RESUMO - SÉRIES

Análise Matematica - Licenciatura em Engenharia Informática

SÉRIES NUMÉRICAS

• Séries Geométricas: $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a r^{n-1}$

 $-\mathbf{a}$ é o primeiro termo da série $(a \neq 0)$;

– **r** é a razão da série, $r = \frac{a_{n+1}}{a_n}$, $n \in \mathbb{N}$.

Critério de convergência: se |r| < 1 a série é convergente, para este caso, podemos calcular a soma da série: $S = \frac{a}{1-r}, |r| < 1$.

• Série de Riemann: $\sum_{n=1}^{\infty} \frac{1}{n^p}, p \in \mathbb{R}$ (se p=1, chama-se série harmónica)

Critério de convergência:

- Se p > 1 então a série é convergente;
- Se $p \leq 1$ então a série é divergente.
- Critério de Divergência: Se $\lim_{n\to\infty} a_n \neq 0$ então $\sum_{n=1}^{\infty} a_n$ é divergente.
- 1º Critério de Comparação: Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ duas séries de termos não negativos. Suponhamos que, a partir de certa ordem, $a_n \leq b_n$. Tem-se:
 - \rightarrow Se $\sum_{n=1}^{\infty} b_n$ converge então $\sum_{n=1}^{\infty} a_n$ também é convergente e $\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n$.
 - \rightarrow Se $\sum_{n=1}^{\infty} a_n$ diverge então $\sum_{n=1}^{\infty} b_n$ também é divergente.
- 2º Critério de Comparação: Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ duas séries de termos não negativos. Se a partir de certa ordem, $b_n > 0$ e $\lim_{n \to +\infty} \frac{a_n}{b_n} = L \in \mathbb{R}^+$, então, se $L \neq 0, +\infty$ as séries são da mesma natureza.
- Critério da Razão: Seja $\sum_{n=1}^{\infty} u_n$ uma série de termos não nulos e suponha-se que

1

$$\rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}$$

- Se ρ < 1, a série é convergente.
- Se $\rho>1,$ a série é divergente.
- Se $\rho=1,$ o critério é inconclusivo.

- Séries alternadas: $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ ou $\sum_{n=1}^{\infty} (-1)^n a_n$.
 - Se a série dos módulos $\sum_{n=1}^{\infty} |(-1)^n a_n|$ for convergente, então a série alternada é absolutamente convergente.
 - Se a série dos módulos for divergente, então aplica-se o **critério de Leibniz**:

Se se verificarem as condições:

*
$$\frac{a_{n+1}}{a_n} < 1$$
 (a_n é sucessão decrescente)

$$* \lim_{n \to \infty} a_n = 0$$

a série alternada diz-se simplesmente convergente, caso contrário diz-se divergente.

SÉRIES DE FUNÇÕES

• Raio e Intervalo de Convergência: Para calcular o Raio (R) e o Intervalo de Convergência (I.C.) da série de potências, com centro de convergência em a,

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} c_n (x-a)^n$$

aplica-se o Critério da Razão ou de D'Alembert:

- Se $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, a série é absolutamente convergente.
- Se $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, a série é divergente.
- Se $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, o critério é inconclusivo.
- \bullet Desenvolvimento de uma função em série de Taylor em torno de x = a

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, \ x \in I.C.$$

Se a = 0, chama-se série de MacLaurin.

• Fórmula de Taylor com Resto

$$f(x) = P_n(x) + R_n(x)$$

Sendo

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

o polinómio de Taylor de ordem n em torno de x=a e $\lim_{n\to\infty} R_n(x)=0$.

2