

CHEMISTRY DATA SHEET

Revised September 2007

FORMULA

Number of moles (mass) n <u>m</u> (molar mass) Μ

Number of moles of solute cV

Number of moles of a gas at STP 22.41

Ideal gas law PVnRT

Parts per million mass of solute (mg) ppm

mass of solution (kg)

pH of a solution рΗ - log [H⁺]

Solubility rules for ionic solids in water

Densi

Soluble in water

11	Soluble	Exceptions							
Units Volume	Solubic	Insoluble	Slightly soluble						
Tempe	Most chlorides	AgCl,	PbCl ₂						
It may	Most bromides	AgBr,	PbBr ₂						
,	Most iodides	AgI, PbI ₂							
Energy	All nitrates	No exceptions							
Pressu	All ethanoates								
Solutio	Most sulfates	SrSO ₄ , BaSO ₄ , HgSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄						

Consta Univers

Insoluble in water

•	,
Volu	me
S.T.F	Р. i
Equi	libr

Avogad	Insoluble	Exceptions							
Volume	IIISOIUDIC	Soluble	Slightly soluble						
S.T.P. i Equilibr	Most hydroxides	NaOH, KOH, Ba(OH) ₂ (NH ₄ OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂						
	Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃							
	Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄							
	Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S							

Soluble more than 0.1 mole dissolves per litre

Slightly soluble between 0.01 and 0.1 mole dissolves per litre

Insoluble less than 0.01 mole dissolves per litre Colour of species in aqueous solution

Cation	Colour	Cation	Colour	Anion	Colour	Halogen	Colour		
Al ³⁺	colourless	Mn ²⁺	very pale pink	Br ⁻	colourless	$C\ell_{2(aq)}$	pale yellow		
NH_4^+	colourless	Ni ²⁺	green	Cℓ	colourless	Br _{2 (aq)}	orange		
Ba ²⁺	colourless	Ag⁺	colourless	CrO ₄ ² -	yellow	I _{2(aq)}	brown		
Ca ²⁺	colourless	Na⁺	colourless	Cr ₂ O ₇ ²⁻	orange				
Cr ³⁺	deep green	Sr ²⁺	colourless	I.	I ⁻ colourless Halo		alogen in organic solvent		
Co ²⁺	pink	Sn ²⁺	colourless	MnO ₄ -	deep purple	Halogen	Colour		
Cu ²⁺	blue	Zn ²⁺	colourless	PO ₄ 3-	colourless	Br ₂	red		
Fe ²⁺	pale green			S ²⁻	colourless	l ₂	purple		
Fe ³⁺	brown								
K ⁺	colourless								
Pb ²⁺	colourless								
Mg ²⁺	colourless			-					

