Hrishee Shastri

CS 441

Spring 2021

■ Input: A connected, undirected graph G = (V, E) with weights to edges $w : E \to \mathbb{R}^+$.

- Input: A connected, undirected graph G = (V, E) with weights to edges $w : E \to \mathbb{R}^+$.
- **A cut** is defined as a partition of V into two sets V' and $V \setminus V'$, and consists of all edges that have an endpoint in both sets.

- Input: A connected, undirected graph G = (V, E) with weights to edges $w : E \to \mathbb{R}^+$.
- **A cut** is defined as a partition of V into two sets V' and $V \setminus V'$, and consists of all edges that have an endpoint in both sets.
- Given two nodes $s,t \in V$, an s-t **cut** is a partition of V that disconnects s and t (i.e. $s \in V'$ and $t \in V \setminus V'$ or vice versa).

- Input: A connected, undirected graph G = (V, E) with weights to edges $w : E \to \mathbb{R}^+$.
- **A cut** is defined as a partition of V into two sets V' and $V \setminus V'$, and consists of all edges that have an endpoint in both sets.
- Given two nodes $s,t \in V$, an s-t **cut** is a partition of V that disconnects s and t (i.e. $s \in V'$ and $t \in V \setminus V'$ or vice versa).
- The minimum-weight s-t cut can be found in polynomial time using the max flow algorithm.

Example

Figure: Minimum weight s-t cut.

Edges in red are a minimum-weight s-t cut because their removal disconnects s from t in G.

■ Generalization of *s*-*t* cut.

- Generalization of s-t cut.
- Given a set of terminals $S = \{s_1, s_2, ..., s_k\}$, a **multiway cut** is a set of edges whose removal disconnects every terminal from one another.

- Generalization of s-t cut.
- Given a set of terminals $S = \{s_1, s_2, ..., s_k\}$, a **multiway cut** is a set of edges whose removal disconnects every terminal from one another.
- The Multiway Cut Problem requires us to find the multiway cut with minimum-weight.

- Generalization of s-t cut.
- Given a set of terminals $S = \{s_1, s_2, ..., s_k\}$, a **multiway cut** is a set of edges whose removal disconnects every terminal from one another.
- The Multiway Cut Problem requires us to find the multiway cut with minimum-weight.
- Multiway Cut is NP-Hard for $k \geq 3$.

Example

Figure: Minimum weight multiway cut.

Edges in red are the minimum-weight multiway cut because their removal disconnects every pair of s_1, s_2 and s_3 .

Example

Figure: Removing the multiway cut creates k connected components.

An **isolating cut** for terminal s_i is a set of edges whose removal disconnects s_i from all other terminals in G.

Figure: An isolating cut for terminal s_3 .

Algorithm 1

- Algorithm 1
 - 1. For each i = 1, ..., k, compute C_i , the minimum-weight isolating cut for terminal s_i .

Algorithm 1

- 1. For each i = 1, ..., k, compute C_i , the minimum-weight isolating cut for terminal s_i .
- 2. Output C, the union of the k-1 least expensive isolating cuts.

■ Algorithm 1

- 1. For each i = 1, ..., k, compute C_i , the minimum-weight isolating cut for terminal s_i .
- 2. Output C, the union of the k-1 least expensive isolating cuts.
- Computing C_i can be done in polynomial time by collapsing terminals $S \setminus \{s_i\}$ into one node t and then finding the minimum weight s_i -t cut in G.

Algorithm 1

- 1. For each i = 1, ..., k, compute C_i , the minimum-weight isolating cut for terminal s_i .
- 2. Output C, the union of the k-1 least expensive isolating cuts.
- Computing C_i can be done in polynomial time by collapsing terminals $S \setminus \{s_i\}$ into one node t and then finding the minimum weight s_i -t cut in G.
- $lackbox{\blacksquare} C$ is a multiway cut because it contains an isolating cut for k-1 terminals, and thus the k^{th} terminal must be isolated as well.

Computing a Minimum-Weight Isolating Cut

Figure: Computing C_3 , an isolating cut for s_3 , is done by collapsing s_1, s_2 into a node t and then outputting the minimum-weight s_3 -t cut. C_3 comprises of the edges in red.

Let A be an optimal (minimum-weight) multiway cut in G.

- Let A be an optimal (minimum-weight) multiway cut in G.
- Then removing the edges in A from G creates k connected components, each of which has exactly one terminal.

- Let A be an optimal (minimum-weight) multiway cut in G.
- Then removing the edges in A from G creates k connected components, each of which has exactly one terminal.
- Write $A = \bigcup_{i=1}^k A_i$, where $A_i \subset A$ is the cut that disconnects terminal s_i from all other terminals.

- Let A be an optimal (minimum-weight) multiway cut in G.
- Then removing the edges in A from G creates k connected components, each of which has exactly one terminal.
- Write $A = \bigcup_{i=1}^k A_i$, where $A_i \subset A$ is the cut that disconnects terminal s_i from all other terminals.
- Each edge in A has an endpoint in two connected components, so each edge in A will be in two different A_i.

- Let A be an optimal (minimum-weight) multiway cut in G.
- Then removing the edges in *A* from *G* creates *k* connected components, each of which has exactly one terminal.
- Write $A = \bigcup_{i=1}^k A_i$, where $A_i \subset A$ is the cut that disconnects terminal s_i from all other terminals.
- Each edge in A has an endpoint in two connected components, so each edge in A will be in two different A_i.
 - ▶ This means $\sum_{i=1}^k w(A_i) = 2w(A)$, where w(A) is the total weight of the edges in cut A.

Note that $w(C_i) \leq w(A_i)$ because C_i is a minimum-weight isolating cut for terminal s_i , and A_i is some isolating cut for s_i .

- Note that $w(C_i) \leq w(A_i)$ because C_i is a minimum-weight isolating cut for terminal s_i , and A_i is some isolating cut for s_i .
- Recall that C, the multiway cut returned by our algorithm, is obtained by taking the union of all C_i except the heaviest one C'_i . This gives

$$w(C) \le \left(\sum_{i=1}^k w(C_i)\right) - w(C_j'). \tag{1}$$

- Note that $w(C_i) \leq w(A_i)$ because C_i is a minimum-weight isolating cut for terminal s_i , and A_i is some isolating cut for s_i .
- Recall that C, the multiway cut returned by our algorithm, is obtained by taking the union of all C_i except the heaviest one C'_i . This gives

$$w(C) \le \left(\sum_{i=1}^k w(C_i)\right) - w(C_j'). \tag{1}$$

It must be that $\frac{\sum_{i=1}^k w(C_i)}{k} \leq w(C_j')$, because the heaviest isolating cut is at least the average. This gives

$$w(C) \le \left(\sum_{i=1}^k w(C_i)\right) - \frac{\sum_{i=1}^k w(C_i)}{k} + \frac{k}{2} +$$

And so

$$w(C) \le \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} w(C_i)$$

$$\le \left(1 - \frac{1}{k}\right) \sum_{i=1}^{k} w(A_i)$$

$$= 2\left(1 - \frac{1}{k}\right) w(A)$$

$$= \left(2 - \frac{2}{k}\right) OPT.$$

A Tight Example for the 2-2/k Approximation

Consider a graph G on 2k nodes that is a k-cycle (unit edge weights) with k terminals each attached via an edge (weight 2) to a distinct node in the k-cycle.

Figure: Tight example for k = 4.

A Tight Example for the 2-2/k Approximation

Consider a graph G on 2k nodes that is a k-cycle (unit edge weights) with k terminals each attached via an edge (weight 2) to a distinct node in the k-cycle.

Figure: Tight example for k = 4.

■ The min-weight isolating cut for each s_i is of weight 2, so w(ALG) = 2(k-1) = 2k-2. But the optimal multiway cut is the k-cycle, so w(OPT) = k.

A Randomized 3/2-approximation Linear Programming Algorithm

The Unit Simplex

Let Δ_k denote the unit k-1 dimensional simplex in \mathbb{R}^k

The Unit Simplex

- Let Δ_k denote the unit k-1 dimensional simplex in \mathbb{R}^k
 - i.e. $\Delta_k = \{\mathbf{x} \in \mathbb{R}^k \mid \mathbf{x} \geq 0 \text{ and } \sum_i x^i = 1\}$, where x^i is the i^{th} coordinate of \mathbf{x} .

The Unit Simplex

- lacksquare Let Δ_k denote the unit k-1 dimensional simplex in \mathbb{R}^k
 - i.e. $\Delta_k = \{\mathbf{x} \in \mathbb{R}^k \mid \mathbf{x} \geq 0 \text{ and } \sum_i x^i = 1\}$, where x^i is the i^{th} coordinate of \mathbf{x} .

Figure: Δ_3 , the 2-dimensional simplex in \mathbb{R}^3

Preliminaries

Idea: every node of G = (V, E) maps to a point in Δ_k .

Preliminaries

- Idea: every node of G = (V, E) maps to a point in Δ_k .
- Each of the k terminals in $S = \{s_1, ..., s_k\}$ maps to a unit vector $e_i \in \mathbb{R}^k$.

Preliminaries

- Idea: every node of G = (V, E) maps to a point in Δ_k .
- Each of the k terminals in $S = \{s_1, ..., s_k\}$ maps to a unit vector $e_i \in \mathbb{R}^k$.
- Let x_v be the point in Δ_k that node $v \in V$ maps to. (Note that $0 \le x_v^i \le 1$ for all i)

Preliminaries

- Idea: every node of G = (V, E) maps to a point in Δ_k .
- Each of the k terminals in $S = \{s_1, ..., s_k\}$ maps to a unit vector $e_i \in \mathbb{R}^k$.
- Let x_v be the point in Δ_k that node $v \in V$ maps to. (Note that $0 \le x_v^i \le 1$ for all i)
- Let the length of an edge $(u,v) \in E$ be half the Manhattan distance between x_u and x_v , i.e. $d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i x_v^i|$.

The LP Relaxation

The relaxation is:

$$\begin{aligned} & \underset{(u,v) \in E}{\sum} w(u,v) d(u,v) \\ & \text{subject to} & & d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i - x_v^i|, & & \forall (u,v) \in E \\ & & & x_v \in \Delta_k, & & \forall v \in V \\ & & & x_{s_i} = e_i, & & \forall s_i \in S. \end{aligned}$$

The LP Relaxation

The relaxation is:

$$\begin{aligned} & \min & \sum_{(u,v) \in E} w(u,v) d(u,v) \\ & \text{subject to} & & d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i - x_v^i|, & & \forall (u,v) \in E \\ & & & x_v \in \Delta_k, & & \forall v \in V \\ & & & x_{s_i} = e_i, & & \forall s_i \in S. \end{aligned}$$

■ But... is this even an LP? (Suspend your disbelief for a moment)

■ Intuition: An integral solution to this LP maps every node in G to one of the k unit vectors

$$\begin{aligned} & \min & & \sum_{(u,v) \in E} w(u,v) d(u,v) \\ & \text{s.t.} & & d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i - x_v^i|, \\ & & & \forall (u,v) \in E \\ & & x_v \in \Delta_k, \forall v \in V \\ & & x_{si} = e_i, \forall s_i \in S. \end{aligned}$$

- Intuition: An integral solution to this LP maps every node in G to one of the k unit vectors
 - This corresponds to an assignment of nodes in G to the k connected components (where each connected component has a single terminal s_i).

$$\text{s.t.} \quad d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i - x_v^i|,$$

 $\sum w(u,v)d(u,v)$

s.t.
$$d(u,v) = \frac{1}{2} \sum_{i=1} |x_u^i - x_v^i|,$$

$$\forall (u,v) \in E$$

$$x_v \in \Delta_k, \forall v \in V$$

$$x_{s_i} = e_i, \forall s_i \in S.$$

 $d(u,v) = 0 \implies u,v \text{ map}$ to the same unit vector

$$\begin{aligned} & \min & & \sum_{(u,v) \in E} w(u,v) d(u,v) \\ & \text{s.t.} & & d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i - x_v^i|, \\ & & & \forall (u,v) \in E \\ & & x_v \in \Delta_k, \forall v \in V \\ & & x_{s_i} = e_i, \forall s_i \in S. \end{aligned}$$

- $d(u,v) = 0 \implies u,v \text{ map}$ to the same unit vector
- $d(u,v) = 1 \implies u,v \text{ map}$ to different unit vectors

$$\min \quad \sum_{(u,v) \in E} w(u,v) d(u,v)$$

s.t.
$$d(u,v) = \frac{1}{2} \sum_{i=1}^{k} |x_u^i - x_v^i|,$$

$$\forall (u,v) \in E$$

$$x_v \in \Delta_k, \forall v \in V$$

$$x_{s_i} = e_i, \forall s_i \in S.$$

- $d(u,v) = 0 \implies u,v \text{ map}$ to the same unit vector
- $d(u,v) = 1 \implies u,v \text{ map}$ to different unit vectors
- So $d(u,v) = 1 \implies (u,v)$ is in the multiway cut

$$\min \quad \sum_{(u,v) \in E} w(u,v) d(u,v)$$

s.t.
$$d(u,v) = \frac{1}{2} \sum_{i=1}^{k} |x_u^i - x_v^i|,$$

$$\forall (u,v) \in E$$

$$x_v \in \Delta_k, \forall v \in V$$

$$x_{s_i} = e_i, \forall s_i \in S.$$

- $d(u,v) = 0 \implies u,v \text{ map}$ to the same unit vector
- $d(u,v) = 1 \implies u,v \text{ map}$ to different unit vectors
- So $d(u,v) = 1 \implies (u,v)$ is in the multiway cut
- Integral solution that minimizes the objective function thus corresponds to the minimum-weight multiway cut.

$$\min \quad \sum_{(u,v) \in E} w(u,v) d(u,v)$$

s.t.
$$d(u,v) = \frac{1}{2} \sum_{i=1}^{k} |x_u^i - x_v^i|,$$

$$\forall (u,v) \in E$$

$$x_v \in \Delta_k, \forall v \in V$$

$$x_{s_i} = e_i, \forall s_i \in S.$$

Integral Solution Determines a Multiway Cut

Figure: An integral solution to the LP naturally determines a multiway cut.

What About a Non-Integral Solution?

Figure: A non-integral solution to the LP. How do we round?

■ The first constraint $d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i - x_v^i|, \quad \forall (u,v) \in E$ is not linear

- The first constraint $d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i x_v^i|, \quad \forall (u,v) \in E$ is not linear
- We can make it linear by replacing it with the constraints

$$x_{uv}^i \ge x_u^i - x_v^i, \qquad 1 \le i \le k \tag{2}$$

$$x_{uv}^i \ge x_v^i - x_u^i, \qquad 1 \le i \le k \tag{3}$$

$$d(u,v) = \frac{1}{2} \sum_{i=1}^{k} x_{uv}^{i} \qquad \forall (u,v) \in E.$$
 (4)

- The first constraint $d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i x_v^i|, \quad \forall (u,v) \in E$ is not linear
- We can make it linear by replacing it with the constraints

$$x_{uv}^i \ge x_u^i - x_v^i, \qquad 1 \le i \le k \tag{2}$$

$$x_{uv}^i \ge x_v^i - x_u^i, \qquad 1 \le i \le k \tag{3}$$

$$d(u,v) = \frac{1}{2} \sum_{i=1}^{k} x_{uv}^{i} \qquad \forall (u,v) \in E.$$
 (4)

lacksquare This means a feasible solution will have $x_{uv}^i \geq |x_u^i - x_v^i|$.

- The first constraint $d(u,v) = \frac{1}{2} \sum_{i=1}^k |x_u^i x_v^i|, \quad \forall (u,v) \in E$ is not linear
- We can make it linear by replacing it with the constraints

$$x_{uv}^i \ge x_u^i - x_v^i, \qquad 1 \le i \le k \tag{2}$$

$$x_{uv}^i \ge x_v^i - x_u^i, \qquad 1 \le i \le k \tag{3}$$

$$d(u,v) = \frac{1}{2} \sum_{i=1}^{k} x_{uv}^{i} \qquad \forall (u,v) \in E.$$
 (4)

- lacksquare This means a feasible solution will have $x_{uv}^i \geq |x_u^i x_v^i|$.
- But an optimal solution will obey $x_{uv}^i = |x_u^i x_v^i|$ because we are minimizing the objective.

