*PCT/FR03/00078

10/500.6A6 2/25/05

REC'D · 2 4 MAR 2003

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

BEST AVAILABLE COPY

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 17 JAN, 2003

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b) Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

INSTITUT NATIONAL DE LA PROPRIETE INDUSTRIELLE SIEGE 26 bls, rue de Saint Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (1) 53 04 53 04 Télécopte : 33 (1) 42 93 59 30 www.inpl.fr

THIS PAGE BLANK (USPTO)

RATIONAL DR RATION

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

REQUÊTE EN DÉLIVRANCE 1/2

	104-41 minut	Cet imprimé est à remplir lisiblement à l'encre			
REMISE DES PIÈCES	20029ve a TINPI	NOM ET ADRESSE DU DEMANDEUR C	OU DU MANDATAIRE FTRE ADRESSÉE		
UNIE 69 INPI LY	ON	A QUI LA CORRESPONDANCE DOTT	À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE		
TIEN	0200265	Cabinet GERMAIN & MAUREAU			
N° D'ENREGISTREMENT		BP 6153 69466 LYON CEDEX 06			
NATIONAL ATTRIBUÉ PAR L'II					
date de dépôt attribuée Par l'inpi	1 O JAN. 2				
Vos références por (facultatif) IT/SC/B		•	•		
Confirmation d'un	dépôt par télécopie	N° attribué par l'INPI à la télécopie			
2 NATURE DE L	A DEMANDE	Cochez l'une des 4 cases suivantes			
Demande de br	evet	[K]			
Demande de ce	rtificat d'utilité				
Demande divisi	onnaire				
	Demande de brevet initiale	N° Date			
ou deman	de de certificat d'utilité initiale	N° Date			
	d'une demande de	N° Date/	/		
	Demande de brevet initiale IVENTION (200 caractères ou				
DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE FRANÇAISE		Pays ou organisation Date			
		Pays ou organisation Date N°			
		S'il y a d'autres priorités, cochez la case et utilise			
E DEMANDEU	R	S'il y a d'autres demandeurs, cochez la case et u	tilisez l'imprimé «Suite»		
Nom ou dénomination sociale		BIO MERIEUX			
Prénoms					
Forme juridique		Société Anonyme			
N° SIREN		1			
Code APE-NAF		11:::1			
Adresse	Rue	Chemin de l'Orme			
	Code postal et ville	69280 MARCY L'ETOILE			
Pays		FR			
Nationalité		française			
Nº de télépho					
N° de télécopie (facultatif)					
Adresse électronique (facultatif)					

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE 2/2

REMISE DES PRÉCESTO DATE 69 INPLLY (LIEU					
n° d'enregistrement	0200265	DB 540 W /260899			
national attribué par l'i Vos références po (facultatif)		IT/SC/B05B3851FR			
MANDATAIRE					
Nom		GUERRE			
Prénom		Dominique			
Cabinet ou Soc	ciété	Cabinet GERMAIN & MAUREAU			
N °de pouvoir de lien contrac	permanent et/ou ctuel	CPI 921104			
Adresse	Rue	BP 6153			
	Code postal et ville	69466 LYON CEDEX 06 / FR			
Nº de télépho	ne (facultatif)	04 72 69 84 30			
Nº de télécop		04 72 69 84 31			
Adresse électi	ronique (facultatif)	dominique.guerre@germainmaureau.com			
M INVENTEUR	(S)				
Les inventeurs sont les demandeurs		Oui Non Dans ce cas fournir une désignation d'inventeur(s) séparée			
RAPPORT D	E RECHERCHE	Uniquement pour une demande de brevet (y compris division et transformation)			
	Établissement immédia ou établissement différé				
Paiement échelonné de la redevance		Paiement en trois versements, uniquement pour les personnes physiques Oui Non			
RÉDUCTION DU TAUX DES REDEVANCES		Uniquement pour les personnes physiques Requise pour la première fois pour cette invention (joindre un avis de non-imposition) Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission pour cette invention ou indiquer sa référence):			
Si vous ave indiquez le	z utilisé l'imprimé «Suite», nombre de pages jointes				
OU DU MA	ualité du signataire)	VISA DE LA PRÉFECTURE OU DE L'INPI A COMPANY L'INPI L'INPI			

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de réctification pour les données vous concernant auprès de l'INPI.

La présente invention a trait au domaine de la détermination d'une espèce animale appelée ci-après d'origine dans un échantillon susceptible de contenir un ingrédient, lui-même obtenu à partir d'au moins ladite espèce. Les produits à partir desquels s'exerce la détermination selon la présente invention sont par exemple des aliments ou denrées alimentaires à destination de l'homme ou des animaux, des produits cosmétiques, et, de manière générale des produits susceptibles de contenir des ingrédients d'origine animale, ou au contraire des produits dans lesquels ces extraits sont interdits.

Par exemple, l'identification des espèces animales présentes dans les aliments peut être nécessaire dans de nombreux domaines d'activités. Une première raison est de lutter contre les fraudes alimentaires où sont substituées certaines espèces animales par des espèces moins chères, comme le remplacement de lièvre par du lapin. Une seconde raison est de santé publique, comme notamment lors de l'épidémie d'encéphalite spongiforme bovine ou ESB, maladie due à l'utilisation de farines animales carnées d'origine bovine pour l'alimentation des bovins. Une troisième raison est d'ordre religieux, afin de vérifier par exemple l'absence de porc dans les aliments. Une quatrième raison est d'ordre législatif, lors notamment de la vérification de l'absence d'espèces protégées dans les aliments.

Trois principales approches d'identification sont actuellement décrites dans la littérature; ces méthodes sont basées sur une analyse tissulaire ou microscopique, sur une analyse protéique, et/ou sur une analyse génétique.

L'analyse tissulaire consiste ainsi à déterminer la présence dans des échantillons de farines destinées à l'alimentation animale, de fragments d'os. Cette technique, décrite notamment dans l'article de Michard, Revue de l'alimentation animale, vol. 508, pp 43-48, 1997, bien que sensible, est fastidieuse et repose sur l'interprétation d'un expert. Elle est donc difficilement comparable d'un laboratoire à un autre. De plus, par nature, elle ne peut détecter l'adjonction de tissus mous, tels que abats, sérum, tissus sanguins, gélatine.

Parmi les analyses protéiques utilisées, on distingue principalement dans la littérature trois groupes de méthodes permettant l'identification d'espèces animales présentes dans un échantillon donné.

Le premier groupe de méthodes comprend des techniques d'électrophorèse de protéines, qui consiste à détecter les protéines cibles solubles par une coloration enzymatique spécifique. Le diagnostic est obtenu après électrophorèse sur gel polyacrylamide par exemple. Toutefois, cette technique ne peut être réalisée qu'avec des tissus frais ou congelés, non transformés, car une période de cuisson de l'aliment est un exemple de transformation susceptibles d'altérer les protéines. Cette technique ne peut donc pas être appliquée à la détection d'espèces animales présentes dans les farines végétales, qui subissent lors de leur fabrication des phases de cuisson.

Le deuxième groupe de méthodes est basé sur des techniques immunologiques, par l'utilisation d'anticorps dirigés contre les protéines cibles solubles. La technique « Ouchterlony », ou immunodiffusion double, méthode utilisée pour différencier des antigènes dans un mélange, peut être utilisée. Mais cette technique présente l'inconvénient majeur d'impliquer des réactions croisées avec les épitopes d'autres espèces. L'utilisation de techniques ELISA (Enzyme-linked immunosorbent assay) permet une meilleure discrimination entre les espèces, et ces techniques peuvent être appliquées à de la viande cuite lorsque des anticorps dirigés contre des épitopes thermorésistants sont utilisés. Toutefois, des problèmes de spécificité sont encore observés. A titre indicatif, des anticorps polyclonaux dirigés contre les épitopes thermorésistants de poulet ne sont pas suffisamment spécifiques pour déterminer s'il s'agit de viande de poulet ou de viande de dinde.

Le troisième groupe de méthodes comprend les techniques chromatographiques (HPLC) utilisées pour caractériser des protéines solubles de muscles. Toutefois, ces techniques restent lourdes financièrement et techniquement, et ne peuvent être appliquées qu'a des tissus frais ou récemment congelés.

Les inconvénients de ces trois méthodes sont principalement dus à leur dépendance envers la caractérisation de protéines qui sont thermosensibles, se dénaturent lors d'une période de cuisson des aliments, perdent leur activité biologique après la mort de l'animal, et dont la présence est souvent fonction du type de cellules qui est examiné.

Il est ainsi préférable d'analyser directement l'ADN, plutôt que les protéines de l'échantillon, pour identifier la ou les espèces animales

25

10

15

20

30

35

d'origine présentes dans un échantillon donné, l'ADN étant identique dans tous les types cellulaires d'un même animal et stable en comparaison avec les protéines. Une troisième approche consiste donc à analyser l'ADN présent dans l'échantillon. Depuis peu de temps, on trouve ainsi dans la littérature des méthodes basées notamment sur l'utilisation d'enzymes de restriction ou de marqueurs génétiques, ces méthodes présentant l'avantage de pouvoir être appliquées à des produits transformés, en particulier après traitement thermique.

La détermination nucléique peut faire appel à des enzymes de restriction, ou technique dite RFLP (Restriction Fragment Length Polymorphism, voir notamment Meyer et al, Journal of AOAC International, vol 78 n°6, pp 1542-1551, 1995). Les enzymes de restriction coupent l'ADN, préalablement extrait de l'échantillon à analyser, à des endroits précis de la macromolécule. Il suffit alors de comparer, par simple électrophorèse, les fragments obtenus avec ceux d'échantillons témoins représentatifs de l'espèce à identifier. Toutefois, l'analyse des résultats obtenus par cette technique est très délicate, en particulier lorsque plusieurs espèces animales sont présentes dans l'échantillon.

10

15

20

25

30

35

La détermination nucléique peut aussi consister à séquencer un marqueur ubiquitaire, tel que le cytochrome B de l'ADN mitochondrial. L'ADN mitochondrial est une cible connue pour ce genre d'analyse puisque chaque mitochondrie contient de une à dix molécules d'ADN mitochondrial, et chaque cellule renferme de quelques dizaines à quelques milliers de mitochondries, ce qui permet de travailler sur une très faible quantité d'échantillon. Ainsi, Bartlett & Davidson (Biotechniques, vol. 12, n°3, 1992) décrivent une méthode appelée FINS (Forensically Informative Nucleotide Sequencing). Cette méthode consiste à i) isoler l'ADN présent dans un échantillon biologique, ii) amplifier cet ADN par PCR par l'utilisation d'amorces spécifiques du gène cytochrome B mitochondrial, les amorces étant choisies dans la partie du gène hautement conservée au cours de l'évolution et iii) séquencer le segment d'ADN amplifié. La séquence est ensuite utilisée pour une analyse phylogénétique à l'aide d'une base de données, permettant l'identification de l'espèce animale présente initialement dans l'échantillon. Si cette méthode présente l'avantage d'être rapide et utilisable sur tout type d'aliments (frais, congelés, transformés...), elle présente toutefois l'inconvénient majeur de

ne pas permettre l'analyse de mélanges d'espèces, à partir de mélanges de séquences amplifiées issues du même marqueur polymorphe ubiquitaire, et reste ainsi réservée à des matières premières homogènes.

L'analyse peut également consister à amplifier un marqueur spécifique d'une espèce donnée. Ainsi, Lahiff et al (Molecular and Cellular Probes, vol.15, pp27-35, 2001) décrivent l'identification d'espèce ovine, bovine ou aviaire présente dans un échantillon par l'utilisation par PCR d'amorces particulières, spécifiques à chaque espèce. Si cette méthode permet l'identification spécifique et rapide de telle ou telle espèce, elle ne peut être appliquée simultanément à la détection de plusieurs espèces. Des PCR successives sont alors nécessaires si on souhaite détecter plusieurs espèces. On retrouve ainsi dans l'art antérieur la détection de six espèces animales par l'utilisation d'une PCR multiplex (Matsuda et al, 1999 Meat Sciences, (1999), 145-148). Toutefois, cette technique reste délicate et difficile à appliquer et implique pratiquement une connaissance préalable des espèces recherchées. Cette technique n'est cependant pas applicable en aveugle, c'est à dire sans connaissance préalable des espèces susceptibles d'être présentes dans l'échantillon. Elle ne permet pas d'avoir des résultats quantitatifs en raisons des difficultés dues à l'amplification multiplex et des possibilités de mésappariements. De plus, cette technique oblige à disposer d'un grand nombre d'amorces spécifiques si l'on veut tester un grand nombre d'espèces, ce qui est peu réalisable en pratique en raison de problèmes de sensibilité et de spécificité. Enfin, si une espèce n'est pas représentée dans le jeu d'amorces mais néanmoins présente dans l'échantillon à analyser, le résultat sera faussé.

10

15

20

25

30

35

Il existe donc un besoin important pour une technique qui, tout en restant générique, puisse détecter une ou plusieurs espèces, même présentes en grand nombre dans le même échantillon à analyser ou en très faible quantité, et sans connaissance préalable des espèces présentes.

En effet, si dans un produit, l'espèce non désirée doit être présente dans des quantités supérieures à 5 % par rapport à l'espèce normalement présente pour qu'il y ait effectivement fraude, ce qui allège les performances exigées pour le test de diagnostic moléculaire, il en est autrement dans le cas de produits dans lesquels la présence de produits d'origine animale est interdite. Par exemple dans le cas des farines employées en France pour l'alimentation animale depuis le 1^{er} janvier 2001,

les traces de teneur en produit d'origine animale sont recherchées, et la contrainte technique est importante en terme de sensibilité de la méthode car la majeure partie du matériel est d'origine végétale et l'adjonction de matériel animal varie entre 0,1 et 5% poids/poids.

5

10

15

20

25

30

Il existe donc un besoin de disposer d'un outil de détermination, permettant l'identification ou la détection qualitative et/ou quantitative d'espèces animales, en aveugle, c'est à dire sans a priori sur l'identité de l'espèce recherchée, susceptible d'être mis en œuvre de manière simple, tout en restant spécifique, fiable et fidèle, et susceptible d'être mis en œuvre dans un milieu pouvant contenir des ingrédients obtenus à partir de plusieurs espèces animales.

Le problème à résoudre présente une complexité importante. La détermination doit être possible en aveugle, c'est à dire que l'échantillon est susceptible de contenir ou de ne pas contenir des ingrédients obtenus à partir d'une ou de plusieurs espèces animales et ces espèces d'origine sont inconnues. Si l'échantillon contient des ingrédients obtenus à partir d'espèces animales, les espèces d'origine doivent être déterminées et sont susceptibles d'être voisines, et la détermination doit être possible en ne faisant qu'une seule analyse, avec un seul réactif et une seule étape d'amplification, sans étape préalable de prédétermination par exemple du groupe d'espèces ou mise en œuvre de batteries de tests permettant par exemple de classer les réactifs par genres ou espèces pour éviter par exemple les réactions croisées.

A cet effet, la Demanderesse a découvert un ensemble de séquences constitué par le groupe comprenant les séquences SEQ ID Nos 1 à 232, leurs séquences respectivement complémentaires, et toutes séquences homologues, comprenant au moins 5 monomères contigus inclus dans l'une quelconque desdites séquences et présentant au moins 70% d'identité avec ladite quelconque séquence, qui permettent par la mise en œuvre de méthodes d'analyse dites de biologie moléculaire, la détermination d'au moins une espèce animale d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce.

Avant d'exposer l'invention, différents termes utilisés dans la description et les revendications sont définis ci-après.

- Une "détermination" s'entend comme étant l'identification ou la détection ou analyse quantitative et/ou qualitative d'une espèce animale.
- Une "espèce animale" s'entend comme étant la catégorie la plus simple utilisée dans le classement des espèces vivantes ou taxonomie. Les espèces vivantes sont classées en catégories appelées taxons, les plus importants taxons sont le Règne (animal ou végétal), l'Embranchement, la Classe, l'Ordre, la Famille, le Genre, et l'Espèce. Les Oiseaux, Poissons et Mammifères sont des classes d'animaux vertébrés.

5

15

20

25

30

- Par "espèce animale d'origine" on entend l'espèce animale,
 10 de l'animal dont les tissus, quels qu'ils soient, ont été utilisé comme
 matière première pour la préparation du ou des ingrédients de l'échantillon.
 du produit soumis à la détermination selon la présente invention.
 - Une "méthode de biologie moléculaire", est une méthode basée sur l'amplification enzymatique de cibles nucléiques (ADN et/ou ARN) in vitro et l'utilisation de sondes oligonucléotidiques.
 - Un "échantillon" est toute partie obtenue directement ou indirectement à partir d'un produit, d'un matériau, d'une matière, de départ, lui-même susceptible de contenir au moins un ingrédient obtenu à partir d'au moins une espèce animale dite d'origine. En conséquence de cette définition, l'échantillon à déterminer conformément à la présente invention est susceptible de contenir ledit ingrédient d'origine animale, à partir duquel on identifie ou détecte la ou les espèces animales entrées dans la composition ou constitution du produit, matériau, ou matière de départ. Au sens de la présente invention, le produit de départ peut être un matériel biologique, un aliment ou denrée alimentaire, par exemple à base de viande ou poisson, un produit cosmétique, etc..
 - Par "étape de lyse", on entend une étape capable de libérer les acides nucléiques contenus dans les enveloppes protéiques et/ou lipidiques des microorganismes (comme des débris cellulaires qui perturbent les réactions ultérieures). A titre d'exemple, on peut utiliser les méthodes de lyse telles que décrite dans les demandes de brevet de la Demanderesse :

WO-A-00/05338 sur la lyse mixte magnétique et mécanique,

WO-A-99/53304 sur la lyse électrique, et

WO-A-99/15321 sur la lyse mécanique.

L'homme du métier pourra utiliser d'autres méthodes de lyse bien connues, telles que les chocs thermiques ou osmotiques ou les lyses

chimiques par des agents chaotropiques tels que les sels de guanidium (US-A-5,234,809).

- Par "purification", on entend la séparation entre les acides nucléiques et les autres constituants cellulaires relargués dans l'étape de lyse. Cette étape permet généralement de concentrer les acides nucléiques. A titre d'exemple, on peut utiliser des particules magnétiques éventuellement revêtues d'oligonucléotides, par adsorption ou covalence (voir à ce sujet les brevets US-A-4,672,040 et US-A-5,750,338), et ainsi purifier les acides nucléiques qui se sont fixés sur ces particules magnétiques, par une étape de lavage. Cette étape de purification des acides nucléiques est particulièrement intéressante si l'on souhaite amplifier ultérieurement lesdits acides nucléiques. Un mode de réalisation particulièrement intéressant de ces particules magnétiques est décrit dans les demandes de brevet déposées par la Demanderesse sous les références suivantes: WO-A-97/45202 et WO-A-99/35500.

10

15

20

25

30

35

Dans la dernière de ces demandes de brevet, il s'agit de particules magnétiques thermosensibles ayant chacune un noyau magnétique recouvert d'une couche intermédiaire. La couche intermédiaire est elle-même recouverte par une couche externe à base d'un polymère susceptible d'interagir avec au moins une molécule biologique, par exemple acide nucléique; le polymère externe est thermosensible et présente une température critique inférieure de solubilité (LCST) prédéterminée comprise entre 10 et 100°C et de préférence entre 20 et 60°C. Cette couche externe est synthétisée à partir de monomères cationiques, qui génèrent un polymère ayant la capacité de lier les acides nucléiques. Cette couche intermédiaire isole les charges magnétiques du noyau, afin d'éviter les problèmes d'inhibition des techniques d'amplification de ces acides nucléiques.

Un autre exemple intéressant de méthode de purification des acides nucléiques est l'utilisation de silice soit sous forme de colonne (nécessaires Qiagen par exemple), soit sous forme de particules inertes [Boom R. et al., J. Clin. Microbiol., 1990, n°28(3), p. 495-503] ou magnétiques (Merck: MagPrep[®] Silica, Promega: MagneSilTM Paramagnetic particles). D'autres méthodes très répandues reposent sur des résines échangeuses d'ions en colonne (nécessaires Qiagen par exemple) ou en format particulaire paramagnétique (Whatman: DEAE-Magarose) [Levison

PR et al., J. Chromatography, 1998, p. 337-344]. Une autre méthode très pertinente mais non exclusive pour l'invention est celle de l'adsorption sur support d'oxyde métallique (société Xtrana: matrice Xtra-BindTM).

- Une "séquence", ou un "fragment nucléotidique", ou un oligonucléotide, ou un polynucléotide, est un enchaînement de motifs nucléotidiques assemblés entre eux par des liaisons ester phosphorique, caractérisé par la séquence informationnelle des acides nucléiques naturels, susceptibles de s'hybrider à un fragment nucléotidique, l'enchaînement pouvant contenir des monomères de structures différentes et être obtenu à partir d'une molécule d'acide nucléique naturelle et/ou par recombinaison génétique et/ou par synthèse chimique.

5

10

15

20

25

30

35

- Un "motif" est dérivé d'un monomère qui peut être un nucléotide naturel d'acide nucléique dont les éléments constitutifs sont un sucre, un groupement phosphate et une base azotée ; dans l'ADN le sucre est le désoxy-2-ribose, dans l'ARN le sucre est le ribose ; selon qu'il s'agisse de l'ADN ou l'ARN, la base azotée est choisie parmi l'adénine, la guanine, l'uracile, la cytosine, la thymine ; ou bien le monomère est un nucléotide modifié dans l'un au moins des trois éléments constitutifs ; à titre d'exemple, la modification peut intervenir soit au niveau des bases, avec des bases modifiées telles que l'inosine, la méthyl-5désoxycytidine, la désoxyuridine, la diméthylamino-5désoxyuridine, la diamino-2,6-purine, la bromo-5désoxyuridine ou toute autre base modifiée capable d'hybridation, soit au niveau du sucre, par exemple le remplacement d'au moins un désoxyribose par un polyamide (P.E. Nielsen et al, Science, 254, 1497-1500 (1991), soit encore au niveau du groupement phosphate, par exemple son remplacement par des esters notamment choisis parmi les diphosphates, alkyl- et aryl-phosphonates et phosphorothioates,

- Par "séquence informationnelle", on entend toute suite ordonnée de motifs de type nucléotidique, dont la nature chimique et l'ordre dans un sens de référence constituent une information de même qualité que celle des acides nucléiques naturels.

- Par "hybridation", on entend le processus au cours duquel, dans des conditions appropriées, deux fragments nucléotidiques, ayant des séquences suffisamment complémentaires sont susceptibles de former un double brin avec des liaisons hydrogène stables et spécifiques. Un fragment nucléotidique "capable de s'hybrider" avec un polynucléotide est

un fragment pouvant s'hybrider avec ledit polynucléotide dans des conditions d'hybridation, qui peuvent être déterminées dans chaque cas de façon connue. Les conditions d'hybridation sont déterminées par la stringence, c'est-à-dire la rigueur des conditions opératoires. L'hybridation est d'autant plus spécifique qu'elle est effectuée à plus forte stringence. La stringence est définie notamment en fonction de la composition en bases d'un duplex sonde/cible, ainsi que par le degré de mésappariement entre deux acides nucléiques.

La "stringence" peut également être fonction des paramètres de la réaction, tels que la concentration et le type d'espèces ioniques présentes dans la solution d'hybridation, la nature et la concentration d'agents dénaturants et/ou la température d'hybridation. La stringence des conditions dans lesquelles une réaction d'hybridation doit être réalisée dépendra principalement des sondes cibles utilisées. Toutes ces données sont bien connues et les conditions appropriées peuvent être déterminées, par l'homme du métier.

10

15

20

25

30

En général, selon la longueur des sondes cibles utilisées, la température pour la réaction d'hybridation est comprise entre environ 20 et 70°C, en particulier entre 35 et 65°C dans une solution saline à une concentration d'environ 0,5 à l M.

- Une "sonde" comprend un fragment nucléotidique comprenant. de 5 à 100 monomères, notamment de 6 à 35 monomères, possédant une spécificité d'hybridation dans des conditions déterminées pour former un complexe d'hybridation avec un fragment nucléotidique ayant, dans le cas présent, une séquence nucléotidique comprise par exemple dans un ARN ribosomique, l'ADN obtenu par transcription inverse dudit ARN ribosomique et l'ADN (appelé ici ADN ribosomique ou ADNr) dont ledit ARN ribosomique est le produit de transcription ; une sonde peut être de capture ou de détection.
- Une "sonde de capture" est immobilisée ou immobilisable sur un support solide par tout moyen approprié, c'est-à-dire directement ou indirectement, par exemple par covalence ou adsorption.
- Une "sonde de détection" peut être marquée au moyen d'un marqueur choisi parmi les isotopes radioactifs, des enzymes (notamment une peroxydase, une phosphatase alcaline, ou une enzyme susceptible d'hydrolyser un substrat chromogène, fluorigène ou luminescent, des

composés chimiques chromophores, des composés chromogènes, fluorigènes ou luminescents, des analogues de bases nucléotidiques, et des ligands tels que la biotine.

fragment nucléotidique un "amorce" comprend Une comprenant de 5 à 100 motifs nucléotidiques et possédant une spécificité d'hybridation dans des conditions déterminées pour l'initiation d'une dans une technique exemple enzymatique, par polymérisation d'amplification, dans un procédé de séquençage, dans une méthode de transcription inverse, etc.

5

10

15

20

25

30

- "L'homologie" caractérise le degré d'identité de deux fragments nucléotidiques comparés, dont les critères retenus pour la présente invention sont définis ci-après.

Les sondes et amorces selon l'invention sont choisies parmi :

- (a) les séquences identifiées dans le listage de séquences annexé à la description,
 - (b) les séquences complémentaires à chacune des séquences identifiées dans le listage de séquences annexé à la description, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C et préférentiellement entre 35 et 65°C en solution saline à une concentration d'environ 0,5 à 1M et préférentiellement 0,8 à 1M, avec une quelconque des séquences identifiées dans le listage de séquences annexé à la description,
 - (c) les séquences homologues à chacune des séquences identifiées dans le listage de séquences annexé à la description, et des séquences complémentaires à chacune des séquences identifiées dans le listage de séquences annexé à la description, respectivement, l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences, et présentant au moins 70% d'identité avec ladite quelconque séquence ; à titre d'exemple, un fragment (c) comporte 10 nucléotides parmi lesquels 5 nucléotides contigus appartiennent à une séquence (a) et au moins 2 nucléotides des 5 nucléotides restants sont identiques respectivement aux deux nucléotides correspondants dans la séquence de référence, après alignement.

- Par "séquence d'identification", on désigne toute séquence ou tout fragment tel que défini ci-dessus, pouvant servir de sonde de détection et/ou de capture.

- Par "détection" on entend soit une détection directe par une méthode physique, soit une méthode de détection à l'aide d'un marqueur.

5

10

15

20

25

30

35

De nombreuses méthodes de détection existent pour la détection des acides nucléiques. [Voir par exemple Kricka et al., Clinical Chemistry, 1999, n° 45(4), p.453-458 ou Keller G.H. et al., DNA Probes, 2nd Ed., Stockton Press, 1993, sections 5 et 6, p.173-249].

Par "marqueur", on entend un traceur capable d'engendrer un signal. Une liste non limitative de ces traceurs comprend les enzymes qui produisent un signal détectable par exemple par colorimétrie, fluorescence ou luminescence, comme la peroxydase de raifort, la phosphatase alcaline, la bêtagalactosidase, la glucose-6-phosphate déshydrogénase; les chromophores comme les composés fluorescents, luminescents ou colorants; les groupements à densité électronique détectables par microscopie électronique ou par leurs propriétés électriques comme la conductivité, par les méthodes d'ampérométrie ou de voltamétrie, ou par des mesures d'impédance; les groupements détectables par des méthodes optiques comme la diffraction, la résonance plasmon de surface, la variation d'angle de contact ou par des méthodes physiques comme la spectroscopie de force atomique, l'effet tunnel, etc.; les molécules radioactives comme ³²P, ³⁵S ou ¹²⁵I.

Ainsi, le polynucléotide peut être marqué pendant l'étape d'amplification enzymatique, par exemple en utilisant un nucléotide triphosphate marqué pour la réaction d'amplification. Le nucléotide marqué sera un désoxyribonucléotide dans les systèmes d'amplification générant un ADN, comme la PCR, ou un ribonucléotide dans les techniques d'amplification générant un ARN, comme les techniques TMA ou NASBA.

Le polynucléotide peut aussi être marqué après l'étape d'amplification, par exemple en hybridant une sonde marquée selon la technique d'hybridation sandwich décrite dans le document WO-A-91/19812.

Un autre mode particulier préférentiel de marquage d'acides nucléiques est décrit 'dans la demande FR-A-2 780 059 de la Demanderesse. Un autre mode préférentiel de détection utilise l'activité exonucléase 5'-3' d'une polymérase, tel que décrit par Holland P.M., PNAS (1991) p 7276-7280.

Des systèmes d'amplification du signal peuvent être utilisés comme décrit dans le document WO-A-95/08000 et, dans ce cas, la réaction préliminaire d'amplification enzymatique peut ne pas être nécessaire.

- Par "amplification enzymatique", on entend une processus générant de multiples copies d'un fragment nucléotidique particulier à l'aide d'amorces spécifiques par l'action d'au moins une enzyme. Ainsi, pour l'amplification des acides nucléiques, il existe, entre autres, les techniques suivantes :

10

15

35

- PCR (Polymerase Chain Reaction), telle que décrite dans les brevets US-A-4,683,195, US-A-4,683,202 et US-A-4,800,159,
- LCR (Ligase Chain Reaction), exposée par exemple dans la demande de brevet EP-A-0 201 184,
- RCR (Repair Chain Reaction), décrite dans la demande de brevet WO-A-90/01069,
- 3SR (Self Sustained Sequence Replication) avec la demande de brevet WO-A-90/06995,
- 20 NASBA (Nucleic Acid Sequence-Based Amplification) avec la demande de brevet WO-A-91/02818, et
 - TMA (Transcription Mediated Amplification) avec le brevet US-A-5,399,491.

On parle alors d'"amplicons" pour désigner les polynucléotides générés par une technique d'amplification enzymatique.

Le terme "support solide" tel qu'utilisé ici inclut tous les matériaux sur lesquels peut être immobilisé un acide nucléique. Des matériaux de synthèse ou des matériaux naturels, éventuellement modifiés chimiquement, peuvent être utilisés comme support solide, notamment les polysaccharides tels que les matériaux à base de cellulose, par exemple du papier, des dérivés de cellulose tels que l'acétate de cellulose et la nitrocellulose ou le dextrane, des polymères, des copolymères, notamment à base de monomères du type styrène, des fibres naturelles telles que le coton, et des fibres synthétiques telles que le nylon; des matériaux minéraux tels que la silice, le quartz, des verres, des céramiques; des latex; des particules magnétiques; des dérivés métalliques, des gels etc.

Le support solide peut être sous la forme d'une plaque de microtitration, d'une membrane comme décrit dans la demande WO -A-94/12670, d'une particule ou d'une biopuce.

 - Par "biopuce", on entend un support solide de dimension
 réduite où sont fixés une multitude de sondes de capture à des positions prédéterminées.

A titre d'illustration, des exemples de ces biopuces sont donnés dans les publications de [G. Ramsay, Nature Biotechnology, 1998, n°16, p. 40-44; F. Ginot, Human Mutation, 1997, n°10, p.1-10; J. Cheng et al, Molecular diagnosis, 1996, n°1(3), p.183-200; T. Livache et al, Nucleic Acids Research, 1994, n° 22(15), p. 2915-2921; J. Cheng et al, Nature Biotechnology, 1998, n° 16, p. 541-546] ou dans les brevets US-A-4,981,783, US-A-5,700,637, US-A-5,445,934, US-A-5,744,305 et US-A-5,807,522.

La caractéristique principale du support solide doit être de conserver les caractéristiques d'hybridation des sondes de capture sur les acides nucléiques tout en générant un bruit de fond minimum pour la méthode de détection. Un avantage des biopuces est qu'elles simplifient l'utilisation de nombreuses sondes de capture permettant ainsi la détection multiple des espèces à détecter.

L'invention décrite ci-après permet de résoudre les problèmes posés par les méthodes précédemment décrites, à la fois en terme de sensibilité, spécificité, capacité de multidétection et identification, tout en étant rapide et facile à mettre en œuvre.

25

35

20

15

L'invention concerne un procédé de détermination d'une espèce animale d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce, caractérisé en ce que :

- a) on dispose d'une fraction nucléique obtenue à partir dudit 30 échantillon,
 - b) on dispose d'au moins un réactif spécifique à l'espèce animale, choisi dans le groupe constitué par
 - les séquences de référence SEQ ID Nos 1 à 232,
 - les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une

Le support solide peut être sous la forme d'une plaque de microtitration, d'une membrane comme décrit dans la demande WO -A-94/12670, d'une particule ou d'une biopuce.

