

« Jusqu'à ce jour, les mathématiciens ont en vain tenté de découvrir un ordre dans la suite des nombres premiers, et nous avons des raisons de croire que c'est un mystère que l'esprit ne pénétrera jamais. »

Leonhard Euler

L'hypothèse de Riemann

Le Graal des mathématiciens

Une hypothèse d'apparence anecdotique avancée par Bernhard Riemann il y a cent cinquante ans au sujet d'un problème classique, la répartition des nombres premiers, focalise l'intérêt des plus grands mathématiciens. David Hilbert en avait fait le huitième problème de sa célèbre liste. Au moins une dizaine de médailles Fields l'ont étudié... En 2005, il manque toujours le maillon qui permettra une démonstration plausible.

Gilles Lachaud est directeur de l'Institut de mathématiques de Luminy, à Marseille.

✓ fonction particulière, la « fonction zêta de Riemann », fonction qui démonstrations impossibles...). fascine les mathématiciens depuis L'objet de cette fascination vient de la cent cinquante ans. On a utilisé à ce richesse du sujet. À elle seule, cette sujet les métaphores les plus surpre- fonction est une source de problèmes, la baleine blanche (de Moby Dick)... de nombreuses théories mathémati-On a aussi évoqué le Jardin des déliques actuelles : on se trouve au car-

e que l'on appelle « *l'hypothèse* de Jérôme Bosch qui porte ce nom de Riemann » porte sur une représente un monde idéal entre le paradis (des conjectures) et l'enfer (des

nantes : l'opium des mathématiciens, qui ont donné lieu au développement ces, sans doute parce que le triptyque refour de l'analyse, de l'algèbre et

de la théorie des nombres. Comme le dit Albert Lautman, l'intérêt d'un problème mathématique ne réside pas dans le plus ou moins grand degré de curiosité que peuvent présenter des faits mathématiques isolés, mais dans les structures, manifestes ou cachées, qui enveloppent ce problème et dont il témoigne.

Espoirs décus

L'intérêt pour la question n'a fait que croître depuis 1900, date à laquelle David Hilbert en fit le huitième problème de sa célèbre liste de problèmes présentée au Congrès des mathématiciens de Paris. Une dizaine de médailles Fields ont étudié la question de près ou de loin.

Il faut avouer que les moyens mis en œuvre sont caractérisés par leur férocité technique. Par exemple, André Weil, l'une des plus grandes figures des mathématiques françaises du XX^e siècle, a écrit : « Quand j'étais jeune, j'espérais démontrer l'hypothèse de Riemann. Quand je suis devenu un peu plus vieux, j'ai encore eu l'espoir de pouvoir lire et comprendre une démons-

← VUE TRIDIMENSIONNELLE DE LA FONCTION ZÊTA avec ses zéros, alignés sur la droite critique (à l'extrémité des zones bleues). Au centre à gauche, on voit le pôle où la valeur de la fonction devient infinie.

©JEAN-FRANÇOIS COLONNA, CMAP/ECOLE POLYTECHNIQUE, F R&D, WWW.LACTAMME.POLYTECHNIQUE.FR

BERNHARD RIEMANN a proposé en 1859 de relier la distribution des nombres premiers aux racines (ou zéros) d'une fonction qu'il a notée par la lettre grecque zêta.

© EMILIO SEGRE VISUAL ARCHIVES

tration de l'hypothèse de Riemann. Maintenant, je me contenterais bien d'apprendre qu'il en existe une démonstration. » Une histoire scrupuleuse de inverses de nombres entiers. C'est la ce problème devrait rendre compte série $\zeta(s) = 1/1 + 1/2^s + 1/3^s + \dots$ (il est des fausses nouvelles, des démonstrations réfutées, des espoirs déçus qui se sont succédé. Lors de sa réunion fonction relève *a priori* de l'analyse, annuelle au Collège de France le qui est la partie des mathématiques qui 24 mai 2000, le Clay Mathematics s'occupe des fonctions, de leurs limites, Institute a inclus ce problème dans les etc. Au XIV^e siècle, Nicolas Oresme,

DANS LE RÉCENT TRAITÉ D'ANALYSE DE R. GODEMENT, le chapitre sur la fonction zêta de Riemann s'intitule « Le jardin des délices modulaires, ou l'opium des mathématiciens », allusion au triptyque de Jérôme Bosch, le « Jardin des délices », dont nous présentons ici un détail. En arrièreplan, on y trouve des structures qui pourraient évoquer les singularités (pôles ou zéros) d'une fonction mathématique ...

© THE BRIDGEMAN ART LIBRARY

pour la conjecture de Poincaré (lire l'article d'E. Singer, p. 14) ou le problème « P ou NP » (lire l'article de P. Lescanne et N. Hermann, p. 64), un prix d'un million de dollars est offert à celui qui trouvera la solution.

Mort à l'âge de 40 ans en 1866, ce génie des mathématiques qu'était l'Allemand Bernhard Riemann a baptisé zêta (la lettre grecque ζ) une fonction déjà étudiée avant lui, mais qu'il examine lorsque la variable est un nombre complexe (on reviendra plus tard sur cette notion). Cette fonction se présente comme une série (une somme infinie) de puissances traditionnel de noter s la variable dont dépend cette série). L'étude de cette « problèmes du millénaire ». Comme évêque de Lisieux, qui enseignait au

ANDRÉ WEIL. L'UNE DES GRANDES FIGURES DES MATHÉ-MATIQUES DU XX^e SIÈCLE, est parvenu en 1940 à démontrer l'hypothèse de Riemann dans un cadre géométrique particulier. © R. HAGARDORN

« Quand j'étais jeune, i'espérais démontrer l'hypothèse de Riemann. Quand je suis devenu un peu plus vieux, j'ai encore eu l'espoir de pouvoir lire et comprendre une démonstration de l'hypothèse de Riemann. Maintenant. ie me contenterais bien d'apprendre qu'il en existe une démonstration. » A. Weil

LE SUISSE LEONHARD EULER a calculé les valeurs de la fonction zêta de Riemann lorsque la variable est un entier pair.

L'IDENTITÉ D'EULER

La série géométrique formée par les puissances d'un nombre $x \ge 1$ est :

$$1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^5} + \dots + \frac{1}{x^n} + \dots = \frac{1}{1 - \frac{1}{x}}$$

Si on fait $x = 2^s$, où s > 0, on obtient la somme des puissances inverses de 2 :

$$1 + \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{8^s} + \dots + \frac{1}{2^{4s}} + \dots = \frac{1}{1 - \frac{1}{2^s}}$$

On peut aussi prendre $x = 3^s$ et obtenir la somme des puissances inverses de 3:

$$1 + \frac{1}{5^5} + \frac{1}{9^5} + \frac{1}{27^5} + \dots + \frac{1}{5^{hg}} + \dots = \frac{1}{1 - \frac{1}{5^g}}$$

Si on fait le produit de ces deux expressions, on obtient la somme des puissances de toutes les fractions dont le dénominateur est un nombre produit de 2 et de 3.

$$\frac{1}{1 - \frac{1}{2^5}} \times \frac{1}{1 - \frac{1}{2^5}} = 1 + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{6^5} + \dots + \frac{1}{(2^6 5^6)^5}$$

Si l'on prend tous les nombres premiers à gauche, on obtiendra à droite tous les nombres entiers, puisque tout entier est produit de nombres premiers, et c'est l'identité fondamentale d'Euler : ce que l'on appelle maintenant la fonction zêta de Riemann est à la fois un produit infini et la somme des puissances inverses

$$\zeta(s) = \frac{1}{1 - \frac{1}{2^5}} \times \frac{1}{1 - \frac{1}{2^5}} \times \frac{1}{1 - \frac{1}{2^5}} \times \dots = 1 + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{5^5} + \dots + \frac{1}{(2^d 3^b 5^c)^8}$$

En notation condensée, l'identité d'Euler est :

$$\xi(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p} \frac{1}{1 - \frac{1}{n^{s}}}$$

où la série porte sur les entiers ≥ 1 et où le produit est étendu à l'ensemble des nombres premiers. Autrement dit, la série représentant la somme des puissances inverses des entiers est égale au produit des inverses des différences entre l'unité et la puissance inverse des divers nombres premiers.

EUCLIDE a souligné le caractère inépuisable de la suite des nombres premiers. © AKG IMAGES

Collège de Navarre à Paris, savait déjà que la série harmonique a une somme infinie: $\zeta(1) = 1 + 1/2 + 1/3 + ... = \infty$. Il disait : « Cette grandeur est supérieure à n'importe quelle grandeur que l'on s'est donnée. » En 1650, Pietro Mengoli, un jeune mathématicien de Bologne, pose la question de la valeur de $\xi(2) = 1 + 1/2^2 + 1/3^2 + 1/4^2 + \dots$ et déclare : « La réponse réclame un esprit blus riche [que le mien]. » En 1735. le Suisse Leonhard Euler, titan des mathématiques modernes (ses œuvres comprennent plus de 70 volumes!) répond à la question posée par Mengoli par une découverte spectaculaire.

Il montre que cette valeur est exactement le sixième du carré du nombre irrationnel π , celui-là même qui permet de calculer la surface du cercle (un nombre irrationnel est un nombre qui ne s'exprime pas comme une fraction de nombres entiers). Il ne s'arrête pas là, et calcule les valeurs de la fonction zêta de Riemann quand la variable est un entier pair.

fort peu de chose aujourd'hui sur les

après Euler pour apprendre en 1979, grâce au Français Roger Apéry, que $\zeta(3) = 1 + 1/2^3 + 1/3^3 + 1/4^3 + \dots$ est aussi un nombre irrationnel. En l'an 2000, un jeune professeur de lycée. Tanguy Rivoal, a démontré que la fonction zêta prend une infinité de valeurs irrationnelles lorsque la variable parcourt les entiers impairs.

