Lycée Chateaubriand MPSI 3 • 2025 – 2026

William GREGORY

Colle 1 • INDICATIONS Raisonnements

Exercice 1.1

Une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est dite polynomiale de degré $n \in \mathbb{N}$ lorsque : $\exists a_0, \dots, a_n \in \mathbb{R}: \forall x \in \mathbb{R}, \quad f(x) = a_0 + a_1 x + \dots + a_n x^n.$

Déterminer l'ensemble des fonctions polynomiales de degré 3 impaires.

indication

Raisonner par analyse-synthèse. En se donnant f une fonction polynomiale de degré 3, déterminer des conditions sur les coefficients a_0 , ..., a_3 pour avoir

$$\forall x \in \mathbb{R}, f(x) + f(-x) = 0.$$

On pourra en particulier évaluer cette relation en certains points.

résultat

Les fonctions répondant au problème sont dans l'ensemble $\left\{x\longmapsto a_3x^3+a_1x\ ;\ a_1,a_3\in\mathbb{R}\right\}$.

Exercice 1.2

Soient $p, q \in [1, +\infty[$ tels que $p \leqslant q$.

Soit $r \in [p, q]$.

Montrer que :

$$\exists \theta \in [0,1]: \quad \frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

indication

Raisonner par analyse-synthèse, en n'oubliant pas de vérifier que la solution trouvée est bien dans [0,1].

Exercice 1.3

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction.

La fonction f est dite paire lorsque

$$\forall x \in \mathbb{R}, \quad f(-x) = f(x).$$

Montrer que f est paire si, et seulement si, il existe une unique fonction $g: \mathbb{R}_+ \longrightarrow \mathbb{R}$ telle que : $\forall x \in \mathbb{R}, \quad f(x) = g(x^2).$

1

indication

- Se vérifie par calcul.
- Raisonner par analyse synthèse. Évaluer en $x = \sqrt{t}$ pour trouver g. La parité de f permet de vérifier que g répond bien au problème.

Exercice 1.4

Déterminer l'entier le plus proche de $\sqrt{73}$.

indication -

- Commencer par encadrer $\sqrt{73}$ par deux entiers consécutifs : 8 et 9.
- Comparer les nombres $|\sqrt{73} 8|$ et $|\sqrt{73} 9|$ en comparant leur carré.

— résultat —

L'entier plus proche de $\sqrt{73}$ est 9.

Exercice 1.5

1. Soit $a \ge 0$. Montrer que :

$$\forall n \in \mathbb{N}, \quad (1+a)^n \geqslant 1+n a.$$

- **2.** Soit $q \in \mathbb{R}$.
 - (a) Montrer que, si q > 1, $q^n \longrightarrow +\infty$.
 - **(b)** Montrer que, si $q \in [0, 1[, q^n \longrightarrow 0]$

indication -

- 1. Raisonner par récurrence. Ce résultat est appelé « l'inégalité de Bernoulli ».
- **2.** (a) Utiliser l'inégalité précédente avec a = q 1 > 0 et passer à la limite par minoration.
 - **(b)** Si $q \neq 0$, appliquer la question précédente avec $q' \coloneqq \frac{1}{q}$.

Exercice 1.6

Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $p \in \mathbb{N}^*$ et $k_1, \dots, k_p \in \mathbb{N}$ tous distincts tels que : $n = 2^{k_1} + \dots + 2^{k_p}$.

indication -

Procéder par récurrence forte. Dans l'hérédité, on pourra supposer la propriété vraie pour tous les entiers strictement inférieurs à n pour montrer la propriété pour n, en distinguant les cas où n est pair et n est impair. Dans le cas où n est pair, on utilise la décomposition de $\frac{n}{2}$ et dans le cas où n est impair, n-1 est pair.

2

Exercice 1.7

Soit $n \in \mathbb{N}$. On suppose que n est le carré d'un entier.

Le nombre 2n peut-il être le carré d'un entier?

indication

- ightharpoonup Si n=0, oui.
- ♦ Si $n \neq 0$, raisonner par l'absurde et aboutir à une contradiction avec l'hypothèse de départ en utilisant que $\sqrt{2} \notin \mathbb{Q}$.

Exercice 1.8

1. Déterminer la solution r_0 de l'équation :

$$x^2 - 10x + 25 = 0.$$

2. Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}, \quad u_{n+2} = 10u_{n+1} - 25u_n.$$

Montrer que :

$$\exists \lambda, \mu \in \mathbb{R} : \forall n \in \mathbb{N}, \quad u_n = (\lambda n + \mu) r_0^n.$$

indication

- 1. Méthode classique.
- **2.** Raisonner par analyse-synthèse. Évaluer en n=0 et n=1 pour déterminer λ et μ puis, dans la synthèse, raisonner par récurrence à deux prédécesseurs.

résultat —

1.
$$r_0 = 5$$
.

Exercice 1.9

Soit $\lambda \in \mathbb{R}$.

Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles telles que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} - \lambda u_n = v_n.$$

- **1.** Soit $K \in \mathbb{N}$.
 - (a) Exprimer u_0 en fonction des termes $v_0, ..., v_K$ et u_{K+1} .
 - **(b)** De même, pour $n \in \mathbb{N}$, exprimer u_n .
- **2.** Si $u_n \longrightarrow 0$ et $\lambda \geqslant 1$, que peut-on en déduire sur la suite $\left(\sum_{k=0}^K \frac{v_k}{\lambda^{k+1}}\right)_K$?

indication -

1. (a) Établir une conjecture en écrivant la relation pour les premiers termes, puis la démontrer par récurrence.

3

- (b) C'est la même chose, en décalant de n.
- **2.** Exprimer $\sum_{k=0}^{K} \frac{v_k}{\lambda^{k+1}}$ en fonction des termes u_0 et u_{K+1} , puis faire tendre K vers $+\infty$.

résultat

1. (a)
$$u_0 = -\sum_{k=0}^K \frac{v_k}{\lambda^{k+1}} + \frac{u_{K+1}}{\lambda^{K+1}}$$
.

(b)
$$u_0 = -\sum_{k=0}^K \frac{v_{n+k}}{\lambda^{n+k+1}} + \frac{u_{n+K+1}}{\lambda^{n+K+1}}.$$

2. La suite
$$\left(\sum_{k=0}^{K} \frac{v_k}{\lambda^{k+1}}\right)_n$$
 converge.

Exercice 1.10

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction vérifiant :

$$\forall x, y \in \mathbb{R}, \quad \forall \lambda \in \mathbb{R}, \quad f(\lambda x + y) = \lambda f(x) + f(y).$$

- **1.** Déterminer, pour $x \in \mathbb{R}$, l'expression de f(x).
- 2. On suppose que :

$$\forall x \in \mathbb{R}, \quad f(f(x)) = x.$$

Montrer que, pour tout $x \in \mathbb{R}$, il existe un unique couple $(x_1,x_2) \in \mathbb{R}^2$ tels que :

$$f(x_1) = x_1$$
, $f(x_2) = -x_2$ et $x = x_1 + x_2$.

indication -

- 1. Tester avec des valeurs stratégiques. Notamment, pour tout réel x, $x = 1 \times x$.
- 2. Raisonner par analyse-synthèse.

résultat

4

1. Pour tout $x \in \mathbb{R}$, f(x) = f(1)x.

2.
$$x_1 = \frac{x + f(x)}{2}$$
 et $x_2 = \frac{x - f(x)}{2}$.