statistics under random multigraph models

✓ M_1 and M_2

- tendency for within and between vertex category edges (homophily/heterophily)

✓ M_2 and R_2

- simplicity statistics
- single ties within vertex category (isolation)

 $\checkmark R_0$ and R_1

- R_0 : tendency for isolated vertices (network diffusion)
- R_1 : simple occupancy of edges

 $\checkmark R_0 + R_1$ compared to $R_3 + \cdots + R_k$

- tendency for strengthening ties (multiplexity)

 $\checkmark M_1$ and R_1

- single ties within vertex category (isolation)

 \checkmark interval estimates for R_k

- if overlapping for multiple edge types \Rightarrow multiplexity

> to avoid computational difficulties we can to use the IEA approximations

moments of these statistics can be derived under IEA but not under RSM

approx 95% intervals

 $\hat{E} \pm 2\sqrt{\hat{V}}$

statistics under random multigraph models

- √ M₁ and M₂
 - tendency for within and between vertex category edges (homophily/heterophily)
- $\checkmark R_0$ and R_1
 - R_0 : tendency for isolated vertices (network diffusion)
 - R_1 : simple occupancy of edges
- $\checkmark M_1$ and R_1
 - single ties within vertex category (isolation)

- √ M₂ and R₂
- simplicity statistics
- single ties within vertex category (isolation)
- $\checkmark R_0 + R_1$ compared to $R_3 + \cdots + R_k$
- tendency for strengthening ties (multiplexity)
- \checkmark interval estimates for R_k
- if overlapping for multiple edge types ⇒ multiplexity

moments of these statistics can be derived under IEA but not under RSM

> to avoid computational difficulties we can to use the IEA approximations

approx 95% intervals
$$\hat{E} \pm 2\sqrt{\hat{V}}$$

goodness of fit tests