- The first constraint $d(u,v)=\frac{1}{2}\sum_{i=1}^k|x_u^i-x_v^i|, \quad \forall (u,v)\in E$ is not linear
- We can make it linear by replacing it with the constraints

$$x_{uv}^i \ge x_u^i - x_v^i, \qquad 1 \le i \le k \tag{2}$$

$$x_{uv}^i \ge x_v^i - x_u^i, \qquad 1 \le i \le k \tag{3}$$

$$d(u,v) = \frac{1}{2} \sum_{i=1}^{k} x_{uv}^{i} \qquad \forall (u,v) \in E.$$
 (4)

- lacksquare This means a feasible solution will have $x_{uv}^i \geq |x_u^i x_v^i|$.
- But an optimal solution will obey $x_{uv}^i = |x_u^i x_v^i|$ because we are minimizing the objective.
 - ightharpoonup To see this: If disobeys, then x_{uv}^i can be made smaller, so solution can be made smaller, contradicting its optimality

A Helpful Lemma

Lemma (Two-coordinate Lemma)

For an optimal solution to the LP relaxation, we can assume (w.l.o.g) that for each edge $(u,v) \in E$, x_u and x_v differ in at most two coordinates.

Note that x_u and x_v can never differ in exactly one coordinate, because both vectors must sum to 1

Consider an edge (u, v) where x_u and x_v differ in > 2 coordinates

- Consider an edge (u,v) where x_u and x_v differ in >2 coordinates
- Make a new node y and replace (u,v) with (u,y) and (y,v), setting both their edge weights to be w(u,v)

- Consider an edge (u,v) where x_u and x_v differ in >2 coordinates
- Make a new node y and replace (u,v) with (u,y) and (y,v), setting both their edge weights to be w(u,v)
 - This means the cost of the optimal integral solution is unchanged because either d(u, y) = 0 or d(y, v) = 0.

- Consider an edge (u, v) where x_u and x_v differ in > 2 coordinates
- Make a new node y and replace (u,v) with (u,y) and (y,v), setting both their edge weights to be w(u,v)
 - This means the cost of the optimal integral solution is unchanged because either d(u, y) = 0 or d(y, v) = 0.
- Consider the optimal fractional solution

- Consider an edge (u, v) where x_u and x_v differ in > 2 coordinates
- Make a new node y and replace (u,v) with (u,y) and (y,v), setting both their edge weights to be w(u,v)
 - This means the cost of the optimal integral solution is unchanged because either d(u, y) = 0 or d(y, v) = 0.
- Consider the optimal fractional solution
 - Note that $d(u, y) + d(y, v) \ge d(u, v)$ since d is a valid distance function, so adding y does not improve the optimal solution

lacksquare Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - \blacktriangleright w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - \blacktriangleright w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$
- Then there must be a coordinate j s.t. $x_u^j x_v^j \ge \alpha$ (w.l.o.g $x_u^j > x_v^j$)

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - \blacktriangleright w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$
- Then there must be a coordinate j s.t. $x_u^j x_v^j \ge \alpha$ (w.l.o.g $x_u^j > x_v^j$)
- Now define x_y to be the point where $x_y^i = x_u^i$, $x_y^j = x_v^j + \alpha$, and remaining coordinates of x_y identical to those of x_v .

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - \blacktriangleright w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$
- Then there must be a coordinate j s.t. $x_u^j x_v^j \ge \alpha$ (w.l.o.g $x_u^j > x_v^j$)
- Now define x_y to be the point where $x_y^i = x_u^i$, $x_y^j = x_v^j + \alpha$, and remaining coordinates of x_y identical to those of x_v .
 - ▶ This means $x_y \in \Delta_k$

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - \blacktriangleright w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$
- Then there must be a coordinate j s.t. $x_u^j x_v^j \ge \alpha$ (w.l.o.g $x_u^j > x_v^j$)
- Now define x_y to be the point where $x_y^i = x_u^i$, $x_y^j = x_v^j + \alpha$, and remaining coordinates of x_y identical to those of x_v .
 - ▶ This means $x_y \in \Delta_k$
 - And d(u,y) + d(y,v) = d(u,v), so cost of optimal solution does not change

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - \blacktriangleright w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$
- Then there must be a coordinate j s.t. $x_u^j x_v^j \ge \alpha$ (w.l.o.g $x_u^j > x_v^j$)
- Now define x_y to be the point where $x_y^i = x_u^i$, $x_y^j = x_v^j + \alpha$, and remaining coordinates of x_y identical to those of x_v .
 - ▶ This means $x_y \in \Delta_k$
 - And d(u,y) + d(y,v) = d(u,v), so cost of optimal solution does not change
- lacksquare x_y and x_v differ in exactly two coordinates

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - \blacktriangleright w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$
- Then there must be a coordinate j s.t. $x_u^j x_v^j \ge \alpha$ (w.l.o.g $x_u^j > x_v^j$)
- Now define x_y to be the point where $x_y^i = x_u^i$, $x_y^j = x_v^j + \alpha$, and remaining coordinates of x_y identical to those of x_v .
 - ▶ This means $x_y \in \Delta_k$
 - And d(u,y)+d(y,v)=d(u,v), so cost of optimal solution does not change
- \blacksquare x_y and x_v differ in exactly two coordinates
- lacksquare x_y and x_u differ in fewer coordinates than x_u and x_v

- Out of all coordinates where x_u, x_v differ, let i be the coordinate in which the difference is minimal
 - $lackbox{ }$ w.l.o.g let $x_u^i < x_v^i$ and let $\alpha = x_v^i x_u^i$
- Then there must be a coordinate j s.t. $x_u^j x_v^j \ge \alpha$ (w.l.o.g $x_u^j > x_v^j$)
- Now define x_y to be the point where $x_y^i = x_u^i$, $x_y^j = x_v^j + \alpha$, and remaining coordinates of x_y identical to those of x_v .
 - ▶ This means $x_y \in \Delta_k$
 - And d(u, y) + d(y, v) = d(u, v), so cost of optimal solution does not change
- \blacksquare x_y and x_v differ in exactly two coordinates
- lacksquare x_y and x_u differ in fewer coordinates than x_u and x_v
 - Iteratively doing this process will eventually guarantee the two-coordinate property while maintaining the cost of the optimal solution

Let $\{x_u \mid u \in V\}$ be the optimal solution to the LP relaxation (with cost OPT) such that x_u and x_v differ in at most two coordinates for all $(u,v) \in E$

- Let $\{x_u \mid u \in V\}$ be the optimal solution to the LP relaxation (with cost OPT) such that x_u and x_v differ in at most two coordinates for all $(u,v) \in E$
- Define E_i to be the set of all edges whose endpoints differ at the i^{th} coordinate.

