. PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-056958

(43)Date of publication of application: 27.02.2001

(51)Int.CI.

G11B 7/24 B41M 5/26 C01G 17/00 G11B 7/00

(21)Application number: 11-255368

(71)Applicant: MITSUBISHI CHEMICALS CORP

(22)Date of filing:

09.09.1999

(72)Inventor: MIZUNO HIRONOBU

ONO TAKASHI HORIE MICHIKAZU

(30)Priority

Priority number: 10254877

Priority date: 09.09.1998

Priority country: JP

11055792 11163685 03.03.1999 10.06.1999

JP

JP

(54) OPTICAL INFORMATION RECORDING MEDIUM AND OPTICAL RECORDING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a medium and a method that allows high speed overwriting, that has small mark edge jitters, that enables high density mark length modulation recording, and that excels greatly in the secular stability of a formed mark.

SOLUTION: The optical information recording medium is such that it is at least provided with a phase change type recording layer on a substrate, that the crystal part of this recording layer is made an unrecorded/erased state while the amorphous part a recorded state, and that information is recorded by a plurality of recording mark lengths having the shortest mark length of 0.5 µm or less. In this case, the optical information recording medium and the optical recording method suitable for it are such that erasure is performed through recrystallization which essentially proceeds by crystal growth from the boundary between the amorphous part or a fused part and the peripheral crystalline part.

LEGAL STATUS

[Date of request for examination]

25.07.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3485040

BEST AVAILABLE COPY

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

24.10.2003

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-56958 (P2001-56958A)

(43)公開日 平成13年2月27日(2001.2.27)

			永讀查審	有	請求項の数65	OL	(全 54 頁)	最終頁に続く
		5 3 8					538C	
		5 3 5					535G	
		5 3 4					534N	5 D O 9 O
		511					511	5 D O 2 9
G11B	7/24	5 2 2		G 1	l B 7/24		5 2 2 A	2H111
(51) Int.Cl.7		識別記号		FΙ			Ť	-73-1*(多考)

(21)出願番号 特	顧平11-255368
------------	-------------

(22)出願日 平成11年9月9日(1999.9.9)

(31) 優先権主張番号 特顯平10-254877

(32) 優先日 平成10年9月9日(1998.9.9)

(33)優先権主張国 日本(JP) (31)優先権主張番号 特願平11-55792

(32) 優先日 平成11年3月3日(1999.3.3)

(33) 優先権主張国 日本 (JP) (31) 優先権主張番号 特願平11-163685

(32) 優先日 平成11年6月10日(1999.6.10)

(33)優先権主張国 日本(JP)

(71)出願人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 水野 裕宜

神奈川県横浜市青葉区鳴志田町1000番地

三菱化学株式会社横浜総合研究所内

(72)発明者 大野 孝志

神奈川県横浜市育葉区鴨志田町1000番地

三菱化学株式会社横浜総合研究所内

(74)代理人 100103997

弁理士 長谷川 曉司

最終頁に続く

(54) 【発明の名称】 光学的情報記録用媒体及び光記録方法

(57)【要約】

【課題】 高速でオーバーライトすることができ、マークエッジのジッタが小さい、高密度のマーク長変調記録を行うことができ、形成されたマークの経時安定性が非常に良好である光学的情報記録用媒体及び光記録方法を提供する。

【解決手段】 基板上に少なくとも相変化型記録層を有し、該記録層の結晶部を未記録・消去状態とし非晶質部を記録状態とし、最短マーク長0.5μm以下の複数の記録マーク長により情報を記録するための光学的情報記録用媒体であって、消去が、非晶質部又は溶融部と、周辺結晶部との境界からの結晶成長によって実質的に進行する再結晶化により行われる光学的情報記録用媒体及びこれに適した光記録方法。

【特許請求の範囲】

【請求項1】 基板上に少なくとも相変化型記録層を有

該記録層の結晶部を未記録・消去状態とし非晶質部を記録状態とし、最短マーク長0.5 μm以下の複数の記録マーク長により情報を記録するための光学的情報記録用媒体であって、

消去が、非晶質部又は溶融部と、周辺結晶部との境界からの結晶成長によって実質的に進行する再結晶化により 行われることを特徴とする光学的情報記録用媒体。

【請求項2】 上記相変化型記録層は、Ge、Sb、Teを主成分とする薄膜からなる請求項1に記載の光学的情報記録用媒体。

【請求項3】 上記相変化型記録層は、 M_v (Sb_x Te_{1-x})_{1-v}($0.6 \le x \le 0.9$ 、 $0 < y \le 0.2$ 、M は Ga、Zn、Ge、Sn、In、Si、Cu 、Au、Ag、Al、Pd、Pt、Pb、Cr、Co、O、S、Se、Ta、Nb、Vのうちの少なくとも1種)合金を主成分とする薄膜からなる請求項1に記載の光学的情報記録用媒体。

【請求項4】 基板上に、Ge、Sb、Teを主成分と する薄膜からなる相変化型記録層を有し、

該記録層の結晶部を未記録・消去状態とし非晶質部を記録状態とし、最短マーク長0.5 μm以下の複数の記録マーク長により情報を記録するための光学的情報記録用媒体であって、

該記録層は、一定線速度で、記録層を溶融させるに足る記録パワーPwの記録光を連続的に照射すると概ね結晶化され、

一定線速度で、記録層を溶融させるに足る記録パワーPwの記録光を照射したのち遮断すると非晶質マークが形成されることを特徴とする光学的情報記録用媒体。

【請求項5】 請求項1乃至4のいずれかに記載の光学的情報記録用媒体であって、

最短マーク長0.5μm以下の複数のマーク長により信号を記録したとき、

記録直後に再生した信号の変調度をM。とし、

記録後、80℃80%RHの条件下で1000時間経過ののち再生した信号の変調度をM, とすると、

【数 1 】 M₁ / M₀ ≥ 0.9 である光学的情報記録用媒体。

【請求項6】 請求項1乃至4のいずれかに記載の光学的情報記録用媒体であって、

最短マーク長0.4μmの複数のマーク長により、EF Mプラス変調方式のランダム信号を記録したとき、

記録直後に再生した信号の変調度をM。とし、

記録後、80℃80%RHの条件下で1000時間経過ののち再生した信号の変調度をM, とすると、

【数2】M、/M。 ≥ 0.9 である光学的情報記録用媒体。

【請求項7】 基板上に、記録再生光の入射方向から順 に、第1保護層、相変化型記録層、第2保護層、反射 層、を設けてなり、

該記録層の結晶部を未記録・消去状態とし非晶質部を記録状態とし、最短マーク長0.5 μm以下の複数の記録マーク長により情報を記録するための光学的情報記録用媒体であって、

相変化型記録層は膜厚が5nm以上25nm以下で、GeSbTe三元状態図において、

10 (Sbor Teo) とGeを結ぶ直線A、

(Geo..o, Sbo.s, Teo.2,)と(Sbo., , Geo., ,)を結ぶ直線B、

(Sb., Ge.,) と(Te., Ge.,) を結ぶ直線C、及び(Sb., Te.,) とGeを結ぶ直線Dの4本の直線で囲まれた領域(ただし、境界線上を含まない)の組成を有するGeSbTe合金を主成分とする薄膜からなり、

第2保護層は膜厚が5 n m以上3 0 n m以下であることを特徴とする光学的情報記録用媒体。

20 【請求項8】 記録層は、GeSbTe三元状態図において、

(Sb., Te.,)とGeを結ぶ直線A、

(Geo.o3 Sbo.68 Teo.23) と (Sbo.3 Geo.1) を結ぶ直線B'、

(Sbo., Geo.,)と(Teo., Geo.,)を結ぶ直線C、及び(Sbo., Teo.,)とGeを結ぶ直線Dの4本の直線で囲まれた領域(ただし、境界線上を含まない)の組成を有するGeSbTe合金を主成分とする薄膜からなる請求項7に記載の光学的情報記録用媒体。

30 【請求項9】 記録層は、Ge_x (Sb_y Te_{1-v})

1-x 合金を主成分とする薄膜(0.04≤x<0.1
0、0.72≤y<0.8)からなる請求項7に記載の
光学的情報記録用媒体。

【請求項10】 記録層は、 Ge_x ($Sb_x Te_{1-x}$) 1-x 合金を主成分とする薄膜($0.045 \le x \le 0.0$ 75、 $0.74 \le y < 0.8$) からなる請求項7に記載の光学的情報記録用媒体。

【請求項11】 上記記録層が、さらに、O、N、及び Sから選ばれる少なくとも1つの元素を含有し、

40 とれら元素の総含有量が0.1原子%以上5原子%以下 である請求項7乃至10のいずれかに記載の光学的情報 記録用媒体。

これら元素の総含有量が8原子%以下であり、かつこれら元素とGeとの総含有量が15原子%以下である請求項7乃至10のいずれかに記載の光学的情報記録用媒体。

50 【請求項13】 上記記録層が、さらに、A1、In、

及びGaから選ばれる少なくとも1つの元素を含有し、 これら元素の総含有量が8原子%以下であり、かつこれ ら元素とGeとの総含有量が15原子%以下である請求 項7乃至10のいずれかに記載の光学的情報記録用媒 体。

【請求項14】 記録層は、膜厚が10nm以上20n m以下である請求項7乃至13のいずれかに記載の光学 的情報記録用媒体。

【請求項15】 第2保護層は、膜厚が10nm以上2 5 n m以下である請求項7乃至14のいずれかに記載の 10 光学的情報記録用媒体。

【請求項16】 基板を通して記録再生光を入射し情報 の記録又は再生を行うための媒体であって、第1保護層 は膜厚が50nm以上である請求項7乃至15のいずれ かに記載の光学的情報記録用媒体。

【請求項17】 反射層は、膜厚が40nm以上300 nm以下で、体積抵抗率が20nΩ・m以上150nΩ · m以下である請求項7乃至16のいずれかに記載の光 学的情報記錄用媒体。

【請求項18】 反射層は、膜厚が150nm以上30 20 Onm以下で、Ta, Ti, Co, Cr, Si, Sc, Hf, Pd, Pt, Mg, Zr, Mo及びMnのうちの 少なくとも一種を0.2原子%以上2原子%以下含むA 1合金からなる請求項17に記載の光学的情報記録用媒

【請求項19】 反射層は、膜厚が40nm以上150 nm以下で、Ti, V, Ta, Nb, W, Co, Cr, Si, Ge, Sn, Sc, Hf, Pd, Rh, Au, P t, Mg, Zr, Mo及びMnのうちの少なくとも一種 を0.2原子%以上5原子%以下含むAg合金からなる 30 溝幅GWと溝間幅LWがともに0.2μm以上0.4μ 請求項17に記載の光学的情報記録用媒体。

【請求項20】 反射層は、複数の金属膜からなる多層 反射層であり、該多層反射層全体の膜厚の50%以上が 体積抵抗率20ηΩ・m以上150ηΩ・m以下である 請求項17乃至19のいずれかに記載の光学的情報記録 用媒体。

【請求項21】 第2保護層と反射層の間に、膜厚5 n m以上100nm以下の界面層を設けた請求項17乃至 20のいずれかに記載の光学的情報記録用媒体。

【請求項22】 第2保護層と反射層の間に、膜厚1n 40 m以上100nm以下の界面層を設けてなり、

該界面層が、Ta、Ti、Co、Cr、Si、Sc、H f、Pd、Pt、Mg、Zr、Mo及びMnのうちの少 なくとも1種を0.2原子%以上2原子%以下含有する A 1 合金からなり、

反射層が、Ti、V、Ta、Nb、W、Co、Cr、S i, Ge, Sn, Sc, Hf, Pd, Rh, Au, P t、Mg、Zr、Mo及びMnのうちの少なくとも一種 を0.2原子%以上5原子%以下含有するAg合金又は Agからなる請求項17に記載の光学的情報記録用媒

体。

【請求項23】 上記界面層と反射層の間に、上記A1 合金及び/又はAg合金の酸化物からなる層が存在し、 該酸化物層の厚みが 1 n m以上 1 0 n m以下である請求 項22 に記載の光学的情報記録用媒体。

【請求項24】 情報を記録するトラックが、ピッチ 8 μ m 以下である請求項7乃至23のいずれかに記 載の光学的情報記録用媒体。

【請求項25】 満内のみをトラックとして情報を記録 するための媒体であって、基板上にピッチ0.8μm以 下の溝を有し、

再生光波長をλ、その波長における基板の屈折率をnと するとき、溝深さがλ/(20n)~λ/(10n)の 範囲にある請求項24に記載の光学的情報記録用媒体。

【請求項26】 波長が630~670nmの光を、開 口数NAが0.6~0.65の対物レンズを通し、基板 を介して記録層に集光させ、データの記録再生を行うた めの媒体であって、

上記溝は溝ピッチが0.6~0.8 µm、溝深さが25 ~40nm、溝幅が0.25~0.5 µmであり、かつ 該溝は、データの基準クロック周期Tの30~40倍の 周期の蛇行を有し、該蛇行の振幅(peak-to-p eak値) が40~80nmである請求項25に記載の 光学的情報記録用媒体。

【請求項27】 溝内と溝間の両方をトラックとして情 報を記録するための媒体であって、基板上に溝を有し、 再生光波長をλ、その波長における基板の屈折率をnと するとき、溝深さがλ/(7n)~λ/(5n)、又は $\lambda/(3.5n)\sim\lambda/(2.5n)$ rby.

m以下であり、かつ、GW/LW比が0.8以上1.2 以下である請求項24に記載の光学的情報記録用媒体。

【請求項28】 請求項1、4、7のいずれかに記載の 光学的情報記録用媒体であって、

記録マーク間には、非晶質を結晶化しうる消去パワーP eの記録光を照射し、

一つの記録マークの時間的な長さをn Tとしたとき(T は基準クロック周期、nは2以上の整数)、

記録マークの時間的長さnTを、

【数3】 η_1 T、 α_1 T、 β_1 T、 α_2 T、 β_2 T、·

 α_i T, β_i T, \cdots , α_n T, β_n T, η_i T (ただし、mはパルス分割数でm=n-k、kは0≤k ≤ 2 なる整数とする。また、 Σ_i ($\alpha_i + \beta_i$) + η_1 $+\eta_1 = n$ とし、 η_1 は $\eta_1 \ge 0$ なる実数、 η_2 は η_3 ≥ 0 なる実数、 $0 \leq \eta_1 + \eta_2 \leq 2$. 0とする。 α , (1≤i≤m)はα,>0なる実数とし、β, (1≤ $i \leq m$) は $\beta_i > 0$ なる実数とし、 $\Sigma \alpha_i < 0$. 5 n と 5 $\alpha_1 = 0.1 \sim 1.5$ $\beta_1 = 0.3 \sim 1.0$

50 $\beta_n = 0 \sim 1.5$ ξ_0 $\xi_$

 \leq m) とする。なお、3 \leq i \leq mなる i において α , + $\beta_{1-1} = 0.5 \sim 1.5$ の範囲にあり、かつ、i によら ず一定とする。) の順に分割し、

 α_i T(1 $\leq i \leq m$) の時間内においては記録層を溶融 させるにたるPw≥Peなる記録パワーPwの記録光を 照射し、 β ,T($1 \le i \le m$)の時間内においては、0<Pb≦0.2Pe(ただし、β_a Tにおいては、0< Pb≦Peとなりうる) なるバイアスパワーPbの記録 光を照射することにより記録を行うための光学的情報記 録用媒体。

【請求項29】 請求項28に記載の光学的情報記録用 媒体であって、

波長が350~680nmの光を、開口数NAが0.5 5~0.9の対物レンズを通して記録層に集光させ、デ ータの記録再生を行うにあたり、

 $\alpha_1 = 0.3 \sim 1.5$

 $\alpha_1 \ge \alpha_i = 0.2 \sim 0.8 \ (2 \le i \le m)$

 $\alpha_i + \beta_{i-1} = 1.0 \ (3 \le i \le m)$

 $0 \le Pb \le 1.5 (mW)$

 3≤Pe/Pw≤0.6として記録を行うための光 学的情報記録用媒体。

【請求項30】 請求項28又は29に記載の光学的情 報記録用媒体であって、

波長が600~680nmの光を、開口数NAが0.5 5~0.65の対物レンズを通し、基板を介して記録層 に集光させ、最短マーク長を0.35~0.45 μmの 範囲として、データの記録再生を行うにあたり、

nは1~14の整数とし、

 $m=n-1 \ge 0$

Pbは線速によらず一定とし、

Pe/Pwは0.4~0.6の範囲で線速度に応じて変 化しうるものとし、(i)記録線速度3~4m/sの範 囲においては、基準クロック周期TをToとし、

 $\alpha_1 = 0.3 \sim 0.8$

 $\alpha_1 \ge \alpha_1 = 0.2 \sim 0.4$ であってiによらず一定 $(2 \le i \le m)$

 $\alpha_2 + \beta_1 \geq 1.0$

 $\alpha_i + \beta_{i-1} = 1.0 \ (3 \le i \le m)$

 $\beta_{\bullet} = 0.3 \sim 1.5 \& U.$

 α , $T(1 \le i \le m)$ の時間内においては記録パワーP w₁ の記録光を照射し、(i i)記録線速度6~8m/ sの範囲においては、基準クロック周期TをTo/2と し、

 $\alpha'_{1} = 0.3 \sim 0.8$

 $\alpha'_1 \ge \alpha'_1 = 0.3 \sim 0.5$ cboot i k s $\delta = 0$ 定 (2 ≤ i ≤ m)、

 $\alpha' + \beta' + 3 = 1 \cdot 0 \quad (3 \le i \le m)$

w』の記録光を照射するとしたとき、

 $\alpha'_{i} > \alpha_{i} \quad (2 \le i \le m), \quad \text{b} \rightarrow 0. \quad 8 \le Pw_{i} /$ Pw、≦1.2として記録を行うための光学的情報記録 用媒体。

【請求項31】 請求項28に記載の光学的情報記録用 媒体であって、所定の記録領域を有し、

記録領域最内周での線速度が2~4m/sとなり記録領 域最外周での線速度が6~10m/sとなるように該媒 体を角速度一定で回転させ、

10 該記録領域は半径によって区切られた複数ゾーンからな り、各ゾーン内の平均線速度に応じて記録密度がほぼ一 定となるように基準クロック周期Tを変化させて記録を 行うにあたり、

ゾーンによらずmを一定とし、

外周ゾーンから内周ゾーンに向かって、Pb/Pe及び /又は α , (i は l ≤ i ≤ mの少なくとも一つ)を単調 に減少させることにより記録を行うための光学的情報記 録用媒体。

【請求項32】 請求項31に記載の光学的情報記録用 媒体であって、

上記記録領域は半径によってp個のゾーンに分割され、 最内周側を第1ゾーン、最外周側を第pゾーンとし、第 qゾーン (ただし、qは1≦q≦pの整数) における角 速度をω。、平均線速度を<ν。>ava 、最大線速度を < v 。 > *** 、 最小線速度を < v 。 > *** 、 基準クロッ ク周期をT。、最短マークの時間的長さをn in T。と すると、

 $\langle v_{\bullet} \rangle_{v_{\bullet}} / \langle v_{\bullet} \rangle_{v_{\bullet}}$ は1.2~3の範囲であっ て、<v。>nax /<v。>n1, は1.5以下であり、 30 (i) 同一ゾーン内では、 ω 。、T。、 α ,、 β ,、Pe、Pb、及びPwは一定であり、最短マークの物理的 長さ n_{min} T。 $\langle v_{\text{o}} \rangle_{\text{ave}}$ は $0.5 \mu \text{m以下}$ であり、 $T_{\text{e}} < v_{\text{e}} >_{\text{ave}}$ は $1 \le q \le p$ なる全ての q に対してほ

 $\alpha_1 = 0.3 \sim 1.5$

ぼ一定であり、かつ、

 $\alpha_1 \ge \alpha_1 = 0.2 \sim 0.8 \ (2 \le i \le m)$

 $\alpha_i + \beta_{i-1} = 1.0 \ (3 \le i \le m)$

 $0 \le Pb \le 1.5 (mW)$

40 0.4≦Pe/Pw≦0.6であり、(ii)各ゾーン でと α Pb、Pw、Pe/Pw、 α 1 (1 \leq i \leq m)、 β_1 、 β_n は可変であり、外周ゾーンから内周ゾーンに 向かって、少なくともα、(iは2≦i≦mの少なくと も一つ)を単調に減少させることにより記録を行うため の光学的情報記録用媒体。

【請求項33】 該記録領域におけるPwの最大値をP Waxx 、最小値をPWain とするとき、PWax /PW ■1 6 ≦1.2とする、請求項32に記載の光学的情報記 録用媒体。

lpha,T($1 \leq i \leq m$)の時間内においては記録パワーP 50 【請求項34】 請求項31乃至33のいずれかに記載

(5)

の光学的情報記録用媒体であって、

波長が600~680nmの光を、開口数NAが0.5 5~0.65の対物レンズを通し、基板を介して記録層 に集光させ、データの記録再生を行うにあたり、

上記記録領域の最内周が半径20~25mmの範囲にあ り、最外周が半径55~60mmの範囲にあり、最内周 側ゾーンの平均線速度が3~4m/sであり、

第qゾーン(ただし、qは1≦q≦pの整数)における 角速度をω。、平均線速度を< ν。> 、、 最大線速度 を < v。 > *** 、最小線速度を < v。 > *** 、基準クロ 10 ック周期をT。、最短マークの時間的長さをngan T。 とすると、

nは1~14の整数であり、

m=n-lであり、

ω。、Pb及びPe/Pwはゾーンによらず一定であ

 $T_{\bullet} < v_{\bullet} >_{\bullet v_{\bullet}}$ は $1 \le q \le p$ なる全ての q に対してほ ぼ一定であり、かつ、

【数4】(<va > max - < va > min) / (< va > $_{max} + < v_{e} >_{min}) < 1.0\%$ を満たし、

(i) 第1 ゾーンにおいては、

 $\alpha^{1}_{1} = 0.3 \sim 0.8$

 $\alpha^{1}_{1} \geq \alpha^{1}_{1} = 0.2 \sim 0.4$ であってiによらず一定 $(2 \le i \le m)$

 $\alpha^1_2 + \beta^1_1 \ge 1.0$

 $\alpha^{1} + \beta^{1} = 1.0 \quad (3 \le i \le m) \ge 0.$

(ii) 第pゾーンにおいては、

 $\alpha^{p}_{1} = 0.3 \sim 0.8$

 α "」 $\geq \alpha$ "」 $= 0.3 \sim 0.5$ であってiによらず-30<Pb ≤ 0.2 Pe(ただし、 β 。Tにおいては、0< 定(2≤i≤m)、

 $\alpha^{n} + \beta^{n} = 1.0 \ (2 \le i \le m) \ b \ b \ b \ b$ (i i i)他のゾーンにおいては、 α^1 , $\leq \alpha^0$, $\leq \alpha$ °, (2≤i≤m)とし、α°, はα¹,とα°, との間 の値とすることにより記録を行うための光学的情報記録 用媒体。

【請求項35】 $\alpha_1^1 \ge \alpha_1^0 \ge \alpha_1^0$ (ただし、 α_1^1 >α°₁)とすることにより記録を行うための請求項3 4に記載の光学的情報記録用媒体。

【請求項36】 Pb、Pe/Pw、β, 、β。はゾー 40 Pe/Pw=0.4~0.6、 ンによらず一定であり、 α_1 及び α_i (2 $\leq i \leq m$)を ゾーンにより変化させることにより記録を行うための請 求項34又は35に記載の光学的情報記録用媒体。

【請求項37】 少なくともPe/Pw、Pb、Pw、 $\beta_{\mathbf{u}}$ 、 $(\alpha^{1}_{1}, \alpha^{p}_{1})$ 、 $(\alpha^{1}, \alpha^{p}_{1})$ の数値 が、あらかじめ基板上に、プリピット列或いは溝変形に より記載されている請求項34乃至36のいずれかに記 載の光学的情報記録用媒体。

【請求項38】 プリピット列もしくは溝変形により、

記録用媒体であって、該アドレス情報とともに、該アド レスにおいて適当な α ,及び α , $(2 \le i \le m)$ に関す る情報を含む請求項34乃至37のいずれかに記載の光 学的情報記録用媒体。

【請求項39】 請求項1、4、7のいずれかに記載の 光学的情報記録用媒体であって、

記録マーク間には、非晶質を結晶化しうる消去パワーP eの記録光を照射し、

一つの記録マークの時間的な長さをn Tとしたとき(T は基準クロック周期、nは2以上の整数)、

記録マークの時間的長さnTを、

【数5】 η_1 T、 α_1 T、 β_1 T、 α_2 T、 β_2 T、 \cdot

 α_1 T, β_1 T, \cdots , α_n T, β_n T, η_2 T (ただし、mはパルス分割数でm=n-k、kは0≤k ≤ 2 なる整数とする。また、 Σ 、 $(\alpha, +\beta,)+\eta$ 、 $+\eta_1 = n$ とし、 η_1 は $\eta_1 \ge 0$ なる実数、 η_2 は η_1 ≥ 0 なる実数、 $0 \leq \eta_1 + \eta_2 \leq 2$. 0とする。 α $_{i}$ (1 \leq i \leq m)は α ,>0なる実数とし、 β ,(1 \leq 20 $i \leq m$) は β , > 0 なる実数とする。 α , = 0. $1 \sim$ 1. 5, $\beta_1 = 0$. $3 \sim 1$. 0, $\beta_n = 0 \sim 1$. 5 \(\alpha \) し、 $2 \le i \le m$ なる i において α_i は $0.1 \sim 0.8$ の 範囲にあり、かつ、iによらず一定とする。なお、3≦ i ≤ mなる i において $\alpha_i + \beta_{i-1}$ は $0.5 \sim 1.5 の$ 範囲にあり、かつ、iによらず一定とする。)の順に分 割し、

 α 、T ($1 \le i \le m$) の時間内においては記録層を溶融 させるにたるPw≥Peなる記録パワーPwの記録光を 照射し、 β 、T ($1 \le i \le m$) の時間内においては、0Pb≦Peとなりうる) なるバイアスパワーPbの記録 光を照射し、

線速度によらずm、 $\alpha_1 + \beta_{1-1}$ (3 $\leq i \leq m$)、 α_1 T、及び α , T (2 \leq i \leq m) を一定とし、線速度が小 さいほどβ。が単調に増加するように変化させることで 記録を行うための光学的情報記録用媒体。

【請求項40】 各記録線速度での最大記録パワーをP wax、最小記録パワーをPwain とするとき、

 $Pw_{max} / Pw_{min} \leq 1.2$

 $0 \le Pb \le 1.5 (mW)$

とすることにより記録を行うための請求項39に記載の 光学的情報記錄用媒体。

【請求項41】 記録線速度が5m/s以下において、 $\Sigma \alpha$, < 0. 5 n とすることにより記録を行うための請 求項40 に記載の光学的情報記録用媒体。

【請求項42】 最大記録線速度におけるβ。を β "。、最小記録線速度における β 。を β い。としたと ₹.