- Par "biopuce", on entend un support solide de dimension réduite où sont fixés une multitude de sondes de capture à des positions prédéterminées.

5

15

20

25

30

35

A titre d'illustration, des exemples de ces biopuces sont donnés dans les publications de [G. Ramsay, Nature Biotechnology, 1998, n°16, p. 40-44; F. Ginot, Human Mutation, 1997, n°10, p.1-10; J. Cheng et al, Molecular diagnosis, 1996, n°1(3), p.183-200; T. Livache et al, Nucleic Acids Research, 1994, n° 22(15), p. 2915-2921; J. Cheng et al, Nature Biotechnology, 1998, n° 16, p. 541-546] ou dans les brevets US-A-4,981,783, US-A-5,700,637, US-A-5,445,934, US-A-5,744,305 et US-A-5,807,522.

La caractéristique principale du support solide doit être de conserver les caractéristiques d'hybridation des sondes de capture sur les acides nucléiques tout en générant un bruit de fond minimum pour la méthode de détection. Un avantage des biopuces est qu'elles simplifient l'utilisation de nombreuses sondes de capture permettant ainsi la détection multiple des espèces à détecter.

L'invention décrite ci-après permet de résoudre les problèmes posés par les méthodes précédemment décrites, à la fois en terme de sensibilité, spécificité, capacité de multidétection et identification, tout en étant rapide et facile à mettre en œuvre.

L'invention concerne un procédé de détermination d'une espèce animale d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce, caractérisé en ce que :

- a) on dispose d'une fraction nucléique obtenue à partir dudit échantillon,
- b) on dispose d'au moins un réactif spécifique à l'espèce animale, consistant en au moins une séquence, choisie dans les groupes constitués par
 - les séquences de référence SEQ ID Nos 1 à 232,
 - les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une

température comprise entre 20 et 70°C et préférentiellement entre 35 et 65°C en solution saline à une concentration d'environ 0,5 à 1M et préférentiellement 0,8 à 1M avec l'une quelconque des séguences SEQ ID Nos 1 à 232,

5

- les séquences homologues à chacune des séquences SEQ ID Nos 1 à 232 et des séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences, et présentant au moins 70% d'identité avec ladite quelconque séquence.

10

c) on met en présence la fraction nucléique et ledit réactif, et

15

d) par détection on détermine tout signal ou information résultant de la réaction spécifique entre ledit réactif et la fraction nucléique, caractérisant la présence dans ledit échantillon de ladite espèce animale d'origine.

__

20

Elle concerne en outre un procédé tel que décrit précédemment, caractérisé en ce qu'on dispose d'un ensemble comprenant une multiplicité desdits réactifs spécifiques à une même espèce d'origine et/ou à des espèces animales d'origine respectivement différentes ; et on détermine une multiplicité de signaux ou informations caractérisant la présence dans ledit échantillon d'une même espèce animale d'origine ou de plusieurs espèces animales d'origine respectivement différentes.

25

Elle concerne également toute séquence nucléotidique caractérisée en ce qu'elle est choisie dans le groupe constitué par :

a) les séquences de référence SEQ ID Nos 1 à 232,

30

b) les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider une température comprise entre 20 et 70°C et préférentiellement entre 35 et 65°C en solution saline à une concentration d'environ 0,5 à 1M et préférentiellement 0,8 à 1M avec l'une quelconque des séquences SEQ ID Nos 1 à 232,

35

température comprise entre 20 et 70°C et préférentiellement entre 35 et 65°C en solution saline à une concentration d'environ 0,5 à 1M et préférentiellement 0,8 à 1M avec l'une quelconque des séquences SEQ ID Nos 1 à 232, ou - les séquences homologues à chacune des séquences SEQ 5 ID Nos 1 à 232 et des séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences, et 10 présentant au moins 70% d'identité avec ladite quelconque séguence. c) on met en présence la fraction nucléique et ledit réactif, et d) par détection on détermine tout signal ou information résultant de la réaction spécifique entre ledit réactif et la 15 fraction nucléique, caractérisant la présence dans ledit échantillon de ladite espèce animale d'origine.

Elle concerne en outre un procédé tel que décrit précédemment,

caractérisé en ce qu'on dispose d'un ensemble comprenant une multiplicité
desdits réactifs spécifiques à une même espèce d'origine et/ou à des
espèces animales d'origine respectivement différentes ; et on détermine
une multiplicité de signaux ou informations caractérisant la présence dans
ledit échantillon d'une même espèce animale d'origine ou de plusieurs
espèces animales d'origine respectivement différentes.

Elle concerne également toute séquence nucléotidique caractérisée en ce qu'elle est choisie dans les groupes constitués par :

a) les séquences de référence SEQ ID Nos 1 à 232,

30

35

b) les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider une température comprise entre 20 et 70°C et préférentiellement entre 35 et 65°C en solution saline à une concentration d'environ 0,5 à 1M et préférentiellement 0,8 à 1M avec l'une quelconque des séquences SEQ ID Nos 1 à 232, ou

c) les séquences homologues à chacune des séquences SEQ ID Nos 1 à 232 et des séquences selon b) respectivement l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences, et présentant au moins 70% d'identité avec ladite quelconque séquence.

Elle concerne également l'utilisation d'une séquence précédemment définie, pour la détermination d'au moins une espèce animale d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce animale.

5

10

15

20

25

30

35

L'invention peut en outre être une sonde pour la détermination d'au moins une espèce animale d'origine, comprenant au moins une séquence nucléotidique d'identification précédemment définie.

Elle concerne également une amorce pour l'amplification spécifique d'un acide nucléique d'une espèce animale d'origine, comprenant au moins une séquence nucléotidique d'identification précédemment définie.

₹

Un autre mode de réalisation de l'invention est un réactif pour la détermination d'au moins une espèce animale d'origine, comprenant un support solide, à l'état divisé ou non, sur lequel est fixée une séquence nucléotidique précédemment définie.

Selon l'invention les séquences nucléotidiques ou leurs fragments peuvent être fixés sur un support solide et peuvent constituer une biopuce qui permet la détermination de la multiplicité de signaux ou informations.

Le procédé selon l'invention peut être conduit de manière manuelle, semi-automatique ou automatique, permettant la mise en œuvre d'un moyen de détermination de l'espèce animale d'origine de la matière animale contenue dans un échantillon.

Cette invention concerne également une méthode de détection utilisant en particulier la technique des biopuces. Cette méthode de détection est spécifique des espèces recherchées grâce à l'utilisation de séquences, dites séquences d'identification de chaque espèce, comme sonde. La rapidité, la sensibilité et la spécificité de cette méthode de détection, permettent de l'appliquer indifféremment à tout milieu. En

particulier cette méthode s'applique à tout échantillon de produit alimentaire, comportant de la matière animale quelque soit son état et les procédés de fabrication et/ou d'élaboration mis en œuvre, en particulier les techniques de cuisson, de déshydratation et/ou de conservation, et à tout échantillon de produit manufacturé susceptible de contenir des extraits animaux, comme par exemple les produits cosmétiques et/ou les produits pharmaceutiques comportant par exemple des gélatines d'origine animale.

Cette détection simultanée en une seule étape de multiples produits d'amplifications spécifiques, est possible grâce à l'utilisation de support solide en particulier sous la forme d'un support solide de dimension réduite où sont fixées une multitude de sondes de capture à des positions prédéterminées, ou « biopuce », ces sondes de capture étant constituées par un jeu de fragments ou de la totalité de séquences nucléotidiques spécifiques dites séquences d'identification des espèces recherchées.

10

15

20

25

30

35

Ces séquences nucléotidiques peuvent également être mises en œuvre dans toutes les techniques d'hybridation connues comme les techniques de dépôt ponctuel sur filtre dites "DOT-BLOT" [Maniatis et al, Molecular Cloning, Cold Spring Harbor, 1982], les techniques de transfert d'ADN dites "SOUTHERN BLOT" [Southern E. M., J. Mol. Biol., 1975, 98, 503], les techniques de transfert d'ARN dites "NORTHERN BLOT", ou les techniques "SANDWICH" [Dunn A.R. et al., Cell, 1977, 12, 23].

La présente invention concerne également la détermination de groupe d'espèces ou classe d'espèces animales ou taxon. Ces groupes d'espèces ou classes ou taxons son constitués par exemple de classe, comme la classe des mammifères, les oiseaux ou les poissons, voire de sous groupes d'espèces comme une famille d'oiseaux ou de deux sougroupes réunis comme les oiseaux ou les mammifères.

Cette identification est possible grâce à l'identification de séquences nucléotidiques, appelées séquences signatures, caractéristiques d'une classe, d'un groupe, d'un sous-groupe ou d'un taxon, et correspondant à des régions conservées pour l'ensemble des individus constituant le groupe.

Toute séquence signature spécifique à une classe d'animaux mises en œuvre dans le procédé selon la présente invention présente la caractéristique selon laquelle, d'une part elle a une région nucléique

conservée pour pratiquement toutes les espèces animales d'une même classe taxonomique, et d'autre part elle peut être discriminée d'autres séquences répondant à la même définition que précédemment, dans les conditions usuelles de détermination, définies de manière générique dans les revendications en annexe.

. 5

20

25

30

35

Par exemple, pour la détection de la présence de mammifères on utilisera la séquence signature M, correspondant à la séquence SEQ N°235 GACACAA CAGC, positions 14685 à 14698 (séquence de référence *Bos taurus* genbank; n° accession V00654). Les bases CAA en positions 14689-14690-14691 (séquence de référence *Bos taurus* genbank; n° accession V00654) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les mammifères. On observe au plus 5 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe de mammifères choisis. La présence de ces trois bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de mammifères dans l'échantillon.

L'identification de la présence d'oiseaux est déterminée par les signatures :

O1, correspondant à la séquence SEQ N°236 TCCCTAGCCT TCTC, positions 15073 à 15086 (séquence de référence *Gallus gallus*; genbank n° accession X52392). Les bases CT (positions 15076-15077) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les oiseaux. On observe au plus 5 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe d'oiseaux choisis. La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence d'oiseaux dans l'échantillon.

O2, correspondant à la séquence SEQ N°237 ACACTTGCCG GAAC, positions 15098 à 15111 (séquence de référence *Gallus gallus*; genbank n° accession X52392). Les bases CT ou CA (positions 15101 - 15102) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les oiseaux. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le

matériel nucléique du groupe d'oiseaux choisis. La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence d'oiseaux dans l'échantillon.

L'identification de la présence de mammifères et d'oiseaux est déterminée par la signature V, correspondant à la séquence SEQ N°238 ATAGCCACAGCATT, positions 14883 à 14896 (séquence de référence Bos taurus genbank; n° accession V00654). Les bases GC (en positions 14886 et 14887) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les oiseaux et les mammifères. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe d'oiseaux et mammifères choisis. La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de mammifères et d'oiseaux dans l'échantillon.

L'identification de la présence de poissons est déterminée par la signature P, correspondant à la séquence SEQ N°239 ATAATAACCTCTTT, positions 14713 à 14726 (séquence de référence *Gadus morhua*; genbank n° accession X99772). Les bases ATA ou ATG (positions 14716-14717-14718) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les poissons. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe de poissons choisis. La présence de ces trois bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de poissons dans l'échantillon.

20

25

30

35

La présente invention concerne donc également une séquence nucléotidique caractérisée en ce qu'elle est choisie dans le groupe constitué par :

a) les séquences de référence SEQ ID Nos 235 à 239,

b) les séquences complémentaires à chacune des séquences SED ID Nos 235 à 239 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M avec l'une quelconque des séquences SEQ ID Nos 235 à 239,

matériel nucléique du groupe d'oiseaux choisis. La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence d'oiseaux dans l'échantillon.

L'identification de la présence de mammifères et d'oiseaux est 5 déterminée par la signature V, correspondant à la séquence SEQ Nº238 ATAGCCACAGCATT, positions 14883 à 14896 (séquence de référence Bos taurus genbank; no accession V00654). Les bases GC (en positions 14886 et 14887) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les oiseaux et les mammifères. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe d'oiseaux et mammifères choisis. La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de mammifères et d'oiseaux dans l'échantillon.

10

15

20

25

30

35

L'identification de la présence de poissons est déterminée par la signature Ρ, correspondant à la séquence SEQ N°239 ATAATAACCTCTTT, positions 14713 à 14726 (séquence de référence Gadus morhua; genbank no accession X99772). Les bases ATA ou ATG. (positions 14716-14717-14718) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les poissons. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe de poissons choisis. La présence de ces trois bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de poissons dans l'échantillon.

La présente invention concerne donc également une séquence nucléotidique caractérisée en ce qu'elle est choisie dans les groupes constitués par :

a) les séquences de référence SEQ ID Nos 235 à 239,

b) les séquences complémentaires à chacune des séquences SED ID Nos 235 à 239 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M avec l'une quelconque des séquences SEQ ID Nos 235 à 239, ou

c) les séquences homologues à chacune des séquences SEQ ID Nos 235 à 239 et des séquences selon b) respectivement l'homologie s'entendant de toute séquence, par exemple fragment, comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences ainsi qu'un groupe de deux ou trois nucléotides appartenant à une région conservée pour l'ensemble des espèces d'un groupe considéré, et ladite séquence présentant au moins 70% d'identité avec ladite quelconque séquence.

Elle concerne plus particulièrement les séquences nucléotidiques telles que définies ci-dessus et caractérisées en ce qu'elles sont constituées d'un groupe de 2 à 3 nucléotides compris dans l'une des séquences SEQ ID Nos 235 à 239 et correspondant à une région conservée pour l'ensemble des espèces d'un groupe considéré.

10

15

20

35

Elle concerne également l'utilisation des séquences définies précédemment, c'est à dire caractérisées en ce qu'elles sont constituées d'un groupe de 2 à 3 nucléotides compris dans l'une des séquences SEQ ID Nos 235 à 239 et correspondant à une région conservée pour l'ensemble des espèces d'un groupe considéré, pour la détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce animale appartenant au dit groupe d'espèces animales considéré.

Ces séquences dites séquences signatures sont choisies parmi
25 le groupe constitué par la séquence nucléotidique constituée des bases
CAA en positions 14689-14690-14691 de SEQ ID N°235, de la séquence
nucléotidique constituée des bases CT en positions 15076-15077 de SEQ
ID N°236, de la séquence nucléotidique constituée des bases CT en
positions 15101-15102 de SEQ ID N°237, de la séquence nucléotidique
30 constituée des bases GC en positions 14886-14887 de SEQ ID N°238, et
de la séquence nucléotidique constituée des bases ATA en positions
14713-14726 de SEQ ID N°239.

Elle concerne également un réactif pour la détermination d'au moins une espèce animale d'origine, comprenant un support solide, à l'état divisé ou non, sur lequel est fixée une séquence nucléotidique choisie parmi le groupe constitué par les séquences SEQ ID Nos 235 à 239.

c) les séquences homologues à chacune des séquences SEQ ID Nos 235 à 239 et des séquences selon b) respectivement l'homologie s'entendant de toute séquence, par exemple fragment, comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences ainsi qu'un groupe de deux ou trois nucléotides appartenant à une région conservée pour l'ensemble des espèces d'un groupe considéré, et ladite séquence présentant au moins 70% d'identité avec ladite quelconque séquence.

Elle concerne plus particulièrement les séquences nucléotidiques telles que définies ci-dessus et caractérisées en ce qu'elles sont constituées d'un groupe de 2 à 3 nucléotides compris dans l'une des séquences SEQ ID Nos 235 à 239 et correspondant à une région conservée pour l'ensemble des espèces d'un groupe considéré.

10

15

20

35

Elle concerne également l'utilisation des séquences définies précédemment, c'est à dire caractérisées en ce qu'elles sont constituées d'un groupe de 2 à 3 nucléotides compris dans l'une des séquences SEQ ID Nos 235 à 239 et correspondant à une région conservée pour l'ensemble des espèces d'un groupe considéré, pour la détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce animale appartenant au dit groupe d'espèces animales considéré.

Ces séquences dites séquences signatures sont choisies parmi 25 le groupe constitué par la séquence nucléotidique constituée des bases CAA en positions 14689-14690-14691 de SEQ ID N°235, de la séquence nucléotidique constituée des bases CT en positions 15076-15077 de SEQ ID N°236, de la séquence nucléotidique constituée des bases CT en positions 15101-15102 de SEQ ID N°237, de la séquence nucléotidique constituée des bases GC en positions 14886-14887 de SEQ ID N°238, et de la séquence nucléotidique constituée des bases ATA en positions 14716-14718 de SEQ ID N°239.

