# Learning to Search for Targets with Deep Reinforcement Learning

Oskar Lundin

Linköping University

April 20, 2022



#### Outline

Introduction

Problem Description

Research Questions

Theory

Background

Related Work

Method

**Environments** 

Approach

Experiments

Results

# Problem Description

Autonomous search for a set of targets in an environment with a fixed camera.

- Agent observes a limited region of the environment.
- ► Can direct its gaze and indicate when a target is in view through actions.
- ▶ Should locate all targets while minimizing the number of actions.
- ► Applications in search and rescue, fire detection, surveillance, etc.

- ► In a random environment with uniformly distributed targets, random or exhaustive search is sufficient.
- ▶ Most real-world search tasks are not random, but exhibit structure.
- Cues in the searched scene can be used to find targets quicker.
  - Books are in bookshelves.
  - Cars can be found on roads.
  - Some targets spread out
  - ► Some are close together.
- ▶ Patterns and cues may be subtle and difficult to pick up.
- Manually engineering a searching system with rules can be difficult and costly.
- Can a system learn to search intelligently from a set of samples and generalize to similar search tasks?

## Challenges

- ▶ Prioritize regions with high probability of targets based on previous experience.
- ► Find multiple targets while minimizing path length.
- Search exhaustively while avoiding searching the same region twice.

# Research Questions

- 1. How can an agent that learns to intelligently search for targets be implemented with reinforcement learning?
- 2. How does the learning agent compare to random walk, exhaustive search and a human searcher with prior knowledge of the searched scene?
- 3. How does the agent's ability to generalize to unseen in-distribution environments depend on the number of training samples?

# Reinforcement Learning

Reinforcement learning (RL) is a paradigm for learning mappings from observations to actions.

Partially observable Markov decision process (POMDP):

- Agent interacts with environment over discrete time steps t = 0, 1, 2...
- ightharpoonup Takes action  $a_t$  in state  $s_t$
- ightharpoonup Perceives observation  $o_t$
- ▶ New state  $s_{t+1}$



# Search with Reinforcement Learning

. . .

#### Problem Formulation

- ▶ Agent searches scene  $S \subset \mathbb{R}^d$  .
- ▶ Scene contains set of targets  $\{t_0, ... t_n\}$ ,  $t_i \in S$ .
- ▶ Agent perceives view  $V \subset S$ .
- Move actions transform view to new subspace.
- ► Trigger action indicates that target(s) is in view.
- ► Locate all targets while minimizing the number of time steps.

#### **Environments**

- ► Three environments with varying characteristics.
- ▶ Search space discretized into  $16 \times 16$  camera positions.
- ▶ Each camera position has a unique view  $V \subset S$ .
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.
- ▶ Should be possible to do better than exhaustive search on average.
- ► Scenes procedurally generated:
  - ▶ Pseudorandom seed determines scene appearance and target positions.
  - Gives control over difficulty to solve.
  - Can vary training and test set sizes.

# Observation, Action and Reward

#### At each time step t:

- ▶ The agent receives observation  $o_t = \langle x_t, p_t \rangle$ , where
  - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$  is an RGB image of current view, and
  - ▶  $p_t \in \{0, ..., 15\} \times \{0, ..., 15\}$  is the position of the camera.
- ▶ Takes action  $a_t \in \{TRIGGER, UP, DOWN, LEFT, RIGHT\}$ , where
  - ► TRIGGER indicates that a target is in view, and
  - ▶ UP, DOWN, LEFT, RIGHT move the view in each cardinal direction.
- ▶ Receives reward  $r_t = 10h 1$  where  $h = |T \cap V|$  is the number of targets in view.
  - ► Rewarded for finding targets.
  - ► Constant penalty encourages quick episode completion.
  - ▶ Two variants that reward exploration or moving towards targets:  $r'_t$  and  $r''_t$

#### Gaussian Environment

- ► Two-dimensional scene.
- ► Three gaussian kernels with random center.
- ➤ Sum of kernels determine appearance of scene and probability of targets.
- Clear correlation between appearance and desired behavior.



#### Terrain Environment

- Similar to previous environment.
- ▶ Terrain seen from above.
- ► Gradient noise used to generate height map.
- ► Color determined by height.
- ► Targets placed with uniform probability across coastlines.
- ► More realistic, higher variance.
- Analogous to search and rescue with UAV.



#### Camera Environment

- ➤ 3D scene viewed from a perspective projection camera.
- ► Height map from terrain environment turned into mesh, same appearance and target probability as before.
- Camera location fixed at center of scene.
- ► Moving actions control pan and tilt (pitch and yaw).
- ► Visually complex, difficult to interpret.



#### Architecture

- ► Actor-critic method.
- ► Trained with proximal policy optimization.
- ▶ Image  $x_t$  passed through CNN.
- ▶ Latent image representation  $h_t$  and position  $p_t$  passed through RNN.
  - 1. LSTM with input  $[h_t, p_t]$ .
  - 2. Spatial memory.
- ightharpoonup Policy head approximates  $\pi$  with MLP.
- ► Value head approximates v with MLP.



# Spatial Memory

- LSTM may have difficulties remembering over many time steps and reasoning over spatial relations.
- Specialized memory could be more useful.
- Structured memory with one slot for each camera position.
- Memory read with CNN.
- Written to with previous read and new latent image.



# Experiments

- ► Train for 25M time steps.
- ► Results reported across 3 seeds.
- Separate training and test sets.
- ► Same hyperparameters in all runs.

#### Search space:

- Larger search spaces places stronger demands on memory
- ► Scene understanding, remember searched positions.
- ▶ Investigate impact by comparing agents on  $8 \times 8$ ,  $12 \times 12$ ,  $16 \times 16$  versions of gaussian environment.

# Experiments

#### Generalization:

- ► Limit number of scene samples seen during training to 100, 1000, 10 000.
- Use terrain environment, high appearance variance and somewhat realistic.
- ► Fix seed pool used to generate scenes seen during training.
- ► Train agents until convergence (or for a fixed number of time steps).
- ▶ Test on held out scenes from full distribution.

## Implementation

- ► OpenAl Gym environment interface.
- ▶ PyTorch for models and automatic differentiation.

# Preliminary Results

#### Problems:

- ► Many configurable parts (hyperparameters, environment settings, agent architectures).
- ► Long training times, difficult to predict hyperparameter interplay, expensive to tune.
- ▶ Difficult to design reward signal, magnitudes matter.
- ► Collecting rigorous results across multiple seeds will take time.
- ► Spatial memory approach can handle it.

### Future Steps

- 1. Collect complete results across multiple seeds for all experiments.
- 2. More baselines vs. ablation studies?
- 3. Tidy up report.
- 4. Discussion and conclusion.
- 5. Presentation preparation.