РАЗРАБОТКА ПРОГРАММЫ ОЦЕНКИ ТОЧНОГО РЕШЕНИЯ ЗАДАЧИ КОММИВОЯЖЕРА

Выполнил: Шевелева Анна Михайловна, гр. 6381

Руководитель: Беляев Сергей Алексеевич, к.т.н., доцент

Санкт-Петербург, 2020

Актуальность

Любую NP-полную задачу можно привести к любой другой NP-полной задаче

За счет алгоритмов приведения можно решать одну задачу, а решение получать в другой задаче, упрощая тем самым само решение

Существующие алгоритмы приведения не позволяют упростить решение данных задач

Приведение NP-полных задач к задаче коммивояжера может решить эту проблему

Задача коммивояжера (ЗК) - NP-полная задача, ее полиномиального решения пока не существует

Оценка длины пути в асимметричной ЗК позволит находить решение, близкое к оптимальному, тем самым упрощая решения других NP-полных задач

Цель и задачи работы

Цель:

Разработка алгоритма для оценки точного решения задачи коммивояжера

Задачи:

- проанализировать существующие точные и эвристические алгоритмы решения ЗК;
- описать математическую модель оценки длины пути;
- реализовать алгоритмы решения пр-полных задач и их приведение к ЗК;
- протестировать корректность полученных алгоритмов;
- проанализировать работу математической модели на прполных задачах и на матрицах со случайными значениями.

Сравнение существующих решений задачи коммивояжера

Названия алгоритмов	Точность алгоритма ¹	Вычислительная	Задачи
	не более, %	сложность	
Алгоритм дерева	50	O(n²log(n))	симметричная
Алгоритм Кристофидеса-	67	O(n ³)	метрическая
Сердюкова			
«Антижадный алгоритм»	772	экспоненциальная	евклидова
Алгоритм Лина-Кернигана	902	O(n ^{2.2})	симметричная
Нижняя граница Хелд-Карпа	67	O(n²)	евклидова
Жадный алгоритм	47 ³	O(n²)	любая
Полный перебор	100	O(n!)	любая
Алгоритм Беллмана-Хелда-Карпа	100	O(n ² 2 ⁿ)	любая

- 1 Процентное соотношение оценки длины пути к оптимальному решению
- 2 Максимальная оценка точности получена экспериментальными данными
- 3 Средняя оценка точности получена экспериментальными данными

Математическая модель оценки длины пути

Имеется матрица весов $A\{a_{ij}\}; i, j \in [1, n], i \neq j$, значения определены на [a,b]. Матрица $B\{b_{ij}\}; i, j \in [0,1], i \neq j$, получается из матрицы A нормированием.

Решение ЗК для матрицы В: $S_B = \sum_{i=1}^n b_{S_i, S_{i+1}}$. (1)

Тогда решение ЗК для матрицы А: $S_A = \sum_{i=1}^{n-1} a_{S_i,S_{i+1}} + a_{S_n,S_1} = a * n + (b-a) * S_B.$ (2)

При первой производной линейной регрессии b>0 ребра решения распределены по закону распределения Релея, при b<=0 по закону γ-распределения.

Математическое ожидание: $MX = \int_{-\infty}^{\infty} x f_x(x) dx$, (3)

где $f_x(x)$ — плотность распределения

Для распределения Релея дисперсия и пороговое значение k равны:

$$k = MX/0.512$$
, $DX = 0.0716 * k^2$. (4.1)

где k – граничный вес, при котором веса более k не участвуют в вычислении веса оптимального решения с вероятностью 95%.

