Spiking Neural Unit

KAC KNUM

Spiking Neural Unit

KAC KNUM

DISCLAIMER

Plan na dziś

- 1. Kontekst
- 2. Pomysł
- 3. Wyniki

Deep Networks Incorporating Spiking Neural Dynamics

Stanisław Woźniak, Angeliki Pantazi, and Evangelos Eleftheriou

IBM Research Labs

~ grudzień 2018

arxiv.org/pdf/1812.07040.pdf

Trochę tła: Spiking Neural Networks

- zupełnie inny framework sieci neuronowych
- wierniejsze odwzorowanie działania mózgu

Trochę tła: Spiking Neural Networks

- zupełnie inny framework sieci neuronowych
- wierniejsze odwzorowanie działania mózgu
- podstawowy model neuronu:
 Leaky Integrate-and-Fire (LIF)

$$\tau \frac{\mathrm{d}V_m(t)}{\mathrm{d}t} = -V_m(t) + RI(t)$$

Trochę tła: Spiking Neural Networks

- zupełnie inny framework sieci neuronowych
- wierniejsze odwzorowanie działania mózgu
- podstawowy model neuronu:
 Leaky Integrate-and-Fire (LIF)

$$\tau \frac{\mathrm{d}V_m(t)}{\mathrm{d}t} = -V_m(t) + RI(t)$$

 brak skutecznych algorytmów uczenia

Propozycja: Spiking Neural Unit

Propozycja: Spiking Neural Unit

Propozycja: soft Spiking Neural Unit

Funkcja straty

$$L = MSE(\bar{y}_{(a,b)}, \hat{y})$$

gdzie (a, b) to przedział czasu, podczas którego oceniamy wynik

czyto działa?

Benchmark I: Jittered MNIST

FIG. 5. **Jittered MNIST:** The input spikes arrive from an asynchronous camera, conveying jittered images of the digits.

Benchmark I: Jittered MNIST

Benchmark I: Jittered MNIST

TABLE III. **Detailed comparison for the jittered MNIST:** the number of model parameters and the test accuracy obtained from 10 trials.

Network	Total # of parameters	Mean accuracy	Maximum accuracy
GRU 3-layer	658880	0.9694	0.9708
LSTM 4-layer	1208460	0.9699	0.9719
RNN 4-layer	400494	0.9708	0.9718
SNU 4-layer	269322	0.9741	0.9754
sSNU 4-layer	269322	0.9796	0.9802

Benchmark II: polyphonic music prediction

Network	# of hidden units	# of hidden layer param.	Total # of parameters
RNN tanh ⁵⁸	100	$\approx 20.1 \times 10^3$	$\approx 30.2 \times 10^3$
GRU ⁵⁸	46	$\approx 20.2 \times 10^3$	$\approx 25.0 \times 10^3$
LSTM ⁵⁸	36	$\approx 19.8 \times 10^3$	$\approx 23.4 \times 10^3$
LSTM ⁶¹	≈ 87	$\approx 61.2 \times 10^3$	$\approx 69.0 \times 10^3$
NIAF-LSTM ⁶¹	≈ 110	$\approx 87.6 \times 10^3$	$\approx 97.3 \times 10^3$
SNU	150	13.350×10^3	26.638×10^3
sSNU	150	13.350×10^3	26.638×10^3

Podsumowując

- Spiking Neural Unit wnosi dynamikę Spking Neural Networks do znanych nam Artificial Neural Networks
- SNU ma mniej parametrów i wygląda na to, że szybciej się uczy (w porównaniu z LSTMami i GRU)
- istnieją benchmarki, na których SNU osiagają wyniki lepsze niż LSTMy i GRU

dzięki. pytania?