Midterm Practice Problems

1. Find the general solution to the following equations

(a)
$$y'' + 3y' + 2y = 0$$

(b)
$$\frac{dr}{d\theta} = \frac{r^2}{\theta}$$

(c)
$$y' + y^2 \sin x = 0$$

(d)
$$w' + w = 3t$$

(e)
$$(2xy - 3x^2) + (x^2 + 1)y' = 0$$

(f)
$$u' = u^2 e^x$$

(g)
$$tv' - v = t^2 e^{-t}$$

(h)
$$(2t - 2y)y' = 2y - 2t$$

(i)
$$9z'' + 6z' + z = 0$$

2. Solve the following IVPs

(a)
$$xdx + ye^{-x}dy = 0$$
; $y(0) = 1$

(b)
$$y' = xe^{\sin x} + y\cos x$$
; $y(0) = 3$

(c)
$$y'' - 2y' + 5y = 0$$
; $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = 2$

3. Prove that t^a and t^b are linearly independent functions if $a \neq b$.

4. Given that $y_1(t) = t^2$ is a solution to

$$t^2y'' - 4ty' + 6y = 0, \quad t > 0,$$

find a second solution $y_2(t)$.

5. Given that $y_1(t) = e^t$ is a solution to

$$(t-1)y'' - ty' + y = 0, \quad t > 1,$$

find a second solution $y_2(t)$.