MA1522 Linear Algebra for Computing Lecture 13: Linear Transformations

Yang Yue

Department of Mathematics National University of Singapore

14 April, 2025

Outline

Exercises and Questions posed in Dr. Teo's Lectures

Practice Problems

Question in Section 7.2

What are the rank and nullity of the following linear transformation?

1.
$$T\left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
.

$$2. T \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Slides 31 and 32: Kernel of Linear Transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

Definition

The <u>kernel</u> of T is defined by $ker(T) = \{ \mathbf{u} \in \mathbb{R}^n \mid T(\mathbf{u}) = \mathbf{0} \}.$

Theorem

The kernel of T is a subspace.

Definition

The <u>nullity</u> of T is the dimension of the kernel of T,

$$\operatorname{nullity}(T) = \dim(\ker(T)).$$

Let **A** be the standard matrix of T. Then

$$\operatorname{nullity}(T) = \operatorname{dim}(\ker(T)) = \operatorname{dim}(\operatorname{Null}(\mathbf{A})) = \operatorname{nullity}(\mathbf{A}).$$

Slides 29 and 30: Range of Linear Transformation

Definition

The *range* of *T* is

$$\mathsf{R}(T) = T(\mathbb{R}^n) = \{ \ \mathbf{v} \in \mathbb{R}^m \mid \mathbf{v} = T(\mathbf{u}) \text{ for some } \mathbf{u} \in \mathbb{R}^n \ \}.$$

Theorem

The range of T is a subspace. In fact, it is the column space of its standard matrix.

Definition

The \underline{rank} of T is the dimension of the range of T

$$rank(T) = dim(R(T)).$$

In fact,
$$rank(T) = dim(R(T)) = dim(Col(\mathbf{A})) = rank(\mathbf{A})$$
.

Answer to Question in Section 7.2 (part 1)

What are the rank and nullity of the following linear transformation?

1.
$$T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
.

Answer: By observation $\ker(T) = \mathbb{R}^n$ and $R(T) = \{\mathbf{0}\}$, we have $\operatorname{rank}(T) = 0$ and $\operatorname{nullity}(T) = n$.

(You can also use the standard matrix $\mathbf{A}=\mathbf{0}_n$ to get the same conclusion.)

Answer to Question in Section 7.2 (part 2)

What are the rank and nullity of the following linear transformation?

$$2. \ T\left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Answer: By observation $\ker(T) = \{\mathbf{0}\}\$ and $\mathrm{R}(T) = \mathbb{R}^n$, we have $\mathrm{rank}(T) = n$ and $\mathrm{nullity}(T) = 0$.

(You can also use the standard matrix $\mathbf{A} = \mathbf{I}_n$ to get the same conclusion.)

Exercise one in Section 7.2

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that if T is injective, then necessarily $n \leq m$.

Recall: On Slide 35,

Definition

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is <u>injective</u>, or <u>one-to-one</u> if whenever $T(\mathbf{u}_1) = T(\mathbf{u}_2)$, then $\mathbf{u}_1 = \mathbf{u}_2$

Theorem

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is injective if and only if the kernel is trivial, $\ker(T) = \{\mathbf{0}\}.$

Slide 36: Full Rank Equals Number of Columns

Theorem

Suppose **A** is an $m \times n$ matrix. The following statements are equivalent.

- (i) **A** is full rank, where the rank is equal to the number of columns, $rank(\mathbf{A}) = n$.
- (ii) The rows of **A** spans \mathbb{R}^n , Row(**A**) = \mathbb{R}^n .
- (iii) The columns of **A** are linearly independent.
- (iv) The homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution, that is, $\text{Null}(\mathbf{A}) = \{\mathbf{0}\}$.
- (v) $\mathbf{A}^T \mathbf{A}$ is an invertible matrix of order n.
- (vi) A has a left inverse.
- (vii) The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by **A** is injective.

Answer to Exercise one in Section 7.2

Q: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that if T is injective, then necessary $n \leq m$.

Answer: Using the "(i) \Leftrightarrow (vii)" in the Theorem on Slide 36, we have $n = \operatorname{rank}(\mathbf{A}) \leq m$ (because **A** is $m \times n$, so $\operatorname{rank}(\mathbf{A}) \leq \min\{n, m\}$).

(You can also use the injectivity of T to get nullity(T) = 0 and rank(T) = rank(A) = n.)

Exercise two in Section 7.2

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that if T is surjective, then necessarily $n \geq m$.

Recall: On Slide 39,

Definition

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is called <u>surjective</u> or <u>onto</u> if for every \mathbf{v} in the codomain \mathbb{R}^m , there exists a \mathbf{u} in the domain \mathbb{R}^n such that $T(\mathbf{u}) = \mathbf{v}$.