Pour comprendre la formulation et l'intérêt de l'hypothèse de Riemann, il faut cependant remonter plus loin dans le temps, jusqu'à Euclide et ses propositions sur les nombres premiers. Un nombre *p* est premier si on ne peut pas l'écrire sous la forme d'un produit p = ab, avec a et b tous les deux différents de p. On s'interroge depuis l'Antiquité grecque sur ces nombres, comme 2, 3, 5, 7, 11, 13, 17, 19, etc. (par convention, le nombre 1 n'est pas considéré comme premier). Mais leur génération semble totalement indépendante de toute construction préalable : le passage de 10 à 11, et celui de 11 à 12, se fait par le même acte, l'addition de l'unité au nombre précédent, et cependant la deuxième opération donne un résultat très différent de la première, puisque 11 est premier et que 12 ne l'est pas. Leur apparition est imprévisible : il y a quatre nombres premiers entre 190 et 200, et aucun entre 200 et 210. Cette distribution énigmatique a inspiré des artistes et fasciné jusqu'à des compositeurs comme Olivier Messiaen ou Iannis Xenakis.

Comme des particules élémentaires

Tout nombre entier est composé de nombres premiers : ceux-ci sont Signalons en passant qu'on sait encore un peu pour les mathématiciens ce que sont les éléments du tableau de peut aussi les engendrer avec la loi de valeurs de cette fonction, lorsque Mendeleïev pour les chimistes, ou multiplication, mais il faut alors dispola variable est un entier impair. Il les particules élémentaires pour les ser de tous les nombres premiers. fallut attendre plus de deux siècles physiciens. Dans les livres arithmé- On trouve dans ces livres d'Euclide la

LA FONCTION $\pi(x)$ (en rouge) représente le nombre de nombres premiers inférieurs ou égaux à un nombre xdonné. Deux autres fonctions sont du même « ordre de grandeur » : la fonction $x/\log x$ (en vert), et le logarithme intégral Li(x) (en bleu). La table nous montre que le logarithme intégral est supérieur à $\pi(x)$, mais il n'en est pas ainsi pour des valeurs extrêmement élevées.

tiques des Éléments d'Euclide, qui datent de 350 av. J.-C. environ, si on traduit littéralement, ces nombres sont d'ailleurs appelés « nombres protons ». En d'autres termes, si on peut engendrer tous les nombres entiers en répétant l'addition du nombre 1, on

ON MONTRE ICI LA TRAJECTOIRE D'UN MOBILE DANS LE PLAN, qui se déplace en suivant au cours du temps les valeurs réelles et complexes de la fonction zêta. Ce mobile passe par l'origine à intervalles irréguliers, en faisant des boucles de plus en plus grandes.

> proposition suivante : « Les nombres premiers sont plus nombreux que toute collection [finie] donnée de nombres premiers. » C'est une manière de dire que la suite des nombres premiers est inépuisable, illimitée, ou encore qu'il y a une infinité de nombres premiers. Remarquons, en passant, que cette proposition contient implicitement une définition particulièrement sobre de l'infini : aucune collection finie ne l'épuise. Définition reprise dans les Éléments de mathématiques de N. Bourbaki, inspirée par M. de La Palice : « On dit qu'un ensemble est infini s'il n'est pas fini. »

Les propositions d'Euclide sont le premier point nodal de notre histoire. Après quoi, il nous faut sauter vingtet-un siècles et retrouver l'inépuisable Euler. À son époque l'analyse était en plein essor : il a traduit le problème des nombres premiers dans le langage des fonctions. Puisqu'on ne peut pas prévoir l'apparition des nombres miers sont « infiniment moins nombreux Pyrotechnie calculatoire premiers, et qu'il n'y a pas de loi de

duisant la fonction traditionnellement $\pi(x)/x \to 0$ quand $x \to \infty$. Autrement 1737 par une méthode qui est toute infinie, mais comme un produit « L'identité d'Euler »). Et il en déduit que la série des inverses des nombres premiers a une somme infinie: $1 + 1/2 + 1/3 + 1/5 + 1/7 + \dots = \infty$

La proportion de nombres premiers inférieurs ou égaux à un nombre donné x tend vers zéro quand

x tend vers l'infini.

Or, si l'ensemble de tous les nombres premiers était fini, cette série aurait une somme finie. Ce faisant, Euler inventait une méthode pour étudier les entiers avec des fonctions, méthode analytique des nombres. La force de faire en sorte que le continu rende compte de phénomènes discontinus. Euler déclare aussi que les nombres preque les entiers », autrement dit que la pro- Et nous en arrivons au troisième point fabrication, on fait une observation portion de nombres premiers inférieurs à nodal : l'énoncé de l'hypothèse de Rie-

