Modeling and Factor Analysis for Food Wastes

Group 1

Contents

01	PROJECT OVERVIEW	04	ANALYSIS
02	DATASET INSPECTION	05	EVALUATION

03 DATA PREPARATION 06 TEAM ROLES & LESSONS LEARNED

Project Overview

Motivation for Dataset Selection

Food waste has become a critical issue in achieving the Sustainable Development Goals (SDGs) in today's world. This project aims to systematically analyze food waste through data, and from this analysis, propose efficient operational strategies and waste reduction plans.

Expected benefits by Data Analysis

Furthermore, it explores the potential to implement an incentive system based on the amount of food waste generated, enabling restaurants or operational units to receive rewards according to their waste reduction performance, thus providing a practical and scalable management approach.

Project Overview

End to End process 7

Object setting

- To solve the problem of food waste occurring in restaurants...etc.
- Predict the amount of food waste using actual operation log data and contribute to establishing a reduction strategy through this.

Data Inspection

- Data exploration using the same plots as Boxplot, Histogram, and Scatter.
- Suitability check -In predicting waste volume, various factors are logically related.

Data Preparation

- Data Value Changes cleaning dirty data, text preprocessing, discretization, data normalization, encoding
- Feature engineering
 selection, creation

Data Analysis

- Clustering Kmeans: Deriving factor-based clusters
- Regression Interpretation by applying Linear Regression and LGBM Regression respectively

Evaluation

 K-Fold Cross Validation: Evaluate model performance more precisely for each cluster

Dataset Inspection

- Contains some missing values and wrong data
- Total number of samples: 911

Main Columns Descriptions

Numerical Features

- 1. day_of_week: Numeric representation of the day
- 2. special_event: Whether a special event was held or not
- 3. meals_served: Number of meals served on the day
- 4. kitchen_staff: Number of kitchen staff working that day
- 5. temperature_C: Kitchen temperature (Celsius)
- 6. humidity_percent: Humidity of kitchen or cafeteria (%)
- 7. past_waste_kg: Average of wasted food generated in the past (Kg)
- 8. food_waste_kg: Amount of wasted food measured for a day (Kg)

Categorical Features

- 1. date: The date of food waste measurement
- 2. staff_experience: Experience levels among kitchen staff (Beginner, Intermediate, Expert)
- 3. waste_category: Type of waste (Dairy, Meat, Vegetables, Grains)

```
RangeIndex: 911 entries, 0 to 910
Data columns (total 12 columns):
                      Non-Null Count Dtype
    Column
    ID
                      911 non-null
                                      int64
    date
                      911 non-null
                                      object
    meals served
                      911 non-null
                                       int64
    kitchen staff
                      911 non-null
                                       int64
    temperature C
                      911 non-null
                                       float64
    humidity percent 911 non-null
                                      float64
    day of week
                      911 non-null
                                       int64
    special event
                      911 non-null
                                       int64
    past waste kg
                      911 non-null
                                       float64
    staff experience 747 non-null
                                      object
    waste_category
                                       object
                      911 non-null
    food waste kg
                      911 non-null
                                       float64
dtypes: float64(4), int64(5), object(3)
```

- Categorical data ('staff_experience', 'waste_category)
 - : Converted to guilt and removed the replacement.
- Outlier 'temperature_C', 'meals_served'
- Missing Value 'temperature_C', 'paste_waste_kg', 'staff_experience'
- Encoding 'staff_experience', 'waste_category'

Outliers

1. temperature_C

- : Some temperature_C values are way too high (60°C) or too low (-10°C)
- In the "Temperature_C" column, calculate the most frequent value from the values greater than 0 and less than 36 (To obtain robust central tendency measurements for temperatures within a normal range)
- → Identify values less than or equal to 0 or greater than or equal to 36 as outliers.
- → These outliers are replaced with the previously computed mode_temp.

2. meals_served

- : Remove all rows more than 500, which are extremely high (about 10 times higher than the normal range)
- : Rows exceeding 500 are a minority.

 The specific event data was 0
 but the values were extremely high and out of the normal range, those rows were removed.

Missing Value

- 1. temperature_C
 - : Any missing values (NaN) remaining in the column are filled with mode_temp.
 - : The mode was selected because it is sensitive to outliers and is less affected by outliers.
- 2. paste_waste_kg
 - : Any missing values (NaN) remaining in the column are filled with mean.
 - : The average was selected because it was normally distributed and reflected the overall trend well.
- 3. staff_experienced
 - : Considering the correlation between kitchen_staff and past_waste_kg.
 - : If there are few kitchen staff(<12) and a lot of waste(>20), it is processed as beginner, if there are many kitchen staff(>17) and little waste(<15), it is processed as expert, and the rests are processed as intermediate.