Slide 40: Full Rank Equals Number of Rows

Theorem

Suppose **A** is an $m \times n$ matrix. The following statements are equivalent.

- (i) **A** is full rank, where the rank is equal to the number of rows, $rank(\mathbf{A}) = m$.
- (ii) The columns of **A** spans \mathbb{R}^m , $Col(\mathbf{A}) = \mathbb{R}^m$.
- (iii) The rows of **A** are linearly independent.
- (iv) The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.
- (v) $\mathbf{A}\mathbf{A}^T$ is an invertible matrix of order m.
- (vi) A has a right inverse.
- (vii) The linear transformation T defined by A is surjective.

Answer to Exercise two in Section 7.2

Q: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that if T is surjective, then necessary $n \ge m$.

Answer: Using the "(i) \Leftrightarrow (vii)" in the Theorem on Slide 40, we have $m = \operatorname{rank}(\mathbf{A}) \leq n$ (because \mathbf{A} is $m \times n$, so $\operatorname{rank}(\mathbf{A}) \leq \min\{n, m\}$).

(You can also use the surjectivity of T to get $m = \text{rank}(T) = \text{rank}(\mathbf{A})$.)

Exercise three in Section 7.2

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is <u>bijective</u> if it is both <u>injective</u> and <u>surjective</u>.

Show that $T: \mathbb{R}^n \to \mathbb{R}^n$ is bijective if and only if there is a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x}$$
 and $S(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Slide 44: Equivalent Statements of Invertibility

Let \mathbf{A} be a square matrix of order n. The following are equivalent.

- (i) A is invertible.
- (ii) \mathbf{A}^T is invertible.
- (iii) (left inverse) There is a matrix B such that BA = I.
- (iv) (right inverse) There is a matrix B such that AB = I.
- (v) The reduced row-echelon form of A is the identity matrix.
- (vi) A can be expressed as a product of elementary matrices.
- (vii) The homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.

- (viii) For any **b**, the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution.
 - (ix) The determinant of **A** is nonzero, $det(\mathbf{A}) \neq 0$.
 - (x) The columns/rows of **A** are linearly independent.
 - (xi) The columns/rows of **A** spans \mathbb{R}^n .
- (xii) rank(A) = n (A has full rank).
- (xiii) $\text{nullity}(\mathbf{A}) = 0.$
- (xiv) 0 is not an eigenvalue of A.
- (xv) The linear transformation *T* defined by **A** is injective.
- (xvi) The linear transformation T defined by **A** is surjective.

Answer to Exercise three in Section 7.2

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is <u>bijective</u> if it is both <u>injective</u> and <u>surjective</u>.

Show that $T: \mathbb{R}^n \to \mathbb{R}^n$ is bijective if and only if there is a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x}$$
 and $S(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Proof: (\Rightarrow) Let **A** be the standard matrix for *T*. Using either item (xv) or item (xvi), we know (i) holds, i.e., **A** is invertible. Let $S: \mathbb{R}^n \to \mathbb{R}^n$ be defined by $S(\mathbf{x}) = \mathbf{A}^{-1}\mathbf{x}$. Then

$$T(S(\mathbf{x})) = \mathbf{A}\mathbf{A}^{-1}\mathbf{x} = \mathbf{x},$$

and similarly,

$$S(T(\mathbf{x})) = \mathbf{x}.$$

Answer to Exercise three in Section 7.2 (conti.)

Q: Show that $T: \mathbb{R}^n \to \mathbb{R}^n$ is bijective if and only if there is a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T(S(\mathbf{x})) = \mathbf{x}$$
 and $S(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Proof: (\Leftarrow) Let us show that T is injective. Suppose that $T(\mathbf{u}_1) = T(\mathbf{u}_2)$. Then $S(T(\mathbf{u}_1)) = S(T(\mathbf{u}_2))$. By assumption that ST = Identity, $\mathbf{u}_1 = \mathbf{u}_2$.

Next we show that T is surjective. Let \mathbf{v} be an arbitrary vector in \mathbb{R}^n . Define $\mathbf{u} = S(\mathbf{v})$. Then $T(\mathbf{u}) = T(S(\mathbf{v})) = \mathbf{v}$. We are done.

Practice Problem 1

Let
$$\mathbf{A} = \mathbf{L} \begin{pmatrix} -1 & 1 & 7 & -1 \\ 0 & 4 & 12 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 be an LU factorization of a 3×4 matrix \mathbf{A} .

(a) Given $\mathbf{A} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 14 \\ 17 \end{pmatrix}$ and $\mathbf{A} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}$, find \mathbf{A} .

