Introduction to Coding Theory Assignment 7

Divij Singh

07/01/19

1 Q1

$$H = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 | & 0 & 0 & 1 & 1 & 1 | & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 | & 1 & 1 & 0 & 0 & 0 | & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 | & 1 & 1 & 0 & 0 & 1 | & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 | & 0 & 1 & 0 & 1 & 0 | & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Syndrome	Coset Leader
0000	000000000000000
0001	000100000000000
0010	00100-00000-00000
0011	00000-01000-00000
0100	01000-00000-00000
0101	00000-00001-00000
0110	00000—10000—00000
0111	00000-00000-01000
1000	10000-00000-00000
1001	00000-00000-00001
1010	00000-00010-00000
1011	00000-00000-00010
1100	000010000000000
1101	00000-00100-00000
1110	00000-00000-10000
1111	00000-00000-00100

(a) Let the received codeword be r

r = c + n, where c is the original codeword, and n is noise.

We first multiply r^{tr} with the parity check matrix H, to receive the four digit syndrome.

 $Hr^{tr} = 0110$

We then add the corresponding coset leader to r.

We receive 01010 - 11010 - 01000 as the decoded codeword.

(b) We apply the same method as above.

 $Hr^{tr} = 1010$

Decoded codeword: 11100 - 01100 - 00111

(c) We apply the same method as above.

 $Hr^{tr} =$

Decoded codeword: 11001 - 11011 - 11000

2 Q2

The same method as is used for binary Hamming codes can be used for ternary Hamming codes.

That is, for an $r \ge 2$, $n = 2^r - 1$, $k = 2^r - r - 1$, and d = 3

The same method is used for decoding, where we construct a parity check matrix H. We then get the syndrome of the received vector r from Hr^{tr}

We then find the corresponding coset leader, and add it to the received vector to find the decoded codeword.

3 Q3

A single error correcting code is a perfect code if there is no coset leader with a weight greater than 1.

For Hamming code, sin $n = 2^r - 1$, there are $n + 1 = 2^r$ vectors for each codeword. The number of codewords is given by 2^k , which is $2^{2^r - r - 1}$ codewords. Multiply the number of codewords by the number of vectors, and you get $2^{2^r - r - 1 + r} = 2^{2^r - 1} = 2^n$ vectors.

Thus, every vector of length n is contained in a codeword, and the code is perfect.