AirQo Ugandan Air Quality Forecast Challenge

Maike, Jonas, Michael

Content

- Background
- EDA
- Prediction Model
- Results
- Next Steps

About Uganda:

- Located in central eastern Africa north of Lake Victoria
- Mostly tropical climate (northern regions less humid)
- Depending on agriculture

Task:

- AirQo: Predict the air quality one day in the future using weather data from the past 5 days
- Goal: Best RMSE

Weather Sensors

Weather Data from 5 Tahmo-Weather-Stations

- Temperature (°C)
- Precipitation (mm)
- Relative Humidity
- Wind Direction (degrees)
- Wind Speed (m/s)
- Atmospheric Pressure (kPa)

Source: Tahmo.org

- No rain in location B
- Mostly raining in location C

- Location D located far lower than other locations
- Location C mostly in low-pressure area

Air Pollution by Location

particulate matter smaller than 2.5 micrometers in diameter

Health Concern	PM _{2.5} (μgm ⁻³)	Precautions
Good	0 - 12	None
Moderate	13 - 35	Unusually sensitive people should consider reducing prolonged or heavy exertion
Unhealthy for Sensitive Groups	36 - 55	Sensitive groups should reduce prolonged or heavy exertion
Unhealthy	56 - 150	Everyone should reduce prolonged or heavy exertion take more breaks during outdoor activities
Very Unhealthy	151 - 250	Everyone should avoid prolonged or heavy exertion move activities indoors or reschedule
Hazardous	250 +	Everyone should avoid all physical activities outdoors

Analysis of Base Model

Definition Base Model:

- Simplest Model
- Only Descriptive Statistics Values w/o Time Series
- No Further Parameter Tuning

- RF- & KNN Regressor better than base model LR → Both will be taken into account for further investigations
- SVM worse than LR → Regressor will not be considered furthermore

Definition Advanced Model:

- Descriptive Statistics Values and Time Series
- **Including Feature Engineering**
- **Including Hyper Parameter Tuning**

Advanced Model Performance

- Parameter Tuning at KNN with big effect, KNN best model with RMSE: 26.67
- Parameter Tuning at RF does not achieve noteable improvement
- Overall, consideration time data does not improve RMSF

Category Range Vs. RMSE

- RMSE within healthy categories (good, moderate range) relatively big but..
- in the unhealthy range good to distinguish!

Category Range Vs. RMSE

Feature Importance

- Atmospheric pressure, temperature and wind direction are most important features
- Not relevant is precipitation

Next Steps

- Choose more suitable method to replace the missing values.
- Use other regression models that may be more appropriate.
- Improve feature engineering.
- Take other data into account.

Attachment

