Distribution assumptions

GARCH MODELS IN PYTHON

Chelsea Yang
Data Science Instructor

Why make assumptions

- Volatility is not directly observable
- GARCH model use residuals as volatility shocks

$$r_t = \mu_t + \epsilon_t$$

Volatility is related to the residuals:

$$\epsilon_t = \sigma_t * \zeta(WhiteNoise)$$

Standardized residuals

• Residual = predicted return - mean return

$$residuals = \epsilon_t = r_t - \mu_t$$

Standardized residual = residual / return volatility

$$std\,Resid = rac{\epsilon_t}{\sigma_t}$$

Residuals in GARCH

```
gm_std_resid = gm_result.resid / gm_result.conditional_volatility
```

```
plt.hist(gm_std_resid, facecolor = 'orange',label = 'standardized residuals')
```


Fat tails

• Higher probability to observe large (positive or negative) returns than under a normal distribution

Skewness

• Measure of asymmetry of a probability distribution

Student's t-distribution

 ν parameter of a Student's t-distribution indicates its shape

GARCH with t-distribution

```
arch_model(my_data, p = 1, q = 1,
    mean = 'constant', vol = 'GARCH',
    dist = 't')
```

Distribution

```
coef std err t P>|t| 95.0% Conf. Int.
nu 4.9249 0.507 9.709 2.766e-22 [ 3.931, 5.919]
```

GARCH with skewed t-distribution

```
arch_model(my_data, p = 1, q = 1,
    mean = 'constant', vol = 'GARCH',
    dist = 'skewt')
```

Distribution

```
coef std err t P>|t| 95.0% Conf. Int.

nu 5.2437 0.575 9.118 7.681e-20 [ 4.117, 6.371]
lambda -0.0822 2.541e-02 -3.235 1.216e-03 [ -0.132,-3.241e-02]
```

Let's practice!

GARCH MODELS IN PYTHON

Mean model specifications

GARCH MODELS IN PYTHON

Chelsea Yang
Data Science Instructor

Constant mean by default

constant mean: generally works well with most financial return data

```
arch_model(my_data, p = 1, q = 1,
    mean = 'constant', vol = 'GARCH')
```

	Constant Mean -	GARCH Model Results		
Dep. Variable:	Return	R-squared:	-0.001	
Mean Model:	Constant Mean	Adj. R-squared:	-0.001	
Vol Model:	GARCH	Log-Likelihood:	-2771.96	
Distribution:	Normal	AIC:	5551.93	
Method:	Maximum Likelihood	BIC:	5574.95	
		No. Observations:	2336	
Date:	Fri, Dec 20 2019	Df Residuals:	2332	
Time:	05:26:46	Df Model:	4	
Mean Model				
	coef std err	t P> t	95.0% Conf. Int.	
mu	0.0772 1.445e-02	5.345 9.031e-08 [4	.892e-02, 0.106]	

Zero mean assumption

zero mean: use when the mean has been modeled separately

```
arch_model(my_data, p = 1, q = 1,
mean = 'zero', vol = 'GARCH')
```

Zero Mean - GARCH Model Results

Dep. Variable:	Return	R-squared:	0.000
Mean Model:	Zero Mean	Adj. R-squared:	0.000
Vol Model:	GARCH	Log-Likelihood:	-2786.65
Distribution:	Normal	AIC:	5579.30
Method:	Maximum Likelihood	BIC:	5596.57
		No. Observations:	2336
Date:	Fri, Dec 20 2019	Df Residuals:	2333
Time:	05:36:28	Df Model:	3

Autoregressive mean

• AR mean: model the mean as an autoregressive (AR) process

```
arch_model(my_data, p = 1, q = 1,
  mean = 'AR', lags = 1, vol = 'GARCH')
```

AR - GARCH Model Results						
Dep. Variable	:		Return	R-squared	!:	0.001
Mean Model:			AR	Adj. R-sq	uared:	0.000
Vol Model:			GARCH	Log-Likel	ihood:	-2690.07
Distribution:	Sta	ndardized St	ıdent's t	AIC:		5392.13
Method:		Maximum L	ikelihood	BIC:		5426.66
				No. Obser	vations:	2335
Date:		Fri, Dec	20 2019	Df Residu	als:	2329
Time:			05:39:58	Df Model:		6
		1	Mean Model	_		
=========						=====
	coef	std err	t	P> t	95.0% Conf.	Int.
		1 000 00		1 101 11		
Const				1.181e-11		
Return[1]	-0.0541	2.060e-02	-2.625	8.670e-03	[-9.444e-02,-1.369	e-02]

Let's practice!

