A HIGHER GROTHENDIECK CONSTRUCTION

AMIT SHARMA

ABSTRACT. In this note we present a *Grothendieck construction* for functors taking values in quasi-categories. We construct a simplicial space from such a functor whose zeroth row is the desired construction. Using our construction we give a new proof of rectification theorem for coCartesian fibrations of simplicial sets.

Contents

1. Introduc	tion	2
2. A Grothendieck construction		4
3. Rectification of coCartesian fibrations Appendix A. A review of marked simplicial sets		10
		17
References		18

 $Date \colon \mathrm{May}\ 2,\ 2020.$

2

1. Introduction

The Grothendieck construction is ubiquitous in category theory. This construction associates to a (pseudo) functors $F:D\to\mathbf{Cat}$, a (op)fibration over the (small) category D. The construction establishes an equivalence and therefore allows us to switch between \mathbf{Cat} -valued functors and fibrations. In this note we want to extend the classical Grothendieck construction to quasi-category valued functors with the aim of establishing an equivalence between a category of \mathcal{S} -valued functors and appropriately defined (simplicial)-fibrations over the nerve of the domain category of functors. In this note we will be primarily working with the adaptation of Joyal model category structure on \mathcal{S} , [Joy08b], [Joy08a], to marked simplicial sets.

It is well known that a *left fibration* of simplicial sets over the nerve of a (small) category N(D) is determined upto equivalence by a homotopy coherent diagram taking values in Kan complexes, see [Cis19, 5.3]. The same holds for coCartesian fibration of simplicial sets over N(D) with respect to homotopy coherent diagrams taking values in quasi-categories, see [Lur09, Ch. 3]. The main goal of this note is to show that the aforementioned homotopy coherent diagrams can be rectified *i.e.* upto equivalence they can be replaced by an honest functor. More precisely, we will show that for each coCartesian fibration $p: X \to N(D)$, there exists a (honest) functor $Z:D\to\mathcal{S}$, taking values in quasi-categories whose Grothendieck construction, denoted $\int^{d\in D} Z$, is equivalent to the fibration p in a suitably defined model category structure on $S^+/N(D)$. Such a result first appeared in [Lur09, Ch. 3] where the author defines an extension of the classical Grothendieck construction called relative nerve which determines a functor $N_{\bullet}(D): [D, \mathcal{S}] \to \mathcal{S}/N(D)$. The author goes further to present another version of the relative nerve for marked simplicial sets which is a functor $N_{\bullet}^+(D):[D,\mathcal{S}^+]\to\mathcal{S}^+/N(D)$. This functor is shown to be the right Quillen functor of a Quillen adjunction between the coCartesian model category structure on $S^+/N(D)$ and the projective model category structure on $[D, (S^+, \mathbf{Q})]$. The guiding principle of our Grothendieck construction is that homotopy colimit of a functor $H:D\to\mathcal{S}$ taking values in quasi-categories should be obtained upon inverting the coCartesian edges of the total space of the Grothendieck construction. We recall that a homotopy colimit of a functor $G:D\to\mathbf{Cat}$ is obtained in this way. Our Grothendieck construction is isomorphic to the relative nerve of a functor $H:D\to\mathcal{S}$ but our construction is a part of a larger structure, namely a simplicial space, which we extract out of the functor H. The main objective of this note is to establish a Quillen equivalence whose left Quillen functor has a (total left) derived functor which is isomorphic to a (total right) derived functor of (a marked simplicial sets version of) our Grothendieck construction.

In section 2 of this note we describe a (higher) Grothendieck construction for functors taking values in S. In the same section we define a simplicial space (or a bisimplicial set) for each functor $F:D\to S$ which encodes the information in the functor as a fibration. We define the Grothendieck construction of F to be the zeroth row of the aforementioned simplicial space. This defines a functor $\int^{d\in D} -: [D,S] \to S/N(D)$. In section 3 we define a version of our Grothendieck construction functor for marked simplicial sets $\int_{+}^{d\in D} -: [D,S^+] \to S^+/N(D)$. In the same section we establish a Quillen equivalence $(\mathfrak{L}_D^+,\mathfrak{R}_D^+)$ between the projective model category structure on $[D,S^+]$ and the coCartesian model category structure on $S^+/N(D)$. This result implies that a (total right) derived functor

of our Grothendieck construction functor is isomorphic to a (total left) drerived functor of \mathfrak{L}_D^+ .

A version of this result for left fibrations has been proved in [HM15] where the authors establish a Quillen equivalence between the *covariant* model category structure on $\mathcal{S}/N(D)$, see [Joy08b, Ch. 8] and the *projective* model category structure on the functor category $[D, (\mathcal{S}, \mathbf{Kan})]$.

Acknowledgments. The author would like to thank Andre Joyal for having useful discussions on the subject and for sharing his views on the notion of a higher Gothendieck construction for quasi-category valued functors.

4

2. A Grothendieck construction

In this section we will describe a *Grothendieck construction* for quasi-categories. The classical Grothendieck construction defines a functor

$$\int^{d\in D} -: [D; \mathbf{Cat}] \to \mathbf{Cat}/D$$

The construction described in this note also defines a functor, which we denote by $\int^{d\in D} -$, which is a *left Kan extension* of the above functor alpng the Nerve functor $[D; N] : [D; \mathbf{Cat}] \to [D; \mathcal{S}].$

Let $X:D\to\mathcal{S}$ be a functor. We recursively define a collection of simplicial sets as follows:

$$\mathcal{G}_0^X(d) := X(d).$$

For a map $f: d_1 \to d_2$ in D, we define a simplicial set $\mathcal{G}_1(f)$ by the following pullback square:

$$\begin{split} \mathcal{G}_1^X(f) & \xrightarrow{p_2(f)} \left[\Delta[1]; X(d_2) \right] \\ \downarrow^{p_1(f)} & \downarrow^{[d_1; X(d_2)] \times [d_0; X(d_2)]} \\ \left[\Delta[0]; X(d_1) \right] \times \left[\Delta[0]; X(d_2) \right] \xrightarrow{[\Delta[0]; X(f)] \times id} \left[\Delta[0]; X(d_2) \right] \times \left[\Delta[0]; X(d_2) \right] \end{split}$$

