

A Model is Worth Tens of Thousands of Examples

Thomas Dagès¹, Laurent D. Cohen², Alfred M. Bruckstein¹

¹Technion - Israel Institute of Technology, ²Université Paris Dauphine PSL France

Classical Data Model or NN? New estimation task: √?→ **Neural network** black box data **Deep Learning** Classical approach Modern - Better **Requirements: Requirements:** Little to no understanding Lots of data samples Little to no data samples Data model $\iff N_{equiv}$ training samples ? **Neural networks:** Training data

Take-home Message

On toy examples: Data model $\iff \ge 10^4$ training samples

• On real problems:

Greater complexity \Longrightarrow More data needed

Best practice (not studied):

Combine better of two worlds: Data model/understanding + NN training

1D Gaussian Signals: Denoising and Deblurring **Data model:** $\varphi^{data} = H\varphi + n$ R_n $\mathbb{E}(\|\hat{\varphi} - \varphi\|^2)$ argmin Goal: **Estimation:** $W = R_{\omega}H^{\top}(HR_{\omega}H^{\top} + R_{n})^{-1}$

 $\bullet \hat{\varphi}^* = W \varphi^{data}$

Wiener filter (**optimal** *L*²)

FC layer

Conv Layer

Performance:

2D Disk image: Geometric Estimation

Data model:

 $\varphi^{data} = H\varphi + n$

Random radius, centre, foreground, background intensities: r, c, f, b

 $\mathbb{E}(\|(\hat{\mathbf{r}},\hat{\mathbf{c}}) - (\mathbf{r},\mathbf{c})\|^2)$ argmin Goal:

Estimation:

• Pointflow $V_{\pm} = \frac{1}{2} (\nabla || \nabla I_b || \pm \nabla I_b^{\top})$

• CNN: AlexNet, VGG₁₁, ResNet₁₈ Training: Transfer-learning* (TL), Finetuning* (FT), From Scratch (SC)

*From standard Imagenet classification

Performance:

