第1章 随机事件及其概率

(1)排列 组合公式	$P_m^n = \frac{m!}{(m-n)!}$ 从 m个人中挑出 n 个人进行排列的可能数
	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m个人中挑出 n 个人进行组合的可能数
(2) 加法 和乘法原 理	加法原理 (两种方法均能完成此事:) m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种 方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理 (两个步骤分别不能完成这件事) m× n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个 步骤可由 n 种方法来完成,则这件事可由 m× n 种方法来完成。
(3)一些 常见排列	重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题
(4) 随机 试验和随 机事件	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果 不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则 称这种试验为随机试验。 试验的可能结果称为随机事件。
(5)基本 事件、样 本空间和 事件	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。
(6) 事件 的关系与 运算	①关系: 如果事件 A的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B: $A = B$ A、B中至少有一个发生的事件: $A \bowtie B$,或者 $A + B \bowtie B$ 。 属于 $A \cap A \cap B \cap $

	A、 B 同时发生: A r B , 或者 AB 。 A r B 则表示 A
	时发生, 称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
	Ω -A称为事件 A的逆事件,或称 A的对立事件,记为 \overline{A} 。它表示
	A不发生的事件。互斥未必对立。
	②运算: 结合率: A(BC)=(AB)C A(B∪C)=(A∪B)∪C 分配率: (AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
	德摩根率: $i=1$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满足下列三个条件:
	「F(A),有例是「勿」」「条件: 1°0≤P(A)≤ 1,
(7) 概率	$2^{\circ} P(\Omega) = 1$
的公理化	3° 对于两两互不相容的事件 A_1 , A_2 , "有
定义 	$P\left(\mathop{\aleph}_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$
	常称为可列(完全)可加性。
	则称 P(A)为事件 A 的概率。
	$1^{\circ} \Omega = \{\omega_1, \omega_2 \sim \omega_n\},$
	$2^{\circ} P(\omega_1) = P(\omega_2) = P(\omega_n) = \frac{1}{n}$
(8) 古典	设任一事件 A ,它是由 ω_1, ω_2 " ω_m 组成的,则有
概型 	$P(A) = \{(\omega_1) \times (\omega_2) \times (\omega_m)\} = P(\omega_1) + P(\omega_2) + (\omega_m)$
	$=\frac{m}{n}=\frac{A \text{ m de so beta beta by }}{4 beta beta beta beta beta beta beta beta$
	- n 基本事件总数
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀, 同时样本空间中的每一个基本事件可以使用一个有界区域来描述,
(9) 几何概型	则称此随机试验为几何概型。对任一事件A,
	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
(10)加	P(A+B)=P(A)+P(B)-P(AB)
(11) 减	当 P(AB)=0 时, P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
法公式	当 B⊂A时,P(A-B)=P(A)-P(B)

г	
	当 A•Ω 时, $P(\overline{B})$ =1- $P(B)$
	定义 设 A、B 是两个事件,且 $P(A)>0$ 、则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条
(12)条 件概率	件下,事件 B发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。
	条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A)$
(13) 乘 法公式	更一般地,对事件 A, A, , ,
	A_{n-1}
	①两个事件的独立性
	设事件 A 、 B 满足 $P(AB) = P(A)P(B)$,则称事件 A 、 B 是相互独
	立的。
	若事件 A 、 B 相互独立,且 $P(A)>0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
(14)独	若事件 A 、 B 相互独立,则可得到 \overline{A} 与 \overline{B} 、 \overline{A} 与 \overline{B} 也都相互独立。
立性	M
	Ø与任何事件都互斥。
	②多个事件的独立性
	设 ABC是三个事件,如果满足两两独立的条件, P(A P)=P(A)P(P)
	P(AB)=P(A)P(B) P(BC)=P(B)P(C) P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C)
	那么 A. B. C相互独立。
	对于 n 个事件类似。
	设事件 $B_1,B_2,$, B_n 满足
	1° $B_1, B_2, $, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, $, $n)$,
(15) 全	$A \subset \mathcal{A} \xrightarrow{n} B_i$
概公式 	$A \subset \mathcal{R}_{i=1}^{B_i}$, (分类讨论的
	则有 R(A) = R(R) R(A R) = R(R) R(A R)
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \cdots + P(B_n)P(A \mid B_n)$
(16)贝 叶斯公式	设事件 B_1 , B_2 , ", B_n 及 A 满足
	1° B_1 , B_2 , $,,$ B_n 两两互不相容, $P(Bi)_{>0}$, $i=1, 2, ,,$
	n
	$A \subset \mathcal{B}^{B_i}$ 2° $P(A) > 0$,(已经知道结果 求原因
	2°
	//4

$$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{j=1}^{n} P(B_j)P(A/B_j)}, i=1, 2, , n_o$$

此公式即为贝叶斯公式。

 $P(B_i)$, (i=1, 2, ..., n), 通常叫先验概率。 $P(B_i/A)$, (i=1, ..., n)2 , n),通常称为后验概率。贝叶斯公式反映了"因果"的概 率规律,并作出了"由果朔因"的推断。

我们作了n次试验,且满足

- ◆ 每次试验只有两种可能结果, A 发生或 A 不发生:
- lacktriangleq n 次试验是重复进行的,即 A 发生的概率每次均一样;
- ◆ 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A发生与否是互不影响的。

努利概型

(17) 伯 \mid 这种试验称为伯努利概型,或称为n 重伯努利试验。

用 p 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 1-p=q,用

 $P_n(k)$ 表示 n 重伯努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离 机变量 的分布 律

设离散型随机变量 X 的可能取值为 X(k=1.2...) 且取各个值的 散型随一概率,即事件(X=X)的概率为

 $P(X=x_k)=p_k, k=1,2,...$

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分 布列的形式给出:

$$\frac{X}{P(X = x_k)} | \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} |$$

显然分布律应满足下列条件:

(1)
$$p^k \ge 0$$
, $k = 1,2,...$ (2) $\sum_{k=1}^{\infty} p_k = 1$

续型随|数x,有 机变量 密度

(2) 连 设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实

机 受 軍 h 分 布
$$F(x) = \int_{-\infty}^{x} f(x) dx$$

则称X为连续型随机变量。f(x)称为X的概率密度函数或密度函数, 简称概率密度。

密度函数具有下面 4 个性质:

$$1^{\circ}$$
 $f(x) \ge 0$

$$2^{\circ} \int_{-\infty}^{+\infty} f(x) dx = 1$$

(:	3)	离
散	与	连
续	型	随
机	变	量
的	关系	Ś
	1)	八

 $P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 P(X = xk) = pk 在离散型随机变量理论中所起的作用相类似。

(4)分 布函数

设 X 为随机变量, x 是任意实数,则函数

$$F(x) = P(X \le x)$$

称为随机变量X的分布函数,本质上是一个累积函数。

 $P(a < X \le b) = F(b) - F(a)$ 可以得到 X落入区间(a,b]的概率。

分布函数F(x)表示随机变量落入区间($-\infty$, x]内的概率。

分布函数具有如下性质:

$$1^{\circ}$$
 $0 \le F(x) \le 1$, $-\infty < x < +\infty$;

 2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$;

3°
$$F(-\infty) = \lim_{x \to \infty} F(x) = 0$$
, $F(+\infty) = \lim_{x \to \infty} F(x) = 1$;

$$4^{\circ}$$
 $F(x+0) = F(x)$, 即 $F(x)$ 是右连续的;

$$5^{\circ}$$
 $P(X = x) = F(x) - F(x - 0)$.

对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$;

对于连续型随机变量, $F(x) = \int_{-\infty}^{x} f(x) dx$ 。

(5)八 大分布

0-1 分布

P(X=1)=p, P(X=0)=q

_	
二项分布	在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A
	发生的次数是随机变量,设为 X,则X可能取值为
	0,1,2,,n .
	$P(X=k) = P_n(k) = C_n^k p^k q^{n-k} , \qquad \sharp \qquad \dagger$
	q = 1 - p, 0 , n ,
	则称随机变量 X 服从参数为 n , p 的二项分布。记为
	$X \sim B(n,p)$.
	当 $n = 1$ 时, $P(X = k) = p^k q^{1-k}$, $k = 0.1$, 这就是(0-1)
	分布,所以(0-1)分布是二项分布的特例。
泊松分布	设随机变量 X 的分布律为
	$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2$
	$X \sim \pi(\lambda)$ 或者 $P(\lambda)$ 。
	│ │泊松分布为二项分布的极限分布(np=λ , n→∞)。
超几何分布	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0,1,2, l l = \min(M, n)$
	随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
几何分布	$P(X = k) = q^{k-1}p, k = 1,2,3,$, 其中 p ≥ 0 , q=1-p。
	随机变量 X 服从参数为 p 的几何分布,记为 G(p)。

均匀分布	设随机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f(x)$ 在
I	

[a, b]上为常数 $\frac{1}{b-a}$,即

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{a leq } x \leq b \\ 0, & \text{其他,} \end{cases}$$

则称随机变量 X 在[a, b] 上服从均匀分布,记为 X-U(a, b)。

分布函数为

$$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} 0, & x , \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b. \end{cases}$$

当 a $\leq x_1$ $\leq b$ 时,X落在区间(x_1, x_2)内的概率为 $P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a}$ 。

指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $\lambda > 0$,则称随机变量 X服从参数为 λ 的指数分布。 X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