アドレス情報をあらかじめ基板上に記録した光学的情報 50 他の記録線速度における $oldsymbol{eta}$ 。は、 $oldsymbol{eta}$ 。 と $oldsymbol{eta}$ "。の間の

値とし、

記録線速度によらず Pb、Pe/Pwを一定とすることにより記録を行うための請求項40又は41に記載の光学的情報記録用媒体。

9

【請求項43】 記録線速度によらず β 。を一定とする ことにより記録を行うための請求項39又は40に記載 の光学的情報記録用媒体。

【請求項44】 少なくともPe/Pw比、Pb、Pw、 α_1 T、 α_i T ($2 \le i \le m$)、(β^i 。、

8"。)の数値が、あらかじめ基板上に、プリピット列 10 或いは溝変形により記録されている請求項42に記載の 光学的情報記録用媒体。

【請求項45】 請求項1、4、7のいずれかに記載の 光学的情報記録用媒体であって、

所定の記録領域を有し、該記録領域が半径方向に均等な幅を有するp個のゾーンに分割され、半径位置によらず角速度一定で回転させて情報を複数のマーク長により記録するための光学的情報記録用媒体であって、

< v。> v。 Tw。は一定であり、

[数6] $(\langle v_q \rangle_{max} - \langle v_q \rangle_{min}) / (\langle v_q \rangle_{max} + \langle v_q \rangle_{min}) < 1\%$

を満たす光学的情報記録用媒体。

【請求項46】 上記溝の一周を1ゾーンとし、該溝は ゾーンによらず周期が一定の蛇行を有し、

溝ピッチをTP、蛇行周期をTw。とすると、近似的に 【数7】2π・TP=a・Tw。・v。

(ただし、aは自然数)なる関係を満たす請求項45に記載の光学的情報記録用媒体。

【請求項47】 請求項1、4、7のいずれかに記載の 光学的情報記録用媒体であって、

所定の記録領域を有し、該記録領域が半径方向に均等な幅を有するp個のゾーンに分割され(ただし、pは200以上の整数)、半径位置によらず角速度一定で回転させて情報を複数のマーク長により記録するための光学的40情報記録用媒体であって、

基板上に、所定の溝蛇行信号を有する溝が形成され、該溝蛇行信号の基準周期は各ゾーン毎に変化し、第qゾーン(ただし、q は $1 \le q \le p$ の整数)における平均線速度を< v。> * v。、溝蛇行信号の基準周期をT w。とすると、< v。> * v。T w。は一定である光学的情報記録用媒体。

【請求項48】 上記記録領域の最内周が半径20~25mmの範囲にあり、最外周が半径55~60mmの範囲にある請求項47に記載の光学的情報記録用媒体。

【請求項49】 請求項1、4、7のいずれかに記載の 光学的情報記録用媒体に情報を記録するにあたり、 記録マーク間には、非晶質を結晶化しうる消去パワーP eの記録光を照射し、

一つの記録マークの時間的な長さをn T としたとき (T は基準クロック周期、n は2以上の整数)、

記録マークの時間的長さnTを、

【数8】 n_1 T、 α_1 T、 β_1 T、 α_2 T、 β_2 T、···

 α , T ($1 \le i \le m$) の時間内においては記録層を溶融させるにたる $Pw \ge Pe$ なる記録パワーPwの記録光を照射し、 β , T ($1 \le i \le m$) の時間内においては、 $0 < Pb \le 0$. 2 Pe (ただし、 β Tにおいては、 $0 < Pb \le Pe$ となりうる)なるバイアスパワーPbの記録光を照射することを特徴とする光学的情報記録用媒体の光記録方法。

【請求項50】 波長が350~680nmの光を、開30 □数NAが0.55~0.9の対物レンズを通して記録 層に集光させ、データの記録再生を行う光記録方法であって、

m=n-1 もしくはm=n-2、

 $\alpha_1 = 0.3 \sim 1.5$

 $\alpha_1 \ge \alpha_1 = 0.2 \sim 0.8 \ (2 \le i \le m)$

 $\alpha_i + \beta_{i-1} = 1. \quad 0 \quad (3 \le i \le m) \ ,$

 $0 \le Pb \le 1.5 (mW)$

 $0.3 \le Pe/Pw \le 0.6$

である請求項49に記載の光記録方法。

【請求項51】 波長が600~680nmの光を、開口数NAが0.55~0.65の対物レンズを通し、基板を介して記録層に集光させ、最短マーク長を0.35~0.45μmの範囲として、データの記録再生を行う光記録方法であって、

nは1~14の整数とし、

 $m=n-1 \ge 0$

Pbは線速によらず一定とし、

Pe/Pwは0.4~0.6の範囲で線速度に応じて変化しうるものとし、(i)記録線速度3~4m/sの範50 囲においては、基準クロック周期TをToとし、

 $\alpha_1 = 0.3 \sim 0.8$

 $\alpha_1 \ge \alpha_1 = 0.2 \sim 0.4$ であってiによらず一定 $(2 \le i \le m)$

 $\alpha_1 + \beta_1 \ge 1.0$

 $\alpha_{i} + \beta_{i-1} = 1.0 \ (3 \le i \le m)$

 $\beta_{\bullet} = 0.3 \sim 1.5 \& 0.$

 α , $T(1 \le i \le m)$ の時間内においては記録パワーP w,の記録光を照射し、(ii)記録線速度6~8m/ sの範囲においては、基準クロック周期TをTo/2と

 $\alpha'_{1} = 0.3 \sim 0.8$

 $\alpha'_1 \ge \alpha'_1 = 0.3 \sim 0.5$ cboot i k \downarrow i k 定(2≤i≤m)、

 $\alpha' + \beta' = 1.0 \quad (3 \le i \le m)$

 $\beta' \cdot = 0 \sim 1.0 \, e \, U$ 、

 α , T(1 \leq i \leq m) の時間内においては記録パワーP w、の記録光を照射するとしたとき、

 α' , $> \alpha$, $(2 \le i \le m)$ 、かつ、 $0.8 \le Pw_1$ / Pw、≦1.2である請求項49又は50に記載の光記 録方法。

【請求項52】 所定の記録領域を有する光学的情報記 録用媒体を角速度一定で回転させて情報を複数のマーク 長により記録する方法であって、

記録領域最内周での線速度が2~4m/sとなり記録領 域最外周での線速度が6~10m/sとなるように該媒 体を回転させ、

該記録領域は半径によって区切られた複数ゾーンからな り、各ゾーン内の平均線速度に応じて記録密度がほぼ一 定となるように基準クロック周期Tを変化させる記録方 法であって、

ゾーンによらずmを一定とし、

外周ゾーンから内周ゾーンに向かって、Pb/Pe及び /又はα゛(iは1≦i≦mの少なくとも一つ)を単調 に減少させる請求項49に記載の光記録方法。

【請求項53】 上記記録領域は半径によってp個のゾ ーンに分割され、最内周側を第1ゾーン、最外周側を第 pゾーンとし、第qゾーン(ただし、qは1≦q≦pの 整数)における角速度をω。、平均線速度を<v。> www、最大線速度をくv。>www、最小線速度をくv。 $>_{ain}$ 、基準クロック周期を T_a 、最短マークの時間的 40 α° $_1$ = 0 . 3 ~ 0 . 8 、 長さをn_{*1}。T。とすると、

 $\langle v_{\bullet} \rangle_{v_{\bullet}} / \langle v_{\bullet} \rangle_{v_{\bullet}}$ は $1.2 \sim 3$ の範囲であっ て、 < v。 > *** / < v。 > *** は1.5以下であり、 (i) 同一ゾーン内では、ω。、T。、α, 、β, 、P e、Pb、及びPwは一定であり、最短マークの物理的 長さ n_{uin} T_{uin} $T_a < v_a >_{ave}$ は $1 \le q \le p$ なる全ての q に対してほ ぼ一定であり、かつ、

m=n-1 もしくはm=n-2、

 $\alpha_1 = 0.3 \sim 1.5$

 $\alpha_1 \ge \alpha_1 = 0.2 \sim 0.8 (2 \le i \le m)$

 $\alpha_1 + \beta_{1-1} = 1.0 \ (3 \le i \le m)$

0 ≤ P b ≤ 1. 5 (m W) \

 $0.4 \leq Pe/Pw \leq 0.6$

であり、(ii)各ゾーンごとにPb、Pw、Pe/P w、 α , $(1 \le i \le m)$ 、 β , β , は可変であり、外 周ゾーンから内周ゾーンに向かって、少なくともα

, (iは2≤i≤mの少なくとも一つ)を単調に減少さ せる請求項52に記載の光記録方法。

10 【請求項54】 該記録領域におけるPwの最大値をP waax 、最小値をPwain とするとき、Pwaax /Pw ai。 ≦1.2である請求項53に記載の光記録方法。

【請求項55】 波長が600~680nmの光を、開 口数NAが0.55~0.65の対物レンズを通し、基 板を介して記録層に集光させ、データの記録再生を行う 光記録方法であって、

上記記録領域の最内周が半径20~25mmの範囲にあ り、最外周が半径55~60mmの範囲にあり、最内周 側ゾーンの平均線速度が3~4m/sであり、

20 第qゾーン(ただし、qはl≤q≤pの整数)における 角速度をω。、平均線速度を< ν。>, ν。、最大線速度 をくv。>。x、最小線速度をくv。>。i、、基準クロ ック周期をT。、最短マークの時間的長さをn.,。T。 とすると、

nは1~14の整数であり、

m=n-1 であり、

ω。、Pb及びPe/Pwはゾーンによらず一定であ

 $T_{q} < v_{q} > v_{q}$ は $1 \le q \le p$ なる全ての q に対してほ 30 ぼ一定であり、かつ、

【数9】(<v。>"", -<v。>",)/(<v, > wax +< v。 >。in) < 10%を満たし、

(i) 第1 ゾーンにおいては、

 $\alpha^{1}_{1} = 0.3 \sim 0.8$

 $\alpha^{1}_{1} \ge \alpha^{1}_{1} = 0.2 \sim 0.4$ であって i によらず一定 $(2 \le i \le m)$

 α^1 , $+\beta^1$, ≥ 1 . 0,

 $\alpha^{1} + \beta^{1} = 1.0 \quad (3 \le i \le m) \ge 0.$

(ii)第pゾーンにおいては、

 $\alpha^{\nu}_{i} \geq \alpha^{\nu}_{i} = 0.3 \sim 0.5$ constant in the constant is a substant in the constant in 定(2≤i≤m)、

 $\alpha^{p}_{i} + \beta^{p}_{i-1} = 1.0 \ (2 \le i \le m) \ge 0, \ (i \ i$ i)他のゾーンにおいては、 α^1 , $\leq \alpha^0$, $\leq \alpha$

 $^{\circ}$, $(2 \le i \le m)$ とし、 α° , $(2 \le i \le m)$ とし、 α° , $(2 \le i \le m)$ の値とする請求項52乃至54のいずれかに記載の光記 録方法。

【請求項56】 $\alpha^1, \geq \alpha^1, \leq \alpha^1, (ただし、<math>\alpha^1,$ >α°1)である請求項55に記載の光記録方法。

50 【請求項57】 Pb、Pe/Pw、β₁、β_nはゾー

(7)

ンによらず一定であり、 α_1 、 α_2 (2 \leq i \leq m) のみ をゾーンにより変化させる請求項55又は56に記載の 光記録方法。

【請求項58】 請求項1、4、7のいずれかに記載の 光学的情報記録用媒体に情報を記録するにあたり、記録 マーク間には、非晶質を結晶化しうる消去パワーPeの 記録光を照射し、一つの記録マークの時間的な長さをn Tとしたとき(Tは基準クロック周期、nは2以上の整 数〉、記録マークの時間的長さn Tを、

[数10] η_1 T、 α_1 T、 β_1 T、 α_2 T、 β_2 T、

 α_i T, β_i T, \cdots , α_n T, β_n T, η_2 T (ただし、mはパルス分割数でm=n-k、kは0≤k ≤ 2 なる整数とする。また、 Σ , $(\alpha, +\beta,)+\eta$, ≥ 0 なる実数、 $0 \leq \eta_1 + \eta_2 \leq 2$. 0とする。 α α_i (1 \leq i \leq m) は α_i > 0 なる実数とし、 β_i (1 \leq $i \leq m$) は β , > 0 なる実数とする。 $\alpha_1 = 0$. $1 \sim$ 1. 5, $\beta_1 = 0$. $3 \sim 1$. 0, $\beta_n = 0 \sim 1$. 5 \geq し、 $2 \le i \le m$ なる i においてlpha,は0. $1 \sim 0$.8の 20 lpha,= 0. $3 \sim 0$.6($2 \le i \le m$)及びeta, $= 0 \sim$ 範囲にあり、かつ、 i によらず一定とする。なお、3≦ $i \le m$ なる i において α , $+\beta$, , , は0.5~1.5の 範囲にあり、かつ、 i によらず一定とする。) の順に分 割し、

 α , $T(1 \le i \le m)$ の時間内においては記録層を溶融 させるにたるPw≥Peなる記録パワーPwの記録光を 照射し、β、T(1≦i≦m)の時間内においては、O <Pb≤0.2Pe(ただし、β. Tにおいては、0< Pb≦Peとなりうる) なるバイアスパワーPbの記録 光を照射し、

線速度によらずm、 $\alpha_1 + \beta_{1-1}$ (3 \leq i \leq m)、 α_1 T、及び α , T (2 \leq i \leq m) を一定とし、線速度が小 さいほどβ』が単調に増加するように変化させることを 特徴とする光記録方法。

【請求項59】 各記録線速度での最大記録パワーをP Wax、最小記録パワーをPwain とするとき、

 $Pw_{max} / Pw_{min} \leq 1.2$

 $Pe/Pw=0.4\sim0.6$

 $0 \le Pb \le 1.5 (mW)$

である請求項58に記載の光記録方法。

【請求項60】 記録線速度が5m/s以下において、 $\Sigma \alpha_1 < 0$. 5 n である請求項5 9 に記載の光記録方

【請求項61】 最大記録線速度における β。を β " 。、最小記録線速度における β 。を β い。としたと ቋ

他の記録線速度における β 。は、 β し。と β り。の間の

記録線速度によらずPb、Pe/Pw比が一定である請 求項59に記載の光記録方法。

【請求項62】 記録線速度によらず β』 が一定である 請求項58乃至60のいずれかに記載の光記録方法。

【請求項63】 所定の記録領域を有する光学的情報記 録用媒体を回転させて情報を複数のマーク長により記録 する方法であって、

記録領域を半径方向に複数のゾーンに分割し、各ゾーン 内においては、線速度一定で記録を行うものとし、

最内周ゾーンにおける記録線速度Vィ。と最外周ゾーンに おける記録線速度 v。」、の比 v。」、 / v,,が1.2~2 であり、β を各ゾーンの線速度に応じて変化させる請 10 求項58乃至62のいずれかに記載の光記録方法。

【請求項64】 所定の記録領域を有する光学的情報記 録用媒体を回転させて情報を複数のマーク長により記録 する方法であって、

記録領域を半径方向に複数のゾーンに分割し、各ゾーン 内においては、線速度一定で記録を行うものとし、

最内周ゾーンにおける記録線速度マパーと最外周ゾーンに おける記録線速度 vout の比 vout / vinが1.2~2

1. 5とし、

線速度によらずm、 $\alpha_i + \beta_{i-1}$ (3 $\leq i \leq m$)、 α_1 T、Pe/Pw、及びPbを一定とし、線速度に応じて α ,及び/又は β 。を変化させる請求項49に記載の光 記録方法。

【請求項65】 請求項45乃至48のいずれかに記載 の光学的情報記録用媒体に対して情報の記録を行うにあ たり、基準クロック周期T。は、各ゾーンの溝蛇行の基 準周期Tw。の倍数もしくは約数として発生せしめると 30 とを特徴とする光記録方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、書換え可能なDV Dなど、相変化型記録層を有する高密度記録用の光記録 媒体及び光記録方法に関わり、特に、1ビームオーバー ライト時における線速度依存性および記録パワー依存性 と、記録マークの経時安定性の改善された光記録媒体及 び光記録方法に関する。

[0002]

【従来の技術】―般にコンパクトディスク(CD)やD V Dは、凹ピットの底部及び鏡面部からの反射光の干渉 により生じる反射率変化を利用して2値信号の記録及び トラッキング信号の検出が行われている。近年、CDと 互換性のある媒体として、相変化型の書換え可能なコン パクトディスク (CD-RW、CD-Rewritab 1e)が広く使用されつつある。また、DVDについて も、相変化型の書換え可能なDVDが各種提案されてい

【0003】これら相変化型の書換え可能なCD及びD 50 VDは、非晶質と結晶状態の屈折率差によって生じる反

14

るが、より最短マーク長を縮めていくと、急激にジッタ が増加することが判明した。

16

射率差および位相差変化を利用して記録情報信号の検出を行う。通常の相変化媒体は、基板上に下部保護層、相変化型記録層、上部保護層、反射層を設けた構造を有し、これら層の多重干渉を利用して反射率差および位相差を制御してDやDVDと互換性を持たせることができる。CD-RWにおいては、反射率を15~25%に落とした範囲内ではCDと記録信号及び溝信号の互換性が確保でき、反射率の低いことをカバーする増幅系を付加したCDドライブでは再生が可能である。

【0004】なお、相変化型記録媒体は消去と再記録過 10程を1つの集束光ビームの強度変調のみによって行うことができるため、CD-RWや書換え可能DVD等の相変化型記録媒体において記録とは、記録と消去を同時に行うオーバーライト記録を含む。相変化を利用した情報の記録には、結晶、非晶質、又はそれらの混合状態を用いることができ、複数の結晶相を用いることもできるが、現在実用化されている書換可能相変化型記録媒体は、未記録・消去状態を結晶状態とし、非晶質のマークを形成して記録するのが一般的である。記録層の材料としてはいずれもカルコゲン元素、即ちS、Se、Teを 20含むカルコゲナイド系合金を用いることが多い。

【0005】例えば、GeTe-Sb, Te, 疑似二元合金を主成分とするGeSbTe系、InTe-Sb, Te, 疑似二元合金を主成分とするInSbTe系、Sb., Te, 、を共晶系を主成分とするAgInSbTe系合金、GeSnTe系などである。このうち、GeTe-Sb, Te, 疑似二元合金に過剰のSbを添加した系、特に、Ge, Sb, Te, などの金属間化合物近傍組成が主に実用化されている。

【0006】 これら組成は、金属間化合物特有の、相分離を伴わない結晶化を特徴とし結晶成長速度が速いため、初期化が容易で、消去時の再結晶化速度が速い。このため従来より、実用的なオーバーライト特性を示す記録層としては、疑似二元合金系や金属間化合物近傍組成が注目されていた(文献Jpn.J.Appl.Phys.,vol.69(1991),p2849、あるいはSPIE,Vol.2514(1995),pp294-301等)。

【0007】しかし一方、とれら組成においては、準安定な正方晶系の結晶粒が成長する。との結晶粒は粒界が明確であり、かつ大きさが不揃いで、その方位により光学異方性が顕著なため、光学的なホワイトノイズを生起しやすいという問題がある。そして、とのような粒径及び光学特性の異なる結晶粒は、非晶質マークの周囲に成長しやすいために、マークのジッタが増加しやすく、或いは、周囲の結晶とは光学特性が異なるため、消え残りとして検出されやすかった。とのため、高線速での記録や、高密度のマーク長変調記録においては、良好な再生特性が得られないという問題があった。具体的には、書物を利DVDの規格では最短マーク長が00600円であ

【0008】ところで、ジッタの改善策として、いわゆる吸収率補正がある。従来の4層構成では、通常、記録層の吸収する光エネルギーは、反射率の高い結晶状態で吸収する光エネルギーAcが、反射率の低い非晶質状態で吸収する光エネルギーAaより小さい(Ac<A

a)。このためオーバーライト時に、元の状態が結晶状態であったか非晶質状態であったかにより、新しい記録マークの形状等が変わってしまいジッタが増加するという問題がある。これを、結晶状態と非晶質状態の光エネルギーの吸収効率をほぼ同じようにし、元の状態によらずマーク形状を安定させ、これによりジッタを低減するのである。さらには、結晶は溶融時に潜熱の分だけ余分に熱が必要なため、結晶状態のほうがより光エネルギーを吸収するようにするのが好ましい(Ac>Aa)。

【0009】この関係を達成するには、光吸収性の層を少なくとも1層追加して5層以上の構成とし、非晶質状態における光吸収の一部をこの吸収層で奪う方法がある。例えば、AuやSiなどの吸収層を下部保護層と基板の間や上部保護層上に挿入する(Jpn.J.Appl.Phys.,vol.37(1998),pp3339-3342、Jpn.L.Appl.Phys.,vol.37(1998),pp2516-2520)。

【0010】しかしながら、とのような層構成は、吸収層の耐熱性や密着性に問題があり、繰返しオーバーライトすると微視的変形や剥離などの劣化が顕著である。また、剥離等を生じやすいために経時安定性もそこねてしまう。すなわち、従来の4層構成を維持しながら高密度化を達成することは、GeTe-Sb, Te, 疑似二元合金記録層では困難であった。しかも、GeTe-Sb, Te, 疑似二元合金記録層では、複屈折率が短波長ほど実部が小さく虚部が大きくなるという波長依存性があるため、特に、短波長レーザー光を光源として用いた場合には、Ac>Aaなる条件を達成しにくい。

【0011】そこで近年、記録層材料として、AgInSbTe四元系合金が使用されつつある。AgInSbTe四元系合金は40dBにも及ぶ高消去比が得られることが特徴であり、従来の4層構成で、吸収率補正をすることなく、高線速で高密度のマーク長変調記録が行える。ただし、高速記録が行えることは、通常、結晶化速度が速く消去しやすいことを意味するため、非晶質マークも結晶化されやすく、記録されたマークの経時安定性が悪い場合が多い。

[0012]

長しやすいために、マークのジッタが増加しやすく、或いは、周囲の結晶とは光学特性が異なるため、消え残りとして検出されやすかった。このため、高線速での記録ではより高速で記録再生可能な媒体が求められている。や、高密度のマーク長変調記録においては、良好な再生特性が得られないという問題があった。具体的には、書物を関する。 第一次 は 1 ・ 2 ~ 1 ・ 4 m / まであるが、4 倍速での記録が可能な C D − R W が商品換え型 D V D の規格では最短マーク長が 0 ・ 6 μ m であ 50 化され、さらに 8 倍速、1 0 倍速での記録が可能な C D

-RWが求められている。一方、書換え可能なDVDと しては、DVD-RAM、DVD+RW、DVD-RW など各種のものが提案あるいは商品化されている。しか しながら、再生専用のDVDと同等の容量である4.7 GBの書換え可能なDVDは未だ実用化されていない。 つまり、短いマークを高速で記録でき、かつマークの安 定性のよい媒体が求められている。

【0013】しかし、従来、高速記録とマーク安定性は 相反する性質と考えられ、この両方を同時に満たすこと は困難と考えられてきた。本発明者らは、結晶化、非晶 10 質化の原理について研究を重ねた結果、これらの特性全 てを同時に満たす画期的な媒体を見いだした。すなわ ち、本発明においては、短いマークが高速で良好に記録 でき、かつ、マーク安定性のよい光記録媒体及びそれに 適した光記録方法を提供する。

[0014]

【課題を解決するための手段】本発明の第一の要旨は、 基板上に少なくとも相変化型記録層を有し、該記録層の 結晶部を未記録・消去状態とし非晶質部を記録状態と し、最短マーク長0.5μm以下の複数の記録マーク長 20 により情報を記録するための光学的情報記録用媒体であ って、消去が、非晶質部又は溶融部と、周辺結晶部との 境界からの結晶成長によって実質的に進行する再結晶化 により行われることを特徴とする光学的情報記録用媒体 に存する。

【0015】本発明の第二の要旨は、基板上に、Ge、 Sb、Teを主成分とする薄膜からなる相変化型記録層 を有し、該記録層の結晶部を未記録・消去状態とし非晶 質部を記録状態とし、最短マーク長0.5μm以下の複 数の記録マーク長により情報を記録するための光学的情 報記録用媒体であって、該媒体は、一定線速度で、記録 層を溶融させるに足る記録パワーPwの記録光を連続的 に照射すると概ね結晶化され、一定線速度で、記録層を 溶融させるに足る記録パワーPwの記録光を照射したの ち遮断すると非晶質マークが形成されることを特徴とす る光学的情報記録用媒体に存する。

【0016】本発明の第三の要旨は、基板上に、記録再 生光の入射方向から順に、第1保護層、相変化型記録 層、第2保護層、反射層、を設けてなり、該記録層の結 晶部を未記録・消去状態とし非晶質部を記録状態とし、 最短マーク長0.5 µm以下の複数の記録マーク長によ り情報を記録するための光学的情報記録用媒体であっ て、相変化型記録層は膜厚が5 n m以上2 5 n m以下 で、GeSbTe三元状態図において、(Sb。, Te 。.,)とGeを結ぶ直線A、(Ge...,Sb...,Te 。、、。)と(Sb。。、Ge。。、)を結ぶ直線B、(Sb 。。Ge。.,)と(Te。。Ge。.,)を結ぶ直線C、 及び(Sbo.s Teo.z)とGeを結ぶ直線Dの4本の 直線で囲まれた領域(ただし、境界線上を含まない)の

なり、第2保護層は膜厚が5nm以上30nm以下であ ることを特徴とする光学的情報記録用媒体に存する。本 発明の他の要旨は、上記媒体と併せ用いるに好ましい光 記録方法に存する。

[0017]

【発明の実施の形態】本発明者らは、記録層の結晶状態 を未記録・消去状態、非晶質状態を記録状態とする相変 化媒体において、消去が、非晶質部又は溶融部と、周辺 結晶部との境界からの結晶成長によって、実質的に進行 する再結晶化により行われるような媒体が、高速かつ高 密度で安定な記録を行うことができることを見いだし た。つまり、高速でオーバーライトすることができ、マ ークエッジのジッタが小さい、高密度のマーク長変調記 録を行うことができ、形成されたマークの経時安定性が 非常に良好である。

【0018】一般に、非晶質マークの消去は、記録層を 結晶化温度以上融点近傍以下に加熱し、非晶質固相状態 又は溶融状態としたのち、冷却するときに再結晶化する ことによって起こる。本発明者らの研究によれば、非晶 質マークの消去、すなわち再結晶化は、(1)非晶質領 域内の結晶核生成と、(2)非晶質部又は溶融部と、結 晶部との境界を起点とする結晶成長、の2つのプロセス によって進行するが、前者の結晶核生成を殆ど起こらな いようにし、実質的に、後者の結晶成長プロセスのみを 利用することで、上記のような効果が得られることが分 かった。

【0019】通常、結晶化は結晶化温度以上融点近傍以 下で進行するが、結晶核生成はその温度範囲内でも比較 的低温側、結晶成長は高温側で進行する。結晶核生成が なければ消去ができないというわけではなく、非晶質部 又は溶融部を囲む周辺結晶領域との境界点を核として結 晶成長が高速で進めば消去は可能である。特に、微小な マークあるいは短いマークほど、このような周辺結晶部 からの結晶成長のみによってマーク中心まで瞬時に結晶 化されやすいため、極めて短時間で完全に消去すること ができる。従って、最短マーク長が0.5μm以下とい う微小なマークを用いる高密度記録媒体においてこそ、 効果が顕著であり、100ナノ秒オーダー以下で消去が でき、高速でのオーバーライトが可能である。なお、最 短マーク長は、一般に、短いほど高密度記録ができる が、マークの安定性の面からは、10nm以上が好まし 64.

【0020】また、マークの横幅が狭いほど、やはり周 辺結晶部からの結晶成長のみによってマーク中心まで瞬 時に結晶化されやすく好ましい。従って、情報を記録す るトラックのトラックピッチは、例えば0.8μm以下 とし、マークが横に広がらないようにするのが好まし い。通常、マーク横幅はトラックピッチの半分程度とな る。なお、トラックピッチは、一般に、狭いほど高密度 組成を有するGeSbTe合金を主成分とする薄膜から 50 記録ができるが、マークの安定性の面からは、 0.1μ

m以上が好ましい。トラックは溝のみであっても、溝と ランドの両方であってもよい。

【0021】本発明の媒体は非晶質マークの経時安定性にも優れる。すなわち、周辺結晶部からの結晶成長は、結晶化温度以上融点近傍以下のなかでも、融点に近い比較的高温域のみで進行し、低温では殆ど進行しないので、一旦形成された非晶質マークは結晶化されにくく、経時安定性に優れる。結晶化温度は通常100℃~200℃の範囲であるが、との温度程度までは熱的安定性が維持できる。

【0022】特に、100℃未満の通常の使用範囲では、記録された非晶質マークは極めて安定で、記録済み信号の振幅はほとんど劣化しない。逆に、そのような経時安定性から結晶核生成をほとんど伴わないことも結論できる。さらに、本発明の媒体は、マーク長記録において、極めて揺らぎの少ない、スムースなマークエッジを形成できるという利点がある。一般に、非晶質マークを記録する際には、記録層を一旦溶融し再凝固させ非晶質とするが、マーク辺縁部は中心に比べ低温であるため、従来は、マーク辺縁部では結晶核成長による再結晶化が20起こりやすく、非晶質の混在した粗大グレインが生じ、マークエッジゆらぎの原因となっていた。

【0023】本発明媒体は、消去時に、非晶質部又は溶融部と、結晶部との境界からの結晶成長が支配的で、かつ高速であるということは、記録時にも同様の原理がはたらき、溶融領域が再凝固し非晶質化する際にも、周辺結晶部からの結晶成長のみが起こり、結晶核成長による結晶化は起こりにくくマークエッジがゆらぎにくいという特徴がある。すなわち、周辺結晶部からの結晶成長は、結晶化温度以上融点近傍以下のなかでも、融点に近30い比較的高温域のみで進行し、低温では殆ど進行しないので、溶融状態からの再凝固時に、温度が低下して融点を通過する時点の冷却速度のみによって、非晶質マークの境界形状が決まる。

【0024】そして、従来問題であった、再凝固時に起きる結晶核成長による非晶質の混在した粗大グレインが非晶質マーク周辺にほとんど全く形成されないのである。これは、マークエッジのゆらぎによるノイズ抑制に極めて効果的であることが分かった。さらにまた、マークエッジ形状も経時的に変化することなく安定なので、初期ジッタが小さいだけでなく、ジッタの経時劣化もほとんどない。

【0025】本発明の結晶化の原理についてより詳細に 説明する。本媒体においては、非晶質マークと周辺結晶 部との境界部が結晶成長の核となるのであって、非晶質 マーク内部ではほとんど結晶核が発生しない。従って、マーク境界部からのみ結晶が成長する。一方、従来のG e Te-Sb, Te, 系の記録層は、非晶質マーク内に 結晶核がランダムに生成し、それが成長して結晶化が進む。 両者の結果化過程の善は、透過電子顕微鏡で確認で

きる。非晶質マーク形成後の両記録層に、比較的低いパワーの消去光を直流的に照射すると、GeTe-Sb,Te,系の記録層は、温度が高くなる非晶質マーク中央部から結晶化が進むのが観察されるのに対し、本発明記録層では、非晶質マーク周辺部から結晶成長しているのが観察される。特に、非晶質マークの前端及び後端からの結晶成長が著しい。

20

【0026】 とのような原理で消去が行われる記録層組 成は、Sb., Te., 共晶点近傍組成に、過剰のSb 10 と20原子%程度までの他元素を添加した合金系に多く 見いだされる。すなわち、M, (Sb, Te, ,), , , $(0.6 \le x \le 0.9, 0 < y \le 0.2, M \& Ga, Z$ n, Ge, Sn, Si, Cu, Au, Al, Pd, P t、Pb、Cr、Co、O、S、Se、Ta、Nb、V のうちの少なくとも1種)合金を主成分とする薄膜であ る。Sb。, Te。」に過剰のSbを含む合金は、非晶 質マーク周辺部の結晶からの結晶成長が、GeTe-S b, Te, 擬似二元合金系と比べて著しく大きいため、 髙線速でのオーバーライトが可能という特徴を有する。 過剰のSbは、非晶質マーク内のランダムな結晶核生成 及び結晶核成長を促進するのではなく、周辺結晶部から の結晶成長速度を大幅に増大する。但し、SbTe二元 合金では、結晶核生成も少なからず起とるため、非晶質 マークの経時安定性が極めて悪く、適当な元素を添加す る必要がある。

【0027】本発明者らの検討によれば、Geの添加は、結晶核生成の抑制に極めて効果的である。さて、非晶質マークの再結晶化が、実質的に周辺結晶部からの再結晶化のみに支配されているかどうかは、経時安定性の評価から間接的に知ることができる。具体的な評価方法としては、高温高湿下の加速環境試験を行ったときの、再生信号の変調度を測定する方法が挙げられる。

【0028】すなわち、最短マーク長0.5 μ m以下の複数のマーク長により信号を記録したとき、記録直後に再生した信号の変調度をM。とし、記録後、80 $^{\circ}$ C80%RHの条件下で1000時間経過ののち再生した信号の変調度をM、とすると、

[0029]

【数11】M₁ /M₀ ≥ 0.9

【0030】である。マーク長変調方式は限定されず、EFM変調、EFMプラス変調、(1,7)RLL-NRZI(run length limited—non return to zero inverted)変調などを用いることができるが、図6に示すようなランダム信号を、最短マーク長を 0.5μ m以下として記録する。本評価の際には、最短マーク長は 0.2μ m程度以上とするのが好ましい。なお、全ての評価条件において上記式を満たす必要はなく、一つの評価条件において上記式を満たせばよい。

結晶核がランダムに生成し、それが成長して結晶化が進 【 0 0 3 1 】一例としては、最短マーク長0. 4 μ m の む。両者の結晶化過程の差は、透過電子顕微鏡で確認で 50 複数のマーク長により、Ε F M プラス変調方式のランダ

ム信号を記録する。変調度は、その変調方式の最長マー クの信号振幅をトップの信号強度で規格化したものであ る。図6にEFMプラス変調されたランダム信号を記録 し再生したときのDC再生信号(直流成分を含む再生信 号)の波形を示す。変調度は、14Tマークのトップの 信号強度 Ito。と信号振幅 Itoの比 Ito とし て定義される。変調度が不変であれば、非晶質マークサ イズは十分安定であると判断できる。加速試験前に記録 したランダム信号の変調度が、加速試験後にも初期の値 の90%以上を保っていれば、結晶核生成を実質的に伴 10 わないことが推定できる。

【0032】本発明の記録層では、周辺結晶部からの結 晶成長は融点直下の高温領域で起こりやすいため、非晶 質マーク形成のために記録層を溶融し再凝固させる時に も、周辺結晶部から結晶成長が起こり得る。従って、溶 融後の冷却速度が遅く非晶質として固化するに必要な臨 界冷却速度に達しない場合、溶融領域全体がほとんど瞬 時に再結晶化してしまう。

【0033】これは以下の実験により確認できる。記録 再生光を案内する溝を設けた0.6mm厚のポリカーボ ネート基板上に、(ZnS)so(SiOz)zo第1保護 層を膜厚68nm、Geo.osSbo.71Teo.24記録層を 膜厚18nm、(ZnS)so(SiOz)zo第2保護層 を膜厚20nm、A1.,,,, Ta,,,, 反射層を膜厚2 50nm、この順に設け、さらに紫外線硬化樹脂保護層 を膜厚4μm設けた。これら2枚を、記録層のある側を 内側にしてホットメルト接着剤で貼合せて光記録媒体と した。本記録層組成は、線速約7m/s以上でオーバー ライト可能とすべくSb/Te≒3とした。本媒体に、 長径約100μm、短径約1.5μmの楕円レーザー光 30 を、短軸方向に走査して溶融再結晶化して初期化した。 【0034】本媒体に、波長637nm、NA=0.6 3の集束光を、案内溝に従って線速7m/sで照射し た。記録パワーPwが10mWの記録光を直流的に照射 したのち、パワーを急激に落とし1mWとした。即ち、 実質的に記録光を遮断した。なお、ビーム径は約0.9 μmで、ガウシアンビームでエネルギー強度がピーク強 度の1/e'以上となる領域に相当する。

【0035】図2に、記録光を遮断した前後での反射率 変化を示す。図2の下段のごとく、時間の経過に従っ て、記録光を遮断した。図2下段の左側で記録光が連続 的に、すなわち直流的に照射され、右側では遮断されて いる。同じ領域を、再生パワー1.0mWの再生光で走 査したところ、図2上段のような再生波形が得られた。 これは反射率変化に対応している。

【0036】記録光を瞬間的に遮断した付近で反射率が 低下しており、その前後では反射率はほぼ同じである。 TEM観察により、反射率低下部は非晶質となってお り、その前後では結晶であることが確認された。すなわ ち、記録光を連続的に照射している限りは溶融部は再結 50 晶化してしまい、記録光を遮断した部分の近辺の溶融領 域だけが非晶質化する。

【0037】これは、記録光を連続的に照射した場合に は、後続部分からの余熱により記録層の冷却速度が抑制 され、非晶質形成に必要な臨界冷却速度が得られないの に対して、記録光を一旦、遮断することで、後続部分か らの余熱を遮断し、冷却速度を上げることができるから である。なお、記録パワーPwを7mW以上としたと き、記録光の遮断によって、非晶質マークが形成されて しょなっ

【0038】検討の結果、本発明の媒体は、一定線速度 で、記録層を溶融させるに足る記録パワーPwの記録光 を連続的に照射すると概ね再結晶化され、一定線速度 で、記録層を溶融させるに足る記録パワーPwの記録光 に続けて、パワーがほぼ0の記録光を照射すると非晶質 マークが形成されることが分かった。パワーがほぼ0と は、厳密に0である必要はなく、0≦Pb≦0.2Pw なるパイアスパワーPb、より好ましくは0≤Pb≤ 0. 1PwなるバイアスパワーPbとすることである。

【0039】本発明においては、溶融部の再凝固時の再 結晶化は、ほとんど、周辺の固相結晶部からの結晶成長 によってのみ起とる。従って再結晶化部は非晶質マーク の中心部には形成されないため、なめらかで連続的なマ ークエッジが形成される。従来、このように著しく再結 晶化しやすい材料は、マーク長記録用の記録層に適さな いと考えられてきた。なぜなら、長マークを形成するた めに記録光を長く照射すると、溶融領域のほとんどは結 晶化してしまうからである。

【0040】しかし、本発明者らの検討によれば、最短 マーク長0.5μm未満という高密度記録においては、 溶融領域の非晶質化と、周辺の固相結晶部の境界からの 再結晶化との競合過程を積極的に用いたほうが、良好な ジッタを得ることができる。そのために、後述のごとく 長さnTのマークの形成に、記録パワーPw印加区間と その遮断区間、即ちバイアスパワーPb印加区間を組み 合わせた、パルス分割方式が極めて有効であることを見 いだしたのである。

【0041】パルス分割方式により記録すると、図1の ように、矢羽型(もしくは三日月型)の非晶質部が連な って非晶質マークが形成される。該マークの始端の形状 は先頭の矢羽型非晶質部の始端の形状によって、該マー クの後端の形状は最後端の矢羽型非晶質部の後端の形状 によってのみ定まる。通常、非晶質部の始端形状はなめ らかであるから、マーク始端形状もなめらかである。前 方への熱の逃げにより冷却速度は十分高く保たれるか ら、ほぼ溶融領域先端の形状を反映し、従って記録パル スの立上がり時間により支配されるからである。記録バ ルス、即ちPw印加区間の立上がりは、2~3ナノ秒以 下であればよい。

【0042】一方、非晶質部の後端形状は、記録パルス

の立下がり時間で決まる冷却速度と、周辺、特に後端の結晶部から進行する再結晶化領域の大きさとによって定まる。冷却速度を十分高くするためには、Pw印加区間の立下がりは、2~3ナノ秒以下が望ましい。再結晶化領域の大きさは、オブバルス、即ちPb印加区間の長さにより正確に制御できる。さらに、層構成として前述の超急冷構造を適用して、記録層の冷却速度をできるだけ急峻にするとともに、冷却速度の空間分布をマーク後端付近で急峻になるようにして、マーク端部の位置がゆらがないようにすることも重要である

【0043】さて、本発明者らは、短マークを高速で記録でき、かつ記録マークの経時安定性に優れた光記録媒体について鋭意検討の結果、Sbo., Teo., 共晶組成近傍にGeを添加した特定組成が特に優れることを見出すとともに、層構成を適切に選ぶことにより、他の特性にも優れた光記録媒体を得た。すなわち、Sbo., Teo., に過剰のSb及びGeを加えた従来にない三元合金に着目し、高密度なマーク長変調記録への適性を検討した。その結果、図3に示すGeSbTe三元状態図において、4本の直線A、B、C、Dに囲まれた、極めて限20定的なGe-Sb-Te比の記録層組成を用いた媒体が、高密度なマーク長変調記録において、繰返しオーバーライト耐久性と経時安定性に特に優れることを見いだしたものである。

【0044】すなわち、GeSbTe三元状態図において、(Sb。,Te。,)とGeを結ぶ直線A、(Ge。。,Sb。。,Te。,)と(Sb。,,Ge。。,)を結ぶ直線B、(Sb。, Ge。,)と(Te。, Ge。,)を結ぶ直線C、及び(Sb。, Te。,)とGeを結ぶ直線Dの4本の直線で囲まれた領域(ただし、境界線上を含まない)の組成を有するGeSbTe合金を主成分とする薄膜を記録層とする。この記録層に後述の層構成を用いることにより、最短マーク長0.5 μ m以下の高密度マーク長変調記録に非常に適した媒体となるのである。そして、DVDと同等の記録密度とDVDとの優れた再生互換性を得ることができる。

【0045】かつ、繰り返しオーバーライト耐久性や、記録パワー・消去パワーの変動に対して良好なジッタが得られるマージンを広く確保できる。との組成範囲内では、Sb、Te₁₋、合金においてy=0.7よりSb量が多いほど、過剰のSb量が増え、結晶化速度が速く高線速でのオーバーライトが可能になる。

【0046】より具体的には、EFMプラス変調記録(8-16変調のマーク長変調記録)において、最短マークである3Tマークの長さを 0.4μ mあるいは 0.35μ m程度まで短縮しても、良好なジッタが得られる。また、十分なサーボ信号が得られ、既存の再生専用 DVDドライブでトラッキングサーボをかけることができる。さらに、線速 $1\sim10$ m/sのいずれかの線速度でオーバーライト可能である。

【0047】これにより、再生専用DVDと同容量でほぼ再生互換性のある曹換え型DVDを得ることができる。過剰なSb量を制御すれば、さらに、8m/s以上の高線速で、上記のような高品質、高密度のオーバーライトが可能である。また、記録パルス分割方法(パルスストラテジー)を後述のように線速に応じて変化させることで、少なくとも3~8m/sを含む広い線速範囲において良好なオーバーライトが可能になる。

24

【0048】本組成について、以下に詳細に説明する。 Ge添加量が10原子%以下のSb。, Te。, 共晶点 近傍組成では、Sb/Te比が大きいほど結晶化速度が 速くなる傾向がある。これは、Sb。, Te。, より過 剰のSbはSbクラスタとして析出し再結晶化過程において結晶核として働くからである。そして、Sb。, Te。, より過剰のSbがない場合は消去性能が不十分で 実質的にオーバーライト不可能である。また、初期化時 に核生成がほとんどないため、初期化が困難で生産性が 非常に悪いという問題もある(直線A)。

【0049】一方、Sb。、Te。、共晶二元合金でSb量を増やしていくと、結晶化速度が速くなるのと引き替えに、結晶化温度も低下し、非晶質マークの経時安定性を損ねてしまう。また、3m/s前後の低線速での記録に適さないし、形成された非晶質マークが短時間の再生光(レーザーパワー約1mW程度)照射で消えてしまう。従って、(Sb。、Te。、、)とGeを結ぶ直線Dよりも過剰のSbは含まれるべきではない。

【0050】また、直線AとDで規定された過剰のSb 量の範囲においては、SbTe二元のままでは、結晶化 温度が低いうえに過剰Sbの結晶核が存在して非晶質マークが不安定になりすぎるため、過剰Sb量が多いほど Geを添加する。Geの4配位結合により、結晶核生成 をほぼ完全に抑制する。結果として結晶化温度は上昇 し、経時安定性が増す。(Ge。。。、Sb。。。、Te。、、。) と(Sb。。。、Ge。。。)を結ぶ直線Bはこの条件を規定 している。より好ましくは、(Ge。。。、Sb。。。、Te 。、、、)と(Sb。。、Ge。、)を結ぶ直線B'より多く Geを含ませる。

【0051】さらには、Ge含有量が10原子%以上となるとマーク長記録時のジッタが悪化するし、繰返しオーバーライトによって高融点のGe化合物、とくにGeTeが偏析しやすくなる。また、成膜直後の非晶質膜の結晶化が極めて困難になるので好ましくない(直線C)。ジッタを低減するために、より好ましくはGeは7.5原子%以下とする。

【0052】なお、線速度3m/s以上でオーバーライトするには、記録層をGe、(Sb、Te_{1-v})_{1-x} 合金を主成分とする薄膜(0.04≦x<0.10、0.72≦y<0.8)とするのが好ましい。すなわち、線速度3m/s以上での記録には、Sb量を多くし、Sb Te_{1-v} 合金においてy≧0.72とするのが好まし

い。ただし、Sb量を多くすることにより非晶質マーク の安定性が若干悪化するため、これを補うのにx≥0. 04とGeを多めにするのが好ましい。さらには、線速 度7m/s以上でオーバーライトするには、記録層をG ex (Sb, Te_{1-v})_{1-x} 合金を主成分とする薄膜 $(0.045 \le x \le 0.075, 0.74 \le y < 0.$ 8)とするのが好ましい。すなわち、線速度7m/s以 上での記録には、Sb量をさらに多くし、Sb、Te 1-1 合金においてy≥0.74とするのが好ましい。こ のとき、非晶質マークの安定性を上げるため、Ge量は 10 x≥0.045とする。一方、高線速ではジッタが悪化 しやすいため、これを補うためにGe量はx≤0.07 5とする。

【0053】さて、従来よりGeSbTe三元組成、も しくはこの三元組成を母体として添加元素を含有する記 録層組成に関して報告がなされている(特開昭61-2 58787号公報、同62-53886号公報、同62 -152786号公報、特開平1-63195号公報、 同1-211249号公報、同1-277338号公 報)。しかしながら、これらに記載された組成はいずれ 20 も、(Sb., Te.,)とGeを結ぶ直線AよりSb プアな組成であり、本発明組成範囲とは異なる。これら はむしろ、Sb、Te、金属化合物組成を主体としてい る。また、GeTe-Sb、Te, 擬似二元合金系で は、本発明とは逆に、過剰のSbは結晶化速度を遅らせ るという効果があるため、5m/s以上の高線速でオー バーライトする場合には、GeTe-Sb, Te,の直 線上、特にGe、Sb、Te、組成に、過剰のSbを含 ませることはむしろ有害である。過剰なSbを含むSb 。., Te。., 近傍でGeを含む第3元素を選択的に加え 30 た組成としては、特開平1-100745号公報(図4 (a)組成範囲α)、特開平1-303643号公報 (図4(a)組成範囲 β) に記載されたものがある。 【0054】しかしながら、特開平1-100745号 公報は、母体組成であるSb_{1-x} Te_x において0.1 0 ≤ x ≤ 0.80 と極めて広範囲であり、S b_{0.7} T e 。、。よりSb過剰な領域のみを利用することで、高密度 記録において繰返しオーバーライト耐久性と経時安定性 に優れるという本願思想は見られない。特開平1-30 3643号公報は、本願のごとき高密度記録においてS bが直線 Dを超えて過剰に含まれると非晶質マークの経 時安定性が損なわれるとの弊害について触れられていな い。また、いずれの公報もGeが直線Cを超えて過剰に 含まれるととの弊害については触れていない。

【0055】また、本発明の記録層組成と一部重複する 組成としては、図4 (b) に示されるように、特開平1 -115685号公報(組成範囲γ)、同1-2513 42号公報(組成範囲な)、同3-71887号公報 (組成範囲ε)及び同4-28587号公報(組成範囲 n)に記載されたものがある。特開平1-115685 50 第1保護層2/記録層3/第2保護層4/反射層5の構

号公報は、組成範囲γを母体としてAu、Pdを添加す るものであるが、低密度記録を目的とし、本発明組成と は直線A及び直線Bにより実質的に区別されている。該 公報の組成は、マーク長約1.1μmに相当する低密度 での記録(線速4m/s、周波数1.75MHz、デュ ーティー50%の方形波)とDC消去に適したものであ るため、短マークを含む高密度記録を目的とする本発明 の組成とは、適する組成が異なると考えられる。

【0056】特開平1-251342号公報の組成範囲 るは、Sb_{0.7} Te_{0.3} 共晶にGeを約10原子%以上 添加した系を主体とする、極めてGeリッチなGeSb Te系であり、本発明組成とは直線Cによって実質的に 区別されている。組成範囲 S のうちG e が 1 0 原子%よ り多く含まれる組成では、前述のように結晶化速度が遅 く、特に成膜後の記録層を結晶化させる初期化操作が困 難であるために、生産性が低く実用に供されないという 深刻な問題がある。該公報においては、との結晶化速度 の問題を克服するために、結晶核となるAu、Pdを別 途添加しているが、本発明のように直線CよりGeが少 ない領域では、そのような必要はない。また、該公報に おいては、Geの量が10原子%より少ないと記録部と 非記録部で十分な光量変化が得られないと記載されてい るが、本発明においては、保護層や反射層を含む層構成 を工夫することによって、変調度60%以上という非常 に大きな反射光量変化が得られている。特開平3-71 887号公報の組成範囲 εは、低密度記録を目的とし、 本発明組成とは直線Cによって実質的に区別されてい る。特に本発明組成範囲を利用することで、髙密度記録 において繰返しオーバーライト耐久性と経時安定性に優 れるという本願思想は見られない。特開平4-2858 7号公報の組成範囲 n は、極めて S b リッチおよび G e リッチな組成を含んでおり、本発明組成とは直線Dによ って実質的に区別されている。以上述べたように、上記 いずれの公報も、本発明の目的とする、最短マーク長が O. 5 μm以下となるような高密度なマーク長変調記録 に関する技術的課題は明らかにされておらず、そのため の最適組成の選択、層構成や記録方法の改善については 全く開示されていない。

【0057】次に、本発明の光学的情報記録用媒体の層 構成について説明する。本発明の媒体は、上述した組成 の記録層と以下の層構成を組み合わせることにより、最 短マーク長0.5μm以下の高密度マーク長変調記録を する際に、少なくとも3m/sから8m/s、好ましく は1m/sから10m/sをカバーする広い線速範囲で オーバーライト可能な媒体を実現することができる。そ して、いわゆるDVDと再生互換を維持することができ る。相変化型記録層は、上下の少なくとも一方を保護層 で被覆されている。

【0058】さらに図5(a)に示すように、基板1/

成を有し、その上を紫外線もしくは熱硬化性の樹脂で被覆(保護コート層6)されている。図5(a)のような各層の順序は、透明基板を介して記録再生用の集束光ビームを記録層に照射する場合に適している。あるいは、上記各層の順序を逆にして、図5(b)のように、基板1/反射層5/第2保護層4/記録層3/第1保護層2という順に積層される構成もとりうる。この層構成は、第1保護層側から集束光ビームを入射する場合に適している。このような構成は、対物開口数NAが0.7以上で、記録層と対物レンズの距離を縮める必要が高い場合10に有用である。

【0059】図5(a)に示す構成であれば、基板には、ポリカーボネート、アクリル、ポリオレフィンなどの透明樹脂、あるいは透明ガラスを用いることができる。なかでも、ポリカーボネート樹脂はCDにおいて最も広く用いられている実績もあり、安価でもあるので最も好ましい。図5(b)に示す構成でも同様に樹脂あるいはガラスが使用できるが、基板自体は透明である必要はなく、むしる平坦性や剛性を高めるために、ガラスやアルミニウム合金を用いることが好ましい場合がある。基板には記録再生光を案内するピッチ0.8μm以下の溝を設けるが、この溝は、必ずしも幾何学的に台形状のである必要はなく、たとえば、イオン注入などによって、屈折率の異なる導波路のようなものを形成して光学的に溝が形成されていても良い。

【0060】図5(a)に記載の層構成においては、記録時の高温による変形を防止するため、基板表面には第1保護層2が、記録層3上には第2保護層4が設けられる。第2保護層4は記録層3と反射層5の相互拡散を防止し、記録層の変形を抑制しつつ、反射層5へ効率的に30熱を逃すという機能を併せ持つ。図5(b)においても集束光ビーム入射側からみて、第2保護層4は記録層3と反射層5との間の相互拡散防止、放熱、記録層変形防止の機能を有する。図5(b)における第1保護層は、記録層の変形防止や、記録層と空気との直接接触防止(酸化汚染等の防止)、光ビックアップとの直接接触による損傷防止の機能がある。

【0061】反射層と基板のあいだに、さらに保護層を設けてもよい。例えば、樹脂製基板への熱ダメージを防ぐことができる。図5(b)に記載の構成においては、第1保護層2のさらに外側には、それより硬質の誘電体や非晶質カーボン保護膜を設けたり、紫外線あるいは熱硬化性樹脂層を設けることが望ましい。あるいは、厚さ0.05~0.6mm程度の透明な薄板を貼合わせ、この薄板を介して集束光ビームを入射することも可能である。

【0062】さらに、DVDのような媒体においては、図5(a)の媒体を記録層面を内側として、接着剤で貼り合せた構造をとる。図5(b)の媒体では、逆に記録層面を外側にして貼り合せることになる。さらに図5

(b)の媒体においては、一枚の基板の両面に射出成形によってトラッキング用の溝を形成し、両面にスパッタ法によって多層膜を形成しても良い。記録層3、保護層2、4、反射層5はスパッタリング法などによって形成される。記録層用ターゲット、保護層用ターゲット、必要な場合には反射層材料用ターゲットを同一真空チャンパー内に設置したインライン装置で膜形成を行うことが各層間の酸化や汚染を防ぐ点で望ましい。

【0063】保護層2、4の材料としては、屈折率、熱伝導率、化学的安定性、機械的強度、密着性等に留意して決定される。一般的には透明性が高く高融点である金属や半導体の酸化物、硫化物、窒化物、炭化物やCa,Mg,Li等のフッ化物を用いることができる。これらの酸化物、硫化物、窒化物、炭化物、フッ化物は必ずしも化学量論的組成をとる必要はなく、屈折率等の制御のために組成を制御したり、混合して用いることも有効である。

【0064】保護層2、4は厚さ方向で組成比や混合比を変化させてもよい。また、保護層2、4はそれぞれ複数膜からなってもよい。各膜は要求される特性に応じ、材料や組成比、混合比を異ならせることができる。繰返し記録特性を考慮するとこれらの保護層の膜密度はバルク状態の80%以上であることが機械的強度の面から望ましい。混合物誘電体薄膜を用いる場合には、バルク密度として下式の理論密度を用いる。

[0065]

 $[数12] \rho = \Sigma m_1 \rho_1 \qquad (1)$

m_i: 各成分 i のモル濃度ρ_i: 単独のバルク密度

【0066】本発明の媒体の記録層3は相変化型の記録層であり、その厚みは一般的に5nmから100nmの範囲が好ましい。記録層3の厚みが5nmより薄いと十分なコントラストが得られ難く、また結晶化速度が遅くなる傾向があり、短時間での消去が困難となりやすい。一方100nmを越すとやはり光学的なコントラストが得にくくなり、また、クラックが生じやすくなる。さらに、DVDなど再生専用ディスクと互換性をとれるほどのコントラストを得る必要があり、かつ、最短マーク長が0.5μm以下となるような高密度記録では、5nm以上25nm以下が好ましい。5nm未満では反射率が低くなりすぎ、また、膜成長初期の不均一な組成、疎な膜の影響が現れやすいので好ましくない。

【0067】一方、25nmより厚いと熱容量が大きくなり記録感度が悪くなるし、結晶成長が3次元的になるため、非晶質マークのエッジが乱れジッタが高くなる傾向にある。さらに、記録層の相変化による体積変化が顕著になり繰返しオーバーライト耐久性が悪くなるので好ましくない。マーク端のジッタ及び繰返しオーバーライト耐久性の観点からは20nm以下とすることがより望ましい。また、記録層の密度はバルク密度の80%以

(16)

30

上、より好ましくは90%以上であることが望ましい。 ここでいう、バルク密度とは、もちろん、合金塊を作成 して実測することもできるが、上記(1)式において、 各成分のモル濃度を各元素の原子%に置き換え、バルク 密度を各元素の分子量に置き換えることで近似値が得ら

【0068】記録層の密度はスパッタ成膜法において は、成膜時のスパッタガス (Ar等の希ガス) の圧力を 低くする、ターゲット正面にに近接して基板を配置する などして、記録層に照射される高エネルギーAr量を多 くすることが必要である。高エネルギーArはスパッタ のためにターゲットに照射されるAェイオンが、一部跳 ね返されて基板側に到達するものか、プラズマ中のAr イオンが基板全面のシース電圧で加速されて基板に達す るものかのいずれかである。このような高エネルギーの 希ガスの照射効果をatomic peening効果 という。一般的に使用されるArガスでのスパッタでは atomic peening効果により、Arがスパ ッタ膜に混入される。膜中のAr量により、atomi c peening効果を見積もることができる。すな 20 わち、Ar量が少なければ、高エネルギーAr照射効果 が少ないことを意味し、密度の疎な膜が形成されやす い。一方、Ar量が多ければ高エネルギーArの照射が 激しく、密度は高くなるものの、膜中に取り込まれたA rが繰返しオーバーライト時にvoidとなって析出 し、繰返しの耐久性を劣化させる。記録層膜中の適当な Ar量は、0. 1原子%以上、1. 5原子%以下であ る。さらに、直流スパッタリングよりも高周波スパッタ リングを用いた方が、膜中Ar量が少なくして、高密度 膜が得られるので好ましい。

【0069】本発明において、記録層は上述の組成を有 するGeSbTe合金を主成分とする薄膜からなる。す なわち、記録層中のGe、Sb、Teの各元素量の比が 上述の組成範囲にあればよく、記録層には必要に応じて 他の元素を、合計10原子%程度まで添加してもよい。 記録層にさらに、O、N、及びSから選ばれる少なくと も一つの元素を、0.1原子%以上5原子%以下添加す ることで、記録層の光学定数を微調整することができ る。しかし、5原子%を超えて添加することは、結晶化 速度を低下させ消去性能を悪化させるので好ましくな 64

【0070】また、オーバーライト時の結晶化速度を低 下させずに、経時安定性を増すために、V、Nb、T a、Cr、Co、Pt及びZrの少なくとも一種を、8 原子%以下添加するのが好ましい。より好ましくは、 0. 1原子%以上5原子%以下添加する。SbTeに対 する、とれら添加元素とGeの合計の添加量は全部で1 5原子%以下であることが望ましい。過剰に含まれると Sb以外の相分離を誘起してしまう。特に、Ge含有量 きい。経時安定性の向上と屈折率の微調整のために、S i、Sn、及びPbの少なくとも一種を、5原子%以下 添加するのが好ましい。これら添加元素とGeの合計の 含有量は15原子%以下が好ましい。これら元素はGe と同じ4配位ネットワークを持つ。

【0071】A1、Ga、Inを8原子%以下添加する ことは、結晶化温度を上昇させると同時に、ジッタを低 減させたり、記録感度を改善する効果もあるが、偏析も 生じやすいため、6原子%以下とするのが好ましい。ま た、Geとあわせた含有量は15原子%以下、好ましく は13%以下とすることが望ましい。Agを8原子%以 下添加することはやはり記録感度を改善する上で効果が あり、特にGe原子量が5原子%を超える場合に用いれ ば、効果が顕著である。しかし、8原子%を超える添加 は、ジッタを増加させたり、非晶質マークの安定性を損 ねるので好ましくないし、Geと合わせた添加量が15 原子%を超えると偏析を生じやすいので好ましくない。 Agの含有量として最も好ましいのは、5原子%以下で ある。

【0072】さて、本発明の記録媒体の記録層3は、成 膜後の状態は通常、非晶質である。従って、成膜後に、 記録層全面を結晶化して初期化された状態(未記録状 態)とする必要がある。初期化方法としては、Sb。, Te。」、に過剰なSbを含む合金には、固相でのアニー ルによる初期化も可能であるが、さらにGeを含む組成 では、一旦記録層を溶融させ再凝固時に徐冷して結晶化 させる溶融再結晶化による初期化が望ましい。本記録層 は成膜直後には結晶成長の核がほとんどなく、固相での 結晶化は困難であるが、溶融再結晶化によれば、少数の 結晶核が形成されてのち、溶融して、結晶成長が主体と なって高速で再結晶化が進むようである。

【0073】また、本発明の記録層は、溶融再結晶化に よる結晶と、固相でのアニールによる結晶とは反射率が 異なるため、混在するとノイズの原因となる。そして、 実際のオーバーライト記録の際には、消去部は溶融再結 晶化による結晶となるため、初期化も溶融再結晶化によ り行うのが好ましい。このとき、記録層を溶融するのは 局所的かつ、1ミリ秒程度以下の短時間に限る。溶融領 域が広かったり、溶融時間あるいは冷却時間が長すぎる と、熱によって各層が破壊されたり、プラスチック基板 表面が変形したりするためである。このような熱履歴を 与えるには、波長600~1000nm程度の髙出力半 導体レーザー光を、長軸100~300μm、短軸1~ 3μmに集束して照射し、短軸方向を走査軸として、1 ~10m/sの線速度で走査することが望ましい。同じ 集束光でも円形に近いと溶融領域が広すぎ、再非晶質化 がおきやすく、また、多層構成や基板へのダメージが大 きく好ましくない。初期化が溶融再結晶化によって行わ れたことは以下のようにして確認できる。すなわち、該 が3原子%以上、5原子%以下の場合には添加効果が大 50 初期化後の媒体に、直径約1.5μmより小さいスポッ

ト径に集束された、記録層を溶融するにたる記録パワー Pwの記録光を、直流的に、一定線速度で照射する。案 内溝がある場合は、その溝もしくは溝間からなるトラッ クに、トラッキングサーボ及びフォーカスサーボをかけ た状態で行う。

【0074】その後、同じトラック上に消去パワーPe (≦Pw)の消去光を直流的に照射して得られる消去状 態の反射率が、全く未記録の初期状態の反射率とほとん ど同じであれば、該初期化状態は溶融際結晶状態と確認 できる。なぜなら、記録光照射により記録層は一旦溶融 10 されており、それを消去光照射で完全に再結晶化した状 態は、記録光による溶融と消去光による再結晶化の過程 を経ており、溶融再結晶化された状態にあるからであ る。なお、初期化状態の反射率R1.1、と溶融再結晶化状 態尺、、の反射率がほぼ同じであるとは、(R、、、-R crv) / {(Rint + Rcrv) / 2} で定義される両者 の反射率差が20%以下であることを言う。通常、アニ ール等の固相結晶化だけでは、その反射率差は20%よ り大きい。

【0075】次に、記録層以外の層について述べる。本 20 発明の層構成は、急冷構造と呼ばれる層構成の一種に属 する。急冷構造は、放熱を促進し、記録層再凝固時の冷 却速度を高める層構成を採用することで、非晶質マーク 形成のときの再結晶化の問題を回避しつつ、高速結晶化 による高消去比を実現する。このため第2保護層膜厚 は、5 n m以上30 n m以下とする。5 n m より薄い と、記録層溶融時の変形等によって破壊されやすく、ま た、放熱効果が大きすぎて記録に要するパワーが不必要 に大きくなってしまう。

ーバーライトにおける耐久性に大きく影響し、特にジッ タの悪化を抑制する上でも重要である。膜厚が30nm より厚い場合には、記録時に、第2保護層の記録側と、 反射層側とで温度差が大きくなり、保護層の両側におけ る熱膨張差から、保護層自体が非対称に変形しやすくな る。この繰返しは、保護層内部に微視的塑性変形を蓄積 させ、ノイズの増加を招くので好ましくない。本発明の 記録層を用いると、最短マーク長0.5μm以下の高密 度記録において低ジッタを実現できるが、本発明者らの 検討によれば、髙密度記録を実現するために短波長のレ ーザーダイオード (例えば、波長700nm以下) を用 いる場合には、上記急冷構造の層構成についても、一層 の留意が必要になる。特に、波長が500nm以下、開 口数NAが0.55以上の小さな集束光ビームを用いた 1ビームオーバーライト特性の検討において、マーク幅 方向の温度分布を平坦化することが、高消去比及び消去 パワーマージンを広く取るために重要であることが分か

【0077】 この傾向は、波長630~680nm、N A=0.6前後の光学系を用いた、DVD対応の光学系 50 ていなかった。

においても同様である。このような光学系を用いた高密 度マーク長変調記録においては、特に、熱伝導率の低い 材料を第2保護層として用いる。好ましくはその膜厚を 10 n m以上25 n m以下とする。いずれの場合にも、 その上に設ける反射層5をとりわけ高熱伝導率の材料と することにより、消去比及び消去パワーマージンを改善 できる。検討によれば、広い消去パワー範囲において、 本発明記録層が持つ良好な消去特性を発揮させるには、 単に膜厚方向の温度分布や時間変化のみならず、膜面方 向(記録ビーム走査方向の垂直方向)の温度分布をでき るだけ平坦化できるような層構成を用いるのが好まし 61

32

【0078】本発明者らは、媒体の層構成を適切に設計 することにより、媒体中のトラック横断方向の温度分布 を平坦にすることで、溶融して再非晶質化されることな く、再結晶化することのできる幅を広げ、消去率及び消 去パワーマージンを広げることを試みた。一方、熱伝導 率が低くどく薄い第2保護層を介して、記録層から、極 めて高熱伝導率の反射層への放熱を促進することで、記 録層における温度分布が平坦になることがわかった。第 2 保護層の熱伝導率を高くしても放熱効果は促進される が、あまり放熱が促進されると、記録に要する照射パワ ーが高くなる、すなわち、記録感度が著しく低下してし まう。

