Chapter 4: Continuity

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 4.1. Suppose f is a real function define on \mathbb{R}^1 which satisfies

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0$$

for every $x \in \mathbb{R}^1$. Does this imply that f is continuous?

Proof. $\lim_{h\to 0} [f(x+h)-f(x-h)] = 0$ holds if f is continuous. But the converse of this statement and is not true. For example, define $f: \mathbb{R}^1 \to \mathbb{R}^1$ by

$$f(x) = \begin{cases} 1 & (x = 0), \\ 0 & (x \neq 0). \end{cases}$$

f is not continuous at x = 0 but

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0$$

for any $x \in \mathbb{R}^1$. (The identity holds for $x \neq 0$ since f is continuous on $\mathbb{R}^1 - \{0\}$. Besides, $\lim_{h\to 0} [f(0+h) - f(0-h)] = \lim_{h\to 0} [0-0] = 0$.) \square

Exercise 4.2. If f is a continuous mapping of a metric space X into a metric space Y, prove that $f(\overline{E}) \subseteq \overline{f(E)}$ for every set $E \subseteq X$. $(\overline{E}$ denotes the closure of E.) Show, by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.

Proof.

(1) Since f is continuous and $\overline{f(E)}$ is closed, $f^{-1}(\overline{f(E)})$ is closed. Hence,

$$f^{-1}(\overline{f(E)}) \supseteq f^{-1}(f(E))$$
 (Monotonicity of f^{-1})
 $\supseteq E$, (Note in Theorem 4.14)
 $\overline{E} \subseteq f^{-1}(\overline{f(E)})$, (Monotonicity of closure)
 $f(\overline{E}) \subseteq f(f^{-1}(\overline{f(E)}))$ (Monotonicity of f)
 $\subseteq \overline{f(E)}$. (Note in Theorem 4.14)

(2) Let $f:(0,\infty)\to\mathbb{R}$ be a continuous function defined by

$$f(x) = \frac{1}{x}.$$

Consider $E = \mathbb{Z}^+ \subseteq (0, \infty)$. Then $f(E) = \left\{ \frac{1}{n} : n \in \mathbb{Z}^+ \right\}$, and thus

$$f(\overline{E}) = \left\{ \frac{1}{n} : n \in \mathbb{Z}^+ \right\}.$$

$$\overline{f(E)} = \left\{ \frac{1}{n} : n \in \mathbb{Z}^+ \right\} \bigcup \{0\}.$$

Supplement (Inverse image).

(1) $E \subseteq f^{-1}[f(E)]$ for $E \subseteq X$.

$$\forall\,x\in E\Longrightarrow f(x)\in f(E)$$

$$\Longleftrightarrow x\in f^{-1}[f(E)]. \qquad \text{(Definition of the inverse image)}$$

(2) $f[f^{-1}(E)] \subseteq E \text{ for } E \subseteq Y.$

$$\forall\,y\in f[f^{-1}(E)]\Longleftrightarrow\exists\,x\in f^{-1}(E)\text{ such that }y=f(x)$$

$$\Longleftrightarrow\exists\,x,f(x)\in E\text{ such that }y=f(x)$$

$$\Longrightarrow\exists\,x,y=f(x)\in E.$$

Supplement (Continuity). Let f be a map from a topological space on X to a topological space on Y. Then, the following statements are equivalent:

- (1) f is continuous: For each $x \in X$ and every neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.
- (2) For every open set O in Y, the inverse image $f^{-1}(O)$ is open in X.
- (3) For every closed set C in Y, the inverse image $f^{-1}(C)$ is closed in X.
- (4) $f(A)^{\circ} \subseteq f(A^{\circ})$ for every subset A of X.
- (5) $f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$ for every subset B of Y.
- (6) $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A of X.
- (7) $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for every subset B of Y.

Exercise 4.3. Let f be a continuous real function on a metric space X. Let Z(f) (the zero set of f) be the set of all $p \in X$ at which f(p) = 0. Prove that Z(f) is closed.

Proof (Corollary to Theorem 4.8). Since f is continuous, $f^{-1}(\{0\}) = Z(f)$ is closed in X for a closed subset $\{0\}$ in \mathbb{R}^1 . \square

Denote the complement of any set E by \widetilde{E} .

Proof (Theorem 4.8). Consider the complement of Z(f) in X,

$$\widetilde{Z(f)} = \{x \in X : f(x) \neq 0\}$$
$$= f^{-1}((-\infty, 0) \cup (0, \infty)).$$

Since f is continuous, $f^{-1}((-\infty,0)\cup(0,\infty))=\widetilde{Z(f)}$ is open in X for a open subset $(-\infty,0)\cup(0,\infty)$ in \mathbb{R}^1 . \square

Proof (Definition 2.18(d)). Given any limit point p of Z(f). Show that f(p) = 0 or $p \in Z(f)$. Since f is continuous, given any $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - f(p)| < \varepsilon$ for all $x \in X$ for which $d_X(x, p) < \delta$. Since p is a limit point of Z(f), for such $\delta > 0$ we have a point $q \neq p$ such that $q \in Z(f)$, or f(q) = 0. So $|f(p)| < \varepsilon$ for any $\varepsilon > 0$. f(p) = 0. \square

