

Tutorial No. : 01			
(Module 1: Electromagnetic Theory)			
Subject	Physics	Subject Code	UBS1002

- 1. For a conducting medium, $\sigma = 58 \times 10^6$ Siemen/m, $\varepsilon_r = 1$, find out the conduction and displacement current densities, if the magnitude of electric field intensity E is given by $E = 150 \sin(10^{10} t)$ Volt/m. (Given $\varepsilon_0 = 8.85 \times 10^{-12}$ C/N m²)
- 2. In a material for which $\sigma = 5$ Siemen/m, $\varepsilon_r = 1$, the electric field intensity is $E = 250 \sin(10^{10} \, t)$ Volt/m. Find the frequency at which magnitude of conduction and displacement current densities are equal.
- 3. If the magnitude of H in a plane wave is 1 Amp/m in free space. Find the magnitude of E for plane wave in free space.
- 4. A 100 W sodium lamp radiating its power. Calculate the electric field and magnetic field strength at a distance of 5 m from the lamp.
- 5. If the earth receives 2 cal min⁻¹ cm⁻² solar energy, what are the amplitudes of electric and magnetic fields of radiation?
- 6. Assuming that all the energy from a 1000 W lamp is radiated uniformly; calculate the average values of the intensities of electric and magnetic fields of radiation at a distance of 2 m from the lamp.
- 7. The sunlight strikes the upper atmosphere of earth with energy flux 1.38 kW/m². What will be the peak values of electric and magnetic fields at the points?
- 8. If the upper atmospheric layer of earth receives 1360 watt/m² energy from the sun, what will be the peak values of electric and magnetic fields at the layer?
- 9. Find the skin depth (δ) at a frequency of 3.0×10^6 Hz in aluminum, where $\sigma = 38.0 \times 10^6$ Siemen/m, $\mu_r = 1$. Also calculate wave velocity.
- 10. If the ocean water is considered to be dielectric then find the permeability of the medium for which dielectric constant K=80, penetration depth is 10 cm and $\sigma = 4.3$ mho/m
- 11. The relative permittivity of distilled water is 81. Calculate refractive index and velocity of light in it.
- 12. Calculate the magnitude of Poynting vector at the surface of the sun. Given that power radiated by $sun = 5.4x10^{28}$ watts and radius of sun is $7.0x10^8$ m.