记住积分公式:

$$\int_{0}^{+\infty} x^{n} e^{-x} dx = n!$$

	7411				
	正态分布 	设随机变量 X 的密度函数为			
		$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$			
		μ、σ的正态分布或高斯(Gauss)分布,记为			
		$X \sim N(\mu, \sigma^2)_{\circ}$			
		$X \sim N(\mu, \sigma^2)$ 。 $f(x)$ 具有如下性质:			
		1° $f(x)$ 的图形是关于 $x = \mu$ 对称的;			
		2° 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2}}$ 为最大值;			
		2° 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ 为最大值;			
		• • • • • • • • • • • • • • • • • • • •			
		δ 数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为标准正态分布,记			
		为 $X \sim N(0,1)$, 基密度函数记为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}}, -\infty < x < +\infty,$			
		分布函数为			
		$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt .$			
		$\Phi(x)$ 是不可求积函数, 其函数值, 已编制成表可供查用。			
		Φ (-x) =1-Φ (x) \mathbb{H} Φ (0) = $\frac{1}{2}$.			
		如果 $X \sim N(\mu, \sigma^2)$,则 $\frac{X - \mu^2}{\sigma} \sim N(0,1)$ 。			
		如果 $X \sim N(\mu, \sigma^2)$,则 $\frac{X - \mu^2}{\sigma} \sim N(0,1)$ 。 $P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$ 。			
(6)分 位数	下分位表:	$P(X \le \mu_{\alpha}) = \alpha ;$			
	上分位表:	$P(X > \mu_{\alpha}) = \alpha$.			
(7)函 数分布	离散型	已知 X 的分布列为			
双刀 仰		$\frac{X}{P(X=x_i)} \frac{x_1, x_2, x_1, x_n, x_n}{p_1, p_2, x_1, p_n, x_n},$			
		$Y = g(X)$ 的分布列($y_i = g(x_i)$ 互不相等)如下: $\frac{Y}{P(Y = y_i)} \left \frac{g(x_1), g(x_2), \dots, g(x_n), \dots}{p_1, \dots, p_2}, \dots, g(x_n), \dots \right $			
		$P(Y = y_i)$ p_1 p_2 p_2 p_3 p_4 p_5 p_6 p_6 若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的			
		概率。			

连续型	先利用 X 的概率密度 f _x (x) 写出 Y 的分布函数 F _t (y) =
	P(g(X)≤ y), 再利用变上下限积分的求导公式求出
	$f_{Y}(y)$.

第三章 二维随机变量及其分布

(1) 联合 分布

离散型

如果二维随机向量 ξ (X Y)的所有可能取值为至多可列

个有序对 (x,y),则称 ξ 为离散型随机量。

设 $\xi = (X, Y)$ 的所有可能取值为 $(x_i, y_i)(i, j = 1, 2, \dots)$,

且事件{ $\xi = (x_i, y_j)$ }的概率为 p_{ii} ,称

$$P\{(X,Y)=(x_i,y_j)\}=p_{ij}(i,j=1,2,m)$$

为 $\xi = (X, Y)$ 的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:

节节的 医角下 国的城中方 带衣木衣外:						
Y	<i>y</i> 1	y_2	"	y_j	,,	
x_I	p_{II}	p_{12}	,,	p_{Ij}	,,	
χ_2	p_{21}	p_{22}	,,	p_{2j}	,,	
2	^	2		2	^	
X_i	p_{il}		"	p_{ij}	,,	
2	2	2		2	^	

这里 p_{ij} 具有下面两个性质:

(1) $p_{ij} \ge 0$ (i,j=1,2, ,,);

(2) $\sum_{i} \sum_{j} p_{ij} = 1$.

	连续型	对于二维随机向量 $\xi = (X,Y)$,如果存在非负函数				
		$f(x,y)$ ($-\infty$ < x < $+\infty$, $-\infty$ < y < $+\infty$),使对任意一个其邻边				
		分别平行于坐标轴的矩形区域 D, 即 D={(X,Y) a 有				
		$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$				
		则称 ξ 为连续型随机向量;并称 $f(x,y)$ 为 $\xi = (X, Y)$ 的分布				
		密度或称为 X 和 Y 的联合分布密度。 分布密度 $f(x,y)$ 具有下面两个性质: (1) $f(x,y) \ge 0$;				
		(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$				
(2) 二维 随机变量 的本质	$\xi(X=x,Y=y) = \xi(X=x \cdot Y=y)$					
(3) 联合	设(X, Y)为	二维随机变量,对于任意实数x,y, 二元函数				
分布函数	$F(x, y) = P\{X \le x, Y \le y\}$					
	称为二维随机向量 (X, Y) 的分布函数,或称为随机变量X和 Y的联合分布函 数。					
	分布函数是一个以全平面为其定义域,以事件					
	$\{(\omega_1,\omega_2) -\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函					
	数。分布函数 F(x,y) 具有以下的基本性质:					
	(1) $0 \le F(x, y) \le 1$;					
	 (2) F (x,y) 分别对 x 和 y 是非减的,即 当 x₂>x₁时,有 F (x₂,y) ≥ F(x₁,y); 当 y₂>y₁时,有 F(x,y₂) ≥ F(x,y₁); (3) F (x,y) 分别对 x 和 y 是右连续的,即 					
	F(x,y) = F(x+0,y), F(x,y) = F(x,y+0);					
	(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$					
	(5) 对于 $x_1 < x_2$, $y_1 < y_2$,					
	$\int F(x_2, y_2) -$	$F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$				
(4) 离散 型与连续	P(X=x, Y)	$f = y$) $\approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dx dy$				
型的关系						