Proof (Definition 2.18(f)). Consider the complement of Z(f) in X,

$$\widetilde{Z(f)} = \{x \in X : f(x) \neq 0\} = \{f > 0\} \cup \{f < 0\}$$

where $\{f>0\}=\{x\in X: f(x)>0\}$ and $\{f<0\}=\{x\in X: f(x)<0\}$. It suffices to show $\{f>0\}$ is open. $(\{f<0\}\text{ is similar.})$ Given any point p of $\{f>0\}$ or f(p)>0. Want to show p is an interior point of $\{f>0\}$. Since f is continuous, given any $\varepsilon=\frac{f(p)}{2}>0$ there exists a $\delta>0$ such that $|f(x)-f(p)|<\frac{f(p)}{2}$ for all $x\in X$ for which $d_X(x,p)<\delta$. For such x with $d_X(x,p)<\delta$ we have

$$\frac{1}{2}f(p) < f(x) < \frac{3}{2}f(p).$$

That is, $N = \{x : d_X(x, p) < \delta\}$ is a neighborhood p such that $N \subseteq \{f > 0\}$. \square

Exercise 4.4. Let f and g be continuous mappings of a metric space X into a metric space Y, and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) = f(p) for all $p \in E$, prove that g(p) = f(p) for all $p \in X$. (In other words, a continuous mapping is determined by its values on a dense subset of its domain.)

Proof.

- (1) Show that f(E) is dense in f(X). It suffices to show that every point $y \in f(X) f(E)$ is a limit point of f(E). Since $y \in f(X) f(E)$, there exists a point $x \in X E$ such that y = f(x). Since E is dense in X, there exists a sequence $\{x_n\}$ in E such that $x_n \to x$ as $n \to \infty$. Let $y_n = f(x_n) \in f(E)$. Take limit and use the continuity of $f, y_n \to y$ as $n \to \infty$, or y is a limit point of f(E).
- (2) Show that g(p) = f(p) for all $p \in X$ if g(p) = f(p) for all $p \in E$. It suffices to show g(p) = f(p) for all $p \in X E$. Given any $p \in X E$, there exists a sequence $\{p_n\}$ in E such that $p_n \to p$ as $n \to \infty$. Notice that $g(p_n) = f(p_n)$ by the assumption. Take limit and use the continuity of f and g, g(p) = f(p) for $p \in X E$.

Exercise 4.5. If f is a real continuous function defined on a closed set $E \subseteq \mathbb{R}^1$, prove that there exist continuous real function g on \mathbb{R}^1 such that g(x) = f(x) for all $x \in E$. (Such functions g are called **continuous extensions** of f from E to \mathbb{R}^1 .) Show that the result becomes false if the word "closed" is omitted. Extend the result to vector valued functions. (Hint: Let the graph of g be a straight line on each of the segments which constitute the complement of E (compare Exercise 2.29). The result remains true if \mathbb{R}^1 is replaced by any metric space, but the proof is not so simple.)

Proof.

- (1) Every open set in \mathbb{R}^1 is the union of an at most countable collection of disjoint segments (Exercise 2.29).
- (2) We need to construct a continuous real function on the complement of E. By (1), write $\tilde{E} = \bigcup_{i \in \mathscr{C}} (a_i, b_i)$ where \mathscr{C} is at most countable and $a_i < b_i$. $(a_i, b_i \text{ could be } \pm \infty.)$ Define g(x) by

$$g(x) = \begin{cases} f(x) & (x \in E), \\ f(a_i) + \frac{f(b_i) - f(a_i)}{b_i - a_i}(x - a_i) & (x \in (a_i, b_i) : \text{finite interval}), \\ f(a_i) & (x \in (a_i, b_i) : a_i : \text{finite}, b_i = +\infty), \\ f(b_i) & (x \in (a_i, b_i) : a_i = -\infty, b_i : \text{finite}), \\ 0 & (x \in (a_i, b_i) : a_i = -\infty, b_i = +\infty). \end{cases}$$

Show that g is continuous in \mathbb{R}^1 , or show that g(x) is continuous at x = p for any point $p \in \mathbb{R}^1$.

(a) Given a point $p \in \widetilde{E}$. There is an open interval $I = (a_i, b_i)$ such that $p \in I$. Since the graph of g in an open interval I is a straight line, g is continuous at x = p.

- (b) Given an isolated point $p \in E$. There are two open intervals $I = (a_i, b_i)$ and $J = (a_j, b_j)$ such that $b_i = p = a_j$. So $\lim_{x \to p^-} g(x) = \lim_{x \to p^+} g(x) = f(p)$ by the construction of g, which says g is continuous at x = p.
- (c) Given a limit point $p \in E$. So that g(p) = f(p). Given $\varepsilon > 0$. Consider $\lim_{x \to p^+} g(x)$ first. (The case $\lim_{x \to p^-} g(x)$ is similar.)
 - (i) For such $\varepsilon > 0$, there is a $\delta' > 0$ such that

$$f(p) - \varepsilon < f(x) < f(p) + \varepsilon$$

whenever

$$x \in E$$
 and $p < x < \delta'$.

Since p is a limit point of E, there is a point $q \neq p$ such that $|q-p| < \delta'$. Might assume that q > p, and then retake $\delta = \min\{\delta', q-p\} > 0$. (If no such q, $\lim_{x \to p^+} g(x) = f(p)$ trivially.)

- (ii) For any x such that p < x < q, consider $x \in E$ or else $x \in \widetilde{E}$. As $x \in E$, nothing to do by (i).
- (iii) As $x \in \widetilde{E}$, there exists an open interval $I = (a_i, b_i)$ such that $x \in I \subseteq (p, q)$. Therefore,

$$f(a_i) \le g(x) \le f(b_i)$$
 or $f(a_i) \ge g(x) \ge f(b_i)$.

By (i),

$$\begin{split} f(p) - \varepsilon &< f(a_i) < f(p) + \varepsilon \text{ and} \\ f(p) - \varepsilon &< f(b_i) < f(p) + \varepsilon, \\ f(p) - \varepsilon &< f(a_i) \le g(x) \le f(b_i) < f(p) + \varepsilon \text{ or} \\ f(p) - \varepsilon &< f(b_i) \le g(x) \le f(a_i) < f(p) + \varepsilon. \end{split}$$

Hence, given $\varepsilon > 0$ there is a $\delta > 0$ such that $|g(x) - g(p)| < \varepsilon$ whenever $p < x < \delta$ (and $x \in \mathbb{R}^1$), or $\lim_{x \to p^+} g(x) = g(p)$.

- (3) Consider $f(x) = \log(x)$ in $(0, \infty)$. Since $\lim_{x\to 0} f(x) = -\infty$, we cannot find any real continuous function g defined on x = 0.
- (4) For a vector-valued function $\mathbf{f} = (f_1, ..., f_k)$, with each f_i is continuous on a closed set $E \subseteq \mathbb{R}^1$, extend f_i to a continuous function g_i on \mathbb{R}^1 as (2). Put $\mathbf{g} = (g_1, ..., g_k)$. Clearly \mathbf{g} is an extension of \mathbf{f} . Besides, \mathbf{g} is continuous in \mathbb{R}^1 by Theorem 4.10.

Supplement (Tietze's Extension Theorem). If X is a normal topological space and $f: A \to \mathbb{R}$ is a continuous map from a closed subset A of X into the real numbers carrying the standard topology, then there exists a continuous map $g: X \to \mathbb{R}$ with g(a) = f(a) for all $a \in A$.

Exercise 4.6. If f is defined on E, the graph of f is the set of points (x, f(x)), for $x \in E$. In particular, if E is a set of real numbers, and f is real-valued, the graph of f is a subset of the plain. Suppose E is compact, and prove that that f is continuous on E if and only if its graph is compact.

Proof. Let $G = \{(x, f(x)) : x \in E\}$ be the graph of f.

(1) (\Longrightarrow) Let $\mathbf{f}: E \to G$ defined by

$$\mathbf{f}(x) = (x, f(x)).$$

 $\mathbf{f}(E) = G$ exactly. Since f and x are continuous in E, \mathbf{f} is continuous (Theorem 4.10). As E is compact, $\mathbf{f}(E)$ is compact (Theorem 4.14).

(2) (\Leftarrow) Let $\pi: G \to E$ be a projection map defined by

$$\pi(x, f(x)) = x.$$

Notice that $\pi \circ \mathbf{f} = \mathrm{id}_E$ and $\mathbf{f} \circ \pi = \mathrm{id}_G$. Besides, π is a continuous one-to-one mapping of a compact set G onto E. Then the inverse mapping $\pi^{-1} = \mathbf{f}$ is a continuous mapping of E onto G (Theorem 4.17). So f is continuous (Theorem 4.10).

Exercise 4.7. If $E \subseteq X$ and if f is a function defined on X, the **restriction** of f to E is the function g whose domain of definition is E, such that g(p) = f(p) for $p \in E$. Define f and g on \mathbb{R}^2 by:

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{xy^2}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \end{cases}$$

$$g(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{xy^2}{x^2 + y^6} & \text{if } (x,y) \neq (0,0), \end{cases}$$

Prove that f is bounded on \mathbb{R}^2 , that g is unbounded in every neighborhood of (0,0), and that f is not continuous at (0,0); nevertheless, the restrictions of both f and g to every straight line in \mathbb{R}^2 are continuous!

Proof.

(1) Show that f is bounded on \mathbb{R}^2 .

$$\begin{split} (|x|-|y^2|)^2 &\geq 0 \Longleftrightarrow |x|^2 - 2|x||y^2| + |y^2|^2 \geq 0 \\ &\iff |x|^2 + |y^2|^2 \geq 2|x||y^2| \\ &\iff |x^2 + y^4| \geq 2|xy^2| \\ &\iff \frac{1}{2} \geq \left|\frac{xy^2}{x^2 + y^2}\right| \text{ whenever } (x,y) \neq (0,0) \\ &\iff |f(x,y)| \leq \frac{1}{2} \text{ whenever } (x,y) \neq (0,0). \end{split}$$

Note that $f(0,0) = 0 \le \frac{1}{2}$. Hence f is bounded by $\frac{1}{2}$ on \mathbb{R}^2 .

(2) Show that g is unbounded in every neighborhood of \mathbb{R}^2 . Consider a sequence $\{\mathbf{p}_n\}_{n\geq 1}\subseteq \mathbb{R}^2$

$$\mathbf{p}_n = (x_n, y_n) = \left(\frac{1}{n^3}, \frac{1}{n}\right)$$

such that $\mathbf{p}_n \neq \mathbf{0}$ and $\lim \mathbf{p}_n = \mathbf{0}$. Thus,

$$\lim_{n \to \infty} g(\mathbf{p}_n) = \lim_{n \to \infty} \frac{x_n y_n^2}{x_n^2 + y_n^6} = \lim_{n \to \infty} \frac{\left(\frac{1}{n^3}\right) \left(\frac{1}{n}\right)^2}{\left(\frac{1}{n^3}\right)^2 + \left(\frac{1}{n}\right)^6} = \lim_{n \to \infty} \frac{n}{2} = \infty.$$

Hence g is unbounded in every neighborhood of \mathbb{R}^2 .

