# **MEC1210 - THERMODYNAMIQUE**

## TRAVAIL À FAIRE SUITE À LA RENCONTRE - 3 DU PROJET

Liste des tâches devant être faites avant la 4<sup>e</sup> rencontre du projet.

- 1) Avancer votre connaissance du **logiciel EES** en l'explorant plus à fond, principalement le nouveau document intitulé : « Notions intermédiaires » couvrant les sujets tels les « Tableaux paramétriques » et autres.
- 2) Terminer le **programme EES de calcul** des paramètres thermodynamiques du cycle Rankine avec 2 turbines et dégazeur. En page 2 vous trouverez la figure de ce cycle et la numérotation des points utilisée. Vous y trouverez également un tableau présentant les données que vous devez utiliser. Les données thermodynamiques doivent être entrées dans un tableau **Lookup Table**. (Vous pouvez aussi définir et utiliser un deuxième tableau **Lookup Table** pour les rendements)
- 3) Particularités du cycle Rankine :

Ajout des composantes suivantes :

Turbine Basse Pression - Dégazeur - Resurchauffe - Pompe # 2 Prise en compte des irréversibilités (pertes) pour les 2 pompes et pour les 2 turbines

- 4) Construire le **diagramme** (**T s**) (température entropie) de ce cycle avec 2 turbines. Ne pas oublier que la construction de ce diagramme nécessite que les paramètres soient sous forme de vecteurs (ex: T[5]).
- 5) Les <u>hypothèses</u> que vous devez utiliser pour calculer les propriétés thermodynamiques aux différents points du cycle sont les suivantes :
  - Le régime est permanent
  - Les pertes de pression par frottement dans les conduites sont négligées
  - Les pertes de chaleur sont négligées
  - La chaleur fournie au fluide dans le générateur de vapeur se fait à pression constante
  - La condensation de la vapeur se fait selon une évolution à pression constante
- 6) À partie des paramètres thermodynamiques, principalement les températures (T) et les enthalpies (h), de chaque point **vous devez calculer** :
  - La puissance utilisée réelle par les 2 pompes
  - La puissance brute des turbines et la puissance nette du cycle
  - Le rapport de la puissance utilisée par les pompes sur la puissance produite par les turbines
  - Le bilan énergétique du condenseur et du dégazeur
  - La puissance électrique produite par l'alternateur
  - La chaleur fournie par le générateur de vapeur
  - Le rendement thermique du cycle Rankine avec 2 turbines
  - Le rendement du cycle de Carnot correspondant

7) Pour être en mesure de faire le 2<sup>e</sup> travail et de se préparer à la 4<sup>e</sup> rencontre, les étudiants doivent lire les pages du livre de Thermodynamique de « Çengel, Boles, Kanoğlu et Lacroix » portant sur la surchauffe et le cycle Rankine avec 2 turbines et dégazeur.

#### NOTE: Voir site Moodle du cours pour la remise du travail!

### Tableau des données à utiliser pour le cycle Rankine avec 2 turbines :

| POINT | NOM                                 | ÉTAT                  | DÉBIT  | T            | P     | TITRE |
|-------|-------------------------------------|-----------------------|--------|--------------|-------|-------|
|       |                                     |                       | (kg/s) | ( <b>K</b> ) | (kPa) | (-)   |
| 1     | Entrée à la pompe # 1               | Liquide comprimé      |        | 320          | 100   |       |
| 2     | Sortie de la pompe # 1              | Liquide comprimé      |        |              | 329   |       |
| 3     | Entrée de la pompe # 2              | Liquide comprimé      | 325    |              | 329   |       |
| 4     | Sortie de la Pompe # 2              | Liquide comprimé      |        |              | 9000  |       |
| 5     | Sortie de l'économiseur             |                       |        | 450          |       |       |
| 6     | Point virtuel                       | Liquide saturé        |        |              |       | 0.0   |
| 7     | Sortie ballon                       | Vapeur saturée        |        |              |       | 1.0   |
| 8     | Entrée à la turbine Haute Pression  | Vapeur<br>surchauffée |        | 800          |       |       |
| 9     | Sortie de la turbine Haute Pression | Vapeur                |        |              | 1750  |       |
| 10    | Entrée de la turbine Basse Pression | Vapeur<br>surchauffée |        | 780          |       |       |
| 11    | Soutirage de la vapeur              |                       |        |              | 329   |       |
| 12    | Sortie de la turbine Basse Pression | Vapeur humide         |        |              |       |       |
| 13    | Sortie du condenseur                | Liquide saturé        |        |              | 9     | 0.0   |
| 14    | Entrée eau de refroidissement       | Liquide               | 6815   | 293.2        | 101   |       |
| 15    | Sortie eau de refroidissement       | Liquide               |        | 317.0        | 101   |       |

#### **NOTES IMPORTANTES:**

Toutes les pressions sont en valeur absolue

Rendement de la pompe # 1 (Basse Pression) = 81 %

Rendement de la pompe # 2 (Haute Pression) = 78 %

Rendement de la turbine Haute Pression = 80 %

Rendement de la turbine Basse Pression 1<sup>e</sup> section = 88 %

Rendement de la turbine Basse Pression 2<sup>e</sup> section = 85 %

Rendement de l'alternateur = 96 %

Soutirage de la vapeur de la turbine Basse Pression = 10 % de la masse totale

Figure 1: Cycle Rankine avec 2 turbines

