This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

This Page Blank (uspto)

ì

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06315027 A

(43) Date of publication of application: 08.11.94

(51) Int. CI

H04L 9/06

H04L 9/14

G09C 1/00

(21) Application number: 06049081

(22) Date of filing: 18.03.94

(30) Priority:

23.04.93 US 93

52304

(71) Applicant:

INTERNATL BUSINESS MACH

CORP <IBM>

(72) Inventor:

BELLARE MIHIR

GUERIN ROCH ANDRE

ROGAWAY PHILLIP WALDER

(54) METHOD AND DEVICE FOR DATA **AUTHENTICATION IN DATA COMMUNICATION ENVIRONMENT**

(57) Abstract:

PURPOSE: To obtain an improved data processing system by generating a tag by combining plural cryptographic words and deciding an authentication tag used with data transfer in which a communication channel is used.

CONSTITUTION: A message is signed by a transmitting origin 12 by a sign processing 22. A message 18, a transmitting origin identifier 26, a shared key 28 and a counter 30 are received by the processing 22. A message 24 with a signature is transmitted with a channel 20. A message 34 is received and an identifier 36 of a signer is extracted by inspecting the message 34 by a receiving destination 14. A value of the receiving destination itself of a key 38 of the receiving destination itself shared by a person who is provided with the identifier equal to the identifier 36 and a value of the receiving destination itself of a CTR 45 is looked up by using the identifier 36 by using a table 42 indexed by the identifier 36 by the receiving destination. After that, the message 34, the identifier 36, the key 38 and the CRT 45 are taken, inspection completion message 44 is recovered or the message 34 is judged to be forged by an inspection processing 43 and when the message 34 is judged to be forged, the message is discarded.

COPYRIGHT: (C)1994,JPO

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-315027

(43)公開日 平成6年(1994)11月8日

(51) Int.Cl.5 庁内整理番号 FΙ 識別記号 技術表示箇所 H 0 4 L 9/06 9/14G 0 9 C 1/00 8837 - 5 L 8949 - 5 K H 0 4 L 9/ 02 請求項の数44 OL (全 19 頁) 審査請求 有 (21)出願番号 特願平6-49081 (71)出願人 390009531 インターナショナル・ビジネス・マシーン (22)出願日 平成6年(1994)3月18日 ズ・コーポレイション INTERNATIONAL BUSIN (31)優先権主張番号 052304 ESS MASCHINES CORPO (32)優先日 1993年4月23日 RATION (33)優先権主張国 米国 (US) アメリカ合衆国10504、ニューヨーク州 アーモンク (番地なし) (72)発明者 ミヒル・ベラーレ アメリカ合衆国10025 ニューヨーク州ニ ューヨーク セントラル・バーク・ウェス

(54)【発明の名称】 データ通信環境におけるデータ認証のための方法および装置

(57)【要約】

【目的】 データ通信環境内で、単純、高速かつ安全に データ認証を提供するためのシステムおよび方法を提供 すること。

【構成】 転送するデータ・メッセージを、データ・ブロックに分割する。各データ・ブロックをブロック・インデックスと組み合わせて、ワードを作成する。各ワードに擬似乱数関数を適用して、複数の暗号データ列を作成する。送信元の識別子とカウンタ値を含む識別于用へッダも、擬似乱数関数を使用して暗号化する。この暗号化されたデータ列とヘッダを論理的に組み合わせて、タグを作成する。特定のワードの暗号化は他のワードと独立に行われるので、各プロックを他のブロックとは独立に暗号化することができる。したがって、この方法およびシステムは、並列にまたはパイプライン方式で実行でき構成できる。受信側の構成要素またはシステムは、メッセージ信頼性を判定するために送信されたタグと比較することのできる、第2のタグを生成する。

ト372 ナンバー16イー (74)代理人 弁理士 合田 巌 (外2名)

最終質に続く

I

【特許請求の範囲】

【請求項1】データを複数のブロックに区分するステップと。

前記プロックのそれぞれについて、前記プロックを符号 化して、前記プロックの値と前記プロックの識別子との 両方を表すワードを作成するステップと、

前記ワードのそれぞれに擬似乱数関数を適用して、複数 の暗号ワードを作成するステップと、

前記複数の暗号ワードを組み合わせて、タグを作成する ステップとを含む、通信チャネルを使用したデータの転 10 送と共に使用する認証タグを決定するための方法。

(請求項2) 前記擬似乱数関数が、データ暗号化標準 (DES) アルゴリズムであることを特徴とする、請求 項1の方法。

【請求項3】前記ブロックが、固定長であることを特徴 とする、請求項1の方法。

【請求項4】前記組み合わせステップが、排他的論理和 演算を含むことを特徴とする、請求項1の方法。

【請求項5】前記タグが、切捨てその他の方法によって 所与の長さに短縮されることを特徴とする、請求項1の 20 方法。

【請求項6】前記擬似乱數関数が、多段式であることを 特徴とする、請求項1の方法。

【請求項7】前記複数のワードが、前記多段式擬似乱数 関数に対してバイプライン化されることを特徴とする、 請求項6の方法。

【請求項8】前記複数のワードが、前記複数の多段式艇 似乱数関数に同時に提示されることを特徴とする、請求 項1の方法。

【請求項9】さらに、少なくとも前記タグを前記識別子 30 と組み合わせて、メッセージ認証コード(MAC)を作成するステップを含む、請求項1の方法。

【請求項10】さらに、少なくともデータとメッセージ 認証コードとを組み合わせて、データ・パケットを作成 するステップを含む、請求項9の方法。

【請求項11】データを複数のブロックに区分するステップと、

前記プロックのそれぞれについて、前記プロックを符号 化して、前記プロックの値と前記プロックの識別子との 両方を表すワードを作成するステップと、

(i) 前記ワードのそれぞれと(ii) 前記データのヘッダとに擬似乱数関数を適用して、複数の暗号ワードを作成するステップと、

前記複数の暗号ワードを組み合わせて、メッセージ認証 コード(MAC)を作成するステップとを含む、通信チャネルを使用したデータの転送と共に使用する認証タグ を決定するための方法。

【請求項12】前記擬似乱数関数が、データ暗号化標準(DES)アルゴリズムであることを特徴とする、請求項11の方法。

【請求項13】前記プロックが、固定長であることを特徴とする、請求項11の方法。

【請求項14】前記組み合わせステップが、排他的論理 和演算を含むことを特徴とする、請求項11の方法。

【請求項15】前記ペッダが、識別子とカウンタとを含むことを特徴とする、請求項11の方法。

【請求項16】前記タグが、切捨てによって所与の長さ に短縮されることを特徴とする、請求項11の方法。

【請求項17】前記擬似乱数関数が、多段式であることを特徴とする、請求項11の方法。

【請求項18】前記複数のワードが、前記多段式擬似乱 数関数に対してパイプライン化されることを特徴とす る、請求項17の方法。

【請求項19】前記複数のフードが、前記複数の多段式 擬似乱数関数に同時に提示されることを特徴とする、請 求項11の方法。

【請求項20】さらに、少なくとも前記タグを前記識別子と組み合わせて、メッセージ認証コード (MAC) を作成するステップを含む、請求項11の方法。

20 【請求項21】 さらに、少なくともデータとメッセージ 認証コードとを組み合わせて、データ・パケットを作成 するステップを含む、請求項20の方法。

【請求項22】データを複数のブロックに区分するステップと、

前記ブロックのそれぞれについて、前記ブロックを符号 化して、前記ブロックの値と前記ブロックの識別子との 両方を表すワードを作成するステップと、

前記ワードのそれぞれに撥似乱数関数を適用して、複数 の暗号ワードを作成するステップと、

が 前記複数の暗号ワードを組み合わせて、タグを作成する ステップと、

少なくとも前記データと前記タグとを組み合わせて、データ・パケットを作成するステップと、

非機密保護通信チャネルを介して前記データ・バケット を送信するステップと、

データ・バケットを受信するステップと、

データ・パケットを分解して、タグとデータを抽出する ステップと、

少なくとも抽出されたデータと局所キーとから第2タグ を生成するステップと、

抽出されたタグと第2タグを比較して、データ・パケットのデータ信頼性を判定するステップとを含む、非機密保護通信チャネルを使用してデータを安全に転送するための方法。

【請求項23】データを複数のブロックに区分するステップと、

前記プロックのそれぞれにプロック識別子を連結して、 フードを作成するステップと、

前記ワードのそれぞれに擬似乱数関数を適用して、複数 50 の暗号ワードを作成するステップと、

ップと.

.3

前記複数の暗号ワードを組み合わせて、タグを作成する ステップとを含む、通信チャネルを使用したデータの転送と共に使用する認証タグを決定するための方法。

【請求項24】前記プロック識別子が、プロック・インデックスに基づくことを特徴とする、請求項23の方法。

【請求項2 5】前記擬似乱数関数が、多段式であること を特徴とする、請求項2 3 の方法。

【請求項26】前記複数のワードが、前記多段式擬似乱 数関数に対してパイプライン化されることを特徴とす 10 る、請求項25の方法。

【請求項2 7】 データを複数のプロックに区分するステップと、

前記プロックのそれぞれについて、前記プロックを符号 化して、前記プロックの値と前記プロックの識別子との 両方を表すワートを作成するステップと、

(i) 前記ワードのそれぞれと(ii) 前記データの識別子とに提似乱数関数を適用して、複数の暗号ワードを作成するステップと、

前記複数の暗号ワードを組み合わせて、タグを作成する 20 ステップと、

少なくともデータとタグとを組み合わせて、データ・パケットを作成するステップと、

非機密保護通信チャネルを介してデータ・パケットを送信するステップと.

データ・パケットを受信するステップと、

受信したデータ・パケットを分解して、受信データと受 信タグを抽出するステップと、

少なくとも受信データと局所キーとから局所タグを生成 するステップと、

受信タグと局所タグを比較して、受信データ・パケットのデータ信頼性を判定するステップとを含む、非機密保護通信チャネルを使用してデータを安全に転送するための方法。

【請求項28】データを複数のプロックに区分するステップと、

前記プロックのそれぞれについて、前記プロックを符号 化して、前記プロックの値と前記プロックの識別子との 両方を表すワードを作成するステップと、

(i) 前記ワードのそれぞれと (ii) 前記データの識別 40 子とに擬似乱数関数を適用して、複数の暗号ワードを作成するステップと、

前記複数の暗号ワードを組み合わせて、タグを作成する ステップと、

少なくともデータ、タグ、送信元識別子および時間変動 パラメータを組み合わせて、データ・パケットを作成す るステップと、

非機密保護通信チャネルを介してデータ・パケットを送 信するステップと、

データ・パケットを受信するステップと、

受信データ・パケットを分解して、受信データ、受信タ グ、受信送信元識別子および受信時間変動パラメータを 抽出するステップと、

少なくとも受信データ、受信送信元識別子、受信時間変動パラメータおよび局所キーから局所タグを生成するステップと、

受信タグと局所タグを比較して、受信データ・パケット のデータ信頼性を判定するステップとを含む、前記非機 密保護通信チャネルを使用してデータを安全に転送する ための方法。

【請求項29】前記比較ステップが、さらに、前記受信 時間変動パラメータを局所時間変動パラメータと比較し て、前記データ信頼性をさらに判定するステップを含む ことを特徴とする、請求項28の方法。

【請求項30】前記受信時間変動パラメータが、受信カウンタを含むことを特徴とする、請求項29の方法。

【請求項31】前記受信時間変動パラメータが、タイム・スタンプを含むことを特徴とする、請求項29の方法。

20 【請求項32】前記受信時間変動パラメータが、シーケンス番号を含むことを特徴とする、請求項29の方法。 【請求項33】データを複数のブロックに区分するステージを表する。

前記プロックのそれぞれにプロック識別子を連結して、 フードを作成するステップと、

(i) 前記ワードのそれぞれと(ii) 前記データの識別子とに擬似乱数関数を適用して、複数の暗号ワードを作成するステップと、

前記複数の暗号ワードを組み合わせて、タグを作成する 30 ステップとを含む、通信チャネルを使用したデータの転送と共に使用する認証タグを決定するための方法。

【請求項34】受信データ・パケットを分解して、受信 データ、受信タグおよび受信時間変動パラメータを抽出 するステップと、

少なくとも受信データ、受信時間変動パラメータおよび 局所キーから局所タグを生成するステップと、

受信タグと局所タグを比較して、受信データ・パケット のデータ信頼性を判定するステップとを含む、受信デー タ・パケットの信頼性を判定するための方法。

の 【請求項35】前記受信時間変動パラメータが、受信カウンタを含むことを特徴とする、請求項34の方法。

【請求項36】前記受信時間変動パラメータが、タイム・スタンプを含むことを特徴とする、請求項34の方法

【請求項37】前記受信時間変動パラメータが、シーケンス番号を含むことを特徴とする、請求項34の方法。

【請求項38】前記受信データ・パケットが、さらに送信元識別子を含むことを特徴とする、請求項34の方法

【請求項39】さらに、前記送信元識別子を使用して、

- 20

5

局所テーブルから前記局所キーを取得するステップを含む、請求項38の方法。

【請求項40】データを複数のブロックに区分する手段 と

前記プロックのそれぞれを符号化して、前記プロックの それぞれの値と前記プロックのそれぞれの識別子との両 方を表すワードを作成する手段と、

前記ワードのそれぞれに撥似乱数関数を適用して、複数 の暗号ワードを作成する手段と、

前記複数の暗号ワードを組み合わせて、タグを作成する 手段とを含む、通信チャネルを使用したデータの転送と 共に使用する認証タグを決定するためのシステム。

【請求項41】データを複数のブロックに区分する手段と、

前記プロックのそれぞれにプロック識別子を組み合わせて、ワードを作成する手段と、

(i) 前記ワードのそれぞれと(ii) 前記データの識別子とに擬似乱数関数を適用して、複数の暗号ワードを作成する手段と、

前記複数の暗号ワードを組み合わせて、タグを作成する 手段とを含む、通信チャネルを使用したデータの転送と 共に使用する認証タグを決定するためのシステム。

【請求項42】受信データ・バケットを分解して、受信データ、受信タグおよび受信時間変動パラメータを抽出する手段と.

少なくとも受信データ、受信時間変動パラメータおよび 局所キーから局所タグを生成する手段と、

受信タグと局所タグを比較して、受信データ・パケット のデータ信頼性を判定する手段とを含む、受信データ・ パケットの信頼性を判定するためのシステム。

【請求項43】前記受信データ・パケットが、さらに送信元識別子を含むことを特徴とする、請求項42のシステム。

【請求項44】さらに、前記送信元識別子を使用して、 局所テーブルから前記局所キーにアクセスする手段を含む、請求項43のシステム。

【発明の詳細な説明】

[0:0:0:1]

【産業上の利用分野】本発明は、データ通信手順に関し、具体的には、機密保護されない通信媒体を使用する際に認証済みデータを提供するための手順に関する。

[0002]

【従来の技術】通信システムでは、一般に、2人の当事者が、機密保護されないチャネルを介して、一方の当事者が受け取ったメッセージが実際に他方の当事者が作成したものであることを各当事者が確信できる形で通信できることを望む。機密保護されないチャネルとは、第3者が、通信リンクを通過するメッセージ・トラフィックを監視または調査でき、かつ自分自身のメッセージを挿入できるチャネルである。通信中の2人の当事者は、短50

いランダムな秘密キーを所有している、または取得できると仮定することができる。機密保護されないチャネルを介してこのような通信を達成するために、当技術分野ではさまざまな技法が知られている。たとえば、その技法は、R. ジュメマン(Juememan)、S. マチアス(Matyas)、C. マイヤー(Neyer)の論文"Message Authentication"、IEEE Communications、1985年9月等に記載されている。既知の技法の1つでは、各当事者が、送ろうとする各メッセージに、メッセージと秘密キーとおそらくは他の引数との関数として計算される、短いメッセージ認証コード(MAC: Message Authentification Code)を付加する。

【0003】このタイプのシステムは、たとえば、AN SIのX9. 9標準 (ANSI X9. 9, 1982) によって示されるように、当技術分野で既知である。し かし、このシステムには、MACを計算できる速度が、 その基礎となる暗号動作を実行できる速度によって制限 されるという欠点がある。ANSI X9、9の機構を 示す図10に示されるように、この制限は、この機構の 逐次式という性質に起因するものである。この機構は、 メッセージをブロックに分割し、プロックを暗号化し、 暗号化されたブロックとメッセージの次ブロックの排他 的論理和をとり、その結果を暗号化し、すべてのプロッ クの処理が終わるまでこれを繰り返すことからなってい る。したがって、あるブロックを利用するためには、そ の前のすべてのブロックが指定に従って暗号化され排他 的論理和をとられるまで、待機しなければならない。こ の逐次式処理は、プロックの到着速度が単一プロックの 処理に必要な時間の逆数より速い、超高速のネットワー クで問題になる。このようなネットワークでは、余分の ハードウェアを設けても、MACの計算を高速化するの には役立たない。というのは、ボトルネックの原因が、 暗号プリミティブの計算に要する時間であって、その計 算を行うための資源の不足ではないからである。このよ うなネットワークでは、暗号プリミティブを計算できる 速度に合わせて、送信時間を低速化する必要が生じるは ずである。したがって、高速ネットワークでの全体的シ ステム・スループットは、このタイプの逐次式メッセー ジ・タグ計算によって大きな影響を受け、情報転送の効 率が低下する可能性がある。

[0004]

【発明が解決しようとする課題】 本発明の目的は、改良されたデータ処理システムを提供することである。

【0005】本発明のもう1つの目的は、データ処理システム用の改善されたデータ転送手順を提供することである。

【0006】本発明のもう1つの目的は、非機密保護通信環境でのデータ用の改良された認証システムを提供することである。

【0007】本発明のもう1つの目的は、データ処理シ

ステムで転送されるメッセージの認証に使用されるメッセージ認証コードを決定するための、改善された方法を 提供することである。

[0008]

【課題を解決するための手段】本発明は、簡単かつ高速 でおそらくは安全にメッセージ認証コード (MAC)を 計算する方法を提供する。送ろうとするデータを、デー タ・プロックに分割し、このデータ・プロックに連続し たインデックス1、2、3、…、nを付ける。各プロッ クiについて、プロックiの内容とインデックスi(識 10 別子) を符号化することによってワードx を作成す る。各ワードx,にそれぞれ擬似乱数関数を適用して、 暗号ワードッ、を作成する。さらに、送信元の識別子と カウンタを符号化することによって、識別子用シーケン ス番号x。(ヘッダ)を作成する。識別子用ヘッダx。に 擬似乱数関数を適用して、暗号ヘッダy゚゚を生成する。 これらの暗号ワードと暗号ヘッダを論理的に組み合わせ て、タグ t を作成する。タグ t は、送信元の識別子(1 D_A) およびカウンタの値(CTR) と共に、メッセ ージ認証コードを形成する。好ましい実施例では、擬似 乱数関数がデータ暗号化標準(DES)のアルゴリズム であり、ブロック・サイズなどはそれに従って選択され

【0009】 極似乱数関数はそれぞれのワードに他のワードと独立に適用されるので、模似乱数関数の計算は、ワード×、ごとに独立に(たとえば並行にまたはパイプライン式に)実行できる。したがって、この方法およびシステムは、並行にまたはパイプライン式に実行でき構成できる。タグのサイズは、メッセージ段と独立である。受信側の構成要素またはシステムは、メッセージの 30 信頼性を判定する際に遂信されたタグと比較できる。第2のタグを生成する。

[0010]

【実施例】図1を参照すると、送信元12が、メッセージまたはデータをある受信先14に安全に送信しようと試みている。この送信元および受信先は、コンピュータ、通信カード、交換機または他の計算実体とすることができる。メッセージ・ジェネレータ16が、送信元12円のメッセージを作成している。このメッセージの内2円のメッセージを作成している。このメッセージの内4に送信しなければならない。メッセージ・ジェネレータ16は、たとえば、通信スタックの下位層実体、上位層アプリケーション実体、音声データまたはビデオ・でタ16は、たとえば、通信スタックの下位層実体、上位層アプリケーション実体、音声データまたはビデオ・でラの供給源もしくは他のデータ供給源とすることができる。機密保護されないチャネル20は、たとえば、物理的に露出されたワイヤ、光ファイバ・ケーブル、無線しAN、衛星チャネルなどとすることができる。