(3) Show that f is not continuous at (0,0). Consider a sequence $\{\mathbf{p}_n\}_{n\geq 1}\subseteq \mathbb{R}^2$

$$\mathbf{p}_n = (x_n, y_n) = \left(\frac{1}{n^2}, \frac{1}{n}\right)$$

such that $\mathbf{p}_n \neq \mathbf{0}$ and $\lim \mathbf{p}_n = \mathbf{0}$. Thus,

$$\lim_{n \to \infty} f(\mathbf{p}_n) = \lim_{n \to \infty} \frac{x_n y_n^2}{x_n^2 + y_n^4} = \lim_{n \to \infty} \frac{\left(\frac{1}{n^2}\right) \left(\frac{1}{n}\right)^2}{\left(\frac{1}{n^2}\right)^2 + \left(\frac{1}{n}\right)^4} = \frac{1}{2}.$$

So, $\lim f(\mathbf{p}_n) = \frac{1}{2} \neq 0$. By Theorem 4.6, f is not continuous at (0,0).

- (4) The restrictions of f to every straight line in \mathbb{R}^2 is continuous.
 - (a) The line $L_{\infty}=\{(0,y):y\in\mathbb{R}\}$. Hence $f|_{L_{\infty}}(x,y)=0$ for all $(x,y)\in L_{\infty}$ (including $(0,0)\in L_{\infty}$). Therefore $f|_{L_{\infty}}$ is continuous.
 - (b) The line $L_{\alpha} = \{(x, \alpha x) : x \in \mathbb{R}\}$ for some $\alpha \in \mathbb{R}$. $f|_{L_{\alpha}}(x, y)$ is continuous on $L_{\alpha} \{(0, 0)\}$.

$$f|_{L_{\alpha}}(x,y) = f|_{L_{\alpha}}(x,\alpha x) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{\alpha^2 x}{1 + \alpha^4 x^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

So

$$\lim_{(x,y)\to(0,0)} f|_{L_{\alpha}}(x,y) = \lim_{x\to 0} \frac{\alpha^2 x}{1+\alpha^4 x^2} = 0 = f(0,0),$$

- or $f|_{L_{\alpha}}(x,y)$ is continuous at (0,0). Therefore, $f|_{L_{\alpha}}(x,y)$ is continuous on L_{α} .
- (c) The line L not passing (0,0). It is clear since f(x,y) is continuous on $\mathbb{R}^2 \{(0,0)\}.$
- (5) The restrictions of g to every straight line in \mathbb{R}^2 is continuous. Similar to (4).
 - (a) The line $L_{\infty}=\{(0,y):y\in\mathbb{R}\}$. Hence $g|_{L_{\infty}}(x,y)=0$ for all $(x,y)\in L_{\infty}$ (including $(0,0)\in L_{\infty}$). Therefore $g|_{L_{\infty}}$ is continuous.
 - (b) The line $L_{\alpha} = \{(x, \alpha x) : x \in \mathbb{R}\}$ for some $\alpha \in \mathbb{R}$. $g|_{L_{\alpha}}(x, y)$ is continuous on $L_{\alpha} \{(0, 0)\}$.

$$g|_{L_{\alpha}}(x,y) = g|_{L_{\alpha}}(x,\alpha x) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{\alpha^{2}x}{1+\alpha^{6}x^{4}} & \text{if } (x,y) \neq (0,0). \end{cases}$$

So

$$\lim_{(x,y)\to(0,0)} g|_{L_{\alpha}}(x,y) = \lim_{x\to 0} \frac{\alpha^2 x}{1+\alpha^6 x^4} = 0 = g(0,0),$$

or $g|_{L_{\alpha}}(x,y)$ is continuous at (0,0). Therefore, $g|_{L_{\alpha}}(x,y)$ is continuous on L_{α} .

(c) The line L not passing (0,0). It is clear since g(x,y) is continuous on $\mathbb{R}^2 - \{(0,0)\}$.

Exercise 4.8. Let f be a real uniformly continuous function on the bounded set E in \mathbb{R} . Prove that f is bounded on E. Show that the conclusion is false if boundedness of E is omitted from the hypothesis.

The conclusion is false if boundedness of E is omitted from the hypothesis. For example, f(x) = x on \mathbb{R} is uniformly continuous on \mathbb{R} but $f(\mathbb{R}) = \mathbb{R}$ is unbounded.

Proof (Brute-force).

- (1) Since $f: E \to \mathbb{R}$ is uniformly continuous, given any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) f(y)| < \varepsilon$ whenever $|x y| < \delta$. In particular, pick $\varepsilon = 1$.
- (2) By the boundedness of E, there is M > 0 such that |x| < M for all $x \in E$.
- (3) For such $\delta > 0$, we construct a covering of $E \subseteq \mathbb{R}$. Construct a special collection \mathscr{C} of intervals

$$I_a = \left[\frac{\delta}{2}a, \frac{\delta}{2}(a+1)\right]$$

where $a \in \mathbb{Z}$ satisfying

$$|a| < \frac{2M}{\delta} + 1.$$

By construction, \mathscr{C} is a finite covering of E.

