Quantum Physics 2025

The Theory/Framework Of <u>Almost</u> Everything <u>Today</u>

But Most Likely <u>NOT of Tomorrow</u>

Yury Deshko

Course Overview

Course Structure And Goals

- Part 1: Mathematical Concepts And Tools.
- Part 2: Classical Physics.
- Part 3: Quantum Physics.

- Learn the language of quantum physics.
- Enhance the knowledge of classical physics.
- Develop modern quantum thinking.

We will focus on this one today.

Simple. Interesting. Useful. Fully Quantum.

Mechanical Analog (Almost)

$$H_a = \frac{p_1^2}{2m} + \frac{kx_1^2}{2}$$

$$|\xi_1\rangle \sim (x_1, p_1)$$

$$m$$
 k

$$H_b = \frac{p_2^2}{2m} + \frac{kx_2^2}{2}$$

$$|\xi_2\rangle \sim (x_2, p_2)$$

$$|\xi\rangle = |\xi_1\rangle \oplus |\xi_2\rangle \sim (x_1, p_1, x_2, p_2)$$

Composite System: Atom + Atom or Atom + Field Mode

$$|e\rangle$$
 ω_1
 $|g\rangle$

$$above{1}{\omega_2}$$
 $|e\rangle$ $|g\rangle$

$$\hat{H}_{1} = \frac{\hbar\omega_{1}}{2} \left(|e\rangle\langle e| - |g\rangle\langle g| \right)$$
$$|\Psi\rangle = b_{g}|g\rangle + b_{e}|e\rangle$$
$$i\hbar\partial_{t}|\Psi\rangle = \hat{H}_{1}|\Psi\rangle$$

$$\hat{H}_{2} = \frac{\hbar \omega_{2}}{2} \left(|e\rangle\langle e| - |g\rangle\langle g| \right)$$
$$|\Phi\rangle = c_{g}|g\rangle + c_{e}|e\rangle$$
$$i\hbar \partial_{t}|\Phi\rangle = \hat{H}_{2}|\Phi\rangle$$

Composite System: Atom + Atom or Atom + Field Mode

$$|\Upsilon\rangle = |\Psi\rangle \otimes |\Phi\rangle$$

$$\uparrow \qquad \uparrow$$

$$\hat{H} = \hat{H}_1 \otimes \hat{H}_2$$

$$colone{1}{\omega_2}$$
 $colone{1}{|e\rangle}$ $colone{1}{|e\rangle}$

$$i\hbar\partial_t|\Upsilon\rangle = \hat{H}|\Upsilon\rangle$$

Bundle them together into single system.

Composite System: Atom + Atom or Atom + Field Mode

$$|\Upsilon\rangle = |\Psi\rangle \otimes |\Phi\rangle$$

$$\uparrow \qquad \uparrow$$

$$\hat{H} = \hat{H}_1 \otimes \hat{H}_2$$

NOT always!

$$\omega_2$$
 $|e\rangle$ $|g\rangle$

$$i\hbar\partial_t|\Upsilon\rangle = \hat{H}|\Upsilon\rangle$$

$$|\Upsilon_1\rangle = |g\rangle \otimes |g\rangle \qquad |\Upsilon_2\rangle = |g\rangle \otimes |e\rangle \qquad |\Upsilon_3\rangle = |e\rangle \otimes |g\rangle \qquad |\Upsilon_4\rangle = |e\rangle \otimes |e\rangle$$

$$|\Upsilon_2\rangle = |g\rangle \otimes |e|$$

$$|\Upsilon_3\rangle = |e\rangle \otimes |g\rangle$$

$$|\Upsilon_4\rangle = |e\rangle \otimes |e\rangle$$

Most important when $\omega_a = \omega_m$ (resonance).