Remark 1. For each object $d \in D$

$$\mathcal{G}_1^X(id_d) = [\Delta[1], X(d)].$$

For a pair of maps $f_1: d_1 \to d_2$, $f_2: d_2 \to d_3$ in D, we define a simplicial set $\mathcal{G}_2^X(f_1, f_2)$ by the following pullback square:

where F_1 is the composite map:

$$\mathcal{G}_1^X(f_1) \stackrel{p_2(f_1)}{\rightarrow} [\Delta[1]; X(d_2)] \stackrel{[\Delta[1]; X(f_2)]}{\rightarrow} [\Delta[1]; X(d_3)]$$

$$F_3 = p_2(f_2), F_2 = p_2(f_2f_1) \text{ and } p_1(f_1, f_2) = (p_1(f_1), p_1(f_2), p_1(f_2f_1)).$$

Remark 2. For each $f \in Mor(D)$, the simplicial sets $\mathcal{G}_2^X((f,id))$ and $\mathcal{G}_2^X((id,f))$ are given by the following two pullback squares respectively:

$$\begin{split} \mathcal{G}_2^X(f,id) & \xrightarrow{p_2((f,id))} \left[\Delta[2];X(d_2)\right] \\ p_1((f,id)) \downarrow & \downarrow ([d_1;X(d_3)],[d_2;X(d_2)]) \\ \mathcal{G}_1^X(f) \times \mathcal{G}_1^X(f) \xrightarrow{F_2 \times F_1} \left[\Delta[1];X(d_2)\right] \times \left[\Delta[1];X(d_2)\right] \end{split}$$

and

$$\begin{split} \mathcal{G}_2^X(id,f) & \xrightarrow{p_2((id,f))} \left[\Delta[2];X(d_2)\right] \\ \downarrow^{p_1((id,f))} & \downarrow^{([d_0;X(d_2)],[d_1;X(d_2)],[d_2;X(d_2)])} \\ \mathcal{G}_1^X(f) \times \mathcal{G}_1^X(f) \times \left[\Delta[1],X(d_1)\right] \xrightarrow{F_3 \times F_2 \times F_1} \left[\Delta[1];X(d_2)\right] \times \left[\Delta[1];X(d_2)\right] \times \left[\Delta[1];X(d_2)\right] \end{split}$$

For an *n*-tuple $\sigma = (f_1, f_2, \dots, f_n) \in (N(D))_n$, we define a simplicial set $\mathcal{G}_n^X(\sigma)$ by the following pullback square:

(1)
$$\mathcal{G}_{n}^{X}(\sigma) \xrightarrow{p_{2}(\sigma)} [\Delta[n]; X(d_{n+1})]$$

$$\downarrow^{p_{1}(\sigma)} \downarrow^{H}$$

$$\prod_{i=0}^{n} \mathcal{G}_{n-1}^{X}(d_{i}(\sigma)) \xrightarrow{F_{n+1} \times \cdots F_{1}} \prod_{n} [\Delta[n-1]; X(d_{n+1})]$$

where $H = ([d_0; X(d_{n+1})], [d_1; X(d_{n+1})], \dots, [d_n; X(d_{n+1})])$ and for $2 \le i \le n+1$ the simplicial map F_i is the following composite:

$$\mathcal{G}_{n-1}^X(d_i(\sigma)) \stackrel{p_2(d_i(\sigma))}{\rightarrow} [\Delta[n-1]; X(d_{n+1})]$$

The map F_1 is the following composite

$$\mathcal{G}^X_{n-1}(d_n(\sigma)) \overset{p_2(d_n(\sigma))}{\to} \left[\Delta[n-1]; X(d_n)\right] \overset{[\Delta[n-1]; X(f_n)]}{\to} \left[\Delta[n-1]; X(d_{n+1})\right]$$

Remark 3. For the canonical simplex $\sigma = id(d)_n$, see definition ??, the simplicial set

$$\mathcal{G}_n^X(\mathbf{id}(d)_n) = [\Delta[n], X(d_{n+1})].$$

Definition 2.1. For a pair consisting of an *n*-simplex $\sigma \in N(D)_n$ and a functor $X: D \to \mathcal{S}$, we will refer to $\mathcal{G}_n^X(\sigma)$ as the 1-Gerbe over σ determined by X.

Proposition 2.2. For each (n-1)-simplex ρ in N(D) there is an inclusion map

$$\iota_{\rho}^{j}:\mathcal{G}_{n-1}^{X}(\rho)\to\mathcal{G}_{n}^{X}(s_{j}(\rho))$$

where s_j is the jth degeneracy operator of N(D) for $1 \le j \le n$.

Proof. The simplicial map ι_{ρ}^{j} is the unique map into the pullback shown in the following diagram:

where i_j is the inclusion into the jth component namely $\mathcal{G}_{n-1}^X(d_js_j(\rho)) = \mathcal{G}_{n-1}^X(\rho)$.

Г

6

Proposition 2.3. There is a simplicial space i.e. a functor $\left(\int^{d\in D} X\right)_{\bullet}: \Delta^{op} \to \mathcal{S}$ whose degree n simplicial-set is defined as follows:

$$\left(\int^{d\in D}X\right)_{\bullet}([n]):=\bigsqcup_{\sigma\in(N(D))_n}\{\sigma\}\times\mathcal{G}_n^X(\sigma)$$

Proof. We will define the degeneracy and face operators. Each $\mathcal{G}_n^X(\sigma)$ is equipped with a projection map

$$d_i(p_1(\sigma)): \mathcal{G}_n^X(\sigma) \to \mathcal{G}_{n-1}^X(d_i(\sigma))$$

For $i \in \{0, 1, 2, ..., n\}$, this map is given by the following composite:

$$\mathcal{G}_n^X(\sigma) \stackrel{p_1(\sigma)}{\to} \prod_{i=0}^n \mathcal{G}_{n-1}^X(d_i(\sigma)) \stackrel{pr_i}{\to} \mathcal{G}_{n-1}^X(d_i(\sigma)),$$

where $f_n: d_n \to d_{n+1}$ is the last map in $\sigma = (f_1, \dots, f_n)$ and pr_i are the obvious projections from the product. The maps $d_i(p_1(\sigma))$ join together to form a map

$$d_i: \underset{\sigma \in (N(D))_n}{\sqcup} \mathcal{G}_n^X(\sigma) \to \underset{\rho \in (N(D))_{n-1}}{\sqcup} \mathcal{G}_{n-1}^X(\sigma)$$

which is our *ith* face operator for $0 \le i \le n$.

