

Lecture 10: Generative Adversarial Networks

Efstratios Gavves

Lecture overview

- Implicit density models: Motivation
- Generative adversarial networks
- Challenges
- GAN models

A map of generative models

Avoiding complex computations

- In the generative models we have model explicitly our density functions
- o Typically, the learning objective is intractable due to normalization constant
- Circumvent the problem with very intelligent approximations
 - Boltzmann machines via energy functions
 - Variational autoencoders via variational approximations
- What if skipped modelling the explicit density altogether?

Learning an implicit density function

- We no longer try to directly optimize p(x) or p(x, z)
- o Instead, learn evaluate directly if the generations are plausible
 - And return gradients when not
- What is a plausible generation?
 - Especially in an unsupervised setting with no guidance
- For generative adversarial networks plausible generation is one that cannot be easily recognized as such by a competing neural network

Generations of high quality

StyleGan