### 《知识图谱: 概念与技术》

# 第8讲知识图谱管理系统

邵斌

微软亚洲研究院

binshao@microsoft.com



### Outline

- Knowledge graph serving scenarios
- General design principles of knowledge graph serving systems
- Real-time query processing
- Representative graph systems
- Demo

### Knowledge Serving Scenarios

### A real-life relation search scenario

#### **A News Headline**

Tom Cruise Admits Katie Holmes Divorced Him To Protect Suri From Scientology

- **10 Tom Cruise** − people.person.marriage − (marriage) − time.event.person − **Katie Holmes**
- **Tom Cruise** people.person.children (**Suri Cruise**) people.person.parent **Katie Holmes**
- Tom Cruise film.actor.film (Bambi Verleihung 2007) film.filmactor Katie Holmes
- 4 ...

### Relation search in knowledge graph

Entity A  $\cdots \sim$  Entity B

#### **Multi-hop Relation Search**

- Discover the hidden relations between entities
- Enable more than what entity indexes can support

### Search results of Google



#### Tom Cruise admits Katie Holmes left to protect Suri from ...

that ex-wife Katie Holmes filed for divorce "to protect Suri from ...



www.nydailynews.com/.../tom-cruise-ad... ▼ New York Daily News ▼ by Bill Hutchinson - in 29 Google+ circles

Nov 7, 2013 - **Tom Cruise** has admitted in an explosive court deposition that actress **Katie Holmes** fled their marriage to protect their daughter from ...

### Search results of Bing



#### Tom Cruise, Katie Holmes



MS Ret:

eta 4,340,000 RESULTS

Any time ▼

#### News about Tom Cruise, Katie Holmes

bing.com/news



KATIE HOLMES DATING JAMIE FOXX RUMORS
CONTINUE AS THE ACTRESS' EX-HUSBAND, TOM
CRUISE WAS REPORTED TO HAVE FINALLY
MOVED ON

Travelers Today · 3 days ago

Katie Holmes dating rumors again sparked as her exhusband Tom Cruise was reportedly dating other woman and that...

Is Tom Cruise Dating Laura Prepon - Katie Holmes Ex Lands Scientologist Girlfriend?

The National Ledger - 10 days ago

Katie Holmes Celebrates Suri Cruise's 8th Birthday

WebProNews · 3 days ago

#### **Images of Tom Cruise, Katie Holmes**

bing.com/images





#### Katie Holmes Celebrates Suri Cruise's 8th Birthday ...



www.webpronews.com/katie-holmes-celebrates-suri-cruises-8th... ▼
Katie Holmes helped daughter Suri Cruise celebrate her 8th birthday in style.
She treated her daughter, along with a few guests, to dinner at Nobu Next ...

#### Tom Cruise: Katie Holmes Divorce Was A Surprise (UPDATE)

www.huffingtonpost.com/2013/04/09/tom-cruise-katie-holmes-divorce... •

Apr 09, 2013 · **Tom Cruise** says **Katie Holmes** divorce was a surprise. Here, the former couple is pictured at the "Mission Impossible: Ghost Protocol" premiere in Dec. 2011.

#### See results for



Katie Holmes
American Actress
Kate Noelle "Katie" Holmes is an American actress and
model who first achieved fame for her role as Joey Pot...



Tom Cruise Film Actor Tom Cruise, is an American film actor and producer. He has been nominated for three Academy Awards and h...

