Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 11 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i) Sei *n* die Anzahl an Elementen im Universum von *G*. Ein *H* muss für einen Isomorphismus auf jeden Fall die gleiche Anzahl an Elementen haben, wie *G*, nämlich *n*.

Wir führen die Variable $E_{i,j}$ für jede Kante $E^G(i,j)$ ein, wobei $1 \le i,j \le n$. Es muss gelten $E_{i,j} \equiv E^G(i,j)$. Wir konstruieren folgende Formel:

$$\varphi := \exists y_1 ... \exists y_n \ ((y_1 \neq y_2 \land ... \land y_1 \neq y_n) \land ... \land (y_{n-1} \neq y_n))$$
$$\land \left(\left(E^H(y_1, y_2) \leftrightarrow E_{1,2} \land ... \land E^H(y_1, y_n) \leftrightarrow E_{1,n} \right) \land \left(E^H(y_{n-1}, y_n) \leftrightarrow E_{n-1,n} \right) \right)$$

Der Satz stellt sicher, dass alle x_1 bis x_n ungleich gewählt sind und sie genau dann in Relation zueinander stehen, wenn sie dies auch im Graphen G taten.

(ii) Es muss eine Menge von Sätzen Φ oder ein Satz ξ gefunden werden, sodass $\mathcal{C} = \mathsf{Mod}(\Phi)$ oder $\mathcal{C} = \mathsf{Mod}(\xi)$. Wir definieren für jeden Graphen G_i die folgende Formel:

$$\psi_i := \bigvee_{G' \subset G_i} \varphi_{G'}$$
 , wobei $\varphi_{G'}$ die Formel aus (i) für den Untergraph G' ist.

 ψ_i sagt also aus, ob H isomorph zu einem Teilgraphen von G_i ist.

Ferner definieren wir folgende Formel:

$$\xi := \bigvee_{i \in \{1, \dots, k\}} \psi_i$$

Diese Formel verodert die vorhin definierten ψ_i . Sie sag also aus, ob H zu einem Subgraphen eines der Graphen $G_1, ..., G_k$ isomorph ist.

Da wir hiermit ein endliches Axiomensystem – nämlich ξ – aufgestellt haben, ist gewiss, dass $\mathcal C$ endlich axiomatisierbar ist.

 ξ ist ein endliches Axiomensystem, da alle ψ_i und auch φ aus (i) für endliche Graphen trivialerweise stets endlich sind.