

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

-----ANÁLISIS DE ALGORITMOS------ANÁLISIS DE ALGORITMOS------

Número de impresiones

PROFESOR:

Franco Martínez Edgardo Adrián

ALUMNO:

 $Meza\ Vargas\ Brandon\ David-2020630288$

GRUPO: 3CM13

-----Cédige 01----

```
int i,j=0,n;

if(argc != 2){
    printf("\nIntroduce el valor de n");
    exit(1);
}

n = atoi(argv[1]);

for(i=10; i<n*5; i*=2)
    printf("\n%dAlgoritmos", ++j);
}</pre>
```

Función

El comportamiento del ciclo es exponencial cuando se dice que i incrementa de la siguiente forma: **i*=2,** por lo tanto, tenemos un comportamiento exponencial, pero también debemos tener en cuenta el límite que es 5n, de esta forma nos queda la siguiente función piso:

$$f(n) = \lfloor \log_2 5n \rfloor$$

Pero no queda ahí, sino que también debemos tener en cuenta los saltos que dio al inicio, de esta forma restárselo a la función anterior para así obtener el número de impresiones correctos, siendo los primeros saltos:

$$f(n) = \lfloor \log_2 10 \rfloor$$

Así tenemos que:

$$f(n) = \lfloor \log_2 5n \rfloor - \lfloor \log_2 10 \rfloor$$

N	Resultados Teóricos	Resultados Empíricos
-1	Math error	0
0	Math error	0
1	0	0
2	0	0
3	1	1
5	2	2
15	3	3
20	4	4
100	6	6

Análisis de algoritmos		Meza Vargas Brandon David 3CM13 impresiones
409	8	8
500	8	8
593	9	9
1000	9	9
1471	10	10
1500	10	10
2801	11	11
3000	11	11
5000	12	12
10000	13	13
20000	14	14

·····Cádiga 02····

Función

Podemos observar que el for que está más adentro tiene un comportamiento lineal, resultando en la función techo:

$$f(n) = \lfloor n/2 \rfloor$$

Posteriormente, vemos que el primer for va a ir reduciendo en j/=2 y dentro comienza con un if que nos da otra condición de que sea menor a la mitad de n, junto con esta y la propia condición del for tenemos 2, las cuales representan dos valores menos al valor resultante de la función de este for, siendo entonces la función piso:

$$f(n) = \lfloor \log_2(n) - 2 \rfloor$$

De esta forma podemos determinar la función final del código:

$$f(n) = \left\lceil \frac{n}{2} \right\rceil \lfloor (\log_2(n) - 2) \rfloor$$

N	Resultados Teóricos	Resultados Empíricos
-1	0	0
0	0	0
1	0	0
2	-1	0
3	0	0
5	0	0
15	8	8

Análisis de algoritmos		Meza Vargas Brandon David 3CM1	Calcular el número de impresiones
20	20		20
100	200		200
409	123		123
500	1500		1500
593	2079		2079
1000	3500		3500
1471	5888		5888
1500	6000		6000
2801	12609		12609
3000	13500		13500
5000	25000		25000
10000	55000		55000
20000	120000		120000

-----Código 03-----

Función

Primeramente, comenzamos analizando los dos for internos del código, si lo analizamos bien es una serie:

$$\sum_{j=0}^{n} n - j$$

Cuya convergencia es:

$$\sum_{j=0}^{n} n - j = \frac{n^2 - n}{2} + n = \left\lfloor \frac{n^2 + n}{2} \right\rfloor$$

Analizando el primer for, tenemos que su función correspondiente es la función techo:

$$f(n) = \left\lceil \frac{5n}{2} \right\rceil$$

De esta forma, multiplicando, podemos concluir que la función del código es:

$$f(n) = \left\lceil \frac{5n}{2} \right\rceil \left\lfloor \frac{n^2 + n}{2} \right\rfloor$$

N	Resultados Teóricos	Resultados Empíricos
-1	0	0
0	0	0
1	3	3
2	15	15
3	48	48
5	195	195
15	4560	4560
20	10500	10500
100	1262500	1262500
409	85773435	85773435
500	156562500	156562500
593	261187443	261187443
1000	1251250000	1251250000
1471	3982008768	3982008768
1500	4221562500	4221562500
2801	$2.74811796 \times 10^{10}$	$2.74811796 \times 10^{10}$
3000	3.376125×10^{10}	3.376125×10^{10}
5000	1.5628125×10^{11}	1.5628125x10 ¹¹
10000	1.250125×10^{12}	1.250125×10^{12}
20000	1.00005×10^{13}	1.00005×10^{13}

En los resultados Empíricos, a partir de la N=1000, se suponen correctos los resultados ya que los anteriores fueron todos correctos, sin embargo, a partir de 1000 el proceso es muy tardado debido a la cantidad de impresiones que realiza.

