ECHO-AWARE signal processing for audio scene analysis

Diego DI CARLO

November 19, 2020

suprevisors: Antione DELEFORGE, Nancy BERTIN

collaborators: Clément ELVIRA, Robin SCHEIBLER, Ivan DOKMANIĆ, Sharon GANNOT, Pini A

INRIA IRISA

produced by sources

- produced by sources
- recorded by microphones

- produced by sources
- recorded by microphones
- · corrupted by noise

- produced by sources
- recorded by microphones
- corrupted by noise
- propagates in the room
 - → reverberation

Microphones recordings carries

Semantic information about source nature and semantic content

Microphones recordings carries

Semantic information about source nature and semantic content

Spatial information about due to sound propagation

Microphones recordings carries

Semantic information about source nature and semantic content

Spatial information about due to sound propagation

Temporal information about events

Microphones recordings carries

Semantic information about source nature and semantic content

Spatial information about due to sound propagation

Temporal information about events

Audio Scene Analysis

is the extraction and organization of all the information in the sound

2

Typical problems

· What?

- Sound Source Separation
- Speech Enhancement (denoising, dereverberation)
- Automatic Speech Recognition

Sounds as signals, recording as process

· a

Sounds as signals, recording as process

- a
- •

Signal Processing

Offer mathematical models, frameworks and tools to tackle such ASA problems

4

Sounds as signals, recording as process

- · a
- . |
- . C

Signal Processing

Offer mathematical models, frameworks and tools to tackle such ASA problems

General Pipeline

- (Mathematical Models)
- · Signal representation (STFT, Features)
- Enhancement (denoising, dereverberation)
- · Parameter Estimation (DOA, Localization)
- Adaptive Processing (Filtering)

Sounds as signals, recording as process

- · a
- . |
- C

Signal Processing

Offer mathematical models, frameworks and tools to tackle such ASA problems

General Pipeline

- (Mathematical Models)
- · Signal representation (STFT, Features)
- Enhancement (denoising, dereverberation)
- · Parameter Estimation (DOA, Localization)
- Adaptive Processing (Filtering)

- Product of the sound propagation
- Sound repetition
 - · "same" content: can be integrated
 - · "different" sounds: carry info about the reflection
 - · different direction of arrival: spatial information

Echo-aware processing is between anechoic processing and reverberant processing Anechoic processing

- short processing
- ✓ sound field tends to be diffuse.
- **X** sound reflection as interferences neglect most of the sound energy ignore the correlation between the direct sound and its reflection and consequently may result in a distorted output
- **X** coherent processing becomes impossible

Echo-processing

· Middle processing perceive coming from all directions [?]

Turning echoes into friendsTypically reverberation is considered as "foe" for the processing.

Thesis objective

- 1. provide new methodologies and data to process and estimate acoustic echoes
- 2. extend previous classical methods for audio scene analysis

From Physics to Digital Signal Processing Introduction Blaster Echo-aware signal Lantern processing Interim conclusion (2/4)for audio scene analysis introduction mirage Interim conclusion (3/4) Echo-aware Dataset Dataset for Echo-aware processing

Introduction Motivation Outline

Modeling

Echoes and Room Acoustics

Sound propagates and interacts with space

- it travels with a certain speed and it is attenuated;
- it is absorbed and reflected by surfaces;
- · and it is scattered, diffracted, etc.

This is describe by the so called RIRs

Elements of reverberation [?, ?, ?, ?]

- · Direct path
- Early Echoes
- · Reverberation tails

Early Echoes

/

Echoes and Room Impulse Response

RIRs can be modeled with the Image Methods

- · specular reflection only
- · "playing billiard in a concert hall"
- for shoebox room it is is the solution for physics
- · in frequency domain it writes as

RIRs accounts for

the geometry of the room

- · Room shape and size
- · Mic and Source position
- · presence of objects

the acoustic properties of the audio scene

- · surface materials
- · objects materials

examples

Echoes in (Digital) Signal Processing

Room Impulse Response

$$\tilde{x}_i = (\tilde{h}_i * \tilde{s})(t) \longrightarrow \tilde{X}_i(f) = \tilde{H}_{ij}(f)\tilde{S}(f)$$

the linear filtering effect due to the propagation of sound from a source to a microphone in a indoor space

