On souhaite réaliser l'expérience de la bouteille multicolore, amélioration de la bouteille bleue. (vidéo de l'expérience en cas d'échec)

Réactifs et matériel :

- solution d'hydroxyde de sodium (Na++OH-) à 0,40 mol.L-1
- D-glucose
- carmin d'indigo
- 1 bécher de 100 mL
- 1 erlenmeyer de 250 mL muni d'un bouchon
- 1 balance
- 1 spatule
- 1 agitateur en verre
- lunettes de protection
- gants

Sécurité:

Nom	D-glucose	Hydroxyde de sodium	Carmin d'indigo	
Formule chimique	C ₆ H ₁₂ O ₆	NaOH	C ₁₆ H ₈ N ₂ Na ₂ O ₈ S ₂	
Solubilité	eau, alcool	très soluble dans l'eau	10 g.L ⁻¹ dans l'eau, très soluble dans l'alcool	
Pictogramme de sécurité			<u>(1)</u>	
Dangers		H314 : Provoque de graves brûlures de la peau et de graves lésions des yeux	H302 : Nocif en cas d'ingestion	
Précautions P102 : tenir hors de portée des enfa		P301+P330+P331: EN CAS D'INGESTION: Rincer la bouche. NE PAS faire vomir. P305+P351+P338: EN CAS DE CONTACT AVEC LES YEUX: Rincer avec précaution à l'eau pendant plusieurs minutes. Enlever les lentilles de contact si la victime en porte et si elles peuvent être facilement enlevées. Continuer à rincer.	P102 : Tenir hors de portée des enfants P280 : Porter des gants de protection/des vêtements de protection/un équipement de protection des yeux/du visage/une protection auditive/ P301+P312+P330 : EN CAS D'INGESTION : Appeler un CENTRE ANTIPOISON/un médecin// en cas de malaise. Rincer la bouche.	
Pictogrammes de précaution		Gants Blouse Lunettes	Gants Masque Lunettes	

Masses molaires:

élément	Н	С	N	0	Na	S
M (g.mol ⁻¹)	1,0	12,0	14,0	16,0	23,0	32,1

Questions preliminaires:
1. Déterminer le volume V_1 d'eau correspondant à $n_1=$ 1,1 mol d'eau.
2. Déterminer le volume V_2 de solution (Na+ + OH-) de concentration $C=0.40$ mol·L ⁻¹ nécessaire pour
apporter $n_2 = 0.028$ mol d'hydroxyde de sodium.
3. Déterminer la masse m_3 de glucose correspondant à $n_3 = 0.014$ mol.
Protocole de l'expérience :
 Se munir des protections nécessaires.

- Verser 1,1 mol d'eau distillée chaude mesuré à l'éprouvette graduée dans l'erlenmeyer.
- Ajouter 0,028 mL d'hydroxyde de sodium mesuré à l'éprouvette graduée à partir de la solution diluée.
- Dissoudre dans un bécher 0,014 mol de glucose dans 10 mL d'eau distillée.
- Verser la solution obtenue dans l'erlenmeyer.
- Ajouter quelque gouttes de carmin d'indigo en solution (ou une petite pointe de spatule pour du carmin d'indigo solide).
- Boucher l'erlenmeyer et patienter.

- · Secouer brièvement l'erlenmeyer.
- Secouer ensuite plus vigoureusement et plus longtemps l'erlenmeyer.

Que se passe-t-il pendant l'agitation qui pourrait expliquer ce qui est observé?