GARCH MODELS IN PYTHON

Volatility models for asymmetric shocks

GARCH MODELS IN PYTHON

Chelsea Yang

Data Science Instructor

Asymmetric shocks in financial data

News impact curve:

Leverage effect

- Debt-equity Ratio = Debt / Equity
- Stock price goes down, debt-equity ratio goes up
- Riskier!

GJR-GARCH

$$\sigma_t^2 = \omega + (\alpha + \gamma I_{t-1}) \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

$$I_{t-1} := \begin{cases} 0 & \text{if } r_{t-1} \ge \mu \\ 1 & \text{if } r_{t-1} < \mu \end{cases}$$

GJR-GARCH in Python

```
arch_model(my_data, p = 1, q = 1, o = 1,
    mean = 'constant', vol = 'GARCH')
```

Constant Mean - GJR-GARCH Model Results Dep. Variable: -0.000 Return R-squared: Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GJR-GARCH Log-Likelihood: -2641.12 Standardized Student's t AIC: 5294.23 Distribution: Method: Maximum Likelihood 5328.77 BIC: No. Observations: 2336 Tue, Dec 10 2019 Df Residuals: 2330 Date: Time: 11:19:41 Df Model: Mean Model 95.0% Conf. Int. 4.521 6.163e-06 [3.141e-02,7.949e-02] 0.0554 1.227e-02 Volatility Model std err 95.0% Conf. Int. 0.0298 5.609e-03 5.317 1.054e-07 [1.883e-02,4.082e-02] omega alpha[1] 0.0000 2.338e-02 1.000 [-4.583e-02,4.583e-02] 0.3267 4.852e-02 6.733 1.663e-11 gamma[1] [0.232, 0.422] beta[1] 0.8121 2.257e-02 35.978 1.835e-283 [0.768, 0.856]

EGARCH

- A popular option to model asymmetric shocks
- Exponential GARCH
- Add a conditional component to model the asymmetry in shocks similar to the GJR-GARCH
- No non-negative constraints on alpha, beta so it runs faster

EGARCH in Python

```
arch_model(my_data, p = 1, q = 1, o = 1,
    mean = 'constant', vol = 'EGARCH')
```

Constant Mean - EGARCH Model Results					
==========					
Dep. Variable:			Return	R-squared	d: -0.000
Mean Model:		Cons	tant Mean	Adj. R-sc	quared: -0.000
Vol Model:			EGARCH	Log-Like	lihood: -2628.40
Distribution:	Sta	ndardized St	udent's t	AIC:	5268.79
Method:		Maximum L	ikelihood	BIC:	5303.33
				No. Obser	rvations: 2336
Date:		Tue, De	c 10 2019	Df Residu	nals: 2330
Time:			11:19:42	Df Model:	: 6
		M	lean Model		
					95.0% Conf. Int.
mu					[3.051e-02,6.806e-02]
Volatility Model					
					95.0% Conf. Int.
omega	-0.0202	7.350e-03	-2.743	6.094e-03	[-3.457e-02,-5.753e-03]
alpha[1]	0.1707	2.279e-02	7.490	6.874e-14	[0.126, 0.215]
qamma[1]	-0.2360	2.598e-02	-9.087	1.019e-19	[-0.287, -0.185]
beta[1]	0.9547	9.191e-03	103.869	0.000	[0.937, 0.973]

Which model to use

GJR-GARCH or EGARCH?

Which model is better depends on the data

Let's practice!

GARCH MODELS IN PYTHON

GARCH rolling window forecast

GARCH MODELS IN PYTHON

Chelsea Yang
Data Science Instructor

Rolling window for out-of-sample forecast

An exciting part of financial modeling: predict the unknown

Rolling window forecast: repeatedly perform model fitting and forecast as time rolls forward

Expanding window forecast

Continuously add new data points to the sample

Motivations of rolling window forecast

- Avoid lookback bias
- Less subject to overfitting
- Adapt forecast to new observations

Implement expanding window forecast

Expanding window forecast:

Fixed rolling window forecast

New data points are added while old ones are dropped from the sample

Implement fixed rolling window forecast

Fixed rolling window forecast:

How to determine window size

Usually determined on a case-by-case basis

- Too wide window size: include obsolete data that may lead to high bias
- Too narrow window size: exclude relevant data that may lead to higher variance

The optimal window size: trade-off to balance bias and variance

Let's practice!

GARCH MODELS IN PYTHON