The maps ι_{ρ}^{j} from proposition 2.2 gives us the *ith* degeneracy map

$$s_j: \underset{\rho \in (N(D))_{n-1}}{\sqcup} \mathcal{G}_{n-1}^X(\rho) \to \underset{\sigma \in (N(D))_n}{\sqcup} \mathcal{G}_n^X(\rho)$$

Notation 2.4. Each pair (K, L) of simplicial sets defines a bisimplicial sets i.e. a functor

$$K\Box L: \Delta^{op} \times \Delta^{op} \to \mathbf{Sets}$$

as follows:

$$K\square L([m],[n]) := K_m \times L_n$$

Remark 4. The simplicial space $\left(\int^{d\in D}X\right)_{ullet}$ is equipped with a map of simplicial spaces:

$$p_{\bullet}^{X}: \left(\int_{\bullet}^{d\in D} X\right)_{\bullet} \to N(D)\Box\Delta[0].$$

Notation 2.5. Each simplicial space $Z:\Delta^{op}\to\mathcal{S}$ determines a bisimplicial set, also denoted by Z

$$Z: \Delta^{op} \times \Delta^{op} \to \mathbf{Sets}$$

by $Z([m], [n]) = (Z[m])_n$. Further we denote the following simplicial set by $i_1^*(Z)$:

$$\Delta \overset{(-,[0])}{\rightarrow} \Delta \times \Delta \overset{Z}{\rightarrow} \mathbf{Sets}$$

Now we can define the (total space of) the Grothendieck construction of $X:D\to\mathcal{S}$ as follows:

(2)
$$\int_{-\infty}^{d \in D} X = i_1^* \left(\left(\int_{-\infty}^{d \in D} X \right)_{\bullet} \right)$$

Remark 5. The set of n-simplices of $\int_{0}^{\infty} X$ can be represented as follows:

$$\left(\int^{d\in D} X\right)_n = \bigsqcup_{\sigma\in N(D)_n} \{\sigma\} \times \left(\mathcal{G}_n^X(\sigma)\right)_0.$$

Remark 6. An *n*-simplex δ of $\int^{d\in D} X$ is a pair $\delta=(\sigma,\beta)$ where $\sigma=(f_1,f_2,\ldots,f_n)\in N(D)_n$ and $\beta\in\mathcal{G}_n^X(\sigma)$ i.e. $\beta=(\underline{\beta},\beta)$. This pair consists of $(\underline{\beta}_{n-1},\beta_{n-1})=\underline{\beta}\in$ $\mathcal{G}_{n-1}^X(d_n(\sigma))$ and $\beta \in X(d_{n+1})_n$, where $f_n: d_n \to d_{n+1}$. The *n*-simplex δ satisfies the following two conditions:

- (1) $X(f_n)(p_2((\underline{\beta}))) = d_n(\beta)$. (2) For $0 \le i \le n-2$

$$(d_i(\underline{\beta}), d_i(\beta)) \in \mathcal{G}_{n-1}^X(d_i(\sigma)).$$

Remark 7. Let $\beta = (\beta, \beta) \in \mathcal{G}_n^X(\sigma)$, where $\sigma \in N(D)_n$ as in remark (6). We observe that $d_n(\beta) = \underline{\beta} = (\underline{\beta_{n-1}}, \beta_{n-1})$. Further, $d_{n-1}(\underline{\beta}) = \underline{\beta_{n-1}} = (\underline{\beta_{n-2}}, \beta_{n-2}) \in \mathcal{G}_{n-2}^X(d_{n-2}(\sigma))$. Since n is finite, there exists a $\beta_0 \in \mathcal{G}_0^X(d_1)$ such that

$$\beta_0 = d_1 \circ \cdots \circ d_{n-1} \circ d_n(\beta).$$

The notion of relative nerve was introduced in [Lur09, 3.2.5.2]. Next we will review this notion:

Definition 2.6. Let D be a category, and $f: D \to \mathcal{S}$ a functor. The nerve of D relative to f is the simplicial set $N_f(D)$ whose n-simplices are sets consisting of:

- (i) a functor $d:[n] \to D$; We write d(i,j) for the image of $i \le j$ in [n].
- (ii) for every nonempty subposet $J \subseteq [n]$ with maximal element j, a map $\tau^J:\Delta^J\to f(d(j)),$
- (iii) such that for nonempty subsets $I \subseteq J \subseteq [n]$ with respective maximal elements $i \leq j$, the following diagram commutes:

For any f, there is a canonical map $p_f: N_f(D) \to N(D)$ down to the ordinary nerve of D, induced by the unique map to the terminal object $\Delta^0 \in \mathcal{S}$ [Lur09, 3.2.5.4]. When f takes values in quasi-categories, this canonical map is a coCartesian fibration.

Remark 8. A vertex of the simplicial set $N_f(D)$ is a pair (c,g), where $c \in Ob(D)$ and $g \in f(c)_0$. An edge $\underline{e}: (c,g) \to (d,k)$ of the simplicial set $N_f(D)$ consists of a pair (e,h), where $e:c\to d$ is an arrow in D and $h:f(e)_0(g)\to k$ is an edge of f(d).

An immidiate consequence of the above definition is the following proposition:

Proposition 2.7. Let $f: D \to \mathcal{S}$ be a functor, then the fiber of $p_f: N_f(D) \to$ N(D) over any $d \in Ob(D)$ is isomorphic to the simplicial set f(d).

The following lemma is a consequence of this definition and the above discussion:

8

Lemma 2.8. For each functor $X: D \to \mathcal{S}$, we have the following isomorphism in the category $\mathcal{S}/N(D)$:

$$\int^{d\in D} X \cong N_X(D).$$

Proof. An *n*-simplex in $\int^{d\in D} X$ is a pair (σ, β) , where $\sigma \in N(D)_n$. This *n*-simplex σ can be viewed as a functor $\sigma : [n] \to D$. The inclusion of each non-empty subposet $i_J : J \subseteq [n]$ gives a map

$$\left(\int^{d\in D} X\right)(i_J): \left(\int^{d\in D} X\right)_n \to \left(\int^{d\in D} X\right)_J.$$

