Ejercicios resueltos de derivación

Juan Gabriel Gomila, Arnau Mir y Llorenç Valverde

Ejercicio 1

Usando la definición de derivada, hallar f'(2) donde $f(x) = x^2 + 4x$.

Ejercicio 1

Usando la definición de derivada, hallar f'(2) donde $f(x) = x^2 + 4x$.

Solución

El valor de f'(2) usando la definición será:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^2 + 4x - 12}{x - 2}$$

Ejercicio 1

Usando la definición de derivada, hallar f'(2) donde $f(x) = x^2 + 4x$.

Solución

El valor de f'(2) usando la definición será:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^2 + 4x - 12}{x - 2}$$
$$= \lim_{x \to 2} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 2} (x + 6) = 8.$$

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Solución

El valor de f'(1) usando la definición será:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{-\frac{1}{x^2} - (-1)}{x - 1}$$

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Solución

El valor de f'(1) usando la definición será:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{-\frac{1}{x^2} - (-1)}{x - 1}$$
$$= \lim_{x \to 1} \frac{1 - \frac{1}{x^2}}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x^2 \cdot (x - 1)}$$

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Solución

El valor de f'(1) usando la definición será:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{-\frac{1}{x^2} - (-1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{1 - \frac{1}{x^2}}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x^2 \cdot (x - 1)}$$

$$= \lim_{x \to 1} \frac{(x - 1) \cdot (x + 1)}{x^2 \cdot (x - 1)} = \lim_{x \to 1} \frac{x + 1}{x^2} = \frac{1 + 1}{1} = 2.$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

$$f'(x) = \cos(\ln(\cos x))$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

$$f'(x) = \cos(\ln(\cos x)) \cdot (\ln(\cos x))'$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

$$f'(x) = \cos(\ln(\cos x)) \cdot (\ln(\cos x))'$$
$$= \cos(\ln(\cos x)) \cdot \frac{1}{\cos x} \cdot$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

$$f'(x) = \cos(\ln(\cos x)) \cdot (\ln(\cos x))'$$

$$= \cos(\ln(\cos x)) \cdot \frac{1}{\cos x} \cdot (\cos x)'$$

$$= \cos(\ln(\cos x)) \cdot \frac{1}{\cos x} \cdot (-\sin x)$$

$$= -\frac{\sin x \cdot \cos(\ln(\cos x))}{\cos x}.$$

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

$$f'(x) = \frac{1}{\sqrt{1-(x^2+\tan x)^2}}$$

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

$$f'(x) = \frac{1}{\sqrt{1 - (x^2 + \tan x)^2}} \cdot (x^2 + \tan x)'$$

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

$$f'(x) = \frac{1}{\sqrt{1 - (x^2 + \tan x)^2}} \cdot (x^2 + \tan x)'$$
$$= \frac{1}{\sqrt{1 - (x^2 + \tan x)^2}} \cdot \left(2x + \frac{1}{\cos^2 x}\right).$$

Recta tangente

Ejercicio 5

Hallar el punto(s) donde las curvas $f(x) = x^3 - 3x + 4$ y $g(x) = 3 \cdot (x^2 - x)$ son tangentes en dicho punto, es decir, que las rectas tangentes a las curvas en dicho punto son la misma. Hacer un gráfico ilustrativo.

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Recta tangente

Ejercicio 5

Hallar el punto(s) donde las curvas $f(x) = x^3 - 3x + 4$ y $g(x) = 3 \cdot (x^2 - x)$ son tangentes en dicho punto, es decir, que las rectas tangentes a las curvas en dicho punto son la misma. Hacer un gráfico ilustrativo.

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma. Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Recta tangente

Ejercicio 5

Hallar el punto(s) donde las curvas $f(x) = x^3 - 3x + 4$ y $g(x) = 3 \cdot (x^2 - x)$ son tangentes en dicho punto, es decir, que las rectas tangentes a las curvas en dicho punto son la misma. Hacer un gráfico ilustrativo.

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Sea (x_0, y_0)