Příklad vyhodnocení - přímé měření

Soubor naměřených dat:

Měření	1	2	3	4	5	6	7	8
Hmotnost m (mg)	406,2	406,8	407,1	406,2	405,9	406,3	406,7	405,8

Mezní chyba použitých vah: $\Delta m = 0.5 \text{ mg}$

1. Určíme aritmetický průměr:

$$\bar{m} = \frac{1}{N} \sum_{i=1}^{N} m_i = 406,375 \text{ mg}$$

2. Určíme směrodatnou odchylku jednoho měření:

$$S_m = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (m_i - \bar{m})^2} = 0.452769257 \text{ mg} \doteq 0.45 \text{ mg}$$

3. Vyloučíme hrubé chyby podle 3σ -kritéria:

"
$$3\sigma$$
" $\equiv k_{3\sigma}S_m = 4.53 \cdot 0.45 \doteq 2.04 \text{ mg}$

Hrubé chyby se nevyskytují, neboť všechna měření leží v intervalu $\langle 404,34;408,42\rangle$. Kdyby se hrubé chyby vyskytly, vyloučíme je ze zpracování a začneme znovu od bodu 1.

4. Určíme směrodatnou (standardní) odchylku aritmetického průměru (počet měření N=8):

$$S_{\bar{m}} = \frac{S_m}{\sqrt{N}} \doteq 0.16 \text{ mg}$$

Celková střední *směrodatná* odchylka:

5. Určíme výslednou odchylku jako celkovou střední směrodatnou odchylku (1 σ , P \sim 68.27 %):

$$u_{\bar{m}} = \sqrt{(k_{1\sigma} \cdot S_{\bar{m}})^2 + \left(\frac{\Delta m}{\sqrt{3}}\right)^2} = \sqrt{(1,08 \cdot 0,16)^2 + \left(\frac{0,5}{\sqrt{3}}\right)^2} \doteq 0,3364 \text{ mg}$$

6. Zaokrouhlíme a zapíšeme výsledek:

$$m = \bar{m} \pm u_{\bar{m}} = (406,38 \pm 0,34) \text{ mg}, P_{1s} = 0,6827$$

Nebo: celková střední *mezní* chyba:

5. Určíme výslednou odchylku jako celkovou střední mezní chybu (3 σ , P \sim 99.73 %):

$$u_{\bar{m}} = \sqrt{(k_{3\sigma} \cdot S_{\bar{m}})^2 + (\Delta m)^2} = \sqrt{(4.53 \cdot 0.16)^2 + (0.5)^2} \doteq 0.8808 \text{ mg}$$

6. Zaokrouhlíme a zapíšeme výsledek:

$$m = \bar{m} \pm u_{\bar{m}} = (406,38 \pm 0,88) \text{ mg}, P_{3s} = 0.9973$$