Elle concerne également un réactif pour la détermination d'au moins une espèce animale d'origine, comprenant un support solide, à l'état divisé ou non, sur lequel est fixée une séquence nucléotidique choisie parmi le groupe constitué par les séquences SEQ ID Nos 235 à 239.

Elle concerne également le procédé de détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce appartenant au dit groupe d'espèces animales considéré, caractérisé en ce que :

a) on dispose d'une fraction nucléique obtenue à partir dudit échantillon,

5

10

b) on dispose d'au moins un réactif comprenant une séquence selon la revendication 10,

c) on met en présence la fraction nucléique et ledit réactif, et d) par détection on détermine tout signal ou information résultant de la présence d'une des séquences signatures choisies parmi le groupe constitué par la séquence nucléotidique constituée des bases CAA en positions 14689-14690-14691 de SEQ ID N°235, de la séquence nucléotidique constituée des bases CT en positions 15076-15077 de SEQ ID Nº236, de la 15 séquence nucléotidique constituée des bases CT en positions 15101-15102 de SEQ ID N°237, de la séquence nucléotidique constituée des bases GC en positions 14886-14887 de SEQ ID N°238, et de la séquence nucléotidique constituée des bases positions 14713-14726 de SEQ ID 20 caractérisant la présence dans ledit échantillon d'une classe d'espèces animales d'origine.

Les séquences d'identification peuvent également être mises en œuvre comme amorces spécifiques dans des techniques d'identification par 25 PCR, par mélange de plusieurs amorces choisies parmi les séquences nucléotidiques spécifiques d'une espèce animale en présence d'autres espèces susceptibles d'être présentes dans les milieux à doser, et en ce que au moins une desdites amorces est choisie parmi le groupe constitué par les séquences SEQ ID Nos : 1 à 232, et toutes séquences comprenant 30 au moins 5 monomères contigus inclus dans l'une quelconque desdites séquences et présentant au moins 70% d'identité avec ladite quelconque séquence

L'invention concerne également les séquences nucléotidiques, choisies parmi le groupe constitué des séquences SEQ ID N° 240 à SEQ ID 35 N°241 et leur utilisation comme amorces d'amplification universelles, c'est Elle concerne également le procédé de détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce appartenant au dit groupe d'espèces animales considéré, caractérisé en ce que :

a) on dispose d'une fraction nucléique obtenue à partir dudit échantillon,

5

10

15

20

25

30

35

40

- b) on dispose d'au moins un réactif comprenant une séquence caractérisée en ce qu'elle est choisie dans les groupes constitués par :
 - 1) les séquences de référence SEQ ID Nos 235 à 239,
- 2) les séquences complémentaires à chacune des séquences SED ID Nos 235 à 239 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M avec l'une quelconque des séquences SEQ ID Nos 235 à 239, ou
 - 3) les séquences homologues à chacune des séquences SEQ ID Nos 235 à 239 et des séquences selon b) respectivement l'homologie s'entendant de toute séquence, par exemple fragment, comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences ainsi qu'un groupe de deux ou trois nucléotides appartenant à une région conservée pour l'ensemble des espèces d'un groupe considéré, et ladite séquence présentant au moins 70% d'identité avec ladite quelconque séquence.
 - c) on met en présence la fraction nucléique et ledit réactif, et
 - d) par détection on détermine tout signal ou information résultant de la présence d'une des séquences signatures choisies parmi le groupe constituée par la séquence nucléotidique constituée des bases CAA en positions 14689-14690-14691 de SEQ ID N°235, de la séquence nucléotidique constituée des bases CT en positions 15076-15077 de SEQ ID N°236, de la séquence nucléotidique constituée des bases CT en positions 15101-15102 de SEQ ID N°237, de la séquence nucléotidique constituée des bases GC en positions 14886-14887 de SEQ ID N°238, et de la séquence nucléotidique constituée des bases ATA en positions 14716-14718 de SEQ ID N°239, caractérisant la présence dans ledit échantillon d'une classe d'espèces animales d'origine.

Les séquences d'identification peuvent également être mises en œuvre comme amorces spécifiques dans des techniques d'identification par PCR, par mélange de plusieurs amorces choisies parmi les séquences nucléotidiques spécifiques d'une espèce animale en présence d'autres espèces susceptibles d'être présentes dans les milieux à doser, et en ce que au moins une desdites amorces est choisie parmi le groupe constitué par les séquences SEQ ID Nos: 1 à 232, et toutes séquences comprenant au moins 5 monomères contigus inclus dans l'une quelconque desdites séquences et présentant au moins 70% d'identité avec ladite quelconque séquence

L'invention concerne également les séquences nucléotidiques, choisies parmi le groupe constitué des séquences SEQ ID N° 240 à SEQ ID N° 241 et leur utilisation comme amorces d'amplification universelles, c'est

à dire utilisables pour la détection d'espèces en mélange et suffisamment sensibles vis à vis des différentes espèces pour éviter des résultats erronés dus au masquage de certaines espèces présentes en très faible proportion en raison de trop grande sensibilité vis à vis d'une autre espèce susceptible d'être présente dans un proportion plus importante.

Ces amorces sont utilisées pour la mise en œuvre des étapes d'amplification des procédés précédemment décrits, notamment lorsque les échantillons comprennent ou sont susceptibles de contenir du matériel biologique provenant d'espèces appartenant au groupe des vertébrés.

10

Les exemples suivants sont donnés à titre illustratif et n'ont aucun caractère limitatif. Ils permettront de mieux comprendre l'invention.

Exemple 1 : Détection d'une espèce animale dans un échantillon (tableau 1)

15

a) Préparation de l'échantillon

Des échantillons provenant de plusieurs espèces animales (mammifères, oiseaux, poissons) ont été utilisés dans cet exemple. Ces échantillons se répartissaient en plusieurs catégories :

20

25

30

35

des échantillons de référence (désignés sous le terme « ref » dans le tableau 1) :

ADN de référence de diverses espèces animales : ADN de mammifères (bœuf, chèvre, mouton, porc, lapin, lièvre, renne), ADN d'oiseaux (autruche, poulet, dinde, oie), ADN de poissons (cabillaud, thon albacore, thon listao, merlu, maquereau espagnol, thonine de l'Atlantique, truite arc-en-ciel, truite de mer, saumon de fontaine)

 des prélèvements tissulaires effectués au laboratoire selon un protocole classique : prélèvement buccal de chèvre, de chat ; souris

- des prélèvements alimentaires, dont la composition exacte et l'origine sont connues : blanquette de veau, bœuf Bourguignon, langue de veau en sauce, rôti d'agneau, rôti de porc, cuisse de poulet,

- des échantillons commerciaux (désignés sous le terme « comm » dans le tableau 1), obtenus en grande distribution à base de boeuf (foie de veau, beefsteack, côte de veau, vache à lait, rôti de veau, Parmentier, Bolognaise), de porc (jambon, saucisson, saucisse, porc à la chinoise), d'oiseau (steack d'autruche, poulet rôti, pintade rôti, cuisse de

dinde, oie rôtie), de poisson (anguille d'Europe, filet de morue salée, thon albacore en boite, thon listao en boite, filet de saumon atlantique, maquereau commun, truite arc-en-ciel, omble chevalier).

Tous les échantillons sont numérotés (E1 à E57), et cette numérotation a été conservée dans les 5 exemples illustrant l'invention.

Chaque échantillon est placé dans un sac type baglight® (Intersciences) puis malaxé jusqu'à homogénéisation dans un malaxeur type BagMixer® (Intersciences).

10

5

b) Lyse de 25 mg d'échantillon et purification des ADN totaux La lyse de l'échantillon et la purification des acides nucléiques est réalisée par l'utilisation du Dneasy ™ Tissue Nécessaire (Qiagen, ref 69504) en appliquant le protocole préconisé par Qiagen pour l'extraction et la purification des acides nucléiques de tissus animaux.

15

20

25

c) PCR

Une PCR est réalisée en utilisant le nécessaire Ampli Taq gold de Applied Biosystems suivant le protocole ci dessous. On ajoute à 2µl de la suspension d'ADN total le tampon 10X gold buffer, 3,5mM de Mgcl2, 100µM de dNTPs (deoxyribonucleosides triphosphates), 2U de Taq gold polymérase, 0,4µM des amorces euvertébrés telles que décrites par Bartlett et al en 1992 (Biotechniques vol12n°3 p408.412) :

SEQ ID N°233: 5' CCATCCAACA TCTCAGCATG ATGAAA 3' (séquence CDL)

SEQ ID N°234: 5' GAAATTAATA CGACTCACTA TAGGGAGACC ACACCCCTCA GAATGATATT TGTCCTCA3' (séquence CBHT7, en gras : promoteur de la polymérase T7), afin d'obtenir 50µl de volume réactionnel final.

- 30

Un premier cycle de PCR de 10 minutes est réalisé à 95°C suivi de 35 cycles composés chacun des 3 étapes suivantes : 94°C pendant 45 secondes, 50°C pendant 45 secondes, 72°C pendant 2 minutes. Une extension finale de 5 minutes à 72°C est ensuite réalisée.

d) Vérification de l'amplification

10

15

25

30

Afin de vérifier l'amplification, 5μ l de produit d'amplification (ou amplicon) sont déposés sur un gel d'agarose 1,5% dans un tampon EDTA-Tris Borate. Après une migration de 20 minutes à 100 Volts, la bande d'amplification est visualisée par coloration au Bromure d'Ethidium et par illumination aux Ultra Violets. L'amplification est positive comme le démontre la présence d'une bande ayant la taille attendue (350 paires de bases).

e) Identification de l'amplicon sur une puce à ADN (Affymetrix, Santa Clara)

Une biopuce est synthétisée sur un support solide en verre selon le procédé décrit dans le brevet US 5,744,305 (Affymetrix, Fodor et al) en utilisant la stratégie de reséquençage décrite dans la demande WO 95/11995 (Affymax, Chee et al) et selon la méthode décrite par A. Troesch et al. (J. Clin. Microbiol., 37(1): 49-55, 1999).

Chaque séquence d'identification comporte 17 bases, avec une position d'interrogation en 10ème position par rapport à l'extrémité 3' de la séquence.

20 L'analyse est effectuée avec le système complet GeneChip® (référence 900228, Affymetrix, Santa Clara, CA) qui comprend le lecteur GeneArray®, la station fluidique GeneChip® et le logiciel d'analyse GeneChip®.

e. 1. Transcription et marquage des amplicons

Grâce à l'amorce antisens CBHT7, tous les produits d'amplification présentent un promoteur pour la RNA polymérase T7. Ces amplicons vont alors servir de matrice à une réaction de transcription au cours de laquelle sera incorporé un ribonucléotide fluorescent.

A partir des 50μ l de produit d'amplification positif, un aliquot de 2μ l est prélevé et ajouté à un mélange de transcription contenant les composants du nécessaire Megascript T7 (Ambion, ref. 1334) et de fluorescein-12-UTP (Roche, ref. 1427857). Le mélange réactionnel final se fait dans 20μ l et la réaction de transcription s'effectue pendant 2 heures à 37° C.

e. 2. Fragmentation des transcripts marqués

Afin d'améliorer les conditions d'hybridation, les transcripts marqués sont fragmentés en fragments d'environ 20 nucléotides. Pour cela, les 20µl de transcripts marqués sont soumis à l'action de l'imidazole (Sigma) 30mM et du chlorure de manganèse (Merck) 30mM pendant 30 minutes à 65°C.

e. 3. Hybridation sur la puce à ADN

A partir des 20μ l de transcripts marqués et fragmentés, un aliquot de 7μ l est prélevé et ajouté à 700μ l de tampon d'hybridation (SSPE 6X (Eurobio), DTAB 5mM (Sigma), Bétaine 3M (Acros), antifoam 0,01% (ref A80082, Sigma), et 250 μ g/ml d'ADN de sperme de hareng (Gibco). Ce mélange est hybridé sur la puce dans les conditions suivantes: 30 minutes à 40° C. Après lavage, la puce est scannée, puis l'image d'hybridation obtenue est analysée par le logiciel GeneChip® (Affymetrix, Santa Clara, CA).

Les spots d'hybridation permettent de reconstituer la séquence de l'amplicon, qui est ensuite comparée aux séquences de références de la puce. La séquence (et donc l'espèce qui lui correspond) qui présente le meilleur pourcentage d'homologie (appelé aussi « base-call », exprimé en %) avec la séquence de l'amplicon est retenue pour l'identification.

e.4. Interprétation des résultats.

Seule une partie de la séquence de 350 bases est analysée pour chaque espèce. Elle correspond à tout ou partie des sondes d'identification. Le seuil d'interprétation, c'est à dire le niveau d'identification est fixé à 90% de base-call sur la séquence signature. En dessous de ce seuil, la cible, et donc l'espèce correspondante n'est pas considérée comme identifiée.

f) Résultat

10

15

20

30

L'ADN extrait de l'échantillon alimentaire donne lieu à un produit d'amplification, puis à une identification sur la puce. Comme présenté dans le tableau 1, les échantillons de référence sont correctement analysés par cette technique, qui permet également la détection d'espèce animale (mammifère, oiseau, poisson) dans des échantillons commerciaux.

Tableau 1 : détection d'une espèce animale dans un échantillon

Espèce animale	N:	iture de l'échantillon	% have call	Identification
Espece amusic			Séquence signature	sur puce
Boyl (Bos taurus)	ref E1: ADN bouf		Bos taurus 100%	boeuf
Been (not maras)	···	E2: Bourguignon	Bos taurus 100%	boeuf
		E3: langue de veau	Bos taurus 100%	boeuf
	T	E4: blanquette de veau	Bos taurus 100%	boeuf
i -	comm	E5: côte de veau	Bos taurus 95%	boeuf
	· -	E6: vache à lait	Bos taurus 100%	bocuf
1		E7: rôti de veau	Bos taurus 100%	boeuf
1	-	F8: parmentier	Bos taurus 100%	boeuf
	-	E9: bolognaise	Bos taurus 100%	boeuf
<u> </u>	- E	E10: beefsteack	Bos taurus 100%	bocuf
	F	Ell: foic de veau	Bos taurus 100%	boeuf
	ref	E12: ADN chèvre	Capra hircus 100%	chèvre
Chèvre (Capra hircus)	161	E13: Prélèvement buccal	Capra hircus 100%	chevre
	ref	E14: ADN mouton	Ovis aries 95,5%	mouton
Mouton (Oris aries)	rei -	E15: rôti d'agneau	Ovis aries 100%	mouton
	ref	E16: ADN pare	Sus scrofa 100%	porc
Porc (Sus scrofa)	rei	E17: rôti de porc	Sus scrofa 100%	porc
<u>L</u>			Sus scrofa 100%	ротс
	comm	E18: jambon	Sus scrola 100%	porc
i		F.19: saucisson	Sus scrofa 100%	porc
	<u> </u>	E20: saucisse	Sus scrofa 100%	porc
		E21: porc à la chinoise	Oryctolagus enniculus 100%	lapin
Lapin (Oryctologus canteulus)	ref	E22: ADN lapin		lievre
Lièvre (Lepus cuniculus)	ref	E22: ADN lièvre	Lepus cuniculus 100%	Renne
Renne (Rangifer tarandus)	ref	E23: ADN renne	Rangifer tarandus 100%	souris
Souris (Mus musculus)	ref	E24: souris	Mus musculus 100%	
Chat (Felis catus)	ref	E25: Prélèvement buccal	Felis catus 100%	chat
Autruche (Struthio camelus)	ref	E26: ADN autruche	Struthio camelus 100%	Autruche
Attituene (Strainte entressin)	comm	E27: steack d'autruche	Struthio camelus 100%	Autruche
Poulet (Gallus gallus)	ref	E28: ADN poulet	Gallus gallus 100%	poulet
runici (cantaz garcas)	··· t	E29: cuisse de poulet	Gallus gallus 94.7%	poulet
1	comm	E30: poulet rôti	Gallus gallus 100%	poulet
51 1 1 N / I was a second	comm	E31: Pintade rôtie	Numida meleagris 100%	Pintade
Pintade (Numida meleagris)	ref	E32: ADN dinde	Meleagris gallopovo 100%	dinde
Dinde (Melvagris gallopovo)	161	E33: rôti de dinde	Meleagris gallopovo 100%	dinde
	comm	E34: cuisses de dinde	Meleagris gallopovo 100%	dinde
	ref	E35: ADN oie	Anser anser 100%	oie
Oie (Anser anser)		E36: oie rôtic	Anser auser 100%	oie
	comm	E37: poisson entier	Auguilla auguilla 100%	Anguille d'Europe
Anguille d'Europe (Anguilla anguilla)	comm		Gadus morhua 100%	Cabilland
Cabilland (Gadus morhua)	ref	E38: ADN cabillaud	Gadus morhua 100%	Cabilland
	comm	E39: filet de monte salec	Thunnus 100%	thon
Thon albacore (Thunnus albacares)	ref	E40: ADN thon albacore	Thunnus 100%	thou
	comm	E41: thon albacore en boite	Thunnus 94.7%	thon
Thon listao (Katsuwonis pelamis)	ref	E42: ADN than listae		thon
· · · · · · · · · · · · · · · · · · ·	comm	E43: thon listae en boite	Thumus 94,7%	sanmon d'atlantique
Saumon d'atlantique (Salmo salar)	comm	E44: filet de saumon d'atlantique	Salmo salar 100%	Merlu
Merlu (Merluccius merluccius)	ref	E45: ADN merlu	Merluccius 94,4%	Maquereau espagn
Maquereau espagnol (Scomber japonicus)	ref	E46: ADN maquereau espagnol	Scomber japonicus 100%	
Maquereau commun (Scomber scombrus)	comm	E47: poisson entier	Scomber scombrus 100%	Maquereau commu
Chonine de l'atlantique (Euthynnus alleteratus)	ref	E48: ADN thonine utlantique	Euthynnus alleteratus 100%	Thonine de l'atlantic
Truite are en ciel (Oncorhyncus mykiss)	ref	E49: ADN truite are en ciel	Oncorhyncus mykiss 100%	Truite arc en ciel
time are en eier francerit name mitmas	comm	E50: poisson entier	Oncorhyncus mykiss 100%	Truite are en ciel
Truite de mer (Salmo trutta fario)	ref	E51: ADN truite de mer	Salmo trutta fario 100%	Truite de mer
Saumon de fontaine (Salvenius foutinalis)	ref	E52: ADN saumon de fontaine	Salvenius fontinalis 100%	Saumon de fontair
Saumon de ioniaine (Suirentus (Vutinutis)		E53: poisson cutier	Salvenius alpinus 100%	Omble chevalier