【0011】受信先14は、送信元12によって送られ 4で、テーブル32(図1)から読み取られる。タグ計 たと主張されるメッセージが実際にその送信元によって 算56については後で図4を参照して説明するが、これ 送られたと確認したいと思う。この目的のため、送信元 50 は、ブロック60でのテーブル32(図1)からのキー

【0012】サイン付きメッセージ24は、機密保護されないチャネル20を介して送信される。このチャネルのもう一方の端で、あるサイン付きメッセージ (signed message) 34が受信先14によって受信される。このサイン付きメッセージ 34は、サイン付きメッセージ24と同一であってもそうでなくてもよい。たとえば、この伝送に使用される機密保護されないチャネル (channel) 20は機密保護されていないので、送信元12が実際にはサイン付きメッセージ24を送信していないのに、サイン付きメッセージ 34が受信される可能性がある。あるいは、侵入者が、サイン付きメッセージのビットをいくつか変更している可能性もある。

「【0013】受信先14は、サイン付きメッセージ。34を受信し、そのサイン付きメッセージ。を検査することによって、そこで主張された署名者の識別子【D_A'36を抽出する。受信先は、【D_A'によってインデックスされるテーブル42を使用することにより、【D_A'36を使用して、【D_A'に等しい識別子を有する者と共用する受信先自体のキー、38と、CTR"45の受信先自体の値を表引きする。その後、検査処理43が、サイン付きメッセージ。34、【D_A'36、キー、38およびCTR'45を取り、検査済みメッセージ。44を回復するか、あるいはサイン付きメッセージ。34が偽造であると判断する。偽造が検出された場合、そのメッセージは廃棄され、他の適当な処置をとることができる。

【0014】図2に、図1のサイン処理22を詳細に示す。このサイン処理22は、メッセージ18を受け取り、ブロック46で、このメッセージを、送信元の識別子である「D_A 26、カウンタの現在値であるCTR 30およびタグ48と連結し、あるいはその他の方法で組み合わせ、符号化する。CTR値は、ブロック54で、テーブル32(図1)から読み取られる。タグ計算56については後で図1を参照して説明するが、これ

28の読取りを含む。結果として得られる連結された文字列、Message、ID_A、CTR、Tag58が、図1のサイン付きメッセージ24である。このサイン付きメッセージに組み合わされたID_A、CTR、Tag部分(すなわち、メッセージ自体を除くすべて)が、図8の符号86に示されるメッセージ認証コード(MAC)である。

【0015】各メッセージのサイン処理のたびに、プロック62で、カウンタCTRの現在値が増分され、あるいは新しい値に変更される。この値は、プロック64で 10 デーブル32(図1)にセーブされ、ID_Aから発する次のメッセージの認証またはサインに使用される。

【0016】ここで図3を参照すると、サイン付きメッ セージ'34が、受信先14に入ってくる。プロック6 6 でこのメッセージを分解して、それを構成するメッセ ージ'35、ID_A'36、CTR'40およびタグ'4 1を決定する。ブロック47で、ⅠD_A'36を使用 してテーブル42(図1)をインデクシングして、局所 キーであるキー'38を得る。ブロック68で、メッセ ージ'35、ID_A'36、CTR'40およびキー'3 20 して使用することもできる。 8 を使用し、送信元12が図2のタグ48を計算するの に使用したタグ計算56と同じアルゴリズムを使用し て、受信先14が、この受信したサイン付きメッセー ジ'34に適したタグ"(TAG") 70を計算する。ブ ロック72で、ブロック68で計算したタグ"70が受 信したタグ'41と異なると判定される場合、この受信 された送信は真正ではないとみなされ、プロック74で 廃棄される。タグが一致する場合、ブロック13でテー ブル42 (図1) からCTR"45を読み取った後に、 ブロック76で、受信したカウンタCTR'40を受信 30 先自体のカウンタであるCTR"45と比較する。前者 のほうが大きい場合、ブロック78でこのメッセージを 受け入れ、プロック80で受信先のカウンタCTR"4 5をCTR'の値で置き換え、ブロック82でテーブル 42 (図1) に書き込む。そうでない場合、受信した送 信は真正でないとみなされ、ブロック74で廃棄され

【0017】時間変動パラメータCTR"45の重要性は、所与のCTR'値に対してあるメッセージを受け入れた後に、同じCTR値で追加のメッセージを受け入れるいようにすることである。好ましい実施例では、メッセージごとに増分されるカウンタを使用し、CTRの最近の値だけをセーブするだけで、カウンタ値が複製されないようにする。しかし、送信されたメッセージが送信時の順序と異なる順序で受信される場合には、これが問題をもたらす。この問題は、真正であるとみなされたメッセージ上で受信された最大のCTR'値からなるk要素の集合Sを受信先がセーブすることによって解決される。さらに、受信先は、(前に説明したように)値CTR"をセーブする。あるメッセージは、そのCTR'値が50

集合Sに含まれるか、あるいはCTR"以下のCTR'値を有する場合に、再生(すなわち真正でない)と判定される。真正のメッセージを受信した時、そのCTR'値を集合Sに追加し、CTR"をその集合の最小要素で置き換え、その後、Sの最小要素をSから取り除く。これによって、複製CTR'値が有効として受け入れられないことが保証される。

10

【0018】別法として、タイム・スタンプなど他のタイプの時間変動パラメータをカウンタの代わりに使用することもできる。送信元は、前述のCTRの代わりに、その現在時刻TIMEを使用する。受信先は、受信先の現在時刻TIME"からあるデルタ量の範囲内にあり、既に使用された時刻値の集合Sのどの時刻値TIME"とも異なる、TIME"値を受け入れる。時刻値TIME"は、このTIME"値を使用してメッセージが受け入れられる時、この集合Sに入れられる。TIME"値は、受信先の現在時刻TIME"との差がデルタ量を越える時、集合Sから取り除かれる。同様の技法を使用して、ブロック・シーケンス番号を時間変動パラメータとして使用することもできる。

【0019】図4は、当技術分野で既知のテータ暗号化 標準(DES)のアルゴリズムに基づく、図2のタグ計 算56と図3のタグ計算68の1実施例を示す図であ る。この暗号化標準は、たとえば、Federal Informatio n Processing Standard (FIPS)Publication 46, Nation al Bureau of Standards, U.S. Department of Commerc e. Washington, D.C., 1977年1月に記載されてい る。図4に示した方法に関する前提条件は次のとおりで ある。第1に、キー28(図1)を使用してメッセージ を送る実体が1つだけ存在し、したがって、その識別子 ID_A 26 (図1) は、単にビット0として扱われ る。第2に、キーの下で送られるメッセージは、20%個 未満である(その後、キーは、手動によりまたは自動的 に新しいキーに更新される)。第3に、各メッセージ は、長さが231個の32ビット・ワード未満である。キ ーの下で送ることのできるメッセージの数は、カウンタ に許容されるピットの数(好ましい実施例では62ピッ ト) によって決まる。1メッセージ内の32ビット・ワ ードの数は、231を上限とする。というのは、この方式 ではビット0がブロック・インデックスの前に付加さ れ、31ビットだけがブロック・インデックス/織別子 の記述用に残されるからである。