notée π (x), qui compte le nombre dit les nombres premiers se font de de nombres premiers inférieurs (ou plus en plus rares. Peut-on approcher égaux) à un nombre x donné (la cette fonction de plus près? La réponse notation π (x) n'a rien à voir avec est oui : en 1808, le Français Adrien le nombre π). On a, par exemple, Legendre montre qu'elle est liée au π (10) = 4. Dire qu'il y a une infinité logarithme naturel* de x. Il observe de nombres premiers revient à dire expérimentalement que la proportion que $\pi(x)$ tend vers l'infini avec x. $\pi(x)/x$ est d'environ $1/\log x$, où $\log x$ est Euler en établit la démonstration en le logarithme naturel de x. Il s'ensuit que l'ordre de grandeur de π (x) devrait différente de celle d'Euclide. Il montre être équivalent à x/log x. Mais on peut que la fonction zêta peut s'exprimer faire mieux : l'estimation obtenue ne non seulement comme une somme serre pas de très près le comportement de la fonction π (x). À peu près à la infini : c'est ce qu'on appelle depuis même époque, l'Allemand Karl-Frielors l'identité d'Euler (voir l'encadré : drich Gauss effectue (dès l'âge de 14 ans!) des observations statistiques et en vient à une idée plus précise : la proportion de nombres premiers dans un intervalle de longueur dx donnée autour du point x est environ $dx/\log x$. Puisque cette proportion de nombres premiers est la dérivée de la fonction π (x), cette fonction devrait être de « l'ordre de grandeur » de la primitive de 1/log x. Celle-ci ne s'exprime pas en termes de fonctions élémentaires, on l'appelle le logarithme intégral \star Li (x). Gauss en vient à supposer que « l'ordre de grandeur » de $\pi(x)$ est égal à celui de Li (x). Cette estimation de Gauss n'était pas contradictoire avec celle de Legendre, puisque $x/\log x$ et Li (x) sont équivalentes. Néanmoins, le point de vue de Gauss semble serrer la réalité de plus près, comme le montrent la figure 1 et la table de la figure 2. Mais pouvait-on sortir du domaine des simples observations qu'on appelle maintenant la théorie et préciser cet « ordre de grandeur »? La réponse est encore oui. Le Russe Pafnouti cette méthode est qu'elle permet de Tchebychev établit en 1852 que si x est assez grand, $\pi(x)$ est compris entre 0,921 $x/\log x$ et $1.105 x/\log x$

statistique de ce qui se passe en intro- x tend vers 0 quand x croît indéfiniment : mann. En 1859, Bernhard Riemann

PROLONGEMENT ANALYTIQUE **ET ÉQUATION FONCTIONNELLE**

Lorsqu'on veut étudier une fonction définie par une série dépendant d'un paramètre en dehors du domaine de convergence, il faut effectuer un prolongement analytique de cette fonction. Par exemple, la série géométrique

$$1+z+z^2+\cdots+z^n+\ldots$$

converge si le module |z| du nombre complexe z est < 1, la fonction f(z) de la variable complexe z égale à la somme de cette série est définie lorsque |z| < 1, et si tel est le cas, on a

$$f(z) = 1 + z + z^2 + \dots = \frac{1}{1 - z}$$

Mais la fraction de droite est définie dans tout le plan complexe (sauf évidemment au point z = 1), et lorsque $|z| \ge 1$ et $z \ne 1$, on prend comme définition de f(z) la fraction de droite; on dit qu'on a effectué le prolongement analytique de f(z) au plan complexe, et que le plan z = 1 est un pôle de f. On peut faire la même chose pour la fonction ζ(s); Riemann montre qu'elle admet un prolongement analytique au plan complexe, sauf au point s = 1 où elle a un pôle : il établit aussi son équation fonctionnelle, qui utilise la fonction Γ d'Euler et s'écrit de la manière suivante : l'expression

$$\varphi(s) = s(s-1) \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s)$$

ne change pas quand on remplace s par 1 - s:

$$\varphi(1 - s) = \varphi(s).$$

Euler avait déià « deviné » cette équation, en opérant sur la fonction (1 – 21-s) [(s) de l'encadré 1 dans un texte intitulé « Remarques sur un beau rapport entre les séries de puissances, tant directes que réciproques ».

inférieurs à une grandeur donnée ». contribution à la théorie des nombres hallucinant exercice de pyrotechnie calculatoire et conceptuelle. Il considère les valeurs de la fonction qu'il l'encadré ci-dessus).

rédige pour son admission comme un nombre $s = \sigma + it$ comprenant une correspondant à l'Académie de Berlin partie réelle σ (nombre représentable un mémoire de huit pages intitulé : par une suite de chiffres décimaux) et que $i^2 = -1$). Il s'intéresse ensuite aux

ainsi ce qui est banal et connu de tout le monde). Quand s est un nombre complexe, on dit que les points où la fonction s'annule sont les zéros non triviaux. Si l'on parle de points, c'est par référence à la représentation graphique d'un nombre complexe : on place sa partie réelle sur un axe horizontal, et sa partie imaginaire sur un axe vertical. Riemann constate que les zéros non triviaux de la fonction zêta sont nécessairement situés, sur ce graphe, dans une bande très étroite, la bande critique [fig. 4]. Il calcule ensuite le nombre approximatif de zéros non triviaux de la fonction de partie imaginaire comprise entre 0 et un nombre T donné, et il poursuit : « On trouve en effet, entre ces limites, un nombre environ égal à celuici, de racines de partie réelle 1/2, et il est très probable que toutes les racines sont de partie réelle 1/2. »

Droite critique

L'hypothèse de Riemann est donc la suivante : « Les zéros non triviaux de la fonction zêta ont pour partie réelle 1/2. » Riemann suppose donc que ces zéros sont non seulement dans la bande critique, mais alignés sur la droite d'abscisse 1/2, la « droite critique ».

Riemann écrit ensuite : « Il serait à désirer, sans doute, que l'on eût une démonstration rigoureuse de cette proposition — néanmoins j'ai laissé cette recherche de côté pour le moment après quelques rapides essais infruc-« Sur le nombre des nombres premiers une partie it dite imaginaire (nombre tueux, car elle paraît superflue dans le réel multiplié par la racine carrée de but de notre étude. » On pourrait en Dans ce mémoire, qui sera la seule — l, notée par la lettre i, de telle sorte déduire que Riemann considère cette propriété comme accessoire; mais il qu'il fera de son vivant, il se livre à un racines ou zéros de cette fonction, faut savoir que les mathématiciens, c'est-à-dire aux nombres complexes s depuis Euclide, pratiquent la litote pour lesquels la fonction zêta s'annule jusqu'aux limites de l'hypocrisie... $(\zeta(s) = 0)$. Celle-ci s'annule aussi D'autant que Riemann va beaucoup nomme $\zeta(s)$ lorsque la variable s est quand s est un entier négatif pair plus loin, et c'est là que son hypothèse un nombre complexe arbitraire (voir (s=-2,-4, etc.)). On appelle ces points prend tout son sens : en se livrant à d'annulation de la fonction les zéros une véritable déconstruction de sa Rappelons qu'un nombre complexe est triviaux (les mathématiciens qualifient fonction π (x), il utilise la fonction

*Le logarithme naturel est la primitive de la fonction 1/x qui s'annule en x = 1

*Le logarithme intégral est la primitive de la fonction $1/\log x$ qui s'annule en x = 0.

HORMIS LES SOLUTIONS ÉVIDENTES, les valeurs, pour lesquelles la fonction zêta s'annule, se trouvent sur une bande critique formée des nombres complexes $s = \sigma + it$, où la partie réelle $Re(s) = \sigma$ et la partie imaginaire Im(s) = t sont des nombres réels et où $i = \sqrt{-1}$, tels que $0 \le \text{Re}(s) \le 1$.

CARL LUDWIG SIEGEL a trouvé dans les notes de Riemann une fonction Z(t) dont les zéros sont les mêmes que ceux de la fonction $|\xi(1/2+it)|$, et qui prend des valeurs réelles lorsque la variable t est réelle ; on l'appelle la fonction de Riemann-Siegel. Sur cette figure, on a tracé le graphe de cette fonction (qui oscille indéfiniment) sur lequel on voit les premiers zéros.

zêta pour fournir une formule exacte on a une loi de densité régulière, la permettant de calculer la distribution des nombres premiers. Et dans cette formule, les zéros de la fonction zêta contrôlent la répartition des nombres premiers! On lit ainsi sur cette formule que si l'hypothèse de Riemann est vraie, cette répartition suit fidèlement la loi en Li (x).

Dans cet article visionnaire, Riemann a indiqué les grandes étapes de sa démarche, sans entrer dans les détails. La rédaction en est si elliptique qu'au début du XX^e siècle d'éminents mathématiciens comme G.H. Hardy à Camles notes personnelles de Riemann étaient conservées à Göttingen. Dans les années 1930, Carl Ludwig Siegel, à Francfort, réussit à les déchiffrer et publie leur contenu. La conclusion, c'est que Riemann avait bien obtenu des résultats sur les zéros de la fonction zêta, en utilisant des outils dont la publication par Siegel constitua un événement [fig. 5].

à Louvain, en démontrant simultanément certains énoncés de Riemann, établissent que la fonction zêta n'a pas de zéros sur la droite Re(s) = 1(en réalité, ils ont fait mieux : ils ont trouvé des régions [fig. 6] où la fonction zêta n'avait pas de zéro). Les estimations de Legendre et de Gauss sont enfin rigoureusement établies. C'est ce résultat que l'on appelle le « théorème des nombres premiers ». On sait que si l'hypothèse de Riemann est vraie, alors l'écart entre la fonction π (x) et le logarithme intégral Li (x) multiple constant de $\sqrt{x} \log x$.

probabilité pour qu'un nombre x soit premier est de l'ordre de 1/log x, mais le comportement local est imprévisible : il y a des oscillations [fig. 3]. En quelque sorte, la distribution des nombres premiers se comporte comme la distribution des molécules dans un gaz parfait. Comme on le verra, cette analogie avec un phénomène physique peut se révéler féconde.