Exemple 2 : Détection de plusieurs d'espèces animales dans un échantillon (tableau 2)

Les conditions expérimentales concernant la préparation des échantillons, la lyse des échantillons et la purification des ADN totaux, la PCR, la vérification de l'amplification et l'identification de l'amplicon sur une puce à ADN (Affymetrix, Santa Clara) sont identiques à ce qui est décrit dans l'exemple 1.

5

10

15

20

Dans cet exemple, plusieurs espèces animales sont simultanément analysées à partir d'un même échantillon. L'analyse est réalisée sur :

des échantillons de référence (désignés « ref », comme dans l'exemple 1) constitués par :

un mélange d'ADN provenant de deux espèces d'animaux différentes, en proportion 50% de chacune des 2 espèces

un mélange d'amplicons (obtenus selon le protocole de l'exemple 1), en proportion 80% d'amplicons de bœuf et 20% d'amplicons de dinde ; 50% d'amplicons de bœuf et 50% d'amplicons de dinde ; 20% d'amplicons de bœuf et 80% d'amplicons de dinde,

des échantillons commerciaux (désignés « comm », comme dans l'exemple 1), issus de la grande distribution, comprenant plusieurs espèces animales dans un même échantillon.

Comme présentés dans le tableau 2, ces résultats montrent que des mélanges d'espèces peuvent être détectées simultanément dans un même échantillon, que cet échantillon soit constitué d'un mélange d'ADN, d'un mélange d'amplicons ou d'un échantillon commercial comprenant plusieurs espèces.

Tableau 2 : détection de plusieurs espèces animales dans un échantillon

Nature de l'échantillon		Composition	% base call	Identification
			Séquence signature	sur puce
Ref	Mélange ADN	50% porc (E16)	S. scrofa 94,7%	porc
		50 %lapin (E22)	O. cuniculus 100%	lapin
		50% poulet	G. gallus 100%	poulet
		(E28)		
1		50% dinde (E32)	M. gallopovo 100%	dinde
		50% bœuf (E1)	B. taurus 100%	boeuf
		50% dinde (E32)	M. gallopovo 100%	dinde
	Mélange amplicons	80% bœuf	B. taurus 100%	boeuf
		20% dinde	M. gallopovo 94,1%	dinde
		50% bœuf	B. taurus 100%	boeuf
		50% dinde	M. gallopovo 100%	dinde
		20 % bœuf	B. taurus 100%	boeuf
		80 % dinde	M. gallopovo 100%	dinde
Comm E54	E54 : Pâté	porc	S. scrofa 100%	porc
		volaille	M. gallopovo 94,1%	dinde
	E55 : boudin blanc	porc	S. scrofa 100%	porc
		volaille	M. gallopovo 94,1%	dinde

5

15

Exemple 3: Détection d'une ou plusieurs espèces animales dans les farines destinées à l'alimentation animale.

a) Préparation de l'échantillon

Les conditions expérimentales concernant la préparation des échantillons sont similaires à ce qui est décrit dans l'exemple 1. Les échantillons sont issus de farines destinées à l'alimentation animale. Ces échantillons (numérotés de F1 à F17) ont été préalablement répertoriés selon 4 catégories, après analyse de la présence de fragments d'os telle

que décrite par Michard (Revue de l'Alimentation animale, vol. 508, pp 43-

48, 1997 ; technique de référence).

On distingue alors des échantillons « négatifs » lorsque le nombre de fragments d'os est inférieurs à 20, des échantillons « traces » lorsqu'il y a plus de 20 fragments d'os mais une proportion en os présents dans l'échantillon, inférieure à 0,01%, des échantillons « à suivre » lorsque la proportion est comprise entre 0,01% et $1^{\circ}/_{00}$, et les échantillons « positifs » lorsque la proportion est supérieure à $1^{\circ}/_{00}$.

b) Lyse de l'échantillon et purification des ADN totaux

Pour la lyse de l'échantillon et la purification des acides nucléiques, on utilise le Dneasy TM Tissue Nécessaire (Qiagen, ref 69504) tel que décrit dans l'exemple 1, à partir de 25 mg de farine. Une adaptation de la technique est réalisée afin d'éliminer les inhibiteurs de la PCR. En effet, ces inhibiteurs (polyphénols, cations (Ca²⁺,Fe³⁺), traces de métaux lourds, tanins, carbohydrates, sels (NaCl, nitrites)) sont en quantité importante dans les végétaux, et de ce fait dans les farines destinées à l'alimentation animale. Cette adaptation est la suivante :

- 1- Après la lyse avec le tampon ATL et la protéinase K, du chelex est ajouté lors de l'étape de purification de l'ADN (200μ l de lnstaGeneTM Matrix (BIO-RAD, ref 732-6030).
- 2- Après incubation de 30 minutes à 56°C, une centrifugation (5 minutes ; 14000 tours/minutes) est réalisée, et l'extraction est réalisée telle que décrite dans le manuel DneasyTM Tissue Nécessaire de Qiagen.

c) PCR

15

20

25

30

On effectue une PCR en utilisant le nécessaire Ampli Taq gold de Applied Biosystems. On ajoute à 10μ l de la suspension d'ADN total extrait de farines le tampon 10X gold buffer, 3,5mM de MgCl₂, 100 μ M de dNTPs (déoxyribonucleosides triphosphates), 2U de Taq gold polymérase, 0,4 μ M des amorces euvertébrés CBL et CBHT7 telles que définies dans l'exemple 1 afin d'obtenir 50μ l de volume réactionnel final. On réalise un premier cycle de 10 minutes à 95°C de PCR puis 35 cycles composés chacun des 3 étapes suivantes : 94°C 45 sec, 50°C 45 sec, 72°C 2 minutes. Une extension finale de 5 minutes à 72°C est ensuite réalisée.

d) Vérification de l'amplification

La vérification de l'amplification est réalisée comme décrit dans l'exemple 1.

e) Identification de l'amplicon sur une puce à ADN (Affymetrix, Santa Clara).

Cette étape d'identification est réalisée telle que décrite dans l'exemple 1.

f) Résultat

Les résultats obtenus sont présentés dans le tableau 3, et comparés aux résultats obtenus par le protocole classique de l'art antérieur. Il y parfaite concordance entre les 2 techniques, mais avec, en plus, l'indication de l'espèce dans le cas de l'invention. L'invention permet de détecter la présence d'une ou plusieurs espèces animales dans des échantillons de farines destinées à l'alimentation animale.

Tableau 3 : détection d'une ou plusieurs espèces animales dans les farines destinées à l'alimentation animale.

	Protocole clas	sique	Protocole selon l'invention
	Catégorie	Fragments os	
F1	Négatif	< 20 fragments	Aucune espèce détectée
F2	Négatif	< 20 fragments	Aucune espèce détectée
F3	Négatif	< 20 fragments	Aucune espèce détectée
F4	Négatif	< 20 fragments	Aucune espèce détectée
F5	Traces	< 0,01%	Aucune espèce détectée
F6	Traces	< 0,01%	Aucune espèce détectée
F7	Traces	<0,01%	Porc
F8	Traces	<0,01%	Aucune espèce détectée
F9	Traces	<0,01%	Porc, Souris, Bœuf,
F10	A suivre	0,05%	Porc, Bœuf
F11	A suivre	0,03%	Porc, Bœuf
F12	A suivre	0,02%	Porc, Rat, Bœuf
F13	A suivre	0,01%	Porc
F14	Positif	0,23%	Porc, Bœuf
F15	Positif	0,23%	Bœuf, Porc
F16	Positif	4,70%	Bœuf, Porc, Souris, Dinde
F17	Positif	3,50%	Bœuf, Souris, Porc, Poulet

15

Exemple 4 : détection de la classe des d'espèces contenues dans un échantillon (tableau 4)

L'objectif de cet exemple est d'obtenir une technique permettant de détecter la classe de vertébrés (mammifères, oiseaux, poissons...) de l'animal d'origine de l'ingrédient contenu dans un échantillon alimentaire ou un échantillon de farine destinée à l'alimentation animale.

10

15

20

25

30

35

Les conditions expérimentales concernant a) la préparation de l'échantillon, b) la lyse de l'échantillon et la purification des ADN totaux, c) la PCR, d) la vérification de l'amplification et e) l'identification de l'amplicon sur une puce à ADN (Affymetrix, Santa Clara) sont similaires à ce qui est décrit dans l'exemple 1 et 3.

L'identification de la présence de mammifère et/ou d'oiseaux est déterminée par la présence de signatures spécifiques à chaque classe.

Par exemple, pour la détection de la présence de mammifères on utilisera la séquence signature M, correspondant à la séquence SEQ N°235 GACACAACAA CAGC, positions 14685 à 14698 (séquence de référence Bos taurus genbank; n° accession V00654). Les bases CAA en positions 14689-14690-14691 (séquence de référence Bos taurus genbank; n° accession V00654) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les mammifères. On observe au plus 5 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe de mammifères choisis. La présence de ces trois bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de mammifères dans l'échantillon.

L'identification de la présence d'oiseaux est déterminée par les signatures :

O1, correspondant à la séquence SEQ N°236 TCCCTAGCCT TCTC, positions 15073 à 15086 (séquence de référence *Gallus gallus*; genbank n° accession X52392). Les bases CT (positions 15076-15077) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les oiseaux. On observe au plus 5 positions mutées pour le reste de la

signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe d'oiseaux choisis. La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence d'oiseaux dans l'échantillon.

O2, correspondant à la séquence SEQ N°237 ACACTTGCCG GAAC, positions 15098 à 15111 (séquence de référence Gallus gallus; genbank n° accession X52392). Les bases CT ou CA (positions 15101 - 15102) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les oiseaux. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe d'oiseaux choisis. La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence d'oiseaux dans l'échantillon.

L'identification de la présence de mammifères et d'oiseaux est déterminée par la signature V, correspondant à la séquence SEQ N°238 ATAGCCACAGCATT, positions 14883 à 14896 (séquence de référence Bos taurus genbank; n° accession V00654). Les bases GC (en positions 14886 et 14887) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici lesmammifères et les oiseaux. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe de mammifères et d'oiseaux choisis La présence de ces deux bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de mammifères et d'oiseaux dans l'échantillon.

L'identification de la présence de poissons est déterminée par la signature P, correspondant à la séquence SEQ N°239 ATAATAACCTCTTT, positions 14713 à 14726 (séquence de référence *Gadus morhua*; genbank n° accession X99772). Les bases ATA ou ATG (positions 14716-14717-14718) sont conservées pour l'ensemble du matériel nucléique correspondant aux espèces prédéfinies constituant le groupe que l'on veut rechercher, ici les poissons. On observe au plus 4 positions mutées pour le reste de la signature citée pour l'ensemble des séquences constituant le matériel nucléique du groupe poissons choisis La présence de ces trois

bases aux positions indiquées ci dessus permet ainsi de déterminer la présence de poissons dans l'échantillon.

Comme présenté dans le tableau 4, cette technique permet de détecter la présence de mammifères et/ou d'oiseaux et/ou de poissons, que ces espèces soient présentes isolément ou en mélange.

Tableau 4 : détection de classe d'espèces dans un échantillon

		· · · · · · · · · · · · · · · · · · ·
Echantillons	Signatures	interprétation
1	détectées	·
E1 : ADN bœuf	V et M	mammifère
E16: ADN porc	V et M	mammifère
E17 : rôti de porc	V et M	mammifère
E12 : ADN chèvre	V et M	mammifère
E13 : chèvre prélèvement	V et M	mammifère
buccal		
E35 : ADN oie	V et O1 et O2	oiseau
E49: ADN truite arc en	Р	poisson
ciel		
E51 : ADN truite de mer	Р	poisson
Mélange amplicons boeuf	V et M et O1 et	mammifère /
/ dinde	02	oiseau
E15 : rôti d'agneau	V et M	mammifère
F9 : farine « trace »	V et M	mammifère
F1 : farine « négatif »	Pas de	pas
	signatures	d'identification
	positive	
farine	Р	poisson

Exemple 5 : amorces universelles d'amplification des vertébrés (tableau 5a et 5b)

L'objectif des expériences présentées dans cet exemple est d'obtenir des amorces encore plus sensibles que celles décrites dans les exemples précédents, et plus universelles pour la détection des espèces en mélanges. En effet, les amorces utilisées dans les exemples 1 à 4 sont très sensibles vis à vis du bœuf, ce qui peut masquer parfois la présence d'autres espèces lorsque elles sont présentes en très faible proportion.

5

10

15

20

25

Les amorces utilisées dans cet exemple sont les suivantes : SEQ ID N°240: 5' GACCTCCCAG CCCCATCAAA 3' (séquence CBL 20)

SEQ ID N°241: 5' GAAATTAATA CGACTCACTA TAGGGAGACC ACACAGAATG ATATTTGTCC TCA 3' (séquence CBHT7 20, avec en gras, la localisation du promoteur de la polymérase T7).

La technique utilisée pour obtenir l'identification sur la puce est telle que décrite dans l'exemple 1a, 1b,1c (avec les amorces modifiées), 1d, 1e.

Comme présenté dans le tableau 5a, l'utilisation de ces nouvelles amorces permettent d'obtenir, chez la dinde, un seuil de détection de l'ordre de 1% par comparaison avec les amorces des exemples 1 à 4 où le seuil de détection était de l'ordre de 10%. L'utilisation de ces nouvelles amorces permettent également, dans des échantillons commerciaux, provenant de la grande distribution, l'identification d'espèces animales, notamment le mouton, présentes à l'état de trace, qui étaient masquées par la présence de bœuf dans les exemples précédents (tableau 5b).

Tableau 5 a : seuil de détection de la dinde en mélange avec du boeuf

		Détection	sur puce: % b	ase call	
% ADN		Amorces e	Amorces ex 1 à 4		ex 5
E1 : bœuf	E32 : dinde	bœuf	dinde	bœuf	dinde
100	0	100	5,9	100	29,4
99,9	0,1	100	17,6	100	41,2
99	1	100	76,5	100	94,1
90	10	100	100	100	100
50	50	100	100	100	100
1	99	100	100	90	100
0,1	99,9	100	100	60	100
0	100	50	94,1	26,9	100
Seuil de détection		0,10%	10%	1%	1%

Tableau 5b : détection du mouton en mélange avec d'autres espèces

Produits commerciaux	composition indiquée	détection sur puce : espèces détectées	
		amorces ex 1 à 4	amorces ex 5
E56 : Kebab Burger	Pain, viande hachée précuite (mouton, bœuf), sauce	Bœuf,	Bœuf Mouton
E57 : Boulette couscous	Bœuf, mouton, végétaux	Bœuf	Bœuf Mouton

REVENDICATIONS

- 1. Procédé de détermination d'une espèce animale d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce, caractérisé en ce que :
- a) on dispose d'une fraction nucléique obtenue à partir dudit échantillon,
- b) on dispose d'au moins un réactif spécifique à l'espèce animale, choisi dans le groupe constitué par

- les séquences de référence SEQ ID Nos 1 à 232,

- les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M, avec l'une quelconque des séquences SEQ ID Nos 1 à 232,

- les séquences homologues à chacune des séquences SEQ ID Nos 1 à 232 et des séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences, et présentant au moins 70% d'identité avec ladite quelconque séquence.

c) on met en présence la fraction nucléique et ledit réactif, et

d) par détection on détermine tout signal ou information résultant de la réaction spécifique entre ledit réactif et la fraction nucléique, caractérisant la présence dans ledit échantillon de ladite espèce animale d'origine.

2. Procédé selon la revendication 1, caractérisé en ce qu'on dispose d'un ensemble comprenant une multiplicité desdits réactifs spécifiques à une même espèce d'origine et/ou à des espèces animales d'origine respectivement différentes ; et on détermine une multiplicité de signaux ou informations caractérisant la présence dans ledit échantillon

25

5

15

20

30

REVENDICATIONS

- 1. Procédé de détermination d'une espèce animale d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce, caractérisé en ce que :
- a) on dispose d'une fraction nucléique obtenue à partir dudit échantillon.
- b) on dispose d'au moins un réactif spécifique à l'espèce animale, consistant en au moins une séquence choisie dans les groupes 10 constitués par
 - les séquences de référence SEQ ID Nos 1 à 232,
 - les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M, avec l'une quelconque des séquences SEQ ID Nos 1 à 232, ou
 - les séquences homologues à chacune des séquences SEQ, ID Nos 1 à 232 et des séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences, et présentant au moins 70% d'identité avec ladite quelconque séquence.
 - c) on met en présence la fraction nucléique et ledit réactif, et d) par détection on détermine tout signal ou information résultant de la réaction spécifique entre ledit réactif et la fraction nucléique, caractérisant la présence dans ledit échantillon de ladite espèce animale d'origine.
- Procédé selon la revendication 1, caractérisé en ce qu'on dispose d'un ensemble comprenant une multiplicité desdits réactifs spécifiques à une même espèce d'origine et/ou à des espèces animales d'origine respectivement différentes ; et on détermine une multiplicité de signaux ou informations caractérisant la présence dans ledit échantillon

20

15

_ .

25

d'une même espèce animale d'origine et/ou de plusieurs espèces animales d'origine respectivement différentes.

- 3. Séquence nucléotidique caractérisée en ce qu'elle est choisie dans le groupe constitué par :
 - a) les séquences de référence SEQ ID Nos 1 à 232,

5

10

15

20

25

- b) les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M, avec l'une quelconque des séquences SEQ ID Nos 1 à 232,
- c) les séquences homologues à chacune des séquences SEQ ID Nos 1 à 232 et des séquences selon b) respectivement, l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences et présentant au moins 70% d'identité avec ladite quelconque séquence.
- 4. Utilisation d'une séquence selon la revendication 3, pour la détermination d'au moins une espèce animale d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce animale.
- 5. Sonde pour la détermination d'au moins une espèce animale d'origine, comprenant au moins une séquence nucléotidique d'identification selon la revendication 3.
 - 6. Amorce pour l'amplification spécifique d'un acide nucléique d'une espèce animale d'origine, comprenant au moins une séquence nucléotidique d'identification selon la revendication 3.
 - 7. Réactif pour la détermination d'au moins une espèce animale d'origine, comprenant un support solide, à l'état divisé ou non, sur lequel est fixée une séquence nucléotidique selon la revendication 3.
- 35 8. Biopuce comprenant un support solide comportant une surface développée, sur laquelle est disposée et fixée une multiplicité de

d'une même espèce animale d'origine et/ou de plusieurs espèces animales d'origine respectivement différentes.

- 3. Séquence nucléotidique caractérisée en ce qu'elle est choisie dans les groupes constitués par :
 - a) les séquences de référence SEQ ID Nos 1 à 232,
 - b) les séquences complémentaires à chacune des séquences SED ID Nos 1 à 232 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M, avec l'une quelconque des séquences SEQ ID Nos 1 à 232, ou
 - c) les séquences homologues à chacune des séquences SEQ ID Nos 1 à 232 et des séquences selon b) respectivement, l'homologie s'entendant de toute séquence, par exemple fragment comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences et présentant au moins 70% d'identité avec ladite quelconque séquence.
- 4. Utilisation d'une séquence selon la revendication 3, pour la détermination d'au moins une espèce animale d'origine dans une échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins ladite espèce animale.
- 5. Sonde pour la détermination d'au moins une espèce animale d'origine, comprenant au moins une séquence nucléotidique d'identification selon la revendication 3.
- 6. Amorce pour l'amplification spécifique d'un acide nucléique d'une espèce animale d'origine, comprenant au moins une séquence nucléotidique d'identification selon la revendication 3.
- 7. Réactif pour la détermination d'au moins une espèce animale d'origine, comprenant un support solide, à l'état divisé ou non, sur lequel est fixée une séquence nucléotidique selon la revendication 3.
- 35 8. Biopuce comprenant un support solide comportant une surface développée, sur laquelle est disposée et fixée une multiplicité de

10

5

15

20

25

séquences nucléotidiques selon la revendication 3, et ceci selon un arrangement prédéterminé.

- 9. Procédé selon la revendication 2, caractérisé en ce qu'on détermine la multiplicité de signaux ou informations avec une biopuce selon la revendication 8.
 - 10. Séquence nucléotidique caractérisée en ce qu'elle est choisie dans le groupe constitué par :
 - a) les séquences de référence SEQ ID Nos 235 à 239,

10

15

- b) les séquences complémentaires à chacune des séquences SED ID Nos 235 à 239 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M avec l'une quelconque des séquences SEQ ID Nos 235 à 239,
- c) les séquences homologues à chacune des séquences SEQ ID Nos 235 à 239 et des séquences selon b) respectivement l'homologie s'entendant de toute séquence, par exemple fragment, comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences ainsi qu'un groupe de deux ou trois nucléotides appartenant à une région conservée pour l'ensemble des espèces d'un groupe considéré, et ladite séquence présentant au moins 70% d'identité avec ladite quelconque séquence.
- 11. Séquence nucléotidique caractérisée en ce qu'elle est constituée d'un groupe de 2 à 3 nucléotides compris dans l'une des séquences selon la revendication 10 et correspondant à une région conservée pour l'ensemble des espèces d'un groupe considéré.
- 30 12. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases CAA en positions 14689-14690-14691 de SEQ ID N°235.
- 13. Séquence nucléotidique selon la revendication 11,
 35 caractérisée en ce qu'elle est constituée des bases CT en positions 15076-15077 de SEQ ID N°236.

séquences nucléotidiques selon la revendication 3, et ceci selon un arrangement prédéterminé.

- 9. Procédé selon la revendication 2, caractérisé en ce qu'on détermine la multiplicité de signaux ou informations avec une biopuce selon la revendication 8.
 - 10. Séquence nucléotidique caractérisée en ce qu'elle est choisie dans les groupes constitués par :
 - a) les séquences de référence SEQ ID Nos 235 à 239,

10

- b) les séquences complémentaires à chacune des séquences SED ID Nos 235 à 239 respectivement, la complémentarité s'entendant de toute séquence susceptible de s'hybrider à une température comprise entre 20 et 70°C en solution saline à une concentration d'environ 0,5 à 1M avec l'une quelconque des séquences SEQ ID Nos 235 à 239, ou
- c) les séquences homologues à chacune des séquences SEQ ID Nos 235 à 239 et des séquences selon b) respectivement l'homologie s'entendant de toute séquence, par exemple fragment, comprenant une suite d'au moins 5 nucléotides contigus inclus dans l'une quelconque desdites séquences ainsi qu'un groupe de deux ou trois nucléotides appartenant à une région conservée pour l'ensemble des espèces d'un groupe considéré, et ladite séquence présentant au moins 70% d'identité avec ladite quelconque séquence.
- 25 11. Séquence nucléotidique caractérisée en ce qu'elle est constituée d'un groupe de 2 à 3 nucléotides compris dans l'une des séquences selon la revendication 10 et correspondant à une région conservée pour l'ensemble des espèces d'un groupe considéré.
- 30 12. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases CAA en positions 14689-14690-14691 de SEQ ID N°235.
- 13. Séquence nucléotidique selon la revendication 11,
 35 caractérisée en ce qu'elle est constituée des bases CT en positions 15076-15077 de SEQ ID N°236.

- 14. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases CT en positions 15101-15102 de SEQ ID N°237.
- 15. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases GC en positions 14886-14887 de SEQ ID N°238.

5

30

- 16. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases ATA en positions 14713-14726 de SEQ ID N°239.
- 17 Réactif pour la détermination d'au moins une espèce 15 animale d'origine, comprenant un support solide, à l'état divisé ou non, sur lequel est fixée une séquence nucléotidique selon la revendication 10.
- 18. Procédé de détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce appartenant au dit groupe d'espèces animales considéré, caractérisé en ce que :
 - a) on dispose d'une fraction nucléique obtenue à partir dudit échantillon,
- b) on dispose d'au moins un réactif comprenant une séquence 25 selon la revendication 10,
 - c) on met en présence la fraction nucléique et ledit réactif, et d) par détection on détermine tout signal ou information résultant de la présence d'une des séquences selon l'une quelconque des revendications 11 à 16, caractérisant la présence dans ledit échantillon d'un groupe d'espèces animales d'origine.
 - 19. Utilisation des séquences définies dans l'une quelconque des revendications 12 à 16, pour la détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce animale appartenant au dit groupe d'espèces animales considéré.

14. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases CT en positions 15101-15102 de SEQ ID N°237.

5

20

- 15. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases GC en positions 14886-14887 de SEQ ID N°238.
- 16. Séquence nucléotidique selon la revendication 11, caractérisée en ce qu'elle est constituée des bases ATA en positions 14716-14718 de SEQ ID N°239.
- 17 Réactif pour la détermination d'au moins une espèce 15 animale d'origine, comprenant un support solide, à l'état divisé ou non, sur lequel est fixée une séquence nucléotidique selon la revendication 10.
 - 18. Procédé de détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce appartenant au dit groupe d'espèces animales considéré, caractérisé en ce que :
 - a) on dispose d'une fraction nucléique obtenue à partir dudit échantillon.
- b) on dispose d'au moins un réactif comprenant une séquence 25 selon la revendication 10,
 - c) on met en présence la fraction nucléique et ledit réactif, et d) par détection on détermine tout signal ou information résultant de la présence d'une des séquences selon l'une quelconque des revendications 11 à 16, caractérisant la présence dans ledit échantillon d'un groupe d'espèces animales d'origine.
 - 19. Utilisation des séquences définies dans l'une quelconque des revendications 12 à 16, pour la détermination d'un groupe d'espèces animales d'origine dans un échantillon susceptible de contenir un ingrédient obtenu à partir d'au moins une espèce animale appartenant au dit groupe d'espèces animales considéré.

1

LISTAGE DE SEQUENCES

<110> BioMérieux

<120> Procédé de détection et/ou d'identification de l'espèce animale d'origine de la matière animale contenue dans un échantillon.

<130> B05B3851FR/ANIFRAUD

<160> 241

<170> PatentIn version 3.1

<210> 1

<211> 18

<212> ADN

<213> Anas platyrhynchos

<400> 1 ctcctactgg ctatgcac

18

<210> 2

<211> 19

<212> ADN

<213> Anas platyrhynchos

<400> 2 gtaatcctac tgctcactc

19

<210> 3

<211> 38

<212> ADN

<213> Anas platyrhynchos

<400> 3 ttcggatctc tgctcgccat ctgcctggcc acacaaat

<210>	4	
<211>	24	
<212>	ADN	
<213>	Anas platyrhynchos	
<400>	4	
gacacat	cece ttgetttete etea	24
<210>	5	
<211>	33	
<212>	ADN	
<213>	Anser anser	
<400>		22
GCGGGC	tcta gccatctgct tagccacaca aat	33
<210>	6	
<211>	21	
<212>	ADN	
<213>	Anser anser	
<400>	6 acac ttcactcgcc t	21
55		
<210>	7	
<211>	25	
<212>	ADN	
<213>	Anser anser	
<400> caacgg	7 tget tegetettet téate	25
23		
<210>	8	

<211> 18 <212> ADN <213> Anser anser <400> 8 18 cacttcactc gccttctc <210> 9 <211> 16 <212> ADN <213> Cairina moschata <400> 9 16 aacctgcacg ccaatg <210> 10 <211> 35 <212> ADN <213> Cairina moschata <400> 10 35 gggtccctcc tcgccatttg cctggtcacc caaat <210> 11 <211> 17 <212> ADN <213> Cairina moschata <400> 11 17 gtcctgccat ggggaca <210> 12 <211> 22 <212> ADN

....

. .

<213>	Cairina moschata	
<400> ctccta	12 actcg ccctcatggc aa	22
<210>	13	
<211>	20 .	
<212>	ADN	
<213>	Cairina moschata	
<400> atccgc	13 aacc tgcacgccaa	20
<210>	14	
<211>	24	
<212>	ADN	
<213>	Cairina moschata	
<400> tcctca	ataa ataaaaata kaas	24
<210>	15	
<211>	17	
<212>	ADN	
<213>	Rangifer tarandus	
<400> cgagaco	15 gtca attatgg	17
<210>	16	
<211>	17	
<212>	ADN	
<213>	Rangifer tarandus	

<400> 16

_	
 5	
atctgcttat ttataca	17
<210> 17	
<211> 17	
<212> ADN	
<213> Rangifer tarandus	
 <400> 17	17
- Ecopologica Socialis	
<210> 18	
<211> 17	
<212> ADN	
<213> Rangifer tarandus	
<400> 18 tootottatt tacagta	17
<210> 19	
<211> 27	
<212> ADN	
<213> Rangifer tarandus	
<400> 19 aatattggag tgatcetett atttaca	27
<210> 20	
<211> 17	
<212> ADN <213> Columba palumbus	
(213) Column balaman	
<400> 20	
acacaggagt cgtcctc	17
<210> 21	

<211>	16	
<212>	ADN	
<213>	Columba palumbus	
<400> ttgctaa	21 actc aaatcc	16
<210>	22	
<211>	17	
<212>	ADN	
<213>	Columba palumbus	
<400> accetta	22 atag ccactgc	17
<210>	23	
<211>	23	
<212>	ADN	
<213>	Columba palumbus	
<400> ggctta	23 ctac tegeegeaca tta	23
<210>	24	
<211>	17	
<212>	ADN	
<213>	Columba palumbus	
<400> ctaacc	24 ggct tactact	17
<210>	25	
<211>	23	
<212>	ADN .	

