	Exercise Question (Inventory & Aggregate Planning)				
1 (a)	What is the economic order quantity (600)?				
	Q* : <u>108</u>				
	$QR : \sqrt{2(5000)(30)} : \sqrt{6000} : 77 \text{ units}$				
	50				
Ь	What is the average inventory?				
	Order quantity				
	1				
3. 89	= 77 = 39 units				
	2				
cy					
cy	What is the optimal number of orders per year (N)?				
c)	Expected number = N = Demand = D				
cy					
с	Expected number = N = Demand = D of orders Order quantity QX				
с	Expected number = N = Demand = D				
c)	Greeted number = N = Demand = D of orders Order quantity N = 5000 = 65 orders per year 77				
	Greeted number = N = Demand = D of orders Order quantity Q* N = 5000 = 65 orders per year				
	Expected number = N = Demand = D of orders Order quantity QX N = 5000 = 65 orders per year 77 What is the optimal number of working days between orders (7)?				
	Expected number = N = Demand = D of orders Order quantity Q* N = 5000 = 65 orders per year 77 What is the optimal number of working days between orders (1)? Expected time = T : Number of working days per year				
	Expected number = N = Demand = D of orders Order quantity QX N = 5000 = 65 orders per year 77 What is the optimal number of working days between orders (T)? Expected time = T : Number of working days per year				
	Expected number = N = Demand = D of orders Order quantity Q* N = 5000 = 65 orders per year 77 What is the optimal number of working days between orders (1)? Expected time = T : Number of working days per year				

BINTI MOHAMAT PAYJI.

NURUL ATIKAH NAJWA

No.: 201220662 (21 4) Date:
What is the total annual Threntory cost?
Total annual cost = Setup (order) cost + Holding (ost
TC: D S + Q H
Q
= 5000 (30) + 77 (50)
77 2
= 1-95 + 1-93
: RM 3.88
hu
What is the reorder point (ROP)?
Rop: Demand per day x Lead time for a new order
în days
Rop = d x L
d :
Number of working days
Th a year
= 5000 2 20 unit v
150
Rop = d x L
= 20 unit per day x 10 day = 200 units

NURUL

2) Inventory Mana	Inventory Management: Quantity Discount				
D: 4900		0 - 999	RM 5		
8 = RM 50		1000 - 3999	RM 4.95		
4: 40%. of pur	. 27, 5	4000 - 5999	Rm 4.90		
		6000 ormore	RM 4. 85		
Calculation of e	002				
4: 0.40 (5)	Q ₅ :	1205 = 12 (49)	00)(50) 2 495		
: 1	/	1 2 0S = 12 (49)	3		
4: 0.40 (4.95)	Q 4.9.5 = /3	-DS = \[\frac{1}{2} (4900	(50) : 498		
= 1-98		H 1-9) (50) : 498 8		
V					
4:0.40 (4.90)	Q 2	1205 = 12(4900)	(50) <u> </u>		
= 1-96	4.40	$\frac{120S}{H} = \frac{12(4900)}{1-96}$			
H: 0.40 (4.85)	Qu. 25 =	1203 : 12 (4900) (50) > 503 Va		
: 1-94	1	H 1-9)(50) = 503 4n		
Calculation of	70+91 Co8+ 2				
		ost + Product	r o 8+		
Q	+ Q H + 1	Ф	4,,1		
7 C 400 C	50) + 495	+ (5) (4900)	= Pm 25 490		
495	2	-	= RM 15 490		
TC - 4900	+ 1000	2 (1 00) + (4.9.5)	(4000) = EM 254		
1000	2	_ (1.48)	(4900) = PM 154		
TC . 4900 .	Co. 1 4000	1 (V.4n)	(4900) 2 Rm 12		
TC 4000: 4900 (1 1 1000 x	(1-96) T = 10)			
6000	2	(1.94) T C4.83	(4900) = Rm 2		

NURYL ATTEAH NAJWA BINTI MOHAMAT FAYAI. No.: 201220662 (214) Date: 3 Planning Aggregate Herin 8 Inventory Demand Month Production Layoofs Total Cost 200 January 1100 0 0 1300 CAX 6000) RM12000 (1× 6000) february 1200 1300 0 0 RM 6000 100 March 0 1400 1300 0 RM 3000 (1×3000) 500 (5% 3000) APMI 1800 1300 D 0 RM 15000 500 (5x 3000) May 1800 RM 15 000 0 0 1300 300 (3 x 30 b0) June 1300 0 1600 0 RM 9 000 RM60 000 Total