Discrete Math Homework 6

noflowerzzk

2024.10.27

1

Proof. Let \mathcal{J} , where $\mathcal{J}(p) = \mathbf{T}$, $\mathcal{J}(q) = \mathbf{F}$, $\mathcal{J}(r) = \mathbf{F}$, we have

$$[\![(p \wedge q) \rightarrow r]\!]_{\mathcal{J}} = \mathbf{T}, [\![(p \rightarrow r) \wedge (q \rightarrow r)]\!]_{\mathcal{J}} = \mathbf{F}$$

That means that they are not equivalent.

 $\mathbf{2}$

They are not logically equivalent.

Proof. Let \mathcal{J} is a S-interpretation, where:

- \mathcal{J} 's domain is \mathbb{Z} ,
- $\mathcal{J}(P)(x) = \mathbf{T}$ iff. x is an even number,
- $\mathcal{J}(Q)(x) = \mathbf{T}$ iff. x is an odd number.

Then for all $a \in \mathbb{Z}$, $[\![\forall x (P(x) \to Q(x))]\!]_{\mathcal{J}} = \mathbf{T}$ iff.

$$\mathcal{J}(P)(a) \to \mathcal{J}(Q)(a) = \mathbf{T}$$

(for all $a \in \mathbb{Z}$).

Let a=2, $\mathcal{J}(P)(a)=\mathbf{T}$, and $\mathcal{J}(Q)(a)=\mathbf{F}$, which means that $[\![\forall x(P(x)\to Q(x))]\!]_{\mathcal{J}}=\mathbf{F}$. However, $[\![\forall x(P(x))]\!]_{\mathcal{J}}=\mathcal{J}(P)(a)=\mathbf{F}$, $[\![\forall x(Q(x))]\!]_{\mathcal{J}}=\mathcal{J}(Q)(a)=\mathbf{T}$, (a=2). So $[\![\forall x(P(x))\to\forall x(Q(x))]\!]_{\mathcal{J}}=\mathbf{T}\neq [\![\forall x(P(x)\to Q(x))]\!]_{\mathcal{J}}$.

So they are not equivalent.

3

Proof. For all \mathcal{J} is a S-interpretation, \mathcal{J} 's domain is A. Then $[\exists x(P(x) \to \forall yP(y))]_{\mathcal{J}} = \mathbf{T}$ if for all $a \in A$, $\mathcal{J}' = \mathcal{J}[x \mapsto a][y \mapsto a]$

$$\llbracket (P(x) \to QPy)
brace \rrbracket_{\mathcal{J}'} = \mathcal{J}'(P)(a) \to \mathcal{J}'(P)(a) = \mathcal{J}(P)(a) \to \mathcal{J}(P)(a) = \mathbf{T}$$

If $\mathcal{J}(P)(a) = \mathbf{T}$, then $\mathcal{J}(P)(a) \to \mathcal{J}(P)(a) = \mathbf{T}$.

If $\mathcal{J}(P)(a) = \mathbf{F}$, then $\mathcal{J}(P)(a) \to \mathcal{J}(P)(a) = \mathbf{T}$.

So $\exists x(P(x) \to \forall y P(y))$ is true on any interpretation.