- (4) For every interval I_a of the collection \mathscr{C} , pick a point $x_a \in E \cap I_a$ if possible. This process will terminate eventually since \mathscr{C} is a finite. Collect these representative points as $\mathscr{D} = \{x_a\}$. Notice that \mathscr{D} is finite again.
- (5) Now for any point $x \in E$, x lies in some I_a containing x_a . Both x and x_a are in the same interval and their distance satisfies

$$|x - x_a| \le \frac{\delta}{2} < \delta$$

and thus by (1)

$$|f(x) - f(x_a)| < 1$$
, or $|f(x)| < 1 + |f(x_a)|$.

(6) Let

$$M = 1 + \max_{x_{\mathbf{a}} \in \mathscr{D}} |f(x_a)|.$$

So given any $x \in E$, |f(x)| < M.

Proof (Heine-Borel Theorem). Heine-Borel theorem provides the finiteness property to construct the boundedness property of f.

(1) Let E be a bounded subset of a metric space X. Show that the closure of E in X is also bounded in X. E is bounded if $E \subseteq B_X(a;r)$ for some r > 0 and some $a \in X$. (The ball $B_X(a;r)$ is defined to the set of all $x \in X$ such that $d_X(x,a) < r$.) Take the closure on the both sides,

$$\overline{E} \subseteq \overline{B_X(a;r)} = \{x \in X : d_X(x,a) \le r\} \subseteq B_X(a;2r),$$

or \overline{E} is bounded.

- (2) Since $f: E \to \mathbb{R}$ is uniformly continuous, given any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) f(y)| < \varepsilon$ whenever $|x y| < \delta$. In particular, pick $\varepsilon = 1$.
- (3) For such $\delta > 0$, we construct an open covering of $\overline{E} \subseteq \mathbb{R}$. Pick a collection \mathscr{C} of open balls $B(a;\delta) \subseteq \mathbb{R}$ where a runs over all elements of E. \mathscr{C} covers \overline{E} (by the definition of accumulation points). Since \overline{E} is closed and bounded (by applying (1) on the boundedness of E), \overline{E} is compact (Heine-Borel theorem). That is, there is a finite subcollection \mathscr{C}' of \mathscr{C} also covers \overline{E} , say

$$\mathscr{C}' = \{B(a_1; \delta)\}, B(a_2; \delta), ..., B(a_m; \delta)\}.$$

- (4) Given any $x \in E \subseteq \overline{E}$, there is some $a_i \in E$ $(1 \le i \le m)$ such that $x \in B(a_i; \delta)$. In such ball, $|x a_i| < \delta$. By (2), $|f(x) f(a_i)| < 1$, or $|f(x)| < 1 + |f(a_i)|$. Almost done. Notice that a_i depends on x, and thus we might use finiteness of $\{a_1, a_2, ..., a_m\}$ to remove dependence of a_i .
- (5) Let

$$M = 1 + \max_{1 \le i \le m} |f(a_i)|.$$

So given any $x \in E$, |f(x)| < M.

Supplement. Exercise about considering the closure. (Problem 3.5 in H. L. Royden, Real Analysis, 3rd Edition.) Let $A = \mathbb{Q} \cap [0,1]$, and let $\{I_n\}$ be a finite collection of open intervals covering A. Then $\sum l(I_n) \geq 1$.

Proof.

$$1 = m^*[0, 1] = m^* \overline{A} \le m^* \left(\overline{\bigcup I_n} \right) = m^* \left(\overline{\bigcup \overline{I_n}} \right)$$
$$\le \sum m^* (\overline{I_n}) = \sum l(\overline{I_n}) = \sum l(I_n).$$

Exercise 4.9. Show that the requirement in the definition of uniformly continuity can be rephrased as follows, in terms of diameters of sets: To every $\varepsilon > 0$ there exists a $\delta > 0$ such that $\operatorname{diam} f(E) < \varepsilon$ for all $E \subseteq X$ with $\operatorname{diam} E < \delta$.

Proof.

(1) (\Longrightarrow) Given $\varepsilon > 0$. By Definition 4.18, there exists a $\delta > 0$ such that

$$d(f(p), f(q)) < \frac{\varepsilon}{64}$$

for all p and q in X for which $d(p,q) < \delta$. Let E be any subset of X satisfying diam $E < \delta$. Then for any $p, q \in E$,

$$d(p,q) \le \text{diam}E < \delta.$$

So that

$$d(f(p), f(q)) < \frac{\varepsilon}{64},$$

or $\frac{\varepsilon}{64}$ is an upper bound of $S=\{d(f(p),f(q)):p,q\in E\}.$ Hence

$$\operatorname{diam} f(E) = \sup S \le \frac{\varepsilon}{64} < \varepsilon.$$

(Here we pick " $\frac{\varepsilon}{64}$ " instead of ε since we want to get "diam $f(E)<\varepsilon$ " instead of diam $f(E)\leq\varepsilon$.)

(2) (\iff) Easy. Given $\varepsilon > 0$ there exists a $\delta > 0$ such that $\operatorname{diam} f(E) < \varepsilon$ for all $E \subseteq X$ with $\operatorname{diam} E < \delta$. In particular, for any $p,q \in X$ with $d(p,q) < \delta$, we can take $E = \{p,q\} \subseteq X$ and its diameter

$$diam E = d(p, q) < \delta.$$

So that

$$d(f(p), f(q)) = \operatorname{diam} f(E) < \varepsilon,$$

or Definition 4.18 holds.

Exercise 4.10. Complete the details of the following alternative proof of Theorem 4.19 (Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X): If f is not uniformly continuous, then for some $\varepsilon > 0$ there are sequences $\{p_n\}$, $\{q_n\}$ in X such that $d_X(p_n, q_n) \to 0$ but $d_Y(f(p_n), f(q_n)) > \varepsilon$. Use Theorem 2.37 to obtain a contradiction.

