Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 Weakest Preconditions

In this exercise, you shall prove the correctness of two simple programs using weakest preconditions.

Step 1 Write a program that stores the maximum of the values of variables a and b in variable c.

definition Max :: com where

Step 2 Prove these lemmas about *max*:

lemma [simp]: " $(a::int) < b \implies max \ a \ b = b$ "

lemma [simp]: " $\neg(a::int) < b \Longrightarrow max \ a \ b = a$ "

Show total correctness of Max:

lemma "wp Max ($\lambda s. s. ''c'' = max (s. ''a'') (s. ''b'') s."$

Step 3 Note that our specification still has a problem, as programs are allowed to overwrite arbitrary variables.

For example, regard the following (wrong) implementation of Max:

definition "MAX_wrong = ("a"::=N
$$\theta$$
;;"b"::=N θ ;;"c"::= N θ)"

Prove that MAX_wrong also satisfies the specification for Max:

lemma "wp
$$MAX$$
_wrong ($\lambda s.\ s$ " c " = max (s " a ") (s " b ")) s "

What we really want to specify is, that Max computes the maximum of the values of a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more accurate specification for Max:

lemma "a=s" $a'' \land b=s$ " $b'' \Longrightarrow wp \; Max \; (\lambda s. \; s \; ''c'' = max \; a \; b \; \land \; a=s \; ''a'' \; \land \; b=s \; ''b'') \; s$ "

Step 4 Write a program that calculates the sum of the first n natural numbers. The parameter n is given in the variable n.

definition Sum :: com where

Step 5 Find a proposition that states partial correctness of Sum and prove it! Hint: Use the following specification for the sum of the first n non-negative integers.

```
fun sum :: "int \Rightarrow int" where

"sum i = (if i \leq 0 \text{ then } 0 \text{ else } sum (i - 1) + i)"

lemma sum\_simps:

"0 < i \Longrightarrow sum i = sum (i - 1) + i"

"i \leq 0 \Longrightarrow sum i = 0"

by simp+
```

lemmas $[simp \ del] = sum.simps$

Exercise 6.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form $P s \Longrightarrow wp$ (x := a) Q s, where Q is some suitable postcondition.

lemma

```
fwd\_Assign: "P s \implies wp (x:=a) (\lambda s'. \exists s. P s \land s'=s(x:=aval\ a\ s)) s"
```

lemmas $fwd_Assign' = wp_conseq[OF fwd_Assign]$

Redo the proofs for *Max* from the previous exercise, this time using your forward assignment rule.

lemma "wp Max (
$$\lambda s. s. ''c'' = max (s. ''a'') (s. ''b'') s."$$

Exercise 6.3 Weakest Preconditions for OR

Use the extend version of IMP with c_1 OR c_2 . Recall that it models nondeterministic choice: it may execute either c_1 or c_2 . Add a rule for OR to the weakest precondition calculus in theory Wp_Demo , and adjust the proofs.

Homework 6.1 While Invariants

Submission until Tuesday, November 20, 2018, 10:00am.

We have pre-defined a while-combinator

```
while :: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow 'a) \Rightarrow 'a \Rightarrow 'a \text{ option}
```

such that the following unfolding property holds:

```
while b f s = (if b s then while b f (f s) else Some s)
```

To prove anything about the computation result of *while* we need to use a proof rule with an invariant (similarly to what you have seen for the weakest precondition calculus). Prove that the following rule is correct:

```
theorem while_invariant:

assumes "wf R" and "I s"

and "\samples s \infty b s \infty I (f s) \sample (f s, s) \in R"

shows "\exists' \samples - b s' \sample while b f s = Some s'"

using assms(1,2)

proof induction

case (less s)
```

