## Wireless Ad Hoc Networks Lab 3

#### **Network Simulator**

NS3 Experiment (II) –

Part I: RTS & CTS \ Part II: CW size

## NS3 Experiment(II)

Part I: RTS & CTS

#### Introduction

- Goal
  - To investigate the impact of hidden terminal problem in ad hoc network and familiar with RTS/CTS mechanism
- Modify the .cc code to meet the scenario we specified in the next slide
- Run simulation and write the analysis to compute
  - System throughput
  - Packet loss ratio

## Simulation environment

- Set node distance
  - $d_{01}=170 \text{m}$ ;  $d_{23}=170 \text{m}$ ;
  - Change d<sub>12</sub> from 50 to 100, 150, 190, 220, 280, 320 (totally 7 scenario)



## Simulation environment



# Simulation environment – Wifi Channel

- CS\_Threshold\_dBm = value1
- RX\_Threshold\_dBm = value2
  - Set proper value for value1 and value2
- Carrier sensing range: 300m
- Transmission range: 200m

# Simulation environment – Wifi Channel

Two-Ray Ground Propagation:

$$P_r(d) = \frac{P_t G_t G_r h_t^2 h_r^2}{d^4 L}$$

- C function (TwoRayGround CS/RX Calculator) is provided
  - compute the receiving threshold

# Simulation environment – Wifi Channel

- set RTS/CTS Threshold = value ??
- Q. How to set proper value to turn on RTS/CTS mechanism?
- → RtsCtsThreshold = ??

## Simulation environment

- Network scenario part 1
  - Simulation time = 4
  - simulation area = 800(x)\*800(y) (m2)
  - CSThresh= value
  - RXThresh= value
    - According to carrier sensing range 300m and transmission range 200m, set proper value
  - CWMin=20
  - CWMax=20
  - RTS/CTS Threshold= value
    - turn on RTS/CTS mechanism

## Simulation environment

- Network scenario part 2
  - CBR packet size = 1024 (bytes)
  - □ CBR rate = 800kbps
  - CBR traffic
    - start at 1.0
    - stop at 3.0



Please Make sure flow configuration is correct!!

## After Simulation

- Analysis
  - a. Average system throughput
  - b. Average packet loss ratio

## Analysis

total received data size (bytes) x 8 (bits)

a. throughput = ------simulation time

# total lost packets

b. packet loss ratio = ------ # total packets sent



## NS3 Experiment(II)

Part II: CW size

- This exercise is to investigate
  - the impact of contention window size on the performance of the IEEE 802.11 MAC protocol
- To reduce the collision probability
  - the IEEE 802.11 uses a backoff mechanism
  - that guarantees a time spreading of the transmissions
- DCF adopts a slotted binary exponential backoff technique

- Construct 3 grid topologies (3\*3 \ 4\*4 \ 5\*5)
  - with nodes spaced by 40 (m)
- 3 x 3



4 x 4



■ 5 x 5



- Network scenario
  - Simulation time = 4
  - $\square$  simulation area = 500m \* 500m (m<sup>2</sup>)
  - □ CWMin=CWMax=2
    - Change CW value to 2, 7, 15, 31, 63
    - RTSThreshold= 100000 (Turn OFF RTS/CTS)

- Network scenario
  - Please make sure flow configuration as instructed!!
  - □ CBR packet size = 1024 (bytes)
  - □ CBR rate = 500kbps
  - CBR traffic
    - start at 1.0
    - stop at 3.0

- Network scenario
  - Run the program for
    - the three topologies (3\*3 \ 4\*4 \ 5\*5)
    - six kinds of contention window size (2, 7, 15, 31, 63)
    - A total of 15 combinations.
  - NOTE: remember to change number of nodes & communication pair!!

## Analysis

- a. System throughput
- b. total lost packets



## Analysis

- System throughput
- Total lost packets

```
total received data size (bytes) x 8 (bits)
throughput = ----- (bps)
simulation time
```

bps/1024/1024 = Mbps