Bipartite Matching

1 Bipartite Matching

1.1 Setup

Problem. Given a bipartite graph G = (V, E) with $V = L \bigcup R$ and weights w_e on each edge $e \in E$, find a maximum weight matching between L and R.

Recall that a matching is a set of edges covering each node at most once. Let n = |V| and m = |E|. Our focus here will be on using the polyhedral interpretation of this problem to gain insights about its structure.

1.2 Bipartite Matching LP Relaxation

We have the LP:

$$\max \sum_{e \in E} w_e x_e$$
s.t.
$$\sum_{e \in \delta(v)} x_e \le 1 \ \forall v \in V$$

$$x_e \ge 0 \ \forall e \in E$$

Note that this LP is a relaxation because we allow fractional matchings; as proved in last lecture, the vertices of the feasible polytope are the indicator vectors of matchings.

Theorem 1. The feasible region of the matching LP is the convex hull of the indicator vectors of matchings. Thus, solving this LP is exactly equivalent to solving the combinatorial problem.

Proof. It suffices to show that all vertices of the feasible polytope are integral. Consider $\boldsymbol{x} \in P$ non-integral, we will show that \boldsymbol{x} is not a vertex. Let H be the subgraph formed by edges with $x_e \in (0,1)$. H either contains a cycle, or else a maximal simple path. Informally, either way, we can add and subtract ϵ around the cycle and maintain feasibility, which shows that \boldsymbol{x} is not a vertex.

2 Total Unimodularity

A matrix **A** is called **totally unimodular** if every square submatrix has determinant 0, 1, or -1.

Theorem 2. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is totally unimodular, and \mathbf{b} is an integer vector, then $\{\mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0\}$ has integer vertices.

Proof. By Cramer's Rule. □

Claim 3. The constraint matrix of the bipartite matching LP is totally unimodular. This is another way we can prove integral vertices.

Proof. $\mathbf{A}_{ve} = 1$ if e is incident on v, and 0 otherwise. By induction on the size of the submatrix \mathbf{A}' , we can show that $\det(\mathbf{A}') = 0$. Thus \mathbf{A} is totally unimodular.

3 Duality of Bipartite Matching

The dual LP of bipartite matching is:

$$\min \sum_{v \in V} y_v$$
s.t. $y_u + y_v \ge w_e \ \forall e = (u, v) \in E$

$$y_v \succeq 0 \ \forall v \in V$$

The primal interpretation is that Player 1 is looking to build a set of projects. Each edge e is a project generating profit w_e . Each project e needs two resources, u and v. Each resource can be used by at most one project at a time. How can we choose a profit-maximizing set of projects? In the dual, Player 2 is looking to purchase resources and offers a price y_v for each resource. The prices should incentivize Player 1 to sell his resources, but Player 2 wants to pay as little as possible. Note that when edge weights are 1, binary solutions to the dual are vertex covers. Thus, the dual is a relaxation of the minimum cost vertex cover problem for bipartite graphs. Strong duality and the total unimodularity of the constraints leads to Konig's Theorem: the cardinality of the maximum matching is equal to the cardinality of the minimum vertex cover.