-----Cédige 04-----

```
int main (int argc, char ** argv){
    int i, j=0,n, k=0;

    if(argc != 2){
        printf("\nIntroduce el valor de n");
        exit(1);
    }

    n = atoi(argv[1]);

    i = n;
    while(i >= 0){
        for(j=n; i<j; i-=2, j/=2)
            printf("\n%dAlgoritmos", ++k);
    }
}</pre>
```

Función

Si analizamos bien el código nos damos cuenta de que no se imprimirá en ningún momento la palabra algoritmos puesto que antes de entrar al bucle while igualamos i a n, esto provoca que la condición del for dentro de while nunca se cumpla, pues debido a que j empieza en n, i y j siempre serán iguales.

$$f(n) = 0$$

N	Resultados Teóricos	Resultados Empíricos
-1	0	0
0	0	0
1	0	0
2	0	0
3	0	0
5	0	0
15	0	0
20	0	0
100	0	0
409	0	0
500	0	0
593	0	0

Análisis de algoritmos	Meza Vargas Brandon David 3CM13	Calcular el número de impresiones
1000	0	0
1471	0	0
1500	0	0
2801	0	0
3000	0	0
5000	0	0
10000	0	0
20000	0	0
6×10^{9} - 4×10^{9} -		
2×10* -		
7-109		

······Cédige 05·····

Función

Primeramente, si analizamos el for interno vemos que j depende de i, esto nos lleva a pensar en una sumatoria, ya que el modelo del for interno nos quedaría de la siguiente forma:

$$f(n) = \left\lceil \frac{5n-i}{3} \right\rceil$$

Es importante recordar que la función será techo, pero tenemos un detalle, la i avanza de forma exponencial como lo indica el for más externo, es decir, va aumentando en potencias de 2:

$$\left[\frac{5n-0}{3}\right] + \left[\frac{5n-2}{3}\right] + \left[\frac{5n-4}{3}\right] + \left[\frac{5n-8}{3}\right] + \left[\frac{5n-16}{3}\right] \dots$$

Por lo tanto, nos lleva a pensar en una sumatoria, pero viendo el primer for vemos que la i no va a llegar hasta n, ya que como se menciona, su comportamiento es exponencial, por lo tanto, el límite superior de la sumatoria seria:

$$f(n) = |\log_2(4n)| - -$$
 Siendo función piso

Siendo la función resultante del código la siguiente, tengamos en cuenta que debemos de sumar el caso donde j inicia en 1:

$$f(n) = \left\lfloor \frac{5n}{3} \right\rfloor + \sum_{i=1}^{\lfloor \log_2(4n) \rfloor} \left\lceil \frac{5n-2^i}{3} \right\rceil$$

Lo comprobaremos "a mano" para N= 5, 15 y 20:

N=5

$$f(5) = \left\lfloor \frac{5(5)}{3} \right\rfloor + \sum_{i=1}^{4} \left\lfloor \frac{5n-2^i}{3} \right\rfloor = \left\lceil \frac{5(5)-2^1}{3} \right\rceil + \left\lceil \frac{5(5)-2^2}{3} \right\rceil + \left\lceil \frac{5(5)-2^3}{3} \right\rceil + \left\lceil \frac{5(5)-2^4}{3} \right\rceil = \left\lfloor 8.33 \right\rfloor + 8 + 7 + 6 + 3 = 32$$

N = 15

$$f(15) = \left\lfloor \frac{5(15)}{3} \right\rfloor + \sum_{i=1}^{5} \left\lfloor \frac{5n-2^i}{3} \right\rfloor = \left\lceil \frac{5(15)-2^1}{3} \right\rceil + \left\lceil \frac{5(15)-2^2}{3} \right\rceil + \left\lceil \frac{5(15)-2^3}{3} \right\rceil + \left\lceil \frac{5(15)-2^4}{3} \right\rceil$$

$$= 25 + 25 + 24 + 23 + 20 + 15 = 132$$

N=20

$$f(20) = \left\lfloor \frac{5(20)}{3} \right\rfloor + \sum_{i=1}^{6} \left\lfloor \frac{5n-2^{i}}{3} \right\rfloor$$

$$= \left\lfloor \frac{5(20)-2^{1}}{3} \right\rfloor + \left\lfloor \frac{5(20)-2^{2}}{3} \right\rfloor + \left\lfloor \frac{5(20)-2^{3}}{3} \right\rfloor + \left\lfloor \frac{5(20)-2^{4}}{3} \right\rfloor + \left\lfloor \frac{5(20)-2^{4}}{3} \right\rfloor + \left\lfloor \frac{5(20)-2^{4}}{3} \right\rfloor$$

$$= 33 + 33 + 32 + 31 + 28 + 23 + 12 = 192$$

Tabla Comparativa

N	Resultados Teóricos	Resultados Empíricos
-1	MATH ERROR	0
0	0	0
1	3	3
2	8	8
3	17	17
5	32	32
15	132	132
20	192	192
100	1333	1333
409	6820	6820
500	8486	8486
593	10497	10497
1000	18639	18639
1471	29146	29146
1500	29776	29776
2801	59898	59898
3000	64546	64546
5000	114080	114080
10000	244827	244827
20000	522979	522979

