MAT1071 MATHEMATICS I

7.1 CURVE SKETCHING EXAMPLES

MAT1071 Ytu Bologna:

9 Asymptotes of Graphs, Curve Sketching Antiderivatives, Indefinite Integrals, Integral Tables

Curve Sketching

Procedure for Graphing y = f(x)

- 1. Identify the domain of f and any symmetries the curve may have.
- **2.** Find the intercepts
- **3.** Identify any asymptotes that may exist
- 4. Find f'.

Find the critical points of f, if any, and identify the function's behavior at each one. Find where the curve is increasing and where it is decreasing.

5. Find f"...

Find the points of inflection, if any occur, and determine the concavity of the curve.

- **6.** Construct the sign table for f' and f".
- 7. Plot key points, such as the intercepts and the points found in Steps 2-5, and sketch the curve together with any asymptotes that exist.

3

EXAMPLE Sketch the graph of
$$f(x) = \frac{x^2}{\sqrt{x+1}}$$
.

Solution

Sketch the graph of
$$f(x) = \frac{x^2}{\sqrt{x+1}}$$
.

Sketch the graph of
$$f(x) = \frac{x^2}{\sqrt{x+1}}$$
.

EXAMPLE Sketch the graph of
$$f(x) = \frac{x^2}{\sqrt{x+1}}$$
.

Domain =
$$\{x \mid x+1>0\} = \{x \mid x>-1\} = (-1, \infty)$$

The x- and y-intercepts are both 0.

Symmetry: None Since

$$f(-x) + f(x)$$
 Theritalass $\lim_{x \to \infty} \frac{1}{\sqrt{x+1}} = \infty$ \Longrightarrow none

vertical asy
$$\Rightarrow \lim_{x \to -1} \frac{x^2}{\sqrt{x+1}} = \infty$$
 $\Rightarrow \boxed{X = -1}$

$$2x\sqrt{r+1} - x^2 \cdot 1/(2\sqrt{r+1})$$

8

$$f'(x) = \frac{2x\sqrt{x+1} - x^2 \cdot 1/(2\sqrt{x+1})}{x+1} = \frac{x(3x+4)}{2(x+1)^{3/2}}$$

Asst. Prof. Dr. Nurten GÜRSES

f is decrease on (-1,0) increase on (0,0) $d+ \chi=0$ f(0)=0local min. sent to boily of inflerent

10

EXAMPLE
$$f(x) = (x-2)^2$$

Solution

- Intercerts X=0 => y=-4
- lin f(x) = a => thee exists oblique asymptote 17=x-3 0 Pride (x3-4x4/4-1 大うさる ニューの $\lim_{N\to\infty} f(X) - u(X) = -3$ M = 11 (X-1) X = 1

where any => 11m (x-2)2 = 00 => [x=1] x+1+-00

EXAMPLE Frances

Sketch the graph of bricker f(x) = x²-2

Solution (1) Det = R-123 (2) Symmetres $f(-x) = \frac{x^2}{x^2} + f(x)$ (is not even odd)

(0,0) O=E=(x) = O=X 9=0=X=0

(8)
$$f_{11}(x) = \frac{(x-5)_{2}}{8} \Rightarrow (x=5)$$

19

X=2 vertical ay

Asst. Prof. Dr. Nurten GÜRSES

a) f fonksiyonunun tanım kümesini bulunuz

b) Eğer varsa, f fonksiyonunun tüm asimptotlarını bulunuz .

$$f(x) = \frac{x^3 - 3x^2 + 1}{x^3}$$

c) f fonksiyonunun artan/azalan olduğu aralıkları belirleyiniz. Eğer varsa, yerel ekstremum değerlerini bulunuz

$$f(x) = \frac{x^3 - 3x^2 + 1}{x^3}$$

d) f fonksiyonunun konkavlığını inceleyiniz ve buküm nokta(lar)ını bulunuz

3) f fonksiyoni
$$f(x) = \frac{x^3 - 3x^2 + 1}{x^3}$$
 placak şekilde tanımlansın.

a) f fonksiyonunun tanım kümesini bulunuz (21 idan).

b) Eğer varsa, f fonksiyonunun tüm asimptotlarını bulunuz :

lim
$$f(x) = \infty$$
 olduğundan $x=0$ Düsey asimptot

c) fonksiyonunun artan/azalan olduğu aralıkları belirleyiniz. Eğer varsa, yerel ekstremum değerlerini bulunuz ' $f'(x) = \frac{3}{x^2} - \frac{3}{x^4} = 0 \implies x^4 - x^2 = 0 \implies x^2(x^2 - 1) = 0 \implies x = 1$ $f'(x) = \frac{3}{x^2} - \frac{3}{x^4} = 0 \implies x^4 - x^2 = 0 \implies x^2(x^2 - 1) = 0 \implies x = -1$ $f'(x) = \frac{3}{x^2} - \frac{3}{x^4} = 0 \implies x^4 - x = 0 \implies x^2(x^2 - 1) = 0 \implies x = -1$ $f'(x) = \frac{3}{x^2} - \frac{3}{x^4} = 0 \implies x^4 - x = 0 \implies x^2(x^2 - 1) = 0 \implies x = -1$ $f'(x) = \frac{3}{x^2} - \frac{3}{x^4} = 0 \implies x^4 - x = 0 \implies x^2(x^2 - 1) = 0 \implies x = -1$