#### Related searches

Tom Cruise Katie Holmes Married

Tom Cruise Katie Holmes Gossip

Tom Cruise Katie Holmes Photos

Tom Cruise Katie Holmes Baby

Tom Cruise Katie Holmes Unusual Marriage

Katie Holmes Tom Cruise Split

Tom Cruise Katie Holmes Suri Custody Settlement

Leah Remini Problems Started Tom Cruise Wedding

### Relation search in knowledge graph

| Satori Add Search                                                                                                       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Tom Cruise, Mimi Rogers, Nicole Kidman, Katie Holmes                                                                    |  |  |  |  |  |
| Results View                                                                                                            |  |  |  |  |  |
| 94 Results (103 ms)                                                                                                     |  |  |  |  |  |
| Results                                                                                                                 |  |  |  |  |  |
| ofilm.actor.film>(Eyes Wide Shut)film.film.actor>(Nicole Kidman)                                                        |  |  |  |  |  |
| ofilm.actor.film>(National Movie Awards)film.film.actor>(Katie Holmes)                                                  |  |  |  |  |  |
| ofilm.actor.film>(InStyle: Celebrity Weddings)film.film.actor>(Katie Holmes)                                            |  |  |  |  |  |
| opeople.person.marriage>(marriage)time.event.person>(Katie Holmes)                                                      |  |  |  |  |  |
| opeople.person.marriage>(marriage)time.event.person>(Nicole Kidman)                                                     |  |  |  |  |  |
| ofilm.actor.film>(War of the Worlds: UK Premiere Special)film.film.actor>(Katie Holmes)                                 |  |  |  |  |  |
| ofilm.producer.film>(The Others)award.nominated_work.nomination>(nomination)award.nomination.nominee(Nicole Kidman)     |  |  |  |  |  |
| opeople.person.children>(Connor Cruise)people.person.siblings>(Isabella Jane Cruise)people.person.parent(Nicole Kidman) |  |  |  |  |  |
| ofilm.producer.film>(The Others)award.nominated_work.nomination>(nomination)award.nomination.nominee(Nicole Kidman)     |  |  |  |  |  |
| ofilm.actor.performance>(performance)film.performance.film>(Eyes Wide Shut)film.film.actor(Nicole Kidman)               |  |  |  |  |  |

### Relation search in knowledge graph





#### **Tom Cruise**



Tom Cruise (born Thomas Cruise Mapother IV; July 3, 1962), is an American film actor and producer. He has been nominated for three Academy Awards and has won three Golden Globe Awards. He started his career at age 19 in the 1981 film Endless Love. After portraying supporting roles in Taps (1981) and The Outsiders (1983), his first leading role was in Risky Business, released in August 1983. Cruise became a full-fledged movie...

#### Types

award.nominee, award.winner, film.actor, film.director, film.producer, film.story\_contributor ...

### General Design Principles

### Challenges of serving knowledge graphs

- Data size
  - in the scale of terabytes

- Complex data schema
  - Rich relations



### Challenges of serving knowledge graphs

- Data size
  - In the scale of terabytes

- Complex data schema
  - Rich relations
  - Multi-typed entities



### How to serve knowledge?



#### Column Index







### The needs ultimately determine the design

The first important rule: there is no one-size-fits-all system!

### First rule: no one-size-fits-all system



### First rule: no one-size-fits-all system



Scale to complexity

### Characteristics of parallel graph processing

- Random access (Poor Locality)
  - For a node, its adjacent nodes cannot be accessed without "jumping" no matter how you represent a graph
  - Not cache-friendly, data reuse is hard



- It is hard to nortition data
  - In this sense, graph is "special".
- Data driven
  - the structure of computations is not known a priori
- High data access to computation ratio

### Design choices

- First important rule: there is no one-size-fits-all system
- Does this system support online queries, offline analytics, or both?
- Is the system optimized for response time, throughput, or both?
- Does the system scale, "out" or "up"?
- Does the system need transaction support?

### Online queries vs. offline analytics

Online query processing is usually optimized for response time

Offline analytics is usually optimized for throughput

- Compared to offline analytics, it is harder to optimize online queries
  - Online queries are sensitive to latency
  - It is difficult to predict the data access patterns of a graph query

## Query response time: data access + communication + computation



### System design choice

Main storage (storage backend)

Index

Communication paradigm: two-sided vs. one-sided

Scale out or scale up

ACID Transactions or not

### System design choice

Main storage (storage backend)

Index

Communication paradigm: two-sided vs. one-sided

Scale out or scale up

ACID Transactions or not

### Graph may be in the jail of storage

- Many existing data management systems can be used to process graphs
- Many existing systems are mature, but not for graphs
  - RDBMS, MapReduce
  - The commonest graph operation "traversal" incurs excessive amount of joins



Graph in the Jail of the storage

### Traverse graph using joins in RDBMS

| ID | name |  |
|----|------|--|
| 1  | N1   |  |
| 2  | N2   |  |
| 3  | N3   |  |
| 4  | N4   |  |
| 5  | N5   |  |
| 6  | N6   |  |
|    |      |  |

| src | dst |
|-----|-----|
| 1   | 3   |
| 2   | 4   |
| 2   | 1   |
| 4   | 3   |
| 1   | 5   |
| 1   | 6   |
|     |     |

### Get neighbors of N1

```
SELECT*

FROM N

LEFT JOIN E ON N.ID = E.dst

WHERE E.src = 1;
```

Node Table: N

Edge Table: E

### Multi-way Join vs. graph traversal



### System design choice

Main storage (storage backend)

Index

Communication paradigm: two-sided vs. one-sided

Scale out or scale up

ACID Transactions or not

### Index

It is costly to index graph structures, use it wisely.

