PLNmodels

A collection of Poisson lognormal models for multivariate analysis of count data

J. Chiquet, M. Mariadassou, S. Robin, B. Batardière, J. Kwon

Paris-Saclay, AgroParisTech, INRAE Last update 01 December, 2021

https://pln-team.github.io/PLNmodels

Reproducibility

R/C++ Package PLNmodels

Last stable release on CRAN, development version available on GitHub.

```
install.packages("PLNmodels")
remotes::install_github("PLN-team/PLNmodels@dev")

library(PLNmodels)
packageVersion("PLNmodels")

## [1] '0.11.4'
```

Python module

A Python + PyTorch implementation is coming

Advertisement (more, sorry about that)

https://computo.sfds.asso.fr, a new journal promoting reproducible research

Resources

Help and documentation

The PLNmodels website contains the standard package documentation and a set of comprehensive vignettes for the top-level functions

Publications

Chiquet, J., M. Mariadassou, and S. Robin (2018). "Variational inference for probabilistic Poisson PCA". In: *The Annals of Applied Statistics* 12, pp. 2674-2698. URL: http://dx.doi.org/10.1214/18-AOAS1177.

Chiquet, J., M. Mariadassou, and S. Robin (2019). "Variational inference for sparse network reconstruction from count data". In: *Proceedings of the 19th International Conference on Machine Learning (ICML 2019)*.

Chiquet, J., M. Mariadassou, and S. Robin (2021). "The Poisson-Lognormal Model as a Versatile Framework for the Joint Analysis of Species Abundances". In: *Frontiers in Ecology and Evolution* 9. DOI: 10.3389/fevo.2021.588292.

Facon, B., A. Hafsi, M. C. de la Masselière, et al. (2021). "Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies". In: *Ecological Letters*. DOI: 10.1111/ele.13825.

PLNmodels: what is done¹

- 1. Motivations
- 2. A family of models for multivariate analysis
- 3. Efficient variational inference
- 4. Illustration

Generic form of data sets

Routinely gathered in ecology/microbiology/genomics

Data tables

- ullet Abundances: read counts of species/transcripts j in sample i
- ullet Covariates: value of environmental variable k in sample i
- ullet Offsets: sampling effort for species/transcripts j in sample i

Need frameworks to model dependencies between counts

- understand environmental effects
 - → explanatory models (multivariate regression, classification)
- exhibit patterns of diversity
 - → summarize the information (clustering, dimension reduction)
- understand between-species interactions
 - → 'network' inference (variable/covariance selection)
- correct for technical and confounding effects
 - → account for covariables and sampling effort

Models for multivariate count data

If we were in a Gaussian world...

The general linear model [MKB79] would be appropriate! For each sample $i=1,\ldots,n$,

$$egin{array}{c} \mathbf{Y}_i = \mathbf{x}_i^ op \mathbf{\Theta} + \mathbf{o}_i + oldsymbol{arepsilon}_i + oldsymbol{arepsilon}_i, \quad oldsymbol{arepsilon}_i \sim \mathcal{N}(\mathbf{0}_p, \mathbf{v}_i) \ & ext{between-species dependencies} \end{array}$$

null covariance ⇔ independence → uncorrelated species/transcripts do not interact

This model gives birth to Principal Component Analysis, Discriminant Analysis, Gaussian Graphical Models, Gaussian Mixture models and many others . . .

With count data...

There is no generic model for multivariate counts

- Data transformation (log, $\sqrt{\ }$): quick and dirty
- Non-Gaussian multivariate distributions [Ino+17]: do not scale to data dimension yet

The Poisson Lognormal model (PLN)

The PLN model [AH89] is a multivariate generalized linear model, where

- the counts \mathbf{Y}_i are the response variables
- the main effect is due to a linear combination of the covariates \mathbf{x}_i
- a vector of offsets \mathbf{o}_i can be specified for each sample.

$$\mathbf{Y}_i | \mathbf{Z}_i \sim \mathcal{P}\left(\exp \mathbf{Z}_i
ight),$$

$$|\mathbf{Y}_i|\mathbf{Z}_i \sim \mathcal{P}\left(\exp \mathbf{Z}_i
ight), \qquad \mathbf{Z}_i \sim \mathcal{N}(\mathbf{o}_i + \mathbf{x}_i^ op \mathbf{\Theta}, \mathbf{\Sigma}),$$