【0079】本発明においては低熱伝導率の、薄い第2 保護層を用いるのが好ましい。低熱伝導率の、薄い第2 保護層を用いることにより、記録パワー照射開始時点の 数nsec~数十nsecにおいて、記録層から反射層 への熱伝導に時間的な遅延をあたえ、その後に反射層へ 【0076】本発明の、第2保護層の膜厚は、繰返しオ 30 の放熱を促進することができるため、放熱により必要以 上に記録感度を低下させることがない。従来知られてい 3、SiO, Ta, O, Al, O, AlN, Si N等を主成分とする保護層材料は、それ自身の熱伝導率 が高すぎて、本発明媒体の第2保護層4としては好まし くない。とのように、金属酸化物や窒化物の熱伝導率 は、同じ薄膜状態に比べても、本発明保護層で用いられ る下記保護層にくらべて、1桁以上熱伝導率が高い。 【0080】一方、反射層における放熱は、反射層の厚 みを厚くしても達成できるが、反射層の厚みが300n mを超えると、記録層膜面方向よりも膜厚方向の熱伝導 が顕著になり、膜面方向の温度分布改善効果が得られな い。また、反射層自体の熱容量が大きくなり、反射層、 ひいては記録層の冷却に時間がかかるようになって、非 晶質マークの形成が阻害される。最も好ましいのは、高 熱伝導率の反射層を薄く設けて横方向への放熱を選択的 に促進することである。従来用いられていた急冷構造 は、膜厚方向の1次元的な熱の逃げにのみ注目し、記録 層から反射層に早く熱を逃すことのみを意図しており、 この平面方向の温度分布の平坦化に十分な留意が払われ

【0081】なお、本発明の、いわば「第2保護層での熱伝導遅延効果を考慮した超急冷構造」は、本発明に係る記録層に適用すると、従来のGeTe-Sb, Te, 記録層に比べて一層効果がある。なぜなら、本発明記録層はTm近傍での再凝固時の結晶成長が再結晶化の律速になっているからである。Tm近傍での冷却即速度を極限まで大きくして、非晶質マーク及びそのエッジの形成を確実かつ明確なものとするには、超急冷構造が有効であり、かつ、膜面方向の温度分布の平坦化で、もともとTm近傍で高速消去可能であったものが、より高消去パローまで確実に再結晶化による消去を確保できるからである。

【0082】本発明においては、第2保護層の材料とし ては熱伝導が低い方が望ましいが、その目安は1×10 - ³ p J / (μm·K·nsec) である。しかしなが ら、このような低熱伝導率材料の薄膜状態の熱伝導率を 直接測定するのは困難であり、代わりに、熱シミュレー ションと実際の記録感度の測定結果から目安を得ること ができる。好ましい結果をもたらす低熱伝導率の第2保 護層材料としては、ZnS、ZnO、TaS。又は希土 20 類硫化物のうちの少なくとも一種を50mo1%以上9 0m01%以下含み、かつ、融点又は分解点が1000 ℃以上の耐熱性化合物とを含む複合誘電体が望ましい。 【0083】より具体的にはLa, Ce, Nd, Y等の 希土類の硫化物を60m01%以上90m01%以下含 む複合誘電体が望ましい。あるいは、ZnS,ZnOも しくは希土類硫化物の組成の範囲を70~90mol% とすることが望ましい。これらと混合されるべき、融点 又は分解点が1000℃以上の耐熱化合物材料として は、Mg, Ca, Sr, Y, La, Ce, Ho, Er, Yb, Ti, Zr, Hf, V, Nb, Ta, Zn, A 1, Si, Ge, Pb等の酸化物、窒化物、炭化物やC a、Mg、Li等のフッ化物を用いることができる。特 にZnOと混合されるべき材料としては、Y, La, C e, Nd等希土類の硫化物あるいは硫化物と酸化物の混 合物が望ましい。そして、との第2保護層の膜厚が30 nmより厚いとマーク幅方向の温度分布の十分な平坦化 効果が得られないため、30nm以下とする。好ましく は25nm以下とする。5nm未満では、第2保護層部 での熱伝導の遅延効果が不十分で、記録感度低下が著し くなり好ましくない。第2保護層4の厚さは、記録レー ザー光の波長が600~700nmでは15nm~25 nmが好ましく、波長が350~600nmでは5~2 Onmが好ましく、より好ましくはは5~15nmであ る。

【0084】本発明においては、非常に高熱伝導率で300nm以下の薄い反射層5を用いて、横方向の放熱効果を促進するのが特徴である。一般には薄膜の熱伝導率はバルク状態の熱伝導率と大きく異なり、小さくなっているのが普通である。特に40nm未満の薄膜では成長50

初期の島状構造の影響で熱伝導率が1桁以上小さくなる場合があり好ましくない。さらに、成膜条件によって結晶性や不純物量が異なり、これが同じ組成でも熱伝導率が異なる要因になる。

【0085】本発明において良好な特性を示す高熱伝導 率の反射層を規定するために、反射層の熱伝導率は直接 測定することも可能であるが、その熱伝導の良否を電気 抵抗を利用して見積もることができる。金属膜のように 電子が熱もしくは電気伝導を主として司る材料において は熱伝導率と電気伝導率は良好な比例関係があるためで ある。薄膜の電気抵抗はその膜厚や測定領域の面積で規 格化された抵抗率値で表す。体積抵抗率と面積抵抗率は 通常の4探針法で測定でき、JIS K 7194によ って規定されている。本法により、薄膜の熱伝導率その ものを実測するよりもはるかに簡便かつ再現性の良いデ ータが得られる。本発明において好ましい反射層は、体 積抵抗率が20nΩ・m以上150nΩ・m以下であ り、より好ましくは20nΩ·m以上100nΩ·m以 下である。体積抵抗率20nΩ・m未満の材料は薄膜状 態では実質的に得にくい。体積抵抗率150nΩ・mよ り体積抵抗率が大きい場合でも、例えば300nmを超 える厚膜とすれば面積抵抗率を下げることはできるが、 本発明者らの検討によれば、このような高体積抵抗率材 料で面積抵抗率のみ下げても、十分な放熱効果は得られ なかった。厚膜では単位面積当たりの熱容量が増大して しまうためと考えられる。また、このような厚膜では成 膜に時間がかかり、材料費も増えるため製造コストの観 点から好ましくない。さらに、膜表面の微視的な平坦性 も悪くなってしまう。好ましくは、膜厚300nm以下 で面積抵抗率0.2以上0.9Ω/□以下が得られるよ うな、低体積抵抗率材料を用いる。0.5Ω/□が最も 好ましい。

【0086】本発明に適した材料は、以下のとおりであ る。例えば、Siを0.3重量%以上0.8重量%以 下、Mgを0.3重量%以上1.2重量%以下含有する Al-Mg-Si系合金である。また、AlにTa, T i, Co, Cr, Si, Sc, Hf, Pd, Pt, M g, Zr, Mo, 又はMnを0.2原子%以上2原子% 以下含むAl合金は、添加元素濃度に比例して体積抵抗 率が増加し、また、耐ヒロック性が改善され、耐久性、 体積抵抗率、成膜速度等考慮して用いることができる。 A 1 合金に関しては、添加不純物量0.2原子%未満で は、成膜条件にもよるが、耐ヒロック性は不十分である ことが多い。また、2原子%より多いと上記の低抵抗率 が得られにくい。経時安定性をより重視する場合には添 加成分としてはTaが好ましい。特に、ZnSを主成分 とする上部保護層4に対しては、Taを0.5原子%以 上、0.8原子%以下とするAITa合金が、耐食性、 密着性、高熱伝導率のすべてをバランス良く満足する反 射層として望ましい。また、Taの場合わずか0.5原 子%の添加で純AIやAI-Mg-Si合金に比べて、スパッタリング時の成膜レートが3~4割アップするという製造上好ましい効果が得られる。上記AI合金を反射層として用いる場合、好ましい膜厚は150nm以上300nm以下である。150nm未満では純AIでも放熱効果は不十分である。300nmを超えると、熱が水平方向より垂直方向に逃げて、水平方向の熱分布改善に寄与しないし、反射層そのものの熱容量が大きく、却って記録層の冷却速度が遅くなってしまう。また、膜表面の微視的な平坦性も悪くなる。

【0087】さらに、AgにTi, V, Ta, Nb, W, Co, Cr, Si, Ge, Sn, Sc, Hf, Pd, Rh, Au, Pt, Mg, Zr, Mo, 又はMnを0.2原子%以上5原子%以下含むAg合金も望ましい。経時安定性をより重視する場合には添加成分としてはTi、Mgが好ましい。上記Ag合金を反射層として用いる場合、好ましい膜厚は40nm以上150nm以下である。40nm未満では純Agでも放熱効果は不十分である。150nmを超えると、熱が水平方向より垂直方向に逃げて、水平方向の熱分布改善に寄与しないし、不必要な厚膜は生産性を低下させる。また、膜表面の微視的な平坦性も悪くなる。

【0088】本発明者らは上記、A1への添加元素、A gへの添加元素は、その添加元素濃度に比例して、体積 抵抗率が増加することを確認している。ところで、不純 物の添加は一般的に結晶粒径を小さくし、粒界の電子散 乱を増加させて熱伝導率を低下させると考えられる。添 加不純物量を調節することは、結晶粒径を大きくすると とで材料本来の髙熱伝導率を得るために必要である。な お、反射層は通常スパッタ法や真空蒸着法で形成される が、ターゲットや蒸着材料そのものの不純物量もさると とながら、成膜時に混入する水分や酸素量も含めて全不 純物量を2原子%以下とする必要がある。このためにプ ロセスチャンパの到達真空度は1×10-3Pa以下とす ることが望ましい。また、10⁻¹Paより悪い到達真空 度で成膜するなら、成膜レートを1nm/秒以上、好ま しくは10nm/秒以上として不純物が取り込まれるの を防ぐことが望ましい。

【0089】あるいは、意図的な添加元素を1原子%より多く含む場合は、成膜レートを10nm/秒以上として付加的な不純物混入を極力防ぐことが望ましい。成膜条件は不純物量とは無関係に結晶粒径に影響を及ぼす場合もある。例えば、A1にTaを2原子%程度混入した合金膜は、結晶粒の間に非晶質相が混在するが、結晶相と非晶質相の割合は成膜条件に依存する。例えば、低圧でスパッタするほど結晶部分の割合が増え、体積抵抗率が下がり、熱伝導率が増加する。膜中の不純物組成あるいは結晶性は、スパッタに用いる合金ターゲットの製法やスパッタガス(Ar, Ne, Xe等)にも依存する。このように、薄膜状態の体積抵抗率は金属材料、組成の

みによっては決まらない。高熱伝導率を得るためには、 上記のように、不純物量を少なくするのが望ましいが、 一方で、AIやAgの純金属は耐食性や耐ヒロック性に 劣る傾向があるため、両者のバランスを考慮して最適組 成が決まる。

【0090】さらなる髙熱伝導と髙信頼性をえるために 反射層を多層化することも有効である。このとき、少な くとも1層は全反射層膜厚の50%以上の膜厚を有する 上記低体積抵抗率材料として実質的に放熱効果を司り、 10 他の層が耐食性や保護層との密着性、耐ヒロック性の改 善に寄与するように構成される。より具体的には、金属 中最も高熱伝導率および低体積抵抗率であるAgはSを 含む保護層との相性が悪く、繰返しオーバーライトした 場合の劣化がやや速いという傾向がある。また、髙温高 湿の加速試験環境下で腐食を生じやすい傾向がある。そ とで、低体積抵抗率材料としてAg及びAg合金を用 い、上部保護層との間に界面層としてA1を主成分とす る合金層を1 n m以上100 n m以下設けることも有効 である。厚さを5 n m以上とすれば、層が島状構造とな らず均一に形成されやすい。A 1 合金としては前述と同 様に例えば、Ta, Ti, Co, Cr, Si, Sc, H f, Pd, Pt, Mg, Zr, Mo, 又はMnを0.2 原子%以上2原子%以下含むA1合金が挙げられる。界 面層の厚さは1 n m未満では保護効果が不十分で、10 0 n mを超えると放熱効果が犠牲になる。界面層の使用 は、特に反射層がAg又はAg合金の場合に有効であ る。なぜなら、Agは本発明で好ましいとされる硫化物 を含む保護層との接触により、比較的硫化による腐食を 起としやすいからである。

【0091】さらにAg合金反射層とA1合金界面層を 用いる場合、AgとAlは比較的相互拡散しやすい組み 合わせであるので、Al表面をlnmより厚く、酸化し て界面酸化層を設けることがいっそう好ましい。界面酸 化層が5 n m、とくに10 n mを越えるとそれが熱抵抗 となり、本来の趣旨である、極めて放熱性の高い反射層 としての機能が損なわれるので好ましくない。反射層の 多層化は、高体積抵抗率材料と低体積抵抗率材料を組み 合わせて所望の膜厚で所望の面積抵抗率を得るためにも 有効である。合金化による体積抵抗率調節は、合金ター ゲットの使用によりスパッタ工程を簡素化できるが、タ ーゲット製造コスト、ひいては媒体の原材料比を上昇さ せる要因にもなる。従って、純A1や純Agの薄膜と上 記添加元素そのものの薄膜を多層化して所望の体積抵抗 率を得ることも有効である。層数が3層程度までであれ ば、初期の装置コストは増加するものの、個々の媒体コ ストはかえって抑制できる場合がある。反射層を複数の 金属膜からなる多層反射層とし、全膜厚を40mm以上 300nm以下とし、多層反射層の厚さの50%以上が 体積抵抗率20nΩ・m以上150nΩ・m以下の金属 50 薄膜層(多層であっても良い)とするのが好ましい。さ

て、記録層及び保護層の厚みは、上記熱特性、機械的強 度、信頼性の面からの制限の他に、多層構成に伴う干渉 効果も考慮して、レーザー光の吸収効率が良く、記録信 号の振幅、すなわち記録状態と未記録状態のコントラス トが大きくなるように選ばれる。

【0092】例えば、本発明媒体を書換え型DVDに適 用し、再生専用タイプのDVDと互換性を確保するとす れば、変調度を高くとらねばならない。また、再生専用 プレーヤーで通常用いられる、DPD (Differential P hase Detection) 法と呼ばれるトラッキングサーボ法が 10 そのまま適用できることが必要である。図6にEFMプ ラス変調されたランダム信号を記録し再生したときのD C再生信号(直流成分を含む再生信号)の波形を示す。 変調度は、14 Tマークのトップの信号強度 Ito, と信 号振幅 I14との比 I14/ Item として定義される。 I to。 は実際上、未記録部(結晶状態)の溝内での反射率 に相当する。 I,,は相変化媒体の結晶部分と非晶質部分 から反射光の強度差及び位相差が問題となる。反射光の 強度差は、基本的に結晶状態と非晶質状態の反射率差で 決まる。上記記録後の変調度が概ね0.5以上であれ ば、低ジッタが実現できるとともに、上記DPD法によ るトラッキングサーボも良好に作動する。

【0093】図7に、典型的な4層構成における反射率 差の計算例を示した。ポリカーボネート基板上に、(Z nS)。(SiO,)。保護層、Ge。。。Sb。。。,Te o.ze記録層、(ZnS)so(SiOz)zo保護層、Al 。。。。、 Ta。。。。 反射層を設けたものとした。 各層の屈 折率は実測値を用いている。波長650nmにおける各 材料の複素屈折率は、上下の保護層は2.12-0.0 i、反射層は1.7-5.3i、基板は1.56、記録 30 層は非晶質状態(成膜直後の状態で測定)で3.5-2.6 i 、初期化後の結晶状態で2.3-4.1 i であ る。また、記録層、第2保護層、反射層の膜厚はそれぞ れ、18nm、20nm、200nmで一定とした。第 1 保護層膜厚依存性を見る限り、通常は振幅の変化は小 さく、分母である Iton、すなわち結晶状態の反射率に 強く依存する。したがって、結晶状態反射率は可能な限 り低いことが望ましい。

【0094】図7の計算例では、第1保護層を、屈折率 n=2. 12の(ZnS)。(SiO₂)。膜とした。 このとき、第1の極小値d,は膜厚50~70nm、第 2の極小値d、は膜厚200~220nmになる。以後 は周期的に変化する。結晶状態の反射率が極小となる第 1 保護層膜厚は、反射率が高い記録層であれば、実質 上、保護層の屈折率のみで決まる。他の屈折率nにおけ る極小点膜厚は、d1、d2に2.1/nをかければほ ぼ求まるが、通常、保護層として用いられる誘電体はn = 1.8~2.3程度であり、d,は60~80nm程 度である。第1保護層の屈折率nが1.8よりも小さい と、極小点における反射率が増加して変調度が著しく低 50 数、n、はn、 ≥ 0 なる実数、 $0 \le n$ 、+n、 ≤ 2 0

下し、0.5未満となるので好ましくない。逆に、2. 3以上とすると、極小点の反射率が低くなりすぎ20% を達成できず、フォーカスやトラッキングサーボが困難 になるので好ましくない。

38

【0095】本発明に係る記録層の組成範囲では、図7 とほぼ類似の光学特性が発揮される。生産性の観点から は第1保護層膜厚は150nm以下にとどめるのが望ま しい。なぜなら、現在、誘電体保護層のスパッタ法によ る成膜速度は高々15nm/秒であり、その成膜に10 秒以上かけることはコストを上昇させるからである。ま た、膜厚変動の許容値が厳しくなるので生産上も好まし くない。即ち、図7からわかるように、反射率は所望の 膜厚d。から△dずれると、第1の極小値d₁近傍で も、第2の極小値d、近傍でもおなじだけ変動する。 【0096】一方、製造上の膜厚分布は、通常はd。に 対して±2~3%が均一性の限度である。従って、d。 が薄いほど膜厚の変動幅△dは小さくなり、ディスク面 内あるいはディスク間の反射率変動を抑制出来るので有 利である。従って、安価な静止対向タイプのスパッタ装 置で、基板の自公転機構を有しない装置では、第1の極 小値d、近傍の膜厚を採用するのが望ましい。一方で、 厚い保護層は繰返しオーバーライト時の基板表面の変形 を抑制する効果が大きいから、繰返しオーバーライト耐 久性改善を重要視するならば、第2の極小値 d 。 近傍の 膜厚を採用するのが望ましい。なお、基板を介して記録 再生光を入射させて記録または再生を行うような媒体に おいては、第1保護層をある程度厚くして、記録時に発 生する熱から基板を保護しなければならない。記録時に 記録層は、100ナノ秒程度であるが500~600℃ 以上となる。このためには膜厚を50nm以上とするの が好ましい。50nm未満では、記録を繰り返すと基板 に微視的な変形が蓄積され、ノイズや欠陥となりやす い。特に基板がポリカーボネートなどの熱可塑性プラス チックからなる場合には重要である。

【0097】次に、本媒体と併せ用いるに好ましい光記 録方法について説明する。好ましい第一の記録方法は、 上述の記録媒体に、マーク長変調された情報を複数の記 録マーク長により記録するにあたり、記録マーク間に は、非晶質を結晶化しうる消去パワーPeの記録光を照 射し、一つの記録マークの時間的な長さをn Tとしたと き(Tは基準クロック周期、nは2以上の整数)、記録 マークの時間的長さn Tを、

[0098]

[数13] η_1 T、 α_1 T、 β_1 T、 α_2 T、 β_2 T、 $\cdot \cdot \cdot \cdot \cdot \alpha_1 T \cdot \beta_1 T \cdot \cdot \cdot \cdot \cdot \alpha_n T \cdot \beta_n T \cdot \eta$, T

【0099】(ただし、mはパルス分割数でm=nk, kは0 $\leq k \leq 2$ なる整数とする。また、 Σ , (α , $+\beta_1$) + η_1 + η_2 = n とし、 η_1 は $\eta_1 \ge 0$ なる実

とする。 α_i (1 $\leq i \leq m$)は $\alpha_i > 0$ なる実数とし、 β , (1 \leq i \leq m) は β , > 0 なる実数とし、 $\Sigma \alpha$, < 0. 5 n e t 3. $\alpha_1 = 0$. $1 \sim 1$. $5 \in \beta_1 = 0$. 38 (2≦ i ≤ m) とする。なお、3≦ i ≤ m なる i にお いて $\alpha_1 + \beta_{1-1} = 0.5 \sim 1.5$ の範囲にあり、か つ、iによらず一定とする。)の順に分割し、α、T (1≤i≤m)の時間内においては記録層を溶融させる にたるPw≥Peなる記録パワーPwの記録光を照射 b≤0. 2Pe (ただし、β。Tにおいては、0<Pb ≦Peとなりうる) なるパイアスパワーPbの記録光を 照射する。

【0100】上述の媒体に本記録方法を併せ用いること で、記録層の再凝固時の冷却速度を正確に制御し、少な くとも3m/sから8m/s、さらには、記録条件の設 定により1m/sから15m/sの広い線速度範囲にお いて、最短マーク長0.5μm以下の高密度マーク長変 調記録が可能となり、1000回以上の繰返しオーバー ライトが達成でき、基準クロック周期Tの10%未満の 20 低ジッタが実現できる。まず、上記のような髙密度マー ク長変調記録を実現するためには、波長350~680 nmのレーザー光ビームを、開口数NAが0.55以上 0. 9以下の対物レンズを通して記録層に集光させて微 小な集束光ビームスポットを得る。

【0101】より好ましくは、NAを0.55以上0. 65以下とする。NAが0.65を超えると、光軸の傾 きによる収差の影響が大きくなるから、対物レンズと記 録面との距離を極めて接近させる必要がある。従って、 DVDなど、0.6mm程度の厚さの基板を介して集束 30 光ビームを入射させる場合には、NAは〇. 65程度が 上限となる。そして、図8に示すように、少なくとも3 値に記録光パワーを変調させることで、パワーマージン 及び記録時線速マージンを広げることができる。図8に おいて、先頭記録パルスα、Tの開始位置、最終オフパ ルスβ。Tの終了位置は、必ずしも元の記録信号の開始 位置、終了位置と一致する必要はない。 $0 \le \eta_1 + \eta_2$ ≦2.0となる範囲内で、先頭にn, Tを置き、最後に η、Tを置いてよい。当該マーク前後のマークの長さや マーク間長さに応じて、カ、Tやカ、Tの長さを微調整 40 することも、マークを正確に形成するのに有効である。 【0102】或いは、 β 。のみをマーク長n Tに応じて 変化させることにより、良好なマークを形成できる場合 もある。最後のβ。=0としてもよい。例えば、EFM 変調において3 T~11 Tのマークのうち11 Tマー ク、又はEFMプラス変調において3T~14Tのマー クのうち14Tマーク、等の長いマークほど熱が蓄積し やすいので、最後のβ。を長くして冷却時間を長めにす るのが良い。逆に、3Tマーク等の短いマークの場合に はβ』を短くするのがよい。その調整幅は0.5程度で 50 e≦0.2とすると、Tc近傍での結晶化が抑制されす

ある。いわゆるDVD程度の線記録密度を超えるような 髙密度記録であれば、必ずしもそのような微調整をしな くても十分な記録信号品質が得られる。

【0103】また、バイアスパワーPbの大きさを変え ることでも、マーク形状を制御できる。図9に、2つの 記録パルスを照射した際の記録層のある1点の温度の時 間変化の例を示す。媒体に対してビームを相対的に移動 させながら記録パルスP1、オフパルス、記録パルスP 2を連続的に照射した場合の、記録パルスP1を照射し し、eta、T ($1 \leq i \leq m$) の時間内においては、0 < P 10 た位置での温度変化である。(a) はP b = P e とした 場合、(b) はPb ≒ 0 とした場合である。図9 (b) では、オフパルス区間のバイアスパワーPbがほとんど Oのため、TL'は融点より十分低い点まで下がり、か つ、途中の冷却速度も大きい。従って、非晶質マークは 記録パルスP1照射時に溶解し、その後のオフパルス時 の急冷によって形成される。一方、図9(a)では、オ フパルス区間でも消去パワーPeが照射されるため、1 番目の記録パルスP1照射後の冷却速度が遅く、オフパ ルス区間での温度降下で到達する最低温度TLが融点T m近傍に留まり、さらに、後続の記録パルスP2により 融点Tm近傍まで加熱され、非晶質マークが形成されに くじょ。

> 【0104】本発明の媒体に対して、図9(b)に示 す、急峻な温度プロファイルをとることは、髙温度域で の結晶化を抑制し、良好な非晶質マークを得る上で重要 なことである。なぜなら、本発明媒体の記録層は、融点 直下の高温域でのみ大きな結晶化速度を示すため、記録 層温度が高温域にほとんどとどまらない(b)のプロフ ァイルをとることで、再結晶化が抑制できると考えられ るからである。あるいは、結晶化温度Tcに近い比較的 低温域での結晶核生成は毎回の消去プロセスでは支配的 でなく、前述の初期化時に形成された結晶核となりうる Sbクラスタが安定に存在するため、高温域の結晶成長 のみが支配的であるとも考えられる。従って、冷却速度 及びTL'を制御することで再結晶化をほぼ完全に抑制 し、溶融領域とほぼ一致するクリアな輪郭を有する非晶 質マークが得られ、マークエッジのジッタが低減でき

【0105】一方、GeTe-Sb、Te,擬似二元系 合金では、図9(a), (b) いずれの温度プロファイ ルでも非晶質マーク形成プロセスに大差がない。なぜな ら、この材料では広い温度範囲、特に結晶化温度Tc 近 くの低温域でも、速度は若干遅いものの再結晶化を示す からである。あるいは、この材料では、比較的Tcに近 い温度域での結晶核生成とTmに近い温度域での結晶成 長とが律速になっているため、全体として広い温度域で 比較的低速の再結晶化が起きるとも考えられる。GeT e-Sb、Te,でも、Pb<Peとしてオフパルスを 用いて粗大グレインを抑制する場合もあるが、Pb/P

ぎるために、かえって消去性能が低下する。しかし、本 発明に係る記録層材料では、Tcに近い比較的低温での 結晶化はほとんど進まないと考えられるので、Pb/P e≤0.2とするのが好ましい。あるいはより具体的に は、 $0 \le Pb \le 1$. 5 (mW) として、トラッキングサーボが安定する限り低いPbを用い、できるだけ急冷と なるようにオフバルスを積極的に用いた方が、非晶質マ ークのエッジが明確に形成でき好ましい。

41

【0106】図8のパルス分割方法において、特に、最 先端の記録パルス α 、Tだけを後続パルス α 、Tより長 10 めにし、また、最先端及び最後端のオフパルス幅β 1 T、β Tのみを他のオフバルスと別に設定するの が、長マークと短マークの特性バランスを取る上で最も 有効である。最先端のパルスα、Tは、余熱効果がない ため、昇温のためにやや長時間を要する。あるいは、最 先端のバルスの記録パワーを、後続のバルスより高めに 設定することも有効である。

【0107】また、パルスの切り替えをクロック周期T に同期させると、パルス制御が簡単になる。マーク長変 調記録に適し、かつパルス制御回路が簡便なパルス分割 方法を図10に示す。(a)のマーク長変調データを記 録する際のパルス分割方法として(b)にm=n-1の 場合、(c) にm=n-2 の場合を示す。なお(b)、 (c)では図を簡略にするためにTを省略している。い ずれも、 α_1 (2 \leq i \leq m) 及び β_1 (2 \leq i \leq m -1) は i によらず一定とし、 $\alpha_1 \geq \alpha_1$ 、 $\alpha_1 + \beta_{1-1}$ = 1. 0 $(3 \le i \le m)$ ≥ 0 , α_i $(2 \le i \le m)$ \emptyset 記録パルスの後端をクロックパルスに同期させる。ま た、Pbを再生光パワーPrと同じにすることも、回路 を簡便化するには有効である。先頭バルスα、Τだけを 30 後続パルスより長くすることは、いわゆるアイパターン において短マークと長マークの記録のバランスを良くす るために必要なことである。或いは、先頭パルスのみ後 続パルスより高パワーとしてもよい。このようなパルス は、図11に示すような3種のゲート発生回路とそれら の間の優先順位を決めることで達成できる。

【0108】図11は本発明の記録方法によるバルス発 生方法の一例の説明図である。(a)はクロック信号、 (b) はデータ信号であり、記録パルス発生回路中の3 種のゲート発生回路から発生するゲート信号(c)Ga tel, (d) Gate2, (e) Gate3 cas. これら3種のゲート信号の優先順位を決めておくこと で、本発明のバルス分割方法が達成できる。Gatel は記録パルス発生区間 α、Tのみを、Gate2は後続 パルス α_1 T(2 \leq i \leq m)を所定個数発生させるタイ ミングを決める。ことでパルス幅 α , は $2 \le i \le m$ にお いて一定値α、とする。Gate3はオフパルス発生区 間 β , Tを発生する。Gate3がオン (レベル高) の 間はPbを発生し、オフの間(レベル低)はPeを発生 する。α, の立ち上がりのタイミングとパルス幅のみを 50 【0113】本発明では、記録層組成をこのようにSb

独立して決めることで、 β_1 を β_2 と異なる値とするこ とができる。Gate3とGate1の立ち上がりは同 期させるのが良い。Gate1、Gate2はそれぞれ Pwを発生させるが、Gatel、2がオンのときはG ate3に優先する。Gate1の遅延時間T,と α_1 、Gate2の遅延時間 $(T_1 + T_2)$ と α_c を指 定すれば、図10のストラテジーを指定できる。

【0109】 CCで、T₁を1T以上とすれば、図10 (b)のm=n-1の場合のパルスとなり、1T未満と して後続パルスの数を一個減らせば、図10(c)のm = n - 2 の場合のパルスとなる。このとき、 α_1 T及び β_{-2} Tを、m=n-1の場合より長くすることで、形 成されるマーク長をnTとする。さて、本発明のさらな る適用例として、再生専用DVDと同等以上の記録密度 で、少なくとも再生時には再生専用DVDと同等の信号 品質を得るためには、下記のような記録方法を用いると とが望ましい。

【0110】すなわち、波長が350~680nmの光 を、開口数NAが0.55~0.9の対物レンズを通し て記録層に集光させ、データの記録再生を行う光記録方 法であって、m=n−1又はm=n−2、0≦Pb≦ 1.5 (mW)、Pe/Pwは0.3以上0.6以下と する。そして、

 $\alpha_1 = 0.3 \sim 1.5$

 $\alpha_1 \ge \alpha_1 = 0.2 \sim 0.8 \ (2 \le i \le m)$

 $\alpha_{i} + \beta_{i-1} = 1.0 \ (3 \le i \le m)$

 $\beta_{\bullet} = 0 \sim 1.5$

とするのが好ましい。

【0111】Pe/Pwの比を一定に保つことは、パワ ー変動が生じたときに、高パワーで記録マークが大きい ときには消去パワーも大きくして消去可能な範囲を広げ るためである。Pe/Pwが0.3未満では、常にPe が低くて消去不十分となりやすい。逆に0.6より大き いと、Реが過剰でビーム中心での再非晶質化を招きや すく、完全な再結晶化による消去が困難となる。また、 記録層に照射されるエネルギー量が大きくなりすぎ、繰 返しオーバーライトにより劣化しやすくなる。

【0112】さて、本発明に係わる組成の記録層は、 a , が特に小さい範囲で良好なジッタが得られるため、Σ $\alpha_1 < 0.5$ n とし、k が小さいほど $(\Sigma \alpha_1) / n$ を 減少させることが望ましい。すなわち、k=0又はk= $1 \text{ cit } (\Sigma \alpha_i) < 0.4 \text{ n. } k = 2 \text{ cit } (\Sigma \alpha_i) <$ 0. 5 n とするのが好ましい。好ましくは、このような 記録パルス分割方法を線速3m/s以上でのオーバーラ イトに適用するためには、本発明記録層Ge、(Sb、 Te1-v)1-x において、特にyを0. 72以上、線速 7m/s以上でのオーバーライトにはyを0.74以上 とする。すなわち、Sb/Te比を2.57以上、より 好ましくは2.85以上のSbリッチとする。

