Заняття 14. Правила Гунда Розщеплення рівнів у магнітному полі. Правила відбору. Елементи ядерної фізики

Аудиторне заняття

1. Використовуючи правила Гунда знайти основний терм атома, електронна конфігурація незаповненої підоболонки якого

 $n d^2$; $n d^3$; $n f^{10}$; $n f^4$. (№2.59б,в,д,е)

- 2. Користуючись правилами Гунда написати основний терм атома, єдина незаповнена підоборонка якого містить третину від можливого числа електронів і S = 1. (№2.60)
- 3. Скориставшись правилами Гунда, знайти число електронів у єдиній незаповненій підоболонці атома, основний терм якого а) ${}^{3}F_{2}$; б) ${}^{2}P_{3/2}$. (№2.61а,б)
- 4. Схематично намалювати енергетичні рівні, пов'язані з термами ${}^{1}D_{2}$ та ${}^{1}P_{1}$ за відсутності магнітного поля та при його наявності. Вказати можливі переходи. (№2.66)
- 5. Визначити фактор Ланде для наступних термів: а) ${}^{5}F_{2}$; б) ${}^{5}P_{1}$. (№2.62)
- 6. Визначити спіновий механічний момент атому в стані D_2 , якщо максимальне значення проекції магнітного моменту при цьому дорівнює чотирьом магнетонам Бора. ($\mathbb{N}2.64$)

Домашнє завдання

- 1. Скориставшись правилами Гунда, знайти число електронів у єдиній незаповненій підоболонці атома, основний терм якого ${}^{6}S_{5/2}$. (№2.61в)
- 2. Атом знаходиться в магнітному полі з індукцією B = 0.25 Тл. Підрахувати повну величину розщеплення терма а) ^{1}D ; б) $^{3}F_{4}$. (№2.67)
- 3. Самостійно розглянути задачі з теми «Елементи ядерної фізики» (https://youtu.be/1IbwTeWbZ_s), задачник с.153-164