Proof.

- (1) (Reductio ad absurdum) If f were not uniformly continuous, then for some $\varepsilon > 0$ there are sequences $\{p_n\}$, $\{q_n\}$ in X such that $d_X(p_n,q_n) \to 0$ but $d_Y(f(p_n),f(q_n)) > \varepsilon$.
- (2) By Theorem 2.37, there is a subsequence $\{p_{n_k}\}$ of $\{p_n\}$ such that $\{p_{n_k}\}$ converges to $p \in X$. Similar argument to $\{q_n\}$, we have a subsequence $\{q_{n'_k}\}$ of $\{q_n\}$ converging to $q \in X$.
- (3) Since

$$d_X(p,q) \leq d_X(p,p_{n_k}) + d_X(p_{n_k},q_{n_k'}) + d_X(q_{n_k'},q) \to 0$$

(by assumption and (2)) and $d_X(p,q)$ is a constant, $d_X(p,q) = 0$ or p = q.

(4) Since f is continuous,

$$\lim_{k\to\infty} f(p_{n_k}) = f(p) = f(q) = \lim_{k\to\infty} f(q_{n_k'})$$

or $d_Y(f(p_{n_k}), f(q_{n'_k})) \to 0$, contrary to the assumption.

Exercise 4.11.

Exercise 4.12. A uniformly continuous function of a uniformly continuous function is uniformly continuous. State this more precisely and prove it.

Statement (similar to Theorem 4.7): suppose X, Y, Z are metric space, $E \subseteq X$, f maps E into Y, g maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

$$h(x) = g(f(x)) \qquad (x \in E).$$

If f is uniformly continuous on E and g is uniformly continuous on f(E), then h is uniformly continuous on E.

Proof.

(1) Given $\varepsilon > 0$. Since g is uniformly continuous on f(E), there exists $\eta > 0$ such that

$$d_Z(g(f(p)), g(f(q))) < \varepsilon$$
 if $d_Y(f(p), f(q)) < \eta$ and $f(p), f(q) \in f(E)$.

(2) Since f is uniformly continuous on E, there exists $\delta > 0$ such that

$$d_Y(f(p), f(q)) < \eta$$
 if $d_X(p, q) < \delta$ and $p, q \in E$.

(3) By (1)(2),

$$d_Z(h(p), h(q)) = d_Z(g(f(p)), g(f(q))) < \varepsilon$$

if $d_X(p,q) < \delta$ and $p,q \in E$. Hence h is uniformly continuous on E.

Exercise 4.13.

Exercise 4.14 (Brouwer's fixed-point theorem). Let I = [0,1] be the closed unit interval. Suppose f is continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.

Proof (Theorem 4.23). Let g(x) = f(x) - x in I.

- (1) g(0) = 0. Take x = 0.
- (2) g(1) = 0. Take x = 1.
- (3) Suppose $g(0) \neq 0$ $(f(0) \neq 0)$ and $g(1) \neq 0$ $(f(1) \neq 1)$. Since $f: I \to I$, f(0) > 0 and f(1) < 1. That is, g(0) > 0 and g(1) < 0. Applying the intermediate value theorem (Theorem 4.23), there is a point in $\xi \in (0,1)$ such that $g(\xi) = 0$. That is, $f(\xi) = \xi$ for some $\xi \in (0,1)$.

In any case, the conclusion holds. \Box

Supplement. Brouwer's fixed-point theorem.

(1) In the \mathbb{R}^1 , see Exercise 4.14 itself.

- (2) In the \mathbb{R}^2 , see Exercise 8.29.
- (3) In the \mathbb{R}^n , every continuous function from a closed ball of a Euclidean space \mathbb{R}^n into itself has a fixed point (without proof).
- (4) In a Banach space, Schauder fixed-point theorem.

Exercise 4.15. Call a mapping of X into Y open if f(V) is an open set in Y whenever V is an open set in X. Prove that every continuous open mapping of \mathbb{R}^1 into \mathbb{R}^1 is monotonic.

In fact, f is strictly monotonic.

Proof.

(1) (Reductio ad absurdum) If f were not strictly monotonic, then there exist $a < c < b \in \mathbb{R}^1$ such that

$$f(a) \le f(c) \ge f(b)$$

or

$$f(a) \ge f(c) \le f(b)$$
.

(2) In any case, f is a real continuous function on a compact set [a, b]. By Theorem 4.16, there exists $p, q \in [a, b]$ such that

$$M = \sup_{x \in [a,b]} f(x) = f(p),$$

$$m = \inf_{x \in [a,b]} f(x) = f(q).$$

- (3) As $f(a) \leq f(c) \geq f(b)$, we consider where f reaches its maximum value M (by (2)).
 - (a) f(a) = M or f(b) = M. Since $f(a) \le f(c) \ge f(b)$, by the maximality of M, f(c) = M or $M \in f((a,b))$.
 - (b) f(a) < M and f(b) < M. Hence $M \in f((a,b))$ clearly.

In any case, $M \in f((a,b))$. Note that f((a,b)) is open since f is an open mapping and (a,b) is open.

Since M is in an open set f((a,b)), there exists an open neighborhood $B(M;r) \subseteq f((a,b))$ where r > 0. Hence

$$M + \frac{r}{64} \in B(M; r) \subseteq f((a, b)),$$

contrary to the maximality of M.