44

リッチとしても、非晶質マークの安定性が高く保存安定 性も良好であることが、好ましい特徴の一つである。特 開平8-22644号公報には、Sb., Te., 近傍 組成にAg及びInを合計で10原子%程度添加したA gInSbTe記録層が記載されている。しかし、との AgInSbTe記録層でSb/Te比を2.57以上 とすると、非晶質マークが極めて不安定となり保存安定 性に問題があった。以下、実験例を用いて比較説明す る。EFMプラス変調のマーク長記録を行うにあたり、 長さnTのマークを記録するに、線速2m/s~5m/ 10 以上の長マークほど、実質の記録エネルギー照射の割合 sの範囲において、波長630~680nm、NA= 0.6の光学系を用いて、記録パルスをn-1個に分割 して記録する場合を考える。本発明記録層の一例とし T, $Ag_{0.0}$, $Ge_{0.0}$, $Sb_{0.6}$, $Te_{0.2}$, $(Sb/Te \Rightarrow$ 2. 91)を用い、上記AgInSbTe記録層の一例 として、Ago, os I no. os Sbo, 63 Teo, 27 (Sb/T e ≒ 2. 33) を用いる。

【0114】本発明組成の記録層も上記AgInSbT e記録層も、光学定数はほぼ同じであるため、同じ層構 成を用いて同等の反射率及び変調度を得ることができ、 したがって熱的に同等の層構成を適用できる。第1保護 層膜厚を100mm、記録層を20mm、第2保護層を 20nm、反射層を200nmとし、いずれも $\beta_1 =$ 0.5程度(1≤i≤n-1)、Pw=10~14(m W)、Pe/Pw=0.5、Pb≒0とする。このと き、従来のAgo.o, Ino.o, Sbo.o, Teo.z, 記録層で $a_1 = 0.8 \sim 1.2, a_1 = 0.4 \sim 0.6$ (2) $\leq i \leq n-1$) が好ましい。特に $\alpha_1 = 1.0$ 、 α , (2≤i≤n-1)=0.5、β_■=0.5とした場 合、 $\Sigma \alpha_1$ はnによらず0.5 nとなる。

【0115】一方、本発明のAgo.osGeo.osSbo.er $Te_{\alpha,z}$,記録層では、 $\alpha_1 = 0.3 \sim 0.5$ 、 $\alpha_1 =$ 0. 2~0. 4 (2≤i≤n-1) が好ましい範囲とな る。より具体的には $\alpha_1 = 0$. 6、 α_i ($2 \le i \le n - 1$ 1) = 0.35 とすることができる。この場合、n = 3 の時、 $\Sigma \alpha_i = 0$. 32nとなり、n = 4以上では、 Σ $\alpha_1 = 0.33 \,\mathrm{n} \sim 0.34 \,\mathrm{n} \,\mathrm{d} \,\mathrm{d$ ち、本発明媒体においては、記録の際に照射される平均 照射パワーを小さくし、実質的な記録パルス照射時間を ている。

【0116】このことにより、以下の効果が得られる。 (1) 高パワー記録による記録信号品質の劣化を低減で きる。高パワー記録の問題点は、記録層に与えられる光 エネルギーが多くなりすぎて記録層にこもることに起因 している。このため冷却速度が遅くなって非晶質マーク の再結晶化が生じたり、繰返しオーバーライト時の劣化 が著しくなる。低パワーのオフパルス区間を設けること で平均入力パワーを抑え、かつ、高熱伝導率の反射層に より平面方向に熱を逃がすことにより、高パワー記録時 50 準クロック周期をTo/2とし、

でも、マーク後端部分、特に長マーク後端部分、の熱蓄 積による悪影響を抑制でき、良好な長マークを形成でき

(2)繰返しオーバーライト時における各層の熱ダメー ジを軽減でき、繰返し耐久性を改善できる。毎回の熱ダ メージを小さくすることで、例えば、熱に弱いプラスチ ック基板の変形を抑制できる。また、ダメージの及ぶ範 囲をレーザービームプロファイルの中心部分の、より狭 い範囲に限定できる。特に、熱が蓄熱されやすいn=4 $(\Sigma \alpha_{i})$ /n を減少させる効果が大きい。従って、熱 ダメージを受けやすい5m/s以下の低線速でも、媒体 への悪影響を軽減することができる。

【0117】本発明では、このように繰返しオーバーラ イト耐久性を改善でき、従来に比して1桁以上大きいオ ーバーライト回数を達成できる。さらに、記録層を、G ex (Sb, Te_{1-v})_{1-x} 合金を主成分とする薄膜 $(0.045 \le x \le 0.075, 0.74 \le y < 0.$

8) とし、線速度に応じて記録パルス分割方法を可変と することで、3 m/s~8 m/s を含む広範囲の線速度 でオーバーライト可能となる。すなわち、図8のパルス 分割方法において、m=n-kのkは一定とし、オーバ ーライト時の線速度が低いほど、Pb/Pe又は α 、 σ いずれかを単調に減少させる。なお、記録線密度を一定 に保つために線速度に応じてクロック周期を変更するこ とや、Pw、Peをそれぞれの線速度で最適に保つよう に変更することは、必要に応じて行ってよい。

【O118】さて、本発明ではさらに、DVDの標準再 生線速度の1倍速と2倍速の両方で、最短マーク長を 0.35~0.45 μmとするいわゆるEFMプラス変 調信号を記録する方法を提供する。なお、DVDの標準 再生線速度は3.49m/sである。すなわち、波長が 600~680nmの光を、開口数NAが0.55~ 0.65の対物レンズを通し、基板を介して記録層に集 光させ、最短マーク長を0.35~0.45 µmの範囲 として、データの記録再生を行う光記録方法であって、 nは1~14の整数とし、m=n-1とし、Pbは0≦ Pb≤1.5 (mW)の範囲で線速によらず一定とし、 Pe/Pwは0.4~0.6の範囲で線速度に応じて変 $\Sigma \alpha_i$ < 0.4 n と小さくすることができることを表し 40 化しうるものとし、(i)記録線速度 $3\sim4$ m/s の範 囲においては、基準クロック周期をToとし、

 $\alpha_1 = 0.3 \sim 0.8$

 $\alpha_1 \ge \alpha_1 = 0$. 2~0. 4であって i によらず一定 $(2 \le i \le m)$

 $\alpha_1 + \beta_1 \ge 1.0$

 $\alpha_1 + \beta_{1-1} = 1.0 \ (3 \le i \le m)$

β_ω = 0.3~1.5 とし、α, T (1 ≤ i ≤ m) の時 間内においては記録パワーPw、の記録光を照射し、

(ii)記録線速度6~8m/sの範囲においては、基

 $\alpha'_{1} = 0.3 \sim 0.8$ $\alpha'_1 \ge \alpha'_1 = 0$. $3 \sim 0$. 5 constant i k 1 k s s定(2≤i≤m)、

 $\alpha' + \beta' = 1.0 \quad (3 \le i \le m)$

 β' 。=0~1.0とし、 α , T(1 \leq i \leq m)の時間 内においては記録パワーPw。の記録光を照射するとし たとき、 α' , $>\alpha$, $(2 \le i \le m)$ であり、 $0.8 \le$ Pw1 / Pw2 ≦1. 2である光記録方法である。本発 明者らの実験によれば、図10のパルス分割方法を用い る限りでは、この設定で特に良好なジッタが得られた。 [0119] CCC、さら $\alpha_2 + \beta_1 = 1.0$ とすれ ば、パルス幅に関する独立パラメータは α_1 、 α_i 、 β 。 の3個となり、記録信号源をより簡略化でき好まし い。なお、nとして1から14までのすべての整数をと る必要はなく、EFMプラス変調では、3から11ま で、及び14をとる。(1,7) RLL-NRZI (Ru n Length Limited-Non Return To Zero Inverted) 符号 等も使用可能である。なお、記録密度を一定とするため に、一般的に、1倍速記録時のクロック周期は2倍速記 録時の倍になるように設定される。なお、本発明は、上 記のような、一定線速度を維持しながら記録領域全面に 記録を行う方式 (constant linear velocity、CLV方 式)のみならず、一定の回転角速度で記録領域全面に記 録を行う方式(constant angular velocity 、CAV方 式)に対しても有効である。あるいは、半径方向を複数 のゾーンに分割して、同一ゾーン内ではCLV方式でオ ーバーライトを行う ZCLV (ZonedCLV) 方式 に対しても有効である。光ディスクの直径は、86m m、90mm (シングルCDサイズ)、120mm (C Dサイズ)、あるいは130mmのように様々あり、記 録領域は半径20~25mmから最大65mm近くに及 ぶ。このとき内外周の線速度差は最大3倍近くなる。

【0120】一般に、高密度のマーク長記録において は、相変化媒体が良好なオーバーライト特性を示す線速 範囲は、線速比で1.5倍程度の範囲である。線速度が 速ければ、記録層の冷却速度は速くなるので非晶質マー クは形成されやすいが、結晶化温度以上に保たれる時間 が短くなり、消去が困難になる。一方、線速度が遅くな れば、消去はされやすいが、記録層の冷却速度は遅くな るので、再結晶化しやすくなり、良好な非晶質マークが 40 形成されにくい。この問題を解決するために、内外周で 反射層膜厚を変化させて内周で反射層による放熱効果度 が大きくなるように調節することができる。あるいは、 記録層組成を変化させて、外周で結晶化速度を高め、あ るいは内周で非晶質形成に必要な臨界冷却速度を低める ことも提案されている。しかし、そのような分布を与え たディスクの作成は、容易ではない。

【0121】一方、本発明の媒体と光記録方法の組合せ によれば、ディスク最外周での線速度、即ち最大線速度 がほぼ10m/s以下であれば、CAV方式やZCLV 50 0≦Pb≦1.5(mW)、

方式においても、良好な記録が可能である。本発明を、 上記のように半径により線速度が変化する媒体に利用す るためには、記録領域を半径により複数のゾーンに分割 し、各ゾーン毎にデータの基準クロック周波数及びパル ス分割方法を切り替えて用いることが望ましい。

【0122】すなわち、所定の記録領域を有する光学的 情報記録用媒体を角速度一定で回転させて情報を複数の マーク長により記録する方法であって、記録領域最内周 での線速度が2~4 m/s となり記録領域最外周での線 速度が6~10m/sとなるように該媒体を回転させ、 該記録領域は半径によって区切られた複数ゾーンからな り、各ゾーン内の平均線速度に応じて記録密度がほぼ一 定となるように基準クロック周期Tを変化させる。この とき、ゾーンによらずパルス分割数mを一定とし、外周 ゾーンから内周ゾーンに向かって、Pb/Pe比及び/ 又は α , (iは $1 \le i \le m$ の少なくとも一つ)を単調に 減少させる。これによって、低線速度の内周部におい て、冷却速度不足により非晶質マークの形成が不完全と なるのを防ぐことができる。なお、 α 、(iは $1 \le i \le$ mの少なくとも一つ)を単調に減少させる、とは、例え ることを指す。より具体的には、図10で示されたバル ス分割方法をベースに、線速に応じたパルス分割方法を 用いることが、可変パルス分割方法回路を簡略化するこ とができて望ましい。その際に、記録領域を半径方向に p個のゾーンに分割して、各ゾーンごとにクロック周期 とパルス分割方法を変化させることが、半径位置に応じ て連続的に変化させるよりも簡便である。

【0123】本発明では、記録領域が半径によってp個 のゾーンに分割され、最内周側を第1ゾーン、最外周側 を第pゾーンとし、第qゾーン(ただし、qは1≤q≤ pの整数)における角速度をω。、平均線速度を<v。 >ava 、最大線速度を<vg>max 、最小線速度を<v 。>」:、、基準クロック周期をT。、最短マークの時間 的長さをnuin T。とすると、<v。>ave /<v1> ave は1.2~3の範囲であって、<v。>axx /<v 。>」、は1.5以下とするのが好ましい。同一ゾーン 内では同一クロック周期と同一バルス分割方法を用いる のであるが、同一パルス分割方法でカバーできる線速節 囲はおおむね1.5倍が限度である。

【0124】そして、同一ゾーン内では、ω。、T。、 α , 、 β , 、Pe、Pb、及びPwは一定であり、最短 マークの物理的長さ n_{**} , T_{*} < v_{*} $>_{**}$ は 0.5μ m以下であり、T。 < v。 > 。 は1 ≤ q ≤ p なる全て のgに対してほぼ一定であり、かつ、

m=n-1 もしくはm=n-2、

 $\alpha_1 = 0.3 \sim 1.5$

 $\alpha_1 \ge \alpha_1 = 0.2 \sim 0.8 \ (2 \le i \le m)$

 $\alpha_1 + \beta_{i-1} = 1.0 \ (3 \le i \le m)$

 $0.4 \leq Pe/Pw \leq 0.6$ とする。ここで、m=n-1の場合は、 $\alpha_1=0.3$ ~ 1. 5、 α , = 0. $2 \sim 0$. 5、m = n - 2 の場合は α $_{1}$ = 0. 5 \sim 1. 5、 α_{i} = 0. 4 \sim 0. 8 とすること が好ましい。

【0125】パルス分割方法は、以下の法則に則って変 化させることが重要である。各ゾーンごとにPb、P w、 $Pe/Pw比、<math>\alpha_1$ 、 β_1 、 β_2 は可変であり、M周ゾーンから内周ゾーンに向かって、少なくともα , (iは2≦i≦mの少なくとも一つ)を単調に減少さ 10 せる。各ゾーンどとのα、の変更は0.1 Τ刻みもしく は0.01 T刻みとすることが好ましい。ここで、最外 周ゾーンでの基準クロック周期T。に対して、1/10 0程度の周期の高周波ベースクロック発生回路を付加す ることで、すべてのゾーンにおけるT。及び分割パルス 長をこのベースクロックの倍数として発生させることが 可能である。DVDでは1倍速での基準クロック周波数 は26MHz程度であるから、最高2.6GHz程度の ベースクロック周波数、通常は一桁少なくて260MH z程度のベースクロック周波数で十分である。

【0126】さらに、該記録領域におけるPwの最大値 をPwax、最小値をPwan とするとき、Pwax / $Pw_{\bullet,n} \le 1.2 \text{ LU}, Pe = Pw = 0.4 \sim 0.6$ $0 \le Pb \le 1$. 5 (mW) とすることができる。これに よれば、3種類のパワーの設定範囲を限定できるので、 パワー発生回路を簡便化できる。本発明では、さらに、 Pw、Pe/Pw比、Pbを一定として、パルス分割方 法のみを変更することで、すべての線速に対応すること も可能である。また、β』もゾーンによらず一定とし、*

> $(\langle v_q \rangle_{aax} - \langle v_q \rangle_{ain}) / (\langle v_q \rangle_{aax} + \langle v_q \rangle_{ain}) < 10\%$ (2)

【0129】を満たすようにゾーンの幅を決める。すな わち、 $(\langle v_q \rangle_{max} - \langle v_q \rangle_{min})$ が $(\langle v_q \rangle_{min})$ *** + < v。 > ***)の10%未満となるようにし、第 qゾーンの幅は、平均半径<r。>aveの±10%未満 の半径位置までが許容されるものとする。より好ましく は、 $(\langle v_q \rangle_{max} - \langle v_q \rangle_{min})$ が $(\langle v_q \rangle_{max})$ + < v, >,,,) の5%未満である。ゾーンの幅は、記 録領域を半径毎に等分割してもよいが、この条件を満た す限り等分割でなくてもよい。記録領域幅にもよるが、 30~40mm幅の記録領域については、概ね10個以 上に分割される。

【0130】本発明者らの検討によれば、最短マーク長 0. 4μm程度でも、(2)式を満たせば、ジッタの値※

$$(\langle v_q \rangle_{max} - \langle v_q \rangle_{min}) / (\langle v_q \rangle_{max} + \langle v_q \rangle_{min}) < 1\%$$
(3)

【0132】を満たさねばならない。すなわち、(くv ***。) の1%未満となるようにし、第gゾーンの幅は、 平均半径< r_。 >_{ava} の±1%未満の半径位置までが許 50 【数16】

 $*\alpha_1$ と α_2 のみをゾーン依存パラメータとすることもで きる。これは、ドライブの記録パルス制御回路を簡略化 する上で極めて有用である。

【0127】本発明においては、記録時に光学ヘッドの 半径位置情報から、記録媒体上に仮想的にゾーンを設定 して記録を行っても良いし、ディスクにあらかじめ記載 されたアドレス情報やゾーン情報にしたがって、ディス ク上に物理的にゾーン構造を設けてもよい。仮想的であ っても物理的であっても、ゾーンによって決まる線速度 に応じた記録パルス分割方法を選定すればよい。次に、 本発明の光記録方法を、ZCAV方式に適用した他の例 について述べる。記録領域が半径によってp個のゾーン に分割され、最内周側を第1ゾーン、最外周側を第pゾ ーンとし、第qゾーン(ただし、qは1≦q≦pの整 数)における角速度をω。、平均線速度を<v 。>***、最大線速度を<v。>***、最小線速度を< v。>、、基準クロック周期をT。、最短マークの時 間的長さをn.i.T。とする。ZCAV方式において は、記録線密度がほぼ一定であるように、外周部のゾー ンに移行するほど、記録データの基準クロックT。を小 20 さくすることが必要である。すなわち、T。 < v。> w. が1≤q≤pなる全てのqに対してほぼ一定となる ように、ゾーンに応じてT。を変化させる。ととで、ほ ば一定とは、±1%程度の誤差を含むものとする。ま た、同一ゾーン内の最大線速と最小線速を一定の範囲内 にするために、

[0128] 【数14】

※は実用レベルであった。以上2つの条件は、記録線密度 を一定とし、ひいてはマークの物理的長さ、或いはチャ ネルビット長を一定するための条件である。なお、チャ ネルビット長とは、トラックに沿った1チャネルビット あたりの長さである。DVDとの再生互換性を、より確 実に得るためには、基準再生速度 v を約3.5 m/s、 基準クロック周期Tを約38.2nsecとしたとき、 チャネルビット長vTの変動をほぼ±1%未満とするの 40 が好ましい。 Z C A V 媒体においてこの条件を満たすた めには、下記(3)式

[0131] 【数15】

容されるものとする。とのため、記録領域を200個以 上のゾーンに分割する。かつ、

[0133]

 $T_q < V_q >_{qvq} = v T$

[0134] $cap (T_{q} < V_{q} >_{q} M 1 \le q \le p t)$ る全てのgに対してほぼ一定となるようにする。とと で、ほぼ一定とは、±1%程度の誤差を含むものとす る。これにより、ZCAV方式ながら擬似的に、半径に よらない等密度記録ができるため、CLV方式でも再生 が可能となり、CLV方式のDVDプレーヤーとの互換 性が高まる。必要に応じて、ゾーン幅はより狭くしても よい。

49

【0135】さて、以上のような条件のもとで、DVD 10 と同等の記録密度を得る光記録方法について説明する。 波長が600~680nmの光を、開口数NAが0.5 5~0.65の対物レンズを通し、基板を介して記録層 に集光させ、データの記録再生を行うにあたり、上記記 録領域の最内周が半径20~25mmの範囲にあり、最 外周が半径55~60mmの範囲にあり、最内周側ゾー ンの平均線速度が3~4m/sであり、第qゾーン(た だし、qは1≤q≤pの整数)における角速度をω。、 平均線速度を<v。>ave、最大線速度を<v

。>nox 、最小線速度を<v。>nox 、基準クロック周 期をT。、最短マークの時間的長さをnun T。とする と、nは1~14の整数であり、m=n-1であり、 ω 。、Pb及びPe/Pwはゾーンによらず一定であり、 $T_{\bullet} < v_{\bullet} >_{\bullet v_{\bullet}}$ は $1 \le q \le p$ なる全ての q に対してほ ぼ一定であり、かつ、

[0136]

【数17】(< v_q $>_{max}$ -< v_q $>_{min}$)/(< v_q $>_{max} + < v_q >_{min}) < 10\%$

【0137】を満たし、(i)第1ゾーンにおいては、 $\alpha^{1}_{1} = 0.3 \sim 0.8$

 $\alpha^{1}_{1} \ge \alpha^{1}_{1} = 0$. 2~0. 4であって i によらず一定 $(2 \le i \le m)$

 $\alpha^{1}_{2} + \beta^{1}_{1} \ge 1.0$

 $\alpha^{1}_{i} + \beta^{1}_{i-1} = 1.0 \quad (3 \le i \le m) \ge 0, \quad (i)$ i) 第pゾーンにおいては、 $\alpha^{p}_{1}=0$. 3~0.8、 $\alpha^{n}_{1} \geq \alpha^{n}_{+} = 0.3 \sim 0.5$ cbort i clasf— 定 $(2 \le i \le m)$ 、 $\alpha^{p}_{i} + \beta^{p}_{i-1} = 1.0$ $(2 \le i)$ ≦m)としたとき、(iii)他のゾーンにおいては、 α^{1} , $\leq \alpha^{q}$, $\leq \alpha^{p}$, $(2 \leq i \leq m)$ & U, α $^{\circ}$ 」は、 α^{1} 」との間の値として記録を行う。 【0138】上記記録領域の最内周が半径20~25m mの範囲にあり、最外周が半径55~60mmの範囲に ある場合、記録領域の半径幅は約30~40mmとな る。そして、ディスクを最内周の第1ゾーンにおいてく $v_1 > v_2 = 3 \sim 4 \, \text{m/s}$ となるように等角速度で回転 させる。第1ゾーン、第pゾーンについては上記条件に より記録を行い、他のゾーン(2≤q≤p-1なる第q ゾーン) については α^1 , $\leq \alpha^q$, $\leq \alpha^p$, $(2 \leq i \leq$ m) とし、 α° , は、 α^{1} , と α° , との間の値とする。

特開2001-56958

(4)

みで設定することが望ましい。好ましくは、 α^1 , $\geq \alpha^9$ $_{1} \geq \alpha^{\circ}_{1}$ (ただし、 $\alpha^{\circ}_{1} > \alpha^{\circ}_{1}$) とする。

[0139] 35K, Pb, Pe/Pw, β_1 , β_s it ゾーンによらず一定であり、 α_1 、 α_2 のみをゾーンに より変化させれば、線速3~8m/sをすべてカバーす る広い線速範囲で良好なオーバーライト特性を得ること ができる。好ましくは、これらPe/Pw、Pb、P $W, \beta_n, (\alpha^1, \alpha^p_1), (\alpha^1, \alpha^p_2)$ の数 値が、あらかじめ基板上に、プリピット列或いは溝変形 により記載しておくことで、各記録媒体ごと、そして各 ゾーンごとにドライブが最適のパルス分割方法及びパワ ーを選択することができてよい。これらは、通常、記録 領域の最内周端もしくは最外周端に隣接した位置に記録 される。バイアスパワーPbを再生パワーPェと同じに するのであれば、バイアスパワーPbはあえて記載しな くても良い場合もある。溝変形とは、具体的には溝蛇行 (ウォブル) などである。

【0140】或いは、プリビット列もしくは溝変形によ り、アドレス情報をあらかじめ基板上に記録した光学的 情報記録用媒体に、該アドレス情報とともに、該アドレ スにおいて適当な α , 及び α , に関する情報を含ませて もよい。これにより、アクセスする際にアドレス情報と ともに該バルス分割方法情報も読み出し、バルス分割方 法を切り替えることができ、特別な補正をすることな く、該記録媒体及び該アドレスの属するゾーンに適した パルス分割方法を選択することができる。

【0141】上記のような、ゾーンごとに記録パルス分 割方式を変更しながら、ディスク全周にわたって記録を 30 行う方式は、ZCLV方式 (Zoned CLV)でも 適用可能である。以下に具体例を説明する。記録領域を 半径方向に複数のゾーンに分割し、各ゾーン内において は、線速度一定で記録を行うものとし、最内周ゾーンに おける記録線速度マーと最外周ゾーンにおける記録線速 度 v_{out} の比 v_{out} / v_{in} が1. 2~2であり、 α_{i} = 0.3~0.6 (2≦i≦m)及びβ_n = 0~1.5と し、線速度によらずm、 α , + β ₁₋₁ (3 ≤ i ≤m)、 α₁ T、Pe/Pw、及びPbを一定とし、線速度に応 じて α_i (2 \leq i \leq m) 及び/又は β_a を変化させるこ 40 とにより記録を行う。 2 C L V 方式は、記録領域を半径 方向の複数のゾーンに分割することはZCAV方式と同 様であるが、同一ゾーン内ではCLVモード、即ち線速 度一定でディスクを回転させながら記録を行う。

【0142】このため、本発明記録方法を2CLV方式 に適用する場合、最内周ゾーンと最外周ゾーンとの線速 度をそれぞれVin、Vou、とするとき、VinとVou、の 差を小さくし、例えばV。ut /Vinを1.2~2とする ととで、媒体への線速度依存性の負担を軽減する。本発 明媒体は、記録パルス分割方法をわずかに変更するのみ この場合、 lpha $^{\circ}$ $_{1}$ の値は0 . 1 T もしくは0 . 0 1 T 刻 $^{\circ}$ 50 $^{\circ}$ で、線速3 \sim 8 m / s の広範囲で記録可能であるから、

比較的少ないゾーン数に分割するZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。ZCLV方式が適用できる。

【0143】そして、各ゾーンにおいて、最適化された 記録パルス分割方法を用いる。すなわち、 $\alpha_i = 0$. 3 ~ 0 . 5 ($2 \le i \le m$) 及び $\beta_n = 0 \sim 1$. $5 \ge l$. 線 速度によらずm、 $\alpha_i + \beta_{i-1}$ ($3 \le i \le m$)、 α_i , T、Pe/Pw、及びPbを一定とし、線速度に応じ 10 T α_i 及び/又は β_n を変化させることにより記録を行う。以上述べた、CLV方式、ZCAV方式、或いはZCLV方式において、オーバーライト時の線速度に応じて記録パルス分割法を可変とする例は、主として β_n を線速によらず一定として、パルス発生回路を簡便化するものであったが、逆に、 β_n を積極的に変化させることで、パルス発生回路の簡易化を図ることもまた可能である。

【0144】すなわち、結晶部を未記録・消去状態とし非晶質部を記録状態とし、最短マーク長0.5μm以下 20の複数の記録マーク長により情報を記録するにあたり、記録マーク間には、非晶質を結晶化しうる消去パワーPeの記録光を照射し、一つの記録マークの時間的な長さをnTとしたとき(Tは基準クロック周期、nは2以上の整数)、記録マークの時間的長さnTを、

[0145]

[数18] η_1 T、 α_1 T、 β_1 T、 α_2 T、 β_2 T、 \cdots 、 α_n T、 β_n T、 \cdots 、 α_n T、 β_n T、 η_2 T

【0146】(ただし、mはパルス分割数でm= nk, kは $0 \le k \le 2$ なる整数とする。また、 Σ , (α , $+\beta$, $)+\eta$, $+\eta$, =nとし、 η , は η , ≥ 0 なる実 数、 η_1 は $\eta_2 \ge 0$ なる実数、 $0 \le \eta_1 + \eta_2 \le 2.0$ とする。 α , $(1 \le i \le m)$ は α , > 0 なる実数とし、 β , $(1 \le i \le m)$ は β , > 0 なる実数とする。 α , = 0. $1 \sim 1$. 5, $\beta_1 = 0$. $5 \sim 1$. 0, $\beta_2 = 0 \sim$ 1. 5とし、 $2 \le i \le m$ なるiにおいて α , は0.1~ 0. 8の範囲にあり、かつ、iによらず一定とする。な お、 $3 \le i \le m$ なる i において $\alpha_i + \beta_{i-1}$ は $0.5 \sim$ 1. 5の範囲にあり、かつ、iによらず一定とする。) の順に分割し、 α , T ($1 \le i \le m$) の時間内において は記録層を溶融させるにたるPw>Peなる記録パワー Pwの記録光を照射し、β、T(1≤i≤m)の時間内 においては、0<Pb≤0.2Pe(ただし、β。Tに おいては、0<Pb≤Peとなりうる) なるパイアスパ ワーPbの記録光を照射し、線速度によらずm、α,+ β_{i-1} (3 \leq i \leq m)、 α_1 T、及び α_i T (2 \leq i \leq m)を一定とし、線速度が小さいほどβ。が単調に増加 するように変化させる光記録方法である。

【0147】まず、記録密度を一定に保つために、上述 50 基準データクロックTrとほぼ一致するようにPLL

の2 C A V 方式もしくは2 C L V 方式を適用し、基準クロック周期 T は線速度に反比例させて変化させる。そして、少なくとも $3 \le i \le m$ 、好ましくは $2 \le i \le m$ において $\alpha_1 + \beta_{1-1}$ を、線速及び i によらず一定とすることにより、パルス発生回路を簡略化でき、かつ、 α_i を低線速ほど単調に減少させて記録層の冷却速度を増加させることができる。通常、 $\alpha_1 + \beta_{1-1} = 1$. 0 とする。このようなパルス分割方法を実現するためには、図11 のゲート発生のタイミングの説明図において、基準クロック周期 T に同期させて(一定の遅延を付加することはありうる)、幅 α_1 T の固定長パルス一個(α_2 T の固定長パルスを複数個(α_3 T の固定長パルスを複数個(α_4 T の固定長パルスを複数個(α_4 T を決める α_4 T を α_4 T α_4 T

【0148】 ことで、各記録線速度での最大記録パワーをPwax、最小記録パワーをPwain とするとき、 Pwax / Pwain ≤1.2、

 $Pe/Pw=0.4\sim0.6$

 $0 \le Pb \le 1.5 (mW)$

とするのが好ましい。また、前述のように、少なくともオーバーライト時の線速度が $5\,\mathrm{m/s}$ 以下の場合において、繰返しオーバーライト時の熱ダメージを防ぐために、 $\mathrm{m=n-1}$ においては $\Sigma\,\alpha_i$ < 0. $4\,\mathrm{n}$ とし、 $\mathrm{m=n-2}$ においては $\Sigma\,\alpha_i$ < 0. $5\,\mathrm{n}$ とするのが好ましい。

【0149】さらに、オーバーライト時の最高線速度における β 』を β "』、最低線速度における β 』を β "』として、各オーバーライト時の線速度における β 』を β 30 「。と β "』の間の値とし、記録線速度によらず β 4 下を β 5 であるような記録方法が適用できる。この場合、少なくとも β 6 であるような記録方法が適用できる。この場合、少なくとも β 7 である。この場合、少なくとも β 8 で、 β 9 で、 β

【0150】さらにまた、最大線速度が最小線速度の倍程度までであれば、十分に実用的な信号品質を維持しつつ、記録線速度によらずβ』が一定であるような光記録 方法も可能である。CLV方式の再生専用DVDドライブには、マークを再生して得られる基準クロック周期をもとに、データクロックと回転同期信号を発生させて、回転制御を行う方式がある。

【0151】上述のようにして、最短マーク長、或いはチャネルビット長が記録半径によらずほぼ一定となるように、ZCAV方式でマークが記録された媒体は、本方式の再生専用DVDドライブで、そのまま再生することが可能である。すなわち、記録されたマークから生成されるデータの基準クロック周期T。'が、該ドライブの基準データの基準クロック周期T。'が、該ドライブの基準データの基準クロック周期T。'が、該ドライブの

(PhaseLock Loop) 方式により回転同期制御すること が可能であるから、多少の線速のゆらぎやチャネルビッ ト長のゆらぎがあっても、再生回路でそのままデコード できるのである。