(5)边缘	离散型	X的边缘分布为
分布		$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij}(i, j = 1, 2, \dots);$
		Y的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij}(i, j = 1, 2, \infty)$
	连续型	X的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
(6)条件	离散型	在已知 $X=x$ 的条件下, Y 取值的条件分布为
分布 		$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
		在已知 Y=y; 的条件下,X取值的条件分布为
		$P(X = x_i Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
	连续型	在已知 Y=y的条件下, X的条件分布密度为
		$f(x \mid y) = \frac{f(x,y)}{f_Y(y)};$
		在已知 X=x的条件下,Y的条件分布密度为
		$f(y \mid x) = \frac{f(x,y)}{f_X(x)}$
(7) 独立	一般型	$F(X,Y)=F_X(x)F_Y(y)$
性	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	f(x,y)=f x(x)f x(y) 直接判断,充要条件:
		①可分离变量
	10 10	②正概率密度区间为矩形
	一二维正态分 布	②止概率密度区间为矩形 $f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$
		$\rho = 0$

若 X, X₂, ,, X_{m+}, ,, X₄相互独立, h,g 为连续函数,则: 随机变量的 函数 h (X, X, ,, Xm) 和g (Xm+, ,, Xm) 相互独立。 特例: 若 X 与 Y 独立,则: h(X)和 g(Y)独立。 例如: 若 X 与 Y 独立,则: 3X+1和 5Y-2 独立。 设随机向量(X Y)的分布密度函数为 (8) 二维 均匀分布 $f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$

其中 S_D 为区域 D的面积,则称 (X,Y) 服从 D上的均匀分布,记为 (X,Y) ~ U(D)°

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

	()	"	_	- 3
ī	E?	太/	分表	有

设随机向量(X, Y)的分布密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$$

其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$ 是 5 个参数,则称 (X. Y) 服从二维正态分布,

记为 (X, Y)
$$\sim$$
N($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$).

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

即 X~N
$$(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$$

但是若 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), (X, Y)$ 未必是二维正态分布。

(10)函数 分布

Z=X+Y

根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$

对于连续型,
$$f_z(z) = \int_{-\infty}^{+\infty} f(x,z-x)dx$$

两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2$, $\sigma_1^2 + \sigma_2^2$)。 n 个相互独立的正态分布的线性组合,仍服从正态分布。

$$\mu = \sum_{i} C_i \mu_i$$
, $\sigma^2 = \sum_{i} C_i^2 \sigma_i^2$

Z=max,min($X_1,X_2,, X_n)$

若 X_1, X_2 \sim X_n 相 互 独 立 , 其 分 布 函 数 分 别 为

 $F_{x_1}(x)$, $F_{x_2}(x)$, $F_{x_n}(x)$, 则 Z=max,min(X₁,X₂,,, X_n)的分布 函数为:

$$F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) - F_{x_n}(x)$$

$$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdot [1 - F_{x_n}(x)]$$

 χ^2 分布

设 n 个随机变量 X_1, X_2, \dots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 W服从自由度为n的 χ^2 分布,记为 W~ $\chi^2(n)$,其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性:设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + m_k).$$

t 分布	设X、Y是两个相互独立的随机变量,且
	$X \sim N(0,1), Y \sim \chi^2(n),$
	可以证明函数
	$T = \frac{X}{\sqrt{Y/n}}$
	的概率密度为
	$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$
	我们称随机变量T服从自由度为n的t分布,记为T~t(n)。
	$t_{1-\alpha}(n) = -t_{\alpha}(n)$
F 分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立,可以证明
	$F = \frac{X/n_1}{Y/n_2}$ 的概率密度函数为
	$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1+n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$
	我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f(n_1, n_2)$.
	$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

