136.171 Test #1

Tuesday 7 February 2006 (5:30-6:30 pm)								Time: 60 minutes
Name:					ID#:			
INSTRU	JCTC	R (please check one):	[]	BE	RRY (L01)	[]]	KOPOTUN (L02)
VALUE								
[10]	1.	Evaluate the integral $\int_{\sqrt{2}}^{\sqrt{7}}$ ANSWER!)	$\frac{x^3}{\sqrt{x^2+x^2}}$	= <i>dx</i> 2	(SHOW ALL YOU	R WO	RK	S AND SIMPLIFY YOUR

- [4] 2. Set up (BUT DO NOT EVALUATE) integrals to determine the following physical quantities:
 - (a) The AREA of the region enclosed by the curves x = 0, $y = e^x$ and $y = e^{2x} 2$:

[5] (b) The LENGTH of that portion of the curve given by x = y(y-1) which lies between the points (0,0) and (12,-3):

Set up (BUT DO NOT EVALUATE) integrals to determine the following physical quantities (continued):

- (c) The VOLUME of the solid of revolution obtained when the disk enclosed by $x^2 + \frac{y^2}{4} = 1$ is revolved ABOUT THE LINE y = 2, using
- [5] (i) the "washers" method:

[6] (ii) the "cylindrical shells" method :

[5] (d) The minimum amount of WORK DONE to pump the oil, having a constant density ρ [kilograms per cubic metre] from a right circular conical tank (with horizontal planar top) of height 1 metre and radius 1 metre, to a height 1 metre above the top of the tank. [You may ignore frictional forces.]:

[5] (e) The TOTAL FLUID FORCE exerted on one face of a circular plate, of radius 1 metre, which is immersed vertically into a fluid of density ρ [kilograms per cubic metre] so that its top edge is 1 metre below the surface of the fluid: