```
In [1]: #import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import plotly.express as px
```

2. Load the dataset into the tool

In [3]: data = pd.read_csv('abalone.csv')
 data

_			$\Gamma \sim$	_	
71		-	12		
v	u) [
_		_	_		

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
							•••	•••	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

#3. Perform Below Visualizations.

· Univariate Analysis

```
In [4]: data['Rings'].value_counts()
   data.hist()
```


Bi-Variate Analysis

```
In [5]: plt.scatter(data.Rings, data.Sex)
   plt.title('The Gender of Abalone vs Number of Rings')
   plt.xlabel('No. of Rings')
   plt.ylabel('Gender')
```

Out[5]: Text(0, 0.5, 'Gender')

Multi-Variate Analysis

In [6]: sb.heatmap(data.corr(),annot=True)

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7fde9e451b90>

#4. Perform descriptive statistics on the dataset.

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
	C1 (C4/7)		145

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

In [8]: data.describe()

Out[8]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

#5. Check for Missing values and deal with them.

There is no missing values

In [9]: data.isnull().any()

Out[9]: Sex False False Length Diameter False Height False Whole weight False Shucked weight False Viscera weight False Shell weight False Rings False dtype: bool

#6. Find the outliers and replace them outliers

The dataset does not have a outliers

```
In [10]: fig = px.histogram(data, x='Whole weight')
fig.show()
```

7. Check for Categorical columns and perform encoding.

There is one Categorical column SEX is replaced by an Integer

```
In [11]: from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         data["Sex"] = le.fit_transform(data["Sex"])
         data["Sex"]
Out[11]: 0
                 2
                 2
         1
         2
                 0
                 2
                 1
         4172
                 0
         4173
                 2
         4174
                 2
         4175
                 0
         4176
                 2
         Name: Sex, Length: 4177, dtype: int64
         #8. Split the data into dependent and independent variables.
In [12]: x=data.iloc[:,0:8].values
         y=data.iloc[:,8:9].values
In [13]: x
Out[13]: array([[2.
                     , 0.455 , 0.365 , ..., 0.2245, 0.101 , 0.15 ],
                [2.
                      , 0.35 , 0.265 , ..., 0.0995, 0.0485, 0.07 ],
                [0.
                      , 0.53 , 0.42 , ..., 0.2565, 0.1415, 0.21 ],
                . . . ,
                       , 0.6 , 0.475 , ..., 0.5255, 0.2875, 0.308 ],
                [2.
                [0.
                      , 0.625 , 0.485 , ..., 0.531 , 0.261 , 0.296 ],
                [2.
                       , 0.71 , 0.555 , ..., 0.9455, 0.3765, 0.495 ]])
```

9. Scale the independent variables

```
In [15]: | x=data.iloc[:,0:8]
         print(x.head())
                                    Height Whole weight Shucked weight \
            Sex Length Diameter
               2
                  0.455
                             0.365
                                     0.095
                                                  0.5140
                                                                   0.2245
                  0.350
                             0.265
                                     0.090
                                                  0.2255
                                                                   0.0995
         1
              0 0.530
                             0.420
                                                  0.6770
                                     0.135
                                                                   0.2565
                  0.440
                             0.365
                                     0.125
                                                  0.5160
                                                                   0.2155
                  0.330
                             0.255
               1
                                     0.080
                                                   0.2050
                                                                   0.0895
             Viscera weight Shell weight
                                    0.150
          0
                     0.1010
                                    0.070
         1
                     0.0485
          2
                     0.1415
                                    0.210
          3
                     0.1140
                                    0.155
                     0.0395
                                    0.055
         #10. Split the data into training and testing
In [16]: from sklearn.model_selection import train_test_split
```

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=0)

#13. Test the Model

```
In [21]: y_pred = lr.predict(x_test)
         print((y_test)[0:6])
         print((y_pred)[0:6])
         [[13]
          [8]
          [11]
          [5]
          [12]
          [11]]
         [[13.11640829]
          [ 9.65691091]
          [10.35350972]
          [ 5.63648715]
          [10.67436485]
          [11.95341338]]
         #14. Measure the performance using Metrics.
In [22]: # RMSE(Root Mean Square Error)
         from sklearn.metrics import mean_squared_error
         mse = mean_squared_error(y_test, y_pred)
         rmse = np.sqrt(mse)
         print("RMSE value : {:.2f}".format(rmse))
         RMSE value : 2.26
In [23]: from sklearn.model_selection import cross_val_score
         cv_scores = cross_val_score(lr, x, y, cv=5)
         sco=cv_scores.round(4)
         print(cv_scores.round(4))
         print("Average", sco.sum()/5)
         [0.4113 0.1574 0.4807 0.5046 0.4362]
         Average 0.3980399999999995
```