We are using the fact that J is isomorphic to an object of Δ which we also denote by J. The inclusion map can now be seen as a map in Δ . This map gives us a J-simplex $\left(\int^{d\in D}X\right)(i_J)((\sigma,\beta))$. Now the second projection map $p_2(\left(\int^{d\in D}X\right)(i_J)((\sigma,\beta)))$ gives us a simplicial map:

$$\Delta[J] \to X(\sigma(j'))$$

where j' is the maximal element of J. For an inclusion $J' \subseteq J$, condition (iii) of definition 2.6 is satisfied because the composite $J' \subseteq J \subseteq [n]$ determines a composite map in Δ . This defines a map $f: \left(\int^{d \in D} X\right)_n \to N_X(D)_n$. Now we define the inverse map. An n-simplex γ in $N_X(D)$ contains a functor $d: [n] \to D$ which uniquely determines an n-simplex σ of N(D). We recall that an n-simplex in $\int^{d \in D} X$ is a pair (σ, β) whose second component β is a pair $(\underline{\beta}, \beta)$, where $\beta \in X(d(n))$. The n-simplex γ contains a simplicial map

$$\Delta[n] \to X(d(n)).$$

We define β to be the *n*-simplex of X(d(n)) which represents the above map. We have an inclusion $[n-1] \hookrightarrow [n]$ in Δ . The *n*-simplex γ contains another simplicial map

$$\Delta[n-1] \to X(d(n-1)).$$

We define $\underline{\beta}$ to be the pair $(\alpha, (\underline{\beta_{n-1}}, \beta_{n-1}))$ consisting of an (n-1)-simplex β_{n-1} of X(d(n-1)) which represents the above map and $\alpha = d_n(\sigma)$. The first condition of remark 6 is equivalent to the commutativity of the following diagram:

$$\Delta[n-1] \xrightarrow{\beta_{n-1}} X(d(n-1))$$

$$\downarrow \qquad \qquad \downarrow X(d(n-1,n))$$

$$\Delta[n] \xrightarrow{\beta} X(d(n))$$

The second condition of remark 6 follows from definition 2.6 (iii).

Next we will define a function object for the category \mathcal{S}/D . We shall denote by $[X,Y]_D$ the simplicial set of maps from X to Y in \mathcal{S}/D . An n-simplex in $[X,Y]_D$ is a map $\Delta[n] \times X \to Y$ in \mathcal{S}/D , where $\Delta[n] \times (X,p) = (\Delta[n] \times X, pp_2)$, where p_2 is the projection $\Delta[n] \times X \to X$. The enriched category \mathcal{S}/D admits tensor and cotensor products. The tensor product of an object X = (X,p) in \mathcal{S}/D with a simplicial set A is the objects

$$A \times X = (A \times X, pp_2).$$

The cotensor product of X by A is an object of \mathcal{S}/D denoted $(X)^{[A]}$. If $q:(X)^{[A]} \to N(\Gamma^{op})$ is the structure map, then a simplex $x:\Delta[n]\to (X)^{[A]}$ over a simplex $y=qx:\Delta[n]\to N(D)$ is a map $A\times (\Delta[n],y)\to (X,p)$. The object $((X)^{[A]},q)$ can be constructed by the following pullback square in \mathcal{S} :

$$(4) \qquad (X)^{[A]} \longrightarrow [A, X]$$

$$\downarrow q \qquad \qquad \downarrow_{[A,p]}$$

$$N(D) \longrightarrow [A, D]$$

where the bottom map is the diagonal. There are canonical isomorphisms:

(5)
$$[A \times X, Y]_D \cong [A, [X, Y]_D] \cong [X, (Y)^{[A]}]_D$$

We now define a functor $\mathfrak{R}_D: \mathcal{S}/D \to [D,\mathcal{S}]$. For each $Y \in \mathcal{S}/N(D)$, the functor $\mathfrak{R}_D(Y)$ is defined as follows:

(6)
$$\mathfrak{R}_D(Y)(d) := [N(d/D), Y]_D$$

The contravariant functor N(-/D), see (??), ensures that this defines a functor $\mathfrak{R}_D(Y): D \to \mathcal{S}$.

Notation 2.9. For a simplicial map $p: X \to B$, we denote the *fiber* of p over an n-simplex $\sigma \in B_n$ by $X(\sigma)$. In other words, the simplicial set $X(\sigma)$ is defined by the following pullback square:

$$X(\sigma) \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow^p$$

$$\Delta[n] \xrightarrow{\sigma} B$$

3. Rectification of CoCartesian fibrations

In this section we will prove a rectification theorem for coCartesian fibrations of simplicial sets over the nerve of a small category D. We will do so along the lines of a similar theory developed in appendix ?? for left fibrations. More precisely, we will show that a marked version of our Grothendieck construction functor is a left Quillen functor of a Quillen equivalence between the coCartesian model category $S^+/N(D)$ and the projective model category $[D, (S, \mathbf{Q})]$. We begin with a review of coCartesian fibrations over the simplicial set N(D). We will also review a model category structure on the category $S^+/N(D)$ in which the fibrant objects are (essentially) coCartesian fibrations.

Definition 3.1. Let $p: X \to S$ be an inner fibration of simplicial sets. Let $f: x \to y \in (X)_1$ be an edge in X. We say that f is p-coCartesian if, for all $n \ge 2$ and every (outer) commutative diagram, there exists a (dotted) lifting arrow which makes the entire diagram commutative:

Remark 9. Let M be a (ordinary) category equipped with a functor $p: M \to I$, then an arrow f in M, which maps isomorphically to I, is coCartesian in the usual sense if and only if f is N(p)-coCartesian in the sense of the above definition, where $N(p): N(M) \to \Delta[1]$ represents the nerve of p.

This definition leads us to the notion of a coCartesian fibration of simplicial sets:

Definition 3.2. A map of simplicial sets $p: X \to S$ is called a *coCartesian* fibration if it satisfies the following conditions:

- (1) p is an inner fibration of simplicial sets.
- (2) for each edge $p: x \to y$ of S and each vertex \underline{x} of X with $p(\underline{x}) = x$, there exists a p-coCartesian edge $\underline{f}: \underline{x} \to \underline{y}$ with $p(\underline{f}) = f$.

A coCartesin fibration roughly means that it is upto weak-equivalence determined by a *functor* from S to a suitably defines ∞ -category of ∞ -categories. This idea is explored in detail in [Lur09, Ch. 3].

Notation 3.3. To each coCartesian fibration $p: X \to N(D)$ we can associate a marked simplicial set denoted X^{\natural} which is composed of the pair (X, \mathcal{E}) , where \mathcal{E} is the set of p-coCartesian edges of X

Notation 3.4. Let (X,p), (Y,q) be two objects in $\mathcal{S}^+/N(D)$. We denote by $[X,Y]_D^+$, the full (marked) simplicial subset of $[X,Y]^+$ spanned by maps in $\mathcal{S}^+/N(D)(X,Y)$, namely spanned by maps in $[X,Y]^+$ which are compatible with the projections p and q. We denote by $[X,Y]_D^{\flat}$, the full simplicial subset of $[X,Y]^{\flat}$ spanned by maps in $\mathcal{S}^+/N(D)(X,Y)$. We denote by $[X,Y]_D^{\sharp} \subseteq [X,Y]^{\sharp}$ the simplicial subsets spanned by maps in $\mathcal{S}^+/N(D)$.

