

Photo by NASA on Unsplash (retrieved 2023-05-07)

Graph Data Science

Photo by NASA on Unsplash (retrieved 2023-05-07)

Photo by Shubham Dhage on Unsplash (retrieved 2023-05-07)

Photo by Shubham Dhage on Unsplash (retrieved 2023-0

Photo by Nathan Dumlao on Unsplash (retrieved 2023-05-07)

Wikimedia (retrieved 2023-05-07)

This course – getting to know each other

About me: Nanotechnology → theoretical physics → complex systems → PhD in Computer Science / AI → Sr. Data Scientist at FedEx

My contact: <u>ilja.rausch@pm.me</u>

My LinkedIn: linkedin.com/in/ilja-rausch/

Disclaimer: None of the material is linked to FedEx!

This course – getting to know each other

About you

- Your background and interests
 - Engineering (mechanical, industrial, technology and systems)
 - Innovation and design
 - Cybersecurity

This course – getting to know each other

About you

- Your background and interests
 - Engineering (mechanical, industrial, technology and systems)
 - Innovation and design
 - Cybersecurity
- Your knowledge and experience
 - Python
 - AIML
 - Data analysis
 - Business / industry

<u>This course – getting to know each other</u>

About you

- Your background and interests
 - Engineering (mechanical, industrial, technology and systems)
 - Innovation and design
 - Cybersecurity
- Your knowledge and experience
 - Python
 - AIML
 - Data analysis
 - Business / industry
- Motivation to take this course
 - Fun / curiosity
 - Career development
 - FOMO
 - Other

• Attendance: in my view, not 100% mandatory

Attendance: in my view, not 100% mandatory

Computer:

- useful but not a must to follow the lectures
- strongly recommended for the graded presentation

Slides: will be shared

Attendance: in my view, not 100% mandatory

• Computer:

- useful but not a must to follow the lectures
- strongly recommended for the graded presentation

• Slides: will be shared

• Grading:

- one presentation (10-15 minutes) per student, 5 minutes Q&A
- in groups of two; Dates: Jul 3rd Jul 5th

Attendance: in my view, not 100% mandatory

• Computer:

- useful but not a must to follow the lectures
- strongly recommended for the graded presentation

• Slides: will be shared

• Grading:

- one presentation (10-15 minutes) per student, 5 minutes Q&A
- in groups of two; Dates: Jul 3rd Jul 5th
- all tools are allowed (PowerPoint, LaTeX, Google Slides)
- strongly invited to do your own literature research
 - Wikipedia is acceptable for images but insufficient for information
 - ChatGPT is allowed but <u>be very very careful</u>

Attendance: in my view, not 100% mandatory

- Computer:
 - useful but not a must to follow the lectures
 - strongly recommended for the graded presentation

Slides: will be shared

• Grading:

- one presentation (10-15 minutes) per student, 5 minutes Q&A
- in groups of two; Dates: Jul 3rd Jul 5th
- all tools are allowed (PowerPoint, LaTeX, Google Slides)
- strongly invited to do your own literature research
 - Wikipedia is acceptable for images but insufficient for information
 - ChatGPT is allowed but be very very careful
- cover the core notions about the selected topic + limitations
- in simplified terms (similar to a technical presentation given to the upper management in business)
- pack the information into a story (make it a fun story if you want); build an imaginary business case

Course overview - topics for presentations

- 1. Network centrality (PageRank, Katz)
- 2. Network controllability and control nodes
- 3. Trees in ML: random forests and gradient boosting
- 4. GNNs (GraphSAGE, GIN)
- 5. Reinforcement learning
- 6. Word/Text embeddings
- 7. Clustering and vector similarity in ML
- 8. Dimensionality reduction (PCA and t-SNE)
- 9. Data sampling techniques (SMOTE)
- 10. Bayesian hyperparameter tuning
- 11. Explainable AI (XAI), Feature importance
- 12. Recommender Systems