The unkwown parameters are

- Θ , the regression parameters
- Σ , the variance-covariance matrix

Stacking all individuals together,

- **Y** is the $n \times p$ matrix of counts
- **X** is the $n \times d$ matrix of design
- $oldsymbol{\cdot}$ $oldsymbol{O}$ is the n imes p matrix of offsets

Properties: over-dispersion, arbitrary-signed covariances

- ullet mean: $\mathbb{E}(Y_{ij}) = \expig(o_{ij} + \mathbf{x}_i^ op \mathbf{\Theta}_{\cdot j} + \sigma_{jj}/2ig) > 0$
- ullet variance: $\mathbb{V}(Y_{ij})=\mathbb{E}(Y_{ij})+\mathbb{E}(Y_{ij})^2\left(e^{\sigma_{jj}}-1
 ight)>\mathbb{E}(Y_{ij})$
- covariance: $\mathrm{Cov}(Y_{ij},Y_{ik})=\mathbb{E}(Y_{ij})\mathbb{E}(Y_{ik})\left(e^{\sigma_{jk}}-1
 ight)$.

Natural extensions

Various tasks of multivariate analysis

• Dimension Reduction: rank constraint matrix Σ .

$$\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma} = \mathbf{B}\mathbf{B}^ op), \quad \mathbf{B} \in \mathcal{M}_{pk} ext{ with orthogonal columns.}$$

• Classification: maximize separation between groups with means

$$\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}_k \mathbf{1}_{\{i \in k\}}, oldsymbol{\Sigma}), \quad ext{for known memberships.}$$

Clustering: mixture model in the latent space

$$\mathbf{Z}_i \mid i \in k \sim \mathcal{N}(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k), \quad ext{for unknown memberships.}$$

Network inference: sparsity constraint on inverse covariance.

$$\mathbf{Z}_i \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma} = oldsymbol{\Omega}^{-1}), \quad \|oldsymbol{\Omega}\|_1 < c.$$

Variable selection: sparsity constraint on regression coefficients

$$\mathbf{Z}_i \sim \mathcal{N}(\mathbf{x}_i^ op \mathbf{\Theta}, \mathbf{\Sigma}), \quad \|\mathbf{\Theta}\|_1 < c.$$

Inference: latent model but intractable EM

Estimate $\theta = (\boldsymbol{\Theta}, \boldsymbol{\Sigma})$, predict the \mathbf{Z}_i , while the model marginal likelihood is

$$p_{ heta}(\mathbf{Y}_i) = \int_{\mathbb{R}_p} \prod_{j=1}^p p_{ heta}(Y_{ij}|Z_{ij}) \, p_{ heta}(\mathbf{Z}_i) \mathrm{d}\mathbf{Z}_i.$$

Maximum likelihood for incomplete data model: EM

With $\mathcal{H}(p) = -\mathbb{E}_p(\log(p))$ the entropy of p,

$$\log p_{ heta}(\mathbf{Y}) = \mathbb{E}_{p_{ heta}(\mathbf{Z} \,|\, \mathbf{Y})}[\log p_{ heta}(\mathbf{Y}, \mathbf{Z})] + \mathcal{H}[p_{ heta}(\mathbf{Z} \,|\, \mathbf{Y})]$$

EM requires to evaluate (some moments of) $p_{ heta}(\mathbf{Z} \mid \mathbf{Y})$, but there is no close form!

Solutions

- [AH89] resort on numerical integration; [Kar05] Monte-Carlo integration
- Several heuristics, not always well motivated, found in the literature...
- Variational approach [WJ08]: use a proxy of $p_{ heta}(\mathbf{Z} \mid \mathbf{Y})$.

