HW_Calibration 로직 설명서

빠른 Calibration, Levenberg-marquardt 알고리즘 두 가지 사용 가능

			커브1 Inform	nation											
Swaption/Cap Flag Kappa고정Flag 0			Result HW		Zero Rate		Cap Info			A	ATM Swaption Info				
Kappa고정값	0.01											Swap	requency	3	
			kappa	0.0108						equency	3	옵션만기	스왑만기		
빠른	levenberg-marquardt		Term	Vol	Index	Term입력	Rate		Index	Term입력	Vol입력		1.00	2.00	3.00
Calibration	Calibration		0.50	0.0037600	1	0.00	0.0131	0.013188		1.00	0.1496	0.50	13.15%	14.05%	14.909
Cumpration			1.00	0.0033600	2	0.25	0.0149	0.0146338			0.1509	1.00	13.55%	14.15%	14.809
Error			1.50	0.0035800	3	0.50	0.0155	0.0150364			0.1497	1.50	14.30%	14.80%	14.959
			2.00	0.0033600	4	0.75	0.0166	0.0153458	4	4.00	0.1473	2.00	15.40%	15.55%	15.209
			3.00	0.0033600	5	1.00	0.0178	0.0159862	5		0.1489	3.00	16.25%	15.65%	15.259
			4.00	0.0032800	6	2.00	0.0207	0.0165981	6	7.00	0.1430	4.00	15.90%	15.55%	15.059
	오후 2:56:23		5.00	0.0039800	7	3.00	0.0217	0.0179237		10.00	0.1421	5.00	16.30%	15.55%	15.209
	오후 2:56:24		7.00	0.0037200	8	4.00	0.0220	0.0191386	8			7.00	15.10%	14.85%	14.609
			10.00	0.0077600	9	5.00	0.0222	0.0203	9			10.00	15.10%	14.95%	14.609
					10	7.00	0.0222	0.0210642	10						
					11	10.00	0.0221	0.0218359							
		커브1			12	12.00	0.0241	0.0225							
					13	15.00	0.0246	0.0230073	13						
					14	20.00	0.0251	0.023433	14						
					15				15						
					16				16						

1. Hull White 1Factor Swaption - Code 1, 2, 3 참고

$$SWPT = P(0, T_{opt}) \left\{ N \left(-\frac{lnG}{H\sqrt{V_{T_{opt}}}} + \frac{H\sqrt{V_{T_{opt}}}}{2} \right) - G \cdot N \left(-\frac{lnG}{H\sqrt{V_{T_{opt}}}} - \frac{H\sqrt{V_{T_{opt}}}}{2} \right) \right\}$$

$$G = \frac{P(0, T_N) + K\sum_{i=1}^{N} \Delta T_i P(0, T_i)}{P(0, T_{opt})}$$

$$H = \frac{P(0, T_N)B(T_{opt}, T_N, \kappa) + K\sum_{i=1}^{N} \Delta T_i P(0, T_i)B(T_{opt}, T_N, \kappa)}{P(0, T_N) + K\sum_{i=1}^{N} \Delta T_i P(0, T_i)}$$

$$V_{T_{opt}} = \int_{0}^{T_{opt}} \sigma_u^2 e^{-2\kappa(T_{opt} - u)} du$$

$$B(T_0, T_1, \kappa) = \frac{1 - e^{-\kappa(t - s)}}{\kappa}$$

2. Hull White 2Factor Swaption - Code 4~10 참고

$$SWPT = P(0, T_{opt}) \int_{-\infty}^{\infty} \frac{e^{\frac{-(x-\mu_{x})^{2}}{2\sigma_{x}^{2}}}}{\sigma_{x}\sqrt{2\pi}} \left\{ N(-h_{1}(x)) - \sum_{i=1}^{n} \lambda_{i}(x) e^{\kappa_{i}(x)} N(-h_{2,i}(x)) \right\} dx$$

$$h_{1}(x) = \frac{\overline{y}(x) - \mu_{y}}{\sigma_{y}\sqrt{1 - \rho_{xy}^{2}}} - \frac{\rho_{xy}(x - \mu_{x})}{\sigma_{x}\sqrt{1 - \rho_{xy}^{2}}}$$

$$h_{2,i}(x) = h_{1}(x) + B_{2}(T_{0}, T_{i})\sigma_{y}\sqrt{1 - \rho_{xy}^{2}}$$