	7	
<213>	Columba palumbus	
<400> ggcattt	25 gct tgctaactca aat	23
<210>	26	
<211>		
<212>		
<213>	Acipenser baerii	
<400> ctcacto	26 cata ggcctctgc	19
<210> <211>		
<211>		
	Acipenser baerii	
<400>	27 acte ataggee	17
tggete	acte acagged	
<210>	28	
<211>		
<212>	Coturnix coturnix	
(213)	COCCENTA COCCENTATION	
<400>		17
	cctca cactaat	
<210>	29	
<211>		
<212>	ADN Coturnix coturnix	
<213>	COURTILLY COURTILLY	
<400>	29	

tcaccg	gcct tctact	16
<210>	30	
<211>	16	
<212>	ADN	
<213>	Coturnix coturnix	
	·	
<400>	30 tatg cctcat	7.6
J		16
<210>	31	
<211>	21	
<212>	ADN	
<213>	Sardina pilchardus	
<400> cttcgg	31 atcg cttcttggcc t	21
<210>	32	
<211>	24	
<212>		
<213>	Sardina pilchardus	
-400-		
<400> ctcctt	32 cttt tggtcatgat aact	24
<210>	33	
<211>	20	
<212>	ADN	
<213>	Sardina pilchardus	
<400>	33	
gggcga	gggc tctattatgg	20
<210>	34	

9 <211> 17 <212> ADN <213> Sardina pilchardus <400> 34 17 attgggcgag ggctcta <210> 35 <211> 20 <212> ADN <213> Sardina pilchardus <400> 35 20 gttgtcctcc ttcttttggt <210> 36 <211> 16 <212> ADN <213> Sardina pilchardus <400> 36 16 atggagcatc ttttt <210> 37 <211> 17 <212> ADN <213> Sardina pilchardus <400> 37 17 ttggttatgt cttaccg

<210> 38

<211> 48

<212> ADN

<213> Sardina pilchardus

<400> tggcct	38 ctgt ctagcggccc agattctgac agggttgttc ttagccat	48
<210>	39	
<211>	21	
<212>	ADN	
<213>	Sardina pilchardus	
<400> tgattc	39 gaag tatgcacgca a	21
<210>	40	
<211>	17	
<212>	ADN	
<213>	Sardina pilchardus	
<400> tttgta	40 ttta cgcccac	17
<210>	41	
<211>	19	
<212>	ADN	
<213>	Sardina pilchardus	
<400> cctctg	acat cgcaaccgc	19
<210>	42	
<211>	19	
<212>	ADN	
<213>	Anguilla anguilla	

. <400> 42

	11	
atacctttac atagaaaca	11	19
<210> 43		
<211> 16		
<212> ADN		
<213> Gallus gallus		
	•	
<400> 43 gtgggctatg ttetec		16
<210> 44		
<211> 18		
<212> ADN		
<213> Gallus gallus		
<400> 44 tccctattag cagtctgc		18
<210> 45		
<211> 19		
<212> ADN		
<213> Gallus gallus		
<400> 45 tcatccggaa tctccacgc		19
<210> 46		
<211> 21		
<212> ADN		
<213> Gallus gallus		
<400> 46 catctgtatc ttccttcaca t		21
<210> 47		

<211>	23	
<212>	ADN	
<213>	Gallus gallus	
<400> gtagcc	47 caca cttgccggaa cgt	23
<210>	48	
<211>	17	
<212>	ADN	
<213>	Scomber japonicus	
	48 ttcc tcgcaat	17
<210>	49	
<211>	23	
<212>	ADN	
<213>	Scomber japonicus	
<400> tgccta	49 attt ctcaaattct cac	23
<210>	50	
<211>	20	
<212>	ADN	
<213>	Scomber japonicus	
<400> ttcggc	50 tcac tgcttggtct	20
<210>	51	
<211>	20	
<212>	ADN	

	13	
<213>	Scomber japonicus	
<400>	51	-
	accc ccgatgttga	20
<210>	52	
<211>	25	
<212>	ADN	
 <213>	Scomber japonicus	<u> </u>
<400> tcctac	52 cttt tcatggaaac atgaa	25
<210>		
<211>		
<212>		
<213>	Scomber japonicus	
<400>	53 ogatg ttgagtcagc attogactca gtogco	36
<210>	54	
<211>	18	
<212>		
<213>	Anguilla japonica	
<400> tatgg	54 atgat tcatccga	18
<210>	· 55	
<211>	21	
<212>	- ADN	
<213>	Anguilla japonica	
<400>	» S5	

gatgat	tcat ccgaaattta c	21
<210>	56	
<211>	17	
<212>	ADN	
<213>	Anguilla japonica	
	. •	
<400> ataata	56 actg cattegt	17
<210>	57	
<211>	19	
<212>	ADN	
<213>	Meleagris gallopavo	
<400>	57 ggtt egtacetat	19
		19
<210>	58	
<211>	17	
<212>	ADN	
<213>	Meleagris gallopavo	
<400> aacctc	58 catg cgaatgg	17
<210>	59	
<211>	26	
<212>	ADN	
	Meleagris gallopavo	
	·	
<400> gcagac	59 acca ctcttgcatt ctcttc	26
<210s	60	

15	
<211> 27	
<212> ADN	
<213> Meleagris gallopavo	
<400> 60 ttctcttctg tggcctacac atgccga	27
<210> 61	
<211> 17	
<212> ADN	
<213> Meleagris gallopavo	
<400> 61 tgcctcatca ctcaaat	17
<210> 62	
<211> 18	
<212> ADN	
<213> Meleagris gallopavo	
<400> 62 cttaaccggc ctcctact	18
<210> 63	
<211> 28	
<212> ADN	
<213> Meleagris gallopavo	
<400> 63 caggagtagt cttacttete acceteat	28
<210> 64	
<211> 18	
<212> ADN	

<213>	Meleagris gallopavo	
<400> ctcatc	64 actc aaatctta	18
<210>	65	
<211>	16 ·	
<212>	ADN	
<213>	Scomber scombrus	
<400> ctcctc	65 gtaa tgatga	16
<210>	66	
<211>		
<212>		
<213>	Scomber scombrus	
<400> ttcctt	66 gcaa tgcacta	17
<210>	67	
<211>	19	
<212>	ADN	
<213>	Scomber scombrus	
<400> atgaaa	67 cgtc ggtgtagtc	19
<210>	68	
<211>	17	
<212>	ADN	

<400> 68

<213> Scomber scombrus

	17	
ggtgta	gtcc tcctcct	17
«210»	69	
<211>	19	
<212>	ADN	
<213>	Scomber scombrus	
<400>	69 cycaa catycacyc	19
<210>	70	
<211>	33	
<212>	ADN	
<213>	Scomber scombrus	
<400> tacac	70 geoeg aegtegaate ageatteaae tea	33
<210>	71	
<211>	17	
	ADN	
<213>	Scomber scombrus	
<400> ggttc	> 71 eectge ttggtet	17
<210>		
<211:		
	> ADN > Anguilla mossambica	
<213	Z SIIGULLE IIIDDUIIDE CO	
<400°	> 72	
	gagett ctttett	17
<210	> 73	

.

--

<211>	26	
<212>	ADN	
<213>	Anguilla mossambica	
<400>		
ggacca	tgtc ttatctctca aatcct	26
<210>	74	
<211>	20	
<212>	ADN	
<213>	Canis familiaris	
<400>	74 ctat atgcacgcaa	
	dead degeacycaa	20
<210>	75	
<211>	21	
<212>	ADN	
<213>	Canis familiaris	
<400> ggagta	75 tgct tgattctaca g	21
		21
<210>	76	
<211>	18	
<212>		
<213>	Canis familiaris	
<400> cggatc	76 ctat gtattcat	18
		-•
<210>	77	
<211>	24	
<212>	ADN	

		19	
<213>	Canis familiaris		
< 400 >	77 gaat tgtactatta ttcg		24
acaceg	gaat tgtattatta ttog		
<210>	78		
<211>	16		
<212>	ADN		
~213>	Canis familiaris		
<400>			16
actatt	attc gcaacc		10
<210>	79		
<211>	16		
<212>	ADN		
<213>	Canis familiaris		
<400>			16
attato	ccgct atatgc		10
<210>	80		
<211>	16		
<212>	ADN		
<213>	Canis familiaris		
<400> caggt	· 80 :ttatt cttagc		16
<210>			
<211>			
	ADN		
<213>	> Canis familiaris		

<400> 81

_

. .

	16
gcaaccatag ccacag	
<210> 82	
<211> 18	
<212> ADN	
<213> Canis familiaris	
<400> 82 aaatggcgct tccatatt	18
<210> 83	
<211> 16	
<212> ADN	
<213> Canis familiaris	
<400> 83 taggagtatg cttgat	16
<210> 84	
<211> 16	
<212> ADN	
<213> Numida meleagris	
<400> 84 gacccaaatt atcacc	16
	•
<210> 85	
<211> 19	
<212> ADN	
<213> Numida meleagris	
<400> 85 atccctccta gcagtctgc	19
.210- 86	
<210> 86	

٠ ٠	
<211> 16	
<212> ADN	
<213> Numida meleagris	
<400> 86	16
atgacccaaa ttatca	10
<210> 87	
 <211> 18	
<212> ADN	
<213> Numida meleagris	
<400> 87	
tgtcgaaatg tccaatac	18
<210> 88	
<211> 18	
<212> ADN	
<213> Equus asinus	
<400> 88	18
agacactaca actgeett	20
<210> 89	
<211> 16	
<212> ADN	
<213> Equus asinus	
<400> 89 geteetacae atteet	16
gettetasas acces	
<210> 90	
<211> 17	
<212> ADN	

<213>	Equus asinus	
<400> atcaga	90 acact acaactg	17
<210>	91	
<211>	18	
<212>	ADN	
<213>	Equus asinus	
<400> tgcctc	91 ettta tecaegta	18
<210>	92 .	
<211>	16	
<212>	ADN	
<213>	Auxis thazard	
<400> ttggcg	92 tagt tottot	16
<210>	93	
<211>	29	
<212>	ADN	
<213>	Equus caballus	
:400> cagatga	93 aatt atccaccatc tccatgcta	29
210>	94	
211>	23 .	
212>	ADN	
213>	Equus caballus	

23	
atgtgaacta cagatgaatt atc	23
<210> 95	
<211> 25	
<212> ADN	
<213> Eguus caballus	
<400> 95 ttctcctatt tcttccagta atage	25
<210> 96	
<211> 23	
<212> ADN	
<213> Equus caballus	•
<400> 96 tcctagctat atactacaca tca	23
<210> 97	
<211> 25	
<212> ADN	
<213> Equus caballus	
<400> 97 gaaatattgg gatteteeta tttet	25
<210> 98	
<211> 18	
<212> ADN	
<213> Equus caballus	
<400> 98 gccttctttg gttccctc	18
<210> 99	

<211>	22	
<212>	ADN	
<213>	Equus caballus	
<400>	99 ctgt tatacacatc tg	22
coccac	·	2.2
<210>	100	
<211>	23	
<212>	ADN	٠,
<213>	Equus caballus	
<400>	100 agga caaggeettt act	23
		2.
<210>	101	
<211>	23	
<212>	ADN	
<213>	Equus caballus	
<400>	101 acta cagetectae ace	23
J		2.
<210>	102	
<211>	21	
<212>	ADN	
<213>	Equus caballus	
<400>	102 ttcc cacctaggaa t	23
		د ع
<210>	103	
<211>	16	
<212>	ADN	

		25	
	-213>	Equus caballus	
	<400> teccace	103 ctag gaatet	16
	<210>	104	
	<211>	19	
	<212>	ADN	
	~213×	Equus caballus	
			•
	<400>	104 ttta ttcacgtag	19
	tgeete	tita titatig	
	<210>	105	
	<211>	17	
	<212>	ADN	
	<213>	Euthynnus alletteratus	
		105	17
	actggt	gtag tacttct	4 ,
	<210>	106	
	<211>	17	
	<212>	ADN	
	<213>	Euthynnus alletteratus	
	<400>	106 attta ctcacac	17
	cccyca	tetta eteacae	1,
	<210>	107	
	<211>	17	
	<212>	ADN	
	<213>	Euthynnus alletteratus	
	<400>	107	

ggcctgl	ctcc tcgcaat	17
<210>	108	
<211>	16	
<212>	ADN	
<213>	Euthynnus alletteratus	
	·	
<400>	108 actc acacat	16
J		
<210>	109	
<211>	17	
<212>	ADN	
<213>	Xiphias gladius	
<400> tatgta	109 ttac cetgagg	17
_		
<210>	110	
<211>	30	
<212>	ADN	
<213>	Xiphias gladius	
<400> gacato	110 gega eggeetttae ateegtagea	30
<210>	111	
<211>	16	
<212>		
<213>	Xiphias gladius	
<400>	111 etegg eetetg	16
<210>	112	

		27	
<211>	21		
<212>	ADN		
<213>	Xiphias gladius		
<400> ggcctgt	112 tttc tcgctataca c		21
<210>	113		
<211>	29		
<212>	ADN		
<213>	Xiphias gladius		
<400>	113 tage tgeecaagte eteacagge		29
204944			
<210>	114		
<211>	17		
<212>	ADN		
<213>	Xiphias gladius		
<400>			17
ctegge	ectct gtttagc		
<210>	115 .		
<211>	17		
<212>	ADN		
<213>	Xiphias gladius		
<400>			17
tccta	tctat acaaaga		J. f
<210>	116		
<211>	19		
<212>	ADN		

<213>	Xiphias gladius	
<400> catcaga	116 acat cgcgacggc	19
<210>	117	
<211>	16	
<212>	ADN	
<213>	Gadus morhua	
<400> tgactaa		16
<210>	118	
<211>	20	
<212>	ADN	
<213>	Gadus morhua	
<400> catgcta		20
<210>	119	
<211>	17	
<212>	ADN	
<213>	Gadus morhua	
<400> ggttcct		17
<210>	120	
<211>	17	
<212>	ADN	
<213>	Phasianus colchicus	

29	
aaacactgga gtcgtcc	17
<210> 121	
<211> 16	
<212> ADN	
<213> Phasianus colchicus	
<400> 121	16
gaaatgtgca gtacgg	
<210> 122	
<211> 20	
<212> ADN	
<213> Phasianus colchicus	
<400> 122 ggttccctgc tagcagtatg	20
ggtteeetge tageageaeg	
<210> 123	
<211> 18	
<212> ADN	
<213> Phasianus colchicus	
<400> 123 actggcctcc tattagcc	18
<210> 124	
<211> 17	
<212> ADN	
<213> Phasianus colchicus	
<400> 124 tgccttatta ctcaaat	17
<210> 125	

--

<211>	18	
<212>	ADN	
<213>	Phasianus colchicus	
<400> tgtcgaa	125 aatg tgcagtac	18
<210>	126	
<211>	17	
<212>	ADN	
<213>	Struthio camelus	
<400> accggc	126 gtta tcctcct	17
<210>	127	
<211>	20	
<212>	ADN	
<213>	Struthio camelus	
<400> tgaaaca	127 accg gegttatect	20
<210>	128	
<211>	18	
<212>	ADN	
<213>	Struthio camelus	
	atcg ctactagg	18
<210>	129	
<211>	24	

<212> ADN

		31	
<213>	Struthio camelus		
<400> cagtace	129 ggat gatttatccg caat		24
<210>			
<211>		·	
<212>	Struthio camelus		
2213>-	Seruthio camerus		
<400>	130		
	tgcc ggaacgt		17
<210>	131		
<211>	23		
<212>	ADN		
<213>	Struthio camelus		
<400>	131 staac attaatagca act		23
	-		
<210>	132		
<211>			
<212>			
<213>	Struthio camelus		
<400>	132		
	tggat cgctac		16
<210>	133		
<211>	20		
<212>	ADN .		
<213>	Struthio camelus		
<400>	133		

••

ctaacag	gggc tectactage	20
<210>	134	
<211>	16	
<212>	ADN	
<213>	Struthio camelus	
	·	
<400>		16
5 -		
<210>	135	
<211>	18	
<212>	ADN	
<213>	Felis catus	
<400> ctgtcg	135 egac gttaatta	18
<210>		
<211>		
<212>		
<213>	Felis catus	
<400> cctaca	136 cctt ctcagagaca tga	23
<210>	137	
<211>	21	
<212>	ADN	
	Felis catus	
-2237		
<400>	137	
	cctg tacatacatg t	21
<210>	138	

	33	
<211>	17	
<212>	ADN	
<213>	Felis catus	
<400>		17
accgga	atca tactatt	Ι,
<210>	139	
<211>	23	
<212>	ADN	
<213>	Felis catus	
<400>		23
acaget	ttta tgggatacgt cct	23
<210>	140	·
<211>	25	
<212>	ADN	
<213>	Felis catus	
<400>	140 geete tttttggeea tacae	25
caccy	geete tetteggeea tacae	
<210>	141	
<211>	25	
<212>	ADN	
<213>	Felis catus	
<400>	141 catac tattatttac agtca	25
33446		
<210>	142	
<211>	22	
<212>	ADN	

<213> Homo sapiens

:400> accaga	142 egce teaacegeet tt	22
<210>	143	
<211>	23	
<212>	ADN	
<213>	Homo sapiens	
<400> tcctcc	143 tgct tgcaactata gca	23
<210>	144	
<211>	33	
<212>	ADN	
<213>	Homo sapiens	
<400> ctcact	144 cett ggegeetgee tgateeteea aat	33
<210>	145	
<211>	20	
<212>	ADN	
<213>	Homo sapiens	
<400>	145 atcac cacaggacta	20
<210>	146	
<211>	20	
<212>	ADN	
<213>	Homo sapiens	

