Binary Search

PCFIM

Ejemplo 1

Dado un array **ordenado** de n elementos. Responder q queries, la i-th querie es: encontrar el primer elemento en el array que es mayor o igual a x_i .

Task 1:
$$n \leq 10^6, q \leq 10^2$$

Task 2:
$$n \leq 10^6, q \leq 10^6$$

Ejemplo 2

Dado un array **ordenado** de n elementos. Responder q queries, la i-th querie es: encontrar la posicion del primer elemento en el array que es igual a x_i o -1 si no existe.

Busqueda 0-1

Imaginen los problemas anteriores como un array de 0's y 1's. Ahora el problema se traduce a:

encontrar el primer elemento que es 1

Binary search se puede aplicar sobre funciones monotonas, o equivalentemente sobre un array de 0's y 1's. Note que:

- 0: false
- 1: true

Binary sobre double

Ejemplo

Encuentre la solucion (x) de:

$$ax^4 + bx^3 + cx^2 + dx + e = 0$$

- $0 \le a, b, c, d, e \le 10$
- Se garantiza que $e \leq x$

Binary sobre la respuesta

Se define un espacio de busqueda: $\log \leq S \leq \text{high}$, y una funcion a $probar\ test$. Tal que,

- si test(x)=1, entonces $orall y\in S | x\leq y$, test(y)=1.
- ullet si test(x)=0, entonces $orall y\in S ig| y\leq x$, test(y)=0.

Si una *variable* o *funcion* cumple con estas condiciones, puede calcularse el primer elemento para el cual la respuesta es 1, usando binary search.

Derivada discreta

Sea el polinomio: $p(x)=ax^2+bx+c$. Se genera una coleccion ordenada de puntos aleatorios $x=[x_0,x_1,x_2,\ldots,x_{n-1}]$ y $y=[p(x_0),p(x_1),p(x_2),\ldots,p(x_{n-1})]$. Encontrar el minimo valor en el array y.