$$\lambda_{i}(x) = c_{i}A(T_{0}, T_{i})e^{-B_{1}(T_{0}, T_{i})x}$$

$$\begin{split} \kappa_i(x) &= -B_2(T_0, T_i) \left\{ \mu_y - \frac{1}{2} \left(1 - \rho_{xy}^2 \right) \sigma_y^2 B_2(T_0, T_i) + \frac{\rho_{xy} \sigma_y(x - \mu_x)}{\sigma_x} \right\} \\ A(T_0, T_i) &= \frac{P^M(0, T_i)}{P^M(0, T_0)} e^{QVT_x(T_0, T_i) + QVT_y(T_0, T_i) + QVT_{xy}(T_0, T_i)} \\ QVT_x(T_0, T_i) &= \frac{1}{2} \left(V_{\kappa_1, \kappa_2}(T_0, T_i) + V_{\kappa_1}(0, T_i) + V_{\kappa_1}(0, T_0) \right) \\ QVT_{xy}(T_0, T_i) &= \frac{1}{2} \left(V_{\kappa_1, \kappa_2}(T_0, T_i) + V_{\kappa_1, \kappa_2}(0, T_i) + V_{\kappa_1, \kappa_2}(0, T_0) \right) \\ V_{\kappa_1}(t, T) &\approx \frac{\sigma_1^2}{\kappa_1^2} \left(T - t + 2 \frac{e^{-\kappa_1(T - t)} - 1}{\kappa_1} - \frac{e^{-2\kappa_1(T - t)} - 1}{2\kappa_1} \right) \\ V_{\kappa_1, \kappa_2}(t, T) &\approx \frac{\sigma_1 \sigma_2}{\kappa_1 \kappa_2} \left(T - t + \frac{e^{-\kappa_1(T - t)} - 1}{\kappa_1} + \frac{e^{-\kappa_2(T - t)} - 1}{\kappa_2} - \frac{e^{-(\kappa_1 + \kappa_2)(T - t)} - 1}{\kappa_1 + \kappa_2} \right) \\ M_x^T(s, t) &= \int_s^t e^{-\kappa(t - u)} \left\{ \sigma_1^2 B_{\kappa_1}(u, T) - \rho \sigma_1 \sigma_2 B_{\kappa_2}(u, T) \right\} du \\ \mu_x &= -M_x^T(0, T_0) \\ \sigma_x &= \int_0^{T_0} \sigma_1^2(u) e^{-2\kappa(T_0 - u)} du \approx \frac{\sigma_1^2}{2\kappa_1} \left(1 - e^{-2\kappa_1 T_0} \right) \\ \rho_{xy} &= \frac{\rho \int_0^{T_0} \sigma_1(u) \sigma_2(u) e^{-(\kappa_1 + \kappa_2)(T_0 - u)} du}{\sigma_x \sigma_y} \end{split}$$

이고, $\bar{y}(x)$ 는 주어진 x에 대하여

$$\sum_{i=1}^{n} c_{i} A(T_{0}, T_{i}) e^{-B_{1}(T_{0}, T_{i})x - B_{2}(T_{0}, T_{i})\overline{y}(x)} = 1$$

$$c_{i} = K\Delta T_{i}, \qquad i = 1, 2, ..., n - 1, c_{n} = 1 + K\Delta T_{n}$$

3. Levenberg-marquardt

$$(\kappa^*, \sigma_t^*) = argmin_{\kappa, \sigma} \sum_i \left\{ BLACKPRICE_i^{mkt} - HWPRICE(\kappa, \sigma_t) \right\}^2$$

$$P_{k+1} = P_k - (J^T J + \mu_k I)^{-1} J^T R(p_k)$$
 (간혹 $\mu_k I$ 대신에 $\mu_k (J^T J)$ 를 사용하기도 함) 여기서 $J = \begin{bmatrix} \frac{\delta r_1(p)}{\delta p_1} & \cdots & \frac{\delta r_1(p)}{\delta p_m} \\ \vdots & \ddots & \vdots \\ \frac{\delta r_n(p)}{r_n} & \cdots & \frac{\delta r_n(p)}{r_n} \end{bmatrix}$, $R(p) = \begin{bmatrix} r_1(p) \\ \vdots \\ r_n(p) \end{bmatrix}$

4. 빠른 Calibration 1F

1-1 빠른 Calibration 방법론

κ는 0.002부터 0.1까지 0.002간격으로,

 σ_t 는 0.001부터 0.04까지 0.001간격으로 넣고 Swaption 및 Cap Pricing을 한다.