(b) It is given that $\begin{pmatrix} -1\\0\\0\\0 \end{pmatrix}$ is a least squares solution to the system $\mathbf{A}\mathbf{x} = \begin{pmatrix} 1\\1\\2 \end{pmatrix}$. Use your answer in (a) or otherwise, find all the least squares solutions to the system.

Answer to Problem 1 (part a)

Q: Given LU factorization $\mathbf{A} = \mathbf{L} \begin{pmatrix} -1 & 1 & 7 & -1 \\ 0 & 4 & 12 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ and

$$\mathbf{A} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 14 \\ 17 \end{pmatrix} \text{ and } \mathbf{A} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}. \text{ Find } \mathbf{A}.$$

Answer:

$$\begin{pmatrix} 4 \\ 14 \\ 17 \end{pmatrix} = \mathbf{A} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \mathbf{L} \begin{pmatrix} -1 & 1 & 7 & -1 \\ 0 & 4 & 12 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \mathbf{L} \begin{pmatrix} 4 \\ 10 \\ -1 \end{pmatrix}.$$

Write
$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ y & z & 1 \end{pmatrix}$$
.

Answer to Problem 1 (part a) conti.

Then

$$\begin{pmatrix} 4\\4x+10\\4y+10z-1 \end{pmatrix} = \mathbf{L} \begin{pmatrix} 4\\10\\-1 \end{pmatrix} = \begin{pmatrix} 4\\14\\17 \end{pmatrix}$$

Also,

$$\begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix} = \mathbf{A} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \mathbf{L} \begin{pmatrix} -1 & 1 & 7 & -1 \\ 0 & 4 & 12 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} = \mathbf{L} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}.$$

Then

$$\begin{pmatrix} 2 \\ 2x+2 \\ 2y+2z+1 \end{pmatrix} = \mathbf{L} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix}.$$

Answer to Problem 1 (part a) conti.

Hence, x = 1, and solving

$$\begin{cases} 4y + 10z = 18 \\ 2y + 2z = 6 \end{cases}$$

gives y = 2, z = 1. Hence,

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

Therefore,

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 7 & -1 \\ 0 & 4 & 12 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 7 & -1 \\ -1 & 5 & 19 & 1 \\ -2 & 6 & 26 & -1 \end{pmatrix}.$$

Answer to Problem 1 (part b)

Q: Given LU factorization
$$\mathbf{A} = \mathbf{L} \begin{pmatrix} -1 & 1 & 7 & -1 \\ 0 & 4 & 12 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
, and $\begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

is a least squares solution to the system $\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. Use your

answer in (a) or otherwise, find all the least squares solutions to the system.

Answer: Since the rank of $\bf A$ is 3, the column space is the whole \mathbb{R}^3 . Hence, for any $\bf b \in \mathbb{R}^3$, $\bf Ax = \bf b$ is consistent. Therefore, least squares solutions are actual solutions (See Slide 15 in Week 10's slide).

Answer to Problem 1 (part b) conti.

$$\left(\begin{array}{c|ccc|c} \textbf{A} & 1 \\ 1 \\ 2 \end{array}\right) = \left(\begin{array}{cccc|c} -1 & 1 & 7 & -1 & 1 \\ -1 & 5 & 19 & 1 & 1 \\ -2 & 6 & 26 & -1 & 2 \end{array}\right) \xrightarrow{\textit{RREF}} \left(\begin{array}{cccc|c} 1 & 0 & -4 & 0 & -1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right).$$

The general solution is

$$egin{pmatrix} -1+4s \ -3s \ s \ 0 \end{pmatrix}, \quad s \in \mathbb{R}.$$

(We skip Problem 2, as it is about Applications of Least Squares Approximation.)

Problem 3 (part a)

Q: A 4×3 matrix **A** has SVD decomposition

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where
$$\mathbf{V} = \begin{pmatrix} 0 & 2/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$$
, and such that the characteristic polynomial of $\mathbf{A}^T\mathbf{A}$ is $(x-3)(x-6)(x-10)$.

(a) Find Σ .

Answer: The eigenvalues of $\mathbf{A}^T \mathbf{A}$ are 3, 6, and 10. Hence, the singular values are (in descending order) $\sqrt{10}$, $\sqrt{6}$, $\sqrt{3}$.

$$\Sigma = egin{pmatrix} \sqrt{10} & 0 & 0 \ 0 & \sqrt{6} & 0 \ 0 & 0 & \sqrt{3} \ 0 & 0 & 0 \end{pmatrix}.$$

Problem 3 (part b)

(b) It is given that

$$\frac{1}{2\sqrt{5}} \mathbf{A} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \frac{1}{6} \mathbf{A} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \quad \frac{1}{3} \mathbf{A} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Find U. Give exact answer.