Для γ -распределения : k = MX/0.39667, $DX = 0.1045*k^2$. (4.2)

Оценка длины пути для весовой матрицы A: $MS_A = a * n + (b-a) * n * MX$ (5)

Относительная погрешность: $\sigma_{S_A} = \sqrt{DS_A} = (b-a) * \sqrt{n*DX}$ (6)

Алгоритм приведения задачи гамильтонова цикла (ГЦ)

```
кол-во_вершин=получить_кол-во_вершин (из гамильтонова графа) tsp_граф = создать_полный_граф (кол-во_вершин)

Цикл по ребрам в tsp_графе

если принадлежность_ребра_графу (ребро, гамильтонов_граф) тогда изменить_вес_ребра (ребро, 1)

иначе изменить_вес_ребра (ребро, кол-во_вершин+1) конец условия конец цикла вернуть (tsp граф)
```

Алгоритм приведения задачи вершинного покрытия (ВП)

```
кол-во вершин = получить кол-во вершин (граф ВП)
кол-во ребер = получить кол-во ребер (граф ВП)
покрытие = получить покрытие (граф ВП)
tsp rpa\phi = cosдать rpa\phi (покрытие+4*кол-во вершин, INF)
цикл по кол-во ребер в графе ВП
изменить значение ребер (0,1), (1,0), (1,2), (2,3), (3,0), (3,2) на 1
    в матрицах (4*кол-во вершин х 4*кол-во вершин)
конец цикла
цикл по покрытию in гамильтон графе
   цикл по кол-во_ребер-покрытие = N в графе B\Pi
      если (odd edge) тогда
         изменить ребро (N, покрытие + 4*кол-во вершин, 1)
         изменить ребро (покрытие +4* кол-во вершин, N, 1)
      конец условия
   конец цикла
конец цикла
цикл по кол-во вершин X в tsp графе
   цикл по кол-во ребер в tsp графе
      Находим 1 вершину Х, запоминаем намер
      Находим 2 вершину X, изменяем ребра (1,2), (2,1) на 1
      Запоминаем новую 1 вершину X равную 2
   конец цикла
конец цикла
```

вернуть (tsp граф)

Алгоритм приведения двухуровневой задачи о назначениях (2-30H)

Диаграмма используемых классов

Тестирование корректности алгоритмов приведения

Для проверки корректности алгоритмов приведения:

- Для 2-3ОН были сгенерированы по 10 различных графов размерности 6-10.
- Для задачи о ГЦ были созданы по 10 различных графов с задачами, когда нет ГЦ, когда он есть и единственный, и когда ГЦ несколько.
- Для задачи о ВП создавались графы с различным количеством ВП (2-5).

Корректность алгоритмов оценивалась при помощи точного решения ЗКи точных решений заданных NP-полных задач

Анализ работы математической модели

Для 2-3ОН в среднем процентное отношение оценки длины пути к оптимальному пути без учета погрешности равно 78.7%, с учетом погрешности 85.3%. Среднее количество распознающихся ребер оптимального пути 79.5%. Учитывать погрешность целесообразно в 77% случаев.

Для задачи о ГЦ и ВП математическая модель не работает

Для полных асимметричных матриц со случайными значениями оценка длины пути не зависит от алфавита (количества различных чисел в матрице). Средняя оценка длины пути без учета погрешности 83.8%, ребер — 82.5%. Учитывать погрешность нецелесообразно.

Для разряженных ассиметричных матриц точность оценки уменьшается с увеличением разряженности. Целесообразно использовать метод с разряженностью не более 50%. Средняя оценка длины пути с учетом погрешности 75.5%. Учитывать погрешность целесообразно в 93.75% случаев.

Точность оценки для ассиметричных матриц повышается при увеличении кол-ва элементов матрицы. Средняя оценка длины пути с учетом погрешности 74.34%.