Definition 3.5. A morphism $F: X \to Y$ in the category $\mathcal{S}^+/N(D)$ is called a *coCartesian*-equivalence if for each coCartesian fibration $p: Z \to N(D)$, the induced simplicial map

$$[F,Z^{\natural}]_D^{\flat}:[Y,Z^{\natural}]_D^{\flat} \to [X,Z^{\natural}]_D^{\flat}$$

is a categorical equivalence of simplicial-sets(quasi-categories).

Proposition 3.6. Let $u: X \to Y$ be a map in $S^+/N(D)$, then the following are equivalent

- (1) u is a coCartesian equivalence.
- (2) For each functor $Z:D\to \mathcal{S}^+$, such that Z(d) is a quasi-category whose marked edges are equivalences, the following (simplicial) map is a categorical equivalence:

$$\left[u, \int_{+}^{d \in D} Z\right]_{D}^{\flat} : \left[Y, \int_{+}^{d \in D} Z\right]_{D}^{\flat} \to \left[X, \int_{-}^{d \in D} Z\right]_{D}^{\flat}$$

(3) For each functor $Z:D\to \mathcal{S}^+$, such that Z(d) is a quasi-category whose marked edges are equivalences, the following map is a bijection:

$$\pi_0 \left[u, \int_+^{d \in D} Z \right]_D^{\sharp} : \pi_0 \left[Y, \int_+^{d \in D} Z \right]_D^{\sharp} \to \pi_0 \left[X, \int_-^{d \in D} Z \right]_D^{\sharp}$$

Proof. $(1 \Rightarrow 2)$ Follows from the definition of coCartesian equivalence because $\int_{+}^{d \in D} Z$ is a coCartesian fibration under the given hypothesis.

Let us assume that $\left[u,\int_{+}^{d\in D}Z\right]_{D}^{\flat}$ is a categorical equivalence of quasi-categories for each functor Z satisfying the given hypothesis. This imples that $\left[u,T^{\natural}\right]_{D}^{\flat}$ is a categorical equivalence if and only if $\left[u,\int_{+}^{d\in D}Z(T)\right]_{D}^{\flat}$ is one.

 $(2 \Rightarrow 3)$ We recall from [Lur09, Prop. 3.1.3.3] and [Lur09, Prop. 3.1.4.1] that, for any coCartesian fibration $T^{\sharp} \in \mathcal{S}^+/N(D)$, the simplicial map $[u, T^{\sharp}]_D^{\flat}$ is a categorical equivalence if and only if the map $[u, T^{\sharp}]_D^{\sharp}$ is a homotopy equivalence of Kan complexes. This implies that $\pi_0 \left[u, \int_+^{d \in D} Z\right]_D^{\sharp}$ is a bijection.

 $(3\Rightarrow 1)$ We recall from [Lur09, Cor. 3.1.4.4] that the coCartesian model category is a simplicial model category with simplicial function object given by the bifunctor $[-,-]_D^{\sharp}$. This implies that u is a coCartesian equivalence if and only if $\pi_0[u,W^{\natural}]_D^{\sharp}$ is a bijection for each fibrant object W of the coCartesian model category. By [Lur09, Prop. 3.1.4.1] we may replace W by a coCartesian fibration $W\cong T^{\natural}$. Further, it follows from [Lur09, Prop. 3.2.5.18(2)] that for each cocartesian fibration T^{\natural} there exists a functor $Z(T):D\to \mathcal{S}^+$, which satisfies the assumptions of the functor in the statement of the proposition, such that there is map

$$F_T: T^{\natural} \to \int_+^{d \in D} Z(T)$$

which is a coCartesian equivalence. Now it follows that u is a coCartesian equivalence if and only if $\pi_0 \left[u, \int_+^{d \in D} Z(T) \right]_D^{\sharp}$ is a bijection for each functor Z satisfying the conditions mentioned in the statement of the proposition.

12

Next we will recall a model category structure on the overcategory $\mathcal{S}^+/N(D)$ from [Lur09, Prop. 3.1.3.7.] in which fibrant objects are (essentially) coCartesian fibrations.

Theorem 3.7. There is a left-proper, combinatorial model category structure on the category $S^+/N(D)$ in which a morphism is

- (1) a cofibration if it is a monomorphism when regarded as a map of simplicial sets.
- (2) a weak-equivalences if it is a coCartesian equivalence.
- (3) a fibration if it has the right lifting property with respect to all maps which are simultaneously cofibrations and weak-equivalences.

We have defined a function object for the category $\mathcal{S}^+/N(D)$ above. The simplicial set $[X,Y]_D^{\flat}$ has verices, all maps from X to Y in $\mathcal{S}^+/N(D)$. An n-simplex in $[X,Y]_D^{\flat}$ is a map $\Delta[n]^{\flat} \times X \to Y$ in $\mathcal{S}^+/N(D)$, where $\Delta[n]^{\flat} \times (X,p) = (\Delta[n]^{\flat} \times X, pp_2)$, where p_2 is the projection $\Delta[n]^{\flat} \times X \to X$. The enriched category $\mathcal{S}^+/N(D)$ admits tensor and cotensor products. The tensor product of an object X = (X,p) in $\mathcal{S}^+/N(D)$ with a simplicial set A is the objects

$$A^{\flat} \times X = (A^{\flat} \times X, pp_2).$$

The cotensor product of X by A is an object of $\mathcal{S}^+/N(D)$ denoted $X^{[A]}$. If $q:X^{[A]}\to N(D)^{\sharp}$ is the structure map, then a simplex $x:\Delta[n]^{\flat}\to X^{[A]}$ over a simplex $y=qx:\Delta[n]\to N(D)^{\sharp}$ is a map $A^{\flat}\times (\Delta[n]^{\flat},y)\to (X,p)$. The object $(X^{[A]},q)$ can be constructed by the following pullback square in \mathcal{S}^+ :

$$X^{[A]} \longrightarrow [A^{\flat}, X]^{+}$$

$$\downarrow [A^{\flat}, p]^{+}$$

$$N(D)^{\sharp} \longrightarrow [A^{\flat}, N(D)^{\sharp}]^{+}$$

where the bottom map is the diagonal. There are canonical isomorphisms:

(8)
$$\left[A^{\flat} \times X, Y\right]_{D}^{\flat} \cong \left[A, \left[X, Y\right]_{D}^{\flat}\right] \cong \left[X, Y^{[A]}\right]_{D}^{\flat}$$

Remark 10. The coCartesian model category structure on $S^+/N(D)$ is a simplicial model category structure with the simplicial Hom functor:

$$[-,-]_D^{\sharp}: \mathcal{S}^+/N(D)^{op} \times \mathcal{S}^+/N(D) \to \mathcal{S}.$$

This is proved in [Lur09, Corollary 3.1.4.4.]. The coCartesian model category structure is a (S, \mathbf{Q}) -model category structure with the function object given by:

$$[-,-]_D^{\flat}: \mathcal{S}^+/N(D)^{op} \times \mathcal{S}^+/N(D) \to \mathcal{S}.$$

This is remark [Lur09, 3.1.4.5.].

