

1 Definitions

Definition 1.1. Differential equation

A n order **differential equation** is an equation defined by :

$$(E): F\left(x,y,y',\ldots,y^{(n)}\right)=0$$

where F is a function of (n+2) variables.

A **solution** for such an equation on an interval $I \subset \mathbb{R}$ is a function $y : I \to \mathbb{R}$ which is derivable n times and verify equation (E).

Definition 1.2. Linear differential equation

A n order **linear** differential equation is an equation defined by :

(E):
$$a_0(x)y + a_1(x)y' + \cdots + a_n(x)y^{(n)} = g(x)$$

The term linear reffers to the fact that there is no nonlinear function applied to the y, y', ...

Definition 1.3. Homogeneous differential equation

A n order homogeneous differential equation is an equation defined by :

$$(E_0)$$
: $a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = 0$

Definition 1.4. Superposition principle

For a linear differential equation (E), let S_h be the set of solutions for the homogeneous equation and y_0 a specific solution of (E). Then, the set of solutions S is composed of :

$$y_0 + y$$
 with $y \in S_h$

- 2 Linear first order differential equation
- 2.1 Homogeneous first order differential equation Definition 2.1.