- (4) As $f(a) \ge f(c) \le f(b)$, we consider where f reaches its minimum value m (by (2)). Similar to (3), we can reach a contradiction again.
- (5) By (3)(4), (1) is absurd, and thus f is strictly monotonic.

Exercise 4.16. Let [x] denote the largest integer contained in x, this is, [x] is a integer such that $x - 1 < [x] \le x$; and let (x) = x - [x] denote the fractional part of x. What discontinuities do the function [x] and (x) have?

Proof.

- (1) The function [x] only has discontinuities at $x \in \mathbb{Z}$.
 - (a) For any $p \notin \mathbb{Z}$, there is an integer n such that $n . Given any <math>\varepsilon > 0$, there is a $\delta = \min\{p-n, (n+1)-p\} > 0$ such that $|[x]-[p]| < \varepsilon$ whenever $|x-p| < \delta$. In fact, $|x-p| < \delta$ is equivalent to n < x < n+1 and therefore $|[x]-[p]| = |n-n| = 0 < \varepsilon$.
 - (b) For any $p \in \mathbb{Z}$, $\lim_{x \to p^+} [x] = p$ and $\lim_{x \to p^-} [x] = p 1$.
- (2) The function (x) only has discontinuities at $x \in \mathbb{Z}$.
 - (a) Since [x] is continuous on $\mathbb{R} \mathbb{Z}$ and x is continuous on \mathbb{R} , especially on $\mathbb{R} \mathbb{Z}$, (x) = x [x] is continuous on $\mathbb{R} \mathbb{Z}$.
 - (b) For any $p \in \mathbb{Z}$, $\lim_{x \to p^+} (x) = 0$ and $\lim_{x \to p^-} (x) = 1$.

Exercise 4.23. A real-valued function f defined in (a,b) is said to be **convex** if

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

whenever a < x < b, a < y < b, $0 < \lambda < 1$. Prove that every convex function is continuous. Prove that every increasing convex function of a convex function is convex. (For example, if f is convex, so is e^f .)

If f is convex in (a,b) and if a < s < t < u < b, show that

$$\frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(s)}{u - s} \le \frac{f(u) - f(t)}{u - t}.$$

Proof.

(1) Show that
$$\frac{f(t)-f(s)}{t-s} \le \frac{f(u)-f(s)}{u-s} \le \frac{f(u)-f(t)}{u-t}$$
. Since

$$t = \frac{t-s}{u-s}u + \left(1 - \frac{t-s}{u-s}\right)s$$
$$= \left(1 - \frac{u-t}{u-s}\right)u + \frac{u-t}{u-s}s$$

and $0 < \frac{t-s}{u-s}, \frac{u-t}{u-s} < 1$, by the convexity of f we have

$$f(t) \le \frac{t-s}{u-s} f(u) + \left(1 - \frac{t-s}{u-s}\right) f(s),$$

$$f(t) \le \left(1 - \frac{u-t}{u-s}\right) f(u) + \frac{u-t}{u-s} f(s).$$

It is equivalent to

$$\frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(s)}{u - s} \le \frac{f(u) - f(t)}{u - t}.$$

(2) If x, y, x', y' are points of (a, b) with $x \le x' < y'$ and $x < y \le y'$, then the chord over (x', y') has larger slope than the chord over (x, y); that is,

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(y') - f(x')}{y' - x'}.$$

It is a corollary to (1).

(3) Show that f is continuous. Let $[c,d] \subseteq (a,b)$. Then by (2),

$$\frac{f(c) - f(a)}{c - a} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(b) - f(d)}{b - d}$$

for x,y in [c,d]. Thus $|f(y)-f(x)| \leq M|y-x|$ in [c,d] (where $M=\max\left(|\frac{f(c)-f(a)}{c-a}|,|\frac{f(b)-f(d)}{b-d}|\right)$), and so f is absolutely continuous on each closed subinterval of (a,b). Especially, f is continuous.

(4) Let f be a convex function, g be an increasing convex function, and $h = g \circ f$. Show that h is convex.

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \qquad \text{(Convexity of } f)$$

$$g(f(\lambda x + (1 - \lambda)y)) \le g(\lambda f(x) + (1 - \lambda)f(y)) \qquad \text{(Increasing of } g)$$

$$\le \lambda g(f(x)) + (1 - \lambda)g(f(y)), \qquad \text{(Convexity of } g)$$

$$h(\lambda x + (1 - \lambda)y) \le \lambda h(x) + (1 - \lambda)h(y).$$

Exercise 4.24. Assume that f is a continuous real function defined in (a,b) such that

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x) + f(y)}{2}$$

for all $x, y \in (a, b)$. Prove that f is convex.

Proof.

(1) Show that

$$f\left(\frac{x_1+\cdots+x_n}{n}\right) \le \frac{f(x_1)+\cdots+f(x_n)}{n}$$

whenever $a < x_i < b \ (1 \le i \le n)$. Apply Cauchy induction and use the same argument in proving the AM-GM inequality. As n = 1, 2, the inequality holds by assumption. Suppose $n = 2^k \ (k \ge 1)$ the inequality holds. As $n = 2^{k+1}$,

$$\begin{split} &f\left(\frac{x_1+\dots+x_{2^{k+1}}}{2^{k+1}}\right) \\ &= f\left(\frac{1}{2}\left(\frac{x_1+\dots+x_{2^k}}{2^k} + \frac{x_{2^k+1}+\dots+x_{2^{k+1}}}{2^k}\right)\right) \\ &\leq \frac{1}{2}\left(f\left(\frac{x_1+\dots+x_{2^k}}{2^k}\right) + f\left(\frac{x_{2^k+1}+\dots+x_{2^{k+1}}}{2^k}\right)\right) \\ &\leq \frac{1}{2}\left(\frac{f(x_1)+\dots+f(x_{2^k})}{2^k} + \frac{f(x_{2^k+1})+\dots+f(x_{2^{k+1}})}{2^k}\right) \\ &= \frac{f(x_1)+\dots+f(x_{2^k})+f(x_{2^k+1})+\dots+f(x_{2^{k+1}})}{2^{k+1}} \\ &= \frac{f(x_1)+\dots+f(x_{2^{k+1}})}{2^{k+1}}. \end{split}$$

