CALCOLO DELLE PROBABILITA'

Appello del 12/2/2018

Nome:		

- Detti X il risultato del lancio di un dado regolare a sei facce, Y il numero estratto a caso e indipendentemente da {1, 2, ..., 12}, Z = X + Y, calcolare;
 - (a) P(X = i | Z = 5);
 - (b) Cov(X, Z);
 - (c) E[X(2Y-5)].
- 2) Da un'uma contenente 3 palline bianche e 3 rosse si effettuano 3 estrazioni con la seguente modalità: si rimette la pallina nell'uma, se esce rossa, non la si rimette altrimenti. Posto E_i = "esce bianca all'i-esima estrazione" e detta S_n la frequenza assoluta di successo in n estrazioni (successo: uscita di pallina bianca), calcolare:
 - (a) $P(E_i)$ (i = 1, 2, 3), $P(E_1|\overline{E}_2)$;
 - (b) P(E2 v E3 | E1);
 - (c) $P(S_2 = 1)$.
- 3) La coppia aleatoria (X,Y) è distribuita sul triangolo di vertici (0,-1), (1,0), (0,1) con densità f_{X,Y}(x, y) = kx|y|. Calcolare:
 - (a) le densità marginali f_X(x), f_Y(y);
 - (b) la funzione di ripartizione del n.a. X

Esecci	1310	1)					
X = 30	sultar	to de	Cano	xo di	un d	ado a	6 Jaccie
Y= n	o estra	to da	51,	, 2,	, 12	} ; Z	7= X+Y
OSS:	X ed	y son	o sto	casti amen i un	came te, co dado	nte in mestata nulla ad ese	distendenti lo ni mo che il rivultato mo a he vedere" msio sun urna
	12 A	np. +	Z=X+7	Y=5 C	7 X=1	1 /= 3	Per 164 mic-
P(X	= i/Z	=5)	+		PI	Z=5)	Per 1 \(4 mic- 5-1) come 7 ha realizeazioni 70.
Xed	Sono					P(/= !	
	endeno	The second second	-		PIZ		
X	1	2	3	4	5	6	
1	2	3	4	5)	6	7	Nota: come si
2	3	4	5	6	7	8	Vare in tabella
3	4	5	6	7	8	3	Cimmagine del
4	15	6	7	8	9	10	Zha 72 elementi
5	6	7	8	9	10	11	Posso assumere equi-
6	7	8	3	10	11	12	harfirione produtto
7	8	9	10	11	12	13	Elementari
8	9	10	11	12	13	14	(X=1 17=3),
Q	10	11	12	13	14	15	2/7-1)-4
10	11	12	13	14	15	16	F(Z=3) - 72 ·
11	12	13	14	15	16	17	
12	13	14	15			18	

Riesce quindi:
$$\frac{1}{2} \times \frac{1}{2} \times$$

a) P(Ei) con i = 1,2,3 Oss: pelcaro del proc. stocarti co in esame, non scambiabili pon esiste una generica P(Ei), inquanto: $P(E_1) \neq P(E_2) \neq ... \neq P(E_n)$ Nei processi stocastici scambiabili è P(E1) = P(E2) = = = P(E1) = = = P(En) Calcalo quindi Ce P(Ei), con i = 1, , 3 reparatamente P(E,) = P(E2 , E1) + P(E2 , E1) = P(F2/E1)P(F1) + P(E2/E1)P(E1) $= \frac{2}{5} \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2 = \frac{1}{5} + \frac{1}{4} = \frac{9}{20}$ P(E3) = P(E3 1 E1 1 E2) + P(E3 1 E1 1 E2) + P(E3 1 E1 1 E2) + P(E3 1 E1 1 E2) = P(E1)P(E2/E1)P(E3/E1/E2) + + P(E1)P(E2/E1)P(E3/E1/E2) + P(E1)P(E2/E1) P(E3/E1/E2) + P(E1)P(E2/F1)P(E3/E1/E2) $= \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{3}{5} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $= \frac{1}{20} + \frac{1}{10} + \frac{3}{25} + \frac{1}{8} = \frac{79}{200}$ · P(E1/E2) = P(E1/E2) P(E1/E2) P(E2) 1-P(E2)

 $= \int \times dx \left[\frac{1}{2} (x-1)^2 + \frac{1}{2} (1-x)^2 \right] = \int \times (1-x)^2 dx$ $= \int (x^3 - 2x^2 + x) dx = \left[\frac{x^4}{4} - 2\frac{x^3}{3} + \frac{x^2}{2} \right]^{\frac{1}{2}} = \frac{1}{4}$ fx(x) = 12 (-fxydy + fxydy) $= 12 \left(-x \cdot \frac{1}{2} \left[y^2 \right]^0 + x \frac{1}{2} \left[y^2 \right]^{1-x} \right)$ $= 12 \left(\times \cdot \frac{1}{2} \left(\times -1 \right)^2 + \times \cdot \frac{1}{2} \left(1 - \times \right)^2 \right)$ = 12 ° × (x-1)2 De O € × € 1 J-xydx = -y. = [x2]y+1 $f_{y}(y) = 12$ = -\frac{1}{2}(y+1)^{2} 1 xydx = y. = [x2] = se Osy 1 = 8 (1-4)2 12 (t(t-1) dt = re OSXS1 $F_{\times}(\times)$ 0=24(3x4-8x3+6x2) se xy1

