*** 부산에 판교와 같은 IT산업단지가 유치된다면 부산의 GRDP를 예측***

- 2. 판교테크노벨리는 2012년 조성이후 활발히 활동하고 있음
- 판교테크노벨리 홈페이지의 연도별 게시물 개수의 통계 사용
- 3. 판교가 개발된 2012년 이후에 부동산 가격이 상승하였음
- 판교 개발 이후를 비교하기 위해 중원구, 분당구의 부동산 가격 변화율 추이 활용
- 4. 회귀분석으로 판교가 개발되지 않았을 경우의 GRDP를 예측
- 경기도 명목GRPD와 실질GRDP사용
- IT 업계를 나타내기 위해 전체GRDP가 아닌 정보통신업의 GRDP로 분석
- 5. 부산의 2030년까지의 GRDP예측
- ARIMA모델 사용
- 6. 부산 센텀2지구가 개발된다면 부산의 GRDP예측
- ARIMA모델에 경기도의GRDP 증가율을 부산시에 반영

부산시(시장 박형준)는 도심융합특구 사업지구로 센텀2 도시첨단산업단지(191만㎡, 이하 센텀2지구)가 선정됐다고 밝혔다.

도심융합특구는 수도권을 제외한 5대 광역시 도심에 **판교 제2테크노밸리 모델을** 적용해 기업과 청년에게 매력적인 복합혁신공간을 만들어 제공하는 것으로, 도심에 창업·벤처 등 범정부가 추진하는 지원사업을 집적하고 산업, 주거, 문화 등이 집약된 우수한 인프라를 갖춘 고밀도 거점 공간을 조성한다.

대상지로 선정된 센텀2지구는 부산 대개조 프로젝트 일환으로 해운대구 반여동·반송동·석대동 일원에 **2027년 완공을 목표로** 부산도시공사와 함께 도시첨단산업단지 조성을 추진 중이며, 또한 센텀시티, 해운대와 인접해 우수한 주거. 상업. 문화 인프라를 활용할 수 있으며, 도시철도 4호선, 반송로 등 시내 교통망 및 경부고속도로 등 광역교통망 접근성도 우수하다.

이를 통해 센텀2지구를 창업·벤처기업 등이 공존하는 ICT(정보통신기술) 중심의 미래 산업 생태계로 조성하고 매력적인 주거. 상업. 문화 복합공간도 함께 마련하여 우수한 지역 인재들의 정착을 도모할 예정이다.

출처 : 전기신문(https://www.electimes.com)

- ※ 부산의 GRDP증가율 예측
- 시계열 데이터를 추정할 수 있는 ARIMA모형 활용
- IT버블이나 금융 위기, 부산 경제 침체 등 다른 변수는 없다고 가정
- 실질GRDP는 물가 변동을 반영하기 때문에 명목GRDP만 추정
- 다른 업종이 정보통신업에 끼치는 영향은 없다고 가정
- 판교 개발 이후의 명목GRDP 증가율을 부산GRDP에 그대로 반영

* IT버블(닷컴버블) : 인터넷 관련 분야가 성장하면서 산업 국가의 주식 시장이 지분 가격의 급속한 상승을 본 1995년부터 닷컴 버블이 붕괴된 2001년까지 걸친 거품 경제 현상

출처:https://ko.wikipedia.org/wiki/%EB%8B%B7%EC%BB%B4_%EB%B2%84%EB%B8%94

* GRDP: 지역내총생산(Gross Regional Domestic Product: GRDP)이란 일정 기간 동안에 일정 지역 내에서 새로이 창출된 최종생산물가치의 합, 즉 각 시・도내에서 경제활동별로 얼마만큼의 부가가치가 발생되었는가를 나타내는 경제지표

출처:

http://kostat.go.kr/understand/info/info lge/1/detail lang.action?bmode=detail_lang&pageNo=&keyWord= 0&cd=SL4409&sTt=