53

【0152】特に、全てのゾーンで最短マーク長が0. 4μmでほぼ一定になるように記録されたEFMプラス 変調データは、記録されたマークから生成される回転同 期信号から、PLL制御によるCLV回転同期が達成さ れる。同時に、周波数が25~27MHzの範囲にある 基準データクロックTrが発生され、このクロックに基 10 づいて、ゾーン間の遷移を意識することなく、CLV記 録媒体として再生することができる。もちろん、基準デ ータクロックがTr/2となるように回転同期が達成さ れれば、2倍速による再生が可能となる。このようなP LL方式による回転同期信号の発生回路等は、既に公知 のDVDプレーヤーやDVD-ROMドライブでの方式 をそのまま使用できる。

【0153】さて、本発明媒体は、反射率以外の全ての 信号特性においてDVDとの再生互換性を確保すること ができる。とのためには溝内記録が望ましく、また、溝 のブッシュブル信号が小さいのが好ましい。溝のブッシ ュプル信号が大きいと、再生時に使用するDPD法での トラッキングサーボ信号が小さくなるからである。従っ て溝深さを、ブッシュブル信号が最大となるλ/(8 n) より浅くする必要がある。なお、 λ は空気中での再 生光波長、nは基板の屈折率である。しかし、記録時に は通常、トラッキングサーボにブッシュブル信号を利用 するので、小さすぎても好ましくない。

【0154】また、再生信号特性については、高いCN 比を得るためには変調度Modが0.5以上であるのが 30 好ましい。ただし、Modは(DC再生信号のエンベロ ープの振幅)/(DC再生信号のエンベロープの上端 値)とする。好ましい溝深さは $d = \lambda / (20n) \sim \lambda$ /(10n)である。λ/(20n)より浅すぎては、 記録時のブッシュブル信号が小さくなりすぎてトラッキ ングサーボがかからず、λ/(10n)より深くては再 生時のトラッキングサーボが安定しない。例えば、記録 再生波長が630~670nm程度、対物レンズの開口 数NAが0.6~0.65では、溝深さは25~40 n mの範囲であることが望ましい。

【0155】また、DVDと同程度の容量を確保するに は、溝のピッチを $0.6\sim0.8\mu$ mとする。また、溝 ピッチを0.74μmとすると、DVDとの互換性がと りやすい。溝幅は $0.25\sim0.5\mu$ mであることが望 ましい。0.25μmより狭いとプッシュブル信号が小 さくなりすぎてしまう。0.5μmより広いと溝間の幅 が狭くなり基板の射出成形時に樹脂が入り込みにくく、 溝形状の基板への正確な転写が困難になる。本発明媒体 は、記録後に反射率が低下する。とのような媒体におい て、溝内の反射率のほうを低くするためには、つまり、

記録後の溝内の平均反射率をRGa、記録後の溝間の平 均反射率をRLaとして、RGa<RLaとするために

は、溝幅が溝間幅より狭いことが望ましい。 【0156】例えばDVDと互換性をとるために、溝ビ ッチを0.74μmとすると、溝幅はその半分である 0. 37μmより狭いことが好ましい。一方、記録前の 溝内の平均反射率をRGb、記録前の溝間の平均反射率 をRLbとするとき、上記RGa<RLaさえ満足すれ ぱRGb>RLbであってもよい場合には、溝幅を0. $4 \sim 0.5 \mu m$ とすることで、溝内に記録される非晶質 マークの幅を広げ、変調度を高めたり、ジッタを低減で きることがある。さて、これら溝には、未記録の特定ト ラックにアクセスするために、また、基板を一定線速度 で回転させる同期信号を得るために、周期的な変形を設 けることがある。一般的には、トラック横断方向に蛇行 したウォブル(wobble)が形成されることが多 い。すなわち、溝が一定周波数 f **。で蛇行していれば、 その周波数を検出することで、PLL方式により回転同 期用の信号が取り出せる。溝蛇行の振幅は、40~80 nm(peak-to-peak値)であることが望ま しい。40nm未満では振幅が小さすぎてSN比が悪く なるし、80nmを超えると、図6に示す記録信号のエ ンベロープの上下端がウォブル信号に由来する低周波成 分を多く含み、再生信号の歪みが大きくなってしまう。 ウォブルの周波数が、記録データの帯域に近い場合に は、その振幅は80 n m以下であることが望ましい。 【0157】さらに、該蛇行周波数fweを搬送波とし て、特定のアドレス情報に従って、周波数変調もしくは 位相変調された蛇行を形成すれば、これを再生すること でアドレス情報を取得できる。蛇行周波数 f "。を一定と して溝蛇行を形成すれば、fwoから生成された溝蛇行信 号の基準周期T。もしくはその倍数又は約数から、デー タ用の基準クロック信号Tを発生させることもできる。 通常、ウォブルの周期は、データの周波数成分より十分 に低周波又は高周波に設定し、データ信号成分との混合 を防止し、帯域フィルタ等で容易に分別できるように設 定される。特に、fwoがデータの基準クロック周期より 1~2桁程度低くすることは記録可能CD等でも実用化 されている。CLV方式に用いる媒体においては、PL L回転同期が達成されたのち、f_w。を1~2桁程度、倍 してデータ基準クロックを生成する。このような方法で 生成されたデータ基準クロックは、一般的に、回転同期 のゆらぎの影響 (f.oの0.1~1%程度) から、デー タ基準クロック(周波数)と同じオーダーの揺らぎを伴 いやすい。これは、データの検出のためのウィンドーマ ージンを悪化させる。

【0158】そとで、溝蛇行信号とは別に、データ基準 クロックのゆらぎを補正するために、一定データ長毎 に、プリピットや振幅の大きい特殊なウォブルを挿入す 50 ることも有効である。一方、f.oがデータ基準クロック

周波数(1/T)もしくはその100分1から100倍 の範囲であれば、回転同期達成後、とりだされたウォブ ル信号をもとに、そのままデータ基準クロックを発生し*

 $100/T \ge f_{**} \ge 1/(100T)$

【0160】とする。また、既に述べた乙CAV法にお いては、基準クロック周期丁。は、各ゾーンの溝蛇行の 基準周期Tw。の倍数もしくは約数として発生せしめる のが好ましい。すなわち、周波数f.。をゾーンごとに変 更しながら、一定角速度で溝蛇行を形成することで、f ... として生成される基準クロックもしくはその通倍数周 10 波数を、データ用の基準クロックT。として発生させる ことができる。この際に、溝のウォブルを、(5)式を 満たすような比較的高周波とすると、各ゾーンごとのデ ータ基準クロックの生成が容易になる。そして、ゾーン ごとに基準クロックT。を変化させ、可変パルス分割方 法をこの信号に同期させて発生させることができ、分割 された各バルスの位置精度やゆらぎが低減でき、好まし い。ZCAV方式のゾーン分割の一例として、溝の一周 を1ゾーンとすることが考えられる。このとき溝が、ゾ ーンによらず周期が一定のウォブルを有し、溝ピッチを 20 比が0.8以上1.2以下であれば、溝及び溝間双方の TP、蛇行周期をTw。とすると、近似的に

[0161]

[数20] $2\pi \cdot TP = a \cdot Tw$ 。· v。 (ただし、aは自然数)

【0162】なる関係を満たすようにすると、周期Tw 。が一定のウォブルが、全記録領域にわたって形成さ れ、トラック一周だけ外周になるごとに、a個のウォブ ルが増加することになる。そして、Tw。が、基準クロ ック周期Tの整数倍となっていること、すなわちTw。 =mT(mは自然数)となっていることは、Tw。から 基準クロックを発生させる場合に、単純に整数分の1と すればよいので、基準クロック発生回路を簡略化でき望 ましい。この場合、mは近似的に自然数でなくてもよ く、±5%程度のずれは許容できる。

【0163】すなわち、TP=0,74µmに対して、 $v_0 = 3.5 \,\text{m/s}, T = 38.23 \,\text{nsec}, n = 1$ とすると、m≒34.7となり、近似的にウォブル周期 Tw。=35Tとすれば、一周ごとに含まれるウォブル の数が1個ずつ増えていく。この場合には、CLV方式 で、ウォブルが導入されているにもかかわらず、隣接ト ラックのウォブルの位相が常にそろっているために干渉 (ビート) によるウォブル信号の再生振幅の変動が小さ いという利点がある。

【0164】以上、本発明の適用例について述べたが、 本発明は相変化媒体一般のマーク長記録における線速度 依存性及び記録パワー依存性を改善するのに有効であ り、書換え型DVDに限定されるものではない。例え は、波長350~500nmの青色レーザー光とNA= 0. 6以上の光学系を用いた、最短マーク長が0. 3μ m以下のマーク長変調記録を行う場合にも、本発明媒体 50 -- 500~700mWの光を照射して全面を溶融して再

* ても十分な精度が確保できる。すなわち、

[0159]

【数19】

(5)

及び記録方法は有効である。最短マーク長は、マークの 安定性を考慮すれば10nm程度以上が好ましい。その 場合、トラック横断方向の温度分布を平坦化することに 留意する必要があり、第2保護層の膜厚を5~15nm と極めて薄くすることが有効である。波長350~45 0nmのレーザー光を用いる場合は、10nm以下とす るのがより好ましい。

【0165】さらに、本発明媒体は、溝と溝間の両方を トラックとして記録を行う、いわゆるランド&グループ 記録に適用してもよい。ランドとグルーブで同等の記録 特性を満たさなければならない困難さはあるものの、溝 幅が広いままトラックピッチを狭めやすく、髙密度記録 に適している。溝幅GWと溝間幅LWをともに0.2~ 0. 4μmとすることで、高密度でありながら安定した トラッキングサーボ性能が得られる。また、GW/LW 信号品質を同等に保てる。クロストークを低減するため には、溝深さ $d=\lambda/(7n)\sim\lambda/(5n)$ 又は $\lambda/$ (3.5n)~\/(2.5n)とすることが望まし 64.

[0166]

【実施例】以下に実施例を示すが、本発明はその要旨を 越えない限り以下の実施例に限定されるものではない。 以下の実施例では、基板は射出成形で作成した。基板は 厚さ0.6mmの射出成形されたポリカーボネート樹脂 基板とし、特に断らない限り、溝ピッチ0. 74μm、 30 幅0.34μm、深さ30nmの溝をスパイラル上に形 成したものを用いた。特に断らない限り、溝は線速3. 5m/sにおいて、周波数140kHzのウォブルを有 し、ウォブルの振幅は約60nm(peak-to-p eak値)とした。

【0167】なお、溝形状は、U溝近似の光学回折法を 用いて測定した。走査型電子顕微鏡や走査型プローブ顕 微鏡で溝形状を実測しても良い。この場合、溝深さの半 分の位置における溝幅を用いる。特に断らない限り、該 40 基板上に、図5(a)に示すような4層構成を成膜後、 その上に紫外線硬化樹脂からなる保護層をスピンコート によって設け、もう1枚同じ層構成を有する0.6mm 厚基板と貼り合わせた。また、以下の実施例及び比較例 においては、図5 (a) における第1保護層を下部保護 層、第2保護層を上部保護層と呼ぶこととする。

【0168】成膜直後の記録層は非晶質であり、長軸約 90μm、短軸約1.3μmに集光した波長810~8 30 n mのレーザー光ビームにより線速3. 0から6. 0m/sの範囲内で適当な線速度を選んで、初期化パワ

結晶化させ初期 (未記録) 状態とした。各層組成は蛍光 X線分析、原子吸光分析、X線励起光電子分光法等を組 み合わせて確認した。記録層、保護層の膜密度は基板上 に数百nm程度に厚く成膜した時の、重量変化から求め た。膜厚は蛍光X線強度を触針計で測定した膜厚で校正 して用いた。反射層の面積抵抗率は4探針法抵抗計 (L oresta FP、(商品名)三菱油化(現ダイアイ ンスツルメント) 社製} で測定した。抵抗測定は、絶縁 物であるガラスもしくはポリカーボネート樹脂基板上に 成膜した反射層、あるいは、図5の4層構成(紫外線硬 10 化樹脂保護コート前)成膜後、最上層となる反射層で測 定した。上部保護層が誘電体薄膜で絶縁物であるため、 4層構成であっても、反射層の面積抵抗率測定に影響は ない。また、実質的に無限大の面積とみなせる、直径1 20mmのディスク基板形状のまま測定した。得られた 抵抗値Rを元に、以下の式で、面積抵抗率 p s 及び体積 抵抗率 p v を計算した。

[0169]

[数21] ρ s = F·R (6) ρ v = ρ s·t (7)

[0170] CCで、 t は膜厚、 F は測定する薄膜領域の形状で決まる補正係数であり、 4.3 ~ 4.5 の値をとる。 CCでは、 4.4 とした。特に断らない限り、記録再生評価にはバルステック製 DDU 1000 評価機を用いた。光ヘッドの波長は 637 nm、対物レンズの開口数 NAは 0.6 もしくは 0.63 である。ビーム径はそれぞれ約 0.90 μ m及び約 0.87 μ mである。なお、ビーム径は、ガウシアンビームでエネルギー強度がピーク強度の $1/e^2$ 以上となる領域に相当する。

【0171】記録は図10に示したパルス分割方法で、特に断らない限りm=n-1とし、 $\alpha_i+\beta_{i-1}=1$. 0($2 \le i \le m$)とした。P b はすべての線速度において再生パワーと同じ1. 0 m W で一定とした。P e $\angle P$ W は特に断らない限り、0. 5 で一定とした。P b を、0. $8 \sim 1$. 0 m W の間で一定とし、P w を変化させて変調度及びジッタを測定した。記録する信号は、D V D で用いられている8-16 変調(EFM ブラス変調)されたランダム信号とした、特に断らない限り最短マーク長は0. 4 μ m とした。また、特に断らない場合は、 μ ートラックのみ記録した状態で測定をおこなったので、クロストークの影響は入っていない。記録は、 μ D の標準線速度 μ 3. μ 5 m μ 5 を μ 1 倍速として、 μ 1 倍速、 μ 2 倍速

速など様々な線速で行った。

【0172】再生は常に線速3.5m/sで行い、ジッ タはイコライザー通過後の再生信号を2値化した後に測 定した。なお、ジッタはエッジ・トゥ・クロックジッタ (edge-to clock jitter)を指し、測定値は基準クロッ ク周期Tに対する%で表示した。イコライザーの特性は 再生専用DVD規格に準拠した。基準クロック周期T= 38. 2nsec. (26. 16MHz) に対して概ね 10%未満(より好ましくは8%未満)のジッタと、5 0%以上の変調度、好ましくは60%以上の変調度が得 られることが好ましい。さらにまた、繰返しオーバーラ イト後のジッタ増加が少なく、少なくとも100回後、 好ましくは1000回後でも、Tに対して13%未満を 維持できることが望ましい。なお、再生専用DVDとの 互換性確保の立場からは650~660nmでの再生光 での測定が重要であるが、本発明において波長は、単に 集束光ビーム形状にわずかに影響するだけであり、再生 光学系を調整すれば、本発明で使用したような637 n m光学系と同様のジッタが660nm光学系でも得られ ることが確認されている。

【0173】(実施例1及び比較例1)記録層として、 本発明に係るInGeSbTe系と従来公知のInAg SbTe四元系とを比較するために、AgとGeの組成 以外はほぼ厳密に記録層組成及び層構成をそろえた媒体 を表-1のように用意した。両記録層は、AgとGeを 置き換えた以外、組成はほとんど測定誤差の範囲内で十 分同等とみなせる範囲である。下部保護層の膜厚が異な っているのは、媒体の反射率Rtopが同じとなるよう に調整したためである。記録層の屈折率が微妙に違うせ いで、このような補正が必要なのであるが、記録層への 光の吸収効率を同じにして、再生光による熱ダメージの 影響を同じにして比較するためには必要な補正である。 記録層膜厚及び上部保護層膜厚が同じであるから、放熱 効果及び熱ダメージについては同等とみなせる。基板は 0.6mm厚のポリカーボネート樹脂で、溝ピッチ0. 74 μm、溝幅0. 34 μm、溝深さ27 nm、ウォブ ル周波数140kHz (線速度3.5m/s)、ウォブ ル振幅60nm (peak-to-peak値) の溝が 形成されており、該溝内に記録を行った。

0 [0174]

【表1】

丧-1

60

		実施例 1	比較例 (
記錄層材料		In _{0.085} Ge _{0.055} Sb _{0.70} Te _{0.21}	In 0.04 Ag 0.05 Sb 0.68 Te 0.22					
S	b/Te	3. З	3. 4					
	下保護層	6 8	7 4					
膜摩	記錄層	1 6	1 6					
(mm)	上保護層	2 0	2 0					
	反射層	250	2 5 0					
記錄光学系		6 3 7 nm, NA = 0. 6 3						
記録	パワー等	Pw = 13.5 mW, $Pe = 6.5$	5 mW, Pb=0.8 mW					
記錄/	いスストラテジー	$\alpha_1 = 0.5$, $\alpha_c = 0.3$, $\beta_u = 0.5$						
R top	(%)	18.8	18.3					
変調	雙 (%)	64.6	. 8 5 . 4					
ジッタ (%)		6. 7~7. 0%	6. 9~7. 2%					

【0175】との2種類の媒体に対して、記録線速度 3. 5m/s、T=38. 2ナノ秒において、EFMプ 20 ラス変調で記録を行ったところ、良好なオーバーライト 記録特性を示した。オーバーライト記録条件は、それぞ れのディスクの特性が必ずしもベストとなる条件ではな く、両方の特性が表-1に示すようにほぼ同等となるよ うな共通の条件で行った。すなわち、図10(a)に示 すパルス分割方法において、m=n-1、 $\alpha_i+\beta_{i-1}$ $=1.0(2 \le i \le m)$ 、 $\alpha_i = \alpha_c = -$ 定 $(2 \le i \le m)$ m) とし、 $\alpha_1 = 0.5$ 、 $\alpha_2 = 0.3$ 、 $\beta_2 = 0.5$ とし、Pw=13.5mW、Pe=6.5mW、Pb=光を繰返し照射し、再生光安定性を調べた。所定の再生 光パワーPrで所定回数照射したのち、再生光パワーを 0.5mWと十分低くしてジッタ等の測定を行った。結 果を図12に示す。実施例1の媒体は、再生光パワー1 mWでは10°回まで全く再生光による劣化を示さなか った。0.1mWずつパワーを上げると徐々に劣化が早 くなる程度である。

【0176】一方、比較例1の媒体は、再生光パワー1 mW以上のすべての再生光において、最初の100~1 000回までの間に急激にジッタが増加したのち徐々に 悪化する。全体としてジッタ値が高いが、初期のジッタ 悪化が致命的である。比較例1においてはまた、再生光 により変調度が低下し、100回程度の照射で10%程 度低下して落ち着いた。初期はジッタが急増するため、 変調度の低下は不均一に進行していると考えられる。実 施例 1 及び比較例 1 の記録済媒体を、80℃/80% R Hの環境下に放置して、加速試験を行ったところ、25 0時間後には実施例1のディスクの特性は、ほとんど全 く変化していないのに対して、比較例1のディスクの記 録層材料では非晶質マークが極めて不安定なことがわか 【0177】このように実施例1のディスクにおいて

は、初期のオーバーライト記録特性とともに、耐再生光 安定性、経時安定性に優れている。これは、Sb., T e。」に過剰のSbを含む合金系において、Geの適量 の添加が非常に効果的であることを示している。実施例 1の媒体について、80℃/80%RHの環境下で加速 試験を行った。2000時間まで加速試験を実施した。 加速試験前に記録した信号のジッタの悪化は1%程度に 過ぎなかった。また、変調度は初期が64%であった 0. 8mWとした。このように記録された信号に、再生 30 が、2000時間加速試験後も61%と、ほとんど変化 しなかった。反射率もほとんど全く変化していなかっ た。2000時間後に未記録部に新たに記録を行った場 合のジッタの悪化は3%程度であったが、実用上全く支 障の無いレベルである。また、実施例1の媒体におい て、ジッタの記録パルス分割方法依存性を、m=n-1 及びm= n-2の場合について詳細に検討した。 【0178】図13は、線速3.5m/sにおいてそれ ぞれ(a)m=n-1、(b)m=n-2で記録した場 合のジッタの、 α_1 、 α_c 依存性を示す等高線図であ 40 る。また、図14は、線速7.0m/sにおいてそれぞ h(a) m = n - 1、(b) m = n - 2 で記録した場合 のジッタの、 α_1 、 α_c 依存性を示す等髙線図である。 各図の測定に用いたPw, Pe, Pb及びβ。は各図の 上に示している。線速3.5m/sにおいては、m=n -1, m=n-2 いずれの場合にも、 $\alpha_1=0$. $7\sim$ $0.8 \alpha_c = 0.35 \sim 0.40$ の近傍において、最 も低いジッタ(概ね7%以下)が得られているのがわか る。線速7.0m/sにおいては、m=n-1, m=n -2いずれの場合にも、 $\alpha_1 = 0$. 5付近、 $\alpha_c = 0$. 録信号は、ほぼ完全に消えていた。比較例1の組成の記 50 40付近において、最も低いジッタが得られているのが

わかる。最小のジッタが得られる近傍の α_1 、 α_s に対しては、いずれの場合も $\Sigma\alpha_i$ < 0.5 nなる条件を満たす。なお、本実施例では、線速3.5 m/s、7.0 m/sいずれの場合にも、m=n-2 とすることで、より低いジッタ値が得られており、また、m=n-1 の場合に比べて、大きい α_1 に対しても低ジッタが得られている。

【0179】さらに、上記実施例1の媒体を、NA= 0.63の評価機を用いて、表-2のように、記録バルス分割方法を変えて、ジッタの線速依存性を評価した。なお、基準クロック周期Tは線速に反比例させている。バルス分割方法は、m=n-1、 α_1 + β_{1-1} = 1.0 *

* $(2 \le i \le m)$ 、 $\alpha_i = \alpha_c = -\overline{c}$ $(2 \le i \le m)$ としている。 Pw、Pb、Pe は線速によらず一定とした。ここで、表 -2 のパルス分割方法では、全線速度において、 $\Sigma\alpha_i$ < <0 、5 nが満たされている。 DVDの標準線速の1倍速から2.5倍速程度まで良好なオーバーライト特性が得られた。本媒体は、記録領域を3~4 ゾーンに分割して、ゾーン毎にわずかに記録パルスストラジーを変更することで、CAV方式であっても、記録領域全域において良好なオーバーライト特性を示す。

o 「[0180] 【表2]

表 - 2

線速度	α, /α, /β,	Pw/Pe (mW)	ジッタ (%)
1. 0× (3. 5m/s)	0. 6T/0. 35T/0. 5T	13. 5mW/7. OmW	5, 95
1.5× (5.2m/s)	0. 4T/0. 35T/0. 5T	13. 5mW/7. 0mW	6, 31
2.0×(7.0m/s)	0. 4T/0. 4T/0. 5T	13. 5mM/7. OmW	7. 57
2. 4× (8. 4m/s)	0. 5T/0. 4T/0. 5T	13. OmW/7. OmW	8. 81

【0181】また、波長660nm、NA=0.65の 評価機を用いて記録再生を行っても、同様の結果が得ら 30 れた。

【0182】(実施例2)基板上に、下部保護層(ZnS)。。(SiO₂)₂₀、記録層Geo.osSbo.73Te o.22、上部保護層(ZnS)。(SiO₂)₂₀、反射層 Alo.99、Tao.00sを、各層の膜厚を様々に変えて設けた。各層の膜厚を表-3に示す。すべての薄膜はスパッタ法で真空を解除せずに作成した。反射層の成膜は到達真空度2×10⁻⁴Pa以下、Ar圧0.54Pa、成膜レート1.3nm/秒で行った。その体積抵抗率は55nΩ·m、面積抵抗率は0.28Ω/□であった。酸素、窒素等の不純物はX線励起光電子分光での検出感度以下で、全部併せてもほぼ1原子%未満であると見なせる。(ZnS)。(SiO₂)₂₀保護層の膜密度は3.50g/cm³で、理論的バルク密度3.72g/cm

³ の94%であった。また、記録層密度はバルク密度の 90%であった。熱シミュレーションから見積もった保 護層の熱伝導率は3.5×10⁻⁴pJ/(μm·K·n sec)であった。

【0183】このようにして作成した媒体に、1倍速及び2倍速それぞれにおいて、図10(a)に示すバルス分割方法を、各媒体の層構成ごとに最適化して用い、記録(オーバーライト)を行った。そののち、初回、10回、100回オーバーライト後のジッタを測定した。測定には、記録再生ともに、波長637nm、NA=0.63の光学系を用いた。表-3に、各媒体の1倍速での最適バルス分割方法、ジッタ、Rtop、変調度をまとめた。

【0184】 【表3】

9

费-3														
	下郵	记录图	上部	反射層	記録/	ベルス		₽₩	Pe	Rtop	安阳度	初回记録	10回 00%後	100回 BUV
实地到2	保護層	(m)	保護學	(nm)	α 1	a &	7元2	(a6/)	(midf)	(%)	(%)	^එ ල්දී	ジャ条)	後沒的多
(aj)	64	18	20	200	0. 5	0.4	0.5	14	7	17	61	6.9	7, 9	8.7
(61)	64	18	20	200	0.5	0.4	0.5	14	7.	18	69	7. 1	8.3	8.9
(c1)	64	20	20	200	0. 5	0.4	0.5	14	7	18	57	7. 6	9.8	9.8
(d))	64	16	80	200	0. 3	0. 3	0.6	13. 5	6.7	15	65	8. 2	9. 3	10. 2
.(e1)	64	18	30	200	0.3	0.3	0.6	13. 5	6.7	18	62	8. 2	9.9	10. 5
(ff).	64	20	80	200	0.3	0. 3	0.8	13.5	6.7	17	80	8. 2	11.1	11. 6
(a1)	64	16	40	200	0.3	0. 25	0. 9	12	6	12	54	>13	>13	>13
(b2)	64	18	40	200	0.8	0. 25	1. 3	12.5	8.2	. 14	51	>13	>13	>13
(c 2)	64	20	40	200	0.3	0. 25	1. 3	13. 5	6.7	15	50	>13	>19	>13
(g1)	84	10	20	250	0.5	0.4	0. 5	14	7	17	61	6.9	7. 5	7.4
(hi)	64	18	20	250	0.5	0.4	0.6	14	7	18	61	6.9	7.8	7, 9
(11)	64	20	20	250	0.5	0. 4	0. B	14	7	19	59	6.8	8.7	B. B
(j1)	64	16	30	250	0.3	0.3	0.6	13.5	6.7	14	66	7. 5	8.9	9.8
(k1)	64	18	30	250	0.3	0.3	0. B	13.5	6.7	15	65	7. 1	9	9.6
(13)	64	20	30	250	0.3	0. 3	0.6	13.5	6.7	16	59	7. 3	10.6	11.6
(d2)	64	16	40	250	0.3	0. 25	0.8	12.5	6.2	12	61	>13	>13	>13
(eż)	64	18	40	250	0.3	0. 25	0.6	13.5	6.7	14	61	10.9	>13	>13
. (f2)	64	20	40	250	0.3	0. 25	1.3	13	6.5	15	54	>13	>13	>13
(m1)	58	18	20	200	0.5	0.4	0.5	14	7	18	61	6.6	8.2	8.1
(01)	58	20	20	200	0.6	0.4	0.5	14	7	19	59	8. 2	10. 1	10.6
(01)	58	18	20	200	0.3	0. 3	0.8	12	6	16	58	8.9	11.7	13
(g ₂)	58	18	40	200	0.3	0. 25	1.3	12.5	6.2	14	53	>13	>13	>13
(19)	70	16	20	200	0.5	0.4	0.5	14	7	17	58	7. 2	7.9	8.3
(q1)	70	18	30	200	0. 5	0.4	0.5	14	7	18	60	6.7	7. 8	B. 3
(t3)	70	20	40	200	0.5	0.4	0.5	14	7	19	57	6.9	8.5	B
(81)	70	23	20	200	0.5	0. 35	0.5	14	7	24	59	9	9.7	10.5
(h2)	70	30	20	200	0.5	0, 35	0.7	(14)	(7)	27	50	>13	>13	>13
(12)	45	18	20	200	0.5	0. 4	0.5	14	7	19	60	7. 2	10.5	>13

【0185】いずれも、1倍速で、最短マーク長0.4 μmのマーク長変調記録が行えており、大きな初期変調 度が得られている。上部保護層膜厚を20nmとする と、初期ジッタ、1000回オーバーライト後のジッ タ、ともに10%未満であった。上部保護層膜厚を30 nmとすると、初期のジッタは良好であるが、繰返しオ ーバーライトによるジッタ増加が若干多く、1000回 オーバーライト後は、ジッタが10~12%となった。 上部保護層膜厚を40nmとすると、初期ジッタが13 %以上となり、また、繰返しオーバーライトで急激に悪 化して20%以上となった。さらに、記録層膜厚を30 nmと厚くした実施例2(h2)は、初回記録ジッタが 13%以上あり、繰返しオーバーライトによるジッタの 悪化が著しかった。下部保護層膜厚を45nmとした実 施例2(i2)は、繰返しオーバーライト耐久性が悪か った。また、反射層の厚みが250nmのほうが200 nmよりも、いっそう良好なジッタが得られた。すなわ ち、このような高密度のマーク長記録においては、「超 急冷構造」とするのが好ましいことがわかる。

【0186】次に、実施例2(g1)の媒体の、ジッタ の記録パワーPw依存性を評価した。パルス分割方法 は、図10においてm=n-1とし、Pw=14mW、 Pe/Pw=0.5、β。=0.5として、1倍速及び 2倍速で記録した。そののち、 α_1 及び $\alpha_2 = \alpha_1$ (2) ≦ i ≦m) に対するジッタの依存性を評価した。2倍速 $\mathcal{C}\mathsf{id}\,\alpha_1 = 0.\ 5,\ \alpha_c = 0.\ 4,\ \beta_{\tt m} = \beta_{\tt m-1} = 0.$ 5、Pw=14mWとし、1倍速では $\alpha_1 = 0.7$ 、 α $\beta_{n} = 0.3, \beta_{n} = \beta_{n-1} = 0.5, Pw = 14 mW \ge 1.5$

3), 0. 33n(n=4), 0. 34n(n=5), 0.38 n以下(n=6~14)であった。1倍速で $t, \Sigma \alpha_1 = 0.33n (n=3), 0.33n (n=$ 4)、0.32n(n=5)、0.32n未満(n=6 ~14)であった。図15にその結果を示す。初回及び 10回オーバーライト後のジッタの記録パワーPw依存 性、並びに、10回オーバーライト後の、反射率Rto p及び変調度Modの記録パワーPw依存性、を示し 30 た。(a) は2倍速記録、(b) は1倍速記録の場合で ある。なお、Rtopは、図6でのItopに相当す る。また、図中、DOW (Direct Overwrite) とはオー バーライトのことを指す。次に、オーバーライト耐久性 を評価した。図16にその結果を示す。ジッタ、反射率 及び変調度について、それぞれオーバーライト1000 回後までの値を示した。(a)は2倍速記録、(b)は 1倍速記録の場合である。いずれの場合も、ジッタは、 10回程度までは漸増するが10回以降は安定化し、ジ ッタ、変調度、反射率ともに1000回までほとんど劣 40 化しなかった。