	(1)	喜	连⁄赤刑
1			连续望

一维	期望	况 v 目该类别防扣亦是 甘八左	况v目达结刑防扣亦具 甘烟液家
1		设 X 是离散型随机变量,其分布 	设 X是连续型随机变量,其概率密
随机变量	期望就是平均值 	律 为 $P(X = x_k) = p_k$,	度为 f(x) ,
一		k=1,2, ", ",n,	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
字特征		$E(X) = \sum_{k=1}^{n} x_k p_k$	-∞ (要求绝对收敛)
		(要求绝对收敛)	
	函数的期望	Y=g(X)	Y=g(X)
		$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{0}^{+\infty} g(x)f(x)dx$
		$\sum_{k=1}^{n} S(w_k) P_k$	
	方差		+∞
	D(X)=E[X-E(X)], 标准差	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx$
		κ	
	$\sigma(X) = \sqrt{D(X)} ,$		
	矩	①对于正整数k,称随机变量 X	①对于正整数k,称随机变量X的
		的 k 次幂的数学期望为 X 的 k	k次幂的数学期望为X的k阶原点
		阶原点矩,记为v _k ,即	矩, 记为 v _k , 即
		$v_{k} = E(X^{k}) = \sum_{i} x_{i}^{k} p_{i} ,$	$ v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx, $
		k=1,2, ,, .	k=1,2, ,, .
		②对于正整数k,称随机变量X	②对于正整数k, 称随机变量 X与
		与 E (X) 差的 k 次幂的数学期	E(X) 差的k次幂的数学期望为X
		望为 X 的 k 阶中心矩,记为 μ_k ,	的 k 阶中心矩,记为 μ_k ,即
		即	$u_{k} = E(X - E(X))^{k}$
		則 $\mu_k = E(X - E(X))^k$ $= \sum_i (x_i - E(X))^k p_i ,$ k=1,2, ,, .	$\begin{bmatrix} \mu_k - L(X - L(X)) \\ \vdots \end{bmatrix}$
			.+00
		$ = \sum (x - E(X))^k n. $	$= \int_{-\infty}^{\infty} (x - E(X))^k f(x) dx,$
		$\left[\begin{array}{cccc} \sum_{i} (w_i & \Sigma(i)) & P_i \end{array}\right]$	k=1,2, ,, .
		k=1,2, ,, .	

	切比雪夫不等式	设随机变量 X 具有数学期望 E (任意正数ε ,有下列切比雪夫不	X)=μ ,方差 D (X) =σ²,则对于 等式
		$ P(X-\mu \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2} $	
		│ │切比雪夫不等式给出了在未知X	的分布的情况下,对概率
		P(X	$-\mu \geq \varepsilon$)
		 的一种估计,它在理论上有重要	意义。
(2) 期望 的性	(1) E(C)=C (2) E(CX)=CE(X)		
质	(3) $E(X+Y)=E(X)+E(Y)$	$E(\sum_{i=1}^{n} C_{i} X_{i}) = \sum_{i=1}^{n} C_{i} E(X_{i})$	
		充分条件: X和 Y独立; 充要条件: X和 Y不相关。	
(3) 方差	(1) $D(C)=0$, $E(C)=C$	$\Gamma(a\mathbf{V}) = a\Gamma(\mathbf{V})$	
刀 左 的 性	(2) $D(aX)=a^2D(X)$, F (3) $D(aX+b)=a^2D(X)$,	E(aX)=aE(X) $E(aX+b)=aE(X)+b$	
质	(4) $D(X)=E(\vec{X})-E^2(X)$	L(aX+b) $aL(X)+b$	
	(4) D(X)=E(X)-E (X) (5) D(X± Y)=D(X)+D(Y) 充分条件: X和 Y独立;		
		充要条件:X和Y不相关。	
		D(Y)± 2E[(X-E(X))(Y-E(Y))] , 无 +E(Y) 无条件成立。	是条件成立。
(4)		期望	方差
常见分布	0-1 分布 B(1, p)	p	p(1-p)
的 期 望 和 立	二项分布 B(n, p)	пр	<i>np</i> (1- <i>p</i>)
方差	泊松分布 <i>P</i> (λ)	λ	λ
	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	超几何分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N - n}{N - 1} \right)$
	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	指数分布 e(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

	正态分布 $N(\mu, \sigma^2)$	μ	σ^2
	χ ² 分布	n	2n
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
变量 的		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)]=
		$\sum_{i}\sum_{j}G(x_{i},y_{j})p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$
	协方差	对于随机变量 X与 Y, 称它们的二	二阶混合中心矩 μ_{11} 为 X 与 Y 的协方
		 差或相关矩,记为σ _{xy} 或 cov(X 	(, Y),即
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(X))]$	-E(Y)].
		$\left \begin{array}{l} & \\ & \mathrm{与记号}_{\sigma_{\mathit{XY}}}$ 相对应, X 与 Y 的方 f	\notin D(X) 与 D(Y) 也可分别记为 σ_{XX}
		$ eg \sigma_{\scriptscriptstyle YY}$.	

