第一章.搜索算法

	始性	最优解	明腹雜	空间复杂度	Frontier
BFS	V	基始搜 每代价·	0(6d)	O(6d)	Queve
DFS	特 特 深 彩 材 形		0 (6m)	O(bm) 空间复数小 运用内存为	Stack
IDS	~	為的搜索作作	0 (b)	O(bd)	Stack
UCS	~	~			Priority Queue 按gen)排序一种性的距离
Greedy	×	×	最年 O(bd) 最年 O(bd)	最好O(b ^m) 最好O(bd)	Priority Queue 按hun)排序→高目标估计
A*	/	✓			Priority Queue 按h(n)+gun)排序

搜索多数

b.一个节点最多较 m:整个图量大浑僵

d:解所在的浑度

实际距离 估算距离 后发习属性 Admissble: dcn) > hcn)

Consistent: din,p) = hin)-hip)

hun=0将同母满足以上2个属性

CSP的来满足问题

前提假设: Single agent + fully observable + deterministic + discrete environment

局部搜索:

从完全放置开始,此时不需要為足争件 总试重新分配变量表满是 Constraint 每次分配一个变量,使得冲突最为

启发式 Backtracking

- · 选择下一个 vaniable Least remaining variable (LRV) Most constraint variable (MCV)
- ·选择下一个value Least constraint assignment (LCA) 选择产生限制最为的值 •早期失败检测
- Forward checking 检查所有变量至少还有一个可能值 Arc consistency

萬二章. Game

因为Max只会选更大的

。纳什均衡

囚徒	图境(图	杨小台个	(1)	猎鹿	游戏(鼓励合作	
	A招	A不把			AR	A兔	
BB	-5,-5	-10.0		B麂	2,2	110	_
B不相	0,10	-1, -1		B免	Dil	1,1	_

不弱步	字对	
	AL	A45
路直	10,10	-111
路钱	1.7	0,0

。定理: 任何搏弈,只要选择有限,则华然有一个纳什均衡

If a player has dominant strategy. 494% this player use dominant the other one use best respond

If both player has dominant strategy. 轴升为两人利用自己的 dominant strategy

第三章、贝叶町]
・基本公式 P(AIB) = P(BIB) + P(AIB) = P(BIB) P(B) = P(BIA) - P(A)

P(ANB) = P(A)·PCB) 相圣经之

P(B) = P(BIAI) P(AI) + P(BIA) · P(A) ··· P(BIAI) · P(An)

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|A) \cdot P(A)}$$

批颂师,7次人上,3次数学上 ·最大类似估计(MIE) 0 = arg max P(x6|0) L(v) = 67 (1-0)3

·最大后验概率 (MAP) $\theta = arg \max P(\theta | X_0)$ $P(X|H) = \frac{25}{50} = \frac{2}{60}$ $P(H) = \frac{21}{60} = \frac{2}{60}$ $P(H|X) = \frac{2}{7}$ 办证属于垃圾的 概率为 多

·朴素贝叶斯

雅(=(012) 新程 $P(X=(0,2)|Y=1) = P(X=0|Y=1) \cdot P(X=2|Y=1) = \frac{7}{16}$ P(X=(0,2) | Y=0) = P(X=0) Y=0) - P(X=2 | Y=0) = 女

。贝叶斯网络

・基本概念

Ø €	Ø 2
P(z,X)=P(z)P(X) 最独生	P(ZX)=P(Z Y)P(X(Y)PCY) 不是独生
$P(z,x Y) = \frac{P(Y X,z)P(x)P(z)}{P(Y)}$	PCZXIY) = PCZIY) P(XIY)
≠ P(Z Y)P(X Y) 不是条件独立	是条件独立

额过法则: P(A., A.-. An) = Ti P(Ai | Parent (Ai) = If P(AilA,...Ain) = P(A1) - P(A2/A1) - P(A3/A1, A2) --- P(An/A1---An-) P(J.M. A.B.E) = P(B)-P(E)-P(A|B.E)-P(J|A)-P(M/A)

P(B,J) = \(\Sigma\) \(\Sigma\) \(\Sigma\)

隐羽的夫模型 HMM

Emission Probability Transition Matrix 映射矩阵 状态转移矩阵 K-个state到观测 从一个 stace 到 现象的概率 另一个State 的概率

· 原物和 Perceptron X, W, O→輸出四a 輸出= {1, 花式+6>0

可做为从下门电路

与门	AND Gate	
与非门	NAND Gate	
韩门	OR Gate	

但无法做为异或:] XOR

	Λ
	1 1 1 de for
	(0.7)
_	(0.0) (1.0) 517
	对门

《域值

·马尔可夫次第庄铨 MDP

组成:·state s

- · Action a 每个state s有可医的行动 A(s)
- · Transition model P(s'Is,a)
- · Reward function R(s)

解 solution 1

· Policy TL(s)

・贝尔曼公式

$$U(s) = R(s) + \gamma \max \sum P(s'|s,a) U(s')$$

$$V \in (0,1)$$

$$U(s_0,s_1,s_2...) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + = \sum_{t=0}^{\infty} \tau^t R(s_t) \leq \frac{R_{max}}{1-\gamma}$$

• 强化学习

Model-based: Learn the model of MDP (transition probability and reward) and try to solve the MOP correctly

Model-freed: Learn how to act without explicitly learning the transition probabity P(s'1s,a)

Q-learning: learn an action-utility function Qcs,a) that tells us the value of doing action a in state s

Model-based:

Exploration 挥頭 (采取一个后果未知的 action)

好处: [教取更准确的环境模型 可能发现最多的 reward

极处: 【挥索不是 maximize utility 可能遇到坏情况

Exploitation 利用(Go with the best strategy found so far)

处好: Smaximize utility 一時免遇到坏情况

饭:可能沒挥牵到未知的最佳策略

Mode-free

Q-learning

TD (Temporal difference)
$$Q(s,a) = R(s) + r \max_{\alpha} Q(s',\alpha')$$

$$Q(s,a) = (1-\alpha)Q(s,a) + q \cdot Q(s,a)$$

第九章

・浑復学习

如何训练神经网络.

1. K training dataset 中随机选择一个 traing token (Xi. yi)

2. 计算 neural net prediction f(xi)

3.计算 loss 例如 L=- (og fy: (Xi)

4. Back-propagate 寻特 梯度 of 和 all awin) 和 all

5. 梯度更新 W(L) ~ W(L) 1 3(L)

6. 重复过程直至Loss 及鲍小