### **Query Index Examples**

| Algorithms                               | Index Size            | Index Time         | <b>Update Cost</b>    |
|------------------------------------------|-----------------------|--------------------|-----------------------|
| ·                                        |                       |                    |                       |
| Ullmann [Ullmann76], VF2 [CordellaFSV04] | -                     | -                  | -                     |
| RDF-3X [NeumannW10]                      | <b>O</b> ( <i>m</i> ) | <b>O</b> (m)       | <b>O</b> ( <i>d</i> ) |
| BitMat [AtreCZH10]                       | $\mathbf{O}(m)$       | $\mathbf{O}(m)$    | $\mathbf{O}(m)$       |
| Subdue [HolderCD94]                      | -                     | Exponential        | <b>O</b> ( <i>m</i> ) |
| SpiderMine [ZhuQLYHY11]                  | -                     | Exponential        | <b>O</b> ( <i>m</i> ) |
| R-Join [ChengYDYW08]                     | $O(nm^{1/2})$         | $O(n^4)$           | $\mathbf{O}(n)$       |
| Distance-Join [ZouCO09]                  | $O(nm^{1/2})$         | $O(n^4)$           | $\mathbf{O}(n)$       |
| GraphQL [HeS08]                          | $O(m + nd^r)$         | $O(m + nd^r)$      | $\mathbf{O}(d^r)$     |
| Zhao [ZhaoH10]                           | $\mathbf{O}(nd^r)$    | $\mathbf{O}(nd^r)$ | $\mathbf{O}(d^L)$     |
| GADDI [ZhangLY09]                        | $O(nd^L)$             | $O(nd^L)$          | $\mathbf{O}(d^L)$     |

Index-based subgraph matching [Sun VLDB 2012]

### **Query Index Examples**

| Algorithms                               | Index Size<br>for Facebook       | Index Time<br>for Facebook | Query Time<br>on Facebook (s) |
|------------------------------------------|----------------------------------|----------------------------|-------------------------------|
| Ullmann [Ullmann76], VF2 [CordellaFSV04] | -                                | -                          | >1000                         |
| RDF-3X [NeumannW10]                      | 1T                               | >20 days                   | >48                           |
| BitMat [AtreCZH10]                       | 2.4T                             | >20 days                   | >269                          |
| Subdue [HolderCD94]                      |                                  | > 67 years                 | -                             |
| SpiderMine [ZhuQLYHY11]                  | -                                | > 3 years                  | -                             |
| R-Join [ChengYDYW08]                     | >175T                            | $> 10^{15}$ years          | >200                          |
| Distance-Join [ZouCO09]                  | >175T                            | $> 10^{15} { m years}$     | >4000                         |
| GraphQL [HeS08]                          | >13T( $r$ =2)                    | > 600 years                | >2000                         |
| Zhao [ZhaoH10]                           | >12T( $r$ =2)                    | > 600 years                | >600                          |
| GADDI [ZhangLY09]                        | $> 2 \times 10^5 \text{T} (L=4)$ | $> 4 \times 10^5$ years    | >400                          |

Index-based subgraph matching [Sun VLDB 2012]

### System design choice

Main storage (storage backend)

Index

Communication paradigm: two-sided vs. one-sided

Scale out or scale up

ACID Transactions or not

### Two-sided communication



### One-sided communication



### System design choice

Main storage (storage backend)

Index

Communication paradigm: two-sided vs. one-sided

Scale out or scale up

ACID Transactions or not

### Design choice: scale-up vs. scale-out

- Supercomputer model
  - Programming model simple and efficient
    - shared memory address space
  - Expensive
  - Hardware is your ultimate limit
- Distributed cluster model
  - Programming model is complex
  - Relatively cheaper and can make use of commodity pc
  - Flexible to meet various needs

Scale "OUT", not "UP"

#### System design choice

Main storage (storage backend)

Index

Communication paradigm: two-sided vs. one-sided

Scale out or scale up

ACID Transactions or not

#### Think twice before diving into transactions

- Pros
  - Strong data consistency guarantee
- Cons
  - The hell of referential integrity
  - The disaster of cascading rollback
  - Multi-round network communications per commit for distributed transactions

### The hell of referential integrity



#### The hell of referential integrity



#### The disaster of cascading rollback



# Real-time Query Processing

#### Query processing

Where latencies come from and asynchronous fan-out search

Index-free query processing

#### Query processing

Where latencies come from and asynchronous fan-out search

Index-free query processing

#### People search challenge in Facebook graph

Among adult Facebook users, the average number of friends is 338.

Can we search a person in one's 3-hop neighborhood within 500 ms?

#### Latency, Bandwidth, and Capacity



#### Disk-based approach

each disk seek + read: > 10 ms

#### RAM-based approach

DRAM latency: 100 ns

10 million reads/writes per second

1 million node-level read/write per second

38,729,054 nodes to access, it takes at least 38 seconds.

#### Where do latencies come from?



#### Move computation, instead of data!



If you care about latency, do not use the shared-memory model in a distributed setting.

