ANÁLISIS VECTORIAL

Lista 1

- 1.- Dos ciudades, A y B, están situadas en oposición directa sobre las orillas de un río cuyo ancho es de 8 millas y fluye con una velocidad de 4 mi/h. Un hombre ubicado en A desea llegar a la ciudad C que está corriente arriba a 6 millas de la ciudad B y en el mismo lado que ésta. Si su embarcación viaja con una velocidad máxima de 10 mi/h y si desea llegar a C en el menor tiempo posible, ¿qué dirección debe seguir y cuánto tiempo durará el viaje?
- 2.- Dados los vectores $\vec{v}, \vec{w}, \vec{z}$ en la figura, construya los vectores,
 - (a) $\vec{v} \vec{w} + 2\vec{z}$
 - (b) $\vec{v} + 2\vec{w} \vec{z}$
 - (c) $\frac{1}{2}\vec{v} \vec{w} + \vec{z}$

3.- Sean $\vec{v}_1=(2,3,3),\ \vec{v}_2=(2,-1,2)$ y $\vec{v}_3=(2,2,0)$ como en la figura, poner cada vector en términos de los vectores unitarios $\hat{i},\hat{j},\hat{k},$ y calcular su magnitud.

Date: 29 de agosto de 2023.

- 4.- Sean $\vec{v}=7\hat{i}-3\hat{j}+5\hat{k}$ y $\vec{w}=2\hat{i}+4\hat{j}-3\hat{k}$. Encontrar un vector unitario a la resultante de \vec{v} y $\vec{w}.$
- 5.- Determine el vector con punto inicial (2,3,1) y punto final (0,-2,2), en términos de los vectores $\hat{i}, \hat{j}, \hat{k}$, y calcular su magnitud.
- 6.- Determine la ecuación de la recta que pasa por el punto (4,3,5) y tiene dirección el vector $\vec{w} = 2\hat{i} - 4\hat{j} + 3\hat{k}$.
- 7.- Sean $\vec{v}_1=2\hat{i}-\hat{j}+\hat{k},\,\vec{v}_2=\hat{i}-3\hat{j}-2\hat{k}$ y $\vec{v}_3=-2\hat{i}+\hat{j}-3\hat{k}$. Expresar al vector $\vec{v}_4=\hat{i}+3\hat{j}+2\hat{k}$ como una combinación lineal de los vectores \vec{v}_1,\vec{v}_2 y \vec{v}_3 , es decir, encuentre escalares x,y,z tales que $\vec{v}_4=x\vec{v}_1+y\vec{v}_2+z\vec{v}_3$.
- 8.- Determine si los vectores son linealmente independientes o linealmente dependientes, si:

a)
$$\vec{v}_1 = 2\hat{i} + \hat{j} - 3\hat{k}, \ \vec{v}_2 = \hat{i} - 4\hat{k}, \ \vec{v}_3 = 4\hat{i} + 3\hat{j} - \hat{k}$$

a)
$$\vec{v}_1 = 2\hat{i} + \hat{j} - 3\hat{k}$$
, $\vec{v}_2 = \hat{i} - 4\hat{k}$, $\vec{v}_3 = 4\hat{i} + 3\hat{j} - \hat{k}$
b) $\vec{v}_1 = \hat{i} - 3\hat{j} + 2\hat{k}$, $\vec{v}_2 = 2\hat{i} - 4\hat{j} - \hat{k}$, $\vec{v}_3 = 3\hat{i} + 2\hat{j} - \hat{k}$