【0020】 さらに具体的に図4を参照すると、メッセージ/データ84は、K=32ビットの倍数になるように、何らかの標準的な方法で埋め込まれる。この埋込みはデータ処理分野で公知であるので、図4には示さない。メッセージ/データ84は、ある個数NのKビット・ブロックからなるとみなされる。図4には、N=3ブロック(120、122および124)でK=32ビットの場合のメッセージ/データ84の例が示されてい

る。

【0021】各プロック識別了の32ビット符号化を、 符号88に示す。好ましい実施例では、この符号化の最 初のビットが0にセットされ、残りのビットは、当該の 各プロックの整数値i (プロック・インデックス) の標 準2進符号化である。符号90にMiと示される、この メッセージのi番目の32ビット・プロックを、プロッ ク92でブロック識別子88の末尾に連結する。その結 果得られるN個の64ピット・プロック89を、プロッ ク93で、暗号化標準 (DES) のアルゴリズムを使用 10 して、それぞれ暗号化する。それぞれの場合に使用され るキー96は、このタグ計算を行うのが送信元と受信先 のどちらであるかに応じて、キー28またはキー、38 になる。その結果得られるN個の暗号テキスト99のす べてが、プロック98で、もう1つの暗号テキスト10 2と共に、ビットごとに排他的論理和をとられる。この 追加の暗号テキスト102は、下記のようにして生成さ れる。

【0022】追加の暗号テキスト102は、カウンタ1 0.4 をワードの下位6.2 ビットに2進符号化することに よって形成される。このカウンタ(このタグ計算を実行 するのが送信元と受信先のどちらであるかに応じて、図 LのCTR30またはCTR'40)の前に、ビット" 1"(最上位ビット位置)と送信元の識別子(この動作 が送信元と受信先のどちらで発生するのかに応じてID _AまたはID_A になり、好ましい実施例では1ビ ット長と仮定される)を連結したものが付加される。最 上位ビット群の先頭ビットは、送僧元のID/CTRを 符号化するワードの空間を、メッセージ・ブロックを符 号化する空間から分離するためのものである。 段上位か 30 ら2番目のビットは、送信元の識別子を示すためのもの である。空間の分離によって、復号部分が、カウンタ・ ブロックとメッセージ・ブロックを識別し、これらを区 別できるようになる。というのは、前者は必ずビット1 で始まり、後者は必ずビット0で始まるので、これらの 組は決して共通要素をもたないからである。その結果得 られる64ピット・ワード91は、プロック110で暗 号化基準のアルゴリズムを使用して暗号化される。この 暗号テキストIO2と他のN個の暗号テキスト99の排 他的論理和をとった後に、その結果得られる64ビット 文字列を、プロック112でより少ないピット数に切り 捨てる。図では32ビットに切り捨てられている。もち ろん、この切捨ては、代替実施例ではプロック98の排 他的論理和の前に行うことができる。その結果得られる タグ114は、このタグ計算を実行するのが送信元と受 信先のどちらであるかに応じて、図2のタグ48または 図3のタグ"70になる。

【0023】上で説明した方法の多くを変更して、簡単 に下記のものを含む代替実施例を得ることができる。

・別個の番号を有するブロックが異なる符号化を引き起 50

こす限り、ブロック識別子88と符号90で示される32ビット・ブロックからなるメッセージ・ブロックをどのように符号化してもよい。

・R. リヴェスト (Rivest) 等の論文"The MD5 Message -Digest Algorithm"、Network Working Group RFC 1321、1992年4月に記載のハッシュ関数である、MD5に基づく擬似乱数関数など、他の機構をDESの代わりに使用することができる。擬似乱数関数は、当技術分野で一般に知られており、たとえば、O. ゴールドライヒ (Goldreich)、S. ゴールドヴァッサー (Goldwasser)、S. ミカリ (Micali) の論文"How to Construct Random Functions", Journal of the Association for Computing Machinery, Vol. 33、No. 4、1986年10月、782-807ページに記載されている。

・ID106とカウンタ(CTR)104の符号化は、そのID/CTR符号化が、番号付きメッセージ・プロックの符号化空間と異なる空間に含まれる限り、すなわちすべてのi、mに関して<ID_A、CTR>が<i.m>と等しくない限り、変更することができる。

・共用キーの下でデータを送信する実体のグループの各メンバに IDIO6によって名前を付けるのに十分なビット数を使用しなければならない。たとえば、2つの実体が共用キーを使用して互いにメッセージを送ろうとする場合、1ビットで十分であり、2つの実体の一方が"0"という名前になり、他方が"1"という名前になる。

【0024】パイプライン化も、上記の技法に簡単に適 合させることができる。一部のDESエンジンは、複数 の内部的に刻時される段を有し、暗号化アルゴリズムを 実行する時に、所与の段のデータが後続の段に転送され る。ワードは互いに独立に暗号化できるので、パイプラ イン式暗号化手法が可能である。ここで図5を参照する と、単一の多段DESエンジンが示されている。このD ESエンジンは、図5では、破線で示した4つの段を有 する。たとえば、各段は、4ラウンドのDES計算を含 むことができる。時刻0に、ワード1がDESエンジン に提示され、暗号化処理を受ける。時刻1に、ワード1 (W1) がこのDESエンジンの内部の第2段に移り、 ワード2 (W2) がこのエンジンの第1段に提示され る。時刻2には、ワード1がこのDESエンジンの内部 の第3段に移り、ワード2が内部の第2段に移り、ワー ド3 (W3) がこのエンジンの第1段に提示される。同 様にして時刻3には、ワード1がこのDESエンジンの 内部の第4段に移り、ワード2が内部の第3段に移り、 ワード3が内部の第2段に移り、ワード4 (W4) がこ のエンジンの第1段に提示される。最後に、時刻4に、 ワード1がDES暗号化を終えてこのエンジンから出、 ワード5 (W5) がこのエンジンの第1段に提示され る。暗号化されるワードはそれぞれ、他のワードの暗号 化された値に依存しないので、段間で別個の動作が可能 な独立の内部段を有するDESエンジンを使用すると、