	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
		$\sigma_{\scriptscriptstyle XY}$
		$rac{\sigma_{XY}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。
		ρ ≤ 1,当 ρ =1 时,称 X与 Y完全相关: $P(X=aY+b)=1$
		完全相关 $\{E$ 正相关,当 $\rho=1$ 时 $(a>0)$, 负相关,当 $\rho=-1$ 时 $(a<0)$,
		而当 $ ho=0$ 时,称 X 与 Y 不相关。
		以下五个命题是等价的:
		$ \bigcirc \mathcal{D} \rho_{XY} = 0; $
		②cov(X,Y)=0; ③E(XY)=E(X)E(Y); ④D(X+Y)=D(X)+D(Y);
		(5)D(X-Y)=D(X)+D(Y).
	协方差矩阵 	$\begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix}$
	混合矩	对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
		$k+l$ 阶混合原点矩,记为 $ u_{kl}$; $k+l$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6)	(i) cov (X, Y)=cov (Y, Z	X);
协方	(ii) $cov(aX,bY)=ab cov(aX,bY)$	· · · ·
差的	(iii) $\operatorname{cov}(X_1+X_2, Y)=\operatorname{cov}(X_1, Y)+\operatorname{cov}(X_2, Y);$	
性质	(iv) cov(X,Y)=E(XY)-E(XY)	X)E(Y).
(7) 独立	(i) 若随机变量 X与	Y相互独立,则 $\rho_{XY}=0$;反之不真。
和 不 相关	(ii) 若(X, Y)~N	$(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho),$
	则X与Y相互独	立的充要条件是X和Y不相关。

第五章 大数定律和中心极限定理

- () 1 M/ () ()-		
(1) 大数定律	切比雪	□ 设随机变量 X, X, "相互独立,均具有有限方差,且被同一 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
$\overline{X} \rightarrow \mu$	夫大数 定律	常数 C 所界: $D(X)$ "),则对于任意的正数 ϵ ,有
,	上任	$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$
		│ 特殊情形: 若 X, X, "具有相同的数学期望 E (X,) = μ , │
		则上式成为
		$\left \lim_{n \to \infty} P\left(\left \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right < \varepsilon \right) = 1.$
	伯努利	设µ 是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在
	大数定	每次试验中发生的概率,则对于任意的正数: , 有
	律 	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
		伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即
		$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$
		这就以严格的数学形式描述了频率的稳定性。
	辛钦大	设 X, X, ", X, "是相互独立同分布的随机变量序列,且 E
	数定律	(X)=μ,则对于任意的正数ε 有
		$\left \lim_{n \to \infty} P\left(\left \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right < \varepsilon \right) = 1.$
(2) 中心极限定	列维一	设随机变量 X, X, "相互独立, 服从同一分布, 且具有
理	林德伯	相 同 的 数 学 期 望 和 方 差 :
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots), \text{ 则随机变量}$
		$Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}}$
		的分布函数 $F_n(x)$ 对任意的实数 x ,有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为独立同分布的中心极限定理。

	棣莫弗 一拉普	设随机变量 X_n 为具有参数 n , $p(0$ 的二项分布,则对于
	拉斯定	任意实数 x, 有
	理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$
(3) 二项定理	若当	$ in N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则
		$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$
	超几何分	分 布的极限分布为二项分布。
(4) 泊松定理	若当	
		$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$
	l .), 1, 2, ,,, n, ,,。 后的极限分布为泊松分布。

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随
本概念		机变量(或随机向量)。
	个体	总体中的每一个单元称为样品(或个体)
	样本	我们把从总体中抽取的部分样品 $x_1, x_2,, x_n$ 称为样本。样本
		中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,
		总是把样本看成是n个相互独立的且与总体有相同分布的随机
		变量,这样的样本称为简单随机样本。在泛指任一次抽取的结
		果时, x_1, x_2, x_n 表示 n 个随机变量 (样本); 在具体的一次
		抽取之后, x_1, x_2, \dots, x_n 表示 n 个具体的数值 (样本值)。我们
		称之为样本的两重性。
	样本函数和 统计量	设 x_1, x_2, \dots, x_n 为总体的一个样本,称
		$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$
		 为样本函数,其中 $arphi$ 为一个连续函数。如果 $arphi$ 中不包含任何未
		 知会粉 剛教 a (x x x x x) 头 A 放江县
		知参数,则称 φ ($x_1,x_2,$, x_n)为一个统计量。

	常见统计量 及其性质	样本均值
		样本方差
		$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$
		样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$
		样本 k 阶原点矩
		$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \dots$
		样本 k 阶中心矩
		$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2,3,$
		$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$
		$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2,$
		其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。
(2) 正态 总体下的	正态分布	设 x_1, x_2, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
四大分布		本函数
		$u \stackrel{def}{=} \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
	t 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$t = \frac{1}{s} \frac{1}{s - \mu} \sim t(n - 1),$
		其中 t(n-1) 表示自由度为 n-1 的 t 分布。