Encoding

- 1. staff_experience
 - : begginer 0, intermediate 1, expert 2
 - : Since staff_experience represents an ordinal variable with a meaningful order of experience levels, and the subsequent regression model interprets numeric values as having quantitative significance, we manually encoded the categories as beginner 0, intermediate 1, and expert 2.
- 2. waste_category
 - : Label encoding was done in alphabetical order.

Feature Engineering

Feature creation

- By standardizing and summarizing multiple features of each group (environment, operation, human), we created a meaning-based representative value (score).
- By performing clustering and regression modeling based on this score, we improved the predictive power and interpretability.
- Normalization within factors by MinMaxScaler and calculation(mean) of factor scores
 - → Renormalize factor scores

env_features

temperature_C humidity_percent

ops_features

meals_served special_event day_of_week

human_features

kitchen_staff staff_experience

Data Analysis

Modeling Strategy: Clustering + Regression Approach

Goal

- Food waste cause prediction
- heterogeneous patterns depending on various environmental/operational/human conditions.

Approaches

- Clustering
 Customized analysis and prediction
 - Each cluster has different characteristics, customized solutions can be provided for each cluster.
- Linear Regression
- LGBM Regression

Data Analysis - Clustering

Clustering

- KMeans
 - : KMeans clustering based on normalized factor scores (n=3)
 - : Store which cluster each data belongs to in df['cluster']
 - : Calculate average score for each cluster
 - → Use to identify cluster characteristics

```
kmeans = KMeans(n_clusters=3, random_state=42)
df['cluster'] = kmeans.fit_predict(cluster_input)

cluster_mean = df.groupby('cluster')[['env_score_norm', 'ops_score_norm', 'human_score_norm']].mean()
print(cluster_mean)
```

	env_score_norm	ops_score_norm	human_score_norm
cluster			
0	0.429175	0.340753	0.203346
1	0.443927	0.361075	0.829298
2	0.696050	0.409591	0.484498

Data Analysis - Clustering

Cluster Visualization

- Cluster
 - 1. Cluster 0: Consists of clusters with high human_score
 - 2. Cluster 1: Configure clusters with high env_score
 - 3. Cluster 2: All factors are evenly distributed and all three scores are low

Data Analysis - K-Means Clustering + Linear Regression

Why? used Linear Regression - Effectiveness

1. Interpretability of the Model

• Coefficients allow us to quantify how much and in what direction each variable affects the target (food waste).

2. Cluster-Specific Variable Influence

• Enables clear **comparison of impact factors across clusters**, helping to identify key drivers like human, environmental, or operational factors in each group.

3.Low Complexity, Fast Execution

• Linear regression assumes a simple relationship, making it quick to train and evaluate without complex tuning.

4. Effective with Normalized Data

 Works well with data scaled using MinMax or StandardScaler, making coefficient magnitudes more comparable across features.

Data Analysis - Linear Regression Result by Coefficient

Feature	Cluster 0	Cluster1	Cluster2
temperature	0.04	1.25	0.56
humidity_percent	0.09	1.73	-0.05
meals_served	6.08	6.14	7.13
special_event	2.84	3.95	2.61
day_of_week	-0.35	0.42	0.41
kitcen_staff	0.84	1.08	-0.38
staff_experience	-1.88	-0.99	-0.40

^{*}Since **special_event** is a binary feature can result in a relatively large regression coefficient.

Cluster 0: Human-driven group

staff_experience has a strong negative coefficient(-1.8), meaning more experience significantly reduce waste.

Kitchen_staff is positively weighted(+0.08), implying **more staff** may cause inefficiencies.

Key Factor: Staff experience.

Cluster 1:Envrionmentally Sensitive Group

Temperature and **humidity** both have **positve** influence.

Special_event is most influential.

Key factor: Climate and events.

Cluster 2: All overall Lowest Group

meal_served has the strongest influence(+7.13), meaning food waste is highly correlated.

Negative coefficient for **kitchen_staff**(-0.38) indicates more staff slightly reduces waste.

Key factor: meal quantity

Data analysis - Linear Regression Conclusion

Cluster 0

• When the experience level of kitchen staff is low, food waste increases significantly, especially during special events.

Cluster 1

• This cluster is highly sensitive to environmental factors such as temperature and humidity, and is still significantly affected by special events.

Cluster 2

 The amount of meals served is the most critical driver of food waste, while the impact of staff size or experience is relatively minor.

