Hui Lin

Machine Learning ·	Computer Vision · Signal Pro	ocessing · Image Ge	neration · H	ealthcare A	pplication
(+1) 872-806-7252	■ huilinsanluo@gmail.com	☞ Google Scholar	☆ Website	? Github	in LinkedIn

\mathbf{T}		7					٠		
E	И	11	•	r	~	+,	,	0	v
1 1	u	1	M	и	u	ι	и	u	п

Ph.D. student in Electrical Engineering	3.9/4.0		09.2019 - 05.2025
Northwestern University, advised by Aggelos Katsaggelos and Daniel	Evanston, Illinois, USA		
M.S. in Mechanical Engineering	92.7/100.0	rank 1	09.2016 - 06.2019
Huazhong University of Science and Technology, advised by Bin Li a		Wuhan, Hubei, China	
B.S. in Materials Processing and Control Engineering	90.1/100.0	rank 3	09.2012 - 06.2016
Huazhong University of Science and Technology (Qiming College)			Wuhan, Hubei, China
Skills			

Machine Learning: ResNet, RNN, GAN, UNet, Transformer, YOLO, SSD, GNN, Diffusion

PyTorch, Docker, Git, CUDA, Numpy, Pandas, Opency, Scikt-learn, SciPy, Caffe, AWS Tools:

Programming: Python, Matlab, SQL, Spark, C++, R, JavaScript

Algorithm Competitions

FLARE (ranked 5th), MyoPS++ (ranked 2nd), MBAS, DIAMOND MICCAI 2024

ISBI 2024 JustRAIGS (ranked 5th) ARCADE (ranked 3rd) MICCAI 2023 Selected Working and Research Experience (13 projects)

H5 Game Recommendation System Design

OPPO US Research Center

02.2025-current

- Developed feature engineering, XGboost, and Wide&Deep to process trillion-scale user behavior data
- Conduct A/B testing and causal inference analysis

Unsupervised Domain Adaptation for Medical Image Segmentation

06.2023 - 02.2025

• Applied GAN to translate images between modalities (CT, MRI) without needing paired data.

• Validated on a large-scale dataset achieving a notable 11.4% increase in DSC and a 13.1% improvement in NSD. Hypertension Classification via Wrist-collected PPG **OPPO US Research Center** 06.2024-08.2024

• Developed ResNet, Transformer, and LSTM models with over 68k spot-check instances from 358 subjects.

• Our compact model, with just 0.124M parameters, outperformed others in dynamic, noisy, real-world scenarios.

Coronary Artery Segmentation and Stenosis Detection

05.2023 - 02.2024

- Proposed ensemble models based on YOLO and UNet, trained on preprocessed data to address challenges of low contrast and non-uniform illumination
- Our method achieved an impressive 3rd place ranking out of over 200 entries, with an F1 score of 0.5348.

Temperature Trending in Additive Manufacturing Processes

03.2020 - 12.2021

- Meshed parts with diverse and complex geometries, and simulated temperature history using FEA.
- Combined a GNN with a GRU to forecast long-term thermal histories for unseen geometries.

Defect Image Sample Generation

10.2017 - 06.2019

- Combining CycleGAN and D2GAN for generating industrial defect images.
- Enhanced the accuracy of anomaly detection by 0.80% and defect classification by 2.95%.

LED Chip Defect Detection

11.2015 - 06.2019

- Pioneered the simultaneous classification and localization of chip defects within a single CNN.
- Utilized **CAM** to localize defect regions without needing region-level human annotations.
- Outperformed others with an impressive accuracy with only 5.04% inaccuracy.

Selected Publications (12 First-Author Papers, 824 citations)

Longitudinal Wrist PPG Analysis for Reliable Hypertension Risk Screening

ICASSP 2025

Lin, H., Li, J., et al.

DRL-STNet: UDA for Cross-modality Medical Image Segmentation

MICCAI 2024 workshop

Lin, H., Schiffers, F., et al.

Brighteye: Glaucoma Screening with Color Fundus Photographs based on Vision Transformer Lin, H., Apostolidis, C., Katsaggelos, A.

ISBI 2024

Usformer: A small network for left atrium segmentation of 3D LGE MRI

Heliyon

Lin, H., López-Tapia, S., Katsaggelos, A., et al.

Defect Image Sample Generation with GAN for Improving Defect Recognition

IEEE TASE

Niu, S., Li, B., Wang, X. and Lin. H. Automated Defect Inspection of LED Chip using Deep Convolutional Neural Network

252 citations IIM

263 citations

Lin, H., Li, B., Wang, X. et al.

Geometry-agnostic Data-driven Thermal Modeling using GNNs

Additive Manufacturing

Mozaffar, M., Liao, S., Lin, H., Ehmann, K. and Cao, J.

59 citations