【0187】さらに、本媒体を、線速9m/sで、基準 クロック周期を14.9nsecとした以外は上記2倍 速(線速7m/s)と同じパルス分割方法で、Pw=1 4mWとしてオーバーライトを行った。消去比は30d B以上の十分な値が得られた。また、ジッタも11%未 満と良好であった。実施例2(g1)の媒体について は、線速3~8 m/s の範囲において、Pw=14m \mathbb{W} , $Pb = 1 \, \text{mW}$, Pe/Pw = 0. 5, $\beta_{\bullet} = 0$. 5 した。このとき、2倍速では、 $\Sigmalpha_i=0$.3n(n=50 ッタが得られた。すなわち、線速3 \sim 5m/<math>sにかけて

速は1倍速又は2倍速、いずれも10回オーバーライト後の再生である。図18に測定結果を示した。チルトマージンは、ラジアル方向で±0.7~0.8度、円周方向で±0.5~0.6度であり、通常のドライブにおい

て問題のないレベルであった。

【0190】 <加速試験>実施例2(g1)の媒体の一 部のトラックに、Pw=13mWとして、上記最適パル ス分割方法を用い、EFMプラス変調されたランダムバ ターンを記録し、ジッタを測定した。そののち、本媒体 を、80℃/80%RHの高温高湿下で加速試験を行っ た。加速試験500時間後及び1000時間後に、本ト ラックのジッタを再度測定したところ、1000時間後 に1%程度悪化したのみであった。また、加速試験10 00時間後に、他のトラックに、上記と同一条件でラン ダムパターンを記録しジッタを測定したところ、2%程 度の悪化が見られたが、この程度であれば実用上問題は ない。また、1倍速及び2倍速で同様に記録を行い、8 0°C/80%RHの高温高湿下で1000時間の加速試 験前後での変調度を評価した。1倍速では、初期変調度 が61%、加速試験後変調度が58%であった。2倍速 では、初期変調度が60%、加速試験後変調度が58% であった。

<対再生光安定性>実施例2(g1)の媒体に対し、再生光を、パワーを1.2mWまで上げて照射したが、10分程度では全く劣化しなかった。次にパワーを1.0mWとして、再生光を100万回まで繰返し照射したが、ジッタの増加は2%未満であった。

【0191】(実施例3)記録層組成をGe...Sb 。,,,TTe。,,,とした以外は実施例2と同様の層構成とし て、媒体を作成した。各層の膜厚及び評価結果をを表-4に示す。測定には、NA=0.63の光学系を使用し た。表-3と同様に、それぞれの層構成で α_1 、 α_2 、 β_{n-1} を最適化し、かつ、Pw、Peもジッタが最低と なるよう設定してジッタを評価した。いずれも、1倍速 で、最短マーク長0. 4μmのマーク長変調記録が行え ており、大きな初期変調度が得られている。実施例3 (a)については実施例2(a1)と同様、記録線速が 1倍速と2倍速では良好な特性が得られたが、9 m/s では実施例2(a1)より1~2%ジッタが高めであっ た。また、上保護層膜厚が30nmである実施例3 (a)~(f)では、ジッタ10%未満が得られ、10 0回オーバーライト後も13%未満であった。上保護層 膜厚が40nmと厚い実施例3(g)~(i)では、ジ ッタは13%より大きい値しか得られなかった。

[0192]

【表4】

は、 $\alpha_1 = 0$. 7、 $\alpha_s = 0$. 35、線速5~7m/s にかけては、 $\alpha_1 = 0.65$ 、 $\alpha_s = 0.4$ 、線速7~ 8 m/s k $\alpha_1 = 0.55$, $\alpha_c = 0.45$, というように少なくとも3段階に変化させれば、概ね9 %未満の良好なジッタが得られた。より細かく、1 血/ s刻みで、 α_1 と α_c を変化させれば、各線速度におい てより良好なジッタが得られると考えられる。なお、P w=11~14mWにおいて、Pe/Pwが0.4~ 0.5で最良のジッタが得られた。また、Pbが1.5 mWを越えるとジッタが急激に悪化した。ここで、Pe 10 /Pw=0.5としてPb依存性を調べたところ、Pb が1.0mW未満なら、ほぼ最良のジッタが得られた。 すなわち、Pb/Peは0.2未満が好ましい。 【0188】次に、上部保護層膜厚が20mmの実施例 2 (g1)と、40 n mの実施例2 (d2)を比較す る。両媒体に対して、記録マーク長依存性を、1倍速に おいて下記のように測定した。NA=0.6の光学系を 用い、EFMプラス変調において最短マークである3T マークの長さを、0.5μmから短縮していったとき の、ジッタのマーク長依存性を評価した。記録線速は 3. 5m/sで一定であり、パルス分割方法も上記のも

ので一定とし、基準クロック周期を変化させてマーク長

を変化させた。ただし、最短マーク長が0.46μm以

上の場合は、装置上の制約から、再生速度3.5m/s

ではCLV制御が困難になるため、再生速度を5m/s

とした。なお、最短マーク長0. 4μmが、再生専用D

VD規格に対応する。図17にその結果を示す。(a)

は実施例2(g1)の媒体、(b)は実施例2(d2)

の媒体である。 【0189】実施例2 (g1) の媒体は、最短マーク長 30 O. 38μm程度まで、ジッタが13%未満で使用可能 であることがわかる。なお、NA=0.63の光学系を 用いると、約2%程度のジッタ低減が可能であった。ま た、再生時のイコライザーを最適化するとやはり2%程 度のジッタ低減が可能であった。これに加えてNA= 0.65の光学系を使用すれば、0.35 μmでも十分 良好なジッタが得られると考えられる。実施例2(d 2) の媒体は、マーク長0. 45 µm以上では概ね問題 のないジッタが得られているが、0.45μm未満で急 激にジッタが増加し、マーク長0.40 µ mではジッタ 40 13%以上となり使用不可能となった。次に、いわゆる チルトマージンを評価するため、実施例2(g1)の媒 体に、EFMプラス変調されたランダムバターン信号を 複数トラックにわたって記録後、基板を再生レーザー光 の光軸に対して意図的に傾けて、再生時のジッタの変化 を測定した。記録再生の光学系はNA=O. 6、記録線

表-4

68

安地列王	下部保護層(400)	記録層 (ma)	上部保護局(四)	反射温	1213v	ベルス ス	トラテジ # ṇ-1	Pw (mil/)	Pe (cfl)	Rtop (%)	変調度 (光)	初回記録 ジッタ (光)	10回 006後 ジッタ (%)	100回 10回 後ジッタ (光)
(8)	64	18	20	200	0.4	0. 4	0. 4	14	7	17	61	8.7	9. 3	9. 2
(b)	64	18	20	200	0.4	D. 4	0.4	14	7	18	60	8.9	9	Ð
(5).	64	20	20	200 .	0. 5	0. 4	0.4	14	7	18	62	7. 9	8.8	9. 1
(d)	64	16	30	200	0. 3	0. 35	0. 5	11.5	5.7	15	62	8	9. 3	9.7
(8)	64	18	30	200	0. 3	0. 35	0. B	12	6	16	82	8.4	9. 6	10. 6
(f)	64	20	30	200	0.3	0. 35	0.6	12.5	6.2	16	59	8.1	10.4	IL I
(9)	64	18	40	200	0. 3	0. 25	0.9	11	5.5	12	55	>13	>13	>13
(Y)	84	18	40	200	0. 3	0. 25	1.3	12	6	14	52	>13	>13	>13
(i)	54	20	40	200	0.3	0. 25	1.3	12	6	14.5	51	>13	>13	>13

【0193】(実施例4)層構成は、下部保護層(Zn S)。(SiO,)。を膜厚215nm、記録層Ge 。。。。Sb。。。Te。、2。を18nm、上部保護層(2n S)。(SiOz) 20を18nm、反射層Alogos T a。。。。。を200nmとした。本記録層組成は、線速3 ~5 m/s での記録で良好な特性が得られるもので、い わゆる1倍速用である。しかし、過剰Sb量が実施例 2、3よりわずかに少ないため、経時安定性に優れてお り、記録された情報の保存安定性や繰返し再生による劣 化、すなわち再生光耐久性を重視するには好ましい。以 下はNA=0.6の光学系で評価した。最適パルス分割 方法の決定は以下のように行った。記録線速3.5m/ sにおいて、Pw=13mW、Pe/Pw=0.5と し、図10において β 。=0.5で一定として α 1、 α 30 %程度の悪化が見られたが、この程度であれば実用上問 。を変化させて最小のジッタが得られるパルス分割方法 を選んだ。図19に、10回オーバーライト後のジッタ $O\alpha$,及O0 α 0 依存性を、ジッターの等髙線図として示 す。 $\alpha_1 = 0$. 4~0. 8、 $\alpha_1 = 0$. 3~0. 35と することでほぼ最良のジッタが得られたので、それを基 本とし、 $\alpha_1 = 0.6$ 、 $\alpha_2 = 0.35$ を選択した。と のとき、 $\Sigma \alpha_1 = 0.32 n (n=3), 0.33 n$ (n=4)、0.3n(n=5)、0.35n未満(n =6~14) であった。変調度は65%と、再生専用D VDに比べても遜色ない値であった。Rtopは23% 程度であるが、実際上15%以上であれば、既存の再生 専用ドライブでも再生が可能であると考えられる。そこ で、本発明記録媒体にPw=12.5mW、線速3.5 m/sにて画像データを記録し、市販の再生専用DVD プレーヤーで再生を試みたところ、フォーカスサーボ、 トラッキングサーボ信号、ジッタは通常の再生専用DV Dと同等の特性が得られた。

【0194】<繰返しオーバーライト耐久性>図20 に、Pw=12.5mWにおける、ジッタ、Rtop、

000回以上のオーバーライト後も、十分に安定な特性 を示している。

【0195】 <加速試験>本媒体の一部のトラックに、 20 Pw=13mWとして、上記最適パルス分割方法を用 い、EFMプラス変調されたランダムパターンを記録 し、ジッタを測定した。そののち、本媒体を、80℃/ 80%RHの高温高湿下で加速試験を行った。加速試験 500時間後及び1000時間後に、本トラックのジッ タを再度測定したところ、1000時間後に0.5%未 満悪化したのみであった。また、変調度は初期が65% であり、加速試験後は63%であった。また、加速試験 1000時間後に、他のトラックに、上記と同一条件で ランダムパターンを記録しジッタを測定したところ、1 題はない。

【0196】<対再生光安定性>本媒体に対し、再生光 を、パワーを1.3mWまで上げて照射したが、10分 程度では全く劣化しなかった。次にパワーを1.0mW として、再生光を100万回まで繰返し照射したが、ジ ッタの増加は1%未満であった。

【0197】(実施例5)実施例2(a1)の層構成に おいて記録層をGe。。。、Sb。、、、Te。、、、とした。評価 はNA=0.6の光学系で行った。 α_1 =0.4、 α_c = 0. 3, β_{\bullet} = 0. 5, Pw = 14 mW, Pe/Pw =0.5において最良のジッタが得られた。初期変調度 も十分に大きかった。10回オーバーライト後のジッタ は10%をぎりぎりきり、1000回後も13%未満が 維持された。

【0198】<加速試験>本媒体の一部のトラックに、 Pw=14mWとして、上記最適パルス分割方法を用 い、EFMプラス変調されたランダムパターンを記録 し、ジッタを測定した。そののち、本媒体を、80℃/ 80%RHの高温高湿下で加速試験を行った。加速試験 変調度の繰返しオーバーライト回数依存性を示した。1 50 500時間後に、本トラックのジッタを再度測定したと

10

ころ、2%程度悪化したのみであった。また、加速試験 500時間後に、他のトラックに、上記と同一条件でラ ンダムパターンを記録しジッタを測定したところ、3% 程度の悪化が見られたが、この程度であれば実用上問題 はない。

【0199】<対再生光安定性>本媒体に対し、再生光 を、パワーを1.0m₩まで上げて照射したが、10分 程度では全く劣化しなかった。次にパワーを1.0mW として、再生光を100万回まで繰返し照射したが、ジ ッタの増加は3%未満であり、13%未満が維持され

【0200】(実施例6)実施例4の層構成において、 記録層をAg.,,Ge,,,Sb,,,Te,,,,とした。N A=0.6の光学系で評価した。線速度3.5m/sに おいて、ジッタのパルス分割方法依存性(α,及び α_c) $\delta Pw = 1.3 \text{ mW}$, Pe/Pw = 0.5, m = n-1、 β ₁ = 0.5で測定したところ、図21(a)に 示す等高線図のようになった。 $\alpha_1 = 0$. 6、 $\alpha_c =$ 0.35がほぼ最適であった。この場合、 $\Sigma \alpha_i = 0$. 32 n (n=3), 0. 33 n (n=4), 0. 33 n 20(n=5)、0.35n未満(n=6~14)であっ た。

【0201】図21(b)に、初回、10回、1000 回オーバーライト後のジッタのパワー依存性を、図21 (c)に、10回オーバーライト後のRtop及び変調 度のパワー依存性を示した。1000回オーバーライト 後まで広い記録パワーの範囲において、良好なジッタが 維持され、また、Rtop18%、変調度60%以上が 達成できた。図22には、Pw=13mWにおけるジッ タ、R t o p、変調度の10000回オーバーライト後 30 の変化まで示した。ジッタが1%程度初期に増加する他 は、全く劣化がなかった。また、実施例1と同様の方法 で、ジッタの最短マーク長依存性を測定した結果を図2 3に示す。最短マーク長0.38μmでジッタは10% 未満と極めて良好であった。なお、本媒体に対して、m = n-2 としたバルス分割方法についても評価を行った ところ、 $\alpha_1 = 1$. 0、 $\alpha_i = 0$. 5、 $\beta_n = 0$. 5に おいて図21と同様な特性が得られた。n=3で $\Sigma \alpha$, $= 0.48 \, \text{n}$, $n = 4 \, \text{C} \, \text{Σ} \, \alpha_1 = 0.48 \, \text{n}$, $n ≥ 5 \, \text{C}$ $\Sigma \alpha_i = 0.46 \,\mathrm{n} \sim 0.47 \,\mathrm{n}$ robot.

【0202】(比較例2)実施例6の層構成において、 記録層をAgo.o, Ino.o, Sbo.s, Teo.z, とした。線 速度3.5m/sにおいて、Pw=13mW、Pe/P w=0.5、 $\beta_{\bullet}=0.5$ として、ジッタのパルス分割 方法依存性を評価したところ、図24(a)に示す等高 線図が得られた。 $\alpha_1 = 1$. 0、 $\alpha_c = 0$. 5が最適で あり、この場合、 $\Sigma \alpha$ 、はn によらず0.5 n で一定であった。記録パワー依存性及び1000回後までの繰返 しオーバーライト特性を図24(b), (c)に示し

り良好であったが、繰返しオーバーライトにより劣化 し、1000回後にはむしろ、より悪めのジッタとなっ た。さらに再生光パワーを1mWまであげたところ、5 分程度でジッタが悪化し、十数%まで増加した。この差 は0.5~1mWの記録感度差では説明がつかない。再 生光劣化の主原因は50~100℃程度に温度が上昇す るためであり、本発明のGe添加が非晶質マークの熱安 定性改善に効果的であることがわかる。

【0203】(比較例3)層構成を、(ZnS)。(S iO、)」。下部保護層を膜厚90nm、Ge、Sb、T e, 記録層を21nm、(ZnS)。(SiO,)。上 部保護層を23nm、Al。。。。,Ta。。。。,反射層を2 00nmとした。記録に際しては、図10(a)に示す パルス分割方法を基本とし、各マーク長、線速において 最良のジッタが得られるように微調整を行った。との媒 体に対しては、図25に示すように、 $\alpha_1 = \alpha_2 = \alpha_3$ $=0.3\sim0.4$ で一定で、 β = 1.0 としたストラ テジーで概ね最良のジッタが得られた。また、Pw=1 3mW, Pe/Pw=0. 4 (Pe=5mW), Pb=2. 0mWが最適記録パワーであり、Pb/Pe=0. 4と高めになっているが、これは、本比較例の記録層で は図9におけるTLをある程度高めに維持する必要があ るためである。Pbが1mW未満でもジッタは悪いが、 Pbが3mW以上でもやはりジッタは悪化した。このバ ルス分割方法をベースとし、さらに、マーク長に応じて α 。に対して0.02程度の精密なバルス幅調整まで行 い、実施例2と同様に、マーク長依存性を測定した。結 果を図26(a)に示す。また、オーバーライト時の線 速依存性を測定した。結果を図26(b)に示す。線速 依存性は、線速に応じて基準クロック周期を変更し、最 短マーク長が0. 4μmになるようにし、再生は常に 3. 5m/sで行った。また、線速依存性については、 10回オーバーライト後のジッタと、その後DC消去し た後に1回オーバーライト記録を行った場合のジッタと を載せた。図26(a)に示すとおり、最短マーク長 0. 4μmでジッタ10%であり、より短くなると急激 にジッタが悪化した。また、図26(b)に示すとお り、記録線速5m/s以上でジッタが悪化している。し かし、一旦DC消去した後の記録ではジッタが2~3% 40 以上低下している。このことから、いわゆる結晶状態と 非晶質状態の吸収率差による温度上昇の不均一により、 消去不良もしくは非晶質マークの形状の歪みが生じ、ジ ッタが悪化していると考えられる。

【0204】なお、線速7m/sでオーバーライト後の ジッタは20%以上であったが、DC消去後の記録では 15%程度になった。従って、髙線速時におけるジッタ が高くなるのは、適切なパルス分割方法が選択されてい なかったからではないと考えられる。本記録層は、もと もと、粗大グレインがあるためジッタが高いが、それに た。初回記録のジッタ及びパワーマージンは実施例5 よ 50 加えて、線速5 m/s 以上では、オーバーライト時に以

(37)

72

前のマークの消去が不十分になり、DC消去後記録との ジッタとの差として、その影響が明確に現れる。なお、 前述の実施例2(g1)の媒体に7m/sでオーバーラ イトした場合と、DC消去後記録した場合の、ジッタの 差は0.5%未満であった。Ge, Sb, Te, のよう なGeTe-Sb、Te、擬似二元合金記録層を用いた 記録媒体の場合、保護層/記録層/保護層/反射層から なる4層構成では、5~6m/s以上の高線速では、上 記のようにDC消去後記録は問題ないがオーバーライト 時にはジッタが悪化する。このため、ジッタ低減のため 10 に、さらに光吸収層などを追加して吸収率補正をするな どの対応が必要である。

【0205】(比較例4)実施例2(g1)において記 録層をGe。、1,Sb。、4,Te。、21とした。初期結晶化が 非常に困難で、複数回初期化ビームを照射してようやく 初期化し、オーバーライトしてジッタを測定したが、バ ルス分割方法を図10の範囲内でどのように変更しても 13%以下のジッタは得られなかった。また、繰返しオ ーバーライトしていくと、10回から100回までの間 でジッタが数%増加した。

【0206】(比較例5)実施例2(g1)の層構成に おいて、記録層をGe...,Sb...,Te...,とした。7 m/sにおいて $\alpha_1 = 0$. 4、 $\alpha_5 = 0$. 3、 $\beta_6 =$ 0. 5、Pw=14mW, Pe/Pw=0. 5でほぼ最 良のジッタが得られたが、ジッタは10回オーバーライ ト後で11%をぎりぎりきる程度であり、1000回後 には13%以上となってしまった。

【0207】<加速試験>本媒体の一部のトラックに、 Pw=14mWとして、上記最適パルス分割方法を用 い、EFMプラス変調されたランダムパターンを記録 し、ジッタを測定した。そののち、本媒体を、80℃/ 80%RHの高温高湿下で加速試験を行った。加速試験 500時間後に、本トラックのジッタを再度測定したと ころ、3%程度悪化し、13%以上となった。また、加 速試験500時間後に、他のトラックに、上記と同一条 件でランダムパターンを記録しジッタを測定したとと ろ、5%程度の悪化が見られ、劣化が早かった。

【0208】<対再生光安定性>本媒体に対し、再生光 を、パワーを1.0mWまで上げて照射したところ、1 0分後にジッタが3%増加し、非常に不安定であった。 また、変調度が低下しマークが消える傾向があった。 【0209】(実施例7)実施例2(a1)の媒体に対

して、1倍速(線速度3.5m/s、基準クロック周期 T=38.2nsec)から2.25倍速(7.9m/ s、T=17nsec) において、 α 、 $T=\tau$ 1 = 19 nsec、α、T=τ、=11nsecですべての線速 において一定とし、Tのみを線速に反比例させてEFM プラス信号を記録した。また、 α , + β , =1.0で 一定となるβ、を決定した。なお、最終のオフパルス区 間β。のみを、線速が遅いほど長くなるよう変化させ た。このようなパルス分割方法では、図11のゲート発 生のタイミングの説明図において、基準クロック周期T に同期させて(一定の遅延を付加することはありう る)、τ₁ = 1 9 n s e c の固定長パルス一個 (Ga t e 1) とて。= 11 n s e c の固定長パルスをn-2個 (Gate2)発生させれば良く、さらに最終オフパル ス長を決めるGate3のみ線速に応じて変化させれば 良く、パルス発生回路を簡略化でき好ましい。さらに本 実施例においては、記録パワーPw=13.5mW、P e = 5 mW、Pb = 0.5 mWで一定としているため、 パルス発生回路は極めて簡便化できる。ととで、線速が 20 5 m/s以下では、 $\Sigma \alpha$, < 0. 47 nが満足されてい るため、熱ダメージは十分抑制されている。表-5に、 各線速において & 。を変化させた場合の、ジッタの値を まとめた。表中vは基準速度3.5m/sを表す。ピッ クアップの波長は637nm、NA=0.63である。 ジッタの値自体は実施例2のように、バルス分割方法を より柔軟に可変とした場合にくらべ、若干悪い値となる が、ほぼ10%未満の値が、1倍速から2.25倍速ま で得られている。ととで、2倍速でβ" 💂 = 0. 3、1 倍速で β = 0.6 (四角で囲まれた点) として、 β 。を線速に反比例させて変化させれば、1倍速から2倍 速の各線速で10%未満のジッタが得られることがわか る。さらに、本実施例においては、β。のマージンは少 ないもののβ。=0.2として一定にしても、1倍速か ら2.25倍速まで10%未満のジッタが得られる。と のようにして、線速によって可変できるバルス発生回路 を簡易化できる。また、あらかじめ記録媒体上に、凹凸 ピットもしくは変調された溝蛇行信号により、Pb、P e/Pw, Pw, τ。、τ、(β^L。,β^H。)を記 載すれば最適な記録条件がオーバーライト時の線速度に 40 応じて自動的に決定できる。

[0210] 【表5】

30

₽ m		ジッタ	(%)	
ш	2. 25倍速	2. 0倍速	1. 5倍速	1 倍速
0	10.2	11. 9	14.8	18.4
0. 1	9. 7	10.6	11.4	12.5
0. 2	9.8	8. 9	9. 0	10. D
0.3	11.2	9.5	8.4	8. 9
0.4	12.5	10.3	8. 2	8. 7
0.5	13.7	11.1	8.3	8. 7
0.6	> 1 3	> 1 3	8. 7	8. 7
0.7	> 1 3	> 1 3	> 1 3	9. 5

【0211】(実施例8)層構成を、下部保護層(Zn S)。(SiO,)。を膜厚215nm、記録層Ge 。.。。Sb。.。。Te。. 2。を19nm、上部保護層(Zn S) so (SiOz) zoを20nm、反射層Alo.sss T a...。 を200nmとした。線速3.5m/sで、パ ルス分割方法を $\alpha_1 = 0.5$ 、 $\alpha_c = 0.35$ 、 $\beta_a =$ 0. 5, Pw = 11mW, Pe = 6. 0mW, Pb = 60.5mWとし、基準クロック周期Tを変化させて最短 マーク長 (3Tマーク長) を0. 4μmから0. 25μ mまで変化させて記録を行った。3Tマークのマーク長 が0. 4μ mのときのT=38. $2nsec. 0. <math>2\mu$ mのときのT=19.1nsecである。記録レーザー 波長は637nm、NA=0.63である。この集束レ ーザー光はガウシアン分布を有しているために、中心部 の高温部分だけを利用して、光学的分解能以上に高密度 に記録することが可能である。記録部分を波長432n m、NA=0.6、パワー0.5mWである青色レーザ 一光で再生した。とのレーザー光は波長約860nmの レーザー光から非線形光学効果により発生されたもので ある。この層構成では、432nmにおいても変調度5 0%以上という大きな変調度が得られた。さらに、図2 8に、記録に用いた637nm, NA=0.63の光学 系で再生した場合と、432nm、NA=0.6の光学 系で再生した場合のジッタを、最短マーク長依存性とし て示した。測定においてはイコライザーの設定値を各測 定点において可能な限り最適化している。との記録媒体 では、青色レーザー光再生では、最短マーク長0.3 μ mでも13%未満の良好なジッタが得られていることが わかる。

【0212】(比較例6)実施例2(a1)の層構成に おいて、記録層をGeo.osSbo.osTeo.asとした。波

った。線速3.5m/sにおいて、m=n-1, $\alpha_1=$ 0. 4, $\alpha_s = 0$. 4, $\beta_n = 0$. 4, Pb = 0.5 m W、Pe=4.5mWで一定として、Pwのみを変化さ せて10回目までオーバーライト記録を行った。このと きのジッタの記録パワー依存性を図27(a)に示す。 図中、1writeとは未記録ディスクの初回記録を、 1DOWとは1回目のオーバーライトを、10DOWと は10回目のオーバーライトを指す。次に、Pw=8. 5 m Wで一定として、Р e のみを変化させて 1 0 回めま でオーバーライト記録を行った。このときのジッタの消 去パワー依存性を図27(b)に示す。いずれの場合 も、初回記録(lwrite)では良好なジッタ得られ るが1回でもオーバーライトするとジッタは急激に悪化 した。本比較例における記録層組成は、図3において直 線AよりTeリッチな組成であり、結晶化速度が遅いた めに十分な消去比が得られず、よって十分なオーバーラ イト特性が得られなかったと考えられる。

【0213】(実施例9及び比較例7)実施例2(a 1)の層構成において、表-6に示すように記録層組成 を変化させた。Ge。.。。Sb。.,,Te。.,zターゲットと GeとをコスパッタすることによりGe量を変化させた ものである。波長637nm、NA=0.63の光学系 を用い、m=n-1、Pb=0. 5mW、 $\beta_{\bullet}=0$. 5 として、α₁ 、α_c 、Pw, Peを変化させて10回オ ーバーライト後のジッタが最小となる条件を探した。各 記録層組成で得られた最小ジッタは表-6のようであっ た。Ge添加量が増えるにつれジッタが増加し、Geが 10原子%以上だと、2倍速でのジッタが14%と非常 に高くなってしまった。なお、本媒体を80℃80%R Hの条件下、加速試験を行ったところ、実施例9(a) に比べて実施例9(b)、(c)が若干、良好であっ 長637nm、NA=0.63の光学系で記録評価を行 50 た。すなわち、加速試験2000時間後に、加速試験前

に記録した信号を読み出したところ、実施例9(a)~ (c)のいずれの場合においても、ジッタは1%程度悪 化しているのみであった。また、実施例9(a)~ (c)の初期変調度は61~63%であり、2000時 間の加速試験後も58~59%の変調度が得られた。反*

*射率もほとんど全く変化していなかった。特に、実施例 9(b)、(c)では0.5%以内の増加であった。 [0214] 【表6】

76

		2 X U				
	記錄線速 (m/s)	α1.	αc	Pw	Рe	最小 ジッタ (%)
実施例?(a)	3. 5	0.7	0.35	13.5	6.0	6.0
Ge _{0.05} Sb _{0.73} Te _{0.22}	7. 0	0.5	0.4	13.5	7.0	8.1
実施例 9 (b)	3. 5	0.6	0.35	13.5	6. 5	6. 2
G e 0.067 S b 0.717 T e 0.216	7.0	0.4	0.4	13.0	6. 5	8. 2
実施例 9 (c)	3. 5	0, 4	0.3	13.5	6. 5	6.6
G e 0.098 S b 0.693 T e 0.209	7. 0	0.3	0.3	14.0	6. 5	9. 9
比較例 7	3.5	0.4	0.3	13.0	6. 5	8. 1
Ge _{0.115} Sb _{0.68} Te _{0.205}	7.0	0.3	0.3	14.0	8. 5	14.1

【0215】次に、Geo.osSbo.73Teo.zzターゲッ トとTaとをコスパッタすることにより、Taを添加し た。その結果、GeSbTeに対してTaを1~2原子 %添加したときに、最良のジッタが得られた。

【0216】(実施例10及び比較例8)実施例2(g 1)の層構成において、記録層を Inを添加したGeS bTeとした。InはGeSbTeターゲットにInS bTeをコスパッタして添加したものである。各記録層 組成は、実施例10(a)がGe。。。Sb。.74T e。、1、実施例10(b)がIn。、2、Ge。、4、Sb 30 としたディスクを、表-7の溝形状を有するポリカーボ 0.719 Teo.21、実施例10(c)がIno.051 Ge 0.044 Sbo.688 Teo.215 、比較例8がIno.118 G eo.o41 Sbo.617 Teo.224 である。それぞれの媒体 のジッタのパワー依存性を評価した結果を図29(a) (b) (c) (d) に示した。上段は記録線速3.5m /sの場合、下段は同7.0m/sの場合である。用い た光学系はいずれも637nm、NA=.63である。 線速3. $5 \,\mathrm{m/s}$ の場合は $\alpha_1 = 0$. 6、 $\alpha_c = 0$. 35、 β 。= 0、5とし、7、0 m/s の場合は α 1 = 0. 4、 $\alpha_s = 0$. 4、 $\beta_s = 0$. 5とした。Pb= O. 5mWで一定とした。Peは2通りの値で一定と し、Pwのみ変化させてジッタのPw依存性を測定し た。 In量が2~5原子%程度の添加でPwマージンが 大幅に改善された。しかし、10原子%を越すと、添加 しない場合よりかえってジッタが悪化した。また、オー バーライト1000回後のジッタは、実施例10(a) ~(c)では、両線速ともに10原子%未満であった が、比較例8では両線速ともに13%より高くなった。 【0217】<加速試験>実施例10(b)の媒体につ いて、80℃/80%RHの環境下で加速試験を行っ

た。2000時間まで加速試験を実施した。加速試験前 に記録した信号のジッタの悪化は1%程度に過ぎなかっ た。また、初期変調度は61%であり、2000時間の 加速試験後も57%の変調度が得られた。反射率もほと んど全く変化していなかった。2000時間後に未記録 部に新たに記録を行った場合のジッタの悪化は3%程度 であったが、実用上全く支障の無いレベルである。

【0218】(実施例11)実施例2(g1)の層構成 において、記録層を I no.o, Geo.o, Sbo.71 Teo.21 ネート樹脂基板上に成膜した。いずれも溝ピッチは0. 74μmである。

[0219]

【表7】

		·
	グループ深さ (nm)	グルーブ幅 (μm)
実施例11 (a)	2 7	0. 27
. (b)	2 7	0.33
(c)	2 7	0. 42
(d)	3 5	0. 27
(e)	3 5	0.33
(f)	3 5	0.42
(9)	3 5	0. 23
(h)	4 2	0. 27
(3)	4 2	0. 33
(3)	4 2	0.42
(4)	1 8	0. 27

