Investigations on the use of Hashing for Parallel Graph and Hypergraph Processing

Somesh Singh, INRIA and LIP, France.

Bora Uçar, CNRS and LIP, France.

SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP22)

Problem of Interest

Given: A d-dimensional sparse tensor T

<u>Goal:</u> To answer queries of the form — "Is $\mathcal{T}[i_1,\ldots,i_d]$ zero or nonzero?"

A desirable solution should have:

- O(d) query response time
- Small memory overhead
- Fast preprocessing

Our focus: Hashing methods with worst-case optimal lookups

Motivating Applications

- Kolda and Hong* propose an efficient algorithm for decomposition of sparse tensors.
 - Sample the zeros and nonzeros of the given tensor.
 - For sampling zeros, a random set of indices is created, and those positions in the given tensor are checked for zero.

 Checking for the presence of edges in a dense graph or subgraph (e.g. a quasi-clique).

^{*}T. G. Kolda and D. Hong, "Stochastic gradients for large-scale tensor decomposition," SIAM Journal on Mathematics of Data Science, vol. 2, no. 4, pp. 1066–1095, 2020.

FKSLean — A Perfect Hashing Method

- FKSLean employs a two-level structure to obtain a perfect hashing.
- First level hash function: $h(\mathbf{k}, \mathbf{x}, p, n) := (\mathbf{k}^T \mathbf{x} \mod p) \mod n$
- Second level hash function: $h(\mathbf{k}_i, \mathbf{x}, p, 2b_i^2) := (\mathbf{k}_i^T \mathbf{x} \mod p) \mod 2b_i^2$

FKSLean data-structure

Bertrand et al., "Algorithms and data structures for hyperedge queries," Inria Grenoble Rhône-Alpes, Research Report RR-9390, Feb. 2021.

FKSLean — Storage Requirements

FKSLean data-structure

K is a set of d-tuples.

At each bucket B_i :

- \bullet b_i is the number of hyperedges.
- If $b_i = 0$, nothing is stored.
- If $b_i = 1$, a reference to the only hyperedge in B_i is stored.
- If $b_i \geq 2$,
 - A $k_i \in K$ which defines a perfect hashing for B_i is stored.
 - Storage space of size 2b_i², which holds the references to the b_i hyperedges in B_i.

FKSLean — In Theory and Practice

A few theoretical results [Bertrand et al.]

- **①** For a randomly chosen $k \in U$ the probability that $\sum b_i^2 < 7n$ is more than 1/2.
 - In expectation, one can find a k such $\sum b_i^2 < 7n$ in a few trials.
 - Such a k guarantees a total of O(n) storage space for the buckets.
- **②** For a randomly chosen $\mathbf{k}_i \in U$ the probability that \mathbf{k}_i defines a perfect hashing $h(\mathbf{k}_i, \mathbf{x}, p, 2b_i^2)$ for the hyperedges of B_i is more than 1/2.
- O(log₂ n) different d-tuples in K are enough, in expectation, to supply each bucket with a suitable hash function.
 - A total space of $O(\frac{d}{\log_2 n})$ for K suffices.

In practice [Bertrand et al.]

- ① Total storage space required for the buckets is less than 5n.
- 2 Less than $0.5 \log_2(n)$ d-tuples in K suffice.

PARFKSLEAN: Parallelize the Construction of FKSLean

Parallel construction proceeds in two steps:

- 1 Setting up fksOffset, in parallel
 - Bucketing
 - ② Build hyperedge-lists for buckets
 - Populate fksOffset
- 2 Populating fksStorage, in parallel

Setting-up fksOffset

- Bucketing
 - Compute in parallel $h(\mathbf{k}, \mathbf{e}, p, n)$ for every hyperedge \mathbf{e} and store it in $bucket_ids$ array.
- Building hyperedge-lists for buckets
 - Maintain two arrays items and offset.

- Populate offset array with histogram of bucket_ids array.
- Parallel prefix-sum on offset array using a two-pass algorithm.
- Populate the *items* array in parallel.

- Populating fksOffset
 - Populate fksOffset in parallel, using the following relation:

$$exttt{fksOffset}[i] := egin{cases} b_i & ext{if } b_i \in \{0,1\}, \ 1+2b_i^2 & ext{otherwise}. \end{cases}$$

where,
$$b_i := \text{offset}[i+1] - \text{offset}[i]$$
.

- Parallel prefix-sum on fksOffset array.
- Examine fksOffset[n] for checking the storage requirement.