1.3

独立の暗号化動作をこのパイプライン方式で実行するこ とができる。

【0025】図6は、並列MAC方式を使用して、高速 のメッセージ・ジェネレータ16と低速の撥似乱数関数 に基づくサイン処理22の間で帯域幅を一致させる方法 を示すタイミング図である。図6のタイミングに関し て、4つのDESエンジン134、136、138、1 4.0 が送信元と受信先の両方で使用可能な、図7の実施 態様を仮定する。さらに、メッセージ130は、1単位 時間毎に32ビット・ワード1個の割合で生成されてい 10 るが、基礎となるDESエンジンは、4単位時間毎に6 4ビット・ワード1つの割合でしか暗号化できないと仮 定する。このタイミング図では、2つのワードの排他的 論理和、ワードの連結、カウンタの増分、カウンタの更 新などに必要な時間を無視しているが、それらの時間 は、一般に、暗号化動作の実行に必要な時間よりはるか に短い、図7の装置は、4つのDESエンジン(13 4、136、138、140)を使用し、認証される人 ッセージの長さとは無関係に、その待ち時間は単一のD ESエンジンの待ち時間にすぎない。したがって、この <math>20並列化によって、メッセージ長が長い時に、従来の方法 に比べて大きなスループットの利益が得られる。

【0026】これから図7に示された装置に関して、図 6を詳細に説明する。時刻0に、符号化された1010 6 (図7) とCTR104が、制御論理機構132によ ってDESエンジン1(図7の134)に提示される。 また、時刻0に、好ましい実施例では64ビットである 一時変数T(図7の114)が、全ピット0に初期設定 される。暗号テキスト150(図7)は、時刻0+4= の1つとして、前述のようにDES暗号化エンジンに4 時間単位を要するものとする)。この時、暗号テキスト 150は、ブロック146で移動タグT(図7の11 4) の現在値と排他的論埋和をとられる。

【0027】時刻1に、メッセージ130(図7)のワ ード1 (図7の152) が、図7の制御論理機構132 によって符号化され(先に図4に関して説明した符号 化)、DESエンジン2(図7の136)に提示され、 時刻1+4=5にそこから出る。この時、結果として得 られる暗号テキスト152が、プロック146で、T (図7の144) の現在値と排他的論理和をとられる。

【0028】時刻2に、メッセージのワード2(図7の 154) が符号化され、DESエンジン3 (図7の13 8) に提示される。これは時刻2+4=6に出る。この 時、結果として得られる暗号テキスト154が、ブロッ ク146で、T (図7の144) の現在値と排他的論理 和をとられる。

【0029】時刻3に、メッセージのワード3(図7の 156) が符号化され、DESエンジン4(図7の14 0) に提示される。これは時刻3+4=7に出る。この 50 時、結果として得られる暗号テキスト156が、プロッ ク146で、T(図7の144)の現在値と排他的論理 和をとられる。

14

【0030】時刻4に、DESエンジン1(図7の13 4) は、IDとCTRの符号化を処理し終えたばかりで あり、ワード4(図7の158)が準備ができている。 このワード4がDESエンジン1 (図7の134) に提 示され、時刻4+4=8にそこから出る。この時、その 暗号テキストが、ブロック146で、T(図7の14 4) の現在値と排他的論理和をとられる。

【0031】メッセージ130の7つのワードがすべて 処理されるまで、この処理が継続する。

【0032】この図では、メッセージの最後のワード (図7に160として示されるワード7)は、時刻7に DESエンジン4 (図7の140) に入る。暗号テキス ト156は、時刻7+4=11に出る時、ブロック14 6でT(図7の144)の現在値と排他的論理和をとら れる。その結果は、ブロック148で切り捨てられ、あ るいはそのまま残されるが、メッセージ130全体のタ グ114である。

【0033】図9は、すべて共通のデータ経路またはバ ス172を介して相互接続された、CPU170、読取 専用メモリ(ROM)176、ランダム・アクセス・メ モリ (RAM) 174、入出カアダプタ178、ユーザ ・インターフェース・アダプタ182、通信アダプタ1 94、認証アダプタ195および表示装置アダプタ19 6を含む、上記の動作を実行するための、好ましい実施 例のデータ処理システム168を示す図である。上記の 構成要素がそれぞれ、CPUをバス・マスタとし、特定 4にDESエンジン1 (図7の134) から出る(前提 30 のアドレス範囲をシステム内の各構成要素専用にするな どの方法を含む、当業者に既知の普通の技法を使用し て、共通のバスにアクセスする。当業者に既知の他の普 通の技法には、DASD180やネットワーク200な どの外部装置からデータ処理システムのランダム・アク セス・メモリ (RAM) 174へ高速でデータを転送す るのに使用される直接メモリ・アクセス(DMA)が含 まれる。図9からわかるように、外部装置であるDAS D180は入出力アダプタ178を介し、ネットワーク 200は通信アダプタ194を介して、共通のバス17 2にインターフェースする。表示装置198など他の外 部装置も、同様に表示装置アダプタ196を使用して、 パス172と表示装置198の間のデータ・フローを実 現する。ユーザ・インターフェース手段は、ユーザ・イ ンターフェース・アダプタ182によって提供される。 ユーザ・インターフェース・アダプタ182には、ジョ イスティック192、マウス186、キーボード18 4、スピーカ188などが接続されている。これらの装 置はそれぞれ周知であり、したがって本明細書では詳細 には説明しない。

【0034】図9は、下記のように図1に対応する。図

9のネットワーク200は、機密保護されないチャネル 20に対応する。図1の送信元12内の諸機能は、図9 のデータ処理システム168と認証アダプタ195によ って提供される。認証アダプタ195は、図7に示した 論理機構および対応する回路を含む。代替実施例では、 認証アダプター95を通信アダプター94と組み合わせ て、さらに性能を高めることができる。図1の受信先1 4内の諸機能は、図9のデータ処理システム168と同 ータイプまたは異なるタイプの別のデータ・プロセッサ によって提供される。

【0035】以下のように発明を開示する。

(1) データを複数のブロックに区分するステップと、 前記プロックのそれぞれについて、前記プロックを符号 化して、前記プロックの値と前記プロックの識別子との 両方を表すワードを作成するステップと、前記ワードの それぞれに擬似乱数関数を適用して、複数の暗号ワード を作成するステップと、前記複数の暗号ワードを組み合 わせて、タグを作成するステップとを含む、通信チャネ ルを使用したデータの転送と共に使用する認証タグを決 定するための方法。

