

Beware of the Bias

Wann Daten zu diskriminierenden Entscheidungen führen

Agenda

- 1.Das Team: BIASpects
- 2. Projektidee
- 3. Theorie
- 4. Das Szenario
- 5. Unsere Hypothesen
- 6.Das Experiment
- 7. Die Ergebnisse
- 8. Reduzierung des Bias
- 9. Zusammenfassung
- 10.Ausblick

1. Das Team: BIASpects

➤ B.Sc. Gesa Götte
Statistik (Master, 4.Semester)

➤ B.Eng. Marcel Öfele

Digital Engineering (Master, 4.Semester)

➤ B.Eng. Viviane Lisa Wolters

Digital Engineering (Master, 4.Semester)

2. Projektidee

- Projektseminar: "Responsible Data Science"
- ➤ Thema: Algorithmen mit Benachteiligung von Gruppen ("Bias") und wie man diesen erkennen kann
- > Woher kommt dieser Bias?
- > Was beeinflusst, ob ein Lernalgorithmus "diskriminierend" ist?
- > Wie reproduzieren sich Ungleichheiten in der Gesellschaft, über Daten in Lernalgorithmen, die wir fur Entscheidungen einsetzen?

Experimentelle Studie zur Erforschung dieses "Biases"

Agenda

- 1. Das Team: BIASpects
- 2. Projektidee

3.Theorie

- 4. Das Szenario
- 5. Unsere Hypothesen
- 6. Das Experiment
- 7. Die Ergebnisse
- 8. Reduzierung des Bias
- 9. Zusammenfassung
- 10.Ausblick

3.1 Arbeitsweise eines Machine Learning Classifier

Erstellung Lerndatensatz

3.1 Arbeitsweise eines Machine Learning Classifier

Lernphase des Classifiers

3.1 Arbeitsweise eines Machine Learning Classifier

Anwendung des Classifiers

3.2 Definition und Entstehung des Bias

Bias = Verzerrung der Wirklichkeit

3.2 Definition und Entstehung des Bias

Bias im Datensatz wird gelernt

Auswirkung auf spätere Beurteilungen

Agenda

- 1. Das Team: BIASpects
- 2. Projektidee
- 3. Theorie

4.Das Szenario

- 5. Unsere Hypothesen
- 6. Das Experiment
- 7. Die Ergebnisse
- 8. Reduzierung des Bias
- 9. Zusammenfassung
- 10.Ausblick

4. Das Szenario

BEWERBUNGSPROZESS BISHER

4. Das Szenario

NEUER BEWERBUNGSPROZESS

Agenda

- 1.Das Team: BIASpects
- 2. Projektidee
- 3. Theorie
- 4. Das Szenario

5.Unsere Hypothesen

- 6.Das Experiment
- 7. Die Ergebnisse
- 8. Reduzierung des Bias
- 9. Zusammenfassung
- 10.Ausblick

5.1 Hypothese 1

Kein Bias, wenn

➤ Anteil geeigneter Frauen = Anteil geeigneter Männer (Anzahl der Frauen bzw. Männer <u>nicht relevant</u>)

5.2 Hypothese 2

Kein Bias, wenn

➤ Anzahl Frauen = Anzahl Männer (Anteil geeigneter Frauen bzw. Männer nicht relevant)

5.3 Hypothese 3

Bias, wenn

- ➤ Anzahl Frauen ≠ Anzahl Männer
- ➤ Anteil geeigneter Frauen ≠ Anteil geeigneter Männer

5.3.1 Hypothese 3.1

> Je größer die Überrepräsentation, desto größer der Bias

5.3.2 Hypothese 3.2

> Je größer der Unterschied zwischen den Anteilen der geeigneten Männer und Frauen, desto größer der Bias.

Agenda

- 1.Das Team: BIASpects
- 2. Projektidee
- 3. Theorie
- 4. Das Szenario
- 5. Unsere Hypothesen

6.Das Experiment

- 7. Die Ergebnisse
- 8. Reduzierung des Bias
- 9. Zusammenfassung
- 10.Ausblick

6.1 Datensatz

6.2 Aufbau/Ablauf

Agenda

- 1.Das Team: BIASpects
- 2. Projektidee
- 3. Theorie
- 4. Das Szenario
- 5. Unsere Hypothesen
- 6. Das Experiment

7. Die Ergebnisse

- 8. Reduzierung des Bias
- 9. Zusammenfassung
- 10.Ausblick

7.1 Unterschied zwischen den Classifiern

7.2 Exkurs: Boxplots

7.3 Hypothese 1

7.4 Hypothese 2

7.5 Hypothese 3

7.5.1 Hypothese 3.1

7.5.2 Hypothese 3.2

Agenda

- 1.Das Team: BIASpects
- 2. Projektidee
- 3. Theorie
- 4. Das Szenario
- 5. Unsere Hypothesen
- 6. Das Experiment
- 7. Die Ergebnisse

8. Reduzierung des Bias

- 9. Zusammenfassung
- 10.Ausblick

8.1 Methoden

Standard A0 Methode A1 ("Ohne Geschlecht"): Entfernen des Geschlechts Input Classifier -Zielvariable Exp. Faktoren

Methode A2 ("Ohne geschlechtsspezifische Informationen"): Entfernen aller Merkmale mit Geschlechtsinformation

Methode B ("50-50-50"):

Lerndatensatz mit 50% Männern, 50% geeigneten Männern und 50% geeigneten Frauen (Testdatensatz wie gehabt)

8.1 Methode 1

8.1 Methode 2

9. Zusammenfassung

Ursachen Bias

- ➤ Gibt es Unterschiede im Anteil geeigneter Personen zwischen zwei Gruppen, dann ist der Classifier für eine der beiden akkurater (Bias)
- ➤ Ist eine Gruppe sehr stark überrepräsentiert, kann sich dieser Bias verstärken
- ➤ Unscharfe Messmethoden der Eignung führen dazu, dass es einen unvermeidbaren Bias zwischen zwei Gruppen mit unterschiedlichem Informationsgehalt gibt

9. Zusammenfassung

Vermeidung Bias

- Informationen über die Gruppe aus dem Lerndatensatz zu entfernen reicht nicht aus um diesen Bias zu verhindern
- ➤ Die Verteilungen im Lerndatensatz anzugleichen vermindert den Bias

10. Ausblick

Was sollte noch untersucht werden?

- > Sehr vereinfachte Daten
 - -> Andere Datenstrukturen sollten untersucht werden
 - -> Versuch mit echten Daten
- Hier: Accuracy-Differenz als Bias
 - ABER: Im Kontext sollte immer bedacht werden, ob es eine Art von Fehlentscheidungen gibt, die "schlimmer" ist
 - Fokus nur auf eine Art von Fehlentscheidungen
 (z.B. Nicht-Erkennen von geeigneten Personen)
- Einstellungen der Classifier könnten noch optimiert werden
 - -> mögliche weitere Methode zur Biasreduktion

10. Ausblick

Was lernen wir aus der Studie?

- Ergebnisse nicht nur auf Männer und Frauen anwendbar (auch andere Ungleichheiten durch z.B. Nationalität oder soziale Schicht)
- Bias für unterschiedliche Gruppierungen immer messen!
- Bias entdeckt Und nun?
 - -> Es genügt nicht nur die Informationen über die Gruppenzugehörigkeit aus dem Datensatz herauszunehmen!
 - -> 50-50-50 Lerndaten
 - -> Messinstrumente überdenken (Quantität und Qualität)

Vielen Dank für Ihre Aufmerksamkeit!

www.ovgu.de