_		
	χ^2 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$w^{\frac{def}{2}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
	F 分布	设 x_1, x_2, x_n , x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		$y_1, y_2, $, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本
		函数
		$F = rac{def}{S_1^2 / \sigma_1^2} \sim F(n_1 - 1, n_2 - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为
		n_2 —1的 F 分布。
(3)正态总体下分	\overline{X} 与 S^2 独立	
布的性质		

第七章 参数估计

(1)点	矩估计
估计	

设总体 X的分布中包含有未知数 $\theta_1,\theta_2,$, θ_m ,则其分布函数可以表成 $F(x;\theta_1,\theta_2,$, θ_m).它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,$, θ_m)中也包含了未知参数 $\theta_1,\theta_2,$, θ_m ,即 $v_k=v_k(\theta_1,\theta_2,$, θ_m)。又设 $x_1,x_2,$, x_n 为总体 X的 n 个样本值,其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} \quad (k=1,2,m,m).$$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩" 的原则建立方程,即有

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \\ v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m. \end{cases}$$

由上面的 m个方程中,解出的 m个未知参数 $(\hat{\theta_1},\hat{\theta_2},\dots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\dots,\theta_m)$ 的矩估计量。

若 $\hat{\theta}$ 为 θ 的矩估计,g(x) 为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	极大似 然估计	当总体 X 为连续型随机变量时, 设其分布密度为
		$f(x; heta_1, heta_2, \dots, heta_m)$,其中 $\theta_1, heta_2, \dots, heta_m$ 为未知参数。又设
		x_1, x_2, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, , \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, , \theta_m)$
		为样本的似然函数,简记为 L_m . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P\{X=x\}=p(x;\theta_1,\theta_2, , \theta_m), 则称$
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
	为样本的似然函数。	
		若似然函数 $L(x_1,x_2, x_n; \theta_1,\theta_2, x_m,\theta_m)$ 在 $\hat{\theta}_1,\hat{\theta}_2, x_m,\hat{\theta}_m$ 处取
		到最大值,则称 $\hat{m{ heta}}_1,\hat{m{ heta}}_2,$, $\hat{m{ heta}}_m$ 分别为 $m{ heta}_1,m{ heta}_2,$, $m{ heta}_m$ 的最大似然估计值,
		相应的统计量称为最大似然估计量。
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \dots, m$
		$\stackrel{}{E}$ 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大似然估计。
(2)估 计量的	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, x_n)$ 为未知参数 θ 的估计量。若E $(\hat{\theta}) = \theta$,则称
评选标 准		$\stackrel{}{ heta}$ 为 $ heta$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

	一致性 	$\partial_{n}\hat{\theta}$,是 θ 的一串估计量,如果对于任意的正数 ϵ ,都有
		$\lim_{n\to\infty} P(\stackrel{\wedge}{\theta}_n - \theta > \varepsilon) = 0,$
		则称 $\hat{m{ heta}}_n$ 为 $m{ heta}$ 的一致估计量(或相合估计量)。
		\dot{E} 为 θ 的无偏估计,且 $D(\hat{\theta}) \to 0 (n \to \infty)$,则 $\dot{\theta}$ 为 θ 的一致估计。 只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。
(3)区 间估计	置信区间和置	设总体 X 含有一个待估的未知参数 $ heta$ 。如果我们从样本 x_1, x_2, \dots, x_n 出
	信度	发, 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x_{,2}, x_n)$ 与
		$\theta_2 = \theta_2(x_1, x_2, x_n)$ $(\theta_1 < \theta_2)$, 使得区间 $[\theta_1, \theta_2]$ 以
		1-lpha(0 <lpha<1)< math="">的概率包含这个待估参数$heta$,即</lpha<1)<>
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$
		那么称区间 $[heta_1, heta_2]$ 为 $ heta$ 的置信区间, $1-lpha$ 为该区间的置信度(或置
		信水平)。
	单总期 方区 计 证体望差间 计	设 $x_1, x_{,2}, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$
		下,我们来确定 μ 和 σ^2 的置信区间[$ heta_1, heta_2$]。具体步骤如下:
		(i) 选择样本函数; (ii) 由置信度 $1-\alpha$, 查表找分位数;
		(iii)导出置信区间[$ heta_1, heta_2$]。