Variational approximation

Principle

• Find a proxy of the conditional distribution $p(\mathbf{Z} \mid \mathbf{Y})$:

$$q(\mathbf{Z}) pprox p_{ heta}(\mathbf{Z}|\mathbf{Y}).$$

ullet Choose a convenient class of distribution ${\mathcal Q}$ and minimize a divergence

$$q(\mathbf{Z})^{\star}rg\min_{q\in\mathcal{Q}}D\left(q(\mathbf{Z}),p(\mathbf{Z}|\mathbf{Y})
ight).$$

Popular choice

The Küllback-Leibler divergence (error averaged wrt the approximated distribution)

$$KL\left(q(\mathbf{Z}),p(\mathbf{Z}|\mathbf{Y})
ight) = \mathbb{E}_q\left[\lograc{q(z)}{p(z)}
ight] = \int_{\mathcal{Z}}q(z)\lograc{q(z)}{p(z)}\mathrm{d}z.$$

Variational EM & PLN

Class of distribution: diagonal multivariate Gaussian

$$\mathcal{Q} = \left\{q: \quad q(\mathbf{Z}) = \prod_i q_i(\mathbf{Z}_i), \quad q_i(\mathbf{Z}_i) = \mathcal{N}\left(\mathbf{Z}_i; \mathbf{m}_i, \operatorname{diag}(\mathbf{s}_i \circ \mathbf{s}_i)
ight), \mathbf{m}_i, \mathbf{s}_i \in \mathbb{R}_p
ight\}$$

Maximize the ELBO (Evidence Lower BOund):

$$J(heta,q) = \log p_{ heta}(\mathbf{Y}) - KL[q_{ heta}(\mathbf{Z})||p_{ heta}(\mathbf{Z}|\mathbf{Y})] = \mathbb{E}_q[\log p_{ heta}(\mathbf{Y},\mathbf{Z})] + \mathcal{H}[q(\mathbf{Z})]$$

Variational EM

ullet VE step: find the optimal q (here, $\{(\mathbf{m}_i,\mathbf{s}_i)\}_{i=1,\ldots,n}=\{\mathbf{M},\mathbf{S}\}$):

$$q^h = rg \max J(heta^h, q) = rg \min_{q \in \mathcal{Q}} \mathit{KL}[q(\mathbf{Z}) \, || \, p_{ heta^h}(\mathbf{Z} \, | \, \mathbf{Y})]$$

• M step: update $\hat{ heta}^h$

$$eta^h = rg \max_{ heta} J(heta, q^h) = rg \max_{ heta} \mathbb{E}_q[\log p_{ heta}(\mathbf{Y}, \mathbf{Z})]$$

ELBO and gradients for PLN

Let
$$\mathbf{A} = \mathbb{E}_q[\exp(\mathbf{Z})] = \exp\Bigl(\mathbf{O} + \mathbf{M} + rac{1}{2}\mathbf{S}^2\Bigr)$$

Variational bound

$$egin{aligned} J(\mathbf{Y}) &= \mathbf{1}_n^\intercal \left(\left[\mathbf{Y} \circ \left(\mathbf{O} + \mathbf{M}
ight) - \mathbf{A} + \log(\mathbf{S})
ight]
ight) \mathbf{1}_p + rac{n}{2} \log |\mathbf{\Omega}| \ &- rac{1}{2} \mathrm{trace} \left(\mathbf{\Omega} igg[(\mathbf{M} - \mathbf{X} \mathbf{\Theta})^\intercal \left(\mathbf{M} - \mathbf{X} \mathbf{\Theta}
ight) + \mathrm{diag}(\mathbf{1}_n^\intercal \mathbf{S}^2) igg]
ight) + \mathrm{cst.} \end{aligned}$$

M-step (Analytical)

$$\hat{oldsymbol{\Theta}} = \left(\mathbf{X}^{ op} \mathbf{X}
ight)^{-1} \mathbf{X} \mathbf{M}, \quad \hat{oldsymbol{\Sigma}} = rac{1}{n} \left(\mathbf{M} - \mathbf{X} \hat{oldsymbol{\Theta}}
ight)^{ op} \left(\mathbf{M} - \mathbf{X} \hat{oldsymbol{\Theta}}
ight) + rac{1}{n} \mathrm{diag}(\mathbf{1}^{\intercal} \mathbf{S}^2)$$

Variational E-step (optimization)

$$rac{\partial J(q)}{\partial \mathbf{M}} = \left(\mathbf{Y} - \mathbf{A} - (\mathbf{M} - \mathbf{X}\mathbf{\Theta})\mathbf{\Omega}
ight), \qquad rac{\partial J(q)}{\partial \mathbf{S}} = rac{1}{\mathbf{S}} - \mathbf{S} \circ \mathbf{A} - \mathbf{S} \mathrm{D}_{\mathbf{\Omega}}.$$

Application to the optimization of PLN models

Property of PLN variational approximation

The ELBO $J(\theta,q)$ is bi-concave, i.e.

