Stance Detection Michael Zhu

Using Sentiment Scores For

MIDS W266

04/14/21

Stance Detection Task

Classification task: determine the relationship between two statements {agree, disagree, unrelated}

Can be useful for determining the opinion of a piece of text

Target Statement: "Climate change/global warming is a serious concern."			
Example Sentence	Label		
If carbon dioxide emissions continue to rise beyond 2020, or even remain level, the temperature goals set in Paris become almost unattainable.	neutral		
The study is one more example that you can get any answer you want when the thermometer data errors are larger than the global warming signal you are looking for.	disagree		
Millions more people around the world are threatened by river floods in coming decades due to climate change.	agree		
45% of the general public view perceived global warming as caused by humans	neutral		
Two billion people may be displaced by rising sea levels by the turn of the next century.	agree		

Data set

2,050 sentences related to climate change scraped from news articles (data set from paper: Luo, Y., Card, D., & Jurafsky, D. 2020)

Left-leaning outlets		Right-leaning outlets		
NYT	6K	Breitbart	2.7K	
Moth. Jones	3.2K	Fox	2.6K	
WaPo	2K	Forbes	2K	
CS Monitor	1.9K	Wash. Times	1.4K	
The Nation	1.4K	Daily Caller	1.2K	
Vox	1.4K	Newsmax	1.2K	
Dem. Now	1K	Wash. Exam.	1 K	
Total	20K	Total	36K	

Class Distribution

Class Imbalance

0.3

0.2

0.1

0.0

agree disagree neutral

Luo et al., 2020

Luo et al. 2020 used BERT-base to achieve **0.75 accuracy, 0.73 macro-F1**

Engineering Sentiment Scores

Hypothesis: Authors who are more opinionated on climate change also write with stronger sentiment.

SentiWordNet-based sentiment scores (swnet-sent)

Tried 2 methods:

- SentiWordNet
 (sentiment lexicon)
- 2. distilBERT

For both methods:
sentiment for disagree
lower than for agree

(for swnet-sent: t-test, p = 0.011 for bert-sent: Wilcoxon, p < 1e-9)

Model Performance

Trained 5 variants of a BERT-base-uncased model (1,850 examples with 5-fold CV)

Table 2: Summary of model performance: (mean \pm std) across 5-fold cross-validation for each model

Model	Validation Accuracy	Validation Macro-F1
Majority Class	0.43	0.17
BERT (baseline)	0.67 ± 0.02	0.64 ± 0.03
BERT With Only "numTokens"	0.64 ± 0.03	0.65 ± 0.03
BERT With Only swnet-sent	0.66 ± 0.02	0.65 ± 0.03
BERT With Only bert-sent	0.69 ± 0.02	0.66 ± 0.03
BERT With 3 Engineered Features	0.67 ± 0.03	0.65 ± 0.04

The model with only bert-based sentiment scores performed best by a small margin (qualitatively, all models performed within the same range)

Overfitting was a major issue

Error Analysis

Most common misclassification: actual agree predict neutral

Example misclassifications:

- 1. 'The globally averaged **sea surface temperature** for 2013 is among the 10 warmest on record.'
- 2. 'By the year 2100, **floods** like the ones caused by Sandy could become **1-in-20-year events**.'
- 3. 'A domino effect will kick in if global temperatures rise.'
- 'Coal would have to be phased out even before the Paris
 Agreement to combat climate change.'
- 5. 'We can expect the **Arctic** to be **ice-free** in summer within 20 years.'

Model doesn't seem to effectively learn abstract relationships that require previous knowledge.

Conclusions

- Null result: sentiment scores did not reliably improve performance of BERT
- Overfitting was a major problem
- Architecture engineering may be more useful than feature engineering
 - Concatenating scalar values onto BERT embeddings may make the information too sparse for the model to effectively use

Stance Detection and Sentiment Analysis

Stance does not always align with sentiment

Example: "Extreme storms will be much more frequent as a result of global warming" strongly **negative sentiment**; **agrees** with "climate change is a serious concern"

Stance detection can complement sentiment analysis for tracking opinions

Thank You

Extra Slides

Engineering Sentiment Scores: bert-sent

Using distilBERT sentiment-analysis probabilities:

Example sentence (neutral sentiment): "Climate change models predict a 15 year period of global cooling."

- 1. P(negative) = 0.508 P(positive) = 0.492
- 2. "Net Sentiment" = 0.508 0.492 = 0.016
- 3. P(negative) > P(positive) so bert-sent = **-0.016**

Sentiment Analysis

Figure 2. Number of GW articles in our dataset from 2007 to 2020 in a) Left-, b) Right-leaning media.

EDA: Tokens for agree vs. disagree classes

Stance Detection Task

Classification task: determine the relationship between two statements {agree, disagree, unrelated}

Exploring how artificial intelligence technologial leveraged to combat fake news.

Conclusions

- Sentiment scores did not reliably improve performance of BERT
- Overfitting was a major problem
- Architecture engineering may be more useful than feature engineering

Stance detection can complement sentiment analysis (for applications like automatic polling and tracking public opinion)

