FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Teodor Duraković Naměřeno: 28. února 2024

Obor: F Skupina: St 8:00 Testováno:

Úloha č. 1: měření hustoty válce

 $T=20.2~^{\circ}\mathrm{C}$ $p=989~\mathrm{hPa}$

 $\varphi = 43.5 \%$

1. Zadání

Zjistit hustotu dutého válce pomocí změření jeho rozměrů a hmotnosti.

2. Postup

Válci jsou změřeny veškeré dimenze (vnější a vnitřní diametr, výška). Průměry jsou měřeny posuvným měřítkem (d=0.02mm), výška mikrometrem (d=0,005mm). Hmotnost je zvážena laboratorními váhami (d=0,0001g;e=0,001g). Na závěr je těleso ponořeno do vody, čímž je odhadnuta jeho hustota - těleso neplove, hustota tudíž bude vyšší než $1000\frac{kg}{m^3}$.

2.1. Měření

Měření rozměrů jsou vždy provedena desetkrát, při zpozorování viditelných hrubých chyb je měření opakováno bez zápisu chybné hodnoty.

n	D [cm]	d [cm]	\mid h $[\mathrm{mm}]\mid$
1	4.962	0.992	15.040
2	4.966	1.000	15.115
3	4.962	0.980	15.110
4	4.962	0.972	15.135
5	4.964	1.000	15.120
6	4.962	0.996	15.065
7	4.964	0.994	15.105
8	4.962	1.000	15.085
9	4.964	1.000	15.080
10	4.962	0.988	15.125

Změřená hmotnost činila m = 33,2557g

2.2. Zpracování měření

Vztahem

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

Získáme odhady středních hodnot (arit. průměry) vícekrát měřených veličin (uvedeny v bodě 2.6.). Střední hodnoty dosadíme do formule pro výpočet hustoty:

$$\overline{\rho} = \frac{m}{V} = \frac{\overline{m}}{\pi \overline{h}((\frac{\overline{D}}{2})^2 - (\frac{\overline{d}}{2})^2)} = 1.18599g/cm^3 = 1185.99kg/m^3$$
 (2)

Vztahem

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}} \tag{3}$$

Získáme odhad směrodatné odchylky. Úpravou studentovým koeficientem s $p=0,9973, \nu=9$ získáme hrubé chyby (krajní odchylky) pro měřené veličiny. Vidíme, že měřené hodnoty z intervalů nevystupují, soubory hodnot tudíž není třeba nijak upravovat.

2.3. Nejistoty typu A

Nejistoty typu A získáme užitím vztahu

$$u_x = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N(N-1)}}$$
 (4)

2.4. Nejistoty typu B

Nejistoty typu B získáme užitím vztahu $u_B = a/k$:

2.4..1 Měřidla délky

pro měřidla délky platí: $a=d; k=\sqrt{3}; u_b=\frac{d}{\sqrt{3}}$ Pro posuvné měřítko tedy nejistota typu B činí $u_B=\frac{0.002}{\sqrt{3}}=0.00115cm$ Pro mikrometr platí $u_B=\frac{0.0005}{\sqrt{3}}=0.000289cm$

2.4..2 Váhy

Pro váhy platí: a=e; k=3,tedy $u_B=\frac{0.001}{3}=0.000333g$

2.5. Nejistota typu C

Nejistotu typu C získáme vztahem:

$$u_C = \sqrt{u_A^2 + u_B^2} \tag{5}$$

2.6. Spočítané veličiny

Výše uvedenými vztahy jsme získali následující veličiny

	\overline{x}	\hat{k}	u_A	u_B	u_C	
D [cm]	4.963	0.0058	0.000447	0.00115	0.00124	
d [cm]	0.9922	0.039	0.00305	0.00115	0.00326	
h [cm]	1.5098	0.012	0.000943	0.000289	0.000986	
m [g]	33.2557	-	-	0.000333	0.000333	

2.7. Zákon přenosu nejistot

Užitím zákona přenosu nejistot získáme formuli pro nejistotu výsledku - hustoty:

$$u_{\rho} = \sqrt{\left(\frac{-8\pi hmD}{\left(\pi h\left(D^{2} - d^{2}\right)\right)^{2}}\right)^{2} \cdot u_{D}^{2} + \left(\frac{8\pi hmd}{\left(\pi h\left(D^{2} - d^{2}\right)\right)^{2}}\right)^{2} \cdot u_{d}^{2} + \left(\frac{-4m}{\pi h^{2} \cdot \left(D^{2} - d^{2}\right)}\right)^{2} \cdot u_{h}^{2} + \left(\frac{4}{\pi h \cdot \left(D^{2} - d^{2}\right)}\right)^{2} \cdot u_{m}^{2}}$$
 (6)

Po dosazení získáváme kombinovanou nejistotu hustoty:

$$u_0 = 0.0034g/m^3$$

Tuto nejistotu upravíme studentovým koeficientem pro $p=0.68; \nu=9$:

$$U_{\rho} = 1.059 * u_{rho} = 0.0036g/cm^3 = 3.6kg/m^3$$

3. Výsledek

Výše popsaným postupem jsme získali hodnotu hustoty:

$$\rho = (1186 \pm 4)kg/m^3 (p = 0.6827)$$

4. Závěr

Spočítaná hodnota se pohybuje v předpokládaných mezích, bez znalosti konkrétního druhu materiálu však hodnotu nedokážeme porovnat s hodnotou tabulkovou. Přesnost experimentu lze nicméně částečně zhodnotit relativní odchylkou, která je při hodnotě $r_{\rho}=\frac{4}{1186}=0.0034$ - tedy kolem tří promile - s ohledem na účely experimentu přijatelná.