- 13. Multivariate testing and A/B testing
- 14. Time Series (ARIMA, drift and temporal networks)
- 15. Meta-heuristics and Genetic Algorithms/ACO/PSO
- 16. Collective foraging/flocking
- 17. Site-selection + inhibition in bee colonies
- 18. Simulating signal propagation on networks
- 19. Qubits
- 20. Prompt engineering

Course overview - syllabus

	Sessio n#	Description
	1	Introductory lecture, course overview; some useful tools from statistics
K 1	2	Introduction to Network Science
WEEK 1	3	Introduction to Machine Learning
	4	Neural Networks
	5	Deep Learning architectures: CNNs, Attention, Transformers, BERT
WEEK 2	6	Knowledge Graphs and Graph Neural Networks
	7	Data mining; Quantum computing;
	8	Collective intelligence, simulation and agent-based modeling
	9	Practical tips for software and ML development
	10	Practical tips for working in the private sector (business, industry)
WEEK 3	11	Students' presentations I
	12	Students' presentations II
	13	Students' presentations III
	14	Guided hands-on session for creating a simple PoC with GNNs and Python
	15	Last day of class: grading and general feedback

Photo by Barn Images on Unsplash (created 2023-05-13)

<u>Course overview – my promise</u>

- The course will widen your horizon
- Provide a broad (but incomplete) overview of Graph Data Science
- Lower the barrier to entry, enabling you to explore beyond
- Some insights useful for business / industry

Image created with Dall-E 2 (created 2023-05-13)

<u>Useful literature and tutorials</u>

- The Art of Statistics book by D. Spiegelhalter
- Statistics course by J. Blitzstein (Harvard)
- Network science book by A.-L. Barabási
- The Machine and Deep Learning Compendium
- A high-bias, low-variance introduction to Machine Learning for physicists paper by Mehta et al.
- Machine Learning course by Y. Abu-Mostafa
- Neural Networks lecture by F. Marquardt
- Deep Learning course by Andrew Ng
- Attention is all you need publication by Vaswani et al.
- Gentle introduction to GNNs web article by Sanchez-Lengeling et al.
- Machine Learning with Graphs by J. Leskovec (Stanford)
- Collective Motion paper by Viscek et al.
- Corey Shafer YouTube channel
- Scaled Agile Framework material

Photo by Tima Miroshnichenko from Pexels (retrieved 2023-05-07)

Photo by Christina Morillo from Pexels (retrieved 2023-05-07)

Photo by Sanket Mishra from Pexels (retrieved 2023-05-07)

Data analysis

Photo by Luke Chesser on Unsplash (retrieved 2023-05-13)

Data analysis

Photo by Luke Chesser on Unsplash (retrieved 2023-05-13)

Data bases & DevOps

Photo by Growtika on Unsplash (retrieved 2023-05-13)

Data analysis

Photo by Luke Chesser on Unsplash (retrieved 2023-05-13)

AI and software dev

Photo by Christopher Gower on Unsplash (retrieved 2023-05-13)

Data bases & DevOps

Photo by Growtika on Unsplash (retrieved 2023-05-13)

Data analysis

Photo by Luke Chesser on Unsplash (retrieved 2023-05-13)

Data bases & DevOps

Photo by Growtika on Unsplash (retrieved 2023-05-13)

AI and software dev

Photo by Christopher Gower on Unsplash (retrieved 2023-05-13)

Graphs / Networks

Photo by Resource Database on Unsplash (retrieved 2023-05-13)

Graph Data Science term coined / promoted by Neo4j

Developer Guides / Neo4j Graph Data Science

Graph Data Science is a science-driven approach to gain knowledge from the relationships and structures in data, typically to power predictions. It describes a toolbox of techniques that help data scientists answer questions and explain outcomes using graph data.

Graph Data Science term coined / promoted by Neo4j

quest.

Introduction to Graph Data Science

What is Graph Data Science?