for (
$$\kappa=0.002$$
 to 0.1; $d\kappa=0.002$) for ($\sigma=0.001$ to 0.04; $d\sigma=0.001$) Error (κ,σ) = P(κ,σ) - P(black)

Find Min Error Point(κ^* , σ^*)

찾아낸 κ, σ 근방에서 위의 로직을 한 번 더 실행함

for
$$(\kappa = \hat{\kappa} - 0.001 \text{ to } \hat{\kappa} + 0.001; d\hat{\kappa} = 0.0002)$$
 for $(\sigma = \hat{\sigma} - 0.001 \text{ to } \hat{\sigma} + 0.001; d\hat{\sigma} = 0.0001)$ Error $(\kappa, \sigma) = P(\kappa, \sigma) - P(black)$

Find Min Error Point(κ , σ)

1-2 Calibration 예시

Example) 다음과 같이 Swaption Vol이 주어진다고 가정하자.

	Swapmat= 1	Swapmat= 2	Swapmat= 3		
Optmat= 0.5	10%	12%	14%		
Optmat= 1	11%	13%	15%		
Optmat= 1.5	12%	14%	16%		

Calibration은 다음과 같이 실행된다.

```
for(optmat = 0.5 to 1.5)
           for (\kappa = 0.002 \text{ to } 0.1; d\kappa = 0.002)
                 for (\sigma = 0.001 \text{ to } 0.04; d\sigma = 0.001)
                       Error_1(\kappa, \sigma) = P(\kappa, \sigma) - P(black, Vol_1)
                       Error_2(\kappa, \sigma) = P(\kappa, \sigma) - P(black, Vol_2)
                       Error_3(\kappa, \sigma) = P(\kappa, \sigma) - P(black, Vol_3)
                       Error = Error_1 + Error_2 + Error_3
                       }
     Find Min Error Point(\kappa, \sigma_{optmat})
      찾아낸 \kappa, \sigma근방에서 위의 로직을 한 번 더 실행함
               B(T_0,T_1,\kappa)=\frac{1-e^{-\kappa(t-s)}}{\kappa}
Code 1.
     double B(double s, double t, double kappa)
           return (1.0 - exp(-kappa * (t - s))) / kappa;
     }
               V_{T_{opt}} = \int_0^{T_{opt}} \sigma_u^2 e^{-2\kappa (T_{opt}-u)} du
Code 2.
                          =e^{-2\kappa T_{opt}}\cdot\int_{0}^{T_{opt}}\!\!\sigma_{u}^{2}e^{2\kappa u}du=e^{-2\kappa T_{opt}}	imes rac{Integig(T_{opt},1,2\kappa,\{\sigma\}ig)}{}
     // 적분 계산 공통함수
     // I(t) = Int_0^t sigma(s)^2 A exp(ks) ds
     double Intea(
           double t,
           double A,
           double kappa,
           double* tVol,
           double* Vol,
           long nVol
     )
           long i;
           long NodeNum = 10;
           long Point = 0;
           double ds = t / (double)NodeNum;
           double s;
           double value = 0.0;
```

if (nVol == 1) return A * Vol[0] * Vol[0] / (kappa) * (exp(kappa * t) - 1.0);

double sigma;

```
for (i = 0; i < NodeNum; i++)
{
    s = (double)(i + 1) * ds;
    sigma = Interpolate_Linear_Point(tVol, Vol, nVol, s, Point);
    value += sigma * sigma * A * exp(kappa * s) * ds;
}
return value;
}</pre>
```

