Inference 2, 2023, lecture 3

Rolf Larsson

November 7, 2023

Outline of the course

Chap. 3.2 Fisher information (continued):

- More on the Fisher Information
- The multivariate case

Recall: under regularity conditions, we have

Definition (3.2)

For every $\mathbf{x} \in \mathcal{A}$, we define the **score function** as the derivative of the log-likelihood function, i.e.

$$V(\theta; \mathbf{x}) = I'(\theta; \mathbf{x}) = \frac{\partial}{\partial \theta} \log\{L(\theta; \mathbf{x})\}.$$

Definition (3.3)

The **Fisher information** is defined by

$$I_{\mathbf{X}}(\theta) = \operatorname{Var}_{\theta} \{ V(\theta; \mathbf{X}) \}.$$

$$I_{\mathbf{X}}(\theta) = -\mathrm{E}_{\theta}\{I''(\theta; \mathbf{X})\} = -\mathrm{E}_{\theta}\left[\frac{\partial^2}{\partial \theta^2}\log\{\rho(\mathbf{X}; \theta)\}\right].$$

Theorem (3.3)

Let X and Y be independent random variables. If $I_X(\theta)$ and $I_Y(\theta)$ are the Fisher informations contained in X and Y, respectively, then the Fisher information contained in (X,Y) is given by

$$I_{(X,Y)}(\theta) = I_X(\theta) + I_Y(\theta).$$

Corollary (3.1)

Let $\mathbf{X} = (X_1, ..., X_n)$, where $X_1, ..., X_n$ are independent and distributed as X, that has Fisher information $i(\theta) = I_X(\theta)$. Then,

$$I_{\mathbf{X}}(\theta) = nI_{\mathbf{X}}(\theta).$$

Example 1:

- Let $\mathbf{X} = (X_1, ..., X_n)$, where $X_1, ..., X_n$ are independent and distributed as X, which is exponential with intensity β .
- Verify by direct calculation that $I_{\mathbf{X}}(\beta) = nI_{\mathbf{X}}(\beta)$.

Theorem (3.4)

Let X be a random variable with distribution P_{θ} . Suppose that another parametrization is given by $\theta = h(\xi)$ where h is differentiable. Then, the information contained in X about ξ is given by

$$I_X^*(\xi) = I_X\{h(\xi)\}\{h'(\xi)\}^2.$$

Here, $I_X(\theta)$ is the information that $X \sim P_\theta$ contains about θ and $I_X^*(\xi)$ is the information that $X \sim P_{h(\xi)}$ contains about ξ .

Example 1':

- Let $\mathbf{X} = (X_1, ..., X_n)$, where $X_1, ..., X_n$ are independent and distributed as X, which is exponential with intensity β .
- Let $\beta = 1/\mu$, where $\mu = E(X)$.
- ullet Calculate the Fisher information in the μ parametrization
 - by direct calculation.
 - ② by using the Fisher information in the β parametrization and theorem 3.4.

Theorem (3.5)

Let **X** be a random variable with $\mathbf{X} \sim P_{\theta}$.

Let $T(\mathbf{X})$ be any statistic. Suppose that regularity conditions 1-3 hold. Then,

$$I_{T(\mathbf{X})}(\theta) \leq I_{\mathbf{X}}(\theta),$$

where $I_{T(\mathbf{X})}$ is computed with respect to the distribution of $T(\mathbf{X})$

Recall the regularity conditions when the parameter θ is a scalar:

① The distributions $\{P:\theta\in\Theta\}$ have common support, so that the set

$$\mathcal{A} = \{\mathbf{x} : p(\mathbf{x}; \theta) > 0\}$$

is independent of θ .

- **②** The parameter space Θ is an open interval (finite or infinite).
- **3** For any $\mathbf{x} \in \mathcal{A}$ and all $\theta \in \Theta$, the derivative $\partial p(\mathbf{x}; \theta)/\partial \theta$ exists and is finite.

Now, assume that $\theta = (\theta_1, ..., \theta_k)'$ is k-dimensional.

Modify conditions 2 and 3 as follows:

- 2'. The parameter space $\theta \subseteq \mathcal{R}^k$ is an open set.
- 3'. For all $\mathbf{x} \in \mathcal{A}$ the likelihood function has finite partial derivatives.

Under regularity conditions 1, 2', 3':

Definition (3.5)

For all $\mathbf{x} \in \mathcal{A}$, the vector of partial derivatives (w.r.t. the parameters) of the log likelihood function

$$V(\theta; \mathbf{x}) = \left(\frac{\partial}{\partial \theta_1} I(\theta; \mathbf{x}), ..., \frac{\partial}{\partial \theta_k} I(\theta; \mathbf{x})\right)'$$

is called the score function or score vector.

Definition (3.5)

The $k \times k$ matrix

$$I_{\mathbf{X}}(\theta) = \operatorname{Cov}_{\theta}\{V(\theta; \mathbf{X})\}$$

is called the **Fisher information matrix**. The element in row j and column r is given by

$$I_{\mathbf{X}}(\theta)_{jr} = \mathrm{E}_{\theta} \left\{ \frac{\partial}{\partial \theta_{j}} I(\theta; \mathbf{X}) \frac{\partial}{\partial \theta_{r}} I(\theta; \mathbf{X}) \right\}.$$

Regularity condition 4': For all $\mathbf{x} \in \mathcal{A}$ the likelihood function has second order partial derivatives and for all $\theta \in \Theta$ and j, r = 1, ..., k,

$$\frac{\partial^2}{\partial \theta_j \partial \theta_r} \int_{\mathcal{A}} f(\mathbf{x}; \theta) d\mathbf{x} = \int_{\mathcal{A}} \frac{\partial^2}{\partial \theta_j \partial \theta_r} f(\mathbf{x}; \theta) d\mathbf{x}$$

in the continuous case, and similarly in the discrete case.

Theorem (3.6)

Suppose regularity conditions 1, 2', 3' and 4' hold.

Let $J(\theta; \mathbf{X})$ (the observed Fisher information matrix) be a $k \times k$ matrix with elements

$$J(\theta; \mathbf{X})_{jr} = -\frac{\partial^2}{\partial \theta_i \partial \theta_r} I(\theta; \mathbf{X}), \quad j, r = 1, ..., k.$$

Then the Fisher information satisfies $I_{\mathbf{X}}(\theta) = \mathbb{E}_{\theta} \{ J(\theta; \mathbf{X}) \}.$

Example 2:

- Suppose $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent and distributed as X
- and that we have a sample $\mathbf{x} = (x_1, ..., x_n)$.
- Calculate the Fisher information matrix of $X \sim N(\mu, \sigma^2)$ (both parameters unknown).

Example 3:

- Suppose $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent and distributed as X
- and that we have a sample $\mathbf{x} = (x_1, ..., x_n)$.
- Let X be multinomial such that the probability function is $p(k) = p_k > 0$ for k = 1, 2, 3, 4 and p(k) = 0 otherwise.
- Calculate the Fisher information matrix of X.

News of today

- For independent random variables, the Fisher information is additive.
- The Fisher information for a transformed parameter is given by a simple formula.
- A statistic does not contain more (Fisher) information than the original sample does.
- The multivariate case:
 - Score function
 - Fisher information