

- Mostly captured in a particular frequency, either 50Hz or 60Hz
- The patterns of fluctuations of ENF signals are quite unique to every region

Crawling online multimedia: Reference data

ENF (Electrical Network Frequency)

Some online multimedia data can be used to extract ENF signals from the recorded multimedia.

Crawling online multimedia: Reference data

Interpolating ENFs to estimate target location value

Performance of Interpolation Methods

Calculating RMSE using LOOCV

RMSE of each point n

$$RMSE^{(n)} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} [Z_t(x_n) - \hat{Z}_t(x_n)]^2}$$

Average RMSE of all points

$$\mathbb{E}[RMSE] = \frac{1}{N} \sum_{n=1}^{N} RMSE^{(n)}$$

$$\sigma[RMSE] = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (RMSE^{(n)} - \mathbb{E}[RMSE])^2}$$