Data Analysis - K-Means Clustering + LGBM Regressor

Use Clustering & Regression

Why?

Q. Why did you use clustering and regression together?

• Data heterogeneity handling, local prediction model creation, accuracy improvement, ease of interpretation, etc...

How?

Q. How did you use K-Means and LGBM Regressor?

K-means: use MinMaxScaler to normalize all features to [0, 1].

LGBMRegressor: Divide the data into clusters, then split the training/validation data for each cluster using train_test_split().

Data Analysis Comparison with another answers-1

Compare clustering aspects

item	Ours	Answer
Apply clustering	Create clusters with KMeans (n_clusters=3)	No clustering
Leveraging clusters	Split data by cluster ID and apply a separate regression model to each cluster	Treat your entire data as one model
Benefits	Learn complex patterns with cluster- specific models	Simple structure with full integration processing without splitting data
Cons	The number of clusters (n=3) needs to be specified in advance, and improper division can actually degrade performance	Possible performance degradation when data is heterogeneous

Data Analysis

Comparison with another answers-2

Compare

Regression aspects

item	Ours	Answer
Model Type	LGBMRegressor (based on LightGBM)	GradientBoostingRegressor (based on sklearn)
Number of models	As many individual models as there are clusters (3)	Single model
How you learn	Train_test_split per cluster and then train separately	Pipeline training on full data
Hyperparameters	n_estimators=1000, learning_rate=0.01, etc. (conservative learning)	n_estimators=100, learning_rate=0.15 (aggressive learning)

Data Analysis

Graph Analytics

What the graph tells us about each cluster

- Cluster 0 or 1 (more likely to be the center cluster): Predicted values concentrated in the 40-50 kg range → representative of the central tendency of the overall data
- Cluster 2 (↑ likelihood of being a highprediction group): Rare but present large predictions in the 80-120 kg range

Evaluation

LGBMRegressor vs LinearRegression

Separation	LGBMRegressor	Linear Regression
Pros	Can learn non-linear relationships - Automatically reflects interactions between features based on trees - Supports automatic handling of missing values - Easy to analyze feature importance - Easy to control overfitting (early_stopping, max_depth, etc.) - Good for customized learning by clusters	Simple and fast to implement - Intuitive to interpret (utilizing regression coefficients) - Low risk of overfitting (especially on small datasets) - Can be utilized as a classic baseline model
Cons	Structure is complex and requires tuning - Learning can be slow - Interpretation is not intuitive (non-linear decision boundaries) - Per-cluster models increase administrative complexity	Cannot learn non-linear relationships - Cannot reflect interactions between traits - Very sensitive to handling missing values, outliers, and categorical variables - Has performance limitations with complex data

Evaluation - K-Fold (Linear Regression)

Pipeline

- 1. Unsupervised Clustering
- 2. Supervised Learning per Cluster
- 3. Evaluation: K-Fold Cross -Validation

```
# KFold
kf = KFold(n_splits=5, shuffle=True, random_state=42)
cluster_kfold_results = []
predictors = env_features + ops_features + human_features
target = 'food_waste_kg'
```

1. Data Splitting After Sturcture

KMeans(n_cluster=3) was used to split the data into 3 Cluster(0,1,2)

2. Applying K-Fold within Each Cluster

- For each Cluster:

 - split the data into features X and target y
 Apply K-Fold(n_split = 5) to divide the data into 5 Folds
 -> Each cluster undergoes 5 rounds of training and validation

3. Iterative Training & Evaluation per Fold

- In each iteration:
 - Use X_train, y_train to train a LinearRegression model
 Predict on X_test, evaluate using y_test

- Evaluation metrics:
 - MSE (Mean Squared Error)
 - R² (R-squared)

Evaluation - K-Fold (Linear Regression)

Cluster 0 - Human-Focused Cluster

```
cluster
                      mse_std
          mse_mean
                                r2_mean
                                           r2_std n_samples
                     7.398669
        93.416161
                               0.290026
                                                          292
                                         0.104504
                     8.876440
         98.982296
                                                          316
                               0.282741
                                         0.102904
         78.572375
                    10.142476
                               0.382559
                                         0.027521
                                                          255
```

- MSE: 93.4 / R²: 0.2900
- Influenced by human operational factors.
- Although staff_experience is an ordinal variable (0, 1, 2), which can **limit expressiveness in linear** models, its categorical nature supports clear, rule-based policy design.

Cluster 1 - Envionment-Sensitive Cluster

- MSE: 98.9 / R²: 0.2827 (Lowest performance)
- Environmental factors often behave **non-linearly** and with **high variability**, making them **harder to model accurately using linear regression**.
- While special_event appears influential, its binary nature may exaggerate importance due to normalization, and interactions with environmental variables might be overlooked.