Заключение

- Разработаны и протестированы алгоритмы приведения задачи о ГЦ, ВП и 2-3ОН к задаче коммивояжера
- Описана математическая модель оценки точного решения ЗК
- Проведены тесты на соответствие данной модели приведенным выше NP-полным задачам
- Проведено исследование на соответствие модели к ассиметричной ЗК с различным алфавитом и разряженностью матрицы
- Проведено исследование на соответствие модели к ассиметричной ЗК с различным количеством ребер в графе при разряженности графа не более 50%
- В дальнейшем планируется разработать алгоритмы приведения других пр-полных задач к ЗК и проверить соответствие данной математической модели к ним
- Найти зависимость процента попадания ребер оптимального решения от различных асимметричных задач и увеличить данный процент до 95%, путем видоизменения графа или внесения корректив в алгоритм нахождения оценки
- На основе данного алгоритма создать другой алгоритм оценки оптимального длины пути, путем удаления ребер, предположительно не участвующих в оценке, и сравнить результаты

Апробация работы

«Исследование приведения двухуровневой кооперативной задачи о назначениях к задаче коммивояжера» // Конференция ППС СПбГЭТУ «ЛЭТИ», 2020

Репозиторий проекта https://github.com/ShevelevaAnna/TSP

СПАСИБО ЗА ВНИМАНИЕ!

Исследование двухуровневой задачи о назначениях

Для исследования двухуровневой задачи о назначениях, было создано по 20 тестов для задач размерности от 6 до 10, использовался закон распределения Релея

В таблице представлена общая картина по данному исследованию. Для каждой размерности и для всех задач в целом были найдены нижняя граница, средняя и верхняя граница оценки длины пути, а также нижняя граница, средняя и верхняя граница количества ребер. Для оценки было найдено значение без(с) погрешности(ью).

	Нижняя	Средняя	Верхняя	Нижняя	Среднее	Верхняя
	граница	оценка	граница	граница	кол-во	граница
	оценки		оценки	кол-ва	ребер	кол-ва
				ребер		ребер
100	52/57	79,6/86,1	98/99,8	65	80	90
81	55/61	74,7/80,6	98/97	61	81,4	94
64	56/62	77,8/85,2	99,5/99,3	56	79,7	93
49	68/73	83,7/89,3	99/99,5	64	76,6	92
36	48/55	77,6/85,3	95/99,5	66	79,8	91
all	48/55	78.68/85.3	99.5/99.8	56	79.5	90

Исследование двухуровневой задачи о назначениях

В таблице представлено процентное отношение количества значений, где оптимальная длина пути меньше оценки, к общему количеству значений

N	Кол-во значений
	оптимальной длины пути <
	оценки
100	16 (80%)
81	15 (75%)
64	14 (50%)
49	16 (80%)
36	16 (80%)
all	77 (77%)

Теперь исследуем данный метод на сгенерированной случайным образом задаче коммивояжера. Проверим метод на графах различной разряженности (100%, 80%, 63%, 50%, 40% заполненности графа) и на различном алфавите задачи (для разряженных графов 10 и 100 чисел, для полного графа 10, 100, 500 и 1000 чисел). Использовался закон распределения Релея. Для оценки было найдено значение без(с) погрешности(ью).

%	алфавит	Нижняя	Средняя	Верхняя	Нижняя	Среднее	Верхняя
заполнен		граница	оценка	граница	граница	кол-во	граница
ности		оценки		оценка	кол-ва	ребер	кол-ва
					ребер		ребер
100%	1000	47/57	84,1/89,7	98/99,3	70	88	100
	500	63/73	79,7/87,7	99,9/99	70	81	100
	100	67/77	85,9/89,9	99/99	70	87	100
	10	75/81	85,4/91,1	96/97	50	74	100
all		47/57	83.8/89.6	99.9/99.3	50	82.5	100

Продолжение таблицы

%	алфавит	Нижняя	Средняя	Верхняя	Нижняя	Среднее	Верхняя
заполнен		граница	оценка	граница	граница	кол-во	граница
ности		оценки		оценки	кол-ва	ребер	кол-ва
					ребер		ребер
80%	100	63/70	79,7/87,1	95/99.97	60	75	90
	10	44/45	76,9/81,2	97/99.9	20	65	90
63%	100	40/46	54,8/77,7	90/96	40	66	90
	10	53/56	77.3/81.6	97/99	20	62	90
50%	100	32/37	57.5/66	80/92	20	49	70
	10	51/63	68.1/73.8	88/96	30	60	90
40%	100	43/49	59.1/67.4	79/92	50	50	80
	10	45/48	63.1/68.8	77/86	40	40	70
all		32/37	67.1/75.5	97/99.97	20	58.4	90

