1 Ling (E)2y"(x) + 4 y(x) = 2 sin(x) - 2e"/ \tau z & IR Thurry L'équation (E) n'est pas normalisé donc on l'a nombie (E) y"(x) + 2 y/x) = sin (x) - e 3x 0,5 2-1900896 (15/21) 1 stape on resout l'équation homogère (E) y"(x) + 2 y(x) =0 , Yx = R Bon Knavant L'équation conacteristique est er bure 2 +2 =0 Le discriminant paut $\Delta = -8$ et les pracines sont z-iviet notración Z = - 6 VZ Lone d'agrès le cours, l'ensemble des volutions de (Extest donné man: 50 = {x EIR -> Car cos (VEx) + C2 e sin(V2x) : (ca, Ca) EIR'S ou unon So= {xER -> Cros(Viz)+Cr sin (Viz) (Cr/4)ER2 } 1 2 étape cherchons les solutions particulières 05 On cherche d'abord une volution particulière de rin (x) peus de - esse Comme le second membres est un (x), que les cofficients de l'equation defletentielle sont constant, on peut cherine une solution particulière yo de la forme you x in (2) reverer car le coefficient devant y'est mul et nour VZER y to a cos (2) et y / pt-x im(2) pour V x ER D'ou y, est solution de (E)

(2) \frac{1}{2} \text{ER} \quad \ y"(n) + Ly(n) = Sin(a) ⇒ ∀x € |K - d sin (x) + 2 × sin (x) = sin (x) EXXER, Z=1 D'où yp: x 6 R > sin (x) est solution particulière de (x) Comme le second membre est exponentiel, que l'équation differential est à conficients constant, on peut charcher une solution particuliere y exponentiel de même purrance que le record membres.

Attention: de nomière général, il faut chencher C un plyrône de degré quelenque Cf T). Ici celo frutionne mais il est possible de trouve des excurples of il n'y a pro de solutions pour ette fram avec C contant ? exsi "2" et remplei par - 9 "! On a pour lout $x \in [R]$, $y'_{p} = C(x)e^{-3x} - 3((x)e^{-3x} = -3((x)e^{-3x})e^{-3x} = 3((x)e^{-3x})e^{-3x} = 3(x)e^{-3x} = 3(x)e^{-3x} = 3(x)e^{-3x} = 3(x)e^{-3x} = 3(x)e^{-3x} =$ Doù yp est solution de (E) (> Yx E /R, y'p (x) +2)y(x) = -e-1x Ø Vx € R, 9 C(x) e 1x + 2 C(x) e 1x = e 1x ⇒ ∀x ∈ R, 3C(x) + 2((x) = -1 () VX ER, C(x) = -1 Don y rell - e est rolation nortember de 3 en étape : d'air l'ensemble des volutions, de (E) est Par le principe de repergrosition, $y_p(x) = \sin(x) - \frac{e^{2x}}{21}$ est sel de (E) F(x) = 50 mile tille + et -t3 // ut On a accum probleme pour 0 mais on no soit nos se elle comperge ou diverge en tos et il n'is a par de value interdite eto, sust done est continue et de sugne constant sin (et) ~ et le + eq-t3 p et fin(e-t)(e+e+-t) ~ et e+=e+. per tout toughthemet grand) par Wet (perten of mental part without the up 5th Te Mest convergente car intégrale de Riemann XXI done d'après le théorème de comparaison m'in e est de même signe que 4 et 060 con me sait gras se sin (e) (e+ e+ e+ + t) ext de nom constant done since 1(e2+e7-6) est positifound suffirm met grand can sin(ét)>0 suffirmat pred per voyage appenie.

Mis beune idie de passe par l'abslu contrague donc d'après le Morine de comparavon par relation d'après]-la (1) 0[d'équivalence F(2) est absolutment couvergente donc converge [(1)) [1 x de dt 15/4 poisque on somm sur

L'appler plutot "6" ou serie

tout ne IN:

L'appler plutot "6" ou serie

si bessin wariable i Sec 4-2 du n1-(n-1)3. est de signe constant à partir d'un cartains rang et est positif à partir de ce rang 1-2 Donc 6) est de signe partil à parter d'un certains u-21) ex Ce DL n'est valable que l'espere

l'élément sous l'exp tend veri 0

puispre c'est le DL en O de

l'exp qui at utilisé éti.