Evaluation - K-Fold

Cluster 2 - All overall Lowest Group

- MSE: 78.6 / R²: 0.3826 (best performance)
- Waste generation in this group is highly correlated with meal volume, forming a near-linear and predictable relationship.
- The strong signal-to-noise ratio and structural simplicity of this cluster enable **more accurate predictions** even with basic models.

Why the R² Scores & MSE were unstable..?

- The relatively unstable R² & MSE values are not due to flaws in the model itself, but rather stem from limitations in the data characteristics and feature design.
- Several key input features are discrete or binary, which makes it difficult to accurately capture the variance in the continuous target variable food_waste_kg.
- The model also does not account for feature interactions. In real-world restaurant operations, factors like temperature + event occurrence or staff count + meal volume interact and jointly impact food waste.
- However, the linear model treats these variables independently, which limits explanatory power.

Future Directions & Model Enhancement Strategy...

1. *Introduce Non-Linear Models (Random Forest, XGBoost, Neural Net...)

• Implementing models like Random Forest, XGBoost, or Neural Networks can capture complex relationships better and improve R² performance

2. Feature Engineering with Interaction Terms

(ex. kitchen_staff × special_event OR temperature × humidity)

• Currently we only considered each variable individually but we can create combinatorial variables to reflect potential relationships.

Team Roles & Lessons Learned

박유원 202135768

Data Research Visualization PPT 이동호 202239878

Evaluation Regression PPT 채민석 202334166

Data Analysis Regression PPT 이나영 202434800

Data Preparation Clustering PPT

이번 과제를 통해 데이터분석이 어떤 과정으로 이루어지는지뿐만 아니라 데이터분석의 필요성과 유 용성, 그리고 소요되는 자원과 시간 을 몸소 경험할 수 있었고 조원들과 함께 협력하여 문제를 해결하는 기 회를 가져 전반적으로 지식과 학습 법을 익힐 수 있는 유익한 시간을 보 낼 수 있었습니다. 감사합니다. 데이터 전처리부터 해석까지 전체 end to end process를 조원들과 함께 경험하며, 데이터가 제공하는 구조적통찰과 다양한 아이디어의 중요성을 절실히 느꼈습니다. 수업 시간에 배운 여러 내용들을 본 프로젝트에 최대한 녹여내려 노력하며 역량 강화에 도움이 되었습니다. 또한 주어진 결과를 다양한 관점으로해석하는 법을 새롭게 배운 것 같아많이 깨우쳤습니다. 감사합니다.

전처리된 dataset을 기반으로 전체적인 모델을 설계하는 역할을 맡았으며, 주어진 dataset에 수업시간에 언급되었던 K-means, LGBMRegressor를 직접 사용해보다 실무적인 경험을 할 수 있었습니다. 데이터 전처리와 군집별 모델설계가 예측 정확도에 얼마나 큰 영향을 미치는지도 배울 수 있던 활동이었습니다. 감사합니다.

데이터 전처리 과정이 분석 단계와 함께 반복적으로 수정되며 진행되는 과정임을 체감했습니다. 또한 조원들과 다양한 관점에서 데이터를 논의하며 데이터를 획일적으로 바라보는 대신 다양한 패턴과 특성을 발견하고 이에 맞춰 분석하는 접근 방식이 깊이 있는 통찰을 도출하는데 기여함을 새롭게 배울 수 있는 의미 있는 경험이었습니다. 감사합니다.

Thank you

The entire process and outcomes of our project are openly shared at https://github.com/dongramiho/Datascience termproject

Appendix

Plaenned(In proposal) vs Actual Approach

Initial Proposal

- Perform clustering by individual factors (Environment, Operations, Human)
- Conduct regression analysis within each cluster
 - → Goal: Understand how each factor independently influences food waste

Challenges Encountered!

1.Limited Dataset Size

- Total samples: 911
- After preprocessing: ~870 usable entries
- 3 clusters per factor × 3 factors = 9 clusters
- → Fewer than 100 samples per cluster → Unstable training & reduced reliability

2. Lack of Factor Interaction Control

- Clustering based on a single factor makes it difficult to control for variation in other factors
- o Example: Clusters based on environmental conditions still include mixed operational and human characteristics

Final Implemented Approach*

- Performed clustering using combined features: Environment + Operations + Human
- Recognized that in real-world restaurant settings, these factors are interdependent, not isolated
- Grouped data based on similar overall operational conditions
- Then, conducted regression analysis within each cluster to identify key influencing variable.