Composite System: Atom + Atom or Atom + Field Mode

$$|\Upsilon\rangle = |\Psi\rangle \otimes |\Phi\rangle = |\Psi\rangle |\Phi\rangle$$

$$\frac{1}{\omega_1 \updownarrow |g\rangle} \qquad \hat{H} = \hat{H}_1 \otimes \hat{H}_2 \qquad \frac{1}{\omega_2 \updownarrow |g\rangle} \qquad \hat{H} = \hat{H}_1 \otimes \hat{H}_2 \qquad \frac{1}{\omega_2 \updownarrow |g\rangle} \qquad \hat{H} |\Upsilon\rangle = (\hat{H}_1 \otimes \hat{H}_2) (|\Psi\rangle \otimes |\Phi\rangle) = (\hat{H}_1 |\Psi\rangle) \otimes (\hat{H}_2 |\Phi\rangle)$$

$$i\hbar \partial_t |\Upsilon\rangle = \hat{H} |\Upsilon\rangle \longleftarrow \text{Schrödinger equation for the composite system}$$

$$|\Upsilon_1\rangle = |g\rangle|g\rangle$$

$$|\Upsilon_2\rangle = |g\rangle|e\rangle$$

$$|\Upsilon_3\rangle = |e\rangle|g\rangle$$

 $|\Upsilon_1\rangle = |g\rangle \otimes |g\rangle \qquad |\Upsilon_2\rangle = |g\rangle \otimes |e\rangle \qquad |\Upsilon_3\rangle = |e\rangle \otimes |g\rangle \qquad |\Upsilon_4\rangle = |e\rangle \otimes |e\rangle$

$$|\Upsilon_4\rangle = |e\rangle|e\rangle$$

Economical notation

Represent Transitions Due to Interaction

$$\frac{1}{\omega_{1}} |e\rangle \qquad \hat{\sigma}_{+} = |e\rangle\langle g|
\frac{1}{\omega_{1}} |e\rangle \qquad \hat{\sigma}_{-} = |g\rangle\langle e|
\frac{1}{\omega_{1}} |e\rangle \qquad \hat{\sigma}_{-} = |g\rangle\langle e|$$

$$\hat{\sigma}_{+}|g\rangle = |e\rangle$$

$$\hat{\sigma}_{-}|e\rangle = |g\rangle$$

$$\hat{\sigma}_{-}^{2}-?, \hat{\sigma}_{+}^{2}-?, \hat{\sigma}_{-}\hat{\sigma}_{+}-?, \hat{\sigma}_{+}\hat{\sigma}_{-}-?,$$

Represent Transitions Due to Interaction

Transition 1

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

Transition 2

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

Represent Transitions Due to Interaction

Transition 1

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

$$(\hat{\sigma}_{-} \otimes \hat{\sigma}_{+}) |e\rangle |g\rangle = |g\rangle |e\rangle$$

Transition 2

$$|e\rangle$$
 $|g\rangle$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$(\hat{\sigma}_{+} \otimes \hat{\sigma}_{-}) |g\rangle |e\rangle = |e\rangle |g\rangle$$

Represent Transitions Due to Interaction

Transition 1

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

$$\hat{T}_1 | \Upsilon_3 \rangle = | \Upsilon_2 \rangle$$

$$\hat{T}_1 | \Upsilon_i \rangle = ?$$

Transition 2

$$|e\rangle$$
 $|g\rangle$

$$|e\rangle$$
 $|g\rangle$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{T}_2 | \Upsilon_2 \rangle = | \Upsilon_3 \rangle$$

$$\hat{T}_2 | \Upsilon_i \rangle = ?$$

In Terms of Transition Operators

$$\hat{H} = E_g |g\rangle\langle g| + E_e |e\rangle\langle e|$$

$$E_e$$
—— $|e\rangle$

$$E_g$$
—— $|g|$

$$E_e - E_g = \hbar \omega$$

$$\hat{H} = \frac{\hbar\omega}{2} \left(|e\rangle\langle e| - |g\rangle\langle g| \right)$$

$$+\hbar\omega/2$$
 — $|e\rangle$

$$-\hbar\omega/2$$
 — $|g\rangle$

$$\hat{H} = \frac{\hbar\omega}{2} \left(\hat{\sigma}_{+} \hat{\sigma}_{-} - \hat{\sigma}_{-} \hat{\sigma}_{+} \right) = \frac{\hbar\omega}{2} \left[\hat{\sigma}_{+}, \hat{\sigma}_{-} \right]$$

Only energy difference matters in physics.