Distribution stochastique

Si l'on veut comprendre ce que signifie l'hypothèse de Riemann, il faut réaliser bridge en 1915 vont jusqu'à déclarer que la fonction zêta n'est pas la seule que Riemann était incapable de de son espèce : c'est le prototype d'une démontrer ce qu'il avait écrit. Mais famille très générale de fonctions intervenant en théorie des nombres. Tout d'abord, l'Allemand Gustav Lejeune-Dirichlet avait défini en 1838 des fonctions très proches de la fonction zêta, les fonctions L, données par ce que l'on appelle depuis une « série de Dirichlet », définies par des conditions arithmétiques. Elles admettent un prolongement analytique, une équation fonctionnelle, et un développement en produit eulé-C'est en 1896 que Jacques Hadamard, rien. Par exemple, Euler utilise la série à Paris, et Charles de la Vallée Poussin, $L(s) = 1 - 1/3^s + 1/5^s - 1/7^s + \dots$ Cette série avait d'ailleurs été étudiée cinquante ans plus tôt par Leibniz, qui avait vu que pour s = 1, cette série vaut exactement $\pi/4$. Comme elle permet de calculer π , il appela cette formule « quadrature du cercle ».

Ensuite, Dirichlet utilise ses fonctions L pour montrer qu'il y a une infinité de nombres premiers dans toute progression arithmétique. À peu près en même temps s'édifiait la théorie des nombres algébriques. Ce sont les nombres qui sont solutions d'équations algébriques, comme √2 ou le nombre est majoré en valeur absolue par un d'or $\phi = 2 \cos \pi / 5 = (1 + \sqrt{5}) / 2$. L'idée de corps est à la base de ces travaux : ce En résumé, les nombres premiers sont les collections de nombres comont une distribution « stochastique » : plexes (ou d'autres choses) où on peut

effectuer les quatre opérations sans tique, et on sait que plus de 40 % des sortir de cette collection. Dedekind et Hecke ont défini des fonctions zêta et des fonctions L associées aux corps de nombres algébriques : la fonction zêta qui correspond au corps des nombres rationnels est celle de Riemann. L'hypothèse de Riemann généralisée suppose que toutes ces fonctions ont leurs riques impressionnants ne prouvent zéros non triviaux sur la droite critique; rien : on connaît des phénomènes et on estime que l'on ne démontrera jamais l'hypothèse de Riemann sans la

Il y a plusieurs « bonnes raisons » de penser que l'hypothèse de Riemann est vraie.

démontrer du même coup pour toutes ces familles.

Il y a plusieurs « bonnes raisons » de penser que l'hypothèse de Riemann est vraie. La première est simplement le résultat des calculs numériques. Représentés sur la figure 4, les cinq premiers zéros de partie imaginaire positive, à quatre décimales près, sont les suivants (rappelons que $\sqrt{-1}$ s'écrit i):

 $\rho_1 = 1/2 + i 14,1347...$ $\rho_2 = 1/2 + i 21,0220...$ $\rho_3 = 1/2 + i \ 25,0108...$ $\rho_4 = 1/2 + i \ 30,4248...$ $\rho_5 = 1/2 + i \ 32,9350...$

Dans la phrase citée plus haut, Riemann déclare qu'il a trouvé « un nombre environ égal » de zéros dans la bande et sur la droite critiques. On n'a toujours pas démontré cette déclaration,

zéros de la fonction zêta sont sur cette droite. De plus, l'hypothèse de Riemann a été vérifiée pour des valeurs numériques de plus en plus élevées, obtenues par calcul sur ordinateur. Les progrès réalisés sont reportés sur la figure 8. Mais ces calculs numéconcernant les nombres entiers qui apparaissent pour des valeurs bien supérieures à toute valeur astronomique imaginable.

Des arguments beaucoup plus sophistiqués — de plus en plus sophistiqués — ont été développés et le sont encore aujourd'hui pour montrer que l'hypothèse de Riemann est vraie. Donnons-en une idée ici. Il y a d'abord les travaux sur les fonctions zêta des corps de fonctions. C'est une démarquand on ne parvient pas à démontrer directement un problème posé, on cherche à résoudre un problème analogue.

En l'occurrence, on a trouvé depuis la fin du XIX^e siècle un analogue géométrique des corps de nombres, correcteurs en particulier[1]. que l'on appelle les corps de fonctions algébriques sur un corps fini[1]. Plus que d'une simple analogie, il s'agit d'un véritable dictionnaire, où les nombres entiers correspondent à des polynômes. Or, en utilisant des méthodes géométriques, André Weil a démontré l'hypothèse de Riemann en 1940 pour les fonctions zêta et L correspondant à ces corps! Il a généralisé un peu plus tard l'hypothèse l'axe réel? La réponse pourrait venir de Riemann dans ce cadre géométrique : ce sont les célèbres conjectures de Weil, approfondies dans les années 1960 à l'Institut des hautes nelle, c'est-à-dire l'étude des équations études scientifiques (IHES), près de dont les inconnues sont des fonctions, mais Hardy a montré en 1914 qu'il y a Paris, par Alexandre Grothendieck, et l'espace euclidien est remplacé par une infinité de zéros sur la droite cri- et d'autres, et finalement démontrées l'espace de Hilbert. Pour comprendre