Answer: Let
$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \end{pmatrix}$$
. Then

$$\mathbf{u}_1 = rac{1}{\sqrt{10}}\mathbf{A}egin{pmatrix} 0 \ 1/\sqrt{2} \ 1/\sqrt{2} \end{pmatrix} = rac{1}{2\sqrt{5}}\mathbf{A}egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} = egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix};$$

(Recall:
$$\mathbf{u}_1 = \frac{1}{\sigma_1} \mathbf{A} \mathbf{v}_1$$
.)

Problem 3 (part b), Answer conti.

$$\mathbf{u}_{2} = \frac{1}{\sqrt{6}} \mathbf{A} \begin{pmatrix} 2/\sqrt{6} \\ -1/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix} = \frac{1}{6} \mathbf{A} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix};$$

$$\mathbf{u}_{3} = \frac{1}{\sqrt{3}} \mathbf{A} \begin{pmatrix} -1\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix} = \frac{1}{3} \mathbf{A} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Problem 3 (part b) Answer conti.

Finally, \mathbf{u}_4 is a unit vector orthogonal to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$, which tell us $\begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{pmatrix}^T \mathbf{u}_4 = 0$. Thus,

$$\label{eq:u4} \boldsymbol{u}_4 = \pm \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \\ 0 \end{pmatrix} \quad \text{and } \boldsymbol{U} = \begin{pmatrix} 0 & 1/\sqrt{2} & 0 & \pm 1/\sqrt{2} \\ 1 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & 0 & \mp 1/\sqrt{2} \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

(You may take either positive or negative.)

Answer to Problem 3 (part c)

(c) Use the information given in (b) to find **A**. Give exact answer.

Answer: Since ${\bf V}$ is given, we may use ${\bf U}$ in (b) (you may choose either of them) and Σ in (a) to find ${\bf A}$:

$$\begin{array}{lll} \textbf{A} = \textbf{U} \boldsymbol{\Sigma} \textbf{V}^T \\ = & \begin{pmatrix} 0 & 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{10} & 0 & 0 \\ 0 & \sqrt{6} & 0 \\ 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}^T \\ = & \begin{pmatrix} \sqrt{2} & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{5} & \sqrt{5} \\ \sqrt{2} & -1/\sqrt{2} & 1/\sqrt{2} \\ -1 & -1 & 1 \end{pmatrix}. \end{array}$$

Problem 4

A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - y - 2z \\ -2x + 2y + 2z \\ -y - z \end{pmatrix}.$$

- (a) Write down the standard matrix of the transformation T.
- (b) Find a nonzero vector \mathbf{u} in \mathbb{R}^3 such that $T(\mathbf{u}) = \mathbf{u}$. Explain how you derive your answer.
- (c) Find a vector \mathbf{u} such that $T(\mathbf{u}) = \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}$. Explain how you derive your answer.

Answer to Problem 4 (part a)

A linear transformation $T:\mathbb{R}^3 o \mathbb{R}^3$ is given by

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - y - 2z \\ -2x + 2y + 2z \\ -y - z \end{pmatrix}.$$

(a) Write down the standard matrix of the transformation T.

Answer:
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -2 \\ -2 & 2 & 2 \\ 0 & -1 & -1 \end{pmatrix}$$
.

Answer to Problem 4 (part b)

A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - y - 2z \\ -2x + 2y + 2z \\ -y - z \end{pmatrix}.$$

(b) Find a nonzero vector \mathbf{u} in \mathbb{R}^3 such that $T(\mathbf{u}) = \mathbf{u}$. Explain how you derive your answer.

Answer: Since T(u) = u, we have (A - I)(u) = 0.

$$\mathbf{I} - \mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 2 & -1 & -2 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Any nonzero multiple of
$$\mathbf{u} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$$
 works.

Answer to Problem 4 (part c)

A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - y - 2z \\ -2x + 2y + 2z \\ -y - z \end{pmatrix}.$$

(c) Find a vector \mathbf{u} such that $T(\mathbf{u}) = \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}$. Explain how you derive your answer.

Answer:
$$\mathbf{A}\mathbf{u} = T(\mathbf{u}) = \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}$$
. Just form the augmented matrix

$$\left(\begin{array}{ccc|c} 1 & -1 & -2 & 5 \\ -2 & 2 & 2 & -4 \\ 0 & -1 & -1 & 1 \end{array}\right) \xrightarrow{rref} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -3 \end{array}\right).$$

Hence, $\mathbf{u} = (1, 2, -3)^T$.

Alternative Answer to Problem 4 (part c)

You may also observe (or show) that **A** is invertible, and then

$$\mathbf{A}\mathbf{u} = T(\mathbf{u}) = \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix} \text{ if and only if } \mathbf{u} = \mathbf{A}^{-1} \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & -1 & -2 \\ -2 & 2 & 2 \\ 0 & -1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}.$$