Dr - 12 n-34, por . + [arc arcta n 12-21 1 (2-12/10 1) n > + 2 n 2 (n!) - n! con lim 1+2>2 ancto > que .4+1 $\frac{\sqrt{n+4} - \frac{2(n+4)}{2(n+4)} \times \frac{n!}{n!} - \frac{(n+4)^{n-4}}{(n+4)} - \frac{(1+\frac{4}{n})^{n-4}}{(n+4)} = 0$ $\frac{\sqrt{n+4} - \frac{2(n+4)}{(n+4)} \times \frac{n!}{(n+4)} - \frac{(n+4)^{n-4}}{(n+4)} - \frac{(1+\frac{4}{n})^{n-4}}{(n+4)} - \frac{(1+\frac{4}{n})^{n-4}}{(n+4)^{n-4}} - \frac{(1+\frac{4$

Van - e - e > 1 pour en n>1 done Vn diverge loreque n > too et donc & Vn diverge alors of après le théorème de comparation Et des plus montés dans le EV. G(4) diverge aussi (e-x-11=0 longue x=0 e = 2 = 0 lorigue x = ln(2) done (E) est leven défini sur J-ln (2), OL 2)(E) y (x)-18(x)=0, Yx E]-1n(2), OL l'équation calacternitique est normalisé, donc on pout appliquer le théorème du cours une premiture de XERHO-1 est XERHO-X d'air l'erzemble des solutions de l'équations (E) est 1 90={x=1-ln(e), ot >> Ce : CERS 3) a) cette techinique s'appelle la viviation de la constent 0,5 cette technique marche dans tout les cas donc très) pertenente ou peut en dire plus, ef contin b) on a grown tout x EI-ln(2), of yp(x)=C(x)e et 30 (x) = C'(x) ex + C(x) ex On a nour yo solution (E): (=) Vx E/F, y, (x) - y(x) = == 1 - == == == +2e +2 étrètere complique qui mère à un even.

 $e'(x) = \left(\frac{1}{(e^{x}-1)^{2}} + \cdots\right) \Rightarrow c'(x) = \frac{1}{e^{x}} \cdot \left(\frac{1}{(e^{x}-1)^{2}} + \cdots\right) = \frac{e}{(e^{x}-1)^{2}} + \cdots$ Of done now to error of (x) = C(x)ex if faut browner of C(x) = 5 C'(t) Itdone if faut determiner we promited at the formation (x) the forest of the faut of the content of the fact of the faut of the fact of the C(x)= Se &x let # Se en 2 x de dt - Se et notes & 12 x x (On fait le changement de variable u=ex > du=-udx dx =-du on a donc C(x) = Sec - 4x 1 x du + Sec 1 x ax du + Sec 41+24+2 x Ux du $0 \le C(x) = \int_{e^{+}}^{e^{+}} \frac{-1}{(y-1)} dy + \int_{e^{+}}^{e^{+}} \frac{1}{y-2} dy + \int_{e^{-}}^{e^{+}} \frac{1}{y+y+1} dy$ C(2) = [(u-1)] = + [ln(1u-21)] = + Sex (u1) +1 du $C(x) = e^{x} - 1 + ln(le^{x} - 2) + [arctan | x] = + Associated Associated (x+1)$ ((a)=ex-1+ln(-ex+21)+arctanley+ A' avec A'eR On en déduit donc que: y (x) = (ex - 1+ln(-ex+2)+arctan(ex))ex /(x) + blancon deline in the extension of example on deduct done que l'ensemble des rolutions dels 9= {x @]-ln(2), O[>> (ex-1+ln(-ex+2) + wrotan(ex)+c)ex