В таблице представлено процентное отношение количества значений, где оптимальная длина пути меньше оценки, к общему количеству значений

% заполненности	алфавит	Кол-во значений		
		оптимальной длины пути <		
		оценки		
100%	1000	6 (60%)		
	500	5 (50%)		
	100	5 (50%)		
	10	3 (30%)		
all		19 (47.5%)		

В таблице представлено процентное отношение количества значений, где оптимальная длина пути меньше оценки, к общему количеству значений

% заполненности	алфавит	Кол-во значений оптимальной длины
		пути < оценки
80%	100	1 (10%)
	10	2 (20%)
63%	100	1 (10%)
	10	1 (10%)
50%	100	0 (0%)
	10	0 (0%)
40%	100	0 (0%)
	10	0 (0%)
all		5 (6.25%)

Исследование на зависимость метода от кол-ва ребер в графе

В заключительном исследовании проверим на зависимость метода от количества ребер в графе. Сгенерируем графы с заполненностью не меньше 50% и количеством ребер примерно от 50 до 250. Использовался закон распределения Релея. Для оценки было найдено значение без(с) погрешности(ью).

N	Нижняя граница	Средняя оценка	Верхняя граница	Нижняя граница	Среднее кол-во	Верхняя граница
	оценки	o Ho llina	оценки	кол-ва	ребер	кол-ва
				ребер		ребер
200- 250	58 / 70	76.7 / 83.9	95 / 99	66	76.9	95
150- 200	49 / 54	74.4 / 76.8	98 / 98	45	69.8	94
100- 150	53 / 59	68.9 / 74.8	99 / 92	50	66.3	86
50-100	42 / 46	62 / 69.7	86 / 97	41	61.1	85
0-50	29 / 32	54.9 / 66.5	82 / 94	30	50.6	75
all	29 / 32	67.38 / 74.34	99 / 99	30	64.9	95

Исследование на зависимость метода от кол-ва ребер в графе

В таблице представлено процентное отношение количества значений, где оптимальная длина пути меньше оценки, к общему количеству значений

N	Кол-во значений оптимальной
	длины пути < оценки
200-250	1 (5.5%)
150-200	3 (25%)
100-150	0 (0%)
50-100	0 (0%)
0-50	0 (0%)
all	4 (4.7%)

Список литературы

Алгоритм дерева – Н. Н. Кузюрин, Сложность комбинаторных задач, лекционный материал, 2003 г.

Алгоритм Кристофидеса-Сердюкова — А.В. Кононов, П.А. Кононова. «Приближенные алгоритмы для NP-трудных задач» Учебно-методическое пособие, 2014

«Антижадный» алгоритм — А.А. Чусовлянкин, В.В. Морозенко Анализ точности и времени решения задачи коммивояжера с помощью «антижадного» алгоритма. Вестник пермского университета, 2016

Алгоритм Лина-Кернигана – Lin S., Kernighan B.W. (1973) An effective heuristic algorithm for the traveling-salesman problem. Operations Research, vol. 21, no. 2, pp. 498–516.

Нижняя граница Хелд-Карпа — Shmoys, D. B., and Williamson, D. P. (1990), "Analyzing the Held-Karp TSP Bound: A Monotonicity Propertywith Application", Information Processing Letters. 35:281-285.

Жадный алгоритм — Alsalibi B.A., Jelodar M.B., Venkat I. A Comparative Study between the Nearest Neighbor and Genetic Algorithms: A revisit to the Traveling Salesman Problem // International Journal of Computer Science and Electronics Engineering (IJCSEE), 2013. Vol. 1, Issue 1.

Первая производная линейной регрессии:

$$b = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - \sum x_i \sum x_i}$$
 (3)