Observation

Our vision is limited both in time (finite and discrete) and in frequency (finite and discrete)

$$x_i[n] = \dots (1)$$

Signal model in the frequency domain

$$x_i = (h_i * s)(t) \ \longrightarrow \ X(f) = H_i(f) S(f)$$

Approximations

- Narrowband Approximation
- · DTFT echo model in the DFT

9

Interim Conclusion I

Approximations

- Echoes are well described by specular reflection
- · Echoes are off-grid by nature
- · Sampling and quantization make them hard
- Processing in the discrete frequency domain, but with continuous time echo model

Acoustic Echo Estimation

Acoustic Echo Retrieval

Given the echo model

$$H_{ij}(f) = \sum_{r=0}^R \alpha e^{2\pi},$$

The acoustic echoes retrieval (AER) problem

Estimating early (strong) acoustic reflections:

- their time of arrivals \rightarrow TOAs Estimation
- their amplitude

 ⇔ closed-from knowing τ [?]

Note that an order of r

Taxonomy of Acoustic Echo Estimation

based on the emitted signal knowledge:

Active approaches

- · Signal is emitted and known
- Intrusive
- · Single channel
- Methods: Least-Square estimation, Inverse Filtering (Equalization)
- Application: measurements, calibration, sonars, slam

Passive approaches

- · Emitted signal is not known
- · Not intrusive (for passive listening)
- Multichannel
- Application: Robot hearing (Table Top Scenario), Pre-processing step

Taxonomy of Acoustic Echo Estimation

based on the estimated filter:

RIR-based approaches

- RIRs are first estimated as SIMO BCE problem
- Echoes extracted from first part of the RIRs with peak picking and disambiguation

Pros

- SIMO BCE is well studied (elegant framework)

Cons

- · Full RIR
- dependent of manually tuned peak picking
- Pathological issue (sampling and body-guard
- Complexity
- · Non-negativity and sparsity not true

RIRs-agnostic approaches

1. Estimation directly in the echoes parameters space $\{\tau,\alpha\}$ and direction of arrivals can be used instead

Performed with

- Cross-correlation on-grid, eg. EM, Acoustic Cameras
- Cross-relation with super-resolution off-grid, [?, ?]

Pro

- · No need for full RIRs
- Sub-sampling accuracy
- · Low complexity
- Sparsity and Non-negativity are respected

Cons

Exploratory

AER as discrete SIMO BCE

Key ingredient – Cross relation identity

$$x_i = h_i * s$$

$$h_2 * x_1 = h_2 * h_1 * s = h_1 * h_2 * s = h_1 * x_2$$

Ideas

- 1. Sampled version of x_1, x_2 are available $(\mathbf{x}_1, \mathbf{x}_2)$
- 2. Assume echoes belong to multiples of the sampling frequency
- 3. Identify echoes ightarrow find sparse vectors $\mathbf{h}_1,\mathbf{h}_2$
- 4. Lasso-like problem

$$\widehat{\mathbf{h}}_1, \widehat{\mathbf{h}}_2 \in \mathop{\arg\min}_{\mathbf{h}_1, \mathbf{h}_2 \in \mathbf{R}^n} \|\mathbf{x}_1 * \mathbf{h}_2 - \mathbf{x}_2 * \mathbf{h}_1\|_2^2 + \lambda \mathsf{Reg}(\mathbf{h}_1, \mathbf{h}_2)$$

$$\mathsf{Reg}(\mathbf{h}_1, \mathbf{h}_2) \longrightarrow \mathsf{sparse promoting regularizer}$$

5. Pick picking

14

Limitations / bottleneck

Limitations

- · Echoes are not necessarily "on grid"
- · Body guard effect [?]
 - \rightarrow low recall \Rightarrow low accuracy
 - \longrightarrow slow convergence

→ Increase Precision

Computational bottleneck

- · Bigger vectors and matrices
 - \longrightarrow memory usage
- Computational complexity: at best $\mathcal{O}(F_s^2)$ per iteration
- the higher the sampling frequency, the more ill-conditioned
 - → slow convergence