Standard Reduction Potentials at 25°C

Half-reaction

E°(volts)

```
F_2(g) + 2 e^- \implies 2 F^-(aq)
                                                                                                 + 2.87
             H_2O_2(aq) + 2 H^+(aq) + 2 e^- \rightleftharpoons 2 H_2O(\ell)
                                                                                                  + 1.78
PbO_2(s) + SO_4^2(aq) + 4 H^+(aq) + 2 e^- \implies PbSO_4(s) + 2 H_2O(t)
                                                                                                  + 1.69
         2 HC\ell O(aq) + 2 H^{\dagger}(aq) + 2 e^{-} \rightleftharpoons C\ell_{2}(q) + 2 H_{2}O(\ell)
                                                                                                 + 1.61
           MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \implies Mn^{2+}(aq) + 4 H_2O(\ell)
                                                                                                 + 1.51
                            Au^{3+}(aq) + 3 e^{-} \implies Au(s)
                                                                                                  + 1.50
              HC\ell O(aq) + H^{+}(aq) + 2e^{-} \rightleftharpoons C\ell^{-}(aq) + H_2O(\ell)
                                                                                                  + 1.48
              PbO_2(s) + 4 H^+(aq) + 2 e^- \implies Pb^{2+}(aq) + 2 H_2O(\ell)
                                                                                                  + 1.46
                               Cl_2(g) + 2 e^- \rightleftharpoons 2 C\ell^-(aq)
                                                                                                  + 1.36
         Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \rightleftharpoons 2 Cr^{3+}(aq) + 7 H_2O(t)
                                                                                                  + 1.23
                  O_2(g) + 4 H^+(aq) + 4 e^- \implies 2 H_2O(\ell)
                                                                                                  + 1.23
                                                                                                  + 1.07
                               Br_2(t) + 2 e^- \rightleftharpoons 2 Br(aq)
                                                                                                 + 0.96
              NO_3^-(aq) + 4 H^+(aq) + 3 e^- \implies NO(g) + 2 H_2O(\ell)
                                                                                                  + 0.91
                         2 \text{ Hg}^{2+}(aq) + 2 e^- \implies \text{Hg}_2^{2+}(aq)
                              Ag^+(aq) + e^- \Rightarrow Ag(s)
                                                                                                  + 0.80
                              Fe^{3+}(aq) + e^{-} \Rightarrow Fe^{2+}(aq)
                                                                                                  + 0.77
                  O_2(g) + 2 H^+(aq) + 2 e^- \iff H_2O_2(aq)
                                                                                                 + 0.68
                                 I_2(s) + 2 e^- \rightleftharpoons 2 I^-(aq)
                                                                                                  + 0.54
                 O_2(g) + 2 H_2O(\ell) + 4 e^- \iff 4 OH^-(aq)
                                                                                                  + 0.40
                            Cu^{2+}(aq) + 2 e^{-} \rightleftharpoons Cu(s)
                                                                                                  +0.34
                            2 H^{+}(aq) + 2 e^{-} \rightleftharpoons H_{2}(g)
                                                                                                  0 exactly
                            Pb^{2+}(aq) + 2 e^{-} \Leftrightarrow Pb(s)
                                                                                                  - 0.13
                            \operatorname{Sn}^{2+}(aq) + 2 e^{-} \Rightarrow \operatorname{Sn}(s)
                                                                                                  - 0.14
                            Ni^{2+}(aq) + 2 e^{-} \implies Ni(s)
                                                                                                 - 0.26
                            Co^{2+}(aq) + 2 e^{-} \implies Co(s)
                                                                                                  - 0.28
                           PbSO_4(s) + 2 e^- \Rightarrow Pb(s) + SO_4^2-(aq)
                                                                                                  - 0.36
                            Cd^{2+}(aq) + 2e^{-} \Rightarrow Cd(s)
                                                                                                 - 0.40
              2 CO_2(g) + 2 H^+(aq) + 2 e^- \Rightarrow HOOCCOOH(aq)
                                                                                                 -0.43
                            Fe^{2+}(aq) + 2e^{-} \Rightarrow Fe(s)
                                                                                                  - 0.44
                            Cr^{3+}(aq) + 3 e^{-}
                                                       Cr(s)
                                                                                                 - 0.73
                            Zn^{2+}(aq) + 2e^{-} \implies
                                                                                                 - 0.76
                                                        Zn(s)
                            2 H<sub>2</sub>O(ℓ) + 2 e<sup>-</sup> →
                                                        H_2(g) + 2 OH^-(aq)
                                                                                                 -0.83
                            Mn^{2+}(aq) + 2 e^{-} \iff Mn(s)
                                                                                                 - 1.18
                            At^{3+}(aq) + 3e^{-} \Rightarrow
                                                       A\ell (s)
                                                                                                 - 1.66
                            Mg^{2+}(aq) + 2 e^- \Rightarrow Mg(s)
                                                                                                 - 2.37
                              Na^+(aq) + e^- \Rightarrow Na(s)
                                                                                                 - 2.71
                            Ca<sup>2+</sup>(aq) + 2 e<sup>-</sup> -
                                                                                                 - 2.76
                                                       Ca(s)
                             Sr<sup>2+</sup>(aq) + 2 e<sup>-</sup>
                                                                                                 - 2.89
                                                        Sr(s)
                            - 2.91
                                                        Ba(s)
                                K^+(aq) + e^- \iff K(s)
                                                                                                 - 2.93
```

Periodic Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.008																		2 He 4.003
	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
·	11 Na 22.99	12 Mg 24.31											13 At 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 C <i>t</i> 35.45	18 Ar 39.95
·	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
·	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
·	55 Cs 132.9	56 Ba 137.3	57 *La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po	85 At	86 Rn
	87 Fr	88 Ra 226.0	89 **Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									
	* Lanthanide Series			58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0	
			** Actinide Series		90 Th 232.0	91 Pa	92 U 238.0	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

6 ← Atomic Number C ← Symbol 12.01 ← Atomic Mass

5