Remark 11. The coCartesian model category is a (S^+, \mathbf{Q}) -model category with the Hom functor:

$$[-,-]_D^+: \mathcal{S}^+/N(D)^{op} \times \mathcal{S}^+/N(D) \to \mathcal{S}^+.$$

This follows from [Lur09, Corollary 3.1.4.3] by taking S = N(D) and $T = \Delta[0]$, where S and T are specified in the statement of the corollary.

Definition 3.8. Let $F:D\to \mathcal{S}^+$ be a functor. We can compose it with the forgetful functor U to obtain a composite functor $F:D\xrightarrow{F}\mathcal{S}^+\xrightarrow{U}\mathcal{S}$. The marked Grothendieck construction of F, denoted $\int_{+}^{d\in D}F$, is the marked simplicial set $\left(\int_{+}^{d\in D}F,\mathcal{E}\right)$, where the set \mathcal{E} consists of those edges $\underline{e}=(e,h)$ of $\int_{+}^{d\in D}F$, see remark 8, which determines a marked edge of the marked simplicial set F(d), where $e:c\to d$ is an arrow in D.

The above construction of the marked Grothendieck construction determines a functor

(9)
$$\int_{+}^{d \in D} -: [D, \mathcal{S}^{+}] \to \mathcal{S}^{+}/N(D).$$

Now we will define a marked version of the functor \mathfrak{R}_D , denoted \mathfrak{R}_D^+ :

$$\mathfrak{R}_{D}^{+}(X)(d) := [N(d/D)^{\sharp}, X]_{D}^{+}$$

where X is an object of $S^+/N(D)$. This functor has a left adjoint which we denote by \mathfrak{L}_D^+ .

Definition 3.9. Let $X:D\to \mathcal{S}^+$ be a functor. For each $d\in D$ we define a map of marked simplicial sets

$$\eta_X^+(d): X(d) \to [N(d/D), \int_+^{d \in D} X]_D^+.$$

Let $x \in X(d)_n$ be an n-simplex in X(d). This n-simplex defines a canonical map $\eta_X^+(d)(x): N(d/D) \times \Delta[n] \to \int_+^{d \in D} X$ in $\mathcal{S}^+/N(D)$ whose value on $(\mathbf{id}(d)_n, id_n) \in (N(d/D) \times \Delta[n])_n$ is the image of x in $\int_+^{d \in D} X$, namely the n-simplex (\underline{x}, x) , where $\underline{x} = (\underline{x_{n-1}}, d_n(x))$. We recall that a k-simplex in $\Delta[n]$ is a map $\alpha : [k] \to [n]$ in the category Δ and therefore it can be written as $\Delta[n](\alpha)(id_n)$. For a k-simplex $((g, f_1, \ldots, f_{k+1}), \alpha)$ in $N(d/D) \times \Delta[n]$, we define

$$\eta_X^+(d)(x)((g, f_1, f_2, \dots, f_{k+1}), \alpha) := X(f_{k+1} \circ f_k \circ \dots \circ g)(X(d)(\alpha)(x)).$$

This defines the (simplicial) map $\eta_X^+(d)(x)$. These simplicial maps glue together into a natural transformation η_X^+ .

Now we define a map ι_d^+ in $\mathcal{S}^+/N(D)$:

(10)
$$\Delta[0]^{\flat} \xrightarrow{id_d} N(d/D)^{\sharp}$$

$$N(D)^{\sharp}$$

Lemma 3.10. For each $d \in D$ the morphism ι_d^+ defined in (10) is a coCartesian equivalence.

Proof. We will show that for each functor $Z:D\to\mathcal{S}^+$ such that, for each $d\in D$, Z(d) is a quasi-category whose marked edges are equivalences, we have the following bijection:

$$\pi_0\bigg[\iota_d^+, \int^{d\in D} Z\bigg]_D^\sharp : \pi_0\bigg[N(d/D), \int^{d\in D} Z\bigg]_D^\sharp \to \pi_0\bigg[\Delta[0], \int^{d\in D} Z\bigg]_D^\sharp \cong \pi_0(J(Z(d))),$$

14

where J(Z(d)) is the largest Kan complex contained in Z(d). Let $z \in J(Z(d))_0$ be a vertex of $J(Z(d))^{\sharp}$. We will construct a morphism $F_z : N(d/D) \to \int^{d \in D} Z$ in the category $\mathcal{S}^+/N(D)$. The vertex z represents a natural transformation

$$T_z: D(d,-) \Rightarrow Z$$

such that $T_z(id_d) = z$. Since $N(d/D) \cong \int_{-\infty}^{d \in D} D(d, -)$ therefore we have a map

$$F_z: N(d/D) \cong \int^{d \in D} D(d, -) \stackrel{\int^{d \in D} T_z}{\to} \int^{d \in D} Z$$

in $S^+/N(D)$ such that $F_z(id_d) = z$. Thus we have shown that the map $\pi_0 \left[\iota_d^+, \int^{d \in D} Z \right]_D^{\sharp}$ is a surjection.

Let $f:y\to z$ be an edge of J(Z(d)), then by the (enriched) Yoneda's lemma followed by an application of the Grothendieck construction functor, this edge uniquely determines a map

$$T_f: N(d/D) \times \Delta[1] \to \int^{d \in D} Z$$

in $S^+/N(D)$ such that $F_z((id_d, id_1)) = f$. Thus we have shown that the map $\pi_0 \left[\iota_d^+, \int_0^{d \in D} Z\right]_D^{\sharp}$ is also an injection.

Lemma 3.11. For any projectively fibrant functor $X:D\to \mathcal{S}^+$, the map η_X^+ defined in 3.9 is an objectwise categorical equivalence of marked simplicial sets.