* 명목GRDP는 물가 변동을 반영하지 않은 것이고, 실질GRDP는 물가 변동을 반영한 것

1. 판교테크노벨리는 2012년 조성이후 활발히 활동하고 있음

- Selenium을 사용하여 연도별 게시물 개수 추출
- -중복된 공지는 제거한 후, Counter을 활용하여 게시물 개수 통계 사용

※ 지원사업의 개수는 다르지만 2012년부터 홈페이지가 계속 활성화되고 있다는 것을 확인할 수 있음

* 판교테크노벨리지원사업 : 판교 테크노벨리 입주 스타트업의 사업화지원을 통해, 경쟁력 제고와 통합 클러스터 생태계 활성화

2. 판교가 개발된 2012년 이후에 부동산 가격이 상승하였읍

- Pandas와 Numpy 사용하여 데이터 정제
- 중원구와 분당구의 부동산 가격 데이터 시각화

최근 주요 부동산 대책

2018년 8월 27일

주택 공급확대 및 투기지역 지정

2018년 9월 13일

양도세·종부세 강화, 청약제도 개편

2018년 9월 21일

3기 신도시 추진 1차 택지 후보지 공개

출처: https://www.sedaily.com/NewsVlew/1S60X71MQ3

- Pandas와 Numpy 사용하여 데이터 정제
- 경기도의 명목GRDP와 실질GRDP 시각화

- Sklearn 사용, 판교개발이 이루어지지 않았을 때의 2020년 GRDP예측
- 명목GRDP와 실질GRDP의 회귀분석 선을 그래프에 나타냄
- 날짜를 종속변수, GRDP를 독립변수로 회귀분석
- 판교가 개발되지 않았을 경우 2020년의 GRDP를 추청
- 1985년부터 2011년까지를 train데이터셋으로 설정

- 명목 GRDP회귀식:

$$y = 427978.59168035 \times x - 85110546.6160372$$

- 실질 GRDP회귀식:

 $y = 447751.90093049 \times x - 890755514.581007$

판교개발이 이루어진 경우

명목GRDP 19,308,265백만원, 실질GRDP는 18,290,686백만원

판교개발이 이루어지지 않은 경우

명목GRDP 약13,411,329백만원, 실질GRDP 약 13,703,325백만원으로 예측.

- 부산의 GRDP시각화

- 부산의 인구유출 그래프와 고령인구 비율 시각화

ARIMA모형 선택 이유 : 시간 순서대로 정렬된 데이터에서 의미 있는 요약과 통계 정보를 추출하기 위해 선택.

* ARIMA모형 : 일정한 시간 간격으로 표시된 자료의 특성(추세변동, 계절변동, 순환변동, 불규칙변동)을 파악하여 미래를 예측하는 분석방법

- ARIMA모형 패키지 사용
- Train 데이터셋 설정
- Train 데이터셋은 1985년부터 2020년까지 설정

- ARIMA 모형의 차수 p,d,q와 계수를 자동으로 추정

```
Performing stepwise search to minimize aic
 ARIMA(2,1,2)(0,0,0)[0] intercept
                                   : AIC=887.458, Time=0.52 sec
 ARIMA(0,1,0)(0,0,0)[0] intercept
                                   : AIC=894.385, Time=0.03 sec
 ARIMA(1,1,0)(0,0,0)[0] intercept
                                    : AIC=894.423, Time=0.07 sec
 ARIMA(0,1,1)(0,0,0)[0] intercept
                                   : AIC=895.776, Time=0.05 sec
 ARIMA(0,1,0)(0,0,0)[0]
                                    : AIC=904.381, Time=0.01 sec
 ARIMA(1,1,2)(0,0,0)[0] intercept
                                   : AIC=886.890, Time=0.14 sec
 ARIMA(0,1,2)(0,0,0)[0] intercept
                                    : AIC=889.775, Time=0.09 sec
                                    : AIC=894.747, Time=0.08 sec
 ARIMA(1,1,1)(0,0,0)[0] intercept
 ARIMA(1,1,3)(0,0,0)[0] intercept
                                    : AIC=890.044, Time=0.31 sec
 ARIMA(0,1,3)(0,0,0)[0] intercept
                                    : AIC=890.926, Time=0.11 sec
 ARIMA(2,1,1)(0,0,0)[0] intercept
                                    : AIC=886.074, Time=0.12 sec
                                    : AIC=883.981, Time=0.07 sec
 ARIMA(2,1,0)(0,0,0)[0] intercept
 ARIMA(3,1,0)(0,0,0)[0] intercept
                                    : AIC=886.015, Time=0.07 sec
 ARIMA(3,1,1)(0,0,0)[0] intercept
                                    : AIC=888.039, Time=0.17 sec
 ARIMA(2,1,0)(0,0,0)[0]
                                    : AIC=883.185, Time=0.04 sec
 ARIMA(1,1,0)(0,0,0)[0]
                                    : AIC=897.980, Time=0.02 sec
 ARIMA(3,1,0)(0,0,0)[0]
                                    : AIC=885.111, Time=0.07 sec
 ARIMA(2,1,1)(0,0,0)[0]
                                    : AIC=885.176, Time=0.13 sec
 ARIMA(1,1,1)(0,0,0)[0]
                                    : AIC=891.711, Time=0.09 sec
 ARIMA(3,1,1)(0,0,0)[0]
                                    : AIC=887.175, Time=0.09 sec
```

