Esercitazione 5: controllo LQ

Si consideri il sistema lineare tempo continuo ∑:

$$\begin{cases} x_1 = -x_1 - 5x_2 + u \\ x_2 = 7x_1 - 2x_2 \\ y = x_1 + x_2 \end{cases}$$

Sia dato il problema di controllo ottimo LQ in cui la cifra di merito da minimizzare è la seguente:

$$J = \int (x'Qx + u'Ru) dt$$

dove Q ed R sono pari alla matrice identità. Scrivere uno script che, una volta verificate le ipotesi necessarie, permetta

- Determinare la matrice K di retroazione dello stato e il guadagno L dell'osservatore.
- Simulare l'uscita libera del sistema controllato a partire da condizioni iniziali [5 5] per il sistema (e nulle per l'osservatore). Indicare l'istante di tempo in cui l'osservatore ricostruisce senza scostamenti apprezzabili lo stato del sistema.

Controllo in retroazione dello stato

Controllo Classico

Controllo Ottimo

Esercitazione 5: controllo LQ

$$J = \int (x'Qx + u'Ru) dt$$

$$[K S E] = \mathbf{lqr}(A,B,Q,R)$$

$$J = \int (y'Qy + u'Ru) dt$$

$$J = \int ((Cx)'Q (Cx) + u'Ru) dt = \int (x'C'QCx + u'Ru) dt$$

$$[K S E] = \mathbf{lqr}(A,B,C'*Q*C,R)$$

Dove:

- K: guadagno del regolatore t.c. la retroazione (A-B*K) minimizzi J
- E: autovalori di (A-B*K)
- S: soluzione della equazione algebrica di Riccati associata al problema di controllo ottimo assegnato.