【0036】(2)前記擬似乱数関数が、データ暗号化 標準(DES)アルゴリズムであることを特徴とする、 (1) の方法。

【0037】(3)前記プロックが、固定長であること を特徴とする、(1)の方法。

【0038】(4) 前記組み合わせステップが、排他的 論理和演算を含むことを特徴とする、(1)の方法。

【0039】(5)前記タグが、切捨てその他の方法に よって所与の長さに短縮されることを特徴とする、 (1) の方法。

【0040】(6)前記擬似乱数関数が、多段式である ことを特徴とする、(1)の方法。

【0041】(7)前記複数のワードが、前記多段式擬 似乱数関数に対してパイプライン化されることを特徴と する、(6)の方法。

【0042】(8) 前記複数のワードが、前記複数の多 段式擬似乱数関数に同時に提示されることを特徴とす る、(1)の方法。

【0043】(9)さらに、少なくとも前記タグを前記 識別子と組み合わせて、メッセージ認証コード(MA C) を作成するステップを含む、(1)の方法。

【0014】(10) さらに、少なくともデータとメッ セージ認証コードとを組み合わせて、データ・パケット を作成するステップを含む、(9)の方法。

【0045】(11)データを複数のブロックに区分す るステップと、前記プロックのそれぞれについて、前記 ブロックを符号化して、前記ブロックの値と前記ブロッ クの識別子との両方を表すワードを作成するステップ と、(i)前配ワードのそれぞれと(ii)前配データの ヘッダとに假似乱数関数を適用して、複数の暗号ワード 50 るステップと、前記プロックのそれぞれにプロック識別

を作成するステップと、前記複数の暗号ワードを組み台 わせて、メッセージ認証コード(MAC)を作成するス テップとを含む、通信チャネルを使用したデータの転送 と共に使用する認証タグを決定するための方法。

16

【0046】(12)前記擬似乱数関数が、データ暗号 化標準 (DES) アルゴリズムであることを特徴とす る、(11)の方法。

【0047】(13)前記プロックが、固定長であるこ とを特徴とする、(11)の方法。

【0048】(14)前記組み合わせステップが、排他 的論理和演算を含むことを特徴とする。 (11) の方

【0049】(15)前記ヘッダが、識別子とカウンタ とを含むことを特徴とする、(11)の方法。

【0050】 (16) 前記タグが、切捨てによって所与 の長さに短縮されることを特徴とする、(11)の方 法。

【0051】(17) 前記擬似乱数関数が、多段式であ ることを特徴とする、(11)の方法。

【0052】(18)前記複数のワードが、前記多段式 擬似乱数関数に対してパイプライン化されることを特徴 とする、(17)の方法。

【0053】 (19) 前記複数のワードが、前記複数の 多段式擬似乱数関数に同時に提示されることを特徴とす る、(11)の方法。

【0054】(20) さらに、少なくとも前記タグを前 記識別子と組み合わせて、メッセージ認証コード(MA C) を作成するステップを含む、(11) の方法。

【0055】(21) さらに、少なくともデータとメッ セージ認証コードとを組み合わせて、データ・パケット を作成するステップを含む、(20)の方法。

【0056】(22)データを複数のプロックに区分す るステップと、前記ブロックのそれぞれについて、前記 ブロックを符号化して、前記ブロックの値と前記ブロッ クの識別子との両方を表すワードを作成するステップ と、前記ワードのそれぞれに擬似乱数関数を適用して、 複数の暗号ワードを作成するステップと、前記複数の暗 号フードを組み合わせて、タグを作成するステップと、 少なくとも前記データと前記タグとを組み合わせて、デ ータ・パケットを作成するステップと、非機密保護通信 チャネルを介して前記データ・パケットを送信するステ ップと、データ・パケットを受信するステップと、デー タ・パケットを分解して、タグとデータを抽出するステ ップと、少なくとも抽出されたデータと局所キーとから 第2タグを生成するステップと、抽出されたタグと第2 タグを比較して、データ・パケットのデータ信頼性を判 定するステップとを含む、非機密保護通信チャネルを使 用してデータを安全に転送するための方法。

【0057】(23)データを複数のプロックに区分す

40

子を連結して、ワードを作成するステップと、前記ワー ドのそれぞれに擬似乱数関数を適用して、複数の暗号ワ ードを作成するステップと、前記複数の暗号ワードを組 み合わせて、タグを作成するステップとを含む、通信チ ャネルを使用したデータの転送と共に使用する認証タグ を決定するための方法。

17

【0058】 (24) 前記プロック識別子が、ブロック ・インデックスに基づくことを特徴とする、(23)の

【0059】 (25) 前記擬似乱数関数が、多段式であ 10 ることを特徴とする、(23)の方法。

【0060】(26)前記複数のワードが、前記多段式 擬似乱数関数に対してパイプライン化されることを特徴 とする、(25)の方法。

【0061】(27) データを複数のブロックに区分す るステップと、前記プロックのそれぞれについて、前記 ブロックを符号化して、前記ブロックの値と前記ブロッ クの識別子との両方を表すワードを作成するステップ と、(i) 前記ワードのそれぞれと(ii) 前記データの 識別子とに擬似乱数関数を適用して、複数の暗号ワード 20 を作成するステップと、前記複数の暗号ワードを組み合 わせて、タグを作成するステップと、少なくともデータ とタグとを組み合わせて、データ・パケットを作成する ステップと、非機密保護通信チャネルを介してデータ・ パケットを送信するステップと、データ・パケットを受 信するステップと、受信したデータ・バケットを分解し て、受信データと受信タグを抽出するステップと、少な くとも受信データと局所キーとから局所タグを生成する ステップと、受信タグと局所タグを比較して、受信デー タ・バケットのデータ信頼性を判定するステップとを含 30 データ・パケットのデータ信頼性を判定するステップと む、非機密保護通信チャネルを使用してデータを安全に 転送するための方法。

【0062】(28) データを複数のブロックに区分す るステップと、前記プロックのそれぞれについて、前記 ブロックを符号化して、前記ブロックの値と前記ブロッ クの識別子との両方を表すワードを作成するステップ と、(i) 前記ワードのそれぞれと(ii) 前記データの 識別子とに擬似乱数関数を適用して、複数の暗号ワード を作成するステップと、前記複数の暗号ワードを組み合 わせて、タグを作成するステップと、少なくともデー タ、タグ、送信元識別子および時間変動パラメータを組 み合わせて、データ・パケットを作成するステップと、 非機密保護通信チャネルを介してデータ・パケットを送 信するステップと、データ・パケットを受信するステッ プと、受信データ・パケットを分解して、受信データ、 受信タグ、受信送信元識別子および受信時間変動パラメ ータを抽出するステップと、少なくとも受信データ、受 信送信元識別子、受信時間変動パラメータおよび局所キ 一から局所タグを生成するステップと、受信タグと局所 タグを比較して、受信データ・パケットのデータ信頼性 50 ブロックのそれぞれの値と前記ブロックのそれぞれの識

1.8 を判定するステップとを含む、前記非機密保護通信チャ ネルを使用してデータを安全に転送するための方法。

【0063】(29)前記比較ステップが、さらに、前 記受信時間変動パラメータを局所時間変動パラメータと 比較して、前記データ信頼性をさらに判定するステップ を含むことを特徴とする、(28)の方法。