- ullet concave wrt $q=(\mathbf{M},\mathbf{S})$ for given heta
- ullet convace wrt $heta=(oldsymbol{\Sigma},oldsymbol{\Theta})$ for given q but not jointly concave in general.

Optimization

Gradient ascent for the set of variational parameters (\mathbf{M}, \mathbf{S})

Medium scale problems

- algorithm: conservative convex separable approximations Svanberg [Sva02]
- implementation: NLopt nonlinear-optimization library Johnson [Joh11]
- **initialization**: LM after log-transformation applied independently on each variables + concatenation of the regression coefficients + Pearson residuals

ightsquigarrow Comfortable up to a thousand of sites (npprox1000), hundreds of species (ppprox100s)

Oaks powdery mildew data set overview

Jakuschkin, Fievet, Schwaller, Fort, Robin, and Vacher [Jak+16] Study effects of the pathogen *E.Aphiltoïdes* (mildew) wrt bacterial and microbial communities

Species Abundances

- ullet Microbial communities sampled on the surface of n=116 oak leaves
- ullet Communities sequenced and cleaned resulting in p=114 OTUs (66 bacteria, 48 fungi).

Covariates and offsets

Characterize the samples and the sampling, most important being

- tree: Tree status with respect to the pathogen (susceptible, intermediate or resistant)
- distTOground: Distance of the sampled leaf to the base of the ground
- orientation: Orientation of the branch (South-West SW or North-East NE)
- readsTOTfun: Total number of ITS1 reads for that leaf
- readsTOTbac: Total number of 16S reads for that leaf

Abundance table (I)

```
data(oaks)
oaks$Abundance %>% as_tibble() %>%
  dplyr::select(1:10) %>%
  rmarkdown::paged_table()
```

b_OTU_1045	b_OTU_109	b_OTU_1093	b_OTU_11	b_OTU_112 \
<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
0	0	0	6	146
0	0	0	0	0
0	0	0	2	0
0	0	0	1	1
0	0	0	4	1
0	0	0	77	2
0	0	0	21	2
0	0	0	27	4
0	0	0	7	42
0	0	0	7	2
1-10 of 116 rows 1-5	5 of 10 columns	Pre	evious 1 2 3	4 5 6 12 Next

Abundance table (II)

```
log(1 + oaks$Abundance) %>%
  corrplot::corrplot(is.corr = FALSE,
    addgrid.col = NA, tl.cex = .5, cl.pos = "n")
```


PLN with offsets and covariates (1)

Offset: modeling sampling effort

The predefined offset uses the total sum of reads, accounting for technologies specific to fungi and bacteria:

```
M01_{oaks} \leftarrow PLN(Abundance \sim 1 + offset(log(Offset)) , oaks)
```

Covariates: tree and orientation effects ('ANOVA'-like)

The tree status is a natural candidate for explaining a part of the variance.

- We chose to describe the tree effect in the regression coefficient (mean)
- A possibly spurious effect regarding the interactions between species (covariance).

```
M11_{oaks} \leftarrow PLN(Abundance \sim 0 + tree + offset(log(Offset)), oaks)
```

What about adding more covariates in the model, e.g. the orientation?

```
M21_{oaks} \leftarrow PLN(Abundance \sim 0 + tree + orientation + offset(log(Offset)), oaks)
```

PLN with offsets and covariates (2)

There is a clear gain in introducing the tree covariate in the model:

	nb_param	loglik	BIC	ICL
M01	6669	-32252.14	-48102.98	-52169.64
M11	6897	-31524.16	-47916.91	-51644.03
M21	7011	-31438.58	-48102.29	-51727.13

Looking at the coefficients Θ associated with tree bring additional insights:

Discriminant Analysis

Use the tree variable for grouping (grouping is a factor of group to be considered)

```
myLDA_tree ←
PLNLDA(Abundance ~ 1 + offset(log(Offset)), grouping = oaks$tree, data = oaks)
```