Populating fksStorage

- Populate K with $2\log_2(n)$ keys.
- Coarse-grained parallelization for populating fksStorage handle every bucket independently.
 - If $b_i = 0$, do nothing.
 - If b_i = 1, store the id of the hyperedge in fksStorage at position fksOffset[i].
 - If $b_i \geq 2$,
 - Pick a k_i from K to effect a perfect hashing of the hyperedges mapped to B_i .
 - Place hyperedge **e** in the hyperedge-list of B_i at position $h(\mathbf{k}_i, \mathbf{e}, p, 2b_i^2) + \text{fksOffset}[i]$ in fksStorage.

Experimental Evaluation

CPU Intel Xeon Gold 5218 (64 cores, 2.3 GHz, 384 GB RAM)

Software Debian GNU/Linux 10 (64 bit), GCC 8.3.0, OpenMP

State-of-the-art: $PTHash^{\dagger}$ — nonminimal and minimal perfect hash function for static sets, with support for parallel construction.

Inputs: Tensors from the FROSTT (http://frostt.io/) dataset.

[†]G. E. Pibiri and R. Trani, "PTHash: Revisiting FCH minimal perfect hashing," in 44th SIGIR, International Conference on Research and Development in Information Retrieval. ACM, 2021, pp. 1339–1348

Construction Time

Takeaway: In the construction phase, PARFKSLEAN is always faster than all the three variants of PTHash for all thread configurations.

T-1 T-2

0.5

T-3

T-4

T-5 T-6 T-7 T-10

T-8

Construction Time

$$\#$$
 threads = 32

Takeaway: In the construction phase, **PARFKSLEAN** is **always** faster than all the three variants of PTHash for all thread configurations.

Scalability of Construction Phase

Takeaway: PARFKSLEAN exhibits better parallel scaling.

Query Response Time

		1	PTHash	1	
Tensor	#Threads	-PC	-DD	-EF	PARFKSLEAN
nell-2	2	2.01	1.64	2.10	0.97
	4	1.01	0.95	1.06	0.53
	8	0.46	0.49	0.54	0.27
	16	0.25	0.27	0.29	0.15
	32	0.14	0.15	0.16	0.11
	64	0.08	0.09	0.11	0.07
	2	2.51	2.04	2.20	1.07
flickr-4d					
₩	64	0.11	0.09	0.09	0.08
4d	2	2.30	2.02	2.25	1.11
delicious-4d		:			
del	64	0.10	0.09	0.15	0.08
nell-1		:			
	64	0.11	0.10	0.08	0.08

Execution time (in seconds) for 10^7 queries on four large tensors.

Takeaway: PARFKSLEAN is at least as fast as the best performing variant of PTHash in all thread configurations for all inputs.

Conclusions

- O PARFKSLEAN parallelizes the construction phase of FKSLean.
- The construction phase of PARFKSLEAN exhibits good parallel scaling.
- PARFKSLEAN outperforms the state-of-the-art both in construction, and query response.

Conclusions

- O PARFKSLEAN parallelizes the construction phase of FKSLean.
- The construction phase of PARFKSLEAN exhibits good parallel scaling.
- PARFKSLEAN outperforms the state-of-the-art both in construction, and query response.

Thank You

https://perso.ens-lyon.fr/somesh.singh/

Backup Slides

Input Tensors

Tensor	d	Dimensions	n
chicago_crime (T-1)	5,330,673		
vast-2015-mc1-3d (T-2)		$165,427 \times 11,374 \times 2$	26,021,854
vast-2015-mc1-5d (T-3)		$165,427 \times 11,374 \times 2 \times 100 \times 89$	26,021,945
enron (T-4)	4	6,066 × 5,699 × 244,268 ×	54,202,099
		1,176	
nell-2 (T-5)	3	$12,092 \times 9,184 \times 28,818$	76,879,419
flickr-3d (T-6)	3	319,686 × 28,153,045 ×	112,890,310
		1,607,191	
flickr-4d (T-7)	4	319,686 × 28,153,045 ×	112,890,310
		$1,607,191 \times 731$	
delicious-3d (T-8)	3	532,924 × 17,262,471 ×	140,126,181
		2,480,308	
delicious-4d (T-9)	4	532,924 × 17,262,471 ×	140,126,181
		$2,480,308 \times 1,443$	
nell-1 (T-10)	3	2,902,330 × 2,143,368 ×	143,599,552
		25,495,389	

Input tensors from FROSTT dataset