In Terms of Transition Operators

$$\hat{H} = E_g |g\rangle\langle g| + E_e |e\rangle\langle e|$$

$$E_e$$
—— $|e\rangle$

$$E_g$$
—— $|g\rangle$

$$E_e - E_g = \hbar \omega$$

$$\hat{H} = \frac{\hbar\omega}{2} \left(|e\rangle\langle e| - |g\rangle\langle g| \right)$$

$$+\hbar\omega/2$$
 — $|e\rangle$

$$-\hbar\omega/2$$
 — $|g\rangle$

$$\hat{H} = \frac{\hbar\omega}{2} \left(\hat{\sigma}_{+} \hat{\sigma}_{-} - \hat{\sigma}_{-} \hat{\sigma}_{+} \right) = \frac{\hbar\omega}{2} \left[\hat{\sigma}_{+}, \hat{\sigma}_{-} \right]$$

Commutator

In Terms of Transition Operators

$$\hat{\sigma}_z = \hat{\sigma}_+ \hat{\sigma}_- - \hat{\sigma}_- \hat{\sigma}_+ = \left[\hat{\sigma}_+, \hat{\sigma}_- \right]$$

$$\hat{H} = \frac{\hbar\omega}{2} \left(|e\rangle\langle e| - |g\rangle\langle g| \right)$$

$$+\hbar\omega/2$$
 — $|e\rangle$

$$-\hbar\omega/2$$
 — $|g\rangle$

$$\hat{H} = \frac{\hbar\omega}{2}\hat{\sigma}_z$$

Qubit Hamiltonian

In Terms of Transition Operators

$$\hat{\sigma}_z = \hat{\sigma}_+ \hat{\sigma}_- - \hat{\sigma}_- \hat{\sigma}_+ = \left[\hat{\sigma}_+, \hat{\sigma}_- \right]$$

$$\sigma = F$$

In Notebook code we use different notation.

In Terms of Transition Operators

$$\hat{\sigma}_z = \hat{\sigma}_+ \hat{\sigma}_- - \hat{\sigma}_- \hat{\sigma}_+ = \left[\hat{\sigma}_+, \hat{\sigma}_- \right]$$

$$\sigma = F$$

$$\hat{H} = \frac{\hbar\omega}{2} \left(|e\rangle\langle e| - |g\rangle\langle g| \right)$$

$$+\hbar\omega/2$$
 — $|e\rangle$

$$-\hbar\omega/2$$
 — $|g\rangle$

$$\hat{H} = \frac{\hbar\omega}{2}\hat{\sigma}_z$$

But σ s are used in QuTiP

Fully Quantum Hamiltonian

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

$$\hat{H}_1 = \frac{\hbar \omega_1}{2} \hat{\sigma}_z$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{H} = \hat{H}_1 \otimes \hat{I}_2 + \hat{I}_1 \otimes \hat{H}_2 + \epsilon \left(\hat{T}_1 + \hat{T}_2\right)$$

$$i\hbar\partial_t|\Upsilon\rangle = \hat{H}|\Upsilon\rangle$$

$$|\Upsilon\rangle = |\Psi\rangle \otimes |\Phi\rangle$$

Fully Quantum Hamiltonian

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

$$\hat{H}_1 = \frac{\hbar \omega_1}{2} \hat{\sigma}_z$$

$$\hat{I}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{I}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{I}_3 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{I}_4 = \frac{\hbar \omega_2}{2} \hat{\sigma}_z$$

$$\hat{H} = \hat{H}_1 \otimes \hat{I}_2 + \hat{I}_1 \otimes \hat{H}_2 + \epsilon \left(\hat{T}_1 + \hat{T}_2\right)$$

$$i\hbar\partial_t|\Upsilon\rangle = \hat{H}|\Upsilon\rangle$$

$$|\Upsilon\rangle = |\Psi\rangle \otimes |\Phi\rangle$$

NOT always!