A PCA analysis of the oaks data set

```
PCA_offset ←
  PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = oaks, ranks = 1:30)
PCA_offset_BIC ← getBestModel(PCA_offset, "BIC")
```


PCA: removing covariate effects

To hopefully find some hidden effects in the data, we can try to remove confounding ones:

```
PCA_tree ←
  PLNPCA(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks, ranks = 1:30)
```


Clustering of the oaks samples

```
PLN_mixtures ←
   PLNmixture(Abundance ~ 1 + offset(log(Offset)), data = oaks, clusters = 1:3)
myPLN_mix ← getModel(PLN_mixtures, 3)

myPLN_mix$plot_clustering_pca()
   myPLN_mix$plot_clustering_data()
```

Network inference

networks ← PLNnetwork(Abundance ~ 0 + tree + offset(log(Offset)), data = oaks)

Some more recent research

Limitations

- No guarantee for the variational estimators
- No test on the inference parameters
- Environmental Genomics, Single-Cell: more zeros, more rows, more columns

Ongoing work

- Hypothesis testing
- Zero-inflated version
- Large scale and/or exact optimization

Statistical Inference

We only consider the standard PLN model.

A first try: Wald test

Test $\mathcal{H}_0: R\theta = r_0$ with the statistic

$$(R\hat{ heta}-r_0)^ op \left[nR\hat{\mathbb{V}}(\hat{ heta})R^ op
ight]^{-1}(R\hat{ heta}-r_0) \sim \chi_k^2 \quad ext{where} \quad k= ext{rank}(R).$$

The Fisher Information matrix

$$I(\hat{ heta}) = -\mathbb{E}_{ heta}\left[rac{\partial^2 \log \ell(heta;x)}{\partial heta^2}
ight]$$

can be used as an approximation of $n\mathbb{V}(\hat{ heta})^{-1}$.

Application

Derive confidences interval for the inverse covariance Ω and the regression parameters Θ .

Variational Wald-test

Variational Fisher Information

The Fisher information matrix is given by

$$I(heta) = \left(egin{array}{cc} rac{1}{n} (\mathbf{I}_p \otimes \mathbf{X}^ op) \mathrm{diag}(\mathrm{vec}(\mathbf{A})) (\mathbf{I}_p \otimes \mathbf{X}) & \mathbf{0} \ \mathbf{0} & rac{1}{2} \mathbf{\Omega}^{-1} \otimes \mathbf{\Omega}^{-1} \end{array}
ight)$$

and can be inverted blockwise to estimate $\mathbb{V}(\hat{\theta})$.

Wald test and coverage

- $\bullet \ \hat{\mathbb{V}}(\mathbf{\Theta}_{kj}) = [n(\mathbf{X}^{\top} \mathrm{diag}(\mathrm{vec}(\hat{A}_{.j}))\mathbf{X})^{-1}]_{kk}$
- $\hat{\mathbb{V}}(\Omega_{kl})=2\Omega_{kk}\Omega_{ll}$

The confidence intervals at level lpha are given by

•
$$B_{kj} = \hat{B}_{kj} \pm rac{q_{1-lpha/2}}{\sqrt{n}} \sqrt{\hat{\mathbb{V}}(oldsymbol{\Theta}_{kj})}$$

•
$$\Omega_{kl} = \hat{\Omega}_{kl} \pm rac{q_{1-lpha/2}}{\sqrt{n}} \sqrt{\hat{\mathbb{V}}(\Omega_{kl})}$$
.

Numerical study

Study Bias and coverage of the estimator

- ullet number of samples $n \in \{50, 100, 500, 1000, 10000\}$
- ullet number of species/genes $p \in \{20,200\}$
- number of covariates $d \in \{2,5,10\}$
- ullet sampling effort $TSS \in \{ ext{low}, ext{medium}, ext{high}\}$ (\$\approx 10^4\$, 10^5 and 10^6)
- noise level $\sigma^2 \in \{0.2, 0.5, 1, 2\}$
- $oldsymbol{\cdot}$ $oldsymbol{\Sigma}$ as $\sigma_{jk}=\sigma^2
 ho^{|j-k|}$, with ho=0.2
- $oldsymbol{\Theta}$ with entries sampled from $\mathcal{N}(0,1/d)$