"Traditional Data Science"

"Graph Data Science"

"Traditional Data Science"

structured data

	a1	a2	a3	a4
r1	0	0	0	1
r2	1	0	1	0
r3	0	1	0	1
r 4	1	1	0	0

"Graph Data Science"

graph-structured data

"Traditional Data Science"

structured data

	a1	a2	a3	a4
r1	0	0	0	1
r2	1	0	1	0
r3	0	1	0	1
r4	1	1	0	0

- Databases
- Neural Networks
- Data mining

"Graph Data Science"

graph-structured data

- Graph databases
- Graph Neural Networks
- Graph mining

"Traditional Data Science"

structured data

	a1	a2	a3	a4
r1	0	0	0	1
r2	1	0	1	0
r3	0	1	0	1
r4	1	1	0	0

- Databases
- Neural Networks
- Data mining

"Graph Data Science"

graph-structured data

- Graph databases
- Graph Neural Networks
- Graph mining

GDS = Data Science enriched with complex data relations

Graph Data Scientist

Knowledge Engineer

What is Graph Data Science?

A work week in the life of a GDS

Monday	Tuesday	Wednesday	Thursday	Friday
Emails / chat	Emails / chat	Emails / chat	Emails / chat	Emails / chat
Data analysisAIML devOther software devDebugging	Team call Other call/email	Project support activities (e.g. documentation, maintenance, git, venvs, gpu)	Data analysisAIML devSoftware devDebuggingR&D	Continuous learning Other call/email
Lunch/office chat	Lunch/office chat	Lunch/office chat	Lunch/office chat	Lunch/office chat
Calls / meetings • Manager		Alignment calls	Other call/email	 Data analysis AIML dev Other software dev Debugging R&D
BusinessPeersKnowledge		Data-related work (engineering, DevOps)	Documentation Preparing slides Dashboard dev	

1. Identify the problem / a business need

- 1. Identify the problem / a business need
- 2. Formulate an idea in analytical ways, think of a solution
- 3. Implement a small prototype for the solution

- 1. Identify the problem / a business need
- 2. Formulate an idea in analytical ways, think of a solution
- 3. Implement a small prototype for the solution
- 4. Prepare a PoC

- 1. Identify the problem / a business need
- 2. Formulate an idea in analytical ways, think of a solution
- 3. Implement a small prototype for the solution

4. Prepare a PoC

- 5. Promote, validate with business, get feedback, evaluate
- 6. Improve and test again

MONTHS

A YEAF

A typical Data Science project workflow

- 1. Identify the problem / a business need
- 2. Formulate an idea in analytical ways, think of a solution
- 3. Implement a small prototype for the solution

4. Prepare a PoC

- 5. Promote, validate with business, get feedback, evaluate
- 6. Improve and test again
- 7. Create MVP

1. Identify the problem / a business need

- 2. Formulate an idea in analytical ways, think of a solution
- 3. Implement a small prototype for the solution

4. Prepare a PoC

MONTHS

- 5. Promote, validate with business, get feedback, evaluate
- 6. Improve and test again
- 7. Create MVP

8. Test and improve

1. Identify the problem / a business need

2. Formulate an idea in analytical ways, think of a solution

3. Implement a small prototype for the solution

4. Prepare a PoC

MONTHS

- 5. Promote, validate with business, get feedback, evaluate
- 6. Improve and test again
- 7. Create MVP

- 8. Test and improve
- 9. Monitor and maintain

A typical data modelling pipeline

Data focus

- 1. Data collection
- 2. Data understanding
- 3. Data cleaning and processing

A typical data modelling pipeline

1. Data collection

2. Data understanding

3. Data cleaning and processing

4. Model development and training

5. Model testing and business validation

6. Model deployment (and/or dashboard deployment)

7. Model maintenance (incl. retraining + retesting)

Sculley et al., NeurIPS 28 (2015)

Additional conditions for success:

• IT support (infrastructure, model consumption, platforms)

Additional conditions for success:

- IT support (infrastructure, model consumption, platforms)
- Business support (coordination, prioritization, visibility and model promotion, enablement, change management, sponsorship, managing expectations)

Additional conditions for success:

- IT support (infrastructure, model consumption, platforms)
- Business support (coordination, prioritization, visibility and model promotion, enablement, change management, sponsorship, managing expectations)