Code 3. Swaption Pricing

```
// 1-factor 모형의 Fixed Payer Swaption 가격 빠른 계산
double HW_Swaption(
                        // 액면금액
   double NA,
                       // 회귀속도
   double kappa,
   double* tVol,
                       // 변동성 구간 종점
                      // 근공등 :
// 구간 변동성
// 변동성 구간 개수
  double* Vol,
{
   double VTO, G, H;
   double d1, d2;
   double value;
   if (kappa < -0.002) kappa = -0.002;
   for (i = 0; i < nVol; i++)
   {
       if (Vol[i] < 0.0) Vol[i] = -Vol[i];
       if (Vol[i] < Tiny_Value) Vol[i] = Tiny_Value;</pre>
   }
   TO = (double)MaturityDate / 365.0;
   VTO = exp(-2.0 * kappa * TO) * Integ(TO, 1.0, 2.0 * kappa, tVol, Vol, nVol);
   G = PT[nDates];
   PrevT = T0;
   for (i = 0; i < nDates; i++)
   {
       T = (double)Dates[i] / 365.0;
       deltaT = T - PrevT;
       G += StrikeRate * deltaT * PT[i + 1];
       PrevT = T;
   G /= PT[0];
   H = PT[nDates] * B(T0, (double)Dates[nDates - 1] / 365.0, kappa);
   PrevT = T0;
```

```
T = (double)Dates[i] / 365.0;
              deltaT = T - PrevT;
              H += StrikeRate * deltaT * PT[i + 1] * B(TO, T, kappa);
              PrevT = T;
          H /= G * PT[0];
          d1 = -\log(G) / (H * sqrt(VT0)) + 0.5 * H * sqrt(VT0);
          d2 = -\log(G) / (H * sqrt(VT0)) - 0.5 * H * sqrt(VT0);
          value = PT[0] * (CDF_N(d1) - G * CDF_N(d2));
          return NA * value;
     }
               M_x^T(s,t) = \int_s^t e^{-\kappa(t-u)} \left\{ \sigma_1^2 B_{\kappa_1}(u,T) - \rho \sigma_1 \sigma_2 B_{\kappa_2}(u,T) \right\} du
Code 4.
     double mu_x(
          double kappa1, double kappa2, long nHW1,
          double *HWTerm1, double* HWVol1, long nHW2,
          double* HWTerm2, double* HWVol2, double rho,
          double T, double t1, double t2
          long i;
          long NodeNum = 10;
          long Point = 0;
          long Point2 = 0;
          double du = (t2-t1) / (double)NodeNum;
          double u = t1;
          double value = 0.0;
          double sigma;
          double v1, v2;
          for (i = 0; i < NodeNum; i++)
              v1 = Interpolate_Linear_Point(HWTerm1, HWVol1, nHW1, u, Point);
              v2 = Interpolate_Linear_Point(HWTerm2, HWVol2, nHW2, u, Point2);
              value += \exp(-\text{kappa1} * (t2 - u)) * (v1 * v1 * B(u, T, kappa1) - rho * v1 * v2 *
     B(u, T, kappa2)) * du;
              u += du;
          }
          return value;
     }
               V_{\kappa_1}(t,T) \approx \frac{\sigma_1^2}{\kappa_1^2} \left( T - t + 2 \frac{e^{-\kappa_1(T-t)} - 1}{\kappa_1} - \frac{e^{-2\kappa_1(T-t)} - 1}{2\kappa_1} \right)
Code 5.
     double V(
          double kappa, double kappa2, double t,
          double T, double vol, double vol2
     )
          return vol * vol2 / (kappa * kappa2) * (T - t + (exp(-kappa * (T - t)) - 1.0) / kappa +
     (\exp(-\text{kappa2} * (T - t)) - 1.0) / \text{kappa2} - (\exp(-(\text{kappa} + \text{kappa2}) * (T - t)) - 1.0) / (\text{kappa})
     + kappa2));
```