#### Lessons learned so far (how to reduce latencies)

- RAM (Hardware sometimes does matter a lot)
  - The stupid buy faster computers, smart ones write better programs?

Avoid moving data

•

#### Lessons learned so far (how to reduce latencies)

- RAM (Hardware sometimes does matter a lot)
  - The stupid buy faster computers, smart ones write better programs?

Avoid moving data

Avoid unnecessary synchronizations

Make programming harder

#### Asynchronous fan-out search



| Нор | Msg # | Node # per machine |
|-----|-------|--------------------|
| 1   | n     | $\frac{d}{n}$      |
| 2   | $n^2$ | $\frac{d^2}{n}$    |
| 3   | $n^3$ | $\frac{d^3}{n}$    |

n is the server count d is the average degree

#### Online query processing

Where latencies come from and fan-out search

Index-free query processing

#### Query KG via Graph Exploration



#### Online query example: subgraph matching

#### Procedure:

1. Break a graph into basic units (edges, paths, frequent subgraphs, ...)

2. Build index for every possible basic unit

3. Decompose a query into multiple basic unit queries, and join the results

#### Case study: distributed subgraph matching

Procedure:

1. Break a query into basic units

2. Match the basic units in parallel on the fly

3. Join the results

### Subgraph matching



### Subgraph matching



### Basic unit for distributed subgraph matching





As a basic unit, which one is the best?

### Basic unit for distributed subgraph matching





As a basic unit, which one is the best?

#### Basic unit for distributed subgraph matching







- Easy to decompose
- Height is always one
  - It at most needs to cross the network once

#### Query decomposition



#### Query decomposition



#### Query optimization problems

How to choose a good query decomposition

How to choose a good execution order

How to choose a good join order

# Representative Graph Systems

#### **Existing systems**

- Mature data processing systems
  - RDBMS
  - Map Reduce Systems
- Systems specialized for certain graph operations
  - PageRank, FlockDB

- General-purpose graph processing systems
  - Neo4j, Trinity, Horton, HyperGraphDB, TinkerGraph, InfiniteGraph, Cayley, Titan, PEGASUS, Pregel, Giraph, GraphLab, GraphChi, GraphX ...

#### Representative graph processing systems

|   |               | Property<br>graphs | Online<br>query | Data<br>sharding | In-memory<br>storage | Atomicity & Transaction |
|---|---------------|--------------------|-----------------|------------------|----------------------|-------------------------|
| * | Neo4j         | Yes                | Yes             | No               | No                   | Yes                     |
| * | Trinity       | Yes                | Yes             | Yes              | Yes                  | Atomicity               |
| * | Horton        | Yes                | Yes             | Yes              | Yes                  | No                      |
| * | HyperGraphDB  | No                 | Yes             | No               | No                   | Yes                     |
| * | FlockDB       | No                 | Yes             | Yes              | No                   | Yes                     |
| * | TinkerGraph   | Yes                | Yes             | No               | Yes                  | No                      |
| * | InfiniteGraph | Yes                | Yes             | Yes              | No                   | Yes                     |
| * | Cayley        | Yes                | Yes             | SB               | SB                   | Yes                     |
| * | Titan         | Yes                | Yes             | SB               | SB                   | Yes                     |
| * | MapReduce     | No                 | No              | Yes              | No                   | No                      |
| * | PEGASUS       | No                 | No              | Yes              | No                   | No                      |
| * | Pregel        | No                 | No              | Yes              | No                   | No                      |
| * | Giraph        | No                 | No              | Yes              | No                   | No                      |
| * | GraphLab      | No                 | No              | Yes              | No                   | No                      |
| * | GraphChi      | No                 | No              | No               | No                   | No                      |
| * | GraphX        | No                 | No              | Yes              | No                   | No                      |

## Demo

#### References

- Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, Jonathan Berry. Challenges in parallel graph processing. Parallel Processing Letters 2007.
- Bin Shao, Haixun Wang, Yatao Li. Trinity: a distributed graph engine on a memory cloud. SIGMOD 2013.
- Luiz André Barroso, Urs Hoelzle. The datacenter as a computer: An introduction to the design of warehouse-scale machines. 2009.
- Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. SIGMOD 2010.
- Aapo Kyrola, Guy Blelloch, Carlos Guestrin. GraphChi: Large-scale graph computation on just a PC. OSDI 2012.
- Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Efficient subgraph matching on billion node graphs. PVLDB 2012.
- U Kang, Charalampos E. Tsourakakis, Christos Faloutsos. PEGASUS: A peta-scale graph mining system implementation and observations. ICDM 2009.

### Thanks!

https://www.graphengine.io/

https://www.binshao.info/