. $\angle X_1[400] = -\angle X_2[500]$ ث) رابطه N_2 و N_2 را چنان تعیین کنید که

۳- الف) سیگنال y[n] یک قطعه ۳۰ نقطه ای از سیگنال x[n] است که بو سیله یک پنجره مستطیلی ۳۰ نقطه ای بد ست آمده است و داریم: x[n] است که بو سیله یک پنجره مستطیلی ۳۰ نقطه ای بد ست آمده است و داریم: $|Y[k]| = a\delta[k-4] + 3a\delta[k-12] + 3a\delta[k-18] + a\delta[k-26]$ سیگنال های زیر می تواند x[n] باشد؟ چرا؟

 $x_1[n] = \cos(\frac{4\pi}{15}n) + 3\sin(\frac{12\pi}{15}n), \quad x_2[n] = \cos(\frac{2\pi}{15}n) + 3\cos(\frac{8\pi}{15}n), \quad x_3[n] = 3\cos(\frac{4\pi}{15}n) + \cos(\frac{12\pi}{15}n)$ $x_4[n] = 3\cos(\frac{2\pi}{15}n) + \cos(\frac{8\pi}{15}n), \quad x_5[n] = \cos(\frac{4\pi}{15}n) + 3\cos(\frac{3\pi}{15}n), \quad x_6[n] = 3\cos(\frac{4\pi}{15}n) + 9\cos(\frac{12\pi}{15}n)$ $x_4[n] = 3\cos(\frac{2\pi}{15}n) + \cos(\frac{8\pi}{15}n), \quad x_5[n] = \cos(\frac{4\pi}{15}n) + 3\cos(\frac{3\pi}{15}n), \quad x_6[n] = 3\cos(\frac{4\pi}{15}n) + 9\cos(\frac{12\pi}{15}n)$ $x_5[n] = \cos(\frac{4\pi}{15}n) + 3\cos(\frac{4\pi}{15}n) + 3\cos(\frac{4\pi}{15}n$

سینوسی موجود باشد (برای هر مقدار طول پنجره).

۴- سیگنال y[n] یک قطعه ۳۰ نقطه ای از سیگنال x[n] است که بوسیله یک پنجره مستطیلی ۳۰ نقطه ای بدست آمده است و داریم: $|Y[k]| = a\delta[k-3] + b\delta[k-11] + b\delta[k-19] + a\delta[k-27]$

الف) یک فرمول برای سیگنال x[n] پیشنهاد کنید.

ب) اگر به جای پنجره مستطیلی از پنجرههای دیگر استفاده شده بود، آیا باز هم در DFT ۳۰ نقطهای فقط ۴ مقدار غیرصفر داشتیم؟ چرا؟ $x_c(t)$ با نمونهبرداری از $x_c(t)$ با فرکانس نمونهبردای $x_s=180$ بدست آمده باشد، یک فرمول برای $x_c(t)$ پیشنهاد کنید.

۵- مسئله ۲۴ از فصل ۱۰ مرجع ۱ (چاپ ۲۰۱۰) را حل کنید.

و متغیر تصادفی X و X با تابع چگالی احتمال توام زیر را داریم. $f_{X,Y}(x,y) = \begin{cases} kyx & 0 \leq x \leq y, \, 0 < y < 2 \\ 0 & otherwise \end{cases}$

الف) k را بدست آورید.

- ب) توابع چگالی احتمال کناری هر یک را بدست آورید.
- پ) متوسط، واریانس، چولگی و پخی هر یک از دو متغیر تصادفی و همبستگی، کوواریانس و ضریب همبستگی بین آنها را بدست آورید.
 - ت) توابع چگالی احتمال کناری شرطی هر یک را بدست آورید و سپس میانگین و واریانس آنها را حساب کنید.
 - ث) بهترین تخمین X بدون اطلاع از Y با معیار محتملترین چیست ؟
 - ج) بهترین تخمین X بدون اطلاع از Y با معیار MMSE چیست و متوسط مربع خطای آن چقدر است؟
 - چ) بهترین تخمین X برحسب Y با معیار محتملترین چیست ؟
 - ح) بهترین تخمین X برحسب Y با معیار MMSE چیست و متوسط مربع خطای آن چقدر است؟
 - خ) بهترین تخمین خطی X برحسب Y با معیار MMSE چیست و متوسط مربع خطای آن چقدر است؟
 - د) بهترین تخمین آفین X برحسب Y با معیار MMSE چیست و متوسط مربع خطای آن چقدر است؟

V یک ماشین شانس به این صورت طراحی کرده ایم که در هر بار بازی یک متغیر تصادفی با توزیع نرمال $N(0,\sigma^2)$ را تولید می کند و متغیر تصادفی تصادفی تولید شده در بازی های مکرر را با توزیع یکسان و مستقل از هم فرض می کنیم. به ازای بازی شماره i، اگر متغیر تصادفی تولید شده را X_i بنامیم، آنگاه اگر X_i مثبت باشد فرد به همان اندازه پول دریافت می کند و در صورتی که منفی باشد به اندازه X_i پرداخت می کند.

الف) پس از n بار بازی، انحراف معیار و متوسط خالص دریافتی هر فرد چقدر است؟

ب) احتمال اینکه پس از n بار بازی فرد بیش از $2\sqrt{n}\sigma$ بدست آورد یا ببازد، چقدر است؟