Дорогой храбрый воин или храбрая воительница! Удачи тебе на малом празднике по прикладной статистике! Начни с того, что напиши клятву и подпишись под ней:

Я клянусь честью студента, что буду выполнять эту работу самостоятельно.

А теперь — задачки:

1. Компания «Голден
Альп» тестирует два новых вкуса шоколада: с орешками и солёной карамелью.
 Фокус-группа разбивают на две непересекающиеся части: N_1 человек пробуют шоколад с орешками, а
 N_2 — с солёной карамелью.

Каждый участник пробует лишь один тип шоколада и одобряет или не одобряет опробованный вкус.

Пусть X_1 — число человек, одобривших шоколад с орешками, а X_2 — одобривших шоколад с солёной карамелью.

Будем предполагать, что $X_1 \sim \text{Bin}(N_1, p_1), X_2 \sim \text{Bin}(N_2, p_2).$

Руководство компании «Голден Альп» хочет узнать, есть ли основание полагать, что один вкус шоколада предпочитается другому.

Для этого её статистический отдел предлагает исследовать величину $p = p_1 - p_2$.

- а) Найди \hat{p}_{ML} .
- б) Построй 95% доверительный интервал для p.
- в) Подробно опиши, как построить 95% доверительный интервал для p при помощи какогонибудь из методов бутстрэпа (метод выбирай сам).
- г) По результатам эксперимента оказалось, что $N_1=N_2=500,\,X_1=400,\,X_2=390.$ Сформулируй гипотезу, которая позволит ответить на вопрос руководства компании. Протестируй эту гипотезу при помощи LR и LM тестов на уровне значимости 5%.
- 2. Пусть X и Y-n-мерные случайные векторы, образованные из независимых одинаково распределённых случайных величин.

Докажи, что $D_{KL}(p_X,p_Y)=nD_{KL}(p_{X_1},p_{Y_1})$, где p — функция плотности.

3. Докажи асимптотическую эквивалентность тестов LR и W в следующем смысле:

$$\operatorname{plim}_{n\to\infty}\frac{W}{LB}=1.$$

Hе знаешь с чего начать? Разложи логарифм правдоподобия по Тейлору и найди приблизительное выражение для LR-статистики.

О храбрый воин и храбрая воительница! На следующей страничке есть ещё задачки!

- 4. Исходная выборка y вектор из n независимых случайных величин, равновероятно принимающих значения 0 и 1. Пусть y^* одна из бутстэп-выборок.
 - а) Просто для удобства выпиши $E(y_i)$, $Var(y_i)$, $E(\bar{y})$, $Var(\bar{y})$.
 - б) Найди $E(y_i^*)$, $Var(y_i^*)$, $E(\bar{y}^*)$, $Var(\bar{y}^*)$.
 - в) Найди $Cov(y_i, y_i^*)$, $Cov(\bar{y}, \bar{y}^*)$.
- 5. У меня есть три монетки. Они выпадают орлом с вероятностями p_1, p_2 и $p_3 = 1$. Я провожу эксперимент из 100 раундов.

В каждом раунде я равновероятно выбираю одну из монеток. Подбрасываю её два раза и записываю число выпавших орлов.

После окончания эксперимента у меня остаётся на бумажке 100 записанных чисел. Какая монетка подкидывалась в каждом раунде, я не помню.

Опиши ЕМ-алгоритм для оценивания неизвестных p_1 и p_2 .

Если формулы для какого-то шага выводятся в явном виде, то выведи их. Если формулы для какогото шага не выводятся в явном виде, то объясни, какая оптимизационная задача будет решаться численно.

- 6. Рассмотрим модель множественной регрессии $y=X\beta+u$, оцениваемую при помощи МНК. Число наблюдений равно n=500, число регрессоров равно k=10, включая константный. Все регрессоры ортогональны друг другу.
 - а) Мелиодас строит оценку МНК по константному и первым следующим за ним четырем регрессорам, а Элизабет строит оценку МНК по константному и оставшимся пяти регрессорам. Покажи на $e \partial u h o u$ картинке МНК \hat{y} , TSS, ESS, RSS и R^2 в их регрессиях.
 - б) Эсканор строит оценку МНК по всем 10 регрессорам. Покажи на картинке МНК из предыдущего пункта \hat{y} , TSS, ESS, RSS и R^2 в его регрессии.
 - в) Как соотносятся \mathbb{R}^2 в регрессиях Эскарнора, Мелиодаса и Элизабет?