Inversão

§1 Definição e Propriedades

Definição 1 (Inversão) Seja O um ponto e r>0 um real. A inversão I com centro O e raio r é uma transformação que leva o ponto $P\neq O$ em um ponto P' tal que:

- (i) P' está na semirreta \overrightarrow{OP} ;
- (ii) $OP \cdot OP' = r^2$.

Proposição 1 A = A''.

Proposição 2 (Troca de ângulos) $\angle OAB = \angle OB'A'$.

Proposição 3 Uma inversão leva uma reta que passa por O em si mesma.

Proposição 4 Uma inversão leva uma reta que não passa por O em um círculo que passa por O.

Proposição 5 Uma inversão leva um círculo que passa por O em uma reta que não passa por O.

Proposição 6 Uma inversão leva um círculo que não passa por O em um círculo que não passa por O.

Proposição 7 Dados quaisquer dois pontos $A \in B$, vale $A'B' = \frac{AB \cdot r^2}{OA \cdot OB}$.

Proposição 8 Inversão preserva ângulos entre curvas. Em partircular, se α e β são curvas tangentes, então α' e β' também são tangentes.

§1.1 Ideias importantes

- Ponto de tangência de circunferências como centro de inversão acaba com elas! Pode ser uma boa ideia para diminuir a quantidade de circunferências numa figura. Em geral, se temos muitas circunferências e muitas retas passando por um mesmo ponto A, inverta em A!
- Dados um ponto P e uma circunferência Γ , a inversão de centro P e raio $r = \sqrt{\text{Pot}_{\Gamma}(P)}$ leva Γ nela mesma. Note que, quanto temos o centro de inversão sobre eixos radicais ou como centro radical, mais circunferências ficam "fixadas".
- Dado um triângulo ABC com lados $AB=c,\ AC=b$ e BC=a, a inversão de centro A e raio $r=\sqrt{bc}$ seguida de uma reflexão em relação a bissetriz de $\angle A$ pode ser bastante útil quando queremos encontrar simetrias.
- Qaundo invertemos com respeito ao circuncírculo do triângulo ABC, como os círculos de apolônio são ortogonais ao circuncírculos, eles permanecem "fixos" após a inversão.
- Condição para segmentos terem a mesma medida após a inversão: em um triângulo ABC, após uma inversão de centro O e raio r, A'B' e B'C' possuem o mesmo tamanho se, e somente se, O está no círculo de Apolônio do triângulo ABC em respeito a B.

§2 Problemas

Problema 1 (Teorema de Ptolomeu) Em um quadrilátero inscritível, o produto das medidas das diagonais é igual à soma dos produtos das medidas dos lados opostos.

Problema 2 (IMO 1996, 2) Let P be a point inside a triangle ABC such that

$$\angle APB - \angle ACB = \angle APC - \angle ABC$$
.

Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP, BD, CE meet at a point.

Problema 3 (Banco IMO 2003) Sejam $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$ círculos distintos tais que Γ_1, Γ_3 são tangentes externamente em P, e Γ_2, Γ_4 são tangentes externamentes no mesmo ponto P. Suponha que Γ_1 e Γ_2 ; Γ_2 e Γ_3 ; Γ_3 e Γ_4 ; Γ_4 e Γ_1 se encontram em A, B, C, D respectivamente, e que todos esses pontos são diferentes de P. Prove que

$$\frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.$$

Problema 4 (Ibero 1998, 2) The circumference inscribed on the triangle ABC is tangent to the sides BC, CA and AB on the points D, E and F, respectively. AD intersect the circumference on the point Q. Show that the line EQ meet the segment AF at its midpoint if and only if AC = BC.

Problema 5 (IMO 1985, 5) A circle with center O passes through the vertices A and C of the triangle ABC and intersects the segments AB and BC again at distinct points K and N respectively. Let M be the point of intersection of the circumcircles of triangles ABC and KBN (apart from B). Prove that $\angle OMB = 90^{\circ}$.

Problema 6 Seja ABC um triângulo acutângulo com circuncentro O. Seja ω um círculo com centro sobre a altura relativa a A em ABC, passando pelos vértices A e em pontos P e Q nos lados AB e AC, respectivamente. Suponha que $BP \cdot CQ = AP \cdot AQ$. Prove que ω é tangente ao circuncírculo do triângulo BOC.

Problema 7 O incírculo ω do triângulo ABC tem centro I. O circuncírculo Γ do triângulo ABI intersecta ω nos pontos X e Y. As tangentes comuns a ω e Γ intersectam-se em Z. Prove que os circuncírculos dos triângulos ABC e XYZ são tangentes.

Problema 8 (Estrela da Morte) Considere que uma circunferência ω_1 tangencia internamente outra circunferência ω_2 em um ponto P. Seja AB uma corda de ω_2 que tangencia ω_1 em X. Mostre que PX passa pelo ponto médio do arco AB que não contém P, isto é, PX é bissetriz de $\angle APB$.

Problema 9 Seja ABC um triângulo e I seu incentro. Seja Γ uma circunferência tangente a AB, AC e ao circuncírculo do triângulo ABC. Γ toca AB e AC em X e Y, respectivamente. Mostre que I é o ponto médio de XY.

Problema 10 (OBM 2011, 5) Seja ABC um triângulo acutângulo e H seu ortocentro. As retas BH e CH cortam AC e AB em D e E, respectivamente. O circuncírculo de ADE corta o circuncírculo de ABC em $F \neq A$. Provar que as bissetrizes internas de $\angle BFC$ e $\angle BHC$ se cortam em um ponto sobre o segmento BC.

Problema 11 Dados quatro pontos A_1, A_2, A_3, A_4 no plano, sem três colineares, tais que $A_1A_2 \cdot A_3A_4 = A_1A_3 \cdot A_2A_4 = A_1A_4 \cdot A_2A_3$. Defina O_1 , como o centro do circuncentro do triângulo $A_2A_3A_4$ e defina O_2 , O_3 e O_4 analogamente. Prove que as quatro retas A_1O_1 , A_2O_2 , A_3O_3 e A_4O_4 concorrem ou são paralelas.

Problema 12 Seja P um ponto no interior do triângulo ABC, com $AC \neq BC$. As retas AP, BP e CP encontram novamente o circuncírculo Γ em K, L e M, respectivamente. A tangente a Γ em C encontra AB em S. Prove que $SC = SP \iff MK = ML$.

Problema 13 (EGMO 2013, 5) Let Ω be the circumcircle of the triangle ABC. The circle ω is tangent to the sides AC and BC, and it is internally tangent to the circle Ω at the point P. A line parallel to AB intersecting the interior of triangle ABC is tangent to ω at Q.

Prove that $\angle ACP = \angle QCB$.

Problema 14 Sobre a reta AC do triângulo ABC há pontos M e N tais que A está entre M e C, C está entre A e N, AM = AB e CN = BC. Prove que a corda comum aos circuncírculos de BCM e BAN bissecta o ângulo $\angle BAC$.

Problema 15 (IMO 1999, 5) Two circles Ω_1 and Ω_2 touch internally the circle Ω in M and N and the center of Ω_2 is on Ω_1 . The common chord of the circles Ω_1 and Ω_2 intersects Ω in A and B. MA and MB intersects Ω_1 in C and D. Prove that Ω_2 is tangent to CD.

Problema 16 Seja Γ um semicírculo com diâmetro AB e centro O. Uma reta corta Γ em C e D e corta AB em M tal que $MB \leq MA$ e $MD \leq MC$. Seja K o segundo ponto de interseção do circuncírculo dos triângulos AOC e DOB. Prove que $\angle MKO = 90^{\circ}$.