for (i = 0; i < nDates; i++) {

```
QVT_x(T_0, T_i) = \frac{1}{2} \Big( V_{\kappa_1}(T_0, T_i) + V_{\kappa_1}(0, T_i) + V_{\kappa_1}(0, T_0) \Big)
Code 6.
    double QV(
         double t, double T, double kappa,
         long NHWVol, double* HWVolTerm, double* HWVol
    )
    {
         long i;
         double vol;
         double RHS = 0.0;
         if (NHWVoI == 1 \mid \mid \text{kappa} > 0.1)
             vol = Interpolate_Linear(HWVolTerm, HWVol, NHWVol, t);
             t,vol,vol));
         }
         else
         {
             RHS = 0.0;
             long NInteg = 10;
             double u = t;
             double du = (T - t) / ((double)NInteg);
             double Bst, BsT;
             for (i = 0; i < NInteg; i++)
             {
                  vol = Interpolate_Linear(HWVolTerm, HWVol, NHWVol, u);
                  Bst = B(u, t, kappa);
                  BsT = B(u, T, kappa);
                  RHS += 0.5 * vol * vol * (Bst * Bst - BsT * BsT) * du;
                  u = u + du;
             }
         }
         return RHS;
    }
              QVT_{xy}(T_0, T_i) = \frac{1}{2} \Big( V_{\kappa_1, \kappa_2}(T_0, T_i) + V_{\kappa_1, \kappa_2}(0, T_i) + V_{\kappa_1, \kappa_2}(0, T_0) \Big)
Code 7.
    double CQV(
         double t, double T, double kappa,
         long NHWVol, double* HWVolTerm, double* HWVol,
         double kappa2, double* HWVolTerm2, double* HWVol2,
         double rho
         long i;
         double Bst, BsT, vol, vol2;
         double RHS = 0.0;
         double s, ds;
         long NInteg = 10.0;
```

```
double u = t;
         double du = (T - t) / ((double)NInteg);
         RHS = 0.0;
         if (NHWVol > 1)
              vol = 0.5*Interpolate Linear(HWVolTerm, HWVol, NHWVol, t)+0.5*
     Interpolate_Linear(HWVolTerm, HWVol, NHWVol, T);
              vol2 = 0.5*Interpolate_Linear(HWVolTerm,HWVol2,NHWVol,t)+0.5*
     Interpolate_Linear(HWVolTerm, HWVol2, NHWVol, T);
         }
         else
         {
              vol = Interpolate_Linear(HWVolTerm, HWVol, NHWVol, t);
              vol2 = Interpolate_Linear(HWVolTerm, HWVol2, NHWVol, t);
         }
         RHS = 2.0 * \text{rho} * 0.5 * (V(kappa, kappa2, t, T, vol, vol2) - V(kappa, kappa2, 0, T,
     vol, vol2) + V(kappa, kappa2, 0, t, vol, vol2));
         return RHS;
     }
               A(T_0, T_i) = \frac{P^M(0, T_i)}{P^M(0, T_0)} e^{QVT_X(T_0, T_i) + QVT_Y(T_0, T_i) + QVT_{XY}(T_0, T_i)}
Code 8.
     // Swaption2F 함수에서 사용
     double A(
         double t, double T, double kappa1,
         double kappa2, double* tVol,double* Vol1,
         double* Vol2, double* Vol12, long nVol,
         double rho, double DF_t, double DF_T
     )
     return exp(QV(t,T,kappa1,nVol,tVol,Vol1)+QV(t,T,kappa2,nVol,tVol,Vol2)+CQV(t,T,kappa1,nVol,
     tVol, Vol1, kappa2, tVol, Vol2, rho));
               \int_{-\infty}^{\infty} \frac{e^{\frac{-(x-\mu_X)^2}{2\sigma_X^2}}}{\sigma_x\sqrt{2\pi}} f(x) dx = \sum_{i=1}^{n} \frac{e^{\frac{-(x_i-\mu_X)^2}{2\sigma_X^2}}}{\sigma_x\sqrt{2\pi}} f(\underline{x_i}) \times \underline{w_i}
Code 9.
     // Gauss Hermite Normal 적분 계산에 사용될 x지점과 weight를 계산
     // integral_-inf to inf 1.0/(sigma*sqrt(2.0Pl)) * exp(-((x-mu)/sigma)^2) f(x) dx = sum(w *
     f(x)
     void gauss_hermite_normal(double* x, double* w, double mu, double sigma, long n)
               long i;
               double sqrt2 = 1.4142135623730951; // sqrt(2.0);
               double sqrtPI = 1.772453809055159; //sqrt(PI);
               gauss_hermite(x, w, n);
               for (i = 0; i < n; i++)
               {
                         x[i] = (x[i] * sqrt2) * sigma + mu;
                         w[i] = (w[i] / sqrtPI);
               }
```

