Recall: Momentum

The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$

Updates using a running average of the gradient

Momentum and incremental updates

The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss (W^{(k-1)})^T$$

- Incremental SGD and mini-batch gradients tend to have high variance
- Momentum smooths out the variations
 - Smoother and faster convergence

Nestorov's Accelerated Gradient

- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient at the resultant position
 - Add the two to obtain the final step
- This also applies directly to incremental update methods
 - The accelerated gradient smooths out the variance in the gradients

Nestorov's Accelerated Gradient

Nestorov's method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)} + \beta \Delta W^{(k-1)})^T$$
$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K$; $j = 0, \Delta W_k = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:
 - $W_k = W_k + \beta \Delta W_k$
 - $\nabla_{W_k} Loss = 0$
 - For t' = t:t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\nabla_{W_k} Loss += \frac{1}{h} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)$
 - Update
 - For every layer k:

$$W_k = W_k - \eta_j \nabla_{W_k} Loss^T$$
$$\Delta W_k = \beta \Delta W_k - \eta_j \nabla_{W_k} Loss^T$$

Until <u>Loss</u> has converged

Still higher-order methods

- Momentum and Nestorov's method improve convergence by normalizing the *mean* of the derivatives
- More recent methods take this one step further by also considering their variance
 - RMS Prop
 - Adagrad
 - AdaDelta
 - ADAM: very popular in practice
 - **—** ...
- All roughly equivalent in performance

Smoothing the trajectory

Step	X component	Y component
1	1	+2.5
2	1	-3
3	3	+2.5
4	1	-2
5	2	1.5

- Simple gradient and acceleration methods still demonstrate oscillatory behavior in some directions
 - Depends on magic step size parameters
- Observation: Steps in "oscillatory" directions show large total movement
 - In the example, total motion in the vertical direction is much greater than in the horizontal direction
- Improvement: Dampen step size in directions with high motion
 - Second order term

Normalizing steps by second moment

- In recent past
 - Total movement in Y component of updates is high
 - Movement in X components is lower
- Current update, modify usual gradient-based update:
 - Scale down Y component
 - Scale up X component
 - According to their variation (and not just their average)
- A variety of algorithms have been proposed on this premise
 - We will see a popular example

RMS Prop

- Notation:
 - Updates are by parameter
 - Sum derivative of divergence w.r.t any individual parameter w is shown as $\partial_w D$
 - The **squared** derivative is $\partial_w^2 D = (\partial_w D)^2$
 - Short-hand notation represents the squared derivative, not the second derivative
 - The *mean squared* derivative is a running estimate of the average squared derivative. We will show this as $E[\partial_w^2 D]$
- Modified update rule: We want to
 - scale down updates with large mean squared derivatives
 - scale up updates with small mean squared derivatives

RMS Prop

• This is a variant on the *basic* mini-batch SGD algorithm

Procedure:

- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale update of the parameter by the *inverse* of the *root mean* squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

RMS Prop

This is a variant on the basic mini-batch SGD algorithm

Procedure:

- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale update of the parameter by the *inverse* of the *root mean* squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

Note similarity to RPROP

The magnitude of the derivative is being normalized out

RMS Prop (updates are for each weight of each layer)

- Do:
 - Randomly shuffle inputs to change their order
 - Initialize: k = 1; for all weights w in all layers, $E[\partial_w^2 D]_k = 0$
 - For all t = 1:B:T (incrementing in blocks of B inputs)
 - For all weights in all layers initialize $(\partial_w D)_k = 0$
 - For b = 0: B 1
 - Compute
 - » Output $Y(X_{t+b})$
 - » Compute gradient $\frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$
 - » Compute $(\partial_w D)_k += \frac{1}{B} \frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$
 - update:

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

- k = k + 1
- Until $E(\mathbf{W}^{(1)}, \mathbf{W}^{(2)}, ..., \mathbf{W}^{(K)})$ has converged

ADAM: RMSprop with momentum

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the momentum-augmented gradient
 - Considers both first and second moments

Procedure:

- Maintain a running estimate of the mean derivative for each parameter
- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale update of the parameter by the *inverse* of the *root mean squared* derivative

$$m_k = \delta m_{k-1} + (1 - \delta)(\partial_w D)_k$$

$$v_k = \gamma v_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$$

$$\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{\widehat{v}_k + \epsilon}} \widehat{m}_k$$

ADAM: RMSprop with momentum

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the *momentum-augmented* gradient

Procedure:

- Maintain a running estimate of the mean derivative for each parameter
- Maintain a running estimate of the mean squared value parameter
- Scale update of the parameter by the *inverse* of the derivative

$$m_{k} = \delta m_{k-1} + (1 - \delta)(\partial_{w}D)_{k}$$
$$v_{k} = \gamma v_{k-1} + (1 - \gamma)(\partial_{w}^{2}D)_{k}$$

$$\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \widehat{m}_k$$

Ensures that the δ and γ terms do not dominate in early iterations

Other variants of the same theme

- Many:
 - Adagrad
 - AdaDelta
 - ADAM
 - AdaMax
 - **–** ...
- Generally no explicit learning rate to optimize
 - But come with other hyper parameters to be optimized
 - Typical params:
 - RMSProp: $\eta = 0.001$, $\gamma = 0.9$
 - ADAM: $\eta = 0.001$, $\delta = 0.9$, $\gamma = 0.999$

Visualizing the optimizers: Beale's Function

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Long Valley

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Saddle Point

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html