LA FONCTION ZÊTA NE S'ANNULE PAS SUR LA DROITE Re(s) = 1. On déduit le théorème des nombres premiers de cette propriété. Jacques Hadamard et Charles de la Vallée Poussin ont vu que la fonction zêta ne s'annule pas sur des régions comme celle représentée ici, qui contient cette droite. Aucune bande du type $u \le Re(s) \le 1$, dans laquelle la fonction zêta ne s'annulerait pas, n'est hélas connue.

par Pierre Deligne. Pour démontrer che classique en mathématiques : ces conjectures, il a fallu accomplir un programme gigantesque, la théorie des schémas. Ces résultats ont de profondes conséquences aussi bien en théorie des nombres que dans ses applications à la théorie de l'information, pour la cryptographie et les codes

Espace de Hilbert

Une troisième voie de recherche est ce qu'on appelle l'interprétation spectrale. Si on écrit les zéros de la fonction zêta sous la forme $\rho_p = 1/2 + i \gamma_p$, l'hypothèse de Riemann signifie que tous les nombres y_ sont des nombres réels. Comment établir qu'une suite de nombres complexes est alignée sur de méthodes élaborées pour l'étude des phénomènes physiques. L'une de ces méthodes est l'analyse fonction-

La Recherche

a publié : [I] Gilles Lachaud et Serge Vladut, « Les codes correcteurs d'erreurs », juilletaoût 1995. [II] Daniel Barsky et Gilles Christol, « Les nombres p-adiques », juillet août 1995. Ces articles ont été repris dans le numéro hors série de *La Recherche* d'août 1999.

DANS CETTE FIGURE. LE PLAN HORIZONTAL EST CELUI DE LA VARIABLE COMPLEXE $s = \sigma + it$. Sur un rectangle contenant une partie de la bande critique $0 \le \text{Re}(s) \le 1$, on a reporté en altitude la valeur de la fonction $1/|\zeta(s)|$, qui est infinie si $|\zeta(s)| = 0$. Les zéros de la fonction zêta apparaissent ainsi comme des pics sur la droite critique Re(s) = 1/2. La couleur (du rouge vers le bleu) est définie par l'altitude.

ce qu'est un espace de Hilbert, on peut partir de la description d'un signal. La plupart des systèmes vibratoires, le son, la lumière, les vagues, un signal quelconque, s'expriment comme une superposition de signaux de base :

 $a_1 \cos (\omega_1 u) + a_2 \cos (\omega_2 u) + \text{etc.}$ avec des coefficients d'amplitude a₁, des nombres réels.

Un signal s'écrit comme une superposition finie ou infinie de signaux élémentaires cos (ω₁u),... qui sont les vibrations propres ou les états propres du système. En acoustique, les états propres sont les sons purs, en optique,

que la somme des carrés des valeurs absolues de ces amplitudes soit finie, forme ce que l'on appelle un espace en forme par George Pólya, qui trade Hilbert.

Or, Riemann lui-même observe que la formule explicite qu'il a obtenue montre que les déviations par rapport à la loi en 1/log x de la densité des le trouver... etc. et des pulsations ω, etc., qui sont nombres premiers sont régies par une Hugh Montgomery, de l'université du fonction ayant la forme d'une onde : Michigan, avait calculé en 1972, en $\cos (\gamma_1 \mathbf{u}) + \cos (\gamma_2 \mathbf{u}) + \cos (\gamma_3 \mathbf{u}) + \dots$ dont les pulsations sont les nombres la fluctuation des espacements entre γ. Comme le disent M. Berry et J.P. les zéros de la fonction zêta. En dis-Keating, de Bristol, les nombres γ, sont les harmoniques de la musique Dyson, celui-ci a immédiatement des nombres premiers!

ce sont les ondes monochromatiques, Dans un tel système, la seule chose qui structure, l'ensemble GUE (Gausetc. La collection de tous ces signaux puisse changer, ce sont les proportions sian Unitary Ensemble), qui est un généraux, lorsqu'on prend toutes les relatives de chaque vibration propre, espace de matrices aléatoires utilisé amplitudes possibles, sous réserve c'est-à-dire les amplitudes. Le chan-pour décrire les systèmes à un grand

gement entre deux états est effectué par un opérateur, qui est une manière d'agir, ou d'opérer sur ces signaux; pour un tel opérateur, on suppose que le résultat de l'opération est proportionnel aux données de départ, autrement dit que l'opérateur est linéaire. S'il n'y a qu'un nombre fini d'états, donc un nombre fini de coefficients, les opérateurs sont des matrices. Les opérateurs qui rendent compte de phénomènes physiques concrets ont un spectre des fréquences réel.