Proof. Under the hypothesis of the lemma, it follows from [Lur09, Prop. 3.2.5.18(2)] and lemma 2.8 that $\int_{+}^{d \in D} X$ is a fibrant object in the coCartesian model category. Now lemma 3.10 and remark 11 gives us, for each $d \in D$, the following homotopy equivalence in (S^+, \mathbf{Q}) :

$$[\iota_d^+, \int^{d \in D} X]_D^+ : [N(d/D)^{\sharp}, \int_+^{d \in D} X]_D^+ \to [\Delta[0]^{\flat}, \int_+^{d \in D} X]_D^+ \cong X(d)$$

such that $c \circ [\iota_d, \int^{d \in D} X]_D \circ \eta_X(d) = id_{X(d)}$, where c is the canonical isomorphism between the fiber of $p : \int^{d \in D} X \to N(D)$ over $d \in D$ and X(d) i.e. the value of the functor X on d. Now the 2 out of 3 property of weak equivalences in a model category tells us that $\eta_X(d)$ is a homotopy equivalence for each $d \in D$ therefore η_X^+ is an objectwise homotopy equivalence in $[D, (S^+, \mathbf{Q})]$.

An immediate consequence of the definition of the right adjoint functor \mathfrak{R}_D^+ is the following lemma:

Lemma 3.12. The adjunction $(\mathfrak{L}_D^+, \mathfrak{R}_D^+)$ is a Quillen adjunction between the projective model category structure on $[D, (\mathcal{S}^+, \mathbf{Q})]$ and coCartesian model category $\mathcal{S}^+/N(D)$.

Proof. The coCartesian model category is a (S^+, \mathbf{Q}) -model category, see remark 11. This implies that \mathfrak{R}_D^+ maps (acyclic) fibrations in the coCartesian model category to (acyclic) projective fibrations in $[D, S^+]$ which are objectwise (acyclic) fibrations of marked simplicial sets.

Now we get to the main result of this note:

Theorem 3.13. The Quillen pair $(\mathfrak{L}_D^+, \mathfrak{R}_D^+)$ is a Quillen equivalence.

Proof. We will prove this proposition by showing that the (right) derived functor of \mathfrak{R}_D^+ induces an equivalence of categories between the two homotopy categories in context. It follows from [Lur09, Prop. 3.2.5.18(2)] that each fibrant object Z in the coCartesian model category is equipped with a coCartesian equivalence

$$\delta(Z): Z \to \int_+^{d \in D} \mathfrak{F}_{ullet}^+(D)(\mathfrak{R}_D^+(Z)).$$

We observe that $\mathfrak{R}_D^+(Z)$ is a fibrant object of $[D, (\mathcal{S}^+, \mathbf{Q})]$.

Let T denote the full subcategory of $\mathcal{S}^+/N(D)$ in which every object W is fibrant in the coCartesian model category and lies in the image of $\int_+^{d\in D} -$, *i.e.* for any $W \in T$, there exists a fibrant V in $[D, (\mathcal{S}^+, \mathbf{Q})]$ such that $W = \int_+^{d\in D} V$. We denote the full subcategory of $Ho_{\mathcal{S}^+/N(D)}$ whose objects are those of T by Ho_T . We will refer to it as the homotopy category of T. We observe that the inclusion map $i: Ho_T \to Ho_{\mathcal{S}^+/N(D)}$ is an equivalence of categories. Now it is sufficient to show that the (right) derived functor of \mathfrak{R}_D^+ induces an equivalence of categories between Ho_T and $Ho_{[D,(\mathcal{S}^+,\mathbf{Q})]}$. It follows from [Lur09, Prop. 3.2.5.18(2)], lemma 3.11 and lemma 2.8 that for each fibrant X in the projective model category $[D, (\mathcal{S}^+, \mathbf{Q})]$ we have the following composite map which is a weak-eqivalence in $[D, (\mathcal{S}^+, \mathbf{Q})]$:

$$\begin{split} \mathfrak{F}^+_{\bullet}(D) \left(Q \left(\int_+^{d \in D} X \right) \right) & \stackrel{q}{\to} \mathfrak{F}^+_{\bullet}(D) \left(\int_+^{d \in D} X \right) \stackrel{\epsilon}{\to} X \stackrel{\eta_X^+}{\to} \\ & \mathfrak{R}^+_D \left(\int_+^{d \in D} X \right) \stackrel{r}{\to} \mathfrak{R}^+_D \left(R \left(\int_+^{d \in D} X \right) \right), \end{split}$$

where ϵ is the counit map of the Quillen equivalence [Lur09, Prop. 3.2.5.18(2)], which is a weak equivalence, $r:id\Rightarrow R$ is a chosen fibrant replacement functor and $q:Q\Rightarrow id$ is a chosen cofibrant replacement functor. We claim that this defines a natural isomorphism between the (restriction to Ho_T of) left derived functor of $\mathfrak{F}^+_{\bullet}(D)$, which we also denote $(\mathfrak{F}^+_{\bullet}(D))^L: Ho_T \to Ho_{[D,(S^+,\mathbf{Q})]}$ and the (restriction to Ho_T of) right derived functor of \mathfrak{R}^+_D , which we also denote $(\mathfrak{R}^+_D)^R: Ho_T \to Ho_{[D,(S^+,\mathbf{Q})]}$. The Quillen equivalence [Lur09, Prop. 3.2.5.18(2)] implies that the right derived functor of $\int_+^{d\in D} -i$ is fully-faithful. Since X and Y are fibrant, this means that for each equivalence class [u] representing an arrow $[u]: R\left(\int_+^{d\in D} X\right) \to R\left(\int_+^{d\in D} Y\right)$ in Ho_T , there exists an arrow $v: X \to Y$ in $[D, (S^+, \mathbf{Q})]$ such that the arrow $R\left(\int_+^{d\in D} v\right)$ is a representative of [u]. This implies that we have defined the desired natural isomorphism. Since $(\mathfrak{F}^+_{\bullet}(D))^L: Ho_T \to Ho_{[D,(S^+,\mathbf{Q})]}$ is an equivalence of categories, the above natural isomorphism implies that the functor $(\mathfrak{R}^+_D)^R: Ho_T \to Ho_{[D,(S^+,\mathbf{Q})]}$ is also one.

