NAVI MUMBAI

MATLAB Unit 2-Lecture 2

BTech (CSBS) -Semester VII

15 July 2022, 09:35AM

Predefined variables

variable	description
ans	Value of last expression
eps	Smallest difference between 2 numbers
i	V-1
inf	Infinity
j	Same as i
NaN	Not a number
pi	The number ∏

Week 1: Unit 1-Lecture 1

Some Useful MATLAB commands

- who List known variables
- whos List known variables plus their size
- help >> help sqrt (Help on using sqrt)
- clear Clear all variables from work space
- clear x y Clear variables x and y from work space
- clc Clear the command window

Variable and assignment statement

variable name = expression

Command window:

```
>> mynum = 6
mynum =
6
>>
```

Correction: The variable name must always be written on left, and expression on wright.

Now write in Command window:

```
>> 6 = mynum
6 = mynum
```

Error: The expression to the left of the equals sign is not a valid target for an assignment.

>>

Initializing, incrementing & decrementing

Frequently, values of variables change, as shown previously. Putting the first or initial value in a variable is called *initializing* the variable.

Adding to a variable is called *incrementing*. For example, the statement

```
mynum = mynum + 1
```

increments the variable mynum by 1.

Similarly, *mynum=mynum-1*, will be *decrementing* variable.

Week 1: Unit 1-Lecture 1

For floating point number there are two basic types:

- Double-Precision Floating Point
- Single-Precision Floating Point

The integer type are int8, int16, int32, int64.
These integers represent the bits used to store the value of data type.

type **char** is used to store the **character or string** eg. 'cat' type **logical** is used to store true/false.

Numerical Expression

Expressions can be created using values, variables that have already been created, operators, built-in functions, and parentheses. For numbers, these can include operators such as multiplication and functions such as trigonometric functions. An example of such an expression is:

```
>>2 * sin(1.4)
ans =
1.9709
```

Fromat Command

This will remain in effect until the format is changed back to **short**, as demonstrated in the following.

```
>> format long

>>2 * sin(1.4)

ans =

1.970899459976920

>> format short

>> 2 * sin(1.4)

ans =

1.9709
```


Fromat Command

The **format** command can also be used to control the spacing between the MATLAB command or expression and the result; it can be either **loose** (the default) or **compact**.

```
>> format loose
>> 5*33
ans =
    165
>> format compact
>> 5*33
ans =
    165
>>
```


Nested Parentheses

Within a given precedence level, the expressions are evaluated from left to right (this is called *associativity*).

For the operators that have been covered thus far, the following is the precedence (from the highest to the lowest):

```
() parentheses
^ exponentiation
- negation
*,/,\ all multiplication and division
+,- addition and subtraction
```


Properator precedence rule:

Operators	Precedence
Parentheses: ()	Highest
Power ^	6작년
Unary: Negation (-), not (~)	
Multiplication, division *,/,\	
Addition, subtraction +, -	
Relational $<$, $<=$, $>$, $>=$, $==$, $\sim=$	
And &&	
Or	
Assignment =	Lowest

Practice problem:

1. Think about what the results would be for the following expressions, and then type them in to verify your answers:

```
1\2
-5^2
(-5)^2
10-6/2
5*4/2*3
```

- 2. What would happen if you use the name of a function, eg abs, as a variable name?
- 3. Use plus operator and check the results.

Also, if a function name is typed incorrectly, MATLAB will suggest a correct name.

```
>> abso(-4)
Undefined function or variable 'abso'.
Did you mean:
>> abs(-4)
```


Constant/random number

```
3.14159....
рi
inf
       infinity \infty
NaN
       stands for "not a number," such as the result of 0/0
 >> rand
```

ans = 0.8147 >> rand ans = 0.9058

Practice problem:

Generate a random

- real number in the range (0,1)
- real number in the range (0, 100)
- real number in the range (20, 35)
- integer in the inclusive range from 1 to 100
- integer in the inclusive range from 20 to 35

Relational Expression

Expressions that are conceptually either true or false are called *relational expressions*; they are also sometimes called *Boolean expressions* or *logical expressions*. These expressions can use both *relational operators*, which relate two expressions of compatible types, and *logical operators*, which operate on *logical* operands.

The relational operators in MATLAB are:

Operator	Meaning
>	greater than
<	less than
>=	greater than or equals
<=	less than or equals
==	equality
~=	inequality

Example:

1. Assume that there is variable x that has been initialized, what would be the value of expression 3 < x < 5, if the value of x is 4? what if the value is 7?

Practice question:

Think about what would be produced by the following expressions, and then type them in to verify your answers.

Thank you for listening

10:45AM

IT Workshop/MATLAB