【0220】ウォブルの変調方式としては、搬送波の周 期T, が基準データクロック周期T=38.2ナノ秒の 32倍である、2値位相変調とした。とこで位相変調ウ ォブルとは、図30に示すように、デジタルデータ信号 の0又は1に対応して、ウォブル波の位相をπだけ、ず らすものである。すなわち、周波数 $f_c = 1/T_s = 1$ /(32T)の無変調搬送波(余弦波もしくは正弦波) が、アドレス用のデジタルデータの0から1、あるいは ジタルデータO、1の切り替え周期T。はT。より低周 波で、T。はT。の整数分の1になっているので、位相 がπシフトしても、ウォブル波形は連続的に変化してい る。本変調方法の好ましい点は、ATIP (Absolute T ime in Pregroove) に用いられる周波数 (FM) 変調と 異なり、蛇行周波数が一定であり、かつ周期が32Tと いう高周波で変調しているために、ウォブルのクロック を参照してディスクの回転同期を確立するとともに、ウ ォブルのクロックに同期して直接データクロックを生成 位相を変化させるには、例えば図31にあるような、リ ング変調器を用いる。デジタルデータは、0、1に対応 して正負の電圧±Vを印可する。スタンパ原盤作成時 に、フォトレジスト露光用のレーザー光を、±V。の電 圧間で2値位相変調されたウォブル波形に従って半径方 向に蛇行させつつ露光する。このとき、リング変調機出

力波をEO変調器に印可することで、露光用ビームを蛇 行させることができる。 【0221】以下、少し詳細に説明する。図の、無変調

10 搬送波入力端子に周期 c o s (2 π f 。 t) なる信号 V ・cos(2πf_ct)が入力されると、入力トラン スの出力には V_* · cos $(2\pi f, t)$ と $-V_*$ · c $os(2\pi f, t)$ の二つの搬送波信号が現れる。デジ タルデータ入力が正(+V)であれば、D、、D、'が 導通し、搬送波V。・ $cos(2\pi f, t)$ はそのまま D₁ を通過し変調は出力端子に現れる。-V₂ · cos $(2\pi f, t)$ の搬送波はD, 'を経た後、出力側のト ランスにより反転されて V_* ・ $cos(2\pi f_c t)$ と なり、D、通過の出力と加え合わされてV、・cos 20 (2πf, t) の出力を得る。もし、デジタルデータ入

力が負(-V)、すなわちD、、D、'が導通になる と、 V_* ・ $cos(2\pi f, t)$ の信号はダイオードD 2 を介して出力側トランスの下側に導かれるので、変調 は出力端子では、これが反転して-V.・cos(2π f 。 t)となる。

【0222】一方、入力側トランスの出力で-V...・c os(2πf。t)であった搬送波はダイオードD;' を介して出力側トランスの同相入力に加わるため、その ままの極性で $(-V_w \cdot cos(2\pi f_c t)$ のまま) 30 変調波出力端子に現れる。従って、ダイオードD、並び κD_{s} の経路を通った搬送波は $-V_{s}$ · cos(2 π f、t)となって合成され、変調は出力端子に現れる。 リング変調器の場合には、デジタルデータ入力が正か負 かによって出力端子に V_* ・ $cos(2\pi f_ct)$ か- V_{\star} · cos $(2\pi f, t)$ を出力することになる。こ のようにして変調されたウォブル波形が、EO変調器に 入力され、露光用ビームを蛇行させることができる。本 実施例ではウォブル振幅はすべて60nm(peakto-peak値)とした。溝内にのみ記録を行う媒体 1から0の切り替えで、ちょうど位相 π だけずれる。デ 40 の場合、記録再生光波長 λ = 637 n m、基板の屈折率 n=1.56に対して、溝深さの好ましい範囲は、下限 n)=40.8nmである。本媒体の評価には、波長6 37nm、NA=0.63の光学系を用いた。

【0223】実施例2と同じく、m=n-1、 $\alpha_1+\beta$ $\alpha_{i-1} = 1.0$ (2 \leq i \leq m)、 $\alpha_i = \alpha_i = -$ 定(2 \leq i ≤m)とした記録パルス分割方法で、線速3.5m/ s $\alpha_i = 0.5$, $\alpha_i = 0.3$, $\beta_i = 0.5$ 0.5、Pw=13mW、Pe=6mWとし、線速7m できることである。このようにデジタルデータの変調で 50 \diagup s においては、 $lpha_1$ = 0 . 4 . $lpha_c$ = 0 . 3 5 . 8 $_{f s}$

(41)

=0.5、Pw=14mW、Pe=7mWとした。ま ず、溝内に線速3.5m/sにおいて記録を行い、Rt op及び変調度を測定した。また、3.5m/s及び7 m/sで記録信号のジッタを測定した。結果を表-8に 示す。

[0224] 【表8】

		
	ジッタ (%) 3. 5m/s	ジッタ (%) 7 m/s
実施例11(a)	6. 49	7.80
. (b)	5. 97	7. 62
(c)	5. 52	7. 35
(d)	7. 26	8. 42
(e)	6. 85	8. 39
(1)	6. 05	7.84
(9)	7. 70	8. 90
(h)	9. 14	10.49
(4)	7. 66	10.01
(3)	6. 59	9. 01
(是)	拠定不	्व

【0225】まず、実施例11(k)は、深さ18nm と非常に浅い溝を有するが、ブッシュブル信号がほとん 40 ど検出できず、トラッキングサーボをかけることができ なかった。また、このような浅い溝を均一に形成するこ とは、スタンパ作成上も非常に難しく、実際上、トラッ キングサーボ信号に非常に大きなむらが観測された。図 32(a)(b)に変調度とRtopの溝形状依存性を 示した。実施例11(h)~(j)は、深さ42nmの 溝を有するが、深さ27nmの場合に比べて反射率が大 幅に低下し、5%以上低くなって好ましくない。変調度 は、特に溝が細い場合に低下し、幅0.23μmでは、 深さ35nmでも、変調度低下が著しかった。なお、本 50 終端は58.54mmである。チャネルビット長は0.

実施例は層構成は同じとしたが、もし、深さ42nmの 場合に、反射率低下を補うために、反射率の高い層構成 にすると、変調度低下は一層顕著になる。すなわち、深 さ42 n mの溝は、溝内用記録には適さない。溝深さ4 Ο n m以上では、溝幅が 0. 3 μ m未満のときに、ウォ ブル信号が記録データ信号へ著しく漏れ込む。溝幅が 3 μ m以上のときに比べ、線速3.5 m/s ではジ ッタが1~2%以上悪化し、線速7m/sでは2~3% も悪化する。

80

10 【0226】(実施例12)層構成を、下部保護層(Z nS)。(SiOz)z。を膜厚65nm、記録層Ge 。。。, S b。, , , T e。, , , を 1 6 n m、上部保護層 (Z n S) ** (SiO,) ** を20nm、第1反射層AI 。. ,,, Ta..., を膜厚40nm、第2反射層Agを膜 厚70 n m とした。下部保護層から第1反射層までは真 空を解除することなくスパッタ法で作成し、第1反射層 を成膜後大気解放し数分放置後、再び真空にてスパッタ 法により第2反射層を成膜した。第2反射層成膜後、ス ピンコート法により紫外線硬化樹脂を、オーバーコート 20 層として4μm積層した。出来たディスクは2枚をオー バーコート層が向かい合うように貼り合わせた。第1反 射層の成膜は到達真空度4×10-4Pa以下、Ar圧 0.55 Paで行った。体積抵抗率は55 n Ω·mであ った。酸素、窒素等の不純物はX線励起光電子分光での 検出感度以下で、全部併せてもほぼ1原子%未満である と見なせた。第2反射層の成膜は到達真空度4×10⁻⁴ Pa以下、Ar圧O. 35Paで行った。体積抵抗率は 32nΩ·mであった。酸素、窒素等の不純物はX線励 起光電子分光での検出感度以下で、全部併せてもほぼ1 30 原子%未満であると見なせた。波長637nm、NA 0.60の光学系を使用して、線速3.5m/s、α1 =0.4、 $\alpha_c = 0.35$ 、 $\beta_{\bullet} = 0.5$ なるパルス分 割方法を用いて10回オーバーライト後のジッタを測定 したところ、Pw=11mW, Pe=6. 0mW, Pb= 0.5mWで最小ジッタ6.5%を得た。この媒体 を、80℃、80%RHの高温高湿下に500時間放置 した後、同様に記録を行ったところ全く劣化がみられな

【0227】(実施例13)溝ピッチ0.74μm、溝 幅0.3μm、溝深さ40nmの、ウォブルを有する螺 旋状の溝を形成したスタンパを作成し、これをもとに、 直径120mm、厚さ0.6mmのポリカーボネート樹 脂基板を射出成形によって形成した。表-9に示すよう に、半径22.5mmから58.5mmまでの36mm を記録領域とし、記録領域を255バンド(ゾーン)に 分割した。各バンドには191トラックが含まれる。各 バンドの終端がちょうど191トラック目になるように バンド幅を設定しているので、各バンド幅は正確に36 /255とはなっていない。このため、記録領域の最外 * CA V回転中の各バンドのウォブルから再生される搬送 波の周期を 1 / 9 倍して、各バンドにおけるデータ基準 クロックT。を生成させ、該クロックに基づいて EFM プラス変調されたデータの記録を行う。再生するときに は、以下のように、記録されたデータから生成されるデータ基準クロック周波数が 2 6 . 16 MH z となるよう

は、以下のように、記録されたデータから生成されるデータ基準クロック周波数が26.16MHzとなるように回転同期を達成すれば、各ゾーンでのチャネルビット 長のばらつきは±1%未満となり、実質的にCLVモードでの再生を支障なく行うことができる。

【0229】すなわち、上記基準クロック26.16M Hz (T=38.23nsec)を水晶発振器により発生させ、この位相と、記録されたデータから生成されるデータ基準クロックと位相とを比較し、両者が同期するよう、通常のPLL (PhaseLocked Loop)制御方式により回転速度を微調整する。このようなPLL制御による回転制御は、現在DVD-ROMの再生で行われており、その方式をそのまま適用できる点で有用である。

[0230]

【表9】

 133μ mとし、線速3. 49m/sにおいて基準クロック26. 16MHz(T=38.23nsec)が得られる。ウォブルの周期は各バンドの中心半径においてチャネルビット長の9倍となるように設定した。その物理的な周期は 1.2μ mである。各バンドの中心半径におけるチャネルビット長総数、及びウォブルの総数をまず計算し、同一バンド内では1周あたりに含まれるチャネルビット数、あるいはウォブルの数が一定となるようにする。

【0228】表-9に示すように、バンド始終端で、± 10 1%の精度で、チャネルビット数あるいはウォブルの数が一定である。すなわち、ZCAV方式でCLV方式と変わりない線密度一定の記録ができ、再生専用DVDの規格を十分満足する。以上の前提から、各バンド中心半径において3.49m/sの線速度が得られるようにディスクを回転させたときに、ウォブル周期は、ちょうどDVDデータの基準クロック周期T=38.23nsecの9倍となる。この媒体を、表-9の最内周バンドのバンド中心半径において線速度が3.49m/sになるように回転させ、ZCAV方式の媒体として使用する。*20

ルド 中心 パンド中心 ルド 中心 バンド始端とバンド中心での パンド終端とパンド中心での IOF 終 Band 半译 (mm) での紹介 チャネルビット長の差 の半径 の円周長 チャネルビット長の差 端のけ 開設級 桃汁数 医 芳 (mm) 地第477 经制部 79 No. ルド 始端 ルド 終端 (nm) (mm) (%) (MHz) 0 22.5000 22.6413 22.57067 141.8157 1063530 133, 7618 0, 4285 132, 9268 | -0, 4085 -0. 305¥ 0. 321% 190 2, 9067 22.6413 22.7827 22, 71201 142. 70377 1070010 132, 9518 | -0. 3815 -0. 286% 133, 7818 0. 4484 0. 336% 2, 9249 132, 8765 | -0, 4568 2 22, 7827 22, 9240 22, 85335 143, 59163 1077300 -0. 343% | 133. 7008 | 0. 3675 0.276% 572 2.9431 3 22.9240 23.0654 22. 99489 | 144. 4799 | 1083780 | 132. 9014 | -0. 4319 -0.324¥ 133. 7208 0. 3875 0. 291% 763 2.9613 23. 13603 23, 2067 145, 36796 1090260 132, 926 -0, 4073 -0. 305% 133, 7406 0, 4073 0. 305¥ 954 2.9795 146, 25603 1096740 132, 9504 -0, 3829 5 23, 2067 23, 3480 23, 27737 -0. 287% 1145 2, 9977 133, 7601 0, 4268 0.320% 6 23. 3480 23. 4894 23. 41871 147. 14409 | 1103220 | 132. 9744 | -0. 3589 -0. 269% 183. 7794 0. 4461 0. 335% 1338 3, 0159 23, 4894 23. 6307 23. 56005 148. 03216 1110510 132. 9012 -0. 4321 -0. 324% 133, 7009 0.3676 0. 276% 1527 3 0341 8 23 6307 23 7721 23 70139 148 92023 1116990 132 9253 -0 4080 -0. 306% | 133. 7203 | 0. 3870 0. 290% 1718 3.0523 9 23. 7721 23. 9134 23. 84273 149. 80829 1123470 132. 949 -0. 3843 -0. 288% 133. 7395 0. 4062 1909 3.0705 0. 305% 10 23.9134 24.0547 23.98407 150.69636 1129950 132.9725 -0.3608 -0. 271% | 133. 7585 | 0. 4252 0.319% 2100 3.0887 100 36.6340 36.7753 36.70467 230.62224 1729350 133.101 -0.2323 -0. 174% | 133. B145 | 0. 2812 0. 211% 19290 4. 7269 101 36, 7753 36, 9167 | 36. 84601 | 231. 51031 | 1736640 | 133. 0536 | -0. 2797 -0. 210X 133, 565 0, 2317 D. 174% 102 36. 9167 37. 0580 36. 98735 232. 39837 | 1743120 | 133. 0685 | -0. 2646 -0.199% 133, 578 0, 2447 0.183% 19672 4. 7633

19481 4. 7451 103 37. 0580 37. 1994 37. 12869 233. 28844 1749600 133. 0832 -0. 2501 -0. 188% 133, 5908 0, 2575 19863 4. 7815 0. 193% 104 37. 1994 37. 3407 37. 27003 234. 1745 1756080 133. 0978 -0. 2355 -0.177% 133. 6036 | 0. 2703 20054 4. 7997 0. 203X 235. 06257 1763370 105 37, 3407 37, 4820 | 37, 41137 | 133, 0512 -0, 2821 -0. 212% 133, 5548 0. 2215 0.166% 20245 4.8179 106 37, 4820 37, 8234 37, 55271 235, 95064 1789850 133, 0659 -0, 2674 -0. 201% | 133. 5676 | 0. 2343 20436 4, 8361 0.176% 107 | 37. 6234 | 37. 7647 | 37. 69405 | 236. 8387 1776330 | 133, 0804 | -0, 2529 -0. 190% 133, 5803 0, 2470 0.185% 20627 4, 8543 108 37, 7647 37, 9061 37. 83539 237, 72677 1782810 133. 0943 -0. 2385 -0.179% 133.5929 20818 4.8725 0, 2596 0. 195% 37. 0474 37. 97673 238. 61483 1789290 133. 1091 -0. 2242 -0. 168% 133. 6054 0. 2721 109 37, 9061 0. 204% 21009 4 8907 110 38.0474 38.1887 38.11807 239.5029 1796580 133.0633 -0.2700 -0.203% 133.5578 0.2243 0. 168% 21200 4. 9089

[0231]

【表10】

84

					数:	- 8 (つつ8	*)						
200	50. 7680	50. 9093	50. 83867	319. 42878	2395980	133, 1333	-0. 2000	-0. 150%	133, 504	0. 1707	0. 128%	38390	6. 547
201	50. 9093	51. 0507	50. 98001	320. 31685	2402460	183, 1439	-0. 1894	-0. 142X	133. 5135	0.1802	0. 135X	38581	6. 5652
202	51. 0507	51. 1920	51. 12135	321. 20492	2408940	133, 1544	-0. 1789	-0. 134%	133, 523	0. 1897	0. 142X	38772	6. 5834
203	51. 1920	51. 8334	51. 28269	322. 09298	2415420	133, 1648	-0. 1685	-0. 126%	133. 5325	0.1992	0. 149%	38963	6.6016
204	51. 3334	51. 4747	51. 40403	322. 98105	2422710	133, 1307	-0. 2026	-0. 152¥	183. 4972	0. 1639	0. 123%	39154	6. 6198
205	51. 4747	51. 6160	51. 54537	323. 86911	2429190	133, 1411	-0. 1922	-0. 144X	133, 5067	0. 1734	0.130%	39345	6. 636
206	51. 6160	51. 7574	51. 68671	324. 7571B	2435670	133, 1515	-0. 1818	-0. 136%	133, 5161	0. 1828	0. 137%	39536	6. 6563
207	5L 7574	51. 8987	51. 82805	325, 64524	2442150	133. 1618	-0. 1715	-0. 129%	133. 5255	0. 1922	0. 144K	39727	6. 6745
208	51. 8987	52. 0401	51. 96939	326. 53331	2448630	133, 1721	-0. 1612	-0. 121X	133. 5348	0. 2015	0.151%	39918	6. 6927
209	52. 0401	52, 1814	52. 11073	327. 42197	2455920	133. 1384	-0. 1949	-0. 146%	133.5	0. 1667	0. 125%	40109	6.7108
510	52. 1814	52. 3227	52, 25207	32B. 30944	2462400	133, 1487	-0. 1846	-0. 138%	133, 5094	0.1761	0. 132%	40300	6. 7291
1		*	·	•							· · · · · · · · · · · · · · · · · · ·		
	T												

245	57. 1283	57. 2696	57. 19897	359. 39173	2695680	133, 1566	-0. 1767	-0. 132%	138. 4861	0. 1528	0. 115%	46985	7. 3661
246	57. 2698	57.4110	57. 34031	360. 27979	2702160	133, 168	-0. 1673	-0. 125%	133, 4946	0. 1613	0. 121%	47176	7. 3843
247	57. 4110	57. 5523	57. 48165	361. 6786	2706640	133, 1753	-0. 1580	-0.119%	133, 5031	0. 1695	0. 127%	47367	7. 4025
248	57. 5523	57. 6937	57. 62299	362, 05592	2715120	133. 1845	-0. 1489	-0.112%	133. 5116	0. 1783	0. 134%	47553	7.4207
249	57. 6937	57. 8350	57, 76433	362. 94399	2722410	133, 1541	-0. 1792	-0. 134 %	133. 4803	0. 1470	0. 110%	47749	7. 4389
250	57. 8350	57. 9763.	57. 90567	363. 83205	2728890	133, 1633	-0. 1700	-0. 127%	133. 4887	0. 1554	0. 117%	47940	7. 4571
251	57. 9763	58. 1177	58. 04701	364. 72012	2735370	133, 1725	-0. 1608	-0. 121%	133, 4972	0. 1839	0. 123%	48131	7. 4753
252	58. 1177	58. 2590	58. 16835	365. 60819	2741850	133, 1817	-0. 1516	-0. 114%	133, 5056	0.1723	0.129%	48322	7. 4935
253	58, 2590	58. 4004	58. 32969	366, 49625	2748320	133, 1908	-0. 1425	-0. 107%	133. 5139	0. 1806	0. 135%	48513	7. 5117
254	58. 4004	58. 5417	58. 47103	367. 38432	2755620	133. 1607	-0.1726	-0. 129%	133. 483	0.1497	0.112%	48704	7. 5299

【0232】(実施例14)実施例2(a1)の層構成 において、反射層をAl.,,,, Ta,,,,, とした。体積 20 抵抗率は220nΩ・mであった。膜厚200n mから 400 n mまで変えて複数のサンプルを作成し、表-3 の測定と同様に、それぞれに図10(a)の中で最適な バルス分割方法を用いて、ジッタ測定を行った。膜厚3 00nm前後で12%という最良のジッタを得た。それ より反射層を厚くしても、薄くしてもさらに悪いジッタ しか得られなかった。

【0233】(実施例15)実施例11(a)の層構成 において、上部保護層の膜厚を23nmとした。本媒体 に、溝内記録を行った。波長405nm、NA=0.6 5の光学系を用い、ほぼ円形でスポット径が約0.5μ m (ガウシアンビームの1/e'強度における径)のビ ームを生成し、0.6mm厚の基板を介して記録再生を 行った。線速度4.86m/sで、最短マーク(3Tマ ーク) の長さを0. 25μmとしたEFMプラス変調信 号を記録した。実施例2と同様の記録パルス分割方法 $\sigma_{1} = n - 1$, $\alpha_{1} = 0$. 5, $\alpha_{2} = 0$. 38, $\beta_{2} = 0$ = 0.67 とし、Pw = 9.5 m W, Pb = 0.5 m W, Pe=4. 0mWにて10回オーバーライトを行っ たところ、ジッタは10%であった。青色レーザーでの 記録再生では、実施例7の場合に比べても、より髙品質 の記録が可能であることがわかった。また、現行の赤色 レーザーに合わせて設計された媒体でも、そのまま青色 レーザーで記録再生して高密度化を図ることができる。 【0234】(実施例16)実施例2(a1)の層構成 において、記録層をGa。。。,Ge。。。,Sb。。。,Te。.ンュ とした媒体を用意した。初期化も実施例2(a1)と同 様に行った。測定には、波長637nm、NA=0.6 3の光学系を用いた。最短マーク3Tの長さを0.4 μ mとしたEFMプラス変調信号を、線速度3.5m/s 50 を密着させた。初期化は、ガラス基板を介して、500

で行った。実施例2と同様の記録パルスストラテジーで m = n - 1, $\alpha_i + \beta_{i-1} = 1$. 0 ($2 \le i \le m$), α , = α, = 一定 (2 ≦ i ≦ m) とし、α, = 0.5、α Pe=6.0mW, Pb=0.5mW EU, EVイト特性を評価した。初回記録(非オーバーライト)、 10回オーバーライト、100回オーバーライト、10 00回オーバーライトで、それぞれジッタは6.9%、 6. 7%、7. 0%、7. 3%と良好であった。さら に、線速度7.0m/sで同様に、 $\alpha_1 = 0.4$ 、 α_s $= 0.35, \beta_{m} = 0.5$ \ge 0.5 \ge 0.530 Pe=7.0mW, Pb=0.5mW EU, EVイト特性を評価した。初回記録(非オーバーライト)、 10回オーバーライト、100回オーバーライト、10 00回オーバーライトで、それぞれジッタは7.4%、 7. 7%、8. 0%、8. 5%と良好であった。変調度 はいずれも55~60%の値が得られた。本媒体を80 ℃/80%RHの加速試験環境下に1000時間放置し たところ、試験前に記録を行った。加速試験前に記録し た信号のジッタの悪化は1%未満であった。また、変調 度は、52~57%の値が得られた。

【0235】(実施例17)実施例2と同様に、0.6 mm厚さのポリカーボネート樹脂基板にピッチ0.74 μmのウォブル溝を形成し、図5(b)のごとく、反射 層、第2保護層、記録層、第1保護層の順に形成した。 反射層A l ..., Ta..., は膜厚165nm、第2保 護層(ZnS)。。(SiO,),。は膜厚20nm、記録 層In。。。。Ge。。。。Sb。、、。Te。、、、を膜厚16nm、 第1保護層(ZnS)。。(SiO.)」。を膜厚68n m、それぞれスパッタリング法により成膜した。そのの ち、第1保護層に対向して、0.6mm厚さのガラス板

mW程度のレーザー光を線速5m/sで照射し、行っ た。このガラス基板を介して、波長637nm、NA= 0.6の光学系を用いてレーザー光を記録層に照射し記 録再生を行った。記録は、レーザー入射側から見て凹凸 の遠い側に行った。実施例2における溝内に相当する。 最短マーク3Tの長さを0.4μmとしたEFMプラス 変調信号を、線速度3.5m/sで行った。実施例2と 同様の記録パルスストラテジーでm=n-1、 $\alpha_1+\beta$ $\alpha_{i-1} = 1.0 (2 \le i \le m), \alpha_{i} = \alpha_{i} = -$ 定(2 \le \tag{2.5} $i \leq m$) & U, $\alpha_1 = 0$. 9, $\alpha_c = 0$. 35, $\beta_m = 10$ 0.5 LU, Pw = 12.0 mW, Pe = 6.0 mW, Pb=0.5mWとし、オーバーライト特性を評価し た。10回オーバーライト後で、ジッタは10.5%、 変調度は61%であった。さらに、線速度7.0m/s で同様に、 $\alpha_1 = 0.55$ 、 $\alpha_2 = 0.40$ 、 $\beta_1 =$ 0.5とし、Pw=13.0mW、Pe=5.5mW、 Pb=0. 5mWとし、オーバーライト特性を評価し た。10回オーバーライト後で、ジッタは11.2%、 変調度は61%であった。

[0236]

【発明の効果】本発明によれば、高速でオーバーライト することができ、マークエッジのジッタが小さい、高密 度のマーク長変調記録を行うことができ、形成されたマ ークの経時安定性が非常に良好な光学的情報記録用媒体 が得られる。また、適切な記録層組成と層構成を選ぶて とで、再生専用媒体との再生互換性に優れ、且つ、繰返 しオーバーライト耐久性の高い相変化型光記録媒体が得 られる。より具体的には、いわゆるDVDディスクと再 生互換を有し、その標準再生速度3.5m/sから倍速 である7m/sを含む広い線速範囲で、1ビームオーバ 30 ーライト可能であり、かつ1万回以上オーバーライトし ても劣化を示さない、書き換え型DVDディスクに使用 可能な光学的情報記録用媒体及び光記録方法が提供でき る。また、本発明の媒体は線速マージンが広いため、C AV方式やZCAV方式など、角速度一定で媒体を回転 させ記録を行う場合にも、媒体の内外周の線速差による 記録特性差の問題を克服できる。CAV方式を採用すれ ば、半径位置ごとにディスク回転速度を変更する必要が なく、アクセス時間の短縮がはかれる。

【図面の簡単な説明】

【図1】非晶質マーク形状の例を示す図。

【図2】本発明の一例の媒体に記録を行った場合の反射 率変化を示す図。

【図3】本発明の媒体の記録層の組成範囲を示すGeS b T e 三元状態図。

【図4】従来のGeSbTe組成の範囲を示すGeSb Te三元状態図。

【図5】本発明の媒体の層構成の一例を示す模式図。

【図6】信号強度と信号振幅、変調度の関係を示すため の信号波形図。

【図7】反射率の第1保護層膜厚依存性を説明するため

【図8】パワー3値変調記録方式の、パルス分割方法の ―例を示す図。

【図9】記録層の温度の時間変化を説明するための模式

【図10】マーク長変調記録に適したパワー3値変調記 録方式の、バルス分割方法の一例を示す図。

【図11】図10のバルス分割方法を実現するための、

3種のゲート発生回路のタイミングを説明する概念図。

【図12】実施例1及び比較例1におけるジッターの再 生光パワー依存性を示すグラフ。

【図13】実施例1におけるジッタの記録パルス分割方 法依存性を示すグラフ。

【図14】実施例1におけるジッタの記録パルス分割方 法依存性を示すグラフ。

【図15】実施例2におけるジッター、反射率及び変調 度の記録パワー依存性を示すグラフ。

【図16】実施例2におけるジッター、反射率及び変調 20 度の、繰返しオーバーライト回数依存性を示すグラフ。

【図17】実施例2(g1)及び実施例2(d2)にお けるジッターのマーク長依存性を示すグラフ。

【図18】実施例2におけるジッターの基板のチルト角 依存性を示すグラフ。

【図19】実施例4における10回オーバーライト後の ジッターの α_1 及び α_c 依存性を示すグラフ。

【図20】実施例4におけるジッター、R t o p 及び変 調度の繰返しオーバーライト回数依存性を示すグラフ。

【図21】(a)実施例6におけるジッターのパルス分 割方法依存性、(b)ジッターの書込みパワー依存性、 並びに(c)10回オーバーライト後のRtop及び変 調度の書込みパワー依存性を示すグラフ。

【図22】実施例6におけるジッター、Rtop及び変 調度の繰返しオーバーライト回数依存性を示すグラフ。

【図23】実施例6におけるジッターのマーク長依存性 を示すグラフ。

【図24】(a)比較例2におけるジッターのパルス分 割方法依存性、(b)ジッターの書込みパワー依存性、 並びに(c)10回オーバーライト後のRtop及び変 40 調度の書込みパワー依存性を示すグラフ。

【図25】比較例3で用いた記録方法のバルス分割方法 を示す図。

【図26】比較例3におけるジッターのマーク長依存性 及び線速依存性を示すグラフ。

【図27】比較例6におけるジッターのPw及びPe依 存性を示すグラフ。

【図28】実施例8におけるジッターの最短マーク長依 存性を示すグラフ。

【図29】実施例10及び比較例8におけるジッターの 50 Pw依存性を示すグラフ。

のグラフ。

【図30】デジタルデータ信号とウォブル波形の関係を説明する図。

【図31】デジタルデータ信号によりウォブル波形を変*

*調させる機構を説明する図。

【図32】実施例11における変調度とRtopの溝幅 依存性を示すグラフ。

【図1】

マーク長依存性
14
12
10
8
6
6
4
2
0.3 0.35 0.4 0.45 0.5 0.55
Mark length (μm)

[図23]

【図10】

【図11】

【図12】

[図13]

(a)3.5m/s · m=r-1 Pw=12.5mW Pe=6.0mW Pb=0.5mW \$\beta\$ m=0.5

0.30 0.4 0.5 0.6 0.7 0.8 0.9 0.657.

Jitter (%)

(b)3.5m/s m=n-2 Pw=13.5mW Pe=6.5mW Pb=0.5mW /3 m=0.7

[図14]

【図15】

[図16]

【図18】

【図20】

【図21】

【図22】

【図24】

[図25]

【図26】

[図27]

【図29】

[図30]

【図31】

【図32】

GG28 KK03 KK05 LL01

フロントページの続き

(51)Int.Cl.	7	識別記号	FΙ				Ĩ.	-42-}	'(参考)
G11B		5 3 8	G11B	7/24		538	3 E		
	,					538	8 F		
		5 6 1				56	1 M		
		5 6 3				56	3 A		
B 4 1 M	5/26		C01G	17/00					
C01G	•		G11B	7/00		63	1 A		
G11B	•	6 3 1	B 4 1 M	•		0 0	X		
GIID	7/00	0.3 1	Dirim	3/20			2.		
(72)発明者	堀江 通和		F ターム (参考)	2H111 EA	.04 EA1.2	EA23	EA31	EA32
(. =), = ,		市青葉区鴨志田町1000番地				37 EA40			
		会社横浜総合研究所内			E/	12 FA14	FA23	FA39	FB04
		A ELECTRICATION I				05 FB06			
						15 FB16			
						22 FB23			
					- "	30	1021		1027
					5D029 JA		7617	1 41 2	1.410
						101 JB33 107 LB11			
						17 WA02			
						33 WB11		WC01	WC04
						:05 WD11			
					5D090 A	O1 BB05	CC02	CC14	DDO2
					Ef	05 FF15	FF25	GG03	GG07

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)