Bias of $\hat{\mathbf{\Theta}}$

The variational estimator are asymptotically unbiased

95% confident interval - Coverage

Variance underestimated, no trusted confidence intervals can be derived out-of-the box

Idea: M-estimation (with M. Mariadassou, S. Robin)

- Asymptotics for the VEM stationary point (not a log-likelihood stationary point).
- Use sandwich estimator for correction as in [WM15]

A zero-inflated PLN with M. Mariadassoua and F. Gindraud

Motivations

- account for a large amount of zero, i.e. with single-cell data,
- try to separate "true" zeros from "technical"/dropouts

The Model

Use two latent vectors \mathbf{W}_i and \mathbf{Z}_i to model excess of zeroes and dependence structure

$$egin{aligned} \mathbf{Z}_i &\sim \mathcal{N}(\mathbf{o}_i + \mathbf{x}_i^ op \mathbf{\Theta}, \mathbf{\Sigma}) \ W_{ij} &\sim \mathcal{B}(\operatorname{logit}^{-1}(\mathbf{x}_i^ op \mathbf{\Theta}_j^0)) \ Y_{ij} \,|\, W_{ij}, Z_{ij} &\sim W_{ij} \delta_0 + (1 - W_{ij}) \mathcal{P}\left(\exp\{Z_{ij}\}
ight), \end{aligned}$$

The unkwown parameters are

- Θ , the regression parameters (from the PLN component)
- Θ^0 , the regression parameters (from the Bernoulli component)
- Σ , the variance-covariance matrix

→ ZI-PLN is a mixture of PLN and Bernoulli distribution with shared covariates.

ZI-PLN identifiability

Consider the standard ZIPLN model (i.e. not the ZIPLN-regression model) with 1 sample:

$$egin{aligned} \left(W_j
ight)_{j=1\dots p} &\sim \mathcal{B}^\otimes(\pi) = \mathcal{B}(\pi_1) \otimes \dots \mathcal{B}(\pi_p) \ \left(Z_j
ight)_{j=1\dots p} &\sim \mathcal{N}_p(\mu,oldsymbol{\Sigma}) \ Y_j|W_j,Z_j &\sim (1-W_j)\mathcal{P}(e^{Z_j}) + W_j\delta_0 \end{aligned}$$

Proposition

The standard ZIPLN model defined above with parameter $\theta=(\pi,\mu,\Sigma)$ and parameter space $(0,1)^p \times \mathbb{R}^p \times \mathbb{S}_p^{++}$ is identifiable.

Proof. We used the moments of \mathbf{Y} to prove identifiability and rely on the following results for Gaussian and Poisson distributions:

- If $U \sim \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}[e^U] = \exp(\mu + \sigma^2/2)$
- If $U\sim \mathcal{P}(\lambda)$ then $\mathbb{E}[U]=\lambda$ $\mathbb{E}[U^2]=\lambda(1+\lambda)$ $\mathbb{E}[U^2]=\lambda(1+3\lambda+\lambda^2)$

Each coordinate of heta can be expressed as a simple functions of the (first three) moments of $p_{ heta}$ and thus $p_{ heta}=p_{ heta'}\Rightarrow heta= heta'$.

ZI-PLN Inference

Same routine...

Variational approximation

$$p(\mathbf{Z}_i, \mathbf{W}_i \mathbf{Y}_i) pprox q_{\psi}(\mathbf{Z}_i, \mathbf{W}_i) pprox q_{\psi_1}(\mathbf{Z}_i) q_{\psi_2}(\mathbf{W}_i)$$

with

$$q_{\psi_1}(\mathbf{Z}_i) = \mathcal{N}(\mathbf{Z}_i; \mathbf{m}_i, \operatorname{diag}(\mathbf{s}_i \circ \mathbf{s}_i)), \qquad q_{\psi_2}(\mathbf{W}_i) = \otimes_{j=1}^p \mathcal{B}(W_{ij}, \pi_{ij})$$

