

# Department of Electrical and Computer Engineering ECE124 Digital Circuits and Systems

# MIDTERM EXAMINATION Feb 28, 2013

Time Allowed: 1 hour 30 minutes

| Name:      | Andrew Kennings            |
|------------|----------------------------|
| ld#:       | Solutions                  |
| Lecture: ( | check one):                |
|            | ☐ LEC 001 (EE/CE Students) |
|            | ☐ LEC 002 (SE Students)    |

#### Instructions:

Instructor(s): A. Kennings

- 1. Answer all questions. The examination is 90 minutes in length.
- 2. The examination is a closed book examination. There are no "aid sheets" permitted.
- 3. All cell phones and/or other electronic devices must be turned off and packed away prior to the beginning of the examination.
- 4. Clearly show all steps used in the solution process. No marks will be given for numerical results unless accompanied by a correct solution method.
- 5. Pease write the examination in pen, not pencil. If you decide to use pencil anywhere, you will not be allowed to request remarking of your examination.

| Q1 | Q2 | Q3 | Q4 | Q5 | TOTAL |
|----|----|----|----|----|-------|
| 2  | 12 | 12 | 12 | 12 | 60    |
|    | ,  | 12 |    | 12 |       |

# Question #1: Number representations and arithmetic

Part A)

Complete the following table by converting the number  $(1523)_6$  to: (i) base-10; (ii) base-2; and (iii) base-16. [4 marks]

| Number System  | Representation        |  |  |
|----------------|-----------------------|--|--|
| Base- <b>6</b> | (1523) <sub>6</sub>   |  |  |
| Base-10        | (411)10               |  |  |
| Base-2         | (110011011)2          |  |  |
| Base-16        | (19B) <sub>16</sub> . |  |  |

$$(1523)_6 = 1 \times 6^3 + 5 \times 6^2 + 2 \times 6^4 + 3 \times 6^\circ$$
$$= 216 + 180 + 12 + 3$$
$$= 411 = (411)_{10}$$

## Part B)

Convert the number  $(41.6875)_{10}$  to its base-2 representation. [4 MARKS]



Part C)

Perform subtraction of the following two signed 8-bit numbers which are represented using 2's complements. What is the result of the numerical operation expressed in decimal? Has overflow occurred? [4 marks]



# Question #2: Boolean algebra, truth tables and canonical forms

## Part A)

Simplify f = [(x'y'+z)'+z+xy+wz]' using only Boolean algebra. Show all steps clearly to obtain full marks. [6 marks]

#### Part B)

Write down the truth table for the following 3-input function f = xy + x'z. Write down the canonical sum-of-minterms and canonical sum-of-maxterms for the function. Do not use shorthand notation! [6 marks]

$$\frac{x}{0}$$
  $\frac{y}{0}$   $\frac{z}{0}$   $\frac{f}{0}$   $\frac{1}{0}$   $\frac{1}$ 

$$f = \overline{x} \overline{y} + \overline{x} y + \overline{x$$

$$f = (x+y+z)(x+y+z)(x+y+z)(x+y+z)$$
(POS)

# Question #3: Karnaugh maps and optimization

## Part A)

Shown below is the truth table for a 4-input logic function f = f(w, x, y, z). Using Karnaugh maps, derive both a minimized sum-of-products and a minimized product-of-sums for the function. Blank Karnaugh maps are provided. [6 marks]



Part B)

Shown below is the Karnaugh map for a 4-input logic function f = f(w, x, y, z). Find and write down all the prime implicants for the logic function and determine which ones are essential. [6 MARKS]



## Question 4: Combinational circuit blocks

Part A)

Implement the 4-input logic function f = f(w, x, y, z) shown in the truth table below using an 8-input multiplexer. [4 marks]



Different solutions possible.

Part B) Complete the diagram below to show how to implement the three logic functions given by f = (y' + x)z, g = y'z' + x'y + yz', and h = (x + y)z using only a 3-to-8 decoder and OR gates. [4 marks]



Need min terms for each function  $f = (y+x)z = yz+xz = xyz+xyz+xyz+xyz = m_1+m_5+m_7$   $h = (x+y)z = xz+yz = xyz+xyz+xyz = m_5+m_3+m_7$   $q = yz+xyz+xyz+xyz = m_5+m_3+m_7$  q = yz+xyz+xyz+xyz+xyz+xyz+xyz+xyz = xyz+xyz+xyz+xyz+xyz+xyz+xyz = xyz+xyz+xyz+xyz+xyz+xyz = xyz+xyz+xyz+xyz+xyz+xyz = xyz+xyz+xyz+xyz+xyz = xyz+xyz+xyz+xyz+xyz = xyz+xyz+xyz+xyz+xyz = xyz+xyz+xyz+xyz+xyz

## Part C)

We can compare two n-bit unsigned numbers  $A=A_{n-1}A_{n-2}\dots A_1A_0$  and  $B=B_{n-1}B_{n-2}\dots B_1B_0$  as shown in the diagram below using n copies of the same subcircuit. [4 MARKS]



Each sub-circuit has 5 inputs  $(G_{i+1}, E_{i+1}, L_{i+1}, A_i, B_i)$  and produces 3 outputs  $(G_i, E_i, L_i)$ .  $G_i = 1$  means that A > B if comparing only the i-th and larger bits of the numbers.  $E_i = 1$  means that A = B if comparing only the i-th and larger bits of the numbers.  $L_i = 1$  means that A < B if comparing only the i-th and larger bits of the numbers. Finally, we can tell if A > B, A = B, A < B by looking at the outputs  $G_0$ ,  $E_0$ ,  $L_0$ , respectively.

Draw the required circuitry to implement each sub-circuit. You can use any sort of logic gate you require.

$$G_i = G_{i+1} + E_{i+1}A_iB_i = E_i + L_i$$
  
 $E_i = E_{i+1} \cdot A_i \cdot \Theta B_i = G_i + L_i$   
 $L_i = L_{i+1} + E_{i+1} \cdot A_iB_i = G_i + E_i$ 



# Question 5: Multi-level circuits and NAND/NOR implementations

## Part A)

Implement/draw the logic function f = wx' + y'z' + w'yz' as a minimized 2-level circuit using only NOR gates. [4 marks]

$$f = WX + Y\overline{2} + WY\overline{2}$$

$$= (W+\overline{2})(X+\overline{2})(\overline{W}+X+\overline{Y})$$

$$= \overline{(W+\overline{2})}(\overline{X}+\overline{2})(\overline{W}+X+\overline{Y})$$

$$= \overline{(W+\overline{2})} + \overline{(X+\overline{2})} + \overline{(W+X+\overline{Y})}$$

## Part B)

Convert the following circuit to one that uses only 2-input NAND gates and inverters. Inputs are available only in un-complemented form so be sure to show any inversions at inputs explicitly using inverter gates. [4 marks]





Part C)
Shown below is the circuit for a half-adder (HA).



Consider the following 4 logic equations:  $D = A \oplus B \oplus C$ , E = A'BC + AB'C, F = ABC' + (A' + B')C, and G = ABC. Show that the 4 logic equations for D, E, F and G can be implemented using only 3 half adders. [4 MARKS]