Fully Quantum Hamiltonian

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

$$\hat{H}_1 = \frac{\hbar \omega_1}{2} \hat{\sigma}_z$$

$$\hat{H}_2 = \frac{\hbar \omega_2}{2} \hat{\sigma}_z$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{H} = \hat{H}_1 \otimes \hat{I}_2 + \hat{I}_1 \otimes \hat{H}_2 + \epsilon \left(\hat{T}_1 + \hat{T}_2\right)$$

Computational basis

$$|\Upsilon_1\rangle = |0\rangle |0\rangle = |00\rangle$$

$$\Upsilon_2 \rangle = |0\rangle |1\rangle = |01\rangle$$

$$|\Upsilon_3\rangle = |1\rangle|0\rangle = |01\rangle$$

$$|\Upsilon_1\rangle = |0\rangle|0\rangle = |00\rangle \qquad |\Upsilon_2\rangle = |0\rangle|1\rangle = |01\rangle \qquad |\Upsilon_3\rangle = |1\rangle|0\rangle = |01\rangle \qquad |\Upsilon_4\rangle = |1\rangle|1\rangle = |11\rangle$$

Fully Quantum Hamiltonian

$$\hat{T}_1 = \hat{\sigma}_- \otimes \hat{\sigma}_+$$

$$\hat{H}_1 = \frac{\hbar \omega_1}{2} \hat{\sigma}_z$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$|e\rangle$$

$$\hat{H}_2 = \frac{\hbar \omega_2}{2} \hat{\sigma}_z$$

$$\hat{T}_2 = \hat{\sigma}_+ \otimes \hat{\sigma}_-$$

$$\hat{H} = \hat{H}_1 \otimes \hat{I}_2 + \hat{I}_1 \otimes \hat{H}_2 + \epsilon \left(\hat{T}_1 + \hat{T}_2\right)$$

Computational basis

$$|\Upsilon_1\rangle = |0\rangle |0\rangle = |00\rangle$$

$$|\Upsilon_2\rangle = |0\rangle |1\rangle = |01\rangle$$

$$|\Upsilon_2\rangle = |0\rangle |1\rangle = |01\rangle$$
 $|\Upsilon_3\rangle = |1\rangle |0\rangle = |01\rangle$

$$|\Upsilon_4\rangle = |1\rangle |1\rangle = |11\rangle$$

Bell States basis

$$|\Phi^{+}\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$$

$$|\Phi^{-}\rangle = (|00\rangle - |11\rangle)/\sqrt{2}$$

$$|0\rangle - |11\rangle)/\sqrt{2}$$

$$|\Psi^{+}\rangle = (|01\rangle + |10\rangle)/\sqrt{2}$$
$$|\Psi^{-}\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$$

NOT product!

Self-Test

Answer These Questions 1hr After Class

- 1. What is a qubit?
- 2. What is a composite system?
- 3. How many basis states are there for a qubit pair? For qubit trio? For N-qubits?
- 4. How does one know that systems are interacting?

Homework Problems

Interacting Qubits

- 1. Evaluate $\hat{\sigma}_{-}^2$, $\hat{\sigma}_{+}^2$, $\hat{\sigma}_{-}\hat{\sigma}_{+}$, $\hat{\sigma}_{+}\hat{\sigma}_{-}$.
- 2. Evaluate $[\hat{T}_1, \hat{T}_2]$.
- 3. Write the Hamiltonian of interacting qubits in terms of the operators $|\Upsilon_i\rangle\langle\Upsilon_i|$.
- 4. Evaluate $\hat{T}_i | \Upsilon_j \rangle$ for all i and j combinations.
- 5. Study the Jupyter Notebook with Qubit Interaction.

Quantum Theory

In a Nutshell

II. POSTULATES FOR QUANTUM MECHANICS

In this paper, all state vectors are supposed to be normalized, and mixed states are represented by density operators i.e., positive operators with unit trace. Let A be an observable with a nondegenerate purely discrete spectrum. Let ϕ_1, ϕ_2, \ldots be a complete orthonormal sequence of eigenvectors of A and a_1, a_2, \ldots the corresponding eigenvalues; by assumption, all different from each other.

According to the standard formulation of quantum mechanics, on the result of a measurement of the observable A the following postulates are posed:

- (A1) If the system is in the state ψ at the time of measurement, the eigenvalue a_n is obtained as the outcome of measurement with the probability $|\langle \phi_n | \psi \rangle|^2$
- (A2) If the outcome of measurement is the eigenvalue a_n , the system is left in the corresponding eigenstate ϕ_n at the time just after measurement.

The postulate (A1) is called the *statistical formula*, and (A2) the *measurement axiom*. The state change $\psi \mapsto \phi_n$ described by the measurement axiom is called the *state reduction*.

You will understand this paragraph in the end of the course.