Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di TE1

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 7 29 APRILE 2010

- 1. Calcolare il discriminante del p-esimo polinomio ciclotomico, per p numero primo, e del polinomio $X^n - a$, per $a \in \mathbb{Q}$. (Suggerimento: usare il secondo esercizio del tutorato precedente. Per chi se la sente: provare a farlo direttamente con la definizione.)
- 2. Dimostrare che se il campo di spezzamento di un polinomio f(X) è reale allora $D(f) \geq 0$.
- 3. Dimostrare che il discriminante di un polinomio di quarto grado e della sua risolvente cubica sono uguali. (Suggerimento: NON usare la forma esplicita della risolvente cubica.)

La regola dei segni di Cartesio

Diciamo che $f(X) \in \mathbb{R}[X]$ ha una variazione (di segno) se due suoi termini consecutivi non nulli hanno segno opposto. Allora:

- Il numero delle radici reali positive di f(X) è al più uguale al numero delle variazioni.
- Il numero delle radici reali negative di f(X) è al più uguale al numero delle variazioni di f(-X).
- 4. Determinare il gruppo di Galois dei seguenti polinomi:

a)
$$X^4 + 2X + 2$$

d)
$$2X^5 - 10X + 5$$

e) $X^5 - 8X + 2$
f) $X^5 - 8X^4 + 2X^2 + 2$

b)
$$4X^4 + 4X + 3$$

e)
$$X^5 - 8X + 2$$

c)
$$X^4 - 6X^2 + 4$$

f)
$$X^5 = 8X^4 + 2X^2 + 3$$

- 5. Esplicitare la corrispondenza di Galois per il polinomio $X^5-2X^3+X^2-3X+1$.
- a) Determinare tutti gli ampliamenti quadratici di \mathbb{Q} contenuti in $\mathbb{Q}(\xi_p)$, per p primo.
 - b) Lo stesso ma per $\mathbb{Q}(\xi_n)$, n generico.
 - c) Dimostrare che tutti gli ampliamenti quadratici di Q sono contenuti in un ampliamento ciclotomico (suggerimento: $\mathbb{Q}(\xi_n)$ è il composto degli $\mathbb{Q}(\xi_p)$ sui divisori primi di n); determinare esplicitamente un ampliamento ciclotomico che contiene \sqrt{d} , per d = 2, 3, 5, -15, -21.
 - d) Dedurne che se $F = \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_k})$ allora F è contenuto in un ampliamento ciclotomico.
 - e) Dimostrare che se $\mathbb{Q} \subset F$ è normale e $\operatorname{Gal}_{\mathbb{Q}} F \simeq \mathbb{Z}_2^k$ per un intero k allora Fè contenuto in un ampliamento ciclotomico.
 - f) Dimostrare che non esistono n per cui $\operatorname{Gal}_{\mathbb{Q}} \mathbb{Q}(\xi_n) \simeq \mathbb{Z}_2^k$ per ogni $k \geq 4$.