Variational lower bound

Let
$$heta=(oldsymbol{\Theta},oldsymbol{\Sigma})$$
 and $\psi=(\mathbf{M},\mathbf{S},oldsymbol{\Pi})$, then

$$egin{aligned} J(heta,\psi) &= \log p_{ heta}(\mathbf{Y}) - KL(p_{ heta}(.|\mathbf{Y})\|q_{\psi}(.)) \ &= \mathbb{E}_{q_{\psi}} \log p_{ heta}(\mathbf{Z},\mathbf{W},\mathbf{Y}) - \mathbb{E}_{q_{\psi}} \log q_{\psi}(\mathbf{Z},\mathbf{W}) \ &= \mathbb{E}_{q_{\psi}} \log p_{ heta}(\mathbf{Y}|\mathbf{Z},\mathbf{W}) + \mathbb{E}_{q_{\psi_1}} \log p_{ heta}(\mathbf{Z}) + \mathbb{E}_{q_{\psi_2}} \log p_{ heta}(\mathbf{W}) \ &- \mathbb{E}_{q_{\psi_1}} \log q_{\psi_1}(\mathbf{Z}) - \mathbb{E}_{q_{\psi_2}} \log q_{\psi_2}(\mathbf{W}) \end{aligned}$$

Property: J is separately concave in heta, ψ_1 and ψ_2 .

Optimizaton

A sparse criterion

Recall that $heta=(m{\Theta},m{\Theta}^0,m{\Omega}=m{\Sigma}^{-1})$. Sparsity allows to control the number of parameters:

$$rg\min_{ heta,\psi}J(heta,\psi)+\lambda_1\|\Theta\|_1+\lambda_2\|\Omega\|_1\left(+\lambda_1\|\Theta^0\|_1
ight)$$

Alternate optimization

- (Stochastic) Gradient-descent on $oldsymbol{\Theta}^0, \mathbf{M}, \mathbf{S}$
- ullet Closed-form for posterior probabilities $oldsymbol{\Pi}$
- Inverse covariance $oldsymbol{\Omega}$

$$\circ$$
 if $\lambda_2=0$, $\hat{oldsymbol{\Sigma}}=n^{-1}\left[(\mathbf{M}-\mathbf{X}oldsymbol{\Theta})^ op(\mathbf{M}-\mathbf{X}oldsymbol{\Theta})+ar{\mathbf{S}}^2
ight]$

- \circ if $\lambda_2>0$, ℓ_1 penalized MLE (\leadsto Graphical-Lasso with $\hat{oldsymbol{\Sigma}}$ as input)
- ullet PLN regression coefficient $oldsymbol{\Theta}$

$$\circ$$
 if $\lambda_1 = 0$, $\hat{oldsymbol{\Theta}} = [\mathbf{X}^ op \mathbf{X}]^{-1} \mathbf{X}^ op \mathbf{M}$

 \circ if $\lambda_1>0$, vectorize and solve a ℓ_1 penalized least-squared problem

Initialize Θ^0 with logistic regression on $\delta_0(\mathbf{Y})$, Θ with Poisson regression

A quick example in genomics (1)

scRNA data set

The dataset scrna contains the counts of the 500 most varying transcripts in the mixtures of 5 cell lines in human liver (obtained with standard 10x scRNAseg Chromium protocol).

We subsample 500 random cells and the keep the 200 most varying genes

```
library(ZIPLN)
data(scRNA)
scRNAsub ← scRNA[sample.int(nrow(scRNA), 500), ]
scRNAsub$counts ← scRNAsub$counts[, 1:200]
scRNAsub$counts %>% as_tibble() %>% rmarkdown::paged_table()
```

KRT81	AKR1B10	LCN2	AKR1C2	ALDH1A1
<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
211	123	1	60	36
3	2	2	1	0
1	4	285	10	0
2	1	1	0	2
7	2	190	2	3

A quick example in genomics (2)

Model fits

We adjust the standard PLN model and the ZI-PLN model with some sparsity on the precision matrix:

```
system.time(myPLN ←
    PLN(counts ~ 1 + offset(log(total counts)),
        data = scRNAsub,control = list(trace = 0)))
##
     user system elapsed
   23,090
          0.032 23.122
##
system.time(myZIPLN ←
    ZIPLN(counts ~ 1 + offset(log(total counts)), rho = .25,
          data = scRNAsub, control = list(trace = 0)))
     user system elapsed
###
##
   50.279
            0.052 7.572
```