As n is not a power of 2, then it is certainly less than some natural power of 2, say $n < 2^m$ for some m. Let

$$x_{n+1} = \dots = x_{2^m} = \frac{x_1 + \dots + x_n}{n} = \alpha.$$

Then by the induction hypothesis,

$$f(\alpha) = f\left(\frac{x_1 + \dots + x_n + \alpha + \dots + \alpha}{2^m}\right)$$

$$\leq \frac{f(x_1) + \dots + f(x_n) + f(\alpha) + \dots + f(\alpha)}{2^m}$$

$$\leq \frac{f(x_1) + \dots + f(x_n) + (2^m - n)f(\alpha)}{2^m},$$

$$2^m f(\alpha) \leq f(x_1) + \dots + f(x_n) + (2^m - n)f(\alpha),$$

$$nf(\alpha) \leq f(x_1) + \dots + f(x_n),$$

or $f\left(\frac{1}{n}(x_1+\cdots+x_n)\right) \le \frac{1}{n}(f(x_1)+\cdots f(x_n)).$

(2) Hence,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for any rational λ in (0,1). (Given any positive integers p < q, put n = q, $x_1 = \cdots = x_p = x$ and $x_{p+1} = \cdots = x_n = y$ in (1).)

(3) Given any real $\lambda \in (0,1)$, there is a sequence of rational numbers $\{r_n\} \subseteq (0,1)$ such that $r_n \to \lambda$. By (2),

$$f(r_n x + (1 - r_n)y) \le r_n f(x) + (1 - r_n)f(y)$$

for any rational r_n in (0,1). Taking limit on the both sides and using the continuity of f, we have

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

Proof (Reductio ad absurdum). If f were not convex, then there is a subinterval $[c,d]\subseteq (a,b)$ such that

$$\frac{f(d) - f(c)}{d - c} < \frac{f(x_0) - f(c)}{x_0 - c}$$

for some $x_0 \in [c,d]$. Let

$$g(x) = f(x) - f(c) - \frac{f(d) - f(c)}{d - c}(x - c)$$

for $x \in [c, d]$. Therefore,

- (1) q(x) is continuous and midpoint convex.
- (2) g(c) = g(d) = 0.
- (3) Let $M = \sup\{g(x) : x \in [c,d]\}$. $\infty > M > 0$ due to the continuity of g and the existence of x_0 . And let $\xi = \inf\{x \in [c,d] : g(x) = M\}$. By the continuity of g, $g(\xi) = M$. $\xi \in (c,d)$ by (2).

(4) Since (c, d) is open, there is h > 0 such that $(\xi - h, \xi + h) \subseteq (c, d)$. By the minimality of ξ and M, $g(\xi - h) < g(\xi)$ and $g(\xi + h) \le g(\xi)$.

Therefore,

$$\begin{split} g(\xi-h) + g(\xi+h) &< 2g(\xi), \\ \frac{g(\xi-h) + g(\xi+h)}{2} &< g(h) \\ &= g\left(\frac{(\xi-h) + (\xi+h)}{2}\right), \end{split}$$

contrary to the midpoint convexity of g. \square

The result becomes false if "continuity of f" is omitted.

Exercise 4.25. If $A \subset \mathbb{R}^k$ and $B \subset \mathbb{R}^k$, define A + B to be the set of all sums $\mathbf{x} + \mathbf{y}$ with $\mathbf{x} \in A$, $\mathbf{y} \in B$.

- (a) If K is compact and C is closed in \mathbb{R}^k , prove that K+C is closed. (Hint: Take $\mathbf{z} \notin K+C$, put $F=\mathbf{z}-C$, the set of all $\mathbf{z}-\mathbf{y}$ with $\mathbf{y} \in C$. Then K and F are disjoint. Choose δ as in Exercise 4.21. Show that the open ball with center \mathbf{z} and radius δ does not intersect K+C.)
- (b) Let α be an irrational real number. Let C_1 be the set of all integers, let C_2 be the set of all $n\alpha$ with $n \in C_1$. Show that C_1 and C_2 are closed subsets of \mathbb{R}^1 whose sum $C_1 + C_2$ is not closed, by showing that $C_1 + C_2$ is a countable dense subset of \mathbb{R}^1 .

Proof. TODO.

Exercise 4.26. Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let g be a continuous one-to-one mapping of Y into Z, and put h(x) = q(f(x)) for $x \in X$.

Prove that f is uniformly continuous if h is uniformly continuous. (Hint: g^{-1} has compact domain g(Y), and $f(x) = g^{-1}(h(x))$.)

Prove also that f is continuous if h is continuous.

Show (by modifying Example 4.21, or by finding a different example) that the compactness of Y cannot be omitted from the hypotheses, even when X and Z are compact.

Proof. TODO.