Les pulsations propres d'un système

Il était tentant de voir les nombres y comme les pulsations propres d'un système. On raconte que Hilbert, pendant l'un de ses cours, et après avoir démontré que certains opérateurs (ceux qui sont symétriques) ont un spectre réel, aurait ajouté : « Et avec ce théorème, messieurs, nous démontrerons l'hypothèse de Riemann!» En effet, si l'on trouve un opérateur dont le spectre, d'une part, est réel, et qui est, d'autre part, exactement composé des nombres γ_a, l'hypothèse de Riemann est démontrée! Quelques années plus tard, cette idée a été mise vaillait à Zurich. On a aujourd'hui de bonnes raisons de penser qu'il existe effectivement un tel « opérateur de Pólya-Hilbert ». Il ne reste plus qu'à

admettant l'hypothèse de Riemann, cutant avec le physicien Freeman reconnu les caractéristiques d'une nombre de particules. Les résultats de Montgomery ont été vérifiés expérimentalement par Andrew Odlyzko, des résultats est frappante. Ces observations ont conduit plus récemment Berry et Keating, déjà évoqués, à supposer que les zéros de la fonction valeurs propres (niveaux d'énergie) d'un hypothétique système mécanique chaotiques, ce qui fournirait immédiatement l'opérateur désiré.

Les idées les plus profondes de la théorie des nombres présentent une ressemblance considérable avec celles de la physique théorique moderne.

En outre, Bernard Julia, à Paris, a critique. exprimé vers 1990 la fonction zêta de Riemann comme la fonction de partition thermodynamique d'un certain « gaz parfait abstrait » construit à partir des nombres premiers. En s'inspirant de cette observation, Jean-Benoît Bost et Alain Connes, à l'IHES, construisent en 1992 un système dynamique quantique dont la fonction de partition est la fonction zêta de Riemann. Leur construction utilise l'anneau des adèles. De quoi s'agit-il? Pour chaque nombre premier

adèles est un espace à une infinité de degrés de liberté, autrement dit de dimensions, formé avec le produit du du Bell Laboratory. La coïncidence corps des nombres réels et de tous les corps p-adiques. Cet espace énorme et bizarre a néanmoins des propriétés naturelles et très commodes pour les calculs : on peut y faire du calcul zêta correspondent exactement aux intégral, et les nombres rationnels y sont présents de manière discontinue ou, comme on dit, discrète. En outre, quantique dont les trajectoires sont les fonctions zêta et les fonctions L (des corps de nombres comme des corps de fonctions), s'expriment par des intégrales très simples sur cet anneau, ce qui permet de retrouver la répartition des nombres premiers leurs principales propriétés : c'était

Or, en 1996, Connes a construit pour un espace de fonctions où la variable tement l'ensemble des nombres réels γ_{-} tels que L(1/2 + i γ_{-}) = 0. Si on pouspectre comprend tous les zéros sans

Analogie troublante

Après tous ces arguments, on a l'impression d'être à la veille de la démonstration de l'hypothèse. Néanmoins, l'opinion générale est qu'il manque encore un maillon essentiel dans nos connaissances actuelles pour arriver à un projet de démonstration plausible. Il vaut mieux rester prudent : tant qu'on n'a pas traversé le fleuve, on ne sait pas si on peut atteindre la rive opposée sans encombre, ou bien si le courant *p*, on dispose des nombres *p*-adiques, du Styx nous entraı̂ne vers les enfers qui sont la généralisation de l'écriture du triptyque de Jérôme Bosch. Il n'en d'un entier en base p[II]. L'anneau des reste pas moins que l'analogie entre

1111	177	COLLAND
date	auteur	n premiers zéros
1903	Gram	15
1914	Backlund	79
1925	Hutchinson	138
1936	Titchmarsh et al.	1 041
1953	Turing	1 104
1956	Lehmer	25 000
1958	Meller	35 337
1966	Lehman	250 000
1969	Rosser et al.	3 500 000
1979	Brent	81 000 001
1986	van de Lune et al.	1 500 000 000

ON A REPORTÉ DANS CE TABLEAU LES DATES CLÉS des différentes vérifications numériques de l'hypothèse de Riemann depuis le début du xxe siècle.

et un phénomène physique est troule sujet de la thèse de John Tate, en blante. Comme le dit Youri Manine, directeur de l'Institut Max Planck de Bonn, à la dernière page de son livre chaque fonction L un opérateur, sur Mathématiques et physique : « Les idées les plus profondes de la théorie des est adélique, dont le spectre était exac- nombres présentent une ressemblance considérable avec celles de la physique théorique moderne. Comme la mécanivait établir, par une autre voie, que ce que quantique, la théorie des nombres fournit des modèles de relations entre exception, on démontrerait immé- le discret et le continu, et met en valeur diatement l'hypothèse de Riemann! le rôle des symétries cachées. On sou-En attendant, son résultat fournit en haiterait espérer que cette ressemblance passant une nouvelle démonstration ne soit pas fortuite, et que nous soyons de l'infinitude des zéros sur la droite en train d'apprendre de nouveaux mots sur le monde dans lequel nous vivons, dont nous ne comprenons pas encore le sens. » G. L.

POUR EN SAVOIR PLUS

- ▶ R. Godement, Analyse mathématique IV, Springer, 2003.
- ▶ G. Tenenbaum, M. Mendès-France, Les Nombres premiers, « Que sais-je ? » nº 571, Paris, Presses universitaires de France, 1997.
- S.J. Patterson, « An introduction to the theory of the Riemann zeta function », n° 14, Cambridge University Press, 1995. ▶www.larecherche.fr

Cet article est la version