We have the following commutative triangle of functors between homotopy categories:

Now the 2 out of 3 property of weak equivalences in the model category \mathbf{Cat} tells us that the right derived functor of \mathfrak{R}_D^+ induces an equivalence of categories between the homotopy categories. Thus we have proved that the Quillen pair $(\mathfrak{L}_D^+, \mathfrak{R}_D^+)$ is a Quillen equivalence.

The natural isomorphism constructed in the proof of the above theorem implies the following proposition:

Proposition 3.14. The (total) left derived functor of the left Quillen functor $\mathfrak{F}_{\bullet}^+(D)$ is naturally isomorphic to the (total) right derived functor of \mathfrak{R}_D^+ .

The proposition has the following corollary:

Corollary 3.15. The (total) left derived functor of \mathfrak{L}_D^+ is naturally isomorphic to the (total) right derived functor of $\int_+^{d \in D} -$.

Notation 3.16. The total (total) right derived functor of $\int_{+}^{d \in D} -$ refers to the total right derived functor of the relative nerve functor for marked simplicial sets, see [Lur09, Prop. 3.2.5.18(2)].

Proposition 3.17. For all functor $X: D \to S^+$ and $K \in S$ we have the following isomorphism

$$\mathfrak{L}_D^+(X \otimes K) \cong \mathfrak{L}_D^+(X) \otimes K.$$

APPENDIX A. A REVIEW OF MARKED SIMPLICIAL SETS

In this appendix we will review the theory of marked simplicial sets. Later in this paper we will develop a theory of coherently commutative monoidal objects in the category of marked simplicial sets.

Definition A.1. A marked simplicial set is a pair (X, \mathcal{E}) , where X is a simplicial set and \mathcal{E} is a set of edges of X which contains every degenerate edge of X. We will say that an edge of X is marked if it belongs to \mathcal{E} . A morphism $f: (X, \mathcal{E}) \to (X', \mathcal{E}')$ of marked simplicial sets is a simplicial map $f: X \to X'$ having the property that $f(\mathcal{E}) \subseteq \mathcal{E}'$. We denote the category of marked simplicial sets by \mathcal{S}^+ .

Every simplicial set S may be regarded as a marked simplicial set in many ways. We mention two extreme cases: We let $S^{\sharp} = (S, S_1)$ denote the marked simplicial set in which every edge is marked. We denote by $S^{\flat} = (S, s_0(S_0))$ denote the marked simplicial set in which only the degerate edges of S have been marked.

The category S^+ is *cartesian-closed*, *i.e.* for each pair of objects $X, Y \in Ob(S^+)$, there is an internal mapping object $[X,Y]^+$ equipped with an *evaluation map* $[X,Y]^+ \times X \to Y$ which induces a bijection:

$$\mathcal{S}^+(Z, [X, Y]^+) \stackrel{\cong}{\to} \mathcal{S}^+(Z \times X, Y),$$

for every $Z \in \mathcal{S}^+$.

Notation A.2. We denote by $[X,Y]^{\flat}$ the underlying simplicial set of $[X,Y]^{+}$.

The mapping space $[X,Y]^{\flat}$ is charaterized by the following bijection:

$$\mathcal{S}(K, [X, Y]^{\flat}) \stackrel{\cong}{\to} \mathcal{S}^{+}(K^{\flat} \times X, Y),$$

for each simplicial set K.

Notation A.3. We denote by $[X,Y]^{\sharp}$ the simplicial subset of $[X,Y]^{\flat}$ consisting of all simplices $\sigma \in [X,Y]^{\flat}$ such that every edge of σ is a marked edge of $[X,Y]^{+}$.

The mapping space $[X,Y]^{\sharp}$ is charaterized by the following bijection:

$$\mathcal{S}(K, [X, Y]^{\sharp}) \stackrel{\cong}{\to} \mathcal{S}^{+}(K^{\sharp} \times X, Y),$$

for each simplicial set K.

The Joyal model category structure on $\mathcal S$ has the following analog for marked simplicial sets:

Theorem A.4. There is a left-proper, combinatorial model category structure on the category of marked simplicial sets S^+ in which a morphism $p: X \to Y$ is a

- (1) cofibration if the simplicial map between the underlying simplicial sets is a cofibration in (S, \mathbf{Q}) , namely a monomorphism.
- (2) a weak-equivalence if the induced simplicial map on the mapping spaces

$$\left[p,K^{\natural}\right]^{\flat}:\left[X,K^{\natural}\right]^{\flat}\rightarrow\left[Y,K^{\natural}\right]^{\flat}$$

is a weak-categorical equivalence, for each quasi-category K.

(3) fibration if it has the right lifting property with respect to all maps in S^+ which are simultaneously cofibrations and weak equivalences.

Further, the above model category structure is enriched over the Joyal model category, i.e. it is a (S, \mathbf{Q}) -model category.

The above theorem follows from [Lur09, Prop. 3.1.3.7].

Notation A.5. We will denote the model category structure in Theorem A.4 by (S^+, \mathbf{Q}) and refer to it either as the *Joyal* model category of *marked* simplicial sets or as the model category of marked quasi-categories.

Theorem A.6. The model category (S^+, \mathbf{Q}) is a cartesian closed model category.

Proof. The theorem follows from [Lur09, Corollary 3.1.4.3] by taking $S = T = \Delta[0]$.

There is an obvious forgetful functor $U: \mathcal{S}^+ \to \mathcal{S}$. This forgetful functor has a left adjoint $(-)^{\flat}: \mathcal{S} \to \mathcal{S}^+$.

Theorem A.7. The adjoint pair of functors $((-)^{\flat}, U)$ determine a Quillen equivalence between the Joyal model category of marked simplicial sets and the Joyal model category of simplicial sets.

The proof of the above theorem follows from [Lur09, Prop. 3.1.5.3].

Remark 12. A marked simplicial set X is fibrant in (S^+, \mathbf{Q}) if and only if it is a quasi-category with the set of all its equivalences as the set of marked edges.

References

- [Cis19] Denis-Charles Cisinski, Higher categories and homotopical algebra, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2019.
- [HM15] Gijs Heuts and Ieke Moerdijk, Left fibrations and homotopy colimits, Mathematische Zeitschrift 279 (2015), no. 3, 723–744.
- [Hov99] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., Providence, RI, 1999.
- [Joy08a] A. Joyal, Notes on quasi-categories, http://www.math.uchicago.edu/~may/IMA/Joyal.pdf, 2008.
- [Joy08b] ______, Theory of quasi-categories and applications, http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf, 2008.
- [Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009.

E-mail address: asharm24@kent.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, KENT STATE UNIVERSITY, KENT, OH