- Let $\{x_u \mid u \in V\}$ be the optimal solution to the LP relaxation (with cost OPT) such that x_u and x_v differ in at most two coordinates for all $(u,v) \in E$
- Define E_i to be the set of all edges whose endpoints differ at the i^{th} coordinate.
 - i.e. $E_i = \{(u, v) \in E \mid x_u^i \neq x_v^i\}$

- Let $\{x_u \mid u \in V\}$ be the optimal solution to the LP relaxation (with cost OPT) such that x_u and x_v differ in at most two coordinates for all $(u,v) \in E$
- Define E_i to be the set of all edges whose endpoints differ at the i^{th} coordinate.
 - i.e. $E_i = \{(u, v) \in E \mid x_u^i \neq x_v^i\}$
 - Every $(u,v) \in E$ with d(u,v) > 0 will lie in two different such sets

Randomized Rounding Algorithm Preliminaries

- Let $\{x_u \mid u \in V\}$ be the optimal solution to the LP relaxation (with cost OPT) such that x_u and x_v differ in at most two coordinates for all $(u,v) \in E$
- Define E_i to be the set of all edges whose endpoints differ at the i^{th} coordinate.
 - i.e. $E_i = \{(u, v) \in E \mid x_u^i \neq x_v^i\}$
 - Every $(u,v) \in E$ with d(u,v) > 0 will lie in two different such sets
- Let $W_i = \sum\limits_{e \in E_i} w(e) d(e)$ and w.l.o.g let W_k be the largest of them

Randomized Rounding Algorithm Preliminaries

- Let $\{x_u \mid u \in V\}$ be the optimal solution to the LP relaxation (with cost OPT) such that x_u and x_v differ in at most two coordinates for all $(u,v) \in E$
- Define E_i to be the set of all edges whose endpoints differ at the i^{th} coordinate.
 - i.e. $E_i = \{(u, v) \in E \mid x_u^i \neq x_v^i\}$
 - $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- \blacksquare Let $W_i = \sum\limits_{e \in E_i} w(e) d(e)$ and w.l.o.g let W_k be the largest of them
 - lacktriangle i.e. W_i is the cost contributed by E_i to the optimal solution

Randomized Rounding Algorithm Preliminaries

- Let $\{x_u \mid u \in V\}$ be the optimal solution to the LP relaxation (with cost OPT) such that x_u and x_v differ in at most two coordinates for all $(u,v) \in E$
- Define E_i to be the set of all edges whose endpoints differ at the i^{th} coordinate.
 - i.e. $E_i = \{(u, v) \in E \mid x_u^i \neq x_v^i\}$
 - Every $(u,v) \in E$ with d(u,v) > 0 will lie in two different such sets
- Let $W_i = \sum\limits_{e \in E_i} w(e) d(e)$ and w.l.o.g let W_k be the largest of them
 - ightharpoonup i.e. W_i is the cost contributed by E_i to the optimal solution
- Define $B(s_i, \rho) = \{v \in V \mid x_v^i \ge \rho\}$ for $\rho \in (0, 1)$

- Algorithm 2:
 - 1. Compute an optimal solution to the LP relaxation

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.
- 3. Choose $\rho \in (0,1)$ uniformly at random

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.
- 3. Choose $\rho \in (0,1)$ uniformly at random
- 4. Choose $\sigma \in \{(1,2,...,k-1,k),(k-1,k-2,...,2,1,k)\}$ uniformly at random

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.
- 3. Choose $\rho \in (0,1)$ uniformly at random
- 4. Choose $\sigma \in \{(1,2,...,k-1,k),(k-1,k-2,...,2,1,k)\}$ uniformly at random
- 5. For i = 1 to k 1:

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.
- 3. Choose $\rho \in (0,1)$ uniformly at random
- 4. Choose $\sigma \in \{(1,2,...,k-1,k), (k-1,k-2,...,2,1,k)\}$ uniformly at random
- 5. For i = 1 to k 1:
 - $\blacktriangleright \text{ Set } V_{\sigma(i)} = B(s_i, \rho) \setminus \bigcup_{i < i} V_{\sigma(i)}$

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.
- 3. Choose $\rho \in (0,1)$ uniformly at random
- 4. Choose $\sigma \in \{(1,2,...,k-1,k),(k-1,k-2,...,2,1,k)\}$ uniformly at random
- 5. For i = 1 to k 1:

 - \blacktriangleright #Put all remaining nodes who's $i^{\rm th}$ coordinate is at least ρ into set $V_{\sigma(i)}$

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.
- 3. Choose $\rho \in (0,1)$ uniformly at random
- 4. Choose $\sigma \in \{(1,2,...,k-1,k),(k-1,k-2,...,2,1,k)\}$ uniformly at random
- 5. For i = 1 to k 1:

 - lacktriangledown #Put all remaining nodes who's $i^{ ext{th}}$ coordinate is at least ho into set $V_{\sigma(i)}$
- 6. Set $V_k = \text{all nodes that remain}$

- 1. Compute an optimal solution to the LP relaxation
- 2. Renumber terminals so that W_k is greater than W_i for all $1 \le i < k$.
- 3. Choose $\rho \in (0,1)$ uniformly at random
- 4. Choose $\sigma \in \{(1,2,...,k-1,k),(k-1,k-2,...,2,1,k)\}$ uniformly at random
- 5. For i = 1 to k 1:
 - $\blacktriangleright \text{ Set } V_{\sigma(i)} = B(s_i, \rho) \setminus \bigcup_{j < i} V_{\sigma(j)}$
 - \blacktriangleright #Put all remaining nodes who's i^{th} coordinate is at least ho into set $V_{\sigma(i)}$
- 6. Set $V_k = \text{all nodes that remain}$
- 7. Output C, the set of edges that run between sets in the partition $V_1,...,V_k$

Figure: Initialize the randomized rounding procedure: compute LP solution, relabel the terminals s_i s.t. W_3 is largest, and choose σ and ρ

 $\sigma = (1, 2, 3)$

$$V_1 = \left\{ v \in V \mid x_v^1 \geqslant \rho \right\}$$

Figure: Compute
$$V_{\sigma(1)} = V_1$$

 $\sigma = (1, 2, 3)$

$$V_1 = \left\{ v \in V \mid x_v^1 \geqslant \rho \right\}$$

$$V_2 = \left\{ v \in V \mid x_v^2 \geqslant \rho \right\} \setminus V_1$$

Figure: Compute $V_{\sigma(2)} = V_2$

$$\begin{split} V_1 &= \left\{ v \ \in V \ | x_v^1 \geqslant \rho \right\} \\ V_2 &= \left\{ v \ \in V \ | x_v^2 \geqslant \rho \right\} \setminus V_1 \\ V_3 &= V \setminus V_1 \cup V_2 \end{split}$$

Figure: Compute V_3

Figure: Voila! Output multiway cut C comprises of the orange edges.

Approximation Guarantee

- Recall E_k is the set of all edges whose endpoints differ in the k^{th} coordinate.
- First, we prove two Lemmas:

Lemma (A)

$$e \in E_k \implies Pr[e \in C] \le d(e)$$

Lemma (B)

$$e \in E \setminus E_k \implies Pr[e \in C] \le 1.5d(e)$$

■ Since $(u, v) \in E_k$, x_u and x_v differ in coordinate k and some other coordinate i, and are identical in all other coordinates

- Since $(u, v) \in E_k$, x_u and x_v differ in coordinate k and some other coordinate i, and are identical in all other coordinates
 - \blacktriangleright This must mean $|x_u^i-x_v^i|=|x_u^k-x_v^k|$ so coordinates of each point sum to 1

- Since $(u, v) \in E_k$, x_u and x_v differ in coordinate k and some other coordinate i, and are identical in all other coordinates
 - \blacktriangleright This must mean $|x_u^i-x_v^i|=|x_u^k-x_v^k|$ so coordinates of each point sum to 1
- In Algorithm 2, V_k contains all leftover points without considering their coordinates

- Since $(u, v) \in E_k$, x_u and x_v differ in coordinate k and some other coordinate i, and are identical in all other coordinates
 - \blacktriangleright This must mean $|x_u^i-x_v^i|=|x_u^k-x_v^k|$ so coordinates of each point sum to 1
- In Algorithm 2, V_k contains all leftover points without considering their coordinates
- Thus, only way for $(u, v) \in C$ is if exactly one of u or v is in V_i .

- Since $(u, v) \in E_k$, x_u and x_v differ in coordinate k and some other coordinate i, and are identical in all other coordinates
 - \blacktriangleright This must mean $|x_u^i-x_v^i|=|x_u^k-x_v^k|$ so coordinates of each point sum to 1
- In Algorithm 2, V_k contains all leftover points without considering their coordinates
- Thus, only way for $(u, v) \in C$ is if exactly one of u or v is in V_i .
- This occurs when ρ is somewhere between x_u^i and x_v^i , which occurs with probability $|x_u^i x_v^i|$.

- Since $(u, v) \in E_k$, x_u and x_v differ in coordinate k and some other coordinate i, and are identical in all other coordinates
 - \blacktriangleright This must mean $|x_u^i-x_v^i|=|x_u^k-x_v^k|$ so coordinates of each point sum to 1
- In Algorithm 2, V_k contains all leftover points without considering their coordinates
- Thus, only way for $(u, v) \in C$ is if exactly one of u or v is in V_i .
- This occurs when ρ is somewhere between x_u^i and x_v^i , which occurs with probability $|x_u^i x_v^i|$.
- This probability is equal to $|x_u^i-x_v^i|=\frac{|x_u^i-x_v^i|+|x_u^k-x_v^k|}{2}=d(u,v).$

If $(u,v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i,j s.t. $i \neq k, j \neq k$

- If $(u,v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i, j s.t. $i \neq k, j \neq k$
- $(u,v) \in C$ if the algorithm puts u and v in different sets

- If $(u, v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i, j s.t. $i \neq k, j \neq k$
- $(u,v) \in C$ if the algorithm puts u and v in different sets
 - Only need to consider V_i , V_j , V_k since all other coordinates are identical, and V_k is the "overflow" bin

- If $(u,v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i,j s.t. $i \neq k, j \neq k$
- \blacksquare $(u,v) \in C$ if the algorithm puts u and v in different sets
 - Only need to consider V_i , V_j , V_k since all other coordinates are identical, and V_k is the "overflow" bin
- \blacksquare Let intervals $\alpha = [x_u^i, x_v^i]$ and $\beta = [x_v^j, x_u^j]$

- If $(u, v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i, j s.t. $i \neq k, j \neq k$
- \blacksquare $(u,v) \in C$ if the algorithm puts u and v in different sets
 - Only need to consider V_i , V_j , V_k since all other coordinates are identical, and V_k is the "overflow" bin
- Let intervals $\alpha = [x_u^i, x_v^i]$ and $\beta = [x_v^j, x_u^j]$
- Given all this, in what cases is it true that $(u,v) \in C$?