【0064】(30)前記受信時間変動パラメータが、 受信カウンタを含むことを特徴とする、(29)の方

【0065】(31)前記受信時間変動パラメータが、 タイム・スタンプを含むことを特徴とする、(29)の 方法。

【0066】(32)前記受信時間変動パラメータが、 シーケンス番号を含むことを特徴とする、(29)の方 法。

【0067】(33) データを複数のブロックに区分す るステップと、前記プロックのそれぞれにプロック識別 子を連結して、ワードを作成するステップと、(i)前 記ワードのそれぞれと(ii)前記データの識別子とに擬 似乱数関数を適用して、複数の暗号ワードを作成するス テップと、前記複数の暗号ワードを組み合わせて、タグ を作成するステップとを含む、通信チャネルを使用した データの転送と共に使用する認証タグを決定するための 方法。

【0068】 (34) 受信デーダ・パケットを分解し て、受信データ、受信タグおよび受信時間変動パラメー タを抽出するステップと、少なくとも受信データ、受信 一時間変動パラメータおよび局所キーから局所タグを生成 するステップと、受信タグと局所タグを比較して、受信 を含む、受信データ・パケットの信頼性を判定するため

【0069】(35)前記受信時間変動パラメータが、 受信カウンタを含むことを特徴とする、(34)の方

【0070】(36)前記受信時間変動パラメータが、 タイム・スタンプを含むことを特徴とする、(34)の 方法。

【0071】(37)前記受信時間変動パラメータが、 40 シーケンス番号を含むことを特徴とする、(34)の方

【0072】 (38) 前記受信データ・パケットが、さ らに送信元識別子を含むことを特徴とする、(34)の

【0073】(39)さらに、前記送信元識別子を使用 して、局所テーブルから前記局所キーを取得するステッ プを含む、(38)の方法。

【0074】(40)データを複数のブロックに区分す る手段と、前記プロックのそれぞれを符号化して、前記

別子との両方を表すワードを作成する手段と、前記ワードのそれぞれに擬似乱数関数を適用して、複数の暗号ワードを作成する手段と、前記複数の暗号ワードを組み合わせて、タグを作成する手段とを含む、通信チャネルを使用したデータの転送と共に使用する認証タグを決定するためのシステム。

【0076】(42)受信データ・パケットを分解して、受信データ、受信タグおよび受信時間変動パラメータを抽出する手段と、少なくとも受信データ、受信時間変動パラメータおよび局所キーから局所タグを生成する手段と、受信タグと局所タグを比較して、受信データ・パケットのデータ信頼性を判定する手段とを含む、受信 20 データ・パケットの信頼性を判定するためのシステム。

【0077】 (43) 前記受信データ・パケットが、さらに送信元識別子を含むことを特徴とする。 (42) のシステム。

【0078】(44) さらに、前記送僧元識別子を使用して、局所テーブルから前記局所キーにアクセスする手段を含む、(43) のシステム。

【0079】(45) データを複数のプロックに区分する手段と、前記プロックのそれぞれを符号化して、前記プロックのそれぞれの値と前記プロックのそれぞれの識別子との両方を安すワードを作成する手段と、前記ワードのそれぞれに擬似乱数関数を適用して、複数の暗号ワードを作成する手段と、前記複数の暗号ワードを組み合わせて、タグを作成する手段とを含む、コンピュータ互換媒体上に常駐する、通信チャネルを使用したデータの転送と共に使用する認証タグをデータ処理システムが決定できるようにするためのコンピュータ・プログラム。

【0080】(46) データを複数のプロックに区分する手段と、前記プロックのそれぞれにプロック識別子を組み合わせて、ワードを作成する手段と、(i)前記ワードのそれぞれと(ii)前記データの識別子とに擬似乱数関数を適用して、複数の暗号ワードを作成する手段と、前記複数の暗号ワードを組み合わせて、タグを作成する手段とを含む、コンピュータ互換媒体上に常駐する、通信チャネルを使用したデータの転送と共に使用する認証タグをデータ処理システムが決定できるようにするためのコンピュータ・プログラム。

【0081】 (47) 受信データ・パケットを分解して、受信データ、受信タグおよび受信時間変動パラメータを抽出する手段と、少なくとも受信データ、受信時間 50

変動バラメータおよび局所キーから局所タグを生成する 手段と、受信タグと局所タグを比較して、受信データ・ パケットのデータ信頼性を判定する手段とを含む、コン ピュータ互換媒体上に常駐する、受信データ・パケット の信頼性をデータ処理システムが判定できるようにする ためのコンピュータ・プログラム。

30

[0082]

【発明の効果】本発明により、簡単、高速かつ安全にメ ッセージ認証コード(MAC)を計算する方法が提供さ の れる。

【図面の簡単な説明】

【図1】 送信されたメッセージの保全性を保護するデータ通信システムのシステム全体図である。

【図2】通信媒体を使用して転送されるメッセージにサインするための処理を示す図である。

【図3】受信したメッセージを認証するための処理を示す図である。

【図4】データ処理システム内の送信元または受信先の タグ計算の機能を示す図である。

39 【図5】パイプライン式に使用される多段式DESエンジンを示す図である。

【図6】 データ認証で使用されるタグの計算に関するタイミング図である。

【図7】データ処理システム内の送信元または受信先のMAC計算を物理的に示す図である。

【図8】サイン付きメッセージの構造を示す図である。

【図9】代表的なデータ処理システムを示す図である。

【図 1 0】逐次式のメッセージ認証コード判定技法を示す図である。

ひ 【符号の説明】

- 12 送信元
- 14 受信先
- 16 メッセージ・ジェネレータ
- 18 メッセージ
- 20 機密保護されないチャネル
- 22 サイン処理
- 24 サイン付きメッセージ
- 2 6 送信元識別子 (ID_A)
- 27 受信先識別子 (ID_B)
- 28 +- (key)
- 30 カウンタ (CTR)
- 32 テーブル
- 3.4 サイン付きメッセージ
- 3 6 署名者識別子 (ID_A')
- 38 +-' (key')
- 40 カウンタ'(CTR')
- 42 テーブル
- 43 検査処理
- 4.4 検査済みメッセージ

40

(12)

【図1】

【図6】 DESKEY(7.M7) DES エンジンる DESKEY(2-M2) DESKEY(6.M6) DES エンジン 2 DESKEY(5.M5) DESKEY(1.M1) DES エンジン i DESKEY(4-M4) 铸刻 10 11 5 7 8

(13)

特開平6-315027

84 ID_A 26 CTR 30 9 48

58 /

メッセージ

[図8]

(14)

[図3]

(15)

【図4】

(16)

(17)

[図7]

(18)

特開平6-315027

ij

(19)

特開平6-315027

フロントページの続き

- (72)発明者 ロッシュ・アンドレ・ゲラン アメリカ合衆国10598 ニューヨーク州ヨ ークタウン・ハイツ ロシャンボー・ドラ イブ シーニック・ビュー ナンパーイエ イチ
- (72)発明者 フィリップ・ウォルダー・ロガウェイ アメリカ合衆国78758 テキサス州オース チン クリブル・クリーク・ドライブ1620

THIS PAGE BLANK (USPTO)