Blaster- Off-grid BCE

Observation 1: the cross relation remains true in the frequency domain

$$\mathcal{F} x_1 \cdot \mathcal{F} h_2({}^n \! / \! F_s) = \mathcal{F} x_2 \cdot \mathcal{F} h_1({}^n \! / \! F_s) \qquad n = 0 \dots N-1$$

Observation 2: $\mathcal{F}\delta_{\text{echo}}$ is known in closed-form

Observation 3: $\mathcal{F}x_i$ can be (well) approximated by DFT

$$\mathbf{X}_i = \mathsf{DFT}(\mathbf{x}_i) \simeq \mathcal{F}\mathbf{x}_i(nF_s) \qquad n = 0 \dots N-1$$

Idea: Recover echoes by matching a finite number of frequencies

$$\underset{h_1,h_2 \in \underset{\text{Space}}{\text{measure}}}{\arg\min} \ \tfrac{1}{2} \|\mathbf{X}_1 \cdot \mathcal{F} h_2(f) - \mathbf{X}_2 \cdot \mathcal{F} h_1(f)\|_2^2 + \lambda \|h_1 + h_2\|_{\text{TV}} \quad \text{s.t. } \begin{cases} h_1(\{0\}) = 1 \\ h_l \geq 0 \end{cases}$$

Instance of a BLasso problem [?] (Sliding Frank-Wolfe algorithm)

no Toeplitz matrix

Solutions is anchor prevents a train of Dirac trivial solution

Blaster- Experiments

Experiments

- simulation data with ISM with Pyroomacoustics
- 1 source, 2 microphones, random room geometry
- · Full RIRs
- · 2 sources: broadband and speech
- 2 datasets: different SNR, different RT60

Methods

- BSN: Blind Sparse and Nonnegative SIMO BCE [?]
- \cdot IL1C: Iteratively-weighted ℓ_1 Constraint SIME BCE \cite{ME}
- Blaster: Proposed off-grid approach

Metrics

- RMSE
- Precision

Blaster- Results

Lantern- data-driven AER

Observation 1: Mapping from observation to echo is extremely difficult Later echoes are not considered, may help

Observation 2: We have acoustic simulators
Acoustic simulators based on ISM
source position, room ← reverberation elements ←
annotation for free

Observation 3: (Deep) Learning-based methods successful for localization Echoes are strongly related to the source position

Idea: Use Deep Learning for AER

- Extend previous work on source localization for Echo Estimation
- Estimate the first echo TOA
 - \hookrightarrow simple case, but with important application in SSL

Lantern- Data & Models

Data

- · train:

 - \hookrightarrow white noise + noise
- · test:
 - → artificially generated RIR

Architecture

- · models: MLP, CNN
- · loss: Multi-class regression problem
 - $\hookrightarrow \mathsf{RMSF}$
 - Gaussian regression + uncertainty
 - \hookrightarrow Student Regression + uncertainty

Lantern- Experiments & Resuls

Experiments

- 1. MLP
- 2. CNN
- 3. CNN + Noise
- 4. CNN + Gaussian
- 5. CNN + Student

Results

- 1. MLP
- 2. CNN
- 3. CNN + Noise
- 4. CNN + Gaussian
- 5. CNN + Student

Interim conclusion (2/4)

on Acoustic Echo Retrieval:

- Most of the literature is on Passive and RIR-based, with on-grid approaches
- On-grid approaches suffers by the off-grid nature of the echoes (complexity, sampling)

on Blaster:

- ✓ off-grid parameter-free which exploit dirac closed-form model (non negativity and sparsity)
- ✓ smaller RMSE due to super-resolution, better for small # of echoes
- X source dependent and on number of echoes
- x validate only on synthetic data
- → Multichannel and RTF-based extention

on Lantern:

- ✓ promising results for first echo estimation
- ✓ direct application for table top application
- **X** difficult extention
- **x** need for real data validation

Echo-aware Application

Audio signal processing and sound propagation

Sound propagation is [?]

$$\begin{split} x_i(t) &= (h*s)(t) \\ h(t) &= h^d(t) + h^e(t) + h^r(t) \\ H(f) &= \sum_{r=0}^R \alpha_i^{(r)}(f) \mathrm{e}^{-\mathrm{i} 2\pi \tau_i^{(r)} f_k} \end{split}$$

completely ignored

$$\hookrightarrow h(t) = 1$$

· assumed direct path (anechoic case)

$$\hookrightarrow h(t) = h^d(t) + \varepsilon(t)$$

fully modeled (reverberant case)

$$\hookrightarrow h(t) = h^d(t) + h^e(t) + h^l(t) + \varepsilon(t)$$

· early echoes (multipath case)

$$\hookrightarrow h(t) = h^d(t) + h^e(t) + \varepsilon(t)$$

$\Leftarrow \textit{strong early reflection and strong reverberation level}$

- · detrimentally affect typical Audio Scene Analysis algorithm
- · undesired interfering source
- undesired position of the true sources (TDOA disambiguation)

Echo-aware Application

What: echoes as sound repetition

- Sound Source Separation
- Speech Enhancement
 → Dereverberation, Denoising, Room Equalization
- Speaker Verification

Where: echoes as new sound direction

- Sound Source Localization
- · Microphone Calibration
- · Room Geometry Reconstruction

How: echoes as element of sound propagation

- Blind Acoustic Channel Estimation as initialization for other methods
- · Acoustic Measurements

Echo-aware Application

What: echoes as sound repetition

- Sound Source Separation
- Speech Enhancement
 → Dereverberation, Denoising, Room Equalization
- · Speaker Verification

Where: echoes as new sound direction

- · Sound Source Localization
- · Microphone Calibration
- · Room Geometry Reconstruction

How: echoes as element of sound propagation

- Blind Acoustic Channel Estimation as initialization for other methods
- · Acoustic Measurements

Mirage- Sound Source Locatization with Echoes

The Picnic Scenario:

- Microphone close to a surface (table-top scenario)
- · Clear definition of the echo
- · One source

Mirage Array

How to access the image microphone

Each pair is augmented with echoes

Mirage- Sound Source Locatization with Echoes

1D SSL

- Estimate the TDOA between two microphones signals with GCC
- · Map the TDOA to angles knowing the array geometry

2D SSL

- For each pair:
- Compute a global angular spectrum by "fusing" together the estimation of each pairs

Baseline:

GCC-PHAT on true microphones

Proposed Approach:

Using DNN-based TDOA estimation problem: real value not estimation

Mirage-Results

Interim conclusion (3/4)

Echo-aware Audio Scene Analysis

- ✓ vast gamma of problems

 → not limited to audio (e.g., seismology, medical imaging, astrophysics, etc.)
- ✓ between anechoic and reverberant propagation
- ✓ physical-interpretation (with virtual microphones)
- * performance depending on the quality of the echo-estimation still very challenging task
- X

Mirage & echo-aware SSL

✓ impossible 2D localization with only 2 microphones

Separake & echo-aware SSS

nice

Echo-aware Dataset

Echo-aware Datasets

Data in audio signal processing

- 1. are necessary for validating (and learning) models
- collecting real data is a not always possible annotation and recording require expertise, equipment and time
- dataset of real data cannot be easily shared they do not generalize to different use-cases and scenarios (array, recording scenario)
- simulated data are used instead: quantity, versatility, annotation easiness and "quality"

Echo-aware Data in audio signal processing

For SE: strong echoes, but not annotated

[?, ?, ?]