A quick example in genomics (3)

ZI-PLN seems to be less variant for predicting small counts

A quick example in genomics (4)

prcomp(myZIPLN\$latent) %>% factoextra::fviz_pca_ind(col.ind = scRNAsub\$cell_line)

A quick example in genomics (5)

```
library(sbm)
A ← myZIPLN$model_par$Omega ≠ 0; diag(A) ← 0
mySBM ← estimateSimpleSBM(A, estimOptions=list(plot=FALSE))
```

A quick example in genomics (6)

```
library(igraph)
G ← igraph::graph.adjacency(A, mode = "undirected")
C ← igraph::cluster_fast_greedy(G)
plot(C, G)
```

Large scale problems

Sophisticated Adaptive Stochastic Gradient Descent

- Rprop (1993) uses the gradient sign and update each variable independently:
- AdaGrad (2011) uses adaptive coordinate-wise step-sizes
- RMSProp (2012) adds momentum to the step-sizes
- Adam (2015) also adds momentum to the gradients

→ All available in **Pytorch** with auto-differentiation.

Optimizers comparison

n = 1,000, p = 200, d = 2. Rprop is much faster.

Performance

n = 10,000, p = 2,000, d = 2 (running time: 1 min 40s)

ightsquigarrow Work up to n=100,000, p=10,000s

Exact likelihood maximization

With B. Batardière, J. Kwon

To compare and assess at least empirically the performance of the VE-M estimator

• Use importance sampling to estimate the likelihood:

$$p_{ heta}(Y_i) = \int ilde{p}_{ heta}(Y_i|Z)p(Z)\mathrm{d}Z = \int ilde{p}_{ heta}(Z)\mathrm{d}Z pprox rac{1}{n_s} \sum_{k=1}^{n_s} rac{ ilde{p}_{ heta}(V_k)}{g(V_k)}, \quad (V_k)_{1 \leq k \leq n_s} \stackrel{iid}{\sim} g_i$$

• Estimate the gradients of the log-likelihood by plug-in:

$$abla_{ heta} \log p_{ heta}(Y_i) pprox
abla_{ heta} \log \left(rac{1}{n_s} \sum_{k=1}^{n_s} rac{ ilde{p}_{ heta}^{(u)}(V_k)}{g(V_k)}
ight)$$

• Use SAGA (F. Bach), a smart incremental gradient descent approach

ightharpoonup
igh

Comparing exact and variational estimators

Log-likelihood computed with importance sampling and variational estimators on 20 replicates

Same, on a single run (blue = IS, black = fastPLN, red = true log-likelihood

The true log-likelihood used for comparison is computed numerically.

Conclusion

Summary

- PLN = generic model for multivariate count data analysis
- Flexible modeling of the covariance structure, allows for covariates
- Efficient V-EM algorithm

Extensions

- Other variants
 - covariance structures (spatial, time series, genetics...)
- Other models
 - Bernoulli/multinomial counterpart to PLN
 - functional data
 - multiple-data integration (e.g., Bernoulli + Poisson)

References

Aitchison, J. and C. Ho (1989). "The multivariate Poisson-log normal distribution". In: *Biometrika* 76.4, pp. 643-653.

Chiquet, J., M. Mariadassou, and S. Robin (2018). "Variational inference for probabilistic Poisson PCA". In: *The Annals of Applied Statistics* 12, pp. 2674-2698. URL: http://dx.doi.org/10.1214/18-AOAS1177.

Chiquet, J., M. Mariadassou, and S. Robin (2019). "Variational inference for sparse network reconstruction from count data". In: *Proceedings of the 19th International Conference on Machine Learning (ICML 2019)*.

Chiquet, J., M. Mariadassou, and S. Robin (2021). "The Poisson-Lognormal Model as a Versatile Framework for the Joint Analysis of Species Abundances". In: *Frontiers in Ecology and Evolution* 9. DOI: 10.3389/fevo.2021.588292.

Facon, B., A. Hafsi, M. C. de la Masselière, et al. (2021). "Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies". In: *Ecological Letters*. DOI: 10.1111/ele.13825.