35	
ategeceaca teactegaga	20
<210> 147	
<211> 17	
<212> ADN	
<213> Homo sapiens	
<400> 147	-17
	- .
<210> 148	
<211> 29	
<212> ADN	
<213> Homo sapiens	
<400> 148	
ttacggatca tttctctact cagaaacct	29
<210> 149	
<211> 18	
<212> ADN	
<213> Homo sapiens	
<400> 149	
atctgcctct tcctacac	18
<210> 150	
<211> 16	
<212> ADN	
<213> Homo sapiens	
<400> 150 ccatgcacta ctcacc	16

<210> 151

<211>	17	
<212>	ADN	
<213>	Homo sapiens	
<400>	151 aaat caccaca	17
	•	
<210>	152	
<211>	17	
<212>	ADN	
<213>	Gadus ogac	
<400>	152 aacg gtgcctc	17
catget	adeg gegeete	
<210>	153	
<211>	20	
<212>	ADN	
<213>	Gadus ogac	
<400>		20
CCCCC	atttg tctctatata	20
<210>	154	
<211>	19	
<212>	ADN	
<213>	Gadus ogac	
<400>	154 etcta tatacatat	19
LLEGE	Licta Lacacatat	
<210>	155	
<211>	18	
<212>	ADN	

	37	
<213>	Bison bison	
<400>	155 ctta cagtaata	18
Cococa		
<210>	156	
<211>	18	
<212>	ADN	
<213>	Bison bison	
<400>	156 ttat accttcct	18
-333		
<210>	157	
<211>	17	
<212>	ADN	
<213>	Lepus europaeus	
<400>	157 actgg cttattt	17
<210>	158	
<211>	23	
<212>	ADN	
<213>	Lepus europaeus	
<400>	158 totat tgggattatg oct	23
33		
<210>	159	
<211>	18	
<212>	ADN	
<213>	Lepus europaeus	
<400>	159	

aataato	ccag atcctaac	18
<210>	160	
<211>	16	
<212>	ADN	
<213>	Lepus europaeus .	
<400> ctaataa	160 atcc agatcc	16
<210>	161	
<211>	22	
<212>	ADN	
<213>	Lepus europaeus	
<400> gactcat	161 ttcg ttacttacac gc	22
<210>	162	
<211>	26	
<212>	ADN	
<213>	Euthynnus pelamis	
<400>	162 cetg aegtagaate ageett	26
<210>	163	
<211>	19	
<212>	ADN	
<213>	Euthynnus pelamis	
<400> atttaci	163 teee atattggee	19
<210>	164	

39	
<211> 18	
<212> ADN	
<213> Euthynnus pelamis	
<400> 164 ctgcatttac tcccatat	18
<210> 165	
<211> 16	
<212> ADN	
<213> Macropus giganteus	
<400> 165 attettata tgeeta	16
acceptata egocca	20
<210> 166	
<211> 16	
<212> ADN	
<213> Macropus giganteus	
<400> 166	
tetttatatg cetatt	16
<210> 167	
<211> 16	
<212> ADN	
<213> Macropus giganteus	
<400> 167 ctttggctcg ctacta	16
<210> 168	
<211> 16	
<212> ADN	

--

..

<213> Macropus giganteus

<400> 168 ttggctcgct a	actagg
<210> 169	
<211> 16	
<212> ADN	
<213> Macro	opus giganteus
<400> 169 atattettta t	atgee
<210> 170	
<211> 20	
<212> ADN	
<213> Merlu	uccius merluccius
<400> 170 ctatttctag o	cgatacatta
<210> 171	
<211> 23	
<212> ADN	
<213> Merlı	uccius merluccius
<400> 171 tcctacttat (tcatagagac ctg
<210> 172	
<211> 17	
<212> ADN	
<213> Merl	uccius merluccius

	•	
л	1	
-		

	41	
aacggc	gett etttett	17
<210>	173	
<211>	24	
<212>	ADN	
<213>	Merluccius merluccius	
<400>	173 cetge ttageegeee aaat	24
~3500		
<210>	174	
<211>	22	
<212>	ADN	
<213>	Merluccius merluccius	
<400>	174 ccgtc gtacacatct gc	22
00000		
<210>	175	
<211>	23,	
<212>	ADN	
<213>	Merluccius merluccius	
<400> qqaqt	175 tgtac tatteettt agt	23
72 5		
<210>	176	
<211>	. 19	
	ADN	
<213>	Merluccius merluccius	
	> 176 eegeee aaatettaa	19
ccago		
<210>	177	

.. .

... -

<211>	34		
<212>	ADN		
<213>	Merl	uccius merluccius	
<400> cattata		caaacgtcga gatagettte teat	34
<210>	178		
<211>	16		
<212>	ADN		
<213>	Bos	taurus	
<400> tcaatg		ttatct	16
<210>	179		
<211>	17		
<212>	ADN		
<213>	Bos	taurus	
<400>	179		
		cccatat	17
<210>	180	•	
<211>	24		
<212>	ADN		
<213>	Bos	taurus	
<400>	180	hasher each make	24
gtaato	cctc	tgctcacagt aata	₩.4
<210>	181		
<211>	17		
<212>	ADN		

·	
43	
<213> Macropus rufus	
<400> 181 ggctcatatc tctacaa	17
<210> 182	
<211> 17	
 <212> ADN	
<213> Macropus rufus	
<400> 182	
aggagcctgc ttaatta	17
<210> 183	
<211> 16	
<212> ADN	
<213> Macropus rufus	
<400> 183	16
gattgatccg caatct	10
<210> 184	
<211> 16	
<212> ADN	
<213> Macropus rufus	
<400> 184 tacggctgat tgatcc	16
<210> 185	
<211> 16	
<212> ADN <213> Oncorhynchus mykiss	
1210/ Oncornynomes mynres	
<400> 185	

gtttgc	caca tetgee	16
<210>	186	
<211>	17	
<212>	ADN	
<213>	Oncorhynchus mykiss	
<400> ctatgt	186 Ettag ctaccca	17
<210>	187	
<211>	20	
<212> <213>	ADN Oncorhynchus mykiss	•
<400> tatace	187 ctccg acatttcaac	20
<210>	188	
<211>	16	
<212>	ADN	
<213>	Oncorhynchus mykiss	
<400> cctgg	. 188 jaatat oggagt	16
<210>	189	
<211>	. 16	
<212>	> ADN	
<213	Oncorhynchus mykiss	
<400:	> 189	16

<210> 190 <211> 19 <212> ADN <213> Oncorhynchus mykiss <400> 190 ttgtactttt acttctcac 19 <210> 191 <211> 16 <212> ADN <213> Oncorhynchus mykiss <400> 191 gctcgtacct ctacaa 16 <210> 192 <211> 17 <212> ADN <213> Oncorhynchus mykiss <400> 192 gagttgtact tttactt 17 <210> 193 <211> 20 <212> ADN <213> Oncorhynchus mykiss <400> 193 cgagatgtta gttacggctg 20 <210> 194 <211> 18

<212> ADN	
<213> Mus musculus	
<400> 194 gtacttctac tgttcgca	18
<210> 195	
<211> 16	
<212> ADN	
<213> Mus musculus	
<400> 195 caggtctttt cttagc	16
<210> 196	
<211> 17	
<212> ADN	
<213> Mus musculus	
<400> 196 tttgggtccc ttctagg	17
<210> 197	
<211> 21	
<212> ADN	
<213> Mus musculus	
<400> 197 gtctgcctaa tagtccaaat c	21
<210> 198	
<211> 21	
<212> ADN	
<213> Mus musculus	

u. uupu.

47

<400> 198 atcattacag	gtetttett a	21
<210> 199		
<211> 17		
<212> ADN		
<213> Mus	musculus	
<400> 199 ttccttcatg	tcggacg	17
<210> 200		
<211> 18		
<212> ADN		
<213> Mus	musculus	
<400> 200 taatagtcca		18
<210> 201		
<211> 16		
<212> ADN		
<213> Mus	musculus	
<400> 201 attggagtac		16
<210> 202		
<211> 16		
<212> ADN		
<213> Salr	MO PATAT	
<400> 202 gagttgtact		16

<210> 203	
<211> 17	
<212> ADN	
<213> Salmo salar	
•	
<400> 203 taggcctatg tctagcc	17
taggettatg telliget	
<210> 204	
<211> 18	
<212> ADN	
<213> Salmo salar	
<400> 204 gatgttagct atggctga	. 18
gatgitaget atggotga	
<210> 205	
<211> 16	
<212> ADN	
<213> Salmo salar	
<400> 205 tacttctact tctcac	16
<210> 206	
<211> 20	
<212> ADN	
<213> Salmo salar	
<400> 206 ctcatccgta acattcacgc	20
000000000000000000000000000000000000000	
<210> 207	
<211> 16	

	49	
<212>	ADN	
<213>	Capra hircus	
	207	
tatto	ataca tatogg	16
<210>	208	
<211>	19	
<212>	ADN	
<213>	Oryctolagus cuniculus	
<400>		
tagge	ctgtg ccttataat	19
<210>	209	
<211>	16	
<212>	ADN	
<213>	Oryctolagus cuniculus	
<400>		
attca	aattt tcactg	16
<210>	210	
<211>	18	
<212>	ADN	
<213>	Oryctolagus cuniculus	
<400>		
CCCCC	actag gcctgtgc	18
<210>	211	
<211>	21	
<212>	ADN	
<213>	Oryctolagus cuniculus	

<400> 211 tcaaattttc actggcctat t	21
<210> 212	
<211> 17	
<212> ADN .	
<213> Oryctolagus cuniculus	
<400> 212 tgccttataa ttcaaat <210> 213	17
<211> 25	
<212> ADN	
<213> Rattus norvegicus	
<400> 213 acactacacg tctgatacca taaca	25
<210> 214	
<211> 17	
<212> ADN	
<213> Rattus norvegicus	
<400> 214 ctatttgcag tcatagc	17
<210> 215	
<211> 17	
<212> ADN	
<213> Rattus norvegicus	
<400> 215 ggatcetaca ettteet	17

.

		51	
<210> 216			
<211> 22			
<212> ADN			
<213> Rattus	norvegious		
<400> 216 atgcctcata gt	acaaatco to		
5			22
 <210> 217			· · · · · ·
<211> 21	•		
<212> ADN			
<213> Rattus	norvegicus		
<400> 217			
aaacattggg at	catectac t		21
<210> 218			
<211> 17			
<212> ADN			
<213> Rattus	norvegicus		
<400> 218			
ttcctccatg tgg	ggacg		17
<210> 219			
<211> 16			
<212> ADN			
<213> Rattus	norvegicus		
<400> 219			
gtatgcctca tag <210> 220	jtac		16
<211> 19			
<212> ADN			

<213> Salvelinus alpinus	
<400> 220 tcatccggaa tatccacgc	19
<210> 221	
<211> 22	
<212> ADN	
<213> Salvelinus alpinus	
<400> 221 tggagtagta ttactacttc ta	22
<210> 222	•
<211> 23	
<212> ADN	
<213> Salvelinus alpinus	
<400> 222 ggcctatgtt tggccaccca aat	23
<210> 223	
<211> 23	
<212> ADN	
<213> Salvelinus alpinus	
<400> 223 tacttctaac tataatgact gcc	23
<210> 224	
<211> 16	
<212> ADN	
<213> Salvelinus alpinus	

		53	
Í	ttggttd	cact cttagg	16
	<210>	225	
	<211>	18	
	<212>	ADN	
	<213>	Salvelinus alpinus	
	<400>	225 tctg tgtgccat	
		cety tytydeat	18
	<210>	226	
	<211>	21	
	<212>	ADN	
•	<213>	Salvelinus alpinus	
	<400>	226 tgtg ccatatctgc c	21
•	<210>	227	21
•	<211>	16	
•	<212>	ADN	
	<213>	Salvelinus fontinalis	
	<400> tattatt	227 tact teteae	16
	<210>		
	<211>		
	<212>		
•	<213>	Salvelinus fontinalis	
_	<400>	228	
		ggta gtattattac ttctc	25
	<210>	229	
	<211>		

<212>	ADN	
<213>	Salvelinus fontinalis	
<400>		
tetgta	tgcc acatttgtc	19
<210>	230	
<211>	20	
<212>	ADN	
<213>	Salvelinus fontinalis	
	·	
<400>	230 ataa tgacagcttt	20
000000		20
<210>	231	
<211>	23	
<212>	ADN	· ·
<213>	Salvelinus fontinalis	
		•
<400> tccgat	231 attt cgacagettt tte	23
_		
<210>	232	
<211>	20	
<212>	ADN	
<213>	Salvelinus fontinalis	
<400> atttat	232 atgc atategeeeg	20
<210>	233	
<211>	26	
<212>	ADN	
<213>	amorce sequence CDL	

· - · - - - - - ·

<400> 233 ccatccaaca totcagcatg atgaaa 26 <210> 234 <211> 58 <212> ADN <213> amorce sequence CBHT7 <400> 234 gaaattaata cgactcacta tagggagacc acacccctca gaatgatatt tgtcctca 58 <210> 235 <211> 14 <212> ADN <213> Bos taurus <400> 235 gacacaacaa cagc 14 <210> 236 <211> 14 <212> ADN <213> Gallus gallus <400> 236 tecetageet tete 14 <210> 237 <211> 14 <212> ADN <213> Gallus gallus <400> 237 acacttgccg gaac 14

<210>	238	
<211>	14	
<212>	ADN	
<213>	Bos taurus	
<400> atagcc	238 . acag catt	14
_		
<210>	239	
<211>	14	
<212>	ADN	
<213>	Gadus morhua	
<400>	239 aacct cttt	. 14
acaaca		
<210>	240	
<211>	20	•
<212>	ADN	
<213>	amorce sequence CBL 20	
<400>	240 cccag ccccatcaaa	20
_		
<210>	241	
<211>	53	
	ADN	
<213>	amorce séquence CBHT7 20	
<400>	241	53

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉSIGNATION D'INVENTEUR(S) Page N° J../2..

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

Cet imprimé est à remplir lisiblement à l'encre noire

DB 113 V7/260899

Vos références p (facultatif)	our ce dossier	IT/SC/B05B3851FR .			
N° D'ENREGISTREMENT NATIONAL		02.00265			
TITRE DE L'INVE	NTION (200 caractères ou esp	aces maximum)			
	DETECTION ET/OU D'IDE ITENUE DANS UN ECHA		N DE L'ESPECE ANIMALE D'ORIGINE DE LA MATIERE		
LE(S) DEWANDE	CUR(S):				
BIO MERIEUX					
		otez chaque p	en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs, age en indiquant le nombre total de pages).		
Nom		MABILAT			
Prénoms		Claude			
Adresse	Rue	5 rue du Manoir			
······	Code postal et ville	69650	SAINT GERMAIN AU MONT D'OR / FR		
Société d'apparte	nance (facultatif)				
Nom		DESVARENNE			
Prénoms		Sabine			
Adresse	Rue	170 rue Emile Zola			
	Code postal et ville	69150	DECINES CHARPIEU / FR		
Société d'appartenance (facultatif)					
Nom		BABOLA			
Prénoms		Odile			
Adresse Rue 25 rue Albert Thomas		Thomas			
	Code postal et ville	69150	DECINES CHARPIEU/ FR		
Société d'appartenance (facultatif)					
DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) OU DU MANDATAIRE (Nom et qualité du signataire) Donuinique GUERRE CPI 921104					
CPI 921104 2 2 FEV. 2002					

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Parls Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

DÉSIGNATION D'INVENTEUR(S) Page N° 2../2.. (Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Cet imprimé est à remplir lisiblement à l'encre noire DB 113 W /260899 IT/SC/B05B3851FR Vos références pour ce dossier (facultatif) N° D'ENREGISTREMENT NATIONAL 02.00265 TITRE DE L'INVENTION (200 caractères ou espaces maximum) PROCEDE DE DETECTION ET/OU D'IDENTIFICATION DE L'ESPECE ANIMALE D'ORIGINE DE LA MATIERE ANIMALE CONTENUE DANS UN ECHANTILLON LE(S) DEMANDEUR(S): **BIO MERIEUX** DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs, utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages). برد. LACROIX Nom Bruno Prénoms .45 33 chemin de Montlouis Rue Adresse SAINT GENIS LAVAL / FR 69230 Code postal et ville Société d'appartenance (facultatif) Nom Prénoms Rue Adresse Code postal et ville Société d'appartenance (facultatif) Nom **Prénoms** Rue Adresse Code postal et ville Société d'appartenance (facultalif) DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) **OU DU MANDATAIRE** (Nom et qualité du signataire) Dominique GUERRE CPI 921104 2 2 FEV.

La loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.