}

```
SWPT = P(0, T_{opt}) \int_{-\infty}^{\infty} \frac{\frac{(x-\mu_X)^2}{2\sigma_X^2}}{\sigma_X\sqrt{2\pi}} \left\{ N(-h_1(x)) - \sum_{i=1}^n \lambda_i(x) e^{\kappa_i(x)} N(-h_{2,i}(x)) \right\} dx
Code 10.
     // 2-factor 모형의 Fixed Payer Swaption 가격 계산
     double _stdcall Swaption2F(
          double NA. double kappa1. double kappa2.
          double* tVol, double* Vol1, double* Vol2,
          double* Vol12, long nVol, double rho,
          double StrikeRate, long MaturityDate, long* Dates,
          double* termdates, double* termC, long nDates,
          double* PT, double P0_at_OptMaturity,
                                         //Gauss Normal Quadrature 개수
          long nQuad,
          double* x,
                                         //Gauss Normal Quadrature의 x값
          double* w
                                         //Gauss Normal Quadrature의 y값 비율
     {
          long i, j;
          double sum, value = 0.0;
          double T;
          double h1, h2, kappa_i, y;
          double m_x, sigma_x, m_y, sigma_y, rho_xy;
          if (kappa1 < Tiny_Value) kappa1 = Tiny_Value;</pre>
          if (kappa2 < Tiny_Value) kappa2 = Tiny_Value;</pre>
          T = (double)MaturityDate / 365.0;
          double exp minus kappa1 T = exp(-kappa1 * T);
          double exp_minus2_kappa1_T = exp(-2.0 * kappa1 * T);
          double exp_minus_kappa2_T = exp(-kappa2 * T);
          double exp_minus2_kappa2_T = exp(-2.0 * kappa2 * T);
          m_x = -mu_x(\text{kappa1}, \text{kappa2}, \text{nVol}, \text{tVol}, \text{Vol1}, \text{nVol}, \text{tVol}, \text{Vol2}, \text{rho}, \text{T}, \text{O}, \text{T});
          m_y = -mu_x(\text{kappa2}, \text{kappa1}, \text{nVol}, \text{tVol}, \text{Vol2}, \text{nVol}, \text{tVol}, \text{Vol1}, \text{rho}, \text{T}, \text{0}, \text{T});
          double v1, v2;
          v1 = Interpolate_Linear(tVol, Vol1, nVol, T);
          v2 = Interpolate_Linear(tVol, Vol2, nVol, T);
          sigma_x = sqrt(v1 * v1 * (1.0 - exp(-2.0 * kappa1 * T)) / (2.0 * kappa1));
          sigma_y = sqrt(v2 * v2 * (1.0 - exp(-2.0 * kappa2 * T)) / (2.0 * kappa2));
          rho_xy = rho * exp(-(kappa1 + kappa2) * T) * Integ(T, 1.0, kappa1 + kappa2, tVol, Vol12, nVol) /
     (sigma_x * sigma_y);
          if (sigma_x < 0.0) sigma_x = -sigma_x;
          if (sigma_x < Tiny_Value) sigma_x = Tiny_Value;</pre>
          if (sigma_y < 0.0) sigma_y = -sigma_y;</pre>
          if (sigma_y < Tiny_Value) sigma_y = Tiny_Value;</pre>
          rho_xy = max(-0.9999, min(0.9999, rho_xy));
          gauss_hermite_normal(x, w, m_x, sigma_x, nQuad);
          for (i = 0; i < nQuad; i++) {
              for (j = 0; j < nDates; j++)
                   if (j == 0)
                       termC[j] = StrikeRate * (termdates[j] - T) * A(T, termdates[j], kappa1, kappa2, tVol,
     Vol1, Vol2, Vol12, nVol, rho, P0_at_OptMaturity, PT[j]) * exp(-B(T, termdates[j], kappa1) * x[i]);
                   else if (j == nDates - 1)
                       termC[j] = (1.0 + StrikeRate * (termdates[j] - termdates[j - 1])) * A(T, termdates[j],
     kappa1, kappa2, tVol, Vol1, Vol2, Vol12, nVol, rho, PO_at_OptMaturity, PT[j]) * exp(-B(T,
     termdates[j], kappa1) * x[i]);
```

```
else
                                                                            {
                                                                                                   termC[j] = StrikeRate * (termdates[j] - termdates[j - 1]) * A(T, termdates[j], kappa1,
kappa2, \ tVol, \ Vol1, \ Vol2, \ Vol12, \ nVol, \ rho, \ PO_at_OptMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j]) \ \star \ exp(-B(T, \ termdates[j], \ tVol_optMaturity, \ PT[j], \ tVol_o
kappa1) * x[i]);
                                                                       }
                                                  y = Find_Sol2(kappa2, termC, T, termdates, nDates);
                                                  h1 = ((y - m_y) / sigma_y - rho_xy * (x[i] - m_x) / sigma_x) / sqrt(1.0 - rho_xy * rho_xy);
                                                  sum = CDF_N(-h1);
                                                  for (j = 0; j < nDates; j++)
                                                                           h2 = h1 + B(T, termdates[j], kappa2) * sigma_y * sqrt(1.0 - rho_xy * rho_xy);
                                                                           kappa\_i = -B(T, termdates[j], kappa2) * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy)) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy * rho_xy)) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma\_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y * (m_y - 0.5 * (1.0 - rho_xy)) * sigma_y
sigma\_y * B(T, termdates[j], kappa2) + rho\_xy * sigma\_y * (x[i] - m\_x) / sigma\_x);
                                                                            sum -= termC[j] * exp(kappa_i) * CDF_N(-h2);
                                                  value += w[i] * sum;
                         }
                         return NA * value * P0_at_OptMaturity;
}
```

Code 11.