

NLP

Otras arquitecturas para procesar secuencias:

CNN y Attention

Dr. Rodrigo Cardenas Szigety rodrigo.cardenas.sz@gmail.com

Dr. Nicolas Vattuone nicolas.vattuone@gmail.com

Programa de la materia

- Clase 1: Introducción a NLP, Vectorización de documentos.
- Clase 2: Preprocesamiento de texto, librerías de NLP y bots de información
- Clase 3: Word Embeddings, CBOW y SkipGRAM, entrenamiento de embeddings.
- Clase 4: Redes recurrentes (RNN), problemas de secuencia y estimación de próxima palabra.
- Clase 5: Redes LSTM, análisis de sentimientos.
- Clase 6: Modelos Seq2Seq, traductores y bots conversacionales.
- Clase 7: Celdas con Attention. Transformers, BERT & ELMo, fine tuning.
- Clase 8: Cierre del curso, NLP hoy y futuro, deploy.
- *Unidades con desafíos a presentar al finalizar el curso.
- *Último desafío y cierre del contenido práctico del curso.

De texto a secuencias de embeddings

Capa de embeddings

[40, 1213, 1215, 20, 578, 11, 120, 79, 31, 26, 608, 974]

Segmentación, normalización, transformación, filtrado y tokenización.

"Cuando Gregorio Samsa se despertó una mañana después de un sueño intranquilo"

Problemas de clasificación en texto a partir de secuencias

- Clasificación en tópicos
- Sentiment analysis
- Modelos de lenguaje
- NER

Procesando secuencias con RNNs

Modelo básico de clasificación a partir de embeddings

Una primera aproximación posible:

Sumar los embeddings

Arquitecturas Convolucionales para procesar secuencias

Dimensión de embedding->cantidad de canales

Tamaño de contexto ->tamaño de filtro

Clasificación de textos con CNN

TextCNN

Mecanismo de atención

En general, un mecanismo de atención es una transformación de secuencias de embeddings a secuencias de embeddings de forma ponderada y paralela.

Existen varios tipos pero las operaciones fundamentales consisten en:

- El cálculo un vector de pesos/scores de atención .
- La construcción de un vector ponderado que es fácilmente paralelizable a lo largo del tamaño de la secuencia.

¡La degradación del gradiente es independiente del tamaño de la secuencia! Pero se debe fijar el tamaño máximo de secuencia a procesar.

A futuro veremos que el mecanismo de **self-attention** es el que utilizan las arquitecturas **transformer**.

Mecanismos de atención

Atención para Encoding-decoding

Attention output: weighted sum of A model can learn to "pay encoder states with attention weights attention" to the most relevant source tokens for each step Attention weights: distribution over source tokens saw a Attention softmax $score(h_t, s_k)$ $p^{(1)} p^{(2)} p^{(3)} p^{(4)}$ How relevant is source token k scalar out for target step t? Attention function Decoder state for token k: sk at step t: h. Я видел котю на мате «eos»

 bos> I saw a ··· "I" "saw" "cat" "on" "mat" Decoder Encoder

Self-attention (transformers)

https://lena-voita.github.io/resources/lectures/seg2seg/transformer/encoder_self_attention.mp4

Attention via Feed-Forward Networks

Cálculo de vector ponderado, paralelizable en el tamaño de la secuencia

Cálculo de vector de pesos

¡Es BOW!

Attention via Recurrent Networks

Cálculo de vector ponderado, paralelizable en el tamaño de la secuencia

Cálculo de vector de pesos

¡Es recurrente!