	已知方差,估计均值	(i) 选择样本函数
		$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
		(ii) 查表找分位数
		$P\left(-\lambda \le \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
		(iii)导出置信区间
		$\left[\bar{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \bar{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$
	未知方差,估计均值	(i)选择样本函数
		$t = \frac{\bar{x} - \mu}{S / \sqrt{n}} \sim t(n-1).$
		(ii) 查表找分位数
		$P\left(-\lambda \leq \frac{\bar{x} - \mu}{S / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$
		(iii)导出置信区间
		$\left[\bar{x} - \lambda \frac{S}{\sqrt{n}}, \bar{x} + \lambda \frac{S}{\sqrt{n}}\right]$
	方差的区间估计	(i)选择样本函数
		$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
		(ii) 查表找分位数
		$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$
		(iii)导出σ的置信区间
		$\left[\sqrt{\frac{n-1}{\lambda_2}}S,\sqrt{\frac{n-1}{\lambda_1}}S\right]$
•		

第八章 假设检验

	game to the second	N. E. L							
基本思想	假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是								
	不会发生的,即小概率原理。								
	为了检验一个假设 H 是否成立。我们先假定 H 是成立的。如果根据这个假								
	定导致了一个不合理的事件发生,那就表明原来的假定H是不正确的,我们拒								
	绝接受 H; 如果由此没有导出不合理的现象,则不能拒绝接受H, 我们称 H是								
	\mid 相容的。与 H 相对的假设称为备择假设,用 H 表示。								
	这里所说的小概率事件就是事件 $\{K\in R_{\alpha}\}$, 其概率就是检验水平 α , 通								
	常我们取α =0.05, 有时也取 0.01 或 0.10。								
基本步骤	假设检验的基本步骤如下:								
	(i) 提出零假设 <i>H</i> ;								
		充 计量 <i>K</i> ;							
	(iii) 对于检验水平α 查表找分位数λ;								
	(iv) 由样本值 x_1, x_2, x_n , x_n 计算统计量之值 K ;								
	$ $ 将 \hat{K} 与 λ 进行比较,作出判断: 当 $ \hat{K} > \lambda$ (或 $\hat{K} > \lambda$) 时否定 H ,否则认为 H								
	相容。								
 两类错误	第一类错误	当 H 为真时,而样本值却落入了否定域,按照我们规定的							
1,120,120		检验法则,应当否定 H 。这时,我们把客观上 H 成立判为							
		H 为不成立(即否定了真实的假设), 称这种错误为"以真							
		当假"的错误或第一类错误,记 α 为犯此类错误的概率,即							
		$P\{$ 否定 H H 为真 $\}=\alpha$;							
		此处的α 恰好为检验水平。							
	第二类错误	当 H 为真时,而样本值却落入了相容域,按照我们规定的							
		│ 检验法则,应当接受H。这时,我们把客观上H。不成立判│							
		为 H 成立(即接受了不真实的假设) 称这种错误为"以假							
		当真"的错误或第二类错误,记 $oldsymbol{eta}$ 为犯此类错误的概率,							
		即							
		$P{接受H H为真}=\beta。$							
	两类错误的关系	人们当然希望犯两类错误的概率同时都很小。但是,当							
		容量 \mathbf{n} 一定时, $\boldsymbol{\alpha}$ 变小,则 $\boldsymbol{\beta}$ 变大;相反地, $\boldsymbol{\beta}$ 变小,则 $\boldsymbol{\alpha}$							
		变大。取定 $lpha$ 要想使 eta 变小,则必须增加样本容量。							
		在实际使用时,通常人们只能控制犯第一类错误的概							
		率,即给定显著性水平α。α大小的选取应根据实际情况而							
		定。当我们宁可"以假为真"、而不愿"以真当假"时,则							
		应把α取得很小,如0.01,甚至0.001。反之,则应把α取							
		得大些。							

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
已知 σ^2	$H_0: \mu = \mu_0$	_	N(0, 1)	$ u > u_{1-\frac{\alpha}{2}}$
	$H_0: \mu \leq \mu_0$	$U = \frac{x - \mu_0}{\sigma_0 / \sqrt{n}}$		$u > u_{1-\alpha}$
	$H_0: \mu \ge \mu_0$			$u < -u_{1-\alpha}$
	$H_0: \mu = \mu_0$	$T = \frac{\bar{x} - \mu_0}{S / \sqrt{n}}$	<i>t</i> (<i>n</i> – 1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
未知 σ^2	$H_0: \mu \leq \mu_0$			$t > t_{1-\alpha}(n-1)$
	$H_0: \mu \ge \mu_0$			$t < -t_{1-\alpha} (n-1)$
	$H_0: \sigma^2 = \sigma^2$ $H_0: \sigma^2 \le \sigma_0^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{\alpha}{2}}^2 (n-1)$ 或
+ hr 2				$w > \kappa_{1-\frac{\alpha}{2}}^2(n-1)$
未知 σ^2				$w > \kappa_{1-\alpha}^2 (n-1)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$w < \kappa_{\alpha}^{2}(n-1)$