Here is an example of how we can use this rule:

definition

```
"list_sum xs \equiv fst (the (while (\lambda(s, xs). xs \neq []) (\lambda(s, xs). (s + hd xs, tl xs)) (0, xs)))" lemma list_sum_list_sum:
```

```
"list\_sum\ xs = sum\_list\ xs"
proof -
 let ?I =
 let ?R = "\{((s, as), (s', bs)). length as < length bs \land length bs \leq length xs\}"
 have "wf?R"
   by (rule wf_bounded_measure[where
         ub = "\lambda_- . length xs" and f = "\lambda(_-, ys) . length xs - length ys"]) auto
 have "\exists s'. ?I s' \land \neg (\lambda(s, xs). xs \neq []) s' \land
   while (\lambda(s, xs), xs \neq []) (\lambda(s, xs), (s + hd xs, tl xs)) (\theta, xs) = Some s'''
   apply (rule while_invariant[OF \langle wf ?R \rangle])
    apply simp
   apply clarsimp
   subgoal for zs ys
     apply (rule exI[where x = "ys @ [hd zs]"])
     apply auto
     done
   done
 then show ?thesis
   unfolding list_sum_def by auto
qed
```

You can get one bonus point if you manage to fill in an invariant for ?I such that the proof goes through!

Homework 6.2 IMP Interpreter

Submission until Tuesday, November 20, 2018, 10:00am.

The goal of this exercise is to define an interpreter for IMP programs and to prove it correct. First define a function cfg_step that interprets a given configuration for a single step:

```
fun cfg\_step :: "com * state" <math>\Rightarrow com * state" where
```

Your function should fulfill the following properties:

```
theorem small_step_cfg_step: "cs \rightarrow cs' \Longrightarrow cfg\_step \ cs = cs'"
```

```
theorem final\_cfg\_step: "final\ cs \Longrightarrow cfg\_step\ cs = cs"
```

Prove these properties!

Our interpreter will interpret programs with a finite amount of fuel, i.e. it simply iterates cfg_step for a finite number of times:

```
fun cfg\_steps :: "nat \Rightarrow com * state \Rightarrow com * state" where "cfg\_steps 0 cs = cs" | "cfg\_steps (Suc n) cs = cfg\_steps n (cfg\_step cs)"
```

Prove that the interpreter is complete:

```
theorem small\_steps\_cfg\_steps:

"cs \to * cs' \Longrightarrow \exists n. cfg\_steps n cs = cs'"

and that it is sound:

theorem cfg\_steps\_small\_steps:

"cfg\_steps n cs = cs' \Longrightarrow cs \to * cs'"

corollary cfg\_steps\_correct:

"cs \to * cs' \longleftrightarrow (\exists n. cfg\_steps n cs = cs')"

by (metis small\_steps\_cfg\_steps cfg\_steps\_small\_steps)
```

Homework 6.3 Simulation and Termination

Submission until Tuesday, November 20, 2018, 10:00am.

Note: This is a bonus exercise worth three additional points.

In this exercise, we consider an abstract notion of simulation between transition system. We simply model transition systems as relations of type $'a \Rightarrow 'a \Rightarrow bool$. A system step' simulates a systems step with respect to relation R if the following holds:

definition

```
"is_sim R step step' \equiv \forall a \ b \ a'. R a \ b \land step \ a \ a' \longrightarrow (\exists \ b'. \ R \ a' \ b' \land step' \ b \ b')"
```

First show that this simulation property can also be extended to runs in the transition system:

```
lemma is\_sim\_star:
assumes "is\_sim\ R step step'" "R a b" "step** a a'"
shows "\exists\ b'.\ R\ a'\ b' \land step'** b\ b'"
```

Define an inductive predicate that correctly characterizes the notion of a terminating state. The predicate terminating step s should hold if there is no infinite execution path from s in the system specified by step:

inductive terminating for step where

Prove the following theorem that connects simulation and termination:

```
theorem terminating_simulation:
assumes "is_sim R step step'" "terminating step' b" "R a b"
shows "terminating step a"
```

Does the converse also hold?

Homework 6.4 Challenge: Partial Correctness of While

Submission until Tuesday, November 20, 2018, 10:00am.

This is a bonus exercise. The challenge is to find a proof of the theorem wlp_whileI' that is as short as possible. The shortest solution gets three points. Solutions that get close to it will get partial credit. The length of a solution is the number of tokens it contains. We will count tokens of the outer syntax roughly as follows:

- Terms of the inner syntax such as abc, a + b etc. will all be counted as one token.
- Keywords and keyword tokens of the outer syntax such as apply, done, by, proof, next, (,), [,], induction, auto, :, add, of, where, OF etc. will all be counted as one token.
- Whitespace is not a token