Best model: ARIMA(2,1,0)(0,0,0)[0]

Total fit time: 2.388 seconds

ARIMA(2,1,0)(0,0,0)[0]

▶ p=2, d=1, q=0으로 적용

- 모델 생성

SARIMAX Results										
Model: ARIMA(2, 1, Date: Mon, 04 Jul 20 Time: 13:49 Sample: -			2022	D) Log Likelihood 22 AIC 50 BIC 0 HQIC 36			36 -438.593 883.185 887.851 884.796			
=======	 coef	std err	====	z	======= P> z	[0.025	0.975]			
ar.L1 ar.L2 sigma2	0.1619 0.5957 4.549e+09	0.111 0.090 7.56e-12		1.452 6.635 1e+20	0.147 0.000 0.000	-0.057 0.420 4.55e+09	0.380 0.772 4.55e+09			
Ljung-Box (L1) (Q): Prob(Q): Heteroskedasticity (H): Prob(H) (two-sided):				2.36	Jarque-Bera (JB): Prob(JB): Skew: Kurtosis:			2.90 0.23 0.56 3.85		

▶유의확률 유의미하다고 판단.

- 시계열로 예측한 부산의 2030년까지 GRDP

- 경기도의 2004년부터 2014년까지 10년의 GRDP증가율 계산
- 부산의 예측GRDP에 증가율 곱하기

	grdp		grdp		grdp
year		year		year	
1985	1.348000e+05	2001	1.438409e+06	2017	1.837631e+06
1986	1.468570e+05	2002	1.572253e+06	2018	1.867771e+06
1987	1.730630e+05	2003	1.743466e+06	2019	1.904423e+06
1988	1.822200e+05	2004	1.807535e+06	2020	1.943742e+06
1989	2.259120e+05	2005	1.927068e+06		
1990	2.719040e+05	2006	1.899069e+06	2021	2.173663e+06
1991	2.869720e+05	2007	1.877078e+06	2022	2.259678e+06
1992	3.753720e+05	2008	1.845400e+06	2023	2.345629e+06
1993	4.231770e+05	2009	1.836835e+06	2024	2.449617e+06
1994	5.258170e+05	2010	1.809895e+06	2025	2.592015e+06
1995	6.040020e+05	2011	1.698804e+06	2026	2.715609e+06
1996	7.109250e+05	2012	1.692436e+06		
1997	8.432990e+05	2013	1.692823e+06	2027	2.742704e+06
1998	9.241990e+05	2014	1.721689e+06	2028	2.917865e+06
1999	1.121303e+06	2015	1.739795e+06	2029	3.325980e+06
2000	1.111246e+06	2016	1.884327e+06	2030	3.607763e+06

- 센텀2지구가 개발될 경우 부산의 예측 GRDP시각화

- 2027년 부산에 제 2테크노벨리가 신설된다면, 2030년 예상 GRDP는 약 3,607,763백만원으로 추정됨

출처

https://www.pangyotechnovalley.org/html/support_biz/pangyo_support.asp

https://www.sedaily.com/NewsVlew/1S60X71MQ3

https://www.reb.or.kr/r-one/main.do

http://kostat.go.kr/understand/info/info_lge/1/detail_lang.action?bmode=detail_lang&pageNo=&key

Word=0&cd=SL4409&sTt=

https://kosis.kr/statHtml/statHtml.do?orgId=210&tblId=DT_GRDP002&conn_path=I3

https://www.electimes.com

https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B26001_A01&conn_path=12

https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1YL20631&conn_path=I2

https://ko.wikipedia.org/wiki/%EB%8B%B7%EC%BB%B4 %EB%B2%84%EB%B8%94

https://colab.research.google.com/drive/1Qqx5G7SzaLcUl16Zrm8x7K_z_BoGt3eS?usp=sharing