For RooGE: good geo. annotation, but no variety of acoustic scenarios

[?, ?, ?]

dEchorate realization

Echo Annotation

- 1. RIR estimation with ESS [?]
- 2. IPS with beacon
- GUI for echo annotation Skyline, Matched Filter, Assisted Peak Picking
- 4. Refined position with Least Square optimization
- 5. iterate including ceiling (perfectly flat)

dEchorate realization

Echo Annotation

- 1. RIR estimation with ESS [?]
- 2. IPS with beacon
- GUI for echo annotation Skyline, Matched Filter, Assisted Peak Picking
- 4. Refined position with Least Square optimization
- 5. iterate including ceiling (perfectly flat)

TABLE RESULTS

dEchorate realization

Echo Annotation

- 1. RIR estimation with ESS [?]
- 2. IPS with beacon
- GUI for echo annotation Skyline, Matched Filter, Assisted Peak Picking
- 4. Refined position with Least Square optimization
- 5. iterate including ceiling (perfectly flat)

IMAGE SKYLINE

Room Geometry Estimation

Estimating the room geometry: shape, volume or reflector position) from signal or form TOAs and labels

If TOAs annotation (label and value) are available, RooGE as Image Source Inversion: For each wall/label:

- 1. $TOA \rightarrow image source position via 3D multilateration$
- 2. image source position \rightarrow reflector estimation via geometric reasoning

Other methods differs for prior knowledge and setup [?, ?, ?]

Room Geometry Estimation

Estimating the room geometry: shape, volume or reflector position) from signal or form TOAs and labels

If TOAs annotation (label and value) are available, RooGE as Image Source Inversion: For each wall/label:

- 1. $TOA \rightarrow image$ source position via 3D multilateration
- 2. image source position \rightarrow reflector estimation via geometric reasoning

Other methods differs for prior knowledge and setup [?, ?, ?]

IMAGE EXAMPLE HERE

Room Geometry Estimation

Estimating the room geometry: shape, volume or reflector position) from signal or form TOAs and labels

If TOAs annotation (label and value) are available, RooGE as Image Source Inversion: For each wall/label:

- 1. $TOA \rightarrow image$ source position via 3D multilateration
- 2. image source position \rightarrow reflector estimation via geometric reasoning

Other methods differs for prior knowledge and setup [?, ?, ?]

TABLES RESULTS HERE

Speech Enhancement

improve the quality of a target sound source with respect:

- interferences, i.e. form other sources → sound source separation
- background noise → denoising
- reverberation → dereverberation, room equalization

Spatial filtering via Beamformers

- · Is a speech enhancement techniques for multichannel
- · vs. Wiener Filtering, the target is distortionless
- · in anechoic case, it correspond to delay-and-sum beamformer
- · physical interpretation with steering vector based on DOA
- both in time and frequency domain

Speech Enhancement

improve the quality of a target sound source with respect:

- interferences, i.e. form other sources → sound source separation
- background noise → denoising
- reverberation → dereverberation, room equalization

Spatial filtering via Beamformers

- · Is a speech enhancement techniques for multichannel
- · vs. Wiener Filtering, the target is distortionless
- · in anechoic case, it correspond to delay-and-sum beamformer
- physical interpretation with steering vector based on DOA
- both in time and frequency domain

Beamforming: Delay and Sum

$$\mathbf{y}[l,k] = \mathbf{W}^{\mathsf{H}}\mathbf{x}[l,k]$$

STFT Signal Model

$$\mathbf{x}[l,k] = \mathbf{H}[k]\mathbf{s}[l,k] + \mathbf{n}[l,k]$$

Beamforming: Filter and Sum

$$\mathbf{y}[l,k] = \mathbf{W}^{\mathsf{H}}\mathbf{x}[l,k]$$

Beamforming in the STFT domain: apply filter and sum independently at each frequency bin

The PSD of various components asd

Different Criteria and Solution

- · DS
- · MVDR DP
- · MVDR ReTF

IMAGE RESULTS

Interim conclusion (3/4)

dEchorate dataset for echo-aware signal processing

- designed for AER, SE and RooGE
- \cdot Geometrical annotation \leftrightarrow image source annotation \leftrightarrow Signal Annotation
- Measured Real RIRs and equivalent synt RIR
- · also speech, noise, babble noise and different room conf (+fornitures)
- · GUI, tools and code

Application

Echo Estimation

· Huge difference between real and simulated data

Room Geometry Reconstruction

 \cdot some annotation inconsistencies are noticed (but manually corrected)

Echo-aware Speech Enhancement

- · a
- b

Conclusion

2D Outline

Thesis outline with projects