- (× -	1 0	1	+04			A STATE OF THE STA		all the same of th
.1/ \	+				(-0,-1) We	$(1,\infty)$	1 => f	is	increa
f(x)							AS THE RESERVE TO THE		
7.7	7	1	11	7	(-1,0) kd	(0,1)	= }	- 15	decre
	,	1 20 11	71.				Name and St.	3.4	Mary In the second

EXAMPLE Sketch the graph of fix1 = x Cnx

Sketch the graph of f(x) = x Cnx

EXAMPLE Sketch the groph of f(x) = x Cnx

- Solution @ Domain x>0 Df = (0,0)
 - (0,1) T=X 10 0=X = 0 = X = 0 = X (1,0) (x +0)
 - (3) $\lim_{x \to 0^+} x \cos x = \lim_{x \to 0^+} \frac{x}{x}$

$$= \lim_{x \to 0^+} \frac{1}{x} = 0 \to 10 \text{ served}$$

I'm X CUX = as no howarter ason. Kyou

29

EXAMPLE

Sketch the graph of $y = \ln(4 - x^2)$.

Sketch the graph of $y = \ln(4 - x^2)$.

EXAMPLE Sketch the graph of $y = \ln(4 - x^2)$.

Solution

The domain is

The y-intercept is $f(0) = \ln 4$. To find the x-intercept we set

$$y = \ln(4 - x^2) = 0$$

(+12,0) (-13,0)

We know that $\ln 1 = \log_e 1 = 0$ (since $e^0 = 1$), so we have

- $4 x^2 = 1 \Rightarrow x^2 = 3$ and therefore the x-intercepts are $\pm \sqrt{3}$. $+ \sqrt{3}$. Since f(-x) = f(x), f is even and the curve is symmetric about the y-axis.
- We look for vertical asymptotes at the endpoints of the domain. Since $4 - x^2 \rightarrow 0^+$ as $x \rightarrow 2^-$ and also as $x \rightarrow -2^+$, we have

$$\lim_{x \to 2^{+}} \ln(4 - x^{2}) = -\infty \qquad \lim_{x \to -2^{+}} \ln(4 - x^{2}) = -\infty$$

X = 2

vortical asymptes

$$\int f'(x) = \frac{-2x}{4-x^2}$$

Since f'(x) > 0 when -2 < x < 0 and f'(x) < 0 when 0 < x < 2, f is increasing on (-2, 0) and decreasing on (0, 2).

F. The only critical number is x = 0. Since f' changes from positive to negative at 0, $f(0) = \ln 4$ is a local maximum by the First Derivative Test.

G.

x=- 5 > tolg

Since f''(x) < 0 for all x, the curve is concave downward on (-2, 2) and has no inflection point.

EXAMPLE Sketch the graph of $f(x) = x + (x^2 - 1)$

Solution 34

EXAMPLE

Sketch the graph of $f(x) = x + \sqrt{x^2 - 1}$

Solution (1) Dt
$$x_5-1>0 \Rightarrow x>1/x=-1$$
 Dt= $(-\infty,-1)$ 0[1] (x)

Descriptions
$$x + (x^2 - 1 = -1)$$
 to verical acom.

 $x_3 - 1^+$
 $x_3 - 1^+$

$$\sum_{k=0}^{\infty-\infty} \left(x + \lfloor x_{2} + 1 \rfloor \frac{\left(x - \lfloor x_{2} - 1 \rfloor\right)}{\left(x - \lfloor x_{2} - 1 \rfloor\right)} = \lim_{k \to \infty} \frac{1}{\sqrt{1 + \left(1 - \frac{1}{\lambda^{2}}\right)}} = 0$$

$$= \mu m \frac{x(1+(1-1))}{1} = 0$$

$$\frac{w = \mu w}{DPliane} \times + (x_5 - 1) = \mu w + |x| \sqrt{1 - x_5} = 5$$

$$N = \lim_{x \to \infty} x + [x^2 - 1] - 2x = \lim_{x \to \infty} \frac{x - [x^2 - 1]}{-1} = 0$$

7=wx+v= 3x -> oplique asym.

$$Q f''(x) = \frac{1}{-1} \Rightarrow x = \pm 1$$

Graphing Equations

Use the steps of the graphing procedure to graph the equations

9.
$$y = x^2 - 4x + 3$$

11.
$$y = x^3 - 3x + 3$$

13.
$$y = -2x^3 + 6x^2 - 3$$

15.
$$y = (x - 2)^3 + 1$$

10.
$$y = 6 - 2x - x^2$$

12.
$$y = x(6-2x)^2$$

Graphing Rational Functions

Graph the rational functions in Exercises 75–92.

75.
$$y = \frac{2x^2 + x - 1}{x^2 - 1}$$

77.
$$y = \frac{x^4 + 1}{x^2}$$

79.
$$y = \frac{1}{x^2 - 1}$$

81.
$$y = -\frac{x^2 - 2}{x^2 - 1}$$

83.
$$y = \frac{x^2}{x+1}$$

76.
$$y = \frac{x^2 - 49}{x^2 + 5x - 14}$$

78.
$$y = \frac{x^2 + 4}{2x}$$

80.
$$y = \frac{x^2}{x^2 - 1}$$

82.
$$y = \frac{x^2 - 4}{x^2 - 2}$$

84.
$$y = -\frac{x^2 - 4}{x + 1}$$

Reference:

Thomas' Calculus, 12th Edition, G.B Thomas, M.D.Weir, J.Hass and F.R.Giordano, Addison-Wesley, 2012.