STAT 3006: TUTORIAL4

- 1. Monte Carlo Integration
- 2. Importance Sampling

MONTE CARLO METHOD

- Generally, Monte Carlo method is using randomness to solve statistical or deterministic problems.
 - Monte Carlo is an area of Monaco.
 - Famous for Monte Carlo casino (opening date: 1863).
 - The concept "Probability" comes from gambling there.
- Application:
 - estimate pi
 - Distribute beans on a square
 - Buffon's needle
 - calculate integral
 - sampling

MONTE CARLO INTEGRATION

- Calculate $\int_0^1 x^2 dx$ using randomness.
- Law of large number: $x_1, ..., x_n$ i. i. d. $\sim f(x)$, $\lim \frac{h(x_1) + ... + h(x_n)}{n} = \int h(x) f(x) dx$ almost surely.
- Draw samples $X_1, X_2, ..., X_n$ from unif[0,1], Monte Carlo estimation is $\frac{1}{n} \sum X_i^2$.

Monte Carlo Integration

MONTE CARLO INTEGRATION

- Example (a)
- How about calculating $\int_{2.5}^{+\infty} \sin(x) e^{-\frac{x^2}{2}} dx$?

- Therefore, we have to sample $x_1, ..., x_n$ from the truncated normal distribution.
- Monte Carlo estimate is $\frac{\sqrt{2\pi}(1-\Phi(2.5))}{n} \sum \sin(x_i)$
- Accept-reject method.
 - The proposal distribution is Exp(2.5) + 2.5
 - Sometimes, the acceptance rate is not high. For example, draw 1000 samples, only 600 samples are accepted and other 400 samples are useless.

IMPORTANCE SAMPLING

- Notice that $\int h(x)f(x)dx = \int \frac{h(x)f(x)}{g(x)}g(x)dx$, where g(x) is a pdf function.
- Draw i.i.d. samples $x_1, ..., x_n$ from g(x).
- By law of large numbers, $\lim \frac{\frac{h(x_1)f(x_1)}{g(x_1)} + ... + \frac{h(x_n)f(x_n)}{g(x_n)}}{n} = \int \frac{h(x)f(x)}{g(x)} g(x) dx = \int h(x)f(x) dx$.
- Monte Carlo estimate is $m(x) := \frac{\frac{h(x_1)f(x_1)}{g(x_1)} + ... + \frac{h(x_n)f(x_n)}{g(x_n)}}{n}$. All samples from g(x) are used.
- However, there is no free lunch. We must put some requirements.
 - Sampling from g(x) is easy. (the same as accept-reject method)
 - Var(m(x)) must be finite.
 - $\frac{f(x)}{g(x)} < M$ for $\forall x$.
 - $E_g h^2 < \infty$
 - g has a larger domain than that of f.

IMPORTANCE SAMPLING

- Example (a) cont.
- $h(x) = \sin(x)$, $f(x) = \frac{\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}I_{[2.5,+\infty)}(x)}{1-\Phi(2.5)}$ (truncated normal), $g(x) = 2.5e^{-2.5(x-2.5)}I_{[2.5,+\infty)}(x)$ (shifted exponential distribution)
- We can show that $\frac{f(x)}{g(x)} < \frac{e^{-\frac{2.5^2}{2}}}{2.5\sqrt{2\pi}(1-\Phi(2.5))}$, $E_gh^2(x) \le 1$ satisfying the requirements.
- Sample $x_1, ..., x_n$ from $2.5e^{-2.5(x-2.5)}I_{[2.5,+\infty)}(x)$
- Monte Carlo estimate is $e^{-2.5^2} \frac{\sum sin(x_i)e^{-\frac{x_i^2}{2}+2.5x_i}}{2.5n}$.

Monte Carlo Integration