- If $(u, v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i, j s.t. $i \neq k, j \neq k$
- \blacksquare $(u,v) \in C$ if the algorithm puts u and v in different sets
 - Only need to consider V_i , V_j , V_k since all other coordinates are identical, and V_k is the "overflow" bin
- Let intervals $\alpha = [x_u^i, x_v^i]$ and $\beta = [x_v^j, x_u^j]$
- Given all this, in what cases is it true that $(u, v) \in C$?
 - ► Case I: $\rho \in \beta$ and $\sigma = (....j, ..., i, ...k)$

- If $(u, v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i, j s.t. $i \neq k, j \neq k$
- \blacksquare $(u,v) \in C$ if the algorithm puts u and v in different sets
 - Only need to consider V_i , V_j , V_k since all other coordinates are identical, and V_k is the "overflow" bin
- Let intervals $\alpha = [x_u^i, x_v^i]$ and $\beta = [x_v^j, x_u^j]$
- Given all this, in what cases is it true that $(u, v) \in C$?
 - ► Case I: $\rho \in \beta$ and $\sigma = (....j, ..., i, ...k)$
 - $\blacktriangleright \ \, \mathsf{Case} \,\, \mathsf{II} \colon \rho \in \beta \,\, \mathsf{and} \,\, \sigma = (....i,...,j,...k)$

- If $(u,v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i, j s.t. $i \neq k, j \neq k$
- \blacksquare $(u,v) \in C$ if the algorithm puts u and v in different sets
 - Only need to consider V_i , V_j , V_k since all other coordinates are identical, and V_k is the "overflow" bin
- Let intervals $\alpha = [x_u^i, x_v^i]$ and $\beta = [x_v^j, x_u^j]$
- Given all this, in what cases is it true that $(u, v) \in C$?
 - ► Case I: $\rho \in \beta$ and $\sigma = (....j, ..., i, ...k)$
 - ▶ Case II: $\rho \in \beta$ and $\sigma = (....i, ..., j, ...k)$
 - ▶ Case III: $\rho \in \alpha$ and $\sigma = (....j, ..., i, ...k)$

- If $(u,v) \in E \setminus E_k$, then x_u and x_v differ in two coordinates i,j s.t. $i \neq k, j \neq k$
- \blacksquare $(u,v) \in C$ if the algorithm puts u and v in different sets
 - Only need to consider V_i , V_j , V_k since all other coordinates are identical, and V_k is the "overflow" bin
- Let intervals $\alpha = [x_u^i, x_v^i]$ and $\beta = [x_v^j, x_u^j]$
- Given all this, in what cases is it true that $(u, v) \in C$?
 - ► Case I: $\rho \in \beta$ and $\sigma = (....j, ..., i, ...k)$
 - ► Case II: $\rho \in \beta$ and $\sigma = (....i, ..., j, ...k)$
 - ► Case III: $\rho \in \alpha$ and $\sigma = (....j, ..., i, ...k)$
 - ► Case IV: $\rho \in \alpha$ and $\sigma = (....i, ..., j, ...k)$

■ Case I: $\rho \in \beta$ and $\sigma = (....j, ..., i, ...k)$

Figure: $(u, v) \in C$ is TRUE

 $\blacksquare \ \, \mathsf{Case} \ \, \mathsf{II} \colon \rho \in \beta \ \, \mathsf{and} \ \, \sigma = (....i,...,j,...k)$

Figure: $(u, v) \in C$ is TRUE

 $\blacksquare \ \, \mathsf{Case} \ \, \mathsf{III} \colon \rho \in \alpha \ \, \mathsf{and} \ \, \sigma = (....j,...,i,...k)$

Figure: $(u, v) \in C$ is FALSE

■ Case IV: $\rho \in \alpha$ and $\sigma = (....i, ..., j, ...k)$

Figure: $(u,v) \in C$ is TRUE

By our case analysis, we have shown that $(u,v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i,...,j,...k))$.

- By our case analysis, we have shown that $(u,v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i,...,j,...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $lackbox{} x_u$ and x_v only differ in coordinates i and j

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $ightharpoonup x_u$ and x_v only differ in coordinates i and j
 - ► So $d(u,v) = \frac{1}{2}|x_u^i x_v^i| + \frac{1}{2}|x_u^j x_v^j|$

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $ightharpoonup x_u$ and x_v only differ in coordinates i and j
 - So $d(u, v) = \frac{1}{2}|x_u^i x_v^i| + \frac{1}{2}|x_u^j x_v^j|$
 - ▶ But $|x_u^j x_v^j| = |x_u^i x_v^i|$ because coordinates of x_v, x_u must sum to 1

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $ightharpoonup x_u$ and x_v only differ in coordinates i and j
 - So $d(u,v) = \frac{1}{2}|x_u^i x_v^i| + \frac{1}{2}|x_u^j x_v^j|$
 - ▶ But $|x_u^j x_v^j| = |x_u^i x_v^i|$ because coordinates of x_v, x_u must sum to 1
 - $\ \, \hbox{So} \,\, d(u,v) = |x_u^i x_v^i| = |x_u^j x_v^j| = |\alpha| = |\beta|$

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $ightharpoonup x_u$ and x_v only differ in coordinates i and j
 - So $d(u,v) = \frac{1}{2}|x_u^i x_v^i| + \frac{1}{2}|x_u^j x_v^j|$
 - \blacktriangleright But $|x_u^j-x_v^j|=|x_u^i-x_v^i|$ because coordinates of x_v,x_u must sum to 1
 - $\ \, \hbox{So} \,\, d(u,v) = |x_u^i x_v^i| = |x_u^j x_v^j| = |\alpha| = |\beta|$
- Therefore $Pr[(u,v) \in C] = \frac{3}{2}d(u,v)$

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $ightharpoonup x_u$ and x_v only differ in coordinates i and j
 - So $d(u,v) = \frac{1}{2}|x_u^i x_v^i| + \frac{1}{2}|x_u^j x_v^j|$
 - \blacktriangleright But $|x_u^j-x_v^j|=|x_u^i-x_v^i|$ because coordinates of x_v,x_u must sum to 1
 - $\ \, \hbox{So} \,\, d(u,v) = |x_u^i x_v^i| = |x_u^j x_v^j| = |\alpha| = |\beta|$
- Therefore $Pr[(u,v) \in C] = \frac{3}{2}d(u,v)$
 - ightharpoonup if α does not overlap with β

- By our case analysis, we have shown that $(u, v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i, ..., j, ...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV
- $Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$
- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $ightharpoonup x_u$ and x_v only differ in coordinates i and j
 - So $d(u,v) = \frac{1}{2}|x_u^i x_v^i| + \frac{1}{2}|x_u^j x_v^j|$
 - \blacktriangleright But $|x_u^j-x_v^j|=|x_u^i-x_v^i|$ because coordinates of x_v,x_u must sum to 1
 - $\ \, \hbox{So} \,\, d(u,v) = |x_u^i x_v^i| = |x_u^j x_v^j| = |\alpha| = |\beta|$
- Therefore $Pr[(u,v) \in C] = \frac{3}{2}d(u,v)$
 - ightharpoonup if α does not overlap with β
- $Pr[(u,v) \in C] \le \frac{3}{2}d(u,v)$

- By our case analysis, we have shown that $(u,v) \in C$ when $\rho \in \beta$ or $(\rho \in \alpha \text{ and } \sigma = (...i,...,j,...k))$.
 - ▶ I.e. in Case I, Case II, and Case IV

$$Pr[(u,v) \in C] = Pr[\rho \in \beta] + Pr[\rho \in \alpha \land \sigma = (...i,...,j,...k)]$$

- $Pr[(u,v) \in C] = |\beta| + |\alpha| \cdot \frac{1}{2}$
- Now note $|\alpha| = |\beta| = d(u, v)$. Why?
 - $ightharpoonup x_u$ and x_v only differ in coordinates i and j
 - ► So $d(u,v) = \frac{1}{2}|x_u^i x_v^i| + \frac{1}{2}|x_u^j x_v^j|$
 - \blacktriangleright But $|x_u^j-x_v^j|=|x_u^i-x_v^i|$ because coordinates of x_v,x_u must sum to 1
 - $\ \, \hbox{So} \,\, d(u,v) = |x_u^i x_v^i| = |x_u^j x_v^j| = |\alpha| = |\beta|$
- Therefore $Pr[(u,v) \in C] = \frac{3}{2}d(u,v)$
 - ightharpoonup if α does not overlap with β
- $Pr[(u,v) \in C] \le \frac{3}{2}d(u,v)$
 - ightharpoonup if α does overlap with β

Let OPT be cost of optimal solution to the LP relaxation, so $OPT = \sum_{e \in E} w(e)d(e)$.

- Let OPT be cost of optimal solution to the LP relaxation, so $OPT = \sum_{e \in E} w(e)d(e)$.
- **Recall** $W_i = \sum_{e \in E_i} w(e) d(e)$.

- Let OPT be cost of optimal solution to the LP relaxation, so $OPT = \sum_{e \in E} w(e)d(e)$.
- **Recall** $W_i = \sum_{e \in E_i} w(e) d(e)$.
- \blacksquare Note that $\sum\limits_{i=1}^k W_i = 2OPT$ since every edge e with d(e)>0 belongs in two of the E_i

- Let OPT be cost of optimal solution to the LP relaxation, so $OPT = \sum_{e \in E} w(e)d(e)$.
- **Recall** $W_i = \sum_{e \in E_i} w(e) d(e)$.
- Note that $\sum\limits_{i=1}^k W_i = 2OPT$ since every edge e with d(e)>0 belongs in two of the E_i
- Then $W_k \ge \frac{2}{k}OPT$ since we made W_k the maximum such W_i , and the maximum is at least the average

- Let OPT be cost of optimal solution to the LP relaxation, so $OPT = \sum_{e \in E} w(e)d(e)$.
- **Recall** $W_i = \sum_{e \in E_i} w(e) d(e)$.
- Note that $\sum\limits_{i=1}^k W_i = 2OPT$ since every edge e with d(e)>0 belongs in two of the E_i
- Then $W_k \ge \frac{2}{k}OPT$ since we made W_k the maximum such W_i , and the maximum is at least the average
- **.**..

$$\begin{split} \mathbb{E}[w(C)] &= \sum_{e \in E} w(e) Pr[e \in C] \\ &= \sum_{e \in E_k} w(e) Pr[e \in C] + \sum_{e \in E \backslash E_k} w(e) Pr[e \in C] \\ &\leq \sum_{e \in E_k} w(e) d(e) + 1.5 \sum_{e \in E \backslash E_k} w(e) d(e) \qquad \text{Lemmas A and B} \\ &= 1.5 \sum_{e \in E} w(e) d(e) - 0.5 \sum_{e \in E_k} w(e) d(e) \\ &\leq 1.5 OPT - 0.5 \left(\frac{2}{k} OPT\right) \\ &= \left(\frac{3}{2} - \frac{1}{k}\right) OPT \end{split}$$

References

- 1. V. Vazirani. Approximation Algorithms. Berlin: Springer, 2003.
- 2. A. Groce. Linear Programming Algorithm for the Multiway Cut Problem. MIT, 2006.
- 3. S. Lowen. Multiway Cut. Rutgers, 2011.